Practical session on Network modeling

Attila Gabor

Saez-Rodriguez Group

www.saezlab.org

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant JRC Computational Biomedicine RWTH Aachen, Faculty of Medicine

EMBL - University Hospital Heidelberg Molecular Medicine Partnership Unit

- Network models
- Perturbation data and Prior knowledge
- Model building cycle
 - Mathematical formulation of the network models
 - Simulation of the models
 - Training model to data
 - Predictions

Molecular networks

• What do we see here?

MacNamara A et al (2012) Phys Biol

Molecular networks

- Signaling network model of EGF and TNFalpha
- Summary of knowledge, experimental observations
- The role of edges:
 - Activation and inhibition
- Feedback loop -> mitigates the initial impulse (in time)
- Huge simplification:
 - Qualitative
 - Many missing interactions and nodes
 - Cellular localisation ignored
 - Complexes not shown

Molecular networks

- Network models describe the interplay of molecular markers (signaling transduction)
- Understand/summarize the molecular details of a biological system, a disease or drug action (gain insight)
- We have molecular data to be modeled
 - The activity of signaling molecules are measured
 - Multiple nodes are observed
 - Multiple conditions (perturbations and time)

Tool	Simulation w/ continuous states		Simulation w/ Boolean states		Graphical User	Import/export	Model fitting /
	Continuous in time	Discrete in time	Synchronous updates	Asynchronous updates	Interface	with standards (SBMLqual)	parameter estimation
CellNOpt (Terfve et al. 2012)							
GINsim (Chaouiya, Naldi, and Thieffry 2012)							
MaBoSS (Stoll et al. 2012)							
FALCON (Landtsheer et al. 2017)							
BoolNet (Müssel, Hopfensitz, and Kestler 2010)							
BooleanNet (Albert et al. 2008)							
SQUAD (Di Cara et al. 2007)							
optPBN (Trairatphisan et al. 2014)							
OptimusQual (Dorier et al. 2016)							
ViSiBool (Schwab et al. 2018)							
GNA (Batt et al. 2012)							
PRUNET (Rodriguez et al. 2015)							
Odefy (Krumsiek et al. 2010)							
Cell Collective (Helikar et al. 2012)							
BMA (Benque et al.							

Model building cycle

1. Perturbation data

Let's study some real experiments

- Let's explore the dynamic data
 - Import data
 - Data formating
 - Comparison of cell lines
 - Visualization signal vs time
 - Follow R-markdown from GitHub:
 - 01_perturbation_data_exploration.Rmd

Example of two cell-lines (MDAkb2 vs UACC3199)

Can someone explain what happens with p-S6 in MDAkb2?

2. Prior knowledge network (PKN)

- PKN stores known molecular interactions
- What type of interactions do we need to model signaling?
- Where do we find molecular interactions?

Task 2: finding prior knowledge information

- Try: https://signor.uniroma2.it/
 - Check e.g. MAP2K1 (MEK1)
 - How many partners does MEK1 have?
 - How many known phosphorylation sites does it have?
 - What is the function of phosphorylation on the sites?
- Can we do this programmatically?
 - Check <u>omnipathdb.org</u>
 - Which other databases are included? (Check the figure)
 - Follow R-markdown from GitHub:
 - 02_prior_knowledge_exploration.Rmd

3. From networks to mathematical models

Kinetic model

- Quantitative
 - models the concentration of compounds
- Model format: Ordinary differential equations
- Describes the nodes in time (continuous in time)
- Mass conservation law: consumption & production
- Requires model parameters (k_f1 and k_r1) and initial conditions (R(t=0), L(t=0), LR*(t=0))

3. From networks to mathematical models

Boolean model

- Qualitative:
 - On/off states
- Model format: Boolean models
- Describes the nodes in (quasi) steady state
- No mass conservation -> focuses on causality
- Does not require model parameters, only edges
- There are extensions (fuzzy/probabilistic, logic-based ODEs which are in-between kinetic and Boolean models)

Task 3: Build a toy Boolean model from data and PKN using CellNOpt

- Follow the CellNOpt tutorial
 - 03_basic_Boolean_model.Rmd
- The tutorial covers:
- On a small network:
 - Load and plot the prior knowledge network
 - Load experimental data and experimental conditions
 - Simulate the model
- Realistic model:
 - Train a model that describes EGF and TNFa signaling to data.

Task 4: Build a logic-ODE model

- Follow the CNORode tutorial
 - 04_logic_ODE_model.Rmd
- The tutorial covers:
 - Intro to Eduati et al (2017) Drug Resistance Mechanisms in Colorectal Cancer Dissected with Cell Type-Specific Dynamic Logic Models, Cancer Research
 - Intro to Logic ODE formalism
 - How to import and plot logicODE models and experiments
 - How to optimize logic ODE model
 - Correlation analysis of model parameters and and drug response

