

Gravitational waves from topological defects

Any short subtitle

Nanna Bryne

CS: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics, Department of Physics Faculty of Mathematics and Natural Sciences

Nanna Bryne

Gravitational waves from topological defects

Any short subtitle

Supervisor: David Fonseca Mota

Contents

No	Notation	. iii
1	Introduction	. 3 . 4 . 4
	1.1.4 Opedia functions (timp. flame, maybe move (appendix).)	. 0
I	Background	7
2	Classical Field Theory and Gravity	
	2.1 General Relativity	
	2.2 TITLE (Conformal Transformations)	
	2.3 TITLE (Scalar-Tensor Theories (maybe subsec. of prev.))	
	2.4 Perturbation Theory	
	2.5 Classical Solitons	
3		
	3.1 Linearised Gravity	
	3.1.1 TITLE (Energy–momentum tensor; Eom.; Scalar field)	
	3.2 Generation of Gravitational Waves	
	3.2.1 General Formalism	
	3.2.2 Scalar Field Source (temp. name)	
4	Lattice- [?] and <i>N</i> -body simulations	. 15
II	Project	17
5	•	. 19
	5.1 General Formalism	
6	Simulating Gravitational Waves from Domain Walls	. 23
7		. 25
		27
8 9		. 29

Contents

													33
Biblio	graphy												35
Α	I do not have an	appendix											37

Notation

Constants and units. We use ['natural units'], where $\hbar = c = 1$, where \hbar is the reduced Planck constant and c is the speed of light in vacuum. Planck units? Set $k_B = G_N = 1$? The Newtonian constant of gravitation G_N is referenced explicitly, and we use Planck units such as the Planck mass $M_{\rm Pl} = (\hbar c/G_N)^{1/2} = G_N^{-1/2} \sim 10^{-8} \text{ kg}$.

Tensors. The metric signature (-,+,+,+) is considered, i.e. $\det[g_{\mu\nu}] \equiv |g| < 0$. The Minkowski metric is denoted $\eta_{\mu\nu}$, whereas a general metric is denoted $g_{\mu\nu}$. A four-vector $p^{\mu} =$

$$[\eta_{\mu\nu}] = \text{diag}(-1, 1, 1, 1)$$

$$f_{,\mu} \equiv \partial_{\mu} f = \frac{\partial f}{\partial x^{\mu}}$$

Christophel symbols. The Christophel symbols or "connections" are written

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\rho\sigma} \left(g_{\mu\sigma,\nu} + g_{\mu\sigma,\nu} - g_{\mu\nu,\sigma} \right) \tag{1}$$

"Lambda tensor." We express the *Lambda tensor*—sometimes called the "projection operator"—that projects onto the TT gauge refer to $\sec^{\textcircled{c}}_{.0}$ as

$$\Lambda_{ij,kl}(\boldsymbol{n}) = P_{ik}(\boldsymbol{n})P_{jl}(\boldsymbol{n}) - \frac{1}{2}P_{ij}(\boldsymbol{n})P_{kl}(\boldsymbol{n}); \quad P_{ij}(\boldsymbol{n}) = \delta_{ij} - n_i n_j$$
 (2)

 \forall **n** of unit length; $\mathbf{n}^2 = n_1^2 + n_2^2 + n_3^2 = 1$. We use a dot ('.') instead of the more conventional comma (',') to distinguish from the Minkowskian partial derivative.

Fourier transforms. We use the following convention for the Fourier transform of f(x), $\tilde{f}(k)$, and its inverse, where x and k are Lorentz four-vectors:

$$f(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \tilde{f}(k)$$

$$\tilde{f}(k) = \int d^4x e^{ik \cdot x} f(x)$$
(3)

Here, $k \cdot x = k_{\sigma} x^{\sigma} = g_{\rho \sigma} k^{\rho} x^{\sigma}$.

Acronyms

CDM <u>cold dark matter</u>

CMB cosmic microwave background (radiation)

DW <u>domain wall</u> GR general <u>relativity</u>

GW gravitational wave

 Λ CDM Lambda (Greek $\underline{\Lambda}$) cold <u>dark matter model</u>; standard model of cosmology

Nomenclature

In the table below is listed the most frequently used symbols in this paper, for reference.

