Universidade do Minho	4 de Julho de 2013
Exame d	e
Lógica I	EI
Lic. Eng. Informática	Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

- 1. Considere o conjunto $\Delta \subseteq \mathcal{F}^{CP}$, definido indutivamente pelas seguintes regras:
 - 1. $\neg p_n \in \Delta$, para todo $n \in \mathbb{N}_0$.
 - 2. Se $\varphi \in \Delta$, então $\neg \neg \varphi \in \Delta$, para todo $\varphi \in \mathcal{F}^{CP}$.
 - 3. Se $\varphi \in \Delta$ e $\psi \in \Delta$, então $\varphi \leftrightarrow \neg \psi \in \Delta$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.
 - (a) Justificando, diga se a fórmula $\neg\neg\neg p_0 \leftrightarrow \neg\neg p_1$ pertence ao conjunto Δ .
 - (b) Prove que o subconjunto de Δ dado por $\Gamma = \{\neg p_0, \neg \neg \neg p_1, \neg p_0 \leftrightarrow \neg \neg p_2\}$ é consistente.
 - (c) Enuncie o Princípio de Indução Estrutural para Δ .
 - (d) Seja v a valoração tal que $v(p_n)=1$, para todo $n\in\mathbb{N}_0$. Prove por indução estrutural que, para toda a fórmula $\varphi\in\Delta$, $v(\varphi)=0$.
 - (e) Justificando, diga se existe alguma tautologia em Δ .
- 2. Apresente uma forma normal conjuntiva logicamente equivalente à fórmula do Cálculo Proposicional $(p_0 \lor \neg (p_1 \to p_0)) \land (p_1 \lor \bot)$.
- 3. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - (a) Para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$, se $\Gamma \models \varphi \land \psi$, então $\Gamma \cup \{\varphi, \psi\}$ é consistente.
 - (b) $p_0 \wedge \neg p_1 \nvdash \neg (p_1 \rightarrow p_0)$.
- 4. Construa uma derivação em DNP mostrando que $p_1 \to (p_2 \to p_3) \vdash (p_1 \land p_2) \to p_3$.
- 5. Seja L o tipo de linguagem $(\{2, \times\}, \{=, <\}, \mathcal{N})$ em que $\mathcal{N}(2) = 0$ e $\mathcal{N}(\times) = \mathcal{N}(=) = \mathcal{N}(<) = 2$.
 - (a) Considere a função $h: \mathcal{T}_L \to \mathcal{T}_L$ tal que $h(t) = t[2 \times x_1/x_0]$, para todo $t \in \mathcal{T}_L$.
 - i. Seja t o termo $(2 \times x_0) \times (2 \times x_1)$. Determine h(t) e VAR(h(t)).
 - ii. Defina h por recursão estrutural.
 - iii. Seja ψ a *L*-fórmula $\forall x_0(x_0 < x_1 \rightarrow \neg(x_0 = x_1))$. Para todo $t \in \mathcal{T}_L$, x_1 é substituível por h(t) em ψ . Porquê?
 - (b) Seja $E = (\mathbb{Q}, \overline{})$ a L-estrutura tal que:

$$\begin{array}{ll} \overline{2} = 2 & \overline{<} = \{(x,y) \in \mathbb{Q}^2 : x < y\} \\ \overline{\times} : \mathbb{Q}^2 \to \mathbb{Q} \text{ tal que } \overline{\times}(x,y) = x \times y & \overline{=} = \{(x,y) \in \mathbb{Q}^2 : x = y\} \end{array}$$

Seja φ a *L*-fórmula $\neg \exists x_0 (x_0 \times x_0 = 2)$.

Quais das seguintes duas afirmações são verdadeiras?

- (i) $E \vDash \varphi$. (ii) $\nvDash \varphi$.
- (c) Indique, sem justificar, uma L-fórmula que represente a afirmação "O produto de qualquer número racional por si próprio é menor ou igual a 2".
- 6. Sejam L tipo de linguagem, $\varphi, \psi \in \mathcal{F}_L$ e x arbitrários. Mostre que $\forall x \varphi, \forall x (\varphi \to \psi) \models \exists x \psi$.

