Certificate of mailing or transmission

certify that this correspondence is being facsimile itted to the USPTO or deposited with the United States FRADE Postal Service with sufficient postage as first class mail in an envelope addressed to "Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450" [37 CFR 1.8(a)]

Date: March 22, 2007

/Sonia V. McVean/ Sonia V. McVean **Docket Number** 60303.32

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Takeshi NISHIUCHI et al.

Application No.: 10/642,324

Confirmation No.: 2834

Filing or 371(c) Date: August 18, 2003

Title: COMPOUND FOR RARE-EARTH BONDED MAGNET

AND BONDED MAGNET USING THE COMPOUND

Art Unit: 1742

Examiner: J. Sheehan

TRANSMITTAL OF PRIORITY DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Enclosed herewith is a certified copy of Japanese Patent Application No. 2001-354315 filed November 20, 2001, from which priority is claimed under 35 U.S.C. 119 and Rule 55b or benefit is claimed under 35 U.S.C. 120. Acknowledgement of the priority document is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

Dated: March 22, 2007

/Stephen R. Funk #57,751/ Attorneys for Applicant(s)

KEATING & BENNETT, LLP 8180 Greensboro Drive, Suite 850 Tyson's Corner, VA 22102

Telephone: (703) 637-1480

Facsimile: (703) 637-1499

Joseph R. Keating Registration No. 37,368

Stephen R. Funk Registration No. 57,751

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed 4 ith this Office.

出願年月日 Date of Application:

2001年11月20日

出願番号 Application Number:

特願2001-354315

パリ条約による外国への出願 三用いる優先権の主張の基礎 三なる出願の国コードと出願 音号

J P 2 0 0 1 - 3 5 4 3 1 5

Ae country code and number your priority application, be used for filing abroad for the Paris Convention, is

Paris Convention.

人

株式会社NEOMAX

: :plicant(s):

願

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2007年 3月 9日

1/

【書類名】

特許願

【整理番号】

SS01129A

【提出日】

平成13年11月20日

【あて先】

特許庁長官 殿

【国際特許分類】

H01F 1/08

H01F 1/053

H01F 1/147

B22F 3/00

C22C 38/00

C22C 45/02

【発明者】

【住所又は居所】

大阪府三島郡島本町江川2丁目15番17号 住友特殊

金属株式会社 山崎製作所内

【氏名】

西内 武司

【発明者】

【住所又は居所】

大阪府三島郡島本町江川2丁目15番17号 住友特殊

金属株式会社 山崎製作所内

【氏名】

金清 裕和

【発明者】

【住所又は居所】 大阪府三島郡島本町江川2丁目15番17号 住友特殊

金属株式会社 山崎製作所内

【氏名】

広沢 哲

【特許出願人】

【識別番号】

000183417

【氏名又は名称】 住友特殊金属株式会社

【代理人】

【識別番号】

100101683

【弁理士】

【氏名又は名称】 奥田

誠司

【手数料の表示】

【予納台帳番号】 082969

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9908800

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 希土類系ボンド磁石用コンパウンドおよびそれを用いたボンド 磁石

【特許請求の範囲】

【請求項1】 希土類合金粉末と結合剤とを含む希土類系ボンド磁石用コンパウンドであって、

前記希土類合金粉末は、組成式($Fe_{1-m}T_m$) $100-x-y-zQ_xR_yM_z$ (Tは Co_{1} 3よび Ni_{1} 3からなる群から選択された1種以上の元素、QはB3よびC3からなる群から選択された元素であってB5を必ず含む少なくとも1種の元素、R4はL4 および Ce_{1} 5を実質的に含まない1種以上の希土類元素、M4は Ti_{1} 7、およびE5 付からなる群から選択された金属元素であって、E7 が含む少なくとも1種の金属元素、組成比率E7、E8 よびE9 が、E9 で表現される組成を有し、E10 E12 に対して、E12 に対して、E12 に対して、E13 に対して、E14 に対して、E16 に対して、E16 に対して、E17 に対して、E18 に対して、E18 に対して、E19 に対して、E19 に対して、E19 に対して、E19 に対して、E19 に対して、E19 に対して、E19 に対して、E19 に対して、E19 に対し、E19 に対して、E19 に対し、E19 に対し、E19 に対し、E19 に対し、E19 に対し、E19 に対し、E19 に対し、E19 に対し、E19 に対し、E1

【請求項2】 前記Ti含有ナノコンポジット磁石粉末粒子のアスペクト比は0.3以上1.0以下の範囲内にある、請求項1に記載の希土類系ボンド磁石用コンパウンド。

【請求項3】 前記希土類合金粉末は、粒径が53μm以下の前記Ti含有 ナノコンポジット磁石粉末粒子を10質量%以上含む、請求項1または2記載の 希土類系ボンド磁石用コンパウンド。

【請求項4】 前記希土類合金粉末は、粒径が38μm以下の前記Ti含有ナノコンポジット磁石粉末粒子を8質量%以上含む、請求項1から3のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項5】 前記希土類合金粉末は、前記Ti含有ナノコンポジット磁石 粉末粒子を70質量%以上含む、請求項1から4のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項6】 前記希土類合金粉末が実質的に前記Ti含有ナノコンポジット磁石粉末粒子のみからなる請求項1から5のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項7】 前記希土類合金粉末は、300℃以上350℃以下の加熱温度で大気中に1時間放置した後の酸素含有率が0.24質量%未満である、請求項1から6のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項8】 大気中に400℃で10分間放置した際の酸化による質量増加が0.26質量%未満である、請求項1から7のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項9】 前記結合剤が熱可塑性樹脂である請求項1から8のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項10】 前記熱可塑性樹脂の軟化点が180℃以上である請求項9 に記載の希土類系ボンド磁石用コンパウンド。

【請求項11】 前記希土類合金粉末を前記希土類合金粉末と前記結合剤との合計の60質量%~99質量%含む、請求項1から9のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項12】 前記希土類合金粉末は、60 μ m以上300 μ m以下の厚さの急冷合金を粉砕することによって作製された粉末粒子からなる請求項1から11のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項13】前記希土類合金粉末は、ストリップキャスト法を用いて得られた急冷合金を粉砕することによって作製された粉末粒子からなる請求項1から12のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項14】 カップリング剤をさらに含む、請求項1から13のいずれかに記載の希土類系ボンド磁石用コンパウンド。

【請求項15】 請求項1から14のいずれかに記載の希土類系ボンド磁石 用コンパウンドを用いて作製されたボンド磁石。

【請求項16】 射出成形法によって作製された、請求項15に記載のボンド磁石。

【請求項17】 前記希土類合金粉末の充填率が60体積%以上である請求

項16に記載のボンド磁石。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、希土類系ボンド磁石用コンパウンドおよびそれを用いた希土類系ボンド磁石に関する。

[0002]

【従来の技術】

現在、ボンド磁石は、各種モータ、アクチュエータ、スピーカ、メータ、フォーカスコンバージェンスリング等の電気機器に用いられている。ボンド磁石とは、磁石用合金粉末(磁石粉末)と結合剤(樹脂や低融点金属)を混合し、成形固化することによって製造された磁石である。

[0003]

従来、ボンド磁石用の磁石粉末として、Magnequench International社(以下、「MQI社」と略する。)から販売されているFe-R-B系磁石粉末、いわゆるMQ粉が広く用いられている。MQ粉は、一般に、Fe100-a-bBaRb(Fe t鉄、Bは硼素、Rは、Pr、Nd、Dy、およびTbからなる群から選択された少なくとも1種の希土類元素)の組成式で表され、この組成式中のaおよびbが、1原子% \le a \le 6原子%、および10原子% \le b \le 25原子%の関係を満足しており、Rの含有率bが高い希土類合金粉末である。

[0004]

MQ粉に代表される従来のボンド磁石用の合金粉末は、溶融した原料合金(すなわち「合金溶湯」)を急冷凝固させることによって作製される。この液体急冷法(メルトクエンチング(melt-quenching)法)として、単ロール法(典型的にはメルトスピニング(melt-spining)法)が用いられることが多い。単ロール法は、合金溶湯を回転する冷却ロールに接触させることによって冷却し凝固させる方法である。この方法による場合、急冷合金の形状は冷却ロールの表面周速度方向に沿って薄帯(リボン)状に伸びたものとなる。このようにして作製した急冷合金薄帯は、熱処理された後、例えば平均粒径が300μm以下(典型的には約

150 μm) になるように粉砕され、永久磁石用の希土類合金粉末となる。以下では、液体急冷法で作製された上述の希土類合金粉末を単に「従来の急冷磁石粉末」と称することとし、後述のナノコンポジット磁石粉末を含まないものとする。

[0005]

従来の急冷磁石粉末と樹脂(ここでは、ゴムまたはエラストマを含むものとする。)とを混合し、ボンド磁石用コンパウンド(以下、単に「コンパウンド」と呼ぶ。)が調製される。このコンパウンドには、潤滑剤やカップリング剤などの添加剤が混合されることもある。

[0006]

このコンパウンドを、例えば圧縮成形、押出し成形や射出成形によって所望形状に成形し、永久磁石の成形体(「永久磁石体」とも言う。)としてのボンド磁石が得られる。また、圧縮成形や押出し成形によって作製されるボンド磁石は、結合剤の含有率が少ないので、磁石粉末を腐食から守るために、さらに表面処理が施されることもある。

[0007]

一方、近年、ボンド磁石に用いられる磁石粉末として、比較的コストが安いという利点から、鉄基希土類合金(特にFe-R-B系)のナノコンポジット磁石(「交換スプリング磁石」と言われることもある。)粉末が用いられつつある。Fe-R-B系のナノコンポジット磁石は、例えばFe3BやFe23B6等の軟磁性相である鉄基硼化物の微結晶と硬磁性相であるR2Fe14B相の微結晶とが同一金属組織内において均一に分布し、両者が交換相互作用によって磁気的に結合した鉄基合金永久磁石である(例えば、本願出願人による特願平11-362103号および特願2000-371788号参照)。

[0008]

ナノコンポジット磁石は、軟磁性相を含みながらも、軟磁性相と硬磁性相との間の磁気的結合(交換相互作用)によって優れた磁気特性を発揮する。また、Nd等の希土類元素Rを含まない軟磁性相が存在する結果、全体として希土類元素Rの含有量が低く抑えられる(典型的には、Rの含有率が4.5原子%)。この

ことは、磁石の製造コストを低減し、磁石を安定に供給するうえでも好都合である。また、酸素に対して活性なRの含有率が低いので、耐食性にも優れている。なお、このナノコンポジット磁石も、液体急冷法によって作製される。このナノコンポジット磁石を所定の方法によって粉砕し、ナノコンポジット磁石粉末を得る。

[0009]

【発明が解決しようとする課題】

しかしながら、上述の合金粉末(磁粉)を用いて作製された従来の希土類系ボンド磁石用コンパウンドには、以下の問題があった。

[0010]

従来の急冷磁石粉末(例えばMQ粉)は、優れた磁気特性に寄与する均一な微細組織を得るために、合金溶湯を高速で急冷する必要がある。例えば、従来の急冷磁石粉末を単ロール法によって作製する場合には、ロール表面周速度を20m/秒以上にし、厚さ 50μ m以下の(典型的には $20\sim40\mu$ m)の急冷合金(典型的には薄帯状)を形成する。

$[0\ 0\ 1\ 1]$

しかし、このようにして得られた急冷合金を粉砕して得られた粉末は、アスペクト比が 0.3 未満の粒子が大部分を占めている。このような形状の粉末と結合剤とを混合して得られた希土類系ボンド磁石用コンパウンド(以下、「コンパウンド」という。)は、例えば射出成形時の流動性が悪い。そのため、より高温および/または高圧で成形する必要があったり、用いられる樹脂の種類や使用方法が制限されたり、流動性を確保するために磁石粉末の含有量が制限されることがあった。また、複雑形状のものや特開平 11-206075号に記載されているような磁石埋没型ロータを備える IPM(Interior Permanent Magnet)型モータのように、小さな間隙(例えば 2mm幅)に充填されるボンド磁石を成形することは困難であった。なお、本明細書において、アスペクト比は粒子の(短軸方向サイズ/長軸方向サイズ)を指すものとする。

[0012]

さらに、従来の急冷磁石粉末(例えばMQ粉)を用いたコンバウンドは、磁粉

が大気中で容易に酸化されるので、射出成形時の加熱によって磁粉自身の特性が 劣化し、最終的に十分な磁気特性を有するボンド磁石を得られないことがある。 本発明者の検討によると、この酸化は、特に従来の急冷磁石粉末が粒径が53 μ mm以下の粒子を含有する場合に顕著に起こる。

$[0\ 0\ 1\ 3]$

従って、従来の急冷磁石粉末を用いたコンパウンドでボンド磁石を製造する場合、成形時の加熱による酸化を抑制するために成形温度が制限され、その結果、流動性などの成形性を犠牲にしていた。

[0014]

さらに、射出成形や押し出し成形に用いられるコンパウンドは、コンパウンドを製造する工程で、結合剤である熱可塑性樹脂を溶融するために加熱されるので、製造工程中にコンパウンド中の磁石粉末が酸化され、磁気特性が低下することもあった。

[0015]

また、射出成形後の成形体をランナー部から分断すると、成形体の分断部において、磁石粉末が樹脂から露出される、さらに、磁粉自身が分断された表面が露出されることがある。このように、磁石粉末が露出された部分があると、この部分から腐食が進行しやすいという問題がある。この問題は、樹脂と磁石粉末とのなじみ(濡れ性)が悪い場合に顕著であり、材料の組み合わせだけなく、樹脂と磁石粉末材料との混合工程に依存する。すなわち、従来の急冷磁石粉末は、アスペクト比が小さいので、コンパウンドの製造工程において均一に混合され難く、その結果として、得られたコンパウンドは、樹脂と磁石粉末とのなじみが十分でないことがあった。また、磁石粉末のアスペクト比が大きいので、混合工程におけるせん断力によって磁石粉末が破壊され新たな表面が形成されやすく、その結果、得られたコンパウンド中の磁石粉末が酸化されやすいという問題もあった。

[0016]

一方、従来のFe-R-B系のナノコンポジット磁石粉末は、希土類元素の含有率が比較的低く、典型的には硬磁性相の体積比率が30%以下である。そのために磁気特性(例えば保磁力 H_{cJ})が従来の急冷磁石粉末(MQ粉など)に比べ

低いので、それだけを用いたコンパウンドでは、十分な磁気特性を有するボンド 磁石を形成することは難しい。例えばハードディスクドライブ装置(HDD)の モータ用のボンド磁石を得ることができなかった。従って、上述した従来のナノ コンポジット磁石粉末は従来の急冷磁石粉末と混合して用いる必要があり、その 結果として、従来の急冷磁石粉末を用いたコンパウンドが有する上記の問題を完全に排除することは難しかった。

[0017]

本発明は、かかる諸点に鑑みてなされたものであり、その主な目的は、ボンド磁石を成形する際の加熱による磁気特性の劣化を抑制するとともに、流動性などの成形性を改善し、優れた磁気特性と耐食性を有する希土類系ボンド磁石を得ることができる希土類系ボンド磁石用コンパウンドを提供することである。

$[0\ 0\ 1\ 8]$

【課題を解決するための手段】

[0019]

前記Ti含有ナノコンポジット磁石粉末粒子のアスペクト比は0.3以上1. 0以下の範囲内にあることが好ましい。

8/

[0020]

前記希土類合金粉末は、粒径が53μm以下の前記Ti含有ナノコンポジット 磁石粉末粒子を10質量%以上含むことが好ましい。

[0021]

