

Overview |

OBJECTIVE

GRAPH GENERATION

ANALYSIS & DISCUSSION

Objective

Study the interconnectedness of populous U.S. cities by use of Amtrak rail travel

Three Networks:

- o Amtrak Rail Stations
- o Populous U.S. Cities (Induced)
- o Populous U.S. Cities (Non-Induced)

Amtrak Rail Station Network

OBTAIN .TXT FILE FROM AMTRAK WEBSITE

Eugene, OR - Amtrak Station (EUG) Albany, OR (ALY) Salem, OR - Amtrak Station (SLM) Oregon City, OR (ORC) Portland, OR - Union Station (PDX) Vancouver, WA (VAN) Kelso-Longview, WA (KEL) Centralia, WA (CTL) Olympia-Lacey, WA (OLW) Tacoma, WA (TAC) Tukwila, WA (TUK) Seattle, WA - King Street Station (SEA) Edmonds, WA (EDM) Everett, WA (EVR) Stanwood, WA (STW) Mount Vernon, WA (MVW) Bellingham, WA (BEL) Vancouver, BC - Pacific Central Station (VAC) Springfield, MA (SPG) Windsor Locks, CT (WNL) Windsor, CT (WND) Hartford, CT (HFD) Berlin, CT (BER) Meriden, CT (MDN) Wallingford, CT (WFD) New Haven, CT - State Street Station (STS) New Haven, CT - Union Station (NHV)

Route #1 **Break** Route #2

Amtrak Rail Station Network 530 Nodes **592 Edges** PARSE DATA TO WRITE OBTAIN .TXT FILE FROM AMTRAK WEBSITE **GML FILE**

Populous U.S. City Network

331 Nodes

319.9 sq mi 828.5 km2 3,007/sq mi 1,161/km2 30.30°N 97.75°W

Induced

Non-Induced

OBTAIN .TXT FILE OF CENSUS DATA

Texas 964,177

961,855

+0.24%

Austin

PARSE DATA TO OBTAIN NODES

MAP AMTRAK NETWORK
TO CITY NETWORK

7 San Antonio Texas 1,451,853 1,434,625 +1.20% 498.8 sq mi 1,291.9 km2 2,876/sq mi 1,110/km2 29.46°N 98.52°W 8 San Diego California 1,381,611 1,386,932 -0.38% 325.9 sq mi 844.1 km2 4,256/sq mi 1,643/km2 32.81°N 117.14°W 9 Dallas Texas 1,288,457 1,304,379 -1.22% 339.6 sq mi 879.6 km2 3,841/sq mi 1,483/km2 32.79°N 96.77°W 10 San Jose California 983,489 1,013,240 -2.94% 178.3 sq mi 461.8 km2 5,683/sq mi 2,194/km2 37.30°N 121.81°W

Populous U.S. City Network (Induced)

- Edge exists if:
 - o Edge exists in Amtrak Network
 - o Both adjacent stations are within a defined city
- o "Direct-Route" Graph

Populous U.S. City Network (Non-Induced)

- Edge exists if:
 - Amtrak route travels between adjacent cities without passing through any other defined cities
- o "Destinations" Graph

Induced Graph

Populous U.S. City Network Mappings

Springfield, MA (SPG)
Windsor Locks, CT (WNL)
Windsor, CT (WND)
Hartford, CT (HFD)
Berlin, CT (BER)
Meriden, CT (MDN)
Wallingford, CT (WFD)
New Haven, CT - State Street Station (STS)
New Haven, CT - Union Station (NHV)

✓

Springfield, Hartford, CT MA New Haven, CT Non-Induced Graph Springfield, Hartford, CT MA New Haven,

Analysis

DEGREE DISTRIBUTION

ASSORTATIVITY

CENTRALITY

Components & Diameter

	Amtrak Network	Non-Induced Graph	Induced Graph
Components	3	204	272
Diameter	81	30	7
Path	San DiegoMiami	San DiegoMiami	Irvine, CAOntario, CA

Discuss

- o Why do the sampled graphs have so many more components?
- o Why is the diameter of the original graph so large?
 - o Structure of transportation networks
- o Why do the original graph and the non-induced graph's diameter span the continent, but the induced graph stays within California?

Degree Distribution

All nodes have degree > 0

- o 203 nodes with degree 0
 - Cities that do not have train stations
- Odd/Even Pattern Shown
- Higher Degrees?
 - Self Edges

Even Degreed Nodes > Odd Degreed Nodes

- 242 nodes with degree 0
 - Nodes whose neighbors were not included in the sample
- Odd/Even pattern not shown

Assortativity

Are cities more likely to be connected if they have similar _____?

