Report 11486 4 August 1999

Integrated Advanced Microwave Sounding Unit-A

GENCORP *A*EROJET

Contract No. NAS 5-32314 - CDRL 208

Performance Verification Report

METSAT AMSU-A2 (PN: 1331200-2, SN: 108)

Antenna Drive Subsystem

Submitted to:

(AMSU-A)

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

Aerojet

•

i i

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)
Performance Verification Report
Antenna Drive Subsystem
METSAT AMSU-A2 (PN: 1331200-2, SN: 108)

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

				•
		,		
•				
	•			
	•			
			-	
	-			

AMSU-A VERIFICATION TEST REPORT

TEST ITEM:

METSAT AMSU- A2 ANTENNA DRIVE

SUBSYSTEM

PART OF P/N: 1331200-2 SERIAL NUMBER: 108

LEVEL OF ASSEMBLY:

SUBASSEMBLY AND COMPLETE INSTRUMENT

ASSEMBLY

TYPE HARDWARE:

FLIGHT

PROCEDURE NO:

AE-26002/2E

TEST COMPLETION DATE:

22 APRIL 1999

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	SUMMARY
3.0	TEST CONFIGURATION - SUBASSEMBLIES
4.0	TEST CONFIGURATION - SUBSYSTEM
5.0	TEST RESULTS
5.1	DRIVE AND COMPENSATOR ASSEMBLIES
5.2	CIRCUIT CARD ASSEMBLIES (CCAs)
5.3	SIGNAL PROCESSOR
5.4	TRANSISTOR ASSEMBLY
5.5	ANTENNA DRIVE SUBSYSTEM TESTS
5.5.1	SCAN MOTION AND JITTER
5.5.2	PULSE LOAD BUS PEAK CURRENT AND RISE TIME
5.5.3	RESOLVER READING AND POSITION ERROR
5.5.4	GAIN AND PHASE MARGIN
5.5.5	OPERATIONAL GAIN MARGIN
6.0	CONCLUSION
7.0	TEST DATA

1.0 INTRODUCTION

The antenna drive subsystem test was performed on the METSAT AMSU-A2 S/N 108 (P/N 1331200-2) instrument. The objective of the test was to demonstrate compliance with applicable paragraphs of AMSU-A specification S-480-80 when tested using AE-26002/2E. Tests were conducted at both the subassembly and subsystem (instrument) level.

2.0 SUMMARY

The performance verification tests include 1) scan motion and jitter, 2) pulse load bus peak current and risetime, 3) resolver reading and position error, 4) gain and phase margin and 5) operational gain margin.

Subassembly tests are performed on the drive assembly, compensator assembly, circuit card assemblies (CCAs), signal processor and the transistor assembly. The transistor assembly was tested during the W3 cable assembly (1356946-1) test. Refer to Figure 1 for test flow.

Antenna Subsystem and Subsystem Component Test Flow Figure 1.

The antenna drive subsystem satisfactorily passed all tests to verify the performance requirements. There were no failures in any of the antenna drive components during subsystem testing. There were several anomalies during subassembly testing. Refer to paragraph 5.0 for a discussion of test results.

3.0 TEST CONFIGURATION – SUBASSEMBLIES

Subassemblies are tested using a variety of test fixtures as required to perform the necessary tests.

Drive Assembly – Prior to complete buildup of this assembly, a starting torque test is performed on the rotating part of the assembly. The test is performed at temperatures of 23, 4, and -10 °C. The tests performed on the completed assembly are 1) motor commutation, 2) resolver operation and no-load speed, 3) temperature sensor resistance and output voltage and 4) random vibration. Motor commutation and resolver operation and no-load speed are repeated after vibration.

Compensator Assembly – The tests performed on this assembly are 1) motor commutation, 2) temperature sensor resistance and output voltage and 3) random vibration. Motor commutation is repeated after vibration.

CCAs – All CCAs are tested prior to being incorporated into the signal processor. They are tested to verify functionality and the derived performance requirements.

Signal Processor – Part of the signal processor test is associated with the antenna drive subsystem. The test includes all applicable CCAs installed in the signal processor card cage, the STE with the associated cabling to the signal processor, and a test motor and inertia wheel to simulate the antenna drive motor and reflector load. This test demonstrates that all signal processor scan drive circuitry is functioning as a subsystem prior to assembly into the instrument. During the tests, qualitative reflector position for the various scan modes is verified by visually observing an index mark on the inertia wheel.

Transistor Assembly – The W3 cable is first tested on the CKT 1000 (continuity and hipot tester). The transistor assembly is then mated with the W3 cable, and tested using a special test fixture. The test assures that the transistors saturate when turned on, and that they turn off.

4.0 TEST CONFIGURATION – SUBSYSTEM

The antenna drive subsystem tests are performed after all of the scan drive subassemblies are assembled into the instrument, and the subsystem is tested in accordance with AE-26002/2 during system integration. At the beginning of system integration testing, the instrument is first proven electrically safe by ground isolation and power distribution checks. The instrument is supplied with 28 Vdc from the STE, and the DC-DC converter is installed to supply the other required voltages to the CCAs.

The tests performed to verify performance are 1) scan motion and jitter, 2) pulse load bus peak current and risetime, 3) resolver reading and position error, 4) gain and phase margin and 5) operational gain margin. In order to verify scan motion and jitter, it is necessary to obtain real time measurement of the drive assembly shaft position. This is done by using a continuous rotation potentiometer (pot) mechanically coupled to the drive assembly shaft, and connecting a source of dc voltage across the pot. The voltage at the pot wiper then gives a voltage analog of shaft position for each revolution of the shaft.

Prior to the performance verification tests, there are five operations performed. These are described as follows:

- 1. An EPROM is programmed with the reflector position commands (14-bit digital words) which are calculated from the nadir position obtained on the antenna range. This PROM is one of the components on the memory board in the signal processor, and it is under microprocessor control for positioning the reflector. Reprogramming may be necessary if the measured reflector positions are not within the specified limits. (See 5.5.3).
- 2. After obtaining the PROM, the instrument is powered, and scan motion is qualitatively checked to conform to the pattern as shown in Appendix B1.
- 3. The motor (drive and compensator) current limits are set with select at test (SAT) resistors.
- 4. The individual steps in the scan are tailored for risetime, overshoot and jitter with SAT resistors which are part of circuits in the rate loop.
- 5. The mechanical resonant frequencies of the drive assembly and reflector are identified. They are then nullified by selecting the appropriate frequencies for three notch filters.

The antenna drive subsystem subassemblies designated for use in the METSAT AMSU-A2 S/N 108 instrument are shown in Table 1.

