PATENT ABSTRACTS OF JAPAN

(11)Publication number :

06-264162

(43)Date of publication of application: 20.09.1994

(51)Int.Cl.

C22C 1/10 B22D 19/14 C22C 1/09

(21)Application number: 05-055844

(71)Applicant : LEOTEC:KK

(22)Date of filing: 16.03.1993

(72)Inventor: OZAWA KAZUHIRO

MORITA YUSUKE NANBA AKIHIKO

(54) PRODUCTION OF DISPERSION STRENGTHENED METALLIC COMPOSITE MATERIAL

(57) Abstract

PURPOSE: To easily produce the dispersion strengthened metallic composite material having good quality by dividing the target component compsn. of an alloy for dispersion medium by the temp, width between a solidus line-liquidus line, adding and mixing a dispersion strengthening material to and with a slurry of the broader component compsn. and incorporating the slurry into the molten metal under stirring of the remaining

component compsn.

CONSTITUTION: The component compsn. (for example, Cu-1mass% Sn alloy) of the broader temp. width between the solidus line-fiquidus line than the target component compsn. of the dispersion medium is prepd. as the slurry of the liquid-solid mixed phases. While this slurry is kept stirred, the dispersion strengthening material (for example, AU203 particles) is added and mixed to and with the slurry to form the precomposite material. The precomposite material is incorporated into the moltan metal (for example, pure copper) prepd. to the remaining component compsn. under stirring to uniformly disperse the dispersion strengthening material, by which the composite material (for example, consisting of Cu-0.19mass% Sn alloy and the Al203 particles) is prepd. As a result, the dispersion strengthened metallic composite material (for example, conductive material) having the good quality is obtained.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2 **** shows the word which can not be translated.

3.In the drawings, any words are not translated,

CLAIMS

[Claim(s)]

Claim 1]A target component presentation of an alloy made into carrier fluid of dispersion-strengthening type metal group composite is divided into component composition which compares with temperature width between the solidus-line-fluidus line, and serves as wider temperature width, and the remaining component composition. A manufacturing method of dispersion-strengthening type metal group composite mixing this ********* to a striring molten metal which the above-mentioned temperature width added and mixed dispersion-strengthening material into liquid-solid mixed phase slurry adjusted to larger component composition, and was adjusted to ************, nothing, and the remaining above-mentioned component composition, and preparing to a target component presentation.

[Claim 2]A manufacturing method of dispersion-strengthening type metal group composite being a super-low alloy which a stirring molten metal uses as a pure metal or a this group in claim 1.

[Claim 3]A manufacturing method of dispersion—strengthening type metal group composite whose dispersion strengthening material is ceramics particles, whose stirring molten metal is pure copper or a thin copper alloy in claim 1 and whose dispersion—strengthening type metal group composite obtained is a high intensity quantity electrical conducting material.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1 This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
- 3 In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Industrial Application] This invention proposes the suitable manufacturing method of the dispersionstrengthening type metal group composite (only henceforth composite) which dispersion-strengthening material. such as metal, metallic compounds, ceramics particles, or a whisker, distributes uniformly in metal carrier fluid (matrix)

[0002] In recent years, the composite which can aim at improvement in the quality characteristics, such as intensity of a member, attracts attention, and utilization is advanced. In order to acquire cheap remarkably good quality as having suited manufacture of this composite, it becomes important how dispersion-strengthening material is uniformly distributed in carrier fluid.

[0003]

[Description of the Prior Art] As a manufacturing method of composite, a high pressure casting process, powdermetallurgy processing, the mechanical alloying method, an internal oxidation method, the molten metal stirring method, the half-coagulation stirring method, etc. which are described below, respectively are known until now. [0004] High pressure casting process: Make preforming of dispersion-strengthening material and carry out application-of-pressure impregnating coagulation of the molten metal made into carrier fluid at this. Powder-metallurgy processing: Carry out disintegration of the alloy made into carrier fluid, mix this after alloy powder and dispersion-strengthening material, and join after alloy powder by application of pressure, extrusion,

The mechanical-alloying method: Carry out disintegration of the alloy made into carrier fluid, mix this after alloy powder and dispersion-strengthening material, and knead together mechanically.

Internal-oxidation method: Carry out internal oxidation of the specific ingredient made to contain in the alloy made into carrier fluid

The molten-metal stirring method: Add and stir dispersion-strengthening material and mix in the molten metal made into carrier fluid.

