Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to ask them on Ed Discussion (so that everyone can benefit from the answer) or stop at the office hours.

Problem 6.1 (2 points). (a) Consider the matrix

$$A = \begin{pmatrix} 3 & 2 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Show that 3, -1, and 2 are eigenvalues of A and give an associated eigenvector in each case. What is the spectrum of A? Justify.

We compute the characteristic polynomial for matrix A, which is given by $det(A - \lambda I_3) = (3 - \lambda)(-2 - \lambda)(2 - \lambda) = 0$, which shows that the spectrum of A are indeed 3, -1, 2. Now we compute the eigenvectors under each eigenvalue.

- (a) $\lambda = 3$, we have to compute the basis for $\mathcal{N}(A 3I_3)$, which is given by $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
- (b) $\lambda = -1$, we have to compute the basis for $\mathcal{N}(A (-1)I_3)$, which is given by $\begin{pmatrix} 1/\sqrt{5} \\ -2/\sqrt{5} \\ 0 \end{pmatrix}$.
- (c) $\lambda = 2$, we have to compute the basis for $\mathcal{N}(A 2I_3)$, which is given by $\begin{pmatrix} -8/\sqrt{74} \\ 1/\sqrt{74} \\ 3/\sqrt{74} \end{pmatrix}$.
- (b) Let $A \in \mathbb{R}^{n \times n}$ be an upper-triangular matrix:

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}.$$

For which values of $\lambda \in \mathbb{R}$ is $A - \lambda \text{Id}$ invertible? What is the spectrum of A?

In order for the matrix A to be invertible, we have to make sure $\det(A) \neq 0$, otherwise there exists two columns that are multiple of each other, resulting in linear dependence. Thus in order for $A - \lambda I_d$ to be invertible, we have to ensure that $\det(A - \lambda I_d) \neq 0$, which implies that $\det(A - \lambda I_d) = p(\lambda) = (a_{1,1} - \lambda)(a_{2,2} - \lambda) \times \cdots \times (a_{n,n} - \lambda) \neq 0$, which means $\lambda \neq a_{i,i} \forall i = 1, 2, \cdots, n$.

The spectrum of A are just the solution to the characteristic polynomial given by $p(\lambda) = 0$, which are $a_{i,i}, \forall i = 1, 2, \dots, n$.

Problem 6.2 (3 points). Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Suppose that there exists a basis (e_1, \ldots, e_n) of \mathbb{R}^n composed of eigenvectors of A, associated with eigenvalues $\lambda_1, \ldots, \lambda_n$.

(a) Let $x \in \mathbb{R}^n$ with coordinates (x_1, \dots, x_n) in the basis (e_1, \dots, e_n) . What are the coordinates of Ax in the basis (e_1, \dots, e_n) ?

We have $\vec{x} = \sum_{i=1}^n x_i \vec{e_i}$ by the problem statement. We then apply linear transformation A and get $A\vec{x} = \sum_{i=1}^n x_i A \vec{e_i} = \sum_{i=1}^n x_i \lambda_i \vec{e_i}$ due to the fact that $\vec{e_i}$'s are eigenvectors corresponding to the spectrum of A. Thus we have $\vec{x} = \sum_{i=1}^n (x_i \lambda_i) \vec{e_i}$, which implies that the coordinates are $(\lambda_1, \ldots, \lambda_n)$.

(b) Show that in the basis (e_1, \ldots, e_n) , the matrix of the linear map A is diagonal.

Denote the transformation matrix under eigen-basis by \widetilde{A} , then we know from the part (a) that in the eigen-basis, for each basis vector $\vec{e_i}$ we have $A(\vec{e_i}) = (0, \dots, \lambda_i, \dots 0)$, thus the

 $i\text{-th column of }\widetilde{A} \text{ by definition should be } A(\vec{e_i})^{\top}. \text{ This implies that } \widetilde{A} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n \end{bmatrix},$

which is a diagonal matrix.

(c) Suppose that A is invertible. Calculate the coordinates of $A^{-1}x$ in the basis (e_1, \ldots, e_n) and give the expression of the matrix of the linear map A^{-1} in this basis.

