Численное интегрирование

Скалько Юрий Иванович **Цыбулин Иван**

Задача численного интегрирования

Задача

Задана функция f(x). Вычислить $\int_a^b f(x) dx$.

Задача численного интегрирования

Задача

Задана функция f(x). Вычислить $\int_a^b f(x)dx$.

Вначале рассмотрим случай собственного интеграла, то есть

- a и b действительные числа (не $\pm \infty$)
- f(x) не имеет на [a, b] особых точек

Задача численного интегрирования

Задача

Задана функция f(x). Вычислить $\int_a^b f(x)dx$.

Вначале рассмотрим случай собственного интеграла, то есть

- ullet а и b действительные числа (не $\pm \infty$)
- f(x) не имеет на [a,b] особых точек

Интеграл можно определить как предел интегральных сумм

$$\int_{a}^{b} f(x) dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n-1} f(\xi_{i}) \Delta x_{i}, \quad \xi_{i} \in [x_{i}, x_{i+1}]$$

Простейший численный метод

$$\int_a^b f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i, \quad \xi_i \in [x_i, x_{i+1}]$$

Введем на отрезке некоторую сетку $\{x_i\}_{i=1}^n$. В качестве ξ_i возьмем, например, середину i-го отрезка $\xi_i = \frac{x_i + x_{i+1}}{2}$

Простейший численный метод

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i=0}^{n-1} f(\xi_{i}) \Delta x_{i}, \quad \xi_{i} \in [x_{i}, x_{i+1}]$$

Введем на отрезке некоторую сетку $\{x_i\}_{i=1}^n$. В качестве ξ_i возьмем, например, середину i-го отрезка $\xi_i = \frac{x_i + x_{i+1}}{2}$

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f\left(\frac{x_{i} + x_{i+1}}{2}\right) \Delta x_{i}$$

Простейший численный метод

$$\int_{a}^{b} f(x) dx = \lim_{\max \Delta x_i \to 0} \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i, \quad \xi_i \in [x_i, x_{i+1}]$$

Введем на отрезке некоторую сетку $\{x_i\}_{i=1}^n$. В качестве ξ_i возьмем, например, середину i-го отрезка $\xi_i = \frac{x_i + x_{i+1}}{2}$

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f\left(\frac{x_{i} + x_{i+1}}{2}\right) \Delta x_{i}$$

Полученный метод называется формулой прямоугольников или формулой средней точки. Формулы численного интегрирования также называют квадратурными формулами.

Формула прямоугольников

Цыбулин Иван

Интегрирование

Формула односторонних прямоугольников

Ничего не запрещает в формуле прямоугольников вместо средней точки брать крайнюю, например левую. Интуитивно такой выбор хуже, но к этому вернемся позднее.

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f(x_{i}) \Delta x_{i}$$

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f(x_{i+1}) \Delta x_{i}$$

Формула односторонних прямоугольников

Ничего не запрещает в формуле прямоугольников вместо средней точки брать крайнюю, например левую. Интуитивно такой выбор хуже, но к этому вернемся позднее.

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f(x_{i}) \Delta x_{i}$$

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f(x_{i+1}) \Delta x_{i}$$

Такие формулы называются формулами *левых* и *правых прямоугольников*

Формулы левых и правых прямоугольников

Более точные формулы

Заменим функцию f(x) некоторой более простой функцией g(x), которая легко интегрируется.

Более точные формулы

Заменим функцию f(x) некоторой более простой функцией g(x), которая легко интегрируется.

Проще всего взять в качестве функции g(x) многочлен. Тогда задача приближения функции f(x) многочленом легко решается с помощью интерполяции.

Более точные формулы

Заменим функцию f(x) некоторой более простой функцией g(x), которая легко интегрируется.

Проще всего взять в качестве функции g(x) многочлен. Тогда задача приближения функции f(x) многочленом легко решается с помощью интерполяции.

