

Systematic co-variation of monophthongs across speakers of New Zealand English

James Brand, Jen Hay, Lynn Clark, Kevin Watson, Márton Sóskuthy

james.brand@canterbury.ac.nz ICPhS. Melbourne 2019

Slides: https://tinyurl.com/icphs-covar

Background

Traditional approaches to studying language variation and change

- Tended to focus on a single linguistic variable
- e.g. NURSE raising and fronting in NZE (Maclagan et al, 2017)
- But... unclear whether an individual variable also co-varies with others

Background

Evidence of variation and change across multiple variables

- Evidence for change where variables are not independent from one another
- e.g. Short front vowel shift in NZE (Maclagan & Hay, 2007)
- But... still not clear whether these changes exist simply at a community level or if it also exists within individuals
- But... still not clear whether other sounds changes are also covarying together

Background

Existing approaches to understanding co-variation

- Recent empirical work has been limited by small speaker sizes or number of variables investigated
- Suitability of the statistical approaches to gain a 'full picture' of how co-variation is operating
- When investigating data with known sound changes, how do we explore co-variation whilst keeping the known predictors of change constant
- On-going theoretical debate about how sets of variables might work together to create speaker styles is a linguistic variable really an independent entity? (see Guy & Hinskens, 2016)

Research question 1

Are there systematic patterns across speaker's realisations of combinations of vowels?

Prediction...

Yes... systematic variation is known to exist when we look at variables in isolation, but these variables rarely operate in isolation

Research question 2

Are there identifiable *leaders* of change who use combinations of innovative variants together?

Prediction...

Yes... it is plausible that a constellation of innovative variants are used by some speakers, whilst not at all by others

Method

N7F

600+ speakers
Born between

Vowel	Freq	
KIT	259,788	_
SCHWA	162,566	
DRESS	116,993	
FLEECE	73,806	
STRUT	70,721	
THOUGHT	58,676	
LOT	52,481	
TRAP	48,769	
START	44,842	
GUUSE	42,915	
NIIRSE	25,804	
FOOT	21,249	
Total	978.610	

Cleaning

Outliers and stopwords Min 10 tokens per vowel per speaker

Analysis	Speaker [‡]	F1_TRAP [‡]	F2_TRAP [‡]	F1_DRESS [‡]	F2_DRESS [‡]	F1_KIT	F2_KIT ÷	
Analysis	fop00-8b	0.184	0.061	-0.053	0.016	0.139	0.152	
	fop01-12b	0.162	-0.207	0.180	-0.109	0.136	0.055	
Run 24 separa	fop94-13a	0.167	-0.132	0.102	-0.219	0.136	0.393	
	fop98-4a	0.054	0.126	0.066	0.082	0.136	-0.081	ues
	myp99-16b	-0.543	0.033	-0.097	0.194	0.133	-0.195	
	fyn98-10b	0.164	-0.090	0.073	0.045	0.132	-0.043	
lmer(F_va	fyp99-24a	-0.211	0.167	-0.046	0.288	0.131	-0.150	
	fop01-1a	-0.218	0.087	-0.208	0.112	0.129	-0.026	
year_of_birt	fyn94-9b	-0.177	-0.556	-0.271	-0.916	0.127	0.325	
	fyn02-1a	-0.129	0.068	0.117	-0.069	0.125	-0.073	ol for
(1 speake	fop96-20b	-0.094	0.092	-0.014	-0.050	0.124	0.091	
	fon00-12b	0.100	0.170	-0.004	0.074	0.118	-0.246	
	fon02-12b	-0.045	-0.155	-0.057	-0.001	0.115	0.037	
Run a Principa	fop02-2b	-0.247	0.086	-0.050	-0.010	0.115	-0.059	
	fyn96-11b	-0.005	0.083	0.056	-0.229	0.115	-0.134	
	myp01-7b	0.035	-0.058	-0.111	0.062	0.115	-0.023	
	fyp95-6a	0.044	-0.112	0.148	0.228	0.114	-0.105	

Analysis

PC1 (21.0%) — Vowel space

Analysis

PC2 (13.7%) — Further normalisation

Analysis

PC3 (10.3%) — Leaders and laggers

Discussion

- Looking at large scale co-variation across periods of sound change is possible... and interesting
- We have a workflow for assessing co-variation across time
- This can be applied to other questions/datasets to further explore co-variation and better understand what the linguistic variable is

Thanks

Slides: https://tinyurl.com/icphs-covar

Proceedings paper: https://tinyurl.com/icphs-covar-paper