Europäisches Palentamt

European Patent Office

Office européen des brevets

(11) EP 1 022 334 A2

(15)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 26.07.2000 Bulletin 2000/30

(21) Application number: 99125399.8

(22) Date of filling: 20.12.1999

(51) Int. Ct.⁷: **C12N 9/28**, C12N 15/31, C12N 15/56

(84) Designated Contracting States:

AT BEICH CY DE DKIES PLER GBIGRIE IT LILU MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 21.12.1998 JP 36248798 21.12.1998 JP 36248696

- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: Kao Corporation Tokyo 103-8210 (JP)
- (72) Inventors:
 - Hagihara, Hiroshi,
 c/o Kao Corp.,
 Research Lab.
 Haga-gun, Tochigi 321-3497 (JP)
 - Kitayama, Kaori,
 c/o Kao Corp.,
 Research Lab.
 Haga-gun, Tochigi 321-3497 (JP)

- Hayashi, Yasuhiro,
 c/o Kao Corp.,
 Research Lab.
 Haga-gun, Tochigi 321-3497 (JP)
- Igarashi, Kazuaki,
 c/o Kao Corp.,
 Research Lab.
 Haga-gun, Tochigi 321-3497 (JP)
- Endo, Kelji,
 c/o Kao Corp.,
 Research Lab.
 Haga-gun, Tochigi 321-3497 (JP)
- Ozaki, Katsuya,
 c/o Kao Corp.,
 Research Lab.
 Haga-gun, Tochigi 321-3497 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstresse 4 81675 München (DE)

Remarks:

The biological material has been deposited with NiBH under number(s) FERM BP-6945, FERM BP-6946

(54) Novel amylases

(57) Described are liquelying aixaline amylases each having residual activity not less than 70% when treated at pH 10 and 45°C for 30 minutes in the presence of 1 to 100 mM of EDTA or EGTA; and a detergent comprising the same. Compared with the conventional amylases for a detergent, they have high chelating-agent resisting performance.

Description

45

50

65

[9001] The present invention relates to liquelying alkaline α-amylases having high chelating-agent-resisting performance and being useful as a component for detergents.

[0002] a. Amyleses have been used widely in verious industrial fields such as starch, brewing, fiber, pharmaceutical and lood industries. Since they are known to be suited as one of the components of a detergent, they are incorporated even in an automatic dish washing detergent or a laundry detergent as a detergency reinforcing component (Enzymes in Detergency, p203, Marcel Detere Inc., New York (1995)).

[0003] As liquefying a-amylases useful for a detergent and having the optimum effects on the alkaline side, those previously found by the present inventors and derived from the strain Bacillus op. KSM-1378 (FERM BP-3048) are known. Recently, a-amylases having the optimum pH at around 8 to 9.5 have been disclosed (WO95/2639). They resemble closely those derived from the strain KSM-1378 in properties and structure.

[0004] In a detergent, a chelating agent such as phosphoric acid, citric acid or zeolite is incorporated to remove, from a washing liquid, cleansing-disturbing ions such as calcium ions. It has been known for long years that liquelying α -amylases require calcium ions for expressing their enzyme activity but such calcium ions are deactivated by the above-described chelating agent or a stronger chelating agent EDTA (HANDBOOK OF AMYLASES AND RELATED ENZYMES, p43, The Amylase Research Society Japan (1988)]. In recent days, it has been reported that X-ray crystallographic analysis of the liquelying α -amylases known to date reveals that three calcium atoms exist in the molecule thereof and 13 aming acid residues are conserved with markedly high frequency [Structure, 6, 281 (1998)].

[0005] Inhibition of enzyme activity by a chelating agent is also recognized in the above-described liquefying alkaline α-amylase derived from the strain Bacillus sp. KSM-1378 (FERM BP-2048) and sufficient effects of this α-amylase are not always exhibited when it is incorporated in an automatic dish washing detergent or laundry detergent. Equelying α-amylases (Termamyl and Duramyl, products of Novo Nordisk A/S) derived from Bacillus lichentformis, which are most inequently employed as a component of an automatic dish washing detergent or laundry detergent, are also insufficient in chelating-agent-resisting performance.

[9006] Among the liquefying amylases known to date, a liquefying α -amylase (WO90/11852) derived from the strain belonging to *Pyrococcus sp.* and an α -amylase (WO96/02633) which is derived from the strain belonging to *Sul-folious sp.* and is effective in the liquefying step of a sterch ere free from this influence from a chelating agent. These enzymes however have the optimum acting pH in a range of 4 to 6 and 2.5 to 4.5, respectively and do not act in the alkaline range so that they are not suited as a component of a detergent.

[9807] An object of the present invention is therefore to provide a figuritying alkaline α-amylase having higher chelating agent-resisting performance than conventional amylases for a detergent and being useful as a component of a detergent; and a detergent composition having this liquefying alkaline α-amylase incorporated therein.

[0008] In one aspect of the present invention, there is thus provided a liquefying alkaline amylase having residual activity not less than 70% when treated at pH 10 and 45°C for 30 minutes in the presence of 1 to 100 mM of ECTA or ECTA.

[0009] In another aspect of the present invention, there is also provided a DNA fragment encoding said liquelying alkaline amylass.

[0010] In a further aspect of the present invention, there is also provided a detergent composition containing said figurelying alkaline ampliase.

FIG. 1 is a diagram illustrating a relationship between a treating concentration with EDTA and residual activity, of each of the liquetying alkaline amylases (K38 and K38) according to the present invention and known amylases used for a detergent; FIG. 2 is a diagram illustrating a relationship between a treating concentration with EGTA and residual activity, of each of the liquelying alkaline armylases (K36 and K38) according to the present invention and known amyleses used for a detergent; FIG. 3 is a diagram illustrating a relationship between a treating concentration with zeolite and residual activity, of the liquelying alkaline amylase K86 according to the present invention; FIG. 4 is a diagram illustrating a relationship between a treating concentration with citric acid and residual activity, of the liquefying alkaline emylase KS6 according to the present invention; FIG. 5 is a diagram illustrating a relationship between a treating concentration with zeolite and residual activity, of the liquefying alkaline amylase K38 according to the present invention; FIG. 6 is a diagram illustrating a relationship between a treating concentration with citric acid and residual activity, of the liquativing alkaline arriylase K38 according to the present invention: FIG. 7 is a diagram litustrating a relationship between a reaction pH and relative activity, of the tiquetying alkaline amylase K36 according to the present invention; FIG. 8 is a diagram illustrating a relationship between a reaction pH and relative activity, of the liquefying alkaline amylase K38 according to the present invention; and FIG. 9 is a diagram illustrating a relationship between a treating time with H₂O₂ and residual activity, of each of the liquefying alkaline amylases (K36 and K38) according to the present invention and known emplases used for detergent.

[0011] The term "alkaline α -amylase" as used herein means an α -emylase having the optimum pH in the alkaline range. The term "neutral" as used herein means a pH range of from 6 to 8, while the term "alkaline" means a pH range higher than the neutral range. As described in HANDBOOK OF AMYLASES AND RELATED ENZYMES [p40-41, The Amylase Research Society of Japan(1988)], the term "liquefying α -amylase" means an α -amylase which degrades starches or starchy polysaccharides at high random.

[0012] The enzyme according to the present invention is a liquelying afkaline amylase having residual activity not less than 70% when treated at pH 10 and 45°C for 30 minutes in the presence of 1 to 100 mM of EDTA or EGTA, with the residual activity not less than 50% being preferred and that not less than 90% being more preferred.

[0013] The invention enzyme is required to have the above-described chelating-agent resistance, but is preferred to have the below-described properties 1) and 2) and is more preferred to have the below-described properties 1 to 5).

1) Oplimum acting pH

It has optimum action at pH exceeding 8.0 (as a result of reaction at 50°C for 15 minutes with a soluble starch as a substrate)

2) Action

15

20

28

30

35

It hydrolyzes u-1,4-glucosidic linkages in starchas, amylose, amylopectin and partial degradation products thereof and from amylose, forms glucose (G1), maltose (G2), maltotriose (G3), maltotetraose (G4), maltopentaose (G5), maltohexaose (G6) and maltohextaose (G7). It however does not act on pullulan.

3) pH stability (Britton-Robinson butler)

It exhibits a residual activity of not less than 70% within a pH range of from 6.5 to 31.0 when treated at 40°C for 30 minutes.

4) Acting temperature range and optimum acting temperature:

It acts in a wide temperature range of from 20 to 80°C, with the optimum temperature being 50 to 60°C.

5) Temperature stability.

It exhibits a residual activity of not less than 80% at 40°C when treated for 30 minutes in a 50 mM glycine sodium hydroxide buffer (pH 10), while it exhibits a residual activity of about 60% even at 45°C.

In addition, the enzymes of the invention having the below-described properties 6) are more preferred.

6) Oxidizing-agent-resisting performance

it exhibits a residual activity of not less than 70% when treated at pH 10 and 30°C for 60 minutes in the presence of 2% H_2O_3 .

Although there is no particular limitation imposed on the specific activity of the enzyme of the invention, that having specific activity as described below in 7) is particularly preferred.

7) Specific activity

The specific activity calculated from the enzyme activity of it when reacted at pH 10 and 50°C for 15 minutes (with a soluble starch as a substrate) and a protein concentration as measured by a protein assay kit (product of Bio-rad Laboratories) is 3000 U/mg or greater.

[8014] Examples of the enzyme of the invention include those having an amino acid sequence as shown in Sequence Listing No. 1 or 2 to be described subsequently herein and those having the above-described amino acid sequence except for having in a part thereof substitution, deletion or addition of one or more than one amino acids. Concerning the substitution, deletion or addition, homology of at least 80% is preferred, with that of at least 90% being particularly preferred. Incidentally, the homology is calculated by the Lipman-Pearson method (Science, 227, 1435(1985)).

