Direkt szorzat

 A_1, A_2, \ldots, A_n tetszőleges halmazok direkt, vagy Descartes féle szorzata:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i, i = 1, \ldots n\}.$$

Jelölés: $\times_{i=1}^{n} A_{i}$.

A direkt szorzat elemei rendezett elem n-esek.

Definíció

Legyenek A és B tetszőleges halmazok. Tetszőleges $S \subseteq A \times B$ részhalmazt (bináris) relációnak nevezzük. Az $a \in A$ és $b \in B$ elemek S relációban állnak egymással (jelölés aSb) akkor és csak akkor, ha $(a, b) \in S$.

A definíció rövidebben:

$$aSb \iff (a, b) \in S$$
.

Definíció

Reláció értelmezési tartománya:

$$D_S = \{a \in A \mid \exists b \in B : (a, b) \in S\}.$$

Definíció

Reláció értékkészlete:

$$R_S = \{b \in B \mid \exists a \in A : (a, b) \in S\}.$$

Definíció

Reláció értéke agy adott helyen: $S(a) = \{b \in B \mid (a, b) \in S\}$.

$$S(a) = \{b \in B \mid (a, b) \in S\}.$$

Definíció

Az S relációt determinisztikus, vagy parciális függvénynek nevezzük, ha $|S(a)| \leq 1 \quad (\forall a \in A).$

Az S relációt függvénynek nevezzük, ha

$$|S(a)| = 1 \quad (\forall a \in D_S).$$

Definíció

Az $S^{(-1)}$ reláció az $S\subseteq A imes B$ reláció inverze, ha $S^{(-1)}=\{(b,a)\in B imes A\mid (a,b)\in S\}$.

Definíció

A $H \subseteq B$ halmaz S reláció szerinti inverz képe:

$$S^{(-1)}(H) = \{ a \in A \mid S(a) \cap H \neq \emptyset \}.$$

Definíció

Az

$$R^{-1}(H) = \{ a \in D_R | R(a) \subseteq H \}$$

halmazt a H halmaz R reláció szerinti ősképének nevezzük.

Definíció

Az $R\subseteq A\times C$ reláció a $P\subseteq A\times B$ és $Q\subseteq B\times C$ relációk kompozíciója (szorzata) (jelölés: $R=Q\circ P$), ha

$$R = \{(a,c) \in A \times C \mid \exists b \in B : (a,b) \in P \land (b,c) \in Q\}.$$

Definíció

Legyen $R \subseteq A \times A$ és $n \in \mathbb{N}$. Az R reláció n-edik hatványa ($n \ge 1$):

$$R^{(n)} = \{(a, a') \in A \times A \mid \exists a_0, a_1, \dots, a_n \in A : (\forall i \in [1..n] : (a_{i-1}, a_i) \in R) \land a_0 = a \land a_n = a'\}.$$

Legyen A ($A \neq \emptyset$) egy tetszőleges halmaz. Ekkor

$$\alpha = \langle \alpha_1, \alpha_2, \dots, \alpha_n \rangle$$

 $(\alpha_i \in A)$ egy A-beli véges sorozat.

Definíció

Az $\alpha = \langle \alpha_1, \alpha_2, \dots, \alpha_n \rangle$ véges sorozat hossza $|\alpha|$.

Definíció

Az A halmazbeli véges sorozatok halmaza A^* .

Definíció

A-beli végtelen sorozat:

$$\alpha = \langle \alpha_1, \alpha_2, \dots, \alpha_k, \dots \rangle,$$

ahol $\alpha_i \in A$ minden $i \in \mathbb{N}$ esetén.

Definíció

A-beli végtelen sorozatok halmaza A^{∞} .

Definíció

Az A-beli véges és végtelen sorozatok halmaza A**.

Definíció

Az $\alpha \in A^{**}$ sorozat értelmezési tartománya D_{α} , ahol

$$D_{lpha} = \left\{ egin{array}{ll} \left[1..\left|lpha
ight|
ight], & \mathsf{ha} \ lpha \in \mathcal{A}^{lpha} \ \mathbb{N}, & \mathsf{ha} \ lpha \in \mathcal{A}^{\infty} \end{array}
ight.$$

Definíció

Az $\alpha^1,\alpha^2,\dots,\alpha^{n-1}\in A^*$ és $\alpha^n\in A^{**}$ sorozatok egymásután írása, konkatenációja

$$kon(\alpha^1, \alpha^2, \dots, \alpha^{n-1}, \alpha^n)$$
.

