

Logika Predikat

MSIM 4103 – Logika Informatika Program Studi Sistem Informasi Jurusan Tehnik , FST

Materi Inisiasi 6

- 1. Kalimat Logika Predikat
 - Simbol
 - Tahap Membangun Logika Predikat
- 2. Variabel Bebas dan Terikat
- 3. Kalimat tertutup
- 4. Interpretasi Kalimat Logika Predikat

1. Kalimat Logika Predikat

- Simbol
- Tahapan Membangun Kalimat Logika Predikat

Kalimat Logika Predikat

- Logika predikat: perluasan logika proposisional yang bertujuan menyatakan objek, sifat objek, serta hubungan antar objek.
- Simbol-simbol pembentuk kalimat logika predikat
 - Simbol kebenaran (true dan false)
 - 2. Simbol konstanta huruf a, b, c, dengan indeks atau aksen (a, b, c, a', b', a_1 , b_1 , ...)
 - 3. Simbol variabel huruf u, v, w, x, y, z dengan indeks atau aksen (u, v, u', v', u₁, v₁, ...)
 - 4. Simbol fungsi huruf f, g, h dengan indeks (f, g, h, f_1 , g_1 , h_1 , f_2 , g_2 , h_2 , ...)
 - 5. Simbol predikat huruf kecil p, q, r dengan indeks (p, q, r, p₁, q₁, r₁, p₂, q₂, r₂, ...)

Note: simbol huruf besar P, Q, R yang ada di logika proposisional tidak digunakan di logika predikat

Penjelasan Simbol

Simbol Konstanta dan Variabel

Menyatakan objek.

Simbol Fungsi dan Predikat

- Simbol fungsi menunjukan fungsi objek.
- Simbol predikat menunjukan relasi antar objek.
- Terhubung dengan banyaknya bilangan positif yang disebut aritasnya.

Aritas Simbol Fungsi dan Predikat

Aritas

- Banyaknya argument dalam fungsi/ predikat
- Jika banyak aritas 1 disebut unary.
- Jika banyak aritas 2 disebut binary.
- Jika banyak aritas 3 disebut ternary.

Contoh

- f(t₁, t₂, t₃): fungsi dengan 3 aritas.
- f(t₁, t₂): fungsi dengan 2 aritas.
- p(t₁, t₂): predikat dengan 2 aritas.
- p(t₁): predikat dengan 1 aritas.

- 1. Definisikan term
- 2. Definisikan proposisi
- 3. Definisikan kalimat

Tahapan Membangun Kalimat Logika Predikat

Term dari Logika Predikat

- Ekspresi yang menunjukan objek-objek.
- Aturan untuk mendefinisikan term:
 - 1. Konstanta (a, b, c) adalah term.
 - 2. Variabel (u, v, w, x, y, z) adalah term.
 - 3. Jika t₁, t₂, t₃, ... t_n adalah term maka f: fungsi dengan n aritas (f(t₁, t₂, t₃, ... t_n)) adalah term.
 - 4. Jika F adalah kalimat dan t_1 , t_2 merupakan term maka if F then t_1 else t_2 merupakan term.

Dalam suatu ekspresi banyak aritas haruslah sama untuk simbol fungsi yang sama.

Langkah Menentukan Term

- 1. Tentukan semua simbol yang ada dalam ekspresi.
- 2. Periksa apakah memenuhi aturan term atau tidak.

Contoh 6.1

Apakah f(g(u), b, f(a, b, x)) merupakan term?

Jawaban Contoh 6.1

- 1. Tentukan semua simbol yang ada dalam ekspresi, yaitu: a, b, u, x, f, g.
- 2. Periksa apakah memenuhi aturan term.
 - Karena a dan b adalah konstanta, maka a dan b adalah term.
 - Karena u dan x adalah variabel, maka u dan x adalah term.
 - karena u adalah term, maka fungsi g(u) (fungsi dengan 1 aritas) adalah term.
 - karena a, b, x adalah term, maka fungsi f(a, b, x) (fungsi dengan 3 aritas) adalah term.
 - Karena g(u), b, dan f(a, b, x) adalah term, maka fungsi f(g(u), b, f(a,b,x))
 (fungsi dengan 3 aritas) adalah term.
 Perhatikan juga fungsi f pada f(a, b, x) dan f(g(u), b, f(a,b,x)) harus memiliki aritas yang sama (dalam kasus ini aritasnya 3).

Proposisi dari Logika Predikat

- Ekspresi untuk menyatakan relasi antar objek.
- Aturan untuk mendefinisikan proposisi:
 - 1. Simbol kebenaran (true atau false) adalah proposisi.
 - 2. Jika t_1 , t_2 , t_3 , ... t_n adalah term maka p: predikat dengan n aritas (p(t_1 , t_2 , t_3 , ... t_n)) adalah proposisi.

