#### Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

# Avaliação de Desempenho de Sistemas Computacionais

### Aula 3

Marcos José Santana Regina Helena Carlucci Santana

## Conteúdo

1. Planejamento de Experimentos 🙂

2. Técnicas para Avaliação de Desempenho

3. Análise de Resultados

## Conteúdo

1. Planejamento de Experimentos 🙂

## 2. Técnicas para Avaliação de Desempenho

Apresentação das técnicas



- Técnicas de Aferição:
  - Protótipos, Benchmarks e Monitores
- Técnicas de Modelagem:
  - Solução Analítica e por Simulação
- Exemplos
- 3. Análise de Resultados





### **Aferição**

- Medidas no próprio sistema
- Sistema deve existir e estar disponível

- Experimentação restrita
- Muito cuidado com aquisição dos dados

### **Modelagem**

- Desenvolvimento de um modelo
- Não é necessário ter o sistema disponível
- Grande flexibilidade

- Resultados estocásticos
- Necessita validar modelo e solução

## Conteúdo

1. Planejamento de Experimentos 🙂

- 2. Técnicas para Avaliação de Desempenho
  - Apresentação das técnicas
  - Técnicas de Aferição:
    - Protótipos, Benchmarks e Monitores
  - Técnicas de Modelagem:
    - Solução Analítica e por Simulação
  - Exemplos
  - 3. Análise de Resultados

- Construção de Protótipos
  - Sistema em Projeto
- Benchmarks
  - Comparação entre Sistemas
  - Avaliar partes específicas de um Sistema
- Monitores ou Coleta de Dados
  - Avaliar um Sistema ou partes dele

Construção de Protótipos

Versão simplificada de um sistema computacional que contém apenas características relevantes para a análise do sistema

## Construção de Protótipos

- uma implementação simplificada do sistema real;
- abstração das características essenciais;
- sistemas em fase de projeto;
- produz resultados com boa precisão;
- recomendado para verificação do projeto final;
- problema: custo e alterações.

# Construção de Protótipos

- Analisar se o sistema é um bom candidato a prototipação
  - Viabilidade da prototipação do sistema;
  - Custo
  - Dificuldades em alterar o protótipo
- 2) Delimitar e conhecer perfeitamente os domínios funcionais e comportamentais do sistema
  - Definir o objetivo da avaliação baseando-se nos objetivos do projeto
  - Abstrair as características essenciais
  - Verificar a possibilidade de obter os dados necessários para a avaliação do protótipo

# Construção de Protótipos

- 3) Desenvolver o protótipo
  - Software
  - Hardware
- 4) Testar e Validar o protótipo
  - Garantir que as simplificações feitas não afetaram a precisão do protótipo
- 5) Coletar e Analisar os dados do protótipo
  - Definir a estratégia de coleta de dados no protótipo
  - Definir os dados a serem coletados

# Construção de Protótipos

#### Concluindo.....

- Ótima opção para verificação de projetos
- Bom para alguns tipos de sistemas
- Custo pode ser um problema
- Flexibilidade não é ponto forte!

Coleta de Dados - Monitores

Ferramenta para observar as atividades de um sistema coletando as características relevantes para a análise do sistema



Ferramenta = Monitor

# Avaliar o Desempenho e Identificar Pontos Críticos

- Objetivos:
  - Determinar partes mais utilizadas
  - Determinar gargalos
  - Ajustar Parâmetros
  - Caracterizar Carga de Trabalho
  - Determinar Parâmetros para modelos

- oferece os melhores resultados;
- problema central ⇒ interfere com o sistema e o sistema TEM de existir!
- Dois tipos básicos de abordagens:
  - Monitores de Software e de Hardware.

