Лекция № 18 (5 мая 2022*)

5.4. Частотные критерии устойчивости.

Частотные критерии устойчивости позволяют судить об устойчивости систем по виду их *частотных характеристик*. Эти критерии являются графоаналитическими и имеют простую геометрическую интерпретацию, поэтому широко используются на практике. Причем на порядок системы не накладывается ограничений, если исследование проводится с помощью программных средств. Например, таких как MATLAB или Mathcad.

Частотные критерии *получаются из* известного в теории функций комплексного переменного *принципа аргумента*. Рассмотрим этот принцип.

5.4.1. Принцип аргумента.

Пусть имеется полином n-ой степени (функция комплексного переменного $p=j\omega$)

$$A(p) = a_0 p^n + \dots + a_n$$

Вопрос: чему равно приращение аргумента данного полинома $\Delta arg A(p)|_{p=j\omega}$ при $0 \stackrel{\circ}{\to} + \infty$?

По следствию из теоремы Безу A(p) можно представить в виде:

$$A(p)=a_0(p-p_1)(p-p_2)\cdot\cdots\cdot(p-p_n)\;,$$
 где $p_i=\alpha_i+j\beta_i\;,\;i=\overline{1,n}\,,$ – корни уравнения $A(p)=0.$

Положим $p = i\omega$, тогда

$$A(j\omega) = a_0(j\omega - p_1)(j\omega - p_2) \cdot \cdots \cdot (j\omega - p_n)$$
 – комплексное число (вектор)

На комплексной плоскости Р каждый корень p_i может быть представлен вектором, проведенным из начала координат к точке p_i :

длина вектора равна $|p_i|$, а угол, образованный вектором с положительным направлением действительной оси, — аргументу (или фазе) p_i .

Величина $(j\omega-p_i)$ геометрически изображается вектором, проведенным из точки p_i в точку $p=j\omega$ на мнимой оси:

Найдем аргумент комплексного числа (вектора) $A(j\omega)$:

 $^{^*}$ На второй половине лекции – контрольная работа № 2.

$$argA(j\omega) = \sum_{i=1}^{n} arg(j\omega - p_i)$$

При изменении частоты от 0 до $+\infty$ изменение (приращение) аргумента $A(j\omega)$ равно:

$$\Delta \underset{0 \to +\infty}{arg} A(j\omega) = \sum_{i=1}^{n} \Delta \underset{0 \to +\infty}{arg} (j\omega - p_i)$$

(= сумме приращений аргументов векторов $(j\omega-p_i)$)

 $\Delta arg(j\omega-p_i)$ зависит от того, в какой полуплоскости лежит корень p_i (справа или слева $0 \to +\infty$ от мнимой оси):

- если корень лежит в левой полуплоскости, то при изменении ω от $-\infty$ до $+\infty$ конец вектора $(j\omega-p_i)$ повернется на угол π против часовой стрелки (положительное направление вращения);
- если корень p_i лежит в правой полуплоскости соответственно на угол π :

То есть

$$\Delta \underset{-\infty}{\text{arg}} (j\omega - p_i) = \left\{ egin{array}{ll} \pi, & \textit{если Re } p_i < 0 \ -\pi, & \textit{если Re } p_i > 0 \end{array}
ight.$$

Очевидно, что при изменении частоты от 0 до $+\infty$ изменение аргумента вектора $(j\omega-p_i)$ будет вдвое меньше:

т.е. «в среднем» у каждого корня $\Delta \underset{0 \to +\infty}{arg} = \frac{\pi}{2}$)

Предположим, что полином A(p) имеет k правых корней p_i и (n-k) левых корней. Тогда приращение аргумента:

$$\underset{0 \to +\infty}{\Delta arg} A(j\omega) = k \cdot \left(-\frac{\pi}{2}\right) + (n-k) \cdot \frac{\pi}{2} = (n-2k) \frac{\pi}{2}$$
 (*)

Выражение (*) и представляет собой математическую формулировку <u>принципа аргумента</u> (– чему равно приращение аргумента полинома $A(p)|_{p=i\omega}$ при изменении ω от 0 до $+\infty$).

5.4.2. Критерий Михайлова.

<u>Критерий</u> устойчивости <u>Михайлова А.В.</u> является <u>геометрической интерпретацией</u> <u>принципа аргумента</u> и позволяет судить об устойчивости системы по виду некоторой кривой называемой <u>годографом Михайлова</u> (кривой Михайлова).

Пусть характеристическое уравнение рассматриваемой САУ имеет вид:

$$A(p) = a_0 p^n + \dots + a_n = 0$$
 (и пусть XУ приведено к виду с $a_0 > 0$)

$$A(j\omega) = A(p)|_{p=j\omega}$$
 – характеристический вектор.

При изменении частоты ω от 0 до $+\infty$ конец вектора $A(j\omega)$ описывает некоторую кривую на комплексной плоскости, называется годографом Михайлова.

Например:

Критерий Михайлова (1938):

Для того чтобы система с характеристическим уравнением A(p)=0 была устойчива, необходимо и достаточно, чтобы годограф Михайлова, начинаясь при $\omega=0$ на вещественной положительной полуоси $(\to a_n>0)$, с ростом ω от 0 до $+\infty$ последовательно прошел в положительном направлении (против часовой стрелки) п квадрантов, где n —порядок характеристического уравнения системы.

Док-во:

- 1) Годографы Михайлова устойчивых систем начинаются на вещественной положительной полуоси, т.к. при $a_0 > 0$ все коэффициенты характеристического уравнения положительны, $\rightarrow A(j\omega)|_{\omega=0} = a_n > 0$.
- 2) Для устойчивости системы с характеристическим уравнением A(p) = 0 необходимо и достаточно, чтобы все корни характеристического уравнения были левыми, \rightarrow должно

2а)
$$\Delta \underset{0 \to +\infty}{\text{аrg}} A(j\omega) = \left(n - \underbrace{2k}_{=0}\right) \frac{\pi}{2} = n \cdot \frac{\pi}{2}$$
 (прошел один квадрант ~ $\arg A(j\omega)$ получил приращение $\frac{\pi}{2}$)

2б) $A(j\omega) \neq 0$ ни при каких ω (так как для устойчивости линейной системы необх. и дост., чтобы корни XУ были левыми, иначе говоря, среди них не должно быть корней на мнимой оси, обращающих $A(j\omega)$ в нуль,

комплексный полином (
$$A(j\omega) = a_0(j\omega - p_1) \cdot ... \cdot (j\omega - p_n)$$
)

3) У устойчивых систем, описываемых ОДУ с постоянными коэффициентами, $\underline{argA(j\omega)}$ с ростом ω должен возрастать монотонно, \rightarrow вектор $A(j\omega)$ поворачивается только в положительном направлении (и не меняет направления).

Пример 1. Годографы Михайлова устойчивых систем при различных значениях n (n – порядок системы):

- при ω → ∞ годограф Михайлова уходит в бесконечность (в n-м квадрате для устойчивых систем)

Пример 2. Устойчивы ли данные системы, если их годографы Михайлова имеют вид:

- <u>а)</u> нарушена последовательность прохождения квадрантов \rightarrow <u>САУ не</u>устойчива
- б) n=3, а кривая Михайлова находится вся в одном квадранте → CAУ неустойчива
- в) годограф Михайлова начинаться на вещественной отрицательной полуоси
- → САУ неустойчива

г) система находится на границе апериодической устойчивости

(небольшая деформация годографа Михайлова делает систему устойчивой – пунктирная линия)

д) система находится на границе колебательной устойчивости