Übungsserie 9

Aufgabe 1: Harmonischer Oszillator (2+2+2+2 Punkte)

Ein Teilchen im Potential eines harmonischen Oszillators befinde sich zum Zeitpunkt $t=t_0$ im Zustand

$$\psi(x) = \left(\frac{1}{\pi b}\right)^{1/4} e^{-\frac{x^2}{2b}} \left(1 + \frac{2}{\sqrt{2}} \frac{x}{b}\right).$$

- a) Drücken Sie den Hamiltonoperator des harmonischen Oszillators durch Leiteroperatoren aus.
- b) Welche Messwerte kann eine Energiemessung zur Zeit t_0 am Zustand $\psi(x)$ liefern?
- Berechnen Sie die Wahrscheinlichkeiten für die Messung jedes Energieeigenwertes aus b). **c**)
- d) Bei einer Energiemessung am Zustand $\psi(x)$ wird die größtmögliche der in b) bestimmten Energien gemessen. Geben Sie die Wellenfunktion des Teilchens direkt nach dieser Messung an. Skizzieren Sie Wellenfunktion und Wahrscheinlichkeitsdichte direkt nach der Messung.

Aufgabe 2: Unschärferelation für Teilchen im Potentialtopf (7 Punkte)

Betrachten Sie ein Teilchen im eindimensionalen Potentialtopf der Breite L. Die bekannten Wellenfunktionen sind gegeben durch

$$\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right).$$

Zeigen Sie, dass das Teilchen in jedem Zustand die Orts-Impuls-Unschärferelation erfüllt.

Hinweis: Beginnen Sie mit der Unschärferelation in der allgemeinen Form $\sigma_x \sigma_p \geq \frac{\hbar}{2}$ mit $\sigma_A =$ $(\langle A^2 \rangle - \langle A \rangle^2).$

Aufgabe 3: Viralsatz (2+1+2 Punkte)

Der Viralsatz stellt einen Zusammenhang zwischen dem Erwartungswert der kinetischen und der potentiellen Energie dar.

a) Zeigen Sie, dass für ein Teilchen in einem stationären Zustand Ψ im Potential V die Beziehung

$$2\left\langle \hat{T}\right\rangle = \left\langle \hat{\mathbf{x}} \cdot \nabla \hat{V}\right\rangle$$

Hinweis: Betrachten Sie hierzu $\left\langle \left[\hat{\mathbf{x}} \cdot \hat{\mathbf{p}}, \hat{H} \right] \right\rangle$ b) Spezialisieren Sie den Viralsatz für den harmonischen Oszillator.

- Verifizieren Sie den Viralsatz für die Grundzustandswellenfunktion des harmonischen Oszilla**c**) tors.