Lógica – Grado en Ingeniería Informática, Grado en Matemáticas e Informática Examen 5 de julio de 2016

Bloque Lógica de Primer Orden

Ejercicio 1. Formalizar en el lenguaje de la lógica de primer orden los siguientes enunciados:

- a) No todo fruto seco tiene cascara.
- b) A nadie le gusta el garbanzo si es un fruto seco.
- c) A Berto le gustan los frutos secos solo si no tienen cascara.

Solución:

S(x) = x es un fruto seco

C(x) = x tiene cascara

 $G(x,y) = a \times le gusta y$

a≡ Berto

b≡ garbanzo

- a) No todo fruto seco tiene cascara.
 - $\neg \forall x(S(x) \rightarrow C(x))$
 - $\exists x(S(x) \land \neg C(x))$
- b) A nadie le gusta el garbanzo si es un fruto seco.
 - $S(b) \rightarrow \neg \exists x (G(x,b))$
 - $\exists x(G(x,b)) \rightarrow \neg S(b)$
- c) A Berto le gustan los frutos secos solo si no tienen cascara.
 - $\forall x(G(a,x) \land S(x) \rightarrow \neg C(x))$
 - $\forall x(C(x) \rightarrow \neg (G(a,x) \land S(x)))$
 - $\neg \exists x (G(a,x) \land S(x) \land C(x))$

Ejercicio 2. Definir una interpretación que demuestre, sobre $D = \{5,7\}$, si la siguiente argumentación es consecuencia lógica. Justifica la respuesta mediante el desarrollo completo de la interpretación de fórmulas.

$$\{\neg P(a), \neg Q(a,b) \land \neg Q(b,a), \forall x(Q(x,x) \rightarrow P(x))\} \mid =? \forall x \forall y \neg Q(x,y)$$

Solución:

{
$$\neg P(a)$$
 , $\neg Q(a,b)$ $\land \neg Q(b,a)$, $\forall x(Q(x,x) \rightarrow P(x))$ } |=? $\forall x \forall y \neg Q(x,y)$ A1 A2 A3 B

- *) Buscamos una interpretación I tal que $I(A_1) = I(A_2) = I(A_3) = V$ y I(B) = F
- *) El lenguaje en que está coinstruída la argumentación es:
 - a, b símbolos de constantes
 - P símbolo de predicado unario
 - O símbolo de predicado binario
- *) El dominio de I es, como sugiere el enunciado D = {5,7}

$$I(a) = 5$$
, $I(b) = 7$ por ejemplo

*)
$$I(A_1) = I(\neg P(a)) = V \longrightarrow I(P(a)) = F \longrightarrow P_D(I(a)) = F$$
 $P_D(5) = F$

*)
$$I(A_2) = I(\neg Q(a,b) \land \neg Q(b,a)) = V$$
 $I(\neg Q(a,b)) = V$ y
$$Q_D(5,7) = F$$

$$I(\neg Q(b,a)) = V$$

$$Q_D(7,5) = F$$

*)
$$I(A_3) = I(\forall x(Q(x,x) \rightarrow P(x))) = V$$

$$x = a \quad I(Q(a,a) \rightarrow P(a)) = V \quad \text{como} \quad I(P(a)) = F \quad I(Q(a,a)) = F \quad \boxed{Q_D(5,5) = F}$$

$$x = b \quad I(Q(b,b) \rightarrow P(b)) = V \quad (1)$$

*) falta por determinar $Q_D(7,7)$ y $P_D(7)$

*)
$$I(B) = I(\forall x \forall y \neg Q(x,y)) = F$$
 $\exists x \exists y \ Q(x,y) = V$ (2) Tomamos $Q_D(7,7) = V$ $y P_D(7) = V$

- *) Hemos encontrado una interpretación con las condiciones buscadas: $P_D = \{7\}$, $Q_D = \{(7,7)\}$
 - ⇒ Queda probado que no es consecuencia lógica

Ejercicio 3.

a) Demostrar mediante deducción natural:

$$T \left[\neg \forall x (P(x) \land Q(x)) \right] \mid \longrightarrow \exists x \neg P(x) \lor \exists y \neg Q(y)$$

- b) Si en la demostración anterior se ha utilizado el teorema o regla de intercambio, decir en qué líneas de la demostración se utilizó, y para alguna de esas utilizaciones del teorema de intercambio decir cuáles son las equivalencias aplicadas.
 - a) 1^a solución: utilizando la regla eliminación de la disyunción
 - 1. $\neg \forall x (P(x) \land Q(x))$
 - 2. $\exists x \neg (P(x) \land Q(x))$
 - 3. $\exists x (\neg P(x) \lor \neg Q(x))$
 - 4. $\neg P(a) \vee \neg Q(a)$
 - 5.
 - $\exists x \neg P(x)$ 6.
 - 7. $\exists x \neg P(x) \lor \exists y \neg Q(y)$
 - $\neg Q(a)$ 8. 9.
 - $\exists y \neg Q(y)$ $\exists x \neg P(x) \lor \exists y \neg Q(y)$ 10.
 - 11. $\exists x \neg P(x) \lor \exists y \neg O(y)$

