

Universidad Nacional de Ingeniería

FACULTAD DE CIENCIAS

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

Comparación de métodos de optimización en una Deep Neural Network

SEMINARIO DE TESIS 1

Autor: Víctor Jesús Sotelo Chico

Asesor: Víctor Melchor Espinoza

Junio, 2018

Resumen

Índice general

Re	esum	en		III
1.	Intr	oducció	ວົກ	2
	1.1.	Motiv	ación	2
	1.2.	Objeti	vos	3
	1.3.		etura del Seminario	
2.	Esta	do del	Arte	5
	2.1.	GPU c	computing	5
		2.1.1.	The GPU computing Era	5
	2.2.	Machi	ine learning	6
		2.2.1.	Uso de redes neuronales para encontrar el rendimiento	
			de una GPU	6
	2.3.	Deep 1	Learning	6
		2.3.1.	Deep Machine Learning - A New Frontier in Artificial	
			Intelligence	6
	2.4.	Métod	los de optimización	7
		2.4.1.	Neural Network Optimization Algorithms: A	
			comparison study based on TensorFlow	7
		2.4.2.	On Optimization Methods for Deep Learning	7
	2.5.	Concl	usiones	8
3.	Mac	hine L	earning y Redes Neuronales	9
	3.1.	Apren	ndizaje Automático	9
		3.1.1.	Aprendizaje Supervizado	10
		3.1.2.	Aprendizaje No Supervizado	20

		3.1.3.	Aprendizaje por refuerzo	21
	3.2.	Redes	Neuronales	22
4.	Algo	oritmos	s de optimización una Red Neuronal convolucional	26
	4.1.	Redes	Neuronales Convolucionales	26
		4.1.1.	Estructura de una imagen	26
		4.1.2.	Arquitectura General de CNN	27
			Input layer	27
			Convolutional layers	27
			Classification layers	29
		4.1.3.	Arquitecturas conocidas	29
	4.2.	Métod	los de optimización	29
		4.2.1.	Gradiente de descenso	29
			Batch gradient descent	29
			Stochastic gradient descent	30
			Mini-batch gradient descent	31
		4.2.2.	Optimizadores	31
			Momentum	31
			Nesterov accelerated gradient	32
			Adagrad	33
			RMSprop	34
			Adam	34
			AdaMax	35
			Nadam	35
5.	Con	clusion	nes y Trabajo Futuro	36
	5.1.	Concl	usiones	36
	5.2.	Trabaj	o Futuro	36
Α.	Títu	lo del a	apéndice	41

Índice de figuras

3.1.	Regresión y clasificación Fuente: https://medium.com/	11
3.2.	Regresión Lineal Fuente: www.forexmt4indicators.com/	12
3.3.	Regresión Logística Fuente: www.analyticsvidhya.com	14
3.4.	knn Fuente: www.medium.com/	15
3.5.	transformación con la función kernel Fuente: www.statsoft.com	16
3.6.	transformación para un problema de regresión Fuente:	
	www.saedsayad.com	18
3.7.	Clustering Fuente: https://medium.com/	20
3.8.	k means clustering Fuente: www.saedsayad.com	21
3.9.	Esquema de aprendizaje por refuerzo Fuente:	
	https://towardsdatascience.com	22
3.10.	ReLu Fuente: https://medium.com/	23
4.1.	Operacion de convolución Fuente: www.openresearch.ai	28
4.2.	Función costo en SGD Fuente: www.doc.ic.ac.uk	30
4.3.	Actualización sin momentum Fuente: www.doc.ic.ac.uk	31
4.4.	Actualización con momentum Fuente: www.doc.ic.ac.uk	32
4.5.	Convergencia Nesterov Fuente: www.doc.ic.ac.uk	33

Índice de Acrónimos

k-nn k- nearest neighbors

SVM Super Vector Machine

SVC Super Vector Regression

SVR Super Vector Classification

SGD Stochastic gradient descent

DNN Deep Neural Network

CNN Convolutional Neural Network

ETC Etcétera

Agradecimientos

Agradezco a mis padres por todo el apoyo incondicional en estos años de estudio

Capítulo 1

Introducción

En el campo de la inteligencia artificial las redes neuronales profundas tienen un papel muy importante, debido a que estas son el camino para que las computadoras realicen tareas que nuestros cerebros realizan de manera natural, tareas como el reconocimiento de voz, imágenes y patrones. En la actualidad empresas importantes utilizan las redes neuronales profundas, un ejemplo de esto es Google con el reconocimiento de voz e imágenes. Una característica de las redes neuronales profundas es que están compuestas por una gran cantidad de capas lo cual dificulta el entrenamiento en computadoras que solo usan el CPU. Una manera de resolver este problema es mediante el uso de las GPU's debido que las tareas de entrenamiento son paralelizables. Se pueden utilizar GPU'S para acelerar el proceso de entrenamientos de nuestra red neuronal profunda. Por otro lado se necesitan métodos de optimización que junto a la fortaleza de las GPU's nos permitan obtener un mejor rendimiento.

1.1. Motivación

La inteligencia artificial constituye una base muy importante en el campo de la computación, mezcla un conjunto de disciplinas como la estadística y ciencia de la computación con el objetivo de construir modelos que puedan permitir a las computadoras realizar tareas que hace algunos años hubiese sido considerado imposible. El hecho de lograr que las computadoras sean capaces de reconocer objetos, clasificarlos lo cual ha permitido que la industria de la robotíca desarrolle de manera acelerada en las últimas décadas. Hoy

en día existen muchas herramientas que nos permiten desarrollar este tema y profundizarlo pero a medida que aumenta la complejidad del problema, el costo computacional incrementa lo cual se convierte un problema importante.

Una de la soluciones que apareció fue el uso de la GPU's para acelerar procesos como el entrenamiento de una red neural con muchas capas ocultas, las GPU's representa una solución muy eficaz debido a que en el campo de la inteligencia artificial existen muchas tareas que son paralelizables.

Actualmente el mercado de GPU's evoluciona muy rápido debido a su gran demanda en la industria de los videojuegos este mercado esta dominado por NVIDIA y AMD esta competencia y la alta demanda permite que las GPU's tengan mejor rendimiento lo cual puede ser usado obtener mejores resultados en el campo de machine learning.

Por otro lado la optimización no solo se basa el uso de hardwares más potentes sino también depende de la elección de métodos adecuados para nuestro modelos esta elección dependerá mucho del problema a tratar métodos un método usado comúnmente en el campo de machine learning es la gradiente de descenso estocástica pero realmente es adecuado para toda variedad de problemas.

Respecto a la problemática de encontrar métodos más eficientes de optimización que obtengan un mejor rendimiento, este presente seminario se centra en la búsqueda y comparación de estos métodos con el fin de encontrar aquellos que sean más rápidos y eficientes.

1.2. Objetivos

El objetivo de este seminario es el de mostrar las ventanjas del uso de distintos métodos de optimización en el entranimiento de una deep neural network en una tarea de clasificación.

Especificamente, los objetivos de este trabajo con respecto al sistema son:

• Entender el funcionamiento de las redes neuronales profundas

- Estudiar métodos de optimización en machine learning.
- Conocer las ventajas y desventajas de diferentes métodos de optimización.
- Mostrar los resultados de distintos métodos de optimización en el entramiento de una red neuronal profunda.

Y los objetivos con respecto a las competencias académicas desplegadas en el trabajo son:

- Desarrollar un mejor entendimiento de las redes neuronales y sus aplicaciones, para así poder lograr afrontar problemas en el campo de la inteligencia artificial.
- Obtener la capacidad de discriminar entre los distintos métodos de optimización y elegir el adecuado para un problema de deep learning.
- Obtener un conocimiento de las herramientas y recursos que existen actualmente para abordar problemas de deep learning, además de poder analizar que herramientas son adecuadas para algunos problemas.

1.3. Estructura del Seminario

Introducción:

En este capítulo introductorio se comenta sobre el tema a tratar, las motivaciones, intereses, objetivos con los cuales se planteo el presente seminario.

Estado del Arte:

En este capítulo muestra los trabajos e investigaciones ya realizadas, además de algunas aplicaciones que motivaron al presente seminario y muestra la importancia del seminario.

Capítulo 2

Estado del Arte

En este capítulo describiremos anteriores investigaciones de machine learning, además de sus aplicaciones. Además veremos algunas investigaciones GPU como un modo de obtener un mejor rendimiento y nos enfocaremos principalmente en los estudios de los métodos de optimización.

También mostraremos investigaciones referentes a deep learning exclusivamente nos enfocaremos a Convolutional Neural Network(CNN) ya que son parte del tema de estudio en este seminario.

2.1. GPU computing

El uso de las GPU's han permitido lograr aplicaciones que antes podriamos imaginar que eran imposibles debido a su largo tiempo de ejecución. Hoy en día las GPU's son altamentes usadas debido que cuentan con cientos de núcleos de procesadores en paralelo que permiten resolver rápidamente los problemas que son altamente paralelizables.

2.1.1. The GPU computing Era

En artículo se enfoca principalmente en describir la evolución que sufrieron las arquitecturas de GPU's, además de mostrar la importancia del uso de las GPU's para un mayor rendimiento y eficiencia que antes hubiesen sido consideradas imposibles de bido al alto tiempo de ejecución que requerian.

Además nos muestra que la escalabilidad es la principal característica que ha permito que las GPU's aumenten su paralelismo y redimiento.

2.2. Machine learning

El uso de machine learning representa una gran ventaja para empresas que manejan gran cantidad de datos debido a que permiten descubrir patrones y analizar los datos.

2.2.1. Uso de redes neuronales para encontrar el rendimiento de una GPU

En la actualidad existen empresas dedicadas a la creación de GPU's, en el proceso una parte fundamental es la verificación del rendimiento de las GPU's actualmente existen simuladores conocidos como GPGPU-SIM que permiten estimaciones precisas pero estos poseen algunas dificultades como el tiempo empleado en configurarlos en base al hardware real además que este proceso esta propenso a errores. Un equipo de equipo conformado por investigadores de AMD y The University of Texas at Austin, quienes propusieron el uso de redes neuronales para predecir el rendimiento.

2.3. Deep Learning

Dentro del área de machine learning encontramos deep learning o aprendizaje profundo el cual consiste en un conjunto de algoritmos que modela abstracciones de alto nivel.

2.3.1. Deep Machine Learning - A New Frontier in Artificial Intelligence

Este trabajo de investigación fue realizado por investigadores oak Ridge National Laboratory y University of tennessee, el objetivo principal de este trabajo fue presentarnos el aprendizaje profundo como un camino para la imitación del cerebro humano y sus principales cualidad como el reconocimientos de objetos, rostros, etc.

Además de mostrarnos las aplicaciones del aprendizaje profundo, como : analísis de documentos, detección de voz, rostro, procesamiento natural del lenguaje, etc.

Actualmente existen algunas empresas privadas que apoyan el campo de deep learning con el objetivo de buscar sus aplicaciones comerciales entre estas empresas tenemos: Numenta y Binatix.

2.4. Métodos de optimización

El campo de machine learning continuamente evoluciona y con esta evolución surgen nuevas necesidades al trabajar con grandes conjuntos de datos se buscan cada vez obtener buenos resultados sin afectar el rendimiento. Una forma de lograr esto es mediante el uso de algoritmos de optimización.

2.4.1. Neural Network Optimization Algorithms: A comparison study based on TensorFlow

Vadim Smolyakov realizo un estudio comparativo de diversos optimizadores entre los cuales se encuentran el método de gradiente de descenso estocástica, Nesterov Momentum,RMSProp y Adam. Se realizo una prueba comparativa con una arquitectura simple de CNN usando el conjunto de datos del MNIST. "Se comparo diferentes optimizadores y se obtuvo que SGD con Nesterov y Adam producen mejores resultados en el entrenamiento de una CNN simple usando tensorflow "[1]

2.4.2. On Optimization Methods for Deep Learning

Un equipo de la universidad de standford realizó una pruebas con el objetivos de encontrar métodos adecuados para un entrenamiento en deep learning. El equipo se percato de lo común que resulta el uso de Gradiente de descenso estocástica o SGD por sus siglas en inglés en deep learning . Se realizaron pruebas con otros métodos de optimización como la gradiente conjugada y Limited memmory BFGS(L-BFGS) los cuales permitieron acelerar el proceso de entrenamiento de algoritmos de deep learning mostrando en su mayoría mejores resultados que el SGD. "Usando L-BFGS el modelo CNN alcanza el 0.69 % en el estandar del MNIST dataset."

2.5. Conclusiones

A medida que tratamos muchos problemas vemos la necesidad de encontrar optimizadores adecuados para los tipos de problemas. En el área de deep learning comumente se trabaja en el campo de reconocimiento de imágenes a pesar de la mejorar mediante el uso de GPU's este tipo de problemas necesitan métodos óptimos para obtener una mejor performance.

Capítulo 3

Machine Learning y Redes

Neuronales

En este capítulo trataremos los principales conocimientos de Aprendizaje automático como su clasificación y su importante dentro del campo de la inteligencia artificial, además exploraremos algunos modelos importantes. En este seminario se dará énfasis en los algoritmos de clasificación. Luego nos enfocaremos en las redes neuronales para tratar más a fondo los problemas de clasificación.

3.1. Aprendizaje Automático

Machine Learning o aprendizaje automático es una rama de la inteligencia artificial que empezó a cobrar cobrar importancia en los años 80's, en esta rama se diseñan sistemas que aprenden a identificar patrones en un conjunto de datos. A medida que se realice este aprendizaje la máquina podrá ser capaz de realizar una predicción o tomar decisiones sin haber estado programada explícitamente para realizar esta tarea.

El aprendizaje automático se puede clasificar en 3 tipos: Supervizado, No supervisado, Aprendizaje con refuerzo.[2]

3.1.1. Aprendizaje Supervizado

Este tipo de aprendizaje toma un conjuto de datos etiquetados, es decir datos cuyos resultados o clases son conocidos estos datos serán usados como entrada al sistema. Primero se entrena el modelo con los datos de entrada y luego se trata de predecir una salida de acuerdo a sus etiquetas.

"El aprendizaje supervisado trata de modelar la relación entre el resultado de la predicción y las características de las entradas de manera que se puede predecir nuevos valores para un nuevo conjunto de datos "[3]

Tipos de problemas

Dentro del aprendizaje supervisado podemos dividir los problemas en 2 tipos:

Problemas de Regresión Lineal

Los problemas de regresión lineal son muy conocidos en el ámbito de aprendizaje automático y la estadística

Problemas de Clasificación

"En este tipo de problemas se predice una respuesta del tipo categórica de manera que se puedan separar los datos mediante clases. "[2]

"El objetivo de los problemas de clasificación es asignar las observaciones en categorías discretas en lugar de estimar valores continuos. "[3]

FIGURA 3.1: Regresión y clasificación Fuente: https://medium.com/

Algoritmos de Aprendizaje Supervizado

Regresión Lineal

"El algoritmo de regresión lineal asume que existe una relación entre las variables de entrada $x=(x_1,...,x_n)$ y una salida simple y. Cuando se tiene solo una variable simple x el método se conoce como simple linear regression y cuando se tienen múltiples entradas se le conoce como multiple linear regression. "[4] .Es comúnmente usado para estimar valores reales en base a variables continuas. La figura 3.2 muestra una regresión lineal simple.

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + \dots + b_n * x_n$$
(3.1)

En esta ecuación:

- y: Variable dependiente
- x_i : Variable independiente i
- *b*₀: Intercepción
- *b*₁: Coeficiente para la primera característica
- b_n : Coeficiente para la primera característica

El objetivo del algoritmo de regresión lineal es obtener valores adecuados para b_0 y b_1 de manera que se reduzca la siguiente función de costo.

$$J = \frac{1}{n} \sum_{i=1}^{n} (pred_i - y_i)^2$$
 (3.2)

- *pred*_i: predicción de la i-esima variable
- y_i : Valor real asociado a la i-esima variable
- n: Número de datos para el entrenamiento

Un método muy importante es la gradiente de descenso que se usa para actualizar los valores de los b_i de manera que se reduzca la función de costo J de la ecuación 3.2.

FIGURA 3.2: Regresión Lineal Fuente: www.forexmt4indicators.com/

Regresión Logística

A diferencia de la regresión Lineal, la regresión Logística es usado para precedir el resultado de un variable de tipo categórica es decir variables que pueden ser describen por un número finito de categorías.

La regresión Logística es usado para problemas de clasificación lo hace mediante la predicción de que una salida *Y* sea dicotoma es decir que solo tenga 2 posibles valores. la regresión produce una curva la cual produce valores entre 0 y 1. "Matemáticamente podemos como que las salidas están modeladas como una combinación de los predictores lineales."[5]

$$odds = p/(1-p)$$

$$ln(odds) = ln(p/(1-p))$$

$$logit(p) = ln(p/(1-p)) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \dots + b_k X_k$$
(3.3)

- p : probabilidad de presencia de una característica de interés.
- odds: probabilidad de éxito.
- logit: función logit

Despejando p de las ecuaciones anteriores de 3.2 podemos obtener que:

$$p = \frac{1}{1 + e^{b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \dots + b_k X_k}}$$

$$Y_{pre} = \frac{1}{1 + e^{f(X)}}$$
(3.4)

En la ecuación 3.3, Y define la función logística que se muestra en la figura 3.3. Esta forma también se puede conocer como la función sigmoidal en el perceptron. El algoritmo usa SGD para hallar los valores adecuados de b_i de manera que el $erro = Y_{pre} - Y$ sea mínimo. El valor de la predicción es 1 si $Y_{pred} > 0.5$ y 0 en caso contrario. De esta forma se determina el objeto con características X si pertenece o no a una clase.

FIGURA 3.3: Regresión Logística Fuente: www.analyticsvidhya.com

Nearest Neighbor

Es un algoritmo de clasificación que almacena los conjuntos de entrenamiento de manera que dado un nuevo ejemplo x lo clasifica buscando la distancia más cercana a un ejemplo de entrenamiento (x_i, y_i) de manera que identifica la clase $y = y_i$ a la que corresponde.

Comúnmente se usa el algoritmo k-nn para clasificar una entrada x en los k más cercanos conjuntos de entrenamiento y asigna el objeto a la clase de más frecuencia.

$$x^{i} = (x_{1}^{i}, x_{2}^{i}, ..., x_{n}^{i})$$

$$d_{E}(x^{i}, x^{j})$$
(3.5)

• x^i : objeto con n características.

Definimos d_E como la función distancia entre los vectores x_i y y_i están función distancia pueden una de las siguientes clasificaciones:

- ullet distancia euclideana: $(\sum_{i=1}^k (x_i-y_i)^2)^{\frac{1}{2}}$
- distancia Manhattan: $\sum_{i=1}^{k} |x_i y_i|$
- distancia Minkowski: $(\sum_{i=1}^{k} (|x_i y_i|)^p)^{\frac{1}{p}}$

Los 3 definiciones anteriores de distancia son usadas para variables continuas. Para el caso de variables categóricas debería usarse la distancia de Hamming cuya definición se muestra en la ecuación 3.6

$$D_{H} = \sum_{i=1}^{k} |x_{i} - y_{i}||$$

$$x = y \Longrightarrow D = 0$$

$$x \neq y \Longrightarrow D = 1$$

$$(3.6)$$

"La elección de un valor óptimo de k se logra mejor por la inspección de los datos. En general un valor grande de k es más preciso ya que reduce el ruido pero no hay garantías de que sea un valor correcto, una mejor manera de calcular el valor de k es mediante el uso de la validación cruzada. "[6]

En la figurar 3.4 muestra el algoritmo de k-nn dado un nuevo ejemplo(círculo verde) este será clasificado a de acuerdo seleccionado. Para k=1 el nuevo ejemplo será clasificado en la clase 1 y k=3 será clasificado en la clase 2.

FIGURA 3.4: knn Fuente: www.medium.com/

Máquinas de soporte Vectorial(SVM)

Las Maquinas de soporte vectorial fueron creadas por Vladimir Vapnik y constituyen un método para realizar tareas de clasificación y regresión.

Las SVM usan el concepto de planos de decisión. Un plano de decisión separa un conjunto de objetos que tienes diferentes etiquetas de clases. Las SVM no están restringidas a los problemas lineales debido a las *funciones Kernel*.

Funciones Kernels

Las SVM pueden tener distintos tipos de kernels que tienen como objetivo tomar la data y transforma una forma requerida algunas de estas funciones son:

- Lineal: $\ker(x_i, x_j) = x_i \cdot x_j$
- Polinomial: $ker(x_i, x_j) = (\gamma x_i \cdot x_j + C)^d$
- Radial: $\ker(x_i, x_j) = e^{(\gamma|x_i x_j|)}$
- Sigmoidal: $\ker(x_i, x_j) = \tanh(\gamma x_i \cdot x_j + C)$

En la figura 3.5 muestra el efecto de las funciones kernels en un conjunto de datos para que este sea linealmente separable sin necesidad de construir curvas complejas.

FIGURA 3.5: transformación con la función kernel Fuente: www.statsoft.com

Podemos dividir SVM en 2 categoríasas:

Super Vector Classificacion

Los SVC realizan la tarea de clasificación encontrando un hiperplano que maximeze el margen entre 2 clases.Los vectores que definen el hiperplano son llamados *support vector*.

Para la clasificación es necesaria mapear los datos a un espacio de características de mayor dimensión donde resulte más fácil la separación lineal. La imagen de la Figura 3.5 muestra de manera gráfica que cambio de espacio nos permite separar clases de manera más sencilla.

Super Vector Regression

La idea de SVR trata de mapear los datos de entrenamiento $x \in X$, a un espacio de mayor dimensión mediante una mapeo no lineal $\varphi: X \to F$.

Las SVR son parecidas a las máquinas de soporte Vectorial para la clasificación pero con la diferencia de que la salida es un número real que es difícil de predecir con la información que se posee además de que tiene infinitas posibilidades. Para los problemas de regresión se usan los kernels Radial y polinomial. La figura 3.6 muestra un ejemplo de problema de regresión para un caso no lineal, mediante la mapeo φ se cambia el espacio.

- \bullet caso lineal: $y = \sum_{i=1}^{N} (\alpha_i \alpha_i^*) \langle x_i, x \rangle + b$
- caso no lineal: $y = \sum_{i=1}^{N} (\alpha_i \alpha_i^*) \ker(x_i, x) + b$

FIGURA 3.6: transformación para un problema de regresión Fuente: www.saedsayad.com

Naive Bayes

Esta basado en el teorema de bayes donde se asume la independencia entre los predictores. "El modelo Naive Bayes es fácil de construir, debido a que no tiene que estimar los parámetros iterativamente lo cual lo hace particularmente util para un gran conjunto de datos "[7].

