Ch 15 Wave Motion

Key words: traveling waves (transverse & longitudinal); velocity, energy, and intensity of traveling wave; interference; standing waves (resonance); resonant frequencies (harmonics/overtones).

Note: MasteringPhysics Ch 15 Homework is due Monday 4/12 @11:59pm

\sim	bie	~+:-	
. ,,	\cap	<i>(</i> ' '	V/₽`
\sim	JIC	\sim α	v C .

I.	Analyze	the	Traveling	Wave	equation	216	(x.	t
1.	Iniaiyzc	u	IIAVCIIIIE	Wav C	Cquation	u,		ι

- \square By examining the equation y(x,t) in its different forms.
- \square By creating 2 graphs: **position-graph** (y vs x) & **time-graph** (y vs t)

II. Solve problems that involve a traveling wave

 \square By constructing our own equation y(x,t) to fit the situation.

Content Review:

[10mins]

■ The **Traveling Wave equation** y(x,t) is a function of 2 variables: x and t

$$y(x,t) = A\sin(kx + \omega t + \phi)$$

where the variables are:

$$y=$$
 $A=$ $k=$ $x=$ $\phi=$

■ For a wave traveling **on a string**, the velocity is given by

$$v_{\rm string} =$$

where T is the tension and μ is the string's mass density (units of kg/m)

■ For traveling waves **in general**, the velocity is given by

v =

where ω is the angular frequency and k is the wave number

- For a string with 2 sections of **differing mass density** (μ_1 and μ_2), the tension T and frequency f throughout the string is constant.
 - $\hfill\Box$ If tension was NOT the same, then the joint between the 2 sections would accelerate and disrupt the string's motion.
 - \Box If frequency was NOT the same, then the wave would not be a smooth wave i.e. different points of the string would not oscillate in-phase.

Guided Practice [10mins]

A sinusoidal wave traveling on a string in the negative x direction has amplitude $1.00\,\mathrm{cm}$, wavelength $3.00\,\mathrm{cm}$, and frequency $245\,\mathrm{Hz}$. At t=0, the particle of string at x=0 is displaced a distance $0.80\,\mathrm{cm}$ above the origin (equilibrium) and moving upward.

- (i) Construct the equation representing this traveling wave as a function of x and t
- (ii) Plot the following 2 equations and describe their physical representation:
 - \square Holding t = 0 s, graph y(x,t) over distance x.
 - \Box Holding $x = 5.00 \, \mathrm{cm}$, graph y(x, t) over time t.
- Here is a link to Desmos online graphing calculator

Solution

```
(i) y(x,t)=(1.00\,\mathrm{cm})\sin\left[(2.09\,\mathrm{cm}^{-1})\,x+(1540\,\mathrm{rad/s})\,t+0.93\,\mathrm{rad}\right] where x is in centimeters and t in seconds.
```

(ii) and (iii) link to Desmos graph

A cord has 2 sections with linear mass densities of $0.10 \,\mathrm{kg/m}$ and $0.20 \,\mathrm{kg/m}$. An incident wave given by $D = (0.05 \,\mathrm{m}) \sin{(7.5x - 12.0t)}$, where x is in meters and t in seconds, travels along the lighter cord.

- (i) Determine wavelength on the lighter section of cord
- (ii) Determine the tension in the cord
- (iii) Determine the wavelength when the wave travels on the heavier section

Solution

- (i) $\lambda_{\text{light}} = 0.84 \,\text{m}$
- (ii) $T = 0.26 \,\mathrm{N}$
- (iii) $\lambda_{\text{heavy}} = 0.59 \,\text{m}$