

BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10260692 A

(43) Date of publication of application: 29 . 09 . 98

(51) Int. CI

G10L 3/00 G10L 3/00 G10L 3/00

(21) Application number: 09064933

(22) Date of filing: 18 . 03 . 97

(71) Applicant:

TOSHIBA CORP

(72) Inventor:

AKAMINE MASAMI **KOSHIBA AKINORI**

(54) METHOD AND SYSTEM FOR RECOGNITION SYNTHESIS ENCODING AND DECODING OF **SPEECH**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a speech encoding/decoding system based upon recognition synthesis which can be applied with incomplete speech recognition technology to encode a speech signal at a very low rate of 1kbps or less and transmit even nonlinguistic information on a feeling, etc., of a speaker.

SOLUTION: On a transmission side, input speech data are inputted to a pitch detection part 101, a phoneme recognition part 102, and a continuance detection part 103 to detect a pitch period, recognize a syllable, and the continuance of a phoneme, information on the pitch period, syllable, and continuance is encoded by encoding circuits 104, 105, and 106, and then the code sequence is transmitted to a channel through a multiplexer 107. On a reception side, a demultiplexer 110 decode the code sequence into the information on the pitch period, syllable, and continuance and on the basis of the decoded information, a synthesizer 114 synthesizes the original speech signal.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-260692

(43)公開日 平成10年(1998) 9月29日

(51) Int.Cl. ⁶	識別記号	FI	
G10L 3/0	0	G 1 0 L 3/00 R	
		Н	
	5 3 5	5 3 5	
	5 5 1	5 5 1 A	
		審査請求 未請求 請求項の数6 OL (全 14]	頁)
(21)出願番号	特顧平9-64933	(71)出願人 000003078	
		株式会社東芝	
(22)出願日	平成9年(1997)3月18日	神奈川県川崎市幸区堀川町72番地	
		(72)発明者 赤嶺 政巳	
		神奈川県川崎市幸区小向東芝町1番地	株
		式会社東芝研究開発センター内	
		(72)発明者 小柴 亮典	
		神奈川県川崎市幸区小向東芝町1番地	株
		式会社東芝研究開発センター内	
		(74)代理人 弁理士 鈴江 武彦 (外6名)	

(54) 【発明の名称】 音声の認識合成符号化/復号化方法及び音声符号化/復号化システム

(57)【要約】

【課題】1 k b p s 以下の極低レートで音声信号を符号 化するために、不完全な音声認識技術でも適用でき、か つ話者の感情など非言語的な情報も伝送することができ る認識合成に基づいた音声符号化/復号化システムを提 供する。

【解決手段】送信側において入力音声データをピッチ検出部101、音素認識部102および継続時間長検出部103に入力して、ピッチ周期の検出、音節の認識および音素の継続時間長の検出を行い、これらピッチ周期、音節および継続時間長の情報を符号化回路104,105,106により符号化した後、符号列をマルチプレクサ107を経て通信路に伝送し、受信側においてはデマルチプレクサ110で符号列からピッチ周期、音節および継続時間長の情報を復号化し、これらの復号化された情報に基づいて合成器114で元の音声信号を合成する。

【特許請求の範囲】

【請求項1】入力音声信号から文字情報を認識するとともに、該入力音声信号から韻律情報を検出して、これら文字情報および韻律情報を符号化データとして伝送または蓄積し、伝送または蓄積された符号化データから前記文字情報および韻律情報を復号し、復号された文字情報および韻律情報に基づいて音声信号を合成することを特徴とする音声の認識合成符号化/復号化方法。

【請求項2】入力音声信号から音素、音節または単語を 文字情報として認識するとともに、該入力音声信号から ピッチ周期と前記音素または音節の継続時間長を韻律情 報として検出して、これら文字情報および韻律情報を符 号化データとして伝送または蓄積し、伝送または蓄積さ れた符号化データから前記文字情報および韻律情報を復 号し、復号された文字情報および韻律情報に基づいて音 声信号を合成することを特徴とする音声の認識合成符号 化/復号化方法。

【請求項3】入力音声信号から文字情報を認識する認識 手段と、

前記入力音声信号から韻律情報を検出する検出手段と、 前記文字情報および韻律情報を符号化する符号化手段 と、

前記符号化手段により得られた符号化データを伝送または蓄積する伝送/蓄積手段と、

前記伝送/蓄積手段により伝送または蓄積された符号化 データから前記文字情報および韻律情報を復号する復号 化手段と、

前記復号化手段により復号された文字情報および韻律情報に基づいて音声信号を合成する合成手段とを備えたことを特徴とする音声符号化/復号化システム。

【請求項4】入力音声信号から音素、音節または単語を 文字情報として認識する認識手段と、

前記認識手段により認識された文字情報の継続時間長を 検出する継続時間長検出手段と、

前記入力音声信号のピッチ周期を検出するピッチ検出手 段と、

前記文字情報と、前記継続時間長およびピッチ周期から なる韻律情報を符号化する符号化手段と、

前記符号化手段により得られた符号化データを伝送または蓄積する伝送/蓄積手段と、

前記伝送/蓄積手段により伝送または蓄積された符号化 データから前記文字情報および韻律情報を復号する復号 化手段と、

前記復号化手段により復号された文字情報および韻律情報に基づいて音声信号を合成する合成手段とを備えたことを特徴とする音声符号化/復号化システム。

【請求項5】前記合成手段は、前記音声信号の合成に用いる合成単位の情報を格納した合成単位辞書として、異なる話者の音声データから生成された複数個の合成単位辞書を備え、前記韻律情報に応じて該複数個の合成単位

