## \*Atomic vibrations in infinite periodic lattices

Dispersion relation -  $\omega(k)$  and group velocity -  $v_g(k)$  in the 1st BZ of 1D crystal

July 1, 2021

#### **Elastic waves**

Period lattices minimize the electric repulsion in a fixed volume By assuming linear response to external deformation

$$F_s = C\left(u_{s+1} - u_s\right) + C\left(u_{s-1} - u_s\right)$$



u<sub>s</sub>: displacement of the s<sup>th</sup> atom from its equilibrium position

Figure 1: Modelling 1D crystal lattice

\_

### Frame Title

Waves solutions are

$$u_s = u \exp(isKa)$$

\* By popping the solutions into the equation one we obtain the dispersion relation

$$\omega = (4C/M)^{1/2} \left| \sin \frac{1}{2} Ka \right|$$



Figure 2: Caption

#### **Elastic waves**

All the properties of the material can be described by the waves in the first
Brillouin zone
 k values outside the first Brillouin zone reproduce the same physical properties of
those inside

$$\frac{u_s}{u_{s+1}} = e^{ika}$$

- \* Then if we are at the edge of the Brillouin zone  $\frac{u_s}{u_{s+1}} = -1 \quad \Rightarrow \quad \text{standing waves (do not move left or right)}$
- ❖ Waves at the edge of the Brillouin zone satisfy the Bragg's condition

Δ

# **Group velocity**

$$v_g = \frac{d\omega(k)}{dk}$$



Figure 3: Group velocity of elastic waves in a crystal

#### **Elastic waves**

If the basis is composed of two different atoms we get two dispersion relations (for small ka)

$$\omega^2 \cong 2C\left(\frac{1}{M_1} + \frac{1}{M_2}\right)$$
 (optical branch)  $\omega^2 \cong \frac{\frac{1}{2}C}{M_1 + M_2}K^2a^2$  (acoustical branch)



Figure 4: Dispersion relations in biatomic crystals for  $ka\ll 1$ 

### Optical and acustical branches



Figure 5: Transverse optical and transverse acoustical waves in a di- atomic linear lattice, illustrated by the particle displacements for the two modes at the same wavelength