Math 302/600 Spring 2015 Homework #2

Due Feb. 17, Tue. in class

Note: For any Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

1. Let (M, d) be a metric space. Show the following inequality:

$$|d(x,y) - d(z,y)| \le d(x,z), \quad \forall \ x,y,z \in M.$$

- 2. Let A be an open set in \mathbb{R} , and define the set $B := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \in A\} \subseteq \mathbb{R}^2$. Show that B is open in \mathbb{R}^2 .
- 3. Let (M,d) be a metric space. Given a nonempty set $A \subseteq M$, let $B := \{x \in M \mid d(x,y) < 1 \text{ for some } y \in A\}$. Show that B is open. (*Hint*: write B as the union of open sets.)
- 4. Consider \mathbb{R}^2 and the metric induced by the 1-norm: $d(x,y) = |x_1 y_1| + |x_2 y_2|, \forall x, y \in \mathbb{R}^2$. Let $A = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 1 \text{ and } x_2 \leq 1\}$. Find the interior of A (using the given metric), and prove your answer.
- 5. Let (M,d) be a metric space and A,B be two subsets of M. Show the following:
 - (1) if $A \subseteq B$, then int $A \subseteq \text{int}B$;
 - (2) $\operatorname{int}(A \cap B) = (\operatorname{int} A) \cap (\operatorname{int} B)$.

The following extra problems are for Math 600 students only:

- 6. Given a normed space $(V, \|\cdot\|)$, let A be a nonempty open set in V, and B be a nonempty set in V. Define $A+B:=\{a+b\in V\mid a\in A,\ b\in B\}$. Show that A+B is open.
- 7. Let M be a set endowed with two metrics d_1 and d_2 , namely, both (M, d_1) and (M, d_2) are metric spaces. Suppose that there exist two positive real numbers α and β such that

$$\beta d_1(x,y) \le d_2(x,y) \le \alpha d_1(x,y), \quad \forall \ x,y \in M.$$

Show that a set $A \subseteq M$ is open with respect to d_1 if and only if A is open with respect to d_2 .