American Computer Science League

2021 Finals • Solutions to Short Problems • Intermediate/Classroom Divisions

1. Boolean Algebra

$$\overline{\overline{A} + B} \oplus \overline{A + \overline{B}} = \overline{\overline{A}} \overline{B} \oplus \overline{A} \overline{\overline{B}}$$

$$= A \overline{B} \oplus \overline{A} B$$

$$= (A \overline{B})(\overline{\overline{A}} B) + (A \overline{B})(\overline{\overline{A}} B)$$

$$= (A \overline{B} (A + \overline{B})) + ((\overline{A} + B) \overline{\overline{A}} B)$$

$$= (A \overline{B} (A + \overline{B})) + ((\overline{A} + B) \overline{\overline{A}} B)$$

$$= (A \overline{B} (A + \overline{B})) + ((\overline{A} + B) \overline{\overline{A}} B)$$

$$= A \overline{B} + \overline{\overline{A}} B \quad \text{Choice d}$$

$$= A \oplus B \quad \text{Choice b}$$

1. b, d (D)

Choice a simplifies to the Boolean expression B.

 $A \oplus B$ cannot be equal to its negation so choice c is invalid.

2. Boolean Algebra

$$(\overline{AB} + \overline{C})(\overline{A} \overline{B} + \overline{C}) = (\overline{A} \overline{B} \overline{C})(\overline{A} \overline{B} + \overline{C})$$

 $= (\overline{A} + \overline{B}) \overline{C} (\overline{A} \overline{B} + \overline{C})$
To be TRUE $\overline{C} = 1$, so $C = 0$.
The expression simplifies to: $(\overline{A} + \overline{B}) 1 (\overline{A} \overline{B} + 1)$

2. 3 (B)

This is FALSE only when A = B = 1. Therefore 3 ordered triples make it TRUE:

(0, 0, 0), (0, 1, 0), and (1, 0, 0)

3. Bit-String Flicking

(LSHIFT-3 (RCIRC-2 (NOT (LCIRC-10 011010))))

- = (LSHIFT-3 (RCIRC-2 (NOT 100110)))
- = (LSHIFT-3 (RCIRC-2 011001))
- = (LSHIFT-3 010110)
- = 110000

3. 110000 (C)

4. Bit-String Flicking

Let
$$X = abcde$$

$$(X AND (LSHIFT-2 01011)) = (RCIRC-3 00011)$$

(abcde AND (LSHIFT-2 01011)) = (RCIRC-3 00011)

LHS =
$$(abcde AND (LSHIFT-2 01011))$$

= (abcde AND 01100)

= 0bc00

RHS = $(RCIRC-3\ 00011)$

= 01100

LHS = RHS
$$\Rightarrow$$
 0bc00 = 01100

$$\Rightarrow$$
 a = *, b = 1, c = 1, d = *, e = *

 \Rightarrow *11** (8 answers)

4. 8 (C)

5. Recursive Functions

Work backwards from the answer choices to see which one evaluates f(3, -2) = 1/9.

$$b/f(b, e-1)$$
: $f(3, -2) = 3/f(3, -3) = 3/(3/f(3, -4)...$

This does not work since the exponent decreases each time, causing an infinite loop.

$$f(b, e + 1)/b$$
: $f(3, -2) = f(3, -1)/3 = f(3, 0)/3/3 = 1/9$

This one calculates the correct answer.

$$f(b, e - 1)/b$$
: $f(3, -2) = f(3, -3)/3 = f(3, -4)/3/3...$

Numerator never stops.

$$b/f(b,e+1)$$
: $f(3,-2) = 3/f(3-1) = 3/3/f(3,0) = 1$

5. f(b, e + 1)/b (B)

6. Recursive Functions

$$f(1,20) = f(1+3,20-2) - (1-20) = f(4,18) + 19=52+19=71$$

$$f(4,18) = f(4+3,18-2) - (4-18) = f(7,16) + 14=38+14=52$$

$$f(7,16) = f(7+3,16-2) - (7-16) = f(10,14) + 9=29+9=38$$

$$f(10,14) = f(10+3,14-2) - (10-14) = f(13,12) + 4=25+4=29$$

$$f(13,12) = 13+12=25$$

6.71 (D)

7. Digital Electronics

The circuit translates to: $\overline{(A + \overline{B} C)(\overline{B} C + C)}$ $= \overline{(A + \overline{B} + \overline{C})(\overline{B} + \overline{C} + C)}$ $= \overline{A + \overline{B} + \overline{C}}$ $= \overline{A} B C$ $\Rightarrow A = 0, B = 1, C = 1 \quad (0, 1, 1)$

