

When conversation meets information retrieval

Pengjie Ren (任鹏杰) IRLab, Shandong University

> renpengjie@sdu.edu.cn https://pengjieren.github.io/

Joint work with

Maarten de Rijke University of Amsterdam

Jun Ma Shandong University

Evangelos Kanoulas
University of Amsterdam

Zhumin Chen Shandong University

Christof Monz
University of Amsterdam

Pengjie Ren Shandong University

Ming Zhou
Sinovation Ventures

Zhaochun Ren Shandong University

Information retrieval

- Technology to connect people to information
 - Search engines
 - Recommender systems
 - Conversational Q&A
 -

Information goals

- Navigational, informational, and resource goals
 - Informational goals take up ~40–60%
 - More exploratory
 - When knowing little about the search target;
 - When wanting to know many aspects about the search target.

Landscape is changing

More mobile queries

 At the start of 2019, over 60% of all queries submitted to Google were mobile

Spoken queries

- Exceeding 50% in some parts of the world
- Spoken queries longer, sessions longer

Conversational search

Conversational recommender systems

New challenges

- Intents/actions increase
 - ✓ Out-of-domain intents/actions
 - ✓ Varying intent/action space
- Response presentation form
 - \checkmark Top n \rightarrow Top 1
 - ✓ Summary, steps, list, link, ...

- Cross-/Multi-Lingual conversations
 - ✓ Leveraging available data better
- Multi-modal conversations
 - ✓ Image, video, ...
- Ethics control
 - √ Safe AI

....

.

Three works we did in 2021

Mixed initiatives

Initiative is the ability to drive the direction of the conversation. **Mixed initiative** is an intrinsic feature of human conversations.

User Initiative

System Initiative

Low (labeled) resource

K1 Coca-Cola, or Coke, is a carbonated soft drink produced by The Coca-Cola Company.

K2 Originally intended as a patent medicine, it was invented in the late 19th century.

K3 Red Bull is an energy drink sold by Austrian company Red Bull GmbH, created in 1987.

••

- 1. Online conversation data is unlabeled mostly.
- 2. Offline built data might not have the required labels.

How do we train mixed initiative systems without knowing the initiatives in training data?

Initiative-aware modeling

Initiative-aware learning

Two hypotheses based on data:

- 1. If there is an **unsmooth knowledge shift** at the current turn, the current KS tends to be **user-initiative**, otherwise **system-initiative**.
- → (detecting the user-initiative ≈ detecting unsmooth knowledge shifts)
- 2. If we remove some turns of a conversation, the adjacent conversation becomes unsmooth.
- → (detecting unsmooth knowledge shifts ≈ locating missing knowledge)

Initiative-aware learning

Incompatible issue: the knowledge currently selected cannot be fetched during inference.

Initiative-aware learning

- Further distinguish the initiative discriminator as a teacher and a student initiative discriminator
- Two tasks: locating missing knowledge and learning with pseudo initiative labels

Now it is compatible with inference.

Methods			Test Se	en (%)					Test Un	seen (%)		
Wictions	BLEU-4	METEOR	ROUGE-1	ROUGE-2	ROUGE-L	R@1	BLEU-4	METEOR	ROUGE-1	ROUGE-2	ROUGE-L	R@1
PostKS + BERT	0.77	14.16	22.68	4.27	16.59	4.83	0.39	12.59	20.82	2.73	15.25	4.39
TMemNet + BERT	1.61	15.47	24.12	4.98	17.00	23.86	0.60	13.05	21.74	3.63	15.60	16.33
SKT	1.76	16.04	24.61	5.24	17.61	25.36	1.05	13.74	22.84	4.40	16.05	18.19
DiffKS + BERT	2.22	16.82	24.75	6.27	17.90	25.62	1.69	14.69	23.62	5.05	16.82	20.11
DukeNet	2.43	17.09	25.17	6.81	18.52	26.38	1.68	15.06	23.34	5.29	17.06	19.57
SKT+PIPM+KDBTS	2.47	17.14	25.19	7.01	18.47	27.40	1.71	14.83	23.56	5.46	17.14	20.20
MIKe (ours)	2.78*	17.76 *	25.40	7.11	18.78*	28.41*	* 2.00*	15.64 *	23.78*	5.61	17.41*	21.47*

