

Network regression reveals factors driving the letter correspondence of 16th century reformers

Ramona Roller

Collaborators: Prof. Frank Schweitzer

The European Reformation (1517-1648)

- Transformative movement of society in early modern Europe
 - Division of Catholic Church
 - Major changes in the socio-political system
- Letters were the main means of communication.
- Use them to study the social system in 16th century Europe

Martin Luther's posting of his 95 theses to the church in Wittenberg (1517)

The letter correspondence network of reformers

Data: 20,000 letters, 3,000 people, sending- and (receiving) dates + locations, 1510 - 1575

Network: directed multi-edge network of interactions

nodes: reformers

edges: letters

Schematic representation of a sample from the letter correspondence network

The role of geographic distance on letter correspondence

Research question

How do social relations affect the letter correspondence, i.e. the network topology?

Social relations (R) between sender and receivers to be tested:

- Geographic distance (tested): Long distances: letters are convenient but costly; Short distances: letters are inconvenient but cheap
- Reciprocity (control): Social norm of rewarding kind actions
- Religious communities (control): Support for same/different religious denominations E.g. Lutherans, Reformed, Calvinists, Baptists, etc.

Regression approach

Linear regression

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + ... + \beta_n \mathbf{x}_n + \varepsilon$
- E.g. y: number of letters per reformer, x_i : religious denomination, age, etc.
- Problem: Networks do not meet independence assumption

Network regression (Casiraghi, 2017; Casiraghi et al., 2016)

Statistical model based on generalised hypergeometric network ensembles (gHypE)

Network regression output

- Regression coefficients β_k
 - Quantify importance of relational layers
- Propensity matrix Ω
 - Odds ratio Ω_{ii}/Ω_{mn} : How much more likely are nodes i and i to be connected compared to nodes m and n?
 - $\Omega := \prod_{k=1}^K \mathsf{R}_k^{\beta_k}$ where each relational layer corresponds to one R_k

Ramona Roller

Predictor construction

Geographic distance

- **cost** (distance ↑, #letters ↓); **convenience** (distance **†**, #letters **†**)
- $R_{ii}^{(1)} = e^{dist_{ij}}, R_{ii}^{(2)} = e^{dist_{ij}^2}$
- $\Omega = R^{(1)\beta_1} * R^{(2)\beta_2}$: Covers all possible combinations of cost and convenience

Reciprocity

- $R^{(3)} = A^T$ (change statistic Snijders, 2006)
- $R_{ii}^{(3)}$: number of letters *i* would have to send to *j* in order to answer each letter of j to i

Religious communities

- Assume homophily
- Same: $R_{ii}^{(4)} = 10$, different: $R_{ii}^{(4)} = 1$ Casiraghi, 2017

Pairwise median distance [km]

- Only convenience
- Only cost
- Either cost or convenience
- Cost and convenience in balance

Results: reduced model $\Omega_{ij} = (e^{dist_{ij}})^{\beta_1} * (e^{dist_{ij}^2})^{\beta_2}$

	reduced	
Distance		
Linear distance	7.885 (0.159)***	
Quadratic distance	-17.918 (0.405)***	
AIC	43427.830	
$McFadden pseudo - R^2$	0.009	

Optimal intermediate distance: At 168km people are most likely to send letters.

Odds ratio:
$$\Omega_{168km}/\Omega_{0km} = 1.29$$
, $\Omega_{168km}/\Omega_{1000km} = 28809$

Results: full model

	reduced	full
Distance		
Linear distance	7.885 (0.159)***	$-3.354 (0.176)^{***}$
Quadratic distance	$-17.918 (0.405)^{***}$	5.032 (0.388)***
Controls		
Reciprocity		0.461 (0.004)***
Religious homophily		0.276 (0.016)***
AIC	43427.307	33989.210
$McFadden pseudo - R^2$	0.009	0.224
*** n < 0.001 ** n < 0.01 * n <	0.05	

^{***}p < 0.001, **p < 0.01, *p < 0.05

- The **full model is better** than the reduced as the smaller AIC shows.
- The **sign flip** of the distance predictors shows that the controls are essential.

Summary

- Insights on the letter correspondence network of reformers
 - People are likely to write letters if they ...
 - live close to or far away from each other
 - have high reciprocity
 - support the same religious denomination
 - Tested for possible cost-convenience relations

Take home message

Network regression: Relations explain interactions

- Benefits of network regression
 - Takes interdependence of samples into account
 - Can deal with missing data ($R_{ii} = 1 \Rightarrow \beta$ has no effect)
 - Construction of predictors is not restricted: Use any kind of quantifyable relation, test hypotheses.

Outlook

- Tailor predictor selection towards specific theories of historical research
- Include node attributes as explanatory variables

Network regression

gHypE depends on four $N \times N$ matrices

- Adjacency matrix A: given
- Combinatorial effects matrix **=**: covered by configuration model
- **Propensity matrix** Ω : to be computed from predictor matrices R's

$$oldsymbol{\Omega}\coloneqq\prod_{k=1}^K \mathsf{R}_k^{eta_k}$$

- Odds ratio Ω_{ii}/Ω_{mn} : How much more likely are nodes i and j to be connected compared to nodes m and n?
- Each **predictor matrix** R_k encodes one relational network layer
- R_{ii} can quantify the relation directly or encode some specific assumptions
- The larger R_{ii} the larger the propensity to be connected of node pair ij
- β_k are the estimated regression coefficients quantifying the importance of one layer

Collinearity causes sign flip

	Reciprocity	Religion
Distance		
Linear distance	$-3.758 (0.172)^{***}$	8.283 (0.164)***
Quadratic distance	5.584 (0.381)***	$-18.552 (0.410)^{***}$
Controls		
Reciprocity	0.457 (0.004)***	
Religious homophily		0.219 (0.016)***
AIC	34229.532	43271.460
McFadden $pseudo - R^2$	0.219	0.012

^{***}p < 0.001, **p < 0.01, *p < 0.05

- Corr(linear distance, reciprocity) = 0.265
- Corr(quadratic distance, reciprocity) = 0.268
- Corr(linear distance, religion) = -0.022
- Corr(quadratic distance, religion) = -0.021
- Corr(reciprocity, religion) = -0.002