

Speed is important

- Using a ripple carry adder, the time required to perform addition is too long
 - each 1-bit ALU has two levels of gates
 - The input to the ith ALU includes an output from the (i-1)th ALU
 - For a 32-bit ALU, we face 64 gate delays before the addition is complete

Arithmetic for Computers - 3

Strategies for speeding things up

- We could derive the truth table for each of the 32 result bits as a function of the 64 inputs
- We could build SOP expressions for each bit and implement our ALU using two levels of gates...
 - ...but that requires too much hardware

A more efficient approach

- The problem is the ripple
 - The last (MSB) carry-in takes a rather long time to compute
- We can try to compute the carry-in bits faster by using a technique called carry lookahead to create a carry-lookahead adder
 - It turns out we can easily compute the carry-in bits much faster
 - (but still not in constant time...)

Arithmetic for Computers - 5

Carry In Analysis

- CarryIn_i is input to the ith 1-bit adder
- CarryOut_{i-1} is connected to CarryIn_i for i>1
- We know how to compute the CarryOuts from the truth table

A	В	Carry In	Carry Out	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Computing the Carry Bits

- CarryIn₀ is an input to the adder
 - we don't compute this --- it's an input
- CarryIn₁ depends on A_0 , B_0 , and $CarryIn_0$:

CarryIn₁ =
$$(B_0 \cdot CarryIn_0) + (A_0 \cdot CarryIn_0) + (A_0 \cdot B_0)$$

SOP: Requires 2 levels of gates

Arithmetic for Computers - 7

CarryIn₂

CarryIn₂ =
$$(B_1 \cdot CarryIn_1) + (A_1 \cdot CarryIn_1) + (A_1 \cdot B_1)$$

We can then substitute for $CarryIn_1$ and obtain:

CarryIn₂ =
$$(B_1 \cdot B_0 \cdot CarryIn_0) + (B_1 \cdot A_0 \cdot CarryIn_0) +$$

$$(B_1 \cdot A_0 \cdot B_0) + (A_1 \cdot B_0 \cdot CarryIn_0) +$$

$$(A_1 \cdot A_0 \cdot CarryIn_0) + (A_1 \cdot A_0 \cdot B_0) + (A_1 \cdot B_1)$$

The length of these expressions gets way too big!

Another way to describe CarryIn?

$$C_{i+1} = (B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$$

= ???

Arithmetic for Computers - 9

Pop Quiz

How can we further rearrange expression $(B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$ to isolate C_i ?

Chapter 2 — Instructions: Language of the Computer — 10

Another way to describe CarryIn

$$C_{i+1} = (B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$$

Commutative (twice)

$$= (A_i \cdot B_i) + (B_i \cdot C_i) + (A_i \cdot C_i)$$

$$= (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$

Distributive (factoring out)

$$= (A_i \cdot B_i) + [(A_i + B_i) \cdot C_i]$$

Arithmetic for Computers - 11

Another way to describe CarryIn

$$C_{i+1} = (B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$$
$$= (A_i \cdot B_i) + (A_i + B_i) \cdot C_i$$

 $A_i \cdot B_i : Call \text{ this Generate } (G_i)$

A_i + B_i : Call this Propagate (P_i)

$$C_{i+1} = G_i + P_i \cdot C_i$$

Generate and Propagate

$$C_{i+1} = G_i + P_i \cdot C_i$$

 $G_i = A_i \cdot B_i$
 $P_i = A_i + B_i$

- Both A_i and B_i must be 1 for G_i to become 1
 i.e., to generate a CarryOut
- If P_i is 1, then any CarryIn (C_i) is essentially propagated to CarryOut (C_{i+1})

Arithmetic for Computers - 13

Using G_i and P_i

$$C_1 = G_0 + P_0 \cdot C_0$$

$$C_2 = G_1 + P_1 \cdot C_1$$

= $G_1 + P_1 \cdot (G_0 + P_0 \cdot C_0)$
= $G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_0$

$$C_3 = G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot C_0$$

 C_4 = etc. (try to write this out...)

Implementation

- Okay, so these expressions still get too big to handle (e.g., for 32 bits!)
- But we can minimize the time needed to compute all the CarryIn bits for say a 4-bit adder
- Then we can connect a bunch of 4-bit adders together and treat CarryIns to these adders in the same manner
 - i.e., use this 4-bit carry-lookahead adder as a single component to implement larger-width adders

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Chapter 3 — Arithmetic for Computers — 17

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

Chapter 3 — Arithmetic for Computers — 18