Matematica e BioStatistica con Applicazioni Informatiche Esercitazione in aula del 15 gennaio 2018

Quesito 1. Si consideri il seguente problema di Cauchy:

$$\begin{cases} y' = x^3 y^2 \\ y(0) = 4 \end{cases}$$

- 1. Trovare la soluzione del problema di Cauchy.
- 2. Determinare l'intervallo massimale di esistenza della soluzione.

Quesito 2. Si consideri il seguente problema di Cauchy:

$$\begin{cases} y' = -xe^{-y} \\ y(0) = 3 \end{cases}$$

- 1. Trovare la soluzione del problema di Cauchy.
- 2. Determinare l'intervallo massimale di esistenza della soluzione.

Quesito 3. Preleviamo un campione di rango n=25 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=3$. La media μ invece potrebbe avere uno qualsiasi valori dei nell'intervallo [2, 8].

Vogliamo testare $H_0: \mu = 2$ contro $H_A: \mu \in (2,8]$. Fissiamo come significatività $\alpha = 0.05$ otteniamo che per uno z-test a coda superiore la zona di rifiuto è $[2.987, +\infty)$.

- 1. Nel caso $H_A: \mu \in [3.5, 8]$ qual'è la massima probabilità β di non rigettare H_0 (errore II tipo)?
- 2. Calcolare la potenza del test con l'effect-size suggerito nel punto precedente.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

```
Formulario: se X \sim B(\mathbf{n}, \mathbf{p}) allora E(X) = np se X \sim NB(\mathbf{n}, \mathbf{p}) allora E(X) = n(1-p)/p T = \frac{\bar{X} - \bar{Y}}{S \cdot \sqrt{1/n_x + 1/n_y}} \quad \text{dove } S^2 = \frac{n_x - 1}{n_x + n_y - 2} \cdot S_x^2 + \frac{n_y - 1}{n_x + n_y - 2} \cdot S_y^2 \quad \text{ha distribuzione } t(n_x + n_y - 2)
```

```
Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python
```

binom.pmf(k, n, p) =
$$\Pr\left(X = k\right)$$
 dove $X \sim B(n,p)$
binom.cdf(k, n, p) = $\Pr\left(X \le k\right)$ dove $X \sim B(n,p)$
bimom.ppf(q, n, p) = k dove k è tale che $\Pr\left(X \le k\right) \cong$ q per $X \sim B(n,p)$
nbinom.xxx(...), è l'analogo per $X \sim NB(n,p)$.
norm.xxx(...), è l'analogo per $Z \sim N(0,1)$.
t.xxx(..., ν), è l'analogo per $T \sim t(\nu)$.