Lumière et couleurs:

La dispersion de la lumière

(Prof : BRAHIM TAHIRI)

I) La dispersion de la lumière blanche.

Expérience: On dirige un faisceau de lumière blanche (lumière de soleil par exemple) vers la face d'un prisme.

Observation et interprétation:

- En passant à travers le prisme, la lumière blanche est transformée en lumières colorées. On dit que le prisme décompose la lumière blanche.
- La figure colorée obtenue est appelée le spectre de la lumière blanche.
- Les sept couleurs principales du spectre de la lumière blanche sont : violet , indigo, bleu , vert, jaune, orange et rouge.

Conclusion:

La lumière blanche est une lumière polychromatique, c'est-à-dire qu'elle est constituée de plusieurs lumières colorées qui forment un spectre continu de la lumière blanche.

Remarque:

L'arc-en-ciel est aussi un phénomène de dispersion de la lumière blanche du soleil sur des gouttelettes d'eau de la pluie.

II) La reconstitution de la lumière blanche :

Expérience: On met en rotation rapide un disque de Newton (disque en carton sur lequel se trouve des secteurs aux couleurs de l'arc-en-ciel).

Interprétation:

- Quand le disque tourne, l'œil ne peut pas distinguer successivement les différentes couleurs.
- Les couleurs se superposent et on a l'impression de voir du blanc. Il semble que la lumière blanche soit recomposée.

Conclusion:

Il est possible de reconstituer la lumière blanche en superposant les lumières colorées du spectre de la lumière blanche.

III) La lumière monochromatique:

Expérience: On place un filtre coloré rouge entre une source de lumière blanche et un écran. Après, on interpose un prisme entre le filtre et l'écran.

Interprétation:

- Le filtre coloré rouge transmet la partie de la lumière qui correspond à sa couleur et absorbe les autres couleurs, et l'écran nous apparaît alors rouge.
- Le prisme ne décompose pas la lumière rouge. On dit donc que la lumière rouge est une lumière monochromatique.

Remarques:

✓ Si on remplace le filtre rouge par un filtre bleu ou un filtre vert , on obtient successivement sur l'écran une lumière bleue et une lumière verte. Don ces deux couleurs sont des couleurs monochromatiques.

✓ Le rayonnement LASER est aussi une lumière monochromatique parce qu'il ne disperse pas.

IV) La superposition des lumières colorées (facultative):

Expérience: Projetant trois faisceaux de lumières colorées (rouge, verte, bleue) sur un écran blanc.

Interprétation:

La superposition de lumières colorées sur un écran blanc permet d'obtenir d'autres couleurs. On dit que ces autres couleurs sont obtenues par synthèse additive.

Conclusion:

- → Par la superposition de lumières rouge, verte et bleue, on obtient une lumière blanche.
- Les trois lumières colorées rouge , verte et bleue sont appelées couleurs primaires.
- La superposition de deux lumières primaires donne les couleurs jaune, cyan et magenta, qui sont appelées couleurs secondaires.

Remarques:

- ✓ La superposition des trois couleurs secondaires absorbe la lumière blanche et donne la lumière noire. C'est la synthèse soustractive.
- ✓ La superposition de deux couleurs secondaires donne l'une des couleurs primaires.

V) La couleur d'un objet (facultative):

Expérience: On éclaire des objets (modèles réduits d'automobiles) de couleurs différentes en lumière blanche (A), en lumière verte (B), puis en lumière rouge (C).

Résultats:

Couleur de La lunière	Bleu	Vert	Noir	Blanc	Rouge	Jaume
Blanche	Bleu	Vert	Noir	Blanc	Rouge	Jaune
Verte	Noir	Vert	Noir	Vert	Noir	Vert
Rouge	Noir	Noir	Noir	Rouge	Rouge	Rouge

Interprétation:

- Un objet noir apparaît toujours noir car il absorbe toutes les lumières.
- → Un objet blanc apparaît toujours de la couleur de la lumière qui l'éclaire car il diffuse toutes les lumières colorées.
- ▶ Un objet coloré diffuse une lumière colorée correspondant à sa propre couleur et il absorbe les autres lumières.

Conclusion:

- La couleur propre d'un objet est la couleur de la lumière qu'il diffuse lorsqu'il est éclairé en lumière blanche.
- 🧇 La couleur apparente d'un objet dépend de la lumière colorée qui l'éclaire.

