The Fundamental Concepts

Prof. Der-Ming Ma, Ph.D.

Department of Aerospace Engineering

Tamkang University

Definitions

- Function
- Functional
- Linearity of Functions
- Linearity of Functionals
- Closeness of Functions
- The Increment of Functions
- The Increment of Functionals
- The Differential of a Function
- The Variation of a Functional
- Maxima and Minima of Functions
- Maxima and Minima of Functionals
- The Fundamental Theorem of Calculus of variations

Definitions – Function

Definition 3-1

A function f is a rule of correspondence that assigns to each element \mathbf{q} in a certain set \mathcal{D} a unique element in a set \mathcal{R} . \mathcal{D} is called the domain of f and \mathcal{R} is the range.

Example 3.1-1 Suppose $q_1, q_2, ..., q_n$ are the coordinates of a point in n-dimensional Euclidean space and

$$f(\mathbf{q}) = \sqrt{q_1^2 + q_2^2 + \dots + q_n^2}$$
 (3.1-1)

the real number assigned by f is the distance of the point \mathbf{q} from the origin.

Definitions – Functional

Definition 3-2

A functional J is a rule of correspondence that assigns to each function \mathbf{x} in a certain class Ω a unique real number. Ω is called the *domain* of functional, and the set of real numbers associated with the functions in Ω is called the *range* of the functional.

Example 3.1-2 Suppose x is a continuous function of t defined in the interval $[t_0, t_f]$ and

$$J(x) = \int_{t_0}^{t_f} x(t)dt$$
 (3.1-2)

the real number assigned by J is the area under the x(t) curve.

Definitions – Linearity of Functions

Definition 3-3

f is a *linear function* of \mathbf{q} if and only if it satisfies the principle of homogeneity

$$f(\alpha \mathbf{q}) = \alpha f(\mathbf{q}) \tag{3.1-3}$$

for all $\mathbf{q} \in \mathcal{D}$ and for all real numbers α such that $\alpha \mathbf{q} \in \mathcal{D}$, and the *principle of additivity*

$$f(\mathbf{q}^{(1)} + \mathbf{q}^{(2)}) = f(\mathbf{q}^{(1)}) + f(\mathbf{q}^{(2)})$$
 (3.1-4)

for all $\mathbf{q}^{(1)}$, $\mathbf{q}^{(2)}$, and $\mathbf{q}^{(1)} + \mathbf{q}^{(2)}$ in \mathcal{D} .

Example 3.1-3. Check the linearity of the functions f(t) = 5t for all t, and g(t) = 2/t for t > 0.

$$f(2t) = 5(2t) = 10t = 2 \cdot f(t)$$
$$f(t+2t) = 5(t+2t) = 5t + 10t = f(t) + f(2t)$$

$$g(2t) = \frac{2}{2t} = \frac{1}{t} = 2 \cdot g(t)$$
$$g(t+2t) = \frac{2}{t+2t} \neq g(t) + g(2t)$$

Definitions — Linearity of Functionals

Definition 3-4

J is a linear functional of \mathbf{x} if and only if it satisfies the principle of homogeneity

$$J(\alpha \mathbf{x}) = \alpha J(\mathbf{x}) \tag{3.1-5}$$

for all $\mathbf{x} \in \Omega$ and for all real numbers α such that $\alpha \mathbf{x} \in \Omega$, and the *principle of additivity*

$$J(\mathbf{x}^{(1)} + \mathbf{x}^{(2)}) = J(\mathbf{x}^{(1)}) + J(\mathbf{x}^{(2)})$$
(3.1-6)

for all $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, and $\mathbf{x}^{(1)} + \mathbf{x}^{(2)}$ in Ω .

Example 3.1-4. Check the linearity of the functionals

$$J(x) = \int_{t_0}^{t_f} x(t)dt$$
 and $F(x) = \int_{t_0}^{t_f} x^2(t)dt$

$$J(2x) = \int_{t_0}^{t_f} 2x(t)dt = 2\int_{t_0}^{t_f} x(t)dt = 2J(x)$$
$$J(x+2x) = \int_{t_0}^{t_f} [x(t) + 2x(t)]dt = \int_{t_0}^{t_f} x(t)dt + \int_{t_0}^{t_f} 2x(t)dt$$

$$F(2x) = \int_{t_0}^{t_f} [2x(t)]^2 dt = 4 \int_{t_0}^{t_f} x(t) dt \neq 2F(x)$$
$$F(x+2x) = \int_{t}^{t_f} [x(t) + 2x(t)]^2 dt \neq F(x) + F(2x)$$

Definitions – Closeness of Functions

Definition 3-5

The *norm* in *n*-dimensional Euclidean space is a rule of correspondence that assigns to each point \mathbf{q} a real number. The *norm* of \mathbf{q} denote by $||\mathbf{q}||$, satisfies the following properties:

- 1. $\|\mathbf{q}\| \ge 0$ and $\|\mathbf{q}\| = 0$ if and only if $\mathbf{q} = 0$.
- 2. $\|\alpha \mathbf{q}\| = |\alpha| \|\mathbf{q}\|$ for all real number α .

3.
$$\|\mathbf{q}^{(1)} + \mathbf{q}^{(2)}\| \le \|\mathbf{q}^{(1)}\| + \|\mathbf{q}^{(2)}\|$$
.

When we say two points $\mathbf{q}^{(1)}$ and $\mathbf{q}^{(2)}$ are close together, we mean that $\|\mathbf{q}^{(1)} - \mathbf{q}^{(2)}\|$ is small.

Definition 3-6

The *norm of a function* is a rule of correspondence that assigns to each function $\mathbf{x} \in \Omega$, defined for $t \in [t_0, t_{\mathrm{f}}]$, a real number. The *norm* of \mathbf{x} denote by $||\mathbf{x}||$, satisfies the following properties:

- 1. $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$ for all $t \in [t_0, t_f]$.
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all real number α .
- 3. $\|\mathbf{x}^{(1)} + \mathbf{x}^{(2)}\| \le \|\mathbf{x}^{(1)}\| + \|\mathbf{x}^{(2)}\|$.

Considering the closeness of two functions \mathbf{y} and \mathbf{z} , let $\mathbf{x}(t) = \mathbf{y}(t) - \mathbf{z}(t)$, the difference of two functions. $||\mathbf{x}(t)||$ is small if the functions are "close".

Definitions — The Increment of Functions

Definition 3-7

If \mathbf{q} and $\mathbf{q} + \Delta \mathbf{q}$ are elements for which the function f is defined, then *the increment of f*, denoted by Δf , is

$$\Delta f \triangleq f(\mathbf{q} + \Delta \mathbf{q}) - f(\mathbf{q}) \tag{3.1-7}$$

Notice that Δf depends on both \mathbf{q} and $\Delta \mathbf{q}$, in general, so to be more explicit we would write $\Delta f(\mathbf{q}, \Delta \mathbf{q})$

Example 3.1-5. Consider the function

$$f(\mathbf{q}) = q_1^2 + 2q_1q_2$$
 for all real q_1, q_2

The increment of f is

$$\Delta f = f(\mathbf{q} + \Delta \mathbf{q}) - f(\mathbf{q})$$

$$= [q_1 + \Delta q_1]^2 + 2[q_1 + \Delta q_1][q_2 + \Delta q_2] - [q_1^2 + 2q_1q_2]$$

$$= 2q_1\Delta q_1 + [\Delta q_1]^2 + 2\Delta q_1q_2 + 2\Delta q_2q_1 + 2\Delta q_1\Delta q_2$$

Definitions — The Increment of Functionals

Definition 3-8

If x and $x + \delta x$ are functions for which the functional J is defined, then *the increment of J*, denoted by ΔJ , is

$$\Delta J \triangleq J(\mathbf{x} + \delta \mathbf{x}) - J(\mathbf{x}) \tag{3.1-8}$$

Again, notice that ΔJ depends on both \mathbf{x} and $\delta \mathbf{x}$, in general, so to be more explicit we would write $\Delta J(\mathbf{x}, \delta \mathbf{x})$

Example 3.1-6. Find the increment of the functional

$$J(x) = \int_{t_0}^{t_f} x^2 dt,$$

where x is a continuous function of t.

The increment of J is

$$\Delta J = J(x + \delta x) - J(x)$$

$$= \int_{t_0}^{t_f} [x(t) + \delta x(t)]^2 dt - \int_{t_0}^{t_f} x^2(t) dt$$

$$= \int_{t_0}^{t_f} [2x(t)\delta x(t) + [\delta x(t)]^2] dt$$

Definitions – The Differential of a Function

Definition 3-9

The increment of a function of n variables can be written as

$$\Delta f(\mathbf{q} + \Delta \mathbf{q}) = df(\mathbf{q}, \Delta \mathbf{q}) + g(\mathbf{q}, \Delta \mathbf{q}) \cdot \|\Delta \mathbf{q}\|$$
(3.1-9)

where df is a linear function of $\Delta \mathbf{q}$. If

$$\lim_{\|\Delta \mathbf{q}\| \to 0} \{g(\mathbf{q}, \Delta \mathbf{q})\} = 0,$$

then f is said to be *differentiable* at \mathbf{q} , and df is the *differential* of f at the point \mathbf{q} .

Notice:

If f is a differentiable function of one variable t, then the differential can be written

$$df(t, \Delta t) = f'(t)\Delta t$$

f'(t) is called the *derivative* of f at t.

