Unidad 5. Fórmulas y funciones trigonométricas

Fórmulas trigonométricas

Página 131

1 Demuestra la fórmula II.2 a partir de la fórmula:

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$cos(\alpha - \beta) = cos(\alpha + (-\beta)) = cos\alpha cos(-\beta) - sen\alpha sen(-\beta) =$$

= $cos\alpha cos\beta - sen\alpha (-sen\beta) = cos\alpha cos\beta + sen\alpha sen\beta$

2 Demuestra II.3 a partir de $tg(\alpha + \beta) = \frac{tg(\alpha + tg(\beta))}{1 - tg(\alpha tg(\beta))}$

$$tg(\alpha - \beta) = tg(\alpha + (-\beta)) = \frac{tg\alpha + tg(-\beta)}{1 - tg\alpha tg(-\beta)} \stackrel{(*)}{=} \frac{tg\alpha + (-tg\beta)}{1 - tg\alpha(-tg\beta)} = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

(*) Como
$$\begin{cases} sen(-\alpha) = -sen \alpha \\ cos(-\alpha) = cos \alpha \end{cases} \rightarrow tg(-\alpha) = -tg \alpha$$

3 Demuestra la fórmula II.3 a partir de las siguientes:

sen
$$(\alpha - \beta)$$
 = sen α cos β – cos α sen β

$$cos(\alpha - \beta) = cos \alpha cos \beta + sen \alpha sen \beta$$

$$tg(\alpha - \beta) = \frac{sen(\alpha - \beta)}{cos(\alpha - \beta)} = \frac{sen\alpha\cos\beta - cos\alpha\sin\beta}{cos\alpha\cos\beta + sen\alpha\sin\beta} = \frac{\frac{sen\alpha\cos\beta}{cos\alpha\cos\beta} - \frac{cos\alpha\sin\beta}{cos\alpha\cos\beta}}{\frac{cos\alpha\cos\beta}{cos\alpha\cos\beta} + \frac{sen\alpha\sin\beta}{cos\alpha\cos\beta}} = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

- (*) Dividimos numerador y denominador por $\cos \alpha \cos \beta$.
- 4 Si sen 12° = 0,2 y sen 37° = 0,6, halla cos 12°, tg 12°, cos 37° y tg 37°. Calcula, a partir de ellas, las razones trigonométricas de 49° y de 25°, usando las fórmulas (I) y (II).

•
$$sen 12^{\circ} = 0.2$$

$$cos 12^{\circ} = \sqrt{1 - sen^2 12^{\circ}} = \sqrt{1 - 0.04} = 0.98$$

$$tg\ 12^{\circ} = \frac{0.2}{0.98} = 0.2$$

•
$$sen 37^{\circ} = 0.6$$

$$cos 37^{\circ} = \sqrt{1 - sen^2 37^{\circ}} = \sqrt{1 - 0.36} = 0.8$$

$$tg\ 37^{\circ} = \frac{0.6}{0.8} = 0.75$$

• $49^{\circ} = 12^{\circ} + 37^{\circ}$, luego:

$$sen 49^{\circ} = sen (12^{\circ} + 37^{\circ}) = sen 12^{\circ} cos 37^{\circ} + cos 12^{\circ} sen 37^{\circ} = 0, 2 \cdot 0, 8 + 0, 98 \cdot 0, 6 = 0, 748$$

$$\cos 49^{\circ} = \cos (12^{\circ} + 37^{\circ}) = \cos 12^{\circ} \cos 37^{\circ} - \sin 12^{\circ} \sin 37^{\circ} = 0.98 \cdot 0.8 - 0.2 \cdot 0.6 = 0.664$$

$$tg \, 49^{\circ} = tg \, (12^{\circ} + 37^{\circ}) = \frac{tg \, 12^{\circ} + tg \, 37^{\circ}}{1 - tg \, 12^{\circ} \, tg \, 37^{\circ}} = \frac{0, 2 + 0, 75}{1 - 0, 2 \cdot 0, 75} = 1,12$$

(Podría calcularse
$$tg 49^{\circ} = \frac{sen 49^{\circ}}{cos 49^{\circ}}$$
).

•
$$25^{\circ} = 37^{\circ} - 12^{\circ}$$
, luego:
 $sen\ 25^{\circ} = sen\ (37^{\circ} - 12^{\circ}) = sen\ 37^{\circ}\ cos\ 12^{\circ} - cos\ 37^{\circ}\ sen\ 12^{\circ} = 0,6 \cdot 0,98 - 0,8 \cdot 0,2 = 0,428$
 $cos\ 25^{\circ} = cos\ (37^{\circ} - 12^{\circ}) = cos\ 37^{\circ}\ cos\ 12^{\circ} + sen\ 37^{\circ}\ sen\ 12^{\circ} = 0,8 \cdot 0,98 + 0,6 \cdot 0,2 = 0,904$
 $tg\ 25^{\circ} = tg\ (37^{\circ} - 12^{\circ}) = \frac{tg\ 37^{\circ} - tg\ 12^{\circ}}{1 + tg\ 37^{\circ}\ tg\ 12^{\circ}} = \frac{0,75 - 0,2}{1 + 0,75 \cdot 0,2} = 0,478$

5 Demuestra esta igualdad:

$$\frac{\cos(a+b)+\cos(a-b)}{\sin(a+b)+\sin(a-b)} = \frac{1}{tg\ a}$$

$$\frac{\cos(a+b)+\cos(a-b)}{\sin(a+b)+\sin(a-b)} = \frac{\cos a \cos b - \sin a \sin b + \cos a \cos b + \sin a \sin b}{\sin a \cos b + \cos a \cos b + \sin a \cos b - \cos a \sin b} =$$

$$= \frac{2\cos a \cos b}{2\sin a \cos b} = \frac{\cos a}{\sin a} = \frac{1}{tg a}$$

6 Demuestra las fórmulas (III.1) y (III.3) haciendo $\alpha = \beta$ en las fórmulas (I).

$$sen 2\alpha = sen (\alpha + \alpha) = sen \alpha cos \alpha + cos \alpha sen \alpha = 2 sen \alpha cos \alpha$$

$$tg\ 2\alpha = tg\ (\alpha + \alpha) = \frac{tg\ \alpha + tg\ \alpha}{1 - tg\ \alpha\ tg\ \alpha} = \frac{2\ tg\ \alpha}{1 - tg^2\ \alpha}$$

7 Halla las razones trigonométricas de 60° usando las de 30°.

$$sen 60^{\circ} = sen (2 \cdot 30^{\circ}) = 2 sen 30^{\circ} cos 30^{\circ} = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

$$cos 60^{\circ} = cos (2 \cdot 30^{\circ}) = cos^{2} 30^{\circ} - sen^{2} 30^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$$

$$tg\ 60^{\circ} = tg\ (2\cdot 30^{\circ}) = \frac{2\,tg\ 30^{\circ}}{1 - tg^2\ 30^{\circ}} = \frac{2\cdot\sqrt{3}\,/3}{1 - (\sqrt{3}\,/3)^2} = \frac{2\cdot\sqrt{3}\,/3}{1 - 3/9} = \frac{2\cdot\sqrt{3}\,/3}{2/3} = \sqrt{3}$$

8 Halla las razones trigonométricas de 90° usando las de 45°.

$$sen 90^{\circ} = sen (2 \cdot 45^{\circ}) = 2 sen 45^{\circ} cos 45^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 1$$

$$cos 90^{\circ} = cos (2 \cdot 45^{\circ}) = cos^{2} 45^{\circ} - sen^{2} 45^{\circ} = \left(\frac{\sqrt{2}}{2}\right)^{2} - \left(\frac{\sqrt{2}}{2}\right)^{2} = 0$$

$$tg 90^{\circ} = tg (2 \cdot 45^{\circ}) = \frac{2 tg 45^{\circ}}{1 - tg^2 45^{\circ}} = \frac{2 \cdot 1}{1 - 1} \rightarrow \text{No existe.}$$

9 Demuestra que: $\frac{2 sen \alpha - sen 2\alpha}{2 sen \alpha + sen 2\alpha} = \frac{1 - cos \alpha}{1 + cos \alpha}$

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \operatorname{cos} \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \operatorname{cos} \alpha} = \frac{2 \operatorname{sen} \alpha \left(1 - \operatorname{cos} \alpha\right)}{2 \operatorname{sen} \alpha \left(1 + \operatorname{cos} \alpha\right)} = \frac{1 - \operatorname{cos} \alpha}{1 + \operatorname{cos} \alpha}$$

Página 132

Hazlo tú. Halla cos 15° y tg 15°.

$$\cos 15^{\circ} = \cos \frac{30^{\circ}}{2} = \sqrt{\frac{1 + \cos 30^{\circ}}{2}} = \sqrt{\frac{1 + \sqrt{3}/2}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}}$$

$$tg\ 15^{\circ} = \sqrt{\frac{1-\cos 30^{\circ}}{1+\cos 30^{\circ}}} = \sqrt{\frac{1-\sqrt{3}/2}{1+\sqrt{3}/2}} = \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}} = 2-\sqrt{3}$$

- 10 Siguiendo las indicaciones que se dan, demuestra detalladamente las fórmulas IV.1, IV.2 y IV.3.
 - $\cos \alpha = \cos \left(2 \cdot \frac{\alpha}{2}\right) = \cos^2 \frac{\alpha}{2} \sin^2 \frac{\alpha}{2}$

Por la igualdad fundamental:

$$cos^2 \frac{\alpha}{2} + sen^2 \frac{\alpha}{2} = 1 \rightarrow 1 = cos^2 \frac{\alpha}{2} + sen^2 \frac{\alpha}{2}$$

De aquí:

a) Sumando ambas igualdades:

$$1 + \cos \alpha = 2\cos^2\frac{\alpha}{2} \rightarrow \cos^2\frac{\alpha}{2} = \frac{1 + \cos \alpha}{2} \rightarrow \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1 + \cos \alpha}{2}}$$

b) Restando las igualdades (2.^a – 1.^a):

$$1 - \cos \alpha = 2 \operatorname{sen}^2 \frac{\alpha}{2} \rightarrow \operatorname{sen}^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} \rightarrow \operatorname{sen} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

• Por último:

$$tg \frac{\alpha}{2} = \frac{sen \alpha/2}{cos \alpha/2} = \frac{\pm \sqrt{\frac{1 - cos \alpha}{2}}}{\pm \sqrt{\frac{1 + cos \alpha}{2}}} = \sqrt{\frac{1 - cos \alpha}{1 + cos \alpha}}$$

- 11 Sabiendo que $\cos 78^\circ = 0.2$, calcula $\sec 78^\circ$ y $tg 78^\circ$. Averigua las razones trigonométricas de 39° aplicando las fórmulas del ángulo mitad.
 - $cos 78^{\circ} = 0.2$

$$sen 78^{\circ} = \sqrt{1 - cos^2 78^{\circ}} = \sqrt{1 - 0.2^2} = 0.98$$

$$tg78^{\circ} = \frac{0.98}{0.2} = 4.9$$

• sen 39° = sen $\frac{78^{\circ}}{2}$ = $\sqrt{\frac{1-\cos 78^{\circ}}{2}}$ = $\sqrt{\frac{1-0.2}{2}}$ = 0,63

$$\cos 39^{\circ} = \cos \frac{78^{\circ}}{2} = \sqrt{\frac{1 + \cos 78^{\circ}}{2}} = \sqrt{\frac{1 + 0.2}{2}} = 0.77$$

$$tg\ 39^{\circ} = tg\ \frac{78^{\circ}}{2} = \sqrt{\frac{1-\cos 78^{\circ}}{1+\cos 78^{\circ}}} = \sqrt{\frac{1-0.2}{1+0.2}} = 0.82$$

- 12 Halla las razones trigonométricas de 30° a partir de $\cos 60^{\circ} = 0.5$.
 - $cos 60^{\circ} = 0.5$

•
$$sen 30^\circ = sen \frac{60^\circ}{2} = \sqrt{\frac{1-0.5}{2}} = 0.5$$

$$\cos 30^\circ = \cos \frac{60^\circ}{2} = \sqrt{\frac{1+0.5}{2}} = 0.866$$

$$tg\ 30^{\circ} = tg\ \frac{60^{\circ}}{2} = \sqrt{\frac{1-0.5}{1+0.5}} = 0.577$$

- 13 Halla las razones trigonométricas de 45° a partir de $\cos 90^{\circ} = 0$.
 - $cos 90^{\circ} = 0$

•
$$sen 45^\circ = sen \frac{90^\circ}{2} = \sqrt{\frac{1-0}{2}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$

$$\cos 45^\circ = \cos \frac{90^\circ}{2} = \sqrt{\frac{1+0}{2}} = \frac{\sqrt{2}}{2}$$

$$tg 45^{\circ} = tg \frac{90^{\circ}}{2} = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1$$

14 Demuestra esta igualdad: $2 tg \alpha \cdot sen^2 \frac{\alpha}{2} + sen \alpha = tg \alpha$

$$2 tg \ \alpha \cdot sen^2 \frac{\alpha}{2} + sen \ \alpha = 2 tg \ \alpha \cdot \frac{1 - cos \ \alpha}{2} + sen \ \alpha = \frac{sen \ \alpha}{cos \ \alpha} (1 - cos \ \alpha) + sen \ \alpha = sen \ \alpha \left(\frac{1 - cos \ \alpha}{cos \ \alpha} + 1\right) =$$

$$= sen \ \alpha \left(\frac{1 - cos \ \alpha + cos \ \alpha}{cos \ \alpha}\right) = sen \ \alpha \cdot \frac{1}{cos \ \alpha} = \frac{sen \ \alpha}{cos \ \alpha} = tg \ \alpha$$

15 Demuestra la siguiente igualdad:

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = tg^2 \frac{\alpha}{2}$$

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cdot \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cdot \cos \alpha} = \frac{2 \operatorname{sen} \alpha \cdot (1 - \cos \alpha)}{2 \operatorname{sen} \alpha \cdot (1 + \cos \alpha)} = \frac{1 - \cos \alpha}{1 + \cos \alpha} = tg^2 \frac{\alpha}{2}$$

Página 133

- 16 Para demostrar las fórmulas (V.3) y (V.4), da los siguientes pasos:
 - Expresa en función de α y β:

$$cos(\alpha + \beta) = ...$$
 $cos(\alpha - \beta) = ...$

- Suma y resta como hemos hecho arriba y obtendrás dos expresiones.
- Sustituye en las expresiones anteriores:

$$\alpha + \beta = A$$

$$\alpha - \beta = B$$

•
$$cos(\alpha + \beta) = cos \alpha cos \beta - sen \alpha sen \beta$$

$$cos(\alpha - \beta) = cos \alpha cos \beta + sen \alpha sen \beta$$

Sumando
$$\rightarrow cos(\alpha + \beta) + cos(\alpha - \beta) = 2 cos \alpha cos \beta$$
 (1)

Restando
$$\rightarrow cos(\alpha + \beta) - cos(\alpha - \beta) = -2 sen \alpha sen \beta$$
 (2)

• Llamando
$$\begin{cases} \alpha + \beta = A \\ \alpha - \beta = B \end{cases} \rightarrow \alpha = \frac{A+B}{2}, \ \beta = \frac{A-B}{2}$$
 (al resolver el sistema)

• Luego, sustituyendo en (1) y (2), se obtiene:

(1)
$$\rightarrow \cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$
 (2) $\rightarrow \cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$

17 Transforma en producto y calcula.

c)
$$\cos 75^{\circ} - \cos 15^{\circ}$$

a)
$$sen 75^{\circ} - sen 15^{\circ} = 2 cos \frac{75^{\circ} + 15^{\circ}}{2} sen \frac{75^{\circ} - 15^{\circ}}{2} = 2 cos 45^{\circ} sen 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2}$$

b)
$$sen 75^{\circ} + sen 15^{\circ} = 2 sen \frac{75^{\circ} + 15^{\circ}}{2} cos \frac{75^{\circ} - 15^{\circ}}{2} = 2 sen 45^{\circ} cos 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$$

c)
$$\cos 75^{\circ} - \cos 15^{\circ} = -2 \sin \frac{75^{\circ} + 15^{\circ}}{2} \sin \frac{75^{\circ} - 15^{\circ}}{2} = -2 \sin 45^{\circ} \cos 30^{\circ} = -2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{6}}{2}$$

18 Expresa en forma de producto el numerador y el denominador de esta fracción y simplifica el resultado:

$$\frac{sen 4a + sen 2a}{cos 4a + cos 2a}$$

$$\frac{\sec 4a + \sec 2a}{\cos 4a + \cos 2a} = \frac{2 \sec \frac{4a + 2a}{2} \cos \frac{4a - 2a}{2}}{2 \cos \frac{4a + 2a}{2} \cos \frac{4a - 2a}{a}} = \frac{2 \sec 3a}{2 \cos 3a} = tg \ 3a$$

Ecuaciones trigonométricas

Página 134

Hazlo tú. Resuelve sen $(\alpha + 30^{\circ}) = 2 \cos \alpha$.

$$sen (\alpha + 30^{\circ}) = 2 cos \alpha$$

$$sen \alpha cos 30^{\circ} + cos \alpha sen 30^{\circ} = 2 cos \alpha$$

$$\frac{1}{2}$$
 sen $\alpha + \frac{\sqrt{3}}{2}$ cos $\alpha = 2$ cos α

Dividimos los dos miembros entre $\cos \alpha$:

$$\frac{1}{2} tg \alpha + \frac{\sqrt{3}}{2} = 2 \rightarrow tg \alpha + \sqrt{3} = 4 \rightarrow tg \alpha = 4 - \sqrt{3}$$

Soluciones:
$$\begin{cases} \alpha_1 = 66^{\circ} 12' 22'' \\ \alpha_2 = 246^{\circ} 12' 22'' \end{cases}$$

Hazlo tú. Resuelve $\cos \alpha = \sin 2\alpha$.

$$\cos \alpha = \sin 2\alpha$$

$$\cos \alpha = 2 \operatorname{sen} \alpha \cos \alpha \rightarrow \cos \alpha - 2 \operatorname{sen} \alpha \cos \alpha = 0 \rightarrow \cos \alpha (1 - 2 \operatorname{sen} \alpha) = 0$$

Posibles soluciones:
$$\begin{cases} \cos \alpha = 0 \rightarrow \alpha_1 = 90^\circ, \ \alpha_2 = 270^\circ \\ 1 - 2 \sin \alpha = 0 \rightarrow \sin \alpha = \frac{1}{2} \rightarrow \alpha_3 = 30^\circ, \ \alpha_4 = 150^\circ \end{cases}$$

Al comprobarlas sobre la ecuación inicial, vemos que las cuatro soluciones son válidas.

Página 135

Hazlo tú. Resuelve sen 3α – sen α = 0.

$$sen 3\alpha - sen \alpha = 0$$

$$2\cos\frac{3\alpha+\alpha}{2}\operatorname{sen}\frac{3\alpha-\alpha}{2}=0 \ \to \ 2\cos2\alpha\operatorname{sen}\alpha=0 \ \to \ \cos2\alpha\operatorname{sen}\alpha=0$$

Si
$$\cos 2\alpha = 0 \rightarrow \begin{cases} 2\alpha = 90^{\circ} \rightarrow \alpha_{1} = 45^{\circ} \\ 2\alpha = 270^{\circ} \rightarrow \alpha_{2} = 135^{\circ} \\ 2\alpha = 90^{\circ} + 360^{\circ} = 450^{\circ} \rightarrow \alpha_{3} = 225^{\circ} \\ 2\alpha = 270^{\circ} + 360^{\circ} = 630^{\circ} \rightarrow \alpha_{4} = 315^{\circ} \end{cases}$$

Si sen
$$\alpha = 0 \rightarrow \alpha_5 = 0^\circ$$
, $\alpha_6 = 180^\circ$

1 Resuelve.

a)
$$tg \alpha = -\sqrt{3}$$

b) sen
$$\alpha = \cos \alpha$$

c)
$$sen^2 \alpha = 1$$

d) sen
$$\alpha = tg \alpha$$

a)
$$x = 120^{\circ} + k \cdot 360^{\circ}$$
 o bien $x = 300^{\circ} + k \cdot 360^{\circ}$

Las dos soluciones quedan recogidas en:

$$x = 120^{\circ} + k \cdot 180^{\circ} = \frac{2\pi}{3} + k \pi \text{ rad} = x \text{ con } k \in \mathbb{Z}$$

b)
$$x = \frac{\pi}{4} + k \pi \text{ rad con } k \in \mathbb{Z}$$

c) Si
$$sen x = 1 \rightarrow x = \frac{\pi}{2} + 2k \pi \text{ rad}$$

Si $sen x = -1 \rightarrow x = \frac{3\pi}{2} + 2k \pi \text{ rad}$ $\Rightarrow x = \frac{\pi}{2} + k \pi \text{ rad con } k \in \mathbb{Z}$

d) En ese caso debe ocurrir que:

O bien
$$sen \ x = 0 \to x = k \pi \text{ rad}$$

O bien $cos \ x = 1 \to x = 2k \pi \text{ rad}$ $\to x = k \pi \text{ rad con } k \in \mathbb{Z}$

2 Resuelve estas ecuaciones:

a)
$$2 \cos^2 \alpha + \cos \alpha - 1 = 0$$

b)
$$2 sen^2 \alpha - 1 = 0$$

c)
$$tg^2 \alpha - tg \alpha = 0$$

d)
$$2 sen^2 \alpha + 3 cos \alpha = 3$$

a)
$$\cos \alpha = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} = \frac{1/2 \rightarrow \alpha_1 = 60^\circ, \ \alpha_2 = 300^\circ}{-1 \rightarrow \alpha_3 = 180^\circ}$$

Las tres soluciones son válidas (se comprueba en la ecuación inicial).

b)
$$2 \operatorname{sen}^2 \alpha - 1 = 0 \rightarrow \operatorname{sen}^2 \alpha = \frac{1}{2} \rightarrow \operatorname{sen} \alpha = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen \alpha = \frac{\sqrt{2}}{2} \rightarrow \alpha_1 = 45^\circ, \alpha_2 = 135^\circ$$

• Si
$$sen \alpha = -\frac{\sqrt{2}}{2} \rightarrow \alpha_3 = -45^\circ = 315^\circ, \ \alpha_4 = 225^\circ$$

Todas las soluciones son válidas.

c)
$$tg^2 \alpha - tg \alpha = 0 \rightarrow tg \alpha (tg \alpha - 1) = 0$$
 $tg \alpha = 0 \rightarrow \alpha_1 = 0^\circ, \alpha_2 = 180^\circ$
 $tg \alpha = 1 \rightarrow \alpha_3 = 45^\circ, \alpha_4 = 225^\circ$

Todas las soluciones son válidas.

d)
$$2 sen^2 \alpha + 3 cos \alpha = 3 \xrightarrow{(*)} 2(1 - cos^2 \alpha) + 3 cos \alpha = 3$$

(*) Como
$$sen^2 \alpha + cos^2 \alpha = 1 \rightarrow sen^2 \alpha = 1 - cos^2 \alpha$$

$$2-2\cos^2\alpha+3\cos\alpha=3 \rightarrow 2\cos^2\alpha-3\cos\alpha+1=0$$

$$\cos \alpha = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} = \frac{1}{1/2}$$

Entonces:

• Si
$$\cos \alpha = 1 \rightarrow \alpha_1 = 0^\circ$$

• Si
$$\cos \alpha = \frac{1}{2} \rightarrow \alpha_2 = 60^\circ$$
, $\alpha_3 = -60^\circ = 300^\circ$

Las tres soluciones son válidas.

