Output-Linear Enumeration of Variable-Inclusion MAX for Extended Variable Automata

- ³ Valentina Silva ⊠
- 4 Pontificia Universidad Católica de Chile
- 5 Cristian Riveros ☑
- 6 Pontificia Universidad Católica de Chile

7 — Abstract

Algebraic frameworks for information extraction model a document as a finite string and pattern matches as mappings that bind variables to spans. While recent automata-based techniques can enumerate all mappings with delay linear in the size of each output, practical applications do not always require the full result: many mappings are redundant because they are strictly extended by others that capture additional variables without altering previously assigned spans. The variable-inclusion skyline (or MAX) operator removes this redundancy, retaining only maximal mappings.

We provide a evaluation scheme that integrates MAX during enumeration while preserving outputlinear delay. Starting from a deterministic extended variable automaton (eVA) E, we construct a product automaton $E_{\rm max}$ whose state pairs keep, in lock-step, a candidate run and a bounded set of dominating witnesses. A mapping is output exactly when no witness can still reach acceptance. These results establish that skyline selection can be incorporated into automata-based text extraction without sacrificing enumeration performance.

- 20 2012 ACM Subject Classification *
- Keywords and phrases Complex event recognition, constant-delay enumeration, skyline selection strategy, maximal mappings.
- 23 1 Introduction

**

2 Preliminaries

- Documents, alphabet, and spans. We fix a finite alphabet Σ . A document is a finite
- string $d = a_1 \dots a_n \in \Sigma^*$. A span is a half-open interval [i, j) with $1 \le i \le j \le |d| + 1$, it denotes
- the substring $d[i,j) = a_i \dots a_{j-1}$. The sets of all spans of d is written Spans(d) [2].

Variables, markers and mappings. Let V be a finite set of variables. For each $x \in V$ we use two variable markers $[x \text{ open and } x\rangle \text{ close}$; $Markers_V = \{[x,x\rangle|x\in V\}$ [3]. A mapping or valuation is a partial function.

$$\mu: dom(\mu) \subseteq V \to Spans(d).$$

- Two mappings are **compatible** when they agree on their common variables. Mappings constitute thr basic tuples produced by our operators.
- Document spanners. A document spanner P associates to every string d a finite set of
- mappings over some variable set V = SVars(P) [2]. Intuitively, a spanner "extracts" all
- matches of a pattern as span relations.

Extended Variable Automata (eVA). REmatch compiles each REQL query to an extended variable-set automaton

$$E = (Q, q_0, F, \delta),$$

whose transitions are quadruples (q, a, S, q') with $a \in \Sigma \cup \{\#\}$ and a (possibly empty) set of markers S. While reading the i-th symbol, the automaton outputs the pair (S, i); if $S = \emptyset$ nothing is produced. A run sequence

$$q_0 \xrightarrow{b_0/S_0} q_1 \xrightarrow{b_1/S_1} \dots \xrightarrow{b_n/S_n} q_{n+1}$$

that alternates variable transitions and letter transitions and respects marker nesting. The mapping defined by a valid accepting run is obtained by pairing every [x] with the corresponding x. Determinisation via a subset construction yields a deterministic eVA guaranteeing at most one accepting run per output sequence, a key invariant for output-linear enumeration [2].

Determinisation of extended VA. an eVA $E = (Q, q_0, F, \delta)$ is deterministic when

$$\delta: Q \times (\Sigma \cup (2^{Markers_V} \{\emptyset\})) \to Q$$

is a partial function: for every state q and pail (a, S) there is at most one outgoing transition (q, a, S, q'). Determinism guarantees that, for any document d and any output sequence, at most one accepting run produces it – a key property to avoid duplicates during enumeration. Every eVA con be turned into an equivalent deterministic eVA via the classical powerset method.

Variable-inclusion order. let V be a finite set of variables, for two mappings μ, ν over the same document we write

$$\mu \preccurlyeq_{varinc} \nu$$

If for all $x \in V$, if $\mu(x)$ is defined, then $\nu(x)$ is defined and $\mu(x) = \nu(x)$.

MAX operator. given a spanner P we define

$$[MAX(P)]_d = \{ \mu \in P(d) | \text{there is no } \nu \in P(d) \text{ with } \mu \leq_{varinc} \nu \}$$

That is, we keep only those mappings that are maximal under \leq_{varinc} [1].

3 Main results

49

Deterministic eVA. Let $E = (Q, q_0, F, \delta)$ be an eVA. Its pair-based subset construction vields the deterministic eVA

with
$$Q_{\det} = 2^{Q},$$

$$X_{0} = \{q_{0}\},$$

$$F_{\det} = \{X \subseteq Q \mid X \cap F \neq \emptyset\},$$

$$\Delta(X, a, S) = \{q' \mid \exists q \in X : (q, a, S, q') \in \delta\}.$$

 $E_{\text{det}} = (Q_{\text{det}}, X_0, F_{\text{det}}, \Delta),$

Selection strategy MAX. Given a deterministic extended variable automaton (eVA) $E_{\text{det}} = (2^Q, X_0, F_{\text{det}}, \Delta)$, we define a new eVA

$$E_{\text{max}} = (Q_{\text{max}}, (R_0, W_0), F_{\text{max}}, \Delta_{\text{max}})$$

that accepts exactly the mappings that are maximal under variable inclusion, where $Q_{max} = 2^Q \times 2^Q$ and

$$Q_{\max} = \{ (R, W) \mid R, W \subseteq Q_{\text{det}} \text{ and } R \cap W = \emptyset \}.$$

