Skriftlig eksamen på Økonomistudiet Sommeren 2017

DYNAMISKE MODELLER

Tirsdag den 15. august 2017

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

2. årsprøve 2017 S-2DM ex

Skriftlig eksamen i Dynamiske Modeller Tirsdag den 15. august 2017

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + 5z^3 + 13z^2 + 19z + 10.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 13\frac{d^2x}{dt^2} + 19\frac{dx}{dt} + 10x = 0,$$

og

$$(**) \qquad \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 13\frac{d^2x}{dt^2} + 19\frac{dx}{dt} + 10x = 96e^t.$$

- (1) Vis, at tallene z = -1 og z = -2 er rødder i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.
- (2) Bestem den fuldstændige løsning til differentialligningen (*), og påvis, at (*) er globalt asymptotisk stabil.
- (3) Bestem den fuldstændige løsning til differentialligningen (**).

For ethvert $\alpha \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + \alpha \frac{d^2x}{dt^2} - 2\alpha \frac{dx}{dt} + \alpha x = 0,$$

- (4) Opstil Routh-Hurwitz matricen $A_4(\alpha)$ for differentialligningen (* * *), og påvis, at (* * *) ikke er globalt asymptotisk stabil for noget $\alpha \in \mathbf{R}$.
- (5) Kunne man have afgjort, at differentialligningen (***) ikke er globalt asymptotisk stabil for nogen værdi af parameteren $\alpha \in \mathbf{R}$ uden at have opstillet Routh-Hurwitz matricen $A_4(\alpha)$?

Opgave 2. Vi betragter korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som har forskriften

$$\forall x \in \mathbf{R} : F(x) = \begin{cases} [0, -2x], & \text{for } x < 0 \\ [-5, 5], & \text{for } x = 0 \\ [-2x, 0], & \text{for } x > 0 \end{cases}$$

og funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + yx.$$

Desuden betragter vi korrespondancen $G:]0, 10] \rightarrow \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in]0, 10] : G(x) = \begin{cases} [0, 1], & \text{for } 0 < x < 5 \\ \mathbf{R}, & \text{for } x = 5 \\ [-1, 0], & \text{for } 5 < x \le 10 \end{cases}.$$

- (1) Vis, at korrespondancen F har afsluttet graf egenskaben.
- (2) Vis, at korrespondancen F ikke er nedad hemikontinuert.
- (3) Vis, at korrespondencen F er opad hemikontinuert.
- (4) Bestem en forskrift for den maksimale værdifunktion $v_u: \mathbf{R} \to \mathbf{R}$, idet udsagnet

$$\forall x \in \mathbf{R} : v_u(x) = \max\{f(x, y) \mid y \in F(x)\}\$$

er opfyldt.

(5) Bestem en forskrift for maksimumskorrespondancen $M_u: \mathbf{R} \to \mathbf{R}$, idet udsagnet

$$\forall x \in \mathbf{R} : M_u(x) = \{ y \in F(x) \mid f(x,y) = v_u(x) \}$$

er opfyldt.

(6) Vis, at korrespondancen G har afsluttet graf egenskaben.

- (7) Vis, at korrespondancen G ikke er nedad hemikontinuert.
- (8) Vis, at korrespondancen G er opad hemikontinuert.

Opgave 3. Vi betragter den funktion $f: \mathbb{C} \to \mathbb{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : f(z) = z^2 + 2iz - 1.$$

- (1) Bestem funktionsværdierne f(i) og f(-i).
- (2) Løs ligningen f(z) = 0.
- (3) Løs ligningen f(z) = -z.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 (4u - u^2 + x - 4x^2) dt.$$

Vi skal løse det optimale kontrolproblem at maksimere I(x), idet $\dot{x}=f(t,x,u)=2u,\ x(0)=\frac{1}{8}$ og $x(1)=\frac{25}{8}$.

- (1) Opskriv Hamilton funktionen H=H(t,x,u,p) for dette optimale kontrol problem.
- (2) Vis, at dette optimale kontrolproblem er et maksimumsproblem.
- (3) Bestem det optimale par (x^*, u^*) , som løser problemet.