Tracking Dynamic Networks under Sampling Constraints: Supporting Materials

Ting He, Animashree Anandkumar, and Dakshi Agrawal

I. Introduction

This report contains supporting materials such as proofs, discussions, and additional numerical results, for [1]. See the original paper for terms and definitions.

II. PROOFS OF SELECTED THEOREMS

A. Relationship between Whittle's Index and Myopic Index

Proposition 2.1: For the link sampling problem, the Whittle's index (if exists) is no smaller than the myopic index, i.e., $W(x) \geq Y(x) \ \forall x \in [0, 1]$. Moreover, $W(x) \rightarrow Y(x)$ as $|p_{11} - p_{01}| \rightarrow 0$.

Proof: Due to the convexity of $V_{\beta,m}(x)$ [2], $V_{\beta,m}(T(x)) \leq xV_{\beta,m}(p_{11}) + (1-x)V_{\beta,m}(p_{01})$. Since Whittle's index must satisfy $V_{\beta,W(x)}(x; U=0) = V_{\beta,W(x)}(x; U=1)$, plugging in the Bellman equations for $V_{\beta,m}(x; U=0)$ and $V_{\beta,m}(x; U=1)$ gives $W(x) + \max(x, 1-x) \geq 1$ and hence $W(x) \geq Y(x)$. As $p_{11} \rightarrow p_{01}$, equality will be achieved.

B. Threshold Structure of the Optimal Policy for Single-Armed Bandit with Subsidy

Lemma 2.2: The optimal policy for the single-armed bandit with subsidy m is a threshold policy: $\pi_m^*(x) = 1$ if and only if $\tau^-(m) < x < \tau^+(m)$, i.e., $\mathcal{P}(m) = [0, \tau^-(m)] \cup [\tau^+(m), 1]$.

Proof: Note that $V_{\beta,m}(x; U=1)$ is linear in x. By the convexity of the value function [2], we have that $V_{\beta,m}(x; U=0)$ is also convex in x. At x=0 or 1, we have

$$\begin{cases} V_{\beta,m}(0; U = 0) = m + 1 + \beta V_{\beta,m}(p_{01}), \\ V_{\beta,m}(1; U = 0) = m + 1 + \beta V_{\beta,m}(p_{11}); \\ V_{\beta,m}(0; U = 1) = 1 + \beta V_{\beta,m}(p_{01}), \\ V_{\beta,m}(1; U = 1) = 1 + \beta V_{\beta,m}(p_{11}), \end{cases}$$

which implies that the endpoints of $V_{\beta,m}(x;U=0)$ are above, equal to, or below those of $V_{\beta,m}(x;U=1)$ for m>0, m=0, or m<0, respectively, as illustrated in Fig. 1. Due to the convexity of $V_{\beta,m}(x;U=0)$, it must have at most two intersections with $V_{\beta,m}(x;U=1)$, denoted by $\tau^-(m)$ and $\tau^+(m)$; for cases without intersection, define $\tau^-(m)=\tau^+(m)\stackrel{\Delta}{=}\tau^*$, where τ^* is the tangent point under a certain m_{\max} . Then as in Fig. 1, $V_{\beta,m}(x;U=1)>V_{\beta,m}(x;U=0)$ if and only if $x\in(\tau^-(m),\tau^+(m))$.

T. He and D. Agrawal are with IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA. E-mail: {the,agrawal}@us.ibm.com.

A. Anandkumar is with Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA, USA. E-mail: animakum@mit.edu.

Research was sponsored in part by the U.S. National Institute of Standards and Technology under Agreement Number 60NANB10D003 and a MURI funded through ARO Grant W911NF-06-1-0076.

1

Fig. 1. Threshold structure of the optimal policy: Value function $V_{\beta,m}(x;\;U=0)$ for (a) m>0, (b) m=0, and (c) m<0.

