Sivaram Ambikasaran

⊠sivaambi@alumni.stanford.edu

http://sivaramambikasaran.com/

ACADEMIC APPOINTMENT Assistant Professor,

August 2017 – Present

Department of Mathematics,

Indian Institute of Technology Madras,

Chennai - 600 036

Previous Appointments Indian Institute of Science

April 2016 – August 2017

Assistant Professor, Department of Computational & Data Sciences

Courant Institute of Mathematical Sciences, New York University

ICTS, Tata Institute of Fundamental Research

Faculty, Interdisciplinary and Applied Mathematics

Aug 2013 – May 2015

Assistant Professor, Department of Mathematics

EDUCATION

Stanford University

Sep 2007 - Jun 2013

Jul 2015 - Mar 2016

- Doctor of Philosophy, Institute for Computational and Mathematical Engineering Thesis Title: Fast Algorithms for Dense Numerical Linear Algebra and Applications. Advisor: Prof. Eric Darve.
- Master of Science, Statistics
- Master of Science, Institute for Computational and Mathematical Engineering

Indian Institute of Technology Madras

Jul 2002 - Jun 2007

- Master of Technology, Aerospace Engineering
- Bachelor of Technology, Aerospace Engineering

Research

Numerical Analysis, Numerical linear algebra, Fast algorithms, Approximation theory with applications to Inverse problems, Scattering, Computational statistics, Material Homogenization, Data assimilation, Filtering.

Honors & Awards

- "Young Scientist Award" by The Academy of Sciences, Chennai
- "Young Faculty Recognition Award" by Indian Institute of Technology, Madras, 2019.
- "Young Scientist Research Award" by the Department of Atomic Energy, India, 2017.
- Simons Foundation fellowship under "Science without Boundaries" of ICTS-TIFR, 2015.
- "INSPIRE Faculty Award" to young achievers for independent research and emerge as a leader in future science & technology by the Department of Science & Technology, India, 2015.
- Research Internship in Science and Engineering by Indo-US Science & Technology Forum at Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore, 2011.
- Stanford Interdisciplinary Graduate Fellowship Honorable mention, 2010.
- Centennial Teaching Assistant Award by Stanford in honor of outstanding teaching, 2009
- Stanford University departmental fellowship to pursue graduate studies, 2007.
- Cornell University departmental fellowship to pursue graduate studies, 2007 (declined).
- Dr. V. Mohan Raman Prize, for best academic record in Bachelors and Masters in Aerospace Engineering, Indian Institute of Technology Madras, India, 2007.
- Institute Medal for highest GPA in Aerospace Engineering for three consecutive years, Indian Institute of Technology Madras, India, 2004 07.
- 99.81 percentile (out of 200,000 students) in the Common Aptitude Test, an all-India test conducted by the Indian Institute of Management, India, 2007.
- General Electric Scholar-Leader scholarship for academic achievements and leadership qualities, 2006.

- One among 30 students from all over India, to get selected for the International Mathematical Olympiad Training Camp held at Homi Bhabha Center for Science and Education, Mumbai, India, 2002.
- First in Mathematics Olympiad held by Association of Mathematics Teachers of India, 2001 & 2002.
- Fellowship by Nanyang Technological University, to pursue undergraduate education in Engineering, 2002 (declined).
- One among 750 students from a pool of about 350,000 students to be awarded National Talent Search Examination Scholarship by the Central Government of India, 2000.

Teaching
Experience

Indian Institute of Technology Madras

• Numerical Optimization.	Jan - Apr 2020
• Probability, Statistics and Stochastic Processes.	$\mathbf{Jan-Apr~2020}$
• Numerical Linear Algebra.	$\mathbf{Jul-Nov}\ 2019$
• Numerical Methods & Scientific Computing.	Jul - Nov 2019
• Computer Modelling and Simulation.	$\mathbf{Jan-Apr~2019}$
• Probability, Statistics and Stochastic Processes.	$\mathbf{Jan-Apr~2019}$
• Numerical Linear Algebra.	Jul – Nov 2018
• Computer Modelling and Simulation.	Jan – Apr 2018
• Probability, Statistics and Stochastic Processes.	Jan – Apr 2018
ndian Institute of Science, Bengaluru	
• Constructive approximation theory for computational scientists.	$\mathbf{Jan-Apr~2017}$

