REDOX & EQUIVALENT CONCEPTS (STOCHIOMETRY-II)

1. **OXIDATION & REDUCTION**

Let us do a comparative study of oxidation and Reduction;

Oxidation

- (1) Addition of oxygen
- e.g. $2Mg + O_2 \rightarrow 2MgO$
- Removal of Hydrogen (2)
- e.g. $H_2S + Cl_2 \rightarrow 2HCl + S$
- Increase in positive charge (3)
- **e.g.** $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$
- Increase in oxidation number (4)

$$SnCl_2 \rightarrow SnCl_4$$

- Removal of electron (5)
- **e.g.** $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$

Reduction

- Removal of oxygen (i)
- e.g. $CuO + C \rightarrow Cu + CO$
- Addition of Hydrogen (ii)
- e.g. $S + H_2 \rightarrow H_2S$
- (iii) Decrease in positive charge
- **e.g.** $Fe^{3+} + e \rightarrow Fe^{2+}$
- (iv) Decrease in oxidation number

$$(+7)$$
 $(+2)$

$$MnO_4^- \rightarrow Mn^{2+}$$

- (v) Addition of electron
- **e.g.** $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$

2. **Oxidation Number:**

- It is an imaginary or apparent charge gained by an element when it goes from its elemental free state to combined state in molecules.
- It is calculated on basis of a arbitrary set of rules.
- It is a relative charge in a particular bonded state.

2.1 Rules governing oxidation number:

The following rules are helpful in calculating oxidation number of the elements in their different compounds. It is remember that the basis of these rule is the electronegativity of the element.

Fluorine atom:

Fluorine is most electronegativity atom (known). It always has oxidation no. equal to -1 in all its compounds.

Oxygen atom:

In general and as well as in its oxides, oxygen atom has oxidation number equal to -2.

In case of:

- peroxide (e.g. H_2O_2 , Na_2O_2) is -1(i)
- super oxide (e.g. KO_2) is $-\frac{1}{2}$ (ii)
- (iii) ozonide (KO_3) is $-\frac{1}{3}$
- (iv) oxygen fluoride OF_2 is +2 & in O_2F_2 is +1

Hydrogen atom :

In general, H atom has oxidation number equal to +1. But in metallic hydrides (e.g. NaH, KH) it is -1.

• Halogen atom:

In general, all halogen atom (Cl, Br, I) has oxidation number equal to -1.

But if halogen atom is attached with an more electronegative atom than halogen atom then it will show positive oxidation numbers.

e.g.
$$KClO_3$$
 HlO_3 $HClO_4$ $KBrO_3$

Metals:

- (a) Alkali metal (Li, Na, K, Rb,) always have oxidation number +1.
- (b) Alkaline earth metal (Be, Mg, Ca) always have oxidation number +2.

Note: Metal may have positive or zero oxidation number.

- (c) Aluminium always have +3 oxidation number
- Oxidation number of an element in free state or in allotropic forms is always zero.

e.g.
$$O_2, S_8, P_4, O_3$$

- Sum of the charges of elements in a molecule is zero.
- Sum of the charges of all elements in an ions is equal to the charge on the ion.
- If the group no. of an element in periodic table is n then its oxidation number may vary from n to n − 8 (but it is mainly applicable in p-block elements)
- e.g. N-atom belongs to v group in the periodic table therefore as per rule its oxidation number may vary from

$$-3$$
 to $+5$ (NH₃,NO,N₂O₃,NO₂,N₂O₅)

$Ex.1 \ \ Calculate \ oxidation \ number \ of \ underlined \ element \ Na_2S_2O_3:$

Sol. Let oxidation number of S-atom is x. Now work accordingly with the rules given before.

$$(+1) \times 2 + (x) \times 2 + (-2) \times 3 = 0$$

 $x = +2$

$$Ex.2 Na_2S_4O_6$$
:

Sol. Let oxidation number of S-atom is x

$$(+1) \times 2 + (x) \times 2 + (-2) \times 6 = 0$$

 $x = +2.5$

◆ It's important to note here that Na₂S₂O₃ have two S-atom and there are four S-atom in Na₂S₄O₆ but sulphur atom in both the compound have +2 or +2.5 oxidation number, it is the average charge (O. No.) Which reside on each sulphur atom therefore we should work to calculate the individual oxidation number of each sulphur atom in these compound.

ALLEN

Ex.3 Calculate the O.S. of all the atoms in the following species:

- (i) ClO^{-} , (ii) NO^{-}_{2} , (iii) NO^{-}_{3} (iv) CCl_{4} (v) $K_{2}CrO_{4}$ and (vi) $KMnO_{4}$
- **Sol.** (i) In ClO $^-$, the net charge on the species is -1 and therefore the sum of the oxidation states of Cl and O must be equal to -1. Oxygen will have an O.S. of -2 and if the O.S. of Cl is assumed to be 'x' then x 2 should be equal to -1.

x is + 1

(ii)
$$NO_{2}^{-}: (2 \times -2) + x = -1$$
 (where 'x' is O.S. of N)
 $\therefore x = +3$

(iii)
$$NO_3^-$$
: $x + (3 \times -2) = -1$ (where 'x' is O.S. of N)
 $x = +5$

(iv) In
$$CCl_4$$
, Cl has an O.S. of -1
 $x + 4 \times -1 = 0$
 $\therefore x = +4$ (where 'x' is O.S. of C)

(v)
$$K_2CrO_4$$
: K has O.S. of +1 and O has O.S. of -2 and let Cr has O.S. 'x' then, $2 \times +1 + x + 4 \times -2 = 0$
 $\therefore x = +6$

(vi)
$$KMnO_4: +1 + x + (4 \times -2) = 0$$

 $\therefore x = +7$ (where x is O.S. of Mn).

2.2 MISCELLANEOUS EXAMPLES

In order to determine the exact or individual oxidation number we need to take help from the structures of the molecules. Some special cases are discussed as follows:

• The structure of CrO_5 is $\int_{0}^{0} Cr$

From the structure it is evident that in ${\rm CrO}_5$ there are two peroxide linkages and one double bond.

The contribution of each peroxide linkage is –2. Let the O.N. of Cr is x.

$$\therefore$$
 x + (-2)2 + (-2) = 0 or x = 6

$$\therefore$$
 O.N. of Cr = +6**Ans.**

$$K_3CrO_8$$

$$\begin{bmatrix}
O & O \\
O & Cr \\
O & O
\end{bmatrix}$$

From the structure it is evident that in CrO_8^{-3} there are four peroxide linkages.

The contribution of each peroxide linkage is -2. Let the O.N. of Cr is x.

$$x + (-2)4 = -3 \text{ or } x = +5$$

$$\therefore$$
 O.N. of Cr = +5**Ans.**

• The streuture of
$$H_2SO_5$$
 is $H-O-O-S_5$

From the structure, it is evident that in H_2SO_5 , there are one peroxide linkage, two sulphur - oxygen double bond and one OH group. Let the O.N. of S = x.

$$\therefore +1-2+x+(-2) 2+(-2)+1=0$$

or
$$x + 2 - 8 = 0$$

or
$$x - 6 = 0$$

or
$$x = 6$$

 \therefore O.N. of S in H₂SO₅ is +6 **Ans**

2.3 PARADOX OF FRACTIONAL OXIDATION NUMBER

Fractional oxidation state is the average oxidation state of the element under examination and the structural parameters reveal that the element for whom fractional oxidation state is realised is actually present in different oxidation states. Structure of the species C_3O_2 , Br_3O_8 and $S_4O_6^{2-}$ reveal the following bonding situations.

♦ The element marked with asterisk in each species is exhibiting the different oxidation state (oxidation number) from rest of the atoms of the same element in each of the species. This reveals that in C₃O₂, two carbon atoms are present in +2 oxidation state each whereas the third one is present in zero oxidation state and the average is 4/3. However the realistic picture is +2 for two terminal carbons and zero for the middle carbon.

$$O = \overset{+2}{C} = \overset{0}{C^*} = \overset{+2}{C} = O$$

Structure of C₃O₂

(Carbon suboxide)

◆ Likewise in Br₃O₈, each of the two terminal bromine atoms are present in +6 oxidation state and the middle bromine is present in +4 oxidation state. Once again the average, that is different from reality is 16/3.

Structure of Br₃O₈ (tribromooctaoxide)

• In the same fashion, in the species $S_4O_6^{2-}$, is 2.5, whereas the reality being +5,0,0 and +5 oxidation number respectively for each sulphur.

Structure of $S_4O_6^{2-}$ (tetrathionate ion)

3.1 OXIDISING AND REDUCING AGENT

3.1 Oxidising agent or Oxidant:

Oxidising agents are those compound which can oxidise others and reduced itself during the chemical reaction. Those reagents whose O.N. decrease or which gain electrons in a redox reaction are termed as oxidants

e.g. KMnO₄, K₂Cr₂O₇, HNO₃, conc. H₂SO₄ etc, are powerful oxidising agents.

3.1 Reducing agent or Reductant :

Redusing agents are those compound which can reduce others and oxidise itself during the chemical reaction. Those reagents whose O.N. increase or which loses electrons in a redox reaction are termed as reductants.

e.g. KI, Na₂S₂O₃ are powerful reducing agents.

Note: There are some compounds also which can work both oxidising agent and reducing agent.

e.g. H_2O_2 , NO_2

3.3 HOW TO IDENTIFY WHETHER A PARTICULAR SUBSTANCE IS AN OXIDISING OR REDUCING AGENT

Ex.4. Identify the species undergoing oxidation and reduction

(i)
$$N_2 + H_2 \longrightarrow NH_3$$
(R)

$$(ii) \qquad \underbrace{Zn + HCl \longrightarrow ZnCl_2 + H_2}_{(O)}$$

Z \node06\2020-21(B0B0-BA)\Kata\JEE(Advanced)\Wadule Coding (V-Tag)\Nurture\Chemistry\Redax & Equivalent

E

(iii)
$$Mg + O_2 \longrightarrow MgO$$

(iv)
$$Zn + NaOH \longrightarrow Na_2ZnO_2 + H_2$$
(R)

$$(v) \qquad H_2SO_4 + Mg \longrightarrow MgSO_4 + SO_2 + H_2O$$

$$(O)$$

$$\begin{array}{ll} (vi) & H_2SO_4 + NaOH - \longrightarrow Na_2SO_4 + H_2O \\ & Neither~O~\&~R \end{array}$$

(vii)
$$Cl_2 + NaOH \longrightarrow NaCl + NaClO_3 + H_2O$$
(O)

(viii)
$$FeCl_3 + SnCl_2 \longrightarrow FeCl_2 + SnCl_4$$
(O)

$$(ix)$$
 $AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$

No oxidation and no reduction.

4 REDOX REACTION

A reaction in which oxidation and reduction simultaneously take place.

In all redox reactions the total increase in oxidation number must equal the total decrease in oxidation number.

e.g.
$$10 \stackrel{+2}{\text{Fe}} \text{SO}_4 + 2 \stackrel{+7}{\text{Mm}} \text{O}_4 + 8 \stackrel{+3}{\text{H}_2} \text{SO}_4 \longrightarrow 5 \stackrel{+3}{\text{Fe}_2} (\text{SO}_4)_3 + 2 \stackrel{+2}{\text{Mn}} \text{SO}_4 + \text{K}_2 \text{SO}_4 + 8 \stackrel{+3}{\text{H}_2} \text{O}_4$$

5. TYPE OF REACTION

5.1 Combination Reactions:

When two or more element combine to form compound then such reaction are redox reaction.

For example

$$A + B \longrightarrow C$$

(a)
$$3 \stackrel{0}{\text{Mg(s)}} + \stackrel{0}{\text{N}_2(g)} \xrightarrow{\Delta} \stackrel{+2}{\text{Mg}_3} \stackrel{-3}{\text{N}_2(s)}$$

(b)
$$\overset{0}{C}(s) + \overset{0}{O_2}(g) \xrightarrow{\Delta} \overset{+4}{C}\overset{-2}{O_2}(g)$$

(c)
$$CH_4^{-4+1}(g) + 2O_2(g) \xrightarrow{\Delta} CO_2(g) + 2H_2O(\ell)$$

(d)
$$\overset{0}{\text{Li}(s)} + \overset{0}{N_2}(g) \xrightarrow{\Delta} \overset{+1}{\text{Li}_3} \overset{-3}{N}(s)$$

In reaction (c), there is no change in the oxidation number of hydrogen.

5.2 **Decomposition Reactions:**

Decomposition reactions are opposite of combination. Decomposition reactions are those in which when a molecule breaks down to form two or more components, at least one of them must be in the elemental state. For example:

(a)
$$2\overset{_{+1}}{K}\overset{_{+5}}{Cl}\overset{_{-2}}{O_3}(s) \xrightarrow{\Delta} 2\overset{_{+1}}{M}\overset{_{-1}}{Cl}(s) + 3\overset{_{0}}{O_2}(g)$$
 (b) $\overset{_{+2}}{Ca}\overset{_{-1}}{H_2} \xrightarrow{\Delta} \overset{_{0}}{Ca}(s) + \overset{_{0}}{H_2}(g)$

(b)
$$C_a^{+2} H_2^{-1} \xrightarrow{\Delta} C_a^{0}(s) + H_2^{0}(g)$$

(c)
$$2 \stackrel{+1}{NaH} \stackrel{-1}{(s)} \stackrel{\Delta}{\longrightarrow} 2 \stackrel{0}{Na(s)} + \stackrel{0}{H_2(g)}$$

(d)
$$H_2^{-2}O(\ell) \xrightarrow{\Delta} 2H_2(g) + O_2(g)$$

Exception:

$$\overset{+2}{\text{Ca}}\overset{+4-2}{\text{CO}_3}(s) \xrightarrow{\Delta} \overset{+2-2}{\text{CaO}}(s) + \overset{+4-2}{\text{CO}_2}(g)$$

5.3 **Displacement Reactions:**

A reaction in which an atom or iron in a compund is replaced by an atom or ion of another element is called a displacement reaction. It may be denoted as:

$$X + YZ \longrightarrow XZ + Y$$

5.4 Disproportionations reactions:

A redox reaction in which a same element present in a particular compound in a definite oxidation state is oxidized as well as reduced simultaneously is a disproportionation reactions.

Disproportionation reactions are a special type of redox reactions. One of the reactants in a disproportionation reaction always contains an element that can exist in at least three oxidation states. The element in the form of reacting substance is in the intermediate oxidation state and both higher and lower oxidation states of that element are formed in the reaction.

$$\begin{split} &2\overset{+1}{H_2}\overset{-1}{O_2}\left(aq\right) \longrightarrow H_2O\left(\ell\right) + O_2(g) \\ &\overset{0}{S_8}(s) + 12OH^-(aq) \longrightarrow 4\overset{-2}{S^2}^-(aq) + 2\overset{+2}{S_2}O_3^{2-}\left(aq\right) + 6H_2O\left(\ell\right) \\ &\overset{0}{Cl_2}(g) + 2OH^-\left(aq\right) \longrightarrow \overset{+1}{ClO}^-\left(aq\right) + \overset{-1}{Cl}^-\left(aq\right) + H_2O\left(\ell\right) \end{split}$$

Consider following reactions:

 $2KClO_3 = 2KCl + 3O_3$ (a)

> KClO₂ plays a role of oxidant and reductant both. Because same element is not oxidised and reduced. Here, Cl present in KClO₃ is reduced and O present in KClO₃ is oxidized. So its not a disproportion reaction although it looks like one.

(b) $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

> Nitrogen in this compound has -3 and +3 oxidation number so it is not a definite value, so its not a disproportion reaction. Its a example of comproportionation reaction which is a class of redox reaction in which a element from two different oxidation state gets converted into a single oxidation state.

(c) $4KClO_3 \longrightarrow 3KClO_4 + KCl$

Its a case of disproportionation reaction in which Cl is the atom disproportionating.

- List of some important disproportionation reaction:
 - 1. $H_2O_2 \longrightarrow H_2O + O_2$
 - 2. $X_2 + OH^-(dil.) \longrightarrow X^- + XO^-$
 - 3. $X_2 + OH^-(conc.) \longrightarrow X^- + XO_3^-$

F, does not (can not) undergo disproportionation as it is the most electronegative element.

$$F_2 + NaOH (dil) \longrightarrow F^- + OF_2$$

 F_2 + NaOH concentration (dil) \longrightarrow F^- + O_2

Reverse of disproportionation is called Comproportionation. In some of the disproportionation reactions by changing the medium (from acidic to basic or reverse) the reaction goes in backward direction and can be taken as an example of Comproportionation.

$$I^- + IO_3^- + H^+ \longrightarrow I_2 + H_2O$$
 (acidic)

6. BALANCING OF REDOX REACTION

All balanced equations must satisfy two criteria

1. Atom balance (mass balance):

That is there should be the same number of atoms of each kind in reactant and products side.

2. Charge balance:

That is the sum of actual charges on both side of the equation must be equal

There are two methods for balancing the redox equations

- (a) Oxidation number change method
- (b) Ion electron method or half cell method
- (a) Oxidation number change method:

This method was given by Jonson. In a balanced redox reaction, total increase in oxidation number must be equal to total decreases in oxidation number. This equivalence provides the basis for balancing redox reactions.

The general procedure involves the following steps:

- (i) Select the atom in oxidising agent whose oxidation number decreases and indicate the gain of electrons.
- (ii) Select the atom in reducing agent whose oxidation number increases and write the loss of electrons.
- (iii) Now cross multiply i.e. multiply oxidising agent by the number of loss of electrons and reducing agent by number of gain of electrons.
- (iv) Balance the number of atoms on both sides whose oxidation numbers change in the reaction.
- (v) In order to balance oxygen atoms, add H₂O molecules to the side deficient in oxygen. Then balance the number of H atoms by adding H⁺ ions in the hydrogen.