Como la técnica de clasificación esta basada en el teorema de bayes supone que las características de una clase no esta relacionada con otras características.

Podemos ilustrar mejor lo dicho mediante el siguiente ejemplo "una fruta puede considerarse una manzana si es roja, redonda y de aproximadamente 3 pulgadas de diámetro. Incluso si estas características dependen unas de otras o de la existencia de otras características, todas estas propiedades contribuyen de forma independiente a la probabilidad de que esta fruta sea una manzana y es por eso que se la conoce como **naives** "[8]

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

$$P(c|X) = P(x_1|c) \times P(x_2|c) \times \dots \times P(x_n|c) \times P(c)$$
(3.7)

- $lackbox{ } P(c|x) : ext{ probabilidad condicional de una clase(target) dado un predictor(atributo)}$
- P(c): probabilidad de la clase

- P(x|c) :es la probabilidad condicional de la clase dada por el predictor.
- P(x): probabilidad del predictor.

Arboles de decisión

Los arboles de decisión son modelos usados para tareas de regresión y clasificación utilizando la estructura de un árbol. La idea se basa en dividir el conjunto de datos en subconjuntos cada vez más pequeños a su vez se desarrolla un árbol de decisión. El resultado final será un árbol con nodos de decisión y nodos hojas.

Los nodos de decisión tienen 2 o más ramas y los nodos hojas representa una clasificación o decisión. La raiz corresponde al mejor predictor. Un árbol de decisión puede ser usado para manejar datos categóricos o numéricos.

Árbol de decisión para clasificación.

El algoritmo principal para construir de decisión es el ID3 que fue desarrollado por J. R. Quinlan.

"ID3 realiza una algoritmo greeady para realizar un búsqueda de arriba hacia abajo a través del espacio de posibles ramas . ID3 usa entropía e información ganada para construir el árbol de decisión ".

A diferencia de Naives bayes en los arboles de decisión es importante asumir la dependencia de los predictores.

- Entropía: Para el algoritmo ID3 es importante tener la entropía para calcular la homogeneidad de la muestra.
- Información ganada: se basa en la disminución de la entropía después que un conjunto de datos se divide en atributos.

Árbol de decisión para regresión.

Al igual que el caso de clasificación, se usa el algoritmo ID3 con la diferencia que la información ganada por la desviación standard de reducción. Este tipo

de desviación se basa en la disminución de la desviación standard cuando el conjunto de datos se divide en un atributo.

Neural Networks

Los modelos de redes neuronales fue inspirado de las redes neuronales biológicas y realizan tareas complejas como reconocimiento de imágenes El tema de Neural Network será tratado con más detenimiento en la siguiente sección.

3.1.2. Aprendizaje No Supervizado

Mientras que el aprendizaje supervizado aprende de un conjunto de datos de entrenamiento con respuestas o etiquetas correctas. En el aprendizaje no supervizado los datos de entrenamiento no poseen ninguno tipo de etiqueta, el sistema debe de interpretar los datos por si mismo. El aprendizaje no supervizado es usado principalmente para el reconocimiento de patrones y modelado descriptivo.

Clustering

Clustering se refiere a agrupar objetos con características similares es decir se busca la relación entre ellos sin necesidad de que exista un conocimiento a priori de esos grupos.

FIGURA 3.7: Clustering Fuente: https://medium.com/

K-means Clustering

El algoritmo intenta particionar N objetos en k clusters en los cuales cada objeto pertenece al cluster que posee la media más cercana. Este método produce k clústeres con la mayor distinción posible. El k adecuado no se conoce a priori por lo cual debe calcularse a partir de datos. El objetivo de k-means es minimizar la función de error al cuadrado mostrada en la ecuación 3.8.

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} ||x_i^j - c_j||^2$$
(3.8)

- *J*: función de error cuadrado
- *k* : número de cluster
- *n* : número de casos.
- x_i^j : caso i
- c_j : centroide del cluster j

FIGURA 3.8: k means clustering Fuente: www.saedsayad.com

3.1.3. Aprendizaje por refuerzo

Este tipo de aprendizaje fue inspirado por la psicología conductista, este tipo busca determinar que tipo de acciones tomar en un entorno dado. "El objetivo

del método es recopilar la interacción con el entorno para tomar acciones que maximicen el beneficio o minimicen el riesgo. "[3]

FIGURA 3.9: Esquema de aprendizaje por refuerzo Fuente: https://towardsdatascience.com

3.2. Redes Neuronales

Neuronas

En la biología la neurona es conocida como la unidad fundamental del cerebro humano, el cual está compuesto por millones de neuronas interconectadas entre si. El trabajo de las neuronas consiste en recibir información, procesarla y enviarla a otras células. Este modelo fue copiado en 1943 por Warren S. McCulloch y Walter H. Pitts. Analogamente con las neuronas del cerebro humano nuestra neuro artificial toma una cantidad n de entradas $x_1, x_2, x_3, ..., x_n$ estas entradas serán multiplicadas por pesos $w_1, w_2, w_3, ..., w_n$ además se puede añadir una constante que llamaremos bias.

La entrada a de la neurona será la suma total de los productos $z=\sum_{i=1}^n x_i$, el valor de z será la entrada a la neurona la cual la evaluará con una función f de tal forma que nuestra salida sea y=f(z). Otra forma de ver esta expresión es por medio de la notación de vectores donde representaremos a las entradas como $x=[x_1x_2x_3...x_n]$ y los pesos $\mathbf{w}=[w_1w_2w_3...w_n]$ de esta manera la salida de la neurona estará dada por $y=f(x\cdot w+b)$ donde b representa las bias.

