МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Заочный факультет

Кафедра: «Физика и электротехника»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине «Электрические машины»

на тему: «Проектирование трехфазного асинхронного электродвигателя»

	Исполнитель: студент гр. 39 – 42с Пархомович А.М. Руководитель: преподаватель Козлов А.В.
	Дата проверки:
	Дата допуска к защите:
	Дата защиты:
	Оценка работы:
Подписи членов комиссии по защите курсовой работы:	

СОДЕРЖАНИЕ

Введение	4
1.Определение главных размеров электродвигателя	5
2.Расчёт обмотки, паза и ярма статора	7
3.Расчёт обмотки, паза и ярма ротора	11
4.Расчёт магнитной цепи асинхронной машины	14
5.Определение параметров асинхронной машины для рабочего режима	17
6.Расчёт постоянных потерь мощности	19
7.Рабочие характеристики асинхронного двигателя	21
8.Пусковые характеристики асинхронного двигателя	23
Заключение	36
Список использованной литературы	37

					КП.1-43.01.03с.42с	.21.24.	.ПЗ.	
Изм.	Лист	№ докум	Подпись	Дата				
Разра	аб	Пархомович				Лит.	Лист	Листов
Пров	в Козлов					У	3	1
					СОДЕРЖАНИЕ	СОДЕРЖАНИЕ ГГТУ им.П.О.Сухого		
Н. Ко	онтр.							
Утв							гр.3Э-42	

ВВЕДЕНИЕ

Потребность в электроэнергии непрерывно растет, особенно в настоящий период в связи с ростом автоматизации и созданием технологических процессов, непосредственно использующих электрическую энергию. Электрическая энергия вырабатывается на электрических станциях из энергии органического или ядерного топлива либо энергии движущейся воды и ветра. При помощи паровых, гидравлических или другого рода турбин эти виды энергии преобразуются в механическую энергию вращения, которая затем в электрической машине, называемой генераторам, преобразуется в электрическую энергию.

При использовании электрической энергии часто требуется обратное преобразование ее в механическую (привод станков, механизмов, колес и т.п.). Такое преобразование также осуществляется при помощи электрических машин, называемых двигателями.

Наряду с большой энергетикой электрические машины получили широкое применение в системах автоматического управления и бытовой технике в качестве двигателей исполнительных механизмов либо различного рода электромеханических преобразователей и датчиков.

Во всех системах большой или малой мощности, где используются электрические машины, их рабочие свойства во многом определяют поведение и свойства этих систем. Поэтому знание основ теории электрических машин необходимо каждому специалисту, работающему в любой из сфер производства, распределения или потребления электрической энергии.

					КП.1-43.01.03с.42с.21.24.ПЗ.				
Изм.	Лист	№ докум	Подпись	Дата					
Разра	аб	Пархомович				Лит.	Лист	Листов	
Пров	3	Козлов				У	4	1	
					ВВЕДЕНИЕ				
Н. Ко	онтр.					ГГТУ им.П.О.Сухого			
Утв			гр.3Э-42с						

1. ОПРЕДЕЛЕНИЕ ГЛАВНЫХ РАЗМЕРОВ

Исходные данные:

- —Полезная мощность на валу: $P_2 = 45 \text{ kBT}$;
- —Число полюсов:2p =2;
- —Номинальное напряжение: $U_{1\text{ном.}\phi}/U_{\text{ном}}=220/380 \text{ B}$;
- —Конструктивное исполнение:IM1;
- —Степень защиты:IP23;
- —Способ охлаждения:IC01;
- —Класс нагревостойкости:F;
- —Климатическое исполнение:УЗ;
- —Установочный размер:М.

Расчёт главных размеров:

1.1.Предварительное значение высоты оси вращения (принимаем ближайшее стандартное сечение) [1 рис. П.1]:

$$h = 200 MM$$

Тогда внешний диаметр статора [1 табл. П.1]:

$$Da = 349 MM$$

1.2. Коэффициент K_D [1 табл. П.2]:

$$K_D = 0.52$$

1.3.Внутренний диаметр статора

$$D = K_D \cdot Da = 0.52 \cdot 349 = 181.5 \text{ MM}$$

1.4.Полюсное деление

$$\tau = \frac{\pi \cdot D}{2 \cdot p} = \frac{3,14 \cdot 181,5}{2} = 285 \text{ MM}$$

1.5.Коэффициент K_{E} [1 рис. $\Pi.2$], η и $\cos \varphi$ [1 рис. $\Pi.4$]

$$K_E = 0.98$$
; $\eta = 0.88$; $\cos \varphi = 0.87$

1.6. Расчетная мощность

$$P' = \frac{P_2 \cdot K_E}{\eta_H \cdot \cos\varphi} = \frac{45000 \cdot 0.98}{0.87 \cdot 0.88} = 50602 \text{ BA}$$

1.7.Электромагнитные нагрузки [1 рис. П.7]

$$B_{\delta} = 0.81 \text{ Tn} ; A = 49.5 \cdot 10^3 \text{A/m}$$

1.8.Для двигателя с высотой вращения h=200мм обмотка выполняется двухслойной, поэтому значение обмоточного коэффициента

$$k_{\text{обм1}} = 0.9$$

1.9. Предварительные значения коэффициентов а $_{\delta}$ и k_{B}

$$a_{\delta} = 0.64 ; k_{B} = 1.11$$

1.10.Синхронная частота вращения n_1

$$n_1 = \frac{60 \cdot f_1}{p} = \frac{60 \cdot 50}{1} = 3000$$
об/мин

					КП.1-43.01.03с.42с.21.24.ПЗ.			
Изм.	Лист	№ докум	Подпись	Дата				
Разра	аб	Пархомович				Лит.	Лист	Листов
Пров	1	Козлов			ОПРЕПЕЦЕНИЕ СПУРИТУ	У	5	2
					ОПРЕДЕЛЕНИЕ ГЛАВНЫХ			
Н. Ко	онтр.				PA3MEPOB	ГГТУ им.П.О.Сухого		
Утв							гр.3Э-42	

1.11.
Синхронная угловая частота
$$\omega$$

$$\omega = \frac{2 \cdot \pi \cdot n_1}{60} = \frac{2 \cdot 3,14 \cdot 3000}{60} = 314 \text{ рад/c}$$

1.12. Расчетная длина магнитопровода

$$l_{\delta} = \frac{P`}{D^2 \cdot \omega \cdot k_B \cdot k_{\text{обм1}} \cdot B_{\delta} \cdot A} = \frac{50602}{0,1815^2 \cdot 314 \cdot 1,11 \cdot 0,9 \cdot 49,5 \cdot 10^3 \cdot 0,81} = 0,15 \text{ м}$$
 1.13.Определим правильность выбора главных размеров l_{δ} и D

$$\lambda = \frac{l_{\delta}^{1}}{\tau} = \frac{0.15}{0.285} = 0.54$$

Данное значение лежит в допустимых пределах для АД с исполнением IP23 [1 рис. П.8]

Изм	Лист	№ докум	Подпись	Дата

2.РАСЧЕТ ОБМОТКИ, ПАЗА И ЯРМА СТАТОРА

2.1.Предельные значения зубцового деления t_{z1} [1 рис. $\Pi.9$]

$$t_{Z1min} = 14$$
MM; $t_{Z1max} = 16,7$ MM

2.2.Предельные значения пазов статор

$$Z_{1\min} = \frac{\pi \cdot D}{t_{Z_{1\max}}} = \frac{3,14 \cdot 0,1815}{0,0164} \approx 34$$

$$Z_{1\max} = \frac{\pi \cdot D}{t_{Z_{1\min}}} = \frac{3,14 \cdot 0,1815}{0,0138} \approx 40$$

2.3.С учётом рекомендаций [1 стр.9] окончательно принимаем число пазов:

$$Z_1 = 36$$

Тогда принятое число пазов $Z_1=36$ будет кратно числу фаз m_1 АД ($m_1=3$), а число пазов на полюс и фазу q_1 будет целым числом:

$$\frac{\ddot{Z}_1}{m_1} = \frac{36}{3} = 12$$

$$q_1 = \frac{\ddot{Z}_1}{2 \cdot p \cdot m_1} = \frac{36}{2 \cdot 1 \cdot 3} = 6$$

Обмотка статора-двухслойная

2.4. Окончательное значение зубцового деления обмотки статора:

$$t_{Z1} = \frac{\pi \cdot D}{2 \cdot p \cdot m_1 \cdot q_1} = \frac{3,14 \cdot 0,1815}{2 \cdot 1 \cdot 3 \cdot 6} = 15,8$$
 мм

2.5. Номинальный ток обмотки статора АД:

$$I_{1_{\text{HOM}}} = \frac{P_2}{\eta \cdot \cos \phi \cdot m_1 \cdot U_{1_{\text{HOM}}, \varphi}} = \frac{45000}{0,87 \cdot 0,88 \cdot 3 \cdot 220} = 89,06 \text{ A}$$

2.6. Число эффективных проводников в пазу (предварительное значение) при условии, что число параллельных ветвей обмотки a = 1 (параллельные ветви отсутствуют):

$$\mathbf{u'_{\Pi}} = \frac{\mathbf{A} \cdot \mathbf{\pi} \cdot \mathbf{D}}{\mathbf{I_{1_{HOM}} \cdot Z_{1}}} = \frac{0,1815 \cdot 3,14 \cdot 49,5 \cdot 10^{3}}{89,06 \cdot 36} = 8,81$$

2.7. Согласно рекомендациям [1 стр.10 и 11], принимаем число параллельных ветвей а:

$$a = 2$$

Тогда фактическое число эффективных проводников в пазу u_{Π} при a=1 (в нашем случае обмотка двухслойная):

$$u_{\Pi} = a \cdot u_{\Pi}^{\prime} = 2 \cdot 8,81 = 17,6$$

Таким образом, $u_{\Pi} = 18$ проводников.

2.8. Число витков в фазе обмотки статора:
$$w_1 = \frac{u_\Pi \cdot Z_1}{2 \cdot a \cdot m_1} = \frac{36 \cdot 18}{2 \cdot 2 \cdot 3} = 54$$

Изм.	Лист	№ докум	Подпись	Дата	КП.1-43.01.03с.42с	.21.24.	ПЗ.	
Разра	аб	Пархомович				Лит.	Лист	Листов
Пров	3	Козлов			РАСЧЕТ ОБМОТКИ, ПАЗА И	У	7	4
					,			
Н. Ко	онтр.				ЯРМА СТАТОРА	ГГТУ	им.П.О.	Сухого
y_{TB}							гр.ЗЭ-42	lc .

2.9. Линейная нагрузка:

$$A = \frac{2 \cdot I_{1_{HOM}} \cdot w_1 \cdot m_1}{\pi \cdot D} = \frac{2 \cdot 89,06 \cdot 54 \cdot 3}{3,14 \cdot 0,1815} = 50,7 \cdot 10^3 A/M$$

Значение А находится в допустимых пределах [1 рис. П.7]

2.10. Для двухслойных обмоток коэффициент укорочения $k_v < 1$. Определим расчётное укорочение шага обмотки:

$$\beta = \frac{2 \cdot (q_1 + 1)}{3 \cdot q_1} = \frac{2 \cdot (6 + 1)}{3 \cdot 6} = 0,61$$

Тогда для 1-й гармоники по [1 рис. П.10] определим значение коэффициента укорочения:

$$k_v = 0.82$$

2.11. Коэффициент распределения k_p определим по [1 табл. П.4] (для 1-й гармоники) в зависимости от q₁:

$$k_n = 0.96$$

2.12. Значение обмоточного коэффициента для однослойной обмотки:

$$k_{obm1} = k_v \cdot k_p = 0.96 \cdot 0.82 = 0.78$$

2.13. Магнитный поток:

$$\Phi = \frac{k_{E} \cdot U_{1_{HOM},\varphi}}{4 \cdot k_{B} \cdot k_{oбm1} \cdot w_{1} \cdot f_{1}} = \frac{0.98 \cdot 220}{4 \cdot 1.11 \cdot 0.78 \cdot 54 \cdot 50} = 22.9 \cdot 10^{-3} \text{ B6}$$

2.14. Индукция магнитного поля в воздушном зазоре:

$$B_{\delta} = \frac{\Phi \cdot p}{l_{\delta} \cdot D} = \frac{22,9 \cdot 10^{-3} \cdot 1}{0,15 \cdot 0,1815} = 0,82 \text{ Tm}$$

Полученное значение B_{δ} выходит за пределы рекомендуемой области [1 рис. П.7] менее, чем на 5%, что допустимо.

2.15. Значение произведения линейной нагрузки на плотность тока А · І найдём по [1 рис. П.11]:

$$A \cdot I = 320 \cdot 10^9 \, A^2 / M^3$$

2.16.Плотность тока в обмотке статора (предварительное значение):
$$J_1 = \frac{A \cdot J}{A} = \frac{320 \cdot 10^9}{50,7 \cdot 10^3} = 6,32 \cdot 10^6 \text{ A/m}^2$$

2.17.Площадь поперечного сечения эффективного проводника (предварительное значение):

$$q_{3\Phi} = \frac{I_{1\text{HOM}}}{a \cdot J_1} = \frac{89,06}{2 \cdot 6,32 \cdot 10^6} = 7,04 \cdot 10^{-6} \text{ m}^2$$

При таком сечении диаметр эффективного проводника будет равен:

$$d_{\Pi P} = \sqrt{\frac{4 \cdot q_{\Im \Phi}}{\pi}} = \sqrt{\frac{4 \cdot 7,04}{3,14}} = 3,5 \text{ mm}$$

Что превышает рекомендованные значения [1 стр. 13].

