

UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES

Instalaciones Eléctricas

TAREA Nº 1

Alumno: Mugni, Juan Mauricio

Profesor: Cirbian, Sergio

Índice

Consigna	3
Explicación	
, Resolución	
Local 1	
Lamparas fluorescentes	
Lamparas LED	9
Local 2	
Lamparas fluorescentes	11
Lamparas LED	
Local 3	
Lamparas fluorescentes	15
Lamparas LED	
Simulación	19
Local 1	20
Lamparas fluorescentes	20
Local 2	
Lamparas fluorescentes	
Local 3	
Lamparas fluorescentes	

Consigna

El objetivo del presente trabajo es calcular la cantidad de artefactos de iluminación a instalar en cada uno de los locales, basándose en los datos proporcionados para cada estudiante. Se especifica la actividad que se realiza en cada espacio, por lo que será necesario asignar el nivel de iluminación medio recomendado según la naturaleza de la actividad.

Se procederá a realizar el cálculo utilizando artefactos con lámparas fluorescentes convencionales estándar, aplicando el método de las cavidades zonales. Posteriormente, se analizará la alternativa utilizando lámparas LED como opción más eficiente.

Explicación

Para la aplicación del método de las *cavidades zonales*, se parte de la siguiente imagen, en la cual el área delimitada por la línea entrecortada amarilla representa el plano de luminarias, mientras que la superficie encerrada por la línea verde indica el plano de trabajo.

La fórmula general de los índices se expresa como:

$$k_1 = \frac{5h_l(a+1)}{a \cdot l} \quad k_2 = \frac{5h_2(a+1)}{a \cdot l} = k_1 \frac{h_2}{h} \quad k_3 = \frac{5h_3(a+1)}{a \cdot l} = k_1 \frac{h_3}{h}$$

Para determinar el número total de luminarias necesarias para iluminar un local con un nivel de iluminación o iluminacia media pre-establecido, se emplea la siguiente ecuación:

$$N = \frac{E_m.a.l}{cu. fm. \phi_I}$$

Donde:

N : es el número de luminarias.

 E_m : es el nivel de iluminación o iluminancia media pre-establecida [lux].

a: es el ancho del local [m].

l: es el largo del local [m].

cu : es el coeficiente de utilización.

fm: es el factor de mantenimiento o depreciación de la instalación.

 $\phi_{\rm L}~$: es el flujo luminoso de cada luminaria.

Resolución

Los datos asignados según el archivo COMPETENCIA LUMINOTECNIA I.E. 2024.pdf son:

Local	a[m]	<i>l</i> [<i>m</i>]	$h_1[m]$	$h_2[m]$	$h_3[m]$	$ ho_{\scriptscriptstyle 1}[\%]$	$ ho_{\scriptscriptstyle 2} [\%]$	$ ho_3 [\%]$	Uso, Normas IRAM - AADL J 20 06
1	3,5	9,5	3,5	0	0,75	70	80	30	Metalúrgica, pintura, pulido y terminación
2	5	4	2,6	0,4	0,9	50	70	20	Pintura, preparación, dosaje y mezcla de colores
3	2	12	3,2	0,6	0	30	50	20	Pintura, inspección y retoque

Las dimensiones del local 1 son las siguientes:

Estas dimensiones definen el espacio disponible para la instalación de luminarias y son fundamentales para el cálculo del número de luminarias necesarias, utilizando el método de las cavidades zonales.

Lamparas fluorescentes

Se considerará que los tubos fluorescentes convencionales tipo A – 2 x 36W estándar emiten 3000[lm] por lampara. Por lo tanto, cada artefacto emitirá un flujo luminoso total de 6000[lm] .

$$\phi_L = 6000[lm]$$

Las dimensiones de la lámpara a utilizar se encuentran destacadas en el recuadro de color rojo.

DIMENSIONES Y POTENCIAS TUBOS FLUORESCENTES

En primer lugar, se determinan los índices de las cavidades: $k_1\!=\!\tfrac{5.3,5.[3,5+1]}{3.5.9.5}\!=\!2,\!368$

$$k_1 = \frac{5.3,5.(3,5+1)}{3.5.9.5} = 2,368$$

$$k_2 = k_1 \frac{0}{3.5} = 0$$

$$k_3 = k_1 \frac{0.75}{3.5} = 0.508$$

Ahora se realiza el calculo considerando $\rho_{3E}=20\%$.

