RECEPTOR COMPOUND FOR PROTEIN OR PEPTIDE

Publication number: JP2001253871 (A)

Publication date: 2001-09-18

Inventor(s): HAMACHI ITARU

Applicant(s): JAPAN SCIENCE & TECH CORP Classification:

- international: G01N33/566; C07D213/36; C07K7/08; C07K7/08; G01N33/566; C07D213/00; C07K7/00; (IPC1-7); C07K7/08; C07D213/36; G01N33/566

- European:

Application number: JP2000066132 20000310

Priority number(s): JP2000066132 20000310

Abstract of JP 2001253871 (A)

PROBLEM TO BE SOLVED: To obtain an artificial receptor compound capable of selectively identifying a specific protein or peptide. SOLUTION: This receptor compound for protein or peptide is a metal complex expressed by formula (1) (X is, for example, an aromatic hydrocarbon group or a heterocyclic group each having methylene groups in two side chains and expressed by formulas 2, 3). The compound identifies protein or peptide of an &alpha -helix structure having histidine residues existing in a specific recurring cycle and combines with it and has a character inducing a more regular &alpha -helix structure.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP)	(JP)	(12) 公開特許公	<u> </u>	- T	北	#	群公	報	A)	(11)特許出版公開番号
			•							特開2001-253871
										(P2001-253871A)
									(43)公開日	(43)公開日 平成13年9月18日(2001.9.18)
(51) Int.Cl.7	難別	鐵別記号					FI			テーマコート*(参考)
C 0 7 D 213/36							C 0 7 D 213/36	22	98/81	4 C 0 5 5

4C055	4H045		OL (全8月)			31番8号		福岡県福岡市早良区昭代2-8-8-504			427 BB01 BB04	A02 CA27 CB10			
		ZNA	審査請求 未請求 淵永頃の数2	9800	科学技術振興事業団	埼玉県川口市本町4丁目1番8号	蓉	福岡市早良区昭	.675	弁理士 筒井 知	Fターム(参考) 40055 AA15 BA02 BA27 BB01 BB04	BB10 CA01 CA02 CA27	DA01 EA03	4H045 BA05 BA17	
3/36	3/566	80/	未離決	396020800	科学技	场玉県	浜地 格	福岡県	100087675	介理 士	考) 4(#	
C 0 7 D 213/36	G 0 1 N 33/566	C07K 7/08	審査請求	(71)出願人			(72)発明者		(74)代理人		Fターム(参				
		ZNA		特麗2000-66132(P2000-66132)		平成12年3月10日(2000.3.10)									
C 0 7 D 213/36	G 0 1 N 33/566	# C07K 7/08		(21) 出願番号		(22) 出願日									

(54) 【発明の名称】 タンパク質またはペプチドのレセプター化合物

(57) [要約] 「課題」 特定のタンパク質またはペプチドを選択的に 識別することのできる人エレセプター化合物を提供す る。 解決手段] 下記の一般式(1)で表わされる金属語 体から成ることを特徴とするタンパク質またはペプチド のレセプター化合物。(式(1)中、Xは、例えば式

「解水井段」 ト記の一板式 (1) で水かされるá 馬馬 体から成ることを特徴とするタンパク質またはベブチド のレセプター化合物。 (1) (1) 中、X14、例えば式 2, 3で表される。2つの側端にメチレン基を有りる折 香族炭化水素基または接素環基を表わず。) 特定の周期 でヒスチンツ種基が存在するαーヘリックス構造の多 規則的なαーヘリックス構造を誘起する性質を有する。 規則的なαーヘリックス構造を誘起する性質を有する。

のフセプター允合物。

【請求項1】 下記の一般式(1)で表わされる金属錯 【特許請求の範囲】

[化1] 体から成ることを特徴とするタンパク質またはベプチド

3

[式(1)中、Xは、2つの側端にメチレン基を有する 【請求項2】 Xが、下記の(2)に示すものの1つか 芳香族族化水素基または複素環基を表わす。〕

【発明の詳細な説明】

(0001)

【発明の属する技術分野】本発明は、人工レセプター化 合物(合成レセプター分子)の分野に属し、特に、特定 構造のタンパク質またはペプ・チドを選択的に認識し得る タンパク質またはペプチドのレセプター化合物に関す

[0002]

利用されるとともに、その研究結果に基づき各種の機能 素子、分離システム、薬剤などへの応用が期待されてい 【従来の技術】近年、生体系が示す高選択性で高精度の レセプターの研究が強んに進められてる。このような人 Lレセプター化合物は、生体内の諸プロセスや各種化学 分子認識機能を模擬し、さらに、これを発展させた人工 反応のメカニズム等を探究するための研究ツールとして

