Reproducible Research: Peer Assessment 1

Aleksander Petrovskii aka petr0vsk March 21, 2017

1. Loading and preprocessing the data

```
project.dir <- "/home/petr0vsk/Project3"
stopifnot( dir.exists(file.path(project.dir)) )
setwd(file.path(project.dir))
steps.raw <- read.csv("activity.csv", header = TRUE)
str(steps.raw)

## 'data.frame': 17568 obs. of 3 variables:
## $ steps : int NA NA NA NA NA NA NA NA NA ...
## $ date : Factor w/ 61 levels "2012-10-01","2012-10-02",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ interval: int 0 5 10 15 20 25 30 35 40 45 ...</pre>
```

2. What is mean total number of steps taken per day?

1. Make a histogram of the total number of steps taken each day Calculate total number of steps taken each day

```
sum.steps.per.day.withNA <- steps.raw %>%
   group_by(date) %>%
   summarise_each(funs( sum(steps, na.rm = T) ), steps = steps) %>%
as.data.frame()
```

Histogram of the total number of steps taken each day

Total number of steps taken each day with NA

Calculate and report the mean and median total number of steps taken per day

```
mn.NA <- round(mean(sum.steps.per.day.withNA$steps, na.rm = T),2)
md.NA <- median(sum.steps.per.day.withNA$steps, na.rm = TRUE)
print(paste0("mean.with.NA = ", mn.NA))

## [1] "mean.with.NA = 9354.23"
print(paste0("median.with.NA = ", md.NA))

## [1] "median.with.NA = 10395"</pre>
```

3. What is the average daily activity pattern?

```
daily.activity.average.with.NA <- steps.raw %>%
    group_by(interval) %>%
summarise_each(funs(mean(steps, na.rm = TRUE)), steps = steps)
```

Make a time series plot (i.e. type = "l") of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all days (y-axis)

```
brake.vec <- as.vector(seq(1,288,by=12))
ggplot(daily.activity.average.with.NA, aes(x=interval, y=steps)) +
    geom_line(colour = "darkblue") +
    scale_x_continuous(name = "Time interval (by 5-minyt step)", limits = c(0,tail(daily.activity.average scale_y_continuous(name = "Time series plot of the average number of steps taken", limits = c(0,max ggtitle("Mean total number of steps taken per day") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(axis.text.x = element_text(angle=30, hjust=1, vjust=1)) +
stat_smooth(colour="green", method = 'loess', na.rm=TRUE)</pre>
```


Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?

```
max.steps <- daily.activity.average.with.NA[which.max(daily.activity.average.with.NA$steps),]
print(pasteO("5-minute interval, contains the maximum number of steps is ", max.steps))
## [1] "5-minute interval, contains the maximum number of steps is 835"
## [2] "5-minute interval, contains the maximum number of steps is 206.169811320755"</pre>
```

4. Imputing missing values

All of the missing values are replaced with mean value for that 5-minute interval Calculate and report the total number of missing values in the dataset

```
print(paste0("Total number of missing values in the datase = ", sum(is.na(steps.raw$steps)) ))
```

[1] "Total number of missing values in the datase = 2304"

Create a new dataset that is equal to the original dataset but with the missing data filled in replace NA with median of interval

```
}#for..
steps.raw.clear$steps <- unlist(steps.raw.clear$steps)</pre>
```

5. Are there differences in activity patterns between weekdays and weekends?

What is sum of total number of steps taken per day?

```
sum.steps.per.day.withoutNA <- steps.raw.clear %>%
    group_by(date) %>%
    summarise_each(funs( sum(steps) ), steps = steps)
mn <- round(mean(sum.steps.per.day.withoutNA$steps),2)
md <- median(sum.steps.per.day.withoutNA$steps)</pre>
```

Histogram of the total number of steps taken each day without NA

```
par(mfrow=c(2,1))
hist(sum.steps.per.day.withoutNA$steps, main = "Total number of steps after missing values are imputed"
     breaks = 61,
     xlab = "Steps per day", ylab = "Frequency",
     col="black",
     border="white")
box(bty="1")
grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray")
rug(sum.steps.per.day.withoutNA$steps)
hist(sum.steps.per.day.withNA$steps, main = "Total number of steps taken each day with NA",
    breaks = 61.
     xlab = "Steps per day", ylab = "Frequency",
     col="black",
     border="white")
box(bty="1")
grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray")
rug(sum.steps.per.day.withNA$steps)
```

Total number of steps after missing values are imputed

Total number of steps taken each day with NA

Print mean and median

```
print(paste0("mean.with.NA = ", mn.NA))

## [1] "mean.with.NA = 9354.23"

print(paste0("median.with.NA = ", md.NA))

## [1] "median.with.NA = 10395"

print(paste0("after missing values are imputed mean = ", mn))

## [1] "after missing values are imputed mean = 10766.18"

print(paste0("after missing values are imputed median = ", md))
```

[1] "after missing values are imputed median = 10766.13"

Find the day of the week for each measurement in the dataset

Panel plot comparing the average number of steps taken per 5-minute interval across weekdays and weekends mean.steps.raw.clear <- steps.raw.clear %>% group_by(interval,weekday) %>%

```
summarise_each(funs( mean(steps)), steps = steps, weekday = weekday)
ggplot(mean.steps.raw.clear, aes(x=interval, y=steps)) +
    geom_line(colour = "darkblue") +
    facet_grid(weekday ~ .) +
    geom_point(size=0.7) +
    scale_x_continuous(name = "Time interval (by 5-minyt step)", limits = c(0,tail(mean.steps.raw.clear scale_y_continuous(name = "Time series plot of the average number of steps taken", limits = c(0,max ggtitle("Mean total number of steps taken per day") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(axis.text.x = element_text(angle=30, hjust=1, vjust=1)) +
    stat_smooth(colour="green", method = 'loess', na.rm=TRUE)
```

Mean total number of steps taken per day

