JP2001288233

Publication Title:

NOVEL POLYMER AND COSMETIC USING THE SAME

Abstract:

PROBLEM TO BE SOLVED: To provide a novel copolymer which is prepared by suitably selecting a monomer to be copolymerized with polyethylene glycol and can be used as a thickener, an emulsifier, a film-forming agent, a pigment dispersant, a percutaneous absorption accelerator or the like and provide a cosmetic containing the same.

SOLUTION: A block copolymer containing polyethylene glycol moieties and copolymerized moieties having specific hydrophilic groups, hydrophobia groups, and amphiphatic groups as constitutional units is provided. A cosmetic containing the block copolymer is also provided.

Data supplied from the esp@cenet database - http://ep.espacenet.com

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-288233 (P2001-288233A)

(43)公開日 平成13年10月16日(2001.10.16)

(51) Int.Cl. ⁷	識別記号	F I	テーマコード(参考)
C08F 293/00		C08F 293/00	4 C 0 8 3
A61K 7/00		A 6 1 K 7/00	J 4J026
			R
			N
7/02		7/02	Z
	審査請求	未請求 請求項の数	8 OL (全 32 頁) 最終頁に続く
(21)出願番号	特願2000-105252(P2000-105252)	(71)出願人 0000	
(22)出顧日	平成12年4月6日(2000.4.6)		会社資生堂 都中央区銀座7丁目5番5号
			和之 川県横浜市港北区新羽町1050番地 株 社資生堂第一リサーチセンター内
			勇 川県横浜市港北区新羽町1050番地 株 社資生堂第一リサーチセンター内
		(74)代理人 1000 弁理	98800 士 長谷川 洋子
			最終頁に続く

(54) 【発明の名称】 新規高分子およびこれを用いた化粧料

(57)【要約】

【課題】 ポリエチレングリコール部に共重合させるモノマーを適宜、選択して用いることにより、増粘剤、乳化剤、皮膜剤、顔料分散剤、経皮吸収促進剤等として適用可能な新規共重合体と、これを配合した化粧料を提供する。

【解決手段】 ポリエチレングリコール部と、特定の親 水性基、疎水性基、両親媒性を含む共重合部とを構成単 位として含有するブロック共重合体、およびこれを配合 してなる化粧料。

【特許請求の範囲】

【請求項1】 下記一般式(I)で示される繰返し単位を含むポリエチレングリコール部と、下記一般式(II)

で示される構造を有する共重合部とを構成単位として含有するブロック共重合体。

【化1】

$$- \stackrel{R^{1}}{\overset{1}{\underset{R^{2}}{\leftarrow}}} (CH_{2})_{q} - A - O + C_{2}H_{4}O + A - CH_{2}O + CH_$$

【化2】

一般式(I)、(II)中、各符号は以下の意味を示す。 R¹: それぞれ独立に、水素原子、または炭素原子数1~6のアルキル基;

R²: それぞれ独立に、炭素原子数1~6のアルキル基、またはシアノ基;

A:CO、NCO、またはCH2;

n:1~10,000の数;

q:1~6の数;

R3:水素原子、または炭素原子数1~6のアルキル基;

B:CO、NCO、または存在しない;

D:O、N、NH、または存在しない;

J-L: スペーサーとして存在していてもしていなくてもよく、Jは炭素原子数 $1\sim22$ のアルキル基、LはNH、O、COO、CONHまたはNHCOO; m: 0または1;

p:1~10,000の数;

E:水素原子、フェニル基、フッ素若しくは水酸基を含有していてもよい炭素原子数 $1\sim22$ の直鎖、分岐鎖若しくは環状アルキル基、 $-NH-R^7$ 、 $-NR^7R^8$ (ただし R^7 、 R^8 はそれぞれ独立に炭素原子数 $1\sim22$ のアルキル基)、置換または非置換の炭素原子数 $6\sim12$ の芳香族炭化水素基、下記化3

【化3】

$$-0-(CH_2)$$
 $=$ $\begin{cases} R^{10} \\ Si - R^{10} \\ R^{10} \end{cases}$

〔式中、 R^{10} はそれぞれ独立に、フッ素を含有していてもよい炭素原子数 $1\sim6$ のアルキル基、フェニル基、または $-O-Si(R^{11})_3$ (ただし R^{11} は炭素原子数 $1\sim6$ のアルキル基またはフェニル基)、 $St1\sim6$ の数。ただし、少なくとも1つの R^{10} が-O-Si

 $(R^{11})_3$ を示すものとする]に示すポリシロキサン含有基、下記化4

【化4】

共重合体。

$$-O - \left(CH_{2}\right)_{u} - Si_{u}^{R^{12}} = \begin{bmatrix} R^{12} & R^{12} \\ I & I \\ I & I \end{bmatrix} Z$$

$$R^{12} - Si_{1} - O - Si_{2} - O - Si_{2} - O - Si_{3} - O - Si_{4} - O - Si_{4} - O - Si_{5} - O - Si_{5$$

(式中、R12はそれぞれ独立にフッ素を含有していても よい炭素原子数1~6のアルキル基またはフェニル基、 Zは炭素原子数1~6のアルキル基または-(CH2) u -O-、uは1~6の数、vは5~1,000の数) に 示すポリシロキサン含有基、コレステリル基、ノルボル ニル基、ボルニル基、アダマンチル基、炭素原子数6~ 12の環状アルキル基、炭素原子数3~6の分岐鎖状ア ルキル基、ビタミンD誘導体またはその類縁体、炭素原 子数6~22の鎖状不飽和炭化水素基、ε-カプロラク タム誘導体またはその類縁体、3級アミン、ポリエチレ ングリコール、ポリプロピレングリコール、スルホン酸 基 (-SO₃H)、アミド基 (-CONH₂)、4級アン モニウム基 [-N(R)₃+(R: それぞれ独立に水素原 子または炭素原子数1~6のアルキル基)〕、カルボキ シベタイン (R'(R')₂N+CH₂COO-(R'、 R'': それぞれ独立に炭素原子数1~6のアルキル 基)〕、スルホベタイン、カルボキシル基(-COO H)、リン酸基 [-O-PO(OH)₂]、水酸基(-OH)、ビニル基を有する窒素含有複素環基の中から選 ばれる1種または2種以上の基(ただし、DがNを示す

場合は、上記基の中から2種以上)。 【請求項2】 ポリエチレングリコール部がアゾ基含有 ポリオキシエチレン化合物由来である、請求項1記載の

【請求項3】 増粘剤である、請求項1または2記載の 共重合体。

【請求項4】 乳化剤である、請求項1または2記載の 共重合体。

【請求項5】 皮膜剤である、請求項1または2記載の 共重合体。

【請求項6】 顔料分散剤である、請求項1または2記 載の共重合体。

【請求項7】 経皮吸収促進剤である、請求項1または 2記載の共重合体。

【請求項8】 請求項1~7のいずれか1項に記載の共

重合体を含有する化粧料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はポリエチレングリコール部を主鎖に有し、他共重合部として特定の基を含む親水性、疎水性、両親媒性のモノマーを構成成分として含む新規なブロック共重合体、およびこれを配合する化粧料に関する。さらに詳しくは、増粘剤、乳化剤、皮膜剤、顔料分散剤、経皮吸収促進剤等として適用可能な新規なブロック共重合体、およびこれを配合する化粧料に関する。

[0002]

【従来の技術】従来、化粧料に用いられてきたポリマー としては多糖類、アクリル系ポリマー、シリコン系ポリ マー、ポリペプチド、ポリウレタン、ポリエーテル等が おもなものである。これらのうち、天燃物由来のものは 直鎖状または分岐状、合成品はおもに直鎖状(ランダム 型)、架橋型、グラフト型に分類される。

【0003】しかしながら、ブロック型のボリマーは天然物にはみられず、また合成品においてもその製造が困難なため、これまであまり利用されていない。

[0004]

【発明が解決しようとする課題】本発明はポリエチレン グリコールを主鎖に有する新規なブロック共重合体、お よびこれを配合した新しい機能を有する化粧料を提供す ることを目的とする。

[0005]

【課題を解決するための手段】上記課題を解決するために本発明は、下記一般式(I)で示される繰返し単位を含むポリエチレングリコール部と、下記一般式(II)で示される構造を有する共重合部とを構成単位として含有するブロック共重合体を提供するものである。

[0006]

【化5】

$$- \stackrel{R'}{\underset{|}{C}} - (CH_2)_{q} - A - O + C_2H_4O + A - (CH_2)_{q} \stackrel{R'}{\underset{|}{C}} - (CH_2)_{q} \stackrel{R'}{\underset{|}{C}} - (I)$$

【0007】 【化6】

【0008】一般式(I)、(II)中、各符号は以下の意味を示す。

【0009】R¹: それぞれ独立に、水素原子、または 炭素原子数1~6のアルキル基:

 R^2 : それぞれ独立に、炭素原子数 $1\sim6$ のアルキル基、またはシアノ基:

A: CO、NCO、またはCH2;

n:1~10,000の数;

q:1~6の数;

R3:水素原子、または炭素原子数1~6のアルキル基;

B:CO、NCO、または存在しない;

D:O、N、NH、または存在しない;

J-L:スペーサーとして存在していてもしていなくてもよく、Jは炭素原子数 $1\sim22$ のアルキル基、LはN H、O、COO、CONHまたはNHCOO:

m: 0または1;

p:1~10,000の数;

E: 水素原子、フェニル基、フッ素若しくは水酸基を含有していてもよい炭素原子数 $1\sim22$ の直鎖、分岐鎖若しくは環状アルキル基、 $-NH-R^7$ 、 $-NR^7R^8$ (ただし R^7 、 R^8 はそれぞれ独立に炭素原子数 $1\sim22$ のアルキル基)、置換または非置換の炭素原子数 $6\sim12$ の芳香族炭化水素基、下記化7

[0010]

【化7】

$$-0 + CH_2 + S_1^{10}$$

【0011】〔式中、 R^{10} はそれぞれ独立に、フッ素を含有していてもよい炭素原子数 $1\sim6$ のアルキル基、フェニル基、または $-O-Si(R^{11})_3$ (ただし R^{11} は炭素原子数 $1\sim6$ のアルキル基またはフェニル基)、 $Si(R^{11})_3$ を示すものとする〕に示すポリシロキサン含有基、下記化8

[0012]

