Using Neural Networks for Pattern Classification Problems

Converting an Image

- Camera captures an image
- Image needs to be converted to a form that can be processed by the Neural Network

Converting an Image

- Image consists of pixels
- Values can be assigned to color of each pixel
- A vector can represent the pixel values in an image

Converting an Image

- If we let +1 represent black and 0 represent white
- p = [0 10101 010001000 10.....

Neural Network Pattern Classification Problem

Types of Neural Networks

- Perceptron
- Hebbian
- Adeline
- Multilayer with Backpropagation
- Radial Basis Function Network

2-Input Single Neuron Perceptron: Architecture

A single neuron perceptron:

Output:
$$a = \text{hardlims}(\mathbf{Wp + b}) = \text{hardlims} \left[\begin{bmatrix} w_{1,1} & w_{1,2} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + b \right]$$

= $\text{hardlims}(w_{1,1}p_1 + w_{1,2}p_2 + b) = \begin{cases} -1, & \text{if } w_{1,1}p_1 + w_{1,2}p_2 + b < 0 \\ +1, & \text{if } w_{1,1}p_1 + w_{1,2}p_2 + b \ge 0 \end{cases}$

2-Input Single Neuron Perceptron: Example

$$a = \text{hardlims}(w_{1,1}p_1 + w_{1,2}p_2 + b)$$

$$= \begin{cases} -1, & w_{1,1}p_1 + w_{1,2}p_2 + b < 0 \\ +1, & w_{1,1}p_1 + w_{1,2}p_2 + b \ge 0 \end{cases}$$

Example:
$$\mathbf{w}_{1,1} = -1$$
 $\mathbf{w}_{1,2} = 1$ $\mathbf{b} = -1$
$$a = \begin{cases} -1, & -p_1 + p_2 - 1 < 0 \text{ or } -p_1 + p_2 < 1 \\ +1, & -p_1 + p_2 - 1 \ge 0 \text{ or } -p_1 + p_2 \ge 1 \end{cases}$$

This separates the inputs $\mathbf{p} = [p_1, p_2]^T$ into two categories separated by the boundary: $-p_1 + p_2 = 1$

2-Input Single Neuron Perceptron: Decision Boundary

2-Input Single Neuron Perceptron: Weight Vector

 The weight vector, W, is orthogonal to the decision boundary

2-Input Single Neuron Perceptron: Weight Vector

W points towards the class with an output of +1

Simple Perceptron Design

- The design of a simple perceptron is based upon:
 - A single neuron divides inputs into two classifications or categories
 - The weight vector, W, is orthogonal to the decision boundary
 - The weight vector, W, points towards the classification corresponding to the "1" output

Orthogonal Vectors

• For any hyperplane of the form:

$$a_1p_1 + a_2p_2 + a_3p_3 + \dots + a_np_n = b$$

the vector $c^*[a_1, a_2, \dots, a_n]$ is orthogonal to
the hyperplane (where c is a constant).

$$-p_1 + p_2 = -1 * p_1 + 1*p_2 = 1$$

 $\mathbf{W} = [-1, 1]$

AND Gate: Description

- A perceptron can be used to implement most logic functions
- Example: Logical AND Truth table:

Inputs		Output		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

AND Gate: Architecture

Input/Target pairs:

AND Gate: Graphical Description

Graphically:

Inputs		Output		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

· Where do we place the decision boundary?

AND Gate: Decision Boundary

· There are an infinite number of solutions

• What is the corresponding value of W?

AND Gate: Weight Vector

- W must be orthogonal to the decision boundary
- W must point towards the class with an output of 1

• Output: $\mathbf{a} = \text{hardlim} \left[\begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + b \right] = \text{hardlim} \left\{ \underbrace{2p_1 + 2p_2 + b} \right\}$ Decision boundary

AND Gate: Bias

Decision Boundary: $2p_1 + 2p_2 + b = 0$

• At (1.5, 0): 2(1.5) + 2(0) + b = 0 b = -3

AND Gate: Final Design

· Final Design:

$$\mathbf{a} = \text{hardlim} \left\{ \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} - 3 \right\}$$

 $\mathbf{a} = \operatorname{hardlim} \left\{ \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} - 3 \right\} = 0 \quad \mathbf{a} = \operatorname{hardlim} \left\{ \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 3 \right\} = 0 \quad \mathbf{a} = \operatorname{hardlim} \left\{ \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 3 \right\} = 1$

Perceptron Learning Rule

- Most real problems involve input vectors,
 p, that have length greater than three
- Images are described by vectors with 1000s of elements
- Graphical approach is not feasible in dimensions higher than three
- An iterative approach known as the Perceptron Learning Rule is used

Character Recognition Problem

Given: A network has two possible inputs, "x" and "o".
 These two characters are described by the 25 pixel (5 x 5) patterns shown below.

 Problem: Design a neural network using the perceptron learning rule to correctly identify these input characters.

