Семинар №7 по курсу «Основы высшей алгебры и теории кодирования»

Репеев Роман, Шиманогов Игорь

Определение 1 — Евклидово кольцо	1
Лемма 1 О единице	1
Теорема 1 О главных идеалах	2
Определение 2 НОД	2
Определение 3 — Взаимно простые элементы	2
Теорема 2 — О представимости НОД	2
Лемма 2 — Лемма к алгоритму Евклида	2
Теорема 3 — О решении диофантова уравнения	4
Определение 4 Прямая сумма колец	4
Теорема 4 КТО	4

Определение 1 (Евклидово кольцо)

По определению, коммутативное кольцо R называется евклидовым, если для него выполнены следующие свойства.

- 1. Кольцо R не имеет делителей нуля.
- 2. Для каждого ненулевого элемента кольца определена числовая характеристика норма, которая принимает целые неотрицательные значения.
- 3. Определено деление с остатком. Возможность деления с остатком означает, что для любых элементов a,b кольца, $b \neq 0$, существуют такие q,r, что a = qb + r и либо r = 0, либо N(r) < N(b). Элемент r называется остатком от деления a на b.
- 4. $\forall a, b \in R, a \neq 0, b \neq 0 N(ab) > max(N(a), N(b))$

Лемма 1 (О единице)

Евклидово кольцо является кольцом с единицей.

Доказательство Выберем такой ненулевой элемент e' евклидова кольца R, что N(e') принимает минимально возможное положительное значение.

Разделим произвольный элемент a на e' с остатком: a = qe' + r.

По определению верно одно из двух: либо N(r) < N(e'), либо r = 0. Первое невозможно в силу минимальности нормы e'. Значит, a = qe'. В частности, e' = ee'.

Но тогда для любого $a \in R$ имеем ae' = aee', иначе говоря e'(a - ae) = 0. Поскольку кольцо R целостное и $e' \neq 0$, получаем a - ae = 0. Значит, e является единицей кольца R.

Пример 1

Нашими основными примерами евклидовых колец является кольцо целых чисел (в нем норма — это модуль числа) и кольцо многочленов (вскоре мы узнаем, что коэффициенты многочлена не обязаны быть действительными, вместо этого они могут лежать в произвольном поле), в котором за норму можно принять степень многочлена. В определении деления с остатком мы не требовали единственности неполного частного и остатка. Это требование не нужно для доказательства основных свойств евклидовых колец. Отметим, однако, что для кольца многочленов, как и для кольца целых чисел, неполное частное и остаток определены однозначно.

Теорема 1 (О главных идеалах)

Евклидовы кольца — это кольца главных идеалов.

Определение 2 (НОД)

Пусть a, b — два элемента евклидова кольца R. Наибольшим общим делителем a и b называют такой элемент d, что a = qd, b = rd, и для любого общего делителя d' (a = q'd', b = r'd') выполнено d = d'd'' для какого-то $d'' \in R$.

Замечание 1

Согласно этому определению ничто не мешает существованию нескольких наибольших общих делителей. Скажем, 5 и -5 являются наибольшими общими делителями чисел 10 и 15 в кольце \mathbb{Z} . Нетрудно показать, что все они будут отличаться на некий элемент обратимый элемент кольца. Иногда такие элементы называют делителями единицы. Мы будем обозначать наибольший общий делитель через (a,b) и понимать под этим традиционным обозначением любой из наибольших общих делителей.

Определение 3 (Взаимно простые элементы)

Элементы евклидова кольца R называются взаимно простыми, если их наибольший общий делитель равен единице.

Теорема 2 (О представимости НОД)

Наибольший общий делитель двух элементов евклидова кольца можно представить как их линейную комбинацию с коэффициентами из кольца.

$$(a,b) = ra + qb$$

В евклидовых кольцах существует простой способ нахождения наибольшего общего делителя и решения уравнения xa+yb=(a,b), который называется расширенным алгоритмом Евклида.

Лемма 2 (Лемма к алгоритму Евклида)

Для любых элементов a, b, q евклидова кольца выполнено (a, b) = (a - qb, b).

На этом основывается то, что называется алгоритмом Евклида.

Пусть a>b, тогда, разделив с остатком, получим a=qb+r, откуда r=a-qb, а значит, (a,b)=(r,b).

