Fibonacci Words

ลำดับ Fibonacci นิยามได้ดังนี้

$$fibo_1 = 1$$

 $fibo_2 = 1$
 $fibo_n = fibo_{n-2} + fibo_{n-1}$

ดังนั้นเราจะได้ลำดับดังนี้ 1, 1, 2, 3, 5, 8, 13, 21, ...

หากเรานิยามลำดับ Fibonacci โดยเริ่มต้นจากจำนวนอื่น เช่น

$$f_1 = 5$$

$$f_2 = 4$$

$$f_n = f_{n-2} + f_{n-1}$$

ลำดับที่ได้คือ 5, 4, 9, 13, 22, 35, 57, ...

ถ้านิยามลำดับ Fibonacci ที่ไม่ใช่จำนวน ดังนี้

$$s_1 = N$$

$$s_2 = A$$

$$s_n = s_{n-2} + s_{n-1}$$

โดยเครื่องหมาย + ในที่นี้แทนการนำค่าสตริงมาต่อกัน ลำดับที่ได้เป็นดังนี้ N, A, NA, ANA, NAANA, ... เรียกลำดับนี้ว่า Batmanacci

คำสั่ง ให้นักเรียนเขียนโปรแกรมเพื่อหาอักขระตัวที่ K^{th} ที่อยู่ในลำดับที่ N^{th} ของลำดับ Batmanacci โดยให้ ค่า N และ K

<u>ข้อมูลนำเข้า</u>

บรรทัดที่ 1 จำนวนเต็ม T แทนจำนวนชุดทดสอบ โดยที่ $1 \leq T \leq 10$

สำหรับแต่ละชุดทดสอบ

บรรทัดที่ 2 ถึงบรรทัดที่ N+1 จำนวนเต็ม N และ K คั่นด้วยช่องว่างหนึ่งช่อง โดยที่ N แทนลำดับสตริงตัวที่ N^{th} ของลำดับ Batmanacci โดยที่ $1 \leq N \leq 10^5$ และ K แทนอักขระตัวที่ K^{th} ของลำดับสตริงตัวที่ N^{th} ของลำดับ Batmanacci โดยที่ $1 \leq K \leq 10^{18}$

ข้อมูลนำออก สำหรับแต่ละชุดทดสอบ ให้พิมพ์อักขระตัวที่ K^{th} ของลำดับสตริงตัวที่ N^{th} ของลำดับ Batmanacci

ตัวอย่าง

Input	Output
2	N
77	A
777 777	

คำแนะนำ

เพื่อให้รองรับ $1 \leq K \leq 10^{18}$ ให้ใช้ข้อมูลชนิด

unsigned long long int

0 to 18,446,744,073,709,551,615

N A NA ANA NAANA ANANAANA strcat(

$$\uparrow$$
 $3-4$
 $3-2$
 $3-2$
 $3-2$
 $3-1$

N A

 $7-2$
 $3=3$

โครงการแลกเปลี่ยนนักเรียน (student exchanged Program)

องค์กรไม่แสวงผลกำไรต้องการจัดโปรแกรมให้นักเรียนได้เข้าร่วมแลกเปลี่ยนวัฒนธรรมระหว่างประเทศ โดยรับสมัคร นักเรียนทั่วโลกจำนวน $m{n}$ คน ซึ่งแต่ละคนต้องให้ข้อมูลประเทศที่อยู่ (original location) และประเทศปลายทาง (target location) แก่เจ้าหน้าที่ขององค์กร เพื่อจัดการให้นักเรียนได้แลกเปลี่ยนกันได้

สำหรับการจัดสรรการแลกเปลี่ยน สามารถทำได้หากมีคู่ที่ต้องการแลกเปลี่ยนที่เหมาะสม นั่นคือ มีนักเรียนอยู่ประเทศ A และต้องการไป B จะต้องมีนักเรียนอีกคนหนึ่งที่อยู่ประเทศ B และต้องการไปประเทศ A หรือในกรณีที่มากกว่า 2 คนดังตัวอย่างต่อไปนี้ ผู้สมัครจำนวน 3 คน

