Algoritmos em Grafos: Fluxo Máximo em Redes de Transporte

R. Rossetti, A. P. Rocha, L. Ferreira, J. P. Fernandes, F. Ramos, G. Leão FEUP, MIEIC

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Rede de transporte

- Modelar fluxos conservativos entre dois pontos através de canais com capacidade limitada
 - s: fonte (produtor)
 - t: poço (consumidor)
 - fluxo não pode ultrapassar a capacidade da aresta
 - soma dos fluxos de entrada num vértice intermédio igual à soma dos fluxos de saída
- Por vezes as arestas têm custos associados (custo de transportar uma unidade de fluxo)

FEUP Universidade do Porto

AL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Redes com múltiplas fontes e poços

 Caso de múltiplas fontes e poços (ou mesmo de vértices que podem ser simultaneamente fontes, poços e vértices intermédios) é facilmente redutível ao caso base (uma fonte e um poço)

 Se a rede tiver custos nas arestas, as arestas adicionadas têm custo 0

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Problema do fluxo máximo

 Encontrar um fluxo de valor máximo (fluxo total que parte de s / chega a t)

Formalização

Dados de entrada:

 c_{ii} - capacidade da aresta que vai do nó i a j (0 se não existir)

Dados de saída (variáveis a calcular):

 f_{ij} - fluxo que atravessa a aresta que vai do nó i para o nó j $(0~{\rm se}~{\rm n\~ao}~{\rm existir})$

Restrições:

$$0 \le f_{ij} \le c_{ij}, \forall_{ij}$$
$$\sum_{j} f_{ij} = \sum_{j} f_{ji}, \forall_{i \ne s,t}$$

Objectivo:

$$\max \sum_{i} f_{sj}$$

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Exemplos de aplicação

- Rede de abastecimento de líquido ponto a ponto
- Tráfego entre dois pontos
- Emparelhamento máximo em grafos bipartidos (maximum bipartite matching)

Algoritmo de Ford-Fulkerson (1955)

- Estruturas de dados:
 - G grafo base de capacidades c(v,w)
 - G_f grafo de fluxos f(v,w)
 - inicialmente fluxos iguais a 0
 - no fim, tem o fluxo máximo
 - G_r grafo de resíduos (auxiliar)
 - para cada arco (v, w) em G com c(v, w) > f(v, w), cria-se um arco no mesmo sentido em G_r de resíduo igual a c(v, w) f(v, w) (capacidade residual, ou seja, ainda disponível)
 - para cada arco (v, w) em G com f(v, w) > 0, cria-se um arco em sentido inverso em G_r de resíduo igual a f(v, w)
 - necessário para garantir que se encontra a solução óptima (ver exemplo)!

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

. #.

Algoritmo de Ford-Fulkerson (1955)

- Método (dos caminhos de aumento):
 - Enquanto existirem caminhos entre s e t em G_r
 - Seleccionar um caminho qualquer em G_r entre s e t (caminho de aumento)
 - Determinar o valor mínimo (f) nos arcos desse caminho
 - Aumentar esse valor de fluxo (f) a cada um dos arcos correspondentes em G_f
 - Recalcular G_r

FEUP Universidade do Porto Faculdade de Engenharia

AL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Análise do algoritmo de Ford-Fulkerson

- Se as capacidades forem números racionais, o algoritmo termina com o fluxo máximo
- Se as capacidades forem inteiros e o fluxo máximo F
 - Algoritmo tem a propriedade de integralidade: os fluxos finais são também inteiros
 - Bastam F iterações (fluxo aumenta pelo menos 1 por iteração)
 - Cada iteração pode ser feita em tempo O(|E|)
 - Tempo de execução total: O(F |E|) mau

FEUP Universidade do Porto

AL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Algoritmo de Edmonds-Karp (1969)

- Em cada iteração do algoritmo de Ford-Fulkerson escolhe-se um caminho de aumento de comprimento mínimo
 - O exemplo apresentado anteriormente já obedece a este critério!
 - Um caminho de aumento mais curto pode ser encontrado em tempo O(|E|) através de pesquisa em largura
 - N° máximo de aumentos é |E|.|V| (ver referências)
 - Tempo de execução: O(|V| |E|2)

