Integrais definidas

Seja uma função f(x) definida e contínua num intervalo real [a, b]. A integral definida de f(x), de **a** até **b**, é um número real, e é indicada pelo símbolo:

$$\int_{2}^{b} f(x)dx$$

onde:

- a é o limite inferior de integração;
- **b** é o limite superior de integração;
- $\mathbf{f}(\mathbf{x})$ é o integrando.

Se $f(x) \ge 0$, $\int_{a}^{b} f(x) d(x)$ representa a área entre o eixo \mathbf{x} e a curva f(x), para $a \le x \le b$:

$$A = \int_{a}^{b} f(x) \, \mathrm{d}(x)$$

Se $f(x) \ge g(x)$, $\int_a^b [f(x) - g(x)] d(x)$ representa a área entre as curvas, para $a \le x \le b$:

$$A = \int_{\mathbf{a}}^{\mathbf{b}} [f(\mathbf{x}) - g(\mathbf{x})] d(\mathbf{x})$$

Integrais definidas (continuação)

Se $f(x) \ge 0$ para $a \le x \le c$ e $f(x) \le 0$ para $c \le x \le b$, então a área entre f(x) e o eixo x, para $a \le x \le b$, é dada por :

Se $f(x) \ge g(x)$, $a \le x \le c$, e $f(x) \le g(x)$, $c \le x \le b$, então a área entre f e g, $a \le x \le b$, é dada por :

$$A = \int_{a}^{b} \left[f(x) - g(x) \right] d(x) + \int_{a}^{b} \left[g(x) - f(x) \right] d(x)$$

A integral definida, nos exemplos vistos, representa uma área, o que ocorre em muitos casos, e é uma das formas de se apresentar a integral definida.

De forma geral, para $f(x) \ge 0$, a área limitada por f(x) e o eixo x, $a \le x \le b : \acute{e}$ dada por $\int_{0}^{b} f(x) \, d(x)$, que pode representar a soma das áreas de infinitos retângulos de largura $\Delta x \to 0$ e cuja altura é o valor da função num ponto do intervalo da base:

Subdividindo o intervalo [a, b] em \mathbf{n} subintervalos através das abscissas $x_0=a, x_1, x_2,...,x_n=b$, obtemos os intervalos (a, x_1), (x_1 , x_2),, (x_{n-1} , b). Em cada intervalo (x_{i-1} , x_i) tomemos um ponto arbitrário \mathbf{h}_i .

Seja $\triangle x_i = x_i - \mathbf{x}_{i-1}, 1 \le i \le n$. De acordo com a figura, os retângulos formados têm área $f(h_1) \triangle x_1$, $\mathbf{f}(h_2) \triangle x_2$,..., $f(h_n) \triangle x_n$.

Então, a soma da áreas de todos os retângulos é:

$$f(h_1) \triangle x_1 + f(h_2) \triangle x_2 + \dots + f(h_n) \triangle x_n = \sum_{i=1}^n f(h_i) \triangle x_i$$

que nos fornece um valor aproximado da área considerada.

Aumentando o número **n** de subintervalos $^{\Delta x_i}$, tal que $^{\Delta x_i}$ tenda a zero $^{(\Delta x_i \to 0)}$ e o número **n** de subintervalos tenda a infinito $^{(n \to \infty)}$, temos as bases superiores dos retângulos e a curva praticamente se confundindo e, portanto, temos a área considerada.

Simbolicamente, escrevemos:

$$\lim_{n\to\infty}\sum_{i=1}^n f(hi)\Delta x_i = \int_a^b f(x)d(x)$$

Integrais definidas (exemplo)

Seja a área entre y = x e o eixo x, para $0 \le x \le b$:

Esta área é dada por:

$$\frac{base \cdot altura}{2} = \frac{b \cdot b}{2} = \frac{b^2}{2}$$

Podemos notar que o processo do limite nos leva ao resultado procurado. Dividindo o intervalo [0, b] em $\bf n$ subintervalos, cada um terá largura $\frac{b-0}{n}=\frac{b}{n}$.

