

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-220485

(43)Date of publication of application: 10.08.1999

(51)Int.CI.

H04L 12/46

H04L 12/28 H04L 12/40

(21)Application number: 10-017368

(71)Applicant:

NEC CORP

(22)Date of filing:

(72)Inventor:

MATSUDA JUNICHI

(54) BRIDGE AND IEEE 1394 BRIDGE

(57) Abstract:

PROBLEM TO BE SOLVED: To transfer a packet sent from a terminal device to a different bus while enhancing the utilizing efficiency of a bus resource in a serial network.

SOLUTION: Initialization of local buses 14a-14n, definition of topology and management of an isochronous resource are conducted for each local bus. Portals 12a-12n use an asynchronous packet discrimination section 215 to discriminate an asynchronous packet sent from a terminal and transfers the asynchronous packet. Furthermore, the portals 12a-12n discriminate the asynchronous packet sent by the terminal to acquire the isochronous resource and reserve the isochronous resource on a different bus. The portals 12a-12n transfer the isochronous packet to a different local bus by relating the received isochronous packet to a plug of a bridge bus side and a plug at the local bus side to an isochronous channel on the bus.

LEGAL STATUS

[Date of request for examination]

29.01.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-220485

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl.⁶

HO4L 12/46

12/28

12/40

酸別記号

FΙ

H04L 11/00

310C

320

11/20

D

請求項の数8 OL (全29 頁)

(21)出願番号

特額平10-17368

(22)出顧日

平成10年(1998) 1月29日

(71) 出顧人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 松田 淳一

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 古牌 聡 (外1名)

(54) 【発明の名称】 IEEE1394プリッジ及びプリッジ

(57)【要約】

【課題】 シリアルバスネットワークにおいて、バスリソースの利用効率を向上させ、端末機器の送出するパケットを異なるバスに転送することを可能にすることである。

【解決手段】 ローカルバス14a~14nの初期化、トポロジーの定義及びisochronousリソースの管理はローカルバス毎に行われる。ポータル12a~12nは、端末機器が送出するasynchronousパケットをAsynchronousパケット判別部215で判別し、asynchronousパケットを転送する。また、ポータル12a~12nは端末機器がisochronousリソース獲得のために送出するasynchronousパケットを判別し、異なるバス上にisochronousリソースを確保する。ポータル12a~12nは、受信したisochronousパケットをブリッジバス側のプラグに、また、ローカルバス側のプラグをバス上のisochronousチャンネルに関連付けることにより、異なるローカルバスにisochronousパケットを転送する。

【特許請求の範囲】

【請求項1】外部の端末機器に接続された互いに別個の IEEE1394シリアルバスに各々接続された複数の ポータルと、各前記ポータルを互いに接続する内部バス とより構成されるIEEE1394プリッジであって、 各前記ポータルは、

1

各前記端末機器がいずれの前記IEEEI1394シリアルバスに接続されているかを示すトポロジー情報を記憶するトポロジー情報記憶手段と、

同一の前記IEEEI1394シリアルバスを介して接続 10 されている前記端末機器及び各前記ポータルが送出した 非同期伝送用パケットを、前記内部バスを介して受信する非同期伝送用パケット受信手段と、

前記非同期伝送用パケット受信手段が受信した前記非同期伝送用パケットに記述されている宛先と、前記トポロジー情報記憶手段に記憶されている前記トポロジー情報とに基づき、前記宛先に接続されている前記IEEE1394シリアルバスを判別して、判別結果が、各自が接続されているものと異なるIEEE1394シリアルバスに接 20 続されている前記ポータルに該非同期伝送用パケットを送出し、該判別結果が、各自が接続されているものと同一の前記IEEE1394シリアルバスを示すとき、各自が接続されている前記IEEE1394シリアルバスに該非同期伝送用パケットを送出する非同期伝送用パケット判別手段と、を備える、

ことを特徴とするIEEE1394プリッジ。

【請求項2】各前記トポロジー情報記憶手段は、

各自が属する前記ポータルに接続されている前記IEE E1394シリアルバスに接続されている前記端末機器の個数の変化を検出し、該変化の検出後に該IEEE1394シリアルバスに接続されている前記端末機器を特定して、特定された前記端末機器を示す情報を他の前記ポータルに供給するトポロジー再定義手段と、

他の前記ポータルの前記トポロジー再定義手段から供給された前記情報と、自らが記憶する前記トポロジー情報とを結合することにより新たな前記トポロジー情報を作成して記憶するトポロジー情報更新手段と、を備える、ことを特徴とする請求項1に記載のIEEE1394プリッジ。

【請求項3】パケットの等時性伝送を行う等時性伝送用 チャンネルの確保を要求するための前記非同期伝送用パ ケットを受信して、前記内部パス上に該等時性伝送用チャンネルを確保する内部パスリソース管理手段を備え、 各前記ポータルは、

前記等時性伝送用チャンネルの確保を要求するための前 記非同期伝送用パケットを受信して、各自に接続されて いる前記 I E E E 1 3 9 4 シリアルパス上に該等時性伝 送用チャンネルを確保するローカルパスリソース管理手 段と、 前記等時性伝送により伝送される等時性伝送用パケット の供給元として指定された前記等時性伝送用チャンネル を介して該等時性伝送用パケットを受信する入力ポート と、

前記等時性伝送用パケットの供給元として指定された前 記入力ポートより該等時性伝送用パケットを取得して、 該等時性伝送用パケットを、該等時性伝送用パケットの 供給先として指定された前記等時性伝送用チャンネルに 送出する出力ポートと、

前記入力ポートへの前記等時性伝送用パケットの供給元となる前記等時性伝送用チャンネルと、前記出力ポートへの前記等時性伝送用パケットの供給元となる前記入力ポートと、前記出力ポートが前記等時性伝送用パケットを供給する供給先となる前記等時性伝送用チャンネルとを指定するチャンネル制御手段と、を備える、

ことを特徴とする請求項1に記載のIEEE1394プリッジ。

【請求項4】少なくとも一つの前記ポータルは、前記内部バスリソース管理手段を備える、

20 ことを特徴とする請求項3に記載のIEEE1394ブ リッジ。

【請求項5】各前記ポータルは、前記内部パスを介して 前記内部パスリソース管理手段に結線されている、

ことを特徴とする請求項3に記載のIEEEI394ブリッジ。

【請求項6】各前記ポータル及び前記内部バスリソース 管理手段は、前記内部バスを介し、分岐のない連鎖をな すようにして互いに結線されている、

ことを特徴とする請求項3に記載のIEEE1394ブ 30 リッジ。

【請求項7】外部の端末機器に接続された互いに別個のローカルバスに各々接続された複数のポータルと、各前記ポータルを互いに接続する内部バスとより構成されるブリッジであって、

各前記ポータルは、

各前記端末機器がいずれの前記ローカルバスに接続されているかを示すトポロジー情報を記憶するトポロジー情報記憶手段と、

同一の前記ローカルバスを介して接続されている前記端 40 末機器及び各前記ポータルが送出した非同期伝送用パケットを、前記内部バスを介して受信するパケット受信手 段と、

前記パケット受信手段が受信した前記非同期伝送用パケットに記述されている宛先と、前記トポロジー情報記憶手段に記憶されている前記トポロジー情報とに基づき、前記宛先に接続されている前記ローカルバスを判別して、判別結果が、各自が接続されているものと異なるローカルバスを示すとき、そのローカルバスに接続されている前記ポータルに該非同期伝送用パケットを送出し、

50 該判別結果が、各自が接続されているものと同一の前記

40

3

ローカルバスを示すとき、各自が接続されている前記ローカルバスに該非同期伝送用パケットを送出するパケット判別手段と、を備える、

ことを特徴とするプリッジ。

【請求項8】パケットの等時性伝送を行う等時性伝送用 チャンネルの確保を要求するための前記非同期伝送用パ ケットを受信して、前記内部バス上に該等時性伝送用チャンネルを確保する内部バスリソース管理手段を備え、 各前記ポータルは、

前記等時性伝送用チャンネルの確保を要求するための前 10 記非同期伝送用パケットを受信して、各自に接続されて いる前記ローカルバス上に該等時性伝送用チャンネルを 確保するローカルバスリソース管理手段と、

前記等時性伝送により伝送される等時性伝送用パケット の供給元として指定された前記等時性伝送用チャンネル を介して該等時性伝送用パケットを受信する入力ポート と、

前記等時性伝送用パケットの供給元として指定された前記入力ポートより該等時性伝送用パケットを取得して、 該等時性伝送用パケットを、該等時性伝送用パケットの 供給先として指定された前記等時性伝送用チャンネルに 送出する出力ポートと、

前記入力ポートへの前記等時性伝送用パケットの供給元となる前記等時性伝送用チャンネルと、前記出力ポートへの前記等時性伝送用パケットの供給元となる前記入力ポートと、前記出力ポートが前記等時性伝送用パケットを供給する供給先となる前記等時性伝送用チャンネルとを指定するチャンネル制御手段と、を備える、

ことを特徴とする請求項7に記載のブリッジ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、シリアルバスにより複数の端末機器が接続されたものから構成されるシリアルバスネットワークにおいて、互いに独立なシリアルバス間で送受信を行うためのブリッジに関し、特に該ブリッジに接続されるネットワークの初期化及びトポロジーの定義を行う装置及び方法、並びに該ネットワーク内においてパケットを転送する装置及び方法に関する。

[0002]

【従来の技術】近年、コンピュータの処理能力を向上させたいという要求や、動画像に代表される大容量データを扱いたいという要求が高まるのに呼応して、機器間で大容量データ転送を行いたいという要求が高まりつつある。

【0003】大容量データ転送に適したシリアルバスとしては、例えばIEEE (The Institute of Electrica 1 and Electronics Engineers) 1394で標準化されている高速シリアルバス (以下、「IEEE1394シリアルバス」と記す) がある。 (なお詳細は"IEEE Standard for a High Performance Serial Bus" IEEE, In

c., 96.8に示されている。)

【0004】IEEE1394シリアルバスを用いれば、各端末機器をデイジーチェーン状に接続することと、1つの機器から複数の配線を分岐することによりスター状に接続することとが可能であり、更にデイジーチェーン状の接続及びスター状の接続の両者を混在させたネットワークを構成することもできる。図31は、IEEE1394シリアルバスを用いたネットワークの一例である。

【0005】IEEE1394シリアルバスは、IEE E1212で規定されているCSRアーキテクチャに従 って形成されたデータを伝送する。CSRアーキテクチ ャに従って形成されたデータはアドレス空間をなし、こ のアドレス空間の上位16ピットは、端末機器を特定す るために使用される。上位16ビットのうちの10ビッ トはシリアルバスを特定するbus_IDを表し、残りの6ピ ットは端末機器を特定するnode_IDを表す。従って、C SRアーキテクチャに従って形成されたデータを伝送す るネットワークは、最大1023個のバスを備えること が可能であり、各々のバスには最大64台の端末機器が 接続可能である。ただし、bus_IDの値が1023である データはローカルバス(すなわち、データの送信元であ る端末機器に直接接続されているバス)に送出されるデ ータを表し、node_IDが63であるデータは、ネットワ ーク内のすべての端末機器に宛てられるデータ(すなわ ち「プロードキャストアドレス」にあるデータ)を表 す。このため、端末機器を単一のバスにより互いに接続 するネットワークに実際に接続可能な端末機器は、63

