

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[INVÁLIDO!! – NÃO RESOLVER (Procure o seu enunciado)]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.4	4.1	9.4	20.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.9625 sendo a tabela de diferenças finitas

1.4 2.7 2.6 3.0 4.1 5.3 5.6 9.4 10.9 20.3

Q4-2a Valor estimado do integral:

Solução: 38.96 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[052204552 - Marco Paulo da Silva Veiga]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.5	4.1	8.7	17.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.5000 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 1.6 & 3.0 & 1.2 \\ 4.1 & 4.6 & 4.2 & \\ 8.7 & 8.8 & & \\ 17.5 & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 9.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[070221144 - Gabriel Ricardo Costa Soromenho]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.6	4.5	9.8	18.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.8250 sendo a tabela de diferenças finitas

1.6 2.9 2.4 1.2 4.5 5.3 3.6 9.8 8.9 18.7

Q4-2a Valor estimado do integral:

Solução: 9.78 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[090221026 – Fábio Miguel Rodrigues Faustino]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.0	4.7	10.0	19.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.1000 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.0 & 2.7 & 2.6 & 1.2 \\ 4.7 & 5.3 & 3.8 \\ 10.0 & 9.1 \\ 19.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 30.30 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 C

Cotação: 4 val.

[130221093 - Claudiu Alexandru Marinel]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.6	4.2	9.6	20.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.7375 sendo a tabela de diferenças finitas

1.6 2.6 2.8 3.0 4.2 5.4 5.8 9.6 11.2 20.8

Q4-2a Valor estimado do integral:

Solução: 40.00 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[140221038 – Edilson de Jesus Jamba]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.7	4.0	9.1	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.6125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.7 & 2.3 & 2.8 & 1.8 \\ 4.0 & 5.1 & 4.6 \\ 9.1 & 9.7 \\ 18.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 28.02 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[140221040 - Miguel Figueiredo Mário]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.3	4.1	8.9	17.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.5625 sendo a tabela de diferenças finitas

1.3 2.8 2.0 1.8 4.1 4.8 3.8 8.9 8.6 17.5

Q4-2a Valor estimado do integral:

Solução: 17.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[140221070 - Rui Filipe Moita Andrade de Sousa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.4	3.6	8.6	17.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.2250 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.4 & 2.2 & 2.8 & 1.2 \\ 3.6 & 5.0 & 4.0 \\ 8.6 & 9.0 \\ 17.6 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 8.68 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 4 de 5 Cotação: 4 val.

[150221020 - Ricardo Filipe Maia Lemos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.6	4.2	8.0	17.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.3125 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.6 & 1.6 & 2.2 & 3.0 \\ 4.2 & 3.8 & 5.2 & \\ 8.0 & 9.0 & & \\ 17.0 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 17.60 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[150221082 - David Jorge Conceição Luz]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.9	4.4	8.9	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.4250 sendo a tabela de diferenças finitas

2.9 1.5 3.0 2.4 4.4 4.5 5.4 8.9 9.9 18.8

Q4-2a Valor estimado do integral:

Solução: 38.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160210042 – Paulo Ruben de Faria Guapo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.4	4.8	10.2	19.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.0500 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.4 & 2.4 & 3.0 & 1.2 \\ 4.8 & 5.4 & 4.2 \\ 10.2 & 9.6 \\ 19.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 10.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160221008 – André Miguel Martins Guerreiro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.3	4.2	8.7	17.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.3000 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.3 & 1.9 & 2.6 & 1.2 \\ 4.2 & 4.5 & 3.8 & \\ 8.7 & 8.3 & & \\ 17.0 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 18.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160221011 - Francisco Maria Esteves Leal]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

:	r	2.9	3.3	3.7	4.1
f(x))	3.0	5.8	11.4	21.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 8.1750 sendo a tabela de diferenças finitas

3.0 2.8 2.8 1.2 5.8 5.6 4.0 11.4 9.6 21.0

Q4-2a Valor estimado do integral:

Solução: 11.68 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160221033 – João Pedro Carromeu Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.9	5.6	10.1	17.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.5500 sendo a tabela de diferenças finitas

2.9 2.7 1.8 1.2 5.6 4.5 3.0 10.1 7.5 17.6

Q4-2a Valor estimado do integral:

Solução: 41.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 4 de 5 Cotação: 4 val.

[160221044 - Rui Pinho de Almeida]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.9	5.7	11.1	22.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 15.7125 sendo a tabela de diferenças finitas

2.9 2.8 2.6 3.0 5.7 5.4 5.6 11.1 11.0 22.1

Q4-2a Valor estimado do integral:

Solução: 35.16 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160221046 - David Nuno Menoita Tavares]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.7	4.6	9.3	17.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.0375 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.7 & 2.9 & 1.8 & 1.8 \\ 4.6 & 4.7 & 3.6 \\ 9.3 & 8.3 & & & \\ 17.6 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 9.42 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^{o} Semestre 2019/20 Exame Final 2^{a} Época

Questão 4 de 5 Cotação: 4 val.

[160221049 - Daniel Ng dos Santos Faria]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.4	2.8	5.4	11.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.9000 sendo a tabela de diferenças finitas

1.4 1.4 1.2 2.4 2.8 2.6 3.6 5.4 6.2 11.6

Q4-2a Valor estimado do integral:

Solução: 23.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160221050 - Bruno Miguel Gonçalves Dias]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	3.0	4.2	8.0	17.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.5875 sendo a tabela de diferenças finitas

3.0 1.2 2.6 3.0 4.2 3.8 5.6 8.0 9.4 17.4

Q4-2a Valor estimado do integral:

Solução: 26.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[160221093 – Daniel Inácio Lima]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.3	3.9	9.3	18.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.1750 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.3 & 2.6 & 2.8 & 1.2 \\ 3.9 & 5.4 & 4.0 \\ 9.3 & 9.4 \\ 18.7 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 37.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221024 - Miguel Ângelo Cadimas Carromeu]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.3	5.2	9.9	19.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.1375 sendo a tabela de diferenças finitas

2.3 2.9 1.8 3.0 5.2 4.7 4.8 9.9 9.5 19.4

Q4-2a Valor estimado do integral:

Solução: 20.76 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221029 - João Paulo Pinto dos Santos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.2	5.2	11.2	22.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 15.8875 sendo a tabela de diferenças finitas

2.2 3.0 3.0 1.8 5.2 6.0 4.8 11.2 10.8 22.0

Q4-2a Valor estimado do integral:

Solução: 11.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221037 - Frederico Albino Alcaria]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.7	3.7	8.5	17.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.6375 sendo a tabela de diferenças finitas

1.7 2.0 2.8 1.8 3.7 4.8 4.6 8.5 9.4 17.9

Q4-2a Valor estimado do integral:

Solução: 26.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221049 – João Francisco Rodrigues dos Reis]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.8	3.2	7.4	15.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.2250 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.8 & 1.4 & 2.8 & 1.2 \\ 3.2 & 4.2 & 4.0 \\ 7.4 & 8.2 \\ 15.6 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221057 - Hugo Alexandre da Silva Modesto]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.5	5.4	10.7	21.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.5625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 2.9 & 2.4 & 3.0 \\ 5.4 & 5.3 & 5.4 \\ 10.7 & 10.7 & & & \\ 21.4 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 22.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[170221068 - Bruno Cunha Selistre]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.8	5.8	11.2	22.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 8.0125 sendo a tabela de diferenças finitas

2.8 3.0 2.4 3.0 5.8 5.4 5.4 11.2 10.8 22.0

Q4-2a Valor estimado do integral:

Solução: 23.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221069 - Eugenio Duarte da Silva]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.6	5.6	11.4	21.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 8.0375 sendo a tabela de diferenças finitas

2.6 3.0 2.8 1.8 5.6 5.8 4.6 11.4 10.4 21.8

Q4-2a Valor estimado do integral:

Solução: 46.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221078 – César Augusto Fonseca Fontinha]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.8	4.8	8.4	15.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.3625 sendo a tabela de diferenças finitas

2.8 2.0 1.6 1.8 4.8 3.6 3.4 8.4 7.0 15.4

Q4-2a Valor estimado do integral:

Solução: 8.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221082 - Filipe dos Santos Serra do Amaral]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.2	3.1	7.2	14.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 1.9500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.2 & 1.9 & 2.2 & 1.2 \\ 3.1 & 4.1 & 3.4 \\ 7.2 & 7.5 \\ 14.7 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.30 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221084 - Rafael Alexandre Botas Rosado]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.0	4.7	8.6	14.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.2750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.0 & 2.7 & 1.2 & 1.2 \\ 4.7 & 3.9 & 2.4 \\ 8.6 & 6.3 & & \\ 14.9 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 26.10 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[170221100 – José Manuel Coelho Florindo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.4	4.2	9.2	19.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.7125 sendo a tabela de diferenças finitas

1.4 2.8 2.2 3.0 4.2 5.0 5.2 9.2 10.2 19.4

Q4-2a Valor estimado do integral:

Solução: 19.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221001 - Weshiley Felix Aniceto]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.5	3.3	6.3	12.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.5375 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 1.8 & 1.2 & 1.8 \\ 3.3 & 3.0 & 3.0 \\ 6.3 & 6.0 & & & \\ 12.3 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.80 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221010 – César Alves Caldeira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.0	4.8	9.4	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.6875 sendo a tabela de diferenças finitas

2.0 2.8 1.8 3.0 4.8 4.6 4.8 9.4 9.4 18.8

Q4-2a Valor estimado do integral:

Solução: 9.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221015 - Francisco Miguel Luzio Moura]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.3	2.8	6.5	14.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 1.9250 sendo a tabela de diferenças finitas

1.3 1.5 2.2 2.4 2.8 3.7 4.6 6.5 8.3 14.8

Q4-2a Valor estimado do integral:

Solução: 20.82 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221022 - Carlos Emanuel Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	3.0	5.7	11.4	23.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.1625 sendo a tabela de diferenças finitas

3.0 2.7 3.0 3.0 5.7 5.7 6.0 11.4 11.7 23.1

Q4-2a Valor estimado do integral:

Solução: 48.24 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221029 - Daniel Mestre Lachkeev]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.6	4.2	8.8	18.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.8375 sendo a tabela de diferenças finitas

1.6 2.6 2.0 3.0 4.2 4.6 5.0 8.8 9.6 18.4

Q4-2a Valor estimado do integral:

Solução: 36.80 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221037 – João Vidal Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.6	3.6	7.2	13.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.1250 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.6 & 2.0 & 1.6 & 1.2 \\ 3.6 & 3.6 & 2.8 \\ 7.2 & 6.4 & & & \\ 13.6 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.36 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221039 – António Carlos Marques da Silva Miranda]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.7	4.5	10.3	20.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.7000 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.7 & 2.8 & 3.0 & 1.2 \\ 4.5 & 5.8 & 4.2 \\ 10.3 & 10.0 & & & \\ 20.3 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 10.32 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221049 - Tomás Machado Correia]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.9	3.4	6.1	11.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.5750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.9 & 1.5 & 1.2 & 1.2 \\ 3.4 & 2.7 & 2.4 \\ 6.1 & 5.1 \\ 11.2 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 6.42 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221052 - António Pedro Guerreiro Milheiras]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.6	3.9	8.0	15.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.6000 sendo a tabela de diferenças finitas

1.6 2.3 1.8 1.2 3.9 4.1 3.0 8.0 7.1 15.1

Q4-2a Valor estimado do integral:

Solução: 32.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221054 - Diogo Couchinho Rodrigues]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.6	5.2	9.4	17.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.8125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.6 & 2.6 & 1.6 & 1.8 \\ 5.2 & 4.2 & 3.4 & \\ 9.4 & 7.6 & & \\ 17.0 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 39.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221060 - Bruno Alexandre da Silva Nunes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.3	4.6	9.7	20.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.0500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 2.3 & 2.8 & 2.4 \\ 4.6 & 5.1 & 5.2 \\ 9.7 & 10.3 & & & \\ 20.0 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 20.36 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221068 – Guilherme Miguel de Azevedo Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.7	5.6	10.9	20.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.8375 sendo a tabela de diferenças finitas

2.7 2.9 2.4 1.8 5.6 5.3 4.2 10.9 9.5 20.4

Q4-2a Valor estimado do integral:

Solução: 11.22 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221070 – Rafael André Anselmo Trindade]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.6	3.9	9.0	18.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.4750 sendo a tabela de diferenças finitas

1.6 2.3 2.8 1.2 3.9 5.1 4.0 9.0 9.1 18.1

Q4-2a Valor estimado do integral:

Solução: 36.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[180221072 - Miguel Ângelo Candeias Messias]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.2	4.4	8.2	14.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.1750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.2 & 2.2 & 1.6 & 1.2 \\ 4.4 & 3.8 & 2.8 \\ 8.2 & 6.6 \\ 14.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 33.76 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221075 - Marco Alexandre Gonçalves Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.3	3.4	6.7	12.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8250 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.3 & 2.1 & 1.2 & 1.2 \\ 3.4 & 3.3 & 2.4 \\ 6.7 & 5.7 \\ 12.4 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 27.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221079 - Daniel Tiago dos Santos Azevedo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.6	4.2	8.4	17.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.0375 sendo a tabela de diferenças finitas

1.6 2.6 1.6 3.0 4.2 4.2 4.6 8.4 8.8 17.2

Q4-2a Valor estimado do integral:

Solução: 17.60 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221080 - Alexandre Miguel Machado Ferreira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.4	3.3	7.2	14.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.9250 sendo a tabela de diferenças finitas

1.4 1.9 2.0 1.2 3.3 3.9 3.2 7.2 7.1 14.3

Q4-2a Valor estimado do integral:

Solução: 22.02 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221083 - Gonçalo Fernandes Costa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.4	2.9	7.0	16.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.7750 sendo a tabela de diferenças finitas

1.4 1.5 2.6 2.4 2.9 4.1 5.0 7.0 9.1 16.1

Q4-2a Valor estimado do integral:

Solução: 29.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221088 – André Pinheiro Duarte]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	3.0	5.8	10.8	19.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.5000 sendo a tabela de diferenças finitas

3.0 2.8 2.2 1.2 5.8 5.0 3.4 10.8 8.4 19.2

Q4-2a Valor estimado do integral:

Solução: 11.08 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221094 - Gonçalo Miguel dos Santos Pratas]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.7	4.0	7.3	15.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.2500 sendo a tabela de diferenças finitas

2.7 1.3 2.0 2.4 4.0 3.3 4.4 7.3 7.7 15.0

Q4-2a Valor estimado do integral:

Solução: 16.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221096 - Nuno Miguel Prazeres Tavares]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.1	4.6	9.7	19.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.6750 sendo a tabela de diferenças finitas

2.1 2.5 2.6 2.4 4.6 5.1 5.0 9.7 10.1 19.8

Q4-2a Valor estimado do integral:

Solução: 10.10 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221099 – Dionicio Odi Djú]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.7	3.4	8.1	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.1875 sendo a tabela de diferenças finitas

1.7 1.7 3.0 3.0 3.4 4.7 6.0 8.1 10.7 18.8

Q4-2a Valor estimado do integral:

Solução: 17.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221100 - Pedro Miguel Martins Lima]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.5	5.4	11.1	20.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.6750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 2.9 & 2.8 & 1.2 \\ 5.4 & 5.7 & 4.0 \\ 11.1 & 9.7 \\ 20.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 11.26 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221104 - Vitor Nuno Valente Gomes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.7	4.0	7.9	15.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.5500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.7 & 1.3 & 2.6 & 1.2 \\ 4.0 & 3.9 & 3.8 \\ 7.9 & 7.7 \\ 15.6 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 33.68 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221106 - Ana Catarina Sales Duarte]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.5	3.2	6.7	13.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.6500 sendo a tabela de diferenças finitas

Q4-2a Valor estimado do integral:

Solução: 27.60 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221110 – Luís Miguel Dias Varela]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.0	3.7	6.8	14.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.8625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.0 & 1.7 & 1.4 & 3.0 \\ 3.7 & 3.1 & 4.4 \\ 6.8 & 7.5 \\ 14.3 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 14.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Co

Cotação: 4 val.

