

Otto-von-Guericke-Universität Magdeburg

Fakultät für Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik

Masterarbeit

Meine Master Thesis

Heinemann, Hannes 17. Juli 2015

Erstprüfer: Rolf Findeisen

Zweitprüfer: Erik B. Betreuer: Pablo

Aufgabenstellung

Thema

Zeitraum: 06 - 11

Das ist meine Aufgabenstellung

Inhaltsverzeichnis

Abbildungsverzeichnis Tabellenverzeichnis				Ш	
				IV	
Abkürzungsverzeichnis					
Sy	mbo	lverzeic	hnis	VI	
1	Einleitung			1	
	1.1	TODO	O	1	
		1.1.1	Format	1	
		1.1.2	Inhalt	1	
2	Gru	ndlagei	1	3	
3	Algorithmus			4	
	3.1	Erwei	terung für Second Order Cone Problems	4	
		3.1.1	SOCP Formulierung	4	
	3.2	Anpas	sung für test cases	5	
		3.2.1	Allgemeine Beschreibung der test cases	5	
		3.2.2	Algorithmus mit Prädiktionshorizont gleich eins	6	
Lit	terati	urverze	ichnis	8	
Selbstständigkeitserklärung				9	

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungsverzeichnis

MPC Modellprädiktive Regelung

Symbolverzeichnis

1 Einleitung

1.1 TODO

1.1.1 Format

- Zitierstil
- Papierformat
- Schriftgröße, Schriftart ...
- Zeilenabstand

1.1.2 Inhalt

- "Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization" hier findet man in kapitel 5 ein paar hinweise zu der Regularization
- "Primal Barrier Methods For Linear Programming" Kapitel 3: schwierigkeiten bei der Wahl des StartKappa und Startwerte, wie man es günstig wählt Bei einem guten Startwert, kann der Barrierparameter entsprechend klein gewählt werden, ohne das Probleme bei der Konvergenz gegen ein Optimum auftreten + S.29 Tested kappa [0.0001, 1] multiplied with (c'x)/n Value of Costfunction durch dimension to have the value of barrier function in same order as the costvalue + lienear modifications to the barrier function + where to stop + The Nullspace Methods + Hinweise zu Cholesky factorization
- Ausprobieren Kappa kleiner zu wählen, wenn in ermittelter Suchrichtung keine Verbesserung des Funktionswertes möglich ist

 $\bullet\,$ Tabelle mit den Ergebnissen der gelösten Tests

[MM97] Modellprädiktive Regelung (MPC)

2 Grundlagen

- ullet generalized inequalities
- Originalalgorithmus von Wang und Boyd [?]

3 Algorithmus

3.1 Erweiterung für Second Order Cone Problems

Um mit dem effizienten Algorithmus aus [?] auch kompliziertere/komplexere [TODO] Probleme, hier speziell Second Order Cone Problems (SOCP) zu lösen, wurde der Algorithmus wie gleich folgt erweitert. Dabei wurde speziell darauf geachtet nicht die Struktur der entstehenden Matrizen zu verändern, sodass diese auch weiterhin ausgenutzt werden kann. Allerdings sind für ein SOCP nun die Matrizen für die Ungleichungsnebenbedingungen nicht mehr konstant sondern hängen von x(k) ab, sodass sie in jedem MPC Schritt angepasst werden müssen, was einen erhöhten Rechenaufwand bedeutet.

3.1.1 SOCP Formulierung

Zusäliche Ungleichungsnebenbedingung sieht wie folgt aus [TODO: woher [?]]:

$$||Ax + b||_2 \le c^T x + d \tag{3.1}$$

Als generalized inequality nimmt Gleichung 3.1 leicht andere Form an:

$$||Ax + b||_2^2 \le (c^T x + d)^2 \tag{3.2}$$

Im folgenden lässt sich die Ungleichungsnebenbedingung so leichter umformen und ableiten, speziell hebt sich so später ein Wurzelterm auf. Mit x=z ergeben sich die zusätzlichen j Funktionen für die logarithmic barrier function somit zu

$$-f_j(x) = (c_j^T x + d_j)^2 - ||A_j x + b_j||_2^2$$
(3.3)

Alle k barrier function Funktionen lassen sich zu

$$-f_{k}(z) = -\begin{bmatrix} f_{i} \\ f_{j} \end{bmatrix}_{k} = \begin{bmatrix} h_{i} \\ 0 \end{bmatrix}_{k} - \begin{bmatrix} p_{i} \\ (\|A_{j}z + b_{j}\|_{2}^{2} - (c_{j}^{T}z + d_{j})^{2}) z^{-1} \end{bmatrix}_{k} z$$
 (3.4)

zusammenfassen. Für den Algorithmus wird nun weiterhin die Ableitung (Gradient und Hessian) der logarithmic barrier function $\phi(z)$ benötigt, die aus unter anderem $\nabla f_k(z)$ und $\nabla^2 f_k(z)$ gebildet werden.

