Exercices sur les anneaux

Exercice 1

Soit $A = \{a + jb \mid a, b \in \mathbb{Z}\}$, où $j = e^{2i\pi/3}$.

- 1. Montrer que A est un sous-anneau de \mathbb{C} .
- 2. Pour tout $z \in A$, montrer que $N(z) = |z|^2 \in \mathbb{Z}$.
- 3. Montrer que $z \in U(A)$ si et seulement si N(z) = 1.
- 4. Décrire le groupe U(A) et déterminer ses éléments d'ordre 3.
- 5. Soit $\Phi : \mathbb{Q}[X] \to \mathbb{C}$ défini par $P \mapsto P(j)$.
 - (a) Montrer que Φ est un morphisme d'anneaux.
 - (b) Déterminer le noyau de Φ .
 - (c) Montrer que Im $\Phi = \{a+jb \mid a,b \in \mathbb{Q}\}$ et que c'est un sous-corps de \mathbb{C} .
- 6. Conclure que $A \cong \mathbb{Z}[X]/(X^2 + X + 1)$.

Exercice 2

Soit A un anneau commutatif et I un idéal de A. On note $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N}, x^n \in I\}$ (le radical de I).

- 1. Montrer que \sqrt{I} est un idéal de A.
- 2. Montrer que $\sqrt{\sqrt{I}} = \sqrt{I}$.
- 3. Montrer que $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ et $\sqrt{I+J} \supseteq \sqrt{I} + \sqrt{J}$.
- 4. Exemple : Si $A = \mathbb{Z}$ et $I = 3648\mathbb{Z}$, trouver \sqrt{I} .

Exercice 3

Soit A un anneau. Un élément $a \in A$ est dit nilpotent s'il existe un entier n > 0 tel que $a^n = 0$.

1. Montrer que si a est nilpotent, alors 1 - a est inversible.

- 2. Montrer que l'ensemble des éléments nilpotents forme un idéal dans A (noté Nil(A)) si A est commutatif.
- 3. Montrer que Nil(A) est contenu dans tout idéal premier de A.
- 4. Calculer Nil(A) si $A = \mathbb{Z}/100\mathbb{Z}$.

Exercice 4

Soit *A* un anneau principal et commutatif.

- 1. Montrer que a divise b si et seulement si $(b) \subseteq (a)$.
- 2. La relation $a \mid b$ définit-elle un ordre sur A?

Exercice 6

- 1) Soit A un corps. Montrer que l'anneau A[X], des polynômes à une variable avec des coefficients dans A, est un anneau principal.
- 2) Soit A un anneau commutatif, unitaire et integre. Montrer que si A[X] est un anneau principal alors A est un corps.

Exercice 7: Localisation d'un anneau commutatif

Soit A un anneau commutatif et S une partie multiplicative de A, c'est-à-dire que S contient 1, et si $s,t\in S$, alors $st\in S$. On veut définir la localisation $S^{-1}A$ de A par rapport à S.

- 1) Montrer qu'on peut définir une relation d'équivalence sur $A \times S$ comme suit : (a,s) est équivalent à (b,t) s'il existe $u \in S$ tel que u(at-bs)=0. Soit $S^{-1}A$ l'ensemble des classes d'équivalences. On écrira $\frac{a}{s}$ pour désigner la classe d'équivalence de (a,s).
- 2) Montrer que $S^{-1}A$, muni des opérations

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
 et $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$,

est un anneau commutatif.

- 3) Montrer que si $0 \in S$, alors $S^{-1}A$ est un anneau trivial.
- 4) Montrer que l'application $f:A\to S^{-1}A$ définie par $f(a)=\frac{a}{1}$ est un morphisme d'anneaux. Montrer que f est injectif si S ne contient pas de diviseurs de zéro.
- 5) Cas particulier: corps des fractions. Supposons que A est intègre, et que $S = A \setminus \{0\}$. Montrer que $S^{-1}A$ est un corps, appelé le *corps des fractions de A*.

- 6) Cas particulier: localisation en un idéal premier. Soit P un idéal premier de A. Montrer que $S = A \setminus P$ est une partie multiplicative de A. On note A_P pour désigner $S^{-1}A$ dans ce cas.
- 7) Cas particulier: Montrer que l'idéal engendré par l'image de P dans A_P est le seul idéal maximal de A_P .

Exercice 8

On considère le sous-anneau A de $\mathbb C$ engendré par $\varphi=\frac{1+\sqrt{5}}{2}$, c'est-à-dire :

$$A = \mathbb{Z}[\varphi] = \{ P(\varphi) : P \in \mathbb{Z}[X] \}.$$

- 1) Vérifier que $\varphi^2 \varphi 1 = 0$. En déduire que $A = \{a + b\varphi : a, b \in \mathbb{Z}\}$.
- 2) On note $\overline{\varphi} = \frac{1-\sqrt{5}}{2} = 1 \varphi$ et, si $w = a + b\varphi \in A$, on pose $\overline{w} = a + b\overline{\varphi}$. Montrer que l'application $w \mapsto \overline{w}$ est un automorphisme de A.
- 3) On définit $N: A \to \mathbb{Z}$, $w = a + b\varphi \mapsto w\overline{w} = (a + b\varphi)(a + b\overline{\varphi})$.
 - (i) Montrer que $x \in A$ est inversible si et seulement si $N(x) = \pm 1$.
 - (ii) Montrer que φ est inversible dans A, d'inverse $-\overline{\varphi} = \varphi 1$.
- 4) Soit $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci, définie par $F_0=0$, $F_1=1$ et $F_{n+2}=F_{n+1}+F_n$.
 - (i) Montrer que, pour tout $n \in \mathbb{N}^*$, $\varphi^n = F_{n-1} + F_n \varphi$.
 - (ii) En déduire que l'ensemble des inversibles de A est de cardinalité infinie.
 - (iii) En déduire que $\mathbb{Z}[\sqrt{5}]^\times$ est infini.

Exercice 9

Soit A un anneau commutatif et $x \in A$ un élément non nul. On considère l'application $f: A \to A$ donnée par $a \mapsto xa$.

- 1) Montrer que f est injective si et seulement si x n'est pas un diviseur de zéro.
- 2) Montrer que f est surjective si et seulement si x est inversible.
- 3) Montrer que si A est de cardinalité finie, alors tout élément non nul de A est soit inversible soit un diviseur de zéro.
- 4) Même question lorsque A est une K-algèbre de dimension finie.
- 5) Donner un exemple d'anneau admettant des éléments non inversibles et non diviseurs de zéro.