2 【0006】図31において、各端末機器は、伝送路及び給電線の機能を兼ねる給電線付ツイストペア線292で互いに接続されており、端末機器291a~291gは、給電線付ツイストペア線292に、所定のパイアス電圧を印加している。

【0007】図31のネットワークにおいて、ツイストペア線の挿抜が起きた場合(すなわち、ツイストペア線292に新たな端末機器が接続されたり、ツイストペア線292と端末機器とが分離されたりした場合)、該ツイストペア線に印加されているバイアス電圧が変動する。そして、挿抜の起きたツイストペア線に接続されている端末機器は、バイアス電圧の変動を検知することにより、該ツイストペア線の挿抜を検知することができる。

【0008】ツイストペア線の挿抜を検出した端末機器は、ネットワークを初期化するための信号であるバスリセット信号を、該ツイストペア線に送出する。バスリセット信号を受信した各端末機器は、これまで記憶していたネットワークトポロジー情報(すなわち、ネットワーク内にあるバスと、該バスに接続されている端末機器を50 示す情報)を破棄する。これにより、ネットワーク全体

が初期化される。ただし、ネットワークの初期化が行わ れている間は、各端末機器間でのパケットの送受信は不 可能になる。

【0009】ネットワークの初期化が終了した後、トポ ロジーの再定義(すなわち、ネットワークトポロジー情 報の更新)が自動的に行われ、ネットワークのルートノ ード(すなわち、後述するようにネットワーク内の各バ スの制御権を管理する端末機器)が決定される。その 後、各端末機器には、改めてnode_IDが割り振られる。 このとき、isochronousリソース(すなわち、等時性伝 送を行うためのisochronous チャンネルと使用帯域)の 管理を行うIsochronous Resource Manager (IRM) も 決定される。(なお詳細はIEEE1394.1995 Appendix E. 3.1~E.3.4に示されている。)

【0010】なお、ツイストペア線の挿抜によるネット ワークの初期化及び端末機器の設定は自動的に行われる ので、ネットワーク使用者は、ネットワークの状態変化 を意識する必要がない。

【0011】また、図31に示すような、IEEE13 9 4 シリアルパスを用いたネットワーク上では、asynch ronousデータ(非同期伝送用のデータ)及びisochronou sデータ(等時性伝送用のデータ)の通信が可能であ る。図31に示すネットワークにおいて、端末機器がパ ケットを転送しようとする場合には、まずIEEE1394.199 5に定められたアービトレーションシークエンスを行 う。すなわち、該端末機器は、ルートノードにバスの制 御権を要求し、該端末機器は、ルートノードからパスの 制御権を与えられると、パケットを送信することができ るようになる。(アーピトレーションシーケンスの詳細 についてはIEEE1394.1995 3.7.3.2参照)

【0012】また、IEEE1394シリアルバスを用 いたネットワークでは、データ伝送の等時性を保証する ことができるので、isochronousデータの通信が可能で ある。図31に示すネットワークにおいては、上述した ように、端末機器の一つがシリアルバスネットワークの バスリソースの管理を行うIRMの機能を行う。isochr onousデータを送信する端末機器は、isochronousデータ の送信を行う前に、asynchronous パケットを用いて、 IRMに、利用可能なisochronousリソースの問い合わ せを行う。すなわち、該端末機器は、IRMが備えるレ ジスタであってネットワークが利用可能なisochronous リソースを示す情報を格納するBANDWIDTH_AVAILABLE レ ジスタ及びCHANNEL_AVAILABLEレジスタに、図32に示 すデータ構造を有するasynchronousパケットを用いてク アドレッドリードトランザクション(データの読み出 し)を行うことにより、両レジスタの値を読み出す。 【0013】問い合わせを行った端末機器は、問い合わ せの結果得た情報を用いて、isochronousデータの送信

に必要なisochronousリソースを獲得できるかどうかを

有するasynchronousパケットを用いて、IRMにロック トランザクションを行う。すなわち、該端末機器は、図 33に示すasynchronousパケットであってそのextended _tcodeフィールドに値"0002"が記述されたパケットを I RMに送信する。すると、BANDWIDTH_AVAILABLE及びCHA NNEL_AVAILABLEレジスタはcompare & swapされる(すな わち、両レジスタに格納されているデータと両レジスタ に書き込むデータとが比較され、格納されているデータ のうち、書き込むデータと異なる部分が更新される)。 10 compare & swapが完了すると、該端末機器はisochronou sデータを送信することが可能な状態になる。

【0014】また、IEEE1394シリアルバスを用 いたネットワークでは、上述のように端末機器の一つが ルートノードになる。ルートノードになった端末機器 は、所定の時間間隔で、所定の形式を有するサイクルス タートパケットをバス上に送出する。バスのisochronou sリソースを獲得した端末機器は、サイクルスタートパ ケットを検知する毎にisochronousデータを送信する。 このようにしてルートノードは、isochronousリソース を確保している端末機器による、所定の時間間隔でのis ochronousデータの通信(すなわち、等時性伝送)を保 証する。

【0015】複数の独立したシリアルバスを接続してネ ットワークを構成する手法として、プリッジを用いて互 いを接続する手法がある。図34は、P1394.1 Draft St andard 0.02 (P1394.1) において規格化されているプリ ッジと、それを用いたネットワークの概念を示す図であ る。図34において、プリッジ321は二つ以上のポー タル(例えば、ポータル322a~322c)を備え 30 る。そして、ブリッジ321は、各ポータルに接続され たシリアルバス (ローカルバス) を互いに接続し、ブリ ッジ321及びこれらのローカルパスは、シリアルバス ネットワークと呼ばれるネットワークを構成する。

【0016】なお、P1394.1 Draft Standard 0.02に は、プリッジの概念と、各ポータルが備えるレジスタの 内容と、パケット転送の基本的な手順とが示されている 一方、プリッジが行うスイッチング機能(すなわち、パ ケット転送の際にブリッジが行う機能)の内容は示され ていない。

【0017】また、P1394.1 Draft Standard 0.02に は、asynchronousパケットの転送手順として、asynchro nousパケットの先頭にあるdestination_IDフィールドの 内容をポータルが判別し、判別結果に従って、ローカル バスとブリッジ内部の伝送路との間での該asynchronous パケットの入出力が制御される、という手順が示されて いる。また、Pl394.1 Draft Standard 0.02には、isoch ronousパケットの転送手順として、転送されるisochron ousパケットが使用するチャンネルが予め指定され、そ のチャンネルを用いて、該isochronousパケットが転送 確認し、獲得可能な場合は、図33に示すデータ構造を 50 される、という手順が示されている。ただし、具体的な

チャンネルを指定する具体的な手法は規格化されていな い

【0018】なお、上述のisochronousパケットの転送においては、IEC61883において定義されている「プラグ」及び「PCR」(Plug Control Register)が用いられる。プラグは、isochronousデータの入出力を行うための仮想的なポートである。プラグは物理的なポートではなく、一つの物理的なポートが複数のプラグの機能を行い、複数のデータフローを制御する。PCRは、IEEE1394シリアルバスを用いてデータを伝送する機器のポート間でisochronousデータの転送を行う場合において、プラグが使用するisochronousチャンネルの番号や占有帯域等を示す情報を書き込むためのレジスタである。プラグは、PCRに格納されているデータが書き換えられることにより、isochronousチャンネルに結びつけられ、またisochronousチャンネルから切断される。

【0019】なお、プラグ及びPCRは、IEEE1394.1995規格においては規格化されていないが、現在既に、AV(オーディオピジュアル)機器等にはすでに実装されており、IEEE1394.1995の拡張規格であるP1394Aにおいて規格化される予定となっている。

[0020]

【発明が解決しようとする課題】上述の従来技術の第一の問題点は、ネットワーク内でツイストペア線の挿抜が生じるたびにネットワークの初期化とトポロジーの再定義が自動的に実行され、且つ、ネットワークの初期化の間パケットの送受信が不可能となるために、バスの利用効率が低くなってしまう点である。

【0021】プリッジを用いて複数の独立したシリアルバスを接続することでネットワークを構成する手法を示す上述のP1394.1においても、ネットワークの初期化およびトポロジーの再定義によるバスの利用効率の低下を解消するための具体的な手法は示されていない。

【0022】第二の問題点は、ネットワークに接続できる端末機器の数が63台に制限されてしまう点である。

【0023】第三の問題点は、ネットワーク内の一部の 端末機器等がシリアルバスのリソースの多くを獲得して しまった場合に、それらの端末機器等以外の端末機器等 の間での通信が不可能になる場合があることである。

【0024】すなわち、上述のネットワークにおいては、シリアルバスのリソースは、シリアルバスに接続されているすべての端末機器等により共有されており、端末機器等がパケットの送受信を行うためには、まず、送受信を行う端末機器等が、利用可能なリソースを確保し、占有する。そして、該端末機器等により占有されたリソースは、同時に他の端末機器等により確保されることができない。このため、端末機器等により必要なリソースが確保できない場合が生じ、パケットの送信を行うために必要なリソースの確保に失敗した端末機器等は、

パケットの送信を行うことができない。なお、上述のP1 394.1では、プリッジ内部における通信の手法が示されていない。すなわち、ブリッジ内部におけるリソースの

確保の手法を含めた具体的なリソース管理の手法は規格 化されていない。

【0025】第四の問題点は、上述のネットワークが、独立に存在する異なるシリアルバス間において、プリッジを介してパケットの転送を行う機能を有していないことである。すなわち、P1394.1には、ポータルによるパ10 ケットの入出力の手法が示されている一方、ブリッジ内部におけるパケットの通信を行う手法は示されていない。このため、上述のネットワークは、P1394.1に示されている手法によっては、ブリッジを介したパケットの転送を行うことができない。

【0026】本発明は、上記実状に鑑みてなされたものである。本発明の主な目的は、シリアルバスネットワーク内で、活線の挿抜が起こった際のバスの利用効率の低下を回避しつつネットワークの初期化及びトポロジーの再定義を行い、バスの利用効率を向上させるIEEE1394プリッジを提供することである。

【0027】本発明の他の目的は、シリアルバスネット ワーク内で64台以上の端末機器等を接続することを可 能とするIEEE1394ブリッジを提供することであ る。

【0028】本発明の他の目的は、IEEE1394ブリッジにより互いに接続された複数のシリアルバスを備えるシリアルバスネットワーク内で、各シリアルバスのリソースの管理を各々独立して行うことにより、リソースが効率よく利用されることを可能にするIEEE1394ブリッジを提供することである。

【0029】本発明の他の目的は、ブリッジ、特にIEEE1394ブリッジにより互いに接続された複数のシリアルバスを備えるシリアルバスネットワーク内で、異なるシリアルバス間におけるasynchronousパケットの転送を行うことを可能にするブリッジ、特にIEEE1394ブリッジを提供することである。

