EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 21 pages. *Hierdie nasienriglyne bestaan uit 21 bladsye.*

SCE/SSE – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY		
	A mark for a correct statement (A statement mark is independent of a reason.)		
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede.)		
R	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)		
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is.)		
S/R	Award a mark if the statement AND reason are both correct.		
	Ken 'n punt toe as beide die bewering EN rede korrek is.		

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

110	112	156	164	167	169
171	176	192	228	278	360

1.1.1	Mean/ $Gemiddelde = \frac{2283}{12}$ = 190,25 Mean profit/ $Gemiddelde$ wins = R190250,00 or 190,25 thousand rands	✓ sum/som ✓ answer ✓ answer in thousands of rands (3)
1.1.2	Median = $\frac{169 + 171}{2}$ = 170 thousand rands = R170 000	✓ answer (1)
1.2	110 170 210 360 100 140 160 180 220 260 300 340 380	✓ whiskers ✓ quartiles
1.3	$IQR = Q_3 - Q_1$ = 210 - 160 thousand rands = R50 000	✓ answer
1.4	Skewed to the right or positively skewed.	✓ answer (1)
1.5.1	$\sigma = 67,04118759$ thousand rands = R67 041,19	✓ answer (1)
1.5.2	$\overline{x} - \sigma = 123,21$ thousand rands For 2 months the profit was less than one standard deviation below the mean.	✓ lower limit ✓ answer (2)

CHIRPS/TJIRPGELUIDE PER MINUTE/ PER MINUUT	AIR TEMPERATURE/ LUGTEMPERATUUR IN °C
32	8
40	10
52	12
76	15
92	17
112	20
128	25
180	28
184	30
200	35

5

DBE/2018

	SCE	S/SSE – Marking Guidelines/Nasienriglyne		
2.3	a = 3.97		$\checkmark a = 3.97$	
	b = 0.15		✓ b = 0.15	
	$\hat{y} = 3.97 + 0.15x$		✓ equation	
	-			(3)
2.4	Air temperature $\approx 15,67^{\circ}$ C	(calculator)	✓✓ answer	
				(2)
	OR			
	$\hat{y} \approx 3.97 + 0.15(80)$		✓ substitution	1
	≈ 15,97°C		✓ answer	(2)
				(2)
	OR			
	Air temperature ≈ 16°C	(graph: Accept between 15°C and 17°C)	✓✓ answer	7- 3

QUESTION/VRAAG 3
B(-2;9)

O

M

A(7;1)

C(-3;-4)

			(8; -11)	
3.1	$m_{\rm AC} = \frac{1 - (-4)}{7 - (-3)} OR \frac{-4 - 1}{-3 - 7}$		✓ substitution	
	$=\frac{5}{10}=\frac{1}{2}$		√answer	(2)
3.2.1	$y = \frac{1}{2}x + c \qquad y - y$	2		
	$1 = \frac{1}{2}(7) + c \qquad y$	_	✓ substitution M and A(7	; 1)
	$c = -\frac{5}{2} \qquad \text{OR/}OF$	<u> </u>		
	$y = \frac{1}{2}x - 2\frac{1}{2}$	$y = \frac{1}{2}x - 2\frac{1}{2}$	✓equation	(2)
	OR/OF			
	$y = \frac{1}{2}x + c \qquad y - y$	L	✓ substitution M and $C(-3; -4)$	
	$-4 = \frac{1}{2}(-3) + c$	$y - (-4) = \frac{1}{2}(x - (-3))$		
	$c = -\frac{5}{2} \qquad OR/OF$	$y + 4 = \frac{1}{2}x + \frac{3}{2}$		
	$y = \frac{1}{2}x - 2\frac{1}{2}$	$y = \frac{1}{2}x - 2\frac{1}{2}$	√equation ((2)