Redes Neuronales Artificiales

Las redes neuronales artificiales(ANN)toman de ejemplo la arquitectura del cerebro como inspiración para la construcción de sistemas inteligente. Actualmente son la base para el desarrollo de la inteligencia artificial. Las redes neuronales están constituidas de las uniones de las neuronas.

Redes Neuronales Profundas

Las redes neuronales profundas estan constituidas principalmente de un numero de capas de convolución, No linearalidad y pooling.

- Convolución: Un proceso importante dentro de las redes neuronales es la convolución que es usada para detectar las características de una imagen estas características pueden ser bordes, curvas, etc.
- No linearalidad: Debido a que las convoluciones son operaciones lineales, lo cual no es adecuado para las tareas del mundo real. Debido a esto es importante introducir el ReLu que aplicará funciones no lineales a los mapas de característica producidas en las capas de convolución. Una de las funciones las común es ReLu.

FIGURA 3.10: ReLu Fuente: https://medium.com/

Pooling: Sirve para transformar el mapa de características en una representación de menor dimensión con el objetivo de la red sea más invariante a pequeñas transformaciones o variación de la imagen de entrada.

Capítulo 4

Algoritmos de optimización una Red Neuronal convolucional

En este capítulo se detallarán los algoritmos de optimización de Aprendizaje automático y principalmente se enfocará en aquellos aplicados a las redes neuronales convolucionales.

4.1. Redes Neuronales Convolucionales

Las CNN son un tipo de redes neuronales especiales para procesar data del tipo de topología grid. El termino convolucional hace referencia a la operación lineal matemática usada. Las redes neuronales convolucionales usan esta operación para aprender de las características de alto orden en la data. La primera CNN fue creada por Yann LeCun. Entre sus usos más comunes tenemos el reconocimiento de imágenes y lenguaje natural.

Las redes neuronales convolucionales fueron inspiradas en la corteza visuales de los animales. Las celulas de la corteza visual principalmente se activan para realizar tareas como el reconocimiento de patrones.

4.1.1. Estructura de una imagen

Debido a que las redes neuronales convoluciones trabajan principalmente con imagenes es importante conocer cual es la estructura de una imagen y como la computadora comprende utiliza esta información. Las imágenes están constituidas por la sucesión de pixeles podemos entender el pixel como la menor unidad homogenea en color de una imagen digital. Teniendo este concepto la información de una imagen puede dividirse de la siguiente forma:

- Width: El ancho de la imagen medido en pixeles
- Height: El alto de la imagen medida en pixeles.
- Canales RGB: Estos canales contiene la información de los colores y profundidad de una imagen. Este canal guarda la información en tres canales Red, Green y Blue.

Teniendo en cuenta esta forma de guardar una podemos resaltar el porque de la ventaja de usar Redes convolucionales en lugar de usar una red neuronal multicapas.

Las redes multicapas toman un vector de una dimensión como entrada si quisieramos entrar una red multicapas con imagenes de 32x32 pixeles y con 3 canales RGB necesitariamos crear 3072 pesos (w_i) para una sola neurona en la capa oculta. La creación hace que la tarea resulte complicada usando redes multicapas.

4.1.2. Arquitectura General de CNN

Input layer

Esta capa es donde se carga y almacena la información de las imágenes para procesarlas en la red. Esta información contiene detalles de ancho, alto y número de canales de imagen.

Convolutional layers

Son una capa importante en el diseño de las CNN's, las capas convolucionales transformarán la entrada de la data usando las conexiones de las neuronas de las capas anteriores. La capa calculará el producto punto entre la región de la neurona de la capa de entrada y los pesos a los que

están colocados localmente en la capa de salida. Esta salida tendrá la misma dimensión de espacios o una dimensión menor.

Para entender más a fondo debemos definir la operación de convolución. La convolución es una operación matematica que describe una regla de como fusionar 2 conjuntos de información. "Esta operación tiene importancia en campos como la matematica y la física debido que permite definir un puente entre el domino del espacio/tiempo y el dominio de la frecuencias a través del uso de transformada de fourier. Toma la entrada un entrada, aplica un kernel de convolución y nos da un mapa de características como salida "[9] .

Las convoluciones son usadas principalmente como un detector de características cuyas entradas principalmente son la capa de entrada u otra convolución. En la figura 4.1 observamos la operación de convolución que por medio del uso de un kernel o filtro de convolución extrae características de la data por ejemplo detalles como bordes de una imagen. Haciendo analogía con los pesos en las redes neuronales convencionales, las redes poseen el filtro o kernel lo cual es beneficioso ya que no se debe definir un peso para cada neurona.

FIGURA 4.1: Operacion de convolución Fuente: www.openresearch.ai

Componentes de la capa de convolución Las capas convolucionales poseen paramétros e hiperparametros. La gradiente de descenso se usa principalmente

para entrenar los parametros de modo que las clases sean consistentes con las etiquetas en el conjunto de entrenamiento. Entre estos parámetros tenemos: **Filtros**

Los filtros son una función que posee ancho(width) y alto (height) más pequeños que la entrada. Los filtros son aplicados a través de del ancho y alto de la entrada. También pueden ser aplicados a la profundidad.

