

Réalisé par: Colin Trève & Marwa TABIB Encadré par: Fabrice Guillet & Angélique Villière Coordinateur: Philippe LERAY

Table de matière

Sujet

- Perception olfactive

Relation entre la structure moléculaire et l'odeur

Problématique

Reconnaître des odeurs à partir d'une molécule

Représenter une molécule par un graphe

02 Solutions proposées

Sources

Solutions proposées dans la littérature

- Random forest models (RF)
- k-nearest neighbor models (KNN)
- GNN

Comparaison

	AUROC	Precision	F1
GNN	0.894 [0.888, 0.902]	0.379 [0.351, 0.398]	0.360 [0.337, 0.372]
RF-Mordred	0.850 [0.838, 0.860]	0.311 [0.288, 0.333]	0.306 [0.283, 0.319]
RF-bFP	0.832 [0.821, 0.842]	0.321 [0.293, 0.339]	0.295 [0.272, 0.308]
RF-cFP	0.845 [0.835, 0.854]	0.315 [0.280, 0.332]	0.295 [0.272, 0.311]
KNN-bFP	0.791 [0.778, 0.803]	0.328 [0.305, 0.347]	0.323 [0.299, 0.335]
KNN-cFP	0.796 [0.785, 0.809]	0.333 [0.307, 0.351]	0.316 [0.292, 0.327]

Figure 1: Tableau de comparaison des modèles de prédiction d'odeur - article [BSLW19]

GNN (Graph Neural Network)

- Couche de GNN
 - Message Passing
 - Agrégation des message
- Phase de READOUT(agrégation des noeuds)
- Décodeur (prédiction)

Figure 3: Processus de Message Passing et d'Agrégation dans les GNN_[RSGH]

$$egin{aligned} \mathbf{m}_v^{(t)} &= ext{AGGREGATE}(\{\mathbf{h}_u^{(t-1)}, orall u \in \mathcal{N}(v)\}) \ \\ \mathbf{h}_v^{(t)} &= ext{UPDATE}(\mathbf{h}_v^{(t-1)}, \mathbf{m}_v^{(t)}) \ \\ \mathbf{y} &= ext{READOUT}(\{\mathbf{h}_v^{(T)}, orall v \in G\}) \ \\ \mathbf{z}_g &= ext{MLP}(\mathbf{y}) \end{aligned}$$

Modèles de GNN

GCN

Figure 3: Architecture du GCN- rapport PRED 2023:[CJ23]

 $h_u^{(t)}$ est la représentation du nœud u à la couche t. N(v) est l'ensemble des voisins du nœud v.

Formule matricielle:

$$\mathbf{H}^{(l)} = \left(\hat{A}D^{-1}
ight)\mathbf{H}^{(l-1)}\mathbf{W}^{(l)}$$

Exemple: Acétone(C3H6O)

Type (symbol)	Degré	Valence implicite	Aromatique	Chiralité
0 (C)	4	3	0	0
0 (C)	3	0	0	0
1(0)	1	0	0	0
0 (C)	4	3	0	0

0	1	0	0
1	0	1	1
0	1	0	0
0	1	0	0

1	0	0	0
0	3	0	0
0	0	1	0
0	0	0	1

Matrice d'adjacence A

Matri	ce	ae	aegre	3

2	0	0	0
0	4	0	0
0	0	2	0
0	0	0	2

Matrice de degré avec boucle réflexive D= D'+l

$$\mathbf{H}^{(l)} = \left(\hat{A}D^{-1}
ight)\mathbf{H}^{(l-1)}\mathbf{W}^{(l)}$$

Exemple: Acétone(C3H6O)

1	1	0	0
1	1	1	1
0	1	1	0
0	1	0	1

Matrice d'adjacence avec boucle réflexive = A+I

X

0.5	0	0	0
0	0.25	0	0
0	0	0.5	0
0	0	0	0.5

Matrice de degré inverse D^{-1}

0.5	0.25	0	0
0.5	0.25	0.5	0.5
0	0.25	0.5	0
0	0.25	0	0.5

Matrice d'adjacence régularisé Â"

$$\mathbf{H}^{(l)} = \left(\hat{A}D^{-1}
ight)\mathbf{H}^{(l-1)}\mathbf{W}^{(l)}$$

