Lecture 6: Value Function Approximation

Lecture 6: Value Function Approximation

David Silver

Lecture 6: Value Function Approximation

Outline

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

■ Backgammon: 10²⁰ states

■ Computer Go: 10¹⁷⁰ states

Helicopter: continuous state space

How can we scale up the model-free methods for *prediction* and *control* from the last two lectures?

Value Function Approximation

- So far we have represented value function by a *lookup table*
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$V_{ heta}(s)pprox V^{\pi}(s)$$
 or $Q_{ heta}(s,a)pprox Q^{\pi}(s,a)$

- Generalise from seen states to unseen states
- Update parameter θ using MC or TD learning

Which Function Approximator?

There are many function approximators, e.g.

- Artificial neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- Coarse coding

In principle, *any* function approximator can be used. However, the choice may be affected by some properties of RL:

- Experience is not i.i.d. successive time-steps are correlated
- During control, value function $V^{\pi}(s)$ is non-stationary
- Agent's actions affect the subsequent data it receives
- Feedback is delayed, not instantaneous

Gradient Descent

- Let $J(\theta)$ be a differentiable function of parameter vector θ
- Define the *gradient* of $J(\theta)$ to be

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{pmatrix}$$

- To find a local minimum of $J(\theta)$
- lacksquare Adjust the parameter heta in the direction of -ve gradient

$$\Delta heta = -rac{1}{2} lpha
abla_{ heta} J(heta)$$

where α is a step-size parameter

Value Function Approx. By Stochastic Gradient Descent

■ Goal: find parameter vector θ minimising mean-squared error between approximate value fn $V_{\theta}(s)$ and true value fn $V^{\pi}(s)$

$$J(\theta) = \mathbb{E}_{\pi} \left[(V^{\pi}(s) - V_{\theta}(s))^2 \mid s_t = s \right]$$

Gradient descent finds a local minimum

$$egin{aligned} \Delta heta &= -rac{1}{2} lpha
abla_{ heta} J(heta) \ &= lpha \mathbb{E}_{\pi} \left[(V^{\pi}(s) - V_{ heta}(s))
abla_{ heta} V_{ heta}(s) \mid s_t = s
ight] \end{aligned}$$

Stochastic gradient descent samples the gradient

$$\Delta \theta = \alpha (V^{\pi}(s) - V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)$$

Expected update is equal to full gradient update

Feature Vectors

■ Represent state by a *feature vector*

$$\phi(s) = \begin{pmatrix} \phi_1(s) \\ \vdots \\ \phi_n(s) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

Represent value function by a linear combination of features

$$V_{ heta}(s) = \phi(s)^{ op} heta = \sum_{j=1}^n \phi_j(s) heta_j$$

 $lue{}$ Objective function is quadratic in parameters heta

$$J(heta) = \mathbb{E}_{\pi} \left[(V^{\pi}(s) - \phi(s)^{ op} heta)^2 \mid s_t = s
ight]$$

- Stochastic gradient descent converges on global optimum
- Update rule is particularly simple

$$egin{aligned}
abla_{ heta} V_{ heta}(s) &= \phi(s) \ \Delta heta &= lpha(V^{\pi}(s) - V_{ heta}(s)) \phi(s) \end{aligned}$$

 $\mathsf{Update} = \mathit{step-size} \times \mathit{prediction} \ \mathit{error} \times \mathit{feature} \ \mathit{value}$

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Using table lookup features

$$\phi^{table}(s) = egin{pmatrix} \mathbf{1}(s=s_1) \ dots \ \mathbf{1}(s=s_n) \end{pmatrix}$$

lacktriangle Parameter vector heta gives value of each individual state

$$V(s) = egin{pmatrix} \mathbf{1}(s = s_1) \ dots \ \mathbf{1}(s = s_n) \end{pmatrix} \cdot egin{pmatrix} heta_1 \ dots \ heta_n \end{pmatrix}$$

Coarse Coding Example

Coarse Coding

Example of linear value function approximation:

- Coarse coding provides large feature vector $\phi(s)$
- \blacksquare Parameter vector θ gives a value to each feature

Generalization in Coarse Coding

a) Narrow generalization

b) Broad generalization

c) Asymmetric generalization

Stochastic Gradient Descent with Coarse Coding

Incremental Prediction Algorithms

- Have assumed true value function $V^{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a *target* for $V^{\pi}(s)$
 - For MC, the target is the return v_t

$$\Delta\theta = \alpha(\mathbf{v_t} - V_{\theta}(s))\nabla_{\theta}V_{\theta}(s)$$

■ For TD(0), the target is the TD target $r + \gamma V_{\theta}(s')$

$$\Delta \theta = \alpha(\mathbf{r} + \gamma V_{\theta}(\mathbf{s}') - V_{\theta}(\mathbf{s})) \nabla_{\theta} V_{\theta}(\mathbf{s})$$

• For TD(λ), the target is the λ -return v_t^{λ}

$$\Delta\theta = \alpha(\mathbf{v}_t^{\lambda} - V_{\theta}(s))\nabla_{\theta}V_{\theta}(s)$$

Monte-Carlo with Value Function Approximation

- The return v_t is an unbiased, noisy sample of true value $V^{\pi}(s)$
- Can therefore apply supervised learning to "training data":

$$\langle s_1, v_1 \rangle, \langle s_2, v_2 \rangle, ..., \langle s_T, v_T \rangle$$

■ For example, using *linear Monte-Carlo policy evaluation*

$$\Delta \theta = \alpha(\mathbf{v_t} - V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)$$
$$= \alpha(\mathbf{v_t} - V_{\theta}(s)) \phi(s)$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

TD Learning with Value Function Approximation

- The TD-target $r_{t+1} + \gamma V_{\theta}(s_{t+1})$ is a *biased* sample of true value $V^{\pi}(s_t)$
- Can still apply supervised learning to "training data":

$$\langle s_1, r_2 + \gamma V_{\theta}(s_2) \rangle, \langle s_2, r_3 + \gamma V_{\theta}(s_3) \rangle, ..., \langle s_{T-1}, r_T \rangle$$

• For example, using *linear* TD(0)

$$\Delta \theta = \alpha (\mathbf{r} + \gamma V_{\theta}(s') - V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)$$
$$= \alpha \delta \phi(s)$$

■ Linear TD(0) converges (close) to global optimum

$\mathsf{TD}(\lambda)$ with Value Function Approximation

- The λ -return v_t^{λ} is also a biased sample of true value $V^{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\langle s_1, v_1^{\lambda} \rangle, \langle s_2, v_2^{\lambda} \rangle, ..., \langle s_{T-1}, v_{T-1}^{\lambda} \rangle$$

■ Forward view linear $TD(\lambda)$

$$\Delta \theta = \alpha(\mathbf{v}_t^{\lambda} - V_{\theta}(s_t)) \nabla_{\theta} V_{\theta}(s_t)$$
$$= \alpha(\mathbf{v}_t^{\lambda} - V_{\theta}(s_t)) \phi(s_t)$$

■ Backward view linear $TD(\lambda)$

$$\delta_t = r_{t+1} + \gamma V_{\theta}(s_{t+1}) - V_{\theta}(s_t)$$

$$e_t = \gamma \lambda e_{t-1} + \phi(s_t)$$

$$\Delta \theta = \alpha \delta_t e_t$$

Forward view and backward view linear $TD(\lambda)$ are equivalent

Incremental Methods

Incremental Control Algorithms

Control with Value Function Approximation

Policy evaluation Approximate policy evaluation, $Q_{\theta} \approx Q^{\pi}$ Policy improvement ϵ -greedy policy improvement