Example 3.1-7. Find the differential of the function

$$f(\mathbf{q}) = q_1^2 + 2q_1q_2$$
 for all real q_1, q_2

The increment of f is

$$\Delta f(\mathbf{q} + \Delta \mathbf{q})
= f(\mathbf{q} + \Delta \mathbf{q}) - f(\mathbf{q})
= [q_1 + \Delta q_1]^2 + 2[q_1 + \Delta q_1][q_2 + \Delta q_2] - [q_1^2 + 2q_1q_2]
= \underbrace{[(2q_1 + 2q_2)\Delta q_1 + 2q_1\Delta q_2]}_{df(\mathbf{q},\Delta \mathbf{q})} + \underbrace{\frac{[\Delta q_1]^2 + 2\Delta q_1\Delta q_2}{\sqrt{[\Delta q_1]^2 + [\Delta q_2]^2}}}_{g(\mathbf{q},\Delta \mathbf{q})} \sqrt{[\Delta q_1]^2 + [\Delta q_2]^2}$$

Definitions – The Variation of a Functional

Definition 3-10

The increment of a functional can be written as

$$\Delta J(\mathbf{x} + \delta \mathbf{x}) = \delta J(\mathbf{x}, \delta \mathbf{x}) + g(\mathbf{x}, \delta \mathbf{x}) \cdot \|\delta \mathbf{x}\|$$
 (3.1-10)

where δJ is linear in δx . If

$$\lim_{\|\delta\mathbf{x}\|\to 0} \{g(\mathbf{x}, \delta\mathbf{x})\} = 0,$$

then J is said to be *differentiable* on \mathbf{x} , and δJ is the *variation* of J evaluated for the function \mathbf{x} .

Example 3.1-6. Find the variation of the functional

$$J(x) = \int_0^1 x^2 dt,$$

where x is a continuous function of t.

The increment of J is

$$\Delta J = J(x + \delta x) - J(x) = \int_0^1 [x(t) + \delta x(t)]^2 dt - \int_0^1 x^2(t) dt$$

$$= \int_0^1 [2x(t)\delta x(t)] dt + \int_0^1 \frac{[\delta x(t)]^2}{\|\delta x\|} dt \cdot \|\delta x\|$$

$$= \underbrace{\int_0^1 [2x(t)\delta x(t)] dt}_{\delta J(\mathbf{x},\delta \mathbf{x})} + \underbrace{\int_0^1 \frac{[\delta x(t)]^2}{\|\delta x\|} dt}_{g(\mathbf{x},\delta \mathbf{x})} \cdot \|\delta x\|$$

Notice:

It is very important to keep in mind that δJ is **the linear approximation** to the difference in the functional J caused by two comparison curves. If the comparison curves are close, then the variation should be a good approximation to the increment; however, δJ may be a poor approximation to ΔJ if the comparison curves are far apart.

Definitions – Maxima and Minima of Functions

Definition 3-11

A function f with domain \mathcal{D} has a relative extremum at the point \mathbf{q}^* if there is an $\varepsilon > 0$ such that for all points \mathbf{q} in \mathcal{D} that satisfy $||\mathbf{q} - \mathbf{q}^*|| < \varepsilon$ the increment of f has the same sign. If

$$\Delta f = f(\mathbf{q}) - f(\mathbf{q}^*) \ge 0 \tag{3.1-11}$$

 $f(\mathbf{q}^*)$ is a relative minimum; if

$$\Delta f = f(\mathbf{q}) - f(\mathbf{q}^*) \le 0 \tag{3.1-12}$$

 $f(\mathbf{q}^*)$ is a relative maximum.

Notice

If (3.1-11) is satisfied for arbitrarily large ε , then $f(\mathbf{q}^*)$ is a *global*, or *absolute, minimum*. Similarly, if (3.1-12) holds for arbitrarily large ε , then $f(\mathbf{q}^*)$ is a *global*, or *absolute, maximum*.

Definitions – Maxima and Minima of Functionals

Definition 3-12

A functional J with domain Ω has a relative extremum at the point \mathbf{x}^* if there is an $\varepsilon > 0$ such that for all functions \mathbf{x} in Ω which satisfy $||\mathbf{x} - \mathbf{x}^*|| < \varepsilon$, the increment of J has the same sign. If

$$\Delta J = J(\mathbf{x}) - J(\mathbf{x}^*) \ge 0 \tag{3.1-13}$$

 $J(\mathbf{x}^*)$ is a relative minimum; if

$$\Delta J = J(\mathbf{x}) - J(\mathbf{x}^*) \le 0 \tag{3.1-14}$$

 $J(\mathbf{x}^*)$ is a relative maximum.

