ELEMENTOS DE ÁLGEBRA :: PROVA 01

PROF. TIAGO MACEDO

Nome: ______ Assinatura: _____ RA: ____

 $\{f\colon G\to G\mid f\text{ \'e um isomorfismo de grupos}\}.$

Questão 1. Dado um grupo G, denote por $\operatorname{Aut}(G)$ o conjunto

Data: 19 de setembro de 2017.

,	$(1,0 \text{ ponto})$ Mostre que $\operatorname{Aut}(G)$ munido da função $m \colon \operatorname{Aut}(G) \times \operatorname{Aut}(G) \to \operatorname{Aut}(G)$ dada por $m(f,g) = f \circ g$ (composição de funções) é um grupo. $(2,0 \text{ pontos})$ Considere o grupo aditivo \mathbb{Z} . Calcule $\operatorname{Aut}(\mathbb{Z})$. (Ou seja, encontre um grupo conhecido ao qual $\operatorname{Aut}(G)$ é isomorfo.)
(a)	 Vamos mostrar as condições (i)-(iii) da definição de grupos. (i) Dadas f, g, h ∈ Aut(G), temos que m(f, m(g, h)) = f ∘ m(g, h) = f ∘ (g ∘ h) = f ∘ g ∘ h = (f ∘ g) ∘ h = m(f, g) ∘ h = m(m(f, g), h). (ii) A função id_G: G → G, dada por id_G(g) = g para todo g ∈ G, pertence a Aut(G). De fato, id_G(gh) = gh = id_G(g)id_G(h) para todo g, h ∈ G. Além disso, m(id_G, f)(g) = (id_G ∘ f)(g) = id_G(f(g)) = f(g) = f(id_G(g)) = (f ∘ id_G)(g) = m(f, id_G)(g) para todos f ∈ Aut(G) e g ∈ G. Portanto, id_G⁻¹ = id_G e e_{Aut(G)} = id_G. (iii) Por definição, toda f ∈ Aut(G) é bijetora. Portanto existe f⁻¹: G → G. Vamos mostrar que f⁻¹ ∈ Aut(G). De fato, basta mostrar que f⁻¹ é um homomorfismo de grupos, pois f = (f⁻¹)⁻¹. Dados g, h ∈ G, denote f⁻¹(g) = ḡ, f⁻¹(h) = h̄ ∈ G, e observe que g = f(ḡ), h = f(h̄). Então temos que f⁻¹(gh) = f⁻¹(f(ḡ)f(h̄)) = f⁻¹(f(ḡh̄)) = ḡh̄ = f⁻¹(g)f⁻¹(h).
	Isso mostra que f^{-1} é um homomorfismo de grupos e portanto $f^{-1} \in \text{Aut}(G)$.
(b)	Suponha que $f: \mathbb{Z} \to \mathbb{Z}$ é um isomorfismo de grupos. Em particular, temos $f(n) = nf(1)$ para todo $n \in \mathbb{Z}$, e im $(f) = \mathbb{Z}$. Consequentemente, $\mathbb{Z} = \{nf(1) \mid n \in \mathbb{Z}\} = \langle f(1) \rangle$, ou seja, $f(1)$ é um gerador de \mathbb{Z} . Como os únicos geradores de \mathbb{Z} são -1 e 1 (Proposição 6.15), então $f(1) \in \{-1,1\}$. Para cada $i \in \{-1,1\}$, denote por $f_i \colon \mathbb{Z} \to \mathbb{Z}$ a função dada por $f(n) = ni$. Vamos mostrar que $\varphi \colon \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z})$ dada por $\varphi(\overline{i}) = f_{(-1)^i}$ $(i \in \{0,1\})$ é um isomorfismo de grupos. Primeiro, observe que φ é bijetora. Agora, para terminar, vamos mostrar que φ é um homomorfismo de grupos. De fato, $(\varphi(\overline{i}) \circ \varphi(\overline{j}))(n) = f_{(-1)^i}(f_{(-1)^j}(n)) = f_{(-1)^i}(n(-1)^j) = (n(-1)^j)(-1)^i = n(-1)^{i+j} = f_{(-1)^{i+j}}(n) = \varphi(\overline{i+j})(n)$ para todos $n \in \mathbb{Z}$, $i, j \in \{-1, 1\}$.

