Lab 1 Report

Dennis Zang, 704766877 Partner: Hirday Gupta Lab Section 5, October 27, 2019

Problem Statement:

The task at hand that was assigned is to modify an existing Verilog program which operates an arithmetic logic unit (ALU) (that originally only supports addition) through the use of 8 switches to encode and instruction and a switch to send the instruction. The modifications we were tasked with are as follows: to add a multiply function/submodule to the ALU, to add a separate button to replace the current send instruction, modify the "model_uart" submodule to format the simulation output into a single line, and modify the actual UART submodule "uart_top" to include the register number in the actual UART output.

Implementation/Algorithm:

The original sequential circuit works as follows: input is fed into the top-level module "nexys"; which includes 8 switches to encode instructions, a send button, a reset button, and a clock input; and outputs an 8-bit led for instruction count. In addition, an input RsRx (receiver) and output RxTx (transmitter) are used for UART input and output, respectively. "nexys3" would then operate an internal submodule "seq" to process the command, access internal 16-bit registers (submodule "seq_rf"), and perform the given arithmetic operations (submodule "seq_alu"). The submodule "uart_top" would be operating the actual interface for UART (the submodule "uart") using a queue to sequentially pass data for writing (using the submodule "uart_fifo"). In addition, for "nexys3", a submodule "model_uart" will be used for the testbench simulation to emulate UART.

The specific functions; PUSH (00), ADD (01), MULT (10), and SEND (11); are all found within the lab manual. Below is the given diagram showing how each I/O component and sub modules inside the "nexys3" module generally interact.

The details for how we modified the sequential circuit for each task are listed below.

("[Implementation] Missing Multiply Operation")

For this task, we basically had to make modifications to the submodule "seq_alu". Originally, "seq_alu" only consists of the submodule "seq_add" to support addition. So, to support multiplication, we create a copy of "seq_add" for multiplication, "seq_mult", which a near-identical module except for 1 line of code (it returns the product of inputs instead of sum, obviously). Then, to link up this new submodule, we needed to add and instance of "seq_mult" to "seq_alu" and add the multiply-command case for "seq_mult" to all switch cases that act as multiplexers for the return value, which was missing in the original.

("[Implementation] A Separate SEND Button")

For this task, to implement a separate SEND button, we had to begin our modification from the top-level module, "nexys3". Here, we added a new input variable, "btnD", to implement a new functionality that automatically performs the SEND function (11), which we will call DISPLAY. Like "btnS", we needed to buffer the previous values of "btnD" to detect a positive edge (on a delayed clock), and if a positive edge is detected, automatically replace the first two bits in the command buffer from the switches (the command type) to (11), which corresponds to SEND. The remaining existing parts of the "nexys3" module will then go through the usual order: passing the modified buffer to "seq" and then that output to "uart_top".

("[Simulation] Nicer UART Output")

For this task, to output everything out in a single line, we needed to buffer the received bytes from the virtual UART receiver. So, in the module "model_uart", we added a buffer register that holds up to 7 bytes, or 56 bits (the reason for 7 bytes is for the next section). To use this buffer, we basically modified the existing subroutine that runs at every negative clock edge to put the current byte in the buffer if the current byte is not a carriage return '\r' or newline '\n', and if the current byte is a carriage return '\r', then display the current contents of the buffer as a string.

("[Implementation] Even Nicer UART Output")

For this task, we needed to include the register number of the value we want to display. So, to do this, we need to pass the register number encoded from the switches (position [5:4]) to the modified submodule "uart_top" from "nexys3". In "uart_top", since it is already implemented as a state machine that would sequentially choose what character to pass to the queue "uart_fifo" and the actual interface "uart", we added additional states to format the output into what we want (we added 4 additional states for the character 'R', one for ':', one for '\n', and one for '\r'). As per the original implementation, "uart_top" will cycle through each of the states in a particular order that follows the requested format ("R<register_number>:<value>").

Simulation Screenshots:

Below are screenshots of the requested waveforms for workshop 2. ("[Implementation] Clock Dividers")

Above are two consecutive occurrences of "clk_en". As we can see, the two occurrences are at 18.351095000ms and 19.661815000ms, respectively. The period for "clk_en" would be **1.31072ms**.

