1 Сходящи редици

1.1 Редици

- ullet Редица е всяка функция $\mathcal{A}: \mathbb{N} \longrightarrow \mathbb{R}$
- При изискването $D_{\mathcal{A}}$ да е безкрайно множество "безкрайна числова редица"
- Обикновено се използва означението a_n вместо $\mathcal{A}(n)$

1.1.1 Примери

- аритметична прогресия $-a_n = a_0 + nd$
- геометрична прогресия $-a_n = a_0 q^n$
- $\bullet \quad a_n = \frac{1}{n}$
- $\bullet \quad a_n = \frac{2019n^3 + 1}{n^3 + 2019^3}$

- $a_n = n$, $a_n = -n^2 + 2019n$, $a_n = (-1)^n n^2 + n$
- $a_n = \left(1 + \frac{1}{n}\right)^n$, обобщено $a_n = \left(1 + \frac{x}{n}\right)^n$
- рекурентно зададени

$$- a_0 = \frac{1}{2}, \ a_{n+1} = \frac{a_n^2 + 1}{2}$$

$$- a_0 = 2, \ a_{n+1} = \frac{a_n^2 + 1}{2}$$

$$- a_0 = 2019 , a_{n+1} = \frac{a_n^2 - 2019}{2a_n}$$

1.2 Някои видове редици

- ограничени (неограничени)
- МОНОТОННИ

- "за почти всички", "от някъде нататък"
- сходящи
- ullet клонящи към $+\infty$, клонящи към $-\infty$

1.2.1 Ограничени (неограничени) редици

- ограничена отгоре: $a_n \leq c$ за всяко $n \in \mathbb{N}$
- неограничена отгоре: за всяко c има $n \in \mathbb{N}$ с $a_n > c$
- ограничена отдолу: $a_n \ge c$ за всяко $n \in \mathbb{N}$
- ullet неограничена отдолу: за всяко c има $n \in \mathbb{N}$ с $a_n < c$
- ограничена: $|a_n| \le c$ за всяко $n \in \mathbb{N}$
- неограничена е еквивалентно на неограничена отгоре ИЛИ неограничена отдолу

1.2.2 Монотонни редици

- ullet растяща $a_n \leq a_{n+1}$ за всяко $n \in \mathbb{N}$, $n < m \Rightarrow a_n \leq a_m$
- строго растяща $a_n < a_{n+1}$ за всяко $n \in \mathbb{N}$

- ullet намаляваща $a_n \geq a_{n+1}$ за всяко $n \in \mathbb{N}$, $n < m \Rightarrow a_n \geq a_m$
- строго намаляваща $a_n > a_{n+1}$ за всяко $n \in \mathbb{N}$

1.3 Сходящи редици

1.3.1 Дефиниция

ullet Редицата $\{a_n\}_{n=1}^\infty$ се нарича сходяща, ако

съществува число l такова, че за всяко $\varepsilon>0$ има число N такова, че за всяко $n\in\mathbb{N},\ n>N$ е изпълнено $|a_n-l|<\varepsilon$.

l се нарича граница на $\{a_n\}_{n=1}^{\infty}$.

- Алтернатива
 - l се нарича граница на $\{a_n\}_{n=1}^\infty$, ако за всяко $\varepsilon>0$ има число N такова, че за всяко $n\in\mathbb{N},\ n>N$ е изпълнено $|a_n-l|<\varepsilon$.
 - Редицата $\{a_n\}_{n=1}^{\infty}$ се нарича сходяща, ако има граница

1.3.2 Отрицания

- l не е граница на $\{a_n\}_{n=1}^\infty$, ако има $\varepsilon_0>0$ такова, че за всяко число N има $n\in\mathbb{N},\ n>N$ и $|a_n-l|\geq \varepsilon_0$.
- Редицата $\{a_n\}_{n=1}^\infty$ не е сходяща, ако за всяко число l има $\varepsilon_0>0$ такова, че за всяко число N има $n\in\mathbb{N},\ n>N$ и $|a_n-l|\geq \varepsilon_0$.
- Означение $l = \lim_{n \to \infty} a_n$.
- Пример $\lim_{n \to \infty} \frac{1}{n} = 0$.
- Пример $(-1)^n$ не е сходяща.

1.4 Основни свойства на сходящите редици

• Премахване (добавяне) на краен брой членове не променя сходимостта (и границата).

- Границата е единствена; в равенства може да се извършва граничен преход.
- От сходимост следва ограниченост.
- Знаците на "почти всички" членовете на сходяща редица, с ненулева граница, са едни и същи.

