

Les vecteurs dans le plan page

Vecteurs du plan (rappel)

a. Activité:

Dans le plan (P) on considère le vecteur \overrightarrow{AB} .

- 1. Qu'appelle-t-on:
- La droite (AB) pour le vecteur AB?
- En partant de A VERS B pour le vecteur \overrightarrow{AB} ?
- La distance \overrightarrow{AB} pour le vecteur \overrightarrow{AB} ?
- 2. Que peut-on dire pour les vecteurs \overrightarrow{DC} et \overrightarrow{AB} ?
- 3. Que peut-on dire pour les vecteurs \overrightarrow{AD} et \overrightarrow{EF} ?
- **b.** Éléments d'un vecteur égalité de deux vecteurs :

A et B deux points distincts du plan (P). On note le vecteur \overrightarrow{AB} par \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{w} .

- La direction de AB c'est la droite (AB) .
- Le sens de AB celui de la demi droite (AB) .
- La longueur ou norme de \overrightarrow{AB} , noté $\|\overrightarrow{AB}\| = AB$; c'est la distance de A à B.
- Cas particulier: A = B; Le vecteur nul $\overrightarrow{AA} = \overrightarrow{0}$ n'apas de direction, pas de sens et a pour longueur 0.
- Vecteur unitaire: c'est un vecteur de longueur 1. soit \overrightarrow{AB} un vecteur non nul a seulement deux vecteurs unitaires $\overrightarrow{u} = \frac{1}{AB} \overrightarrow{AB}$ et $\overrightarrow{v} = -\frac{1}{AB} \overrightarrow{AB}$.
- Deux vecteurs non nuls sont égaux si et seulement si : ils ont même direction et même sens et même longueur .
- (ABCD) est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$

Operations dans l'ensemble des vecteurs du plan (P):

01.

L'adition (somme de deux vecteurs de (P))

Prenons l'activité précédente : déterminer les sommes

des vecteurs suivantes : \overrightarrow{AB} et \overrightarrow{AD} ; \overrightarrow{AC} et \overrightarrow{CB} ; \overrightarrow{AB} et \overrightarrow{EF} .

b. Définition:

Soient \vec{u} et \vec{v} deux vecteurs du plan (1).

La somme des vecteurs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$ est le vecteur $\vec{w} = \overrightarrow{AC}$. On écrit : $\vec{w} = \vec{u} + \vec{v}$

- c. Remarques:
 - $\forall A,B,C \in (P): \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ est appelé relation de Chasles.
 - Le vecteur \overrightarrow{BA} est appelé l'opposé du vecteur \overrightarrow{AB} ; on dit que les \overrightarrow{AB} et \overrightarrow{BA} sont opposés
 - l'opposé du vecteur \vec{u} est le vecteur qui a la même direction de \vec{u} et la même norme (longueur) de \vec{u} et de sens contraire de \vec{u} on le note par $-\vec{u}$.

Les vecteurs dans le plan page

d. Règle du parallélogramme :

Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs du plan (P).

On a $\overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{AC}} = \overrightarrow{\mathbf{AD}}$ avec le point $\overrightarrow{\mathbf{D}}$ vérifie

la condition suivant ABDC est un parallélogramme

e. Applications:

- Soit ABCD un rectangle de centre I. construire $\vec{u} = \overrightarrow{AB} + \overrightarrow{CI} + \overrightarrow{BC}$
- ABC est un triangle.
 - Construire le point D tel que : $\overrightarrow{AD} = \overrightarrow{AB} \overrightarrow{AC}$.
 - 2 Que peut-on dire du quadrilatère ADBC?
 - 3 Construire le point D tel que : $\overrightarrow{BM} = \overrightarrow{BC} \overrightarrow{CA}$.

02. La multiplication d'un vecteur \vec{u} par un nombre réel α :

a. Activité:

b. Définition :

Soit u un vecteur non nul et k un nombre non nul.

Le produit d'un vecteur \vec{v} par un réel k (ou un scalaire) est le vecteur \vec{v} qui vérifie :

- \vec{v} a la direction parallèle à la direction du vecteur \vec{u} .
- v a pour sens :
 - \bullet Ce lui de $\overset{?}{\mathbf{u}}$ si $\mathbf{k} > 0$.
 - **\Leftrightarrow** Contraire de $\overset{\frown}{\mathbf{u}}$ si $\mathbf{k} < \mathbf{0}$.
- \vec{v} de norme (longueur) égale à la norme (longueur) de \vec{u} multiplier par $|\mathbf{k}|$ ou encore

$$\|\vec{\mathbf{v}}\| = |\mathbf{k}| \|\vec{\mathbf{u}}\|$$

- Cas particulier :
 - * pour tout vecteur \vec{u} on a: $\vec{0} \cdot \vec{u} = \vec{0}$.
 - pour tout réel k on a : $k \cdot \vec{0} = \vec{0}$.

