SVM for binary classification in CIFAR-10 dataset

Matteo Marre' Brunenghi - a.a. 2018-2019

CIFAR-10

Dimensionality:

- 32*32 px * 3 channels per image
- 5000 training images per class
- 10 classes
- 1000 test images

9: truck

Dimensionality overview

Preprocessing: Histogram of oriented gradients

- computing the gradient image in row and col with Sobel filter
- computing gradient histograms
- flattening into a feature vector

Scaling and PCA

Cumulative explained variance 90% with 176 features

SVM?

Perceptron Learning Algorithm

$$\operatorname{sign} f(x), \quad f(x) = x^{\top} w + b,$$

$$w_i = w_{i-1} + \gamma y_i x_i$$
, if $y_i w^T x_i \le 0$

Iteratively separes linearly separable data:

- no generalization
- never ends if data are non-separable

What's the best separating hyperplane?

We need to compute a number that allows us to tell which hyperplane separates the data the best.

$$f = y(\mathbf{w} \cdot \mathbf{x} + b)$$

$$\gamma = y \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x} + \frac{b}{\|\mathbf{w}\|} \right)$$

$$F = \min_{i=1,..m} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$$

$$M = \min_{i=1...m} y_i \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x} + \frac{b}{\|\mathbf{w}\|} \right)$$

Functional Margin

Geometric Margin

Support Vector Machines

SVM optimization problem (hard margin):

maximize
$$M$$

subject to $\gamma_i \ge M$, $i = 1, ..., m$

maximize
$$\frac{F}{\|\mathbf{w}\|}$$

subject to $f_i \ge 1, i = 1, ..., m$

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i) + b \ge 1, i = 1, ..., m$

Solution

- Lagrange multipliers
- Wolfe dual problem (Slater's condition)
- Karush-Kuhn-Tucker conditions

CVXOPT QP solver:

Computational complexity: O(Dn³)

minimize
$$\frac{1}{2}x^T P x + q^T x$$

subject to
$$Gx \le h$$

$$Ax = b$$

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{m} \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i = \mathbf{0}$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{m} \alpha_i y_i = 0$$

maximize
$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$
subject to $\alpha_i \ge 0$, for any $i = 1, \dots, m$
$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

Not linearly separable data

Soft margin SVM

minimize
$$\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \zeta_i$$

subject to
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \zeta_i$$

$$\zeta_i \ge 0 \quad \text{for any } i = 1, \dots, m$$

maximize
$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$
 subject to
$$0 \le \alpha_i \le C, \text{ for any } i = 1, \dots, m$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

Kernel

maximize $\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ subject to $0 \le \alpha_i \le C, \text{ for any } i = 1, \dots, m$ $\sum_{i=1}^{m} \alpha_i y_i = 0$

Cross Validation

#X_train = 2000 for performance reasons

	linear	1 176+V(x)	5 e ⁻⁵	5 e ⁻⁴	1/176	5 e ⁻²
0.1	0.87	0.88	0.49	0.89	0.87	0.49
1	0.87	0.91	0.87	0.91	0.9	0.63
10	0.86	0.9	0.9	0.9	0.9	0.64

Final Results

Г	plane	car	bird	cat	deer	dog	frog	horse	ship	truck
plane	0.0	0.91	0.84	0.89	0.89	0.92	0.92	0.93	0.83	0.9
car	0.91	0.0	0.94	0.92	0.95	0.95	0.93	0.94	0.89	0.84
bird	0.84	0.94	0.0	0.74	0.76	0.77	0.83	0.85	0.91	0.93
cat	0.89	0.92	0.74	0.0	0.78	0.68	0.82	0.83	0.92	0.9
deer	0.89	0.95	0.76	0.78	0.0	0.81	0.86	0.84	0.92	0.94
dog	0.92	0.95	0.77	0.68	0.81	0.0	0.83	0.83	0.95	0.93
frog	0.92	0.93	0.83	0.82	0.86	0.83	0.0	0.92	0.95	0.94
horse	0.93	0.94	0.85	0.83	0.84	0.83	0.92	0.0	0.94	0.91
ship	0.83	0.89	0.91	0.92	0.92	0.95	0.95	0.94	0.0	0.9
truck	0.9	0.84	0.93	0.9	0.94	0.93	0.94	0.91	0.9	0.0