Wizard of Wikipedia dataset (R@1 denotes Recall@1)

Methods		Sing	le golden	reference	(%)	Multiple golden references (%)						
Wicthous	BLEU-4	METEOR	ROUGE-1	ROUGE-2	ROUGE-L	R@1	BLEU-4	METEOR	ROUGE-1	ROUGE-2	ROUGE-L	R@1
PostKS + BERT	6.54	19.30	28.94	9.89	22.15	3.95	8.49	23.97	32.85	13.10	26.17	6.40
TMemNet + BERT	8.99	24.48	31.65	13.24	25.90	28.44	12.36	28.61	35.29	16.14	29.51	37.30
SKT	17.81	29.41	35.28	21.74	30.06	28.99	24.69	35.78	41.68	28.30	36.24	39.05
DiffKS + BERT	19.08	30.87	36.37	22.88	31.30	29.39	26.20	37.32	42.77	29.57	37.53	38.99
DukeNet	19.15	30.93	36.53	23.02	31.46	30.03	26.83	37.73	43.18	30.13	38.03	40.33
SKT+PIPM+KDBTS	20.07	31.07	36.78	24.29	31.70	30.80	27.49	37.34	43.07	30.91	37.82	40.70
MIKe (ours)	21.14*	32.28*	37.78	25.31*	32.82*	31.86	* 28.52*	38.55*	44.06	31.92*	38.91*	41.78

Holl-E dataset (R@1 denotes Recall@1)

- According to Recall@1, MIKe significantly outperforms all baselines in terms of knowledge selection.
- According to BLEU-4, METEOR and ROUGE-1/2/L, MIKe significantly outperforms all baselines in terms of response generation.

				Test	Seer	ı (%)						-	Гest U	Jnse	en (%)			
Methods	Appropriateness			Informativeness		Engagingness		Appropriateness		Informativeness		Engagingness						
	Win	Tie	Lose	Win	Tie	Lose	Win	Tie	Lose	Win	Tie	Lose	Win	Tie	Lose	Win	Tie	Lose
MIKe vs DiffKS + BERT	32	59	9	18	76	6	26	62	12	27	67	6	19	77	4	24	64	12
MIKe vs DukeNet	27	64	9	18	75	7	22	65	13	30	66	4	18	74	8	24	61	15
MIKe vs SKT+PIPM+KDBTS	25	67	8	17	78	5	20	69	11	29	66	5	19	76	5	25	62	13

- Mlke achieves the best performance in terms of all metrics compared to the three most competitive baselines.
- The results are consistent with the automatic evaluation results.

	Example 1 (Test seen)
Knowledge pool	K_1 : no knowledge used . K_2 : while basketball is most often played as a team sport with five players on each side , two-on-two , and one-on-one competitions are also common .
8 1	K_3 : basketball is a limited contact sport played on a rectangular court .
	K_4 : jordan played 15 seasons in the nba for the chicago bulls and washington wizards
Context	User: are you a basketball fan? System: (K_2) yes , i am a fan of the five player sport . are you? User: not as much as i used to be . i watched the bulls in the 90s when they were the dream team . (the current user utterance)
Initiative type	User-initiative KS
Response	DiffKS + BERT: $(K_3 \nearrow)$ i do know that basketball is a limited contact sport played on a rectangular court . DukeNet: $(K_2 \nearrow)$ i agree . i like to play basketball . i like the sport with five players on each side . SKT+PIPM+KDBTS: $(K_2 \nearrow)$ i 'm not sure but i know that while basketball is most played as a team sport with five players . MIKe: $(K_4 \nearrow)$ i know that jordan played 15 seasons in the nba for the chicago bulls and washington wizards .

 MIKe identifies the current turn as userinitiative and then selects the knowledge about "Jordan."