前記希土類合金粉末は、粒径が38μm以下の前記Ti含有ナノコンポジット 磁石粉末粒子を8質量%以上含むことが好ましい。

[0022]

前記希土類合金粉末は、前記Ti含有ナノコンポジット磁石粉末粒子を70質量%以上含むことが好ましい。

[0023]

前記希土類合金粉末が実質的に前記Ti含有ナノコンポジット磁石粉末粒子の みからなることが好ましい。

[0024]

前記希土類合金粉末は、300℃以上350℃以下の加熱温度で大気中に1時間放置した後の酸素含有率が0.24質量%未満であることが好ましい。

[0025]

大気中に400℃で10分間放置した際の酸化による質量増加が0.26質量 %未満であることが好ましい。

[0026]

前記結合剤は熱可塑性樹脂であってもよい。

$[0\ 0\ 2\ 7\]$

前記熱可塑性樹脂の軟化点が180℃以上であることが好ましい。

[0028]

前記希土類合金粉末を前記希土類合金粉末と前記結合剤との合計の60質量% ~99質量%含むことが好ましい。

[0029]

前記希土類合金粉末は、60μm以上300μm以下の厚さの急冷合金を粉砕することによって作製された粉末粒子からなることが好ましい。

[0030]

前記希土類合金粉末は、ストリップキャスト法を用いて得られた急冷合金を粉砕することによって作製された粉末粒子からなることが好ましい。

$[0\ 0\ 3\ 1]$

カップリング剤をさらに含むことが好ましい。

[0032]

本発明による希土類系ボンド磁石は、上記のいずれかの希土類系ボンド磁石用 コンパウンドを用いて作製される。ある好ましい実施形態による希土類系ボンド 磁石は、射出成形法によって形成される。このとき、前記希土類合金粉末の充填 率は60体積%以上であることが好ましい。

[0033]

【発明の実施の形態】

本発明による希土類系ボンド磁石用コンパウンドは、それが含む希土類合金粉末(以下、「磁粉」と略す。)が、Ti含有ナノコンポジット磁石粉末(以下、「Ti含有ナノコンポジット磁粉」と略す。)を2質量%以上含んでいる。

[0034]

Ti含有ナノコンポジット磁粉は、組成式(Fe1-mTm)100-x-y-zQxRyMz(TはCo3よびNiからなる群から選択された1種以上の元素、QはB3おび Cx0 からなる群から選択された元素であってBx0 を必ず含む少なくとも1種の元素、Rx1 にx2 になる群から選択された元素であってBx2 が出たった。MidTx3 にないHx4 からなる群から選択された金属元素であって、Tx4 を必ず含む少なくとも1種の金属元素、組成比率x5 になる場合であって、Tx5 を必ず含む少なくとも1種の金属元素、組成比率x7 になる場合であって、Tx6 を必ず含む少なくとも1種の金属元素、組成比率x7 になる場合であって、Tx7 にないが、それぞれ、x8 に表現される組成を有し、且つ、x9 に表現される組成を有し、且つ、x1 に表現される組成を有し、理な性相の平均結晶粒径が x1 に対ける組成が表現である組織を有している。Tx1 に対ける組成が、それぞれ、x2 に対ける組成式における組成比率x3 によることががが、それぞれ、x3 によることが好ましく、x4 に対することが更に好ましい。なお、x5 によることが好ましく、x5 に対することが更に好ましい。なお、x6 によることが好ましく、x6 には、x7 に表記を満足することが列ました。

ましい。

[0035]

本発明によるコンパウンドが含むTi含有ナノコンポジット磁粉は、上述のような組成および組織を有しているので、硬磁性相と軟磁性相とが磁気的な交換相互作用によって結合しており、希土類元素の含有率が比較的低いにも拘わらず、従来の急冷磁石粉末と同等またはそれ以上の優れた磁気特性を有し、さらにはFe3B相を主相とする従来のナノコンポジット磁石粉末よりも、優れた磁気特性を有する(特に保磁力 H_{cJ} が高い)。具体的には、本発明によるコンパウンドが含むTi含有ナノコンポジット磁粉は、最大エネルギー積(BH)max:70kJ/m3以上、保磁力 H_{cJ} :700kA/m3以上、残留磁束密度 B_r :0.7T1以上を実現でき、さらには、最大エネルギー積(BH)m2、90kJ/m3以上、保磁力 H_{cJ} :800kA/m3以上、残留磁束密度 B_r :0.8T3以上を有し得る(例えば、表3参照)。

[0036]

このように、Ti含有ナノコンポジット磁粉は従来の急冷磁石粉末と同等以上の磁気特性を有しているので、従来の急冷磁石粉末(例えばMQ粉)の代わりにTi含有ナノコンポジット磁粉を含むコンパウンドは従来のコンパウンドと同等以上の磁気特性を発揮し得る。勿論、Ti含有ナノコンポジット磁粉のみを磁粉として含むコンパウンドとして良いし、従来の急冷磁石粉末および/または従来のナノコンポジット磁粉と混合して用いても良い。後に実施例を示しながら説明するように、本発明によるコンパウンドは、Ti含有ナノコンポジット磁粉を磁粉全体の2質量%以上含むことによって、射出成形や押出し成形において優れた成形性や流動性を示し、優れた磁気特性を有するボンド磁石が比較的容易に得られる等の効果が得られる。コンパウンド中の磁粉の5質量%以上をTi含有ナノコンポジット磁粉とすることがさらに好ましい。

[0037]

本発明によるコンパウンドが含むTi含有ナノコンポジット磁粉は、後に詳述するように、Tiの働きによって、従来の急冷磁石粉末よりも遅い冷却速度(102~106℃/秒)で合金溶湯を冷却することによっても作製され得る。例えば

、ロール表面周速度を15m/秒以下にしても磁気特性に優れた合金を得ること ができる。従って、ストリップキャスト法を用いて従来よりも厚い急冷合金(薄 帯)、例えば60μm以上の急冷合金を作製しても上記の金属組織を得ることが できる。ストリップキャスト法は、量産性に優れるので、安定した磁気特性を有 するTi含有ナノコンポジット磁粉が比較的安価に製造され得る。

[0038]

ストリップキャスト法を用いて、例えば、60μm以上300μm以下の厚さ の急冷合金を形成し、磁粉の平均粒径が70μmとなるように、例えばピンディ スクミルを用いて粉砕することによって、アスペクト比が0.3以上1.0以下 の粒子からなる粉末を容易に得ることができる。また、Ti含有ナノコンポジッ トの急冷合金は、従来の急冷合金よりも微細な結晶粒によって構成されているた め、ランダムな方位に沿って破断されやすく、等軸的な(アスペクト比が1に近 い)粉末粒子が生成されやすい。従って、粉砕条件などを調整することによって 、アスペクト比が0.4以上の粒子からなる粉末も容易に得ることもできる。

[0039]

アスペクト比が0.3以上、より好ましくは0.4以上の粒子からなるTi含 有ナノコンポジット磁粉を含むコンパウンドは、アスペクト比が 0.3未満の従 来の急冷磁石粉末を用いたコンパウンドに比べて成形性や流動性に優れている。 アスペクト比が 0. 3以上 1. 0以下の T i 含有ナノコンポジット磁粉をコンパ ウンド中の磁粉全体に対して2質量%以上混合することによって流動性を改善す ることができる。さらに優れた流動性を得るためには、コンパウンド中の磁粉が アスペクト比が 0. 3以上のTi含有ナノコンポジット磁粉を5質量%以上含む ことが好ましい。

$[0 \ 0 \ 4 \ 0.]$

Ti含有ナノコンポジット磁粉は、希土類元素Rの含有率が比較的低い上に、 R₂Fe₁₄B相を取り囲むように小さな硼化物相が分散しており、さらにTiは 硼素との親和性が高いので硼化物相は他の相よりも多くのTiを含有している。 その結果、Ti含有ナノコンポジット磁粉は、従来の急冷磁石粉末や従来のナノ コンポジットに比べ耐酸化性に優れている。

[0041]

このように、Ti含有ナノコンポジット磁粉は耐酸化性に優れているので、後 に表1を参照しながら詳述するように、コンパウンドの成形が行われる温度(例 えば300℃)においても酸化され難い。また、Ti含有ナノコンポジット磁粉 を含むコンパウンドは、コンパウンドの調製工程において磁粉の酸化の影響を受 け難く、Ti含有ナノコンポジット磁粉の優れた磁気特性を維持している。加え て、後に実施例に示すように、コンパウンドの耐酸化性も優れている。Ti含有 ナノコンポジット磁粉と従来の急冷磁石粉末および/または従来のナノコンポジ ット磁粉を混合して用いる場合には、300℃以上350℃以下の加熱温度で大 気中に1時間放置した後の酸素含有率が0.24質量%となるように混合比率を 調整した磁粉を用いてコンパウンドを調製することが好ましい。

$[0\ 0\ 4\ 2\]$

また、Ti含有ナノコンポジット磁粉は、優れた耐酸化性を有するので、従来 は使用することが困難であった、融点または軟化点が高い樹脂(例えば、ポリイ ミドや液晶ポリマなど、また、種々の樹脂の高分子量グレード品)や、従来より も融点の高い金属を結合剤として用いることができる。例えば、軟化点が180 ℃以上、さらにはポリフェニレンサルファイド樹脂のように軟化点が250℃以 上の熱可塑性樹脂を用いても、磁気特性および成形性に優れた射出成形用のコン パウンドを得ることができる。なお、本明細書における軟化点は、結晶性樹脂お よび非晶性樹脂のいずれの樹脂についても、ビカット軟化点試験(例えばJIS K6870)によって求めた温度を指す。また、熱硬化性樹脂を用いる場合に も、従来よりも高い硬化温度で硬化される樹脂を用いることができる。また、磁 粉自体が耐食性に優れているため、熱硬化処理を大気中で行っても磁石特性の劣 化は極めて小さい。従って、熱硬化処理を不活性雰囲気で行う必要がないので工 程費用を削減できる。さらに、この様な耐熱樹脂を採用できることにより、HD Dなどで問題となるアウトガスの発生を抑えるための加熱脱ガスをより高温で行 えるため、HDDなどにより適したボンド磁石を得ることができる。

[0043]

このように従来よりも軟化点が高い樹脂や硬化温度が高い樹脂を用いることに

よって、ボンド磁石の特性(耐熱性や機械特性など)を改善することが出来る。 耐熱酸化性の観点から、Ti含有ナノコンポジット磁粉と従来の急冷磁石粉末お よび/または従来のナノコンポジット磁粉を混合して用いる場合には、大気中に 400℃で10分間放置した際の酸化による質量増加が0.26質量%未満のコ ンパウンドを調製することが好ましい。

[0044]

従来の急冷磁石粉末は比較的多量の希土類元素Rを含むため酸化されやすく、その結果、粒径が小さいほど粉末粒子表面の酸化による磁気特性の低下が顕著であるのに対し、T i 含有ナノコンポジット磁粉は酸化による磁気特性の低下の割合が低く、比較的小さな粒子(例えば、粒径が5 3 μ m以下)でも酸化による磁気特性の低下がほとんどない。従って、例えば、コンパウンドに含まれる磁粉のうち、粒径が5 3 μ m以下の粉末粒子成分としてT i 含有ナノコンポジット磁粉を用いることが好ましい。

[0045]

また、磁粉の充填性を考慮すると、 53μ m以下の粉末粒子を10質量%以上含むことが好ましく、20質量%以上含むことが更に好ましい。更に、密度の高い成形体を得るためのコンパウンドには、粒径が 38μ m以下の粉末粒子を8質量%以上含む磁粉を用いることが好ましい。粒径が 53μ m以下の粉末粒子を20質量%以上含んでも、それがTi含有ナノコンポジット磁粉であれば、ボンド磁石用磁粉の磁気特性が低下することはなく、むしろ、粒径が 53μ m以下の従来の急冷磁石粉末を同量含むボンド磁石用磁粉に比べれば磁気特性が向上する。

[0046]

一般にボンド磁石用磁粉は、最大粒径が 500μ m以下(典型的には 300μ m以下)の粒子から構成されており、磁粉の充填性を向上させるためには、粒径が 53μ m以下、特に 38μ m以下の粒子をある程度含むことが好ましい。しかしながら、従来の急冷磁石粉末は上述したように粒径が小さな粒子の磁気特性が劣るので、磁気特性を向上させるためには充填性を犠牲にせざるを得ず、逆に、充填性を向上するためには磁気特性を犠牲にする必要があった。

[0047]

これに対し、Ti含有ナノコンポジット磁粉は、粒径が小さい粒子でも優れた磁気特性を有するので、小さな粒子(例えば粒径が53 μ m以下)を比較的多く含む磁粉を調製しても磁気特性が低下しない。例えば、特開昭63-155601号に開示されているような粒度分布の磁粉を調製しても磁気特性を犠牲にする必要がない。なお、粒度分布の調整は、上述のような方法で作製されたTi含有ナノコンポジット磁粉を必要に応じて分級することによって行われる。

[0048]

Ti含有ナノコンポジット磁粉を含む磁粉を用いてコンパウンドを作製すると、従来の急冷磁石粉末と混合して用いた場合においても、成形性が改善されるだけでなく、得られるボンド磁石の磁気特性を改善する効果が得られる。これは、Ti含有ナノコンポジット磁粉と従来の急冷磁石粉末との磁気特性の違いだけでなく、Ti含有ナノコンポジット磁粉を用いることによって、コンパウンドの製造工程や成形工程の温度を低下させることが可能となる結果、コンパウンド中の従来の急冷磁石粉末の酸化による磁気特性の低下を抑制することも出来るためである。すなわち、本発明のコンパウンドは、Ti含有ナノコンポジット磁粉自身が耐酸化性に優れるだけでなく、ボンド磁石の製造においてTi含有ナノコンポジット磁粉と混合して用いられる耐酸化性に劣る従来の急冷磁石粉末の酸化を抑制することもできる。

[0049]

また、Ti含有ナノコンポジット磁粉を含むコンパウンドは成形性や流動性に優れるので、例えば混練工程における装置(例えばニーダ)に対する負荷を低減することができる。従って、コンパウンドの生産性が向上し、製造コストを低減することができる。さらに、樹脂と磁粉との混練(混合)を十分に行うことができるので、磁粉の粒子表面が樹脂によって十分に覆われ、耐食性に優れたコンパウンドを得ることができる。また、混練中にコンパウンドに導入される不純物の量を低減できるなどの利点も得られる。樹脂と磁粉との濡れ性や混練性、結合強度をさらに改善するために、カップリング剤を添加することが好ましい。カップリング剤は、磁粉の表面に予め付与しても良いし、樹脂と混合する際に付与してもよい。カップリング剤を添加することによって、混錬トルク等をより低下させ

ることができ、本発明の効果がより発揮される。

[0050]

上述したTi含有ナノコンポジット磁粉が有する優れた磁気特性、耐酸化性、 および成形性や流動性を改善する効果の全てを十分に利用するためには、磁粉全体の70質量%以上をTi含有ナノコンポジット磁粉とすることが好ましく、Ti含有ナノコンポジット磁粉のみを用いることが最も好ましい。

$[0\ 0\ 5\ 1]$

本発明によるコンパウンドは成形性に優れるので、成形体の空隙率を減少させ、磁粉充填率が従来よりも高いボンド磁石を得ることができる。また、樹脂として熱硬化性樹脂を用い、例えば圧縮成形法で成形すると、磁粉の充填率が80体積%以上のボンド磁石を容易に得ることができる。樹脂として熱可塑性樹脂を用いて、例えば射出成形法で成形する場合には、磁粉の充填率が60体積%以上のボンド磁石を容易に得ることができる。このように、充填率が従来よりもボンド磁石の成形が可能となる結果、従来よりもさらに磁気特性が優れたボンド磁石が提供される。

