Introduction to Mathematical Logic

Chapter 5 Beginning Propositional Logic

By Johannes Yuan Hong Or just John

Spring 2022

Propositions

- All men are mortal.
- Romeo loves Juliet.
- There is no largest natural number.
- He speaks French or German.
- Albert Camus was a great novelist and philosopher.
- If he is a spy, he has to die.

•

- Negation / not / ~
 - p: There is the largest natural number.
 - ~p: There is no largest natural number.

р	~p
Т	F
F	Т

- Conjunction / and / ∧
 - p: Albert Camus was a novelist.
 - q: Albert Camus was a philosopher.
 - p∧q: Albert Camus was a novelist and philosopher.

р	q	p∧q
Т	Т	Т
Т Т	F	F
F	Т	F
F	F	F

- Disjunction / or / \times
 - p: He speaks French.
 - q: He speaks German.
 - p∨q: He speaks French or German.

р	q	p∨q
Т	Т	Т
. Т	F	Т
F	Т	Т
F	F	F

- Disjunction / or / \times
 - p: He'll finish the job today.
 - q: He'll finish the job tomorrow.
 - $p \lor q$: He'll finish the job today or tomorrow.

р	q	p∨q
Т	Т	
Т	F	Т
F	Т	Т
F	F	F

- Disjunction / or / \times
 - p: You come with me.
 - q: You stay here.
 - $p \lor q$: You come with me or stay here.

р	q	p∨q
Т	Т	
Т	F	Т
F	Т	Т
F	F	F

- Conditional / imply / if...then... / ⊃
 - p: He is a spy.
 - q: He has to die.
 - $p \supset q$: If he is a spy, he has to die.

р	q	p⊃q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Biconditional / if and only if / equivalent / \equiv
 - p: He is a spy.
 - q: He has to die.
 - $p \equiv q$: He has to die if and only if he is a spy.

р	q	p≡q
Т	Т	Т
. Т	F	F
F	Т	F
F	F	Т

- Letters like p, q, r, with or without subscripts, are propositional variables.
- By *a formula* is meant any expression that is constructed according to the following rules.
 - (1) A propositional variable is a formula.
 - (2) Given formulae X and Y already constructed, ~X, (X∧Y), (X∨Y), (X⊃Y) and (X≡Y) are all formulae.
 - No expression is a formula unless its being so is the consequence of rule (1) and (2).

• Which, if any, are formulae among the follow expressions?

$$-(1) p$$

$$-(2) \sim q$$

$$-(3)((p \supset q) \land r)$$

$$- (4) \sim (p_1 \wedge (p_2 \supset p_3) \wedge (p_1 \supset p_3))$$

$$-(5) \sim (p_1 \wedge (p_2 \supset p_3) \vee (p_1 \supset p_3))$$

$$-(6)((p_1 \supset (p_2 \supset p_3)) \lor (p_1 \supset (\sim p_3)))$$

$$(7) ((p_1 \supset (p_2 \supset p_3)) \lor \sim (p_1 \supset p_3))$$

Matching parentheses

$$-\left(\left(\mathbf{p}_{1}\supset\left(\mathbf{p}_{2}\supset\mathbf{p}_{3}\right)\right)\vee\sim\left(\mathbf{p}_{1}\supset\mathbf{p}_{3}\right)\right)$$

- Define a pair of matching parentheses.
- The *level* of a matching parentheses pair
 - A pair of matching parentheses between that there is no matching parenthesis is said to be parentheses of *level 0*.
 - A pair of matching parentheses is said to be of level n+1 given that the top pair between the pair of parentheses is of level n.

- Simplifications
 - Since $((X \lor Y) \lor Z)$ has the same truth table as $(X \lor (Y \lor Z))$, they both can be put as $(X \lor Y \lor Z)$.
 - Therefore, all formulae consist of X_1 , X_2 , ..., X_n and disjunctions only for connectives like $((...(X_1 \lor X_2) \lor ...) \lor X_n)$ can be put as $(X_1 \lor X_2 \lor ... \lor X_n)$. (prove it by yourselves)
 - Similarly, all those of $X_1, X_2, ..., X_n$ and only conjunctions, can be put as $(X_1 \wedge X_2 \wedge ... \wedge X_n)$.