Classification layers

4.1.3. Arquitecturas conocidas

4.2. Métodos de optimización

Los métodos de optimización dentro del campo de deep learning son muy importantes debido a que esistentes gran cantidad de parámetros es

4.2.1. Gradiente de descenso

La gradiente de descenso es un algoritmo común para optimizar redes neuronales. La gradiente de descenso es una forma de minimizar la función de costo $J(\theta)$ para metrizada por los parámetros $\theta \in \Re^d$ actualizando los parámetros en la dirección opuesta a la gradiente de la función objetivo en este caso a nuestra función de costo $\nabla_{\theta}J(\theta)$ Dentro de la gradiente de descenso podemos diferenciar 3 variantes de acuerdo al la cantidad de datos que se usan para calcular la gradiente de la función objetivo entre estas variantes tenemos a:

Batch gradient descent

Esta variante calcula la gradiente de descenso de la función de costo con respecto a un parámetro θ , para todo el conjunto de datos. En la ecuación 4.1 podemos observar la actualización que se dará para cada ejecución. η

representa la taza o tamaño de los pasos para encontrar el mínimo local.

$$\theta = \theta - \eta \nabla_{\theta} J(\theta) \tag{4.1}$$

La ecuación 4.1 asegura la convergencia para mínimo global en una supercifie convexa y mínimo local para una supercifie no convexa. Entre las dificultades de este método tenemos que puede llegar a ser lento y que esta limitado por la cantidad de datos ya que esta puede superar a la memoria del computador.

Stochastic gradient descent

A diferencia del método anterior las actualización se realizan para cada ejemplo de entrenamiento de (x^i,y^i) de esta manera se evitan problemas como la generación de redundancia debido a que se realiza una actualización por ejemplo de entrenamiento.

$$\theta = \theta - \eta \nabla_{\theta} J(\theta, x^i, y^i) \tag{4.2}$$

En la figura 4.2 vemos que la función de costo en SGD fluctúa demasiado esto podría representar un problema pero al contrario de la figura representa que el método SGD es capaz de saltar de un mínimo local con lo cual puede encontrar mínimos locales potencialmente mejores.

FIGURA 4.2: Función costo en SGD Fuente: www.doc.ic.ac.uk

Mini-batch gradient descent

Este método pude verse como una mezcla de los 2 métodos anteriores, en lugar de aplicarlo para un conjunto entero de datos, los datos se particionan en pequeños conjuntos o mini batches. Este método nos permite reducir la varianza de las actualizaciones de los parámetros lo cual nos permite una convergencia más estable. El tamaño de los mini-batches oscilan entre 50-250 y varían de acuerdo a su aplicación.

$$\theta = \theta - \eta \nabla_{\theta} J(\theta, x^{i:i+n}, y^{i:i+n}) \tag{4.3}$$

4.2.2. Optimizadores

En la siguiente sección analizaremos algunos optimizadores que acelerarán el proceso de gradiente de descenso.

Momentum

Las SGD tienen problemas para desplazarse en áreas con donde la superficie se curva más en una dimensión que en otra, estos lugares son los alrededores de los óptimos locales. En este escenario la SGD oscilará en la curvatura y descenderá lentamente hacia el óptimo como se muestra en la figura 4.3.

FIGURA 4.3: Actualización sin momentum Fuente: www.doc.ic.ac.uk

El momentum es un método que ayuda a la SGD a acelerar en la dirección correcta, mientras evitas las oscilaciones. El momentum lográ esto añadiendo una fracción γ del vector de actualización pasado al vector presente tal como se muestra en las ecuaciones 4.4. Un valor comunmente elegido de $\gamma=0.9$,

en las actualización el valor del momentum aumenta para dimensiones cuyos gradientes apuntan en la misma dirección y disminuye para dimensional en la que la gradiente cambia de dirección. Esto nos asegura que tendremos una convergencia más rápida con una oscilación reducida. En la figura 4.4 se observa gráficamente la aceleración de la convergencia en la SGD.

$$\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta)$$

$$\theta = \theta - \nu_t$$
(4.4)

FIGURA 4.4: Actualización con momentum Fuente: www.doc.ic.ac.uk

Nesterov accelerated gradient

Este método en el que nuestro descenso sea más controlado ya que reduce la velocidad antes de volver a subir una pendiente. En momentum usamos el término $\gamma \nu_{t-1}$ para mover los parámetros de θ . Al calcular el valor de $\theta - \gamma \nu_{t-1}$ nos da una aproximación de donde se encontrá la siguiente posición de los parámetros. De esta forma no calculamos la gradiente en el parámetro θ actual sino que se calcula en una posición futura aproximada.

$$\nu_{t} = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$$

$$\theta = \theta - \nu_{t}$$
(4.5)

En la figura 4.5 observamos el proceso. Primero el momentum calcula la gradiente actual(vector azul pequeño) y luego da un gran salto en la dirección de la gradiente actualizada acumulada (gran vector azul), el NAG primero realiza un gran salto en dirección del gradiente acumulado previo(vector marron) luego realiza un correción(vector rojo), esto nos da como resultado la actualización completa de NAG(vector verde). Esta actualización anticipada es muy importante debido a que nos impide ir demasiado rápido y mejora la capacidad de respuesta lo cual aumenta el rendimiento de las CNN.

FIGURA 4.5: Convergencia Nesterov Fuente: www.doc.ic.ac.uk

Adagrad

Es una algoritmo optimización basada en la gradiente de descenso, el algoritmo adapta la tasa de aprendizaje realizando actualizaciones más pequeñas para parámetros con carácteristicas que se repiten con más frencuencia y una tasa alta para parámetros con carácteriscticas pocas frencuentes. Adagrad mejora en gran manera a la SGD, este método es usado para entrenar redes neuronales a gran escala.

En métodos anteriores se usaba la actualización de todos los parámetros θ al mismo tiempo esto debido a que se usaba la misma tasa de aprendizaje η . Adagrad usa una tasa de aprendizaje diferente para cada parámetro θ_i en cada paso de tiempo t. En la ecuación 4.6

$$g_{t,i} = \nabla_{\theta} J(\theta_{t,i})$$

$$\theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i}$$
(4.6)

El termino $g_{t,i}$ representa el valor de la gradiente en el paso de tiempo t, el cual es la derivada de la función objetivo con respecto al termino θ_i .