[0052]

以下に、本発明による希土類系ボンド磁石用コンパウンドをさらに詳細に説明 する。

[0053]

[Ti含有ナノコンポジット磁粉]

本発明による希土類系ボンド磁石用コンパウンドの磁粉の少なくとも一部として含まれるTi含有ナノコンポジット磁粉は、Tiを含有するFe-R-B系合金の溶湯を冷却し、それによって凝固した急冷合金から形成されている。この急冷凝固合金は、結晶相を含むものであるが、必要に応じて加熱され、更に結晶化が進められる。

[0054]

本発明者は、特定範囲の組成を有する鉄基希土類合金へTiを添加することにより、合金溶湯の冷却過程で生じやすく、優れた磁気特性(特に高い保磁力や減磁曲線の優れた角型性)の発現を阻害する原因となるα-Fe相の析出・成長を

抑制し、硬磁気特性を担う R_2F e $_{14}B$ 型化合物相の結晶成長を優先的かつ均一に進行させることができることを見出した。

[0055]

T i を添加しなかった場合、N d $_2F$ e $_{14}B$ 相の析出・成長に先だって α $_4F$ e 相が析出し、成長しやすい。そのため、急冷合金に対する結晶化熱処理が完了した段階では、軟磁性の α $_4F$ e 相が粗大化してしまい、優れた磁気特性(特に H_{CI} や角形性)が得られない。

[0056]

これに対し、T i を添加した場合は、 α -F e 相の析出・成長のキネティクス (kinetics) が遅くなり、析出・成長に時間を要するため、 α -F e 相の析出・成長が完了する前にN d $_2F$ e $_{14}$ B 相の析出・成長が開始すると考えられる。このため、 α -F e 相が粗大化する前にN d $_2F$ e $_{14}$ B 相が均一に分散した状態に大きく成長する。また、T i は、N d $_2F$ e $_{14}$ B 相中にはほとんど含まれず、鉄基硼化物の中、または、N d $_2F$ e $_{14}$ B 相と鉄基硼化物相との界面に多く存在し、鉄基硼化物を安定化すると考えられる。

[0057]

すなわち、本発明のコンパウンドに用いられるTi含有ナノコンポジット磁粉は、Tiの働きによって鉄基硼化物や α -Fe相などの軟磁性相が微細化されるともに、Nd $_2$ Fe $_{14}$ B相が均一に分散し、しかもNd $_2$ Fe $_{14}$ B相の体積比率の高いナノコンポジット組織を得ることができる。その結果、Tiを添加しない場合に比べて保磁力および磁化(残留磁束密度)が増加し、減磁曲線の角形性が向上するため、得られるボンド磁石の優れた磁気特性に寄与している。

[0058]

以下、本発明のコンパウンドに用いられるTi含有ナノコンポジット磁粉をより詳細に説明する。

[0059]

本発明によるコンパウンドが少なくとも含むTi含有ナノコンポジット磁粉は、好適には、その組成式が(Fe $_{1-m}T_m$) $_{100-x-y-z}Q_xR_yM_z$ で表現される。ここで、TはCoおよびNiからなる群から選択された1種以上の元素、QはB(

硼素)およびC(炭素)からなる群から選択された元素であってBを必ず含む少 なくとも1種の元素、RはLaおよびCeを実質的に含まない1種以上の希土類 元素、MはTi、Zr、およびHfからなる群から選択された少なくとも1種の 金属元素であり、Tiを必ず含んでいる。

[0060]

組成比率を規定するx、y、z、およびmは、それぞれ、10<x≤20原子 %、6<y<10原子%、0.1≤z≤12原子%、および0≤m≤0.5の関 係を満足することが好ましい。

$[0\ 0\ 6\ 1]$

Ti含有ナノコンポジット磁粉は、希土類元素の組成比率が全体の10原子% 未満であるにもかかわらず、Tiの添加によって磁化(残留磁束密度)がTiを 添加しない場合と同等のレベルを維持するか、または増加し、減磁曲線の角形性 が向上するという予想外の効果が発揮される。

[0062]

Ti含有ナノコンポジット磁粉では、軟磁性相のサイズが微細であるため、各 構成相が交換相互作用によって結合し、硬磁性のR2Fe14B型化合物相以外に 鉄基硼化物や $\alpha-Fe$ のような軟磁性相が存在していても、合金全体としては優 れた減磁曲線の角形性を示すことが可能になる。

[0063]

Ti含有ナノコンポジット磁粉は、好適には、R2Fe14B型化合物相の飽和 磁化と同等、または、それよりも高い飽和磁化を有する鉄基硼化物や α - F e を 含有している。この鉄基硼化物は、例えば、Fe3B(飽和磁化1.5T)やF e 23 B 6 (飽和磁化 1. 6 T) である。ここで、R 2 F e 14 B の飽和磁化はR が N dのとき約1.6 Tであり、 α -Feの飽和磁化は2.1 Tである。

$[0\ 0\ 6\ 4\]$

通常、Bの組成比率 x が 1 0 原子%を超え、しかも希土類元素 R の組成比率 y が5原子%以上8原子%以下の範囲にある場合、R2Fe23B3が生成されるが、 このような組成範囲にある原料合金を用いる場合であっても、本発明のようにT i を添加することにより、 $R_2Fe_{23}B_3$ 相の代わりに、 $R_2Fe_{14}B$ 相、および

、Fe23B6やFe3Bなどの軟磁性鉄基硼化物相を生成することができる。すな わち、Tiを添加することにより、R2Fe14B相の比率を増加できるとともに 、生成した鉄基硼化物相が磁化向上に寄与する。

[0065]

本発明者の実験によると、Tiを添加した場合だけ、V、Cr、Mn、Nb、 Moなどの他の種類の金属を添加した場合と異なり、磁化の低下が生じず、むし ろ磁化が向上することが初めてわかった。また、Tiを添加した場合には、前述 の他の添加元素と比べ、減磁曲線の角形性が特に良好なものとなった。

[0066]

また、このようなTi添加効果は、Bが10原子%を超える場合に顕著に発揮 される。以下、図1を参照しながら、この点を説明する。

[0067]

図1は、Tiが添加されていないNd-Fe-B磁石合金の最大磁気エネルギ ー積(BH)_{max}とB量との関係を示すグラフである。グラフ中、白いバーは1 ○原子%以上14原子%以下のNdを含有する試料のデータを示し、黒いバーは 8原子%以上10原子%未満のNdを含有する試料のデータを示している。これ に対し、図2は、Tiが添加されたNd-Fe-B磁石合金の最大磁気エネルギ ー積(BH)_{max}とBとの関係を示すグラフである。グラフ中、白いバーは10 原子%以上14原子%以下のNdを含有する試料のデータを示し、黒いバーは8 原子%以上10原子%未満のNdを含有する試料のデータを示している。

[0068]

図1からわかるように、Tiが添加されていない試料では、Ndの含有量にか かわらず、Bが10原子%を超えて多くなるにつれ、最大磁気エネルギー積(B H) maxが低下している。さらにこの低下の程度は、Ndの含有量が8~10原 子%の場合により大きくなる。このような傾向は従来から知られており、Nd2 FeldB相を主相とする磁石合金においては、Bの量を10原子%以下に設定す ることが好ましいと考えられてきた。例えば、米国特許4、836、868号は 、Bは5~9.5原子%の実施例を開示し、更に、Bの好ましい範囲として4原 子%以上12原子%未満、より好ましい範囲として4原子%以上10原子%以下 の範囲を教示している。

[0069]

これに対して、Tiが添加された試料では、図2からわかるように、Bが10原子%を超える或る範囲で最大磁気エネルギー積(BH) maxが向上している。この向上はNdの含有量が $8\sim1.0$ 原子%の場合に特に顕著である。

[0070]

このように本発明によれば、Bが10原子%を超えると磁気特性が劣化するという従来の技術常識からは予期できない効果をTi添加によって得ることが可能になる。その結果、先述した本発明のコンパウンドの優れた特徴に寄与する磁粉が得られる。

[0071]

次に、本発明の希土類系ボンド磁石用コンパウンドが少なくとも含むTi含有ナノコンポジット磁粉の製造方法を説明する。

[0072]

[Ti含有ナノコンポジット磁粉用急冷合金]

上記の組成式($Fe_{1-m}T_m$) $_{100-x-y-z}Q_xR_yM_z$ (x、y、z、およびmは、それぞれ、 $10< x \le 20$ 原子%、6< y< 10原子%、 $0.1\le z\le 12$ 原子%、および $0\le m\le 0.5$)で表される鉄基合金の溶湯を不活性雰囲気中で冷却し、それによって $R_2Fe_{14}B$ 型化合物相を例えば全体の60体積%以上含む急冷合金を作製する。急冷合金中の $R_2Fe_{14}B$ 型化合物相の平均結晶粒径は例えば80nm以下にすることができる。この急冷合金に対して、必要に応じて熱処理を行なえば、急冷合金中に残存していた非晶質を結晶化させることができる。

[0073]

メルトスピニング法やストリップキャスト法などの冷却ロールを用いる実施形態では、上記合金溶湯を圧力1.3 k P a 以上の雰囲気中で冷却する。それにより、合金溶湯は、冷却ロールとの接触によって急冷されるだけでなく、冷却ロールから離れた後も、雰囲気ガスによる二次冷却効果を受けて適切に冷却される。

[0074]

本発明者の実験によれば、急冷時の雰囲気ガスの圧力は、1.3 k P a 以上で

しかも常圧(101.3 k P a)以下に制御することが好ましく、10 k P a 以 上90kPa以下の範囲にすることが更に好ましい。より好ましい範囲は20k Pa以上60kPa以下である。

[0075]

上記雰囲気ガス圧力のもとで、ロール表面周速度の好ましい範囲は4 m/秒以 上50m/秒以下である。ロール表面周速度が4m/秒より遅くなると、急冷合 金中に含まれるR2Fe14B型化合物相の結晶粒が粗大化してしまうことになる 。その結果、熱処理によってR2Fe14B型化合物相は更に大きくなり、磁気特 性が劣化する可能性がある。

[0076]

実験によると、ロール表面周速度の更に好ましい範囲は5m/秒以上30m/ 秒以下であり、更に好ましい範囲は5m/秒以上20m/秒以下である。

[0077]

なお、本発明によるコンパウンドが含むTi含有ナノコンポジット磁粉の組成 は、急冷合金中に粗大なα-Feをほとんど析出させず、微細なR2Fe14B型 化合物相を有する組織、あるいは、微細な R2F e 14 B型化合物相を有する組織 とアモルファス相が混在した組織が作製される。これにより、熱処理後に鉄基硼 化物相などの軟磁性相が硬磁性相の間(粒界)に微細に分散した状態または薄く 広がった状態で存在する高性能のナノコンポジット磁石を得ることができる。な お、本明細書における「アモルファス相」とは、原子配列が完全に無秩序化した 部分によってのみ構成される相だけではなく、結晶化の前駆体や微結晶(サイズ :数 n m以下)、または原子クラスタを部分的に含んでいる相をも含むものとす る。具体的には、X線回折や透過電子顕微鏡観察によって結晶構造を明確に同定 できない相を広く「アモルファス相」と称することにする。

[0078]

従来、本発明のコンパウンドが含むTi含有ナノコンポジット磁粉の組成に類 似する組成(但しTiを含まない)を有する合金溶湯を冷却してR2Fe14B型 化合物相を 6 0 体積%以上含むような急冷合金を作製しようとすると、 α - F e が多く析出した合金組織が得られるため、その後の結晶化熱処理でα-Feが粗

21/

大化してしまうという問題があった。α-Feなどの軟磁性相が粗大化すると、 磁気特性が大きく劣化し、到底実用に耐えるボンド磁石は得られない。

[0079]

特に本発明のコンパウンドが含むTi含有ナノコンポジット磁粉の組成のよう にBの含有量が比較的多い場合、合金溶湯が持つ高いアモルファス生成能のため 、合金溶湯の冷却速度を遅くしても、結晶相は生成されにくかった。そのため、 合金溶湯の冷却速度を充分に低下させてR2Fe14B型化合物相の体積比率が6 0%を超えるような急冷凝固合金を作製しようとすると、従来技術ではR2F e 1 ΔB型化合物相以外に α-Feまたはその前駆体が多く析出してしまい、その後 の結晶化熱処理により、α-Fe相の粗大化が進行し、磁気特性が大きく劣化し てしまった。

[0080]

以上のことから、従来、ナノコンポジット磁石磁粉用原料合金の保磁力を増大 させるには、合金溶湯の冷却速度を高め、急冷凝固合金の大部分がアモルファス 相によって占められるような状態にした後、そのアモルファス相から結晶化熱処 理により均一に微細化された組織を形成することが好ましいとの常識が存在して いた。これは、微細な結晶相が分散した合金組織を持つナノコンポジットを得る には、制御しやすい熱処理工程でアモルファス相から結晶化を行なうべきと考え られていたからである。

[0081]

このため、アモルファス生成能に優れたLaを原料合金に添加し、その原料合 金の溶湯を急冷することによってアモルファス相を主相とする急冷凝固合金を作 製した後、結晶化熱処理で $Nd_2Fe_{14}B$ 相および $\alpha-Fe$ 相の両方を析出・成 長させ、いずれの相も数十nm程度の微細なものとする技術が報告されている(W .C.Chan, et.al. "THE EFFECTS OF REFRACTORY METALS ON THE MAGNETIC PROP ERTIES OF α -Fe/R₂Fe₁₄B-TYPE NANOCOMPOSITES", IEEE, Trans. Magn. No. 5、 INTERMAG. 99、 Kyongiu、 Korea pp. 3265-3267、 1999)。なお、この論文 は、Tiなどの高融点金属元素の微量添加(2原子%)が磁気特性を向上させる ことと、希土類元素であるNdの組成比率を9. 5原子%よりも11. 0原子%

に増加させることがN d_2F $e_{14}B$ 相および α -F e 相の両方を微細化する上で好ましいことを教示している。上記高融点金属の添加は、硼化物(R_2F $e_{23}B_3$ やF $e_{3}B$)の生成を抑制し、N d_2F $e_{14}B$ 相および α -F e 相の 2 相のみからなる磁石粉末用原料合金を作製するために行なわれている。

[0082]

これに対し、本発明のコンパウンドが含むTi含有ナノコンポジット磁粉では、添加Tiの働きにより、急冷凝固工程でα-Fe相の析出を抑えることができる。更には、結晶化熱処理工程において鉄基硼化物等の軟磁性相を生成させ、かつその粗大化を抑制することにより優れた磁気特性を有する磁粉を得ることができる。

[0083]

すなわち、希土類元素量が比較的少ない(例えば9原子%以下)原料合金を用いながら、磁化(残留磁束密度)および保磁力が高く、減磁曲線の角形性にも優れた磁石粉末を製造することができる。

[0084]

前述のように、Ti含有ナノコンポジット磁粉用原料合金の保磁力の増加は、 $Nd_2Fe_{14}B$ 相を冷却工程で優先的に析出・成長させ、それによって $Nd_2Fe_{14}B$ 相の体積比率を増加させながら、しかも軟磁性相の粗大化を抑制したことによって実現する。また、磁化の増加は、Tiの働きにより、急冷凝固合金中に存在するBリッチな非磁性アモルファス相から強磁性鉄基硼化物などの硼化物相を生成することで、結晶化熱処理後の強磁性相の体積比率を増加させたために得られたものと考えられる。