辞書の中から1個の合成単位辞書を選択して前記音声信号を合成することを特徴とする請求項3または4記載の音声符号化/復号化システム。

【請求項6】前記合成手段は、前記音声信号の合成に用いる合成単位の情報を格納した合成単位辞書として、異なる話者の音声データから生成された複数個の合成単位辞書を備え、指示された合成音の種類に応じて該複数個の合成単位辞書の中から1個の合成単位辞書を選択して前記音声信号を合成することを特徴とする請求項3または4記載の音声符号化/復号化システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、音声信号を高能率に圧縮符号化/復号化する方法及びシステムに係り、特に音声信号を1 k b p s 以下の極低ビットレートで符号化する認識合成符号化方法及びこれを用いた音声符号化/復号化方法及びシステムに関する。

[0002]

【従来の技術】音声信号を高能率に符号化する技術は、利用できる電波帯域が限られている移動体通信や、メモリの有効利用が求められるボイスメールなどの蓄積媒体において、今や不可欠の技術になっており、より低いビットレートへ向かっている。電話帯域の音声を4kbps~8kbps程度の伝送レートで符号化する方式として、CELP(Code Excited Linear Prediction)は有効な方式の一つである。

【0003】このCELP方式に関しては、M.R.Schroe der and B.S.Atal, "Code ExcitedLinear Prediction (CELP):High Quality Speech at Very Low Bit Rate s", Proc. ICASSP, pp. 937-940, 1985および W.S.Kleijin, D.J.Krasinski et al. "Improved Speech Quality and Efficient Vector Quantization in SELP", Proc. ICA SSP, pp. 155-158, 1988 (文献1) で詳しく述べられている.

【0004】同文献1によると、この方式はフレーム単位に分割された入力音声から、声道をモデル化した音声合成フィルタを求める処理と、このフィルタの入力信号に当たる駆動ベクトルを求める処理に大別される。これらのうち、後者は符号帳に格納された複数の駆動ベクトルを一つずつ音声合成フィルタに通し、合成音声と入力音声との歪を計算し、この歪が最小となる駆動ベクトルを探索する処理からなる。これは閉ループ探索と呼ばれており、4kbps~8kbps程度のビットレートで良好な音質を再生するために非常に有効な方法である。

【0005】また、音声信号を更に低いビットレートで符号化する方法として、LPCボコーダが知られている。これは声帯信号をパルス列と白色雑音信号で、また声道の特性をLPC合成フィルタでモデル化し、それらのパラメータを符号化する方式であり、音質的に問題はあるものの音声信号を2.4kbps程度で符号化する

50

ことができる。これらの符号化方式は、発声者が何を言っているかという言語情報はもちろん、個人性、声の質、感情など元の音声波形が持っている情報を人間の聴覚特性上できるだけ忠実に伝送しようとするもので、主に電話を中心とする通信の用途に用いられている。

【0006】一方、最近のインターネットブームを背景にネットチャットと呼ばれるサービスの利用者が増加している。これは、ネットワーク上でリアルタイムに一対一、または一対多、多対多の会話を楽しむものであり、音声信号の伝送のため上記のCELP方式を基本にした 10ものが用いられている。CELP方式は、PCM方式と比べビットレートが1/8~1/16と低く、音声信号の能率的な伝送を可能にしている。しかし、インターネットを利用するユーザ数は急激に増加しつつあり、これに伴いネットワークがしばしば混雑する状況が発生し、そのため音声情報の伝送に遅延が生じて会話に支障が起こっている。

【0007】このような状況を解決するためには、音声信号をCELP方式よりさらに低いビットレートで符号化する技術が必要である。低ビットレート符号化の究極の姿としては、音声の言語情報を認識してその言語情報を表現する文字列を伝送し、受信側で規則合成する認識合成符号化が知られている。この認識合成符号化は、中田和男著、「音声の高能率符号化」、森北出版発行(文献2)で簡単に紹介されているように、数十乃至100bps程度の極低レートで音声信号を伝送することができると言われている。

【0008】しかし、認識合成符号化方式は音声認識技術を適用することで得られた文字列から音声を規則的に合成する必要があるため、音声認識が不完全であるとイントネーションが著しく不自然になったり、会話の内容が誤ったりという問題が生じる。このため、認識合成符号化は完全な音声認識技術を仮定しており、今まで具体的に実現された例はなく、近い将来もその実現は困難であると予想される。

【0009】このように音声信号という物理的な情報を言語情報という高度に抽象化された情報に変換した後、通信を行う方法では、実現性に問題があるため、音声信号をより物理的な情報に認識して変換する符号化方法が提案されている。この方法の一例として、特公平5-76040号(文献3)に記述されている「ボコーダ方法及び装置」が知られている。

【0010】同文献3においては、アナログ音声入力は音声認識装置へ送られ、音素列に変換される。音素列は、音素-異音合成器によってそれを近似した異音列に変換され、この異音列によって音声が再生される。音声認識装置では、アナログ音声入力はAGCにより信号のゲインがある一定の値に保持されつつ、ホルマントトラッカーに入力されて入力信号のホルマントが検出され、RAMに記憶される。記憶されたホルマントは音素境界 50

