Reshaping data

Logistics and reminders

- HW 1 due tonight
- HW 2 released, due next Friday
- Department seminar coming up on 9/11
 - 11am in ZSR auditorium
 - Speaker: Robert Langefeld
 - Attendance part of class participation grade
 - If you can't attend in person, can instead watch a seminar on YouTube

Last time: pivot_longer

id	bp1	bp2	
Α	100	120	
В	140	115	
С	120	125	

id	measurement	value
Α	bp1	100
Α	bp2	120
В	bp1	140
В	bp2	115
С	bp1	120
С	bp2	125

```
1 df |>
2  pivot_longer(
3   cols = bp1:bp2,
4   names_to = "measurement",
5   values_to = "value"
6  )
```

```
# A tibble: 260 \times 38
   country `1975` `1976` `1977` `1978` `1979` `1980` `1981` `1982`
`1983` `1984`
   <chr> <dbl> 
<dbl> <dbl>
                                                           NA
 1 Afghan...
               NA
                      NA
                              NA
                                     NA
                                          4.99
                                                 NA
                                                                  NA
NA NA
 2 Albania
               NA
                      NA
                              NA
                                     NA NA
                                                 NA
                                                           NA
                                                                  NA
NA
    NA
                                     NA NA
                                                 NA
                                                           NA
 3 Algeria
               NA
                      NA
                              NA
                                                                  NA
NA
    NA
 4 Andorra
               NA
                      NA
                              NA
                                     NA NA
                                                  NA
                                                           NA
                                                                  NA
NA
     NA
```

Challenge: a variable of interest (year) is contained in the column names!

Literacy data in narrow form:

```
litF_long <- litF |>
     pivot_longer(
       cols = -country,
       names_to = "year",
       values_to = "literacy_rate",
       values_drop_na = T
   litF_long
# A tibble: 571 × 3
  country year literacy_rate
  <chr> <chr>
                         <dbl>
 1 Afghanistan 1979
                           4.99
 2 Afghanistan 2011
                           13
 3 Albania
              2001
                          98.3
4 Albania 2008
                           94.7
 5 Albania
          2011
                         95.7
 6 Algeria
                           35.8
              1987
```

7	Algeria	2002	60.1
8	Algeria	2006	63.9
9	Angola	2001	54.2
10	Andola	2011	58.6

	country	year	literacy_rate
1	Afghanistan	1979	4.987460
2	Afghanistan	2011	13.000000
3	Albania	2001	98.252274
4	Albania	2008	94.681814
5	Albania	2011	95.691480
6	Algeria	1987	35.839915
7	Algeria	2002	60.075082
8	Algeria	2006	63.918785
9	Angola	2001	54.194488
10	Angola	2011	58.608460
11	Anguilla	1984	95.714930
12	Antigua and Barbuda	2001	99.420000
13	Antigua and Barbuda	2011	99.420000
14	Argentina	1980	93.580894
15	Argentina	1991	96.041358
16	Argentina	2001	97.193411
4 ¬		~~~	07 000400

```
100 - 1980 1990 2000 2010 year
```

	country	year	literacy_rate
1	Afghanistan	1979	4.987460
2	Afghanistan	2011	13.000000
3	Albania	2001	98.252274
4	Albania	2008	94.681814
5	Albania	2011	95.691480
6	Algeria	1987	35.839915
7	Algeria	2002	60.075082
8	Algeria		63.918785
9	Angola	2001	54.194488
10	Angola	2011	58.608460
11	Anguilla	1984	95.714930
12	Antigua and Barbuda	2001	99.420000
13	Antigua and Barbuda	2011	99.420000
14	Argentina	1980	93.580894
15	Argentina	1991	96.041358
16	Argentina	2001	97.193411
		2244	07 000 100

```
(Intercept) year
-1323.2098674 0.6979597
```

1 lm(literacy_rate ~ year, data = litF_long)

Another example from last time

```
1 df_3

id bp_1 bp_2 hr_1 hr_2

1 1 100 120 60 77

2 2 120 115 75 81

3 3 125 130 80 93
```