低分子化合物を認識 (識別) するためのものが多い。 高 した例なども見出される。しかし、タンパク質表面にあ る官能基を認識し結合する人工レセプターの研究は殆ど 行われていないのが現状である。この理由は、タンパク 質表面に存在する官能基は高度に溶媒和され複雑な形態 を呈しているので、分子認識にとって困難な場になって に展開されており、これを特定のDNAの検出系に応用 分子化合物については、DNAを対象とする研究が盛ん 【0003】これまで知られている人口レセプターは、 いるためと考えられる。

ら選ばれることを特徴とするレセプター化合物。

得ることができれば、その特性を利用して生体内の反応 とともに、新しい薬剤、試薬、機能素子等への開発に資 【0004】タンパク質またはペプチド、特に、その基 本構造であるαーヘリックス構造から成る特定のタンパ ク質またはペプチドを選択的に認識し得るレセプターを 機構などを解明するための強力な研究手段として用いる するものと期待されるが、その例は殆ど見当たらない。 [0000]

【発明が解決しようとする課題】本発明の目的は、これ まで殆ど例が見られない、特定のタンパク質またはペプ チドを選択的に識別することのできる人工レセプター化 合物を提供することにある。

[0000]

強く配位結合することに注目し、このDpaと亜鉛とか プのタンパク質またはペプチドのレセプター化合物を設 る)が亜鉛などの遷移金属に対して三座の配位子として ら構成される亜鉛二核錯体型化合物から成る新しいタイ ジピコリルアミン (以下、Dpaと略称することがあ 【課題を解決するための手段】本発明者は、2,2, 計、合成した。

で表わされる金属錯体から成ることを特徴とするタンパ ク質またはペプチドのレセプター化合物を提供するもの [0007]かくして、本発明は、下記の一般式(1) である。

[8000]

[483]

:(3) 001-253871 (P2001-Pm71

たで、式(1)中、Xは、2つの側端にメチレン基を 有する芳香族炭化水素基または複素環基を表わし、好ま しくは、下記の(2)に示すものの1つから選ばれる

[0000]

[化4]

[0010]

つの側端にメチレン基を有する各種の芳香族炭化水素基 サー部位を構成する。このスペーサーとなるXは、剛直性のある分子が好ましく、(2)に示されるように、2 【発明の実施の形態】 本発明のタンパク質・ペプチドレ セプター化合物を表わず式(1)においてXは、スペー または複素環基から選ばれる。

がある)が、上記のごときスペーサー(X)を介して結 あり、四面体構造をとる亜鉛イオンに対し高い会合定数 【0011】式(1)で表わされるように、本発明のス 合した構造から成る。この場合、Dpaは三座配位子で (10-8M-1)を示し、亜鉛イオンの1つの配位子が空 2'ージピコリルアミン(以下、Dpaと略称すること ペーサー化合物は、亜鉛の周りに配位した2つの2.

位となっている。

プター化合物はスペーサー (X)によって画定される距 する機能を有する。例えば、スペーサーとしてpーキシレンを有する亜鉛二核錯体は、フ個毎にヒスチジンが存 在するアミノ酸配列を有するタンパク質またはペプチド アントラセンを導入したものは4個毎にヒスチジン残基 【0012】このような亜鉛二核錯体型の本発明のレセ パク質またはペプチドに対し、上記のように空位のある に対して良好な認識能を示し、また、スペーサーとして 離に応じて、特定の周期でヒスチジン残基を有するタン 亜鉛がヒスチジン残基に特異的に結合することにより、 そのタンパク質またはペプチドを選択的に認識 (識別) をもつタンパク質またはペプチドを選択的に認識し得 【0013】このようにして、本発明のレセプター化合

クス構造を誘起する。これらのことは、後述の実施例に 示すように、円編光二色性(CD)スペクトルを測定す リックス構造のタンパク質またはペプチドを認識し、亜 鉛がヒスチジン残基のイミダゾール環に配位してそれぞ れのヒスチジン残基に結合することにより、2つのヒス 1:1の複合体を形成し、より規則性の高い α ーヘリッ すなわち、特定の周期でヒスチジン残基が存在しαーヘ チジン残基間で該タンパク質またはペプチドを架橋して 物は、水中において特定のタンパク質またはペプチド、 ることによって確かめられている。

