```
In [1]: import pandas as pd
data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
```

In [2]: data.describe()

Out[2]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [3]: data1=data.drop(['lat','lon','ID'],axis=1)

In [4]: data1

Out[4]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

In [5]: data1.shape

Out[5]: (1538, 6)

In [6]: data1=pd.get_dummies(data1)

In [7]: data1

Out[7]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [8]: data1.shape
```

Out[8]: (1538, 8)

```
In [9]: #adding to seperate dataframe the value, we want to predict
y=datal['price']
#removing the value we want to predict from orginal dataframe
x=datal.drop('price',axis=1)
```

```
In [10]: y
Out[10]: 0
                    8900
                    8800
           2
                    4200
           3
                    6000
           4
                    5700
                     . . .
           1533
                    5200
           1534
                    4600
           1535
                    7500
           1536
                    5990
           1537
                    7900
           Name: price, Length: 1538, dtype: int64
In [11]: #dividing data into testing and training
          from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [12]: x_test

Out[12]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
481	51	3197	120000	2	0	1	0
76	62	2101	103000	1	0	1	0
1502	51	670	32473	1	1	0	0
669	51	913	29000	1	1	0	0
1409	51	762	18800	1	1	0	0
291	51	701	22000	1	1	0	0
596	51	3347	85500	1	0	1	0
1489	51	366	22148	1	0	1	0
1436	51	1797	61000	1	1	0	0
575	51	366	19112	1	1	0	0

508 rows × 7 columns

In [13]: x_train

Out[13]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
527	51	425	13111	1	1	0	0
129	51	1127	21400	1	1	0	0
602	51	2039	57039	1	0	1	0
331	51	1155	40700	1	1	0	0
323	51	425	16783	1	1	0	0
1130	51	1127	24000	1	1	0	0
1294	51	852	30000	1	1	0	0
860	51	3409	118000	1	0	1	0
1459	51	762	16700	1	1	0	0
1126	51	701	39207	1	1	0	0

1030 rows × 7 columns

In [14]: x_test.head()

Out[14]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
481	51	3197	120000	2	0	1	0
76	62	2101	103000	1	0	1	0
1502	51	670	32473	1	1	0	0
669	51	913	29000	1	1	0	0
1409	51	762	18800	1	1	0	0

```
In [15]: y train.head()
Out[15]: 527
                  9990
          129
                  9500
          602
                  7590
          331
                  8750
          323
                  9100
          Name: price, dtype: int64
In [16]: x_train.head()
Out[16]:
               engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                                                         1
           527
                        51
                                  425 13111
                                                                     1
                                                                               0
                                                                                          0
                        51
                                  1127 21400
           129
                                                         1
                                                                     1
                                                                               0
                                                                                          0
           602
                        51
                                 2039 57039
                                                         1
                                                                     0
                                                                               1
                                                                                          0
           331
                                  1155 40700
                                                         1
                                                                     1
                                                                                          0
                        51
           323
                                  425 16783
                                                         1
                                                                               0
                                                                                          0
                        51
                                                                     1
In [17]: y_train
Out[17]: 527
                    9990
          129
                    9500
          602
                    7590
          331
                    8750
          323
                    9100
                   . . .
          1130
                   10990
          1294
                    9800
          860
                    5500
          1459
                    9990
          1126
                    8900
          Name: price, Length: 1030, dtype: int64
```

In [18]: from sklearn.linear model import LinearRegression

```
reg=LinearRegression()#creating object of LinearRegression
         reg.fit(x train, v train)#training and fitting LR object using training data
Out[18]:
          ▼ LinearRegression
          LinearRegression()
In [19]: ypred=reg.predict(x test)
In [20]: ypred
Out[20]: array([ 5867.6503378 ,
                                  7133.70142341,
                                                   9866.35776216,
                                                                   9723.28874535,
                 10039.59101162,
                                  9654.07582608,
                                                   9673.14563045, 10118.70728123,
                  9903.85952664,
                                  9351.55828437, 10434.34963575, 7732.26255693,
                  7698.67240131,
                                  6565.95240435.
                                                   9662.90103518, 10373.20344286,
                  9599.94844451,
                                  7699.34400418,
                                                   4941.33017994, 10455.2719478 ,
                                                                    9952.37340054,
                 10370.51555682, 10391.60424404,
                                                   7529.06622456,
                  7006.13845729,
                                  9000.1780961 ,
                                                   4798.36770637,
                                                                    6953.10376491,
                                                                   5229.18705519,
                  7810.39767825,
                                  9623.80497535,
                                                   7333.52158317,
                  5398.21541073,
                                  5157.65652129,
                                                   8948.63632836,
                                                                    5666.62365159,
                  9822.1231461 ,
                                  8258.46551788,
                                                   6279.2040404 ,
                                                                    8457.38443276,
                  9773.86444066,
                                  6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                   9069.05761443,
                                                                    8866.7826029 ,
                  7058.39787506,
                                  9073.33877162,
                                                   9412.68162121, 10293.69451263,
                 10072.49011135,
                                  6748.5794244 ,
                                                   9785.95841801,
                                                                    9354.09969973,
                  9507.9444386 , 10443.01608254,
                                                   9795.31884316,
                                                                    7197.84932877,
                 10108.31707235,
                                                   9853.90699412,
                                                                    7146.87414965,
                                  7009.6597206 ,
                  6417.69133992,
                                  9996.97382441,
                                                   9781.18795953,
                                                                    8515.83255277,
                                  6499.76668237,
                                                   7768.57829985,
                                                                   6832.86406122,
                  8456.30006203,
                  8347.96113362, 10439.02404036,
                                                   7356.43463051,
                                                                    8562.56562053,
                                                   7270 77100022
                                                                    0411 45004000
```

762.8156575420782

```
In [21]: from sklearn.metrics import r2_score
    r2_score(y_test,ypred)

Out[21]: 0.8415526986865394

In [22]: from sklearn.metrics import mean_squared_error#calculating MSE
    mean_squared_error(ypred,y_test)

Out[22]: 581887.727391353

In [23]: import math
    print(math.sqrt(581887.727391353))
```

```
In [24]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=ypred
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

Out[24]:

	index	price	predicted	ld
0	481	7900	5867.650338	0
1	76	7900	7133.701423	1
2	1502	9400	9866.357762	2
3	669	8500	9723.288745	3
4	1409	9700	10039.591012	4
5	1414	9900	9654.075826	5
6	1089	9900	9673.145630	6
7	1507	9950	10118.707281	7
8	970	10700	9903.859527	8
9	1198	8999	9351.558284	9
10	1088	9890	10434.349636	10
11	576	7990	7732.262557	11
12	965	7380	7698.672401	12
13	1488	6800	6565.952404	13
14	1432	8900	9662.901035	14

In [25]: Results['diff']=Results.apply(lambda row:row.price-row.predicted,axis=1)
 Results

Out[25]:

	index	price	predicted	ld	diff
0	481	7900	5867.650338	0	2032.349662
1	76	7900	7133.701423	1	766.298577
2	1502	9400	9866.357762	2	-466.357762
3	669	8500	9723.288745	3	-1223.288745
4	1409	9700	10039.591012	4	-339.591012
503	291	10900	10032.665135	503	867.334865
504	596	5699	6281.536277	504	-582.536277
505	1489	9500	9986.327508	505	-486.327508
506	1436	6990	8381.517020	506	-1391.517020
507	575	10900	10371.142553	507	528.857447

508 rows × 5 columns

In []: