Sieci bayesowskie

F	pali papierosy
C1	chory na chorobę 1
C2	chory na chorobę 2
M	łatwo się męczy
R	wynik RTG płuc

Sieci bayesowskie

Prawdopodobieństwo łączne:

$$P(C1, C2, M, R, F) = P(F) * P(C1 | F) * P (C2 | F) * P(M | C1, C2) * P(R | C2)$$

$$P(C2=1|R=1,F=0) \ = \frac{P(C2=1,R=1,F=0)}{P(R=1,F=0)} \ = \frac{\sum_{i=0}^{1} \sum_{j=0}^{1} P(C1=i,C2=1,M=j,R=1,F=0)}{\sum_{i=0}^{1} \sum_{j=0}^{1} P(C1=i,C2=j,M=k,R=1,F=0)}$$

Sieci bayesowskie - zalety

- Czytelna reprezentacja wiedzy o zależnościach przyczynowych
- Oszczędna reprezentacja łącznego rozkładu prawdopodobieństwa
- Efektywne algorytmy wnioskowania

Sieci bayesowskie

- 1. Uczenie sieci
 - uczenie struktury sieci
 - szacowanie parametrów
- 2. Wnioskowanie na podstawie sieci

Uczenie parametrów

Założenie:

Znana jest struktura sieci bayesowskiej

Zadanie:

Wyznaczenie prawdopodobieństw warunkowych

Uczenie parametrów

- 1. Ocena częstości na podstawie pierwotnej wiedzy (opartej na naszych subiektywnych oszacowaniach lub pochodzącej z innych źródeł).
- 2. Uaktualnienie prawdopodobieństw na podstawie danych.

Uczenie parametrów, zmienna binarna – rozkład beta

Do przedstawienia naszej pierwotnej wiedzy o względnej częstości nadaje się funkcja gęstości beta:

$$\rho(f) = \frac{\Gamma(N)}{\Gamma(a)\Gamma(b)} f^{a-1} (1-f)^{b-1},$$

$$N = a+b$$

f – względna częstośća, b, N – parametry rozkładu

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

$$x \ge 1$$
 i $x \in C \Rightarrow \Gamma(x) = (x - 1)!$

Uczenie parametrów, zmienna binarna - rozkład beta

Uczenie parametrów, zmienna binarna

Oznaczenia:

- X zmienna losowa binarna przyjmująca wartości 1 i 2
- F zmienna losowa reprezentująca naszą wiedzę dotyczącą względnej częstości z jaką zmienna X przyjmuje wartość 1
- f konkretna wartość F

Uczenie parametrów, zmienna binarna

- Jeżeli F ma rozkład beta z parametrami a, b, N = a + b, to wartość oczekiwana E(F) = a / N;
- Jeżeli zmienna X przyjmuje wartości 1 lub 2 i $P(X = 1 \mid f) = f$, to P(X = 1) = E(F);
- Jeśli F ma rozkład beta, to P(X = 1) = a / N;

Przykład: rzut monetą

przypuszczamy, że na 100 rzutów monetą ok. 50 razy wypadnie orzeł, zatem zakładamy rozkład beta(*f*; 50,50), stąd

$$P(X = orze1) = 50 / (50 + 50) = 0.5$$

Uczenie parametrów, zmienna binarna – uaktualniania na podstawie danych

Dane:

 $\rho(f)$ – rozkład gęstości zmiennej losowej F reprezentującej względną częstość

d - zbiór danych zawierający M przykładów

s – liczba wystąpień pierwszej wartości w zbiorze d

t - liczba wystąpień drugiej wartości w zbiorze d (M = s + t)

Problem:

Jak uaktualnić na podstawie danych d naszą pierwotną wiedzę reprezentowaną przez $\rho(t)$?

Rozwiązanie:

Jeżeli $\rho(f) = \text{beta}(f; a, b)$, to $\rho(f \mid d) = \text{beta}(f; a + s, b + t)$.

Uczenie parametrów, zmienna binarna – uaktualniania na podstawie danych

Przykład:

Rzut oszczepem wykonany 10 razy (może wbić się w ziemię lub wylądować płasko).

Pierwotna wiedza: beta(f; 3, 3).

