Prokka: rapid prokaryotic genome annotation

Seemann Torsten, *Bioinformatics* 30.14 (2014): 2068-2069.

Presented by Sohyoung Won

What is Prokka?

- **Prok**aryotic **a**nnotation
- A command line software tool to annotate bacterial, archaeal and viral genomes quickly and produce standards-compliant output files

Workflow of genome analyses

Genome annotation

- Process of identifying and labeling genetic elements on a genome sequence
- **Genetic elements**: coding regions, tRNAs, rRNAs, non-coding RNAs, signal peptides, repeats, ...

Adding biological info to sequences

Genome annotation

- Structural annotation: identifying coordinates of genetic elements
- Functional annotation: associating functional data with the elements

Genome annotation

- Coordinates: which sequence is on which location and strand
- Feature types
 - Protein coding genes
 - Coding sequence, signal peptide
 - Non-coding genes
 - Transfer RNA (tRNA), ribosomal RNA (rRNA), non-coding RNA (ncRNA)
 - Others
 - Repeats
- Attributes: protein products, enzyme codes, subcellular location, ...

Genome annotation example

```
CDS
               complement(15858..16703)
                                                      Strand, gene start and end (Structural)
              /gene="soj_1"
                                                                  Gene name (Functional)
              /locus_tag="EJPLKBPL_00016"
Feature type
             /EC_number="3.6.-.-"
(Functional)
                                                   Enzyme Commission number(Functional)
              /inference="ab initio prediction:Prodigal:002006"
              /inference="similar to AA sequence:UniProtKB:P37522"
              /codon start=1
              /transl table=11
              /product="Sporulation initiation inhibitor protein Soj"

    Gene product (Functional)

              /db_xref="COG:COG1192"
              /translation="MVKKIVFGNFKGGVGKTTNSVMVAYELAKKGFRVLVCDLDPQAN
              STQLLRRTYGLQNNKELPIKETMMVAIQEGNLGKAVVNVMPNLYLLPSHKDFVNYPDF
              LELTIMPTEKNYKERRIAFFSELLKPIENDYDYIIFDVPPTLSVFTDTALYSSNYIVI
Sequence
(Structural)
              VLQTQQRSLDGAEAFWEYLQTLYDTYKNIDFDIAGVLPVLLKNDSGIDNQIIKDAKDA
              FGDETLFNTIVRHMERLKRYDRKGISEEGYTELYDFHDRKVHELYNKLSDEIIERTEG
              TTANE"
```

Genome annotation strategies

Ab initio gene prediction

- Model based method using only the sequence information
- Use patterns of promoter sequences, open reading frames, stop codons, ...

Homology based gene prediction

- Search for sequences that are similar to extrinsic evidence
- Find biologically similar sequences from databases

Annotation tools

	NCBI*	RAST	xBASE2	Prokka
Availability	Web server	Web server	Web server	Stand anlone
Time	In days	Under a day	Few hours	~10 minutes

- Limitations of online annotation servers
 - Not useful where throughput or privacy is critical
 - Difficult to iterate and integrate into pipeline

*NCBI Prokaryotic Genomes Automatic Annotation Pipeline

What Prokka does

- Coordinates a suite of existing software tools
 - Use both ab initio and homology based gene prediction
- Rich and reliable annotation of genomic bacterial sequences
 - Can annotate protein coding genes and non-coding genes at once
- Can be installed on any Unix system and exploit multiple processing cores
- A typical bacterial genome can be annotated in 10 min on a quad core desktop computer - Fast

Pipeline

• Relies on external feature prediction tools

Tool (reference)	Features predicted
Prodigal (Hyatt 2010)	Coding sequence (CDS)
RNAmmer (Lagesen et al., 2007)	Ribosomal RNA genes (rRNA)
Aragorn (Laslett and Canback, 2004)	Transfer RNA genes
SignalP (Petersen et al., 2011)	Signal leader peptides
Infernal (Kolbe and Eddy, 2011)	Non-coding RNA

Pipeline

Protein coding gene annotation

- 1. Prodigal identifies the coordinates of candidate genes
- 2. Compares the sequence with a **database of known sequences**

Prokka uses databases in a hierarchical manner

Databases for protein coding genes

- 1) Optional user-provided set of annotated proteins
- 2) All bacterial proteins in UniProt that have real protein or transcript evidence and are not fragmented (\sim 16,000 proteins)

BLAST+

- 3) All proteins from finished bacterial genomes in RefSeq for a specified genus
- 4) Hidden Markov model profile databases (Pfam and TIGRFAMs) ————— HMMER3
- 5) No matches → 'hypothetical protein'