		_
3.2.2	$M\left(\frac{-2+8}{2}; \frac{9+(-11)}{2}\right)$ ∴ $M(3;-1)$	$\checkmark x$ coordinate $\checkmark y$ coordinate
	Equation of AC: $y = \frac{1}{2}x - 2\frac{1}{2}$ OR/OF $y = \frac{1}{2}x - 2\frac{1}{2}$ $y = \frac{1}{2}(3) - 2\frac{1}{2}$ $y = -1$ $y = 3$ \therefore M lies on AC	✓ substitution of x ✓ conclusion (4)
	OR/OF	
	$M\left(\frac{-2+8}{2}; \frac{9+(-11)}{2}\right)$ $\therefore M(3;-1)$ $m_{CM} = \frac{-4+1}{-3-3} = \frac{1}{2}$	✓ x coordinate ✓ y coordinate ✓ gradient of CM
	$\therefore m_{CM} = m_{AC} \text{ and C a common point}$	✓ reasoning & conclusion
	∴ M lies on AC	(4)
3.3	$m_{\rm BD} = \frac{9 - (-11)}{-2 - 8}$ OR $\frac{(-11) - 9}{8 - (-2)}$	✓ correct substitution
	$-2-8 \qquad 8-(-2)$ $=-2$	✓ m _{BD}
	$m_{\mathrm{BD}} \times m_{\mathrm{AC}} = \frac{1}{2} \times -2$ = -1 \therefore\text{BD} \perp AC	✓ product of gradients = -1 (3)
3.4.1	$\tan \theta = m_{\rm BD} = -2$	$\sqrt{\tan \theta} = m_{\rm RD}$
	$\therefore \theta = 116,57^{\circ}$	✓ answer
2.4.2		(2)
3.4.2	$\tan \beta = m_{BC}$ $m_{BC} = \frac{9 - (-4)}{-2 - (-3)} OR \frac{-4 - 9}{-3 - (-2)}$ $= 13$ $\beta = 85,6^{\circ}$ $\therefore \hat{CBD} = 116,57^{\circ} - 85,60^{\circ} [ext \angle \text{ of } \Delta]$ $= 30,97^{\circ}$ OR/OF $BD = \sqrt{500} \; ; BC = \sqrt{170} \& CD = \sqrt{170}$ $CD^{2} = BD^{2} + BC^{2} - 2BD.BC.\cos \hat{CBD}$ $170 = 500 + 170 - 2\sqrt{500}.\sqrt{170}.\cos \hat{CBD}$ $\cos \hat{CBD} = \frac{\sqrt{500}}{2\sqrt{170}} = 0,85749$	\checkmark m _{BC} = 13 \checkmark value of β \checkmark answer (3) \checkmark subst into cos rule \checkmark value of cosCBD
	$\hat{CBD} = 30,96^{\circ}$	✓ answer (3)
		(3)

Need an amazing tutor? www.teachme2.com/matric

Mathematics/P2/Wiskunde/V2

SCE/SSE – Marking Guidelines/Nasienriglyne

8 SCE/SSE – Marking Guidelines/Nasienriglyne

		1	
3.4.3	$AC = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$		
	$= \sqrt{(7-(-3))^2 + (1-(-4))^2} OR \sqrt{((-3)-7)^2 + ((-4)-1)^2}$	✓ correct substitution	
	$=\sqrt{100+25}$	into distance formula	
	$=\sqrt{125}=5\sqrt{5}=11.58$	√ answer	
	- V123 - 3V3 - 11,30	v aliswei	(2)
3.4.4	BM = $\sqrt{((-2)-3)^2 + (9-(-1)^2)^2} OR \sqrt{(3-(-2))^2 + ((-1)-9)^2}$	✓ correct substitution into distance formula	
	$=\sqrt{125}=5\sqrt{5}$	✓ BM	
	Area of $\triangle ABC = \frac{1}{2} base \times \bot height$		
	$=\frac{1}{2}(\sqrt{125})(\sqrt{125})$	✓ substitution into area	
	2	formula	
	= 62.5 square units	√ 62,5	
	Area of ABCD = 2×62.5	$\checkmark 2 \times \triangle ABC$	
	= 125 square units	V Z ^ ΔADC	(5)
			` ′
			[23]

4.1	$M\left(\frac{0+4}{2};\frac{0+(-6)}{2}\right)$	
	$\therefore M(2;-3)$	$\checkmark 2 \checkmark -3 \tag{2}$
4.2.1	$x^2 + y^2 = 4^2 + (-6)^2$	✓ substitution
	$= 52$ $\therefore x^2 + y^2 = 52$	✓ equation (2)
4.2.2	$(x-2)^2 + (y+3)^2 = \left(\frac{\sqrt{52}}{2}\right)^2 = 13$	✓ substitution of M
	$x^2 - 4x + 4 + y^2 + 6y + 9 - 13 = 0$	\checkmark substitution of radius = $\frac{\sqrt{52}}{2}$
	$x^2 + y^2 - 4x + 6y = 0$	✓ answer (3)
4.2.3	$m_{\rm OP} = \frac{-6}{4} = -\frac{3}{2}$	✓ m _{OP}
	$m_{\rm RS} \times m_{\rm OP} = -1$ [radius \perp tangent / raaklyn]	
	$\therefore m_{RS} = \frac{2}{3}$ $\therefore y = \frac{2}{3}x$	✓ m _{RS}
	$\therefore y = \frac{2}{3}x$	✓ equation (3)

