FPGA-Based Evaluation and
Implementation of an
Automotive RADAR Signal Processing
System using
High-Level Synthesis [1]

Presented by Eric Todd

Context

FMCW RADAR

Frequency Modulated Continuous Wave Radio Detection and Ranging

Transmit wave of linearly increasing frequency

Reflected wave delayed in time

Leads to frequency offset

Frequency difference -> time delay -> range

Non-Reconfigurable Radar Hardware

Voltage Controlled Oscillator

Beamforming - steering

Signal reflects - measure time

Mix with transmitted signal

Analog to Digital Conversion

Fig. 1 Conceptual diagram of the RADAR system [12].

Motivation

HLS vs HDL

High Level Synthesis (C/C++)

Higher level abstractions

Less direct control over hardware

Faster development time?

Hardware Design Language

Register Transfer Level

Large semantic gap

Higher performance?

Paper tests this

Design

Reconfigurable Radar Hardware

Digitize

Fast Fourier Transform

Target Detection

Post Processing

Output

Fig. 3 Flowchart of Radar Receiver flow control and Signal Processing [12].

Comparison

Faster development time

Estimate?

Fig. 4 Approximate design time (in weeks)

Resource Usage

Significantly higher for HLS

Particularly Block-RAM (BRAM)

Fig. 6. Slice LUTS/Registers utilization comparison graph.

Fig. 7 BRAM and DSP blocks utilization comparison graph.

Performance

Lower latency - better performance

But higher resource usage

Fig.8. Latency comparison graph.

Conclusion

Conclusion

Contribution

Comparison of HLS and HDL in DSP RADAR application

Strengths

- Interesting, concrete, real world application
- Clear, helpful diagrams, good explanation of background

Weaknesses

• Uneven comparison - Higher resource usage and better performance

Sources

Sources

- 1. S. Luthra, M. A. S. Khalid and M. A. Moin Oninda, "FPGA-Based Evaluation and Implementation of an Automotive RADAR Signal Processing System using High-Level Synthesis," 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 2020, pp. 1-6, doi: 10.1109/CCECE47787.2020.9255725.
- 2. https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20Radar_nen.html