Diskretna matematika 2

Zadaća 9 March 19, 2025 Borna Gojšić

1. Napišite tablice množenja i zbrajanja u polju $(\mathbb{Z}_7, +_7, \cdot_7)$.

Rj:	+7	0	1	2	3	4	5	6
	0	0	1	2	3	4	5	6
	1	1	2	3	4	5	6	0
	2	2	3	4	5	6	0	1
	3	3	4	5	6	0	1	2
	4	4	5	6	0	1	2	3
	5	5	6	0	1	2	3	4
	6	6	0	1	2	3	4	5
		•						

.7	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

- 2. a) Izračunajte $3(2^3+5)^{-1}+6$ u polju $(\mathbb{Z}_7,+_7,\cdot_7)$.
 - b) Riješite jednadžbu $(2x+9)(3x+1)^{-1} = 7$ u polju $(\mathbb{Z}_{11}, +_{11}, \cdot_{11})$.
 - c) Riješite jednadžbu $x^2 + 4(x^{-1} + 2x + 1) = 2$ u polju $(\mathbb{Z}_5, +_5, \cdot_5)$.

Rj:

a)
$$3(2^3+5)^{-1}+6=3(1+5)^{-1}+6=3\cdot 6^{-1}+6=3+6=2$$
.

b) Znamo da $3x + 1 \neq 0$ pa imamo $3x \neq 10 = -1$, tj. $x \neq -3 = 8$.

$$(2x+9)(3x+1)^{-1} = 7$$

$$2x+9 = 7(3x+1)$$

$$2x+9 = 9x+7$$

$$9x-2x = 7-9$$

$$7x = 9$$

Očito je x = 6. Budući da je $(\mathbb{Z}_{11}, +_{11}, \cdot_{11})$ polje, rješenje je jedinstveno.

c) Budući da imamo x^{-1} u jednadžbi, znamo da je $x \neq 0$.

$$x^{2} + 4(x^{-1} + 2x + 1) = 2 \implies x^{2} + 4x^{-1} + 3x + 4 = 2$$

 $x^{2} - x^{-1} + 3x = 3$

Sada možemo provjeriti sve elemente iz $\{1, 2, 3, 4\}$.

$$1^{2} - 1^{-1} + 3 \cdot 1 = 1 - 1 + 3 = 3 \quad \checkmark$$

$$2^{2} - 2^{-1} + 3 \cdot 2 = 4 - 3 + 1 = 2 \neq 3$$

$$3^{2} - 3^{-1} + 3 \cdot 3 = 4 - 2 + 4 = 1 \neq 3$$

$$4^{2} - 4^{-1} + 3 \cdot 4 = 1 - 4 + 2 = 4 \neq 3$$

Dakle, jedino rješenje je x = 1.

3. Na skupu racionalnih brojeva definirane su operacije \triangle i \square na sljedeći način:

$$x \triangle y = x + y + 1$$
, $x \square y = xy + x + y$.

Dokažite da je $(\mathbb{Q}, \triangle, \square)$ prsten.

Rj: Trebamo dokazati da je (\mathbb{Q}, \triangle) abelova grupa i (\mathbb{Q}, \square) polugrupa te da vrijedi distributivnost.

1. Zatvorenost operacije \triangle slijedi iz zatvorenosti zbrajanja u \mathbb{Q} . Imamo

$$(x \triangle y) \triangle z = (x + y + 1) + z + 1 = x + y + z + 2 = x + (y + z + 1) + 1 = x \triangle (y \triangle z)$$

pa vrijedi asocijativnost. Neutralni element je -1 jer je

$$x\triangle - 1 = x + (-1) + 1 = x = -1 + x + 1 = -1\triangle x$$

Inverz elementa x je -(x+2) jer je

$$x\triangle(-(x+2)) = x + (-(x+2)) + 1 = -1 = -(x+2) + x + 1 = -(x+2)\triangle x$$

Također, imamo komutativnost jer je

$$x \triangle y = x + y + 1 = y + x + 1 = y \triangle x$$

Dakle, (\mathbb{Q}, \triangle) je abelova grupa.

2. Zatvorenost operacije 🗆 slijedi iz zatvorenosti množenja i zbrajanja u Q. Imamo

$$(x\square y)\square z = (xy+x+y)z + xy + x + y + z = xyz + xz + yz + xy + x + y + z$$

$$x\square (y\square z) = x(yz+y+z) + x + yz + y + z = xyz + xy + xz + x + yz + y + z$$

pa je (\mathbb{Q}, \square) polugrupa.

3. Još trebamo provjeriti samo distributivnost. Imamo

$$x \Box (y \triangle z) = x \Box (y + z + 1) = x(y + z + 1) + x + y + z + 1 = xy + x + y + xz + x + z + 1$$
$$= (x \Box y) + (x \Box z) + 1 = (x \Box y) \triangle (x \Box z)$$

$$(x\triangle y)\Box z = (x+y+1)\Box z = (x+y+1)z + x + y + z + 1 = xz + x + z + yz + y + z + 1$$

= $(x\Box z) + (y\Box z) + 1 = (x\Box z)\triangle (y\Box z)$

Dakle, $(\mathbb{Q}, \triangle, \square)$ je prsten.

4. Neka su $a \oplus b = a + b - 1$ i $a \otimes b = -\frac{ab}{2}$ binarne operacije na skupu \mathbb{R} . Ispitajte ima li $(\mathbb{R}, \oplus, \otimes)$ strukturu prstena.

Rj: Trebamo dokazati da je (\mathbb{R}, \oplus) abelova grupa i (\mathbb{R}, \otimes) polugrupa te da vrijedi distributivnost.

1. Zatvorenost
 operacije \oplus slijedi iz zatvorenosti zbrajanja
u $\mathbb R.$ Imamo

$$(a \oplus b) \oplus c = (a+b-1) + c - 1 = a+b+c-2 = a+(b+c-1) - 1 = a \oplus (b \oplus c)$$

pa vrijedi asocijativnost. Neutralni element je 1 jer je

$$a \oplus 1 = a + 1 - 1 = a = 1 + a - 1 = 1 \oplus a$$

Inverz elementa a je 2-a jer je

$$a \oplus (2-a) = a + (2-a) - 1 = 1 = 2 - a + a - 1 = (2-a) \oplus a$$

Također, imamo komutativnost jer je

$$a \oplus b = a + b - 1 = b + a - 1 = b \oplus a$$

Dakle, (\mathbb{R}, \oplus) je abelova grupa.

2. Zatvorenost operacije ⊗ slijedi iz zatvorenosti množenja u ℝ. Imamo

$$(a\otimes b)\otimes c = -\frac{ab}{2}\otimes c = -\frac{\frac{-ab}{2}\cdot c}{2} = \frac{abc}{4} = -\frac{a\cdot \frac{-bc}{2}}{2} = -\frac{a\cdot (b\otimes c)}{2} = a\otimes (b\otimes c)$$

pa je (\mathbb{R}, \otimes) polugrupa.

3. Još trebamo provjeriti samo distributivnost. Imamo

$$a \otimes (b \oplus c) = a \otimes (b + c - 1) = -\frac{a(b + c - 1)}{2} = -\frac{ab + ac - a}{2}$$

ali je

$$(a \otimes b) \oplus (a \otimes c) = -\frac{ab}{2} \oplus -\frac{ac}{2} = -\frac{ab}{2} - \frac{ac}{2} - 1 = -\frac{ab + ac + 2}{2}$$

pa distributivnost ne vrijedi.

Dakle, $(\mathbb{R}, \oplus, \otimes)$ nije prsten.

5. Dokažite da matrice oblika $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$, gdje su a i b racionalni brojevi, uz uobičajeno zbrajanje i množenje matrica čine polje.

