

Разработка информационной системы, предсказывающей увольнение

Студент: Галкин Андрей Андреевич

Описание проекта

Заказчик предоставил данные о сотрудниках, включая уровень их удовлетворённости работой, рассчитанный на основе опросов. Сбор таких данных в большой компании трудоёмок, но удовлетворённость может влиять на отток. Цель проекта — разработать модель, предсказывающую увольнение сотрудников на основе всех предоставленных данных.

Задачи проекта

Разработка модели, предсказывающей уровень удовлетворённости сотрудников работой.

Составление портрета «уволившегося сотрудника».

Проверка гипотезы о том, что уровень удовлетворённости сотрудника работой влияет на вероятность его увольнения.

Разработка модели, предсказывающей увольнение сотрудников, на основе данных заказчика, и предсказанного уровня удовлетворённости работой.

Пропуски

В категориальных входных признаках присутствуют редкие пропущенные значения (менее 1%). Пропуски могут быть как NAN, так и пробелами.

Решение

Пропуски также могут встретиться и в продакшн данных, поэтому они будут обработаны внутри пайплайна.

Вначале, с помощью вспомогательной функции, все пропуски будут приведены к единому виду, а потом заполнены с помощью SimpleImputer.

Использовать более сложные алгоритмы заполнения пропусков нецелесообразно, т.к. пропуски встречаются крайне редко.

Исследовательский анализ

Было проанализировано распределение всех признаков. Скрытых дубликатов в категориальных признаках не выявлено. Аномальных значений и выбросов не выявлено.

Портрет уволившегося сотрудника

Корреляционный анализ

- 1. Сильнее всего целевой признак (job_satisfaction_rate) коррелирует с оценкой качества работы сотрудника (supervisor_evaluation).
- 2. Меньше всего целевой признак зависит от департамента, уровня должности и загруженности (dept, level, workload).
- 3. Наблюдается высокая корреляция между следующими входными признаками (возможно, их не стоит использовать для обучения модели, есть смысл протестировать все варианты):
 - o salary и workload 0.88
 - o salary и level 0.83

Тестирование моделей регрессии

Только модели, основанные на деревьях смогли уверенно пройти порог SMAPE < 15 %. Лучший результат показал CatBoostRegressor.

 $X \Box -$

CatBoostRegressor

model SMAPE cv SMAPE test

10.357616

11.070393

Ристограмма распределения уровня удовлетворённости сотрудников 160 уволившиеся не уволившиеся 60 40 20 0.0 0.2 0.4 Уровень удовлетворённости

р-значение: 2.4192827253155234e-159

Отвергаем нулевую гипотезу

```
# Задаём минимальную вероятность получить такую выборку, при условии, что гипотеза верна alpha = 0.01

# Передаём в метод имеющиеся выборки и необходимые настройки results = st.ttest_ind(quit_no['satisfaction'], quit_yes['satisfaction'], equal_var=False, alternative='greater')

# Выводим на экран р-значение print('p-значение:', results.pvalue)

# Сравниваем р-значение с alpha и делаем вывод if results.pvalue < alpha: print('Отвергаем нулевую гипотезу')

else: print('Не отвергаем нулевую гипотезу')
```

Проверка гипотезы

Нулевая гипотеза: У уволившихся и у не уволившихся сотрудников одинаковый уровень удовлетворённости работой.

Альтернативная гипотеза: Не уволившиеся сотрудники удовлетворены работой больше, чем уволившиеся.

Вывод: Гипотеза подтвердилась: Уволившиеся сотрудники в среднем удовлетворены работой меньше, чем не уволившиеся.

Повторный корреляционный анализ

Показатель удовлетворённости работой был предсказан лучшей регрессионной моделью. После этого был проведён повторный корреляционный анализ для изучения зависимости между увольнением сотрудников и входными признаками.

- 1. Сильнее всего целевой признак (quit) коррелирует с трудовым стажем в компании (employment_years) и зарплатой (salary).
- 2. Целевой признак не зависит от департамента (dept). Лучше не учитывать его для обучения модели классификации.
- 3. Наблюдается высокая корреляция между следующими входящими признаками (возможно, их не стоит использовать для обучения модели):
 - o salary и workload 0.91
 - o salary и level 0.87
- 4. Целевой признак (quit) коррелирует с предсказанным признаком (satisfaction), коэффициент корреляции 0.55, поэтому стоит использовать его для обучения модели.

Тестирование моделей классификации

Все модели прошли порог на тестовой выборке ROC-AUC > 91. Лучший результат показал CatboostClassifier.

model	roc_auc_cv	roc_auc_test
CatBoostClassifier	0.926640	0.930313
RandomForestClassifier	0.920908	0.927554
KNNClassifier	0.914381	0.916734
SVC	0.913683	0.915791
LogisticRegression	0.911645	0.919140
DecisionTreeClassifier	0.906847	0.925381

Установка порогового значения

В зависимости от того, насколько для компании важно вовремя заметить, что сотрудник собирается увольняться, и какие затраты она понесёт на его удержание, можно выставить оптимальное пороговое значение.

Слайд 11/14

Интерпретация лучшей модели

Влияние входных признаков

Данные графики соответствуют портрету уволившегося сотрудника, полученному во время исследовательского анализа.

Расчёт вероятности увольнения сотрудника

Вероятность увольнения: 0.82

Интерфейс

Для демонстрации модели заказчику был разработан интерфейс, позволяющий получать предсказания и просматривать график «водопада» для каждого сотрудника. Это наглядно показывает, почему модель сделала определенное предсказание.

Санкт-Петербургский Государственный Лесотехнический **Университет** им. С.М. Кирова

Спасибо за внимание!

Галкин Андрей Андреевич

951)-672-20-21

✓ taxi-ehe@inbox.ru

https://github.com/nightcarpenter