The half-coagulation stirring method (also in half-melting, it contains): Change into a liquid-solid mixed phase state the alloy made into carrier fluid, add and stir dispersion-strengthening material and mix in this. [0005]In the high pressure casting process which makes preforming of dispersion-strengthening material among these manufacturing methods, powder-metallurgy processing which uses after alloy powder and the mechanical alloying method, and also an internal oxidation method, many [intricately] the manufacturing process is not preferred. It is difficult to manufacture large-sized composite in these manufacturing methods.

[0006]On the other hand, by the molten metal stirring method or the half-coagulation stirring method, it has the advantage that a process tends to build simple and composite large-sized few moreover. However, by the molten metal stirring method, it is difficult to carry out mixing distribution of the dispersion-strengthening material uniformly, i.e., obtain good composite-ization, and becomes the composite which was inferior in quality. Although good composite-ization is obtained in the half-coagulation stirring method, since it is important to maintain the alloy made into carrier fluid in this method in the good liquid-solid mixed phase state, it has a problem in each with the alloy with narrow temperature width between the solidus-line-liquidus lines -- manufacture of composite becomes difficult.

T00071

[Problem(s) to be Solved by the Invention] This invention aims to let the good composite of quality propose the cheap manufacturing method obtained easily, even if there is no temperature width between the solidus-lineliquidus lines of the alloy made into carrier fluid of the composite which it is going to manufacture even if in view of the above-mentioned situation.

[8000]

[Means for Solving the Problem]A gist of this invention a target component presentation of an alloy made into carrier fluid of dispersion-strengthening type metal group composite, It divides into component composition which compares with temperature width between the solidus-line-fluidus line, and serves as wider temperature width, and the remaining component composition. The above-mentioned temperature width is a manufacturing method of dispersion-strengthening type metal group composite mixing this ********* to a stirring molten metal which added and mixed dispersion-strengthening material into liquid-solid mixed phase slurry adjusted to larger component composition, and was adjusted to ************ the meaning above-mentioned component composition, and preparing to a target component presentation, [0009]In the above, a stirring molten metal is a pure metal or a super-low alloy based on this, further, dispersion-strengthening material is ceramics particles, a stirring molten metal is a pure metal or a super-low alloy based on this, further, dispersion-strengthening material is ceramics particles, a stirring molten metal is a pright intensity quantity electrical conducting material.

[0010]

[Function]An operation of this invention is described below in more detail. Although it is very easy to build a molten metal with the molten metal stirring method, since the viscosity is low, making dispersion-strengthening material mixing uniformly and what is called good composite-ization are not obtained. On the other hand, by the half-coagulation stirring method, although it is suitable for mixing of dispersion-strengthening material, if the temperature width between the solidus-line-fluidus lines of the alloy made into carrier fluid is narrow, it will be difficult to be stabilized and to maintain a good liquid'-solid mixed phase state also including the time of addition of dispersion-strengthening material, and good compositer ization will no longer be obtained.

[0011]Therefore, the thing for which ******** which mixed dispersion-strengthening material in consideration of the above-mentioned characteristic into the liquid-solid mixed phase slurry of the component composition which a liquid-solid mixed phase state is stabilized and can be maintained, and distributed dispersion-strengthening material uniformly beforehand is built with this invention, Then, the composite prepared by the target component presentation of the alloy made into carrier fluid of composite as a result is manufactured by mixing this *********** or string mother metal.

[0012] The above is described below still more concretely. The target component presentation of an alloy made into carrier fluid of the composite which it is going to manufacture is divided into the two component composition A and B. That is, A chooses the component composition whose temperature width between the solidius-line-fluidus lines is wider than a target component presentation, and it is made for B to become a target component presentation, and it is made for B to become a target component composition.

[0013]As for the temperature width between the solidus-line-liquidus lines of the component composition A, it is preferred here to consider it as not less than 30 **.

[0014]And ******** which mixed dispersion-strengthening material in the liquid-solid mixed phase slurry adjusted to the component composition A, and was composite-ized beforehand is built, and when the abovementioned ******** is made to mix to the stirring molten metal adjusted to the component composition B and A and B alloy, the alloy made into carrier fluid serves as composite prepared by the target component presentation.

[0015]Once inserting in with slurry form and making it massive on the occasion of mixing to the stirring molten metal of the above-mentioned *********, it is also good to insert this in. However, it is preferred to use what was cut to the wafer so that the medium may dissolve easily, in inserting in, after making it massive.

