

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

• Summary of methodologies

- Data Collection through Web API.
- Data loaded into a relation database to utilize SQL commands to cleanup and normalize the data.
- Utilized data visualization of static and interactive charts to approach correlations.
- Initiated machine learning algorithms to verify hypothesis from visualizations.

Summary of all results

- The results were striking in that heavier payloads from the Kennedy Space Center LC-39A launch site would yield the most success for the Falcon 9 booster.

Introduction

- Project background and context
 - In order to maximize the reduction in costs compared to competitors and ensure the success of a launch, it is imperative to examine the real-world success of data. By increasing the chances of success, SpaceX can provide the best value compared to its competitors.
- Problems you want to find answers
 - What factors were more likely to reenter and land successfully.
 - What characteristics of a launch had a higher probability of success.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected through utilization of the web scraping API's in Python through publicly available data.
- Perform data wrangling
 - Missing data points were dropped from the analysis in order to preserve real-world outcomes.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Compared the outcome of various modeling to find the best predictor.

Data Collection

- Describe how data sets were collected.
 - Data collection was through utilizing Python and its extensive libraries to scrape the web through built-in API into a dataframe.

Data Collection - SpaceX API

- Utilize a web API call to SpaceX to collect the data needed to complete the analysis.
- Link for API code is https://github.com/SineOverdirve/C apstoneProject/blob/07001f00bd 848873744b6372b5f7c95b1c6d 9200/jupyter-labs-spacex-datacollection-api.ipynb

```
1. Get request for rocket launch data using API
           spacex_url="https://api.spacexdata.com/v4/launches/past"
           response = requests.get(spacex url)
   2. Use json_normalize method to convert json result to dataframe
In [12]:
           # Use json normalize method to convert the json result into a dataframe
           # decode response content as json
           static_json_df = res.json()
In [13]:
           # apply json_normalize
           data = pd.json normalize(static json df)
   3. We then performed data cleaning and filling in the missing values
In [30]:
           rows = data_falcon9['PayloadMass'].values.tolist()[0]
           df_rows = pd.DataFrame(rows)
           df rows = df rows.replace(np.nan, PayloadMass)
           data falcon9['PayloadMass'][0] = df rows.values
           data falcon9
```

Data Collection - Scraping

- Utilizing BeautifulSoup in Python, scrapped data from Wikipedia on the Falcon 9.
- https://github.com/SineOver dirve/CapstoneProject/blob/ 17c14a6722b62db1d53ddf d799dcce63d0703c4f/jupyt er-labs-webscraping.ipynb

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
In [4]: static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"
In [5]: # use requests.get() method with the provided static_url
           # assign the response to a object
           html_data = requests.get(static_url)
           html_data.status_code
Out[5]: 200
    2. Create a Beautiful Soup object from the HTML response
In [6]: # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
            soup = BeautifulSoup(html_data.text, 'html.parser')
          Print the page title to verify if the BeautifulSoup object was created properly
           # Use soup.title attribute
            soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
    3. Extract all column names from the HTML table header
         column_names = []
          # Apply find_all() function with "th" element on first_launch_table
         # Iterate each th element and apply the provided extrict column from header() to get a column name # Append the Non-empty column name ("if name is not None and Len(name) > 0") into a list colled column names
          element = soup.find_all('th')
           for row in range(len(element)):
             try:
    name = extract_column_from_header(element[row])
    name = extract_column_from_header(element[row])
                     column_names.append(name)
    4. Create a dataframe by parsing the launch HTML tables
    5. Export data to csv
```

Data Wrangling

- Combined the data from the SpaceX API call data and what was scrapped from the Falcon 9 Wikipedia page.
- Calculated number of launches at each site along with destination orbital region.
- Through wrangling also created a binary outcome of the launch if success or failed.
- https://github.com/SineOverdirve/CapstoneProject/blob/1 7c14a6722b62db1d53ddfd799dcce63d0703c4f/Capstone% 20Project%20Data%20Wrangling.ipynb

EDA with Data Visualization

• Utilized a scatter plot of payload vs launch site to find the better location along with a bar chart of the success rate by orbit.

• https://github.com/SineOverdirve/CapstoneProject/blob/3a87b5d4e73ef8cba 4244ee6a5c5f4b0628fc780/EDA%20with%20Visualization%20Lab.ipynb

EDA with SQL

- Loaded the SpaceX dataset into a PostgreSQL database and confirmed data loaded correctly with jupyter notebook.
- Applied EDA utilizing SQL to gain insight through queries:
 - The unique launch site names and identifiers.
 - The payload mass carried by each Falcon 9 launch.
 - The average payload mass carried by the Falcon 9 booster.
 - The total count of successful and failure missions.
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- https://github.com/SineOverdirve/CapstoneProject/blob/3a87b 5d4e73ef8cba4244ee6a5c5f4b0628fc780/Capstone%20EDA%20 w_SQL.ipynb

Build an Interactive Map with Folium

- Utilizing the Folium library, all launch sites are marked with a marker, circle, and text. Additionally, each site shows the number of launches with a marker along with green for successful and red for failure.
- These objects were added to provide us with a quick visual representation of what sites were used more often along with which had more successful uses of the Falcon 9 booster.
- https://github.com/SineOverdirve/CapstoneProject/blob/3a87b5d4e73ef8cba4244 ee6a5c5f4b0628fc780/Launch%20Site%20Location%20Lab.ipynb

Build a Dashboard with Plotly Dash

- Through the use of the Plotly library, interactive charts were able to be examined to look for trends.
- Through using a scatter plot of the payload vs the Falcon 9 booster version, we gain insight into what version is showing the most success.
- Utilizing a pie chart of the launch locations and number of successful missions, we can visually see which sites provide the best probability of a successful outcome.
- https://github.com/SineOverdirve/CapstoneProject/blob/3a87b5d4e73ef8cba 4244ee6a5c5f4b0628fc780/spacex_dash_app.py

Predictive Analysis (Classification)

- Utilized the numby, pandas, and scikit learn libraries to be able to ETL the data and run against various ML algorithms.
- By spinning the data and pushing it through the various classification models, we were able to determine that the decision tree provided the most accurate predictor.
- https://github.com/SineOverdirve/CapstoneProject/blob/3a87b5d4e73ef8cba 4244ee6a5c5f4b0628fc780/SpaceX_Machine%20Learning%20Prediction_P art 5.ipynb

Results

• The decision tree predictor gave us an accuracy against the test data of 87.5%

```
tuned hpyerparameters :(best parameters) {'criterion': 'entropy', 'max_depth': 14, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_spli
t': 10, 'splitter': 'random'}
accuracy : 0.875
```


Flight Number vs. Launch Site

 Through a scatter plot visualization, we were able to determine that LC-39A at Kennedy Space Center provided the highest probability of success.

Payload vs. Launch Site

• Utilizing a scatter plot visualization, we were able to see that heavier payloads led to a high chance of success at each site.

Success Rate vs. Orbit Type

Using a bar chart
 visualization, we can see that
 ES-L1, GEO, HEO, SSO, and
 VLEO have the higher
 probability of success.

Flight Number vs. Orbit Type

• Using a scatter plot visualization of the orbit type vs the iteration of attempts, we can see a strong correlation of the GTO orbit leading to more successes.

Payload vs. Orbit Type

• Through the use of a scatter plot of payloads vs orbit, there is a greater chance of success using the LEO and ISS orbits.

Launch Success Yearly Trend

 On the line plot, we can see that the success rate has increased quite rapidly from 2013 to 2017 and has held nearly steady at 80%.

All Launch Site Names

• Attached is a screenshot of the query used to compile the unique launch sites utilized by SpaceX for the Falcon 9 booster.

```
task_1 = '''

SELECT DISTINCT LaunchSite
FROM SpaceX

create_pandas_df(task_1, database=conn)

launchsite

KSC LC-39A

CCAFS LC-40

VAFB SLC-40

VAFB SLC-4E
```

Launch Site Names Begin with 'KSC'

• Find 5 records where launch sites' names start with `KSC`

%sql SELECT * FROM SPACEX_SQL_EDA WHERE LAUNCH_SITE LIKE '%KSC%' LIMIT 5

 $* ibm_db_sa://kdt73268:***@125f9f61-9715-46f9-9399-c8177b21803b.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludbDone.$

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2017-02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2017-03-16	06:00:00	F9 FT B1030	KSC LC-39A	EchoStar 23	5600	GTO	EchoStar	Success	No attempt
2017-03-30	22:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
2017-05-01	11:15:00	F9 FT B1032.1	KSC LC-39A	NROL-76	5300	LEO	NRO	Success	Success (ground pad)
2017-05-15	23:21:00	F9 FT B1034	KSC LC-39A	Inmarsat-5 F4	6070	GTO	Inmarsat	Success	No attempt

Total Payload Mass

Calculate the total payload carried by boosters from NASA

Average Payload Mass by F9 v1.1

Calculate the average payload mass carried by booster version F9 v1.1

