Scilab Textbook Companion for Introduction to Electric Drives by V. Singhal¹

Created by
Ashish Kumar
B.tech
Mechanical Engineering
Uttarakhand Technical University
College Teacher
Ms. Vinesh Saini
Cross-Checked by
K. V. P. Pradeep

June 1, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introduction to Electric Drives

Author: V. Singhal

Publisher: S. K. Kataria & Sons, New Delhi

Edition: 1

Year: 2011

ISBN: 978-93-5014-119-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Thyristors Principles and Characteristics	5
2	Phase Controlled Rectifiers	31
3	Inverters	51
4	Choppers	58
6	Control of DC drives	71

List of Scilab Codes

Exa 1.1	Anode Current
Exa 1.2	Equivalent capacitance
Exa 1.3	Find various voltages 6
Exa 1.4	Find VG IG and RG
Exa 1.5	Minimum width of gate pulse
Exa 1.6	Minimum width of gate pulse 8
Exa 1.7	Maximum value of R
Exa 1.8	Maximum value of R
Exa 1.9	Find Triggering angle
Exa 1.12	RMS current and form factor
Exa 1.13	Power supplied
Exa 1.14	Average power loss
Exa 1.15	Average on state current
Exa 1.16	Mean power dissipation
Exa 1.17	Current rating and I2t rating
Exa 1.18	Series resistance and average gate power loss 15
Exa 1.19	Source Resistance Trigger Current and voltage 15
Exa 1.20	Find Rs R1 and R2
Exa 1.21	Finf thermal resistance
Exa 1.22	Find maximum losses
Exa 1.23	Thermal resistance of heat sink
Exa 1.24	Find Junction temperature
Exa 1.25	Maximum thermal resiatance
Exa 1.26	Average power loss and increase in rating 19
Exa 1.27	Minimum and maximum firing angle 20
Exa 1.28	Design a UJTcircuit
Exa 1.29	Various component of circuit
Exa 1.30	Range of firing angle

Exa 1.31	Time of conduction	4
Exa 1.32	Find value of L and C	4
Exa 1.33		5
Exa 1.34		5
Exa 1.35	Current rating of thyristor	6
Exa 1.36		7
Exa 1.37	Value of R and C Power loss and rating	7
Exa 1.38		8
Exa 1.39		8
Exa 1.40	Fault clearing time	0
Exa 2.1		1
Exa 2.2		2
Exa 2.3		2
Exa 2.4	Vdc Ide Vrms Irms	3
Exa 2.5		4
Exa 2.6		4
Exa 2.7	Rated voltage of thyristor	5
Exa 2.8		6
Exa 2.9		7
Exa 2.10		8
Exa 2.11		8
Exa 2.12	Vrms Vdc form factor power factor	9
Exa 2.13		0
Exa 2.14	Find output volage and current	1
Exa 2.15	Voltage current and various factors	2
Exa 2.16		3
Exa 2.17	Firing angle Power and variation in firing angle 4	4
Exa 2.18		5
Exa 2.19	Firing angle Power and current	5
Exa 2.20		6
Exa 2.21		7
Exa 2.22	Firing angle current and power factor	8
Exa 2.25	-	9
Exa 3.1		1
Exa 3.2		2
Exa 3.3		2
Exa 3.4		3
Exa 3.5		4

Exa 3.6	Find value of C
Exa 3.7	Current and power
Exa 3.8	Current and power
Exa 4.1	Period of conduction and blocking
Exa 4.2	Periods of conduction and blocking
Exa 4.3	Find duty cycle
Exa 4.4	Voltage Efficiency and resistance 60
Exa 4.5	Chopping frequency 61
Exa 4.6	Find the current 61
Exa 4.7	Find load inductance
Exa 4.8	Find the current
Exa 4.9	Speed of motor
Exa 4.10	Average load voltage
Exa 4.11	Find curent and voltage 65
Exa 4.12	Output current and voltage 65
Exa 4.13	Find series inductance
Exa 4.14	Motor speed and current swing 67
Exa 4.17	Find the current
Exa 4.18	RMS value of load current
Exa 4.19	Period of conduction
Exa 4.20	Period of conduction
Exa 6.1	Proper size of motor
Exa 6.2	Thermal time constant and temperature rise 71
Exa. 6.3	Field current

Chapter 1

Thyristors Principles and Characteristics

Scilab code Exa 1.1 Anode Current

```
1 //Example 1_1
2 clc;
3 clear; close;
4
5 //Given data
6 alfa1=0.35;
7 alfa2=0.4;
8 IG=40*10^-3;//A
9
10 //Solution :
11 IA=alfa2*IG/(1-(alfa1+alfa2));//A
12 disp(IA, "Anode current in A : ");
```

Scilab code Exa 1.2 Equivalent capacitance

```
1 / \text{Example } 1_2
```

```
2 clc;
3 clear; close;
4
5 //Given data
6 dv_dt=190; //V/ s
7 IC=8*10^-3; //A
8
9 //Solution :
10 C=IC/(dv_dt/10^-6); //F
11 disp(C, "Capacitance of depletion layer in F : ");
```

Scilab code Exa 1.3 Find various voltages

```
1 / Example 1_3
2 clc;
3 clear; close;
5 // Given data
6 RG=2000; //ohm
7 VCC = 20; //V
8 VT = 0.75; //V
9 Vthy=0.7; //V(Voltage across thyristor)
10 R = 200; //ohm
11 IT=7*10^-3; //A
12 Ih=5*10^-3; //A
13
14
15 // Solution :
16 //part (a)
17 Vo=VCC; //V//// thyristor not conducting
18 disp(Vo,"(a) When thyristor is in off state, Output
      voltage in V")
19 //part (b)
20 Vs = VT + IT * RG; //V
21 disp(Vs,"(b) Voltage necessary to turn on the
```

```
thyristor in V")

22 //part (c)

23 VR1=Ih*R; //V

24 disp("(c) Current through thyristor should be less than holding current. Voltage should be reduced to less than "+string(VR1)+" V")

25 //part (d)

26 VR2=VR1+Vthy; //V

27 disp("(d) VCC should be reduced to less than "+string(VR2)+" V")
```

Scilab code Exa 1.4 Find VG IG and RG

```
1 / Example 1_4
2 clc;
3 clear; close;
4
5 //Given data
6 IG=poly(0,'IG');//A
7 VG = 1 + 9 * IG; //V
8 Vgate=25; //V
9 t=%pi; //radian (duration)
10 Pavg=0.6; //W
11
12 // Solution :
13 Ploss=Pavg*2*%pi/t;/W
14 // Ploss=VG*IG
15 \quad X = VG * IG - Ploss;
16 IG=roots(X);//A
17 IG=IG(2); //A(taking + ve value only)
18 VG = 1 + 9 * IG; //V
19 / Vgate = RG*IG+VG
20 RG=(Vgate-VG)/IG;//ohm
21 disp(VG,"VG in V");
22 disp(IG, "IG in A");
```

```
23 disp(RG, "RG in ohm");
```

Scilab code Exa 1.5 Minimum width of gate pulse

```
1 //Example 1.5
2 clc;
3 clear; close;
4
5 //Given data
6 Vdc=100; //V
7 L=10; //H
8 i=80*10^-3; //A
9
10 //Solution :
11 t=i*L/Vdc; //s
12 disp("Width of pulse should be more than "+string(t *1000)+" milli-seconds.");
```

Scilab code Exa 1.6 Minimum width of gate pulse

```
1 //Example 1_6
2 clc;
3 clear; close;
4
5 //Given data
6 Vdc=100; //V
7 R=10; //ohm
8 L=5; //H
9 i=50*10^-3; //A
10
11 //Solution :
12 //i=Vdc/R*(1-exp(-R*t/L))
13 t=-log(1-i/Vdc*R)/R*L; //s
```

Scilab code Exa 1.7 Maximum value of R

```
1 / Example 1_7
2 clc;
3 clear; close;
5 // Given data
6 i_latch=40*10^-3; //A
7 t=40*10^-6; //s
8 Vdc = 90; //V
9 R=25; //ohm
10 L=0.5; //H
11
12 //Solution :
13 i=Vdc/R*(1-exp(-R*t/L)); //A
14 disp("Current in the circuit is "+string(i)+" A, it
      is less than latchig current, the thyristor will
     not turn on.");
15 R=Vdc/(i_latch-i);//ohm
16 disp("Maximum value of R is "+string(R)+" ohm.");
```

Scilab code Exa 1.8 Maximum value of R

```
1 //Example 1_8
2 clc;
3 clear; close;
4
5 //Given data
6 i_h=50*10^-3; //A
7 t=50*10^-6; //s
```

```
8 Vdc=100; //V
9 R=20; //ohm
10 L=0.5; //H
11
12 //Solution :
13 i=Vdc/R*(1-exp(-R*t/L)); //A
14 //i<i_h;;; so thyristor will return to off state
15 iR=i_h-i; //A//current through R
16 R=Vdc/iR; //ohm
17 disp("Maximum value of R is "+string(R)+" ohm.");</pre>
```

Scilab code Exa 1.9 Find Triggering angle

```
1 / Example 1_9
2 clc;
3 clear; close;
5 //Given data:
6 V = 240; // Volt
7 f = 50; //Hz
8 R=5; //ohm
9 L=0.05; //H
10 theta=atand(2*\%pi*f*L/R); //degree
11 Vm = V * sqrt(2); // Volt
12 // \sin d (fi - theta) = 0; // for no current transient
13 fi=theta+asind(0);//degree
14 disp(fi, "For no current transient, triggering angle
      in degree");
15 // \sin d (fi - theta) = 1; // for worst current transient
16 fi=theta+asind(1);//degree
17 disp(fi, "For worst current transient, triggering
      angle in degree");
```

