

Universidade do Minho

Trabalho Prático – Computação Gráfica

Licenciatura em Ciências da Computação

Fase 2 – Grupo 17

Bruno Neiva	Gabriel Antunes	Pedro Gonçalves	Guilherme Pinho
(a95311)	(a101101)	(a101250)	(a105533)

30 de março de 2025

Índice

Ín	dice	2
1.	Introdução	3
2.	Implementações	4
3.	Sistema Solar	5
]	Escala	7
,	Tamanho Radial (radius)	7
,	Tamanho dos anéis	7
1	Distância entre Planetas e o Sol	8
1	Distância ao sol	8
4.	Demos	9
5.	Conclusão	10

1. Introdução

Nesta segunda fase do projeto, foi pedido uma atualização da *engine* possibilitando a criação de cenas hierárquicas utilizando transformações geométricas (translação, rotação, escala e cor). Então, nesta fase apenas a parte da *engine* foi alterada.

2. Implementações

De momento, temos implementadas, no engine, as seguintes funcionalidades:

Foi atualizado de forma a poder suportar cenas hierárquicas de transformações geométricas e alteração da cor do objeto. Para alcançar isso, foi implementado a função *fillMap* que tem como objetivo percorrer recursivamente o XML, extrair as transformações associadas a cada grupo/modelo e armazená-las no map *modelTrans* que a cada modelo faz corresponder um vetor de transformações.

o fillMap:

- Verifica se o grupo tem transformações e armazenas num vetor.
- Percorre recursivamente os subgrupos e herda as transformações do grupo pai.
- Procura os modelos dentro do grupo e associa-os às transformações acumuladas.
- Adiciona essa associação a modelTrans (estrutura que liga nomes de modelos às suas transformações)

3. Sistema Solar

solar_system_3

solar_system_4

solar_system_5

Escala

Para representarmos o sistema solar de forma mais realista, usamos as seguintes escalas:

- Para cada astro, usamos uma escala de 10.000km para 1 unidade na engine;
- Para cada distância no espaço, usamos uma escala de 10.000.000km para 1 unidade na *engine*.

Então, as proporções no projeto ficaram da seguinte maneira:

Tamanho Radial (radius)

- **Sol**: $695700 \text{ km} \Rightarrow 69.57 \text{ unidades}$
- Mercúrio: 2439.7 km \Rightarrow 0.24397 unidades
- **Vênus**: $6052 \text{ km} \Rightarrow 0.6052 \text{ unidades}$
- **Terra**: $6378 \text{ km} \Rightarrow 0.6378 \text{ unidades}$
- Lua: 1737.4 km \Rightarrow 0.17374 unidades
- Marte: 3389.5 km \Rightarrow 0.33895 unidades
- **Júpiter**: 71492 km \Rightarrow 7.1492 unidades
- **Saturno**: $60000 \text{ km} \Rightarrow 6.0 \text{ unidades}$
- Úrano: 25362 km \Rightarrow 2.5362 unidades
- Neptuno: 24764 km \Rightarrow 2.4764 unidades
- **Plutão**: 1188 km -> 0.1188 unidades

Tamanho dos anéis

- **Saturno anel C**: [166500; 17500] ⇒ [16.65; 1.75]
- **Saturno anel B**: [209500; 25500] ⇒ [20.95; 2.55]
- **Saturno anel A**: [259900; 15000] ⇒ [25.9; 1.5]

Distância entre Planetas e o Sol

Para calcular a distância entre os planetas e é necessário calcular para cada caso. A posição do planeta atual é dada por:

Distância ao sol

• **Mercúrio**: 49036000 km ⇒ 4.9036

• **Vênus**: 107600000 km ⇒ 10.76

• **Terra**: 148670000 km ⇒ 14.867

• Lua: 384400 km ⇒ 0.03844 (Distância da Terra!)

• Marte: $249790000 \text{ km} \Rightarrow 24.9790000$

• **Júpiter**: 763480000 km ⇒ 76.348

• **Saturno**: 1436700000 km ⇒ 143.67

• Úrano: 2922200000 km \Rightarrow 292.22

• **Neptuno**: $4471200000 \text{ km} \Rightarrow 447.12$

• **Plutão**: $5906380000 \text{ km} \Rightarrow 590.638$

4. Demos

Aqui temos os testes pretendidos para demonstrar as capacidades do nosso motor gráfico:

test_2_2

test_2_4

5. Conclusão

Nesta segunda fase, enfrentamos novos desafios, como a necessidade de modificar drasticamente o processamento das transformações geométricas. No entanto, encaramos essas dificuldades de forma positiva, pois nos ajudaram a prestar mais atenção aos detalhes do nosso trabalho e a aumentar o nosso compromisso com a sua realização.

Além disso, esta etapa foi essencial para consolidarmos os conhecimentos adquiridos nas aulas, especialmente no que diz respeito à manipulação de XML e à aplicação de transformações.