Egy $\alpha \in A^{**}$ sorozat redukáltja az a sorozat, amelyet úgy kapunk, hogy az α sorozat minden azonos elemből álló véges részsorozatát a részsorozat egyetlen elemével helyettesítjük. Jelölése: $red(\alpha)$.

Definíció

Utolsó elem függvény $\tau: A^* \to A$, ahol $\tau(\alpha) = \alpha_{|\alpha|} \ (\alpha \in A^*)$.

Definíció

Legyen
$$m, n \in \mathbb{N}, m \leq n, 1 \leq i_1 < i_2 < i_3 < \ldots < i_m \leq n,$$
 $A = \times_{i=1}^n A_i$ és $B = \times_{j=1}^m A_{i_j}$. A $pr_B : A \to B$ függvényt projekciónak nevezzük (A ortogonális projekciója B -re), ha $pr_B(a) = (a_{i_1}, a_{i_2}, \ldots, a_{i_m}) \quad (\forall a = (a_1, a_2, \ldots, a_n) \in A)$.

Definíció

(Projekció kiterjesztése "terek" direkt szorzataira): Legyen A és B olyan, mint az előző definícióban, $(a_1, a_2) \in A \times A$. Ekkor $pr_B((a_1, a_2)) = (pr_B(a_1), pr_B(a_2)) \in B \times B$.

Definíció

(Projekció kiterjesztése "sorozatterekre"): Legyen A és B olyan, mint az előző definícióban, $\alpha = \langle \alpha_1, \alpha_2, \dots, \alpha_i, \dots \rangle \in A^{**}$. Ekkor

$$pr_B(\alpha) = \langle pr_B(\alpha_1), pr_B(\alpha_2), \dots, pr_B(\alpha_i), \dots \rangle \in B^{**}.$$

vagy másképp:

$$pr_{B}(\alpha) = \beta \in B^{**}$$
, ahol $\beta_{i} = pr_{B}(\alpha_{i})$ $(\forall i \in D_{\beta} = D_{\alpha})$.

Az $R \subseteq A \times A$ reláció lezártján az $\overline{R} \subseteq A \times A$ relációt értjük, amelyre

$$D_{\overline{R}} = \{ a \in A \mid \nexists \alpha \in A^{\infty} : (a, \alpha_1) \in R \land \forall i \in \mathbb{N} : (\alpha_i, \alpha_{i+1}) \in R \}$$

és minden $a \in D_{\overline{R}}$ esetén

$$\overline{R}\left(a\right)=\left\{ b\in A\mid b\notin D_{R}\wedge\exists k\in\mathbb{N}_{0}:b\in R^{\left(k\right)}\left(a\right)
ight\} .$$

Definíció

Legyenek A_1, A_2, \ldots, A_n tetszőleges véges, vagy megszámlálhatóan végtelen halmazok. Az $A = A_1 \times A_2 \times \ldots \times A_n$ halmazt állapottérnek nevezzük, az A_i halmazokat pedig tipusértékhalmazoknak.

Definíció

Legyen A állapottér. Az $F \subseteq A \times A$ relációt (programozási) feladatnak nevezzük.

Definíció

Az $S \subseteq A \times A^{**}$ relációt programnak nevezzük, ha

- 1. $D_S = A$,
- 2. $\forall a \in A : \forall \alpha \in S(a) : \alpha_1 = a$,
- 3. $\forall \alpha \in R_S : \alpha = red(\alpha)$.

Definíció

A $p(S) \subseteq A \times A$ relációt az $S \subseteq A \times A^{**}$ program programfüggvényének nevezzük, ha

- 1. $D_{p(S)} = \{ a \in A \mid S(a) \subseteq A^* \},$
- 2. $p(S)(a) = \{b \in A \mid \exists \alpha \in S(a) : \tau(\alpha) = b\}.$

Az $S \subseteq A \times A^{**}$ program megoldja az $F \subseteq A \times A$ feladatot, ha

- 1. $D_F \subseteq D_{p(S)}$,
- 2. $\forall a \in D_F : p(S)(a) \subseteq F(a)$.