Table 1: helo

Symbol	Referent	SI-value or definition
Natural consta	ants	
$G_{ m N}$	Newtonian constant of gravitation	1.2 kg
$k_{ m B}$	Boltzmann's constant	1.2 K
Fiducial quant	tities	
h_0	Reduced Hubble constant	0.67
Subscripts		
$Q_{ m gw}$	Quantity Q related to gravitational wave	
Functions and	operators	
$\Theta(\xi)$	Heaviside step function	$\begin{cases} 1 & \xi > 0 \\ 0 & \xi < 0 \end{cases}$
$sgn(\xi)$	Signum function	$2\Theta(\xi) - 1$
$\delta^{(n)}(\xi)$	Dirac-Delta function of $\xi \in \mathbb{R}^n$, $n \in \mathbb{N}$.	
$\delta^{\mu u}$	Kronecker delta.	

DRAFT

r

Writing Tools

```
This is a comment.

This needs spelling check.

[Rephrase this.]

[Awkward wording.]

[Needs double-checking.]

This is in need of citation or reference to a section.

[With a comment.]

blah blah [...] (Phantom text.)

PHANTOM PARAGRAPH: THIS IS A PHANTOM PARAGRAPH, MAYBE WITH SOME KEYWORDS.
```

- This is a note.
- This is another note.
 - This is a related note.

This is very important.

This text is highlighted.

Statement. [←That needs to be shown or proven.]

Notation

Introduction

- GOALS:
 - Gather framework about GWs from DWs

$$\tilde{h}_{\circledast}^{"} + 2\mathcal{H}\tilde{h}_{\circledast}^{'} + k^{2}\tilde{h}_{\circledast} = 16\pi G_{N}a^{2}\tilde{\sigma}_{\circledast}; \quad \circledast = +, \times$$

$$\tag{1.1}$$

$$\left(\tilde{h}^{\mathrm{TT}}\right)_{ij}(\eta, \mathbf{k}) = \sum_{\circledast = +, \times} e_{ij}^{\circledast}(\hat{\mathbf{k}}) \tilde{h}_{\circledast}(\eta, \mathbf{k})$$
(1.2)

$$\tilde{h}^{\text{TT}}_{ij}(\eta, \mathbf{k}) = \sum_{\circledast = +, \times} e_{ij}^{\circledast}(\hat{\mathbf{k}}) \tilde{h}_{\circledast}(\eta, \mathbf{k})$$
(1.3)

1.1 Preliminaries

It is assumed that the reader is familiar with variational calculus and linear perturbation theory. [In the following, we briefly (re)capture some concepts that are important starting points for the rest of the thesis.]

- variational calculus/ varying action
- action
- pert. theory?
- line element
- gauge invariance
- FRW cosmology
- classical field theory

$$G_{\mu\nu} = 8\pi G_{\rm N} T_{\mu\nu} \tag{1.4}$$

1.1.1 Field theory

We formulate a theory in four-dimensional spacetime Minkowski in terms of the Lorentz invariant action

$$S = \int d^4x \, \mathcal{L}(\{\phi_i\}, \{\partial_\mu \phi_i\}), \tag{1.5}$$

with \mathcal{L} being the *Lagrangian density* of the theory, a function of the set of fields $\{\phi_i\}$ and its first derivatives. We will refer to \mathcal{L} simply as the Lagrangian, as is customary when working with fields. For a general (i.e. curved) spacetime, blah blah $[\ldots]$ $\partial_{\mu} \to \nabla_{\mu}$ blah blah $[\ldots]$ to construct a Lorentz invariant Lagrangian,

$$S = \int d^4x \underbrace{\mathcal{L}(\{\phi_i\}, \{\nabla_{\mu}\phi_i\})}_{\text{not scalar}} = \underbrace{\int d^4x \sqrt{-|g|}}_{\text{scalar}} \underbrace{\hat{\mathcal{L}}(\{\phi_i\}, \{\nabla_{\mu}\phi_i\})}_{\text{scalar}}, \tag{1.6}$$

Maybe specify that this is only for scalar fields? Or include other fields?

1.1.2 Expanding universe: FRW cosmology

The universe expands with the rate a(t) at cosmic time t.

- expansion rate, cosmic time, conformal time
- why is flat assumption OK?