Need an amazing tutor? www.teachme2.com/matric

Mathematics/P2/Wiskunde/V2

SCE/SSE – Marking Guidelines/Nasienriglyne

4.3	$x^2 + y^2 = 52$ and $y = \frac{2}{3}x$	
	$x^2 + \left(\frac{2}{3}x\right)^2 = 52$	✓ substitution
	$x^2 + \frac{4}{9}x^2 = 52$	
	$1\frac{4}{9}x^2 = 52$	
	$x^2 = 36$	✓ simplification
	x = 6	\checkmark value of x
	∴ R(6; 4) and N(-6; 4) ∴ NR = 12 units	✓ length of NR (4)
4.4	Let T(x; 0) be the other x intercept of the small circle Then OT is the common chord $\therefore (x-2)^2 + (0+3)^2 = 13$	$\checkmark y = 0$
	$(x-2)^2 = 13-9 = 4$ $x^2-4x+4+9=13$ $x-2=\pm 2$ OR $x=2\pm 2$ $x=2\pm 2$ $x=2\pm 2$	✓ <i>x</i> -values
	x = 4 or 0 $x = 0$ or $x = 4∴ length of common chord = OT = 4 units$	✓ answer (3) [17]

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

	Given: $\sin M = \frac{15}{17}$ $MN^2 = 17^2 - 15^2$ $8a$ 17a	✓ sketch or Pyth
	= 64 $MN = 8$ OR $N = 15a P$	✓ MN = 8
	$\therefore \tan M = \frac{15}{8}$	✓answer (3)
5.1.2	$\sin M = \frac{NP}{MP}$	
	$\frac{NP}{51} = \frac{15a}{17a}$ $\therefore NP = 45$	✓ equating trig ratios ✓ answer
		(2)
	$\cos(x - 360^{\circ}) \cdot \sin(90^{\circ} + x) + \cos^{2}(-x) - 1$ $= \cos x \cdot \cos x + \cos^{2} x - 1$	$\sqrt{\cos x} \sqrt{\cos x}$
	$= \cos^2 x + \cos^2 x - 1$	$\sqrt{\cos^2 x}$
	$= 2\cos^2 x - 1$	
	$=\cos 2x$	✓ identity
5.3.1	$\sin(2x+40^{\circ})\cos(x+30^{\circ}) - \cos(2x+40^{\circ})\sin(x+30^{\circ})$	(4)
	$\sin(2x + 40^{\circ})\cos(x + 30^{\circ}) - \cos(2x + 40^{\circ})\sin(x + 30^{\circ})$ $= \sin[(2x + 40^{\circ}) - (x + 30^{\circ})]$	✓ reduction
	$=\sin(x+10^{\circ})$	√ answer
		(2)
	$\sin(2x + 40^\circ)\cos(x + 30^\circ) - \cos(2x + 40^\circ)\sin(x + 30^\circ) = \cos(2x - 20^\circ)$	
	$\therefore \cos(2x - 20^\circ) = \sin(x + 10^\circ)$	✓ equating
	$\cos(2x - 20^\circ) = \cos[90^\circ - (x + 10^\circ)]$	✓ co ratio
	$2x - 20^{\circ} = 80^{\circ} - x + k.360^{\circ}$ or $2x - 20^{\circ} = 360^{\circ} - (80^{\circ} - x) + k.360^{\circ}$	$\sqrt{80^{\circ} - x}$ $\sqrt{280^{\circ} + x}$
	$3x = 100^{\circ} + k.360^{\circ}$ or $2x - 20^{\circ} = 280^{\circ} + x + k.360^{\circ}$ $x = 33,33^{\circ} + k.120^{\circ}$ or $x = 300^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	✓ simplification/vereenv ✓ $x = 33,33^{\circ} + k.120^{\circ}$
	$\lambda = 33,33 + 0.120$ Of $\lambda = 300 + 0.300$, $\lambda \in \mathbb{Z}$	$\sqrt{x} = 300^{\circ} + k.360^{\circ}$;
	OR/OF	$k \in \mathbb{Z}$
	(2 200) : (100)	(7)
	$\cos(2x - 20^{\circ}) = \sin(x + 10^{\circ})$	✓ equating
	$\sin[90^{\circ} - (2x - 20^{\circ})] = \sin(x + 10^{\circ})$	✓ co ratio
	$110^{\circ} - 2x = x + 10^{\circ} + k.360^{\circ} \text{ or } 110^{\circ} - 2x = 180^{\circ} - (x + 10^{\circ}) + k.360^{\circ}$ $3x = 100^{\circ} - k.360^{\circ} \text{ or } 110^{\circ} - 2x = 170^{\circ} - x + k.360^{\circ}$	$\sqrt{x+10^{\circ}} \sqrt{170^{\circ}-x}$ $\sqrt{\text{simplification/} } \sqrt{\text{vereenv}}$
	$3x = 100^{\circ} - k.360^{\circ}$ of $110^{\circ} - 2x = 170^{\circ} - x + k.360^{\circ}$ $x = 33,33^{\circ} - k.120^{\circ}$ or $x = -60^{\circ} - k.360^{\circ}$; $k \in \mathbb{Z}$	$\checkmark simplification / vereenv$ $\checkmark x = 33,33^{\circ} - k.120^{\circ}$
		$\checkmark x = -60^{\circ} - k.360^{\circ} ;$ $k \in \mathbb{Z}$
		(7)
		[18]