レセプター分子(C)が生成される。レセプター化合物 となる所望の金属錯体(1)を得るには、この合成レセ プター分子(C)を亜鉛と混合するだけでよい。 すなわ ち、亜鉛は配位子置換活性であるため、平衡が非常に選 を調整した水溶液中で、合成レセプター分子と亜鉛の塩 (好ましくは硝酸亜鉛)を混合するだけで所望の錯体が ジピコリルアミン (B)と反応させることにより、スペ ーサー部位 (X)を介して2つのDpaが結合した合成 いので、適当な緩衝液(例えば、ホウ酸緩衝液)でPH することができる。図1は、本発明のレセプター化合物 の合成スキームを概示するものである。図1に示すよう に、スペーサー部位(X)のプロモ体(A)を得ること 化合物は、既知の反応を工夫することにより容易に合成 [0014]式(1)で表わされる本発明のレセプター ができれば、これを炭酸カリウムの存在下に2,2'-

【0015】加上のように、本発明のレセプター化合物 は、特定のアミノ酸配列を有するタンパク質またはペプ チドを選択的に認識しこれに結合する性質を有するの 形成される。

!(4)001-253871 (P2001-854音

で、該アミノ酸配列をブロックすることにより、そのよ うなタンパク質やペプチドが関与する生体反応の機構解 明や薬剤等の開発に当たって阻害剤として用いることが うな特定のタンパク質またはペプチドを検出したり分離 できる。さらに、本発明のレセブター化台物は、そのよ する手段として応用展開される可能性も有する。

ために実施例に沿って本発明を説明するが、本発明はこ の実施例によって制限されるものではない。なお、本明 【実施例】以下に、本発明の特徴をさらに明らかにする 細書および図面中の構造式においては、当該分野で慣用 されているように、炭素原子や水素原子を省略して示し ていることもある。 [0016]

【0017】実施例1:p-キシレンビス(2,2'-

-キシレンを有し下記の式(3)で表わされる亜鉛二核 本発明に従うレセプター化合物として、スペーサーにP 錯体(以下、pXyDpa(Zn)₂と略記する)を合 ジピコリルアミン)と亜鉛錯体の合成

[0018]

[46]

pーキシレンジプロミド712mg (2.7mmol)、TB A I 0.2g (0.54mm o 1 / 0.2e q) および炭酸カリウ ム1.1g (7.%mmol/3eq)を加え、乾燥DMF2 0m1に溶解させた。さらに、2.2'ージピコリルアミ 【0019】脱気窒素置換した100m1二ロフラスコに ン1.2g (6.0mm o 1 / 2.2e q)を加え、50℃で攪拌

[0021]

1H-NMR (250MHz、CDC13、TMS、25°C) 分析結果

	%/ppm	分裂(J _H /Hz)	積分比	理論比	帰属
	3.67	s	4.31	4Н	N
	3.81	Ø	7.11	₩	9
	7.09	ţ.	4.10	4#	7
	7.36	ש	4.94	4H	₩.
	7.63	æ	7.48	#S	3, 7
	8.50	þ	4.00%1)	#	,- 1
	※1)基準値				
[0022]			501.48	501.64	501.64(M+H)+
スペクトル(1	マススペクトル(ESI-TOF)分析結果	析結果	523.49	523.61	523.61[M+Na]+

計算値 実測値 (m/z)

[0023]

C/N 元素分析(Cg2 Hg2 Ns +0.5H2O)分析結果

元紫

MR分析における帰属位置を示すためのものである〕で ミン(pXyDpa)が生成されたことを確認した。ホ を確認した。反応が完全に進行したことを確認するため paと硝酸亜鉛を混合することにより、目的のpXyD を開始した。TLC(シリカゲル、MeOH)による反 応追跡により12時間後にp−キシレンジブロミドの消失 に、反応溶液から少量サンプリングし溶媒を減圧留去し 浄操作を行った。有機相を無水硫酸マグネシウムで乾燥 -NMR測定を行った。60時間後、残りの反応溶液につ - TOF-MS)、および元素分析により同定すること ウ酸緩衝液でpH8.0に調整した水溶液中で、pXyD た。残渣にクロロホルム10m 1を加え、蒸留水で5回洗 後、溶媒を減圧留去した。さらに減圧乾燥を行い、1日 1)により精製し、橙黄色の化合物を得た。収量1.0g により下記の式(4) (式中の数字は、後述の1H-N 表わされる pーキシレンビス (2, 2'ージピコリルア (74%)。1H-NMR、マススペクトル分析(ESI いても同様の処理を行い、カラムクロマトグラフィー (シリカ、CHC13:MeOH:TEA=80:2: pa(Zn)₂を得た。 [0020]

