Algorithms for algebraic modular forms

UPenn Algebra seminar

Sebastian Schönnenbeck March 21, 2016

A classical problem

 $V=\mathbb{Q}^n,\,q:V\to\mathbb{Q}$ a positive definite quadratic form. $L,L'\subset V$ lattices (i.e. \mathbb{Z} -submodules in V of rank n)

- $\bullet \ L, L' \ \textit{isometric}, L \cong L', \textit{iff} \ gL = L' \ \textit{for some} \ g \in O(q); \\ \text{class}(L) = \{M \mid M \cong L\}.$
- L, L' in the same genus, iff for all p prime there is $g_p \in O(\mathbb{Q}_p \otimes V, \mathbb{Q}_p \otimes q)$ with $g_p(\mathbb{Z}_p \otimes L) = \mathbb{Z}_p \otimes L'$.
- L, L' isometric implies L, L' in the same genus **but** the converse is false.
- The genus of L decomposes into finitely many isometry classes; $\operatorname{genus}(L) = \operatorname{class}(L_1) \sqcup ... \sqcup \operatorname{class}(L_r), r$ the *class number* of L.

Question: How do we find representatives for the isometry classes in a given genus?

Theorem (Eichler, Kneser)

Assume L even (i.e. $q(L)\subset 2\mathbb{Z}$) of rank greater or equal $3, \det(L)$ squarefree, and $p\nmid\det(L)$ prime. Then every class in the genus of L is represented by a lattice M such that

$$\mathbb{Z}_{\ell} \otimes L = \mathbb{Z}_{\ell} \otimes M \ \forall \ \ell \neq p.$$

Strong approximation and the Kneser method

Neighbours

L as before. $M,N\in \operatorname{genus}(L)$ are called p-neighbours, $M\stackrel{p}{-}N$ if

$$[M:M\cap N]=[N:M\cap N]=p.$$

Theorem (Kneser)

For $M \in \text{genus}(L)$ there is an $M' \in \text{class}(M)$ and a chain of lattices $L = L_0, L_1, ..., L_k = M'$ such that

$$L_0 \stackrel{p}{-} L_1 \stackrel{p}{-} L_2 \stackrel{p}{-} \dots \stackrel{p}{-} M'.$$

Neighbouring Graph

The p-neighbouring graph of $\operatorname{genus}(L)$ is the directed weighted graph with vertices the isometry classes in $\operatorname{genus}(L)$ and edges $\operatorname{class}(L_i) \to \operatorname{class}(L_j)$ weighted by the number of p-neighbours of L_i isometric to L_j .

Example

Dimension 16

There are two isometry classes in the set of even unimodular lattices of rank 16:

$$class(E_8 \perp E_8) \sqcup class(D_{16}^+).$$

The 2-neighbouring graph of this genus is:

- Note that 18225 + 14670 = 12870 + 20025, number of neighbours does not depend on the class.
- Note that $\frac{18225}{12870} = \frac{|\mathrm{Aut}(E_8 \perp E_8)|}{|\mathrm{Aut}(D_{16}^+)|}$.
- The adjacency matrix of the graph acts as a Hecke operator on the space of modular forms generated by the theta series of the two lattices (Eichler, Andrianov, Yoshida).

Algebraic modular forms

Notation: \mathbb{G} almost simple linear algebraic group defined over \mathbb{Q} , $\mathbb{G}(\mathbb{R})$ compact, V a f.d. \mathbb{Q} -rational representation of \mathbb{G} , \mathbb{A}_f the finite adeles of \mathbb{Q} .

Definition [Gross '99]

 $K \leq \mathbb{G}(\mathbb{A}_f)$ open and compact.

$$M(V,K) := \left\{ f: \mathbb{G}(\mathbb{A}_f) \to V \mid f(gxk) = gf(x) \text{ for all } g \in \mathbb{G}(\mathbb{Q}), x \in \mathbb{G}(\mathbb{A}_f), k \in K \right\},$$

the space of algebraic modular forms of level K and weight V.