		18.351105000 ms														
Name	Value	0 ms	5 ms	10 ms	15 ms	_,_	20 ms	25 ms	30 m	is	35 ms	40 m	s	45 ms	50 ms	55 ms
U uart_tx_busy	0															
V _{el} rst	0															
Ug arst_i	0					0000000										
▶ St. clk_dv_inc(17:0)	000000000000000000000000000000000000000					******			********				***************************************			
lo is_btnS_posedge	1														\vdash	
l is_btnD_posedge	00								00							
▶ ■ arst_ff[1:0] ▶ ■ clk dv[16:0]	000000000000000000000000000000000000000															
□ cik_dv(16:0) □ cik_en □ c	000000000000000000000000000000000000000															
is cik en d	1															
▶ 👹 inst_wd[7:0]	10000110	(0)X) 0000	0100 × 00000	000 0001001	1 X 100001	10 X	01100011	1100	0000	······································	11010	000	<u> </u>	11100000	V	11110000
16 inst_vid	0				1			1							T^-	
▶ Step_d[2:0]	110	000 X1.		X1X0X1X	1\(0\\1\)	(I)	0\(0\(1\(1\)	0\(101\(1\(0	(0	X 000	χ1χ1χ0.	Xo X	000	1\(1\(0\(0\)	X 000 X	ı(1\(0\(0\()
▶ Step_d_D[2:0]	000		T===:		000						X0X 000	XI XI)(1)(0)	0 000 1	(1)(0)(001)	000 (1)(
▶ ■ inst cnt[7:0]	00000011	00000000	X 00000001 X	00000010	00000011		0000100 × 00	000101 × 0000	0110	0000011	1 00000	000 X	00001001	00001010	00001011	00001100 (
seg in width[31:0]	99099999999999999							00000000000000	000000	00000000100)					
▶ ■ seq op width[31:0]	000000000000000000000000000000000000000							00000000000000	000000	000000000001)					
▶ seq_rn_width[31:0]	000000000000000000000000000000000000000							00000000000000	000000	00000000001)					
seq_num_regs(31:0)	000000000000000000000000000000000000000							00000000000000	000000	00000000010)					
▶ Seq_im_width[31:0]	99099999999999999							00000000000000	00000	00000000010)					
▶ ■ seq_op_push[1:0]	00								00							
▶ ■ seq_op_add[1:0]	01								01							
seq_op_mult[1:0]	10								10							
h == coa on cond(1:0)	11								111							
		X1: 18.35110500	00 ms													

From the above, we can see an instance of "clk_en" = 1. It then immediately becomes 0 when "clk_en_d" becomes 1 exactly 1 "clock_dv" increment later. Given that "clk_en" is set to 1 for 18.351095000ms to 18.351105000ms, or for a duration of 0.00002ms, the duty cycle of "clk_en" would be $(0.00002/1.31072) = \underline{0.00153\%}$. In addition, during the clock cycle that "clock_en" is high, the value of "clock_dv" is 000000000000000000000.

Given that "clk_en" and "clk_en_d" are set to 1 only for 1 "clk_dv", which counts from 0 to 111111111111111 (in binary), the circuit corresponding to these 3 values should look something like the figure below.

("[Implementation] Debouncing") 11010000 00000000 00001011 00001001 00001010 00001100 000 \1...\\0...\\0...\\0.001\\0.000\\1...\\0.0001100 000 (1... ...\101\(1...\\0...\0...\0...\101\(1...\0...\101\(1...\0...\10...\101\(1...\1 000 .\1...\0... 00001001 00000000 00000001 00000010 00000011 X1: 5.243895000 ms Value 01100011 11100000 XX...Y 00000 X 00000000 X 00010011 X 10000110 X 11010000 11110000 1. (0./1..)1 (1./0../1..)1 (0./1./1..)0 (0../1..)1 (0../1..)0 (0../1...)0 (0../1...)0 (0.../1... \(\)1...\(\)1...\(\)0...\(\)0. \(\)0...\(\) 000 \(\)1 \(\) 00001000 (1...\0...\0...\0... (000\1...\00001010 000 \(1...\) \(1...\) \(000 \(1... Value 25 ms 30 ms 3 × 11000000 × × 0000011 × 00000110 × 00000111 45 ms 11100000 (00001010 00000000 00001001 00001011 00001100 X 10000110 11100000 000 ..\1...\0...\ 00001001 000 \(1... 1...\(0...\(1...\(1...\) X1...\0...\1...\1 X0...X1...X1...X .\0...\1...\1...\0...\101\1...\0.. (1...)(0... 000 step_d[2:0]
 step_d_D[2:0]
 step_d_D[2:0]
 step_in_width[3:0]
 steq_in_width[31:0]
 steq_op_width[31:0]
 steq_rn_width[31:0] 000 \(1 000 \(1. 0000011) seq_rn_width[31:0]
 seq_num_regs[31:0]
 seq_im_width[31:0]
 seq_op_push[1:0]
 seq_op_add[1:0]
 seq_op_mult[1:0]