[180221116 - Victor Castilho de Barros]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.6	4.2	7.0	14.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.7875 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.6 & 1.6 & 1.2 & 3.0 \\ 4.2 & 2.8 & 4.2 \\ 7.0 & 7.0 \\ 14.0 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 15.60 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221118 - Daniel Franco Custódio]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.9	3.2	7.5	16.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.9 & 1.3 & 3.0 & 1.8 \\ 3.2 & 4.3 & 4.8 & \\ 7.5 & 9.1 & & \\ 16.6 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 23.94 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221122 - Tiago Miguel Cotovio Fino]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.8	4.6	10.2	20.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.6125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.8 & 2.8 & 2.8 & 1.8 \\ 4.6 & 5.6 & 4.6 \\ 10.2 & 10.2 & \\ 20.4 & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 41.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[180221123 – Iuri Sanchez Fidalgo Amaral Tomé]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.0	4.9	9.2	16.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.3500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.0 & 2.9 & 1.4 & 1.2 \\ 4.9 & 4.3 & 2.6 \\ 9.2 & 6.9 \\ 16.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 18.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[180221132 - Rui M. Pitas de Almeida e Oliveira Nunes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.7	3.0	6.7	15.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.3875 sendo a tabela de diferenças finitas

1.7 1.3 2.4 3.0 3.0 3.7 5.4 6.7 9.1 15.8

Q4-2a Valor estimado do integral:

Solução: 22.14 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 4 de 5 Cotação: 4 val.

[190200040 - Rafael Bernardino Palma]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.3	3.5	6.9	15.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.8125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 1.2 & 2.2 & 3.0 \\ 3.5 & 3.4 & 5.2 & \\ 6.9 & 8.6 & & \\ 15.5 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 15.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200043 - Pedro Miguel Viegas Ferreira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.6	3.4	8.2	17.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.2875 sendo a tabela de diferenças finitas

1.6 1.8 3.0 1.8 3.4 4.8 4.8 8.2 9.6 17.8

Q4-2a Valor estimado do integral:

Solução: 34.08 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200050 - Pedro Miguel Lima Fernandes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.3	2.7	5.9	12.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 1.8500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.3 & 1.4 & 1.8 & 1.2 \\ 2.7 & 3.2 & 3.0 \\ 5.9 & 6.2 \\ 12.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 6.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200051 – André Filipe Benjamim Castro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.0	4.5	8.4	16.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.2250 sendo a tabela de diferenças finitas

2.0 2.5 1.4 2.4 4.5 3.9 3.8 8.4 7.7 16.1

Q4-2a Valor estimado do integral:

Solução: 17.56 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática

Análise Numérica 2º Semestre 2019/20 Exame Final 2º Época

Questão 4 de 5 C

Cotação: 4 val.

[190200054 - Tiago João Mateus de Lima]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.8	3.0	6.8	14.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.1500 sendo a tabela de diferenças finitas

1.8 1.2 2.6 1.2 3.0 3.8 3.8 6.8 7.6 14.4

Q4-2a Valor estimado do integral:

Solução: 21.48 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200059 - Tiago Lopes Quaresma]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.5	5.2	9.1	15.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.8750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 2.7 & 1.2 & 1.2 \\ 5.2 & 3.9 & 2.4 & \\ 9.1 & 6.3 & & \\ 15.4 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 37.20 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200060 – João Pedro Dias Daniel]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.9	4.0	8.3	17.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.0250 sendo a tabela de diferenças finitas

1.9 2.1 2.2 2.4 4.0 4.3 4.6 8.3 8.9 17.2

Q4-2a Valor estimado do integral:

Solução: 17.48 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200061 – João Guilherme Peniche Massano]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	2.3	3.1	3.9	4.7
Ī	f(x)	2.8	5.7	9.8	17.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.2500 sendo a tabela de diferenças finitas

2.8 2.9 1.2 2.4 5.7 4.1 3.6 9.8 7.7 17.5

Q4-2a Valor estimado do integral:

Solução: 20.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200063 – André Filipe Rocha dos Santos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.3	4.0	7.1	14.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.1625 sendo a tabela de diferenças finitas

Q4-2a Valor estimado do integral:

Solução: 31.28 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200064 - Rafael Carvalho Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.5	3.4	6.5	13.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.2500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 1.9 & 1.2 & 2.4 \\ 3.4 & 3.1 & 3.6 \\ 6.5 & 6.7 & & & \\ 13.2 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 20.70 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190200085 - Sergio Trentin Junior]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.9	4.3	8.7	17.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.3000 sendo a tabela de diferenças finitas

2.9 1.4 3.0 1.2 4.3 4.4 4.2 8.7 8.6 17.3

Q4-2a Valor estimado do integral:

Solução: 9.24 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221001 - Rafael Viegas Caumo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.8	5.7	10.0	18.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.6125 sendo a tabela de diferenças finitas

2.8 2.9 1.4 3.0 5.7 4.3 4.4 10.0 8.7 18.7

Q4-2a Valor estimado do integral:

Solução: 42.32 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221002 - Israel Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.9	5.8	10.9	20.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.2250 sendo a tabela de diferenças finitas

2.9 2.9 2.2 2.4 5.8 5.1 4.6 10.9 9.7 20.6

Q4-2a Valor estimado do integral:

Solução: 34.14 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221003 – Geovani de Souza Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	3.0	6.0	10.6	19.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.4375 sendo a tabela de diferenças finitas

3.0 3.0 1.6 3.0 6.0 4.6 4.6 10.6 9.2 19.8

Q4-2a Valor estimado do integral:

Solução: 22.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221005 – Lunay António Gomes Simão]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.5	2.9	6.3	13.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.3125 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.5 & 1.4 & 2.0 & 1.8 \\ 2.9 & 3.4 & 3.8 \\ 6.3 & 7.2 \\ 13.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 26.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221006 - Armindo Filipe da Costa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.9	4.6	8.5	16.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.5875 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.9 & 1.7 & 2.2 & 1.8 \\ 4.6 & 3.9 & 4.0 \\ 8.5 & 7.9 & & \\ 16.4 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 18.20 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221008 – André Miguel Lança Lisboa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.8	5.5	10.6	19.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.6750 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.8 & 2.7 & 2.4 & 1.2 \\ 5.5 & 5.1 & 3.6 \\ 10.6 & 8.7 \\ 19.3 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 43.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221009 - Bernardo Serra Mota]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.2	3.5	7.6	16.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.4500 sendo a tabela de diferenças finitas

2.2 1.3 2.8 2.4 3.5 4.1 5.2 7.6 9.3 16.9

Q4-2a Valor estimado do integral:

Solução: 24.78 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221010 – João Pedro Freitas Caetano]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.5	3.8	7.9	17.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.3500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 1.3 & 2.8 & 2.4 \\ 3.8 & 4.1 & 5.2 & \\ 7.9 & 9.3 & & \\ 17.2 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 17.24 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221013 - Sara Filomena Gonçalves Jorge]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.0	4.7	9.2	17.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.5750 sendo a tabela de diferenças finitas

2.0 2.7 1.8 2.4 4.7 4.5 4.2 9.2 8.7 17.9

Q4-2a Valor estimado do integral:

Solução: 28.62 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Departamento de Matemática

Análise Numérica 2^o Semestre 2019/20Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221014 – Tiago Miguel Galvão Simão]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.7	3.4	8.1	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3, 4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.3625 sendo a tabela de diferenças finitas

