Bargaining with Mechanisms

Marcin Pęski

University of Toronto

May 19, 2022

Introduction

- Sophisticated offers in real world
 - menus,
 - menus of menus ("I divide, you choose"),
 - deadlines or delays,
 - negotiation chapters,
 - propose arbitration (example: trial by gods), propose a change to bargaining protocols, etc.

Introduction

- Model of bargaining, where players offer mechanisms to find a resolution.
- Why mechanisms help?
 - screening: which type of the opponent wants what?
 - signaling: how to protect oneself from revealing information?
 - "belief threats": can opponent's adversarial beliefs be tested?

Environment

- Alice (informed) and Bob (uninformed):
 - ▶ Bob's beliefs F about Alice's preferences $u \in [0, 1]$,
 - ▶ Bob's preferences $v \in [0,1]$ are known.
- Single good + transfers,
 - ▶ Alice's utility: qu + t
 - ▶ Bob's utility (1-q)v-t
- Bargaining game
 - multiple rounds until offer is accepted, discounting $\delta < 1$,
 - random proposer: Alice is a proposer with i.i.d. probability $\beta=\beta_A$ and Bob with prob. $1-\beta=\beta_B$,
 - both sides make offers,
 - ★ includes single-proposer games $\beta \in \{0,1\}$.

Mechanisms as offers

- Each offer is a *mechanism*: a finite-horizon extensive-form game.
 - $\qquad \qquad \mathbf{m} = \left(\left(S_A^t, S_B^t \right)_{t \le T}, \chi \right)$
 - allocation: $\chi:\prod_{i,t} S_{i,t} \to X$,
 - ▶ $T < \infty$ and S_i^t compact.
 - examples: single-offers, menu, menu of menus
- When an offer is accepted, mechanism is implemented, and the game ends.
- ullet Main result hold as long as ${\mathcal M}$ contains menus and menus of menus.

Equilibrium

- Perfect Bayesian Equilibrium,
 - existence is an issue,
 - lacktriangle we show the existence if ${\mathcal M}$ is "compact",
 - ▶ menus + menus of menus is "compact".

Commitment

- Coasian bargaining and dynamic mechanism design without commitment: Skreta (06), Liu et al (19), Doval, Skreta (21),
 - only uninformed party makes offers.
- As in that literature,
 - players cannot unilaterally commit to future offers,
 - players are committed to an offer for the period in which the offer is made,
 - once the offer is accepted, it must be implemented.
- But, mechanisms may generate ex post inefficient allocation,
 - players have also access to a large(-r) space of mechanisms,
 - applications: bargaining over protocol, bargaining without common knowledge of surplus

Complete information

- Complete information bargaining: Alice u, and Bob v (fixed).
- Surplus max (u, v).
- Both players split the surplus, and receive

$$(\beta \max(u,v),(1-\beta)\max(u,v))$$

- the player with higher utility gets the good and pays out a fraction of its value in the form of a transfer.
- This is not incentive compatible if Alice's utility u > v.

Optimal mechanisms

- Alice's optimal (ICR) mechanism:
 - own the good and offer it for sale at price v,
 - payoffs

$$(\max(u,v),0)$$

- Bob's optimal mechanism:
 - own the good and offer it for sale at price $p^* \in \arg\max vF(p) + p(1 F(p))$
 - payoffs

$$\left(\max\left(u-p^*,0\right), vF\left(p^*\right)+p^*\left(1-F\left(p^*\right)\right)\right).$$

Assume for simplicity that p* is unique.

Theorem

Suppose $\mathcal M$ contains all menus and menus of menus. Then, in the unique equilibrium, the expected payoffs are as if with prob β_i , player i=A,B implements their optimal mechanism.

- ullet eta-random property ("usage" + "sell") right,
- "Incentive-efficient", but not ex post efficient,
- Bob's payoffs are continuous and convex in F,
- Bob's constrained commitment.

