2.1.1

- a) True
- b) False
- c) False
- d) True
- e) False
- f) False
- g) True
- h) False

2.1.5

Proof. Let $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ defined by $T(f(x)) = x \cdot f(x) + f'(x)$. Let $f, g \in P_2(\mathbb{R})$ and $c \in \mathbb{R}$. Then

$$T(f+g) = x(f(x)+g(x)) + f'(x) + g'(x) = xf(x) + f'(x) + xg(x) + g'(x) = T(f) + T(g)$$

and

$$T(cf) = x(c \cdot f(x)) + cf'(x) = c(xf(x) + f'(x)) = cT(f).$$

Therefore T is a linear transformation.

$$\begin{split} \beta_{N(T)} &= \{0\} \\ \beta_{R(T)} &= \left\{x, x^2 + 1, x^3\right\} \\ &\implies \dim(R(T)) = 3 \end{split}$$

Since $N(T) = \{0\}$, T is one-to-one but not onto since $\operatorname{rank}(T) \neq \dim(P_3(\mathbb{R}))$.

2.1.9

- 1. $T(0,0) = (1,0) \neq (0,0)$
- **2.** $cT(a_1, a_2) = (ca_1ca_1^2) \neq (ca_1, c^2a_1^2) = T(ca_1, ca_2)$
- 3. $T(2 \cdot \frac{\pi}{2}, 0) = (0, 0) \neq (2, 0) = 2 \cdot T(\frac{\pi}{2}, 0)$
- 4. $T((1,0)+(-1,0))=(0,0)\neq(2,0)=T(1,0)+T(-1,0)$
- 5. $T(0,0) = (1,0) \neq (0,0)$

2.1.15

Since the only function when integrated equals zero is the zero function itself. Therefore $N(T) = \{0\}$, therefore T is one-to-one. Note as well that

$$T(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x + a_1) = \frac{a_n}{n+1} x^{n+1} + \frac{a_{n-1}}{n-1} x^n + \ldots + \frac{a_2}{2} x^2 + a_1 x$$

Since there is no constant term in the output, all constant polynomials dont have a corresponding polynomial that under T would equal it. Therefore T cannot be onto.

2.1.17

Part A

Since rank $T \leq \dim V < \dim W$, rank $T < \dim W$ and therefore T is not onto.

Part B

Since nullity $T = \dim V - \operatorname{rank} T \ge \dim V - \dim W > 0$, $N(T) \ne \{0\}$ and therefore T cannot be one-to-one.

2.1.22

For $T: \mathbb{R}^3 \to \mathbb{R}$, let a = T(1,0,0), b = T(0,1,0), c = T(0,0,1). Note then that

$$T(x, y, z) = xT(1, 0, 0) + yT(0, 1, 0) + zT(0, 0, 1) = ax + by + cz$$

Now generally:

Theorem 0.1. Let $T: \mathbb{F}^n \to \mathbb{F}$ be linear. Then there exists scalars $a_i \in \mathbb{F}$ such that $T(x_1, x_2, \dots, x_n) = a_1x_1 + a_2x_2 + \dots a_nx_n$.

Proof. Let $T: \mathbb{F}^n \to \mathbb{F}$ be linear. Let e_i denote the vector where the *i*th position is one and all other's are zero. Let $a_i = T(e_i)$ where $1 \le i \le n$. Note than that

$$T(x_1, x_2, x_3, \ldots, x_n) = \sum_{i=1}^n x_i T(e_i) = \sum_{i=1}^n a_i x_i.$$

2.2.1

- a) True
- b) True
- c) False
- d) True

- e) True
- f) False

2.2.4

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.2.10

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \end{pmatrix}$$

2.2.14

Proof. Let $V=P(\mathbb{R})$ and $T_j(f)=f^{(j)}(x)$. Let $n\in\mathbb{N}$ and assume that $\sum_{j=0}^n a_iT_i=0$. Note that $T_j(x^n)=\frac{n!}{(n-j)!}x^{n-j}$. It is clear that for different j, the results are linearly independent since the degrees are different. Therefore $\sum_{j=0}^n a_iT_i(x^n)=0$ implies that $a_i=0$ for all i. Hence $\{T_1,T_2,\ldots,T_n\}$ is linearly independent.

2.2.16

Proof. Let V and W be vector spaces such that $\dim V = \dim W = n$ and let $T: V \to W$ be linear. Let $\{u_1, u_2, u_3, \dots u_m\}$ be a basis for N(T) and extend it to be a basis $\beta = \{u_1, \dots, u_m, v_{m+1}, v_{m+2}, \dots v_n\}$ of V. Examine the linear independent of the set $\{T(v_{m+1}), T(v_{m+2}), \dots, T(v_n)\}$. Assume that

$$a_{m+1}T(v_{m+1}) + a_{m+2}T(v_{m+2}) + \ldots + a_nT(v_n) = 0.$$

Then

$$T(a_{m+2}v_{m+1} + a_{m+2}v_{m+2} + \ldots + a_nv_n) = 0.$$

Therefore $a_{m+2}v_{m+1} + a_{m+2}v_{m+2} + \ldots + a_nv_n \in N(T)$ and therefore can be expressed as linear combination of basis vectors of N(T). That is

$$\sum_{i=m+1}^{n} a_{i}v_{i} = \sum_{i=1}^{m} b_{i}u_{i} \implies \sum_{i=1}^{m} b_{i}u_{i} - \sum_{i=m+1}^{n} a_{i}v_{i} = w = 0.$$

