In the last tab, the user all the results can be exported.

First, a table show the basic results of the experiment with average deldaD values at each labeling timepoint and t-values from the Welch's t-test for each peptide. In the last column are the condensed results from the hybrid significant test. A number zero (0) means the peptide is non-significant. A number one means the peptide has at least one timepoint showing increased flexibility. Peptides with a negative number one are the ones with at least one timepoint showing increase in protection. Finally, if a peptide has the word "check" means is showing both increase and decrease flexibility at different timepoints.

Two buttons are located at the top of the page. One ("Export all plots") will enable the user to download all the plots from the different tabs together in a compressed zip file, and the other ("Export results") button returns an excel spreadsheet with all the calculated results.

On the first sheet of the excel file, peptide number, start and end amino acid residue, sequence, charge, raw deuteration data, average deuteration and standard deviation for each labeling timepoint is displayed. Sheet two includes the same information but for protein state 2.

A	в с	D	E	F	G	н	- 1		J	К	L	М	N	0	P	Q	R	s	Т	U	v	w	х	Y	Z	AA
State	pepnumber Start	End	Sequence	Charge	30s_1	30s_2	30s_3	30s_	4 60	ls_1	60s_2	60s_3	60s_4	800s_1	800s_2	800s_3	800s_4	2500s_1	2500s_2	2500s_3	2500s_4	Average D at	SD for 30 sec	Average D at 6	SD for 60 sec	Average D at 1
NIST mAb pH (1 5	11	RESGPAL	1	3.	5	3.5	3.5	3.5	-1.8	-1.	8 -1.8	-1.8	2.359	2.183	2.051	2.311	2.056	2.322	2.457	2.274	3.5	0	-1.8	0	2.226
NIST mAb pH (2 5	19	RESGPALVKP	13	3.46	3 3.4	158 3	.405	3.415	4.028	4.10	2 4.141	4.028	4.866	4.908	4.813	4.867	5.167	5.28	5.252	5.183	3.43525	0.0295113	4.07475	0.05628129	4.8635
NIST mAb pH (3 5	20	RESGPALVKP	13	3.45	4 3.	215 3	.314	3.362	3.896	3.91	5 3.96€	3.99	4.452	4.427	4.483	4.264	4.945	4.682	4.749	4.822	3.33625	0.09954019	3.94175	0.04368352	4.4065
NIST mAb pH (4 21	26	TCTFSG	1						1.597				1.417	1.846	1.869)				2.006	#NUM!		1.597		1.71066667
NIST mAb pH (5 27	50	FSLSTAGMSV	¢3	4.60	4 4.	726 4	.631	4.449	5.184	5.22	9 5.329	5.31	5.641	5.697	5.658	5.702	6.029	6.088	6.16	6.118	4.6025	0.11493331	5.263	0.06822023	5.6745
NIST mAb pH (6 28	50	SLSTAGMSVG	13	4.05	1 3.	361 3	.946	3.79	4.304	4.4	3 4.505	4.576	5.112	5.045	5.033	5.049	5.229	5.343	5.301	5.422	3.912	0.11249	4.45375	0.11627661	5.05975
NIST mAb pH (7 35	50	SVGWIRQPP	G3	2.29	9 2.	225 2	.208	2.22	2.65	2.72	1 2.75€	2.711	3.039	3.023	3.035	3.053	3.138	3.142	3.146	3.118	2.238	0.04128761	2.7095	0.04410971	3.0375
NIST mAb pH (8 35	52	SVGWIRQPP		2.59			.333	2.557	2.975					3.15	3.201					3.078	2.48725	0.11700819	3.07275	0.07777907	3.06425
NIST mAb pH (9 36	47	VGWIRQPPG		2.32	3 2.0	013 1	.966	1.891	2.006	2.15	3 2.26	2.227	2.305	2.558	2.061	2.283	2.354	2.23	2.562	2.173	2.04825	0.18993222	2.1615	0.11290852	2.30175
NIST mAb pH (10 36	48	VGWIRQPPG		2.20	7 2.0	045 2	.152	2.002	2.204	2.33	2 2.34	2.173	2.213	2.341	2.163	2.3	2.204	2.187	2.445	2.266	2.1015	0.09446869	2.26225	0.08615635	2.25425
NIST mAb pH (11 36	50	VGWIRQPPG	k3	2.15	3 2.	165 2	.121	2.144	2.524	2.55	1 2.448	2.629	2.892	2.953	2.833	2.88	2.975	3.007	3.079	3.009	2.14575	0.01860779	2.538	0.07471278	2.8895
NIST mAb pH (12 38	50	WIRQPPGKA		2.00			.035	2.07	2.361	2.32				2.564	2.563			2.913			2.0165		2.4275	0.18250205	2.60975
NIST mAb pH (13 39	50	IRQPPGKALE	V3	2.53	8 2.	144 2	.427	2.249	2.718	2.73	7 2.915	2.783	2.845	3.1	2.952	3.247	3.28	3.077	2.866	3.072	2.4145	0.12064963	2.78825	0.08879705	3.036
NIST mAb pH (14 47	50	LEWL	1	0.44	6 0.	295 0	.446	0.287	0.523	0.52	9 0.654	0.584	0.859	0.863	0.835	0.911	0.914	0.926	0.931	0.907	0.3685	0.08954887	0.5725	0.06087419	0.867
NIST mAb pH (15 47	54	LEWLADIW	1	1.51	9 1	.49 1	.402	1.36	1.65	1.70	9 1.701	1.722	2.335	2.348	2.33	2.355	2.944	2.986	2.967	2.96	1.44275	0.07428492	1.6955	0.03154362	2.342
NIST mAb pH (16 49	52	WLAD	1	0.28			.257	0.264	0.244	0.2										0.218	0.27	0.01251666	0.27275		0.2625
NIST mAb pH (17 49	65	WLADIWWD	C4	1.98	6 1.	351 1	.952	1.834	2.1	1.92	7 2.162	2.048	2.394	2.491	2.251	2.402	2.477	2.676	2.73	2.491	1.90575	0.07466536	2.05925	0.0997242	2.3845
NIST mAb pH (18 49	69	WLADIWWD	c's	2.44	2 2.0	035 2	.151	2.086	2.789	3.23	2 3.03€	2.789	3.734	3.795	3.783	3.824	4.546	4.661	4.48	4.915	2.1785	0.18196795	2.9615	0.21465709	3.784
NIST mAb pH (19 51	65	ADIWWDDK	K 4	2.05	4 1.5	963 1	.831	1.802	2.318	2.2	4 2.268	2.112	2.446	2.595	2.212	2.334	2.56	2.752	2.687	2.687	1.9125	0.11750886	2.2345	0.0878085	2.39675

