CHAPITRE VI- 1^{ère} PARTIE CINÉMATIQUE DE ROTATION : MOUVEMENT CIRCULAIRE PROBLÈMES SUGGÉRÉS

Problème Nº 6.1

La vitesse angulaire du moteur d'une automobile augmente de 1200 RPM à 3000 RPM en 12 secondes.

- a) Calculez l'accélération angulaire α en supposant qu'elle est uniforme;
- b) Combien de révolutions accomplit le moteur pendant ces 12 secondes ?

Problème Nº 6.2

Une plaque tournante, dont la vitesse angulaire est de 78 RPM, met 30 secondes à s'arrêter, une fois le contact coupé.

- a) Trouvez l'accélération angulaire de la plaque, en supposant qu'elle soit uniforme;
- b) Combien de révolutions accomplit-elle pendant ce temps?

Problème Nº 6.3

En attendant votre tour de monter à bord d'un hélicoptère, vous calculez que la vitesse du rotor passe de 300 RPM à 225 RPM en une minute.

- a) Trouvez l'accélération angulaire moyenne pendant cet intervalle de temps;
- b) En supposant que l'accélération angulaire demeure constante, combien de temps mettra le rotor à s'arrêter ?
- c) Combien de tours aura fait le rotor entre la fin de la première minute et le moment où il s'arrêtera?

Problème Nº 6.4

Un disque en rotation autour d'un axe fixe accélère uniformément à partir du repos. À un instant donné, sa vitesse angulaire vaut 10 révolutions/sec. Après 60 tours supplémentaires, sa vitesse angulaire vaut 15 révolutions/sec. Calculez :

- a) l'accélération angulaire α ;
- b) le temps requis pour accomplir 60 révolutions;
- c) le temps requis pour atteindre la vitesse de 10 révolutions /sec;
- d) le nombre de révolutions accomplies à partir du repos jusqu'au moment où sa vitesse vaut 10 révolutions /sec.

6	+												
	RPM; = 1200	(.) 1 RV	$m = \frac{\lambda}{6}$	t cd		1	Cof - (= 1					
	RPmj = 3000					ſ	d >	y-co,					
	·		α	= 1200.	1			19 17					
	ty = 125		/ Wi:	= 1200.	60								
	1, = 00		1.3	= 40R	cc. 1/c		/	100x-6	0 7C = S	·	206.	1,2	
			V _t	- 70101	u v			12-0		1 2 1 3	Jeg fo	id/so,	
/	D		(41 -	3060-	2×				L Con.	~1/2)			
			07 =	300-	60		2	(en rev[s+)	= 27				
			Gy.	1= 100 x	radio				15				
			-97	, - 100 X	1-2625			d :	15 2x =	d,Srev/s ^a			
	6)0y = 0; +1	v; [1]-5)+14	< (<i>ħ-ti)</i> }ª		10.	1/2	_ () (eural	J				
	/				116 rc	rd9170		2 (eura)					
	Øj = 0 t	40x (12-0)	f 1/2 St(12-	a) ²		0.50:							
	87	= 40x(1d) +/b	Sx(12)2		nor =	2638, 2x	99						
						J.R.							
		0y = 263	6,94 rad			= 42	() ₁ /	1/2					
						[0-0) pao	Ser.					
(e, c	}			d =	cus- wi								
,	RPMi = 7	?		0.5	ty-ti			OJ = Oi	+ w; (ty -	f:]+1/2 d	·(1/-1;)		
	Rpmy = 0		dz rad/s	-	0-13x	132							
	ty = 30							Of = 0+	35 (30-0)) 4 1/2 (17x)	(30)2		
		ly= orad	= 13t reds	2 >	-13x 150 2# D			0g =	13#(30) +1/2	(48/3c) ²			
		7-0104)			27 1								
				2=	-0,928	reufz			OJ= 122,52				
						, D		ner -	<u>o</u> =	9x =	192,52 rev		
^													
63													
	On4. 200	1 rpm =	de medis	۷=	wf-v; tg-t;	24 24		G)	= Wi + × 1	(da = L:)			
	R.pm; = 300	w; = 30.				21		~ J.					
	RPm/ = 225	w; = 10x	. 60	d≥ !	60 E0	- 198 B	v	0=	学大药	(st)			
	ty = 60s	wf = 225.	22	₹2 -	₹ r-d/sa	78 0	,						
	t;=0	y = 15 <u>*</u>		n6m2 = 5									
		7 *											