Scilab code Exa 1.12 RMS current and form factor

```
//Example 1_12
clc;
clear; close;

//Given data:
I=120; //A
Gamma=180; // degree
RMS_current=I*sqrt(Gamma/360); //A
AVG_current=I*(Gamma/360); //A
FormFactor=RMS_current/AVG_current; // no unit
disp(RMS_current, "rms current (in A) : ");
disp(FormFactor, "Form Factor : ");
```

Scilab code Exa 1.13 Power supplied

```
1 / \text{Example } 1 \text{\_} 13
2 clc;
3 clear; close;
5 //Given data:
6 V = 130; //V
7 R=100; //ohm
8 theta1=60; // degree
9 theta2=45; // degree
10 v = sqrt(2) *V; //
11 Irms=sqrt (1/2/\%pi*integrate ('(3.25*\sin(\text{omega}_{-}t))^2',
      'omega_t',theta1*%pi/180,%pi));//A
12 P=Irms^2*R;/W
13 disp(P, "(a) Power supplied to load (in W): ");
14 Irms=sqrt (1/2/\%pi*integrate ('(3.25*\sin(\text{omega}_{-}t))^2',
      'omega_t', theta2*%pi/180,%pi)); //A
15 P=Irms^2*R;/W
16 disp(P,"(a) Power supplied to load (in W): ");
```

Scilab code Exa 1.14 Average power loss

```
1 / Example 1_14
2 clc;
3 clear; close;
5 //Given data:
6 Iavg=200; //A
7 period1=2*%pi;
8 period2=%pi;
9 Vth1=1.8; //V
10 I1=200; //A
11 Vth2=1.9; //V
12 I2=400; //A
13 //part (a)
14 Ploss1=I1*Vth1*period1/2/%pi;//W
15 \operatorname{disp}(\operatorname{Ploss1}, "(a) \text{ Average power loss (in W)}: ");
16 Ploss2=I2*Vth2*period2/2/%pi; //W
17 disp(Ploss2, "(b) Average power loss (in W): ");
```

Scilab code Exa 1.15 Average on state current

```
1 //Example 1_15
2 clc;
3 clear; close;
4
5 //Given data:
6 Irms=40; //A
7 f=50; //Hz
8 period1=170; // degree
9 period2=100; // degree
```

```
10 period3=40; // degree
11 //part (a)
12 alfa1=%pi-period1*%pi/180;//degree
13 Irms_by_Im=sqrt(1/2/%pi*((%pi-alfa1)/2+sin(2*alfa1)
     /4));
14 Im=Irms/Irms_by_Im; //A
15 Iav1=Im/2/\%pi*(1+cos(alfa1));//A
16 disp(Iav1,"(a) Average current (in A): ");
17 //part (b)
18 alfa2=%pi-period2*%pi/180;//degree
19 Irms_by_Im=sqrt(1/2/\%pi*((\%pi-alfa2)/2+sin(2*alfa2))
     /4));
20 Im=Irms/Irms_by_Im; //A
21 Iav2=Im/2/\%pi*(1+cos(alfa2));//A
22 disp(Iav2,"(b) Average current (in A) : ");
23 //part (c)
24 alfa3=%pi-period3*%pi/180;//radian
25 Irms_by_Im=sqrt(1/2/%pi*((%pi-alfa3)/2+sin(2*alfa3)
     /4));
26 Im=Irms/Irms_by_Im;//A
27 Iav3=Im/2/\%pi*(1+cos(alfa3));//A
28 disp(Iav3,"(c) Average current (in A): ");
```

Scilab code Exa 1.16 Mean power dissipation

```
1 //Example 1_16
2 clc;
3 clear; close;
4
5 //Given data:
6 //VT=0.9+0.02*IT;//V
7 //part (a)
8 IT=20;//A
9 VT=0.9+0.02*IT;//V
10 Pdiss=VT*IT;//W
```

```
11 disp(Pdiss,"(a) Mean power dissipation (in W): ");
12 //part (b)
13 IT_mean=20; //A
14 IT_peak=20*\%pi;//A
15 Pdiss=1/2/\%pi*integrate('(0.9+0.02*IT_peak*sin(theta)))
      ))*(IT_peak*sin(theta))', 'theta', 0, %pi); //W
16 disp(Pdiss,"(b) Mean power dissipation (in W): ");
17 //part (c)
18 IT=20; //A//for half cycle
19 VT = 0.9 + 0.02 * IT; //V
20 Pdiss=VT*IT/2; //W
21 disp(Pdiss,"(c) Power dissipation occur only during
      half cycle. Mean power dissipation (W)");
22 //part (d)
23 IT=20; //A//for half cycle
24 \text{ VT} = 0.9 + 0.02 * \text{IT}; //\text{V}
25 Pdiss=VT*IT/3; //W
26 disp(Pdiss,"(d) Power dissipation occur only during
      1/3rd period in a cycle. Mean power dissipation (
     W)");
```

Scilab code Exa 1.17 Current rating and I2t rating

```
1 //Example 1_17
2 clc;
3 clear; close;
4
5 //Given data
6 Isub=2000; //A
7 f=50; //Hz
8 t=10*10^-3; //s
9 T=2*t; //s // duration of half cycle
10 I=sqrt(Isub^2*t/T); //A
11 I2t=I^2*t; //A^2 seconds
12 disp(I2t, "I^2*t rating in A^2-seconds");
```

Scilab code Exa 1.18 Series resistance and average gate power loss

```
1 / Example 1_18
2 clc;
3 clear; close;
5 //Given data
6 Vgate=12; //V
7 t=60*10^-6; //s
8 \text{ cycle=0.3};
9 P_peak=6; /W
10 //part (a)
11 / P_peak=Vg*Ig leads to <math>9*Ig^2+Ig-P_peak=0
12 X = [9 \ 1 \ -6]; //polynomial
13 Ig=roots(X);//A
14 Ig=Ig(2); //A(taking + ve value)
15 \text{ Vg} = 1 + 9 * \text{Ig}
16 Rg=(Vgate-Vg)/Ig;//ohm
17 disp(Rg, "Series resistance Rg in ohm");
18 PavgLoss=P_peak*cycle;//W
19 disp(PavgLoss, "Average power loss in W ");
```

Scilab code Exa 1.19 Source Resistance Trigger Current and voltage

```
1 //Example 1_19
2 clc;
3 clear; close;
4
5 //Given data
6 Vs=12; //V
7 P=0.3; //W
```

```
8 Rs=100; //ohm//as slope is -100V/A
9 //Vs=Vg+Ig*Rg leads to Rs*Ig^2-Vs*Ig+P=0
10 X=[Rs -Vs P]; // polynomial
11 Ig=roots(X); //A
12 Ig=Ig(2); //A(taking one value)
13 disp(Rs, "Source resistance, Rs in ohm ");
14 disp(Ig*1000, "Trigger current in mA");
15 Vg=P/Ig; //V
16 disp(Vg, "Voltage Vg in V");
```

Scilab code Exa 1.20 Find Rs R1 and R2

```
1 / Example 1_20
2 clc;
3 clear; close;
5 // Given data
6 V = 800; //V
7 I=110; //A
8 Es=12; //V
9 Im=250; //mA
10 Ish=600; //mA
11 VG = 2.4; /V
12 IG=50; /mA
13 IGm = 100; /mA
14 VGm = 3; //V
15 Rs=Es/(Ish*10^-3);//ohm
16 disp(Rs, "Value of Rs in ohm");
17 R1=Es/(Im*10^-3)-Rs;//ohm(Assumed R2 is not
      connected)
18 / Rs_plus_R1 > = Es/(IGm*10^-3); //ohm
19 Rs_plus_R1=Es/(IGm*10^-3);//ohm
20 R1_Lower=Rs_plus_R1-Rs; //ohm
21 / Rs_plus_R1 \le (Es-VG) / (IGm*10^-3); / / ohm
22 Rs_plus_R1 = (Es-VG)/(IG*10^-3);/ohm
```

Scilab code Exa 1.21 Finf thermal resistance

```
1 //Example 1_21
2 clc;
3 clear; close;
4
5 //Given data:
6 l=0.2; //m
7 w=0.01; //m
8 d=0.01; //m
9 P=3; //W
10 Tc=220; //W/m/degreeC
11 T1=30; //degreeC
12 theta=1/Tc/w/d; //degreeC/W
13 T2=P*theta+T1; //degreeC
14 disp(T2," Temperature of the surface in degree C ");
```

Scilab code Exa 1.22 Find maximum losses

```
1 //Example 1_22
2 clc;
3 clear; close;
```

```
5 //Given data:
6 l=2/1000; //m
7 A=12/10000; //m^2
8 T21=4; //degreeC(T2-T1)
9 Tc=220; //W/m/degreeC
10 theta=1/Tc/A; //degreeC/W
11 Losses=T21/theta; //W
12 disp(Losses, "Maximum losses in W");
```

Scilab code Exa 1.23 Thermal resistance of heat sink

```
1 //Example 1_23
2 clc;
3 clear; close;
4
5 //Given data:
6 P=30; //W
7 T1=125; //degreeC
8 T2=50; //degreeC
9 theta=1; //degree C/W
10 theta_mica=0.3; //degree C/W
11 Rth_total=(T1-T2)/P; //degree C/W
12 Rth_heat_sink=Rth_total-theta-theta_mica; //degree C/W
13 disp(Rth_heat_sink, "Thermal resistance of heat sink in degree C/W");
```

Scilab code Exa 1.24 Find Junction temperature

```
1 //Example 1_25
2 clc;
3 clear; close;
```

```
5 //Given data:
6 T1=120; //degreeC(Junction Temperature)
7 T2=35; //degreeC(Ambient Temperature)
8 P=40; //W
9 theta_dash=0.8; //degree C/W(junction to heat sink)
10 theta=(T1-T2)/P; //degree C/W
11 disp(theta-theta_dash, "Resistance of heat sink in degree C/W");
```