[0015] One of the characteristics of the amino acid sequence of the enzyme of the invention is that different from 45 the liquefying a-amylases known to date which have markedly highly conserved 13 amino acid residues at a calcium linkage site, the enzyme of the invention has a low conservation ratio. Particularly, five residues, among eight residues which correspond to aspartic acid having a carboxyl side chain playing an important role in binding of calcium atoms in the conventional liquelying a-amylase, are asparagine or serine without carboxyl-side chain in the enzyme of the invention which suggests that no calcium is contained in the molecule. In other words, the enzyme of the invention is presumed to have high chelating-agent-resisting performance because it does not need calcium for the expression of enzyme activity. As such a liquefying u-amylase having a low conservation ratio of amino acid residues at the calcium linkage site and therefore being not so dependent on catcium, only that derived from Pyrococcus sp. is known [Appl. Environm. Microbiol., 63, 3569(1997)]. This enzyme however is not suited for use as a component for a detergent, because it is an acidic amylase having the optimum acting pH at around 5.5 to 6 and its activity strongly decreases at a temperature not greater than 50°C. The homology of the amino acid sequence of this enzyme with that of the enzyme of the invention is only about 30%, indicating that the liquelying alkaline a amylase of the present invention is utterly different from this enzyme. Accordingly, the liquefying alkaline a amylase according to the present invention is a novel enzyme which can be strictly distinguished from the liquelying a-emyteses known to date.

[8016] The enzyme of the present invention is prepared, for example, by culturing target-enzyme-producing bacteria belonging to *Bacillus sp.* and collecting the enzyme from the culture. Examples of such target-enzyme-producing bacteria include the strains KSM-K36 and KSM-K38 each having the below-described mycological properties.

Table 1

	Strain KSM-K36	Stain KSM-KS8
(a) Results of microscopic observa- tion	The strains K36 and K38 are bacili ha µm and 1.0 to 1.2 µm x 1.8 to 3.8 µm, endospore (1.0 to 1.2 µm x 1.2 to 1.4 to the cell, Positive in the Gram's stain.	respectively They form an oval micron) at the center or near the end o
(b) Growth in various media Since the present strain is alkaliphilic, 0.5% sodium carbonate is-added to the medium employed in the following tests.		
•Nutrient agar plate culture	Good growth is observed. The colony has a circular shape, it has a flat surface, but a rough periphery. The color of the colony is pale earthlike color.	Good growth is observed. The colon has a circular shape, it has a flat su tace and a smooth periphery. The color of the colony is yellowish brown
Nutrient ager stant culture	Growth is observed.	Growth is observed.
 Nutrient broth culture 	Growth is observed,	Growth is observed.
Nutrient-gelatin stab culture	Good growth is observed. No lique- faction of gelatin is observed.	Good growth is observed. No lique- faction of gelatin is observed.
·Litmus milk	No change is observed.	No change is observed.
(c) Physiological properties *Reduc- tion of a nitrate and dentification reaction	Reduction of a nitrate is positive. Denitrification reaction is negative.	Reduction of a nitrate is positive. Denitrification reaction is negative.
•MR test	Owing to the alkaline medium, judg- ment is impossible.	Owing to the alkaline medium, judg- ment is impossible.
-V-P test	Negative.	Negative.
•Formation of indole	Negative	Negative.
•Formation of hydrogen nitride	Negative.	Negative.
·Hydrolysis of starch	Positive.	Positive.
•Assimilation of citric acid	It grows on a Christensen's medium, but not on a Koser's medium and Simmon's medium.	it grows on a Christensen's medium but not on a Roser's medium and Simmon's medium
•Assimilation of an inorganic nitrogen source	It assimilates a nitrate but not an ammonium salt.	it assimilates a nitrate but not an ammonium salt.
•Formation of a potorant	Formation of a pale yellow colorant on King's B medium.	Negative.
*Urease	Negative	Negative.
«Oxidase	Negative.	Negative.
-Catalase	Positive.	Positive.

65

s

Table 1 (continued)

	Strain KSM-K36	Stain KSM-K38
-Range for growth	Temperature range for growth is 15 to 40°C. The optimum growth temperature ranges from 30 to 37°C.	Temperature range for growth is 15 to 40°C. The optimum growth tempera- ture is 30°C.
	The pH range for growth is 8.0 to 11.0. The optimum growth pH is pH 10.0 to 11.0.	The pH range for growth is 9.0 to 11.0. The optimum growth pH is sim- llar to the above.
◆Gehavior to oxygen	Aerophilic.	Aerophilic.
<o-f td="" test<=""><td>No growth is observed.</td><td>No growth is observed.</td></o-f>	No growth is observed.	No growth is observed.
Assimilation of saccharides	Assimilated are D-palactose, D-xylose ose, litoose, D-glucose, D-mannose, m starch, raffinose and D-fructose.	
*Growth on a salt-containing medium	Grown at a salt concentration of 12%, I 15%.	but no growth at a salt concentration of

[0017] As a result of investigation based on the above-described microbiological properties while making reference to "Bergey's Manual of Systematic Bacteriology" [Williams & Wilkins, Linited States of America (1986)] and "The Genus Bacillus" (Agricultural Research Service, Washington, D.C. (1973)], these cell strains are recognized to be endospore-producing bacillus belonging to Bacillus sp. Since they cannot grow in the neutral range but exhibit good growth in the high alkeline range, they belong to alkeliphilic microorganisms and can be distinguished from the conventional bacteria belonging to Bacillus sp. which show growth in the nautral range, in addition, microbiological and physiological properties of them were compared with those of known alkeliphilic bacilli [Microbiol., 141, 1745(1995)]. As a result, neither the strain KSM-K36 nor the strain KSM-K38 agrees with any known alkeliphilic bacillus. Each of the strains KSM-K36 and KSM-K38 was therefore judged as a novel strain and was deposited under the name of FERM BP-6945 and FERM BP-6946 with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of Industrial Trade and Technology.

20

[0018] The liquefying alkaline amylase according to the present invention can be obtained by inoculating the above-described microorganism to a medium, followed by incubation in a conventional manner. Since the microorganism is alkaliphilic, an alkaline medium is preferred. The target liquefying alkaline amylase can be collected from the thus obtained culture. The supernatent can be used as it is. Alternatively, it can be used as a purified enzyme after subjecting it to salting-out, precipitation or ultrafiltration to obtain a crude enzyme as needed and then, purifying and crystallizing in a conventional manner.

[0019] One example of the purification process of the liquefying alkaline amylase of the present invention will next be mentioned. By subjecting the culture supernatant to (1) emmonium sulfate precipitation, (2) DEAE-Toyopearl (TOSOH Corporation) column chromatography or (3) gel filtration, it is possible to obtain a purified enzyme which provides a single band in polyacrylamide electrophoresis (gel concentration 10%) and sodium dodecyl sulfate (SDS) electrophoresis.

[0020] The liquelying alkaline amylase according to the present invention can also be prepared by obtaining a gene encoding the liquelying alkaline amylase of the present invention and a vector plasmid containing it, transforming a suitable microorganism, preferably a bacterium belonging to Bacillus sp. by using the plasmid and then incubating the transformed microorganism or bacterium.

[0021] Examples of the gene encoding the liquelying alkaline arrylase of the present invention include those having a nucleotide sequence as shown in Sequence Listing Nos. 3 and 4 to be described subsequently herein

[0022] As described above, the liquefying alkaline amylase according to the present invention has the optimum pH on the alkaline side and has high chelating-agent-resisting performance so that it is particularly useful as an enzyme to be incorporated in a detergent. The liquelying alkaline amylase of the present invention has strong oxidizing-agent-resistance as described above so that it can be added to a detergent having an oxidizing agent such as a bleaching agent incorporated therein. The amount of the enzyme of the invention to a detergent is preferably 0.001 to 5 wt.%.

[0023] In addition to the above-described liquiditying alkaline amylase, known detergent components can be added to the detergent composition of the present invention. Examples of the known detergent component include those described in page 5, upper right column, line 14 to the same page, lower right column, line 29 of WO94/25881, for example, surfactant, chelating agent, alkaline agent, inorganic salt, bleaching agent and fluorescent agent.

[0024] A surfactant is added in an amount of 0.5 to 60 wt.% (which will bereinafter be indicated "%", simply) in a

detergent composition, more specifically, 10 to 45% in a powdery detergent composition and 20 to 50% in a liquid detergent composition. When the detergent composition of the present invention is a bleeching detergent or automatic dish washing detergent, a surfactant is generally added in an amount of 1 to 10%, preferably 1 to 5 %, a divalent metal ion scavenger is added in an amount of 0.01 to 50 %, preferably 5 to 40% and an alkali agent and an inorganic salt are added in a total amount of 0.01 to 50%, preferably 1 to 40%.

[0025] A recontamination preventive is added in an amount of 0.001 to 10%, preferably 1 to 5%.

[0026] In addition to the amylase of the present invention, protease, cellulase, protopectinase, pectinase, lipase, hemicellulase, β-glycosidase, glucose oxidase, cholesterol oxidase and the like can be employed. These enzymes can be added in an amount of 0.001 to 5%, preferably 0.1 to 3%. The bleaching agent (ex. hydrogen peroxide, percarbonate or the like) is preferably added in an amount of 1 to 10%. Upon use of the bleaching agent, a bleaching editivator can be added in an amount of 0.01 to 10%. Examples of the fluorescent agent include biphenyl type fluorescent agents (ex. "Chinopearl CBS-X", trade name) and stilbene type fluorescent agents (ex. DM type fluorescent dye). It is preferred to add the fluorescent agent in an amount of 0.001 to 2%.

[0027] The above-described detargent composition can be provided in the form of liquid, powder, granute or the like. This detargent composition can be used as a laundry detargent, automatic dish washing detargent, pipe detargent, artificial tooth detargent or bleaching agent.

