A rule based method to locate the bounds of neural networks

Ioannis G. Tsoulos, Alexandros Tzallas, Evangelos Karvounis

Department of Informatics and Telecommunications, University of Ioannina, Greece

Abstract

An advanced method of training artificial neural networks is presented here, which aims to identify the optimal interval for initialization and training of artificial neural networks. The location of the optimal interval is performed using rules evolving from a genetic algorithm. The method has two phases: in the first phase, an attempt is made to locate the optimal interval and in the second phase, the artificial neural network is initialized and trained in this interval using a method of global optimization, such as genetic algorithms. The method has been tested on a range of categorization and function learning data and the experimental results are extremely encouraging.

1 Introduction

Artificial Neural networks (ANNs) are programming tools [1, 2] based on a series of parameters that are commonly called weights or processing units. They have been used in a variety of problems from different scientific areas, such as physics [3, 4, 5], solving of differential equations [6, 7], agriculture [8, 9], chemistry [10, 11, 12], economics [13, 14, 15], medicine [16, 17] etc. A common way to express a neural network is a function $N(\overrightarrow{x}, \overrightarrow{w})$, with \overrightarrow{x} the input vector (commonly called pattern) and \overrightarrow{w} the weight vector. A method that trains a neural network should be used to estimate the vector \overrightarrow{w} for a certain problem. The training procedure can also be formulated as an optimization problem, where the target is to minimize the so-called error function:

$$E(N(\overrightarrow{x}, \overrightarrow{w})) = \sum_{i=1}^{M} (N(\overrightarrow{x}_i, \overrightarrow{w}) - y_i)^2$$
(1)

In equation 1 the set $(\overrightarrow{x_i}, y_i)$, i = 1, ..., M is the dataset used to train the neural network, with y_i being the actual output for the point $\overrightarrow{x_i}$. The neural network $N(\overrightarrow{x}, \overrightarrow{w})$ can be modeled as a summation of processing units as proposed in

[18]:

$$N\left(\overrightarrow{x}, \overrightarrow{w}\right) = \sum_{i=1}^{H} w_{(d+2)i-(d+1)} \sigma \left(\sum_{j=1}^{d} x_j w_{(d+2)i-(d+1)+j} + w_{(d+2)i}\right)$$
(2)

with H is the number of processing units of the neural network and d is the dimension of vector \overrightarrow{x} . The function $\sigma(x)$ is the sigmoid function defined as:

$$\sigma(x) = \frac{1}{1 + \exp(-x)} \tag{3}$$

From the equation 2 one can obtain that the dimension of the weight vector w is computed as: n = (d+2)H. The function of equation 1 has been minimized with a variety of optimization methods during the past years such as: the Back Propagation method [19, 20], the RPROP method [21, 22, 23], Quasi Newton methods [25, 26], Simulated Annealing [34, 35], Genetic Algorithms [27, 28], Particle Swarm Optimization [29, 30] etc. Also, various researchers have worked on the initialization of the weights of the neural networks such as initialization using decision trees [?], an initialization method based on the Cauchy's inequality [?], a method based on discriminant learning [?] etc. Another topic that attracted the interest of many researchers is the weight decaying, which is a regularization method that adapts the weights of the network aiming to avoid the overfitting problem. Several papers have appeared in this area such as method with positive correlation [?], the SarProp algorithm [?], incorporation of pruning techniques [?] etc. Also, more advanced and more recent techniques from the area of computational intelligence have been proposed for neural network training such as the Differential Evolution method [?, ?], construction of neural networks with Ant Colony Optimization [?], construction of neural networks using Grammatical Evolution to solve differential equations [?] etc. Furthermore, due to development of GPU units a lot of works have been published that take advantage of these processing units [?, ?].

The present work proposes an innovative interval generation technique for the initialization and training of artificial neural network parameters. This new method has its roots in interval methods [31, 32, 33]. In current work, using arithmetic intervals, a set of rules for dividing the initial interval for the parameters of the artificial neural network is constructed. The construction is carried out using a hybrid genetic algorithm, in which chromosomes are the set of division rules. After the termination of the genetic algorithm, the artificial neural network is initialized in the interval resulting from the application of the optimal partitioning rules and then trained using a genetic algorithm.