C. Pseudo-Linear Form of Value Function $V_{\beta,m}(x)$

Lemma 2.3: Given thresholds $\tau^{-}(m)$ and $\tau^{+}(m)$, define coefficients a_i , b_i (i = 1, 2) as in (3–6) and define functions

$$a(x) \stackrel{\Delta}{=} \frac{1 - \beta^{L(x)}}{1 - \beta} + \beta^{L(x) + 1} \mathcal{T}^{L(x)}(x) a_{2} + \beta^{L(x) + 1} (1 - \mathcal{T}^{L(x)}(x)) a_{1}, \tag{1}$$

$$b(x) \stackrel{\Delta}{=} f(x; L(x)) + \beta^{L(x)} + \beta^{L(x)+1} \mathcal{T}^{L(x)}(x) b_2 + \beta^{L(x)+1} (1 - \mathcal{T}^{L(x)}(x)) b_1,$$
 (2)

where $L(x) \stackrel{\Delta}{=} \mathcal{L}(x; \tau^{-}(m), \tau^{+}(m))$. Then the value function is equal to $V_{\beta,m}(x) = a(x)m + b(x)$, with end values $V_{\beta,m}(p_{01}) = a_1m + b_1$, and $V_{\beta,m}(p_{11}) = a_2m + b_2$.

Proof: The linear forms of $V_{\beta,m}(p_{01})$ and $V_{\beta,m}(p_{11})$ are obtained by simply rewriting their expressions in (29, 30). Substituting them into (28) gives the linear form of $V_{\beta,m}(x)$.

D. Piecewise-Linear Property of a(x), b(x)

Proposition 2.4: The functions a(x), b(x) defined in Lemma 3 of [1] are both piecewise-linear functions of x.

Proof: The proof is based on the piecewise-constant property of L(x) (see Fig. 2). For fixed $L(x) \equiv l$, it is easy to see that $\mathcal{T}^{L(x)}(x)$ and f(x; L(x)) are both linear in x, which implies the linearity of a(x) and b(x). Thus, each constant piece of L(x) corresponds to a linear piece of a(x) and b(x), respectively.

E. Monotonicity of $\tau^-(m)$, $\tau^+(m)$

Lemma 2.5: The thresholds $\tau^-(m)$, $\tau^+(m)$ are monotone increasing and decreasing, respectively, with m for $\beta \leq 0.5$.

Proof: It suffices to show ([3]) that for any given thresholds $(\tau^-(m'), \tau^+(m'))$ corresponding to some $m' \in [0, m_{\max}]$,

$$\frac{\partial}{\partial m} V_{\beta,m}(x; U = 0) \ge \frac{\partial}{\partial m} V_{\beta,m}(x; U = 1) \tag{7}$$

$$a_1 \stackrel{\Delta}{=} \frac{\left(1 - \beta^{L_1 + 1} \mathcal{T}^{L_1}(p_{11})\right) \left(\frac{1 - \beta^{L_2}}{1 - \beta}\right) + \beta^{L_2 + 1} \mathcal{T}^{L_2}(p_{01}) \left(\frac{1 - \beta^{L_1}}{1 - \beta}\right)}{n}, \tag{3}$$

$$b_1 \stackrel{\triangle}{=} \frac{(1 - \beta^{L_1 + 1} \mathcal{T}^{L_1}(p_{11}))(f(p_{01}; L_2) + \beta^{L_2}) + \beta^{L_2 + 1} \mathcal{T}^{L_2}(p_{01})(f(p_{11}; L_1) + \beta^{L_1})}{\eta}, \tag{4}$$

$$a_2 \stackrel{\triangle}{=} \frac{(1 - \beta^{L_2+1}(1 - \mathcal{T}^{L_2}(p_{01})))\left(\frac{1 - \beta^{L_1}}{1 - \beta}\right) + \beta^{L_1+1}(1 - \mathcal{T}^{L_1}(p_{11}))\left(\frac{1 - \beta^{L_2}}{1 - \beta}\right)}{\eta}, \tag{5}$$