0	0	0.25	0.5
0.5	0.5	0.25	0.5
0	0.5	0.25	0
0.5	0	0.25	0

0	4	3	0	0
0	3	0	0	0
1	1	0	0	0
0	4	3	0	0

2 (0.5)(0.5)(0.5)(0.5)					
0.4967	1415	-0.1382643	0.64768854	1.52302986	-0.23415337
-0.2341	3696	1.57921282	0.76743473	-0.46947439	0.54256004
-0.4634	1769	-0.46572975	0.24196227	-1.91328024	-1.72491783
-0.5622	8753	-1.01283112	0.31424733	-0.90802408	-1.4123037
1.4656	4877	-0.2257763	0.0675282	-1.42474819	-0.54438272

Matrice d'adjacence régularisé Â"

Matrice caractéristique $X=H^{(0)}$

Matrice de poids aléatoire W

-1.339003	3.644241	2.473389	-4.160975	-1.095337
-2.371115	6.824546	5.078763	-7.443066	-2.44339
-0.044314	1.904884	1.283138	0.174672	0.561123
-1.339003	3.644241	2.473389	-4.160975	-1.095337

Matrice des nouvelles caractéristiques H^1

ÉTAPES DU MPNN

Dans l'article [LMSL+22]

Dans le git [BKSS23]

MPNN

1- Message Passing

$$m_v^{t+1} = \sum_{u \in N(v)} W(e_{uv}) h_u^t$$

$$M^{(t+1)} = D^{-1/2} \hat{\mathsf{A}} D^{-1/2} H^t W$$

2- Mise à jour GRU

$$h_v^{t+1} = GRU(h_v^t, m_v^{t+1})$$

$$H^{t+1} = GRU(H^t, M^{t+1})$$

3- Phase du readout

$$y' = \phi\left(h_v^{(T)}, \sum_{u \in \mathcal{N}(v)} \psi\left(h_u^{(T)}, e_{uv}
ight)
ight)$$

$$Y' = H^t W_z + \sum_{u \in N(v)} EW$$

4- Agrégation finale

$$y = \sum_{v \in V} y'$$

$$Y = \sum_{v \in V} Y'$$

L'exemple de l'Acétone

En ce qui concerne l'exemple de l'acétone, voici un lien du google colab où se trouve le code qui calcule la matrice H^1 en se basant sur la vectorisation du git OpenPOM [BKSS23]: Untitled9.ipynb - Colab

openPom	stellargraph
aldehyde	aldehyde
alliaceous	alliaceous
almond	almond
animal	animal
apple	apple
apricot	apricot
balsamic	balsamic
banana	banana
berry	berry
burnt	burnt
buttery	buttery
cabbage	cabbage
caramel	caramel
cedar	cedar
cheese	cheese
cherry	cherry
chocolate	chocolate
cinnamon	cinnamon
citrus	citrus
cocoa	cocoa
coconut	coconut
coffee	coffee

iie	alcoholic	ambergris
	amber	aniseed
	anisic	beeswax
	aromatic	bread
	beefy	broth
	bergamot	camphor
	bitter	chemical
	black currant	chicken
	brandy	coriander
	camphoreous	coumarin
	celery	earth
	chamomile	ester
	clean	ether
	clove	fermentative
	cooked	fresh milk
	cooling	jam
	cortex	lactic
	coumarinic	licorice
	dairy	lily of the valley
	dry	lime
	earthyness	plastic
	ethereal	
	fermented	

