Applications of Linear Systems

Applications

- Economics
- Chemistry
- Network flow

A Homogeneous System in Economics

Leontief "input-output" model

Suppose an economy consists of the Coal, Electric (power), and Steel sectors, and the output of each sector is distributed among the various sectors as shown in Table 1, where the entries in a column represent the fractional parts of a sector's total output.

TABLE 1 A Simple Economy

Distribu	ution of Output from:			
Coal	Electric	Steel	Purchased by:	
.0	.4	.6	Coal	
.6	.1	.2	Electric	
.4	.5	.2	Steel	

• Denote the prices (i.e., dollar values) of the total annual outputs of the Coal, Electric, and Steel sectors by p_c , p_F , and p_S , respectively.

•
$$p_c = .4pE + .6pS$$

•
$$p_E = .6pC_{+}.1pE + .2pS$$

•
$$p_S = .4pC_{+}.5pE + .2pS$$

$$p_{\rm C} - .4p_{\rm E} - .6p_{\rm S} = 0$$

 $-.6p_{\rm C} + .9p_{\rm E} - .2p_{\rm S} = 0$
 $-.4p_{\rm C} - .5p_{\rm E} + .8p_{\rm S} = 0$

TABLE 1 A Simple Economy

Distribu	ution of Outpu	t from:	
Coal	Electric	Steel	Purchased by:
.0	.4	.6	Coal
.6	.1	.2	Electric
.4	.5	.2	Steel

$$\mathbf{p} = \begin{bmatrix} p_{\mathrm{C}} \\ p_{\mathrm{E}} \\ p_{\mathrm{S}} \end{bmatrix} = \begin{bmatrix} .94p_{\mathrm{S}} \\ .85p_{\mathrm{S}} \\ p_{\mathrm{S}} \end{bmatrix} = p_{\mathrm{S}} \begin{bmatrix} .94 \\ .85 \\ 1 \end{bmatrix}$$

Balancing Chemical Equations

• $(x1)C_3H_8+(x2)O_2 \rightarrow (x3)CO_2+(x4)H_2O$

$$C_3H_8$$
: $\begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix}$, O_2 : $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$, CO_2 : $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, H_2O : $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ \leftarrow Carbon \leftarrow Hydrogen \leftarrow Oxygen

$$x_1 \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

$$x_1 \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 = \frac{1}{4}x_4$$
, $x_2 = \frac{5}{4}x_4$, $x_3 = \frac{3}{4}x_4$, with x_4 free

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

Network Flow

FIGURE 1
A junction, or node.

Intersection	Flow in		Flow out
A	300 + 500	=	$x_1 + x_2$
В	$x_2 + x_4$	=	$300 + x_3$
C	100 + 400	=	$x_4 + x_5$
D	$x_1 + x_5$	=	600

$$\begin{cases} x_1 = 600 - x_5 \\ x_2 = 200 + x_5 \\ x_3 = 400 \\ x_4 = 500 - x_5 \\ x_5 \text{ is free} \end{cases}$$

FIGURE 2 Baltimore streets.