Inc

• Short term course on Numerical Methods for Engineers & Scientists.	Dec 2016
• Numerical Linear Algebra.	$\mathbf{Aug}-\mathbf{Dec}2016$

International Centre for Theoretical Sciences, Bengaluru

• Fast Matrix Computation, taught at IISc.	Jan - Apr 2016
--	----------------

Courant Institute of Mathematical Sciences, NY

• Analysis.	$\mathrm{Sep}-\mathrm{Dec}\ 2014$
• Mathematics for Economics.	Jan – May 2014
Algebra and Calculus.	$\mathrm{Sep}-\mathrm{Dec}\ 2013$

Jan - May 2015

Stanford University, CA

• Discrete Mathematics.

• Discrete Mathematics Summer program by "Army High Performance Computing Research Center"	Jul 2013
• Numerical Linear Algebra Summer program by "Army High Performance Computing Research Center"	Jul 2012

Summer program by	Army riigh i enormance Computing Research Cente	Jui 2012
• Applied Analysis		
Math refresher course	e for incoming engineering graduate students.	Sep 2011

• Numerical Linear Algebra	
Summer program by "Army High Performance Computing Research Center"	Jul 2011

• Teaching Assistant, Institute for Computational and Mathematical Engineering 2008 - 2009Undergrad courses in Vector Calculus, Linear Algebra and PDE's, Probability and Statistics

MENTORING

Indian Institute of Science

- Doctoral Student(s):
 - Kandappan (Mathematics, IITM; August 2016 Present)
 - Vaishnavi Gujjula (Mathematics, IITM; August 2016 Present)
 - Ritesh Khan (Mathematics, IITM; August 2019 Present)

• Alumni:

- Shyam Sundar Sankaran (Project Associate @ IIT Madras; May 2018 June 2019)
- Abhay Gupta (M.S. Student @ IISc; Aug 2016 Dec 2018)
- Nachiketa Mishra (Airbus Postdoctoral Fellow @ TIFR-ICTS; Feb 2016 Jan 2018)
- Karan Raj Singh (Project Associate @ IISc; Aug 2016 May 2017)
- Richa Naik (Intern @ IISc; May 2017 July 2017)
- Deeksha Koul (Intern @ IISc; Dec 2016 Apr 2017)
- Ankit kumar (S.N.Bhatt Fellow @ ICTS-TIFR; May 2016 July 2016)
- Chaitanya Tappu (S.N.Bhatt Fellow @ ICTS-TIFR; May 2016 July 2016)

Publications

Google Scholar (as of December 2^{nd} , 2019): Number of citations: 803, h-index: 14, i10-index: 16, Erdos number: 4

• Journal Publications:

- 14. "HODLRlib: A Library for Hierarchical Matrices", The Journal of Open Source Software. Authors: Ambikasaran, S., Karan Raj Singh and Shyam Sundar Sankaran. Year: 2019
- 13. "Fast and scalable Gaussian process modeling with applications to astronomical time series", The Astronomical Journal. Authors: D Foreman-Mackey, E Agol, Ambikasaran, S., R Angus. Year 2017
- 12. "An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi-component diffusion velocities", Proceedings of the Combustion Institute. Authors: Ambikasaran, S., Krithika N. Year 2016
- 11. "Fast, adaptive, high order accurate discretization of the Lippmann-Schwinger equation in two dimension", SIAM Journal on Scientific Computing. Authors: **Ambikasaran**, S., Borges, C., Imbert-Gerard, L.M., and Greengard, L. Year: 2016
- 10. "A fast block low-rank dense solver with applications to finite-element matrices", Journal of Computational Physics. Authors: AmirHossein Aminfar, Ambikasaran, S., and Darve, E.F. Year: 2016
- 9. "Generalized Rybicki Press Algorithm", in Numerical Linear Algebra with applications. Author: **Ambikasaran**, S. Year: 2015
- 8. "Fast hierarchical algorithms for Gaussian processes", in IEEE Transactions on Pattern Analysis and Machine Intelligence. Authors: **Ambikasaran**, S., Foreman-Mackey, D., Greengard, L., Hogg, G., and O'Neil, M. Year: 2015
- 7. "A fast direct solver for scattering from a large cavity in two dimensions", in SIAM Journal on Scientific Computing. Authors: Lai, J., Ambikasaran, S., Greengard, L. Year: 2014
- 6. "A Kalman filter powered by \mathcal{H}^2 -matrices for quasi-continuous data assimilation problems", in Water Resources Research. Authors: Li, J.Y., **Ambikasaran S.**, Kitanidis, P.K., Darve, E. Year: 2014
- 5. "Large-scale stochastic linear inversion using hierarchical matrices", in Computational Geosciences. Authors: Ambikasaran, S., Li, J.Y., Kitanidis, P.K., Darve, E.F. Year: 2013
- 4. "An $\mathcal{O}(N \log N)$ fast direct solver for partially hierarchical semi-separable matrices", in Journal of Scientific Computing. Authors: **Ambikasaran**, S., and Darve, E.F. Year: 2013
- 3. "Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices", in Proceedings of the National Academy of Sciences. Authors: Monajemi, H., Jafarpour, Sina., Gavish Matan., Donoho, D. L., Ambikasaran, S., et. al. Year: 2013
- 2. "Application of hierarchical matrices in geostatistics", in Oil & Gas Science and Technology Revue d'IFP Energies Nouvelles. Authors: Saibaba, A.K., **Ambikasaran**, S., Li, J.Y., Kitanidis, P.K., Darve, E.F. Year: 2012

1. "Untruncated infinite series superposition method for accurate flexural analysis of isotropic or orthotropic rectangular plates with arbitrary edge conditions", in Composite Structures. Authors: K. Bhaskar and Ambikasaran, S. Year: 2008

• Book chapter(s):

 "Fast algorithms for Bayesian inversion", Computational challenges in the Geosciences, IMA Volumes in Mathematics and its Applications. Authors: Ambikasaran, S., Saibaba, A.K., Darve, E.F., Kitanidis, P.K. Year: 2013

• Conference proceedings:

"Efficient data assimilation tool in conjunction with TOUGH2 for CO₂ monitoring", TOUGH symposium 2012, Li, J.Y., Ambikasaran, S., Kitanidis, P.K., Darve, E. Year: 2012

• Mathematical packages:

- BBFMM2D Black Box Fast Multipole Method in two dimensions. Available at: https://github.com/sivaramambikasaran/BBFMM2D
- FLIPACK Fast Linear Inversion PACKage.
 Available at: https://github.com/sivaramambikasaran/FLIPACK
- HODLR Fast Direct Solver Package.Available at: https://github.com/sivaramambikasaran/HODLR
- ESS Extended SemiSeparable Solver.
 Available at: https://github.com/sivaramambikasaran/ESS
- Celerite Scalable 1D Gaussian Processes in C++, Python, and Julia Available at: https://github.com/dfm/celerite
- George Fast and flexible Gaussian Process regression in Python Available at: https://github.com/dfm/george

Organized Mini-symposiums

• "Fast Linear Algebra for UQ in Inverse Problems and Data Assimilation", SIAM Conference on Uncertainty Quantification, April 1^{st} , 2014.