- $|gKg^{-1} \cap \mathbb{G}(\mathbb{Q})| < \infty$ for all $g \in \mathbb{G}(\mathbb{A}_f)$.
- $|\mathbb{G}(\mathbb{Q})\backslash\mathbb{G}(\mathbb{A}_f)/K|<\infty$.
- Let $\mathbb{G}(\mathbb{A}_f) = \bigsqcup_{i=1}^r \mathbb{G}(\mathbb{Q}) \gamma_i K$ and $\Gamma_i := \gamma_i K \gamma_i^{-1} \cap \mathbb{G}(\mathbb{Q})$ then

$$M(V,K) \cong_{\mathbb{Q}} \bigoplus_{i=1}^{r} V^{\Gamma_i}.$$

Example (cont.)

$$\mathbb{G} = \mathrm{SO}_{16}, K = \prod_{p} \mathrm{Stab}_{\mathrm{SO}_{16}(\mathbb{Q}_p)}(\mathbb{Z}_p \otimes (E_8 \perp E_8)).$$
 Then:

$$\mathbb{G}(\mathbb{A}_f) = \mathbb{G}(\mathbb{Q})K \sqcup \mathbb{G}(\mathbb{Q})\gamma K,$$

where $\gamma \in \mathbb{G}(\mathbb{A}_f)$ with $\gamma(E_8 \perp E_8) = D_{16}^+$. Set

$$\Gamma_{1} := \operatorname{Stab}_{\mathrm{SO}_{16}(\mathbb{Q})}(E_{8} \perp E_{8}) = K \cap \mathbb{G}(\mathbb{Q}), \ |\Gamma_{1}| = 2^{28} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2},$$

$$\Gamma_{2} := \operatorname{Stab}_{\mathrm{SO}_{16}(\mathbb{Q})}(D_{16}^{+}) = \gamma K \gamma^{-1} \cap \mathbb{G}(\mathbb{Q}), \ |\Gamma_{2}| = 2^{29} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13.$$

- $\bullet \ \ M(\mathsf{triv.},K) \cong \mathbb{Q}^{\Gamma_1} \oplus \mathbb{Q}^{\Gamma_2} \cong \mathbb{Q} \oplus \mathbb{Q}.$
- $M(\mathbb{Q}^{16}, K) \cong (\mathbb{Q}^{16})^{\Gamma_1} \oplus (\mathbb{Q}^{16})^{\Gamma_2} = \{0\}.$
- $M(\operatorname{Sym}^2(\mathbb{Q}^{16}), K) \cong \mathbb{Q} \oplus \mathbb{Q}$

The Hecke algebra

Definition

 $K \leq \mathbb{G}(\mathbb{A}_f)$ open and compact.

 $H_K := \{f: \mathbb{G}(\mathbb{A}_f) \to \mathbb{Q} \mid f \text{ compactly supported and } K\text{-bi-invariant}\}$

with multiplication by convolution. The *Hecke algebra* of \mathbb{G} with respect to K.

Remark

- H_K has the natural basis $\mathbb{1}_{K\gamma K},\ K\gamma K\in \mathbb{G}(\mathbb{A}_f)/\!\!/K$.
- Let $\gamma_1,\gamma_2\in\mathbb{G}(\mathbb{A}_f)$ with $K\gamma_iK=\bigsqcup_j\gamma_{i,j}K.$ The multiplication in H_K is

$$\mathbbm{1}_{K\gamma_1K}\mathbbm{1}_{K\gamma_2K} = \sum_{j,j'} \mathbbm{1}_{\gamma_{1,j}\gamma_{2,j'}K}.$$

• If $K=\prod_p K_p$ is a product of local factors, the Hecke algebra is the restricted tensor product

$$H_K = \otimes_p' H_{K_p}.$$

The action of the Hecke algebra

Definition

For $\gamma \in \mathbb{G}(\mathbb{A}_f)$ we define the linear operator $T(\gamma) \in \operatorname{End}_{\mathbb{Q}}(M(V,K))$ via

$$(T(\gamma)f)(x) = \sum_{i} f(x\gamma_i)$$

where $f \in M(V, K)$ and $K\gamma K = \bigsqcup_i \gamma_i K$.

- The additive extension of $\mathbb{1}_{K\gamma K}\mapsto T(\gamma)$ defines an algebra homomorphism $H_K\to \operatorname{End}_{\mathbb{Q}}(M(V,K)).$
- The is a scalar product on M(V,K) with respect to which $T(\gamma)^{ad} = T(\gamma^{-1})$.
- M(V, K) is a semi-simple H_K -module.

Integral forms

What would be "interesting" / computationally well-suited open compact subgroups to consider?

