Financial Data Science G7

Fernando Oktavianes Gan Kai Heng Cassidy Jiang Jin Miti Nopnirapath Stephen Kusrianto

Problem 1 - Signals for the last few days (6 to be exact) are zero

Date	≪ ← 6 rows ~ → ≫ 6 rows × 6 columns											
2019-12-30 0.0 165.979996 166.210007 164.570007 165.440002	Adj Close \$											
	164.039063											
2019-12-31 0.0 165.080002 166.350006 164.710007 165.669998	163.623688											
	163.851135											
2020-01-02 0.0 166.740005 166.750000 164.229996 165.779999	163.959946											
2020-01-03 0.0 163.740005 165.410004 163.699997 165.130005	163.317093											
2020-01-06 0.0 163.850006 165.539993 163.539993 165.350006	163.534668											

Problem 2 - Adj close minimum value is negative

Problem 3

Outliers in the dataset

Assumption: Outliers is identifiable as an extreme value change, followed by an extreme reversion.
With this logic, we can automatically detect outliers.

Problem 4

38 rows contain NaN values

Problem 5

Irregularity in ratio of Close/Adj Close observed

	→ >> 38 rows >	< 4 columns		
Date ‡	Open ÷	High ÷	Low ÷	Close ÷
2017-07-04	NaN	142.600000	141.400003	142.200006
2017-07-05	141.699997	141.850006	140.699997	141.589996
2017-08-01	142.169998	142.199997	NaN	141.779999
2017-09-08	138.929993	139.770004	138.619995	NaN
2017-09-11	140.389999	140.919998	140.229996	NaN
2017-09-12	141.039993	141.690002	140.820007	NaN
2017-09-13	141.410004	142.220001	141.320007	NaN
2017-09-14	141.779999	142.160004	141.419998	NaN
2017-09-15	141.639999	142.470001	141.550003	NaN
2017-09-18	142.619995	143.809998	142.600006	NaN

Problem 6 - Handle inconsistent data values

- Shifting high and low to max and min value
- Shift and scale so that Open-High-Low and Close of each rows are 0 mean and 1 variance
- Handle imputations
- Forward fill signal for last 6 values that are NaN

Can you spot what is wrong?

Some of it is completely made up! Imputed with RandomForest

Imputation Process

Standardize Open High Low Close to mean 0 and std 1.

 We save the original offset and original std so we can transform our data back.

Use Sklearn IterativeImputer with RandomForest to fill in missing values

Reverse the transformation by adding back offset and multiply by original standard deviation

We transform from left values to right values by taking away the mean of OHLC. The values on the right can then be used to train randomforest on and fill other missing data without issues with out-of-range observation.

This process is reversible, and we can transform from right back to left after imputing

Signal Analysis

Evidence of MA (1) are in the signals given to us.

This is despite the fact that no such process appeared in the KLines/Candlestick data.

ARIMA (1,0,1) Modelling

Mean Squared Error: 0.00403771

Click to add text

Part III Clustering stocks with Analysts coverage

We are given a data of 8676 rows. We will only be looking at this four columns as they are the most useful for clustering stocks. The rest are either irrelevant or an expert's opinion, which is the last thing we want.

	ANALYST	BBTICKER	GICS_SECTOR_NAME	GICS_INDUSTRY_GROUP_NAME
0	Jamrgett	NESN SW Equity	Consumer Staples	Food, Beverage & Tobacco
1	Joneeney	NESN SW Equity	Consumer Staples	Food, Beverage & Tobacco
2	MarDeboo	NESN SW Equity	Consumer Staples	Food, Beverage & Tobacco
3	Niclberg	NESN SW Equity	Consumer Staples	Food, Beverage & Tobacco
4	Antpagna	NESN SW Equity	Consumer Staples	Food, Beverage & Tobacco
8671	Inghmidt	LHA GR Equity	Industrials	Transportation
8672	Xavaroen	BMW3 GR Equity	Consumer Discretionary	Automobiles & Components
8673	FraMaury	BMW3 GR Equity	Consumer Discretionary	Automobiles & Components
8674	RenWeber	UHRN SW Equity	Consumer Discretionary	Consumer Durables & Apparel
8675	Loiorvan	UHRN SW Equity	Consumer Discretionary	Consumer Durables & Apparel

Q1 Which company has the higher analyst coverage?

Of the 360 stocks given to us, most (80-90%~) of the stocks will be covered by at least 20 analysts. Most of which is ADS GR.

Q2 Which analyst covers the most companies?