3 Transforma en producto sen 5α – sen 3α y resuelve después la ecuación sen 5α – sen 3α = 0.

$$sen \ 5\alpha - sen \ 3\alpha = 0 \ \rightarrow \ 2\cos\frac{5\alpha + 3\alpha}{2} \ sen \ \frac{5\alpha - 3\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} \ sen \ \frac{2\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{8\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{\alpha}{2} = 0 \ \rightarrow \ 2\cos\frac{\alpha$$

$$\rightarrow 2\cos 4\alpha \sin \alpha = 0 \rightarrow \begin{cases} \cos 4\alpha = 0 \\ \sin \alpha = 0 \end{cases}$$

• Si
$$\cos 4\alpha = 0$$
 \rightarrow
$$\begin{cases} 4\alpha = 90^{\circ} & \rightarrow \alpha_{1} = 22^{\circ} 30' \\ 4\alpha = 270^{\circ} & \rightarrow \alpha_{2} = 67^{\circ} 30' \\ 4\alpha = 90^{\circ} + 36^{\circ} & \rightarrow \alpha_{3} = 112^{\circ} 30' \\ 4\alpha = 270^{\circ} + 360^{\circ} & \rightarrow \alpha_{4} = 157^{\circ} 30' \end{cases}$$

• Si sen
$$\alpha = 0 \rightarrow \alpha_5 = 0^\circ$$
, $\alpha_6 = 180^\circ$

Comprobamos que las seis soluciones son válidas.

4 Resuelve.

a)
$$4 \cos 2\alpha + 3 \cos \alpha = 1$$

b)
$$tg 2\alpha + 2 \cos \alpha = 0$$

c)
$$\sqrt{2} \cos (\alpha/2) - \cos \alpha = 1$$

d) 2 sen
$$\alpha \cos^2 \alpha - 6 \sin^3 \alpha = 0$$

a)
$$4 \cos 2\alpha + 3 \cos \alpha = 1 \rightarrow 4 (\cos^2 \alpha - \sin^2 \alpha) + 3 \cos \alpha = 1 \rightarrow$$

$$\rightarrow 4 (\cos^2 \alpha - (1 - \cos^2 \alpha)) + 3 \cos \alpha = 1 \rightarrow 4 (2 \cos^2 \alpha - 1) + 3 \cos \alpha = 1 \rightarrow$$

$$\rightarrow 8 \cos^2 \alpha - 4 + 3 \cos \alpha = 1 \rightarrow 8 \cos^2 \alpha + 3 \cos \alpha - 5 = 0 \rightarrow$$

$$\rightarrow \cos \alpha = \frac{-3 \pm \sqrt{9 + 160}}{16} = \frac{-3 \pm 13}{16} = \frac{10/16 = 5/8 = 0,625}{-1}$$

• Si
$$\cos \alpha = 0.625 \rightarrow \alpha_1 = 51^{\circ} 19' 4.13'', \alpha_2 = -51^{\circ} 19' 4.13''$$

• Si
$$\cos \alpha = -1 \rightarrow \alpha_3 = 180^\circ$$

Al comprobar las soluciones, las tres son válidas.

b)
$$tg \ 2\alpha + 2 \cos \alpha = 0 \rightarrow \frac{2 tg \ \alpha}{1 - tg^2 \alpha} + 2 \cos \alpha = 0 \rightarrow$$

$$\rightarrow \frac{tg \alpha}{1 - tg^2 \alpha} + \cos \alpha = 0 \rightarrow \frac{\frac{sen \alpha}{\cos \alpha}}{1 - \frac{sen^2 \alpha}{\cos^2 \alpha}} + \cos \alpha = 0 \rightarrow$$

$$\rightarrow \frac{sen \ \alpha \cos \alpha}{\cos^2 \alpha - sen^2 \alpha} + \cos \alpha = 0 \rightarrow sen \ \alpha \cos \alpha + \cos \alpha \ (\cos^2 \alpha - sen^2 \alpha) = 0 \rightarrow$$

$$\rightarrow cos \alpha (sen \alpha + cos^2 \alpha - sen^2 \alpha) = 0 \rightarrow cos \alpha (sen \alpha + 1 - sen^2 \alpha - sen^2 \alpha) \rightarrow$$

$$\rightarrow \cos \alpha (1 + \sin \alpha - 2 \sin^2 \alpha) = 0 \rightarrow$$

$$\rightarrow \begin{cases} \cos \alpha = 0 \\ 1 + \sin \alpha - 2 \sin^2 \alpha = 0 \end{cases} \rightarrow \sin \alpha = \frac{-1 \pm \sqrt{1 + 8}}{-4} = \frac{-1/2}{1}$$

• Si
$$\cos \alpha = 0 \rightarrow \alpha_1 = 90^\circ$$
, $\alpha_2 = 270^\circ$

• Si sen
$$\alpha = -\frac{1}{2} \rightarrow \alpha_3 = 210^\circ, \ \alpha_4 = 330^\circ = -30^\circ$$

• Si sen
$$\alpha = 1 \rightarrow \alpha_5 = 90^\circ = \alpha_1$$

Al comprobar las soluciones, vemos que todas ellas son válidas.

c)
$$\sqrt{2} \cos \frac{\alpha}{2} - \cos \alpha = 1 \rightarrow \sqrt{2} \sqrt{\frac{1 + \cos \alpha}{2}} - \cos \alpha = 1 \rightarrow$$

$$\rightarrow \sqrt{1+\cos\alpha}-\cos\alpha=1 \rightarrow \sqrt{1-\cos\alpha}=1+\cos\alpha \rightarrow$$

$$\rightarrow 1 + \cos\alpha = 1 + \cos^2\alpha + 2\cos\alpha \rightarrow \cos^2\alpha + \cos\alpha = 0 \rightarrow \cos\alpha (\cos\alpha + 1) = 0$$

• Si
$$\cos \alpha = 0 \rightarrow \alpha_1 = 90^\circ$$
, $\alpha_2 = 270^\circ$

• Si
$$\cos \alpha = -1 \rightarrow \alpha_3 = 180^\circ$$

Al comprobar las soluciones, podemos ver que las únicas válidas son: $\alpha_1 = 90^{\circ}$ y $\alpha_3 = 180^{\circ}$

d) 2 sen
$$\alpha \cos^2 \alpha - 6 \sin^3 \alpha = 0 \rightarrow 2 \sin \alpha (\cos^2 \alpha - 3 \sin^2 \alpha) = 0 \rightarrow$$

$$\rightarrow 2 sen \alpha (cos^2 \alpha + sen^2 \alpha - 4 sen^2 \alpha) = 0 \rightarrow 2 sen \alpha (1 - 4 sen^2 \alpha) = 0$$

• Si sen
$$\alpha = 0 \rightarrow \alpha_1 = 0^\circ$$
, $\alpha_2 = 180^\circ$

• Si
$$sen^2 \alpha = \frac{1}{4} \rightarrow sen \alpha = \pm \frac{1}{2} \rightarrow \alpha_3 = 30^\circ, \ \alpha_4 = 150^\circ, \ \alpha_5 = 210^\circ, \ \alpha_6 = 330^\circ$$

Comprobamos las soluciones y observamos que son válidas todas ellas.

5 Resuelve las siguientes ecuaciones trigonométricas:

a)
$$sen (180^{\circ} - \alpha) = cos (270^{\circ} - \alpha) + cos 180^{\circ}$$

b) sen
$$(45^{\circ} - \alpha) + \sqrt{2}$$
 sen $\alpha = 0$

a)
$$sen (180^{\circ} - \alpha) = cos (270^{\circ} - \alpha) + cos 180^{\circ}$$

sen
$$180^{\circ}$$
 cos α – cos 180° sen α = cos 270° cos α + sen 270° sen α – 1

$$sen \ \alpha = -sen \ \alpha - 1 \ \rightarrow \ 2 \ sen \ \alpha = -1 \ \rightarrow \ sen \ \alpha = -\frac{1}{2} \ \rightarrow \ \alpha_1 = 210^\circ, \ \alpha_2 = 330^\circ$$

b)
$$sen(45^{\circ} - \alpha) + \sqrt{2} sen \alpha = 0$$

$$sen \ 45^{\circ} \cos \alpha - \cos 45^{\circ} sen \ \alpha + \sqrt{2} \ sen \ \alpha = 0 \ \rightarrow \ \frac{\sqrt{2}}{2} \cos \alpha - \frac{\sqrt{2}}{2} sen \ \alpha + \sqrt{2} \ sen \ \alpha = 0$$

$$\cos \alpha - \sin \alpha + 2 \sin \alpha = 0 \rightarrow \cos \alpha + \sin \alpha = 0$$

Dividimos entre $\cos \alpha$:

$$1 + tg \alpha = 0 \rightarrow tg \alpha = -1 \rightarrow \alpha_1 = 135^\circ, \alpha_2 = 315^\circ$$

Funciones trigonométricas

Página 137

- ¿Verdadero o falso?
 - a) El radián es una medida de longitud equivalente al radio.
 - b) Un radián es un ángulo algo menor que 60°.
 - c) Puesto que la longitud de la circunferencia es $2\pi r$, un ángulo completo (360°) tiene 2π radianes.
 - d) 180° es algo menos de 3 radianes.
 - e) Un ángulo recto mide $\pi/2$ radianes.
 - a) Falso. El radián es una medida angular, no es una medida de longitud.
 - b) Verdadero, porque un radián tiene 57° 17' 45".
 - c) Verdadero, porque cada radián abarca un arco de longitud r.
 - d) Falso. 180° es la mitad de un ángulo completo y equivale, por tanto, a π radianes, algo más de 3 radianes.
 - e) Verdadero. Un ángulo recto es la cuarta parte de un ángulo completo y tiene $\frac{2\pi}{4} = \frac{\pi}{2}$ radianes.
- 2 Pasa a radianes los siguientes ángulos:
 - a) 30°

b) 72°

c) 90°

d) 127°

e) 200°

f) 300°

Expresa el resultado en función de π y luego en forma decimal. Por ejemplo:

$$30^{\circ} = 30 \cdot \frac{\pi}{180} \text{ rad} = \frac{\pi}{6} \text{ rad} = 0.52 \text{ rad}$$

a)
$$\frac{2\pi}{360^{\circ}} \cdot 30^{\circ} = \frac{\pi}{6} \text{ rad } \approx 0,52 \text{ rad}$$

b)
$$\frac{2\pi}{360^{\circ}} \cdot 72^{\circ} = \frac{2\pi}{5} \text{ rad } \approx 1,26 \text{ rad}$$

c)
$$\frac{2\pi}{360^{\circ}} \cdot 90^{\circ} = \frac{\pi}{2} \text{ rad } \approx 1,57 \text{ rad}$$

d)
$$\frac{2\pi}{360^{\circ}} \cdot 127^{\circ} \approx 2,22 \text{ rad}$$

e)
$$\frac{2\pi}{360^{\circ}} \cdot 200^{\circ} = \frac{10\pi}{9} \text{ rad } \approx 3,49 \text{ rad}$$
 f) $\frac{2\pi}{360^{\circ}} \cdot 300^{\circ} = \frac{5\pi}{3} \text{ rad } \approx 5,24 \text{ rad}$

f)
$$\frac{2\pi}{360^{\circ}} \cdot 300^{\circ} = \frac{5\pi}{3} \text{ rad } \approx 5,24 \text{ rad}$$

- 3 Pasa a grados los siguientes ángulos:

- b) 0,83 rad
- c) $\frac{\pi}{5}$ rad

- d) $\frac{5\pi}{6}$ rad
- e) 3,5 rad
- f) π rad

- a) $\frac{360^{\circ}}{2\pi}$ · 2 = 114° 35′ 29,6′′
- b) $\frac{360^{\circ}}{2\pi} \cdot 0.83 = 47^{\circ} 33' 19.8''$
- c) $\frac{360^{\circ}}{2\pi} \cdot \frac{\pi}{5} = 36^{\circ}$
- d) $\frac{360^{\circ}}{2\pi} \cdot \frac{5\pi}{6} = 150^{\circ}$
- e) $\frac{360^{\circ}}{2\pi} \cdot 3.5 = 200^{\circ} 32' 6.8''$
- f) $\frac{360^{\circ}}{2\pi} \cdot \pi = 180^{\circ}$

4 Copia y completa la siguiente tabla en tu cuaderno y añade las razones trigonométricas (seno, coseno y tangente) de cada uno de los ángulos:

GRADOS	0°	30°		60°	90°		135°	150°	
RADIANES			$\frac{\pi}{4}$			$\frac{2}{3}\pi$			π

GRADOS	210°	225°		270°			330°	360°
RADIANES			$\frac{4}{3}\pi$		$\frac{5}{3}\pi$	$\frac{7}{4}\pi$		

La tabla completa está en el siguiente apartado (página siguiente) del libro de texto.

Página 138

5 ¿Verdadero o falso?

a) Las funciones trigonométricas son periódicas.

b) Las funciones sen y cos tienen un periodo de 2π .

c) La función tg x tiene periodo π .

d) La función $\cos x$ es como $\sin x$ desplazada $\pi/2$ a la izquierda.

a) Verdadero. La forma de sus gráficas se repite a lo largo del eje horizontal, cada 2π radianes.

b) Verdadero.

 $\frac{sen(x+2\pi) = sen x}{cos(x+2\pi) = cos x}$ porque 2π radianes equivalen a una vuelta completa.

c) Verdadero.

$$tg\left(x+\pi\right) =tg\,x$$

Podemos observarlo en la gráfica de la función tg x dibujada más arriba en esta página.

d) Verdadero. Se puede observar en las gráficas correspondientes de esta página.

Ejercicios y problemas resueltos

Página 139

1. Razones trigonométricas a partir de otras

Hazlo tú. Sabiendo que sen $54^{\circ} = 0.81$ halla cos 108° , $tg 27^{\circ}$, $sen 24^{\circ}$, $cos 99^{\circ}$.

$$sen^{2} 54^{\circ} + cos^{2} 54^{\circ} = 1 \rightarrow 0,81^{2} + cos^{2} 54^{\circ} = 1 \rightarrow cos 54^{\circ} = \sqrt{1-0,81^{2}} = 0,59$$

$$cos 108^{\circ} = cos (2 \cdot 54^{\circ}) = cos^{2} 54^{\circ} - sen^{2} 54^{\circ} = 0,59^{2} - 0,81^{2} = -0,31$$

$$tg 27^{\circ} = tg \left(\frac{54^{\circ}}{2}\right) = \sqrt{\frac{1-cos 54^{\circ}}{1+cos 54^{\circ}}} = \sqrt{\frac{1-0,59}{1+0,59}} = 0,51$$

$$sen 24^{\circ} = sen (54^{\circ} - 30^{\circ}) = sen 54^{\circ} cos 30^{\circ} - cos 54^{\circ} sen 30^{\circ} = 0,81 \cdot \frac{\sqrt{3}}{2} - 0,59 \cdot \frac{1}{2} = 0,41$$

$$cos 99^{\circ} = cos (54^{\circ} + 45^{\circ}) = cos 54^{\circ} cos 45^{\circ} - sen 54^{\circ} sen 45^{\circ} = 0,59 \cdot \frac{\sqrt{2}}{2} - 0,81 \cdot \frac{\sqrt{2}}{2} = -0,16$$

2. Identidades trigonométricas

Hazlo tú. Demuestra que sen $2\alpha - tg \alpha \cos 2\alpha = tg \alpha$.

Aplicamos las fórmulas del ángulo doble y las relaciones fundamentales:

$$sen 2\alpha - tg \alpha \cos 2\alpha = 2 sen \alpha \cos \alpha - tg \alpha (\cos^2 \alpha - sen^2 \alpha) =$$

$$= 2 sen \alpha \cos \alpha - \frac{sen \alpha}{\cos \alpha} (\cos^2 \alpha - sen^2 \alpha) =$$

$$= \frac{2 sen \alpha \cos^2 \alpha - sen \alpha \cos^2 \alpha + sen^3 \alpha}{\cos \alpha} =$$

$$= \frac{sen \alpha}{\cos \alpha} (2 \cos^2 \alpha - \cos^2 \alpha + sen^2 \alpha) =$$

$$= \frac{sen \alpha}{\cos \alpha} (\cos^2 \alpha + sen^2 \alpha) = \frac{sen \alpha}{\cos \alpha} = tg \alpha$$

3. Simplificación de expresiones trigonométricas

Hazlo tú. Simplifica la expresión
$$\frac{2\cos{(45^{\circ}+\alpha)}\cos{(45^{\circ}-\alpha)}}{\cos{2\alpha}}.$$

$$\frac{2\cos(45^{\circ} + \alpha)\cos(45^{\circ} - \alpha)}{\cos 2\alpha} = \frac{2(\cos 45^{\circ}\cos\alpha - \sin 45^{\circ}\sin\alpha)(\cos 45^{\circ}\cos\alpha + \sin 45^{\circ}\sin\alpha)}{\cos 2\alpha} =$$

$$= \frac{2\left(\frac{\sqrt{2}}{2}\cos\alpha - \frac{\sqrt{2}}{2}\sec\alpha\alpha\right)\left(\frac{\sqrt{2}}{2}\cos\alpha + \frac{\sqrt{2}}{2}\sec\alpha\alpha\right)}{\cos 2\alpha} =$$

$$= 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{(\cos\alpha - \sin\alpha)(\cos\alpha + \sin\alpha)}{\cos 2\alpha} =$$

$$= \frac{\cos^{2}\alpha - \sin^{2}\alpha}{\cos 2\alpha} = \frac{\cos 2\alpha}{\cos 2\alpha} = 1$$

Página 140

4. Resolución de ecuaciones trigonométricas

Hazlo tú. Resuelve estas ecuaciones:

a)
$$sen^3 x - sen x cos^2 x = 0$$

b)
$$\sqrt{3} \ sen \ x + cos \ x = 2$$

c)
$$tg^2 \frac{x}{2} = 1 - \cos x$$

d)
$$\frac{\cos 4x + \cos 2x}{\sin 4x - \sin 2x} = 1$$

a) Extraemos factor común: $sen x (sen^2 x - cos^2 x) = 0$

Igualamos a cero cada factor:

$$sen \ x = 0 \ \rightarrow \ x = 0^{\circ} + 360^{\circ} \cdot k; \ x = 180^{\circ} + 360^{\circ} \cdot k$$

$$sen^2 x - cos^2 x = 0 \rightarrow sen^2 x - (1 - sen^2 x) = 0 \rightarrow 2sen^2 x = 1 = sen^2 x = \frac{1}{2} \rightarrow sen x = \pm \frac{\sqrt{2}}{2}$$

Si sen
$$x = \frac{\sqrt{2}}{2}$$
, entonces $x = 45^{\circ} + 360^{\circ} \cdot k$; $x = 135^{\circ} + 360^{\circ} \cdot k$

Si sen
$$x = -\frac{\sqrt{2}}{2}$$
, entonces $x = 225^{\circ} + 360^{\circ} \cdot k$; $x = 315^{\circ} + 360^{\circ} \cdot k$

b) Pasamos cos x al segundo miembro y elevamos al cuadrado después:

$$(\sqrt{3} \operatorname{sen} x)^{2} = (2 - \cos x)^{2} \to 3 \operatorname{sen}^{2} x = 4 - 4 \cos x + \cos^{2} x \to 3(1 - \cos^{2} x) = 4 - 4 \cos x + \cos^{2} x \to 4 \cos^{2} x - 4 \cos x + 1 = 0 \to \cos x = \frac{4 \pm 0}{8} = \frac{1}{2} \to x = 60^{\circ} + 360^{\circ} \cdot k; \ x = 300^{\circ} + 360^{\circ} \cdot k$$

Comprobamos las soluciones porque pueden aparecer falsas soluciones al elevar al cuadrado.

$$x = 60^{\circ} + 360^{\circ} \cdot k \rightarrow \sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} = 2 \rightarrow \text{Vale.}$$

 $x = 300^{\circ} + 360^{\circ} \cdot k \rightarrow \sqrt{3} \cdot \frac{-\sqrt{3}}{2} + \frac{1}{2} = 2 \rightarrow \text{No vale.}$

c) Utilizamos la fórmula de la tangente del ángulo mitad:

$$\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)^{2} = 1 - \cos x \implies \frac{1-\cos x}{1+\cos x} = 1 - \cos x \implies 1 - \cos x = 1 - \cos^{2} x \implies$$

$$\implies \cos^{2} x - \cos x = 0 \implies \cos x (1 - \cos x) = 0 \implies$$

$$\implies \begin{cases} \cos x = 0 \implies x = 90^{\circ} + 360^{\circ} \cdot k; \ x = 270^{\circ} + 360^{\circ} \cdot k \end{cases}$$

$$\implies \cos x = 1 \implies x = 0^{\circ} + 360^{\circ} \cdot k$$

d) Transformamos las sumas en productos:

$$\frac{2\cos\frac{4x+2x}{2}\cos\frac{4x-2x}{2}}{2\cos\frac{4x+2x}{2}\sin\frac{4x-2x}{2}} = 1 \rightarrow \frac{\cos x}{\sin x} = 1 \rightarrow \frac{1}{tg x} = 1 \rightarrow tg x = 1 \rightarrow$$

$$\rightarrow x = 45^{\circ} + 360^{\circ} \cdot k; \ x = 225^{\circ} + 360^{\circ} \cdot k$$

Ejercicios y problemas guiados

Página 141

1. Razones trigonométricas de $(\alpha + \beta)$; $(\alpha - \beta)$; (

Si sen
$$\alpha = \frac{3}{5}$$
, $90^{\circ} < \alpha < 180^{\circ}$, $y \cos \beta = -\frac{1}{4}$, $180^{\circ} < \beta < 270^{\circ}$, hallar: $\cos (\alpha + \beta)$; sen $(\alpha - \beta)$; $tg \ 2\alpha$; $tg \ \frac{\beta}{2}$.

$$sen^2 \alpha + cos^2 \alpha = 1 \rightarrow \frac{9}{25} + cos^2 \alpha = 1 \rightarrow cos^2 \alpha = \frac{16}{25} \rightarrow$$

$$\rightarrow \cos \alpha = -\frac{4}{5}$$
 porque el ángulo está en el segundo cuadrante.

$$tg \alpha = \frac{3/5}{-4/5} = -\frac{3}{4}$$

$$sen^2 \beta + cos^2 \beta = 1 \rightarrow sen^2 \beta + \frac{1}{16} = 1 \rightarrow sen^2 \beta = \frac{15}{16} \rightarrow$$

$$\rightarrow$$
 sen $\beta = -\frac{\sqrt{15}}{4}$ porque el ángulo está en el tercer cuadrante.

$$tg \beta = \frac{-\sqrt{15}/4}{-1/4} = \sqrt{15}$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta = \left(-\frac{4}{5}\right) \cdot \left(-\frac{1}{4}\right) - \frac{3}{5} \cdot \left(-\frac{\sqrt{15}}{4}\right) = \frac{3\sqrt{15} + 4}{20}$$

$$sen (\alpha - \beta) = sen \alpha cos \beta - cos \alpha sen \beta = \frac{3}{5} \cdot \left(-\frac{1}{4}\right) - \left(-\frac{4}{5}\right) \cdot \left(-\frac{\sqrt{15}}{4}\right) = \frac{-4\sqrt{15} - 3}{5}$$

$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha} = \frac{2 \cdot \left(-\frac{3}{4}\right)}{1 - \left(-\frac{3}{4}\right)^2} = -\frac{24}{7}$$

$$tg \frac{\beta}{2} = -\sqrt{\frac{1-\cos\beta}{1+\cos\beta}} = -\sqrt{\frac{1-\left(-\frac{1}{4}\right)}{1+\left(-\frac{1}{4}\right)}} = -\sqrt{\frac{5}{3}}$$
 ya que el ángulo $\frac{\beta}{2}$ está en el segundo cuadrante.