			5.243925000 ms											
Name	Value	0 ms	s ms	10 ms	15 ms	20 ms	25 ms	30 m	s	35 ms	40 ms	45 ms	50 ms	55 ms
▶ 🛂 sw[7:0]	00000100	X 00000100	00000000	00010011	10000110	01100011	11000	000	Х	11010000	X	11100000	X 11	10000
▶ 🕌 led[7:0]	00000001	00000000	00000001	00000010	00000011	0000100	00000101) 00	000110	000001	1 00001000	00001001	00001010	00001011	00001100 (.
l btnS	1													
l₁ cik	1													
 Clk_dv_inc(17:0) 	000000000000000000000000000000000000000													
le is_btnS_posedge	1							Ц_						
🎼 is_btnD_posedge	0													
Sinch (16:0)	0000000000000000011													
la clk_en	Θ													1 1 1
lla cik_en_d	Θ													1 1 1
inst_wd[7:0]	00000100	0XX 00000	00 000000	0001001	1 × 10000110	01100011	11	000000	X_	11010000	XX	11100000	X 11	110000
🐌 inst_vld	0													
■ step_d(2:0)	110	000 (1	X1X0X1X1.		1(1(1)	0X0X1X1.	\0\101\(\1			X1\(1\(0\)C		1 (1 (0 (0		1\0\0\
Step_d_D[2:0]	000				000				(1)(1)(0.			0 000 1		000 (1)
 inst_cnt[7:0] 	00000001	00000000	00000001	00000010	00000011	00000100)		000110	000001		00001001	00001010	00001011	00001100
seq_in_width[31:0]	000000000000000000000000000000000000000						000000000000							
seq_op_width[31:0]	000000000000000000000000000000000000000						000000000000							
seq_rn_width(31:0)	000000000000000000000000000000000000000						000000000000							
seq_num_regs(31:0)	000000000000000000000000000000000000000						0000000000000							
seq_im_width[31:0]	000000000000000000000000000000000000000						000000000000	00000000	000000000010	0				
seq_op_push[1:0]	00							90						
seq_op_add[1:0]	01							01						
seq_op_mult[1:0]	10							10						
con on condition	11	<u> </u>	I.	!		!		11		!			!	
		X1: 5.243925000	ms											

As we can see in the pictures above, when "clk_dv" periodically becomes 0, "clk_en" becomes 1, and in the immediate next "clk_dv", "clk_en" becomes 0 and "clk_en_d" becomes 1 for one "clk_dv". Then, in the immediate next "clk_dv", "inst_vld" is set to 1 for one clock divider signal (as a positive edge has been detected in the previous clock divider period).

In the original code, if we are to use "clk_en_d" instead of "clk_en" in line 102 of "nexys3.v", then we would not be able to detect the positive edge of "btnS", as we need the previous value of "btnS" (queued in array "step_d"). More specifically, the next always block in line 99 with the conditional for "clk_en_d" as well cannot access the "previous" "btnS" value, as it is currently being queued in the same time frame (and no other always block will catch this positive edge in the next time frame).

Shown below is a diagram corresponding to the values clk_en, step_d[1], step_d[0], btnS, clk_en_d, and inst_vld.