Prodigal - For protein coding gene annotation

Read in the sequence

```
Locate all starts and stops in the genome
   Scan all open reading frames and record numbers of G's and C's in each codon position
   Build a frame bias model based on ORF length and G/C codon position within each ORF
   Record the highest scoring start nodes in each frame that overlap a stop codon by <= 60 bp
   Do the first pass dynamic programming, connecting nodes based on frame bias scores
7. Create a hexamer background of all 6-mers in the entire sequence
                                                                                                                               MRNA
8. FOR each gene model in the dynamic programming output:
     1. Gather all hexamer statistics
9. Create log table of hexamer coding scores
10. FOR each gene model in the dynamic programming output:
     1. Calculate a coding score based on hexamer statistics
     2. Penalize the score if there is a higher scoring start upstream in the same ORF
     3. If the gene is very long but has a negative score, THEN give it a barely positive
          score
                                                                             ρ-independent
                                                                                                           Asp) (Lew) (Val) (Arg
                                          Translation
                                                                   Stop
                                                                             transcription
                                          start
                           Transcription
                                                  Coding region
                                                                             signal
                                                                                                 5 UCAUGAUCUCGUAAG
                           start
                               Ribosomal
                                                                                                        Met (Ile) (Ser)
                               binding site
                                                    Start codon
                                                                   Stop codon
                                                                                                      Start codon's position
                                                    ATG
                                                                   TAA, TAG, TGA
                                                                                                      ensures that this
                                                                                                      frame is chosen
```

Hyatt, D., Chen, GL., LoCascio, P.F. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). 15 https://slideplayer.com/slide/5750865/; www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/translation/a/the-genetic-code-discovery-and-properties

Prodigal - For protein coding gene annotation

11. FOR 10 iterations

1. Build a ribosomal binding site and ATG/GTG/TTG background for all nodes

2. FOR each gene with a score of > 35.0:

1. Gather its Shine-Dalgarno RBS motif data and ATG/GTG/TTG data

3. Modify RBS and ATG/GTG/TTG weights by the observations

12. If organism is not determined to use Shine-Dalgarno THEN run the non-SD finder

13. FOR each gene model:

1. Assign a final score of start score + coding score

2. Penalize the final score of genes < 250bp

14. Do the second pass dynamic programming, connecting nodes based on hexamer coding

15. FOR each gene model in the final dynamic programming:

1. Eliminate negative scoring models

2. Resolve very close start pairs (<= 15 bp from each other)

16. Print final output

Hyatt, D., Chen, GL., LoCascio, P.F. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). 16 https://slideplayer.com/slide/5750865

BLAST – For protein coding gene annotation

Compares query and database sequences to find similar sequences

Query sequence of length L

Maximum of L-w+I words (typically w = 3 for proteins)

For each word from the query sequence find the list of words that will score at least T when scored using a pairscore matrix (e.g. PAM 250). For typical parameters there are around 50 words per residue of the query.

BLAST – For protein coding gene annotation

(2) Compare the word list to the database and identify exact matches.

(3) For each word match, extend alignment in both directions to find alignments that score greater than score threshold S.

Maximal Segment Pairs (MSPs)

BLAST – For protein coding gene annotation

- Query: Coding sequence identified from Prodigal
- Subject: Gene sequence from database
- Database is used hierarchically (as the order in slide 13)
 - If there is a match from DB 1) then 2) is not searched
 - The gene from DB 1) is annotated
- Prokka identifies genes of e-value $< 10^{-6}$

Score		Expect	Identities	Gaps	Strand
542 bi	ts(293)	9e-150	296/297(99%)	1/297(0%)	Plus/Plus
Query	1	GTGGTCTGGCAGGCAG	GATTATCCTGACCCTATGAG ⁻	TTTTTTAGGTAACTTTGA	AAGTAAC 60
Sbjct	54826	GTGG-CTGGCAGGCA	GATTATCCTGACCCTATGAG	TTTTTTAGGTAACTTTGA	AAGTAAC 54884
Query	61	AGTGTGTTGAATTTT(GAGGTTATAGCAATACTAA 	ATATGATGAATACTTAAA	AGATACC 120
Sbjct	54885	AGTGTGTTGAATTTT	GGAGGTTATAGCAATACTAAA	ATATGATGAATACTTAAA	ÁGÁTÁCC 54944

HMMER – For protein coding gene annotation

Toy example of HMM (hidden Markov model)

