INSTRUCTIONS FOR THE STUDENTS

- 1. Kindly Adhere to the presentation format
- 2. Kindly note that the Evaluation Committee would focus more on knowing about the Implementation and Functionality in your project
- 3. Total interaction duration: 15 minutes
 Duration of Presentation: 12 minutes

Q&A round: 3 minutes

- 5. Candidates will be requested to wait in a meeting room before interacting with the Evaluation Committee
- 6. Candidates are requested to join 15 minutes prior to their designated slot and be present in a formal attire for the meeting along with Guide.

	Evaluation by Review Committee	Evaluation by Guide
Implementatio	3	3
n of Module-1		
Implementatio	3	3
n of Module-2		
Integration &	2	2
Deployment		
Project Demo	3	3
Results	2	2
Conclusion &	2	2
Future Scope		
Total	15	15

MVSR Engineering College, Hyderabad - 501 510

Bachelor of Engineering Department of Computer Science and Engineering

Project Name: DEEP LEARNING ANALYSIS OF COVID-19 USING CHEST CT SCAN

Batch No:

Mohd. Ataur Rahman – 2451-17-733-026

Sahithya Namani – 2451-17-733-027

Lalita Snigdha Akkapeddi – 2451-17-733-054

Internal Guide:
B. Saritha
Associate Professor,
CSED, MVSREC

Project Objective:

To screen Covid-19 using CT Scan images in a quick and accurate manner using the concepts of deep learning

Implementation of Module-1

Software Environment Used: Google Colab

Major Functions used: VGG19(),cv2.imread(), cv2.cvtColor(),cv2.resize()

Number of lines of code: 40 cells

Test cases for Module 1: Training and Testing

Scenario 1: Evaluating Image modifications

Test case 1:

Input: HRCT image of Covid-19 positive patient with random dimensions

Output: Image modified according to the requirements of model

Test case 2:

Input: HRCT image of Covid-19 negative patient with random dimensions

Output: Image modified according to the requirements of model

Input HRCT image with random dimensions

Output HRCT image with 224x224 pixels size

Implementation of Module-1(Contd.)

Software Environment Used: Google Colab

Major Functions used: VGG19(),cv2.imread(), cv2.cvtColor(),cv2.resize()

Number of lines of code: 40 cells

Scenario 2: Building the model

Test case 1:

Input: Existing VGG19 model

Output: Modified VGG19 model

Scenario 3: **Training the model**

Test case 1:

Input: Weights obtained from VGG19 and training dataset

Output: Trained model

Model: "model"		
Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	ø
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
olock1_pool (MaxPooling2D)	(None, 112, 112, 64)	ø
olock2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
olock2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
olock2_pool (MaxPooling2D)	(None, 56, 56, 128)	9
olock3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
olock3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
olock3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
olock3_conv4 (Conv2D)	(None, 56, 56, 256)	590080
olock3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
olock4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
olock4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
olock4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
olock4_conv4 (Conv2D)	(None, 28, 28, 512)	2359808
olock4_pool (MaxPooling2D)	(None, 14, 14, 512)	9
olock5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
olock5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
olock5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
olock5_conv4 (Conv2D)	(None, 14, 14, 512)	2359808
olock5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Flatten)	(None, 25088)	8
dropout (Dropout)	(None, 25088)	0
dense (Dense)	(None, 2)	50178
Total params: 20,074,562 Trainable params: 50,178		

Output of Testcase-1

Implementation of Module-2

Software Environment Used: Google Colab

Major Functions used :cv2.imread(), cv2.cvtColor(),cv2.resize()

Number of lines of code: 83

Test cases for Module 2: Deploying the model into Flask App

Scenario 1: Evaluating the trained model

Test case 1:

Input: HRCT image of COVID-19 patient

Output: Predictions by model

Test case 2:

Input: HRCT image of Non-COVID patient

Output: Predictions by model

Implementation of Module-2(Contd.)

Software Environment Used : Google Colab

Major Functions used :cv2.imread(), cv2.cvtColor(),cv2.resize()

Number of lines of code: 83

Test cases for Module 2: Deploying the model into Flask App

Scenario 2: Evaluating the outputs in Flask app

Test case 1:

Input: HRCT image of COVID-19 patient

Output: Predictions by model

Test case 2:

Input: HRCT image of Non-COVID patient

Output: Predictions by model

Integration & Deployment

Technical challenges faced / Issues addressed :

- Collection of datasets was difficult.
- Lack of availability of properly marked data.
- Since the used dataset was very large, loading it was not timely.
- Working with Anaconda was very challenging.
- Availability of GPU is appreciable.
- Using Google Colab to run the Flask application was quite difficult.

Project Demo

Demo of project **Subjective Evaluation** (As observed)

Results

Objective Evaluation (Using Evaluation Metrics)

- Accuracy: 93%
- Classification Report:

	precision	recall	f1-score	support
0	0.93	0.93	0.93	70
1	0.94	0.94	0.94	80
accuracy			0.93	150
macro avg	0.93	0.93	0.93	150
weighted avg	0.93	0.93	0.93	150
Name of the Association of the Section of the Secti				

Confusion Matrix:

ROC Curve:

• Accuracy, Loss Plots:

Conclusion & Future scope

_		
Conc	lusion	•
COLIC	IUSIUII	•

Future Scope:

Artificial Intelligence (AI) is very powerful on image analytics and radiology is all about images from MRI, CT scans and X-rays. Analysing these images and identifying the pathology or disease, to what extent it has infected or progressed, is radiology AI.

- Radiology AI -Several other models can be built on top of this model which in turn will be useful in detecting family of such viral diseases
- The volume of training data can be increased to develop a new CNN model specifically trained on COVID data.
- The model can also be trained using other suitable Transfer Learning models

THANK YOU