PATENT ABSTRACTS OF JAPAN

(11) Publication number:

09-329229

(43) Date of publication of application: 22.12.1997

(51)Int.Cl.

F16H 61/18 F16H 9/00 // F16H 59:44

(21)Application number: **08-144344**

(71)Applicant:

NISSAN MOTOR CO LTD

(22)Date of filing:

06.06.1996

(72)Inventor:

YAMAMOTO MASAHIRO

WAKAHARA TATSUO

(54) SHIFT CONTROL DEVICE OF CONTINUOUSLY VARIABLE TRANSMISSION

(57) Abstract:

PROBLEM TO BE SOLVED: To carry out feed back control of a gear ratio just after start rapidly so as to start smoothly by shifting a target gear ratio from the lowest value to a Hi side on the basis of a prescribed correction value for a prescribed time after start of a vehicle is detected.

SOLUTION: A pair of variable pulley is set to a target gear ratio. In change of the gear ratio, a shift control valve 102 is driven by a feed back means 104 so as to match the driving rate of an actuator according to the target gear ratio with the real gear ratio of a continuously variable transmission. During stop, start of the real gear ratio is carried out from a lowest position by an initializing means 105. During a prescribed time after start of a vehicle is detected, the target gear ratio of the actuator is shifted from a lowest side to a Hi side on the basis of a prescribed correction value. A shift control valve 102 is displaced from the lowest position to the Hi

side, and the feed back means 104 is operated surely just after start.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-329229

(43)公開日 平成9年(1997)12月22日

						(10) 24 26 11	T-MX 3 4	-(1997)12月22日
(51) Int.Cl.		識別記号	庁内整理番号	-				
F16H	61/18		// 门政性留厅	FΙ				技術表示箇所
	9/00			F16H	61/18			人们女不過刀
// T 1 6	.,				9/00		_	
∥F16H	59: 44				5/ 60		F	

#F16H 59:		9/00 F
		審査請求 未請求 請求項の数4 OL (全 19)
(21)出願番号	特願平8-144344	(71)出願人 000003997
(22)出顧日	平成8年(1996)6月6日	日産自動車株式会社 神奈川県横浜市神奈川区宝町2番地 (72)発明者 山本 雅弘 神奈川県横浜市神奈川区宝町2番地 日 自動車株式会社内
		(72)発明者 若原 龍雄 神奈川県横浜市神奈川区宝町2番地 日夏 自動車株式会社内
		(74)代理人 弁理士 後藤 政喜 (外1名)

(54) 【発明の名称】 無段変速機の変速制御装置

(57)【要約】

【課題】 発進直後から迅速に変速比のフィードバック 制御を行う。

【解決手段】 無段変速機100の目標変速比を設定する目標変速比設定手段101と、可変プーリへ油圧を供給する変速制御弁102と、目標変速比に応じて変速制御弁102を駆動するアクチュエータ103と、実変速比が目標変速比と一致するように変速制御弁102を補正するフィードバック手段104と、車両の停止時には前記実変速比が所定の最しっとなるようにアクチュエータ103を駆動する初期化手段105と、車両の発進を検出する発進検出手段107と、前記発進検出手段107が車両の発進を検出してから所定の時間の間は、目標変速比を最しっよりも所定の補正値に基づいてHi側へシフトする発進補正手段106とを備える。

【特許請求の範囲】

【請求項1】 Vベルトの接触プーリ幅が油圧に基づいて可変制御されるプライマリ側とセカンダリ側の一対の可変プーリを備えた無段変速機と、

車両の運転状態または運転者からの指令に応じて前記無 段変速機の目標変速比を設定する目標変速比設定手段 と

前記可変プーリへ油圧を供給する変速制御弁と、

前記目標変速比に応じて変速制御弁を駆動するアクチュ エータと、

前記無段変速機の実際の変速比が目標変速比と一致するように前記変速制御弁を補正するフィードバック手段 と

車両の停止時には前記実変速比が所定の最L o となるようにアクチュエータを駆動する初期化手段とを備えた無段変速機の変速制御装置において、

車両の発進を検出する発進検出手段と、

前記発進検出手段が車両の発進を検出してから所定の時間の間は、前記目標変速比を最Loよりも所定の補正値に基づいてHi側へシフトする発進補正手段とを備えたことを特徴とする無段変速機の変速制御装置。

【請求項2】 前記発進補正手段は、前記補正値を学習 補正する学習制御手段を備えたことを特徴とする請求項 1に記載の無段変速機の変速制御装置。

【請求項3】 前記初期化手段は、エンジン回転数の変化量を検出する手段と、前記エンジン回転数変化量に基づいて次回の車両の停止時に設定される最L。変速比を可変制御する初期位置変更手段を備えたことを特徴とする請求項1に記載の無段変速機の変速制御装置。