Notice

If (3.1-13) is satisfied for arbitrarily large ε , then $J(\mathbf{x}^*)$ is a *global*, or *absolute, minimum*. Similarly, if (3.1-14) holds for arbitrarily large ε , then $J(\mathbf{x}^*)$ is a *global*, or *absolute, maximum*. \mathbf{x}^* is called an *extremal*, and $J(\mathbf{x}^*)$ is referred to as an *extremum*.

The Fundamental Theorem of Calculus of variations

Let \mathbf{x} be a vector function of t in the class Ω , and $J(\mathbf{x})$ be a differentiable functional of \mathbf{x} . Assume that the functions in Ω are not constrained by any boundaries. If \mathbf{x}^* is an extremal, the variation of J must vanish on \mathbf{x}^* ; that is

 $\delta J(\mathbf{x}^*, \delta \mathbf{x}) = 0$ for all admissible $\delta \mathbf{x}$. (3.1-15)

Proof by contradiction:

Assume \mathbf{x}^* is an extremal, and that $\delta J(\mathbf{x}^*, \delta \mathbf{x}) \neq 0$. We will show that these assumption imply that the increment ΔJ can be made to change sign in an arbitrarily small neighborhood of \mathbf{x}^* . (It contradicts to <u>Definition 3-12</u>, that is, ΔJ has the same sign.)

Proof:

The increment is

$$\Delta J(\mathbf{x}^*, \delta \mathbf{x}) = J(\mathbf{x}^* + \delta \mathbf{x}) - J(\mathbf{x}^*)$$

$$= \delta J(\mathbf{x}^*, \delta \mathbf{x}) + g(\mathbf{x}^*, \delta \mathbf{x}) \cdot \|\delta \mathbf{x}\| \qquad (3.1-16)$$

where $g(\mathbf{x}^*, \delta \mathbf{x}) \to 0$ as $||\delta \mathbf{x}|| \to 0$; thus, there is a neighborhood, $||\delta \mathbf{x}|| < \varepsilon$, where $g(\mathbf{x}^*, \delta \mathbf{x}) \cdot ||\delta \mathbf{x}||$ is small enough so that δJ dominate the expression for ΔJ .

Now let us select the variation $\delta \mathbf{x} = \alpha \delta \mathbf{x}^{(1)}$, where $\alpha > 0$ and $\|\alpha \delta \mathbf{x}^{(1)}\| < \epsilon$. Suppose that $\delta J(\mathbf{x}^*, \alpha \delta \mathbf{x}^{(1)}) < 0$.

Since δJ is a linear functional of δx , the principle of homogeneity gives

$$\delta J(\mathbf{x}^*, \alpha \delta \mathbf{x}^{(1)}) = \alpha \delta J(\mathbf{x}^*, \delta \mathbf{x}^{(1)}) < 0.$$

The sign of ΔJ and δJ are the same for $||\delta \mathbf{x}|| < \varepsilon$; thus

$$\Delta J(\mathbf{x}^*, \alpha \delta \mathbf{x}^{(1)}) < 0.$$

Now let us select the variation $\delta \mathbf{x} = -\alpha \delta \mathbf{x}^{(1)}$. Clearly, $\|\alpha \delta \mathbf{x}^{(1)}\| < \varepsilon$ implies that $\|-\alpha \delta \mathbf{x}^{(1)}\| < \varepsilon$; therefore, the sign of $\Delta J(\mathbf{x}^*, -\alpha \delta \mathbf{x}^{(1)})$ is the same as the sign of $\delta J(\mathbf{x}^*, -\alpha \delta \mathbf{x}^{(1)})$. Again, using the principle of homogeneity, we obtain

$$\delta J(\mathbf{x}^*, -\alpha \delta \mathbf{x}^{(1)}) = -\alpha \delta J(\mathbf{x}^*, \delta \mathbf{x}^{(1)});$$

therefore, since $\delta J(\mathbf{x}^*, \alpha \delta \mathbf{x}^{(1)}) < 0$, $\delta J(\mathbf{x}^*, -\alpha \delta \mathbf{x}^{(1)}) > 0$, and this implies

$$\Delta J(\mathbf{x}^*, -\alpha \delta \mathbf{x}^{(1)}) > 0.$$

To recapitulate, we have shown that if $\delta J(\mathbf{x}^*, \delta \mathbf{x}) \neq 0$, then in an arbitrary small neighborhood of \mathbf{x}^*

$$\Delta J(\mathbf{x}^*, \alpha \delta \mathbf{x}^{(1)}) < 0$$

and

$$\Delta J(\mathbf{x}^*, -\alpha \delta \mathbf{x}^{(1)}) > 0$$
,

Thus contradicting the assumption that x^* is an extremal.