【0030】本発明の他の目的は、ブリッジ、特にIE EE1394ブリッジにより互いに接続された複数のシ リアルバスを備えるシリアルバスネットワーク内で、異 40 なるシリアルバス間におけるisochronousパケットの転 送を行うことを可能にするブリッジ、特にIEEE13 94ブリッジを提供することである。

[0031]

【課題を解決するための手段】上記目的を達成するため、この発明の第1の観点にかかるIEEE1394ブリッジは、外部の端末機器に接続された互いに別個のIEEE1394シリアルバスに各々接続された複数のポータルと、各前記ポータルを互いに接続する内部バスとより構成されるIEEE1394ブリッジであって、各前記ポータルは、各前記端末機器がいずれの前記IEE

20

1

E1394シリアルバスに接続されているかを示すトポ ロジー情報を記憶するトポロジー情報記憶手段と、同一 の前記IEEE1394シリアルバスを介して接続され ている前記端末機器及び各前記ポータルが送出した非同 期伝送用パケットを、前記内部パスを介して受信する非 同期伝送用パケット受信手段と、前記非同期伝送用パケ ット受信手段が受信した前記非同期伝送用パケットに記 述されている宛先と、前記トポロジー情報記憶手段に記 **値されている前記トポロジー情報とに基づき、前記宛先** に接続されている前記IEEE1394シリアルパスを 判別して、判別結果が、各自が接続されているものと異 なるIEEE1394シリアルパスを示すとき、そのI EEE1394シリアルバスに接続されている前記ポー タルに該非同期伝送用パケットを送出し、該判別結果 が、各自が接続されているものと同一の前記IEEE1 394シリアルバスを示すとき、各自が接続されている 前記IEEE1394シリアルパスに該非同期伝送用パ ケットを送出する非同期伝送用パケット判別手段と、を 備える、ことを特徴とする。

9

【0032】このようなIEEE1394ブリッジの各々のポータルに、互いに独立なIEEE1394シリアルバスを接続し、シリアルバスネットワークを構築すれば、互いに異なるIEEE1394シリアルバスに接続されている端末機器同士での非同期伝送用パケット(as ynchronousパケット)の交換が行われる。このシリアルバスネットワークでは、各IEEE1394シリアルバスは互いに独立であるので、各々のIEEE1394シリアルバスには、最大63台の端末機器を接続することが可能であり、従って、このシリアルバスネットワークに接続され得る端末機器の数は、63台に限定されない。

【0033】各前記トポロジー情報記憶手段は、各自が属する前記ポータルに接続されている前記IEEE1394シリアルバスに接続されている前記端末機器の個数の変化を検出し、該変化の検出後に該IEEE1394シリアルバスに接続されている前記端末機器を特定して、特定された前記端末機器を示す情報を他の前記ポータルに供給するトポロジー再定義手段と、他の前記ポータルの前記トポロジー再定義手段と、他の前記ポータルの前記トポロジー再定義手段から供給された前記情報と、自らが記憶する前記トポロジー情報を作成して記憶するトポロジー情報更新手段と、を備えるものであってもよい。

【0034】これにより、各々のIEEE1394シリアルバスに接続されている端末機器の個数に変化が生じた場合、そのIEEE1394シリアルバスに接続されている前記ポータルが、個数の変化後においてそのIEEE1394シリアルバスに接続されている端末機器を特定する。そして、新たに特定された前記端末機器を示す情報は各ポータルに供給され、各ポータルは、供給さ

れた情報を、各自が従前より記憶しているトポロジー情報と結合することにより、新たなトポロジー情報を作成する。そのため、ある一部のIEEE1394シリアルバスに接続されている端末機器の個数に変化が起きても、初期化はそのIEEE1394シリアルバスについて行われ、ネットワーク全体は初期化されず、従ってネットワーク全体においてパケットの交換を停止する必要が生じない。

【0035】前記 I E E E 1394ブリッジは、パケッ トの等時性伝送を行う等時性伝送用チャンネルの確保を 要求するための前記非同期伝送用パケットを受信して、 前記内部バス上に該等時性伝送用チャンネルを確保する 内部バスリソース管理手段を備え、各前記ポータルは、 前記等時性伝送用チャンネルの確保を要求するための前 記非同期伝送用パケットを受信して、各自に接続されて いる前記IEEE1394シリアルバス上に該等時性伝 送用チャンネルを確保するローカルバスリソース管理手 段と、前記等時性伝送により伝送される等時性伝送用パ ケットの供給元として指定された前記等時性伝送用チャ ンネルを介して該等時性伝送用パケットを受信する入力 ポートと、前記等時性伝送用パケットの供給元として指 定された前記入力ポートより該等時性伝送用パケットを 取得して、該等時性伝送用パケットを、該等時性伝送用 パケットの供給先として指定された前記等時性伝送用チ ャンネルに送出する出力ポートと、前記入力ポートへの 前記等時性伝送用パケットの供給元となる前記等時性伝 送用チャンネルと、前記出力ポートへの前記等時性伝送 用パケットの供給元となる前記入力ポートと、前記出力 ポートが前記等時性伝送用パケットを供給する供給先と なる前記等時性伝送用チャンネルとを指定するチャンネ ル制御手段と、を備えるものであってもよい。

【0036】このようなIEEE1394ブリッジと、 該IEEE1394プリッジの各々のポータルに接続さ れた互いに独立なIEEE1394シリアルパスとから なるシリアルバスネットワークは、互いに異なるIEE E1394シリアルバスに接続されている端末機器同士 で等時性伝送用パケット(isochronousパケット)の交 換を行う。また、このようなIEEE1394ブリッジ の各ポータルは、各自に接続されたIEEE1394シ リアルバスの等時性伝送用リソースの管理(すなわち、 IEEE1394シリアルパス上に確保し得る等時性伝 送用チャンネルとその周波数帯域等、各等時性伝送用チ ャンネルを特定するパラメータを決定する処理や、等時 性伝送用チャンネルの確保を要求した端末機器等へ該等 時性伝送用チャンネルの制御権を割り当てる処理)を各 々独立して行う。これにより、等時性伝送用パケットの 交換に関与しないIEEE1394シリアルバスは、該 等時性伝送用パケットの交換による影響(例えば、他の パケットの伝送効率の低下等の影響)を受けず、IEE E1394シリアルバスの等時性伝送用リソースは効率

よく利用される。

【0037】少なくとも一つの前記ポータルは、前記内部バスリソース管理手段を備えるものとすれば、前記内部バスリソース管理手段は別個の装置により構成される必要はなく、従って、このIEEE1394ブリッジの構造は簡単なものとなり、IEEE1394ブリッジの製造や、このIEEE1394ブリッジを備えるネットワークの管理が容易となる。

【0038】各前記ポータルは、例えば、前記内部パス を介して前記内部パスリソース管理手段に結線されている。

【0039】各前記ポータル及び前記内部バスリソース管理手段は、前記内部バスを介し、分岐のない連鎖をなすようにして互いに結線されるものとすれば、このIEEE1394プリッジに新たなポータルを増設したり、一部の前記ポータルを撤去したりするために前記内部バスリソース管理手段に変更を加える必要が回避され、ポータルの増設・撤去が容易となる。従って、このIEEE1394プリッジを備えるネットワークの管理も容易になる。

【0040】また、この発明の第2の観点にかかるブリ ッジは、外部の端末機器に接続された互いに別個のロー カルバスに各々接続された複数のポータルと、各前記ポ ータルを互いに接続する内部バスとより構成されるブリ ッジであって、各前記ポータルは、各前記端末機器がい ずれの前記ローカルバスに接続されているかを示すトポ ロジー情報を記憶するトポロジー情報記憶手段と、同一 の前記ローカルバスを介して接続されている前記端末機 器及び各前記ポータルが送出した非同期伝送用パケット を、前記内部バスを介して受信するパケット受信手段 と、前記パケット受信手段が受信した前記非同期伝送用 パケットに記述されている宛先と、前記トポロジー情報 記憶手段に記憶されている前記トポロジー情報とに基づ き、前記宛先に接続されている前記ローカルバスを判別 して、判別結果が、各自が接続されているものと異なる ローカルバスを示すとき、そのローカルバスに接続され ている前記ポータルに該非同期伝送用パケットを送出 し、該判別結果が、各自が接続されているものと同一の 前記ローカルバスを示すとき、各自が接続されている前 記ローカルパスに該非同期伝送用パケットを送出するパ ケット判別手段と、を備える、ことを特徴とする。

【0041】このようなブリッジの各々のポータルに、 互いに独立なローカルバスを接続し、非同期伝送を行う ネットワークを構築すれば、互いに異なるローカルバス に接続されている端末機器同士での非同期伝送用パケッ トの交換が行われる。

【0042】前記ブリッジは、パケットの等時性伝送を 行う等時性伝送用チャンネルの確保を要求するための前 記非同期伝送用パケットを受信して、前記内部バス上に 該等時性伝送用チャンネルを確保する内部バスリソース

管理手段を備え、各前記ポータルは、前記等時性伝送用 チャンネルの確保を要求するための前記非同期伝送用パ ケットを受信して、各自に接続されている前記ローカル パス上に該等時性伝送用チャンネルを確保するローカル パスリソース管理手段と、前記等時性伝送により伝送さ れる等時性伝送用パケットの供給元として指定された前 記等時性伝送用チャンネルを介して該等時性伝送用パケ ットを受信する入力ポートと、前記等時性伝送用パケッ トの供給元として指定された前記入力ポートより該等時 性伝送用パケットを取得して、該等時性伝送用パケット 10 を、該等時性伝送用パケットの供給先として指定された 前記等時性伝送用チャンネルに送出する出力ポートと、 前記入力ポートへの前記等時性伝送用パケットの供給元 となる前記等時性伝送用チャンネルと、前記出力ポート への前記等時性伝送用パケットの供給元となる前記入力 ポートと、前記出力ポートが前記等時性伝送用パケット を供給する供給先となる前記等時性伝送用チャンネルと を指定するチャンネル制御手段と、を備えるものであっ てもよい。

20 【0043】このようなブリッジと、該ブリッジの各々のポータルに接続された互いに独立なローカルバスとからなるネットワークは、互いに異なるローカルバスに接続されている端末機器同士で等時性伝送用パケットの交換を行う。また、このようなブリッジの各ポータルは、各自に接続されたローカルバスの等時性伝送用リソースの管理を各々独立して行う。これにより、等時性伝送用パケットの交換に関与しないローカルバスは、該等時性伝送用パケットの交換による影響を受けず、ローカルバスの等時性伝送用リソースは効率よく利用される。

0 [0044]

40

【発明の実施の形態】以下、本発明の実施の形態を、図面を参照して説明する。

【0045】 <第1の実施の形態>図1は、本発明の第1の実施の形態にかかるIEEE1394ブリッジの構成を示すブロック図である。図示するように、このIEEE1394ブリッジ11は、ポータル12a~12n、ブリッジバス13及びブリッジマネージャ15より構成されている。ポータル12a~12nには、IEEE1394シリアルバスからなるローカルバス14a~14nには、端末機器が接続されている。ポータル12a~12nは、ローカルバス14a~12cは、端末機器が接続されている。ポータル12a~12nは、ローカルバス14a~14nには、端末機器が接続されている。ポータル12a~12nは、ローカルバス14a~14nにでは端末機器として機能する。またポータル12a~12nとブリッジマネージャ15とは、IEEE1394ブリッジ11が備える内部バスであるブリッジバス13を介し、ブリッジマネージャ15を中心にしてスター型に接続され、互いに通信が可能である。