<u>c.</u> Propriétés :

Pour tous vecteurs \vec{u} et \vec{v} ; pour tous réel k et k'on a :

- $\mathbf{l}(\mathbf{k}+\mathbf{k}').\vec{\mathbf{u}}=\mathbf{k}\vec{\mathbf{u}}+\mathbf{k}'\vec{\mathbf{u}}.$
- $2 k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}.$
- 3 $k \cdot (k'\vec{u}) = k'(k\vec{u}) = (kk')\vec{u}$.
- 4 $1.\vec{u} = \vec{u}$.
- $\vec{5}$ $\vec{k} \cdot \vec{u} = \vec{0}$ équivaut $(\vec{k} = \vec{0} \text{ et } \vec{u} = \vec{0})$.

Les vecteurs dans le plan page

В

d. Application:

- Simplifier: $3\overrightarrow{AB} + 7\overrightarrow{AB} 2\overrightarrow{BA}$ puis $-2\left(\frac{3}{5}\right)\overrightarrow{CD} + 7\overrightarrow{DA} \frac{29}{5}\overrightarrow{DA}$.
- ABC est un triangle.
 - Construire les points E, F, G et H tels que : $\overrightarrow{AE} = \overrightarrow{AB} + 2\overrightarrow{AC}$ et $\overrightarrow{AF} = -2\overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{AG} = 2\overrightarrow{AB} + 3\overrightarrow{AC}$ et $\overrightarrow{AH} = -3\overrightarrow{AB} + \overrightarrow{BC}$.
 - 2 On suppose que : AB = 8 cm et le point M vérifie la relation $\overline{MA} + 3\overline{MB} = 0$ (I)
 - \rightarrow démontrer que 4MA + 3MB = 0.
 - En déduire MA en fonction de AB puis construire le point M.

03. Vecteurs colinéaires :

Définition:

- Deux vecteurs \mathbf{u} et \mathbf{v} sont colinéaires s'il existe α de \mathbb{R} tel que : $\mathbf{u} = \alpha \mathbf{v}$ ou $\mathbf{v} = \alpha \mathbf{u}$.
- Trois points A et B et C du plan (1) sont alignés si et seulement si : u = AB et v = CDsont alignés (ou encore il existe α de \mathbb{R} tel que : $AB = \alpha AC$ ou $BC = \alpha BA$
- Deux droites (AB) et (CD) sont parallèles si et seulement si AB et CD sont alignés.

Application: b.

Soient A et B deux points du plan (P) et M est un point du plan (P) qui vérifie la relation :

$$(1): -4\overrightarrow{MA} + 5\overrightarrow{MB} + 2\overrightarrow{AB} = \overrightarrow{0}$$
.

- lacksquare Montrer que le point Mappartient à la droite lacksquare .
- Construire le point M .

- Soit ABCD un quadrilatère sachant que AB = 2CD.
 - Donner la nature du quadrilatère ABCD.

Démontrer que C est le milieu de [AD] .

- 2 On considère le point E tel que AE = 2AC démontrer que : BE = 2BD.
- ABC est un triangle. Les points A' et B' et C'sont respectivement les milieux des segments [BC] et [AC] et [AB].
 - Montrer que : $\overrightarrow{BB'} = -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{CC'} = -\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$.
 - **2** Soient E et F deux points tel que : $\overrightarrow{BE} = 2\overrightarrow{BB}$ et $\overrightarrow{CF} = 2\overrightarrow{CC}$.
 - a) Construire une figure.
 - b) Donner la nature des quadrilatères ACBF et ACBE.
 - c) Montrer que les points A et E et F sont alignés.

Les vecteurs dans le plan page

III.

Milieu d'un segment - Propriétés des milieux d'un triangle :

01.

Milieu d'un segment :

a. Activité:

Soit un segment [AB].

- **1** Construire le point I de (P) tel que : $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.
- 2 Que représente le point I ? donner la définition pur I .

b. Définition :

AB] est un segment du plan (P) .

Le point I est le milieu de [AB] si et seulement si : \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}.

c. Propriétés :

- Le point I est le milieu de [AB] si et seulement si : $\overrightarrow{AI} = \overrightarrow{IB}$
- Le point I est le milieu de [AB] si et seulement si : $\overrightarrow{AB} = 2\overrightarrow{AI}$ ou $\overrightarrow{BA} = 2\overrightarrow{BI}$.
- Le point I est le milieu de $\begin{bmatrix} AB \end{bmatrix}$ si et seulement si : $\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$ ou $\overrightarrow{BI} = \frac{1}{2} \overrightarrow{BA}$.

02.

Propriétés des milieux d'un triangle :

a. Activité:

Soit ABC un triangle dans le plan (P) .(voir la figure) .

On considère le point I le milieu du segment [BC] .

- **L** Exprimer le vecteur $\overrightarrow{AB} + \overrightarrow{AC}$ en fonction de \overrightarrow{AI} ...
- 2 Soient J et K les milieux de [AB] et [AC] déterminer une relation entre \overrightarrow{JK} et \overrightarrow{BC} .

<u>**b.**</u> Propriétés :

- ABC est un triangle . I et J sont les milieux des segment [AB] et [AC], on a : $\overline{IJ} = \frac{1}{2} \overline{BC}$.
- ABC est un triangle, K est le milieu du segment [BC], on a : $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AK}$.