Cotações	1.	2.	3.	4.	5.	6.
	1,5+1,5+1+1,5+1	1,5	1,5+1,5	1,5	3+2,5+1	1

EXAME DE LÓGICA EI 4 julho 2013 1. (a) 7 po, 7 p1, 777 po, 777 po 00 77 p1 é ums sequência de formisés de 777 po ↔ 77 p1 · Logo, 777 po ↔ 77 p1 € A. (OBS: 700 € △ por 1. 3 come 700 € △, 77700 € △ por 2. ; $7p_1 \in \Delta$ for 1.; como $777p_0 \in \Delta$ = $7p_1 \in \Delta$, $777p_0 \leftrightarrow 77p_1 \in \Delta$ por 3.) (b) T = { 7po, 777p1, 7po ↔ 77pz} i consistente se existe uma valoração v tal que $v(7p_0) = v(777p_1) = v(7p_0 \leftrightarrow 77p_2) = 1$. Temos que, dade ums valoração N, N(7p3) = 1 => N(p0) = 0 N (777p1) = 1 (=> N (p1)=0 N(7p0 (37p2)=1 (3) N(1p0)=N(77p2) ~ N (7p0) = N(p2) logo, se v é uma velorceéo tel que v (po) = v (p1) = 0 e v (p2)=1, entos N satisfez T. T.E., portanto, consistenti. (c) Sija P(φ) uma propriedede sobre es domentos φ de Δ. Se (1) P(7pm) pera Ido ME/No; (2) se P(q) entré P(77q), per todo q = A; (3) se P(q) e P(q) entire P(q (> 774), pre quisquer q, Y E A; então P(q) pere todo $\varphi \in \Delta$.

P. $\frac{1}{6}$ (d) Sija P(φ) a popiedade $N(\varphi) = 0$ sobre os elements φ de Δ .

(1) Temos que $N(7p_m) = 1 - N(p_m) = 1 - 1 = 0,$

Logo, Papa, pare todo MEINO.

(2) Sija $\varphi \in \Delta$ tel que $P(\varphi)$, i.e., $N(\varphi) = 0$. (HI) Pritendemos mostrar que $N(77\varphi) = 0$. Ora,

$$N(779) = 1 - N(79)$$

= 1 - (1 - N(9)) = N(9)

HI O

logo, β (77φ).

fare todo MEINo,

(3) Sejam $\varphi, \psi \in \Delta$ tais que $P(\varphi) \in P(\psi)$, or seja, $N(\varphi) = 0$ $\in V(\psi) = 0$ (HI).

Mostremos que N(q +> 74)=0.

Como N(q)=0 < $N(7\psi)=1-N(\psi)=1-0=1$)

temos que r(q 074)=0. Logo, P(q 074).

For (1),(2),(3) i plo Principo de Induceso Estrutural fara Δ , $r(\phi)=0$, fara to de a frimula $\phi\in\Delta$.

(e) Atendendo à alinea (d), ∇ é uma valoração que atribui a valor lógico O a todas as formulas de Δ . Logo, renhema formula de Δ é umo toutologia.

(pov7(p, >po)) \wedge (pov(p, \wedge 7po)) \wedge (pov1)

1 elements

ments \vee (pov(p, \wedge 7po)) \wedge (pov1)

(pov(p, \wedge 7po)) \wedge p1

distributivated

Assim, (povp1) Λ (pov7po) Λ pr e ums FNC begicemente equivalente a (pov7(p+>po)) Λ (p1v1).

3.

Sijom $\Gamma = \{p_0, 7p_0\}, p = p_1 = p_2 \}$. Γ i obviamente inconsistente. Por isso, $\Gamma = p_1$ pua quelque $E \in \mathcal{F}(P_1)$.

[m particular, $\Gamma = p_1 p_2$. Como $\Gamma \subseteq \Gamma \cup \{p_1, p_2\}$. Γ i inconsistente.

tente, também $\Gamma \cup \{p_1, p_2\}$ i inconsistente. \log_p , a afirmação é falsa.

In Pilo Tionema da Adegvação, saternos que po $\wedge 7p_1 \not\vdash \neg (p_1 \Rightarrow p_0)$ se 26 se $p_0 \wedge 7p_1 \not\vdash \neg (p_1 \Rightarrow p_0)$.

Sija N una veloração tal que $N(p_0)=1$ e $N(p_1)=0$. Entaç, $N(p_0)=1$ e $N(p_0 \wedge 7p_1)=1$ e $N(p_0 \wedge 7p_1)$

4.

	(1)	P1 1 P2 11E		
Pa x Pa	2 /2 E	pı	p1 → (b2->	, b3) > t
72	. Agas Bi	F	2 → P3	F.
	P3			- → I (1)
	(p1 1 p2) -> p3			+

é uma derivação cuja conclusão e (p11p2) → p3 e em que todas

as lipsters são conceledos, except
$$p_1 \rightarrow (p_2 \rightarrow p_3)$$
.