Scilab code Exa 1.25 Maximum thermal resistance

```
//Example 1_25
clc;
clear; close;

//Given data:
T1=120; //degreeC(Junction Temperature)
T2=35; //degreeC(Ambient Temperature)
P=40; //W
theta_dash=0.8; //degree C/W(junction to heat sink)
theta=(T1-T2)/P; //degree C/W
disp(theta-theta_dash, "Resistance of heat sink in degree C/W");
```

Scilab code Exa 1.26 Average power loss and increase in rating

```
1 //Example 1_26
2 clc;
3 clear; close;
4
5 //Given data:
6 Tj=125; //degreeC
7 Ts=80; //degreeC
```

Scilab code Exa 1.27 Minimum and maximum firing angle

```
1 / \text{Example } 1 27
2 clc;
3 clear; close;
4
5 //Given data:
6 Vs = 230; //V
7 f = 50; //Hz
8 \text{ vc} = 25; //V
9 C=0.6*10^-6; //F
10 R=2000:20000; //ohm
11 Xc=1/(2*\%pi*f*C);//ohm
12 //When R=2000 ohm
13 Z=\min(R) - \text{%i} * Xc; //ohm
14 I=Vs/Z;/A
15 Vc = -\%i * I * Xc; //V
16 //vc = sqrt(2) * abs(Vc) * sind(omega_t + atand(imag(Vc)),
      real (Vc))
17 omega_t=asind(vc/sqrt(2)/abs(Vc))-atand(imag(Vc),
      real(Vc));//degree
```

```
18 alfa1=omega_t;//degree
19
20 //When R=20000 ohm
21 Z=max(R)-%i*Xc;//ohm
22 I=Vs/Z;//A
23 Vc=-%i*I*Xc;//V
24 //vc=sqrt(2)*abs(Vc)*sind(omega_t+atand(imag(Vc), real(Vc)))
25 omega_t=asind(vc/sqrt(2)/abs(Vc))-atand(imag(Vc), real(Vc));//degree
26 alfa2=omega_t;//degree
27 disp(alfa1, "Minimum firing angle in degree")
28 disp(alfa2, "Maximum firing angle in degree")
```

Scilab code Exa 1.28 Design a UJTcircuit

```
1 / \text{Example } 1_{-28}
2 clc;
3 clear; close;
4
5 // Given data:
6 V = 32; //V
7 Eta=0.63;
8 Ip=10*10^-6; //A
9 Vv = 3.5; //V
10 Iv=10*10^-3; //A
11 Vf = 0.5; //V
12 f = 50; //Hz
13 tau = 50 * 10^{-3}; //s
14 T=1/f//s
15 Vp=Eta*V+Vf;/V
16 C=0.4*10^-6; //F//assumed
17 disp(C*10^6, "Suitable value of C in micro F")
18 //V - Ip *R > Vp
19 R_{upper} = (V - Vp) / Ip; //ohm
```

Scilab code Exa 1.29 Various component of circuit

```
1 / Example 1_29
2 clc;
3 clear; close;
5 //Given data:
6 f = 2*1000; //Hz
7 Vdc = 10; //V
8 Eta=0.6;
9 Ip=5*10^-3;/A
10 Vf = 0.5; //V//assumed
11 Vp=Eta*Vdc+Vf;//V
12 / Vdc-Ip*R>Vp
13 R_{upper} = (Vdc - Vp) / Ip; //ohm
14 disp("Value of R should be less than "+string(
      R_upper)+" ohm")
15 C=0.5*10^-6; //F//assumed
16 disp(C*10^6, "Let value of C in micro F")
17 T = 1/f//s
18 R=T/C/\log(1/(1-Eta)); //ohm
19 disp("For C=0.5 micro F, calculated value of R"+
      string(R)+" ohm. But it is not suitable");
```

Scilab code Exa 1.30 Range of firing angle

```
1 / \text{Example } 1 \text{\_} 30
2 clc;
3 clear; close;
5 // Given data:
6 Vs = 230; //V
7 R=1000:22000; //ohm
8 Vg=2; /V
9 C=0.47*10^-6; //F
10 f = 50; //Hz
11 Xc=1/(2*\%pi*f*C);//ohm
12 //When R=1000 ohm
13 theta=atand(min(R)/Xc); //degree
14 Z=\min(R) - \%i * Xc; //ohm
15 I=Vs/Z;/A
16 Vc = -\%i * I * Xc; //V
17 //vc = sqrt(2) * abs(Vc) * sind(omega_t + atand(imag(Vc)),
      real (Vc))
18 omega_t=asind(Vg/sqrt(2)/abs(Vc))-atand(imag(Vc),
      real(Vc)); // degree
19 alfa1=omega_t;//degree
20 / \text{When R} = 22000 \text{ ohm}
21 Z=\max(R)-\%i*Xc;//ohm
22 I=Vs/Z;/A
23 Vc = -\%i * I * Xc; //V
24 //vc = sqrt(2) * abs(Vc) * sind(omega_t + atand(imag(Vc)),
      real (Vc))
```

Scilab code Exa 1.31 Time of conduction

```
1 / \text{Example } 1 \text{-} 31
2 clc;
3 clear; close;
5 //Given data:
6 R=0.8; //ohm
7 L=10*10^-6; //H
8 C=50*10^-6; //F
9 / R < sqrt (4*L/C)
10 Rupper=sqrt(4*L/C);//ohm
11 disp("Maximum value of R should be "+string(Rupper)+
      " ohm")
12 disp("Given value of R is "+string(R)+" ohm. The
      circuit is underdamped.")
13 t0 = \%pi/sqrt(1/L/C-R^2/4/L^2);//s
14 disp(t0, "Time of conduction of thyristor in seconds"
      )
```

Scilab code Exa 1.32 Find value of L and C

```
1 //Example 1_32
2 clc;
3 clear; close;
4
5 //Given data:
```

```
6  V=90; //V
7  Iload=8; //A
8  t_off=40*10^-6; //s
9  //Ipeak=2*Iload; // assumed
10  //V*sqrt(C/L)=2*Iload
11  C_by_L=(2*Iload/V)^2;
12  // t_off=%pi/2*sqrt(L*C)
13  L_into_C=(t_off/%pi*2)^2;
14  C=sqrt(L_into_C*C_by_L); //F
15  L=L_into_C/C; //H
16  disp(L, "Value of L(H)");
17  disp(C, "Value of C(F)");
```

Scilab code Exa 1.33 Find value of C

```
1 //Example 1_33
2 clc;
3 clear; close;
4
5 //Given data:
6 RL=10; //ohm
7 V=100; //V
8 t_off=50*10^-6; //s
9 C=t_off/RL/log(2); //F
10 disp(C," Value of C(F)");
```

Scilab code Exa 1.34 Find value of L and C

```
1 //Example 1_34
2 clc;
3 clear; close;
4
5 //Given data:
```

```
6 IL=40; //A
7 VC = 100; //V
8 \text{ t_off=}60*10^-6; //s
9 C=t_off*IL/VC;//F
10 \operatorname{disp}(C, "Value \ of \ C(F)");
11 //L>VC^2*C/IL
12 L_lower=VC^2*C/IL^2; //H
13 Ip=VC*sqrt(C/L_lower);/A
14 disp("Value of L should be greater than "+string(
      L_lower)+" H. For this value of L, Peak capacitor
        current is "+string(Ip)+" A. But it should be
      less than maximum load current.")
15 / \text{Let Ip} = 34.6 \text{ A}
16 Ip=34.6; //A
17 L=C/(Ip/VC)^2;/H
18 \operatorname{disp}(L, "Value \ of \ L(H)");
```

Scilab code Exa 1.35 Current rating of thyristor

```
1 / Example 1_35
2 clc;
3 clear; close;
4
5 // Given data:
6 Vdc = 100; //V
7 L=0.1*10^-3; //H
8 C=10*10^-6; //F
9 Vc = 100; /V
10 t_off_thyristor=25*10^-6; //s
11 IL=10; //A
12 t_off=Vc*C/IL;//s
13 disp("T_off is "+string(t_off)+" seconds. It is
      greater than thristor turn off time, so it is
      sufficient for communication.")
14 Ip=Vdc*sqrt(C/L);//A
```

```
15 disp(Ip, "Current rating(A)");
```

Scilab code Exa 1.36 Find value of R and C

```
1 //Example 1_36
2 clc;
3 clear; close;
4
5 //Given data:
6 dv_by_dt=25/10^-6; //V/s
7 L=0.2*10^-3; //H
8 Vrms=230; //V
9 damping=0.65; //damping factor
10 Vm=sqrt(2)*Vrms; //V
11 C=1/(2*L)*[0.564*Vm/dv_by_dt]^2; //F
12 R=2*damping*sqrt(L/C); //ohm
13 disp(C,"Value of C(F)");
14 disp(R,"Value of R(ohm)");
```

Scilab code Exa 1.37 Value of R and C Power loss and rating

```
1 //Example 1_37
2 clc;
3 clear; close;
4
5 //Given data:
6 V=300; //V
7 RL=10; //ohm
8 L=0; //H
9 Ith=100; //A
10 f=2000; //Hz
11 dv_by_dt=100*10^6; //V/s
12 //dv/dt=(vth(tau)-vth(0))/tau
```

```
//dv/dt=RL*(1-0.368)*V/(R+RL)/((R+RL)*C)
R=V/Ith;//ohm
C=RL*(1-0.368)*V/(R+RL)/(R+RL)/dv_by_dt
disp(R,"Value of R(ohm)");
Ploss=1/2*C*V^2*f;//W
disp(Ploss,"Power loss in snubber circuit(W)")
disp("Power rating of resitance is "+string(Ploss)+"
W as all energy will be disspated in the resistance.")
```