1.5 Аритметични действия със сходящи редици

Нека редиците $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ са сходящи с граници, съответно, a и b. Тогава

- $\{a_n+b_n\}_{n=1}^{\infty}$ е сходяща и $\lim_{n\to\infty}(a_n+b_n)=a+b$
- $\{a_n-b_n\}_{n=1}^\infty$ е сходяща и $\lim_{n\to\infty}(a_n-b_n)=a-b$
- $\{a_nb_n\}_{n=1}^{\infty}$ е сходяща и $\lim_{n\to\infty}a_nb_n=ab$
- ullet ако $b \neq 0$, то $\left\{ \frac{a_n}{b_n} \right\}_{n=1}^{\infty}$ е сходяща и $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$
- $\bullet \quad \lim_{n \to \infty} |a_n| = |a|$

• Безкрайно малки редици

$$\lim_{n \to \infty} |a_n| = 0 \quad \Leftrightarrow \quad \lim_{n \to \infty} a_n = 0$$

• $\lim_{n\to\infty} \max(a_n, b_n) = \max(a, b)$, $\lim_{n\to\infty} \min(a_n, b_n) = \min(a, b)$

1.6 Сходимост и неравенства

• Граничен преход в неравенства

Нека
$$\lim_{n\to\infty}a_n=a$$
 и $\lim_{n\to\infty}b_n=b$. Ако $a_n\leq b_n$ за $n\geq n_0$, то $a\leq b$.

• Лема за междинната редица:

Нека
$$a_n \leq b_n \leq c_n$$
 за $n \geq n_0$. Ако $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l$, то редицата $\{b_n\}_{n=1}^{\infty}$ е сходяща и $\lim_{n \to \infty} b_n = l$.

• Пример:

Ако
$$\lim_{n\to\infty} a_n = 0$$
, то $\lim_{n\to\infty} \left(1 + \frac{a_n}{n}\right)^n = 1$.

2 Редици, клонящи към безкрайност

2.1 Дефиниция

- Казваме, че редицата $\{a_n\}_{n=1}^\infty$ клони към $+\infty$, ако за всяко C има число N такова, че за всяко $n\in\mathbb{N},\ n>N$ е изпълнено $a_n>C$.
- Казваме, че редицата $\{a_n\}_{n=1}^\infty$ клони към $-\infty$, ако за всяко C има число N такова, че за всяко $n\in\mathbb{N},\ n>N$ е изпълнено $a_n< C$.
- Отрицания
- Означения $\lim_{n\to\infty} a_n = +\infty$, $\lim_{n\to\infty} a_n = -\infty$
- Безкрайно големи $\lim_{n\to\infty} |a_n| = +\infty$
- Примери геометрична прогресия; рационални

2.2 Неравенства

• Ako $\lim_{n\to\infty}a_n=+\infty$, to $a_n>0$ sa $n\geq n_0$. Ako $\lim_{n\to\infty}a_n=-\infty$, to $a_n<0$ sa $n\geq n_0$.

ullet Нека $a_n \leq b_n$ за $n \geq n_0$. Тогава: ако $\lim_{n \to \infty} a_n = +\infty$, то $\lim_{n \to \infty} b_n = +\infty$; ако $\lim_{n \to \infty} b_n = -\infty$, то $\lim_{n \to \infty} a_n = -\infty$.

2.3 Аритметични действия

2.3.1 Събиране

	$-\infty$	a	$+\infty$
	-∞	-∞	???
b	-∞	a+b	+∞
+∞	???	+∞	+∞

- Ако $\lim_{n\to\infty}a_n=+\infty$ и $b_n\geq B$ за $n\geq n_0$, то $\lim_{n\to\infty}(a_n+b_n)=+\infty$
- Ако $\lim_{n\to\infty}a_n=-\infty$ и $b_n\leq B$ за $n\geq n_0$, то $\lim_{n\to\infty}(a_n+b_n)=-\infty$

2.3.2 Безкрайно малки и безкрайно големи

Безкрайно малки и безкрайно големи

•
$$\lim_{n\to\infty} a_n = +\infty \Leftrightarrow a_n > 0$$
 за $n \ge n_0$ и $\lim_{n\to\infty} \frac{1}{a_n} = 0$

•
$$\lim_{n \to \infty} a_n = -\infty \Leftrightarrow a_n < 0$$
 за $n \ge n_0$ и $\lim_{n \to \infty} \frac{1}{a_n} = 0$