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Implementação

- Para efetuar os cálculos num único grafo, guardam-se:
 - Em cada aresta:
 - orig: apontador para vértice de origem
 - dest: apontador para vértice de destino
 - capacity: capacidade da aresta
 - flow: fluxo na aresta
 - Em cada vértice:
 - outgoing: vetor de apontadores para arestas que saem do vértice incoming: vetor de apontadores para arestas dirigidas ao vértice
 - visited: campo booleano usado na procura do caminho de aumento
 - path: apontador para aresta anterior no caminho de aumento
 - No grafo:
 - vertexSet: vetor de apontadores para vértices
- O grafo de resíduos é determinado "on the fly"
 - Arestas percorridas no sentido normal têm resíduo = capacidade fluxo
 - Arestas percorridas no sentido inverso têm resíduo = fluxo

FEUP Universidade do Porto

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Pseudo-código FordFulkerson(g, s, t): 1. ResetFlows(g) 2. tot ← 0 3. while FindAugmentationPath(g, s, t) do 4. f ← FindMinResidualAlongPath(g, s, t) 5. AugmentFlowAlongPath(g, s, t, f) 6. tot ← tot + f 7. return tot ResetFlows(g): 1. for v ∈ vertexSet(g) do 2. flow(v) ← 0

```
FindAugmentationPath(g,s,t): // Edmonds-Karp (breadth-first)
  1. for v ∈ vertexSet(g) do visited(v) ← false
   2. visited(s) \leftarrow true
   3. 0 \leftarrow \emptyset
   4. ENQUEUE(Q, s)
   5. while Q \neq \emptyset \land \neg visited(t) do
           v \leftarrow DEQUEUE(Q)
   6.
   7.
           for e \in outgoing(v) do // direct residual edges
   8.
               TestAndVisit(Q, e, dest(e), capacity(e) - flow(e))
           for e ∈ incoming(v) do // reverse residual edges
   9.
  10.
              TestAndVisit(Q, e, orig(e), flow(e))
  11. return visited(t)
   TestAndVisit(Q, e, w, residual):
   1. if ¬ visited(w) ∧ residual > 0 then
         visited(w) \leftarrow true
   2.
   3.
          path(w) \leftarrow e // previous edge in shortest path
          ENQUEUE (Q, w)
FEUP Universidade do Porto Faculdade de Engenharia
```

```
FindMinResidualAlongPath(g, s, t):
 1. f \leftarrow \infty
 2.
     v ← t
 3. while v \neq s do
 4.
         e \leftarrow path(v)
         if dest(e) = v then // direct residual edge
 5.
             f \leftarrow \min(f, capacity(e) - flow(e))
 6.
 7.
             v \leftarrow orig(e)
 8.
          else // reverse residual edge
 9.
            f \leftarrow \min(f, flow(e))
 10.
             v \leftarrow dest(e)
 11. return f
 AugmentFlowAlongPath(g, s, t, f):
 1. v \leftarrow t
 2. while v \neq s do
 3.
         e \leftarrow path(v)
         if dest(e) = v then // direct residual edge
 4.
 5.
             flow(e) \leftarrow flow(e) + f
 6.
             v \leftarrow orig(e)
          else // reverse residual edge
 7.
 8.
             flow(e) \leftarrow flow(e) - f
 9.
             v \leftarrow dest(e)
FEUP Universidade do Porto
```

year	authors	complexity
1955	Ford-Fulkerson [19]	O(mnU)
1970	Dinic [15]	$O(mn^2)$
1969	Edmonds-Karp [17]	$O(m^2n)$
1972	Dinic [15], Edmonds-Karp [17]	$O(m^2 \log U)$
1973	Dinic [16], Gabow [20]	$O(mn \log U)$
1974	Karzanov [37]	$O(n^3)$
1977	Cherkassky [11]	$O(n^2m^{1/2})$
1980	Galil-Naamad [21]	$O(mn(\log n)^2)$
1983	Sleator-Tarjan [44]	$O(mn\log n)$
1986	Goldberg-Tarjan [26]	$O(mn\log(n^2/m))$
1987	Ahuja-Orlin [3]	$O(mn + n^2 \log U)$
1987	Ahuja-Orlin-Tarjan [4]	$O(mn\log(2+n\sqrt{\log U/m}))$
1990	Cheriyan-Hagerup-Mehlhorn [9]	$O(n^3/\log n)$
1990	Alon [5]	$O(mn + n^{8/3}\log n)$
1992	King-Rao-Tarjan [38]	$O(mn + n^{2+\epsilon})$
1993	Phillips-Westbrook [42]	$O(mn\log_{m/n}n + n^2(\log n)^{2+\epsilon})$
1994	King-Rao-Tarjan [39]	$O(mn\log_{m/(n\log n)} n)$
1997	Goldberg-Rao [23]	$O(\min\{m^{1/2}, n^{2/3}\}m \log(n^2/m) \log U)$

