```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\madrid_2011.csv")
 data

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	ТСН	TOL
0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7
2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2
3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN
4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN
209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN
209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN

209928 rows × 14 columns

▲

```
In [3]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209928 entries, 0 to 209927
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	209928 non-null	object
1	BEN	51393 non-null	float64
2	CO	87127 non-null	float64
3	EBE	51350 non-null	float64
4	NMHC	43517 non-null	float64
5	NO	208954 non-null	float64
6	NO_2	208973 non-null	float64
7	0_3	122049 non-null	float64
8	PM10	103743 non-null	float64
9	PM25	51079 non-null	float64
10	S0_2	87131 non-null	float64
11	TCH	43519 non-null	float64
12	TOL	51175 non-null	float64
13	station	209928 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [4]: df=data.fillna(value=0)
 df

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2011-11- 01 01:00:00	0.0	1.0	0.0	0.00	154.0	84.0	0.0	0.0	0.0	6.0	0.00	0.0	2
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	2
2	2011-11- 01 01:00:00	2.9	0.0	3.8	0.00	96.0	99.0	0.0	0.0	0.0	0.0	0.00	7.2	2
3	2011-11- 01 01:00:00	0.0	0.6	0.0	0.00	60.0	83.0	2.0	0.0	0.0	0.0	0.00	0.0	2
4	2011-11- 01 01:00:00	0.0	0.0	0.0	0.00	44.0	62.0	3.0	0.0	0.0	3.0	0.00	0.0	2
209923	2011- 09-01 00:00:00	0.0	0.2	0.0	0.00	5.0	19.0	44.0	0.0	0.0	0.0	0.00	0.0	2
209924	2011- 09-01 00:00:00	0.0	0.1	0.0	0.00	6.0	29.0	0.0	11.0	0.0	7.0	0.00	0.0	2
209925	2011- 09-01 00:00:00	0.0	0.0	0.0	0.23	1.0	21.0	28.0	0.0	0.0	0.0	1.44	0.0	2
209926	2011- 09-01 00:00:00	0.0	0.0	0.0	0.00	3.0	15.0	48.0	0.0	0.0	0.0	0.00	0.0	2
209927	2011- 09-01 00:00:00	0.0	0.0	0.0	0.00	4.0	33.0	38.0	13.0	0.0	0.0	0.00	0.0	2

209928 rows × 14 columns

```
In [5]: df.columns
```

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x1f809544850>


```
In [8]: |sns.distplot(data["station"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

MODEL BUILDING

Linear Regression

Out[15]: <matplotlib.collections.PathCollection at 0x1f81a00a580>


```
In [16]: print(lr.score(x_test,y_test))
```

0.298928872212475

Ridge Regression

```
In [17]: from sklearn.linear_model import Ridge
In [18]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[18]: Ridge(alpha=10)
In [19]: rr.score(x_test,y_test)
Out[19]: 0.2990637039599836
```

Lasso Regression

```
In [20]: from sklearn.linear_model import Lasso
```

```
In [21]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[21]: Lasso(alpha=10)

In [22]: la.score(x_test,y_test)

Out[22]: 0.14425099333511227
```

Elastic Regression

Logistic Regression

```
In [27]: from sklearn.linear_model import LogisticRegression
In [28]: feature_matrix=df1.iloc[:,0:14]
    target_vector=df1.iloc[:,-1]
In [29]: feature_matrix.shape
Out[29]: (209928, 13)
In [30]: target_vector.shape
Out[30]: (209928,)
```

```
In [31]: | from sklearn.preprocessing import StandardScaler
In [32]: | fs=StandardScaler().fit transform(feature matrix)
In [33]: logr=LogisticRegression()
         logr.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[33]: LogisticRegression()
In [36]: | observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13]]
         prediction=logr.predict(observation)
In [37]:
         print(observation)
         [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]]
In [38]: logr.classes
Out[38]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
               dtype=int64)
In [39]: logr.score(fs,target vector)
Out[39]: 0.9833323806257384
```

Random Forest

```
In [40]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.tree import plot_tree
```

```
In [41]: df1=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25',
                 SO_2', 'TCH', 'TOL', 'station']]
         x=df1[['BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25',
                 'SO_2', 'TCH', 'TOL']]
         y=df1['station']
In [42]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.70)
In [43]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[43]: RandomForestClassifier()
In [44]: parameters={'max_depth':[1,2,3,4,5],
                    'min_samples_leaf':[5,10,15,20,25],
                    'n_estimators':[10,20,30,40,50]}
In [45]: from sklearn.model_selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='acc
         grid_search.fit(x_train,y_train)
Out[45]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [46]: grid search.best score
Out[46]: 0.7565975419987933
In [47]: rfc best=grid_search.best_estimator_
```

```
In [48]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)
         1, 10, 41, 0<sub>1</sub> /,
          Text(148.8, 543.599999999999, 'NO <= 5.5\ngini = 0.682\nsamples = 5156\n
         value = [8, 1, 54, 4, 8, 0, 8, 1, 2, 2, 16, 2, 14\n2724, 2550, 8, 2714, 5,
         0, 20, 1, 12, 27, 3]'),
          Text(74.4, 181.199999999999, 'gini = 0.666\nsamples = 2304\nvalue = [5,
         1, 31, 1, 5, 0, 8, 0, 1, 0, 16, 1, 13\n1550, 1198, 8, 728, 5, 0, 17, 0, 8,
         20, 1]'),
          Text(223.2000000000000, 181.1999999999982, 'gini = 0.657\nsamples = 285
         2\nvalue = [3, 0, 23, 3, 3, 0, 0, 1, 1, 2, 0, 1, 1, 1174\n1352, 0, 1986,
         0, 0, 3, 1, 4, 7, 2]'),
          Text(446.4000000000003, 543.59999999999, 'NO <= 2.5\ngini = 0.292\nsam
         ples = 28\nvalue = [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0, 0,
         30, 0, 0, 3, 0, 0]'),
          Text(372.0, 181.199999999999, 'gini = 0.64\nsamples = 5\nvalue = [0, 0, 0]
         0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0]'),
          Text(520.800000000001, 181.1999999999982, 'gini = 0.179 \nsamples = 23 \n
         value = [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 28, 0, 0,
         1, 0, 0]'),
          Text(892.800000000001, 906.0, 'BEN <= 0.65\ngini = 0.502\nsamples = 3243
         \nvalue = [0, 3, 2553, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0\n0, 0, 0, 0, 2549,
```

Results

The best model is Logistic Regression 0.9833323806257384

In []: