Dynamic Host Configuration Protocol

Classical Internet Applications - Midterm Research

Ahmed Nouralla

Security and Network Engineering Lab Innopolis University

November 26, 2024

Overview

- 1. Introduction
- 2. History
- 3. Terminology
- 4. Use case
- 5. Architecture
- 6. Configuration Management
- 7. Security issue
- 8. Tools and implementations
- 9. Practical Demonstration

1. Introduction

 Dynamic Host Configuration Protocol (DHCP) provides a framework for hosts joining a network to automatically obtain configuration information essential for further communications.

• Such information includes: 1. The host's identity (e.g., IP address with subnet mask) and 2. Addresses of other key nodes (e.g., network gateway, name server, time server, etc.).

2. History

- RFC 951 (1985) defined the bootstrap protocol (BOOTP) for static IP assignment to clients based on their MAC address.
- RFC 1531 (1993) introduced DHCP as an extension to BOOTP for automatic IP address assignment. RFC 1541 (1993) replaced it with clearer specifications.
- RFC 2131 (1997) standardized DHCPv4, defining the DHCP message format and operation procedures. It remains the primary DHCPv4 standard.

Note

Multiple RFCs were published later introducing extensions, enhancements, security patches, and support for IPv6.

3. Terminology

Essential terminology as defined in RFC 2131

- DHCP client: host using DHCP to obtain configuration parameters
- DHCP server: host providing the configuration parameters to clients
- Relay agent: host/router forwarding DHCP messages between server and client
- **Binding**: the configuration parameters (i.e., at least the IP address to be bound to the client).

4. Use case

The most common use-case of DHCP (also known as the DORA process) involves four message exchanges.

- **Discover**: client probing DHCP servers
- Offer: server proposing an address
- Request: client asking to get a certain address
- ACK: server acknowledging the assignment

Figure: The DORA process in DHCP

5. Architecture

- DHCP uses a client server architecture as illustrated.
- A DHCP server is always listening on port 67/UDP for client messages.
- Currently, 18 OP codes (1-18) are in use to specify different types of DHCP messages, with over 80 options and extensions for communicating different types of information.

		FIELD	OCTETS	
0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6				Message op code / message type. 1 = BOOTREQUEST, 2 = BOOTREPLY
op (1) htype (1)	hlen (1) hops (1)	htype		Hardware address type, see ARP section in "Assigned Numbers" RFC; e.g., '1' = 10mb ethernet.
xid (hlen		Hardware address length (e.g. '6' for 10mb ethernet).
secs (2)	flags (2)	hops		Client sets to zero, optionally used by relay agents when booting via a relay agent.
ciaddr	(4)	xid		Transaction ID, a random number chosen by the client, used by the client and server to associate
yiaddr	(4)			messages and responses between a client and a server.
siaddr	(4)	secs		Filled in by client, seconds elapsed since client
giaddr	(4)	flags		began address acquisition or renewal process. Flags (see figure 2).
 chaddr	(16)	ciaddr		Client IP address; only filled in if client is in BOUND, RENEW or REBINDING state and can respond to ARP requests.
		yiaddr		'your' (client) IP address.
		siaddr		IP address of next server to use in bootstrap; returned in DHCPOFFER, DHCPACK by server.
		giaddr		Relay agent IP address, used in booting via a
sname	(64)			relay agent.
		chaddr		Client hardware address.
		sname	64	Optional server host name, null terminated string.
file	(128)	file	128	Boot file name, null terminated string; "generic"
				name or null in DHCPDISCOVER, fully qualified directory-path name in DHCPOFFER.
options	(variable)	options		Optional parameters field. See the options
‡				documents for a list of defined options.
Figure 1: Format o	of a DHCP message	Ta	ble 1:	Description of fields in a DHCP message