$$\nabla f_k(z) = \begin{bmatrix} p_i \\ -2\left(\left(c_j^T z + d_j\right)c_j - A_j^T\left(A_j z + b_j\right)\right) \end{bmatrix}_k$$
(3.5)

$$\nabla^2 f_k(z) = \begin{bmatrix} 0 \\ -2\left(c_j^T c_j - A_j^T A_j\right) \end{bmatrix}_k$$
(3.6)

3.2 Anpassung für test cases

Der implementierte Algorithmus wie in [Paper:, Section:] beschrieben kann auch verwendet werden, um Optimierungsprobleme zu lösen, die ihren Ursprung nicht in der Anwendung von MPC haben. Dazu sind keine wirklichen Anpassungen des Algorithmus notwendig. Da der Algorithmus allerdings die Struktur der bei MPC auftretenden Matrizen ausnutzt, muss der jeweilige test case so "transformiert" werden, dass dieser eine ähnliche Struktur aufweist.

3.2.1 Allgemeine Beschreibung der test cases

Nach [MM97] haben die test cases folgende Form:

min
$$\hat{c}^T \hat{x} + \frac{1}{2} \hat{x}^T \hat{Q} \hat{x}$$

s.t. $\hat{A}\hat{x} = \hat{b}$ (3.7)
 $\hat{l} < \hat{x} < \hat{u}$

Aber es existieren auch test cases mit weiteren Ungleichungsnebenbedingung der Form:

$$\hat{b}_{lower} \le \hat{A}\hat{x} \le \hat{b}_{upper} \tag{3.8}$$

Vereinheitlicht für 3.6 und 3.7 schreiben

min
$$\hat{c}^T \hat{x} + \frac{1}{2} \hat{x}^T \hat{Q} \hat{x}$$

s.t. $\hat{b}_{lower} \leq \hat{A} \hat{x} \leq \hat{b}_{upper}$
 $\hat{l} < \hat{x} < \hat{u}$ (3.9)

Wobei sich für

$$\hat{b} = \hat{b}_{lower} = \hat{b}_{upper}$$

die Gleichungsnebenbedingungen

$$\hat{A}\hat{x} = \hat{b}$$

ergeben

3.2.2 Algorithmus mit Prädiktionshorizont gleich eins

Um die test cases lösen zu können, muss der Prädiktionshorizont T=1 gewählt werden. Die Optimierungsvariable beschränkt sich damit auf

$$z = (u(t), x(t+T)) \in \mathbb{R}^{(m+n)}, \quad T = 1$$

Die strukturierten Matrizen im Algorithmus zum lösen des Optimierungsproblems

$$\begin{aligned} & \text{min} \quad z^T H z + g^T z \\ & \text{s.t.} \quad Pz \leq h, \quad Cz = b \end{aligned}$$

reduzieren sich damit auf folgende Form:

$$H = \begin{bmatrix} R & 0 \\ 0 & Q_f \end{bmatrix}$$

$$P = \begin{bmatrix} F_u & 0 \\ 0 & F_f \end{bmatrix}$$

$$C = \begin{bmatrix} -B & I \end{bmatrix}$$

$$g = \begin{bmatrix} r + 2S^T x(t) \\ q \end{bmatrix}$$

$$h = \begin{bmatrix} f - F_x x(t) \\ f_f \end{bmatrix}$$

$$b = \begin{bmatrix} Ax(t) \end{bmatrix}$$

Um den Algorithmus nun mit den test cases nach [MM97] zu testen muss

$$H = \frac{1}{2}\hat{Q}, \quad g = \hat{c}, \text{ nicht korrekt, einzelne Untermatrizen setzen}$$
 (3.10)

gesetzt werden. Die Ungleichungsnebenbedingung

$$F_u u(t) + F_x x(t) + F_f x(t+1) \le f = f_u + f_x \tag{3.11}$$

ergeben sich zu

$$F_{u} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$F_{x} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$F_{f} = \begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix}$$

$$f = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f_{f} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Als Gleichungsnebenbedingungen bleibt im implementierten Algorithmus

$$x(t+1) = Ax(t) + Bu(t)$$
(3.12)

Da allerdings x(t+1) auch zu dem Vektor der Optimierungsvariablen gehört muss

$$\hat{b} = -Ax(t) \quad \text{mit} \quad A = -I \tag{3.13}$$

gesetzt werden. Zusätzlich wird mit weiteren Ungleichungsnebenbedingung dafür gesorgt, dass x(t+1) im Optimum nahe der Null liegt. Das bedeutet aber auch, dass in der Auswertung der Güte der eingehaltenen Gleichungsnebenbedingungen auch die Genauigkeit der zusätzlichen Ungleichungsnebenbedingung betrachtet werden muss.

Literaturverzeichnis

[MM97] Maros, István ; Mészáros, Csaba: A Repository of Convex Quadratic Programming Problems. (1997)

Selbstständigkeitserklärung

Hiermit versichere ich, Hannes Heinemann, dass ich die vorliegende Bachelorarbeit mit dem Thema "Umsetzung eines Kanalmodells für Petri-Netz modellierte Funksysteme" selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

 $17.~\mathrm{Juli}~2015$

Hannes Heinemann