גיליון תרגילים 1:

להגיש לתא של הקורס בבניין אמאדו קומה 0

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
 מתקיים $n \in N$ הוכח שלכל (1

- מתקיים $\sqrt[n]{m}$ שלם או אי רציונלי. $n,m\in N$ מתקיים מתקיים מהכנה (2 רמז : קראו את שיעור ההכנה הראשון ב-mathnet של חדו"א n (guest
 - :3) הוכח

$$\sqrt{2}+\sqrt{3}+\sqrt{5}\not\in Q$$
 .א

$$\sqrt[3]{2} + \sqrt[3]{4} \notin Q$$
 .2

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
 : א. הוכח

- . ב. מצא ביטוי המפשט את $\prod_{k=2}^{n-1} \left(1-\frac{1}{k^2}\right)$ והוכח את נכונותו
 - : הוכח באינדוקציה (5

$$\left|\sum_{k=1}^n a_k\right| \leq \sum_{k=1}^n \left|a_k\right| . \mathsf{X}$$

$$\left| \prod_{k=1}^{n} a_k \right| = \prod_{k=1}^{n} |a_k| .$$

(6

$$|x+1|-|2x+6| \le |x+5|$$
 . א. התר את אי השיוויון

$$\left| \frac{x^2 - 6x + 8}{x + 4} \right| < \frac{3}{7}$$
 אז $\left| x - 4 \right| < 1$ ב. הוכח שאם 1

- . הוכח כי A חסומה חסומה ומתקיים: $B \subset \Re$ תהא תהא (7 $\inf B \leq \inf A \leq \sup A \leq \sup B$
- : הבא דוגמאות לקבוצות בעלות התכונות הבאות או הוכח שלא קיימת קבוצה כזאת או הבא דוגמאות לקבוצות בעלות התכונות הבאות או הוכח $A \in A$
 - . ב. A חסומה מלעיל וגם A^{C} המשלים של A
 - $|a-\sup A|>rac{1}{100}$ מתקיים $a\in A$ ג. $a-\sup A$
 - $\sup A = \inf A$. τ