Aufgabe 3 (4 Punkte):

Sei R ein faktorieller Ring, $p \in R$ mit $0 \neq p \notin R^{\times}$. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (i) p ist irreduzibel (prim),
- (ii) $\forall a, b \in R : (p \mid ab \Rightarrow p \mid a \text{ oder } p \mid b),$
- (iii) (p) ist Primideal.

$$\frac{(iii) \Rightarrow (ii)}{\forall a, b \in R} : \text{ a. } b \in (p) \text{ b. } d \in (p) \vee b \in (p).$$

$$\forall a, b \in R : \text{ a. } b \in (p) \Rightarrow d \in (p) \vee b \in (p).$$

$$\text{Sei } a, b \in R \text{ mit } p \mid d \cdot b, d \cdot h.$$

$$\text{vair Linder } x \in R \text{ mit } p \cdot x = d \cdot b.$$

$$\Rightarrow a \cdot b \in (p) \Rightarrow a \in (p) \text{ order } b \in (p)$$

$$\Rightarrow \exists x_1 \in R \text{ mit } x_1 p = a \text{ order } \exists x_2 \in R \text{ mit } x_2 p = b$$

$$\Rightarrow p \mid a \text{ order } p \mid b$$

$$\Rightarrow p \mid a \text{ order } b \mid b$$

$$\Rightarrow p \mid a \text{ order } b \mid b$$

Aufgabe 3 (4 Punkte):

Sei R ein faktorieller Ring, $p \in R$ mit $0 \neq p \notin R^{\times}$. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (i) p ist irreduzibel (prin),
- (ii) $\forall a, b \in R : (p \mid ab \Rightarrow p \mid a \text{ oder } p \mid b), (poin)$
- (iii) (p) ist Primideal.

miro

Aufgabe 2 (4 Punkte):

Zeigen Sie: In Hauptidealbereichen sind alle Primideale $\neq 0$ maximal.

Sei R HIB und
$$\{03 \neq P \neq R \text{ ein } P = R \text{ oder } P = R \text{$$

Noch zu zeigen:
$$J = R$$
 oder $J = (p)$.
 (\Rightarrow) (p) maximal)

Da R HIB, sor finden wir $a \in R$

sodans $(a) = \{v \cdot a \mid v \in R\} = J$.

$$\mathcal{D}_{\alpha}(p) \in (a)$$
, so it $p \in (a) \Rightarrow$
Wir finden $x \in \mathbb{R}$ sordan $a \cdot x = p$

$$\Rightarrow q \cdot x = p \cdot \Lambda$$

$$\Rightarrow d \cdot x \in (p)$$

$$\Rightarrow d \in (p) \text{ odes } x \in (p)$$

1. Full
$$d \in (p)$$

 $\Rightarrow (a) = (p)$
 $\Rightarrow J = (p)$
2. Fall $x \in (p) = \{y, p \mid y \in R\}$

$$a \cdot x = p$$

$$a \cdot y \cdot p = p$$

$$0 = p \cdot (1 - a \cdot y)$$
onte or the second of the second of

$$(da P \neq do3) \Rightarrow a \cdot y = 1$$

$$(da P \neq do3) \Rightarrow a \in R^{\times}$$

$$\Rightarrow a \cdot y = 1$$

Aufgabe 1 (4 Punkte):

 $V = V \cdot V = V \cdot Q \cdot Q$

Sei R ein Hauptidealbereich und S ein Integritätsbereich, welcher R als Unterring enthält. Zeigen Sie, dass ein ggT zweier Elemente $a, b \in R$ auch ggT in S von a, b ist.

Soi on, be R and deggT (on, b) in R, d.h. $d \mid_R a$ and $d \mid_R b$ and $(\forall d' \in R : d' \mid_R a u d)$ $d' \mid_R b \Rightarrow d' \mid_R d$ Worth an reight: $d \in ggT(a, b)$ in S, d.h. $d \mid_S a$ and $d \mid_S b$ and $(\forall d' \in S : d' \mid_S a u d)$ $d' \mid_S b \Rightarrow d' \mid_S d$

Beweis:

Da dtra => Wir finder XER sodars d. X= a

in the state of the state of

Sei sun d'e S mit d'Is a und d'Is b. Zu reigen: d'Is d

(a, b)= ={v1.a+v2.b | v1, v2 ∈ R3

Da $d'|_{S}$ a_{1} no finden wir $x_{1} \in S$ sodan $d': x_{1} = a$ ud da $d'|_{S}$ b, no finden wir $x_{2} \in S$ nodan $d': x_{2} = b$.

13.16 Lemma: Sei A HIB, $a,b \in A$, $d \in A$ ggT(a,b). Dann: $\exists x,y \in A: d=xa+yb$.

Wegen Lemma 13.16 finden vir $x,y \in \mathbb{R}$ nodan $d = x \cdot a + y \cdot b$ $d' \cdot x_1 = a$ $d' \cdot x_2 = b$ $\uparrow \in S$

 $d'(x,x_1 + y,x_2) = x \cdot d'(x_1 + y \cdot d'(x_2))$ $= x \cdot d'(x_1 + y \cdot d'(x_2))$ $\Rightarrow d'(x_1 + y \cdot d'(x_2))$