На каждом таком шаге минимальная из норм двух элементов уменьшается, поэтому алго-

ритм придет к концу. Тогда мы будем иметь НОД.

Задача 1

Найти НОД двух многочленов: $x^5 - 1$ и $x^3 - 1$.

Решение

$$x^{5} - 1 = x^{2} \cdot (x^{3} - 1) + (x^{2} - 1)$$

$$x^{3} - 1 = x \cdot (x^{2} - 1) + (x - 1)$$

$$x^{2} - 1 = (x + 1) \cdot (x - 1) + 0$$

$$(x^{5} - 1, x^{3} - 1)$$

$$(x^{3} - 1, x^{2} - 1)$$

$$(x^{2} - 1, x - 1)$$

$$x - 1$$

Таким образом, $(x^5 - 1, x^3 - 1) = x - 1$.

Теперь познакомимся с такой вещью, как расширенный алгоритм Eвклида. Решим уравнение ax + by = d, d = (a, b). такие уравнения называются диофантовыми.

Мы будем вычислять последовательность троек (a_i, x_i, y_i) , для которых сохраняется

$$a_i = x_i a + y_i b$$

Начальные значения такие:

$$a_0 = a$$
, $x_0 = 1$, $y_0 = b$
 $a_0 = b$, $x_0 = 0$, $y_0 = 1$

Дальнейшие значения вычисляем, деля с остатком a_{i-2} на a_{i-1} :

$$a_{i} = a_{i-2} - q_{i-1}a_{i-1}$$

$$x_{i} = x_{i-2} - q_{i-1}x_{i-1}$$

$$y_{i} = y_{i-2} - q_{i_{1}}y_{i-1}$$

Задача 2

Представить число 1 = (12,17) как линейную комбинацию 12 и 17.

Решение 1 а х у q 0 12 1 0 1 17 0 1 0 2 12 1 0 1 3 5 -1 1 2 4 2 3 -2 2 5 1 -7 5

Последняя строчка как раз говорит, что $1 = -7 \cdot 12 + 5 \cdot 17$

Замечание 2

Часто это пригождается для поиска обратных в кольцах вычетов. Например, чтобы найти 7^{-1} в $\mathbb{Z}/(19)$, нужно найти такой x, что

$$x \cdot 7 - 1 \in (19) \iff 7x + 19y = 1$$

Решив это диофантово уравнение, получим $x = 7^{-1}$.

Решим исходное линейное уравнение полностью.

Утверждение 1

Множеством решений однородного уравнения

$$ax + by = 0$$
, $a, b \in R$, $a \neq 0, b \neq 0$

являются такие пары:

$$x = t\frac{b}{d}$$
, $y = -t\frac{a}{d}$ $d = (a, b)$, $t \in R$

Утверждение 2

Неоднородное уравнение ax + by = c разрешимо тогда и только тогда, когда c делится на (a,b).

С помощью расширенного алгоритма Евклида можно найти частное решение уравнения ax + by = d. Если c = kd, то, умножив на k наше решение, получим решение ax + by = c. Имея частное решение неоднородного уравнения и общее решение однородного, можно найти общее решение, как в линале:

Теорема 3 (О решении диофантова уравнения)

Если c кратно d = (a, b), то множество решений уравнения ax + by = c таково:

$$x = x_0 + t\frac{b}{d}, \ y = y_0 + t\frac{a}{d} \quad t \in R$$

Пример 2

Возвращаясь κ уравнению 12x + 17y = 1, получаем общее решение

$$x = -7 + t, \ y = 5 - t \quad t \in \mathbb{Z}$$

Теперь рассмотрим, как можно обобщить КТО для колец.

Определение 4 (Прямая сумма колец)

 $R_1 \oplus R_2$ есть декартово произведение носителей с покомпонентным сложением и умножением, аналогично прямому произведению групп.

Теорема 4 (КТО)

Для взаимно простых элементов p_1, p_2 евклидова кольца R имеет место изоморфизм колец $R/(p_1p_2)\cong R/(p_1)\oplus R/(p_2).$

С помощью КТО можно решать системы сравнений по модулю взаимно простых чисел. Об этом можно прочитать в учебнике в параграфе 10.5

Но сейчас рассмотрим задачу, где мы используем теорему в обратную сторону

Задача 3

Найти решения уравнения $x^2 - 1 = 0$ в кольце $\mathbb{Z}/(143)$.