1.1.3 Method of Green's Functions

A linear ordinary differential equation (ODE) $L_x f(x) = g(x)$ assumes a linear differential operator L, a [continuous], unknown function f, and a right-hand side g that constitutes the inhomogeneous part of the ODE. The *Green's function G* for the ODE (or L) is manifest as any solution to $L_x G(x,y) = \delta(x-y)$ [check plagiarism (Bringmann)]. If L is translation invariant (invariant under $x \mapsto x + a$)—which is equivalent to L having constant coefficients—we can write G(x,y) = G(x-y) and [\leftarrow show?]

$$f(x) = (G * g)(x) = \int dy G(x - y)g(y)$$
 (1.7)

solves $L_x f(x) = g(x)$.

Let $f_i^{(0)}$, i = 1, 2, 3, ... be solutions to the homogeneous ODE, i.e. $L_x f_i^{(0)} = 0$. Then, by the superposition principle, $f(x) + \sum_i c_i f_i^{(0)}$ is also a solution of the original, inhomogeneous equation.

Pulse signal. Consider the very common scenario where the source is a temporary pulse;

$$g(x) = \begin{cases} g(x), & x_0 \le x \le x_1, \\ 0, & x \ge x_1. \end{cases}$$
 (1.8)

1.1.4 Special functions (tmp. name, maybe move (appendix)?)

blah blah [...]

For $\nu = n + 1/2, n \in \mathbb{N}$ we have

$$\mathcal{J}_{n+1/2}(x) = \sqrt{\frac{2}{\pi}} x^{n+\frac{1}{2}} \left(-\frac{1}{x} \frac{d}{dx} \right)^n \frac{\sin x}{x}$$
 (1.9a)

and

$$\mathcal{N}_{n+1/2}(x) = (-1)^{n+1} \mathcal{J}_{-(n+1/2)}(x)$$
(1.9b)

for $x \in \mathbb{C}xlxl$

Part I Background

Classical Field Theory and Gravity

Alongside quantum mechanics, Einstein's theory of gravity—general relativity (GR)—is widely accepted as the most accurate description of our surroundings. GR can be formulated from a geometrical point of view, or it can be viewed as a classical field theory. In the former approach we meet geometrical tools such as the geodesic equation, whereas the latter allows the application of field-theoretical methods. This chapter lays emphasis on the field interpretation of GR.

PHANTOM PARAGRAPH: Two perspectives insightful; better overall understanding of aspects of concepts in GR

2.1 General Relativity

The Einstein-Hilbert action in vacuum is Check Planck mass def.

$$S_{\rm EH} = 1/2M_{\rm Pl}^2 \int d^4x \sqrt{-|g|} \,\mathcal{R},$$
 (2.1)

where $\mathcal{R} = g^{\mu\nu}\mathcal{R}_{\mu\nu}$. By varying S_{EH} with respect to $g_{\mu\nu}$ one obtains the equation of motion

$$\mathcal{G}_{\mu\nu} \equiv \mathcal{R}_{\mu\nu} + \frac{1}{2}g_{\mu\nu}\mathcal{R} = 0. \tag{2.2}$$

Thus, we interpret GR as a *classical* field theory where the tensor field $g_{\mu\nu}$ is the gravitational field, [with the particle realisation named "graviton"].

- scalar field (ST theories)
- energy momentum tensor
- 2.2 TITLE (Conformal Transformations)
- 2.3 TITLE (Scalar-Tensor Theories (maybe subsec. of prev.))
- 2.4 Perturbation Theory
- 2.5 Classical Solitons

Chapter 2. Classical Field Theory and Gravity

Gravitational Waves

The term "gravitational waves" refers to the tensor perturbations to the background metric $^{\mathbb{C}}_{0}$. These "waves" are spacetime distortions whose name comes from the fact that \lceil they obey the wave equation \rfloor_{7} .

3.1 Linearised Gravity

CONFORMAL TRAFOS!!!! Carroll ((2019, p. 467))

If we let $\overline{g}_{\mu\nu}$ be the background metric, the perturbed metric is given by

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + h_{\mu\nu}; \quad \left| h_{\mu\nu} \right| \ll 1, \tag{3.1} \label{eq:3.1}$$

where $h_{\mu\nu}$ describes a tensor field propagating on said background. Now, $g^{\mu\nu} = \overline{g}^{\mu\nu} - h^{\mu\nu}$ is the inverse metric, however $h^{\mu\nu}h_{\nu\lambda} = \overline{g}^{\mu\rho}\overline{g}^{\nu\sigma}h_{\rho\sigma}h_{\nu\lambda} \neq \delta^{\mu}_{\lambda}$.

