ACH2053 - Introdução à Estatística Lista de Exercícios 05

1 Intervalos de credibilidade & Testes de hipótese

Suponha que n variáveis aleatórias X_1, \ldots, X_n sejam independentes e identicamente distribuídas, seguindo uma distribuição normal de valor esperado θ (desconhecido) e variância σ^2 conhecida. Uma pesquisadora, com base em suas experiências passadas, propôe uma distribuição normal $N(\mu_0, \sigma_0^2)$ para a distribuição a priori de θ . O objeto de investigação aqui é a altura de crianças de uma dada turma; adota-se, a partir de informações de estudos similares, que $\sigma^2 = 4^2 \text{cm}^2$. Ademais, após a coleta de n = 20 dados, constatou-se que a altura média amostral era de $\overline{x}_n = 155 \text{cm}$. Por fim, na proposta da pesquisadora para a distribuição de θ , ela tomou $\mu_0 = 150 \text{cm}$ e $\sigma_0^2 = 5^2 \text{cm}^2$.

1)	Determinar	o	intervalo	${\rm de}$	confiança	com	nível	de	confiança	a	95%
----	------------	---	-----------	------------	-----------	-----	-------	----	-----------	---	-----

(153.25, 156.75) (cm).

2) Determinar o intervalo de credibilidade a 95% <u>antes</u> de realizar as medições; escolher este intervalo de sorte que sua amplitude seja a menor possível.

(140.2, 159.8) (cm)

3) Determinar o intervalo de credibilidade a 95% <u>após</u> realizar as medições; escolher este intervalo de sorte que sua amplitude seja a menor possível.

(153.96, 155.73) (cm)

4) Determinar o intervalo de credibilidade a 95% após realizar as medições; escolher este intervalo de sorte que seu menor valor seja 152.00cm.

(152.00, 156.30) (cm)

Deseja-se investigar se um paciente é portador de uma determinada doença. Defina as hipóteses

 $\left\{ \begin{array}{ll} H_1 & : & \text{Paciente com a doença} \\ H_2 & : & \text{Paciente sem a doença} \end{array} \right. ,$

sendo que a prevalência desta doença na sociedade é estimada (segundo estudos anteriores) como sendo 0.1%. O paciente em questão submeteu-se a um teste e o resultado foi positivo. Sabe-se que os falsos positivos e falsos negativos ocorrem, respectivamente, com probabilidades 0.5% e 0.2%.

5) Determinar a chance a priori e decidir, com base nesta grandeza, a hipótese a ser rejeitada.

 $O(H_2, H_1)$ = 999; rejeição de H

6) Determinar a chance a posteriori.

 $O(H_2, H_1|x) = 5.01...$

7) Determinar o fator de Bayes B_{12} e decidir, com base nesta grandeza, a hipótese a ser rejeitada.

 B_{12} = 199.6; rejeição de ${\cal H}_2.$

Uma investigação aponta um suspeito como sendo culpado por um crime. Defina as seguintes hipóteses:

 $\begin{cases} H_1 &: \text{ Suspeito inocente} \\ H_2 &: \text{ Suspeito culpado} \end{cases}$

De acordo com o histórico do suspeito, estima-se que a probabilidade deste ser inocente é de p_0 . Contudo, com o desenvolvimento das investigações, novas evidências foram coletadas e, com base nelas, a probabilidade do suspeito ser inocente foi alterada para p_1 .

8) Determinar o fator de Bayes B_{12} .

 $B_{12} = \frac{1-p_0}{1-p_1} \frac{p_1}{p_0}$

9) Se o juiz decidir pela inocência se $B_{21} < 3$, indicar como se relacionam as probabilidades a priori e a posteriori.

 $p_1>\tfrac{p_0}{3-2p_0}$

A duração média de uma bateria de uma dada marca está em análise. Com base em estudos de baterias de outras marcas, assumiu-se que a vida média destas baterias segue uma distribuição normal/gaussiana com desvio padrão de 4.0 meses e valor esperado θ (meses). Uma técnica propõe que θ obedeça a uma distribuição normal $N(30,2^2)$. Ao coletar 100 dados, verificou-se que a duração média destas amostras era de $\overline{x}_n = 24$ meses.

10) Determinar o intervalo de confiança a um nível de significância de 10%.

(23.344, 24.656

11) Determinar o intervalo de <u>credibilidade</u> em que a probabilidade de θ estar nele seja de 90%. Escolher o intervalo com a menor amplitude possível.

(23.59, 24.87)

12) Nas condições do enunciado, determinar a probabilidade *a posteriori* tal que o intervalo de credibilidade (de menor amplitude possível) tenha comprimento 1 (mês).

79.59%