Conferences

- "An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi- component diffusion velocities", 36^{th} International Conference on Combustion, August 5^{th} , 2016 at COEX, Seoul, South Korea.
- " $\mathcal{O}(N)$ sparse direct solver for finite difference matrices", Computational Partial Differential Equations 2015, December 22^{nd} , 2015 at TIFR Centre for Applicable Mathematics, Bengaluru.
- "Generalised Rybicki Press Algorithm", SIAM Linear Algebra, October 29th, 2015 at Atlanta.
- "The inverse fast multipole method", SIAM Annual meeting, July 9th, 2014 at Chicago.
- "Hierarchical Matrix Powered Fast Kalman Filtering and Uncertainty Quantification", SIAM Conference on Uncertainty Quantification, April 1st, 2014 at Savannah.
- "Fast Linear Algebra for Stochastic Inversion in Large-Scale High-Dimensional Complex Systems", SIAM Annual Meeting, July 11th, 2013 at San Diego.
- "Fast Direct Solvers for Hierarchical Matrices", SIAM Annual Meeting, July 10th, 2013 at San Diego.
- "Large-scale Stochastic Linear Inversion using Hierarchical Matrices", SIAM Conference on Computational Science & Engineering (CSE13), February 27th, 2013 at Boston.
- "Fast Kalman filtering, data assimilation and uncertainty quantification", Thermal and Fluid Sciences Affiliates and sponsors program, TFSA, February 14th, 2013 at Stanford.
- "Fast Linear Algebra Applications in Stochastic Inversion and Data Assimilation", Kitanidis P.K., Ambikasaran S., Saibaba A.K., Li J.Y., Darve E.F., AGU Fall meeting, December 6th, 2012 at San Francisco.
- "Efficient Data Assimilation Tool For Real Time Subsurface Monitoring", AGU Fall meeting, December 6^{th} , 2012 at San Francisco.

- "Fast & scalable algorithms in computational linear algebra", SuperComputing-12, November $13^{th} 15^{th}$, 2012 at Salt Lake.
- "Fast algorithms in computational physics", Young Researchers Meet. YRM-2012, May $26^{th} 27^{th}$, 2012 at Stanford.
- "Efficient data assimilation tool in conjunction with TOUGH2 for CO_2 monitoring", Proceedings, TOUGH Symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, September $17^{th} 19^{th}$, 2012 at LBNL.
- "Fast Linear Algebra", SuperComputing-11, November $16^{th} 17^{th}$, 2011 at Seattle.
- "Fast Direct Solvers for a class of matrices", 7th International Congress on Industrial and Applied Mathematics, ICIAM, July 19th, 2011 at Vancouver.
- "Fast linear algebra using low rank approximations", Thermal and Fluid Sciences Affiliates and sponsors program, TFSA, February 3rd, 2011 at Stanford.

SEMINARS AND INVITED TALKS

- "The art of presenting science", Department of Mathematics, Indian Indian of Technology Madras, Oct 24th, 2019.
- "Finite precision computations in computational physics and machine learning", Department of Mathematics, Indian Indian of Technology Madras, August 3rd, August 1st, 2019.
- "Fast matrix algorithms in computational physics", Department of Computational & Data Sciences, Indian Institute of Science, Jan 27th, 2016.
- "Fast linear algebra", Airbus Day, International Centre for Theoretical Sciences, January 11th, 2016.
- "Fast algorithms for computational statistics and elliptic PDEs", Super Computer Education & Research Centre, Indian Institute of Science, September 14th, 2015.
- "Fast algorithms for computational statistics and elliptic PDEs", Centre for Applicable Mathematics, Tata Institute of Fundamental Research, September 8th, 2015.
- "Fast algorithms for computational statistics and elliptic PDEs", Chennai Mathematical Institute, July 22nd, 2015.
- "Fast algorithms for computational statistics and elliptic PDEs", Department of Mathematics, Indian Institute
 of Science, June 24th, 2015.
- "The inverse fast multipole method", Fast Direct Methods for elliptic PDE's Workshop at Dartmouth, June 28th, 2014.
- "Fast algorithms for elliptic PDE's & Gaussian processes", Department of Mathematics, Indian Institute of Technology Madras, February 17rd, 2015.
- "Fast algorithms for elliptic PDE's & Gaussian processes", International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, February 3rd, 2015.
- "Fast solver for elliptic partial differential equations", Mathematics Colloquium, Carnegie Mellon University, October 3^{rd} , 2014.
- "Fast algorithms for data analysis", Center for Nonlinear Analysis, Carnegie Mellon University, October 2nd, 2014.
- "Extended sparsification and hierarchical compression based fast direct solver", Numerical analysis seminar, Courant, April 11th, 2014.
- "Fast algorithms for dense numerical linear algebra", Courant Instructor day, September 27th, 2013.
- "Fast dense linear algebra", Lawrence Berkeley National Laboratory, December 4th, 2012.
- "Fast multipole method and hierarchical matrices", SUPRI-B seminar series, Stanford University, CA, October 23^{rd} , 2012.
- "A fast data assimilation technique for real time CO₂ monitoring", Global Climate and Energy Project (GCEP) Student Energy Lectures. Stanford, July 16th, 2012.
- "Fast Direct Solvers", Applied Math Seminar. Stanford, December 7th, 2011.