[0085]

上述のようにして得られた原料合金に対しては、必要に応じて、結晶化熱処理を行ない、 $R_2Fe_{14}B$ 型化合物相、硼化物相、および $\alpha-Fe$ 相を含む3種類以上の結晶相を含有する組織を形成することが好ましい。この組織中、 $R_2Fe_{14}B$ 型化合物相の平均結晶粒径は10nm以上200nm以下、硼化物相および $\alpha-Fe$ 相の平均結晶粒径は1nm以上100nm以下となるように熱処理温度および時間を調節する。 $R_2Fe_{14}B$ 型化合物相の平均結晶粒径は通常 30nm

以上となるが、条件によっては 5 0 n m以上になる。硼化物相や α - F e 相など の軟磁性相の平均結晶粒径は30nm以下となることが多く、典型的には数nm の大きさにしかならない。

[0086]

Ti含有ナノコンポジット磁粉用原料合金における最終的なR2Fe14B型化 合物相の平均結晶粒径はαーFe相の平均結晶粒径よりも大きい。図3は、この 原料合金の金属組織を模式的に示している。図3からわかるように、相対的に大 きなR₂Fe₁₄B型化合物相の間に微細な軟磁性相が分散して存在している。こ のようにR₂Fe₁₄B型化合物相の平均結晶粒径が比較的大きくなっても、軟磁 性相の結晶成長は抑制されており、平均結晶粒径が充分に小さいため、各構成相 が交換相互作用によって磁気的に結合し、その結果、軟磁性相の磁化方向が硬磁 性相によって拘束されるので、合金全体としては優れた減磁曲線の角形性を示す ことが可能になる。

[0087]

上述の製造方法において硼化物が生成されやすい理由は、R₂Fe₁₄B型化合 物相が大半を占める凝固合金を作製すると、急冷合金中に存在するアモルファス 相がどうしてもBを過剰に含むこととなるため、このBが結晶化熱処理で他の元 素と結合して析出・成長しやすくなるためであると考えられる。しかし、このB と他の元素の結合により、磁化の低い化合物が生成されると、合金全体として磁 化が低下してしまう。

[0088]

本発明者の実験によれば、Tiを添加した場合だけ、V、Cr、Mn、Nb、 Moなどの他の種類の金属を添加した場合と異なり、磁化の低下が生じず、むし ろ磁化が向上することがわかった。また、M(特にTi)を添加した場合には、 前述の他の添加元素と比べ、減磁曲線の角形性が特に良好なものとなった。これ らのことから、磁化の低い硼化物の生成を抑制する上でTiが特に重要な働きを していると考えられる。特に、Ti含有ナノコンポジット磁粉の作製で用いる原 料合金の組成範囲のうち、BおよびTiが比較的に少ない場合は、熱処理によっ て強磁性を有する鉄基硼化物相が析出しやすい。この場合、非磁性のアモルファ

ス相中に含まれるBが鉄基硼化物中に取り込まれる結果、結晶化熱処理後に残存 する非磁性アモルファス相の体積比率が減少し、強磁性の結晶相が増加するため 、残留磁束密度Brが向上すると考えられる。

[0089]

以下、図4を参照しながら、この点をより詳細に説明する。

[0090]

図4は、Tiを添加した場合、および、Tiに代えてNbなどを添加した場合 における急冷凝固合金の結晶化過程における微細組織の変化を模式的に示す図で ある。Tiを添加した場合は、 $\alpha-Fe$ が析出する温度よりも高い温度領域にお いても各構成相の粒成長が抑制されており、優れた硬磁気特性が維持される。こ れに対し、Nb、V、Cr などの金属元素を添加した場合は、 $\alpha-Fe$ が析出す るような比較的高い温度領域で各構成相の粒成長が著しく進行し、各構成相間に 働くの交換相互作用が弱まってしまう結果、減磁曲線の角形性が大きく低下する

[0091]

まず、Nb、Mo、We添加した場合を説明する。この場合、 $\alpha-Fe$ が析出 しない比較的低い温度領域で熱処理を行なえば、減磁曲線の角形性に優れた良好 な硬磁気特性を得ることが可能である。しかし、このような温度で熱処理を行な った合金では、R₂Fe₁₄B型微細結晶相が非磁性のアモルファス相中に分散し て存在していると推定され、ナノコンポジットの構成は形成されていないため、 高い磁化が期待できない。また、更に高い温度で熱処理を行なうと、アモルファ ス相中から $\alpha - Fe$ 相が析出する。この $\alpha - Fe$ 相は、Ti を添加した場合と異 なり、析出後、急激に成長し、粗大化する。このため、各構成相間の交換結合が 弱くなり、減磁曲線の角形性が大きく劣化してしまうことになる。

[0092]

一方、Tiを添加した場合は、熱処理により、R2Fe14B型結晶相、鉄基硼 化物相、α-Fe相、およびアモルファス相を含むナノコンポジット構造が得ら れ、各構成相が均一に微細化する。また、Tiを添加した場合は、 $\alpha-Fe$ 相の 成長が抑制される。

[0093]

VやCr を添加した場合は、これらの添加金属がFe に固溶し、Fe と反強磁性的に結合するため、磁化が大きく低下してしまう。また、VやCr を添加した場合、熱処理に伴う粒成長が充分に抑制されず、減磁曲線の角形性が劣化する。

[0094]

このようにTiを添加した場合のみ、 α -Fe相の粗大化を適切に抑制し、強磁性の鉄基硼化物を形成することが可能になる。更に、Tiは、液体急冷時にFe初晶(後に α -Feに変態する γ -Fe)の析出を遅らせ、過冷却液体の生成を容易にする元素としてBやCとともに重要な働きをするため、合金溶湯を急冷する際の冷却速度を 10^2 C/秒~ 10^5 C/秒程度の比較的低い値にしても、 α -Feを大きく析出させることなく、 R_2 Fe 1_4 B型結晶相とアモルファス相とが混在する急冷合金を作製することが可能になる。このことは、種々の液体急冷法の中から、特に量産に適したストリップキャスト法の採用を可能にするため、低コスト化にとって極めて重要である。

[0095]

合金溶湯を急冷して原料合金を得る方法として、ノズルやオリフィスによる溶湯の流量制御を行なわずに溶湯をタンディッシュから直接に冷却ロール上に注ぐストリップキャスト法は生産性が高く、製造コストの低い方法である。R - F e - B 系希土類合金の溶湯をストリップキャスト法によっても達成可能な冷却速度範囲でアモルファス化するには、通常、Bを10原子%以上添加する必要がある。従来の技術においてBを多く添加した場合は、急冷合金に対して結晶化熱処理を行った後、非磁性のアモルファス相の他、粗大な $\alpha-$ F e 相や軟磁性相である N d 2 F e 23 B 3 相が析出するため、均質な微細結晶組織が得られない。その結果、強磁性相の体積比率が低下し、磁化の低下およびN d 2 F e 14 B 相の存在比率の低下により、保磁力の大幅な低下を招来する。しかしながら、T i を添加すると、上述したように $\alpha-$ F e 相の粗大化が抑制されるなどの現象が起こり、予想外に磁化が向上する。

[0096]

なお、急冷合金がアモルファス相を多く含む場合よりも、N d 2F e 14B相を

多く含む状態にある方が、最終的な磁気特性は高いものが得やすい。急冷合金中に占める $Nd_2Fe_{14}B$ 相の体積比率は、全体の半分以上、具体的には60体積%以上になることが好ましい。この60体積%という値は、メスバウアー分光法で測定されたものである。

[0097]

次に、本発明におけるTi含有ナノコンポジット磁粉用合金の製造についてロール法の一種であるメルトスピニング法、ストリップキャスト法を用いた実施形態をさらに具体的に説明する。

[0098]

<液体急冷装置>

本実施形態では、例えば、図5に示す急冷装置を用いて原料合金を製造する。酸化しやすい希土類元素RやFeを含む原料合金の酸化を防ぐため、不活性ガス雰囲気中で合金製造工程を実行する。不活性ガスとしては、ヘリウムまたはアルゴン等の希ガスや窒素を用いることができる。なお、窒素は希土類元素Rと比較的に反応しやすいため、ヘリウムまたはアルゴンなどの希ガスを用いることが好ましい。

[0099]

図5の装置は、真空または不活性ガス雰囲気を保持し、その圧力を調整することが可能な原料合金の溶解室1および急冷室2を備えている。図5 (a) は全体構成図であり、図5 (b) は、一部の拡大図である。

[0100]

図5 (a) に示されるように、溶解室1は、所望の磁石合金組成になるように配合された原料20を高温にて溶解する溶解炉3と、底部に出湯ノズル5を有する貯湯容器4と、大気の進入を抑制しつつ配合原料を溶解炉3内に供給するための配合原料供給装置8とを備えている。貯湯容器4は原料合金の溶湯21を貯え、その出湯温度を所定のレベルに維持できる加熱装置(不図示)を有している。

[0101]

急冷室2は、出湯ノズル5から出た溶湯21を急冷凝固するための回転冷却ロ ール7を備えている。

[0102]

この装置においては、溶解室1および急冷室2内の雰囲気およびその圧力が所定の範囲に制御される。そのために、雰囲気ガス供給口1b、2b、および8bとガス排気口1a、2a、および8aとが装置の適切な箇所に設けられている。特にガス排気口2aは、急冷室2内の絶対圧を30kPa~常圧(大気圧)の範囲内に制御するため、ポンプに接続されている。

[0103]

溶解炉3は傾動可能であり、ロート6を介して溶湯21を貯湯容器4内に適宜 注ぎ込む。溶湯21は貯湯容器4内において不図示の加熱装置によって加熱される。

[0104]

貯湯容器4の出湯ノズル5は、溶解室1と急冷室2との隔壁に配置され、貯湯容器4内の溶湯21を下方に位置する冷却ロール7の表面に流下させる。出湯ノズル5のオリフィス径は、例えば0.5~2.0mmである。溶湯21の粘性が大きい場合、溶湯21は出湯ノズル5内を流れにくくなるが、本実施形態では急冷室2を溶解室1よりも低い圧力状態に保持するため、溶解室1と急冷室2との間に圧力差が形成され、溶湯21の出湯がスムーズに実行される。

[0105]

冷却ロール7は、熱伝導度の点からAI合金、銅合金、炭素鋼、真鍮、W、Mo、青銅から形成され得る。ただし、機械的強度および経済性の観点から、Cu、Fe、またはCuやFeを含む合金から形成することが好ましい。CuやFe以外の材料で冷却ロールを作製すると、急冷合金の冷却ロールに対する剥離性が悪くなるため、急冷合金がロールに巻き付くおそれがあり好ましくない。冷却ロール7の直径は例えば300~500mmである。冷却ロール7内に設けた水冷装置の水冷能力は、単位時間あたりの凝固潜熱と出湯量とに応じて算出し、調節される。

[0106]

図 5 に示す装置によれば、例えば合計 10 k g の原料合金を $10 \sim 20$ 分間で 急冷凝固させることができる。こうして形成した急冷合金は、例えば、厚さ: 1

0~300μm、幅:2mm~3mmの合金薄帯(合金リボン)22となる。

[0107]

このとき、合金薄帯の厚さが 60μ m以上 300μ m以下となるように調整し、次に、必要に応じて、熱処理によって急冷凝固合金を結晶化させた後、この合金を粉砕することによって、粉末粒子全体に対してアスペクト比(短軸方向サイズ/長軸方向サイズ)が0.3以上1.0以下の粒子を70質量%以上含み、さらに粒径が 53μ m以下の粒子を10質量%以上含む粉末を得ることができる。このように合金薄帯の厚さを調整し、それを粉砕することによって、例えば、粉末中のほとんどについて、アスペクト比を0.3以上1.0以下とすることが可能である。なお、本願明細書における粒径は、JIS8801の標準ふるいによって分別されたものとする。

[0108]

<液体急冷法>

まず、前述の組成式で表現される原料合金の溶湯21を作製し、図5の溶解室1の貯湯容器4に貯える。次に、この溶湯21は出湯ノズル5から減圧Ar雰囲気中の水冷ロール7上に出湯され、冷却ロール7との接触によって急冷され、凝固する。急冷凝固方法としては、冷却速度を高精度に制御できる方法を用いる必要がある。

[0109]

本実施形態の場合、溶湯 2 1 の冷却凝固に際して、冷却速度を 1×1 $0^2 \sim 1$ $\times 1$ $0^8 \mathbb{C}$ / 秒とすることが好ましく、 1×1 $0^4 \sim 1 \times 1$ $0^6 \mathbb{C}$ / 秒とすることが更に好ましい。

[0110]

合金の溶湯 2 1 が冷却ロール 7 によって冷却される時間は、回転する冷却ロール 7 の外周表面に合金が接触してから離れるまでの時間に相当し、その間に、合金の温度は低下し、過冷却液体状態になる。その後、過冷却状態の合金は冷却ロール 7 から離れ、不活性雰囲気中を飛行する。合金は薄帯状で飛行している間に雰囲気ガスに熱を奪われる結果、その温度は更に低下する。本実施形態では、雰囲気ガスの圧力を 3 0 k P a ~常圧の範囲内に設定しているため、雰囲気ガスに

よる抜熱効果が強まり、合金中にNd₂Fe₁₄B型化合物を均一微細に析出・成長させることができる。なお、適切な量のTiなどの元素Mを原料合金中に添加していない場合には、上述したような冷却過程を経た急冷合金中には、α-Feが優先的に析出・成長するため、最終的な磁気特性が劣化してしまうことになる

[0111]

本実施形態では、ロール表面速度を10m/秒以上30m/秒以下の範囲内に調節し、かつ、雰囲気ガスによる二次冷却効果を高めるために雰囲気ガス圧力を30kPa以上にすることによって、平均結晶粒径80nm以下の微細なR2Fe14B型化合物相を60体積%以上含む急冷合金を作製している。

[0112]

なお、本発明のコンパウンドに用いるTi含有ナノコンポジット磁粉を作製するための液体急冷法としては、例示したノズルやオリフィスによって冷却ロールの表面に供給する合金溶湯の流量を制御するメルトスピニング法に限られず、ノズルやオリフィスを用いないストリップキャスト法等の種々の方法を用いることが出来る。また、単ロール法以外に、2つの冷却ロールを用いる双ロール法を用いてもよい。

[0113]

上記急冷法の中でも、ストリップキャスト法の冷却速度は比較的低く、10² ~10⁵℃/秒である。本実施形態では、適切な量のTiを合金に添加することにより、ストリップキャスト法による場合でもFe初晶を含まない組織が大半を占める急冷合金を形成することができる。ストリップキャスト法は、工程費用が他の液体急冷法の半分程度以下であるため、メルトスピニング法に比べて大量の急冷合金を作製する場合に有効であり、量産に適した技術である。原料合金に対して元素Mを添加しない場合や、元素Tiの代わりにCr、V、Mn、Mo、Ta、および/またはWを添加した場合には、ストリップキャスト法を用いて急冷合金を形成しても、Fe初晶を多く含む金属組織が生成するため、所望の金属組織を形成することができない。

[0114]

また、メルトスピニング法やストリップキャスト法においてロール表面周速度 を調整することによって、合金の厚さを制御することができる。ロール表面周速 度を調整することによって、厚さが 6 0 μ m以上 3 0 0 μ m以下の範囲の合金を 形成すると、この合金は、上記の微細な組織から構成されているため、粉砕工程 によって種々の方位に破断しやすい。その結果、等軸的な形状の(アスペクト比 が1に近い)粉末粒子が得られやすい。すなわち、一定の方位に沿って平たく伸 びた粉末粒子が得られるのではなく、等軸的な形状、すなわち球形に近い形状の 粉末粒子が形成される。