2. Identidades trigonométricas

Demostrar que: $\cos 3x = 4 \cos^3 x - 3 \cos x$

$$\cos 3x = \cos(2x + x) = \cos 2x \cos x - \sin 2x \sin x = (\cos^2 x - \sin^2 x) \cos x - 2 \sin x \cos x \sin x =$$

$$= \cos^3 x - \sin^2 x \cos x - 2 \sin^2 x \cos x = \cos^3 x - 3 \sin^2 x \cos x$$

3. Expresiones algebraicas equivalentes

Escribir la expresión $\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}$ en función de $\cos{\alpha}$ y sen β .

$$\cos (\alpha + \beta) \cos (\alpha - \beta) = (\cos \alpha \cos \beta - \sin \alpha \sin \beta) (\cos \alpha \cos \beta + \sin \alpha \sin \beta) =$$

$$= \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta = \cos^2 \alpha (1 - \sin^2 \beta) - (1 - \cos^2 \alpha) \sin^2 \beta =$$

$$= \cos^2 \alpha - \cos^2 \alpha \sin^2 \beta - \sin^2 \beta + \cos^2 \alpha \sin^2 \beta = \cos^2 \alpha - \sin^2 \beta$$

4. Simplificación de expresiones trigonométricas

Simplificar esta expresión: 2 tg $\alpha \cos^2 \frac{\alpha}{2}$ – sen α

$$2 tg \alpha \cos^{2} \frac{\alpha}{2} - sen \alpha = 2 tg \alpha \left(\pm \sqrt{\frac{1 + \cos \alpha}{2}} \right)^{2} - sen \alpha = 2 \frac{sen \alpha}{\cos \alpha} \cdot \frac{1 + \cos \alpha}{2} - sen \alpha =$$

$$= \frac{sen \alpha (1 + \cos \alpha) - sen \alpha \cos \alpha}{\cos \alpha} = \frac{sen \alpha + sen \alpha \cos \alpha - sen \alpha \cos \alpha}{\cos \alpha} = \frac{sen \alpha}{\cos \alpha} = tg \alpha$$

5. Ecuaciones trigonométricas

Resolver estas ecuaciones:

a)
$$\cos^2(2x + 30^\circ) = \frac{1}{4}$$

b)
$$4 \sin x + 4 \cos^2 x \tan x + \tan x = 0$$
, con $\tan x \neq 0$

a)
$$cos(2x + 30^{\circ}) = \pm \frac{1}{2}$$

Si
$$cos(2x + 30^{\circ}) = \frac{1}{2}$$
 \rightarrow
$$\begin{cases} 2x + 30^{\circ} = 60^{\circ} \rightarrow x = 15^{\circ} + 360^{\circ} \cdot k \\ 2x + 30^{\circ} = 300^{\circ} \rightarrow x = 135^{\circ} + 360^{\circ} \cdot k \\ 2x + 30^{\circ} = 60^{\circ} + 360^{\circ} \rightarrow x = 195^{\circ} + 360^{\circ} \cdot k \\ 2x + 30^{\circ} = 300^{\circ} + 360^{\circ} \rightarrow x = 315^{\circ} + 360^{\circ} \cdot k \end{cases}$$

Si
$$cos(2x + 30^{\circ}) = -\frac{1}{2}$$
 $\rightarrow \begin{cases} 2x + 30^{\circ} = 120^{\circ} \rightarrow x = 45^{\circ} + 360^{\circ} \cdot k \\ 2x + 30^{\circ} = 240^{\circ} \rightarrow x = 105^{\circ} + 360^{\circ} \cdot k \\ 2x + 30^{\circ} = 120^{\circ} + 360^{\circ} \rightarrow x = 225^{\circ} + 360^{\circ} \cdot k \\ 2x + 30^{\circ} = 240^{\circ} + 360^{\circ} \rightarrow x = 285^{\circ} + 360^{\circ} \cdot k \end{cases}$

b) Si tg x = 0 entonces $x = 0^{\circ} + 360^{\circ} \cdot k$; $x = 180^{\circ} + 360^{\circ} \cdot k$ son soluciones de la ecuación, ya que el seno de estos ángulos también es 0.

Si $tg \neq 0$, dividimos entre esta función en los dos términos de la ecuación:

$$\frac{4 \operatorname{sen} x}{\operatorname{tg} x} + 4 \cos^{2} x + 1 = 0 \to \frac{4 \operatorname{sen} x}{\frac{\operatorname{sen} x}{\operatorname{cos} x}} + 4 \cos^{2} x + 1 = 0 \to 4 \cos^{2} x + 4 \cos x + 1 = 0 \to 0$$

$$\to \cos x = \frac{-4 \pm 0}{8} = -\frac{1}{2} \to x = 120^{\circ} + 360^{\circ} \cdot k; \quad x = 240^{\circ} + 360^{\circ} \cdot k$$

6. Resolución de sistemas de ecuaciones trigonométricas

Resolver el siguiente sistema de ecuaciones en el intervalo [0°, 360°]:

$$\begin{cases} \cos y - \sin x = 1 \\ 4 \sin x \cos y + 1 = 0 \end{cases}$$

$$cos y = 1 + sen x$$

$$4 \operatorname{sen} x (1 + \operatorname{sen} x) + 1 = 0 \rightarrow 4 \operatorname{sen}^2 x + 4 \operatorname{sen} x + 1 = 0 \rightarrow \operatorname{sen} x = \frac{-4 \pm 0}{8} = -\frac{1}{2}$$

- Si $sen x = \frac{1}{2} \rightarrow cos y = 1 + \frac{1}{2} = \frac{3}{2}$, que es imposible.
- Si $sen x = -\frac{1}{2} \rightarrow cos y = 1 \frac{1}{2} = \frac{1}{2}$

Las diferentes posibilidades son:

$$\begin{cases} x = 210^{\circ} + 360^{\circ} \cdot k \\ y = 60^{\circ} + 360^{\circ} \cdot k \end{cases}; \begin{cases} x = 210^{\circ} + 360^{\circ} \cdot k \\ y = 300^{\circ} + 360^{\circ} \cdot k \end{cases}; \begin{cases} x = 330^{\circ} + 360^{\circ} \cdot k \\ y = 60^{\circ} + 360^{\circ} \cdot k \end{cases}; \begin{cases} x = 330^{\circ} + 360^{\circ} \cdot k \\ y = 300^{\circ} + 360^{\circ} \cdot k \end{cases}$$

Ejercicios y problemas propuestos

Página 142

Para practicar

Fórmulas trigonométricas

1 Sabiendo que $\cos \alpha = -\frac{3}{4}$ y 90° < α < 180°, calcula sin hallar el valor de α :

b)
$$tg \frac{\alpha}{2}$$

c) sen (
$$\alpha$$
 + 30°)

d)
$$\cos (60^{\circ} - \alpha)$$

e) cos
$$\frac{\alpha}{2}$$

f)
$$tg (45^{\circ} + \alpha)$$

 $sen^2 \alpha + cos^2 \alpha = 1 \rightarrow sen^2 \alpha + \frac{9}{16} = 1 \rightarrow sen^2 \alpha = \frac{7}{16} \rightarrow sen \alpha = \frac{\sqrt{7}}{4}$ ya que el ángulo está en el 2.º cuadrante.

$$tg \alpha = \frac{sen \alpha}{cos \alpha} = \frac{\sqrt{7}/4}{-3/4} = -\frac{\sqrt{7}}{3}$$

a)
$$sen 2\alpha = 2 sen \alpha cos \alpha = 2 \cdot \left(\frac{\sqrt{7}}{4}\right) \cdot \left(-\frac{3}{4}\right) = -\frac{3\sqrt{7}}{8}$$

b) $tg \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \sqrt{\frac{1 - \left(-\frac{3}{4}\right)}{1 + \left(-\frac{3}{4}\right)}} = \sqrt{7}$ ya que $\frac{\alpha}{2}$ está comprendido entre 45° y 90° (está en el 1.er cuadrante).

c)
$$sen(\alpha + 30^{\circ}) = sen \alpha cos 30^{\circ} + cos \alpha sen 30^{\circ} = \frac{\sqrt{7}}{4} \cdot \frac{\sqrt{3}}{2} + \left(-\frac{3}{4}\right) \cdot \frac{1}{2} = \frac{\sqrt{21} - 3}{8}$$

d)
$$cos(60^{\circ} - \alpha) = cos 60^{\circ} cos \alpha + sen 60^{\circ} sen \alpha = \frac{1}{2} \cdot \left(-\frac{3}{4}\right) - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{7}}{4} = \frac{-\sqrt{21} - 3}{8}$$

e) $\cos \frac{\alpha}{2} = \sqrt{\frac{1+\cos\alpha}{2}} = \sqrt{\frac{1+\left(-\frac{3}{4}\right)}{2}} = \frac{\sqrt{2}}{4}$ porque $\frac{\alpha}{2}$ está comprendido entre 45° y 90° (está en el 1.er cuadrante).

f)
$$tg(45^{\circ} + \alpha) = \frac{tg 45^{\circ} + tg \alpha}{1 - tg 45^{\circ} tg \alpha} = \frac{1 + \left(-\frac{\sqrt{7}}{3}\right)}{1 - 1 \cdot \left(-\frac{\sqrt{7}}{3}\right)} = \frac{1 - \sqrt{7}}{1 + \sqrt{7}}$$

2 Calcula las razones trigonométricas de 22° 30' a partir de las de 45°.

$$sen(22^{\circ}30') = sen\frac{45^{\circ}}{2} = \sqrt{\frac{1-\sqrt{2}/2}{2}} = \frac{\sqrt{2-\sqrt{2}}}{2}$$

$$cos(22^{\circ}30') = cos\frac{45^{\circ}}{2} = \sqrt{\frac{1+\sqrt{2}/2}{2}} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

$$tg(22^{\circ}30') = tg\frac{45^{\circ}}{2} = \sqrt{\frac{1-\sqrt{2}/2}{1-\sqrt{2}/2}} = \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}}$$

3 Si $\cos 78^\circ = 0.2$ y $\sin 37^\circ = 0.6$ halla las razones trigonométricas de 41° y de 115° .

$$41^{\circ} = 78^{\circ} - 37^{\circ}$$

•
$$sen 78^{\circ} = \sqrt{1 - cos^2 78^{\circ}} = \sqrt{1 - 0, 2^2} = 0,98$$

•
$$\cos 37^{\circ} = \sqrt{1 - \sin^2 37^{\circ}} = \sqrt{1 - 0.6^2} = 0.8$$

Ahora ya podemos calcular:

•
$$sen 41^{\circ} = sen (78^{\circ} - 37^{\circ}) = sen 78^{\circ} cos 37^{\circ} - cos 78^{\circ} sen 37^{\circ} = 0,98 \cdot 0,8 - 0,2 \cdot 0,6 = 0,664$$

•
$$cos 41^{\circ} = cos (78^{\circ} - 37^{\circ}) = cos 78^{\circ} cos 37^{\circ} + sen 78^{\circ} sen 37^{\circ} = 0, 2 \cdot 0, 8 + 0, 98 \cdot 0, 6 = 0, 748$$

•
$$tg 41^{\circ} = \frac{sen 41^{\circ}}{cos 41^{\circ}} = \frac{0,664}{0.748} = 0,8877$$

•
$$sen 115^{\circ} = sen (78^{\circ} + 37^{\circ}) = sen 78^{\circ} cos 37^{\circ} + cos 78^{\circ} sen 37^{\circ} = 0,98 \cdot 0,8 + 0,2 \cdot 0,6 = 0,904$$

•
$$cos 115^{\circ} = cos (78^{\circ} + 37^{\circ}) = cos 78^{\circ} cos 37^{\circ} - sen 78^{\circ} sen 37^{\circ} = 0, 2 \cdot 0, 8 - 0, 98 \cdot 0, 6 = -0, 428$$

•
$$tg 115^{\circ} = \frac{sen 115^{\circ}}{cos 115^{\circ}} = -\frac{0.904}{0.428} = -2,112$$

4 a) Halla el valor exacto de las razones trigonométricas de 75° a partir de las de 30° y 45°.

b) Utilizando los resultados del apartado anterior, calcula las razones trigonométricas de: 105°; 165°; 195° y 135°.

a)
$$sen 75^{\circ} = sen (30^{\circ} + 45^{\circ}) = sen 30^{\circ} cos 45^{\circ} + cos 30^{\circ} sen 45^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

 $cos 75^{\circ} = cos (30^{\circ} + 45^{\circ}) = cos 30^{\circ} cos 45^{\circ} - sen 30^{\circ} sen 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$

$$tg 75^{\circ} = tg (30^{\circ} + 45^{\circ}) = \frac{tg 30^{\circ} + tg 45^{\circ}}{1 - tg 30^{\circ} tg 45^{\circ}} = \frac{\frac{\sqrt{3}}{3} + 1}{1 - \frac{\sqrt{3}}{3} \cdot 1} = \frac{\sqrt{3} + 3}{3 - \sqrt{3}} = \sqrt{3} + 2$$

b)
$$sen \ 105^{\circ} = sen \ (30^{\circ} + 75^{\circ}) = sen \ 30^{\circ} \ cos \ 75^{\circ} + cos \ 30^{\circ} \ sen \ 75^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2} + \sqrt{6}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\cos 105^{\circ} = \cos (30^{\circ} + 75^{\circ}) = \cos 30^{\circ} \cos 75^{\circ} - \sin 30^{\circ} \sin 75^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{6} - \sqrt{2}}{4} - \frac{1}{2} \cdot \frac{\sqrt{2} + \sqrt{6}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4}$$

$$tg\ 105^{\circ} = \frac{\frac{\sqrt{6} + \sqrt{2}}{4}}{\frac{\sqrt{2} - \sqrt{6}}{4}} = \frac{\sqrt{6} + \sqrt{2}}{\sqrt{2} - \sqrt{6}} = -\sqrt{3} - 2$$

$$sen 165^{\circ} = sen (90^{\circ} + 75^{\circ}) = sen 90^{\circ} cos 75^{\circ} + cos 90^{\circ} sen 75^{\circ} = cos 75^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$cos\ 165^{\circ} = cos\ (90^{\circ} + 75^{\circ}) = cos\ 90^{\circ}\ cos\ 75^{\circ} - sen\ 90^{\circ}\ sen\ 75^{\circ} = -sen\ 75^{\circ} = \frac{-\sqrt{2} - \sqrt{6}}{4}$$

$$tg\ 165^{\circ} = \frac{\frac{\sqrt{6} - \sqrt{2}}{4}}{\frac{-\sqrt{2} - \sqrt{6}}{4}} = \frac{\sqrt{2} - \sqrt{6}}{\sqrt{2} - \sqrt{6}} = \sqrt{3} - 2$$

$$sen 15^{\circ} = sen (90^{\circ} - 75^{\circ}) = sen 90^{\circ} cos 75^{\circ} - cos 90^{\circ} sen 75^{\circ} = cos 75^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$cos\ 15^{\circ} = cos\ (90^{\circ} - 75^{\circ}) = cos\ 90^{\circ}\ cos\ 75^{\circ} + sen\ 90^{\circ}\ sen\ 75^{\circ} = sen\ 75^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

$$tg \ 15^{\circ} = \frac{\frac{\sqrt{6} - \sqrt{2}}{4}}{\frac{\sqrt{2} + \sqrt{6}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{2} + \sqrt{6}} = 2 - \sqrt{3}$$

$$sen 195^{\circ} = sen (270^{\circ} - 75^{\circ}) = sen 270^{\circ} cos 75^{\circ} - cos 270^{\circ} sen 75^{\circ} = -cos 75^{\circ} = \frac{\sqrt{2} - \sqrt{6}}{4}$$

$$cos\ 195^{\circ} = (cos\ 270^{\circ} - 75^{\circ}) = cos\ 270^{\circ}\ cos\ 75^{\circ} + sen\ 270^{\circ}\ sen\ 75^{\circ} = -sen\ 75^{\circ} = \frac{-\sqrt{2} - \sqrt{6}}{4}$$

$$tg\ 195^{\circ} = \frac{\frac{\sqrt{2} - \sqrt{6}}{4}}{\frac{\sqrt{2} + \sqrt{6}}{4}} = \frac{\sqrt{2} - \sqrt{6}}{-\sqrt{2} - \sqrt{6}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}} = 2 - \sqrt{3}$$

$$sen \ 135^{\circ} = sen \ (180^{\circ} - 45^{\circ}) = sen \ 180^{\circ} \ cos \ 45^{\circ} - cos \ 180^{\circ} \ sen \ 45^{\circ} = sen \ 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$cos \ 135^{\circ} = cos \ (180^{\circ} - 45^{\circ}) = cos \ 180^{\circ} \ cos \ 45^{\circ} + sen \ 180^{\circ} \ sen \ 45^{\circ} = -cos \ 45^{\circ} = \frac{-\sqrt{2}}{2}$$

$$tg \ 135^{\circ} = \frac{\sqrt{2}}{2} = -1$$

5 Desarrolla, en función de las razones trigonométricas de α, y simplifica las siguientes expresiones:

a) sen
$$(45^{\circ} + \alpha) - \cos (\alpha - 45^{\circ})$$

b)
$$\frac{\cos 2\alpha}{\cos \alpha + \sin \alpha}$$

c)
$$(sen \alpha + cos \alpha)^2 - 2 sen \alpha + cos 2\alpha$$

d)
$$cos^2 \frac{\alpha}{2} \cdot sen^2 \frac{\alpha}{2} + \frac{1}{4} cos^2 \alpha$$

a)
$$sen(45^{\circ} + \alpha) - cos(\alpha - 45^{\circ}) = sen 45^{\circ} cos \alpha + cos 45^{\circ} sen \alpha - (cos \alpha cos 45^{\circ} + sen \alpha sen 45^{\circ}) = sen 45^{\circ}$$

$$=\frac{\sqrt{2}}{2}\cos\alpha+\frac{\sqrt{2}}{2}sen\alpha-\frac{\sqrt{2}}{2}\cos\alpha-\frac{\sqrt{2}}{2}sen\alpha=0$$

b)
$$\frac{\cos 2\alpha}{\cos \alpha + \sin \alpha} = \frac{\cos^2 \alpha - \sin^2 \alpha}{\cos \alpha + \sin \alpha} = \frac{(\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)}{\cos \alpha + \sin \alpha} = \cos \alpha - \sin \alpha$$

c)
$$(sen \ \alpha + cos \ \alpha)^2 - 2 \ sen \ \alpha + cos \ 2\alpha = sen^2 \ \alpha + 2 \ sen \ \alpha \ cos \ \alpha + cos^2 \ \alpha - 2 \ sen \ \alpha + cos^2 \ \alpha - sen^2 \ \alpha =$$

$$= 2(cos^2 \ \alpha + sen \ \alpha \ cos \ \alpha - sen \ \alpha)$$

d)
$$cos^2 \frac{\alpha}{2} \cdot sen^2 \frac{\alpha}{2} + \frac{1}{4} cos^2 \alpha = \left(\pm \sqrt{\frac{1 + cos \alpha}{2}}\right)^2 \cdot \left(\pm \sqrt{\frac{1 - cos \alpha}{2}}\right)^2 + \frac{1}{4} cos^2 \alpha =$$

$$= \frac{1 + cos \alpha}{2} \cdot \frac{1 - cos \alpha}{2} + \frac{1}{4} cos^2 \alpha = \frac{1 - cos^2 \alpha}{4} + \frac{cos^2 \alpha}{4} = \frac{1}{4}$$

6 Sabiendo que $\cos \alpha = \frac{-7}{25}$ (180° < α < 270°) y $tg \beta = \frac{4}{3}$ (180° < β < 270°), calcula $tg \frac{\alpha + \beta}{2}$.

Usamos la relación $sen^2 \alpha + cos^2 \alpha = 1$ para calcular $sen \alpha$:

$$sen^2 \alpha + cos^2 \alpha = 1 \rightarrow sen^2 \alpha + \frac{49}{625} = 1 \rightarrow sen^2 \alpha = \frac{576}{625} \rightarrow sen \alpha = -\frac{24}{25}$$
 porque el ángulo está en el 3. er cuadrante.

$$\frac{\operatorname{sen} \beta}{\cos \beta} = \frac{4}{3} \longrightarrow \operatorname{sen} \beta = \frac{4}{3} \cos \beta$$

$$sen^2 \beta + cos^2 \beta = 1 \rightarrow \frac{16}{9} cos^2 \beta + cos^2 \beta = 1 \rightarrow \frac{25}{9} cos^2 \beta = 1 \rightarrow cos^2 \beta = \frac{9}{25} \rightarrow cos \beta = -\frac{3}{5}$$
 porque también pertendences

nece al tercer cuadrante.

sen
$$\beta = \frac{4}{3} \cdot \left(-\frac{3}{5}\right) = -\frac{4}{5}$$

Como $360^{\circ} < \alpha + \beta < 540^{\circ}$, dividiendo las desigualdades entre 2 tenemos que $180^{\circ} < \frac{\alpha + \beta}{2} < 270^{\circ}$.

Por tanto, $\frac{\alpha + \beta}{2}$ pertenece al tercer cuadrante y la tangente de $\frac{\alpha + \beta}{2}$ es positiva.

