Teoria da Informação

Capítulo I - Introdução

Paulo de Carvalho, Rui Pedro Paiva

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Sumário

- Teoria da Informação: Porquê?
 - Compressão
 - Códigos de Recuperação de Erros
 - Segurança Informática
 - Aprendizagem Computacional (Machine Learning)

- Leitura Aconselhada:
 - Sayood Cap. I
 - MacKay Cap. I e II

You Tube

Diminuição dos requisitos de armazenamento

Uso adequado da largura de banda disponível

- Aplicações médicas
- Web: Google, youtube, facebook,...
- Imagens de satélite
- Jornais on-line (público, diariodigital, IEEE, etc)
- Bases de dados Multimédia (e.g. aplicações móveis; música)
- Vídeo conferência

Armazenamento:

Hospital com 500 camas/160 000 estudos por ano (3.5 Tb)

Modalidade	Matriz	Bytes/pixel	MB/Estudo
CR	2048x2580	2	20
CT	512x512	2	30
MRI	256x256	2	25
US	512x512	3	10
Mamografia	4096x6144	2	192
Angiografia	1024x1024	2	30
Fluoroscopia	1024x1024	1	10

- Armazenamento:
 - Televisão de baixa resolução 512x512 pixels, 3 canais de cor a 8 bits – 6.3 Mb/imagem

- Armazenamento:
 - LANDSAT Tematic Mapper: 6000x6000 pixels/ banda espectral/8 bits por banda/ 6 bandas – 1700 Mb/imagem

- Armazenamento:
 - Computação gráfica representação espectral de um quadro (e.g. BRDFs) – muitos Mb/imagem

Vídeo

- 640x480 pixels (3 canais de cor a 8 bits) x 30 imagens /segundo: 221 Mb/s
- CIF (vídeo-conferência) –
 360x288 pixels na ordem dos
 70Mb/s
- CCIR(TV: 720x576): 300 Mb/s
- StandardHDTV (1260x720 pixels X 24 b/p X 80 imagens/s): 1.3 Gb/s (Full HD → ainda mais)

Compressão destrutiva e não destrutiva

 A ideia: Identificação e remoção da redundância/irrelevância (destrutiva) da fonte.

- Tipos de compressão:
 - Não destrutiva: a reconstrução é exacta

```
Original \rightarrow Comprimido \rightarrow Descomprimido 110101101 \rightarrow 10101 \rightarrow 110101101
```

 Destrutiva: a reconstrução é aproximada (exploração das limitações dos sistemas perceptuais)

```
Original → Comprimido → Descomprimido
110101101 → 101 → 110110101
```

Compressão destrutiva e não destrutiva

- Texto, ficheiros binários, etc
 - Tipicamente compressão não destrutiva

Compressão destrutiva e não destrutiva

- Imagem fotográfica
 - Tipicamente compressão destrutiva (e.g., JPEG)

- (a) Imagem original
- (b) Q = 75 (factor de qualidade típico)
- (c) Q = 25
- (d) Q = 5
- © Ze-Nian Li 2014, p. 34

Compressão Não Destrutiva

- Codificação de eventos de elevada probabilidade com poucos bits.
- Codificação de eventos improváveis com um número superior de bits

Compressão Não Destrutiva

- Qual é o menor comprimento médio do melhor código?
- Como obter o melhor código possível?
 - A primeira pergunta a que iremos responder na cadeira!

Modelo de Compressão

- Codificação da fonte
 - A redundância, normalmente, não é imediatamente evidente/disponível

- Tipos de modelos (mais frequentes)
 - Modelação do Processo (ou Física)
 - Modelação Preditiva
 - Modelação Estatística

Exemplo 1 (Modelação Física)

Número de símbolos distintos do alfabeto: 3 => 2 bits/símbolo

12*2 = 24 bits (mensagem)

Exemplo 2 (Modelação Preditiva - Aplicações à Imagem)

- Redundância Espacial
 - Exemplo: Pixels vizinhos são semelhantes

Exemplo 2 (Modelação Preditiva - Aplicações à Imagem)

- PNG: Método de Compressão
 - Modelos de previsão
 - Em cada linha, cada byte é previsto com base nos valores de bytes anteriores (explora correlação espacial entre amostras consecutivas)
- Bytes c b
- Tipo de modelo de previsão

Туре	Name	Filter Function	
0	None	Filt(x) = Orig(x)	
1	Sub	Filt(x) = Orig(x) - Orig(a)	
2	Up	Filt(x) = Orig(x) - Orig(b)	
3	Average	<pre>Filt(x) = Orig(x) - floor((Orig(a) + Orig(b)) / 2)</pre>	
4		<pre>Filt(x) = Orig(x) - PaethPredictor(Orig(a), Orig(b), Orig(c))</pre>	

```
p = a + b - c
pa = abs(p - a)
pb = abs(p - b)

pc = abs(p - c)
if pa <= pb and pa <= pc then Pr = a
else if pb <= pc then Pr = b
else Pr = c
return Pr</pre>
```

Exemplo 3 (Modelação Preditiva - Aplicações ao Vídeo)

- Redundância Temporal
 - Exemplo: Frames adjacentes são semelhantes
 - Diferença entre duas frames consecutivas → gama de valores reduzida → menos bits

Exemplo 4 (Modelação Estatística)

Fonte:

"akbarayarankarraykankfarkfaarkfaaarkaway"

- Analíse estatística
 - Histograma de símbolos (número de ocorrências)

Símbolos mais frequentes → menos bits (e vice-versa)

Símbolo	Ocorrência	Código
А	16	1
K	7	001
В	1	01100
F	3	0100
N	2	0111
R	7	000
W	1	01101
Υ	1	0101

Exemplo 4 (Modelação Estatística – Aplicações ao Áudio)

Redundância Estatística (na voz)

Criptografia

- Confidencialidade Manter os dados secretos
 - Encriptação de dados garantia de que os dados só podem ser descodificados pelo receptor autorizado
 - Exemplo: dados financeiros, documentos confidencias, etc.
- Integridade
 - Garantia de que os dados não sofreram alteração
 - Exemplo: dados forenses
- Autenticação
 - Saber origem dos dados / emissor
 - Exemplo: transferência bancária
- Não repúdio
 - Garantia de origem dos dados
 - Exemplo: evitar que alguém não assuma a origem dos dados

Criptografia

- Tipos de algoritmos
 - Chave simétrica (privada)
 - Chave assimétrica (pública e privada)
 - Funções de Hashing
- Como?
 - É a segunda pergunta a que iremos responder!