$[0\ 1\ 1\ 5]$

これに対して、ロール表面周速度を速くして合金の厚さを 60 μmより薄くす ると、従来の急冷磁石のように、合金の金属組織がロール接触面に垂直な方位に 揃う傾向がある。そのため、その方位に沿って破断しやすくなり、粉砕によって 得られた粉末粒子は、合金の表面に平行な方向に沿って平たく伸びた形状となり やすく、アスペクト比が0.3未満の粉末粒子が生成されやすい。

$[0\ 1\ 1\ 6]$

図6 (a)は、本実施形態による磁石粉末の製造方法の粉砕工程前における合 金10と、粉砕工程後の粉末粒子11を模式的に示している。一方、図6 (b) は、従来の急冷磁石粉末の製造方法の粉砕工程前における合金薄帯12と、粉砕 工程後の粉末粒子13を模式的に示している。

[0117]

図6(a)に示されるように、本実施形態の場合は、粉砕前の合金10が結晶 粒径の小さな等軸晶によって構成されているため、ランダムな方位に沿って破断 しやすく、等軸的な粉末粒子11が生成されやすい。これに対し、従来の急冷合 金の場合は、図6(b)に示されるように、合金薄帯12の表面に対してほぼ垂 直な方向に破断しやすいため、粒子13の形状は扁平なものとなる。

$[0\ 1\ 1\ 8]$

このように、ロール表面周速度を2m/秒から20m/秒、好ましくは8m/ 秒から 1 5 m/秒の範囲に制御し、合金薄帯の厚さを 6 0 μ mから 3 0 0 μ mの 範囲に調整することによって、アスペクト比が0.3以上、好ましくは0.4以 上1. 0以下の粉末を得ることができる。

[0119]

<熱処理>

[0120]

なお、熱処理温度が550℃を下回ると、熱処理後もアモルファス相が多く残存し、急冷条件によっては、保磁力が充分なレベルに達しない場合がある。また、熱処理温度が850℃を超えると、各構成相の粒成長が著しく、残留磁束密度 B_r が低下し、減磁曲線の角形性が劣化する。このため、熱処理温度は550℃以上850℃以下が好ましいが、より好ましい熱処理温度の範囲は570℃以上820℃以下である。

[0121]

本実施形態では、雰囲気ガスによる二次冷却効果のため、急冷合金中に充分な量のNd₂Fe₁₄B型化合物相が均一かつ微細に析出している。このため、急冷合金に対して敢えて結晶化熱処理を行なわない場合でも、急冷凝固合金自体が充分な磁気特性を発揮し得る。そのため、結晶化熱処理は必須の工程ではないが、これを行なうことが磁気特性向上のためには好ましい。なお、従来に比較して低い温度の熱処理でも充分に磁気特性を向上させることが可能である。

[0122]

熱処理雰囲気は、合金の酸化を防止するため、不活性ガス雰囲気が好ましい。
0.1 k P a 以下の真空中で熱処理を行っても良い。

[0123]

32/

なお、原料合金に炭素を添加すると、磁粉の耐酸化性がさらに向上する。充分 な量のCを添加している場合は、急冷合金に対する熱処理を大気雰囲気下で行な っても良い。

[0124]

熱処理前の急冷合金中には、R₂Fe₁₄B型化合物相およびアモルファス相以 外に、Fe₃B相、Fe₂₃B₆、およびR₂Fe₂₃B₃相等の準安定相が含まれてい ても良い。その場合、Ti添加の効果により、熱処理によって、R2Fe23B3相 は消失し、R₂Fe₁₄B相の飽和磁化と同等、または、それよりも高い飽和磁化 を示す鉄基硼化物(例えば $Fe_{23}B_6$)や $\alpha-Fe$ を結晶成長させることができ る。

[0125]

本発明のコンパウンドに含まれるTi含有ナノコンポジット磁粉では、最終的 にα-Feのような軟磁性相が存在していても、Tiの効果によってその粒成長 が抑制されて、組織が微細化されている。その結果、軟磁性相と硬磁性相とが交 換相互作用によって磁気的に結合するため、優れた磁気特性が発揮される。

[0126]

熱処理後におけるR2Fe14B型化合物相の平均結晶粒径は、単磁区結晶粒径 である300nm以下となる必要があり、10nm以上200nm以下、更には 20nm以上150nm以下であることが好ましく、20nm以上100nm以 下であることが更に好ましい。これに対し、硼化物相や α - F e 相の平均結晶粒 径が100mmを超えると、各構成相間に働く交換相互作用が弱まり、減磁曲線 の角形性が劣化するため、(BH) maxが低下してしまう。これらの平均結晶粒 径が1nmを下回ると、高い保磁力が得られなくなる。以上のことから、硼化物 相やα-Fe相などの軟磁性相の平均結晶粒径は1nm以上100nm以下、好 ましくは50nm以下であることが好ましく、30nm以下であることが更に好 ましい。

[0127]

なお、熱処理前に急冷合金の薄帯を粗く切断または粗粉砕しておいてもよい。 熱処理後、得られた合金粗粉末(または薄帯)を粉砕し、磁粉を作製することに よって、Ti含有ナノコンポジット磁粉を製造することができる。

[0128]

<粉砕工程の説明>

本発明の希土類系ボンド磁石用コンパウンドには、最大粒径が 500μ m以下、特に 300μ m以下の希土類合金粉末が好適に用いられる。平均粒径は圧縮成形に用いる場合 50μ mから 200μ mの範囲にあることが好ましく、 100μ mから 150μ mの範囲にあることがより好ましい。

[0129]

磁粉のアスペクト比は、コンパウンドの流動性に影響する。本発明のコンパウンドに2質量%以上含まれるTi含有ナノコンポジット磁粉のアスペクト比は、0.3以上1.0以下であることが好ましい。もちろん、アスペクト比が0.3 未満のTi含有ナノコンポジット磁粉と混合して用いてもよい。さらに流動性に優れたコンパウンドを得るためには、磁粉全体の70%以上がアスペクト比0.3以上1.0以下とすることが好ましく、アスペクト比が0.3以上1.0以下のTi含有ナノコンポジット磁粉を70質量%以上含む磁粉を用いてコンパウンドを調製することがさらに好ましい。もちろん、MQ粉など粉末粒子のアスペクト比が0.3未満の粉末粒子と混合して用いることもできる。

$[0.1 \cdot 3.0]$

上述のようなアスペクト比を有するTi含有ナノコンポジット磁粉は、例えば図7に示すようなピンディスクミル装置などを用いて、厚さが60μm以上300μm以下の合金薄帯を粉砕することによって作製することができる。図7は、本実施形態に使用するピンミル装置の一例を示す断面図である。このピンミル装置40はピンディスクミルであり、片面に複数のピン41が配列されたディスク(円盤)42aおよび42bを2枚対向させ、互いのピン41が衝突しないように配置されている。少なくとも一方の円盤42aおよび/または42bが高速で回転する。図7の例では、円盤42aが軸43の周りを回転する。回転する側の円盤42aの正面図を図8に示す。図8の円盤42a上では、ピン41が複数の同心円を描くように配列されている。固定されている円盤42bでも、ピン41は同心円を描くように配列されている。

[0131]

ピンディスクミルによって粉砕されるべき被粉砕物は、投入口44から2枚の円盤が対向している隙間の空間内に送り込まれ、回転する円盤42a上のピン41および停止している円盤42b上のピン41に衝突し、その衝撃によって粉砕されることになる。粉砕によって生成された粉末は矢印Aの方向に飛ばされ、最終的には1箇所に集められる。

[0132]

本実施形態のピンミル装置40において、ピン41を支持する円盤42aおよび42bはステンレス鋼などから形成されているが、ピン41は炭素鋼、セラミックスおよびタングステンカーバイド(WC)焼結体等の超硬合金材料から形成されている。超硬合金材料としては、WC焼結体以外にも、TiC、MoC、NbC、TaC、Cr₃С₂等を好適に用いることができる。これらの超硬合金は、IVa、Va、およびVIa族に属する金属の炭化物粉末をFe、Co、Ni、Mo、Cu、Pb、もしくはSnまたはこれらの合金を用いて結合した焼結体である。

[0133]

例えば、上記ピンミル装置を用いて平均粒径が 100μ m以下となるような条件で粉砕を実行すれば、粒子のアスペクト比が0.3以上1.0以下の粉末を得ることができる。また、例えば粒径が 53μ m以下、あるいは 38μ m以下の粉末粒子は、これらを分級することによって得られる。

$[0\ 1\ 3\ 4]$

原料合金を細かく粉砕するほど、アスペクト比は1.0に近づく傾向にある。 アスペクト比が1.0に近いものほど充填性を改善する効果が高く、アスペクト 比が0.4以上1.0以下であることが好ましく、0.5以上1.0以下である ことがさらに好ましく、0.6以上1.0以下であることが最も好ましい。

[0135]

本実施形態で好適に用いられるピンミル装置は、ディスク上にピンが配列されたピンディスクミルに限定されず、例えば、円筒上にピンが配列された装置であってもよい。ピンミル装置を用いると、正規分布に近い粒度分布を有する粉末を

得ることができ、平均粒径の調整が容易で、且つ、量産性に優れるという利点が ある。

[0136]

[組成の限定理由]

本発明のコンパウンドに用いられるTi含有ナノコンポジット磁粉は、組成式 $(Fe_{1-m}T_m)_{100-x-y-z}Q_xR_yM_z$ で表される(TはCoおよびNiからなる群から選択された1種以上の元素、QはBおよびCからなる群から選択された元素であってBをかならず含む少なくとも1種の元素、RはLaおよびC e e 実質的に含まない1種以上の希土類元素、MはT i、Z r、およびH f からなる群から選択された金属元素であって、T i e 必ず含む少なくとも1種の金属元素、組成比率x、y、z およびmが、それぞれ、1 0 < x \leq 2 0 原子%、0. 1 \leq z \leq 1 2 原子%、および0 \leq m \leq 0. 5) で表される組成を有する。

[0137]

Qは、その全量がB(硼素)から構成されるか、または、BおよびC(炭素)の組み合わせから構成される。Qの総量に対するCの原子比率割合は0.25以下であることが好ましい。

[0138]

Qの組成比率 x が 1 0 原子%以下になると、急冷時の冷却速度が 1 0 2℃/秒~1 0 5℃/秒程度と比較的低い場合、R 2 F e 14 B型結晶相とアモルファス相とが混在する急冷合金を作製することが困難になり、その後に熱処理を施しても 7 0 0 k A/m未満のH cJ しか得られない。そのため、メルトスピニング法やストリップキャスト法でロール表面周速度を比較的遅くしてアスペクト比が 0.3~1.0 でかつ優れた磁気特性を有する磁粉を作製することが困難になる。 さらに、液体急冷法の中でも工程費用が比較的安いストリップキャスト法を採用できなくなり、磁粉の製造コストが上昇してしまうことになる。一方、Qの組成比率 x が 2 0 原子%を超えると、結晶化熱処理後も残存するアモルファス相の体積比率が増し、同時に、構成相中で最も高い飽和磁化を有する α − F e の存在比率が減少するため、残留磁束密度 B r が低下してしまう。以上のことから、Qの組成比

率 x は 1 0 原子% を超え、 2 0 原子%以下となるように設定することが好ましい。 より好ましい組成比率 x の範囲は 1 0 原子%以上 1 7 原子%以下である。 さらに、鉄基硼化物相を効率よく析出させ B_r を向上させることが可能なことから、 x の範囲を 1 0 原子%以上 1 4 原子%以下にすることがさらに好ましい。 なお、 1 5 < x \le 2 0 原子%のときには、 3 . 0 < z < 1 2 原子% を満足することが好ましい。

[0139]

Rは、希土類元素(Yを含む)の群から選択された1種以上の元素である。 LaまたはCeが存在すると、保磁力および角形性が劣化するため、LaおよびCeを実質的に含まないことが好ましい。ただし、微量のLaやCe(0.5原子%以下)が不可避的に混入する不純物として存在する場合は、磁気特性上、問題ない。したがって、0.5原子%以下のLaやCeを含有する場合は、LaやCeを実質的に含まないといえる。

[0 1 4 0]

Rは、より具体的には、PrまたはNdを必須元素として含むことが好ましく、その必須元素の一部をDyおよび/またはTbで置換してもよい。Rの組成比率 yが全体の 6 原子%未満になると、保磁力の発現に必要な R_2Fe_{14} B型結晶構造を有する化合物相が充分に析出せず、700k A/m以上の保磁力 H_{cJ} を得ることができなくなる。また、Rの組成比率 yが 10 原子%以上になると、強磁性を有する鉄基硼化物や $\alpha-Fe$ の存在量が低下する。と同時に、磁粉の耐食性や耐酸化性が低下し、本発明による効果が得られにくくなる。故に、希土類元素Rの組成比率 y は 6 原子%以上 10 原子%未満の範囲、例えば、 6 原子%以上 10 原子%以下に調節することが好ましい。より好ましい Rの範囲は 10 不見 10 不同 10 不同

$[0 \ 1 \ 4 \ 1]$

添加金属元素Mは、T i を必須としており、更にZ r および/またはH f を含んでいても良い。T i は、前述した効果を得るためには必須の元素であり、保磁力 H_{cl} および残留磁束密度 B_r の向上および減磁曲線の角形性の改善に寄与し、

最大エネルギー積(BH)maxを向上させる。

[0142]

金属元素Mの組成比率 z が全体の 0.5原子%未満になると、 T i 添加の効果が充分に発現しない。一方、金属元素Mの組成比率 z が全体の 1 2 原子%を超えると、結晶化熱処理後も残存するアモルファス相の体積比率が増すため、残留磁束密度 B r の低下を招来しやすい。以上のことから、金属元素Mの組成比率 z は 0.5原子%以上 1 2 原子%以下の範囲とすることが好ましい。より好ましい z の範囲の下限は 1.0原子%であり、より好ましい z の範囲の上限は 8.0原子%である。更に好ましい z の範囲の上限は 6.0原子%である。

[0143]

また、Qの組成比率xが高いほど、Q(例えばB)を含むアモルファス相が形成されやすいので、金属元素Mの組成比率zを高くすることが好ましい。これにより磁化の高い軟磁性鉄基硼化物を析出させたり、生成した鉄基硼化物の粒成長が抑制できる。具体的には、 $z/x \ge 0$. 1 を満足させるように組成比率を調節することが好ましく、 $z/x \ge 0$. 1 5 を満足させることがより好ましい。

[0144]

なお、Ti は特に好ましい働きをするため、金属元素MはTi を必ず含む。この場合、金属元素M全体に対するTi の割合(原子比率)は、70%以上であることが好ましく、90%以上であることが更に好ましい。

[0145]

Feは、上述の元素の含有残余を占めるが、Feの一部をCoおよびNiの一種または二種の遷移金属元素(T)で置換しても所望の硬磁気特性を得ることができる。Feに対するTの置換量が50%(すなわち、mが0.5)を超えると、0.7T以上の高い残留磁束密度B $_{r}$ が得られない。このため、置換量は0%以上50%以下(すなわち、0 \le m \le 0.5)の範囲に限定することが好ましい。なお、Feの一部をCoで置換することによって、減磁曲線の角形性が向上するとともに、 R_{2} Fe $_{14}$ B相のキュリー温度が上昇するため、耐熱性が向上する。CoによるFe置換量の好ましい範囲は0.5%以上40%以下である。また、Al、Si、Cu、Ga、Ag、Pt、Au、Pb、V、Cr、Mn、Nb、