1.7 1.7 3.0 3.03.4 4.76.0 8.1 10.7 18.8

Q4-2a Valor estimado do integral:

Solução: 17.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221015 - Pedro Miguel Teixeira Palma Rosa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.4	4.4	8.6	15.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.2375 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.4 & 3.0 & 1.2 & 1.8 \\ 4.4 & 4.2 & 3.0 \\ 8.6 & 7.2 \\ 15.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 34.56 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221016 - Tiago Filipe de Deus Folgado Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.7	5.0	10.1	21.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.6375 sendo a tabela de diferenças finitas

2.7 2.3 2.8 3.0 5.0 5.1 5.8 10.1 10.9 21.0

Q4-2a Valor estimado do integral:

Solução: 21.56 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221017 – André Fraga Pauli]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.6	4.9	8.4	15.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.3500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.6 & 2.3 & 1.2 & 2.4 \\ 4.9 & 3.5 & 3.6 \\ 8.4 & 7.1 \\ 15.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 35.76 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221018 – Diogo António Bettencourt Santos Félix]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.5	2.8	5.5	12.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.1625 sendo a tabela de diferenças finitas

1.5 1.3 1.4 3.0 2.8 2.7 4.4 5.5 7.1 12.6

Q4-2a Valor estimado do integral:

Solução: 6.14 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221020 - Gonçalo Filipe Mesquita Fernandes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.4	3.9	8.2	17.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.6125 sendo a tabela de diferenças finitas

1.4 2.5 1.8 3.0 3.9 4.3 4.8 8.2 9.1 17.3

Q4-2a Valor estimado do integral:

Solução: 17.16 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221021 - Marco Neves Gomes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.0	4.3	8.2	15.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.3125 sendo a tabela de diferenças finitas

2.0 2.3 1.6 1.8 4.3 3.9 3.4 8.2 7.3 15.5

Q4-2a Valor estimado do integral:

Solução: 8.50 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221022 - Duarte Mourão Pardal]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.9	3.9	7.1	13.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.7125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.9 & 2.0 & 1.2 & 1.8 \\ 3.9 & 3.2 & 3.0 \\ 7.1 & 6.2 \\ 13.3 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 22.32 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221023 - Jorge Filipe Carapinha Piteira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.2	3.8	7.6	15.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.3125 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.2 & 1.6 & 2.2 & 1.8 \\ 3.8 & 3.8 & 4.0 \\ 7.6 & 7.8 \\ 15.4 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 16.16 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221026 – João Tomás Ramos Ferreira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.9	5.6	9.9	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.5875 sendo a tabela de diferenças finitas

2.9 2.7 1.6 3.0 5.6 4.3 4.6 9.9 8.9 18.8

Q4-2a Valor estimado do integral:

Solução: 21.08 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática

Análise Numérica 2º Semestre 2019/20 Exame Final 2º Época

Questão 4 de 5

Cotação: 4 val.

[190221028 - Pedro Miguel Teixeira Alves]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.8	4.6	9.0	17.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.1500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.8 & 2.8 & 1.6 & 2.4 \\ 4.6 & 4.4 & 4.0 \\ 9.0 & 8.4 \\ 17.4 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 9.28 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221029 - Tomás Correia Barroso]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.2	3.0	6.6	15.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.3875 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.2 & 1.8 & 1.8 & 3.0 \\ 3.0 & 3.6 & 4.8 \\ 6.6 & 8.4 & & \\ 15.0 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 28.32 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221032 - Tiago Miguel Camacho Branco]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.1	4.6	9.3	19.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.2625 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.1 & 2.5 & 2.2 & 3.0 \\ 4.6 & 4.7 & 5.2 \\ 9.3 & 9.9 & & \\ 19.2 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221034 – Daniel Alexandre de Morais e Sousa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

ĺ	x	1.1	2.7	4.3	5.9
ĺ	f(x)	2.8	5.5	11.2	22.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 15.9250 sendo a tabela de diferenças finitas

2.8 2.7 3.0 2.4 5.5 5.7 5.4 11.2 11.1 22.3

Q4-2a Valor estimado do integral:

Solução: 46.80 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221036 – André Filipe Virtuoso Serrado]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.3	2.9	7.5	17.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.6750 sendo a tabela de diferenças finitas

1.3 1.6 3.0 2.4 2.9 4.6 5.4 7.5 10.0 17.5

Q4-2a Valor estimado do integral:

Solução: 7.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221037 - Daniel Alexandre Andrade Singh]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.6	4.6	9.0	18.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.3500 sendo a tabela de diferenças finitas

2.6 2.0 2.4 2.4 4.6 4.4 4.8 9.0 9.2 18.2

Q4-2a Valor estimado do integral:

Solução: 28.80 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221039 – Hysa Mello de Alcântara]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.6	4.9	10.0	19.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.5125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.6 & 2.3 & 2.8 & 1.8 \\ 4.9 & 5.1 & 4.6 \\ 10.0 & 9.7 \\ 19.7 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 10.42 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221040 - Sandro Miguel Sousa Santos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.0	4.6	9.4	18.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.3750 sendo a tabela de diferenças finitas

2.0 2.6 2.2 2.4 4.6 4.8 4.6 9.4 9.4 18.8

Q4-2a Valor estimado do integral:

Solução: 39.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221042 - Tiago Alexandre dos Santos Rosa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.3	2.6	6.5	14.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.1500 sendo a tabela de diferenças finitas

1.3 1.3 2.6 1.2 2.6 3.9 3.8 6.5 7.7 14.2

Q4-2a Valor estimado do integral:

Solução: 26.96 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Departamento de Matemática Análise Numérica

2º Semestre 2019/20 Exame Final 2ª Época

Questão 4 de 5

Cotação: 4 val.

[190221043 - Carolina Rabaçal da Cunha Lobo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	3.0	4.4	8.8	19.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.0625 sendo a tabela de diferenças finitas

3.0 1.4 3.0 3.0 4.4 4.4 6.0 8.8 10.4 19.2

Q4-2a Valor estimado do integral:

Solução: 19.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221044 - Eduardo Feliciano Ferra]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.3	3.6	8.5	17.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.6500 sendo a tabela de diferenças finitas

1.3 2.3 2.6 1.2 3.6 4.9 3.8 8.5 8.7 17.2

Q4-2a Valor estimado do integral:

Solução: 8.54 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221045 – João Carlos de Brito Bandeira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.4	3.6	7.8	16.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.4000 sendo a tabela de diferenças finitas

1.4 2.2 2.0 2.4 3.6 4.2 4.4 7.8 8.6 16.4

Q4-2a Valor estimado do integral:

Solução: 8.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221046 – Joao Miguel dos Santos Cabete]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	2.9	3.3	3.7	4.1
ĺ	f(x)	2.0	4.7	10.0	19.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.9500 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.0 & 2.7 & 2.6 & 1.2 \\ 4.7 & 5.3 & 3.8 \\ 10.0 & 9.1 \\ 19.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 10.10 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221047 - Miguel Alexandre Marques Rodrigues]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.9	4.5	7.3	14.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.0875 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.9 & 1.6 & 1.2 & 3.0 \\ 4.5 & 2.8 & 4.2 \\ 7.3 & 7.0 \\ 14.3 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 32.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221048 - Rafael da Rosa Marçalo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.4	4.8	9.8	19.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.0250 sendo a tabela de diferenças finitas

2.4 2.4 2.6 2.4 4.8 5.0 5.0 9.8 10.0 19.8

Q4-2a Valor estimado do integral:

Solução: 41.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221049 – André Luís da Cruz Santos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.6	3.8	6.2	12.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.2000 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.6 & 1.2 & 1.2 & 2.4 \\ 3.8 & 2.4 & 3.6 \\ 6.2 & 6.0 & & & \\ 12.2 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 13.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221050 - Bernardo Manuel Fernandes Vicente]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.2	3.1	7.6	17.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.2 & 1.9 & 2.6 & 2.4 \\ 3.1 & 4.5 & 5.0 \\ 7.6 & 9.5 \\ 17.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 15.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221051 – Bruno Miguel Lázaro Resende]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.3	4.2	7.3	14.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.4500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 1.9 & 1.2 & 2.4 \\ 4.2 & 3.1 & 3.6 \\ 7.3 & 6.7 & & & \\ 14.0 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 15.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221052 - Daniel Filipe Martins Roque]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.2	4.0	9.8	19.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.4500 sendo a tabela de diferenças finitas

1.2 2.8 3.0 1.2 4.0 5.8 4.2 9.8 10.0 19.8

Q4-2a Valor estimado do integral:

Solução: 29.16 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221053 – Ivo Martinho Garraio]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.3	3.9	8.3	16.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.8250 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 1.6 & 2.8 & 1.2 \\ 3.9 & 4.4 & 4.0 \\ 8.3 & 8.4 \\ 16.7 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 8.68 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221054 – João Alexandre dos Anjos Soeiro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.8	5.3	10.8	21.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 15.4250 sendo a tabela de diferenças finitas

2.8 2.5 3.0 2.4 5.3 5.5 5.4 10.8 10.9 21.7

Q4-2a Valor estimado do integral:

Solução: 11.34 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 C

Cotação: 4 val.

[190221055 – João Filipe Lopes Jardin]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.3	3.1	6.7	14.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.5250 sendo a tabela de diferenças finitas

1.3 1.8 1.8 2.4 3.1 3.6 4.2 6.7 7.8 14.5

Q4-2a Valor estimado do integral:

Solução: 28.32 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221056 – Rúben Pereira Lourenço]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.2	4.4	8.2	16.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.4500 sendo a tabela de diferenças finitas

2.2 2.2 1.6 2.4 4.4 3.8 4.0 8.2 7.8 16.0

Q4-2a Valor estimado do integral:

Solução: 17.36 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221057 - Gabriel Soares Alves Dias Pais]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.5	3.1	7.7	16.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.5000 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 1.6 & 3.0 & 1.2 \\ 3.1 & 4.6 & 4.2 \\ 7.7 & 8.8 \\ 16.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221058 – Diogo André Fernandes dos Santos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	2.3	3.1	3.9	4.7
ĺ	f(x)	2.9	5.9	11.9	23.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 16.7750 sendo a tabela de diferenças finitas

2.9 3.0 3.0 2.4 5.9 6.0 5.4 11.9 11.4 23.3

Q4-2a Valor estimado do integral:

Solução: 24.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221059 - Marco Antonio Coelho Teodoro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.0	3.3	7.6	16.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.2500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.0 & 1.3 & 3.0 & 1.2 \\ 3.3 & 4.3 & 4.2 & \\ 7.6 & 8.5 & & \\ 16.1 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.98 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221060 - Ricardo Filipe Sobral Ribeiro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.2	3.0	7.8	18.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8750 sendo a tabela de diferenças finitas

1.2 1.8 3.0 2.4 3.0 4.8 5.4 7.8 10.2 18.0

Q4-2a Valor estimado do integral:

Solução: 32.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221061 - Tiago Alexandre Morgado Rosa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.7	4.8	9.3	17.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.5250 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.7 & 2.1 & 2.4 & 1.2 \\ 4.8 & 4.5 & 3.6 & \\ 9.3 & 8.1 & & \\ 17.4 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 28.98 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221062 – João Filipe Rodrigues Silva]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.5	4.5	9.9	19.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.0625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 3.0 & 2.4 & 1.8 \\ 4.5 & 5.4 & 4.2 \\ 9.9 & 9.6 \\ 19.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221063 – Gonçalo Mestre Páscoa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.9	5.8	11.3	22.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.2125 sendo a tabela de diferenças finitas

2.9 2.9 2.6 3.0 5.8 5.5 5.6 11.3 11.1 22.4

Q4-2a Valor estimado do integral:

Solução: 47.60 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221064 - Henrique Candeias Madureira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.2	4.4	8.2	16.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.9125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.2 & 2.2 & 1.6 & 3.0 \\ 4.4 & 3.8 & 4.6 \\ 8.2 & 8.4 & & \\ 16.6 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 26.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221065 – José Eduardo Lopes Castanhas]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.2	4.2	8.6	16.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.0750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.2 & 2.0 & 2.4 & 1.2 \\ 4.2 & 4.4 & 3.6 & \\ 8.6 & 8.0 & & \\ 16.6 & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 35.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221066 – Rúben Miguel da Costa Videira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.6	4.3	8.8	17.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.4750 sendo a tabela de diferenças finitas

2.6 1.7 2.8 1.2 4.3 4.5 4.0 8.8 8.5 17.3

Q4-2a Valor estimado do integral:

Solução: 36.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cota

Cotação: 4 val.

[190221067 - David Rodrigues Cerdeira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.8	3.8	7.4	15.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.5500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.8 & 2.0 & 1.6 & 2.4 \\ 3.8 & 3.6 & 4.0 \\ 7.4 & 7.6 \\ 15.0 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221068 – André Carlos Fernandes Dias]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.8	3.7	7.0	12.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.5500 sendo a tabela de diferenças finitas

1.8 1.9 1.4 1.2 3.7 3.3 2.6 7.0 5.9 12.9

Q4-2a Valor estimado do integral:

Solução: 28.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221069 – Luís Manuel Gonçalves Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.2	3.5	7.8	16.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.6375 sendo a tabela de diferenças finitas

2.2 1.3 3.0 1.8 3.5 4.3 4.8 7.8 9.1 16.9

Q4-2a Valor estimado do integral:

Solução: 25.02 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221070 - Margarida Maunu]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.7	3.5	6.7	14.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.7625 sendo a tabela de diferenças finitas

1.7 1.8 1.4 3.0 3.5 3.2 4.4 6.7 7.6 14.3

Q4-2a Valor estimado do integral:

Solução: 7.28 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221071 – André Filipe Gonçalves Paiva]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.2	5.0	10.6	20.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.3625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.2 & 2.8 & 2.8 & 1.8 \\ 5.0 & 5.6 & 4.6 \\ 10.6 & 10.2 & & & \\ 20.8 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 43.36 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221074 - Miguel Costa Coelho]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	\boldsymbol{x}	1.7	2.9	4.1	5.3
f	f(x)	1.4	4.4	9.6	20.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.5375 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.4 & 3.0 & 2.2 & 3.0 \\ 4.4 & 5.2 & 5.2 \\ 9.6 & 10.4 & & & \\ 20.0 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 29.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221075 – André Galveia Castanho]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.6	4.1	8.6	17.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.8625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.6 & 1.5 & 3.0 & 1.8 \\ 4.1 & 4.5 & 4.8 & \\ 8.6 & 9.3 & & \\ 17.9 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 9.18 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221076 - Filipe Alexandre Ribeiro Domingos]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.3	5.2	9.3	17.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.9125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 2.9 & 1.2 & 3.0 \\ 5.2 & 4.1 & 4.2 \\ 9.3 & 8.3 & & \\ 17.6 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 9.78 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221077 – Duarte Vieira Nunes da Conceição]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	1.1	2.7	4.3	5.9
ĺ	f(x)	3.0	5.9	11.2	21.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.3375 sendo a tabela de diferenças finitas

3.0 2.9 2.4 3.0 5.9 5.3 5.4 11.2 10.7 21.9

Q4-2a Valor estimado do integral:

Solução: 47.28 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221078 - João Pedro Botelheiro Matias]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.4	4.0	9.4	20.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.5375 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.4 & 2.6 & 2.8 & 3.0 \\ 4.0 & 5.4 & 5.8 \\ 9.4 & 11.2 & & \\ 20.6 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 39.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221079 – Adalberto Camará King]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.3	4.1	7.1	13.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.3375 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 1.8 & 1.2 & 1.8 \\ 4.1 & 3.0 & 3.0 \\ 7.1 & 6.0 \\ 13.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.56 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221080 - Melo Carlos Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.6	4.6	8.8	16.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.4000 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.6 & 2.0 & 2.2 & 1.2 \\ 4.6 & 4.2 & 3.4 \\ 8.8 & 7.6 \\ 16.4 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 9.16 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221081 – Pedro de Castro Vitória]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.8	5.8	11.4	21.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 15.7375 sendo a tabela de diferenças finitas

2.8 3.0 2.6 1.8 5.8 5.6 4.4 11.4 10.0 21.4

Q4-2a Valor estimado do integral:

Solução: 46.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221082 - Ricardo Luís Pinto Cabrito]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.8	5.6	11.4	21.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 8.0500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.8 & 2.8 & 3.0 & 1.2 \\ 5.6 & 5.8 & 4.2 \\ 11.4 & 10.0 & & & \\ 21.4 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 23.28 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática

Análise Numérica 2º Semestre 2019/20 Exame Final 2º Época

Questão 4 de 5

Cotação: 4 val.