- Ex.5 Write the skeleton equation for each of the following processes and balance them by ion electron method:
 - (i) Permagnet ion oxidizes oxalate ions in acidic medium to carbon dioxide and gets reduced itself to Mn^{2+} ions.
 - (ii) Chlorine reacts with base to form chlorate ion, chloride ion and water in acidic medium.
- **Sol.** (i) The skeleton equation for the process :

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$$

◆ Step (1) : Indicating oxidation number :

$$MnO_{4}^{-7} + C_{2}^{-3}O_{4}^{2-} \longrightarrow Mn^{2+} + CO_{2}^{+4} + CO_{2}^{+1}$$

♦ Step (2): Writing oxidation and reduction half reaction:

$$\overset{^{+3}}{\text{C}_2^{}}\text{O}_4^{2-}\longrightarrow 2\overset{^{+4}}{\text{CO}_2}$$
 (Oxidation half)
 $\overset{^{+7}}{\text{MnO}_4^{-}}\longrightarrow \text{Mn}^{2+}$ (Reduction half)

• Step (3): Adding electrons to make the difference in O.N.

$$\overset{^{+3}}{\text{C}_2}\text{O}_4^{2-} \longrightarrow 2\overset{^{+4}}{\text{CO}_2} + 2e^ \overset{^{+7}}{\text{MnO}_4^-} + 5e^- \longrightarrow Mn^{2+}$$

♦ Step (4) : Balancing 'O' atom by adding H₂O molecules

$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$$

 $MnO_4^- + 5e^- \longrightarrow Mn^{2+} + 4H_2O$

◆ Step (5) : Balancing H atom by adding H⁺ ions

$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$$

 $MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$

◆ **Step (6)**: Multiply the oxidation half reaction by 2 and reduction half reaction by 5 to equalize the electrons lost and gained and add the two half reactions.

$$[C_{2}O_{4}^{2-} \longrightarrow 2CO_{2} + 2e^{-}] \times 5$$

$$[MnO_{4}^{-} + 5e^{-} + 8H^{+} \longrightarrow Mn^{2+} + 4H_{2}O] \times 2$$

$$2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} + 16H^{+} \longrightarrow 10CO_{2} + 2Mn^{2+} + 8H_{2}O$$

(ii) The skeleton equation for the given process :

$$Cl_2 + OH^- \longrightarrow Cl^- + ClO_3^- + H_2O$$

• Step (1): Indicate the oxidation number of each atom

$$\stackrel{0}{\text{Cl}}_{2} + \stackrel{-2}{\text{OH}}^{-} \longrightarrow \text{Cl}^{-} + \stackrel{+5}{\text{ClO}}_{3}^{-} + \stackrel{+1}{\text{H}}_{2}^{-2} \text{O}$$

Z\rode06\2020-21(6080-BA)\Kaa\JEFAdranced\Wadule Cading (V-Tag)\Nurture\Chemistry\Radax & Equivalent Canaga\Eng

Thus, chlorine is the only element which undergoes the change in oxidation number. It decreases its oxidation number from 0 to 1 and also increases its oxidation number from 0 to 5.

◆ Step (2): Write the oxidation and reduction half reactions

$$\overset{0}{\text{Cl}}_{2} \longrightarrow 2 \overset{+5}{\text{ClO}}_{3}^{-}$$

(Oxidation half)

$$\stackrel{\circ}{\text{Cl}}_2 \longrightarrow 2\text{Cl}^-$$

(Reduction half)

• Step (3): Add electrons to make up for the difference in O.N.

$$\stackrel{\circ}{\text{Cl}}_2 \longrightarrow 2 \stackrel{+5}{\text{ClO}}_3^- + 10e^-$$

$$\stackrel{\circ}{\text{Cl}_2} + 2e^- \longrightarrow 2\text{Cl}^-$$

• Step (4): Balance O atoms by adding H₂O molecules

$$Cl_2 + 6H_2O \longrightarrow 2(ClO_3)^- + 10e^-$$

$$Cl_2 + 2e^- \longrightarrow Cl^-$$

◆ Step (5): Since medium is basic, balance H atoms by adding H₂O molecules to the side falling short of H atoms and equal number of OH⁻ ions to the other side.

$$Cl_2 + 6H_2O + 12OH^- \longrightarrow 2ClO_3^- + 10e^- + 12H_2O$$

$$Cl_2 + 2e^- \longrightarrow 2Cl^-$$

• Step (6): Multiply the reduction half reaction by 5 and add two half reactions.

$$Cl_2 + 5H_2O + 2OH^- \longrightarrow 2ClO_3^- + 10e^- + 12H_2O$$

$$[Cl_2 + 2e^- \longrightarrow 2Cl^-] \times 5$$

$$\text{Cl}_2 + 5\text{Cl}_2 + 12\text{OH}^- \longrightarrow 2\text{ClO}_3^- + 10\text{Cl}^- + 6\text{H}_2\text{O}$$

or,
$$6Cl_2 + 12OH^- \longrightarrow 2ClO_3^- + 10Cl^- + 6H_2O$$

or,
$$3Cl_2 + 6OH^- \longrightarrow ClO_3^- + 5Cl^- + 3H_2O$$

Ex.6 Balance the following chemical reaction by oxidation number method and write their skeleton equation:

- (i) The nitrate ions in acidic medium oxidize magnesium to Mg^{2+} ions but itself gets reduced to nitrous oxide.
- **Sol.** (i) The skeleton equation for the given process is

$$Mg + NO_3^- \longrightarrow Mg^{2+} + N_2O + H_2O$$

• Step (1): $M_g + (N_O^{+5})^- \longrightarrow Mg^{2+} + N_O^{+1} - N_O^{-2} + H_O^{+1}$

Multiply NO₂ by 2 to equalize N atoms

• Step (2): O.N. increases by 2 per Mg atom

O.N. decreases by 4 per N atom

E

◆ Step (3): Equalize increase/decrease in O.N. by multiplying Mg by 4 and 2NO₃ by 1.

$$4Mg + 2NO_3^- \longrightarrow Mg^{2+} + N_2O + H_2O$$

◆ Step (4): Balance atoms other than O and H

$$4Mg + 2NO_3^- \longrightarrow 4Mg^{2+} + N_2O + H_2O$$

◆ Step (5) : Balance O atoms

$$4Mg + 2NO_3^- \longrightarrow 4Mg^{2+} + N_2O + H_2O + 4H_2O$$

• Step (6): Balance H atoms as is done in acidic medium.

$$4Mg + 2NO_3^- + 10H^+ \longrightarrow 4Mg^{2+} + N_2O + 5H_2O$$

(b) Ion electron method or half cell method:

By this method redox equation are balanced in two different medium

- (a) Acidic medium (b) Basic medium
- Balancing in acidic medium

Students are advised to follow the following steps to balance the redox reactions by ion electron method in acidic medium.

Ex.7 Balance the following redox reaction.

$$FeSO_4 + KMnO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + MnSO_4 + H_2O_4$$

Sol: Step-I assign the oxidation No. to each elements present in the reaction.

$$\begin{array}{c} +2 +6 -2 \\ \text{Fe S O}_4 \ + \ \text{KMnO}_4 \ + \ \text{H}_2 \text{SO}_4 \longrightarrow \\ \text{Fe}_2(\text{SO}_4)_3 \ + \ \text{MnSO}_4 \ + \ \text{H}_2 \text{O}_4 \end{array}$$

Step-II Now convert the reaction in ionic form by eliminating the elements or species which are not going either oxidation or reduction

$$Fe^{2+} + MnO_4^- \longrightarrow Fe^{3+} + Mn^{2+}$$

Step-III Now identify the oxidation / reduction occurring into the reaction.

undergoes reduction
$$Fe^{2+} + MnO_{4}^{-} \rightarrow Fe^{3+} + Mn^{2+}$$
undergoes oxidation

Step-IV Split the ionic reaction in two half one for oxidation and other for reduction

$$Fe^{2+} \xrightarrow{\text{oxidation}} Fe^{3+} \mid MnO_4^- \xrightarrow{\text{Re duction}} Mn^{2+}$$

Step-V Balance the atom other than oxygen and hydrogen atom in both half reactions

$$Fe^{2+} \rightarrow Fe^{3+} \mid MnO_4^- \rightarrow Mn^{2+}$$

Fe & Mn atom are balanced in both side.

Step-VI Now balance O & H atom by H₂O & H⁺ respectively by the following way for one excess oxygen atom add one H₂O on the other side and two H⁺ on the same side.

$$Fe^{2+} \longrightarrow Fe^{3+}$$
 (no oxygen atom)(i)

$$8H^+ + MnO_4^- \longrightarrow Mn^{2+} + 4H_2O$$
(ii)

Step VII Now see equation (i) & (ii) is balanced atomwise. Now balance both equations chargewise to balance the charge add electrons to the electrically positive side.

$$5e^{-} + 8H^{+} + MnO_{4}^{-} \xrightarrow{\text{Reduction}} Mn^{2+} + 4H_{2}O$$
(2)

Step VIII The number of electrons gained and lost in each half-reaction are equalised by multiply suitable factor in both the half reaction and finally the half reactions are added to give the over all balanced reaction.

Here we multiply equation (i) by 5 and (ii) by one

$$5e^{-} + 8H^{+} + MnO_{4}^{-} \rightarrow M^{2+} + 4H_{2}O$$
(2) × 1

$$\frac{1}{5Fe^{2+} + 8H^{+} + MnO_{4}^{-} \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_{2}O}$$

(Here at this stage you will get balanced redox reaction in ionic form)

Step IX Now convert the ionic reaction in to molecular form by adding the elements or species which are removed instep (II).

Now by some manipulation you will get

$$5 \text{ FeSO}_4 + \text{KMnO}_4 + 4\text{H}_2\text{SO}_4 \rightarrow \frac{5}{2} \text{ Fe}_2(\text{SO}_4)_3 + \text{MnSO}_4 + 4\text{H}_2\text{O}$$
 or

$$10 \; \mathrm{FeSO_4} + 2 \mathrm{KMnO_4} + 8 \mathrm{H_2SO_4} \rightarrow \; 5 \mathrm{Fe_2(SO_4)_3} + 2 \mathrm{MnSO_4} + 8 \mathrm{H_2O} + \mathrm{K_2SO_4}$$

7. **Equivalent weight (E):**

Eq. wt (E) =
$$\frac{\text{Molecular weight}}{\text{valency factor (v.f)}} = \frac{\text{Mol. wt.}}{\text{n-factor}}$$

no of Equivalents =
$$\frac{\text{mass of a sample}}{\text{eq. wt. of that species}}$$

- Equivalent mass is a pure number when expressed in gram, it is called gram equivalent mass.
- The equivalent mass of substance may have different values under different conditions.

8. **Valency factor calculation:**

For Acids:

valence factor = number of replaceable H⁺ ions

Solved Examples:

Ex:
$$HCl$$
, H_2SO_4 H_3PO_4 H

$$H_3PO_3$$

{see there are only two replaceable H⁺ ions}

Sol: valence
$$\rightarrow 1$$
 2

Eq.wt.
$$\rightarrow \frac{M}{1}$$
 $\frac{M}{2}$ $\frac{M}{3}$

$$\frac{M}{2}$$

2

Self practice problems:

- 1. Find the valence factor for following acids
 - (i) CH₃COOH
- (ii) NaH₂PO₄
- (iii) H₃BO₃

Answers:

- **1.** (i) 1
- (ii) 2
- (iii) 1

8.2 For Base :

v.f. = number of replicable OH⁻ions

Solved Examples:

Ex: NaOH

KOH

Sol: v.f. \rightarrow

1

 $E. \rightarrow \frac{N}{1}$

 $\frac{M}{1}$

Self practice problems:

- 1. Find the valence factor for following bases
 - (i) Ca(OH),
- (ii) CsOH
- (iii) Al(OH),

Answers:

1. (i) 2

(ii) 1

(iii) **3**

8.3 Acid - base reaction :

In case of acid base reaction, the valence factor is the actual number of H^+ or OH^- replaced in the reaction. The acid or base may contain more number of replaceable H^+ or OH^- than actually replaced in reaction.

v.f. for base is the number of H⁺ion form the acid replaced by per molecule of the base.

$Ex.9\ 2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Base Acid

Sol: valency factor of base = 1

valency factor of acid = 2

Here two molecule of NaOH replaced $2H^+$ ion from the H_2SO_4 therefore per molecule of NaOH replaced only one H^+ ion of acid so v.f. = 1

v.f. for acid is number of OH replaced for the base by per molecule of acid

$$Ex.10 \ NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$$

Base Acid

Sol: valence factor of acid = 1

here one of molecule of H_3PO_4 replaced one OH^- from NaOH therefore v.f. for H_3PO_4 is = 1

$$E = \frac{\text{mol.wt.of } H_3 PO_4}{1}$$

 ${\rm Z} \setminus {\rm rode} 06 \setminus 2020 \cdot 21 \\ [6080 \cdot 84] \\ {\rm Xea} \setminus {\rm JEF} \\ {\rm Advorced} \\ {\rm VMedule \ Coding \ } \\ {\rm V-Tog)} \\ {\rm Vurture} \setminus {\rm Chemistry} \\ {\rm Redox \ 8. Equation \ } \\ {\rm Equati$

ALLEN

 $Ex.11\ 2NaOH + H_{3}PO_{4} \rightarrow Na_{2}HPO_{4} + 2H_{2}O$

Base Acid

Sol: valence factor of acid = 2

here one of molecule of H_3PO_4 replaced two OH^- from NaOH therefore v.f. for H_3PO_4 is = 2

$$E = \frac{\text{mol.wt.of } H_3 PO_4}{2}$$

 $Ex.12 Al(OH)_3 + HCl \rightarrow Al(OH)_2Cl + H_2O$

Base Acid

Sol: valence factor of base = 1

here one of molecule of Al(OH)₃ replaced one H⁺ from HCl therefore v.f. for Al(OH)₃ is = 1

$$E = \frac{\text{mol. wt. of Al(OH)}_3}{1}$$

8.4 For Salts:

v.f. = Total number of positive charge or negative charge present into the compound.

Solved Examples:

$$Na,CO_3$$

$$Fe_2(SO_4)_3(2Fe^{3+} + 3SO_4^{2-})$$

$$FeSO_{4}.7H_{2}O$$

$$2 \times 3 = 6$$

E.
$$\frac{M}{2}$$

$$\frac{M}{6}$$

$$\frac{M}{2}$$

8.5 Eq. wt. of oxidising / reducing agents in redox reaction :

The equivalent weight of an oxidising agent is that weight which accepts one mole electron in a chemical reaction.

(a) Equivalent wt. of an oxidant (get reduced)

$$= \frac{\text{Mol.wt.}}{\text{No. of electrons gained by one mole}}$$

Ex.14 In acidic medium

$$6e^- + Cr_2O_7^{2-} + 14H^+ \longrightarrow 2Cr^{3+} + 7H_2O$$

Eq. wt. of
$$K_2Cr_2O_7 = \frac{\text{Mol. wt of } K_2Cr_2O_7}{6} = \frac{\text{Mol. wt.}}{6}$$

Note: [6 in denominator indicates that 6 electrons were gained by $\operatorname{Cr_2O_7^{2-}}$ as it is clear from the given balanced equation]

(b) Similarly equivalent wt. of a reductant (gets oxidised)

$$= \frac{\text{Mol. wt.}}{\text{No. of electrons lost by one mole}}$$

Ex.15 In acidic medium,

$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^{-}$$

Here, Total electrons lost = 2

So, eq. wt. =
$$\frac{\text{Mol. wt.}}{2}$$

- In different condition a compound may have different equivalent weights. Because, it (c) depends upon the number of electrons gained or lost by that compound in that reaction.
- $MnO_4^- \longrightarrow Mn^{2+}$ (acidic medium) **Ex.15** (i) (+7)(+2)

Here 5 electrons are taken so eq. wt. = $\frac{\text{Mol.wt.of KMnO}_4}{5} = \frac{158}{5} = 31.6$

(ii) $MnO_4^- \longrightarrow Mn^{+4}$ (neutral medium) (+4)

Here, only 3 electrons are gained, so eq. wt. = $\frac{\text{Mol.wt.of KMnO}_4}{3} = \frac{158}{3} = 52.7$

 $MnO_4^- \longrightarrow MnO_4^{-2}$ (alkaline medium) (iii) (+6)

Here, only one electron is gained, so eq. wt. = $\frac{\text{Mol.wt.of KMnO}_4}{1} = 158$

Note: It is important to note that KMnO₄ acts as an oxidant in every medium although with different strength which follows the order.

acidic medium > neutral medium > alkaline medium

$$Ex.16 2S_2O_3^{--} \longrightarrow S_4O_6^{--} + 2e^{-}$$

(Reducing agent)

equivalent weight of $S_2O_3^{--} = \frac{2M}{2} = M$

- **Questions based on Equivalent weight:**
- 1. Molecular weight of KMnO₄ in acidic medium and neutral medium will be respectively:
 - (A) $7 \times$ equivalent wt. and $2 \times$ equivalent wt.
- (B) $5 \times$ equivalent wt. and $3 \times$ equivalent wt.
- (C) $4 \times$ equivalent wt. and $5 \times$ equivalent wt.
- (D) $2 \times$ equivalent wt. and $4 \times$ equivalent wt.
- 2. In acidic medium, equivalent weight of $K_2Cr_2O_2$ (Mol. wt. = M) is –
 - (A) M/3
- (B) M/4
- (C) M/6
- (D) M/2

Answers:

(1) B

(2) A

(3) C

Z/node06/2020-21(B0B0-BA))Kdat/JEE(Advanced)/Wodule Coding (V-Tag)/Nutrure\Chemistry/Redox & Equivalent Concept/Eng/01_Theary E

9. NORMALITY

Normality of solution is defined as the number of equivalent of solute present in one litre (1000 mL) solutions. Let a solution is prepared by dissolving W g of solute of eq. wt. E in V mL water.

- No. of equivalent of solute = $\frac{W}{E}$
- V mL of solution have $\frac{W}{E}$ equivalent of solute
- 1000 mL solution have $\frac{W \times 1000}{E \times VmL}$
- Normality (N) = $\frac{W \times 1000}{E \times VmL}$
- **♦** Normality (N) = Molarity × Valence factor

Normality (N) = molarity \times Valence factor (n)

or
$$N \times V$$
 (in mL) = $M \times V$ (in mL) \times n

or milli equivalents = millimoles \times n

10. LAW OF EQUIVALENCE

The law states that one equivalent of an element combine with one equivalent of the other, and in a chemical reaction equivalent and mill equivalent of reactants react in equal amount to give same no. of equivalent or milli equivalents of products separately.

According:

(i) $aA + bB \rightarrow mM + nN$

m.eq of A = m.eq of B = m.eq of M = m.eq of N

(ii) In a compound M_vN_v

 $m.eq of M_x N_y = m.eq of M = m.eq of N$

Ex.17 The number of moles of oxalate ions oxidized by one mole of MnO_4^- ion in acidic medium.

