19日本国特許庁(JP)

⑪特許出願公告

⑫特 許 公 報(B2)

 $\Psi 3 - 23034$

⑤Int. Cl. ⁵

識別記号

庁内整理番号

❷❸公告 平成3年(1991)3月28日

H 04 N 5/232 5/225

Z D 8942-5C 8942-5C

発明の数 1 (全5頁)

図発明の名称 撮像装置

> @特 頭 昭59-167448

69公 開 昭61-45684

22出 • 顖 昭59(1984)8月9日 @昭61(1986)3月5日

@発 明 者 횯 大 原 文 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 @発 明 者 中 村 克 己 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 @発 明 者 吉 田 雄 重 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 内 @発 明 者 Ш 正 樹 丸 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社

シャープ株式会社 大阪府大阪市阿倍野区長池町22番22号 四代 理 人 弁理士 青 山 葆 外2名

1

審 査 官 Ш 也

2

切特許請求の範囲

願 人

勿出

1 担当する変倍区間がそれぞれ異なるが連続的 に設定されている複数個のズームレンズと、ズー ムレンズを切換えるズーム部切換手段と、倍率に 対応するズームレンズに切換えるための信号をズ 5 ーム部切換手段に出力し且つ映像信号切換手段に レンズ切換に伴つて映像信号を切換えるための信 号を出力する判別手段と、選択されているズーム レンズをとおつた画像を電気信号に変換する揚像 させる映像信号処理回路と、該テレビ映像信号を 書き込み読み出し得る映像メモリと、上記の判別 手段からの信号をうけて、画像の変倍を各変倍区 間内で行なう場合には映像信号処理回路からリア を2つ以上の変倍区間にわたつて変える場合に は、区間切換え時に、映像メモリからテレビ映像 信号を出力する映像信号切換手段とを備え、ズー ムレンズの切換に伴なう映像信号出力の中断を映 像メモリで補間することを特徴とする撮像装置。

発明の詳細な説明

(産業上の利用分野)

本発明は変倍の全範囲で時間的に連続して高解 像度の映像信号出力を得る撮像装置に関する。

(従来技術)

撮像装置においては、物体をレンズ光学系で撮 像素子面に結像させる際に、変倍の機能を有する ズームレンズを用いて、結像の倍率を変えてい る。ズームレンズを用いると、レンズ系内のレン 素子と、この電気信号からテレビ映像信号を発生 10 ズの一部を相対移動し焦点距離を変え倍率を増減 できる。しかし、倍率が3倍以上になつてくる と、レンズ収差が多く、従つて解像度の劣化が起 つてくる。そのため倍率を大きくかつレンズ収差 を少なくするために、ズーム部のレンズ枚数を多 ルタイムのテレビ映像信号を出力し、画像の変倍 15 くしたり、ダブルズームと言つて1本のズームレ ンズの中に2個所のズーム部を持たせるなどの構 成にして、レンズとしての特性を良くしている。 また、ズームレンズの変倍の範囲を広くするため に数本の変倍範囲の異なるズームレンズを具備 20 し、それら数本のレンズを画像の大きさに従って ターレット式に変換して変倍範囲を大きくとつて

3

いるものもある。

(発明の解決すべき問題点)

第3図に、従来の放送業務用ズームレンズとポ ータブル用ズームレンズの振幅変調率の例を示 す。ここに、縦軸は、正弦波入力に対する振幅変 調率であり、横軸は、TV本数の単位で示した解 像度である。現状の放送業務用などの2/3インチ ~1.25インチの撮像面を有する撮像装置に用いる ズームレンズには、特に高い解像度特性が要求さ 相対的に移動する14倍の非常に良い解像度特性を 示す放送業務用ズームレンズの特性の一例を示 す。実線の曲線が示すように、解像度1600TV本 でレンズ結像系で振幅変調率が約50%に劣化して のため、映像信号出力そのものの振幅変調率は解 像度1600TV本で約10%に劣化する。

しかし、放送業務用ズームレンズは、解像度は 良いが、重く且つ大きいという欠点がある。ズー 量が約10~20kgあり、また前玉有効径が約170mm ゆある。したがつて、重量においても、大きさに おいても、ズームレンズと撮像装置の本体とはほ とんど同じ大きさになつており、撮像装置全体と しては非常に大きくなる。

