```
In [1]: import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import numpy as np
    from sklearn import linear_model
```

In [76]: df=pd.read_csv('try.csv')

In [77]: df.head()

Out[77]:

	Date	first	second	Match	Ground / Location	Result
0	6/2/14	New Zealand	India	1st Match: New Zealand v India	Eden Park, Auckland	Loss
1	14/02/2014	New Zealand	India	2nd Match: New Zealand v India	Basin Reserve, Wellington	Draw
2	9/7/14	England	India	1st Match: England v India	Trent Bridge, Nottingham	Draw
3	17/07/2014	England	India	2nd Match: England v India	Lord's, London	Won
4	27/07/2014	England	India	3rd Match: England v India	The Rose Bowl, Southampton	Loss

In [78]: df.groupby(['first','Result']).count()
#plt.bar(df.groupby(['first','Result']).count(),df['first'])

Out[78]:

		Date	second	Match	Ground / Location
first	Result				
Australia	Draw	2	2	2	2
	Loss	2	2	2	2
Bangladesh	Draw	1	1	1	1
England	Draw	1	1	1	1
	Loss	3	3	3	3
	Won	1	1	1	1
New Zealand	Draw	1	1	1	1
	Loss	1	1	1	1

1 of 2

```
In [75]: p=df.groupby(['Date','Result']).count()
    q=df['Date']
    print(p)
    print(len(q))
    #plt.bar(df.Result,df.Date)

objects = df.Date #('Python', 'C++', 'Java', 'Perl', 'Scala', 'Lisp')
    y_pos = np.arange(len(df.Date)) #np.arange(len(objects))
    performance = df.Result#[x for x in range(len(df.Date))]#[10,8,6,4,2,1]
    plt.bar(y_pos,performance,align='center',alpha=0.5)
    yt=np.arange(len(df.Result.unique()))
    plt.xticks(y_pos, objects,rotation=90)
    plt.yticks(yt,['0','Loss','Draw','Win'])
    #plt.xlabel(df.Date,rotation=90)
    #plt.xticks(df.Result,df.Date)
```

		first	second	Match	Ground /	Location
Date	Result					
10/6/15	2	1	1	1		1
14/02/2014	2	1	1	1		1
15/08/2014	1	1	1	1		1
17/07/2014	3	1	1	1		1
17/12/2014	1	1	1	1		1
26/12/2014	2	1	1	1		1
27/07/2014	1	1	1	1		1
6/1/15	2	1	1	1		1
6/2/14	1	1	1	1		1
7/8/14	1	1	1	1		1
9/12/14	1	1	1	1		1
9/7/14	2	1	1	1		1
12						

2 of 2 10/23/2017, 6:08 AM