2.18. В качестве обмоточного провода принимаем круглый медный изолированный провод марки ПЭТВ сечением $q_{\rm ЭЛ} = 1,767 \, {\rm mm}^2$ и диаметром $d_{\rm ЭЛ} =$ 1,5 мм [1 табл. П.6]. Диаметр провода с учётом изоляции $d_{\rm H3}=1,585$ мм. С учётом рекомендаций на [1 стр. 13 и 14], принимаем число элементарных проводников $n_{ЭЛ} = 4$.

Изм	Лист	№ докум	Подпись	Дата

Тогда уточнённое значение площади поперечного сечения эффективного проводника:

$$q_{\Theta\Phi} = n_{\Theta\Pi} \cdot q_{\Theta\Pi} = 4 \cdot 1,767 = 7,07 \text{ MM}^2$$

2.19. Плотность тока в обмотке статора (уточнённое значение):

$$J_1 = \frac{I_{1\text{HOM}}}{a \cdot n_{2\Pi} \cdot q_{2\Pi}} = \frac{89,06}{2 \cdot 4 \cdot 1,767} = 6,3 \text{ A/mm}^2$$

- 2.20. Всыпную обмотку статора с круглым обмоточным проводом будем укладывать в пазы трапецеидальной формы [1 рис. П.13, а].
- 2.21. Длина стали сердечника статора l_{CT1} [1 стр. 6] и коэффициент заполнения сталью магнитопровода статора k_{C1} [1 табл. П.8]:

$$l_{CT1} = l_{\delta} = 0.15 \text{ mm}; k_{C1} = 0.97$$

- 2.22. По [1 табл. П.7] предварительно принимаем значения:
- магнитной индукции в зубцах статора при постоянном сечении $B_{Z1}=1,9$ Тл;
 - магнитной индукции в ярме статора $B_a = 1,45 \, \mathrm{Tr}$.
- 2.23. Ширина зубца статора (предварительное значение):

$$b_{Z1} = \frac{B_{\delta} \cdot l_{\delta} \cdot t_{Z1}}{l_{CT1} \cdot k_{C1} \cdot B_{Z1}} = \frac{0.82 \cdot 0.15 \cdot 15.8 \cdot 10^{-3}}{0.15 \cdot 1.9 \cdot 0.97} = 7.04 \text{ mm}$$

2.24. Высота ярма статора:

$$h_a = \frac{\Phi}{2 \cdot l_{CT1} \cdot k_{C1} \cdot B_a} = \frac{22,9 \cdot 10^{-3}}{2 \cdot 0,15 \cdot 0,97 \cdot 1,45} = 52,9 \text{ MM}$$

- 2.25. Размеры паза в штампе определим с учётом приведённых на [1 стр. 15 и 16] рекомендаций и рассчитаем по соответствующим выражениям [1 рис. 2.1]:
 - ширина шлица паза $b_{III1} = 4$ мм [1 табл. $\Pi.10$];
 - высота шлица паза $h_{III1} = 1$ мм [1 стр. 15];
 - угол наклона грани клиновой части паза $\beta_K = 45^{\circ}$ [1 стр. 15];
 - высота паза:

$$h_{\Pi 1} = \frac{Da - D}{2} - h_a = \frac{0,349 - 0,1815}{2} - 0,0529 = 30,9 \text{ MM}$$

• меньшая ширина паза:

$$b_1 = \frac{\pi \cdot (D + 2 \cdot h_{III1} - b_{III1}) - Z_1 \cdot b_{Z1}}{Z_1 - \pi} = \frac{3,14 \cdot (181,5 + 2 \cdot 1 - 4) - 36 \cdot 7,04}{36 - 3,14} = \frac{9.4 \text{ MM}}{2}$$

• большая ширина паза:

$$b_2 = \frac{\pi \cdot (D + 2 \cdot h_{\Pi 1})}{Z_1} - b_{Z1} = \frac{3,14 \cdot (181,5 + 2 \cdot 30,9)}{36} - 7,04 = 14,2$$
 мм

• высота клиновой части паза:

$$h_{K} = \frac{b_{1} - b_{III1}}{2} = \frac{9,4 - 4}{2} = 2,7 \text{ mm}$$

• высота паза без учёта высоты клиновой части и высоты шлица

$$h_{\Pi.K} = h_{\Pi 1} - \left(h_{III1} + \frac{b_1 - b_{III1}}{2}\right) = 30,9 - \left(1 + \frac{9,4 - 4}{2}\right) = 27,2$$
 мм

2.26. Припуски на сборку по ширине $\Delta b_{\Pi 1}$ и высоте $\Delta h_{\Pi 1}$ паза [1 табл. П.9]:

$$\Delta b_{\Pi 1} = 0.2$$
 мм; $\Delta h_{\Pi 1} = 0.2$ мм;

Изм	Лист	№ докум	Подпись	Дата

- 2.27. Размеры паза "в свету":
 - высота паза:

$$h_{\Pi 1} = h_{\Pi 1} - \Delta h_{\Pi 1} = 30,9 - 0,2 = 30,7$$
 мм

• высота паза без учёта высоты клиновой части и высоты шлица:

$$h_{\Pi,K} = h_{\Pi,K} - \Delta h_{\Pi 1} = 27.2 - 0.2 = 27 \text{ MM}$$

• меньшая ширина паза:

$$b_1 = b_1 - \Delta b_{\Pi 1} = 9.4 - 0.2 = 9.2 \text{ MM}$$

• большая ширина паза:

$$b^{\hat{}}_{2} = b_{2} - \Delta b_{\Pi 1} = 14,2 - 0,2 = 14$$
 мм

2.28.Односторонняя толщина изоляции в пазу [1 табл. П.11]:

$$b_{\rm M3} = 0.4 \,\rm MM$$

2.29. Площадь, занимаемая корпусной изоляцией в пазу:

$$S_{\text{H3}} = b_{\text{H3}} \cdot (2 \cdot h_{\Pi 1} + b_1 + b_2) = 0.4 \cdot (2 \cdot 30.7 + 9.4 + 14.2) = 34.16 \text{ Mm}^2$$

2.30. Площадь поперечного сечения паза, остающаяся свободной для размещения проводников обмотки:

$$S_{\Pi}^{`} = \frac{b_{1}^{`} + b_{2}^{`}}{2} \cdot h_{\Pi.K}^{`} - (S_{\text{M3}}) = \frac{9.2 + 14}{2} \cdot 27 - (34.16) = 265.16 \text{ mm}^{2}$$

2.31. Коэффициент заполнения паза статора:

$$k_3 = \frac{d_{\text{M3}}^2 \cdot n_{\text{ЭЛ}} \cdot u_{\text{II}}}{S_{\text{II}}} = \frac{1,585^2 \cdot 4 \cdot 18}{265,16} = 0,69$$

Что является допустимым значением [1 стр. 18] и говорит о том, что расчёт обмотки статора и выбор главных размеров АД были выполнены, верно.

2.32. Уточняем среднее значение ширины зубца статора b_{Z1} , приняв его в качестве расчётного:

$$\begin{aligned} \mathbf{b} \mathbf{\hat{c}}_{Z1} &= \pi \cdot \frac{D + 2 \cdot (\mathbf{h}_{III1} + \mathbf{h}_{K})}{Z_{1}} - \mathbf{b}_{1} = 3,14 \cdot \frac{181,5 + 2 \cdot (1 + 2,7)}{36} - 9,2 = 7,03 \text{MM} \\ \mathbf{b} \mathbf{\hat{c}}_{Z1} &= \pi \cdot \frac{D + 2 \cdot \mathbf{h}_{\Pi 1}}{Z_{1}} - \mathbf{b}_{2} = 3,14 \cdot \frac{181,5 + 2 \cdot 30,7}{36} - 14,2 = 7,03 \text{ MM} \end{aligned}$$

Значения $b_{Z1} = b_{Z1}$, поэтому $b_{Z1} = b_{Z1} = b_{Z1} = 7,03$ мм.

2.33. Пользуясь рекомендациями на [1 стр. 19 и П.14] определим величину воздушного зазора между статором и ротором АД:

$$\sigma = 1 \text{ mm}$$

Изм	Лист	№ докум	Подпись	Дата

3.РАСЧЁТ ОБМОТКИ, ПАЗА И ЯРМА РОТОРА

3.1. Число пазов ротора [1 по табл. П.12]:

$$Z_2 = 28$$

3.2. Внешний диаметр ротора:

$$D_2 = D - 2 \cdot \sigma = 181,5 - 2 \cdot 1 = 179,5 \text{ MM}$$

3.3. Длина сердечника ротора [1 стр. 7-8]:

$$l_{CT2} = l_2 = l_{CT1} = l_\delta = 0$$
,13мм

3.4. Зубцовое деление ротора:

$$t_{Z2} = \frac{\pi \cdot D_2}{Z_2} = \frac{3,14 \cdot 0,1815}{28} = 20,14$$
 мм

3.5. Сердечник ротора двигателя выполнен с непосредственной посадкой на вал [1 стр. 20-21], поэтому внутренний диаметр сердечника ротора определим по выражению:

$$D_{j} = D_{B} = k_{B} \cdot D_{a} = 0.23 \cdot 349 = 80 \text{ mm}$$

где: $D_{\rm B}$ — диаметр вала;

 $k_{\rm B} = 0.23$ — коэффициент, выбранный по [1 табл. П.13]

3.6. Коэффициент k_i , учитывающий влияние тока намагничивания на отношение токов $\frac{l_2}{r}$ (предварительное значение):

$$k_i = 0.2 + 0.8 \cdot \cos \varphi = 0.2 + 0.8 \cdot 0.88 = 0.9$$

- 3.7. Высота оси АД 180 мм, поэтому ротор выполняется без скоса пазов [1 стр. 20-22].
 - коэффициент скоса:

$$k_{c\kappa} = 1$$

3.8. Коэффициент приведения токов:
$$v_{\rm i} = \frac{2 \cdot {\rm m_1} \cdot {\rm w_1} \cdot {\rm k_{\rm oбм1}}}{{\rm Z_2} \cdot {\rm k_{\rm cK}}} = \frac{2 \cdot 3 \cdot 54 \cdot 0.78}{28 \cdot 1} = 9.06$$

3.9. Ток в обмотке ротора (предварительное значение):

$$I_2 = k_i \cdot I_{1\text{hom}} \cdot v_i = 9,06 \cdot 89,06 \cdot 0,9 = 729,6 \text{ A}$$

3.10. В качестве обмотки ротора принимаем литую конструкцию с алюминиевыми стержнями и короткозамкнутыми кольцами [1 стр.20].

Задаёмся плотностью тока в алюминиевых стержнях ротора [1 стр.22]:

$$J_2 = 3.2 \cdot 10^6 \text{ A/m}^2$$

3.11. Площадь поперечного сечения стержня (предварительное значение):

$$q_C = \frac{I_2}{J_2} = \frac{729.6}{3.2} = 228.01 \text{ mm}^2$$

					КП.1-43.01.03с.42с.21.24.ПЗ				
Изм.	Лист	№ докум	Подпись	Дата					
Разра	аб	Пархомович				Лит.	Лист	Листов	
Пров	Козлов				Расчет обмотки, паза и ярма ро-	У	11	2	
Пров Н. Контр. Утв					тора		им.П.О. гр.ЗЭ-42		

- 3.12. В данном двигателе применяются трапецеидальные закрытые пазы [1 рис. 3.2, стр. 23]. Принимаем:
- ширина шлица паза b_{Ш2} = 1,5мм [1 стр. 23];
 - высота шлица паза $h_{\text{Ш2}} = 0.7$ мм [1 стр. 23];
 - высота перемычки над пазом $h'_{III2} = 1$ мм [1 стр. 23];

По [1 табл. П.7] принимаем значение магнитной индукции в зубцах ротора при постоянном сечении $B_{Z2}=2$ Тл.

3.13. Допустимая ширина зубца ротора:

$$\mathbf{b}_{\mathrm{Z2.Д}} = \frac{\mathbf{B}_{\delta} \cdot \mathbf{l}_{\delta} \cdot \mathbf{t}_{\mathrm{Z2}}}{\mathbf{l}_{\mathrm{CT2}} \cdot \mathbf{k}_{\mathrm{C2}} \cdot \mathbf{B}_{\mathrm{Z2}}} = \frac{0.82 \cdot 0.15 \cdot 20.14 \cdot 10^{-3}}{0.15 \cdot 2 \cdot 0.97} = 8.51 \,\mathrm{mm}$$

где $k_{C2} = 0,97$ — коэффициент заполнения сталью магнитопровода ротора [1 табл. $\Pi.8$]

- 3.14. Размеры паза ротора:
 - диаметр закругления верхней части паза:

$$b_1 = \frac{\pi \cdot (D_2 - 2 \cdot h_{\text{III}2} - 2 \cdot h \hat{}_{\text{III}2}) - Z_2 \cdot b_{\text{Z2.Д}}}{Z_2 + \pi} = \frac{3,14 \cdot (179,5 - 2 \cdot 0,7 - 2 \cdot 1) - 28 \cdot 8,51}{28 + 3,14} = 10,1 \text{мм}$$

• диаметр закругления нижней части паза:

$$b_2 = \sqrt{\frac{b_1^2 \cdot \left(\frac{Z_2}{\pi} + \frac{\pi}{2}\right) - 4 \cdot q_C}{\frac{Z_2}{\pi} + \frac{\pi}{2}}} = \sqrt{\frac{10,1^2 \left(\frac{28}{3,14} + \frac{3,14}{2}\right) - 4 \cdot 228,01}{\frac{28}{3,14} + \frac{3,14}{2}}} = 4,6 \text{ MM}$$

• расстояние между центрами закруглений верхней и нижней частей паза:

$$h_1 = (b_1 - b_2) \cdot \frac{Z_2}{2 \cdot \pi} = (10.1 - 4.6) \cdot \frac{28}{2 \cdot 3.14} = 24.5 \text{MM}$$

3.15. Округлим до десятых и примем окончательные значения $b_1,\,b_2$ и h_1 :

$$b_1 = 10$$
,1 мм ; $b_2 = 4$,6мм ; $h_1 = 24$,5 мм

3.16. Полная высота паза ротора:

$$h_{\Pi 2} = h_1 + h_{III2} + h^*_{III2} + \frac{b_1}{2} + \frac{b_2}{2} = 24.5 + 0.7 + 1 + \frac{10.1}{2} + \frac{4.6}{2} = 33.6 \text{ mm}$$

3.17. Уточняем ширину зубцов ротора:

$$\begin{aligned} b \mathring{}_{Z2} &= \pi \cdot \frac{D_2 - 2 \cdot (h_{\text{III}2} + h \mathring{}_{\text{III}2}) - b_1}{Z_2} - b_1 = \\ &= 3,14 \cdot \frac{179,5 - 2 \cdot (0,7+1) - 10,1}{28} - 10,1 = 8,5 \text{ MM} \\ b \mathring{}_{Z2} &= \pi \cdot \frac{D_2 - 2 \cdot h_{\pi 2} + b_2}{Z_2} - b_2 = 3,14 \cdot \frac{179,5 - 2 \cdot 33,6 + 4,6}{28} - 4,6 = 8,5 \text{ MM} \end{aligned}$$

3.18. Уточнённое значение ширины зубца ротора:

$$b_{Z2} = b$$
` $_{Z2} = b$ `` $_{Z2} = 8,5$ мм

3.19. Уточнённое значение площади поперечного сечения стержня:

$$\begin{aligned} \mathbf{q}_{\mathrm{C}} &= \frac{\pi}{8} \cdot (\mathbf{b}_{1}^{2} + \mathbf{b}_{2}^{2}) + \frac{1}{2} \cdot (\mathbf{b}_{1} + \mathbf{b}_{2}) \cdot \mathbf{h}_{1} = \frac{3,14}{8} \cdot (10,1^{2} + 4,6^{2}) + \frac{1}{2} \cdot (10,1 + 4,6) \cdot 24,5 \\ &= 228,4 \; \mathrm{mm}^{2} \end{aligned}$$

Изм	Лист	№ докум	Подпись	Дата

3.20. Плотность тока в стержне ротора (уточнённое значение):

$$J_2 = \frac{I_2}{q_C} = \frac{729.6}{228.4} = 3.19 \cdot 10^6 \text{ A/m}^2$$

3.21. Коэффициент Δ для расчёта тока короткозамкнутого кольца:

$$\Delta = 2 \cdot \sin \frac{\pi \cdot p}{Z_2} = 2 \cdot \sin \frac{3,14 \cdot 1}{28} = 0,22$$

3.22. Ток короткозамкнутого кольца ротора:

$$I_{\text{\tiny KJI}} = \frac{I_2}{\Delta} = \frac{729.6}{0.22} = 3258.36 \text{ A}$$

3.23. Плотность тока в короткозамкнутых кольцах принимаем согласно рекомендациям на [1 стр. 27]:

$$J_{KJ} = 0.85 \cdot J_2 = 0.85 \cdot 3.19 \cdot 10^6 = 2.71 \cdot 10^6 \text{A/m}^2$$

3.24. Площадь поперечного сечения короткозамкнутого кольца:

$$q_{\kappa\pi} = \frac{I_{\kappa\pi}}{I_{\kappa\pi}} = \frac{3258,36}{2.71 \cdot 10^6} = 1200,2 \text{mm}^2$$

- 3.25. Размеры короткозамкнутых колец [1 рис. 3.3]:
 - высота кольца:

$$h_{\text{\tiny KJI}} = 1.2 \cdot h_{\pi 2} = 1.2 \cdot 33.6 = 42 \text{MM}$$

• ширина кольца:

$$b_{_{\mathrm{KJI}}}=rac{q_{_{\mathrm{KJI}}}}{h_{_{\mathrm{KJI}}}}=rac{1200,2}{42}=28,6$$
 мм

• средний диаметр кольца:

$$D_{\text{кл.cp}} = D_2 - h_{\text{кл}} = 179,5 - 42 = 137,5$$
 мм

3.26. Расчётное уточнённое значение площади поперечного сечения короткозамкнутого кольца:

$$q_{KJ} = h_{KJ} \cdot b_{KJ} = 42 \cdot 28,6 = 1201,2 \text{ mm}^2$$

Изм	Лист	№ докум	Подпись	Дата

4. РАСЧЁТ МАГНИТНОЙ ЦЕПИ АСИНХРОННОЙ МАШИНЫ

- 4.1. Марку стали магнитопровода принимаем согласно рекомендациям [1 табл.П.14]: сталь марки 2013
- 4.2. Коэффициент γ_1 для расчёта магнитного напряжения воздушного зазора:

$$\gamma_1 = \frac{(\frac{b_{\text{III}}}{\sigma})^2}{5 + \frac{b_{\text{III}}}{\sigma}} = \frac{(\frac{4}{1})^2}{5 + \frac{4}{1}} = 1,78$$

4.3. Коэффициент k_{σ} для расчёта магнитного напряжения воздушного зазора:

$$k_{\sigma} = \frac{t_{Z1}}{t_{Z1} - \gamma_1 \cdot \sigma} = \frac{15,84}{15,84 - 1,78 \cdot 1} = 1,13$$

4.4. Магнитное напряжение воздушного зазора:

$$F_{\sigma} = \frac{2}{\mu_0} \cdot B_{\delta} \cdot \sigma \cdot k_{\sigma} = \frac{2}{12,56 \cdot 10^{-7}} \cdot 0,82 \cdot 1,13 \cdot 1 \cdot 10^{-3} = 1469,2 \text{ A}$$

где μ_0 =12,56 ·10⁻⁷ Гн/м – магнитная проницаемость [1 стр. 28].

4.5. Расчётная высота зубца статора:

$$h_{Z1} = h_{\Pi 1} = 30,9 \text{ MM}$$

4.6. Расчётная индукция в зубцах статора:

$$B_{Z1} = \frac{B_{\delta} \cdot l_{\delta} \cdot t_{Z1}}{l_{CT1} \cdot k_{C1} \cdot b_{Z1}} = \frac{0.82 \cdot 0.15 \cdot 15.84}{0.15 \cdot 7.03 \cdot 0.97} = 1.905 \, T\pi$$

4.7. Так как расчётная индукция $B_{Z_1}^*=1,905$ Тл >1,8 Тл ,то необходимо учесть ответвление потока в паз и найти действительную индукцию в зубце статора B_{Z_1} . Для этого:

$$k_{\pi 1} = \frac{b_{\pi 1} \cdot l_{\delta} \cdot t_{Z1}}{l_{CT1} \cdot k_{C1} \cdot b_{Z1}} = \frac{11,8 \cdot 0,15 \cdot 15,84}{0.15 \cdot 7.03 \cdot 0.97} = 1,72$$

Где:

$$b_{\Pi 1} = \frac{b_1 + b_2}{2} = \frac{9,4 + 14,2}{2} = 11,8$$
 мм

• зададимся значением действительной индукции $B_{Z1}=1,9~\mathrm{T}л$ и определим по [1 табл. П.17] напряженность магнитного поля в сечении зубца статора:

$$H_{Z1} = 2070 \text{ A/m}^2$$

• проверим выполнение условия:

$$B_{Z1} = B_{Z1}^{\cdot} - H_{Z1} \cdot k_{\pi 1} \cdot \mu_0$$

1,9 = 1,905 - 2070 \cdot 1,72 \cdot 12,56 \cdot 10^{-7} = 1,9

Условие выполняется

					КП.1-43.01.03с.42с	.21.24.	21.24.П3.				
Изм.	Лист	№ докум	Подпись	Дата							
Разра	аб	Пархомович				Лит.	Лист	Листов			
-		Козлов				У	14	3			
					РАСЧЕТ МАГНИТНОЙ ЦЕПИ						
Н. Ко	онтр.				, in the second of the second	ГГТУ	им.П.О.	Сухого			
Н. Контр. Утв					гр.3Э-42с						

4.8. Магнитное напряжение зубцовой зоны статора:

$$F_{Z1} = 2 \cdot H_{Z1} \cdot h_{Z1} = 2 \cdot 2070 \cdot 30,9 \cdot 10^{-3} = 127,93 \text{ A}$$

4.9. Расчётная высота зубца ротора:

$$\mathbf{h}_{Z2} = \mathbf{h}_{\Pi 2} - 0.1 \cdot \mathbf{b}_2 = 33.6 - 0.1 \cdot 4.6 = 33.14 \text{ мм}$$

4.10. Расчётная индукция в зубцах ротора:

$$B_{Z2}^{\cdot} = \frac{B_{\delta} \cdot l_{\delta} \cdot t_{Z2}}{l_{CT2} \cdot k_{C2} \cdot b_{Z2}} = \frac{0.82 \cdot 0.15 \cdot 20.14}{0.15 \cdot 8.5 \cdot 0.97} = 2.05 \text{ Тл}$$

Так как расчётная индукция $B_{Z2}^*=2,05$ Тл >1,8 Тл ,то необходимо учесть ответвление потока в паз и найти действительную индукцию в зубце ротора B_{Z1} . Для этого:

$$k_{\pi 2} = \frac{b_{\pi 2} \cdot l_{\delta} \cdot t_{Z2}}{l_{CT2} \cdot k_{C2} \cdot b_{Z2}} = \frac{7,35 \cdot 0,15 \cdot 20,14}{0,15 \cdot 8,5 \cdot 0,97} = 1,22$$

Где:

$$b_{\Pi 2} = \frac{b_1 + b_2}{2} = \frac{10,1 + 4,6}{2} = 7,35 \text{ mm}$$

• зададимся значением действительной индукции $B_{Z2} = 2$ Тл и определим по [1 табл. П.17] напряженность магнитного поля в сечении зубца статора:

$$H_{Z2} = 3150 \text{ A/m}^2$$

• проверим выполнение условия:

$$B_{Z2} = B_{Z2}^{\cdot} - H_{Z2} \cdot k_{\pi 2} \cdot \mu_0$$

2 = 2,05 - 3150 \cdot 1,22 \cdot 12,56 \cdot 10^{-7} = 2

Условие выполняется

4.11. Напряженность магнитного поля в сечении зубца ротора [1 табл. П.1.7]:

$$H_{Z2} = 3150 A/M^2$$
 $B_{Z2} = 2 T\pi$

4.12. Магнитное напряжение зубцовой зоны ротора:

$$F_{Z2} = 2 \cdot H_{Z2} \cdot h_{Z2} = 2 \cdot 3150 \cdot 33,14 \cdot 10^{-3} = 208,78 \text{ A}$$

4.13. Коэффициент насыщения зубцовой зоны:

$$k_Z = 1 + \frac{F_{Z2} + F_{Z1}}{F_{G}} = 1 + \frac{208,78 + 127,93}{1469,2} = 1,23$$

Значение коэффициента насыщения зубцовой зоны k_Z находится в допустимых пределах, что предварительно говорит о правильности выбранных размерных соотношений и обмоточных данных АД [1 стр. 31]

4.14. Длина средней силовой линии магнитного поля в ярме статора:

$$L_{a}=\pi\cdotrac{D_{a}-h_{a}}{2\cdot p}=3$$
,14 $\cdotrac{0,349-0,0529}{2}=0$,47 м

4.15. Проектируемый АД имеет длину сердечника статора $l_{\text{СТ1}} = 150$ мм< 300 мм, поэтому вентиляционные каналы в статоре отсутствуют [1 стр. 31]. В этом случае расчётная высота ярма статора:

$$h_a = h_a = 52,9$$
 мм

4.16. Индукция в ярме статора:

						КП.1-43.01.0
--	--	--	--	--	--	--------------

КП.1-43.01.03с.42с.21.24.ПЗ.

$$B_a = \frac{\Phi}{2 \cdot h_a \cdot l_{CT1} \cdot k_{C1}} = \frac{22,9 \cdot 10^{-3}}{2 \cdot 0,0529 \cdot 0,15 \cdot 0,97} = 1,45 \text{ Тл}$$

4.17. Напряжённость поля ярма статора при индукции B_a [1 табл.П.1.6]:

$$H_a = 460 \text{ A/m}^2$$

4.18. Магнитное напряжение ярма статора:

$$F_a = H_a \cdot L_a = 460 \cdot 0,529 = 213,98 A$$

4.19. Сердечник ротора проектируемого АД является сердечником с непосредственной посадкой на вал. Определим значение следующего выражения и оценим выполнения условия:

$$0.75 \cdot \left(\frac{D_a}{2} - h_{\Pi 2}\right) = 0.75 \cdot \left(\frac{0.349}{2} - 0.0336\right) = 0.135 > D_B = 0.08$$

Поэтому для АД с 2р=2 расчётная высота ярма ротора определится по выражению:

$$h_j^* = \frac{D_2 - D_B}{2} - h_{\Pi 2} = \frac{0,1795 - 0,08}{2} - 0,0336 = 15,99 \text{ MM}$$

4.20. Длина средней силовой линии магнитного поля в ярме ротора:

$$L_i = 2 \cdot h_i = 2 \cdot 15,99 = 31,98 \text{ MM}$$

4.21. Индукция в ярме ротора:

$$B_{j} = \frac{\Phi}{2 \cdot h_{j} \cdot l_{CT2} \cdot k_{C2}} = \frac{22,9 \cdot 10^{-3}}{2 \cdot 0,01599 \cdot 0,15 \cdot 0,97} = 1,46 \text{ Тл}$$

4.22. Напряжённость поля ярма ротора при индукции B_i [1 табл. Π .16]:

$$H_i = 460A/M^2$$

4.23. Магнитное напряжение ярма ротора:

$$F_i = H_i \cdot L_i = 460 \cdot 0.03198 = 13.75 A$$

4.24. Суммарное магнитное напряжение магнитной цепи на одну пару полюсов:

$$F_{II} = F_j + F_a + F_{Z2} + F_{Z1} + F_\sigma = 13,75 + 213,98 + 208,78 + 127,93 + 1469,2 = 2033,6 A$$

4.25. Коэффициент насыщения магнитной цепи:

$$k_{\mu} = \frac{F_{\mu}}{F_{\sigma}} = \frac{2033.6}{1469.2} = 1.38$$

4.26. Намагничивающий ток АД:

$$I_{\mu} = \frac{p \cdot F_{\mu}}{0.9 \cdot m_1 \cdot k_{06M1} \cdot w_1} = \frac{1 \cdot 1469.2}{0.9 \cdot 3 \cdot 0.78 \cdot 54} = 17.8A$$

4.27. Относительное значение намагничивающего тока:

$$I_{\mu}^* = \frac{I_{\mu}}{I_{1HOM}} = \frac{17.8}{89.06} = 0.2$$

Значение I_{μ}^{*} лежит в допустимых пределах, что говорит о корректном выборе размеров двигателя и параметров его обмоток [1 стр. 35]

					KI
Изм	Лист	№ докум	Подпись	Дата	

5. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ АСИНХРОННОЙ МАШИНЫ ДЛЯ РА-БОЧЕГО РЕЖИМА

5.1. Длина пазовой части катушки обмотки статора:

$$l_{\pi 1} = l_1 = l_2 = 0.15 \text{ M}$$

5.2. Средняя ширина катушки обмотки статора:

$$b_{\text{кт}} = \frac{\pi \cdot (D + h_{\Pi 1})}{2 \cdot p} \cdot \beta = \frac{3,14 \cdot (0,1815 + 0,0309)}{2} \cdot 0,61 = 0,2 \text{ м}$$

5.3. Коэффициенты k_{π} и $k_{выл}$ для расчёта длины лобовой части катушки обмотки статора [1 табл. П.24,] (обмотка всыпная с неизолированными лобовыми частями):

$$k_{\pi} = 1.2$$
; $k_{\text{выл}} = 0.26$

5.4. Длина вылета прямолинейной части катушек обмотки статора из паза от торца сердечника до начала отгиба лобовой части ([1 стр. 37] для случая, когда всыпная обмотка укладывается в пазы до запрессовки сердечника в корпус):

$$B = 0.01 \text{ M}$$

5.5. Длина изогнутой лобовой части катушки обмотки статора:

$$l_{\pi 1} = k_{\pi} \cdot b_{\kappa \tau} + 2 \cdot B = 1,4 \cdot 0,2 + 2 \cdot 0,01 = 0,26$$
 м

5.6. Длина вылета лобовой части катушки обмотки статора:

$$l_{\scriptscriptstyle
m BЫЛ1} = k_{\scriptscriptstyle
m BЫЛ} \cdot b_{\scriptscriptstyle
m KT} + B = 0.5 \cdot 0.2 + 0.01 = 0.063$$
 м

5.7. Средняя длина витка обмотки фазы статора:

$$l_{cp1} = 2 \cdot (l_{\pi 1} + l_{\pi 1}) = 2 \cdot (0.15 + 0.26) = 0.84 \text{ M}$$

5.8. Длина проводников фазы обмотки статора:

$$L_1 = l_{cp1} \cdot w_1 = 0.84 \cdot 54 = 42.26$$
 м

5.9. Расчётная температура $v_{\text{расч}}$ и удельное сопротивление материала проводника медной обмотки статора $p_{\text{м}}$ при расчётной температуре ([1 стр. 37 и табл. П.26]):

$$v_{\text{расч}} = 75^{\circ}\text{C}$$
 (для класса изоляции B); $p_{\text{м}} = \frac{1}{47} \cdot 10^{-6} \text{ Ом} \cdot \text{м}$

5.10. Активное сопротивление обмотки статора:

$$r_1 = p_M \cdot k_R \cdot \frac{L_1}{a \cdot q_{20}} = 1 \cdot \frac{1}{47} \cdot 10^{-6} \cdot \frac{42,26}{2 \cdot 7,07 \cdot 10^{-6}} = 0,068 \text{ Om}$$

где: $k_R = 1[1 \text{ стр. } 38]$

5.11. Относительное значение активного сопротивления обмотки статора:

$$r_{1*} = r_1 \cdot \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\Phi}} = 0.068 \cdot \frac{89,06}{220} = 0.027 \text{ o. e.}$$

		КП.1-43.01.03с.42с.21.24.ПЗ.									
Изм.	Лист	№ докум	Подпись	Дата							
Разра	аб	Пархомович				Лит.	Лист	Листов			
Пров	:	Козлов			ОПЕРДЕЛЕНИЕ ПАРАМЕТ-	У	17	3			
					РОВ МАШИНЫ ДЛЯ РАБО-						
Н. Контр.					ЧЕГО РЕЖИМА	ГГТУ им.П.О.Сухого					
Утв					= = = = = = = = = = = = = = = = = =	гр.3Э-42с					

5.12. Удельное сопротивление материала алюминиевой литой обмотки ротора и короткозамкнутого кольца p_a при расчётной температуре $v_{pacq} = 75^{0}$ C [1 стр. 37 и табл. Π .26]:

$$p_a = \frac{1}{21.5} \cdot 10^{-6} \text{ Ом} \cdot \text{м}$$

5.13. Активное сопротивление алюминиевого стержня ротора:

$$r_c = p_a \cdot k_R \cdot \frac{l_2}{q_c} = 1 \cdot \frac{1}{21.5} \cdot 10^{-6} \cdot \frac{0.13}{228.4 \cdot 10^{-6}} = 32.9 \cdot 10^{-6} \text{ Ом}$$

где: $k_R = 1[1 \text{ стр. } 38]$

5.14. Активное сопротивление алюминиевого короткозамкнутого кольца:

$$ho_{_{\mathrm{K}\!\Pi}} =
ho_{a} \cdot \frac{\pi \cdot D_{_{\mathrm{K}\!\Pi},\mathrm{cp}}}{q_{_{\mathrm{K}\!\Pi}} \cdot Z_{2}} = \frac{1}{21.5} \cdot 10^{-6} \cdot \frac{3.14 \cdot 0.1375}{1201.2 \cdot 28 \cdot 10^{-6}} = 0.63 \cdot 10^{-6} \,\mathrm{Om}$$

5.15. Активное сопротивление фазы алюминиевой обмотки ротора:

$$r_2 = r_c + \frac{2 \cdot r_{_{\rm KJ}}}{\Delta^2} = 32,9 \cdot 10^{-6} + \frac{2 \cdot 0,63 \cdot 10^{-6}}{0.22^2} = 57,98 \cdot 10^{-6} \, {
m Om}$$

5.16. Активное сопротивление ротора, приведённое к числу витков обмотки статора:

$$\dot{r}_2 = r_2 \cdot \frac{4 \cdot m_1 \cdot (w_1 \cdot k_{06M1})^2}{Z_2 \cdot k_{cK}^2} = 57,98 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (54 \cdot 0,78)^2}{28 \cdot 1^2} = 0,044 \text{ Om}$$

5.17. Относительное значение приведённого активного сопротивления ротора:

$$r_{2*} = r_2 \cdot \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\Phi}} = 0.044 \cdot \frac{89,06}{220} = 0.02 \text{ o. e.}$$

5.18. Радиальные вентиляционные каналы в данном АД отсутствуют, поэтому расчётная длина магнитопровода статора (при $n_k = 0$):

$$l_{\sigma} = l_1 = 0$$
,15 м

5.19. Коэффициенты k_{β} и $k^{\hat{}}_{\beta}$:

$$k_{\beta} = 0.25 \cdot (1 + 3\beta) = 0.25 \cdot (1 + 3 \cdot 0.78) = 0.67$$

 $k_{\beta} = 0.25 \cdot (1 + 3k_{\beta}) = 0.25 \cdot (1 + 3 \cdot 0.67) = 0.75$

5.20. Коэффициент магнитной проводимости пазового рассеяния статора:

$$\lambda_{\Pi 1} = \frac{h_2}{3 \cdot b_1} \cdot k_{\beta} + \left(\frac{h_1}{b_1} + \frac{3h_k}{b_1 + 2 \cdot b_{\Pi 1}} + \frac{h_{\Pi 1}}{b_{\Pi 1}}\right) \cdot k_{\beta} =$$

$$= \frac{26.4}{3 \cdot 9.4} \cdot 0.75 + \left(\frac{0}{9.5} + \frac{3 \cdot 1.7}{9.5 + 2 \cdot 4} + \frac{1}{4}\right) \cdot 0.67 = 1.17$$

где h_1 = 0 (проводники закреплены пазовой крышкой), и h_2 = $h_{\pi\kappa}$ – $2 \cdot b_{\mu 3}$ = $27,2-2 \cdot 0,4=26,4$ мм

5.21. Коэффициент магнитной проводимости лобового рассеяния статора:

$$\lambda_{\pi 1} = 0.34 \cdot \frac{q_1}{\Gamma_{\sigma}} \cdot (l_{\pi 1} - 0.64 \cdot \beta \cdot \tau) = 0.34 \cdot \frac{6}{0.15} \cdot (0.26 - 0.64 \cdot 0.78 \cdot 0.285) = 2.02$$

5.22. Коэффициент ξ (паз статора – полузакрытый, скос пазов ротора $\beta_{ck} = 0$)

Изм	Лист	№ докум	Подпись	Дата

$$\xi = 2 \cdot k_{ck}^* \cdot k_{\beta} - k_{obm1}^2 \cdot (\frac{t_{Z2}}{t_{Z1}})^2 \cdot (1 + \beta_{ck}^2) =$$

$$= 2 \cdot 1.5 \cdot 0.75 - 0.78^2 \cdot (\frac{20.14}{15.81})^2 \cdot (1 + 0^2) = 1.26$$

где $k_{ck}^* = 1,5$ [1 рис. $\Pi.16$]

5.23. Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора:

$$\lambda_{\text{д1}} = \frac{t_{\text{Z1}}}{12 \cdot \sigma \cdot k_{\sigma}} \cdot \xi = \frac{15,81}{12 \cdot 1 \cdot 1,13} \cdot 1,26 = 1,47$$

5.24. Индуктивное сопротивление фазы обмотки статора:

$$\begin{aligned} \mathbf{x}_1 &= 15,8 \cdot \frac{f_1}{100} \cdot (\frac{\mathbf{w}_1}{100})^2 \cdot \frac{\mathbf{l}_{\sigma}}{\mathbf{p} \cdot \mathbf{q}_1} \cdot \left(\lambda_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}\right) = \\ &= 15,8 \cdot \frac{50}{100} \cdot (\frac{54}{100})^2 \cdot \frac{0,15}{1 \cdot 6} \cdot (2,02 + 1,26 + 1,47) = 0,28 \text{ Ом} \end{aligned}$$

5.25. Относительное значение индуктивного сопротивления фазы статора:

$$x_{1*} = x_1 \cdot \frac{I_{1HOM}}{U_{1HOM,\Phi}} = 0.28 \cdot \frac{89,06}{220} = 0.11 \text{ o. e.}$$

5.26. Коэффициент магнитной проводимости пазового рассеяния короткозамкнутого ротора [1 стр. стр. 41-42]:

$$\begin{split} \lambda_{\pi 2} &= \left[\frac{h_0}{3 \cdot b_1} \cdot \left(1 - \frac{\pi \cdot b_1^2}{8 \cdot q_c}\right) + 0.66 - \frac{b_{\text{III}2}}{2 \cdot b_1}\right] \cdot k_{\text{A}} + \frac{h_{\text{III}2}}{b_{\text{III}2}} + 1.12 \cdot 10^6 \frac{h^{\hat{}}_{\text{III}2}}{I_2} = \\ &= \left[\frac{26.34}{3 \cdot 10.1} \cdot \left(1 - \frac{3.14 \cdot 10.1^2}{8 \cdot 228.4}\right) + 0.66 - \frac{1.5}{2 \cdot 10.1}\right] \cdot 1 + \frac{0.7}{1.5} + 1.12 \\ &\cdot 10^6 \frac{1}{729.64} = 3.17 \end{split}$$

где

$$h_0 = h_1 + \frac{b_2}{2} - 0.1 \cdot b_2 = 24.5 + \frac{4.6}{2} - 0.1 \cdot 4.6 = 26.34 \text{ mm}$$