Action-Value Function Approximation

Approximate the action-value function

$$Q_{\theta}(s,a) \approx Q^{\pi}(s,a)$$

• Minimise mean-squared error between approximate action-value fn $Q_{\theta}(s,a)$ and true action-value fn $Q^{\pi}(s,a)$

$$J(heta) = \mathbb{E}_{\pi} \left[\left(Q^{\pi}(s,a) - Q_{ heta}(s,a)
ight)^2 \mid s_t = s
ight]$$

Use stochastic gradient descent to find a local minimum

$$egin{aligned} -rac{1}{2}
abla_{ heta}J(heta) &= (Q^{\pi}(s,a)-Q_{ heta}(s,a))
abla_{ heta}Q_{ heta}(s,a) &= lpha(Q^{\pi}(s,a)-Q_{ heta}(s,a))
abla_{ heta}Q_{ heta}(s,a) \end{aligned}$$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\phi(s,a) = egin{pmatrix} \phi_1(s,a) \ dots \ \phi_n(s,a) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$Q_{ heta}(s,a) = \phi(s,a)^{ op} heta = \sum_{j=1}^n \phi_j(s,a) heta_j$$

Stochastic gradient descent update

$$egin{aligned}
abla_{ heta} Q_{ heta}(s, a) &= \phi(s, a) \ \Delta heta &= lpha(Q^{\pi}(s, a) - Q_{ heta}(s, a)) \phi(s) \end{aligned}$$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $Q^{\pi}(s, a)$
 - For MC, the target is the return v_t

$$\Delta\theta = \alpha(\mathbf{v_t} - Q_{\theta}(\mathbf{s_t}, \mathbf{a_t}))\phi(\mathbf{s_t}, \mathbf{a_t})$$

■ For TD(0), the target is the TD target $r_{t+1} + \gamma Q(s_{t+1}, a_{t+1})$

$$\Delta\theta = \alpha(r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q_{\theta}(s_t, a_t))\phi(s_t, a_t)$$

■ For forward-view TD(λ), target is the action-value λ -return

$$\Delta\theta = \alpha(\mathbf{q}_t^{\lambda} - Q_{\theta}(s_t, a_t))\phi(s_t, a_t)$$

■ For backward-view $TD(\lambda)$, equivalent update is

$$\delta_t = r_{t+1} + \gamma Q_{\theta}(s_{t+1}, a_{t+1}) - Q_{\theta}(s_t, a_t)$$

$$e_t = \gamma \lambda e_{t-1} + \phi(s_t, a_t)$$

$$\Delta \theta = \alpha \delta_t e_t$$

Linear Sarsa with Coarse Coding in Mountain Car

Linear Sarsa with Radial Basis Functions in Mountain Car

Study of λ : Should We Bootstrap?

Convergence Questions

- The previous results show it is desirable to bootstrap
- But now we consider convergence issues
- When do incremental prediction algorithms converge?
 - When using bootstrapping (i.e. TD with $\lambda < 1$)?
 - When using linear value function approximation?
 - When using off-policy learning?
- Ideally, we would like algorithms that converge in all cases

Baird's Counterexample

Parameter Divergence in Baird's Counterexample

Parameter values, $\theta_k(i)$ (log scale, broken at ±1)

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	TD(0)	✓	✓	×
	$TD(\lambda)$	✓	✓	×
Off-Policy	MC	✓	✓	√
	TD(0)	✓	X	×
	$TD(\lambda)$	✓	X	X

Convergence

Gruesome Threesome

We have not quite achieved our ideal goal for prediction algorithms.

