One-Time Pad

A classic example of a perfectly secure encryption scheme is the one-time pad.

Definition: One-time pad (OTP)

Let the message space $\mathcal M$ be some additive group (G,+). Define the random variable K to be uniformly distributed over the key space $\mathcal K=\mathcal M$, and define the ciphertext space to be $\mathcal C=\mathcal M$ as well. Define the encryption and decryption function as follows:

$$Enc(m, k) = m + k = c,$$

 $Dec(c, k) = c - k = m.$

Here, c-k stands for c+(-k), where -k is the additive inverse of k in the group (G,+).

Example: One-time pad for binary strings

The most common use of the one-time pad is for the group of binary strings under (bit-wise) addition modulo 2, i.e. $(\{0,1\}^n,\oplus)$. In this group, every element is its own additive inverse, resulting in the encryption and decryption functions

$$Enc(m, k) = m \oplus k = c,$$

 $Dec(c, k) = c \oplus k = m.$

For example, if n=4, a possible message m is 0101, and a possible key k is 0110. The ciphertext c is $0101 \oplus 0110 = 0011$, and the decryption of c is again $0011 \oplus 0110 = 0101$, the original message m.

We can show that the one-time pad indeed satisfies **the definition of perfect security**.

Theorem

The one-time pad is perfectly secure.

Proof hint

Draw a three-variable entropy diagram for the random variables M, K, and C. Use the fact that the key K is picked uniformly at random, and the setup assumption that it is independent from the message M. Then deduce from the

created: 2018-12-12

Information Theory | One-Time Pad

diagram that I(M;C)=0, i.e., the message and ciphertext share no information.

Show full proof

Write $n=\log |G|$. We need to verify that I(M;C)=0. We do so using a three-variable entropy diagram. We can already fill in the values $H(K)=n=\log |G|$ (because K is uniformly distributed),

H(M|CK)=H(C|MK)=H(K|MC)=0 (because each random variable is a function of the other two), and I(M;K)=0 (this is our setup assumption).

Note that the area of I(M;K)=I(M;K|C)+R(M;K;C) (shaded orange in the picture) as a whole is 0, but that does not mean that I(M;K|C) and R(M;K;C) themselves are zero, because R(M;K;C) can be negative. We can conclude that there must be some (non-negative) real number $a\geq 0$ such that I(M;K|C)=a and R(M;K;C)=-a. As the entropy of K has to be H(K)=n, we can furthermore conclude that I(K;C|M)=n. From $I(M;C)\geq 0$ follows that $x\geq a$, and because $H(C)\leq n$, it follows that $x\leq a$ and hence, x=a and I(M;C)=0, as desired.

created: 2018-12-12

We have thus seen that the one-time pad provides perfect information-theoretic security. There is one enormous drawback to this encryption scheme though: the key needs to be as large as the message! To send a message of n bits, Alice needs to share n bits of key with Bob. It might be tempting for Alice to reuse the key k for several messages once she has shared it with Bob, but this is dangerous: Eve could, from two intercepted encryptions (m_1+k) and (m_2+k) , recover the difference of the two plaintext messages $m_1+k-(m_2+k)=m_1-m_2$. Already the difference between two plaintext messages can reveal a lot of information about the individual messages, as illustrated in this Cryptosmith blog post.