Chapter 11 Simple Linear Regression

Introduction

Statistics

Mehmet Güray Güler, PhD

Last updated 28.07.2020

What is SLR?

- Simple linear regression is a statistical method that allows us to summarize and study relationships between two continuous (quantitative) variables:
 - X: predictor, explanatory, or independent variable.
 - Y: response, outcome, or dependent variable.
- Types of relationships:
- <u>Deterministic</u>: the equation *exactly* describes the relationship between the two variable
 - Fahr = 1.8 Cels + 32
 - Circumference = $\pi \times$ diameter
 - Volt = I (current) x R (resistance)

What is SLR?

- Instead, we are interested in **statistical relationships**, in which the relationship between the variables is <u>not perfect</u>.
- Here is an example of a statistical relationship.
- The response variable *y*
 - The weight
- the predictor variable *x*
 - The height

Sample relations

- Assume we want to find the relation between the weight and the height of the students in this university.
- We have the following data:

Height	Weight			
163	58			
164	55			
166	64			
169	71			
169	73			
171	71			
171	77			
172	75			
173	82			
175	94			

Sample relations

Height vs Weight

Line 1: Weight = -470.2 + 3.2*Height

Line 2: Weight = -384+2.7*Height

Sample relations

- It appears to be a positive linear relationship between weight and height,
 - but the relationship is not perfect.
- Indeed, the plot exhibits
 - some "trend,"
 - but it also exhibits some "scatter."
- Therefore, it is a **statistical** relationship, not a deterministic one.
- Examples
 - Size and annual sales as the size of a shop increases, you'd expect sales to increase, but not perfectly.
 - Anything?

- Since we are interested in summarizing the trend between two quantitative variables, the natural question arises —
 - "which line is better?"

Height vs Weight

Line 1: Weight = -470.2 + 3.2*Height

Line 2: Weight = -384+2.7*Height

- In order to examine which of the two lines is a better fit, we first need to introduce some common notation:
 - y_i denotes the observed response for experimental unit i
 - x_i denotes the predictor value for experimental unit i
 - \hat{y}_i is the predicted response (or fitted value) for experimental unit i
- Then, the equation for the best fitting line is:
 - $\hat{y}_i = b_0 + b_1 x_i$
- Recall that an "experimental unit" is the object or person on which the measurement is made.
 - In our height and weight example, the experimental units are students.

- First data:
 - $x_1 = 163$ cm, $y_1 = 58$ kg.
- If we don't know weight, then
 - using line 1:
 - Weight = -470.2 + 3.2*height
 - Weight = -470.2 + 3.2*163
 - Weight = 51.4
 - $\hat{y}_1 = 51.4$
 - which is the <u>prediction</u>.
- Our prediction wouldn't be perfectly correct — it has some "prediction error" (or "residual error")
- Here the error is 58-51.4 = 6.6 kg.

Height	Weight			
163	58			
164	55			
166	64			
169	71			
169	73			
171	71			
171	77			
172	75			
173	82			
175	94			

• If we use $\hat{y}_i = b_0 + b_1 x_i$ to predict y_i , we make a prediction error (or residual error) of size:

$$e_i = y_i - \hat{y}_i$$

- e_i value are the **vertical deviations**
 - from points to the predicted regression line.

• If we use $\hat{y}_i = b_0 + b_1 x_i$ to predict y_i , we make a prediction error (or residual error) of size:

$$e_i = y_i - \hat{y}_i$$

- e_i value are the **vertical deviations** from points to the predicted regression line.
- A line that fits the data "better" will be one for which the n prediction errors one for each observed data point are as small as possible in some overall sense.
- Sum of the Squared prediction Errors (SSE).

$$SSE = \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

y_i	\widehat{y}	e_i	e_i^2	y_i	$\widehat{m{y}}$	e_i	e_i^2
58	51.4	6.6	43.56	58	56.1	1.9	3.61
55	54.6	0.4	0.16	55	58.8	-3.8	14.44
64	61	3	9	64	64.2	-0.2	0.04
71	70.6	0.4	0.16	71	72.3	-1.3	1.69
73	70.6	2.4	5.76	73	72.3	0.7	0.49
71	77	-6	36	71	77.7	-6.7	44.89
77	77	0	0	77	77.7	-0.7	0.49
75	80.2	-5.2	27.04	75	80.4	-5.4	29.16
82	83.4	-1.4	1.96	82	83.1	-1.1	1.21
94	89.8	4.2	17.64	94	88.5	5.5	30.25
			141.28				126.27

The Best Fitting Line

- "best" line: minimum SSE.
- "least squares criterion," which says
- "minimize the **S**um of the **S**quared prediction **E**rrors (SSE) or residual sum of squares.
- Find b_0 and b_1 that minimize:

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Method of Least Squares

• Differentiating SSE with respect to b_0 and b_1 and setting the resulting equations to zero we get:

$$\frac{\partial (SSE)|}{\partial b_0} = -2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) \qquad \frac{\partial (SSE)|}{\partial b_1} = -2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) x_i.$$

• Solving these two equations will yield the computing formulas for b_0 and b_1 as follows:

Method of Least Squares

$$nb_0 + b_1 \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i = \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} y_i, \qquad b_0 \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i + b_1 \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i^2 = \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i y_i$$

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} - b_{1} \sum_{i=1}^{n} x_{i}}{n} = \bar{y} - b_{1}\bar{x}.$$

Method of Least Squares

	x_i	y_i	x_i^2	$x_i y_i$	
	163	58	26569	9454	
	164	55	26896	9020	
	166	64	27556	10624	
	169	71	28561	11999	
	169	73	28561	12337	
	171	71	29241	12141	
	171	77	29241	13167	
	172	75	29584	12900	
	173	82	29929	14186	
	175	94	30625	16450	
sum	1693	720	286763	122278	
avg	169.3	72			

- Using the formula above, our best fit is:
 - Weight = -393.3 + Height *2.7661
- b₀:
 - The intercept,i.e., the value at x=0
 - Here no meaning!
- b₁:
 - The slope
 - The change in y when x increases by 1 unit.

Method of Least Squares – Using MS Excel

SUMMARY	OUTPUT							
Regression	Statistics							
Multiple R	0.950328							
R Square	0.903124							
Adjusted R	0.891014							
St Error	3.764064							
Observatio	10							
ANOVA								
	df	SS	MS	F	ignificance l	F		
Regression	1	1056.655	1056.655	74.57944	2.51E-05			
Residual	8	113.3454	14.16818					
Total	9	1170						
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Jpper 95.0%
Intercept	-396.303	54.24025	-7.30643	8.34E-05	-521.381	-271.224	-521.381	-271.224
X Variable 1	2.766112	0.320302	8.635939	2.51E-05	2.027493	3.50473	2.027493	3.50473