検出装置へ送られ、音素の成分へ区切られる。区切られ た音素は、認識アルゴリズムによって音素テンプレート

た音素は、認識アルゴリズムによって音素テンプレート 登録表との間でマッチングがとられ、認識された音素が 得られる。

【0011】音素-異音合成器では、入力された音素符号と対応する異音列をROMから読み出し、音声合成器 へ送る。音声合成器は送られてきた異音列から線形予測フィルタのパラメータなど音声合成に必要なパラメータを求め、それらを用いて音声を合成する。ここで、異音(Allophone)と呼ぶものは、当該音素とその前後の音素を用いて予め定めた規則に従って決定された属性(当該音素が語頭、語中、語尾のどれか、また、鼻音化や無声化するかといった類)が付加されたものであ

【0012】この文献3に記載された技術のポイントは、音声信号を言語情報である文字列に変換するのではなく、音声信号を単に音素記号列に変換し、その記号列と音声合成のための物理パラメータを対応付けたことである。このようにすることによって、音素の認識が誤ったとしても、誤った音素が別の音素に変わるものの文章全体としては大きく変わらないという利点が生じる。そして、文献3には「人間の耳の自然のフィルタ作用と聞き手の思考過程での誤り修正のために、完全な認識でなくても、最も良い一致を取ることで、認識アルゴリズムによって発生する誤りは最小のものとなる。」と記載されている。

【0013】しかし、文献3に記載の符号化方法では、符号化側から単に音素を表す記号列を伝送しているのみであるため、復号化側で再生される合成音は抑揚やリズムのない不自然なものとなってしまい、単に会話の意味が伝わるのみで話者に関するの情報や感情といった情報は伝わらないという問題がある。

[0014]

【発明が解決しようとする課題】上述したように、音声の言語情報を認識し、その情報を表現する文字列を伝送、復号化側で規則合成する従来の認識合成方式は完全な音声認識技術を仮定しているため、現実に実現することが困難であるという問題があった。

【0015】また、不完全な音声認識技術でも適用できる公知の符号化方式では、単に音素を表す記号列を伝送しているのみであるため、復号化側で再生される合成音は抑揚やリズムのない不自然なものとなってしまい、単に会話の意味が伝わるのみで話者に関するの情報や感情といった情報は伝わらないという問題があった。

【0016】本発明は、1kbps以下の極低レートで音声信号を符号化するために、不完全な音声認識技術でも適用でき、かつ話者の感情など非言語的な情報も伝送することができる認識合成に基づいた音声の認識合成符号化/復号化方法及びシステムを提供するものである。

[0017]

30

5

【課題を解決するための手段】上記の課題を解決するため、本発明に係る音声の認識合成符号化/復号化方法は、入力音声信号から音素、音節または単語などを文字情報として認識するとともに、該入力音声信号からピッチ周期と音素または音節の継続時間長などを韻律情報を検出して、これら文字情報および韻律情報を符号化データとして伝送または蓄積し、伝送または蓄積された符号化データから文字情報および韻律情報を復号し、復号された文字情報および韻律情報を復号し、復号された文字情報および韻律情報に基づいて音声信号を合成することを特徴とする。

【0018】また、本発明に係る音声符号化/復号化システムは、入力音声信号から文字情報を認識する認識手段と、入力音声信号から韻律情報を検出する検出手段と、これら文字情報および韻律情報を符号化する符号化手段と、この符号化手段により得られた符号化データを伝送または蓄積する伝送/蓄積手段と、この伝送/蓄積手段により伝送または蓄積された符号化データから文字情報および韻律情報を復号する復号化手段と、この復号化手段により復号された文字情報および韻律情報に基づいて音声信号を合成する合成手段とを備えたことを特徴とする。

【0019】より具体的には、認識手段は入力音声信号から音素、音節または単語を文字情報として認識し、韻律情報検出手段は認識された文字情報の継続時間長と入力音声信号のピッチ周期を韻律情報として検出する。

【0020】このように本発明では、符号化側(送信側)において入力音声信号から音素や音節などの文字情報を認識してその情報を伝送または蓄積することに加えて、入力音声信号からピッチ周期や継続時間長などの韻律情報を検出してその情報も伝送または蓄積し、復号化が(受信側)において伝送または蓄積されてきた音素や音節などの文字情報とピッチ周期や継続時間長などの韻律情報に基づいて音声信号を合成することにより、1kbps以下といった極低レートでの符号化が可能である上に、話者の抑揚やリズム、話調なども再生されることによって、従来では困難であった話者の感情などの非言語的情報の伝送も可能となる。

【0021】また、本発明においては音声信号の合成に 用いる合成単位の情報を格納した合成単位辞書として異 なる話者の音声データから生成された複数個の合成単位 辞書を備え、韻律情報に応じて1個の合成単位辞書を選 択して音声信号を合成するようにしてもよい。このよう に構成にすると、符号化側(送信側)で音声信号を入力 した話者とより類似した合成音が復号化側(受信側)で 再生される。

【0022】さらに、上述した複数個の合成単位辞書の中から、指示された合成音の種類に応じて1個の合成単位辞書を選択して音声信号を合成するようにしてもよい。このようにすると、合成される音声信号の種類を送信側または受信側のユーザを指定でき、声質変換なども

可能となる。

[0023]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態を説明する。

(第1の実施形態)図1は、本発明の第1の実施形態に係る音声の認識合成符号化/復号化方法を適用した音声符号化/復号化システムの構成を示すプロック図である。この符号化/復号化システムは、ピッチ検出部101、音素認識部102、継続時間長検出部103、符号化回路104,105,106、マルチプレクサ107、デマルチプレクサ110、復号化回路111,112,113および合成器114から構成される。

