Supporting Information

A 6'-Fluoro-Substituent in Bicyclo-DNA Increases Affinity to Complementary RNA

Presumably by CF---HC Pseudohydrogen Bonds

Branislav Dugovič and Christian J. Leumann*

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern

Pages 2-41	Figures S1 – S40: ¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR spectra of compounds 2-15
Page 42	Crystal structure determination - General
Page 43	Figure S41: ORTEP views of compound 13
Pages 43-49	Tables S1 – S9: Crystal structure data of compound 13
Page 50	Figure S42: Melting curves of ON1-3 vs DNA
	and RNA
Pages 51-53	Figures S43 – S45: HPLC traces of ON1-3.
Pages 54-55	Figures S46 – S48: ESIMS of ON1-3.

Figure S1: ¹H NMR (CDCI₃, 300 MHz) spectrum of 2

Figure S2: ¹³C NMR (CDCl₃, 75 MHz) spectrum of 2

Figure S3: ¹H NMR (CDCl₃, 300 MHz) spectrum of **3** (* Unknown impurity)

Figure S4: ¹³C NMR (CDCl₃, 75 MHz) spectrum of 3

Figure S5: ¹H NMR (CDCl₃, 400 MHz) spectrum of **4** (* Unknown impurities)

Figure S6: ¹³C NMR (CDCl₃, 75 MHz) spectrum of **4**

Figure S7: ¹H NMR (CDCI₃, 300 MHz) spectrum of 5

Figure S8: ¹³C NMR (CDCl₃, 75 MHz) spectrum of **5**

Figure S9: ¹H NMR (CDCl₃, 400 MHz) spectrum of **6** (* unknown impurities).

Figure \$10: ¹³C NMR (CDCl₃, 75 MHz) spectrum of 6

Figure S11: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **6**

Figure S12: ¹H NMR (CDCl₃, 400 MHz) spectrum of **7**

Figure \$13: ¹³C NMR (CDCl₃, 101 MHz) spectrum of **7** (* unknown impurity)

Figure S14: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **7**

Figure S15: ¹H NMR (CDCl₃, 300 MHz) spectrum of 8

Figure \$16: ¹³C NMR (CDCl₃, 75 MHz) spectrum of 8

Figure S17: ¹H NMR (CDCl₃, 300 MHz) spectrum of 9

Figure S18: ¹³C NMR (CDCl₃, 75 MHz) spectrum of 9

Figure S19: ¹H NMR (CDCl₃, 400 MHz) spectrum of **10**

Figure S20: ¹³C NMR (CDCl₃, 75 MHz) spectrum of **10**

Figure S21: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **10**

Figure S22: ¹H NMR (CDCl₃, 300 MHz) spectrum of 11a

Figure S23: ¹³C NMR (CDCl₃, 75 MHz) spectrum of **11a**

Figure S24: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **11a**

Figure S25: ¹H NMR (CDCl₃, 300 MHz) spectrum of **11b**

Figure S26: ¹³C NMR (CDCl₃, 75 MHz) spectrum of **11b**

Figure S27: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **11b**

Figure S28: ¹H NMR (CDCl₃, 400 MHz) spectrum of **12**

Figure S29: ¹³C NMR (CDCl₃, 75 MHz) spectrum of **12** (* unknown impurities).

Figure S30: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **12**

Figure S31: ¹H NMR (DMSO-d6, 400 MHz) spectrum of 13

Figure S32: ¹³C NMR (DMSO-d6, 75 MHz) spectrum of **13**

Figure S33: ¹⁹F NMR (CD₃OD, 376 MHz) spectrum of **13**

Figure S34: ¹H NMR (DMSO-d6, 400 MHz) spectrum of 14

Figure S35: ¹³C NMR (DMSO-d6, 75 MHz) spectrum of **14**

Figure S36: ¹⁹F NMR (DMSO-d6, 376 MHz) spectrum of **14**

Figure S37: ¹H NMR (CDCl₃, 400 MHz) spectrum of **15**

Figure S38: ¹³C/DEPT NMR (CDCl₃, 75 MHz) spectrum of 15

Figure S39: ¹⁹F NMR (CDCl₃, 376 MHz) spectrum of **15**

Figure S40: ³¹P NMR (CDCl₃, 122 MHz) spectrum of 15

Crystal-Structure Determination. –A colorless crystal of compound **13** ($C_{12}H_{15}FN_2O_5$)was mounted in air and used for X-ray structure determination at 173K. All measurements were made on a *Oxford Diffraction SuperNova* area-detector diffractometer using mirror optics monochromated Mo $K\alpha$ radiation (λ = 0.71073 Å) and Al filtered. The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range 2° < 0 < 27.2°. A total of 561 frames were collected using ω scans, with 80+80 seconds exposure time, a rotation angle of 1.0° per frame and a crystal-detector distance of 65.2 mm.