We know that the eigenvalues for matrix A^{-1} should be λ_i^{-1} and the eigenvectors are the same as A. Using the same logic from part (a), we have $\forall \vec{x} = \sum_{i=1}^n x_i \vec{e_i}, A^{-1} \vec{x} = \sum_{i=1}^n x_i A^{-1} \vec{e_i} = \sum_{i=1}^n x_i \lambda_i^{-1} \vec{e_i}$, which implies that the coordinate should be $(\lambda_1^{-1}, \dots, \lambda_n^{-1})$. Using the same logic as part (b), denote the transformation matrix under eigen-basis by $\widehat{A^{-1}}$, then we know from the part (a) that in the eigen-basis, for each basis vector $\vec{e_i}$ we have $A^{-1}(\vec{e_i}) = (0, \dots, \lambda_i^{-1}, \dots 0)$, thus the i-th column of $\widehat{A^{-1}}$ by definition should be

 $A^{-1}(\vec{e_i})^{\top}. \text{ This implies that } \widetilde{A^{-1}} = \begin{bmatrix} \lambda_1^{-1} & 0 & \cdots & 0 \\ 0 & \lambda_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n^{-1} \end{bmatrix}.$

Problem 6.3 (3 points). The trace of a square $A \in \mathbb{R}^{n \times n}$ matrix is defined as the sum of its diagonal elements

$$Tr(A) = \sum_{i=1}^{n} A_{i,i}.$$

(a) Show that for any $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{m \times n}$, Tr(BC) = Tr(CB).

$$Tr(BC) = \sum_{i=1}^{n} \sum_{k=1}^{m} B_{ik} C_{ki}$$
 (By definition)
 $= \sum_{k=1}^{m} \sum_{i=1}^{n} C_{ki} B_{ik}$ (Change the summation sequence)
 $= Tr(CB)$ (By definition)

(b) Consider a matrix $A \in \mathbb{R}^{n \times n}$ that can be written $A = PDP^{-1}$ where $P \in \mathbb{R}^{n \times n}$ is invertible and $D \in \mathbb{R}^{n \times n}$ is diagonal. Calculate Tr(A) as a function of D.

$$Tr(PDP^{-1}) = Tr(P^{-1}PD)$$
 (Using the result from part (a))
= $Tr(D)$ (Property of matrix inverse)

(c) Show that $\langle B, C \rangle = \text{Tr}(B^{\top}C)$ defines an inner product on the space of rectangular matrices $\mathbb{R}^{n \times m}$

We have to verify the three properties:

- (a) Symmetry: $\langle B, C \rangle = \text{Tr}(B^{\top}C) = Tr(C^{\top}B) = \langle C, B \rangle (By \text{ the fact that } Tr(A^{\top}) = Tr(A) \forall A \in \mathbb{R}^{n \times n})$
- (b) Linearity:

$$\langle \alpha A + B, C \rangle = \text{Tr}((\alpha A + B)^{\top}C)$$

$$= \text{Tr}(\alpha A^{\top}C + B^{\top}C).$$
(By the linearity of trace)
$$= \alpha \text{Tr}(A^{\top}C) + \text{Tr}(B^{\top}C)$$
(By the linearity of trace)
$$= \alpha \langle A, C \rangle + \langle B, C \rangle$$
(By defintion)

(c) Positive Definiteness:

$$\langle A, A \rangle = Tr(A^{\top}A)$$
 (By definition)
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A_{i,k}^{\top} A_{k,i}$$
 (By definition)
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A_{k,i} A_{k,i}$$
 (Transpose)
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A_{k,i}^{2} \geq 0$$

. When $\langle A, A \rangle = 0$, we have $\sum_{i=1}^{n} \sum_{k=1}^{n} A_{k,i}^2 = 0$, which implies $A_{i,k} = 0, \forall 1 \leq i, k \leq n$, which implies that A = 0.

Problem 6.4 (3 points). Let $P \in \mathbb{R}^{n \times n}$ be a stochastic matrix.

