SÉRIES CHRONOLOGIQUES

Cours n=02: Étude d'une série chronologique

Mr.HAMEL Elhadj

Département de Mathématiques Université Hassiba Benbouali - Chlef

2021-2022

Plan

Introduction

Rappel : Une série chronologique - ou chronique - est constituée par une suite ordonnée d'observations d'une grandeur au cours du temps.

Il est bien utile de disposer de quelques mesures numériques qui résument une série temporelle :

- La tendance
- La saisonnalité, ou périodicité,
- La composante résiduelle.

Ajustement de la tendance

Ajustement de la tendance

On dispose d'une série chronologique $(X_i)_{i=1,\dots,n}$ où les seules composantes présentes sont

- la tendance
- et la composante résiduelle (les fluctuations irrégulières).

Le problème. Peut-on trouver une fonction simple du temps qui modélise au mieux la tendance de la série $(X_i)_{i=1,\dots,n}$?

Ajustement de la tendance

Ajustement linéaire

Objectif

On veut ajuster les données par une droite et donc modéliser la tendance par une fonction de la forme :

$$Z_{\theta}(t) = a.t + b$$
 avec $\theta = (a, b)$.

Deux méthodes :

- la méthode des moindres carrés.
- la méthode des 2 points.

1-La méthode des moindres carrés

Supposons que l'on observe T valeurs (le temps) d'une série de taille n dont la tendance semble être linéaire, $Z_t = at + b$.

ullet Cette méthode consiste à choisir les coefficients a et b de sorte que la quantité

$$\sum_{i=1}^{n} (X_i - (at_i + b))^2 = g(a, b).$$

On cherche donc a et b solutions du système :

$$S(a,b) = \begin{cases} \frac{\partial g(a;b)}{\partial a} = 0, \\ \frac{\partial g(a;b)}{\partial b} = 0, \end{cases}$$

1-La méthode des moindres carrés(la suite)

Aprés la résolution de problème, On démontre que le couple solution est (\hat{a},\hat{b}) avec :

$$\begin{split} \widehat{a} &= \frac{\operatorname{Cov}\left(t, X_{t}\right)}{\mathbb{V}[t]} \qquad \text{et} \qquad \widehat{b} = \bar{X} - \widehat{a}\bar{t} \\ \widehat{a} &= \frac{\operatorname{Cov}\left(t, X_{t}\right)}{\mathbb{V}[t]} \qquad \text{et} \qquad \widehat{b} = \bar{X} - \widehat{a}\bar{t} \\ \bar{t} &= \frac{1}{T} \sum_{t=1}^{T} t \qquad \text{et} \qquad \bar{X} = \frac{1}{T} \sum_{t=1}^{T} X_{t} \\ \operatorname{Cov}\left(t, X_{t}\right) &= \frac{1}{T} \sum_{t=1}^{T} (t - \bar{t}) \left(X_{t} - \bar{X}\right) \qquad \text{et} \\ \mathbb{V}[t] &= \frac{1}{T} \sum_{t=1}^{T} (t - \bar{t})^{2} \end{split}$$

1-La méthode des moindres carrés(la suite)

Propriétés

- **1** La droite d'équation $y = \hat{a}.t + \hat{b}$ s'appelle la droite des moindres carrés (DMC).
- 2 Le point moyen de coordonnées (\bar{t},\bar{X}) appartient à la Droite du MC.
- $\textbf{ On peut apprécier la qualité de l'ajustement linéaire à l'aide du coefficient de corrélation linéaire noté <math>\rho$ et défini par :

$$\rho = \frac{\operatorname{Cov}(t, X_t)}{\sqrt{\mathbb{V}[t]} \cdot \sqrt{\mathbb{V}[X_t]}},$$

1-La méthode des moindres carrés(la suite) Exemple

Exemple: On considère la série chronologique ci-dessous:

t		1	2		3	4		5	
X_t	1	35	143	1	L40	154	1	15	2
		_	v		4 2	,	$\sqrt{2}$!	4

	t	X_t	t^2	X_t^2	$t \times X_t$
	1	135	1	18225	135
	2	143	4	20449	286
	3	140	9	19600	420
	4	154	16	23716	616
	5	152	25	23104	760
Total	15	724	55	105094	2217