Con los valores del índice del la reflectancia de la cavidad del cielorraso ($\rho_{\scriptscriptstyle 2E}$), reflectancia de la pared ($\rho_{\scriptscriptstyle 1}$) e índice de la cacavidad del piso como abscisa ($k_{\scriptscriptstyle 1}$), se procede a consultar la tabla de coeficientes de utilización:

	METODO DE LAS CAVIDADES ZONALES																
DE CAVIDAD DE		8	0			70			50				30		10		
CIELORRASO % REFLECTANCIA DE PARED %	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10
INDICE DE LOCAL					The same		COE	FICIEN.	TES DE	UTIL	ZACIO	N					
	0.70	0.68	0.65	0.64	0.68	0.66	0.64	0.62	0.64	0.62	0.60	0.61	0.60	0.59	0.59	Total Section 1	0.57
2	0.65	0.61	0.57	0.54	0.63	0.59	0.56	0.54	0.57	0.54	0.52	0.55	0.53	0.51	0.53	0.51	0.45
2	BONDSHAFE	0.54	0.50	0.46	0.59	0.53	0.49	0.46	0.51	0.48	0.45	0.50	0.47	0.44	0.48	0.46	0.44
3	0.60	0.49	0.44	0.40	0.54	0.48	0.43	0.40	0.46	0.42	0.39	0.45	0.41	0.39	0.44	0.41	0.38
4	0.55	100000	0.38	0.34	0.50	0.43	0.38	0.34	0.41	0.37	0.34	0.40	0.36	0.34	0.39	0.36	0.3
5	0.51	0.44	10000000		0.46	0.39	0.34	0.30	0.37	0.33	0.30	0.36	0.33	0.30	0.36	0.32	0.2
6	0.47	0.39	0.34	0.30		0.35	0.30	0.26	0.34	0.29	0.26	0.33	0.29	0.26	0.32	0.29	0.2
7	0.43	0.35	0.30	0.27	0.42	The same of the sa	ALEXANDER OF THE PARTY OF THE P	0.23	0.30	0.26	0.23	0.30	0.26	0.23	0.29	0.25	0.2
8	0.40	0.32	0.27	0.23	0.39	0.31	0.26		0.30	0.23	0.20	0.27	0.23	0.20	0.26	0.22	0.7
9	0.37	0.29	0.24	0.20	0.36	0.28	0.23	0.19	-	- Contract of		0.24	0.20	65650	0.24	0.20	0.
10 RELACIO	0.34	0.26	0.21	0.18	0.33	0.26	0.16	0.16	0.25	0.21	0.18	2000000	A Company	DE CA	The state of	100	

Dado que $k_1\!=\!2,\!368$, se interpolan de manera lineal los siguientes valores para obtener una mejor aproximación:

para
$$k_1 = 2 \rightarrow cu = 0,65$$

para
$$k_1 = 3 \rightarrow cu = 0,6$$

$$cu = 0.65 - (0.65 - 0.6) \frac{5}{10} = 0.625$$

Se debe ajustar el valor obtenido del coeficiente de utilización para $\rho_{_{3E}}{=}30\,\%$.Para ello, se determina la reflectancia efectiva del piso ($\rho_{_{3E}}$) utilizando la gráfica correspondiente. En dicha gráfica, se ingresa con el índice de la cavidad del piso como abscisa ($k_{_2}$) y se busca la curva correspondiente a la combinación de reflectancias medias de paredes ($\rho_{_1}$) y piso ($\rho_{_3}$). Como resultado, se obtiene la reflectancia efectiva $\rho_{_{2E}}$ en la ordenada.

Es importante tener en cuenta que el valor ρ_1 =70% no está tabulado. Por lo tanto, siguiendo la indicación del profesor, se considera ρ_1 =50%.

Se estipula que la reflectancia efectiva de la cavidad del piso es:

$$\rho_{3F} = 27\%$$

Concideramos un valor cercano, $\rho_{^{3E}}=30\,\%$, ya que se encuentra tabulado en la tabla siguiente.

Donde, con los valores $\rho_{2E}[\%]$ (reflectancia de cavidad de cielorraso), $\rho_1[\%]$ (reflectancia de pared) y de k_1 (índice local) se entra a la tabla de coeficientes de utilización:

Tabla I Factores para reflectancias efectivas de cavidad piso 30% y 10%.

