

CS3144 霍尔开关电路

CS3144 霍尔开关集成电路应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字电压讯号。

此款电路管腿采用纯锡制作,产品完整型号为 CS3144EUA-S 或者 CS3144LUA-S。

产品特点

- . 体积小
- . 灵敏度高
- . 响应速度快
- . 温度性能好
- . 精确度高
- . 可靠性高

典型应用

- . 无触点开关
- . 汽车点火器
- . 刹车电路
- . 位置、转速检测与控制
- . 安全报警装置
- . 纺织控制系统

功能方框图

磁电转换特性

极限参数

参数	符号		量值	单位		
电源电压	V _{CC}		V _{CC}		28	V
输出截止态电压	Vo		28	V		
输出电流	Io		25	mA		
工作环境温度	T _A	后缀 E	-40~85	°C		
		后缀 L	- 40∼150			
贮存温度范围	Ts		- 65∼150	$^{\circ}$		

1

电特性 T_A=25℃

参数	符号	测试条件	量值			. 单位
2 XX 111 V		NA MAZA II		典型	最大	
电源电压	V _{CC}	V _{CC} =4.5V∼24V	4.5	-	24	V
输出低电平电压	V _{OL}	V_{CC} =4.5V, V_o =24V Io=20mA B \geqslant B _{OP}	-	175	400	mV
输出漏电流	I _{OH}	Vo=24V B <b<sub>RP</b<sub>	-	<1.0	10	μA
电源电流	Icc	V _{CC} =24V, Vo 开路	-	3.0	9.0	mA
输出上升时间	t _r	V _{CC} =12V,R _L =820 Ω C _L =20PF	-	0.2	2.0	μS
输出下降时间	t _f	V _{CC} =12V,R _L =020 \(\text{C} \) C _L =20PF	-	0.18	2.0	μS

磁特性 Vcc=4.5~24V

参数	符号	测试条件	量值			单位	
		例此来日	最小	典型	最大	十二江	
工作点 B _{OP}		T _A =25℃	7.0	ı	23.0		
	B _{OP}	全工作温度范围	3.5	-	24.5		
释放点 B _{RP}		T _A =25℃	5.0	ı	17.5	_	
	全工作温度范围	2.5	-	19.0	mT		
回差 B	Вн	T _A =25℃	2.0	5.5	-		
		全工作温度范围	2.0	5.5	-		

配套磁钢

型号	SCI	SCII	SCIII	NFBI	NFBII
规格 (mm)	4.0x3.3x1.5	5.0x4.0x2.5	5.0x5.0x2.5	4.0x3.3x1.5	5.0x4.0x2.5
表面磁感应强度 (mT)	160	220	220	170	230
型号	NFBIII	NFBIV	NFBV	NFBVI	
规格 (mm)	5.0x5.0x2.5	Ф8.х4	Ф9.5х6	Ф12х4	
表面磁感应强度 (mT)	230	280	320	300	

特征曲线

磁场强度(mT)

输出低电压的温度特性

印章说明

盒装: 5000只(10袋)/盒

使用须知:

HALL IC 是一种敏感器件,除了对磁敏感外,对光、热、机械应力均有不同程度的敏感,因此在使用过程中,应注意如下几点:

- ◆ 机械应力:由于机械应力会造成 Hall IC 磁敏感度的漂移,在使用安装中应尽量减少施加到 IC 外壳和引线上的机械应力,引线根部 3mm 以内不得弯曲,其余部分弯曲时必须将引线根部夹住,以防对内引线的影响,降低可靠性。
- ◆ 热应力:为避免 Hall IC 的非正常损坏,焊接时,温度应低于 260℃,时间少于 4 秒,焊接 点距离 IC 引线上根部 3mm 以外。
- ◆ Hall IC 的工作电压不得超过说明书规定的 Vcc, 大部分 Hall IC 开关均为 OC 输出。因此,输出应接负载电阻 R_L,如图(1), R_L的值取决于负载电流 I_U的大小,不得超负载使用。
- ◆ 由于 Hall IC 是一种敏感器件,因此,它的磁感度在高、低温下的一定漂移是正常的。一般情况下 T 变化 ± 60 °C,温漂应不高于 30GS(高温 IC 不大于 15GS)。因此,在磁路设计时,应放出一定的磁灵敏度余量,即作用于 IC 表面磁场强度应高于实际 B_{H-1} 50GS 左右,如图(2)。