Descripteurs d'odeurs utilisés dans OpenPom et Stellargraphe

stellargraphe openPom C1CCCC2(CCC1)CCCO2 C1CCCC2(CCC1)CCCO2 Descripteurs de molécules C1CCCCC2COCC2CCCC1 C1CCCCC2COCC2CCCC1 C1CCNCC1 C1CCNCC1 C1CSCCS1 C1CSCCS1 utilisées dans OpenPom et C1CSCS1 C1CSCS1 C1CSCSC1 C1CSCSC1 C=CC=O C=CC=O Stellargraphe C=CCC(C=O)c1ccccc1 C=CCC(C=O)c1ccccc1 C=CCCC(=O)c1ccccc1 C=CCCC(=O)c1ccccc1 C=CCCCCCCCC=O Comparaison des molécules (SMILES) entre les fichiers C=CCCCCCCCC(=O)OCC=C C=CCCCCCCC(=O)OCC=C C=CCCCCCCCCCO C=CCCCCCCCCCO 3748 C=CCCCCCCCCCCCC#N C=CCCCCCCCCCCCC#N 3500 C=CCN=C=S C=CCN=C=S C=CCOC(=O)CCC1CCCCC1 C=CCOC(=O)CCC1CCCCC1 3000 C=CCOC(=0)CCCC1CCCCC1 C=CCOC(=O)CCCC1CCCCC1 Br\C=C\c1cccc1 BrC=Cc1ccccc1 C=CCOC(=O)CCCCC1CCCCC1 C=CCOC(=O)CCCCC1CCCCC1 de molécules C#CC(C)(O)CCC=C(C)CBrc1ccc(NC(=O)c2cccc2)c(c1)c3ccccc3 C=CCOC(=O)CCCCCC1CCCCC1 C=CCOC(=O)CCCCCC1CCCCC1 2500 C#CC1(OC(C)=O)CCCCC1 C(Cc1cccc1)Cc2ccccn2 C=CCOC(=0)COC1CCCCC1 C=CCOC(=O)COC1CCCCC1 C#CC1(OC(C)=O)CCCCC1C(C)CC C(OCc1ccccc1)c2cccc2 C=CCOC(=O)COc1ccccc1 C=CCOC(=O)COc1ccccc1 2000 C#CCO C(OCclocccl)c2occc2 C=CCOC(=O)Cc1ccccc1 C=CCOC(=O)Cc1ccccc1 C#CCO.CCC(=O)CCC1C(C)=CCCC1 C(SCc1occc1)c2occc2 C=CCOC(=O)c1ccccc1 C=CCOC(=O)c1ccccc1 C(=CC1OCCO1)c1ccccc1 C(SSCc1ccccc1)c2ccccc2 1500 C(SSCc1occc1)c2occc2 C1=CC2COCC2CCCCCCC1 1235 C1=NCCC1 C(c1ccccc1)c2ccccc2 C1CC2C3CC(C2C1)C1(CCCO1)C3 C(n1cccc1)c2occc2 1000 C1CCC(SSC2CCCCC2)CC1 C/C(C=O)=C/c1ccccc1 C1CCCCC1 C/C(C=O)=C/c1occc1 500 C1CCNC1 C/C=C(/C)C(=O)OCCC(C)CC1CCOCC1 C/C=C(/C)C(=O)OCCC(C)C=CC1CCSC1 C/C=C(/C)C(=O)OCCc1ccccc1 C1CCSSC1 C/C=C(C)/C=C/C=C(C)CCommuns Uniquement dans openfiguement dans stellargraphe C1CNCCN1 C/C=C(C)/CO C1CNCCN1.O=C(O)CCCCC(=O)O C/C=C(C)/COC(=O)C(/C)=C/C C/C=C/C(=O)C1=C(C)C=CCC1(C)CC1CS1 C1CSSSS1 C/C=C/C(=O)C1=C(C)CCCC1(C)C

C/C=C/C(=O)C1C(=CCCC1(C)C)C

C/C=C/C(=O)C1C(C)C=CCC1(C)C

C/C=C/C(=O)C1CCC(C)(C)C=C1C

C1SCSS1

C1SSCSSS1

C=C(C(C)C(C)O)C(C)C(C)(C)C

1476

Vecteur d'entrée de Stellargraph [gab23]

Caractéristique	Description	Dimension
Symbole	Type d'atome {'C': 0, 'O': 1, 'N': 2, 'S': 3, 'Cl': 4, 'Br': 5, 'H': 6}, encodé sous forme d'entier	1
Degré	nombre de voisins du sommet (tout atome confondu)	1
Valence Implicite	nombre de H absent du smile	1
Aromatique	Indique si l'atome appartient à un cycle aromatique (si oui: 1, 0 sinon)	1
Chiralité	Type de chiralité de l'atome: 0:CHI_UNSPECIFIED, 1:CHI_TETRAHEDRAL_CW, 2:CHI_TETRAHEDRAL_CCW	1

Vecteurs d'entrée de OpenPOM [BKSS23]

Caractéristiques des atomes			
Caractéristique	Description	Dimension	
Valence	One-hot encoding de la valence totale de l'atome (0-6)	7	
Degree	One-hot encoding du degré de l'atome (0-5)	6	
Nombre d'hydrogèn	One-hot encoding du nombre d'atomes d'hydrogène voisins (0-4)	5	
Charge formelle	One-hot encoding de la charge électronique (-2, -1, 0, 1, 2)	5	
Numéro atomique	One-hot encoding du numéro atomique (1-100)	100	
Hybridation	One-hot encoding de l'hybridation (SP, SP2, SP3, SP3D, SP3D2)	5	