Wyniki rzutów (1-wbity): *d*={1,1,2,1,1,1,1,2,1}

$$a = b = 3$$
, $s = 8$, $t = 2$

$$\rho(f \mid d) = \text{beta}(f; 3 + 8, 3 + 2) = \text{beta}(f; 11, 5)$$

$$P(X = 1 \mid d) = E(F \mid d) = (a + s) / (N + M) = (3 + 8) / (6 + 10) = 0.69$$

Wybór wartości a oraz b

- a = b = 1
 - brak jakiejkolwiek wiedzy na temat względnej częstości lub dla zachowania obiektywizmu; zakładamy, że wszystkie wartości z przedziału [0, 1] są jednakowo prawdopodobne;
- a, b > 1
 prawdopodobnie względna częstość wystąpienia pierwszej z
 dopuszczalnych wartości zmiennej wynosi ok. a/(a+b); im większe
 przekonanie, tym większe wartości a, b;
- a, b < 1
 <p>prawdopodobnie względna częstość wystąpienia jednej z wartości zmiennej jest bardzo mała;

- trzy urny zawierające kule z numerami 1 i 2;
- losujemy kulę z pierwszej urny. Jeśli wylosowawo 1, to losujemy z urny drugiej, w przeciwnym razie z trzeciej;
- X_1 , X_2 zmienne reprezentujące wyniki dwóch losowań;
- beta(f_{11} ; 1, 1) reprezentuje pierwotną wiedzę na temat częstości wylosowania kuli 1 przy pierwszym losowaniu;
- beta(f_{21} ; 1, 1) reprezentuje pierwotną wiedzę na temat częstości wylosowania kuli 1 przy drugim losowaniu, jeżeli przy pierwszym wylosowano 1;
- beta(f_{22} ; 1, 1) reprezentuje pierwotną wiedzę na temat częstości wylosowania kuli 1 przy drugim losowaniu, jeżeli przy pierwszym wylosowano 2;

$$X_1$$

$$P(X_1 = 1) = \frac{1}{2}$$

$$P(X_2 = 1 \mid X_1 = 1) = \frac{1}{2}$$

$$P(X_2 = 1 \mid X_1 = 2) = \frac{1}{2}$$

np.:

$$P(X_1 = 2, X_2 = 1) = P(X_2 = 1 \mid X_1 = 2) P(X_1 = 2) = \frac{1}{2} * \frac{1}{2} = \frac{1}{4}$$

Dane d:

X_1	X_2
1	1
1	1
1	1
1	2
2	1
2	1
2	2

•
$$\rho(f_{11}|d) = beta(f_{11}; 1 + 4, 1 + 3)$$

•
$$\rho(f_{11}|d) = beta(f_{11}; 1 + 4, 1 + 3)$$

• $\rho(f_{21}|d) = beta(f_{21}; 1 + 3, 1 + 1)$

•
$$\rho(f_{22}|d) = beta(f_{22}; 1 + 2, 1 + 1)$$

$$X_1$$

$$P(X_1 = 1) = 5/9$$

$$P(X_2 = 1 \mid X_1 = 1) = 2/3$$

$$P(X_2 = 1 \mid X_1 = 2) = 3/5$$

np.:

$$P(X_1 = 2, X_2 = 1) = P(X_2 = 1 \mid X_1 = 2) P(X_1 = 2) = 3/5 * 4/9 = 4/15$$

- X_1 zmienna mówiąca czy pacjent pali papierosy (1-tak, 2-nie)
- X_2 zmienna mówiąca czy pacjent ma chore płuca (1-tak, 2-nie)
- $\rho(f_{11}) = beta(f_{11}; 1, 1)$
- $\rho(f_{21}) = beta(f_{21}; 1, 1)$
- $\rho(f_{22}) = beta(f_{22}; 1, 1)$

$$X_1$$

$$P(X_1 = 1) = \frac{1}{2}$$

$$P(X_2 = 1 \mid X_1 = 1) = \frac{1}{2}$$

$$P(X_2 = 1 \mid X_1 = 2) = \frac{1}{2}$$

np.:

$$P(X_2 = 1) = P(X_2 = 1, X_1 = 1) + P(X_2 = 1, X_1 = 2) =$$

 $= P(X_2 = 1 | X_1 = 1) P(X_1 = 1) + P(X_2 = 1 | X_1 = 2) P(X_1 = 2) =$
 $= \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2} = \frac{1}{2}$