("[Implementation] Register File")

			5.243925000 ms													
Name	Value	0 ms	s ms	10 ms	15 ms	20 ms	25 ms		30 ms	1	35 ms	40 ms		45 ms	50 ms	55 ms
► 😽 led[7:0]	60060061	00000000	00000001	00000010	00000011	00000100	00000101	00000	10)	0000011	1 0000100	X	00001001	X 00001010	00001011	00001100
- 👹 sw(7:0)	00000100	X 00000100	00000000	00010011	10000110	01100011	\times	11000000		\times	11010000		Х	11100000) 1	1110000
l∰ clk	1															
1 btnS	1						ш									
1€ btnD	в															
ll btnR	G											_				
■ sw(7:0)	00000100	X 00000100		00010011	10000110	01100011		11000000		Х	11010000		Х	11100000		1110000
■ led[7:0]	00000001	00000000	00000001	00000010	00000011	00000100	00000101	00000	10	0000011	1 0000100	PC	00001001	00001010	00001011	00001100
ใ₽ btnS	1															
l⊑ cik	1															
dk_dv_inc[17:0]	000000000000000000000000000000000000000															
la is_btnS_posedge	1					$\overline{}$										
🎼 is_btnD_posedge	G															
dk_dv(16:0)	000000000000000011															
🔚 clk_en	0											-				
🔚 clk_en_d	8															1 1
- 👹 inst_wd[7:0]	80000100	(0XXX 00000	100 000000	000100 X 000100	11 X 10000110	X 01100011	X	110000	00	X_	1101000	9		11100000	X	1110000
🔓 inst_vld	Э															
rf[0:3,15:0]	[00000000000000100,0	[00000000000000		0000000000100	[000000000X[00	0000000100						000011	,000000001	1000000,0000000	100000000)	
▶ ■ [0,15:0]	000000000000000000000000000000000000000	000000000000000	(000000000)						000		1000000					
[1,15:0]	00000000000000000	0	000000000000000000000000000000000000		4					0	0000000000000011					
▶ ■ [2,15:0]	00000000000000000		0000000000		X_						0000000011					
▶ ■ [3,15:0]	00000000000000000			0000000000000000									00000000			
eton d[2:0]	110	000 X1	¥1X0X1X1	.l. X1 X0X1)	1 Yo Y1 Y1	X0X0X1	1X0X10	1X1Y0	X0X	000	X1X1X0X0	11X	000 X	1	M 000 X1.	

The lines of code where a register is first written a non-zero value are lines 68 and 88, where the "seq_rf" and "seq_alu" are wired to sequentially evaluate the instructions to perform. "seq_alu", when performing a PUSH instruction, would simply perform assignments to "o_data" and "o_valid" in separate switch cases in separate always blocks (in lines 32 and 40 in "seq_alu.v", respectively). One thing to note is that although the assignments are blocking, there is only a single line performed in each, so the underlying execution is still sequential. Finally, the output would be passed to "seq_rf" to update the register files.

The values that "seq_alu" gets from "seq_rf" are also received through sequential execution. "seq_rf" would return 2 values from two register numbers, which it receives as input). The output values are wired to "seq_alu" to perform the computation, and the return values is passed back to "seq_rf" on the next clock cycle.

If I were to implement the readout logic, I would use flip-flops (particularly D flip-flops) to cache the previous value in the previous time frame to keep particular input values constant as they are not done being loaded (ie when "seq_rf" needs the output of "seq_alu" to update registers, I would use D flip-flops to keep the previous input loaded to keep the "seq_alu" module on standby). In addition, for the actual registers, D flip-flops can allow for persistent storage (until the next write-in) one can continuously perform read-out with. Below is a simple circuit diagram of the register file block.

Netlists:

("[Implementation] Missing Multiply Operation")

As we can see above, when we added "seq_mult" to "seq_alu", a new module is instantiated, and a new case is considered by the multiplexers (case statements in Verilog code).

Tthe above 2 pictures show the implementation changes from adding a new button for DISPLAY ("btnD"), like changing the conditional for when a command (SEND or DISPLAY) button is pressed and adding an input to a multiplexer to manipulate variable "inst_wd[7:0]" (not shown).

("[Simulation] Nicer UART Output")
We cannot actually generate any netlists for "model uart".

The above would be the effects of adding a new input "i_reg" (to display register number) and adding extra states to "uart_top".

Inferences:

(Challenges)

The main challenge in our case would be learning how to read the logic flow sequential logic through each submodule in the project. In addition, we needed to know how each submodule connected to each other, and where we can make changes to the existing code to implement new functionalities (ie adding new states to "uart top").

Also, this lab provided us with a good basis for experimenting how to use Xilinx ISE for debugging and testing purposes.

(Mistakes)

We definitely spent more time that needed in modifying "uart_top", especially with caching characters to send over UART and the state machine implementation (which took longer than it should have).