$$b_2 \stackrel{\triangle}{=} \frac{(1 - \beta^{L_2+1}(1 - \mathcal{T}^{L_2}(p_{01})))(f(p_{11}; L_1) + \beta^{L_1}) + \beta^{L_1+1}(1 - \mathcal{T}^{L_1}(p_{11}))(f(p_{01}; L_2) + \beta^{L_2})}{\eta}.$$
(6)

for $x = \tau^-(m')$, $\tau^+(m')$, because this condition guarantees that for all m > m', $V_{\beta,m}(x; U = 0) \ge V_{\beta,m}(x; U = 1)$ at $x = \tau^-(m')$ and $\tau^+(m')$, implying $\tau^-(m) \geq \tau^-(m')$, $\tau^+(m) \leq \tau^+(m')$. Next, by Lemma 2.3, we have

$$V_{\beta,m}(x; U = 0) = m + \max(x, 1 - x) + \beta a(\mathcal{T}(x))m + \beta b(\mathcal{T}(x)),$$

$$V_{\beta,m}(x; U=1)=1+\beta x(a_2m+b_2)+\beta(1-x)(a_1m+b_1).$$

Substituting these into (7) and noting that a_i , b_i and $a(\cdot)$, $b(\cdot)$ are constants for fixed thresholds reduce (7) into

$$1 + \beta a(\mathcal{T}(x)) \ge \beta x a_2 + \beta (1 - x) a_1, \quad x = \tau^-(m'), \ \tau^+(m').$$
 (8)

For $\beta \leq 1/2$, $1 + \beta a(\mathcal{T}(x)) \geq 1 \geq \beta/(1-\beta)$. Meanwhile, $a_1, a_2 \le 1/(1-\beta)$ (since they are the discounted total passive time) implies $\beta/(1-\beta) \ge \beta x a_2 + \beta (1-x) a_1$, proving (8).

III. SUPPORTING STEPS IN COMPUTING WHITTLE'S **INDEX**

A. Computing Hitting Time $\mathcal{L}(x; c_1, c_2)$

For the ease of presentation, we introduce the following auxiliary functions:

$$g_{1}(y; x) \stackrel{\Delta}{=} \frac{\log(\max(y - x_{0}, 0)) - \log|x - x_{0}|}{\log|p_{11} - p_{01}|}, (9)$$

$$g_{2}(y; x) \stackrel{\Delta}{=} \frac{\log(\max(x_{0} - y, 0)) - \log|x - x_{0}|}{\log|p_{11} - p_{01}|}. (10)$$

$$g_2(y; x) \stackrel{\Delta}{=} \frac{\log(\max(x_0 - y, 0)) - \log|x - x_0|}{\log|p_{11} - p_{01}|}.$$
 (10)

Then some calculation will show that for $p_{11} > p_{01}$,

$$\mathcal{L}(x; c_1, c_2) = \begin{cases} \min \mathbb{N} \cap (g_1(c_2; x), g_1(c_1; x)) & \text{if } x \ge x_0, \\ \min \mathbb{N} \cap (g_2(c_1; x), g_2(c_2; x)) & \text{if } x < x_0, \end{cases}$$

where \mathbb{N} denotes the set of nonnegative integers. For p_{11} < p_{01} , if $x \geq x_0$,

$$\mathcal{L}(x; c_1, c_2) = \min \left(\min \mathbb{N}_0 \cap (g_2(c_1; x), g_2(c_2; x)), \\ \min \mathbb{N}_e \cap (g_1(c_2; x), g_1(c_1; x)) \right), (12)$$

where \mathbb{N}_e is the set of nonnegative even numbers $(0, 2, \ldots)$ and \mathbb{N}_0 the set of nonnegative odd numbers $(1, 3, \ldots)$. Similarly, if $x < x_0$,

$$\mathcal{L}(x; c_1, c_2) = \min \big(\min \mathbb{N}_0 \cap (g_1(c_2; x), g_1(c_1; x)), \\ \min \mathbb{N}_e \cap (g_2(c_1; x), g_2(c_2; x)) \big).$$
(13)

