

RK3358J MINI EVB 用户指南

发布版本:V1.0 日期:2018.09.28

免责声明

您购买的产品、服务或特性等应受瑞芯微电子股份有限公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,瑞芯微电子股份有限公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标声明

Rockchip、RockchipTM图标、瑞芯微和其他瑞芯微商标均为福州瑞芯微电子股份有限公司的商标,并归瑞 芯微电子股份有限公司所有。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

版权所有 © 福州市瑞芯微电子股份有限公司 2018

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式 传播。

福州市瑞芯徽电子股份有限公司 地址:福建省福州市软件园A区18号 网址: www.rock-chips.com 客户服务电话: +86-591-83991906

客户服务电话: +86-591-83991906 客户服务传真: +86-591-83951833 客户服务邮箱: www.rock-chips.com

前言

概述

本文档主要介绍RK3358J MINI EVB单板基本功能特点和硬件特性、多功能硬件配置、软件调试操作使用方法,旨在帮助开发人员更快、更准确地使用RK3358J MINI EVB,熟悉RK3358J芯片方案。

产品版本

本文档对应的产品版本如下:

产品名称	产品版本
RK3358J MINI EVB	RK3358J_Mini_EVB_V10_20180528

适用对象

本文档主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师
- 嵌入式软件开发工程师
- 测试工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前说有文档版本的更新内容。

修订日期	版本号	作者	修订说明
2018-09-28	V1.0	XHF	Initial Release
			×

缩略语

缩略语包括文档中常用词组的简称。

	一节用地口间物。	
DDR	Double Data Rate	双倍速率同步动态随机存储器
еММС	Embedded Multi Media Card	内嵌式多媒体存储卡
I ² C	Inter-Integrated Circuit	内部整合电路(两线式串行通讯总 线)
JTAG	Joint Test Action Group	联合测试行为组织定义的一种国际标准测试协议(IEEE 1149.1兼容)
LDO	Low Drop Out Linear Regulator	低压差线性稳压器
LVDS	Low-Voltage Differential Signaling	低电压差分信号
MIPI	Mobile Industry Processor Interface	移动产业处理器接口
PMIC	Power Management IC	电源管理芯片
PMU	Power Management Unit	电源管理单元
RK	Rockchip Electronics Co.,Ltd.	瑞芯微电子股份有限公司
SD Card	Secure Digital Memory Card	安全数码卡
SDIO	Secure Digital Input and Output	安全数字输入输出接口
SDMMC	Secure DigitalMulti Media Card	安全数字多媒体存储卡
TF Card	Micro SDCard(Trans-flash Card)	外置记忆卡
USB	Universal Serial Bus	通用串行总线
Q		
-		

目录

前	·言概述	
	产品版本	3
	适用对象	3
	修订记录	4
	缩略语	5
插	录 图目录 格目录 概述	8 9
••	1.1 EVB开发平台简介	. 10
	1.2 EVB系统框图	. 12
	1.3 功能概述	. 13
	1.4 EVB默认功能	. 14
	1.5 EVB组件	16
2.		. 17
	2.1 整体效果图	. 17
	2.2 结构与接口示意图	
	2.3 电源框图	. 20
	2.4 I ² C地址	
	2.5 开发板参考图	. 21
3.	EVB Main Board模块简述	
	3.2 存储器	. 22
	3.2.1 EMMC	. 22
	3.4 G-Sensor输出	
	3.5 音频输入输出	
	3.6 USB OTG插座	
	3.7 USB HOST插座	. 25
	3.8 TF Card插座	. 25

	3.9 Camera插座	. 25
	3.10 WIFI+BT模组	. 26
	3.11 LCM MIPI接口	. 26
	3.12 扩展连接器	. 27
	3.12.1 功能切换芯片	. 27
	3.12.2 Raspberry Pi 接口	. 30
	3.12.3 扩展接口J9401信号定义	. 32
	3.12.4扩展接口J9402信号定义	. 33
	3.13 百兆网口	. 33
	3.14 UART Debug调试座	. 34
4.		. 35
	4.1 扩展板功能框图	. 35
	4.2 功能概述	. 35
	4.3 结构与接口示意图	. 36
5.	开发板的使用	
	5.1 EVB开关机和待机	
	5.2 USB驱动安装	
	5.3 EVB固件烧写	
	5.3.1 Maskrom烧写模式 5.3.2 Loader烧写模式	. 39
	5.4 串口调试	. 40
	5.4.1 连接串口	
6.	5.4.2 ADB调试注意事项	
	6.1 注音車币	