SCE/SSE – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 6

6.1	Period = 720°	√ ongvyor
6.1	Period = 720°	✓ answer
6.2	[2 . 2]	
0.2	$y \in [-2 ; 2]$	
	OD/OF	(2)
	OR/OF	√√ answer
	$-2 \le y \le 2$	(2)
6.3	$f(-120^{\circ}) - g(-120^{\circ})$	$\checkmark x = -120^{\circ}$
0.2		<i>n</i> 120
	$= -3\sin\left(-\frac{120^{\circ}}{2}\right) - 2\cos(-120^{\circ} - 60^{\circ})$	✓ substitution
	· · · ·	
	$=\frac{4+3\sqrt{3}}{2}$ or 4,60 (4,5980)	✓ answer
	2 01 4,00 (4,3980)	(3)
6.4.1	x-intercepts of g at $-90^{\circ} + 60^{\circ} = -30^{\circ}$	✓ value
	and $90^{\circ} + 60^{\circ} = 150^{\circ}$	✓ value
	$\therefore x \in (-30^{\circ}; 150^{\circ})$	✓ answer
	OR/OF	(3)
	x-intercepts of g at $-90^{\circ} + 60^{\circ} = -30^{\circ}$	✓ value
	and $90^{\circ} + 60^{\circ} = 150^{\circ}$	✓ value
	$-30^{\circ} < x < 150^{\circ}$	✓ answer
		(3)
6.4.2	$x \in [-180^{\circ}; -120^{\circ}) \cup (-30^{\circ}; 60^{\circ}) \cup (150^{\circ};$	[180°] \(\sqrt{[-180°; -120°)}
		✓ (-30°; 60°)
		✓ (150°; 180°]
		✓ notation for inclusive in the
	OR/OF	first/last interval
	1000 < 1000 200	(4)
	$-180^{\circ} \le x < -120^{\circ} \text{ or } -30^{\circ} < x < 60^{\circ} \text{ or } 1$	$V = 100 \le \lambda \le -120$
		$\sqrt{-30^{\circ}} < x < 60^{\circ}$
		$\checkmark 150^{\circ} < x \le 180^{\circ} 1$ mark: each
		interval
		✓ notation for inclusive in the
		first/last interval
		(4)
		[13]

