IUT GB - Fiche de TD - Variables aléatoires discrètes

Exercice 1. On s'intéresse dans cet exercice aux allergies déclenchées par un médicament dans une grande population. Une étude a montré que 23% des individus sont allergiques. On choisit au hasard un échantillon de 18 personnes. Soit *X* le nombre aléatoire de personnes allergiques.

- 1. Quelle loi la variable *X* suit-elle ? Donner son espérance, sa variance et son écart type.
- 2. Calculer la probabilité : $\mathbb{P}(3 \le X \le 7)$.

Corrigé

Exercice 2.

On sait par expérience qu'une certaine opération chirurgicale a 85% de chances de réussir. On s'apprête à réaliser l'opération sur 20 patients. Soit *X* la variable aléatoire égale au nombre de réussites de l'opération sur les 20 tentatives.

- 1. Quel modèle proposez-vous pour X ? (préciser la loi de probabilité de X.)
- 2. Donner l'espérance, la variance et l'écart type de X.
- 3. Calculer la probabilité d'avoir au moins 15 réussites.
- 4. Trouver toutes les valeurs de k qui vérifient : $\mathbb{P}(X \ge k) \le 25\%$.

Corrigé

Exercice 3. On examine successivement les souris dans une population à la recherche d'un caractère génétique particulier C. Pour chaque souris, on suppose que la probabilité d'avoir ce caractère est de 15%. On note X le nombre de souris à examiner pour observer la première fois le caractère C.

- 1. Quelle est la loi de X ? Calculer $\mathbb{E}(X)$, $\mathbb{V}(X)$ et $\sigma(X)$.
- 2. Calculer les probabilités $\mathbb{P}(X=1)$, $\mathbb{P}(X\leq 6)$, $\mathbb{P}(X\geq 15)$.
- 3. Calculer $\mathbb{P}(X \leq n)$ pour $n \geq 1$. Calculer n minimum pour que $\mathbb{P}(X \leq n) \geq 95\%$.

Corrigé

Exercice 4. Un liquide contient $9.3.10^5$ bactéries par litre. On prélève un échantillon de $1 mm^3$ de ce liquide. Chaque bactérie a donc une probabilité $p = 10^{-6}$ de se trouver dans l'échantillon (on rappelle : $1l = 10^6 mm^3$).

- 1. Déterminer le nombre moyen m de bactéries par mm^3 .
- 2. On note X le nombre aléatoire de bactéries dans l'échantillon. X suit une loi de Poisson de moyenne M. Calculer les probabilités $\mathbb{P}(X=1)$, $\mathbb{P}(X\leq 2)$ et $\mathbb{P}(X\geq 4)$.

Corrigé

Exercice 5.

La prévalence du daltonisme chez les femmes est de 0,4%. Sur un échantillon de 800 femmes, on note X le nombre aléatoire de femmes daltoniennes.

- 1. Justifier que *X* suit une loi binomiale et préciser ses paramètres.
- 2. On peut approcher la loi de X par une loi de Poisson. Pourquoi ? Laquelle ?
- 3. Calculer la probabilité d'avoir au maximum 5 femmes atteintes de daltonisme.

Corrigé

Exercice 6.

La mucoviscidose est une maladie héréditaire récessive qui se caractérise par la présence d'un allèle m au lieu d'un allèle M. Les personnes atteintes sont de génotype mm. Les personnes hétérozygotes sont de génotype Mm. Des études ont montré que 1 personne sur 1600 est atteinte de la mucoviscidose et 1 personne sur 20 est hétérozygote.

- 1. On choisit au hasard (avec remise) un échantillon de 4000 individus. On note X le nombre aléatoire de personnes atteintes de mucoviscidose.
 - a. Justifier que X suit une loi binomiale et préciser ses paramètres. Préciser $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
 - b. On peut approcher la loi de *X* par une loi de Poisson. Pourquoi ? Laquelle ?
 - c. Calculer la probabilité d'avoir au minimum 6 personnes atteintes de mucoviscidose.
- 2. On choisit les unes après les autres des personnes jusqu'à découvrir la première fois un hétérozygote. On note Y le nombre aléatoire de tirages nécessaires.
 - a. Quelle est la loi de Y? Préciser son espérance, sa variance, son écart type.

- b. Calculer $\mathbb{P}(Y \ge 40)$.
- c. Quel est le nombre minimal n de tirages à prévoir pour avoir $\mathbb{P}(Y \le n) > 99\%$?

Corrigé

Exercice 7. En France, environ 80% des enfants de moins de deux ans sont vaccinés contre la rougeole (vaccin ROR). Pour un échantillon de 20 enfants de moins de deux ans, on note *X* le nombre aléatoire d'enfants qui sont vaccinés.