【請求項4】 前記初期位置変更手段は、前記エンジン回転数の変化量の増大に応じた学習補正値に基づいて、次回の車両の停止時に設定される最しの変速比をHi側へ設定することを特徴とする請求項3に記載の無段変速機の変速制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、無段変速機の変速 制御装置の改良に関し、特にVベルト式の無段変速機の 変速速度制御に関するものである。

[0002]

【従来の技術】車両に搭載される無段変速機の変速制御装置としては、Vベルト式のものが従来から知られており、例えば、本願出願人が提案した特開昭61-105353号公報等がある。

【0003】これは、図15、図16に示すように、無段変速機のVベルト24との接触プーリ幅が、油圧に基づいて可変制御されるプライマリ側とセカンダリ側の一対の可変プーリ16、26を備え、プライマリプーリ16のシリンダ室20へ供給する油圧を変化させることで固定円錐板18に対向する可動円錐板22を軸方向へ駆

動して、無段変速機の変速比を連続的に変更するものである。

【0004】プライマリプーリ16の可動円錐板22を駆動するシリンダ室20は、変速リンク67を介してステップモータ64に駆動される変速制御弁63のプライマリポート63Pと連通しており、変速リンク67は基端をステップモータ64に連結する一方、他端はプライマリプーリ16の可動円錐板22と軸方向で係合し、この両端の途中を変速制御弁63のスプール63aに連結する。

【0005】ステップモータ64はCVTコントロールユニット1からの目標変速比に応じて変速リンク67を駆動する一方、変速リンク67の他端は可動円錐板22の位置、すなわち、実変速比に応じて変位するため、スプール63aは実変速比と目標変速比の差に応じて駆動され、変速リンク67を主体にフィードバック手段が構成される。

【0006】変速制御弁63には、上記プライマリポート63Pに加えて、ライン圧供給回路と連通したライン 圧ポート63Lとタンクに連通したタンクポート63T が所定の位置に形成されて、スプール63aに形成されたランド63bの位置に応じてプライマリポート63Pへの作動油の給排が制御され、図16に示す中立位置では、ランド63bがプライマリポート63Pを封止してシリンダ室20の油圧保持する。

【0007】このような、変速リンク67によるプライマリプーリ16の変速制御は、図17に示すように、ステップモータ64の駆動量の増大に応じて変速比が最しoから最Hiまで連続的に変化するもので、ステップモータ64の最大駆動量X_{nax}で変速比は最Hiとなる一方、最小駆動量X_{nin}から原点(駆動量=0)の間で変速比は最Loとなるように設定されている。

【0008】変速制御弁63は、図18のように、プライマリポート63Pがランド63bで封止される中立位置Nを境に、プライマリポート63Pがライン圧ポート63Lと連通する区間VLと、プライマリポート63Pがタンクポート63Tと連通する区間VTの間で駆動され、ステップモータ64の駆動量が最小駆動量X_{min}を超えると区間VLでプライマリポート63Pがライン圧ポート63Lと連通して、変速比が変更され、目標変速比であるステップモータ64の駆動量と、実変速比であるプライマリブーリ16の可動円錐板22の変位が一致した位置で、変速制御弁63は中立位置Nとなる。

【0009】そして、車両の停車時には、変速比を最し o位置へ確実に設定するため、ステップモータ64の駆動量が最小駆動量X_{min}未満の、プライマリポート63 Pとタンクポート63Tが連通する区間VTとなるよう に初期化を行って、発進時には必ず最し。変速比から車 両の駆動を行うようにするものであり、停車時のステッ プモータ64の駆動量は、図18に示す0からX_{min}の 間の初期位置XLoに設定される。

[0010]

【発明が解決しようとする課題】しかしながら、上記従 来例においては、停車中の初期化によって、ステップモ ータ64の駆動量は最小駆動量X_{nin}未満の初期位置X Loとなるため、図19に示すように、発進後の時間T 1から目標変速比(図中目標プーリ比)がHi側へ変化 しても、初期位置XLoにあるステップモータ64の駆 動量が変速リンク67の中立位置Nを超えるまでに時間 を要し、実際の変速比(実プーリ比)は時間T2以降で 初めて変化することになり、発進後の変速開始が遅れる という問題があり、さらに、この時間T1、T2間は、 ステップモータ64の初期化の誤差に応じて初期位置X Loの範囲内で変化するため、変速制御弁63が中立位 置Nを超えるまでの時間もばらつき、最Lo変速比から の変速の遅れによりエンジン回転数が過大になったり、 発進後の時間T2から目標変速比と実変速比の差に応じ たフィードバックが急激に開始されるため、変速ショッ クが発生する場合があり、運転者に違和感や不快感を与 えてしまうという問題があった。

