No. of Printed Pages: 7

MCS-212

# MASTER OF COMPUTER

## **APPLICATIONS**

(MCA) (NEW)

## **Term-End Examination**

# December, 2021

#### MCS-212: DISCRETE MATHEMATICS

Time: 3 Hours Maximum Marks: 100

Note: Question No. 1 is compulsory and carries
40 marks. Attempt any three questions from
the rest four questions (Question Nos. 2 to 5).

- 1. (a) Make the truth table for: 5
  - (i)  $p \rightarrow q \land \sim r$
  - (ii)  $p \oplus q \land r \rightarrow p \land r$

- (b) Show that  $\sqrt{5}$  is irrational using the proof by contradiction.
- (c) If  $A = \{a, b, c\}$  and  $B = \{x, y, z\}$ , find:

2+2+1

- (i)  $A \times B$
- (ii)  $A \times A$
- (iii) А × ф
- (d) Find the regular expression for the language:

 $L = \{aa, aba, abba, abbba, \dots \}$ 

- (e) Give one difference between DeterministicFinite Automata and Non-deterministicFinite Automata.
- (f) Find the order and degree of the following recurrence relations:
  - (i)  $a_n = a_{n-1} + a_{n-2}$
  - (ii)  $a_n = \sqrt{a_{n-1}} + a_{n-2}^2$

(g) Determine the number of integer solutions of the equation;

$$(x_1 + x_2 + x_3 + x_4) = 7$$
,

where  $x_i \ge 0$  for all i = 1, 2, 3, 4.

- (h) How many three-letter words, which has vowel in the middle position, can be formed using the letter of English alphabets?
- (i) Consider graph  $G = K_4$  on four vertices a, b, c, d. Make three sub-graphs of graph G.
- (j) Show that  $C_6$  is a bipartite graph.
- (k) Does the following graph have Eulerian circuit? If yes, give the Eulerian circuit, if no, explain the reasons:



2. (a) What is a tautology? Find, if the following is a tautology:

$$[(p \to q) \land \neg q] \to \neg p$$

(b) Explain how principle of mathematical induction can be used to prove: 8

$$1^{2} + 2^{2} + 3^{2} + \dots n^{2} = \frac{n}{6}(n+1)(2n+1), \forall n \in \mathbb{N}$$

(c) Find the Boolean expression for the output of the logic circuit given below:



(d) Find, if the following Boolean expressions are equivalent over the two-element Boolean algebra  $\mathbf{B} = \{0, 1\}$ :

$$X = (a \wedge b) \vee (a \wedge c)$$
 and  $Y = a \wedge (b \vee c')$ 

3. (a) Find the power set of the set  $A = \{a, b, c, d\}$ .

- (b) If  $A = \{1, 2, 3, 4\}$  and  $B = \{2, 3, 4, 5, 6, 7\}$  and  $f : A \to B$  is f(x) = x + 1, then find the domain and range of f.
- (c) If  $f(x) = x^2$  and g(x) = x+1, then find  $f \circ g(x)$  and  $(g \circ f)(x)$ .
- (d) Explain the meaning of each symbol in the finite automata definition  $M = (Q, \Sigma, \delta, q_0, F)$ .
- (e) Consider the following finite automata:



- (i) What would be the values of Q,  $\Sigma$ ,  $\delta$ ,  $q_0$  and F for the automata given above?
  - 3
  - P. T. O.

- (ii) Give one string that will be accepted and one string that will not be accepted by this finite automata. 3
- 4. (a) If there are 7 men and 5 women, how many circular arrangements are possible in which women do not sit adjacent to each other?
  - (b) What is the probability that a number between 1 to 1,000 is divisible by neither 2, nor 3 nor 5?
  - (c) What is the meaning of 'distributions' of objects? Explain with the help of an example.
  - (d) Explain the Fibonacci numbers. Also explain the recurrence relation for Fibonacci numbers.5
- 5. (a) Define the following terms in the context of a graph, with the help of an example: 8
  - (i) Digraph
  - (ii) Complete graph of three vertices
  - (iii) Degree of a vertex
  - (iv) A regular graph

- (b) Explain the terms tree and forest in the context of graphs, with the help of an example. 5
- IGNOUASSIEMMENtGUMU.com What are Hamiltonian graphs? Explain with the help of an example.
- (d) State the travelling salesperson problem. 2