列型空間

Q-rad.heart

2020年12月11日

この文書は Q-rad.heart が個人的な使用を目的として作成したものであり、内容についての正確性は保証しない。また参考文献などは示されない。

記法に関する注意:

- 写像 $f\colon X\to Y$ と $A\subset X$ について、 $f[A]:=\{f(a)|a\in A\}$ と定める。
- 写像 $f\colon X\to Y$ と $g\colon Y\to Z$ について、その合成を $g\circ f$ もしくは $f\rhd g$ と表記する。

目次

第1章		3
1.1		3
	1.1.1 収束列	3
	1.1.2 列型空間·Fréchet-Urysohn 空間	5
第 2 章	Further Information	7
2.1	文献リスト	7
2.2	"Fréchet-Urysohn" の打ち方	7

第1章

1.1

1.1.1 収束列

定義 1.1.1.1

全順序集合 $P=(P_{\mathrm{Set}},\leq)$ について、P 上の順序位相とは、 P_{Set} 上に以下のように定まる位相のことである。

• $a \leq b \in P$ について $(a,b) := \{a < c < b | c \in P\}$ とおき、また $a \in P$ について $(-\infty,a) := \{c < a | c \in P\}$, $(a,\infty) := \{a < c | c \in P\}$ とおく。このとき、(a,b) もしくは $(-\infty,a)$, (a,∞) の形で表される P_{Set} の部分集合全体を $\mathcal B$ とおいたとき、 $\mathcal B$ を開基とする P_{Set} 上の位相がただ一つ存在する。

注意 1.1.1.2

以下順序数 α が与えられたとき、明示的に言及せずに α を位相空間とみなす場合は、順序位相が入れられているものとする。

観察 1.1.1.3

順序数 ω には離散位相が入っているため、位相空間 X に対して、任意の集合としての射 $\omega \to X$ は連続写像を誘導する。しかし、 $\omega+1$ には離散位相が入っていない。従って、次のような図式

について、

を可換にするような \tilde{f} が存在するとは限らない。ここで、i は $n \in \omega$ を $n \in \omega + 1$ へ移す包含写像である。

定義 1.1.1.4

位相空間 X に対して、X 上の点列とは、 ω から X への連続写像のことである。また、 $A\subset X$ に対し、A 内の点列とは、値域が A に含まれるような X 上の点列のことである。

定義 1.1.1.5

位相空間 X に対して、X 上の収束列とは、 ω から X への連続写像 f であって、以下の図式

を可換にするような \tilde{f} が存在することをいう。また、点 $x \in X$ が点列 f の収束先であるとは、このような \tilde{f} として $\tilde{f}(\omega) = x$ が成り立つようなものが取れることをいう。

観察 1.1.1.6

一般に、点列の収束先は、存在したとしても一意であるとは限らない。実際、密着位相の入った空間 X においては、任意の点列 f と任意の点 x に対し、x は f の収束先となる。

補題 1.1.1.7

位相空間 X について、X 上の点列 f と $x \in X$ を任意に取ったとき、以下は同値である。

- 1. x は f の収束先である
- 2. x の任意の近傍 U について、有限個の n を除いて $f(n) \in U$ が成り立つ

 $Proof.\ \tilde{f}: \omega + 1 \to X$ を f の延長であって $\tilde{f}(\omega) = x$ が成り立つような集合の写像とする。

 $1. \Rightarrow 2.$ を示す。 $n \neq \omega$ なる $n \in \omega + 1$ について $\tilde{f}(n) = f(n)$ が成り立ちかつ $\tilde{f}(\omega) = x$ が成り立つような写像 \tilde{f} が連続であるため、任意の x の開近傍 U について、 $\tilde{f}^{-1}[U]$ は $\omega + 1$ の開集合となる。また、 $\tilde{f}^{-1}[U]$ は $\omega \in \omega + 1$ を含むため、ある $\alpha \in \omega + 1$ に対して $(\alpha, \infty) \subset \tilde{f}^{-1}[U]$ かつ $\omega \in (\alpha, \infty)$ が成り立つ。従って、 α は自然数であり、したがって、 $f^{-1}[U]$ に含まれない元は α 以下の自然数に限られるが、これは高々有限個である。

 $2. \Rightarrow 1.$ を示す。 $x \notin U$ なる X の開集合については、 $\tilde{f}^{-1}[U] \subset \omega \subset \omega + 1$ であるため、これは $\omega + 1$ の開集合となる。 $x \in U$ なる X の開集合については、 $\tilde{f}^{-1}[U]$ は $\omega + 1$ の補有限集合となり、したがってこれは開集合である。よって \tilde{f} は連続写像である。

補題 1.1.1.8

狭義単調増加関数 $incr: \omega \to \omega$ を任意に取る。このとき、位相空間 X 上の点列 $f: \omega \to X$ と f の収束先 x が与えられたならば、 $incr \triangleright f$ は x に収束する。

 $Proof.\ x$ の近傍 U を任意に取る。このとき、有限個の n を除いて $f(n) \in U$ が成り立つ。従って、incr は 狭義単調増加であるため、有限個の n を除いて $f(\operatorname{inrc}(n)) \in U$ が成り立つ。従って $\operatorname{incr} \triangleright f$ は x に収束する。

定義 1.1.1.9

位相空間 X とその部分集合 A について、A の点列閉包とは、A 内の点列の収束先全体の集合のことである。 このとき、A の点列閉包について $[A]_{\text{seq}}$ と表記する。また、 $A \in \mathcal{P}(X)$ について $[A]_{\text{seq}} \in \mathcal{P}(x)$ を充てる写像 $[-]_{\text{seq}}$ について、これを点列閉包作用素とよぶ。