【0011】そこで本発明は、上記問題点に鑑みてなされたもので、発進直後から迅速に変速比のフィードバック制御を行って円滑な発進を行うことが可能な無段変速機の変速制御装置を提供することを目的とする。

[0012]

【課題を解決するための手段】第1の発明は、図20に 示すように、Vベルトの接触プーリ幅が油圧に基づいて 可変制御されるプライマリ側とセカンダリ側の一対の可 変プーリを備えた無段変速機100と、車両の運転状態 または運転者からの指令に応じて前記無段変速機100 の目標変速比を設定する目標変速比設定手段101と、 前記可変プーリへ油圧を供給する変速制御弁102と、 前記目標変速比に応じて変速制御弁102を駆動するア クチュエータ103と、前記無段変速機100の実際の 変速比が目標変速比と一致するように前記変速制御弁1 02を補正するフィードバック手段104と、車両の停 止時には前記実変速比が所定の最しっとなるようにアク チュエータ103を駆動する初期化手段105とを備え た無段変速機の変速制御装置において、車両の発進を検 出する発進検出手段107と、前記発進検出手段107 が車両の発進を検出してから所定の時間の間は、前記目 標変速比を最してよりも所定の補正値に基づいてHi側 ヘシフトする発進補正手段106とを備える。

【0013】また、第2の発明は、図20に示すように、前記第1の発明において、前記発進補正手段106は、前記補正値を学習補正する学習制御手段108を備える。

【0014】また、第3の発明は、図20に示すよう に、前記第1の発明において、前記初期化手段105 は、エンジン回転数の変化量を検出するエンジン回転数 変化量検出手段109と、前記エンジン回転数変化量に 基づいて次回の車両の停止時に設定される最し o 変速比 を可変制御する初期位置変更手段110を備える。

【0015】また、第4の発明は、前記第3の発明において、前記初期位置変更手段は、前記エンジン回転数の変化量の増大に応じた学習補正値に基づいて、次回の車両の停止時に設定される最Lo変速比をHi側へ設定する。

[0016]

【作用】したがって、第1の発明は、Vベルトを挟持する一対の可変プーリは、例えば、車速とアクセルペダルの開度等の運転状態や運転者からの指令に応じた目標変速比に設定され、変速比の変更は目標変速比に応じたアクチュエータの駆動量と無段変速機の実際の変速比が一致するようにフィードバック手段により変速制御弁が駆動されており、停車中には初期化手段によって実変速比が所定の最し。位置から変速が開始されるが、車両の発進を検出してから所定の時間の間は、目標変速比を最し。よりも所定の補正値に基づいてアクチュエータがHi側へシフトするため、変速制御弁は最し。位置よりもHi側、例えば、中立位置などへ変位することができる。発進直後からフィードバック手段の動作を確実に行うことができる。

【0017】また、第2の発明は、発進補正手段は、学習補正値に応じて発進直後のHi側へのシフト量を設定するため、車両の固体差等を吸収して発進直後の変速制御を迅速に開始できる。

【0018】また、第3の発明は、初期化手段は、前回発進時のエンジン回転数変化量に基づいて車両の停車中の最Lo変速比を可変制御するため、例えば、前回発進時のエンジン回転数変化量が大きければ、停車中のアクチュエータの最Lo位置をHi側へ移行して、変速制御の応答遅れを防いで、発進直後からフィードバック手段を確実に作動させることができる。

【0019】また、第4の発明は、前回発進時のエンジン回転数の変化量の増大に応じた学習補正値に基づいて、次回の車両の停止時に設定される最Lo変速比をHi側へ設定するため、車両の固体差等を吸収して発進直後の変速制御を迅速に開始できる。

[0020]

【発明の実施の形態】以下、本発明の実施の形態を添付 図面に基づいて説明する。

【0021】図1~図9に本発明の一実施形態を示し、図1はVベルト式無段変速機の変速制御装置の概略構成図を示し、図2は無段変速機17の縦断面図を、図3は油圧コントロールバルブ3の概略構成図をそれぞれ示す

【0022】図1において、無段変速機17は、一対の可変プーリとして図示しないエンジンに連結されたプライマリプーリ16と、駆動軸に連結されたセカンダリプ

ーリ26を備え、これら一対の可変プーリはVベルト2 4によって連結されている。

【0023】そして、無段変速機17の変速比(以下、プーリ比とする)及びVベルト24の接触摩擦力は油圧コントロールバルブ3によって制御され、油圧コントロールバルブ3にはライン圧を調整する図示しないライン圧制御手段と、図3に示すように、CVTコントロールユニット1からの目標プーリ比に応じて変速制御弁63を駆動するアクチュエータとしてのステップモータ64が収装される。