- Simplifications
 - The most outer pair of parentheses can be lifted without misunderstanding.
 - So $(X \supset Y)$ can be put as $X \supset Y$, and $(X_1 \land X_2 \land ... \land X_n)$ as $X_1 \land X_2 \land ... \land X_n$.

Compound truth tables

$$-\left(\left(p_{1}\supset\left(p_{2}\supset p_{1}\right)\right)\vee\sim\left(p_{1}\supset p_{2}\right)\right)$$

$p_{_1}$	p ₂	$(p_2 \supset p_1)$	$(p_1 \supset p_2)$	$(p_1 \supset (p_2 \supset p_1))$	$\sim (p_1 \supset p_2)$	$((p_1 \supset (p_2 \supset p_1)) \lor \sim (p_1 \supset p_2))$
Т	Т	Т	Т	Т	F	Т
Т	F	Т	F	Т	Т	Т
F	Т	F	Т	Т	F	Т
F	F	Т	Т	Т	F	Т

• Find, if any, the wrong calculated row of the truth table.

$$-\left(\left(p_{1}\supset\left(p_{2}\supset p_{3}\right)\right)\vee\sim\left(p_{1}\supset p_{3}\right)\right)$$

I)	p_2	p_3	$(p_2 \supset p_3)$	$(p_1 \supset p_3)$	$(p_1 \supset (p_2 \supset p_3))$	$\sim (p_1 \supset p_3)$	$((p_1 \supset (p_2 \supset p_3)) \lor \sim (p_1 \supset p_3))$
	Т	Т	Т	Т	Т	Т	F	Т
	Т	Т	F	F	F	F	Т	Т
	Т	F	Т	Т	Т	Т	F	Т
	Т	F	F	Т	F	F	Т	Т
	F	Т	Т	Т	Т	Т	F	Т
	F	Т	F	F	Т	Т	F	Т
	F	F	Т	Т	Т	F	F	F
	F	F	F	Т	Т	Т	F	Т

Tautologies

 Consider the following formula and its truth table

$$-\left(\left(p_{1}\supset\left(p_{2}\supset p_{3}\right)\right)\vee\sim\left(p_{1}\supset p_{3}\right)\right)$$

p ₁	p_2	p^3	$(p_2 \supset p_3)$	$(p_1 \supset p_3)$	$(p_{\scriptscriptstyle 1} \supset (p_{\scriptscriptstyle 2} \supset p_{\scriptscriptstyle 3}))$	$\sim (p_1 \supset p_3)$	$((p_1 \supset (p_2 \supset p_3)) \lor \sim (p_1 \supset p_3))$
Т	Т	Т	Т	Т	Т	F	Т
Т	Т	F	F	F	F	Т	Т
Т	F	Т	Т	Т	Т	F	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	Т	Т	Т	F	Т
F	Т	F	F	Т	Т	F	Т
F	F	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	F	Т

Tautologies

• State which of the following are *tautologies*, which are *contradictions*, and which are *contingent*.

$$-(1)((p_1 \supset (p_2 \supset p_3)) \lor \sim (p_1 \supset p_3))$$

$$-(2)((p \supset q) \supset (q \supset p))$$

$$- (3) ((p \supset q) \supset (\sim p \supset \sim q))$$

$$- (4) ((p \supset q) \supset (\sim q \supset \sim p))$$

$$-(5)(p\supset \sim p)$$

$$-(6) (p \equiv \sim p)$$

Tautologies

• State which of the following are *tautologies*, which are *contradictions*, and which are *contingent*.