คนที่ 1 A

คนที่ 2 B (

คนที่ 3 C A

กรณีข้างต้นสามารถแลกเปลี่ยนกันได้ เจ้าหน้าที่จึงจะจัดการแลกเปลี่ยนนักเรียนได้

ให้นักเรียนเขียนโปรแกรมเพื่อช่วยเจ้าหน้าที่ตรวจสอบข้อมูลที่ผู้สมัครให้มาว่าสามารถจัดโปรแกรมแลกเปลี่ยนได้ หรือไม่

<u>ข้อมูลนำเข้า</u>

บรรทัดที่ 1 จำนวนเต็ม T แทนจำนวนชุดทดสอบ โดยที่ $1 \leq T \leq 10$

สำหรับแต่ละชุดทดสอบ

บรรทัดที่ 2 จำนวนเต็ม n โดยที่ n แทนจำนวนผู้สมัครเข้าโครงการแลกเปลี่ยน โดยที่ $1 \leq n \leq 500000$

บรรทัดที่ 3 ถึงบรรทัดที่ n+2 แสดงข้อมูลประเทศที่อยู่ (original location) และประเทศปลายทาง (target location) แทนด้วยจำนวนเต็มบวกสองจำนวน คั่นด้วยช่องว่างหนึ่งช่อง

ข้อมูลนำออก สำหรับแต่ละชุดทดสอบ

ให้พิมพ์ 'YES' สำหรับชุดทดสอบที่สามารถจัดผู้สมัครให้แลกเปลี่ยนกันได้ และให้พิมพ์ 'NO' สำหรับชุดทดสอบที่<u>ไม่</u>สามารถจัดผู้สมัครให้แลกเปลี่ยนกันได้

ตัวอย่าง

Input	Output
2	YES
10	NO
12/	
2,1/	
3,4/	
4,31	
100, 200,	
200 100	
57 2,	
2,57	
1,2,	
21/	
10	
1 2	
3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	

5	74	4	1		A.F. 7.F. 7
1	2	1	2	1) 1)	A[x][2]
3	4	2	3		
2	3	3	4	17 Landoni	
4	1			HILIMIA	

City Plan

เมืองรูสะมิแลมีรูปแบบผังเมืองเป็นรูปสี่เหลี่ยมที่สามารถสร้างถนนเพื่อแบ่งพื้นที่เป็นบล็อก ๆ ได้ขนาด m × n บล็อก การเดินทางภายในเมืองถูกกำหนดให้สามารถเดินทางไปทางทิศเหนือหรือทิศตะวันออกเท่านั้น

จงเขียนโปรแกรมเพื่อหาจำนวนวิธีทั้งหมดที่สามารถเดินทางจากจุด B ไปยังจุด D โดยมีเงื่อนไขว่าต้องเดินทางผ่านจุด R ด้วยเสมอ

Input: บรรทัดที่ 1 ขนาดของผังเมือง m และ n โดยเว้นวรรคข้อมูลแต่ละตัว ผัดท้าย บรรทัดที่ 2 จุด B ในรูปแบบของคู่ลำดับ โดยเว้นวรรคข้อมูลแต่ละตัว บรรทัดที่ 3 จุด D ในรูปแบบของคู่ลำดับ โดยเว้นวรรคข้อมูลแต่ละตัว บรรทัดที่ 4 จุด R ในรูปแบบของคู่ลำดับ โดยเว้นวรรคข้อมูลแต่ละตัว ราง เ

หมายเหตุ ข้อมูลนำเข้าทุกกรณีสามารถหาคำตอบที่ตรงตามเงื่อนไขได้

Output : จำนวนวิธีทั้งหมดที่สามารถเดินทางจากจุด B ไปยังจุด D โดยผ่านจุด R

Sample:

Input	Output	Note
4 3	3	D (2, 3)
0 0		D (2, 3)
2 3		R (2, 1)
2 1		B (0, 0)
5 6	35	D (4, 5)
0 1		
4 5		R (4, 4)
4 4		
		B (0, 1)
7 8	2450	D (7, 8)
0 0		
7 8		
4 4		
		R (4, 4)