Para reflectancia efectiva de cavidad de piso igual a 30 %, multiplicar por el factor apropiado dado en la tabla.

Para reflectancia efectiva de cavidad de piso igual a 10 %, dividir por el factor apropiado dado en la tabla.

Reflectancia efectiva de cavidad cielorraso, ρ _{2,F} %	80				70	aviali pe	or er iaco	50	opiado	dado en	10		
Reflectancia de pared, ρ, %	50	30	10			AND DE		30					
Indice de cavidad local, k_1		30	10	50	30	10	50	30	10	50	30	10	
I .	1.08	1 08	1.07	1.07								1.01	
2				37755	1.06		1.05	1.04	1.04	1.01	1.01	1.01	
3			1.05	1.06	1.05	1.04	1.04	1.03	1.03	1.01	1.01	1.01	
4			1.03	1.05	1.04	1.03	1.03	1.03	1.02	1.01	1.01	1.01	
•			1.02	1.04	1.03	1.02	1.03	1.02	1.02	1.01	1.01	1.00	
5	1.04	1.03	1.02	1.03	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.00	
. 6	1.03	1.02	1.01	1.03	1.02	1.01	1.02	1.02	1.01	1.01	1.01	1.00	
7	1.03	1.02	1.01	1.03	1.02	1.01	1.02	1.01	1.01	1.01	1.01	1.00	
8	1.03		1.01	1.03		1.01	1.02			1.01	1.01	1.00	
9	1.02	1.01	1.01	1.02	1.01	1.01	1.02	1.01	1.01	1.01	1.0	1.00	
10	1.02	1.01	1.01	1.02	1.01	1.01	1.02		1.01	1.01	1.0	1.00	

para
$$k_1 = 2 \rightarrow cu = 1,07$$

para
$$k_1 = 3 \rightarrow cu = 1,05$$

interpolando nuevamente en forma lineal, se obtiene:

$$cu = 1,07 - (1,07 - 1,05) \frac{5}{10} = 1,06$$

El nuevo coeficiente de utilización será:

$$cu = 0.625.1,06 = 0.6625 \approx 0.66$$

Para determinar el nivel de iluminación o iluminancia media pre-establecida, se considerará el uso del local. En este caso, se realizarán tareas de metalúrgica, pintura, pulido y terminación. Según las Normas IRAM – AADL J 20 06 para tareas de trabajos finos, manuales, inspección, pintura y sopleteado, se requiere una iluminación entre 750[lux] y 1500[lux]. Se eligirá el valor más alto para asegurar una iluminación adecuada.

$$Em = 1500[lux]$$

Dado que el local se utilizará para pintar, la limpieza y el mantenimiento deben ser óptimos. Por lo tanto, el factor de mantenimiento será:

$$fm = 0.8$$

Finalmente, el número de luminarias necesarias será:

$$N = \frac{E_{m.a.l.}}{cu.fm.\phi_{t}} = \frac{1500.3,5.9,5}{0.66.0,8.6000} = 15,74 \approx 16$$

Se adoptan 16 luminarias, las cuales se pueden disponer de la siguiente manera:

Y la iluminación real será:

$$E_m = \frac{N. cu. fm. \phi_L}{a.l} = \frac{16.0,66.0,8.6000}{3.5.9.5} = 1524 [lux]$$

Lamparas LED

Se seleccionaron las lámparas X302CP de 36W, que emiten un flujo luminoso de 5500[lm] . Con esta información, obtenemos:

$$\phi_L = 5500[lm]$$

Se realiza el cálculo similar al procedimiento anterior, aunque ahora se establece:

$$cu.fm=0,6$$

Entonces, el número de luminarias necesarias será:

$$N = \frac{E_m.a.l}{cu.fm.\phi_r} = \frac{1500.3,5.9,5}{0.6.5500} = 15,11 \approx 15$$

Se adoptan 15 luminarias, que se pueden disponer de la siguiente forma:

La iluminación real será:

$$E_m = \frac{N. cu. fm. \phi_L}{a.l} = \frac{15.0, 6.5500}{3.5.9.5} = 1489[lux]$$

Local 2

Las dimensiones del local 2 son las siguientes:

Lamparas fluorescentes

Nuevamente, se tendrá en cuenta que los tubos fluorescentes convencionales tipo estándar emiten un flujo luminoso de 3000[lm] por lampara. Por lo tanto, cada artefacto emitirá 6000[lm] en total.

$$\phi_L = 6000 [lm]$$

En primer lugar, se determinan los índices de las cavidades:

$$k_1 = \frac{5 \cdot 2, 6 \cdot (5+1)}{5 \cdot 4} = 3,9$$

se aproxima a: $k_1 = 4$

$$k_2 = k_1 \frac{0.4}{2.6} = 0.6$$

$$k_3 = k_1 \frac{0.9}{2.6} = 1,35$$

Para la determinación de la reflectancia efectiva de la cavidad del cielorraso (ρ_{2E}), se utilizan las siguientes gráficas. En estas gráficas, se ingresa el índice de la cavidad como abscisa (k_2) y se busca la curva correspondiente a la combinación de reflectancias medias de paredes (ρ_1) y cielorraso (ρ_2). Como resultado, se obtiene la reflectancia efectiva ρ_{2E} en la ordenada.

Se estipula que la reflectancia efectiva de la cavidad del cielorraso es:

$$\rho_{2E} = 62\%$$

Un valor próximo sería ρ_{2E} =60%, pero no se encuentra tabulado en la siguiente tabla:

	METODO DE LAS CAVIDADES ZONALES																
REFLECTANCIA DE CAVIDAD DE		8	0			70			50				30		10		
CIELORRASO % REFLECTANCIA DE PARED %	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10
INDICE DE LOCAL				THE.			COE	ICIENT	res de	UTIL	IZACIO	N					
	0.70	0.68	0.65	0.64	0.68	0.66	0.64	0.62	0.64	0.62	0.60	0.61	300000	0.59	0.59	Total Control	0.57
2	0.65	0.61	0.57	0.54	0.63	0.59	0.56	0.54	0.57	0.54	0.52	0.55	0.53	0.51	0.53	Paris Cons	0.45
	0.60	0.54	0.50	0.46	0.59	0.53	0.49	0.46	0.51	0.48	0.45	0.50	0.47	0.44	0.48	0.46	0.44
3	0.55	0.49	0.44	0.40	0.54	0.48	0.43	0.40	0.46	0.42	0.39	0.45	0.41	0.39	0.44	0.41	0.3
4	1000	0.44	0.38	0.34	0.50	0.43	0.38	0.34	0.41	0.37	0.34	0.40	0.36	0.34	0.39	0.36	0.3
5	0.51	0.39	0.34	0.30	0.46	0.39	0.34	0.30	0.37	0.33	0.30	0.36	0.33	0.30	0.36	0.32	0.2
6	0.47	500000	0.30	0.27	0.42	0.35	0.30	0.26	0.34	0.29	0.26	0.33	0.29	0.26	0.32	0.29	0.2
7	0.43	0.35		0.27	0.39	0.31	0.26	0.23	0.30	0.26	0.23	0.30	0.26	0.23	0.29	0.25	0.2
8	0.40	0.32	0.27	-	0.36	0.28	0.23	0.19	0.28	0.23	0.20	0.27	0.23	0.20	0.26	0.22	0.7
9	0.37	0.29	0.24	0.20		0.26	0.16	0.16	0.25	0.21	0.18	0.24	0.20	0.18	0.24	0.20	0.
10 RELACIO	0.34	0.26	0.21	0.18	0.33	The same	3/0/27/6	353700		0.21	1.40000	100000000000000000000000000000000000000		DE CA	VIDAD	DICO	-20

Entonces, por indicación del profesor se considera:

$$cu = 0,4$$

Para obtener el nivel de iluminación o iluminancia media pre-establecida, se tendrá en cuenta el uso del local, en el que se realizará una tarea de pintura, preparación, dosaje y mezcla de colores. Según las Normas IRAM – AADL J 20 06, para trabajos finos, manuales, inspección, pintura y sopleteado, se requiere una iluminación entre 750[lux] y 1500[lux] . Se eligirá:

$$Em = 1000[lux]$$

Dado que el local se utilizará para pintar, la limpieza y el mantenimiento deben ser óptimos. Entonces, el factor de mantenimiento será:

$$fm = 0.8$$

Finalmente, el número de luminarias necesarias será:

$$N = \frac{E_m.a.l}{cu.fm.\phi_r} = \frac{1000.5.4}{0.4.0.8.6000} = 10,42 \approx 10$$