[190221084 - Carlos Manuel da Palma Oliveira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.8	3.4	6.2	12.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 8.6125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.8 & 1.6 & 1.2 & 1.8 \\ 3.4 & 2.8 & 3.0 & \\ 6.2 & 5.8 & & \\ 12.0 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.80 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221085 - David Eduardo Maia]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.8	3.8	7.6	15.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.7375 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.8 & 2.0 & 1.8 & 1.8 \\ 3.8 & 3.8 & 3.6 \\ 7.6 & 7.4 & & & \\ 15.0 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 23.76 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221086 – André Filipe Lamas Rebelo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	3.0	4.5	8.0	16.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.4375 sendo a tabela de diferenças finitas

3.0 1.5 2.0 3.0 4.5 3.5 5.0 8.0 8.5 16.5

Q4-2a Valor estimado do integral:

Solução: 8.90 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 2ª Época

Questão 4 de 5 Cotação: 4 val.

[190221087 - Bruno Bispo Gibellino]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.6	3.9	9.0	19.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.9500 sendo a tabela de diferenças finitas

1.6 2.3 2.8 2.4 3.9 5.1 5.2 9.0 10.3 19.3

Q4-2a Valor estimado do integral:

Solução: 18.68 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221088 - Pedro Alexandre Santos Vicente]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.5	4.7	9.5	18.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.6625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 2.2 & 2.6 & 1.8 \\ 4.7 & 4.8 & 4.4 & \\ 9.5 & 9.2 & & \\ 18.7 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática Análise Numérica

2° Semestre 2019/20 Exame Final 2° Época

Questão 4 de 5

Cotação: 4 val.

[190221090 – Daniel Corrêa Saes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.2	2.7	5.8	11.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 1.8250 sendo a tabela de diferenças finitas

1.2 1.5 1.6 1.2 2.7 3.1 2.8 5.8 5.9 11.7

Q4-2a Valor estimado do integral:

Solução: 11.96 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221091 – Gonçalo Marchão Sousa Martins]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.9	3.4	7.3	16.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8625 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.9 & 1.5 & 2.4 & 3.0 \\ 3.4 & 3.9 & 5.4 \\ 7.3 & 9.3 & & \\ 16.6 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.98 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221092 - Alberto Miguel Jardino Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.4	3.6	7.2	16.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.9125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.4 & 1.2 & 2.4 & 3.0 \\ 3.6 & 3.6 & 5.4 \\ 7.2 & 9.0 \\ 16.2 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 24.12 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221093 - Alexandre Manuel Parreira Coelho]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.6	5.6	9.8	17.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.1000 sendo a tabela de diferenças finitas

2.6 3.0 1.2 2.4 5.6 4.2 3.6 9.8 7.8 17.6

Q4-2a Valor estimado do integral:

Solução: 20.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221094 – André Alexandre da Costa Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.5	3.5	6.7	12.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.4250 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 2.0 & 1.2 & 1.2 \\ 3.5 & 3.2 & 2.4 \\ 6.7 & 5.6 \\ 12.3 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 27.36 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221095 – André Rodrigues Batista]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	3.0	4.4	8.2	16.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.5125 sendo a tabela de diferenças finitas

3.0 1.4 2.4 1.8 4.4 3.8 4.2 8.2 8.0 16.2

Q4-2a Valor estimado do integral:

Solução: 8.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221096 – Bernardo José Lopes Batista Paulino]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.5	4.9	9.7	18.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.4750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.5 & 2.4 & 2.4 & 1.2 \\ 4.9 & 4.8 & 3.6 & \\ 9.7 & 8.4 & & \\ 18.1 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.92 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

2° Semestre 2019/20 Exame Final 2° Época

Questão 4 de 5 Cotação: 4 val.

[190221097 - Bruno Miguel Lopes Revez]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	\boldsymbol{x}	1.7	2.9	4.1	5.3
j	f(x)	1.2	3.1	6.8	14.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.8875 sendo a tabela de diferenças finitas

1.2 1.9 1.8 1.8 3.1 3.7 3.6 6.8 7.3 14.1

Q4-2a Valor estimado do integral:

Solução: 21.06 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221099 - Carlos Eduardo Lúcio Antunes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.3	3.2	6.3	13.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.4500 sendo a tabela de diferenças finitas

1.3 1.9 1.2 2.4 3.2 3.1 3.6 6.3 6.7 13.0

Q4-2a Valor estimado do integral:

Solução: 6.66 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221100 - Catarina Filipa Balugas Alves]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.9	4.9	9.7	20.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.0875 sendo a tabela de diferenças finitas

2.9 2.0 2.8 3.0 4.9 4.8 5.8 9.7 10.6 20.3

Q4-2a Valor estimado do integral:

Solução: 10.48 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221101 - Daniel Domingos Cordeiro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.4	2.7	6.6	15.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.1750 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.4 & 1.3 & 2.6 & 2.4 \\ 2.7 & 3.9 & 5.0 \\ 6.6 & 8.9 \\ 15.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 28.40 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221102 - David Eduardo Passos Gomes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.9	4.0	8.9	18.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.9875 sendo a tabela de diferenças finitas

1.9 2.1 2.8 1.8 4.0 4.9 4.6 8.9 9.5 18.4

Q4-2a Valor estimado do integral:

Solução: 18.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221103 - Diogo Alexandre Serra Pereira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.5	3.8	8.1	16.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.7500 sendo a tabela de diferenças finitas

1.5 2.3 2.0 2.4 3.8 4.3 4.4 8.1 8.7 16.8

Q4-2a Valor estimado do integral:

Solução: 16.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 C

Cotação: 4 val.

[190221104 - Diogo Alexandre Sobral Ferreira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.2	3.9	9.0	17.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.3250 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.2 & 2.7 & 2.4 & 1.2 \\ 3.9 & 5.1 & 3.6 \\ 9.0 & 8.7 \\ 17.7 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 17.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221105 - Francisco M. Serralha N. Belchior Zacarias]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	3.0	5.7	11.4	23.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.9875 sendo a tabela de diferenças finitas

3.0 2.7 3.0 3.0 5.7 5.7 6.0 11.4 11.7 23.1

Q4-2a Valor estimado do integral:

Solução: 36.18 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221106 – Iúri Miguel Francês Pêta]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.6	5.5	11.2	21.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.8125 sendo a tabela de diferenças finitas

2.6 2.9 2.8 1.8 5.5 5.7 4.6 11.2 10.3 21.5

Q4-2a Valor estimado do integral:

Solução: 23.00 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221107 – João Grácio Coelho Rodrigues]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.9	4.2	7.5	15.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.4125 sendo a tabela de diferenças finitas

2.9 1.3 2.0 3.0 4.2 3.3 5.0 7.5 8.3 15.8

Q4-2a Valor estimado do integral:

Solução: 16.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221108 – João José Lopes Batista da Silva Pinto]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.4	3.4	6.8	13.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.4 & 2.0 & 1.4 & 1.8 \\ 3.4 & 3.4 & 3.2 & \\ 6.8 & 6.6 & & \\ 13.4 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 7.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221109 – João Pedro Pereira Rosete]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.9	3.4	7.9	17.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.0250 sendo a tabela de diferenças finitas

1.9 1.5 3.0 2.4 3.4 4.5 5.4 7.9 9.9 17.8

Q4-2a Valor estimado do integral:

Solução: 8.46 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221110 – Jorge André Gomes de Sousa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.4	4.7	9.4	19.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.5875 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.4 & 2.3 & 2.4 & 3.0 \\ 4.7 & 4.7 & 5.4 \\ 9.4 & 10.1 \\ 19.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 20.04 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221111 – José Manuel Almeida Sousa Mendes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.3	2.5	6.3	15.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.1125 sendo a tabela de diferenças finitas

1.3 1.2 2.6 3.0 2.5 3.8 5.6 6.3 9.4 15.7

Q4-2a Valor estimado do integral:

Solução: 13.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221112 - Leonardo Costeira Costa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	3.0	5.9	11.8	23.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.2250 sendo a tabela de diferenças finitas

3.0 2.9 3.0 2.4 5.9 5.9 5.4 11.8 11.3 23.1

Q4-2a Valor estimado do integral:

Solução: 12.30 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221113 – Luís Carlos de Veloso Fernandes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.3	4.0	8.1	15.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.6750 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 1.7 & 2.4 & 1.2 \\ 4.0 & 4.1 & 3.6 \\ 8.1 & 7.7 \\ 15.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 25.38 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221114 - Marco António Botelho da Silva]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.0	4.0	8.2	15.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.8000 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.0 & 2.0 & 2.2 & 1.2 \\ 4.0 & 4.2 & 3.4 \\ 8.2 & 7.6 \\ 15.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 8.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221115 – Martim Antunes de Oliveira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.5	3.1	6.3	13.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 9.2500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 1.6 & 1.6 & 2.4 \\ 3.1 & 3.2 & 4.0 \\ 6.3 & 7.2 \\ 13.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 13.52 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221117 – Miguel Ângelo Pereira Morgado]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.6	4.1	8.4	16.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.7375 sendo a tabela de diferenças finitas

1.6 2.5 1.8 1.8 4.1 4.3 3.6 8.4 7.9 16.3

Q4-2a Valor estimado do integral:

Solução: 25.74 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221118 - Nicole Alexandra Martins Vieira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.0	4.3	9.4	20.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 13.9375 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.0 & 2.3 & 2.8 & 3.0 \\ 4.3 & 5.1 & 5.8 \\ 9.4 & 10.9 & & \\ 20.3 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 19.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221119 - Nuno Miguel Cortiço Viola]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.7	5.0	10.1	19.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 14.2625 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.7 & 2.3 & 2.8 & 1.8 \\ 5.0 & 5.1 & 4.6 \\ 10.1 & 9.7 \\ 19.8 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 42.16 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221120 – Pedro Afonso D' Além Dionísio]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	1.7	2.9	4.1	5.3
ĺ	f(x)	1.3	2.9	7.3	15.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7, 5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7, 5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.6750 sendo a tabela de diferenças finitas

1.3 1.6 2.8 1.2 2.9 $4.4 \ 4.0$ 7.3 8.415.7

Q4-2a Valor estimado do integral:

Solução: 22.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época Questão 4 de 5

Cotação: 4 val.

[190221122 – Pedro Manuel Gonçalves Paiva de Carvalho]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.0	3.9	8.6	18.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9, 4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.7500 sendo a tabela de diferenças finitas

2.0 1.9 2.8 2.4 3.9 4.75.28.69.918.5

Q4-2a Valor estimado do integral:

Solução: 9.10 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221123 – Renato André Claro Nunes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.6	3.5	7.4	15.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 10.6625 sendo a tabela de diferenças finitas

1.6 1.9 2.0 1.8 3.5 3.9 3.8 7.4 7.7 15.1

Q4-2a Valor estimado do integral:

Solução: 23.10 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221124 - Ricardo Diogo Gonçalves Caetano]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	3.0	5.1	10.2	19.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 7.2000 sendo a tabela de diferenças finitas

3.0 2.1 3.0 1.2 5.1 5.1 4.2 10.2 9.3 19.5

Q4-2a Valor estimado do integral:

Solução: 10.62 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221125 - Rodrigo Nave da Costa]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.8	4.2	7.8	16.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.3625 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.8 & 1.4 & 2.2 & 3.0 \\ 4.2 & 3.6 & 5.2 \\ 7.8 & 8.8 & & \\ 16.6 & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 17.36 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221126 - Rodrigo Roque Fontinha]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.8	4.5	9.6	18.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 6.6750 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.8 & 2.7 & 2.4 & 1.2 \\ 4.5 & 5.1 & 3.6 \\ 9.6 & 8.7 \\ 18.3 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 38.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

 2^{o} Semestre 2019/20 Exame Final 2^{a} Época

Questão 4 de 5

Cotação: 4 val.

[190221127 - Sara Conceição Catarino de Jesus]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.7	5.7	11.1	21.9

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 15.6375 sendo a tabela de diferenças finitas

2.7 3.0 2.4 3.0 5.7 5.4 5.4 11.1 10.8 21.9

Q4-2a Valor estimado do integral:

Solução: 11.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221128 – Sérgio Manuel Pinhal Veríssimo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.6	2.9	6.8	16.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.1125 sendo a tabela de diferenças finitas

1.6 1.3 2.6 3.0 2.9 3.9 5.6 6.8 9.5 16.3

Q4-2a Valor estimado do integral:

Solução: 29.84 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221129 – Tiago Miguel de Albuquerque Eusébio]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.4	4.1	9.2	19.7

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.6375 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.4 & 2.7 & 2.4 & 3.0 \\ 4.1 & 5.1 & 5.4 \\ 9.2 & 10.5 \\ 19.7 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 28.62 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221130 - Tiago Miguel Fumega Henriques]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.8	4.8	8.2	16.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.3625 sendo a tabela de diferenças finitas

2.8 2.0 1.4 3.0 4.8 3.4 4.4 8.2 7.8 16.0

Q4-2a Valor estimado do integral:

Solução: 8.96 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221131 - Tim Tetelepta Rodrigues]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.3	4.5	8.1	16.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.9375 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.3 & 2.2 & 1.4 & 3.0 \\ 4.5 & 3.6 & 4.4 & \\ 8.1 & 8.0 & & \\ 16.1 & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 34.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Co

Cotação: 4 val.

[190221132 - Vasco Miguel Ucha de Pinho]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	1.7	2.9	4.1	5.3
ĺ	f(x)	1.2	2.9	7.6	16.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8000 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.2 & 1.7 & 3.0 & 1.2 \\ 2.9 & 4.7 & 4.2 \\ 7.6 & 8.9 \\ 16.5 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 23.22 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221133 – António Pedro Resende Rebelo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	1.8	3.5	7.6	15.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.1750 sendo a tabela de diferenças finitas

1.8 1.7 2.4 1.2 3.5 4.1 3.6 7.6 7.7 15.3

Q4-2a Valor estimado do integral:

Solução: 15.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20Exame Final 2^a Época

Questão 4 de 5

Cotação: 4 val.

[190221134 – Miguel do Paço A. D'Albuquerque Serrano]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.5	3.6	7.3	15.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7, 5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7, 5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.5000 sendo a tabela de diferenças finitas

1.5 $2.1 \quad 1.6 \quad 2.4$ 3.7 4.03.6 7.3 7.7 15.0

Q4-2a Valor estimado do integral:

Solução: 22.98 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 2^a Época

Questão 4 de 5 Co

Cotação: 4 val.

