

CSC4008: Techniques for Data Mining

Project Introduction Jan. 26, 2021

Chenye Wuwuchenye@cuhk.edu.cn

Data Mining in Power Systems

Motivation:

- To put the theory/toolbox into action
- To give you a prototype research experience (find your own topic)
- To have a concrete example during the rest of the course

Grades: 40 Points in total

Course presentation: 10 Points

1st report: 5 points

- 2nd report: 25 points

Data Mining in Power Systems

 Dataset: Pecan Street Individual Users' Daily Energy Consumption Dataset (you may also find your own dataset).

Deliverables:

- Literature Review (1st Report, due on March 15, 2021)
- During the Spring Festival, you are suggested to conduct the literature review to find your own topic, as well as conduct the pre-processing for the dataset.
- 5-minute Course Presentation (in May, the last two weeks)
- Final Report (2nd Report, tentatively due on May 26, 2021)

Example Directions

The Dataset

Collected from 400 users

Location: Austin, TX

Period: May 1 to Oct 30, 2015

Granularity: 1 minute

Need to 'Preprocess' the Dataset due to missing data

Example 1:

Prediction...

Chenye Wu, Wenyuan Tang, Kameshwar Poolla, Ram Rajagopal, "Predictability, Constancy and Contingency in Electric Load Profiles," In Proceedings of IEEE SmartGridComm 2016, Sydney, Australia, Nov, 2016.

The most straightforward task

- The challenges:
 - It might be impossible to predict the time series sequence.

What we can do?

Not all predictions are hard!!!

ig. 7: Individual scaled load profile with granularity of (a) one minute, (b) 10= minutes, (c) one hour.

CSC4008: 7

Possible Direction

- Define your own way of the 'hardness' for predicting the loads
- Examine the relationship between the hardness and other parameters, say granularity, aggregate level, etc.
- Preferably, with insights.
- What else we can do?

Re-examing the Load Profiles

 What would you expect to see if you conduct the FFT for the 3 time series data?

ig. 7: Individual scaled load profile with granularity of (a) one minute, (b) 10= minutes, (c) one hour.

How does NN work?

- Most predictors, during training, are expected to first capture
 - A) low frequency component
 - B) high frequency component
- Hence, will you be able to observe such phenomenon in predicting the load profiles?
- If yes, how can you make the phenomenon much easier to observe?

Example 2:

Good Consumers v.s. Bad Consumers

[1] Yu et al, Good consumer or bad consumer: Economic information revealed from demand profiles, IEEE Trans. On Smart Grid.

Common Belief

- In power system operation, the critical peak during the year drives the operational cost high.
- Hence, suppose the State Grid is asking you to distinguish bad consumers from good consumers, how would you suggest?

Common Belief

- People tend to believe those large consumers (consume large quantity of energy) are the bad consumers.
- What are the inherent assumptions behind this belief?

Underlying Assumption

We thought that the energy consumption patterns are similar.

- Based on this assumption, of course, large consumers are bad consumers.
- Hence, we should charge them a higher electricity rate.

Is this assumption true?

How to validate your conclusion?

Ask the Data!

Good consumers v.s. Bad consumers

- To determine if one consumer is good or bad, we need to specify the system operator's marginal cost to serve the consumer.
- This marginal cost is uniquely determined by the consumer's load shape!
- Hence, instead of evaluation the consumer's total energy consumption, the system operator needs to evaluate its load profile!
- Yu et al. have developed such an index to use the load profile to determine the marginal serving cost in [1].

^[1] Yu et al, Good consumer or bad consumer: Economic information revealed from demand profiles, IEEE Trans. On Smart Grid.

Good consumers v.s. Bad consumers

Good consumers v.s. Bad consumers

Example 3:

Vulnerability of Data-driven Pricing

Jingshi Cui, Haoxiang Wang, Chenye Wu, Yang Yu, "Robust Data-driven Profile-based Pricing Schemes", In Proceedings of IEEE ISGT NA 2021, Washington D.C. USA

Clustering Results

- Using Pecan Street Dataset
 - K-means clustering using l_1 -norm!

Why choose l_1 -norm?

Cost function

-
$$C_T(\mathbf{L}) = \sum_{t=1}^T C(L_t) = \sum_{t=1}^T \frac{1}{2} a \cdot L_t^2 + b \cdot L_t + c, \ \forall \ 1 \le t \le T, \quad s. \ t. \ L_t = \sum_{i=1}^N l_i^t$$

Real time price (real time marginal cost)

$$- p(t) = \frac{\partial C(L_t)}{\partial L_t} = a \cdot L_t + b, \ \forall \ 1 \le t \le T$$

Marginal System Cost Impact (MCI)

If we implement MCI as a uniform price, why it is good?

-
$$MCI_i = \lim_{\Delta \to 0} \frac{C_T\left(L + \Delta \frac{l_i}{||l_i||_1}\right) - C(l)}{\Delta} = \sum_{t=1}^T \frac{l_i^t}{\sum_{m=1}^T l_i^m} p(t)$$

What does MCI tell us?

- If we choose to implement a uniform price, then we should choose MCI.
- And MCI is uniquely determined by user's load profiles.
- One straightforward implementation can be to conduct the k-means clustering based on load profiles.
- Users in the same cluster share the same price.

Clustering for Pricing

• Clustering Challenges

- Problem: users in the same cluster do not share exactly the same load profile.
- Loophole: certain users may bypass to other clusters for a better retail price.

Our Contributions

Two Questions

- What are the possible strategic behaviors?
- How many users can conduct price manipulation?

Our Work

- Defining disguising ⇒ to identify strategic behavior.
- Characterizing sensitive zone \Rightarrow to observe the impacts of different parameters.
- Based on sensitive zone characterization and cost benefit analysis \Rightarrow vulnerability analysis.

Disguising: Strategic Behaviors

- Assumption
 - All users know the global information (central profile of each cluster and its corresponding price).
- Minimal Effort for Disguising

- Index to Differentiate Disguising
 - $CR_i = min_{n \in \{1,\dots,k\}, n \neq u(i)} inf \lambda_{i,n}$
- u(i) is the cluster that user i belongs to.
- Parametric Definition of Disguising
 - $CR_i \leq \theta$

Empirical Evidence: Strategic Behaviors

Index to Quantify the Existence of Strategic Behaviors

-
$$N_n(\theta) = \sum_{i,u(i)=n} I(CR_i \le \theta)$$

To define the number of users, having the ability to disguise, in each cluster n.

Why Such Strategic Behaviors Exist?

- From End-to-End machine learning perspective...
 - It's because we select the wrong clustering criteria.
- We conduct k-means clustering for pricing. Hence, we should directly conduct the k-means clustering based on MCI.
- We define smoothness to guarantee robustness.
- (**Definition**) The k-means clustering is δ -smooth if for any user i and its associated disguising set \mathcal{K}_i , the following condition holds:

$$|p_{u(i)} - p_n| \le \delta, \quad \forall n \in \mathcal{K}_i$$

Local properties for smoothness!

- *k*-means Clustering with Smoothness Guarantee
 - (Theorem) Suppose a k-means clustering algorithm can guarantee that

$$|MCI_i - p_{u(i)}| \le \rho, \ \forall \ i \in u(i),$$

then, the clustering is $\rho(1+\frac{1}{1-\theta})$ -smooth.