Analyse numérique

Filière: SMI/SMA-S4

2019-2020

(Devoir # 1)

Donnez des solutions complètes et justifiées. Le devoir est à remettre le 30 avril 2020.

Exercice 1: On suppose que $(x_0, y_0) = (0, 0), (x_1, y_1) = (1, 1), (x_2, y_2) = (2, 4)$ et $(x_3, y_3) = (3, 9)$.

- 1. Quelle est l'avantage de la méthode d'interpolation par les différences divisées de Newton par rapport à celle de Lagrange?
- 2. Déterminer par la méthode de Newton côtes, le polynôme d'interpolation P_3 de degré 3 tel que $P(x_i) = y_i$, i = 0, 1, 2, 3.
- 3. Soit $f(x) = x^2$, pour i = 0, 1, 2 et 3, on a $f(x_i) = y_i$. Déterminer une borne de l'erreur d'interpolation polynomiale.

Exercice 2 : On considère le système linéaire (S) : Ax = b, avec

$$A = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix}, \qquad b = \begin{pmatrix} -10 \\ 6 \\ 7 \end{pmatrix} \qquad \text{et} \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

- 1. Expliquer le principe des méthodes indirectes pour résoudre un système linéaire Ax = b. On cherche à résoudre le système (S) par les méthodes directes.
- 2. Donner les matrices de Gauss A_1 et A_2 qui permettent de transformer (S) en un système (S_2) de la forme Ux = c où U est triangulaire supérieure. Donner U et c.
- 3. Donner la solution x en solvant le système (S_2) .
- 4. Décomposer la matrice A sous la forme A = LU où L est triangulaire inférieure.
- 5. Donner la solution x en utilisant la décomposition LU.
 - On cherche à résoudre le système (S) par les méthodes indirectes de type : $x_{k+1} = Mx_k + N$.
- 6. Ecrire la matrice d'itération B_J de la méthode de Jacobi associée à la matrice A. Calculer le rayon spectral $\rho(B_J)$ de la matrice B_J . La méthode de Jacobi converge-t-elle?
- 7. Ecrire la matrice d'itération B_{GS} de la méthode de Gauss-Seidel associée à la matrice A. Calculer le rayon spectral $\rho(B_{GS})$ de la matrice B_{GS} . La méthode de Gauss-Seidel converge-t-elle?
- 8. En cas de convergence des 2 méthodes, quelle est celle qui converge plus rapidement?
- 9. En partant du vecteur initial $x^{(0)} = {}^{t}(0,0,0)$, calculer les trois premières itérations des méthodes de Jacobi et de Gauss-Seidel. Que remarque-t-on?

Exercice 3 : Le but de cet exercice est de calculer la racine cubique de 8. Soit f la fonction définie sur \mathbb{R}_+^* par

$$f(x) = x^3 - 8. (1)$$

- 1. Montrer que l'équation (1) admet une solution unique $\alpha \in [0, +\infty[$.
- 2. En utilisant la méthode de la dichotomie sur l'intervalle [1, 5], estimer le nombre d'itérations nécessaires pour calculer le zéro α de la fonction f avec une tolérance $\varepsilon = 10^{-5}$.
- 3. Posons $g_1(x) = \frac{2}{3} \left(\frac{4}{x^2} + x \right)$. Montrer que $|g_1'(x)| < 1, \ \forall \ x \in [2, \ 4] \ \text{et que } g_1([2, \ 4]) \subset [2, \ 4]$.
- 4. En déduire que la méthode du point fixe définie par g_1 converge pour tout choix $x_0 \in [2, 4]$.
- 5. Calculer l'ordre de convergence de la méthode du point fixe définie par g_1 .
- 6. Expliciter la méthode de Newton pour la recherche du zéro de la fonction f. Que remarque-t-on?
- 7. Pour $-\frac{2}{3} < \lambda < 0$ posons $g_2(x) = \lambda \left(x \frac{8}{x^2} \right) + x$. Soit $[a, b] \subset [0, +\infty[$ tel que $g_2 : [a, b] \longrightarrow [a, b]$ de classe \mathcal{C}^1 . Montrer que $\alpha = 2$ est un point fixe attractif pour g_2 dans [a, b].
- 8. Que remarque-t-on pour $\lambda = -\frac{1}{3}$.
- 9. Que se passe t'il si $\lambda = -\frac{2}{3}$.
- 10. Soient $\lambda \in \mathbb{R}$, $a_0 = 1$, $a_1 = 2$ et $a_2 = 3$. Calculer explicitement le polynôme d'interpolation de Lagrange P_{g_2} associé à g_2 aux points a_0 , a_1 et a_2 .
- 11. Montrer que $|g_2(x) P_{g_2}(x)| \le \frac{|g_2^{(3)}(\xi)|}{9\sqrt{3}}$ avec $\xi \in [a_0, a_2]$.
- 12. Pour $\lambda=-14$, calculer l'ordre de convergence de la méthode du point fixe définie par P_{g_2} .
- 13. Pour $x_0 = 2.75$ calculer les trois premières itérations de la suite $(x_{n+1} = g_1(x_n))_{n \ge 0}$.
- 14. Pour $y_0 = 2.75$ et $\lambda = -14$, calculer les trois premières itérations de la suite $(y_{n+1} = P_{g_2}(y_n))_{n \ge 0}$.