Order of Growth Assignment

Big-O

1)
$$32(n^2) + 17n + 1 \le c * n^2$$

n >= 1

So...

$$n^2 >= n >= 1$$

$$32n^2 >= 32n >= 32$$

$$17n^2 >= 17n >= 17$$

So...

$$32(n^2) + 17n + 1 \le 32(n^2) + 17(n^2) + (n^2)$$
:

This holds true because everything on right hand side is greater than each corresponding term on the left hand side.

So...

$$32(n^2) + 17n + 1 \le 50 (n^2)$$
 while $n \ge 1$

So...

Being that $32(n^2) + 17n + 1$ is bound on top by a constant * n^2 , we say it's $O(n^2)$

2)
$$32(n^2) + 17n + 1 \le c * n$$

Pick a counterexample of $n \ge 1$:

$$32(2^2) + 17(2) + 1 \le 50(2)$$

163 is is greater 100

So...

A counterexample has been found, and thus $32(n^2) + 17n + 1$ is not O(n)

3)
$$32(n^2) + 17n + 1 \le c * nlogn$$

Pick a counterexample of $n \ge 1$:

$$32(1^2) + 17(1) + 1 \le 50(\log 1)$$

50 is greater than 0

So...

A counterexample has been found, and thus $32(n^2) + 17n + 1$ is not O(nlogn)

Ω

1)
$$32(n^2) + 17n + 1 \ge c * n^2$$

n > = 1

So...

$$32(n^2) + 17n + 1 >= 17(n^2)$$
:

This holds true because $32(n^2)$ is greater than $17(n^2)$, and because n is always positive here, $32(n^2)$ is only adding positive terms and therefore is always $> 17(n^2)$

So...

$$32(n^2) + 17n + 1 \ge 17 (n^2)$$
 while $n \ge 1$

So...

Being that $32(n^2) + 17n + 1$ is bounded from below by a constant * n^2 , we say it's $\Omega(n^2)$

2)
$$32(n^2) + 17n + 1 \ge c * n$$

n > = 1

So...

$$32(n^2) + 17n + 1 >= 17n$$
:

This holds true because 17n is \geq 17n, and 17n is only adding positive terms and therefore the left hand side is always \geq right hand side

So...

$$32(n^2) + 17n + 1 >= 17n$$
 while $n >= 1$

So...

Being that $32(n^2) + 17n + 1$ is bounded from below by a constant * n, we say it's $\Omega(n)$

3)
$$32(n^2) + 17n + 1 \ge c * n^3$$

Pick a counterexample of $n \ge 1$:

$$32(3^2) + 17(3) + 1 >= 17(3^3)$$

340 is less than 459

So...

A counterexample has been found, and thus $32(n^2) + 17n + 1$ is not $\Omega(n^3)$

 Θ

1)
$$c1 * n^2 \le 32(n^2) + 17n + 1 \le c2 * n^2$$

Already proved above the following:

$$32(n^2) + 17n + 1 >= 17(n^2)$$

$$32(n^2) + 17n + 1 \le 50(n^2)$$

So...

$$17(n^2) \le 32(n^2) + 17n + 1 \le 50(n^2)$$
 while $n \ge 1$

So...

Being that $32(n^2) + 17n + 1$ is bounded from below and above each by a constant * n^2 , we say it's $\Theta(n^2)$

2)
$$c1 * n \le 32(n^2) + 17n + 1 \le c2 * n$$

Pick a counterexample of $n \ge 1$:

$$17(2) \le 32(2^2) + 17(2) + 1 \le 50(2)$$

34 is less than 163, but 163 is greater than 100

So...

A counterexample has been found, and thus $32(n^2) + 17n + 1$ is not $\Theta(n)$

3)
$$c1 * n^3 \le 32(n^2) + 17n + 1 \le c2 * n^3$$

Pick a counterexample of $n \ge 1$:

$$17(3^3) \le 32(3^2) + 17(3) + 1 \le 50(3^3)$$

459 is greater than 340

So...

A counterexample has been found, and thus $32(n^2) + 17n + 1$ is not $\Theta(n^3)$