Similarity Query Processing for Probabilistic Sets

Ming Gao ¹, Cheqing Jin ¹, Wei Wang ², Xuemin Lin ^{1,2}, Aoying Zhou ^{1*}

¹Shanghai Key Laboratory on trustworthy computing, Software Engineering Institute,

East China Normal University, Shanghai, China

²The University of New South Wales, Sydney, Australia

omega.mgao@gmail.com, {cqjin, ayzhoug}@sei.ecnu.edu.cn

{weiw, lxue}@cse.unsw.edu.au

Motivation

- Evaluate similarity between uncertain sets
- Existing work
 - Huge model size
 - Significant similarity evaluation cost
- This paper
 - Comprehensive study for probabilistic set may have thousands of elements

Solution

- Similarities based on dynamic programming
 - Expected Similarity (ES)
 - Confidence-based Similarity (CS)
- Exact query processing based on pruning
 - Individual pruning
 - Batch pruning
- Approximate query processing based on sampling

Agenda

- Introduction
- Related work
- Problem definition and data normalization
- Exact similarity computation
- Pruning techniques
- Approximate solution
- Experiments

Introduction

- Applications
 - Personalization systems
 - Multi-label classification
- Contribution
 - Handle large p-sets efficiently
 - Similarity measure based on dynamic programming
 - Pruning techniques and approximate methods
 - Experiments upon synthetic and real datasets

Related work

- Uncertain Data Management
 - Information extraction and integration, multimedia retrieval, optical character recognition
 - MayBMS, MystiQ, Trio
- Similarity Search
 - Top-k, k-NN, reverse k-NN, range queries
- Similarity Join
 - Batch similarity queries

Related work

- Efficient processing of probabilistic set-containment queries on uncertain set-valued data.[*Inf. Sci*]
 - Same
 - Probabilistic set model, one of the similarity measure
 - Different
 - Pruning methods, approximate methods
- Probabilistic string similarity joins.[SIGMOD 2010]
 - Different
 - Non-neglectible correlations
 - Involving aggregated probabilities

Related work

• Set similarity join on probabilistic data.[VLDB 2010]

Model	Expressive Power	Exact Similarity Computation	Upper Bound Computation
Set-level [27]	Most general	$O(N^2)$	O(N)
Element-level [27]	Can model exclusion	$\Omega(2^n)$	$O(n^2)$ (online) or $O(n)$ (offline)
Our p-set model	A special case of Element-level model	$O(n^3)$	O(n)

- Models and Similarity Evaluation
 - Set-level
 - Element-level
- Pruning Rules
 - Jaccard Distance pruning
 - Probability upper bound pruning

Probabilistic set model

$$\mathcal{A} = \{a_i : p_{a_i} | a_i \in \mathcal{D}, \forall i \in [1, n]\}$$

Possible world semantics

$$w(\mathcal{A}) \qquad \mathbf{Pr}[w] = \prod_{t \in w} p_t \prod_{t \notin w} (1 - p_t)$$

$$\mathcal{W}(\mathcal{A}, \mathcal{B}) = \mathcal{W}(\mathcal{A}) \times \mathcal{W}(\mathcal{B}) \qquad (w_a, w_b) \in \mathcal{W}(\mathcal{A}, \mathcal{B}) \text{ is } \mathbf{Pr}[w_a] \cdot \mathbf{Pr}[w_b].$$

Jaccard coefficient

$$jac(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$$

- Example
 - P-sets

\mathcal{A}	$\mathcal B$
$\{1:0.7,\ 2:1.0\}$	$\{1:1.0,\ 2:0.5,\ 3:0.8\}$

All the joint possible worlds

w_a	w_b	$\Pr\left[\left(w_a,w_b\right)\right]$	Jaccard
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.03	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.03	0.5
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.12	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.12	0.333
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.07	0.5
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.07	1
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	0.333
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	0.666

• Expected Similarity (ES)

$$ES(\mathcal{A}, \mathcal{B}) = \sum_{(w_a, w_b) \in \mathcal{W}(\mathcal{A}, \mathcal{B})} sim(w_a, w_b) \cdot \mathbf{Pr} [(w_a, w_b)]$$

$$= \sum_{w_a \in \mathcal{W}(\mathcal{A}) \land w_b \in \mathcal{W}(\mathcal{B})} sim(w_a, w_b) \cdot \mathbf{Pr} [w_a] \cdot \mathbf{Pr} [w_b]$$