[0016]Thus, since component composition of the liquid-solid mixed phase slurry which adds and mixes dispersion—strengthening material is made into the component composition A whose temperature width between the solidus—line—fliquidus lines is wider than the target component presentation of an alloy made into carrier fluid of composite, It is stabilized and a good liquid-solid mixed phase state can be made easily, and since dispersion—strengthening material is added and mixed into the slurry of this good liquid-solid mixed phase state, good *********** of a compound state is obtained.

[0017] Subsequently, since this ******** is inserted in to the stirring molten metal of the component composition B, the medium of ********* dissolves, and the composite which A and B became what was prepared by the target component presentation of the alloy made into carrier fluid of the composite obtained by alloying easily, and distributed uniformly [dispersion-strengthening material] in carrier fluid is obtained.

[0018]In the above, in order to achieve the uniform dispersion of the dispersion-strengthening material currently

distributed in ********, and perfect alloying with A and B, it is important to continue stirring of a molten metal, until it inserts ******* in a stirring molten metal and makes it dissolve in it thoroughly.

[0013]When the target component presentation of carrier fluid is a low alloy like the copper alloy in which high conductivity is demanded, in order to make component composition A into the component composition which easy to build fliquid-solid mixed phase slurry, the component composition B serves as a pure metal or a super-low alloy near this. However, it is not this limitation if carrier fluid is one of the things of a high alloy, or an eutectic alloy presentation or the component composition near this.

[0020]Although it is applicable in favor of aluminum system alloy, Cu system alloy, and other alloy systems, since this invention maintains especially high conductivity and can measure improving strength, it is used for manufacture of the high intensity electrical conducting material which used ceramics for dispersion strengthening material and used pure copper or a thin copper alloy for the stirring molten metal, and is preferred.

[0021]

[Example]First, the composite manufacturing installation used for the example of this invention is explained based on a drawing. <u>Drawing 1</u> is an explanatory view of a composite manufacturing installation. In this figure, as for the rotator for stirring, and 3, 1 is [an additional ingredent charging apparatus and 5] molds a dispersion-strengthening material addition device and 4 a crucible and 2, these are installed in the space of the airtight structure formed with the vacuum tank 6, and the exhaust port 7 and the controlled atmosphere feed port 8 are established in the vacuum tank 6.

OID22]As an example of conformity of this invention, the above-mentioned composite manufacturing installation is used and the target component presentation of carrier fluid is a Cu-0.19mass% Sn alloy. (solidus-line-liquidus-temperature width: 6 **) Dispersion-strengthening material (aluminum₂O₃) manufactured the composite scattered by 1 wt% by the following.

[0025]About the composite ingot obtained in this way, the distributed situation of dispersion-strengthening material, conductivity, hardness, etc. were investigated. Distributing dispersion-strengthening material uniformly as a result, the material of the high intensity high conductivity of hardness:70 (HR_P) was obtained conductivity 75%.

[0026]On the other hand, as a comparative example, Cu-0.19mass\(^x\) Sn alloy 2400g which is a target component of carrier fluid was tried in order to build liquid-solid mixed phase slurry within the crucible 1, but when lowered near the liquidus temperature (1082 **) in the stirring bath, it was unable for generating of shell to become remarkable and to lower temperature more. Then, the state of a stirring bath is stable. Although it held to the temperature of 1132 ** and addition of particle diameter. Imicrometer aluminum₂O₃ particle was tried, most

 ${
m aluminum_2O_3}$ particles were not mixed into the bath, floated on a bath surface. [0027]

[Effect of the Invention]This invention divides the target component presentation of an alloy made into carrier

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1]It is the explanatory view of a composite manufacturing installation used for the example.

[Description of Notations]

- 1 Crucible
- 2 The rotator for stirring
- 3 Dispersion-strengthening material addition device
- 4 Additional ingredient charging apparatus
- 5 Mold
- 6 Vacuum tank
- 7 Exhaust port
- 8 Inactive gas feed port

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.

