Рекуррентные соотношения

Определение 1. Последовательность чисел $a_0, a_1, \ldots, a_n, \ldots$ называется рекуррентной, если каждый последующий ее член выражается через один или несколько предыдущих.

$$a_n = f(a_{n-1}, \dots, a_0).$$

Определение 2. бозначим через C_n количество способов выстроить правильную скобочную последовательность из n открывающихся и n закрывающихся скобок. Число C_n называется n-ым числом Kamanaha.

1. Докажите, что числа Каталана определяются рекуррентным соотношением

$$C_{n+1} = C_0 C_n + C_1 C_{n-1} + \dots + C_n C_0 \ (n \ge 0)$$

и начальным членом $C_0 = 1$.

2. Докажите, что количество *плоских корневых строго двоичных деревьев* (у каждой вершины либо два сына, либо ни одного [и тогда это по определению лист]) с n+1 листом равно C_n .

3. Дана последовательность натуральных чисел $a_1, a_2, \ldots, a_n, \ldots$, в которой a_1 не делится на 5 и для всякого n имеет место равенство

$$a_{n+1} = a_n + b_n,$$

где b_n — последняя цифра числа a_n . Докажите, что последовательность содержит бесконечно много степеней двойки.

- **4.** Назовём слово из букв X, P, Ю *повторюшным*, если рядом с любой его буквой стоит такая же (неважно слева или справа). Найдите количество повторюшных слов длины n.
- **5.** Последовательность натуральных чисел a_n строится следующим образом: a_0 некоторое натуральное число; $a_{n+1} = \frac{a_n}{5}$, если a_n делится на 5; $a_{n+1} = [\sqrt{5}a_n]$, если a_n не делится на 5. Докажите, что начиная с некоторого члена последовательность a_n возрастает.
- **6.** По данному натуральному числу a_0 строится последовательность $\{a_n\}$ следующим образом $a_{n+1}=a_n^2-5$,если a_n нечетно, и $\frac{a_n}{2}$,если a_n четно. Докажите, что при любом нечетном $a_0>5$ в последовательности $\{a_n\}$ встретятся скольугодно большие числа.
- 7. Пусть a_n последовательность, заданная соотношениями $a_1 = 0$, $a_2 = 2$, $a_3 = 3$, $a_n = a_{n-2} + a_{n-3}$ для n > 3. Докажите, что a_p делится на p для любого простого p. Указание: Покажите, что a_n количество способов разрезать клетчатое кольцо из n клеток на доминошки и триминошки.