$$- (7) ((p \equiv q) \equiv (\sim p \equiv \sim q))$$

$$- (8) (\sim (p \land q) \equiv (\sim p \land \sim q))$$

$$- (9) (\sim (p \land q) \equiv (\sim p \lor \sim q))$$

$$- (10) ((\sim p \vee \sim q) \equiv \sim (p \vee q))$$

$$- (11) (\sim (p \vee q) \equiv (\sim p \wedge \sim q))$$

$$-(12)((p \equiv (p \land q)) \equiv (q \equiv (p \lor q)))$$

Logical Implication and Equivalence

- Let X, Y be formulae and S be a set of formulae
 - By X (logically) *implies* Y is meant in all cases where X is true, Y is also true. Or what is the same thing, X⊃Y is a tautology.
 - By S (logically) *implies* X is meant in all cases where all elements of S are true, so is X.
 - By X is (logically) equivalent to Y is meant both X and Y are true in just the same cases.
 Or what is the same thing, X≡Y is a tautology.

Logical Implication and Equivalence

- Which, if any, of the following statements are true?
 - -(1) (p \wedge q) implies p.
 - (2) (p \vee q) implies p.
 - (3) p implies $(p \land q)$.
 - (4) p implies $(p \lor q)$.
 - (5) {p, p⊃q} implies q.
 - (6) {q, p⊃q} implies p.
 - (7) {q, p⊃q} implies q.

Logical Implication and Equivalence

- Which, if any, of the following statements are true?
 - (8) ($p \supset q$) is equivalent to ($\sim p \supset \sim q$).
 - (9) (p \supset q) is equivalent to (\sim q $\supset\sim$ p).

- Let *t* stands for truth and *f* stands for falsity, we define *t* and *f* as *propositional constants*.
- We thus have a new version of definition of *formulae* as following.
 - (1) A propositional variable is a formula.
 - (2) A propositional constant is a formula.
 - (3) Given formulae X and Y already constructed, ~X, (X∧Y), (X∨Y), (X⊃Y) and (X≡Y) are all formulae.
 - An expression is a formula unless its being so is the consequence of rules (1) through (3).

- Every formula involving t's or f's or both is equivalent to another that involves neither, or to t alone, or to f alone. Related facts are following with equ standing for is equivalent to.
 - $X \wedge t$ equ X, $t \wedge X$ equ X
 - $-X \wedge f$ equ f, $f \wedge X$ equ f
 - $-X \lor t \text{ equ t, } t \lor X \text{ equ t}$
 - $-X \lor f equ X, f \lor X equ X$

- Every formula involving t's or f's or both is equivalent to another that involves neither, or to t alone, or to f alone. Related facts are following with equ standing for is equivalent to.
 - X⊃t equ t, t⊃X equ X
 - X ⊃ f equ ~X, f ⊃ X equ t
 - X≡t equ X, t≡X equ X
 - X \equiv f equ ~X, f \equiv X equ ~X
 - − t equ ~f, f equ ~t

• Reduce following formulae to anothers that involve neither, or to *t* alone, or to *f* alone.

$$-(((t \supset p) \land (q \lor f)) \supset ((q \supset f) \lor (r \land t)))$$

$$-((p\lor t)\supset q)$$

$$-(\sim(p\vee t)\equiv(f\supset q))$$

Liars and Truth Tellers

- There is a land where inhabitants are of one of two types only truth tellers who tell only truths and liars who tell only lies. Now let's consider two inhabitants A and B from the land when A is asked to say something about they two.
 - Suppose A says 'We are both liars.' What can be determined about the types of A and B?

Liars and Truth Tellers

- There is a land where inhabitants are of one of two types only truth tellers who tell only truths and liars who tell only lies. Now let's consider two inhabitants A and B from the land when A is asked to say something about they two.
 - If, instead, A says 'At lease one of us is a liar.' then what can be determined?

Liars and Truth Tellers

- There is a land where inhabitants are of one of two types only truth tellers who tell only truths and liars who tell only lies. Now let's consider two inhabitants A and B from the land when A is asked to say something about they two.
 - If, instead, A says 'We are of the same type. B and I are both truth tellers or liars.' then what can be determined about them?

The End

• Chapter 5: Beginning Propositional Logic