7.1	In PMQ: $\tan \theta = \frac{x}{QM}$	✓ trig ratio
	$\therefore QM = \frac{x}{\tan \theta}$	✓ answer
	OR/OF	(2)
	$\frac{x}{\sin \theta} = \frac{MQ}{\sin P}$	✓ sine rule
	$MQ = \frac{x\sin P}{\sin \theta}$	
	$=\frac{x\cos\theta}{\sin\theta}$	✓ answer
	$=\frac{x}{\tan\theta}$	(2)
7.2		
7.2	In PMR: $\tan \theta = \frac{x}{MR}$ OR PMQ = PMR [AAS/HHS]	
	$\therefore MR = \frac{x}{\tan \theta} = QM$	✓ MR = QM
	$Q\hat{M}R = 180^{\circ} - 2\beta$	
	$\frac{\sin \beta}{MR} = \frac{\sin QMR}{12x}$	✓ correct substitution into the
	$\frac{12x}{MR}$	sine rule in ΔQMR
	$\sin \beta \times \frac{\tan \theta}{x} = \frac{\sin(180^\circ - 2\beta)}{12x}$	
	$\tan \theta = \frac{\sin 2\beta}{12x} \times \frac{x}{\sin \beta}$	✓ reduction
	$\tan \theta = \frac{2 \sin \beta \cos \beta}{12x} \times \frac{x}{\sin \beta}$	
		✓ double angle
	$\tan \theta = \frac{\cos \beta}{6}$	
	OR	(4)

Need an amazing tutor? www.teachme2.com/matric

Mathematics/P2/ <i>Wiskunde/V2</i> 14 SCE/ <i>SSE</i> – Marking Guidelines/ <i>Nasienriglyne</i>	DBE/2018
In PMR: $\tan \theta = \frac{x}{MR}$ OR PMQ = PMR [AAS/HHS] $MR^{2} = QM^{2} + QR^{2} - 2QM.QR \cos \beta$ $MR^{2} = \left(\frac{x}{\tan \theta}\right)^{2} + (12x)^{2} - 2\left(\frac{x}{\tan \theta}\right)(12x)(\cos \beta)$ $\frac{x^{2}}{\tan^{2} \theta} = \frac{x^{2}}{\tan^{2} \theta} + 144x^{2} - 24\left(\frac{x^{2}}{\tan \theta}\right)(\cos \beta)$ $24\left(\frac{x^{2}}{\tan \theta}\right)(\cos \beta) = 144x^{2}$ $\cos \beta = 6 \tan \theta$ $\tan \theta = \frac{\cos \beta}{6}$	✓ correct substitution into the cosine rule in ΔQMR ✓ substitution ✓ MR = QM ✓ simplification
7.3 $\frac{x}{QM} = \frac{\cos \beta}{6}$ [both equal $\tan \theta$] $x = \frac{60 \cos 40}{6}$ $x = 7,66$ The height of the lighthouse is 8 metres	√ equating $ √ subst. QM = 60 $ and β = 40° $ √ answer $ (3) [9]

QUESTION/VRAAG 8

8.1

8.1.1	$\hat{G} = x$ [\angle centre = $2 \times$ circumference / $midpts \angle = 2 \times omtreks \angle$]	✓S ✓R
	$\hat{H}_1 = x$ [alt \angle s / verwiss \angle e; KH GJ]	✓S
	$\widehat{GJH} = x$ [tan chord theorem / raaklyn koordstelling]	✓S ✓R
		(5)
8.1.2	$\hat{J}_1 + \hat{H}_3 = 180^\circ - 2x$ [sum of \angle s in Δ / som van \angle e in Δ]	
	$\therefore \hat{J}_1 = \hat{H}_3 = 90^\circ - x \qquad [\angle s \text{ opp equal sides } / \angle e \text{ teenoor gelyke sye}]$	✓S
	$\hat{x} + \hat{H}_2 = 90^{\circ} \text{ OR}$ [tan \perp radius / raaklyn \perp radius]	✓S ✓R
	$\hat{H}_2 = 90^{\circ} - x$	
	$\therefore \hat{\mathbf{H}}_2 = \hat{\mathbf{H}}_3$	(3)

16 SCE/SSE – Marking Guidelines/Nasienriglyne DBE/2018

8.2

8.2.1	$\hat{N}_2 = y$	$[\angle s \text{ in the same seg} / \angle e \text{ in dieselfde segment}]$	✓S ✓R	(2)
8.2.2(a)	$2y + y + 87^{\circ} = 180^{\circ}$ $3y = 93^{\circ}$ $y = 31^{\circ}$	[opp ∠s of cyclic quad / teenoorst ∠e v kvh]	✓S ✓R ✓S	(2)
8.2.2(b)	$T\hat{P}L = 62^{\circ}$	[ext. \angle of cyclic quad / buite $\angle v kvh$]	✓S ✓R	(3)
				(2) [15]