Equilibrium

• For each α , let m_{α}^* be the best mechanism for Bob st. Alice receives her complete info payoffs

$$y(u) \ge \alpha \max(u, v) =: y_{\alpha}(u)$$

- ullet Implementation: lpha-random property rights, or
- 3-element Alice's menu Y_{α,p^*} :
 - ▶ Bob gets the good and Alice receives transfer αv ,
 - Alice gets the good with prob. α ,
 - Alice gets the good, and pays $(1 \alpha) p^*$,
- payoffs are affine in α ,

Alice payoffs:
$$y_{\alpha}^*(u) := \alpha \max(u, v) + (1 - \alpha) \max(u - p^*, 0)$$

Bob payoffs: $\Pi_{\alpha}^*(F) := (1 - \alpha) [vF(p^*) + p^*(1 - F(p^*))]$,

Equilibrium

ullet In equilibrium, if player i is chosen a proposer, they offer $m_{lpha_i}^*$, where

$$\alpha_A = 1 - \delta (1 - \beta)$$
 and $\alpha_B = \delta \beta$.

- the average payoff is as if m_{β}^* was implemented,
- lacktriangle Bob is indifferent between accepting Alice's offer and waiting for m_eta^* ,
- Alice is either indifferent or strictly prefers to accept Bob's offer than to wait for m_{β}^* .

Payoff bounds

- These are the only equilibrium payoffs.
- If Bob's payoff is lower, he has a profitable deviation in the form of menu Y_{α,p^*} :
 - helps with screening and signaling
- If Alice's payoff is too low, she has a profitable deviation in the form of a menu of menus:

$$\left\{ Y_{\alpha,p}:p\in\left[0,1\right]\right\} ,$$

helps with "belief threats".

- Neutral solution
- Coasian bargaining
- Renegotiation
- Other bargaining environments
- Two-sided incomplete information

Neutral solution

- Axiomatic bargainin: Harsanyi and Selten (72), Myerson (84)
 - incentive compatible mechanisms,
- (Myerson 84) neutral solution as a minimal set of incentive compatible outcomes that satisfies three axioms
 - probability invariance
 - extension axiom,
 - random-dictatorship (with simple bargaining problems .
- In practice, equal sharing of virtual valuations.

Neutral solution

• Here: assume that $\beta = 1/2$.

Theorem

Suppose that

$$(u-v) f(u) - (1-F(u))$$

is strictly increasing in u. Then, equal likelihood of "property rights" mechanism is the unique neutral solution.

Coasian bargaining

- When $\beta=0$, Bob is the single proposer, the unique PBE is that Bob proposes optimal selling mechanism: sell at price $p^*>v$, which is accepted.
 - ▶ that's unlike Coasian bargaining, where Bob would sell at *v*:
 - in the Coasian bargaining, if offer is rejected, Bob cannot stop himself from learning that it is rejected,
 - here, rejection does not reveal any information,
- The ability of players to commit to the mechanism once accepted is important, but not crucial - renegotiation!

Two-sided incomplete information

- Two-sided incomplete information with binary, identical types (but different beliefs).
- Two types $u_l < u_h$ for each player,
 - ▶ beliefs $F_i \in \Delta \{u_I, u_h\}$,
- $\beta_A + \beta_B = 1$ proposer probabilities:
- β -random property right mechanism: with prob. β_i , player i gets the good and may offer to sell it at price $p = u_h$.
 - this mechanism is ex post efficient.

Two-sided incomplete information

Theorem

Suppose $\mathcal M$ contains all α -random property rights mechanisms for all $\alpha \in [0,1]$. Then, in the unique equilibrium, the expected payoffs are as if β -random property rights mechanism is implemented.

Conclusion

- A model of bargaining with incomplete information and mechanisms as offers
- Main result: unique and continuous equilibrium outcome
 - role of mechanisms in bargaining,
- Proof of a concept that bargaining with mechanisms is possible and useful,
 - relation to axiomatic theory,
 - other environments,
 - two-sided incomplete information,