Категорические силлогизмы

- Силлогизм «подытоживание, подсчёт, умозаключение»
- Категорический потому, что речь идёт о категориях (в философском смысле).
- Определяем некоторые стандартные мыслительные блоки, с которыми у образованной аудитории есть навык работы. Цель сделать неформальный человеческий язык чуть более формальным. Где важно: научный трактат, диспут, для исключения ошибок в рассуждениях.
- Язык рассуждений понимается единым, без разделения на язык исследователя и предметный.
- Пример категорического силлогизма:

 $\frac{{\sf Kаждый \ человек \ смертен}}{{\sf Cократ \ смертен}}$

Восходят к Аристотелю и Теофрасту, активно развивались в средневековье.

Категорический силлогизм: вспомогательные определения

Категорический силллогизм соединяет три термина:

```
предикат (больший термин, P) субъект (меньший термин, S) средний термин (M).
```

На основании соотношений P и M, а также M и S строим соотношение P и S. Возможные соотношения:

A Affirmato (общеутвердительное)
affIrmato (частноутвердительное)
E nEgo (общеотрицательное)
O negO (частноотрицательное)

Матан есть раздел математики (SaP) Некоторые разделы математики сложны (SiP) Никакой человек не знает всю математику Некоторые разделы математики — не матан

Фигуры и модусы

Большая посылка:

Заключение:

Расстановка соотношений вместо «—» в фигуре — модус. Например, тут фигура 1, ааа.

Каждый	человек	смертен	Сократ	есть	человек
Сократ смертен					

Как этим пользоваться: по умозаключению на (русском) языке определяем, где в нём P,M,S и каковы между ними соотношения, находим соответствующую фигуру и модус, а дальше определяем силлогизм и его свойства в соответствии со следующими правилами.

Правильные модусы

Не все модусы осмысленны, большинство некорректно. Например фигура 1, аае:

Каждый	человек смертен	Сократ	есть	человек
Сократ не есть смертен				

Список всех правильных модусов (из них выделяют *слабые*, выводящие частное соотношение при возможности общего — указаны курсивом):

Фигура 1	Фигура 2	Фигура 3	Фигура 4
Barbara	Cesare	Darapti	Bramantip
Celarent	Camestres	Disamis	Camenes
Darii	Festino	Datisi	Dimaris
Ferio	Baroco	Felapton	Fesapo
Barbari	Cesaro	Bocardo	Fresison
Celaront	Camestros	Ferison	Camenos

Некоторые модусы требуют непустоты M: это все слабые модусы и четыре сильных (указаны серым), например Darapti:

Все единороги имеют рог	Все единороги суть лошади				
Некоторые лошади имеют рог					

Ограничения языка исчисления высказываний

Каждый человек смертен Сократ есть человек

Сократ смертен

Ограничения языка исчисления высказываний

 $\frac{{\sf Kаждый}\ {\sf человек}\ {\sf смертен}\ {\sf Сократ}\ {\sf есть}\ {\sf человек}\ {\sf Сократ}\ {\sf смертен}}$

Цель: увеличить формализованную часть метаязыка.

Ограничения языка исчисления высказываний

$$\frac{\mathsf{Kаждый}\ \mathsf{человеk}\ \mathsf{смертеh}\ \mathsf{Coкрат}\ \mathsf{eстb}\ \mathsf{человеk}}{\mathsf{Coкрат}\ \mathsf{смертeh}}$$

Цель: увеличить формализованную часть метаязыка.

Мы неформально знакомы с предикатами (P:D o V) и кванторами $(\forall x. H(x) o S(x)).$

$$\frac{\forall x. H(x) \to S(x) \qquad H(\mathsf{Cokpat})}{S(\mathsf{Cokpat})}$$

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).
- 2. Логические выражения
 - 2.1 Предикатные символы «равно» и «больше»

1. Два типа: предметные и логические выражения.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ▶ Предметные переменные: a, b, c, ..., метапеременные x, y.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f , g , \ldots

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: *a*, *b*, *c*, . . . , метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f,g,\ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ightharpoonup Предикатные выражения: $P(heta_1,\ldots, heta_n)$, метапеременная P.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .
 - lacktriangle Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: *a*, *b*, *c*, ..., метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f,g,\ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .
 - ► Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
 - ► Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращения записи, метаязык

1. Метапеременные:

- \blacktriangleright ψ , ϕ , π , ... формулы
- ► *P*, *Q*, . . . предикатные символы
- **▶** *θ*, . . . термы
- $ightharpoonup f, g, \ldots$ функциональные символы
- ▶ x, y, . . . предметные переменные