CCAs	S/N
Resolver Data Isolator	F33
Interface Converter	F25
Motor Driver 3-Hall Sensor	F03
Motor Driver 3-Hall Sensor	F02
R/D Converter/Oscilator	F11

OTHER	S/N
Antenna Drive Assembly	F07
Compensator Assembly	F05
Signal Processor	F04
Transistor Assembly (W3 Cable)	NONE

Table 1. A2 108 Subassembly S/N

5.0 TEST RESULTS

The test results for the subassemblies are first presented in paragraphs 5.1 through 5.4. The subsystem test results are presented in 5.5.

5.1 DRIVE AND COMPENSATOR ASSEMBLIES

During electrical test of the F07 drive assembly, the motor would not start (TAR 003199). Disassembly and inspection revealed that excessive bonding material resulted in bonding of the shaft and cover. The excess material was removed, and the area was cleaned. Step 20 of MAI 32 was revised to clarify the quantity and placement of bonding material. The unit then passed electrical test.

During electrical test of the F05 compensator assembly, the motor would not start (TAR 003124). Disassembly and inspection revealed that the Hall effect sensors had been broken off from the circuit board. It was determined that this occurred during assembly when the temporary spacers between the rotating assembly and stator were being removed. The number of spacers was reduced, and their placement was changed to preclude this happening again. The Hall sensor board was replaced, and the unit passed electrical test.

5.2 CCAs

There were no test anomalies or failures during testing of the CCAs for this instrument. The test data sheets (TDSs) for the CCAs are presented in Appendicies A1 trhrough A4.

5.3 SIGNAL PROCESSOR

There were no test anomalies or failures during the scan drive part of the testing of the signal processor for this instrument.

5.4 TRANSISTOR ASSEMBLY

There were no test anomalies or failures during testing of the transistor assembly for this instrument.

5.5 ANTENNA SUBSYSTEM

There were no test anomalies or failures during testing of the antenna drive subsystem for this instrument. A discussion of test results is given in paragraphs 5.5.1 through 5.5.5.

5.5.1 SCAN MOTION AND JITTER

In this test, the antenna position is measured in a series of five full scans. The measurement was made with the continuous rotation test pot temporarily affixed to the motor shaft. A Dynamic Signal Analyzer (DSA) is connected to the pot wiper to record the antenna position. Five scans were captured and stored on the AMSU-A2 Test Data File disc. One representative pattern is presented in Appendix B1.

Each 3.33 degree scene step was expanded in order to verify risetime, overshoot and jitter. The risetime limit is 42 ms, the jitter limits are ±5 % and the overshoot limit is 4 % above the upper jitter limit. The expanded waveforms were plotted and are presented in Appendicies B2 through B59. All of the scene steps meet the step response requirements.

Slew periods to the cold and warm calibration stations were measured and met requirements. A time of 0.21 s is allowed for the 35 degree slew to cold cal, and 0.4 s for the 96.67 degree slew to warm cal. Calibration station jitter is less than the ± 5 % maximum allowed. Expanded waveforms were plotted and are presented in Appendicies B60 and B61. The waveforms are also stored on the AMSU-A2 Test Data File disc. The test data sheet is presented in Appendix B62.

5.5.2 PULSE LOAD BUS PEAK CURRENT AND RISE TIME

The peak current must be less than 2 A at any beam position along the scan, and it was measured to be 1.988 A. The current risetime while transitioning from one beam position to the next, and the risetime at the start and stop of the slew to warm cal position must be greater than 70 μ s. One 3.33° step was selected, and the risetime is 2.34 ms. For the slew to warm cal, the times are 2.43 ms and 2.34 ms for start and stop respectively.

The full scan pulse load bus current waveform is presented in Appendix C1, and the TDS is presented in Appendix C2. The waveform is also stored on the AMSU-A2 Test Data File disc.

5.5.3 RESOLVER READING AND POSITION ERROR

Reflector positions are obtained by using the STE, which displays the resolver readings to be compared with the position commands. Two readings are taken, one at the start of integration (LOOK 1), and the other halfway into the integration period (LOOK 2). The limits on the difference between the reported position (actual) and the command are ± 10 counts for LOOK 1 and ± 5 counts for LOOK 2. A table of reflector position commands and the reported position obtained from the STE computer printout is shown in Table 2, together with the differences between actual and command.

		Acı	tual	Differ	ence*			Act	tual	Differ	ence*
BP	Command	Look I	Look 2	Look 1	Look 2	BP	Command	Look 1	Look 2	Look 1	Look 2
1	8368	8369	8369	1	1	19	5638	5642	5639	4	1
2	8216	8218	8216	2	0	20	5486	5488	5486	2	0
3	8064	8068	8064	4	0	21	5334	5338	5334	4	0
4	7913	7918	7914	5	1	22	5183	5187	5183	4	0
- 5	7761	7762	7761	1	0	23	5031	5034	5031	3	0
6	7609	7613	7610	4	l	24	4879	4882	4879	3	0
7	7458	7462	7459	4	1	25	4728	4732	4728	4	0
8	7306	7309	7306	3	0	26	4576	4579	4576	3	0
9	7154	7157	7155	3	1	27	4424	4428	4425	4	1
10	7003	7008	7004	5	1	28	4273	4277	4274	4	l
11	685 I	6855	6852	4	1	29	4121	4123	4121	2	0
12	6699	6703	6699	4	0	30	3969	3972	3970	3	I
13	6548	6552	6548	4	0	WC	14361	14362	14362	I	I
14	6396	6396	6396	0	0	CC1	2376	2377	2377	1	1
15	6244	6247	6244	3	0	CC2	2452	2451	2451	-1	-1
16	6093	6098	6093	5	0	CC3	2528	2529	2529	I	I
17	5941	5945	5941	4	0	CC4	2679	2680	2680	1	1
18	5789	5792	5789	3	0						

BP = Beam position

*Actual - Command

Table 2. Reflector (Beam) Position Commands and Measurements

5.5.4 GAIN AND PHASE MARGIN

The gain and phase margin test is performed on the position control loop of the antenna drive subsystem. Three separate open loop gain and phase plots (measured with the loop closed) are obtained. The DSA is used to make the plots using the swept sine mode. Gain margin is measured at the –180° phase crossover frequency, and phase margin is measured at the 0 dB gain crossover frequency. The margins on each of the three plots are above the minimum specification requirement of 12 dB and 25 degrees for the gain and phase respectively. The plots are presented in Appendices D1 through D6, and the TDS is presented in Appendix D7. The plots are also stored on the AMSU-A2 Test Data File disc.