• Безкрайно голяма редица 👄 Реципрочната редица е безкрайно малка

2.3.3 Умножение

	$-\infty$	a<0	a=0	a>0	$+\infty$
-∞	$+\infty$	+∞	???	8	8
b<0	8+				8
b=0	???		a.b		???
b>0	$-\infty$				+∞
+∞	-8		???	+8	+8

• Ако $\lim_{n\to\infty}a_n=+\infty$ и $b_n\geq B>0$ за $n\geq n_0,$ то $\lim_{n\to\infty}a_nb_n=+\infty$

- Ако $\lim_{n\to\infty}a_n=-\infty$ и $b_n\geq B>0$ за $n\geq n_0$, то $\lim_{n\to\infty}a_nb_n=-\infty$
- Ако $\lim_{n\to\infty}a_n=+\infty$ и $b_n\leq B<0$ за $n\geq n_0,$ то $\lim_{n\to\infty}a_nb_n=-\infty$
- Ако $\lim_{n\to\infty}a_n=-\infty$ и $b_n\leq B<0$ за $n\geq n_0,$ то $\lim_{n\to\infty}a_nb_n=+\infty$

3 Монотонни редици

3.1 Основна теорема

- Нека $\{a_n\}_{n=1}^{\infty}$ е растяща (от някъде нататък) и ограничена отгоре. Тогава $\{a_n\}_{n=1}^{\infty}$ е сходяща.
- Дуална форма

Нека $\{a_n\}_{n=1}^{\infty}$ е намаляваща (от някъде нататък) и ограничена отдолу. Тогава $\{a_n\}_{n=1}^{\infty}$ е сходяща.

3.2 Следствия

- Следствие от доказателството
 - Нека $\{a_n\}_{n=1}^{\infty}$ е растяща (от някъде нататък) и ограничена отгоре. Тогава $a_k \leq \lim_{n \to \infty} a_n$.
 - Дуална форма Нека $\{a_n\}_{n=1}^{\infty}$ е намаляваща (от някъде нататък) и ограничена отдолу. Тогава $a_k \geq \lim_{n \to \infty} a_n$.
- Монотонно поведение
 - Нека $\{a_n\}_{n=1}^\infty$ е растяща (от някъде нататък). Тогава или $\{a_n\}_{n=1}^\infty$ е сходяща, или $\lim_{n\to\infty}a_n=+\infty$.
 - Дуална форма Нека $\{a_n\}_{n=1}^\infty$ е намаляваща (от някъде нататък). Тогава или $\{a_n\}_{n=1}^\infty$ е сходяща, или $\lim_{n\to\infty}a_n=-\infty$.

3.3 Важни приложения

- За всяко $x \in \mathbb{R}$ редицата $\left(1 + \frac{x}{n}\right)^n$ е
 - 1) растяща (от някъде нататък); 2) ограничена отгоре; 3) сходяща.

Полагаме
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Между другото,
$$\lim_{n\to\infty}\left(1+\frac{k}{n}\right)^n=e^k$$
 за $k\in\mathbb{N}$

- При q>1 е изпълнено $\lim_{n\to\infty} \frac{n^k}{q^n}=0$.
- $\bullet \quad \lim_{n \to \infty} \frac{q^n}{n!} = 0.$
- ullet За всяко $x>1\,$ редицата $b_0=x^2\,$, $b_{n+1}=rac{b_n^2+x}{2b_n}\,$ е сходяща и за границата и́ b е изпълнено $b^2=x\,$.

4 Подредици. Точки на сгъстяване

4.1 Подредици

4.1.1 Дефиниция

- Казваме, че редицата $\{b_k\}_{k=1}^{\infty}$ е подредица на редицата $\{a_n\}_{n=1}^{\infty}$, ако съществува строго растяща редица $\{n_k\}_{k=1}^{\infty}$ от естествени числа, за която $b_k=a_{n_k}$
- Примери:
 - $\{a_{2n}\}_{n=1}^{\infty}, \{a_{n^2}\}_{n=1}^{\infty},$
 - —
 Q в редица по някакъв начин, № е подредица
 - изходната редица

4.1.2 Свойства

- Подредица на подредица е подредица
- Всяка подредица на ограничена редица е ограничена
- Всяка подредица на монотонна редица е монотонна

ullet Ако $\lim_{n o \infty} a_n = l$, то $\lim_{k o \infty} a_{n_k} = l$ за всяка подредица