Langkah Menentukan Proposisi

- 1. Tentukan semua simbol yang ada dalam ekspresi.
- 2. Periksa apakah memenuhi aturan term atau tidak.
- 3. Periksa apakah memenuhi aturan proposisi atau tidak.

Contoh 6.2

Apakah p(g(u), b, f(a, b, x)) merupakan proposisi?

Jawaban Contoh 6.2

- 1. Tentukan semua simbol yang ada dalam ekspresi, yaitu: a, b, u, x, f, g, p.
- 2. Periksa apakah memenuhi aturan term.
 - Karena a dan b adalah konstanta, maka a dan b adalah term.
 - Karena u dan x adalah variabel, maka u dan x adalah term.
 - karena u adalah term, maka fungsi g(u) (fungsi dengan 1 aritas) adalah term.
 - karena a, b, x adalah term, maka fungsi f(a, b, x) (fungsi dengan 3 aritas) adalah term.
- 3. Periksa apakah memenuhi aturan proposisi. Karena g(u), b, f(a, b, x) adalah term dan p merupakan simbol predikat dengan 3 aritas, maka p(g(u), b, f(a, b, x)) adalah proposisi.

Kalimat dari Logika Predikat

- Kalimat dari logika predikat dibentuk dari proposisi-proposisinya dengan aturan:
 - 1. Setiap proposisi merupakan kalimat.
 - 2. Apabila 7 kalimat, maka negasinya (not 7) merupakan kalimat.
 - 3. Apabila 7 dan 9 kalimat, maka konjungsinya 7 and 9 merupakan kalimat.
 - 4. Apabila 7 dan 9 kalimat, maka disjungsinya 7 or 9 adalah kalimat.
 - 5. Apabila 7 dan 4 kalimat, maka implikasinya (if 7 then 4) adalah kalimat.

Kalimat dari Logika Predikat

- 6. Apabila 7 dan 9 kalimat, maka ekuivalensinya (7 if and only if 9) adalah kalimat.
- 7. Apabila 7, 9 dan 4 kalimat, maka kondisionalnya (if 7 then 9 else 4) adalah kalimat.
- 8. Aturan kuantifier Jika x sebarang variabel dan $\mathcal F$ adalah kalimat, maka (**for all** x) $\mathcal F$ dan (**for some** x) $\mathcal F$ merupakan kalimat.
 - For all disebut universal quantifier dan for some disebut existential quantifier.

2. Variabel Bebas dan Terikat

Variabel Bebas dan Terikat

Variabel Bebas

- Permunculannya perlu diberikan nilai dalam interpretasi.
- Bila variabel tidak termasuk dalam scope kuantifier universal atau exsintensial artinya variabel tersebut variabel bebas.

Variabel terikat

- Permunculannya tidak tergantung dan tidak perlu diberikan nilai dalam interpretasi.
- Bila variabel termasuk dalam scope kuantifier universal atau existensial artinya variabel tersebut variabel terikat.

Permunculan suatu variabel bisa berada dalam lebih dari satu kuantifier.

Langkah Penentuan

- 1. Tentukan variabel yang ada dalam kalimat.
- 2. Tentukan scope kuantifier untuk variabel tersebut. Bila termasuk dalam suatu scope, maka ia variabel terikat.

Contoh 6.3

Tentukan variabel bebas dan terikat dari kalimat berikut ini!

 \mathcal{F} : ((for some y) p(x,y)) and ((for all x) q(f(x), y))

Jawaban Contoh 6.3

- 1. Tentukan variabel yang ada dalam kalimat, yaitu x dan y.
- 2. Tentukan scope masing-masing variabel.
 - Pada kalimat (for some y) p(x, y), terdapat variabel x dan y.
 - 1. Variabel x dalam p(x,y) tidak berada dalam scope kuantifier apapun, sehingga variabel x pada kalimat adalah variabel bebas.
 - 2. Variabel y dalam p(x, y) berada dalam scope kuantifier (for some y), sehingga variabel y pada kalimat adalah variabel terikat.
 - Pada kalimat (for all x) q(f(x), y), terdapat variabel x dan y.
 - 1. Variabel x dalam q(f(x),y) berada dalam scope kuantifier (for all x), sehingga variabel x pada kalimat adalah variabel terikat.
 - 2. Variabel y dalam q(f(x),y) tidak berada dalam scope kuantifier apapun, sehingga variabel y pada kalimat adalah variabel bebas.