【0024】まず、符号化側(送信側)においては、音声入力端子100からディジタル化された音声信号(以下、入力音声データという)が入力される。この入力音声データはピッチ検出部101、音素認識部102、継続時間長検出部103に入力される。ピッチ検出部101による検出結果、音素認識部102による認識結果および継続時間長検出部103による検出結果は、符号化回路104,105,106によってそれぞれ符号化された後、符号化多重化部であるマルチプレクサ107により多重化されて符号化列となり、出力端子108から通信路に伝送される。

【0025】一方、復号化側(受信側)においては、符号化側(送信側)から通信路を経て伝送されてきた符号列が符号化分解部であるデマルチプレクサ110によって、ピッチ周期の符号、音素の符号、継続時間長の符号に分解された後、復号化回路111,112,113に入力されて元のデータが復号され、さらに合成器114により合成されて出力端子115から合成音声信号(復号音声信号)が出力される。

【0026】次に、図1の各部について詳細に説明する。音素認識部102は、公知の認識アルゴリズムを用いて音声入力端子100からの入力音声データに含まれる文字情報を音素単位で識別し、その識別結果を符号化回路104に出力する。認識のアルゴリズムとしては、北脇信彦編著、「音のコミュニケーション工学」コロナ社などのテキストで紹介されているように、種々の方法を用いることができる。ここでは、音素を認識単位とするアルゴリズムとして以下の方法を用いるものとする。

【0027】図2に、このアルゴリズムに基づく音素認識部102の構成を示す。この音素認識部102において、音声入力端子100からの入力音声データはまず分析フレーム生成部201は、入力音声データを分析フレーム長に分割し、さらに窓関数をかけて信号の打ち切りによる影響を減じてから、結果を特徴量抽出部202に送る。特徴量抽出部202は、分析フレーム毎にLPCケプストラム係数を計算し、これを特徴ベクトルとして音素判定部203に送る。音素判定部203は、入力された分析フレ

6

ーム毎の特徴ベクトルと、代表特徴量メモリ204に予 め用意してある音素毎の代表的な特徴ベクトルとの間の 類似度としてユークリッド距離を計算し、この距離が最 も小さい音素をそのフレームの音素と判定し、この判定 結果を出力する。

【0028】ここでは特徴量としてLPCケプストラム 係数を用いたが、これにさらに△ケプストラムを併せて 用いることにより、認識率を向上させることも可能であ る。また、入力された分析フレームのLPCケプストラ ム係数だけを特徴ベクトルとするのではなく、そのフレ 10 ームの前後一定時間に入力された分析フレームから得ら れるLPCケプストラム係数も含めて特徴ベクトルとす ることにより、LPCケプストラム係数の時間方向の変 動を考慮する方法もある。さらに、ここでは特徴ベクト ルの間の類似度としてユークリッド距離を用いたが、特 徴ベクトルにLPCケプストラム係数を用いていること を考慮して、LPCケプストラム距離を用いることもで きる。

【0029】ピッチ検出部101は、音素認識部102 の動作と同期をとりながら、または予め定めた単位時間 20 毎に、音声入力端子100からの入力音声データが有声 音か無声音かの判定を行い、有声音と判定した場合には 更にピッチ周期を検出する。ここで得られた有声音/無 声音判定結果とピッチ周期の情報は符号化回路105に 送られ、有声音/無声音判定結果とピッチ周期を表す符 号が割り当てられる。有声音/無声音判定とピッチ周期 検出のアルゴリズムとしては、自己相関法など既知の手 法を用いることができる。この場合、音素認識部102 の認識結果とピッチ検出部101の検出結果を互いに利 用し合うことで、音素認識、ピッチ検出の精度を改善さ せることができる。

【0030】継続時間長検出部103は、音素認識部1 02の動作と同期をとりながら、音素認識部102で認 識された音素の継続時間長を検出する。図3に示すフロ ーチャートを参照して、継続時間長の検出手順の一例を 説明する。

【0031】まず、ステップS11で音素認識を実行す るための分析フレーム長を設定し、ステップS12で音 素認識を実行するフレーム番号を初期化する。次に、ス テップS13で音素の認識を音素認識部102により実 40 行し、ステップS14でその認識結果が前フレームの認 識結果と同じかどうか判定する。現フレームと前フレー ムの音素の認識結果が同じである場合は、ステップS1 5でフレーム番号をインクリメントしてステップS13 に戻り、そうでない場合はステップS16でフレーム番 号nを出力する。以上の処理を入力音声データがなくな るまで行う。

【0032】こうして検出される音素の継続時間時間長 は、nとフレーム長の積になる。また継続時間長の検出 に関しては、ある音素が認識されたとき、次に別の音素 50 が認識されるまでに最低要する時間を予め定めておき、 音素の認識誤りによって、実際にはありえない継続時間 長が出力されることを抑制する方法も考えられる。継続 時間長検出部103の検出結果は符号化回路106に送 られ、継続時間長を表す符号が割り当てられる。

【0033】符号化回路104,105,106の出力 は符号多重化部107に送られ、ピッチ周期の符号、音 素の符号および継続時間長の符号が多重化されて符号列 となり、出力端子108から通信路に伝送される。以上 が符号化側 (送信側) の動作である。