This method used has two objectives: the first objective is to detect a small interval of initialization of the parameters of the artificial neural network and the second objective is to accelerate the training of the network. In the first target, using information from the training data the algorithm will make an attempt to identify that interval that will ultimately give better results. In the second objective, once a small value interval has been detected, a global optimization

method can be used more efficiently to detect the lowest value of the network error.

The proposed method is expected to achieve significant results since in principle it has all the advantages of genetic algorithms, such as tolerance on errors, possibilities for parallel implementation, efficient exploration of the research space, etc. In addition, in the first phase of the method will reduce the volume of the possible values for the weights, so that in the second phase the search for global minimum of the network error function becomes more efficient and faster.

The proposed methodology can even be applied to different types of artificial neural networks such as Recurrent Neural networks [?, ?]. A simple recurrent neural network can be expressed as single neural cell with a single input, a single output and a state (also known as the memory of the cell). Given the input of the cell x(t) at step t and the previous state of the cell h(t-1) at step t-1 the updated state of the cell h(t) is estimated as shown in the equation:

$$\mathbf{h}(t) = f\left(\mathbf{W}_{hh} * \mathbf{h}(t-1) + \mathbf{W}_{xh} * \mathbf{x}(t) + \mathbf{b}_{h}\right) \tag{4}$$

$$\mathbf{y}(t) = \sigma \left(\mathbf{W}_{hu} * h(t) + \mathbf{b}_{u} \right) \tag{5}$$

where the f(x) function is usually the softmax function. The proposed method can be used here to estimate a promising bounding box for the vector parameters \mathbf{W} , \mathbf{b} of the network before any other training method is applied.

The rest of this article is as follows: in section 2 the proposed method is discussed in detail, in section 3 the experimental datasets as well as the results from the application of the proposed method are provided and finally in section 4 some conclusions and guidelines for future enhancements are presented.

2 Method description

The proposed method consists of two major steps: in the first step, the construction of the partition rules of the initial value interval for the parameters of the artificial neural network is made and in the second step, the artificial neural network is initialized in the optimal space resulting from the first step and training takes place. The training is performed through a second genetic algorithm. In the first genetic algorithm, the chromosomes are sets of partition rules of the initial value interval of the artificial neural network, and in the second genetic algorithm, the chromosomes are the parameters of the artificial neural network. It is obvious that this is a time consuming process and modern parallel techniques such as the OpenMP [36] library must be used to accelerate it. The first genetic algorithm is analyzed in subsection 2.1 and the second in subsection 2.5.

2.1 Locating the best rules

Firstly, we introduce the rule set I_n where:

$$I_n = \{(l_1, r_1), (l_2, r_2), \dots, (l_n, r_n)\}$$
(6)

where $l_i \in \{0,1\}$, $r_i \in \{0,1\}$, i = 1,...,n. The set I_n defines the set of partition rules for a function defined as

$$f: S \to R, S \subset R^n \tag{7}$$

with S:

$$S = [a_1, b_1] \otimes [a_2, b_2] \otimes \dots [a_n, b_n]$$
(8)

If $l_i = 1$ then $a_i = \frac{a_i}{2}$ and if $r_i = 1$ then $b_i = \frac{b_i}{2}$. For example consider the Rastrigin function:

$$f(x) = x_1^2 + x_2^2 - \cos(18x_1) - \cos(18x_2), \ x \in [-1, 1]^2$$
 (9)

Also consider the set $I_2 = \{(1,0), (0,1)\}$ The produced bounding box for the Rastrigin function is now $S' = [-0.5, 1] \times [-1, 0.5]$.

Subsequently, we introduce the extended set C_{Kn} as a set of production rules defined as:

$$R_{Kn} = \left\{ I_n^{(1)}, I_n^{(2)}, \dots, I_n^{(K)} \right\}$$
 (10)

where $I_n^{(i)}$, i=1,...,K are rule sets of equation 4. For example let K=2 for the Rastrigin function and $R_{22}=\{\{(0,1),(1,0)\},\{(1,0),(1,1)\}\}$. The final bounding box is considered after applying the sets $\{(0,1),(1,0)\}$ and $\{(1,0),(1,1)\}$ in the original box S. The computation steps are:

