7.2.1.1. Считывание данных

```
In [1]: # Установка пакетов:
#using Pkg
#for p in ["CSV", "DataFrames", "RDatasets", "FileIO", "DataArrays"]
# Pkg.add(p)
#end

In [2]: using CSV, DataFrames, DelimitedFiles

In [3]: #P = download("https://raw.githubusercontent.com/nassarhuda/easy_data/master/progr

In [4]: # Считывание данных и их запись в структуру:
P = CSV.File("programminglanguages.csv") |> DataFrame
```

	year	language
	Int64	String
1	1951	Regional Assembly Language
2	1952	Autocode
3	1954	IPL
4	1955	FLOW-MATIC
5	1957	FORTRAN
6	1957	COMTRAN
7	1958	LISP
8	1958	ALGOL 58
9	1959	FACT
10	1959	COBOL
11	1959	RPG
12	1962	APL
13	1962	Simula
14	1962	SNOBOL
15	1963	CPL
16	1964	Speakeasy
17	1964	BASIC
18	1964	PL/I
19	1966	JOSS
20	1967	BCPL
21	1968	Logo
22	1969	В
23	1970	Pascal
24	1970	Forth
25	1972	C
26	1972	Smalltalk
27	1972	Prolog
28	1973	ML
29	1975	Scheme
30	1978	SQL
:	:	i

In [5]:

Функция определения по названию языка программирования года его создания:
function language_created_year(P,language::String)
loc = findfirst(P[:,2].==language)

```
return P[loc,1]
          end
         language_created_year (generic function with 1 method)
Out[5]:
In [6]:
          # Пример вызова функции и определение даты создания языка Python:
          language_created_year(P, "Python")
         1991
Out[6]:
 In [7]:
          # Пример вызова функции и определение даты создания языка Julia:
          language created year(P,"Julia")
         2012
Out[7]:
In [8]:
          #В следующем примере при вызове функции, в качестве аргумента которой указано
          #слово julia, написанное со строчной буквы:
          language created year(P, "julia")
          #поэтому выходит ошибка
         MethodError: no method matching getindex(::DataFrame, ::Nothing, ::Int64)
         Closest candidates are:
           getindex(::DataFrame, !Matched::Colon, ::Union{AbstractString, Signed, Symbol, U
         nsigned}) at C:\Users\Admin\.julia\packages\DataFrames\GtZ11\src\dataframe\datafra
         me.jl:420
           getindex(::DataFrame, !Matched::typeof(!), ::Union{Signed, Unsigned}) at C:\User
         s\Admin\.julia\packages\DataFrames\GtZ1l\src\dataframe\dataframe.jl:426
           getindex(::DataFrame, !Matched::Integer, ::Union{Signed, Unsigned}) at C:\Users
         \Admin\.julia\packages\DataFrames\GtZ11\src\dataframe\dataframe.j1:383
            . . .
         Stacktrace:
          [1] language_created_year(::DataFrame, ::String) at .\In[5]:4
          [2] top-level scope at In[8]:3
          [3] include_string(::Function, ::Module, ::String, ::String) at .\loading.jl:1091
          [4] execute_code(::String, ::String) at C:\Users\Admin\.julia\packages\IJulia\rWZ
         9e\src\execute request.jl:27
          [5] execute request(::ZMQ.Socket, :::Julia.Msg) at C:\Users\Admin\.julia\packages
         \IJulia\rWZ9e\src\execute_request.jl:86
          [6] #invokelatest#1 at .\essentials.jl:710 [inlined]
          [7] invokelatest at .\essentials.jl:709 [inlined]
          [8] eventloop(::ZMQ.Socket) at C:\Users\Admin\.julia\packages\IJulia\rWZ9e\src\ev
         entloop.jl:8
          [9] (::IJulia.var"#15#18")() at .\task.jl:356
 In [9]:
          # Функция определения по названию языка программирования
          # года его создания (без учёта регистра):
          function language_created_year_v2(P,language::String)
              loc = findfirst(lowercase.(P[:,2]).==lowercase.(language))
              return P[loc,1]
          end
          language_created_year_v2(P,"julia")
         2012
Out[9]:
In [10]:
          # Пример вызова функции и определение даты создания языка julia:
          language created year v2(P, "julia")
```

```
2012
Out[10]:
In [11]:
          # Построчное считывание данных с указанием разделителя:
          Tx = readdlm("programminglanguages.csv", ',')
         74×2 Array{Any,2}:
Out[11]:
              "year" "language"
                      "Regional Assembly Language"
          1951
                       "Autocode"
          1952
          1954
                      "IPL"
                       "FLOW-MATIC"
          1955
                       "FORTRAN"
          1957
                       "COMTRAN"
          1957
                       "LISP"
          1958
                       "ALGOL 58"
          1958
                       "FACT"
          1959
                       "COBOL"
          1959
                       "RPG"
          1959
                       "APL"
          1962
                       "Scala"
           2003
                       "F#"
           2005
                       "PowerShell"
          2006
           2007
                       "Clojure"
                       "Go"
          2009
                       "Rust"
           2010
                       "Dart"
          2011
                       "Kotlin"
          2011
                       "Red"
          2011
          2011
                       "Elixir"
                       "Julia"
          2012
                       "Swift"
           2014
         7.2.1.2. Запись данных в файл
In [12]:
          # Запись данных в CSV-файл:
          CSV.write("programming_languages_data2.csv", P)
          "programming_languages_data2.csv"
Out[12]:
In [13]:
          # Пример записи данных в текстовый файл с разделителем ',':
          writedlm("programming_languages_data.txt", Tx, ',')
In [14]:
          # Пример записи данных в текстовый файл с разделителем '-':
          writedlm("programming_languages_data2.txt", Tx, '-')
In [15]:
          # Построчное считывание данных с указанием разделителя:
          P_new_delim = readdlm("programming_languages_data2.txt", '-')
```

```
Out[15]: 74×2 Array{Any,2}:
               "year" "language"
                       "Regional Assembly Language"
                       "Autocode"
          1952
                       "IPL"
           1954
          1955
                       "FLOW-MATIC"
          1957
                       "FORTRAN"
                      "COMTRAN"
          1957
                      "LISP"
          1958
                      "ALGOL 58"
          1958
                      "FACT"
          1959
          1959
                       "COBOL"
                       "RPG"
          1959
                       "APL"
          1962
                       "Scala"
           2003
                       "F#"
           2005
                       "PowerShell"
          2006
                       "Clojure"
          2007
                      "Go"
          2009
                      "Rust"
          2010
                      "Dart"
          2011
                      "Kotlin"
          2011
          2011
                      "Red"
                       "Elixir"
          2011
                       "Julia"
           2012
                       "Swift"
           2014
         7.2.1.3. Словари
In [16]:
          # Инициализация словаря:
          dict = Dict{Integer, Vector{String}}()
         Dict{Integer,Array{String,1}}()
Out[16]:
In [17]:
          # Инициализация словаря:
          dict2 = Dict()
         Dict{Any,Any}()
Out[17]:
In [18]:
          # Заполнение словаря данными:
          for i = 1:size(P,1)
              year,lang = P[i,:]
               if year in keys(dict)
                   dict[year] = push!(dict[year],lang)
               else
                   dict[year] = [lang]
               end
          end
In [19]:
          # Пример определения в словаре языков программирования, созданных в 2003 году:
          dict[2003]
          2-element Array{String,1}:
Out[19]:
          "Groovy"
           "Scala"
         7.2.1.4. DataFrames
```

```
In [20]: # Подгружаем пакет DataFrames:
using DataFrames

In [21]: # Задаём переменную со структурой DataFrame:
df = DataFrame(year = P[:,1], language = P[:,2])
```