【0034】復号化側(受信側)では、入力端子109 から入力された符号列がまず符号分解部110でピッチ 周期の符号と音素の符号、継続時間長の符号に分解さ れ、それぞれ復号化回路111,112,113に出力 される。復号化回路111, 112, 113では、それ ぞれピッチ周期、音素、継続時間長が元のデータに復号 され、それらのデータが合成器114に送られる。合成 器114はピッチ周期、音素、継続時間長のデータを用 いて音声信号を合成する。

【0035】合成器114での合成方式としては、北脇 信彦編著、「音のコミュニケーション工学」コロナ社で 紹介されているように、合成単位の選択と合成に用いる パラメータの選択の組合せによって種々の方式を用いる ことができる。ここでは、音素を合成単位とする方式の 例として、特公昭59-14752に開示されている分 析合成方式による合成器を用いるものとする。

【0036】図4に、この方式による合成器114の構 成を示す。まず、入力端子300,301,302から ピッチ周期、音素、継続時間長のデータが入力され、こ れらが入力バッファ303に書き込まれる。パラメータ 結合処理部305は、入力バッファ303から音素のデ ータ系列を読み出し、各音素に対応したスペクトルパラ メータをスペクトルパラメータメモリ304から読み出 して単語あるいは文として結合し、バッファ307に出 力する。スペクトルパラメータメモリ304には、合成 単位である音素がPARCOR、LSP、ホルマントな どのスペクトルパラメータの形で表現され、予め蓄積さ れている。

【0037】音源生成処理部306は、入力バッファ3 03から音素、ピッチ周期、継続時間長のデータ系列を 読み出し、これらのデータに基づいて音源波形メモリ3 11から音源波形を読み出し、ピッチ周期と継続時間長 に基づいて、この音源波形を加工することにより、合成 フィルタ309の駆動音源信号を生成する。音源波形メ モリ311には、実音声データ中の各音素信号を線形予 測分析して得られる残差信号から抽出された音源波形が 蓄積されている。

【0038】音源生成処理部306での駆動音源信号の 生成は、合成する音素が有声音のときと無声音のときで 処理が異なる。合成する音素が有声音のときは、音源波

形を入力バッファ303から読み込んだ継続時間と等し い長さになるまで、入力バッファ303から読み込んだ ピッチ周期単位で重ね合せ補間または間引き処理を行う ことによって、駆動音源信号が生成される。合成する音 素が無声音のときは、音源波形メモリから読み出された 音源波形をそのまま、または、一部を切り出したり繰り 返したりして、入力バッファ303から読み込んだ継続 時間と等しい長さに加工することにより生成される。

【0039】最後に、合成フィルタ309によりバッフ ァ207に書き込まれたスペクトルパラメータとバッフ ァ308に書き込まれた駆動音源信号が読み出され、音 声合成のモデルに基づいて音声信号が合成されて合成音 声信号が出力端子310から図1の出力端子115へと 出力される。

【0040】 (第2の実施形態) 図5に、本発明の第2 の実施形態に係る音声の認識合成符号化/復号化方法を 適用した音声符号化/復号化システムの構成を示す。第 1の実施形態では、入力音声データの音素を認識し、合 成単位を音素とする構成を示したが、第2の実施形態は 合成単位を音節単位とするものである。

【0041】図5の構成は、音節認識部122と合成器 124を除いて図1の構成と基本的に同じである。合成 する音節の単位や音節認識法には種々あるが、ここでは 一例として合成単位をCV、VC音節とし、音節認識法 として以下の方法を用いる。ただし、Cは子音、Vは母 音を表す。

【0042】図6に、CV、VC音節を単位とする音節 認識部122の構成を示す。音素認識部401は、前記 の音素単位の認識部102と同じ働きをするものであ り、音声信号を入力すると、フレーム毎に認識した音素 を出力する。CV音節を単位とする音節認識部402は 音素認識部401から出力された音素列からCV音節を 認識して出力する。VC音節構成部403はCV音節認 識部402から出力されたCV音節列からVC音節を構 成し、これを入力と合わせて結果を出力する。

【0043】図7のフローチャートを参照して、CV音 節認識部402による音節認識処理手順の一例を説明す る。まず、ステップS21で入力音声データの先頭の音 素にフラグを立てる。ステップS22では、音節認識部 401に入力する音素数nを予め定めておいた数 I に初 期化する。ステップS23で、実際にn個の連続する音 素を予めCV音節毎に用意した音素を出力シンボルとす る離散型HMMに入力する。ステップS24では、各H MM毎に、入力した音素列がそのHMMから出力される 確率pを求める。ステップS25では、nが予め定めて おいた入力音素数の上限Nに達したかどうか判定する。 nがNに達していなければ、ステップS26で入力する 音素数nをn=n+1として、ステップS23から繰り 返す。nがNに達していれば、ステップS27に進む。 ステップS27では、まず確率pを最大とするHMMに 50 対応するCV音節、および音素数nを求める。次に、フ ラグを立てた音素に対応するフレームから数えて、求め た音素数分の区間が該CV音節に対応する区間であると 判定し、これを求めたCV音節とともに出力する。ステ ップS28では、音素の入力が終了したがどうか判定 し、終了していない場合にはステップS29で出力した 区間の次の音素にフラグを立ててステップS22に戻 り、再びこの操作を繰り返す。

10

【0044】次に、VC音節構成部403について説明 する。VC音節構成部403には、前記の方法で出力さ れたCV音節およびその音節の対応する区間が入力され る。VC音節構成部403は、予め2つのCV音節から VC音節を構成するための方法を記述したメモリを有 し、入力される音節列をそのメモリに従ってVC音節列 に再構成する。2つのCV音節からVC音節を構成する 方法としては、1つ目のCV音節の中心フレームから次 のフレームの中心フレームまでの区間を1つ目のCV音 節の母音と次のCV音節の子音からなるVC音声と定め るという方法などが考えられる。