Sheet 3 contains all the statistical parameters used during calculations, such as the pooled standard deviation, the standard error of the mean, the significance level, the t value used to calculate the threshold and the actual global statistical threshold. Additionally, contains a small reminder of the coloring scheme used in the representations to identify significant peptides.

Α	В	С	D	E	F	G	н	1	J					
PooledSD	StrdErrorMea	alpha	tValUsed	StatisticalThre	eshold									
0.105052309	0.0742832	0.01	3.70742802	0.27539962										
Positive delta	D values (State	2-State ref) me	ans increase in	flexibility by st	tate 2 compare	ed to the refere	nce (Peptides o	colored as red)						
Negative delta	Negative deltaD values (State2-State ref) means increase in protection by state 2 (Peptides colored as blue)													
Peptides prese	Peptides presenting protection and deprotection at different labeling times are colored as yellow (Check data in HDExaminer)													

Sheet 4 contains the same table displayed at the beginning. Average deldaD values at each labeling timepoint and t-values from the Welch's t-test for each peptide plus the summary of the hybrid significance test. Additionally, peptides considered significant will be colored. Red for peptides with increased flexibility, blue for peptides with increased protection and peptides colored yellow are the ones showing mixed behavior. Note that for a peptide to be considered significant at least one the labeling timepoints must be significant. Numbers in bold are the ones that failed the hybrid significance test.

Finally, in the last sheet are the k-means clustering results, average deuteration and t-value from the Welch's t-test at each labeling timepoint for all peptides. Timepoints in cluster 1 are considered insignificant, timepoints in cluster 2 are considered intermediate effects and timepoints located in cluster 3 are considered strong effects.

Additional information such as cluster sizes, cluster limits and number of iterations are also included here.