3

5227 118.2 0110D 7454 t. th His 超され アチド ていないことから裏付けられる。

[0600]

9

monoDpa(Zn)

[0026]図3に示されるように、p XyDpa(Z n)。の添加によりαーヘリックス構造に特徴的な222n 由来の誘起CD (248nm、267nm) (図3右上の拡大 図参照)が観測され、会合定数を算出すると10gK=

トを図3に示す。

mのCD強度の減少および2,2'ージピコリルアミン

Mとし、これに0~5等量のpXyDpa(Zn)2を 添加し、4°Cで行った。得られたCDスペクトルチャー

でp H8.0に調整した水溶液中で、ペプチド濃度を50μ

の場合は、特にHisが4個のアミノ毎に導入されてい 下記の式(6)で表わされるようにスペーサーとして9 た。その結果を図らに示す。図らに示されるように、こ るペプチド (pep (11, 15)) に対してαーヘリック ス含量の増加が確認された。このように、本発明のアク セプター化合物は、スペーサーを変えることにより認識 位および10位の側端にメチレン基を有するアントラセン (Zn)2]を合成し、実施例2と同様に、図2の4種 類のペプチドに添加しヘリックス含量の増加を観察し [0031] 実施例3:ペプチド結合試験(その2) を導入したレセプター化合物 (9, 19AnthDpa できるペプチドを変化させることができる。

9

図2に示すHisの存在位置が異なる4種類のペプチド

[0028]上記のようなCDスペクトル測定により、

-1m01)であることが明らかとなった。

量論比は、1:1(ペプチド1mo1に対してレセプタ

ろ、いずれの場合でも0.5で最大値をとることから化学

ルアミン由来の誘起CD (267nm)で評価したとこ

[0032]

αーヘリックス由来の222ππおよび2, 2'ージピコリ

中、4°Cで行った。その結果を図4に示されるように、

uMとしpH8.0 (10mMのホウ酸緩衝液)の水溶液

(8.15) ペプチド+p XyDpa (Zn) 2の濃度を100

【0027】さらに、連続変化法によるCDスペクトル 測定により化学量論比の決定を行った。測定は、pep

4.5程度であることが明らかとなった。

9,10AnthDpa(Zn)2 【図面の簡単な説明】

【図1】本発明のレセプター化合物となる亜鉛二核錯体 の合成スキームを概示する。

【0029】図5に示されるように、本発明に従うレセ

oDpa(Zn))についても評価を行った。

アター化合物PXyDpa (Zn) が、特にHisが

7個毎に導入されているペプチド (pep (8,15))

つ導入された下記の式 (5) で示される化合物 [mon

のヘリックス含量の増加量を図5に示す。この際、コン

トロール化合物として2,2'ージピコリルアミンが一

に対して、pXyDpa(Zn)₂を一等量添加した際

【図2】本発明のレセプター化合物のペプチド認識能を 調べる結合実験において用いたペプチドのアミノ酸配列

:(5)001-253871(P2001-p違沓

THV.	実測値	6.36	75.36	16.35	4.61
dira	計算值	6.48	75.44	16.50	4.57
	- □	-0.12	-0.08	-0.15	+0.04
【0024】実施例2:ペプチド結合実験	ペプチド結合美	發	73	対してαーヘリック	に対してαーヘリックス含量の増加が確認された
図2に示すようなアミノ酸配列を有するペプチドを用い	酸配列を有する	ペプチドを用		t, pXyDpa (Z	は、pXyDpa (Zn) 2の2つの2, 2'ージ
て結合実験を行った。各ペプチドは、16残基のアミノ酸	ペプチドは、1	5残基のアミノ配		アミン亜鉛錯体がス	ルアミン亜鉛錐体がスペーサーを介してちょうど
から構成され、αーヘリックス構造安定化のため、適当	ックス構造安定	E化のため、適当		0イミグゾール環に配	のイミダゾール環に配位し、ペプチドに架橋する
な位置にG1u-Lys (グルタミン酸残基-リシン残	(グルタミン部	険残基―リシン 展		ヒーヘリックス構造が	αーヘリックス構造が誘起されたためと考えられ
基)の導入、N末端のアセチル化による保護、C末端ア	やチル化による	6保護、C末端7)考察はコントロール	の考察はコントロール化合物として評価したmo
ミド型となっている。また、それぞれのペプチドには、	た、それぞれの	ハペプチドには、		oa (Zn) 74, D	pa (Zn)では、Dpaが1つしか導入されて
レセプター分子の硝酸イオンと容易に配位子交換する金	オンと容易に酌	2位子交換する4		iisに配位しても架	Hisに配位しても架橋することができず、ペプ
属配位能の高いHis (ヒスチジン残基)が異なる位置	(トスチジン残割	5) が異なる位置		(pep (8, 15)) 0	(pep (8, 15))のαーヘリックス構造が寄続
に存在する。すなわち、pep (15) は15位、pep	рер (15) В	t15位, pep	۲	ていないことから裏付けられる。	Hons.
(4,15) は4位および15位、pep (8,15) は8位お	15/1, рер (8, 15) は8位4		[0030]	