Caractéristiques des arêtes			
Caractéristique	Description	Dimension	
Liaison simple	One-hot encoding du type de liaison single	2	
Liaison double	One-hot encoding du type de liaison double	2	
Liaison triple	One-hot encoding du type de liaison triple	2	
Liaison aromatique	One-hot encoding du type de liaison aromatique	2	

Tables de comparaison des modèles

	AUROC	Precision	Recall	F1
MPNN GCN			0.387 [0.366, 0.408] 0.390 [0.365, 0.412]	

Figure 5: Performances du MPNN et GCN -article [BSLW19]

Proposition

Modification modèle actuelle

Objectif: Réutiliser le modèle de OPENPOM([BKSS23]) et tenter de trouver des pistes d'amélioration pour cela on va modifier:

- Les données du dataset
- La fonction de READOUT
- Le nombres de couches
- En fonction de la hiérarchisation des odeurs de SketchOscent

Dataset SketchOscent

Traitement:

- Retire les doublons 3920 -> 3841 mol
- CAS -> SMILES 3841 mol -> 3737 mol
- Pas d'unicité du SMILES (101 SMILES dupliqué)
- molécules sans descripteurs d'odeurs : 33

Variation du jeu de données

Variation du dataset avec descripteurs d'odeurs présent sur plus de 30 molécule :

- Nature
- Sans codes SMILES doublons
- Sans les molécules sans descripteurs d'odeur et sans doublons

Variation du nombre de couches de message passing

Variation du nombre de couche de 1 à 5

Modification de la fonction de READOUT

On modifie la fonction de READOUT:

- de set2set (2 couches et 3 step)
- à globale somme pooling.

Odeurs individuelle

- Modèles avec les odeurs individuelles et les molécules sans descripteur
- Modèles avec les odeurs individuelles et sans les molécules sans descripteur
- Modèles avec toutes les odeurs et le molécules sans descripteur

Conclusion

- Prédiction des descripteurs d'odeurs à l'aide du GNN
- Différents modèles du GNN (MPNN & GCN)
- Comparaisons des modèles
- Améliorations du modèle OpenPOM
 - Modification de la fonction Readout
 - Variation du nombre de couche du message passing
 - Hiérarchisation des odeurs Sketch Oscent
 - Variation du jeu de données

QUESTION:

Peut-on utiliser le GCL(Graph Contrastive Learning) pour distinguer les zones particulières de la molécule qui sont responsables de ses odeurs?

07 Ribliogran

[BSLW19] Brian K Lee1 Richard C Gerkin Alán Aspuru-Guzik Benjamin Sanchez-Lengeling, Jennifer N Wei and Alexander B Wiltschko1r. Machine learning for scent: Learning generalizable perceptual representations of small molecules. 2019.

[LMSL+22] Brian K. Lee, Emily J. Mayhew, Benjamin Sanchez-Lengeling, Jennifer N. Wei, Wesley W. Qian, Kelsie Little, Matthew Andres, Britney B. Nguyen, Theresa Moloy, Jane K. Parker, Richard C. Gerkin, Joel D. Mainland, and Alexander B. Wiltschko. A principal odor map unifies diverse tasks in human olfactory perception. bioRxiv, 2022.

[LS24] Amit Barsainyan Mrityunjay Sharma Ritesh Kumar Laura Sisson, Aryan. Olfactory label prediction on aroma-chemical pairs. 2024

[gab23] gabikun. Pred. https://github.com/gabikun/PRED/tree/main,2023

[BKSS23] Aryan Amit Barsainyan, Ritesh Kumar, Pinaki Saha, and Michael Schmuker. Openpom - open principal odor map, 2023. https://github.com/BioMachineLearning/openpom.

[Sis25] Laura Sisson. odor_pair, 2025. https://github.com/odor-pair/odor-pair.

[CJ23] Thomas Clouet and Gabriel Jolly. Fouille de données olfactives: Clustering de molécule odorantes par gnn (graph neural networks). Rapport de recherche et développement, École Polytechnique de l'Université de Nantes, Département d'Informatique, février 2023.