Definition

Let $\mathbb{G} \hookrightarrow \mathrm{GL}_n$ be a faithful representation. An *integral form* \mathbb{G}_L of \mathbb{G} is given by a lattice $L \leq_{\mathbb{Z}} \mathbb{Q}^n$ via

$$\mathbb{G}_L(\mathbb{O}_k) = \operatorname{Stab}_{\mathbb{G}(k)}(\mathbb{O}_k \otimes L), \ \mathbb{G}_L(\mathbb{Z}_p) = \operatorname{Stab}_{\mathbb{G}(\mathbb{Q}_p)}(\mathbb{Z}_p \otimes L)$$

for every finite extension k of \mathbb{Q} and every prime p.

- $\mathbb{G}(\mathbb{A}_f)$ acts on the integral forms via $(g_p)_p L = L'$ where $\mathbb{Z}_p \otimes L' = g_p(\mathbb{Z}_p \otimes L)$ for all p.
- $\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L) = \prod_p \mathbb{G}_L(\mathbb{Z}_p)$ is an open compact subgroup of $\mathbb{G}(\mathbb{A}_f)$.
- $\mathbb{G}_L(\mathbb{Z}_p)$ is a hyperspecial maximal compact subgroup of $\mathbb{G}(\mathbb{Q}_p)$ for all but finitely many p.
- Call L, L' (\mathbb{G} -)isomorphic if gL = L' for some $g \in \mathbb{G}(\mathbb{Q})$. Say L, L' in the same genus if $\gamma L = L'$ for some $\gamma \in \mathbb{G}(\mathbb{A}_f)$.

Algorithmic questions

Aim: Compute the action of $T(\gamma)$ on M(V,K) (where K comes from an integral form \mathbb{G}_L).

Approach

- Decompose $\mathbb{G}(\mathbb{A}_f) = \bigsqcup_i \mathbb{G}(\mathbb{Q})\mu_i K$, compute $\Gamma_i = \mu_i K \mu_i^{-1} \cap \mathbb{G}(\mathbb{Q})$ and V^{Γ_i} .
- Decompose $K\gamma K = \bigsqcup_{i} \gamma_{i} K$.
- For i, j write $\gamma_j \mu_i$ as $g' \mu_{i'} k$ for some i'.

Aspects to consider

What do we have to know in order to make this work?

- Decide for two integral forms if they are \mathbb{G} -isomorphic / compute the stabilizer of a lattice in $\mathbb{G}(\mathbb{Q})$.
- ullet Be able to compute a system of representatives for genus(L).
- Decompose double cosets into left cosets.

Stabilizers and isometries

- $\mathbb{G} \hookrightarrow \mathrm{GL}_n$, $L, L' < \mathbb{Q}^n$ lattices.
 - $\mathbb{G}(\mathbb{Q}) \subset \mathrm{GL}_n(\mathbb{Q})$ compact $\leadsto \mathbb{G}(\mathbb{Q})$ fixes a definite inner product on \mathbb{Q}^n .
 - $\mathbb{G}(\mathbb{Q}) \subset O_n(\mathbb{Q}) \leadsto \mathrm{Stab}_{\mathbb{G}(\mathbb{Q})}(L) \subset \mathrm{Stab}_{O_n(\mathbb{Q})}(L)$.
 - $\operatorname{Stab}_{O_n(\mathbb{Q})}(L)$ computable (Plesken-Souvignier-algorithm) and finite \leadsto Finding $\operatorname{Stab}_{\mathbb{G}(\mathbb{Q})}(L)$ reduced to a finite problem.
 - Same idea for isometry testing: Find O_n -isometry $g:L\to L'\leadsto {\sf All}$ isometries are given by $g\operatorname{Stab}_{O_n(\mathbb{Q})}(L)\leadsto {\sf Finite}$ problem.

Example: G_2

The group G_2 can be realized as the automorphism group of the (8-dim.) octonion algebra $\mathbb O$ (Dickson-double of the Hamilton quaternions). G_2 fixes the inner product $(x,y)\mapsto \operatorname{Tr}(x\bar y)$. $L<\mathbb O$ lattice then $\operatorname{Stab}_{G_2}(L)$ is the stabilizer of the multiplication (which can be thought of as an element of $V^*\otimes V^*\otimes V$) in $\operatorname{Stab}_{O_8}(L)$. E.g. L a maximal order then

$$|\operatorname{Stab}_{O_8}(L)| = 696729600, |\operatorname{Stab}_{G_2}(L)| = 12096.$$

Genus enumeration

Question: How do you compute representatives of genus(L) starting at L?