Dane d:

<i>X</i> ₁	<i>X</i> ₂
1	<i>X</i> ₂ 2
1	1
2	1
2	2
2	1
2	1
1	2
2	2

•
$$\rho(f_{11}|d) = beta(f_{11}; 1 + 3, 1 + 5)$$

•
$$\rho(f_{21}|d) = beta(f_{21}; 1 + 1, 1 + 2)$$

•
$$\rho(f_{22}|d) = beta(f_{22}; 1 + 3, 1 + 2)$$

$$X_1$$
 X_2

$$P(X_1 = 1) = 2/5$$

$$P(X_2 = 1 \mid X_1 = 1) = 2/5$$

$$P(X_2 = 1 \mid X_1 = 2) = 4/7$$

np.:

$$P(X_2 = 1) = P(X_2 = 1, X_1 = 1) + P(X_2 = 1, X_1 = 2) =$$

= $P(X_2 = 1 | X_1 = 1) P(X_1 = 1) + P(X_2 = 1 | X_1 = 2) P(X_1 = 2) =$
= $2/5 * 2/5 + 4/7 * 3/5 = 0.50286$

- Początkowo $P(X_2 = 1) = 0.5$
- Wśród danych uczących były 4 przykłady, dla których $X_2 = 1$ oraz 4 przykłady, dla których $X_2 = 2$
- Po uaktualnieniu parametrów $P(X_2 = 1) = 0.50286$

?

Uczenie parametrów, odpowiedni rozmiar danych - *przykład 2*

Początkowa wiedza:

•
$$\rho(f_{11}) = beta(f_{11}; \mathbf{2}, \mathbf{2})$$

•
$$\rho(f_{21}) = beta(f_{21}; 1, 1)$$

•
$$\rho(f_{22}) = beta(f_{22}; 1, 1)$$

X_1 $P(X_1 = 1) = \frac{1}{2}$ $P(X_2 = 1 \mid X_1 = 1) = \frac{1}{2}$ $P(X_2 = 1 \mid X_1 = 2) = \frac{1}{2}$

Po uaktualnieniu parametrów:

•
$$\rho(f_{11}|d) = beta(f_{11}; 2 + 3, 2 + 5)$$

•
$$\rho(f_{21}|d) = beta(f_{21}; 1 + 1, 1 + 2)$$

•
$$\rho(f_{22}|d) = beta(f_{22}; 1 + 3, 1 + 2)$$

$$X_1$$
 $P(X_1 = 1) = 5/12$
 $P(X_2 = 1 \mid X_1 = 1) = 2/5$
 $P(X_2 = 1 \mid X_1 = 2) = 4/7$

$$P(X_2 = 1) = P(X_2 = 1, X_1 = 1) + P(X_2 = 1, X_1 = 2) =$$

= $P(X_2 = 1 | X_1 = 1) P(X_1 = 1) + P(X_2 = 1 | X_1 = 2) P(X_1 = 2) =$
= $2/5 * 5/12 + 4/7 * 7/12 = 0.5$

Uczenie parametrów, odpowiedni rozmiar danych

Definicja:

Dla każdego i oraz j funkcje gęstości są postaci $beta(f_{ij}; a_{ij}, b_{ij})$. Jeżeli istnieje liczba N taka, że

$$N_{ij} = a_{ij} + b_{ij} = P(pa_{ij}) * N$$

to mówimy, że sieć ma odpowiedni rozmiar danych N .
 $P(pa_{ij})$ – prawd. tego, że węzły rodzice danego węzła były w stanie ij

Dla danych z przykładu 2:

$$N_{21} = 2 + 3 = 5/12 * 12$$

 $N_{22} = 4 + 3 = 7/12 * 12$
 $N = 12$

Uczenie parametrów, odpowiedni rozmiar danych

•
$$beta(f_{11}; 10, 5)$$
 $f_{11} = P(X_1=1|f_{11})$
• $beta(f_{21}; 9, 6)$ $f_{21} = P(X_2=1|f_{21})$

