When mistaking "car tyre" for "Kaitaia" is not okay -Towards quantifying language bias in speech technology

ECSE Project 18

Louis Chuo & Henry An

Supervisors: Jesin James & Josh Bensemann

Background

- Speech recognition systems need data to "learn" from much like how toddlers need experience in order to learn around them.
- Different regions have different ways of pronouncing words, commonly referred to as accents, NZ English is distinct from US English^[1].
- Accents can influence how a speech recognition system can learn, developing biases depending on the accents^[2]
- As speech recognition technology becomes more widely adopted, it becomes increasingly important that the systems are able to effectively understand a wide variety of different English dialects.

Our goal: Minimize the effects of NZ English on ASR systems to make it so that speech recognition systems can properly "understand" NZ English.

Methodology

NZ English Datasets

Dataset Name	Is Open Source	Number of Lines	Metadata	File Type
JL Corpus	Yes	2,400	Emotion, Gender	.wav
Mozilla Common Voice	Yes	4,366	Gender, Age, Accent	.mp3
Mansfield	No	1,863	Gender	.wav

MER - Match Error Rate

- Ratio of words mistranslated, added, or missing
- **Lower values = better**

Commercial Match Error Commercial Commer-Speech Rate Results cial ASR Calculation Recognition Microsoft NZ English Datasets Google Finetuned Match Error Finetuned Speech Rate Results Calculation Recognition

- **Speechbrain**^[3] was used as basis for speech recognition system
- None
- US \$300 Yes \$0.006 per 15 Yes seconds \$0.024 per Yes yes

Has NZ

Model

Native mp3

support

No

Commercial Speech Recognition

\$1 per hour Yes

Free Credits Pricing

Amazon Web Serminute vices

US \$200

Results

It has in-built support for finetuning, multiple pretrained systems

• Automatically sorts and process audio files to be consistent for

- MER of corpuses on commerical Google US speech model 1.0 0.8 0.6 . . . --• • • • • のでは、 0.4 0.2 0.0 Mansfield Mozilla
- Different commercial speech recognition systems were tested to observe their performance on NZ English
- Graphs show match error rate performance on Google speech -to-text US versus NZ models
- Google NZ model performs noticeably worse than the US model on NZ English data
- Same trend present on other commercial speech recognition systems tested like Microsoft

- Finetuning was done on an open-sourced model
- Different combinations of data were tested for training
- Best model performance uses only Mansfield dataset for training
- Best results appear when tested on the JL dataset, 1.6% decrease in average MER

Discussion

Current datasets are insufficient for properly representing NZ English.

available

training and testing

- Commercial systems trained on NZ English performed worse when tested.
- Finetuning results had a lower improvement than expected.
- Some datasets when used for training like JL worsened the performance of the system.

Conclusion: We need a better dataset in terms of quality and quantity for the NZ English dataset.