【0046】ブリッジバス13はローカルバスを構成するものと同様のIEEE1394シリアルバスからな 50 る。ブリッジマネージャ15は、ブリッジバス13にお

ける通信の手順の管理と、isochronousリソース(すなわち、等時性伝送を行うためのisochronous チャンネルと使用帯域)の管理を行うIsochronous Resource Manager (IRM)の機能を行う。また、ブリッジマネージャ15は、一定間隔でブリッジパス13上にパケットを送出するルートの機能を行う。そのパケットは、これを受信したポータル12a~12nによって、サイクルスタートパケットとしてローカルバス14a~14n上に転送される。サイクルスタートパケットは、ローカルバス14a~14nのisochronousリソースを獲得した端末機器がisochronousデータを送信するタイミングを決定するために用いるパケットである。

13

【0047】図2は、ポータル12aの構成を示すプロック図である。なお、ポータル12b~12nの構成は、ポータル12aの構成と実質的に同一である。図示するように、ポータル12aは、ポータルコントロールレジスタ22と、BANDWIDTH_AVAILABLEレジスタ23と、CHANNEL_AVAILABLEレジスタ24と、CHANNEL_SWITCHレジスタ25と、input Plug Controlレジスタ(i PCR)26a~26n及び28a~28nと、output P20lug Controlレジスタ(o PCR)27a~27n及び29a~29nと、i Plug210a~210n及び212a~212nと、o Plug211a~211n及び213a~213nと、メモリ214と、Asynchronousパケット判別部215と、NODE_IDSレジスタ216より構成される。

【0048】ポータルコントロールレジスタ22には、ブリッジバス13と、自らに接続されているローカルバス14(ポータル12aのポータルコントロールレジスタ22の場合は、ローカルバス14a)の双方の状態を示す情報が格納される。具体的には、ポータルコントロールレジスタ22の値が0の場合はローカルバス14a又はブリッジバス13について後述する初期化が行われていることを示し、この場合ポータル12aはパケットを転送しない。ポータルコントロールレジスタ22の値が0でない場合、ポータル12aは受信したパケットの転送が可能な状態となる。

【0049】メモリ214には、ブリッジバス13及び 自らに接続されているローカルパスから受信したasynch ronousパケットのうち、他のポータルへ転送すべきパケ ットが格納される。

【0050】Asynchronousパケット判別部215は、プリッジパス13及び自らに接続されているローカルパスから受信した後述のasynchronousパケットの先頭にあるdestination_IDフィールドを参照し、受信したパケットを転送するか否かを判別する。また、Asynchronousパケット判別部215は、受信したasynchronousパケットに含まれるdestination_offsetフィールドの内容と、destination_IDフィールドの判別結果とより、受信したasynchronousパケットが、他のローカルパスが接続されてい

るポータルに対するバスリソースの問い合わせを行うためのものであるか否かを判別する。さらに、Asynchrono usパケット判別部215は、受信したasynchronousパケットに含まれるextended_tcodeフィールドの内容より、受信したパケットがisochronousリソース獲得のためのものであるか否かを判別する。

信したポータル12a~12nによって、サイクルスタ ートパケットとしてローカルバス14a~14n上に転 送される。サイクルスタートパケットは、ローカルバス 14a~14nのisochronousリソースを獲得した端末 機器がisochronousデータを送信するタイミングを決定 するために用いるパケットである。

【0051】NODE_IDSレジスタ216には、シリアルバ スネットワーク(すなわち、例えば図3に示すような、 IEEE1394ブリッジ11と、ローカルバス14a ~14nと、ローカルバス14a~14nに接続された 端末機器とより構成されるネットワーク)に接続されて いる各端末機器を識別する情報が格納されている。

【0052】iPlug210a~210n及び212a~212nと、oPlug211a~211n及び213a~213nとは、ブリッジバス13又は各ローカルバス14a~14n上に端末機器等により確保されるisochronousデータ転送用の特定のチャンネルと、後述のようにして関連づけられる。ポータル12aは、各iPlug及び各oPlugを介して、後述の通りにisochronousデータの入出力を行う。

【0053】iPCR26a~26n及び28a~28nと、oPCR27a~27n及び29a~29nには、各iPlug及び各oPlugを、ローカルバス14a~14n上又はブリッジバス13上のいずれのチャンネルに関連付けるかを示す情報が格納される。ポータル12aは、各iPCR及び各oPCRの内容を書き換えることによって、各iPlug及び各oPlugに関連づけるチャンネルを選択する。

【0054】CHANNEL_SWITCHレジスタ25には、ブリッジパス側のプラグ(すなわち、ブリッジパス13上に確保されたチャンネルに関連づけられた各iplug及び各oPlug)とローカルバス側のプラグ(すなわち、自らに接続されているローカルバス上に確保されたチャンネルに関連づけられた各iPlug及び各oPlug)との関連付けを示す情報が格納される。ポータル12aは、isochronousデータを伝送するため、CHANNEL_SWITCHレジスタ25の内容に従って、ローカルバス側の各iPlug又は各oPlugと、ブリッジバス側の各oPlug又は各oPlugとを関連づける。

【0055】BANDWIDTH_AVAILABLEレジスタ23及びCHA NNEL_AVAILABLEレジスタ24は、自らに接続されているローカルバスについての、利用可能なリソース情報(帯域及びisochronousチャンネル)を格納する。isochronousパケットを送信する端末機器は、これらのレジスタを参照することによりリソースの確認を行い、リソースを獲得する。

【0056】また、ポータル12aは、自らに接続されているローカルバス上で伝送されるパケットと、ブリッジバス13上で伝送されるパケットを受信している。そ 50 して、各自が備えるポータルコントロールレジスタ22

ッジバス13上に一定間隔で送出するサイクルスタート

パケットを、常に自らに接続されているローカルバス上

に転送する。

化及びトポロジーの定義が行われる。なお、図5は、ロ ーカルバス14の初期化及び再定義が行われる際の各部 の動作を示す図である。

【0057】 (動作) 以下、図2のポータル12aの動 作、特に、シリアルバスネットワークの初期化、トポロ ジーの定義及びパケットの転送の動作を、図面を参照し て説明する。なお、ポータル12b~12nの動作は、 ポータル12aの動作と実質的に同一である。図3は、 IEEE1394プリッジ11と、ローカルバス14a ~14nと、ローカルバス14a~14nに接続された 端末機器とより構成されるシリアルバスネットワークの 一例を示す。

【0062】各ポータル12a~12nにportal_IDを 割り振ると、プリッジマネージャ15は、プリッジパス 13にローカルバス初期化命令51を送出する。各ポー タル12a~12nは、ローカルパス初期化命令51を 受信すると、各自に接続されているローカルパスにパス リセット信号52を送出することにより、該ローカルバ 10 スを初期化する。各ポータル12a~12nは、例えば IEEE1394.1995に定められた手順に従って、各自に接続 されているローカルバスのトポロジーの定義(ないし再 定義)を行う。このとき、各ローカルバスのbus_IDは、 各ローカルバスが接続されているポータルに割り当てら れたportal_IDに一致するように割り当てられる。ま た、トポロジーの定義を行うとき、各ポータル12a~ 12nは、例えばIEEE1394.1995に定められている通 り、各自を、各自が接続されているローカルパスにおけ るルート及びIRMに指定する。各ポータル12a~1 2 n は、各自に接続されているローカルパスに接続され ている端末機器を識別する情報を、各自のNODE_IDSレジ スタ216に格納する。そして、各ポータル12a~1 2nは、ローカルバス14a~14nの初期化及びトポ ロジーの定義を終了する。

【0058】(シリアルバスネットワークの初期化、ト ポロジーの定義)図3のシリアルバスネットワークにお いては、異なるローカルバスに接続された端末機器同士 が通信を行うために、まず、シリアルパスネットワーク の初期化と、トポロジーの定義(すなわち、このシリア ルバスネットワークに含まれるプリッジバス及びローカ ルバスの特定と、これらのバスに接続されているポータ ルや端末機器の特定)が行われる。以下、シリアルバス ネットワークの初期化及びトポロジーの定義の動作を、 図面を参照して説明する。図4は、シリアルバスネット ワークを初期化する際の、シリアルバスネットワーク各 部の動作を説明する図である。

【0063】各ポータル12a~12nは、各自が接続 されているローカルバス1の初期化及びトポロジーの定 義を終了すると、各自のNODE_IDSレジスタ216の内容 をブリッジマネージャ15に送信する。ブリッジマネー ジャ15は、各ポータル12a~12nのNODE_IDSレジ 30 スタ216の内容を受信した後、その内容を結合し、各 ポータル12a~12nのNODE_IDSレジスタ216の内 容を、結合により得られた情報(すなわち、このシリア ルバスネットワークに接続されている各端末機器を識別 する情報)に書き換える。具体的には、ブリッジマネー ジャ15は、各ポータル12a~12nのNODE_IDSレジ スタ216に、例えばIEEE1394.1995に定められている 手法により該情報の書き込み(ライトトランザクショ ン)を行う。その後、各ポータル12a~12nは、各 自のポータルコントロールレジスタ22の値を0でない 値に設定してパケットの転送が可能な状態になる。

【0059】プリッジマネージャ15は、各ポータルに プリッジバス初期化命令41を送信することにより、シ リアルバスネットワークの初期化を開始する。ブリッジ バス初期化命令41を受信した各ポータルは、メモリ2 14内に格納されているパケットと、NODE_IDSレジスタ 216の内容とを破棄し、ポータルコントロールレジス タ22の値を0に設定する。これにより、各ポータル は、パケットの転送が実質的に不可能な状態になる。

> 【0064】このシリアルパスネットワークでは、ロー カルバス14a~14nに端末機器が接続されたり、ロ 一力ルパス14a~14nから端末機器が離脱したりす るといった状態変化が生じることがある。ローカルバス 14 a~14 nでこの状態変化が生じた場合、状態変化 が生じたローカルバスは、該ローカルバスに接続されて いるポータルにより初期化され、該ポータルによりトポ ロジーの再定義が行われる。このとき、眩ポータルは、 自らのポータルコントロールレジスタ22の値を0とす 50 る。これにより、該ポータルは、自らが接続されている

【0060】次に、ブリッジマネージャ15は、ブリッ ジバス13上でのトポロジーの定義を行う。プリッジバ ス13が所定の手法により初期化された後、プリッジバ ス13上で、例えばIEEE1394.1995 Appendix E.3.2に定 められた手法によりtree-IDプロセスが実行され、プリ ッジパス13における各ポータルのトポロジーの定義が 行われる。プリッジマネージャ15は、プリッジパス1 3におけるトポロジーの定義が終わったポータルに送信 許可を送信する。プリッジマネージャ15から送信許可 を受信したポータルは、ブリッジマネージャ15 にself _IDパケットを送信する。ブリッジマネージャ15は、s elf_IDパケットを自らに送信したポータルにportal_ID を割り振る。portal_IDを決定する手法は、例えばIEEE1 394. 1995 Appendix E. 3. 3に記述されているnode_IDの決 定法と実質的に同一の手法である。

