Shield Module Overview

Hyeongrae Kim

Architecture and Compiler for Embedded system LAB. School of Electronics Engineering, KNU, KOREA

Hitex ShieldBuddy TC275

Easy Module Shield V1

Easy Module Shield V1 연결 구조

모듈		TC275 Shield Buddy Pin	TC275 Pin	TC275 관련기능
LED1		D13	P10_2	GPIO, PWM
LED2		D12	P10_1	GPIO, PWM
SW1		D2	P02_0	GPI0
SW2		D3	P02_1	GPIO
RGB LED	Red	D9	P02_7	GPIO, PWM
	Green	D10	P10_5	GPIO, PWM
	Blue	D11	P10_3	GPIO, PWM
Rotation		AO	SAR4_7	ADC
Buzzer		D5	P02_3	PWM
Light		A1	SAR4_6	ADC
LM35		A2	SAR4_5	ADC

Easy Module Shield V1 - LED

- LED1/LED2
 - ✓ D13 / D12 핀의 출력을 통해 LED1 / LED2를 제어할 수 있다.
 - ✓ D13 / D12 핀에 High를 출력하면 LED1 / LED2에 전류가 흘러 LED가 켜진다.
 - ✓ D13 / D12 핀에 Low를 출력하면 LED1 / LED2에 전류가 흐르지 않아 LED가 꺼진다.

ACE Lab.

5/18

Easy Module Shield V1 – Switch

- SW1 / SW2
 - ✓ D2 / D3 핀의 입력을 통해 SW1 / SW2의 상태를 읽을 수 있다.
 - ✓ SW1 / SW2를 누르지 않으면 Pull-up 저항에 의해 D2 / D3 핀이 High가 된다.
 - ✓ SW1 / SW2를 누르면 D2 / D3 핀이 Low가 된다.

Easy Module Shield V1 - RGB LED

- RGB LED
 - ✓ D9 / D10 / D11 핀의 출력을 통해 RGB LED를 제어할 수 있다.
 - ✓ D9 / D10 / D11 핀에 High를 출력하면 Red / Green / Blue LED에 전류가 흘러 LED가 켜진다.
 - ✓ D9 / D10 / D11 핀에 Low를 출력하면 Red / Green / Blue LED 에 전류가 흐르지 않아 LED가 꺼진다.
 - ✓ 각 LED (Red/Green/Blue LED)는 독립적으로 동작하며 여러 개의 LED가 동시가 켜져 있는 경우에는 색깔이 섞여 보인다.

ACE Lab.

7/18

Easy Module Shield V1 - Rotation

- Rotation
 - ✓ Rotation은 가변 저항을 조절하며 이에 따라 가변 저항에 걸리는 전압이 달라진다.
 - ✓ A0 핀의 입력을 통해 가변 저항에 걸리는 전압을 읽을 수 있다.
 - ✓ Rotation을 1번 방향으로 끝까지 돌리면 가변 저항에 걸리는 전압은 O(V)가 되며, 3번 방향으로 끝까지 돌리면 가변 저항에 걸리는 전압은 VCC(V)가 된다.
 - ✓ Rotation이 1번과 3번 사이에 있으면 가변 저항에 걸리는 전압은 0 VCC (V)의 범위 안에 존재하고, Rotation의 각도에 비례한다.

Easy Module Shield V1 - Buzzer

- Buzzer (Piezo)
 - ✓ D5 핀의 출력을 통해 Buzzer를 제어할 수 있다.
 - ✓ D5 핀에 PWM 신호를 출력하면 Buzzer가 진동하며 소리를 발생시킨다.
 - ✓ PWM 신호의 Duty Cycle은 소리의 크기를 제어하며, 소리의 크기는 Duty Cycle에 비례한다.
 - ✓ PWM 신호의 주파수는 소리의 주파수를 제어하며, 소리의 주파수는 PWM 신호의 주파수와 일치한다.

ACE Lab.

9/18

Easy Module Shield V1 – Light

- Light
 - ✓ Light는 조도센서로써 빛의 밝기에 따라 내부 저항이 달라져 Light에 걸리는 전압이 달라진다.
 - ✓ A1 핀의 입력을 통해 빛의 밝기에 따른 전압 변화를 읽을 수 있다.
 - ✓ 빛의 밝기가 밝은 경우, Light의 내부 저항이 낮아져 Light에 걸리는 전압이 낮아지기 때문에 A1 핀에 입력되는 전압은 증가한다.
 - ✓ 빛의 밝기가 어두운 경우, Light의 내부 저항이 높아져 Light에 걸리는 전압이 높아지기 때문에 A1 핀에 입력되는 전압은 감소한다.
 - ✓ Light의 내부 저항 변화가 빛의 밝기에 선형적으로 비례하지 않기 때문에 정확한 빛의 밝기의 측정보다는 밝고 어두운 정도만을 판별하기에 적합하다.

Easy Module Shield V1 – LM35

- LM35
 - ✓ LM35는 온도센서로써 주변의 온도에 따라 출력하는 전압이 달라진다.
 - ✓ A2 핀의 입력을 통해 LM35가 출력하는 전압을 읽을 수 있다.
 - ✓ LM35는 2° C -150° C의 측정 범위를 가지며 출력 전압은 다음과 같다.