一方、第3図の破線は、高解像度のポータブル カメラに用いられる、同じく一部分を相対的に移 動する標準的な10倍のズームレンズの特性の一例 を示す。1000TV本以上の解像度が必要な高品位 破線で代表的に示されるポータブルカメラのズー ムレンズを用いた映像信号の出力では、解像度は 非常に悪い。第3図の破線の特性を示す高解像度 のポータブルカメラに用いられるズームレンズ は、おおよそ2~3 kgで、前玉有効径が70mm o で 35 あり、放送業務用ズームレンズに比べて軽く小さ い。しかし、重量と形状を小さくすることに設計 の主眼がおかれているので、特性としては解像度 が悪く不十分なものになつている。

はじめに記したようにその変倍手段としてターレ ツト式の様に何本かのズームレンズを交換した り、ズームレンズの一部を交換、着脱する構成の ものがあるが、これ等の構造のズームレンズを用 いて変倍する時には、映像信号が一時的に遮断す る弊害がある。第4図は、撮影時に時間と共に変 倍率が増加して、ある変倍区間からある変倍区間

に移る時に、倍率が変化する様子を示しており、 5 切換に際して倍率が定まらない時間 (taとtaの 間)では映像出力もなくなることを示しており、 画像再生する受像側において不連続な受画像が出 力され不自然感が甚しい。

本発明の目的は、高解像度で比較的軽量、小型 れる。第3図の実線は、ズームレンズの一部分を 10 な変倍機能を有するズームレンズで、映像出力信 号に中断のない連続画像を発生させる撮像装置を 提供することである。

(問題点を解決するための手段)

本発明に係る撮像装置は、担当する変倍区間が おり、さらに撮像装置本体での振幅変調率の低下 15 それぞれ異なるが連続的に設定されている複数個 のズームレンズと、ズームレンズを切換えるズー ム部切換手段と、倍率に対応するズームレンズに 切換えるための信号をズーム部切換手段に出力し 且つ映像信号切換手段にレンズ切換に伴つて映像 ムレンズのズーム比が10倍の標準的なものでも重 20 信号を切換えるための信号を出力する判別手段 と、選択されているズームレンズをとおった画像 を電気信号に変換する撮像素子と、この電気信号 からテレビ映像信号を発生させる映像信号処理回 路と、該テレビ映像信号を書き込み読み出し得る 25 映像メモリと、上記の判別手段からの信号をうけ て、画像の変倍を各変倍区間内で行なう場合には 映像信号処理回路からリアルタイムのテレビ映像 信号を出力し、画像の変倍を2つ以上の変倍区間 にわたつて変える場合には、区間切換え時に、映 テレビに用いる高解像度信号としては、第3図の 30 像メモリからテレビ映像信号を出力する映像信号 切換手段とを備え、ズームレンズの切換に伴なう 映像信号出力の中断を映像メモリで補間すること を特徴とする。

(作用)

本発明によれば、変倍のズームレンズの変倍区 間を分割する設計により、各変倍区間を小さく出 来るので、全変倍区間の範囲にわたつて高い振幅 変調率の高解像度ズームレンズが得られる。変倍 区間を切換える際に一時的に消失する映像信号出 軽量で、形状が小さなズームレンズとしては、 40 力を、撮像装置の映像メモリ回路からの映像信号 で補間することにより、連続した映像信号出力と なるので、受像側には、何ら不自然感を与えるこ となく、連続してズーム変倍をすることが出来 る。

5

(実施例)

以下、添付の図面を参照して本発明の実施例を 説明する。

第1図は、本発明の実施例のブロツク図であ レンズのフォーカシングレンズ部2がズーム部3 または3′の前に設けられる。(ズームレンズでは 大きな口径のレンズ部品を使うのが普通である。) 2つのズーム部3,3′は、各々が異なる変倍の は、変倍の手段としてレンズの一部もしくは全部 が変換あるいは着脱される。以下では、ズーム部 3が低倍率の区間、ズーム部3′が高倍率の区間 を担当するとして説明する。ズーム部3,3'の 4'とコンペンセイションレンズ5,5'が内装さ れている。パリエーションレンズ4, 4'はズー ム比を変えるためのものであり、コンペンセイシ ヨンレンズ5,5'は、収差の量を少なくするも 7を撮像素子8の面に結像させる。ズーム部3, 3'には、変倍させるためのモーター 9 から、ギ アやカムなどの伝達機構 10を経て、変倍区間の 切換えと、区間内での変倍駆動力が伝えられる。 からは、モーター9への倍率区間の切換え指令 と、区間内での変倍指令が与えられる。