	year	language
	Int64	String
1	1951	Regional Assembly Language
2	1952	Autocode
3	1954	IPL
4	1955	FLOW-MATIC
5	1957	FORTRAN
6	1957	COMTRAN
7	1958	LISP
8	1958	ALGOL 58
9	1959	FACT
10	1959	COBOL
11	1959	RPG
12	1962	APL
13	1962	Simula
14	1962	SNOBOL
15	1963	CPL
16	1964	Speakeasy
17	1964	BASIC
18	1964	PL/I
19	1966	JOSS
20	1967	BCPL
21	1968	Logo
22	1969	В
23	1970	Pascal
24	1970	Forth
25	1972	С
26	1972	Smalltalk
27	1972	Prolog
28	1973	ML
29	1975	Scheme
30	1978	SQL
:	:	:

```
Out[22]: 73-element Array{Int64,1}:
          1951
          1952
          1954
          1955
          1957
          1957
          1958
          1958
          1959
          1959
          1959
          1962
          1962
          2003
          2005
          2006
          2007
          2009
          2010
          2011
          2011
          2011
          2011
          2012
          2014
In [23]:
          # Получение статистических сведений о фрейме:
          describe(df)
Out[23]: 2 rows × 8 columns
```

	variable	mean	min	median	max	nunique	nmissing	eltype
	Symbol	Union	Any	Union	Any	Union	Nothing	DataType
1	year	1982.99	1951	1986.0	2014			Int64
2	language		ALGOL 58		dBase III	73		String

7.2.1.5. RDatasets

```
In [24]:
          # Подгружаем пакет RDatasets:
          using RDatasets
In [25]:
          # Задаём структуру данных в виде набора данных:
          iris = dataset("datasets", "iris")
```