3. Kalimat Tertutup

Kalimat Tertutup

- Kalimat dikatakan tertutup jika semua variabel yang muncul tidak memiliki permunculan bebas/ tidak memuat variabel bebas.
- Simbol bebas dalam suatu ekspresi:
 - Variabel bebas dalam ekspresi
 - Simbol konstanta
 - Fungsi
 - Predikat

Contoh 6.4

Tentukan variabel bebas dan terikat serta simbol bebas dari kalimat berikut ini!

$$\mathcal{P}$$
: (for all x) q(x, y, f(a,b))

Apakah kalimat tersebut tertutup?

Jawaban Contoh 6.4

Penentuan Variabel Bebas dan Terikat

- 1. Tentukan semua variabel yang ada dalam kalimat, yaitu x dan y.
- 2. Tentukan scope kuantifier masing-masing variabel, yaitu:
 - 1. Variabel x berada dalam scope kuantifier (for all x), sehingga variabel x adalah variabel terikat.
 - 2. Variabel y tidak berada dalam scope kuantifier apapun, sehingga variabel y adalah variabel bebas.

Jawaban Contoh 6.4

Penentuan Simbol Bebas

Simbol bebas dalam suatu ekspresi: variabel bebas dalam ekspresi, simbol konstanta, fungsi, dan predikat. Jadi, simbol bebas:

- variabel y,
- konstanta a dan b,
- fungsi f, dan
- predikat q.

Kalimat bukan merupakan kalimat tertutup karena masih memuat variabel bebas, yaitu variabel y.

- Memberikan nilai pada setiap simbol yang muncul dalam kalimat.
 Simbol: konstanta, variabel, fungsi dan predikat.
- Dalam interpretasi kalimat logika predikat diperlukan domain, yaitu himpunan objek yang menyediakan nilai atau arti untuk terms. Domain merupakan himpunan tidak kosong.
 - Contoh domain:
 - Domain bilangan bulat {...., -2, -1, 0, 1, 2, ...}
 - Domain bilangan asli ganjil {1, 3, 5, 7, ...}

Suatu interpretasi I atas domain D memberikan nilai kepada masingmasing himpunan simbol konstanta, variabel, fungsi, dan predikat dengan aturan sebagai berikut:

- masing-masing simbol konstanta (misalnya a) diberikan interpretasi nilai yang merupakan elemen dari domain (misalnya a $_{\rm l}$ ϵ D), yang dituliskan dengan

- masing-masing simbol variabel (misalnya x) diberikan interpretasi nilai yang merupakan elemen dari domain (misalnya $x_l \in D$), yang dituliskan dengan

Jika variabel merupakan variabel bebas sekaligus terikat, variabel tersebut tetap perlu diberikan nilai.

- masing-masing simbol fungsi (misalnya f) dengan aritas n diberikan interpretasi fungsi dengan aritas n (misalkan $f_l(d_1, d_2, d_3, ..., d_n)$), dengan fungsi f_l didefinisikan pada d_1 , d_2 , d_3 , ..., d_n dalam D dan nilai $f_l(d_1, d_2, d_3, ..., d_n)$ juga merupakan elemen dari D.

$$f \leftarrow f_1(d_1, d_2, d_3, ..., d_n)$$

fungsi fungsi yang didefinisikan

Jadi, hasil dari fungsi harus merupakan anggota dari domain.

Contoh: D: bilangan bulat, $f \leftarrow f_1(d_1, d_2) = d_1 + d_2$, hasil dari $f_1(d_1, d_2)$ adalah bilangan bulat juga.

- masing-masing simbol predikat (misalnya p) dengan aritas n diberikan interpretasi predikat dengan aritas n (misalkan $p_l(d_1, d_2, d_3, ..., d_n)$), dengan fungsi p_l didefinisikan pada $d_1, d_2, d_3, ..., d_n$ dalam D dan nilai $p_l(d_1, d_2, d_3, ..., d_n)$ adalah **true/false**.

$$p \leftarrow p_l(d_1, d_2, d_3, ..., d_n)$$

predikat predikat yang didefinisikan

Jadi, hasil dari predikat harus merupakan nilai kebenaran true/ false. Biasanya menggunakan tanda >, <, =, ≠, ≤, ≥.

Contoh: D: bilangan bulat, $p \leftarrow p_1(d_1, d_2) = d_1 < d_2$, hasil dari $p_1(d_1, d_2)$ adalah true/ false.

• Suatu interpretasi dikatakan interpretasi untuk kalimat logika predikat \mathcal{E} jika I memberikan nilai kepada masing-masing simbol bebas (konstanta, variabel bebas, fungsi, predikat) dalam \mathcal{E} .