【0061】各ポータル12a~12nにportal_IDが 割り当てられると、ローカルバス14a~14nの初期

ローカルバスとブリッジバス13との間でパケットを転送することが実質的に不可能な状態になる。トポロジーの再定義が終了した後、該ポータルは、ブリッジマネージャ15に自らのNODE_IDSレジスタ216の内容を送信する。ブリッジマネージャ15は、該ポータルのNODE_IDSレジスタ216の内容を受信すると、各ポータル12a~12nの従前のNODE_IDSレジスタの内容を、トポロジーの再定義を行ったポータルのNODE_IDSレジスタ216の内容を含むように書き換える。

17

【0065】 (パケットの転送) シリアルバスネットワークの初期化及びトポロジーの定義が終了すると、シリアルバスネットワークに接続された各端末機器間で、as ynchronousパケットを交換することが可能になる。端末機器がas ynchronousパケットの送信を行う場合、その端末機器は自らが接続されているローカルバスのルートであるポータルに、該ローカルバスの制御権を要求する。該ポータルは、ブリッジバス13及び自らが接続されているもの以外のローカルバスの状況のいかんに拘わらず、該端末機器に該ローカルバスの制御権を与える。該ローカルバスの制御権を得た端末機器は、asynchronousパケットを該ローカルバスに送出する。

【0066】送出されたasynchronousパケットが、そのasynchronousパケットの送信元と同一のローカルバスに接続されている端末機器に宛てたものである場合、そのローカルバスに接続されているポータルは、そのasynchronousパケットの転送に関与しない。他のローカルバスに接続されている端末機器に宛てたものである場合、送出されたasynchronousパケットの送信元と同一のローカルバスに接続されているポータルは、ブリッジバス13を介して、宛先である端末機器にasynchronousパケットを転送する。以下、シリアルバスネットワーク内の異なるローカルバスに接続された端末機器間におけるasynchronousパケットの通信手順について、図面を参照して説明する。

【0067】 (asynchronousパケットの通信手順)図6は、asynchronousパケットのパケットフォーマットの一例を示す。図示するパケットフォーマットは、IEEE1394.1995に定められたパケットフォーマットと実質的に同一のものである。図6に示すパケットフォーマットを有するasynchronousパケットの先頭には、図示するように、destination_IDフィールド61と呼ばれるデータ領域がある。このデータ領域には、送信先の端末機器のbus_ID及びnode_IDが記述されており、このbus_ID及びnode_IDにより、送信先の端末機器を一意に決定できる。また、destination_IDフィールド61に続くデータ領域であるsource_IDフィールド62には、asynchronousパケットの発信元の端末機器を識別する情報が記述されている。また、このasynchronousパケットは、図6には示していないdestination_offsetフィールドを備える。dest

ination_offsetフィールドには、asynchronousパケットが、BANDWIDTH_AVAILABLEレジスタ23及びCHANNEL_AVAILABLEレジスタ24に格納されている値を取得するために送信されたものであるか否かを示す情報が記述される。更に、このasynchronousパケットは、図6には示していないextended_tcodeフィールドを備える。extended_tcodeフィールドには、asynchronousパケットが、BANDWIDTH_AVAILABLEレジスタ23及びCHANNEL_AVAILABLEレジスタ24にcompare & swapを行うために送信されたものであるか否かを示す情報が記述される。

【0068】図7は、ブリッジマネージャ15と2個のポータル12a、12bとを備えるIEEE1394ブリッジ11と、ローカルバスを介してポータル12aに接続された端末機器31bとからなるシリアルバスネットワークの一例を示す。(なお、図7に示すシリアルバスネットワークにおいて、IEEE1394ブリッジ11と、ポータル12a及び12bと、ブリッジマネージャ15とは、いずれも、図1において同一の参照符号を付して示すものと実質的に同一のものである。)

以下、図7を参照して、端末機器31aが端末機器31 bに対してasynchronousパケットを送信する手順を説明 する-

【0069】図8は、図7に示すシリアルバスネットワークの端末機器31aがasynchronousパケットを送出する場合における、該シリアルバスネットワークの各部の動作を説明するための図である。

【0070】図示するように、

(1) 端末機器 3 1 a は、例えば IEEE 1394. 1995に定められた手順に従って、ポータル 1 2 a に送信要求 8 1 を送信する。

(2) 送信要求81を受信したポータル12aは端末機器31aに送信許可82を送信し、送信許可82を受信した端末機器31aは、asynchronousパケットをローカルバスに送出する。

【0071】図9は、図7に示すシリアルバスネットワークにおいて、端末機器31aが送出したasynchronous パケット91をポータル12aが受信した場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0072】図示するように、

- (3) ポータル12 a のAsynchronousパケット判別部2 15は、受信したasynchronousパケット91のdestinat ion_IDフィールド61に記述されている、送信先のbus_ IDを読み取る。
- (4) (3) で読み取ったbus_IDが、ポータル12aに 接続されているローカルバス14aのbus_IDと異なる か、又は同報パケット(すなわち、シリアルバスネット 50 ワークに接続されているすべての端末機器に宛てられた

19

・パケット)であることを示す(例えば、IEEE1394.1995で定められている値、すなわち16進数"3FF"である)場合、ポータル12aは、ブリッジマネージャ15に送信要求93を送信し、受信したasynchronousパケット91を、自らが備えるメモリ214aに格納する。メモリ214aは、上述のメモリ214と実質的に同一のものである。また、ポータル12aは、ローカルバス14aに、送達を確認する送達確認信号92b(例えば、IEEE1394.1995で定められたペンディングコードを含む信号)を送出する。

【0073】図10は、図7に示すシリアルバスネット ワークにおいて、ポータル12aがブリッジバス13に asynchronousパケット91を送出する場合における、該 シリアルバスネットワークの各部の動作を説明する図で ある。

【0074】図示するように、

(5) 送信要求93を受信したブリッジマネージャ15 は、ポータル12aに送信許可101を送信する。

(6) ブリッジマネージャ15からの送信許可101を受信したポータル12aは、メモリ214aに格納されているasynchronousパケット91を、ブリッジバス13に送出する。ポータル12bは、ポータル12aが送出したasynchronousパケット91をブリッジバス13より受信する。ポータル12bが備えるAsynchronousパケット判別部215bは、受信したasynchronousパケット91のdestination_bus_IDフィールド61の内容を読み取る。そして、destination_bus_IDフィールド61に記述されているbus_IDが、ポータル12bに接続されているローカルバス14bのbus_IDに実質的に一致するか、又は、受信したasynchronousパケット91が同報パケットであることを示している場合、ポータル12bは、受信したasynchronousパケット91を、自らが備えるメモリ214bに格納する。

【0075】図11、図12は、図7に示すシリアルバスネットワークにおいて、ポータル12bがブリッジバス13よりasynchronousパケット91を受信する場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0076】図示するように、

(7) ポータル12bは、ローカルパス14bのbus_ID 40 る。と実質的に一致するbus_IDがdestination_bus_IDフィールド61に記述されているasynchronousパケット91を受信したことを確認すると、自らが備えるポータルコントロールレジスタ22bの値を読み取る。

【0077】そして、図11に示すように、

(8-a) ポータル12bは、ポータルコントロールレジスタ22bの値が0である場合、ブリッジバス13に、asynchronousパケット91が送達されたことを確認する送達確認信号111a(例えば、IEEE1394.1995で定められたアドレスエラーコードを含む信号)を送信す

る。そして、メモリ214bに格納されているパケット を破棄する。

【0078】 (9-a) ブリッジバス13から送達確認信号111aを受信したポータル12aは、メモリ214aに格納されているasynchronousパケット91を破棄する。そして、asynchronousパケット91が送達されたことを確認する送達確認信号112 (例えば、IEEE1394.1995で定められたアドレスエラーコードを含む信号)を、ローカルバス14aに送出する。送達確認信号112を受信した端末機器31aは、asynchronousパケット91の転送を、手順(1)からやり直す。

【0079】一方、図12に示すように、

(8-b) ポータル12bは、ポータルコントロールレジスタ22bの値が0でない場合、メモリ214bに格納されているasynchronousパケット91を、ローカルバス14bに送出する。

【0080】 (9-b) そして、ポータル12bは、手順(8-b) の処理を行うと共に、ブリッジパス13に、送達の手続きが続行されることを示すペンディング コードを含んだ送達確認信号111bを送出する。ポータル12bからの送達確認信号111bを受信したポータル12aは、メモリ214aに格納されているasynch ronousパケット91を破棄する。

【0081】図13は、図7に示すシリアルバスネット ワークにおいて、端末機器31bがasynchronousパケット91を受信する場合における、該シリアルバスネット ワークの各部の動作を説明する図である。

【0082】図示するように、

(10)端末機器31bは、ローカルバス14bから、自らに宛てられたasynchronousパケット91を受信すると、ローカルバス14bに、送達確認信号121を送出する。

(11) 端末機器 31 b からの送達確認信号 121を受信したポータル12 b はブリッジマネージャ15 に送信要求122を送信する。

【0083】図14は、図7に示すシリアルバスネット ワークにおいて、ポータル12bがプリッジマネージャ 15からの送信許可131を得る場合における、該シリ アルバスネットワークの各部の動作を説明する図であ

【0084】図示するように、

(12) ポータル12bより送信要求122を受信した ブリッジマネージャ15は、ポータル12bに送信許可 131を送信する。

(13) ブリッジマネージャ15からの送信許可131 を受信したポータル12bは、メモリ214bに格納さ れていたasynchronousパケット91に含まれるsource_I Dフィールド62の内容(すなわち、発信元を識別する 情報)を読み取り、読み取ったsource_IDフィールド6 2の内容がdestination_IDフィールド61に記述された

21

asynchronousパケット(無データ)132を作成して、 ブリッジバス13に送信する。そして、ポータル12b は、メモリ214bに格納されているasynchronousパケット91を破棄し、asynchronousパケット(無データ) 132を、メモリ214bに格納する。

【0085】図15、図16は、図7に示すシリアルバスネットワークにおいて、ポータル12aがasynchronousパケット(無データ)132を受信した場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0086】図示するように、

(14) ポータル12bが送出したasynchronousパケット(無データ)132をポータル12aが受信すると、ポータル12aが備えるAsynchronousパケット判別部215aは、asynchronousパケット(無データ)132のdestination_IDフィールド61の内容を読み取る。そして、読み取った内容に含まれるbus_IDの値がローカルバス14aを示す値と実質的に一致する場合は、受信したasynchronousパケット(無データ)132をメモリ214aに格納する。その後、ポータル12aは、ポータル20コントロールレジスタ22aが格納する値を読み取り、値がOであるか否かを判別する。

【0087】そして、図15に示すように、

(15-a) ポータルコントロールレジスタ 2 2 a が格納する値が 0 の場合、ポータル 1 2 a は、リトライコードを含む送達確認信号 1 4 2 をブリッジバス 1 3 に送出する。ポータル 1 2 b は、送達確認信号 1 4 2 を受信し、ブリッジマネージャ 1 5 に送信要求を送信して、ブリッジマネージャ 1 5 より送信許可を受信した後、メモリ 2 1 4 b に格納されている a synchronous パケット (無データ) 1 3 2 を、再びブリッジバス 1 3 に送出する。【0088】また、図 1 6 に示すように、