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
	Float64	Float64	Float64	Float64	Cat
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa
17	5.4	3.9	1.3	0.4	setosa
18	5.1	3.5	1.4	0.3	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa
22	5.1	3.7	1.5	0.4	setosa
23	4.6	3.6	1.0	0.2	setosa
24	5.1	3.3	1.7	0.5	setosa
25	4.8	3.4	1.9	0.2	setosa
26	5.0	3.0	1.6	0.2	setosa
27	5.0	3.4	1.6	0.4	setosa
28	5.2	3.5	1.5	0.2	setosa
29	5.2	3.4	1.4	0.2	setosa
30	4.7	3.2	1.6	0.2	setosa
:	÷	:	÷	:	:

```
Out[26]: DataFrame
In [27]:
           #Пакет RDatasets также предоставляет возможность с помощью description получить
           #основные статистические сведения о каждом столбце в наборе данных:
           describe(iris)
Out[27]: 5 rows × 8 columns
                 variable
                                         median
                            mean
                                    min
                                                     max nunique
                                                                    nmissing
                                                                                                eltype
                 Symbol Union...
                                    Any Union...
                                                      Any
                                                           Union...
                                                                    Nothing
                                                                                              DataType
          1 SepalLength
                          5.84333
                                     4.3
                                              5.8
                                                      7.9
                                                                                                Float6₄
              SepalWidth
                          3.05733
                                     2.0
                                              3.0
                                                      4.4
                                                                                                Float64
                                                      6.9
          3
              PetalLength
                            3.758
                                     1.0
                                             4.35
                                                                                                Float6₄
               PetalWidth
                          1.19933
                                     0.1
                                              1.3
                                                      2.5
                                                                                                Float64
                                                                              CategoricalValue{String,UInt8
          5
                 Species
                                                  virginica
                                                                 3
                                  setosa
          7.2.1.6. Работа с переменными отсутствующего типа (Missing Values)
In [28]:
           # Отсутствующий тип:
           a = missing
           typeof(a)
          Missing
Out[28]:
In [29]:
           # Пример операции с переменной отсутствующего типа:
          missing
Out[29]:
In [30]:
           # Определение перечня продуктов:
           foods = ["apple", "cucumber", "tomato", "banana"]
          4-element Array{String,1}:
Out[30]:
            "apple"
            "cucumber"
           "tomato"
            "banana"
In [31]:
           # Определение калорий:
           calories = [missing,47,22,105]
          4-element Array{Union{Missing, Int64},1}:
Out[31]:
               missing
            47
            22
            105
In [32]:
```

Определение типа переменной:

typeof(calories)

```
Out[32]: Array{Union{Missing, Int64},1}
In [33]:
           # Подключаем nakem Statistics:
           using Statistics
In [34]:
           # Определение среднего значения:
           mean(calories)
          missing
Out[34]:
In [35]:
           # Определение среднего значения без значений с отсутствующим типом:
           mean(skipmissing(calories))
          58.0
Out[35]:
In [36]:
           # Задание сведений о ценах:
           prices = [0.85, 1.6, 0.8, 0.6]
          4-element Array{Float64,1}:
Out[36]:
           0.85
           1.6
           0.8
           0.6
In [37]:
           # Формирование данных о калориях:
           dataframe_calories = DataFrame(item=foods,calories=calories)
Out[37]: 4 rows × 2 columns
                 item calories
               String
                       Int64?
                apple
                       missing
            cucumber
                           47
          3
               tomato
                           22
                          105
               banana
In [38]:
           # Формирование данных о ценах:
           dataframe_prices = DataFrame(item=foods,price=prices)
Out[38]: 4 rows × 2 columns
                 item
                         price
                String Float64
                apple
                         0.85
             cucumber
                          1.6
          3
               tomato
                          8.0
```

banana

0.6

```
In [39]:
           # Объединение данных о калориях и ценах:
          DF = join(dataframe_calories,dataframe_prices,on=:item)
Out[39]: 4 rows × 3 columns
                 item calories
                                price
               String
                       Int64? Float64
          1
                                 0.85
                apple
                      missing
          2 cucumber
                          47
                                  1.6
                                  8.0
          3
              tomato
                          22
              banana
                          105
                                  0.6
         7.2.1.7. FileIO
In [40]:
           # Подключаем nakem FileIO:
           using FileIO
In [41]:
           julialogo = download("https://avatars0.githubusercontent.com/u/743164?s=200&v=4","
          "julialogo.png"
Out[41]:
In [42]:
           # Подключаем nakem ImageIO:
           import Pkg
           Pkg.add("ImageIO")
             Updating registry at `C:\Users\Admin\.julia\registries\General`
            Resolving package versions...
          No Changes to `C:\Users\Admin\.julia\environments\v1.5\Project.toml`
         No Changes to `C:\Users\Admin\.julia\environments\v1.5\Manifest.toml`
```

In [43]:

Загрузка изображения: X1 = load("julialogo.png")

```
200×200 Array{RGBA{N0f8},2} with eltype ColorTypes.RGBA{FixedPointNumbers.Normed{U
Out[43]:
         Int8,8}}:
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
          RGBA{N0f8}(0.0,0.0,0.0,0.0)
                                           RGBA{N0f8}(0.0,0.0,0.0,0.0)
In [44]:
          # Определение типа и размера данных:
          @show typeof(X1);
          @show size(X1);
         typeof(X1) = Array{ColorTypes.RGBA{FixedPointNumbers.Normed{UInt8,8}},2}
         size(X1) = (200, 200)
 In [ ]:
```