Confidence-based Similarity (CS)

$$CS(A, B, minconf) = \max\{x \mid \mathbf{CPr}(x, A, B) \geq minconf\}$$

conditioned cumulative probability CPr(x, A, B)

$$\mathbf{CPr}(x, \mathcal{A}, \mathcal{B}) = \sum_{(w_a, w_b) \in \mathcal{W}(\mathcal{A}, \mathcal{B}) \land sim(w_a, w_b) \ge x} \mathbf{Pr}\left[(w_a, w_b)\right]$$

Example

\mathcal{A}	\mathcal{B}		
$\{1:0.7,\ 2:1.0\}$	$\{1:1.0,\ 2:0.5,\ 3:0.8\}$		

w_a	w_b	$\Pr\left[\left(w_a,w_b\right)\right]$	Jaccard
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.03	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.03	0.5
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},3^{\mathcal{B}}\}$	0.12	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.12	0.333
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$ $\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.07	0.5
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.07	1
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	0.333
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	0.666

	Jaccard
ES(A, B)	0.44
$CS(\mathcal{A}, \mathcal{B}, minconf = 0.3)$	0.666
$CS(\mathcal{A}, \mathcal{B}, minconf = 0.5)$	0.333

Normalization of two p-sets

$$\mathcal{A} = \{ c_1 : p_{c_1}^{\mathcal{A}}, \dots, c_k : p_{c_k}^{\mathcal{A}}, d_1 : p_{d_1}, \dots, d_{n-k} : p_{d_{n-k}} \}$$

$$\mathcal{B} = \{ c_1 : p_{c_1}^{\mathcal{B}}, \dots, c_k : p_{c_k}^{\mathcal{B}}, d_{n-k+1} : p_{d_{n-k+1}}, \dots$$

$$d_{n+m-2k} : p_{d_{n+m-2k}} \}$$

\mathcal{A}	\mathcal{B}
$\{1:0.7, 2:1.0\}$	$\{1:1.0, 2:0.5, 3:0.8\}$

Size and expected size

w_a	w_b	$\Pr\left[\left(w_a,w_b\right)\right]$	Jaccard
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.03	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.03	0.5
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},3^{\mathcal{B}}\}$	0.12	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.12	0.333
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.07	0.5
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.07	1
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	0.333
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	√0.28 uang	0.666

Exact similarity computation

Equivalent classes

$$H[i,j] = \sum_{(w_a,w_b)\in\mathcal{W}(\mathcal{A},\mathcal{B})\wedge|w_a\cap w_b|=i\wedge|w_a\cup w_b|=j} \mathbf{Pr}[w_a]\cdot\mathbf{Pr}[w_b]$$

Example

w_a	w_b	$\Pr\left[\left(w_a,w_b ight) ight]$	i	j	Jaccard
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.03	0	2	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.12	0	3	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.12	1	3	0.333
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	1	3	0.333
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.03	1	2	0.5
$\{2^{\mathcal{A}}, 1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.07	1	2	0.5
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}, 3^{\mathcal{B}}\}$	0.28	2	3	0.666
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}, 2^{\mathcal{B}}\}$	0.07	2	2	1

	j = 0	j = 1	j=2	j = 3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
$i=2_{\scriptscriptstyle m Yi}$	fu Huang		0.07	0.28

Exact similarity computation

Calculate ES

$$ES = \sum_{i=1}^{k} \sum_{j=i}^{m+n-k} H[i,j] \cdot (i/j)$$

Calculate CS

```
Algorithm 1: Calculate CS from H[i, j]
```

```
Input: H[i,j], minconf
Data: heap is a max-heap on the similarity values.

1 for i=1 to k do heap.push(1.0,i,i);

2 CPr \leftarrow 0; sim \leftarrow 0;

3 while heap.empty = false do

4 (sim,i,j) \leftarrow heap.pop;

5 CPr \leftarrow CPr + H[i,j];

6 if CPr \geq minconf then break;

7 if j < m+n-k then heap.push(\frac{i}{j+1},i,j+1);
```

H[i,j]

	j = 0	j = 1	j=2	j = 3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i = 2			0.07	0.28

8 return sim

Exact similarity computation

- Computing H
 - Common element

$$\begin{split} H^{l}[i,j] &= H^{l-1}[i,j](1-p_{l}^{\mathcal{A}})(1-p_{l}^{\mathcal{B}}) \\ &+ H^{l-1}[i,j-1](p_{l}^{\mathcal{A}}(1-p_{l}^{\mathcal{B}}) + (1-p_{l}^{\mathcal{A}})p_{l}^{\mathcal{B}}) \\ &+ H^{l-1}[i-1,j-1]p_{l}^{\mathcal{A}}p_{l}^{\mathcal{B}} \end{split}$$