【0024】CVTコントロールユニット1は、無段変速機17のプライマリプーリ16の回転数Npriを検出するプライマリプーリ回転数センサ6、セカンダリプーリ26の回転数Nsecを検出するセカンダリプーリ回転数センサ7からの信号と、インヒビタースイッチ8からのセレクト位置と、運転者が操作するアクセルペダルの踏み込み量に応じたスロットル開度センサ5からのスロットル開度TVO(又は、アクセルペダルの開度)を読み込むとともに、無段変速機17の油温Tf及び車速VSPを読み込んで、車両の運転状態ないし運転者の要求に応じて、プーリ比ipを可変制御している。なお、本実施形態弟では、セカンダリ回転数Nsecを車速VSPとして読み込む。

【0025】Vベルト式の無段変速機17について、図2を参照しながら説明する。

【0026】図示しないエンジンに結合されたエンジン出力軸10と無段変速機17の入力軸13との間にはトルクコンバータ12が連結されており、このトルクコンバータ12は、図1の油圧コントロールバルブ3を介してCVTコントロールユニット1に制御されるロックアップクラッチ11を備えている。

【0027】なお、エンジン出力軸10はポンプインペラ12aに、無段変速機17の入力軸13はタービンランナ12bに結合され、ロックアップクラッチ11はポンプインペラ12aとタービンランナ12bとを選択的に接続する。

【0028】無段変速機17の入力軸13は遊星歯車機構19を主体に構成された前後進切換機構15と連結され、この遊星歯車機構19の駆動軸14に無段変速機17の駆動側となるプライマリプーリ16が設けられる。【0029】プライマリプーリ16は、駆動軸14と一体となって回転する固定円錐板18と、固定円錐板18と対向配置されてV字状のプーリ溝を形成するとともに、プライマリプーリシリンダ室20へ作用する油圧(プライマリプーリシリンダ室20へ作用する油圧(プライマリプーリシリンダ室20は、油室20a、20bから構成され、後述するセカンダリプーリシリンダ室32よりも大きな受圧面積を有している。

【0030】一方、セカンダリプーリ26は従動軸28

に設けられており、この従動軸28と一体となって回転する固定円錐板30と、この固定円錐板30と対向配置されてV字状のプーリ溝を形成するとともに、セカンダリプーリシリンダ室32へ作用する油圧(セカンダリ油圧)に応じて従動軸28の軸方向へ変位可能な可動円錐板34から構成される。

【0031】従動軸28にはアイドラギア48と噛み合う駆動ギア46が固設され、アイドラギア48のアイドラ軸52に設けたピニオンギア54がファイナルギア44と噛み合っている。ファイナルギア44は差動装置56を介して図示しないドライブシャフトやプロペラシャフトを駆動する。

【0032】エンジン出力軸10から入力された駆動トルクは、トルクコンバータ12及び前後進切換機構15に伝達され、前進用クラッチ40が締結されるとともに、後進用ブレーキ50が解放される場合には一体回転状態となっている遊星歯車機構19を介して、入力軸13と同一回転方向のまま駆動軸14へ伝達される。一方、前進用クラッチ40が解放されるとともに後進用ブレーキ50が締結される場合には、遊星歯車機構19の作用により入力軸13へ伝達された駆動トルクは、回転方向が逆になった状態で駆動軸14へ伝達される。

【0033】駆動軸14の駆動トルクは、プライマリプーリ16、Vベルト24、セカンダリプーリ26、従動軸28を介して、駆動ギア46から、アイドラギア48、アイドラ軸52、ピニオンギア54そしてファイナルギア44へ伝達される。

【0034】上記のような駆動力伝達の際に、プライマリプーリ16の可動円錐板22及びセカンダリプーリ26の可動円錐板34を軸方向へ変位させて、Vベルト24との接触半径を変更することにより、プライマリプーリ1とセカンダリプーリ26とのプーリ比、すなわちプーリ比ipを変えることができる。

【0035】例えば、プライマリプーリ16のV字状プーリ溝の幅を縮小すれば、セカンダリプーリ26側のVベルト24の接触半径は大きくなるので、大きなプーリ比(Low側)を得ることができる。可動円錐板22及び34をこの逆方向へ変位させればプーリ比は小さく(Hi側)なる。

【0036】このような、プライマリブーリ16とセカンダリプーリ26のV字状プーリ溝の幅を変化させる変速制御は、プライマリプーリシリンダ室20への油圧制御によって行われ、図3に示すように、油圧コントロールバルブ3の変速制御弁63を駆動するステップモータ64を制御することで行われる。