• beta
$$(f_{31}; 2, 4)$$
 $f_{31} = P(X_3 = 1 | X_1 = 1, X_2 = 1, f_{31})$

•
$$beta(f_{32}; 3, 1)$$
 $f_{32} = P(X_3=1|X_1=1, X_2=2, f_{32})$

•
$$beta(f_{33}; 2, 1)$$
 $f_{33} = P(X_3=1|X_1=2, X_2=1, f_{33})$

•
$$beta(f_{34}; 1, 1)$$
 $f_{34} = P(X_3=1|X_1=2, X_2=2, f_{34})$

$$P(X_1 = 1) = 2/3$$

$$X_1$$

$$P(X_2 = 1) = 3/5$$

$$P(X_3 = 1 | X_1 = 1, X_2 = 1) = 1/3$$

$$P(X_3 = 1 | X_1 = 1, X_2 = 2) = 3/4$$

$$P(X_3 = 1 | X_1 = 2, X_2 = 1) = 2/3$$

$$P(X_3 = 1 | X_1 = 2, X_2 = 1) = 2/3$$

$$P(X_3 = 1 | X_1 = 2, X_2 = 1) = 2/3$$

$$P(X_3 = 1 | X_1 = 2, X_2 = 2) = 1/2$$

$$P(X_3 = 1 | X_1 = 2, X_2 = 2) = 1/2$$

Uczenie parametrów, odpowiedni rozmiar danych

W jaki sposób wyrazić brak początkowej wiedzy (*a*=*b*=1) zachowując odpowiedni rozmiar danych?

•
$$beta(f_{11}; 1, 1)$$
 $f_{11} = P(X_1 = 1 | f_{11})$

•
$$beta(f_{22}; 1, 1)$$
 $f_{22} = P(X_2=1|f_{22})$

•
$$beta(f_{31}; \frac{1}{4}, \frac{1}{4})$$
 $f_{31} = P(X_3 = 1 | X_1 = 1, X_2 = 1, f_{31})$

•
$$beta(f_{32}; \frac{1}{4}, \frac{1}{4})$$
 $f_{32} = P(X_3 = 1 | X_1 = 1, X_2 = 2, f_{32})$

•
$$beta(f_{33}; \frac{1}{4}, \frac{1}{4})$$
 $f_{33} = P(X_3 = 1 | X_1 = 2, X_2 = 1, f_{33})$

•
$$beta(f_{34}; \frac{1}{4}, \frac{1}{4})$$
 $f_{34} = P(X_3 = 1 | X_1 = 2, X_2 = 2, f_{34})$

Uczenie parametrów, brakujące wartości

Początkowa wiedza:

•
$$\rho(f_{11}) = beta(f_{11}; 2, 2)$$

•
$$\rho(f_{21}) = beta(f_{21}; 1, 1)$$

• $\rho(f_{22}) = beta(f_{22}; 1, 1)$

$$P(X_1 = 1) = 1/2$$

$$P(X_2 = 1 \mid X_1 = 1) = 1/2$$

 $P(X_2 = 1 \mid X_1 = 2) = 1/2$

Dane *d*:

X_1	X_2
1	1
1	?
1	1
1	2
2	?

Dane d':

$$P(X_2 = 1 \mid X_1 = 1) = \frac{1}{2}$$

 $P(X_2 = 1 \mid X_1 = 2) = \frac{1}{2}$

X_1	X_2	Liczba wystąpień
1	1	1
1	1	1/2
1	2	1/2
1	1	1
1	2	1
2	1	1/2
2	2	1/2

Sieci bayesowskie

Uczenie parametrów, brakujące wartości

Początkowa wiedza:

•
$$\rho(f_{11}) = beta(f_{11}; 2, 2)$$

•
$$\rho(f_{21}) = beta(f_{21}; 1, 1)$$

•
$$\rho(f_{22}) = beta(f_{22}; 1, 1)$$

Po uaktualnienie parametrów

•
$$\rho(f_{11}|d') = beta(f_{11}; 2+4, 2+1)$$

•
$$\rho(f_{21}|d') = beta(f_{21}; 1 + 5/2, 1 + 3/2)$$

•
$$\rho(f_{22}|d') = beta(f_{22}; 1 + 1/2, 1 + 1/2)$$

Dane d':

