Project_Netflix

I will first begin by splitting the Netflix data into the training and test data sets.

```
library(ISLR2)
library(tree)
library(tidyverse)
## -- Attaching packages --
                                                      ----- tidyverse 1.3.2 --
## v ggplot2 3.4.0
                                1.0.1
                    v purrr
## v tibble 3.1.8 v dplyr
                                1.1.0
## v tidyr
           1.3.0
                   v stringr 1.5.0
            2.1.3
## v readr
                      v forcats 1.0.0
## -- Conflicts -----
                                       ------tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(caret)
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
Netfl <- read.csv("Best Movies Netflix.csv")</pre>
Net <- subset(Netfl, select = c(RELEASE_YEAR:MAIN_GENRE))</pre>
Net$MAIN_GENRE <- as.factor(Net$MAIN_GENRE)</pre>
Netflix<-Net%>%
 as_tibble()
set.seed(456)
netflix_index = sample(1:nrow(Netflix), nrow(Netflix)/2)
NetflixTrain_set = Netflix[netflix_index,]
NetflixTest_set = Netflix[-netflix_index,]
```

The regression tree will only work on factor variables and numeric variables, so the 'MAIN_GENRE' variable was changed in order to prevent NA's introduced by coercion. This is also why the 'TITLE' variable and

 ${\rm 'MAIN_PRODUCTION'}$ variable were not included because transforming these variables created too many factors.

The regression tree will be fitted.

```
Netflix_regressiontree <- tree(SCORE~., NetflixTrain_set)
summary(Netflix_regressiontree)</pre>
```

```
##
## Regression tree:
## tree(formula = SCORE ~ ., data = NetflixTrain_set)
## Number of terminal nodes: 17
## Residual mean deviance: 0.08655 = 15.23 / 176
## Distribution of residuals:
##
      Min. 1st Qu.
                       Median
                                  Mean
                                        3rd Qu.
                                                    Max.
## -0.61110 -0.21110 -0.00625
                               0.00000
                                        0.20000
                                                 0.75000
```

This tree was plotted in order to develop a visualization of it.

```
plot(Netflix_regressiontree)
text(Netflix_regressiontree,pretty=0,cex =0.5)
```


This regression tree will also be pruned with cross-validation.

```
set.seed(456)
Pruned_Netflix <-cv.tree(Netflix_regressiontree)
Pruned_Netflix
## $size</pre>
```

```
## [1] 17 15 14 13 12 11 10 9 8 5 4 3 2 1
##
## $dev
   [1] 37.33907 37.29157 38.33699 37.65415 38.33797 37.92118 38.40678 37.02964
  [9] 35.68048 33.90672 35.72537 36.70415 35.61927 36.51040
##
##
## $k
##
   [1]
            -Inf 0.4053175 0.4861111 0.6300000 0.7067227 0.7401389 0.8648868
   [8] 0.9463416 1.0285714 1.0544949 1.7640000 2.1310744 2.8578339 3.4374900
##
## $method
## [1] "deviance"
##
## attr(,"class")
## [1] "prune"
                       "tree.sequence"
```

Plots were developed in order to see the results from performing cross-validation on this pruned tree.

We should choose the tree with the lowest error, which is the tree with 5 nodes. Then, we will predict on the test dataset.

```
NetflixLowestErrorTree = prune.tree(Netflix_regressiontree, best = 5)
summary(NetflixLowestErrorTree)
```

```
##
## Regression tree:
## snip.tree(tree = Netflix_regressiontree, nodes = c(3L, 5L, 9L
## Variables actually used in tree construction:
## [1] "NUMBER_OF_VOTES" "DURATION"
                                           "MAIN_GENRE"
## Number of terminal nodes: 5
## Residual mean deviance: 0.1309 = 24.61 / 188
## Distribution of residuals:
      Min. 1st Qu.
                      Median
                                  Mean
                                        3rd Qu.
                                                    Max.
## -0.72940 -0.26110 -0.01429
                               0.00000 0.23890
                                                 0.98570
```