6) by = 0; + (v; (y+t)+(jal(y+t))2 d) of = 15.2x = 20x rad/5 of = 0; + w; (y+t)4 (y+t)2 d) of = 0; + w; (y+t)4 (y+t)4	
$v_{f} = 15.3x = 20_{K} \operatorname{Falfs}$ $\theta_{f} = \theta_{f} + \omega_{f}(f_{f} + f_{f})^{A} + (f_{f} + f_{f})^{A}$	
(a) = 0 reds	
to 1/2 O 10/2 Uy = 12 + 2α (9-6)	
[w] = (5 rev(s) 30x = 20x + 20x (140x) (1) wf = C; c = (15-5) By = 304,894 and 17	
$\frac{d \times (6.5 \text{ ks mod}/\text{cb})}{6.5 \text{ ks}} \qquad \frac{2.0 \times 0.0 + 6.19 \times (9.16)}{4.0 \times 0.0 + 6.19 \times (9.16)}$ $\frac{6.5 \times 5}{2.0 \times 0.0} = 1.042 \text{ range}$ $\frac{6.5 \times 5}{2.0 \times 0.0} = 1.042 \text{ range}$ $\frac{6.5 \times 5}{2.0 \times 0.0} = 1.042 \text{ range}$	
ATT TOWN	
6,5	
A	
6; > 1,5 rads	
by = 0 vel/s () 0 vel = ?	
a) by=L;+x(ty) by=Cp;2d(0y-0;) dv-dx=box mid	
1,5 = 0 + d (th) 0 = 1,5 + d (to a)	
1/5 = 0+ Geograph d = 900 4 176 12/5 4 + 1/4 . (900 4 476) pt	
05 \$19 m/m T= 9 \$115 s	
Con. I/6 k mi)	

Problème Nº 6.5

Un disque accomplit 40 révolutions avant de s'arrêter. Avec une vitesse initiale de 1,5 rad/sec et une accélération uniforme,

- a) Combien de temps a pris la roue pour s'arrêter?
- b) Quelle était l'accélération angulaire ?
- c) Combien de temps a mis le disque pour accomplir les 20 premières révolutions ?

CHAPITRE VI- 1^{ère} PARTIE CINÉMATIQUE DE ROTATION : MOUVEMENT CIRCULAIRE RÉPONSES DES PROBLÈMES SUGGÉRÉS

Problème Nº 6.1: Rép.:

a)
$$\begin{cases} \alpha = 15,708 \text{ rad/s}^2 \\ \alpha = 2,5 \text{ rev/s}^2 \end{cases}$$
 et b)
$$\begin{cases} \theta_f = 2638,93 \text{ rad} \\ \theta_f = 420 \text{ rev} \end{cases}$$

Problème Nº 6.2 : Rép. :

a)
$$\begin{cases} \alpha = -0.2723 \text{ rad/s}^2 \\ \alpha = -0.0433 \text{ rev/s}^2 \end{cases}$$
 et b) $\begin{cases} \theta_f = 122.52 \text{ rad} \\ \theta_f = 19.5 \text{ rev} \end{cases}$

Problème Nº 6.3: Rép.:

a)
$$\begin{cases} \alpha = -0.1309 \text{ rad/s}^2 \\ \alpha = -0.0208 \text{ rev/s}^2 \end{cases}$$
 b) $\Delta t = 240 \text{ s}$ c)
$$\begin{cases} \theta_f = 2120.57 \text{ rad} \\ \theta_f = 337.5 \text{ rev} \end{cases}$$

Problème Nº 6.4: Rép.:

a)
$$\begin{cases} \alpha = 6,545 \text{ rad/s}^2 \\ \alpha = 1,042 \text{ rev/s}^2 \end{cases}$$
 b) $\Delta t = 4,8 \text{ s}$ c) $\Delta t' = 9,6 \text{ s}$ d) $\theta_f = 48 \text{ rév}$

Problème Nº 6.5: Rép.:

a)
$$\begin{cases} \Delta t = 335,1 \text{ s} \\ \Delta t = 5,58 \text{ min} \end{cases}$$
 b)
$$\begin{cases} \alpha = 4,476 \times 10^{-3} \text{ rad/s} \\ \alpha = 7,12 \times 10^{-4} \text{ rév/s} \end{cases}$$
 c)
$$\begin{cases} \Delta t = 98,14 \text{ s} \\ \Delta t = 1,64 \text{ min} \end{cases}$$