Evaluation of approaches for multiple imputation in three-level data structures

Rushani Wijesuriya

Supervisors:

A/Prof Katherine Lee, Dr. Margarita Moreno-Betancur, Prof John Carlin and Dr. Anurika De Silva

24th of September 2019

Case Study: Childhood to Adolescence Transition Study (CATS)

school

Case Study: Target Analysis and Missing Data

Multiple Imputation

- MI is a two stage approach with a separate imputation stage and an analysis stage
- A key consideration in MI: the imputation model needs to preserve all the features of the analysis
- Need to incorporate the clustered structure in the imputation model

Multiple Imputation for multilevel data

How to incorporate the multilevel structure in the imputation model?

Manipulate the standard (single-level) MI approaches

The Dummy Indicator (DI) approach

Just Another Variable (JAV) approach (if repeated measures are at fixed intervals of time)

Wide format one row per individual

	Age	Sex	Dep_1	Dep_2	Dep_3
1	8	Male	0.4	1.9	0.2
2	7	Female	1.9	-	2.9
3	9	Male	1.0	3.1	-
4	8	Male	-	2.6	-
5	10	Female	1.5	0.5	1.5

MI approaches based on mixed effects /multilevel models

ID	Age	Sex	Wave	Dep
1	8	Male	1	0.4
1	8	Male	2	1.9
1	8	Male	3	0.2
2	7	Female	1	1.9
2	7	Female	2	-
2	7	Female	3	2.9

Long format
One row
per wave
per
individual

Structure used in the analysis stage

Multiple Imputation for three-level data

How to impute incomplete three-level data?

Manipulate standard MI approaches to allow for both levels of clustering

One level of clustering: mixed model based MI (specialized for one level of clustering)

Remaining level of clustering: JAV or

both levels of clustering

DI

School clusters: DI Repeated measures: JAV

- JM-STD
- **FCS-STD**

School clusters: Mixed model based MI Repeated measures: JAV

- ML-JM-JAV
- **ML-FCS-JAV**

School clusters :DI Repeated measures: Mixed

model based MI

- ML-JM-DI
- ML-FCS-DI

Blimp (FCS)

Simulation of Complete Data

- 1000 datasets were simulated
- 40 school clusters (i = 1, ..., 40) were generated
- Each school cluster was populated in two ways: Fixed, Varying
- Four different strengths of level-2 and level-3 intra-cluster correlations

	ICC				
	level 3 (within school)	level 2 (within individual)			
High-high	0.15	0.5			
High-low	0.15	0.2			
Low-high	0.05	0.5			
Low-low	0.05	0.2			

Generation of Missing Data

MCAR

Missing values assigned completely at random

Simulation Study-Results

Standardized biases for the regression coefficient β = (-0.5) - MAR (strong)

(Average estimate-Parameter)/Emp.SE*100

Key findings

- Approaches which imputes in long format (BLIMP, ML-JM-DI, ML-FCS-DI) were the best in estimating the effect estimate
- These approaches are also less sensitive to the missing data proportion
- However, ML-JM-DI and ML-FCS-DI can be problematic when the number of clusters is high

Acknowledgements

- Statistical Society of Australia, Victorian Branch
- Supervisors
- VicBiostat

Thank You

You can download the slides at:

https://www.slideshare.net/secret/svP7IOLLC0OzzS

You can contact me anytime at : rushani.wijesuriya@mcri.edu.au