Gradient Temporal-Difference Learning

- TD does not follow the gradient of any objective function
- This is why TD can diverge when off-policy or using non-linear function approximation
- Gradient TD follows true gradient of projected Bellman error

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	TD	✓	✓	×
	Gradient TD	✓	✓	✓
Off-Policy	MC	✓	✓	√
	TD	✓	X	×
	Gradient TD	✓	✓	✓

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	\checkmark	(✓)	×
Q-learning	\checkmark	X	×
Gradient Q-learning	✓	✓	Х

 (\checkmark) = chatters around near-optimal value function

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation $V_{\theta}(s) \approx V^{\pi}(s)$
- And *experience* \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

- Which parameters θ give the *best fitting* value fn $V_{\theta}(s)$?
- Least squares algorithms find parameter vector θ minimising sum-squared error between $V_{\theta}(s_t)$ and target values v_t^{π} ,

$$egin{aligned} LS(heta) &= \sum_{t=1}^T (v_t^\pi - V_ heta(s_t))^2 \ &= \mathbb{E}_{\mathcal{D}}\left[(v^\pi - V_ heta(s))^2
ight] \end{aligned}$$

Stochastic Gradient Descent with Experience Replay

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

Repeat:

Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta\theta = \alpha(\mathbf{v}^{\pi} - V_{\theta}(\mathbf{s}))\nabla_{\theta}V_{\theta}(\mathbf{s})$$

Converges to least squares solution

$$\theta^{\pi} = \operatorname*{argmin}_{\theta} \, \mathit{LS}(\theta)$$

Linear Least Squares Prediction

- Experience replay finds least squares solution
- But it may take many iterations
- Using *linear* value function approximation $V_{\theta}(s) = \phi(s)^{\top} \theta$
- We can solve the least squares solution directly

Linear Least Squares Prediction (2)

• At minimum of $LS(\theta)$, the expected update must be zero

$$\mathbb{E}_{\mathcal{D}} \left[\Delta \theta \right] = 0$$

$$\alpha \sum_{t=1}^{T} \phi(s_t) (v_t^{\pi} - \phi(s_t)^{\top} \theta) = 0$$

$$\sum_{t=1}^{T} \phi(s_t) v_t^{\pi} = \sum_{t=1}^{T} \phi(s_t) \phi(s_t)^{\top} \theta$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_t) \phi(s_t)^{\top} \right)^{-1} \sum_{t=1}^{T} \phi(s_t) v_t^{\pi}$$

- For N features, direct solution time is $O(N^3)$
- Incremental solution time is $O(N^2)$ using Shermann-Morrison

Linear Least Squares Prediction Algorithms

- We do not know true values v_t^{π}
- In practice, our "training data" must use noisy or biased samples of v_t^π
 - LSMC Least Squares Monte-Carlo uses return $v_t^\pi pprox \mathbf{v}_t$
 - LSTD Least Squares Temporal-Difference uses TD target $v_t^{\pi} \approx r_{t+1} + \gamma V_{\theta}(s_{t+1})$
- LSTD(λ) Least Squares TD(λ) uses λ -return $v_t^{\pi} \approx v_t^{\lambda}$
- In each case solve directly for fixed point of MC / TD / TD(λ)

Batch Methods
Least Squares Prediction

Linear Least Squares Prediction Algorithms (2)

LSMC
$$0 = \sum_{t=1}^{T} \alpha(v_t - V_{\theta}(s_t))\phi(s_t)$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_t)\phi(s_t)^{\top}\right)^{-1} \sum_{t=1}^{T} \phi(s_t)v_t$$
LSTD
$$0 = \sum_{t=1}^{T} \alpha(r_{t+1} + \gamma V_{\theta}(s_{t+1}) - V_{\theta}(s_t))\phi(s_t)$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_t)(\phi(s_t) - \gamma \phi(s_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} \phi(s_t)r_{t+1}$$
LSTD(λ)
$$0 = \sum_{t=1}^{T} \alpha \delta_t e_t$$

$$\theta = \left(\sum_{t=1}^{T} e_t(\phi(s_t) - \gamma \phi(s_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} e_t r_{t+1}$$

Convergence of Linear Least Squares Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
	MC	√	✓	√
On-Policy	LSMC	✓	✓	-
	TD	✓	✓	×
	LSTD	✓	✓	_
Off-Policy	MC	✓	✓	√
	LSMC	✓	✓	-
	TD	✓	X	×
	LSTD	✓	✓	-

