Exercises for section 12.5

Ex 1. Proposition: $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 6 - n is bijective.

Proof.

First we show f is injective. Suppose f(x) = f(y) where $x, y \in \mathbb{Z}$, then $f(x) = f(y) \leftrightarrow 6 - x = 6 - y \leftrightarrow x = y$. Thus f is injective.

Then we show that f is surjective. Suppose $x \in \mathbb{Z}$. Observe that when $y = 6 - x \in \mathbb{Z}$ we have f(y) = 6 - y = 6 - (6 - x) = x. Thus f is surjective.

Let n = f(y) = 6 - y, then $n = 6 - y \leftrightarrow y = 6 - n$. So $f^{-1}(n) = 6 - n$.

Ex 2.

Let x = f(y), then $x = f(y) \leftrightarrow x = \frac{5y+1}{y-2} \leftrightarrow xy - 2x = 5y+1 \leftrightarrow xy - 5y = 1+2x \leftrightarrow y = \frac{1+2x}{x-5}$. So $f^{-1}(x) = \frac{1+2x}{x-5}$.

Ex 3.Proposition: Let $B = \{2^n : n \in \mathbb{Z}\}$. Then $f : \mathbb{Z} \to B$ defined as $f(n) = 2^n$ is bijective.

Proof.

First we show that f is injective. Suppose f(x) = f(y) for some $x, y \in \mathbb{Z}$. Then $f(x) = f(y) \leftrightarrow 2^x = 2^y \leftrightarrow x = y$. Thus f is injective.

Then we show that f is surjective. Suppose $b \in B$. By the definition of B we have $b = 2^x$ for some $x \in \mathbb{Z}$. Thus $f(x) = 2^x = b$ and consequently f is surjective.

Let x = f(y), then $x = f(y) \leftrightarrow x = 2^y \leftrightarrow y = log_2(x)$. So $f^{-1}(x) = log_2(x)$.

Ex 4.

Let x = f(y), then $x = f(y) \leftrightarrow x = e^{y^3 + 1} \leftrightarrow ln(x) = (y^3 + 1)ln(e) \leftrightarrow y = \sqrt[3]{ln(x) - 1}$. So $f^{-1}(x) = \sqrt[3]{ln(x) - 1}$.

Ex 5.

Let x = f(y), then $x = f(y) \leftrightarrow x = \pi y - e \leftrightarrow y = \frac{x+e}{\pi}$. So $f^{-1}(x) = \frac{x+e}{\pi}$.

Ex 6.

Let (m,n) = f(x,y), then $(m,n) = f(x,y) \leftrightarrow (m,n) = (5x+4y,4x+3y)$ yields the following system of linear equations

$$m = 5x + 4y$$
$$n = 4x + 3y$$

Solving the system we get y = 4m - 5n and x = 4n - 3m. So $f^{-1}(m, n) = (4n - 3m, 4m - 5n)$.

Ex 7. Proposition: Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $f(x,y) = ((x^2+1)y, x^3)$ is bijective.

Proof.

First we show that f is injective. Suppose f(x,y) = f(x',y') for some $x, x', y, y' \in \mathbb{R}$. So $((x^2+1)y, x^3) = (((x')^2+1)y', (x')^3)$ yields the following equations

$$(x^{2} + 1)y = ((x')^{2} + 1)y'$$

 $x^{3} = (x')^{3}$

The second equation is equivalent to x=x', plugging that into the first we get $(x^2+1)y=((x')^2+1)y' \leftrightarrow (x^2+1)y=(x^2+1)y' \leftrightarrow y=y'$. Thus we have that x=x' and y=y'. So f is injective.

Then we show that f is surjective. Suppose $(a,b) \in \mathbb{R}^2$. Then when $x = \sqrt[3]{b}$ and $y = \frac{a}{b^{2/3} + 1}$ we have f(x,y) = (a,b). Thus f is surjective.

From the surjective part of the proof above, we have that $f^{-1}(x,y)=(\sqrt[3]{y},\frac{x}{y^{2/3}+1})$.

Ex 8.

We already showed θ to be bijective in exercise 14, section 12.2. Let $X = \theta(Y)$, then $X = \theta(Y) \leftrightarrow X = \overline{Y} \leftrightarrow Y = \overline{X}$. So $\theta^{-1}(X) = \overline{X}$.

Ex 9. Proposition: $f: \mathbb{R} \times \mathbb{N} \to \mathbb{N} \times \mathbb{R}$ defined as f(x,y) = (y,3xy) is bijective.

Proof.

First we show that f is injective. Suppose f(a,b) = f(a',b') for some $a,a' \in \mathbb{R}, b,b' \in \mathbb{N}$. So we have $f(a,b) = f(a',b') \leftrightarrow (b,3ab) = (b',3a'b')$. From this it directly follows that b=b'. Plugging that into the second equation we get $3ab = 3a'b' \leftrightarrow 3ab = 3a'b \leftrightarrow a = a'$. Thus a=a' and b=b', which implies that f is injective.

Then we show that f is surjective. Suppose $(a,b) \in \mathbb{N} \times \mathbb{R}$. Then when y=a and $x=\frac{b}{3a}$ we have f(x,y)=(a,b). Thus f is surjective.

From the surjective part of the proof above we have $f^{-1}(x,y) = (\frac{y}{2x},x)$.

Ex 10.

The piecewise function below was derived through case-work.

 $f(x)^{-1} = \begin{cases} -2x+1 & x \le 0\\ 2x & x > 0 \end{cases}$