Data reduction was performed using the *CrysAlisPro* program. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in *CrysAlisPro* was applied. Data collection and refinement parameters are given in *Table 1*.

The structure was solved by direct methods using *SHELXS-97*, which revealed the positions of all non-hydrogen atoms of the title compound. The non-hydrogen atoms were refined anisotropically. All Hatoms were placed in geometrically calculated positions and refined using a riding model where each Hatom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for the methyl groups).

Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_o^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections.

All calculations were performed using the SHELXL-97 program.

The data did not allow assignment of absolute configuration, which was assigned based on the knowledge of the parent compound. Friedel pairs were then merged before the refinement.

Figure \$41: ORTEP view of compound 13.

Table S1 - Crystal Data and Details of the Structure Determination
 for: 13 in P2(1)2(1)2(1)

	Crystal Data		
Formula		C12	H15 F N2 O5
Formula Weight			286.26
Crystal System		(Orthorhombic
Space group		$P2_12_12_1$	(No. 19)
a, b, c [Angstrom]	6.1167(17)	13.975(2)	14.558(2)
V [Ang**3]			1244.5(4)
Ζ			4
D(calc) [g/cm**3]			1.528
Mu(MoKa) [/mm]			0.129
F(000)			600
Crystal Size [mm]		0.10 x	0.03 x 0.02
	Data Collection		
Temperature (K)			173
Radiation [Angstrom]		MoKa	0.71073
Theta Min-Max [Deg]			2.0, 27.2
Dataset		7:-7; 16	:-16 ; 17:-17
Tot., Uniq. Data, R(in	nt)	9404,	1348, 0.1046
Observed data [I > 2.0) sigma(I)]		1050

Refinement

Nref, Npar	1348, 181
R, wR2, S	0.0827, 0.1418, 1.053
R, wR2 [I $> 2.0 \text{ sigma(I)}$]	0.0589, 0.13
Max. and Av. Shift/Error	0.008, 0.001
Min. and Max. Resd. Dens. [e/Ang^3]	-0.37, 0.32

Table S2 - Final Coordinates and Equivalent Isotropic Displacement

Parameters of the non-Hydrogen atoms

for:	13	in	P2(1)	2 (1	2(1)
------	----	----	-------	------	------

Atom	х	У	z	U(eq) [Ang^2]
F1	-0.1977(6)	0.2464(3)	0.0962(2)	0.0402(11)
01	0.4259(7)	0.6673(3)	-0.0174(3)	0.0340(14)
02	0.6465(7)	0.4699(3)	0.2110(2)	0.0320(12)
03	0.1204(7)	0.1193(3)	0.0323(2)	0.0312(11)
04	0.1652(7)	0.2029(3)	0.3499(2)	0.0308(13)
09	0.2905(6)	0.2673(2)	0.1314(2)	0.0222(11)
N4	0.5205(7)	0.5670(3)	0.0972(3)	0.0210(12)
N6	0.3192(8)	0.4350(3)	0.1397(3)	0.0230(12)
C1	0.1662(9)	0.4597(4)	0.0736(3)	0.0227(17)
C2	0.1852(9)	0.5370(4)	0.0190(3)	0.0240(16)
С3	0.3802(9)	0.5964(4)	0.0285(3)	0.0200(16)
C5	0.5076(9)	0.4881(4)	0.1529(3)	0.0243(17)
C7	0.0144(9)	0.5664(5)	-0.0500(4)	0.0333(19)
C8	0.2932(9)	0.3467(4)	0.1928(3)	0.0223(17)
C10	0.2147(9)	0.1874(4)	0.1847(3)	0.0197(17)
C11	0.0726(9)	0.2285(4)	0.2636(3)	0.0213(16)
C12	0.0838(9)	0.3375(4)	0.2472(3)	0.0227(17)
C13	-0.1562(10)	0.1839(4)	0.2483(3)	0.0317(17)
C14	-0.1657(9)	0.1617(4)	0.1469(4)	0.0307(17)
C15	0.0657(9)	0.1238(4)	0.1264(3)	0.0233(17)
,		5		,