## Formas de Implementação

Define o nível em que o monitor será implementado

- 1. Hardware
- 2. Software

## Forma de Implementação

#### **Hardware**

- monitor de hardware que é conectado com o sistema (observador silencioso)
- não interfere no funcionamento normal do sistema medido
- captura eventos rápidos
- apresenta dificuldades em fazer medidas em nível de software
- técnica cara

## Forma de Implementação

#### Software

#### Vantagens:

- generalidade
- flexibilidade
- para medidas em nível de programas
- clock virtual

#### Desvantagens:

- ele pode interferir com o normal funcionamento do sistema
- não captura eventos que ocorrem rapidamente

# Forma de Implementação - Exemplos

#### **Software**

Rotina inserida nos protocolos de comunicação para medir o tempo gasto em uma transação em arquivos

#### **Hardware**

Hardware adicionado ao sistema para espionar e contabilizar o tempo gasto em uma transação em arquivos

# Comparação entre monitores de Software e Hardware

| Critério                       | Hardware                          | Software                      |
|--------------------------------|-----------------------------------|-------------------------------|
| Domínio                        | Eventos de Hardware               | Eventos de SO e<br>Software   |
| Taxa de Entrada                | Alta (10 <sup>5</sup> / Seg)      | Depende do proc.              |
| Resolução                      | Nanosegundos                      | Milisegundos                  |
| Conhecimento<br>Necessário     | Hardwarre                         | Software                      |
| Capacidade de<br>Armazenamento | Limitada pelo armazenamento disp. | Limitada pela<br>sobrecarga   |
| Largura de<br>Entrada          | Obtém vários dados simultâneos    | Único processador – um evento |

# Comparação entre monitores de Software e Hardware

| Critério        | Hardware                | Software           |
|-----------------|-------------------------|--------------------|
| Sobrecarga      | Nenhuma                 | Variável - <5%     |
| Portabilidade   | Grande                  | Pequena            |
| Erros           | Mais fácil de ocorrer   | Raro               |
| Custo           | Alto                    | Baixo              |
| Disponibilidade | Grande– mesmo com crash | Para durante crash |
| Flexibilidade   | Baixa                   | Alta               |

# **Monitores - Exemplo**

### **Ganglia**

- Monitor para clusters e grids
- Métricas e forma de coleta configuráveis
- Pode ser baseado em evento ou amostragem
- Em uso por mais de 500 clusters
- Possui um núcleo + ferramentas auxiliares

# Monitores - Ganglia

#### Núcleo:

- deamon que deve estar em todos os nós do cluster
- responsável por coletar infos dos nós

#### Ferramentas:

- Gmetric permite adicionar métricas durante monitoração
- Gmetad armazenar infos coletadas
- Diversas outras

# Monitores - Ganglia

- Propagação da info coletada é feita por multicast
- Informações enviadas em um documento XML
- Informações armazenadas em um banco de dados
- Utiliza XDR para transporte dos dados



#### Concluindo....

- Podem gerar resultados bastante confiáveis.
- O sistema deve existir e estar disponível.
- Cuidado com a interferência do Monitor nos resultados
- Dois tipos básicos de abordagens:
  - Monitores de Software e de Hardware.

#### Concluindo....

- Protótipos
  - Sistema não existe
  - Fase de Projeto
  - Avaliar comportamento ou desempenho
- Monitores
  - Avaliação de sistemas existentes real ou protótipo

#### Problema ....

- Protótipos
- Monitores

Como comparar com outros sistemas?





- Instrumento fixo, que permite comparar uma medida (mark - marca) a um padrão preestabelecido
- Deve-se ter um ponto de observação (bench - banco)
- Ponto fixo ou referência para comparações

- Empresas
  - Utilizam como modelo
  - Onde elas pretendem chegar
- Ponto fixo ou referência para comparações
- Definir um benchmark para a vida....
- Exemplo:
  - Termômetro

 $T = 36,5^{O}$ 

Normal

## **Termômetro**



T = 38<sup>°</sup> Febre!!!





Benchmarks - Computação

Programa escrito em linguagem de alto nível, representativo de uma classe de aplicações, utilizado para medir o desempenho de um dado sistema ou para comparar diferentes sistemas

- Abordagem muito utilizada para a avaliação de desempenho por aferição
- Exemplo

Qual a diferença entre um i5 e um i7?

