10 septembre 2019 CIR 1 et CNB 1

Quiz de rentrée de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

т	, •		, ,			1 .	,	1. 1
 Les	questions	peuvent	présenter	une	011	plusieurs	reponses	valides.
	1	P	P			1		

- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

BON COURAGE!

* * * * * * * * * * * * * * * * *

1. Parmi les expressions suivantes, lesquelles ne sont pas une différence de deux carrés?

$$(1)$$
 \square $(a-b)^2$ (2) \square a^2-b^2 (3) \square $(a+b)^2-c^2$ (4) \square $(a+b)(a-b)$ (5) \square aucune des réponses précédentes n'est correcte.

2. Le prix hors taxes d un objet est 250€. Le montant des taxes sur ce produit est de 49€. Le taux de ces taxes est de :

$$_{(1)}\square$$
 5% $_{(2)}\square$ 4,8% $_{(3)}\square$ 19,6% $_{(4)}\square$ 21,2% $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

3. $(a^{\frac{2}{3}})^4$ est égal à ...

$$(1)$$
 \square $a^{\frac{14}{3}}$ (2) \square $a^{-\frac{3}{8}}$ (3) \square $\sqrt{a^{12}}$ (4) \square $a^2\sqrt[3]{a^2}$ (5) \square aucune des réponses précédentes n'est correcte.

4. Cocher les bonnes réponses.

$$_{(1)}\Box$$
 $\cos\frac{\pi}{2} = 0$ $_{(2)}\Box$ $\cos\frac{\pi}{4} = \frac{\sqrt{3}}{2}$ $_{(3)}\Box$ $\sin\frac{\pi}{6} = \frac{1}{2}$
 $_{(4)}\Box$ $\tan a = \frac{\cos a}{\sin a}$ $_{(5)}\Box$ $\cos(\pi - a) = -\cos(a)$

- 5. Soit $f(x) = \frac{\sqrt{1-x}}{\sqrt{2-x}}$ et $g(x) = \ln\left(\frac{2+x}{2-x}\right)$. On notera D_f et D_g le domaine de définition de f et g respectivement. Quelles sont les assertions vraies?
 - (1) \square $D_f = \mathbb{R} \setminus \{2\}$ (2) \square $D_f =]-\infty,1]$ (3) \square $D_g =]-2,2[$ (4) \square $D_g =]0,+\infty[$ (5) \square aucune des réponses précédentes n'est correcte.
- 6. L'inégalité |x+1| < 2 est équivalente à :

$$(1)$$
 \square $x < -3$ (2) \square $-3 < x < 1$ (3) \square $-1 < x < 3$ (4) \square $x \leqslant -3$ ou $x \geqslant 1$ (5) \square aucune des réponses précédentes n'est correcte.

7. Que vaut $(a-b)^3$?

$$(1) \square \quad a^3 - 2a^2b + 2ab^2 - b^3 \qquad (2) \square \quad a^3 + 3a^2b + 3ab^2 - b^3 \qquad (3) \square \quad a^3 + 3a^2b - 3ab^2 + b^3$$

$$(4) \square \quad a^3 - 3a^2b + 3ab^2 - b^3 \qquad (5) \square \quad a^3 - 3a^2b + 3ab^2 + b^3$$

8. Soient a et b deux réels strictement positifs quelconques. Cochez les propositions qui sont toujours vraies.

$$\ln \frac{\ln a}{\ln b} = \ln a - \ln b$$
 $\ln a - \ln b$ $\ln a - \ln a$

9. On considère dans $\mathbb C$ le nombre $z=(1+i)^2.$ Cocher les affirmations qui sont vraies :

$$(1)$$
 \square $\mathrm{Re}(z)=2$ (2) \square $\mathrm{Im}(z)=2$ (3) \square z est un imaginaire pur (4) \square $z\overline{z}=4$ (5) \square aucune des réponses précédentes n'est correcte

10. Évaluer

$$\int_{-1}^{1} x^2 \, \mathrm{d}x$$

$${}_{(1)}\square \quad \frac{1}{3} \qquad {}_{(2)}\square \quad -\frac{1}{3} \qquad {}_{(3)}\square \quad 0 \qquad {}_{(4)}\square \quad \frac{2}{3} \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte}.$$

11. Un sac contient 3 boules bleues et 5 boules vertes identiques. La probabilité de tirer ...

une boule bleue est $\frac{3}{8}$ $_{(2)}\square$ une boule bleue est $\frac{3}{5}$ $_{(3)}\square$ une boule verte est $\frac{5}{3}$ $_{(4)}\square$ une boule verte est 0,625 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

12. La diagonale de mon écran d'ordinateur mesure 17 pouces (1 pouce vaut 2.54 cm). Sachant qu'il s'agit d'un format $16/9^{\circ}$ (autrement dit, le rapport largeur/hauteur vaut $\frac{16}{9}$), approximez la surface de cet écran.

