МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка характеристик надежности программ по структурным схемам надежности»

Студент гр. 8304	Бутко А. М.
Преподаватель	Кирьянчиков В. А.

Цель работы.

Выполнить расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.

Ход работы.

По списку был выбран вариант №2. Описание варианта представлено в таблице. Таблица 1 – Исходные данные.

	N_1				N_2		N_3	
Комб.соедин.	λ_1	λ_2	λ_3	λ_4	Комб.соедин.	λ	Комб.соедин.	λ
C(3)	4.0	2.85	3.8	-	(2, 2)	3.8	(1,1)	2.0

Был построен граф программы, результат работы представлен на рисунке 1.

Рисунок 1 – Граф программы

Структура графа: N_1 — блок, состоящий из трех последовательных эл-ов; N_2 — блок, состоящий из двух параллельных ветвей (два элемента на верхней ветви, два на нижней); N_3 — блок, состоящий из двух параллельных ветвей (один элемент на верхней ветви, один на нижней); 2 дополнительные вершины: первая — связь между N_2 и N_3 , вторая — конченая вершина.

Расчетный способ.

Ручной расчет вероятностей для блоков и для целого графа представлен ниже ($t=2,~\lambda_5=3.8,\lambda_6=2.0$)

• Первый блок:

$$R_{N_1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3)t} = e^{-(4.0 + 2.85 + 3.8) *2 *10^{-5}} \approx 0.9997870226829$$

• Второй блок:

$$R_{N_2} = 1 - (1 - e^{-2\lambda_5 t})(1 - e^{-2\lambda_5 t}) = 1 - (1 - e^{-7.6*10^{-5}})(1 - e^{-7.6*10^{-5}}) \approx 0.9999999942$$

• Третий блок:

Вероятность безотказной работы системы в заданный момент времени: 0.9997870164842284, среднее время до отказа системы: 6841.519236 часа.

Программный способ.

Был выполнен программный расчет, XML-описание графа представлено в приложении А. Полученная схема представлена на рисунке 2.

Рисунок 2 – Полученная схема

Программные результаты представлены на рисунке 3.

t	R	T
2.0	0.9997869979877256	6927.973699763332

Рисунок 3 – Программные результаты

Выводы.

В ходе выполнения лабораторной работы было проведено исследование характеристик надежности вычислительных систем по структурным схемам надежности. По данной структуре были рассчитаны вероятность безотказной работы системы в заданный момент времени и среднее время до отказа системы двумя способами.

Общая надежность системы при ручном расчете полностью совпадает с общей надежностью, рассчитанной программным способом. Среднее время до отказа системы при ручном расчете практически совпадает со средним временем отказа системы, рассчитанным программным способом.

приложение А.

ХМL-ОПИСАНИЕ.

```
<Schema>
   <graf>
        <Block>
           <Id>1</Id>
            <Id2>1</Id2>
           <failureRate>4.0E-5</failureRate>
           <name>1</name>
           <quantity>1</quantity>
           t>
                <int>2</int>
           </list>
           <type></type>
        </Block>
        <Block>
           <Id>2</Id>
           <Id2>2</Id2>
           <failureRate>2.85E-5</failureRate>
           <name>2</name>
           <quantity>1</quantity>
           t>
                <int>3</int>
           </list>
            <type></type>
        </Block>
        <Block>
           <Id>3</Id>
           <Id2>3</Id2>
           <failureRate>3.8E-5</failureRate>
           <name>3</name>
           <quantity>1</quantity>
           t>
                <int>4</int>
                <int>5</int>
           </list>
           <type></type>
        </Block>
        <Block>
           <Id>4</Id>
           <Id2>4</Id2>
           <failureRate>3.8E-5</failureRate>
           <name>4</name>
           <quantity>1</quantity>
           st>
```

```
<int>6</int>
    </list>
    <type></type>
</Block>
<Block>
    <Id>5</Id>
    <Id2>5</Id2>
    <failureRate>3.8E-5</failureRate>
    <name>5</name>
    <quantity>1</quantity>
    t>
        <int>7</int>
    </list>
    <type></type>
</Block>
<Block>
    <Id>6</Id>
    <Id2>6</Id2>
    <failureRate>3.8E-5</failureRate>
    <name>6</name>
    <quantity>1</quantity>
    t>
        <int>8</int>
    </list>
    <type></type>
</Block>
<Block>
    <Id>7</Id>
    <Id2>7</Id2>
    <failureRate>3.8E-5</failureRate>
    <name>7</name>
    <quantity>1</quantity>
    t>
        <int>8</int>
    </list>
    <type></type>
</Block>
<Block>
    <Id>8</Id>
    <Id2>8</Id2>
    <failureRate>0E-5</failureRate>
    <name>8</name>
    <quantity>1</quantity>
    t>
        <int>9</int>
```

```
<int>10</int>
            </list>
            <type></type>
        </Block>
        <Block>
            <Id>9</Id>
            <Id2>9</Id2>
            <failureRate>2.0E-5</failureRate>
            <name>9</name>
            <quantity>1</quantity>
            t>
                <int>11</int>
            </list>
            <type></type>
        </Block>
        <Block>
            <Id>10</Id>
            <Id2>10</Id2>
            <failureRate>2.0E-5</failureRate>
            <name>10</name>
            <quantity>1</quantity>
            t>
                <int>11</int>
            </list>
            <type></type>
        </Block>
        <Block>
            <Id>11</Id>
            <Id2>11</Id2>
            <failureRate>0E-5</failureRate>
            <name>11</name>
            <quantity>1</quantity>
            t></list>
            <type></type>
        </Block>
    </graf>
    <ListOfFlag />
    <listOfNode />
    t />
</Schema>
```