

Design and Analysis of Experiments

04 - Statistical Intervals

Version 2.12.2018b

Felipe Campelo

http://orcslab.cpdee.ufmg.br/

Graduate Program in Electrical Engineering

Belo Horizonte September 2018

"I attribute my success to this: I never gave or took an excuse."

"I think one's feelings waste themselves in words; they ought all to be distilled into actions, and into actions which bring results."

Florence Nightingale 1820-1910 English statistician and founder of modern nursing

Statistical Intervals

Introduction

Statistical intervals are important in quantifying the uncertainty associated to a given estimate;

As an example, consider the situation: a coaxial cable manufacturing operation produces cables with a target resistance of 50Ω and a known standard deviation of 2Ω . Assume that the resistance values can be well modeled by a normal distribution.

Let us now suppose that a sample mean of n=25 observations of resistance yields $\bar{x}=48$. Given the sampling variability, it is very likely that this value is not exactly the true value of μ , but we are so far unable quantify how much uncertainty there is in this estimate.

Statistical Intervals

Definition

Statistical intervals define regions that are likely to contain the true value of an estimated quantity.

Intervals are used to quantify the uncertainty associated with a given estimate, allowing the derivation of statements at quantifiable levels of confidence.

Three (plus one) of the most common types of interval are:

- Tolerance intervals;
- Prediction intervals;
- Highest density intervals;
- Confidence intervals.

Definition

"A tolerance interval is an **enclosure** interval for a specified **proportion of the sampled population**, not its mean or standard deviation. For a specified confidence level, you may want to determine lower and upper bounds such that a given percent of the population is contained within them." [1].

Definition

The common practice in engineering of defining specification limits by adding $\pm 3\sigma$ to a given estimate of the mean arises from this definition for a Normal population, $\approx 99.75\%$ of observations fall within $\mu \pm 3\sigma$.

Since σ^2 is usually unknown, we use s^2 and compensate for the additional uncertainty in this estimation.

Calculation (Normal Population)

For a Normal population, the *two-sided tolerance interval* for a given population proportion γ at the confidence level $1 - \alpha$ is given as:^[2]

$$\bar{X} \pm S \sqrt{\frac{(n-1)}{n} \frac{\left(n + z_{(\alpha/2)}^2\right)}{\chi^2_{(\gamma)}^{(n-1)}}}$$

where $z_{(q)}$ is the q-quantile of the standard normal distribution; and $\chi^{2(n-1)}_{(q)}$ is the q-quantile of the χ^2 distribution with n-1 degrees of freedom.

Quantiles

Definition

Confidence intervals quantify the degree of uncertainty associated with the **estimation of population parameters** such as the mean or the variance.

Can be defined as "the interval that contains the true value of a given population parameter with a confidence level of $100(1-\alpha)$ ";

Another useful definition is to think about confidence intervals in terms of confidence *in the method*: "The method used to derive the interval has a hit rate of 95%" - i.e., the interval generated has a 95% chance of 'capturing' the true population parameter."

Example: 100 Cl.95 for a sample of 25 observations

For an interactive demonstration of the factors involved in the definition of a confidence interval, download the files from https://git.io/vxXGj and run on RStudio.

CI on the Mean of a Normal Variable

The two-sided $CI_{(1-\alpha)}$ for the mean of a normal population with known variance σ^2 is given by:

$$\bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where $(1 - \alpha)$ is the confidence level and z_x is the x-quantile of the standard normal distribution.

For the more usual case with an unknown variance,

$$\bar{x} + t_{\alpha/2}^{(n-1)} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{1-\alpha/2}^{(n-1)} \frac{s}{\sqrt{n}}$$

where $t_x^{(n-1)}$ is the x-quantile of the t distribution with n-1 degrees of freedom.

CI on the Variance and Standard Deviation of a Normal Variable

A two-sided confidence interval on the variance of a normal variable can also be easily calculated:

$$\frac{(n-1)s^2}{\chi^{2(n-1)}_{1-\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^{2(n-1)}_{\alpha/2}}$$

For the standard deviation one simply needs to take the squared root of the confidence limits.

Statistical Intervals

Wrapping up

Statistical intervals quantify the uncertainty associated with different aspects of estimation;

Reporting intervals is always better than point estimates, as it provides the necessary information to quantify the location and uncertainty of your estimated values;

The correct interpretation is a little tricky (although not very difficult)^[3], but it is essential in order to derive the correct conclusions based on the statistical interval of interest.

Intervals for other distributions (and even distribution-free intervals) can be obtained using analytical or resampling methods.

Bibliography

Required reading

- J.G. Ramírez, Statistical Intervals: Confidence, Prediction, Enclosure: https://git.io/v5ZFh
- D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, Chapter 8. 3rd Ed., Wiley 2005.
- 3 J. Orloff and J. Bloom, Bootstrap confidence intervals: https://goo.gl/XrTlao

Recommended reading

- O Simply Statistics (blog) http://simplystatistics.org
- R. Dawkins, Climbing Mount Improbable, W.W.Norton&Co.,1997.

About this material

Conditions of use and referencing

This work is licensed under the Creative Commons CC BY-NC-SA 4.0 license (Attribution Non-Commercial Share Alike International License version 4.0).

```
http://creativecommons.org/licenses/by-nc-sa/4.0/
```

Please reference this work as:

Felipe Campelo (2018), Lecture Notes on Design and Analysis of Experiments. Online: https://github.com/fcampelo/Design-and-Analysis-of-Experiments Version 2.12. Creative Commons BY-NC-SA 4.0.

```
@Misc(Campelo2018,
    title={Lecture Notes on Design and Analysis of Experiments},
    author={Felipe Campelo},
    howPublished={\url{https://github.com/fcampelo/Design-and-Analysis-of-Experiments}},
    year={2018},
    note={Version 2.12. Creative Commons BY-NC-SA 4.0.},
}
```