Сокращения записи, метаязык

- 1. Метапеременные:
 - \blacktriangleright ψ , ϕ , π , ... формулы
 - **▶** *P*, *Q*, . . . предикатные символы
 - **▶** *θ*, . . . термы
 - $ightharpoonup f, g, \ldots$ функциональные символы
 - ightharpoonup x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \ A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

Сокращения записи, метаязык

- 1. Метапеременные:
 - \blacktriangleright ψ , ϕ , π , ...— формулы
 - ▶ P, Q, . . . предикатные символы
 - **▶** *θ*, . . . термы
 - ightharpoonup f, g, ... функциональные символы
 - \triangleright x, y, . . . предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
 - $ightharpoonup (heta_1 = heta_2)$ вместо $E(heta_1, heta_2)$
 - $(\theta_1 + \theta_2) \text{ вместо } p(\theta_1, \theta_2)$
 - ▶ 0 вместо z

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(s(x), z) \lor G(p(q(s(x)), o), o)$$

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(s(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(s(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(s(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(s(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;
 - 2.2 функциональные символы (в том числе константы = нульместные функциональные символы)

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

1. $D \neq \varnothing$ — предметное множество;

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. $D \neq \varnothing$ предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. $D \neq \emptyset$ предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}:D^n\to V$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. $D \neq \emptyset$ предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{\mathcal{U}, \mathcal{J}\}$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. $D \neq \varnothing$ предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{\mathcal{U}, \mathcal{J}\}$$

4. Е — оценка для предметных переменных.

$$E(x) \in D$$

$$\llbracket \phi \rrbracket \in V, \quad \llbracket Q(x, f(x)) \vee R \rrbracket^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

1. Правила для связок \lor , &, \neg , \to остаются прежние;

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \lor , &, \lnot , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \lor , &, \neg , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=V} = V$$

- 1. Правила для связок \lor , &, \lnot , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 4.

$$\llbracket \forall x. \phi
rbracket = egin{cases} \mathsf{И}, & \mathsf{если} \ \llbracket \phi
rbracket ^{x:=t} = \mathsf{И} \ \mathsf{при} \ \mathsf{всеx} \ t \in D \\ \mathsf{Л}, & \mathsf{если} \ \mathsf{найдётся} \ t \in D, \ \mathsf{что} \ \llbracket \phi
rbracket ^{x:=t} = \mathsf{Л} \end{cases}$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{M}} = \mathsf{M}$$

- 1. Правила для связок \lor , &, \lnot , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 4.

$$\llbracket \forall x.\phi
rbracket = egin{cases} \mathsf{N}, & \mathsf{если} \ \llbracket \phi
rbracket ^{x:=t} = \mathsf{N} \ \mathsf{при} \ \mathsf{всеx} \ t \in D \\ \mathsf{Л}, & \mathsf{если} \ \mathsf{найдётся} \ t \in D, \ \mathsf{что} \ \llbracket \phi
rbracket ^{x:=t} = \mathsf{Л} \end{cases}$$

Оценим:

 $\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- $ightharpoonup F_1 := 1$, $F_{(+)}$ сложение в \mathbb{N} ;
- $ightharpoonup P_{(=)}$ равенство в \mathbb{N} .

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- ▶ $F_1 := 1$, $F_{(+)}$ сложение в \mathbb{N} ;
- ▶ $P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

$$[a+1=b]^{b:=a}=J$$

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

$$ightharpoonup D := \mathbb{N};$$

▶
$$F_1 := 1$$
, $F_{(+)}$ — сложение в \mathbb{N} ;

▶
$$P_{(=)}$$
 – равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

$$\llbracket a+1=b \rrbracket^{b:=a}= Л$$

поэтому при любом $a \in \mathbb{N}$:

$$\llbracket\exists b. \neg a + 1 = b \rrbracket = \mathsf{V}$$

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

$$ightharpoonup D := \mathbb{N};$$

$$ightharpoonup F_1 := 1, F_{(+)}$$
 — сложение в \mathbb{N} ;

▶
$$P_{(=)}$$
 – равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

$$[\![a+1=b]\!]^{b:=a}=J$$

поэтому при любом $a \in \mathbb{N}$:

$$\llbracket\exists b. \lnot a+1=b
\rrbracket=\mathsf{M}$$

Итого:

$$\llbracket orall a. \exists b. \neg a + 1 = b \rrbracket = \mathsf{V}$$

 $\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

- $ightharpoonup D := \{\Box\};$
- $ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$
- $P_{(=)}(a,b) := V$.

