Getting started with matching complexes

1. (a) A simplicial complex on [n] is a set $\Delta \subseteq 2^{[n]}$ with the following property:

If $\sigma \in \Delta$ and $\tau \subseteq \sigma$, then $\tau \in \Delta$. (In other words, Δ is "closed under taking subsets.")

- (b) Elements of Δ are faces, and maximal elements are facets.
- (c) The dimension of Δ is $\max\{|\sigma|-1 \mid \sigma \in \Delta\}$. (This is often lower than the dimension that Δ can be "embedded" into.)
- (d) Given a graph G, a **matching** is a collection of edges such that no two share an endpoint. If G is a graph with edges $1, \ldots, n$, then its **matching complex**, denoted M(G), is the set of all matchings of G. From our discussion, we saw that M(G) is a simplicial complex whose vertices were the edges of G.
- 2. Given a simplicial complex Δ , its **geometric realization** $||\Delta||$ is created by drawing the following:
 - A vertex for each face containing only a single element,
 - an edge for each face containing exactly two elements,
 - a (filled in) triangle for each face containing exactly three elements,
 - a (filled in) tetrahedron for each face containing exactly four elements,
 - and so on...
- 3. Find the matching complexes for C_3 (the cycle graph with 3 edges) and for the graph with three edges all meeting in a single vertex (a star graph with three edges). What do you notice?
- 4. Here are some more examples to consider:
 - (a) C_5 , C_6 , and C_7 . (Cycle graphs)
 - (b) K_4 (The complete graph on 4 vertices)
 - (c) $K_{3,2}$ and $K_{3,4}$. (Complete bipartite graphs this last one is a bit complicated, but it has a nice result.)
- 5. The following is a geometric realization of the complex $\Delta = \langle 12, 13, 23 \rangle$ (i.e., Δ is just C_3). Can this be the matching complex for some graph G?

To discuss: Flaq complexes

- 6. How do the following affect M(G)?
 - (a) An isolated vertex?
 - (b) A loop edge?
 - (c) Multiple edges between the same two vertices?
- 7. In general, we want to investigate the following sort of questions:
 - (a) Given a graph G (or class of graphs, like complete graphs, cycles, paths, trees, etc.), what can we say about M(G)?
 - (b) Given a simplicial complex Δ , is it the matching complex of some graph? Given some properties of the matching complex, can we say something about G?
 - (c) The above questions are *super vague*. We'd like to narrow these down into questions that are more specific. Here are some to start thinking about:
 - (i) When is M(G) also a graph?
 - (ii) When is M(G) connected? (We can talk more specifically about what this means next week.)
 - (d) In general, keep track of any questions you have while thinking about this or working through examples, and then we can discuss them. **Generating and attempting to answer questions like these is the heart of mathematics research.** I have lots of questions that I can pose for us, but we'll probably be more successful if we don't limit ourselves to the questions that I ask.