Review of the last lesson
Discrete Random Variables
Common Types of Discrete Random Variables
Review of Integration

Week 3 Lecture: Discrete random variables

Table of contents

- Review of the last lesson
- 2 Discrete Random Variables
- 3 Common Types of Discrete Random Variables
 - Bernoulli Distribution
 - Binomial Distribution
 - Geometric Distribution
 - Poisson Distribution
- Review of Integration

Bayes' Rule

Simplified version

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^c)P(F^c)}.$$

• General version: F_1, \ldots, F_n is a partition of Ω , event E.

$$P(F_k|E) = \frac{P(E \cap F_k)}{P(E)} = \frac{P(E|F_k)P(F_k)}{\sum_{i=1}^{n} P(E|F_i)P(F_i)}$$

Random Variables

ullet A random variable X on the sample space Ω is a function

$$X:\Omega\to\mathbb{R}.$$

- Roll a die 5 times: $\Rightarrow \Omega = \{(a,b,c,d,e): a,b,c,d,e \in \{1,\dots,6\}\}$
 - $X_1 = \text{sum of values which show up}$

$$X_1((1,2,4,4,6)) = 1 + 2 + 4 + 4 + 6 = 17.$$

• $X_2 = \text{sum of squares of values which show up}$

$$X_1((1,2,4,4,6)) = 1^2 + 2^2 + 4^2 + 4^2 + 6^2 = 73.$$

• $X_3 =$ number of sixes which show up: $X_3((1, 2, 4, 4, 6)) = 1$.

Discrete Random Variable

- A random variable $X:\Omega\to\mathbb{R}$ is **discrete** if it takes on only countably many values.
- The set of possible values of X, $X(\Omega) = \{X(w) : w \in \Omega\}$, is **countable**. Equivalently, there is an order to list out all elements of this set.

Examples of Discrete Random Variables

- X= number of heads in 3 coin tosses $X(\Omega)=\{0,1,2,3\}$ is countable.
- X = number of coin tosses until a head comes up $X(\Omega) = \mathbb{Z}^+$ is countable.
- Remark: ℝ is not countable. The proof is beyond the scope of this course. You can use this property without proof.

Probability Mass Function (PMF)

• The probability mass function (PMF) of a discrete random variable X is a function $p:\mathbb{R}\to [0,1]$ defined by

$$p(x) = P(X = x).$$

• Capital letters X,Y,Z,\ldots denote random variables. Small letters x,y,z,\ldots denote possible values of X,Y,Z,\ldots

Properties of PMF

Lemma 2. Let $X:\Omega\to R$ be a discrete random variable with PMF p(x). Then

- (a) p(x) = 0 for any $x \notin X(\Omega)$.
- (b) $\sum_{x \in X(\Omega)} p(x) = 1$.

Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) of a random variable $X:\Omega\to\mathbb{R}$ is a function $F:\mathbb{R}\to[0,1]$ defined by

$$F(x) = P(X \le x), \ x \in \mathbb{R}.$$

Lemma 3. F is a nondecreasing function, that is, $F(a) \leq F(b)$ whenever $a \leq b$.

Bernoulli Distribution

 A Bernoulli trial with success probability p is an experiment which has only two outcomes success and failure

$$P(\mathsf{success}) = p.$$

- A Bernoulli random variable X counts the number of successes in a Bernoulli trial.
- Write $X \sim \mathsf{Bernoulli}(p)$.

Bernoulli Distribution

- X = number of successes in a Bernoulli trial.
- The set of possible values of X is $\{0,1\}$.
- It has PMF

$$p(x) = \begin{cases} p \text{ if } x = 1, \\ 1 - p \text{ if } x = 0, \\ 0 \text{ if } x \notin \{0, 1\}. \end{cases}$$

Graph of Bernoulli distribution

PMF and CDF of $X \sim \text{Bernoulli}(3/4)$

Binomial Distribution

- A binomial random variable X counts the number of successes in n independent Bernoulli trials with success probability p.
- Write $X \sim \mathsf{Binomial}(n, p)$.
- X takes on values $0, 1, \ldots, n$.

PMF of Binomial(n,p)

The PMF of $X \sim \mathsf{Binomial}(n,p)$ is

$$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{if } x \in \{0,1,\dots,n\} \\ 0 & \text{otherwise.} \end{cases}$$

Example 1

X= number of heads in 100 independent fair coin tosses $\Rightarrow X \sim {\sf Binomial}(100,0.5).$

Example 2

One bit (0 or 1) is transmitted 9 times through a noisy channel.

The probability of a failure in a single transmission is 0.05.

The bit is decoded 1 if ≥ 5 ones are received, and 0 otherwise.

What is the probability of incorrect decoding?

Solution.

- Incorrect decoding \Leftrightarrow total number of failures ≥ 5 .
- $X = \text{total number of failures} \Rightarrow X \sim \text{Binomial}(9, 0.05).$

$$P(\text{incorrect decoding}) = P(X \ge 5)$$

$$= \sum_{x=5}^{9} {9 \choose x} 0.05^x 0.95^{9-x}$$

$$\approx 0.000033.$$

Example 2 Continued

Geometric Distribution

- ullet Consider a sequence of Bernoulli trials with success prob. p.
- A geometric random variable X counts the number of Bernoulli trials needed to get the first success.
- Write $X \sim \mathsf{Geom}(p)$ (or $X \sim \mathsf{Geometric}(p)$).
- The set of possible values for X is \mathbb{Z}^+ .