(A)
$$\frac{5}{2}$$

$$(B)$$
 $\frac{2}{5}$

(C)
$$\frac{3}{5}$$

(D)
$$\frac{5}{3}$$

Sol: Equivalents of $C_2O_4^{2-}$ = equivalents of MnO_4^{-}

$$x \text{ (mole)} \times 2 = 1 \times 5$$

$$x = \frac{5}{2}$$

Ex.18 What volume of 6 M HCl and 2 M HCl should be mixed to get two litre of 3 M HCl?

Sol. Let, the volume of 6 M HCl required to obtain 2 L of 3M HCl = x L

 \therefore Volume of 2 M HCl required = (2 - x) L

$$\mathbf{M}_{1}\mathbf{V}_{1} \quad + \quad \mathbf{M}_{2}\mathbf{V}_{2} \quad = \quad \mathbf{M}_{3}\mathbf{V}_{3}$$

6M HCl 2M HCl 3M HCl

$$6 \times (x) + 2 \times (2 - x) = 3 \times 2$$

$$\Rightarrow$$
 6x + 4 - 6x = 6 \Rightarrow 4x = 2

$$x = 0.5 L$$

Hence, volume of 6 M HCl required = 0.5 L

Volume of 2M HCl required = 1.5 L

Ex.19 In a reaction vessel, 1.184 g of NaOH is required to be added for completing the reaction. How many millilitre of 0.15 M NaOH should be added for this requirement?

Sol. Amount of NaOH present in 1000 mL of 0.15 M NaOH = $0.15 \times 40 = 6$ g

∴ 1 mL of this solution contain NaOH =
$$\frac{6}{1000} \times 10^{-3}$$
 g

:. 1.184 g of NaOH will be present in =
$$\frac{1}{6 \times 10^{-3}} \times 1.184 = 197.33 \text{ mL}$$

Ex.20 What weight of Na_2CO_3 of 85% purity would be required to prepare 45.6 mL of 0.235N H_2SO_4

Sol. Meq. of Na₂CO₃ = Meq. of
$$H_2SO_4 = 45.6 \times 0.235$$

$$\therefore \frac{W_{Na_2CO_3}}{E_{Na_2CO_2}} \times 1000 = 45.6 \times 0.235$$

$$\Rightarrow \frac{W_{Na_2CO_3}}{106/2} \times 1000 = 45.6 \times 0.235$$

$$\therefore W_{Na_2CO_3} = 0.5679 g$$

For 85 g of pure Na_2CO_3 , weighed sample = 100 g

$$\therefore \qquad \text{For } 0.5679 \text{ g of pure Na}_2\text{CO}_3, \text{ weighed sample} = \frac{100}{85} \times 0.5679$$

$$= 0.6681 g$$

10.1 Drawbacks of Equivalent concept:

(i) Since equivalent weight of a substance for example oxidising or reducing agent may be variable hence it is better to use mole concept.

e.g.
$$5e^- + 8H^+ + MnO_4^- \rightarrow Mn^{2+} + 2H_2O$$

$$\therefore \qquad \text{Eq. wt of MnO}_4^- = \frac{\text{MnO}_4^-(\text{mol.wt.})}{5}$$

e.g.
$$3e^{-} + 2H_{2}O + MnO_{4}^{-} \rightarrow MnO_{2} + 4OH^{-}$$

$$\therefore \qquad \text{Eq. wt. of } MnO_4^- = \frac{MnO_4^-}{3}$$

Thus the no. of equivalents of MnO_4^- will be different in the above two cases but no. of moles will be same.

E

(ii) Normality of any solution depends on reaction while molarity does not.

For example.

Consider 0.1 mol KMnO₄ dissolved in water to make 1L solution. Molarity of this solution is 0.1 M. However, its normality is not fixed. It will depend upon the reaction in which KMnO₄ participates, e.g. If KMnO₄ forms Mn²⁺, normality = 0.1 × 5 = 0.5 N. This same sample of KMnO₄, if employed in a reaction giving MnO₂ as product (Mn in +4 state) will have normality $0.1 \times 3 = 0.3$ N.

- (iii) The concept of equivalents is handy, but it should be used with care. One must never equate equivalents in a sequence which involves same element in more than two oxidation states. Consider an example KIO₃ reacts with KI to liberate iodine and liberated iodine is titrated with standard hypo solution, The reaction are
- (i) $IO_3^- + I^- \longrightarrow I_2$
- (ii) $I_2 + S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + I^$ meq of hypo = meq of I_2 = meq of IO_3^- + meq of $I^ \therefore IO_3^-$ react with $I^- \Rightarrow$ meq of IO_3^- = meq of I^-
- meq of hypo = $2 \times \text{meq of IO}_3^-$

This is wrong. Note that I₂ formed by (i) have v.f. = 5/3 & reacted in equation (ii) have v.f. = 2.

:: v.f. of I_2 in both the equation are different therefore we cannot equate m.eq is sequence. In this type of case students are advised to use mole concept.

Ex.21 How many milliliters of 0.02000 M KMnO $_4$ solution would be required to exactly titrate 25.00 mL of 0.2000 M Fe(NO $_3$) $_2$ solution.

Sol: Method - 1: Mole concept method

Starting with 25.00 mL of 0.2000MFe²⁺, we can write.

Millimoles of Fe²⁺ = 25.00×0.2000

and in volume V (in milliliters of the MnO₄)

Millimoles of $MnO_4^- = V(0.02000)$

The balanced reaction is:

$$MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

This requires that at the equivalent point,

$$\frac{V(0.02000)}{1} = \frac{(25.00)(0.2000)}{5}$$
 V = 50.00 mL

Method - 2 : Equivalent Method :

Equivalents of $MnO_4^- = 5 \times moles of MnO_4^-$

Normality $MnO_4^- = 5 \times molarity of MnO_4^-$

For Fe²⁺, moles and equivalents are equal,

At the equivalence point,

Equivalents of MnO_4^- = Equivalents of Fe^{2+}

or
$$V_{MnO_4^-} \times Normality of MnO_4^-$$

= $V_{Fe^{2+}} \times Normality of Fe^{2+}$

=
$$V_{E_0^{2+}} \times \text{Normality of Fe}^{2+}$$

For 0.02000 M MnO $_4^-$ solution

Normality of MnO $_4^-$ = (5) (0.02000) = 0.1 N and for 0.2000 M Fe $^{2+}$ solution

Normality of Fe²⁺ = 0.2000 N
$$V_{MnO_4^-} = (25.00 \text{ mL}) \left(\frac{0.2000}{0.1000} \right) = 50.00 \text{ mL}$$

10.2 FOR ACID-BASE (NEUTRALIZATION REACTION) OR REDOX REACTION

 $N_1V_1 = N_2V_2$ is always true.

But $M_1V_1 = M_2V_2$ (may or may not be true)

But $M_1 \times n_1 \times V_1 = M_2 \times n_2 \times V_2$ (always true where n terms represent n-factor).

10.3 SOME OXIDIZING AGENTS/REDUCING AGENTS WITH EQ. WT.

Species	Changed to	Reaction	Electrons exchanged or change in O.N.	Eq. wt.
MnO ₄ -(O.A.)	Mn ⁺² in acidic medium	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	5	$E = \frac{M}{5}$
$MnO_4^-(O.A.)$	MnO ₂	$MnO_4^- + 3e^- + 2H_2O \longrightarrow MnO_2 + 4OH$	3	$E = \frac{M}{3}$
$MnO_4^-(O.A.)$	${ m MnO_4^{2-}}$ in basic medium	$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	1	$E = \frac{M}{1}$
Cr ₂ O ₇ ²⁻ (O.A.)	Cr ³⁺ in acidic medium	$\text{CrO}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \longrightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{C}$	6	$E = \frac{M}{6}$
MnO ₂ (O.A.)	Mn ²⁺ in acidic medium	$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	2	$E = \frac{M}{2}$
Cl ₂ (O.A.) in bleaching powder	Cl ⁻	$Cl_2 + 2e^- \longrightarrow 2Cl^-$	2	$E = \frac{M}{2}$
CuSO ₄ (O.A.) in iodometric titration	Cu ⁺	$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	1	$E = \frac{M}{1}$
$S_2O_3^{2-}(R.A.)$	$S_4O_6^{2-}$	$2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$	2	$E = \frac{2M}{2} = M$
		(for ty	wo molecules)	
H ₂ O ₂ (O.A.)	H ₂ O	$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$	2	$E = \frac{M}{2}$
H ₂ O ₂ (R.A.)	O_2	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^-$ (O.N. of oxygen in H_2O_2 is -1 per atom)	2	$E = \frac{M}{2}$
Fe ²⁺ (R.A.)	Fe ³⁺	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$	1	$E = \frac{M}{1}$

Ex.22 To find the n-factor in the following chemical changes.

(i)
$$KMnO_{A} \xrightarrow{H^{+}} Mn^{2+}$$

$$(ii) \quad KMnO_{4} \xrightarrow{H_{2}O} Mn^{44}$$

(iii)
$$KMnO_4 \xrightarrow{OH} Mn^{6+}$$

$$\begin{array}{cccc} (ii) & KMnO_4 & \xrightarrow{\quad H_2 \bigcirc} & Mn^{4+} \\ (iv) & K_2Cr_2O_7 & \xrightarrow{\quad H^+ \longrightarrow} & Cr^{3+} \\ (vi) & FeSO_4 & \rightarrow & Fe_2O_3 \end{array}$$

$$(v) \qquad C_2 O_4^{2-} \rightarrow CO_2$$

(vi)
$$FeSO_4 \rightarrow Fe_2O_3$$

$$(v\ddot{u})$$
 $Fe_{2}O_{3} \rightarrow FeSO_{4}$

In this reaction, KMnO₄ which is an oxidizing agent, itself gets reduced to Mn²⁺ under acidic Sol. (i) conditions.

$$n = |1 \times (+7) - 1 \times (+2)| = 5$$

In this reaction, KMnO₄ gets reduced to Mn⁴⁺ under neutral or slightly (weakly) basic (ii)conditions.

$$n = |1 \times (+7) - 1 \times (+4)| = 3$$

In this reaction, KMnO₄ gets reduced to Mn⁶⁺ under basic conditions. (iii) $n = |1 \times (+7) - 1 \times (+6)| = 1$

In this reaction, K₂Cr₂O₇ which acts as an oxidizing agent reduced to Cr³⁺ under acidic (iv) conditions. (It does not react under basic conditions.)

$$n = |2 \times (+6) - 2 \times (+3)| = 6$$

In this reaction, $C_2O_4^{2-}$ (oxalate ion) gets oxidized to CO_2 when it is reacted with an (v) oxidizing agent.

$$n = |2 \times (+3) - 2 \times (+4)| = 2$$

In this reaction, ferrous ions get oxidized to ferric ions. (vi)

$$n = |1 \times (+2) - 1 \times (+3)| = 1$$

In this reaction, ferric ions are getting reduced to ferrous ions. (vi)

$$n = |2 \times (+3) - 2 \times (+2)| = 2$$

Ex.23 Calculate the molar ratio in which the following two substances would react?

 $Ba_3(PO_2)$, and $AlCl_3$

Sol. n-factor of Ba₃(PO₄)₂ = 3 × (+2) = 6 = n₁

While n-factor of $AlCl_3 = 1 \times (+3) = 3 = n_2$

$$\frac{n_1}{n_2} = \frac{6}{3}$$
 If $\frac{n_1}{n_2} = \frac{x}{y}$

Molar ratio = $\frac{y}{x}$ (inverse of equivalent ratio)

:. Molar ratio in which $Ba_3(PO_4)_2$ and $AlCl_3$ will react = 3 : 6 = 1 : 2

10.4 APPLICATIONS OF THE LAW OF EQUIVALENCE

10.4.1 Simple Titration

In this, we can find the concentration of unknown solution by reacting it with solution of known concentration (standard solution).

For example, let there be a solution of substance A of unknown concentration. We are given solution of another substance B whose concentration is known (N_1). We take a certain known volume of A in a flask (V₂) and then we add B to A slowly till all the A is consumed by B (this can be known with the help of indicators). Let us, assume that the volume of B consumed is V₁. According to the law of equivalence, the number of g equivalents of B at the end point.

E

 \therefore N₁V₁ = N₂V₂, where N₂ is the conc. of A.

From this we can calculate the value of N_2 .

- Ex.24 1.20 g sample of Na₂CO₃ and K₂CO₃ was dissolved in water to form 100 mL of a Solution. 20 mL of this solution required 40 mL of 0.1 N HCl for complete neutralization. Calculate the weight of Na₂CO₃ in the mixture. If another 20 mL of this solution is treated with excess of BaCl₂ what will be the weight of the precipitate?
- **Sol.** Let, weight of $Na_2CO_3 = x g$

Weight of
$$K_2CO_3 = y g$$

$$x + y = 1.20 \text{ g}$$

For neutralization reaction of 100 mL

Meq. of
$$Na_2CO_3 + Meq.$$
 of $K_2CO_3 = Meq.$ of HCl

$$\Rightarrow \frac{x}{106} \times 2 \times 1000 + \frac{y}{138} \times 2 \times 1000 = \frac{40 \times 0.1 \times 100}{20}$$

$$\therefore$$
 69 x + 53 y = 73.14

From Eqs. (i) and (ii), we get

$$x = 0.5962 g$$

$$y = 0.604 g$$

Solution of Na_2CO_3 and K_2CO_3 gives ppt. of $BaCO_3$ with $BaCl_2$

(Meq. of Na, CO_3 + Meq. of K_2CO_3) in 20 mL = Meq. of Ba CO_3

$$\Rightarrow$$
 Meq. of HCl for 20 mL mixture = Meq. of BaCO₃

$$\Rightarrow$$
 Meq. of BaCO₃ = 40 × 0.1 = 4

$$\frac{W_{BaCO_3}}{M_{BaCO_3}} \times 1000 = 40 \times 0.1 = 4$$

$$\frac{W_{BaCO_3}}{197} \times 2 \times 1000 = 4$$

$$\therefore W_{BaCO_3} = 0.394 g$$

10.4.2 BACK TITRATION

Back titration is used to calculate % purity of a sample. Let us assume that we are given an impure solid substance C weighing w gs and we are asked to calculate the percentage of pure C in the sample. We will assume that the impurities are inert. We are provided with two solutions A and B, where the concentration of B is known (N_1) and that of A is not known. This type of titration will work only if the following condition is satisfied, i.e. the nature of compounds A, B and C should be such that A and B can react with each other. A and C can react with each other but the product of A and C should not react with B.

Now, we take a certain volume of A in a flask (the g equivalents of A taken should be \geq g equivalents of C in the sample and this can be done by taking A in excess). Now, we perform a simple titration using B. Let us assume that the volume of B used is V_1 . In another beaker, we again take the solution of A in the same volume as taken earlier. Now, C is added to this and after the reaction is completed, the solution is being titrated with B. Let us assume that the volume of B used up is V_2 . Gram equivalents of B used in the first titration = V_1V_1 .

2 JEE-Chemistry

- :. gm. equivalents of A initially = N_1V_1 gm. equivalents of B used in the second titration = N_1V_2
- \therefore gm. equivalents of A left in excess after reacting with $C = N_1 V_2$ gm. equivalents of A that reacted with $C = N_1 V_1 N_1 V_2$

If the n-factor of C is x, then the moles of pure C = $\frac{N_1V_1 - N_1V_2}{x}$

:. The weight of C =
$$\frac{N_1V_1 - N_1V_2}{x}$$
 × Molecular weight of C

$$\therefore \text{ Percentage of C} = \frac{N_1 V_1 - N_1 V_2}{x} \times \frac{\text{Molecular wt. of C}}{w} \times 100$$

□ SOME REDOX TITRATIONS (EXCLUDING IODOMETRIC / IODIMETRIC)

Estimation of	By titrating with	Reactions	Relation between O.A. and R.A.
Fe ²⁺	MnO ₄	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$	$5\text{Fe}^{2+} \equiv \text{MnO}_4^-$
		$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	Eq. wt. $Fe^{2+} = M/1$
			Eq. wt. $MnO_4^- = M/5$
Fe ²⁺	Cr ₂ O ₇ ²⁻	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$	$6Fe^{2+} \equiv Cr_2O_7^{2-}$
		$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	Eq. wt. $Cr_2O_7^{2-} = M/6$
C ₂ O ₄ ²⁻	MnO ₄	$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$ $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{+2} + 4H_2O$	$5C_2O_4^{2-} \equiv 2MnO_4^{-}$ Eq. wt. $C_2O_4^{2-} = M/2$ Eq. wt. $MnO_4^{-} = M/5$
H ₂ O ₂	MnO ₄	$H_2O_2 \longrightarrow 2H^+ + O_2 + 2e^-$ $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	$5H_2O_2 \equiv 2MnO_4^-$ Eq. wt. $H_2O_2 = M/2$
As_2O_3 AsO_3^{3-}	MnO ₄ ⁻ BrO ₃ ⁻	$As_2O_3 + 5H_2O \rightarrow 2AsO_4^{3-} + 10H^+ + 4e^-$ $AsO_3^{3-} + H_2O \longrightarrow AsO_4^{3-} + 2H^+ + 2e^-$	Eq. wt. $MnO_4^- = M/5$ Eq. wt. $As_2O_3 = M/4$ Eq. wt. $AsO_3^{3-} = M/2$
		$BrO_3^- + 6H^+ + 6e^- \longrightarrow Br^- + 3H_2O$	Eq. wt. $BrO_3^- = M/6$

10.4.3 Iodometric and Iodimetric Titration:

The reduction of free iodine to iodide ions and oxidation of iodide ions to free iodine occurs in these titrations.

$$I_2 + 2e^- \longrightarrow 2I^-$$
 (reduction)

$$2I^- \longrightarrow I_2 + 2e^-$$
 (oxidation)

These are divided into two types:

(i) Iodometic Titration:

In iodometric titrations, an oxidizing agent is allowed to react in neutral medium or in acidic medium with excess of potassium iodide to liberate free iodine.

$$KI + oxidizing agent \longrightarrow I$$

Free iodine is titrated against a standard reducing agent usually with sodium thiosulphate. Halogen, dichromates, cupric ion, peroxides etc., can be estimated by this method.

$$\begin{split} &I_2 + 2 \text{NaS}_2 \text{O}_3 \longrightarrow 2 \text{NaI} + \text{Na}_2 \text{S}_4 \text{O}_6 \\ &2 \text{CuSO}_4 + 4 \text{KI} \longrightarrow \text{Cu}_2 \text{I}_2 + 2 \text{K}_2 \text{SO}_4 + \text{I}_2 \\ &\text{K}_4 \text{Cr}_2 \text{O}_7 + 6 \text{KI} + 7 \text{H}_2 \text{SO}_4 \longrightarrow \text{Cr}_2 (\text{SO}_4)_3 + 4 \text{K}_2 \text{SO}_4 + 7 \text{H}_2 \text{O} + 3 \text{I}_2 \end{split}$$

(ii) Iodimetric Titration

These are the titrations in which free iodine is used as it is difficult to prepare the solution of iodine (volatile and less soluble in water), it is dissolved in KI solution:

$$KI + I_2 \longrightarrow KI_3$$
 (Potassium triiodide)

This solution is first standardized before using with the standard solution of substance such as sulphite, thiosulphate, arsenite etc, are estimated.