Scilab code Exa 1.38 Value of dvbydt and dibydt

```
1 //Example 1_38
2 clc;
3 clear; close;
4
5 //Given data:
6 R=4; //ohm
7 L=6*10^-6; //H
8 C=6*10^-6; //F
9 V=300; //V
10 di_by_dt_max=V/L; //A/s
11 Isc=V/R; //A
12 dvc_by_dt=R*di_by_dt_max+Isc/C; //V/s
13 disp(di_by_dt_max, "Maximum permissible value of di/dt(A/s)");
14 disp(dvc_by_dt, "Maximum permissible value of dv/dt(V/s)");
```

Scilab code Exa 1.39 Design a snubber circuit

```
1 / \text{Example } 1 \text{\_} 39
```

```
2 clc;
3 clear; close;
5 // Given data:
6 \text{ RL=8; } //\text{ohm}
7 V = 230; //V
8 Ip=100; //A
9 SF=2; //safety factor
10 di_by_dt_max = 40/10^-6/2; //A/s
11 dv_by_dt_max = 150/10^-6/2; /V/s
12
    L=sqrt(2)*V/di_by_dt_max;//H
13
14 \operatorname{disp}(L, "Value \text{ of } L(H)");
15 R=L/(sqrt(2)*V)*dv_by_dt_max;//ohm
16 disp(R,"Value of R(ohm)");
17 IL_peak=(sqrt(2)*V)/RL;//A
18 Ic_peak = (sqrt(2)*V)/R; //A
19 Itotal=IL_peak+Ic_peak; //A
20 disp(Itotal," Total current through capacitor for
      these values (A)");
21 disp("Itotal>Ip, therefore value of R should be
      increased.");
22 \text{ Ic_max=Ip-IL_peak;} //A
23 R=(sqrt(2)*V)/Ic_max;//ohm
24 R = ceil(R); //ohm
25 disp(R,"New Value of R(ohm)");
26 \text{ damping} = 0.65;
27 C=4*damping^2*L/R^2;//F
28 disp(C*10^6, "Value of C(micro F)");
29 disp(L*10^6, "Value of L(micro H)");
30 // Ic_s witching = C*dv/dt
31 dv_by_dt = sqrt(2) *V/(R+RL)/C; /V/s
32 \operatorname{disp}("Value \ of \ dv/dt \ is "+string(dv_by_dt)+" \ V/s. \ It
       is within the limit for the calculated value of
      R, L & C. Design is safe.")
```

Scilab code Exa 1.40 Fault clearing time

```
1 //Example 1_40
2 clc;
3 clear; close;
4
5 //Given data:
6 V=230; //V
7 R1=2; //ohm
8 R2=5; //ohm
9 R3=1; //ohm
10 R4=6; //ohm
11 R5=5; //ohm
12 Isqr_t=30; //A^2-s
13 R=R1+R2*R3/(R2+R3); //ohm(X grounded)
14 Ifault=sqrt(2)*V/R; //A
15 tc=Isqr_t/Ifault^2; //s
16 disp(tc,"Fault clearing time in seconds");
```

Chapter 2

Phase Controlled Rectifiers

Scilab code Exa 2.1 Average Load and rms load voltage and current

```
1 / Example 2_1
2 clc;
3 clear; close;
5 // Given data:
6 \text{ Vin=400; } /V
7 alfa=30;//degree
8 R=50; //ohm
9
10 //Solution :
11 Vdc=Vin/\%pi/2*(1+cosd(alfa));/V
12 disp(Vdc, "Average load voltage(V): ");
13 I=Vdc/R;//A
14 disp(I, "Average load current(A): ");
15 Vrms=Vin*sqrt((180-alfa)/4/180+sind(2*alfa)/8/%pi);
16 disp(Vrms, "rms load voltage(V): ");
17 Irms=Vrms/R; //A
18 disp(Irms, "rms load current(A): ");
```

Scilab code Exa 2.2 Find average curren

Scilab code Exa 2.3 Find average current

```
1  //Example 2_3
2  clc;
3  clear; close;
4
5  //Given data:
6  Eb=55.5; //V
7  R=10; //ohm
8  //Vin=110*sin(omega*t); //V
9  Vm=110*sqrt(2); //V
10
11  //Solution :
12  omega_t=asind(Eb/Vm); //degree
```

Scilab code Exa 2.4 Vdc Idc Vrms Irms

```
1 / Example 2_4
2 clc;
3 clear; close;
4
5 //Given data:
6 Vs = 230; //V
7 R=15; //ohm
8 alfa=%pi/2;//radian
10 //Solution :
11 Vm = sqrt(2) * Vs; //V
12 Vdc = Vm/2/\%pi*(1+cos(alfa)); //V
13 \operatorname{disp}(\operatorname{Vdc}, \operatorname{"Vdc}(V) : ");
14 Idc=Vdc/R;//A
15 \operatorname{disp}(\operatorname{Idc}, \operatorname{"Idc}(A) : ");
16 Vrms = Vm * sqrt((\%pi-alfa)/4/\%pi + sin(\%pi)/8/\%pi); //V
17 disp(Vrms, "Vrms(V) : ");
18 Irms=Vrms/R; //A
19 disp(Irms, "Irms(A) : ");
20 Pdc = Vdc * Idc; //W
21 disp(Pdc,"Pdc(W) : ");
22 Pac=Vrms*Irms; //W
23 \operatorname{disp}(\operatorname{Pac}, \operatorname{``Pac}(W) : \operatorname{``'});
24 R_eff=Pdc/Pac; // rectification efficiency
25 disp(R_eff, "Rectification efficiency (unitless): ");
26 Kf=Vrms/Vdc;//Form factor
27 disp(Kf, "Form factor (unitless): ");
28 Kr=sqrt(Kf^2-1); //Ripple factor
29 disp(Kr, "Ripple factor(unitless): ");
```

Scilab code Exa 2.5 Vdc Vrms Irms

```
1 / Example 2_5
2 clc;
3 clear; close;
4
5 //Given data:
6 Vo = 150; //V
7 R=30; //ohm
8 alfa=45; //degree
10 //Solution :
11 Vdc=sqrt(2)*Vo/\%pi*(1+cosd(alfa));//V
12 disp(Vdc, "Average dc Voltage(V): ");
13 Iavg=Vdc/R;//A
14 disp(Iavg, "Average load current(A): ");
15 Vrms=sqrt(2)*Vo*sqrt((180-alfa)/2/180+sind(90)/4/%pi
         );//V
16 disp(Vrms, "rms load Voltage(V): ");
17 Irms=Vrms/R; //A
18 disp(Irms, "rms load current(A): ");
```

Scilab code Exa 2.6 Turn ratio VA rating PIV

```
1 / Example 2_6
2 clc;
3 clear; close;
5 //Given data:
6 Vs = 230; //V
7 f = 50; //Hz
8 Vdc=100;/V
9 Ip=15; //A
10 alfa=30; // degree
11
12 //Solution :
13 Vm = Vdc * \%pi/(2 * cosd(alfa)) + 1.7; //V
14 Vrms_2nd=Vm/sqrt(2);//V
15 TurnRatio=Vs/Vrms_2nd;
16 disp(TurnRatio,"(a) Turn ratio of transformer");
17 Irms_2nd=sqrt(Ip^2/2);//A
18 Rating=2*Vrms_2nd*Irms_2nd; //VA
19 disp(Rating,"(b) Transformer rating in VA");
20 PIV=2*Vm; //V
21 disp(PIV,"(c)) PIV in V");
22 disp(Irms_2nd,"(d) RMS value of thyristor current in
      A");
23 ///Answer in the book is wrong for some part.
```

Scilab code Exa 2.7 Rated voltage of thyristor

```
1 //Example 2_7
2 clc;
3 clear; close;
4
5 //Given data:
6 P=10; //kW
7 Idc=50; //A
8 SF=2; // safety factor
```

```
9
10 //Solution :
11 Vdc=P*1000/Idc;//V
12 alfa=0;//degree
13 Vm=Vdc*%pi/(2*cosd(alfa))+1.7;//V
14 PIV=2*Vm;//V
15 Vthy=SF*PIV;//V
16 disp(Vthy,"(a) Voltage rating of thristor in V");
17 PIV=Vm;//V/for bridge rectifier
18 Vthy=SF*PIV;//V
19 disp(Vthy,"(b) Voltage rating of thristor in V");
20 ///Answer in the book is wrong.
```

Scilab code Exa 2.8 Firing angle and power factor

```
1 / Example 2_8
2 clc;
3 clear; close;
5 // Given data:
6 Vs = 230; //V
7 f = 50; //Hz
8 Io=15; //A
9 R=0.5; //ohm
10 L=0.3; //H
11 E1=100; //V
12 E2=-100; //V
13
14 // Solution :
15 ///part (a)
16 Vm = sqrt(2) * Vs; //V
17 / 2*Vm/\%pi*cosd(alfa)=E1+Io*R
18 alfa1=acosd((E1+Io*R)/(2*Vm/\%pi));//degree
19 disp(alfa1,"(a) Firing angle in degree");
20 /// part (b)
```

Scilab code Exa 2.9 Average load current

```
1 //Example 2_9
2 clc;
3 clear; close;
4
5 //Given data:
6 V=230; //V
7 f=50; //Hz
8 R=5; //ohm
9 L=8*10^-3; //H
10 E=50; //V
11 alfa=40; // degree
12
13 // Solution :
14 // Vdc=2*sqrt(2)*V*cosd(alfa)/%pi=E+Io*R
15 Io=(2*sqrt(2)*V*cosd(alfa)/%pi-E)/R; //A
16 disp(Io, "Average value of load current in A");
```