Examples

30

40

49

20 [9028] The enzyme activity was measured in accordance with the below-described method by using the following buffers:

pH 4.5 to 6.0 acetate buffer

pH 6.0 to 6.0 potassium phosphate buffer pH 9.0 to 10.5 glycine sodium hydroxide buffer

pH 10.0 to 12.0 carbonate buffer

pH 4.0 to 12.0 Sritton-Robinson buffer

[Measuring method of the activity of amylase]

1. Preparation process of a reagent

(Preparation of a 1% aqueous solution of soluble starch)

5 [0029] In 400 mL of delonized water was suspended 5 g of soluble starch (potato-derived starch, product of Sigma Chemical Co., Ltd.). While stirring in a boiling water, the suspension was dissolved by heating for about 10 minutes, followed by the addition of delonized water to give a total volume of 500 mL.

(Preparation of a 250 mM glycine sodium hydroxide buffer (pH 10))

[0030] In about 300 mL of deionized water was dissolved 9.38 g of glycine (guaranteed class, product of Wako Pure Chemical Industries, Ltd.), followed by adjustment of the resulting solution to pH 10 with an about 5N aqueous sodium hydroxide solution by using a pH meter. To the pH-adjusted solution was added deionized water to give a total volume of 500 mL.

(Preparation of a DNS reagent)

[0031] In 200 mil. of deionized water was dissolved 8 g of sodium hydroxide (guaranteed class, product of Wako Pure Chemical industries, Ltd.). To the resulting solution was added 2.5 g of 3,5-dinitrosalicytic acid (DNS, guaranteed class, product of Wako Pure Chemical Industries, Ltd.) in portions, while dissolving the letter in the former. After DNS was completely dissolved. 150 g of sodium potassium tertrate (guaranteed class, product of Wako Pure Chemical Industries, Ltd.) was added. After complete dissolution, deionized water was added to the resulting solution to give a total volume of 500 mt.

ss. (Preparation of a glupose solution for a calibration curve)

[9032] Using a glucose standard solution (for photoelectric use, product of Wako Pure Chemical Industries, Ltd.) and delonized water, glucose solutions of 0, 1, 2, 3, 4 and 5 µmol/0,1 mt were prepared, respectively.

2. Measuring method of the activity of amylase

(Dilution of an enzyme solution)

5 [0033] The purified enzyme was diluted with a 10 mM glycine sodium hydroxide buffer (pH 10) to give a 5-absorbance [= (absorbance of a sample) - (absorbance of a biank)] not greater than 0.6.

(Measurement of a sample)

[0034] In a test tube, 0.5 mL of the 1% aqueous solution of soluble starch, 0.2 mL of the 250 mM glycine sodium hydroxide buffer (pH 10) and 0.2 mL of deionized water (said mixture will hereinafter be called "substrate solution") were changed, followed by preliminary heating for about 5 minutes in a water bath of 50°C. After preliminary heating, 0.1 mt of a properly diluted enzyme solution was added to the reaction mixture, followed by reaction at 50°C for 15 minutes. After completion of the reaction, 1.0 mL of the DNS reagent was added to the reaction mixture, followed by color development by heating in boiling water for 5 minutes. Immediately after that, the solution was allowed to cool down in an icewater bath. The resulting solution, after cooling, was added with 4.0 mL of deionized water, followed by mixing. The absorbance of the solution at 535 nm was then measured.

(Measurement of blank)

50 (wedstreweur o

[9035] In a test tube, 0.9 mL of the substrate solution was charged, followed by the addition of 1.0 mL of the DNS reagent and then with 0.1 mL of an enzyme solution. The resulting mixture was heated in a boiling water for 5 minutes to cause color development. Immediately after that, the reaction mixture was allowed to cool down in ice water. After cooling, 4.0 mL of delonized water was added to the reaction mixture, followed by mixing. The absorbance of the solution at 535 nm was then measured.

(Preparation of a calibration curve)

[0036] In a test tube, 0.9 mL of the substrate solution was charged, followed by the addition of 1.0 mL of the DNS reagent and then with 0.1 mL of each of the glucose solutions for a calibration curve having various concentrations. The resulting mixture was heated in boiling water for 5 minutes to cause color development. Immediately after that, the solution was allowed to cool down in ice water. The resulting solution, after cooling, was added with 4.0 mL of delonized water, followed by mixing. The absorbance of the solution at 535 nm was then measured. On a graph, the glucose concentration (µmol/0.1 mL) was plotted as abscissa and the absorbance as ordinate and the slope of those linear plots was determined by the least square method. A conversion factor (F) was calculated in accordance with the following formula:

Conversion Factor (F)= [1/(slope)] x [1/15] x [1000/0.1]

40 [D037] Incidentally, a calibration curve was prepared whenever activity was measured.

(Calculation of activity)

50

[0036] With the amount of the enzyme which formed reducing suger equivalent to 1 µmol of glucose in one minute was defined as one unit (1U), the titler of the enzyme was calculated in accordance with the following formula:

Activity of amylase (U/L) = [6-absorbance] x (conversion factor (F)] x (dilution ratio)

[Testing method of chelating-agent-resisting performance]

(Preparation of an EDTA solution)

[9089] After 9.3 g of EOTA (product of Sigma Chemical Co., Ltd.) was dissolved in about 80 mt. of delonized water, the resulting solution was adjusted to pH 8 with an about 5N aqueous sodium hydroxide solution by using a pH meter. To the pH-adjusted solution, delonized water was added to give a total volume of 100 mt., whereby a 250 mM EDTA solution was prepared. The resulting solution was diuted with delonized water to prepare 10 to 100 mM EDTA solutions. [9040] After 9.5 g of EGTA (product of Sigma Chemical Co., Ltd.) was dissolved in about 80 mt. of delonized water, the resulting solution was adjusted to pH 8 with an about 5N aqueous sodium hydroxide solution by using a pH meter.

To the pH-adjusted solution, deionized water was added to give a total volume of 100 mL, whereby a 250 mM EGTA solution was prepared. The resulting solution was diluted with deionized water to prepare 10 to 100 mM EGTA solutions. (Testing method of chelating-agent-resisting performance)

5 In the case of treatment with 1 mM EDTA at 45°C for 30 minutes.

[0041] In a test tube, 0.1 mL of the 10 mM EDTA solution, 0.2 mL of the 250 mM glycine sodium hydroxide buffer (pH 10) and 0.1 mL of deionized water were charged, followed by preliminary heating in a water bath of 45°C for about 5 minutes. After preliminary heating, 0.1 mL of an enzyme solution diluted properly with a 10 mM glycine sodium hydroxide buffer (pH 10) was added to the reaction mixture. The resulting mixture was kept at a temperature of 45°C for 30 minutes. Thirty minutes later, a 0.1 mL portion of the resulting solution was added to 0.9 mL of the substrate solution preliminary heated in a water bath of 50°C and the residual enzyme activity was measured in accordance with the amylase activity measuring method.

15 [Testing method of oxidizing-agent resisting performance]

[0042] In a test tube, 0.067 mL of hydrogen peroxide (a 30% aqueous hydrogen peroxide solution, product of Wako Pure Chemical Industries, Ltd.), 0.2 mL of the 250 mM glycine sodium hydroxide buffer (pH 10) and 0.633 mL of deionized water were charged, followed by preliminary heating in a water bath of 30°C for about 5 minutes. After preliminary heating, 0.1 mL of an enzyme solution properly diluted with a 10 mM glycine sodium hydroxide buffer (pH 10) was added to the reaction mixture. The resulting mixture was kept at 30°C for 60 minutes. Sixty minutes later, a 0.2 mL portion of the resulting solution was charged in a feet tube containing 1 pL of catalase (derived from bovine liver, product of Boehringer Mannheim GmbH) placed in advance in ice water, whereby hydrogen peroxide was deactivated and the reaction was terminated. Then, a 0.1 ml portion of the resolion-terminated solution was added to 0.9 mL of the substrate solution preliminary heated in a water bath of 50°C and residual enzyme activity was measured in accordance with the amylase activity measuring method.

[Quantitative analysis of protein]

35

50

65

[9843] Quantitative analysis of a protein was carried out in accordance with the standard assay method by Protein Assay Kit II (catalogue No. 500-0002, product of Bio-rad Laboratories) with bovine serum albumin attached to the kit as a standard protein.

Example 1: Screening of liquetying alkaline amylases having chelating-agent-resisting performance

[0044] In sterifized water was suspended about 0.8 g of soil, followed by heating at 80°C for 15 minutes. The supernatant after heat treatment was diluted properly with sterifized water, and then it was spread onto an again medium A for isolation of amylase-producing microorganisms. Colonies were then formed by incubation at 30°C for 2 days. The colony having at the periphery thereof a transparent help formed by the hydrotysis of starch was selected and it was separated as amylase-producing bacteria. The isolated bacteria were inoculated on a medium B, followed by aerobic culture at 30°C for 2 days under shaking. After centrifugal separation of the resulting culture, chelating-agent (EDTA) resisting performance of crude amylase in the resulting supernatant was measured. In addition, the optimum pH of the crude amylase was measured, and thus bacteria producing the liquefying alikaline amylase of the present invention were screened.

[0045] According to the above-described method, the strain KSM-K36 and the strain KSM-K38 each belonging to the Bacillus sp. were obtained.

\$

10

18

20

1.5% Medium A: Tryptone 0.5% Soylone Sodium chloride 0.5% Colored starch 0.5% Ager 1.5% Na₂CO₃ 0.5% (pH 10) Medium B: Trypione 1.5% Sovtone 0.5% Sodium chloride 0.5% Soluble starch 1.0% Na₂CO₃ 0.5% (pH 10)

Example 2: Culture of the strains KSM-K36 and KSM-K38

28

[9046] On the figuid medium B as described in Example 1, each of the strains KSM-KS5 and KSM-K35 was inoculated, followed by serobic culture at 20°C for 2 days under shaking. The amylase activity (pH 8.5) of the supernatant obtained by centrifugal separation was measured. As a result, it has been found that the culture solutions had activity of 1177 U and 557 U/L, respectively.