L'équation de la droite de la régression de X_t sur t, $Xt = \widehat{a}.t + \widehat{b}$, $\widehat{a} := \frac{Cov(t,X)}{V[t]} = 4.5$ et $\widehat{b} := \overline{x} - \widehat{a}\overline{t} = 131.3$

1-La méthode des moindres carrés(la suite) Exemple

La prévision pour la date 6 s'obtient en remplaçant X par la valeur 6 dans l'équation de la tendance : T(6)=158

2- La méthode des 2 points

- Cette méthode consiste à choisir arbitrairement deux points et à faire passer la droite d'ajustement par ces deux points.
- Si on suppose que ces points ont pour coordonnées (t_i, X_i) et (t_j, X_j) et si la droite a pour équation Y = ax + b alors on a :

$$\begin{cases} a.t_i + b = y_i, \\ a.t_j + b = y_j, \end{cases} \implies \begin{cases} \widehat{a} = \frac{y_j - y_i}{t_j - t_i}, \\ b = y_j - \widehat{a}.t_j, \end{cases}$$

 Pour le choix des 2 points, on constitue deux sous-séries d'observations de tailles égales (à 1 près), puis, on prend les points médians ou les points moyens de chaque série.

2- La méthode des 2 points (suite)

propriétés

- La méthode des deux points est empirique. Elle n'est basée sur aucun critère d'erreur à minimiser.
- Elle peut cependant s'avérer efficace en présence de valeurs aberrantes, ce qui n'est pas le cas de la méthode des moindres carrés.

2- La méthode des 2 points Example

Exemple

Considérons la série chronologique suivante :

1	 	<u> </u>		8	9	10
						19.0

- La méthode des moindres carrés donne : $\widehat{a}=1,3430$ et $\widehat{b}=-2,3467$
- En prenant les points médians des deux sous-séries (3,2.4) et (8,5.7)

la méthode des 2 points donne : a=0,66 et b=0,42

Tendance polynomiale

Objectif

On veut ajuster les données par un polynôme de degré p et donc modéliser la tendance par une fonction de la forme :

$$Z_{\theta}(t) = a_0 + a_1 t + \dots + a_{p-1} t^{p-1} + a_p t^p \text{ avec } \theta = (a_0, a_1, \dots, a_p)'.$$

Le cas p=0 correspond à la tendance constante et le cas p=1 à la tendance linéaire.

• Trouver la valeur de $\theta = (a_0, a_1, ..., a_p)'$ qui minimise

$$\sum_{i=1}^{n} (X_i - (a_0 + a_1 t + \dots + a_{p-1} t^{p-1} + a_p t^p))^2.$$

• La solution de ce problème de minimisation

$$\theta^{MC} = ({}^tT.T)^{-1}.({}^tT.Y),$$

Autre tendance : changement de variable :

Pour certaines autres tendances, on peut se ramener à une tendance linéaire ou polynomiale à l'aide d'un changement de variable.

Exemples:

- Ajuster $C_t=\frac{1}{at+b}$ revient à ajuster une tendance linéaire sur la série $Z_t=\frac{1}{Y_t}$
- Ajuster $C_t = e^{at+b}$ revient à ajuster une tendance linéaire sur la série $Z_t = \ln(Y_t)$
- Ajuster $C_t = \ln(at^2 + bt + c)$ revient à ajuster une tendance $at^2 + bt + c$ sur la série $Z_t = exp(Y_t)$

la tendance avec la méthode des moyennes mobiles

Définition

On appelle moyennes mobiles centrées de longueur p (p < T) de la série $\{X_t, t = 1, ..., T\}$ les moyennes successives calculées en fonction de la parité de p selon les formules qui suivent.

• p impair,
$$p=2m+l \Longrightarrow M_p(t)=\frac{1}{p}\sum_{k=-m}^{+m}X_{t+k};$$

• p pair,

$$p = 2m \Longrightarrow M_p(t) = \frac{1}{p} \left(\frac{X_{t-m}}{2} + \sum_{k=-m+1}^{m-1} X_{t+k} + \frac{X_{t+m}}{2} \right);$$

Il y a (Tp) moyennes mobiles centrées de longueur paire p. Pour simplifier, la longueur p de la moyenne mobile étant fixée, on notera désormais X_t la moyenne mobile centrée de longueur p à la date t.

la tendance avec la méthode des moyennes mobiles (suite)