【0037】ステップモータ64は、変速リンク67を介してCVTコントローラ1からの指令に応じて変速制御弁63を駆動し、プライマリプーリ16のシリンダ室20に供給される油圧を調整することで実プーリ比Aipを目標プーリ比ipに一致させるよう制御する。

【0038】油圧コントロールバルブ3及び変速リンク64を主体とするフィードバック手段は前記従来例と同様に構成されており、ステップモータ64はピニオン66を介してラック65と歯合しており、このラック65は所定のレバー比の変速リンク67の一端に連結される。そして、この変速リンク67の途中には変速制御弁63のスプール63aが連結されるとともに、リンク67の他端には可動円錐板22の軸方向の変位に応動するフィードバック部材158が連結される。

【0039】このフィードバック部材158は、一端を可動円錐板22の外周と軸方向で係合するとともに、所定の位置にはライン圧制御弁60のロッド60aが連結され、ステップモータ64の変位と、実際のプーリ比となる可動円錐板22の変位に応じて変速制御弁63及びライン圧制御弁60を駆動する。

【0040】変速制御弁63は、ステップモータ64の駆動量(回転位置)に応じて前記従来例の図18と同様にプライマリプーリ16のシリンダ室20への供給油圧を制御し、ラック65の図中左方向への変位によって、図16のプライマリポート63Pとライン圧ポート63Lを連通してプライマリプーリ16のシリンダ室20への供給油圧を増大し、Hi側への変速を行う一方、同じく右方向への変位によってプライマリポート63Pをタンクポート63Tに連通することでシリンダ室20の油圧を低減してLo側へ変速を行う。

【0041】なお、図3において、78はシフトレバー に応動するマニュアル弁、76は負圧ダイアフラム、7 7は負圧ダイアフラム76に応動するスロットル弁で、 95は油温Tfを検出する油温センサである。

【0042】次に、CVTコントロールユニット1で行われる変速制御の一例について、図4、図5のフローチャート並びに図6~図9の制御概念図を参照しながら詳述する。なお、図4は変速制御のメインルーチンを、図5は目標プーリ比演算処理のサブルーチンを示す。

【0043】ステップS1では、無段変速機17からプライマリ回転数Npriとセカンダリ回転数Nsec (=車速VSP)と、運転者の操作に応じたスロットル開度TVO並びに無段変速機17の油温Tfを読み込み、この他、インヒビタスイッチ8からの信号(例えば、変速モード等)を読み込む。

【0044】ステップS2では、スロットル開度TVOと車速VSPに応じてプライマリプーリ16の到達回転数Npri'を演算し、例えば、スロットル開度TVOをパラメータとして車速VSPに応じて予め到達(又は目標)回転数Npri'を設定した変速マップ(図示せず)に基づいて演算される。このステップS2は、図6の制御ブロック図において、到達Npri'計算部に相当する。【0045】そして、ステップS3では、ステップS1

【0045】そして、ステップS3では、ステップS1で読み込んだプライマリプーリ16の到達回転数Npri'とセカンダリプーリ26の回転数Nsecから、実際のプ

ーリ比(実プーリ比)Aipを演算する。なお、このステップS3は、図7の実プーリ比Aip演算部を構成する。 【0046】次に、ステップS4では、図5に示すステップS10~S15のサブルーチンが実行される。

【0047】まず、ステップS10では、車速VSPが所定値(例えば、3Km/h)を超えた発進直後であるか否かを判定して、発進直後である場合には、ステップS11へ進んでタイマTMRをインクリメントして時間の計測を開始する一方、車速VSPが所定値未満の停車中であれば、ステップS14へ進んでタイマTMRをリセットし、次の発進時に備える。

【0048】そして、ステップS12では、目標プーリ 比ipを所定の最Loプーリ比よりも所定値 α だけHi側 へ小さくなるように設定する。

【0049】次に、ステップS13では、タイマTMRが所定値Tc以上となったか否かを判定して、タイマTMRが所定値Tc未満であれば、図4のメインルーチンへ復帰してステップS5の処理を行う一方、タイマTMRが所定値Tc以上であればステップS15へ進んで、目標ブーリ比ipを実プーリ比Aipと目標値の偏差eipに応じた値に設定して図4のメインルーチンへ復帰してステップS5の処理を行う。

【0050】この目標プーリ比ipの演算処理は、車両の発進後(車速VSP≧3Km/h)、所定時間Tcの間は目標プーリ比ipを最Loよりも所定値αだけHi側に設定し、所定時間Tc経過後は通常の変速制御を行うものである。

【0051】ステップS4は、図6の目標波形生成部及び図7の詳細ブロック図と等価であり、目標プーリ比ipを演算する目標波形生成部では、図7に示すように、まず、プライマリプーリ16の到達回転数Npri'と現在のセカンダリプーリ回転数Nsecから到達プーリ比ip'を求めた後、この到達プーリ比ip'が機構的に設定可能な最大値(最Lo変速比)、最小値(最Hiプーリ比)以内となるようにリミット処理を加える。