Se adoptan 10 luminarias, que se pueden disponer de la siguiente manera:

Con esta disposición, la iluminación real será:
$$E_{\it m} = \frac{{\it N.\,cu.fm.\,\phi_l}}{{\it a.\,l}} = \frac{{\it 10.0,4.0,8.6000}}{{\it 5.4}} = 960 [\it lux]$$

Lamparas LED

Seleccionando nuevamente las lamparas X302CP de 36W, que emiten 5500[lm], obtenemos:

$$\phi_L = 5500[lm]$$

Se realiza el cálculo similar al procedimiento anterior, aunque ahora se establece:

$$cu.fm = 0.6$$

Por lo tanto, el número de luminarias necesarias será:

$$N = \frac{E_m.a.l}{cu. fm. \phi_r} = \frac{1000.5.4}{0.6.5500} = 6,06 \approx 6$$

Se adoptan 6 luminarias, que se pueden disponer de la siguiente manera:

La iluminación real, correspondiente al valor calculado es: $E_{\it m} = \frac{N.\,cu.fm.\,\phi_{\it l}}{a.l} = \frac{6.0,6.5500}{5.\,4} = 990\,[lux\,]$

$$E_m = \frac{N. cu. fm. \phi_L}{a.l} = \frac{6.0, 6.5500}{5.4} = 990 [lux]$$

Las dimensiones del local 3 son las siguientes:

Lamparas fluorescentes

Nuevamente, considerando que los tubos fluorescentes convencionales tipo estándar emiten un flujo luminoso de 3000[lm] por lámpara, entonces cada artefacto emitirá 6000[lm] en total.

$$\phi_L = 6000[lm]$$

Primero, se deben determinar los índices de las cavidades: $k_1 = \frac{5.3,2.[2+1]}{2.12} = 2$

$$k_1 = \frac{5.3, 2.(2+1)}{2.12} = 2$$

$$k_2 = k_1 \frac{0.6}{3.2} = 0.375$$

$$k_3 = k_1 \frac{0}{3,2} = 0$$

Para determinar la reflectancia efectiva de la cavidad del cielorraso (ρ_{2E}), se utilizan las siguientes gráficas. En estas gráficas, se ingresa con el índice de la cavidad como abscisa (k_2) . Luego, se busca la curva correspondiente a la combinación de las reflectancias medias de las paredes (ρ_1) y del cielorraso (ρ_2). La reflectancia efectiva ρ_{2E} se obtiene en el eje de las ordenadas.

Se estipula que la reflectancia efectiva de la cavidad del cielorraso es:

$$\rho_{2E} = 47\%$$

Se adopta el valor tabulado de ρ_{2E} =50 % para su aplicación en los cálculos.

Con los valores $\rho_{2E}[\%]$ (reflectancia de cavidad del cielorraso), $\rho_1[\%]$ (reflectancia de la pared) y de k_1 (índice local), se consulta a la tabla de coeficientes de utilización:

	METODO DE LAS CAVIDADES ZONALES																
REFLECTANCIA DE CAVIDAD DE CIELORRASO %		8	0		70				50				30				
REFLECTANCIA DE PARED %	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10
INDICE DE LOCAL				THE.			COE	ICIEN'	res de	UTIL	IZACIO	N					
	0.70	0.68	0.65	0.64	0.68	0.66	0.64	0.62	0.64	0.62	0.60	0.61	0.60	0.59			0.57
-	0.65	0.61	0.57	0.54	0.63	0.59	0.56	0.54	0.57	0.54	0.52	0.55	0.53	0.51	0.53	0.51	0.45
2	0.60	0.54	0.50	0.46	0.59	0.53	0.49	0.46	0.51	0.48	0.45	0.50	0.47	0.44	0.48	0.46	0.44
3	0.55	0.49	0.44	0.40	0.54	0.48	0.43	0.40	0.46	0.42	0.39	0.45	0.41	0.39	0.44	0.41	0.38
4	100000	0.44	0.38	0.34	0.50	0.43	0.38	0.34	0.41	0.37	0.34	0.40	0.36	0.34	0.39	0.36	0.3
5	0.51		0.34	0.30	0.46	0.39	0.34	0.30	0.37	0.33	0.30	0.36	0.33	0.30	0.36	0.32	0.2
6	0.47	0.39		0.30	0.42	0.35	0.30	0.26	0.34	0.29	0.26	0.33	0.29	0.26	0.32	0.29	0.2
7	0.43	0.35	0.30	0.27	0.39	0.31	0.26	0.23	0.30	0.26	0.23	0.30	0.26	0.23	0.29	0.25	0.2
8	0.40	0.32	0.27	100000000000000000000000000000000000000	942000	0.28	0.23	0.19	0.28	0.23	0.20	0.27	0.23	0.20	0.26	0.22	0.7
9	0.37	0.29	0.24	0.20	0.36	100000	10000	0.16	0.25	0.21	0.18	0.24	0.20	0.18	0.24	0.20	0.
10 RELACIO	0.34	0.26	0.21	0.18	0.33	0.26	0.16	333730		0.21	100000	- Control of	100000	DE CA	VIDAD	PISO	=20

De la tabla anterior, la marca en rojo indica el valor que toma el coeficiente de utilización:

$$cu = 0.54$$

Para obtener el nivel de iluminación o iluminancia media pre-establecida, se considerará el uso del local. En este caso, se realizarán tareas de pintura, inspección y retoque. Según las Normas IRAM – AADL J 20 06, para trabajos finos, manuales, inspección, pintura y sopleteado se requiere una iluminación entre $750[\mathit{lux}]$ y $1500[\mathit{lux}]$. Se eligirá el valor:

$$Em = 1300[lux]$$

Teniendo en cuenta que será una habitación para pintar, la limpieza y mantenimiento debe ser óptimos; entonces, el factor de mantenimiento será:

$$fm = 0.8$$

Y, el número de luminarias será:

$$N = \frac{E_m.a.l}{cu. fm. \phi_t} = \frac{1300.2.12}{0.54.0.8.6000} = 12,04 \approx 12$$

Se adoptan 12 luminarias, que pueden disponerse de la siguiente forma:

La iluminación real obtenida será:

$$E_m = \frac{N. cu. fm. \phi_L}{a.l} = \frac{12.0,54.0,8.6000}{2.12} = 1296 [lux]$$

Lamparas LED

Seleccionando nuevamente las lamparas X302CP de 36W, las cuales emiten 5500[lm] obtenemos:

$$\phi_{I} = 5500[lm]$$

Se realiza lo mismo que antes, ahora se establece:

$$cu.fm = 0.6$$

Entonces, el número de luminarias será:

$$N = \frac{E_m.a.l}{cu. fm. \phi_s} = \frac{1300.2.12}{0.6.5500} = 9,45 \approx 10$$

Se adoptan 10 luminarias, que se pueden disponer de la siguiente manera:

Y la iluminación real será:

$$E_m = \frac{N. cu. fm. \phi_L}{a.l} = \frac{10.0, 6.5500}{2.12} = 1375[lux]$$

Simulación

Para la simulación se utilizo el software QuickLux. Y se utilizó la siguiente lámpara fluorescente.

Lamparas fluorescentes

Lamparas fluorescentes

Informe Técnico.Proyecto de iluminación

Solución propuesta

Nivel de iluminación medio en el plano de trabajo: 1113.6 Lux.

Nro de columnas: 4 Distancia entre columnas 1.25 mts. Nro. de lámparas: 16 de 36 Watts
Nro de filas: 2 Distancia entre filas 2.00 mts. Pot. distribuída: 28.80 Watt/mt²

8 luminarias estimadas para mantener el nivel medio informado, en las condiciones fijadas.

Datos del local

Nivel Buscado en el plano de Trabajo:

1000 lux.

Dimensiones: *a=5.00 mts. l=4.00 mts.*

l=4.00 mts. h=3.90 mts.

Reflectancias:

Paredes: 50 % Techo: 70 % Piso: 20 %

Alturas medias:

Plano de trabajo: 0.90 mts. Plano de montaje: 3.50 mts.

suspensión: 0.40 mts.

Luminaria: 512-2-36 Lámparas: 2 de 6000Lms. Fabricante: Facalu S.R.L. (Argandoña 4673-Córdoba-Argentina-Te:(351)4565480-Email proyectos@facalu.com) Version 4.03

Notas: Información del proyecto:

Lamparas fluorescentes