Adagrad modifica la idea de utilizar una tasa eta fija, podemos observar el la ecuación 4.7 es una variante de la ecuación 4.6. En donde se modifica la tasa de aprendizaje en cada paso de tiempo t para todos los parámetros θ_i basadas

en los valores de las gradientes pasadas que fueron calculas para θ_i

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i} \tag{4.7}$$

- $G_{t,ii}$: representa la suma de los cuadrados de las gradientes pasadas con respecto a θ_i
- ϵ es un término pequeño para evitar la división por 0. ϵ encuentra en el orden de 10^{-8} .

Como $G_t \in \Re^{dxd}$ contiene la suma de los cuadrados de las gradientes pasados con respecto a todos los parámetros de θ a lo largo de su diagonal. A lo largo de su diagonal por lo cual se puede realizar ahora el producto matriz- vector.

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_{t,i} \tag{4.8}$$

El principal beneficio de adagrad nos evita el hecho de trabajar con una taza fija por otro lado su principal desventaja se basa en el la suma de los gradientes al cuadrado aumentará en cada iteración lo cual provocará que su taza sea cada vez más pequeña.

RMSprop

Es un método de aprendizaje por adaptación de la taza que fue propuesto por Geoff Hinton Este modelo se desarrollo con el objetivo resolver el problema de disminuir radicalmente la tasa de aprendizaje en Adagrad. RMSprop divide la taza de aprendizaje mediante el decaimiento del promedio de la suma de las gradientes cuadradas.

$$E[g^{2}]_{t} = 0.9E[g^{2}]_{t-1} + 0.1g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$
(4.9)

Adam

Adaptative moment estimation o Adam que calcula la taza de aprendizaje adaptativo para cada parámetro. Este método mantiene un decaimiento exponencial del promedio de las gradientes pasadas. El método adam prefiere los mínimos en las superficies de error. En la figura 4.9 mostramos el calculo de promedio de decaimiento de las gradientes pasadas m_t y el cuadrado de las gradientes pasadas v_t

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
(4.10)

- m_t : Primer momento (media)
- v_t : Segundo momento de la gradiente.

$$\hat{m_t} = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v_t} = \frac{v_t}{1 - \beta_2^t}$$
(4.11)

La ecuación 4.12 muestra la regla de actualización en Adam.

$$\theta_{t+1} = \theta_{t+1} - \frac{\eta}{\sqrt{\hat{v_t}} + \epsilon} \hat{m_t} \tag{4.12}$$

AdaMax

Nadam

Capítulo 5

Conclusiones y Trabajo Futuro

ESTE CAPÍTULO ES UNO DE LOS MÁS IMPORTANTES, POR NO DECIR EL QUE MÁS. EN ÉL, EL JURADO VA A TENER CLARO QUÉ HA APRENDIDO EL ALUMNO Y CÓMO LO HA DESARROLLADO, LOS PROBLEMAS QUE HAN SURGIDO Y COMO LOS HA SOLUCIONADO... ADEMÁS DE QUE EL ALUMNO DEJARÁ CLARO QUE SE HA ESPECIALIZADO EN LA TEMÁTICA Y DEJARÁ EN ESCRITO TODO LO APRENDIDO Y COMO CONTINUARÁ CON LA TEMÁTICA EN POSTERIORES ESTUDIOS DEL MISMO TEMA

5.1. Conclusiones

- CONCLUSION 1: ASDFASDFASDFAS.
- CONCLUSION 2: ASDFASDFASDFAS.

Además de lo anterior

5.2. Trabajo Futuro

COMO SE VA A SEGUIR TRABAJANDO CON ESTA TEMÁTICA Y QUE FALTA POR DESARROLLAR. ADEMÁS SE ACONSEJARÁ SEGUIR UNA METODOLOGÍA PARA QUE LAS PERSONAS QUE QUIERAN SEGUIR TRABAJANDO ESTA TEMÁTICA

NASDFASDFASF

ADFASDFASDFA

NASDFASDFASF

ADFASDFASDFA

NASDFASDFASF

ADFASDFASDFA

Bibliografía

- [1] Adam Coates Abhik Lahiri Bobby Prochnow Quoc V. Le, Jiquan Ngiam and Andrew Y. Ng. On optimization methods for deep learning. *International Conference on Machine Learning* 2010, pages 1–8, 2010.
- [2] Machine learning 101 | supervised, unsupervised, reinforcement and beyond. https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2, Sep 2017. Accessed on 2018-05-11.
- [3] David Fumo. Types of machine learning algorithms you should know. https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861, Jun 2017. Accessed on 2012-05-11.
- [4] Jason Brownlee. Linear regression for machine learning. https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2, Mar 2016. Accessed on 2018-05-12.
- [5] Essentials of machine learning algorithms (with python and r codes). https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/, Sep 2017. Accessed on 2018-05-14.
- [6] K nearest neighbors classification). http://www.saedsayad.com/k_nearest_neighbors.htm. Accessed on 2018-05-15.
- [7] Naive bayesian). http://www.saedsayad.com/naive_bayesian. htm. Accessed on 2018-05-15.

BIBLIOGRAFÍA 39

[8] Sunil Ray. 6 easy steps to learn naive bayes algorithm (with codes in python and r). https://www.analyticsvidhya.com/blog/2017/ 09/naive-bayes-explained/, Sep 2017. Accessed on 2018-05-13.

[9] Josh Patterson and Adam Gibson. Major architectures of deep networks. In *Deep Learning A Practitioner's Approach*, pages 132–135. O'Reilly Media, 2017.

Apéndice A

Título del apéndice

Un ejemplo de los apendices