Мо、Wを少量含んでいても磁気特性を劣化させるものではないが、2原子%以 下の含有量とすることが好ましい。

$[0 \ 1 \ 4 \ 6]$

「磁粉の耐酸化性】

本発明の希土類系ボンド磁石用コンパウンドに用いられるTi含有ナノコンポ ジット磁粉の耐酸化性を従来の急冷磁石粉末と比較しながら説明する。

$[0\ 1\ 4\ 7]$

ここでは、Ti含有ナノコンポジット磁粉と、従来の急冷磁石粉末としてMQ Ⅰ社から市販されているMQP-BおよびMQP-O(何れも最大粒径が300 μm以下)とを比較する。なお、Ti含有ナノコンポジット磁粉の試料は、以下 のようにして作製した。

[0 1 4 8]

まず、後述する実施例1と同様の方法で作製した急冷合金(Nd:9原子%、 B:11原子%、Ti:3原子%、Co:2原子%、残部Feの合金、平均厚さ :70μm、標準偏差σ:13μm)を850μm以下に粉砕した後、長さ約5 00mmの均熱帯を有するフープベルト炉を用い、Ar流気下、ベルト送り速度 100mm/分にて680℃に保持した炉内へ粉末を20g/分の供給速度で投 入することによって熱処理を施し、磁粉を得た。得られた磁粉を上述したピンデ ィスクミルを用いてアスペクト比が0.4以上1.0以下の粉末を体積基準で3 0%程度含む粒度分布になるよう粉砕したものをTi含有ナノコンポジット磁粉 の試料NCP-0とした。

$[0\ 1\ 4\ 9]$

表1に、それぞれの磁粉を種々の温度(23℃、300℃および350℃)で 大気中に1時間放置した後の酸素含有率と磁気特性を示す。磁気特性は振動式磁 力計を用いて測定した。23℃で測定した結果とともに、大気中で300℃およ び350℃でそれぞれ1時間放置した後に測定した結果を合せて示している。

[0150]

表1に示したように、MQP-Bは、大気中に300℃で1時間放置すると酸 素含有量が0.67質量%まで増加し、350℃で1時間放置すると、1.93

質量%まで増加した。MQP-Oは、300で1時間放置すると酸素含有量が0.24質量%まで増加し、350で1時間放置すると、0.59質量%まで増加した。

[0151]

これに対し、T i 含有ナノコンポジット磁粉NCP-0は、大気中に300℃で1時間放置しても酸素含有量は0.10質量%までしか増加せず、350℃で1時間放置した後の酸素含有率は、0.20質量%までであり、従来の急冷磁石粉末に比較して耐酸化性に優れていることが分かる。

[0152]

また、それぞれの磁粉の加熱質量増加率を熱天秤を用いて測定した結果を図9に示す。なお、加熱雰囲気は大気中で、昇温速度は10℃/分とした。図9から分かるように、Ti含有ナノコンポジット磁粉NCP-0は、MQP-BやMQP-Oに比べて酸化による質量増加が少なく、耐酸化性に優れている。

[0153]

次に、表1の磁気特性についてみると、MQP-Bは、磁気特性の低下も著しく、例えば(BH) maxは、300 \mathbb{C} で1時間放置すると23 \mathbb{C} で1時間放置したものの約65%まで低下し、350 \mathbb{C} で1時間放置すると約30%まで低下した。また、MQP-Oの(BH) maxは、350 \mathbb{C} で1時間放置すると23 \mathbb{C} で1時間放置したものの約80%未満にまで低下した。これに対し、Ti含有ナノコンポジット磁粉NCP-0は、350 \mathbb{C} で1時間放置しても、その(BH) maxは23 \mathbb{C} で1時間放置したものの約90%までしか低下しなかった。

[0154]

このように、Ti含有ナノコンポジット磁粉は耐酸化性に優れているので、ボンド磁石を作製する工程(例えば、コンパウンドの調製および/または熱硬化)において磁粉が酸化されにくい。従って、磁粉の酸化を抑制するために従来の急冷磁石粉末(特にMQP-B)で必要であった磁粉の防錆処理を簡素化または省略することができる。また、従来の急冷磁石粉末を用いる場合には、磁粉の酸化を抑制するために、真空またはArなどの不活性ガス雰囲気中で加熱硬化する必要があったが、Ti含有ナノコンポジット磁粉を用いることによって、大気中で

加熱硬化することが可能となる。すなわち、Ti含有ナノコンポジット磁粉を用 いることによって、ボンド磁石の製造工程を簡略化し、コストを削減することが できる。さらに、従来の急冷磁石粉末は、耐酸化性が低かったので、例えば25 0℃~300℃程度の温度で樹脂と混練する工程や成形する工程を必要とする射 出成形用のボンド磁石には適用することが難しかったが、Ti含有ナノコンポジ ット磁粉を用いることによって、射出成形によって作製されるボンド磁石を得る ことができる。Ti含有ナノコンポジット磁粉と従来の急冷磁石粉末および/ま たは従来のナノコンポジット磁粉を混合して用いる場合には、Ti含有ナノコン ポジット磁粉の優れた耐酸化性の利点を十分に得るために、300℃以上350 ℃以下の温度で1時間大気中に放置した後の酸素含有率が0.24質量%未満と なるように混合比率を調整した磁粉を用いることが好ましく、上記の酸素含有率 が0.2質量%以下となるように調製された磁粉を用いることがより好ましい。 例えば、各種回転機やアクチュエータ用のボンド磁石に求められる磁気特性を考 慮すると、これらのボンド磁石用コンパウンドに好適に用いられる磁粉の磁気特 性としては、最終的な状態で、 $B_r \ge 0$. 7 T、(BH) $max \ge 80 k J/m^3$ 、H_{CI}≥600kA/mを満足することが好ましい。上述の耐酸化性を有する磁 粉を用いると、コンパウンドおよびボンド磁石の作製工程における酸化の影響を 考慮しても上記の磁気特性を得ることができる。

[0155]

【表1】

磁粉	放置温度	(BH) _{max}	В,	H _{cJ}	O ₂
	(°C)	(kJ/m ³)	(T)	(kA/m)	(%)
NCP-0	23	107.0	0.802	1009.7	0.02
	300	103.1	0.790	989.3	0.10
	350	96.1	0.774	1006.8	0.20
MQP-B	23	122.0	0.899	732.6	0.04_
	300	79.3	0.762	686.8	0.67
	350	38.2	0.546	635.8	1.93
MQP-0	23	113.0	0.818	1007.6	0.04
	300	105.7	0.802	999.0	0.24
	350	88.5	0.744	977.4	0.59

[0156]

本発明のコンパウンドに用いられるTi含有ナノコンポジット磁粉は、その組成および組織の特徴のため、その磁気特性に粒径依存性が小さいという特徴を有している。Ti含有ナノコンポジット磁粉は、希土類元素Rの含有率が比較的低く、Rがリッチな粒界相が存在しないのに加え、R2Fe14B相を取り囲むように小さな硼化物相が分散しており、さらにTiは硼素との親和性が高いので硼化物相は他の相よりも多くのTiを含有している。その結果、Ti含有ナノコンポジット磁粉は、従来の急冷磁石粉末に比べ耐酸化性に優れている。

[0157]

従来の急冷磁石粉末は比較的多量の希土類元素Rを含むので酸化されやすく、 粒径が小さいほど粉末粒子表面の酸化による磁気特性の低下が顕著となる。例え ば、MQP-B(最大粒径300μm以下)では、表2に示すように、粒径が7 5μm以下、特に53μm以下の粉末粒子の磁気特性が低下している。残留磁束 密度Brについてみると、最も高い値を示している125μm超150μm以下 の粉末粒子の残留磁束密度Br(0.90T)に対して、53μm以下の粉末粒 子の残留磁束密度Br(0.79T)は90%未満にまで低下している。また、 (BH) maxについて見ると、53μm以下の粉末粒子の平均の(BH)ma x(38μm以下と38μm超53μm以下の値の単純平均)は85.5kJ/ m³であり、150μm超212μm以下の粉末粒子の平均の(BH) max(150μm超180μm以下と180μm超212μm以下の値の単純平均)で ある114.6kJ/m³の75%未満にまで低下している。

[0158]

これに対し、Ti含有ナノコンポジット磁粉は酸化による磁気特性の低下の割合が低く、磁気特性の粒径依存性が小さい。例えば、ナノコンポジット磁粉NCP-0(最大粒径300 μ m以下)では、表3に示すように、磁気特性はほとんど粒径に依存せず、優れた磁気特性を有している。例えば、残留磁束密度 B_r は、最も高い値を示している106 μ m超125 μ m以下の粉末粒子の残留磁束密度 B_r (0.845T)に対して、53 μ m以下の粉末粒子の残留磁束密度 B_r (約0.829T)は98%以上の値を有している。また、(BH)maxについ

ても、 53μ m以下の粉末粒子の平均の(BH) maxは104.6k J/m 3 であり、 150μ m超 212μ m以下の粉末粒子の平均の(BH) maxである 106.6k J/m 3 の98%以上の値を有している。種々の組成のTi含有ナノコンポジット磁粉について同様の評価を行った結果、ほとんどの組成についてナノコンポジット磁粉の 53μ m以下の粉末粒子の平均の(BH) maxは、 150μ m超 212μ m以下の粉末粒子の平均の(BH) maxの90%以上の値を有し、多くの組成について95%以上の値が得られることが分かった。なお、磁粉の粒度分布の評価は、JIS8801準拠の標準ふるいを用いて行った。

[0159]

【表2】

粒度	(BH) _{max}	HeJ	B _r
(μm)	(kJ/m^3)	(kA/m)	(T)
38以下	83.7	744	0.79
38超~53	87.2	752	0.79
53超~75	94.2	739	0.82
75超~106	108.3	748	0.84
106超~125	111.5	754	0.86
125超~150	116.8	741	0.90
150超~180	115.7	750	0.88
180超~212	113.4	763	0.85
212超~250	110.1	755	0.87
250超	112.9	752	0.88

[0160]

【表3】

	NCP-0					
粒度	質量%	(BH) _{max}	HeJ	B,		
(μm)		(kJ/m³)	(kA/m)	(T)		
38以下	9.36	104.5	854.66	0.830		
38超~53	6.83	104.77	844.00	0.829		
53超~75	12.34	107.16	853.39	0.831		
75超~106	19.76	110.67	859.75	0.837		
106超~125	12.23	112.64	866.12	0.845		
125超~150	15.24	111.63	864.21	0.843		
150超~180	9.42	105.64	896.30	0.820		
180超~212	8.89	107.61	849.41	0.831		
212超~250	4.27	99.67	851.16	0.814		
250超	1.65	88.44	844.64	0.800		

[0161]

このように、Ti含有ナノコンポジット磁粉は従来の急冷磁石粉末と同等以上の磁気特性を有しているので、従来の急冷磁石粉末(例えばMQ粉)の代わりに希土類系ボンド磁石用コンパウンドの磁粉として用いることができる。さらに、Ti含有ナノコンポジット磁粉を用いると、上述したような種々の優れた特性を有するコンパウンドを得ることができる。勿論、ボンド磁石用磁粉をTi含有ナノコンポジット磁粉のみで構成しても良いが、例えば、上述したMQ粉のうちの粒径が53μm以下の粉末粒子をTi含有ナノコンポジット磁粉に置き換えることによっても大きな効果を得ることができる。

[0162]

以下に、 53μ m以下および 38μ m以下の微粒子を混入することによって充填性が改善される効果を実験結果を例示しながら説明する。

[0163]

まず、表 4 に示すような種々の粒度分布を有するナノコンポジット磁粉の試料 NCP-1からNCP-5を作製した。なお、NCP-1の磁粉は、 $0.5\,\mathrm{mm}$ ϕ のスクリーンを用いてパワーミルで粉砕することによって調製し、他のNCP-2~NCP-5の磁粉は、上述したピンミル装置を用いて、それぞれ回転数を $3000\,\mathrm{rpm}$ 、 $4000\,\mathrm{rpm}$ 、 $5000\,\mathrm{rpm}$ および $8000\,\mathrm{rpm}$ とする

ことによって調製した。これらの磁粉試料NCP-1からNCP-5をタップデンサを用いてタップ密度を測定した結果を表 5に示す。表 5には、それぞれの磁粉試料中に含まれる粒径が 5 3 μ m以下の粉末粒子の質量%および粒径が 2 5 0 μ m超の粉末粒子の質量%を合せて示している。

[0164]

表5の結果からわかるように、粒径が53 μ m以下の粒子を10質量%以上(厳密には9.5質量%以上)含む試料NCP-3~NCP-5は、タップ密度が4.3g/cm³以上と高く、磁粉の充填性が優れていることが分かる。磁粉のタップ密度で評価される磁粉の充填性は、ボンド磁石用のコンパウンドの粉末の充填性と相関しており、充填性の高い磁粉を用いて調製されたコンパウンドの粉末の充填性も高くなる。従って、粒径が53 μ m以下のナノコンポジット磁粉を10質量%含む磁粉を用いることによって、ボンド磁石用コンパウンドの粉末の充填性や流動性が改善され、高品質の成形体を得ることができる。

[0165]

【表4】

粒度	質量%					
(μm)	NCP-1	NCP-2	NCP-3	NCP-4	NCP-5	
38以下	2.37	2.05	4.86	8.88	17.99	
38超~53	1.91	2.54	4.64	7.42	20.90	
53超~75	4.90	5.17	11.80	16.36	26.92	
75超~106	11.57	13.87	23.08	26.30	23.60	
106超~125	7.30	11.11	13.49	12.56	5.59	
125超~150	12.29	14.10	16.26	13.40	3.37	
150超~180	13.47	17.53	10.67	7.90	1.15	
180超~212	17.37	17.64	9.08	4.09	0.37	
212超~250	16.84	8.80	3.49	1.76	0.09	
250超~300	9.26	4.34	1.56	0.77	0.03	
300超	2.72	2.87	1.03	0.50	0.00	

[0166]

【表5】

試料No.	(質量%)	(質量%)	(g/cm³)
(μm)	53μm以下	250 μ m超	タップ密度
NCP-1	4.30	12.00	4.01
NCP-2	4.59	7.21	4.12
NCP-3	9.50	2.59	4.28
NCP-4	16.30	1.27	4.25
NCP-5	38.90	0.00	4.33

[0167]

さらに、成形密度を向上するためには、粒径が 38μ m以下の粉末粒子を含むことが好ましい。表6に示す粒度分布を有するTi 含有ナノコンポジット磁粉NCP-11からNCP-16を調製し、それぞれ2質量%のエポキシ樹脂と混合することによってコンパウンドを得た。それぞれのコンパウンドを用いて成形圧力980 MPa (10 t/c m^2) で圧縮成形することによってボンド磁石成形体を得た。それぞれのボンド磁石成形体の密度を、それぞれのコンパウンドに用いた磁粉中の粒径が 38μ m以下の粉末粒子の含有率とともに図10に示す。

[0168]