Qual a influência no desempenho??

| i5                                                                                       | i7                                                                                       |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 2 ou 4 núcleos                                                                           | 4 ou 6 núcleos                                                                           |
| Não possui Hyper-<br>threading                                                           | possui Hyper-threading –<br>2 núcleos lógicos para<br>cada físico                        |
| DMI - Direct Media<br>Interface (taxa de<br>transferência ~2Gb/s)                        | QPI - Quick Path<br>Interconnect (taxa de<br>transferência >4,8Gb/s)                     |
| Quantidade de canais<br>para acesso a memória –<br>2 (acessa 2 pentes ao<br>mesmo tempo) | Quantidade de canais<br>para acesso a memória –<br>3 (acessa 3 pentes ao<br>mesmo tempo) |

http://www.cpubenchmark.net/

#### PassMark Performance Test

| Processador                   | Benchmark | Preço (\$) |
|-------------------------------|-----------|------------|
| Intel Core i7 980X @ 3.33GHz  | 10336     | 1000,00    |
| Intel Core i7 975 @ 3.33GHz   | 7007      | 994,49     |
| Intel Core i5 760 @ 2.80GHz   | 4510      | 205,00     |
| Intel Core i5 680 @ 3.60GHz   | 3,431     | 296,66     |
| Intel Core i7 740QM @ 1.73GHz | 3521      | 546,00     |

#### - Uso:

- Comparar desempenho de máquinas diferentes
- Reprojetar hardware e software
- Decidir sobre aquisição de sistemas
- Ajudar na otimização de programas
- Previsão de desempenho de aplicações em computadores específicos

#### Como escolher um benchmark?

- Ideal -> aplicação do usuário
- O ideal pode ser inviável quando os sistemas são de propósito geral
- Necessita-se de algo mais amplo e representativo

programa escrito em linguagem de alto nível; representativo de alguma categoria de programação; que possa ser avaliado facilmente; que possua larga distribuição.

# Medidas de Desempenho Frequentemente Utilizadas

- Comum aos outros casos:
  - Tempo de resposta,
  - Utilização,
  - Throughput,
  - Tempo/Tamanho de filas.
- Freqüência de clock MHZ
  - Pode ser UMA medida
  - Problemas É necessário considerar:
    - Arquitetura do processador
    - Velocidade e quantidade de memória
    - Disco

# Aspectos Relacionados aos Benchmarks

#### Problemas...

- Sistemas com configurações diferentes geram medidas de desempenho diferentes
- Otimização do compilador: influencia diretamente no desempenho medido

- Benchmarks mais comums
  - Whetstone, Linpack, Dhrystone
- Outros programas de *Benchmarks* 
  - Stanford Small Programs *Benchmark* Set
  - EDN Benchmarks
  - Sieve of Eratosthenes
  - Livermore Fortran Kernels
  - Perfect Club Benchmarks
  - SPEC Benchmarks
  - EuroBen Benchmarks

#### Whetstone

- Primeiro grande programa da literatura escrito para Benchmarking
- Elaborado para análise de programação numérica de ponto flutuante intensivo
- Apenas a versão Pascal é oficialmente controlada
- resultado: número de loops por segundo

- Características do Whetstone
  - Possui alto percentual de dados e operações de ponto flutuante
  - Alto percentual de tempo de execução é gasto em funções matemáticas
  - Ao invés de variáveis locais, Whetstone utiliza muitos dados globais

#### Whetstone

- Ranking das melhores máquinas
- Whetstone 97
- Última atualização setembro 2006
- MWips, million whetstones instructions per second
- http://www.cse.clrc.ac.uk/disco/Benchmarks/whetstone.shtml

(Setembro 2006)

http://homepage.virgin.net/roy.longbottom/whetstone%20results.htm

(Dezembro de 2007)

| Rank | Machine                             | Mflop ratings (VI=1024) |      |      | Total CPU | MWIPS |
|------|-------------------------------------|-------------------------|------|------|-----------|-------|
|      |                                     | N2                      | N3   | N8   | (seconds) |       |
| 1    | Intel Woodcrest 3.0GHz 4MBL2 DC     | 1966                    | 4588 | 2907 | 3.3       | 10560 |
| 2    | Intel Woodcrest 3.0GHz-533 4MBL2 DC | 1966                    | 4588 | 3069 | 3.3       | 10451 |
| 3    | IBM eServer p5 570/1.9              | 1966                    | 1966 | 1625 | 6.2       | 6219  |
| 4    | SunFire V20 2.2GHz (EKO)            | 1311                    | 1298 | 1481 | 7.7       | 4496  |
| 5    | IBM eServer p5 575/1.5              | 1966                    | 1529 | 1315 | 7.8       | 4874  |
| 6    | AMD Opteron852/2600 (EKO 2.2)       | 1513                    | 1547 | 1771 | 8.1       | 4488  |
| 7    | HP DL380 Pentium4/3600 (EM64T)      | 1966                    | 1720 | 607  | 8.4       | 4408  |
| 8    | Dell PowerEdge 1850/3600 1MBL2      | 1966                    | 1720 | 607  | 8.4       | 4351  |
| 9    | Dell PowerEdge 1850/3600 2MBL2      | 1966                    | 1720 | 607  | 8.5       | 4370  |
| 10   | AMD Opteron875/2200 DC (EKO 2.0)    | 1311                    | 1251 | 1497 | 8.6       | 4543  |

VL = Vector loops

MWIPS = million whetstones instructions per second N2,N3 e N8 – diferentes instruções de ponto flutuante no loop

#### Linpack

- Trata-se de um benchmark de Kernel, desenvolvido a partir do Pacote Linpack de Rotinas de Álgebra Linear em 1976
- Foi originalmente escrito e muito utilizado em Fortran, porém possui versão em C
- Solução de uma matriz 100x100 utilizando decomposição L/U pelo método de Eliminação de Gauss (Linpack100)
- Resultado: MFLOPS

- Características do Linpack
  - Por ser um benchmark numérico, possui alto desempenho em operações de ponto flutuante.
  - Resultado é mostrado em Mflops/s
  - Trata-se de um programa pequeno, portanto muito ágil para ser executado
  - Maior capacidade com resolução de matrizes
     300x300 e 1000x1000

#### Dhrystone

- Benchmark sintético publicado por seu autor Reinhold Weicker da Siemens Nixdorf em 1984
- Dhrystone é aplicável em sistemas não numéricos com tipos de dados inteiros, como sistemas operacionais, compiladores, editores de texto, etc
- Resultado: número de loops por segundo

- Características do Dhrystone
  - Não analisa operações de ponto flutuante
  - Processadores RISC possuem melhor desempenho que processadores CISC
  - Leva em consideração a localidade dos operadores
  - Para análise de processadores diferentes devese utilizar compilações de mesma linguagem para o Dhrystone

#### • Para sistemas específicos:

- Servidores Web
- Redes
- HD
- Servidores de e-mail
- Virtualização
- SOA
- Servidores de arquivos
- Etc.....

### Concluindo....

Benchmarks podem ser utilizados para verificar diversos tipos de sistemas ...

- -Servidores Web,
- -Banco de dados,
- -Processadores,
- -Redes de comunicação

### Concluindo....

sendo utilizados com diferentes objetivos...

- Codificação de vídeo e edição de imagens,
- Jogos,
- Processamento intensivo,
- Processamento de textos, etc.

### Concluindo....

Querendo avaliar diferentes características...

- Produtividade
- Desempenho
- Confiabilidade, etc.

# O importante é...

- Escolher o Benchmark adequado,
- Aplicar o Benchmark de forma adequada,
- Analisar os resultados obtidos com critério.

# Técnicas de Aferição

