

Rafbók

REIT rafeindatækni 11. kafli lausnir Flemming Madsen

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Rafmenntar, fræðsluseturs rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Rafmenntar.

Höfundur er Flemming Madsen.

Umbrot í rafbók Bára Laxdal Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Flemmings Madsen <u>flemmma@icloud.com</u> eða til Báru Laxdal Halldórsdóttur á netfangið <u>bara@rafmennt.is</u>

Efn	ict	/fir	lit
	15)	1111	ΠL

Dæmi 11.1	3
Dæmi 11.2	3
Dæmi 11.3	3
Dæmi 11.4	4
Dæmi 11.5	4
Dæmi 11.6	4

Dæmi 11.1

Α:37,5 μΑ

B: $2 k\Omega$

C: $150 \text{ k}\Omega$

D: 338 $k\Omega$

 $E: u_{inn}$ á milli jarðar og tengipunkts t.v. á þétti tengdum base. $U_{út}$ á milli jarðar og tengipunkts t.h. á þétti tengdum við emitter.

F: emitter-fylgja (emitter follower)

Dæmi 11.2

A: 4,7 Ω

B: 0.98x

C: $42 \text{ k}\Omega$

D: 18 Ω

E: 0°

Dæmi 11.3

A: 0.98x

B: 684 mV

C: $25 \text{ k}\Omega$

D: 8,3 Ω

E: 424 nF

F: 348 µF

G: 15 Hz

H: 111x

I: 699 mV

Dæmi 11.4

Α: 75 Ω

B: 0.983x

C: 1561 Ω

D: 393 mV

E: 4,7 mW

F: 48x

G: 25,4 Ω

H: $fn_{inn} = 10.2 \text{ Hz } fn_{\acute{u}t} = 5.9 \text{ Hz} > \text{svar } 10 \text{ Hz}$

Dæmi 11.5

A: -

B: 9 pF

C: 29 MHz

D: 21 Hz

E: lárétt lína við 0 dB, -3 dB við 21 Hz og 29 MHz hallinn á skerðingunni er -20 dB/tíund = -6 dB/átt.

F: fe er hærri vegna miklu minni C_{inn} 9 pF á móti 1,6 nF. Lærri fn vegna hærri Z_{inn} 16 k Ω á móti 3,6 k Ω

Dæmi 11.6

A: 4,12 mA; 34x

B: $Z_i = 6.7 \text{ k}\Omega$, $Z_{\acute{u}} = 1.8 \text{ k}\Omega$

C: 8,8 mA; 0,998x

D: $Z_i=144 \text{ k}\Omega$, $Z_{\acute{u}}=25 \Omega$

E: 321 mV

F: 30 dB

G: 180°

H: Spennumögnun rásanna er nánast eins. Inngangs-impedansinn lækkar úr $30~\text{k}\Omega$ í $6,7\text{k}\Omega$. Það er það eina sem versnar. Útgangs-impedansinn lækkar úr $1,8~\text{k}\Omega$ í $25~\Omega$ sem gerir að rásin er fær um að gefa um 70x meiri útgangsstraum en rásin í dæmi 10.10.