$11n_{73} (K11n_{73})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^5 + 3u^4 - 6u^3 + 6u^2 + 4d - u - 1, \ -u^5 + 3u^4 - 6u^3 + 6u^2 + 4c - 5u - 1, \ u^4 - 2u^3 + 2u^2 + 2b - 1, \\ u^6 - 3u^5 + 6u^4 - 5u^3 + 2u^2 + 2a + 6u + 3, \ u^7 - 3u^6 + 5u^5 - 3u^4 - u^3 + 7u^2 + 3u - 1 \rangle \\ I_2^u &= \langle u^3 + 4d - u + 2, \ -u^3 + 2u^2 + 4c - 3u - 4, \ -u^3 + 4b + u + 2, \ -5u^3 + 4u^2 + 8a - 7u - 14, \\ u^4 - 2u^3 + 3u^2 + 4u - 4 \rangle \\ I_3^u &= \langle d, \ c + 1, \ b, \ a + 1, \ u + 1 \rangle \\ I_4^u &= \langle d + 1, \ c + 1, \ b, \ a - 1, \ u + 1 \rangle \\ I_5^u &= \langle d - c - 1, \ ca + a + 1, \ b, \ u + 1 \rangle \\ I_1^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v - 1 \rangle \end{split}$$

- * 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 14 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^5 + 3u^4 + \dots + 4d - 1, \ -u^5 + 3u^4 + \dots + 4c - 1, \ u^4 - 2u^3 + 2u^2 + 2b - 1, \ u^6 - 3u^5 + \dots + 2a + 3, \ u^7 - 3u^6 + \dots + 3u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{6} + \frac{3}{2}u^{5} + \dots - 3u - \frac{3}{2} \\ -\frac{1}{2}u^{4} + u^{3} - u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{6} + \frac{3}{2}u^{5} + \dots - 3u - 2 \\ -\frac{1}{2}u^{4} + u^{3} - u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{4}u^{5} - \frac{3}{4}u^{4} + \dots + \frac{5}{4}u + \frac{1}{4} \\ \frac{1}{4}u^{5} - \frac{3}{4}u^{4} + \dots + \frac{1}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{6} + \frac{3}{2}u^{5} + \dots - \frac{3}{2}u - \frac{3}{2} \\ \frac{1}{4}u^{6} - \frac{1}{4}u^{5} + \dots + \frac{3}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{4}u^{5} - \frac{3}{4}u^{4} + \dots + \frac{1}{4}u + \frac{1}{4} \\ \frac{1}{4}u^{5} - \frac{3}{4}u^{4} + \dots + \frac{1}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{6} - \frac{3}{4}u^{5} + \dots + \frac{1}{4}u + 1 \\ \frac{1}{4}u^{6} - \frac{3}{4}u^{5} + \dots + \frac{5}{4}u^{2} + \frac{1}{4}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{6} - \frac{3}{4}u^{5} + \dots + \frac{5}{4}u^{2} + \frac{1}{4}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$3u^6 - \frac{19}{2}u^5 + \frac{35}{2}u^4 - 14u^3 + 3u^2 + \frac{39}{2}u + \frac{9}{2}u^4 + \frac{39}{2}u^4 + \frac{3$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$u^7 - 3u^6 + 5u^5 - 3u^4 - u^3 + 7u^2 + 3u - 1$
c_2, c_{11}	$u^7 - u^6 + 5u^5 - 29u^4 + 67u^3 + 61u^2 + 23u + 1$
c_3, c_7	$u^7 - 6u^5 + 4u^4 + 32u^3 - 12u^2 + 16u - 8$
c_6, c_9	$u^7 + u^6 - 4u^5 + 15u^3 + 3u^2 - 8u - 4$
c ₈	$u^7 - 9u^6 + 46u^5 - 142u^4 + 297u^3 - 249u^2 + 88u - 16$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$y^7 + y^6 + 5y^5 + 29y^4 + 67y^3 - 61y^2 + 23y - 1$
c_2, c_{11}	$y^7 + 9y^6 + 101y^5 - 3y^4 + 8259y^3 - 581y^2 + 407y - 1$
c_3, c_7	$y^7 - 12y^6 + 100y^5 - 368y^4 + 928y^3 + 944y^2 + 64y - 64$
c_{6}, c_{9}	$y^7 - 9y^6 + 46y^5 - 142y^4 + 297y^3 - 249y^2 + 88y - 16$
c ₈	$y^7 + 11y^6 + 154y^5 + 2854y^4 + 25301y^3 - 14273y^2 - 224y - 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.643564 + 0.238013I		
a = -0.348787 + 1.223080I		
b = -0.031685 + 0.698136I	-1.11796 + 1.29283I	-4.63450 - 5.74515I
c = -1.34441 + 1.38199I		
d = -0.700849 + 1.143970I		
u = -0.643564 - 0.238013I		
a = -0.348787 - 1.223080I		
b = -0.031685 - 0.698136I	-1.11796 - 1.29283I	-4.63450 + 5.74515I
c = -1.34441 - 1.38199I		
d = -0.700849 - 1.143970I		
u = 0.46828 + 1.59550I		
a = -1.42404 - 0.69085I		
b = -2.23667 - 1.02998I	5.28066 - 2.46552I	0.37200 + 1.61165I
c = -0.124307 + 0.903472I		
d = -0.592592 - 0.692030I		
u = 0.46828 - 1.59550I		
a = -1.42404 + 0.69085I		
b = -2.23667 + 1.02998I	5.28066 + 2.46552I	0.37200 - 1.61165I
c = -0.124307 - 0.903472I		
d = -0.592592 + 0.692030I		
u = 0.222829		
a = -2.19711		
b = 0.460179	1.26042	8.87750
c = 0.468941		
d = 0.246113		
u = 1.56387 + 1.00084I		
a = 1.37138 - 2.22950I		
b = 2.03826 - 1.30990I	14.9463 - 10.4045I	-1.17625 + 4.09895I
c = -0.765750 + 0.890549I		
d = -2.32961 - 0.11029I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.56387 - 1.00084I		
a = 1.37138 + 2.22950I		
b = 2.03826 + 1.30990I	14.9463 + 10.4045I	-1.17625 - 4.09895I
c = -0.765750 - 0.890549I		
d = -2.32961 + 0.11029I		