Rj: Neka je
$$\mathcal{Q} = \left\{ \begin{bmatrix} a & b \\ 2b & a \end{bmatrix} : a, b \in \mathbb{Q} \right\}$$
 Tada je
$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} + \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ 2(b+d) & a+c \end{bmatrix} \in \mathcal{Q}$$

$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} ac+2bd & ad+bc \\ 2(ad+bc) & ac+2bd \end{bmatrix} \in \mathcal{Q}$$

Dakle, $\mathcal Q$ je zatvoren na zbrajanje i množenje matrica. Vrijedi asocijativnost zbrajanja i množenja iz asocijativnosti zbrajanja i množenja matrica. Neutralni element je $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, a inverz

od $A = \begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$ je $A^{-1} = \begin{bmatrix} -a & -b \\ -2b & -a \end{bmatrix}$. Distributivnost množenja nad zbrajanjem proizlazi iz distributvnosti matričnog množenja nad zbrajanjem. Dakle, $(\mathcal{Q}, +, \cdot)$ je prsten. Jedinica je očito I. Dakle, trebamo provjeriti da postoje inverzi u $(\mathcal{Q} \setminus \{0\}, \cdot)$. Imamo:

$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} ac + 2bd & ad + bc \\ 2(ad + bc) & ac + 2bd \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Dakle,

$$ac + 2bd = 1$$

$$ad + bc = 0 \implies c = -\frac{ad}{b}$$

$$a\left(-\frac{ad}{b}\right) + 2bd = 1 \implies d\left(-\frac{a^2}{b} + 2b\right) = 1$$

$$d = \frac{b}{2b^2 - a^2}, \quad c = \frac{-a}{2b^2 - a^2}$$

Budući da je $a, b \neq 0$, to je $2b^2 - a^2 \neq 0$, tj. $\frac{1}{2b^2 - a^2} \begin{bmatrix} -a & b \\ 2b & -a \end{bmatrix} \in \mathcal{Q}$. Dakle, $(\mathcal{Q}, +, \cdot)$ je tijelo. Za polje još trebamo dokazati komutativnost množenja:

$$\begin{bmatrix}c&d\\2d&c\end{bmatrix}\cdot\begin{bmatrix}a&b\\2b&a\end{bmatrix}=\begin{bmatrix}ac+2bd&ad+bc\\2(ad+bc)∾+2bd\end{bmatrix}=\begin{bmatrix}a&b\\2b&a\end{bmatrix}\cdot\begin{bmatrix}c&d\\2d&c\end{bmatrix}$$

Dakle, $(Q, +, \cdot)$ je polje

- 6. Zadan je skup $T = \{a + b\sqrt{10} ; a, b \in \mathbb{Q}\}.$
 - a) Dokažite da je skup T polje uz uobičajeno zbrajanje i množenje realnih brojeva.
 - b) Je li polje T izomorfno polju racionalnih brojeva $(\mathbb{Q},+,\cdot)$?
 - c) Odredite inverz elementa $x = -3 + 2\sqrt{10}$ s obzirom na množenje.

Rj:

a) Neka su $x = a + b\sqrt{10}, y = c + d\sqrt{10} \in T$. Tada imamo

$$x + y = (a + c) + (b + d)\sqrt{10} \in T$$

 $x \cdot y = (ac + 10bd) + (ad + bc)\sqrt{10} \in T$

Dakle, T je zatvoren na zbrajanje i množenje. Vrijedi asocijativnost zbrajanja i množenja jer vrijedi asocijativnost zbrajanja i množenja realnih brojeva. Neutralni element zbrajanja je $0 \in \mathbb{R}$, a neutralni element množenja je $1 \in \mathbb{R}$. Inverz od $x = a + b\sqrt{10}$ s obzirom na zbrajanje je $-a - b\sqrt{10}$. Inverz od $x = a + b\sqrt{10}$ s obzirom na množenje je $\frac{a}{a^2-10b^2} - \frac{b}{a^2-10b^2}\sqrt{10}$ jer je

$$(a+b\sqrt{10})\left(\frac{a}{a^2-10b^2}-\frac{b}{a^2-10b^2}\sqrt{10}\right)=\frac{a^2}{a^2-10b^2}-\frac{10b^2}{a^2-10b^2}=1$$

Distributivnost množenja nad zbrajanjem slijedi iz distributivnosti množenja realnih brojeva nad zbrajanjem. Dakle, $(T, +, \cdot)$ je polje.