Sanity check: Consider the case $p_{11} > p_{01}$ (positively correlated arm). If $c_1 < x < c_2$, it is easy to see that

 $\mathcal{L}(x; c_1, c_2) = 0$. Indeed, in (11), either $g_1(c_2; x) < 0$ and $g_1(c_1; x) > 0$ (if $x \ge x_0$), or $g_2(c_1; x) < 0$ and $g_2(c_2; x) > 0$ (if $x < x_0$), yielding $\mathcal{L}(x; c_1, c_2) = 0$. If $x, x_0 \ge c_2$ or $x, x_0 \le c_1$, it is easy to see that $\mathcal{L}(x; c_1, c_2) = \infty$. Indeed, for $x, x_0 \ge c_2$, either $g_1(c_2; x) = \infty$ and $g_1(c_1; x) = \infty$ (if $x \ge x_0$), or $g_2(c_1; x) < 0$ and $g_2(c_2; x) < 0$ (if $x < x_0$); for $x, x_0 \le c_1$, either $g_1(c_2; x) < 0$ and $g_1(c_1; x) < 0$ (if $x \ge x_0$), or $g_2(c_1; x) = \infty$ and $g_2(c_2; x) = \infty$ (if $x < x_0$), both yielding $\mathcal{L}(x; c_1, c_2) = \infty$ (define $(\infty, \infty) \stackrel{\Delta}{=} \emptyset$ and $\min \emptyset \stackrel{\Delta}{=} \infty$). Similar sanity check holds for $p_{11} < p_{01}$.

Due to the integral requirement, $\mathcal{L}(x; c_1, c_2)$ is always a piecewise-constant function of x for any c_1 , c_2 and p_{01} , p_{11} , as illustrated in Fig. 2.

Fig. 2. Piece-wise constant property of $\mathcal{L}(x; c_1, c_2)$ ($c_1 = 0.35, c_2 =$ 0.65): (a) $p_{01} = 0.25$, $p_{11} = 0.65$ (positively correlated); (b) $p_{01} = 0.65$, $p_{11} = 0.25$ (negatively correlated).

B. Computing Auxiliary Function f(x; L)

First of all, note that since L may be infinity, we cannot always compute f(x; L) by the definition. Fortunately, due to its special structure, we can provide a closed-form solution as follows. The computation is based on the observation that f(x; L) is a piecewise power series. We will treat positivelycorrelated and negatively-correlated arms separately.

For positively-correlated arms (i.e., $p_{11} > p_{01}$), let $L_{1/2}$ denote the hitting time (i.e., smallest l) for $\mathcal{T}^l(x)$ to cross 1/2, if the crossing occurs within L steps. That is, $L_{1/2} \stackrel{\triangle}{=} \min(L, \mathcal{L}(x; 1/2, 1))$ if $x \leq 1/2$, and $\min(L, \mathcal{L}(x; 0, 1/2))$ if x > 1/2. It is easy to see that

$$f(x;L) = \begin{cases} \sum_{i=0}^{L_{1/2}-1} \beta^i (1 - \mathcal{T}^i(x)) + \sum_{i=L_{1/2}}^{L-1} \beta^i \mathcal{T}^i(x) & \text{if } x \leq \frac{1}{2}, \\ \sum_{i=0}^{L_{1/2}-1} \beta^i \mathcal{T}^i(x) + \sum_{i=L_{1/2}}^{L-1} \beta^i (1 - \mathcal{T}^i(x)) & \text{o.w.} \end{cases}$$