- premisa
- $\neg \forall x A(x) \equiv \exists x \neg A(x)$
- De Morgan 2 + th intercambio
- elim ∃ 3, a constante nueva
- supuesto
- int \exists 5
- int v 6
- supuesto
- int 3 8
- int v 9
- elim v 4, 5-7, 8-10
- a) 2^a solución: mediante contradicción
 - 1. $\neg \forall x (P(x) \land Q(x))$
 - 2. $\exists x \neg (P(x) \land Q(x))$
 - 3. $\exists x (\neg P(x) \lor \neg Q(x))$
 - 4. $\neg P(a) \vee \neg Q(a)$
 - 5. $\neg (\exists x \neg P(x) \lor \exists y \neg Q(y))$

 - $\neg \exists x \neg P(x) \land \neg \exists y \neg Q(y)$ 6.

P(a)

 $\neg Q(a)$

 $\forall y Q(y)$

Q(a)

- 7. $\forall x P(x) \land \forall y Q(y)$
- 8. $\forall x P(x)$
- 9.
- 10.
- 11. 12.
- 13. $\neg \neg (\exists x \neg P(x) \lor \exists y \neg Q(y))$
- $\exists x \neg P(x) \lor \exists y \neg Q(y)$ 14.

- premisa
- $\neg \forall x A(x) \equiv \exists x \neg A(x)$
- De Morgan 2 + th intercambio
- elim 3, a constante nueva
- supuesto
- De Morgan 5
- $\neg \exists x \ A(x) \equiv \forall x \ \neg A(x) + doble \ negación + ...$
- elim ∧ 7
- elim ∀ 8
- corte 4,9
- elim ∧ 7
- elim ∀ 11
- int \neg 5, 10, 12
- elim ¬ 13

b) Teorema de intercambio:

1ª versión:

Sea A una formula y B1 una subfórmula de A, si:

$$\mid --- B1 \leftrightarrow B2$$
 (2)

A' resulta de sustituir en A todas o algunas de las apariciones de B1 por B2 (3)

Entonces: $T \vdash A'$ (4)

 $2^{\underline{a}}$ versión: exactamente igual a la anterior, pero en el lenguaje español o castellano:

Sea A una formula y B1 una subfórmula de A, si:

- (1) A es un teorema en una teoría T
- (2) B1 es una subfórmula de A
- (3) Si se sustituyen en A todas o algunas de las apariciones de B1 por otra fórmula equivalente B2, **Entonces**, la fórmula resultante A' también es un teorema en la teoría T

En ambas soluciones se ha utilizado el teorema de intercambio al pasar de la línea 2 a la 3:

2.-
$$\exists x \neg (P(x) \land Q(x))$$

2.-
$$\exists x B1$$
 con $B1 = \neg (P(x) \land Q(x))$

como $B1 \equiv \neg (P(x) \land Q(x))$ es equivalente a $B2 \equiv \neg P(x) \lor \neg Q(x)$, De Morgan

- 3.- ∃x B2
- 3.- $\exists x (\neg P(x) \lor \neg Q(x))$

Ejercicio 4. Demostrar por Resolución con UMG que la fórmula $\neg E(s(a),s(s(a)))$ se deduce a partir del siguiente conjunto de cláusulas:

C1: N(a)

C2: $\neg N(x) \vee N(s(x))$

C3: $\neg N(x) \lor \neg E(a,s(x))$

C4: $\neg N(x) \lor \neg N(y) \lor \neg E(s(x),s(y)) \lor E(x,y)$

C5: E(f(x,a),x)

C6: E(s(f(x,s(y))),f(s(x),s(y))

Solución:

Se trata de algunos de los axiomas de la aritmética de Peano, donde la constante a representa el número 0, la función s representa el "sucesor", la función f representa la suma, el predicado N representa el concepto de "ser un número natural", y el predicado E representa la igualdad.

La afirmación que se pide demostrar es que 1 no es igual a 2.

Negando la conclusión se obtiene una nueva cláusula

C0: E(s(a),s(s(a)))

A continuación se renombran todas las variables para evitar, en la medida de lo posible, problemas con la resolución.

C1: N(a)

C2: $\neg N(x2) \lor N(s(x2))$

C3: $\neg N(x3) \lor \neg E(a,s(x3))$

C4: $\neg N(x4) \lor \neg N(y4) \lor \neg E(s(x4), s(y4)) \lor E(x4, y4)$

C5: E(f(x5,a),x5)

C6: E(s(f(x6,s(y6))),f(s(x6),s(y6))

La refutación es la siguiente:

C7:	$\neg N(a) \lor \neg N(s(a)) \lor E(a,s(a))$	(C0,C4)	{ x4/a, y4/s(a) }
C8:	$\neg N(s(a)) \lor E(a,s(a))$	(C7,C1)	{}
C9:	¬N(a)vE(a,s(a))	(C8,C2)	{ x2/a }
C10:	E(a,s(a))	(C9,C1)	{}
C11:	¬N(a)	(C10,C3)	{ x3/a }
C12:		(C11,C1)	{}