- 第四讲: 的分解
 - 将一个 阶方阵 变换为 需要的计算量估计:

第四讲: A 的 LU 分解

AB的逆矩阵:

$$A \cdot A^{-1} = I = A^{-1} \cdot A$$

 $(AB) \cdot (B^{-1}A^{-1}) = I$
则 AB 的逆矩阵为 $B^{-1}A^{-1}$

 A^T 的逆矩阵:

$$(A \cdot A^{-1})^T = I^T$$
$$(A^{-1})^T \cdot A^T = I$$

则 A^T 的逆矩阵为 $(A^{-1})^T$

将一个n 阶方阵A 变换为LU 需要的计算量估计:

1. 第一步,将 a_{11} 作为主元,需要的运算量约为 n^2

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
消費
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ 0 & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

- 2. 以此类推,接下来每一步计算量约为 $(n-1)^2$ 、 $(n-2)^2$ 、 …、 2^2 、 1^2 。
- 3. 则将 A 变换为 LU 的总运算量应为 $O(n^2 + (n-1)^2 + \dots + 2^2 + 1^2)$,即 $O(\frac{n^3}{3})$ 。

置换矩阵(Permutation Matrix):

3阶方阵的置换矩阵有6个:

Γ1	0	$\begin{bmatrix} 0 \end{bmatrix}$	[0	1	0	Γ0	0	1	Γ1	0	0	Γ0	1	0	Γ0	0	1
0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0
$\lfloor 0$	0	1	0	0	1		0	0	0	1	0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	0	0	0	1	0

n阶方阵的置换矩阵有 $\binom{n}{1} = n!$ 个。