- " $\mathcal{O}(N)$ Fast Direct Solver for System of Algebraic Equations", Predictive Science Academic Alliance Program. PSAAP, October 7^{th} , 2011.
- "Fast algorithms in computational physics", Centre for Mathematical Modeling and Computer Simulation, Bangalore, India, August 25^{th} , 2011.
- "Fast algorithms in computational physics", TIFR Centre for Applicable Mathematics, Bangalore, India, August $10^{th}, 2011.$
- "Fast Linear Algebra Using Low Rank Properties of Matrices", Center for Turbulence Research. CTR, January 14^{th} . 2011.
- "Fast direct solvers for integral equations", Linear Algebra and Optimization Seminar, Stanford University, CA, May 20^{th} , 2010.

Posters

- "Fast Direct methods for Gaussian Processes", Data Science Moore-Sloan launch event, April 28th, 2014.
- "Real-time monitoring at CO₂ sequestration sites: Fast inversion, assimilation and risk evaluation", GCEP symposium 2012, Stanford University, October 10^{th} , 2012.
- "Fast linear multi-frontal solvers for finite volume matrices", Predictive Science Academic Alliance Program. PSAAP, September 6^{th} , 2012.
- "Fast data assimilation for real-time CO₂ monitoring using a TOUGH2 Model", TOUGH Symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, September $17^{th} - 19^{th}$, 2012.
- "Fast $\mathcal{O}(N)$ linear solvers without preconditioners", Army High Performance Computing Research Center. AH-PCRC, November 30^{th} , 2011.
- "Fast $\mathcal{O}(N)$ linear solvers without preconditioners", Predictive Science Academic Alliance Program. PSAAP, October 6^{th} , 2011.
- "Using Domain Specific Languages to Build Fast Direct Solvers", Predictive Science Academic Alliance Program. PSAAP, April 28^{th} , 2011.
- "Direct Solvers for FEMs in Liszt", Predictive Science Academic Alliance Program. PSAAP, October 18th, 2010.

Internships

• TIFR Centre for Applicable Mathematics, Bangalore, India

August 2011

- John F.Welch Technology Centre, Bangalore, India May 2006 - June 2006 Designed non-invasive diagnostics to predict the heart rate variability, with Dr. P.J. Lavakare.
- National Aerospace Laboratories, Bangalore, India Computational and Theoretical Fluid Dynamics Division Aerofoil Optimization using Discrete Adjoint Method, with Manoj T Nair.

May 2005 - June 2005

Workshops

- Waves and Imaging July 2011 Gene Golub SIAM Summer School July 4 – 15, 2011, University of British Columbia, Vancouver, Canada.
- Fast Direct Solvers for Elliptic PDEs June 2014 2014 CBMS-NSF Conference: Fast Direct Solvers for Elliptic PDEs June 23 – 29, 2014, Dartmouth College, USA.

OTHER ACTIVITIES

- Vice-President, Society for Industrial and Applied Mathematics, Stanford Chapter, 2010 2013.
- Member of Computational and Mathematical Consulting (C²), Stanford University, CA, 2010.
- Vice-President, Stanford Hindu Student Council, Stanford University, CA, 2008 2009.