In iodimetric and iodometric titration, starch solution is used as an indicator. Starch solution gives blue or violet colour with free iodine. At the end point, the blue or violet colour disappears when iodine is completely changed to iodide.

E

ALLEN

□ SOME IODOMETRIC TITRATIONS (TITRATING SOLUTIONS IS Na₂S₂O₃.5H₂O)

Estimation of	Reaction	Relation between O.A. and R.A.
I_2	$I_2 + 2Na_2S_2O_3 \longrightarrow 2Nal + Na_2S_4O_6$	$I_2 = 2I = 2Na_2S_2O_3$
	or	Eq. wt. of $Na_2S_2O_3 = M/1$
	$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$	
CuSO ₄	$2\text{CuSO}_4 + 4\text{KI} \longrightarrow 2\text{Cu}_2\text{I}_2 + 2\text{K}_2\text{SO}_4 + \text{I}_2$	$2CuSO_4 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$
	$Cu^{2+} + 4I^{-} \longrightarrow Cu_{2}I_{2} + I_{2}$	Eq. wt. of $CuSO_4 = M/1$
	(White ppt.)	
	$CaOCl_2 + H_2O \longrightarrow Ca(OH)_2 + Cl_2$	
CaOCl ₂	$Cl_2 + 2KI \longrightarrow 2KCl + I_2$ $CaOCl_2 = Cl_2 = I_2 = 2I = 2Na_2S_2O_3$	
	$Cl_2 + 2I^- \longrightarrow 2Cl^- + I_2$	Eq. wt. of $CaOCl_2 = M/2$
	$MnO_2+4HCl(conc) \xrightarrow{\Delta} MnCl_2+Cl_2+2H_2O$	
	$Cl_2 + 2KI \longrightarrow 2KCl + I_2$	
MnO_2	or	$MnO_2 = Cl_2 = I_2 = 2I = 2Na_2S_2O_3$
	$MnO_2 + 4H^+ + 2Cl^- \longrightarrow Mn^{2+} + 2H_2O + Cl_2$	Eq. wt. of $MnO_2 = M/2$
	$Cl_2 + 2I^- \longrightarrow I_2 + 2Cl^-$	
IO ₃	$IO_3^- + 5I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$	$IO_3^- \equiv 3I_2 \equiv 6I \equiv 6Na_2S_2O_3$
		Eq. wt. of $IO_3^- = M/6$
H_2O_2	$H_2O_2 + 2I^- + 2H^+ \longrightarrow I_2 + 2H_2O$	$H_2O_2 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$
		Eq. wt. of $H_2O_2 = M/2$
Cl_2	$Cl_2 + 2I^- \longrightarrow 2CI^- + I_2$	$Cl_2 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$ Eq. wt. of $Cl_2 = M/2$
O ₃	$O_3 + 6I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$	$O_3 = 3I_2 = 6I = 6Na_2S_2O_3$ Eq. wt. of $O_3 = M/6$
Cr ₂ O ₇ ²⁻	$Cr_2O_7^{2-} + 14H^+ + 6I^- \longrightarrow 3I_2 + 2Cr^{3+} + 7H_2O$	$Cr_2O_7^{2-} \equiv 3I_2 \equiv 6I$
		Eq. wt. of $\operatorname{Cr_2O_7^{2-}}$
MnO ₄	$2MnO_4^- + 10I^- + 16H^+ \longrightarrow 2MnO_4^- + 5I_2 + 8H_2O$	$2MnO_4^- \equiv 5I_2 \equiv 10I$
		Eq. wt. of $MnO_4^- = M/5$
BrO ₃	$BrO_3^- + 6I^- + 6H^+ \longrightarrow Br^- + 3I_2 + 3H_2O$	$BrO_3^- \equiv 3I_2 \equiv I_2$
		Eq. wt. of $BrO_3^- = M/6$
As(V)	$H_3AsO_4 + 2\Gamma + 2H^+ \longrightarrow H_3AsO_3 + H_2O + I_2$	$H_3 AsO_4 \equiv I_2 \equiv 2I$
		Eq. wt. of $H_3 AsO_4 = M/2$

■ SOME IODIMETRIC TITRATION (TITRATING SOLUTIONS IS I, IN KI)

Estimation of	Reaction	Relation between O.A. and R.A.
H ₂ S	$H_2S + I_2 \longrightarrow S + 2I^- + 2H^+$	$H_2S \equiv I_2 \equiv 2I$
(in acidic medium)		Eq. wt. of $H_2S = M/2$
SO ₃ ²⁻	$SO_3^{2-} + I_2 + H_2O \longrightarrow SO_3^{2-} + 2I^- + 2H^+$	$SO_3^{2-} \equiv I_2 \equiv 2I$
(in acidic medium)		Eq. wt. of $SO_3^{2-} = M/2$
Sn ²⁺	$\operatorname{Sn}^{2+} + \operatorname{I}_2 \longrightarrow \operatorname{Sn}^{4+} + 2\operatorname{I}^{-}$	$Sn^{2+} \equiv I_2 \equiv 2I$
(in acidic medium)		Eq. wt. of $Sn^{2+} = M/2$
As(III) (at pH = 8)	$H_2AsO_3^- + I_2 + H_2O \longrightarrow$	$H_2 AsO_3^- \equiv I_2 \equiv 2I$
	$HAsO_4^{2-} + 2I^- + 2H^+$	Eq. wt. of $H_2 As O_3^- = M/2$
N_2H_4	$N_2H_4 + 2I_2 \longrightarrow N_2 + 4H^+ + 4I^-$	$N_2H_4 \equiv 2I_2 \equiv 4I$
		Eq. wt. of $N_2H_4 = M/4$

11. Hardness of water:

Hard water does not give lather with soap. Water free from soluble salts of calcium and magnesium is called **Soft water**. It gives lather with soap easily.

Hard water forms scum/precipitate with soap. Soap containing sodium stearate ($C_{17}H_{35}COONa$) reacts with hard water to precipitate out Ca/Mg stearate.

$$2C_{17}H_{35}COONa(aq) + M^{2+}(aq) \rightarrow (C_{17}H_{35}COO)_2M \downarrow +2Na^+(aq); M \text{ is Ca/Mg}$$

Hardness of water is of two types

- (a) Temporary Hardness
- (b) Permanent Hardness

Temporary Hardness:-

This is due to presence of bicarbonate of calcium and magnesium. Rain water dissolves a small quantities of CO₂ from the atmospher forming a very dilute solution of carbonic acid.

This water attacks Ca and Mg carbonate in any rock

$$CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$$

Temporary hardness in water is easily removed by boiling, as the bicarbonates decomposes readily and the insoluble carbonates are precipitated.

$$Ca(HCO_3)_2 \xrightarrow{Boil} CaCO_3 + H_2O + CO_2$$

$$(Insoluble)$$

$$Mg(HCO_3)_2 \xrightarrow{Boil} MgCO_3 + H_2O + CO_2$$

$$(Insoluble)$$

Temporarily hardness can also be removed by clark's process which involves the addition of slaked lime Ca(OH)

$$Ca(HCO_3)_2 + Ca(OH)_2 \xrightarrow{Boil} 2CaCO_3 + 2H_2O$$
(Insoluble)

Permanent Hardness: Permanent hardness is due to presence of sulphates and chlorides of both calcium and magnesium. This type of hardness cannot be removed by boiling or by Ca(OH)₂;. Substance used to remove the hardness of water are known as water softener. This various water softeners are -

(i) Washing soda:- It removes both the temporary and permanent hardness by converting soluble Ca and Mg compounds into insoluble Carbonates.

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2NaCl_3$$

$$C aSO_4 + Na_2CO_3 \longrightarrow CaCO_3 + Na_2SO_4$$

$$Ca(HCO_3)_2 + Na_2CO_3 \longrightarrow CaCO_3 + NaHCO_3$$

(Insoluble) (Insoluble)

(ii) **Permutit:** Permutit is technical name given to certain hydrated silicates of aluminium and sodium.or sodium alumunium orthosilicate or sodium zeolite.

Example :
$$Na_2 Al_2 Si_2 O_8 xH_2 O$$
.

Na, Al, Si,
$$O_8 \times H_2O + Ca^{+2} \longrightarrow Ca \text{ Al, Si, } O_8 \times H_2O + 2Na^{\oplus}$$

Na, Al, Si,
$$O_8$$
 xH, $O + Mg^{+2} \longrightarrow Mg$ Al, Si, O_8 xH, $O + 2Na^{\oplus}$

These ions can be re-exchanged by treating it with brine (NaCl) solution.

$$Ca Al_2 Si_2 O_8 xH_2O + 2NaCl \longrightarrow Na_2 Al_2 Si_2 O_8 xH_2O + CaCl_2$$

This method is useful for the removal of both temporary and permanent hardness of water.

(iii) **CALGON:** The complex salt of metaphosphoric acid, sodium hexametaphosphate $(Na_4(PO_3)_6)$ is called Calgon. It is represented as $Na_2[Na_4(PO_3)_6]$.

$$2\text{CaSO}_4 + \text{Na}_2[\text{Na}_4(\text{PO}_3)_6] \longrightarrow \text{Na}_2[\text{Ca}_2(\text{PO}_3)_6] + \text{Na}_2\text{SO}_4$$

$$2MgSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Mg_2(PO_3)_6] + Na_2SO_4$$

(iv) Ion exchange Resins:- Ion exchange resins are the most popular water softener thease days. This resins are synthetic substance. The cation exchanger consists of granular insoluble organic acid resins having giant molecules with -SO₃H or -COOH groups while the anion exchanges contains giant organic molecules with basic groups derived from amine. Ion exchange resins removes all soluble mineral from water.

Cation exchanger

Cation exchanger

Remove cation like

Remove anion like

SO₄²⁻, Cl⁻ or NO₃⁺

$$Na^+$$
, Mg^{2+} or Ca^{2+}

and furnish H+

and furnish OH-

$$Ca^{2+} + RH_2 \longrightarrow$$

$$R_2Ca + 2H^+$$

Z/nodbO6/2020:21(8080-BA)/Kda/JEE(Advanced)/Module Coding (V-Tog)/Nurture/Chemistry/Redox & Equivalent Concept/Eng/01_Theory

E

The water coming from cation exchanger is acidic due to H®. This water is then passed through another bed containing anion exchanger. This exchanger removes anion like Cl^- , $SO_4^{\ 2^-}$, NO_3 by exchanging with OH– ions.

Reaction at Cation exchanger:

$$Ca^{+2} + RH_2 \longrightarrow R_2Ca + 2H^{\oplus}$$

 $Mg^{+2} + RH_2 \longrightarrow R_2Mg + 2H^{\oplus}$

Reaction at Anion exchanger:

$$R.(OH)_2 + Cl^- \longrightarrow RC1_2 + OH^-$$

 $R.(OH)_2 + SO_4^{2-} \longrightarrow RSO_4 + OH^-$

NOTE: Degree of Hardness of water is measured in terms of ppm of CaCO₃ which is defined as number of parts of CaCO₃ by mass present in one million parts by mass of water whose equivalent is equal to the gram equivalent of various calcium & magnesium salts.

For **example** consider the sample of hard water which is found to contain 36 mg of MgSO₄ per kg of water.

gm equivalent of CaCO₃ = gm eq. of MgSO₄

$$\frac{W_{CaCO_3}}{100} \times 2 = \frac{36 \times 10^{-3}}{120} \times 2$$

$$W_{CaCO_3} = 3 \times 10^{-2} \text{gm}$$

degree of hardness = ppm of CaCO₃ =
$$\frac{3 \times 10^{-2}}{1000} \times 10^{6} = 30$$

12. GLOSSARY

Aliquot. A portion of the whole, usually a simple fraction. A portion of a sample withdraw from a volumetric flask with a pipet is called an aliquot.

Analytical concentration. The total number of moles per litre of a solute regardless of any reactions that might occur when the solute dissolves. Used synonymously with formality.

Equivalent. The amount of a substance which furnishes or reacts with 1 mol of H^+ (acid-base), 1 mol of electrons (redox), or 1 mol of a univalent cation (precipitation and complex formation).

Equivalent weight. The weight in grams of one equivalent of a substance.

Equivalence point. The point in a titration where the number of equivalents of titrant is the same as the number of equivalents of analyte.

End point. The point in a titration where an indicator changes color.

Formula weight. The number of formula weights of all the atoms in the chemical formula of a substance.

Formality. The number of formula weights of solute per litre of solution; synonymous with analytical concentration.

Indicator. A chemical substance which exhibits different colors in the presence of excess analyte or titrant.

Normality. The number of equivalents of solute per litre of solution.

Primary standard. A substance available in a pure form or state of known purity which is used in standardizing a solution.

Standardization. The process by which the concentration of a solution is accurately ascertained.

Standard solution. A solution whose concentration has been accurately determined.

Titrant. The reagent (a standard solution) which is added from a buret to react with the analyte.

SOME MORE SOLVED EXAMPLES

- **Ex.25** A 3.00 g sample containing Fe_3O_4 , Fe_2O_3 and an inert impure substance, is treated with excess of KI solution in presence of dilute H_2SO_4 . The entire iron is converted into Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to $100 \, \text{mL}$. A $20 \, \text{mL}$ of the diluted solution require $11 \, \text{mL}$ of $0.5 \, \text{M} \, \text{Na}_2 S_2 O_3$ solution to reduce the iodine present. A $50 \, \text{mL}$ of diluted solution after complete extraction of the iodine requires $12.80 \, \text{mL}$ of $0.25 \, \text{KMnO}_4$ solution in dilute H_2SO_4 medium for the oxidation of Fe^{2+} . Calculate the percentages of Fe_2O_3 and Fe_3O_4 in the original sample.
- Sol. Let number of moles of Fe₃O₄ is 'a' and no. of moles of Fe₂O₃ is 'b' in 3 gram sample.

Now, 'a' moles Fe₃O₄ means (a moles Fe₂O₃ + a mole of FeO)

So, in sample (a + b) moles Fe₂O₃ and 'a' mole FeO present.

$$\text{Fe}_2\text{O}_3 + \text{KI} + \xrightarrow{\text{H}_2\text{SO}_4} \text{FeSO}_4 + \text{I}_2 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O}$$

No. of gram equivalent of $Fe_2O_3 = no.$ of gram equivalent of I_2

$$n_{Fe_2O_3} \times n_{f(Fe_2O_3)} = n_{I_2} \times n_{f(I_2)}$$

$$(a+b) \times 2 = n_{I_2} \times 2$$

$$n_{I_2} = (a + b)$$
 moles.

Now, solution is diluted to 100 ml

So,
$$[I_2] = \frac{n}{V_{\text{little}}} = \frac{(a+b)}{100/1000} = 10(a+b)$$

$$[Fe^{2+}] = \left(\frac{n(Fe^{2+})}{V_{\rm litre}}\right) = \frac{(3a+2b)}{100/1000} = 10(3a+2b)$$

Now 20 ml of this solution titrated with 11 ml, 0.5 M Na₂S₂O₃

$$\rm I_2 + Na_2S_2O_3 \rightarrow NaI + Na_2S_4O_6$$

No. of gram equivalent of $I_2 = no.$ of gram equivalent of $Na_2S_2O_3$

$$(N \times V)_{I_2} = (N \times V)_{Na_2S_2O_3}$$

$$(\mathbf{M} \times \mathbf{n_f} \times \mathbf{V})_{\mathbf{I_2}} = (\mathbf{M} \times \mathbf{n_f} \times \mathbf{V})_{\mathbf{Na_2S_2O_3}}$$

$$10 (a + b) \times 2 \times 20 = 0.5 \times 1 \times 11$$

$$a + b = \frac{11}{800}$$
(i)

E

50 ml of solution after extraction of I₂ allowed to oxidation

$$Fe^{2+} + KMnO_4 + H_2SO_4 \rightarrow Fe^{3+} + MnSO_4 + K_2SO_4 + H_2O_4$$

no. of gram equivalent of Fe^{2+} = no. of gram equivalent of KMnO₄.

$$(M \times n_f \times V)_{Fe^{2+}} = (M \times n_f \times V)_{KMnO4}$$

$$10(3a + 2b) \times 1 \times 50 = 0.25 \times 5 \times 12.80$$

$$3a + 2b = \frac{16}{500}$$
(ii)

By (i) & (ii)

a = 0.0045 moles

b = 0.00925 moles

so %
$$\operatorname{Fe_2O_3} = \frac{\operatorname{Wt}(\operatorname{Fe_2O_3})}{\operatorname{Total}\operatorname{wt.}} \times 100 = \frac{b \times 160}{3} \times 100 = \frac{0.00925 \times 160}{3} \times 100 = 49.33\%.$$

%
$$\operatorname{Fe_2O_3} = \frac{\operatorname{Wt}(\operatorname{Fe_2O_3})}{\operatorname{Total\,wt.}} \times 100 = \frac{a \times 232}{3} \times 100 = \frac{0.0045 \times 232}{3} \times 100 = 34.8 \%$$

- **Ex.26** Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of $KMnO_4$ (20 mL) acidified with dilute H_2SO_4 . The same volume of $KMnO_4$ solution is just decolorized by 10 mL of $MnSO_4$ in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO_2 . The brown precipitate is dissolved in 10 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute H_2SO_4 . Write the equations involved in the reactions and calculate the molarity of H_2O_2 .
- **Sol.** Let molarity of H_2O_2 , solution is M_1

20 ml, M₁ molar H₂O₂ react with 20 ml KMnO₄ in H₂SO₄ solution

$$H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + H_2O + O_2$$

no. of gram equivalent of H_2O_2 = no. of gram equivalent of KMnO₄

$$(\mathbf{M} \times \mathbf{n}_{_{\mathrm{f}}} \times \mathbf{V})_{_{\mathbf{H}_{2}\mathbf{O}_{2}}} = (\mathbf{M} \times \mathbf{n}_{_{\mathrm{f}}} \times \mathbf{V})_{\mathrm{KMnO}_{4}}$$

$$M_1 \times 2 \times 20 = M_{KMnO_4} \times 5 \times 20$$
(i)