Α	В	С	D	E	F	G	Н	- 1	J	к	L	М	N	0	Р	Q	R	S	Т	U	v
pepnumber	Start	End	Sequence	Delta D at 30s	Cluster30sec	t test30sec	Delta D at 60s	Cluster60sec	t test60sec	Delta D at 800	Cluster800se	t test800sec	Delta D at 250	Cluster2500	sit test2500se	c					
1	5	11	RESGPAL	-1.6265	3	0.00013307	3.64325	3	1.1978E-06	0.071	1	0.38708572	0.2305		0.0626503	2 Cluster sizes					
2	5	19	RESGPALVKPT	0.0005	1	0.98338704	0.06175	1	0.12752003	0.09725	1	0.01420546	0.184		0.0022159	1 7113	2753	574			
3	5	5 0	RESGPALVKPT	0.0795	1	0.25375516	0.00225	1	0.96611825	0.312	1	0.00301816	0.23975		0.0180137	3 Cluster 1 (ab	s From 0 to 0.0	317			
4,	5 1	5 6	TCTFSG		1			1		-0.2701667	1	0.19827077			1	Cluster 2 (ab	s From 0.0317	to 0.0865			
5,	5 7	^K 0	FSLSTAGMSV	0.2585	1	0.08329361	0.285	1	0.00093581	0.2095	1	0.00027776	-0.09725		0.0491263	2 Cluster 3 (ab	s From 0.0865	to max value			
6,	5 8	² 0	SLSTAGMSVG	0.25125	1	0.01496914	0.407	1	0.00752667	0.10625	1	0.18034452	-0.079		0.3848760	k-means clus	t 3				
7,	5	² 0	SVGWIRQPPG	0.35475	1	5.1353E-05	0.30125	1	0.00019713	0.07975	1	0.00085292	0.02875		0.0612847	3 Datapoints i	n cluster 1 are o	onsidered insi	gnificant or ne	egligible withir	your dataset
8,	5	² 2	SVGWIRQPPG	0.341	1	0.05494845	-0.3415	1	0.01625308	-0.162	1	0.10596959	-0.05875		0.4874085	B Datapoints i	n cluster 2 are i	ntermediate ef	fects within y	our dataset	
9,	⁵ 6	7.7	VGWIRQPPGK	-0.0635	1	0.57605315	-0.076	1	0.40529894	-0.22425	1	0.114213	-0.2160833		0.0878290	Datapointsi	n cluster 3 are s	trong effects w	ithin your dat	taset	
10	⁵ 6	² 8	VGWIRQPPGK	0.14675	1	0.08241251	0.2055	1	0.07872732	0.174	1	0.08179632	0.18475		0.0612648	3					
11,	⁵ 6	₹ 0	VGWIRQPPGK	0.26975	1	1.684E-06	0.318	1	0.00185362	0.0905	1	0.06318118	0.01975		0.4700040	5					
12	5 8	^F 0	WIRQPPGKAL	0.35425	1	0.01275498	0.1865	1	0.13333858	0.23675	1	0.0319014	0.06825		0.508916	В					
13	59	² 0	IRQPPGKALEV	0.09075	1	0.26381961	0.075	1	0.36915329	-0.087	1	0.40858835	-0.05425		0.6122465	5					
14	47	² 0	LEWL	0.1335	1	0.05622341	0.1595	1	0.00711418	-0.069	1	0.01437324	-0.10425		0.0574937	5					
15	47	F-4	LEWLADIW	0.03375	1	0.45135739	0.0975	1	0.00603881	0.2755	2	6.9897E-05	0.1585		0.0060708	9					
16	4 9	F-2	WLAD	-0.0755	1	0.00431502	-0.115	1	0.00154843	-0.15175	1	0.00273822	-0.07575		0.1225670	5					
17	4 9	Z ₅	WLADIWWDD	0.03225	1	0.58889962	0.06625	1	0.40044404	0.0975	1	0.20479812	0.25675		0.0215013	5					
18	4 9	~ 9	WLADIWWDD	0.2895	1	0.04538516	0.1975	1	0.18028856	0.32175	1	8.5823E-05	0.19725		0.1464698	2					
19	[*] 1	Z-5	ADIWWDDKK	0.06325	1	0.38595028	0.03525	1	0.67708494	0.17675	1	0.11540635	0.16375		0.0669055	5					