Lab 7- Pulse Oximeter Kuhu Jayaswal 3rd April, 2025

Circuit Schematic:

Circuit Picture:

Explanation for Resistor & Capacitor Values:

Equations Used:

Cutoff Frequency: $f = 1/2\Pi RC$

Gain: $(V_{out}/V_{in}) = gain * (R_1 + R_2)/R_2$ where $R_1 > R_2$

Using the given schematic from the lab, the process to find the resistor and capacitor values was basically through "plug and chug" and simple substitution of variables.

Note: did the calculations on a whiteboard, but forgot to take pictures sorry!

• High Pass Filter:

$$f = 1 Hz, C = 1 \mu F$$
 \Rightarrow $R = 158k\Omega$

• Low Pass Filter:

$$f = 10 \text{ Hz}, C = 0.1 \mu F$$
 \Rightarrow $R = 15.8 k\Omega$

• Op-Amps (both):

$$V_{in} = 5V$$
, $V_{out} = 2.5V$, $R_1 = 100k\Omega$, $gain = 10$ \Rightarrow $R_2 = 11k\Omega$

Bode Plot:

Caption: Gain vs. frequency showing band-pass behavior from \sim 1 Hz to \sim 100 Hz, ideal for detecting pulse signals.

Trace of Pulse:

Caption: Voltage signal from finger showing clear pulse waveform after filtering and amplification.