20 ml KMnO₄ decolourise by 10 ml MnSO₄ in neutral medium.

$$KMnO_4 + MnSO_4 + H_2O \rightarrow MnO_2 + H_2SO_4 + KHSO_4$$

no. of gram equivalent of $KMnO_4 = no.$ of gram equivalent of MnO_2

 $M_{KMnO_4} \times 3 \times 20ml = no. of gram equivalent of MnO_2$

$$M_{KMnO_4} \times 3 \times 20 \times 10^{-3} \ = \ n_{MnO_2} \times 6/5 \qquad \qquad(ii)$$

and obtained MnO₂ dissolved in 10 ml, 0.2 M Na₂C₂O₄

$$MnO_2 + Na_2C_2O_4 + H_2SO_4 \rightarrow MnSO_4 + CO_2 + Na_2SO_4 + H_2O_4$$

no. of gram equivalent of $MnO_2 = no.$ of gram equivalent of $Na_2C_2O_4$

$$n_{MnO_{2}} \times 2 = 0.2 \times 2 \times 10 \times 10^{-3}$$

$$n_{MnO_2} = 2 \times 10^{-3} \, moles$$

.....(iii)

From equaiton (ii)

$$M_{KMnO_4} \times 3 \times 20 \times 10^{-3} = 2 \times 10^{-3} \times \frac{6}{5}$$

$$M_{KMnO_4} = \frac{2}{50}$$

From equation (1)

$$\mathbf{M}_1 \times 2 \times 20 = \frac{2}{50} \times 5 \times 20$$

$$M_{1} = 0.1M$$

- Ex.27 One litre of a mixture of O_2 and O_3 ($O_3 \longrightarrow O_2 + O^{2-}$) at 1 atm and 273 K was allowed to react with an excess of acidified solution of KI. The iodine liberated required 40 ml of M/10 sodium thiosulphate solution for titration. What is the percent of ozone in the mixture? Ultraviolet radiation of wave length 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture?
- **Sol.** Let in 1 litre mixture x litre is O₂ and y litre is O₃ at NTP

excess KI reduce O_3 into O_2 and O^{2-}

$$KI + O_3 + H_2O \rightarrow I_2 + O_2 + KOH$$

no. of gram equivalent of $O_3 = no$. of gram equivalent of I_2

$$(\mathbf{n} \times \mathbf{n}_{f})_{O_{3}} = (\mathbf{n} \times \mathbf{n}_{f})_{I_{2}}$$

$$\frac{y}{22.4} \times 2 = n_{I_2} \times 2$$

$$n_{I_2} = \frac{y}{22.4}$$
(1)

Now, released I_2 required 40 ml , $\frac{1}{10}M$ $Na_2S_2O_3$

$$I_2 + Na_2S_2O_3 \rightarrow NaI + Na_2S_4O_6$$

No. of gram equivalent of $I_2 = no.$ of gram equivalent of $Na_2S_2O_3$

$$n_{I_2} \times 2 = \frac{1}{10} \times 1 \times 40 \times 10^{-3}$$

$$n_{I_2} = 2 \times 10^{-3} \text{ moles}$$

Now from equation (1)

$$\frac{y}{22.4} = 2 \times 10^{-3}$$

$$y = (44.8 \times 10^{-3})$$
 litre = 0.0448 litre

$$x = 1 - y = 1 - 0.0448 = 0.9552$$
 litre

% (by wt) =
$$\frac{\text{wt}(O_3)}{\text{wt.(total)}} \times 100$$

$$= \frac{n(O_3) \times 48}{n(O_3) \times 48 + n(O_3) \times 32} \times 100$$

$$= \frac{\frac{y}{22.4} \times 48}{\frac{y}{22.4} \times 48 + \frac{x}{22.4} \times 32} \times 100$$

$$= \frac{3y}{3y + 2x} \times 100$$

$$= \frac{3 \times 0.0448}{3 \times 0.048 + 2 \times 0.9552} \times 100$$

$$= \frac{0.1344}{2.0448} \times 100 = 6.57 \%$$

One photon required for breaking of one $\mathrm{O_3}$ bond in to $\mathrm{O_2}$ & O

$$O_3 \xrightarrow{hv} O_2 + O$$

So. no. of photon required = no. of O_3 bonds break

= no. of O₃ molecules

=
$$n_{O_3} \times N_A = \frac{0.0448}{22.4} \times 6 \times 10^{23}$$

= 1.2×10^{21} photons.

- **Ex.28** A mixture of FeO and Fe_2O_3 is reacted with acidified KMnO₄ solution having a concentration of 2/5 M, 100 mL of which was used. The solution was then titrated with Zn dust which converted Fe^{3+} of the solution to Fe^{2+} . The Fe^{2+} required 1000 mL of 2/15 M $K_2Cr_2O_7$ solution. Find the % by mol of FeO and Fe_2O_3 .
- **Sol.** Let no. of moles of FeO is x millimoles & Fe₂O₃ is y millimoles in mixture.

$$\text{FeO} + \text{KMnO}_4 + \text{H}_2\text{SO}_4 \rightarrow \text{MnSO}_4 + \text{Fe}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O}$$

no. of milligram equivalent of FeO = no. of milli gram equivalent of KMnO₄.

$$x \times 1 = \frac{2}{5} \times 5 \times 100$$

x = 200 m moles.

Zn - dust convert all Fe^{3+} to Fe^{2+}

So no. of millimoles of Fe^{2+} in solution is =(x + 2y).

$$Fe^{2+} + K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Fe^{3+} + K_2SO_4 + H_2O_4$$

E

32

no. of milli gram equivalent of Fe^{2+} = no. of milligram equivalent of $K_2Cr_2O_7$

$$(x + 2y) \times 1 = \frac{2}{15} \times 6 \times 1000$$

$$(200 + 2y) = \frac{2}{15} \times 1000$$

y = 300 millimoles.

% FeO (by moles) =
$$\frac{x}{x+y} \times 100 = \frac{200}{500} \times 100 = 40\%$$

 $\% \text{ Fe}_{2}O_{3} \text{ (by moles)} = 60\%$

- Ex.29 A substance of crude copper is boiled in H_2SO_4 till all the copper has reacted. The impurities are inert to the acid. The SO_2 liberated in the action is passed into 100 mL of 0.4 M acidified $KMnO_4(SO_2 \rightarrow SO_4^{-2})$ The solution of $KMnO_4$ after passage of SO_2 is allowed to react with oxalic acid and requires 25 mL of 1 M oxalic acid. If the purity of copper is 95.25%, what was the weight of the sample.
- **Sol.** let given sample is w gram and no. of moles of Cu in given sample is x millimoles.

$$Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$$

x millimoles

x millimoles

$$SO_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + H_2O + SO_3 + K_2SO_4$$

no. of milligram eq. of $SO_2 = no.$ of milli gram eq. of $KMnO_4$

 $x \times 2 = \text{no. of gram eq. of } KMnO_4$

left $KMnO_4$ reduced by $H_2C_2O_4$

$$KMnO_4 + H_2SO_4 + H_2C_2O_4 \rightarrow MnSO_4 + CO_2 + H_2O + K_2SO_4$$

no. of milligram eq. of KMnO₄(left)

= no. of mill gram equ. of $H_2C_2O_4$

$$= 1 \times 2 \times 25$$

So, total milligram eq. of $KMnO_4$ = milligram eq. of SO_2 + milligram eq. of $H_2C_2O_4$

$$0.4 \times 5 \times 100 = x \times 2 + 1 \times 2 \times 25$$

x = 75 millimoles

$$wt(Cu) = 95.25\%$$
 of W

$$75 \times 10^{-3} \times 63.5 = \frac{95.25}{100} \times W$$

$$\Rightarrow$$
 W = 5 gram.

- $\textbf{Ex.30}\,\text{H}_2\text{O}_2 \, \text{is reduced rapidly by Sn}^{2+}, \text{ the products being Sn}^{4+} \, \text{and water. H}_2\text{O}_2 \, \text{decomposes slowly at room temperature to yield O}_2 \, \text{and water. Calculate the volume of O}_2 \, \text{produced at 273 K and } 1.00 \, \text{atm when 200 g of } 10.0 \, \% \, \text{by mass H}_2\text{O}_2 \, \text{in water is treated with } 88.2 \, \text{mL of } 1 \, \text{M Sn}^{2+} \, \text{and then the mixture is allowed to stand until no further reaction occurs.}$
- **Sol.** Let x millimoles of H_2O_2 react with 1M, 88.2 ml Sn^{2+}

$$H_2O_2 + Sn^{2+} \rightarrow Sn^{4+} + H_2O$$

no. of milligram equivalent of H₂O₂

= no. of milligram eq. of Sn^{2+}

$$x_{\text{millimole}} \times 2 = 1 \times 2 \times 88.2$$

x = 88.2 millimoles

Total given moles of H₂O₂ is

$${\rm n_{total} = \frac{W(H_{2}O_{2})}{34} = \frac{10\% of\, 200\, gram}{34}}$$

$$=\frac{20}{34}$$
 moles

= 0.5882 moles

= 588.2 millimoles.

so. no. of moles of H_2O_2 that decomposed to O_2

$$= 588.2 - 88.2$$

= 500 millimoles

$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$$

$$n(O_2)$$
 released = $\frac{1}{2} \times 500 = 250$ millimoles

 V_{O_2} (at 1atm, 273 K) = $250 \times 10^{-3} \times 22.4 = 5.6$ litre.

- **Ex.31** 0.84 g iron ore containing x percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required x ml of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the normality of dichromatic solution.
- **Sol.** Let Normality of K₂Cr₂O₇ solution is N

$$\mathrm{Fe^{2+}} + \mathrm{K_2Cr_2O_7} + \mathrm{H^+} \rightarrow \mathrm{Fe^{3+}} + \mathrm{Cr^{3+}} + \mathrm{H_2O}$$

no. of gram eq. of Fe^{2+} = no. of gram eq. of $K_2Cr_2O_7$

$$n_{Fe^{2+}} \times 1 = N \times x \times 10^{-3}$$

$$\frac{W_{Fe^{2+}}}{56} \times 1 = N \times x \times 10^{-3}$$

$$\frac{\frac{x}{100} \times 0.84}{56} \times 1 = N \times x \times 10^{-3}$$

$$N = 0.15$$

Z\rock06\2020-21[8080-BA]\Kat\UEEAdorced]\Woodule Coding IV-Togj\V4uTun\Chemisty\Redox & Equivalent Concept\Eng\U1_Theory

- Ex.32 5 g of pyrolusite (impure MnO₂) were heated with conc. HCl and Cl₂ evolved was pssed through excess of KI solution. The iodine liberated required 40 mL of N/10 hypo solution. Find the % of MnO₂ in the pyrolusite.
- **Sol.** Let moles of MnO₂ in 5 gram sample is x.

$$MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O$$

no. of gram eq. of $MnO_2 = no.$ of gram equivalent of Cl_2

$$x \times 2 = n_{(Cl_2)} \times 2$$

$$x = n_{(Cl_2)}$$

so
$$n_{I_2} = n_{Cl_2} = x$$

evolved Cl, passes through KI that released I,

$$\text{Cl}_2$$
 + 2 KI \rightarrow I₂ + 2KCl

x moles

x moles

Evaled I_2 required 40 ml, $\frac{N}{10}$ Na₂S₃O₃

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

no. of gram equivalent of I_2 = no. of gram equivalent of hypo

$$\mathbf{x} \times 2 = \frac{1}{10} \times 40 \times 10^{-3}$$

$$x = 2 \times 10^{-3}$$
 moles

$$\% \text{ MnO}_2 = \frac{\text{wt.}(\text{MnO}_2)}{\text{total wt.}} \times 100$$

$$= \frac{x \times 87}{5} \times 100 = \frac{2 \times 10^{-3} \times 87}{5} \times 100$$

 $\rm Ex.33~A~458~g$ sample containing $\rm Mn_3O_4$ was dissolved and all manganese was converted to $\rm Mn^{2+}$. In the presence of fluoride ion, Mn²⁺ is titrated with 3 lit of KMnO₄ solution (which was 1.25 N against oxalate in acidic medium), both reactants being converted to a complex of Mn(III), What was the % of Mn_3O_4 in the sample?

Sol.
$$KMnO_4 + H_2C_2O_4 + H_2SO_4 \rightarrow CO_2 + MnSO_4 + K_2SO_4 + H_2O_4$$

3 litre, M molar

Normality (KMnO₄) = Molarity \times n₅

$$1.25 = M \times 5$$

$$M = 0.25$$

Let x moles of Mn₃O₄ present in 458 gram sample

$$Mn_3O_4 \rightarrow 3Mn^{2+}$$

xmole 3xmoles

$$Mn^{2+} + KMnO_4 \rightarrow Mn^{3+}$$

no. of gram eq. of Mn^{2+} = no. of gram eq. $KMnO_4$

$$3x \times 1 = (M \times n_f \times V)_{KMnO_4}$$

$$3x \times 1 = 0.25 \times 4 \times 3$$

x = 1 moles

%
$$Mn_3O_4$$
 (by wt) = $\frac{w(Mn_3O_4)}{w_{total}} \times 100$
= $\frac{1 \times 229}{458} \times 100 = 50\%$

 $Ex.34\,80$ gm of a sample of Anhydrous $CuSO_4$ was dissolved in water and made to 250 mL. 25 mL of this solution after taking usual precaution was treated with a little excess of KI solution. A white ppt. of Cu_2I_2 and iodine was evolved. The iodine so evolved required 40 mL of 1 M hypo solution. What is the approximate purity of $CuSO_4$ solution.

[Mol. wt. of
$$CuSO_4 = 160$$
]

Sol. Let 80 gram sample contains x moles of CuSO₄ that desolve in 250 ml solution

So 25 ml solution contain (x/10) moles CuSO₄

$$CuSO_4 + KI \rightarrow Cu_2I_2 + I_2$$

no. of gram eq. of $CuSO_4 = no.$ of gram eq. of I_2

$$\frac{x}{10}\!\times\!1=n_{(I_2)}\!\times\!2$$

$$n_{(I_2)} = \frac{x}{20}$$

Evalved I₂ required 40 ml, 1M hypo solution

$$\rm I_2 + Na_2S_2O_3 \rightarrow NaI + Na_2S_4O_6$$

no. of gram eq. of I_2 = no. of gram eq. of hypo

$$n(I_2) \times 2 = 1 \times 1 \times 40 \times 10^{-3}$$

$$\frac{x}{20} \times 2 = 40 \times 10^{-3}$$

$$x = 40 \times 10^{-2} \text{ moles}$$

%
$$CuSO_4$$
 (by mass) = $\frac{wt(CuSO_4)}{wt total} \times 100$

$$=\frac{40\times10^{-2}\times160}{80}\times100=80\%$$

Z/node06/2020-21(B0B0-BA)) Kab/JE(Advanced)/Wodule Coding (V-Tog)/Wurture) Chemistry/Redox & Equivalent Concept/Eng/01_Theory

E

EXERCISE # S-I

OXIDATION NUMBER

- Calculate oxidation number of underlines elements in the following compounds 1.
 - (a) $H_{2}S_{2}O_{7}$
- (b) $H_1P_2O_7$
- (c) $\underline{S}_{2}O_{3}^{2-}$

- (e) \underline{CCl}_{4}
- CaO, (f)
- (g) $\underline{Z}nO_2^{2-}$ (h) $\underline{Cr}O_2Cl_2$

 $Ca(\underline{Cl}O_2)_2$ (i)

RR0001

- 2. Classify each of the following unbalanced half-reactions as either an oxidation or a reduction:
 - $O_{\gamma}(g) \longrightarrow OH^{-}(aq)$

- $H_2O_2(aq) \longrightarrow O_2(g)$ (b)
- $MnO_4^-(aq) \longrightarrow MnO_4^{2-}(aq)$ (c)
- $CH_2OH(aq) \longrightarrow CH_2O(aq)$ (d)

RR0002

- **3.** Identify the oxidant and reductant in the following reactions:
 - $Zn(s) + \frac{1}{2}O_2(g) \longrightarrow ZnO(s)$ (a)
 - $Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$ (b)
 - $10H^{+}(aq) + 4Zn(s) + NO_{3}^{-}(aq) \longrightarrow 4Zn^{2+}(aq) + NH_{4}^{+}(aq) + 3H_{2}O(\ell)$ (c)

RR0003

BALANCING OF REDOX

- 4. Balance the following redox reactions by oxidation number method:
 - $Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$ (Acidic medium) (i)

RR0004

 $Br_2 + H_2O_2 \longrightarrow BrO_3^- + H_2O$ (Acidic medium) (ii)

RR0005

 $MnO_A^- + Fe^{+2} \longrightarrow Mn^{+2} + Fe^{+3}$ (Acidic medium)

RR0006

 $MnO_2 + Cl^- \longrightarrow Mn^{+2} + Cl_2 + H_2O$ (Acidic medium)

RR0007

 $ClO^- + CrO_2^- \xrightarrow{OH^-} Cl^- + CrO_4^{2-} + H_2O$ (Basic medium)

- **RR0008**
- 5. Balance the following redox reactions by half-reaction method (Ion electron method):
 - (i) $MnO_4^-(aq) + I^-(aq) \longrightarrow MnO_2(s) + I_2(s)$

- (in basic medium)
- RR0009

- (ii) $MnO_4^-(aq) + SO_2(g) \longrightarrow Mn^{2+}(aq) + HSO_4^-(aq)$
- (in acidic solution)
- **RR0010**

- (iii) $H_2O_2(aq) + Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + H_2O(1)$
- (in acidic solution)
- **RR0011**

- (iv) $Cr_2O_7^{2-}(aq.) + SO_2(g) \longrightarrow Cr^{3+}(aq) + SO_4^{2-}(aq)$
- (in acidic solution)
- **RR0012**

- **6.** Find the valence factor for the following acid/bases -
 - (1) CH₃COOH
- (2) NaH₂PO₄
- (3) H₃BO₃