```
%sql SELECT BOOSTER_VERSION, AVG(PAYLOAD_MASS__KG_) FROM SPACEX_SQL_EDA WHERE BOOSTER_VERSION LIKE '%F9 v1.1%' GROUP BY BOOSTER_VERSION

* ibm_db_sa://kdt73268:***@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb
Done.
booster_version 2

F9 v1.1 2928
```

First Successful Ground Landing Date

• The screenshot of the query shows that the first successful landing of a booster to the ground was on December 22nd, 2015.

Successful Drone Ship Landing with Payload between 4000 and 6000

 Using a Select query with a between in the where clause, we are able to find all the drone ship landings that were successful that carried payloads between 4000 to 6000 kg.

Total Number of Successful and Failure Mission Outcomes

• Through a count with a group by, we are able to count the number of missions that resulted in a success or failure. This approach was used instead of wild card on "fail" or "success" to show the breakdown of each category.

%sql SELECT Land	ing	Outcome, CouNT(Landing_Outcome) AS Cntr FROM SPACEX_SQL_EDA WHERE Landing_Outcome LIKE '%Success%' OR Landing_Outcome LIKE '
* ibm_db_sa://kd Done.	t7326	8:***@125f9f61-9715-46f9-9399-c8177b21803b.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb
landing_outcome	cntr	
Failure	3	
Failure (drone ship)	5	
Failure (parachute)	2	
Success	38	
Success (drone ship)	14	
Success (ground pad)	9	

Boosters Carried Maximum Payload

• The attached screenshot shows all boosters that launched at max capacity.

%sql SELECT Booster_Version, PAYLOAD_MASS__KG_ FROM SPACEX_SQL_EDA WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEX_SQL_EDA)

* ibm_db_sa://kdt73268:***@125f9f61-9715-46f9-9399-c8177b21803b.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

2

2017 Launch Records

• The attaches screenshot shows the records by month names that resulted in successful landing outcomes in the year 2017.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 The attached screenshot shows the query and count of successful landing outcomes between the date 2010-06-04 and 2017-03-20 in descending order.

```
%sql SELECT Landing_Outcome, Count(Landing_Outcome) FROM SPACEX_SQL_EDA WHERE Date >= '20100604' AND Date <='20170320' AND Landing_Outcome LIKE

* ibm_db_sa://kdt73268:***@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb
Done.
landing_outcome 2
Success (drone ship) 5
Success (ground pad) 3</pre>
```


All launch sites displayed

Launch Site Markers with Success Icons

Showing Distances to Major land markers

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the KSC LC-39A site success rate

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see that heavier payloads led to a higher success rate.

Classification Accuracy

• Below is a screenshot showing the various classification models along with their best score. We can see that the decision tree method led to the most accurate results.

```
print('Accuracy for Logistics Regression method:', logreg_cv.best_score_)
print( 'Accuracy for Support Vector Machine method:', svm_cv.best_score_)
print('Accuracy for Decision tree method:', tree_cv.best_score_)
print('Accuracy for K nearsdt neighbors method:', knn_cv.best_score_)

> 0.4s

Accuracy for Logistics Regression method: 0.8464285714285713

Accuracy for Support Vector Machine method: 0.8482142857142856

Accuracy for Decision tree method: 0.875

Accuracy for K nearsdt neighbors method: 0.8482142857142858
```

Confusion Matrix

 Attached is the confusion matrix for the decision tree classification model using the best parameters.

Conclusions

In conclusion the following can be gleaned from the data:

- The best launch site is LC-39A at Kennedy space center.
- If the target orbit is ES-L1, GEO, HEO, SSO, or VLEO then the booster has a greater chance of reusability.
- We can calculate the probability of success to 87.5% using the decision tree classification machine learning model.

Knowing this we will be able to adjust our pricing to remain competitive and profitable based on the input parameters.

