The-Elements-of-Statistical-Learning 学习笔记

李奥林

mrliaolin@outlook.com

目录

第一章	Model Inference and Averaging	1	1.5	The EM Algorithm	2
1.1	Introduction	1		1.5.1 Two-Component Mix-	
1.2	The Bootstrap and Maximum			ture Model	2
	Likelihood Methods	1		1.5.2 The EM Algorithm in	
	1.2.1 A Smoothing Example .	1		General	2
	1.2.2 Maximum Likelihood			1.5.3 EM as a Maximization-	
	Inference	1		Maximization Procedure	3
	1.2.3 Bootstrap versus Maxi-		1.6	MCMC for Sampling from the	
	mum Likelihood	1		Posterior	3
1.3	Bayesian Methods	1	1.7	Bagging(装袋)	3
1.4	Relationship Between the			1.7.1 Example: Trees with	
	Bootstrap and Bayesian Inference	2		Simulated Data	3

第一章

Model Inference and Averaging

本章为《The elements of Statistical Learning》第8章的笔记。

1.1 Introduction

1.2 The Bootstrap and Maximum Likelihood Methods

1.2.1 A Smoothing Example

自助法提供了一种评估不确定性的直接计算方法(置信区间)。

- 非参数自助法 (与最小二乘法的置信区间类似)
- 参数自助法(对每个预测的 y 值加一个高斯噪声,参数为噪声的方差,此时估计出的函数的置信区间与最小二乘法的完全相同)

1.2.2 Maximum Likelihood Inference

参数自助法与最小二乘法是一致的,因为模型具有加法高斯误差。一般地,参数自助 法并非与最小二乘法一致,而是与极大似然一致。

1.2.3 Bootstrap versus Maximum Likelihood

1.3 Bayesian Methods

在用于推理的贝叶斯方法中, $\Pr(\mathbf{Z}|\theta)$ 是采样模型,先验分布是 $\Pr(\theta)$,反映我们看到数据之前的关于 θ 的知识,后验分布为 $\Pr(\theta|\mathbf{Z})$ 是我们看到数据之后关于 θ 更新的知识。

与标准的"频率论"方法的区别是使用先验分布来表达看到数据之前的不确定性,并 在看到数据之后允许残余的不确定性以后验分布形式来表示。

1.4 Relationship Between the Bootstrap and Bayesian Inference

自助法分布为我们的参数提供了一个(近似的)非参数的、无信息的后验分布。

1.5 The EM Algorithm

1.5.1 Two-Component Mixture Model

1.5.2 The EM Algorithm in General

公式 $E(\ell_0(\theta'; \mathbf{T})|\mathbf{Z}, \hat{\theta}^{(j)})$ 的定义是

$$E(\ell_0(\theta'; \mathbf{T})|\mathbf{Z}, \hat{\theta}^{(j)}) = \sum_{\mathbf{Z}^m} \ell_0(\theta'; \mathbf{T}) \Pr(\mathbf{Z}^m | \mathbf{Z}, \hat{\theta}^{(j)})$$
(1.1)

根据条件概率的链式法则

$$Pr(x_2, ..., x_n | x_1) = \prod_{i=2}^{n} Pr(x_i | x_1, ..., x_{i-1})$$
(1.2)

得 $Pr(\mathbf{Z}^m, \mathbf{Z}|\theta') = Pr(\mathbf{Z}^m|\theta') Pr(\mathbf{Z}|\mathbf{Z}^m, \theta')$,即

$$Pr(\mathbf{Z}|\theta') = \frac{Pr(\mathbf{Z}^m, \mathbf{Z}|\theta')}{Pr(\mathbf{Z}^m|\mathbf{Z}, \theta')}$$
(1.3)

用对数似然函数表示, $\ell(\theta'; \mathbf{Z}) = \ell_0(\theta'; \mathbf{Z}^m, \mathbf{Z}) - \ell_1(\theta'; \mathbf{Z}^m | \mathbf{Z})$,其中 ℓ_1 基于条件概率密度 $\Pr(\mathbf{Z}^m | \mathbf{Z}, \theta')$ 。关于参数 θ 支配的 $\mathbf{T} | \mathbf{Z}$ 取条件期望,得

$$\ell(\theta'; \mathbf{Z}) = \mathbf{E}[\ell_0(\theta'; \mathbf{T}) | \mathbf{Z}, \theta] - \mathbf{E}[\ell_1(\theta'; \mathbf{Z}^m | \mathbf{Z}) | \mathbf{Z}, \theta]$$

$$\equiv Q(\theta', \theta) - R(\theta', \theta)$$
(1.4)

其中, $R(\theta',\theta)$ 的定义是

$$R(\theta', \theta) = \sum_{\mathbf{Z}^m} \ell_1(\theta'; \mathbf{Z}^m | \mathbf{Z}) \Pr(\mathbf{Z}^m | \mathbf{Z}, \theta)$$
(1.5)

is the expectation of a log-likelihood of a density(indexed by θ'), with respect to the same density indexed by θ , 当 $\theta' = \theta$ 时,作为 θ' 的函数取最大值。因而,当极大化 $Q(\theta',\theta)$ 时,可以得出

$$\ell(\theta'; Z) - \ell(\theta; Z) = [Q(\theta', \theta) - Q(\theta, \theta)] - [R(\theta', \theta) - R(\theta, \theta)]$$

$$\geq 0$$
(1.6)

1.5.3 EM as a Maximization-Maximization Procedure

One does not need to maximize with respect to all of the latent data parameters at once, but could instead maximize over one of them at a time, 而可以在 M 步轮流一次极大化它们中的一个。

1.6 MCMC for Sampling from the Posterior

MCMC(Markov chain Monte Carlo) 马尔科夫链蒙特卡洛方法。

1.7 Bagging(装袋)

Bagging(Bootstrap aggregation) 对自助法样本集上的预测求平均,从而降低方差。真实装袋估计的定义是 $\mathbf{E}_{\hat{p}}\hat{f}^*(x)$,其中 \hat{p} 表示经验分布,即从实际总体中而不是数据中抽取样本。

仅当原来的估计是非线性的,或者是数据的自适应函数时,装袋估计与 $\hat{f}(x)$ 不同。 对于数模型来说,类概率估计为在末端节点中的类比例,Bagging 平均类概率通常可 降低方差。

1.7.1 Example: Trees with Simulated Data

由于预测子的相关性,这些树具有较高的方差。Bagging 成功地光滑了这种方差,从而降低了检验误差。

Bagging 可以降低均方误差,因为平均可以降低不稳定过程(如树)的方差,而保持偏倚不变。参考知乎: 为什么说 bagging 是减少 variance,而 boosting 是减少 bias,由于子集样本集的相似性以及使用的是同种模型,因此各模型有近似相等的 bias 和 variance。由于 $E[\sum x_i/n] = E[x_i]$,以 bagging 后的 bias 和单个子模型的接近,一般来说不能显著降低 bias。另一方面,若各子模型独立, $var(\sum x_i/n) = var(x_i)/n$,此时可以显著降低 variance。

训练样本是从P分布中抽取的不相关的样本(不重复),而自助样本也是从P中采样得到的。

当 bag 一个模型时,模型中任何简单结构都将失去。如 bagged 树已不再是树,对于模型的解释,这显然是一个缺点。

由 bag 计算的期望类概率不能在任何一个 single replication 上实现,在这种其意义上, bag 一定程度上增大了各基分类器的模型空间。对于该例子 (single split 分类器 bag 拟合双 向拟合 $x_1 + x_2 = 1$) 或者其它例子,模型需要放大时,bag 没有帮助。