【0052】そして、ステップS3で求めた実プーリ比Aipと,この到達プーリ比ip'から偏差eipを求め、予め設定した偏差eipと目標プーリ比ipのマップ(図中プーリ比変化速度マップ)から、偏差eipに基づく目標プーリ比ipを演算する。

【0053】そして、図7のリミッタは、上記図5のステップS10~13のように、発進直後の所定時間Tcだけ目標プーリ比ipを最Loプーリ比から所定値 α だけ Hi 側に設定して、発進直後から円滑なフィードバック制御を行うものである。

【0054】こうして、目標プーリ比ipを求めてから、ステップS5では、ステップS4で決定した目標プーリ比ipより、ステップモータ64の目標制御位置である目標ステップ数DsrSTPを演算する。

【0055】この目標ステップ数DsrSTPの演算処

理は図6の変速制御機構制御部及び図8の詳細ブロック 図で行われ、図8に示すように、目標プーリ比ipと実プーリ比Aipからスプール63aで構成された変速制御弁63の開口量、すなわち、図16のプライマリポート63Pの開口量を決定する操作量uを次式により演算する。

[0056]

【数1】

$$u = K_{P1} \cdot K_{P2} \left(1 + \frac{1}{Ti \cdot s} + Td \cdot s \right) \cdot \cdots \cdot (1)$$

【0057】ただし、 K_{P1} 、 K_{P2} ;比例ゲイン

Ti;積分時間

Td; 微分時間

である。

【0058】同時に、図8に示すように、プライマリプーリ16の可動円錐坂22の現在のストローク量Pri STKを、実プーリ比Aipに基づいて予め設定したマップ(図中PRIストロークの計算)から演算する。

【0059】そして、プライマリプーリ16のストローク量PriSTKと変速制御弁63の制御量uから、変速リンク67のレバー比等の機構の構成に応じてステップモータ64の目標ステップ数DsrSTPを演算する。なお、この目標ステップ数DsrSTPは、ステップモータ64の所定の原点(例えば、従来例の図17、図18に示した0点)からの絶対位置を示すものである。

【0060】こうして目標ステップ数DsrSTPを求めた後、ステップS6ではステップモータ64へパルスを送出する駆動制御処理が行われる。この駆動制御処理は図7のステップモータドライバ部及び図9の詳細概念図に相当する。

【0061】まず、検出した油温Tfに基づいて、予め設定したマップよりステップモータ64の駆動速度を決定するパルスレートppsを演算し、油温に応じた無段変速機17内の作動油の粘度に基づいて、負荷特性の変化を補償する。

【0062】次に、ステップモータ64の絶対位置に応じた実ステップ数ASTPを演算し、前記ステップS5で求めた目標ステップ数DsrSTPとこの実ステップ数ASTPの差から、変速制御弁63の駆動に必要な相対ステップ数STPを演算する。

【0063】そして、ステップS13では、ステップS 10で求めたパルスレートppsで相対ステップ数ST Pに応じたパルスをステップモータ64へ送出して変速 制御弁63を駆動する。

【0064】なお、実ステップ数ASTPは、図9に示すように、CVTコントローラ1内のカウンタ等で計数され、また、ステップモータ64の原点位置は、図3に示したラック65が最Lowプーリ比(最Lo変速比)

まで変位するとONになるLoスイッチ95 (リミットスイッチ)等により設定され、車速VSP=0となる停車時などに、ステップモータ64は所定の初期位置、すなわち、前記従来例の図18と同様に最小駆動位置X ginよりも原点側へ駆動される。

【0065】上記制御を所定時間毎に繰り返すことにより、車速VSPが所定値(例えば、3km/h)を超える発進直後から迅速かつ円滑な変速動作を開始して、エンジンの過大な上昇や変速ショックを防いで、スムーズな発進を行うことができるのである。

【0066】いま、図10に示すように、停車中の車両が発進を行って、図中時間T1で所定値である3km/hを超えると、目標プーリ比ipは最しっから若干Hi側の最しっ一αに設定されるため、このときの実プーリ比Aip(最しっ)と目標プーリ比ip(最しっーα)の偏差に応じてステップモータ64は、前記従来例の図18に示す初期位置XしっからHi側へ駆動されて、ほぼ中立位置Nまで迅速に変位する。