Exemple

Les moyennes mobiles d'ordre 2, 3, 4 et 5 sont données par :

•
$$MM_{(2)}t = \frac{1}{2} \left(\frac{X_{t-1}}{2} + X_t + \frac{X_{t+1}}{2} \right)$$

•
$$MM_{(3)}t = \frac{1}{3}(X_{t-1} + X_t + X_{t+1})$$

•
$$MM_{(4)}t = \frac{1}{4} \left(\frac{X_{t-2}}{2} + X_{t-1} + X_t + X_{t+1} + \frac{X_{t+2}}{2} \right)$$

•
$$MM_{(5)}t = \frac{1}{5}(X_{t-2} + X_{t-1} + X_t + X_{t+1} + X_{t-2})$$

la méthode des moyennes mobiles (suite) Exemple 01

t	1	2	3	4	5	6
x(t)	84	123	165	108	103	137
$M_3(t)$		124	132	125.3	116	
$M_4(t)$			122.38	126.5		

Pour t = 1, on a: $M_4(1)$ est non-définie car x(-1) est non disponible.

Pour t = 2, on a : $M_4(2)$ est non-définie car x(0) est non disponible.

Pour
$$t = 3$$
, on a: $M_4(3) = \frac{1}{4} \times \left[\frac{x(1)}{2} + x(2) + x(3) + x(4) + \frac{x(5)}{2} \right] = 122.38$.

Pour
$$t = 4$$
, on a: $M_4(4) = \frac{1}{4} \times \left[\frac{x(2)}{2} + x(3) + x(4) + x(5) + \frac{x(6)}{2} \right] = 126.5$.

- Propriétés d'une moyenne mobile :

 a) Une moyenne mobile est opérateur linéaire, c'est-à-dire :

 $M_p(t)(X+X') = M_p(t)(X) + M_p(t)(X')$ $M_v(t)(\lambda \times X) = \lambda \times M_v(t)(X) \quad (\forall \lambda \in \mathbf{R})$

la méthode des moyennes mobiles (suite) Exemple 02

t	X_t	MM_3	MM_4	MM_5	MM_6
1	130				
2	121	123,67			
3	120	122,67	123,50	124,00	
4	127	123,00	123,50	123,80	124,33
5	122	126,00	125,00	124,40	123,75
6	129	125,00	124,63	124,40	125,25
7	124	124,33	125,88	126,80	127,58
8	120	127,67	128,88	129,60	129,42
9	139	131,67	131,13	130,80	130,92
10	136	136,67	134,25	132,80	132,33
11	135	135,00	135,63	136,00	134,42
12	134	135,00	134,88	134,80	135,42
13	136	134,33	134,88	135,20	135,08
14	133	135,67	135,13	134,80	
15	138	134,67			
16	133				

la méthode des moyennes mobiles

Remarque

Si la série X_t possède une composante saisonnière de période p alors l'application d'une moyenne mobile d'ordre p supprime cette saisonnalité.

Méthodologie

- Si aucune liaison fonctionnelle entre $MM(k)_t$ et le temps ne semble se dégager, on définit la tendance $Z_t = MM(k)_t$.
- Si une liaison (par exemple linéaire) se dégage, on estime cette liaison et on estime Z_t grace à l'estimation de cette liaison. L'avantage est de pouvoir définir une tendance à tout instant.

la méthode des moyennes mobiles

Les propriétés de la moyenne mobile

L'application de la moyenne mobile d'ordre p fixé entraînent que :

- ① Conserve une tendance linéaire : si X_t a une tendance linéaire, $MM(k)_t$ aura la même tendance ;
- 2 Supprime toute saisonnalité de période p : si X_t a une composante saisonnière, $MM(k)_t$ n'en aura pas ;
- **3** Atténue de façon optimale le bruit : le bruit de $MM(k)_t$ sera plus faible que celui de X_t .

Remarque : Choix pratique de l'ordre d'une moyenne mobile

Le but d'un lissage par moyenne mobile est de faire apparaître l'allure de la tendance, en gommant les variations saisonnières. On fait disparaître la composante saisonnière de période p avec une moyenne mobile d'ordre p. En pratique on doit trouver le meilleur compromis pour le choix de l'ordre p de lissage optimal.