【0045】音節を合成単位とする合成器の他の例とし て、特公昭58-134697に開示された波形編集型 音声合成装置を用いることができる。図8に、このよう な合成器124の構成を示す。

【0046】図8において、制御回路510は入力端子 500,501,502を介してピッチ周期、音節、継 続時間長のデータ系列を入力し、単位音声波形メモリ5 03に対して音節データと該メモリ503に蓄積されて いる単位音声波形の転送先を指示すると共に、ピッチ周 期をピッチ変換回路504に送り、継続時間長を波形編 集回路505に送る。そして、制御回路510は合成し ようとする当該音節が有声部でピッチを変換する必要が ある場合はピッチ変換回路504に転送し、当該音節が 無声部である場合は波形編集回路505に転送するよう 指示する。

【0047】単位音声波形メモリ503は、実音声デー タから切り出された合成単位の音節CV, VCの音声波 形を蓄積しており、制御回路510から入力した音節デ ータと指示に従って該当する単位音声波形をピッチ変換 回路504または波形編集回路505に出力する。制御 回路510は、ピッチを変換する必要がある場合はピッ チ変換回路504にピッチ周期を送り、そこでピッチ周 期が変換される。ピッチ周期の変換は波形重畳法など公 知の方法で行われる。

【0048】波形編集回路505は、制御回路510の 指示に従ってピッチを変換する必要がある場合には、ピ ッチ変換回路504から送られた音声波形を補間または 間引き処理し、また変換する必要がない場合には、単位 音声波形メモリ503から送られた音声波形を補間また は間引きすることにより入力した継続時間長と等しくな るよう処理し、音節単位の音声波形を生成する。さら

12

に、波形編集回路505は各音節の音声波形を結合する ことにより音声信号を作成する。

【0049】このように図8の合成器124では、音節単位で音声信号を認識して合成するため、音素単位で認識して合成を行う図4に示した合成器114と比べて、より高音質の合成音が得られる利点がある。すなわち、音素を合成単位とする場合には、合成単位間での接続個所が多く、しかも子音から母音へ接続するように音声パラメータの変化が激しい場所でも合成単位を接続するため、高い品質の合成音を得ることが難しいのに対し、音節単位では合成単位間の接続個所が少ないばかりでなく、子音と母音の変化部を合成単位が含むため高品質の合成音が得られる。また、認識の単位が長くなることによって認識率も改善し、合成音の音質が向上する効果もある。

【0050】(第3の実施形態)図8の合成器124の上述した利点に着目して、音質向上のため合成単位を音節より更に長い単語単位とすることも考えられる。しかし、合成単位が単語レベルまでになると単語を識別するための符号量が増加し、ビットレートが高くなる問題が生じる。符号量を抑えつつ、認識率を改善し音質向上を図る方法として、入力音声データを単語単位で認識し音節単位で合成する折哀案が考えられる。

【0051】図9は、この方法に基づく本発明の第3の実施形態に係る音声符号化/復号化システムのブロック図であり、図1における音素認識部102または図5における音節認識部122が単語認識部132と認識された単語を音節に変換する単語一音節変換部133に置き換えられている点が第1および第2の実施形態と異なっている。このような構成により、符号量を増大させることなく、認識率を改善して音質の向上を図ることができる。

【0052】(第4の実施形態)以上説明した第1、第2、第3の実施形態は、ピッチ周期や継続時間長の韻律情報を入力音声データから抽出して伝送しているものの、合成器で用いるスペクトルパラメータや音源波形、または単位音声波形は、予め作成されたある一種類のものを用いる構成となっている。このため、イントネーションやリズム、話調などの話者の韻律は復号化側で再生されるものの、再生される声の質は予め作成されたスペクトルパラメータや音源波形、または単位音声波形で定まるものとなり、話者によらず常に同一の声質が再生されてしまう。より豊かなコミュニケーションのためには、多様な声質を再生できるものが望まれる。

【0053】本実施形態は、この要求に応えるために合成器で用いる合成単位辞書を複数備えたものである。ここで、スペクトルパラメータや音源波形、または単位音声波形などを合成単位辞書と呼んでいる。

【0054】図10は、本実施形態に係る成単位辞書を 複数備えた符号化/復号化システムの構成を示すブロッ 50 ク図である。本実施形態の基本的な構成は図1、図5、図9で説明した第1、第2、第3の実施形態と同様であり、これらの実施形態と異なる点は、復号化側に複数個(N個)の合成単位辞書143,144,145を備え、伝送されてきたピッチ周期の情報に応じて、合成に用いる合成単位辞書を1個選択する構成としたことである。

【0055】図10において、符号化側の文字情報認識部140は、図1中に示した音素認識部102、図5中に示した音節認識部122、または図9中に示した単語認識部132および単語-音節変換部133のいずれかに相当するものである。

【0056】一方、復号化側の復号化回路111は伝送されてきたピッチ周期を復号し、これを韻律情報抽出部141に送る。韻律情報抽出部141は入力されたピッチ周期を蓄積し、蓄積されたピッチ周期の系列から平均ピッチ周期やピッチ周期の最大値、最小値など韻律情報を抽出する。