【化8】

【0013】(式中、R¹²はそれぞれ独立にフッ素を含有していてもよい炭素原子数1~6のアルキル基またはフェニル基、Zは炭素原子数1~6のアルキル基または

- (CH₂) "-O-、uは1~6の数、vは5~1,0 00の数) に示すポリシロキサン含有基、コレステリル 基、ノルボルニル基、ボルニル基、アダマンチル基、炭 素原子数6~12の環状アルキル基、炭素原子数3~6 の分岐鎖状アルキル基、ビタミンD誘導体またはその類 緑体、炭素原子数6~22の鎖状不飽和炭化水素基、ε ーカプロラクタム誘導体またはその類縁体、3級アミ ン、ポリエチレングリコール、ポリプロピレングリコー ル、スルホン酸基 (-SO₃H)、アミド基 (-CON H_2)、4級アンモニウム基 $(-N(R)_3^+(R: \mathcal{E}_1)$ ぞれ独立に水素原子または炭素原子数1~6のアルキル 基)〕、カルボキシベタイン〔R'(R'')₂ N⁺CH ₂COO-(R'、R'': それぞれ独立に炭素原子数1 ~6のアルキル基)]、スルホベタイン、カルボキシル 基(-COOH)、リン酸基〔-O-PO(O H),)、水酸基(-OH)、ビニル基を有する窒素含

有複素環基の中から選ばれる1種または2種以上の基 (ただし、DがNを示す場合は、上記基の中から2種以上)。

【0014】上記ブロック共重合体は、増粘剤、乳化剤、皮膜剤、顔料分散剤、または経皮吸収促進剤として好適に用いられる。

【0015】また本発明は、上記ブロック共重合体を含有する化粧料を提供するものである。

[0016]

【発明の実施の形態】以下、本発明について詳述する。 【0017】本発明共重合体の一構成成分をなすポリエ チレングリコール部は、下記一般式(I)で示される繰 返し単位を含む。

【0018】 【化9】

$$- \stackrel{R^{1}}{c} - \stackrel{C}{c} + \frac{R^{1}}{c} - \frac{R^{1}}{c} - \frac{R^{1}}{c} - \frac{R^{2}}{c} - \frac{$$

【0019】上記式中、 R^1 はそれぞれ独立に、水素原子、または炭素原子数 $1\sim6$ のアルキル基を示す。 R^1 としてはメチル基が好ましい。

【0020】 R^2 はそれぞれ独立に、炭素原子数 $1\sim6$ のアルキル基、またはシアノ基を示す。 R^2 としてはシアノ基が好ましい。

【0021】AはCO、NCO、またはCH2示す。

【0022】nは1~10,000の数を示し、qは1~6の数を示す。

【0023】本発明共重合体では、ボリエチレングリコール部を構成単位とすることにより、水との親和性がよく、水溶性薬剤との親和性もよいため、これら薬剤成分を効率よく吸収させることができる。なお、油溶性薬剤成分については、共重合部に疎水性部を用いることにより、同様に効率よく吸収させることができる。

【0024】本発明共重合体の他の構成部分である共重合部は、下記一般式 (II) で示される構造を有する。

【0025】

【化10】

【0026】上記式中、R3は水素原子、または炭素原子数1~6のアルキル基を示す。

【0027】BはCO、NCOを示すか、あるいは存在しない。DはO、N、NHを示すか、あるいは存在しない。

【0028】J-Lはスペーサーとして存在していても していなくてもよく、存在する場合、Jは炭素原子数1 ~22のアルキル基を示し、LはNH、O、COO、C ONH、またはNHCOOを示す。

【0029】mは0または1を示し、pは1~10,000の数を示す。

【0030】 Eは、以下に示す各基の中から選ばれる1種または2種以上 (DがNを示す場合は2種以上) を示す。

【0031】水素原子、フェニル基、フッ素若しくは水酸基を含有していてもよい炭素原子数1~22の直鎖、分岐鎖若しくは環状アルキル基、-NH-R⁷、-NR⁷ R⁸(ただしR⁷、R⁸はそれぞれ独立に炭素原子数1~22のアルキル基)、置換または非置換の炭素原子数6~12の芳香族炭化水素基、下記化11

[0032]

【化11】

$$-0+CH_2$$

【0033】〔式中、 R^{10} はそれぞれ独立に、フッ素を含有していてもよい炭素原子数 $1\sim6$ のアルキル基、フェニル基、または $-O-Si(R^{11})_3$ (ただし R^{11} は炭素原子数 $1\sim6$ のアルキル基またはフェニル基)、 $Si(R^{11})_3$ を示すものとする〕に示すポリシロキサ

ン含有基、下記化12 【0034】 【化12】

$$-O - CH_2 - \frac{R^{12}}{U} - \frac{R^{12}}{Si} - \frac{R^{12}}{O - Si} - O - \frac{SI}{I} - O - \frac{I}{I}$$

【0035】(式中、R12はそれぞれ独立にフッ素を含 有していてもよい炭素原子数1~6のアルキル基または フェニル基、Zは炭素原子数1~6のアルキル基または $-(CH_2)_{\parallel}-O-$ 、uは1~6の数、vは5~1,0 00の数) に示すポリシロキサン含有基、コレステリル 基、ノルボルニル基、ボルニル基、アダマンチル基、炭 素原子数6~12の環状アルキル基、炭素原子数3~6 の分岐鎖状アルキル基、ビタミンD誘導体またはその類 緑体、炭素原子数6~22の鎖状不飽和炭化水素基、ε ーカプロラクタム誘導体またはその類縁体、3級アミ ン、ポリエチレングリコール、ポリプロピレングリコー ル、スルホン酸基 $(-SO_3H)$ 、アミド基 (-CON) H_2)、4級アンモニウム基 $[-N(R)_3^+(R: それ)]$ ぞれ独立に水素原子または炭素原子数1~6のアルキル 基)〕、カルボキシベタイン〔R'(R'))2N+CH $_2$ COO-(R'、R'': それぞれ独立に炭素原子数1 ~6のアルキル基)]、スルホベタイン、カルボキシル 基(-COOH)、リン酸基〔-O-PO(O H),〕、水酸基(-OH)、ビニル基を有する窒素含 有複素環基。

【0036】一般式(II)においてEが疎水性を示す場合の共重合部(モノマー)の具体例としては、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ブチル(メタ)アクリレート、メチル(メタ)アクリレート、1H,1

H, 2H, 2H-ヘプタデカフルオロデシル (メタ) アクリレート、N-ステアリル (メタ) アクリルアミド、N-ヘキシル (メタ) アクリルアミド、スチレン等が例示されるが、これら例示に限定されるものでない。

【0037】またEがポリシロキサン含有基を示す場合のモノマーの具体例としては、3-(メタ)アクリロキシプロピルトリス(トリメチルシロキシ)シラン、3-(メタ)アクリロキシプロピルポリジメチルシロキサン等が例示されるが、これら例示に限定されるものでない。

【0038】また、コレステリル基や、ノルボルニル基、ボルニル基、アダマンチル基、εーカプロラクタム誘導体等は嵩高い疎水性基である。

【0039】上記嵩高い疎水性基を含む疎水性部(モノマー)の好適な具体例としては、例えば以下に示す例が挙げられるが、これら例示に限定されるものでないことはもちろんである。

【0040】コレステリル基を含むモノマーとして、例 えば下記化13、14に示すモノマー1、モノマー2が 挙げられる。

[0041]

【化13】

(monomer 1)

【0042】 【化14】

【0043】 ノルボルニル基を含むモノマーとして、例 えば下記化15に示すモノマー3が挙げられる。

[0044]

【化15】

(monomer 3)

【0045】ボルニル基を含むモノマーとして、例えば下記化16、17に示すモノマー4、5が挙げられる。

【0046】 【化16】

(monomer 4)

【0047】 【化17】

A.

(monomer 5)

【0048】アダマンチル基を含むモノマーとして、例 えば下記化18に示すモノマー6が挙げられる。

[0049]

【化18】

(monomer 6)

【0050】炭素原子数6~12の環状アルキル基を含むモノマーとして、例えば下記化19、20、21、22に示すモノマー7、8、9、12が挙げられる。

[0051]

【化19】

(monomer 7)

【0052】 【化20】

(monomer 8)

【0053】 【化21】

(monomer 9)

【0054】 【化22】

(monomer 12)

【0055】炭素原子数3~6の分岐鎖状アルキル基を含むモノマーとして、例えば下記化23に示すモノマー10が挙げられる。

[0056]

【化23】

(monomer 10)

【0057】ビタミンD誘導体またはその類縁体を含む モノマーとして、例えば下記化24に示すモノマー11 が挙げられる。

[0058]

【化24】

【0059】炭素原子数6~22の鎖状不飽和炭化水素基を含むモノマーとして、例えば下記化25に示すモノマー13が挙げられる。なお、炭素原子数6~22の鎖状不飽和炭化水素基は、直鎖、分岐鎖のいずれも含み、「不飽和炭化水素基」としては好ましくは二重結合を有する基が好ましい。

[0060]

【化25】

(monomer 13)

【0061】 ε -カプロラクタム誘導体またはその類縁体を含むモノマーとして、例えば下記化26に示すモノマー14が挙げられる。

[0062]

【化26】

(monomer 14)

【0063】3級アミンを含むモノマーとして、例えば 下記化27に示すモノマー15が挙げられる。

[0064]

【化27】

(monomer 15)

【0065】親水性モノマーとして、例えばスルホン酸基、4級アンモニウム基、リン酸基等の親水性基を有する化合物等が挙げられる。親水性基を有する化合物の具体例としては例えば以下に示すものが挙げられる。

【0066】スルホン酸基を有する化合物として、例えば2-(メタ)アクリルアミド2-メチルプロパンスルホン酸、P-スチレンスルホン酸等が挙げられる。

【0067】アミド基を有する化合物として、例えば (メタ) アクリルアミド、N-イソプロピル (メタ) アクリルアミド、N, N-ジメチル (メタ) アクリルアミド等が挙げられる。

【0068】4級アンモニウム基を有する化合物として、例えば(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N, Nージメチルアミノエチル、塩化(メタ)アクリル酸トリメチルアンモニウムエチル等が挙げられる。

【0069】アミノベタインを有する化合物として、例 えば2-(メタ)アクリロキシエチルジメチルアンモニ ウムα-メチルカルボキシベタイン等が挙げられる。

【0070】カルボキシル基を有する化合物として、例えば(メタ)アクリル酸、無水マレイン酸等が挙げられる。

【0071】リン酸基を有する化合物として、例えば (メタ) アクリル酸リン酸エチル等が挙げられる。

【0072】水酸基を有する化合物として、例えばヒドロキシエチル(メタ)アクリレート、ビニルアルコール、グリセロールモノ(メタ)アクリレート等が挙げられる。

【0073】ビニル基を有する窒素含有複素環基としては、例えばビニルピリジン、2-ビニルピロリドン、ビニルモルホリン等が挙げられる。

【0074】その他、ポリエチレングリコールモノ (メタ) アクリレート、ポリプロピレングリコールモノ (メタ) アクリレート等が挙げられる。

【0075】上記構成の本発明ブロック共重合体は、ポリエチレングリコール部以外の共重合部に含有する官能基に応じて、それぞれ増粘剤、乳化剤、皮膜剤、顔料分散剤、経皮吸収促進剤等として好ましく用いられる。