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION/VRAAG9

9.1

9.1 Constr: Join KZ and LY and draw h_1 from K \perp XL and h_2 ✓ constr / konstr from $L \perp XK$ *Konstr:* Verbind KZ en LY en trek h_1 vanaf K \perp XL en h_2 $vanaf L \perp XK$ Proof / Bewys: area ΔLYK area ΔXKL = area ΔXKL [common / gemeenskaplik] But area Δ LYK = area Δ KLZ [same base & height; LK || YZ / $\checkmark S \checkmark R$ *dies basis & hoogte ;* LK || YZ] area ΔXKL _ area ΔXKL area ∆LYK area ΔKLZ $\checkmark S$ $\frac{XK}{} = \frac{XL}{}$ KY -(5)

18 SCE/SSE – Marking Guidelines/Nasienriglyne

9.2

9.2.1	$\frac{RF}{FS} = \frac{RH}{HT}$ [line one side of Δ OR prop theorem; FH ST]	✓S/R
	[Lyn een sy van Δ OF eweredigh. st; FH ST] $\frac{2x-10}{9} = \frac{4}{x-2}$ $(2x-10)(x-2) = 4 \times 9$	✓ substitution
	$2x^2 - 14x - 16 = 0$	✓ standard form
	$x^{2} - 7x - 8 = 0$ $(x - 8)(x + 1) = 0$ ∴ $x = 8$ ($x \ne -1$)	✓ factors ✓ answer with rejection
	OR/OF	(5)
	$\frac{RF}{RS} = \frac{RH}{RT}$ [line one side of Δ OR prop theorem; FH ST] [Lyn een sy van Δ OF eweredigh. st; FH ST]	✓S/R
	$\frac{2x-10}{2x-1} = \frac{4}{x+2}$ $(2x-10)(x+2) = 4(2x-1)$	✓ substitution
	$2x^{2} - 14x - 16 = 0$ $x^{2} - 7x - 8 = 0$ $(x - 8)(x + 1) = 0$ $x = 8 (x \neq -1)$	✓ standard form ✓ factors ✓ answer with rejection (5)
9.2.2	$\frac{\text{area } \Delta \text{RFH}}{\text{area } \Delta \text{RST}} = \frac{\frac{1}{2} \text{RF} \times \text{RH} \sin \hat{R}}{\frac{1}{2} \text{RS} \times \text{RT} \sin \hat{R}}$	✓ numerator/teller ✓ denominator/noemer
	$= \frac{\frac{1}{2} \times 6 \times 4 \times \sin \hat{R}}{\frac{1}{2} \times 15 \times 10 \times \sin \hat{R}}$	✓ substitution
	$=\frac{24}{150}=\frac{4}{25}$	✓answer (4)
		[14]

10.1.1	$\hat{C}_1 = 90^{\circ}$ [\angle in sem	ni circle / ∠in halfsirkel]	✓ S ✓ R	
	$\hat{D}_1 = 90^{\circ}$ [line from	n centre to midpt of chord / lyn vanaf midpt van koord	✓ S ✓ R	
	$\therefore \hat{\mathbf{C}}_1 = \hat{\mathbf{D}}_1$	•	/ D	
	∴ FC OD [corresp ∠ OR/OF	∠s = ooreenkomstige ∠e =]	✓ R	(5)
	UR/UF			
	FO = OE [radii] CD = DE [given / ge	2004]	✓ S ✓ R	
		theorem / middelpuntstelling]	✓ S ✓ ✓ R	
				(5)
10.1.2	$\hat{DOE} = \hat{F}$	[corresp \angle s =; FC OD]	✓ S ✓ R	
		[∠s in the same seg]	✓ S ✓ R	
	∴ DÔE = BÂE			(4)
10.1.3	In ΔABE and ΔFCE:		. ~	•
	Ê is common		✓ S ✓ S	
	$B\hat{A}E = \hat{F}$	[proved in 10.1.2]	V S	
	$\therefore \mathbf{A}\mathbf{\hat{B}}\mathbf{E} = \mathbf{\hat{C}}_{1}$	[sum of \angle s in Δ]		
	∴ ∆ABE ∆FCE	$[\angle\angle\angle]$	✓ R	
	$\frac{AB}{BC} = \frac{AE}{BE}$	$[\parallel \Delta s]$	✓ S	
	FC $FEAB \times FE = AE \times FC$		✓ S	
	But $FE = 2 OF$	[d=2r]		
	And FC =2 OD	[midpoint theorem]	✓ S/R	
	$AB \times 2OF = AE \times 2OD$ $AB \times OF = AE \times OD$		✓ S	(7)
	$AB \times OF = AE \times OD$			(7)