Least Squares Policy Iteration

Policy evaluation Policy evaluation by least squares Q-learning Policy improvement Greedy policy improvement

Least Squares Action-Value Function Approximation

- Approximate action-value function $Q^{\pi}(s,a)$
- using linear combination of features $\phi(s,a)$

$$Q_{\theta}(s,a) = \phi(s,a)^{\top}\theta \approx Q^{\pi}(s,a)$$

- Minimise least squares error between $Q_{\theta}(s,a)$ and $Q^{\pi}(s,a)$
- \blacksquare from experience generated using policy π
- consisting of $\langle (state, action), value \rangle$ pairs

$$\mathcal{D} = \{ \langle (s_1, a_1), v_1^{\pi} \rangle, \langle (s_2, a_2), v_2^{\pi} \rangle, ..., \langle (s_T, a_T), v_T^{\pi} \rangle \}$$

Least Squares Control

- For policy evaluation, we want to efficiently use all experience
- For control, we also want to improve the policy
- This experience is generated from many policies
- So to evaluate $Q^{\pi}(s,a)$ we must learn off-policy
- We use the same idea as Q-learning:
 - lacktriangle Use experience generated by old policy $s_t, a_t, r_{t+1}, s_{t+1} \sim \pi_{old}$
 - lacksquare Consider alternative successor action $a'=\pi_{new}(s_{t+1})$
 - Update $Q_{\theta}(s_t, a_t)$ towards value of alternative action $r_{t+1} + \gamma Q_{\theta}(s_{t+1}, a')$

Least Squares Q-Learning

Consider the following linear Q-learning update

$$\delta = r_{t+1} + \gamma Q_{\theta}(s_{t+1}, \pi(s_{t+1})) - Q_{\theta}(s_t, a_t)$$

$$\Delta \theta = \alpha \delta \phi(s_t, a_t)$$

LSTDQ algorithm: solve for total update = zero

$$\begin{aligned} 0 &= \sum_{t=1}^{T} \alpha(r_{t+1} + \gamma Q_{\theta}(s_{t+1}, \pi(s_{t+1})) - Q_{\theta}(s_{t}, a_{t})) \phi(s_{t}, a_{t}) \\ \theta &= \left(\sum_{t=1}^{T} \phi(s_{t}, a_{t}) (\phi(s_{t}, a_{t}) - \gamma \phi(s_{t+1}, \pi(s_{t+1})))^{\top}\right)^{-1} \sum_{t=1}^{T} \phi(s_{t}, a_{t}) r_{t+1} \end{aligned}$$

Least Squares Policy Iteration Algorithm

- The following pseudocode uses LSTDQ for policy evaluation
- lacktriangle It repeatedly re-evaluates experience ${\cal D}$ with different policies

```
function LSPI-TD(\mathcal{D}, \pi_0)
      \pi' \leftarrow \pi_0
      repeat
           \pi \leftarrow \pi'
            Q \leftarrow \mathsf{LSTDQ}(\pi, \mathcal{D})
            for all s \in \mathcal{S} do
                 \pi'(s) \leftarrow \operatorname{argmax} Q(s, a)
            end for
      until (\pi \approx \pi')
      return \pi
end function
```

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	✓	(\checkmark)	X
Q-learning	✓	X	X
LSPI	✓	(✓)	-

 (\checkmark) = chatters around near-optimal value function

Chain Walk Example

- Consider the 50 state version of this problem
- Reward +1 in states 10 and 41, 0 elsewhere
- Optimal policy: R (1-9), L (10-25), R (26-41), L (42, 50)
- Features: 10 evenly spaced Gaussians ($\sigma = 4$) for each action
- Experience: 10,000 steps from random walk policy

LSPI in Chain Walk: Action-Value Function

LSPI in Chain Walk: Policy

Lecture 6: Value Function Approximation Batch Methods

Least Squares Control

Questions?