【0076】[増粘剤]本発明ブロック共重合体を増粘剤として用いる場合、以下の3種の方法に大別して考えることができる。

【0077】(1)共重合体全体を親水性とし、分子同士の絡み合いにより増粘させる水系増粘剤。

【0078】この場合、ボリエチレングリコール部と共 重合させるモノマーとしては、親水性モノマーが好まし く、さらに粘度をより増幅させるためには、カルボキシ ル基、スルホン酸基、リン酸基、アンモニウム基、カル ボキシベタイン、スルホベタイン等の電荷をもったも の、若しくはボリエチレングリコール(メタ)アクリレ ート等のマクロモノマー等を用いるとより効果的であ る。

【0079】(2)共重合体全体を親水性とし、一部に 疎水性基を導入し、疎水性相互作用による会合を利用し た増粘剤。

【0080】この場合、ポリエチレングリコール部と共重合させるモノマーは親水性と疎水性、あるいは疎水性のみである。疎水性モノマーとしては、互いに会合する性質をもつものが好ましく、直鎖状、環状、分岐状アルキル基、芳香族炭化水素基、フッ素含有アルキル基が好適であるが、これにその他の基(例えば、ポリシロキサン含有基、等)を含んでもよい。親水性モノマーは用途に応じてイオン系(例えば(メタ)アクリル酸、2-(メタ)アクリルアミド2-メチルプロパンスルホン酸、等)、ノニオン系のもの(例えば(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、等)を選択できる。

【0081】(3)反対の電荷を有する共重合体を別々に合成し、使用時または配合時に混合してイオンコンプレックスを形成し、増粘させる方法。

【0082】この場合、カルボキシル基、スルホン酸基、リン酸基等マイナス電荷を有する基を共重合させたものと、アミノ基、アンモニウム基等プラス電荷を有する基を共重合させたものを混合し、イオンコンプレックスによるネットワークを形成させて増粘させる方法であるが、上記の官能基以外にその効果を損なわない範囲で他の親水性基を導入することも可能であり、また、疎水性基を導入し、その会合によってより増粘効果をさらに高めることもできる。

【0083】[乳化剤] 本共重合体を乳化剤として用いる場合、ボリエチレングリコール部と共重合させる基として疎水性基が必須成分である。その種類は乳化の目的により選択でき、炭化水素系油分の場合はアルキル基、シリコーン系油分の場合はボリシロキサン含有基、フッ素系油分の場合にはフッ化アルキル基、芳香族系油分の場合には芳香族炭化水素基を含有することが好ましい。しかし必ずしも油分と導入基は上記のとおりに対応する必要はなく、また、数種類の疎水性基を共重合させてもよい。またそれ以外に親水基、上記以外の疎水性基、両親媒性基を含んでもよい。

【0084】 [皮膜剤] 共重合体を皮膜剤として用いる場合、ポリエチレングリコール部と共重合させる基の性

質により皮膜強度、耐水性等を調節することが可能である。

【0085】例えば毛髪のセット樹脂のように皮膜の硬さが重要視される場合、(メタ)アクリル酸メチル、スチレン、カルボキシベタイン、ビニルピロリドンといった硬い性質をもつモノマーを使用することが好ましい。これに加え、使用性の向上を目的として(ポリ)シロキサン含有基やアンモニウム基を導入してもよい。

【0086】口紅やファンデーション、エナメル等への配合を目的とした場合、耐水性を有するアルキル基、フッ素含有アルキル基、ポリシロキサン含有基を有することが好ましい。また目的に応じて上記以外の疎水性基、親水性基、両親媒性基を共重合させることも可能である。

【0087】 [顔料分散剤] 本ブロック共重合体を顔料 分散剤として用いる場合、顔料の性質に応じてポリエチ レングリコール部以外のモノマーを選択できる。

【0088】顔料が親水性の場合、スルホン酸基、カルボキシル基、リン酸基、水酸基、アミド基、アンモニウム基、カルボキシベタイン、スルホベタイン等を有するモノマーを含むことが好ましい。また上記以外の親水性基、および疎水性基、両親媒性基を共重合させてもよい。

【0089】顔料が疎水性の場合、アルキル基、(ボリ)シロキサン含有基等の疎水性基を有するモノマーを含むことが好ましい。また、上記以外の疎水性基および、親水性基、両親媒性基を共重合させてもよい。

【0090】顔料が有機顔料の場合、その構造に応じて イオン性基、芳香族炭化水素基、疎水性基を導入するこ とが好ましい。またその効果を損なわない範囲で他のモ ノマーと共重合させることもできる。

【0091】なお、本発明共重合体を顔料分散剤として 用いる場合、配合し得る顔料としては、一般に化粧料に 用いられ得るものであれば特に限定されるものでない。 具体的には、ポリアミド樹脂粉末(ナイロン粉末)、ポ リエチレン粉末、ポリメタクリル酸メチル粉末、ポリス チレン粉末、スチレンとアクリル酸の共重合体樹脂粉 末、ベンゾグアナミン樹脂粉末、ポリ四フッ化エチレン 粉末、セルロース粉末などの有機粉末、トリメチルシル セスキオキサン粉末などのシリコン粉末の他、各種無機 粉末や金属粉末等が例示される。これら無機粉末等は、 疎水化処理、未処理のものいずれでも用いることがで き、その粉末成分としては、例えばタルク、カリオン、 雲母、絹雲母(セリサイト)、白雲母、金雲母、合成雲 母、紅雲母、黒雲母、リチア雲母、パーミキュライト、 炭酸マグネシウム、炭酸カルシウム、ケイ酸アルミニウ ム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネ シウム、ケイ酸ストロンチウム、タングステン酸金属 塩、マグネシウム、シリカ、ゼオライト、硫酸バリウ ム、焼成硫酸カルシウム(焼セッコウ)、リン酸カルシ

ウム、フッ素アパタイト、ヒドロキシアパタイト、セラ ミックパウダー、金属石鹸(ミリスチン酸亜鉛、パルミ チン酸カルシウム、ステアリン酸アルミニウムなど)、 窒化ホウ素等の無機粉末;二酸化チタン、酸化亜鉛等の 無機白色顔料;酸化鉄(ベンガラ)、チタン酸鉄等の無 機赤色系顔料;ケー酸化鉄等の無機褐色系顔料;黄酸化 鉄、黄土等の無機黄色系顔料;黒酸化鉄、カーボンブラ ック、低次酸化チタン等の無機黒色系顔料;マンゴバイ オレット、バルトバイオレット等の無機紫色系顔料;酸 化クロム、水酸化クロム、チタン酸コバルト等の無機緑 色系顔料;群青、紺青等の無機青色系顔料;酸化チタン コーテッドマイカ、酸化チタンコーテッドオキシ塩化ビ スマス、酸化チタンコーテッドタルク、着色酸化チタン コーテッドマイカ、オキシ塩化ビスマス、魚鱗箔等のパ ール顔料;アルミニウムパウダー、カッパーパウダー等 の金属粉末顔料等が挙げられる。顔料は1種または2種 以上を用いることができる。

【0092】本発明のブロック共重合体を顔料分散剤として用いる場合、特にファンデーション、口紅、頬紅、アイシャドー等のメーキャップ化粧料、スキンケアクリーム、スキンローション、サンスクリーン剤等の皮膚保護化粧料、ネイルエナメル等の爪用化粧料などに好適に用いられ、これら化粧料の使用性を向上させることができる。

【0093】 [経皮吸収促進剤] 本ブロック共重合体を 経皮吸収促進剤として用いる場合、皮膚角層と相互作用 する官能基として長鎖アルキル基(直鎖状、分岐状)、 環状アルキル基、コレステリル基、アダマンチル基、ノ ルボルニル基、ボルニル基、ビタミンDそれぞれの誘導 体、tーブチル基、フッ素含有アルキル基等を有するこ とが好ましい。また上記以外の疎水性基および、親水性 基、両親媒性基を共重合させてもよい。

【0094】本発明のブロック共重合体は、薬剤成分を 効率的かつ持続的に経皮吸収することができる。このよ うな薬剤成分としては水溶性、油溶性、両親媒性のいず れも適用し得る。

【0095】本発明共重合体を経皮吸収促進剤として用いる場合、配合し得る薬剤成分としては、一般に化粧料に用いられ得るものであれば特に限定されるものでない。具体には、例えば、美白剤、保湿剤、抗炎症剤、抗菌剤、ホルモン剤、ビタミン類、各種アミノ酸およびその誘導体や酵素、抗酸化剤、育毛剤などの薬剤が挙げられる。

【0096】美白剤としては、アルブチン等のハイドロキノン誘導体、コウジ酸、L-アスコルビン酸(ビタミンC)およびその誘導体、パントテニールエチルエーテル、トラネキサム酸およびその誘導体、プラセンタエキスや植物抽出物(例えばカミツレエキス等)等の各種抽出物などが例示される。

【0097】 L-アスコルビン酸誘導体としては、例え

ばL-アスコルビン酸モノステアレート、L-アスコル ビン酸モノパルミテート、L-アスコルビン酸モノオレ ート等のL-アスコルビン酸モノアルキルエステル類、 L-アスコルビン酸モノリン酸エステル、L-アスコル ビン酸-2-硫酸エステルなどのL-アスコルビン酸モ ノエステル類; L-アスコルビン酸ジステアレート、L ーアスコルビン酸ジパルミテート、L-アスコルビン酸 ジオレートなどのLーアスコルビン酸ジアルキルエステ ル類;L-アスコルビン酸ジリン酸エステルなどのL-アスコルビン酸ジエステル類; L-アスコルビン酸トリ ステアレート、L-アスコルビン酸トリパルミテート、 L-アスコルビン酸トリオレートなどのL-アスコルビ ン酸トリアルキルエステル類 ; L-アスコルビン酸トリ リン酸エステルなどのアスコルビン酸トリエステル類; L-アスコルビン酸2-グルコシドなどのL-アスコル ビン酸グルコシド類などが挙げられる。L-アスコルビ ン酸およびその誘導体としては、L-アスコルビン酸、 L-アスコルビン酸リン酸エステル、L-アスコルビン 酸-2-硫酸エステル、L-アスコルビン酸2-グルコ シドまたはそれらの塩が挙げられる。

【0098】トラネキサム酸誘導体としては、トラネキ サム酸の二量体 (例えば、塩酸トランス-4-(トラン スーアミノメチルシクロヘキサンカルボニル) アミノメ チルシクロヘキサンカルボン酸、等)、トラネキサム酸 とハイドロキノンのエステル体(例えば、トランスー4 -アミノメチルシクロヘキサンカルボン酸4'-ヒドロ キシフェニルエステル、等)、トラネキサム酸とゲンチ シン酸のエステル体 (例えば、2-(トランス-4-ア ミノメチルシクロヘキシルカルボニルオキシ) -5-ヒ ドロキシ安息香酸およびその塩、等)、トラネキサム酸 のアミド体(例えば、トランスー4-アミノメチルシク ロヘキサンカルボン酸メチルアミドおよびその塩、トラ ンス-4-(P-メトキシベンゾイル) アミノメチルシ クロヘキサンカルボン酸およびその塩、トランス-4-グアニジノメチルシクロヘキサンカルボン酸およびその 塩、等) などが挙げられる。