By plugging in the expression of $\mathcal{T}^l(x)$, it can be shown that for $x \leq 1/2$,

$$f(x; L) = \frac{1 - \beta^{L_{1/2}}}{1 - \beta} - \frac{x_0(1 - 2\beta^{L_{1/2}} + \beta^L)}{1 - \beta} + \frac{(x_0 - x)(1 - 2(\beta(p_{11} - p_{01}))^{L_{1/2}} + (\beta(p_{11} - p_{01}))^L)}{1 - \beta(p_{11} - p_{01})}, (14)$$

and for x > 1/2,

$$f(x; L) = \frac{\beta^{L_{1/2}} - \beta^{L}}{1 - \beta} + \frac{x_0(1 - 2\beta^{L_{1/2}} + \beta^{L})}{1 - \beta} - \frac{(x_0 - x)(1 - 2(\beta(p_{11} - p_{01}))^{L_{1/2}} + (\beta(p_{11} - p_{01}))^{L})}{1 - \beta(p_{11} - p_{01})}. (15)$$

For negatively-correlated arms (i.e., $p_{11} < p_{01}$), the even steps $\mathcal{T}^{2k}(x)$ and the odd steps $\mathcal{T}^{2k+1}(x)$ will converge toward x_0 from opposite directions. Let $\mathcal{K}(x;c_1,c_2) \triangleq \min\{k:\mathcal{T}^{2k} \in (c_1,\ c_2)\}$ denote the hitting time of $(c_1,\ c_2)$ from x by taking two steps at a time, and $\mathcal{K}_{1/2}(x)$ the number of step pairs needed to first cross 1/2 starting from x, i.e., $\mathcal{K}_{1/2}(x) \stackrel{\Delta}{=} \mathcal{K}(x;1/2,1)$ if $x \leq 1/2$, and $\mathcal{K}_{1/2}(x) \stackrel{\Delta}{=} \mathcal{K}(x;0,1/2)$ if x > 1/2. Define $K_{1/2} \stackrel{\Delta}{=} \min(\mathcal{K}_{1/2}(x),\ \lfloor (L-1)/2 \rfloor + 1)$, and $K'_{1/2} \stackrel{\Delta}{=} \min(\mathcal{K}_{1/2}(\mathcal{T}(x)),\ \lfloor (L-2)/2 \rfloor + 1)$. Note that $\mathcal{K}(x;\ c_1,\ c_2)$ (thus $K_{1/2},\ K'_{1/2}$) can be computed similarly as $\mathcal{L}(x;\ c_1,\ c_2)$ (see Section III-A). We can write $f(x;\ L)$ as

$$f(x; L) = \sum_{k=0}^{K_{1/2}-1} \beta^{2k} \max(\mathcal{T}^{2k}(x), 1 - \mathcal{T}^{2k}(x))$$
(16)

$$+ \sum_{k=K_{1/2}}^{\lfloor \frac{L-1}{2} \rfloor} \beta^{2k} \max(\mathcal{T}^{2k}(x), 1 - \mathcal{T}^{2k}(x))$$
(17)

$$+ \sum_{k=0}^{K'_{1/2}-1} \beta^{2k+1} \max(\mathcal{T}^{2k+1}(x), 1 - \mathcal{T}^{2k+1}(x))$$
(18)

$$+ \sum_{k=K'_{1/2}}^{\lfloor \frac{L-2}{2} \rfloor} \beta^{2k+1} \max(\mathcal{T}^{2k+1}(x), 1 - \mathcal{T}^{2k+1}(x))$$
(19)

This decomposition guarantees that (16) is on the same side of 1/2 as x, (17) on the other side, (18) on the same side as $\mathcal{T}(x)$, and (19) on the other side.