(15-b) ポータルコントロールレジスタ22aが格納する値が0でない場合、ポータル12aは送達確認信号141をブリッジバス13に送出し、また、メモリ214aに格納されているasynchronousパケット(無データ)132をローカルパス14aに送出する。ポータル12bは、送達確認信号141を受信し、メモリ214bに格納されているasynchronousパケット(無データ)132を破棄する。

【0089】図17は、図7に示すシリアルバスネット ワークにおいて、端末機器31aがasynchronousパケット(無データ)132を受信した場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0090】図示するように、

(16) 端末機器31aは、ポータル12aが送出した asynchronousパケット (無データ) 132を受信すると、送達確認信号151をローカルバス14a上に送出する。ポータル12aは、送達確認信号151を受信す 50

ると、メモリ214aに格納されているasynchronousパケット(無データ)132を破棄する。

【0091】以上で、一連の通信手順は終了する。上述の(1)~(16)の手順に従うことにより、端末機器31aから端末機器31bへ、IEEE1394プリッジ11を介して、asynchronousパケットが送信される。 【0092】(isochronousパケットの通信手順)シリアルバスネットワークの初期化及びトポロジーの定義が

終了すると、シリアルバスネットワークに接続された端 10 末機器間では、asynchronousパケットだけではなく、is ochronousパケットを交換することも可能になる。各自 が接続されたローカルバス上にisochronousパケットを 送出しようとする端末機器は、各自が接続されているローカルバスのIRMであるポータルに、isochronousリ ソースを要求する。シリアルバスネットワークのisochronousリソースの管理は、各々のローカルバスのIRM であるポータルが、ローカルバス 毎に独立に行う。すな わち、一つのローカルバスのリソースの状況は、他のローカルバスのリソースの状況に影響されない。

【0093】互いに異なるローカルバスに接続された端末機器間でisochronous通信を行う場合、isochronousパケットは、これらの端末機器が接続されているローカルバスに接続されているポータルと、ブリッジバスとを介して転送される。

【0094】isochronousパケットの転送に関しては、 以下に述べる2つの状況が考えられる。

(状況1) 既に端末機器のためにローカルバス上でis ochronousリソースが確保され、その端末機器がisochro nousパケットを送信しており、該端末機器が接続されているものとは異なるローカルバスに接続されている端末機器が、送信されたisochronousパケットを受信する場合

(状況2) 自らが接続されているものとは異なるローカルバスに接続されている端末機器(送信先)にisochronousパケットを送信しようとする端末機器(送信元)が、該パケットを送信することを決定した後に、送信元及び送信先が接続されているローカルバス及びブリッジバスのisochronousリソースを獲得する場合

【0095】以下、図7のシリアルバスネットワークに おいて、端末機器31aが既にローカルパス14a上に おいてisochronousリソースを獲得してisochronousパケ ットを送出して、ポータル12aと通信を行っている状 況で、端末機器31aの送信しているisochronousパケ ットを端末機器31bが受信する手順を例として、上述 の状況1の場合におけるisochronousパケットの通信手 順を、図面を参照して説明する。なお、端末機器31a は、例えばIEEE1394、1995に定められた手順に従って、 ローカルバス14a上でのisochronousリソースを獲得 しているものとする。

【0096】図18は、図7のシリアルバスネットワー

クにおいて、端末機器 3 1 b が端末機器 3 1 a に、端末機器 3 1 a がローカルバス 1 4 a 上に確保したバスリソースの問い合わせを行う場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0097】図示するように、

(1) 端末機器31 bは、asynchronousパケットを用い てローカルパス上で端末機器31aが獲得しているisoc hronousリソースを示す情報を、端末機器31aに問い 合わせる。具体的には、端末機器31bは、ポータル1 2a、12bを介し、端末機器31aが備えるoPCR から、例えばIEEE1394, 1995に定められた手法によりリ ードトランザクション(データの読み出し)161を行 う。これにより、端末機器31bは、端末機器31aか らリードレスポンス162を受信する。そして、端末機 器31bは、受信したリードレスポンス162より、端 末機器31 a がローカルパス14 a 上で占有しているチ ャンネル及びその帯域を示す情報、すなわちisochronou sリソースを示す情報を取得する。リードレスポンス1 62は、ポータル12a、12bを介して上述のように 端末機器31bに転送されるとき、asynchronousパケッ トの形式をとって転送される。ポータル12a、12b が該パケットを受信すると、Asynchronousパケット判別 部215a、215bは、該パケットのdestination_ID フィールド61の内容を読み取って宛先を判別し、ポー タル12a、12bは、判別された宛先に、上述したas ynchronousパケットの通信手順に従って該パケットを転 送する。

【0098】図19は、図7のシリアルバスネットワークにおいて、端末機器31bが、ポータル12bに、ローカルパス14b及びブリッジパス13のリソース情報の問い合わせを行う場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0099】図示するように、

(2) 端末機器31bは、ローカルバス14bのIRM であるポータル12bにローカルバス14b上で利用可 能なisochronousリソースを問い合わせ、ブリッジバス 13の1RMであるブリッジマネージャ15に、ブリッ ジバス13上で利用可能なisochronousリソースを問い 合わせる。具体的には、端末機器31bは、ポータル1 2bに、asynchronousパケットを用いてクアドレッドリ ードトランザクション(データの読み出し)171aを 行い、ポータル12bから、ポータル12bが備えるBA NDWIDTH_AVAILABLEレジスタ 2 3 b 及びCHANNEL_AVAILAB LEレジスタ24bの値を含んだリードレスポンス171 bを受信する。そして、リードレスポンス171bよ り、BANDWIDTH_AVAILABLEレジスタ23b及びCHANNEL_A VAILABLEレジスタ24bの値を取得する。また、端末機 器31bは、プリッジマネージャ15に、asynchronous パケットを用いてクアドレッドリードトランザクション

ジマネージャ 1 5 が備えるBANDWIDTH_AVAILABLEレジスタ 2 3 c 及びCHANNEL_AVAILABLEレジスタ 2 4 c の値を含んだリードレスポンス 1 7 2 b を受信する。そして、リードレスポンス 1 7 2 b より、BANDWIDTH_AVAILABLEレジスタ 2 3 c 及びCHANNEL_AVAILABLEレジスタ 2 4 c の値を取得する。

【0100】図20は、図7のシリアルバスネットワークにおいて、端末機器31bがローカルバス14b及びブリッジバス13上にバスのリソースを獲得する場合に おける、該シリアルバスネットワークの各部の動作を説明する図である。

【0101】図示するように、

(3) 端末機器31bは、手順(2)で得られた、ポー タル12b上及ぴプリッジマネージャ15上で使用可能 なisochronousリソースを示す情報と、手順(1)で得 られた、端末機器31aがローカルバス14a上に確保 しているisochronousリソースを示す情報とを比較す る。そして、端末機器31bは、端末機器31aがロー カルバス14a上に確保しているisochronousリソース と同様のisochronousリソースをローカルパス14b上 20 及びブリッジパス13上に獲得することができるか否か を判別する。ローカルバス14b上及びブリッジバス1 3上に同様なリソースを獲得できると判別された場合、 端末機器31bは、ローカルバス14bのIRMである ポータル12bにロックトランザクション181aを行 うことにより、isochronousリソースを確保する。具体 的には、端末機器 3 1 b は、例えばIEEE1394.1995に定 められた手法により、asynchronousパケットを用いて、 BANDWIDTH_AVAILABLEレジスタ23b及びCHANNEL_AVAIL ABLEレジスタ24bの内容のうち、手順(1)で得られ 30 たisochronousリソースを示す情報と異なる部分を更新 する動作 (compare & swap) を行う。また、端末機器3 1 b は、ブリッジバス 1 3 の I R M であるブリッジマネ ージャ15にロックトランザクション182aを行うこ とにより、isochronousリソースを確保する。具体的に は、端末機器31bは、例えばロックトランザクション 181aにおける手法と同様の手法により、BANDWIDTH_ AVAILABLEレジスタ23c及びCHANNEL_AVAILABLEレジス タ24cの内容のうち、手順(1)で得られたisochron 40 ousリソースを示す情報と異なる部分を更新する。isoch ronousリソースを確保した後、端末機器31bは、ポー タル12b及びブリッジマネージャ15より、ロックレ スポンス181b、182bを受信する。なお、ローカ ルバス14b上及びブリッジパス13上に、ローカルパ ス14a上におけるものと同様なisochronousリソース を獲得できないと判別された場合、端末機器31bはis ochronousリソースを要求しない。

器31bは、ブリッジマネージャ15に、asynchronous 【0102】図21は、図7のシリアルパスネットワー パケットを用いてクアドレッドリードトランザクション クにおいて、端末機器31bが確保したisochronousチ 172aを行い、ブリッジマネージャ15から、ブリッ *50* ャンネルと、ポータル12a及び12bのプラグとを関

25

連づける場合における、該シリアルパスネットワークの 各部の動作を説明する図である。

【0103】図示するように、

(4) 端末機器31bは、ポータル12bが備えるロー カルブリッジ側のoPCR191bに、asynchronousパ ケットを用いて、例えばIEEE1394.1995に定められた手 法によりライトトランザクション(データ書き込み) 1 95aを行う。これにより、端末機器31bは、ローカ ルバス14b上に確保したisochronousチャンネルとo Plug194bとを互いに関連づける。その後、端末 機器31bは、ポータル12bからライトレスポンス1 95 b を受信すると、ポータル12 b が備えるブリッジ パス側のiPCR192bに、ライトトランザクション 196aを行う。これにより、端末機器31bは、自ら がブリッジバス13上に確保したisochronousチャンネ ルとiPlug193bとを互いに関連づける。その 後、端末機器31bは、ポータル12bからライトレス ポンス196bを受信すると、更に、ポータル12bが 備えるCHANNEL_SWITCHレジスタ25bにライトトランザ クション197aを行う。これにより、端末機器31b は、iPlug193bとoPlug194bとを互い に関連づける。

【0104】 (5) (4) の処理の後、ポータル12b からライトレスポンス197bを受信すると、端末機器 31bは、ポータル12aにも、(4)の処理における ライトトランザクション196aと同様のライトトラン ザクション198aを行う。これにより端末機器31b は、ポータル12aが備えるローカルバス側のiPlu g193aと、端末機器31aがローカルバス14a上 に確保しているisochronousチャンネルとを、互いに関 連付ける。また、端末機器316は、ポータル126か らライトレスポンス197bを受信すると、ポータル1 2 a に、ライトトランザクション199 a を行う。これ により端末機器31bは、ポータル12aが備えるプリ ッジパス側のoPlug194aと、プリッジバス13 上に端末機器31bが確保したisochronousチャンネル とを、互いに関連付ける。その後、ポータル12aか ら、ライトトランザクション198a及び199aに応 答して送信されたライトレスポンス198b及び199 bを受信すると、端末機器31bは更に、ポータル12 aが備えるCHANNNEL_SWITCHレジスタ25aにライトト ランザクション1910aを行う。これにより端末機器 31bh, iPlug193aboPlug194ab を互いに関連づける。なお、ライトランザクション19 10aを行った後、端末機器31bは、ポータル12a よりライトレスポンス1910bを受信する。