Definíció

Legyen $A = A_1 \times A_2 \times ... \times A_n$ állapottér. A $pr_{A_i} : A \rightarrow A_i$ projekciós függvényeket változóknak nevezzük:

$$pr_{A_i}(a) = a_i \quad (\forall a = (a_1, a_2, \ldots, a_n) \in A).$$

Definíció

Legyen $A = A_1 \times A_2 \times ... \times A_n$ állapottér. A $pr_{A_i} : A \rightarrow A_i$ projekciós függvényeket változóknak nevezzük:

$$pr_{A_i}(a) = a_i \quad (\forall a = (a_1, a_2, \ldots, a_n) \in A).$$

Definíció

Legyen a B állapottér altere az A állapottérnek. Az $F' \subseteq A \times A$ relációt az $F \subseteq B \times B$ feladat kiterjesztésének nevezzük, ha

$$F' = \{(x, y) \in A \times A \mid (pr_B(x), pr_B(y)) \in F\}.$$

Definíció

Legyen a B állapottér altere az A állapottérnek, és jelölje B' a B kiegészítő alterét A-ra. Legyen továbbá S program a B állapottéren. Ekkor az S' A-beli relációt az S program kiterjesztésének nevezzük, ha

$$S'(a) = \{\alpha \in A^{**} | pr_B(\alpha) \in S(pr_B(a))$$
 és $\forall i \in D_\alpha : pr_{B'}(\alpha_i) = pr_{B'}(a) \}.$

Tétel

Legyen a B állapottér altere az A állapottérnek, és jelölje B' a B kiegészítő alterét A-ra. Legyen továbbá S program a B állapottéren, és S' az S kiterjesztése A-ra. Ekkor S' program.

Bővített identitás

Legyen B altere A-nak, B' a B kiegészítő altere A-ra, $G \subseteq A \times A$ feladat. A G bővített identitás B' felett, ha minden $(a, a') \in G$ esetén létezik $a'' \in A$, hogy $(a, a'') \in G$ és $pr_{B'}(a) = pr_{B'}(a'')$ és $pr_B(a') = pr_B(a'')$.

Vetítéstartás

Legyen B altere A-nak, $G \subseteq A \times A$ feladat. A G vetítéstartó B felett, ha minden $a_1, a_2 \in D_G$ esetén

$$pr_B(a_1) = pr_B(a_2) \Rightarrow pr_B(G(a_1)) = pr_B(G(a_2)).$$

Félkiterjesztés

Legyen B altere A-nak, $G \subseteq A \times A$ feladat, $H \subseteq B$. Azt mondjuk, hogy a G félkiterjesztés H felett, ha $pr_B^{-1}(H) \subseteq D_G$.

Tétel

Legyen B altere A-nak, B' a B kiegészítő altere A-ra, S program B-n, $F \subseteq B \times B$ feladat, S' illetve F' S-nek illetve F-nek a kiterjesztése A-ra. Legyen továbbá $\overline{F} \subseteq A \times A$ olyan feladat, melyre $pr_B(\overline{F}) = F$ és \overline{S} pedig olyan program, amely ekvivalens S-sel B-n. Ekkor az alábbi állítások teljesülnek:

- (1) ha S' megoldása F'-nek, akkor S megoldása F-nek,
- (2) ha S' megoldása \overline{F} -nek, akkor S megoldása F-nek,
- (3) ha \overline{S} megoldása F'-nek, akkor S megoldása F-nek,
- (4) ha \overline{S} megoldása \overline{F} -nek és $p(\overline{S})$ vetítéstartó B felett, vagy \overline{F} félkiterjesztés D_F felett, akkor S megoldása F-nek,
- (5) ha S megoldása F-nek, akkor S' megoldása F'-nek,
- (6) ha S megoldása F-nek és \overline{F} bővített identitás B' felett és vetítéstartó B felett, akkor S' megoldása \overline{F} -nek,
- (7) ha S megoldása F-nek és $p(\overline{S})$ félkiterjesztés D_F felett, akkor \overline{S} megoldása F'-nek

Megoldás általánosítása

Legyen $F \subseteq A \times A$ feladat és $S \subseteq B \times B^{**}$ program. Azt mondjuk, hogy a S megoldása F-nek, ha létezik olyan C állapottér, aminek A és B is altere és S kiterjesztése C-re az F C-re való kiterjesztésének megoldása.