L'étude d'une Série Chronologique

On a vu précédament qu'il y a deux types de décomposition (modèles) d'une série chronologique :

- la décomposition à partir d'un modèle additif.
- la décomposition à partir d'un modèle multiplicatif.

La démarche d'étude d'une Série Chronologique consistera à :

- Identifier les coefficients saisonniers
- désaisonnaliser la série initiale, pour pouvoir ensuite ajuster une courbe de tendance.
- O construire la série lissée des prédictions en vue de faire de la prévision

Analyse De La Composante Saisonnière

Analyse De La Composante Saisonnière

Modèle Additif

- 1- calcul des différences $Y_t T_t = S_t$.
- 2- calcul des coefficients saisonniers bruts S_j :

 nour chaque saison i, \bar{S} movenne des différences de la saison i
- pour chaque saison j, $\bar{S}=$ moyenne des différences de la saison j.
- 3- calcul des coefficients saisonniers $S_j^* = S_j \bar{S}$ 4- La série corrigée des variations saisonnières ou la série désaisonnalisée notée (X_t^{cvs}) s'obtient en retranchant à la série initiale X_t la suite
 - des coefficients saisonniers centrés : $X_t^{cvs} = X_t S_j^*$.

Modèle Multiplicatif 1-calcul des rapports $\frac{X_t}{T} = S_t$

- 1-calcul des rapports $\frac{X_t}{Z_t} = S_t$.
- 2- calcul des coefficients saisonniers bruts S_j : pour chaque saison j, \bar{S} = moyenne des rapport de la saison j.
- 3- calcul des coefficients saisonniers $S_i^* = \frac{\dot{S}_j}{c}$
- 4- La série corrigée des variations saisonnières s'obtient en divisant la série initiale X_t par la suite des coefficients saisonniers normalisés : $X^{cvs} = \frac{X_t}{G^2}$

Cette méthode consiste à :

- Déterminer la droite des moindres carrés qui ajuste la série chronologique.
- **2** Calculer les valeurs ajustées \hat{Z}_t grâce à l'équation précédente.
- **3** Faire le rapport entre la valeur x_i réellement observée et la valeur \hat{Z}_t ajustée et ce, pour chaque observation.
- Prendre pour chaque période (mois ou trimestre), le rapport moyen qui sera considéré comme le coefficient saisonnier de la période.

Exemple :considérons la série suivante .

Trimestre	1	2	3	4
années				
1	1000	1200	1400	1150
2	1050	1350	1500	1300
3	1100	1450	1700	1400
4	1250	1650	1850	1550

- 1- D'aprés le graphisme le modéle est multiplicatif
- 2- la tendance $(Z_t = a.t + b)$ où la droite de regréssion :a= 35,5882 et b= 1066,25

Les valeurs ajustées par l'équation $(Z_t=35,5882.t+1066,25)$ tq t=1,2,...,16. sont données dans le tableau suivant :

Trimestre	1	2	3	4
années				
1	1101,84	1173,43	1173,01	1208,60
2	1244,19	1279,78	1315,37	1350,96
3	1386,54	1422,13	1457,72	1493,31
4	1528,90	1564,49	1600,07	1635,66

Les rapports entre valeur réelle et valeur ajustée $(S_t = \frac{X_t}{Z_t})$ sont donnés dans le tableau suivant :

Trimestre	1	2	3	4	
années					
1	0,9076	1,0550	1,1935	0,9515	
2	0,8439	1,0549	1,1404	0,9623	
3	0,7933	1,0196	1,1662	0,9375	
4	0,8176	1,0547	1,1562	0,9476	
Coefficients	0,8406	1,0461	1,1641	0,9497	
saisonniers bruts					
Coefficients	0,84	1,05	1,16	0,95	
saisonniers arrondis					

La prévision qui peut être faite d'une part, sur l'hypothèse que les années à venir connaîtront la même tendance générale que les années passées; et d'autre part, sur un calcul :

- L'équation générale du mouvement extra saisonnier est utilisée pour prévoir la tendance à long terme des quatre prochains trimestres. L'équation est X=35,5882*t+1066,25. Dans notre exemple, les valeurs de X seront calculées pour t égal à 17,18 et 19 et 20.
- Des coefficients saisonniers sont appliqués aux valeurs trouvées pour tenir compte des fluctuations saisonnières :

Trimestre années	1 17	2 18	3 19	4 20
Prévisions du tendance	1671,25	1706,84	1742,43	1778,01
Coefficients saisonniers	0,84	1,05	1,16	0,95
Prévisions de ventes (Z-t*S-t	1403,85	1792,18	2021,22	1689,11

Figure: La prévision des ventes.