5.5.5 OPERATIONAL GAIN MARGIN

The operational gain margin test is also done three times. This test consists of increasing the gain inside the rate loop until oscillation occurs. The gain increase is calculated and the frequency of oscillation is measured from the spectrum plot using the DSA. An increase in gain greater than 9 dB is required, and the frequency of oscillation is just recorded.

To increase the gain, a 50 k Ω pot is connected in series with the R58 feedback resistor on amplifier AR8 on the R/D Converter/Oscillator CCA. The resistance of the test pot is slowly added to the feedback resistor while observing the reflector for oscillations. The reflector begins to produce an audible sound as gain is increased to the point of oscillation. Table 3 shows the added resistance values and the calculated gain margin.

	Gain
Resistance (kΩ)	Margin
	(dB)
40.315	9.51
40.877	9.59
39.805	9.44

Table 3. Pot Resistance and Operational Gain Margin

The first mode mechanical resonance of the shaft and reflector is about 78 Hz as shown in the power spectrum. The spectrum was plotted and is presented in Appendix E1, and the TDS is presented in Appendix E2. The spectrum plot is also stored on the AMSU-A2 Test Data File disc.

6.0 CONCLUSION

Based on the test results, it can be concluded that the METSAT AMSU-A2 S/N 108 antenna drive subsystem meets the AMSU-A specification requirements.

7.0 TEST DATA

Test data for the CCAs and the antenna drive subsystem is presented in the appendices as outlined in the Appendix Index on the following page.

APPENDIX INDEX

Appendix A1Resolver Data Isolator CCA TDS
Appendix A2 Interface Converter CCA TDS
Appendix A3 Motor Driver 3-Hall Sensor CCA TDS
Appendix A4R/D Converter/ Oscillator CCA TDS
Appendix B1Full Scan Step Response
Appendix B2 thru B59Single Step Responses
Appendix B60Cold Calibration Step Response
Appendix B61Warm Calibration Step Response
Appendix B62Scan Motion and Jitter TDS
Appendix C1Peak Pulse Load Bus Current Waveform
Appendix C2Pulse Load Bus Current TDS
Appendix D1 thru D6Gain and Phase Margin Plots
Appendix D7Gain and Phase Margin TDS
Appendix E1Operational Gain Margin Power Spectrum
Appendix E2Operational Gain Margin TDS

			
	•		
		*	

TEST DATA SHEET B-6 (Sheet 1 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

Date: $\frac{7/28/4}{5N}$: $\frac{533}{5}$

1334972-1

6.6.7.1 Supply Voltages

Supply*	Measured Value (V)	Limits (Vdc)	Pass/Fail
+5 V (I)	15.00	± 0.25	P
+5 V (U)	45.06	± 0.25	f

6.6.7.2 Supply Currents

Steps 1 and 2:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	53.47	100 max	P
+5 V (U)	324.10	400 max	P

Steps 3 and 4:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	82.91	150 max	P
+5 V (U)	11.94	30 max	P

^{*} I = Isolated, U = Unisolated

6.6.7.3 Resolver Data

Bit No.	Pass/Fail
API 0 - AP Bit 0	P
API 1 - AP Bit 1	P
API 2 - AP Bit 2	l P
API 3 - AP Bit 3	<u> </u>
API 4 - AP Bit 4	l P
API 5 - AP Bit 5	
API 6 - AP Bit 6	P
API 7 - AP Bit 7	<u> </u>
API 8 - AP Bit 8	<u> </u>
API 9 - AP Bit 9	P
API 10 - AP Bit 10	P
API 11 - AP Bit 11	ρ
API 12 - AP Bit 12	P
API 13 - AP Bit 13	P

6.6.7.4 Converter Busy Pulse

Converter Busy Pulse	Measured Value (µsec)	Limits (µsec)	Pass/Fail
15.0	14.45	± 3.0	P

				-	-
	,				
·					
			-		
			-		

TEST DATA SHEET B-6 (Sheet 2 of 2)

Comments:	117				
	1 14 0	- -			
·					
			_		
			•		
			-	•	
			•		÷
Conducted by:	Penilan Vest Engineer	/	1/28/97		
Verified by:	Quality Control Inspec	New (260) 0%	7/29/97		
Approved by:	Descrip Arma	Da Da	169/97 te		

TEST DATA SHEET B-13 (Sheet 1 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date: 8/6/97 CCA S/N: F25 133 | 497 - 1

6.13.7.1 Supply Voltages

Supply	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
+5V (U)	5.00	+5V± 0.05	1 6
+15V (I)	15.00	+15V± 0.15	P
-15V (I)	-14.97	-15V± 0.15	Ι θ
+5V (I)	5.02	+5V± 0.05	١ و

6.13.7.2 Supply Currents

Step 1 (CP and API Low):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	36.70	70 - 110	1 8
+5V (I)	3, 40	1.5 - 5.5	1
+15V (I)	17.96	15 - 23	P
-15V (I)	20.57	18 - 26	<u> </u>

Step 2 (CP and API High):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
Supply	Measured Value (III I)	40 - 70	P
+5V (U) +5V (I)	72.96	18 - 30	P
+3V (I) +15V (T)	17.96	15 - 23	P
-15V (I)	20.57	18 - 26	<u></u>

6.13.7.3 Amplifier Offsets

Amplifier	Measured Value (mV)	Limits (mV)	Pass/Fail
AR1	+0.14	0.0 ±0.15	P
AR2	-0.10	0.0 ±2.0	<u> </u>

TEST DATA SHEET B-13 (Sheet 2 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