5.27. Коэффициент магнитной проводимости лобового рассеяния ротора:
$$\lambda_{\text{л}2} = \frac{2,3 \cdot D_{\text{кл.cp}}}{Z_2 \cdot \Gamma_\delta \cdot \Delta^2} \cdot \lg \cdot \frac{4,7 \cdot D_{\text{кл.cp}}}{h_{\text{кл}} + 2 \cdot b_{\text{кл}}} = \frac{2,3 \cdot 137,5}{28 \cdot 0,15 \cdot 0,22^2} \cdot \lg \cdot \frac{4,7 \cdot 137,5}{42 + 2 \cdot 28,6} = 1,45$$

5.28. Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

$$\lambda_{\text{A2}} = \frac{t_{\text{Z2}}}{12 \cdot \sigma \cdot k_{\sigma}} \cdot \xi = \frac{20,84}{12 \cdot 1 \cdot 1,16} \cdot 1 = 1,45$$

Так как $\frac{Z_2}{p} = \frac{28}{1} = 28 < 10$, то $\xi = 1$

5.29. Коэффициент проводимости скоса:

$$\lambda_{cK} = \frac{t_{Z2} \cdot \beta_{cK}^2}{12 \cdot k_{II} \cdot k_{\sigma}} = \frac{20,84 \cdot 0^2}{12 \cdot 1,16 \cdot 1,38} = 0$$

5.30. Индуктивное сопротивление фазы обмотки ротора:

$$\begin{aligned} \mathbf{x}_2 &= 7.9 \cdot f_1 \cdot \mathbf{l} \cdot_{\sigma} \cdot 10^{-6} \cdot \left(\lambda_{\text{д2}} + \lambda_{\text{л2}} + \lambda_{\text{п2}} + \lambda_{\text{ск}} \right) = \\ &= 7.9 \cdot 50 \cdot 0.1 \cdot 10^{-6} \cdot \left(0 + 1.45 + 1.45 + 3.17 \right) = 272 \cdot 10^{-6} \text{ Ом} \end{aligned}$$

Изм	Лист	№ докум	Подпись	Лата

5.31. Индуктивное сопротивление фазы обмотки ротора, приведённое к числу витков обмотки статора:

$$x_2 = x_2 \cdot \frac{4 \cdot m_1 \cdot (w_1 \cdot k_{o6M1})^2}{Z_2 \cdot k_{cK}^2} = 272 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (54 \cdot 0,78)^2}{28 \cdot 1^2} = 0,27 \text{ Om}$$

5.32. Относительное значение индуктивного сопротивления фазы ротора:

$$x_{2*} = x_2 \cdot \frac{I_{1\text{HOM}}}{U_{1\text{HOM}, \phi}} = 0.27 \cdot \frac{89.06}{220} = 0.11 \text{ o. e.}$$

Изм	Лист	№ докум	Подпись	Дата

6. РАСЧЕТ ПОСТОЯННЫХ ПОТЕРЬ МОЩНОСТИ

6.1. Удельные потери мощности в стали марки 2013 при индукции 1 Тл и частоте перемагничивания 50 Гц [1 табл. П.27]:

$$p_{1,0/50} = 2,5 \, \text{Вт/кг}$$

6.2. Масса стали ярма статора:

$$\begin{split} m_a &= \pi \cdot (\text{Da} - h_a) \cdot h_a \cdot l_{\text{CT1}} \cdot k_{\text{C1}} \cdot \gamma_c = \\ &= 3,14 \cdot (0,349 - 0,0529) \cdot 0,0529 \cdot 0,15 \cdot 0,97 \cdot 7,8 \, \cdot 10^3 = 57,48 \; \text{кг} \\ \Gamma\text{де} \; \gamma_c &= 7,8 \, \cdot 10^3 \; \text{кг/м}^3 - \text{удельная масса стали} \; [1 \; \text{стр.} \; 44] \end{split}$$

6.3. Масса стали зубцов статора:

$$m_{z1} = h_{Z1} \cdot b_{Z1} \cdot Z_1 \cdot l_{CT1} \cdot k_{C1} \cdot \gamma_c = 0.0309 \cdot 36 \cdot 0.00703 \cdot 0.15 \cdot 0.97 \cdot 7.8 \cdot 10^3 = 9.17 \text{kg}$$

6.4. Коэффициенты для нахождения основных потерь в стали [1 стр. 44]:

$$k_{\pi a} = 1.6$$
; $k_{\pi z} = 1.8$ $b = 1.4$

6.5. Основные потери активной мощности в стали статора АД:

$$\begin{split} P_{\text{ct.och}} &= p_{1,0/50} \cdot (\frac{f_1}{50})^b \cdot \left(k_{\text{дa}} \cdot B_a^2 \cdot m_a + k_{\text{дz}} \cdot B_{z1}^2 \cdot m_{z1} \right) = \\ &= 2.5 \cdot (\frac{50}{50})^{1.4} \cdot (1.6 \cdot 1.45 \cdot 57.48 + 1.8 \cdot 1.9^2 \cdot 9.17) = 631.3 \text{ BT} \end{split}$$

6.6. Отношение ширины шлица пазов статора АД к воздушному зазору:

$$\frac{\mathbf{b}_{\mathbf{III}\,\mathbf{1}}}{\sigma} = \frac{4}{1} = 4$$

6.7. По [1 рис. П.19, б] находим значения коэффициента β_{02} :

$$\beta_{02} = f\left(\frac{b_{III1}}{\sigma}\right) = 0.22$$

6.8. Амплитуда пульсации индукции в воздушном зазоре над коронками зубцов ротора B_{02} :

$$B_{02} = \beta_{02} \cdot B_{\delta} \cdot k_{\sigma} = 0.22 \cdot 0.82 \cdot 1.13 = 0.2$$
 Тл

6.9. Удельные поверхностные потери, т.е. потери, приходящиеся на 1м² поверхности головок ротора:

$$p_{\text{пов2}} = 0.5 \cdot k_{02} \cdot (\frac{Z_1 \cdot n_1}{10000})^{1.5} \cdot (B_{02} \cdot t_{Z1} \cdot 10^3)^2 =$$

$$= 0.5 \cdot 1.6 \cdot (\frac{36 \cdot 3000}{10000})^{1.5} \cdot (0.22 \cdot 15.84 \cdot 10^3)^2 = 305.4 \text{ BT}$$

Где $k_{02} = 1$,6 [1 стр. 45] $n \approx n_1 = 3000$ об/мин

6.10. Полные поверхностные потери ротора:

$$P_{\text{пов2}} = p_{\text{пов2}} \cdot (t_{\text{Z2}} - b_{\text{III2}}) \cdot Z_2 \cdot l_{\text{CT2}} = 30,4 \cdot (0,02014 - 0,0015) \cdot 28 \cdot 0,1 = 20.09 \text{ BT}$$

					КП.1-43.01.03с.42с.21.24.ПЗ.					
Изм.	Лист	№ докум	Подпись	Дата						
Разра	аб	Пархомович				Лит.	Лист	Листов		
		Козлов			РАСЧЕТ ПОСТОЯННЫХ ПО-	У	21	2		
	Іров									
Н. Ко	онтр.				ТЕРЬ МОЩНОСТИ	ГГТУ им.П.О.Сухого				
y_{TB}							гр.ЗЭ-42			

6.11. Амплитуда пульсаций индукции в среднем сечении зубцов ротора:

$$B_{\text{пул.2}} = \frac{\gamma_1 \cdot \sigma}{2 \cdot t_{Z2}} \cdot B_{z2} = \frac{1,78 \cdot 0,001}{2 \cdot 0,02014} \cdot 2 = 0,09 \text{ Тл}$$

6.12. Масса стали зубцов ротора:

$$m_{z2} = h_{Z2} \cdot b_{Z2} \cdot Z_2 \cdot l_{CT2} \cdot k_{C2} \cdot \gamma_c = 0.03314 \cdot 28 \cdot 0.0085 \cdot 0.14 \cdot 0.97 \cdot 7.8 \cdot 10^3 = 9.24 \text{kg}$$

6.13. Пульсационные потери в зубцах ротора:

$$P_{\text{пул.2}} = 0.11 \cdot \left(\frac{Z_1 \cdot n}{1000} \cdot B_{\text{пул.2}}\right)^2 \cdot m_{z2} = 0.11 \cdot \left(\frac{36 \cdot 3000}{1000} \cdot 0.09\right)^2 \cdot 9.24 = 91.75 \text{BT}$$

6.14. Поверхностные и пульсационные потери в статоре АД с короткозамкнутым ротором незначительны, поэтому принимаем:

$$P_{\text{пул.1}} = 0$$
 и $P_{\text{пов1}} = 0$ [1 стр. 45]

6.15. Добавочные потери в стали:

 $P_{\text{ст.доб}} = P_{\text{пул.1}} + P_{\text{пов1}} + P_{\text{пул.2}} + P_{\text{пов2}} = 0 + 0 + 91,75 + 20,09 = 111,84 \ Вт 6.16. Добавочные потери в стали:$

$$P_{ct} = P_{ct,do6} + P_{ct,och} = 523,2 + 90,32 = 613,5 Bt$$

6.17. Асинхронные двигатели с системой охлаждения IC01с вентиляционными лопатками на замыкающих кольцах [1 стр. 46-49] механические потери найдём по выражению:

$$P_{\text{Mex}} = K_{\text{T}} \cdot \left(\frac{n}{10}\right)^2 \cdot (10D)^3 = 6 \cdot \left(\frac{3000}{10}\right)^2 \cdot (10 \cdot 0.1815)^3 = 376.6 \text{ BT}$$

Где: $K_{\rm T} = 6$

6.18. Электрические потери в статоре в режиме холостого хода АД:

$$P_{91.x} = m_1 \cdot r_1 \cdot I_{\mu}^2 = 3 \cdot 0.068^2 \cdot 17.8 = 64.7BT$$

6.19. Активная составляющая тока холостого хода:

$$I_{x.a} = \frac{P_{91.x} + P_{cT} + P_{mex}}{m_1 \cdot U_{1HOM.0}} = \frac{64.7 + 631.3 + 376.6}{3 \cdot 220} = 1.8 \text{ A}$$

6.20. Реактивная составляющая тока холостого хода:

$$I_{\mu} = 17.8A \approx I_{x.p}$$

6.21.Ток холостого хода:

$$I_x = \sqrt{I_{x.a}^2 + I_{x.p}^2} = \sqrt{1.8^2 + 17.8^2} = 17.89 \text{ A}$$

6.22. Коэффициент мощности АД в режиме холостого хода:

$$\cos \varphi_{\rm x} = \frac{I_{\rm x.a}}{I_{\rm x}} = \frac{1.8}{17.89} = 0.1$$

Изи	Лист	№ докум	Подпись	Дата

7. РАБОЧИЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ

7.1. Параметры x_{12} r_{12} схемы замещения:

$$r_{12} = \frac{P_{\text{ст.осн}}}{m_1 \cdot I_{\mu}^2} = \frac{631,3}{3 \cdot 17,8^2} = 0,66 \text{ Ом}$$
 $x_{12} = \frac{U_{1\text{ном.}\phi}}{I_{\mu}} - x_1 = \frac{220}{17,8} - 0,28 = 12,08 \text{ Ом}$

7.2. Угол ү

$$\gamma = \arctan \frac{r_1 \cdot x_{12} - r_{12} \cdot x_1}{r_{12}(r_1 + r_{12}) + x_{12}(x_1 + x_{12})} =$$

$$= \arctan \frac{0,068 \cdot 17,8 - 0,66 \cdot 0,28}{0,66(0,068 + 0,66) + 12,08(0,28 + 12,08)} = 0,24^0 < 1^0$$

Тогда при расчёте коэффициентов a`, a, b`, b будем использовать приближённый метод:

$$c_1 = 1 + \frac{x_1}{x_{12}} = 1 + \frac{0,28}{17,8} = 1,02$$

$$a = c_1 \cdot r_1 = 1,02 \cdot 0,068 = 0,0730 \text{м}$$

$$a` = c_1^2 = 1,02^2 = 1,04$$

$$b = c_1 \cdot (x_1 + c_1 \cdot x`_2) = 1,02 \cdot (0,28 + 1,02 \cdot 0,27) = 0,570 \text{м}$$

$$b` = 0$$

- 7.3. Одной из точек принятого расчётного ряда скольжений является номинальное скольжение, значение которого предварительно примем $s_{\text{ном}} \approx r_{2*} \!=\! 0{,}02$
- 7.4 Рассчитаем некоторые параметры, значения которых не зависят от скольжения s:
- активная составляющая тока синхронного холостого хода

$$I_{0.a} = \frac{P_{\text{ct.och}} + 3 \cdot r_1 \cdot I_{\mu}^2}{3 \cdot U_{1 \text{HOM}, 0}} = \frac{631.3 + 3 \cdot 0.073 \cdot 17.8^2}{3 \cdot 220} = 1.06 \text{ A}$$

• реактивная составляющая тока синхронного холостого хода

$$I_{\mu} = 17.8A \approx I_{0.p}$$

• потери мощности, не зависящие от скольжения

$$P_{ct} + P_{mex} = 631.3 + 376.6 = 1007.9 BT$$

7.5. Выражения для расчёта рабочих характеристик в порядке вычисления и результаты расчёта приведены в табл. 7.1.