 ${\tt U\,(eq)}$ = 1/3 of the trace of the orthogonalized ${\tt U}$ Tensor

 $\begin{tabular}{lll} \textbf{Table S3} & \textbf{-} & \textbf{Hydrogen Atom Positions and Isotropic Displacement} \\ & \textbf{Parameters} \\ \end{tabular}$

for: **13** in P2(1)2(1)2(1)

Atom	x	У	z U(iso) [Ang^2]
H1	0.04144	0.41989	0.06637	0.0271
Н3	0.02079	0.14486	0.00114	0.0468
H4	0.63445	0.60414	0.10659	0.0252
H4A	0.08833	0.22561	0.39248	0.0466
н7А	0.06078	0.62542	-0.08074	0.0496
Н7В	-0.12488	0.57750	-0.01843	0.0496
H7C	-0.00396	0.51556	-0.09568	0.0496

Н8	0.42031	0.33984	0.23546	0.0267
H10	0.34049	0.14993	0.20973	0.0234
H12A	-0.04375	0.36039	0.21162	0.0271
H12B	0.09225	0.37307	0.30591	0.0271
H13A	-0.17348	0.12484	0.28519	0.0378
Н13В	-0.27274	0.22961	0.26568	0.0378
H14	-0.28028	0.11278	0.13281	0.0366
H15	0.07518	0.05733	0.15162	0.0281

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Table S4 - (An)isotropic Displacement Parameters
 for: 13 in P2(1)2(1)2(1)

Atom	U(1,1) or 0	J U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
F1	0.0244(19)	0.062(2)	0.0341(17)	0.0028(17)	-0.0092(17)	0.0106(18)
01	0.037(3)	0.034(2)	0.031(2)	0.0118(19)	-0.005(2)	-0.003(2)
02	0.028(2)	0.033(2)	0.035(2)	0.0065(17)	-0.010(2)	-0.002(2)
03	0.033(2)	0.039(2)	0.0215(18)	-0.0020(16)	-0.001(2)	-0.002(2)
04	0.042(3)	0.034(2)	0.0165(18)	0.0013(15)	0.000(2)	0.017(2)
09	0.0190(19)	0.0211(19)	0.0266(19)	-0.0024(16)	0.0079(18)	-0.0039(16)
N4	0.018(2)	0.021(2)	0.024(2)	0.001(2)	0.003(2)	-0.0059(19)
N6	0.021(2)	0.023(2)	0.025(2)	0.001(2)	-0.003(2)	0.004(2)
C1	0.015(3)	0.029(3)	0.024(3)	-0.008(2)	0.007(2)	-0.004(2)
C2	0.019(3)	0.032(3)	0.021(2)	-0.002(2)	0.001(3)	0.003(2)
C3	0.019(3)	0.026(3)	0.015(2)	-0.003(2)	-0.001(2)	0.003(2)
C5	0.026(3)	0.025(3)	0.022(3)	-0.002(2)	0.006(3)	0.005(2)
C7	0.023(3)	0.051(4)	0.026(3)	-0.001(3)	-0.002(3)	-0.003(3)
C8	0.021(3)	0.021(3)	0.025(3)	0.000(2)	0.000(3)	0.002(2)
C10	0.015(3)	0.019(3)	0.025(3)	0.001(2)	0.000(2)	0.005(2)
C11	0.019(3)	0.028(3)	0.017(2)	0.002(2)	-0.002(2)	0.003(2)
C12	0.019(3)	0.026(3)	0.023(3)	0.000(2)	0.003(2)	0.002(2)
C13	0.028(3)	0.039(3)	0.028(3)	0.005(3)	0.006(3)	-0.008(3)
C14	0.020(3)	0.038(3)	0.034(3)	-0.002(3)	-0.003(3)	-0.009(3)
C15	0.026(3)	0.018(3)	0.026(3)	0.000(2)	0.006(3)	-0.004(2)

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and

h(i) are the Reflection Indices.

