Введение в молекулярную биологию

Лекция 4. Методы анализа ДНК, секвенирование

ПЦР: Введение

Классическая ПЦР: Принцип метода

Классическая ПЦР: Компоненты реакции

Классическая ПЦР: Циклы амплификации

Классическая ПЦР: Циклы амплификации

Классическая ПЦР: Применение

Классическая ПЦР: Выходные данные

Классическая ПЦР: Выходные данные

ПЦР в реальном времени (qPCR): Принцип

ПЦР в реальном времени (qPCR): Принцип

ПЦР в реальном времени (qPCR): Принцип

qPCR: Флуоресцентные методы

qPCR: применение

Обработка данных qPCR

Другие варианты ПЦР: Мультиплексная ПЦР

Другие варианты ПЦР: Мультиплексная ПЦР

Emission Filters Overlaid onto Reporter Spectra

Другие варианты ПЦР: Мультиплексная ПЦР

Обратная транскрипционная ПЦР (RT-PCR)

Обратная транскрипционная ПЦР (RT-PCR)

Цифровая ПЦР (dPCR): Принцип

Цифровая ПЦР (dPCR): Принцип

Секвенирование по Сэнгеру: История и значение

Секвенирование по Сэнгеру: Методика

Reagents

1) Primer annealing and chain extension

(2) ddNTP binding and chain termination

(3) Fluorescently labelled DNA sample

Capillary gel electrophoresis and fluorescence detection

5 Sequence analysis and reconstruction

Секвенирование по Сэнгеру: Методика

Автоматизация Сэнгер-секвенирования

Автоматизация Сэнгер-секвенирования

Reagents

1 Primer annealing and chain extension

(2) ddNTP binding and chain termination

(3) Fluorescently labelled DNA sample

Capillary gel electrophoresis and fluorescence detection

(5) Sequence analysis and reconstruction

Микрочипы: Введение

Микрочипы Affymetrix: Особенности технологии

Микрочипы Illumina: Технология

(B) Illumina

probe

Микрочипы Illumina: Технология

Микрочипы Illumina: обработка данных

Исторические NGS методы: SOLiD

Исторические NGS методы: 454 Pyrosequencing

Ion Torrent: Принцип действия

Ion Torrent: Выходные данные

Illumina: Технология секвенирования

Illumina: Выходные данные

Pacific Biosciences (PacBio): SMRT секвенирование

Oxford Nanopore Technologies: Нанопоровое секвенирование

Анализ модификаций с Nanopore

Новые подходы: Ultima Genomics

Новые подходы: MGI Tech

Новые подходы: Aviti

Выравнивание последовательностей

Сборка геномов de novo

Обнаружение генетических вариаций

Reference CCGTTAGAGTTACAATTCGA

Read 2 TTAGAGTAACAA

Read 3 CCGTTAGAGTTA

Read 4 TTACAATTCGA

Read 5 GAGTAACAA

Read 6 TTAGAGTAACAAT

Обнаружение генетических вариаций

DNA-seq: Подготовка библиотек

Fragmented input DNA

End repair

Input DNA blunting

Ligation 1

Single-stranded ligation of Ligation 1 Adapter to 3' ends of insert

Ligation 2

Ligation 2 Adapter primes gap filling across the UMI followed by 5' ligation

PCR

Amplification with xGen[™] Unique Dual Index (UDI) Primer Pairs

DNA-seq: Подготовка библиотек

A) Combinatorial dual indexing has repeated sequences across the rows and columns of a primer plate in contrast to B) unique dual indexing where every sequence is unique.

DNA-seq: Подготовка библиотек

RNA-seq: Подготовка библиотек

RNA-seq: Stranded vs. Non-stranded

Обогащение и экзомное секвенирование

ChIP-seq: Подготовка образцов

Methyl-seq: Анализ метилирования

STEP 1

Denaturation Incubation at 98°C fragments genomic DNA

STEP 2

Conversion Incubation with sodium bisulfite at 64°C and low pH (5-6) deaminates cytosine residues in fragmented DNA.

STEP 3

Desulphonation
Incubation at high pH
at room temperature for
15 min removes the
sulfite moiety,
generating uracil

5-Methylcytosine (5mC)

5-Hydroxymethylcytosine (5hmC)

RRBS: Анализ метилирования

Анализ модификаций с РасВіо

Вопросы и обсуждение