[0025] 実施例1で合成したレセプターp Xy Dp a (Zn) ₂を、pep (8, 15) ペプチドに添加しCD スペクトルを測定した。測定は、10m M のホウ酸緩衝液

ぞれ、ヒスチジン残基が存在する。

よび15位、pep(11, 15)は11位および15位に、それ

(6) 001-253871 (P2001-77]

[図3] 本発明のレセプター化合物とペプチドとの結合 [図4] 本発明のレセブター化合物とペプチドとの結合 実験において、それらの化学量論比を求めるために行っ た連続変化法によるCDスペクトルの強度変化を示す。 実験におけるCDスペクトルチャートの1例である。

[図5] 本発明のレセプター化合物が特定のアミノ酸配 列のペプチドを認識してαーヘリックス構造を誘起する ことを示す実験結果の1例である。

[図6]本発明のレセプター化合物が特定のアミノ酸配 列のペプチドを認識してαーヘリックス構造を誘起する ことを示す実験結果の別の1例である。

[図4]

[図1]

[図2]

波 板(nm)

:(7) 001-253871 (P2001-s71

[図5]

Dep(11,15) ヘリックス含素の変化

図2に示すようなアミノ酸配列を有するペプチドを用い [提出日] 平成12年12月5日(2000.12. 【0024】実施例2:ペプチド結合実験 【補正対象項目名】0024 [補正対象書類名] 明細書 [補正方法]変更 [手続補正1] 【補正內容】

[手続補正書]

(4,15) は4位および15位、pep (8,15) は8位お レセプター分子の確酸イオンと容易に配位子交換する金 属配位能の高いHis(ヒスチジン残基)が異なる位置 1、pep(4,15)については配列番号:2、pe p(8,15)については配列番号:3、pep(1 ぞれ、ヒスチジン残基が存在する。なお、各ペプチドの よび15位、pep(11,15)は11位および15位に、それ アミノ酸配列は、pep (15) については配列番号: に存在する。すなわち、pep(15)は15位、pep

1,15)については配列番号:4とする。 [補正対象書類名] 明細書 【手続補正2】

> て結合実験を行った。各ペプチドは、16残基のアミノ酸 から構成され、αーヘリックス構造安定化のため、適当 な位置にGluーLys(グルタミン酸残基-リシン残 基)の導入、N末端のアセチル化による保護、C末端ア ミド型となっている。また、それぞれのペプチドには、

[補正対象項目名] 0032 [補正方法]変更

(8) 001-253871 (P2001-71

[配列表]

```
[補正內容]
[0032]
[化8]
```

```
Ala Glu Ala Ala Lys Glu Ala Ala Ala Lys Glu Ala Ala Ala His Ala 10 \  \, 15 \  \,
9,10AnthDpa(Zn),
SQU(ENCE LISTING
<;110>; Japan Science and Technology Corporation
<;120>; Receptor compounds for proteins or peptides
<;130>; PQ12ST
<;140>; JD2000-066132
<;140>; JD2000-06132
<;160>; 4
<;210>; 1
<;210>; 1
<;210>; 16
<;210>; PET
                                                                                                                                                                                                                                                              <;21≫; Artificial Sequence
                                                                                                                                                                                                                                                                                         <;400>; 1
```

<;400c; 2</p>
Ala Giu Ala His Lys Giu Ala Ala Ala Lys Giu Ala Ala His Ala IIs Ala Giu Ala His Lys Giu Ala His Ala His Ala Giu Ala G <;210>; 2
<;21>; 16
<;21>> PRT
<;21>> Artificial Sequence

<;210>; 3 <;211>; 16

<;21>: PRT
<;21>: Artificial Sequence
<;400>; 3
Ala Giu Ala Ala Lys Giu Ala His Ala Lys Giu Ala Ala His Ala
10
11

<;210>; 4 <;211>; 16

Ala Giu Ala Ala Lys Giu Ala Ala Ala Lys His Ala Ala Ala His Ala 5 10 15 <;213>; Artificial Sequence
<;400>; 4