【0105】以上説明した手順(1)~(5)が行われ る結果、端末機器31bは、端末機器31aが送出する isochronousパケットを受信することが可能になる。な お、手順(1)において、端末機器31bは、端末機器

31aがローカルバス14a上に占有しているisochron ousリソースを端末機器31 a 自身に問い合わせる必要 はなく、端末機器31 bは、例えば、ポータル12 a に 該リソースの問い合わせを行っても良い。

【0106】図22は、図7のシリアルパスネットワー クにおける、isochronousパケット1911の具体的な 流れを説明する図である。

【0107】図示するように、まずプリッジマネージャ 15が、ブリッジバス13にサイクルスタートパケット 1912を送出する。ポータル12aはサイクルスター トパケット1912を受信し、これをローカルパス14 aに転送する。端末機器31aは、ローカルパス14a に転送されたサイクルスタートパケット1912を受信 すると、isochronousパケット1911を送出する。す ると、ポータル12aが、iPlug193aを介し て、ローカルパス14a上に送出されたisochronousパ ケット1911を受信する。そして、ポータル12a は、CHANNEL_SWITCHレジスタ25aの内容が示す通り に、isochronousパケット1911を、oPlug19 4 a を介して、ブリッジパス13上に確保されたisochr onousチャンネルに送出する。ブリッジパス13上の該i sochronousチャンネルに送出されたisochronousパケッ ト1911は、ポータル12bにより、iPlug19 3 bを介して受信される。ポータル12bは、CHANNEL_ SWITCHレジスタ25bの内容が示す通り、受信したisoc hronousパケット1911を、oPlug194bを介 し、ローカルパス14b上に確保されたisochronousチ ャンネルに送出する。端末機器31bは、このisochron ousチャンネルに送出されたisochronousパケット191 30 1を受信する。

【0108】次に、図7のシリアルバスネットワークに おける端末機器31aが端末機器31bに対してisochr onousパケットを送信する手順を例として、上述の状況 2の場合におけるisochronousパケットの通信手順を、 図面を参照して説明する。

【0109】図23は、図7のシリアルバスネットワー クにおいて、端末機器31aがポータル12bにisochr onousリソースの問い合わせを行う場合における、該シ リアルバスネットワークの各部の動作を説明するもので 40 ある。

【0110】図示するように、

(1) 端末機器 3 1 a は、isochronousパケットを送出 するに先立って、自らが接続されているローカルパス1 4 a の I R M であるポータル 1 2 a に、ローカルバス 1 4 a で利用可能なi sochronous リソースの問い合わせを 行う。具体的には、例えば、destination_IDフィールド 6 1 にポータル 1 2 a のbus_IDとnode_IDを配述したasy nchronousパケットを用いて、上述のクアドレッドリー ドトランザクション171aと同様のクアドレッドリー ドトランザクション201を行う。これにより、端末機 器31aは、ポータル12aのBANDWIDTH_AVAILABLEレジスタ23a及びCHANNEL_AVAILABLEレジスタ24aの値を返送することを、ポータル12aに要求する。

27

【0111】図24は、図7のシリアルバスネットワークにおいて、端末機器31aから送信されたasynchronousパケットをポータル12aが受信する場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0112】図示するように、

(2) ポータル12aが、端末機器31aが送出したas ynchronousパケットを受信したすると、Asynchronousパケット判別部215aは、受信したasynchronousパケットが、ローカルバス14bのisochronousリソースをポータル12aに問い合わるためのパケットであることを判別する。具体的には、Asynchronousパケット判別部215aは、受信したasynchronousパケットのdestination_IDフィールド61及びdestination_offsetフィールドに記述されている内容を読み取る。そして、読み取った内容が、該パケットが、BANDWIDTH_AVAILABLEレジスタ23a及びCHANNEL_AVAILABLEレジスタ24aが格納する値を取得するためのasynchronousパケットであることを示していることを判別する。

【0113】(3)(2)の処理による判別を行うと、ポータル12aは、BANDVIDTH_AVAILABLEレジスタ23 a及びCHANNNEL_AVAILABLEレジスタ24aが格納する値を、リードレスポンス2103として端末機器31aに返送する。

【0114】(4)次にポータル12aは、ブリッジマ ネージャ15に、プリッジバス13のisochronousリソ ースの問い合わせを行い、該当するisochronousリソー スを示す情報を、ブリッジマネージャ15より取得す る。また、ポータル12aは、ポータル12bに、ロー カルバス14bのisochronousリソースの問い合わせを 行い、該当するisochronousリソースを示す情報を、ポ ータル12 b より取得する。ブリッジマネージャ15及 びポータル12bへの上述の問い合わせは、例えば、ブ リッジマネージャ15及びポータル12bに、上述のク アドレッドリードトランザクション201と同様のクア ドレッドリードトランザクション 2 1 0 1 a 及び 2 1 0 ousリソースを示す情報は、例えば、上述のリードレス ポンス2103と同様の形式のリードレスポンス210 1b及び2102bとして、プリッジマネージャ15及 びポータル12bより送信される。

【0115】図25は、図7のシリアルバスネットワークにおいて、端末機器31aがローカルバス14aのis ochronousリソースを獲得する場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0116】図示するように、

(5) 端末機器31aは、ポータル12aに、asynchro 50 ータル12a及び12bのプラグとを互いに関連づける

nousパケットを用い、例えば上述のロックトランザクション181aと同様にして、ロックトランザクション221を行う。

【0117】(6) 端末機器31aが送出したパケットをポータル12aが受信すると、Asynchronousパケット判別部215aは、ポータル12aが受信したパケットのdestination_IDフィールド61及びextended_tcodeフィールドの内容を読み取る。そして、読み取った内容より、該パケットが、BANDWIDTH_AVAILABLEレジスタ23a及びCHANNEL_AVAILABLEレジスタ24aにcompare&swapを行うことを要求するものであることを判別する。そして、ポータル12aは、BANDWIDTH_AVAILABLEレジスタ23a及びCHANNEL_AVAILABLEレジスタ24aに、compare&swapを行う。

【0118】 (7) 続いて、ポータル12aは、ローカルバス14aに、isochronousチャンネルの獲得の処理が続行されていることを示すペンディングコードを含んだ送達確認信号222を送信する。

【0119】図26は、図7のシリアルバスネットワー 20 クにおいて、ポータル12aが、プリッジバス13及び ローカルバス14bのisochronousリソースを獲得する 場合における、該シリアルバスネットワークの各部の動 作を説明する図である。

【0120】図示するように、

(8) ポータル12aは、asynchronousパケットを用いて、ブリッジマネージャ15にロックトランザクション231aを行う。すなわち、ポータル12aは、ブリッジマネージャ15のBANDWIDTH_AVAILABLEレジスタ23c及びCHANNEL_AVAILABLEレジスタ24cにcompare & swapを行うことにより、ブリッジパス13のisochronousリソースを獲得する。その後、ポータル12aはブリッジマネージャ15からのロックレスポンス231bを受信する。なお、確保されるisochronousリソースのうち、ポータル12aがブリッジパス13上で占有する帯域は、端末機器31aがローカルバス14a上で占有している帯域と実質的に同一である。

> 【0122】図27は、図7のシリアルバスネットワークにおいて、ブリッジバス13及びローカルバス14 a、14bに確保されたisochronousチャンネルと、ポータル12a及び12bのプラグとを互いに関連づける

29 場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0123】図示するように、

(10) ポータル12aは、ブリッジバス13及びローカルバス14bのisochronousリソースを獲得した後、ローカルバス側のiPCR192aにライトトランザクション(データ書き込み)を行うことにより、端末機器31aがローカルバス14a上に確保したisochronousチャンネルと、ローカルバス側のiPlug193aとを、互いに関連づける。また、ポータル12aは、ブリッジバス側のoPCR191aにライトトランザクションを行い、ポータル12aがブリッジバス13上に確保したisochronousチャンネルと、ブリッジバス側のoPlug194aとを、互いに関連づける。

【0124】(11)続いて、ポータル12aは、ポータル12bのプリッジパス側のiPCR192b及びローカルパス側のoPCR191bに、例えば上述のライトトランザクション195aと同様のライトトランザクション251aを行う。これにより、ポータル12aがブリッジパス13上に確保したisochronousチャンネルとブリッジパス側のiPlug193bとが互いに関連付けられ、ポータル12bがローカルバス14b上に確保したisochronousチャンネルとローカルバス側のoPlug194bとが、互いに関連付けられる。その後、ポータル12aは、ポータル12bから送信されるライトレスポンス251bを受信する。

【0125】図28は、図7のシリアルバスネットワークにおいて、ポータル12a、12bが、各自のプラグ同士を互いに関連づける場合における、該シリアルバスネットワークの各部の動作を説明する図である。

【0126】図示するように、

(12) ポータル12aは、oPlug194aとiPlug193aとが互いに関連付けられるように、CHAN NEL_SWITCHレジスタ25aの内容を更新する。続いて、ポータル12aは、CHANNEL_SWITCHレジスタ25bに、例えば上述のライトトランザクション199aと同様の手順によるライトトランザクション261aを行い、iPlug193bとoPlug194bとを互いに関連付ける。その後、ポータル12aは、ポータル12bが送信したライトレスポンス261bを受信する。

【0127】 (13) その後、ポータル12aは、端末機器31aに宛てたasynchronousパケット (無データ) 262をローカルバス14aに送信する。端末機器31aは、asynchronousパケット (無データ) 262を受信すると、isochronousパケットの送信を開始する。

【0128】図29は、図7のシリアルバスネットワークにおける、isochronousパケット241の流れを説明する図である。図29に示すisochronousパケット241の流れは、図22を参照して上述したisochronousパケット1911の流れと実質的に同一である。

【0129】以上説明した手順により、上述の状況2における端末機器31aは、端末機器31bにisochronousパケットを送信する。なお、上述の手順では、isochronousリソースをまずローカルパス14a上に確保し、次いでブリッジパス13上、ローカルパス14b上の順にisochronousリソースを確保したが、これら3種のバス上にisochronousリソースが確保される限り、isochronousリソースの確保はどのような順序で行っても良い。また、ブリッジパス13上、ローカルバス14a及びローカルパス14b上のisochronousリソースが端末機器31bにより確保され、その後、端末機器31aが、確保されたこれらのisochronousチャンネル上にisochronousパケットを送出するようにしてもよい。

【0130】 < 第2の実施の形態 > 図30は、本発明の 第2の実施の形態にかかるIEEE1394ブリッジの 構成を示すプロック図である。

【0131】上述した第1の実施の形態にかかるIEE E1394ブリッジ11においては、各ポータルは、ブリッジマネージャ15を中心としてスター型に接続されていた。しかし、第2の実施の形態にかかるIEEE1 394ブリッジ281においては、図30に示すように、IEEE1394ブリッジ281に含まれるポータル252a~252n及びブリッジマネージャ255のうち互いに隣接するもの同士がブリッジバス253により連結され、全体として1本の連鎖をなしている。すなわち、各ポータル252a~252n及びブリッジマネージャ255は、ブリッジバス253によりデイジー・チェーン型に連結されている。