3 In the drawings, any words are not translated.

DRAWINGS

C 2 2 C 1/10

(51)Int.Cl.5

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

FΙ

庁内整理番号

(11)特許出願公開番号 特開平6-264162

(43)公開日 平成6年(1994)9月20日

(74)代理人 弁理士 杉村 暁秀 (外5名)

技術表示箇所

B 2 2 D 19/1- C 2 2 C 1/0		
		審査請求 未請求 請求項の数3 OL (全 4 頁
(21)出願番号	特顯平5-55844	(71)出額人 390014432 株式会社レオテック
(22)出顯日	平成5年(1993)3月16日	東京都港区西新橋1丁目7番2号
		(72)発明者 小沢 一広 千葉県千葉市中央区川崎町 1番地 株式会 社レオテック内
		(72)発明者 森田 有充 千葉県千葉市中央区川崎町 1 番地 株式会 社レオテック内
		(72)発明者 難波 明彦 千葉県千葉市中央区川崎町 1番地 株式会
		社レオテック内

(54) 【発明の名称】 分散強化型金属基複合材の製造方法

識別紀号

G

(57) 【要約】

【目的】 複合材の分散媒とする合金の固相線-液相線 間の温度幅がたとえないものであっても、品質の良好な 分散強化型金属基複合材を安価でかつ容易に製造できる ものとする。

【構成】 複合材の分散媒とする合金の目標成分組成 を、その固相線-液相線間の温度幅に比しより広い温度 幅となる成分組成と残りの成分組成とにわけ、温度幅が より広い成分組成に調整した液固混相スラリ中へ分散強 化材を混入して予複合材とし、残りの成分組成に調整し た攪拌溶湯に対して上記予複合材を混入して目標合金成 分に調製する。

【特許請求の範囲】

【請求項1】 分散強化型金属基複合材の分散媒とする 合金の目標成分組成を、その園相線一液相線間の温度幅 に比しより広い温度幅となる成分組成と残りの成分組成 とにわけ、

上部温度幅がより広い成分組成に調整した液固混相スラ リ中へ分散強化材を添加・混入して予複合材となし、 上記残りの成分組成に調整した撹拌溶湯に対し該予複合 材を混入して目標成分組成に調製することを特徴とする 分散強化型金属基複合材の製造方法。

【請求項2】 請求項1において、摂拌溶湯が錬金属ないしはこれ基とする極低合金であることを特徴とする分 散強化型金属基複合材の製造方法。

[請求項3] 請求項1において、分散強化材がセラミックス超子、提择溶温が鈍弱ないしは希薄網合金であり、得られる分散域化型金属基複合材が高強度高導電材 以である分散強化型金属基複合材が高強度高導電材 以である分散強化型金便基複合材の郵告方法。

【発明の詳細な説明】

[0001]

[産業上の利用分野] この発明は、金属、金属化合物又 はセラミックス粒子あるいはウィスカー等の分散強化材 が金属分散媒(マトリックス)中に均一に分散してなる 分散強化型金属基核合材(以下単に複合材という)の好 流な製造方法を得象するものである。

【〇〇〇2】近年、部材の強度などその品質特性の向上 がはかれる複合材が注目され、実用化が進められてい る。この複合材の鎖造にあったっては、安価であること のほか、良好な品質を得るために、分散媒中に分散強化 材をいかに均一に分散させるかが重要になる。

[0003]

【従来の技術】これまでに複合材の製造法としては、それぞれ以下に述べる高圧録造法、粉末治金法、メカニカルアロイング法、内部酸化法、溶湯操袢法及び半凝固提 拌法等が知られている。

【0004】高圧鋳造法:分散強化材のプリフォームを 作り、これに分散媒とする合金溶湯を加圧含浸凝固させ ス

粉末冶金法:分散媒とする合金を粉末化し、この合金粉末と分散強化材とを混合し、加圧、押出し等により合金粉末同士を接合させる。

メカニカルアロイング法:分散媒とする合金を粉末化 し、この合金粉末と分散強化材とを混合して機械的に練 り合せる。

内部酸化法:分散媒とする合金中に含有させた特定の成 分を内部酸化させる。

溶漏攪拌法:分散媒とする合金溶湯に分散強化材を添加 ・攪拌して混入する。

半凝固攪拌法(半溶融の場合も含む):分散蝶とする合 金を液固混相状態にし、これに分散強化材を添加・攪拌 して混入する。 [0005] 二れらの製造法のうち、分散強化材のブリフォームを作る高圧構造法や、合金物末を使用する粉末 あ金融及びメカニカルアロイング法、さらには内部酸化 法などでは、その製造工程が複雑でかつ多く好ましくな い、また、これらの製造法では大型の複合材を製造する ことは医酵である。

【0006】一方、溶湯摂拌法や半返回損拌法では工程 が単純でかつかなく、しかも大型の複合材を造り易いと いう利点を有している。しかしながら、溶湯焊料法では 分散強化材を切一に温入分散させること、すなわち良好 な複合化を得ることは限難であり、品質的に劣った複合 材となる。また半返回提押法では、良好な破後化は得ら れるが、この方法においては分散媒とする合金を良好な 級園温相状態に維持しておくことが重要であるために、 個相線一級相線間の温度幅が残い合金では複合材の製造 が困難になるなど、それぞれに問題を有している。 「0007]