b) Neka je $\varphi: T \to \mathbb{Q}$ izomorfizam polja. Tada je $\varphi(0 + 0\sqrt{10}) = 0$ i $\varphi(1 + 0\sqrt{10}) = 1$ jer su to neutralni elementi zbrajanja i množenja. Tada imamo:

$$\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = 2$$

$$\varphi(4) = \varphi(2+2) = \varphi(2) + \varphi(2) = 4$$

$$\varphi(8) = \varphi(4+4) = \varphi(4) + \varphi(4) = 8$$

$$\varphi(10) = \varphi(8+2) = \varphi(8) + \varphi(2) = 10$$

ali ako definiramo $q = \varphi(\sqrt{10})$, tada s druge strane imamo:

$$\varphi(10) = \varphi(\sqrt{10} \cdot \sqrt{10}) = \varphi(\sqrt{10}) \cdot \varphi(\sqrt{10}) = q^2 = 10$$

Ali ne postoji $q\in\mathbb{Q}$ takav da je $q^2=10.$ Dakle, φ nije izomorfizam.

c) Neka je $x = -3 + 2\sqrt{10}$. Tada je prema a) dijelu

$$x^{-1} = \frac{-3}{(-3)^2 - 10 \cdot 2^2} - \frac{2}{(-3)^2 - 10 \cdot 2^2} \sqrt{10} = \frac{3}{31} + \frac{2}{31} \sqrt{10}$$

7. Dokažite da je skup $P = \{a + bi \; ; \; a, b \in \mathbb{Z}\}$ prsten uz uobičajeno zbrajanje i množenje kompleksnih brojeva. Je li skup P polje? Obrazložite!

Rj: Neka su $z = a + bi, w = c + di \in P$. Tada imamo:

$$z + w = (a+c) + (b+d)i \in P$$
$$z \cdot w = (ac - bd) + (ad + bc)i \in P$$

Dakle, P je zatvoren na zbrajanje i množenje. Vrijedi asocijativnost zbrajanja i množenja jer vrijedi asocijativnost zbrajanja i množenja kompleksnih brojeva. Neutralni element zbrajanja je $0 \in \mathbb{C}$. Inverz od z=a+bi s obzirom na zbrajanje je -a-bi. Komutativnost zbrajanja slijedi iz komutativnosti zbrajanja kompleksnih brojeva. Distributivnost množenja nad zbrajanjem slijedi iz distributivnosti množenja kompleksnih brojeva nad zbrajanjem. Dakle, $(P,+,\cdot)$ je prsten. Skup P nije polje jer nema nužno inverz za množenje. Na primjer, $1+i\in P$ nema inverz jer

$$(1+i)(a+bi) = 1$$

 $(a-b) + (a+b)i = 1 \implies a = \frac{1}{2}, b = -\frac{1}{2}$

ali $a, b \notin \mathbb{Z}$.

- 8. a) Dokažite da je skup $P = \{a+bi \; ; \; a,b \in \mathbb{Q}\}$ polje uz uobičajeno zbrajanje i množenje kompleksnih brojeva.
 - b) Je li polje P izomorfno standardnom polju racionalnih brojeva? Obrazložite!

Ri:

a) Neka su $z = a + bi, w = c + di \in P$. Tada imamo:

$$z + w = (a+c) + (b+d)i \in P$$
$$z \cdot w = (ac-bd) + (ad+bc)i \in P$$

Dakle, P je zatvoren na zbrajanje i množenje. Vrijedi asocijativnost zbrajanja i množenja jer vrijedi asocijativnost zbrajanja i množenja kompleksnih brojeva. Neutralni element zbrajanja je $0 \in \mathbb{C}$, a neutralni element množenja je $1 \in \mathbb{C}$. Inverz od z = a+bi s obzirom na zbrajanje je -a-bi. Komutativnost zbrajanja i množenja slijedi iz komutativnosti zbrajanja kompleksnih brojeva. Distributivnost množenja nad zbrajanjem slijedi iz distributivnosti množenja kompleksnih brojeva nad zbrajanjem. Inverz od z = a+bi s obzirom na množenje je $\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i$ jer je

$$(a+bi)\left(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\right) = \frac{a^2}{a^2+b^2} + \frac{b^2}{a^2+b^2} = 1$$

pa je $(P, +, \cdot)$ polje.

b) Pretpostavimo da postoji izomorfizam $\varphi: P \to \mathbb{Q}$. Tada je $\varphi(1) = 1$ jer je 1 neutralni element množenja. Također, $\varphi(1) = \varphi(-1 \cdot -1) = \varphi(-1) \cdot \varphi(-1) = 1$, pa je $\varphi(-1) = -1$. Ali, $\varphi(1) = \varphi(i^4) = \varphi(i)^4 = 1$ pa je $\varphi(i) = \pm 1$. Dakle, φ nije pa nije ni izomorfizam. Dakle, P nije izomorfno standardnom polju racionalnih brojeva.