Distinct element

$$H^{l}[i,j] = H^{l-1}[i,j](1-p_l) + H^{l-1}[i,j-1]p_l$$

- Time complexity $O(n^3)$
- Space complexity $O(n^2)$

H[i,j]

	j = 0	j = 1	j=2	j=3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i = 2			0.07	0.28

Algorithm 2: Answer Queries with Pruning $(Q, \{O_i\}, \tau, minconf)$

```
1 C \leftarrow candidates that survive the batch pruning (c.f., Sec. V-D);
 2 foreach p-set in C do
         pruned \leftarrow false;
         if the query type is ESQ then
              ub \leftarrow \mathsf{calcESUpperBound}(\mathcal{Q}, \mathcal{O}_i) \text{ (c.f., Sec. V-B)};
              if ub < \tau then pruned \leftarrow true
         if the query type is CSQ then
 7
              ub \leftarrow \mathsf{calcCSUpperBound}(\mathcal{Q}, \mathcal{O}_i, \tau) \text{ (c.f., Sec. V-C)};
             if ub < minconf then pruned \leftarrow true
 9
         if pruned = false then
10
              sim \leftarrow the similarity value between Q and O_i;
11
              if sim > \tau then
12
               output \mathcal{O}_i;
13
```

$$\mathbf{E}[|\mathcal{A}|]$$
, is $\sum_{w \in \mathcal{W}(\mathcal{A})} |w| \cdot \mathbf{Pr}[w] = \sum_{l=1}^{n} p_{l}^{\mathcal{A}}$

$$\mathbf{E}[|\mathcal{A} \cap \mathcal{B}|]$$
 is $\sum_{(w_a, w_b) \in \mathcal{W}(\mathcal{A}, \mathcal{B})} |w_a \cap w_b| \cdot \mathbf{Pr}[(w_a, w_b)] = \sum_{l=1}^k p_l^{\mathcal{A}} \cdot p_l^{\mathcal{B}}$

$$\mathbf{E}[|\mathcal{A} \cup \mathcal{B}|] \text{ is } \mathbf{E}[|\mathcal{A}|] + \mathbf{E}[|\mathcal{B}|] - \mathbf{E}[|\mathcal{A} \cap \mathcal{B}|] = \sum_{l=1}^{k} (p_l^{\mathcal{A}} + p_l^{\mathcal{B}} - p_l^{\mathcal{A}} \cdot p_l^{\mathcal{B}}) + \sum_{l=k+1}^{n+m-k} p_l$$

2013/7/28 Yifu Huang 17

Pruning Rule for ESQ

$$\mathbf{E}\left[X/Y\right] < UB_1(\mathbf{E}\left[X\right], \mathbf{E}\left[Y\right])$$

$$UB_1(u, v) = \min_{\substack{\exp(-u/3) \le \epsilon \le 1}} \left(2\epsilon + \frac{u + \sqrt{-3u\ln\epsilon}}{v - \sqrt{-2v\ln\epsilon}}\right)$$

$$UB_1(\mathbf{E}[|Q \cap \mathcal{O}|], \mathbf{E}[|Q \cup \mathcal{O}|]) \leq \tau$$

Pruning Rule for CSQ

$$\Pr\left[X \geq \alpha Y\right] < UB_2(\mathbf{E}\left[X\right], \mathbf{E}\left[Y\right], \alpha\right)$$

$$UB_2(u, v, \alpha) = \min_{u \le \xi \le \min(\alpha v, 2u)} \left(e^{\frac{-(\alpha v - \xi)^2}{2\alpha^2 v}} + e^{\frac{-(\xi - u)^2}{3u}} \right)$$

$$\mathbf{E}[|Q \cap \mathcal{O}|] \leq \tau \cdot \mathbf{E}[|Q \cup \mathcal{O}|]$$

$$\mathbf{E}\left[\left|\mathcal{Q}\cap\mathcal{O}\right|\right] \;\leq\; \tau\,\cdot\,\mathbf{E}\left[\left|\mathcal{Q}\cup\mathcal{O}\right|\right] \qquad \qquad UB_{2}(\mathbf{E}\left[\left|\mathcal{Q}\cap\mathcal{O}\right|\right],\mathbf{E}\left[\left|\mathcal{Q}\cup\mathcal{O}\right|\right],\tau\right) \leq \mathit{minconf}$$