		Conversion / 0	3 9-10-97	± 0.000	
tep 1:				\$ 20.000	30
	Actual Position (API)	Command Position (CP)	AR1 Output	Test Result	
	MSB LSB	MSB LSB	Voltage Required (Vdc)	(Vdc)	Pass/Fa
	00000000000000	00000000000000	0.00000	10.00014	
	00000000000001	00000000000000	-0.00061	-0.000433	1
	00000000000010	00000000000000	-0.00122	- 0.001056	0
	0000000000011	00000000000000	-0.00184	-0.001681	9
	00000000000100	000000000000000	-0.00245	-0.002310	
	0000000001000	00000000000000	-0.00490 ★	-0.004797	P
	0000000010000	00000000000000	-0.00979 ★	-0.009764	0
	0000000100000	00000000000000	-0.01958 *	-0.019700	- 0
	0000001000000	00000000000000	-0.03917 🖈	-0.039572	
	00000010000000	. 00000000000000	-0.07834 🛧	-0.079323 -0.15882	
	00000100000000	00000000000000	-0.15667 *	-0.1785	
	00001000000000	00000000000000	-0.31334 ⊀		
	. 00010000000000	00000000000000	-0.62669 🛧	-0.63598	
	00100000000000	00000000000000	-1.25338 *	-1.5447	
		00000000000000	-2.50675 🛠	1-4.7411	
. i	0100000000000			F 0 X99	
	10000000000000000 Tolerance on output vol	00000000000000	-5.01350 * umfummed 9-10-97	± 0.000 ± 0.000 ± 0.000	60
* Step 2:	10000000000000000 Tolerance on output vol	00000000000000000000000000000000000000	-5.01350 * WMfummed 9-10-97	± 0.000 ± 0.000 ± 0.000	60
	10000000000000000 Tolerance on output vol	00000000000000000000000000000000000000	-5.01350 * WM fumme 9-10-97 ARI Output	± 0.000 ± 0.000 ± 0.000	30
	1000000000000000000 Tolerance on output vol	00000000000000000000000000000000000000	-5.01350 * Winfumme 9-10-97 AR1 Output Voltage Required (Vgc)	土 0.000 土 0.000 土 0.000 (Test Result (Vdc)	30
	1000000000000000 Tolerance on output vol Actual Position (API)	00000000000000000000000000000000000000	-5.01350 * WyfummeQ 9-10-97 ARI Output Voltage Required (Vgc) 0.00000	# 0.000 # 0.000 # 0.000 Test Result (Vdc)	60 30 Pass/Fa
	1000000000000000000 Tolerance on output vol Actual Position (API) MSB LSB	00000000000000000000000000000000000000	-5.01350 * WyfummeQ 9-10-97 ARI Output Voltage Required (Vdc)/ 0.00000 0.00061	土 0.000 土 0.000 土 0.000 (土 0.000 (Vdc) 10.00014 10.000756	Pass/Fa
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000000000000	00000000000000000000000000000000000000	-5.01350 * Wypfumme 9-10-97 AR1 Output Voltage Required (Vgc) 0.00000 0.00061 0.00122	土 0.000 土 0.000 土 0.000 (Pass/Fa
	100000000000000000 Tolerance on output vol Actual Position (API) MSB	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184	10.000 10.000 10.000 10.00014 10.00014 10.001390 10.002003	Pass/Fa
	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245	10.000 10.000 10.000 10.00014 10.001390 10.002628	Pass/Fa
	10000000000000000 Tolerance on output vol Actual Position (API) MSB	00000000000000000000000000000000000000	-5.01350 * Wyfum Q 9-10-97 ARI Output Voltage Required (Vgc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 *	± 0.000 ± 0.000 ± 0.000 10.00014 10.000156 10.001390 10.002628 10.002628 10.005113	Pass/Fa
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 000000000000000 00000000000000 0000000	00000000000000000000000000000000000000	-5.01350 * Wyfum Q 9-10-97 ARI Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 *	± 0.000 ± 0.000 ± 0.000 10.00014 +0.000756 +0.001390 +0.002628 +0.005113 +0.010100	Pass/Fa
	1000000000000000000 Tolerance on output vol Actual Position (API) MSB	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 *	10.000 10.000 10.000 10.00014 10.000756 10.001390 10.002003 10.002628 10.005113 10.010100 10.020042	Pass/Fa P P P P P P P P P P P P P P P P P P P
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 000000000000000 00000000000000 0000000	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 *	10.000 10.000 10.000 10.00014 10.000156 10.002628 10.002628 10.005113 10.010100 10.020042 10.039926	Pass/Fa P P P P P P P P P P P P P P P P P P P
	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * Wyfum Q 9-10-97 AR1 Output Voltage Required (Vec) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 *	10.000 10.000 10.000 10.00014 10.000156 10.00203 10.002628 10.005113 10.010100 10.02042 10.039916 10.019668	Pass/Fa P P P P P P P P P P P P P P P P P P P
	1000000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 000000000000000 00000000000000 0000000	00000000000000000000000000000000000000	-5.01350 * One for a contract of the contract	± 0.000 ± 0.000 ± 0.000 10.00014 +0.000756 +0.001390 +0.002628 +0.005113 +0.010100 +0.02042 +0.039926 +0.019668 +0.15924	Pass/Fa P P P P P P P P P P P P P P P P P P P
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000 0000000000000 00000000	00000000000000000000000000000000000000	-5.01350 * Wyfumy 2 9-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 *	# 0.000 # 0.000 # 0.000 # 0.000 10.00014 10.000756 10.002628 10.002628 10.005113 10.010100 10.02042 10.039916 10.019668 10.15924 10.31833	Pass/Fa P P P P P P P P P P P P P P P P P P P
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000 0000000000000 00000000	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 * 0.62669 *	# 0.000 # 0.000 # 0.000 # 0.000 # 0.00014 # 0.001390 # 0.002628 # 0.002628 # 0.003113 # 0.010100 # 0.010100 # 0.019668 # 0.019668	Pass/Fa P P P P P P
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000 0000000000000 00000000	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 * 0.62669 * 1.25338 *	# 0.000 # 0.000 # 0.000 # 0.000 # 0.000 # 10.000 #	Pass/Fa P P P P P P
	100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000 0000000000000 00000000	00000000000000000000000000000000000000	-5.01350 * Wyfumme 9-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 * 0.62669 *	# 0.000 # 0.000 # 0.000 # 0.000 # 0.00014 # 0.001390 # 0.002628 # 0.002628 # 0.003113 # 0.010100 # 0.010100 # 0.019668 # 0.019668	Pass/Fa P P P P P P P P P P P P P P P P P P P

TEST DATA SHEET B-13 (Sheet 3 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.5 Strobe Fu	nction		
Step 1: Strobe Low		Pass/Fail	. '
No E11 Change with Input CP C		<u></u>	
Step 2: Strobe High	h	Pass/Fail	ı
E11 Change with Input CP C	Changes	<u></u>	
6.13.7.6 Amplifier	<u>Gain</u>		
E11	Measured Value (Vdc) 0.31833	Limits (Vdc) Pass/Fail	
E10	3.4931	<u> </u>	. •
E10 Voltage E11 Voltage	10.97	10.7 - 11.3	
6.13.7.7 <u>Ground Is</u>	<u>olation</u>		
,	Measured Value (M Ω)	Limits (MΩ) Pass/Fail	
Pin 91 to Pin 7 DC Resistance	larger than 115MN	>20	
Comments: NoNE			
	· -D	01/164	
Conducted by:	Test Engineer // /	8/6/97 Date	
Verified by:	Quality Control Inspector	10/10/97 Date	
Approved by:	DCMC Thomas	10/14/99 Date	

