Problem 1

U)
$$P(X_1) = \frac{1}{N \times K_0} \exp\left(-\frac{1}{2} \cdot (X_1^T - \mu^T)(X_1 - \mu)\right)$$
 $\log P(X_1) = 6 \cot x \cot x - \frac{1}{2} \cdot (X_1^T - \mu^T)(X_1 - \mu) - \log \delta I$
 $\max P(X_1) \cdot P(X_2) \cdots P(X_n) \iff \max \log P(X_1) \cdot P(X_2) \cdots P(X_n)$
 $\Rightarrow \max \log - = \cot x + \sum_{i=1}^{n} \frac{(X_1^T - \mu^T)(X_2 - \mu)}{2\sigma^2 1} - \log \delta I$
 $\frac{1}{2M} = \sum_{i=1}^{n} \frac{1}{\sigma^2} (X_1 - \mu) - 0 \Rightarrow \widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $L = \log P(X_1) \cdots P(X_n) = \cot x + \sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $L = \log P(X_1) \cdots P(X_n) = \cot x + \sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \Delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_1 - \mu)^T (X_1 - \mu)$
 $\Rightarrow \delta^2 = \frac{1}{n} \sum_{i=1}$

Problem 2 Problem 2

1. $\mu_i = 1/(1+\exp(-\beta k_i)) \Rightarrow \frac{d\mu_i}{d\beta k_i} = \frac{e^{-\beta k_i}}{(1+e^{-\beta k_i})^2} = \mu_i(1-\mu_i) \Rightarrow \nabla \mu_i = \chi_i \frac{d\mu_i}{d\beta}$ $\frac{d}{dz} \left(\sum_{i=1}^{n} [y_i \log \mu_i + (1-y_i) \log (1-\mu_i)] \right) = \sum_{i=1}^{n} \frac{y_i}{\mu_i} \nabla \mu_i - \frac{1-y_i}{1-\mu_i} \nabla \mu_i \right) = \sum_{i=1}^{n} (y_i \log \mu_i + (1-y_i) \log (1-\mu_i)) = \sum_{i=1}^{n} (y_i \log \mu_i + (1-y_i) \log (1-$ =) gradiot of a: ZNB-XT(y-N) (N = TM) gradient of b: $2x\beta + x^T x \beta - x^T y$ 2. Herrian of a: $2\lambda + 1 \ge a x_i^T P M_B = 2\lambda + \sum x_i^T X_i (1-M_i) M_i$

Hercian of a > 2x + XTDX (I = [(1-M2)(M) Hessian of $b: 2x + x^Tx$

3. update = (72)-1. p $a: (2x) + x^{T} (2x)^{-1} \cdot (2x)^{2} - x^{T} (y-\mu)$ ($\int \Omega = [1-\mu)\mu$) b: (27)+XTX)+.(27)β+XTXβ-XTy)

4.

Problem 3 1.], (B) = = Tr[(y-XB)] + > TriAl > 11B11, = $\frac{1}{2}y^{T}y - y^{T}X\beta + \frac{1}{2}\beta^{T}X^{T}X\beta + \lambda \stackrel{\cancel{L}}{>} 1\beta_{i}$ $X^TX = nI$ $\Rightarrow J_{\lambda}(\beta) = \frac{1}{2}y^{T}y + \sum_{i=1}^{d} \lambda |\beta_{i}| - y^{T}\chi_{i}\beta_{i} + \frac{1}{2}\beta_{i}^{2}$ 9(y) $\Sigma f(X_i, y, \beta_i, \lambda)$ So B; only depends on i-th feature. 2. 计 Bi+ >0 = d Js(Bi) = >-y / si 台+ Bi $\Rightarrow \beta; = \overline{y} \langle \cdot, - \rangle$ 3. if Bi*70 = d Tn(Bi) = -n-y xi+Bi $\Rightarrow \beta_i = y^T x_{i+\lambda}$ 4. When β : $\frac{1}{2}$ 0 min $f(\lambda_i, y, \beta_i, \lambda) = -\frac{1}{2}(y^T \lambda_i - \lambda)^2$ when $\beta_i^* = -\frac{1}{2} (y^T \lambda_i + \lambda)^2$ \Rightarrow when $\beta_i * = 0$, min f = 0. $\Rightarrow 0 \leq -\frac{1}{2} (y^{T} \lambda_{i} - \lambda) \text{ and } -\frac{1}{2} (y^{T} \lambda_{i} + \lambda)^{2}$ $\Rightarrow \lambda = 0$, and $y^T x_i = 0$

5. For
$$\beta^* = \operatorname{argmir}_{\beta} \{ J_{\lambda}(\beta) = \frac{1}{2} \| y - \chi \beta \|_{2}^{2} + \lambda \| \beta \|_{2}^{2} \}$$

$$= \frac{\partial J(\lambda | \beta)}{\partial \beta_{i}} = \lambda \beta_{i}^{2} + \frac{1}{2} \beta_{i}^{2} - y^{T} \lambda_{i} \beta_{i}$$

$$= \frac{y^{T} \lambda_{i}}{2\lambda + 1} = 0 \Rightarrow y^{T} \lambda_{i} = 0.$$
(not need >=0)

Problem 4

- 1. gradient: $2 \pi \beta \chi^T (y \mu)$.
- 2. Stochastic gradient: $2\beta\beta X_i^T(y_i \mu_i)$ (urve in (1) is smoother and has less loss"

3.

3. The learning rate decreased during the iteration. And the training accuracy dropped down.

1. plot

Standardize:

Logistic:

Binary:

2. plot

Standardize:

Logistic:

Binary:

3. plot

Standardize:

Logistic:

Binary:

5.

