Fenómenos de Transferência II

1. Num estudo experimental de absorção de SO_2 pela água numa coluna de parede molhada determinou-se para K_G o valor de 0.768 kmole h^{-1} m^{-2} at m^{-1} a 20° e à pressão atmosférica. Não sendo a absorção de SO_2 controlada nem pelo filmo gasoso nom polo filmo líquido, podo, poróm considerar-so que $\frac{1}{2}$ $\frac{1}{2}$

filme gasoso nem pelo filme líquido, pode, porém considerar-se que $\frac{1}{k_G} = \frac{H}{k_L}$.

Sabendo que o valor de K_G para absorção de NH_3 em água a 10^{o} C na mesma aparelhagem e com os mesmos caudais de gás e água é 2.217 kmole h^{-1} m^{-2} at m^{-1} , calcule a constante α na equação:

 $k_G = A (D_G)^{\alpha}$ em que D_G é o coeficiente de difusão do gás no ar.

- coeficiente de difusão de SO_2 em ar a 20° C, D_{SO_2} = 0.041 m²/h

-coeficiente de difusão de NH₃ em ar a 10° C, $D_{NH_3} = 0.083 \text{ m}^2/\text{h}$

$$\frac{H_{SO_2}}{H_{NH_3}} = \frac{1}{0.018} \qquad \frac{D_{SO_2}/H_2O}{D_{NH_3}/H_2O} \cong 1$$

2. Ar e água são postos em contacto em contracorrente numa coluna de parede molhada de 30 mm de diâmetro.

Para a fase gasosa sabe-se que:

$$Sh = 0.023 \text{ Re}^{0.8} \text{ Sc}_6^{0.44}$$

Mostre que na fase líquida, a quantidade transferida por unidade de tempo e por unidade de área de interface é k_L C_L $(x_i - x)$ Kmol/m² s; x_i e x são respectivamente as fracções molares de soluto na interface e na fase líquida, C_L a concentração molar de água $(C_L = 1000/18 \text{ kmol/m}^3)$ e k_L m/s.

Então mostre ainda que, com K_G e k_G em m/s, e H nas unidades em que é

dado na tabela
$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{10^5 \text{ H}}{k_L C_L \text{ RT}}$$

Em experiências de desabsorção de oxigénio verificou-se que para a fase líquida k_L =0,2mm/s.

Admitindo $k_L \alpha \sqrt{D_L}$, calcule o coeficiente global de transferência K_G quando o ar contém pequenas quantidades de a) NH₃, b) SO₂, c) CO₂ e a velocidade do ar é 0,40 m/s a uma pressão de 5×10^5 Pa e à temperatura de 20° c.

Dados: (a 20°C)

Gás	H(10 ⁵ Pa)	Sc_G	$D_L \times 10^9 (m^2/s)$
NH ₃	0,62	0,6	1,6
SO_2	12,2	1,3	1,4
CO ₂	1420	1,0	1,7
O ₂			2,1

Para o ar, $\mu = 1.84 \times 10^{-5} \text{ Ns m}^{-2}$