Приближать функцию f(x) многочленом высокой степени нежелательно, вследствие возможного роста ошибки интерполяции при большом числе узлов. Можно воспользоваться простейшим сплайном (для приближения гладкость и непрерывность g(x) не важна) — кусочно многочленной интерполяцией.

Интерполяционные квадратурные формулы

По-аналогии с формулой прямоугольников, введем на отрезке интегрирования сетку, но теперь на каждом интервале приблизим функцию не константой, как в методе средней точки $f(x) \approx f\left(\frac{x_i + x_{i+1}}{2}\right)$, а многочленом степени p: $f(x) \approx Q_i(x)$.

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} Q_{i}(x)dx$$

p=1. Формула трапеций

Рассмотрим случай линейных функций $Q_i(x)$.

$$Q_i(x) = \frac{x_{i+1} - x}{x_{i+1} - x_i} f(x_i) + \frac{x - x_i}{x_{i+1} - x_i} f(x_{i+1})$$

p=1. Формула трапеций

Рассмотрим случай линейных функций $Q_i(x)$.

$$Q_i(x) = \frac{x_{i+1} - x}{x_{i+1} - x_i} f(x_i) + \frac{x - x_i}{x_{i+1} - x_i} f(x_{i+1})$$

Проинтегрировав (представление в форме Лагранжа удобнее интегрировать), получаем

$$\int_{x_i}^{x_{i+1}} Q_i(x) dx = \frac{x_{i+1} - x_i}{2} f(x_i) + \frac{x_{i+1} - x_i}{2} f(x_{i+1})$$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \Delta x_i$$

Полученная формула называется формулой трапеций.

Формула трапеций

При построении формулы трапеций представление $Q_i(x)$ в виде Лагранжа оказалось весьма удобным. Покажем, как обобщить эту формулу на произвольный порядок p.

При построении формулы трапеций представление $Q_i(x)$ в виде Лагранжа оказалось весьма удобным. Покажем, как обобщить эту формулу на произвольный порядок p.

Введем теперь на каждом отрезке $[x_i, x_{i+1}]$ свою внутреннюю сетку из p+1 узла:

При построении формулы трапеций представление $Q_i(x)$ в виде Лагранжа оказалось весьма удобным. Покажем, как обобщить эту формулу на произвольный порядок p.

Введем теперь на каждом отрезке $[x_i, x_{i+1}]$ свою внутреннюю сетку из p+1 узла:

Тогда для $Q_i(x)$ справедливо представление

$$Q_i(x) = \sum_{s=0}^{p} \ell_s(x) f(x_i^s)$$

$$\int_{x_i}^{x_{i+1}} Q_i(x) dx = \sum_{s=0}^{p} f(x_i^s) \int_{x_i}^{x_{i+1}} \ell_s(x) dx$$

Интегрирование функции $Q_i(x)$ свелось к интегрированию базисных многочленов Лагранжа.

$$\int_{x_i}^{x_{i+1}} Q_i(x) dx = \sum_{s=1}^{p} f(x_i^s) \int_{x_i}^{x_{i+1}} \ell_s(x) dx$$

Интегрирование функции $Q_i(x)$ свелось к интегрированию базисных многочленов Лагранжа.

$$\int_{x_i}^{x_{i+1}} Q_i(x) dx = \sum_{s=1}^{p} f(x_i^s) \int_{x_i}^{x_{i+1}} \ell_s(x) dx$$

Если дополнительно предположить, что на каждом отрезке внутренние сетки отличаются только масштабом (например, всюду равномерные или всюду чебышевские), то интегралы от $\ell_s(x)$ будут отличаться только множителем Δx_i

$$\int_{x_i}^{x_{i+1}} \ell_s(x) dx \equiv \gamma_s \Delta x_i$$

Интегрирование функции $Q_i(x)$ свелось к интегрированию базисных многочленов Лагранжа.

$$\int_{x_i}^{x_{i+1}} Q_i(x) dx = \sum_{s=1}^{p} f(x_i^s) \int_{x_i}^{x_{i+1}} \ell_s(x) dx$$

