### Summer Online Course

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversio

# Sequential Logic Circuit Design Module III

# Flip-Flop Conversion

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

The FF conversion is a process to design a new FF from the available FF.

### Step-by-step procedure for FF conversion

- [1] Identify available and required FFs.
- [2] Make characteristic table for required FF.
- [3] Make excitation table for available FF.
- [4] Write boolean expression for available FF in terms of required FF.
- [5] Draw the logic diagram.

Digital Logic Design

Step-1: Available FF : SR

Required FF : **D** 

Conversion

Problems on

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion **Step-1:** Available FF : **SR** 

Required FF : **D** 

**Step-2-3:** Characteristic (**D**) and excitation (**SR**) table

| D | $\mathbf{Q_n}$ | $\mathbf{Q_{n+1}}$ | S | R |
|---|----------------|--------------------|---|---|
| 0 | 0              | 0                  | 0 | × |
| 0 | 1              | 0                  | 0 | 1 |
| 1 | 0              | 1                  | 1 | 0 |
| 1 | 1              | 1                  | × | 0 |

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

**Step-1:** Available FF : **SR** Required FF : **D** 

**Step-2-3:** Characteristic (**D**) and excitation (**SR**) table

| ٠ | D | $\mathbf{Q_n}$ | $Q_{n+1}$ | S | R |
|---|---|----------------|-----------|---|---|
| • | 0 | 0              | 0         | 0 | × |
|   | 0 | 1              | 0         | 0 | 1 |
|   | 1 | 0              | 1         | 1 | 0 |
|   | 1 | 1              | 1         | × | 0 |

Step-4: Boolean expression





Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

**Step-1:** Available FF : **SR** Required FF : **D** 

**Step-2-3:** Characteristic (**D**) and excitation (**SR**) table

| D | $\mathbf{Q_n}$ | $\mathbf{Q_{n+1}}$ | S | R |
|---|----------------|--------------------|---|---|
| 0 | 0              | 0                  | 0 | × |
| 0 | 1              | 0                  | 0 | 1 |
| 1 | 0              | 1                  | 1 | 0 |
| 1 | 1              | 1                  | × | 0 |

Step-4: Boolean expression



Step-5: Circuit Diagram



Digital Logic Design

**Step-1:** Available FF : **SR** Required FF : **T** 

Flip- Flop Conversion

FF Conversi

Digital Logic Design

Flip- Flop Conversion **Step-1:** Available FF : **SR** 

Required FF : **T** 

 $\begin{array}{ll} \textbf{Step-2-3:} & \text{Characteristic (T)} \\ \text{and excitation (SR) table} \end{array}$ 

| Т | $\mathbf{Q_n}$ | $\mathbf{Q_{n+1}}$ | S | R |
|---|----------------|--------------------|---|---|
| 0 | 0              | 0                  | 0 | × |
| 0 | 1              | 1                  | × | 0 |
| 1 | 0              | 1                  | 1 | 0 |
| 1 | 1              | 0                  | 0 | 1 |

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

**Step-1:** Available FF : **SR** 

**Step-2-3:** Characteristic (T) and excitation (SR) table

| Т | $\mathbf{Q_n}$ | $Q_{n+1}$ | S | R |
|---|----------------|-----------|---|---|
| 0 | 0              | 0         | 0 | × |
| 0 | 1              | 1         | × | 0 |
| 1 | 0              | 1         | 1 | 0 |
| 1 | 1              | 0         | 0 | 1 |

Required FF : **T** 

**Step-5:** Circuit Diagram



Step-4: Boolean expression



### SR FF to JK FF

Digital Logic Design

Flip- Flop Conversion Step-1: Available FF : SR

Required FF : **JK** 

Step-5: Circuit Diagram



**Step-2-3:** Characteristic and excitation table

| J | K | $\mathbf{Q_n}$ | $\mathbf{Q_{n+1}}$ | S | R |
|---|---|----------------|--------------------|---|---|
| 0 | 0 | 0              | 0                  | 0 | × |
| 0 | 0 | 1              | 1                  | × | 0 |
| 0 | 1 | 0              | 0                  | 0 | × |
| 0 | 1 | 1              | 0                  | 0 | 1 |
| 1 | 0 | 0              | 1                  | 1 | 0 |
| 1 | 0 | 1              | 1                  | × | 0 |
| 1 | 1 | 0              | 1                  | 1 | 0 |
| 1 | 1 | 1              | 0                  | 0 | 1 |

Step-4: Boolean expression



### JK FF to SR FF Conversion

Digital Logic Design

Flip- Flop Conversion

#### J-K Flip Flop to S-R Flip Flop

| Conversi | on Ta | able |
|----------|-------|------|
|          |       |      |

| S-R I | nputs<br>R | Out<br>Qp ( | puts<br>Qp+1 | J-K<br>J | Inputs<br>K |
|-------|------------|-------------|--------------|----------|-------------|
| 0     | 0          | 0           | 0            | 0        | X           |
| 0     | 0          | 1           | 1            | X        | 0           |
| 0     | 1          | 0           | 0            | 0        | X           |