- (4) NaOH
- (5) Ca(OH),
- (6) CsOH

- 7. Find the n-factor of underlined species in the following non redox reaction.
 - (1) NaOH + $\underline{H_3PO_4}$ \longrightarrow NaH₂PO₄ + H₂O
 - (2) NaOH + $\underline{H}_2\underline{SO}_4$ \longrightarrow NaHSO₄ + \underline{H}_2O
 - (3) $\underline{\text{Ca}(\text{OH})_2} + \text{HCl} \longrightarrow \text{Ca}(\text{OH})\text{Cl} + \text{H}_2\text{O}$
 - (4) $\underline{\text{Na}_2\text{CO}_3}$ + HCl \longrightarrow NaHCO₃ + NaCl
 - (5) $\underline{\text{Na}_2\text{CO}_3}$ + HCl \longrightarrow NaCl + H₂O + CO₂

RR0014

8. What will be the equivalent wt. of H₃PO₄ in each of the reaction.

$$H_3PO_4 + OH^- \longrightarrow H_2PO_4^- + H_2O$$

$$H_3PO_4 + 2OH^- \longrightarrow HPO_4^{2-} + 2H_2O$$

$$H_3PO_4 + 3OH^- \longrightarrow PO_4^{3-} + 3H_2O$$

RR0015

9. What is the equivalent weight of HNO₃ in following reaction?

$$HNO_3 + H_2S \longrightarrow H_2O + NO + S$$

RR0016

10. Find out the equivalent weight of the underlined species in the following reaction:

(i)
$$\underline{\text{ClO}}_3^- + \text{Fe}^{2+} + \text{H}^+ \longrightarrow \text{Cl}^- + \text{Fe}^{3+} + \text{H}_2\text{O}$$

(ii) CuO +
$$\underline{NH}_3$$
 \longrightarrow Cu + N_2 + H_2O

RR0017

11. Find out the n_{factor} of $(NH_4)_2Cr_2O_7$ in the following decomposition reaction.

$$(\mathrm{NH_4})_2\mathrm{Cr_2O_7} \longrightarrow \mathrm{Cr_2O_3} + \mathrm{N_2(g)} + \mathrm{H_2O}$$

RR0018

12. Find out the n_{factor} of IO_3^- in the following disproportination reaction.

$$I_2 \xrightarrow{OH^-} IO_3^- + I^-$$

RR0019

ACID BASE TITRATION

13. How many millilitre of $0.5 \,\mathrm{M}\,\mathrm{H}_2\mathrm{SO}_4$ are needed to dissolve $0.5 \,\mathrm{g}$ of copper II carbonate ?[JEE 1999]

38 JEE-Chemistry ALLEN

14. An aqueous solution of 6.3 g of oxalic acid dihydrate is made upto 250 mL. The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is : [JEE 2001]

RR0021

15. Calculate volume of 1N H₃PO₄ required to react with 20 ml 2N Ca(OH)₂ solution

RR0022

16. Calculate volume of 1N H₂SO₄ required to react with 20 ml 1 M Al(OH)₃ solution

RR0023

17. Calculate volume of 0.4 M NaOH required to react with following mixture $HCl(1 \text{ mol}) + H_2SO_4(2 \text{ mol})$

RR0024

18. Calculate volume of $0.2 \text{ M H}_2\text{SO}_4$ required to react with following mixture NaOH(1 mol) + Ca(OH)₂ (2 mol)

RR0025

19. How many litre of 0.1N HCl are required to react completely with 19 gm mixture of Na₂CO₃ and NaHCO₃ containing equimolar amount of two?

RR0026

20. H₃PO₄ is a tri basic acid and one of its salt is NaH₂PO₄. What volume in ml of 1 M NaOH solution should be added to 12 g of NaH₂PO₄ to convert it into Na₃PO₄?

RR0027

REDOX TITRATION

- 21. Calculate the normality of a solution containing 50 mL of 5 M solution of K₂Cr₂O₇ in acidic medium. RR0028
- 22. A 5.0 cm^3 solution of H_2O_2 liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of H_2O_2 solution in terms of volume strength at STP. [JEE' 1995]

RR0029

23. Calculate the normality of a solution containing 15.8 g of $KMnO_4$ in 50 mL acidic solution.

RR0030

24. 20 mL of H_2O_2 after acidification with dil H_2SO_4 required 30 mL of $\frac{N}{12}$ KMn O_4 for complete oxidation. The strength of H_2O_2 solution is [Molar mass of $H_2O_2 = 34$]

RR0031

25. It required 40 ml of 1 M Ce⁴⁺ to titrate 20 ml of 1 M Sn²⁺ to Sn⁴⁺. What is the oxidation state of cerium in the product.

RR0032

26. A volume of 10.0 ml of 1 M SeO₂ reacted with exactly 20 ml of 2 M CrSO₄. In the reaction, Cr^{2+} was oxidized to Cr^{3+} . To what oxidation state was selenium converted by the reaction.

RR0033

27. Potassium acid oxalate $K_2C_2O_4$. $3H_2C_2O_4$. $4H_2O$ can be oxidized by MnO_4^- in acid medium. Calculate the volume of 0.1 M KMnO₄ reacting in acid solution with 5.08 gm of the acid oxalate.

RR0034

28. A 1 g sample of H_2O_2 solution containing x% H_2O_2 by mass requires x cm³ of a KMnO₄ solution for complete oxidation under acidic condition. Calculate the normality of KMnO₄ solution.

RR0035

29. Metallic tin in the presence of HCl is oxidized by $K_2Cr_2O_7$ to stannic shloride, $SnCl_4$. What volume of deci-normal dichromate solution would be reduced by 11.9 gm of tin [Sn = 119]

RR0036

30. Calculate the number of millimoles of K₂Cr₂O₇ which will completely react with 40 ml 0.1 MKI Solution.

RR0037

31. Find the number of moles of $KMnO_4$ needed to oxidise one mole Cu_2S in acidic medium. The reaction is : $Cu_2S + KMnO_4 \longrightarrow Cu^{2+} + Mn^{2+} + SO_2$

RR0038

32. 0.4 M KMnO₄ solution completely reacts with 0.05 M FeSO₄ solution under acidic conditions. The volume of FeSO₄ used is 50 mL. What volume of KMnO₄ was used ?

RR0039

BACK TITRATION

33. 50 gm of a sample of $Ca(OH)_2$ is dissolved in 50 ml of 0.5 N HCl solution. The excess of HCl was titrated with 0.3N – NaOH. The volume of NaOH used was 20cc. Calculate % purity of $Ca(OH)_2$

RR0040

34. 10 g CaCO₃ were dissolved in 250 ml of 1 M HCl. What volume of 2 M KOH would be required to neutralise excess HCl.

RR0041

35. 20 g of a sample of Ba(OH)₂ is dissolved in 10 mL of 0.5 N HCl solution: The excess of HCl was titrated with 0.1 N NaOH. The volume of NaOH used was 20 cc. Calculate the percentage of Ba(OH)₂ in the sample. (Ba = 137)

RR0042

36. To 50 L of 0.2 N NaOH, 2.5 L of 2N HCl and 15 L of 0.1 N FeCl₃ solutions are added. What weight of Fe₂O₃ can be obtained from the precipitate? Also report the normality of NaOH left in resultant solution :

RR0043

Hardness of water

37. Softening of hard water by using sodium aluminium silicate (zeolite) is due to - Adsorption of andions of hard water, replacingions

RR0044

38. One litre of a sample of hard water contains 10 mg of CaCl₂ & 9.5 mg of MgCl₂. What is degree of hardness in terms of ppm of CaCO₃

RR0045

Z\node06\2020-21[8080-BA]\Kata\JEE[Advanced]\Module Coding (Y-Tag)\Nurture\Chemistry\Redax & Equivalent Concept\Eng\02_E

EXERCISE # S-II

- 1. Find out the oxidation number of the underlined elements in the following compounds:
 - (a) $Na_2S_4O_6$
- (b) \underline{C}_3O_2
- (c) KI_3
- (d) $\underline{\text{Fe}}_3\text{O}_4$

(e) $\underline{C}H_{3}\underline{C}H_{2}OH$

(f) $\underline{C}H_3\underline{C}OOH$

(g) \underline{Br}_3O_8

(h) CaOCl,

RR0047

RR0046

(i) $\underline{F}e\underline{S}_2$

(j) OF,

(k) HOF

(1) $\underline{O}_{\underline{2}}^+$

RR0048

(m) \underline{O}_2^-

(n) C_6H_5CHO

(o) $C_6H_5\underline{N}O_7$

(p) $C_6H_5\underline{N}H_2$

RR0049

(q) $(\underline{C}N)_2$

(r) <u>C</u>N

(s) <u>C</u>NO

RR0050

- 2. Calculate oxidation number of underlines elements in the following compounds
 - (a) $K[\underline{Co}(C_2O_4)_2.(NH_3)_2]$

(b) $K\underline{Al}(\underline{SO}_4)_2.12H_2O$

(c) $[\underline{Fe}(CN)_6]^{4-}$

(d) $\underline{Fe}_{0.93}O$

RR0051

(e) $H_2S_2O_8$

(f) \underline{CrO}_5

 $(g) H_2SO_5$

(h) K_3CrO_8

RR0052

(r) $Na_2[\underline{Fe}(CN)_5NO^+]$

(s) $\underline{Cr}(CN)_6^{3-}$

RR0053

- 3. Balance the following redox reactions by half-reaction method
 - (i) $\text{KMnO}_4(\text{aq.}) + \text{FeC}_2\text{O}_4(\text{aq.}) + \text{H}_2\text{SO}_{4}(\text{aq.}) \longrightarrow$ $\text{MnSO}_4(\text{aq.}) + \text{Fe}_2(\text{SO}_4)_3 \text{ (aq.}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(l) \text{ (Acidic medium)}$

RR0054

(ii) $P_4(s) + OH^-(aq.) \longrightarrow PH_3(aq) + HPO_2^-(aq.)$ (Basic medium)

RR0055

(iii) $I_2(s) + \text{NaOH}(aq.) \longrightarrow \text{NaI } (aq.) + \text{NaIO}_3(aq.) + H_2O(l) \text{ (Basic medium)}$

RR0056

(iv) $HNO_2(aq.) \rightarrow NO_3^- + NO(g)$ (acidic medium)

RR0057

(v) $IO_3^- + I^- + H^+ \rightarrow I_2 + H_2O$ (acidic medium)

RR0058

(vi) $Cu_2S + MnO_4^- + H^+ \rightarrow Cu^{2+} + Mn^{2+} + SO_2$ (Acidic medium)

RR0059

(vii) HCHO (l) + 2[Ag(NH₃)₂]⁺(aq.) + 3OH⁻(aq.) \rightarrow 2Ag(s) + HCOO⁻(aq.) + 4NH₃(aq.) + 2H₂O(l) (basic medium)

4. A solution containing 4.2g of KOH and Ca(OH)₂ is neutralized by an acid. It consumes 0.1 equivalent of acid, calculate the percentage composition of the sample.

RR0061

5. Calculate volume of 0.4 M KMnO₄ required to react with following in acidic medium

$$KHC_2O_4(1 \text{ mol}) + H_2C_2O_4(2 \text{ mol})$$

RR0062

6. Calculate volume of 0.4 M NaOH required to react with following mixture.

$$KHC_2O_4(1 \text{ mole}) + H_2C_2O_4(2 \text{ mol})$$

RR0063

7. Calculate volume of 0.2 M KMnO₄ required to react with following mixture in acidic medium.

$$KHC_2O_4(128 \text{ gm}) + H_2C_2O_4(180 \text{ gm})$$

RR0064

8. 520 gm mixture of Fe_2O_3 and FeO reacts completely with 158 gm $KMnO_4$ in acidic medium Calculate the mole % of Fe_2O_3 in mixture.

RR0065

9. Calculate the millimoles of Br₂ produced when 10 ml of 0.1 M BrO₃ reacts with excess of Br⁻.

RR0066

10. One gm of impure sodium carbonate is dissolved in water and the solution is made up to 250 ml. To 50 ml of this made up solution, 50 ml of 0.1N – HCl is added and the mix after shaking well required 10 ml of 0.16 N – NaOH solution for complete titration. Calculate the % purity of the sample.

RR0067

11. 100 ml sample of hard water containing only Ca²⁺ hardness is passed through a column of cation exchange resin (H⁺ – resin). The water coming out the column require 20 ml of 0.02M NaOH for its titration. What is hardness of water as ppm of Ca²⁺

RR0068

12. 3.55 g sample of bleaching powder suspended in H₂O was treated with enough acetic acid and KI solution. Iodine thus liberated required 80 mL of 0.2 M hypo for titration. Calculate the % of available chlorine.

RR0069

13. 3.2 g of pyrolusite (MnO₂) was treated with 50 mL of 0.5 M oxalic acid and some sulphuric acid. The oxalic acid left undecomposed was raised to 250 mL in a flask. 25 mL of this solution when treated with 0.02 M KMnO₄ required 32 mL of the solution: Find the % of MnO₂ in the sample.

RR0070

Z\nods06\2020-21(B0B0-BA)\Kota\JEE|Advanced\\Wodule Coding (V-Tag)\Nurture\Chemistry\Redox & Equivolent Concept\Eng\02_Ex

42 JEE-Chemistry ALLEN

14. Mg can reduce NO₃⁻ to NH₃ in basic medium.

$$NO_3^- + Mg(s) + H_2O \rightarrow Mg(OH)_2(s) + OH^-(aq.) + NH_3(g)$$

A 25.0 mL sample of NO_3^- solution was treated with Mg. The NH_3 (g) was passed into 100 mL of 0.15 N HCl. The excess of HCl required 32.10 mL of 0.10 N NaOH for neutralization. What was the molarity of NO_3^- ions in the original sample?

RR0071

15. A mixture of H₂SO₄ and H₂C₂O₄ (oxalic acid) and some inert impurity weighing 3.185 g was dissolved in water and the solution made up to 1 litre, 10 mL of this solution required 3 mL of 0.1 N NaOH for complete neutralization. In another experiment 100 mL of the same solution in hot condition required 4 mL of 0.02M KMnO₄ solution for complete reaction. The wt. % of H₂SO₄ in the mixture was :-

RR0072

16. An aqueous solution containing 0.10 g KIO₃ (formula wt. 214.0) was treated with an excess of KI solution. The solution was acidified with HCl. The liberated I₂ consumed 45.0 mL of thiosulphate solution to decolourise the blue starch – iodine complex. Calculate the molarity of the sodium thiosulphate solution.
[JEE 1998]

1.	The oxidation nun	nber of phosphorus in Ba(H_2PO_2 is:		
	(A) +3	(B) +2	(C) +1	(D) -1	
					RR0074
2.	The oxidation stat	tes of the most electronega	ative element in the pro	ducts of the reac	tion of BaO, with
	dilute H ₂ SO ₄ .	_	_		2
	(A) $0 \text{ and } -1$	(B) -1 and -2	(C) –2 and 0	(D) –2 and	d +2
					RR0075
3.	In the coordinatio	on compound, K ₄ [Ni (CN)) ₆], the oxidation state	of nickel is	[AIEEE-03]
	(A) + 1	(B) +2	(C) –1	(D) 0	
					RR0076
4.	The oxidation stat	te of Cr in [Cr(NH ₃) ₄ Cl ₂]	+ is -		[AIEEE-05]
	(A) + 2	(B) +3	(C) 0	(D) $+1$	
					RR0077
5.	Oxidation numbe	r of Cl in CaOCl ₂ (bleach	ing powder is)		[AIEEE-02]
	(A) Zero, since it o	contains Cl ₂	(B)-1, since it con	ntains Cl ⁻	
	(C) +1, since it co	ontains ClO ⁻	(D) $+1$ and -1 sin	ce it contains Cl	O ⁻ and Cl ⁻
					RR0078
6.	The oxidation nu	mber of sulphur in S ₈ , S ₂	₂ F ₂ and H ₂ S respective	ly are:	
	(A) 0 , +1 and -2		(B) $+2$, $+1$ and -2	2	
	(C) 0 , +1 and +2		(D) -2 , $+1$ and -2	2	
					RR0079
7.	The incorrect orde	er of decreasing oxidation	n number of S in compo	ounds is :-	
	(A) $H_2S_2O_7 > Na_2$	$_{2}S_{4}O_{6} > Na_{2}S_{2}O_{3} > S_{8}$	(B) $H_2SO_5 > H_2S$	$O_3 > SCl_2 > H_2S$	S
	(C) SO3 > SO2 >	$S_8 > H_2 S$	(D) H2SO4 > SO2	$_2 > H_2S > H_2S_2C$	8
					RR0080
8.	Which of the follo	_			[AIEEE-02]
	_	$+$ Zn \longrightarrow Na ₂ Zn (CN) ₂	₄ + 2 Ag		
		$O_4 \longrightarrow BaSO_4 + H_2O_2$			
	(C) $N_2O_5 + H_2O$	3			
	(D) $AgNO_3 + KI$	\longrightarrow AgI + KNO ₃			
_					RR0081
9.		oes not represent autoredo	ox or disproportionation	1:-	
	-	$\rightarrow Cl^- + ClO_3^- + H_2O$			
	$(B) 2H_2O_2 \longrightarrow H$				
	$(C) 2Cu^{+} \longrightarrow C$,		
	(D) $(NH_4)_2Cr_2O_7$	\longrightarrow N ₂ + Cr ₂ O ₃ + 4H ₂ O)		

$${\rm (A)~BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2}$$

(B)
$$2BaO + O_{2} \rightarrow 2BaO_{2}$$

(C)
$$2KClO_3 \rightarrow 2KCl + 3O_7$$

(D)
$$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$$

11. H_2O_2 acts as a reducing agent in:

(A) FeCl₂ + HCl + H₂O₂
$$\longrightarrow$$
 FeCl₃ + H₂O

(B)
$$Cl_2 + H_2O_2 \longrightarrow HCl + O_2$$

(C)
$$HI + H_2O_2 \longrightarrow I_2 + H_2O$$

(D)
$$H_2SO_3 + H_2O_2 \longrightarrow H_2SO_4 + H_2O_4$$

RR0084

12. Match List-I (Compounds) with List-II (Oxidation states of nitrogen) and select answer using the codes given below the lists:-

List-I

List-II

(B)
$$N_2H_2$$

Code:

$$(C) \qquad (D)$$

4

1

1

1

RR0085

 $\mathrm{MnO_4}^-$ is good oxidising agent in different medium changing to -**13.**

[AIEEE-02]

$$\begin{array}{ccc} MnO_4^- & \longrightarrow & Mn^{2+} \\ & \longrightarrow & MnO_4^{2-} \\ & \longrightarrow & MnO_2 \\ & \longrightarrow & Mn_2O_3 \end{array}$$

Changes in oxidation number respectively are -

$$(C)$$
 5, 1, 3, 4

RR0086

In the reaction, **14.**

$$\mathbf{x}\mathbf{H}\mathbf{I} + \mathbf{y}\mathbf{H}\mathbf{N}\mathbf{O}_{3} \longrightarrow \mathbf{N}\mathbf{O} + \mathbf{I}_{2} + \mathbf{H}_{2}\mathbf{O}$$

(A)
$$x = 3, y = 2$$
 (B) $x = 2, y = 3$

(B)
$$x = 2$$
, $y = 3$

(C)
$$x = 6, y = 2$$

(D)
$$x = 6$$
, $y = 1$

(D) 2

(C)3

RR0088

RR0096

(A) 5

15.

