

Prof. Dr. Felix Wolf

LABORATORY FOR PARALLEL PROGRAMMING

Introduction

- Recently moved from Aachen to Darmstadt
- Research statement

"Develop methods, tools, and infrastructure to exploit massive parallelism on modern computer architectures"

www.parallel.informatik.tu-darmstadt.de

Team

Prof. Dr. Felix Wolf

Alexandru Calotoiu

David Giessing

Dr. Daniel Lorenz

Suraj Prabhakaran

Sebastian Rinke

Laura von Rüden

Aamer Shah

Sergei Shudler

Multicore Programming Group

Dr. Ali Jannesari

Rohit Atre

Zhen Li

Zia Ul Huda

Mohammad Norouzi

Arya Mazaheri

IBM Blue Gene/Q in Jülich

- Performance analysis tool for HPC applications
- Collaboration with Jülich Supercomputing Centre
- Our focus: automated performance modeling & visual analytics
- www.scalasca.org

Automatic empirical modeling

Small-scale measurements

Generation of candidate models and selection of best fit

$$f(p) = \sum_{k=1}^{n} c_k \cdot p^{i_k} \cdot \log_2^{j_k}(p)$$

Performance model normal form (PMNF)

Kernel [2 of 40]	Model [s] t = f(p)	Error [%] p _t =262k
sweep → MPI_Recv	$4.03\sqrt{p}$	5.10
sweep	582.19	0.01

Visual analytics of performance data

Visual analytics: Visual data exploration + automatic data analysis¹

 Daniel Keim, Jörn Kohlhammer, Geoffrey Ellis, and Florian Mansmann: Mastering the Information: Age Solving Problems with Visual Analytics. Eurographics Association, 2010.

DiscoPoP

- <u>Discovers potential parallelism</u>
 in sequential programs
- Targets DOALL loops, pipelines,
- Reveals data dependences that prevent parallelization
- Efficient in time and space

Scheduling

- Dynamic resource management and job scheduling in HPC
- Support for more classes of applications - moldable, malleable
 and evolving
- Adaptive scheduling with enhanced fairness for high throughput
 - Fault tolerance with dynamic node replacement

LWM²

- Light-Weight Monitoring Module
- Profiles: MPI, File I/O, OpenMP and CUDA
- Easy to use: No code recompilation or relinking
- Synchronized, timestamped, periodic profiles across multiple applications

- Generates simple command line output and data files
- Geared towards identifying performance interference between jobs

Scalable brain simulation

- Collaboration with SimLab Neuroscience at Forschungszentrum Jülich
- Neuronal network of human brain not "hard-wired"
- Lesions, e.g. stroke, cause reorganization of connections
- Goal:
 - Develop biologically realistic full-scale network model of the brain
 - Better understand the dynamics of the network
- Algorithmic challenge:
 - How to handle 10¹¹ neurons in the simulation.

Large-scale word sense disambiguation

- Collaboration with Ubiquitous Knowledge Processing Lab at TU Darmstadt
- A word can have many different meanings depending on its context
- Goal:
 - Use supercomputer to disambiguate all words in large text collections
 - Create basis for further semantic analysis
- Algorithmic challenge:
 - Processing large texts requires much file I/O
 - Minimize slow file I/O through efficient use of main memory and network communication

Student assistant positions

The position offers:

- Research and development in the area of programming tools for parallel computing
- Experience in parallel programming
- Working in an international team
- The option to prepare for a master's thesis
- Negotiable number of hours per week

The ideal candidate will have:

- A bachelor's degree in computer science or a related discipline
- Programming practice in C/C++
- Familiarity with UNIX-like system environments
- Good command of English
- High motivation and the ability to work effectively with others

Additional qualifications:

Knowledge of parallel programming

If you are interested, please contact Prof. Wolf wolf@cs.tu-darmstadt.de

THANK YOU!