2. LOGISTIC REGRESSION

Logistic Regression is famously utilized as a Classification Algorithm, categorized under the Supervised learning technique. This regression technique is utilized to anticipate the likelihood of the event of the observation values into one of the two categories of the dichotomous Dependent variable (i.e., two dependent values). Logistic regression analysis is a method to determine the result-reason relationship of independent variables with dependent variable.

OBJECTIVE:

The purpose of this analysis is to find the how well logistic regression method can predict whether or not an accident is serious or slight. (Accident severity)

DATASET:

This Road Accident dataset is obtained by merging two different datasets from a depositary of official UK government statistics, as various factors leading to accident. This dataset has information about Accidents and vehicles for last 5 years (2017 -2021) in UK region. road_surface_conditions, Speed Limit, number_of_casualties, vehicle_type & vehicle manoeuvre are considered as the independent variables in this analysis and the Accident Severity of the injury of the accident victim is considered as the Dependent variable.

Data pre-processing and transformation has been done with the help of python language. Datasets were downloaded in .csv format, which are then imported in python language. With help of panda's library values from accidents csv and vehicles csv were merged with inner join method with "accident index" as a primary key column. Null values were checked using "Isnull (). sum ()" function and later Null values were dropped using DROP () function.

Also based on correlation matrix features which are not correlated are dropped from the dataframe.

Link to Data Source:

Independent Variables:

day_of_week
junction_detail
number_of_vehicles
road_surface_conditions
special_conditions_at_site
time
weather_conditions
hit_object_in_carriageway
hit_object_off_carriageway
sex_of_driver
skidding_and_overturning
vehicle_manoeuvre
vehicle_type

Dependent Variable:

Accident Severity

ASSUMPTIONS:

1. Dependent variable is dichotomous:

Here dependent variable is Accident Severity which is 1 Serious and 2 is Slight in terms of severity.

2. Collinearity and Multi-Collinearity

This can be checked with correlation matrix:

									road_su		special_							hit_obje	hit_obje			skidding			
							number	number	rface_c		conditio			urban_o	weather	age_ba		ct_in_c	ct_off_c	engine_		_and_o	vehicle_		
		acciden	first_roa	day_of_	junction	light_co	_of_cas	_of_veh	ondition	road_ty	ns_at_si	speed_li		r_rural_	_conditi	nd_of_d	age_of_	arriage	arriage	capacit	sex_of_	verturni	manoeu	vehicle_	Acci_se
		t_index	d_class	week	_detail	nditions	ualties	icles	S	pe	te	mit	time	area	ons	river	vehicle	way	way	y_cc	driver	ng	vre	type	verity
Acci_se	Pearso	0.000	.005	.006"	.036"	038"	068"	.021"	.033"	033"	.036"	074"	0.000	080"	.028"	050"	-0.001	.044"	.033"	.007"	.054"	.006"	0.004	.006"	1
verity	n					110000011					10000000									100000					
	Correlat																								
	ion																								
	Sig. (2-	1.000	0.028	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.902	0.000	0.000	0.000	0.688	0.000	0.000	0.002	0.000	0.008	0.087	0.011	
	tailed)																								
	N	160398	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654	192654

Independent factors have Pearson Relationship less than 0.7 inside themselves, this fulfils the condition of Multicollinearity.

3. Sample Size: Logistic Regression needs large number of records with high number of values to classify the Output. (Minimum 50 cases per prediction) Taking 192654 records in this analysis satisfies this assumption.

Unweighted Case	es ^a	Ν	Percent		
Selected Cases	Included in Analysis	192654	100.0		
	Missing Cases	0	.0		
	Total	192654	100.0		
Unselected Case	s	0	.0		
Total		192654 100.0			

- **4. Outliers:** This dataset has Exceptions which impacts less to classify the Dependent variable; subsequently this presumption is confirmed.
- 5. Goodness-of-fit: This dataset is analysed and has found to be having Goodness-of-fit.

ANALYSIS OF LOGISTIC REGRESSION MODEL:

This analysis has been conducted within the IBM SPSS Statistics software. Here the factors First Road Class, Number of casualties, Day of week, Junction Detail, Number of vehicles, Road surface conditions, Urban or Rural Area, Weather Conditions, Age of Driver, sex of Driver and Hit object in carriageways has been given as the independent variable and Accident Severity has been given as Dependent variable.

Then under Analyse->Regression->Binary Logistic -> under Options -> Statistics and Plots -> the Classification plots, Hosmer-Lemeshow goodness-of-fit, Case wise listing of residuals has been chosen and CI for exp(B) is kept in 95%.

Omnibus Test:

Omnibus test is used to test the performance of model. If model fit is significant this shows that there is significant improvement in fit as compared to null model.in this case as significant value is less than 0.05 which is 0.027, which satisfies the condition.

