|--|

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1), (x_2, y_2) \in V$ and let $c \in \mathbb{R}$.

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + x_2, y_1 + y_2)$$

$$= (c^2(x_1 + x_2), c^3(y_1 + y_2))$$

$$= (c^2x_1, c^3y_1) \oplus (c^2x_2, c^3y_2)$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

However, V is not a vector space, as the other distributive law fails:

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

V3. Determine if the vectors $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly

dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V4. Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Solution: This set is closed under addition, but not under scalar multiplication so it is not a subspace.

S2. Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

V1: V3: V4: S2: