Binôme 2 :

Nom du répertoire :

COMPTE RENDU - TP N°3

Coef. de Contre-réaction Echelle Assemblage Date

25/11/2013

DRAGON

Document de référence : Manuel Utilisateur DRAGON-VERSION4

Travaillez dans un dossier « dragon »

1/ jdd A - Coeur REP RZ (coeur2D.d)

Consignes

L'homogénéisation spatiale consiste à définir un milieu homogène dans lequel les quantités isotopiques sont respectées. Pour chaque isotope, la « densité homogénéisée » équivalente est :

$$[i]_{hom} = \frac{\int_{Cellule} [i] dV}{V_{Cellule}}$$

Ci-dessous la géométrie d'une cellule combustible REP 900 :

Géo				
cellule carrée	coté	1,26	cm	
pastille	diamètre	0,410	cm	
gaine	diamètre intérieur	0,418	cm	
gaine	diamètre extérieur	0,480	cm	

Ci-dessous la composition d'une cellule combustible REP 900 :

	016	=	'016'	4,6131E-02
Pastille	U235	=	'U235'	8,0729E-04
	U238	=	'U238'	2,2258E-02
Gaine	Zr91	=	'Zr91'	3,8324E-02
Eau	H1H2O	=	'H1_H2O'	4,7508E-02
(308°C)	O16H2O	=	'016'	2,3754E-02

Homogénéisez cette cellule combustible

Questions Réponses Quel sont les fractions volumiques de chaque région ? Région Fraction volumique Pastille Gaine Eau (308°C)

Binôme 2 :

COMPTE RENDU - TP N°3 Coef. de Contre-réaction Echelle Assemblage

Date

25/11/2013

Nom du répertoire :

Quel sont les concentrations des isotopes de la cellule homogénéisée ?

CELL.	ISOT.	COMPO (10^24at/cm3)
	'016'	
	'U235'	
COMP	'U238'	
COMB	'Zr91'	
	'H1_H2O'	
	'016'	

Consignes

Ci-dessous la géométrie d'une cellule absorbante de B4C:

Géo			
cellule carrée	coté	1,26	cm
Pastille B4C	diamètre	0,370	cm

Ci-dessous la composition d'une cellule <u>absorbante</u> de B4C:

5	B10	=	'B10'	1,5453E-02
Pastille B4C	B11	=	'B11'	6,2200E-02
D4C	С	=	'C0'	1,9391E-02
Eau	H1H2O	=	'H1_H2O'	4,7508E-02
(308°C)	O16H2O	=	'016'	2,3754E-02

Homogénéisez cette cellule absorbante

<u>Questions</u>	<u>Réponses</u>	
Quel sont les fractions volumiques de		
chaque région ?	Région	Fraction volumique
	Pastille B4C	
	Eau (308°C)	

Binôme 2:

COMPTE RENDU - TP N°3

Coef. de Contre-réaction Echelle Assemblage

Date

25/11/2013

Nom du répertoire :

Quel sont les concentrations des isotopes de la cellule homogénéisée ?

CELL.	ISOT.	COMPO (10^24at/cm3)
	'B10'	
	'B11'	
POISON	'C0'	
	'H1_H2O'	
	'016'	

Consignes

En vous inspirant des jdd déjà étudiés auparavant, construisez un jdd dragon nommé « coeur2D.d » dans lequel sont définis ces deux milieux homogénéisés.

A l'aide du manuel Dragon, ajoutez dans ce jdd la définition de la géométrie suivante « grappes à mi-cœur »:

Enfin, ajoutez les éléments de résolution du flux selon une méthode SN (voir ci-dessous)

```
TRACK := SNT: GCELL ::
    EDIT 0
    MAXR 1000
    DIAM 1 SN 8
    SCAT 2
    QUAB 7
    TITLE 'CORE' ;
LIBMIXS := USS: LIBMIX TRACK :: EDIT 0
    GRMAX 1 ARM ;
SYS := ASM: LIBMIXS TRACK :: EDIT 0 ARM ;
FLUX := FLU: SYS LIBMIXS TRACK ::
    EDIT 1
    TYPE K
    EXTE 100 1E-4 THER 10 1E-4 ;
```

(extrait du fichier « SN.d »)

COMPTE RENDU - TP N°3

Coef. de Contre-réaction Echelle Assemblage

Date

25/11/2013

Nom du répertoire :

Binôme 2:

Questions	Réponses		
Quel est le Keff obtenu ? - Grappes à mi-cœur - Grappes en haut du cœur (que du combustible)	Config. Grappes à mi-cœur Grappes extraites	Nom du fichier coeur2D.d coeur2D.TGE.d	Keff
Quel est la concentration en Bore critique - enrichi à 20% _{isot} en Bore 10 - dans le cas « grappes extraites » du cœur ? Indiquez les valeurs en : • 10 ²⁴ at/cm ³			

2/ Effets des grappes

ppm

Consignes

Le **poids d'une grappe** est définie par la différence de réactivité entre l'état « grappe extraite » et l'état « grappe insérée» :

 $ho_{grappe} =
ho_{grappe\ en\ haut\ du\ coeur} -
ho_{grappe\ en\ bas\ du\ coeur}$

La **courbe d'insertion d'antiréactivité d'une grappe** est définie par la différence de réactivité entre l'état « grappe extraite » et l'état « grappe insérée de z cm » :

$$\rho_{grappe}(z) = \rho_{grappe \, \grave{a} \, 0 \, cm} - \rho_{grappe \, \grave{a} \, z \, cm}$$

Lorsque deux grappes s'insèrent simultanément, des phénomènes « d'ombre » et « d'anti-ombre » occurrent, tout comme des effets de redistribution de flux dans les différentes zones combustibles:

- Ombre : au voisinage de la grappe insérée, le flux est déprimé. Tout poison dans l'environnement « affaibli » par la grappe est « affaibli » à son tour
- Anti-ombre : loin de la grappe insérée, le flux est légèrement augmenté par effet de renormalisation. Tout poison dans l'environnement « renforcé » par la grappe est « renforcé » à son tour.
- Redistribution du flux dans le cœur : dans le cas des RNR particulièrement, une grappe perturbe le flux à grande distance et il s'ensuit une remarquable redistribution du flux dans le cœur : le flux de neutrons peut ainsi être délocalisé dans une zone combustible de plus grande importance neutronique, amoindrissant notablement l'insertion d'antiréactivité .

Faites varier la position des rideaux de grappes.

Questions Réponses Quels sont les poids : Du rideau intérieur Du rideau extérieur Des deux rideaux Rideau int. Rideau ext. 2 rideaux

COMPTE RENDU - TP N°3 Binôme 1: Date Coef. de Contre-réaction Binôme 2: 25/11/2013 **Echelle Assemblage** Nom du répertoire : Commentez l'effet d'ombre. Quel est la courbe d'insertion en Nom du fichier z (cm) $\rho_{grappe}(z)$ antiréactivité des deux rideaux. 0. Tracez-la. 10. 20. 30. 40. 50. 60.

20

40

Z

60

80

Binôme 1: Date **COMPTE RENDU - TP N°3** Coef. de Contre-réaction Binôme 2: 25/11/2013 **Echelle Assemblage** Nom du répertoire : **TRIPOLI** Document de référence : Manuel Utilisateur TRIPOLI 4.4 Travaillez dans un dossier « tripoli » 1/ jdd A - Coeur REP RZ (coeur2D.t4) **Consignes** En vous inspirant des jdd déjà étudiés auparavant, et à l'aide du manuel Tripoli, construisez un jdd tripoli nommé « coeur2D.t4 » semblable au jdd dragon. (conservez la concentration en bore critique que vous avez déterminée) **Questions** <u>Réponses</u> Quel est le Keff obtenu? Nom du fichier Keff Config. Grappes à mi-cœur coeur2D.t4 Grappes à mi-cœur Grappes en haut du cœur (que du combustible) **Grappes extraites** coeur2D.TGE.t4 2/ Effets des grappes **Consignes** Faites varier la position des rideaux de grappes. **Ouestions** <u>Réponses</u> Quels sont les poids : Nom du fichier Config. **Poids** Du rideau intérieur Rideau int. Du rideau extérieur Des deux rideaux Rideau ext. 2 rideaux

Commentez l'effet d'ombre.

COMPTE RENDU - TP N°3

Coef. de Contre-réaction Echelle Assemblage Date

25/11/2013

Nom du répertoire :

Binôme 2:

Quel est la courbe d'insertion en antiréactivité des deux rideaux. Tracez-la.

z (cm)	Nom du fichier	$ ho_{grappe}(z)$
0.		
10.		
20.		
30.		
40.		
50.		
60.		