Calculamos
$$\cos{(\alpha+\beta)}=\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}=\frac{-7}{25}\cdot\frac{-3}{5}-\frac{-24}{25}\cdot\frac{-4}{5}=-\frac{3}{5}$$

Por tanto,
$$tg \frac{\alpha + \beta}{2} = \sqrt{\frac{1 - cos(\alpha + \beta)}{1 + cos(\alpha + \beta)}} = \sqrt{\frac{1 - (3/5)}{1 + (-3/5)}} = 2$$

7 Si $tg \frac{\alpha}{2} = -3$ y $\alpha < 270^{\circ}$, halla $sen \alpha$, $cos \alpha$ y $tg \alpha$.

$$tg\frac{\alpha}{2} = -3 \rightarrow \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = -3 \rightarrow \frac{1 - \cos \alpha}{1 + \cos \alpha} = 9 \rightarrow$$

$$\rightarrow 1 - \cos \alpha = 9 + 9 \cos \alpha \rightarrow 10 \cos \alpha = -8 \rightarrow \cos \alpha = -\frac{4}{5}$$

sen
$$\alpha = -\sqrt{1 - \left(-\frac{4}{5}\right)^2} = -\sqrt{\frac{9}{25}} = -\frac{3}{5}$$

$$tg \ \alpha = \frac{-3/5}{-4/5} = \frac{3}{4}$$

8 Si $tg 2\alpha = \sqrt{6}$ y $\alpha < 90^{\circ}$, halla $sen \alpha$, $cos \alpha$ y $tg \alpha$.

$$\frac{2 tg \alpha}{1 - tg^2 \alpha} = \sqrt{6} \rightarrow 2 tg \alpha = \sqrt{6} - \sqrt{6} tg^2 \alpha \rightarrow \sqrt{6} tg^2 \alpha + 2 tg \alpha - \sqrt{6} = 0 \rightarrow tg \alpha = \frac{-2 \pm \sqrt{28}}{2\sqrt{6}} = \frac{-1 \pm \sqrt{7}}{\sqrt{6}} = \frac{-1 \pm \sqrt$$

Como α está en el primer cuadrante, solo puede darse que $tg \alpha = \frac{-1 + \sqrt{7}}{\sqrt{6}}$.

sen
$$\alpha = \frac{\sqrt{7} - 1}{\sqrt{6}} \cos \alpha$$

$$\left(\frac{\sqrt{7}-1}{\sqrt{6}}\right)^2\cos^2\alpha+\cos^2\alpha=1 \ \rightarrow \ \frac{8-2\sqrt{7}}{6}\cos^2\alpha+\cos^2\alpha=1 \ \rightarrow$$

$$\rightarrow \frac{7 - \sqrt{7}}{3}\cos^2\alpha = 1 \rightarrow \cos^2\alpha = \frac{3}{7 - \sqrt{7}} \rightarrow \cos\alpha = \sqrt{\frac{3}{7 - \sqrt{7}}}$$

sen
$$\alpha = \frac{\sqrt{7} - 1}{\sqrt{6}} \cdot \sqrt{\frac{3}{7 - \sqrt{7}}} = \sqrt{\frac{\sqrt{7} - 1}{2(7 - \sqrt{7})}}$$

9 Expresa en función de α y simplifica esta expresión:

$$sen^2 \frac{\alpha}{2} - cos^2 \frac{\alpha}{2} + 2 sen (90 - \alpha)$$

$$sen^2\frac{\alpha}{2} - cos^2\frac{\alpha}{2} + 2 sen(90^\circ - \alpha) = \frac{1 - cos \alpha}{2} - \frac{1 + cos \alpha}{2} + 2 (sen 90^\circ cos \alpha - cos 90^\circ sen \alpha) = -cos \alpha + 2 cos \alpha = cos \alpha$$

10 Transforma las siguientes sumas en productos:

a)
$$sen 65^{\circ} + sen 35^{\circ}$$

c)
$$cos 48^{\circ} + cos 32^{\circ}$$

e)
$$\frac{1}{2}$$
 + sen 50°

f)
$$\frac{\sqrt{2}}{2} + \cos 75^{\circ}$$

a)
$$sen 65^{\circ} + sen 35^{\circ} = 2 sen \frac{65^{\circ} + 35^{\circ}}{2} cos \frac{65^{\circ} - 35^{\circ}}{2} = 2 sen 50^{\circ} cos 15^{\circ}$$

b)
$$sen 65^{\circ} - sen 35^{\circ} = 2 cos \frac{65^{\circ} + 35^{\circ}}{2} sen \frac{65^{\circ} - 35^{\circ}}{2} = 2 cos 50^{\circ} sen 15^{\circ}$$

c)
$$\cos 48^{\circ} + \cos 32^{\circ} = 2 \cos \frac{48^{\circ} + 32^{\circ}}{2} \cos \frac{48^{\circ} - 32^{\circ}}{2} = 2 \cos 40^{\circ} \cos 8^{\circ}$$

d)
$$\cos 48^{\circ} - \cos 32^{\circ} = -2 \operatorname{sen} \frac{48^{\circ} + 32^{\circ}}{2} \operatorname{sen} \frac{48^{\circ} - 32^{\circ}}{2} = -2 \operatorname{sen} 40^{\circ} \operatorname{sen} 8^{\circ}$$

e)
$$\frac{1}{2}$$
 + sen 50° = sen 30° + sen 50° = 2 sen $\frac{30^{\circ} + 50^{\circ}}{2}$ cos $\frac{30^{\circ} - 50^{\circ}}{2}$ = 2 sen 40° cos (-10°) = 2 sen 40° cos 10°

f)
$$\frac{\sqrt{2}}{2} + \cos 75^{\circ} = \cos 45^{\circ} + \cos 75^{\circ} = 2\cos \frac{45^{\circ} + 75^{\circ}}{2}\cos \frac{45^{\circ} - 75^{\circ}}{2} = 2\cos 60^{\circ}\cos (-15^{\circ}) = 2\cos 60^{\circ}\cos 15^{\circ}$$

Identidades trigonométricas

11 Demuestra las siguientes identidades teniendo en cuenta las relaciones fundamentales:

a)
$$(sen \alpha + cos \alpha)^2 - (sen \alpha - cos \alpha)^2 = 4 sen \alpha cos \alpha$$

b)
$$sen \alpha \cdot cos^2 \alpha + sen^3 \alpha = sen \alpha$$

c)
$$\frac{sen \alpha}{1 + cos \alpha} + \frac{sen \alpha}{1 - cos \alpha} = \frac{2}{sen \alpha}$$

d)
$$\frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha} \cdot \cos 2\alpha = 1 + \sin 2\alpha$$

a)
$$(sen \ \alpha + cos \ \alpha)^2 - (sen \ \alpha - cos \ \alpha)^2 = sen^2 \ \alpha + 2 sen \ \alpha cos \ \alpha + cos^2 \ \alpha - (sen^2 \ \alpha - 2 sen \ \alpha cos \ \alpha + cos^2 \ \alpha) = sen^2 \ \alpha + 2 sen \ \alpha cos \ \alpha + cos^2 \ \alpha +$$

$$= sen^2 \alpha + 2 sen \alpha cos \alpha + cos^2 \alpha - sen^2 \alpha + 2 sen \alpha cos \alpha - cos^2 \alpha = 4 sen \alpha cos \alpha$$

b)
$$sen \alpha \cdot cos^2 \alpha + sen^3 \alpha = sen \alpha (cos^2 \alpha + sen^2 \alpha) = sen \alpha \cdot 1 = sen \alpha$$

c)
$$\frac{sen\ \alpha}{1+cos\ \alpha} + \frac{sen\ \alpha}{1-cos\ \alpha} = \frac{sen\ \alpha - sen\ \alpha\ cos\ \alpha + sen\ \alpha\ cos\ \alpha}{(1+cos\ \alpha)(1-cos\ \alpha)} = \frac{2\ sen\ \alpha}{1-cos^2\ \alpha} = \frac{2\ sen\ \alpha}{sen^2\ \alpha} = \frac{2}{sen\ \alpha}$$

d)
$$\frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha} \cdot \cos 2\alpha = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha} (\cos^2 \alpha - \sin^2 \alpha) = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha} (\cos \alpha + \sin \alpha) (\cos \alpha - \sin \alpha) =$$

$$= (\cos \alpha + \sin \alpha) (\cos \alpha + \sin \alpha) = \cos^2 \alpha + 2\cos \alpha \sin \alpha + \sin^2 \alpha =$$

$$= 1 + 2\sin \alpha \cos \alpha = 1 + \sin 2\alpha$$

12 Prueba que son verdaderas las identidades siguientes:

a)
$$cos(x + 60^\circ) - cos(x + 120^\circ) = cos x$$

b)
$$tg(x + 45^{\circ}) - tg(x - 45^{\circ}) = \frac{2 + 2tg^2x}{1 - tg^2x}$$

a)
$$cos(x+60^{\circ}) - cos(x+120^{\circ}) = cos \ x \ cos \ 60^{\circ} - sen \ x \ sen \ 60^{\circ} - (cos \ x \ cos \ 120^{\circ} - sen \ x \ sen \ 120^{\circ}) = cos \ x \ cos \ 120^{\circ} - sen \ x \ sen \ 120^{\circ} + sen \ x \ sen \ x$$

$$= cos \times cos 60^{\circ} - sen \times sen 60^{\circ} - cos \times cos 120^{\circ} + sen \times sen 120^{\circ} =$$

$$= cos \times cos 60^{\circ} - sen \times sen 60^{\circ} - cos \times (-cos 60^{\circ}) + sen \times sen 60^{\circ} =$$

$$= 2 \cos x \cos 60^{\circ} = 2 \cdot \frac{1}{2} \cos x = \cos x$$

b)
$$tg(x+45^{\circ}) - tg(x-45^{\circ}) = \frac{tg \ x + tg \ 45^{\circ}}{1 - tg \ x \ tg \ 45^{\circ}} - \frac{tg \ x - tg \ 45^{\circ}}{1 + tg \ x \ tg \ 45^{\circ}} = \frac{tg \ x + 1}{1 - tg \ x} - \frac{tg \ x - 1}{1 + tg \ x}$$

$$= \frac{1+2 tg x+tg^2 x-(-1+2 tg x-tg^2 x)}{(1-tg x)(1+tg x)} = \frac{2+2 tg^2 x}{1-tg^2 x}$$

13 Comprueba que se verifican las dos identidades siguientes:

a) sen
$$\alpha$$
 sen $(\alpha + \beta) + \cos \alpha \cos (\alpha + \beta) = \cos \beta$

b)
$$\frac{sen(\alpha + \beta)}{sen(\alpha - \beta)} = \frac{tg(\alpha + tg(\beta))}{tg(\alpha - tg(\beta))}$$

* En b), divide numerador y denominador entre $\cos \alpha \cos \beta$.

a)
$$sen \alpha sen (\alpha + \beta) + cos \alpha cos (\alpha + \beta) = sen \alpha (sen \alpha cos \beta + cos \alpha sen \beta) + cos \alpha (cos \alpha cos \beta - sen \alpha sen \beta) =$$

$$= sen^2 \alpha cos \beta + sen \alpha cos \alpha sen \beta + cos^2 \alpha cos \beta - cos \alpha sen \alpha sen \beta =$$

$$= (sen^2 \alpha + cos^2 \alpha) cos \beta = cos \beta$$

b)
$$\frac{sen (\alpha + \beta)}{sen (\alpha - \beta)} = \frac{sen \alpha cos \beta + cos \alpha sen \beta}{sen \alpha cos \beta - cos \alpha sen \beta} = \frac{\frac{sen \alpha cos \beta + cos \alpha sen \beta}{cos \alpha cos \beta}}{\frac{sen \alpha cos \beta - cos \alpha sen \beta}{cos \alpha cos \beta}} = \frac{\frac{sen \alpha cos \beta}{cos \alpha cos \beta} + \frac{cos \alpha sen \beta}{cos \alpha cos \beta}}{\frac{sen \alpha cos \beta}{cos \alpha cos \beta}} = \frac{tg \alpha + tg \beta}{tg \alpha - tg \beta}$$

14 Demuestra.

a)
$$tg \alpha + \frac{1}{tg \alpha} = \frac{2}{sen 2\alpha}$$

b) 2
$$tg \propto cos^2 \frac{\alpha}{2} - sen \alpha = tg \alpha$$

a)
$$tg \ \alpha + \frac{1}{tg \ \alpha} = \frac{sen \ \alpha}{cos \ \alpha} + \frac{cos \ \alpha}{sen \ \alpha} = \frac{sen^2 \ \alpha + cos^2 \ \alpha}{sen \ \alpha \ cos \ \alpha} = \frac{1}{sen \ \alpha \ cos \ \alpha} = \frac{2}{2 \ sen \ \alpha \ cos \ \alpha} = \frac{2}{sen \ 2\alpha}$$

b)
$$2 tg \alpha cos^2 \frac{\alpha}{2} - sen \alpha = 2 \frac{sen \alpha}{cos \alpha} \cdot \frac{1 + cos \alpha}{2} - sen \alpha = \frac{2}{2} \frac{sen \alpha + sen \alpha cos \alpha - sen \alpha cos \alpha}{cos \alpha} = tg \alpha$$

15 Demuestra.

a)
$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2\beta - \sin^2\alpha$$

b) sen
$$(\alpha + \beta)$$
 sen $(\alpha - \beta) = sen^2 \alpha - sen^2 \beta$

b)
$$sen(\alpha + \beta) sen(\alpha - \beta) = (sen \alpha cos \beta + cos \alpha sen \beta) (sen \alpha cos \beta - cos \alpha sen \beta) =$$

$$= sen^2 \alpha cos^2 \beta - sen \alpha cos \beta cos \alpha sen \beta + cos \alpha sen \beta sen \alpha cos \beta - cos^2 \alpha sen^2 \beta =$$

$$= sen^2 \alpha cos^2 \beta - cos^2 \alpha sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta =$$

$$= sen^2 \alpha - sen^2 \alpha sen^2 \beta - sen^2 \beta + sen^2 \alpha sen^2 \beta = sen^2 \alpha - sen^2 \beta$$

16 Demuestra las siguientes igualdades:

a)
$$\frac{2 \operatorname{sen} \alpha}{\operatorname{tg} 2\alpha} + \frac{\operatorname{sen}^2 \alpha}{\operatorname{cos} \alpha} = \operatorname{cos} \alpha$$

b)
$$\frac{1-\cos 2\alpha}{\sin^2 \alpha + \cos 2\alpha} = 2 tg^2 \alpha$$

c)
$$sen 2\alpha cos \alpha - sen \alpha cos 2\alpha = sen \alpha$$

d)
$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = tg^2 \frac{\alpha}{2}$$

e)
$$\frac{sen 2\alpha}{1 + cos 2\alpha} = tg \alpha$$

a)
$$\frac{2 \operatorname{sen} \alpha}{\operatorname{tg} 2\alpha} + \frac{\operatorname{sen}^2 \alpha}{\cos \alpha} = \frac{2 \operatorname{sen} \alpha (1 - \operatorname{tg}^2 \alpha)}{2 \operatorname{tg} \alpha} + \frac{\operatorname{sen}^2 \alpha}{\cos \alpha} = \frac{\operatorname{sen} \alpha}{\frac{\operatorname{sen} \alpha}{\cos \alpha}} + \frac{\operatorname{sen}^2 \alpha}{\cos \alpha} + \frac{\operatorname{sen}^2 \alpha}{\cos \alpha} = \frac{\operatorname{sen} \alpha}{\operatorname{sen} \alpha} + \frac{\operatorname{sen}^2 \alpha}{\operatorname{sen} \alpha} = \frac{\operatorname{sen} \alpha}{\operatorname{sen} \alpha} = \frac{\operatorname{sen} \alpha}{\operatorname{sen} \alpha} + \frac{\operatorname{sen}^2 \alpha}{\operatorname{sen} \alpha} = \frac{\operatorname{sen} \alpha}{\operatorname{se$$

$$=\frac{\cos^2\alpha-\sin^2\alpha}{\cos\alpha}+\frac{\sin^2\alpha}{\cos\alpha}=\frac{\cos^2\alpha}{\cos\alpha}=\cos\alpha$$

b)
$$\frac{1-\cos 2\alpha}{\sin^2\alpha+\cos 2\alpha} = \frac{1-(\cos^2\alpha-\sin^2\alpha)}{\sin^2\alpha+\cos^2\alpha-\sin^2\alpha} = \frac{1-\cos^2\alpha+\sin^2\alpha}{\cos^2\alpha} = \frac{2\sin^2\alpha}{\cos^2\alpha} = 2tg^2\alpha$$

c)
$$sen 2\alpha cos \alpha - sen \alpha cos 2\alpha = 2 sen \alpha cos \alpha cos \alpha - sen \alpha (cos^2 \alpha - sen^2 \alpha) =$$

$$= 2 sen \alpha cos^2 \alpha - sen \alpha cos^2 \alpha + sen^3 \alpha = sen \alpha cos^2 \alpha + sen^3 \alpha =$$

$$= sen \alpha (cos^2 \alpha + sen^2 \alpha) = sen \alpha$$

d)
$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \operatorname{cos} \alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} \alpha \operatorname{cos} \alpha} = \frac{2 \operatorname{sen} \alpha (1 - \operatorname{cos} \alpha)}{2 \operatorname{sen} \alpha (1 + \operatorname{cos} \alpha)} = \frac{1 - \operatorname{cos} \alpha}{1 + \operatorname{cos} \alpha} = tg^2 \frac{\alpha}{2}$$

e)
$$\frac{sen 2\alpha}{1 + cos 2\alpha} = \frac{2 sen \alpha cos \alpha}{1 + cos^2 \alpha - sen^2 \alpha} \stackrel{(*)}{=} \frac{2 sen \alpha cos \alpha}{cos^2 \alpha + cos^2 \alpha} = \frac{2 sen \alpha cos \alpha}{2 cos^2 \alpha} = \frac{sen \alpha}{cos \alpha} = tg \alpha$$

(*)
$$1 = cos^2 \alpha + sen^2 \alpha \rightarrow -sen^2 \alpha = cos^2 \alpha - 1$$

17 Comprueba, sin utilizar la calculadora, las siguientes igualdades.

a)
$$sen 130^{\circ} + sen 50^{\circ} = 2 cos 40^{\circ}$$

b)
$$\cos 75^{\circ} - \cos 15^{\circ} = -\frac{\sqrt{2}}{2}$$

a)
$$sen 130^{\circ} + sen 50^{\circ} = 2 sen \frac{130^{\circ} + 50^{\circ}}{2} cos \frac{130^{\circ} - 50^{\circ}}{2} = 2 sen 90^{\circ} cos 40^{\circ} = 2 cos 40^{\circ}$$

b)
$$\cos 75^{\circ} - \cos 15^{\circ} = -2 \operatorname{sen} \frac{75^{\circ} + 15^{\circ}}{2} \operatorname{sen} \frac{75^{\circ} - 15^{\circ}}{2} = -2 \operatorname{sen} 45^{\circ} \operatorname{sen} 30^{\circ} = -2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{2}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{2}}{$$

Página 143

Ecuaciones trigonométricas

18 Resuelve las siguientes ecuaciones:

a)
$$2 sen^2 x = 1$$

b)
$$3 tg^2 x - 1 = 0$$

c)
$$1 - 4 \cos^2 x = 0$$

d)
$$3 tg x + 4 = 0$$

a)
$$2 sen^2 x = 1 \rightarrow sen^2 x = \frac{1}{2} \rightarrow sen x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen x = \frac{\sqrt{2}}{2} \rightarrow x = 45^{\circ} + 360^{\circ} \cdot k; \ x = 135^{\circ} + 360^{\circ} \cdot k$$

• Si
$$sen x = -\frac{\sqrt{2}}{2} \rightarrow x = 225^{\circ} + 360^{\circ} \cdot k; \ x = 315^{\circ} + 360^{\circ} \cdot k$$

Es decir, las soluciones son todos los ángulos del tipo $x = 45^{\circ} + 90^{\circ} \cdot k$

b)
$$3 tg^2 x - 1 = 0 \rightarrow tg^2 x = \frac{1}{3} \rightarrow tg x = \pm \frac{1}{\sqrt{3}} = \pm \frac{\sqrt{3}}{3}$$

• Si
$$tg \ x = \frac{\sqrt{3}}{3} \rightarrow x = 30^{\circ} + 360^{\circ} \cdot k; \ x = 210^{\circ} + 360^{\circ} \cdot k$$

• Si
$$tg \ x = -\frac{\sqrt{3}}{3} \rightarrow x = 150^{\circ} + 360^{\circ} \cdot k; \ x = 330^{\circ} + 360^{\circ} \cdot k$$

c)
$$1 - 4\cos^2 x = 0 \rightarrow \cos^2 x = \frac{1}{4} \rightarrow \cos x = \pm \frac{1}{2}$$

• Si
$$\cos x = \frac{1}{2} \rightarrow x = 60^{\circ} + 360^{\circ} \cdot k$$
; $x = 300^{\circ} + 360^{\circ} \cdot k$

• Si
$$\cos x = -\frac{1}{2} \rightarrow x = 120^{\circ} + 360^{\circ} \cdot k; \ x = 240^{\circ} + 360^{\circ} \cdot k$$

d)
$$3 tg x + 4 = 0 \rightarrow tg x = -\frac{4}{3} \rightarrow x = 126^{\circ} 52' 12'' + 360^{\circ} \cdot k; \ x = 306^{\circ} 52' 12'' + 360^{\circ} \cdot k$$

19 Resuelve estas ecuaciones:

a)
$$2 \cos^2 x - \sin^2 x + 1 = 0$$

b)
$$sen^2 x - sen x = 0$$

c)
$$2 \cos^2 x - \sqrt{3} \cos x = 0$$

a)
$$2 \cos^2 x - \underbrace{\sec^2 x + 1 = 0}_{\cos^2 x}$$
 $\rightarrow 2 \cos^2 x - \cos^2 x = 0$

$$\cos^2 = 0 \rightarrow \cos x = 0 \rightarrow \begin{cases} x_1 = 90^{\circ} \\ x_2 = 270^{\circ} \end{cases}$$

Al comprobarlas en la ecuación inicial, las dos soluciones son válidas. Luego:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k \pi$$
con $k \in \mathbb{Z}$

Lo que podemos expresar como:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

b)
$$sen \ x \ (sen \ x - 1) = 0 \ \rightarrow \begin{cases} sen \ x = 0 \ \rightarrow \ x_1 = 0^{\circ}, \ x_2 = 180^{\circ} \\ sen \ x = 1 \ \rightarrow \ x_3 = 90^{\circ} \end{cases}$$

Comprobando las posibles soluciones, vemos que las tres son válidas. Luego:

$$\begin{aligned} x_1 &= k \cdot 360^\circ = 2k \, \pi \\ x_2 &= 180^\circ + k \cdot 360^\circ = \pi + 2k \, \pi \\ x_3 &= 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \, \pi \end{aligned} \right\} \ \text{con } k \in \mathbb{Z}'$$

O, de otra forma:

$$x_1 = k \pi = k \cdot 180^{\circ}$$

$$x_3 = \frac{\pi}{2} + 2k \pi = 90^{\circ} + k \cdot 360^{\circ}$$
 con $k \in \mathbb{Z}$

 $(x_1 \text{ así incluye las soluciones } x_1 \text{ y } x_2 \text{ anteriores})$

c)
$$\cos x (2\cos x - \sqrt{3}) = 0 \rightarrow \begin{cases} \cos x = 0 \rightarrow x_1 = 90^\circ, \ x_2 = 270^\circ \\ \cos x = \frac{\sqrt{3}}{2} \rightarrow x_3 = 30^\circ, \ x_4 = 330^\circ \end{cases}$$

Las cuatro soluciones son válidas. Luego:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{4} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

NOTA: Obsérvese que las dos primeras soluciones podrían escribirse como una sola de la siguiente forma:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

20 Resuelve.

a)
$$sen^2 x - cos^2 x = 1$$

$$b) \cos^2 x - \sin^2 x = 0$$

c)
$$2 \cos^2 x + \sin x = 1$$

b)
$$\cos^2 x - \sin^2 x = 0$$
 c) $2 \cos^2 x + \sin x = 1$ d) $3 tg^2 x - \sqrt{3} tg x = 0$

a)
$$(1 - cos^2 x) - cos^2 x = 1 \rightarrow 1 - 2 cos^2 x = 1 \rightarrow cos^2 x = 0 \rightarrow cos x = 0 \rightarrow \begin{cases} x_1 = 90^{\circ} \\ x_2 = 270^{\circ} \end{cases}$$

Las dos soluciones son válidas. Luego:

$$x_1 = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$
con $k \in \mathbb{Z}$

O, lo que es lo mismo:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

b)
$$(1 - sen^2 x) - sen^2 x = 0 \rightarrow 1 - 2 sen^2 x = 0 \rightarrow sen^2 x = \frac{1}{2} \rightarrow sen x = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen x = \frac{\sqrt{2}}{2} \rightarrow x_1 = 45^\circ, x_2 = 135^\circ$$

• Si
$$sen x = -\frac{\sqrt{2}}{2} \rightarrow x_3 = 225^\circ, x_4 = 315^\circ$$

