

Evaluation and Validation

Jian-Jia Chen
(Slides are based on
Peter Marwedel)
TU Dortmund, Informatik 12
Germany

© Springer, 2018

2018年 11 月 27 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Structure of this course

Numbers denote sequence of chapters

Validation and Evaluation

Definition: <u>Validation</u> is the process of checking whether or not a certain (possibly partial) design is appropriate for its purpose, meets all constraints and will perform as expected (yes/no decision).

Definition: Validation with mathematical rigor is called *(formal) verification*.

Definition: <u>Evaluation</u> is the process of computing quantitative information of some key characteristics of a certain (possibly partial) design.

How to evaluate designs according to multiple criteria?

Many different criteria are relevant for evaluating designs:

- Average & worst case delay
- power/energy consumption
- thermal behavior
- reliability, safety, security
- cost, size
- weight
- **EMC** characteristics

Definitions

- Let *X*: *m*-dimensional **solution space** for the design problem. Example: dimensions correspond to # of processors, size of memories, type and width of busses etc.
- Let *F*: *n*-dimensional **objective space** for the design problem. Example: dimensions correspond to average and worst case delay, power/energy consumption, size, weight, reliability, ...
- Let $f(x)=(f_1(x),...,f_n(x))$ where $x\in X$ be an **objective function**. We assume that we are using f(x) for evaluating designs.

Pareto points

 We assume that, for each objective, an order < and the corresponding order ≤ are defined.

Definition:

Vector $u=(u_1,...,u_n) \in F$ dominates vector $v=(v_1,...,v_n) \in F$

u is "better" than v with respect to at least one objective and not worse than v with respect to all other objectives:

$$\forall i \in \{1,...,n\} : u_i \le v_i \land \exists i \in \{1,...,n\} : u_i < v_i$$

Definition:

Vector $u \in F$ is **indifferent** with respect to vector $v \in F$ \Leftrightarrow neither u dominates v nor v dominates u

Pareto points

- A solution $x \in X$ is called **Pareto-optimal** with respect to X \Leftrightarrow there is no solution $y \in X$ such that u = f(x) is dominated by v = f(y). x is a **Pareto point**.
- Definition: Let S ⊆ F be a subset of solutions.
 v ∈ F is called a non-dominated solution with respect to S
 v is not dominated by any element ∈ S.
- v is called **Pareto-optimal** $\Leftrightarrow v$ is non-dominated with respect to all solutions F.
- A Pareto-set is the set of all Pareto-optimal solutions

Pareto-sets define a **Pareto-front** (boundary of dominated subspace)

Pareto Point

Pareto-point

better

(Assuming *minimization* of objectives)

Objective 2 (e.g. run time)

Pareto Set

Objective 1 (e.g. energy consumption)

(Assuming *minimization* of objectives)

fakultät für

informatik

Objective 2 (e.g. run time)

One more time ...

Pareto point

Pareto front

fakultät für

informatik

Design space evaluation

Design space evaluation (DSE) based on Pareto-points is the process of finding and returning a set of Pareto-optimal designs to the user, enabling the user to select the most appropriate design.

informatik

How to evaluate designs according to multiple criteria?

Many different criteria are relevant for evaluating designs:

- Average & worst case delay
- power/energy consumption
- thermal behavior
- reliability, safety, security
- cost, size
- weight
- **EMC** characteristics

How to compare different designs? (Some designs are "better" than others)

Average delays (execution times)

Estimated average execution times:
 Difficult to generate sufficiently precise estimates;
 Balance between run-time and precision

Accurate average execution times:
 As precise as the input data is.

We need to compute **average** and **worst case** execution times

Worst case execution time (1)

Definition of worst case execution time:

WCET_{EST} must be

- 1. safe (i.e. ≥ WCET) and
- 2. tight (WCET_{FST}-WCET \ll WCET_{FST})

Worst case execution times (2)

Complexity:

- in the general case: undecidable if a bound exists.
- for restricted programs: simple for "old" architectures, very complex for new architectures with pipelines, caches, interrupts, virtual memory, etc.

Approaches:

- for hardware: requires detailed timing behavior
- for software: requires availability of machine programs;
 complex analysis (see, e.g., www.absint.de)

Structure of this course

fakultät für

informatik

Integer linear programming models

Ingredients:

- Cost function
- Involving linear expressions of integer variables from a set XConstraints

Cost function
$$C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in \mathbb{R}, x_i \in \mathbb{N}$$
 (1)

Constraints:
$$\forall j \in J : \sum_{x_i \in X} b_{i,j} x_i \ge c_j \text{ with } b_{i,j}, c_j \in \mathbb{R}$$
 (2)

Def.: The problem of minimizing (1) subject to the constraints (2) is called an integer linear programming (ILP) problem.

If all x_i are constrained to be either 0 or 1, the ILP problem is said to be a 0/1 integer linear programming problem.

Example

$$C = 5x_1 + 6x_2 + 4x_3$$
$$x_1 + x_2 + x_3 \ge 2$$
$$x_1, x_2, x_3 \in \{0,1\}$$

x_1	x_2	x_3	C		
0	1	1	10		
1	0	1	9	•	Optimal
1	1	0	11		
1	1	1	15		

Remarks on integer programming

- Maximizing the cost function: just set C'=-C
- Integer programming is NP-complete.
- Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem)
- The case of $x_i \in \mathbb{R}$ is called *linear programming* (LP). Polynomial complexity, but most algorithms are exponential, in practice still faster than for ILP problems.
- The case of some $x_i \in \mathbb{R}$ and some $x_i \in \mathbb{N}$ is called *mixed* integer-linear programming.
- ILP/LP models good starting point for modeling, even if heuristics are used in the end.
- Solvers: lp_solve (public), CPLEX (commercial), ...