【発明が解決しようとする課題】 この発明は上記の事情 に鑑み、たとえ製造しようとする複合材の分散媒とする 合金の固相線一液相線間の温度幅がないものであって

も、品質の良好な複合材が安価でかつ容易に得られる製 造方法を提案することを目的とする。

[0008]

「課題を解決するための手段」この発明の要旨は、分散 成化型金属基複合材の分散准とする合金の目標成分組成 を、その国相様一液相線間の退度傾に比しより広い温度 幅となる成分組成と残りの成分組成とにわり、上彩温度 域にはを影加・混入して予複合材とない。上記残り 成分組成に調整した撹拌溶湯に対し該予複合材を混入し で目域成分組成に調整することを特徴とする分放強化型 金属集複合材の越波方法であり、

[0009]上記において、携枠溶湯が純金属ないしは これを基とする様低合金であるものであり、さらに、分 散強化材がセラミックス粒子、携件溶湯が純銅ないしは 希薄銅合金であり、得られる複合材が高強度高導電材料 であるものである。

[0010]

【作用】この発明の作用をさらに詳しく以下に述べる。 溶瀬横井設では溶瀬を造ることはいとも簡単であるが、 への栽皮が低いために分娩験化材を均一に混っとせること、いわゆる良好な複合化は得られない。一方、半凝固 提押技では分散強化材の混入には好適であるが、分数な とする合金の固相軸・液相極間の温度幅が放大り良好な 液固混相状態を分散強化材の添加時も含めて安定して総 持することが困難であり、良好な複合化は得られなくなる。

【0011】したがって、この発明では、上記の特性を 考慮して、液固混相状態の安定して維持できる成分組成 の液固混相スラリ中へ分散強化材を混入してあらかじめ 分散強化材を均一に分散させた予複合材を造ること、その後、この予複合材を攪拌溶湯・混入することによって 結果的に接合材の分散媒とする合金の目標成分組成に調 製された複合材を製造するようにしたものである。

[0012]上記についてさらに具体的に以下に述べる。製造しようとする複合材の分数線とする合金の目標成分組成を2つの成分組成 A 2 び目にわける。すなわち、A は目標が分組成より固相線一流相線間の温度解がより広い成分組成を選択し、B は残りの成分組成として、A と日とを含金化することによって目標派分組成に

なるようにする。 【0013】ここで成分組成Aの固相線-液相線間の温

【0013】ここで成分組成Aの固相線一液相線間の温度幅は30℃以上とすることが好ましい。

[0014] そして、成分組成人に調整した液面温相ス ラリに分散強化材を混入してあらかじめ接合化した予複 合材を造り、成分組成日に耐整した機井溶温に対して上 記予核合材を選入させAとBとが合金化することによっ て分数様よする合金が目標成分組成に調製された複合材 となる。

[0015] なお、上記予核合材の撹拌溶湯への混入に 際しては、スラリ状で読入してもよく、一度検状にした のちこれを読入することもよい。ただし、焼状にしたの ち装入する場合にはその媒体が容易に溶解するように小 片に切断したものを用いることが好ましい。

[0016] このように、分散強化材を添加・混入する 液面原相スラリの成分組成を、複合相の対数とするも のの程成分組成より固相線一液相線制の温度標がより 広い成分組成みとするので、安定して良好な液面源相状 態を容易に造りだすことができ、この良好な液面原相状 筋の身状な子様分が振される流加・混入するので複合状 態の身状な子様分が振される流加・混入するので複合状 態の身状な子様分が振られる。

[0017]ついで、この予複合材を成分組成日の攪拌 溶湯~凝入するので、予報合材の媒体は溶解してAと日 とが容易に合金化し、得られる複合材の分散媒とする合 金の目標成分組成に調製されたものとなり、分散強化材 も分散媒中に均一に分散した複合材が得られる。

[0018] なお、上記において、攪拌溶湯に予複合材 を装入して完全に溶解させるまでは、予複合材中に分散 している分散強化材の均一分散及びAとBとの完全な合 金化をはかるため溶湯の攪拌を続けることが肝要であ る。

[0019]また、高導電性が要求される個合金のよう 法の計画に分数様の目標成分組成が低合金の場合、成分組成 Aを 液固混相スラリを造り悪い成分組成にするため、成分組 成日は抹金属ないしはこれに近い極低合金となる。ただ し、分数数が高合金や水晶合金組成るないはこれに近い 成分組成のものにあってはこの限りではない。

【0020】さらに、この発明は、AI系合金、Gu系合金及び他の合金系に有利に適用できるが、特に高導電性を維持して、強度向上がはかれることから、分散強化

材にセラミックス、撹拌溶湯に純銅ないしは希薄銅合金 を用いた高強度導電材料の製造に用いて好適である。 【0021】

【実施例】まず、この発明の実施例に用いた複合材製造装置を図面にもとづいて説明する。図 | は被合材製造装置を図面にもとづいて説明する。図 | ははる「氏、2は境拌用回転す。3は分散強化材添加装置。4は追加成分装入装置。5は禁型であり、これらは真空タンク6で形成する密閉構造の空間内に設置され、真空タンク6で形は排気口7支投野風気ガス弾入口8が設けられている。は00221 この発明の適合例として、上記複合材製造業を用い、分散媒の目標成分組成がCu - 0、19mass%5m合金(個相線一液相線度無端:6で)で分散造化が(A 1/20)が1 **1**が分散した複合材の製造を下記により行った。

【〇〇23】分散鉱の目標の分組成より固相線〜海相線
物≤n 合金 (圆相線→液相線は 物≤n 合金 (圆相線→液相線温度幅:33°0) 2500gをる つぼ 1 内内・温度: 106°70、個相率:0.3 の液固腫相ス・ リとし、撹拌用回転子2で撹拌を加えながら分散強化 材添加装置 3から粒径:1 / μm のA 150粒子を、上記波 面混相スラリ中へ・1.0g / min の添加速度で 132分間に わたって合計 132g添加し、その後撹拌用回転子 25 岩撹を破けながら 1125 ℃に昇進したのも、鋳型 5へ 移注し予複合材鋳塊(Cu − 1 mass% Sn 合金: 95wt %、A 150粒子:5 % 15%)を鋳造し、この鋳塊を20×20 ×20mmの対底とり断した。

【〇〇24】つぎに、続詞 3000 gをるつぼ2内で選 度:1133℃(残相機温度+50℃)へ昇温した溶温を振作 用回転充2では解を刻えなが53分間気持したのち、こ の機幹溶湯へ上記の切断した予核合材 750gを追加成分 接入装置4から装入してその媒体を溶解し、純穀と合金 化させると共一分数強化切の一分数化をはかり、分数 以よする合金の目標成分組成に調製したのち、鋳型5へ 移注して複合材構炼 (Gu ー0.19 mas %5 n 合金:99 **%、A 169%で:1 mt/s) とした。

【0025】かくして得られた複合材鉄塊について、分数強化材の分散状況、導電率、硬さなどを調査した。この結果分散強化材は均一に分散していて、導電率:75%、硬さ:70(HRr)の高強度高導電率の材料が得られた。

【0026】一方比較例として、分散線の目標成分であるCu □ - 0.19mass%Sn 合金2400gをるつぼ「内で液固 温相スラリを流るべく試みたが、攪拌浴にて飛船線温度 近く (1082℃) に下げるとシェルの発生が着しくなり、これ以上温度を下げることは不可能であった。そこで、提拌浴の状態が安定な 1132 の温度に保持して軽径: 1 μm の A 1:0:粒子の流かを試みたが、A 1:0:粒子はほとんど溶菌上に浮いたままで浴中へ混入されなかった。 [0027]

【発明の効果】この発明は、複合材の分散媒とする合金の目標成分組成を、その間相線一液相傾間の温度幅に比しより広い温度幅となる成分組成と異りの成分組成といい、前者の成分組成に顕彰した液固凝相スラリに分散 流化材を添加・混入して予報合材とに、後者の成分組成に調整した授粋溶湯に対して上記予複合材を混入して調整した授粋溶湯に対して上記予複合材を混入して一起の発明に、認知する複合材を選入して、この発明によれば、従来の平基間法にくらく適用できる分散 波とする合金の種類が飛躍的に拡大し、かつ品質の良好な複合材を硬に製造することができる。

【図面の簡単な説明】

【図1】実施例に用いた複合材製造装置の説明図である。

【符号の説明】

- るつぼ
 増拌用回転子
- 2 19.1千万四年4丁
- 3 分散強化材添加装置
- 4 追加成分装入装置 5 鋳型
- 6 真空タンク
- 7 排気口
- 8 不活性ガス導入口

【図1】