Решение $143 = 11 \cdot 13$ — произведение двух взаимно простых чисел. Значит, согласно КТО, $\mathbb{Z}/(143) \cong \mathbb{Z}/(11) \oplus \mathbb{Z}/(13)$.

 $x^2-1=(x+1)(x-1)$. В нашем кольце $-1\neq 1$, поэтому, так как кольцо многочленов евклидово \Rightarrow область целостности, то $x^2-1=0\Leftrightarrow x=\pm 1$ — ровно два различных корня. Единицей в сумме колец будет (1,1), поэтому решения уравнения в $\mathbb{Z}/(143)$ — это пары (x_1,x_2) , где x_1 и x_2 — решения уравнения в кольцах $\mathbb{Z}/(11)$ и $\mathbb{Z}/(13)$ (каждое в своем кольце).

Всего таких пар 4: (1,1), (-1,-1), (1,-1), (-1,1).

Первые две из них — это 1 и -1 в кольце $\mathbb{Z}/(143)$.

Осталось найти остальные. Они находятся из систем сравнений:

$$\begin{cases} x \equiv 1 & \mod 11 \\ x \equiv -1 & \mod 13 \end{cases} \qquad \begin{cases} x \equiv -1 & \mod 11 \\ x \equiv 1 & \mod 13 \end{cases}$$

 Θ ти решения — противоположные вычеты, поэтому достаточно решить только одну систему.

Это можно сделать руками с помощью алгоритма Евклида, но здесь можно просто увидеть, что x=12 — решение первой системы.

Итого получается 4 решения в $\mathbb{Z}/(143)$: $\pm 1, \pm 12$.

Замечание 3

В изложении этой задачи мы пытались избежать термина «поле», так как его мы еще не проходили (оно есть в оригинале в учебнике).

В решении мы пользовались тем, что у уравнения (x+1)(x-1) всего два корня ± 1 , но почему мы так не сказали изначально для кольца $\mathbb{Z}/(143)$ и почему там решения 4? Мы так говорили в связи с тем, что в кольце нет делителей нуля. Если это так, то

$$(x-1)(x+1) = 0 \Leftrightarrow \begin{bmatrix} x-1=0\\ x+1=0 \end{bmatrix}$$

Это выполняется в $\mathbb{Z}/(13)$ и $\mathbb{Z}/(13)$. Пусть в кольце вычетов есть делители нуля. Это значит, что для некоторых ненулевых чисел выполняется $a \cdot b = n \cdot p$, где p — число, остатки по модулю которого мы берем, a,b < p. Но если p — простое, то такое невозможно.

В отличие от колец, на сумму которых мы его разбиваем, кольцо $\mathbb{Z}/(143)$ имеет делители нуля, например 11 и 13 (на самом деле, еще -11 и -13 и все). Поэтому мы и не могли говорить, что есть только два корня.

Задача 4

Найти все нильпотентые элементы в кольце $\mathbb{Z}_3[x]/(x^2-1)$.

Решение Сперва разложим многочлен на простые $x^2-1=(x-1)(x+1)$. Теперь мы можем применить КТО, сказав, что $\mathbb{Z}_3[x]/(x^2-1)\cong\mathbb{Z}_3[x]/(x-1)\oplus\mathbb{Z}_3[x]/(x+1)$. Рассмотрим, например, левое слагаемое. Любой многочлен степени k из $\mathbb{Z}_3[x]/(x^2-1)$ представим как $p_k(x)=(x-1)\cdot p_{k-1}(x)+c$ (деление с остатком). Заметим, как найти c: $p_k(1)=(1-1)\cdot p_{k-1}(x)+c=c$. Значит, существует изоморфизм $\varphi:p\to p(1)$ между $\mathbb{Z}_3[x]/(x-1)$ и \mathbb{Z}_3 . Значит исходное кольцо изоморфно \mathbb{Z}_3^2 , в котором лишь тривиальный нильпотентный элемент — ноль. Значит и в исходном кольце только ноль является нильпотентным элементом.