PHANTOM PARAGRAPH: FIND THE LINEARISED EINSTEIN EQS — USING COMMA NOTATION — COMMENT ABOUT NO BACKREACTION

The Christophel symbols are now

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\rho\sigma}\left(g_{\mu\sigma,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma}\right)
= \overline{\Gamma}^{\rho}_{\mu\nu} + \frac{1}{2}\overline{g}^{\rho\sigma}\left(h_{\mu\sigma,\nu} + h_{\nu\sigma,\mu} - h_{\mu\nu,\sigma}\right) - \frac{1}{2}h^{\rho\sigma}\underbrace{\left(\overline{g}_{\mu\sigma,\nu} + \overline{g}_{\nu\sigma,\mu} - \overline{g}_{\mu\nu,\sigma}\right)}_{=2\overline{g}_{\sigma\lambda}\overline{\Gamma}^{\lambda}_{\mu\nu}} + \mathcal{O}(h^{2})
= \overline{\Gamma}^{\rho}_{\mu\nu} + \frac{1}{2}\overline{g}^{\rho\sigma}\left(h_{\mu\sigma,\nu} + h_{\nu\sigma,\mu} - h_{\mu\nu,\sigma}\right) - h^{\rho}_{\lambda}\overline{\Gamma}^{\lambda}_{\mu\nu} + \mathcal{O}(h^{2})
= \overline{\Gamma}^{\rho}_{\mu\nu} + \frac{1}{2}\overline{g}^{\rho\sigma}\left(h_{\mu\sigma,\nu} + h_{\nu\sigma,\mu} - h_{\mu\nu,\sigma} - 2h_{\sigma\lambda}\overline{\Gamma}^{\lambda}_{\mu\nu}\right) + \mathcal{O}(h^{2})
= \overline{\Gamma}^{\rho}_{\mu\nu} + \frac{1}{2}\overline{g}^{\rho\sigma}\left(h_{\mu\sigma,\nu} + h_{\nu\sigma,\mu} - h_{\mu\nu,\sigma}\right) + \mathcal{O}(h^{2}),$$
(3.2)

where $h_{\mu\nu;\sigma} = \overline{\nabla}_{\sigma} h_{\mu\nu} + \mathcal{O}(h^2)$??... [\leftarrow Prove this last line.].

「Maybe have such things in an appendix?」

■ The such things in an appendix in the such things in an appendix in the such things in the such that the such that

DRAFT

г

3.1.1 TITLE (Energy-momentum tensor; Eom.; Scalar field)

The energy-momentum tensor is

$$T^{\mu\nu} = -\frac{2}{\sqrt{-q}} \frac{\delta S_{\phi}}{\delta g^{\mu\nu}} = \partial_{\mu} \phi \partial_{\nu} \phi - g_{\mu\nu} \left[\frac{1}{2} g^{\rho\sigma} \partial_{\rho} \phi \partial_{\sigma} \phi + V(\phi) \right] \tag{3.3}$$

blah blah [...] Assume no cross terms in $g_{\mu\nu}$. To retrieve the TT-part of $T_{\mu\nu}$ we utilise the Lambda tensor $_{\text{(repeat or refer?)}}^{\textcircled{c}}$

$$T_{ij}(\eta, \mathbf{k}) = \Lambda_{ij,kl}(\hat{\mathbf{k}}) (T^{\neg \text{TT}})_{ij} (\eta, \mathbf{k})$$

$$\stackrel{!}{=} \Lambda_{ij,kl}(\hat{\mathbf{k}}) \left[\partial_i \phi \partial_j \phi \right] (\eta, \mathbf{k})$$
(3.4)

$$\left[\partial_{i}\phi\partial_{j}\phi\right](\eta, \mathbf{k}) = \int d^{3}x \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \left[\partial_{i}\phi\partial_{j}\phi\right](\eta, \mathbf{x})$$

$$=????$$
(3.5)

Ш

3.2 Generation of Gravitational Waves

• Somehow get to this eq:

$$T_{ij}^{\mathrm{TT}}(\eta, \mathbf{k}) = \Lambda_{ij,kl}(\hat{\mathbf{k}}) \int \frac{d^3p}{(2\pi)^3} p_k p_l \phi(\eta, \mathbf{p}) \phi(\eta, \mathbf{k} - \mathbf{p}). \tag{3.6}$$

• Production instead of generation?