Comprobamos que todas las soluciones son válidas. Luego:

$$x_{1} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{2} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{4} + 2k \pi$$

$$x_{3} = 225^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{4} + 2k \pi$$

O, lo que es lo mismo:

$$x = 45^{\circ} + k \cdot 90^{\circ} = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$$
 con $k \in \mathbb{Z}$

c)
$$2(1-sen^2x) + sen x = 1 \rightarrow 2-2 sen^2x + sen x = 1 \rightarrow 2sen^2x - sen x - 1 = 0 \rightarrow$$

 $\rightarrow sen x = \frac{1 \pm \sqrt{1+8}}{4} = \frac{1 \pm 3}{4} = \frac{1 + 3}{4} =$

Las tres soluciones son válidas, es decir:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 210^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{6} + 2k \pi$$

$$x_{3} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}'$$

d)
$$tg \ x (3 \ tg \ x - \sqrt{3}) = 0 \rightarrow \begin{cases} tg \ x = 0 \rightarrow x_1 = 0^\circ, \ x_2 = 180^\circ \\ tg \ x = \frac{\sqrt{3}}{3} \rightarrow x_3 = 30^\circ, \ x_4 = 210^\circ \end{cases}$$

Comprobamos las posibles soluciones en la ecuación inicial y vemos que las cuatro son válidas. Entonces:

$$\begin{aligned} x_1 &= k \cdot 360^\circ = 2k \, \pi \\ x_2 &= 180^\circ + k \cdot 360^\circ = \pi + 2k \, \pi \\ x_3 &= 30^\circ + k \cdot 360^\circ = \frac{\pi}{6} + 2k \, \pi \\ x_4 &= 210^\circ + k \cdot 360^\circ = \frac{7\pi}{6} + 2k \, \pi \end{aligned} \right\} \quad \text{con } k \in \mathbb{Z}'$$

Lo que podría expresarse con solo dos soluciones que englobaran las cuatro anteriores:

$$x_1 = k \cdot 180^\circ = k \pi \text{ y } x_2 = 30^\circ + k \cdot 180^\circ = \frac{\pi}{6} + k \pi \text{ con } k \in \mathbb{Z}$$

21 Resuelve las siguientes ecuaciones:

a)
$$sen\left(\frac{\pi}{6}-x\right)+cos\left(\frac{\pi}{3}-x\right)=\frac{1}{2}$$

b)
$$sen 2x - 2 cos^2 x = 0$$

c)
$$\cos 2x - 3 \sin x + 1 = 0$$

d) sen
$$\left(\frac{\pi}{4} + x\right) - \sqrt{2}$$
 sen $x = 0$

a)
$$sen \frac{\pi}{6} cos x - cos \frac{\pi}{6} sen x + cos \frac{\pi}{3} cos x + sen \frac{\pi}{3} sen x = \frac{1}{2}$$

$$\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = \frac{1}{2} \rightarrow \frac{1}{2}\cos x + \frac{1}{2}\cos x = \frac{1}{2} \rightarrow \cos x = \frac{1}{2}$$

Comprobamos y vemos que:

$$x_{1} \rightarrow sen\left(\frac{\pi}{6} - \frac{\pi}{3}\right) + cos\left(\frac{\pi}{3} - \frac{\pi}{3}\right) = sen\left(-\frac{\pi}{6}\right) + cos\left(0 = \frac{-1}{2} + 1 = \frac{1}{2}\right)$$

$$x_{2} \rightarrow sen\left(\frac{\pi}{6} - \frac{5\pi}{3}\right) + cos\left(\frac{\pi}{3} - \frac{5\pi}{3}\right) = sen\left(-\frac{3\pi}{3}\right) + cos\left(-\frac{4\pi}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$

Son válidas las dos soluciones. Luego:

$$x_{1} = \frac{\pi}{3} + 2k \pi = 60^{\circ} + k \cdot 360^{\circ}$$

$$x_{2} = \frac{5\pi}{3} + 2k \pi = 300^{\circ} + k \cdot 360^{\circ}$$
con $k \in \mathbb{Z}$

b)
$$2 \operatorname{sen} x \cos x - 2 \cos^2 x = 0 \rightarrow 2 \cos x (\operatorname{sen} x - \cos x) = 0 \rightarrow$$

$$\rightarrow \begin{cases} \cos x = 0 \rightarrow x_1 = 90^\circ, \ x_2 = 270^\circ \\ \sin x = \cos x \rightarrow x_3 = 45^\circ, \ x_4 = 225^\circ \end{cases}$$

Comprobamos las soluciones. Todas son válidas.

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{4} = 225^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

También podríamos expresarlas como:

$$x_1 = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_2 = 45^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{4} + k \pi$$
con $k \in \mathbb{Z}$

c)
$$\cos^2 x - \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 1 - \sin^2 x - \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 0$$

 $\rightarrow 1 - 2 \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 2 \sin^2 x + 3 \sin x - 2 = 0 \rightarrow 0$
 $\rightarrow \sin x = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4} = \frac{1/2 \rightarrow x_1 = 30^\circ, \ x_2 = 150^\circ}{-2 \rightarrow \text{iImposible!}, \ pues \ | \sin x | \le 1}$

Comprobamos que la dos soluciones son válidas. Luego:

$$x_1 = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_2 = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

d)
$$sen \frac{\pi}{4} cos x + cos \frac{\pi}{4} sen x - \sqrt{2} sen x = 0 \rightarrow \frac{\sqrt{2}}{2} cos x + \frac{\sqrt{2}}{2} sen x - \sqrt{2} sen x = 0$$

 $\frac{\sqrt{2}}{2} cos x - \frac{\sqrt{2}}{2} sen x = 0 \rightarrow cos x - sen x = 0 \rightarrow cos x = sen x \rightarrow x_1 = \frac{\pi}{4}, x_2 = \frac{5\pi}{4}$

Al comprobar, podemos ver que ambas soluciones son válidas. Luego:

$$x_{1} = \frac{\pi}{4} + 2k \pi = 45^{\circ} + k \cdot 360^{\circ}$$

$$x_{2} = \frac{5\pi}{4} + 2k \pi = 225^{\circ} + k \cdot 360^{\circ}$$
con $k \in \mathbb{Z}'$

Podemos agrupar las dos soluciones en: $x = \frac{\pi}{4} + k \pi = 45^{\circ} + k \cdot 180^{\circ}$ con $k \in \mathbb{Z}$

22 Resuelve.

a)
$$\cos^2 \frac{x}{2} + \cos x - \frac{1}{2} = 0$$

b)
$$tg^2 \frac{x}{2} + 1 = \cos x$$

c)
$$2 sen^2 \frac{x}{2} + cos 2x = 0$$

d)
$$4 sen^2 x cos^2 x + 2 cos^2 x - 2 = 0$$

a)
$$\frac{1+\cos x}{2} + \cos x - \frac{1}{2} = 0 \rightarrow 1 + \cos x + 2\cos x - 1 = 0 \rightarrow$$

$$\rightarrow 3\cos x = 0 \rightarrow \cos x = 0$$
 $x_1 = 90^{\circ}$ $x_2 = 270^{\circ}$

Las dos soluciones son válidas. Luego:

$$x_1 = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270 + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Agrupando las soluciones: $x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$ con $k \in \mathbb{Z}$

b)
$$\frac{1 - \cos x}{1 + \cos x} + 1 = \cos x \rightarrow 1 - \cos x + 1 + \cos x = \cos x + \cos^{2} x \rightarrow$$

$$\rightarrow 2 = \cos x + \cos^{2} x \rightarrow \cos^{2} x + \cos x - 2 = 0 \rightarrow$$

$$\rightarrow \cos x = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2}$$

$$1 \rightarrow x = 0^{\circ}$$

$$-2 \rightarrow \text{iImposible, pues} |\cos x| \le 1$$

Luego: $x = k \cdot 360^{\circ} = 2k \pi \text{ con } k \in \mathbb{Z}$

c)
$$2 \cdot \frac{1 - \cos x}{2} + \cos^2 x - \sin^2 x = 0 \rightarrow 1 - \cos x + \cos^2 x - (1 - \cos^2 x) = 0 \rightarrow 1 - \cos x + \cos^2 x - 1 + \cos^2 x = 0 \rightarrow 2\cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos^2 x - \cos x = 0 \rightarrow \cos x + \cos x + \cos x = 0 \rightarrow \cos x + \cos x +$$

Se comprueba que son válidas todas. Por tanto:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 60^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{3} + 2k \pi$$

$$x_{4} = 300^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{3} + 2k \pi$$

Agrupando las soluciones quedaría:

$$x_{1} = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_{2} = 60^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{3} + 2k \pi$$

$$x_{3} = 300^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

d)
$$4(1-\cos^2 x)\cos^2 x + 2\cos^2 x - 2 = 0 \rightarrow 4\cos^2 x - 4\cos^4 x + 2\cos^2 x - 2 = 0 \rightarrow 4\cos^4 x - 6\cos^2 x + 2 = 0 \rightarrow 2\cos^4 x - 3\cos^2 x + 1 = 0$$

Sea $\cos^2 x = z \rightarrow \cos^4 x = z^2$
Así:

$$2z^{2} - 3z + 1 = 0 \rightarrow z = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4}$$

$$z_{1} = 1 \rightarrow \cos x = \pm 1$$

$$x_{1} = 0^{\circ}$$

$$x_{2} = 180^{\circ}$$

$$z_{2} = \frac{1}{2} \rightarrow \cos x = \pm \frac{\sqrt{2}}{2}$$

$$x_{3} = 45^{\circ}, x_{4} = 315^{\circ}$$

$$x_{5} = 135^{\circ}, x_{6} = 225^{\circ}$$

Comprobando las posibles soluciones, vemos que todas son válidas. Por tanto:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{3} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

$$x_{5} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{4} + 2k \pi$$

$$x_{6} = 225^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{4} + 2k \pi$$

O, agrupando las soluciones:

$$x_1 = k \cdot 180^{\circ} = k \pi$$

$$x_2 = 45^{\circ} + k \cdot 90^{\circ} = \frac{\pi}{4} + k \frac{\pi}{2}$$
 con $k \in \mathbb{Z}$

23 Transforma estas ecuaciones en otras equivalentes cuya incógnita sea tg x y resuélvelas:

a)
$$sen x + cos x = 0$$

b)
$$sen^2 x - 2\sqrt{3} sen x cos x + 3 cos^2 x = 0$$

c)
$$sen^2 x + sen x cos x = 0$$

a) Dividimos toda la ecuación entre cos x:

$$\frac{sen x}{cos x} + \frac{cos x}{cos x} = 0 \rightarrow tg \ x + 1 = 0 \rightarrow tg \ x = -1 \rightarrow x = 135^{\circ} + 360^{\circ} \cdot k; \ x = 315^{\circ} + 360^{\circ} \cdot k$$

b) Dividimos toda la ecuación entre $\cos^2 x$:

$$\frac{sen^2 x}{cos^2 x} - 2\sqrt{3} \frac{sen x cos x}{cos^2 x} + 3 \frac{cos^2 x}{cos^2 x} = 0 \rightarrow tg^2 x - 2\sqrt{3} tg x + 3 = 0 \rightarrow tg x = \frac{2\sqrt{3} \pm 0}{2} = \sqrt{3} \rightarrow x = 60^\circ + 360^\circ \cdot k; \ x = 240^\circ + 360^\circ \cdot k$$

c) Dividimos toda la ecuación entre cos² x:

$$\frac{sen^2 x}{cos^2 x} + \frac{sen x cos x}{cos^2 x} = 0 \rightarrow tg^2 x + tg x = 0 \rightarrow tg x (tg x + 1) = 0 \rightarrow \begin{cases} tg x = 0 \\ tg x = -1 \end{cases}$$

• Si
$$tg x = 0 \rightarrow x = 0^{\circ} + 360^{\circ} \cdot k$$
; $x = 180^{\circ} + 360^{\circ} \cdot k$

• Si
$$tg x = -1 \rightarrow x = 135^{\circ} + 360^{\circ} \cdot k$$
; $x = 315^{\circ} + 360^{\circ} \cdot k$

24 Resuelve las siguientes ecuaciones:

a)
$$\sqrt{3} \cos\left(\frac{3\pi}{2} + x\right) + \cos\left(x - \pi\right) = 2$$

b)
$$cos\left(\frac{5\pi}{6}-x\right)+sen x-\sqrt{3} cos x=0$$

c) sen
$$\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} + x\right) = 1$$

d)
$$\cos\left(\frac{\pi}{3} - x\right) - \sqrt{3} \operatorname{sen}\left(\frac{\pi}{3} - x\right) = 1$$

a)
$$\sqrt{3}\left(\cos\frac{3\pi}{2}\cos x - \sin\frac{3\pi}{2}\sin x\right) + \cos x\cos\pi + \sin x\sin\pi = 2 \rightarrow$$

$$\rightarrow \sqrt{3} sen x - cos x = 2 \rightarrow \sqrt{3} sen x - 2 = cos x$$

Elevamos al cuadrado los dos miembros de la igualdad:

$$3 \, sen^2 \, x - 4 \, \sqrt{3} \, sen \, x + 4 = \cos^2 x \, \rightarrow \, 3 \, sen^2 \, x - 4 \, \sqrt{3} \, sen \, x + 4 = 1 - sen^2 \, x \, \rightarrow$$

$$\rightarrow \, 4 \, sen^2 \, x - 4 \, \sqrt{3} \, sen \, x + 3 = 0 \, \rightarrow \, sen \, x = \frac{4 \, \sqrt{3} \pm 0}{8} = \frac{\sqrt{3}}{2} \, \rightarrow$$

$$\rightarrow \, x = \frac{\pi}{3} + 2\pi \cdot k; \, x = \frac{2\pi}{3} + 2\pi \cdot k$$

Ahora debemos comprobar las soluciones porque pueden aparecer falsas soluciones al elevar al cuadrado.

$$x = \frac{\pi}{3} \rightarrow \sqrt{3} \cdot cos\left(\frac{3\pi}{2} + \frac{\pi}{3}\right) + cos\left(\frac{\pi}{3} - \pi\right) = 1 \neq 2$$
 No vale.

$$x = \frac{2\pi}{3} \rightarrow \sqrt{3} \cdot cos\left(\frac{3\pi}{2} + \frac{2\pi}{3}\right) + cos\left(\frac{2\pi}{3} - \pi\right) = 2$$
 Vale.

b)
$$\cos \frac{5\pi}{6} \cos x + \sin \frac{5\pi}{6} \sin x + \sin x - \sqrt{3} \cos x = 0 \rightarrow -\frac{\sqrt{3} \cos x}{2} + \frac{\sin x}{2} + \sin x - \sqrt{3} \cos x = 0 \rightarrow \frac{3}{2} \sin x = \frac{3\sqrt{3}}{2} \cos x$$

Dividimos los dos miembros entre cos x:

$$\frac{3}{2} tg \ x = \frac{3\sqrt{3}}{2} \rightarrow tg \ x = \sqrt{3} \rightarrow x = \frac{\pi}{3} + 2\pi \cdot k; \ x = \frac{4\pi}{3} + 2\pi \cdot k$$

d)
$$\cos \frac{\pi}{3} \cos x + \sin \frac{\pi}{3} \sin x - \sqrt{3} \left(\sin \frac{\pi}{3} \cos x - \cos \frac{\pi}{3} \sin x \right) = 1 \rightarrow$$

$$\rightarrow \frac{\cos x}{2} + \frac{\sqrt{3} \sin x}{2} - \sqrt{3} \left(\frac{\sqrt{3} \cos x}{2} - \frac{\sin x}{2} \right) = 1 \rightarrow$$

$$\rightarrow \cos x + \sqrt{3} \sin x - 3 \cos x + \sqrt{3} \sin x = 2 \rightarrow$$

$$\rightarrow$$
 $-2\cos x + 2\sqrt{3}\sin x = 2 \rightarrow \sqrt{3}\sin x = 1 + \cos x$

Elevamos al cuadrado los dos miembros de la igualdad:

$$3 sen^2 x = 1 + 2 cos x + cos^2 x \rightarrow 3 - 3 cos^2 x = 1 + 2 cos x + cos^2 x \rightarrow 4 cos^2 x + 2 cos x - 2 = 0 \rightarrow 2 cos^2 x + cos x - 1 = 0 \rightarrow cos x = \frac{-1 \pm 3}{4}$$

• Si
$$\cos x = \frac{1}{2} \to x = \frac{\pi}{3} + 2\pi \cdot k \to x = \frac{5\pi}{3} + 2\pi \cdot k$$

• Si
$$\cos x = -1 \rightarrow x = \pi + 2\pi \cdot k$$

Ahora debemos comprobar las soluciones porque pueden aparecer falsas soluciones al elevar al cuadrado.

• Si
$$x = \frac{\pi}{3} \rightarrow cos\left(\frac{\pi}{3} - \frac{\pi}{3}\right) - \sqrt{3} \cdot sen\left(\frac{\pi}{3} - \frac{\pi}{3}\right) = 1$$
 Vale.

• Si
$$x = \frac{5\pi}{3} \rightarrow cos\left(\frac{\pi}{3} - \frac{5\pi}{3}\right) - \sqrt{3} \cdot sen\left(\frac{\pi}{3} - \frac{5\pi}{3}\right) = -2 \neq 1$$
 No vale.

• Si
$$x = \pi \rightarrow cos\left(\frac{\pi}{3} - \pi\right) - \sqrt{3} \cdot sen\left(\frac{\pi}{3} - \pi\right) = 1$$
 Vale.

25 Resuelve las siguientes ecuaciones:

a)
$$\cos 2x + 3 \sin x = 2$$

b)
$$tg \ 2x \cdot tg \ x = 1$$

c)
$$\cos x \cos 2x + 2 \cos^2 x = 0$$

d)
$$2 sen x = tg 2x$$

e)
$$\sqrt{3} \ sen \frac{x}{2} + cos x - 1 = 0$$

f)
$$sen 2x cos x = 6 sen^3 x$$

g)
$$tg\left(\frac{\pi}{4}-x\right)+tgx=1$$

a)
$$\cos^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 2 \sin^2 x - 3 \sin x + 1 = 0 \rightarrow$$

$$\Rightarrow \sin x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \underbrace{\qquad \qquad 1 \rightarrow x_1 = 90^\circ}_{1/2 \rightarrow x_2 = 30^\circ, \ x_3 = 150^\circ}_{1/2 \rightarrow x_2 = 30^\circ}_{1/2 \rightarrow x_2 = 30^\circ}_{1/2 \rightarrow x_2 = 30^\circ}_{1/2 \rightarrow x_3 = 150^\circ}_{1/2 \rightarrow x_3 =$$

Las tres soluciones son válidas:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

b)
$$\frac{2 tg x}{1 - tg^2 x} \cdot tg \ x = 1 \rightarrow 2 tg^2 x = 1 - tg^2 x \rightarrow tg^2 x = \frac{1}{3} \rightarrow tg \ x = \pm \frac{\sqrt{3}}{3} \rightarrow \begin{cases} x_1 = 30^\circ, \ x_2 = 210^\circ \\ x_3 = 150^\circ, \ x_4 = 330^\circ \end{cases}$$

Las cuatro soluciones son válidas:

$$x_{1} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{2} = 210^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{6} + 2k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$x_{4} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

Agrupando:

$$x_{1} = 30^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{6} + k \pi$$

$$x_{2} = 150^{\circ} + k \cdot 180^{\circ} = \frac{5\pi}{6} + k \pi$$
con $k \in \mathbb{Z}'$

c)
$$\cos x (\cos^2 x - \sin^2 x) + 2 \cos^2 x = 0 \rightarrow \cos x (\cos^2 x - 1 + \cos^2 x) + 2 \cos^2 x = 0 \rightarrow$$

 $\rightarrow 2 \cos^3 x - \cos x + 2 \cos^2 x = 0 \rightarrow \cos x (2 \cos^2 x + 2 \cos x - 1) = 0 \rightarrow$

$$\Rightarrow \begin{cases} \cos x = 0 \rightarrow x_1 = 90^\circ, \ x_2 = 270^\circ \\ \cos x = \frac{-2 \pm \sqrt{4 + 8}}{4} = \frac{-2 \pm 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2} \end{cases} \approx -1,366 \rightarrow \text{[Imposible!, pues } |\cos x| \le -1 \\ \approx 0,366 \rightarrow x_3 = 68^\circ 31'51,1'', \ x_4 = 291^\circ 28'8,9'' \end{cases}$$

Las soluciones son todas válidas:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 68^{\circ} 31'51, 5'' + k \cdot 360^{\circ} \approx 0, 38\pi + 2k \pi$$

$$x_{4} = 291^{\circ} 28'8, 9'' + k \cdot 360^{\circ} \approx 1, 62\pi + 2k \pi$$

Agrupadas, serían:

$$x_{1} = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_{2} = 68^{\circ} 31' 51, 1'' + k \cdot 360^{\circ} \approx 0, 38\pi + 2k \pi$$

$$x_{3} = 291^{\circ} 28' 8, 9'' + k \cdot 360^{\circ} \approx 1, 62\pi + 2k \pi$$

$$con k \in \mathbb{Z}$$

d)
$$2 \operatorname{sen} x = \frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x} \to 2 \operatorname{sen} x - 2 \operatorname{sen} x \operatorname{tg}^2 x = 2 \operatorname{tg} x \to$$

$$\to \operatorname{sen} x - \operatorname{sen} x \frac{\operatorname{sen}^2 x}{\cos^2 x} = \frac{\operatorname{sen} x}{\cos x} \to \operatorname{sen} x \cos^2 x - \operatorname{sen} x \operatorname{sen}^2 x = \operatorname{sen} x \cos x \to$$

$$\to \operatorname{sen} x (\cos^2 x - \operatorname{sen}^2 x - \cos x) = 0 \to \operatorname{sen} x (\cos^2 x - 1 + \cos^2 x - \cos x) = 0 \to$$

$$= \begin{cases} \operatorname{sen} x = 0 \to x_1 = 0^\circ, \ x_2 = 180^\circ \\ 2 \cos^2 x - \cos x - 1 = 0^\circ \to \cos x = \frac{1 \pm \sqrt{1 + 8}}{4} = \begin{cases} 1 \to x_3 = 0^\circ = x_1 \\ -1/2 \to x_4 = 240^\circ, \ x_5 = 120^\circ \end{cases}$$

Las cuatro soluciones son válidas. Luego:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{4} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$

$$x_{5} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$
con $k \in \mathbb{Z}'$

Que, agrupando soluciones, quedaría:

$$x_{1} = k \cdot 180^{\circ} = k \pi$$

$$x_{2} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$

$$x_{3} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$
con $k \in \mathbb{Z}'$

e)
$$\sqrt{3}\sqrt{\frac{1-\cos x}{2}} + \cos x - 1 = 0 \rightarrow \frac{3-3\cos x}{2} = (1-\cos x)^2 \rightarrow 3-3\cos x = 2(1+\cos^2 x - 2\cos x) \rightarrow 2\cos^2 x - \cos x - 1 = 0 \rightarrow \cos x = \frac{1\pm\sqrt{1+8}}{4} = \frac{1\pm3}{4} = \frac{1+3}{4} = \frac{1+3}{4$$

Al comprobar, vemos que las tres soluciones son válidas:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$

$$x_{3} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$
con $k \in \mathbb{Z}$

f)
$$2 \operatorname{sen} x \cos x \cos x = 6 \operatorname{sen}^3 x \to 2 \operatorname{sen} x \cos^2 x = 6 \operatorname{sen}^3 x \to 2 \operatorname{sen} x (1 - \operatorname{sen}^2 x) = 6 \operatorname{sen}^3 x \to 2 \operatorname{sen} x - 2 \operatorname{sen}^3 x = 6 \operatorname{sen}^3 x \to 2 \operatorname{sen} x = 6 \operatorname{sen}^3 x \to 2 \operatorname{sen}^3 x \to$$

Comprobamos que todas las soluciones son válidas.