Aturan Dasar Semantik

Misalkan diketahui ekspresi \mathcal{E} dan suatu interpretasi I untuk \mathcal{E} atas D. Nilai kalimat \mathcal{E} dapat diperoleh dengan menerapkan aturan:

- Aturan konstanta.
 Nilai dari konstanta (misal a) adalah elemen dari domain (a_I).
- 2. Aturan variabel. Nilai dari variabel (misal X) adalah elemen dari domain (x₁).
- 3. Aturan aplikasi. Nilai dari $f_1(t_1, t_2, t_3, ..., t_n)$ adalah elemen dari domain $(f_1(d_1, d_2, d_3, ..., d_n))$.

Aturan Dasar Semantik

- 4. Aturan term if-then-else if 7 then s else t. Nilai kalimat sama dengan term s bila 7 true dan sama dengan term t bila 7 false.
- Aturan true dan false
 Nilai simbol kebenaran true dan false adalah true dan false.
- 6. Aturan proposisi Nilai dari $p_1(t_1, t_2, t_3, ..., t_n)$ adalah true/ false yang diperoleh dari $p_1(d_1, d_2, d_3, ..., d_n)$.

Aturan Dasar Semantik

- Aturan untuk penghubung: not, and, or, if-then, if-and-only-if, dan ifthen-else hampir serupa dengan aturan semantik logika proposisional.
 - 1. Aturan Negasi
 Jika 7 bernilai true pada suatu interpretasi I, maka not 7 bernilai false pada interpretasi tersebut.
 - 2. Aturan Konjungsi Jika 7 dan 9 keduanya bernilai true pada suatu interpretasi I, maka 7 and 9 bernilai true pada interpretasi tersebut.

Aturan Quantifier

Universal Quantifier

- (For all x) 7 bernilai **true** di bawah interpretasi yang diberikan **jika untuk setiap** x dalam D menyebabkan kalimat 7 bernilai **true** di bawah interpretasi.
- (For all x) \mathcal{F} bernilai **false** di bawah interpretasi yang diberikan **jika ada** x dalam D yang membuat kalimat \mathcal{F} bernilai **false** di bawah interpretasi.

Existential Quantifier

- (For some x) \mathcal{F} bernilai **true** di bawah interpretasi yang diberikan **jika ada** x dalam D yang membuat kalimat \mathcal{F} bernilai **true** di bawah interpretasi.
- (For some x) \mathcal{F} bernilai **false** di bawah interpretasi yang diberikan **jika untuk setiap** x dalam D menyebabkan kalimat \mathcal{F} bernilai **false** di bawah interpretasi.

Langkah Menentukan Interpretasi untuk Kalimat

- 1. Tentukan semua simbol yang ada dalam kalimat.
- 2. Tentukan simbol bebas dari kalimat.
- 3. Berikan interpretasi untuk kalimat tersebut.

Contoh 6.5

Diketahui D adalah domain bilangan bulat. Apakah interpretasi

$$I=\{a\leftarrow 2, b\leftarrow 3, f\leftarrow f_1(d_1, d_2)=d_1-d_2, q\leftarrow q_1(d_2, d_2, d_3)=d_1>d_2\}$$

merupakan interpretasi untuk kalimat \mathcal{P} : (for all x) q(x, y, f(a,b))?

Jawaban Contoh 6.5

- 1. Tentukan semua simbol dalam 7, yaitu: a, b, x, y, f, dan q.
- 2. Tentukan simbol bebas dalam 7, Simbol bebas dalam suatu ekspresi: variabel bebas dalam ekspresi, simbol konstanta, fungsi, dan predikat. Jadi, simbol bebas:
 - variabel y,
 - konstanta a dan b,
 - fungsi f, dan
 - predikat q.
- 3. Perhatikan interpretasi yang diberikan, yaitu $I=\{a\leftarrow 2, b\leftarrow 3, f\leftarrow f_{_{I}}(d_{_{1}}, d_{_{2}})=d_{_{1}}-d_{_{2}}, q\leftarrow q_{_{i}}(d_{_{2}}, d_{_{2}}, d_{_{3}})=d_{_{1}}>d_{_{2}}\}$. Interpretasi tidak memberikan nilai untuk variabel bebas y.

Jadi, interpretasi I={a←2, b←3, f ←f₁ (d₁, d₂)=d₁-d₂, q ←q_i (d₂, d₂, d₃)=d₁>d₂} bukan merupakan interpretasi untuk kalimat \mathcal{F} .

Referensi

- 1. Suprapto. (2020). Logika Informatika (BMP). Tangerang Selatan: Universitas Terbuka.
- 2. Bergman, M, Moor, J, and Nelson, J. (2014). The Logic Book (6th Edition). New York: McGraw Hill.