【0057】合成単位辞書143,144,145は、各々異なる話者の音声データから作成されたスペクトルパラメータや音源波形、または単位音声波形と各々の音声データから抽出された平均ピッチ周期やピッチ周期の最大値、最小値などの韻律情報を蓄積している。

【0058】制御回路142は、韻律情報抽出部141から平均ピッチ周期やピッチ周期の最大値、最小値など韻律情報を受け取り、これと合成単位辞書143,144,145に蓄積されている韻律情報との誤差を計算し、誤差が最小となる合成単位辞書を選択して合成器114に転送する。ここで、韻律情報の誤差は、一例として平均ピッチ周期、最大値、最小値の各々の誤差の二乗の重み付き平均を計算することで得られる。

【0059】合成器114は、復号化回路111,112,113からピッチ周期、音素または音節、継続時間長のデータをそれぞれ受け取り、これらのデータと制御回路142から転送された合成単位辞書を用いて音声を合成する。

【0060】このような構成によると、符号化側で入力 された話者と類似した声の高さの合成音が復号化側で再 生されることになるため、話者の識別が容易になり、よ り豊かなコミュニケーションが実現される効果がある。

【0061】(第5の実施形態)図11に、複数の合成単位辞書を備えた別の実施形態として、第5の実施形態に係る音声符号化/復号化システムの構成を示す。この実施形態は、復号化側に複数の合成単位辞書を備えるとともに、符号化側に合成音の種類を指示するための合成音指示回路を備えることを特徴とする。

【0062】図11において、符号化側に設けられた合成音指示回路150は、復号化側で用意されている合成単位辞書143,144,145に関する情報を話者に提示し、どの合成音を用いるか選択させ、キーボードな

50

14

どの入力装置を通して合成音の種類を指示する合成音選択情報を受け取り、マルチプレクサ107に送る。話者に提示する情報は、合成単位辞書作成に用いた音声データの性別、年齢、太い声、細い声といった声質の特徴を表す情報からなる。

【0063】マルチプレクサ107から通信路を経て復号化側に伝送された合成音選択情報は、デマルチプレクサ110を介して制御回路152に送られる。制御回路152は、合成音選択情報に基づいて合成単位辞書143,144,145の中から合成に用いる合成単位辞書を1個選択して合成器114に転送すると同時に、選択された合成単位辞書に蓄積されている平均ピッチ周期やピッチ周期の最大値、最小値などの韻律情報を韻律情報変換部151に出力する。

【0064】韻律情報変換部151は、復号化回路11 1からピッチ周期を、また制御回路152から合成単位 辞書の韻律情報をそれぞれ受け取り、入力したピッチ周 期の平均ピッチ周期、最大値、最小値などの韻律が合成 単位辞書の韻律情報に近づくようにピッチ周期を変換し て、その結果を合成器114に与える。合成器114 は、復号化回路112,113と韻律情報変換部151 から音素または音節、継続時間長、ピッチ周期のデータ を受け取り、これらのデータと制御回路152から転送 された合成単位辞書を用いて音声を合成する。

【0065】このような構成にすると、符号化側のユーザである送信者の好みによって、復号化側で再生される合成音を選択することができるばかりでなく、男性の声を女性の声で再生するというように男女間の声質の変換を含む各種声質の変換を容易に実現できる従来の符号化装置にはなかった効果が生じる。このような声質の変換など多様な合成音を実現する機能は、インターネットなどで不特定の人間同士でおしゃべりをしてコミュニケーションを図る場合、会話を楽しくしたり、豊かにするのに有効である。

【0066】 (第6の実施形態) 図12に、本発明の第6の実施形態に係る符号化/復号化システムの構成を示す。図11に示した第5の実施形態では、符号化側に合成音指示回路150を備える構成としたが、図12に示すように復号化側に合成音指示回路160を備える構成としてもよい。このようにすると、符号化側のユーザである受信者が再生される合成音の声質などを選択することができるという利点がある。

【0067】(第7の実施形態)図13に、本発明の第7の実施形態に係る符号化/復号化システムの構成を示す。本実施形態は図11に示した第5の実施形態と同様に符号化側に合成音指示回路150を備え、復号化側で合成音指示回路150からの指示に基づいて韻律情報および合成器114のパラメータを変換して合成音の抑揚や声質を送信者の好みに応じて変えられるようにしたことを特徴とする。

【0068】図13において、符号化側に設けられた合成音指示回路150は、送信者の指示により例えばロボットの声、アニメーションの声、宇宙人の声など予め作成された声の特徴を表す分類の中から好みの声を選択し、それを表すコードを合成音選択情報としてマルチプレクサ107に送る。

【0069】マルチプレクサ107から通信路を経て復号化側に伝送された合成音選択情報は、デマルチプレクサ110を介して変換テーブル170に送られる。変換テーブル170は、符号化側で合成音指示回路150を介して指示されたロボットの声、アニメーションの声、宇宙人の声などの合成音の特徴に対応して合成音の抑揚を変換するための抑揚変換パラメータと声質を変換するための声質変換パラメータを予め蓄積している。そして、変換テーブル170はデマルチプレクサ110を介して入力された合成音指示回路150からの合成音指示情報に従って、抑揚変換パラメータおよび声質変換パラメータの情報を制御回路152と韻律情報変換部171 および声質変換部172に送る。

【0070】制御回路152は、変換テーブル170からの情報に基づいて合成単位辞書143,144,145の中から合成に用いる合成単位辞書を1個選択して合成器114に転送すると同時に、選択された合成単位辞書に蓄積されている平均ピッチ周期やピッチ周期の最大値、最小値などの韻律情報を韻律情報変換部171に出力する。