30

48

Example 3: Purification of the liquefying alkaline amylases of the present invention

Anmonium sulfate was added to the supernatiant culture of the strain Bacillus sp. KSM-K36 to give 80% saturation, followed by stirring. The precipitate so formed was collected and dissolved in a 10 mM Tris-hydrochloric acid buffer (pH 7.5) containing 2 mM CaCl₂, followed by dialysis overnight against the buffer. The inner dialyzate was thereafter applied to DEAE-TOYOPEARL 650 M column which had been equilibrated with the same buffer, and then protein was sluted with a linear concentration gradient of NaCl (0 M to 1 M) in the same buffer. After dialysis of active fractions against the above-described buffer, further purification was canted out by gel-filtration column chromatography. Active fractions thus obtained were dialyzed against the same buffer, which made it possible to obtain a purified enzyme providing a single band by both polyacrylamide get electrophoresis (get concentration: 10%) and sodium-dodecylsulfate (SDS) polyacrylamide get electrophoresis. From the supernatant culture of the strain Bacillus sp. KSM-K38, another purified enzyme was obtained by the similar method.

Example 4: Chelating-agent-resisting performance of the liquelying atkaline amyltases of the present invention

[0048] Using two purified liquelying alkaline amylases (which will hereinafter be abbreviated as "K36" and "K38", respectively) of the present invention obtained respectively from the strains K9M-K36 and KSM-K38 in Example 3, resisting performance against various chelating agents was measured.

1) EDTA or EGTA resisting performance

[0049] To a 50 mM glycine sodium hydroxide buffer (pH 10) containing EDTA or EGTA (each, product of Sigma Co., Ltd.) having a final concentration of 0 to 100 mM, a purified enzyme properly diluted with a 10 mM glycine sodium hydroxide buffer (pH 10), followed by treatment at a predetermined temperature (30°C, 40°C or 45°C) for 30 minutes. The residual enzyme activity of the reaction mixture was measured in accordance with the amylase activity measuring method (with a 50 mM glycine sodium hydroxide buffer (pH 10)). As a control, purified products of Termamyl and Duremyl (each, purified from products of Novo Industry A/S in the granular form), which were amylases derived from Bacillus lichenilormis, were employed.

[0050] As illustrated in FiGS. 1 and 2, it was confirmed that K36 and K98 each had high resisting performance compared with Tarmamyl and Duramyl, not influenced by highly concentrated EDTA or EGTA.

2) Resisting performance against citric acid or zeolite

S

45

50

65

[0051] To a 50 mM glycine sodium hydroxide buffer (pH 10) containing trisodium citrate dihydrate (guaranteed class product of Wake Pure Chemical Industries, Ltd.) or synthetic zeolite A-3 (product of Wake Pure Chemical Industries, Ltd.) having each of final concentrations of 0 to 0.5%, a purified enzyme properly diluted with a 10 mM glycine sodium hydroxide buffer (pH 10) was added, followed by treatment at each of predatermined temperatures (40°C and 45°C) for 30 minutes. The residual enzyme activity of the reaction mixture was measured in accordance with the amylese activity measuring method (with a 50 mM glycine sodium hydroxide buffer (pH 10)).

[9052] As a result, it was confirmed that each of K36 and K38 was influenced by neither citric acid nor zeofite (as illustrated in FIGS. 3 to 6).

15 Example 5: Acting pH and optimum acting pH of the liquelying alkaline amylases of the present invention

[0053] The acting pH and optimum acting pH of each of K36 and K38 were measured in accordance with the amylase activity measuring method by using various buffers having a final concentration of 50 mM (acetate buffer (pH 4.5 to 6.0), potassium phosphate buffer (pH 5.0 to 8.0), glycine sodium hydroxide buffer (pH 9.0 to 10.5) and carbonate buffer (pH 10.0 to 12.0)] and they were indicated by relative activity with the maximum activity as 100%.

[9054] As a result (as illustrated in FIGS. 7 and 8), it was confirmed that each of K86 and K98 acted within a pH range of 8.0 to 10.0 and the optimum acting pH was 8.0 to 9.0. Incidentally, the pH indicated was the actually measured value of the reaction mixture.

Example 6: Oxidizing-agent-resisting performance and relative enzyme activity of the liquefying alkaline amylases of the present invention

[0055] An enzyme (K36, K38, Tarmamy) or Durarryl) properly diluted with a 10 mM glycine sodium hydroxide buffer (pH 10) was added to a 50 mM glycine sodium hydroxide buffer (pH 10) containing H₂O₂ having a final concentration of 2% (580 mM), followed by treatment at 30°C for 60 minutes. The residual activity was measured at appropriate intervals in accordance with the amylase activity measuring method (with a 50 mM glycine sodium hydroxide buffer (pH 10)). The oxidizing-agent-resisting performance was indicated by residual activity with activity before treatment as 100%.

[0056] As a result (FIG. 9), it was recognized that each of KSS and KS8 maintained the residual activity not less than 70%, particularly not less than 94%, even after treatment at pH 10 and 30°C for 60 minutes in the presence of 2% H₂O₂ and thus had sufficient oxidizing-agent-resisting performance.

[0057] The specific activities of K36 and K38 calculated from the value of enzyme activity when reacted at pH 10 and 50°C for 15 minutes (with a soluble starch as a substrate) and the concentration of protein as measured by a protein assay kit (product of Bio-rad Laboratories) were 4300 U/mg and 3600 U/mg, respectively (Table 2). It revealed that each enzyme has a specific activity not less than 3000 U/mg, markedly high specific activity compared with exidizing-agent-resistent enzymes (LAMY • M202T (WO98/44126) and Duramyi) formed by protein engineering. Accordingly, the liquefying alkaline amylases of the present invention are advantageous from the viewpoints of an amount to be added to a delergent, industrial fermentation production and the like.

Table 2

Comparisor	of specific activity
Enzyme	Specific activity (U/mg)
K36	4300
K38	3600
LAMY*	4000
LAMY · M202T**	1700
Duramyi	500

^{*}LAMY: derived from the strain Bacillus sp. KSM-1378

[&]quot; LAMY - M2021" the above enzyme substifuted with Met2021 in:

Enzyme activity: solivity when reacted at 50°C for 15 minutes (with a soluble starch as a substrate) by using a glycine sodium hydroxide buffer (pH 10).

Amount of protein: measured by a protein assay kit (product of Bio-rad Laboratories)

5 Example 7: Other enzymetic properties of the liquefying alkaline amylases (K36 and K38) of the present invention

[9058] These two purified enzymes were analyzed to have the following properties:

(1) Action:

10

12

20

28

30

35

60

Each of them hydrolyses a.1.4-glucosidic linkages in starches, amylose, amylopectin and partial degradation products thereof and from amylose, forms glucose (G1), mailose (G2), maltotriose (G3), maltotetraose (G4), mailopentaose (G5), maltohexaose (G6) and maltoheptaose (G7). If however does not act on pullulan. (2) pH stability (Britton-Robinson buffer)

Each of them exhibits a residual activity of not less than 70% when treated at 40°C for 30 minutes within a pH range of from 6.5 to 11.0.

(3) Acting temperature range and optimum acting temperature:

Each of them acts in a wide temperature range of from 20°C to 80°C, with the optimum acting temperature being 50 to 60°C.

(4) Temperature stability:

As a result of treatment in a 50 mM glycine sodium hydroxide buffer (pH 10) at varied temperatures for 30 minutes to study conditions of deactivation, each of them exhibited a residual activity of not less than 80% at 40°C and even about 60% at 45°C.

(5) Molecular weight:

Each of them has a molecular weight of $55,000 \pm 5,000$ as measured in accordance with the sodium dodecyl sulfate polyacrylamide gel electrophoresis.

(6) Isoelectric point:

Each of them has an isoelectric point of around pH 4.2 when measured by isoelectric focusing electrophoresis.

(7) Effects of surfactants:

Each of them is substantially free from activity inhibition (activity remaining ratio not less than 90%) when treated at pH 10 and 30°C for 30 minutes in a 0.1% solution of a surfactant such as sodium linear alkylbenzene sulfonates, sodium alkylbulfate esters, sodium polyoxyethylene alkylbulfate esters, sodium α-olefinsulfonates, sodium α-sulfonated fatty acid esters, sodium alkylbulfonates, DSD, soaps or softanot.

(8) Effects of metal salts:

Each of them was treated at pH 10 and 30°C for 30 minutes in the presence of various metal salts, whereby their effects were studied. As a result, K36 is inhibited by 1 mM of Mr²⁺ (inhibition ratio: about 95%) and slightly inhibited by 1 mM of Hg²⁺, Be²⁺ or Cd²⁺ (inhibition ratio: 30 to 40%). K38 is inhibited by 1 mM of Mr²⁺ (inhibition ratio: about 75%) and slightly inhibited by 1 mM of Sr²⁺ or Cd²⁺ (inhibition ratio: about 30%).

(9) N-terminal amino acid sequence

The N-terminal amino acid sequence of each of the present amylases was determined by Edman degradation [Edman, P., Acta Chem. Scand., 4 . 283 (1948)] with a protein sequencer (model 477A manufactured by ABI Corp.). As a result, it was found to have a sequence of Asp-Gly-Leu-Asn-Gly-Thr-Met-Met-Gln-Tyr-Tyr-Glu-Tip-His-Leu.