Definíciók:

- Logikai értékek halmaza: $\mathbb{L} = \{igaz, hamis\} = \{i, h\}.$
- Az A halmazon értelmezett (logikai) állítás egy $Q:A \to \mathbb{L}$ függvény.
- Legyen Q az A halmazon értelmezett állítás. A Q állítás igazsághalmaza:

$$[Q] = \{ a \in A \mid Q(a) = igaz \}.$$

- Legyenek Q_1 és Q_2 az A halmazon értelmezett állítások. A Q_1 és Q_2 állítások ekvivalensek, ha $[Q_1]=[Q_2]$. Jelölés: $Q_1\equiv Q_2$.
- Legyen $R \subseteq A$ tetszőleges részhalmaz. P(R) olyan állítást jelöl, amelyre [P(R)] = R.

Következmény:

Tetszőleges Q állításra igaz, hogy $Q \equiv P([Q])$.

Definíció

Legyenek P és Q az A halmazon értelmezett állítások. A következő logikai műveleteket definiáljuk, un. igazságtáblával:

1 $P \wedge Q$ (konjunkció / és / logikai szorzás):

P	i	i	h	h
Q	i	h	i	h
$P \wedge Q$	i	h	h	h

A $P \wedge Q$ állítás igaz $\iff P$ és Q is igaz;

2 $P \lor Q$ (diszjunkció / vagy / logikai összeadás):

Р	i	i	h	h
Q	i	h	i	h
$P \lor Q$	i	i	i	h

A $P \lor Q$ állítás igaz $\iff P$ és Q közül legalább az egyik igaz;

Legyenek P és Q az A halmazon értelmezett állítások. A következő logikai műveleteket definiáljuk, un. igazságtáblával:

3 ¬Q (negáció / tagadás):

Q	i	h
$\neg Q$	h	i

A $\neg Q$ állítás igaz $\iff Q$ hamis, az állítás hamis $\iff Q$ igaz;

4 $P \Rightarrow Q$ (implikáció / következés / ha P, akkor Q):

Р	i	i	h	h
Q	i	h	i	h
$P \Rightarrow Q$	i	h	i	i

A $P \Rightarrow Q$ állítás hamis $\iff P$ igaz és Q hamis.

Állítás

Legyenek P és Q az A halmazon értelmezett állítások. Ekkor

- (i) $[P \land Q] = [P] \cap [Q]$;
- (ii) $[P \lor Q] = [P] \cup [Q];$
- (iii) $[Q] = A \setminus [Q]$
- (iv) Ha $P \Rightarrow Q$, akkor $[P] \subseteq [Q]$.

Definíció

Legyen $S \subseteq A \times A^{**}$ program, R az A állapottéren értelmezett állítás. Az S program R utófeltételhez tartozó leggyengébb előfeltétele az If(S,R) állítás, amelyre

$$[If(S,R)] = \{a \in D_{p(S)} \mid p(S)(a) \subseteq [R]\}.$$

Tétel (Dijkstra)

Legyen $S \subseteq A \times A^{**}$ program, R és Q az A halmazon értelmezett állítások, és HAMIS az azonosan hamis állítás. Ekkor

- If (S, HAMIS) = HAMIS,
- 2 Ha $Q \Rightarrow R$, akkor $If(S, Q) \Rightarrow If(S, R)$,
- **3** If $(S, Q) \land If (S, R) = If (S, Q \land R)$,

Definíció

Legyen $F \subseteq A \times A$ feladat. A B halmazt a feladat paraméterterének nevezzük, ha van olyan $F_1 \subseteq A \times B$ és $F_2 \subseteq B \times A$ reláció, hogy $F = F_2 \circ F_1$.

Specifikáció tétele

Legyen $F\subseteq A\times A$ feladat, B az F egy paramétertere, $F_1\subseteq A\times B,\ F_2\subseteq B\times A$ és $F=F_2\circ F_1$. Legyen $b\in B$ és legyenek Q_b és R_b olyan állítások, amelyek igazsághalmazai

$$[Q_b] = \{ a \in A \mid (a, b) \in F_1 \} = F_1^{(-1)}(b),$$

 $[R_b] = \{ a \in A \mid (b, a) \in F_2 \} = F_2(b).$

Ha minden $b \in B$ esetén $Q_b \Rightarrow lf(S, R_b)$, akkor az S program megoldja az F feladatot.