Chapter 7

Inference for numerical data¹

Department of Mathematics & Statistics North Carolina A&T State University

 $^{^1\}mbox{These}$ notes use content from OpenIntro Statistics Slides by Mine Cetinkaya-Rundel.

Difference of two means

Experiment

- ➤ A 2003 American Journal of Health Education Study investigated the effects of cell phone use on reaction time while driving.
- In the study, 60 participants were randomly selected and placed into one of two groups:
 - ▶ Treatment Group Access to text documents on a cell phone.
 - Control Group No distractions
- Participants in each group were then asked to take a computerized reaction time test.
- Researchers then recorded each subject's reaction time in seconds.

Data Summary

	Treatment	Control
	Phone	No Phone
\bar{x}	0.546	0.356
s	0.213	0.245
n	30	30

Parameter and point estimate

▶ Parameter of interest: Average difference between the reaction time of all drivers using a phone or not.

$$\mu_C - \mu_T$$

Parameter and point estimate

▶ Parameter of interest: Average difference between the reaction time of all drivers using a phone or not.

$$\mu_C - \mu_T$$

Point estimate: Average difference between the reaction time of **participants** in the treatment and control group.

$$\bar{x}_C - \bar{x}_T$$

Hypotheses

Which of the following is the correct set of hypotheses for testing if the average reaction time of the drivers using a phone (μ_T) is higher than the average reaction time of the drivers not using a phone (μ_C) ?

- $\begin{array}{c} \mathbf{A)} \ \ H_0: \mu_C = \mu_T \\ H_A: \mu_C \neq \mu_{pT} \end{array}$
- B) $H_0: \mu_C = \mu_T$ $H_A: \mu_C > \mu_T$
- C) $H_0: \mu_C = \mu_T$ $H_A: \mu_C < \mu_T$
- $\begin{array}{c} \mathbf{D}) \ \ H_0: \bar{x}_C = \bar{x}_T \\ H_A: \bar{x}_C < \bar{x}_T \end{array}$

Hypotheses

Which of the following is the correct set of hypotheses for testing if the average reaction time of the drivers using a phone (μ_T) is higher than the average reaction time of the drivers not using a phone (μ_C) ?

- $\begin{array}{c} \text{A)} \ \ H_0: \mu_C = \mu_T \\ \ \ H_A: \mu_C \neq \mu_{pT} \end{array}$
- B) $H_0: \mu_C = \mu_T$ $H_A: \mu_C > \mu_T$
- C) $H_0: \mu_C = \mu_T$ $H_A: \mu_C < \mu_T$
- $\begin{array}{c} \mathbf{D}) \ \ H_0: \bar{x}_C = \bar{x}_T \\ H_A: \bar{x}_C < \bar{x}_T \end{array}$

Conditions

Which of the following does <u>not</u> need to be satisfied in order to conduct this hypothesis test using theoretical methods?

- A) The reaction time of drivers not using a phone in the sample should be independent of another, and the reaction time of drivers using a phone should independent of another as well.
- B) The reaction times of drivers using and not using a phone in the sample should be independent.
- C) Distributions of reaction times of drivers in both groups should not be extremely skewed.
- D) Both sample sizes should be the same.

Conditions

Which of the following does <u>not</u> need to be satisfied in order to conduct this hypothesis test using theoretical methods?

- A) The reaction time of drivers not using a phone in the sample should be independent of another, and the reaction time of drivers using a phone should independent of another as well.
- B) The reaction times of drivers using and not using a phone in the sample should be independent.
- C) Distributions of reaction times of drivers in both groups should not be extremely skewed.
- D) Both sample sizes should be the same.

The test statistic for inference on the difference of two means where σ_1 and σ_2 are unknown is the T statistic.

$$T_{df} = \frac{\text{point estimate-null value}}{SE}$$

where

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \qquad \text{ and } \qquad df = min(n_1 - 1, n_2 - 1)$$

Note: The calculation of the df is actually much more complicated. For simplicity we'll use the above formula to <u>estimate</u> the true df when conducting the analysis by hand.

	Treatment	Control
	Phone	No Phone
\bar{x}	0.546	0.356
s	0.213	0.245
n	30	30

	Treatment	Control
	Phone	No Phone
\bar{x}	0.546	0.356
s	0.213	0.245
n	30	30

$$T \ = \ \frac{{\rm point\ estimate-null\ value}}{SE}$$

	Treatment	Control
	Phone	No Phone
\bar{x}	0.546	0.356
s	0.213	0.245
n	30	30

$$T = \frac{\text{point estimate} - \text{null value}}{SE}$$

$$= \frac{(0.356 - 0.546) - 0}{\sqrt{\frac{0.213^2}{30} + \frac{0.245^2}{30}}}$$

	Treatment	Control
	Phone	No Phone
\bar{x}	0.546	0.356
s	0.213	0.245
n	30	30

$$\begin{array}{ll} T & = & \frac{\text{point estimate} - \text{null value}}{SE} \\ & = & \frac{(0.356 - 0.546) - 0}{\sqrt{\frac{0.213^2}{30} + \frac{0.245^2}{30}}} \\ & = & \frac{-0.19}{0.0593} \end{array}$$