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N:

4/17/97

Date:

1331494-4

6.4.3.2 Input Signal Offset

Step No.	Test Results	Limits
4	1,21 mV	0.0 ±1 mVdc
6	1.41 mV	0.0 ±1 mVdc
3	0.93 hV	0.0 ±1 mVdc

Step No.	Test Resistor	Resistance Measured
13	E7-ES (R25)	3.16K
.,,	E9-E10 (R52)	4.80k
	E11-E12 (R33)	3.40k
	E13-E14 (R53)	5.80K
	E15-E16 (R42)	3.161
	E17-E18 (R54)	4.30k

Step No.	Resistors	Selected Trim Resistors
14	R25	RNC55 J3161FS
	R52	RNC55J4751ES
-	R33	RNC55T34ØIFS
	R53	RNCSSISCZIFS
<u> </u>	R42	RNC 5533161FS
	R5+	RNC 55 J 422 I FS

Step No.	E Point	Test Results	Limits	¿ Pass/Fail
19	E19	-001nV	0.0 ±1 mVdc	P
' * F	E20	0.02hV	0.0 ±1 mVdc	P
}	E21	0.04mV	0.0 ±1 mVdc	<u> </u>

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

Test Results 5.00 V 52.6 mA 15.07V	+5V±0.05Vdc 70mAdc max +15V±0.15Vdc	P
52-6 MA	70mAdc max	8
		0
1 Z · · · I V		1
1.5 mA	3.0m.Adc max	P
14 981/	-15V±0.15Vdc	8
18 5m4	25mAdc max	P
· · · · · · · · · · · · · · · · · · ·	+28V±0.5Vdc	P
	8mAdc max	P
	400mVdc max	P
	50m.Adc max	P
		7
	14.98V 18.5m4 28.c3V 5.6mA 275mV 422mA 211.2 MA	14.98V -15V±0.15Vdc 18.5m4 25mAdc max 28.c3V +28V±0.5Vdc 5.6mA 8mAdc max 275mV 400mVdc max 4127hA 50mAdc max

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
31EP 110.	280 hV	400mVdc max	P
	36.6mA	50mAdc max	P
	40.0 m A	50mAdc max	P

6.4.3.4 Current Limit Test

Comments:

Step No.	Test Results	Limits	Pass/Fail
2	460 MA	350-500mAdc	

Conducted by:	Test Engineer Date
Verified by:	Quality Control Inspector Date
Approved by:	1/29/97

43

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N: Date: FØ3 4/17/97

Date:

133 1694-4

6.4.3.2 Input Signal Offset

Step No.	Test Results	Limits
4	1.49 NV	0.0 ±1 mVdc
6	100mV	0.0 ±1 mVdc
9	1 45 mV	0.0 ±1 mVdc

Step No.	Test Resistor	Resistance Measured
13	E7-E8 (R25)	2.80K
	E9-E10 (R52)	4.50K
	E11-E12 (R33)	2.80K
	E13-E14 (R53)	3.20 k
	E15-E16 (R42)	2. 30k
	E17-E18 (R54)	4.35K

Step No.	Resistors	Selected Trim Resistors
14	R25	RNC5552801FS
	R52	RNC55J4531FS
	R33	RNG 55 J 2801 FS
}	R53	RNC55 53741FS
-	R42	RNC55J2801FS
	R54	RNC55J422 FS

Step No.	E Point	Test Results	Limits	Pass/Fail
19	E19	- 0.05mV	0.0 ± 1 mVdc	
	E20	+0.05mV	0.0 ± 1 mVdc	P
}	F21	+0.06 mV	0.0 ± 1 mVdc	Ι₽

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
2	15.00V	+5V±0.05Vdc	P P
- F	52.4 mA	70mAdc max	P
}	+15.07 V	+15V±0.15Vdc	<u> </u>
<u> </u>	1.6 MA	3.0mAdc max	P
· }	-15.00V	-15V±0.15Vdc	ρ
<u>}</u>	is ma	25mAdc max	P
}	128.04V	+28V±0.5Vdc	P
}	6 m A	8mAdc max	P
	+277mV	400mVdc max	P
<u> </u>	42.1 mA	50mAdc max	₹
	47.5 mA	50mAdc max	P

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
Step No.	3 0 h V	400mVdc max	P
<u> </u>	37.2 hA	50mAdc max	P
	388mA	50mAdc max	P

6.4.3.4 Current Limit Test

Comments: NONG

Step No.	Test Results	Limits	Pass/Fail	
2	450 MA	350-500mAdc	[P]	

•	
_	
_	
Conducted by:	Jernester 174, 4/17/97
conducted by:	Test Engineer / 269 Date
37 '6 11	Judia Warrell 04/28/97
Verified by:	Quality Control Inspector Date
	MA 14/29/91
Approved by:	
	DCMC

TEST DATA SHEET B-5 (Sheet 1 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date	3/26/97
CCA S/N	FIL
	1737739-2

6.5.7.1

UUT Pre-Test

Step 2:

Supply Currents (Without UUT)

Supply (Vdc)	(Baseline) Measured Value (mA) (Without UUT)	Limits (mA)	Pass/Fail
+15	0.06	0-1	P
-15	-0.28	-1 - 0	<u> </u>
+5	0.06	0-1	P

Supply Voltages (Without UUT)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.02	± 0.50	P
-15V (I)	-15.02	± 0.50	P
+5V (I)	5.03	±0.25	P

Step 6:

Supply Currents (UUT Installed)

	Supply (Vdc)	Measured Value (mA) (UUT Installed)	Difference (mA) (Measured - Baseline)	Limits (mA)	Pass/Fail
ŀ	.15 .	32.20	32.14	20-40	<u> </u>
ŀ	-15	37 84	- 37.56	-3050	P
ŀ	+5	56.76	56.70	30-70	<u> </u>

6.5.7.2 Supply Voltages (UUT Installed)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.01	± 0.50	<u> </u>
-15V (I)	-14.97	± 0.50	P
+5V (I)	5.02	±0.25	J P

6.5.7.3 Oscillator Frequency, Duty Cycle, and Output Voltage

	Measured Value	Limits	Pass/Fail
Parameter	1610 HZ	1550-1650 Hz	P
Frequency Duty Cycle	51.7%	45-55 %	P
Output Voltage	8.03 V	7.6-8.4 Vrms	<u></u>

TEST DATA SHEET B-5 (Sheet 2 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.4 R-D Converter Operation

Step 1:

Bit Number/	CW	CCW
Test Fixture Label	Pass/Fail	Pass/Fail
API 0/1	P	l l
API 1/2	P	
API 2/3	P	P
API 3/4	P	P
API 4/5	P	· P
API 5/6	· P	P
API 6/7	P	· P
API 7/8	P	P
API 8/9	P	P
API 9/10	P	ρ'
API 10/11	P	<u> </u>
API 11/12	<u> </u>	<u></u>
API 12/13	<u> </u>	<u> </u>
API 13/14	P	
Converter Busy	P	Р

Step 2:

RS	Measured Value	Calculated Value (Vdc) *	Calculated Value (Vdc) *	Pass/Fail
(E10)	(Vdc)	CCA -1 Assy	CCA -2 Assy	
CW Rotation**	1.557	(+) N/A	(+) 1.790	P
CCW Rotation**	- 1.846	(-) N/A	(-) 1.790	Р

* Signal level function of test and calibration gain resistors. Record calculated value and measured value. Measured value shall be within ±10 percent of calculated value. The equation is as follows:

$$V = \pm 0.155 \left(\frac{R20}{R17} \right) \pm 10\%$$

$$\frac{225}{3-26-97} = 0.155 \left(\frac{59t}{5.11k} \right)$$

$$\frac{20}{20} = 0.155 \left(\frac{59t}{5.11k} \right)$$

8-25-91

6.5.7.5 Amplifier Gain

6.5.7.6 <u>Direction Control Signal</u>

DIR CNTRL	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
CW Rotation	5.000V	4.5 to 5.5	$\perp P$
CCW Rotation	0.132 V	0.0 to 0.4	P

TEST DATA SHEET B-5 (Sheet 3 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Frequency	Measured Value (Hz)	Calculated Value (Hz) * CCA -1 Assy	Calculated Value (Hz) * CCA -2 Assy	Pass/Fail
AR3 Notch	NIA	N/A	NA	N/A
AR4 Notch				
AR5 Notch	1	1	4	ν.
* Notch frequencies: and measured values		f values determined by test a	nd calibration resistors. Rec	ord calcula
Comments: NON1	£	. ,		
·			·	
	·	•:		
·				
Conducted by:	Test Engineer 3	8/26/97 Date	-	
Verified by:	Quality Control Inspector	1609 15 '97 Date		
Approved by:	DCMC	11-14-97 Date		

				•	
r					
	•				
		-			
			•		
			•		
	•				

BK

T 00 C

シャロン

320

93

大光切以圧

 $\Delta Y = 18.01 \text{mV}$

 $\forall = 1$

B43

847

7 m /	Market Market						2 · · · · · · · · · · · · · · · · · · ·	5.82 (Datitules 856	
$\triangle \forall = 1 \ge$.			,035mV	1,68%				Lingh! Dans	
Y=16.2153	Time = 41.4/ m Sec		12.07mVpp = ± 6	6.035 mV = ±				Titter Test	
1.41mS Y 356.8mV	Rise Time =		Jitter = 12	7 Titter= I	· · · · · · · · · · · · · · · · · · ·			Motion and 7 3.4.5.5 5700 28-29	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>		•					2 Sec 71-	
00 0.1 00 1 00 1 00 1	m i	F > 100		(>	<u>:</u>	10. B	35-168 35-168 133.1200-2	

٠,		No. Market			· • · · · · · · · · · · · · · · · · · ·	: · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		5.05 25:44
		Ar and boat was	:	· · · · · · · · · · · · · · · · · · ·		2			3
) 	. .	عاديد ماديد الماديد ال					· ;		2 (10 mg/s)
1		monor de decir				· · · · · · · · · · · · · · · · · · ·			1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
)		Jun Marchart	2		<u>:</u>	•			Sold Sold Sold Sold Sold Sold Sold Sold
) ; ;		مر <i>سمون بهراسه</i>	0.0		: : : : :- : : : : : : : : : : : : : : :		•		77 ter
•	+	Mary Congression	hoot			·	: -	:	and 1.
	7 limi	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Oversi	:		÷			2 × 3
	+5,	A JAN VIN JAN JAN JAN JAN JAN JAN JAN JAN JAN JA	•				,	<u> </u>	Scan Moti Scan Moti F Ste
944 1 1 1 1 1 1 1 1			Marie Complete	The same of the sa			· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·	Scan
(C) (C) (Z)					: :		No.	·	10 t
1:4 }: 1: ((:		.,	4-4	335768 1331200-2
በ 4)መ () መ	j -		g-4 ™5 		u U U	S. J.		()	6:33516 24:133120 14:108

*	,		

TEST DATA SHEET 7 (SHEET 1 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Test Setup Verified: Shop Order No. 335/68
Signature

Step No.	Description	Requirement	Test Result	Pass/Fa
7	••	Stepping Slewing <8 sec period per Figure 25	18 sec	P
9	Scene 1-2 3.33° step	<42 msec rise time per Figure 26	39.06 m Sec	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 0.691% 0.0%	PP
10	Scene 2-3 3.33° step	<42 msec rise time per Figure 26	39.06 m Sec	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	±1.025%	P
11	Scene 3-4 3.33° step	<42 msec rise time per Figure 26	41,8 m Sec	P
	•	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 0.873% 0.0%	P
12	Scene 4-5 3.33° step	<42 msec rise time per Figure 26	38,28mSac	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	±1.654% 0.0%	P
13	Scene 5-6 3.33° step	<42 msec rise time per Figure 26	41.02 m Sec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 1.48% 0.0%	P
14	Scene 6-7 3.33° step	<42 msec rise time per Figure 26	37.5 m Sec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 2.09% 0.0%	P
15	Scene 7-8 3.33° step	<42 msec rise time per Figure 26	39.06 m Sec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 1,0170 0.070	PP
16	Scene 8-9 3.33° step	<42 msec rise time per Figure 26	39.06 m Sec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 1.45%	P