45 Example 8: Evaluation of detergency of an automatic dish washing detergent containing each of the present liquefying alkeline amylases

[0053] Detergency of an automatic dish washing detergent containing each of the present liquefying alkaline amylases (K36 and K38) was evaluated under the below-described conditions. As a control, a detergent free from the invention enzyme was used.

1) Preparation of solled dishes

[0060] To a porcelain dish was applied 1 mi. of oatmest (Quaker Corp.) which had been boiled in boiling tap water and then added with tap water to dissolve therein. After the dish was dried at room temperature for 3 hours, it was stored at 5°C (semi-hermetically-sealed condition) until provided for use. Three dishes were prepared in this way for washing once

2) Washing conditions

[1800]

- Washer employed: Full automatic dish washer "NP-810", trade name; manufactured by Matsushita Electric Industries Co., Ltd.
 - Washing temperature: Water temperature is increased gradually to about 55°C.
 - · Water used for washing; tap water
 - Concentration of the detergent: 0.2 wt.%
- 10 Washing time: washing for about 20 minutes -- drising for about 20 minutes (standard course)
 - Amount of water circulated upon washing: 3.5 L.
 - 3) Composition of the detergent (% indicates wt.%)
- 15 [8062] 2.2% of "Pullulonic L-61". 24.7% of sodium carbonate, 24.7% of sodium bicarbonate, 10.0% of sodium percarbonate, 12.0% of No.1 sodium silicate, 20.0% of trisodium citrate, 2.2% of "Propylene glycol 2000", 0.2% of silicone "KST-04" (trade name; product of Toshiba Silicone Co., Ltd.) and 4.0% of scoaran "CP-45" (trade name; product of BASE AG)
- 20 4) Amount of the enzyme to be added

[0063] The activity value of each of the purified enzymes which had been obtained in Example 3 was measured by the above-described amylase activity measuring method by using as a buffer a glycine-sodium hydroxide buffer (pH 10). Based on the result, the amylase was added to the delergent in an amount of 150 U.

5) Evaluation method of detergency

[0064] An lodine solution was applied to the dish after washing and the color due to lodo-starch reaction was macroscopically judged.

(D065) As a result, the detergent containing each of the present enzymes removed the stain completely, thus exhibiting excellent detergency compared with the detergent free from the present enzyme.

Example 9

28

[0866] With the DNA of the chromosome of each of the strains KSM-K36 and KSM-K38 extracted by the Salto-Miura method [Blochim. Biophys. Acta, 72, 819(1961)] as a template, PCR was effected in a conventional manner by using two oligonucleotide primers which had been designed based on the sequences Met-Gln-Tyr-Phe-Glu-Trp and Trp-Phe-Lys-Pro-Leu-Tyr which had been highly conserved in the known fiquefying amylase derived from bacteria belonging to *Beolilus sp.* In each case, an amplified DNA fragment of about 1.0 kb was obtained. Subsequent to the enalysis of the nucleotide sequence of the DNA fragment, the nucleotide sequences of the DNA fragment on the upstream side and downstream side which had been obtained by the reverse PCR method [T. Triglia, et al., Nucleic Acids Res., 16, 81(1988)] and a PCR in vitro cloning kit (product of Boehringer Mannheim GmbH) were enalyzed. As a result, in an about 1.7kb gene region of each of the strains, only one open reading frame (ORF) encoding 501 amino acid residues as shown in Sequence Listing Nos. 1 and 2 was found. It was elucidated that the sequence (Amino acid residues) of Amylases K36 and K38 purified from the culture solution of the strains KSM-K36 and KSM-K38. The genes of the K36 and K38 amylases thus determined were found to have nucleotide sequences as shown in Sequence Listing No. 3 and No. 4, respectively.

so Example 10

[0067] By the PCR method with the chromosome DNA of each of the two strains as a template, a DNA fragment of 1.7 kb from the 0.7 kb upstream from the initiation codon to 0.1 kb downstream from the termination codon was amplified, followed by introduction into the strain Bacillus subtilis ISW 1214 by using a shuttle vector pHY300PLK (trade name; product of Yakult Honsha Co., Ltd.). The recombinant strain of the Bacillus subtilis thus obtained was subjected to liquid culture, whereby an amylase was produced in the culture solution. As a result of analysis of the properties of the amylase purified from the resulting culture supernatant by the method as shown in Example 3, it was revealed that they had good conformity with those of the amylase purified from the culture solution of each of the strains KSM-K36

and KSM-K38. Described specifically, the optimum acting pH was recognized to fall within a range of 8 to 9, the specific activity was about 4000 U/mg at pH 10 and resistance to each of a chelating agent and an oxidizing agent was high. [0068] Compared with the conventionally known amylases for a detergent, the liquelying alkaline amylases of the present invention have high chelating-agent resisting performance. Their optimum pH exceeds 8. The liquelying alkaline amylases according to the present invention can therefore be used in a markedly wide range of industrial fields, for example, in the step of processing a starch in an alkaline range. In particular, they bring about an advantage when incorporated in an automatic dish washing detergent, laundry detergent, bleaching agent or the like containing a chelating agent and thus possess industrially great significance.

	SE	10ER	NCE I	137	INC											
						1000										
\$	1111	3 er 3	KA0 (JURF	MAL:	CON										
	<120	35 3	Vove	l lâms	elas.	5										
10	S 2 July	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	1 (1841)	11201		>									
	<130)> }	P9561	31012	2											
15																
	<160	j> :	4													
20	(21)	}>														
	(21)	> 1	501													
25	<211	2> {	PRT													
	<213	3> }	Baci	llus	sp.											
40	<400	}>	ì													
30																
	Met	Lys	Arg	Trp	Vai	Val.	Ala	Met	L e u	Ala	lsV	leu	Phe	Leu	Phe	Pro
35					5					10					15	
	Ser	Val	Val	Val	Ala	Asp	Gly	Leu	Asn	Gly	Thr	Net	Het	Gin	Tyr	Tyr
40				20					25					30		
**	Glu	Trp		Leu	Glo	Asn	Asp	Gly	Gin	His	Trp	Asn	Arg	Leu	His	Asp
			35					40					45			
49	Asp		Glu	Ala	Leu	Ser		Ala	Gly	He	Thr		He	Trp	He	Pro
		50					55					- 69				
50		Ala	îyr	Lys	Gly		Ser	Gla	Ala	Asp		Gly	Tyr	Gly	Ala	
	65					70					75					80
	ASP	Len	Ty:	250	Leu	Giy	Glu	Phe	ASS	Sla	Lys	Gly	Thr	.Val	318	Thr

					85					90					95	
\$	Lys	Tyr	Gly	Thr	£ys.	Ala	Gin	i.eu	Gly	Arg	Ala	He	Gly	Šer	Leu	Lys
				100					105					110		
	Ser	Asn	Asp	()e	Ásn	Val	îyr	Gly	Āsp	Val	Val	Net	Ass	Bis	Lys	Lea
16			115					120					125			
	Gly	Ala	Asp	Phe	Thr	Glu	Ala	Val	Gla	Ala	Väl	Gln	Val	Åsn	Pro	Ser
15		130					135					140				
	ÅSB	Ar8	Trp	Gla	Asp	He	Ser	Gly	Va1	Tyr	Tor	He	Asp	àla	Trp	Thr
	145					150					165					180
20	Gly	Phe	Asp	eri (Pro	Gly	Arg	Asn	Asa	Ala	Tyr	Ser	Åsp	Phe	Lys	Trp
					165					170					175	
26	3 78	Trp	Phe	His	Phe	Aso	Gly	Val	Asp	Trp	ÁSP	Gln	årg	Tyr	Gin	Glu
				180					185					190		
	Asn.	His	Ļeu	Phe	Arg	Phe	Ala	Ásn	Thr	Asa	Trp	Ass	Trp	Árg	Val	Asp
30			195					200					205			
	Glu	Glu	ÀSN	Gly	ásn	Tyr	Asp	îyr	Leu	Leu	Gly	Ser	Àsa	ile	Asp	Phe
35		210					215					220				
	Ser	His	Pro	Glu	Val	Gin	Giu	Glu	Léu	Lys	Asp	Try	Gly	Ser	Trp	Phe
	225					230					235					240
40	Thr	Asp	Glu	Leu	839	Lea	Åsp	Gly	Tyr	Arg	Leu	ÁSP	Àla	He	Lys	His
					245					250					255	
40°	He	Pro	Phe	Trø	Tyr	Thr	Ser	Āsp	Trp	Val	áre	His	Gla	Arg	Ser	6lu
45				260					265					270		
	Ala	Asp	Gin	Asp	Leu	Phe	Val	Val	Gly	Gla	Tyr	Trp	Lys	नेइष्ट	ÁSP	Val
50			275					280					285			
	Gly	Ala	Leu	Glu	Phe	Tyr	Leu	ÀSP	Glu	Met	Ase	Trp	Glu	Met	Ser	Leu