Scilab code Exa 2.10 Average load current

```
1 / Example 2_10
2 clc;
3 clear; close;
5 //Given data:
6 Vs = 230; //V
7 f=50; //Hz
8 Vdc = 100; //V
9 Ip=15; //A
10 alfa=30; // degree
11
12 //Solution :
13 //Vdc=2*Vm*cosd(alfa)/\%pi-2*1.7//(Full converter)
      bridge)
14 Vm = (Vdc + 2*1.7)/2/cosd(alfa)*%pi;//V
15 Vrms=Vm/sqrt(2);//V
16 TurnRatio=Vs/Vrms;
17 disp(TurnRatio,"(a) Turn ratio of transformer");
18 Irms=sqrt(Ip^2/2);//A
19 Rating=Vrms*Ip;//VA
20 disp(Rating,"(b) Transformer rating in VA");
21 PIV=Vm; //V
22 disp(PIV,"(c)) PIV in V");
23 disp(Irms,"(d) RMS value of thyristor current in A")
```

Scilab code Exa 2.11 Vrms Vdc Form factor

```
1 //Example 2_11
2 clc;
```

Scilab code Exa 2.12 Vrms Vdc form factor power factor

```
16  Is_by_I=sqrt(1-%pi/2/%pi);
17  Is1_by_I=2*sqrt(2)/%pi*cos(%pi/4);
18  HF=sqrt((Is_by_I/Is1_by_I)^2-1);// unitless
19  disp(HF,"Harmonic factor");
20  theta1=-alfa/2*%pi/180;//radian
21  DF=cos(theta1);// unitless
22  disp(DF,"Displacement factor");
23  PF=(Is1_by_I/Is_by_I)*DF;//lagging
24  disp(PF,"Power factor(lagging)");
```

Scilab code Exa 2.13 Vrms Vdc form factor power factor

```
1 / Example 2_13
2 clc;
3 clear; close;
5 // Given data:
6 Vs = 230; //V
7 f = 50; //Hz
8 alfa=%pi/3;//radian
9
10 // Solution :
11 Vm = Vs * sqrt(2); //V
12 Vdc=2*Vm/\%pi*cos(alfa)/V
13 disp(Vdc, "Vdc in V");
14 Vrms=Vs;//V
15 disp(Vrms, "Vrms in V");
16 Is_by_I=sqrt(1-%pi/2/%pi);
17 Is1_by_I=2*sqrt(2)/\%pi*cos(\%pi/4);
18 HF = sqrt((Is_by_I/Is1_by_I)^2-1); //unitless
19 disp(HF, "Harmonic factor");
20 fi1=-alfa;//radian
21 DF=cos(fi1);//unitless
22 disp(DF, "Displacement factor");
23 PF=(Is1_by_I/Is_by_I)*DF; //lagging
```

Scilab code Exa 2.14 Find output volage and current

```
1 / Example 2_14
2 clc;
3 clear; close;
5 //Given data:
6 Vs = 230; //V
7 f=50; //Hz
8 alfa=30*%pi/180;//radian
9 I=4; //A
10
11 // Solution :
12 disp("part (a)");
13 Vm = Vs * sqrt(2); //V
14 Vdc=2*Vm/\%pi*cos(alfa)/V
15 RL=Vdc/I;/ohm
16 IL=I*2*sqrt(2)/%pi;//A
17 Pin_active=Vs*IL*cos(alfa);//W
18 Pin_reactive=Vs*IL*sin(alfa);//vars
19 Pin_appearent=Vs*IL; //VA
20 \operatorname{disp}(\operatorname{Vdc}, \operatorname{"dc} \operatorname{output} \operatorname{voltage}(V));
21 disp(Pin_active, "Active power input(W)");
22 disp(Pin_reactive, "Reactive power input(vars)");
23 disp(Pin\_appearent, "Appearent power input(VA)");
24 disp("part (b)");
25 Vdc=Vm/\%pi*(1+cos(alfa))/V
26 \text{ IL=Vdc/RL}; //A
27 I_fund=2*sqrt(2)/%pi*IL*cos(alfa/2);//A
28 Pin_active=Vs*I_fund*\cos(alfa/2);/W
29 Pin_reactive=Vs*I_fund*sin(alfa/2);//vars
30 Pin_appearent=Vs*I_fund;//VA
31 \operatorname{disp}(\operatorname{Vdc}, \operatorname{"dc} \operatorname{output} \operatorname{voltage}(V));
```

```
disp(Pin_active, "Active power input(W)");
disp(Pin_reactive, "Reactive power input(vars)");
disp(Pin_appearent, "Appearent power input(VA)");
disp("part (c)");
Vdc=Vs/sqrt(2)/%pi*(1+cos(alfa))//V
Idc=Vdc/RL;//A
disp(Vdc, "dc output voltage(V)");
disp(Idc, "dc output current(A)");
```

Scilab code Exa 2.15 Voltage current and various factors

```
1 / \text{Example } 2.15
2 clc;
3 clear; close;
5 // Given data:
6 Vs = 230; /V
7 f = 50; //Hz
8 alfa=30; // degree
9 IL=10; //A
10
11 // Solution :
12 Vm = Vs * sqrt(2); //V
13 Vdc=2*Vm/\%pi*cosd(alfa)/V
14 disp(Vdc,"(a) dc output voltage(V)");
15 Irms=IL; //A
16 disp(Irms,"(b) Irms in A");
17 Is1=2*sqrt(2)/%pi*IL;//A
18 disp(Is1,"(c) Fundamental component of input current
       in A");
19 DF=cosd(-alfa);//unitless
20 disp(DF,"(d) Displacement fator");
21 pf_in=Is1/IL*DF; //lagging
22 disp(pf_in,"(e) Input power fator(lagging)");
23 HF = sqrt((IL/Is1)^2-1); //unitless
```

```
24 disp(HF,"(f) Harmonic factor");
25 Vrms=Vs;//V
26 FF=Vrms/Vdc;//form fator
27 RF=sqrt(FF^2-1);//ripple fator
28 disp(RF,"(g) Ripple factor");
```

Scilab code Exa 2.16 Voltage current power factor and power disipated

```
1 / Example 2_16
2 clc;
3 clear; close;
5 // Given data:
6 Vs = 240; /V
7 f=50; //Hz
8 alfa=60; //degree
9 RL=10; //ohm
10
11 // Solution :
12 Vm = Vs * sqrt(2); //V
13 Vdc=Vm/\%pi*(1+cosd(alfa))/V
14 disp(Vdc, "(a) average load voltage(V)");
15 I=Vdc/RL;//A
16 Is=I*sqrt(1-alfa/180); //A
17 Irms=Is; //A
18 disp(Irms, "(b) rms input current(A)");
19 Is1=2*sqrt(2)/\%pi*I*cosd(alfa/2);//A
20 fi1=-alfa/2; //degree
21 DF=cosd(fi1);//unitless
22 pf_in=Is1/Is*DF; //lagging
23 disp(pf_in,"(c) Input power fator(lagging)");
24 Pavg=I^2*RL;/W
25 disp(Pavg,"(d) Average power dissipated(W)");
```

Scilab code Exa 2.17 Firing angle Power and variation in firing angle

```
1 / \text{Example } 2 \text{\_} 17
2 clc;
3 clear; close;
5 //Given data:
6 IL=200; //A
7 VL = 400; //V
8 \, \text{Vdc} = 360; //V
9 variation=10; //\%
10
11 // Solution :
12 Vm=VL*sqrt(2)/sqrt(3);/V
13 / Vdc = 3* sqrt(3) / \%pi*Vm* cosd(alfa) / V
14 alfa=acosd(Vdc/(3*sqrt(3)/\%pi*Vm))//degree
15 disp(alfa, "Firing angle in degree");
16 S=sqrt(3)*VL*IL;//VA
17 disp(S, "Apparent power(VA)");
18 P=S*cosd(alfa);/W
19 disp(P, "Active power(W)");
20 Q = sqrt(S^2-P^2); // vars
21 disp(Q, "Rective power(vars)");
22 Vac1=(1+variation/100)*VL; //V
23 alfa1=acosd(Vdc/(3*Vac1*sqrt(2)/\%pi)); //degree
24 Vac2=(1-variation/100)*VL;/V
25 alfa2=acosd(Vdc/(3*Vac2*sqrt(2)/\%pi)); //degree
26 disp(alfa1,"When variation is +10\%, firing angle(
      degree)");
  disp(alfa2,"When variation is -10\%, firing angle(
27
      degree)");
28 //Answer in the book is wrong for some part.
```

Scilab code Exa 2.18 Pdc Current and PIV

```
1 / Example 2.18
2 clc;
3 clear; close;
5 //Given data:
6 Vs = 400; //V
7 f=50; //Hz
8 Idc=150; //A
9 alfa=60;//degree
10
11 // Solution :
12 Vm=Vs*sqrt(2)/sqrt(3);//V
13 Vdc=3*sqrt(3)/\%pi*Vm*cosd(alfa)//V
14 Pdc = Vdc * Idc; //W
15 disp(Pdc, "Output power, Pdc(W)");
16 Iavg=Idc/3;/A
17 disp(Iavg, "Average thyristor current(A)");
18 Irms=Idc/sqrt(3);//A
19 disp(Irms, "RMS value of thyristor current(A)");
20 Ipeak=Idc; //A
21 disp(Ipeak, "Peak current through thyristor(A)");
22 PIV=sqrt(2)*Vs;//V
23 disp(PIV, "Peak inverse voltage(V)");
24 //Answer of first part in the book is wrong.
```

Scilab code Exa 2.19 Firing angle Power and current

```
1 //Example 2_19
2 clc;
3 clear; close;
```

```
4
5 //Given data:
6 V = 415; //V
7 Vdc = 460; //V
8 I = 200; //A
9 f = 50; //Hz
10
11 //Solution :
12 Vm=V*sqrt(2)/sqrt(3);//V
13 alfa=acosd(Vdc/(3*sqrt(3)/%pi*Vm));//degree
14 disp(alfa, "Converter firing angle(degree)");
15 Pdc=Vdc*I;/W
16 disp(Pdc/1000, "dc power(kW)");
17 IL=I*sqrt(120/180);//A
18 disp(IL, "AC line current(A)");
19 Ipeak=I; //A
20 Irms=Ipeak*sqrt(120/360); //A
21 disp(Irms, "RMS value of thyristor current(A)");
22 Iavg=Ipeak/3;/A
23 disp(Iavg, "Average thyristor current(A)");
```