Sejam, então, os pontos:

$$x_1 = \frac{b}{n}, \ \ x_2 = \frac{2b}{n}, \ \ x_3 = \frac{3b}{n}, ..., \ x_n = \frac{nb}{n} = b$$

Como f(x) = x, então
$$f(x_1) = \frac{b}{n}, f(x_2) = \frac{2b}{n}, ..., f(x_n) = b$$
.

$$Mas, \Delta x_1 = \Delta x_2 = ... = \Delta x_n = \frac{b}{n}$$

Então, a soma das áreas
$$f(x_1) \triangle x_1 + f(x_2) \triangle x_2 + ... + f(x_n) \triangle x_n$$
 vale:
$$\frac{b}{n} \cdot \frac{b}{n} + \frac{2b}{n} \cdot \frac{b}{n} + \frac{3b}{n} \cdot \frac{b}{n} + ... + \frac{nb}{n} \cdot \frac{b}{n} = \frac{b^2}{n^2} + \frac{2b^2}{n^2} + \frac{3b^2}{n^2} + ... + \frac{nb^2}{n^2} = \frac{b^2}{n^2} \cdot (1 + 2 + 3 + ... + n)$$
Logo:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \triangle x_i = \lim_{n \to \infty} \frac{b^2}{n^2} . (1 + 2 + 3 + ... + n)$$

 $Como1 + 2 + 3 + ... + n = \frac{n \cdot (n+1)}{2}$ é a soma de uma PA de razão 1, então :

$$\lim_{n \to \infty} \frac{b^2}{n^2} \cdot \frac{n \cdot (n+1)}{2} = \lim_{n \to \infty} \frac{b^2}{n^2} \cdot \left(\frac{n^2 + n}{n^2} \right) = \frac{b^2}{2}$$

Portanto:

$$A = \int_0^b f(x) d(x) = \int_0^b x dx = \frac{b^2}{2}$$

Cálculo da integral definida

O método que temos para o cálculo da área ou da integral definida, no caso, é ainda muito complicado, conforme vimos no exemplo anterior, pois encontraremos somas bem piores.

Para tal, consideremos a área das figuras quando movemos a extremidade direita:

Se a área é dada por A(x), então A(a) = 0, pois não há área alguma. Já A(x) dá a área da figura 1, A(b), a área entre $x \in x + \Delta x \in A(x + \Delta x) - A(x)$, ou seja:

•
$$\int_{a}^{a} f(x) d(x) = A(a) = 0$$
•
$$\int_{a}^{b} f(x) d(x) = A(b)$$
•
$$\int_{a}^{x} f(x) d(x) = A(x)$$
•
$$\int_{x}^{x+inx} f(x) d(x) = A(x+\Delta x) - A(x)$$

$$Mas:$$

$$\frac{dA}{dx} = \lim_{Ax \to 0} \frac{A(x+\Delta x) - A(x)}{\Delta x} = A'(x),$$

ou seja, A(x) é uma das antiderivadas de f(x). Mas sabemos que se F(x) é antiderivada qualquer de f(x), então A(x) = F(x) + C. Fazendo x = a, temos: A(a) = F(a) + C = 0 (A(a) = 0)

Logo,
$$C = -F(a) e A(x) = F(x) - F(a)$$
.

Portanto:

$$\int_{a}^{b} f(x) d(x) = A(b) = F(b) - F(a)$$

ou ainda,

$$\int_a^b f(x) d(x) = F(x)\Big|_a^b = F(b) - F(a)$$

Exemplos:

1)
$$\int_0^1 x \, dx = \frac{x^2}{2} \Big|_0^1 = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2}$$

2) $\int_0^b x \, dx = \frac{x^2}{2} \Big|_0^b = \frac{b^2}{2} - 0 = \frac{b^2}{2}$
3) $\int_1^2 x^2 \, dx = \frac{x^3}{3} \Big|_1^2 = \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$
4) $\int_0^{\frac{\pi}{4}} \cos x \, dx = \sin x \Big|_0^{\frac{\pi}{4}} = \sin \frac{\pi}{4} - \sin 0 = \frac{\sqrt{2}}{2}$

Note que conseguimos uma forma de calcular integrais definidas e áreas sem calcular somas complicadas e usando apenas as antiderivadas.

Propriedades da integral definida

$$1^{\mathbf{a}})\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \ \mathbf{d}(\mathbf{x}) = 0, \, \mathbf{pois} \int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f}(\mathbf{x}) \ \mathbf{d}(\mathbf{x}) = \mathbf{F}(\mathbf{x}) \Big|_{\mathbf{a}}^{\mathbf{a}} = F(\mathbf{a}) - F(\mathbf{a}) - 0.$$

$$2^a)\int_a^b f(x)\ d(x) = -\int_b^a f(x)\ dx, \ pois \int_b^a f(x)\ dx = F(a) - F(b).$$

$$3^a$$
) $\int_a^b kf(x) dx = k \int_a^b f(x) dx$, como nas integrais indefinida s.

$$4^{\mathbf{a}}) \int_{0}^{b} \mathbf{f}(\mathbf{x}) \ d\mathbf{x} = \int_{a}^{c} \mathbf{f}(\mathbf{x}) \ d\mathbf{x} + c \int_{c}^{b} \mathbf{f}(\mathbf{x}) \ d\mathbf{x}, \ \mathbf{a} \ \leq c \leq b.$$