Méthodes de calcul des coefficients saisonniers.

t	X_CVS	t	X_CVS
1	1190,48	9	1309,52
2	1142,86	10	1380,95
3	1206,90	11	1465,52
4	1210,53	12	1473,68
5	1250,00	13	1488,10
6	1285,71	14	1571,43
7	1293,10	15	1594,83
8	1368,42	16	1631,58

Nous allons ajuster la tendance par la méthode des moindres carrés.

1400.	unoi	is ajuster la terraurice par la metriode des momares carres.
t	X_t	Cov(t, X)
1	8	$a:=rac{\mathrm{Cov}(t,X)}{\mathbb{V}[t]}=1.67 \mathrm{et} b:=\overline{x}-a\overline{t}=7$
2	10	₩ [₺]
3	7	9 — x
4	30	₩ - X ₁ - 2;-at+b
5	13	8 -
6	14	
7	8	9-
8	40	7 08
9	16	
10	18	8
11	11	
12	50	2
13	20	5 10 15
14	20	t
15	14	
10		

Figure: Les ventes d'une entrprise.

t	X_t	\widehat{Z}_t	\widehat{S}_t
1	8	8.67	0.92
2	10	10.34	0.97
3	7	12.01	0.58
4	30	13.68	2.19
5	13	15.35	0.85
6	14	17.01	0.82
7	8	18.68	0.43
8	40	20.35	1.97
9	16	22.02	0.73
10	18	23.69	0.76
11	11	25.36	0.43
12	50	27.03	1.85
13	20	28.70	0.7
14	20	30.37	0.66
15	14	32.04	0.44
16	60	33.71	1.78

$$S_1 = \frac{0.92 + 0.85 + 0.73 + 0.7}{4} = 0.8$$

$$S_2 = \frac{0.97 + 0.82 + 76 + 0.66}{4} = 0.8$$

$$S_3 = \frac{0.58 + 0.43 + 0.43 + 0.44}{4} = 0.47$$

$$S_4 = \frac{2.19 + 1.97 + 1.85 + 1.78}{4} = 1.95$$
On a $\overline{S} \simeq 1$, se sont les coefficients finaux.

Méthodes de calcul des coefficients saisonniers : (par la méthode des moyennes mobiles :). Exemple 01

Nous allons éstimer la tendance en effectuant un lissage par la méthode des Moyenne Mobiles, soit la série chronologique trimestrielle suivante :

	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
Année 1	8	10	7	30
Année 2	13	14	8	40
Année 3	16	18	11	50
Année 4	20	20	14	60

Méthodes de calcul des coefficients saisonniers : (par la méthode des moyennes mobiles :). Exemple 01

Donc le modéle de série chronologique est multiplicatif.

Méthodes de calcul des coefficients saisonniers : (par la méthode des moyennes mobiles :). Exemple 01

	t	x_t	MM_4	X_t/MM_4
T1	1	8		
T2	2	10		
T3	3	7	14,38	0,49
T4	4	30	15,50	1,94
T1	5	13	16,13	0,81
T2	6	14	17,50	0,80
T3	7	8	19,13	0,42
T4	8	40	20,00	2,00
T1	9	16	20,88	0,77
T2	10	18	22,50	0,80
T3	11	11	24,25	0,45
T4	12	50	25,00	2,00
T1	13	20	25,63	0,78
T2	14	20	27,25	0,73
T3	15	14		
T4	16	60		

Méthodes de calcul des coefficients saisonniers : (par la méthode des moyennes mobiles :). Exemple 01

Nous allons calculer les coefficients saisonniers par la méthode des Moyenne Mobiles :

coefficients saisonniers brutes

$$\begin{split} S_3 &= \frac{0.49 + 0.42 + 0.45}{3} = 0.453 \;\;, \quad S_3 = \frac{1.94 + 2 + 2}{3} = 1.98 \\ S_1 &= \frac{0.81 + 0.77 + 0.78}{3} = 0.786 \;\;, \quad S_2 = \frac{0.80 + 0.80 + 0.73}{3} = 0.776 \\ \sum_{j=1}^4 &\simeq 4 \Longrightarrow \text{On a } \overline{S} = 1 \text{, se sont les coefficients finaux.} \end{split}$$