Scilab code Exa 2.20 Firing angle and power factor

```
1 //Example 2_20
2 clc;
3 clear; close;
4
5 //Given data:
6 Vs=230; //V
7 f=50; //Hz
8 emf=200; //V
9 Rint=0.5; //ohm
10 I=20; //A
11
12 //Solution:
```

```
13 Vm=Vs*sqrt(2)/sqrt(3);//V
14 Vdc=emf+Rint*I;//V
15 alfa=acosd(Vdc/(3*sqrt(3)/%pi*Vm));//degree
16 disp(alfa,"Firing angle(degree)");
17 Pout=emf*I+I^2*Rint;//W
18 Is=sqrt(I^2*120/180);//A
19 cos_theta=Pout/(sqrt(3)*Vs*Is);//power factor
20 disp(cos_theta,"Input power factor(lagging)");
```

Scilab code Exa 2.21 Firing angle current and power factor

```
1 / Example 2_21
2 clc;
3 clear; close;
5 // Given data:
6 Vs = 400; //V
7 R=10; //ohm
8 f = 50; //Hz
9
10 //Solution :
11 Vm = Vs * sqrt(2) / sqrt(3); //V
12 Vdc_{max}=3*sqrt(3)*Vm/2/%pi*(1+cosd(0));//V
13 / Vdc should be Vdc_max/2
14 Vdc = Vdc_max*50/100; //V
15 alfa=acosd(1-Vdc/(3*sqrt(3)*Vm/2/%pi));//degree
16 disp(alfa, "Firing angle(degree)");
17 Idc=Vdc/R;//A
18 disp(Idc, "Average output current(A)");
19 Vrms=sqrt(3)*Vm*sqrt(3/4/%pi*(%pi-%pi/2+sin(%pi)/2))
      ; //V
20 Irms=Vrms/R; //A
21 disp(Vrms, "RMS output voltage(V)");
22 disp(Irms, "RMS output current(A)");
23 Iavg_thy = Idc/3; //A
```

```
disp(Iavg_thy, "Average thyristor current(A)");
Irms_thy=Irms/sqrt(3); //A
disp(Irms_thy, "RMS thyristor current(A)");
Eff=Vdc*Idc/(Vrms*Irms)*100; //%
disp(Eff, "Rectification Efficiency(%)");
Iline_rms=Irms*sqrt(120/180); //A
VA_in=3*Vs*Iline_rms/sqrt(3); //VA
TUF=Vdc*Idc/VA_in;
disp(TUF, "Transformer utilisation factor");
Pin_active=Irms^2*R; //W
pf_in=Pin_active/VA_in; // lagging
disp(pf_in, "Input power factor(lagging)");
// Answer in the book is wrong for some part.
```

Scilab code Exa 2.22 Firing angle current and power factor

```
1 / Example 2_2
2 clc;
3 clear; close;
4
5 //Given data:
6 Vs = 400; /V
7 R = 10; //ohm
8 f = 50; //Hz
9
10 //Solution :
11 Vm = Vs * sqrt(2) / sqrt(3); //V
12 alfa=60; //degree (For 50% output voltage)
13 Vdc=3*sqrt(3)*Vm/%pi*cosd(alfa);//V
14 alfa=acosd(Vdc/3/sqrt(3)/Vm*%pi);//V
15 disp(alfa, "Firing angle in degree");
16 Idc=Vdc/R; //A
17 disp(Idc, "Average output current(A)");
18 Vrms = sqrt(3) * Vm * sqrt(0.5 + 3 * sqrt(3) / 4 / %pi * cosd(2 * alfa)
      ));//V
```

```
19 Irms=Vrms/R; //A
20 disp(Vrms, "RMS output voltage(V)");
21 disp(Irms, "RMS output current(A)");
22 Iavg_thy = Idc/3; //A
23 disp(Iavg_thy, "Average thyristor current(A)");
24 Irms_thy=Irms/sqrt(3); //A
25 disp(Irms_thy,"RMS thyristor current(A)");
26 Eff=Vdc*Idc/(Vrms*Irms)*100; /\%
27 disp(Eff, "Rectification Efficiency (\%)");
28 Iline_rms=Irms*sqrt(120/180);//A
29 \text{ VA_in=3*Vs*Iline_rms/sqrt}(3); //VA
30 TUF=Vdc*Idc/VA_in;
31 disp(TUF, "Transformer utilisation factor");
32 Pin_active=Irms^2*R; //W
33 pf_in=Pin_active/VA_in;//lagging
34 disp(pf_in,"Input power factor(lagging)");
35 //Answer in the book is wrong for some part.
```

Scilab code Exa 2.25 Firing angle of converter

```
1 //Example 2_25
2 clc;
3 clear; close;
4
5 //Given data:
6 Vs=400; //V
7 f=50; //Hz
8 Eb=300; //V
9
10 //Solution :
11 Vdc=Eb; //V
12 Vm=Vs*sqrt(2); //V
13 //Vdc=3*sqrt(3)/2/%pi*Vm*cosd(alfa); //V
14 alfa=acosd(Vdc/(3*sqrt(3)/2/%pi*Vm)); // degree
15 disp(alfa, "Firing angle(degree)");
```

Chapter 3

Inverters

Scilab code Exa 3.1 Maximum output frequency

```
1 / Example 3_1
2 clc;
3 clear; close;
5 // Given data:
6 R=80; //ohm
7 L=8; //mH
8 C=1.2; // micro F
9
10 //Solution :
11 if R^2<4*(L*10^-3)/(C*10^-6) then
       disp("As R^2<4*L/C, Circuit will work as a
12
          series inverter.");
13 else
       disp("As R^2>4*L/C, Circuit will not work as a
14
          series inverter.");
15 end
16 omega_m=sqrt(1/(L*10^-3*C*10^-6)-R^2/4/(L*10^-3)^2);
     // \mathrm{rad/s}
17 fm=omega_m/2/%pi; //Hz
18 disp(fm, "Maximum frequency in Hz:");
```

Scilab code Exa 3.2 Frequency of output

```
1 / Example 3_2
2 clc;
3 clear; close;
5 // Given data:
6 R=80; /ohm
7 L=8; //mH
8 C=1.2; // micro F
9 Toff=14; //micro sec
10
11 //Solution :
12 omega_m=sqrt(1/(L*10^-3*C*10^-6)-R^2/4/(L*10^-3)^2);
     // rad/s
13 fm=omega_m/2/%pi; //Hz
14 T=1/fm;//sec
15 f=1/(T+2*Toff*10^-6); //Hz
16 disp(f, "Frequency of output in Hz: ");
```

Scilab code Exa 3.3 Voltage power and current

```
1 //Example 3_3
2 clc;
3 clear; close;
4
5 //Given data:
6 RL=3; //in ohm
7 V=30; //in V
8
9 //Solution:
```

```
10  Vpeak=2*V/%pi;//V
11  Vrms=Vpeak/sqrt(2);//V
12  disp(Vrms,"(a) RMS value of output voltage(V): ");
13  //VL=sqrt(2/T*integrate('(V/2)^2','t',0,T/2));//V
14  VL=V/2;//V
15  Pout=VL^2/RL;//W
16  disp(Pout,"(b) Output power(W): ");
17  Ipeak=VL/RL;//A
18  disp(Ipeak,"(c) Peak current in thyristor(A): ");
19  Iavg=Ipeak*50/100;//A
20  disp(Iavg,"(d) Average current of each thyristor(A): ");
21  Vprb=2*VL;//V
22  disp(Vprb,"(e) Peak reverse braking voltage(V): ");
```

Scilab code Exa 3.4 Voltage power and current

Scilab code Exa 3.5 Current Distortion and power

```
1 / Example 3_5
2 clc;
3 clear; close;
5 // Given data:
6 V = 200; //V
7 R=10; //in ohm
8 L=20; /mH
9 C=100; //pF
10 f = 50; //Hz
11
12 //Solution :
13 Z1=R+\%i*(2*\%pi*f*L*10^-3-1/(2*\%pi*f*C*10^-6)); //ohm
14 Z3=R+\%i*(3*2*\%pi*f*L*10^-3-1/(3*2*\%pi*f*C*10^-6));//
  Z5=R+\%i*(5*2*\%pi*f*L*10^-3-1/(5*2*\%pi*f*C*10^-6));//
15
16 Z7=R+\%i*(7*2*\%pi*f*L*10^-3-1/(7*2*\%pi*f*C*10^-6));//
17 Z9=R+\%i*(9*2*\%pi*f*L*10^-3-1/(9*2*\%pi*f*C*10^-6));//
18 I=4*V/\%pi/abs(Z1);//A
19 Irms=I/sqrt(2);//A
20 disp(Irms, "RMS load current(A)");
21 Ip=sqrt((4*V/\%pi/abs(Z1))^2+(4*V/3/\%pi/abs(Z3))
      ^2+(4*V/5/\%pi/abs(Z5))^2+(4*V/7/\%pi/abs(Z7))
```

```
^2+(4*V/9/%pi/abs(Z9))^2);//A

22 disp(Ip,"Peak value of load current(A)");
23 Ih=sqrt(Ip^2-I^2)/sqrt(2);//A

24 disp(Ih,"RMS harmonic current(A)");
25 hd=sqrt(Ip^2-I^2)/I;//harmonic distortion
26 disp(hd*100,"Harmonic distortion(%)");
27 Irms_load=Ip/sqrt(2);//A

28 Pout=Irms_load^2*R;//W

29 disp(Pout,"Total output power(W)");
30 Pout_com=Irms^2*R;//W(fundamental component)
31 disp(Pout_com,"Fundamental component of power(W)");
32 Iavg_in=Pout/V;//A
33 disp(Iavg_in,"Average input current(A)");
34 Ip_thy=Ip;//A
35 disp(Ip_thy,"Peak thyristor current(A)");
```