TEST DATA SHEET 7 (SHEET 2 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Step No.	Description	Requirement	Test Result	Pass/Fa
17	Scene 9-10 3.33° step	<42 msec rise time per Figure 26	40.23 m Sec	P
	•	< ±5% jitter per Figure 26	± 1.61%	P
		< +4% overshoot for 19 msec	0.0%	P
18	Scene 10-11 3.33° step	<42 msec rise time per Figure 26	41,8m Sec	P
1	·	< ±5% jitter per Figure 26	±1,74%	P
1		< +4% overshoot for 19 msec	0.0%	P
19	Scene 11-12 3.33° step	<42 msec rise time per Figure 26	41.41mSec	P
	•	< ±5% jitter per Figure 26	± 1.38%	P
•		< +4% overshoot for 19 msec	0.0%	12
20	Scene 12-13 3.33° step	<42 msec rise time per Figure 26	39.84 msec	P
	•	< ±5% jitter per Figure 26	±1.0470	P
		< +4% overshoot for 19 msec	0.0%	P
21	Scene 13-14 3.33° step	<42 msec rise time per Figure 26	41.8 m Sec	
	•	< ±5% jitter per Figure 26	± 1.06%	P
1		< +4% overshoot for 19 msec	0.0%	P
22	Scene 14-15 3.33° step	<42 msec rise time per Figure 26	39.06mSec	P
ı	•	< ±5% jitter per Figure 26	±1,99%	P
		< +4% overshoot for 19 msec	0.0%	P
23	Scene 15-16 3.33° step	<42 msec rise time per Figure 26	41.02 mSec	P
i	2	< ±5% jitter per Figure 26	±1,37%	P
	-	< +4% overshoot for 19 msec	0.0%	P
24	Scene 16-17 3.33° step	<42 msec rise time per Figure 26	41.4/msa	P
	•	< ±5% jitter per Figure 26	11.45%	P
		< +4% overshoot for 19 msec	0.0%	P

TEST DATA SHEET 7 (SHEET 3 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Step No.	Description	Requirement	Test Result	Pass/Fai
25	Scene 17-18 3.33° step	<42 msec rise time per Figure 26	41.4/mSec	P
	•	< ±5% jitter per Figure 26	± 1.55%	P.
		< +4% overshoot for 19 msec	0.0%	3
26	Scene 18-19 3.33° step	<42 msec rise time per Figure 26	41.8 mSec	<i>n P</i>
İ		< ±5% jitter per Figure 26	± 0,893%	P
		< +4% overshoot for 19 msec	0.0%	P
27	Scene 19-20 3.33° step	<42 msec rise time per Figure 26	40,62 mSec	P
	•	< ±5% jitter per Figure 26	±1.156%	P
		< +4% overshoot for 19 msec	0.0%	P
28	Scene 20-21 3.33° step	<42 msec rise time per Figure 26	41.02 m Sec.	P
	•	< ±5% jitter per Figure 26	± 1.39%	P
		< +4% overshoot for 19 msec	0.0%	٦
29	Scene 21-22 3.33° step	<42 msec rise time per Figure 26	41.8mSec	م
	•	< ±5% jitter per Figure 26	±1.58%	P
		< +4% overshoot for 19 msec	0.0% 41,4/mSec	
30	Scene 22-23 3.33° step	<42 msec rise time per Figure 26	41,4/mSec	P
	•	< ±5% jitter per Figure 26	±1.68%	P
		< +4% overshoot for 19 msec	0.0%	P
31	Scene 23-24 3.33° step	<42 msec rise time per Figure 26	. 39.84 m Sec	P
	•	< ±5% jitter per Figure 26	± 1.98%	P
		< +4% overshoot for 19 msec	0.0%	P
32	Scene 24-25 3.33° step	<42 msec rise time per Figure 26	41.41 m Sec	P
	,	< ±5% jitter per Figure 26	± 1.11%	P
		< +4% overshoot for 19 msec	0.0%	<i>P</i>

TEST DATA SHEET 7 (SHEET 4 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Step No.	Description	Requirement	Test Result	Pass/Fail
33	Scene 25-26 3.33° step	<42 msec rise time per Figure 26	41.8 m Sec	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 1.92% 0.0%	<i>ح</i> ا حر
34	Scene 26-27 3.33° step	<42 msec rise time per Figure 26	40,23 mSec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 1.88%	P
35	Scene 27-28 3.33° step	<42 msec rise time per Figure 26	41.8mSec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	± 1.47% 0.0%	P
36	Scene 28-29 3.33° step	<42 msec rise time per Figure 26	41.41 mSec	P
	•	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	11.68%	P
37	Scene 29-30 3.33° step	<42 msec rise time per Figure 26	40.23 mSec	P
İ	•	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	11.80%	P
38	Scene 30- Cold Cal	<0.21 sec slew time per Figure 29	<0.215cc	P
	35.0° slew	< ±5% jitter per Figure 30	c± 5%	P
39	Cold Cal - Warm Cal	<0.40 sec slew time per Figure 31	< 0.405cc	P
	96.67° slew	< ±5% jitter per Figure 32	< ±5%	Р

Unit: 1331200-2-IT	Test Engineer:
Serial No.: 108	Quality Assurance:
Date: 4/21/99	Customer Representative: Jalacopac 5/5/93

TEST DATA SHEET 8 3.4.5.6: METSAT Pulse Load Bus Current

Test Setup Verified: 19 Sand	Shop Order No. 335/68	
Signature	•	•

3.4.5.6: 28V Bus Peak Current and Rise Time Test

Step No.	Requirement	Test Result	Pass/Fail
4	< 2 A peak any place in the scan	1.988 mA	P
5	> 70 µsec rise time, 3.33° step	2.34 m Sec	P
6	> 70 µsec rise time, start of WC slew	2.43 m Sec	P
6	> 70 µsec rise time, end of WC slew	2.34 m Sec	P

Unit: 1331200 - 2 - IT.	Test Engineer: Dand
Serial No.:	Quality Assurance: (932)
	Date: 4/23/99
	, ,

TEST DATA SHEET 0

	3.4.5.8:		T Gain/Phase Margin Test		
Test Setup Ver	ified: Dand	Shop Order No. 3357/68			
	Signature				
	•				
					.ve
3 4 5 0 Star 12). Cain Ohaan Margin Test				,
3.4.3.6 Step 12	2: Gain/Phase Margin Test			•	
	F		Test Result	Pass/Fail	1
	Requirement		•	rass/raii	
		1	13,58	_	<u> </u> -
	12 dB minimum	2	13.58	$\exists P$	₹ ·
		3	13.64		
		1	64.50		
	25 degrees minimum	2	64.15	$\supset P$	
		3	64.19		
					Pass = P
					Fail = F
_					
	•				
	· ·			_	
Unit: /33/	200-2		Test Engineer:	Lund	
			(1A ₁)		
Serial No.: /6	o8		C		
Date: 4/19	199		Customer Representative:	J. Jala	egai
	A CONTRACTOR OF THE CONTRACTOR		•	0	5/5/99
1					

					-
		-			
		,			
	`				

TEST DATA SHEET 10 3.4.5.9: METSAT Operational Gain Margin Test

Test Setup Verifi	ed: Signature Sho	op Order No. 335/68	
3.4.5.9: Operation	on Gain Margin Test		
,			16. 95.11
Step No.	Requirement	Test Result	Pass/Fail
	R58 Resistance (Kohms)	18,266K	4)
11		1 40.315K	- b P
	Test Pot Resistance (Kohms)	2 40,877 K	J{
		3 37.805K	<u> </u>
12		1 78.12 HZ	ו ו ת
	Oscillation Frequency (Hz)	2 77.73 HZ 3 77.73 HZ] { <i>P</i>
		3 77.73 HZ	וו'ער
		1 9,51db	5
16	Gain Margin, 9 dB minimum	2 9.59db	7691 1
, ,	dan maigin, o de minimo	3 9.4406	1) '
a.			Pass = P Fail = F
•			
Unit: 13312	200-2-17	Test Engineer: Double	····
Serial No.: 10	8	Quality Assurance	

FORMS

National Aeronautics and Space Administration	Report Docum	nentation P	²age				
1. Report No.	2. Government Accession N	0.	3. Recipient's Catalog N	ło.			
Title and Subtitle			5. Report Date				
Integrated Advanced M	icrowave Sounding U	Jnit-A	4 August	1999			
(AMSU-A), Performance			Performing Organizati	on Code			
7. Author(s)			Performing Organizati	on Report No.			
L. Paliwoda			11486				
			10. Work Unit No.				
 Performing Organization Name an Aerojet 	d Address		11. Contract or Grant No				
1100 W. H	lollyvale		NAS 5-32314				
Azusa, CA	91702		13. Type of Report and F	Period Covered			
12. Sponsoring Agency Name and Ad	ldress		Final				
NASA Goddard	Space Flight Center		14. Sponsoring Agency Code				
	, Maryland 20771						
16. ABSTRACT (Maximum 200 words) This is the Performance Subsystem, METSAT All Microwave Sounding Un	MSU-A2 (P/N 133120						
17. Key Words (Suggested by Autho	18. Distribution Statement						
EOS Microwave Sys	stem	Unclassified Unlimited					
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of pages	22. Price			
Unclassified							
NASA FORM 1626 OCT 86			<u> </u>	L			

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. <u>Recipient's Catalog No.</u>. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Selfexplanatory.
- Block 21. No. of <u>Pages</u>. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

, **** 					
REPORT DO	Form Approved OMB No. 0704-0188				
Public reporting burden fothis collection of in gathering andmaintaining thedata needed a collection of information, including suggestic Davis Highway, Suite 1204, Arlington, VA 2:	formation is estimatedo average 1 hour per res du completing and eviewing the collection inform that reducing this burden to Washington Headqu 2202-4302, and to the Office of Management at	oonse including the ation. Send comme arters Services pirec ad Budget, Paperwo	timefor reviewing Instru ntsregardingthis burde storate for Information (ork Reduction Project ((ictionssearching existing data sources nestimate or any other aspect of this Operationand Reports, 1215 Jeffersor 9704-0188). Washington, DC 20503.	
AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPOR	T TYPE AND DA	TES COVERED	
4. TITLE AND SUBTITLE	Microwave Sounding Unit-Ace Verification Report	ļ -	FUNDING NUMBE	5-32314	
6. AUTHOR(S) C. Haapala					
7. PERFORMING ORGANIZATIO Aerojet 1100 W. Holl Azusa, CA 9		1	PERFORMING OF REPORT NUMBE 11486 4 August 1	R	
9. SPONSORING/MONITORING NASA Goddard Spa	AGENCY NAME(S) AND ADDRESS ace Flight Center aryland 20771	(ES) 10.	D. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILI	II Y STATEMENT	12b	. DISTRIBUTION	CODE	
	e Verification Report, Anter MSU-A2 (P/N 1331200-2, nit-A (AMSU-A).		for the Integra		
14. SUBJECT TERMS	****			15. NUMBER OF PAGES	
EOS Microwave System				16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	OF ABSTRA	CLASSIFICATION ACT assified	20. LIMITATION OF ABSTRACT SAR	

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, andyear, if available (e.g.,1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program
 WU
 Work Unit

 Element
 Accession No.

Block 6. Author(s) Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the eport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing Organization Report Number</u>. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and</u>
Address(es) Self-explanatory.

Block 10. <u>Sponsoring/MonitoringAgency Reports Number</u> (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with ...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement</u>Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms</u>. Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code</u>. Enter appropriate price codeNT/S only).

Block 17 - 19. <u>Security Classifications.</u> Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u>This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

DOCUMENT APPROVAL SHEET

Dominion Dominion	DOCOMENT NO.					
Performance Verification Report Antenna Drive Subsystem, METSAT AMSU-A2 (P/N 1331200-2, SN: 108)				Report 11486		
Antenna Drive Subsystem, METSAT	4 August 1999					
INPUT FROM:	CDRL:	SPECIFICATION ENGINEER:	· · · · · · · · · · · · · · · · · · ·	DATE		
C. Haapala	208	N/A		5,2		
CHECKED BY:	DATE	JOB NUMBER:		DATE		
N/A		ALZA				
APPROVED SIGNATURES		N/A	DEPT. NO.	DATE		
AFFROVED SIGNATURES			DEFT. NO.	DATE		
-		1				
		7		2/1/		
Product Team Leader (A. Nieto) _		ess	8341	18/2/85		
, , <u>, </u>	<u> </u>	22.4		8/4/49		
		1 /1/ 6				
Systems Engineer (R. Platt)	War 1	1 (Red)	8311	8/4/99		
	$\Omega(\mathcal{Q})$			1.1		
Design Assurance (E. Lorenz)	C. The	h	8331	8/3799		
	900			•/ / •		
	01 1			1 1		
Quality Assurance (R. Taylor)	RM Tourle	u	7831	8/5/99		
				, , , , ,		
	Λ	^		01 1.40		
PMO/Technical (P. Patel)	K. Pat	el	8341	8/11/99		
(, , , , , , , , , , , , , , , , , , ,	·					
	1	~				
Released:	1-1	. 1		8/11/99		
Configuration Management (J. Ca	avanaugh) <u>/ </u>	Curanaug .	8361			
	()	\mathcal{O}	•			
	V					
By my signature, I certify the above document has	haan raviewad by ma an	od concure with the technical				
requirements related to my area of responsibility.	b been reviewed by the an	ia concurs with the technical				
				•		
(Data Center) FINAL						
	_ _					
Please return this sheet and the reproducible	master to Jim Kirk (Bldg.	1/Dept. 8631), ext. 2081.				

_				
			•	