NPTEL Course

Robotics and Control: Theory and Practice

Assignment 1

- 1. Degree of freedom for a rigid body in space is:
 - a. Three
 - b. One
 - c. Six
 - d. Four
- 2. Which of the following quantities not taken into account for Kinematics of a rigid body?
 - a. Position
 - b. Velocity
 - c. Acceleration
 - d. Torque
- 3. Two vectors are orthonormal if:
 - a. Their cross product is zero.
 - b. Their dot product is zero.
 - c. Their cross product is one.
 - d. Their dot product is one.
- 4. Select True or False:

Statement: While performing successive translations and rotation, we can change the sequence of Homogeneous transformations.

- a. True
- b. False
- 5. Consider following differential coordinate transformation Matrix represented by Vectors n, o, a and p. Which of the following is not true?

$$T = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a. $n \times o = a$
- b. $a \times n = 0$
- c. $o \times a = n$
- d. $a \times o = n$
- 6. In case of Inverse Kinematics:
 - a. Base frame position and orientation known; find end-effector position and orientation
 - b. Joint Variables values known; find end-effector position and orientation.
 - c. End -Effector position and orientation known; find values of joint variables.

- d. End-Effector position and orientation known; find base frame position and orientation.
- 7. A triangle with coordinates A(0,0), B(4,0) and C(2,2) rotated about z-axis by 90^{0} anticlockwise, now triangle will be described by:
 - a. A(0,0),B(2,-2),C(0,4)
 - b. A(0,0),B(-2,2),C(0,4)
 - c. A(0,0),B(0,4),C(-2,2)
 - d. A(0,0),B(0,-4),C(2,-2)
- 8. Let F be the coordinate frame with $i^{"}, j^{"}, k^{"}$ as the coordinate axes and M be the coordinate frame with $k^{"}, j^{"}, -i^{"}$ as its coordinate axes. Suppose the coordinates of point p with respect to frame M are $M[p] = [2\ 1\ 3]^T$. What are the coordinates of p with respect to fixed frame F.
 - a. $[-3 \ 1 \ 2]^T$
 - b. $[3 \ 1 \ 2]^T$
 - c. $[2 \ 1 \ 3]^T$
 - d. $[-2 \ 1 \ 3]^T$
- 9. If the work space of a 3 dof manipulator is a cylinder, then its configuration is given by:
 - a. PPP
 - b. RRP
 - c. RPP
 - d. RRR
- 10. If the matrix for a general rotation about a unit vector angle θ is given by

$$\begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$$

Then approximate value of $1+2\cos\theta$ will be:

- a. 0.467
- b. 0.934
- c. 0
- d. 0.783