We now calculate (16–19) by cases. If
$$x \leq 1/2$$
, then (16) is equal to $\sum\limits_{k=0}^{K_{1/2}-1} \beta^{2k}(1-\mathcal{T}^{2k}(x))$ and (17) to $\sum\limits_{k=K_{1/2}}^{L-1} \beta^{2k}\mathcal{T}^{2k}(x)$. Calculation will yield the closed-form results as in (20–21). Otherwise (i.e., $x > 1/2$), (16) becomes $\sum\limits_{k=0}^{K_{1/2}-1} \beta^{2k}\mathcal{T}^{2k}(x)$ and (17) becomes $\sum\limits_{k=K_{1/2}}^{\lfloor \frac{L-1}{2} \rfloor} \beta^{2k}(1-\mathcal{T}^{2k}(x))$, which yield (22–23). Similarly, if $\mathcal{T}(x) \leq 1/2$, then (18) becomes $\sum\limits_{k=0}^{K'_{1/2}-1} \beta^{2k+1}(1-\mathcal{T}^{2k+1}(x))$ and (19) becomes $\sum\limits_{k=0}^{\lfloor \frac{L-2}{2} \rfloor} \beta^{2k+1}\mathcal{T}^{2k+1}(x)$, which gives the results in (24–25).

Otherwise (i.e.,
$$\mathcal{T}(x) > 1/2$$
), (18) is $\sum_{k=0}^{K'_{1/2}-1} \beta^{2k+1} \mathcal{T}^{2k+1}(x)$ and (19) is $\sum_{k=K'_{1/2}}^{\lfloor \frac{L-2}{2} \rfloor} \beta^{2k+1} (1 - \mathcal{T}^{2k+1}(x))$, yielding (26–27).

C. Computing Value Function $V_{\beta,m}(x)$

It is shown in [1] that given m, $\tau^-(m)$, and $\tau^+(m)$, we can compute the value function of the single-armed bandit with subsidy m by

$$V_{\beta,m}(x) = \frac{(1-\beta^L)m}{1-\beta} + f(x;L) + \beta^L + \beta^{L+1} \mathcal{T}^L(x) V_{\beta,m}(p_{11}) + \beta^{L+1} (1-\mathcal{T}^L(x)) V_{\beta,m}(p_{01}). (28)$$

The only unknowns left are $V_{\beta,m}(p_{11})$, $V_{\beta,m}(p_{01})$. Note that $x = p_{11}$ or p_{01} should also satisfy (28), giving us two equations with two unknowns. Solving these equations yields the results in (29, 30).

IV. ADDITIONAL NUMERICAL RESULTS

We first verify the properties of a(x), b(x) given in Proposition 2.4. As shown in Fig. 3, a(x) and b(x) are indeed piecewise-linear functions of x.

Fig. 3. Coefficients a(x), b(x) vs. x ($\beta=0.8$, $p_{01}=0.25$, $p_{11}=0.65$, m=0.4039, $\tau^-(m)=0.35$, $\tau^+(m)=0.6329$).

We then verify the convexity of $V_{\beta,m}(x)$ with respect to m, which is needed to ensure that the performance upper bounds derived in [1] are well-defined and the associated subsidies are unique. We plot the value function $V_{\beta,m}(x_0)$ (with the steady state as the initial state) for the single-armed bandit as a function of subsidy m under positive and negative correlation, respectively, as shown in Fig. 4. In both cases, $V_{\beta,m}(x)$ is a monotone increasing, convex function of m. This observation holds even if we vary the parameters (not shown). Therefore, the expressions within the minimization of the bounds are convex in m (or m), and hence the bounds are well-defined and the dual variables (subsidies) achieving them are unique.

Next, we compare the Whittle's policy and the myopic policy for the single-armed bandit with subsidy m, as shown in Fig. 5. We see that the two policies can behave differently even for a single arm; node that by the threshold structure in Lemma 2.2, the Whittle's index policy is also the optimal policy in the single-armed case. For large $|p_{11}-p_{01}|$, the myopic policy is strictly suboptimal (Fig. 5 (a)), and this holds over a range of subsidies (Fig. 5 (b)).