定義 1.1.1.10

位相空間 X とその部分集合 A について、 $A = [A]_{seq}$ であるようなものを点列閉集合であるという。

命題 1.1.1.11

位相空間 X とその部分集合 A,B について、以下が成り立つ。

- 1. $A \subset B$ ならば $[A]_{seq} \subset [B]_{seq}$
- 2. $A \subset [A]_{seq} \subset \overline{A}$
- 3. $[\emptyset]_{\text{seq}} = \emptyset$
- 4. $[A \cup B]_{seq} = [A]_{seq} \cup [B]_{seq}$

Proof.~1. を示す。任意の A 内の点列は B 内の点列であるため、 $[A]_{seq} \subset [B]_{seq}$ は明らかに成り立つ。

- 2. を示す。任意の $a \in A$ について、 $\omega \to \{a\} \subset X$ で表される A 内の点列は、a を収束点として持つため、 $A \subset [A]_{\text{seq}}$ が成り立つ。 $x \in [A]_{\text{seq}}$ について、 $x \notin \overline{A}$ であるとし、また x に収束する A 内の点列 f が存在すると仮定する。このとき $X \overline{A}$ は x の近傍であるため、有限個の n を除いて $f(n) \in X \overline{A}$ が成り立つ。特に、 $f(n) \notin A$ なる n が存在してしまうため、これは仮定に矛盾する。従って、 $x \in \overline{A}$ が示される。
 - 3. を示す。 \emptyset 内の点列は存在しないため、 $[\emptyset]_{seq} = \emptyset$ である。
- 4. を示す。 $A \subset A \cup B$ かつ $B \subset A \cap B$ であるため、 $[A]_{\text{seq}} \subset [A \cup B]_{\text{seq}}$ かつ $[B]_{\text{seq}} \subset [A \cup B]_{\text{seq}}$ が成り立つ。逆に、 $x \in [A \cup B]_{\text{seq}}$ なる点 x を取ると、 $A \cup B$ 内の点列 f であって、x に収束するものが取れる。ここで、 $X_A = \{n \in \omega | f(n) \in A\}$ もしくは $X_B = \{n \in \omega | f(n) \in B\}$ のいずれかは無限集合である。

 X_A が無限集合であると仮定すると、狭義単調増加関数 incr: $\omega \to X_A \subset \omega$ が存在する。このとき incr $\triangleright f$ は A 内の点列であって、x に収束する。従って $x \in [A]_{seq}$ である。同様に、 X_B は無限集合であると仮定すると、 $x \in [B]_{seq}$ が成り立つ。

系 1.1.1.12

位相空間 X の閉集合 A について、A は点列閉集合である。

1.1.2 列型空間・Fréchet-Urysohn 空間

定義 1.1.2.1

列型空間とは、位相空間 X であって、任意の部分集合 $A \subset X$ に対し以下が成り立つようなものである。

• $A = [A]_{seq}$ ならば、A は閉集合

定義 1.1.2.2

 $Fr\'{e}chet$ -Urysohn 空間とは、位相空間 X であって、任意の部分集合 $A\subset X$ に対し以下が成り立つようなものである。

• $\overline{A} = [A]_{\text{seq}}$

例 1.1.2.3

 $\mathbb R$ は Fr'echet-Urysohn 空間である。実際、 $\mathbb R$ の各点は高々可算個の開集合 U_1,U_2,\ldots からなる開近傍系を持つ。さらに $U_1 \supset U_2 \supset \ldots$ が成り立つと仮定してよい。このとき、ある $A \subset \mathbb R$ について $x \in \overline{A}$ が成り立つならば、 $U_n \cap A$ は空でない。したがって、 $x_n \in U_n \cap A$ なる点を選べる。このとき、 $n \in \omega$ に対し x_n を充てる写像は x に収束する。

例 1.1.2.4

例 1.1.2.5

第2章

Further Information

2.1 文献リスト

- 1. "列型空間のノート", 箱 (@o_ccah), https://o-ccah.github.io/docs/files/sequential-space-20200314.pdf
- 2. "Sequential Spaces, I", Dan Ma's Topology Blog, https://dantopology.wordpress.com/2010/06/21/sequential-spaces-i/
- 3. "Sequential Spaces, II", Dan Ma's Topology Blog, https://dantopology.wordpress.com/2010/06/23/sequential-spaces-ii/
- $4.\ \ {\rm "Sequential \, Spaces, III", \, Dan \, Ma's \, Topology \, Blog, \, https://dantopology.wordpress.com/2010/07/01/sequential-spaces-iii/}$
- $5.\ \ {\rm ``Sequential\,Spaces,\,IV'',\,Dan\,Ma's\,Topology\,Blog,\,https://dantopology.wordpress.com/2010/07/17/sequential-spaces-iv/}$
- "Sequential Spaces, V", Dan Ma's Topology Blog, https://dantopology.wordpress.com/2010/07/21/sequential-spaces-v/
- 7. "k-spaces, I", Dan Ma's Topology Blog, https://dantopology.wordpress.com/2010/06/27/k-spaces-i/
- 8. "k-spaces, II", Dan Ma's Topology Blog, https://dantopology.wordpress.com/2010/08/03/k-spaces-ii/
- 1. は箱さん (@o_ccah) のノート。短くまとまっている。
- 2. から 8. は、Dan Ma's Topology Blog 上の一連の列型空間、k-space もしくは Fréchet-Urysohn 空間に ついての記事群である。この Blog はよく位相空間論まわりでお世話になる。

2.2 "Fréchet-Urysohn" の打ち方

"é"の文字は、Alt キーに 0233 を打ち込むことで出力できる。