Almost Strong Approximation [Chan, Hsia]

If $\mathbb G$ is simply connected and of certain type then there is a finite set Ω of primes such that for all $p \notin \Omega$ the lattice L_p is hyperspecial and we can find representatives of $\operatorname{genus}(L)$ as "p-neighbours" of L.

Question: How do you know when to stop?

Mass Formula

Let $genus(L) = class(L_1) \sqcup ... \sqcup class(L_r)$ and set

$$\operatorname{mass}(\operatorname{genus}(L)) := \sum_{i=1}^r \frac{1}{|\operatorname{Stab}_{\mathbb{G}}(\mathbb{Q})(L_i)|}.$$

Then we can compute $\operatorname{mass}(\operatorname{genus}(L))$ from information only on the local structure of L.

Examples

Some Genera for G_2

Genus	Class Number	Mass Decomposition
max. order	1	$\frac{1}{12096}$
type 2 at 3 , max. else	2	$\frac{1}{192} + \frac{1}{432}$
type 2 at 5 , max. else	3	$\frac{1}{192} + \frac{1}{48} + \frac{1}{36}$
type 3 at 7 , max. else	2	$\frac{1}{216} + \frac{1}{42}$

Some Genera for Sp_4

Compact forms of Sp can be found as unitary groups over (definite) quaternion algebras D, integral forms via \mathfrak{O}_D -lattices (where \mathfrak{O}_D is a maximal order).

Genus Representative	. – ,	Mass Decomposition
$\begin{aligned} \mathfrak{O}_D^2, D &= \left(\frac{-1, -1}{\mathbb{Q}}\right) \\ \mathfrak{O}_D^2, D &= \left(\frac{-2, -5}{\mathbb{Q}}\right) \\ \mathfrak{O}_D^2, D &= \left(\frac{-2, -13}{\mathbb{Q}}\right) \\ \mathfrak{O}_D^2, D &= \left(\frac{-1, -23}{\mathbb{Q}}\right) \end{aligned}$	1	$\frac{1}{1152}$
\mathcal{O}_D^2 , $D = \left(\frac{-2, -5}{\mathbb{Q}}\right)$	2	$\frac{1}{240} + \frac{1}{72}$
\mathcal{O}_D^2 , $D = \left(\frac{-2, -13}{\mathbb{Q}}\right)$	4	$\frac{1}{48} + \frac{1}{12} + \frac{2}{8}$
\mathcal{O}_D^2 , $D = \left(\frac{-1, -23}{\mathbb{Q}}\right)$	16	$\frac{5}{4} + \frac{3}{8} + \frac{3}{12} + \frac{2}{24} + \frac{1}{32} + \frac{1}{48} + \frac{1}{72}$

Coset decomposition

Aim: Decompose a double coset $K\gamma K$ into left cosets.

First observation: Since $H_K = \otimes_p' H_{K_p}$ we only need to do this locally.

For simplicity assume: \mathbb{G} split at p, K_p "nice".

Structure of *p*-adic Groups (Bruhat-Tits)

 $I \leq K_p \leq \mathbb{G}(\mathbb{Q}_p)$ lwahori subgroup, $\tilde{W} (= X^{\vee} \rtimes W_0)$ the extended affine Weyl group.

- $\bullet \ \mathbb{G}(\mathbb{Q}_p) = \bigsqcup_{w \in \tilde{W}} IwI, \, K_p = \bigsqcup_{w \in W_{K_p}} IwI \text{ for some } W_{K_p} \leq \tilde{W}.$
- H_I is an algebra with basis $T_w,\ w\in \tilde{W}$ and multiplication $T_wT_{w'}=T_{ww'}$ if $l(ww')=l(w)+l(w'),\ T_s^2=(p-1)T_s+p$ for the simple reflections s.
- ullet $e:=[K_p:I]^{-1}\sum_{w\in W_{K_p}}T_w\in H_I$ is an idempotent and $H_{K_p}\cong eH_Ie$.

Coset Decomposition

- \bullet Bruhat-Tits ('65): Explicit formula to decompose $IwI,\ w\in \tilde{W}$ into I-left cosets.
- Lansky-Pollack (2001): Explicit formula to decompose $K_pwK_p,\ w\in \tilde{W}$ into K_p -left cosets.