【0067】したがって、発進直後にステップモータ64は変速制御弁63の中立位置Nまで駆動することができ、この中立位置Nからプライマリポート63Pへの作動油の給排は、変速リンク67の微小な変位により迅速に行うことが可能となって、前記従来例のような発進直後の変速の遅れを防いで、発進とほぼ同時に変速リンク67によるフィードバック機構を動作させながら迅速かつ円滑な変速制御を行うことが可能となって、エンジン回転数の過剰な増大や変速ショックを防いで、無段変速機を備えた車両の運転性及び乗心地を向上させることができるのである。

【0068】図11は第2の実施形態を示し、上記図5のステップS12をステップS20〜S22の学習制御に置き換えて、発進直後の所定時間Tc内でも学習補正値△ipに応じてフィードバック制御を行ってさらに円滑な変速制御を行うものであり、その他の構成は前記第1実施形態と同様である。

【0069】ステップS10、11で発進直後であることを判定してからタイマTMRの計測を開始すると、ステップS20では実プーリ比Aipが所定の最Loプーリ比未満になっているか否かを判定する。

【0070】そして、実プーリ比Aipが最Loのままの場合では、ステップS21へ進んで目標プーリ比ipを前回の目標プーリ比ip(n-1)から次のように補正する

[0071]

目標プーリ比ip=前回値ip(n-1) $-\Delta ip$ ここで、 Δip は学習補正値を示し、所定の上限及U下限以内の値に設定される。

【0072】したがって、実プーリ比Aipが最Loosまの場合には、学習補正値 Δip づつHi 側へのシフトが行われ、前記第1実施形態と同様に、変速制御弁63を

迅速に中立位置NからHi側のプーリ比となるようにステップモータ64の駆動が行われる。

【0073】一方、実プーリ比Aipが最Lo未満の場合では、ステップS22へ進んで目標プーリLipを前回の目標プーリLip(n-1)と上記学習補正値 Δ ipから次のように補正する。

[0074]

目標プーリ比ip=前回値 $ip(n-1)+\Delta ip$ したがって、実プーリ比Aipが最 $L\circ$ 未満の場合には、学習補正値 Δip づつ $L\circ$ 側へのシフトが行われ、発進直後の所定時間 $T\circ$ 内でHi側へのシフトが過大になるのを防止する。

【0075】こうして、発進直後の所定時間Tc内では、学習補正値∆ipに応じた実プーリ比Aipのフィードバック制御が行われ、前記従来例のようなエンジン回転数の過大な上昇を防ぐと共に、車両の固体差等に拘わらず変速ショックを防いで常時滑らかな変速制御を行うことができる。

【0076】なお、Δipを学習補正値としたが、所定値としてもよく、この場合では制御内容を簡易にしながら円滑な変速制御が可能となる。

【0077】図12は第3の実施形態を示し、上記図5のステップS12をステップS30、S31に置き換えて、停車中のステップモータ64の初期位置を前回の発進時のエンジン回転数Neの変化量△Neに応じて可変制御するもので、前記従来例と同様に、停車中では確実にプライマリプーリ16のシリンダ室20をタンクに連通して最Loプーリ比(最大変速比)からの発進を確保しながら、発進後の変速制御を迅速に開始するものである。

【0078】ステップS10、11で発進直後であることを判定してからタイマTMRの計測を開始すると、ステップS30ではエンジン回転数Neの変化量ΔNeを次のように求める。

【0079】ΔNe=Ne-Ne(n-1) ただし、Ne(n-1)は前回値。

【0080】そしてステップS31では、図13に示すマップから変化量△Neに応じた補正値βを求めてから、次式により停車中にステップモータ64が維持すべき初期プーリ比を演算する。

【0081】初期プーリ比 $ip=最Lo-\beta$

したがって、エンジン回転数Neの変化量△Neが大きければ大きいほど、次回の発進時にはHi側の駆動位置からステップモータ64の駆動が開始されるため、発進直後には迅速に変速制御弁63を中立位置Nに設定してフィードバック制御を行うことができ、図14に示すように、前記従来例では図中破線のように、エンジン回転数がオーバーシュートして回転上限を超えたり、変速ショックを引き起こすのに対して、本実施形態では図14の実線に示すように、エンジン回転数Neのオーバーシ

ュートを防いで円滑な変速制御を行うことができるのである。なお、初期位置は、前記従来例の図18に示した XLoの範囲に設定されて、停車中には、プライマリプーリ16のシリンダ室20はタンクと連通して最大のプーリ比に設定される。

【0082】また、この補正値 β を学習値とすれば、前回の発進時のエンジン回転数変化量 Δ Neによりステップモータ64の初期位置を車両の固体差等に拘わらず円滑に補正してさらに発進直後の変速制御を迅速に行うことが可能となる。

[0083]

