Week 2 Review

Announcements & Reminders

- Have you activated your ECF account for the labs? See our announcements on Portal.
- Lab divisions have shifted!
 - Section L0101 Wednesday Labs
 - BA3145: Aayani Limam
 - BA3155: Lin Zhu
 - Section L0201 Monday Labs
 - BA3145: Abdin Li (Cheuk Man)
 BA3155: Li (Justin) Zhou
 - Section L5101 Tuesday Labs
 - BA3145: Afrashteh Kajo
 BA3155: Kang Shek
 BA3165: Shi Zuo
- Have you done your Lab1 prelab? ©
 - Check out the Breadboard Demo video; link posted under Course Materials -> Labs.

Textbook

- The bookstore is still ordering the textbook ☺
- For now, you may want to:
 - Check the book out first in the library (it's under course reserves).
 - Look for a used copy
- If you have a different edition:
 - You can find the table of contents of the 4th edition under Course Materials -> General Course Information.

Week 1 Review

- Properties of electricity
- Semiconductor materials
 - Doping (n-type and p-type)
- p-n junctions
- Transistors
 - MOSFETs

How CSC258 tutorials work

- Each week has three hours of classroom time.
 - Two hours of lectures,
 - One hour of tutorials.
- The tutorial is split into two halves:
 - The first half hour at the beginning, reviewing last week's material and potential exam questions.
 - The second half hour is later in the week, reviewing what you need to know for the upcoming lab.

Midterm Questions

- True or False? Doping gives a semiconductor an overall positive or negative charge.
- What kind of bias on a pn junction causes the depletion layer to expand?
 Reverse bias
- Phosphorus has 5 electrons in its outer valence shell. When added in small amounts to silicon, the result is a ______
 semiconductor. Doped or N-Type

Let's review

Logic gates are built from

Let's review

Logic gates are built from transistors.

This transistor is called nMOS.

It conducts (i.e. acts as a closed switch) if we apply 5 Volts (logic 1) at its gate.

This transistor is called pMOS

It conducts (i.e. acts as a closed switch) if we apply 0 Volts (logic 0, Ground) at its gate.

Which gate is this one?

Α	В	W	Y
0	0		
0	1		
1	0		
1	1		

Which gate is this one?

Α	В	W	Υ
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

$$W = \overline{(A + B)}$$
$$Y = (A + B)$$

Basic Logic Gates: Symbols and Truth Tables

• What are the names and truth table values for the following gates? How many transistors do you need to build a NOT gate?

A	В	Y
0	0	
0	1	
1	0	
1	1	

A	В	Y
0	0	
0	1	
1	0	
1	1	

A	Y
0	
1	

Basic Logic Gates: Symbols and Truth Tables

• What are the names and truth table values for the following gates?

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

A	Y
0	1
1	0

More Questions

What gate is created by the following?

Remember: transistors that look like are activated when the gate input is high, whereas transistors that look like are activated when the gate input is low.

Kinds of current

What is the name of currents A and B, and how are they produced?

Kinds of current

- Two things to note here:
 - Need to determine which electrons are moving from high concentration to low concentration (diffusion),

and which are moving because of the electric field (drift).

- Note: Current is measured in the opposite direction of electron flow (i.e. as the flow of positive charge through the material)