撮像素子8で光学的画像が光電変換されて電気 信号となり、映像信号処理回路 1 2 で、γ補正。 シエーデング補正、ニー補正などが加えられ、同 30 ことなく出力される。 期信号やバースト信号なども加えられ、テレビ映 像信号が作られる。このテレビ映像信号はCCD やCMOSなどの映像メモリ回路13に記憶され る。倍率設定回路11からモーター9へ送られる 切換判別回路14は、ズームレンズの変倍区間を 変えるか否かを判定し、映像信号切換回路15に 出力する。映像信号切換回路 15は、切換判別回 路14からの信号より、映像信号出力として、映 像信号処理回路12から信号を取るか、映像メモ 40 り回路 13から信号を取るかを選択し、映像信号 をズームの変倍区間の切換えによらず連続的に出 力する。

第2図は本実施例において、変倍区間の切換え

6

の経過と、映像信号切換回路 15 へ送られる信号 とを示す。第2図aは、ズーム部3(ズーム倍率 乙。)の変倍区間から別のズーム部3′(ズーム培 率Z₃′) へ切り換えながら画像の倍率Mを変える る。物体 1 は、撮像すべき被写体である。ズーム 5 ときの時間経過を示す。ズームレンズの倍率設定 回路11によつて、ズーム倍率が指示される。ズ ームレンズの切換判別回路14では、倍率の閾値 が各変倍区間に設定されてある。例えば、t=t では、ズーム部3により、ズーム倍率Z。を増加さ 区間を担当する。ズームレンズ3, 3'において 10 せて閾値Th。に達し、なおかつ、倍率が増加方向 に倍率設定が行なわれつつあり、第2図bに示す ように映像信号切換信号Vonのパルスが発生され る。この映像信号切換信号Vmにより映像信号切 換回路 15では、映像信号出力として映像メモリ 円筒の中にはそれぞれバリエーションレンズ4, 15 回路13からの信号が出力される。ズーム部3に よる変倍は、taの後もしばらく続き、t=taでズ ーム部3による変倍が終る。taから短時間後のta までは第2図cに示す様にズーム部切換信号ich がモーター9へ加えられ、t=tcにおいてズーム のである。リレーレンズ 6 を用いて、物体 1 の像 20 部は 3'に切換えられる。teからはズーム部 3'に より変倍され、 t=tc、ズーム部3′の閾値 Th₃′の倍率に達し、なおかつ倍率が増加しつつ あり、第2図dに示すように、映像信号切換信号 Vorrのパルスが切換判別回路 1 4 で発生される。 ズームレンズの倍率を設定する倍率設定回路11 25 このVorr信号により映像信号切換回路15では、 映像信号出力として映像信号処理回路12からの オンライン信号を出す。よつて、変倍によるズー ムレンズの切換えにもかかわらず、第2図eに示 すように映像信号vsはtaとtaとの間でも途切れる

本実施例においては、変倍区間を2つに分割し た構成のものを示したが、変倍の全範囲が広い場 合には、2つ以上に分割することによりあらゆる 倍率で高解像度を維持出来る。また、変倍の機構 倍率設定信号は切換判別回路14へも送られる。 35 としてズームレンズの他に、同じくレンズの一部 を変換して変倍する通称エクステンダーと呼ばれ る変倍光学系を用いてもよいことはもちろんであ

(発明の効果)

本発明によれば、信号を処理する撮像装置本体 が小さいポータブルカメラにおいても、小型で軽 量で、安価で、且つ、第3図に実線で示した放送 業務用ズームレンズ以上の高性能のズームレンズ を具備した撮像装置を提供できる。

8

図面の簡単な説明

第1図は、本発明の実施例のブロック図であ 振幅3 る。第2図a~eは、変倍区間切換の時間経過と のタロ映像信号の連続性とを示すタイムチャートであ 用いたる。第3図は、従来の放送業務用ズームレンズ 5 ある。

(実線)とボータブル用ズームレンズ (破線)の 振幅変調率を示すグラフである。第4図は、従来 のタレツト式あるいは一部交換式ズームレンズを 用いたときの変倍の経緯を示すタイムチャートで ある。