【発明の効果】以上説明したように、第1の発明は、V ベルトを挟持する一対の可変プーリは、例えば、車速と アクセルペダルの開度等の運転状態や運転者からの指令 に応じた目標変速比に設定され、変速比の変更は目標変 速比に応じたアクチュエータの駆動量と無段変速機の実 際の変速比が一致するようにフィードバック手段により 変速制御弁が駆動されており、停車中には初期化手段に よって実変速比が所定の最し。位置から変速が開始され るが、車両の発進を検出してから所定の時間の間は、目 標変速比を最Loよりも所定の補正値に基づいてアクチ ュエータがHi側へシフトするため、変速制御弁は最し ○位置よりもHi側、例えば、中立位置などへ変位する ことができ、発進直後からフィードバック手段の動作を 確実に行って、前記従来例のようなエンジン回転数の過 大な上昇や変速ショックを防いで無段変速機を備えた車 両の運転性を向上させることが可能となる。

【0084】また、第2の発明は、発進補正手段は、学習補正値に応じて発進直後のHi側へのシフト量を設定するため、車両の固体差等を吸収して発進直後の変速制御を迅速に開始でき、前記従来例のようなエンジン回転数の過大な上昇や変速ショックを防いで無段変速機を備えた車両の運転性を向上させることが可能となる。

【0085】また、第3の発明は、初期化手段は、前回発進時のエンジン回転数変化量に基づいて車両の停車中の最Lo変速比を可変制御するため、例えば、前回発進時のエンジン回転数変化量が大きければ、停車中のアクチュエータの最Lo位置をHi側へ移行して、変速制御の応答遅れを防いで、発進直後からフィードバック手段を確実に作動させることができ、前記従来例のようなエンジン回転数の過大な上昇や変速ショックを防いで無段変速機を備えた車両の運転性を向上させることが可能となる。

【0086】また、第4の発明は、前回発進時のエンジン回転数の変化量の増大に応じた学習補正値に基づいて、次回の車両の停止時に設定される最しの変速比をHi側へ設定するため、車両の固体差等を吸収して発進直後の変速制御を迅速に開始でき、前記従来例のようなエンジン回転数の過大な上昇や変速ショックを防いで無段変速機を備えた車両の運転性を向上させることが可能と

なる。

【図面の簡単な説明】

【図1】本発明の実施形態を示すブロック図。

【図2】同じく無段変速機の断面図。

【図3】同じく油圧コントロールバルブの概略図。

【図4】CVTコントルールユニットで行われる変速比制御の一例を示すフローチャートで、メインルーチンを示す。

【図5】同じく目標プーリ比演算のサブルーチンを示 す。

【図6】変速比制御の概念図。

【図7】同じく制御概念図で、目標波形生成部を示す。

【図8】同じく制御概念図で変速機構制御部を示す。

【図9】同じく制御概念図でステップモータドライバ部 を示す。

【図10】第1実施形態の作用を示すグラフで、変速比 (プーリ比)、ステップモータ駆動位置、プライマリプーリシリンダ室油圧と時間の関係を示す。

【図11】第2の実施形態を示し、目標プーリ比演算の サブルーチンを示す。

【図12】第3の実施形態を示し、目標プーリ比演算の サブルーチンを示す。

【図13】同じくエンジン回転数変化量と補正値βの関係を示すマップである。

【図14】同じくエンジン回転数と時間の関係を示すグラフで、実線は本実施形態を、破線は従来例を示す。

【図15】従来の変速制御装置の概略図。

【図16】同じく従来の変速制御弁の概略図。

【図17】同じくステップモータ駆動量と変速比の関係 を示すグラフ。

【図18】同じくフィードバック機構の概念図。

【図19】同じく従来の変速比(プーリ比)、ステップ モータ駆動位置、プライマリプーリシリンダ室油圧と時 間の関係を示すグラフ。

【図20】第1ないし第4の発明のいずれかひとつに対応するクレーム対応図。

【符号の説明】

1 CVTコントロールユニット

6 プライマリ回転数センサ

7 セカンダリ回転数センサ

16 プライマリプーリ

17 無段変速機

18 固定円錐板

19 遊星歯車機構

20 プライマリプーリシリンダ室

22 可動円錐板

24 Vベルト

26 セカンダリプーリ

28 従動軸

30 固定円錐板

32 セカンダリプーリシリンダ室

34 可動円錐板

60 ライン圧制御弁

63 変速制御弁

63a スプール

63b ランド

63T タンクポート

63P プライマリポート

63L ライン圧ポート

64 ステップモータ

67 変速リンク

100 無段変速機

101 変速比設定手段

102 変速制御弁

103 アクチュエータ

104 フィードバック手段

105 初期化手段

106 発進補正手段

107 発進検出手段

108 学習制御手段

109 エンジン回転数検出手段

110 初期位置変更手段

【図14】

【図15】

【図1】

【図6】

【図9】

【図11】