插图目录

冬	1-1 RK3358J芯片架构	11
冬	1-2 EVB系统框图	12
冬	2-1 EVB整体实物图	17
冬	2-2 EVB PCB结构示意图	18
冬	2-3 EVB实物图正面	19
冬	2-4 EVB实物图背面	19
冬	2-5 EVB电源框图	20
冬	3-1 EVB电源输入	22
冬	3-2 EVB Memory eMMC	22
冬	3-3 DDR3位置和实物图	23
冬	3-4 EVB按键	23
冬	3-5 EVB重力加速度传感器	24
冬	3-6 EVB音频输入输出	24
冬	3-7 EVB喇叭输出	24
	3-8 EVB USB OTG插座	
冬	3-9 EVB USB HOST插座	25
冬		
冬		25
冬		26
图	3-13 LCM-MIPI接口	27
冬	3-14 EVB CIF/RMII功能切换开关图	29
冬	3-16 百兆网络口	33
冬		
冬	5-0-1 驱动安装成功示意图	38
图:	5-0-2 进入Maskrom烧写模式工具上示意图	39
冬!	5-0-3 进入Loader烧写模式工具上示意图	40
	5-0-4 获取当前端口COM号	
冬	5-0-5 串口工具SecureCRT界面	41
冬	5-0-6 配置串口信息	41
冬	5-0-7 配置串口工具选项	42

表格目录

表	2-1	EVB器件I2C地址表	21
耒	3_1	功能引脚复田 <u>关系</u> 表	28

1. 概述

1.1 EVB开发平台简介

RK3358J MINI EVB是针对瑞芯微电子RK3358J多媒体处理芯片(以下简称RK3358J芯片)开发的集参考设计、芯片调试和测试、芯片验证一体的硬件开发板,用于给客户展示RK3358J芯片强大的多媒体接口和丰富的外围接口,同时为客户提供基于RK3358J芯片的硬件参考设计,使客户不需修改或者只需要简单修改参考设计的模块电路,就可以完成产品的硬件开发。RK3358J MINI EVB支持RK3358J芯片的EVB开发、应用软件的开发和运行等,因为考虑到不同的使用环境,对芯片进行全功能验证,所以各种接口齐全,设计相对比较复杂。

RK3358J MINI EVB可通过USB线与电脑连接,做为一个USB DEVICE设备下载更新程序,或实现更完全的开发系统或演示环境,此时连接如下设备或部件:

- 电源
- LCM MIPI屏
- TF Card存储设备
- 耳机或音箱
- 摄像头模组

图 1-1 RK3358J芯片架构

1.2 EVB系统框图

系统框图可以让开发人员对整个系统的架构和原理有一个直观的认识,整个系统由电源适配器或者电池供电,通过UART串口进行调试,验证各功能模块。开发板带有大部分接口,配有Camera输入,WIFI+BT模组,USB OTG,USB HOST,TF卡,音频接口,视频接口,百兆网口,满足大多数情况下不同应用需求,有利于芯片方案的深入研发与快速产品化。

图 1-2 EVB系统框图

1.3 功能概述

RK3358J MINI EVB包含的功能如下:

- RK809-1电源路径管理系统
- 4 * 256M * 16bit DDR3,总容量2GByte
- 8bit eMMC,总容量16GByte
- TF Card: 支持外部扩展存储容量
- USB OTG: 系统升级使用,可以支持Host/Device切换
- USB HOST: 支持各种USB设备
- 系统按键: Power、VOL+、VOL-、RESET、Maskrom
- SDIO Wifi(AP6212): 支持无线上网功能
- Audio out: 支持耳机、扬声器
- Audio in: 支持录音
- RMII:支持百兆网络
- Uart Debug: 开发板Debug使用
- Sensor: G-sensor MMA7660FC
- MIPI Camera: OV5695, 500W像素
- 扩展接口包含: CIF、RGB24bit、Raspberry Pi

1.4 EVB默认功能

开发板默认已经有烧录固件的,涵盖所有的功能如下表:

Processor	Rockchip RK3358J Quad-core ARM Cortex-A35 CPU Embedded 3D GPU, compatible with OpenGL ES 1.1/2.0/3.2, DirectX 11 FL9_3, OpenCL 2.0 and Vulkan 1.0
Memory	DDR3, □ 4 * 256M * 16bit
Storage	□ 16GB eMMC □ External SD card
Power/PMIC	Power: ☐ 12V(2.0A) PMIC: ☐ RK809-1
Buttons	Five buttons on board: Reset Recovery/VOL+ Maskrom VOL- PWRON
USB	一个stander-A plug: ☐ USB host 2.0 两个micro-USB plugs: ☐ USB OTG 2.0, uses as USB device ☐ Debug, uses as serial debug port
MIPI_DSI interface	☐ Compatible with MIPI Alliance Interface specification v1.0 ☐ Up to 1080p@60fps display output ☐ Support 4 data lane, 1.0Gbps maximum data rate per lane
MIPI_CSI interface	 □ Compatible with the MIPI Alliance Interface specification v1.0 □ Up to 4 data lane, 1.0Gbps maximum data rate per lane □ Support MIPI-HS, MIPI-LP mode
Audio	□ RK809集成Audio codec与Class D功放 □ Exteral Micphone □ Headphone

Ethernet	One RJ45 Ethernet that supports: ☐ IEEE802.3u compliant ☐ Support only RMII(Reduced MII) mode ☐ 10Mbps and 100Mbps compatible	
Wireless Bluetooth	Integrated with AP6212 module, which is a solution for a combination of WiFi + BT: ☐ Complies with IEEE 802.11 b/g/n ☐ Bluetooth V4.0(HS) with integrated Class 1.5 PA and Low Energy (BLE) support ☐ On-board BT and WLAN antenna	
切换开关扩展连接器		
7-003		

1.5 EVB组件

RK3358J MINI EVB主要包括以下物品:

- RK3358J MINI EVB
- 电源适配器, 规格: 输入 100V AC~240V AC, 50Hz; 输出 12V DC, 2.0A
- 显示屏,规格: MIPI;尺寸: 5.5寸/竖屏;分辨率: 720*1280 开发板有如下扩展组件,可选配:
- 扩展功能板,包含CVBS IN/OUT功能与RGB转HDMI双屏异显功能。

2.EVB硬件介绍

2.1 整体效果图

EVB整体实物图

图 2-1 EVB整体实物图

2.2 结构与接口示意图

EVB PCB结构示意图:

图 2-2 EVB PCB结构示意图

RK3358J MINI EVB的实物照片如下:

图 2-3 EVB实物图正面

图 2-4 EVB实物图背面

2.3 电源框图

RK3358J MINI EVB电源使用的PMIC是RK809-1,电源框图如下图。

图 2-5 EVB电源框图

2.4 I²C地址

RK3358J MINI EVB的外围器件I²C(7bit)地址配置如下表:

表 2-1 EVB器件I2C地址表

	设备	地址
I ² C0	RK809	0x20
100	RK618	0x50
	MMA8452Q	0x1d
	LIS3DH	0x19
I ² C1	LSM303D	0x1d
	GSL1680	0x40
	GSL3676	0x40
l ² C2	OV5695	0x36
1 02		

注意:使用扩展板时,要保证板上I²C地址与开发板上I²C地址不冲突。

2.5 开发板参考图

RK3358J MINI EVB对应的参考图对应如下,如有需要,请向我司FAE索取。

《RK3358J_MINI_EVB_V10_20180528.DSN》

《RK3358J_Mini_EVB_V10_20180528.brd》

3. EVB Main Board模块简述

3.1 电源输入

电源适配器输入的12V/2A电源,可以通过电源开关来控制电源ON/OFF。

图 3-1 EVB电源输入

3.2 存储器

3.2.1 **EMMC**

1.开发板上的默认存储为16GByte eMMC FLASH,同时预留了Nand Flash位置,可以支持8bit Nand Flash。

2.Flash背面配有Update升级按键,方便开发板固件升级。连接USB,按住SW4100上电或复位,系统将进入MaskRom固件烧写模式。

图 3-2 EVB Memory eMMC

3.2.2 DDR

RK3358J支持单通道32bit DDR, EVB采用四颗16bit DDR3, 默认总容量为2GByte。

图 3-3 DDR3位置和实物图

3.3 按键输入

- 1.开发板提供按键组合应用,使用RK3358J ADC_IN2作为检测口,支持10位分辨率。
- 2.ADC供电电压由VCC 1V8提供。
- 3.开发板上定义了常用的几个按键: VOL+/VOL-。