_		•		_							
					КП.1-43.01.03с.42с.21.24.ПЗ.						
Изм.	Лист	№ докум	Подпись	Дата							
Разра	-	Пархомович				Лит.	Лист	Листов			
1	Козлов			РАБОЧИЕ ХАРАКТЕРИСТИ-		23	10				
	Іров										
Н. Ко	онтр.				КИ ДВИГАТЕЛЯ	ГГТУ	им.П.О.	Сухого			
Н. Контр. Утв					гр.3Э-42с						

	26	D 1	Ед.				Скольх	кение <i>s</i>			
	No	Расчетная формула	изм.	0,005	0,01	0,015	0,02	0,03	0,04	0,05	<i>s</i> ном =0,0156
	1	a`·r` ₂ s	Ом	9,15	4,58	3,05	2,29	1,53	1,14	0,92	2,94
	2	$R = a + \frac{a \cdot r_2}{s}$ $X = b + \frac{b \cdot r_2}{s}$ $Z = \sqrt{R^2 + X^2}$ $\Gamma_2 = \frac{U_{1\text{HOM.}\Phi}}{Z}$	Ом	9,23	4,65	3,12	2,36	1,60	1,22	0,99	3,01
\perp	3	$X = b + \frac{b \cdot r_2}{s}$	Ом	0,57	0,57	0,57	0,57	0,57	0,57	0,57	0,57
	4	$Z = \sqrt{R^2 + X^2}$	Ом	9,24	4,68	3,18	2,43	1,70	1,34	1,14	3,06
	5	$\Gamma_2 = \frac{U_{1\text{HOM.}\Phi}}{Z}$	A	23,80	46,97	69,29	90,58	129,65	163,71	192,85	71,79
	6	$\cos\varphi_2 = \frac{R}{Z}$	-	1,00	0,99	0,98	0,97	0,94	0,91	0,87	0,98
	7	$sin\phi_2 = \frac{\overline{R}}{Z}$	-	0,06	0,12	0,18	0,23	0,34	0,42	0,50	0,19
	8	I _{0.a}	A	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06
_	9	I _{0.p}	A	17,80	17,80	17,80	17,80	17,80	17,80	17,80	17,80
_	10	$I_{1.a} = I_{0.a} + I^{2} \cdot \cos\varphi_{2}$	A	24,82	47,68	69,22	89,11	123,17	149,31	168,11	71,59
١	11	$I_{1.a} = I_{0.a} + I^{``}_{2} \cdot \cos\varphi^{`}_{2}$ $I_{1.p} = I_{0.p} + I^{``}_{2} \cdot \sin\varphi^{`}_{2}$	A	19,27	23,52	30,24	39,06	61,35	87,24	114,15	31,15
TOT 1 42 01 02 42	12	$I_1 = \sqrt{I_{1.a}^2 + I_{1.p}^2}$	A	31,42	53,16	75,54	97,29	137,61	172,93	203,20	78,08
)	13	$\Gamma_{2} = c_{1} \cdot \Gamma_{2}$ $P_{1} = 3U_{1\text{HOM}, \varphi} \cdot I_{1,a} \cdot 10^{-3}$ $P_{31} = 3 \cdot I_{1}^{2} \cdot r_{1} \cdot 10^{-3}$ $P_{32} = 3 \cdot \Gamma_{2}^{2} \cdot r_{2}^{2} \cdot 10^{-3}$	A	24,28	47,91	70,67	92,39	132,24	166,98	196,70	73,22
_	14	$P_1 = 3U_{1\text{HOM}.\phi} \cdot I_{1.a} \cdot 10^{-3}$	кВт	16,38	31,47	45,69	58,81	81,29	98,55	110,95	47,25
'	15	$P_{31} = 3 \cdot I_1^2 \cdot r_1 \cdot 10^{-3}$	кВт	0,08	0,11	0,19	0,31	0,77	1,55	2,66	0,20
2	16	$P_{32} = 3 \cdot \Gamma_2^2 \cdot r_2 \cdot 10^{-3}$	кВт	0,13	0,37	0,75	1,25	2,50	3,95	5,45	0,80
	17	$P_{ct} + P_{mex}$	кВт	1,01	1,01	1,01	1,01	1,01	1,01	1,01	1,01
	18	$P_{\text{доб}} = 0.005 \cdot P_1$	кВт	0,08	0,16	0,23	0,29	0,41	0,49	0,55	0,24
3	19	$\Sigma P = P_{ct} + P_{mex} + P_{do6} + P_{ec} + P_{ec}$	кВт	1,30	1,65	2,18	2,86	4,68	7,00	9,67	2,25
	20	$P_2 = P_1 - \sum P$	-	15,08	29,82	43,51	55,95	76,61	91,54	101,28	45,00
	21	$\eta = 1 - \frac{\sum P}{P_1}$	-	0,92	0,95	0,95	0,95	0,94	0,93	0,91	0,95
Лист	22	$\cos \varphi = \frac{I_{1.a}}{I_{1}}$	_	0,79	0,90	0,92	0,92	0,90	0,86	0,83	0,92

- 7.5. По рабочим характеристикам уточняем номинальные параметры двигателя по известной из условия проектирования номинальной мощности $P_{2\text{ном}} = 45 \text{kBt}$:
- номинальный ток $I_{1\text{ном}} = 78,08\text{A}$;
- номинальный коэффициент мощности $\cos \varphi_{\text{ном}} = 0.92$
- номинальный КПД пном =0,95
- номинальное скольжение $s_{\text{ном}} = 0.0156$

157. Для уточнённого значения номинального скольжения $s_{\text{ном}} = 0,018$ рассчитываем параметров в табл. 7.1 и заносим результаты в последний столбец

Изм	Лист	№ докум	Подпись	Дата

Рисунок 7.1-Рабочие характеристики двигателя

8.ПУСКОВЫЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ

8.1 В начале выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока, но без учета влияния насыщения от полей рассеяния. Расчёт проведём для ряда скольжений, который будет начинаться со значения чуть ниже критического и заканчиваться 1. Значение критического скольжения также необходимо включить в расчётный ряд.

Приведем расчет для значения скольжения s = 1

8.2. Расчётная высота стержня в пазу ротора, т.к. паз закрытый:

$$h_{C2} = h_{\Pi 2} - (h_{III2} + h_{III2}) = 33.6 - (0.7 + 1) = 31.9 \text{MM}$$

8.3. Так называемая "приведённая высота" стержня ротора:

$$C = 63,61 \cdot h_{c2} \cdot \sqrt{s} = 63,61 \cdot 0,0319 \cdot \sqrt{1} = 2,03$$

8.4. По [1 рис. Π .22 и Π .23] соответственно находим значения величин ϕ и ϕ :

$$\varphi = f(C) = 0.84$$

 $\varphi' = f(C) = 0.69$

8.5. Глубина проникновения тока:

$$h_r = \frac{h_{c2}}{1 + \omega} = \frac{0.0319}{1 + 0.84} = 17.34 \text{ MM}$$

8.6. Проверяем условие:

$$\frac{b_1}{2} < h_r < h_1 + \frac{b_1}{2}$$

$$\frac{10,1}{2} = 5,55 < 17,34 < 24,5 + \frac{10,1}{2} = 30,05$$

Условие выполняется, поэтому площадь сечения верхней части стержня ротора \mathfrak{q}_r , по которому распространяется ток при пуске, определится по формуле:

$$q_r = \frac{\pi \cdot b_1^2}{8} + \frac{b_1 + b_r}{2} \cdot \left(h_r - \frac{b_1}{2}\right) = \frac{3,14 \cdot 10,1^2}{8} + \frac{10,2 + 7,34}{2} \cdot \left(17,34 - \frac{10,1}{2}\right) = \frac{147,2 \text{ mm}^2}{8}$$

Где:

$$b_r = b_1 - \frac{b_1 - b_2}{h_1} \cdot \left(h_r - \frac{b_1}{2}\right) = 10.1 - \frac{10.1 - 4.6}{24.5} \cdot \left(17.34 - \frac{10.1}{2}\right) = 7.34 \text{ mm}$$

8.7. Коэффициент k_r:

$$k_r = \frac{q_c}{q_r} = \frac{228,4}{147,2} = 1,55$$

8.8. Коэффициент общего увеличения сопротивления фазы ротора под влиянием эффекта вытеснения тока:

$$K_R = \frac{r_2 + r_c \cdot (k_r - 1)}{r_2} = \frac{57,98 \cdot 10^{-6} + 32,9 \cdot 10^{-6} \cdot (1,55 - 1)}{57,98 \cdot 10^{-6}} = 1,31$$

					КП.1-43.01.03с.42с	.21.24.	П3.				
Изм.	Лист	№ докум	Подпись	Дата							
Разра	аб	Пархомович				Лит.	Лист	Листов			
Пров	1	Козлов			ПУСКОВЫЕ ХАРАКТЕРИ-	У	27	10			
Н. Ко	онтр.				СТИКИ ДВИГАТЕЛЯ	ГГТУ им.П.О.Сухого					
Утв				_			rn 39-42	•			

Где:
$$r_c = r_c = 32,9 \cdot 10^{-6} \text{ Ом}$$

8.9. Приведенное активное сопротивление ротора с учетом влияния эффекта вытеснения тока:

$$r_{2c} = K_R \cdot r_2 = 0.044 \cdot 1.31 = 0.06 \text{ Om}$$

8.10. Коэффициент магнитной проводимости участка паза ротора, занятого проводником с обмоткой:

$$\lambda_{\Pi 2}^{`} = \frac{h_0}{3 \cdot b_1} \cdot \left(1 - \frac{\pi \cdot b_1^2}{8 \cdot q_c} \right) + 0,66 - \frac{b_{\Pi 2}}{2 \cdot b_1} =$$

$$= \frac{26,34}{3 \cdot 10,1} \cdot \left(1 - \frac{3,14 \cdot 10,1^2}{8 \cdot 228,4} \right) + 0,66 - \frac{1,5}{2 \cdot 10,1} = 1,45$$

8.11. Коэффициент магнитной проводимости пазового рассеяния с учетом эффекта вытеснения тока:

$$\lambda_{\pi 2c} = \lambda_{\pi 2} - \Delta \lambda_{\pi 2c} = 3,17 - 0,45 = 2,72$$
 Где: $\Delta \lambda_{\pi 2c} = \lambda \hat{}_{\pi 2} \cdot (1 - k_{\text{д}}) = 1,45 \cdot (1 - 0,69) = 0,45$
$$k_{\text{д}} = \phi \hat{} = 0,69$$

8.12. Коэффициент, показывающий изменение индуктивного сопротивления фазы обмотки ротора от действия эффекта вытеснения тока:

$$K_X = \frac{\lambda_{\pi 2c} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}} = \frac{2,72 + 1,45 + 1,45}{3,17 + 1,45 + 1,45} = 0,93$$

8.13. Приведенное индуктивное сопротивление ротора с учетом влияния эффекта вытеснения тока:

$$x'_{2c} = K_X \cdot x'_2 = 0.27 \cdot 0.93 = 0.25 \text{ Om}$$

8.14. В пусковом режиме активным сопротивлением r_{12} схемы замещения АД на [1 рис. П.20] пренебрегают, то есть ${\bf r}_{12\pi}=0$. Индуктивное сопротивление взаимоиндукции в схеме замещения АД [1 рис. П.20] в пусковом режиме:

$$x_{12\pi} = k_{\mu} \cdot x_{12} = 1,38 \cdot 12,08 = 16,67 \text{ Om}$$

8.15. Коэффициент c_1 в пусковом режиме АД :

$$c_{1\pi} = 1 + \frac{x_1}{x_{12\pi}} = 1 + \frac{0.28}{16.67} = 1.02$$

8.16. Активное R_{π} и реактивное X_{π} сопротивления правой ветви Γ -образной схемы замещения АД в пусковом режиме с учётом вытеснения тока:

$$R_{\Pi} = r_1 + \frac{c_{1\pi} \cdot r_{2c}}{s} = 0,68 + \frac{1,02 \cdot 0,06}{1} = 0,13 \text{ Ом}$$
 $X_{\Pi} = x_1 + c_{1\pi} \cdot x_{2c}^* = 0,28 + 1,02 \cdot 0,25 = 0,530$ м

8.17. Ток в обмотке ротора с учётом вытеснения тока в пусковом режиме:

$$\Gamma_{2.\Pi} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\Pi}^2 + X_{\Pi}^2}} = \frac{220}{\sqrt{0.13^2 + 0.53^2}} = 400.75 \text{ A}$$

8.18. Пусковой ток статора с учётом вытеснения тока:

Подпись Дата

№ докум

$$I_{1.\Pi} = \Gamma_{2.\Pi} \cdot \frac{\sqrt{R_{\Pi}^2 + (X_{\Pi} + X_{12\Pi})^2}}{c_{1\Pi} \cdot X_{12\Pi}} = 400,75 \cdot \frac{\sqrt{0,13^2 + (0,53 + 16,67)^2}}{1,02 \cdot 16,67} = 406,67 \text{ A}$$

28

-1.11	- 2.11	$c_{1\pi} \cdot x_{12\pi}$,
				Лист
			КП.1-43.01.03с.42с.21.24.ПЗ.	28

8.18. Кратность пускового тока АД с учётом вытеснения тока: $I_{1.\pi}^* = \frac{I_{1.\pi}}{I_{1.\text{Hom}}} = \frac{406,67}{89,06} = 4,5$

$$I_{1.\Pi}^* = \frac{I_{1.\Pi}}{I_{1.HOM}} = \frac{406,67}{89,06} = 4,5$$

8.19. Кратность пускового момента АД с учётом вытеснения тока:

$$M^* = \left(\frac{I_{1.\Pi}}{\Gamma_{2.HOM}}\right)^2 K_R \frac{S_{HOM}}{S} = \left(\frac{406,67}{78,08}\right)^2 \cdot 1,31 \cdot \frac{0,0156}{1} = 0,56$$