[190221136 – Vítor Luís Domingues Nunes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	2.2	3.5	7.6	17.5

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

★ PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 5.0125 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.2 & 1.3 & 2.8 & 3.0 \\ 3.5 & 4.1 & 5.8 \\ 7.6 & 9.9 & & & \\ 17.5 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 25.14 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221138 – João Sá Santos Mendes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	1.3	2.6	6.9	17.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.1125 sendo a tabela de diferenças finitas

1.3 1.3 3.0 3.0 2.6 4.3 6.0 6.9 10.3 17.2

Q4-2a Valor estimado do integral:

Solução: 7.50 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221140 - Ricardo Margarido Oliveira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	1.1	2.7	4.3	5.9
ĺ	f(x)	1.5	3.8	7.9	16.2

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.3750 sendo a tabela de diferenças finitas

1.5 2.3 1.8 2.4 3.8 4.1 4.2 7.9 8.3 16.2

Q4-2a Valor estimado do integral:

Solução: 32.88 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221141 - Gonçalo Santos Alves]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	2.9	4.6	8.3	16.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.6500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.9 & 1.7 & 2.0 & 2.4 \\ 4.6 & 3.7 & 4.4 \\ 8.3 & 8.1 \\ 16.4 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 36.08 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221142 – Francisco José dos Santos Vicente]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.5	4.5	9.3	17.1

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 12.7500 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 1.5 & 3.0 & 1.8 & 1.2 \\ 4.5 & 4.8 & 3.0 \\ 9.3 & 7.8 \\ 17.1 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 27.72 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221143 – João Pedro Vicente Rei]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.4	4.0	8.0	16.4

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(4.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.4625 sendo a tabela de diferenças finitas

1.4 2.6 1.4 3.0 4.0 4.0 4.4 8.0 8.4 16.4

Q4-2a Valor estimado do integral:

Solução: 25.08 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221144 - Rodrigo Miguel Portilho Nunes]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.1	2.7	4.3	5.9
f(x)	1.9	4.0	8.1	16.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(5.1)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 11.4625 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.9 & 2.1 & 2.0 & 1.8 \\ 4.0 & 4.1 & 3.8 \\ 8.1 & 7.9 \\ 16.0 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 33.68 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221146 - Rafael Santos Mordomo]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.3	3.1	3.9	4.7
f(x)	2.4	4.4	8.4	15.6

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.7)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.3,4.7]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.3,4.7]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.2250 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 2.4 & 2.0 & 2.0 & 1.2 \\ 4.4 & 4.0 & 3.2 \\ 8.4 & 7.2 \\ 15.6 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 17.44 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.128000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221147 – Ricardo Sinaré Torres Ferreira]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.8	3.2	7.2	15.0

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.8000 sendo a tabela de diferenças finitas

 $\begin{array}{cccc} 1.8 & 1.4 & 2.6 & 1.2 \\ 3.2 & 4.0 & 3.8 \\ 7.2 & 7.8 \\ 15.0 \end{array}$

Q4-2a Valor estimado do integral:

Solução: 22.56 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221148 – André Ricardo Nascimento Guerreiro]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

	x	1.1	2.7	4.3	5.9
ĺ	f(x)	2.1	5.1	11.1	21.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(1.9)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.1,5.9]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.1,5.9]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 3.3000 sendo a tabela de diferenças finitas

 $\begin{array}{ccccc} 2.1 & 3.0 & 3.0 & 1.2 \\ 5.1 & 6.0 & 4.2 \\ 11.1 & 10.2 & & & \\ 21.3 & & & & \end{array}$

Q4-2a Valor estimado do integral:

Solução: 44.64 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $1.024000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[190221149 - Thiers Pinto de Mesquita Neto]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	1.7	2.9	4.1	5.3
f(x)	1.6	3.7	8.6	19.3

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(2.3)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [1.7,5.3]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [1.7,5.3]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 2.4875 sendo a tabela de diferenças finitas

1.6 2.1 2.8 3.0 3.7 4.9 5.8 8.6 10.7 19.3

Q4-2a Valor estimado do integral:

Solução: 27.30 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.432000 \cdot m_2$

Exame Final 2^a Época

Questão 4 de 5 Cotação: 4 val.

[Modelo – Docente]

Considere uma função f(x) para a qual conhecemos os seguinte valores:

x	2.9	3.3	3.7	4.1
f(x)	2.0	3.6	6.4	12.8

- 1. Construa a tabela de diferenças finitas e use a fórmula de interpolação de Gregory-Newton para obter um valor aproximado de f(3.5)
- 2. Através duma regra de quadratura composta que use todos os valores conhecidos da função, estime o valor do integral de f(x) no intervalo [2.9,4.1]. Identifique um majorante do erro cometido nesta quadratura, se conhecemos todos os valores $m_i = \max_{x \in [2.9,4.1]} \left| f^{(i)}(x) \right|$

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 11:25H

Q4-1 Valor interpolado de f(x) no ponto indicado:

Solução: 4.7000 sendo a tabela de diferenças finitas

2.0 1.6 1.2 2.4 3.6 2.8 3.6 6.4 6.4 12.8

Q4-2a Valor estimado do integral:

Solução: 6.96 (Regra do trapézio composta)

Q4-2b Majorante do erro:

Solução: Erro menor que $0.016000 \cdot m_2$

Resolução do modelo do docente

1

Temos um conjunto de 4 nós $x_0=2.9, x_1=3.3, x_2=3.7, x_3=4.1$ uniformemente distribuidos, com um comprimento de passo $h=x_1-x_0=x_2-x_1=x_3-x_2=0.4$. Usamos valores $y_i=f(x_i)$, e para estes valores as diferenças finitas de ordem superior (progressivas) são dadas pela fórmula recursiva $\Delta^{j+1}y_i=\Delta^jy_{i+1}-\Delta^jy_i$, começando por $\Delta^0y_i=y_i=f(x_i)$. A tabela de diferenças finitas associadas a f, no conjunto de nós dado seria portanto a seguinte:

Se usamos a fórmula de Gregory-Newton, o polinómio interpolador p(x) deste suporte de interpolação pode ser dado como:

$$p(2.9 + 0.4\alpha) = 2.0 + \alpha \left(1.6 + \frac{\alpha - 1}{2} \left(1.2 + \frac{\alpha - 2}{3} \cdot 2.4\right)\right)$$

Estamos a considerar $x=3.5=2.9+\alpha\cdot0.4$, logo devemos usar $\alpha=\frac{3.5-2.9}{0.4}=1.5$. Para esta escolha de $\alpha=1.5$ temos:

$$p(3.5) = p(2.9 + 0.4\alpha) = 2.0 + 1.5\left(1.6 + \frac{0.5}{2}\left(1.2 + \frac{-0.5}{3}2.4\right)\right) = 4.7$$

 $\mathbf{2}$

Se dividimos o intervalo [2.9, 4.1] uniformemente em n=3 subintervalos, cada subintervalo tem comprimento (4.1-2.9)/3=1.2/3=0.4, e os extremos destes subintervalos são exatamente os 4 pontos dados no enunciado.

Como temos o valor de f(x) nos extremos destes três subintervalos, podemos aplicar a regra de quadratura do trapézio em cada subintervalo. Portanto podemos aplicar uma regra do trapézio composta com n=3 subintervalos, e distância entre nós h=(b-a)/n=0.4.

Valor da quadratura: Basta aplicar a correspondente fórmula de quadratura para obter

$$\int_{2.9}^{4.1} f(x) dx \simeq \overline{S} = \frac{h}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3)) =$$

$$= 0.2(2.0 + 7.2 + 12.8 + 12.8) = 6.96$$

Majorante de erro: Basta aplicar a correspondente fórmula de erro de quadratura para obter

$$E = \left| \int_{2.9}^{4.1} f(x) \, dx - \overline{S} \right| \le \frac{b - a}{12} h^2 \cdot m_2 = 0.016 m_2$$