Finally, we verify the actual performance of the proposed policies measured by the total reward without discount:

$$x \le \frac{1}{2} : (16) = \frac{(1 - x_0)(1 - \beta^{2K_{1/2}})}{1 - \beta^2} + \frac{(x_0 - x)[1 - (\beta^2(p_{11} - p_{01})^2)^{K_{1/2}}]}{1 - \beta^2(p_{11} - p_{01})^2}, \tag{20}$$

$$(17) = \frac{x_0(\beta^{2K_{1/2}} - \beta^{2(\lfloor \frac{L-1}{2} \rfloor + 1)})}{1 - \beta^2} - \frac{(x_0 - x)[(\beta^2(p_{11} - p_{01})^2)^{K_{1/2}} - (\beta^2(p_{11} - p_{01})^2)^{\lfloor \frac{L-1}{2} \rfloor + 1}]}{1 - \beta^2(p_{11} - p_{01})^2};$$
(21)

$$x > \frac{1}{2}: (16) = \frac{x_0(1-\beta^{2K_{1/2}})}{1-\beta^2} - \frac{(x_0-x)[1-(\beta^2(p_{11}-p_{01})^2)^{K_{1/2}}]}{1-\beta^2(p_{11}-p_{01})^2}, \tag{22}$$

$$(17) = \frac{(1-x_0)(\beta^{2K_{1/2}} - \beta^{2(\lfloor \frac{L-1}{2} \rfloor + 1)})}{1-\beta^2} + \frac{(x_0-x)[(\beta^2(p_{11}-p_{01})^2)^{K_{1/2}} - (\beta^2(p_{11}-p_{01})^2)^{\lfloor \frac{L-1}{2} \rfloor + 1}]}{1-\beta^2(p_{11}-p_{01})^2}.(23)$$

$$\mathcal{T}(x) \le \frac{1}{2} : (18) = \frac{(1-x_0)\beta(1-\beta^{2K'_{1/2}})}{1-\beta^2} + \frac{(x_0-x)\beta(p_{11}-p_{01})[1-(\beta^2(p_{11}-p_{01})^2)^{K'_{1/2}}]}{1-\beta^2(p_{11}-p_{01})^2}, \tag{24}$$

$$(19) = \frac{x_0 \beta (\beta^{2K'_{1/2}} - \beta^{2(\lfloor \frac{L-2}{2} \rfloor + 1)})}{1 - \beta^2} - \frac{(x_0 - x)\beta (p_{11} - p_{01})[(\beta^2 (p_{11} - p_{01})^2)^{K'_{1/2}} - (\beta^2 (p_{11} - p_{01})^2)^{\lfloor \frac{L-2}{2} \rfloor + 1}]}{1 - \beta^2 (p_{11} - p_{01})^2};$$
(25)

$$\mathcal{T}(x) > \frac{1}{2} : (18) = \frac{x_0 \beta (1 - \beta^{2K'_{1/2}})}{1 - \beta^2} - \frac{(x_0 - x)\beta (p_{11} - p_{01})[1 - (\beta^2 (p_{11} - p_{01})^2)^{K'_{1/2}}]}{1 - \beta^2 (p_{11} - p_{01})^2}, \tag{26}$$

$$(19) = \frac{(1-x_0)\beta(\beta^{2K'_{1/2}} - \beta^{2(\lfloor\frac{L-2}{2}\rfloor+1)})}{1-\beta^2} + \frac{(x_0-x)\beta(p_{11}-p_{01})[(\beta^2(p_{11}-p_{01})^2)^{K'_{1/2}} - (\beta^2(p_{11}-p_{01})^2)^{\lfloor\frac{L-2}{2}\rfloor+1}]}{1-\beta^2(p_{11}-p_{01})^2}.$$
(27)

$$V_{\beta,m}(p_{01}) = \frac{(1 - \beta^{L_1 + 1} \mathcal{T}^{L_1}(p_{11}))v_2 + \beta^{L_2 + 1} \mathcal{T}^{L_2}(p_{01})v_1}{n},$$
(29)

$$V_{\beta,m}(p_{11}) = \frac{(1 - \beta^{L_2+1}(1 - \mathcal{T}^{L_2}(p_{01})))v_1 + \beta^{L_1+1}(1 - \mathcal{T}^{L_1}(p_{11}))v_2}{\eta},$$
(30)

