Imperial College London

Relativity – Lecture 4

Dr Caroline Clewley

Page 1

Key concepts of lecture 3

- Events that are simultaneous in one inertial frame and spatially separated, are non-simultaneous in another inertial frame.
- Time dilation: moving clocks run slow.
- Proper time: the time interval measured between 2 events by a stationary clock.
- Length contraction: moving objects are short.

Example: time dilation & length contraction

A negatively-charged pion (π -) travels at β = 0.998 in a lab. It's lifetime is measured in the lab frame to be 4.20 x 10⁻⁷ s.

- 1. What distance does it travel in the lab frame?
- 2. What distance does it travel in the pion's rest frame?
- 3. What is its rest frame lifetime?

Page 3

Example: time dilation & length contraction

Galilean coordinate transformation

Page 5

Galilean transformations: what about light?

Lorentz transformations

Page 7

Lorentz transformations

Lorentz transformations: what about light?

Page 9

Example: Lorentz transformations

Velocity Addition

Page 11

Example: velocity addition

Summary of formulae

Lorentz transformations (1D):

$$x' = \gamma(x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \gamma(t - \frac{vx}{c^2})$$

Velocity addition:

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$$