AMENDMENTS TO THE CLAIMS

1-15. (Cancelled)

16. (Currently Amended) A dry fractionation method for fat which comprises the steps of:

fractionating an interesterified fat or a fractionated crystalline fraction thereof, or an isomerization hydrogenated fat into a crystalline fraction (F) and a liquid fraction (L);

melting a part of the crystalline fraction (F) by raising the temperature so that G2U is melted while the glycerides having a higher melting point than G2U are not melted, wherein G denotes a saturated or trans-fatty acid residue and U denotes a cis-unsaturated fatty acid residue; and

subjecting the resulting crystalline fraction (F) to a temperature-lowering treatment followed by subjecting to solid/liquid separation to obtain a liquid fraction (FL) and a crystalline fraction (FF)₋₂

wherein the liquid fraction (L) is further fractionated into a crystalline fraction (LF) and a liquid fraction (LL), followed by partially melting the crystalline fraction (LF) by raising the temperature, and subjecting the resulting fraction (LF) to a temperature-lowering treatment followed by subjecting to solid/liquid separation to obtain a liquid fraction (LFL) and a crystalline fraction (LFF), and

wherein temperature-raising and temperature-lowering treatments and, if necessary, collection of the crystalline fraction are repeated.

17-22. (Cancelled)

- 23. (Currently Amended) The fractionation method according to claim 16 or 17, wherein the weight ratio of the crystalline fraction to the liquid fraction after fractionation or solid/liquid separation in each step is 8:2 to 2:8.
- 24. (Currently Amended) The fractionation method according to claim 16-or-17, wherein the weight ratio of the crystalline fraction to the liquid fraction after fractionation or solid/liquid separation in each step is 7:3 to 3:7.

Yuji KUWABARA et al. Serial No. 10/529,550 Attorney Docket No. 2005_0454A November 2, 2009

- 25. (Currently Amended) The fractionation method according to claim 16-or-17, wherein the proportion of the liquid component remaining in the crystalline fraction obtained in each step is 15% by weight or less at a fractionation temperature.
- **26.** (Currently Amended) The fractionation method according to claim 16-or-17, wherein the proportion of the liquid component remaining in the crystalline fraction obtained in each step is 10% by weight or less at a fractionation temperature.
- 27. (Previously Presented) The fractionation method according to claim 16, wherein crystalline fraction (F) contains G2U and glycerides having a higher melting point than G2U, wherein G denotes a saturated or trans-fatty acid residue, U denotes a cis-unsaturated fatty acid residue, and G2U denotes a triglyceride having two G residues and one U residue.
- 28. (Previously Presented) The fractionation method according to claim 16, wherein the crystalline fraction (F) is that obtained by subjecting a raw material fat containing G2U and GU2 to crystallization and solid/liquid separation to fractionate it into a crystalline fraction (F) in which G2U is concentrated and a liquid fraction (L) in which GU2 is concentrated, wherein G denotes a saturated or trans-fatty acid residue, U denotes a cis-unsaturated fatty acid residue, and G2U denotes a triglyceride having two G residues and one U residue.
- **29.** (**Previously Presented**) The fractionation method according to claim 27 or 28, wherein G2U is 1,3-di-saturated-2-unsaturated triglycerides.
- **30.** (Previously Presented) The fractionation method according to claim 29, wherein the saturated and unsaturated fatty acid residues have 16 to 22 carbon atoms.

31. (Cancelled)

32. (Previously Presented) The fractionation method according to claim 16, wherein the raw material fat is an isomerization hydrogenated fat having a trans acid content of 30% or more.