II.
$$I_2^u = \langle u^3 + 4d - u + 2, -u^3 + 2u^2 + 4c - 3u - 4, -u^3 + 4b + u + 2, -5u^3 + 4u^2 + \dots + 8a - 14, u^4 - 2u^3 + 3u^2 + 4u - 4 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{5}{8}u^{3} - \frac{1}{2}u^{2} + \frac{7}{8}u + \frac{7}{4} \\ \frac{1}{4}u^{3} - \frac{1}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{3}{8}u^{3} - \frac{1}{2}u^{2} + \frac{9}{8}u + \frac{9}{4} \\ \frac{1}{4}u^{3} - \frac{1}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{4}u^{3} - \frac{1}{2}u^{2} + \frac{3}{4}u + 1 \\ -\frac{1}{4}u^{3} + \frac{1}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{8}u^{3} - u^{2} + \frac{7}{8}u + \frac{9}{4} \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} + \frac{3}{2}u + \frac{3}{2} \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{5}{8}u^{3} + u^{2} + \frac{1}{8}u - \frac{9}{4} \\ 2u^{3} - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{5}{8}u^{3} + u^{2} + \frac{1}{8}u - \frac{9}{4} \\ 2u^{3} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$u^4 - 2u^3 + 3u^2 + 4u - 4$
c_2, c_{11}	$u^4 - 2u^3 + 17u^2 + 40u + 16$
c_{3}, c_{7}	$(u^2 + 4u + 2)^2$
c_6, c_9	$(u^2 + 2u - 1)^2$
<i>C</i> ₈	$(u^2 - 6u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$y^4 + 2y^3 + 17y^2 - 40y + 16$
c_2, c_{11}	$y^4 + 30y^3 + 481y^2 - 1056y + 256$
c_3, c_7	$(y^2 - 12y + 4)^2$
c_{6}, c_{9}	$(y^2 - 6y + 1)^2$
c ₈	$(y^2 - 34y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.14055		
a = -0.825724		
b = -0.585786	-2.46740	0
c = -0.876768		
d = -0.414214		
u = 0.726339		
a = 2.36126		
b = -0.585786	-2.46740	0
c = 1.37677		
d = -0.414214		
u = 1.20711 + 1.83612I		
a = -2.76777 + 0.53779I		
b = -3.41421	17.2718	0
c = 0.250000 - 0.380272I		
d = 2.41421		
u = 1.20711 - 1.83612I		
a = -2.76777 - 0.53779I		
b = -3.41421	17.2718	0
c = 0.250000 + 0.380272I		
d = 2.41421		