- 1. Quelle est la loi de X? Calculer son espérance, sa variance et son écart type.
- 2. Calculer $\mathbb{P}(14 \le X \le 17)$.
- 3. Déterminer toutes les valeurs de k telles que $\mathbb{P}(X \ge k) < 25\%$.
- 4. Déterminer toutes les valeurs de k telles que $\mathbb{P}(X \le k) < 5\%$.

Corrigé

Corrigé exercice 1. On note p=23% et q=1-p=77%. La variable X est le nombre aléatoire de personnes allergiques pour n=18 personnes prélevées au hasard dans la population concernée.

1. *X* suit une loi binomiale : $X \sim \mathcal{B}(n; p) = \mathcal{B}(18; 0,23)$.

$$\mathbb{E}(X) = np = 4.14$$
 $\mathbb{V}(X) = npq = 3.1878$ $\sigma(X) = \sqrt{npq} \simeq 1.785$

2. Pour $0 \le k \le 18$, on a : $\mathbb{P}(X = k) = \binom{18}{k} p^k q^{18-k}$

k	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbb{P}(X=k)$	0,905%	4,868%	12,359%	19,689%	22,055%	18,446%	11,938%	6,113%	2,511%	0,833%	0,224%	0,049%	0,008%
$\mathbb{P}(X \le k)$	0,905%	5,773%	18,133%	37,822%	59,877%	78,323%	90,261%	96,374%	98,884%	99,718%	99,942%	99,990%	99,999%

$$\mathbb{P}(3 \le X \le 7) = \mathbb{P}(X \le 7) - \mathbb{P}(X \le 2) \simeq (96,374 - 18,133)\% \simeq 78,24\%$$

Énoncé

Corrigé exercice 2.

1. Tirage avec remise : $X \sim \mathcal{B}(20; 0.85)$.

2. $\mathbb{E}(X) = 20 \times 0.85 = 17$ $\mathbb{V}(X) = 20 \times 0.85 \times 0.15 = 2.55$ $\sigma(X) = \sqrt{2.55} \approx 1.597$.

3. $\mathbb{P}(X \ge 15) = 93,27\%$

4. $k \ge 19$.

k	15	16	17	18	19	20
$\mathbb{P}(X=k)$	10,28%	18,21%	24,28%	22,93%	13,68%	3,88%
$\mathbb{P}(X \ge k)$	93,27%	82,98%	64,77%	40,49%	17,56%	3,88%

<u>Énoncé</u>

Corrigé exercice 3.

1. C'est un temps d'attente de premier succès (loi géométrique de paramètre p=0.15) :

$$X \sim \mathcal{G}(15\%)$$
 (pour $k \in \mathbb{N}^*$ $\mathbb{P}(X = k) = pq^{k-1}$ où $q = 1 - p = 0.85$)
 $\mathbb{E}(X) = \frac{1}{p} = 6,667$ $\mathbb{V}(X) = \frac{q}{p^2} = 37,778$ $\sigma(X) = \frac{\sqrt{q}}{p} = 6,146$.

2. $\mathbb{P}(X = 1) = p = 15\%$

$$\mathbb{P}(X \le 6) = p(1+q+q^2+\dots+q^5) = p\frac{1-q^6}{1-q} = 1 - q^6 = 1 - (0.85)^6 = 62,29\%$$

$$\mathbb{P}(X \ge 15) = 1 - \mathbb{P}(X \le 14) = 1 - p(1+q+q^2+\dots+q^{13}) = 1 - p\frac{1-q^{14}}{1-q} = q^{14} = 10,28\%$$

3. $\mathbb{P}(X \le n) = p(1 + q + q^2 + \dots + q^{n-1}) = p \frac{1-q^n}{1-q} = 1 - q^n = 1 - (0.85)^n$

$$1 - (0.85)^n \ge 95\% \Leftrightarrow (0.85)^n \le 0.05 \Leftrightarrow n \ln(0.85) \le \ln(0.05) < 0 \Leftrightarrow n \ge \frac{\ln(0.05)}{\ln(0.85)} = 18.4$$

Il faut donc prendre $n \ge 19$.

Énoncé

Corrigé exercice 4.

1.
$$m = np = 9,3.10^5 \times 10^{-6} = 0,93.$$

2.
$$X \sim \mathcal{P}(0,93)$$
 : pour $k \in \mathbb{N}$ $\mathbb{P}(X = k) = e^{-m} \frac{m^k}{k!} = e^{-0.93} \frac{0.93^k}{k!}$.

Remarque : on peut interpréter X comme suivant une loi binomiale de taille $n=9,3.10^5$ et de paramètre $p=10^{-6}~q$ ue l'on approxime par une loi de Poisson : $X \sim \mathcal{B}(9,3.10^5;10^{-6}) \simeq \mathcal{P}(0,93)$

k	0	1	2	3	4	5	6	7	8
$\mathbb{P}(X=k)$	39,46%	36,69%	17,06%	5,29%	1,23%	0,23%	0,04%	0,00%	0,00%
$\mathbb{P}(X \le k)$	39,46%	76,15%	93,21%	98,50%	99,73%	99,96%	99,99%	100,00%	100,00%

$$\mathbb{P}(X=1) = 36,69\%$$
, $\mathbb{P}(X \le 2) = 93,21\%$ et $\mathbb{P}(X \ge 4) = 1 - \mathbb{P}(X \le 3) = 100\% - 98,5\% = 1,5\%$.