- Modèle considéré : $X_t = Z_t + S_t + \varepsilon_t$.
- la série chronologique :

Trimestre Année	1	2	3	4
1	24	25	29	24
2	24	27	30	26
3	27	29	32	29

• la tendance est linéaire avec equation $Z_t = 0,4965.t + 23,939.$

	t	X_t	Z_t	S_t=X_t - Z_t	S_j	X_cvs
T1	1	24	24,436	-0,4355	-1,422	25,857
T2	2	25	24,932	0,068	0,082	24,850
T3	3	29	25,429	3,5715	2,919	22,510
T4	4	24	25,925	-1,925	-1,578	27,503
T1	5	24	26,422	-2,4215		27,843
T2	6	27	26,918	0,082		26,836
T3	7	30	27,415	2,5855		24,496
T4	8	26	27,911	-1,911		29,489
T1	9	27	28,408	-1,4075		29,829
T2	10	29	28,904	0,096		28,822
T3	11	32	29,401	2,5995		26,482
T4	12	29	29,897	-0,897		31,475

Le calcul des coefficients saisonniers par la méthode de la différence à la tendance par la méthode des moyennes mobiles :

On a la SC " Évolution des ventes d'un produit au cours de 4 années" :

	Année 1		Année 2		Année 3			Année 4								
Trimestres	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ventes	100	130	192	313	298	290	303	347	311	259	237	234	160	99	72	80

Nous allons calculer le trend par la méthode des moyennes mobiles :

		Trimestre				
	1	2	3	4		
Année 1			208.5	253.25		
Année 2	287.13	305.25	311.13	308.88		
Année 3	296.75	274.38	241.38	202.5		
Année 4	161.88	122			\neg	

Le calcul des coefficients saisonniers par la méthode de la différence à la tendance par la méthode des moyennes mobiles :

calcul des coefficients saisonniers additifs :
 Différence = Donnée brute - Trend

	Trimestre				Total
	1	2	3	4	
Année 1			-16.50	59.75	
Année 2	10.87	-15.25	-8.13	38.12	
Année 3	14.25	-15.38	-4.38	31.50	
Année 4	-1.88	-23.00			
Estimation des	7.75	-17.88	-9.67	43.12	23.32
coefficients saisonniers					
Coefficients saisonniers	1.92	-23.71	-15.50	37.29	0

(Dernière ligne : -23.32 / 4)

f 0 élimination des variations saisonnieres dans le modèle additif (X_{cvs})

Données Corrigées des Variations Saisonnières = Donnée brute - Coefficient additif.

Le calcul de la série corrigée des Variations Saisonnières :

		Trimestre				
	1	2	3	4		
Année 1	98	154	208	276		
Année 2	296	314	319	310		
Année 3	309	283	253	197		
Année 4	158	123	88	43		

Variation résiduelle = Données corrigées des Variations Saisonnières - Trend.

Le calcul tableau des variations résiduelles

	Trimestre			
	1	2	3	4
Année 1			-1	22
Année 2	9	8	7	1
Année 3	12	8	11	-6
Année 4	-4	1		

Résumé : Méthodes de désaisonnalisation par régression

Le test de Ficher :

Test De Fisher Base Sur L'Analyse De La Variance

Le test de Ficher : l'analyse de la variance permet de détecter une éventuelle tendance et saisonnalité dans une série chronologique.

Le test de Fisher:

- ullet Soit N: le nombre d'années .
- Soit P: la périodicité des données (P=2, P=4, P=6, P=12),
- X_{ij} : la valeur de la série pour la i^{me} année et la j^{me} période.
- Le déroulement des tests : Calcul de la variance total(Somme Total) :

$$ST = \sum_{i=1}^{N} \sum_{j=1}^{P} \left(X_{ij} - X_{..} \right)^2 \ \text{avec} \ X_{..} = \frac{1}{N \times P} \sum_{i=1}^{N} \sum_{j=1}^{P} X_{ij}$$

 $X_{...}$: est la moyenne générale de la série temporelle .