Questão 2. Considere o grupo $G = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}$ munido da função $m \colon X \times X \to X$ dada por m(x, y) = x + y (soma de dois números reais).

- (a) (1,0 ponto) Mostre que $H = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ é um subgrupo de G.
- (b) (2,0 pontos) Considere o grupo quociente G/H. Mostre que todo elemento $x \in G/H$ tem ordem finita.
- (a) Vamos mostrar as condições (i), (ii) da definição de subgrupo.
 - (i) Dados $a, b, c, d \in \mathbb{Z}$, temos que $m((a+b\sqrt{2}), (c+d\sqrt{2})) = (a+c) + (b+d)\sqrt{2}$. Como $a, b, c, d \in \mathbb{Z}$, então $(a+b), (c+d) \in \mathbb{Z}$. Portanto $m((a+b\sqrt{2}), (c+d\sqrt{2}))$ pertence a H.
 - (ii) Observe que o inverso de $(a + b\sqrt{2})$ é $((-a) + (-b)\sqrt{2})$. De fato,

$$m\left(\left(a+b\sqrt{2}\right),\left((-a)+(-b)\sqrt{2}\right)\right)=0=m\left(\left((-a)+(-b)\sqrt{2}\right),\left(a+b\sqrt{2}\right)\right),$$

 $m(c+d\sqrt{2},0)=c+d\sqrt{2}\quad \text{para todos } c,d\in\mathbb{Z}.$

Como $a, b \in \mathbb{Z}$, então $-a, -b \in \mathbb{Z}$. Portanto o inverso de $a + b\sqrt{2}$ pertence a H.

(b) Lembre que todo $x \in G/H$ é da forma $(a+b\sqrt{2})$ para alguns $a, b \in \mathbb{Q}$. Denote $a = p_a/q_a$ e $b = p_b/q_b$, onde $p_a, p_b \in \mathbb{Z}$, $q_a, q_b \in \mathbb{Z} \setminus \{0\}$ e $\mathrm{mdc}(p_a, q_a) = \mathrm{mdc}(p_b, q_b) = 1$. Tome $k = q_a q_b \in \mathbb{Z} \setminus \{0\}$ e observe que

$$k\overline{(a+b\sqrt{2})} = \overline{(ka) + (kb)\sqrt{2}} = \overline{(q_bp_a) + (q_ap_b)\sqrt{2}} = \overline{0},$$

pois $(q_b p_a), (q_a p_b) \in \mathbb{Z}$. Isso mostra que a ordem de $x = \overline{(a + b\sqrt{2})}$ é finita $(\leq k)$.

Questão 3.

- (a) (1,0 ponto) Dado um homomorfismo sobrejetivo de grupos $f: G \to H$, mostre que existe um isomorfismo de grupos $G/\ker(f) \cong H$ (sem usar o primeiro Teorema de Isomorfismo de grupos).
- (b) (2,0 pontos) Sejam G um grupo e $N, K \subseteq G$ dois subgrupos normais. Se G = NK, mostre que existe um isomorfismo de grupos $G/(N \cap K) \cong G/N \times G/K$.
- (a) Considere a função $F: G/\ker(f) \to H$ dada por $F(\overline{g}) = f(g)$. Vamos mostrar que F é um isomorfismo de grupos. Primeiro, observe que F está bem definida. De fato, se $k \in \ker(f)$, então:

$$F(\overline{gk}) = f(gk) = f(g)f(k) = f(g)e_H = f(g) = F(\overline{g}).$$

Agora vamos verificar que F é um homomorfismo de grupos. Dados $g_1, g_2 \in G$, temos:

$$F(\overline{g_1}\,\overline{g_2}) = f(g_1g_2) = f(g_1)f(g_2) = F(\overline{g_1})F(\overline{g_2}).$$

Como F é um homomorfismo de grupo, F é injetora se, e somente se, $\ker(F) = \{\overline{e_G}\}$. Vamos calcular o núcleo de F:

$$\ker(F) = \{ \overline{g} \in G / \ker(f) \mid F(\overline{g}) == f(g) = e_H \}$$
$$= \{ \overline{g} \in G / \ker(f) \mid g \in \ker(f) \}$$
$$= \{ \overline{e_G} \}.$$

Isso mostra que F é injetora. O fato de F ser sobrejetora segue da definição de F e da hipótese que f é sobrejetora. Com isso concluímos que F é um isomorfismo de grupos entre $G/\ker(f)$ e H.