Example

G_2

 \mathbb{G} of type G_2 (simply connected and adjoint) with extended Dynkin diagram (at split prime p):

$$\tilde{G}_2:$$
 $\overset{0}{\bigcirc}$ $\overset{1}{\bigcirc}$ $\overset{2}{\bigcirc}$

If K open compact, with K_p hyperspecial maximal compact ($W_{K_p} = \langle s_1, s_2 \rangle$), then the local Hecke algebra H_{K_p} is a polynomial ring in two variables generated by the characteristic functions on the double cosets

$$T_1 := K_p s_0 K_p$$
 and $T_2 := K_p s_0 s_1 s_2 s_1 s_0 K_p$.

 T_1 decomposes into $p(p^5 + p^4 + p^3 + p^2 + p + 1)$ left cosets.

 T_2 decomposes into $p^5(p^5+p^4+p^3+p^2+p+1)$ left cosets.

Sp_4

In the analogous situation for Sp_4 (simply connected but not adjoint) there are also two generators which decompose into $p(p^3+p^2+p+1)$ and $p^3(p^3+p^2+p+1)$ left cosets, respectively.

The Eichler method

Aim: Find a way to compute two Hecke operators at once using the incidence relation on the affine building of \mathbb{G} .

Idea: Use a generalization of the following idea attributed to Eichler: L,L^\prime two lattices, then

$$\operatorname{mass}(\operatorname{genus}(L))\frac{[\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L):\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L,L')]}{[\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L'):\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L,L')]}=\operatorname{mass}(\operatorname{genus}(L')).$$

Let K_1, K_2 be two open, compact subgroups of $\mathbb{G}(\mathbb{A}_f)$ and $K_2 = \bigsqcup_i m_i (K_1 \cap K_2)$.

Observation

If $\mathbb{G}(\mathbb{A}_f) = \coprod_j K_1 \gamma_j \mathbb{G}(\mathbb{Q})$, then one can find a system of representatives for $K_2 \setminus \mathbb{G}(\mathbb{A}_f) / \mathbb{G}(\mathbb{Q})$ in the collection $m_i \gamma_j$.

Interpretation (Ex.)

Is $L \leq E_8 \perp E_8$ a lattice, one can find representatives of the isometry classes in $\operatorname{genus}(L)$ as sublattices of $E_8 \perp E_8$ and D_{16}^+ (and all of these representatives have index $[(E_8 \perp E_8) : L]$ in either $E_8 \perp E_8$ or D_{16}^+).

The intertwining operator

Definition

We define the intertwining operator $T_2^1 := T(K_1, K_2)$ (w.r.t. K_1 and K_2) via

$$T_2^1: M(V, K_1)
ightarrow M(V, K_2), \ f \mapsto f' \ ext{where} \ f'(x) = \sum_i f(xm_i).$$

Lemma

The operators $T(K_1,K_2)$ und $T(K_2,K_1)$ are adjoint to each other with respect to the scalar products on $M(V,K_1)$ and $M(V,K_2)$. In particular $T(K_2,K_1)$ is uniquely determined by $T(K_1,K_2)$.

Definition

Let $K_1 = \bigsqcup_{i'} l_{i'}(K_1 \cap K_2)$, then we call $\nu_{1,2} := \nu(K_1, K_2) := \sum_{i,i'} \mathbbm{1}_{l_{i'} m_i K_1}$ the *Eichler element* w.r.t. K_1 and K_2 .

Proposition

- $\nu_{1,2}$ is an element of H_{K_1} .
- $T_1^2T_2^1=T(\nu_{1,2})$, in particular we see that $T_1^2T_2^1$ acts as a (self adjoint) Hecke operator on $M(V,K_1)$.

Question: Which operators are obtainable in this fashion?

Theorem [S.]

Let $\mathbb G$ be simply connected, $K_i=\prod_p K_{i,p}$ products of local factors with $K_{1,p}=K_{2,p}$ for all $p\neq q$ and $K_{1,q},K_{2,q}$ parahoric subgroups of $\mathbb G(\mathbb Q_p)$, which contain a common lwahori subgroup I. Let $\widetilde W$ be the extended affine Weyl group and $W_i\leq \widetilde W$ with $K_{i,q}=IW_iI$, $W_{1,2}=W_1\cap W_2$ and $[W_{1,2}\backslash W_2/W_{1,2}]$ a system of representatives of elements of shortest lengths. Then the following holds:

$$\nu_{1,2} = \sum_{\kappa \in [W_{1,2} \setminus W_2/W_{1,2}]} [I(W_1 \cap {}^{\kappa}W_1)I : I(W_1 \cap {}^{\kappa}W_1 \cap W_2)I] \mathbb{1}_{K_1 \kappa K_1}.$$

Theorem [S.]

Let $\mathbb G$ be of type C_n simply connected, K_1 as above with $K_{1,q}$ hyperspecial. If $K_{i,q}, 2 \leq i \leq n+1$, runs through the n further conjucacy classes of maximal parahoric subgroups, then the corresponding elements $\nu(K_1,K_i)$ form a minimal generating system for the local Hecke algebra $H_{K_{1,q}}$.

Example

Generators for the local (hyperspecial) Hecke algebra for Sp_4 (Type C_2 , s.c.): Extended Dynkin diagram:

$$\tilde{C}_2:$$
 0
 1
 2
 0

 $W_1:=\langle s_1,s_2\rangle, W_2:=\langle s_0,s_2\rangle, W_3:=\langle s_0,s_1\rangle.\ I\leq \mathrm{Sp}_4(\mathbb{Q}_q)$ lwahori subgroup, $K_{i,q}=IW_iI, i=1,2,3.$

 $H_{K_{1,q}}$ is generated by $\mathbb{1}_{K_1s_0K_1}, \mathbb{1}_{K_1s_0s_1s_0K_1}$.

Coset decomposition and Eichler elements:

- $[W_{1,2}\backslash W_2/W_{1,2}] = \{1, s_0\}, {}^{s_0}W_1 \cap W_1 = \langle s_2 \rangle = {}^{s_0}W_1 \cap W_1 \cap W_2.$
- $\nu_{1,2} = (q^3 + q^2 + q + 1)\mathbb{1}_{K_1} + \mathbb{1}_{K_1 s_0 K_1}$.
- $\bullet \ [W_{1,3} \setminus W_3 / W_{1,3}] = \{1, s_0, s_0 s_1 s_0\}, s_0 s_1 s_0 W_1 \cap W_1 = \langle s_1 \rangle = s_0 s_1 s_0 W_1 \cap W_1 \cap W_3.$
- $\nu_{1,3} = (q^3 + q^2 + q + 1)\mathbb{1}_{K_1} + (q+1)\mathbb{1}_{K_1s_0K_1} + \mathbb{1}_{K_1s_0s_1s_0K_1}.$

Example (cont.)

 $L_1=\mathcal{O}_D^2, D=\left(rac{-2,-5}{\mathbb{Q}}
ight)$, hyperspecial at $p \neq 5$. There are lattices $L_3 \leq L_2 \leq L_1$, such that L_i differ only at 2 and $\operatorname{Stab}_{\mathbb{G}(\mathbb{Q}_2)}(L_i)=K_{i,2}$ (as above). Compute $T(K_1s_0K_1)$ and $T(K_1s_0s_1s_0K_1)$ acting on $M(\operatorname{triv},K_1)$:

- genus(L_i) = class(L_i) \sqcup class(L'_i), for 1 < i < 3.
- $\bullet \ \, \text{Classical method: } T(K_1s_0K_1) = \begin{pmatrix} 21 & 9 \\ 30 & 0 \end{pmatrix}, \ T(K_1s_0s_1s_0K_1) = \begin{pmatrix} 96 & 24 \\ 80 & 40 \end{pmatrix}.$
- For each class in $genus(L_1)$ we had to construct 30 (resp. 120) lattices and test them for isometry.
- $\bullet \ \ T_1^2 = \begin{pmatrix} 9 & 6 \\ 15 & 0 \end{pmatrix}, \ T_1^3 = \begin{pmatrix} 12 & 3 \\ 10 & 5 \end{pmatrix} \left(\leadsto T_2^1 = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}, \ T_3^1 = \begin{pmatrix} 12 & 3 \\ 10 & 5 \end{pmatrix} \right).$
- ullet For each class in in $genus(L_1)$ we had to construct 15 (resp. 15) lattices and test them for isometry.
- $15I_2 + T(K_1s_0K_1) = \begin{pmatrix} 36 & 9\\ 30 & 15 \end{pmatrix} = T_1^2T_2^1.$
- $15I_2 + 3T(K_1s_0K_1) + T(K_1s_0s_1s_0K_1) = \begin{pmatrix} 174 & 51\\170 & 55 \end{pmatrix} = T_1^3T_3^1.$
- We also obtain the Hecke operators $T_2^1T_1^2=3I_2+T(K_2s_1K_2)+T(K_2s_1s_2s_1K_2)$ and $T_3^1T_1^3=15I_2+T(K_3s_2K_3)$ acting on $M({\sf triv.},K_2)$ and $M({\sf triv.},K_3)$ respectively.