9. Je li skup $T = \{a + b\sqrt[4]{2} ; a, b \in \mathbb{Q}\}$ prsten uz uobičajeno zbrajanje i množenje realnih brojeva?

Rj: Ne, jer $\sqrt{2}=\sqrt[4]{2}\cdot\sqrt[4]{2}$ nije u skupu T. Pretpostavimo suprotno, neka je $a+b\sqrt[4]{2}\in T$ i $a+b\sqrt[4]{2}=\sqrt{2}$. Tada imamo

$$a + b\sqrt[4]{2} = \sqrt{2}$$

$$a - \sqrt{2} = -b\sqrt[4]{2}$$

$$a^{2} - 2a\sqrt{2} + 2 = b^{2}\sqrt{2}$$

$$a^{2} + 2 = (b^{2} + 2a)\sqrt{2}$$

Lijeva strana je racionalna, a desna strana je iracionalna, što je kontradikcija. Dakle, $\sqrt{2} \notin T$.

10. Je li prsten (\mathbb{Z}_{143} , $+_{143}$, \cdot_{143}) integralna domena? Ukoliko jest, dokažite tu tvrdnju, a ukoliko nije navedite odgovarajući kontraprimjer.

Rj: Prsten $(\mathbb{Z}_{143}, +_{143}, \cdot_{143})$ nije integralna domena jer je $11 \cdot_{143} 13 = 0$.

11. Dokažite da je skup

$$P = \{a + b\sqrt[3]{3} + c\sqrt[3]{9} : a, b, c \in \mathbb{Z}\}\$$

prsten uz uobičajeno zbrajanje i množenje realnih brojeva. Je li taj skup polje? Detaljno obrazložite!

Rj: Da bi $(P,+,\cdot)$ bio prsten, (P,+) treba biti abelova grupa i (P,\cdot) polugrupa.

$$(a+b\sqrt[3]{3}+c\sqrt[3]{9}) + (d+e\sqrt[3]{3}+f\sqrt[3]{9}) = (a+d)+(b+e)\sqrt[3]{3}+(c+f)\sqrt[3]{9} \in P$$

$$(a+b\sqrt[3]{3}+c\sqrt[3]{9}) \cdot (d+e\sqrt[3]{3}+f\sqrt[3]{9}) = (ad+3bf+9ce)$$

$$+(ae+bd+3cf)\sqrt[3]{3}+(af+be+3cd)\sqrt[3]{9} \in P$$

Dakle P je zatvoren na zbrajanje i množenje. Komutativnost i asocijativnost slijede iz asocijativnosti i komutativnosti zbrajanja i množenja realnih brojeva. Neutralni element zbrajanja je $0 \in P$, a neutralni element množenja je 1. Inverz od elementa $x = a + b\sqrt[3]{3} + c\sqrt[3]{9}$ s obzirom na zbrajanje je $-a - b\sqrt[3]{3} - c\sqrt[3]{9}$. Distributivnost množenja nad zbrajanjem slijedi iz distributivnosti množenja realnih brojeva nad zbrajanjem. Dakle, $(P, +, \cdot)$ je prsten. Neka je $x = \sqrt[3]{3}$ Tada bi njegov invez s obzirom na množenje bio $x^{-1} = a + b\sqrt[3]{3} + c\sqrt[3]{9}$ za koji je

$$1 = \sqrt[3]{3}(a+b\sqrt[3]{3}+c\sqrt[3]{9}) = 3c+a\sqrt[3]{3}+b\sqrt[3]{9} \implies a=0, b=0, c=\frac{1}{3}$$

ali $c \notin \mathbb{Z}$, pa $(P, +, \cdot)$ nije polje.