Damos las soluciones agrupando las dos primeras por un lado y el resto por otro:

$$x_{1} = k \cdot 180^{\circ} = k \pi$$

$$x_{2} = 30^{\circ} + k \cdot 90^{\circ} = \frac{\pi}{6} + k \cdot \frac{\pi}{2}$$
con $k \in \mathbb{Z}$

g)
$$\frac{tg(\pi/4) + tg x}{1 - tg(\pi/4) tg x} + tg x = 1 \rightarrow \frac{1 + tg x}{1 - tg x} + tg x = 1 \rightarrow 1 + tg x + tg x - tg^{2} x = 1 - tg x \rightarrow tg^{2} x - 3 tg x = 0 \rightarrow tg x (tg x - 3) = 0 \rightarrow$$

$$\Rightarrow \begin{cases} tg x = 0 \rightarrow x_{1} = 0^{\circ}, x_{2} = 180^{\circ} \\ tg x = 3 \rightarrow x_{3} = 71^{\circ} 33^{\circ} 54, 2^{\circ}, x_{4} = 251^{\circ} 33^{\circ} 54, 2^{\circ} \end{cases}$$

Las cuatro soluciones son válidas:

$$\begin{aligned} x_1 &= k \cdot 360^\circ = 2k \,\pi \\ x_2 &= 180^\circ + k \cdot 360^\circ = \pi + 2k \,\pi \\ x_3 &= 71^\circ \, 33' \, 54, 2'' + k \cdot 360^\circ \approx \frac{2\pi}{5} + 2k \,\pi \end{aligned} \right\} \quad \text{con } k \in \mathbb{Z}'$$

$$x_4 &= 251^\circ \, 33' \, 54, 2'' + k \cdot 360^\circ \approx \frac{7\pi}{5} + 2k \,\pi$$

O, lo que es lo mismo:

$$\begin{aligned} x_1 &= k \cdot 180^\circ = k \, \pi \\ x_2 &= 71^\circ \, 33' \, 54, 2'' + k \cdot 180^\circ \approx \frac{2\pi}{5} + k \, \pi \end{aligned} \quad \text{con } k \in \mathbb{Z}$$

Ángulos en radianes

26 Expresa en grados los siguientes ángulos dados en radianes:

$$\frac{5\pi}{6}; \frac{7\pi}{3}; \frac{4\pi}{9}; \frac{3\pi}{5}; 1,5; 3,2$$

$$\frac{5\pi}{6} rad = \frac{5 \cdot 180^{\circ}}{6} = 150^{\circ} \qquad \frac{7\pi}{3} rad = \frac{7 \cdot 180^{\circ}}{3} = 420^{\circ} \qquad \frac{4\pi}{9} rad = \frac{4 \cdot 180^{\circ}}{9} = 80^{\circ}$$

$$\frac{3\pi}{5} rad = \frac{3 \cdot 180^{\circ}}{5} = 108^{\circ} \qquad 1,5 rad = \frac{1,5 \cdot 180^{\circ}}{\pi} = 85^{\circ} 56' 37'' \qquad 3,2 rad = \frac{3,2 \cdot 180^{\circ}}{\pi} = 183^{\circ} 20' 47''$$

27 Pasa a radianes los siguientes ángulos. Exprésalos en función de π :

$$135^{\circ} = \frac{135 \cdot \pi}{180} = \frac{3\pi}{4} rad$$

$$210^{\circ} = \frac{210 \cdot \pi}{180} = \frac{7\pi}{6} rad$$

$$108^{\circ} = \frac{108 \cdot \pi}{180} = \frac{3\pi}{5} rad$$

$$72^{\circ} = \frac{72 \cdot \pi}{180} = \frac{2\pi}{5} rad$$

$$126^{\circ} = \frac{126 \cdot \pi}{180} = \frac{7\pi}{10} rad$$

$$480^{\circ} = \frac{480 \cdot \pi}{180} = \frac{8\pi}{3} rad$$

28 Prueba que:

a)
$$4 sen \frac{\pi}{6} + \sqrt{2} cos \frac{\pi}{4} + cos \pi = 2$$

b) $2\sqrt{3} sen \frac{2\pi}{3} + 4 sen \frac{\pi}{6} - 2 sen \frac{\pi}{2} = 3$

c) sen
$$\frac{2\pi}{3} - \cos \frac{7\pi}{6} + tg \frac{4\pi}{3} + tg \frac{11\pi}{6} = \frac{5\sqrt{3}}{3}$$

a)
$$4 \operatorname{sen} \frac{\pi}{6} + \sqrt{2} \cos \frac{\pi}{4} + \cos \pi = 4 \cdot \frac{1}{2} + \sqrt{2} \cdot \frac{\sqrt{2}}{2} + (-1) = 2 + 1 - 1 = 2$$

b)
$$2\sqrt{3} \operatorname{sen} \frac{2\pi}{3} + 4 \operatorname{sen} \frac{\pi}{6} - 2 \operatorname{sen} \frac{\pi}{2} = 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} + 4 \cdot \frac{1}{2} - 2 \cdot 1 = 3 + 2 - 2 = 3$$

c)
$$sen \frac{2\pi}{3} - cos \frac{7\pi}{6} + tg \frac{4\pi}{3} + tg \frac{11\pi}{6} = \frac{\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) + \sqrt{3} + \left(-\frac{\sqrt{3}}{3}\right) = \sqrt{3}\left(\frac{1}{2} + \frac{1}{2} + 1 - \frac{1}{3}\right) = \frac{5\sqrt{3}}{3}$$

Halla el valor exacto de cada una de estas expresiones sin utilizar la calculadora:

a)
$$5 \cos \frac{\pi}{2} - \cos 0 + 2 \cos \pi - \cos \frac{3\pi}{2} + \cos 2\pi$$

b)
$$sen \frac{\pi}{4} + sen \frac{\pi}{2} + sen \pi$$

c)
$$\cos \frac{5\pi}{3} + tg \frac{4\pi}{3} - tg \frac{7\pi}{6}$$

d)
$$\sqrt{3} \cos \frac{\pi}{6} + \sin \frac{\pi}{6} - \sqrt{2} \cos \frac{\pi}{4} - 2\sqrt{3} \sin \frac{\pi}{3}$$

Comprueba los resultados con calculadora.

a)
$$5 \cdot 0 - 1 + 2 \cdot (-1) - 0 + 1 = -2$$

b)
$$\frac{\sqrt{2}}{2} + 1 + 0 = \frac{\sqrt{2} + 2}{2}$$

c)
$$\frac{1}{2} + \sqrt{3} - \frac{\sqrt{3}}{3} = \frac{1}{2} + \frac{2\sqrt{3}}{3}$$

d)
$$\sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} - \sqrt{2} \cdot \frac{\sqrt{2}}{2} - 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} + \frac{1}{2} - 1 - 3 = -2$$

30 Halla las razones trigonométricas de los siguientes ángulos e indica, sin pasar a grados, en qué cuadrante está cada uno:

- a) 0,8 rad
- b) 3,2 rad
- c) 2 rad
- d) 4,5 rad

- e) $\pi/8$ rad
- f) $7\pi/4$ rad
- g) $3\pi/5$ rad
- h) $1,2\pi$ rad

* Ten en cuenta que: $\frac{\pi}{2} \approx 1,57; \quad \pi \approx 3,14; \quad \frac{3\pi}{2} \approx 4,7; \quad 2\pi \approx 6,28.$

Para saber en qué cuadrante está cada uno, podemos usar también los signos de las razones trigonométricas.

a)
$$sen 0.8 = 0.72$$

$$\cos 0.8 = 0.50$$

$$tg \ 0.8 = 1.03 \rightarrow \text{Cuadrante I}$$

b) sen
$$3.2 = -0.06$$

$$\cos 3.2 = -1$$

$$tg 3,2 = 0,06 \rightarrow \text{Cuadrante III}$$

c)
$$sen 2 = 0.91$$

$$cos 2 = -0.42$$

$$tg 2 = -2,19 \rightarrow \text{Cuadrante II}$$

d)
$$sen 4.5 = -0.98$$

$$cos 4,5 = -0.21$$

$$tg 4.5 = 4.64 \rightarrow \text{Cuadrante III}$$

e)
$$sen \frac{\pi}{8} = 0.38$$

$$cos \frac{\pi}{8} = 0,92$$

$$tg \frac{\pi}{8} = 0,41 \rightarrow \text{Cuadrante I}$$

f)
$$sen \frac{7\pi}{4} = -0.71$$
 $cos \frac{7\pi}{4} = 0.71$

$$\cos \frac{7\pi}{4} = 0,71$$

$$tg \frac{7\pi}{4} = -1 \rightarrow \text{Cuadrante IV}$$

g)
$$sen \frac{3\pi}{5} = 0.95$$

$$\cos \frac{3\pi}{5} = -0.31$$

$$tg \frac{3\pi}{5} = -3.08 \rightarrow \text{Cuadrante II}$$

h) sen
$$1.2\pi = -0.59$$

$$cos\ 1,2\pi = -0.81$$

$$tg \ 1,2\pi = 0,73 \rightarrow \text{Cuadrante III}$$

31 En cada caso halla, en radianes, dos valores para el ángulo α tales que:

a) sen
$$\alpha = 0.32$$

b)
$$cos \alpha = 0.58$$

c)
$$tg \alpha = -1.5$$

d) sen
$$\alpha = -0.63$$

a)
$$\alpha_1 = 0.33$$
; $\alpha_2 = 2.82$

b)
$$\alpha_1 = 0.95$$
; $\alpha_2 = 5.33$

c)
$$\alpha_1 = -0.98$$
; $\alpha_2 = 2.16$

d)
$$\alpha_1 = -0.68$$
; $\alpha_2 = 3.82$

Página 144

Para resolver

32 Representa las siguientes funciones trigonométricas:

a)
$$\gamma = -sen x$$

b)
$$y = 1 + sen x$$

c)
$$y = -\cos x$$

$$d) y = 1 + \cos x$$

Todas estas funciones son periódicas, de período 2π . Están representadas en el intervalo $[0, 2\pi]$. A partir de aquí, se repite.

a)
$$y = -sen x$$

b)
$$y = 1 + sen x$$

c)
$$y = -\cos x$$

$$d) y = 1 + \cos x$$

33 Asocia a cada una de las siguientes funciones la gráfica que le corresponde:

a)
$$y = 2 sen x$$

b)
$$y = cos 2x$$

c)
$$y = 2 \cos x$$

- a) Grafica III.
- b) Gráfica II.
- c) Gráfica IV.
- d) Gráfica I.

34 Halla los puntos de corte de las funciones y = sen x e y = tg x.

Los puntos de corte serán aquellos cuyas abscisas cumplan sen x = tg x.

Resolvemos la ecuación:

$$sen x - tg x = 0 \rightarrow sen x - \frac{sen x}{cos x} = 0 \rightarrow sen x \left(1 - \frac{1}{cos x}\right) = 0 \rightarrow \begin{cases} sen x = 0 \\ 1 - \frac{1}{cos x} = 0 \end{cases}$$
• Si $sen x = 0 \rightarrow x = 0 + 2\pi + h$; $x = \pi + 2\pi + h$

• Si
$$sen x = 0 \rightarrow x = 0 + 2\pi \cdot k$$
; $x = \pi + 2\pi \cdot k$

• Si
$$1 - \frac{1}{\cos x} = 0 \rightarrow \cos x = 1 \rightarrow x = 0 + 2\pi \cdot k$$

En resumen, $x = \pi \cdot k$

En todos ellos tanto el seno como la tangente valen 0. Por tanto, los puntos de corte de las funciones son de la forma $(\pi \cdot k, 0)$.

55 En una circunferencia de 16 cm de radio, un arco mide 20 cm. Halla el ángulo central que corresponde a ese arco en grados y en radianes.

Como la circunferencia completa (100,53 cm) son 2π rad, entonces:

$$\frac{100,53}{20} = \frac{2\pi}{\alpha} \rightarrow \alpha = \frac{20 \cdot 2\pi}{100,53} = 1,25 \, rad$$

$$\alpha = \frac{360^{\circ}}{2\pi} \cdot 1,25 = 71^{\circ} 37' 11''$$

56 En una determinada circunferencia, a un arco de 12 cm de longitud le corresponde un ángulo de 2,5 radianes. ¿Cuál es el radio de esa circunferencia?

$$\frac{2,5 \, rad}{1 \, rad} = \frac{12 \, \text{cm}}{R \, \text{cm}} \rightarrow R = \frac{12}{2,5} = 4,8 \, \text{cm}$$

37 Halla, en radianes, el ángulo comprendido entre 0 y 2π tal que sus razones trigonométricas coincidan con las de $\frac{19\pi}{5}$.

Como $\frac{19}{5}$ = 3,8, el ángulo α dado verifica $2\pi < \alpha < 4\pi$, luego tiene más de una vuelta completa y menos de dos vueltas.

Si le restamos una vuelta (2π) obtendremos el ángulo que nos piden.

Tiene las mismas razones trigonométricas que el ángulo $\frac{19\pi}{5} - 2\pi = \frac{9\pi}{5}$ y $0 < \frac{9\pi}{5}$ rad $< 2\pi$.

38

Si en este triángulo isósceles sabemos que $\cos\alpha=\frac{\sqrt{2}}{4}$, calcula, sin hallar el ángulo α , el valor de $\cos\beta$.

Para calcular $\cos \beta$ necesitamos averiguar primero el valor de $sen \alpha$:

$$sen^2 \alpha + cos^2 \alpha = 1 \rightarrow sen^2 \alpha + \frac{1}{8} = 1 \rightarrow sen^2 \alpha = \frac{7}{8} \rightarrow sen \alpha = \sqrt{\frac{7}{8}}$$
 ya que es un ángulo agudo.

$$\cos \beta = \cos (180^{\circ} - 2\alpha) = \cos 180^{\circ} \cos 2\alpha + \sin 180^{\circ} \sin 2\alpha = -\cos 2\alpha = -(\cos^{2} \alpha - \sin^{2} \alpha) = -\left(\frac{1}{8} - \frac{7}{8}\right) = \frac{3}{4}$$

39 En un triángulo ABC conocemos $\hat{B} = 45^{\circ}$ y $\cos \hat{A} = -\frac{1}{5}$. Calcula, sin hallar los ángulos \hat{A} y \hat{C} , las razones trigonométricas del ángulo \hat{C} .

Calculamos primero las razones trigonométricas de $\hat{A}\,$ y de $\hat{B}.$

$$sen^2 \hat{A} + cos^2 \hat{A} = 1 \rightarrow sen^2 \hat{A} + \frac{1}{25} = 1 \rightarrow sen^2 \hat{A} = \frac{24}{25} \rightarrow sen^2 \hat{A} = \frac{\sqrt{24}}{5} \text{ ya que } \hat{A} < 180^\circ.$$

$$sen \ \hat{B} = sen \ 45^{\circ} = \frac{\sqrt{2}}{2}, \ cos \ \hat{B} = cos \ 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$sen~\hat{C} = sen~(180^\circ - (\hat{A} + \hat{B})) = sen~180^\circ~cos~(\hat{A} + \hat{B}) - cos~180^\circ~sen~(\hat{A} + \hat{B}) = sen~(\hat{A} + \hat{B}) = sen$$

$$= sen \hat{A} cos \hat{B} + cos \hat{A} sen \hat{B} = \frac{\sqrt{24}}{5} \cdot \frac{\sqrt{2}}{2} + \left(-\frac{1}{5}\right) \cdot \frac{\sqrt{2}}{2} = \frac{4\sqrt{3} - \sqrt{2}}{10}$$

$$\cos \hat{C} = \cos (180^{\circ} - (\hat{A} + \hat{B})) = \cos 180^{\circ} \cos (\hat{A} + \hat{B}) + \sin 180^{\circ} \sin (\hat{A} + \hat{B}) = -\cos (\hat{A} + \hat{B}) =$$

$$= -(\cos \hat{A} \cos \hat{B} - \sin \hat{A} \sin \hat{B}) = -\left(-\frac{1}{5} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{24}}{5} \cdot \frac{\sqrt{2}}{2}\right) = \frac{4\sqrt{3} + \sqrt{2}}{10}$$

$$tg \hat{C} = \frac{\sec \hat{C}}{\cos \hat{C}} = \frac{\frac{4\sqrt{3} - \sqrt{2}}{10}}{\frac{4\sqrt{3} + \sqrt{2}}{10}} = \frac{4\sqrt{3} - \sqrt{2}}{4\sqrt{3} + \sqrt{2}} = \frac{25 - 4\sqrt{6}}{23}$$

40 Si $\cos 2\alpha = \frac{\sqrt{3}}{3}$ y $\frac{3\pi}{2} < \alpha < 2\pi$, calcula $\sin \alpha$ y $\cos \alpha$, \sin hallar el ángulo α .

$$\cos 2\alpha = \frac{\sqrt{3}}{3} \to \cos^2 \alpha - \sec^2 \alpha = \frac{\sqrt{3}}{3} \to 1 - \sec^2 \alpha - \sec^2 \alpha = \frac{\sqrt{3}}{3} \to 2 \sec^2 \alpha = 1 - \frac{\sqrt{3}}{3} \to 2 \cot^2 \alpha = 1 - \frac{\sqrt{$$

41 Demuestra estas igualdades:

c) $\cos 4\alpha + 2 \sec^2 2\alpha = \cos (2 \cdot 2\alpha) + 2 \sec^2 2\alpha = \cos^2 2\alpha - \sec^2 2\alpha + 2 \sec^2 2\alpha = \cos^2 2\alpha + \sec^2 2\alpha = 1$

42 Simplifica:

a)
$$\frac{2\cos(45^\circ + \alpha)\cos(45^\circ - \alpha)}{\cos 2\alpha}$$
 b) $\sin \alpha \cdot \cos 2\alpha - \cos \alpha \cdot \sin 2\alpha$

a)
$$\frac{2\cos(45^{\circ} + \alpha)\cos(45^{\circ} - \alpha)}{\cos 2\alpha} = \frac{2(\cos 45^{\circ}\cos\alpha - \sin 45^{\circ}\sin\alpha)(\cos 45^{\circ}\cos\alpha + \sin 45^{\circ}\sin\alpha)}{\cos^{2}\alpha - \sin^{2}\alpha} =$$

$$= \frac{2(\cos^{2}45^{\circ}\cos^{2}\alpha - \sin^{2}45^{\circ}\sin^{2}\alpha)}{\cos^{2}\alpha - \sin^{2}\alpha} =$$

$$= \frac{2 \cdot [(\sqrt{2}/2)^{2}\cos^{2}\alpha - \sin^{2}\alpha]}{\cos^{2}\alpha - \sin^{2}\alpha} =$$

$$= \frac{2 \cdot 1/2\cos^{2}\alpha - \sin^{2}\alpha}{\cos^{2}\alpha - \sin^{2}\alpha} = \frac{\cos^{2}\alpha - \sin^{2}\alpha}{\cos^{2}\alpha - \sin^{2}\alpha} = 1$$

b)
$$sen \ \alpha \cdot cos \ (2\alpha) - cos \ \alpha \cdot sen \ (2\alpha) = sen \ \alpha \ (cos^2 \ \alpha - sen^2 \ \alpha) - cos \ \alpha \ 2 \ sen \ \alpha \ cos \ \alpha =$$

$$= sen \ \alpha \ cos^2 \ \alpha - sen^3 \ \alpha - 2 \ sen \ \alpha \ cos^2 \ \alpha = -sen^3 \ \alpha - sen \ \alpha \ cos^2 \ \alpha =$$

$$= -sen \ \alpha \ (sen^2 \ \alpha + cos^2 \ \alpha) = -sen \ \alpha$$

43 Resuelve estas ecuaciones:

a)
$$\frac{sen 5x + sen 3x}{cos x + cos 3x} = 1$$

b)
$$\frac{sen 3x + sen x}{cos 3x - cos x} = \sqrt{3}$$

c)
$$sen 3x - sen x = cos 2x$$

d)
$$sen 3x - cos 3x = sen x - cos x$$

a)
$$\frac{2 \operatorname{sen} \frac{5x + 3x}{2} \cos \frac{5x - 3x}{2}}{2 \cos \frac{3x + x}{2} \cos \frac{3x - x}{2}} = 1 \rightarrow \frac{2 \operatorname{sen} 4x \cos x}{2 \cos 2x \cos x} = 1 \rightarrow \frac{\operatorname{sen} 4x}{\cos 2x} = 1 \rightarrow \frac{\operatorname{sen} (2 \cdot 2x)}{\cos 2x} = 1 \rightarrow \frac{\operatorname{sen$$

Al comprobar, vemos que todas las soluciones son válidas.

b)
$$\frac{2 \operatorname{sen} \frac{3x + x}{2} \cos \frac{3x - x}{2}}{-2 \operatorname{sen} \frac{3x + x}{2} \operatorname{sen} \frac{3x - x}{2}} = \sqrt{3} \rightarrow \frac{2 \operatorname{sen} 2x \cos x}{-2 \operatorname{sen} 2x \operatorname{sen} x} = \frac{\cos x}{-\operatorname{sen} x} = -\frac{1}{\operatorname{tg} x} = \sqrt{3} \rightarrow \operatorname{tg} x = -\frac{\sqrt{3}}{3} \rightarrow \begin{cases} x_1 = 150^{\circ} \\ x_2 = 330^{\circ} \end{cases}$$

Ambas soluciones son válidas, luego:

$$x_1 = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$x_2 = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$
con $k \in \mathbb{Z}$

c)
$$2\cos\frac{3x+x}{2}\sin\frac{3x-x}{2} = \cos 2x$$

$$2\cos 2x \ sen \ x = \cos 2x \ \to \ 2 \ sen \ x = 1 \ \to \ sen \ x = \frac{1}{2} \ \to \ x_1 = 30^{\circ}, \ x_2 = 150^{\circ}$$

Comprobando, vemos que las dos soluciones son válidas. Luego:

$$x_1 = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_2 = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

d)
$$sen 3x - sen x = cos 3x - cos x \rightarrow 2 cos 2x sen x = -2 sen 2x sen x \rightarrow$$
 (Dividimos entre 2 sen x)

$$\begin{cases} 2x = 315^{\circ} \rightarrow x_1 = 157, 5^{\circ} + k \cdot 360^{\circ} \\ 2x = 315^{\circ} \rightarrow x_2 = 157, 5^{\circ} + k \cdot 360^{\circ} \\ 3x = 135^{\circ} \rightarrow x_3 = 157, 5^{\circ} + k \cdot 360^{\circ} \end{cases}$$

$$\rightarrow \begin{cases}
2x = 315^{\circ} \to x_{1} = 157, 5^{\circ} + k \cdot 360^{\circ} \\
2x = 135^{\circ} \to x_{2} = 67, 5^{\circ} + k \cdot 360^{\circ} \\
2x = 675^{\circ} \to x_{3} = 337, 5^{\circ} + k \cdot 360^{\circ} \\
2x = 495^{\circ} \to x_{4} = 247, 5^{\circ} + k \cdot 360^{\circ}
\end{cases}$$
con $k \in \mathbb{Z}$

