Amstrong's Axioms

Amstrong's Axioms

- 1.Reflexivity if Y⊆X then X→Y
- 2. Augmentation if $X \rightarrow Y$ then $XZ \rightarrow Y$ and $/or XZ \rightarrow YZ$
- 3. Transitivity if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
- 4.Psuedo transitivity if $X \rightarrow Y$ and $YW \rightarrow Z$ then $XW \rightarrow Z$
- 5.Union $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
- 6.Decomposition If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

1.Reflexivity if Y⊆X then X→Y

1.Since $A \subseteq AB$, $AB \rightarrow A$

2.Since B \subseteq AB then AB \rightarrow B

A	В	C	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b2	c3	d2	e3
a3	b3	c4	d2	e4
a4	b4	c5	d4	e5

3.Since $AB \subseteq AB$, Then $AB \rightarrow AB$

2. Augmentation if $X \rightarrow Y$ then $XZ \rightarrow Y$ and $/or XZ \rightarrow YZ$

1.IF $C \rightarrow A$ THEN $CB \rightarrow A$ AND $CB \rightarrow AB$

A	В	C	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b2	c3	d2	e3
a3	b3	c4	d2	e4
a4	b4	c5	d4	e5

4. Psuedo transitivity if $X \rightarrow Y$ and $YW \rightarrow Z$ then $XW \rightarrow Z$

If $C \rightarrow B$ AND $BA \rightarrow D$ then $CA \rightarrow D$

A	В	C	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b2	c3	d2	e3
a3	b3	c4	d2	e4
a4	b4	c5	d4	e5

5.Union X→Y and X→Z then X→YZ

1.iF C→A AND C→B THEN

 $C \rightarrow AB$

A	В	C	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b2	c3	d2	e3
a3	b3	c4	d2	e4
a4	b4	c5	d4	e5

6.Decomposition If

 $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

1.iF C→DE then C→D As well as C→E

A	В	C	D	E
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a1	b2	c3	d2	e3
a3	b3	c4	d2	e4
a4	b4	c5	d4	e5

Exercises on Inference rules (Amstrongs axioms)

• Q1. Given the set $F=\{A \rightarrow B, C \rightarrow X, BX \rightarrow Z\}$ Derive $AC \rightarrow Z$

Exercises on Inference rules (Amstrongs axioms)

• Q1. Given the set $F=\{A \rightarrow B, C \rightarrow X, BX \rightarrow Z\}$ Derive $AC \rightarrow Z$

```
Answer
```

```
A \rightarrow B \qquad (1)
BX \rightarrow Z \qquad (2)
```

- $AX \rightarrow Z$ (3) (psuedotransitivity rule (1) and (2))
- \bullet C \rightarrow X (4)

 $AX \rightarrow Z$ (5) psuedotransitivity rule (3) and (4))

 $CA \rightarrow Z$ (6

 $CA \rightarrow Z$ means $AC \rightarrow Z$

Q2.F= $\{A \rightarrow B, C \rightarrow D\}$ With C $\subseteq B$, Derive $A \rightarrow D$

- $\bullet A \rightarrow B \qquad (1)$
- $B \rightarrow C$ (2) (GIVEN
- $A \rightarrow C$ (3) (TRANSITIVITY (1) AND (2))
- $\bullet \underline{C \rightarrow D} \qquad (4)$
- A→D (5) (TRANSITIVITY (3) AND (4))

Redundant FDs

- Given a set F of functional dependencies, A→B of F is said to be redundant with respect to the FDs of F iff A→B can be derived from set of FDs F-{A→B}
- A→B can be derived from set of functional dependencies not including A→B

Given a set $F=\{X \rightarrow YW, XW \rightarrow Z, Z \rightarrow Y, XY \rightarrow Z\}$. Determine if the functional dependencies $XY \rightarrow Z$ is redundant in F?

- Step 1:Remove XY→Z from F
- New F₁= $\{X \rightarrow YW, XW \rightarrow Z, Z \rightarrow Y\}$
- Step 2, Using F₁, derive XY→Z
- $\bullet X \rightarrow YW \qquad (1)$
- $XW \rightarrow Z$ (2)
- \bullet Z \rightarrow Y (3)
- By Applying decomposition rule on (1) we get
- $X \rightarrow Y(4)$
- $X \rightarrow W(5)$

- $X \rightarrow W(5)$
- $XW \rightarrow Z$ (2)
- XX→Z(Psuedotransitivity (5) and (2))
- $\bullet X \rightarrow Z \qquad (6)$
- XY→Z (augmentation rule on (6))