[RSGH]https://www.researchgate.net/figure/A-typical-and-basic-architecture-and-processing-procedures-of-GNN-First-GNN-selects_fig2_352526255

[GNTRO] A Gentle Introduction to Graph Neural Networks https://distill.pub/2021/gnn-intro/

07 Annexe

GIN(Graph Isomorphism Network) En annexe

la fonction de mise à jour est :

$$h_v^t = MPL^t(\left(1+arepsilon^t
ight).h_{v+}^{t-1}\sum_{u\in N(u)}h_u^{t-1})$$

Où epsilon est un paramètre appris dans le MLP

En annexe

Paramètre (MPNN)	Article olfactory(MPNN)	OPENPOM(MPNN)	
Entrée	?	vector(129, 6)	
Nombre et taille de couche de message passing	5 couche de dimension 43	6 couche + connexion résiduelle	
Phase de mise à jour	GRU-update at each layer	RELU	
READOUT	Global sum pooling, soft max avec un MLP de dimension 197	Set2Set de 3 couches de 6 étapes prend en entrée: 64+64	
Décodeur	Multi-headed sigmoid, 138 tasks Weighted-cross entropy loss, optimized with Adam, used learning rate decay with warm restarts, 300 epochs	FFN d'une couche de dimension 300	

En annexe Paramètre (GCN)	Article olfactory(GCN)	Implémentation étudiant(GCN)
Entrée	?	Vecteur de dimension 15
Nombre et taille de couche de message passing	4 couches de dimension [15,20,27,36] 4 couches de dimension [15,20,27,36]	
Phase de mise à jour	2 couche de dim [96, 63] SELU avec relu, batchnorm, dropout of 0.47	
READOUT	3 couche de dimension 392 avec relu, batchnorm, dropout de 0.12 GlobalAveragePoolin =>vecteur(dim:98) Couche dense + soft =>vecteur(dim: 175)	
Décodeur	Multi-headed sigmoid, 138 tasks Weighted-cross entropy loss, optimized with Adam, used learning rate decay with warm restarts, 300 epochs	MLP de 3 couche [relu, relu, sigmoid] de dimension [96,63,98]

Paramètre	Article Paire de molécule	Implémentation git
Entrée	?	Vecteur atome de 9 élément
Nombre de couche de message passing	3 couche	5 couche
Phase de mise à jour	MLP de 2 couche de dimension caché 832	MLP de 2 couche de dimension 100 Fonction activation : ReLU
READOUT	Global mean + Add pool Concaténation des deux fonction et concaténation des molécule	concaténation(Global mean+ Add pool) 2 couche de MLP de taille 100. Fonction d'activation : ReLU et Rien. concaténation(2 molécules)
Décodeur	MLP de 2 couche de dimension 832 qui utilise l'entropie binaire croisée comme fonction de coût	MLP de 2 couche de dimension du nombre de classe. Et fonction d'activation ReLU et Rien

acidic	fusel	floral	vanilla
aldehydic	green	fresh	vegetable
alliaceous	herbal	fruity	waxy
amber	honey	fungal	winey
animal	jammy	woody	tonka
anise	licorice	creamy	thujonic
aromatic	marine	dairy	tropical
balsamic	meaty	earthy	sulfurous
berry	medicinal	estery	spicy
bitter	melon	ethereal	sour
bready	mentholic	fatty	solvent
brown	minty	fermented	soapy
burnt	mossy	caramellic	rummy
buttery	musk	cheesy	roasted
camphoreous	musty	chemical	powdery
cocoa	nutty	chocolate	phenolic
coconut	oily	citrus	onion
coffee	orris	coumarinic	licorice
clean	buttery	bready	amber

Schema GNN

Nouveaux schéma possible du GNN

https://www.researchgate.net/ figure/A-typical-and-basic-arch itecture-and-processing-proced ures-of-GNN-First-GNN-selects _fig2_352526255

A supprimer

1 couche de message passing

Set2Set

Fonction d'agrégation qt est initialisé à 0

$$egin{aligned} \mathbf{q}_t &= \mathrm{LSTM}(\mathbf{q}_{t-1}^*) \ lpha_{i,t} &= \mathrm{softmax}(\mathbf{x}_i \cdot \mathbf{q}_t) \ \mathbf{r}_t &= \sum_{i=1}^N lpha_{i,t} \mathbf{x}_i \ \mathbf{q}_t^* &= \mathbf{q}_t \parallel \mathbf{r}_t, \end{aligned}$$