Dualidade entre fluxo máximo e corte mínimo

- Teorema: O valor do fluxo máximo numa rede de transporte é igual à capacidade do corte mínimo
 - Um corte (S,T) numa rede de transporte G=(V,E) com fonte s e poço t é uma partição de V em conjuntos S e T=V-S tal que s∈S e t∈T
 - A capacidade de um corte (S,T) é a soma das capacidades das arestas cortadas dirigidas de S para T
 - Um corte mínimo é um corte cuja capacidade é mínima

Cortes mínimos na rede do exemplo:

FEUP Universidade do Porto

FEUP Universion

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

*Algoritmo de Dinic (1970)

- Refina algoritmo de Edmonds-Karp, evitando trabalho repetido a achar sucessivos caminhos de aumento de igual comprimento mínimo:
 - 1. Inicializar os grafos de fluxos (Gf) e de resíduos (Gr) como antes
 - 2. Calcular o nível de cada vértice, igual à distância mínima a s em Gr
 - 3. Se nível(t) = ∞ , terminar
 - 4. "Esconder" as arestas (u,v) de Gr em que $nivel(v) \neq nivel(u) + 1$
 - Não podem fazer parte de um caminho mais curto de s para t em Gr!
 - Sem elas, qualquer caminho de s para t em Gr tem comprimento mínimo!
 - 5. Enquanto existirem caminhos de aumento em *Gr* (ignorando as arestas escondidas), seleccionar e aplicar um caminho de aumento qualquer
 - Se forem adicionadas a Gr arestas de sentido inverso ao fluxo, ficam também escondidas, pois apenas servem para encontrar caminhos mais compridos
 - 6. Se nível(t) = |V|-1, terminar; senão saltar para o passo 2 para recalcular os níveis (voltando a considerar todas as arestas de Gr)

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

<#:

* Eficiência do algoritmo de Dinic

- Passo 2 (cálculo do nível de cada vértice)
 - Cada execução pode ser feita em tempo O(|E|) (assumindo |E|>|V|) por uma simples pesquisa em largura (ver explicação das referências)
 - O nº máximo de execuções é |V|, pois cada nova execução só acontece quando se esgotaram os caminhos de aumento de um dado comprimento, e o comprimento dos caminho de aumento só pode crescer até |V|
- Passo 5 (selecionar e aplicar um caminho de aumento)
 - O nº máximo de execuções (seleção e aplicação de um caminho de aumento) é o nº máximo de caminhos de aumento, que é o mesmo que no algoritmo de Edmonds-Karp, ou seja, O(|E|.|V|) ~ (O(|E|) para cada comprimento, multiplicado por |V| comprimentos possíveis)
 - Cada caminho de aumento pode ser encontrado em tempo O(|V|) no grafo Gr (ignorando as arestas escondidas) por simples pesquisa em profundidade, pois já não há que ter a preocupação de encontrar um caminho mais curto
- Total: O(|V|² |E|) (melhoria significativa para grafos densos)

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

4#

*Algoritmo de Dinic em redes unitárias

- Rede unitária:
 - Capacidades unitárias
 - Todos os vértices excepto s e t têm no máximo uma aresta a entrar ou uma aresta a sair
- Surge em problemas de emparelhamento em grafos bipartidos
- Nesse caso o nº máximo de "renivelamentos" é |V|^{1/2} (vide referências)
- Para cada nível/comprimento, os vários caminhos de aumento podem ser seleccionados e aplicados em tempo O(|E|), numa única passagem de visita em profundidade pelo grafo nivelado
 - Uma vez que as capacidades são unitárias, as arestas usadas num caminho não têm de voltar a ser consideradas
- Total: O(|V|^{1/2} |E|)

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte

Referências e informação adicional

- "Introduction to Algorithms", 3rd Edition, T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein., MIT Press, 2009
 - Chapter 26 Maximum Flow
- "Data Structures and Algorithm Analysis in Java", Second Edition, Mark Allen Weiss, Addison Wesley, 2006
- "The Algorithm Design Manual", Steven S. Skiena, Springer-Verlag, 1998

FEUP Universidade do Porto Faculdade de Engenharia

CAL: Algoritmos em Grafos: Fluxo máximo em redes de transporte