Cognome e Nome	Matricola
Docente	

ANALISI COMPLESSA Appello del 20 FEBBRAIO 2012 - Compito A

Esercizio 1 (3 punti)

Trovare gli zeri della funzione complessa

$$f(z) = \frac{1 - e^{3\pi z}}{z^4 - 16} \,,$$

nel suo naturale dominio di definizione $\operatorname{dom}(f) \subseteq \mathbb{C}$.

Esercizio 2 (3 punti)

Trovare l'insieme delle soluzioni $z \in \mathbb{C}$ dell'equazione

$$e^{3z} = e^{3\overline{z}}$$

e disegnarlo nel piano complesso.

Esercizio 3 (5 punti)

Si determini e si disegni l'insieme di convergenza della serie complessa

$$\sum_{n=0}^{\infty} \frac{n^5 (iz+1)^n}{(1+i2)^n} \, .$$

Esercizio 4 (4 punti)

Si calcoli

$$I := \int_{\gamma} \frac{1}{z^2(z+1)(z+1-i/4)} dz \,,$$

dove γ è la curva di Jordan percorsa in senso antiorario avente come sostegno l'insieme $\{z\in\mathbb{C}\ :\ |z+1|=1/2\}.$

Esercizio 5 (5 punti)

Al variare di $\alpha \in \mathbb{R}$, si scriva lo sviluppo di Laurent centrato in $z_0 = 0$ nell'insieme $\mathbb{C} \setminus \{0\}$ della funzione

$$f(z) := \frac{z^2 - \alpha e^{i2z}}{z^4} \,.$$

Si determini il residuo di f in $z_0=0$ e la natura di tale singolarità.

Esercizio 6 (4 punti)

Sia $f: \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \left[\operatorname{sgn}(x-1) + \operatorname{sgn}(x)\right]x^{2}.$$

Disegnare il grafico di f e calcolare la derivata della distribuzione T_f .

Esercizio 7 (4 punti)

Posto

$$f(x) = x^4, \qquad x \in \mathbb{R},$$

verificare che la distribuzione $f(x)\delta_4 + T_f$ è temperata e calcolarne la trasformata di Fourier.

Esercizio 8 (5 punti)

- a) Scrivere la definizione di funzione armonica.
- b) Verificare che se $f:\mathbb{C}\longrightarrow\mathbb{C}$ è analitica, allora la sua parte reale è armonica.