【0099】抗炎症剤としては、例えばグリチルリチン、グリチルリチン酸塩(例えばグリチルリチン酸ジカリウム、グリチルリチン酸アンモニウム、等)、アラントインなどが挙げられる。

【0100】保湿剤としては、例えば尿素などが挙げられる。

【0101】抗菌剤としては、例えばレゾルシン、イオウ、サリチル酸などが挙げられる。

【0102】ホルモン剤としては、例えばオキシトシン、コルチコトロピン、バソプレッシン、セクレチン、ガストリン、カルシトニン、ヒノキチオール、エチニルエストラジオールなどが挙げられる。

【0103】ビタミン類としては、例えばビタミンAおよびその誘導体(例えば、レチノール、ビタミンAパル

ミテート、等)、ビタミンB₆、ビタミンB₆塩酸塩等の ビタミンB₆誘導体、ニコチン酸、ニコチン酸アミド等 のニコチン酸誘導体、ビタミンEおよびその誘導体、β ーカロチンなどが挙げられる。

【0104】各種アミノ酸およびその誘導体や酵素としては、例えばLーグルタミン酸やウロカニン酸、トリプシン、塩化リゾチーム、キモトリプシン、セミアルカリプロテナーゼ、セラペプターゼ、リパーゼ、ヒアルロニダーゼなどが挙げられる。

【0105】抗酸化剤としては、例えばチオタウリン、 グルタチオン、カテキン、アルブミン、フェリチン、メ タロチオネインなどが挙げられる。 【0106】育毛剤としては、例えばβ-グリチルレチン酸、パントテニルエチルエーテル、ミノキシジルなどが挙げられる。

【0107】また、カンファー、メントール等の清涼剤 も用いられ得る。

【0108】本発明ブロック共重合体の製造は、アゾ基 含有ポリオキシエチレン化合物と共重合部(モノマー) とを共重合させて製造するのが好ましい。

【0109】上記アゾ基含有ポリオキシエチレン化合物 としては、例えば下記一般式 (III)

[0110]

【化28】

$$-CO - \left(CH_{2}\right)_{q} - \left(\frac{R^{1}}{C} - N\right) = N - \left(\frac{R^{1}}{C} - CH_{2}\right)_{q} A - O\left(C_{2}H_{4}O\right)_{n} A - \left(CH_{2}\right)_{q} \left(\frac{R^{1}}{C} - CH_{2}\right)_{q} \left(\frac{R^{1$$

(111)

【0111】(式中、R¹、R²、A、n、qはそれぞれ 上記一般式(I)での定義と同じ)に示す繰返し単位を 有する化合物が好ましいものとして挙げられる。

【0112】上記一般式 (III) で示される繰返し単位を有するアゾ基含有ポリオキシエチレン化合物は、例えば「VPE」シリーズ (和光純薬工業(株)製)等として市販されており、商業的に入手可能である。

【0113】上記一般式(III) に示す繰返し単位を有するアゾ基含有ポリオキシエチレン化合物(マクロアゾ重合開始剤)は、加熱または光照射によって容易にN₂を発生して分解し、ラジカル種(上記一般式(I) に示される繰返し単位を有するポリオキシエチレン部)を生じ、その際に、それ以外の共重合部(モノマー)と速やかに重合を起し、本発明ブロック共重合体を生成する。

【0114】上記製造が加熱によって行われる場合の反応温度は、通常30~130℃程度、好ましくは50~100℃程度であり、重合の進行に伴って変化させてもよい。反応時間は、通常1~48時間程度、好ましくは1~24時間程度である。また、上記製造が光照射によって行われる場合の反応温度は通常0~60℃程度、好

ましくは20~50℃程度とするのが適当である。光照 射に用いられる光源としては、例えば高圧水銀灯が使用 可能である。照射光としてはアゾ基含有ポリオキシエチ レン化合物を速やかに光分解させて親油性部を共重合さ せるため、UV光であるのが好ましい。

【0115】アゾ基含有ポリオキシエチレン化合物の重合反応時の平均分子量は特に限定されないが、500~100,000程度、好ましくは1,000~50,000程度のものが好適に用いられる。分子量が小さすぎるとブロック共重合体の生成効率が低下し、一方、分子量が大きすぎると溶媒に対する溶解性が低下し、溶液の粘性も増加するため低濃度でブロック共重合を行う必要があり、疎水性部との重合率が低下するので、好ましくない。

【0116】このようにして得られる本発明共重合体は、具体的には例えば下記一般式(IV)で示される構成単位を有するものが挙げられる。

[0117]

【化29】

$$\begin{array}{c|c}
 & R^{3} \\
 & C \\
 &$$

【0118】(式中、各置換基はいずれも上記で定義したとおり)

【0119】本発明共重合体は、上記一般式(IV)に示すように共重合モノマーーポリエチレングリコール部ー共重合モノマーの型(A-B-A型)のブロック共重合体が好ましいが、共重合モノマーーポリエチレングリコール部ー共重合モノマーの型(A-B-A-B-A型)の共重合体も好ましい。

【0120】本発明共重合体は分子量 $1,000\sim1,000,000$ 程度が好ましく、特には $2,000\sim5$ 00,000程度である。分子量は目的に応じて適宜、変えることができ、また、重合時に添加するモノマー量が多いほど生成する共重合体の分子量は大きくなる。

【0121】本発明共重合体の分子量は目的に応じて適宜、変えることができ、また、重合時に添加するモノマー量が多いほど生成する共重合体の分子量は大きくなる。

【0122】本発明によるブロック共重合体は、ポリエチレングリコール部との共重合部モノマーを適宜選択して用いることにより、増粘剤、乳化剤、皮膜剤、顔料分散剤、経皮吸収促進剤として適宜、使い分けて適用することができるなど、優れた特徴を有することから、特にファンデーション、口紅、頬紅、アイシャドー等のメーキャップ化粧料、スキンケアクリーム、スキンローション、サンスクリーン剤等の皮膚保護化粧料、シャンプー、ヘアトニック、リンス、毛髪セット剤等の毛髪用化粧料などに好適に用いられ、これら化粧料の使用性を向上させることができる。本発明共重合体は1種または2種以上を化粧料中に配合することができる。

【0123】なお、本発明共重合体を化粧料に配合する場合、その用途、目的とする効果の度合い等によっても異なるが、おおむね以下の配合量が好ましい。

【0124】本発明共重合体を増粘剤として用いる場合、化粧料全量中に0.1~30重量%程度が好ましく、特には0.5~20重量%程度である。

【0125】本発明共重合体を乳化剤として用いる場合、化粧料全量中に0.05~20重量%程度が好ましく、特には0.1~10重量%程度である。

【0126】本発明共重合体を皮膜剤として用いる場合、化粧料全量中に0.1~20重量%程度が好ましく、特には0.2~10重量%程度である。

【0127】本発明共重合体を顔料分散剤として用いる場合、化粧料全量中に0.05~20重量%程度が好ましく、特には0.1~10重量%程度である。

【0128】本発明共重合体を経皮吸収促進剤として用いる場合、化粧料全量中に0.01~10重量%程度が好ましく、特には0.1~5重量%程度である。

【0129】本発明化粧料には、本発明共重合体のほかに、通常、化粧料に用いられる得る添加成分を、本発明の効果を損なわない範囲で任意に添加することができる。このような成分としては例えばビタミン類、油脂、ロウ類、炭化水素油、高級脂肪酸、高級アルコール、合成エステル油、シリコーン、保湿剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、親油性非イオン界面活性剤、親水性非イオン界面活性剤、防腐剤、消炎剤、美白剤、植物抽出物、賦活剤、血行促進剤、抗脂漏剤、天然の水溶性高分子、半合成水溶性高分子、合成水溶性高分子、無機の水溶性高分子、増粘剤、粉末成分、金属イオン封鎖剤等が挙げられる。また、剤型等は特に限定されず、例えば油性化粧料、油中水型乳化化粧料、水中油型乳化化粧料、水性化粧料、固形化粧料、油性固形化粧料等とすることができる。

[0130]

【実施例】以下、本発明について具体例を挙げてさらに 説明するが、本発明はこれになんら限定されるものでは ない。なお、以下の配合量は特記しない限り重量%で示 す。

【0131】なお、本実施例において、アゾ基含有ポリオキシエチレン化合物として、高分子アゾ開始剤(「VPE」シリーズ;和光純薬工業(株)製)のポリオキシエチレン部の分子量をそれぞれ変えて調製したものを用

いた。

【0132】[合成例1] ポリエチレングリコールー アクリル酸ブロック共重合体

ポリ[ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)10g、アクリル酸70gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0133】 [合成例2] ポリエチレングリコールー アクリルアミド-2-アクリルアミド2-メチルプロパ ンスルホン酸ブロック共重合体

ポリ[ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)10g、アクリルアミド20g、2-アクリルアミド2-メチルプロパンスルホン酸10gをエタノール250ml-ジメチルホルムアミド250mlに溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い90℃で12時間加熱撹拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0134】[合成例3] ポリエチレングリコールーポリエチレングリコールアクリレート(ポリエチレングリコールアクリレート(ポリエチレングリコール分子量2,000)-ヒドロキシエチルメタクリレート-2-アクリロキシエチルトリメチルアンモニウムクロリドブロック共重合体

ボリ[ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)10g、ポリエチレングリコールアクリレート5g、ヒドロキシエチルメタクリレート20g、2-アクリロキシエチルトリメチルアンモニウムクロリド5gをエタノール400ml-ジメチルホリムアミド100mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0135】 [合成例4] ポリエチレングリコールーアクリル酸ーステアリルアクリレートブロック共重合体ポリ [ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)] (ポリオキシエチレン部平均分子量6,000)10g、アクリル酸20g、ステアリルアクリレート1gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0136】[合成例5] ポリエチレングリコールー アクリルアミドーNーヘキシルアクリルアミドブロック 共重合体 ポリ[ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)30g、アクリルアミド30g、N-ヘキシルアクリルアミド1gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0137】[合成例6] ポリエチレングリコールー2-1H, 1H, 2H, 2H-ヘプタデカフルオロデシルアクリレート-3-メタクリロキシプロピル(トリストリメチルソロキシ)シランブロック共重合体

ポリ [ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)] (ポリオキシエチレン部平均分子量6,000)50g、2-1H,1H,2H,2 Hーヘプタデカフルオロデシルアクリレート1g、3ーメタクリロキシプロピル(トリストリメチルシロキシ)シラン1gをエタノール300m1-クロロホルム200m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い70℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0138】 [合成例7] ポリエチレングリコールー 2-アクリロキシエチルジメチルアミン-ステアリルア クリレートブロック共重合体

ポリ[ポリオキシエチレンー4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)10g、2-アクリロキシエチルジメチルアミン20g、ステアリルアクリレート1gをエタノール500m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。【0139】[合成例8] ポリエチレングリコールーアクリル酸-3-メタクリロキシプロピルポリジメチルシロキサン(ポリジメチルシロキサン(ポリジメチルシロキサン(ポリジメチルシロキサン)ブロック共重合体

