Lecture 4: The cross product (§12.4)

Goals:

- 1. Algebraically compute the cross product of two given vectors using determinants.
- 2. Geometrically interpret the magnitude and direction of the cross product of two given vectors.
- 3. Perform elementary vector algebra using properties of vector addition, scalar multiplication, the dot product, and the cross product.

In this lecture we focus on the following operation:

Definition. (intuition) The **cross product** $\overrightarrow{u} \times \overrightarrow{v}$ of vectors \overrightarrow{u} and \overrightarrow{v} is the vector

$$\overrightarrow{u} \times \overrightarrow{v} := |\overrightarrow{u}| |\overrightarrow{v}| \sin(\theta) \cdot \overrightarrow{n},$$

where \overrightarrow{n} is the unit normal vector perpendicular to the plane spanned by \overrightarrow{u} and \overrightarrow{v} , chosen according to the right-hand rule.

FIGURE 12.28 The construction of $\mathbf{u} \times \mathbf{v}$.

- 1. Note that $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$ if \overrightarrow{u} and \overrightarrow{v} are parallel, or if \overrightarrow{u} or \overrightarrow{v} are the zero vector.
- 2. Further note that $|\overrightarrow{u} \times \overrightarrow{v}|$ is the area of the parallelogram determined by \overrightarrow{u} and \overrightarrow{v} .

FIGURE 12.31 The parallelogram determined by \mathbf{u} and \mathbf{v} .

Here are a few properties of cross product:

Let \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} be vectors, and let r, s be scalars. Then:

$$(\vec{\nabla} + \vec{\omega}) = \vec{\omega} \times \vec{V} + \vec{\omega} \times \vec{W}$$

$$3 \vec{k} \times \vec{V} = -\vec{V} \times \vec{k}$$

$$\frac{\partial}{\partial x} (\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$$

FIGURE 12.29 The construction of $\mathbf{v} \times \mathbf{u}$.

Example. Compute

1.
$$i \times j = k$$

2.
$$k \times i = j$$

3.
$$k \times j = -$$

4.
$$j \times j = \bigcirc$$

We now give an explicit formula to the cross product. We first define determinants:

Definition.

1. The determinant of a 2×2 -matrix is calculated as follows

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

2. The determinant of a 3×3 -matrix is calculated as follows

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_3 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_1 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & c_3 - b_3 & c_1 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & c_2 - b_3 & c_1 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & c_3 - b_3 & c_1 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & c_3 - b_3 & c_1 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & c_3 - b_2 & c_1 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & c_3 - b_3 & c_1 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & c_3 - b_2 & c_1 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & c_3 - b_3 & c_1 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & c_3 - b_2 & c_1 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & c_3 - b_3 & c_1 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_2 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_2 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 &$$

We can now define the cross product more explicitly:

Definition (Cross product as a determinant). Let
$$\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$$
 and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$. Then
$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \mathbf{i} \cdot \begin{vmatrix} u_1 & u_3 \\ v_2 & v_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} u_1 & u_3 \\ v_1 & v_2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} u_1 & u_1 \\ v_1 & v_2 \end{vmatrix}$$

$$= i(u_2v_3 - u_3v_2) - j(u_1v_3 - u_3v_1) + k(u_1v_2 - u_2v_1)$$

Example. Let $\overrightarrow{u} = \langle 2, 1, 1 \rangle$ and $\overrightarrow{v} = \langle -4, 3, 1 \rangle$. Find $\overrightarrow{u} \times \overrightarrow{v}$? How about Find $\overrightarrow{u} \times (\overrightarrow{u} + \overrightarrow{v})$?

$$\vec{u} \times \vec{v} = \langle 2, 1, 1 \rangle \times \langle -4, 3, 1 \rangle = \begin{vmatrix} i & j & k \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} -4 & 3 & 1 \\ -4 & 3 & 1 \end{vmatrix}$$

$$= i / \frac{1}{3} | \frac{1}{3} - j | \frac{2}{-4} | \frac{1}{3} + k | \frac{2}{-4} | \frac{1}{3} = -2i - 6j + 10k = \langle -2, -6, 10 \rangle$$

$$\vec{u} \times (\vec{u} + \vec{v}) = \vec{u} \times \vec{u} + \vec{u} \times \vec{v} = \vec{u} \times \vec{v} = \langle -2, -6, 10 \rangle$$

Example. Let P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2) be points. Find:

- 1. A unit vector perpendicular to the plane of P, Q and R (how many such unit vectors exist?)
- 2. The area if the triangle PQR.

$$\vec{V} = \vec{P}\vec{R} = \langle -2, 2, 2 \rangle$$
 $\vec{V} = \vec{P}\vec{Q} = \langle 1, 2, -1 \rangle$

$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ -2 & 2 & 2 \\ 1 & 2 & -1 \end{vmatrix} = i(-2-4)-j(2-2)+k(-4-2)=-6i-6k$$

$$= \langle -6,0,-6 \rangle = \sqrt{36+0.136} = \sqrt{72} = 6\sqrt{2}$$

The normalized orthogonal vector is $\frac{1}{6\sqrt{2}} \langle -6,0,-6 \rangle = \langle \frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}} \rangle$ **Example.** Is it true that $(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w})$? The area

Example
$$(ixi)xj = 0xj = 0$$

 $ix(ixj) = ixk = -5j \neq 0$

$$=\frac{1}{2}.6\sqrt{2}=3\sqrt{2}$$

Triple (or Box) product

Definition. Given vectors \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} , the **box product** is (the scalar) defined by

$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}$$

 $(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}.$ The absolute value $|(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}| = |\overrightarrow{u} \times \overrightarrow{v}| |\overrightarrow{w}| |\cos(\theta)|$ of the box product can be seen geometrically as the volume of the parallelepiped, as below:

FIGURE 12.35 The number $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ is the volume of a parallelepiped.

The box product has the following nice formula:

$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

Example. Find the volume of the parallelepiped determined by $\overrightarrow{u} = \langle 1, 2, -1 \rangle$, $\overrightarrow{v} = \langle -2, 0, 3 \rangle$ and $\overrightarrow{w} = \langle 0, 7, -4 \rangle$ (the coordinates are in meters).

Example. Is it always true that

$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})?$$

Example. Using the dot product and cross product to describe the following:

- 1. A vector orthogonal to \overrightarrow{u} and \overrightarrow{v} .
- 2. A vector orthogonal to $\overrightarrow{u} \times \overrightarrow{v}$ and \overrightarrow{w} .
- 3. The area of a triangle with vertices P, Q and R.