3.2.1 General Formalism

DRAFT

[™]Use conformal trafo! ((Carroll, 2019, p. 467)) [™]

$$ds^{2} = -dt^{2} + a^{2}(t) \left\{ \gamma_{ij} + h_{ij} \right\} dx^{i} dx^{j} = a^{2}(\eta) \left\{ -d\eta^{2} + \left(\gamma_{ij} + h_{ij} \right) dx^{i} dx^{j} \right\}$$
(3.7)

$$h_{ij} = h_{ij}^{\text{TT}}, \gamma_{ij} = \delta_{ij}, (\overline{g}_{\mu\nu} = a^2 \eta_{\mu\nu})$$

 $h_{ij}=h_{ij}^{\rm TT}, \gamma_{ij}=\delta_{ij}, (\overline{g}_{\mu\nu}=a^2\eta_{\mu\nu})$ Linearised Einstein equations: Conformal Newtonian gauge

$$\delta G^{i}_{j} = 8\pi G_{N} T^{i}_{j} = \frac{1}{2a^{2}} \left[\ddot{h}_{ij} + 2\frac{\dot{a}}{a} \dot{h}_{ij} - \nabla^{2} h_{ij} \right]$$
 (3.8)

where a dot (''') signifies the *conformal* time derivative. $(T_i^i = a^{-2}T_{ij})$ blah blah [...]

$$\ddot{h}_{ij}(\eta, \mathbf{k}) + 2\frac{\dot{a}}{a}\dot{h}_{ij}(\eta, \mathbf{k}) - k^2 h_{ij}(\eta, \mathbf{k}) = 16\pi G_N T_{ij}(\eta, \mathbf{k})$$
(3.9)

Define $\mathfrak{h}_{ij} \equiv ah_{ij}$. By inserting this in Eq. (3.9) and multiplying the equation by a, one finds

$$\ddot{\mathfrak{h}}_{ij}(\eta, \mathbf{k}) + \left[k^2 - \frac{\ddot{a}(\eta)}{a(\eta)} \right] \mathfrak{h}_{ij}(\eta, \mathbf{k}) = 16\pi G_{\text{N}} a(\eta) T_{ij}(\eta, \mathbf{k}). \tag{3.10}$$

We assume $a(\eta) \propto \eta^{\alpha}$ and define $\nu \equiv \alpha - \frac{1}{2}$. Letting $\tau = k\eta$, Eq. (3.10) becomes

$$\left[\frac{\partial^2}{\partial \tau^2} + 1 - \frac{4v^2 - 1}{4\tau^2}\right] \mathfrak{h}_{ij}(\eta, \mathbf{k}) = \frac{16\pi G_{\text{N}} a(\eta)}{k^2} T_{ij}(\eta, \mathbf{k})$$
(3.11)

Now, Eq. (3.11) transforms into a problem of the form $L_{\tau} f(\tau) = g(\tau)$; a problem that can be solved using Green's method (see some section 0). Kawasaki and Saikawa ((2011)) propose

$$G(\tau, \tau') = \frac{\pi}{2} \Theta(\tau - \tau') \left[\mathcal{N}_{\nu}(\tau) \mathcal{J}_{\nu}(\tau') - \mathcal{J}_{\nu}(\tau) \mathcal{N}_{\nu}(\tau') \right]$$
(3.12)

as a solution to $L_{\tau}G(\tau,\tau')=\delta(\tau-\tau')$. In some appendix we show that this holds for a matter dominated universe where $v = 2 - \frac{1}{2} = \frac{3}{2}$.