ポリ[ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)10g、アクリル酸10g、3-メタクリロキシプロピルポリジメチルシロキサン2gをエタノール350m1-ヘキサン150m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0140】[合成例9] ポリエチレングリコールーアクリルアミドー2-1H, 1H, 2H, 2H-ヘプタデカフルオロデシルアクリレートブロック共重合体ポリ[ポリオキシエチレン-4, 4'-アゾビス(4-

シアノベンタノエート)] (ポリオキシエチレン部平均分子量2,000)10g、アクリルアミド10g、2-1H,1H,2H,2H-ヘプタデカフルオロデシルアクリレート2gをエタノール350ml-クロロホルム150mlに溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い90℃で12時間加熱撹拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈段をろ取し、減圧乾燥して目的物を得た。

【0141】[合成例10] ポリエチレングリコールースチレンーへキシルアクリレートブロック共重合体ポリ[ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)20g、スチレン1g、ヘキシルアクリレート1gをエタノール500m1に溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0142】[合成例11] ポリエチレングリコールーメチルメタクリレートー2ーメタクリロキシエチルジメチルアンモニウムαーメチルカルボキシベタイシービニルピロリドンブロック共重合体

ボリ [ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)] (ポリオキシエチレン部平均分子量6,000)10g、メチルメタクリレート3g、2-メタクリロキシエチルジメチルアンモニウムα-メチルカルボキシベタイン5g、ビニルピロリドン20gをエタノール500m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0143】[合成例12] ポリエチレングリコール -3-メタクリロキシプロピルポリジメチルシロキサン (ポリジメチルシロキサン部分子量5,000)-2-アクリロキシエチルトリメチルアンモニウムクロリドブ ロック共重合体

ボリ[ボリオキシエチレンー4,4'-アゾビス(4-シアノペンタノエート)](ボリオキシエチレン部平均分子量6,000)20g、メタクリロキシプロピルポリジメチルシロキサン10g、2-アクリロキシエチルトリメチルアンモニウムクロリド10gをエタノール300m1ージメチルホルムアミド200m1に溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い90℃で12時間加熱撹拌した。反応液を減圧濃縮、エタノールを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0144】[合成例13] ポリエチレングリコールー3ーメタクリロキシプロビルポリジメチルシロキサン (ポリジメチルシロキサン部分子量20,000)ードデシルアクリレートブロック共重合体

ポリ [ポリオキシエチレン-4, 4'-アゾビス(4-シアノペンタノエート)] (ポリオキシエチレン部平均分子量2,000)20g、メタクリロキシプロピルポリジメチルシロキサン20g、ドデシルアクリレート10gをエタノール500m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0145】[合成例14] ポリエチレングリコール -2-1H, 1H, 2H, 2H-ヘプタデカフルオロデ シルアクリレートブロック共重合体

ポリ[ポリオキシエチレンー4, 4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)20g、2-1H,1H,2H,2H-ペプタデカフルオロデシルアクリレート20gをエタノール250ml-クロロホルム250mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0146】[合成例15] ポリエチレングリコールーメチルメタクリレートーブチルアクリレートブロック 共重合体

ポリ [ポリオキシエチレン-4, 4'-アゾビス(4-シアノペンタノエート)] (ポリオキシエチレン部平均分子量2,000)10g、メチルメタクリレート20g、ブチルアクリレート20gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い70℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0147】[合成例16] ポリエチレングリコールー2ーアクリルアミド2ーメチルプロパンスルホン酸ー3ーメタクリロキシプロビルポリジメチルシロキサン(ポリジメチルシロキサン部分子量10,000)プロック共重合体

ボリ[ボリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ボリオキシエチレン部平均分子量2,000)10g、2-アクリルアミド2-メチルプロパンスルホン酸1g、3-メタクリロキシプロピルポリジメチルシロキサン30gをエタノール400ml-ジメチルホルムアミド100mlに溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い90℃で12時間加熱撹拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0148】[合成例17] ポリエチレングリコールーアクリル酸-3-メタクリロキシプロピルポリジメチルシロキサン(ポリジメチルシロキサン部分子量10,000)ブロック共重合体

ポリ[ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)10g、アクリル酸1g、3-メタクリロキシプロピルポリジメチルシロキサン30gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱撹拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈股をろ取し、減圧乾燥して目的物を得た。

【0149】[合成例18] ポリエチレングリコール ーステアリルアクリレートブロック共重合体

ポリ[ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)50g、ステアリルアクリレート1gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0150】 [合成例19] ポリエチレングリコールー3ーメタクリロキシプロピルポリジメチルシロキサン (ポリジメチルシロキサン部分子量20,000) ブロック共重合体

ポリ [ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)] (ポリオキシエチレン部平均分子量2,000)50g、3-メタクリロキシプロピルポリジメチルシロキサン2gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0151】[合成例20] ポリエチレングリコール -スチレン-アクリル酸ブロック共重合体

ポリ [ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)] (ポリオキシエチレン部平均分子量2,000)50g、スチレン2g、アクリル酸5gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0152】 [合成例21] ポリエチレングリコールードデシルアクリレートーコレステアリルアクリレートーアクリル酸ブロック共重合体

ポリ「ポリオキシエチレン-4,4'-アゾビス(4-シアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)10g、ドデシルアクリレート0.5gアクリルを30gをエタノール500mlに溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して折出した沈股をろ取し、減圧乾燥して目的物を得た。【0153】[合成例22] ポリエチレングリコール

-N, N-ジドデシルメタクリルアミド-アクリルアミド-3-メタクリロキシプロピルポリジメチルシロキサン(ポリジメチルシロキサン部分子量10,000)ブロック共重合体

ポリ[ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量2,000)10g、N,Nージドデシルメタクリルアミド1g、アクリルアミド10g、3ーメタクリロキシプロピルポリジメチルシロキサン20gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0154】[合成例23] ポリエチレングリコール -1H, 1H, 5H-オクタフルオロペンチルメタクリ レート-2-メタクリロキシエチルジメチルアンモニウ ムα-メチルカルボキシベタイン-t-ブチルアクリレ ートブロック共重合体

ポリ[ポリオキシエチレンー4, 4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)20g、1H,1H,5Hーオクタフルオロペンチルメタクリレート1g、2ーメタクリロキシエチルジメチルアンモニウムαーメチルカルボキシベタイン10g、tーブチルアクリレート2gをエタノール400mlークロロホルム100mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い70℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0155】[合成例24] ポリエチレングリコールー3-メタクリロキシプロピルポリジメチルシロキサン(ポリジメチルシロキサン部分子量10,000)-nープチルメタクリレートブロック共重合体

ポリ「ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)5g、3ーメタクリロキシプロピルポリジメチルシロキサン20g、nーブチルメタクリレート20gをエタノール300m1ーヘキサン200m1に溶解、室温で窒素気流下1時間撹拌した後、徐々に加熱を行い70℃で12時間加熱撹拌した。反応液を減圧濃縮、メタノールを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0156】[合成例25] ポリエチレングリコールーアクリル酸ーモノマー13ブロック共重合体ポリ[ポリオキシエチレン-4,4'-アゾビス(4-

シアノペンタノエート)] (ポリオキシエチレン部平均分子量6,000)10g、アクリル酸60g、上記化25に示すモノマー13 0.5gをエタノール500m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を

減圧濃縮、メチルエチルケトンを添加して析出した沈殿 をろ取し、減圧乾燥して目的物を得た。

【0157】[合成例26] ポリエチレングリコールーアクリル酸ーモノマー14ブロック共重合体ポリ[ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)10g、アクリル酸60g、上記化26に示すモノマー14 0.5gをエタノール500m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、メチルエチルケトンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0158】[合成例27] ポリエチレングリコールーアクリル酸ーモノマー15ブロック共重合体ポリ[ポリオキシエチレンー4,4'ーアゾビス(4ーシアノペンタノエート)](ポリオキシエチレン部平均分子量6,000)10g、アクリル酸60g、上記化27に示すモノマー15 0.5gをエタノール500mlに溶解、室温で窒素気流下1時間攪拌した後、徐々

に加熱を行い90℃で12時間加熱撹拌した。反応液を 減圧濃縮、メチルエチルケトンを添加して析出した沈殿 をろ取し、減圧乾燥して目的物を得た。

【0159】(実施例1~8、比較例1~2)上記合成例1~7で得た各ブロック共重合体について、下記方法により増粘剤使用性を評価した。結果を表1~2に示す。

【0160】 [増粘剤使用テスト] 専門パネル40名が表1~2に示す増粘剤水溶液を使用し、その増粘効果、指どれ、のび、べたつきについてそれぞれ評価した。各評価基準は以下のとおりとした。

(評価基準)

◎: 40名中、30名以上が良好と答えた○: 40名中、20~29名が良好と答えた△: 40名中、10~19名が良好と答えた×: 40名中、9名以下が良好と答えた【0161】

【表1】

	実 施 例					
	1	2	3	4	5	
プロック共重合体(合成例 1)	0. 5	_	_	_		
ブロック共重合体(合成例2)	_	0. 5	_	_		
ブロック共重合体(合成例3)	_	_	0. 5		_	
ブロック共重合体(合成例4)				0. 5	_	
ブロック共重合体(合成例5)			_	<u> </u>	0.5	
プロック共重合体(合成例6)	_	_	_		_	
ブロック共重合体(合成例7)	_		_	-	_	
ポリエチレングリコール(分子量 2 万)	_	_	-		_	
キサンタンガム	_	_	-	_	_	
精製水	残余	残余	残 余	残 余	残余	
增粘効果	0	0	0	0	0	
指どれ	0	0	0	0	0	
のび	0	0	0	0	0	
べたつき	0	0	0	0	0	

	実施例			比草	交 例
	6	7	8	1	2
ブロック共重合体(合成例1)		_	_		_
ブロック共重合体(合成例2)		_	_		
ブロック共重合体(合成例3)					_
ブロック共重合体(合成例4)			0. 25		_
ブロック共重合体(合成例5)	_	_	_		
ブロック共重合体(合成例6)	0. 5	_	_	_	_
ブロック共重合体(合成例7)	_	0. 5	0. 25		_
ポリエチレングリコール(分子量 2 万)		_	_	0. 5	ı
キサンタンガム	_	-	ı	_	0. 5
精製水	残余	残 余	残 余	残 余	残余
增粘効果	0	0	0	×	0
指どれ	0	0	0	×	0
ου	0	0	0	0	0
べたつき	0	0	0	0	×

【 O 1 6 3】本発明によるブロック共重合体は増粘効果に優れ、その使用感も良好なものであった。本増粘剤は単独で用いてもよいし、他の増粘多糖類、アクリル系ポリマー、粘土鉱物、シリコン系ポリマー等と併用してもよい。

【0164】(実施例9~14、比較例3~6)上記合成例1~7、下記に示す比較合成例1~4で得た各プロック共重合体について、下記方法により乳化安定性を評価した。結果を表3~4に示す。