Podemos comprobar que las cuatro soluciones son válidas. Agrupándolas:

$$x = 67.5^{\circ} + k \cdot 90^{\circ} \text{ con } k \in \mathbb{Z}$$

44 a) Demuestra que $sen 3x = 3 sen x cos^2 x - sen^3 x$. b) Resuelve la ecuación sen 3x - 2 sen x = 0.

a)
$$sen 3x = sen (2x + x) = sen 2x cos x + cos 2x sen x = 2 sen x cos x cos x + (cos^2 x - sen^2 x) sen x =$$

= $2 sen x cos^2 x + sen x cos^2 x - sen^3 x = 3 sen x cos^2 x - sen^3 x$

b) $sen 3x - 2 sen x = 0 \rightarrow por el resultado del apartado anterior:$

$$3 \operatorname{sen} x \cos^{2} x - \operatorname{sen}^{3} x - 2 \operatorname{sen} x = 0 \to 3 \operatorname{sen} x (1 - \operatorname{sen}^{2} x) - \operatorname{sen}^{3} x - 2 \operatorname{sen} x = 0 \to$$

$$\to 3 \operatorname{sen} x - 3 \operatorname{sen}^{3} x - \operatorname{sen}^{3} x - 2 \operatorname{sen} x = 0 \to$$

$$\to 4 \operatorname{sen}^{3} x - \operatorname{sen} x = 0 \to \operatorname{sen} x (4 \operatorname{sen}^{2} x - 1) = 0 \to$$

$$= \begin{cases} \operatorname{sen} x = 0 \to x_{1} = 0^{\circ}, \ x_{2} = 150^{\circ} \\ \operatorname{sen} x = \pm \frac{1}{2} \to x_{3} = 30^{\circ}, \ x_{4} = 150^{\circ}, \ x_{5} = 210^{\circ}, \ x_{6} = 330^{\circ} \end{cases}$$

Todas las soluciones son válidas y se pueden expresar como:

$$x_{1} = k \cdot 180^{\circ} = k \pi$$

$$x_{2} = 30^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{6} + k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 180^{\circ} = \frac{5\pi}{6} + k \pi$$

$$con k \in \mathbb{Z}'$$

45 Demuestra las siguientes igualdades:

a)
$$sen^2\left(\frac{\alpha+\beta}{2}\right)-sen^2\left(\frac{\alpha-\beta}{2}\right)=sen\ \alpha\cdot sen\ \beta$$
 b) $cos^2\left(\frac{\alpha-\beta}{2}\right)-cos^2\left(\frac{\alpha+\beta}{2}\right)=sen\ \alpha\cdot sen\ \beta$

a) El primer miembro de la igualdad es una diferencia de cuadrados, luego podemos factorizarlo como una suma por una diferencia:

$$\left[sen\left(\frac{\alpha+\beta}{2}\right) + sen\left(\frac{\alpha-\beta}{2}\right) \right] \cdot \left[sen\left(\frac{\alpha+\beta}{2}\right) - sen\left(\frac{\alpha-\beta}{2}\right) \right] \stackrel{(*)}{=} \left[2 sen \frac{\alpha}{2} cos \frac{\beta}{2} \right] \cdot \left[2 cos \frac{\alpha}{2} sen \frac{\beta}{2} \right] =$$

$$= 4 \sqrt{\frac{1-cos \alpha}{2}} \cdot \sqrt{\frac{1+cos \beta}{2}} \cdot \sqrt{\frac{1+cos \alpha}{2}} \cdot \sqrt{\frac{1-cos \beta}{2}} =$$

$$= \sqrt{(1-cos \beta)(1+cos \beta)(1+cos \alpha)(1-cos \beta)} =$$

$$= \sqrt{(1-cos^2 \alpha)(1-cos^2 \beta)} = \sqrt{sen^2 \alpha \cdot sen^2 \beta} = sen \alpha \cdot sen \beta$$

(*) Transformamos la suma y la diferencia en productos, teniendo en cuenta que:

$$\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}=\alpha \quad y \quad \frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}=\beta$$

b) Procedemos de manera análoga al apartado anterior, pero ahora:

$$\frac{\alpha - \beta}{2} + \frac{\alpha + \beta}{2} = \alpha \quad y \quad \frac{\alpha - \beta}{2} - \frac{\alpha + \beta}{2} = -\beta$$

$$\cos^{2}\left(\frac{\alpha - \beta}{2}\right) - \cos^{2}\left(\frac{\alpha + \beta}{2}\right) = \left[\cos\left(\frac{\alpha - \beta}{2}\right) + \cos\left(\frac{\alpha + \beta}{2}\right)\right] \cdot \left[\cos\left(\frac{\alpha - \beta}{2}\right) - \cos\left(\frac{\alpha + \beta}{2}\right)\right] =$$

$$= \left[2\cos\frac{\alpha}{2}\cos\frac{-\beta}{2}\right] \cdot \left[-2\sin\frac{\alpha}{2}\sin\frac{-\beta}{2}\right] = \left[2\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\right] \cdot \left[2\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\right] =$$

$$= 4\sqrt{\frac{1 + \cos\alpha}{2}} \cdot \sqrt{\frac{1 + \cos\beta}{2}} \cdot \sqrt{\frac{1 - \cos\alpha}{2}} \cdot \sqrt{\frac{1 - \cos\beta}{2}} = \sqrt{(1 - \cos^{2}\alpha)(1 - \cos^{2}\beta)} = \sqrt{\sin^{2}\alpha \cdot \sin^{2}\beta} = \sin\alpha \cdot \sin\beta$$
NOTA: También podríamos haberlo resuelto aplicando el apartado anterior como sigue:

$$\cos^{2}\left(\frac{\alpha-\beta}{2}\right) - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) = 1 - \sin^{2}\left(\frac{\alpha-\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha-\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha-\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha-\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) - 1 + \cos^{2}\left(\frac{\alpha+\beta}{2}\right) - 1 + \cos^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) - 1 + \cos^{2}\left(\frac{\alpha+\beta}{2}\right) = 2 - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) - \cos^{2}\left(\frac$$

$$= sen^2 \left(\frac{\alpha + \beta}{2} \right) - sen^2 \left(\frac{\alpha - \beta}{2} \right)_{=}^{(*)} sen \alpha sen \beta$$

(*) Por el apartado anterior.

46 Resuelve los sistemas siguientes dando las soluciones correspondientes al primer cuadrante:

a)
$$\begin{cases} x+y=120^{\circ} \\ sen \ x-sen \ y=\frac{1}{2} \end{cases}$$
 b)
$$\begin{cases} sen \ x+cos \ y=1 \\ x+y=90^{\circ} \end{cases}$$
 c)
$$\begin{cases} sen^{2} \ x+cos^{2} \ y=1 \\ cos^{2} \ x-sen^{2} \ y=1 \end{cases}$$
 d)
$$\begin{cases} sen \ x+cos \ y=1 \\ 4 \ sen \ x \ cos \ y=1 \end{cases}$$

b)
$$\begin{cases} sen \ x + cos \ y = \\ x + y = 90^{\circ} \end{cases}$$

c)
$$\begin{cases} sen^2 x + cos^2 y = 1 \\ cos^2 x - sen^2 y = 1 \end{cases}$$

d)
$$\begin{cases} sen \ x + cos \ y = 1 \\ 4 \ sen \ x \ cos \ y = 1 \end{cases}$$

a) De la segunda ecuación:
$$2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} = \frac{1}{2}$$

Como:

$$x + y = 120^{\circ} \rightarrow 2\cos 60^{\circ} sen \frac{x - y}{2} = \frac{1}{2} \rightarrow 2 \cdot \frac{1}{2} sen \frac{x - y}{2} = \frac{1}{2} \rightarrow$$

$$\rightarrow sen \frac{x-y}{2} = \frac{1}{2} \rightarrow \frac{x-y}{2} = 30^{\circ} \rightarrow x-y = 60^{\circ}$$

Así:
$$x + y = 120^{\circ}$$

$$\frac{x - y = 60^{\circ}}{2x = 180^{\circ}} \rightarrow x = 90^{\circ} \rightarrow y = 30^{\circ}$$

Luego la solución es (90°, 30°)

b)
$$x + y = 90^{\circ} \rightarrow \text{complementarios} \rightarrow \text{sen } x = \cos y$$

Sustituyendo en la primera ecuación del sistema:

$$cos \ y + cos \ y = 1 \ \rightarrow \ 2 \ cos \ y = 1 \ \rightarrow \ cos \ y = \frac{1}{2} \ \rightarrow \ y = 60^{\circ} \ \rightarrow \ x = 90^{\circ} - y = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Luego la solución es: (30°, 60°)

c) Como
$$\begin{cases} \cos^2 y = 1 - \sin^2 y \\ \cos^2 x = 1 - \sin^2 x \end{cases}$$

El sistema queda:

$$\begin{array}{l}
sen^2 x + 1 - sen^2 y = 1 \\
1 - sen^2 x - sen^2 y = 1
\end{array}$$

$$\rightarrow \underbrace{-sen^2 x - sen^2 y = 0}_{-2 sen^2 x - sen^2 y = 0}_{-2 sen^2 y = 0}$$

$$-2 sen^2 y = 0 \rightarrow sen y = 0 \rightarrow y = 0^\circ$$

Sustituyendo en la segunda ecuación (por ejemplo) del sistema inicial, se obtiene:

$$\cos^2 x - 0 = 1 \rightarrow \cos^2 x = 1 = \begin{cases} \cos x = 1 \rightarrow x = 0^{\circ} \\ \cos x = -1 \rightarrow x = 180^{\circ} \in 2.^{\circ} \text{ cuadrante} \end{cases}$$

Luego la solución es: (0°, 0°)

d)
$$sen x + cos y = 1$$

 $4 sen x cos y = 1$ $cos y = 1 - sen x$

$$4 \operatorname{sen} x (1 - \operatorname{sen} x) = 1 \rightarrow 4 \operatorname{sen}^2 x - 4 \operatorname{sen} x + 1 = 0 \rightarrow \operatorname{sen} x = \frac{4 \pm 0}{8} = \frac{1}{2} \rightarrow \cos y = 1 - \frac{1}{2} = \frac{1}{2}$$

Las diferentes posibilidades son:

$$\int x = 30^{\circ} + 360^{\circ} \cdot k$$

$$\begin{cases} y = 60^\circ + 360^\circ \cdot k \end{cases}$$

$$\int x = 30^{\circ} + 360^{\circ} \cdot k$$

$$\int y = 300^\circ + 360^\circ \cdot k$$

$$\begin{cases} x = 150^{\circ} + 360^{\circ} \cdot k \\ y = 60^{\circ} + 360^{\circ} \cdot k \end{cases}$$

$$y = 60^\circ + 360^\circ \cdot k$$

$$\int x = 150^{\circ} + 360^{\circ} \cdot k$$

$$y = 300^{\circ} + 360^{\circ} \cdot k$$

47 Sin desarrollar las razones trigonométricas de la suma o de la diferencia de ángulos, averigua para qué valores de x se verifica cada una de estas igualdades:

a)
$$sen(x-60^\circ) = sen 2x$$

b)
$$cos(x-45^\circ) = cos(2x+60^\circ)$$

c)
$$sen(x + 60^\circ) = cos(x + 45^\circ)$$

d)
$$cos(2x-30^\circ) = cos(x+45^\circ)$$

a)
$$sen(x-60^\circ) = sen 2x \rightarrow sen 2x - sen(x-60^\circ) = 0 \rightarrow$$

• Si
$$\cos \frac{3x - 60^{\circ}}{2} = 0 \rightarrow \begin{cases} \frac{3x - 60^{\circ}}{2} = 90^{\circ} \rightarrow x = 80^{\circ} + 360^{\circ} \cdot k \\ \frac{3x - 60^{\circ}}{2} = 270^{\circ} \rightarrow x = 200^{\circ} + 360^{\circ} \cdot k \end{cases}$$

Si sumamos 360° encontramos otra solución:

$$\frac{3x - 60^{\circ}}{2} = 90^{\circ} + 360^{\circ} \rightarrow x = 320^{\circ} + 360^{\circ} \cdot k$$

• Si
$$sen \frac{x+60^{\circ}}{2} = 0 \rightarrow \begin{cases} \frac{x+60}{2} = 0^{\circ} \rightarrow x = 300^{\circ} + 360^{\circ} \cdot k \\ \frac{x+60^{\circ}}{2} = 180^{\circ} \rightarrow x = 300^{\circ} + 360^{\circ} \cdot k \end{cases}$$

b)
$$cos(x-45^{\circ}) = cos(2x+60^{\circ}) \rightarrow cos(2x+60^{\circ}) - cos(x-45^{\circ}) = 0 \rightarrow$$

$$\rightarrow -2 \operatorname{sen} \frac{2x + 60^{\circ} + x - 45^{\circ}}{2} \operatorname{sen} \frac{2x + 60^{\circ} - (x - 45^{\circ})}{2} = 0 \rightarrow \operatorname{sen} \frac{3x + 15^{\circ}}{2} \operatorname{sen} \frac{x + 105^{\circ}}{2} = 0$$

• Si
$$sen \frac{3x+15^{\circ}}{2} = 0 \rightarrow \begin{cases} \frac{3x+15^{\circ}}{2} = 0^{\circ} \rightarrow x = 355^{\circ} + 360^{\circ} \cdot k \\ \frac{3x+15^{\circ}}{2} = 180^{\circ} \rightarrow x = 115^{\circ} + 360^{\circ} \cdot k \end{cases}$$

Si sumamos 360° encontramos otra solución: $\frac{3x+15^{\circ}}{2} = 0^{\circ} + 360^{\circ} \rightarrow x = 235^{\circ} + 360^{\circ} \cdot k$

• Si
$$sen \frac{x+105^{\circ}}{2} = 0 \rightarrow \begin{cases} \frac{x+105^{\circ}}{2} = 0^{\circ} \rightarrow x = 255^{\circ} + 360^{\circ} \cdot k \\ \frac{x+105^{\circ}}{2} = 180^{\circ} \rightarrow x = 255^{\circ} + 360^{\circ} \cdot k \end{cases}$$

c)
$$sen(x + 60^{\circ}) = cos(x + 45^{\circ})$$

Como $\cos x = \sin (x + 90^{\circ})$, podemos sustituir en el segundo miembro obteniendo:

$$sen(x + 60^{\circ}) = sen(x + 45^{\circ} + 90^{\circ}) \rightarrow sen(x + 60^{\circ}) = sen(x + 135^{\circ}) \rightarrow sen(x + 135^{\circ}) - sen(x + 60^{\circ}) = 0$$

$$-2\cos\frac{x+135^{\circ}+x+60^{\circ}}{2} sen\frac{x+135^{\circ}-(x+60^{\circ})}{2} = 0 \ \to \ \cos\frac{2x+195^{\circ}}{2} sen\frac{75^{\circ}}{2} = 0 \ \to$$

$$\Rightarrow \begin{cases}
\frac{2x+195^{\circ}}{2} = 90^{\circ} \to x = 352^{\circ} 30' + 360^{\circ} \cdot k \\
\frac{2x+195^{\circ}}{2} = 270^{\circ} \to x = 172^{\circ} 30' + 360^{\circ} \cdot k
\end{cases}$$

d)
$$cos(2x - 30^{\circ}) = cos(x + 45^{\circ}) \rightarrow cos(2x - 30^{\circ}) - cos(x + 45^{\circ}) = 0 \rightarrow$$

$$\rightarrow -2 \operatorname{sen} \frac{2x - 30^{\circ} + x + 45^{\circ}}{2} \operatorname{sen} \frac{2x - 30^{\circ} - (x + 45^{\circ})}{2} = 0 \rightarrow \operatorname{sen} \frac{3x + 15^{\circ}}{2} \operatorname{sen} \frac{x - 75^{\circ}}{2} = 0$$

• Si
$$sen \frac{3x+15^{\circ}}{2} = 0 \rightarrow \begin{cases} \frac{3x+15^{\circ}}{2} = 0^{\circ} \rightarrow x = 355^{\circ} + 360^{\circ} \cdot k \\ \frac{3x+15^{\circ}}{2} = 180^{\circ} \rightarrow x = 115^{\circ} + 360^{\circ} \cdot k \end{cases}$$

Si sumamos 360° encontramos otra solución: $\frac{3x+15^{\circ}}{2} = 0 + 360^{\circ} \rightarrow x = 235^{\circ} + 360^{\circ} \cdot k$

• Si
$$sen \frac{x - 75^{\circ}}{2} = 0 \rightarrow \begin{cases} \frac{x - 75^{\circ}}{2} = 0^{\circ} \rightarrow x = 75^{\circ} + 360^{\circ} \cdot k \\ \frac{x - 75^{\circ}}{2} = 180^{\circ} \rightarrow x = 75^{\circ} + 360^{\circ} \cdot k \end{cases}$$

- **48** En una circunferencia goniométrica dibujamos los ángulos α y β . Llamamos $\gamma = \alpha \beta$.
 - a) ¿Cuál de estas expresiones es igual a sen γ ?

I.
$$ac + bd$$
 II. $bc - ad$ III. $ad - bc$ IV. $ab + cd$

b) ¿Alguna de ellas es igual a $\cos \gamma$?

a)
$$sen \gamma = sen (\alpha - \beta) = sen \alpha cos \beta - cos \alpha sen \beta = ad - bc$$
 (III)

b)
$$\cos \gamma = \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta = bd + ac$$
 (I)

Página 145

Cuestiones teóricas

49 ¿Cuál de las siguientes condiciones deben cumplir $x \in y$ para que se verifique cos(x + y) = 2 cos x cos y?

$$(I) x = y \qquad (II) x - y = \pi \qquad (III) x + y = \pi \qquad (IV) x - y = \frac{\pi}{2}$$

cos(x + y) = cos x cos y - sen x sen y

Si
$$cos(x + y) = 2 cos x cos y \rightarrow cos x cos y - sen x sen y = 2 cos x cos y \rightarrow -sen x sen y = cos x cos y$$

Dividiendo entre $\cos x \cos y$ se obtiene que $\frac{-\sin x \sin y}{\cos x \cos y} = 1$, es decir, -tg x tg y = 1 y esto ocurre solo

cuando se cumple (IV) porque despejando y tenemos: $y = x + \frac{\pi}{2}$, luego:

$$\begin{cases} sen \ y = sen\left(x + \frac{\pi}{2}\right) = cos \ x \\ cos \ y = cos\left(x + \frac{\pi}{2}\right) = -sen \ x \end{cases} \rightarrow tg \ y = \frac{sen \ y}{cos \ y} = \frac{cos \ x}{-sen \ x} = -\frac{1}{\frac{sen \ x}{cos \ x}} = -\frac{1}{tg \ x}$$

50 Expresa sen 4α y cos 4α en función de sen α y cos α .

$$sen 4\alpha = sen (2 \cdot 2\alpha) = 2 sen 2\alpha cos \alpha = 2 \cdot 2 sen \alpha cos \alpha (cos^2 \alpha - sen^2 \alpha) = 4 cos^3 \alpha sen \alpha - 4 cos \alpha sen^3 \alpha$$

$$cos 4\alpha = cos (2 \cdot 2\alpha) = cos^2 \alpha - sen^2 2\alpha = (cos^2 \alpha - sen^2 \alpha)^2 - (2 sen \alpha cos \alpha)^2 =$$

$$= cos^4 \alpha - 2 cos^2 \alpha sen^2 \alpha + sen^4 \alpha - 4 sen^2 \alpha cos^2 \alpha = cos^4 \alpha - 6 cos^2 \alpha sen^2 \alpha + sen^4 \alpha$$

51 Al duplicarse un ángulo, ¿se duplica su seno? Prueba si se cumple sen 2x = 2 sen x para cualquier valor de x.

La afirmación es falsa porque, por ejemplo, sen $60^{\circ} = \sqrt{3}$ sen $30^{\circ} \neq 2$ sen 30° .

Veamos ahora si existe algún ángulo que cumpla la relación sen 2x = 2 sen x.

$$2 \operatorname{sen} x \operatorname{cos} x = 2 \operatorname{sen} x = \operatorname{sen} x \operatorname{cos} x - \operatorname{sen} x = 0 \rightarrow \operatorname{sen} x (\operatorname{cos} x - 1) = 0$$

• Si sen
$$x = 0 \rightarrow x = 0^{\circ} + 360^{\circ} \cdot k$$
, $x = 180^{\circ} + 360^{\circ} \cdot k$

• Si
$$\cos x = 1 \rightarrow x = 0^{\circ} + 360^{\circ} \cdot k$$
 (solución botenida anteriormente)

Por tanto, los únicos ángulos que cumplen la relación dada son de la forma $180^{\circ} \cdot k$.

52 Justifica que en un triángulo ABC, rectángulo en A, se verifica la siguiente igualdad:

$$sen 2B = sen 2C$$

Como el triángulo es rectángulo en \hat{A} , se tiene que $\hat{B} = 90^{\circ} - \hat{C}$ y, por tanto, $sen \hat{B} = sen (90^{\circ} - \hat{C}) = cos \hat{C}$ y $cos \hat{B} = cos (90^{\circ} - \hat{C}) = sen \hat{C}$ Luego, $sen 2\hat{B} = 2 sen \hat{B} cos \hat{B} = 2 cos \hat{C} sen \hat{C} = sen 2\hat{C}$

53 ¿Para qué valores de α y β se verifica la igualdad sen $(\alpha + \beta) = 2$ sen α cos β ?

Como sen $(\alpha + \beta)$ = sen α cos β + cos α sen β , sen $(\alpha + \beta)$ = 2sen α cos β \rightarrow

$$\rightarrow$$
 sen α cos β + cos α sen β = 2 sen α cos β \rightarrow cos α sen β = sen α cos β

Esta relación es cierta, obviamente si $\alpha = \beta$.

Por otro lado, dividiendo entre $\cos \alpha \cos \beta$ se tiene que $\frac{\sec \alpha}{\cos \alpha} = \frac{\sec \beta}{\cos \alpha}$, luego los ángulos α y β deben tener la misma tangente.

Esto ocurre cuando $\beta = \alpha + 180^{\circ} \cdot k$ por la periodicidad de la función y = tg x.

Si $\cos \alpha = 0$ entonces $0 = \sec n \alpha \cos \beta \rightarrow \cos \beta = 0$ ya que $\sec n \alpha = \pm 1$.

Por tanto, la relación también es cierta si α y β son simultáneamente de la forma 90° + 360° · k o $270^{\circ} + 360^{\circ} \cdot k$.

En resumen, se verifica la igualdad cuando $\beta = \alpha + 180^{\circ} \cdot k$.

2 ¿Qué relación existe entre las gráficas de y = sen x e y = cos x y la de cada una de las funciones siguientes?:

a)
$$y = sen\left(x + \frac{\pi}{2}\right)$$

b)
$$y = cos\left(x + \frac{\pi}{2}\right)$$

a)
$$y = sen\left(x + \frac{\pi}{2}\right)$$
 b) $y = cos\left(x + \frac{\pi}{2}\right)$ c) $y = cos\left(\frac{\pi}{2} - x\right)$ d) $y = sen\left(\frac{\pi}{2} - x\right)$

$$\mathbf{d}) y = sen\left(\frac{\pi}{2} - x\right)$$

La relación que existe es que la gráfica de la función y = cos x está desplazada horizontalmente hacia

la izquierda $\frac{\pi}{2}$ unidades respecto de sen x.