【0071】韻律情報変換部171は、制御回路152から合成単位辞書の韻律情報を、変換テープル170から抑揚変換パラメータの情報をそれぞれ受け取り、入力したピッチ周期の平均ピッチ周期、最大値、最小値などの韻律情報を変換して、その結果を合成器114に供給する。一方、声質変換部172は制御回路152により選択された合成単位辞書に蓄積されている音源波形、スペクトルパラメータなどを変換して合成器114に送る。

【0072】図11に示した第5の実施形態では、合成音の抑揚や声質の種類は合成単位辞書143,144,145の作成時に用いられた音声の種類によって事実上制限される構成となっていたが、本実施形態によると韻律情報や音源波形、スペクトルパラメータの変換規則を多様にすることにより、合成音の種類を容易により多様なものとすることができる。

【0073】なお、図13では合成音指示回路150を符号化側に設けたが、図12と同様に復号化側に設けてもよい。以上、本発明の実施形態をいくつか説明したが、本発明の主旨は符号化側において入力音声信号から音素、音節または単語などの文字情報を認識し、それらを伝送または蓄積するとともにピッチ周期や継続時間長などの韻律情報を検出して伝送または蓄積し、復号化側において伝送または蓄積されてきた音素、音節または単

語などの文字情報と、ピッチ周期や継続時間長などの韻 律情報に基づいて音声信号を合成するものであり、この 主旨の範囲内で様々な変形が可能である。また、認識の 手法、ピッチ検出法、継続時間長の検出法、伝送情報の 符号化法、復号化法、音声合成器の方式などは、本発明 の実施形態で示したもののに限定されるものではなく、 公知の種々の方法、方式を適用することができる。

[0074]

【発明の効果】以上説明したように、本発明によれば入力音声信号から音素や音節などの文字情報を認識し、それらを伝送または蓄積するのみでなく、入力音声信号からピッチ周期や継続時間長などの韻律情報を検出してそれらも伝送または蓄積し、伝送または蓄積された音素または音節などの文字情報とピッチ周期や継続時間長などの韻律情報に基づいて音声信号を合成するため、認識合成による1kbps以下の極低レートでの音声信号の符号化が可能であることに加えて、話者の抑揚やリズム、話調を再生でき話者の情緒や感情を伝えることができるという従来にない優れた効果を奏する。

【0075】また、合成に用いるスペクトルパラメータや音源波形、または単位音声波形など合成単位辞書を複数個備え、話者のピッチ情報などの韻律情報や、ユーザの指示によって合成単位辞書を選択できるようにすれば、話者の識別が容易になる効果や、ユーザが望む多様な合成音の実現、声質変換などの機能の実現によって、コミュニケーションを楽しくしたり、豊かにするという効果が得られる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態に係る音声符号化/復 号化システムの構成を示すブロック図

【図2】図1における音素認識部の構成例を示すプロック図

【図3】図1における継続時間長検出の処理手順を示す フローチャート

【図4】図1における合成器の構成例を示すブロック図

【図5】本発明の第2の実施形態に係る音声符号化/復 号化システムの構成を示すプロック図

【図6】図5における音節認識部の構成例を示すブロック図

【図7】図6におけるCV音節認識部の処理手順を示す 40 フローチャート

【図8】本発明で用いる合成器の他の構成例を示すブロック図

【図9】本発明の第3の実施形態に係る音声符号化/復 号化システムの構成を示すブロック図

【図10】本発明の第4の実施形態に係る音声符号化/ 復号化システムの構成を示すプロック図

【図11】本発明の第5の実施形態に係る音声符号化/*

16

* 復号化システムの構成を示すプロック図

【図12】本発明の第6の実施形態に係る音声符号化/ 復号化システムの構成を示すプロック図

【図13】本発明の第7の実施形態に係る音声符号化/ 復号化システムの構成を示すプロック図

【符号の説明】

- 100…音声入力端子
- 101…ピッチ検出部
- 102…音素認識部
- 103…継続時間長検出部
 - 104, 105, 106…符号化回路
 - 107…マルチプレクサ(符号多重化部)
 - 110…デマルチプレクサ(符号分解部)
 - 111, 112, 113…復号化回路
 - 114…合成器
 - 122…音節認識部
 - 132…単語認識部
 - 133…単語一音節変換部
 - 140…文字情報認識部
- 20 141…韻律情報抽出部
- 142…制御回路
 - 143, 144, 145…合成単位辞書
 - 150…合成音指示回路
 - 151…韻律情報変換部
 - 152…制御回路
 - 160…合成音指示回路
 - 170…変換テーブル
 - 171…韻律情報変換部
 - 172…音質変換部
- 30 201…分析フレーム生成部
 - 202…特徵量抽出部
 - 203…音素判定部
 - 204…代表特徴量メモリ
 - 303…入力バッファ
 - 304…スペクトルパラメータメモリ
 - 305…パラメータ結合処理部
 - 306…音源生成処理部
 - 307, 308…バッファ
 - 309…合成フィルタ
 - 3 1 1 … 音源波形メモリ
 - 401…音素認識部
 - 402…CV音節認識部
 - 403…VC音節構成部
 - 510…制御回路
 - 503…単位音声波形メモリ
 - 504…ピッチ変換回路
 - 505…波形編集回路

【図1】

[図2] [図6]

【図3】

【図4】

【図8】

【図5】

【図9】

【図7】

【図10】

【図11】

【図12】

【図13】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.