X_1	X_2	Liczba wyst ą pień
1	1	1
1	1	1/2
1	2	1/2
1	1	1
1	2	1
2	1	1/2
2	2	1/2

$$X_1$$
 X_2

$$P(X_1 = 1) = 6 / (6 + 3) = 2/3$$

$$P(X_2 = 1 \mid X_1 = 1) = 7/2 / (7/2 + 5/2) = 7/12$$

 $P(X_2 = 1 \mid X_1 = 2) = 1/2$

Uczenie parametrów, brakujące wartości

Wyznaczenie najbardziej prawdopodobnego rozkładu (algorytm EM)

Powtarzaj na przemian k razy:

- 1. oblicz oczekiwane wartości s_{ij} oraz t_{ij} na podstawie rozkładu prawdopodobieństw i danych d (expectation)
- 2. oblicz wartości f_{ij} na podstawie s_{ij} oraz t_{ij} (maximization)

Można w ten sposób wyznaczyć f maksymalizujące $\rho(f|d)$. Problem: ryzyko znalezienia maksimum lokalnego.

Uczenie parametrów, zmienne dyskretne o dowolnej liczbie wartości – rozkład Dirichleta

$$\rho(f_1, f_2, ..., f_{r-1}) = \frac{\Gamma(N)}{\prod_{k=1}^r \Gamma(a_k)} f_1^{a_1 - 1} f_2^{a_2 - 1} ... f_r^{a_r - 1}$$

$$0 \le f_k \le 1, \qquad \sum_{k=1}^r f_k = 1, \qquad \sum_{k=1}^r a_k = N$$

k=1 k=1

r – liczba różnych wartości (dla zmiennej binarnej r = 2 i mamy rozkład beta) a_i – liczba wystąpień i-tej wartości

Uczenie parametrów, zmienne dyskretne – rozkład Dirichleta

Jeżeli zmienne F_1 , F_2 ,..., F_r mają rozkład Dirichleta z parametrami a_1 , a_2 ..., a_r , a_1 + a_2 + ... + a_r = N, to dla 1 $\leq k \leq r$

$$E(F_k) = \frac{a_k}{N}$$

Jeżeli zmienna losowa X przyjmuje wartości 1,2,...,r; i dla zmiennych losowych F_1 , F_2 ,..., F_r , $P(X = k | f_k) = f_k$, to

$$P(X=k) = \frac{a_k}{N}$$

Uczenie parametrów, zmienne dyskretne – rozkład Dirichleta

Przykład 1

Rzut kostką

$$Dir(f_1, f_2, f_3, f_4, f_5; 50, 50, 50, 50, 50, 50)$$

 $P(X = 4) = 50 / 300 = 1/6$

Przykład 2

Kolor skarpetek (białe, czarne, kolorowe)

$$Dir(f_1, f_2; 2, 2, 4)$$

$$P(X = biale) = 2 / (2 + 2 + 4) = 1 / 4$$

$$P(X = \text{kolorowe}) = 4 / (2 + 2 + 4) = 1 / 2$$

Uczenie parametrów

Zmienna X_1 przyjmuje 3 wartości, zmienna X_2 przyjmuje 4 wartości

- $\rho(f_{111}, f_{112}) = Dir(f_{111}, f_{112}; 4, 8, 10)$
- $\rho(f_{211}, f_{212}, f_{213}) = Dir(f_{211}, f_{212}, f_{213}; 1, 1, 1, 1)$
- $\rho(f_{221}, f_{222}, f_{223}) = Dir(f_{221}, f_{222}, f_{223}; 2, 4, 1, 1)$
- $\rho(f_{231}, f_{232}, f_{233}) = Dir(f_{231}, f_{232}, f_{233}; 1, 3, 4, 2)$

Uczenie parametrów, zmienne dyskretne – uaktualnianie na podstawie danych

Dane:

 $\rho(f_1,f_2,...,f_{r-1})$ – rozkład gęstości zmiennych reprezentujących względną częstość d - zbiór danych zawierający M przykładów

s_i – liczba wystąpień *i*-tej wartości w zbiorze *d*

Problem:

Jak uaktualnić na podstawie danych d naszą pierwotną wiedzę reprezentowaną przez $\rho(f_1, f_2, ..., f_{r-1})$?

