Robot Parallel Motion Planning

Final Presentation

Klayton Wittler https://kla

https://klaywittler.github.io/

Peyman Norouzi https://www.linkedin.com/in/peymannorouzi/

Problem Setup and Goal

Goal: Enable autonomous robot to navigate to a goal in an unknown environment using the power of the GPU

Problem Setup and Goal

Goal: Enable autonomous robot to navigate to a goal in an unknown environment using the power of the GPU

Our Results

Default CARLA

Our Implementation

Our Results

Chafige:Rath!!

Dubins Paths

$$(X_0, Y_0, \theta_0) \longrightarrow (X_1, Y_1, \theta_1)$$

Curve-Straight-Curve

Curve-Curve-Curve

LSL, RSR, LSR, RSL

LRL, RLR

Samples

Note missing orientation on opposite side of the road

Dubins Paths + Collision Check

GMT* Wavefront Parallelization

Unit Testing and Debugging

Unit Test for testing straight paths

Unit Test for testing turns

Unit Test for obstacle avoidance

Performance Analysis

Kernel for checking if we made it to the goal taking 90% of current 2.16s run time

Performance Analysis

Compaction to prevent thread divergence under 3ms per iteration

Future Improvements

- Clever approach to checking if the goal has been found
- Compaction operations also need to be reduced
- State estimation and Perception
- Estimate the states of other agents in the environment
- Improve controller by: tuning the PID, return Dubin's control, or optimal control
- CPU multi-threading can be used to control the GPU planning while other threads manage other parts of the code.

Bloopers

References

- 1. CARLA
 - a. http://carla.org/
 - b. https://carla.readthedocs.io/en/latest/
- 2. PyCuda
 - a. https://documen.tician.de/pycuda/
 - b. https://wiki.tiker.net/PyCuda
- 3. GMT*
 - a. https://arxiv.org/pdf/1705.02403.pdf
- 4. Dubins
 - a. https://gieseanw.files.wordpress.com/2012/10/dubins.pdf
- 5. FMT*
 - a. https://arxiv.org/pdf/1306.3532.pdf

Klayton Wittler https://klaywittler.github.io/

Check our Project Github:

http://bit.do/GH-RPMP

Peyman Norouzi https://github.com/pnorouzi