E

16.	Number of mole	s of electrons taken up w	when 1 mole of NO ₃ ions	s is reduced to 1 mole o	f NH ₂ OH is
	(A) 2	(B) 4	(C) 5	(D) 6	
					RR0089
17.	For the redox rea	action,			
	$MnO_4^- + C_2$	$O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO$	O ₂ + H ₂ O		
	the correct coeff	icients of the reactants f	or the balanced reaction	are:	
	MnO_4^-	$C_2O_4^{\ 2-}$	H^{+}		
	(A) 2	5	16		
	(B) 16	5	2		
	(C) 5	16	2		
	(D) 2	16	5		
					RR0090
18.	In a redox reacti	ion, the equivalent weigh	nt of HNO ₂ is found to be	e 23.5. The reaction pro	ducts might
	contain		2	_	_
	(A) NO ₂	(B) NO	(C) NH ₃	(D) HNO ₃	
	() 2	(-)	(-) - 13	(= / === 3	RR0091
19.	When N is conv	verted into NH ₃ , the equi	valent weight of nitroge	n will he :	
17.	(A) 1.67	(B) 2.67	(C) 3.67	(D) 4.67	
			(-)		RR0092
20.	The equivalent r	mass of MnSO ₄ is half it	s molecular mass when	it is converted to: [.	
	$(A) Mn_2O_3$	(B) MnO_2	(C) MnO_4^-	(D) MnO_4^{2-}	
					RR0093
21.	When KBrO ₃ io	on reacts with Br - ion i	in acid solution Br ₂ is 1	iberated.The equivalen	t weight of
	KBrO ₃ in this rea	action is			
	(A) M/8	(B) M/3	(C) M/5	(D) M/6	
					RR0094
22.	In the reaction C	$CrO_5 + H_2SO_4 \rightarrow Cr_2(SC)$	$(O_4)_3 + H_2O + O_2$ one mod	le of CrO ₅ will liberate	how many
	moles of O_2 :-				
	(A) 5/2	(B) 5/4	(C) 9/2	(D) 7/4	
					RR0095
23.	A solution of KN	MnO ₄ is reduced to MnO	2. The normality of solu	tion is 0.6. The molarit	y is:
	(A) 1.8M	(B) 0.6M	(C) 0.1M	(D) 0.2M	

The number of electrons to balance the following equation:-

(B) 4

 $NO_3^- + 4H^+ + e^- \rightarrow 2H_2O + NO$ is

24.	The normality of	f 0.3 M phosphorus acid	$d(H_3PO_3)$ is:	
	(A) 0.1	(B) 0.9	(C) 0.3	(D) 0.6
				RR0097
25 .	0.52 g of a dibasi	c acid required 100 mL	of 0.2 N NaOH for complete	neutralization. The equivalent
	weight of acid is			
	(A) 26	(B) 52	(C) 104	(D) 156
				RR0098
26.	What is the equiv	valent weight of H ₂ SO ₄	in the reaction?	
	$H_2SO_4 + Na$	$I \rightarrow Na_2SO_4 + I_2 + H_2S$	$S + H_2O$	
	(A) 12.25	(B) 49	(C) 61.25	(D) None of these
				RR0099
27.	125 mL of 63% (The resulting sol		made to react with 125 mL o	f a 40% (w/v) NaOH solution.
	(A) neutral	(B) acidic	(C) strongly acidic	(D) alkaline
	()	(=)	(0) 212 212 8-1 212 212	RR0100
28.	The mass of oxal	lic acid crystals (H ₂ C ₂ O	2H ₂ O) required to prepare	50 mL of a 0.2 N solution is :-
	(A) 4.5 g	(B) 6.3 g	(C) 0.63 g	(D) 0.45 g
	. , 2	. , ,	. , ,	RR0101
29.	If 25 mL of a H ₂ S this acid solution		pletely with 1.06 g of pure Na	a ₂ CO ₃ , what is the normality of
	(A) 1 N	(B) 0.5 N	(C) 1.8 N	(D) 0.8 N
				RR0102
30 .	The number of m	noles of KMnO ₄ that wil	ll be required to react with 2	mol of ferrous oxalate is
	(A) $\frac{6}{5}$	(B) $\frac{2}{5}$	(C) $\frac{4}{5}$	(D) 1
	5	` ´ 5	` ´ 5	RR0103
31.	The oxidation sta	ate of chromium in the fir	nal product formed by the rea	action between Kl and acidified
		omate solution is -	•	[AIEEE-05]
	(A) + 6	(B) +4	(C) +3	(D) $+2$
				RR0104
32.		•	need to react completely wi	th one mole ferrous oxalate in
	acidic solution is		(0) 4/5	[JEE 1997]
	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1
33.	The number of n	note of KMnO that will	I ha naadad to raact with one	RR0105
JJ.	solution is:	note of Kivino ₄ that will	to the the to teact with one	mole of sulphite ion in acidic [JEE 1997]
	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1
				RR0106

E

34.	What volume of 0.1 M	I KMnO ₄ is needed to ox	kidize 100 mg of FeC ₂ O	in acid solution ?
	(A) 4.1 mL	(B) 8.2 mL	(C) 10.2 mL	(D) 4.6 mL
				RR0107
35 .	What volume of 6 M I	HNO ₃ is needed to oxidi	ze 8 g of Fe ²⁺ to Fe ³⁺ , H	NO ₃ gets converted to NO?
	(A) 8 mL	(B) 7.936 mL	(C) 32 mL	(D) 64 mL
				RR0108
36 .	The minimum quantity	of H ₂ S needed to precip	pitate 63.5 g of Cu ²⁺ will	be nearly.
	(A) 63.5 g	(B) 31.75 g	(C) 34 g	(D) 2.0 g
				RR0109
37.	The volume of 1.5 MH is:-	PO ₄ solution required to	neutralize exactly 90 mL	of a 0.5 M Ba (OH) ₂ solution
	(A) 10 mL	(B) 30 mL	(C) 20 mL	(D) 60 mL
				RR0110
38.	equation		nposes on warming to g	ive oxygen according to the
	$2H_2O_2$ (aq) $\longrightarrow 2$	$^{2}\text{H}_{2}\text{O}\left(\ell\right) + \text{O}_{2}\left(g\right)$		
	Under conditions when $3 \text{ dm}^3 \text{ of } O_2$. Thus X is		es 24 dm ³ . 100 cm ³ of XN	M solution of H ₂ O ₂ produces
	(A) 2.5	(B) 1	(C) 0.5	(D) 0.25
				RR0111
39.				times of 0.2 N KMnO ₄ and ${}_{2}O_{4}$. H ${}_{2}C_{2}O_{4}$ in the mixture ?
	(A) 6:1	(B)	(C) 1:3	(D) none
				RR0112
40.	-	$MK_2Cr_2O_7$ is needed for C MNO_4 needed for same		$578 \mathrm{g} \mathrm{N_2H_4}$ in acidic medium. lium will be :-
	(A) $\frac{2}{5}V_1$	(B) $\frac{5}{2}V_1$	(C) 113 V ₁	(D) can't say
	3	Z	•	RR0113
41.	As ₂ O ₂ is oxidised to H	H, AsO, by KMnO, in a	cidic medium. Volume	of 0.02M KMnO ₄ required
		nmol of As ₂ O ₃ will be		4 1
	(A) 10 mL	(B) 20 mL	(C) 40 mL	(D) 80 mL

42.		passed through dry KO	J.	${\rm CO}_3$ is obtained and ${\rm O}_2$ is liberated. In this reaction educed.			
	(A) hydrogen, o		(B) potassium,	oxygen			
	(C) oxygen, oxy	gen	(D) oxygen, hyd	Irogen			
				R	R0115		
43.	100 ml of 0.1M Volume of HCl	2 0	tralised by 0.25 N HC	l to form NaCl, AlCl ₃ and	i CO ₂ .		
	(A) 10 mL	(B) 40 mL	(C) 100mL	(D) 160 mL			
				R	R0116		
44.	-	quantitatively oxidized K 20 ml of decinormal hypo	2	alongwith formation of KF on. The value of x is	. This		
	(A) 0.5	(B) 1.0	(C) 2.0	(D) 5.0			
				R	R0117		
45.	Temporary hard	ness is due to HCO_3^- of M	Mg ²⁺ and Ca ²⁺ . It is remo	ved by addition of CaO.			
	Ca(HCO ₃) ₂ -	$+ \text{CaO} \rightarrow 2\text{CaCO}_3 + \text{H}_2$	O				
	Mass of CaO req	uired to precipitate 2 g C	CaCO ₃ is :-				
	(A) 2.00	(B) 0.56 g	(C) 0.28 g	(D) 1.12 g			
				R	R0118		
46.	0.3 g of an oxala	ate salt was dissolved in	100 mL solution. The	solution required 90 mL o	f N/20		

- **46.** 0.3 g of an oxalate salt was dissolved in 100 mL solution. The solution required 90 mL of N/20 KMnO₄ for complete oxidation. The % of oxalate ion in salt is :-
 - (A) 33%
- (B) 66%
- (C) 70%
- (D) 40%

1.

EXERCISE # O-II

If 10 g of V_2O_5 is dissolved in acid and is reduced to V^{2+} by zinc metal, how many mole I_2 could be reduced by the resulting solution if it is further oxidised to VO^{2+} ions?

	[Assume no change	in state of Zn ²⁺ ions] (V = 51, O = 16, I = 127	:
	(A) 0.11 mole of I_2	(B) 0.22 mole of I_2	(C) 0.055 mole of I_2	(D) 0.44 mole of I_2
	_	_	_	RR0120
2.		es of $Cr_2O_7^{2-}$ needed to $N_2 + Cr^{3+} + H_2O$ is	oxidize 0.136 equivale	ents of N ₂ H ₅ ⁺ by the reaction
	(A) 0.136	(B) 0.068	(C) 0.0227	(D) 0.272
				RR0121
3.		=	= = =	by 600 meq of an oxidizing mmonia to form ammonium
	(A) 0.0167	(B) 0.1	(C) 0.3	(D) 0.6
				RR0122
4.	HNO ₃ oxidises NH ₄ ⁺ it 1 mol of (NH ₄) ₂ SO ₄ is		f gets reduced to NO ₂ . Th	ne moles of HNO ₃ required by
	(A) 4	(B) 5	(C) 6	(D) 2
				RR0123
5.	During the disproport formed in alkaline me		lide and iodate ions, the	ratio of iodate and iodide ions
	(A) 1:5	(B) 5:1	(C) 3:1	(D) 1:3
				RR0124
6.	When arsenic sulphic	le is boiled with NaOH,	sodium arsenite and sodi	um thioarsenite are formed
	$x As_2S_3 + y NaOH -$	\rightarrow Na ₃ AsO ₃ + x Na ₃ AsS	$S_3 + \frac{y}{2} H_2O$. What are the	ne values of x and y?
	(A) 1, 6	(B) 2, 8	(C) 2, 6	(D) 1, 4
				RR0125
7.	35 mL sample of hyd strength of H ₂ O ₂ samp		of 500 mL of O_2 at 27°C	and 1 atm pressure. Volume
	(A) 10 volume	(B) 13 volumes	(C) 11 volume	(D) 12 volume
				RR0126
8.	medium. In the exper	riment 1.68×10^{-3} moles	s of K ₂ Cr ₂ O ₇ were used f	s oxidised by $\text{Cr}_2\text{O}_7^{2-}$ in acid or 3.26×10^{-3} moles of ABD.
		imber of A after oxidation		(D) +n2
	(A) 3	(B) $3 - n$	(C) $n - 3$	(D) +n3 RR0127
				KK0127

- 50g of pure CaCO₃ is heated to liberate CO₂. Liberated CO₂ required 0.4 mol of moist ammonia 9. to yield only (NH₄)₂CO₃. Find the volume of CO₂ liberated at STP adding excess dil. HCl to this heated residue.
 - (A) zero
- (B) 4.42 L
- (C) 6.81 L
- (D) 6.72 L

10. For the reaction

$$\overline{\text{I}}^- + \overline{\text{ClO}}_3^- + \overline{\text{H}}_2 \overline{\text{SO}}_4 \rightarrow \overline{\text{Cl}}^- + \overline{\text{HSO}}_4^- + \overline{\text{I}}_2$$

The correct statement(s) in the balanced equation is / are :

- (A) Stoichiometric coefficient of HSO₄ is 6
- (B) Iodide is oxidized
- (C) Sulphur is reduced
- (D) H₂O is one of the products

RR0129

- A sample of KMnO₄ solution required 50 ml when titrated against 3 mmol of oxalic acid. The normality of same solution in reaction with alkaline H₂O₂ is
 - (A) 0.120 N
- (B) 0.060 N
- (C) 0.072 N
- (D) 0.036 N

RR0130

Assertion Reason Type

Statement–1: Moles of $KMnO_4$ required for oxidation of Fe^{2+} in acidic and basic medium will be different.

Statement-2:- Final oxidation state to which Mn⁷⁺ will be reduced will be different in case of acidic and basic medium.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

RR0131

Statement-1: Mass of a particular substance that combine with 8 gm of oxygen is said to be equivalent **13.** weight of substance.

Statement–2:-x gm of metal gave y gm of its oxide, so equivalent weight of metal is $\left(\frac{x}{y-x}\right) \times 8$

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

14. Statement-1: Degree of hardness of water is measured in terms of ppm of CaCO₃.

Statement–2:- If water contains 120 ppm of $MgSO_4$, and 2ppm NaCl, its hardness in terms of $CaCO_3 > 100$ ppm.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

RR0133

MATCH THE COLUMN

15. Column-I

(A)
$$P_2H_4 \longrightarrow PH_3 + P_4H_2$$

(p)
$$E = \frac{3M}{4}$$

(B)
$$\underline{I}_2 \longrightarrow \overline{I} + IO_3$$

(q)
$$E = \frac{3M}{5}$$

(C)
$$MnO_4^- + Mn^{2+} + H_2O \longrightarrow Mn_3O_4 + H^+$$

(r)
$$E = \frac{15M}{26}$$

(D)
$$\underline{H_3PO_2} \longrightarrow PH_3 + H_3PO_3$$

(s)
$$E = \frac{5M}{6}$$

RR0134

Paragraph for Q.16 to Q.19

Equivalent weight =
$$\frac{\text{Molecular weight / Atomic weight}}{\text{n - factor}}$$

n-factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predicts the molar ratio of the reactant species taking part in reactions. The reaciprocal of n-factor's ratio of the reactants is the molar ratio of the reactants.

In general n-factor of acid/base is number of moles of H⁺/OH⁻ furnished per mole of acid/base. n-factor of a reactant is no. of moles of electrons lost or gained per mole of reactant.

Example 1:

- 1. In acidic medium : $KMnO_4$ (n = 5) $\longrightarrow Mn^{2+}$
- 2. In neutral medium : $KMnO_4$ (n = 3) $\longrightarrow Mn^{2+}$
- 3. In basic medium : $KMnO_4$ (n = 1) $\longrightarrow Mn^{6+}$

Example 2 :
$$FeC_2O_4 \longrightarrow Fe^{3+} + 2CO_2$$

Total no. of moles of e^- lost by 1 mole of $FeC_2O_4 = 1 + 1 \times 2 \Rightarrow 3$

$$\therefore$$
 n-factor of FeC₂O₄ = 3

- **16.** n-factor of Ba(MnO₄), in acidic medium is :
 - (A) 2
- (B) 6
- (C) 10
- (D) none of these

17. For the reaction,

$$H_3PO_2 + NaOH \longrightarrow NaH_2PO_2 + H_2O$$

What is the equivalent weight of H₃PO₂? (mol. wt. is M)

- (A) M
- (B) M/2
- (C) M/3
- (D) none of these

RR0136

- For the reaction, $Fe_{0.95}O$ (molar mass : M) \longrightarrow Fe_2O_3 . What is the eq. wt. of $Fe_{0.95}O$? 18.
 - $(A) \ \frac{M}{0.85}$
- (B) $\frac{M}{0.95}$ (C) $\frac{M}{0.8075}$
- (D) none of these

RR0137

- In the reaction, $xVO + yFe_2O_3 \longrightarrow FeO + V_2O_5$. What is the value of x and y respectively? **19.**
 - (A) 1, 1
- (B) 2, 3
- (C) 3, 2
- (D) none of these

RR0138

Table type question:

Column-I	Column-II	Column-III
(1 mole of each oxidizing)	(oxidation number	(Reducing agents)
agent is taken)		

- (A) KMnO₄ (acidic)
- (P) O.N of Mn = 4
- (1) 3 mole of $FeSO_4$

- (B) KMnO₄ (neutral)
- (Q) O.N of Mn = 7
- (2) 0.5 mole of I₂ changes to HIO₃

- (C) MnO₂ (acidic)
- (R) O.N of Cr = 6
- 1 mole of K₂C₂O₄ (3)

- (D) K₂CrO₄ (acidic)
- (S) O.N of Cr = 7
- 1.5 mole K₂SO₃ **(4)**

- 20. Which of the following is correct
 - (A) A; P; 2
- (B) A; Q; 4
- (C) B; Q; 1
- (D) B; Q; 3

RR0139

- Which of the following is correct 21.
 - (A) A ; Q ; 3
- (B) C; P; 3
- (C) C; P; 4
- (D) C; Q; 1

RR0139

- **22**. Which of the following is correct
 - (A) D; R; 1
- (B) D; R; 2
- (C) D; S; 1
- (D) D; R; 4

EXERCISE # J-MAINS

1. Given: [JEE(Main-online)-2013]

 $X Na_2 HAsO_3 + Y NaBrO_3 + ZHCl \rightarrow NaBr + H_3AsO_4 + NaCl$

The values of X, Y and Z in the above redox reaction are respectively :

- (1) 2, 1, 3
- (2) 3, 1, 6
- (3) 2, 1, 2
- (4) 3, 1, 4

RR0140

2. Consider the following reaction :

[JEE(Main)-2013]

$$xMnO_4^- + yC_2O_4^{2-} + zH^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2} H_2O$$

The values of x, y and z in the reaction are respectively:-

- (1) 5,2 and 16
- (2) 2,5 and 8
- (3) 2, 5 and 16
- (4) 5,2 and 8

RR0141

3. How many electrons are involved in the following redox reaction? [JEE(Main-online)-2014]

$$Cr_2O_7^{2-} + Fe^{2+} + C_2O_4^{2-} \rightarrow Cr^{3+} + Fe^{3+} + CO_2$$
 (Unbalanced)

(1) 3

(2) 4

- (3)5
- (4)6

RR0142

4. Consider the reaction

[JEE(Main-online)-2014]

$$\mathrm{H_{2}SO_{3(aq)} + Sn_{(aq)}^{4+} + H_{2}O_{(l)} \rightarrow Sn_{(aq)}^{2+} + HSO_{4(aq)}^{-} + 3H_{(aq)}^{+}}$$

Which of the following statements is correct?