• Profile HMM modelling a multiple sequence alignment

tRNA gene annotation

- tRNA gene: Aragorn
 - Heuristic algorithms to predict tRNA secondary structure
 - Based on **homology** with recognized tRNA consensus sequences and ability to form a base-paired cloverleaf
 - Heuristic algorithm: adapting the approach to a problem based on previous solutions to similar problems

rRNA and ncRNA gene annotation

rRNA gene: RNAmmer

 HMMs trained on data from the 5S ribosomal RNA database and the European ribosomal RNA database project

ncRNA: Infernal

- Builds consensus RNA secondary structure profiles called covariance models (CMs), and uses them to search nucleic acid sequence databases for homologous RNAs
- A CM is like a sequence profile, but it scores a combination of sequence consensus and RNA secondary structure consensus

Signal peptide annotation

- Signal peptide: SignalP
 - Short amino acid sequences in the amino terminus of many newly synthesized proteins that target proteins into, or across, membranes
 - Neural network-based method

Outputs

Suffix	Description of file contents
.fna	FASTA file of original input contigs (nucleotide)
.faa	FASTA file of translated coding genes (protein)
.ffn	FASTA file of all genomic features (nucleotide)
.fsa	Contig sequences for submission (nucleotide)
.tbl	Feature table for submission
.sqn	Sequin editable file for submission
.gbk	Genbank file containing sequences and annotations
.gff	GFF v3 file containing sequences and annotations
.log	Log file of Prokka processing output
.txt	Annotation summary statistics

.fna, .ffn, .fas

>contig_1_pilon GTGCTAAATAAGGAAAATCAAGAAAACTATTACT TCTTTTGAAGAGTTAAGTTTAGAAGAAATGGAAGG GCTGAGACAACTCCAGCATGTTTTACCATAGGCTT

.faa

>EJPLKBPL_00001 hypothetical protein MEDNLINVLSINERCFLLKQSGNEKYDIKNLQAWKER GLGITPIENFPDKEVAIQYIKDQSWYIFFESILDSYNDSE LFLLDLNSELNICTKEFIINLLENLTQELIHLTSKTLVLDL

.tbl

> Feature contig_1_pilon 253 3234 gene locus_tag EJPLKBPL_00001 253 3234 CDS inference ab initio prediction:Prodigal:002006 locus_tag EJPLKBPL_00001 product hypothetical protein

.sqn

.gbk

CDS

```
LOCUS
                             54297 bp DNA linear
                                                        10-8월-2021
          contig_1_pilon
DEFINITION Genus species strain strain.
ACCESSION
VERSION
KEYWORDS
SOURCE Genus species
 ORGANISM Genus species
       Unclassified.
COMMENT Annotated using prokka 1.14.6 from
       https://github.com/tseemann/prokka.
FEATURES
                 Location/Qualifiers
               1..54297
   source
             /organism="Genus species"
             /mol_type="genomic DNA"
             /strain="strain"
               253..3234
   gene
```

/inference="ab initio prediction:Prodigal:002006"

/translation="MEDNLINVLSINERCFLLKQSGNEKYDIKNLQAWKERKSVLKQD

/locus_tag="EJPLKBPL_00001"

/locus_tag="EJPLKBPL_00001"

/product="hypothetical protein"

253..3234

/codon_start=1 /transl_table=11

.log	
	This is prokka 1.14.6
	Written by Torsten Seemann <torsten.seemann@gmail.com> Homepage is https://github.com/tseemann/prokka</torsten.seemann@gmail.com>
	Local time is Tue Aug 10 13:49:22 2021

Outputs - .gff

Outputs - .txt

• Summary of annotated feature types

organism: Genus species strain

contigs: 4

bases: 3089071

CDS: 3011

gene: 3090

rRNA: 12

repeat_region: 1

tRNA: 66

tmRNA: 1

Results

• Comparison of annotation of *E. Coli K-12* accession U00096.2

Feature	Reference	Prokka	RAST	xBase2
Total CDS	4321	4305	4512	4444
Matching start	-	3828	3571	3025
Different start	-	318	533	1052
Missing CDS	-	172	214	241
Extra CDS	-	159	405	367
Hypothetical protein	18	276	638	156
With EC number	1114	1050	1118	0
Total tRNA	89	88	86	88
Total rRNA	22	22	22	22

The bold denotes the best performing tool (column) for that attribute (row). The italics are "subsets" of the "Total CDS" section.

Summary

- Annotation is a process of identifying and labeling genetic elements (protein coding genes, non-coding RNAs, ...) on a genome sequence
- There are web- or email-based systems for prokaryotic genome annotation, but these are not applicable for sensitive data or integrating into computational pipelines
- Prokka is a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer
- The input for Prokka is a genome assembly (.fasta) and the outputs are standards-compliant files such as .gff files

Thank you for listening!

