CHAPTER 8(15)

Ceramic Materials

Why study ceramics?

- Bricks
- Cement
- Concrete
- Roof tiles
- Windows
- Skylights
- Smart glass
- Glass fibers

Why study ceramics?

- Ceramic capacitors: Electrical charge storage, between metallic layer.
- Piezoelectric ceramics: Transform mechanical energy into electric energy or vice versa.
- Flexible glass: organic light emitting diodes (OLEDs).

What are they?

Made from inorganic materials having non-metallic properties, usually processed at a high temperature at some time during their manufacture.

Properties

- Mostly Ionic
- Net charge of the structure should be Zero
- Few covalent ceramics
- 1. Crystalline: Ceramic
- 2. Amorphous: Glass
- 3. Crystalline process from amorphous: Glass Ceramic

Structure

Classification based on chemical composition

Oxides based

Silicate and nonsilicate oxide ceramics (alumina, zirconia, etc)

Non-oxides

Carbides, borides, nitrides, silicides

Composites

Particulate reinforced, combinations of oxides/nonoxides.

Glass

Inorganic Glasses: Metastable material that has hardened and become rigid.
However, the structure is not organized due to impurities.

Tg: Glass temperature (not fixed)

Tm: Crystalline temperature

Silica (SiO2) behaves this way

Temperature (°F) 400 800 1200 1600 2000 2400 2800 3200 1018 10^{16} Borosilicate 1016 96% silica Fused glass glass silica 1014 Strain point 10^{14} Annealing point 10^{12} 10^{12} 10¹⁰ Viscosity (Pa-s) 10¹⁰ Viscosity (P) 10⁸ Softening point 10⁶ Working range 104 Working point 10⁴ 10² Melting point 10² Soda-lime glass 200 400 600 800 1000 1200 1400 1600 1800 Temperature (°C)

Glass properties: Viscosity

- Melting point: viscosity = 100 P, above this temperature glass is liquid
- Working point: viscosity = 10⁴ P, glass is easily deformed
- Softening point: viscosity = 4x10⁷ P, maximum T at which a glass piece maintains shape for a long time
- Annealing point: viscosity = 10¹³ P, relax internal stresses (diffusion)
- Strain point: viscosity = 3x10¹⁴ P, above this viscosity, fracture occurs before plastic deformation

Glass forming operations - between softening and working points

Glass properties

Mechanical Properties

- Brittle
- Low Weibull modulus
- Low mechanical strength

Electrical properties

• Low conductivity.

Thermal properties

- Low Thermal conductivity
- Low Thermal shock

Covalent ceramics

Diamonds

Spherulite (SiC)

Silicon Nitrate

Applications

- Glass: optical, containment
- Clay products: Whiteware, bricks
- Abrasives: Cutting, polishing
- Cements: Composites, structural
- Advanced ceramics: sensors, bearings, rotors