Если дополнительно предположить, что на каждом отрезке внутренние сетки отличаются только масштабом (например, всюду равномерные или всюду чебышевские), то интегралы от $\ell_s(x)$ будут отличаться только множителем Δx_i

$$\int_{x_i}^{x_{i+1}} \ell_s(x) dx \equiv \gamma_s \Delta x_i$$

Квадратурная формула записывается в виде

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} \left(\sum_{s=0}^{p} \gamma_{s} f(x_{i}^{s}) \right) \Delta x_{i}$$

p = 2. Формула Симпсона

В этом случае на каждом отрезке функция приближается параболой. Для этого требуются значения в трех точках — в концах отрезка и в центре. Вычисляя коэффициенты γ_s

$$\gamma_0 = \frac{1}{6}, \quad \gamma_1 = \frac{2}{3}, \quad \gamma_2 = \frac{1}{6}$$

и подставляя в общую формулу, получаем формулу Симпсона

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} \frac{f(x_{i}) + 4f\left(\frac{x_{i} + x_{i+1}}{2}\right) + f(x_{i+1})}{6} \Delta x_{i}$$

Хотя данная формула точнее формулы трапеций и средней точки, она требует в два раза больше вычислений функции f(x).

Что точнее?

Что точнее?

Ошибка pprox 1%

Ошибка $\approx 2\%$

Ошибка квадратурной формулы, то есть отличие точного значения интеграла от вычисленного, в худшем случае, просуммируется по всем интервалам сетки. Поэтому, найдем ошибку интегрирования функции только на одном отрезке. Для простоты, обозначим его [a,b], h=b-a.

$$\int_{a}^{b} f(x) dx \approx h \sum_{s=0}^{p} \gamma_{s} f(x_{s})$$

Ошибка квадратурной формулы, то есть отличие точного значения интеграла от вычисленного, в худшем случае, просуммируется по всем интервалам сетки. Поэтому, найдем ошибку интегрирования функции только на одном отрезке. Для простоты, обозначим его $[a,b],\ h=b-a.$

$$\int_{a}^{b} f(x) dx \approx h \sum_{s=0}^{p} \gamma_{s} f(x_{s})$$

Поскольку интегрирование — это линейная операция, квадратурные формулы также линейны по значениям функции f(x). Здесь γ_s — просто некоторые коэффициенты квадратурной формулы.

$$\int_{a}^{b} f(x) dx \approx h \sum_{s=0}^{p} \gamma_{s} f(x_{s})$$

Возьмем некоторую точку z. Конкретное значение несущественно, но удачный выбор точки z может сильно сократить объем вычислений.

$$\int_{a}^{b} f(x) dx \approx h \sum_{s=0}^{p} \gamma_{s} f(x_{s})$$

Возьмем некоторую точку z. Конкретное значение несущественно, но удачный выбор точки z может сильно сократить объем вычислений. Представим функцию f(x) в виде формулы Тейлора в окрестности точки z

$$f(x) = f(z) + (x - z)f'(z) + \frac{(x - z)^2}{2}f''(z) + \dots + \frac{(x - z)^m}{m!}f^{(m)}(\zeta(x))$$

Если формулу Тейлора проинтегрировать, получим

$$\int_{a}^{b} f(x)dx = hf(z) + \frac{(x-z)^{2}}{2} \Big|_{a}^{b} f'(z) + \dots + \int_{a}^{b} \frac{(x-z)^{m}}{m!} f^{(m)}(\zeta(x))dx$$

$$\int_{a}^{b} f(x)dx = hf(z) + \frac{(x-z)^{2}}{2} \Big|_{a}^{b} f'(z) + \dots + \int_{a}^{b} \frac{(x-z)^{m}}{m!} f^{(m)}(\zeta(x))dx$$

Разложим аналогично правую часть

$$h \sum_{s=0}^{p} \gamma_{s} f(x_{s}) = h \sum_{s=0}^{p} \gamma_{s} f(z) + h \sum_{s=0}^{p} (x_{s} - z) \gamma_{p} f'(z) + \dots + h \sum_{s=0}^{p} \gamma_{s} \frac{(x - z)^{m}}{m!} f^{(m)}(\zeta(x_{s}))$$

Ошибка интегрирования получается из разности первых не совпадающих выражений перед одинаковыми производными. В частности, для всех квадратурных формул должно быть $\sum_{s=0}^{p} \gamma_s = 1$, а для формул выше первого порядка $\sum_{s=0}^{p} \gamma_s x_s = \frac{a+b}{2}$.