图 3-4 EVB按键

3.4 G-Sensor输出

开发板所用的重力加速度传感器MMA7660FC为±1.5g三轴数字输出的I2C,超低功率,紧凑型电容式微电机的加速度计,如下图所示。

图 3-5 EVB重力加速度传感器

3.5 音频输入输出

开发板的音频使用RK809-1芯片内置的Codec, 其特性如下:

- 内置Charge Pump,支持立体声耳机无电容耦合输出。
- 内置Class-D功放,可驱动1.3W/8ohm喇叭输出,且有过流保护。
- 麦克风支持单端/差分输入。

图 3-6 EVB音频输入输出

图 3-7 EVB喇叭输出

3.6 USB OTG插座

开发板带USB OTG接口,如下图,为USB OTG Micro-B型插座,兼容USB 2.0/1.1规范。通过检测VBUS、USB ID信号输入,能够配置成独立的USB HOST或USB DEVICE。在烧录模式下,OTG做为固件烧写输入口。

图 3-8 EVB USB OTG插座

3.7 USB HOST插座

开发板带USB HOST接口,如下图,可用于连接USB外设。

图 3-9 EVB USB HOST插座

3.8 TF Card插座

开发板带TF卡接口,如下图所示,支持SDMMC 2.0/3.0,数据总线宽度是4bits。

图 3-10 EVB TF插座

3.9 Camera插座

开发板摄像头插座支持MIPI CSI摄像头模组,插座如图3-12。

图 3-11 EVB Camera座

信号列表:

管脚数	网络名	管脚数	网络名
Pin1	GND	Pin2	MIPI_CSI_D0P
Pin3	MIPI_CSI_D0N	Pin4	GND
Pin5	MIPI_CSI_D2P	Pin6	MIPI_CSI_D2N
Pin7	GND	Pin8	MIPI_CSI_D3P
Pin9	MIPI_CSI_D3N	Pin10	GND
Pin11	MIPI_MCLK	Pin12	MIPI_RST
Pin13	GND	Pin14	MIPI_PDN
Pin15	GND	Pin16	GND
Pin17	VCC2V8_DVP	Pin19	VCC2V8_AF
Pin19	GND	Pin20	I2C2_SCL_CAM
Pin21	I2C2_SDA_CAM	Pin22	VDD1V5_DVP
Pin23	GND	Pin24	VCC1V8_DVP
Pin25	GND	Pin26	MIPI_CSI_D1N
Pin27	MIPI_CSI_D1P	Pin28	GND
Pin29	MIPI_CSI_CLKP	Pin30	MIPI_CSI_CLKN

3.10 WIFI+BT模组

开发板上WIFI+BT模组采用台湾正基的AP6212模组,如图3-14,其特性如下:

- 支持WIFI(802.11 b/g/n)、BT4.1、FM功能。
- BT数据采用UART通信方式。
- BT语音通过PCM接口传输。
- WIFI数据支持4bits SDIO 3.0数据总线。

图 3-12 EVB WIFI+BT模组

3.11 LCM MIPI接口

开发板视频输出默认使用MIPI屏。

图 3-13 LCM-MIPI接口

信号列表:

管脚数	网络名	管脚数	网络名
Pin1	GND	Pin2	LCDC_D11_M1/LVDS_TX0N/
			MIPI_TX_D0N
Pin3	LCDC_D8_M1/LVDS_T	Pin4	GND
	X0P/MIPI_TX_D0P		
Pin5	LCDC_D1_M1/LVDS_T	Pin6	LCDC_D10_M1/LVDS_TX1P/
	X1N/MIPI_TX_D1N		MIPI_TX_D1P
Pin7	GND	Pin8	LCDC_D4_M1/LVDS_CLKN/M
			IPI_TX_CLKN
Pin9	LCDC_D3_M1/LVDS_C	Pin10	GND
	LKP/MIPI_TX_CLKP		
Pin11	LCDC_VSYNC_M1/LVD	Pin12	LCDC_D5_M1/LVDS_TX2P/MI
	S_TX2N/MIPI_TX_D2N		PI_TX_D2P
Pin13	GND	Pin14	LCDC_HSYNC_M1/LVDS_TX
			3N/MIPI_TX_D3N
Pin15	LCDC_DEN_M1/LVDS_	Pin16	GND
	TX3P/MIPI_TX_D3P		
Pin17	LCDC_BL_PWM	Pin19	NC
Pin19	NC	Pin20	NC
Pin21	ADC0_HW_ID	Pin22	LED_EN
Pin23	I2C1_SCL	Pin24	I2C1_SDA
Pin25	TP_INT	Pin26	TP_RST
Pin27	GND	Pin28	VCC5V0_SYS
Pin29	VCC5V0_SYS	Pin30	VCC5V0_SYS