		290					295					300				
\$	Phe	Asp	Val	Pro	teu	Ásn	Tyr	Asa	Phe.	Tyr-	Årg	ála	Ser	Ĺxs	Gln	Gly
	305					310					315					820
	Gly	Ser	Tyr	Asp	Wet	Arg	ÅSB	He	Leu	Årg.	Gly	Ser	Les	Va!	Glu	λla
10					325					330					335	
	His	Pro	lle	His	Ala	Val	Thr	Phe	Va I	Ásp	àsa	His	Asp	Thr	Gin	Pro
15				340					345					350		
	Gly	Glu	Ser	Leu	Glu	Ser	Tre	Vai	Ala	Åsp	Trp	Phe	Lys	Pro	Leu	Ala
			355					360					365			
20	Tyr	Ala	Thr	[]e	Leu	lhr	Arg	Ghi	Gly	Gly	Tyr	Pro	ÁSR	Val	Phe	Tyr
		370					375					380				
28	Gly	Åsp	Tyr	Tyr	Çly:	He	Pro	Asn	Asp	Aan	He	Ser	Ala	Lys	Lys	Asp
	385					390					395					400
	Ne t	Ue	Asp	G) u	Leu	Leu	Asp	Ala	Arg	Glo	Åsn	Tyr	Ala	Tyr	Gly	Thr
30					405					410					415	
	Gln	His	Asp	Tyr	Phe	Asp	His	Trp	Asp	(le	Va1	Gly	Trp	Thr	Arg	Gla
35				420					425					430		
	Gly	Thr	Ser	Ser	árg	Pro	Asn	Ser	Oly	Leu	Ala	Thr	lie	Met	Ser	Asn
			435					440					445			
40	Gly	Pro	Gly	Gly	Ser	Lys	Trp	Net	Tyr	Val	Gly	€{a	Gla	His	Ála	Gly
		450					485					460				
45	Gln	Thr	Trp	Thr	ASP	Leu	The	Gly	ASB	#12	Ala	SÍÂ	Ser	Val	Thr	He
	468					470					475					480
	ÀSH	Gly	ásp	Gly	Trp	Gly	6lu	Phe	Phe	Thr	Asa	Gly	Gly	Ser	Val	Ser
50					485					490					485	
	Val	Tyr	Val	Asn	Gln											

			500												
<210	i) 2	2													
<211	> 5	501													
<212	> 1	PRT													
<213	B)	Bacil	las	sp.											
<400)> {	2													
Net.	Årg	Àrg	Trp	Va I	Val	Ala	Met	Leu	Ala	Val	Leu	Phe	Leu	Phe	Pro
				Ę					10					15	
Ser	Val	Val	Val	Ala	Asp	Gly	Lea	Asn	Ğİy	Thr	liet	Met	Gla	Tyr	Tyr
			20					28					30		
Glu	Trp	His	Leu	Glu	Aso	Asp	Gly	Gin	His	Trp	Asn	Arg	Leu	His	Аsp
		35					40					45			
Asp	Ala	Ala	Ala	Leu	Ser	Asp	Ala	Gly	He	Thr	Ala	He	Trp	He	Pro
	50					55					60				
Pro	Ala	Tyr	Lys	Gly	Asa	Ser	Cin	Ala	Asp	Va1	Gly	Tyr	Gly	Ala	Tyr
65					70					75					80
Asp	Leu	Tyr	Asp	Leu	Gly	Glu	Phe	ÀSB	Gla	Lys	Gly	Thr	Val	Arg	Thr
				85					90					95	
Lys	Tyr	Gly	Thr	Lys	Ala	Glo	Leu	Glű	ârg	Ala	lle	Gly	Ser	Léu	Lys
			100					105					110		
Ser	Asn	Asp		Asn	Va1	Tyr	Gly		Val	Val	Met	Âsn	818	Lys	Net
		115					120					125			

Gly Ala Asp Phe Thr Glo Ala Val Glo Ala Val Glo Val Aso Pro Thr

	den	Arres	***	MA	Ann	110	Sar	Olv.	3.6%	Thom	The	13.5	ien	115	Tran	The
		03.8	11.8	otu	1308	lle.	363	Gra	nia	233		110	nay	215	113	
\$	145					150					155					160
	Gly	Phe	Ašp	Phe	Ser	Gly	Arg	Asn	Àsn	Ala	Tyr	Ser	Asp	Phe	Lys	Trp
					165					170					175	
10	Arg	Trp	Phe	838	Phe	Ass	Gły	Val	Asp	Trp	Asp	Gla	Arg	Tyr	Glo	Glu
				180					185					199		
	Ass	Mis	He	Phe	Årg	Phe	Ala	તેકલ	Thr	Ase	Trp	Asa	Trp	ÀFR	Val	Asp
15			195					200					265			,
	£1.60	0356		Civ.	Acres	Tur	len		Len	£ ac	C15s	Cer.		110	200	Diam.
20	सस्य		สจแ	33.3	324	Tyr		173	Dan	rea.	833		M39	115	Мор	e sab
		210					215					220				
	Ser	His	Pro	Glu	Val	G) n	Asp	Glu	l.eu	Lys	ASP	Trp	Gly	Ser	Trp	Phe
28	225					230					235					240
	Thr	Asp	Glu	Leu	Asp	(eu	ásp	Gly	Tyr	årg	Lea	åsp	Ala	ile	Lys	His
					245					250					255	
30	He	Pro	Phe	Trp	Tyr	Thr	Ser	âsp	Try	Val	Arg	His	Gla	Ārg	Asn	Glu
				260					265					270		
	Ala	Asp	Gin	Asp	Leu	Phé	Val	Val	0ly	Glu	Tyr	Tro	Lys	Asp	Asp	Va]
35			275					280					285			
	file.	à La		63 6	Dhe	To.	Len		Clo	Nor	Son	Tree.		Mar	024	£ air
40	UIY		ucu	53.Q	1 11%	Tyr		OOF	ord	mc (CLOSS		SIG	34C. C	,5002	8,00
**		290					295					300				۸.
	Phe	Asp	Val	Pro	Leu	ASB	Tyr	Asa	Phe	Tyr	Arg	Àla	Ser	GIn	Oln	() I y
49	305					310					315					320
	Gly	Ser	Tyr	Asp	Met	Arg	Asn	He	Leu	Arg	Gly	Ser	Leu	¥81	Glu	Ala
					325					330					335	
50	His	Pro	Wet	Hi s	Ala	Val	îhr	Phe	Va I	Asp	Àsa	Bis	Asp	Thr	Gla	Pro
				340					345					350		

	Gly	Glu	Ser	l.eu	Gla	Ser	Trp	Val	Ala	Asp	Tre	Phe	Eys	Pro	Leu	Ala
\$			355					360					365			
	Tyr	Ala	Thr	He	Lea	Thr	årg.	Glu	Gly	Gly	Tyr	Pro	Ass	Va I	Phe	Tyr
		370					375					380				
16	Gly	ÅSP	Tyr	Tyr	Gly){e	Pro	Àso	àsp	Åsa	He	Ser	Ala	Lys	Lys	Asp
	385					390					395					400
18	Met	He	Åsp	Glu	leu	Leu	Asp	Ala	årg	Gln	Asa	Tyr	Ala	Tyr	Gly	Thr
					405					410					415	
	Gla	His	dsp	Tyr	Phe	ÀSP	llis	Trp	Åsp	Val	Val	Gly	Trp	Thr	Årg	Gla
80				420					425					430		
	Gly	Ser	Ser	Ser	376	Pro	Aso	Ser	Gly	Leu	Ala	Thr	lle	Met	Ser	Asn
28			435					440					446			
	Gly	Pro	Gly	Gly	Ser	Lys	Tro	Me s	Tyr	Val	Üly	årg	Gla	ÅSD	Ala	Gly
		450					455					460				
30	Ğlm	Thr	Trp	Thr	Asp	Leu	Thr	Cly	Asa	Aso	Gly	Ala	Ser	Val	The	He
	465					470					475					480
35	Aso	Gly	Àsp	Gly	Trp	Gly	Glu	Fhe	Phe	Thr	Asn	Gly	Gly	Ser	Va1	Ser
					485					490					495	
	Val	Tyr	Val	ásn	Øln											
40				500												
	(2)()> :	3													
48	(21)	>	1650													
	(2)2	> !	DNA													
	K213	}> :	Baci	llus	sþ,											
80																
	<400)> :	3													

	cttg	(aati	ai i	attt	8888	e ti	gtts	etgai	ata	itgta	age	gtta	itca i	(\$8.)	aagg	aggta	80
ş	ttig	atg	(aa/	1 8g8	igs	gta	gts	r 8cs	e atg	ets	808	gtg	i tia	iti	t tta	itt	109
		Me	Elys	s årg	Tri	- Val	Val	Ala	Met	Lea	ı Ala	. Val	Lei	i Phi	e Le	i Phe	
						ξ	ŝ				16	}				15	
10	cct	teg	gta	gta	git	gca	fáş	ggc	tig	aat	gga	acg	atg	ate	cag	tat	157
	Pro	Ser	Val	Val	Val	ala	Asp	Gly	Leu	àsn	G) y	Thr	Net	liet	Glo	Tyr	
15					20					25					39		
	tat	gag	tgg	cat	cta	898	aat	gat	888	caa	cae	tgg	aat	688	tig	cat	205
	Tyr	Glo	Trp	Ris	Leu	Glu	Asn	Asp	Gly	Oln	Sis	Trp	ÀSE	arg	Leu	His	
20				35					40					-15			
	gat	gat	géc	888	gçt	tta	agt	aat	gcg	ggt	att	a ca	gat	att	tgg	ata	253
26	Asp	Asp	Ala	Glu	Ala	(.อน	Ser	Àsa	Ala	Gly	116	Thr	Äla	(le	Trp	(le	
			50					55					50				
	ccc	CCR	gec	tac	888	888	aai	agt	cag	get	gat	gtt	888	tai	egt	gca	301
30	Pro	Pro	Ala	Tyr	Lys	Gly	Asa	Ser	Gln	Ala	Asp	Va t	Gly	Tyr	Gly	Ala	
		65					70					75					
35	tac	gac	ctt	tat	1.68	tta	888	gag	ttt	188	caa	aaa	881	306	gtt	683	349
	Tyr	Asp	l.eu	Tyr	Asp	Léu	Gly	Glu	Phe	àsn	Gla	Lys	Gly	Thr	Val	Arg	
	80					85					90					95	
40	acg	asa	tac	888	aca	aag	get	cag	ett	888	088	get	ata	ESS	tcc	cta	397
	Thr	Lys	Tyr	Gly	Thr	Lys	Ala	GIn	Leu	Glu	årg	Ala	ile.	Gly	Ser	Leu	
45					100					105					110		
	388	tëg	ant	gat	atc	aat	gtt	tat	888	gat	gte	gta	atg	aat	cat	asa	445
	Lys	Ser	Asn	Asp	He	Asa	Val	Tyr	Gly	ÁSP	Val.	Val	Het	ÀSO	Ris	Lys	
50				115					120					125			
	tta	gga	get	gat	ttc	acg	gag	gca	gtg	caa	get	gtt	caa	gta	aat	cct	493