(b) Vamos definir um homomorfismo de grupos sobrejetor $f: G \to G/N \times G/K$ tal que $\ker(f) = (N \cap K)$. Daí, usando o item (b), segue que existe um isomorfismo de grupos $G/(N \cap K) \cong G/N \times G/K$.

Dado $g \in G$, denote a correspondente classe de equivalência em G/N (resp. G/K) por \overline{g} (resp. \widetilde{g}). Agora considere a função $f \colon G \to G/N \times G/K$ dada por $f(g) = (\overline{g}, \widetilde{g})$. Primeiro vamos verificar que f é um homomorfismo de grupos. Para todos $g, h \in G$, temos que:

$$f(gh) = (\overline{gh}, \widetilde{gh}) = (\overline{g} \, \overline{h}, \widetilde{gh}) = (\overline{g}, \widetilde{g})(\overline{h}, \widetilde{h}) = f(g)f(h).$$

Agora observe que

$$\ker(f) = \{g \in G \mid f(g) = (\overline{e_G}, \widetilde{e_G})\}$$

$$= \{g \in G \mid (\overline{g}, \widetilde{g}) = (\overline{e_G}, \widetilde{e_G})\}$$

$$= \{g \in G \mid g \in N, g \in K\}$$

$$= (N \cap K).$$

Por fim, vamos mostrar que f é sobrejetora. Por hipótese, para todo $g \in G$, existem $n \in N$ e $k \in K$ tais que nk = g. Além disso, $\overline{nk} = \overline{k}$ e $\overline{nk} = \widetilde{n}$. Logo, para todo $(\overline{g}, \widetilde{h}) \in G/N \times G/K$, existem $k \in K$ e $n \in N$ tais que $(\overline{g}, \widetilde{h}) = (\overline{k}, \widetilde{n}) = f(nk)$. \square

Questão 4. Determine se as afirmações a seguir são verdadeiras ou falsas. É necessário justificar a sua escolha provando as afirmações verdadeiras e encontrando contra-exemplos para as falsas.

- (a) (1,0 ponto) Seja G um grupo. Todo subconjunto finito $X \subseteq G$ tal que $N_G(X) = G$ e $xy \in X$ para todos $x, y \in X$ é um subgrupo normal de G.
- (b) (1,0 ponto) Existe um subgrupo de \mathbb{Z} isomorfo a \mathbb{Z}_{17} .
- (c) (1,0 ponto) Se G é um grupo e os únicos subgrupos $H \subseteq G$ são $H = \{e\}$ e H = G, então G é cíclico.
- (a) Verdadeiro. Se X é um subconjunto finito e $xy \in X$ para todos $x, y \in X$, então X é um subgrupo de G (Proposição 5.9). Se X é um subgrupo e $N_G(X) = G$, então $gXg^{-1} = X$ para todo $g \in G$, ou seja, X é um subgrupo normal de G.
- (b) Falso. Suponha que $H \subseteq \mathbb{Z}$ seja um subgrupo isomorfo a \mathbb{Z}_{17} . Em particular, existe $h \in H \subseteq \mathbb{Z}$, tal que o(h) = 17. Isso significa que 17h = 0. Como $17h = 0 \in \mathbb{Z}$ se, e somente se, h = 0, segue que tal h não pode existir. (Lembre que o(0) = 1.) Portanto tal subgrupo $H \subseteq \mathbb{Z}$ não pode existir.
- (c) Verdadeiro. Se $G = \{e\}$, então G é cíclico. Agora suponha que G é não-trivial e tome $g \in G \setminus \{e_G\}$. Como $\langle g \rangle$ é um subgrupo de G diferente de $\{e_G\}$, por hipótese, $\langle g \rangle = G$. Portanto G é gerado por g, ou seja, G é cíclico. \square