Quiz 7 - Evolution: Population Genetics (Hardy Weinberg Equilibrium)

Due Mar 12 at 11:59pm Points 13 Questions 7

Available until Mar 13 at 12pm Time Limit 60 Minutes

Allowed Attempts 2

Instructions

This quiz asks questions about Hardy-Weinberg Equilibrium and some of the assumptions that must be met for a population to be in HWE for a specific gene.

The relevant textbook pages are pp 470-474. (Frog on cover: 270-274; Stellar Jay on cover: 478-482).

You have 2 attempts at this quiz. The highest marks counts.

You have 60 minutes to complete each quiz

This quiz will remain open until Sunday, March 12 @ 11:59 pm

This quiz was locked Mar 13 at 12pm.

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	6 minutes	13 out of 13
LATEST	Attempt 2	6 minutes	13 out of 13
	Attempt 1	11 minutes	11.6 out of 13

(!) Correct answers are no longer available.

Score for this attempt: 13 out of 13

Submitted Mar 8 at 4:15pm This attempt took 6 minutes.

Question 1	1 / 1 pts
------------	-----------

Watch the first couple of minutes of the Hardy-Weinberg vid Solving Hardy Weinberg Problems (http://www.youtube.com /watch?v=xPkOAnK20kw)	eo:
(http://www.youtube.com/watch?v=xPkOAnK20kw)	
What do the red and blue blobs/dots in the video represent?)
Alleles of a gene of interest in an individual.	
Alleles of a gene of interest in a population.	
Individuals in a population.	
O p and q.	
Question 2	1 / 1 pts

Watch the rest of the video:

 $\underline{http://www.youtube.com/watch?v=xPkOAnK20kw} \ \boxminus$ (http://www.youtube.com/watch?v=xPkOAnK20kw)

(http://www.youtube.com/watch?v=xPkOAnK20kw)

When showing us how to solve "Hardy Weinberg problems", the speaker makes a big assumption (which he should have stated, and which you should always state). What is this assumption?

Ho	assun	0.00	that	$n+\alpha-1$	1
пе	dobull	162	UTTELL	p + q - 1	١.

He assumes that the population in question is in Hardy equilibrium.	r-Weinberg
Question 3	1 / 1 pts
ABO blood types are governed by three alleles of the I[A] allele, the I[B] allele, and the i allele. People with have blood type O; people with genotypes I[A]/I[A] or blood type A, people with genotypes I[B]/I[B] or I[B]/IB, and people genotype I[A]/I[B] have blood type AB	n genotype i/i or I[A]/i have i have blood type
If the vast majority of people worldwide have blood to be concluded from this information?	ype O. What can
The i allele must be dominant.	
The i allele must be advantageous.	
The i allele is the most frequent of the three worldw	vide.
The world population is not in Hardy-Weinberg equilibre blood types.	ium for ABO
Question 4	5 / 5 pts
Determine the genotype frequencies in a population where the frequency of the A allele is 0.4. Check all apply.	

He assumes that 1/4 of the population is homozygous recessive.

AA genotype: 0.16

☐ AA genotype: 0.42
☐ AA genotype: 0.5
✓ aa genotype: 0.36
aa genotype: 0.50
aa genotype: 0.33
☐ Aa genotype: 0.50
Aa genotype: 0.48
☐ Aa genotype: 0.25

Question 5	2 / 2 pts
Whar determines the frequency of a particular (and geneticular determined) phenotype in a given population? Select all the that apply.	•
The frequency of the alleles controlling that phenotype.	
Selection in favour or against the phenotype in question.	
✓ Migrations in and out of the population.	
Whether individuals mate randomly or not.	

Question 6	2 / 2 pts
The Hardy-Weinberg theorem always works for population	s that have

a certain set of characteristics. What are these characteristics? Select all the answers that apply. There is no selection for or against the trait under investigation. **/** The trait under investigation is controlled by genes that are not ever subject to mutation. Mating is random with resepct to the trait under investigation. The frequency of the recessive allele is not zero. **/** The population size is so large that genetic drift and migrations do not affect the frequencies of alleles or genotypes. All individuals have equal fitness with respect to the trait of interest. Good job, you can recognize the conditions under which the theorem is always applicable! 1 / 1 pts **Question 7** A population is in equilibrium if... p+q=1 $p^2 + 2pq + q^2 = 1$

The expected genotypic frequencies calculated assuming equilibrium

are equal (or very close to) the observed genotypic frequencies.

There are equal proportions of each genotype.

There are more heterozygotes than homozygotes.

Good work! Make sure you can justify your answers.

Quiz Score: 13 out of 13