Анализируя представления в виде формулы Тейлора, можно заключить, что ошибка интерполяции квадратурных формул имеет вид (для одного отрезка)

$$\varepsilon_{\mathsf{метода}} \leq \mathit{Ch}^{r+1} \mathit{M}_r,$$

где C - некоторая числовая константа. Суммируя ошибку по всем отрезкам

$$arepsilon_{ ext{метода}} \leq C \sum_{i=0}^{n-1} h_i^{r+1} M_{r,i} \leq C \max_i (M_r h^r) \sum_{i=0}^{n-1} h_i = C(b-a) \max_i (M_r h^r)$$

Здесь хорошо видно, что имеет смысл уменьшать шаг h_i на тех отрезках, где r-я производная начинает сильно возрастать по модулю.

Погрешность метода средней точки

Рассмотрим один интервал $a=x_i, b=x_{i+1}.$ Возьмем в качестве опорной именно среднюю точку $z=\frac{a+b}{2}.$

$$f(x) = f(z) + (x-z)f'(z) + rac{(x-z)^2}{2}f''(\zeta)$$

$$\int_a^b f(x)dx = hf(z) + \int rac{(x-z)^2}{2}f''(\zeta)dx$$
 $arepsilon_{ ext{метод}} \leq \left| \int rac{(x-z)^2}{2}f''(\zeta)dx
ight| \leq M_2 \int \left| rac{(x-z)^2}{2}
ight| dx = M_2 rac{h^3}{24}$

При этом на всем отрезке справедлива оценка

$$\varepsilon_{\mathsf{Metod}} \leq (b-a) \frac{M_2 h^2}{24}$$

Погрешность метода трапеций

Воспользуемся формулой Тейлора с остаточным членом в форме Пеано. В качестве опорной точки возьмем $z=\frac{a+b}{2}$

$$f(x) = f(z) + (x - z)f'(z) + \frac{(x - z)^2}{2}f''(z) + o((x - z)^2)$$

$$\int_a^b f(x)dx = hf(z) + 2\frac{(b - z)^3}{6}f''(z) + o(h^3) = hf(z) + \frac{h^3}{24}f''(z) + o(h^3)$$

$$f\left(z \pm \frac{h}{2}\right) = f(z) \pm \frac{h}{2}f'(z) + \frac{h^2}{8}f''(z) + o(h^2)$$

$$h\frac{f(a) + f(b)}{2} = hf(z) + \frac{h^3}{8}f''(z) + o(h^3)$$

Вычитая разложение квадратуры из разложения интеграла получаем ошибку

$$\Delta = \frac{h^3}{24}f''(z) - \frac{h^3}{8}f''(z) + o(h^3) = -\frac{h^3}{12}f''(z) + o(h^3).$$

Погрешность метода трапеций

Мы показали, что в пределах одного отрезка

$$\int_{a}^{b} f(x)dx = h \frac{f(a) + f(b)}{2} - \frac{h^{3}}{12} f''\left(\frac{a+b}{2}\right) + o(h^{3})$$