Пример:
$$\lim_{n \to \infty} \left(1 + \frac{1}{kn} \right)^n = \sqrt[k]{e}$$
 за $k \in \mathbb{N}$

- ullet Ако $\lim_{n o \infty} a_n = +\infty$, то $\lim_{k o \infty} a_{n_k} = +\infty$ за всяка подредица
- ullet Ако $\lim_{n o \infty} a_n = -\infty$, то $\lim_{k o \infty} a_{n_k} = -\infty$ за всяка подредица
- "Обратните" са тафталогия

4.1.3 Изчерпване с краен брой редици

- "Лоша" редица може да бъде изчерпана с безкраен брой "хубави" редици
- Ако са ограничени, то изходната е ограничена
- За монотонност нищо не може да се твърди
- Ако са сходящи с една и съща граница (число, $+\infty$ или $-\infty$), то изходната има същото свойство
- Пример:

Ако
$$\lim_{n\to\infty}a_{2n}=\lim_{n\to\infty}a_{2n+1}=L$$
 (число, $+\infty$ или $-\infty$), то $\lim_{n\to\infty}a_n=L$.

4.2 Теорема на Болцано

Всяка ограничена редица има сходяща подредица.

Уточнение

Нека $x_n \in [a,b]$ (краен и затворен). Тогава редицата $\{x_n\}_{n=1}^{\infty}$ има сходяща подредица $\{x_{n_k}\}_{k=1}^{\infty}$ и за нейната граница $x_0 = \lim_{k \to \infty} x_{n_k}$ е изпълнено $x_0 \in [a,b]$.

4.3 Точки на сгъстяване

4.3.1 Дефиниция

- a се нарича точка на сгъстяване на редицата $\{a_n\}_{n=1}^{\infty}$, ако за всяко $\varepsilon>0$ и за всяко число N има $n\in\mathbb{N},\ n>N$ такова, че $|a_n-a|<\varepsilon$.
- Еквивалентно условие

a е точка на сгъстяване на редицата $\{a_n\}_{n=1}^\infty$ тогава и само тогава, когато всяка околност на a съдържа безкрайно много членове на редицата $\{a_n\}_{n=1}^\infty$

• Отрицание:

a не е точка на сгъстяване на редицата $\{a_n\}_{n=1}^{\infty}$, ако съществуват $\varepsilon_0>0$ и число N_0 такива, че за всяко $n\in\mathbb{N},\ n>N_0$ е изпълнено $|a_n-a|\geq \varepsilon_0$.

4.3.2 Примери

- Редицата $(-1)^n$ има две точки на сгъстяване -1 и 1.
- Редицата $((-1)^n + 1) n$ има единствена точка на сгъстяване -0.
- Редицата $(-1)^n n$ няма точки на сгъстяване.
- По-общо: безкрайно големите редици нямат точки на сгъстяване
- Ако $\lim_{n\to\infty} a_n = a$, то редицата $\{a_n\}_{n=1}^{\infty}$ има (единствена) точка на сгъстяване a.

4.3.3 Необходимо и достатъчно условие

a е точка на сгъстяване на редицата $\{a_n\}_{n=1}^\infty$ тогава и само тогава, когато съществува сходяща подредица $\{a_{n_k}\}_{k=1}^\infty$, за която $\lim_{k\to\infty}a_{n_k}=a$

• Теорема на Болцано

Всяка ограничена редица има поне една точка на сгъстяване.

• Уточнение

Всяка ограничена редица има най-малка и най-голяма точка на сгъстяване.

• Означение $\liminf_{n\to\infty} a_n$, $\limsup_{n\to\infty} a_n$

4.4 Теорема на Болцано – план на доказателство

- $a = \limsup_{n \to \infty} a_n \iff$ за всяко $\varepsilon > 0$ са изпълнени:
 - 1. за всяко число N има $n \in \mathbb{N}, \ n > N$ такова, че $a \varepsilon < a_n$;
 - 2. има число N_0 такова, че за всяко $n \in \mathbb{N}, \ n > N_0$ е изпълнено $a_n < a + \varepsilon$.
- редицата $b_m = \sup \{a_m, a_{m+1}, a_{m+2}, \dots\}$ намалява и е ограничена отдолу
- $\bullet \quad \lim_{m \to \infty} b_m = \limsup_{n \to \infty} a_n$

Необходимо и достатъчно условие за сходимост на редица

Редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща тогава и само тогава, когато

1) $\{a_n\}_{n=1}^{\infty}$ е ограничена

И

 $\{a_n\}_{n=1}^{\infty}$ има единствена точка на сгъстяване.