	โยม	Gly	Ala	Asp	Phe	m	Glu	Ala	Val	Gìn	Ala	Val	Gla	Val	Asn	Pro	
\$			139					135					140				
	teg	aac	cgt	188	gso	gat	311	tca	192	gtc	tac	acg	att	gat	gca	tgg	641
	Ser	Asn	årg	Trp	Gln	Asp	fie	Ser	Gly	Val	ĩyr	Thr	I (e	Asp	Ala	Trp	
10		145					150					155					
	acg	888	111	880	111	cca	888	cgs	880	aai	gee	tat	tec	188	111	888	589
15	Thr	GT y	Phe	Asp	Phe	Pro	Gly	Arg	Àsa	Asn	Ala	Tyr	Ser	Asp	Phe	Lys	
	160					185					170					175	
	teg	aga	tgg	ttc	cat	itt	aat.	238	git	gac	i gg	881	caa	ege	iat	сва	687
20	Trp	Àrg	Trp	Phe	His	Phe	Asa	Gly	9a1	Asp	Trp	Asp	Gln	årg	Tyr	Gln	
					180					185					190		
26	888	880	cat	ctt	ttt	cgc	ttt	gca	aat	acg	aac	tgg	880	tgg	oga	gtg	685
	Glu	Asa	218	Leu	Phe	Arg	Phe	Ala	Asa	Thr	Asn	Trp	Asn	Trp	Arg	Val	
				195					200					205			
30	gat	888	888	aal	ggt	aat	iat	980	iai	118	tta	888	teg	880	att	388	733
	Asp	Glu	Glu	Ása	Öly	Ass	Tyr	Asp	Tyr	Leu	Leu	619	Ser	Àsn	Ne	Asp	
25			210					215					220				
	int	age	cac	cca	gaç	gtt	683	888	gaa	tta	888	gat	tgg	888	388	tgg	781
	Phe	Ser	His	Pro	Glu	Val	Gln	Glu	Glu	Leu	Lys	Asp	Try	Gly	Ser	Trp	
4 0		225					230					235					
	; ; ; ;	808	gat	888	cta	gat	tta	gat	888	isi	ega	ttg	gat	get	att	888	829
45°	Phe	Thr	Asp	Glu	Leu	Asp	Len	Asp	Gly	Tyr	Arg	Lea	Asp	Ala	He	Lys	
46	240					245					250					255	
	cat	att	cca	itc	tgg	tat	acg	tca	gat	tgg	gtt	agg	cat	cag	cga	agt	877
50	His	He	Pro	Phe	Trp	Tyr	Thr.	Ser	Asp	Trp	Val	årg	His	Gin	Arg	Ser	
					280					285					270		

	838	gca	gac	caa	gat	tta.	ttt	gic	gtá	888	gaş	tat	tee	aag	fsg	gac	925
\$	Glu	Ala	Asp	Gla	Asp	Leu	Phe	Val	Va1	Gly	Gla	Tyr	Trp	Lys	Asp	Asp	
				275					280					285			
	gta	ggt	gct	ctc	gaa	ij.	tat	tta	gat	gaa	atg	aat	tgg	888	atg	tet	973
10	Val	Gly	Ala	Leu	Glu	Phe	Tyr	Leu	Asp	Çlu	Met	Asa	Trp	Glu	Net	Ser	
			290					295					300				
15	cta	tte	gat	gtt	ecg	ete	aat	tat	aat	iti	tac	css	gct	tca	aag	caa	1921
	Leu	Phe	Asp	Val	Pro	Leu	Asn	Tyr	Asn	Phe	Tyr	Arg	ala	Ser	Lys	Gla	
		305					310					315					
80	£80	888	age	tat	881	aig	cgt	aat	att	tta	088	888	ict	tta	gta	888	1069
	Gly	Gly	Ser	Tyr	Asp	Met	Årg	Asa	He	Leu	Árg	61y	Ser	Leu	Val	Glu	
28	320					325					330					335	
	80 <u>8</u>	cat	ccg	att	cat	808	git	acg	1)1	gŧţ	188	aat	cat	gat	act	cag	1117
	Ala	His	Pro	lle	His	Ala	Va.l	Thr	Phe	Val	Asp	Asn	His	ÁSP	Thr	GIn	
30					349					345					350		
	cca	888	888	tca	tta	ess	tca	tgg	gto	gat	gat	tgg	itt	888	cca	ctt	1165
35	Pro	Gly	Glu	Ser	Leu	Glu	Ser	Trp	Val	Ala	Asp	Trp	Phe	Lys	Pro	Leu	
				355					360					365			
	gat	tat	geg	808	atc	ttg	acg	cgt	gaá	ggt	ggt	tat	cca	aat	gta	ttt	1213
40	Ala	Tyr	Ala	Thr	Πe	Leu	Thr	Arg	Glu	Gly	Gly	Tyr	Pro	Ásn	Va1	Phe	
			370					375					380				
45	tac	ggt	gac	tac	tat	888	att	cct	aac	gat	aac	att	tca	gct	888	888	1261
	Tyr	Gly	तेडइ	Tyr	Tyr	Gly	He	Pro	Àso	Ásp	Asn	He	Ser	Ala	Lys	Lys	
		385					390					395					
50	188	aig	att	388	888	itg	cti	gat	gca	cgt	caa	aat	tac	808	tat	ggc	1309
	Asp	Met	He	Asp	Glu	Leu	teu	Asp	àla	Arg	Gin	Asn	Tyr	Ala	Tyr	Gly	

1357 1465 1453
1453
1453
1453
1501
1549
1605
1850

	aaci	aagi	iaa c	atc _g	atte	8 8	ja taa	iaagi	ati	(cgaa	acg	a (80	gcas	iaa (tgqş	caac t	60
\$	acta	igcad	ite s	teas	(889)	it as	acca	iccti	i til	iteca	läää	atga	icato	at a	itaaa	icaaat	120
	tigi	tota	s Bac	tcac	tati	i aa	age	igiti	818	atai	atg	taas	rogt i	at (atta	lääägg	180
	388	talti	(8 H	g ag	(8 aş	(8 18	8 8	ia gi	a 80	a ai	g ti	8 80	a gi	g ti	a ii	t tla	231
10			Me	et Ar	g Ai	E 11	°p -¥8	11 V2	il Al	a Me	et Le	u Al	a Va	il Le	u Pt	ne Leu	
								5				3	0				
15	tŧt	ect	teg	gta	gta	gtt	808	gat	888	itg	aac	ggt	acg	aig	ate	cag	279
	Phe	Pro	Ser	Val	Va)	Val	Ala	Азр	Gly	Lea	Asn	Gly	Thr	Met	Met	Gln	
	15					20					25					30	
20	tat	(a)	gag	tgg	cat	217	888	386	282	988	cag	cat	tgg	aat	CZZ	ttg	327
	Tyr	Tyr	Glu	Trp	His	Leu	Glu	Àsn	Asp	Ğly	Gin	His	Trp	Ásn	Arg	Leu	
28					35					40					45		
en.	cac	gat	gat	800	gca	tog	ttg	281	gat	801	ggt	att	aca	gojt	att	tgg	375
	Bis	Asp	Asp	Ala	Ala	Ala	Leu	Ser	Asp	ala	Gly	377	Thr	Ala	ile	Trp	
30				5 0.					55					60.			
	att	008	cca	800	tac	888	ggt	881	agt	cag	geg	183	118	888	180	188	423
	He	Pro	Pro	Ala	Tyr	Lys	Gly	Āsn	Ser	Gln	àla	Asp	Val	Gly	Tyr	Gly	
35			65					70					75				
	gca	tac	gat	ctt	tat	gat	tta	883	888	tto	aat	çaa	888	188	act	gtt	471
40	Ala	Tyr	ÁSP	Leu	Tyr	Asp	Leu	Gly	Gla	Phe	Asn	Gla	Lys	Gly	Thr	Val	
		80					85					90					
	089	acg	333	tac	888	act	aag	808	eag	ett	888	cga	get	att	888	tcc	519
49	Arg	Thr	Lys	Tyr	Gly	Thr	Lys	Ala	Gln	Leu	Glu	Arg	åla	He	Çly	Ser	
	35					100					105					110	
50	εŧţ	aaa	tot	aat	gat	atc	aat	818	tac	888	158	gtc	gtġ	atg	aat	cat	567
	Leu	Lys	Ser	Asn	Åsp	He	Åsa	Val	Tyr	Gly	Asp	Va i	Val	Net	Asn	His	