Оценка через остаточный член в форме Лагранжа дает ошибку в два раза большую

$$\varepsilon_{\text{метод}} \leq \frac{M_2 h^3}{6}$$

Однако, более тонкими рассуждениями можно показать, что

$$\int_{a}^{b} f(x)dx = h \frac{f(a) + f(b)}{2} - \frac{h^{3}}{12} f''(\xi)$$

то есть асимптотическая оценка является точной. На всем отрезке верна оценка

$$\varepsilon_{\mathsf{METOJ}} \leq (b-a) \frac{M_2 h^2}{12}$$

Погрешность метода Симпсона

Аналогично, для метода Симпсона без дополнительных точек можно получить асимптотическую оценку на интервалах

$$\varepsilon_{\text{METOA}} = \frac{f^{IV}(z)h^5}{180} + o(h^5)$$

Эта оценка также допускает строгое обоснование

$$arepsilon_{ ext{Metod}} \leq rac{M_4 h^5}{180},$$

а на всем отрезке [a, b]

$$\varepsilon_{\text{метод}} \leq (b-a) \frac{M_4 h^4}{180}$$

Добавление середин отрезков эффективно уменьшает h вдвое

$$\varepsilon_{\text{метод}} \leq (b-a) \frac{M_4 h^4}{2880}$$

Погрешность при недостаточной гладкости f(x)

Поскольку разложения в ряды Тейлора справедливы только при наличии у функции определенной гладкости, многие оценки теряют свою силу при недостаточной гладкости подынтегральной функции. В этом случае необходимо выводить новые оценки пользуясь «урезанными» рядами Тейлора, записанными вплоть до последней существующей производной.

Например, метод Симпсона, примененный к функции с неограниченной 4й производной допускает оценку погрешности

$$\varepsilon_{\mathsf{METOJ}} \leq (b-a) \frac{M_3 h^3}{36}$$

вместо

$$\varepsilon_{\text{метод}} \leq (b-a) \frac{M_4 h^4}{180}$$

Интегралы от быстро осциллирующих функций

Задача

Вычислить

$$\int_0^1 e^{-x^2} \sin 1000 \pi x dx$$

Интегралы от быстро осциллирующих функций

Задача

Вычислить

$$\int_0^1 e^{-x^2} \sin 1000\pi x dx$$

При использовании вышеописанных методов возникают следующие проблемы:

- Подынтегральная функция 1000 раз меняет знак на отрезке [0, 1]. Узлов сетки необходимо не меньше
- r-я производная имеет максимум порядка $M_r \sim (1000\pi)^r$.
- Значение интеграла небольшое ($\approx 2.012 \cdot 10^{-4}$), а в вычислениях участвуют большие числа разного знака

В совокупности, из-за этих проблем расчет получается очень долгим и сильно неточным.

Замена огибающей

Заменим подынтегральную функцию не многочленом, но функцией от которой можно аналитически посчитать интеграл.

Цыбулин Иван Интегрирование

Замена огибающей

Заменим подынтегральную функцию не многочленом, но функцией от которой можно аналитически посчитать интеграл.

В качестве такой функции можно взять $Q(x) \sin 1000\pi x$, где Q(x) - многочлен. Такая функция легко интегрируется.

Замена огибающей

Заменим подынтегральную функцию не многочленом, но функцией от которой можно аналитически посчитать интеграл.

В качестве такой функции можно взять $Q(x) \sin 1000\pi x$, где Q(x) - многочлен. Такая функция легко интегрируется.

Пусть $e^{-x^2} = Q(x) + R(x)$, где R(x) - небольшая функция.

Оценим погрешность такой замены

$$\int_0^1 e^{-x^2} \sin \omega x dx - \int_0^1 Q(x) \sin \omega x dx = \int_0^1 R(x) \sin \omega x dx$$

$$\int_0^1 R(x) \sin \omega x dx = -\frac{R(x) \cos \omega x}{\omega} \Big|_0^1 + \int_0^1 R'(x) \frac{\cos \omega x}{\omega} dx$$

Оценка ошибки

Возьмем в качестве Q(x) интерполяционный многочлен функции e^{-x^2} . При этом функцией R(x) будет ошибка интерполяции, которая в точках 0 и 1 обратится в 0.

$$\int_0^1 R(x) \sin \omega x dx = -\frac{R(x) \cos \omega x}{\omega} \Big|_0^1 + \int_0^1 R'(x) \frac{\cos \omega x}{\omega} dx$$

Так как R(0) = R(1) = 0

$$\int_{0}^{1} R(x) \sin \omega x dx = \int_{0}^{1} R'(x) \frac{\cos \omega x}{\omega} dx$$

$$arepsilon_{\mathsf{METOA}} = \left| \int_0^1 R(x) \sin \omega x dx \right| \leq \frac{1}{\omega} \max_{x \in [0,1]} |R'(x)|.$$

Даже при небольшом числе узлов интерполяции $(n \sim 5 \div 10)$ оценка для интеграла мала за счет множителя $\frac{1}{m}$.

