topAl A New Class of Al Architecture

M. Tony Ewing 2025-05-07 DOI-protected content: Zenodo 10.5281/zenodo.15345660 & 15345661

The Problem

Existing Al Architectures Are Fragile

Transformers like GPT and DeepSeek's MoE suffer from:

- Recursive instability: Feedback loops degrade model reliability
- o Cost Explosion: Retraining and scaling require exponential compute
- o Synthetic data contamination: Degraded learning from model-generated inputs
- Opacity and drift: Unpredictable behavior under distributional shift
- Critical use unreliability: Mislead decision-makers in high-risk domains—e.g., physicians in differential analysis, autonomous operators under stress, military personnel during target recognition, etc.

The Transformer "Tri-Lemma"

During development and innovation, Transformers face 3 Challenges:

- 1. Effectiveness (Al Models Compete on Performance benchmarks)
- 2. Cost (Training + Inference)
- 3. Stability (Under recursion or low data)

Commercial competition between AI models distills to these three dimensions

The Solution: TopAl (topAl)

A New Class of Al Architecture Designed For:

- Structural stability under recursive use and system feedback
- Low-cost, non-destructive updating—no retraining required
- Modular scaling that allows integration with transformer backbones or as a standalone alternative
- Addressing the Tri-Lemma

Architecture: topAl

Feature	TopAI	GPT/DeepSeek
Update Cost	Minimal	High
Drift Risk	None	High
Interpretability	Native	Low
Compute	CPU / Edge	Multi-GPU
Stability	Built-in	Patched-in

TopAl updates without retraining by anchoring learning to topological markers within the data landscape.

topAl Placement

Compatible with existing transformer systems but NOT dependent upon them:

- Operates as an interference engine (behind or beside LLMs)
- Stabilizes output (with transformers through totemic memory and projection)

Or,

 Serves as a standalone architecture in domains where drift and hallucination is fatal

Who This Is For

TopAl is NOT a chatbot, but a recursive inference engine for:

- Healthcare—Real time diagnostics
- Finance Market regime shift resilience
- Cybersecurity drift-aware monitoring
- Embedded Al—wearables, drones, medical devices
- Safety systems—constrain LLMs, prevent hallucinations

DOI-protected content: Zenodo 10.5281/zenodo.15345660 & 15345661

TopAI_Investor Presentation_v1.0 - 7 May 2025

Key Differentiators: topAl

- 20 40x cheaper to deploy (100x in some environments)
- No retraining required under feedback
- Zero hallucination by design
- Interpretable and memory-preserving
- Runs on CPUs and edge devices

TopAl replaces statistical approximation with topological memory and constraint—preserving structure rather than flattening it

DOI-protected content: Zenodo 10.5281/zenodo.15345660 & 15345661

TopAl_Investor Presentation_v1.0 - 7 May 2025

Early Results: topAl versus GPT Models

Metric	GPT-Class (GPT-4o / DeepSeek)	TopAl
Accuracy (diagnostic task)	94–97% (with prompt tuning)	97% (native, no tuning)
Update Time (CPU)	N/A or requires retrain (~hours)	0.008 sec
Retraining Cost (per cycle)	\$1–5M (est.)	\$0 (no retraining)
Inference FLOPs (per query)	1.1e11 - 1.4e12	~2e9 (40–500x cheaper)
Hallucination Rate	~3–12% depending on prompt	~0% in constrained domains
Deployment	GPU-only / Cloud-dependent	CPU-ready / Edge-compatible
Stability Under Feedback	Degrades or collapses	Stable by design

DOI-protected content: Zenodo 10.5281/zenodo.15345660 & 15345661

TopAl_Investor Presentation_v1.0 - 7 May 2025

Early Results: Cardiac Arrest Prediction Task

Dataset: Cardiac Arrest Events Dataset, sourced from MMIC-IV Clinical Database (PhysioNet) Filtered 6,200 patient records with time series vitals and events outcomes

Model Comparison

Metric	Random Forest (Baseline)	TopAl Prototype
Accuracy (AUROC)	96.3%	97.1%
Update Time	0.74 sec (CPU, partial retrain)	0.008 sec (no retrain)
Inference Time per Sample	0.11 sec	0.006 sec
FLOPs per Update	~3.4e9	~2.6e7 (130x— cheaper)
Stability Under Recursion	Degrades	Preserved across 10+ cycles
Deployment Hardware	GPU/Cloud	CPU/Edge-compatible

topAl: Al Tri-lemma Is Broken

Model	Performance	Cost	Stability	Overall
GPT-4o	SOTA	Extreme	Collapses under recursion	Powerful but expensive and unstable
DeepSeek	High	Lower	Degrades under updates	Cheaper GPT, but still brittle
TopAl	High	Minimal	Stable by design	Cheaper, safer, and enduring

Key Takeaways

- TopAl exhibits equal or better prediction accuracy vs. state-of-the-art models
- o 130x faster and cheaper to update
- No retraining required
- o Coherence preserved even under simulated patient feedback loops
- Fully testable on commodity laptop hardware

CONTACT

Maurice "Tony" Ewing
TonyEwing.com/BlackCopernicus
ewing@tonyewing.com

[DOI-protected papers: Zenodo 10.5281/zenodo.15345660 & 15345661]