- (1) H₂SO₃ is the reducing agent because it undergoes oxidation
- (2) H₂SO₃ is the reducing agent because it undergoes reduction
- (3) Sn⁴⁺ is the reducing agent because it undergoes oxidation
- (4) Sn⁴⁺ is the oxidizing agent because it undergoes oxidation

RR0143

5. In which of the following reaction H_2O_2 acts as a reducing agent? [JEE(Main)-2014]

- (a) $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$
- (b) $H_2O_2 2e^- \rightarrow O_2 + 2H^+$

(c) $H_2O_2 + 2e^- \rightarrow 2OH^-$

(d) $H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$

- (1)(a),(c)
- (2) (b), (d)
- (3)(a),(b)
- (4)(c),(d)

RR0144

6. The molecular formula of a commercial resin used for exchanging ions in water softening is $C_8H_7SO_3Na$ (Mol. w.t 206). What would be the maximum uptake of Ca^{2+} ions by the resin when expressed in mole per gram resin? [JEE(Main)-2015]

- $(1) \frac{2}{309}$
- $(2) \frac{1}{412}$
- $(3) \frac{1}{103}$
- $(4) \frac{1}{206}$

RR0145

Z\rook608\2020-21[8080-84]\Koa\JEEAA\raoxal\wodule\Coding\V\Tog)\V\unture\Chensiar\Wedax & Equivident Concap\\Eg\02_E

54	JEE-Chemistry				ALLEN
7.	The volume of 0.	1N dibasic acid sufficient	ent to neutralize 1 g of	a base that furnishes	0.04 mole of
	OH- in aqueous s	solution is:		[JEE(Main)-C	OnLine-2016]
	(1) 400 mL	(2) 200 mL	(3) 600 mL	(4) 800 mL	
					RR0146
8.	Which of the foll	owing reactions is an e	xample of a redox reac	etion? [JEE(N	Main)-2017]
	(1) $XeF_4 + O_2F_2$	$\rightarrow {\rm XeF}_6 + {\rm O}_2$	$(2) XeF_2 + PF_5$	$\rightarrow [XeF]^+PF_6^-$	

(3) $XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$ (4) $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$

9. In which of the following reaction, hydrogen peroxide acts as an oxidizing agent?

(1) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$

[JEE(Main)-OnLine-2017]

(2) $HOC1 + H_2O_2 \rightarrow H_3O^+ + C1^- + O_2$

(3) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$

(4) $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$

RR0148

RR0147

In KO₂, the nature of oxygen species and the oxidation state of oxygen atom are, respectively **10.**

(1) Superoxide and -1/2

(2) Oxide and --2

[JEE(Main)-OnLine-2018]

(3) Peroxide and -1/2

(4) Superoxide and −1

RR0150

In the reaction of oxalate with permaganate in acidic medium, the number of electrons involved in 11. producing one molecule of CO₂ is: [JEE(Main)-(Jan.)-

2019]

 $(1)\ 10$

(2) 2

(3) 1

(4) 5

RR0151

12. The chemical nature of hydrogen preoxide is :- [JEE(Main)-(Jan.)-2019]

(1) Oxidising and reducing agent in acidic medium, but not in basic medium.

(2) Oxidising and reducing agent in both acidic and basic medium

(3) Reducing agent in basic medium, but not in acidic medium

(4) Oxidising agent in acidic medium, but not in basic medium.

RR0152

The hardness of a water sample (in terms of equivalents of CaCO₃) containing 10⁻³ M CaSO₄ is : **13.** [JEE(Main)-(Jan.)-2019] (molar mass of $CaSO_4 = 136 \text{ g mol}^{-1}$)

(1) 100 ppm

(2) 50 ppm

(3) 10 ppm

(4) 90 ppm

E

14.			eded to neutralize 25 mL of sodium sodium hydroxide solution is:	n hydroxide solution. The amount [JEE(Main)-(Jan.)-2019]
	(1) 4 g	(2) 2 g	(3) 8 g	(4) 1 g
				RR0154
15.			mole of each of FeC_2O_4 , $Fe_2(C_2O_4)$ of $KMnO_4$ required is -	$_{4}$) ₃ , FeSO ₄ and Fe ₂ (SO ₄) ₃ in acidic [JEE (Main)-(April)- 2019]
	(1) 3	(2) 2	(3) 1	(4) 1.5
				RR0155
16.		et order of the oxidati $N_2O_3 < NO < N_2O$	on states of nitrogen in NO, N ₂ C), NO_2 and N_2O_3 is :
	(2) NO ₂ <	$NO < N_2O_3 < N_2O$		
	(3) $N_2O <$	$N_2O_3 < NO < NO_2$		
	-	$1 \text{ NO} < \text{N}_2\text{O}_3 < \text{NO}_2$		[JEE(Main)-(April)-2019]
	. / 2	2 3 2		RR0156
17.	An example	le of a disproportiona	tion reaction is:	[JEE(Main)-(April)-2019]
	(1) 2KMn	$O_4 \rightarrow K_2 MnO_4 + MnO_2$	$_{2}+O_{2}$ (2) $2MnO_{4}^{-}+10I^{-}+$	$16H^+$ →2Mn ²⁺ +5I ₂ +8H ₂ O
	(3) 2CuBr	·→CuBr ₂ +Cu	(4) 2NaBr+ $Cl_2 \rightarrow$	2NaCl+Br ₂
				RR0158
18.		_	ns 0.81 g of calcium bicarbonate an e expressed in terms of equivalent	_
			ate is 162 g mol ⁻¹ and magnesium bi	•
	(1) 1,000 p	opm	(2) 10,000 ppm	[JEE(Main)-(April)-2019]
	(3) 100 pp	m	(4) 5,000 ppm	
				RR0159
19.		•	requires 30 mL of 0.1 M sodium uired to titrate 30 mL of 0.2 M a	
				[JEE(Main)-(Jan)-2019]
	(1) 25 mL	(2) 50 m	nL (3) 12.5 mL	(4) 75 mL
				RR0160
20.	Oxidation : (1) +1, +4	-	in K_2O , K_2O_2 and KO_2 , respective (2) +1, +2 and +4	·
	(3) +1, +1	and +1	(4) +2 +1 and $+$	$\frac{1}{2}$

JEE-Chemistry ALLEN

21. The compound that cannot act both as oxidising and reducing agent is :[JEE(Main)-(Jan)-2020]
(1) H₂O₂
(2) H₂SO₃
(3) HNO₂
(4) H₃PO₄

RR0168
22. The hardness of a water sample containing 10⁻³ M MgSO₄ expressed as CaCO₃ equivalents (in ppm) is _____.
[JEE(Main)-(Jan)-2020]
(molar mass of MgSO₄ is 120.37 g/mol)

RR0169

- 1. Reduction of the metal centre in aqueous permanganate ion involves [JEE-2011]
 - (A) 3 electrons in neutral medium
- (B) 5 electrons in neutral medium
- (C) 3 electrons in alkaline medium
- (D) 5 electrons in acidic medium

Reaction of Br₂ with Na₂CO₃ in aqueous solution gives sodium bromide and sodium bromate with evolution of CO₂ gas. The number of sodium bromide molecules involved in the balanced chemical equation is.
 [JEE- 2011]

RR0162

- 3. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen-
 - (A) HNO₃, NO, NH₄Cl, N₂

(B) HNO₃, NO, N₂, NH₄Cl

(C) HNO₃, NH₄Cl, NO, N₂

(D) NO, HNO₃, NH₄Cl, N₂

[JEE- 2012]

RR0163

- 4. 25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of 0.25 N Na₂S₂O₃ was used to reach the end point. The molarity of the household bleach solution is [JEE- 2012]
 - (A) 0.48 M
- (B) 0.96 M
- (C) 0.24 M
- (D) 0.024 M

RR0164

- 5. In neutral or faintly alkaline solution, 8 moles permanganate anion quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. the magnitude of X is[JEE- 2016]

 RR0165
- 6. To measure the quantity of MnCl₂ dissolved in an aqueous solution, it was completely converted to KMnO₄ using the reaction, [JEE- 2018]

 $MnCl_2 + K_2S_2O_8 + H_2O \rightarrow KMnO_4 + H_2SO_4 + HCl$ (equation not balanced).

Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid (225 g) was added in portions till the colour of the permanganate ion disappeard. The quantity of MnCl₂ (in mg) present in the initial solution is _____.

(Atomic weights in g mol^{-1} : Mn = 55, Cl = 35.5)

RR0166

ANSWER-KEY

EXERCISE # S-I

1. (a) +6

58

- **(b)** +5
- (c) +2
- **(d) -4**

- +4 **(e)**
- -1 **(f)**
- +2 **(g)**
- +6 **(h)**

- +3 (i)
- 2. (a) Reduction

(b) Oxidation

(c) Reduction

- (d) Oxidation
- **3.** Oxidant : O, ; Reductant : Zn (a)
 - Oxidant: H+; Reductant: Zn **(b)**
 - Oxidant: NO, ; Reductant: Zn (c)
- $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$ 4. **(i)**
 - $Br_2 + 5H_2O_2 \longrightarrow 2BrO_3^- + 4H_2O + 2H^+$ (ii)
 - $MnO_4^- + 5Fe^{+2} + 8H^+ \longrightarrow Mn^{+2} + 5Fe^{+3} + 4H_2O$ (iii)
 - $MnO_2 + 2Cl^- + 4H^+ \longrightarrow Mn^{+2} + Cl_2 + 2H_2O$ (iv)
 - $3ClO^- + 2CrO_3^- + 2OH^- \longrightarrow 3Cl^- + 2CrO_4^{2-} + H_3O$ **(v)**
- $2MnO_4^- + 6I^- + 4H_2O \longrightarrow 2MnO_2 + 3I_2 + 8OH^-$ 5. **(i)**
 - $H^{+} + 2MnO_{4}^{-} + 5SO_{2} + 2H_{2}O \longrightarrow 2Mn^{2+} + 5HSO_{4}^{-}$ (ii)
 - $2Fe^{2+} + H_2O_2 + 2H^+ \longrightarrow 2Fe^{3+} + 2H_2O$ (iii)
 - $Cr_2O_7^{2-} + 3SO_2 + 2H^+ \longrightarrow 2Cr^{3+} + 3SO_4^{2-} + H_2O$ (iv)
- 6. Ans. (1) 1

(1) 1

- (2) 2, 1
- (3) 1

- (4) 1
- (5)2

(6) 1

- **(2)** 1

(3) 1

36.

(4) 1

- 8. 98, 49, 32.67
- Ans.21 9.
- **Ans.** (i) $\frac{83.5}{6}$; (ii) 10.

Ans.40 g, 0.0518N

11. Ans. 6

7.

- **12.** Ans.5
- **13.** Ans.(8.097 mL)

- **14.** Ans.(40)
- **15.** Ans.40 ml
- **16.** Ans.60 ml
- 17. Ans.12.5 L

(5) 2

- Ans.12.5 L 18.
- 19. Ans. V = 3 lit.
- Ans. 200 mL 20.
- 21. Ans. 30 N

- 22. Ans.(4.48)
- 23. Ans. 10 N
- 24. Ans.2.12 g/L
- 25. Ans.+ 3

- 26. Ans.Zero
- 27. Ans.V = 160 ml 28.

Ans.1.28%

- Ans.0.588 N
- 29. Ans.4 lit.

- Ans. $\frac{2}{3}$ **30.**
- 31. Ans. 8/5
- **32.** Ans. 1.25 mL
- 33. Ans.1.406%

- 34. Ans.V = 25 mL

35.

- **37.** Ans. $(Ca^{2+}, Mg^{2+}, Na^{+})$
- 38. Ans.(19.09)

EXERCISE # S-II

				EXER	RCISE #	S-11			
1.	(a)	+2.5	(b)	+4/3	(c)	-1/3		(d)	+8/3
	(e)	-3, -1	(f)	-2, +2	(g)	+16/3		(h)	0
	(i)	+2, -1	(j)	+2	(k)	0		(l)	+1/2
	(m)	-1/2	(n)	+1	(o)	+3		(p)	-3
	(q)	+3	(r)	+2	(s)	+4			
2.	(a)	+3	(b)	+3, +6	(c)	+2	(d)		<u>00</u> 03
	(e)	+6	(f)	+6	(g)	+6	(h)	+5	
	(r)	+2	(s)	+3					
3.	(i) 6	$KMnO_4(aq.) +$	10FeC	$_{2}O_{4}(aq.) + 24$	H ₂ SO _{4 (} aq	1.) →			
			6N	InSO ₄ (aq.) +	5Fe ₂ (SO	₄) ₃ (aq.) +	20CO ₂	(g) +	$3K_2SO_4 + 24H_2O(l)$
	(ii)	$5P_4(s) + 12OH$	I ⁻ (aq.)	+ 12H ₂ O	→ 8PH ₃ (aq) + 12H	PO ₂ (a	(.p	
	(iii)	$3I_2(s) + 6NaO$	H(aq.)	→ 5NaI ((aq.) + Na	aIO ₃ (aq.) -	+ 3H ₂ O	(l)	
	(iv)	3HNO ₂ (aq.) –	$\rightarrow NO_3$	$+ H^+ + 2NO($	$(g) + H_2O$	•			
	(v)	$IO_3^- + 5I^- + 6$	$H^{+} \rightarrow$	$3I_2 + 3H_2O$					
	(vi)	$5Cu_2S + 8MnC$	O ₄ -+ 4	$4H^+ \rightarrow 10Cu^2$	²⁺ + 5O ₂ +	+ 8Mn ²⁺ +	22 H ₂ C)	
	(vii)	HCHO(l) + [A]	g(NH ₃)	$[a_2]^+(aq.) + 2O$	H ⁻ (aq.) -	\rightarrow Ag(s) +	2NH ₃ (a	(.p	$HCOO^{-}(aq.) + H_2O(l)$
4.	KOI	H = 35%, $Ca(O)$	$H)_{2} = 6$	5%					
5.	Ans		2		6.	Ans. 12.5	5 <i>l</i>		
7.	Ans	. 6 <i>l</i>			8.	Ans. 16.0	66%		
9.	Ans	. 3			10.	Ans. 90.1	1%		
11.	Ans	. (80)			12.	Ans. 16%	6		
13.		24.46%			14.	Ans. 0.4	7		
15.	Ans	. (40)			16.	Ans. (0.0	626 M))	

EXERCISE # O-I

1.	Ans. (C)	2.	Ans. (B)	3.	Ans. (B)	4.	Ans. (B)
5.	Ans. (D)	6.	Ans. (A)	7.	Ans. (D)	8.	Ans. (A)
9.	Ans. (D)	10.	Ans. (A)	11.	Ans. (B)	12.	Ans. (A)
13.	Ans. (C)	14.	Ans. (C)	15.	Ans. (C)	16.	Ans. (D)
17.	Ans. (A)	18.	Ans. (D)	19.	Ans. (D)	20.	Ans. (B)
21.	Ans. (C)	22.	Ans. (D)	23.	Ans. (D)	24.	Ans. (D)
25.	Ans. (A)	26.	Ans. (C)	27.	Ans. (D)	28.	Ans. (C)
29.	Ans. (D)	30.	Ans. (A)	31.	Ans. (C)	32.	Ans. (B)
33.	Ans. (A)	34.	Ans. (A)	35.	Ans. (B)	36.	Ans. (C)
37.	Ans. (C)	38.	Ans. (A)	39.	Ans. (D)	40.	Ans. (A)
41.	Ans. (C)	42.	Ans. (C)	43.	Ans. (D)	44.	Ans. (A)
45.	Ans. (B)	46.	Ans. (B)				

JEE-Chemistry ALLEN

EXERCISE # O-II

1. Ans. (A)

60

- 2. Ans. (C)
- 3. Ans. (B)
- 4. Ans. (C)

- **5.** Ans. (A)
- 6. Ans. (A)
- 7. **Ans.** (**B**)
- 8. Ans. (B)

- 9. **Ans.** (**C**)
- 10. **Ans.** (**A**,**B**,**D**)

Ans. (A)

- 11. Ans. (C)
- **12.** Ans. (A)

- **13. Ans.** (**B**)
- **14. Ans.** (C)
- **15.**

18.

19.

 $(A) \rightarrow s ; (B) \rightarrow q ; (C) \rightarrow r ; (D) \rightarrow p$

Ans. (**B**)

19.

20.

16. Ans. (C)

Ans. (C)

20.

21. Ans. (B)

17.

18.

22. **Ans.** (**A**,**D**)

Ans. (A)

EXERCISE # J-MAINS

- 1. Ans. (2)
- 2. Ans. (3)
- **3.** Ans. (4)
- 4. Ans. (1)

- **5.** Ans. (2)
- 6. Ans. (2)
- 7. Ans. (1)
- 8. Ans. (1)

- 9. Ans. (3)
- 10. Ans. (1)
- 11. Ans. (3)
- **12.** Ans. (2)

- **13.** Ans. (1)
- 14. Ans. (1)
- **15.** Ans. (2)

Ans. (1)

16. Ans. (4)

Ans. (3)

- **17.** Ans. (3) 21. Ans. (4)
- 22. Ans. (100)

Ans. (2)

EXERCISE # J-ADVANCED

- 1. Ans. (A,C,D)
- 2. Ans. (5)
- **3.** Ans. (B)
- 4. Ans. (C)

- **5.** Ans. (6)
- 6. Ans. (126)