Интегрирование особенностей

Рассмотрим теперь задачу вычисления несобственного интеграла, то есть интеграла с особенностью.

Интегрирование особенностей

Рассмотрим теперь задачу вычисления несобственного интеграла, то есть интеграла с особенностью.

Задача

Вычислить

$$\int_{a}^{b} f(x) dx$$

при
$$\lim_{x\to a} f(x) = \infty$$

Интегрирование особенностей

Рассмотрим теперь задачу вычисления несобственного интеграла, то есть интеграла с особенностью.

Задача

Вычислить

$$\int_{a}^{b} f(x) dx$$

при
$$\lim_{x\to a} f(x) = \infty$$

Другие типы особенностей могут быть сведены к этой с использованием подходящей замены переменной.

Универсальный метод выделения особенности

Идея метода проста — нужно аналитически проинтегрировать особенность в окрестности точки *а*. Для этого в окрестности точки *а* нужно представить подынтегральную функцию в виде отрезка степенного ряда.

За пределами этой окрестности интеграл считается с применением стандартных средств для неособых интегралов.

Универсальный метод выделения особенности

Для примера возьмем интеграл

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx$$

Универсальный метод выделения особенности

Для примера возьмем интеграл

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx$$

Разобьем его на два

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \underbrace{\int_0^\delta \frac{\cos x}{\sqrt{x}} dx}_{l_1} + \underbrace{\int_\delta^1 \frac{\cos x}{\sqrt{x}} dx}_{l_2}$$

Аналитический учет особенности

$$I_1 = \int_0^\delta \frac{\cos x}{\sqrt{x}} dx$$
$$\frac{\cos x}{\sqrt{x}} \approx \frac{1 - \frac{x^2}{2} + \frac{x^4}{24}}{\sqrt{x}}$$

Проинтегрируем разложение подынтегральной функции

$$I_1 \approx 2\sqrt{\delta} - \frac{1}{5}\delta^{5/2} + \frac{1}{108}\delta^{9/2}$$

При этом совершается ошибка порядка следующего слагаемого в ряде:

$$\varepsilon_1 = \frac{1}{4680} \delta^{13/2}$$

Оценка ошибки второго интеграла

Для вычисления второго интеграла воспользуемся формулой прямоугольников (например)

$$I_2 = \int_{\delta}^{1} \frac{\cos x}{\sqrt{x}} dx$$

Оценка для ошибки интегрирования у данного метода

$$\varepsilon_2 = (1 - \delta) \frac{M_2 h^2}{24} \approx \frac{M_2 h^2}{24}$$

Поскольку в особенности в бесконечность обращаются все производные, максимум второй производной на отрезке $[\delta,1]$ будет либо близок либо точно равен значению производной в точке δ .

$$\underset{[\delta,1]}{\textit{M}_2}\left(\frac{\cos x}{\sqrt{x}}\right) \approx \underset{[\delta,1]}{\textit{M}_2}\left(\frac{1}{\sqrt{x}}\right) = \frac{3}{4}\frac{1}{\sqrt{x^5}}\Big|_{x=\delta} = \frac{3}{4}\delta^{-5/2}$$

Определение параметра δ

Зададимся точностью $\varepsilon_1+\varepsilon_2=10^{-6}$. При этом нет смысла вычислять один интеграл точнее другого, $\varepsilon_1=\varepsilon_2=5\cdot 10^{-7}$. Выберем δ . Это значение не должно быть большим, иначе погрешность замены функции отрезком ряда становится существенной. Также значение не должно быть слишком малым, иначе значения функции в окрестности особенности велики и могут вносить существенную погрешность в вычисления. Оптимальным для нашего случая будет значение $\delta=0.3$.

Вычисление интеграла

Зная $\delta=0.3$, оценим первый интеграл I_1 и его погрешность ε_1 :

$$I_1 = 2\sqrt{0.3} - \frac{1}{5}0.3^{5/2} + \frac{1}{108}0.3^{9/2} \approx 1.085627188, \quad \epsilon_1 = 8.5 \cdot 10^{-8}$$

Теперь необходимо вычислить шаг сетки h для формулы прямоугольников. $h=\sqrt{\frac{24\varepsilon_2}{M_2}}\approx 9\cdot 10^{-4}$

$$I_2 = 0.72342125646$$

$$I = I_1 + I_2 = 1.809048445, \quad \int_0^1 \frac{\cos x}{\sqrt{x}} dx = 1.809048476$$

Вычисления потребовали 800 вычислений подынтегральной функции.

Исключение особенности из функции

Если в предыдущем методе для избавления от особенности мы разбивали отрезок на два части, то в этом методе на два слагаемых разбивается сама подынтегральная функция.

Исключение особенности из функции

Если в предыдущем методе для избавления от особенности мы разбивали отрезок на два части, то в этом методе на два слагаемых разбивается сама подынтегральная функция.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \varphi(x)dx + \int_{a}^{b} [f(x) - \varphi(x)]dx$$

Исключение особенности из функции

Если в предыдущем методе для избавления от особенности мы разбивали отрезок на два части, то в этом методе на два слагаемых разбивается сама подынтегральная функция.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \varphi(x)dx + \int_{a}^{b} [f(x) - \varphi(x)]dx$$

Функция $\phi(x)$ выбирается из таких условий

- $\phi(x)$ интегрируется аналитически
- $f(x) \varphi(x)$ не содержит особенности (особенность выделена в $\varphi(x)$)
- $f(x) \phi(x)$ достаточно гладкая для применения квадратурной формулы

Вернемся к примеру

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \int_0^1 \varphi(x) dx + \int_0^1 \left[\frac{\cos x}{\sqrt{x}} - \varphi(x) \right] dx$$

Вернемся к примеру

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \int_0^1 \varphi(x) dx + \int_0^1 \left[\frac{\cos x}{\sqrt{x}} - \varphi(x) \right] dx$$

Разложим подынтегральную функцию в степенной ряд

$$\frac{\cos x}{\sqrt{x}} = \frac{1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots}{\sqrt{x}}$$

Вернемся к примеру

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \int_0^1 \varphi(x) dx + \int_0^1 \left[\frac{\cos x}{\sqrt{x}} - \varphi(x) \right] dx$$

Разложим подынтегральную функцию в степенной ряд

$$\frac{\cos x}{\sqrt{x}} = \frac{1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots}{\sqrt{x}}$$

Слагаемое $\frac{1}{\sqrt{x}}$ полностью содержит в себе особенность. Без него у подынтегральной функции не будет особенности в точке 0.

Можно положить
$$\varphi(x) = \frac{1}{\sqrt{x}}, g(x) = \frac{\cos x - 1}{\sqrt{x}}$$

$$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx = \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx = 2 + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx$$

Можно положить
$$\varphi(x) = \frac{1}{\sqrt{x}}, g(x) = \frac{\cos x - 1}{\sqrt{x}}$$

$$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx = \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx = 2 + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx$$

При доопределении g(0) = 0 новая подынтегральная функция особенности не содержит.

Можно положить $\phi(x) = \frac{1}{\sqrt{x}}, g(x) = \frac{\cos x - 1}{\sqrt{x}}$

$$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx = \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx = 2 + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx$$

При доопределении g(0)=0 новая подынтегральная функция особенности не содержит.