【0165】[乳化安定性テスト]各ブロック共重合体を用いてO/WおよびW/O乳化物を調製し、5時間経過後の外観を目視により観察し、その乳化安定性を評価した。

(評価基準)

〇: 乳化時(調製時)から変化なし

△: 一部乳化粒子の合一、相分離がみられた

【0166】[比較合成例1] アクリル酸-3-メタクリロキシプロピルポリジメチルシロキサン(ポリジメチルシロキサン部分子量10,000)ブロック共重合体

アクリル酸10g、3-メタクリロキシプロビルポリジメチルシロキサン2gをエタノール350ml-へキサン150mlに溶解、室温で窒素気流下1時間撹拌した

後、徐々に加熱を行い90℃で12時間加熱攪拌した。 反応液を減圧濃縮、ヘキサンを添加して析出した沈殿を ろ取し、減圧乾燥して目的物を得た。

【0167】[比較合成例2] アクリルアミドー2-1H,1H,2H,2H-ヘプタデカフルオロデシルアクリレートブロック共重合体

アクリルアミド10g、2-1H, 1H, 2H, 2H-ヘプタデカフルオロデシルアクリレート2gをエタノール350ml-クロロホルム150mlに溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して析出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0168】 [比較合成例3] アクリル酸-スチレン -ヘキシルアクリレートブロック共重合体

アクリル酸10g、スチレン1g、ヘキシルアクリレート1gをエタノール500m1に溶解、室温で窒素気流下1時間攪拌した後、徐々に加熱を行い90℃で12時間加熱攪拌した。反応液を減圧濃縮、ヘキサンを添加して折出した沈殿をろ取し、減圧乾燥して目的物を得た。

【0169】 [比較合成例4] アクリル酸-3-メタクリロキシプロピルポリジメチルシロキサン(ポリジメチルシロキサン部分子量10,000)-n-ブチルメ

タクリレートブロック共重合体 アクリル酸5g、3-メタクリロキシプロピルポリジメ チルシロキサン20g、n-ブチルメタクリレート20 gをエタノール300ml-ヘキサン200mlに溶 解、室温で窒素気流下1時間攪拌した後、徐々に加熱を 行い70℃で12時間加熱撹拌した。反応液を減圧濃 縮、メタノールを添加して析出した沈殿をろ取し、減圧 乾燥して目的物を得た。

【0170】 【表3】

101-1						
		3	実 施 タ	i)		
	9	10	11	12	13	
ブロック共重合体(合成例8)	1	1				
ブロック共重合体(合成例9)			1	<u></u>	_	
ブロック共重合体(合成例10)	_	_		111		
ブロック共重合体(合成例24)			_		1	
ブロック共重合体(比較合成例 1)		-			_	
ブロック共重合体(比較合成例 2)					-	
ブロック共重合体(比較合成例3)	_		_	_		
ブロック共重合体(比較合成例4)	_	_	_	_		
ポリジメチルシロキサン(6mPa·s)	10				30	
流動パラフィン	_	10	_	_	_	
パーフルオロポリエーテル		_	10			
パラメトキシケイ皮酸エチルヘキシル	_	_	_	10		
精製水	残 余	残 余	残余	残 余	残余	
乳化形態	0/W	O/W	0/W	0/ W	W/O	
乳化安定性(5時間経過後)	0	0	0	0	0	

[0171]

	実施例	例 比較例			
	14	3	4	5	6
ブロック共重合体(合成例8)	_	_			_
ブロック共重合体(合成例9)	_	-	_	_	
ブロック共重合体(合成例10)	_	_		_	
ブロック共重合体(合成例24)	1	_		_	_
ブロック共重合体(比較合成例 1)		1			
ブロック共重合体(比較合成例2)	-		1	_	_
ブロック共重合体(比較合成例 3)	<u> </u>	_	_	1	_
ブロック共重合体(比較合成例4)		_			1
ポリジメチルシロキサン(6mPa·s)	_	10			30
流動パラフィン	30	_	_	_	_
パーフルオロポリエーテル	_	_	10	_	
パラメトキシケイ皮酸エチルヘキシル		_	_	10	_
精製水	残余	残余	残 余	残余	残余
乳化形態	W/O	0/W	0/W	0/W	W/O
乳化安定性(5時間経過後)	0	Δ	Δ	Δ	Δ

【0172】表3、表4の結果より、本ブロック共重合体の乳化剤としての効果が確認された。

【0173】(実施例15~16、比較例7~9)上記合成例11~12で得た各ブロック共重合体を毛髪皮膜剤に適用し、その使用性、セット力、形状維持効果について、下記方法、評価基準により評価した。結果を表ちに示す。

【0174】[毛髪皮膜剤使用テスト]専門パネル40 名が表5に示す組成の各試料を使用し、その使用性、セ ット力、形状維持効果についてそれぞれ評価した。各評価基準は以下のとおりとした。

(評価基準)

◎: 40名中、30名以上が良好と答えた○: 40名中、20~29名が良好と答えたΔ: 40名中、10~19名が良好と答えた×: 40名中、9名以下が良好と答えた

【0175】 【表5】

	実 施 例		比較例		d
	1 5	16	7	8	9
ブロック共重合体(合成例11)	_ 1	_	-	_	_
ブロック共重合体(合成例12)	_	1		_	_
ポリビニルピロリドン	-	ı	. 1	_	_
カチオン化セルロース	-			1	_
ビニルメチルエーテルーマレイン酸ブ チル共重合体	-	-	, 1	_	1
精製水	80	80	80	80	80
エタノール	19	19	19	19	19
使用性	0	0	Δ	Δ	Δ
セット力	0	0	0	Δ	0
毛髮形状維持効果	0	0	×	×	Δ

【0176】本ブロック共重合体は、使用性に優れ、そのセット力、スタイリング維持効果とも良好であった。 【0177】(実施例17、比較例10)本ブロック共重合体(合成例13)配合および未配合口紅を調製し、塗布時ののび、2次付着効果、経時での色落ちについて40名の専門バネルにより評価を行った。評価基準は以下のとおりとした。

(評価基準)

◎: 40名中、30名以上が良好と答えた○: 40名中、20~29名が良好と答えた△: 40名中、10~19名が良好と答えた×: 40名中、9名以下が良好と答えた

【0178】 【表6】

	実施例17	比較例10
二酸化チタン	5	5
キャンデリラロウ	9	9
固形パラフィン	8	8
ミツロウ	5	5
カルナウバロウ	5	5
ポリジメチルシロキサン(6mPa·s)	26. 5	27
デ カメチルシクロペンタシロキサン	20	20
ラノリン	11	11
イソプロピルミリスチン酸エステル	10	10
プロック共重合体(合成例13)	0. 5	_
香料	適量	適量
酸化防止剤	適量	適 量
ου	0	⊗
2次付着のなさ	0	Δ
色落ちのなさ	0	Δ

【0179】(実施例18、比較例11)本ブロック共重合体(合成例14)配合および未配合ファンデーションを調製し、塗布時ののび、2次付着効果、経時での化粧もちについて40名の専門パネルにより評価を行った。評価基準は以下のとおりとした。

(評価基準)

③: 40名中、30名以上が良好と答えた○: 40名中、30~30名以上が良好と答えた

○: 40名中、20~29名が良好と答えた△: 40名中、10~19名が良好と答えた

×: 40名中、9名以下が良好と答えた

[0180]

【表7】

	実施例18	比較例11
タルク	43. 1	43. 1
カオリン	15	15
セリサイト	10	10
亜鉛華	7	7
二酸化チタン	3. 6	3. 8
ベンガラ	11	1
黄酸化鉄	2. 9	2. 9
黒酸化鉄	0. 2	0. 2
ブロック共重合体(合成例14)	0. 2	_
スクワラン	8	8
モノオレイン酸POEソルビタン	3	3
オクタン酸イソセチル	2	2
イソステアリン酸	4	4
のび	©	0
2次付着のなさ	0	Δ
化粧もち	©	Δ

【0181】本ブロック共重合体の配合により、ファンデーションの2次付着、化粧もちが改善された。

【0182】(実施例19、比較例12)本ブロック共重合体(合成例13)をエナメルの皮膜剤として用いた場合の顔料分散性、皮膜耐水性、皮膜の割れについて、40名の専門パネルにより評価を行った。評価基準は以下のとおりとした。結果を表8に示す。

(評価基準)

◎: 40名中、30名以上が良好と答えた○: 40名中、20~29名が良好と答えた△: 40名中、10~19名が良好と答えた×: 40名中、9名以下が良好と答えた

【0183】 【表8】

	実施例19	比較例12
二酸化チタン	4	4
アルキッド樹脂	8	8
クエン酸アセチルトリプチル	5	5
酢酸エチル	18	18
酢酸ブチル	14. 5	14. 5
エタノール	20	20. 5
トルエン	30	30
ブロック共重合体(合成例15)	0.5	_
顔料分散性	0	×
皮膜耐水性	0	0
皮膜割れ	0	Δ

【0184】本ブロック共重合体の配合により、二酸化 チタンの分散性が向上し、その結果皮膜が均一なものと なり、耐水性、耐割れ性が向上した。

【0185】(実施例20~24、比較例12~13) 合成例16~20で得た本ブロック共重合体について、 顔料分散性について下記方法により評価した。結果を表 9に示す。

【0186】 [顔料分散性] 試料を調製して静置後、1 時間経過後、外観を目視で観察した。

(評価基準)

〇: 均一に分散していた

×: 顔料が凝集した

[0187]

【表9】

	·							
		実 施 例				比較例		
	17	18	19	20	21	10	11	
ブロック共重合体(合成例16)	0. 5			_			- -	
ブロック共重合体(合成例17)	_	0. 5	_	_	_	_	_	
ブロック共重合体(合成例18)	_	_	0. 5	_	_	_	_	
ブロック共重合体(合成例19)	_	_		0. 5	_		_	
ブロック共重合体(合成例20)			_	_	0. 5	_	_	
 疎水化処理二酸化チタン	_	_	0. 5	0. 5	0. 5	0. 5	_	
二酸化チタン	0. 5	0. 5	_	_		_	0. 5	
流動パラフィン	_	99		_	_	_		
ジメチルポリシロキサン(6mPa·s)	99	_	_	_	_	_	99.5	
精製水	_	_	99	99	99	99.5	_	
1 時間後分散均一性(外観)	0	0	0	0	0	×	×	

顔料を油分中に分散可能となった。

【0189】(実施例25~31、比較例14~15) 上記合成例21~23で得た本ブロック共重合体を用い て、水溶性および油溶性剤に対する経皮吸収促進効果を 評価した。評価のスクリーニングは以下に記載する手順 で実施した。