7.1 (A)

8. Digital Electronics

A	В	С	A B	B + C	$\overline{B + C}$	AND	OR	NAND	NOR
0	0	0	0	0	1	0	1	1	0
0	0	1	0	1	0	0	0	1	1
0	1	0	0	1	0	0	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	0	0	1	0	1	1	0
1	0	1	0	1	0	0	0	1	1
1	1	0	0	1	0	0	0	1	1
1	1	1	1	1	0	0	1	1	0

8. NAND (C)

9. Prefix-Infix-Postfix

/-+/#2531#41+#131= /-+/(#25)31(#41)+(#13)1

9. 3 (B)

$$= / - + (/ 57 3) 1 5 (+ 4 1)$$

$$= / - (+ 19 1) 5 5$$

$$= / (- 20 5) 5$$

$$= / 15 5$$

$$= 3$$

10. Prefix-Infix-Postfix

$$\frac{A + \sqrt{B^2 - C}}{3D} = (A + (B \uparrow 2 - C) \uparrow (1/2)) / (3 * D) \text{ in Infix}$$
notation
$$= (A + (B 2 \uparrow C -) \uparrow (1 2/)) / (3 D *)$$

$$= (A + (B 2 \uparrow C - 1 2/\uparrow)) / (3 D *)$$

$$= (A B 2 \uparrow C - 12/\uparrow +)/(3 D *)$$

= $A B 2 \uparrow C - 12/\uparrow + 3 D */$

4 consecutive 0s

10. $AB2\uparrow C - 12/\uparrow + 3D * /$ (D)

11. Computer Number Systems

11. 137556 (B)

12. Computer Number Systems

 $2017 = 111111100001_2$

 $2021 = 11111100101_2$ 2 consecutive 0s $2020 = 11111100100_2$ 2 consecutive 0s $2019 = 11111100011_2$ 3 consecutive 0s $2018 = 11111100010_2$ 3 consecutive 0s

12. 2017 (C)

13. Data Structures

ACSL*FINALS**COMPETITION***THIS*YEAR*

The queue (FIFO) is built as follows:

C, CS, CSL, L, LF, LFN, LFNL, LFNLS, NLS, S, SC, SCM, SCMP, SCMPT, SCMPTT, SCMPTTN, MPTTN, TTN, N, NT, NTH, NTHS, HS, HSY, HSYR, YR

The longest length of the queue is 7: SCMPTTN

13. 7 (C)

14. Data Structures

The binary search tree for **PTERODACTYL** is:

The preorder transversal (root, left, right) is: PEDACOLTRTY

14. PEDACOLTRTY (B)

15. Graph Theory

Squaring the adjacency matrix gives the number of paths of length 2.

0	1	1	0	1	2		1	0	2	2	0
0	0	1	0	0			0	0	0	1	0
0	0	0	1	0		=	1	0	0	0	0
1	0	0	0	0			0	1	1	0	1
1	0	1	1	0			1	1	1	1	1

There are 12 paths of length 2 that do not exist: AB, AE, BA, BB, BC, BE, CB, CC, CD, CE, DA and DD. However if only pairs are counted (order does not count), there are 5: AB/BA, BB, BC/CB, CC, DD

The others are eliminated because there is a path in the other order-

15. 5 (C)

AE has none but EA has 1.	
16. Graph Theory There are 5 cycles from A:	
ABCDA, ACDA, AEA, AECDA, AEDA	16. 5 (C)
17. What Does This Program Do? There are 6 possible original arrangements of 3 numbers. Choices (A), (B) and (C) work for some of the 6 arrangements but only (A) works on all 6.	17. a > b (A)
18. LISP (CDDADDR '(P (R O) (G (R A) (M M) I) (N G))) = (CDDADR '((R O) (G (R A) (M M) I) (N G))) = (CDDAR '((G (R A) (M M) I) (N G))) = (CDDR '(G (R A) (M M) I)) = (CDR '((R A) (M M) I)) = ((M M) I)	18. ((M M) I) (B)
[a-l]*[e-u]*(cs y) The expressions that are not accepted are: c. physics - fails at the "y" d. botany - fails at the "a" g. mathematics - fails at the first "a"	19. c, d, g (B)
20. Assembly Language This program sums the proper factors of a number and outputs that sum. For $6: 1 + 2 + 3 = 6$ which makes 6 a perfect number.	20. 6 (C)