ImageNet Classification with Deep Convolutional Neural Networks

by Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Kazuki Egusa, 03/12/2019

Conclusion

AlexNet : Deep Learning 初の成功例 => 第三次AIブーム到来!!!

(問題点/背景) ラベル付けされた画像のデータセットでも、比較的小さなものであれば上手く認識できていたが、現実世界に存在する物体は、かなり バラエティ豊かなため、もっと大きな学習用データを使う必要があった。実際、小さな画像データセットの欠点は広く認識されており、最近になっ て、LabelMeやImageNetなどの、大量の画像のラベル付けされたデータセットを集めることが可能になってきた。

(各種先行研究) これまでもGPU上でCNNを実装する試みは行われてきたが、もちろんAlexNet程ではなかった。

(本研究の意義)ラベル付けされた大量の画像を分類するための深層なCNNを構築する。

Main Purpose

ラベル付けされた大量の画像を分類するための深層なCNNを構築。

Important Points When Compared to Previous Researches

大きなスケールのデータセットでも、ラベル付けされた画像を 認識出来るようになった。

Key Points

Deep learning

How to Verify

ImageNet datasets on ILSVRC-2010 & ILSVRC-2012

Discussions

- ・一つの畳み込み層を抜くだけでエラー率が上がったため、深層であることは重要である。
- ・動画にも応用したい。

Other Treatises I Should Read Next

D.C. Cires an, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. High-performance neural networks for visual object classification.

Arxiv preprint arXiv:1102.0183. 2011.

Overall Architectures

5 Convolutional Layers (+ 3 Max Pooling Layers) + 3 Fully Connected Layers + A 1000-way Softmax

Novel or Unusual Features of AlexNet's Architecture (重要度順)

- 1. <u>活性化関数</u>: f(x) = tanh(x)やシグモイド関数f(x) = {1 + e^(-x)}^(-1)ではなく、ReLU関数f(x) = max(0, x)を採用。
- 2. 複数のGPUで学習: 今回は二つのGPUを並列化させて使用している。
- 3. Local Response Normalization (LRN): 全然分かりません。
- 4. Overlapping Pooling: Pooling層から出力されたunitを、他のunitと被らないようにするのが伝統的だが、条件を満たした場合にのみ被るように取ると、エラー率がわずかに下がり、少しだけ過学習しにくくなった。

Reducing Overfitting

- 1. <u>Data Augmentation (データの拡張)</u>: Label-preserving Transformationを使用して、データセットを人工的に拡張する方法。今回は、画像の形式を変更したものを水平反転させる方法と、学習用データにおいて、RGBチャンネルの強度を変更する方法の二通り。
- 2. <u>Dropout</u>: 隠れ層の各ニューロンの出力を50%の確率で0にすることで、フォワード/バックプロパゲーションに関与させない(ドロップアウトさせる)。これにより、毎回入力が与えられる度に、ニューラルネットが異なる構築を試すことになるが、全てのニューラルネットで重みは共有される。また、あるニューロンが他のニューロンの出現に依存しなくて済むため、ニューロンの複雑な共適応を減らすことが出来る。ゆえに、よりrobustな特徴量を学習することが出来る。

Results

ILSVRC-2010

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

ILSVRC-2012

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]		97 <u></u>	26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Results

