

Cairo University

Faculty of Engineering

Computer Engineering Department

Spring Semester 2025

Course Code: ELC 3252

Course Title: Control Engineering

Course Instructors: Prof. Dr. Ragia Badr - Dr. Meena Elia

Course TA: Eng. Hassan El-Menier

Project: Due on Tuesday, 6th of May, 2025 at 10:00 PM

Question (1):

For the two-tank system shown below:

- 1. Write the dynamic equations of the system and use it to drive the block diagram representation of the system (hand analysis). Don't perform any reduction to the block diagram.
- 2. Use Matlab to enter your detailed block diagram and then use Matlab commands to obtain the following transfer functions: $\frac{Q_o}{Q_{in}}$, $\frac{Q_1}{Q_{in}}$, $\frac{H_1}{Q_{in}}$, $\frac{H_2}{Q_{in}}$

The system parameters are as follows:

- Area of the first tank is $5m^2$
- Area of the second tank is $4m^2$
- Resistance of the first valve is $3s/m^2$
- Resistance of the second valve is $5s/m^2$
- 3. For any of the above transfer functions $\left(i.e.\frac{H_2(s)}{Q_{in}(s)}\right)$ study the stability of the system (using poles location).
- 4. The system is then operated by applying a fixed input flow of $1m^3/s$. Simulate the system under this value of input flow showing the response of $h_1, h_2, q_{in}, q_{out}$, also from the resulting responses calculate the steady state value of these signals.

- 5. Suggest a modification to the system such that: the system input is a certain desired level h_d (reference input) and the liquid level in the second tank h_2 is required to follow this desired level h_d (Hint: Use Feedback concept).
- 6. Simulate the system for a desired level (h_d) of 5m showing the response of h_1 , h_2 .
- 7. For the response of h_2 , calculate the value of the rise time, peak time, max peak, and settling time. Also calculate the value of e_{ss} .
- 8. As a solution to reduce the value of e_{ss} , a proportional controller can be used. Study the effect of the value of proportional controller on both e_{ss} and transient response by simulating the system with the following values of P controller: 1, 10, 100. Calculate transient response parameters for each case. Comment on your results.
- 9. If the actual height of the second tank walls is 6m, is it possible to obtain a steady state error less than 0.01 using a proportional only controller? Why?
- 10. Suggest a suitable controller to eliminate e_{ss} . Then, simulate the system using your proposed controller. **Hint**: Get controller constants by try and error, knowing that height of the second tank is 6m.

Guidelines

- 1. The number of group members is up to 4 students.
- 2. You can use either MATLAB or Simulink for your simulations.
- 3. Delivery requirements:
 - (a) Include all the hand analysis and MATLAB/Simulink simulations with results and your analysis in a pdf file.
 - (b) Add the pdf file along with the MATLAB files in a zip folder.
 - (c) The format of the folder should be ELC3252_Project_Gp_[Group No.] (ex: ELC3252_Project_Gp_7).
 - (d) Only one folder to be submitted per group.
- 4. The deadline is on Tuesday, 6^{th} of May, 2025 at 10:00 PM.
- 5. Duplicated/Late submissions will receive **ZERO** mark.