Scilab code Exa 3.6 Find value of C

```
1  //Example 3_6
2  clc;
3  clear; close;
4
5  //Given data:
6  R=2; //in ohm
7  XL=10; //ohm
8  f=4; //kHz
9  Toff=12; // micro sec
10
11  // Solution :
12  Toff_time=Toff*1.5; // micro sec
13  theta=2*%pi*f*10^3*Toff_time*10^-6; // radians
14  Xc=tan(theta)*R+XL; //ohm
15  C=1/(2*%pi*f*1000*Xc); //F
16  disp(C,"Value of Capacitance in F:");
```

Scilab code Exa 3.7 Current and power

```
1 / \text{Example } 3_{-}7
2 clc;
3 clear; close;
5 //Given data:
6 V = 400; /V
7 R=10; //in ohm/phase
9 //Solution:
10 Ipeak=V/2/R;/A
11 Irms=sqrt(Ipeak^2*2/3); //A
12 disp(Irms, "RMS load current in A: ");
13 Pout=Irms^2*R*3; //W
14 disp(Pout, "Power output(W): ");
15 Iavg=Ipeak/3; //A
16 disp(Iavg, "Average thyristor current(A): ");
17 Irms_thyristor=sqrt(Ipeak^2/3);//A
18 disp(Irms_thyristor, "RMS value of thyristor current(
     A) : ");
```

Scilab code Exa 3.8 Current and power

```
1 //Example 3_8
2 clc;
3 clear; close;
4
5 //Given data:
6 V=400; //V
7 R=10; //in ohm/phase
```

```
9 //Solution:
10 RL=R+R/2; //ohm
11 i1=V/RL;//A
12 i2=V/RL;//A
13 i3=V/RL;//A
14 Irms_load=sqrt(1/2/%pi*(integrate('i1^2', 'theta')
      ,0,2*\%pi/3)+integrate('(i1/2)^2','theta',2*\%pi
     /3,2*\%pi)));//A
15 disp(Irms_load, "RMS load current in A : ");
16 Pout=Irms_load^2*R*3; //W
17 disp(Pout, "Power output(W): ");
18 Ipeak=i1; //A
19 Iavg=1/2/%pi*[Ipeak*%pi/3+Ipeak/2*2*%pi/3];//A
20 disp(Iavg, "Average thyristor current(A): ");
21 Irms_thyristor=sqrt(1/2/%pi*[Ipeak^2*%pi/3+(Ipeak/2)
      ^2*2*\%pi/3]);//A
22 disp(Irms_thyristor, "RMS value of thyristor current(
     A) : ");
```

Chapter 4

Choppers

Scilab code Exa 4.1 Period of conduction and blocking

Scilab code Exa 4.2 Periods of conduction and blocking

```
1 / \text{Example } 4_2
2 clc;
3 clear; close;
5 // Given data:
6 Ra=0.06; //ohm
7 \text{ Rf} = 0.03; //\text{ohm}
8 Iav=15; //A
9 f=500; //Hz
10 Eb=100; //V
11 V = 200; //V
12
13 //Solution :
14 Vav = Iav * (Ra + Rf) + Eb; //V
15 T=1/f; //s
16 Ton=Vav*T/V; //s
17 Toff=T-Ton; //s
18 disp(Toff, Ton, "Periods of conduction & blocking(
       seconds)");
```

Scilab code Exa 4.3 Find duty cycle

```
1 //Example 4_3
2 clc;
3 clear; close;
4
5 //Given data:
6 N=800; //rpm
7 I=20; //A
8 Ra=0.5; //ohm
9 Vs=240; //V
10 Ndash=600; //rpm
11
12 //Solution:
13 Eb_800=Vs-I*Ra; //V
```

```
14 Eb_600=Eb_800*Ndash/N; //V
15 Vav=I*Ra+Eb_600; //V
16 alfa=Vav/Vs; //duty cycle
17 disp(alfa,"(a) Duty cycle");
18 //Torque reduced to half will reduce I to half
19 I=I/2; //A
20 Vav=I*Ra+Eb_600; //V
21 alfa=Vav/Vs; //duty cycle
22 disp(alfa,"(b) Duty cycle");
```

Scilab code Exa 4.4 Voltage Efficiency and resistance

```
1 / Example 4_4
2 clc;
3 clear; close;
5 // Given data:
6 V = 200; /V
7 \text{ RL=8; } //\text{ohm}
8 Vthy=2; //V
9 f=800; //Hz
10 alfa=0.4; //duty cycle
11
12 //Solution :
13 Vav=alfa*(V-Vthy); //V
14 disp(Vav, "(a) Average output voltage(V)");
15 VL=sqrt(alfa)*(V-Vthy);//V
16 disp(VL, "(b) RMS output voltage(V)");
17 Pout=VL^2/RL; //W
18 Pin=alfa*V*(V-Vthy)/RL;/W
19 Eff=Pout/Pin*100; //\%
20 disp(Eff,"(c) Chopper efficiency(\%)");
21 Rin=RL/alfa;//ohm
22 disp(Rin,"(d) Input resistance(ohm)");
23 V1=(V-Vthy)*sqrt(2)/%pi;//V
```

```
24 \operatorname{disp}(V1,"(e) \text{ RMS value of fundamental component}(V)");
```

Scilab code Exa 4.5 Chopping frequency

```
1 / \text{Example } 4_5
2 clc;
3 clear; close;
5 // Given data:
6 V = 400; /V
7 R=0; //ohm
8 L=0.05; //H
9 alfa=0.25; //duty cycle
10 delta_i=10; //A
11
12 //Solution :
13 Vav=alfa*V; //V
14 delta_T=L*delta_i/(V-Vav); //s
15 Ton=delta_T; ///s
16 T=Ton/alfa; //s
17 f=1/T; //pulses/s
18 disp(f, "Chopping frequency(pulses/s)");
```

Scilab code Exa 4.6 Find the current

```
1 //Example 4_6
2 clc;
3 clear; close;
4
5 //Given data:
6 R=4; //ohm
7 L=6/1000; //H
```

```
8 V = 200; /V
9 alfa=0.5; //duty cycle
10 f=1000; //Hz
11
12 //Solution :
13 T=1/f; //s
14 E=0; //V
15 Imax=V/R*[(1-exp(-alfa*T*R/L))/(1-exp(-T*R/L))]-E/R;
16 Imin=V/R*[(exp(alfa*T*R/L)-1)/(exp(T*R/L)-1)]-E/R; //
     A
17 disp(Imax, "Maximum current(A)");
18 disp(Imin, "Minimum current(A)");
19 Iavg = (Imax + Imin)/2; //A
20 disp(Iavg, "Average load current(A)");
21 IL=sqrt(1/alfa/T*integrate('(Imin+(Imax-Imin)*t/alfa))
     /T)^2, 't', 0, alfa*T)); //A
22 disp(IL, "RMS load current(A)");
23 Iavg_in=alfa*Iavg;//A
24 disp(Iavg_in, "Average input current(A)");
25 Irms_in=sqrt(1/T*integrate('(Imin+(Imax-Imin)*t/alfa))
      /T)^2', 't',0,alfa*T)); //A
26 disp(Irms_in,"RMS input current(A)");
```

Scilab code Exa 4.7 Find load inductance

```
1 //Example 4_7
2 clc;
3 clear; close;
4
5 //Given data:
6 V=300; //V
7 R=4; //ohm
8 f=250; //Hz
9 ripple=20; //%
```

Scilab code Exa 4.8 Find the current

```
1 / \text{Example } 4_8
2 clc;
3 clear; close;
5 // Given data:
6 Ra = 0.5; //ohm
7 L=16/1000; //H
8 V = 200; //V
9 E=100; /V
10 Imin=10; //A
11 t_off = 2/1000; //s
12
13 //Solution :
i=(V-E)/Ra*[1-exp(-Ra*t_off/L)]+Imin*exp(-Ra*t_off/L)
      );//A
15 disp(i, "Current at instant of turn off(A)");
16 t=5/1000; //s
17 i_dash=i*exp(-Ra*t/L);//A
18 disp(i_dash, "Current 5 ms after turn off(A)");
19 //Answer is wrong in the book.
```

Scilab code Exa 4.9 Speed of motor

```
1 / \text{Example } 4_9
2 clc;
3 clear; close;
5 // Given data:
6 V = 220; //V
7 \text{ N_NoLoad=1000;}//\text{rpm}
8 alfa=0.6; //duty cycle
9 I = 20; //A
10 Ra=1; //ohm
11
12 //Solution :
13 Eb1=V; //V///at no load
14 Vin=alfa*V; //V
15 Eb2=Vin-I*Ra; //V
16 N=N_NoLoad*Eb2/Eb1;/rpm
17 disp(N, "Speed of the motor(rpm)");
```

Scilab code Exa 4.10 Average load voltage

```
1 //Example 4_10
2 clc;
3 clear; close;
4
5 //Given data:
6 V=230; //V
7 Ton=25/1000; //s
8 Toff=10/1000; //s
9
10 //Solution :
11 Vavg=V*Ton/(Ton+Toff); //V
12 disp(Vavg, "Average load voltage(V)");
```