【0190】試験はin vitroの形態で行った。皮膚モデルとしてミニブタの皮膚を用いた。

【0191】各薬剤の単純溶液(アルブチン、アスコルビン酸2-グルコシドは生理食塩水溶液、レチノールは

オクタン酸セチルー流動パラフィン混合溶液)または本ブロック共重合体を含む上記溶液をミニブタ皮膚に適用、37℃で6時間インキュベートし、表皮を溶媒で抽出、単位重量当たりに含まれる薬剤量をHPLCにより定量し、本ブロック共重合体含有、非含有(コントロール)の場合の皮膚吸収量を比較した。結果を表10、11に示す。

【0192】 【表10】

	実 施 例					
	2 2	23	2 4	25	26	
ブロック共重合体(合成例21)	0.5	_		0. 5	_	
ブロック共重合体(合成例22)		0.5	_	_	0. 5	
ブロック共重合体(合成例23)	_		0. 5			
アルブチン	6	6	6			
アスコルビン酸 2 - グルコシド		_	_	6	6	
レチノール	_	1				
生理食塩水	93. 5	63	93. 5	93. 5	63	
デカメチルシクロペンタシロキサン	_	30	-	_	30	
POEポリジメチルシロキサン	-	0. 5	_		0.5	
オクタン酸セチルー流動パラフィン		_	_	_	_	
薬剤経皮吸収量比(実施例処方吸収 量/コントロール吸収量)	1.8	2. 3	1.9	2. 0	2. 4	

[0193]

【表11】

	実施例		比氧	交例
	27	28	2 9	30
ブロック共重合体(合成例21)	1	0.5		
ブロック共重合体(合成例22)	1	_	0. 5	_
ブロック共重合体(合成例23)	0. 5	_	_	0. 5
アルブチン	ı	_		
アスコルピン酸2-グルコシド	6	-	_	-
レチノール	1	6	6	6
生理食塩水	93. 5	_	_	_
デカメチルシクロペンタシロキサン	-	_	30	_
POEポリジメチルシロキサン	ı	_	_	-
オクタン酸セチルー流動パラフィン	- ,	93. 5	63. 5	93. 5
薬剤経皮吸収量比(実施例処方吸収 量/コントロール吸収量)	2.1	1.6	1.5	1.8

【0194】表10、表11の結果より、本ブロック共

【0195】以下に処方例を示す。

重合体を添加することにより、親水性、疎水性薬剤の経

[0196]

皮吸収性は大幅に向上することが確認された。

[処方例1] 透明化粧水

(配合成分)	配合量(重量%)
1,3-ブチレングリコール	6
グリセリン	4
オレイルアルコール	0.1
POE (20) ソルビタンモノラウリン	ン酸エステル 0.5
ブロック共重合体(合成例1)	0.5
エタノール	10
アルブチン	2
精製水	残 余
香料	適量
色剤	適量
防腐剤	適量
緩衝剤	適量

(製法)精製水に保湿剤、薬剤、ブロック共重合体(合成例1)、緩衝剤を溶解して水相とする。エタノールに防腐剤、香料、オレイルアルコール、界面活性剤を溶解

し、先の水相に可溶化し、透明化粧水を得る。 【0197】

[処方例2] 化粧水

[/2///12]	
(配合成分)	配合量(重量%)
ジプロピレングリコール	1
ソルビット	1
POE (20) オレイルアルコールエーテル	1
クエン酸	適 量
ブロック共重合体(合成例21)	0.2
アスコルビン酸2-グルコシド	2

Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

```
エタノール
                                     15
                                     残余
           精製水
                                     適量
           香料
                                     適 量
           防腐剤
           緩衝剤
                                     適 量
           色剤
                                     適量
(製法)精製水に保湿剤、薬剤、ブロック共重合体(合
                              相を先の水相に可溶化させ、化粧水を得る。
成例21)、クエン酸、緩衝剤を溶解する。エタノール
                              【0198】
に香料、界面活性剤、防腐剤を溶解し、このエタノール
           [処方例3] エモリエントローション(O/W)
            (配合成分)
                                    配合量(重量%)
           ステアリン酸
                                      2
           セチルアルコール
                                      1.5
           ワセリン
                                      4
                                      5
           スクワラン
                                      0.5
           レチノール
                                      0.5
           ブロック共重合体(合成例8)
           アクリル酸-アクリル酸エステル共重合体
                                      0.1
                                     適量
           水酸化カリウム
           ジプロピレングリコール
                                      5
                                      3
           ポリエチレングリコール (PEG1500)
                                      0.3
           L-グルタミン酸
           トリエタノールアミン
                                     適 量
                                     適量
           緩衝剤
                                     適 量
           防腐剤
           香料
                                     適量
                                     残 余
           精製水
                              ョン (O/W)を得る。
(製法)精製水に保湿剤、アルカリを加えた後、レーグ
ルタミン酸、緩衝剤を加える。油溶性成分を油分に溶解
                              [0199]
し、水相とホモミキサーで乳化し、エモリエントローシ
           [処方例4] 無水油性タイプクレンジングクリーム
                                    配合量(重量%)
            (配 合 成 分)
                                      8
           セレシン
                                      5
           マイクロクリスタリンワックス
           ワセリン.
                                     34
           ポリジメチルシロキサン (6mPa·s)
                                     50
           ブロック共重合体(合成例24)
                                      1
                                      2
           低分子ポリエチレン
           香料
                                     適量
                              イプクレンジングクリームを得る。
(製法) 香料以外の成分を混合し加熱溶解(約90℃)
                              [0200]
した後、約60℃まで冷却し香料を添加し、無水油性タ
           [処方例5] エモリエントクリーム(W/O)
            (配合成分)
                                    配合量(重量%)
                                     15
           スクワラン
           デカメチルシクロペンタシロキサン
                                      5
           セチルイソオクタノエート
                                      8.5
                                      2
           アスコルビン酸ジパルミテート
           マイクロクリスタリンワックス
                                      1
                                      0.2
           ブロック共重合体(合成例22)
                                      1.6
           有機変性スメクタイト
```

0.4

```
POEグリセロールトリイソステアリン酸エステル
                                      0.2
           グリセリン
                                     10
                                     適量
           防腐剤
           香料
                                     適 量
           精製水
                                     残 余
(製法)油分に粘土鉱物、界面活性剤、防腐剤、香料を
                              後、先の油相に添加、ホモミキサーにより攪拌して乳化
加え均一分散し、さらに薬剤を添加して油性ゲルを得
                              し、エモリエントクリーム (W/O) を得る。
                              [0201]
る。精製水に保湿剤および他の水溶性成分を添加、溶解
           [処方例6] 油性ジェル
                                    配合量 (重量%)
            (配合成分)
           流動パラフィン
                                      6
           ポリジメチルシロキサン (6mPa·s)
                                      6
           グリセロールトリー2-エチルヘキサン酸エステル 50
           ソルビトール
                                     10
                                      5
           ポリエチレングリコール (PEG400)
           アシルメチルタウリン
                                      5
                                     10
           POEオクチルドデシルアルコールエーテル
           ブロック共重合体(合成例22)
                                      0.5
           ビタミンAパルミテート
                                      2
           香料
                                     適量
           精製水
                                     残 余
(製法) 精製水に保湿剤、アシルメチルタウリンを加え
                              し、油性ジェルを得る。
水相とする。残りの成分を混合溶解して油相とし、先の
                              [0202]
水相にホモミキサーにより攪拌しながら添加して乳化
           「処方例7] モイスチャージェル
            (配合成分)
                                    配合量(重量%)
           ジプロピレングリコール
                                      6
                                      1
           キサンタンガム
           ポリエチレングリコール (PEG400)
                                      8
           カルボキシビニルポリマー
                                      0.4
           メチルセルロース
                                      0.2
           POE(15)オレイルアルコールエーテル
                                      1
                                      0.1
           水酸化カリウム
           ブロック共重合体(合成例6)
                                      0.5
                                      3
           アスコルビン酸
           尿素
                                     10
           緩衝剤
                                     適量
                                     適量
           防腐剤
           香料
                                     適量
           精製水
                                     残 余
(製法)精製水に水溶性高分子を均一溶解させた後、残
                              を得る。
りの成分を添加し、均一溶解させ、モイスチャージェル
                              [0203]
           [処方例8] クリーム(O/W)
                                    配合量(重量%)
            (配合成分)
                                      8
           ステアリン酸
           ステアリルアルコール
                                      4
                                      6
           ステアリン酸ブチル
                                      5
           プロピレングリコール
           モノステアリン酸グリセリン
                                      2
```

水酸化カリウム

ブロック共重合体(合成例5) 0.2 精製水 残 余 適量 防腐剤 酸化防止剤 適量 香料 適量 (製法)精製水に保湿剤、アルカリを加え、70℃に加 いて乳化し、クリーム (O/W) を得る。 [0204] 熱。油分に界面活性剤、防腐剤、酸化防止剤、香料を加 え、70に加熱し、先の水相に添加、ホモミキサーを用 [処方例9] サンケア化粧料 (配 合 成 分) 配合量(重量%) 残 余 精製水 1,3-ブチレングリコール 7 二酸化チタン 5 0.05 エデト酸2ナトリウム トリエタノールアミン 1 ブロック共重合体(合成例19) 1 2 オキシベンゾン パラメトキシケイ皮酸オクチル 5 10 スクワラン ワセリン 5 3 ステアリルアルコール 3 ステアリン酸 グリセリルモノステアレート 3 1 ポリアクリル酸エチル 酸化防止剤 適量 防腐剤 適量 香料 適量 (製法)精製水に保湿剤、活性剤、粉末、エデト酸ナト ホモミキサーにより撹拌しながら混合し、乳化させ、ク リウム、トリエタノールアミン、ブロック共重合体(合 リーム (O/W)を得る。 成例19)を溶解する。油相に残りを溶解し、70℃で 【0205】 [処方例10] ゼリー状パック (配 合 成 分) 配合量(重量%) ポリビニルアルコール 15 5 カルボキシメチルセルロース ブロック共重合体(合成例21) 0.2 エタノール 12 水酸化カリウム 適量 1,3-ブチレングリコール ポリオキシエチレンオレイルアルコール 0.5 香料 適量 防腐剤 適量 適量 緩衝剤 残 余 精製水 後、先の水相に添加し、可溶化し、ゼリー状パックを得 (製法)精製水に緩衝剤、保湿剤、合成例を添加後、8 ○℃に加熱。増粘剤、皮膜剤を添加し、攪拌溶解を行 る。 [0206] う。エタノールに香料、防腐剤、界面活性剤を添加溶解 [処方例11] ヘアスプレー (原液処方) (配合成分) 配合量(重量%)