Figure: DHCP message format as defined in RFC2131

	DHCP messa	ge types							
Code •	Name ¢	Length +	RFC ¢	RFC 1497 (BOOTP Vendor Information Extensions) vendor extensions[14]: Section 3					
1	DHCPDISCOVER	1 octet	rfc2132 ^[14] : Section 9.6	Code •		•		Notes	
2	DHCPOFFER	1 octet	rfc2132 ^[14] : Section 9.6		Pad 0 octets			Can be used to pad other options so that they are aligned to the word boundary; is not	
3	DHCPREQUEST	1 octet	rfc2132 ^[14] : Section 9.6	0			0 octets	followed by length byte	
4	DHCPDECLINE	1 octet	rfc2132 ^[14] : Section 9.6	1	Suhnet mask 4 octets		4 octets	Client's subnet mask as per RFC 950 ₺. If both the subnet mask and the router option	
5	DHCPACK	1 octet	rfc2132 ^[14] : Section 9.6	_			4 001013	(option 3) are included, the subnet mask option must be first.	
6	DHCPNAK	1 octet	rfc2132 ^[14] : Section 9.6		Time offset		4 octets	Offset of the client's subnet in seconds from Coordinated Universal Time (UTC). The offset is expressed as a two's complement 32-bit integer. A positive offset indicates a location east of the zero meridian and a negative offset indicates a location west of the zero meridian.	
7	DHCPRELEASE	1 octet	rfc2132 ^[14] : Section 9.6	2					
8	DHCPINFORM	1 octet	rfc2132 ^{[14]: Section 9.6}						
9	DHCPFORCERENEW	1 octet	rfc3203 ^{[15]: Section 4}	2	Router		Multiples of	Available routers, should be listed in order of preference	
10	DHCPLEASEQUERY	1 octet	rfc4388 ^[16] : Section 6.1	3			4 octets		
11	DHCPLEASEUNASSIGNED	1 octet	rfc4388 ^[16] : Section 6.1	4	Time server		Multiples of	Available Time Protocol servers to synchronise with, should be listed in order of	
12	DHCPLEASEUNKNOWN	1 octet	rfc4388[16]: Section 6.1				4 octets	preference	
13	DHCPLEASEACTIVE	1 octet	rfc4388 ^{[16]: Section 6.1}	5			Multiples of 4 octets	Available IEN 116 name servers, should be listed in order of preference	
14	DHCPBULKLEASEQUERY	1 octet	rfc6926[17]: Section 6.2.1		Domain name		Multiples of		
15	DHCPLEASEQUERYDONE	1 octet	rfc6926 ^[17] : Section 6.2.1	6	server		4 octets	Available DNS servers, should be listed in order of preference	
16	DHCPACTIVELEASEQUERY	1 octet	rfc7724 ^[18] : Section 5.2.1		Log server		Multiples of 4 octets	Available log servers, should be listed in order of preference	
17	DHCPLEASEQUERYSTATUS	1 octet	rfc7724 ^{[18]: Section 5.2.1}	1					
18	DHCPTLS	1 octet	rfc7724[18]: Section 5.2.1						

Figure: DHCP message types and common options

Figure: DHCP client state transition diagram. Adapted from RFC 2131 Fig 5.

6. Configuration Management

A DHCP server can be configured to allocate addresses using one of three allocation strategies:

- Dynamic: providing addresses from a pool with leases (expiration) time.
- Automatic: permanent address assignment, unless voluntarily released.
- **Manual**: static IP/MAC binding table maintained by the administrator.

7. Security issue

- Rogue DHCP is a Man-In-The-Middle attack where a malicious host on the same subnet as the DHCP client deceives them by acting as the DHCP server
- It does so by replying to DHCPDISCOVER, offering it's own IP address as the default gateway.
- Once carried out, it allows the attacker to intercept all requests sent by the victim.
- A common mitigation strategy (DHCP snooping) involves dropping DHCP messages that did not come from the trusted switchport (the one connected to the real DHCP server).

8. Tools and implementations

• DHCP server functionality can be implemented in routers, and in Linux hosts.

- Popular server implementations include dnsmasq and ISC DHCP server (superseded by Kea)
- A thin client (e.g., dhcpcd or dhclient) is needed for communication with the server.

9. Practical Demonstration

A quick demo showing the minimal set of commands to configure a working DHCP server on Cisco IOS. The scenario is simulated in GNS3 and the results are inspected in Wireshark.

Figure: Demo with Cisco IOS, GNS3, and Wireshark

References

Ralph Droms (1997)

Dynamic Host Configuration Protocol

RFC 2131. Available: https://doi.org/10.17487/RFC2131

Kurose, James F. and Ross, Keith W. (2012)

Computer Networking: A Top-Down Approach (6th Edition)

Available: https://doi.org/10.5555/258450

Cisco Documentation

Configuring the Cisco IOS DHCP Server

Available:

 $https://www.cisco.com/en/US/docs/ios/12_4t/ip_addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/htdhcpsv.html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/configuration/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/html/linearing/scales/addr/guide/htm$