Corrigé exercice 5.

1. On a un tirage sans remise mais dans une grande population.

On peut utiliser une loi binomiale $X \sim \mathcal{B}(800; 0.4\%)$.

2. n = 800 > 30 p = 0.4% < 10% np = 3.2 < 5 donc $\mathcal{B}(800; 0.4\%) \simeq \mathcal{P}(3.2).$

3.	$\mathbb{P}($	X	≤	5)	=	89	,46%

k	0	1	2	3	4	5
$\mathbb{P}(X=k)$	4,08%	13,04%	20,87%	22,26%	17,81%	11,40%
$\mathbb{P}(X \le k)$	4,08%	17,12%	37,99%	60,25%	78,06%	89,46%

<u>Énoncé</u>

Corrigé exercice 6.

1. C'est une situation de tirages de n = 4000 personnes avec remise (ou dans une grande population), avec une probabilité $p_1 = \frac{1}{1600}$ pour chaque personne d'être atteinte de mucoviscidose.

a. Ainsi
$$X \sim \mathcal{B}\left(4000; \frac{1}{1600}\right)$$
 et $\mathbb{E}(X) = \frac{4000}{1600} = 2,5$ $\mathbb{V}(X) = 2,4984$ b. Comme $np_1 = \mathbb{E}(X) = 2,5 < 5$ et $p_1 = \frac{1}{1600} < 0,1$, il est légitime d'approximer :

$$X \sim \mathcal{B}\left(5000; \frac{1}{1600}\right) \simeq \mathcal{P}(2,5)$$

k	0	1	2	3	4	5	6	7	8
$\mathbb{P}(X=k)$	8,21%	20,52%	25,65%	21,38%	13,36%	6,68%	2,78%	0,99%	0,31%
$\mathbb{P}(X \le k)$	8,21%	28,73%	54,38%	75,76%	89,12%	95,80%	98,58%	99,58%	99,89%

- c. $\mathbb{P}(X > 6) = 1 \mathbb{P}(X < 5) = 4.2\%$
- 2. On est dans le cas du temps d'attente (discret) du premier hétérozygote. On a une probabilité $p_2 = \frac{1}{20}$ qu'une personne soit hétérozygote et $q_2=1-p_2=rac{19}{20}\,{\rm qu'elle}$ ne le soit pas.

a. Ainsi
$$Y \sim \mathcal{G}\left(\frac{1}{20}\right) \ \left(\mathbb{P}(Y=k) = p_2 q_2^{k-1} \ \text{pour} \ k \in \mathbb{N}^*\right) \text{ et}$$

$$\mathbb{E}(Y) = \frac{1}{p_2} = 20 \qquad \mathbb{V}(Y) = q_2 \frac{1}{p_2^2} = \frac{19}{20} \times 20^2 = 380 \qquad \sigma(Y) = 19,49$$

b.
$$\mathbb{P}(Y \ge 40) = q_2^{39} = \left(\frac{19}{20}\right)^{39} \approx 13,521\%$$

c.
$$\mathbb{P}(Y \le n) = 1 - q_2^n \ge 99\% \Leftrightarrow n \ln\left(\frac{19}{20}\right) \le \ln\left(\frac{1}{100}\right) \Leftrightarrow n \ge \frac{\ln(100)}{\ln\left(\frac{20}{19}\right)} \simeq 89.8$$

donc la valeur minimale de n est 90.

Énoncé

Corrigé exercice 7.

1. C'est une situation de tirages de n=20 enfants sans remise mais dans une grande population, avec une probabilité p = 80% pour chaque enfant d'être vacciné.

Ainsi $X \sim \mathcal{B}(20; 0.8)$ et $\mathbb{E}(X) = 20 \times 0.8 = 16$ $\mathbb{V}(X) = 3.2$ $\sigma(X) = 1.789$.

1	k	8	9	10	11	12	13	14	15	16	17	18	19	20
IF	$\mathcal{D}(X=k)$	0,01%	0,05%	0,20%	0,74%	2,22%	5,45%	10,91%	17,46%	21,82%	20,54%	13,69%	5,76%	1,15%
IF	$\mathbb{P}(X \leq k)$	0,01%	0,06%	0,26%	1,00%	3,21%	8,67%	19,58%	37,04%	58,86%	79,39%	93,08%	98,85%	100,00%

- 2. $\mathbb{P}(14 \le X \le 17) = 10.91\% + 17.46\% + 21.82\% + 20.54\% = 70.72\%$
- 3. $k \ge 18$.
- 4. k < 12.

Énoncé