# Novel View Synthesis with Diffusion Models

Nikita Morozov
Centre of Deep Learning and Bayesian Methods
HSE University

## Novel view synthesis

Given a number of scene views and respective camera poses, reconstruct views from new poses.



## Common approach

Take some parameterized scene representation and a differentiable rendering algorithm, then optimize using reconstruction loss.

- Volumetric representations (NeRF)
- Signed distance functions
- Point-based approaches

#### Problems:

- One model is trained per scene
- Struggle when there are only few input views

#### Pose-conditional diffusion model

Directly generate a novel view conditioned on one clean input view and the respective camera poses.



Training objective:

$$L( heta) = \mathbb{E}_{q(oldsymbol{x}_1, oldsymbol{x}_2)} \ \mathbb{E}_{\lambda, oldsymbol{\epsilon}} \ \|oldsymbol{\epsilon}_{ heta}(oldsymbol{z}_2^{(\lambda)}, oldsymbol{x}_1, \lambda, oldsymbol{p}_1, oldsymbol{p}_2) - oldsymbol{\epsilon}\|_2^2$$

## Inference stage: stochastic conditioning

At each denoising step, condition on a random view from the set of available views.



### X-UNet architecture



|             | cars     |                   |                   |  |  |  |
|-------------|----------|-------------------|-------------------|--|--|--|
|             | PSNR (↑) | SSIM $(\uparrow)$ | $FID(\downarrow)$ |  |  |  |
| Concat-UNet | 17.21    | 0.52              | 21.54             |  |  |  |
| X-UNet      | 21.01    | 0.57              | 8.99              |  |  |  |

## Comparisons



|                   | SRN cars |          |         | SRN chairs |          |         |  |
|-------------------|----------|----------|---------|------------|----------|---------|--|
|                   | PSNR (↑) | SSIM (↑) | FID (↓) | PSNR (↑)   | SSIM (↑) | FID (↓) |  |
| Geometry-aware    |          |          |         |            |          |         |  |
| SRN               | 22.25    | 0.88     | 41.21   | 22.89      | 0.89     | 26.51   |  |
| <b>PixelNeRF</b>  | 23.17    | 0.89     | 59.24   | 23.72      | 0.90     | 38.49   |  |
| <b>VisionNeRF</b> | 22.88    | 0.90     | 21.31   | 24.48      | 0.92     | 10.05   |  |
| CodeNeRF          | 23.80    | *0.91    | _       | 23.66      | *0.90    | _       |  |
| Geometry-free     |          |          |         |            |          |         |  |
| LFN               | 22.42    | *0.89    | -       | 22.26      | *0.90    | _       |  |
| ENR               | 22.26    | -        | -       | 22.83      | -        | _       |  |
| 3DiM (ours)       | 21.01    | 0.57     | 8.99    | 17.05      | 0.53     | 6.57    |  |

## 3D consistency metric

Generate a number of views using the model, then train and evaluate NeRF on the generated views. The less consistent the views are, the worse will NeRF perform.

| Training view source              | SRN cars |          |                   | SRN chairs* |          |                   |
|-----------------------------------|----------|----------|-------------------|-------------|----------|-------------------|
|                                   | PSNR (↑) | SSIM (↑) | $FID(\downarrow)$ | PSNR (↑)    | SSIM (†) | $FID(\downarrow)$ |
| Original data (3D consistent)     | 28.21    | 0.96     | 10.57             | 24.87       | 0.93     | 17.05             |
| $3DiM (\sim 1.3B params)$         | 28.48    | 0.96     | 29.55             | 22.90       | 0.86     | <b>58.61</b>      |
| $3DiM (\sim 471M \text{ params})$ | 28.53    | 0.96     | 22.09             | 18.84       | 0.79     | 98.78             |
| + no stochastic conditioning      | 25.78    | 0.94     | 30.51             | 17.61       | 0.75     | 116.16            |