Batch Pruning

- Discard many p-sets in the database without even evaluating their similarity upper bounds
 - Index all the p-sets in the database by their expected sizes
 - Compute a lower bound S_L and an upper bound S_U of the expected size for the appropriate query type
 - Only consider p-sets in the database whose expected sizes fall within $[S_L, S_U]$

Batch Pruning

– How to decide S_L and S_U

$$\begin{split} \mathbf{E}\left[\left|\mathcal{Q}\cap\mathcal{O}\right|\right] &\leq \min(\mathbf{E}\left[\left|\mathcal{Q}\right|\right], \mathbf{E}\left[\left|\mathcal{O}\right|\right]) \\ \mathbf{E}\left[\left|\mathcal{Q}\cup\mathcal{O}\right|\right] &\geq \max(\mathbf{E}\left[\left|\mathcal{Q}\right|\right], \mathbf{E}\left[\left|\mathcal{O}\right|\right]) \end{split}$$

Batch Pruning for ESQ

$$x + \sqrt{-3x \ln \epsilon^*} = (\tau - 2\epsilon^*) \left(\mathbf{E} \left[|\mathcal{Q}| \right] - \sqrt{-2\mathbf{E} \left[|\mathcal{Q}| \right] \ln \epsilon^*} \right)$$
$$x - \sqrt{-2x \ln \epsilon^*} = \left(\mathbf{E} \left[|\mathcal{Q}| \right] + \sqrt{-3\mathbf{E} \left[|\mathcal{Q}| \right] \ln \epsilon^*} \right) / (\tau - 2\epsilon^*)$$

Batch Pruning for CSQ

$$\exp\left(\frac{-(\xi_1^* - x)^2}{3x}\right) = minconf/2$$

$$\exp\left(\frac{-(\tau \cdot x - \xi_2^*)^2}{2\tau^2 \cdot x}\right) = minconf/2$$

Approximate solution

- Sampling-based method
 - Approximate algorithm for ES

$$\lceil (\ln \frac{2}{\delta})/(2\epsilon^2) \rceil$$
 $\mathbf{Pr} \left[\left| \widehat{\mathit{ES}} - \mathit{ES} \right| \leq \epsilon \right] \geq 1 - \delta$

Approximate algorithm for CS

$$G = 24 \cdot \lceil \ln \frac{1}{\delta} \rceil, \ M = \lceil 2\epsilon^{-2}
ceil \qquad \mathbf{Pr} \left\lceil \mathit{CS}^- \leq \widehat{\mathit{CS}} \leq \mathit{CS}^+
ight
ceil \geq 1 - \delta.$$

-O(n)

- Implementation
 - Java
 - Intel Pentium IV 2.8GHz CPU
 - 4GB memory
- Synthetic datasets
 - SYNa-U
 - a uniform distribution within the range of [v, 0.9] with a default v value of 0.2.
 - SYNa-G
 - a Gaussian distribution N(u, o) capped to the range of (0, 1]. By default, u = 0.8 and o = 0.2.

Real-world datasets

Dataset	DB Size	p-set Min/Max/Avg Size			
pDBLP	5,000	27 / 708 / 204.9			
pDeli	44,876	50 / 293,214 / 453.2			

- pDBLP
 - a fairly simple yet effective method based on topical terms used in authors' DBLP entries
- pDeli
 - the social bookmarking dataset which was crawled from the Del.icio.us web site during 2006 and 2007
- Sigmoid function

$$p(e) = \frac{2}{1 + \exp(-c(e))} - 1$$

Default parameters

```
are: minconf = 0.5 (for CS), \tau = 0.5, \alpha = 1000, \gamma = 10\%, \epsilon = 0.06, \delta = 0.06, \upsilon = 0.2, \sigma = 0.2, and \mu = 0.8.
```

- Measures
 - Memory Usage
 - Computation Time
 - Query Time, Pruning time
 - Candidate size, result size
 - Pruning rate
 - Average precision

Computing Similarities Exactly

(b) Computation time

Computing Similarities Approximately

Evaluating Pruning
 Efficiency on SYN

 Performance on the pDBLP Dataset

AP@k	5	10	15	20	25	30
ES	0.7000	0.6675	0.6250	0.5875	0.5825	0.5500
CS	0.7000	0.6785	0.6280	0.5825	0.575	0.5500

Performance on the pDeli Dataset

Thank You!