13. Rappeler la formule permettant de développer $\cos(a+b)$:

 $\begin{array}{ccc} (1) \square & \cos a \sin b + \sin a \cos b & (2) \square & \cos a \cos b + \sin a \sin b \\ (3) \square & \cos a \sin b - \sin a \cos b & (4) \square & \cos a \cos b - \sin a \sin b \\ & & & (5) \square & \sin a \cos b - \cos a \sin b \end{array}$

14. En se basant sur le repère suivant d'origine O, on peut dire que :

$$(1)$$
 \Box $AB=\frac{\sqrt{85}}{2}$ (2) \Box $CE=\frac{3}{2}\sqrt{2}$ (3) \Box $O,$ B et C sont alignés. (4) \Box $OA=3$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

15. Quelle est la limite quand $x \to +\infty$ de $\ln\left(\frac{1}{x^2}\right)$? Cocher les affirmations qui sont vraies :

 $\lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = 0 \qquad \text{(2)} \qquad \lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = +\infty \qquad \text{(3)} \qquad \lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = -\infty$ $\text{(4)} \qquad \lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = 1 \qquad \text{(5)} \qquad \text{aucune des réponses précédentes n'est correcte}$

16. Quelle est la limite quand $x \to \frac{\pi}{3}$ de $\frac{\sin(x) - \frac{\sqrt{3}}{2}}{x - \frac{\pi}{3}}$? Cocher les affirmations qui sont vraies :

$$\lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=0 \qquad \text{(2)} \qquad \lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=1 \qquad \text{(3)} \qquad \lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=\frac{1}{2}$$

$$\text{(4)} \qquad \lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=\frac{\pi}{2\sqrt{3}} \qquad \text{(5)} \qquad \text{aucune des réponses précédentes n'est correcte}$$

17. Soit la fonction $f(x) = (2x+1)^2(2x+1)^{\frac{1}{3}}$

Cocher les affirmations qui sont toujours vérifiées :

$$f(x) = (2x+1)^{\frac{7}{3}}$$
 $f(x) = (2x+1)^{\frac{2}{3}}$ $f(x) = (2x+1)^{\frac{2}{3}}$ $f(x) = (2x+1)^6$ $f(x) = (2x+1)^2 \sqrt[3]{2x+1}$

 $_{(5)}\square$ aucune de ces réponses

18. Quelle est la dérivée de la fonction f(x) de la question précédente?

$$f'(x) = 2(2x+1)^{\frac{4}{3}}$$
 $f'(x) = \frac{7}{3}(2x+1)^{\frac{4}{3}}$ $f'(x) = \frac{7}{3}(2x+1)^{\frac{4}{3}}$ $f'(x) = 12(2x+1)^5$ $f'(x) = \frac{4}{3}(2x+1)^{-\frac{1}{3}}$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

19. Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$. Soit f la transformation du plan complexe qui, à tout point M d'affixe $z \neq 0$, associe le point M' d'affixe $z' = 1 + \frac{i}{z}$. Dans la suite on pose z = x + iy avec $x, y \in \mathbb{R}$ et $x^2 + y^2 \neq 0$ et z' = x' + iy' avec $x', y' \in \mathbb{R}$. Cocher les affirmations qui sont correctes :

(1)
$$\operatorname{Re}(z') = x' = \frac{x^2 + y^2 + y}{x^2 + y^2}$$
 (2) $\operatorname{Re}(z') = x' = \frac{x}{x^2 + y^2}$

 $_{(3)}\Box$ $\operatorname{Im}(z') = y' = \frac{x^2 + y^2 + x}{x^2 + y^2}$ $_{(4)}\Box$ $\operatorname{Im}(z') = y' = \frac{x}{x^2 + y^2}$

 $_{(5)}\square$ $\;$ aucune des réponses précédentes n'est correcte

- 20. Je crée un réseau social basé sur le principe suivant :
 - le premier jour, je suis seul et possède n invitations $(n \neq 1)$;
 - le lendemain, j'invite n personnes dans mon réseau;
 - \cdot chaque personne invitée reçoit, en tout et pour tout, n invitations, qu'elle doit utiliser obligatoirement le lendemain de son adhésion.

En supposant que personne n'invite quelqu'un qui est déjà membre du réseau, combien ce réseau compte-t-il de personnes le soir du 9° jour?

$$(1)^{\square}$$
 n^9 $(2)^{\square}$ 9^n $(3)^{\square}$ $\frac{n^{10}-1}{n-1}$ $(4)^{\square}$ $\frac{n^9-1}{n-1}$ $(5)^{\square}$ $\frac{9^n-1}{9-1}$