- 1. Calcule o volume do sólido delimitado elipsóide do sólido dado por $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.
- 2. Determinar o volume interno ao cilindro $x^2 + y^2 = 9$, $0 \le z \le 9$ e externo ao cone $x^2 + y^2 = \frac{1}{9}z^2$, $z \ge 0$.
- 3. Considere a integral $\iiint_B z \, dx \, dy \, dz$ onde B é o sólido definido pelas desigualdades $x^2 + y^2 \le z$, $x^2 + y^2 + z^2 \le 2$, $z \ge 0$. Determine os extremos de integração, e escreva as integrais iteradas usando coordenadas cartesianas, coordenadas cilíndricas e coordenadas esféricas. Calcule esta integral usando o sistema de coordenadas que achar mais conveniente.
- 4. Calcule o volume do sólido definido pelas desigualdades $1 \le x^2 + y^2 \le 9$ e $\sqrt{x^2 + y^2} \le z \le 6$. Sugestão: usar coordenadas cilíndricas.
- 5. Calcular o volume do sólido constituído pelo cilindro $x^2 + y^2 \le 4$, $0 \le z \le 2$ e pelo cone $x^2 + y^2 \le z^2$, $2 \le z \le 5$.
- 6. Seja R a região limitada pelo parabolóide $z = 2x^2 + y^2 + 1$, pelo plano x + y = 1 e pelos planos coordenados. Calcule o volume de R.
- 7. Calcule as integrais abaixo usando a sistema de coordenadas mais conveniente:
 - (a) $\int_0^4 \int_0^3 \int_0^{\sqrt{9-x^2}} \sqrt{x^2 + y^2} \, dy \, dx \, dz$
 - (b) $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} z^2 dz dy dx$
 - (c) Seja B a região limitada pelo tetraedro formado pelo plano 12x + 20y + 15z = 60 e os planos coordenados. Calcule:
 - a) $\iiint_B y \, dx dy dz$ b) $\iiint_B (x^2 + y^2) \, dx dy dz$
- 8. Uma lâmina plana é limitada pelos gráficos de $y = x^2$ e y = 4. Ache o centro de massa, sabendo-se que a densidade no ponto P = (x, y) é diretamente proporcional à distância de P ao eixo y.
- 9. Considere uma placa delimitada pela elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a, b > 0. Seccionando-se a placa segundo o segmento que liga o ponto (0, b) ao ponto (a, 0), pede-se o centróide (centro de massa) de cada porção seccionada da placa.
- 10. Seja B $\subset \mathbb{R}^3$ um compacto cuja fronteira tem interior nulo. Suponha que B tem a forma de um sólido cuja densidade dada por uma função contínua $\delta(x,y,z)$, $(x,y,z) \in B$. O momento de inércia deste sólido com relação a um eixo ℓ é dado por

$$I = \iiint_{B} r^{2}(x, y, z)\delta(x, y, z) dV$$

em que r(x, y, z) é a distância do ponto (x, y, z) ao eixo ℓ . Calcule os seguintes momentos de inércia nas seguintes situações

- (a) B é uma bola fechada de raio R, ℓ é um eixo que passa pelo cento de B e $\delta(x,y,z)=\delta_0$ constante;
- (b) B é um cilindro (maciço) circular de raio R e altura h, ℓ é o eixo do cilindro e $\delta(x,y,z)=\delta_0$ constante;
- (c) B é um cubo de lado a, ℓ contém uma das arestas de B e $\delta(x, y, z) = \delta_0$ constante;
- (d) $B = [0, 1] \times [0, 1] \times [0, 1]$, ℓ é o eixo Oz e $\delta(x, y, z) = x$.
- 11. Sejam B₁ e l como descritos no exercício 10(b) e B₂ o cilindro vazado de raio interno R₀, raio externo R e altura h. Suponha que ambos têm a mesma densidade constante. Qual dos dois tem maior momento de inércia com relação a l? Suponha agora que B₁ tenha densidade constante δ₁, B₂ tenha densidade

constante δ_2 e a massa de ambos sejam iguais. Neste caso, qual dos dois tem maior momento de inércia com relação a ℓ ?

Respostas

- 1. $4\pi abc/3$
- 2. 54π .

3.

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{\sqrt{2-x^2-y^2}} z \, dz dy dx = \int_{0}^{2\pi} \int_{0}^{1} \int_{r^2}^{\sqrt{2-r^2}} z r \, dz dr d\theta$$

$$\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{\sqrt{2}} \rho^3 \cos \phi \sin \phi \, d\rho d\phi d\theta + \int_{0}^{2\pi} \int_{\pi/4}^{\pi/2} \int_{0}^{\cos \phi / \sin^2 \phi} \rho^3 \cos \phi \sin \phi \, d\rho d\phi d\theta = \frac{7\pi}{12}$$

- 4. $92\pi/3$
- 5. 47π
- 6. 3/4
- 7. a) 18π
- b) $\pi/30$. c-a) 15/2 c-b) 34

- 8. (0, 8/3)
- 9. Parte menor: $(\frac{2a}{3(\pi-2)}, \frac{2b}{3(\pi-2)})$. Parte maior: $(-\frac{2a}{3(3\pi+2)}, -\frac{2b}{3(3\pi+2)})$.
- 10. (a) $I = 2MR^2/5$, em que M é a massa de B
 - (b) $I = MR^2/2$, em que M é a massa de B
 - (c) $I = 2M\alpha^2/3$, em que M é a massa de B
 - (d) 5/12
- 11. B₁; B₂.