BENDING DISPLACEMENT

- Point O goes to O'

- Point P goes to P'

- ton O = slope =
$$\frac{dv}{dx}$$

- Point P moves by

$$P''P' \text{ in the } x - \text{ direction } y$$

But $P'P'' \approx -yO \approx -y\frac{dv}{dx}$

$$U_P - U_O \approx -y\frac{dv}{dx} \Rightarrow U_P \approx U_O - y\frac{dv}{dx}$$

General AXIAL displacement 15
$$U_p(x, y, z) \approx U_0(x, 0, 0) - y \frac{dv}{dx}$$

A similar exercise in
$$\xi - x$$
 plane gives:

$$U_{p}(x, y, 3) \approx U_{0}(x, 0, 0) - \left(\xi \frac{d\overline{v}}{dx}\right)$$

$$\approx U_{0}(x, 0, 0) - y \frac{d\overline{v}}{dx} - 3 \frac{d\overline{w}}{dx} \qquad y \frac{d\overline{v}}{dx} \cos \alpha + 3 \frac{d\overline{v}}{dx} \sin \alpha$$

$$- (a) \frac{d\overline{v}}{dx} \qquad \frac{d\overline{w}}{dx}$$

ALTERNATIVE DEFN.

$$\mathcal{E}_{XX} = \frac{\partial u}{\partial x} = -y \frac{d^2 v}{dx^2} - 3 \frac{d^2 w}{dx^2}$$

$$\Rightarrow \int \frac{\partial u}{\partial x} dx = -y \frac{dv}{dx} - 3 \frac{dw}{dx} = u(x, y, 3) - u_0(x, 0, 0)$$
* When $F_{XX} = 0$, $u_0(x, 0, 0) = 0$ (WHY??)

General Derivation (alternate form 2):

 $\mathcal{E}_{XX} = 0$ at origin $0 \Rightarrow y=0.3=0$

Exx linear in 4,3 otherwise 3

 $\Rightarrow \quad \mathcal{E}_{XX} \left(x_1 y_1 z_3 \right) \approx \quad \mathcal{O}_0(x) \, \mathcal{Y} + \mathcal{O}_2(x) z_3$

 $6xx = E \mathcal{E}xx$; $\mathcal{E}_{yy} = -\frac{1}{E} 6xx = -\mathcal{D} \mathcal{E}xx$ = $-\mathcal{D} (a_0 y + a_1 3)$

But $\mathcal{E}_{YY} = \frac{\partial U}{\partial y} = -D(Ooy + Oi3) \Rightarrow U(x,y,3) - U(x,0,0)$ = $-D(\frac{Ooy^2}{2} + Oiy3) \Leftarrow QUADRATIC IN y,3!!$

Retaining terms upto linear gives:

 $U(x,y,3) - U(x,0,0) \approx 0$ OR $U(x,y,3) \approx U(x,0,0)$ $\approx U(x)$

Similarly, $w(x_1y_13) \approx w(x) \leftarrow DOES NOT VARY$ WITH y_13

Now, since $8xy \approx 0 \Rightarrow \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0 \Rightarrow \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ $\Rightarrow u(x,y,3) - u(x,0,0) = -y \cdot \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = g(x,3)$

 $8x3 \approx 0 \Rightarrow \frac{\partial u}{\partial 3} = -\frac{dw}{dx} \Rightarrow \frac{\partial 9}{\partial 3} = -\frac{dw}{dx}$

 $\Rightarrow g(x,3) = -3 \frac{d\omega}{dx}$

 $\Rightarrow \qquad u(x,y,3) \approx u(x,0,0) - y \frac{dv}{dx} - 3 \frac{dw}{dx}$ $= u_0(x)$ $v(x,y,3) \approx v(x) ; w(x,y,3) \approx w(x)$

BENDING

DISPLACEMEN

FIELD !!