Однако, если формально оценивать погрешность метода Симпсона или метода прямоугольников возникает другая трудность — у функции неограниченна вторая производная

$$g(x) \sim -\frac{x^2}{2\sqrt{x}}, g''(x) \sim -\frac{3}{8\sqrt{x}}$$

Можно положить $\varphi(x) = \frac{1}{\sqrt{x}}, g(x) = \frac{\cos x - 1}{\sqrt{x}}$

$$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx = \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx = 2 + \int_{0}^{1} \frac{\cos x - 1}{\sqrt{x}} dx$$

При доопределении g(0)=0 новая подынтегральная функция особенности не содержит.

Однако, если формально оценивать погрешность метода Симпсона или метода прямоугольников возникает другая трудность — у функции неограниченна вторая производная

$$g(x) \sim -\frac{x^2}{2\sqrt{x}}, g''(x) \sim -\frac{3}{8\sqrt{x}}$$

Можно воспользоваться формулой оценки погрешности первого порядка

$$\varepsilon = (b - a) \frac{M_1 h}{4}$$

Регуляризация до гладкости

А можно сильнее регуляризовать функцию f(x), дополнительно вычтя из нее не дифференцируемую дважды функцию.

Положим
$$\varphi(x) = \frac{1-\frac{x^2}{2}}{\sqrt{x}}, u(x) = \frac{\cos x - 1 + \frac{x^2}{2}}{\sqrt{x}}$$

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \int_0^1 \frac{1 - \frac{x^2}{2}}{\sqrt{x}} dx + \int_0^1 \frac{\cos x - 1 + \frac{x^2}{2}}{\sqrt{x}} dx = \frac{9}{5} + \int_0^1 u(x) dx$$

Регуляризация до гладкости

А можно сильнее регуляризовать функцию f(x), дополнительно вычтя из нее не дифференцируемую дважды функцию.

Положим
$$\varphi(x) = \frac{1-\frac{x^2}{2}}{\sqrt{x}}, u(x) = \frac{\cos x - 1 + \frac{x^2}{2}}{\sqrt{x}}$$

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \int_0^1 \frac{1 - \frac{x^2}{2}}{\sqrt{x}} dx + \int_0^1 \frac{\cos x - 1 + \frac{x^2}{2}}{\sqrt{x}} dx = \frac{9}{5} + \int_0^1 u(x) dx$$

Доопределим u(0) = 0. Теперь

$$u(x) \sim \frac{x^4}{24\sqrt{x}}, u''(x) \sim \frac{35x\sqrt{x}}{96}, M_2 \approx \frac{35}{96} \approx 0.36$$

Регуляризация до гладкости

А можно сильнее регуляризовать функцию f(x), дополнительно вычтя из нее не дифференцируемую дважды функцию.

Положим
$$\varphi(x) = \frac{1-\frac{x^2}{2}}{\sqrt{x}}, u(x) = \frac{\cos x - 1 + \frac{x^2}{2}}{\sqrt{x}}$$

$$\int_0^1 \frac{\cos x}{\sqrt{x}} dx = \int_0^1 \frac{1 - \frac{x^2}{2}}{\sqrt{x}} dx + \int_0^1 \frac{\cos x - 1 + \frac{x^2}{2}}{\sqrt{x}} dx = \frac{9}{5} + \int_0^1 u(x) dx$$

Доопределим u(0) = 0. Теперь

$$u(x) \sim \frac{x^4}{24\sqrt{x}}, u''(x) \sim \frac{35x\sqrt{x}}{96}, M_2 \approx \frac{35}{96} \approx 0.36$$

Задавшись той же точностью $\varepsilon=10^{-6}$, вычислим шаг $h=\sqrt{\frac{24\varepsilon}{M_2}}\approx 8\cdot 10^{-3}$. Такой шаг потребует уже 125 вычислений по методу прямоугольников.

$$I = 1.809048\underline{107}, \quad \int_0^1 \frac{\cos x}{\sqrt{x}} dx = 1.809048\underline{476}$$

Спасибо за внимание!

Цыбулин Иван e-mail: tsybulin@crec.mipt.ru