What we can do with the current data

What we can do with reshaped data

```
# A tibble: 12 \times 4
       id measurement stage value
                       <chr> <dbl>
   <dbl> <chr>
        1 bp
                                 100
        1 bp
                                 120
 3
        1 hr
                                  60
        1 hr
                                 77
 5
        2 bp
                                 120
 6
       2 bp
                                 115
        2 hr
                                  75
 8
                                  81
        2 hr
                                 125
        3 bp
10
        3 bp
                                 130
```


Warmup activity

Work on the activity (handout) with a neighbor, then we will discuss as a class

Warmup

```
1 df 3
   df_3 |>
    pivot_longer(cols = -id,
 5
                names_to = c(".value", "stage"),
                names_sep = "_")
 id bp_1 bp_2 hr_1 hr_2
 1 100 120
             60 77
2 2 120 115 75 81
3 3 125 130
            80 93
 id stage bp hr
       1 100 60
  1
 1
       2 120 77
       1 120 75
  2 2 115 81
5 3 1 125 80
       2 130 93
```

What is names_to = c(".value", "stage") doing?

What we can do with the reshaped data

```
# A tibble: 6 \times 4
     id stage
                                  Call:
                 bp
                       hr
  <dbl> <dbl> <dbl> <dbl>
                                  df3_new)
                100
                       60
                120
                       77
3
                120 75
                                  Coefficients:
                                  (Intercept)
                115
                       81
5
   3 1
                125
                       80
                                       38.022
6
                130
                       93
```

```
Call:
lm(formula = bp ~ hr + stage, data =
df3_new)

Coefficients:
(Intercept) hr stage2
    38.022    1.074   -6.223

1 lm(bp ~ hr + stage,
    data = df3_new)
```

Going the other way

Data on air quality in two locations (BETR801, London Westminster) on different days:

```
1 air_quality
# A tibble: 1,825 \times 3
   date.utc
                       location value
   <dttm>
                       <chr>
                                <dbl>
 1 2019-06-18 06:00:00 BFTR801
                                 18
 2 2019-06-17 08:00:00 BFTR801
                                6.5
                                18.5
 3 2019-06-17 07:00:00 BETR801
 4 2019-06-17 06:00:00 BETR801
                                16
 5 2019-06-17 05:00:00 BETR801
                                7.5
                                  7.5
 6 2019-06-17 04:00:00 BFTR801
 7 2019-06-17 03:00:00 BFTR801
 8 2019-06-17 02:00:00 BETR801
 9 2019-06-17 01:00:00 BETR801
10 2019-06-16 01:00:00 BETR801
                                 15
```

What if I want a separate column for each location?

pivot_wider

pivot_wider

```
# A tibble: 3 \times 3
  date.utc
                     location value
  <dttm>
                      <chr> <dbl>
1 2019-06-18 06:00:00 BETR801 18
2 2019-06-17 08:00:00 BETR801 6.5
3 2019-06-17 07:00:00 BETR801 18.5
 1 air_quality |>
      pivot_wider(id_cols = date.utc,
                  names_from = location,
                  values_from = value)
# A tibble: 1,670 \times 3
                       BETR801 `London Westminster`
   date.utc
   <dttm>
                         <dbl>
                                              <dbl>
 1 2019-06-18 06:00:00
                          18
 2 2019-06-17 08:00:00
                       6.5
                                                  6
 3 2019-06-17 07:00:00
                         18.5
                                                  6
 4 2019-06-17 06:00:00
                         16
                                                  6
 5 2019-06-17 05:00:00 7.5
                                                  6
                       7.5
 6 2019-06-17 04:00:00
                                                  6
 7 2019-06-17 03:00:00
                                                  6
```

8	2019-06-17	02:00:00	7	6
9	2019-06-17	01:00:00	8	6
10	2019-06-16	01:00:00	15	7

Class activity

https://sta279-f25.github.io/class_activities/ca_05.html

- Work with a neighbor on the class activity
- At the end of class, submit your work as an HTML file on Canvas (one per group, list all your names)

For next time, read:

• Chapter 5 in Modern Data Science with R