- a) Coincide con la gráfica de la función y = cos x.
- b) Es la gráfica de la función y = -sen x.
- c) Coincide con la gráfica de la función y = sen x.
- d) Coincide con la gráfica de la función $y = \cos x$.

(Además de comprobarse mediante la representación gráfica, puede probarse fácilmente usando las fórmulas de las razones trigonométricas de la suma o diferencia de ángulos).

En qué puntos del intervalo $[0, 4\pi]$ corta al eje X cada una de las siguientes funciones?:

a)
$$y = \cos \frac{x}{2}$$

b)
$$y = sen(x - \pi)$$

c)
$$y = cos(x + \pi)$$

Los puntos de corte con el eje X son aquellos para los que y = 0.

a)
$$\cos \frac{x}{2} = 0 \rightarrow \begin{cases} \frac{x}{2} = \frac{\pi}{2} \rightarrow x = \pi \\ \frac{x}{2} = \frac{3\pi}{2} \rightarrow x = 3\pi \end{cases}$$

b)
$$sen(x-\pi) = 0 \rightarrow \begin{cases} x - \pi = -\pi \rightarrow x = 0 \\ x - \pi = 0 \rightarrow x = \pi \end{cases}$$

 $\begin{cases} x - \pi = 0 \rightarrow x = \pi \\ x - \pi = \pi \rightarrow x = 2\pi \end{cases}$
 $\begin{cases} x - \pi = 2\pi \rightarrow x = 3\pi \end{cases}$
 $\begin{cases} x - \pi = 3\pi \rightarrow x = 4\pi \end{cases}$

$$\begin{cases} x + \pi = \frac{3\pi}{2} \rightarrow x = \frac{\pi}{2} \\ x + \pi = \frac{5\pi}{2} \rightarrow x = \frac{3\pi}{2} \end{cases}$$

$$\begin{cases} x + \pi = \frac{5\pi}{2} \rightarrow x = \frac{3\pi}{2} \\ x + \pi = \frac{7\pi}{2} \rightarrow x = \frac{5\pi}{2} \\ x + \pi = \frac{9\pi}{2} \rightarrow x = \frac{7\pi}{2} \end{cases}$$

Para profundizar

56 Demuestra que si $\alpha + \beta + \gamma = 180^{\circ}$, se verifica: $tg \alpha + tg \beta + tg \gamma = tg \alpha \cdot tg \beta \cdot tg \gamma$

$$=tg\ \alpha+tg\ \beta-tg\ (\alpha+\beta)=tg\ \alpha+tg\ \beta-\frac{tg\ \alpha+tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg^2\ \alpha\,tg\ \beta-tg\ \alpha\,tg^2\ \beta-tg\ \alpha-tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg^2\ \alpha\,tg\ \beta-tg\ \alpha\,tg^2\ \beta-tg\ \alpha-tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg^2\ \alpha\,tg\ \beta-tg\ \alpha+tg\ \beta-tg\ \alpha+tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg^2\ \alpha\,tg\ \beta-tg\ \alpha+tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg^2\ \alpha\,tg\ \beta-tg\ \alpha+tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg\ \alpha+tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta-tg\ \alpha+tg\ \beta}{1-tg\ \alpha\,tg\ \beta}=\frac{tg\ \alpha+tg\ \beta}{1-tg\ \alpha+tg\ \alpha+tg\ \beta}=\frac{tg\ \alpha+tg\ \beta}{1-tg\ \alpha+tg\ \alpha+tg\ \beta}=\frac{tg\ \alpha+tg\ \alpha+tg\ \beta}{1-tg\ \alpha+tg\ \alpha+tg\$$

$$=\frac{-tg^{2} \alpha tg \beta - tg \alpha tg^{2}\beta}{1 - tg \alpha tg \beta} = tg \alpha tg \beta \frac{-tg \alpha - tg \beta}{1 - tg \alpha tg \beta} = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg \beta [-tg (\alpha + \beta)] = tg \alpha tg \alpha tg$$

=
$$tg \alpha tg \beta tg (360^{\circ} - (\alpha + \beta)) = tg \alpha tg \beta tg \gamma$$

57 Prueba si existe algún triángulo isósceles en el que el coseno del ángulo distinto sea igual a la suma de los cosenos de los ángulos iguales.

Si llamamos x a cada uno de los ángulos iguales, entonces el ángulo desigual es $180^{\circ} - 2x$.

Se trata de ver si la siguiente ecuación tiene solución: $cos (180^{\circ} - 2x) = 2 cos x$

Veámoslo:

$$\cos 180^{\circ} \cos 2x + \sin 180^{\circ} \sin 2x = 2 \cos x \rightarrow -\cos 2x = 2 \cos x \rightarrow -\cos^{2} x + \sin^{2} x = 2 \cos x \rightarrow$$

$$\rightarrow -\cos^{2} x + 1 - \cos^{2} x = 2 \cos x \rightarrow 2 \cos^{2} x + 2 \cos x - 1 = 0 \rightarrow$$

$$\rightarrow \cos x = \frac{-2 \pm \sqrt{12}}{4} = \frac{-1 \pm \sqrt{3}}{2}$$

Si
$$\cos x = \frac{\sqrt{3} - 1}{2} \rightarrow x = 68^{\circ} 31' 45''$$
 tiene cada uno de los ángulos iguales y el ángulo desigual tiene $180^{\circ} - 2 \cdot 68^{\circ} 31' 45'' = 42^{\circ} 56' 30''$

 $\cos x = \frac{\sqrt{3} + 1}{2} > 1$ que no es posible porque el coseno de un ángulo no puede ser mayor que 1.

Luego no existe ningún triángulo con esas condiciones.

58 Resuelve los sistemas siguientes dando las soluciones en el intervalo $[0, 2\pi)$:

a)
$$\begin{cases} \cos x + \cos y = -1/2 \\ \cos x \cos y = -1/2 \end{cases}$$
 b)
$$\begin{cases} x + y = \pi/2 \\ \sqrt{3} \cos x - \cos y = 1 \end{cases}$$
 c)
$$\begin{cases} \sec x + \sec y = \sqrt{3}/2 \\ \sec^2 x + \sec^2 y = 3/4 \end{cases}$$
 d)
$$\begin{cases} \sec x \cdot \cos y = 1/4 \\ \cos x \cdot \sin y = 1/4 \end{cases}$$

a)
$$\cos x + \cos y = -\frac{1}{2}$$
 $\cos y = -\frac{1}{2} - \cos x$
 $\cos x \cdot \cos y = -\frac{1}{2}$ $\cos x \left(-\frac{1}{2} - \cos x \right) = -\frac{1}{2} \rightarrow -\frac{1}{2} \cos x - \cos^2 x = -\frac{1}{2} \rightarrow \cos x + 2 \cos^2 x = 1$

$$2\cos^2 x + \cos x - 1 = 0 \rightarrow \cos x = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1-3}{4} = -1$$

$$\frac{-1+3}{4} = \frac{1}{2}$$

• Si
$$\cos x = -1 \to x = \pi$$

 $\cos y = -\frac{1}{2} - (-1) = \frac{1}{2}$ $y = \pi/3$
 $y = 5\pi/3$

• Si
$$\cos x = \frac{1}{2}$$
 $x = \frac{\pi}{3}$ $x = \frac{5\pi}{3} \to \cos y = -\frac{1}{2} - \frac{1}{2} = -1 \to y = \pi$

Soluciones:
$$\left(\pi, \frac{\pi}{3}\right)$$
, $\left(\pi, \frac{5\pi}{3}\right)$, $\left(\frac{\pi}{3}, \pi\right)$, $\left(\frac{5\pi}{3}, \pi\right)$

b)
$$y = \frac{\pi}{2} - x$$

$$\sqrt{3}\cos x - \cos\left(\frac{\pi}{2} - x\right) = 1 \rightarrow \sqrt{3}\cos x - \cos\frac{\pi}{2}\cos x - \sin\frac{\pi}{2}\sin x = 1 \rightarrow \sqrt{3}\cos x = \sin x + 1$$

Elevamos al cuadrado:

$$3\cos^2 x = sen^2 x + 2 sen x + 1 \rightarrow 3(1 - sen^2 x) = sen^2 x + 2 sen x + 1 \rightarrow 4 sen^2 x + 2 sen x - 2 = 0 \rightarrow 3 sen^2 x + 2 sen x + 2 sen x + 2 sen x + 2 sen x + 3 sen x + 2 sen x + 3 sen x$$

$$\rightarrow 2 \operatorname{sen}^2 x + \operatorname{sen} x - 1 = 0 \rightarrow \operatorname{sen} x = \frac{-1 \pm 3}{4}$$

• Si
$$sen x = \frac{1}{2} \to x = \frac{\pi}{6}, x = \frac{5\pi}{6}$$

$$x = \frac{\pi}{6} \rightarrow y = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3} \text{ y } \left(\frac{\pi}{6}, \frac{\pi}{3}\right) \text{ vale.}$$

$$x = \frac{5\pi}{6} \rightarrow y = \frac{\pi}{2} - \frac{5\pi}{6} = -\frac{\pi}{3}$$
 no puede ser porque no está en el intervalo dado.

• Si
$$sen x = -1 \rightarrow x = \frac{3\pi}{2} \rightarrow y = \frac{\pi}{2} - \frac{3\pi}{2} = -\pi$$
 tampoco es posible por el mismo motivo.

c) Elevamos al cuadrado la primera ecuación:

$$sen^2 x + 2 sen x sen y + sen^2 y = \frac{3}{4} \rightarrow 2 sen x sen y + \frac{3}{4} = \frac{3}{4} \rightarrow sen x sen y = 0$$

Si
$$sen x = 0 \rightarrow x = 0, x = \pi$$

Además, sen
$$y = \frac{\sqrt{3}}{2} \rightarrow y = \frac{\pi}{3}, y = \frac{2\pi}{3}$$

Sustituimos en el sistema para comprobarlas porque pueden aparecer soluciones falsas al elevar al cuadrado.

$$\left(0, \frac{\pi}{3}\right), \left(0, \frac{2\pi}{3}\right), \left(\pi, \frac{\pi}{3}\right), \left(\pi, \frac{2\pi}{3}\right)$$
 Valen.

Si sen
$$y = 0 \rightarrow y = 0, y = \pi$$

Además, sen
$$x = \frac{\sqrt{3}}{2} \rightarrow x = \frac{\pi}{3}$$
, $x = \frac{2\pi}{3}$

Sustituimos en el sistema para comprobarlas porque pueden aparecer soluciones falsas al elevar al cuadrado.

$$\left(\frac{\pi}{3},0\right), \left(\frac{\pi}{3},\pi\right), \left(\frac{2\pi}{3},0\right), \left(\frac{2\pi}{3},\pi\right)$$
 Valen.

d) Elevamos al cuadrado la primera ecuación y sustituimos en la segunda:

$$sen^2 x cos^2 y = \frac{1}{16} \rightarrow cos^2 y = \frac{1}{16 sen^2 x}$$

$$\cos^{2} x \operatorname{sen}^{2} y = \frac{1}{16} \to \cos^{2} x (1 - \cos^{2} y) = \frac{1}{16} \to \cos^{2} x \left(1 - \frac{1}{16 \operatorname{sen}^{2} x}\right) = \frac{1}{16} \to$$

$$\to (1 - \operatorname{sen}^{2} x) \left(1 - \frac{1}{16 \operatorname{sen}^{2} x}\right) = \frac{1}{16} \to 1 - \frac{1}{16 \operatorname{sen}^{2} x} - \operatorname{sen}^{2} x + \frac{1}{16} = \frac{1}{16} \to$$

$$\to 1 - \frac{1}{16 \operatorname{sen}^{2} x} - \operatorname{sen}^{2} x = 0 \to 16 \operatorname{sen}^{2} x - 1 - 16 \operatorname{sen}^{4} x = 0 \to$$

$$\to 16 \operatorname{sen}^{4} x - 16 \operatorname{sen}^{2} x + 1 = 0 \to \operatorname{sen}^{2} x = \frac{16 + \sqrt{192}}{32} = \frac{2 \pm \sqrt{3}}{4}$$

• Si
$$sen \ x = \sqrt{\frac{2+\sqrt{3}}{4}} = \frac{\sqrt{2+\sqrt{3}}}{2} \rightarrow cos \ y = \frac{1}{4 \cdot \frac{\sqrt{2+\sqrt{3}}}{2}} = \frac{\sqrt{6}-\sqrt{2}}{4}$$

$$x = 75^{\circ}$$
, $x = 105^{\circ}$, $y = 75^{\circ}$, $y = 285^{\circ}$

Ahora comprobamos las soluciones porque al elevar al cuadrado pueden aparecer resultados falsos:

$$(75^{\circ}, 75^{\circ}) \rightarrow \text{Vale}.$$

(75°, 285°) \rightarrow No vale ya que no cumple la segunda ecuación.

(105°, 75°) → No vale ya que no cumple la segunda ecuación.

$$(105^{\circ}, 285^{\circ}) \rightarrow \text{Vale}.$$

• Si
$$sen \ x = -\sqrt{\frac{2+\sqrt{3}}{4}} = -\frac{\sqrt{2+\sqrt{3}}}{2} \rightarrow cos \ y = -\frac{1}{4 \cdot \frac{\sqrt{2+\sqrt{3}}}{2}} = -\frac{\sqrt{6}-\sqrt{2}}{4}$$

$$x = 285^{\circ}$$
, $x = 255^{\circ}$, $y = 105^{\circ}$, $y = 255^{\circ}$

Ahora comprobamos las soluciones porque al elevar al cuadrado pueden aparecer resultados falsos:

$$(285^{\circ}, 105^{\circ}) \rightarrow \text{Vale}.$$

(285°, 255°) → No vale ya que no cumple la segunda ecuación.

(255°, 105°) → No vale ya que no cumple la segunda ecuación.

$$(255^{\circ}, 255^{\circ}) \rightarrow \text{Vale}.$$

59 Demuestra que:

a)
$$sen \ x = \frac{2 tg (x/2)}{1 + tg^2 (x/2)}$$
 b) $cos \ x = \frac{1 - tg^2 (x/2)}{1 + tg^2 (x/2)}$ c) $tg \ x = \frac{2 tg (x/2)}{1 - tg^2 (x/2)}$

a) Desarrollamos y operamos en el segundo miembro de la igualdad:

$$\frac{2 tg \frac{x}{2}}{1 + tg^2 \frac{x}{2}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{1 + \frac{1 - \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{2}{1 + \cos x}} = (1 + \cos x) \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \sqrt{(1 + \cos x)^2 \frac{1 - \cos x}{1 + \cos x}} = \sqrt{(1 + \cos x)(1 - \cos x)} = \sqrt{1 - \cos^2 x} = \sqrt{\sin^2 x} = \sin x$$

b)
$$\frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}} = \frac{1 - \frac{1 - \cos x}{1 + \cos x}}{1 + \frac{1 - \cos x}{1 + \cos x}} = \frac{\frac{1 + \cos x - 1 + \cos x}{1 + \cos x}}{\frac{1 + \cos x + 1 - \cos x}{1 + \cos x}} = \frac{2\cos x}{2} = \cos x$$

c)
$$\frac{2 tg \frac{x}{2}}{1 - tg^2 \frac{x}{2}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{1 - \frac{1 - \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{2 \cos x}{1 + \cos x}} = \frac{1 + \cos x}{1 + \cos x} = \frac{1 + \cos x}{1 + \cos x} = \frac{1}{1 + \cos$$

60 Demuestra que, en la siguiente figura, $\alpha = \beta + \gamma$:

Supongamos que los cuadrados tienen lado l.

Por una parte,

$$tg \alpha = \frac{l}{l} = 1$$

Por otro lado,

$$tg(\beta + \gamma) = \frac{tg \beta + tg \gamma}{1 - tg \beta tg \gamma} = \frac{\frac{l}{2l} + \frac{l}{3l}}{1 - \frac{l}{2l} \cdot \frac{l}{3l}} = \frac{\frac{5}{6}}{1 - \frac{1}{6}} = 1$$

Así, α y β + γ son dos ángulos comprendidos entre 0° y 90° cuyas tangentes coinciden. Por tanto, los ángulos tienen que ser iguales, es decir, $\alpha = \beta + \gamma$.

Autoevaluación

Página 145

1 Si $\cos \alpha = -\frac{1}{4}$ y $\alpha < \pi$, halla:

a) sen
$$\alpha$$

b)
$$\cos\left(\frac{\pi}{3} + \alpha\right)$$

c)
$$tg \frac{\alpha}{2}$$

d) sen
$$\left(\frac{\pi}{6} - \alpha\right)$$

a)
$$sen^2\alpha + cos^2\alpha = 1 \rightarrow sen^2\alpha + \frac{1}{16} = 1 \rightarrow sen^2\alpha = \frac{15}{16} \rightarrow sen\alpha = \frac{\sqrt{15}}{4}$$
 ya que el ángulo está en el 2.º cuadrante.

b)
$$cos\left(\frac{\pi}{3} + \alpha\right) = cos\frac{\pi}{3}cos\alpha - sen\frac{\pi}{3}sen\alpha = \frac{1}{2}\cdot\left(-\frac{1}{4}\right) - \frac{\sqrt{3}}{2}\cdot\frac{\sqrt{15}}{4} = \frac{-3\sqrt{5}-1}{8}$$

c)
$$tg \frac{\alpha}{2} = \sqrt{\frac{1 - \left(-\frac{1}{4}\right)}{1 + \left(-\frac{1}{4}\right)}} = \frac{\sqrt{15}}{3}$$
 porque $\frac{\alpha}{2} < \frac{\pi}{2}$

d)
$$sen\left(\frac{\pi}{6} - \alpha\right) = sen\frac{\pi}{6}cos\alpha - cos\frac{\pi}{6}sen\alpha = \frac{1}{2}\cdot\left(-\frac{1}{4}\right) - \frac{\sqrt{3}}{2}\cdot\frac{\sqrt{15}}{4} = \frac{-3\sqrt{5}-1}{8}$$

2 Demuestra cada una de estas igualdades:

a)
$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}$$

b) sen
$$(\alpha + \beta)$$
 · sen $(\alpha - \beta) = sen^2 \alpha - sen^2 \beta$

a)
$$tg \ 2\alpha = \frac{sen \ 2\alpha}{cos \ 2\alpha} = \frac{2sen \ \alpha \ cos \ \alpha}{cos^2 \ \alpha - sen^2 \ \alpha} = \frac{\frac{2sen \ \alpha \ cos \ \alpha}{cos^2 \ \alpha}}{1 - \frac{sen^2 \ \alpha}{cos^2 \ \alpha}} = \frac{2tg \ \alpha}{1 - tg^2 \ \alpha}$$

b)
$$sen(\alpha + \beta) \cdot sen(\alpha - \beta) = (sen \alpha cos \beta + cos \alpha sen \beta) (sen \alpha cos \beta - cos \alpha sen \beta) =$$

$$= sen^2 \alpha cos^2 \beta - cos^2 \alpha sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta =$$

$$= sen^2 \alpha - sen^2 \alpha sen^2 \beta - sen^2 \beta + sen^2 \alpha sen^2 \beta = sen^2 \alpha - sen^2 \beta$$

3 Resuelve:

a)
$$\cos 2x - \cos \left(\frac{\pi}{2} + x\right) = 1$$

b) 2
$$tg \times cos^2 \frac{x}{2} - sen \times x = 1$$

a)
$$\cos 2x - \cos \left(\frac{\pi}{2} + x\right) = 1$$

$$cos^2 x - sen^2 x - (-sen x) = 1 \rightarrow 1 - sen^2 x - sen^2 x + sen x - 1 = 0 \rightarrow$$

Soluciones:

$$x_1 = 360^{\circ} \cdot k; \ x_2 = 180^{\circ} + 360^{\circ} \cdot k; \ x_3 = 30^{\circ} + 360^{\circ} \cdot k; \ x_4 = 150^{\circ} + 360^{\circ} \cdot k, \ \text{con} \ k \in \mathbb{Z}$$

b)
$$2tg \times cos^2 \frac{x}{2} - sen \times = 1 \rightarrow 2tg \times \frac{1 + cos \times x}{2} - sen \times = 1 \rightarrow tg \times + tg \times cos \times - sen \times = 1 \rightarrow x_1 = 45^\circ + 360^\circ$$

$$\rightarrow tg \ x + \frac{sen \ x}{cos \ x} cos \ x - sen \ x = 1 \rightarrow tg \ x = 1$$

$$x_1 = 45^\circ + 360^\circ \cdot k$$

$$x_2 = 225^\circ + 360^\circ \cdot k$$

$$con \ k \in \mathbb{Z}$$

4 Simplifica:

a)
$$\frac{sen 60^{\circ} + sen 30^{\circ}}{cos 60^{\circ} + cos 30^{\circ}}$$

b)
$$\frac{sen^2 \alpha}{1-cos \alpha} \left(1+tg^2 \frac{\alpha}{2}\right)$$

a)
$$\frac{sen 60^{\circ} + sen 30^{\circ}}{cos 60^{\circ} + cos 30^{\circ}} = \frac{2 sen \frac{60^{\circ} + 30^{\circ}}{2} cos \frac{60^{\circ} - 30^{\circ}}{2}}{2 cos \frac{60^{\circ} + 30^{\circ}}{2} cos \frac{60^{\circ} - 30^{\circ}}{2}} = \frac{sen 45^{\circ}}{cos 45^{\circ}} = tg 45^{\circ} = 1$$

b)
$$\frac{sen^2 \alpha}{1 - cos \alpha} \left(1 - tg^2 \frac{\alpha}{2} \right) = \frac{sen^2 \alpha}{1 - cos \alpha} \left(1 + \frac{1 - cos \alpha}{1 + cos \alpha} \right) = \frac{sen^2 \alpha}{1 - cos \alpha} \left(\frac{2}{1 + cos \alpha} \right) = \frac{2sen^2 \alpha}{1 - cos^2 \alpha} = \frac{2sen^2 \alpha}{sen^2 \alpha} = 2$$

5 Expresa en grados: $\frac{3\pi}{4}$ rad, $\frac{5\pi}{2}$ rad, 2 rad.

$$\frac{3\pi}{4}$$
 rad = 135°

$$\frac{5\pi}{2}$$
 rad = 450°

6 Expresa en radianes dando el resultado en función de π y como número decimal.

a)
$$60^{\circ} = \frac{\pi}{3} \text{ rad} = 1,05 \text{ rad}$$

b)
$$225^{\circ} = \frac{5\pi}{4}$$
 rad = 3,93 rad

c)
$$330^{\circ} = \frac{11\pi}{6}$$
 rad = 5,76 rad

7 En una circunferencia de 16 cm de diámetro dibujamos un ángulo de 3 rad. ¿Qué longitud tendrá el arco correspondiente?

$$l = 8 \cdot 3 = 24 \text{ cm}$$

8 Asocia a esta gráfica una de las siguientes expresiones y di cuál es su periodo:

a)
$$y = \frac{sen x}{2}$$

$$b) y = sen 2x$$

c)
$$y = sen \frac{x}{2}$$

La función representada es de periodo 4π y se corresponde con la del apartado c).

Podemos comprobarlo estudiando algunos puntos. Por ejemplo:

$$x = \pi \rightarrow y = sen \frac{\pi}{2} = 1$$

$$x = 2\pi \rightarrow y = sen \frac{2\pi}{2} = sen \pi = 0$$

$$x = 3\pi \rightarrow y = sen \frac{3\pi}{2} = -1$$

$$x = 4\pi \rightarrow y = sen \frac{4\pi}{2} = sen 2\pi = 0$$