THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

1. Introduction

Aquí va la introducción.

2. Preliminaries

3. HAUSDORFF PROPERTIES IMPLIES PATCH TRIVIALITY

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 A^{\wedge} .

The preframe of open filters of $\Omega(S)$.

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter $F \in A^{\wedge}$ has three faces, that is, determines (and its determine) by :

- The compact saturated $Q \in \mathcal{Q}S$.
- $\nabla \in \Omega(S)^{\wedge}$.
- The compact quotient $A \to A_F$.
- The fitted nucleus v_F .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

Definition 3.1. A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is close.

Denote by $\mathcal{H}rm$ the subcategory of Frm of Hausdorff frames in the sense of Johnstone and Shu.

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposition 3.2. For every $A \in \mathcal{H}rm$ the interval corresponding to the block determined by a open filter $F \in A^{\wedge}$ is trivial, that is,

$$[v_F, w_F] = \{*\}$$

Proof. We know that for all $F \in A^{\wedge}$ the following holds: $v_F \leq w_F$. As a contradition, suppose that exists $F \in A^{\wedge}$ such that $w_F \nleq v_F$, that is, exists $a \in A$ such that $w_F(a) \nleq v_F(a)$.

Note that $w_F(a) \neq 1$, otherwise

$$1 = w_F(a) = \bigwedge \{ p \in M \mid a \le p \} \le p$$

and this is a contradition because $p \neq 1$.

Then $1 \neq w_F(a) \nleq v_F(a)$ and for the property (**H**), exists $u \in A$ such that

(1)
$$u \not\leq w_F(a) \quad \mathbf{y} \quad \neg u \not\leq v_F(a)$$

Note that $0 \le a$, then $w_F(0) \le w_F(a)$ and $v_F(0) \le v_F(a)$. Thus, for 1 we have that

(2)
$$i) u \nleq w_F(0) \quad \mathbf{y} \quad ii) \neg u \nleq v_F(0).$$

For 2-(i) is true that $u \nleq \bigwedge M$, in particular, $u \nleq p$ for all $p \in M$. Therefore, $\neg u \leq p$ and $\neg u \leq w_F(0)$. If 2-(ii) is true, then $u \notin F$, in otherwise

$$u \in F \Rightarrow v_u \le f \Rightarrow v_u(0) = \neg u \le f(0)$$

and this is a contradition. Thus, for the Birkhoff's separation lemma, exists a completely prime filter G such that $u \notin G \supseteq F$. We take

$$q = \bigvee \{ y \in A \mid y \notin G \}$$

the point corresponding to G. Thus, $u \notin G$, $u \leq q$. If $q \notin F$, then exists $m \in M$ such that $q \leq m$. Sinse q is maximum, q = m or m = 1, but $m \neq 1$ ($1 \in F$ and $M = A \setminus F$), then $m = q \in M$. Hence $u \nleq q$ and this is a contradition. Therefore $v_F = w_F$.

A consequence of the Proposition 3.2 is that $v_F = w_F$, so that, $A_{v_F} = A_{w_F}$ and $A_{w_F} \simeq \mathcal{O}M \simeq \mathcal{O}Q$. Thus, for all $j \in KA$ we have that $j = v_F$. Then in the Huasdorff case

$$\begin{array}{ccc}
A & \longrightarrow & A_F \\
\downarrow & & \downarrow^g \\
\mathcal{O}S & \longrightarrow & \mathcal{O}S_{\nabla}
\end{array}$$

where g is an isomorphism and $A_F \simeq \mathcal{O}Q \simeq \mathcal{O}S_{\nabla}$.

On the other hand, $U_*u_{Q'}U^* = v_F$ if and only if $u_{Q'}U^* = U^*v_F$, for the adjuntion properties and U^* the spatial reflection morphism. Therefore

$$A \xrightarrow{v_F} A$$

$$U_* \uparrow \downarrow U \qquad U \downarrow \uparrow U_*$$

$$\mathcal{O}S \xrightarrow{v_\nabla} \mathcal{O}S$$

so that, if $A \in \mathcal{H}rm$ then patch trivial implies KC.

The above is the proof of the following theorem.

Theorem 3.3. C. Hausdorff If $A \in \mathcal{H}rm$. then every compact quotient is isomrphic to a closed quotient of the topology of a Hausdorff space.

Proposition 3.4. Every Hausdorff frame A (in the sense of Johnstone and Shou) is tidy, that is, A is patch trivial.

Proof.

REFERENCES