We will create a plot of this pruned tree.

```
plot(NetflixLowestErrorTree)
text(NetflixLowestErrorTree, pretty = 0)
```


This tree will be used to form the predictions on the test data set.

predictedbestNextflixtree <-predict(NetflixLowestErrorTree,newdata=NetflixTest_set)
predictedbestNextflixtree</pre>

```
3
                                               5
## 7.420000 7.929412 7.929412 7.929412 8.260000 7.714286 7.361069 7.714286
                  10
                            11
                                     12
                                              13
                                                        14
                                                                 15
## 7.714286 8.260000 7.929412 7.714286 7.361069 7.361069 7.714286 7.361069
         17
                  18
                            19
                                     20
                                              21
                                                        22
                                                                 23
## 8.260000 7.361069 7.929412 7.714286 7.714286 7.420000 7.929412 8.260000
         25
                  26
                            27
                                     28
                                              29
                                                        30
                                                                 31
                                                                           32
  7.714286 7.714286 7.714286 7.361069 7.361069
                                                          7.420000 7.714286
                  34
         33
                            35
                                     36
                                              37
                                                        38
                                                                 39
## 7.929412 7.714286 7.929412 7.361069 7.929412 7.714286 7.840000 7.361069
##
         41
                  42
                            43
                                     44
                                                        46
                                                                 47
                                              45
## 7.929412 7.361069 7.929412 7.929412 7.420000 8.260000 7.361069 8.260000
##
         49
                  50
                            51
                                     52
                                              53
                                                        54
                                                                 55
                                                                           56
  7.714286 7.714286 7.929412 7.929412 7.929412 7.361069 7.929412 7.929412
         57
                  58
                            59
                                     60
                                              61
                                                        62
                                                                 63
  7.361069 7.361069 7.714286 7.361069 7.361069 7.361069 7.361069
##
         65
                  66
                            67
                                     68
                                              69
                                                        70
                                                                 71
                                                                           72
## 7.361069 7.420000 7.929412 7.714286 7.361069 7.929412 7.361069 7.361069
         73
                  74
                            75
                                     76
                                              77
                                                        78
                                                                 79
##
## 7.361069 7.714286 7.361069 7.714286 7.361069 7.361069 7.361069 7.840000
```

```
##
                            83
                                                                            88
                  82
                                     84
                                               85
## 7.929412 7.361069 7.361069 7.361069 7.714286 7.714286 7.361069 7.361069
                            91
                  90
                                     92
                                               93
                                                         94
                                                                  95
                                                                            96
##
  7.714286 7.361069 7.361069 7.361069 7.361069 7.361069 7.361069
##
         97
                  98
                            99
                                    100
                                              101
                                                       102
                                                                 103
  7.361069 7.361069 7.714286 7.714286 7.714286 7.361069 7.361069 7.361069
##
##
        105
                  106
                           107
                                    108
                                              109
                                                       110
                                                                 111
## 7.361069 7.929412 7.361069 7.361069 7.714286 7.361069 7.714286 7.361069
##
        113
                  114
                           115
                                              117
                                                       118
                                                                 119
                                                                           120
                                    116
  7.361069 7.361069 7.714286 7.361069 7.420000 7.361069 7.714286 7.361069
        121
                  122
                           123
                                    124
                                              125
                                                       126
                                                                 127
                                                                          128
##
   7.361069 7.361069 7.714286 7.361069 7.714286 7.361069 7.840000 7.361069
                                    132
##
        129
                  130
                           131
                                              133
                                                       134
                                                                 135
                                                                          136
  7.714286 7.714286 7.361069 7.420000 7.361069 7.361069 7.361069 7.361069
##
        137
                  138
                           139
                                     140
                                              141
                                                       142
                                                                 143
                                                                          144
  7.361069 7.361069 7.361069 7.840000 7.361069 7.361069 7.361069 7.714286
##
        145
                  146
                                              149
                                                       150
                           147
                                     148
                                                                 151
                                                                           152
   7.361069 7.361069 7.361069 7.361069 7.361069 7.361069 7.361069
##
        153
                  154
                                              157
                                                       158
                                                                          160
                           155
                                    156
                                                                 159
  7.361069 7.361069 7.714286 8.260000 7.361069 7.361069 7.361069 7.714286
##
        161
                  162
                           163
                                    164
                                              165
                                                       166
                                                                 167
                                                                          168
## 7.361069 7.714286 7.714286 7.361069 7.361069 7.361069 7.361069 7.361069
##
        169
                  170
                           171
                                    172
                                              173
                                                       174
                                                                 175
                                                                          176
## 7.361069 7.361069 7.361069 7.361069 7.361069 7.361069 7.714286 7.361069
##
        177
                  178
                           179
                                    180
                                              181
                                                       182
                                                                 183
                                                                           184
   7.714286 7.361069 7.714286 7.361069 7.714286 7.361069 7.361069 7.714286
                                                                          192
##
        185
                  186
                           187
                                    188
                                              189
                                                       190
                                                                 191
  7.361069 7.361069 7.361069 7.714286 7.361069 7.361069 7.714286 7.361069
##
        193
                  194
## 7.361069 7.361069
```