- Initial state. $(R_0, W_0) = (X_0, \emptyset)$.
- Transition function. R represents a set of "current" states of E_{det} and W represents the
- set of states of E_{det} having a run that dominates the current run under variable inclusion.
- For $(R, W) \in Q_{\text{max}}$, letter $a \in \Sigma \cup \{\#\}$, and marker set S:

$$\Delta_{\max}((R, W), a, S) = (R', W')$$

where

$$R' = \Delta(R, a, S) \backslash W' \quad \text{and} \quad W' = \begin{cases} \Delta(W, a, S) & \bigcup_{S \neq \emptyset} \Delta(R, a, S') & \text{if } S' = \emptyset, \\ \Delta(W, a, S) & \bigcup_{S \subset S'} \Delta(R, a, S') & \text{if } S \neq \emptyset. \end{cases}$$

Final states.

$$F_{\text{max}} = \{ (R, W) \in Q_{\text{max}} \mid R \cap F_{\text{det}} \neq \emptyset \text{ and } W \cap F_{\text{det}} = \emptyset \}.$$

- Proposition 1. Let $E_{\text{det}} = (2^Q, X_0, F_{\text{det}}, \Delta)$ be the deterministic eVA obtained from an eVA
- E, and let $E_{\max} = (Q_{\max}, (R_0, W_0), F_{\max}, \Delta_{\max})$ be its MAX-product automaton as defined
- above. Then for every document d,

$$[\![E_{\max}]\!]_d = \left\{ \mu \in [\![E_{\det}]\!]_d \mid \not \ni \nu \in [\![E_{\det}]\!]_d : \mu \prec_{\text{varInc}} \nu \right\} = MAX([\![E_{\det}]\!]_d).$$

That is, $E_{\rm max}$ accepts exactly the maximal mappings under variable-inclusion.

7 4 Conclusions

- Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
- 69 labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
- 10 laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
- voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
- 72 non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

4 Output-Linear Enumeration of Variable-Inclusion MAX for Extended Variable Automata

73 — References -

- Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and Stijn Vansummeren.
 CORE: a complex event recognition engine. VLDB, 15(9):1951–1964, 2022.
- Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Wang-Chiew Tan. Document spanners:
 A formal approach to information extraction. *Journal of the ACM*, 62(2):12:1–12:51, 2015.
 doi:10.1145/2699430.
- Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj Vrgoč. Efficient enumeration algorithms for regular document spanners. *ACM Transactions* on Database Systems, 45(1):3:1–3:42, 2020. doi:10.1145/3351451.

A Proofs of Section 3

A.1 Proof of Proposition 1 1

Proof. We show two inclusions.

```
(1) \ \llbracket E_{\max} \rrbracket_d \subseteq MAX(\llbracket E_{\det} \rrbracket_d)
```

If E_{max} accepts via a run ρ_{max} producing mapping μ , then μ is maximal under \leq_{varInc} .

Indeed, acceptance in E_{max} means that in the final state $(R, W) \in F_{\text{max}}$ we have $R \cap F_{\text{det}} \neq \emptyset$ (so ρ_{max} yields μ) and $W \cap F_{\text{det}} = \emptyset$. The fact $W \cap F_{\text{det}} = \emptyset$ guarantees that no "witness" run that dominates the reference run ever reached an accepting configuration. But any mapping $\nu >_{\text{varInc}} \mu$ in $[E_{\text{det}}]_d$ would correspond to some such dominating run in the subset–construction, and hence would force $W \cap F_{\text{det}} \neq \emptyset$. Contradiction. Therefore μ cannot be strictly extended, i.e. it is maximal.

 $(2) MAX(\llbracket E_{\text{det}} \rrbracket_d) \subseteq \llbracket E_{\text{max}} \rrbracket_d$

94

106

107

108

If μ is maximal in $[\![E_{\det}]\!]_d$, E_{max} accepts μ . Let ρ be the unique accepting run of E_{\det} that produces μ ; denote by $X_0 \xrightarrow{(a_1,S_1)} X_1 \dots X_n$ the sequence of subset–states visited by ρ . We simulate ρ in E_{\max} and show inductively that after processing the first k input positions $(0 \le k \le n)$ the witness component W_k contains no final states:

$$W_k \cap F_{\text{det}} = \varnothing, \qquad X_k \in R_k.$$

Base case. Initially $(R, W) = (X_0, \emptyset)$; clearly $W \cap F_{\text{det}} = \emptyset$.

Inductive step. Assume the invariant for k. When reading (a_{k+1}, S_{k+1}) the reference component follows ρ to X_{k+1} . The update rule adds to W (a) successors of the existing witnesses; (b) any successor of X_k that emits a strict superset of S_{k+1} . If any state inserted under (b) could reach F_{det} , then the corresponding run would realise a mapping $\nu \succ_{\text{varInc}} \mu$, contradicting the maximality of μ . By induction the invariant holds for k+1.

After the last symbol we have $R_n \cap F_{\text{det}} \neq \emptyset$ (contains X_n) and $W_n \cap F_{\text{det}} = \emptyset$, so the final composite state is accepting. Hence E_{max} outputs μ .

Combining (1) and (2) yields the desired equality $[E_{\text{max}}]_d = \text{Max}([E_{\text{det}}]_d)$.