Rozwiązanie:

Jeżeli
$$\rho(f_1, f_2, ..., f_{r-1}) = Dir(f_1, f_2, ..., f_{r-1}; a_1, a_2, ..., a_r)$$
, to $\rho(f_1, f_2, ..., f_{r-1} \mid d) = Dir(f_1, f_2, ..., f_{r-1}; a_1 + s_1, a_2 + s_2, ..., a_r + s_r)$.

Metody uczenia struktury sieci - podział

Ze względu na sposób optymalizacji:

- Dokładne (przeglądanie wszystkich możliwych sieci w celu wybrania optymalnej, wykonalne jedynie w przypadku małej liczby zmiennych).
- Przybliżone (nie gwarantują optymalnego rozwiązania, ale przeważnie prowadzą do rozwiązań bliskich optymalnemu).

Ze względu na wynik końcowy:

- Wybór modelu (wyznaczenie jednej sieci).
- Uśrednianie modelu (wyznaczenie wielu sieci a następnie uśrednianie prawdopodobieństw podczas wnioskowania).

Uczenie struktury sieci bayesowskiej – miara jakości

Im większe prawdopodobieństwo P(G|d), tym lepsza sieć G(d-d) dane uczące).

$$P(G|d) = \frac{P(d|G)P(G)}{P(d)}$$

Miara jakości sieci *G* zbudowanej na podstawie danych *d*:

$$score_{B}(d,G) = P(d \mid G) = \prod_{i=1}^{n} \prod_{j=1}^{q_{i}^{(G)}} \frac{\Gamma(N_{ij}^{(G)})}{\Gamma(N_{ij}^{(G)} + M_{ij}^{(G)})} \prod_{k=1}^{r_{i}} \frac{\Gamma(a_{ijk}^{(G)} + s_{ijk}^{(G)})}{\Gamma(a_{ijk}^{(G)})}$$

n - liczba węzłów (zmiennych)

 q_i – liczba kombinacji wartości przyjmowanych przez rodziców węzła i-tego

 r_i – liczba wartości przyjmowanych przez zmieną (węzeł) i-tą

 M_{ij} – liczba przykładów uczących, dla których rodzice węzła i-tego przyjmują j-tą kombinację wartości

 s_{ijk} – liczba przykładów uczących, dla których zmienna i-ta przyjmuje wartość k-tą a jej rodzice j-tą

Chcemy znaleźć sieć G maksymalizującą powyższą miarę.

Uczenie struktury sieci bayesowskiej – miara jakości

Dane d:

Dane u.		
<i>X</i> ₁	X_2	
1	1	
1	2	
1	1	
2	2	
1	1	
2	1	
1	1	
2	2	

G1 X_1 X_2

$$P(X_1 = 1) = 7/12$$

$$P(X_2 = 1 \mid X_1 = 1) = 5/7$$

$$P(X_2 = 1 \mid X_1 = 2) = 2/5$$

$$P(d \mid G1) = (\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+5)\Gamma(2+3)}{\Gamma(2)\Gamma(2)}) (\frac{\Gamma(2)}{\Gamma(2+5)} \frac{\Gamma(1+4)\Gamma(1+1)}{\Gamma(1)\Gamma(1)}) (\frac{\Gamma(2)}{\Gamma(2+3)} \frac{\Gamma(1+1)\Gamma(1+2)}{\Gamma(1)\Gamma(1)}) = 7.215 \times 10^{-6}$$

$$P(G1 \mid d) = \frac{P(d \mid G1)P(G1)}{P(d)}$$

$$G2 \left(X_1\right)$$

$$P(d \mid G2) = 6.746 \times 10^{-6}$$

$$P(G2 \mid d) = \frac{P(d \mid G2)P(G2)}{P(d)}$$

Uczenie struktury sieci, metody przybliżone

- Przeszukiwana jest przestrzeń zawierająca wszystkie kandydujące rozwiązania.
- Definiuje się zbiór operacji przekształcających jedno rozwiązanie w drugie.