However, note that w is a linear combination of the basis β . Therefore the summation is linearly independent meaning all coefficients, and therefore all a_i , must equal 0. Therefore $\{T(v_{m+1}), T(v_{m+2}), \ldots, T(v_n)\}$ is linearly independent and hence can be extend to

be a basis γ of W with $\gamma = \{w_1, w_2, \dots, w_m, T(v_{m+1}), T(v_{m+2}), \dots, T(v_n)\}$. Therefore

$$\left[T
ight]_{eta}^{\gamma}=egin{pmatrix}0&&&&&&\ &\ddots&&&&&\ &&0&&&&&\ &&&1&&&&\ &&&\ddots&&&&\ &&&&\ddots&&&\ &&&&&1\end{pmatrix}$$

which is a diagonal matrix.

2.3.3

Part A

$$\begin{split} [U]_{\beta}^{\gamma} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \\ [T]_{\beta} &= \begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 8 \\ 0 & 0 & 2 \end{pmatrix} \\ [UT]_{\beta}^{\gamma} &= \begin{pmatrix} 2 & 6 & 8 \\ 0 & 0 & 2 \\ 2 & 0 & -8 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 8 \\ 0 & 0 & 2 \end{pmatrix} \checkmark \end{split}$$

2.3.9

Take T(a, b) = (0, a) and U(a, b) = (a, 0). Note then that

$$UT(a,b) = U(T(a,b)) = U(0,a) = (0,0)$$

but that

$$TU(a,b) = T(U(a,b)) = T(a,0) = (0,a) \neq (0,0)$$

Therefore by using the standard basis for \mathbb{F}^2 ,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

2.3.11

Proof. Let V be a vector space and $T: V \to V$ be linear.

- \Rightarrow) Assume that $T^2 = T_0$. Let $w \in R(T)$. Then $\exists v \in V$ such that w = T(v). Note than that T(w) = T(T(v)) = 0. Therefore $w \in N(T)$, meaning $R(T) \subseteq N(T)$.
- \Leftarrow) Assume that $R(T)\subseteq N(T)$. That is, an element $w\in R(T)$ is in N(T) meaning T(w)=0. Since $w\in R(T)$, $\exists v\in V$ such that T(v)=w. Hence T(T(v))=0 meaning $T^2=T_0$.

2.3.16

Let *V* be a finite dimensional vector space and $T: V \to V$ be linear.

Part A

Proof. Assume that $\operatorname{rank} T = \operatorname{rank} T^2$. First, note that $N(T) \subseteq N(T^2)$ since for $x \in T(V)$, $T^2(x) = T(0) = 0$ hence $x \in N(T^2)$. Furthermore, $N(T) = N(T^2)$ since nullity $T^2 = \dim V - \operatorname{rank} T^2 = \dim V - \operatorname{rank} T = \operatorname{nullity} T$. Let $v \in N(T) \cap R(T)$. Then $v \in R(T)$ meaning there is $u \in V$ such that T(u) = v. Since $v \in N(T)$ as well, T(T(u)) = T(v) = 0, meaning $u \in N(T^2)$ and therefore $u \in N(T)$. This means that T(u) = 0 = v and therefore v = 0, hence $R(T) \cap N(T) = \{0\}$.

Note that since $R(T) \cap N(T) = \{0\}$, it follows that $R(T) \oplus N(T)$ is well defined and that $R(T) \oplus N(T) = R(T) + N(T)$. Since $R(T) \subseteq V$ and $N(T) \subseteq V$, $R(T) + N(T) \subseteq V$. Note that $\dim(R(T) + N(T)) = \operatorname{rank} T + \operatorname{nullity} T - \dim(R(T) \cap N(t)) = \operatorname{rank} T + \operatorname{nullity} T + 0 = \dim V$. Therefore it follows that $V = R(T) \oplus N(T)$.

Part B

Proof. Note that $R(T^{k+1}) \subseteq R(T^k)$ for any k since $v \in R(T^{k+1})$ means there is some $a \in V$ such that $T^{k+1}(a) = T^k(T(a)) = v$ meaning $v \in R(T^k)$. Assume towards contradiction that there is no $k \in \mathbb{N}_0$ such that $R(T^k) \subseteq R(T^{k+1})$. Then $R(T^{k+1}) \subset R(T^k)$ meaning rank $T^{k+1} < \operatorname{rank} T^k$ for all k. This gives rise to an infinite chain

$$0 \le \ldots < \operatorname{rank} T^3 < \operatorname{rank} T^2 < \operatorname{rank} T$$

However, since rank $T \leq \dim V$, it follows that there is an infinite chain of distinct powers of T between 0 and $\dim V$ which is only finite. Therefore there must be some $k \in \mathbb{N}_0$ such that $R(T^k) \subset R(T^{k+1})$ and therefore $R(T^k) = R(T^{k+1})$. Hence rank $T^k = \operatorname{rank} T^{k+1}$. By using the argument from part A and using the fact that rank $T^k = \operatorname{rank} T^{k+1}$ instead of rank $T = \operatorname{rank} T^2$, it will follow that $V = R(T^k) \oplus N(T^k)$.