где $\Gamma_{2.\text{HOM}} = 65,28 \text{ A}$ - значение приведённого тока ротора при номинальном скольжении $s_{\text{ном}} = 0.0182$

8.20. Предварительно значение критического скольжения:

$$s_{KP} = \frac{r_2}{\frac{X_1}{c_{1\Pi}} + X_2} = \frac{0,044}{\frac{0,28}{1,02} + 0,93} = 0,062$$

Изм Ли-	№ докум	Подпись Д

Таблица 8.1- Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока

№	Decreasing the market	Ед.				Ско	ольжение	S			
1/1⊡	Расчетная формула		0,05	0,062	0,1	0,2	0,3	0,5	0,7	0,9	1
1	$C = 63,61 \cdot h_{c2} \cdot \sqrt{s}$	-	0,45	0,51	0,64	0,91	1,11	1,43	1,70	1,93	2,03
2	$\varphi = f(\mathcal{C})$	-	0,04	0,05	0,06	0,09	0,12	0,27	0,53	0,76	0,84
3	$\varphi = f(C)$ $\phi = \frac{h_{c2}}{1 + \varphi}$ $k_r = \frac{q_c}{q_r}$ $K_R = \frac{r_2 + r \cdot c \cdot (k_r - 1)}{r_2}$	MM	30,67	30,38	30,09	29,27	28,48	25,12	20,85	18,13	17,34
4	$k_r = \frac{q_c}{q_r}$	-	1,01	1,02	1,03	1,04	1,06	1,16	1,33	1,49	1,55
5	$K_R = \frac{r_2 + r_c \cdot (k_r - 1)}{r_2}$	-	1,01	1,01	1,01	1,02	1,04	1,09	1,19	1,28	1,31
6	$r_{2c} = K_r \cdot r_2$ $k_{A} = \varphi = f(C)$	Ом	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,06	0,06
7	$k_{\mathrm{A}} = \varphi` = f(C)$	-	0,99	0,98	0,98	0,96	0,94	0,91	0,83	0,77	0,69
8	$\lambda_{\text{m2c}} = \lambda_{\text{m2}} - \Delta \lambda_{\text{m2c}}$	-	3,16	3,14	3,14	3,11	3,08	3,04	2,92	2,84	2,72
9	$\lambda_{\Pi 2c} = \lambda_{\Pi 2} - \Delta \lambda_{\Pi 2c}$ $K_{X} = \frac{\lambda_{\Pi 2c} + \lambda_{\Lambda 2} + \lambda_{\Lambda 2}}{\lambda_{\Pi 2} + \lambda_{\Lambda 2} + \lambda_{\Lambda 2}}$	-	1,00	1,00	1,00	0,99	0,99	0,98	0,96	0,94	0,93
10	$x_{2c} = K_X \cdot x_2$	Ом	0,27	0,27	0,27	0,27	0,27	0,26	0,26	0,26	0,25
11	$x_{2c} = K_{X} \cdot x_{2}$ $R_{\Pi} = r_{1} + \frac{c_{1\pi} \cdot r_{2c}}{s}$	Ом	0,97	0,80	0,52	0,30	0,22	0,17	0,14	0,13	0,13
12	$X_{\Pi} = x_1 + c_{1\Pi} \cdot x_{2c}$	Ом	0,55	0,55	0,55	0,55	0,55	0,55	0,54	0,54	0,53
13	$X_{\Pi} = x_{1} + c_{1\Pi} \cdot x_{2c}$ $\Gamma_{2.\Pi} = \frac{U_{1\text{HOM.}\Phi}}{\sqrt{R_{\Pi}^{2} + X_{\Pi}^{2}}}$	A	196,94	226,59	289,23	350,95	370,50	383,94	391,40	396,23	400,75
14	$I_{1.\Pi} = \Gamma_{2.\Pi} \frac{\sqrt{R_{\Pi}^2 + (X_{\Pi} + x_{12\Pi})^2}}{c_{1\Pi} \cdot x_{12\Pi}}$ $I_{1.\Pi}^* = \frac{I_{1.\Pi}}{I_{1.HOM}}$ $M^* = (\frac{I_{1.\Pi}}{\Gamma_{2.HOM}})^2 K_R \frac{S_{HOM}}{S}$	A	200,44	230,49	294,03	356,63	376,44	390,04	397,50	402,31	406,77
15	$I_{1.\pi}^* = \frac{I_{1.\pi}}{I_{1.\text{HOM}}}$		2,21	2,54	3,25	3,94	4,16	4,31	4,39	4,45	4,50
16	$M^* = \left(\frac{I_{1.\Pi}}{\Gamma_{2.\text{HOM}}}\right)^2 K_R \frac{S_{\text{HOM}}}{S}$		2,07	2,22	2,15	1,67	1,25	0,85	0,69	0,59	0,56

Рисунок 8.1-Пусковые характеристики двигателя с учётом эффекта вытеснения тока

По построенным пусковым характеристикам уточняем, что $s_{\rm kp}=0.07$. Найдём максимальный момент АД, соответствующий критическому скольжению, с учётом вытеснения тока:

$$M^* = \left(\frac{I_{2.\Pi(S_{\text{KP}})}}{\Gamma_{2.\text{HOM}}}\right)^2 \cdot K_R \cdot \frac{S_{\text{HOM}}}{S_{\text{KP}}} = \left(\frac{400,75}{78,08}\right)^2 \cdot 1,01 \cdot \frac{0,0156}{0,07} = 2,22$$

8.21.Определим необходимость учёта влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД. Для этого найдём значение полного тока паза статора в начальный момент времени пуска двигателя:

ка паза статора в начальный момент времени пуска двигателя:
$$I_{1.\text{паза}} = \frac{I_{1.\text{п}} \cdot u_\Pi}{a} = \frac{406,77 \cdot 18}{2} = 3660,9$$

Полученное значение $I_{1.паза} > 400$ A, поэтому учёт влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД необходим.

					КП.1-43.01.03
Изм	Лист	№ докум	Подпись	Дата	

ζП.1-43.	.01.03c	42c.21	.24.ПЗ.

- 8.22. Выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока и влияния насыщения от полей рассеяния.
- 8.23. Первоначально зададимся значением коэффициента увеличения тока от насыщения зубцовой зоны полями рассеяния: k_{hac} =1,28.
- 8.24.Средняя МДС обмотки, отнесенная к одному пазу обмотки статора:

$$F_{\text{п.cp}} = 0.7 \cdot \frac{k_{\text{нас}} \cdot I_{1.\pi} \cdot u_{\Pi}}{a} \cdot \left(k_{\beta}^{\cdot} + k_{y} \cdot k_{06\text{M1}} \cdot \frac{Z_{1}}{Z_{2}}\right)$$

$$= 0.7 \cdot \frac{1,27 \cdot 406,77 \cdot 18}{2} \cdot \left(0,67 + 0,61 \cdot 0,78 \cdot \frac{36}{28}\right) = 4204,36\text{A}$$

8.25. Фиктивная индукция потока рассеяния в воздушном зазоре:

$$B_{\phi\delta} = \frac{F_{\text{п.ср}}}{1.6 \cdot \delta \cdot C_N} \cdot 10^{-3} = \frac{4204,34}{1.6 \cdot 1 \cdot 1.06} \cdot 10^{-3} = 2,49 \text{ Тл}$$

где коэффициент

$$C_N = 0.64 + 2.5 \sqrt{\frac{\delta}{t_{z1} + t_{z2}}} = 0.64 + 2.5 \sqrt{\frac{1}{15.8 + 20.14}} = 1.06$$

8.26. Коэффициент k_{δ} , характеризующий отношение потока рассеяния при насыщении к потоку рассеяния ненасыщенной машины [1 рис. П.26]:

$$k_{\delta} = f(B_{\phi.\delta}) = 0.77$$

8.27. Дополнительное эквивалентное раскрытие пазов статора:

$$c_{91} = (t_{z1} - b_{111}) \cdot (1 - k_{\delta}) = (15.8 - 4) \cdot (1 - 0.77) = 2.71$$

8.28. Паз статора полузакрытый, поэтому вызванное насыщением от полей рассеяния уменьшение коэффициента магнитной проводимости рассеяния паза статора:

$$\Delta \lambda_{\text{\tiny II.Hac}} = \frac{h_{\text{\tiny III}1} + 0.58 \cdot h_{\text{\tiny K}}}{b_{\text{\tiny III}1}} \cdot \frac{c_{\text{\tiny 31}}}{c_{\text{\tiny 31}} + 1.5 \cdot b_{\text{\tiny III}1}} = \frac{1 + 0.58 \cdot 2.7}{4} \cdot \frac{2.71}{2.71 + 1.5 \cdot 4} = 0.2$$

8.29. Коэффициент магнитной проводимости пазового рассеяния статора при насыщении:

$$\lambda_{\text{m1.Hac}} = \lambda_{\text{m1}} - \Delta \lambda_{\text{m1.Hac}} = 1.17 - 0.2 = 0.97$$

8.30. Коэффициент проводимости дифференциального рассеяния при насыщении участков зубцов статора:

$$\lambda_{\text{д1.нас}} = \lambda_{\text{д1}} \cdot k_{\delta} = 1,47 \cdot 0,77 = 1,13$$

8.31. Индуктивное сопротивление обмотки статора с учетом насыщения от полей рассеяния:

$$\mathbf{x}_{1.\text{Hac}} = \mathbf{x}_1 \cdot \frac{\lambda_{\Pi 1.\text{Hac}} + \lambda_{Д 1.\text{Hac}} + \lambda_{\Pi 1}}{\lambda_{\Pi 1} + \lambda_{\Pi 1} + \lambda_{Д 1}} = 0,28 \cdot \frac{1,13 + 0,97 + 2,02}{1,47 + 1,17 + 2,02} = 0,25 \text{ Ом}$$

8.32. Дополнительное эквивалентное раскрытие пазов ротора:

$$c_{32} = (t_{z2} - b_{1112}) \cdot (1 - k_{\delta}) = (20,14 - 1,5) \cdot (1 - 0,77) = 4,29$$

8.33. Паз ротора полуоткрытый, поэтому вызванное насыщением от полей рассеяния уменьшение коэффициента магнитной проводимости рассеяния паза ротора:

$$\Delta \lambda_{\text{\tiny II2.Hac}} = \frac{h_{\text{\tiny III2}} + h_{\text{\tiny III2}}}{b_{\text{\tiny III2}}} \cdot \frac{c_{\text{\tiny 92}}}{c_{\text{\tiny 92}} + b_{\text{\tiny III2}}} = \frac{0.7 + 1}{1.5} \cdot \frac{4.29}{4.29 + 1.5} = 0.84$$

Изм	Лист	№ докум	Подпись	Дата

8.34. Коэффициент магнитной проводимости пазового рассеяния ротора при насыщении:

$$\lambda_{\text{n2.c.hac}} = \lambda_{\text{n2c}} - \Delta \lambda_{\text{n2.hac}} = 2,72 - 0,84 = 1,88$$

8.35. Коэффициент проводимости дифференциального рассеяния при насыщении участков зубцов ротора:

$$\lambda_{\text{\tiny M2.Hac}} = \lambda_{\text{\tiny M2}} \cdot k_{\delta} = 1,45 \cdot 0,77 = 1,12$$

8.36. Индуктивное сопротивление обмотки ротора с учетом насыщения от полей

$$\mathbf{x^{\hat{}}_{2\text{c.Hac}}} = \mathbf{x^{\hat{}}_{2}} \cdot \frac{\lambda_{\text{п2.c.Hac}} + \lambda_{\text{д2.Hac}} + \lambda_{\text{л2}}}{\lambda_{\text{п2}} + \lambda_{\text{л2}} + \lambda_{\text{д2}}} = 0,27 \cdot \frac{1,12 + 1,88 + 1,45}{3,17 + 1,45 + 1,45} = 0,2 \text{ Om}$$

8.36. Коэффициент c_1 в пусковом режиме АД с учётом насыщения:

$$c_{1\pi,\text{Hac}} = 1 + \frac{x_{1,\text{Hac}}}{x_{12\pi}} = 1 + \frac{0.25}{16.67} = 1.01$$

8.37. Активное $R_{\text{п.нас}}$ и реактивное $X_{\text{п.нас}}$ сопротивления правой ветви Γ -образной схемы замещения АД в пусковом режиме с учётом вытеснения тока и насыщения:

$$R_{ ext{п.нас}} = ext{r}_1 + rac{c_{1 ext{п.нас}} \cdot ext{r'}_{2 ext{c}}}{ ext{s}} = 0,068 + rac{1,01 \cdot 0,06}{1} = 0,13 \ ext{Ом} \ X_{ ext{п.нас}} = ext{x}_{1. ext{наc}} + c_{1 ext{п.наc}} \cdot ext{x'}_{2 ext{c.hac}} = 0,25 + 1,01 \cdot 0,2 = 0,450 ext{м}$$

8.38. Ток в обмотке ротора в пусковом режиме с учётом вытеснения тока и насышения:

$$\Gamma_{2.\Pi,\text{Hac}} = \frac{U_{1\text{HoM},\phi}}{\sqrt{R_{\Pi,\text{Hac}}^2 + X_{\Pi,\text{Hac}}^2}} = \frac{220}{\sqrt{0,13^2 + 0,45^2}} = 471,52 \text{ A}$$

8.39. Пусковой ток статора с учётом вытеснения тока и насыщения:

$$I_{1\pi,\text{Hac}} = \Gamma_{2,\pi,\text{Hac}} \cdot \frac{\sqrt{R_{\pi,\text{Hac}}^2 + (X_{\pi,\text{Hac}} + x_{12\pi})^2}}{c_{1\pi,\text{Hac}} \cdot x_{12\pi}} = 471,52 \cdot \frac{\sqrt{0,18^2 + (0,6 + 20,5)^2}}{20,5 \cdot 1,01} = 477,13A$$

пускового тока АД с учётом 8.40. Кратность вытеснения насыщения:

$$I_{1.\pi}^* = \frac{I_{1\pi.\text{Hac}}}{I_{1.\text{Hom}}} = \frac{477,13}{89,06} = 5,36$$

8.41. Кратность пускового момента АД с учётом вытеснения тока и насыщения:

$$M^* = (\frac{\Gamma_{2.\Pi,\text{Hac}}}{\Gamma_{2,\text{HOM}}})^2 \cdot K_R \cdot \frac{S_{\text{HOM}}}{S} = (\frac{471,52}{78,08})^2 \cdot 1,31 \cdot \frac{0,0156}{1} = 0,75$$

8.42. Полученный в результате расчёта коэффициент насыщения: $k`_{\text{нас}} = \frac{I_{1\pi.\text{нас}}}{I_{-}} = \frac{477,13}{406.77} = 1,17$

$$k_{\text{Hac}}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1,\pi}} = \frac{477,13}{406,77} = 1,17$$

Данное значение отличается от принятого изначально $k_{\text{нас}}=1,28$ на 9 %, что допустимо и означает, что уточняющий пересчёт пусковых параметров АД не требуется.