- 1. **Apply** $\{(0,1),(1,0)\}$ to S yielding $S' = [-0.5,1] \times [-1,0.5]$
- 2. **Apply** $\{(1,0),(1,1)\}$ to S' yielding $S'' = [-0.25,1] \times [-0.5,0.25]$

We consider chromosomes in the form of equation 8 for the first phase of the proposed method. The value n is the total number of parameters of the neural network. The fitness of every chromosome g is an interval $f_g = \left[f_{g,\min}, f_{g,\max}\right]$. Hence, in order to compare two different intervals $a = [a_1, a_2]$ and $b = [b_1, b_2]$ we incorporate the following function:

$$L^*(a,b) = \begin{cases} \text{TRUE}, & a_1 < b_1, \text{ OR } (a_1 = b_1 \text{ AND } a_2 < b_2) \\ \text{FALSE}, & \text{OTHERWISE} \end{cases}$$
 (11)

Hence, the steps of the genetic algorithm of the first phase are the following:

Initialization step

- 1. **Set** K as the number of rules.
- 2. **Set** $S = [-D, D]^n$, as the initial bounding box for the parameters of the neural network. D is considered as a positive number with D > 1.
- 3. Set N_C as the total number of chromosomes.
- 4. Set N_S the number of samples in fitness evaluation.
- 5. Set P_s as the selection rate, where $P_s \leq 1$.
- 6. Set P_m as the mutation rate, where $P_m \leq 1$.
- 7. **Set** t = 0 the current generation number.
- 8. Set N_t the maximum number of generations allowed.
- 9. **Initialize** randomly the chromosomes C_i , $i = 1, ..., N_C$ as sets of the equation 8.

Termination check step

- 1. **Set** t=t+1
- 2. If $t \geq N_t$ terminate.

Genetic operations step

- 1. For every chromosome C_i , $i = 1, ..., N_C$ calculate the corresponding fitness value f_i using the algorithm of subsection 2.2.
- 2. Apply the selection operator. Initially, the chromosomes are sorted according to their fitness value. The sorting utilizes the function $L^*(a,b)$ of equation 9 to compare fitness values. The best $(1-P_s) \times N_c$ are copied to the next generation while the rest of them are substituted by offsprings created through the crossover procedure. The mating parents for the crossover procedure are selected using the well known technique of tournament selection.
- 3. **Apply** the crossover operator: For every pair of selected parents (z, w), two children (cz, cw) are produced using the uniform crossover procedure described in subsection 2.3.
- 4. **Apply** the mutation operator using the algorithm of subsection 2.4.
- 5. Goto Termination Check Step.

2.2 Fitness evaluation for the rule genetic algorithm

The fitness value for each chromosome g is considered as an interval $f = [f_{\min}, f_{\max}]$ where f_{\min} is an estimation of the lower value obtained using the rules of the chromosome g and f_{\max} is an estimation of the maximum value. In order to calculate the fitness of every set of rules C the following steps are performed:

- 1. Set $f_{\min} = \infty$
- 2. Set $f_{\text{max}} = -\infty$
- 3. **Apply** the rule set g to the original bounding box S. The outcome of this application is the new bounding box S_g .
- 4. For $i = 1, ..., N_S$ do
 - (a) **Produce** a random sample $w \in S_g$
 - (b) Calculate the training error $E_g = E(N(\overrightarrow{x}, \overrightarrow{w}))$ using equation 1.
 - (c) If $E_g \leq f_{\min}$ then $f_{\min} = E_g$.
 - (d) If $E_g \ge f_{max}$ then $f_{max} = E_g$
- 5. EndFor
- 6. **Return** the interval $f = [f_{\min}, f_{\max}]$ as the fitness of chromosome g.