					115					120					125		
ş	aaa	318	888	get	gat	111	acg	gag	80ā	gtg	caa	göt	gtt	caa	gta	aat	615
	L'às	Mei	Qly	Ala	Àsp	Phe	Thr	មី)ប	Ala	Val	Gln	àla	Val	Gln	Val	Asn	
				130					135					140			
10	008	acg	aat	cgt	(88	cag	381	att	tca	188	gee	tac	acg	att	gat	808	663
	Pro	Thr	Asa	Arg	Trp	Gln	Asp	118	Ser	Gly	Ala	Tyr	Thr	He	Àsp	Ala	
15			145					150					155				
	188	808	128	itc	gac	:::	tca	888	egt	aac	880	338	tat	ŧca	gat	111	711
	Trp	Thr	Gly	Phe	ÅSP	Phe	Ser	Gly	Årg	Asn	ÀSB	Ala	Tyr	Ser	Asp	Phe	
80		160					168					170					
	888	tgg	aga	tgg	tte	cat	tŧŧ	aat	igg	gtt	886	tgg	gat	cag	ege	tat	759
26	Lys	Trp	Arg	Trp	Phe	His	Phe	Ass	Gly	Val	Asp	Trp	Asp	Gla	Årg	Туг	
	175					180					185					190	
	caa	888	aat	cať	sti	itc	ege	ttt	gca	aat	acg	aac	tgg	aac	tgg	cga	807
30	Ole	Glu	ÀSĐ	865	[]e	Phe	Arg	Phe	Ala	Asn	Thr	Asa	îrp	Asn	Trp	årg	
					195					200					205		
35	gig	881	yaa	888	aac	188	aat	tat	gat	tac	etg	tta	883	teg	188	atc	855
	Val	Аsp	6) u	Glu	Ásn	Gly	ASB	Tyr	Asp	Tyr	Leu	Leu	Gly	Ser	Asa	lle	
				210					215					220			
40	gac	itt	agt	cat	eca	sas	gta	caa	gat	838	itg	888	881	ŧ88	188	agc	903
	Asp	Phe	Ser	HIS	Pro	Glu	Val	Gln	ASP	Glu	Leu	Lys	Asp	Trp	Gly	Ser	
45			225					230					235				
·**	tg8	III	228	881	888	ttä	gai	(tg	fat	887	tat	cgt	t ta	168	gçi	att	951
	Trp	Phe	Thr	ásp	Glu	Leu	839	Leu	Àsp	Gly	Tyr	Àrg	Leu	Àsp	Ala	lle	
50		240					245					250					
	a88	çat	att	cca	tte	tgg	tat	aca	tet	148	tgg	213	688	cat	cag	cgc	399

	Lys	Ĥis	He	Pro	Phe	Trp	Tyr	Thr	Ser	Asp	Trp	Va I	Àrg	His	Gla	Arg	
ş	255					260					265					270	
	äac	gaa	gca	gai	caa	gat	tta	ttt	gtc	gta	888	gaa	tat	teg	aag	gat	1047
	Asn	Glu	Ala	Asp	Gia	åsp	Lès	Phe	Val	Val	Gly	6lu	Tyr	Trp	Lys	Asp	
10					275					280					285		
	gac	818	ggt	get	ctc	g aa	itt	tat	tta	1.68	888	atg	aat	(gg	gag	atg	1095
15	Asp	Val	Gly	Ala	Leu	Glu	Phe	Tyr	Leu	Asp	G] u	Met	ÀSB	Trp	Glu	Met	
				290					295					300			
	tot	cta	tic	3.8g	811	cca	ctt	aat	tat	188	ŧŧŧ	tac	cãã	801	tca	caa	1148
20	Ser	Leu	Phe	Asp	Val	Pro	Leu	Asn	Tyr	Asn	Phe	Tyr	årg	Ala	Ser	Gln	
			305					310					315				
25	caa	ġgt	gga	ägc	tat	tes	atg	cgt	aat	att	tta	cga	883	tet	Eta	gta	1191
	Glo	Gly	Gly	Ser	Tyr	Asp	Met	Arg	Ásn	He	Leu	årg	Gly	Ser	Leu	Val	
		320					325					330					
30	gaa	808	eat	ccg	äig	cat	800	gtt	808	tţţ	gtt	gat	aat	cat	gat	act	1239
	Glu	Ala	His	Pro	Met	His	Ala	Val	Thr	Phe	Val	ÅSÞ	ÁSB	gis	Asp	Thr	
35	335					840					345					350	
	cag	cca	888	gag	ica	tia	gag	tea	188	118	get	341	188	itt	aag	008	1287
	Gin	Pro	Gly	Glu	Ser	Leu	Glu	Ser	Trp	Val	Ála	ÁSP	Trp	Phe	Lys	Pro	
40					355					360					365		
	cti	gct	tat	808	aca	att	ttg	acg	cgt	gaa	ggt	ggt	tat	cca	aat	818	1335
49	Leu	Ala	Tyr	Ala	Thr	(le	Leu	Thr	Arg	Glo	Gly	Gly	Tyr	Pro	Asn	Val	
				370					375					380			
	111	tac	ggt	gat	tac	tat	888	att	cct	3ac	gat	aac	811	ica	8¢ t	aaa	1383
50	Phe	Tyr	Gly	Asp	Tyr	Tyr	Gly	l]le	Pro	Åsa	Asp	Aso	He	Ser	Ala	Lys	
			385					390					395				

	aaa	gat	atg	att	isg	888	ctg	çtt	gat	gca	cgt	caa	aat	tac	gca	tat	1431
\$	Lys	Asp	Met	He	Asp	Glu	Leu	Leu	ÀSp	Ala	Arg	Gln	ÀSO	Tyr	Ala	Tyr	
	,	100				i	105				,	110					
10	880	acg	cag	cat	gac	tat	ttt	gat	cat	tgg	gat	118	gta	883	igg	act	1479
	Gly	Thr	Gln	His	Asp	Tyr	Phe	Asp	His	Trp	Åsp	Val	Val	Gly	îrp	Thr	
	415					420					425					430	
15	388	gaa	888	tet	toc	tec	aga	cct	aat	tca	880	ctt	gcg	act	att	atg	1527
	Arg	Glu	Gly	Ser	Ser	Ser	Arg	Pro	Asn	Ser	Gly	Leu	Ala	Thr	He	Met	
20					435					440					445		
	tog	aat	888	cct	ggt	ggt	tcc	aag	tgg	atg	tat	gta	gga	cgt	cag	aat	1575
26	Ser	Asn	Gly	Pro	Gly	Gly	Ser	Lys	Trp	Net	Tyr	Val	Gly	Arg	Gln	Asn	
				450					455					460			
30	gca	888	caa	aca	tgg	aca	gat	tta	act	tgg	aat	aac	gga	gog	tee	gtt	1623
	Ala	Gly	Gla	Thr	Trp	Thr	Asp	Lea	Thr	Gly	ÀSB	Asn	Gly	Ala	Ser	Val	
			465					470					475				
35	aça	att	āāt,	ggc	gat	888	tgg	ggc	gaa	ttc	ttt	acg	aat	888	883	tct	1671
	Thr	He	Aso	Gly	Asp	Gly	Trp	Gly	Glu	Phe	Phe	Thr	Asn	Gly	Gly	Ser	
40		480					485					490					
	gta	tee	gtg	tac	gtg	aac	caa	taa	zaaa	182 (octti	gagag	18 81	gatte	ctc	citaa	1726
45	Val	Ser	Val	Tyr	Val	Asn	Gln										
	495					500											
	etca	agge	ett :	tott	tatg	į											1745

ss Claims

 A liquelying alkaline amylase having residual activity not less than 70% when treated at pH 10 and 45°C for 30 minutes in the presence of 1 to 100 mM of EDTA or EGTA.

- 2. A liquelying alkaline amylese according to claim 1, further having the following enzymatic properties:
 - 1) oH Optimum
 - It has a pH Optimum exceeding 8.0 (reaction at 50°C for 15 minutes with a soluble starch as a substrate):
 - 2) Action

S

10

15

28

30

85

40

45

50

85

It hydrolyzes a-1,4-glucosidic linkages in starches, amylose, amylopedin and partial degradation products thereof and from amylose, forms glucose (G1), mallose (G2), mallotriose (G3), mallotetraose (G4), maltopentaose (G6), mallotexaose (G6) and maltoheptaose (G7); it does not act on pullulan;

3) pH stability (Brition-Robinson buffer)

It exhibits a residual activity of not less than 70% within a pH range of from 6.5 to 11.0 when treated at 40°C for 30 minutes.

4) Acting temperature range and optimum acting temperature:

It acts in a wide temperature range of from 20 to 80°C, with the optimum acting temperature being 50 to 60°C:

5) Temperature stability:

If exhibits a residual activity of not less than 80% at 40°C when treated for 30 minutes in a 50 mM glycine-salt-sodium hydroxide buffer (pH 10) and exhibits a residual activity of about 60% at 45 °C.

- 20 3. A liquefying alkaline amylase according to claim 1 or 2, further having the following enzymatic properties:
 - 6) Oxidizing-agent resistance

It exhibits a residual activity of not less than 70% when treated at pH 10 and 30°C for 60 minutes in the presence of 2% H₂O₂.

- A liquefying alkaline amylase according to any one of claims 1 to 3, which has an amino acid sequence having a homology of at least 80% with that shown in Sequence ID No. 1 or No. 2.
- 5. A DNA molecule encoding a liquefying alkaline amylase as daimed in any one of claims 1 to 4.
- 6. DNA molecule according to claim 5 having the nucleobde sequence of SEQ ID NO: 3 or 4 or a fragment thereof.
- A process for producing a protein as claimed in any one of claims 1 to 4 which comprises culturing bacteria belonging to Bacillus sp. collecting the protein from the supernatant and, optionally, purifying the protein.
- A process according to daim 7, wherein the bacteria are the bacillus strains KSM-K36 (FERM BP 6945) or KSM-K38 (FERM BP 6946).
- 9. A detergent composition comprising a liquefying alkaline amylase as claimed in any one of claims 1 to 4.

FIG. 3

FIG. 4

FIG. 5

FIG. 7

- Acetate buffer
- Potassium phosphate buffer
- Glycine sodium hydroxide buffer
 Carbonate buffer

FIG. 8 100 Relative activity (%) 80 60 40 20 S 8 S 10 11 12 4 Hiq Acting pH of K38

- Acetate buffer
- Potassium phosphate buffer
 Glycine sodium hydroxide buffer
 Carbonate buffer

FIG. 9: OXIDIZING-AGENT-RESISTING PERFORMANCE