Character Recognition Problem: Input Description

- The inputs must be described as column vectors
- Pixel representation: 0 = white1 = black

The "o" is represented as: $[011100001100011000110001]^T$

Character Recognition Problem: Output Description

- The output will indicate that either an "x" or "o" was received
- Let: 0 = "o" received

 1 = "x" received

 A hard limiter will be used
- The inputs are divided into two classes requiring a single neuron
- Training set:

 $\mathbf{p_1} = [1000101010101000110101010101]^T, \ t_1 = 1$ $\mathbf{p_2} = [0111010001100011000101110]^T, \ t_2 = 0$

Character Recognition Problem: Network Architecture

Perceptron Learning Rule: Summary

- Step 1: Initialize W and b (if non zero) to small random numbers.
- Step 2: Apply the first input vector to the network and find the output, a.
- Step 3: Update W and b based on:

$$W_{\text{new}} = W_{\text{old}} + (t-a)p^{T}$$
$$b_{\text{new}} = b_{\text{old}} + (t-a)$$

 Repeat steps 2 and 3 for all input vectors repeatedly until the targets are achieved for all inputs

Character Recognition Problem: Perceptron Learning Rule

- Step 1: Initialize **W** and **b** (if non zero) to small random numbers.
 - Assume $W = [0 \ 0 \dots 0]$ (length 25) and b = 0
- · Step 2: Apply the first input vector to the network
 - $\mathbf{p_1} = [1000101010100010001010101010]^T$, $\mathbf{t_1} = 1$
 - $a = \text{hardlim}(\mathbf{W}(\mathbf{0})\mathbf{p}_1 + b(0)) = \text{hardlim}(0) = 1$
- · Step 3: Update W and b based on:

$$b_{new} = b_{old} + (t-a) = b_{old} + (1-1) = 0$$

Character Recognition Problem: Perceptron Learning Rule

- Step 2 (repeated): Apply the second input vector to the network
- · Step 3 (repeated): Update W and b based on

Character Recognition Problem: Perceptron Learning Rule

W	b	р	t	а	е
[00000000000000000000000000000000000000	0	p ₁	1	1	0
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	p ₂	0	1	-1
[0 -1 -1 -1 0 -1 0 0 0 -1 -1 0 0 0 -1 -1 0 0 0 -1 0 -1 0 -1 -1 -1 0]	-1	p ₁	1	0	1
[1 -1 -1 -1 1 -1 1 0 1 -1 -1 0 1 0 -1 -1 1 0 1 -1 1 -1 -1 -1 -1 -1	0	p ₂	0	0	0
[1 -1 -1 -1 1 -1 1 0 1 -1 -1 0 1 0 -1 -1 1 0 1 -1 1 -1 -1 -1 -1 -1	0	p ₁	1	1	0

Character Recognition Problem: Results

- After three epochs, W and b converge to:
 - **W** = [1 -1 -1 -1 1 -1 1 0 1 -1 -1 0 1 0 -1 -1 1 0 1 -1 1 -1 -1 -1 1]
 - b = 0
- One possible solution based on the initial condition selected. Other solutions are obtained when the initial values of W and b are changed.
- Check the solution: a = hardlim(W*p + b) both both inputs

Character Recognition Problem: Results

· How does this network perform in the presence of noise?

x and o with three pixel errors in each

- For the "x" with noise:
- For the "o" with noise:
- The network recognizes both the noisy x and o.

Character Recognition Problem: Simulation

- Use MATLAB to perform the following simulation:
 - Apply noisy inputs to the network with pixel errors ranging from 1 to 25 per character and find the network output
 - Each type of error (number of pixels) was repeated 1000 times for each character with the incorrect pixels being selected at random
 - The network output was compared to the target in each case.
 - The number of detection errors was tabulated.

Character Recognition Problem: Performance Results

No. of	No. of Character Errors		Probability of Error		
Pixel Errors	x	0	x	0	
1 - 9	0	0	0	0	
10	96	0	.10	0	
11	399	0	.40	0	
12	759	58	.76	.06	
13	948	276	.95	.28	
14	1000	616	1	.62	
15	1000	885	1	.89	
16 - 25	1000	1000	1	1	

Perceptrons: Limitations

Perceptrons only work for inputs that are linearly separable

Linearly separable

$$\begin{array}{ccc} X & & & \\ X & O_0 & X & & \\ & O & X & & \end{array}$$

Not Linearly separable

Other Neural Networks

- How do the other types of neural networks differ from the perceptron?
 - Topology
 - Function
 - Learning Rule

Perceptron Problem: Part 1

- Design a neural network that can identify a tank and a house.
 - Find W and b by hand as illustrated with the xo example.
 - Use the Neural Network Toolbox to find W and b

Tank (t = 1)

House (t = 0)

Perceptron Problem: Part 2

- Design a neural network that can find a tank among houses and trees.
 - Repeat the previous problem but now with a tree included.
 - Both the house and tree have targets of zero.

Perceptron Problem: Part 3

- Design a neural network that can find a tank among houses, trees and other items.
 - Create other images on the 9 x 9 grid.
 - Everything other than a tank will have a target of zero.
 - How many items can you introduce before the perceptron learning rule no longer converges?

MATLAB: Neural Networks Toolbox

- Go to MATLAB Help and review the documentation on the Neural Networks Toolbox
- Use the GUI interface (>> nntool) to reproduce the results you obtained for the perceptron (tank vs. house, tree, etc.)
- Data can be imported/exported from the workspace to the NN Tool.