Test De Fisher Base Sur L'Analyse De La Variance

Table d'analyse de la variance :

Somme des carrés	Degré de liberté	Désignation	Variance
$SP = N_j \sum_{j=1}^{P} (X_{.j} - X_{})^2$	P-1	Variance période	$V_P = \frac{SP}{P-1}$
$SA = P \sum_{i=1}^{N} (X_{i.} - X_{})^{2}$	N-1	Variance année	$V_A = \frac{SA}{N-1}$
SR = ST - SA - SP	(P-1)(N-1)	Variance résiduelle	$V_R = \frac{SR}{(P-1)(N-1)}$
		Variance totale	$V_T = V_P + V_A + V_R$

Test De Fisher Base Sur L'Analyse De La Variance

Déroulement du test de fisher

Le test se déroule de la manière suivante :

	Test de la tendance	Test de saisonnalité
Les hypothèses	H ₀ : la série n'a pas de tendance	H ₀ : la série n'a pas de saisonnalité
	H ₁ : la série possède une tendance	H ₁ : la série possède une
		saisonnalité
La statistique du test	$:F_c = \frac{V_A}{V_R}$	$F_c = \frac{V_P}{V_R}$
La règle de décision	Si $F_c > F_{(V1,V2)}$ on accepte H_1	
	Si $F_c \leq F_{(V1,V2)}$ on accepte H	Si $F_c > F_{(V3,V4)}$ on accepte H_1
	(1,1,2)	Si $F_c > F_{(V3,V4)}$ on accepte H_1 Si $F_c \le F_{(V3,V4)}$ on accepte H_0
Le degré de liberté	V1=N-1 et V2=(P-1)(N-1)	V3=P-1 et V4=(N-1)(P-1)

Test De Ficher :Exemple

Soit la série semestrielle X_t observée pendant 3 ans.

Joil ia .	JCI IC J	CITICS	there it observes pendant 5 ans.
	T1	T2	
2010	10	15	$P = 2, N = 3, X_{} = 15.83, SP = 60.29, SA = 60.29$
2011	12	20	$F = 2, N = 5, A_{} = 15.55, SF = 00.29, SA = 15.55$
2012	16	22	

42.33, SR = 2.21, ST = 104, 83;

On demande d'effectuer le test de détection de saisonnalité et de tendance avec un risque $\alpha=5\%$

Test De Ficher : Exemple

Solution:

Test de la tendance

$$X_{i,} = \frac{1}{P} \sum_{j=1}^{P} X_{ij}$$
: la moyenne de l'année i

Test de la tendance :

H₀: la série n'a pas de tendance H_1 : la série possède une tendance $F_c = \frac{V_A}{V_C} = 19.15 < \underline{19.56}$. On accepte H_0 Si $F_c > F_{(V_1,V_2)}$ on accepte H_1 Si $F_c \leq F_{(V_1 V_2)}$ on accepte H_0 $v_1=N-1$ et $v_2=(P-1)(N-1)$

Test de saisonnalité

$$X_{,j} = \frac{1}{N} \sum_{i=1}^{N} X_{ij}$$
 : la moyenne de 'période j

Test de saisonnalité :

H₀: la série n'a pas de saisonnalité H₁: la série possède une saisonnalité $F_c = \frac{V_P}{V_C} = .54.56 > 19.56$. On accepte H₁ Si $F_c > F_{(V3,V4)}$ on accepte H_1 Si $F_c \le F_{(V3,V4)}$ on accepte H_0 19.56 = F (2, 2) $v_3=P-1$ et $v_4=(N-1)(P-1)$

de fisher

Prévision d'une série chronologique : Le lissage exponentiel

Prévision d'une série chronologique : Le lissage exponentiel

Dans cette section nous examinons quelques méthodes traditionnelles de prévision des séries chronologiques. Nous nous intéressons tout d'abord au cas d'une chronique dépourvue de saisonnalité et aux méthodes de prévision susceptibles d'être utilisées : lissage exponentiel simple et double.

Le lissage exponentiel

Définition

L'expression lissage exponentiel désigne un ensemble de méthodes de calcul de prédictions(prévision) d'une série chronologique, centrées sur une mise à jour facile de la prédiction de la série quand une nouvelle observation est disponible. Ces méthodes partent d'une décomposition de série en tendance, saisonnalité et erreur, et proposent un mécanisme de mise à jour de la tendance et de la saisonnalité quand une nouvelle observation est disponible.