3.12 扩展连接器

EVB板上有三个扩展连接器,用户可以根据实际需求使用。

EVB板上的RMII信号与CIF信号复用,这里通过切换芯片进行功能切换,EVB板上使用RMII功能,CIF输入功能被接到扩展连接器上。

3.12.1 功能切换芯片

TS3DV520ERUAR切换选择功能如下:

FUNCTION TABLE

INPUT SEL	INPUT/OUTPUT An	FUNCTION		
L	nB ₁	$A_n = nB_1$	nB ₂ high-impedance mode	
Н	nB ₂	$A_n = nB_2$	nB ₁ high-impedance mode	

表 3-1 功能引脚复用关系表

位号	管脚名称	功能1	功能2
AA5	GPIO2_A0/CIF_D2_M0/RMII_TXEN	RMII_TXEN	CIF_D2
AA8	GPIO2_A1/CIF_D3_M0/RMII_TXD1	RMII_TXD1	CIF_D3
AA7	GPIO2_A2/CIF_D4_M0/RMII_TXD0	RMII_TXD0	CIF_D4
Y6	GPIO2_A3/CIF_D5_M0/RMII_RXD0	RMII_RXD0	CIF_D5
Y8	GPIO2_A4/CIF_D6_M0/RMII_RXD1	RMII_RXD1	CIF_D6
Y7	GPIO2_A5/CIF_D7_M0/RMII_RXER	RMII_RXER	CIF_D7
W5	GPIO2_A6/CIF_D8_M0/RMII_RXDV	RMII_RXDV	CIF_D8
W7	GPIO2_A7/CIF_D9_M0/RMII_MDIO	RMII_MDIO	CIF_D9
U7	GPIO2_B7/CIF_D10_M0/I2C2_SCL	I2C2_SCL	I2C2_SCL
V6	GPIO2_C0/CIF_D11_M0/I2C2_SDA	I2C2_SDA	I2C2_SDA
Y4	GPIO2_B0/CIF_VSYNC_M0	HOST_WAKE_BT	CIF_VSYNC
AA4	GPIO2_B1/CIF_HREF_M0/RMII_MDC	RMII_MDC	CIF_HREF
AA6	GPIO2_B2/CIF_CLKI_M0/RMII_CLK	RMII_CLK	CIF_CLKI
Y5	GPIO2_B3/CIF_CLKO_M0/CLK_OUT_ ETHERNET	MIPI_CLKO	CVBS_RST
V12	GPIO2_B4/CIF_D0_M0/UART2_TX_M1	GPIO2_B4	HDMI_INT
V7	GPIO2_B5/PWM2	RMII_RST	CVBS_MODU LE_EN
W6	GPIO2_B6/CIF_D1_M0/UART2_RX_M1	CIF_PDN0	CVBS_INT

CIF功能与RMII的功能切换,通过拨码开关实现,PCB板上有标明功能。

图 3-14 EVB CIF/RMII功能切换开关图

3.12.2 Raspberry Pi 接口

板上接口管脚定义如下:

J9400				
Connector				
VCC3V3_SYS	PIN 1	2	VCC5V0_SYS	
I2C2_SDA	3	4	VCC5V0_SYS	
I2C2_SCL	5	6	GND	
LCDC_D3_M0/I2S2_2CH_SDO/CIF _D4_M1/GPIO3_A7	7	8	LCDC_VSYNC_M0/l2S2_2CH_SCL K/CIF_D1_M1/UART5_TX/GPIO3_A 2	
GND	9	10	LCDC_HSYNC_M0/l2S2_2CH_MCL K/CIF_D0_M1/UART5_RX/GPIO3_ A1	
LCDC_D19/PDM_CLK1/CIF_D11_M 1/GPIO3_C7	11	12	LCDC_D15/I2S0_8CH_SCLKTX/PW M5/TDM_SCLK/TDM_SCLK/GPIO3 _C3	
LCDC_D20/PDM_SDI1/CIF_CLKOU T_M1/GPIO3_D0	13	14	GND	
LCDC_D21/PDM_SDI2/CIF_VSYNC _M1/ISP_PRELIGHT_TRIG/GPIO3_ D1	15	16	LCDC_D1_M0/l2S2_2CH_SDI/CIF_ D3_M1/UART5_RTS/GPIO3_A5	
VCC3V3_SYS	17	18	LCDC_D23/PDM_SDI0_M0/CIF_CL KIN_M1/ISP_FL_TRIG/GPIO3_D3	
LCDC_D8_M0/I2S0_8CH_SCLKRX/ CIF_D7_M1/SPI1_TXD/GPIO3_B4	19	20	GND	
LCDC_D10_M0/I2S0_8CH_SDO3/CI F D8 M1/SPI1 RXD/GPIO3 B6	21	22		
LCDC_D11_M0/I2S0_8CH_SDO2/CI F_D9_M1/SPI1_CLK/GPIO3_B7	23	24	LCDC_D5_M0/I2S0_8CH_SDI2/CIF _D6_M1/SPI1_CSN/GPIO3_B1	
GND	25	26	LCDC_D6/SPI1_CSN1/GPIO3_B2	
I2C1_SDA	27	28	I2C1_SCL	
LCDC_D4_M0/I2S0_8CH_SDI3/CIF D5 M1/GPIO3 B0	29	30	GND	
LCDC_D9_M0/l2S0_8CH_LRCKRX/ GPIO3_B5	31	32	LCDC_D13/I2S0_8CH_MCLK/GPIO 3_C1	
LCDC_D12/I2S0_8CH_SDO1/GPIO 3_C0	33	34	GND	
LCDC_D14/I2S0_8CH_LRCKTX/PW M4/TDM_LRCK/TDM_FSYNC/GPIO 3_C2	35	36	LCDC_D7/l2S0_8CH_SDl1/GPlO3_ B3	
LCDC_DEN_M0/l2S2_2CH_LRCK/C IF_D2_M1/UART5_CTS/GPIO3_A3	37	38	LCDC_D17/I2S0_8CH_SDI0/PWM7/ TDM_SDI/TDM_SDI/GPIO3_C5	
GND	39	40	LCDC_D16/I2S0_8CH_SDO0/PWM 6/TDM_SDO/TDM_SDO/GPIO3_C4	

树莓派2代B版本标准接口插座如下图所示:

图 3-15 树莓派B版本接口图

3.12.3 扩展接口J9401信号定义

J9401 Connector

I2S1_LRCK_TXRX	PIN 1	2	GND	
I2S1 SDI	3	4	I2S1 MCLK	
LCDC_D22/PDM_SDI3/CIF_HRE F_M1/ISP_FLASH_TRIG/GPIO3_ D2	5	6	PDM_CLK0	
I2S1_SCLK	7	8	LCDC_D18/PDM_CLK0_M0/CIF_D 10_M1/GPIO3_C6	
12S1_SDO	9	10	LCDC_D0/GPIO3_A4	
LCDC_CLK/GPIO3_A0	11	12	LCDC_D2/GPIO3_A6	
GND	13	14	GND	
VCC12V_DCIN	15	16	VCC12V_DCIN	
GND	17	18	GND	
SDMMC0_DET	19	20	GPIO2_B4	
LCDC_HSYNC_M1/LVDS_TX3N/ MIPI_TX_D3N	21	22	LCDC_DEN_M1/LVDS_TX3P/MIPI _TX_D3P	
LCDC_VSYNC_M1/LVDS_TX2N/ MIPI_TX_D2N	23	24	LCDC_D5_M1/LVDS_TX2P/MIPI_ TX_D2P	
LCDC_D4_M1/LVDS_CLKN/MIPI TX_CLKN	25	26	LCDC_D3_M1/LVDS_CLKP/MIPI_ TX_CLKP	
LCDC_D10_M1/LVDS_TX1P/MIP I_TX_D1P	27	28	LCDC_D1_M1/LVDS_TX1N/MIPI_ TX_D1N	
LCDC_D8_M1/LVDS_TX0P/MIPI _TX_D0P	29	30	LCDC_D11_M1/LVDS_TX0N/MIPI_ TX_D0N	

