qaa sa syi	TOROGONAQUAD PRAIDETA	Tack to the Medical	1 - 1 1 1 1 2 2 2

в) (4) Нека X е број на појавувања на настанот A во Бернулиева шема со 3 експерименти. Да се определи веројатноста на настанот A, ако DX=0.27.

5. а) (3) Нека $X\sim P(2)$ и $Y\sim P(3)$ се независни случајни променливи. Со користење на функцијата изводница, да се определи распределбата на случајната променлива Z=X+2Y.

б) (5) Нека $Y_n \sim B(n,p)$. Да се покаже дека за произволен реален број $\varepsilon > 0$, важи:

$$\lim_{n\to+\infty} P\left\{ \left| \frac{Y_n}{n} - p \right| < \varepsilon \right\} = 1.$$

в) (3) Формулирај ја централната гранична теорема (Линдерберг - Леви). Каков вид на конвергенција обезбедува оваа теорема?

6. (5) Нека (X_1, X_2, X_3) е случаен примерок од обележје X со густина на распределба $p(x) = \begin{cases} x/9, & 0 < x < 3 \\ 0, & \text{инаку} \end{cases}$. Нека $Y_1 < Y_2 < Y_3$ се подредени статистики на примерокот. Да се определи EY_1 .

- 7. а) (2) Како се дефинираат просек и дисперзија на случаен примерок (X_1, X_2, X_2, X_4) ?
 - б) (4) Определете го математичкото очекување на просекот и дисперзијата на случаен примерок (X_1, X_2, X_4) .

- 8. а) (2) Нека $(X_1, X_2, ..., X_n)$ е случаен примерок од статистичко обележје X чија распределба зависи од непознат параметар θ . Да се дефинира конзистентен оценувач за θ .
 - б) (3) Нека $(X_1, X_2, ..., X_n)$ е случаен примерок од обележје X со густина на распределба $p(x, \theta_1, \theta_2, \theta_3)$. Како со користење на методот на моменти се опредеуваат оценувачи за непознатите параметри $\theta_1, \theta_2, \theta_3$?

9. а) (4) Нека $(X_1, X_2, ..., X_{60})$ е случаен примерок од статистичко обележје X кое има непознато математичко очекување μ и дисперзија 81. Да се определи $(1-\alpha)100\%$ интервал на доверба за параметарот μ .

б) (4) Нека X е случајна променлива со густина на распределба $p(x) = \begin{cases} \frac{1}{\theta}, & \text{за } 0 < x < \theta \\ 0, & \text{инаку} \end{cases}$. Ако се земе

едно набљудување X_1 од оваа распределба колку изнесува веројатноста на грешка од тип I при тестирање на нултата хипотезата H_0 : $\theta = 3$ наспроти алтернативната хипотеза H_a : $\theta = 1$, ако H_0 се отфрла кога $X_1 < 0.8$.

10.(4) Формулирај го Пирсоновиот хи-квадрат тест за независност на две категориски случајни променливи.