Uczenie struktury sieci, metody przybliżone

Lokalna ocena sieci w węźle X_i :

$$score_{B}(d, X_{i}, PA_{i}) = \prod_{j=1}^{q_{i}^{(PA)}} \frac{\Gamma(N_{ij}^{(PA)})}{\Gamma(N_{ij}^{(PA)} + M_{ij}^{(PA)})} \prod_{k=1}^{r_{i}} \frac{\Gamma(a_{ijk}^{(PA)} + s_{ijk}^{(PA)})}{\Gamma(a_{ijk}^{(PA)})}$$

$$score_B(d,G) = \prod_{i=1}^n score_B(d,X_i,PA_i)$$

Uczenie sieci, metody przybliżone - algorytm K2

Założenie: dany jest porządek węzłów (jeśli X_i jest przed X_j to nie jest dozwolona krawędź $X_i \rightarrow X_j$).

Uczenie sieci, metody przybliżone - algorytm nie wymagający uporządkowania węzłów

Założenie: dozwolone są następujące operacje: dodanie krawędzi między dwoma węzłami, usunięcie krawędzi, zmiana kierunku krawędzi (pod warunkiem, że nie powstaje cykl)

repeat

```
if w sąsiedztwie sieci G istnieje sieć o większym score_B(d,G) then zastąp G siecią o największej wartości score_B(d,G) end
```

until żadna z operacji nie zwiększa wartości score (d, G)

Sąsiedztwo sieci G – wszystkie sieci, które można otrzymać z sieci G wykonując jedną z dozwolonych operacji.

Problem: możliwość znalezienia lokalnego maksimum

Równoważność sieci

•
$$\rho(f_{11}|d) = beta(f_{11}; 2+4, 2+3)$$

•
$$\rho(f_{21}|d) = beta(f_{21}; 1+3, 1+1)$$

•
$$\rho(f_{22}|d) = beta(f_{22}; 1+2, 1+1)$$

$$P(X_1=1,X_2=1) = P(X_2=1 \mid X_1=1) P(X_1=1) =$$

= 2/3 * 6/11 = 4/11
 $P(X_1=1,X_2=2) = P(X_2=2 \mid X_1=1) P(X_1=1) =$
= 1/3 * 6/11 = 2/11
 $P(X_1=2,X_2=1) = P(X_2=1 \mid X_1=2) P(X_1=2) =$
= 3/5 * 5/11 = 3/11
 $P(X_1=2,X_2=1) = 2/11$

Dane *d*:

Danc a.		
X_1	X_2	
1	1	
1	1	
1	1	
1	2	
2	1	
2	1	
2	2	

•
$$\rho(f_{22}|d) = beta(f_{11}; 2 + 5, 2 + 2)$$

•
$$\rho(f_{11}|d) = beta(f_{21}; 1+3, 1+2)$$

•
$$\rho(f_{12}|d) = beta(f_{22}; 1 + 1, 1 + 1)$$

$$X_1$$
 $P(X_1=1 \mid X_2=1)=4/7$
 $P(X_1=1 \mid X_2=2)=1/2$
 $P(X_2=1)=7/11$

$$P(X_1=1,X_2=1) = P(X_1=1 \mid X_2=1) P(X_2=1) =$$
 $= 4/7 * 7/11 = 4/11$
 $P(X_1=1,X_2=2) = P(X_1=1 \mid X_2=2) P(X_2=2) =$
 $= 1/2 * 4/11 = 2/11$
 $P(X_1=2,X_2=1) = P(X_1=2 \mid X_2=1) P(X_2=1) =$
 $= 3/7 * 7/11 = 3/11$
 $P(X_1=2,X_2=1) = 2/11$

jeden rozkład prawdopodobieństwa ↔ różne sieci

Równoważność sieci

$$P(X_2=1|X_1=1)=3/4$$

 $P(X_2=1|X_1=2)=2/3$

$$P(X_3=1|X_1=1)=1/2$$

 $P(X_3=1|X_1=2)=1/3$

Zbiór uczący:

ZDIOI GCZąc			
X_1	X_2	X_3	
1	1	<i>X</i> ₃ 2	
2	2	1	
1	2	1	
2	1	2	
1	1	1	
2	1	2	
1	1	2	

$$P(X_1=1|X_2=1)=3/5$$

 $P(X_1=1|X_2=2)=1/2$

$$P(X_2=1)=5/7$$
 $P(X_3=1|X_1=1)=1/2$ $P(X_3=1|X_1=2)=1/3$

$$P(X_1=1,X_2=1,X_3=1)=?$$

$$P(X_1=1) * P(X_2=1|X_1=1) * P(X_3=1|X_1=1) =$$

= 4/7 * 3/4 * 1/2= **3/14**

$$P(X_2=1) * P(X_1=1|X_2=1) * P(X_3=1|X_1=1) =$$

= 5/7 * 3/5 * 1/2 = **3/14**

$$P(X_1=2,X_2=2,X_3=2) = ?$$

$$P(X_1=2) * P(X_2=2|X_1=2) * P(X_3=2|X_1=2) =$$

= 3/7 * 1/3 * 2/3= **2/21**

$$P(X_2=2) * P(X_1=2|X_2=2) * P(X_3=2|X_1=2) =$$

= 2/7 * 1/2 * 2/3 = **2/21**

.....

jeden rozkład prawdopodobieństwa ↔ różne sieci

Równoważność sieci

<u>Twierdzenie</u>: dwie sieci zawierające ten sam zbiór zmiennych są równoważne, gdy mają te same krawędzie (niezależnie od ich kierunku) oraz takie same połączenia typu $X \rightarrow Y \leftarrow Z$ w przypadku, gdy nie ma krawędzi między X i Z [Pearl 1989].

- (1) i (2) są równoważne
- (1) i (3) nie są równoważne
- (2) i (3) nie są równoważne

Równoważność sieci - wzorzec

Wzorzec klasy sieci równoważnych – sieć, która ma takie same połączenia jak sieci w tej klasie i tylko połączenia wspólne dla wszystkich sieci tej klasy są skierowane.

Poszukiwanie sieci czy wzorca?

- Jeśli w klasach sieci równoważnych jest dużo sieci, to znacznie dłuższy czas poszukiwania (strata czasu, ponieważ wszystko jedno którą sieć z klasy sieci równoważnych wybierzemy).
- Traktowanie wszystkich sieci jak jednakowo prawdopodobnych (jeśli w klasie jest dużo sieci, to duże szanse na wybór jednej z nich → różne rozkłady łączne nie są traktowane jednakowo).

Algorytmy znajdujące najlepsze wzorce

 graf częściowo skierowany – zawiera krawędzie skierowane i nieskierowane;

 sieć G odpowiadająca grafowi częściowo skierowanemu g – wszystkie krawędzie skierowane w g są skierowane w G, G nie zawiera połączeń typu X→Y←Z (bez krawędzi między X a Z) innych niż w g;

 każdy wzorzec sieci jest grafem częściowo skierowanym, ale nie każdy graf częściowo skierowany jest wzorcem;

Zestaw operacji przekształcających graf częściowo skierowany g1 w g2:

- dodanie krawędzi (dowolnie skierowanej lub nieskierowanej) między dwoma węzłami
- usunięcie krawędzi nieskierowanej
- usunięcie lub zmiana kierunku krawędzi skierowanej
- zamiana połączenia typu X-Y-Z (nie ma krawędzi między X a Z) na X→Y←Z

Przekształcanie jednego wzorca w drugi:

- 1) usunięcie krawędzi
- 2) znalezienie sieci

3) znalezienie wzorca


```
repeat
  if w sąsiedztwie wzorca gp istnieje wzorzec o większym
    score<sub>B</sub>(d, gp)
  then zastąp dany wzorzec wzorcem poprawiającym score<sub>B</sub>(d, gp)
    najbardziej
  end
until żadna z operacji nie zwiększa wartości score<sub>B</sub>(d, G)
```

W przeciwieństwie do dwóch poprzednich algorytmów, tym razem nie można uaktualniać miary *score*_R lokalnie.

Uczenie struktury sieci, metody przybliżone - porównanie

- Metody poszukujące wzorca przeważnie prowadzą do lepszych sieci niż metody znajdujące sieć.
- Metody poszukujące wzorca są wolniejsze.
- Jeżeli znane jest uporządkowanie zmiennych wymagane przez algorytm K2, to algorytm ten znajduje sieci często lepsze niż inne metody.