Now assume the source is active (emits gravitational radiation) between η_{ini} and η_{fi} , and followingly? initial conditions $\mathfrak{h}_{ij}(\eta_{\text{ini}}, \mathbf{k}) = \dot{\mathfrak{h}}_{ij}(\eta_{\text{ini}}, \mathbf{k}) = 0$. Thus,

$$\mathfrak{h}_{ij}(\eta \geq \eta_{\text{ini}}, \mathbf{k}) = \frac{8\pi^2 G_{\text{N}}}{k^2} \int_{k\eta_{\text{ini}}}^{k\eta} d\tau' \sqrt{\tau\tau'} \left[\mathcal{N}_{\nu}(\tau) \mathcal{J}_{\nu}(\tau') - \mathcal{J}_{\nu}(\tau) \mathcal{N}_{\nu}(\tau') \right] a(\tau') T_{ij}(\tau', \mathbf{k}), \quad (3.13)$$

which reduces to

$$\mathfrak{h}_{ij}(\eta \ge \eta_{\mathrm{fi}}, \mathbf{k}) = A_{ij}(\mathbf{k}) \sqrt{k\eta} \mathcal{J}_{\nu}(k\eta) + B_{ij}(\mathbf{k}) \sqrt{k\eta} \mathcal{N}_{\nu}(k\eta). \tag{3.14}$$

Combining Eq. (3.13) and Eq. (3.14) at $\eta = \eta_{fi}$ gives the coefficients A_{ij} and B_{ij} :

$$A_{ij}(\mathbf{k}) = -\frac{8\pi^2 G_{\rm N}}{k^2} \int_{k\eta_{\rm ini}}^{k\eta_{\rm fi}} d\tau' \sqrt{\tau'} a(\tau') \mathcal{N}_{\nu}(\tau') T_{ij}(\tau', \mathbf{k})$$

$$B_{ij}(\mathbf{k}) = +\frac{8\pi^2 G_{\rm N}}{k^2} \int_{k\eta_{\rm ini}}^{k\eta_{\rm fi}} d\tau' \sqrt{\tau'} a(\tau') \mathcal{J}_{\nu}(\tau') T_{ij}(\tau', \mathbf{k})$$
(3.15)

3.2.2 Scalar Field Source (temp. name)

Lattice $\frac{?}{}$ and N-body simulations

Chapter 4. Lattice- $^{?}$ and N-body simulations

Part II Project

Calculating Gravitational Waves from Domain Walls

DRAFT

г

Consider a planar domain wall in the xy-plane in a flat FRW universe, represented by a scalar field $\phi(\eta, \mathbf{x})$ and a potential $V(\phi)$. The action of this theory is

$$S = \int d^4x \sqrt{-g} \left\{ 16\pi G_{\rm N} \mathcal{R} - \frac{1}{2} \phi^{;\mu} \phi_{;\mu} + V(\phi) \right\}. \tag{5.1}$$

The background metric is

$$d\overline{s}^{2} = \overline{g}_{\mu\nu} d\overline{x}^{\mu} d\overline{x}^{\nu} = -dt^{2} + a^{2}(t) \delta_{ij} dx^{i} dx^{j} = a^{2}(\eta) \left\{ -d\eta^{2} + dx^{2} + dy^{2} + dz^{2} \right\}. \tag{5.2}$$

The solution to $\Box \phi = dV/d\phi$ is denoted $\overline{\phi}(\eta, z)$. We let indices a, b, c = 1, 2 and $i, j, k, l, \ldots = 1, 2, 3$. Now we add a linear perturbation $\zeta(\eta, x^a)$ to the wall such that

$$\phi(\eta, \mathbf{x}) = \overline{\phi}(\eta, z; \zeta(\eta, x^a)) = \overline{\phi}(\eta, z; 0) + \zeta(\eta, x^a) \frac{\partial \overline{\phi}}{\partial z}\Big|_{\zeta=0} + \mathcal{O}(\zeta^2). \tag{5.3}$$

Remember eqs for $\zeta! \supseteq$ Furthermore, Fourier transforming [\leftarrow show this!] the spatial components gives

$$\phi(\eta, \mathbf{k}) = \int d^3x \, e^{ik_i x^i} \phi(\eta, \mathbf{x}) = \left[(2\pi)^2 \delta^{(2)}(k_a) - ik_3 \zeta(\eta, k_a) \right] \overline{\phi}(\eta, k_3; 0) + O(\zeta^2). \tag{5.4}$$

The TT-part of the energy-momentum tensor is [\leftarrow refer to some section] \blacksquare \square NB: g cannot have cross terms!!