Scilab code Exa 4.11 Find curent and voltage

```
1 //Example 4_11
2 clc;
3 clear; close;
5 //Given data:
6 V = 100; //V
7 R=0.5; //ohm
8 L=1/1000; //H
9 Ton=1/1000; //s
10 T=3/1000; //s
11
12 //Solution :
13 Toff=T-Ton; //s
14 alfa=Ton/T;//duty cycle
15 E=0; /V
16 Imax=V/R*[(1-exp(-alfa*T*R/L))/(1-exp(-T*R/L))]-E/R;
17 Imin=V/R*[(exp(alfa*T*R/L)-1)/(exp(T*R/L)-1)]-E/R; //
18 disp(Imax, "Maximum current(A)");
19 disp(Imin, "Minimum current(A)");
20 Iavg = (Imax + Imin)/2; //A
21 disp(Iavg, "Average load current(A)");
22 Vavg=alfa*V; //V
23 disp(Vavg, "Average load voltage(V)");
```

Scilab code Exa 4.12 Output current and voltage

```
1 //Example 4_12
2 clc;
3 clear; close;
4
5 //Given data:
```

```
6  V=100; //V
7  E=12; //V
8  L=0.8/1000; //H
9  R=0.2; //ohm
10  T=2.4/1000; //s
11  Ton=1/1000; //s
12
13  // Solution :
14  alfa=Ton/T; // duty cycle
15  Imax=V/R*[(1-exp(-alfa*T*R/L))/(1-exp(-T*R/L))]; //A
16  Imin=V/R*[(exp(alfa*T*R/L)-1)/(exp(T*R/L)-1)]; //A
17  disp(Imax, "Maximum current(A)");
18  disp(Imin, "Minimum current(A)");
19  Vavg=alfa*V; //V
20  disp(Vavg, "Average load voltage(V)");
```

Scilab code Exa 4.13 Find series inductance

```
1 //Example 4_13
2 clc;
3 clear; close;
4
5 //Given data:
6 V=500; //V
7 I=10; //A
8 f=400; //Hz
9
10 //Solution:
11 alfa=0.5; //for maximum swing
12 //I=V/(4*f*L); //A
13 L=V/(4*f*I); //H
14 disp(L, "Series inductance(H)");
```

Scilab code Exa 4.14 Motor speed and current swing

```
1 ///Example 4_14
2 clc;
3 clear; close;
5 // Given data:
6 V = 800; //V
7 P = 300; //HP
8 Eff=0.9; // Efficiency
9 R=0.1; //ohm
10 L=100/1000; //H
11 alfa=0.2; //duty cycle
12 N=900; //\text{rpm}
13 f = 400; //Hz
14
15 // Solution :
16 Pout=P*735.5/1000; //kW
17 Pin=Pout/Eff; //kW
18 I = Pin * 1000 / V; //A
19 E=V-I*R; //V(at rated voltage)
20 Edash=V*alfa-I*R; //V(at 0.2 duty cycle)
21 Ndash=N*Edash/E;//rpm
22 disp(Ndash, "Motor speed(rpm)");
23 T=1/f; //s
24 d_{ia}=(V-alfa*V)/L*alfa*T;//A
25 disp(d_ia, "Current swing(A)");
```

Scilab code Exa 4.17 Find the current

```
1 ///Example 4_17
2 clc;
3 clear; close;
4
5 //Given data:
```

```
6 V = 200; //V
7 R=2; //ohm
8 L=10/1000; //H
9 E=20; //V
10 T=1000/10^6; //s
11 Ton = 300/10^6; //s
12
13 // Solution :
14 f = 1/T; //Hz
15 alfa_min=1/(R*T/L)*\log (1+E/V*(\exp (R*T/L)-1)); //duty
      cycle
16 alfa=Ton/T; //duty cycle
17 disp(alfa_min, "Minimum value required of alfa");
18 disp(alfa, "Actual value of alfa");
19 disp ("Load current is continuous as alfa_actual >
      alfa_min")
20 Imax=V/R*[(1-exp(-alfa*T*R/L))/(1-exp(-T*R/L))]-E/R;
21 Imin=V/R*[(\exp(alfa*T*R/L)-1)/(\exp(T*R/L)-1)]-E/R;//
22 disp(Imax, "Maximum current(A)");
23 disp(Imin, "Minimum current(A)");
24 Iavg=(alfa*V-E)/R;//A
25 disp(Iavg, "Average load current(A)");
26 \text{ Iavg\_in=alfa*(V-E)/R-L/R/T*(Imax-Imin);}/A
27 disp(Iavg_in, "Average input current(A)");
```

Scilab code Exa 4.18 RMS value of load current

```
1 ///Example 4_18
2 clc;
3 clear; close;
4
5 //Given data:
6 V=200; //V
```

```
7 T=1000/10^6; //s
8 Ton=300/10^6; //s
9 R=4; //ohm
10 L=10/1000; //H
11
12 // Solution :
13 f = 1/T; //Hz
14 Vrms1=sqrt((200/%pi*sin(2*%pi*0.3))^2+(200/%pi*((1-
      \cos(2*\%pi*0.3)))^2)/sqrt(2);/V
  Vrms2=sqrt((200/2/%pi*sin(2*%pi*2*0.3))^2+(200/2/%pi
      *((1-\cos(2*\%pi*2*0.3)))^2)/sqrt(2);/V
  Vrms3=sqrt((200/3/%pi*sin(2*%pi*3*0.3))^2+(200/3/%pi
      *((1-\cos(2*\%pi*3*0.3)))^2)/sqrt(2);/V
17 Z1=R+%i*(2*\%pi*f*L);//ohm
18 I1=Vrms1/abs(Z1); //A
19 disp(I1, "RMS value of 1st harmonic of load current (A
     )");
20 Z2=R+\%i*(2*2*\%pi*f*L);/ohm
21 I2=Vrms2/abs(Z2);//A
22 disp(I2, "RMS value of 2nd harmonic of load current (A
23 Z3=R+%i*(3*2*\%pi*f*L);//ohm
24 I3=Vrms3/abs(Z3); //A
25 disp(I3,"RMS value of 3rd harmonic of load current(A
      )");
26 \text{ Iavg=V/R*Ton/T}; //A
27 Irms=sqrt(Iavg^2+I1^2+I2^2+I3^2);//A
28 disp(Irms, "RMS value of load current(A)");
```

Scilab code Exa 4.19 Period of conduction

```
1 //Example 4_19
2 clc;
3 clear; close;
4
```

```
5 //Given data:
6 V=200; //V
7 Vav=250; //V
8 Toff=0.6*10^-3; //s
9
10 //Solution :
11 T=Vav/V*Toff; //s
12 Ton=T-Toff; //s
13 disp(Ton, "Period of conduction(seconds)");
```

Scilab code Exa 4.20 Period of conduction

```
1 //Example 4_20
2 clc;
3 clear; close;
4
5 //Given data:
6 V=150; //V
7 Vav=250; //V
8 Toff=1*10^-3; //s
9
10 //Solution :
11 T=Vav/V*Toff; //s
12 Ton=T-Toff; //s
13 disp(Ton, "Period of conduction(seconds)");
```

Chapter 6

Control of DC drives

Scilab code Exa 6.1 Proper size of motor

```
1 //Example 6_1
2 clc;
3 clear; close;
4
5 //Given data:
6 hp=[50 100 150 120 0]; //hp
7 t=[20 20 10 20 15]; //seconds
8
9 //Solution :
10 hp_rms_t=0; //initializing
11 for i=1:5
12 hp_rms_t=hp_rms_t+(hp(i)^2*t(i)); //hp
13 end
14 hp_rms=sqrt(hp_rms_t/sum(t)); //hp
15 disp(hp_rms, "Required hp(rms)");
16 disp("Motor size should be 100 hp");
```

Scilab code Exa 6.2 Thermal time constant and temperature rise

```
1 / Example 6_2
2 clc;
3 clear; close;
5 //Given data:
6 P=30; /kW
7 theta1=30; // degree C
8 t1=40; // minutes
9 theta2=45; // degree C
10 t2=80; //minutes
11 t2=2*t1; // minutes
12 Loss_fl=2; //kW
13 Loss_Cu=2.5; /kW
14
15 // Solution :
16 // \text{theta1} = \text{theta_f} * (1 - \exp(-\text{t1/T}));
17 / let \exp(-t1/T) = a
18 a=poly(0, 'a');
19 polynomial = (1-a^2)*(theta1/theta2)-1+a;
20 a=roots(polynomial)
21 a=a(2);
22 T = -t1/\log(a); //s
23 disp(T, "Thermal time constant (minutes)");
24 theta_f=theta1/(1-\exp(-t1/T));
25 disp(theta_f, "Final temperature rise(degree C)");
26 alfa=Loss_fl/Loss_Cu;
27 t=20; // minutes
28 rating=P*sqrt((1+alfa)/(1-exp(-t/T))-alfa); /kW
29 disp(rating, "20 minute rating of motor(kW)");
```

Scilab code Exa 6.3 Field current

```
1 //Example 6_3
2 clc;
3 clear; close;
```

```
4
5 //Given data:
6 V = 230; //V
7 f = 50; //Hz
8 alfa=0;//degree
9 Rf = 200; //ohm
10 Ra=0.3; //ohm
11 T=50; //N-m
12 N = 900; //rpm
13 Kv=0.8; //V/A-rad/s
14 Kt = 0.8; //N-m/A^2
15
16 // Solution :
17 Vm = V * sqrt(2); //V
18 Vf = 2*Vm/\%pi; //V
19 If=Vf/Rf; //A
20 disp(If, "Field current(A)");
21 Ia=T/(Kt*If);//A
22 omega=(2*\%pi/60)*N; //radian/s
23 Eb=Kv*omega*If; //V
24 Va=Eb+Ia*Ra; //V
25 alfa_a=acosd(Va/(Vm/\%pi)-1); //degree
26 disp(alfa_a, Firing angle of armture circuit (degree)
      ");
27 Pout=Va*Ia; //W
28 I_in=sqrt(2/(2*%pi)*integrate('Ia^2', 't', alfa_a*%pi
      /180,%pi));//A
29 VA_{in}=V*I_{in};/VA
30 pf_in=Pout/VA_in;//lagging
31 disp(pf_in, "Input power factor(lagging)");
```