Dont care Invalid

Invalid Dont care

| L | og | ic | D | iag | rai | m |
|---|----|----|---|-----|-----|---|
|   |    |    |   |     |     |   |



| SR | <sup>Qp</sup> 00 | 01     | 11     | 10  | SRO    |
|----|------------------|--------|--------|-----|--------|
| 0  | 0                | X 1    | X 3    | 0 2 | 0      |
| 1  | 1                | 5<br>X | 7<br>X | X 6 | 1      |
|    |                  | 1=     | S      |     | K-maps |

| SRC | <sup>2</sup> P 00 | 01  | 11  | 10  |
|-----|-------------------|-----|-----|-----|
| 0   | x <sup>0</sup>    | 0 1 | 1   | X 2 |
| 1   | X 4               | 0 5 | x 7 | X 6 |
| aps |                   | K=  | -R  |     |

# Home Assignment on FF Conversion

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

- JK Flip Flop to D Flip Flop
- JK Flip Flop to T Flip Flop
- D Flip Flop to SR Flip Flop
- D Flip Flop to JK Flip Flop
- D Flip Flop to T Flip Flop
- T Flip Flop to SR Flip Flop
- T Flip Flop to JK Flip Flop
- T Flip Flop to D Flip Flop

#### Problem 1 on FF Conversion

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

A new clocked X-Y flip-flop is defined with two inputs, X and Y is in addition to the clock input. The flip flop functions as follows:

- 1 If XY = 00, the FF changes state with each clock pulse
- 2 If XY = 01, the FF state Q becomes '1' with the next clock pulse
- 3 If XY = 10, the FF state Q becomes '0' with the next clock pulse
- 4 If XY = 11, the same state occurs with the clock pulse.
  - (a) Write the truth table for the XY FF.
  - (b) Write the excitation table for the XY FF.
  - (c) Convert JK FF into XY FF by adding some external gates.

# Solution of problem 1

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion Table: (a) Truth Table for XY FF

| X | Υ | $Q_{n+1}$ |
|---|---|-----------|
| 0 | 0 | $Q'_n$    |
| 0 | 1 | 1         |
| 1 | 0 | 0         |
| 1 | 1 | $Q_n$     |

Table: (b) **Excitation Table** for XY Flip Flop

| $Q_n$ | $Q_{n+1}$ | J | K |
|-------|-----------|---|---|
| 0     | 0         | 1 | × |
| 0     | 1         | 0 | × |
| 1     | 0         | × | 0 |
| 1     | 1         | × | 1 |

Table: **Characteristic Table** for XY Flip Flop

| X | Υ | $Q_n$ | $Q_{n+1}$ |
|---|---|-------|-----------|
| 0 | 0 | 0     | 1         |
| 0 | 0 | 1     | 0         |
| 0 | 1 | 0     | 1         |
| 0 | 1 | 1     | 1         |
| 1 | 0 | 0     | 0         |
| 1 | 0 | 1     | 0         |
| 1 | 1 | 0     | 0         |
| 1 | 1 | 1     | 1         |

Now follow the same procedure that we did in the standard FF conversion

#### Problem 2 on FF Conversion

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

A sequential circuit using D FF and logic gates is shown in figure, where X and Y are the inputs and Z is output. The circuit is



#### Problem 2 on FF Conversion

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

A sequential circuit using D FF and logic gates is shown in figure, where  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  are the inputs and  $\boldsymbol{Z}$  is output. The circuit is



- a S-R FF with inputs X=R and Y=S
- b S-R FF with inputs X=S and Y=R
- c J-K FF with inputs X=J and Y=K

# Solution of problem 2

Digital Logic Design

Flip- Flop Conversion

Problems on FF Conversion

From the Circuit: D=X'Z+YZ' Output Z=Q=D Inputs are X and Y

| X | Υ | $\mathbf{Q_n} = \mathbf{Z}$ | $\mathbf{Q_{n+1}} = \mathbf{D}$ |
|---|---|-----------------------------|---------------------------------|
| 0 | 0 | 0                           | 0                               |
| 0 | 0 | 1                           | 1                               |
| 0 | 1 | 0                           | 1                               |
| 0 | 1 | 1                           | 1                               |
| 1 | 0 | 0                           | 0                               |
| 1 | 0 | 1                           | 0                               |
| 1 | 1 | 0                           | 1                               |
| 1 | 1 | 1                           | 0                               |
|   |   |                             |                                 |

# Solution of problem 2

Digital Logic Design

Problems on FF Conversion

From the Circuit: D=X'Z+YZ'Output Z=Q=D

Inputs are X and Y

| X | Υ | $\mathbf{Q_n} = \mathbf{Z}$ | $\mathbf{Q_{n+1}} = \mathbf{D}$ |
|---|---|-----------------------------|---------------------------------|
| 0 | 0 | 0                           | 0                               |
| 0 | 0 | 1                           | 1                               |
| 0 | 1 | 0                           | 1                               |
| 0 | 1 | 1                           | 1                               |
| 1 | 0 | 0                           | 0                               |
| 1 | 0 | 1                           | 0                               |
| 1 | 1 | 0                           | 1                               |
| 1 | 1 | 1                           | 0                               |

Table: JK Flip Flop

| J | K | $Q_{n+1}$   |
|---|---|-------------|
| 0 | 0 | $Q_n$       |
| 0 | 1 | 0           |
| 1 | 0 | 1           |
| 1 | 1 | $\bar{Q}_n$ |

The answer is [d] J-K FF with inputs X=K and Y=J