DPhil thesis outline

1 Introduction

- Introduction to CP-violation and measurement of γ using $b \to c$ transitions
- Introduction to strong-phase measurements at charm factories

2 Theoretical background

• Introduction to CP-violation

2.1 The Standard Model and the CKM matrix

- Basic description of the Standard Model
- Explanation of how $C\!P\text{-}\mathrm{violation}$ arises from the CKM matrix

2.2 Measuring γ using $B^{\pm} \to Dh^{\pm}$ decays

– Theory of γ measurements using $B^{\pm} \to Dh^{\pm}$ decays

2.2.1 Measuring γ using self-conjugate multibody D final states

- \ast Description of BPGGSZ and GLW methods
- * Motivation for model-independent measurement
- * Present yield equations and fit strategy

2.2.2 Binning scheme of $D^0 \to K^+K^-\pi^+\pi^-$

* Strategy for binning of phase space

2.3 Strong phases from quantum-correlated $D^0\bar{D^0}$ decays

- Theory of quantum-correlated $D^0\bar{D^0}$ processes
- Present the double tag method and tag types
- Derive yield equations for the strong-phase fits

3 The LHCb experiment

- \bullet Description of the LHCb experiment during Run 1 and 2
- Focus on VELO, tracking system and RICH

4 Analysis of $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ candidates

- This section contains the whole LHCb analysis
- Status: Paper submitted to EPJC

4.1 Data selection

- Overview of all the selection requirements

4.1.1 Initial selection requirements

* Simple requirements on triggers, mass windows, momentum and RICH

4.1.2 Boosted Decision Tree

- * Training and test samples
- * Training variables

* Optimisation of working point

4.1.3 Final selection requirements

- * Flight significance requirement
- * PID requirements
- * K_S^0 mass veto
- * Semileptonic B^{\pm} decay veto
- * Ghost track rejection

4.2 Background studies

- For each background, describe the origin, mass shape and yield

4.2.1 Charmless background

- * Rejection with flight significance requirements
- * Residual background estimate using sidebands

4.2.2 Semileptonic D background

- * Overview of all possible decay modes
- * RapidSim studies of shape and yield

4.2.3 Background from $D^0 \to K^-\pi^+\pi^-\pi^+\pi^0$ decays

- * Explanation of combined mis-ID and missing particle background
- * RapidSim studies of mass shape and PID requirements in data

4.2.4 Background from $D^0 \to K^-\pi^+\pi^-\pi^+$ decays

* Present full study of single and triple mis-ID

4.3 Invariant mass fits

- Outline the fit strategy

4.3.1 Global invariant mass fit

- * Present and describe global mass fit
- * Show the same fit, split by charge

4.3.2 Binned invariant mass fit

- * Describe binned mass fit
- * Show the fitted *CP*-violating parameters

4.4 Systematic uncertainties

- Very brief description of each systematic uncertainty considered
- 4.4.1 Strong-phase uncertainties
- 4.4.2 Bin-dependent mass shapes
- 4.4.3 Fixed signal shape
- 4.4.4 PID efficiencies
- 4.4.5 Fixed yield fractions
- 4.4.6 Low mass physics effects
- 4.4.7 Small backgrounds not included in the fit
- 4.4.8 Fit bias
- 4.4.9 $D \to K\pi\pi\pi^0$ phase space distribution and mass shape
- 4.4.10 Charmless backgrounds
- 4.4.11 Checks of negligible systematic effects
- 4.4.12 Summary of systematic uncertainties

4.5 Interpretation of in terms of γ

- Combination and interpretation of CP-violating observables in terms of γ

- Highlight the difference between model-dependent and independent results
- Compare with latest LHCb combination

5 The BESIII experiment

- Description of the BESIII experiment and the available data sets
- Focus on MDC, TOF system and EMC

6 Analysis of $D^0 \to K^+K^-\pi^+\pi^-$ strong phases

- This section contains the whole BESIII analysis
- Status: Paper on inclusive phase space measurement submitted to PRD
- Plan: Binned analysis is ongoing and is expected to finish at the end of TT23

6.1 Event selection

- Overview of all the selection requirements

6.1.1 Particle selection

- * Charged pion and kaon track requirements
- * Photon shower requirements
- * Neutral composite particles

6.1.2 Tag selection

- * Reconstruction of fully and partially reconstructed D-mesons
- * Final selection of single- and double-tag events
- * Quantum correlated phase space reweighting

6.2 Yield determinations using mass fits

- Overview of strategy for determining event yields

6.2.1 Single tag yields

- * Description of mass shapes
- * Extraction of single tag yields

6.2.2 Double tag yields

- * Description of mass shapes and fit strategy
- * Simultaneous fit of double tag yields

6.2.3 Peaking backgrounds

- * Determination of background yield and mass shapes from simulation
- * Quantum correlation corrections in double tag yields

6.3 Systematic uncertainties

- Very brief description of each systematic uncertainty considered
- 6.3.1 External parameters
- 6.3.2 Model dependence
- 6.3.3 Peaking backgrounds
- 6.3.4 Single tag yields of $K_L^0 X$ tags
- 6.3.5 Efficiency factorisation
- **6.3.6** K_S^0 veto
- 6.3.7 Summary of systematic uncertainties

6.4 Maximum likelihood fit of strong phases

- Description of likelihood function and fitter

6.4.1 Inclusive phase space measurement

* Present measurement of F_+

6.4.2 Binned phase space measurement

- * Present fit results for c_i and s_i
- * Comparison with model prediction
- * Evaluation of binning scheme performance and impact on γ measurement

7 Analysis of TORCH testbeam PID performance

- This section contains the whole TORCH analysis
- Status: PID likelihood calculation successfully tested on 2018 testbeam data
- Plan: Analysis of PID performance using 2022 testbeam data is ongoing and expected to finish at the end of 2023

7.1 The TORCH detector

- Describe the design, physics and strategy of TORCH

7.1.1 Physics behind TORCH

- * Motivate the need for low momentum PID at LHCb
- * Explain how TORCH combines timing and Cherenkov information
- * Show the design of TORCH
- * Briefly introduce previous studies of timing performance

7.2 PID likelihood calculation

- Describe analytical likelihood calculation

7.3 November 2022 testbeam

- Briefly mention the motivation and goals of this testbeam campaign

7.3.1 Testbeam setup

- * Proto-TORCH
- * The Proton Synchrotron T9 beam line
- * Cherenkov counters
- * Large scintillators
- * Timing stations
- * Beam telescope
- * Trigger Logic Unit

7.3.2 PID study of testbeam

- * Calibration of timing information
- * Cable length measurement
- * PID separation power at different momenta
- * PID separation power in different beam positions
- * Comparison of PID separation power with and witout knowledge of t_0
- * Overall improvement in PID performance at LHCb

8 Summary and conclusion

- Summarise LHCb, BESIII and TORCH analyses
- Outlook on future improvements and measurements