【0132】このように、ポータル同士の接続をデイジ 30 ー・チェーン型にすることにより、IEEE1394プ リッジ281においては、ポータルの増設が容易とな る。すなわち、IEEE1394プリッジの拡張性が向 上する。

【0133】なお、上述の第1及び第2の実施の形態にかかるIEEE1394ブリッジにおいては、ブリッジマネージャを、ポータルとは別個のものとしている。しかし、ポータルとブリッジマネージャとは別個のものである必要はなく、ポータルの一つがブリッジマネージャの機能を兼ねても良い。

40 【0134】また、プリッジパス13及びローカルバス 14a~14nは、IEEE1394において標準化されているシリアルバスと同一のシリアルバスである必要 はなく、同一のパスに接続されている端末機器及びポータルの間におけるシリアルデータの非同期伝送及び等時 性伝送が可能である限り、任意のバスでよい。

【0135】以上、この発明の実施の形態を説明したが、この発明のIEEE1394プリッジは、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、マイクロコンピュータに上述 の動作を実行するためのプログラムを格納した媒体(ソ

ケットに着脱可能なROM等)から該プログラムをインストールすることにより、上述の処理を実行するIEE E1394ブリッジを構成することができる。

31

【0136】また、コンピュータにプログラムを供給するための媒体は、通信媒体(通信回線、通信ネットワーク、通信システムのように、一時的且つ流動的にプログラムを保持する媒体)でも良い。例えば、通信ネットワークの掲示板(BBS)に該プログラムを掲示し、これをネットワークを介して配信してもよい。そして、このプログラムを起動し、OSの制御下に、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行することができる。

【0137】なお、OSが処理の一部を分担する場合、 あるいは、OSが本願発明の1つの構成要素の一部を構 成するような場合には、記録媒体には、その部分をのぞ いたプログラムを格納してもよい。この場合も、この発 明では、その記録媒体には、コンピュータが実行する各 機能又はステップを実行するためのプログラムが格納さ れているものとする。

[0138]

【発明の効果】以上説明したように、本願発明による第一の効果は、シリアルバスネットワーク内で、活線の挿抜が起こった際のバスの利用効率の低下を回避しつつネットワークの初期化及びトポロジーの再定義を行い、バスの利用効率を向上させるIEEE1394ブリッジが実現されることである。その理由は、シリアルバスにおいて活線の挿抜が起こった際、そのシリアルバスが、独立に初期化及びトポロジーの再定義を受けるようにしている点にある。

【0139】第二の効果は、シリアルバスネットワーク 内で64台以上の端末機器等を接続することを可能とす るIEEE1394ブリッジが実現されることである。 その理由は、シリアルバスネットワークを、複数の独立 なシリアルバスを接続することにより構築している点に ある。

【0140】第三の効果は、IEEE1394ブリッジにより互いに接続された複数のシリアルバスを備えるシリアルバスネットワーク内で、各シリアルバスのリソースの管理を各々独立して行うことにより、リソースが効率よく利用されることを可能にするIEEE1394ブリッジが実現されることである。その理由は、各々のシリアルバスのリソースの管理が、シリアルバス毎に行われるようにしている点にある。

【0141】第四の効果は、ブリッジ、特にIEEE1394ブリッジにより互いに接続された複数のシリアルバスを備えるシリアルバスネットワーク内で、異なるシリアルバス間におけるasynchronousパケットの転送を行うことを可能にするブリッジ、特にIEEE1394ブリッジが実現されることである。その理由は、この発明にかかるブリッジ(IEEE1394ブリッジを含む)

が、端末機器の送出するasynchronousパケットの宛先を 判別して、宛先の端末機器に接続されているシリアルバ スへ該asynchronousパケットを転送する機能を有してい る点にある。

【0142】第五の効果は、ブリッジ、特にIEEE1394ブリッジにより互いに接続された複数のシリアルバスを備えるシリアルバスネットワーク内で、異なるシリアルバス間におけるisochronousパケットの転送を行うことを可能にするブリッジ、特にIEEE1394ブリッジが実現されることである。その理由は、この発明にかかるブリッジ(IEEE1394ブリッジを含む)が、isochronousパケットを伝送するためのisochronousチャンネルを、互いに異なるシリアルバス間に確保する機能を有している点にある。

【0143】なお、本発明が上記各実施例に限定されず、本発明の技術思想の範囲内において、各実施の形態が適宜変更され得ることは明らかである。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態を示すブロック図で 20 ある。

【図2】図1の一部分の詳細なブロック図である。

【図3】図1のIEEEE1394プリッジを用いて独立 したローカルバスを接続することで構築されたシリアル バスネットワークの一例である。

【図4】シリアルバスネットワークを初期化する際の各 部の動作を説明するプロック図である。

【図 5】ローカルバスの初期化・再定義を行っている際の各部の動作を示すプロック図である。

【図6】IEEE1394.1995に定められたasynchronousパケットのフォーマットである。

【図7】IEEE1394ブリッジを用いたシリアルバスネットワークの一例である。

【図8】端末機器がasynchronousパケットを送出する際の各部の動作を説明するプロック図である。

【図9】ポータルが端末機器が送出したasynchronousパケットを受信した際の各部の動作を説明するブロック図である。

【図10】ポータルがプリッジバス上にasynchronousパケットを送出する際の各部の動作を説明するプロック図でなる。

【図11】ポータルがブリッジバス上からasynchronous パケットを受信した際にポータルコントロールレジスタ の値が0である場合における各部の動作を示すブロック 図である。

【図12】ポータルがブリッジバス上からasynchronous パケットを受信した際にポータルコントロールレジスタ が0でない場合における各部の動作を示すブロック図で ある。

【図13】端末機器がasynchronousパケットを受信する 際の各部の動作を説明するブロック図である。

【図14】 ポータルがプリッジマネージャからの送信許 可を得た際の各部の動作を説明するブロック図である。

【図15】 ポータルがasynchronousパケット(無デー タ)を受信した際にポータルコントロールレジスタの値 が0である場合における各部の動作を説明するプロック 図である。

【図16】 ポータルが as ynchronous パケット (無デー タ)を受信した際にポータルコントロールレジスタの値 が0でない場合における各部の動作を説明するブロック 図である。

【図17】端末機器がasynchronousパケット(無デー タ) を受信した際の各部の動作を説明するブロック図で

【図18】 端末機器がポータルに対してisochronousリ ソースの問い合わせを行う際の各部の動作を説明するブ ロック図である。

【図19】端末機器がローカルパス及びプリッジパスの isochronousリソース情報の問い合わせを行う際の各部 の動作を説明するブロック図である。

【図20】端末機器がローカルバス及びブリッジバスの 20 27a~27n、29a~29n oPCR isochronousリソースを獲得する際の各部の動作を説明 するブロック図である。

【図21】端末機器のために確保したバス上のisochron ousチャンネルに対してポータルのプラグを関連づける 際の各部の動作を説明するブロック図である。

【図22】isochronousパケットの具体的な流れを説明 する図である。

【図23】端末機器がリソース問い合わせを行う際の各 部の動作を説明するプロック図である。

【図24】端末機器からasynchronousパケットをポータ ルが受信した際の各部の動作を説明するブロック図であ

【図25】端末機器のためにバスのisochronousリソー スを獲得する際の各部の動作を説明するプロック図であ

【図26】ポータルがブリッジパス及びローカルパスの isochronousリソースを獲得する際の各部の動作を説明 するプロック図である。

【図27】各バス上に確保されたisochronousチャンネ ルとポータルのプラグを関連づける際の各部の動作を説 40 101 送信許可 明するものである。

【図28】ポータルが入出力プラグ同士を関連づける際 の各部の動作を説明するものである。

【図29】isochronousパケットの流れを説明するプロ ック図である。

【図30】本発明の第2の実施の形態を示すプロック図 である。

【図31】IEEE1394シリアルパスを用いたネッ トワークの一例である。

【図32】クアドレッドリードトランザクションの際に 50 162 リードレスポンス

用いられるasynchronousパケットのフォーマットを示す 図である。

【図33】ロックトランザクションの際に用いられるas vnchronousパケットのフォーマットを示す図である。

【図34】P1394.1 Draft Standard 0.02に示されたプ リッジの概略を示す図である。

【符号の説明】

11 IEEE139471yy

12、12a~12n ポータル

10 13 プリッジパス

14、14a~14n ローカルバス

15 ブリッジマネージャ

22、22a、22b ポータルコントロールレジスタ

23, 23a, 23b, 23c BANDWIDTH_AVAILABLE V ジスタ

24、24a、24b、24c CHANNEL_AVAILABLEレジ

25、25a、25b CHANNEL_SWITCHレジスタ

26a~26n, 28a~28n i PCR

210a~210n, 212a~212n iPlug

211a~211n, 213a~213n oPlug

214、214a、214b メモリ

215、215a、215b Asynchronousパケット判 別部

216 NODE_IDSレジスタ

31a~31n 端末機器

41 ブリッジパス初期化命令

51 ローカルパス初期化命令

30 52 バスリセット信号

61 destination_IDフィールド

62 source_IDフィールド

63 destination_offsetフィールド

64 extended_tcodeフィールド

81 送信要求

82 送信許可

91 asynchronousパケット

92a、92b 送達確認信号

93 送信要求

111a、111b 送達確認信号

112 送達確認信号

121 送達確認信号

122 送信要求

131 送信許可

132 asynchronousパケット (無データ)

141、142 送達確認信号

151 送達確認信号

161 リードトランザクション

特開平11-220485

36

171 クアドレッドリードトランザクション

172 リードレスポンス

181a、182a ロックトランザクション

1816、1826 ロックレスポンス

191a, 191b oPCR

192a, 192b i PCR

193a, 193b i Plug

194a, 194b oPlug

195a、196a、197a ライトトランザクショ

ン

1956、1966、1976 ライトレスポンス

198a、199a、1910a ライトトランザクシ

ョン

1986、1996、19106 ライトレスポンス

1911 isochronousパケット

1912 サイクルスタートパケット

201 クアドレッドリードトランザクション

2101a、2102a クアドレッドリードトランザ

クション

21016、21026 リードレスポンス

2103 リードレスポンス

221 ロックトランザクション

222 送達確認信号

231a、232a ロックトランザクション

2316、2326 ロックレスポンス

10 241 isochronousパケット

281 IEEE1394ブリッジ

252a~252n ポータル

253 プリッジパス

254a~254n ローカルパス

291a~291g 端末機器

292 給電線付ツイストペア線

[図1]

[図2]

【図3】

【図4】

[図5]

【図6】

【図9】

[図10]

【図11】

【図12】

[図13]

【図14】

[図15]

【図32】

61	destination_ID	ti	rt	tcode	pri
62	source_ID		_		
63、	destination_offset				
	heder_CRC				

【図16】

【図17】

【図18】

【図19】

【図20】

[図21]

【図22】

【図23】

【図24】

【図25】

[図26]

【図27】

【図28】

【図29】

【図30】

【図33】

[図34]