We will compute the RMSE through the creation of this function.

```
rmse<-function(actual, predicted){
  rmse=sqrt(mean((actual - predicted) ^ 2))
  mse= mean((actual-predicted)^2)
  c(rmse,mse)
}</pre>
```

The performance of this tree will be evaluated through using RMSE.

```
rmse(NetflixTest_set$SCORE,predictedbestNextflixtree)
```

```
## [1] 0.4234998 0.1793521
```

We will load this library in order to perform random forest and bagging.

```
library(randomForest)
```

```
## randomForest 4.7-1.1
```

Type rfNews() to see new features/changes/bug fixes.

```
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
We will perform bagging with atleast 500 trees.
set.seed(458)
bagging_Netflix <-randomForest(SCORE~.,data=NetflixTrain_set,mtry=4,importance=TRUE,ntree=500)
bagging_Netflix
##
## Call:
   randomForest(formula = SCORE ~ ., data = NetflixTrain_set, mtry = 4,
                                                                                importance = TRUE, ntree
                  Type of random forest: regression
##
##
                        Number of trees: 500
## No. of variables tried at each split: 4
##
             Mean of squared residuals: 0.1647302
##
                       % Var explained: 8.64
importance(bagging_Netflix,type = 1)
##
                     %IncMSE
## RELEASE_YEAR
                   -1.744600
## NUMBER_OF_VOTES 14.500684
## DURATION
                   23.462023
## MAIN_GENRE
                    3.841185
varImpPlot(bagging_Netflix,type = 1)
```

bagging_Netflix

The test data set will be used for the predictions.

No. of variables tried at each split: 1

```
baggingpredictions_Netflix <- predict(bagging_Netflix,newdat=NetflixTest_set)
rmse(NetflixTest_set$SCORE, baggingpredictions_Netflix)</pre>
```

```
## [1] 0.4102320 0.1682903
```

##

##

##

Random forest will now be implemented on the Netflix dataset. Since this is regression, the total number of predictors divided by 3 will be the value that is selected for the mtry function.

Number of trees: 500

Mean of squared residuals: 0.1632537 % Var explained: 9.46

The predictions will be developed on the test set now.

```
randomforestpredictions_Netflix <-predict(Netflix_randomforests,newdat=NetflixTest_set)
rmse(NetflixTest_set$SCORE, randomforestpredictions_Netflix)</pre>
```

```
## [1] 0.4120424 0.1697789
```

We will begin to examine the importance of each variable and how they operate in the splits of the 500 trees through these two visualizations.

Netflix randomforests

This visual uses the information from random forest's variable importance plot to create a colorful visualization in the form of a bar plot.

Variable Importance: Random Forest