 $\text{where } L_1 \stackrel{\Delta}{=} \mathcal{L}(p_{11}; \tau^-(m), \tau^+(m)), L_2 \stackrel{\Delta}{=} \mathcal{L}(p_{01}; \tau^-(m), \tau^+(m)), v_1 \stackrel{\Delta}{=} \frac{(1 - \beta^{L_1})m}{1 - \beta} + f(p_{11}; L_1) + \beta^{L_1}, v_2 \stackrel{\Delta}{=} \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01}; L_2) + \beta^{L_2} = \frac{(1 - \beta^{L_2})m}{1 - \beta} + f(p_{01};$ β^{L_2} , and $\eta \stackrel{\triangle}{=} (1 - \beta^{L_1+1} \mathcal{T}^{L_1}(p_{11}))(1 - \beta^{L_2+1}(1 - \mathcal{T}^{L_2}(p_{01}))) - \beta^{L_1+L_2+2}(1 - \mathcal{T}^{L_1}(p_{11})) \mathcal{T}^{L_2}(p_{01}).$

(a) positively-correlated arm (b) negatively-correlated arm Fig. 4. $V_{\beta,m}(x)$ vs. m ($\beta = 0.8$): (a) $p_{01} = 0.05$, $p_{11} = 0.45$; (b) $p_{01} = 0.45, p_{11} = 0.05.$

Fig. 5. Values of the optimal (Whittle's index) policy and the myopic policy for the single-armed bandit with subsidy ($\beta = 0.8$, $p_{01} = 0.01$, $p_{11} = 0.99$, 100 Monte Carlo runs).

 $R_T'(\pi) := \mathbb{E}_{\pi}[\sum_{t=1}^T R(t; \pi)]$, i.e., the expected number of times until time step T that any link is tracked correctly. Under the same settings as in Section VI.C of [1], we plot the actual performance in Fig. 6-8. We see that the comparison results between the myopic policy and the (extended) Whittle's index policy in [1] carry through to the actual performance as well.

(a) i.i.d. links (b) non-i.i.d. links

Fig. 6. Link sampling ($\beta = 0.8$, M = 60, K = 3, T = 40, $\mathbf{x}(1) = \mathbf{x}_0$, 100 Monte Carlo runs): (a) $p_{01} = 0.2$, $p_{11} = 0.9$; (b) $p_{01} = 0.999$ for fast links and 0.001 for slow links, $p_{11} = 1 - p_{01}$.

(a) lattice (b) random graph Fig. 7. Node sampling: i.i.d. links ($\beta = 0.8$, N = 36, M = 60, K = 2, $T = 40, p_{01} = 0.2, p_{11} = 0.9, \mathbf{x}(1) = \mathbf{x}_0, 100 \text{ Monte Carlo runs}.$

Fig. 8. Node sampling: non-i.i.d. links ($p_{01}=0.5$ for fast links and 0.001 for slow links, $p_{11}=1-p_{01}$, rest as in Fig. 7).

REFERENCES

- T. He, A. Anandkumar, and D. Agrawal, "Index-Based Sampling Policies for Tracking Dynamic Networks under Sampling Constraints," 2010. draft.
- [2] E. Sondik, "The optimal control of partially observable markov processes over the infinite horizon: Discounted costs," *Operations Research*, vol. 26, no. 2, pp. 282–304, 1978.
- [3] K. Liu and Q. Zhao, "Indexability of Restless Bandit Poblems and Optimality of Whittle's Index for Dynamic Multichannel Access." Submitted to IEEE Trans. on Information Theory, Jan 2010.