An Example: Knapsack Problem

Example IP formulation: The Knapsack problem:

I wish to select items to put in my backpack.

There are *m* items available.
Item *i* weights *w_i* kg, Item *i* has value *v_i*. I can carry Q kg.

$$\text{Let } x_i = \begin{cases} 1 & \text{if I select item } i \\ 0 & \text{otherwise} \end{cases}$$

max
$$\sum_{i} x_{i} v_{i}$$
s.t.
$$\sum_{i} x_{i} w_{i} \leq Q$$

$$x_{i} \in \{0,1\}, \ \forall \ i$$

Variance of Knapsack Problem

- Given a set of periodic tasks with implicit deadlines
 - Task τ_i: period T_i
 - Options: Execution without/with scratchpad memory (SPM)
 - Without SPM: Worst-case execution time C_{i,1}
 - With SPM: required m_i scratchpad memory size and Worstcase execution time C_{i,2}
 - Utilization without SPM $U_{i,1} = C_{i,1}/Ti$
 - Utilization with SPM is $U_{i,2} = C_{i,2}/T_i$
- Objective
 - Select the tasks to be put into the min SPM
 - Minimize the required SPM size
 - The utilization of the task set should be no more than 100%

s.t.
$$\sum_{i}^{1} x_{i}U_{i,2} + \sum_{i} (1 - x_{i})U_{i,1} \le 1$$
$$x_{i} \in \{0,1\}, \forall j$$

Summary

Integer (linear) programming

- Integer programming is NP-complete
- Linear programming is faster
- Good starting point even if solutions are generated with different techniques

Simulated annealing

- Modeled after cooling of liquids
- Overcomes local minima

Evolutionary algorithms

- Maintain set of solutions
- Include selection, mutation and recombination

Evolutionary Algorithms (1)

- Evolutionary Algorithms are based on the collective learning process within a population of individuals, each of which represents a search point in the space of potential solutions to a given problem.
- The population is arbitrarily initialized, and it evolves towards better and better regions of the search space by means of randomized processes of
 - selection (which is deterministic in some algorithms),
 - mutation, and
 - recombination (which is completely omitted in some algorithmic realizations).

[Bäck, Schwefel, 1993]

Evolutionary Algorithms (2)

- The environment (given aim of the search) delivers a quality information (fitness value) of the search points, and the selection process favours those individuals of higher fitness to reproduce more often than worse individuals.
- The recombination mechanism allows the mixing of parental information while passing it to their descendants, and mutation introduces innovation into the population

[Bäck, Schwefel, 1993]

Evolutionary Algorithms

Principles of Evolution

An Evolutionary Algorithm in Action

informatik

Issues in Multi-Objective Optimization

A Generic Multiobjective EA

fakultät für

informatik

Example: SPEA2 Algorithm

Step 1:	Generate initial population P0 and empty archive (external set) A_0 . Set t = 0.
Step 2:	Calculate fitness values of individuals in P _t and A _t .
Step 3:	A_{t+1} = nondominated individuals in P_t and A_t . If size of A_{t+1} > N then reduce A_{t+1} , else if size of A_{t+1} < N then fill A_{t+1} with dominated individuals in P_t and A_t .
Step 4:	If $t > T$ then output the nondominated set of A_{t+1} . Stop.
Step 5:	Fill mating pool by binary tournament selection.
Step 6:	Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set $t = t + 1$ and go to Step 2.

Simulated Annealing

- General method for solving combinatorial optimization problems.
- Based the model of slowly cooling crystal liquids.
- Some configuration is subject to changes.
- Special property of Simulated annealing: Changes leading to a poorer configuration (with respect to some cost function) are accepted with a certain probability.
- This probability is controlled by a temperature parameter: the probability is smaller for smaller temperatures.

Simulated Annealing Algorithm

```
procedure SimulatedAnnealing;
var i, T: integer;
begin
 i := 0; T := MaxT;
 configuration:= <some initial configuration>;
 while not terminate(i, T) do
  begin
   while InnerLoop do
    begin NewConfig := variation(configuration);
     delta := evaluation(NewConfig,configuration);
     if delta < 0
     then configuration := NewConfig;
     else if SmallEnough(delta, T, random(0,1))
      then configuration := Newconfiguration;
    end;
 T:= NewT(i,T); i:=i+1;
end; end;
```

fakultät für

informatik

Explanation

- Initially, some random initial configuration is created.
- Current temperature is set to a large value.
- Outer loop:
 - Temperature is reduced for each iteration
 - Terminated if (temperature ≤ lower limit) or (number of iterations ≥ upper limit).
- Inner loop: For each iteration:
 - New configuration generated from current configuration
 - Accepted if (new cost ≤ cost of current configuration)
 - Accepted with temperature-dependent probability if (cost of new config. > cost of current configuration).

Behavior for actual functions

[people.equars.com/~marco/poli/phd/node57.html]

http://foghorn.cadlab.lafayette.edu/cadapplets/fp/fpIntro.html

Performance

- This class of algorithms has been shown to outperform others in certain cases [Wegener, 2005].
- Demonstrated its excellent results in the TimberWolf layout generation package [Sechen]
- Many other applications ...

Summary

Integer (linear) programming

- Integer programming is NP-complete
- Linear programming is faster
- Good starting point even if solutions are generated with different techniques

Simulated annealing

- Modeled after cooling of liquids
- Overcomes local minima

Evolutionary algorithms

- Maintain set of solutions
- Include selection, mutation and recombination