III. $I_3^u=\langle d,\; c+1,\; b,\; a+1,\; u+1\rangle$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2\\-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_5	u-1
c_2, c_4, c_{10} c_{11}	u+1
c_3, c_6, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5, c_{10}, c_{11}$	y-1
c_3, c_6, c_7 c_8, c_9	y

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000		
b = 0	-3.28987	-12.0000
c = -1.00000		
d = 0		

IV.
$$I_4^u = \langle d+1, \ c+1, \ b, \ a-1, \ u+1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_9	u-1
c_2, c_4, c_6 c_8	u+1
c_3, c_5, c_7 c_{10}, c_{11}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_8, c_9	y-1
c_3, c_5, c_7 c_{10}, c_{11}	y

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000		
b = 0	0	0
c = -1.00000		
d = -1.00000		

V.
$$I_5^u = \langle d - c - 1, ca + a + 1, b, u + 1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} c \\ c+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} c+a \\ c+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c - 1 \\ c \end{pmatrix}$$

$$a_6 = \begin{pmatrix} c \\ c+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} c \\ c+1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-c^2 a^2 2c 5$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$		
$b = \cdots$	-1.64493	-5.89563 + 0.16586I
$c = \cdots$		
$d = \cdots$		

VI.
$$I_1^v = \langle c, d+1, b, a-1, v-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	u
c_5, c_6, c_8 c_{11}	u+1
c_9, c_{10}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 1.00000		
b = 0	0	0
c = 0		
d = -1.00000		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{2}(u^{4}-2u^{3}+3u^{2}+4u-4)$ $\cdot (u^{7}-3u^{6}+5u^{5}-3u^{4}-u^{3}+7u^{2}+3u-1)$
c_2, c_{11}	$u(u+1)^{2}(u^{4} - 2u^{3} + 17u^{2} + 40u + 16)$ $\cdot (u^{7} - u^{6} + 5u^{5} - 29u^{4} + 67u^{3} + 61u^{2} + 23u + 1)$
c_3, c_7	$u^{3}(u^{2} + 4u + 2)^{2}(u^{7} - 6u^{5} + 4u^{4} + 32u^{3} - 12u^{2} + 16u - 8)$
c_4	$u(u+1)^{2}(u^{4}-2u^{3}+3u^{2}+4u-4)$ $\cdot (u^{7}-3u^{6}+5u^{5}-3u^{4}-u^{3}+7u^{2}+3u-1)$
c_5, c_{10}	$u(u-1)(u+1)(u^4 - 2u^3 + 3u^2 + 4u - 4)$ $\cdot (u^7 - 3u^6 + 5u^5 - 3u^4 - u^3 + 7u^2 + 3u - 1)$
c_6	$u(u+1)^{2}(u^{2}+2u-1)^{2}(u^{7}+u^{6}-4u^{5}+15u^{3}+3u^{2}-8u-4)$
c_8	$u(u+1)^{2}(u^{2}-6u+1)^{2}$ $\cdot (u^{7}-9u^{6}+46u^{5}-142u^{4}+297u^{3}-249u^{2}+88u-16)$
<i>c</i> ₉	$u(u-1)^{2}(u^{2}+2u-1)^{2}(u^{7}+u^{6}-4u^{5}+15u^{3}+3u^{2}-8u-4)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$y(y-1)^{2}(y^{4} + 2y^{3} + 17y^{2} - 40y + 16)$ $\cdot (y^{7} + y^{6} + 5y^{5} + 29y^{4} + 67y^{3} - 61y^{2} + 23y - 1)$
c_2, c_{11}	$y(y-1)^{2}(y^{4} + 30y^{3} + 481y^{2} - 1056y + 256)$ $\cdot (y^{7} + 9y^{6} + 101y^{5} - 3y^{4} + 8259y^{3} - 581y^{2} + 407y - 1)$
c_3, c_7	$y^{3}(y^{2} - 12y + 4)^{2}$ $\cdot (y^{7} - 12y^{6} + 100y^{5} - 368y^{4} + 928y^{3} + 944y^{2} + 64y - 64)$
c_6, c_9	$y(y-1)^{2}(y^{2}-6y+1)^{2}$ $\cdot (y^{7}-9y^{6}+46y^{5}-142y^{4}+297y^{3}-249y^{2}+88y-16)$
C ₈	$y(y-1)^{2}(y^{2} - 34y + 1)^{2}$ $\cdot (y^{7} + 11y^{6} + 154y^{5} + 2854y^{4} + 25301y^{3} - 14273y^{2} - 224y - 256)$