F1 -C14 1.409(7) C10 -C15 1.530(7)

01	-C3	1.227(7)	C10	-C11	1.551(7)
02	-C5	1.226(6)	C11	-C12	1.543(8)
03	-C15	1.412(5)	C11	-C13	1.548(8)
04	-C11	1.424(6)	C13	-C14	1.510(7)
09	-C8	1.425(6)	C14	-C15	1.540(8)
09	-C10	1.437(6)	C1	-H1	0.9500
03	-H3	0.8400	С7	-H7A	0.9800
04	-H4A	0.8400	С7	-Н7В	0.9800
N4	-C5	1.371(7)	С7	-H7C	0.9800
N4	-C3	1.380(7)	C8	-H8	1.0000
N6	-C5	1.384(7)	C10	-H10	1.0000
N6	-C8	1.465(7)	C12	-H12A	0.9900
N6	-C1	1.386(7)	C12	-H12B	0.9900
N4	-H4	0.8800	C13	-H13A	0.9900
C1	-C2	1.346(7)	C13	-H13B	0.9900
C2	-C3	1.460(8)	C14	-H14	1.0000
C2	-C7	1.506(8)	C15	-H15	1.0000
C8	-C12	1.511(7)			

Table 86 - Bond Angles (Degrees) for: **13** in P2(1)2(1)2(1)

C8	-09	-C10	105.7(3)	C10	-C11	-C13	104.5(4)
C15	-03	-н3	109.00	04	-C11	-C10	109.7(4)
C11	-04	-H4A	109.00	04	-C11	-C13	112.7(4)
C3	-N4	-C5	129.2(5)	C8	-C12	-C11	101.7(4)
C1	-N6	-C8	120.2(4)	C11	-C13	-C14	105.0(4)
C1	-N6	-C5	121.7(4)	F1	-C14	-C13	110.2(4)
C5	-N6	-C8	118.0(4)	F1	-C14	-C15	108.4(4)
C5	-N4	-H4	115.00	C13	-C14	-C15	103.0(4)
C3	-N4	-H4	115.00	03	-C15	-C14	114.9(4)
N6	-C1	-C2	123.5(5)	C10	-C15	-C14	103.9(4)
C1	-C2	-C7	123.6(5)	03	-C15	-C10	115.0(4)
C3	-C2	-C7	118.3(5)	N6	-C1	-H1	118.00
C1	-C2	-C3	118.1(5)	C2	-C1	-H1	118.00
01	-C3	-C2	126.4(5)	C2	-C7	-н7А	109.00
N4	-C3	-C2	114.0(4)	C2	-C7	-н7в	109.00
01	-C3	-N4	119.6(5)	C2	-C7	-H7C	110.00
02	-C5	-N4	122.4(5)	H7A	-C7	-н7в	109.00
02	-C5	-N6	124.2(5)	H7A	-C7	-H7C	109.00
N4	-C5	-N6	113.4(4)	н7в	-C7	-H7C	109.00
09	-C8	-N6	109.0(3)	09	-C8	-H8	109.00
N6	-C8	-C12	116.1(5)	N6	-C8	-H8	109.00
09	-C8	-C12	104.6(4)	C12	-C8	-H8	109.00
09	-C10	-C11	107.0(4)	09	-C10	-H10	111.00
09	-C10	-C15	110.1(4)	C11	-C10	-H10	111.00
C11	-C10	-C15	107.0(4)	C15	-C10	-H10	111.00
C10	-C11	-C12	103.1(4)	C8	-C12	-H12A	111.00

C12	-C11	-C13	114.5(4)	C8	-C12	-H12B	111.00
04	-C11	-C12	111.5(4)	C11	-C12	-H12A	111.00
C11	-C12	-H12B	111.00	F1	-C14	-H14	112.00
H12A	-C12	-H12B	109.00	C13	-C14	-H14	112.00
C11	-C13	-H13A	111.00	C15	-C14	-H14	112.00
C11	-C13	-н13в	111.00	03	-C15	-H15	108.00
C14	-C13	-H13A	111.00	C10	-C15	-H15	108.00
C14	-C13	-н13в	111.00	C14	-C15	-H15	108.00
H13A	-C13	-н13в	109.00				

Table S7 - Torsion Angles (Degrees) for: **13** in P2(1)2(1)2(1)

C8	-09	-C10	-C15	142.2(4)
C10	-09	-C8	-N6	-167.0(4)
C10	-09	-C8	-C12	-42.1(5)
C8	-09	-C10	-C11	26.2(5)
С3	-N4	-C5	-N6	-3.8(7)
C5	-N4	-C3	-01	-176.3(5)
C5	-N4	-C3	-C2	4.1(8)
С3	-N4	-C5	-02	179.1(5)
C5	-N6	-C1	-C2	-1.4(8)
C5	-N6	-C8	-C12	126.5(5)
C1	-N6	-C5	-N4	2.2(7)
C1	-N6	-C8	-C12	-58.2(6)
C1	-N6	-C5	-02	179.2(5)
C8	-N6	-C5	-02	-5.7(7)
C1	-N6	-C8	-09	59.6(6)
C8	-N6	-C5	-N4	177.3(4)
C8	-N6	-C1	-C2	-176.5(5)
C5	-N6	-C8	-09	-115.6(5)
N6	-C1	-C2	-C7	-177.2(5)
N6	-C1	-C2	-C3	1.6(8)
C7	-C2	-C3	-N4	176.2(5)
C1	-C2	-C3	-N4	-2.7(7)
C1	-C2	-C3	-01	177.7(5)
C7	-C2	-C3	-01	-3.4(8)
N6	-C8	-C12	-C11	160.5(4)
09	-C8	-C12	-C11	40.2(4)
09	-C10	-C11	-04	-119.6(4)
09	-C10	-C11	-C12	-0.7(5)
09	-C10	-C11	-C13	119.3(4)
C15	-C10	-C11	-04	122.4(5)
C15	-C10	-C11	-C12	-118.7(4)
C15	-C10	-C11	-C13	1.3(5)
09	-C10	-C15	-03	33.2(6)
09	-C10	-C15	-C14	-93.2(5)
C11	-C10	-C15	-03	149.2(4)

C11	-C10	-C15	-C14	22.8(5)
04	-C11	-C12	-C8	94.6(4)
C10	-C11	-C12	-C8	-23.1(5)
C13	-C11	-C12	-C8	-136.0(4)
04	-C11	-C13	-C14	-144.6(4)
C10	-C11	-C13	-C14	-25.6(5)
C12	-C11	-C13	-C14	86.5(5)
C11	-C13	-C14	-F1	-75.5(5)
C11	-C13	-C14	-C15	39.9(5)
F1	-C14	-C15	-03	-48.5(6)
F1	-C14	-C15	-C10	78.1(5)
C13	-C14	-C15	-03	-165.2(5)
C13	-C14	-C15	-C10	-38.7(5)

Table S8 - Contact Distances(Angstrom)

for: **13** in P2(1)2(1)2(1)

F1	.03	2.794(6)	02	.H12A_d	2.4400
F1	.09_a	3.186(5)	04	.H4_h	1.9500
F1	.09	3.044(5)	09	.H1	2.7900
F1	.C12	3.069(6)	09	.H3_f	2.6900
F1	.03_b	2.874(5)	N4	.04_e	2.810(6)
F1	.н3	2.3900	N6	.03_f	3.200(6)
F1	.H12A	2.5000	N4	.H13A_i	2.8400
F1	.H1	2.8600	N4	.H7B_d	2.7500
F1	.H3_b	2.7000	N6	.H3_f	2.6400
01	.04_c	2.708(6)	C1	.03_f	3.364(7)
02	.C12_d	3.295(7)	C5	.03_f	3.162(6)
03	.C5_b	3.162(6)	C12	.F1	3.069(6)
03	.F1	2.794(6)	C12	.02_a	3.295(7)
03	.09	2.728(5)	C1	.H3_f	2.8300
03	.N6_b	3.200(6)	C1	.H12A	2.7600
03	.C1_b	3.364(7)	C1	.H13A_i	3.0900
03	.F1_f	2.874(5)	C2	.H14_f	3.0500
04	.01_g	2.708(6)	С3	.H13A_i	3.0200
04	.N4_h	2.810(6)	C5	.H3_f	2.9100
09	.F1	3.044(5)	C5	.H13A_i	2.9400
09	.03	2.728(5)	C7	.H14_f	3.0500
09	.F1_d	3.186(5)	C12	.H1	2.8800
01	.H7A	2.4900	C14	.H12A	3.0300
01	.H12B_c	2.6400	Н1	.F1	2.8600
01	.H4A_c	1.9900	Н1	.09	2.7900
02	.H10_e	2.7700	Н1	.C12	2.8800
02	.H8	2.3100	Н1	.H12A	2.3300
02	.H15_e	2.9000	Н3	.F1	2.3900
нЗ	.F1_f	2.7000	H12A	.F1	2.5000
нЗ	.09_b	2.6900	H12A	.02_a	2.4400
Н3	.N6_b	2.6400	H12A	.C1	2.7600