Three works we did in 2021

Asking clarifying questions

- What was *Ira Hayes* doing after the War? Q₁ Hayes attempted to lead a normal civilian life after the war. **A1** What *truth* is he wanting to *reveal*? O3To Block's family about their son *Harlon* being in the **A3** Rosenthal photograph. Was anyone opposed to Ira Hayes revealing the SQ4 truth about Harlon and the Rosenthal photograph? anaphora ellipsis anaphora fluent Ira Hayes revealing... about ... in \rightarrow him \rightarrow this CQ4 Was anyone opposed to him (in) this? MLE Was anyone opposed to Was anyone opposed to Ira Hayes ... MLD Was anyone opposed to him ...
- Asking clarifying questions is one of the most important
 characteristics of mixed initiatives.
- Pure generation vs. Retrieval + Reranking + Rewriting
- MLE gives equal attention to generate each question token, stuck in easily learned tokens, i.e., tokens appearing in input, ignoring conversational tokens, e.g., him, which is a small but important portion of output.

Iterative sequence editing

Four edits: 'K': keep, 'D': delete, 'I': insert, 'S': substitute.

Dynamic programming based sampling

 M^t : $M_{i,j}^t$ tracks the expectation of converting $y_{:i}^t$ to $y_{:j}^*$

	CANARD (%)					CAsT (%) (unseen)						
Method	B-1	B-2	B-3	B-4	R-L	CIDEr	B-1	B-2	B-3	B-4	R-L	CIDEr
Origin	54.7	47.0	40.6	35.3	70.9	3.460	75.9	69.2	62.9	57.6	85.0	5.946
Rule	55.0	47.0	40.2	34.8	70.5	3.420	78.0	71.4	65.3	60.0	86.1	6.220
Trans++	84.3	77.5	72.1	67.5	84.6	6.348	76.0	64.3	54.8	47.2	76.5	4.258
QGDiv	85.2	78.6	73.3	68.9	85.2	6.469	75.9	65.3	56.7	59.6	78.0	4.694
QuerySim	83.1	78.5	74.5	71.0	82.7	6.585	80.6	75.3	70.2	65.5	83.3	6.345
RISE	86.3*	80.5*	75.6	71.6*	86.2*	6.759	85.1*	78.4	72.2	66.8	87.8 *	6.543

Results on CANARD and CAsT.

- ✓ RISE has a better ability to emphasize conversational tokens, rather than treating all tokens equally.
- ✓ RISE is more robust, which generalizes better to unseen data of CAsT.

✓ As the number of different tokens between x and y increases, the number of editing iterations increases too.

Example 1	1. At Tabuk the standard of the army
Context	was entrusted to Abu Bakr. 2. Where was Tabuk located? 3. Tabuk on the Syrian border.
Question	What did Abu Bakr do during the expedition of Tabuk?
Rewrite#1	What did he bakr do during expedition?
Rewrite#2 Target	What did he do during expedition? What did abu bakr do during the expedition?

Example 2	1. When did Clift start his film ca-
	reer?
Context	2. His first movie role was opposite
	John Wayne in Red River, which was
	shot in 1946 and released in 1948.
Question	Did Montgomery Clift win any
	awards for any of his films?
Rewrite#1	Did he win any awards for and?
Rewrite#2	Did he win any awards?
Target	Did he win any awards for any of his
_	films?

- It is helpful to edit iteratively.
- RISE can generate more conversational questions than human sometimes.

Three works we did in 2021

Conversation evaluation

- ✓ Automatic Evaluation: Efficient but not reliable usually.
- ✓ Human Evaluation: Mostly reliable but not efficient.

Sample assignment execution

Sample Assignment Execution (SAE)

$$\max \sum_{i=1}^{M} \hat{a}_i z_i + \sum_{i=1}^{M} b_i (1 - z_i),$$

$$\min \sum_{i=1}^{M} k_i z_i + \sum_{i=1}^{M} \hat{l}_i (1 - z_i),$$

$$z_i = \begin{cases} 0, & \text{sample } i \text{ is assigned to a human;} \\ 1, & \text{sample } i \text{ is assigned to machine.} \end{cases}$$

M The number of all samples.

- \hat{a}_i The model confidence for evaluating sample i.
- b_i The human confidence for evaluating sample i.
- k_i The machine effort for evaluating sample i.
- \hat{l}_i The human effort for evaluating sample i.