Omnibus Tests of Model Coefficients									
		Chi-square	df	Sig.					
Step 1	Step	4500.764	22	.000					
	Block	4500.764	22	.000					
	Model	4500.764	22	.000					

Model Summary:

This Model Summary table makes a difference to discover the esteem of distraction in dependent variable in foreseeing the output. This could be done with the assistance of Cox & Snell R Square and Nagelkarke R Square values, here the values are observed as 0.023 and 0.038 respectively. This output has been taken to prove that the predicted value has distraction somewhere between 23% to 38% from the actual value.

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	172056.101ª	.023	.038

Hosmer and Lemeshow Test:

This Hosmer and Lemeshow table offer assistance to demonstrate that the presumption of Goodness-of-fit has been fulfilled. The Significance value watched within the analysis must be more than 0.05, which is 0.583 here. This clarifies the presence of relationship between indicator variable and dependent variable.

Н	osmer and Le	meshow	Test	
Step	Chi-square	df	Sig.	
1	231.603	8	.583	

In below figure, difference between observed and expected values are approximately equal so dataset fits the chosen model.

		Acci_seve	rity = 1.00	Acci_sev	erity = 2.00	
		Observed	Expected	Observed	Expected	Total
Step 1	1	6102	5568.538	13163	13696.462	19265
	2	4209	4357.959	15056	14907.041	19265
	3	3791	3861.958	15474	15403.042	19265
	4	3299	3536.892	15966	15728.108	19265
	5	3225	3290.174	16040	15974.826	19265
	6	2982	3068.161	16283	16196.839	19265
	7	2702	2848.249	16563	16416.751	19265
	8	2434	2601.656	16831	16663.344	19265
	9	2287	2293.102	16978	16971.898	19265
	10	2005	1609.315	17264	17659.685	19269

Classification Table:

This table shown in Classification table is Confusion Matrix, which is used to check for the accuracy of the output after applying the model, which is here 82.9%.

			Predicted						
			Acci_se	everity	Percentage				
	Observed		1.00	2.00	Correct				
Step 1	Acci_severity	1.00	48	32988	.1				
		2.00	23	159595	100.0				
	Overall Percer	ntage			82.9				

Variables In the Equation:

The B value in this table signifies the contribution of the independent variable in anticipating the value of output variable.

								95% C.I.for EXP(B)		
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1ª	first_road_class	.079	.082	.921	1	.337	1.082	.921	1.271	
	day_of_week	078	.053	2.192	1	.139	.925	.834	1.02	
	junction_detail	039	.034	1.329	1	.249	.961	.899	1.028	
	number_of_vehicles	.414	.155	7.159	1	.007	1.513	1.117	2.048	
	road_surface_conditions	122	.118	1.078	1	.299	.885	.703	1.114	
	special_conditions_at_site	139	.099	1.956	1	.162	.870	.717	1.05	
	time	.000	.000	.187	1	.665	1.000	1.000	1.00	
	weather_conditions	.093	.059	2.454	1	.117	1.097	.977	1.23	
	hit_object_in_carriageway	.025	.016	2.614	1	.106	1.025	.995	1.05	
	hit_object_off_carriageway	.056	.042	1.788	1	.181	1.057	.974	1.14	
	sex_of_driver	.107	.165	.418	1	.518	1.113	.805	1.53	
	skidding_and_overturning	037	.085	.193	1	.661	.963	.815	1.13	
	vehicle_manoeuvre	014	.010	1.784	1	.182	.986	.966	1.00	
	vehicle_type	.003	.013	.059	1	.809	1.003	.978	1.02	
	Constant	1.193	.633	3.554	1	.059	3.297			

In this case number of vehicles will increase 0.414 log odds of output variable.

$$log(p/1-p) = b0 + b1*x1 + b2*x2 + b3*x3 + b3*x3+...Bn*Xn$$

Substituting B values in equation, to derive the equation for this Logistic Regression as shown below.

 $\label{log(p/1-p)} \begin{tabular}{l} log(p/1-p) = 1.193 + 0.079*First_road_class - 0.078* day_of_week - 0.039*junction detail + 0.414*number_of_vehicles - 0.122*road_surface_conditions - 0.139*Special_conditions_at_site + 0.093*weather_conditions + 0.025*hit_object_in_carriageway + 0.056*hit_object_off_carriageway + 0.107*sex_of_driver - 0.037*skidding_and_overturning - 0.014*vehicle_manoeuvre + 0.003*vehicle_type \end{tabular}$

The independent variables have significance value more than 0.05 which specifies that these variables are less contributing for the prediction of output, while Number of vehicles involved in causing accident contributes on higher side for the prediction.

Exp(B) is the exponential of the Coefficients, this provides us the odd's ratio of the predictor. In this analysis, the odds of getting severely injured with Vehicles (Car's has higher number) is 1.513 higher than the opposite.

Also, other factors such as first_raod_class, time, weather conditions, hit object in carriageway, hit object off carriageway, sex of driver (male or female driver) and type of vehicle increases the probability of getting severely injured in accident.

CONCLUSION:

This study has been conducted to analyse the Severity of road accidents of the victims from UK. This resulted that this Binary logistic model could analyse with accuracy of **82.9%** of this case across various scenarios.