【表 6】

粒度	NCP						
(μm)	-11	-12	-13	-14	-15	-16	
38以下	2.1	4.9	9.4	11.6	15.0	18.0	
38超~53	2.5	4.6	6.8	11.0	23.2	20.9	
53超~75	5.2	11.8	12.3	14.4	26.0	26.9	
75超~106	13.9	23.1	19.8	20.3	22.4	23.6	
106超~125	11.1	13.5	12.2	13.5	6.1	5.6	
125超~150	14.1	16.3	15.2	10.4	2.9	3.4	
150超~180	17.5	10.7	9.4	9.0	2.2	1.2	
180超~212	17.6	9.1	8.9	6.9	1.7	0.4	
212超~250	8.8	3.5	4.3	2.1	0.5	0.1	
250超~300	4.3	1.6	1.7	0.8	0.1	0.0	
300超	2.9	1.0	0.0	0.1	0.0	0.0	

[0169]

図10からわかるように、38 μ m以下の粉末粒子の含有率が低すぎても高す

ぎても成形体の密度は低下する。種々検討した結果、高い成形体密度を得るためには、粒径が 38μ m以下の粉末粒子を約8 質量%以上含む磁粉を用いることが好ましい。但し、粒径が 38μ m以下の粉末粒子の含有率が約16 質量%を超える磁粉を用いると、成形性が低下し、高い密度を有する高品位の成形体が得られないことがある。

[0170]

なお、圧縮成形用のコンパウンドについて、磁粉の粒径と成形性の関係を説明 したが、射出成形や押出し成形などの他の成形用のコンパウンドについても同様 のことが言える。

[0171]

[コンパウンドおよび磁石体の製造方法の説明]

上述のTi含有ナノコンポジット磁粉を含むボンド磁石用磁粉は、樹脂等の結合剤と混合され、ボンド磁石用コンパウンドが製造される。

[0172]

射出成形用のコンパウンドは、公知の混練装置(例えばニーダや押出し機)を 用いて磁粉と熱可塑性樹脂とを混練することによって製造される。また、圧縮成 形用のコンパウンドは、溶剤で希釈した熱硬化性樹脂と磁粉とを混合し、溶剤を 除去することによって製造される。得られた磁粉と樹脂との混合物は、必要に応 じて、所定の粒度となるように解砕される。解砕の条件などを調整することによ って、顆粒状としてもよい。また、粉砕によって得られた粉末材料を造粒しても よい。

[0173]

磁粉の耐食性を向上するために、磁粉の表面に予め化成処理等の公知の表面処理を施しても良い。さらに、磁粉の耐食性や樹脂との濡れ性、コンパウンドの成形性をさらに改善するために、シラン系、チタネート系、アルミネート系、ジルコネート系などの各種カップリング剤を使用することが好ましい。また、コロイダルシリカなどセラミックス超微粒子、ステアリン酸亜鉛やステアリン酸カルシウムなどの潤滑剤を使用してもよく、熱安定剤、難燃剤、可塑剤などを使用してもよい。

[0174]

磁石用コンパウンドは種々の成形方法で種々の用途に用いられるので、用途に応じて、樹脂の種類および磁粉の配合比率が適宜決められる。樹脂としては、例えばエポキシ樹脂、フェノール樹脂やメラミン樹脂などの熱硬化性樹脂や、ポリアミド(ナイロン66、ナイロン6、ナイロン12等)や、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエステル、ポリフェニレンサルファイドなどの熱可塑性樹脂や、ゴムやエラストマ、さらには、これらの変性体、共重合体、混合物などを用いることができる。特に、これまで工業的規模での利用が難しかった180℃以上の軟化点を有するナイロン6やポリフェニレンサルファイドなどの高融点樹脂を用いたコンパウンドを比較的容易に作製できる。

[0175]

さらに、Ti含有ナノコンポジット磁粉を用いることによって、成形性や流動性を改善することができるので、従来は用いることが難しかった高粘度の樹脂を用いることもできる。さらに、磁粉は酸化されにくいので、融点または軟化点が高く従来は使用できなかった樹脂(例えば、ポリイミドや液晶ポリマなど、また、種々の樹脂の高分子量グレード品)を用いることができるので、ボンド磁石の特性(耐熱性など)を改善することが出来る。また、熱硬化性樹脂を用いる場合においても、従来よりも高い温度で硬化する樹脂を用いることができる。

[0176]

成形方法としては、圧縮成形、圧延成形、カレンダー成形、押出し成形および 射出成形を例示することができる。これらの成形方法のうち、圧縮成形、圧延成 形および押出し成形では、比較的単純な形状の成形体しか成形できないが、成形 時にあまり高い流動性が要求されないので、磁石粉末の充填率を高くできる。本 発明によるコンパウンドは、Ti含有ナノコンポジット磁粉を含むので、従来よ りも更に高い(例えば80%を超える)磁粉充填率を実現することができ、最大 で90%程度まで充填することができる。但し、充填率を上げすぎると磁粉同士 を十分に結合するための樹脂が不足し、ボンド磁石の機械的な強度の低下や、使 用時の磁粉の脱落が生じる恐れがあるので、磁粉充填率は、85%以下が好まし い。また、圧縮成形においては本発明のコンパウンドを用いることによって、成 形体の表面に形成される空隙 (ボイド) の量を減少でき、必要に応じて表面に形成される被膜への悪影響を抑制できるという利点が得られる。

[0177]

本発明によると流動性が優れたコンパウンドを提供することができるので、特に、射出成形用コンパウンドとして好適に用いられ、従来の急冷磁石粉末を用いたコンパウンドでは成形が困難であった複雑な形状の成形体を得ることが可能となる。また、従来よりも高い充填率(例えば65%を超える)で磁石粉末を配合できるので、磁石体の磁気特性を向上することができる。さらに、本発明のコンパウンドが含むTi含有ナノコンポジット磁粉は、耐酸化性に優れるので、比較的軟化点の高い熱可塑性樹脂や熱可塑性エラストマを用いて、比較的高い温度で射出成形を行っても磁気特性が低下しない。なお、用途に応じて樹脂塗装やめっき等によってボンド磁石の表面に被膜を形成することが望ましい。

[0178]

[ボンド磁石の応用例]

本発明によるボンド磁石用コンパウンドは、上述したように、従来の急冷磁石粉末(例えばMQI社製の製品名MQP-B)を用いたコンパウンドに比べ、優れた充填性(成形性)を有するとともに、耐熱性に優れており、且つ、従来の急冷磁石粉末を用いたボンド磁石と同等以上の磁気特性を有するボンド磁石を形成することができるので、種々の用途に好適に用いられる。

[0179]

図11を参照しながら、ステッピングモータに応用した例を説明する。

図11は、永久磁石回転子型を備えるステッピングモータ100の構成を模式的に示す分解斜視図である。ステッピングモータ100は、ロータ101と、ロータ101の周辺に設けられたステータ部102とを有している。ロータ101は、外径8mmの外周面を10極に均等に着磁したボンド磁石を備えている。ステータ部102は、外ヨーク102aおよび102bと、これらと互いに背中合わせに接合された2個の内ヨーク103と、これらの間に収容された励磁コイル104aおよび104bの起磁力により1ステッルス電流に対応する励磁コイル104aおよび104bの起磁力により1ステッ

プ角だけロータ 101が変位する動作を行う、いわゆる PM型パルスモータである。

[0180]

ロータ101が備えるボンド磁石は、上述した本発明による充填性(成形性) に優れたコンパウンドを用いて形成されており、従来の急冷磁石粉末を用いたボンド磁石と同等以上の磁気特性を有するとともに、機械的特性に優れ、欠けなどが発生する恐れがなく、信頼性に優れている。また、耐熱性にも優れる。

[0181]

このような本発明によるコンパウンドを用いて形成されたボンド磁石を備えるステッピングモータは、小型・高性能で且つ信頼性に優れており、プリンターやディスクドライブ装置などのOA機器やカメラやビデオなどのAV機器などに好適に用いられる。

[0182]

ロータ101は、種々の方法で製造することができる。例えば、熱硬化性樹脂を用いたコンパウンドを圧縮成形することによって形成しても良いし、熱可塑性 樹脂を用いたコンパウンドを射出成形または押出し成形することによって形成してもよい。以下、図12を参照しながら、ロータ101の製造方法を説明する。

[0183]

例えば、熱硬化性樹脂を結合剤とするコンパウンドを用いる場合、図12(a)~(c)を参照しながら説明するような成形方法を採用することによって、図12(d)に示すボンド磁石一体成形型のロータ200を作製することができる。

[0184]

図12(d)に示したロータ200は、ロータ軸205と、そのまわりに設けられたヨーク208と、ボンド磁石210とを備えている。ボンド磁石210は、ヨーク208の表面212に接着されている。

[0185]

ロータ200は、図12(a)から(c)に示した工程で製造される。

[0186]

まず、図12(a)に示したように、まず、粉末状のコンパウンド201を収 容したフィーダボックス203を金型204の上面で摺動させながらコンパウン ド201をキャビティ202内に充填する。金型204には、ロータ軸205が その中央に圧入されたヨーク208がセットされており、ロータ軸205を覆う ように補助部材207が設けられている。金型204とこれらの間にキャビティ 202が形成されている。

$[0\ 1\ 8\ 7]$

次に、例えば、図12(b)に示すように、上パンチ209を介して、コンパ ウンド201を圧縮成形することによって、ヨーク208とコンパウンド201 の成形体とを物理的に結合させる。

[0188]

次に、図12(c)に示すように、ロータ成形体を金型204から取り出す。 補助部材は207は、ロータ軸205およびヨーク208から簡単に取り外され 、ロータ軸205、ヨーク208、ボンド磁石210は一体化されている。但し 、この状態では、ボンド磁石210はコンパウンドの粉末成形体であり、コンパ ウンドに含まれている熱硬化性樹脂は未硬化である。

$[0\ 1\ 8\ 9\]$

次に、ボンド磁石210を硬化するため、およびヨーク208とボンド磁石2 10との界面212における接合を強化するために、コンパウンドを所定の温度 で硬化させる。硬化温度および硬化時間は用いる樹脂に応じて適宜設定される。

[0190]

本発明によるコンパウンドは、耐熱性に優れる磁粉を含んでいるので、従来よ りも高い硬化温度で好適に硬化されるコンパウンドであり得る。従って、従来よ りも、耐熱性、機械特性および接着強度に優れたボンド磁石210を形成するこ とができる。さらに、本発明によるコンパウンドは、磁粉自体が耐食性に優れて いるため、熱硬化処理を大気中で行っても磁石特性の劣化は極めて小さい。従っ て、熱硬化処理を不活性雰囲気で行う必要がないので工程費用を削減できる。

[0191]

上述した成形方法によると、リング状のボンド磁石210を成形しながら、同

時に、ヨーク208およびロータ軸205とボンド磁石210とを一体に成形できるので、ロータ200を高い生産性で製造することができる。

[0192]

なお、金型204から成形体を取り出してから硬化する例を説明したが、金型204に加熱機構を設けて、金型204内で硬化してもよく、加圧した状態で硬化してもよい。さらに、圧縮成形に限られず、射出成形によってボンド磁石一体成形型ロータを形成することもできる。

[0193]

また、本発明によるコンパウンドは、従来の急冷磁石粉末を用いたコンパウンドに比べて高い充填性(成形性および/または流動性)を有するので、小さな間隙(例えば、約2mm幅)に確実に充填することができる。従って、本発明によるコンパウンドは、IPM(Interior Permanent Magnet)型モータに用いられる磁石埋設型ロータ300(図13参照)の製造に好適に用いられる。

[0194]

図13に示した磁石埋設型ロータ300は、鉄心(例えば直径80mm、厚さ50mm)301と、鉄心301の中心に形成された回転軸スロット302と、鉄心301の周辺部に形成された複数のアーク状磁石スロット304とを備えている。ここでは、8個のアーク状磁石スロット304が設けられており、それぞれのスロット304は、第1スロット(例えば幅3.5mm)304aと第2スロット(例えば幅1.8mm)304bとを有する2層構造となっている。これらのスロット304aおよび304b内に本発明によるコンパウンドを充填し、ボンド磁石を形成する。ロータ300の複数の磁石スロット304に対向するようにS極とN極とが交互に配置されたステータ(不図示)と組み合わせることによってIPM型モータが得られる。

[0195]

ボンド磁石の成形は、種々の方法で実行することができる。例えば、熱硬化性 樹脂を含むコンパウンドを用いる場合、スロット内圧縮成形法(例えば特開昭 6 3-98108号公報参照)を採用することができる。また、熱可塑性樹脂を含 むコンパウンドを用いる場合には、押出成形法や射出成形法を採用することができる。何れの成形方法を採用する場合においても、本発明によるコンパウンドは 充填性に優れるので、スロット304aおよび304b内に確実に充填でき、且 つ、機械特性や耐熱性が優れるとともに、従来と同等以上の磁気特性を有するボンド磁石を形成することができる。従って、従来よりも高性能で高信頼性の小型 IPM型モータを作製することが可能になる。

[0196]

本発明によるコンパウンドは、図14(a)に示す角度センサ(ロータリーエンコーダ)400が有するボンド磁石の形成に好適に用いられる。

[0197]

図14(a)に示したロータリエンコーダ411は、回転軸413と、回転軸413に連結された回転ドラム416と、回転ドラム416の外周面に接合された複数のボンド磁石415とを有するロータ414と、ロータ414の外周面に離間して配置された検出器417とを備えている。検出器417は、ロータ414からの磁束の変化を検出できるものであれば、特に限定されず、例えば、ホール素子、磁気抵抗素子、磁気インピーダンス効果素子を用いることができる。また、回転軸413はモータ412に連結されている。検出器17は、図示しない計測部に接続されている。

[0198]

本発明によるコンパウンドを用いて形成されたボンド磁石415は、例えば、図14(b)に示したような円柱状のものであり、回転ドラム416の外周面に沿ってN極とS極とが交互に配置されている。ボンド磁石415と回転ドラム416は、16との接合は、例えば接着剤等によって行われている。回転ドラム416は、例えば、金属材料を用いて形成され、磁性材料でなくてもよい。

[0199]

このロータリエンコーダ400は、以下のように動作する。モータ412の回転軸413が回転すると、その回転に応じてロータ414が回転する。このとき、ロータ414の外周面に配置されたボンド磁石415が検出器417に形成する磁束の向きが、ロータ414の回転に従って変化する。検出器417はこの磁

東の向きの変化に相当する出力信号(電圧の変化量または電流の変化量等)を生成し、計測部(不図示)に出力する。このようにして、モータ412の回転量(角度)が計測される。

[0200]

本発明によるコンパウンドは充填性(成形性、流動性)に優れ、従来と同等以上の磁気特性を有し、且つ、従来よりも機械特性や耐熱性に優れるボンド磁石を 形成することができるので、小型で高性能で信頼性の高い角度センサを作製する ことが可能になる。なお、ロータリエンコーダ用の磁石としては、図14のよう に磁石を配置するかわりに、回転ドラム416の外側に多極着磁したリング磁石 を組み込んでもよいことは言うまでもない。

[0201]

さらに、本発明によるコンパウンドは、図15(a)および(b)を参照しながら説明する磁気ロール用のボンド磁石の形成に好適に用いられる。

[0202]

図15(a)は、電子写真用のプロセスカートリッジ501の構造を模式的に示す断面図である。カートリッジ501は、矢印A方向に回転駆動される感光ドラム510と、感光ドラム510を帯電するための帯電ローラ502と、現像装置511と、クリーニング装置512とを一体に有している。

[0203]

現像装置511は、トナー513を収容する現像容器509を備え、現像容器509の開口部には感光ドラム510に対向するように現像スリーブ506が回転可能に配設されている。また、現像装置511は弾性ブレード514を備えており、弾性ブレード514は現像スリーブ506に当接し、現像スリーブ506により担持搬送されるトナー513の層厚を規制する。

