Cap 4-Sec 5. Determinantes e Valores próprios

Definição. Sejam V um \mathbb{R} -espaço vetorial, $T:V\to V$ uma transformação linear e seja $\lambda\in\mathbb{R}$.

- λ é dito valor próprio de T se existir um vetor $v \in V$ não nulo tal que $T(v) = \lambda v$.
- Um vetor $v \in V$ <u>não nulo</u> tal que $T(v) = \lambda v$ é dito **vetor próprio** associado ao valor próprio λ .

Nota. Se v for um vetor próprio associado ao valor próprio λ tem-se, para qualquer $\alpha \in \mathbb{R}$, $T(\alpha v) = \alpha(\lambda v) = \lambda(\alpha v)$ e

$$T(\langle v \rangle) = \begin{cases} \langle v \rangle & \text{se } \lambda \neq 0 \\ \{0_V\} & \text{se } \lambda = 0. \end{cases}$$

Exemplos.

- Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y)=(x+y,2y) e seja v=(1,1). Tem-se T(v)=2v. Logo 2 é valor próprio e v=(1,1) é um vetor próprio associado.
- Seja $T: C^{\infty}(\mathbb{R}, \mathbb{R}) \to C^{\infty}(\mathbb{R}, \mathbb{R})$ dado por T(f) = f'. Um número $\lambda \in \mathbb{R}$ é valor próprio de T sse existir uma função f não nula tal que $f' = \lambda f$, isto é, uma solução não nula da equação diferencial $y' - \lambda y = 0$. Como tal solução existe (por exemplo, $y(x) = e^{\lambda x}$), podemos dizer que todo o $\lambda \in \mathbb{R}$ é valor próprio.

Nota. O exemplo anterior mostra que uma transformação linear pode, em geral, admitir uma infinidade de valores próprios. Isto já não é verdade quando o espaço vetorial V tem dimensão finita. Recorde que, se dim V for finita e se $S:V\to V$ for uma transformação linear, tem-se

$$\dim V = \dim \operatorname{Ker}(S) + \dim \operatorname{Im}(S)$$

Em particular, nestas condições, tem-se

$$S$$
 bijetiva \Leftrightarrow S injetiva $(\Leftrightarrow \dim \operatorname{Ker}(S) = 0)$
 \Leftrightarrow S sobrejetiva $(\Leftrightarrow \dim \operatorname{Im}(S) = \dim V)$

Determinação dos valores próprios de $T: \mathbb{R}^n \to \mathbb{R}^n$ de matriz canónica A.

Proposição. Sejam $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear, A a matriz canónica de T e seja $\lambda \in \mathbb{R}$. Tem-se

 λ é valor próprio de $T \Leftrightarrow \det(A - \lambda I_n) = 0$.

Prova: λ valor próprio de T \Leftrightarrow existir $v \neq \vec{0}$ tal que $T(v) = \lambda v$ \Leftrightarrow existir $v \neq \vec{0}$ tal que $(T - \lambda \operatorname{Id})(v) = \vec{0}$ \Leftrightarrow $T - \lambda \operatorname{Id}$ não é injetiva \Leftrightarrow $T - \lambda \operatorname{Id}$ não é bijetiva \Leftrightarrow det $(A - \lambda I_n) = 0$. \square

Nota. Como $P(\lambda) = \det(A - \lambda I_n)$ é um polinómio de grau n em λ e como, por esta proposição, os valores próprios de $T : \mathbb{R}^n \to \mathbb{R}^n$ são as raizes reais deste polinómio P, vem que T tem no máximo n valores próprios.

Determinação dos vetores próprios de $T:\mathbb{R}^n\to\mathbb{R}^n$ de matriz canónica A.

Se $\lambda \in \mathbb{R}$ for um valor próprio de $T: \mathbb{R}^n \to \mathbb{R}^n$ então

 $v \in \mathbb{R}^n$ é vetor próprio associado a $\lambda \Leftrightarrow v \neq \vec{0}$ e $T(v) = \lambda v \Leftrightarrow v \neq \vec{0}$ e $Av = \lambda v$.

Escrevendo $v=(x_1,\cdots,x_n)$, os vetores próprios associados a λ são as soluções não nulas do sistema

$$A \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) = \lambda \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

Exemplo [Ficha5-Ex. 10] Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ associada à matriz A dada e determine, caso existam, os seus valores próprios e os vetores próprios associados.

$$A = \left[\begin{array}{cc} 1 & -1 \\ -4 & 1 \end{array} \right]$$

A transformação $T: \mathbb{R}^2 \to \mathbb{R}^2$ é dada por T(x,y) = (x-y, -4x+y).

Se existirem, os valores próprios de T são os $\lambda \in \mathbb{R}$ que satisfazem a equação $\det(A - \lambda I_2) = 0$. Tem-se

$$\det(A - \lambda I_2) = \begin{vmatrix} 1 - \lambda & -1 \\ -4 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4$$

Resolvendo a equação $(1 - \lambda)^2 - 4 = 0$ vem $\lambda = -1$ ou $\lambda = 3$. Assim os valores próprios de T são -1 e 3.

Vetores próprios associados ao valor próprio $\lambda = -1$: são os vetores $v = (x, y) \in \mathbb{R}^2$ não nulos tais que T(v) = -v (ou, equivalentemente os vetores não nulos de $\mathrm{Ker}(T+Id)$). Tem-se

$$\begin{cases} x - y = -x \\ -4x + y = -y \end{cases} \Leftrightarrow y = 2x$$

pelo que os vetores próprios associados ao valor próprio $\lambda=-1$ são os vetores x(1,2) com $x\neq 0$.

Vetores próprios associados ao valor próprio $\lambda=3$: são os vetores $v=(x,y)\in\mathbb{R}^2$ não nulos tais que T(v)=3v (ou, equivalentemente os vetores não nulos de $\mathrm{Ker}(T-3Id)$). Tem-se

$$\begin{cases} x - y = 3x \\ -4x + y = 3y \end{cases} \Leftrightarrow y = -2x$$

pelo que os vetores próprios associados ao valor próprio $\lambda=3$ são os vetores x(1,-2) com $x\neq 0$.

Nota. Como os 2 vetores $v_1 = (1,2)$ e $v_2 = (1,-2)$ são linearmente independentes, eles formam uma base de \mathbb{R}^2 (pois dim(\mathbb{R}^2) = 2). Temos então uma base de \mathbb{R}^2 constituída por vetores próprios de T. Seja agora um vetor $u \in \mathbb{R}^2$ qualquer. Decompondo u na base $\mathcal{B} = (v_1, v_2)$ vem

 $u = \alpha v_1 + \beta v_2$ com $\alpha, \beta \in \mathbb{R}$ o que podemos escrever $u_{\beta} = (\alpha, \beta)$

Como

$$T(u) = \alpha T(v_1) + \beta T(v_2) = -\alpha v_1 + 3\beta v_2$$

temos $(T(u))_{/\mathcal{B}} = (-\alpha, 3\beta)$ e, escrevendo em colunas,

$$(T(u))_{/\mathcal{B}} = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \cdot u_{/\mathcal{B}}$$

A matriz $\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$ (cujas colunas são as coordenadas de $T(v_1)$, $T(v_2)$ na base $\mathcal{B} = (v_1, v_2)$) é chamada matriz de T na base \mathcal{B} .