- (a) Let $x \in \Delta_n$ be a probability vector. Show that Px is a probability vector. By definition, we have $\sum_{i=1}^n \vec{x}_i = 1$, then $\sum_{i=1}^n P\vec{x} = \sum_{i=1}^n \sum_{k=1}^n P_{ik} \vec{x}_k = \sum_{k=1}^n (\sum_{i=1}^n P_{ik}) \vec{x}_k = \sum_{k=1}^n 1 \times \vec{x}_k = 1$, which implies that $P\vec{x}$ is a probability vector of \mathbb{R}^n .
- (b) Assume that there exists a basis (e_1, \ldots, e_n) of \mathbb{R}^n composed of eigenvectors of P associated with eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $x = x_1 e_1 + \cdots + x_n e_n$. Show that $P^k x = \lambda_1^k x_1 e_1 + \cdots + \lambda_n^k x_n e_n$. We could prove it by induction, assume the inductive hypothesis is $M(k) : P^k \vec{x} = \lambda^k x_i \vec{e}_1 + \cdots + \lambda_n^k x_n \vec{e}_n$,
 - (a) Base Step k = 0: $P^0 \vec{x} = \vec{x} = \sum_{i=1}^n x_i \vec{e}_i = \sum_{i=1}^n \lambda_i^0 x_i \vec{e}_i$, which means P(0) holds.
 - (b) Inductive Step k=m, assume P(m) holds, then $P^i\vec{x} = \sum_{i=1}^n \lambda_m^i x_i \vec{e_i}$. Apply the linear transformation matrix P again we have $P^{m+1}\vec{x} = P\sum_{i=1}^n \lambda_i^m x_i \vec{e_i} = \sum_{i=1}^n \lambda_i^m x_i P\vec{e_i} = \sum_{i=1}^n \lambda_i^{m+1} x_i \vec{e_i}$, which means P(m+1) holds.
 - . Thus by mathematical induction, we have $P^k x = \lambda_1^k x_1 e_1 + \cdots + \lambda_n^k x_n e_n$ holds for all $k \in \mathbb{N}$. But things get tricky when k < 0 (this is indeed possible). But our stochastic matrix P are not guaranteed to have inverse, so the statement does't necessaily hold for k < 0.
- (c) Further assume that $\lambda_1 = 1$ and $|\lambda_k| < 1$ for $k \ge 2$. Show that $P^k x \to x_1 e_1$ when $k \to \infty$. From part (b) we know that $P^k x = \lambda_1^k x_1 e_1 + \cdots + \lambda_n^k x_n e_n$. If $\lambda_1 = 1$ and $|\lambda_i| < 1$ for $i \ge 2$, then $|\lambda_i|^k \to 0$ when $k \to \infty$ for $i \ge 2$. Thus $\lim_{n \to \infty} P^k \vec{x} \to \lambda_1^k x_1 \vec{e}_1 = x_1 \vec{e}_1$.
- (d) What can you say about the long-term behavior of the Markov chain with transition matrix P started at some $x_0 \in \Delta_n$?
 - We can write $\vec{x}_0 = \sum_{i=1}^n x_i \vec{e}_i, \forall \vec{x}_0 \in \Delta_n$, then by Perron-Frobenius Theorem, there exists an eigenvalue with value $1(\vec{u} \text{ is its eigenvector with geometric multiplicity 1})$ and that $P^k \vec{x}_0$ will converge to this $\vec{\mu}$ when $k \to \infty$.

Problem 6.5 (*). We say that a symmetric matrix $M \in \mathbb{R}^n$ is positive semi-definite if, for any $x \in \mathbb{R}^n$,

$$x^{\top}Mx \ge 0.$$

(a) Are the following matrices positive semi-definite?

$$M_1 = \mathrm{Id}_n, \quad M_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

- (a) M_1 is PSD since $\vec{x}^{\top} M_1 \vec{x} = x_1^2 + x_2^2 \ge 0, \forall x_1, x_2 \in \mathbb{R}$.
- (b) M_2 is not PSD since $\vec{x}^{\top} M_2 \vec{x} = x_1^2 + 4x_1x_2 + x_2^2$, which is negative when $x_1 = 1, x_2 = -1$.
- (c) M_3 is PSD. Since $\vec{x}^{\top} M_3 \vec{x} = x_1^2 2x_1x_2 + x_2^2 = (x_1 x_2)^2 \ge 0, \forall x_1, x_2 \in \mathbb{R}$.
- (b) Show that if M is positive semi-definite, then all its eigenvalues are non-negative.

By spectrum theorem (which can be proved by Schur Decomposition), any symmetric matrix M can be diagonalized(have n linearly independent eigenvectors) and thus can be written as $M = VDV^{\top}$ where the column of V is M's eigenvectors and the diagonal entries of D are M's spectrum. Then $\vec{x}^{\top}M\vec{x} = \vec{x}^{\top}VDV^{\top}\vec{x} = \vec{y}D\vec{y} = \sum_{i=1}^{n} D_{i,i}y_i^2 \geq 0, \forall y_i \in \mathbb{R}$, which implies that $D_{i,i}$ are non-negative, which proves the original statement.