 $logo$, $p_1 \rightarrow (p_2 \rightarrow p_3)$ $\longleftarrow (p_1 \land p_2) \rightarrow p_3$

5.

h:
$$I_L \rightarrow I_L$$

 $h(t) = t \left(2 \times \pi_1 / x_0 \right)$, pure todo $t \in I_L$

i)
$$h(t) = (2 \times 16) \left[2 \times 11 / 16 \right] \times (2 \times 11) \left[2 \times 11 / 16 \right]$$
$$= \left(2 \times (2 \times 11) \right) \times (2 \times 11)$$

$$VAR (h(t)) = VAR (2x(2xx1)) \cup VAR (2xx1)$$

$$= VAR (2) \cup VAR (2xx1) \cup VAR (2) \cup VAR (x_1)$$

$$= \emptyset \cup \{x_1\} \cup \emptyset \cup \{x_1\} = \{x_1\}.$$

- ii) li: J_ > Ti i definide por recursais estrutural por :

 - 2) $h(t_1 \times t_2) = h(t_1) \times h(t_2)$, for grainquer $t_1, t_2 \in \mathcal{T}_L$.

(iii)
$$\psi = \forall x_0 (x_0 < x_1 \rightarrow 7 (x_0 = x_1))$$

Sign to T_1 .

As dues ocorrêncies de XI em Y estato no decence de quantificados Vxo. Como xo & VAR (hit), x, e substituível por litt) em Y.

OBS: mostumos que xo & vAR (h(t)) para todo t & JL, por inductor estutural fore Th.

- (1) $\underline{t=2}$ h(t)=2 var(h(t))=8logo, so & vAR(h(t)).
- (2) $t = t_1 \times t_2$ para algument, $t_2 \in \mathcal{T}_L$. Admitantes que Lo & VAR (h(t1)) e 26 & VAR (h(t2)). Tenns que h(t) = h(t1) xh(t2). Logo, vAR (h(t)) =

- VAR (MIET) U VAR (MLEZ) . Arrim, i imediats que xo & VAR(bill). Por (1) e (2), plo Princípio de Induces Estratural para TL, 26 & VAR(h(+)), pere todo te T. 6) ii) E = 4 Sya a uma atribuições em E. Temos que E=q[a] me q[a]=1 sse Ins (nox No = 2) [a] = 0 Me para todo $d \in \mathbb{Q}$, $(76 \times 76 = 2) \left[a \begin{pmatrix} \chi_0 \\ d \end{pmatrix} \right] = 0$ me para todo $d \in \mathbb{Q}$, $d \neq d \neq 2$ m pue toob d & Q, dxd #2 me pera todo de a, d2 +2 Ora, d2=2 (=> d=± \(\frac{1}{2}\). Como \(\frac{1}{2}\) \(\frac{1}{2}\) \(\lefta\), \(\epsi^2\) \rightarrow \(\text{valcele}\),

entos, que pue todo d E Q, d2 + 2.

Logo, E = y [a].

Assim, E = p e uma afinmação vindadeira.

(ii) Consideremos a estartura $E'=(\Omega, ^{\sim})$ onde $^{\sim}$ coincide com $^{-}$ exute na interpretaer de constante 2, sendo. 2 = 0. Dada uma atibuicos a em E,

E= φ[a] sse para tido d∈ (l (16×76=2) [a(16)]= m pare todo d∈ Q, d=d≠ = on pre todo d∈Q, dxd ≠0 me por tol dea, d2 to

Como 02=0 e 0 ∈ Q, a afinmação "para todo d & Q, d2 to " e- Palse. Logo, E' # y [a].

logo, E' é uma testruture onde q mos é vélide.
Portante, q mos é universalmente vélide, donde #q é ume afirmação vardodiirs.

(c)
$$\forall_{x_0} \left(\left(x_0 \times x_0 < 2 \right) \vee \left(x_0 \times x_0 = 2 \right) \right)$$
.

Sejam € υπα estretura e a uma atribuição um € tais que
 (€,a) realiza T = { ∀n φ, ∀n(φ⇒ψ)}. Výamos n € = J₁γ βα
 Επτας,

[= Yn (φ=γ)[a] m para todo d ∈ dom f, (φ=γ)[a(2)]=1

Ora,
$$(\varphi \rightarrow \psi) \left[a \begin{pmatrix} \chi \\ d \end{pmatrix} \right] = 1 \quad \text{minim} \quad \varphi \left[a \begin{pmatrix} \chi \\ d \end{pmatrix} \right] = 0 \quad \text{ou}$$

$$\psi \left[a \begin{pmatrix} \chi \\ d \end{pmatrix} \right] = 1 .$$

Arrim,

para todo d c dom Ε, (φ[a(x)]=0 ου Ψ[a(x)]=1)

Logo, for *,

pera todo de dom 6, y [a(x)]=1,