Sample assignment execution

Sample Assignment Execution (SAE)

$$\max \left[\sum_{i=1}^{M} \hat{a}_i z_i + \sum_{i=1}^{M} b_i (1 - z_i) - \lambda \left(\sum_{i=1}^{M} k_i z_i + \sum_{i=1}^{M} \hat{l}_i (1 - z_i) \right) \right],$$

subject to

$$\sum_{i=1}^{M} z_i \ge M - N$$

$$b_i = 1 \text{ for } i = 1, \dots, M$$

$$k_i = 0 \text{ for } i = 1, \dots, M$$

$$\lambda \ge 0.$$

- N The number of samples assigned to human.
- (a) The number of samples assigned to a human is less than or equal to N.
- (b) Human confidence is assumed to be 1.
- (c) Machine effort is assumed to be 0.
- (d) λ is to balance confidence and effort.

Model confidence estimation

Model Confidence Estimation (MCE)

- Maximum Class Probability (MCP)
 - Use the classification probabilities to measure the confidence.
- Trust Score (TS)
 - Estimate whether the predicted category of a test sample by a classifier can be trusted, i.e., the ratio between the Hausdorff distance from the sample to the non-predicted and the predicted categories.
- True Class Probability (TCP)
 - Similar to TS, except that the estimation is obtained by a learning-based method, BERT + ConfidNet.

Human effort estimation

Human Effort Estimation (HEE)

- Use time cost, i.e., the time spent for each annotation, to represent human effort.
- Use random forest regression to estimate the time cost.
- Dialogue related features
 - total turns, malevolent turns, non-malevolent turns, first submission or not, paraphrased turns, total length, FK score (readability), DC score (readability), contains malevolent turn or not, perplexity score...
- Worker related features
 - worker test score, approval rate ranking...

			-
Metric	Machine	Human	HMCEval
Reliability			
Precision	0.818	1	0.983
Recall	0.803	1	0.976
F1-score	0.810	1	0.980
Accuracy	0.862	1	0.985
Efficiency			
Human ratio	0	1	0.500
Time cost	0	1	0.500

HMCEval achieves around 99% evaluation accuracy with half of the human effort spared.

References

- Zhongkun Liu, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Maarten de Rijke and Ming Zhou. Learning to Ask Conversational Questionsby Optimizing Levenshtein Distance. The 59th Annual Meeting of the Association for Computational Linguistics (ACL), 2021.
- Yangjun Zhang, Pengjie Ren and Maarten de Rijke. A Human-machine Collaborative Framework for Evaluating Malevolence in Dialogues. The 59th Annual Meeting of the Association for Computational Linguistics (ACL), 2021.
- Chuan Meng, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tengxiao Xi and Maarten de Rijke. Initiative-Aware Self-Supervised learning for Knowledge-Grounded Conversations. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2021.
- Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zhumin Chen, Zhaochun Ren and Maarten de Rijke. Wizard of Search Engine: Access to Information Through Conversations with Search Engines. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2021.
- Weiwei Sun, Chuan Meng, Qi Meng, Zhaochun Ren, Pengjie Ren, Zhumin Chen and Maarten de Rijke. Conversations Powered by Cross-Lingual Knowledge. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2021.
- Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evangelos Kanoulas, Christof Monz, Maarten de Rijke.
 Conversations with Search Engines: SERP-based Conversational Response Generation. ACM Transactions on Information Systems (TOIS), 2021.
- Weiwei Sun, Chuan Meng, Qi Meng, Zhaochun Ren, Pengjie Ren, Zhumin Chen, Maarten de Rijke.
 Conversations Powered by Cross-Lingual Knowledge. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2021.
- Dongdong Li, Zhaochun Ren, Pengjie Ren, Zhumin Chen, Miao Fan, Jun Ma, Maarten de Rijke.Few-Shot Variational Reasoning for Medical Dialogue Generation. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2021.

Thank you for your attention!

Pengjie Ren

renpengjie@sdu.edu.cn
https://pengjieren.github.io/