Н3	.C1_b	2.8300	H12A	.C14	3.0300
нЗ	.C5_b	2.9100	H12A	.H1	2.3300
H4	.H7B_d	2.3700	H12A	.H13B	2.4300
Н4	.04_e	1.9500	H12B	.H4A	2.4200
Н4	.H4A_e	2.4000	H12B	.01_g	2.6400
H4A	.H12B	2.4200	H13A	.N4_j	2.8400
H4A	.01_g	1.9900	H13A	.C1_j	3.0900
H4A	.H4_h	2.4000	H13A	.C3_j	3.0200
H7A	.01	2.4900	H13A	.C5_j	2.9400
Н7В	.N4_a	2.7500	Н13В	.H8_a	2.4700
Н7В	.H4_a	2.3700	H13B	.H12A	2.4300
H7C	.H14_f	2.3200	H14	.C2_b	3.0500
Н8	.02	2.3100	H14	.C7_b	3.0500
Н8	.H13B_d	2.4700	H14	.H7C_b	2.3200
H10	.02_h	2.7700	Н15	.02_h	2.9000

Table S9 - Hydrogen Bonds (Angstrom, Deg) for: **13** in P2(1)2(1)2(1)

0	3	 Н3	 F1	0.8400	2.3900	2.794(6)	110.00	
N	4	 H4	 04	0.8800	1.9500	2.810(6)	165.00	4_655
0	4	 H4A	 01	0.8400	1.9900	2.708(6)	143.00	2_565
C	7	 H7A	 01	0.9800	2.4900	2.924(7)	107.00	
C	8	 Н8	 02	1.0000	2.3100	2.776(7)	107.00	
C	12	 H12A	 F1	0.9900	2.5000	3.069(6)	116.00	
C	12	 H12A	 02	0.9900	2.4400	3.295(7)	145.00	1 455

Translation of Symmetry Code to Equiv.Pos

- a = [1455.00] = -1+x, y, z
- b = [3455.00] = -1/2+x, 1/2-y, -z
- c = [2564.00] = 1/2-x, 1-y, -1/2+z
- d = [1655.00] = 1+x,y,z
- e = [4655.00] = 1-x, 1/2+y, 1/2-z
- f = [3555.00] = 1/2+x, 1/2-y, -z
- g = [2565.00] = 1/2-x, 1-y, 1/2+z
- h = [4645.00] = 1-x, -1/2+y, 1/2-z
- i = [4555.00] = -x, 1/2+y, 1/2-z
- j = [4545.00] = -x, -1/2+y, 1/2-z

Figure S42: Melting curves of 6'F-bcT in oligonucleotides vs DNA (top) and vs RNA(bottom). Conditions: $1.2 \mu M$ single strands in 150 mM NaCl and 10 mM NaH₂PO₄ at pH 7.0

Figure S43: HPLC traces of **ON1** as crude mixture (top) and after purification (bottom). Conditions: Dionex DNA Pac-PA100 (top), Dionex DNA Pac-PA200 (bottom); Buffer A: 25 mM Trizma in H_2O , buffer B 25 mM Trizma, 1.25 M NaCl in H_2O , pH 8.0, 0 to 50% B in A over 30 min with 1 mL/min.

Figure S44: HPLC traces of ON2 as crude mixture (top) and after purification (bottom). Conditions: Dionex DNA Pac-PA100 (top), Dionex DNA Pac-PA200 (bottom); Buffer A: 25 mM Trizma in H_2O , buffer B 25 mM Trizma, 1.25 M NaCl in H_2O , pH 8.0, 0 to 50% B in A over 30 min with 1 mL/min.

Figure S45: HPLC traces of **ON3** as crude mixture (top) and after purification (bottom). Conditions: Dionex DNA Pac-PA100 (top), Dionex DNA Pac-PA200 (bottom); Buffer A: 25 mM Trizma in H_2O , buffer B 25 mM Trizma, 1.25 M NaCl in H_2O , pH 8.0, 0 to 50% B in A over 30 min with 1 mL/min.

Figure S46: Reconstruction of a ESI--MS of ON1.

Figure S47: Reconstruction of ESI--MS of ON2 (see also Table S10)

Figure S48: Reconstruction of ESI--MS of ON3