PMF of Geom(p)

Lemma 2. $X \sim \text{Geom}(p)$. Then its PMF is

$$p(x) = \begin{cases} (1-p)^{x-1}p \text{ if } x \in \mathbb{Z}^+, \\ 0 \text{ otherwise.} \end{cases}$$

Proof. X = x if the first x - 1 trials are failures and the last trial is success.

Example 3

A grandmaster plays a series of chess games against an amateur until the amateur wins a game. The probability that the amateur wins any specific game is 0.001. What is the probability that they are finished after ≤ 100 games?

Example 3 solution

- X= number of games played until the amateur wins the first game $\Rightarrow X \sim \text{Geom}(0.001)$.
- The required probability is

$$P(X \le 100) = \sum_{x=1}^{100} P(X = x) = \sum_{x=1}^{100} 0.999^{x-1} 0.001 \approx 0.095.$$

Poisson Distribution

• The Poisson distribution with parameter λ ($\lambda > 0$) has PMF

$$p(x) = P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}, \ x = 0, 1, 2, \dots$$

- Write $X \sim \mathsf{Poisson}(\lambda)$.
- Possible values of X are $0, 1, 2, \dots$

Rationale of Poisson distribution

- Poisson distribution is used to analyze occurrences in a large number of very rare events.
- For example, the total number of car breakdowns among 100,000 cars in a specific week.

Poisson Distribution vs Binomial Distribution

- Poisson distribution \approx binomial distribution in the case ${\bf n}$ is large and ${\bf p}$ is small.
- Recall: $X \sim \text{Binomial}(n,p) \Rightarrow P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$. When n is large and p is small
 - it is hard to compute exactly $\binom{n}{x}p^x(1-p)^{n-x}$,
 - it is difficult to analyze Binomial(n, p) for large n.

Poisson Distribution Approximates Binomial Distribution

If $X \sim \text{Binomial}(n,p)$ and $\lambda = np$ is a constant, then its PMF is asymptotically equal to the PMF of $\text{Poisson}(\lambda)$. Precisely, this means if $\lambda = np$ is a constant, then

$$\lim_{n \to \infty} \binom{n}{x} p^x (1-p)^{n-x} \div \left(\frac{\lambda^x}{x!} e^{-\lambda}\right) = 1.$$

Proof. Optional.

Rule of Thumb

- Lemma 1 says $\mathbf{Binomial}(\mathbf{n}, \mathbf{p}) \approx \mathbf{Poisson}(\mathbf{np})$ when n is large, p is small and np is a constant.
- Rule of thumb: The approximation is acceptable if

$$n \ge 50$$
 and $np \le 10$.

Possion vs Binomial

Poisson distribution is simpler to analyze than Binomial distribution \Rightarrow useful in studying statistical models.

- While Poisson distribution depends only on one parameter λ , binomial distribution depends on two parameters n and p.
- Poisson PMF $p_1(x)=\frac{\lambda^x e^{-\lambda}}{x!}$ is simpler to analyze than binomial PMF $p_2(x)=\binom{n}{x}p^x(1-p)^{n-x}$.

Binomial(10,0.1) vs Poisson(1)

Bad approximation: n = 10 is too small

Binomial(100,0.01) vs Poisson(1)

Acceptable approximation: n = 100 > 50 and np = 1 < 10

Binomial(100,0.5) vs Poisson(50)

Not really an approximation: np = 50 is too large

Binomial(10000,0.0001) vs Poisson(1)

Good approximation: n = 10,000 is large and np = 1 is small

Basic Integration Formulas

$$\int x^r dx = \frac{x^{r+1}}{r+1} + C, \text{ for } r \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C, \text{ for } x \neq 0$$

$$\int \sin x dx = -\cos x + C \qquad \int \cos x dx = \sin x + C$$

$$\int e^x dx = e^x + C \qquad \int e^{-x} dx = -e^{-x} + C$$

Useful Integration Techniques for Probability

Integration by Parts:

$$\int udv = uv - \int vdu$$

.

To apply integration by parts, you need to make a judicious choice of u and dv so that the integral on the right-hand side is one that you know how to evaluate.

Example

Integration by Parts: Evaluate $\int x \sin x dx$ Let u = x and $dv = \sin x dx$

Example: Poor choice of u and dv

Let $u = \sin x$ and dv = xdx

Example

Integration by Parts: Evaluate $\int \ln x dx$ Let $u = \ln x$ and dv = dx

Repeated Integration by Parts

Evaluate $\int x^2 \sin x dx$.

Review of the last lesson
Discrete Random Variables
Common Types of Discrete Random Variables
Review of Integration

Continue

Repeated Integration by Parts with a Twist

Evaluate $\int e^{2x} \sin x dx$ Let $u = e^{2x}$ and $dv = \sin x dx$ Review of the last lesson
Discrete Random Variables
Common Types of Discrete Random Variables
Review of Integration

Continue

Definite Integrals for Integration by Parts

$$\int_{x=a}^{x=b} u dv = uv|_{x=a}^{x=b} - \int_{x=a}^{x=b} v du$$

Example: Evaluate $\int_{1}^{2} x^{3} \ln x dx$

Review of the last lesson
Discrete Random Variables
Common Types of Discrete Random Variables
Review of Integration

Continue

Improper Integrals

If f is continuous on the interval $[a, \infty)$, we define the improper integral $\int_a^\infty f(x)dx$ to be

$$\int_{a}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{a}^{R} f(x)dx$$

Quiz 1

- Week 4 during tutorial
- 50 minutes in total
- 10 MCQ
- Weight: 10%
- Contents tested: Week 1-3 Lecture Notes
- Calculators are allowed.
- For Quiz 1 No Formula sheet will be given