Условие на Коши

Дефиниция

- Редицата $\{a_n\}_{n=1}^{\infty}$ се нарича фундаментална, ако за всяко $\varepsilon > 0$ има число N такова, че за всеки две $n \in \mathbb{N}, \ n > N, \ m \in \mathbb{N}, \ m > N$ е изпълнено $|a_n - a_m| < \varepsilon$.
- Редицата $\{a_n\}_{n=1}^{\infty}$ не е фундаментална, ако съществува $\varepsilon_0>0$ такова, че за всяко N има две $n \in \mathbb{N}, \ n > N, \ m \in \mathbb{N}, \ m > N$, за които $|a_n - a_m| \ge \varepsilon_0$.
- Примери
 - Редицата $1 \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n}$ е фундаментална
 Редицата $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ не е фундаментална

4.6.2 Необходимо и достатъчно условие за сходимост

Редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща тогава и само тогава, когато е фундаментална.

4.6.3 Доказателство в "трудната" посока

Нека $\{a_n\}_{n=1}^{\infty}$ е фундаментална. Тогава тя е ограничена. Наистина, има N такова, че за всяко $n \in \mathbb{N}, \ n > N$ и всяко $m \in \mathbb{N}, \ m > N$ е изпълнено $|a_n - a_m| < 1$. Ако $m_0 > N$, то за всяко $n \geq m_0$ имаме $-1 + a_{m_0} < a_n < 1 + a_{m_0}$. Следователно, една долна граница е $\min \{-1 + a_{m_0}, \ a_1, \ldots a_{m_0}\}$, а горна — $\max \{1 + a_{m_0}, \ a_1, \ldots a_{m_0}\}$.

Да допуснем, че $\{a_n\}_{n=1}^{\infty}$ има две точки на сгъстяване b < c. За $\varepsilon = \frac{c-b}{4} > 0$ има число N такова, че за всеки две $n \in \mathbb{N}, \ n > N, \ m \in \mathbb{N}, \ m > N$ е изпълнено $|a_n - a_m| < \varepsilon$. Има и $n_1 > N$, за което $|a_{n_1} - b| < \varepsilon$, и $n_1 > N$, за което $|a_{n_2} - c| < \varepsilon$.

Неравенството на триъгълника ни води до противоречие:

$$4\varepsilon = c - b \le |a_{n_1} - b| + |a_{n_1} - a_{n_2}| + |a_{n_2} - c| < 3\varepsilon$$

4.7 Сходимост на средните

• Теорема на Щолц:

Нека $\{b_n\}_{n=1}^\infty$ е строго растяща редица, за която $\lim_{n\to\infty}b_n=+\infty$.

Ако
$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$$
 (число, $+\infty$ или $-\infty$), то $\lim_{n\to\infty}\frac{a_n}{b_n}=L$.

• Пример:

$$\lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}}{\sqrt{n}} = 2.$$

• Средно аритметично

Ако
$$\lim_{n\to\infty} a_n = L$$
 (число, $+\infty$ или $-\infty$), то $\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = L$

• Идея за доказателство: (L - число)

Можем да предполагаме L = 0.

За $\varepsilon>0$ има n_0 такова, че за всяко $n\geq n_0$ е изпълнено $|a_n|<\frac{\varepsilon}{2}$. Има и $n_1>n_0$ такова, че

за всяко
$$n \geq n_1$$
 е изпълнено $\frac{1}{n} \left| \sum_{k=1}^{n_0} a_k \right| < \frac{\varepsilon}{2}$. За $n_1 > n_0$ имаме

$$\left| \frac{1}{n} \left| \sum_{k=1}^{n} a_k \right| \le \frac{1}{n} \left| \sum_{k=1}^{n_0} a_k \right| + \frac{1}{n} \sum_{k=n_0+1}^{n} |a_k| < \varepsilon$$

- ullet Средно геометрично Нека $a_n>0$. Ако $\lim_{n\to\infty}a_n=L$ (число или $+\infty$), то $\lim_{n\to\infty}\sqrt[n]{a_1a_2\dots a_n}=L$
- Следствие: Нека $a_n>0$ Ако $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L$ (число или $+\infty$), то $\lim_{n\to\infty}\sqrt[n]{a_n}=L$
- Пример:

$$\lim_{n \to \infty} \sqrt[n]{\binom{2n}{n}} = 4$$