Some Analysts are extremely productive, covering 200+ stocks.
However, if we exclude the top 5, many still covers a very reasonable number of 15+

Many analysts (544 out of 2065) only covered 1 stocks. They would add no value to our purpose of using them for clustering.

Statistics	Before winsorize	After winsorize 10-90
mean	4.20	4.01
std	6.60	1.62
median	3	4
mode	1	2

Q3 Clustering methodology

We will convert the analysts data into a vector of 1 and 0 for each stocks. Each element corresponds to a specific analysts, and 1 indicates that the stocks have been covered by the analysts.

In the figure to the right, we can see what this would look like with 5 analysts. 1COV GR is covered by Antpagna and Svemeir, and is not covered by the other 3.

Given that the values are bounded between 0 and 1, this should be suitable for Euclidean distance calculation.

ANALYST	Antpagna	Casy Lea	Svemeier	Teaerage	Valtaldy
BBTICKER					
1COV GR Equity	1	0	1	0	0
AAL LN Equity	0	0	1	0	1
ABBN SW Equity	0	0	0	0	1
ABF LN Equity	1	0	0	0	1
ABI BB Equity	1	0	0	1	1
					:::
WPP LN Equity	0	1	0	0	1
WRT1V FH Equity	1	0	0	0	0
WTB LN Equity	1	0	0	0	1
YAR NO Equity	1	0	0	0	0
ZURN SW Equity	0	1	0	0	1
300 rows × 5 colum	ns				

t-SNE (t-distributed Stochastic Neighbor Embedding)

The essence of this clustering method is that it calculates Euclidean distance (in the default implementation) between each samples and use that distance as the 'attraction factor' between each points.

It then instantiates a completely random distribution in a lower dimension space, and then "shake things around" and let the attraction factor make the samples cluster with each other in a random (stochastic) manner.

From a 2D space, it can calculate how close each samples should be between each other. It use this knowledge to produce a similar distribution in 1D space.

This can be generalized into N number of dimension.

https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a

Q3a All Analyst

Q3b Winsorized and +- 1 S.D.

Q3c Analysts with 4 coverage

Q3+ TruncatedSVD

Instead of assuming that Analysts with coverage far from the mean provide less/noisy information, we can let the data speak for itself.

With all analyst, we have 2065 columns against 360 rows, which is somewhat irrational. Fortunately, its either 0 or 1 and therefore "sparse". TruncatedSVD is specialized in decomposing sparse matrices and we will be using sklearn's TruncatedSVD to decompose analysts information for us.

Explained Variance vs Components

At about 100 components, we will retain about 75% of all variance.

Part III TruncatedSVD, Select Top 100, then TSNE

Part III Q4-6

- 4. The most heterogenous are Financials and Industrials,
- 5. The most homogenous are Energy and Real Estate which almost purely form its own group. Although utilities sector is also a notable mention.
- 6. One way to determine 'outliers' would be to see which companies tends to have an ill-defined clusters. These could be the one that tends to 'join up' with other clusters or those that appears in the center of T-SNE plot which seems to be reserved for the companies that can't be clustered. Financials and Industrials are often the outlier everywhere, which makes sense as both tends to have their cashflow dictated by other sector rather than their own (Financial and Industrial companies would be exposed to the risk factor of their clients). Materials are also similar in this regard, but not as bad.

Part III

For comparison Winsorized and +- 1 S.D.

This makes sense in sub-industry too

Part III Additional Sections

Portfolio Optimization using HRP and HERC

- Hierarchical Tree Clustering
- HRC vs HERC

Hierarchical Tree Clustering

Part III HRP (Hierarchical Risk Parity)

Part III HRP Weights

	UNA.AS	ESSITY-B.ST	ELE.PA	ORK.OL	ALC.SW	SPSN.SW	MONC.MI	NESN.SW	TEL.OL	LISN.SW
weights	8.55%	2.36%	1.90%	1.44%	1.32%	1.22%	1.16%	0.99%	0.93%	0.93%

	mean	std	min	25%	50%	75%	max
weights	0.36%	0.56%	0.00%	0.18%	0.27%	0.40%	8.55%

Part III HERC(Hierarchical Equal Risk Contribution)

Part III HERC weights

	UNA.AS	NESN.SW	SCMN.SW	SPSN.SW	ELE.PA	ESSITY-B.ST	ALC.SW	NOVN.SW	LISN.SW	ROG.SW
weights	5.09%	1.63%	1.53%	1.49%	1.43%	1.41%	1.21%	1.19%	1.13%	1.04%

	mean	std	min	25%	50%	75%	max
weights	0.36%	0.45%	0.00%	0.07%	0.18%	0.57%	5.09%

The End!