STATE

POPULATION

CHANGE IN POPULATION

GEOGRAPHICAL AREA

Assortativity by State

	Non-Induced Graph	Induced Graph
Q	0.1469	0.1898
Q_{max}	0.9956	0.9927

Discuss

- Both are assortatively mixed
 - o Trains travel between big cities in the same state more often than different states
- $OOQ_{max} \approx 1$
 - o Graph could be almost perfectly assortatively mixed
 - o Number of routes that cross a given states border is roughly even

Scalar Assortativity

Attribute	Non-Induced Graph r	Induced Graph r
Population	0.1033	0.0586
Change in Population	0.5949	0.6457
Geographical Area	0.5663	0.4500

Discuss

- o All attributes are assortatively mixed. Why?
- o Why is change in population the most assortatively mixed?
 - o Geographical proximity?
- Why does it make sense for the non-induced graph to be more assortatively mixed by population than the induced graph?

Eigenvector Centrality

- o Rank 'importance' of nodes based on the number of connections to other nodes
- oBut connections are more 'important' if the other node is 'important'

Meaning for our Network:

Ranking of cities or train stations by number of route options available from the current city or train station as well as its neighbors

Eigenvector Centrality

Rank	Amtrak Network	Non-Induced Graph	Induced Graph
1	Philadelphia, PA - William H. Gray III 30th St. Station (PHL) - 0.4774	Philadelphia, PA - 0.5961	Newark, NJ - 0.7522
2	Trenton, NJ (TRE) - 0.4508	Newark, NJ - 0.5674	New York, NY - 0.6098
3	Newark, NJ - Penn Station (NWK) - 0.3694	<u>Baltimore, MD</u> - 0.4506	Yonkers, NY - 0.2293
4	Wilmington, DE (WIL) - 0.3638	New York, NY - 0.2817	Stamford, CT - 0.0956
5	New York, NY - Moynihan Train Hall (NYP) - 0.2574	Washington, DC - 0.1714	New Haven, CT - 0.0180
6	Baltimore, MD - Penn Station (BAL) - 0.2058	Yonkers, NY - 0.0714	Bridgeport, CT - 0.0171
7	Metropark, NJ (MET) - 0.1852	Alexandria, VA - 0.0443	<u>Providence, RI</u> - 0.0014
8	North Philadelphia, PA (PHN) - 0.1525	<u>Stamford, CT</u> - 0.0431	Baltimore, MD - 0.0005
9	Cornwells Heights, PA (CWH) - 0.1472	Pittsburgh, PA - 0.0386	Washington, DC - 0.0003
10	Newark, NJ - Liberty International Airport (EWR) - 0.1354	Boston, MA - 0.0206	Alexandria, VA - 0.0001

Betweenness Centrality

Rank nodes by how common it is for paths to pass through them

Meaning for our Network:

Ranking of cities or train stations by the likelihood that any trip planned will make a stop at that city or train station

Betweenness Centrality

Rank	Amtrak Network	Non-Induced Graph	Induced Graph
1	Chicago, IL - Union Station (CHI) - 0.5779	<u>Chicago, IL</u> - 0.0896	Fullerton, CA - 0.0007
2	Cleveland, OH (CLE) - 0.3454	Naperville, IL - 0.0707	Los Angeles, CA - 0.0006
3	South Bend, IN (SOB) - 0.2986	Alexandria, VA - 0.0474	Anaheim, CA - 0.0003
4	Elkhart, IN (EKH) - 0.2973	Indianapolis, IN - 0.0406	Riverside, CA - 0.0003
5	Waterloo, IN (WTI) - 0.2965	Greensboro, NC - 0.0400	Oakland, CA 0.0002
6	Toledo, OH (TOL) - 0.2947	Greensboro, NC - 0.0400	Santa Ana, CA - 0.0002
7	Sandusky, OH (SKY) - 0.2939	Omaha, NE - 0.0348	San Bernardino, CA - 0.0002
8	Elyria, OH (ELY) - 0.2930	Cleveland, OH - 0.0335	Pomona, CA - 0.0002
9	Sacramento, CA - Sacramento Valley Station (SAC) - 0.2827	<u>Lincoln, NE</u> - 0.0334	New York, NY - 0.0002
10	Naperville, IL (NPV) - 0.2810	Denver, CO - 0.0320	San Jose, CA - 0.0002

Conclusion

Does the Amtrak network do a good job of connecting major cities?

- o No
 - Multiple Components
 - o Large Diameter

Do either of the sampled networks accurately reflect the original?

- o Non-Induced
 - Maybe, a lot of important information is missing, and it is usually better to use the original network since it is small enough to be analyzed easily, but it was accurate enough to give useful information for assortativity
- o Induced
 - o No, too much information is missing such that it does not reflect the behavior of the original graph in any of the analysis