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

▶
$$D := \{ \Box \};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a:=\Box,b:=\Box}=V$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

▶
$$D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a\in D,b\in D}=V$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

$$\triangleright$$
 $D := {\square};$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a\in D,b\in D}=V$$

Итого:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket = \mathsf{J}$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \varsigma$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \phi$$

То есть истинна при любых D, F, P и E.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket = \mathcal{U}$$

Доказательство.

Фиксируем D, F, P, E.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket = \mathcal{U}$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket = \mathcal{U}$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket = \mathcal{U}$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- lacktriangle Если $t=m{\mathsf{U}}$, то $[\![Q(f(x))]\!]^{Q(f(x)):=t}=m{\mathsf{U}}$, потому $[\![Q(f(x))\lor
 eg Q(f(x))]\!]^{Q(f(x)):=t}=m{\mathsf{U}}$
- lacktriangle Если $t= \Pi$, то $[\![\neg Q(f(x))]\!]^{Q(f(x)):=t} = \mathbb{N}$, потому всё равно $[\![Q(f(x)) \lor \neg Q(f(x))]\!]^{Q(f(x)):=t} = \mathbb{N}$

Свободные вхождения

Определение

Bхождение подформулы в формулу — это позиция первого символа этой подформулы в формуле.

Вхождения
$$x$$
 в формулу: $(\forall x.A(x) \lor \exists x.B(x)) \lor C(x)$

Определение

Рассмотрим формулу $\forall x.\psi$ (или $\exists x.\psi$). Здесь переменная x связана в ψ . Все вхождения переменной x в ψ — связанные.

Определение

Вхождение x в ψ свободное, если не находится в области действия никакого квантора по x. Переменная входит свободно в ψ , если имеет хотя бы одно свободное вхождение. $FV(\psi), FV(\Gamma)$ — множества свободных переменных в ψ , в Γ

Пример

$$\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$$

Подстановка, свобода для подстановки

$$\psi[\mathbf{x} := \theta] := \begin{cases} \psi, & \psi \equiv \mathbf{y}, \mathbf{y} \not\equiv \mathbf{x} \\ \psi, & \psi \equiv \forall \mathbf{x}. \pi \text{ или } \psi \equiv \exists \mathbf{x}. \pi \\ \pi[\mathbf{x} := \theta] \star \rho[\mathbf{x} := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv \mathbf{x} \\ \forall \mathbf{y}. \pi[\mathbf{x} := \theta], & \psi \equiv \forall \mathbf{y}. \pi \text{ и } \mathbf{y} \not\equiv \mathbf{x} \\ \exists \mathbf{y}. \pi[\mathbf{x} := \theta], & \psi \equiv \exists \mathbf{y}. \pi \text{ и } \mathbf{y} \not\equiv \mathbf{x} \end{cases}$$

Определение

Терм θ свободен для подстановки вместо x в ψ ($\psi[x:=\theta]$), если ни одно свободное вхождение переменных в θ не станет связанным после подстановки.

Свобода есть	Свободы нет
$(\forall x. P(y))[y := z]$	$(\forall x. P(y))[y := x]$
$(\forall y. \forall x. P(x))[x := y]$	$(\forall y. \forall x. P(t))[t := y]$

Теория доказательств

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

- 11. $(\forall x.\varphi) \rightarrow \varphi[x := \theta]$
- 12. $\varphi[x := \theta] \to \exists x. \varphi$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\dfrac{arphi o \psi}{arphi o orall x. \psi}$$
 Правило для $orall$ $\dfrac{\psi o arphi}{(\exists x. \psi) o arphi}$ Правило для \exists

Определение

Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

▶ Рассмотрим формулу $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$

- lackbox Рассмотрим формулу $(\forall x.\exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- ▶ Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

- lackbox Рассмотрим формулу $(\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

▶ Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

- ▶ Рассмотрим формулу $(\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- **С**оответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{N}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{J}$

- lackbox Рассмотрим формулу $(\forall x.\exists y. \neg x=y) \rightarrow ((\exists y. \neg x=y)[x:=y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{M}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{M}$

$$\blacktriangleright \not\models (\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $lpha o \delta_{\it n}$, если предыдущие уже обоснованы.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $lpha o \delta_n$, если предыдущие уже обоснованы.

Два новых похожих случая: правила для \forall и \exists . Рассмотрим \forall .

Доказываем (n) $\alpha \to \psi \to \forall x. \varphi$ (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

$$(\Rightarrow)$$
 — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_n$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀.

