D^3 as a 2-MCFL

Orestis Melkonian, Konstantinos Kogkalidis

January 25, 2018

Universiteit Utrecht

1.3 Challenge

[This is not a hand-in exercise. If you can solve it by Dec 5, there will be a present for you!]

Let D^n be the language over an n-symbol alphabet, lexicographically ordered $a_1 < \cdots < a_n$, where words satisfy the following conditions:

- 1. each word contains an equal number of the n alphabet symbols
- 2. for every prefix p of a word, the number of a_i in $p \ge$ the number of a_{i+1} $(1 \le i \le n-1)$

 D^n generalizes the familiar language of balanced brackets, in which case you have an alphabet of size 2, say $\{a,b\}$, with 'opening bracket' a preceding 'closing bracket' b in the lexicographic ordering.

The conjecture (Makoto Kanazawa, p.c.) is that for $n \ge 2$, D^n is the language of a non-wellnested (n-1)-MCFG.

Give a 2-MCFG for D^3 , i.e. words over a 3-letter alphabet $\{a, b, c\}$ (with the usual lexicographic order) satisfying conditions (1) and (2) above. Give the ACG encoding of your MCFG for D^3 .

Reference M. Moortgat (2014), A note on multidimensional Dyck languages.

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

• aabb

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc

Dyck words

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc
- abcacb

Dyck words

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc
- abcacb

ababacbcabcc

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc
- abcacb

ababacbcabcc

Dyck words

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc
- abcacb

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc
- abcacb

ababacbcabcc

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

Non-dyck words

- aabb
- aabbbcc
- abcacb

$$S(xy) \leftarrow W(x, y). \tag{1}$$

$$W(\epsilon, xyabc) \leftarrow W(x, y). \tag{2}$$

$$W(\epsilon, xaybc) \leftarrow W(x, y). \tag{3}$$

$$\dots \dots$$

$$W(abxcy, \epsilon) \leftarrow W(x, y). \tag{60}$$

$$W(abcxy, \epsilon) \leftarrow W(x, y). \tag{61}$$

$$W(\epsilon, abc). \tag{62}$$

$$W(a, bc). \tag{63}$$

$$W(ab, c). \tag{64}$$

$$W(abc, \epsilon). \tag{65}$$

Overview

- Background
- G0: Triple insertion
- Meta-grammar notation
- G_0' : Triple insertion (in O_2 notation)
- G_1 : G0' + interleavings
- *G*₂: incomplete words
- G_3 : G2 + 3-ins
- DEMO: dyck
- Refined states
- Constraints (notation)
- ARIS
- Results
- Road to completeness
- Correspondences
- DEMO: dyckviz

Theoretical background

Modelling techniques

Tools

Demo