Лекция 5. Алгоритм. Исполнитель.

Курс «Программирование» КИТ, 1 семестр Щукин Александр Валентинович

Алгоритм

- Понятие термина «Алгоритм»
- Схема выполнения алгоритма

Исполнитель

- Исполнителя характеризуют:
 - среда,
 - элементарные действия,
 - система команд,
 - отказы.

Основные свойства алгоритмов

- Дискретность (прерывность, раздельность)
- Определенность
- Результативность (конечность)
- Массовость

Машина Тьюринга

Машина Тьюринга - абстрактный исполнитель (абстрактная вычислительная машина), используемая для формализации понятия алгоритма.

Машина Тьюринга

- Бесконечная лента, состоящая из дискретных ячеек инструкций
- Алфавит входной информации
- Управляющее устройство, способное находится в одном из множества состояний (конечно и точно задано)
- Правила перехода

Формы представления алгоритма

- Представление на естественном языке.
- Графическое представление.
- Представление на языке программирования.

Алгоритм НОД1

Алгоритм НОД1

- 1.Ввести значения в А и В.
- 2.Если A < B, то A \leftrightarrow B.
- 3.А ← остаток от деления нацело числа А на число В.
- 4.Если А > 0, то перейти на шаг 2.
- 5.HOД ← B.

Конец

A	www.avalon.ru	В
24		40
40		24
16		24
24		16
8		16
16		8
0		8

Алгоритм НОД2

Алгоритм НОД2

- Вести значение А и В.
- 2. Если A<B, то A \leftrightarrow B
- R ← остаток от деления A на B.
- 4. Если R = 0, то перейти на шаг 7
- 5. $A \leftarrow B$; $B \leftarrow R$
- 6. Перейти на шаг 3.
- 7. НОД ← В.

Конец

www.avalon.ru

Алгоритм НОД3

Алгоритм НОДЗ

- Ввести значения А и В.
- 2.А ← остаток от деления А на В.
- 3.Если А = 0, то НОД ← В и перейти на шаг 7
- 4.В ← остаток от деления В на А
- 5.Если В = 0, то НОД ← А и перейти на шаг 7
- 6.Перейти на шаг 2.
- 7.Конец алгоритма Конец

www.avalon.ru

Почему нужны блок-схемы?

- кроссязыковое применение;
- лаконичность и удобство в анализе, разборе и обсуждении;
- возможность концентрации внимания автора на алгоритмической проблеме, а не технических деталях реализации;
- относительно простая модификация.

(с) Александр В. Щукин, СПбПУ, ИКНТ, КИТ

Блок-схема НОД

Постановка задачи

- Постановка задачи:
 - Описать поведение разрабатываемой системы
 - Описать поведение окружения
- Результат работы описание на формальном языке

Приемы

- Декомпозиция задачи
 - Разбиение задачи на подзадачи
 - Вычленение общих черт подзадач
- Модульность и иерархическая структура
 - Самодостаточные блоки
- Абстрагирование
 - Парадигма черного ящика
- Нисходящее и восходящее программирование
- Приемы программирования: сборочное, конкретизирующее, синтезирующее

(с) Александр В. Щукин, СПбПУ, ИКНТ, КИТ