	TT	3.0	т.	ш
Изм	Лист	№ докум	Подпись	Дата

Ų.		Дата	Подпись	№ докум	
3/	K11.1-43.01.03c.42c.21.24.113				
011101					
Пист					

Таблица 8.2- Расчётные выражения и результаты расчёта пусковых характеристик асинхронного
двигателя с учётом эффекта вытеснения тока и насыщения

		Ед.					Скольжение	S			
№	Расчетная формула	изм.	0,05	0,062	0,1	0,2	0,3	0,5	0,7	0,9	1
1	$k_{\scriptscriptstyle \mathrm{HaC}}$	-	1,00	1,00	1,10	1,15	1,20	1,20	1,22	1,25	1,28
2	$F_{\text{n.cp}} = 0.7 \cdot \frac{k_{\text{Hac}} \cdot I_{1.\text{II}} \cdot u_{\text{II}}}{a} \cdot (k_{\beta} + k_{\text{y}} \cdot k_{\text{o6M1}} \cdot \frac{Z_1}{Z_2})$	-	1618,55	1861,20	2611,72	3311,75	3647,69	3779,48	3915,96	4060,81	4204,36
3	$B_{\phi\delta} = \frac{F_{\text{n.cp}}}{1.6 \cdot \delta \cdot C_N} \cdot 10^{-3}$	MM	0,96	1,10	1,54	1,96	2,16	2,23	2,32	2,40	2,49
4	$k_{\delta} = f(B_{\Phi,\delta})$	-	0,96	0,96	0,91	0,86	0,82	0,80	0,79	0,79	0,77
5	$c_{91} = (t_{Z1} - b_{111}) \cdot (1 - k_{\delta})$	-	0,47	0,47	1,06	1,65	2,12	2,36	2,48	2,48	2,71
6	$k_{\delta} = f(B_{\Phi,\delta})$ $c_{31} = (t_{z1} - b_{u1}) \cdot (1 - k_{\delta})$ $\Delta \lambda_{\Pi 1.Hac} = \frac{h_{u1} + 0.58 \cdot h_{\kappa}}{b_{u1}} \cdot \frac{c_{31}}{c_{31} + 1.5 \cdot b_{u1}}$ $\lambda_{\Pi 1.Hac} = \lambda_{\Pi 1} - \Delta \lambda_{\Pi 1.Hac}$	Ом	0,05	0,05	0,10	0,14	0,17	0,18	0,19	0,19	0,20
7	$\lambda_{\text{п1.нас}} = \lambda_{\text{п1}} - \Delta \lambda_{\text{п1.нас}}$	-	1,12	1,12	1,07	1,03	1,00	0,99	0,98	0,98	0,97
8	$\lambda_{ extstyle{A1.Hac}} = \lambda_{ extstyle{A1}} \cdot k_{\delta}$	-	1,41	1,41	1,34	1,26	1,21	1,18	1,16	1,16	1,13
9	$\lambda_{\Pi 1.\text{Hac}} = \lambda_{\Pi 1} \Delta \lambda_{\Pi 1.\text{Hac}}$ $\lambda_{\Pi 1.\text{Hac}} = \lambda_{\Pi 1} \cdot k_{\delta}$ $x_{1.\text{Hac}} = x_{1} \cdot \frac{\lambda_{\Pi 1.\text{Hac}} + \lambda_{\Pi 1.\text{Hac}} + \lambda_{\Pi 1}}{\lambda_{\Pi 1} + \lambda_{\Pi 1} + \lambda_{\Pi 1}}$ $c_{32} = (t_{22} - b_{\text{III}2}) \cdot (1 - k_{\delta})$ $\Delta \lambda_{\Pi 2.\text{Hac}} = \frac{h_{\text{III}2}}{b_{\text{III}2}} \cdot \frac{c_{32}}{c_{32} + 1.5 \cdot b_{\text{III}2}}$	-	0,27	0,27	0,27	0,26	0,25	0,25	0,25	0,25	0,25
10	$c_{32} = (t_{22} - b_{1112}) \cdot (1 - k_{\delta})$	Ом	0,75	0,75	1,68	2,61	3,36	3,73	3,91	3,91	4,29
11	$\Delta\lambda_{\scriptscriptstyle \Pi2.\text{HaC}} = \frac{h_{\scriptscriptstyle \rm III2}}{b_{\scriptscriptstyle \rm III2}} \cdot \frac{c_{\scriptscriptstyle 32}}{c_{\scriptscriptstyle 32} + 1.5 \cdot b_{\scriptscriptstyle \rm III2}}$	Ом	0,38	0,38	0,60	0,72	0,78	0,81	0,82	0,82	0,84
12	$\lambda_{\Pi 2.c. Hac} = \lambda_{\Pi 2c} - \Delta \lambda_{\Pi 2. Hac}$	Ом	2,76	2,76	2,54	2,39	2,30	2,23	2,10	2,02	1,88
13	$\lambda_{ exttt{ iny A2.Hac}} = \lambda_{ exttt{ iny A2}} \cdot k_{\delta}$	Α	1,39	1,39	1,32	1,25	1,19	1,16	1,15	1,15	1,12
14	$\lambda_{\Pi 2.C.Hac} = \lambda_{\Pi 2c} - \Delta \lambda_{\Pi 2.Hac}$ $\lambda_{\Pi 2.Hac} = \lambda_{\Pi 2c} + \lambda_{\Pi 2.Hac}$ $\lambda_{\Pi 2.Hac} = \lambda_{\Pi 2c.Hac} + \lambda_{\Pi 2.Hac} + \lambda_{\Pi 2.Hac}$ $\lambda_{\Pi 2.Hac} = \lambda_{\Pi 2.Hac} + \lambda_{\Pi 2.Hac} + \lambda_{\Pi 2}$ $\lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{\Pi 2}$ $\lambda_{\Pi 3.Hac} = 1 + \frac{\lambda_{1.Hac}}{\lambda_{12}}$	A	0,25	0,25	0,24	0,23	0,22	0,22	0,21	0,21	0,20
15	$c_{1_{\Pi, \text{Hac}}} = 1 + \frac{\mathbf{x}_{1, \text{Hac}}}{\mathbf{x}_{12_{\Pi}}}$		1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,01
16	$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}} \cdot r_{2c}}{s}$		0,88	0,72	0,47	0,32	0,24	0,19	0,16	0,14	0,13
17	$X_{\text{п.нас}} = X_{\text{1.нас}} + c_{\text{1п.нас}} \cdot X_{\text{2c}}$		0,53	0,53	0,51	0,49	0,48	0,47	0,46	0,46	0,45
18	$R_{\text{п.наc}} = r_1 + \frac{c_{1\text{п.наc}} \cdot r_{2\text{c}}}{s}$ $X_{\text{п.наc}} = x_{1,\text{наc}} + c_{1\text{п.наc}} \cdot x_{2\text{c}}$ $\Gamma_{2,\text{п.наc}} = \frac{U_{1\text{ном.}\varphi}}{\sqrt{R_{\text{п.наc}}^2 + X_{\text{п.наc}}^2}}$		214,27	245,71	317,09	375,72	413,03	433,97	451,28	460,02	471,52
19	$I_{1\pi,\text{Hac}} = \Gamma_{2,\pi,\text{Hac}} \cdot \frac{\sqrt{R_{\pi,\text{Hac}}^2 + (X_{\pi,\text{Hac}} + x_{12\pi})^2}}{c_{1\pi,\text{Hac}} \cdot x_{12\pi}}}{k_{\text{Hac}}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1,\pi}}}{I_{1,\pi}^*}$ $I_{1,\pi}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1,\text{HoM}}}$ $M^* = (\frac{\Gamma_{2,\pi,\text{Hac}}}{\Gamma_{2,\text{HoM}}})^2 K_R \frac{S_{\text{HoM}}}{S}$		217,76	249,61	321,71	380,89	418,51	439,60	456,95	465,70	477,13
20	$k_{\text{Hac}} = \frac{I_{\text{1n.Hac}}}{I_{\text{1.n}}}$		1,09	1,08	1,09	1,07	1,11	1,13	1,15	1,16	1,17
21	$I_{1.\pi}^* = \frac{I_{1\pi, \text{Hac}}}{I_{1, \text{Hom}}}$		2,45	2,80	3,61	4,28	4,70	4,94	5,13	5,23	5,36
22	$M^* = \left(\frac{\Gamma_{2.\Pi,\text{Hac}}}{\Gamma_{2.\text{HoM}}}\right)^2 K_R \frac{S_{\text{HoM}}}{S}$		2,37	2,52	2,32	1,88	1,51	1,05	0,89	0,77	0,75

8.43.По построенным пусковым характеристикам определяем критическое скольжение и максимальный момент, соответствующий критическому скольжению:

$$s_{kp} = 0.06$$

 $M_{max}^* = 2.52$

Рисунок 8.2-Пусковые характеристики двигателя с учётом эффекта вытеснения тока и насыщения

Изм	Лист	№ докум	Подпись	Дата

ЗАКЛЮЧЕНИЕ

При проектировании данного электродвигателя были рассчитаны размеры статора и ротора, выбраны типы обмоток, обмоточные провода, изоляция, материалы активных и конструктивных частей машины. Отдельные части машины были сконструированы так, чтобы при изготовлении машины трудоёмкость и расход материалов были наименьшими, а при эксплуатации машина обладала наилучшими энергетическими показателями. При этом данная электрическая машина соответствует условиям применения её в электроприводе.

При выполнении проекта учитывалось соответствие технико—экономических показателей машины современному мировому уровню. Проектирование производилось с учётом требований государственных и отраслевых стандартов. При проектировании пришлось учесть назначение и условия эксплуатации, стоимость активных и конструктивных материалов, КПД, технологию производства, надёжность в работе и патентную чистоту.

					КП.1-43.01.03с.42с.21.24.ПЗ.			
Изм.	Лист	№ докум	Подпись	Дата				
Разра	аб	Пархомович			Лит.		Лист	Листов
Пров Н. Контр.		Козлов				У	36	1
					ЗАКЛЮЧЕНИЕ			
						ГГТУ им.П.О.Сухого		
y_{TB}						гр.3Э-42с		

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Проектирование трехфазного асинхронного электродвигателя : учеб.-метод. пособие по курсовому проектированию по дисциплинам «Электрические машины» и «Электромеханика» для студентов специальностей 1-43 01 02 «Электроэнергетические системы и сети» и 1-43 01 03 «Электроснабжение (по отраслям)» днев. и заоч. форм обучения /сост.: К. М. Медведев, А. В. Козлов. Гомель : ГГТУ им. П. О. Сухого, 2019. 157 с. –
- 2. Проектирование электрических машин : учебник для вузов / И.П. Копылов [и др.] ; под ред. И.П. Копылова. 4-е изд., перераб. и доп. М. : Издательство Юрайт, 2011. 767 с.
- 3. Асинхронные двигатели серии 4A : Справочник / А.Э. Кравчик [и др.]. М. : Энергоиздат, 1982. 504 с. : ил.
- 4. Обмотки электрических машин : метод. указания к практ. занятиям и курсовому проекту по дисциплине «Электрические машины» для студентов специальностей 1-53 01 05 «Автоматизированные электроприводы» и 1-43 01 03 «Электроснабжение» днев. и заоч. форм обучения / авт.-сост.: В. С. Захаренко, В. В. Тодарев. Гомель : ГГТУ им. П. О. Сухого, 2007. 49 с.

					КП.1-43.01.03с.42с.21.24.ПЗ.				
Изм.	Лист	№ докум	Подпись	Дата					
Разра	аб	Пархомович				Лит.	Лист	Листов	
Пров	Козлов			СПИСОК ИСПОЛЬЗУЕМОЙ	У	37	1		
Н. Контр.					ЛИТЕРАТУРЫ ГГТУ им.П.О		им.П.О.).Сухого	
Утв						гр.3Э-42с			