 $V_{out} = 10 (mV/^{\circ}C) \times T (^{\circ}C)$

✓ LM35는 0.5°C의 온도 측정 해상도를 가진다.

ACE Lab.

11/18

Arduino Motor Shield

Arduino Motor Shield 연결 구조

모듈		TC275 Shield Buddy Pin	TC275 Pin	TC275 관련기능	
DC모터 (A채널)	Direction	D12	P10_1	GPI0	
	Speed	D3	P02_1	PWM	
	Brake	D9	P02_7	GPIO	
	Current Sensing	АО	SAR4_7	ADC	
DC모터 (B채널)	Direction	D13	P10_2	GPI0	
	Speed	D11	P10_3	PWM	
	Brake	D8	P02_6	GPI0	
	Current Sensing	A1	SAR4_6	ADC	
스텝모터		DC모터의 A,B채널을 모두 사용			

ACE Lab.

13/18

Arduino Motor Shield – DC Motor

- DC Motor (A채널 / B채널)
 - ✓ A채널 / B채널을 통해 최대 2개의 DC Motor를 제어할 수 있다.
 - ✓ D12 / D13 핀 (Direction 핀)에 High를 출력하면 모터가 순방향으로 회전하고, Low를 출력하면 역방향을 회전한다.
 - ✓ D9 / D8 핀 (Brake 핀)에 High를 출력하면 모터가 멈추고, Low를 출력하면 모터가 동작한다.
 - ✓ D3 / D11 핀 (Speed 핀)에 PWM 신호를 출력하면 Duty Cycle에 비례해 모터의 회전속도가 제어된다.
 - ✓ PWM 신호의 주파수의 경우, 일반적으로 Arduino에서는 976Hz로 설정한다.
 - ✓ A0 / A1 핀 (Current Sensing 핀)의 입력을 통해 모터에 흐르는 전류에 대한 전압을 읽을 수 있다.
 - ✓ 해당 전압은 모터에 흐르는 전류에 비례한다.

Arduino Motor Shield – Stepper Motor

- Stepper Motor
 - ✓ A채널 / B채널을 함께 사용하여 최대 1개의 Stepper Motor를 제어할 수 있다.
 - ✓ A채널 / B채널을 통해 Stepper Motor에 공급하는 신호는 다음과 같다.
 - ✓ A: A채널의 순방향 최대 신호 (Direction (A) = High, PWM Duty (A) = 100%)
 - \checkmark \bar{A} : A채널의 역방향 최대 신호 (Direction (A) = Low, PWM Duty (A) = 100%)
 - ✓ B: B채널의 순방향 최대 신호 (Direction (B) = High, PWM Duty (B) = 100%)
 - ✓ \bar{B} : B채널의 역방향 최대 신호 (Direction (B) = Low, PWM Duty (B) = 100%)
 - \checkmark $A \to \bar{B} \to \bar{A} \to B$ 순서로 출력을 제어하여 Stepper Motor를 회전시킬 수 있다.
 - \checkmark $A \rightarrow B \rightarrow \bar{A} \rightarrow \bar{B}$ 순서로 출력을 제어하여 Stepper Motor를 반대로 회전시킬 수 있다.

ACE Lab.

15/18

uWave Sensor

- uWave Sensor (초음파센서)
 - ✓ 초음파 센서는 약 20kHz 이상의 높은 주파수의 초음파를 발생시킨 후 반사되어 돌아오는 시간차를 측정하여 거리를 계산할 수 있는 센서이다.
 - ✓ 초음파 센서는 초음파가 나오는 TRIG와 초음파는 받는 ECHO로 구성되어 있다.
 - ✓ 초음파 센서는 TRIG 핀에 펄스가 입력되었을 때 초음파를 발생시킨다.
 - ✓ 초음파 센서의 ECHO 핀은 초음파 발생 및 도달 상태에 따른 신호를 출력한다.

ACE Lab.

16/18

uWave Sensor

- uWave Sensor (초음파센서)
 - ✓ 초음파 센서의 TRIG 핀에 입력되는 펄스의 폭은 10us 이상이어야 하며, 펄스가 끝나는 시점에 초음파가 발생한다.
 - ✓ 초음파 센서의 ECHO 핀은 초음파를 발생시킬 때 Low 상태에서 High 상태로 전환하고, 초음파가 돌아오면 다시 High 상태에서 Low 상태로 전환한다.
 - ✓ 초음파 센서의 ECHO 핀이 High 상태를 유지한 시간과 소리의 속도 (340m/s)를 이용하여 거리를 계산할수 있다.

(거리) = (소리의 속도) X (측정 시간) / 2 = 340 (m/s) X duration (us) / 2

17/18

Q&A

Thank you for your attention

OCCOO Architecture and Coocoo Compiler For Embedded Systems Lab.

School of Electronics Engineering, KNU

ACE Lab (hn02301@gmail.com)

ACE Lab.

18/18