[0204]

図15(b)は、プロセスカートリッジ501が有する現像装置511の構成を模式的に示す断面図である。

[0205]

現像スリーブ506は非磁性材料で形成されており、軸受を介して現像容器5

09に回転可能に支持されている。現像スリーブ(例えば直径10mm)506 内には磁気ロール(例えば直径8.5mm)507が配設されている。磁気ロール507の軸部507aには切欠き507a-1が形成されており、切欠き507a-1が現像容器509に係合することによって磁気ロール507が固定されている。磁気ロール507は、感光ドラム510と対向する位置に現像極S1を有し、その他の位置にはS2極、N1極およびN2極を有している。

[0206]

磁石508は、現像スリーブ506を包囲するように配置されており、現像スリーブ506との間隙gに磁気カーテンを形成し、この磁気カーテンによって間隙内にトナーを保持することによって、トナー漏れが防止される。

[0207]

磁気ロール507は本発明によるコンパウンドを用いて形成されているので、 従来の磁石と同等以上の磁気特性を有し、且つ、機械特性や耐熱性にも優れる。 従って、磁気ロール507や現像スリーブ506を従来よりも更に小型化するこ が可能であるとともに、性能を向上することができる。本発明によるコンパウン ドを用いて形成された磁気ロールは、複写機やレーザビームプリンタ内の現像装 置や現像カートリッジにも適用できる。

[0208]

以下、本発明の実施例を示す。

[0209]

(実施例1~3、比較例1)

<磁石粉末の作製>

Nd:8.9原子%、B:12.6原子%、Ti:3.0原子%、C:1.4原子%、Nb:1.0原子%、残部Feの合金組成になるように配合した原料5kgを坩堝内に投入した後、50kPaに保持したAr雰囲気中にて高周波誘導加熱により合金溶湯を得た。

[0210]

ストリップキャスト法を用いて得られた合金溶湯から急冷合金を作製した。具体的には、坩堝を傾転することによって、合金溶湯をシュートを介して、ロール

表面周速度14m/秒にて回転する純銅製の冷却ロール(直径250mm)上に 直接供給し、合金溶湯を急冷した。なお、ロールに溶湯を供給する際には、シュ ート上で溶湯を2条に分流し、その際の溶湯の供給速度は坩堝の傾転角を調整す ることにより、1条あたり1.3 kg/分に調整した。

[0211]

得られた急冷合金について、鋳片100個の厚みをマイクロメータで測定した 結果、急冷合金の平均厚さは85μmでその標準偏差σは13μmであった。得 られた急冷合金を850μm以下に粉砕した後、長さ約500mmの均熱帯を有 するフープベルト炉を用い、Ar流気下、ベルト送り速度100mm/分にて7 80℃に保持した炉内へ粉末を20g/分の供給速度で投入することによって熱 処理を施し、磁粉を得た。

[0212]

得られた磁粉の結晶構造を粉末X線回折法を用いて解析した結果、本磁粉がN e₂Fe₁₄B相とFe₂₃B₆相およびα-Fe相から構成されるTi含有ナノコン ポジット磁粉であることを確認した。

[0213]

次いで、得られた磁粉を図7および図8を参照しながら上述したように、ピン ディスクミルを用いて粉砕し、表7のような粒度分布を持つ磁粉を得た。なお、 粒度分布は、粉末50gをJIS8801の標準ふるいを用いて分級し、それぞ れの粒度の粉末質量から求めた。

[0214]

【表7】

粒度	質量%
38以下	10.40
38超~53	22.74
53超~75	27.47
75超~106	30.17
106超~125	8.39
125超~150	0.55
150超	0.28

[0215]

得られた磁粉粒子100個について、そのアスペクト比を走査型電子顕微鏡に よって求めた結果、全てアスペクト比が0.3以上1.0以下の粒子であった。

[0216]

<コンパウンドの作製>

上記Ti含有ナノコンポジット磁粉(真密度7.5g/с m^3)と、分級によって表7と同様の粒度分布とした市販のMQP-O粉(真密度7.5g/с m^3)を表8に示す体積割合で混合したものをボンド磁石用磁粉とした。このボンド磁石用磁粉とナイロン66(真密度1.1g/с m^3)とを例えば二軸混練機を用いて混練し、実施例1~3および比較例1の希土類系ボンド磁石用コンパウンドを得た。得られたコンパウンドの真密度(5.0g/с m^3)から求めたコンパウンド中の磁粉の体積比率(磁粉充填率)は61%であった。

[0217]

【表8】

	Ti系ナノコンポジット磁粉	MQP-O
実施例1	100%	
実施例2	70%	30%
実施例3	2%	98%
比較例1	-	100%

[0218]

〈評価〉

実施例および比較例のコンパウンドについて、以下の評価を行った。

[0219]

(流動性の評価)

実施例 $1 \sim 3$ および比較例 1 のコンパウンドについて、メルトインデクサを用いて、メルトフローレート(MFR)を評価した。評価条件は、ノズルの直径を $2.095\,\mathrm{mm}$ 、押出し荷重を $5\,\mathrm{kg}\,\mathrm{f}/\mathrm{cm}^3$ として、溶融温度を $240\,\mathrm{C}$ 、 $260\,\mathrm{C}$ 、 $280\,\mathrm{C}$ に設定した。なお、MFR値が高いほどコンパウンドの粒度性が優れていることを示す。結果を表 9 に示す。

[0220]

(耐酸化性の評価)

実施例1~3および比較例1のコンパウンドそれぞれ約5gを大気中400℃ で10分間放置した際の酸化による質量増加(酸化増量)を測定した。なお、酸 化増量は、(放置後の質量-放置前の質量)/(放置前の質量)を百分率で示す ことにする。酸化増量が小さいものほどコンパウンドの耐酸化性が優れているこ とを示す。結果を表9にあわせて示す。

[0221]

【表9】

	MFR値 (g/10分)			酸化增量(%)
	240°C	260°C	280°C	
実施例1	136	220	366	0.152
実施例2	150	255	350	0.180
実施例3	114	190	320	0.254
比較例1	67	115	190	0.261

[0222]

(射出成形体の特性評価)

実施例1および比較例1のコンパウンドを、断面2mm×10mm、高さ(深 さ) 60mmのキャビティにに射出成形し、扁平長尺形状を有するボンド磁石を 得た。なお、このキャビティ形状は、上述したIPMモータのロータのスロット 形状を模擬したものである。

[0223]

得れたボンド磁石をキャビティの深さ方向に3等分に切断し、2 mm×10 m m×20mmの磁石片を得た。これら3つの磁石片を射出成形のゲートに近い方 からA、BおよびCとそれぞれ呼ぶことにする。これらの磁石片を短辺(2 mm の辺) に平行に3.2MA/mのパルス磁界を印加することによって着磁した後 、それぞれの磁気特性をBHトレーサを用いて測定した。得られた結果を表11 に示す。

[0224]

【表10】

	射出温度	磁石片	B _r	H°	(BH) _{max}
	(°C)		(T)	(kA/m)	(kJ/m^3)
実施例1	260	Α	0.500	994.2	49.4
		В	0.496	994.0	48.4
		C	0.497	997.5	48.9
	350	Α	0.495	989.7	47.0
		В	0.493	990.3	47.1
		С	0.496	990.4	47.5
比較例1	260	Α	0.481	987.2	47.2
		В	0.472	992.6	42.8
		С	0.465	989.9	40.3
	350	Α	0.433	993.1	40.7
		В	0.425	984.2	37.8
		С	0.414	988.8	35.1

[0225]

表9の結果から、Ti含有ナノコンポジット磁粉を2質量%含む実施例3のコンパウンドは、従来のMQP-O粉のみを含む比較例1のコンパウンドよりも流動性が改善されている。また、Ti含有ナノコンポジット磁粉の分率を70%とすることによって、酸化増量が2質量%以下まで低下し、耐酸化性が改善されている。

[0226]

表10の結果から分かるように、Ti含有ナノコンポジット磁粉を含む実施例 1のコンパウンドは、ゲートからの位置によらず安定した磁気特性を示しており 、流動性および耐酸化性に優れている。すなわち、狭いキャビティへの射出成形 を安定に行うことができるとともに、350℃で成形した場合でも、得られたボンド磁石の酸化による磁気特性の低下は認められなかった。

[0227]

一方、比較例1のコンパウンドは、表9に示したように、流動性が低く、また、酸化増量も2.6%以上と多く耐酸化性に劣る。また、表10の結果から分かるように、ゲートから遠いものほど磁気特性が低く、キャビティに十分にコンパウンドが充填されていない。また、射出成形の温度を350℃として磁石片の磁気特性は260℃で成形したのよりも明らかに劣っており、磁粉の酸化によって

磁気特性が低下していることが分かる。

[0228]

(実施例4、比較例2および3)

<コンパウンドの作製>

上述の実施例 $1 \sim 3$ で用いたT i 系ナノコンポジット磁粉(真密度 7. 5 g / c m 3、粒度分布は表 7 参照)のみを用いて実施例 4 のコンパウンドを作製し、市販のMQP-B粉(MQI社製、真密度 7. 6 g / c m 3)および市販のMQP-O粉(MQI社製、真密度 7. 5 g / c m 3)を用いて、それぞれ比較例 2 および 3 のコンパウンドを作製した。

[0229]

具体的には、それぞれの磁粉と、得られるコンパウンドに対して2質量%のエポキシ樹脂(真密度1.2g/с m^3 、メチルエチルケトンで希釈)を混合した後、Ar雰囲気中で、メチルエチルケトンを蒸発させながら混練し、実施例4および比較例2、3の希土類系ボンド磁石用コンパウンドを得た。それぞれのコンパウンドの真密度(6.9g/с m^3)より求めたコンパウンド中の希土類合金粉末の体積比率は、実施例4および比較例3のコンパウンドで90%、比較例2のコンパウンドで89%であった。

<ボンド磁石の作製>

実施例 4、および比較例 2、3のコンパウンドを用いて、径 $10\,\mathrm{mm}\times$ 高さ $7\,\mathrm{mm}$ の圧縮成形ボンド磁石を、得られる磁石の密度がいずれも 5. $9\,\mathrm{g/c\,m}^3$ となるように成形圧力を調整して作製した後、 $A\,\mathrm{r}$ ガス雰囲気中、 $1\,5\,0\,\mathrm{C}$ で $1\,\mathrm{mm}$ 時間加熱処理を行うことにより作製した。

<評価>

 (いずれのデータもn=3の平均)を放置時間に対してプロットしたグラフを図16 (a) および (b) に示す。

[0230]

本実験の結果、実施例4に示すように、本発明のコンパウンドを用いたボンド 磁石は、MQP-BやMQP-Oに代表される従来の急冷合金磁石粉末を用いた 比較例2および3のコンパウンドを用いたボンド磁石に比べて、高温高湿下放置 による酸化が進行しにくく、かつ磁気特性が低下しにくいことが分かった。

[0231]

【発明の効果】

本発明によると、ボンド磁石を成形する際の加熱による磁気特性の劣化を抑制 するとともに、流動性などの成形性を改善し、優れた磁気特性と耐食性を有する 希土類系ボンド磁石を得ることができる希土類系ボンド磁石用コンパウンドが提 供される。

[0232]

本発明によるコンパウンドは流動性に優れるので、射出成形用のコンパウンド として特に好適に用いられる。

【図面の簡単な説明】

【図1】

T i が添加されていないN d -F e -B ナノコンポジット磁石の最大磁気エネルギー積(B H) \max と 硼素濃度との関係を示すグラフである。グラフ中、白いバーは 1 0 \sim 1 4 原子%のN d を含有する試料のデータを示し、黒いバーは 8 \sim 1 0 原子%のN d を含有する試料のデータを示している。

【図2】

T i が添加されたN d -F e -B ナノコンポジット磁石の最大磁気エネルギー 積 $(BH)_{max}$ と 硼素濃度との関係を示すグラフである。グラフ中、白いバーは $10\sim14$ 原子%のN d を含有する試料のデータを示し、黒いバーは $8\sim10$ 原子%のN d を含有する試料のデータを示している。

【図3】

本発明による磁石におけるR2Fe14B型化合物相と(Fe、Ti)-B相を

示す模式図である。

【図4】

Tiを添加した場合、および、Tiに代えてNbなどを添加した場合における 急冷凝固合金の結晶化過程における微細組織の変化を模式的に示す図である。

【図5】

(a) は、本発明による鉄基希土類合金磁石のための急冷合金を製造する方法 に用いる装置の全体構成例を示す断面図であり、(b) は急冷凝固が行われる部 分の拡大図である。

【図6】

(a)は、本発明に関して粉砕前の合金および粉砕後の粉末粒子を模式的に示す斜視図であり、(b)は、従来技術に関して粉砕前の合金および粉砕後の粉末 粒子を模式的に示す斜視図である。

【図7】

本発明の実施形態で用いられるピンミル装置の構成を示す図である。

【図8】

図7に示したピンミル装置のピン配列を示す図である。

図9】

本発明によるTi含有ナノコンポジット磁粉および従来の急冷磁石粉末の加熱 質量増加率を示すグラフである。

【図10】

粒度分布の異なるTi含有ナノコンポジット磁粉を用いて形成されたボンド磁 石成形体の密度を示すグラフである。

【図11】

本発明による実施形態の永久磁石回転子型を備えるステッピングモータ 100 の構成を模式的に示す分解斜視図である。

【図12】

(a) ~ (d) は、本発明による実施形態のボンド磁石一体成形型のロータ 2 0 0 およびその成形工程を示す図である。

【図13】

本発明による実施形態の磁石埋設型ロータ300の構造を示す模式図である。

【図14】

(a) および(b) は、本発明による実施形態のロータリーエンコーダ411 の構造を模式的に示す図である。

【図15】

(a) および(b) は、本発明による実施形態の磁気ロール507を備える電子写真用のプロセスカートリッジ501の構造を模式的に示す断面図である。

【図16】

本発明の実施例 4、比較例 2 および 3 のコンパウンドを用いたボンド磁石の相対湿度 9 0 %の高温高湿下に放置した際の耐食性を評価した結果を示すグラフであり、(a)は質量増加率を放置時間に対してプロットしたグラフであり、(b)磁束(Φ o p e n)の変化率を放置時間に対してプロットしたグラフである。

【符号の説明】

- 1 b、2 b、8 b、および9 b 雰囲気ガス供給口
- 1 a、2 a、8 a、および9 a ガス排気口
- 1 溶解室
- 2 急冷室
- 3 溶解炉
- 4 貯湯容器
- 5 出湯ノズル
- 6 ロート
- 7 回転冷却ロール
- 2 1 溶湯
- 22 合金

【書類名】

図面

【図1】

【図2】

【図3】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

図11]

【図12】

【図13】

【図14】

【図15】

【図16】

1/E

【書類名】 要約書

【要約】

【課題】 ボンド磁石を成形する際の加熱による磁気特性の劣化を抑制するとともに、流動性などの成形性を改善し、優れた磁気特性と耐食性を有する希土類系ボンド磁石を得ることができる希土類系ボンド磁石用コンパウンドを提供することである。

【選択図】 なし

特願2001-354315

出願人履歴情報

識別番号

[000183417]

1. 変更年月日

1990年 8月13日

[変更理由]

新規登録

住 所 名

大阪府大阪市中央区北浜4丁目7番19号

住友特殊金属株式会社

2. 変更年月日

2004年 4月 1日

[変更理由]

名称変更

住 所

大阪府大阪市中央区北浜4丁目7番19号

氏 名

株式会社NEOMAX