Resolução A1

terça-feira, 29 de setembro de 2020 10:18

1)
$$g(x_1y) = 3 - 2x^2 - 3y^2$$
, $f(x_1y) = 4 - x^2 y$
Planos tangentes Pavalelas?
• $g_x = -4x$ (em (1,2,-6):
• $g_y = -6y$ ($g_x = -4$, $g_y = -12$
 $f_{x=-2x}$ ($f_{x=-4}$) $f_{x=-4}$ Petores Andierles
 $f_{y=-2y} = -2x = -4$, $f_{x=-2}$ = $f_{x=-2}$ =

2)
$$Y = (X_1 y_1 z_1)$$
, $p = ||Y|| / V(\frac{1}{p}) = \frac{-Y}{p^3}$?

 $p = ||Y|| = \sqrt{\chi^2 + y^2 + z^2}$ / Observe que sempre que

 $P_{x} = \chi \cdot (\frac{1}{\sqrt{\chi^2 + y^2 + z^2}} \cdot \frac{2}{2})$ devivor- mws , $\frac{1}{\sqrt{\chi^2 + y^2 + z^2}} = \frac{1}{p}$

expansece

 $P = (X_1 y_1 z_2) \cdot \frac{1}{\sqrt{\chi^2 + y^2 + z^2}} = \frac{Y}{p}$.

 $P = (X_1 y_1 z_2) \cdot \frac{1}{\sqrt{\chi^2 + y^2 + z^2}} = \frac{Y}{p}$.

3)
$$M = g(x, y) = \kappa y \cdot f\left(\frac{x+y}{\kappa y}\right)$$

Primeiro Jamos calcular $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$

Seja $K = \frac{\kappa + y}{\kappa y} : \frac{\partial K}{\partial x} = \frac{\kappa y}{\kappa^2 y^2} = \frac{1}{\kappa^2}$

$$= \chi^2 \mathcal{U}_{\chi} = \chi^2 \mathcal{Y}_{f(R)} - \chi \mathcal{Y}_{f(R)}$$

$$= \chi^2 \mathcal{Y}_{f(R)} - \chi \mathcal{Y}_{f(R)}$$

$$(I) - (I) = \chi^2 y f(K) - \chi y^2 f(K) = \chi y f(K)(X-y)$$

= $g(\chi, y)(\chi - y)$

$$4) f = \frac{\chi^3}{3} + \frac{y^3}{3} - \frac{\chi^2}{2} - \frac{5}{2} \gamma^2 + 6\gamma + 10.$$

$$f_{x} = x^{2} - \kappa = \kappa(x-1) = 0 \Rightarrow \kappa = \{0,1\} \ / \ P_{2} = (0,1)$$

$$f_{y} = y^{2} - 5y + 6 = 0 \Rightarrow y = \{2,3\} \ / \ P_{3} = (1,2)$$

$$f_{xx} = 2x-1 \ / \ f_{xy} = 0$$

$$f_{yy} = 2y-5$$

10 1 Lu Minimo local.

(5)
$$f(x_1y_1z) = \ln x + \ln y + 3\ln z$$
 $g = x^2 + y^2 + z^2 = 5\alpha^2$ $i_1 x_1 y_1 z_2 x_3$.
 $\nabla f = \left(\frac{1}{2}, \frac{1}{3}, \frac{3}{2}\right) = \lambda \cdot \lambda \left(x_1 y_1 z_2\right) = \lambda \nabla g(x_1 y_1 z_2)$
 $\lambda \neq 0$ pois $1/\pi \neq 0$. $\frac{1}{2} = \frac{1}{2} \cdot y \Leftrightarrow y^2 = x^2 \cdot pov(1)$
 $\Rightarrow \frac{1}{2} = \lambda \pi \Rightarrow \lambda = \frac{1}{2}$

$$\Rightarrow \frac{3}{7} = \frac{1}{7} = 2 \Rightarrow 2 \Rightarrow 1$$

$$\begin{cases} 2 & \text{Substitutedo em } g: \\ 2 & \text{Substitutedo em } g: \\ 2 & \text{Substitutedo em } g: \end{cases}$$

lugo; Seja P um ponto crítico: P=(a,a, v3 a).

Em f: f(a, a, v3 a) = lna + lna +3ln(av3)

(6)
$$Z_1 = 3(x^2 + y^2)$$
, $Z_2 = (x^2 + y^2)$, $Z_3 = 9 - (x^2 + y^2)$
Utilizando Coordenados Polores:
 $Z_1 \cap Z_3 : 3 \cdot 3 \cdot 2 = 9 - r^2 < = 9 \cdot r^2 = 3 \cdot 2 = 9 \cdot r = 3$
 $Z_2 \cap Z_3 : r^2 = 9 - r^2 < = 9 \cdot r^2 < = 9 \cdot r = 3 \cdot 2 = 9 \cdot r = 3$
(J) $Y \le 3 = 9 \cdot r = 3 \cdot 2 = 9 \cdot r = 3 \cdot 2 = 9 \cdot 2$

(II)
$$\frac{3}{2} \le r \le \frac{3}{\sqrt{2}} \Rightarrow \text{ integramos:}$$

$$Z_3 - Z_2 = 9 - r^2 - r^2 = 9 - 2r^2$$

$$(7)(a)(x-1)^2+y^2\leq 1, x^2+y^2\pi^1$$

Coordenadas Polares:

12-2x +9250 (=> 12527 6050 (=> 152650 x2+ y2711 /=> x711 / Como x711, 20050 711

$$\sqrt{3}$$
 $\sqrt{3}$ $\sqrt{3}$

$$= \int \frac{\pi}{3} (1 + \cos 2\theta) \, d\theta - \pi = \pi + \frac{1}{3} \left(\frac{3 \cos 2\theta}{\pi} \right) = \pi + \frac{1}{3} + \frac{1}{3} \left(\frac{3 \cos 2\theta}{\pi} \right) = \pi + \frac{1}{3} + \frac{1}{3} \left(\frac{3 \cos 2\theta}{\pi} \right) = \frac{\pi}{3} + \frac{1}{3} + \frac{1}{3} \left(\frac{3 \cos 2\theta}{\pi} \right) = \frac{\pi}{3} + \frac{1}{3} + \frac{1}{3} \left(\frac{3 \cos 2\theta}{\pi} \right) = \frac{\pi}{3} + \frac{1}{3} + \frac{1$$

(b) $\int \int \int e^{x^2} dx dy$;

$$\Rightarrow \int_{0}^{1} \int_{0}^{x} e^{x^{2}} dx = \int_{0}^{1} x e^{x^{2}} dx = u^{2} dx$$

$$= \int_{0}^{1} \int_{0}^{x} e^{x^{2}} dx = \int_{0}^{1} x e^{x^{2}} dx = u^{2} dx$$

$$= \int_{0}^{1} \frac{1}{2} e^{n} dn = \frac{1}{2} (e^{n} | \frac{1}{2}) = \frac{1}{2} (e^{-1}) \cdot \frac{1}{2}$$