3.12.4扩展接口J9402信号定义

J9402 Connector

CIF_D2	PIN 1	2	REF_CLKO/GPIO0_A0
CIF_D3	3	4	GND
CIF_D4	5	6	LCDC_BL_PWM
CIF_D5	7	8	TP_INT
CIF_D6	9	10	TP_RST K
CIF_D7	11	12	LCD_EN
CIF_D8	13	14	ADC2_KEY_IN
CIF_D9	15	16	GND
CIF_VSYNC	17	18	VCC_1V8
CIF_HREF	19	20	GND
CIF_CLKI	21	22	VCC_3V0
CIF_CLKO	23	24	GND
CAM_PDN0	25	26	VCC1V8_DVP
CAM_PDN1	27	28	GND
GND	29	30	VCC2V8_DVP

3.13 百兆网口

通过S9500拨码开关,可以在CIF/RMII功能之间进行切换,EVB板支持百兆网络功能。

图 3-16 百兆网络口

3.14 UART Debug调试座

开发板提供串口供开发调试使用,如下图所示。板上选用高度集成的FT232RL接口转换芯片。

图 3-17 EVB UART Debug调试座(Mini USB)

4. 功能扩展板(选配)

4.1 扩展板功能框图

4.2 功能概述

RK3358J 扩展板包含的功能如下:

- 1. CVBS IN转CIF输入功能;
- 2. RGB转LVDS/MIPI/HDMI,结合MINI EVB板实现双屏异显功能。

4.3 结构与接口示意图

4.4.与EVB主板连接示意

扩展板通过J9400,J9401,J9402与主板连接,扩展CVBS IN/CVBS OUT/HDMI OUT/MIPI OUT/LVDS OUT功能。

LCM-LVDS Panel接口管脚列表:

管脚数	网络名	管脚数	网络名
Pin1	GND	Pin2	LVDS_D0N
Pin3	LVDS_D0P	Pin4	GND
Pin5	LVDS_D1N	Pin6	LVDS_D1P
Pin7	GND	Pin8	LVDS_CLKN
Pin9	LVDS_CLKP	Pin10	GND
Pin11	LVDS_D2N	Pin12	LVDS_D2P
Pin13	GND	Pin14	LVDS_D3N
Pin15	LVDS_D3P	Pin16	GND
Pin17	LCDC_BL_PWM	Pin19	NC
Pin19	NC	Pin20	NC
Pin21	ADC0_HW_ID	Pin22	LED_EN
Pin23	I2C1_SCL	Pin24	I2C1_SDA
Pin25	TP_INT	Pin26	TP_RST
Pin27	GND	Pin28	VCC5V0_SYS
Pin29	VCC5V0_SYS	Pin30	VCC5V0_SYS

LCM-LVDS Panel接口管脚列表:

管脚数	网络名	管脚数	网络名
Pin1	GND	Pin2	MIPI_D0N
Pin3	MIPI _D0P	Pin4	GND
Pin5	MIPI _D1N	Pin6	MIPI _D1P
Pin7	GND	Pin8	MIPI _CLKN
Pin9	MIPI _CLKP	Pin10	GND
Pin11	MIPI _D2N	Pin12	MIPI _D2P
Pin13	GND	Pin14	MIPI _D3N
Pin15	MIPI _D3P	Pin16	GND
Pin17	LCDC_BL_PWM	Pin19	NC
Pin19	NC	Pin20	NC V
Pin21	ADC0_HW_ID	Pin22	LED_EN
Pin23	I2C1_SCL	Pin24	I2C1_SDA
Pin25	TP_INT	Pin26	TP_RST
Pin27	GND	Pin28	VCC5V0_SYS
Pin29	VCC5V0_SYS	Pin30	VCC5V0_SYS

5.开发板的使用

5.1 EVB开关机和待机

EVB开机和关机方法介绍如下:

- 1、开机方法:
- (1)使用DC 12V供电,打开电源总开关,即可开机。后续开关机可以通过PWRON按钮实现;
- 2、关机方法:

长按Power键2s,在显示屏窗口界面点击关机。

3、异常关机方法:

使用DC 12V供电,异常情况下,可以通过关闭船型开关电源来关闭开发板电源。

4、待机的方法:

在桌面或者应用场景下,按下Power键,系统会进入一级待机状态。在没有连接USB的情况下,不做任何操作,系统会在一段时间后,由一级待机转入二级待机状态

5.2 USB驱动安装

EVB在固件烧写、驱动升级以及ADB连接前需要先安装USB驱动程序,驱动工具路径: SDK\RKTools\windows\Release_DriverAssitant目录下,打开"DriverInstall.exe",点击"驱动安装",提示"安装驱动成功"即可。如果已安装旧驱动,请点击"驱动卸载",并重新安装驱动。 驱动文件目前仅支持Windows。

图 5-0-1 驱动安装成功示意图

5.3 EVB固件烧写

RK3358J MINI EVB有两种固件烧写方式:

5.3.1 Maskrom烧写模式

基本原理是在系统上电前将FLASH D0对地短路,使Flash引导失败,从而进入Maskrom状

- 态。适用于烧写了错误的bootloader文件,无法正常引导系统开机的情况下。
 - 具体步骤如下:
 - 1、连接USB到电脑PC端,并按住开发板的Maskrom按键不放;
 - 2、给EVB供电12V,并打开船型开关;要是已经处于上电情况下,请按下复位按键。
- **3**、等待会儿开发工具将显示"发现一个Maskrom设备",需要注意的是在Maskrom状态下需要同时选择对应的Loader才能升级。
 - 4、开发工具选择对应的image文件。
 - 5、点击执行,即进入升级状态,在工具的右侧有进度显示栏,显示下载与校验情况。

图5-0-2 进入Maskrom烧写模式工具上示意图

5.3.2 Loader烧写模式

基本原理在系统上电或重启前保证ADC2_KEY_IN是低电平,上电或重启后系统将进入Loader 状态。适用于正常情况下,更换固件中的一小部分或者全部。

具体步骤如下:

- 1、并按住开发板的Vol+/RECOVER按键不放,连接USB到电脑PC端。
- 2、给EVB供电12v,并打开船型开关;要是已经处于上电情况下,请按下复位按键。
- **3**、等待会儿开发工具将显示"发现一个Loader设备",需要注意的是在Loader模式下不需要烧写完整的固件,可以只选择需要更新的image文件。
 - 4、开发工具选择对应的image文件。
 - 5、点击执行,即进入升级状态,在工具的右侧有进度显示栏,显示下载与校验情况。

图5-0-3 进入Loader烧写模式工具上示意图

5.4 串口调试

5.4.1 连接串口

连接EVB板的USB Debug到电脑PC端,在PC端设备管理器中得到当前端口的COM号。

图 5-0-4 获取当前端口COM号

打开串口工具"SecureCRT",点击"快速连接"按钮。

图 5-0-5 串口工具SecureCRT界面

配置串口,如下图所示,端口选择连接开发板的端口号,波特率选择1.5M,流控RTS/CTS不需勾选。

图 5-0-6 配置串口信息

点击连接,就能正常连接设备了。为方便调试,配置会话选项,点击工具栏"会话选项",回滚缓冲区设置较大数,可以保存更多的log信息。

图 5-0-7 配置串口工具选项

5.4.2 ADB调试

- 1.确保驱动安装成功,PC连接开发板的USB OTG口;
- 2.开发板上电,开机进入系统,再进入setting项,选择"developer options",勾选"USB debugging";
- 3.电脑PC端,点击"开始---运行",输入cmd,进入adb.exe工具所在的目录,输入"adb devices",可以查询到连接的设备,表示连接正常;
 - 4.输入"adb shell",进入ADB调试。

6.注意事项

6.1 注意事项

RK3358J MINI EVB适用于实验室或者工程开发环境,在开始操作之前,请先阅读以下注意事项:

- 任何情况下都不可以对开发板的屏幕接口及扩展板进行热插拔操作。
- 在拆封开发板包装和安装之前,为避免静电释放(ESD)对开发板硬件造成损伤,请采取必要的防静电措施。
- 手持开发板时请拿开发板的边沿,不要触碰到开发板上的外露金属部分,以免静电对开 发板元器件造成损坏。
- 请将RK3358J开发板放置于干燥的平面上,以保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如: 医疗设备)等。