# Lab3 Prelab Report

| Name    | 伽洞康        | Score |       |
|---------|------------|-------|-------|
| Stu NO. | 2022533080 |       | of 42 |

## **Part One: Superposition Theorem**

Consider the circuit given in Figure. 1, in which  $R_L$  is  $10k\Omega$ 



Figure 1.

Determine the  $U_L$  (voltage across  $R_L$ ) and  $I_L$  (current through  $R_L$ ) using superposition. \_\_/12pt

| i. Us only                                             | ii. Is only                                           |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Equivalent Circuit                                     | Equivalent Circuit                                    |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |
| $U_L$ '= 769 m $\bigvee$                               | $U_L$ ''= 113V                                        |  |  |  |  |
| $I_L$ ' = 76.9 $\mu$ A                                 | $I_{L}^{\prime\prime}=$ 113 $\mu$ A                   |  |  |  |  |
|                                                        |                                                       |  |  |  |  |
| $U_L = 1.90 \text{V}$                                  |                                                       |  |  |  |  |
| $I_L = 190  \text{mA}$                                 |                                                       |  |  |  |  |

### Part Two: Thevenin's Theorem and Norton's Theorem

For the circuit given in Fig.2, remove R<sub>L</sub> from the original circuit.



- 1. Calculate the Thevenin's equivalent parameters following from the perspective of terminals A and B. Show all work.

  \_\_/9pt
  - a. open-circuit voltage U<sub>OC</sub>
  - b. short circuit current I<sub>sc</sub>
  - c. equivalent resistance R<sub>0</sub>



2. Use your results to construt Thévenin and Norton Equivalent Circuit.



#### 3. Validate Thevenin theorem.

#### 1) Calculate the external characteristics of the linear two-terminal active network

As shown in Fig.3, the variable resistor  $R_L$  is connected between terminals A and B of the two-terminal active network. Change the resistance of  $R_L$ , as shown in Table 1, and measure the external characteristics of the network. Record the corresponding voltages and currents into Table 1. \_\_/6pt



#### 2) Calculate the external characteristics of the Thévenin Equivalent Circuit

According to your Thévenin Equivalent Circuit in step2, a variable resistor R<sub>L</sub> is used as load.

Calcultae the external characteristics of the Thévenin Equivalent Circuit. Record the corresponding voltages and currents into the Table 1. \_\_\_/14pt

Table 1.

| $R_L/\Omega$                                                 | 0      | 1k                    | 2k                     | $R_{\theta}$            | 6k                    | 12k                     | $\infty$   |
|--------------------------------------------------------------|--------|-----------------------|------------------------|-------------------------|-----------------------|-------------------------|------------|
| $U_L/V$ Fig.8 original two-terminal network                  | 0      | 725×10-3              | 1,10                   | 1.15                    | 1.69                  | 1.96                    | 2,3        |
| $U_L/V$ Thevening equivalent circuit                         | 0      | 726×103               | 1.41                   | 1.15                    | 1.69                  | 1.95                    | 2,3        |
| <i>I<sub>L</sub></i> /mA Fig.8 original two-terminal network | -1.06  | -775×10 <sup>-3</sup> | -551X 10 <sup>+3</sup> | -529 X 10 <sup>-3</sup> | -181×10 <sup>-3</sup> | -163 X 10 <sup>-3</sup> | -2,3 X)o-6 |
| $I_L/\text{mA}$ Thevening equivalent circuit                 | -l, əb | -726X10 <sup>-3</sup> | -563 X 10-3            | -530 X 10 <sup>-3</sup> | -282X10 <sup>-3</sup> | -163×10 <sup>-3</sup>   | o          |