$$T_{ij}^{\text{TT}}(\eta, \mathbf{k}) = \Lambda_{ij,kl}(\hat{\mathbf{k}}) \int \frac{d^3p}{(2\pi)^3} p_k p_l \phi(\eta, \mathbf{p}) \phi(\eta, \mathbf{k} - \mathbf{p}). \tag{5.5}$$

We define a quantity t_{kl} by

$$T_{ij}^{\text{TT}}(\eta, \mathbf{k}) = \Lambda_{ij.kl}(\hat{\mathbf{k}}) \left(\frac{1}{2\pi} \cdot t_{kl}(\eta, \mathbf{k}) + \mathcal{O}(\zeta^2) \right), \tag{5.6}$$

and the additional function

$$\mathfrak{I}_{n}(\eta, q_{0}) = \int_{\mathbb{R}} dq \, q^{n} \overline{\phi}(\eta, q; 0) \overline{\phi}(\eta, q_{0} - q; 0). \tag{5.7}$$

After some manipulation $[\leftarrow$ show this!], we get the following:

$$t_{ab}(\eta, \mathbf{k}) = k_a k_b \left[-i\zeta(\eta, k_c) \right] \Im_1(\eta, k_3) \tag{5.8a}$$

$$t_{a3}(\eta, \mathbf{k}) = k_a \left[-i\zeta(\eta, k_c) \right] \Im_2(\eta, k_3) \tag{5.8b}$$

$$t_{33}(\eta, \mathbf{k}) = k_3 \left[-i\zeta(\eta, k_c) \right] \Im_2(\eta, k_3) + (2\pi)^2 \delta^{(2)}(k_a) \Im_2(\eta, k_3)$$
 (5.8c)

There are some *small* constraint on the perturbation from this. Need to be commented!

Gravitational waves sourced by this field is – to first order in ζ – given by

$$ah_{ij}(\eta, \mathbf{k}) = \frac{16\pi G_{\rm N}}{k} \int_{\eta_i}^{\eta} \mathrm{d}\eta' \sin\left(k\left[\eta - \eta'\right]\right) a(\eta') T_{ij}^{\rm TT}(\eta', \mathbf{k})$$

$$= \frac{8G_{\rm N}}{k} \Lambda_{ij,kl}(\hat{\mathbf{k}}) \int_{\eta_i}^{\eta} \mathrm{d}\eta' \sin\left(k\left[\eta - \eta'\right]\right) a(\eta') t_{kl}(\eta', \mathbf{k}) + \mathcal{O}(\zeta^2).$$
(5.9)

Remaining are the $\Lambda_{ii,kl}t_{kl}$ -elements, which in total are $\lceil 6 \rfloor_{?}$ terms per ij, due to symmetry in t_{kl} :

$$\begin{split} \Lambda_{ij,kl}(\hat{\pmb{k}})t_{kl}(\eta,\pmb{k}) &= \left\{ \left(\Lambda_{ij,12} + \Lambda_{ij,21} \right) t_{12} + \left(\Lambda_{ij,13} + \Lambda_{ij,31} \right) t_{13} + \left(\Lambda_{ij,23} + \Lambda_{ij,32} \right) t_{23} \right\} (\eta,k\hat{\pmb{k}}) \\ &+ \left\{ \Lambda_{ij,11}t_{11} + \Lambda_{ij,22}t_{22} + \Lambda_{ij,33}t_{33} \right\} (\eta,k\hat{\pmb{k}}) \end{split} \tag{5.10}$$

All of these are on the form

$$-i\zeta(\eta, k_a) \times \left\{ k^2 k^2 S_1(\eta, k_3) A_{ij}(\hat{k}) + k \Im_2(\eta, k_3) B_{ij}(\hat{k}) \right\}, \tag{5.11}$$

leaving

$$ah_{ij}(\eta, \mathbf{k}) = 8G_{\rm N} \left[kA_{ij}(\hat{\mathbf{k}}) \mathcal{I}_1(\eta, \mathbf{k}; \eta_{\rm i}) + B_{ij}(\hat{\mathbf{k}}) \mathcal{I}_2(\eta, \mathbf{k}; \eta_{\rm i}) \right]$$
 (5.12)

where

$$I_n(\eta, \mathbf{k}; \eta_i) = -i \int_{\eta_i}^{\eta} d\eta' \, a(\eta') \sin\left(k \left(\eta - \eta'\right)\right) \times \zeta(\eta', k_a) \Im_n(\eta', k_3). \tag{5.13}$$

