An overview of the HSQC

Encode ¹⁵N chemical shift for time t₁

Bodenhausen & Ruben

2D Time-Domain Data

The Spin Echo "averages" chemical shift evolution

Spin-Echo Refocuses J and CS Evolution

J Coupling Refocused

J Coupling & Chemical Shift Refocused

Double Spin Echo

HSQC: guided tour

¹⁵N transverse "antiphase" magnetization subject to ¹⁵N chemical shift

Morris & Freeman, INEPT

¹⁵N Chemical Shift Evolution

Detection

HSQC Signal

Obtaining the Sine Component

States, Ruben, Haberkorn

After Obtaining Im Part of Indirect Dimension . . .

2D Fourier Transform: FT Direct Dimension

FT Direct Dimension

Re $S(t_1,v_2)$ is absorptive. But unable to discriminate sign of δ^N

Some data shuffling then 2D FT = the HSQC Spectrum

 H^N