$\begin{array}{c} 20\\ \text{SCE/}\textit{SSE}-\text{Marking Guidelines/}\textit{Nasienriglyne} \end{array}$

	OR/OF	
	In $\triangle ODE$ and $\triangle ABE$	
	1. Ê is common	✓ S
	2. $\widehat{DOE} = \widehat{EAB}$ (proved in 10.1.2)	✓ S
	3. $\hat{D}_1 = A\hat{B}E$ ($\angle sum \Delta$)	
	$\triangle ODE \parallel \triangle ABE (\angle \angle \angle)$	✓ R
	$\frac{EO}{EA} = \frac{OD}{AB} = \frac{ED}{EB} \qquad (\Delta s)$	✓ S
	EA AB EB	4.0
	. AD EO – OD EA	✓ S
	$\therefore AB.EO = OD.EA$ but $OE = FO$ (radii)	✓ S ✓ R
	$\therefore AB \times OF = OD \times EA$	(7)
10.0		
10.2	$\frac{AT}{TO} = \frac{AC}{CD} = \frac{3}{1}$ [line one side of \triangle OR prop theorem; FC OD]	✓ S ✓ R
	But CD = DE	
		✓ S
	$\frac{AE}{CE} = \frac{5}{2}$:: $AE = \frac{5}{2}CE$	
		✓ S
	$\frac{BE}{CE} = \frac{AE}{FE} \qquad [\Delta s]$	
	$\frac{BE}{CE} = \frac{\frac{5}{2}CE}{FE}$	/1
	$\frac{BE}{BE} = \frac{2^{BE}}{BE}$	✓ substitute
		$AE = \frac{5}{2}CE$
	$BE \times FE = \frac{5}{2}CE^2$	2
	$\therefore 5CE^2 = 2BE.FE$	
	JCE - ZDE.FE	(5)
		[21]

TOTAL/TOTAAL: 150

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

MATHEMATICS P2: JUNE 2018 MARKING GUIDELINES NOTES

QUESTION 1

1.1.1	If left as 190, 25 then penalise 1 mark.
1.1.2	If the position is used:
	$\left[\frac{1}{4}(n+1) + \frac{3}{4}(n+1)\right] \div 2$
	_ 158 + 219
	$=\frac{377}{}$
	$-{2}$
	=188,5

QUESTION 2

2.4 Do not accept estimation from the table.

QUESTION 3

3.1	No ca if $\frac{x_2 - x_1}{y_2 - y_1}$	
3.3	$MD^2 + AM^2$	
	$= \left[(3-8)^2 + (-1+11)^2 \right] + \left[(3-7)^2 + (-1-1)^2 \right]$	
	=125+20	$\checkmark AM^2 + MD^2$
	=145	
	AD^2	
	$= (7-8)^2 + (1+11)^2$	\checkmark AD ²
	=145	
	$MD^2 + AM^2 = AD^2$	$\checkmark MD^2 + AM^2 = AD^2 $ (3)

QUESTION 4

4.3	Candidates can use the rotation of P through 90° to get to R(6; 4)
4.3	If the candidate assumes that R(4 ; 6) : 1/4 marks

QUESTION 6

6.2	$y \in (-2; 2)$	1/2 marks
	-2 < y < 2	1/2 marks

QUESTION 7

7.3	There is NO penalty for incorrect rounding.
-----	---

SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION 9

9.2.2 Join FT.

$$area \, \Delta RFH = \frac{4}{10} \times (area \, \Delta RFT)$$
But area $\Delta RFT = \frac{6}{15} \times (area \, \Delta RST)$ (common vertex; = heights)

$$area \, \Delta RFH = \frac{4}{10} \times \frac{6}{15} \times (area \, \Delta RST)$$

$$\frac{area \, \Delta RFH}{area \, \Delta RST} = \frac{4}{25}$$