Furthermore, we can show $[\leftarrow \text{proof!}]_{\blacksquare}$ that $A_{ij}(\mathbf{n}) = -n_3 B_{ij}(\mathbf{n}) \equiv +2n_3 C_{ij}(\mathbf{n})$ for $|\mathbf{n}|^2 = n_1^2 + n_2^2 + n_3^2 = 1$, allowing for the slightly simpler expression

$$ah_{ij}(\eta, \mathbf{k}) = 4G_{\rm N}C_{ij}(\hat{\mathbf{k}}) \left[k_3 \mathcal{I}_1(\eta, \mathbf{k}; \eta_{\rm i}) - \mathcal{I}_2(\eta, \mathbf{k}; \eta_{\rm i}) \right], \tag{5.14}$$

where :

$$C_{ab}(\mathbf{n}) = n_3 \left[n_a n_b \left(n_3^2 + 1 \right) - \delta_{ab} \left(1 - n_3^2 \right) \right]$$

$$C_{a3}(\mathbf{n}) = -n_a n_3^2 \left(1 - n_3^2 \right)$$

$$C_{33}(\mathbf{n}) = n_3^2 \left(1 - n_3^2 \right)^2$$
(5.15)

1,

Redshift
$$\mathfrak{z}_* = 2 : a(\eta_i) = (1 + \mathfrak{z}_*)^{-1} = 1/3$$

$$ds^2 = a^2(\eta) \left(\delta_{\mu\nu} + h_{\mu\nu} \right) dx^{\mu} dx^{\nu}, x^0 = \eta$$

$$u_{\alpha}x^{\alpha}, \alpha = 0, 1, 2$$

$$u_{\alpha}x^{i}, i = 0, 1, 2bb$$

Important references: ((Vachaspati, 2006, p. 145)), ((Vilenkin, 1985, p. 291)), ((Vilenkin and Shellard, 1994, p. 375))

5.1 General Formalism

Simulating Gravitational Waves from Domain Walls

Chapter 6. Simulating Gravitational Waves from Domain Walls

Studying Gravitational Waves from Domain Walls

Chapter 7. Studying Gravitational Waves from Domain Walls

Discussion

Conclusion and Outlook

Chapter 9. Conclusion and Outlook

Bibliography

- Sean M. Carroll. *Spacetime and Geometry: An Introduction to General Relativity*. Cambridge University Press, July 2019. ISBN 978-0-8053-8732-2 978-1-108-48839-6 978-1-108-77555-7.
- Masahiro Kawasaki and Ken'ichi Saikawa. Study of gravitational radiation from cosmic domain walls. *Journal of Cosmology and Astroparticle Physics*, 2011(09):008–008, September 2011. ISSN 1475-7516. doi: 10.1088/1475-7516/2011/09/008. URL http://arxiv.org/abs/1102. 5628.
- William H. Press, Barbara S. Ryden, and David N. Spergel. Dynamical Evolution of Domain Walls in an Expanding Universe. *The Astrophysical Journal*, 347:590, December 1989. ISSN 0004-637X. doi: 10.1086/168151. URL https://ui.adsabs.harvard.edu/abs/1989ApJ...347. .590P.
- Tanmay Vachaspati. Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons. Cambridge University Press, Cambridge, 2006. ISBN 978-0-521-83605-0. doi: 10.1017/CBO9780511535192. URL https://www.cambridge.org/core/books/kinks-/and-/domain-/walls/98D525CCD885D53F51BDFC3B08A711A6.
- A. Vilenkin. Cosmic strings and domain walls. *Physics Reports*, 121:263–315, January 1985. ISSN 0370-1573. doi: 10.1016/0370-1573(85)90033-1X. URL https://ui.adsabs.harvard.edu/abs/1985PhR...121..263V.
- Alexander Vilenkin and E. Paul S. Shellard. *Cosmic Strings and Other Topological Defects*. January 1994. URL https://ui.adsabs.harvard.edu/abs/1994csot.book....V.

Bibliography

Appendix A I do not have an appendix