	Treatment	Control
	Phone	No Phone
\bar{x}	0.546	0.356
s	0.213	0.245
n	30	30

$$T = \frac{\text{point estimate} - \text{null value}}{SE}$$

$$= \frac{(0.356 - 0.546) - 0}{\sqrt{\frac{0.213^2}{30} + \frac{0.245^2}{30}}}$$

$$= \frac{-0.19}{0.0593}$$

$$= -3.20$$

- Coincidentally, in the experiment the number of participants in both groups is the same.
- $\qquad \qquad \text{Thus, } df = \min(30-1,30-1) = \min(29,29) = 29.$

p-value

Which of the following is the correct p-value for this hypothesis test?

$$T = -3.20$$
 $df = 29$

- A) Between 0.0005 and 0.001
- B) Between 0.001 and 0.0025
- C) Between 0.002 and 0.005
- D) Between 0.01 and 0.02

p-value

Which of the following is the correct p-value for this hypothesis test?

$$T = -3.20$$
 $df = 29$

- A) Between 0.0005 and 0.001
- B) Between 0.001 and 0.0025
- C) Between 0.002 and 0.005
- D) Between 0.01 and 0.02

Synthesis

What is the conclusion of the hypothesis test? How (if at all) would this conclusion change your behavior if you went diamond shopping?

Synthesis

What is the conclusion of the hypothesis test? How (if at all) would this conclusion change your behavior if you went diamond shopping?

- $lackbox{ p-value is small so reject H_0. The data provide convincing evidence to suggest that the average reaction time of drivers not using a phone is faster than the drivers using a phone while driving.$
- ▶ Try not to use your phone while driving because you may never know when you would require the fast reaction time to avoid an accident.

Equivalent confidence level

What is the equivalent confidence level for a one-sided hypothesis test at $\alpha=0.05$?

- A) 90
- B) 92.5
- C) 95
- D) 97.5

Equivalent confidence level

What is the equivalent confidence level for a one-sided hypothesis test at $\alpha=0.05$?

- A) 90%
- B) 92.5
- C) 95
- D) 97.5

Critical value

What is the appropriate t^* for a confidence interval for the average difference between using a phone and not using it while driving?

- A) 1.32
- B) 1.70
- C) 2.07
- D) 2.82

Critical value

What is the appropriate t^* for a confidence interval for the average difference between using a phone and not using it while driving?

- A) 1.32
- B) 1.70
- C) 2.07
- D) 2.82

Calculate the interval, and interpret it in context

Calculate the interval, and interpret it in context

point estimate $\pm\,ME$

Calculate the interval, and interpret it in context

point estimate $\pm\,ME$

$$(\bar{x}_C - \bar{x}_T) \pm t_{df}^\star \times SE \ = \ (0.356 - 0.546) \pm 1.70 \times 0.0593$$

Calculate the interval, and interpret it in context

point estimate $\pm ME$

$$(\bar{x}_C - \bar{x}_T) \pm t_{df}^{\star} \times SE = (0.356 - 0.546) \pm 1.70 \times 0.0593$$

= -0.19 ± 0.1008

Calculate the interval, and interpret it in context

point estimate $\pm ME$

$$\begin{array}{lll} (\bar{x}_C - \bar{x}_T) \pm t_{df}^\star \times SE &=& (0.356 - 0.546) \pm 1.70 \times 0.0593 \\ &=& -0.19 \pm 0.1008 \\ &=& (-0.2908, -0.0892) \end{array}$$

Calculate the interval, and interpret it in context

point estimate
$$\pm ME$$

$$\begin{array}{lll} (\bar{x}_C - \bar{x}_T) \pm t_{df}^\star \times SE &=& (0.356 - 0.546) \pm 1.70 \times 0.0593 \\ &=& -0.19 \pm 0.1008 \\ &=& (-0.2908, -0.0892) \end{array}$$

We are 90% confident that they average reaction time of a driver not using a phone is 0.0892 to 0.2908 seconds faster than the average reaction time of a driver using a phone.

If σ_1 or σ_2 is unknown, difference between the sample means follow a t-distribution with $SE=\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_1}}$.

- If σ_1 or σ_2 is unknown, difference between the sample means follow a t-distribution with $SE=\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_1}}$.
- Conditions:
 - Independence within groups (often verified by a random sample, and if sampling without replacement, n < 10% of population) and between groups.
 - No extreme skew in either group.

- If σ_1 or σ_2 is unknown, difference between the sample means follow a t-distribution with $SE=\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_1}}$.
- Conditions:
 - Independence within groups (often verified by a random sample, and if sampling without replacement, n < 10% of population) and between groups.
 - No extreme skew in either group.
- ▶ Hypothesis testing:

$$T_{df} = \frac{\text{point estimate-null value}}{SE}, \text{ where } df = min(n_1-1,n_2-1).$$

- If σ_1 or σ_2 is unknown, difference between the sample means follow a t-distribution with $SE=\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_1}}$.
- Conditions:
 - Independence within groups (often verified by a random sample, and if sampling without replacement, n < 10% of population) and between groups.
 - No extreme skew in either group.
- Hypothesis testing:

$$T_{df} = \frac{\text{point estimate-null value}}{SE}, \text{ where } df = min(n_1-1,n_2-1).$$

Confidence interval:

point estimate
$$\pm~t^*_{df} \times SE$$