5

ブロック共重合体(合成例11)

```
0.1
           セチルアルコール
           ポリジメチルシロキサン(6mPa·s)
                                     0.3
           エタノール
                                     94.6
          香料
                                    適 量
          (充填処方)
                                   配合量(重量%)
            (配合成分)
                                     50
           原液
                                     50
           ジメチルエーテル
                              入し、ヘアスプレーを得る。
(製法)原液はエタノールに多の成分を加え溶解し、ろ
                              [0207]
過する。充填は缶に原液を入れ、バルブ装着、ガスを注
           [処方例12] ウォーターグリース
                                   配合量(重量%)
            (配合成分)
                                      0.2
           ポリアクリル酸
                                      0.3
           ブロック共重合体(合成例12)
                                     適量
           水酸化ナトリウム
           エタノール
                                     10
           ポリオキシエチレンオクチルドデシルエーテル
                                    適量
            香料
                                      5
                                     残 余
           精製水
(製法) すべてを均一に混合溶解しウォーターグリース
                              [0208]
を得る。
           [処方例13] 油性タイプ口紅
                                   配合量(重量%)
            (配合成分)
           二酸化チタン
                                      5
                                      9
           キャンデリラロウ
           固形パラフィン
                                      8
                                      5
           ミツロウ
                                      5
           カルナウバロウ
           ポリジメチルシロキサン(6mPa·s)
                                     26.5
           デカメチルシクロペンタシロキサン
                                     20
                                     1 1
           ラノリン
                                     1.0
           イソプロピルミリスチン酸エステル
                                      0.5
           ブロック共重合体(合成例16)
                                     適量
           香料
                                     適量
           酸化防止剤
(製法)二酸化チタン、香料を除く成分を混合し加熱融・
                              油性タイプ口紅を得る。
                              [0209]
解した後、二酸化チタン、香料を加えホモミキサーで均
一に分散する。型に流し込み急冷しスティック状とし、
           [処方例14] 固形頬紅
                                    配合量 (重量%)
            (配合成分)
                                     80
           タルク
                                      9
           カオリン
                                      3
           ワセリン
                                      3
           ジメチルポロシロキサン(6mPa·s)
                                      4.5
           ミリスチン酸亜鉛
                                      0.5
           ブロック共重合体(合成例17)
                                     適量
           酸化防止剤
           香料
                                     適 量
(製法) 香料の成分をブレンダーでよく攪拌混合し、香
                              得る。
                              [0210]
```

料を加え粉砕機で処理した後、圧縮成型し、固形類紅を

```
[処方例15] 鉛筆タイプ眉墨
            (配合成分)
                                    配合量(重量%)
                                     20
           酸化鉄(黒)
           酸化チタン
                                      5
           タルク
                                     10
           カオリン
                                     15
           モクロウ
                                     20
                                     10
           ステアリン酸
           ミツロウ
                                      5
           ワセリン
                                      4
           ポリジメチルシロキサン(20mPa·s)
                                     10.5
           ブロック共重合体(合成例16
                                      0.5
           酸化防止剤
                                     適 量
(製法) 二酸化チタン、酸化鉄、タルクをブレンダーで
混合する。他の成分を混合、加熱融解し、先の粉末部に
                              [0211]
均一に加え粉砕機で処理後圧縮成型し、固形頬紅を得
           [処方例16] サンスクリーン剤(W/Oタイプ)
                                    配合量(重量%)
            (配合成分)
           精製水
                                     残余
           1,3-ブチレングリコール
                                      5
                                      5
           二酸化チタン
                                      5
           酸化亜鉛
                                      5
           パラメトキシケイ皮酸オクチル
                                      3
           オキシベンゾン
           ブロック共重合体(合成例20)
                                      1
           スクワラン
                                     30
           ジイソステアリン酸グリセリン
                                      2
           有機変性モンモリロナイト
                                      1.5
           防腐剤
                                     適量
           香料
                                     適量
(製法)水溶性成分と親油性成分をそれぞれ70℃に加
                              を得る。
                              [0212]
熱溶解させる。親油性成分に水相部をホモジナイザー処
理とともに徐添し、サンスクリーン剤(W/Oタイプ)
           [処方例17] デオドラントスティック
            (配合成分)
                                    配合量(重量%)
           アルミニウムクロロハイドレート
                                     23
           タルク
                                     15
                                      2
           固形パラフィンワックス
                                      8
           ステアリルアルコール
           ブロック共重合体(合成例17)
                                      1
           流動パラフィン
                                     13.5
           デカメチルシクロペンタシロキサン
                                     36.5
           ソルビタン脂肪酸エステル
                                      1
           香料
                                     適量
(製法)流動パラフィンに固形パラフィン、ステアリル
                              え、ホモミキサーを用いて均一に分散混合し、型に流し
アルコール、ソルビタン脂肪酸エステル、ブロック共重
                              込み冷却固化させ、デオドラントスティックを得る。
合体(合成例2)を加熱溶解し混合する。残る粉末を加
                              [0213]
           [処方例18] ファンデーション(W/O乳化型)
            (配合成分)
                                    配合量(重量%)
           セリサイト
```

(多0))01-288233 (P2001-2858

カオリン	4		
二酸化チタン	9.3		
ベンガラ	0.4		
黄酸化鉄	0.8		
黒酸化鉄	0. 2		
ブロック共重合体(合成例14)	0.5		
流動パラフィン	4.5		
デカメチルシクロペンタシロキサン	1 2		
ポリオキシエチレン変性ジメチルポリ	シロキサン 4		
精製水	残 余		
1 , 3 – ブチレングリコ ー ル	5		
防腐剤	適量		
安定化剤	2. 1		
香料	適量		
(製法)水相を70℃で加熱攪拌後、粉体部を添加、ホ	却し、45℃で香料を添加し、室温まで冷却し、ファン		
モミキサー処理し、安定化剤を添加する。さらに70℃	デーション (W/O乳化型) を得る。		
に加熱した油相を加え、ホモミキサー処理する。攪拌冷	[0214]		
[処方例19] ネールエナメル			
(配 合 成 分)	配合量(重量%)		
ニトロセルロース	10		
アルキッド樹脂	1 0		
クエン酸アセチルトリブチル	5		
酢酸エチル	20		
酢酸ブチル	10		
エタノール	5		
トルエン	32		
パール剤	5		
ブロック共重合体 (合成例15)	3		
(製法) アルキッド樹脂の一部とクエン酸アセチルトリ	加、均一に分散し、ネールエナメルを得る。		
ブチルの一部にパール剤とブロック共重合体(合成例	[0215]		
1)を加えよく混合する。他の成分を混合し、これに添			
[処方例20] 染毛剤(カラーステ	ィック)		
(配 合 成 分)	配合量(重量%)		
カーボンブラック	2		
ミツロウ	15		
モクロウ	10		
ブロック共重合体(合成例13)	1		
流動パラフィン	65.8		
POE(20)セスキオレイン酸エス	テル 1.2		
香料	5		
酸化防止剤	適量		
(製法)油性成分を加熱融解、均一に混合後、カーボン	ック)を得る。		
ブラックを添加、混合、冷却し、染毛剤 (カラースティ	[0216]		
[処方例21] パウダリーファンデ	ーション		
(配合成分)	配合量(重量%)		
タルク	20.3		
マイカ	35		
カオリン	5		
二酸化チタン	1 0		
雲母チタン	3		

適量

適量

```
ステアリン酸亜鉛
                                      1
           ベンガラ
                                      1
           黄酸化鉄
                                      3
           黒酸化鉄
                                      0.2
           ナイロンパウダー
                                     10
           ブロック共重合体(合成例14)
                                      2
           スクワラン
                                      6
                                      1
           ミリスチン酸オクチルドデシル
           ジイソオクタン酸ネオペンチルグリコール
                                      2
                                      0.5
           モノオレイン酸ソルビタン
           防腐剤
                                    適 量
           酸化防止剤
                                     適量
           香料
                                    適量
(製法) タルクと着色顔料をブレンダーで混合、残りの
                              ンを得る。
粉体を添加した後、残りの成分を加え、粉砕機で粉砕、
                              [0217]
ふるいを通し、圧縮成型し、パウダリーファンデーショ
           [処方例22] 油性タイプ口紅
                                    配合量(重量%)
            (配合成分)
           二酸化チタン
                                      5
                                      9
           キャンデリラロウ
           固形パラフィン
                                      8
                                      5
           ミツロウ
           カルナウバロウ
                                      5
           ポリジメチルシロキサン(6mPa·s)
                                     26.5
           デカメチルシクロペンタシロキサン
                                     20
           ラノリン
                                     11
           イソプロピルミリスチン酸エステル
                                     10
           ブロック共重合体(合成例25,27)
                                      0.5
           香料
                                    適量
           酸化防止剤
                                    適量
(製法) 二酸化チタン、香料を除く成分を混合し加熱融
                              油性タイプ口紅を得る。
解した後、二酸化チタン、香料を加えホモミキサーで均
                              [0218]
一に分散する。型に流し込み急冷しスティック状とし、
           [処方例23] エモリエントローション
                                    配合量(重量%)
            (配合成分)
           ステアリン酸
                                      2
           セチルアルコール
                                      1.5
           ワセリン
                                      4
           スクワラン
                                      5
           レチノール
                                      0.5
           ブロック共重合体(合成例26)
                                      0.5
           アクリル酸-アクリル酸エステル共重合体
                                      0.1
                                     適量
           水酸化カリウム
           ジプロピレングリコール
                                      5
                                      3
           ポリエチレングリコール (PEG1500)
                                      0.3
           Lーグルタミン
                                    通 量
           トリエタノールアミン
           緩衝剤
                                    通量
```

防腐剤

香料

精製水

(製法)精製水に保湿剤、アルカリを加えた後、L-グルタミン酸、緩衝剤を加える。油溶性成分を油分に溶解し、水相とホモミキサーで乳化し、エモリエントローションを得る。

[0219]

【発明の効果】本発明によるブロック共重合体は、ポリ

残 余

エチレングリコール部に共重合させるモノマーを適宜、 選択して用いることにより、増粘剤、乳化剤、皮膜剤、 顔料分散剤、経皮吸収促進剤等として適用可能であり、 これらを化粧料に配合することにより、優れた機能の化 粧料を得ることができる。

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FI		テーマユード(参考)
A 6 1 K	7/02		A 6 1	K 7/02	Α
	7/027			7/027	
	7/031			7/031	
	7/032			7/032	
	7/043			7/043	
	7/11			7/11	
	7/13			7/13	
	7/38			7/38	
	7/44			7/44	

(72)発明者 梁木 利男

神奈川県横浜市港北区新羽町1050番地 株式会社資生堂第一リサーチセンター内

Fターム(参考) 4C083 AA082 AA122 AB032 AB132

AB212 AB222 AB232 AB242

AB432 AB442 AC012 AC022

AC082 AC102 AC122 AC132

AC172 AC182 AC242 AC342

AC352 AC372 AC392 AC402

AC422 AC442 AC472 AC522

AC542 AC582 AC792 AD022 AD041 AD042 AD072 AD091

10041 AD042 AD072 AD091

AD092 AD112 AD131 AD132

AD151 AD152 AD162 AD172

AD262 AD272 AD392 AD491

AD512 AD622 AD642 BB01 BB60 CC04 CC07 CC12 CC13

DD00 CC04 CC07 CC12 CC13

CC14 CC17 CC19 CC28 CC32

CC36 DD01 DD08 DD11 DD21

DD32 DD33 DD41

4J026 HA06 HA11 HA19 HA20 HA22

HA45 HA46 HE02