Доказываем (n)
$$\alpha \to \psi \to \forall x. \varphi$$
 (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(\alpha\to\psi\to\varphi)\to(\alpha\&\psi)\to\varphi$ Т. о полноте КИВ $(n-0.6)$ $(\alpha\&\psi)\to\varphi$ М.Р. $k,n-0.8$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

$$(⇒)$$
 — как в КИВ $(⇐)$ — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_n$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀.

Доказываем (n)
$$\alpha \to \psi \to \forall x. \varphi$$
 (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(lpha o\psi oarphi) o(lpha\&\psi) oarphi$ Т. о полноте КИВ

$$(n-0.6)$$
 $(\alpha \& \psi) \rightarrow \varphi$ M.P. $k,n-0.8$

$$(n-0.4)$$
 $(\alpha \& \psi) \to \forall x. \varphi$ Правило для $\forall, \ n-0.6$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

Следование

Определение

$$\gamma_1,\gamma_2,\ldots,\gamma_n\models lpha$$
, если $lpha$ выполнено всегда, когда выполнено $\gamma_1,\gamma_2,\ldots,\gamma_n.$

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ . Легко показать, что $P(x) \vdash \forall x. P(x)$.

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Легко показать, что $P(x) \vdash \forall x. P(x)$.

$$(6) \quad \forall x. P(x) \qquad \qquad M.P. 5, 4$$

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Г.

Легко показать, что $P(x) \vdash \forall x. P(x)$.

(2)
$$P(x) \rightarrow (A \rightarrow A \rightarrow A) \rightarrow P(x)$$
 Cx. akc. 1

(3)
$$(A \to A \to A) \to P(x)$$
 M.P. 1, 2

$$(4) \quad (A o A o A) o orall x. P(x)$$
 Правило для $orall$, 3

(5)
$$(A \rightarrow A \rightarrow A)$$
 Cx. arc. 1
(6) $\forall x P(x)$ MP 5.4

(6)
$$\forall x.P(x)$$
 M.P. 5, 4

Пусть
$$D=\mathbb{Z}$$
 и $P(x)=x>0$. Тогда не будет выполнено $P(x)\models \forall x.P(x)$.

Корректность

Теорема

Если heta свободен для подстановки вместо x в arphi, то $[\![arphi]\!]^{x:=[\![heta]\!]}=[\![arphi[\![x:= heta]\!]]$

Доказательство (индукция по структуре φ).

- ightharpoonup База: arphi не имеет кванторов. Очевидно.
- lacktriangle Переход: пусть справедливо для ψ . Покажем для $\varphi = \forall y.\psi.$
 - lacktriangledown x=y либо $x
 otin FV(\psi)$. Тогда: $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]}=[\![\forall y.\psi]\!]=[\![(\forall y.\psi)[\![x:=\theta]]\!]$
 - ▶ $x \neq y$. Тогда: $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]} = [\![\psi]\!]^{y\in D,x:=[\![\theta]\!]} = \dots$ Свобода для подстановки: $y \notin \theta$.

$$\cdots = \llbracket \psi \rrbracket^{\times := \llbracket \theta \rrbracket ; y \in D} = \cdots$$

Индукционное предположение.

$$\cdots = \llbracket \psi[\mathsf{x} := \theta] \rrbracket^{\mathsf{y} \in D} = \llbracket \forall \mathsf{y}. (\psi[\mathsf{x} := \theta]) \rrbracket = \cdots$$

Ho $\forall y.(\psi[x:=\theta]) \equiv (\forall y.\psi)[x:=\theta]$ (как текст). Отсюда:

$$\cdots = \llbracket (\forall y.\psi)[x := \theta] \rrbracket$$

Корректность

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из $FV(\Gamma)$, то $\Gamma \models \alpha$

Доказательство.

Фиксируем D, F, P. Индукция по длине доказательства α : при любом E выполнено $\Gamma \models \alpha$ при длине доказательства n, покажем для n+1.

- ▶ Схемы аксиом (1)..(10), правило М.Р.: аналогично И.В.
- lacktriangle Схемы (11) и (12), например, схема $(\forall x. arphi)
 ightarrow arphi[x:= heta]$:

$$\llbracket (\forall x.\varphi) \to \varphi[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi)[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi \rrbracket^{x := \llbracket \theta \rrbracket} = \mathsf{M}$$

▶ Правила для кванторов: например, введение \forall : Пусть $\llbracket \psi \to \varphi \rrbracket = \mathsf{И}$. Причём $x \notin FV(\Gamma)$ и $x \notin FV(\psi)$. То есть, при любом x выполнено $\llbracket \psi \to \varphi \rrbracket^{x:=x} = \mathsf{И}$. Тогда $\llbracket \psi \to (\forall x.\varphi) \rrbracket = \mathsf{И}$.