Assignment 18

Gaydhane Vaibhav Digraj Roll No. AI20MTECH11002

Abstract—This document solves a problem based on polynomial vector spaces.

Download latex-tikz codes from

https://github.com/Vaibhav11002/EE5609/tree/master/Assignment 18

1 Problem

Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers a_0, a_1, \dots, a_k . For $p \in V$

$$max\{|p(a_j)|: 0 \le j \le k\}$$

defines a norm on V

- 1) only if k < n
- 2) only if $k \ge n$
- 3) if $k + 1 \le n$
- 4) if $k \ge n + 1$

2 Solution

Options 2 and 4 are correct as verified in the table 2

Properties	Norm $\forall x \in V$
Positivity	$ x \ge 0, x = 0 \iff x = 0$
Scalar Multiplication	$ \alpha x = \alpha x , \alpha \in F$
Triangle Inequality	$ x + y \le x + y $

TABLE 1: Properties of Norm

For $p \in V$ then the norm, $max\{ p(a_j) : 0 \le j \le k\} = 0 \iff p(a_j) _{0 \le j \le k} = 0$	
Conditions	Explanation
only if $k < n$	A polynomial doesn't necessarily have $k + 1$ distinct real roots,
	i.e., for some j , $ p(a_j) \neq 0$
	thus p is not identically zero. Thus condition fails.
only if $k \ge n$	p is a polynomial of degree ≤n,
	it can't have more than n roots and is only possible when,
	$p(x) = 0 \implies \left p(a_j) \right _{0 < j < k} = 0$
	hence p is identically zero. Thus condition satisfies.
if $k + 1 \le n$	Not a norm for $k < n$. Hence incorrect.
if $k \ge n + 1$	Norm for $k \ge n$. Hence correct.

TABLE 2: Verifying Positivity Property of Norm