2.3 Crossover for the rule genetic algorithm

The crossover for the genetic algorithm of the first phase is performed using uniform crossover. For every couple (z, w) of selected parents two children (cz, cw) are produced through the following procedure:

- 1. For i = 1..K do
 - (a) Let $z^{(i)} = \left\{ l_z^{(i)}, r_z^{(i)} \right\}$ the *i* item of the chromosome *z*.
 - (b) Let $w^{(i)} = \left\{ l_w^{(i)}, r_w^{(i)} \right\}$ the i item of the chromosome w.
 - (c) **Produce** a random number $r \leq 1$
 - (d) If $r \leq 0.5$ then

i. Set
$$\operatorname{cz}^{(i)} = \left\{ l_z^{(i)}, r_w^{(i)} \right\}$$
 ii. Set $\operatorname{cw}^{(i)} = \left\{ l_w^{(i)}, r_z^{(i)} \right\}$

(e) Else

i. Set
$$cz^{(i)} = \left\{ l_w^{(i)}, r_z^{(i)} \right\}$$
 ii. Set $cw^{(i)} = \left\{ l_z^{(i)}, r_w^{(i)} \right\}$

- (f) Endif
- 2. EndFor

2.4 Mutation for the rule genetic algorithm

The steps for the mutation procedure for the genetic algorithm of the first phase have as following:

- 1. For $i = 1, ..., N_C$ do
 - (a) Let $C_i = \left\{C_i^{(1)}, C_i^{(2)}, \dots, C_i^{(K)}\right\}$ the i chromosome of the population.
 - (b) For j = 1, .., K do
 - i. Let $C_i^{(j)} = \left\{l_i^{(j)}, r_i^{(j)}\right\}$
 - ii. Take $r \leq 1$ a random number.
 - iii. If $r \leq P_m$ then alter randomly with probability 50% the $l_i^{(j)}$ or the $r_i^{(j)}$ part of $C_i^{(j)}$.
 - (c) EndFor
- 2. EndFor

2.5 Second phase

In the second phase the best chromosome g_b defined as

$$g_{\mathbf{h}} = \{\{l_{b,1}, r_{b,1}\}, \{l_{b,2}, r_{b,2}\}, \dots, \{l_{b,K}, r_{b,K}\}\}$$
(12)

is used to transform the original bounding box $S = [-F, F]^{(n)}$ to a new box S_b . The new hyperbox is defined as

$$S_b = [a_{g,1}, b_{g,1}] \times [a_{g,2}, b_{g,2}] \times \ldots \times [a_{g,n}, b_{g,n}]$$
(13)

This hyperbox will be used to bound the parameters of the neural network. The parameters of the network are trained using a genetic algorithm with the following steps:

Initialization step

- 1. Set N_C as the total number of chromosomes.
- 2. **Set** P_s as the selection rate, where $P_s \leq 1$.
- 3. Set P_m as the mutation rate, where $P_m \leq 1$.
- 4. **Set** t = 0 the current generation number.
- 5. **Set** N_t the maximum number of generations allowed.
- 6. **Initialize** randomly the chromosomes C_i , $i = 1, ..., N_C$ inside the bounding box S_b .

Termination check step

- 1. **Set** t=t+1
- 2. If $t \geq N_t$ goto Local Search Step.

Genetic operations step

- 1. Calculate the fitness value of every chromosome
 - (a) **For** $i = 1..N_C$ **Do**
 - i. Set $f_i = E(N(\overrightarrow{x}, C_i))$ using the equation 1.
 - (b) EndFor
- 2. Apply the crossover operator. In this phase the best $(1-P_s) \times N_c$ chromosomes are transferred intact to the next generation. The rest of the chromosomes are substituted by offsprings created through crossover. The selection of two parents $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$ for crossover is performed using tournament selection. Having selected the parents, the offsprings \tilde{x} and \tilde{y} are formed using the following:

$$\tilde{x}_i = r_i x_i + (1 - r_i) y_i
\tilde{y}_i = r_i y_i + (1 - r_i) x_i$$
(14)

where r_i are random numbers in [-0.5, 1.5] [?].

- 3. **Apply** the mutation operator. The mutation scheme is the same as in the work of Kaelo and Ali[38]:
 - (a) For $i = 1..N_C$ do
 - i. For $j = 1..n \ do$
 - A. Let $r \in [0,1]$ a random number
 - B. If $r \leq P_m$ alter the element C_{ij} using the following

$$C_{ij} = \begin{cases} C_{ij} + \Delta (t, b_{g,i} - C_{ij}) & t = 0 \\ C_{ij} - \Delta (t, C_{ij} - a_{g,i}) & t = 1 \end{cases}$$
 (15)

where t is a random number that takes either the values 0 or 1 and $\Delta(t, y)$ is calculated as:

$$\Delta(t,y) = y \left(1 - r^{\left(1 - \frac{t}{N_t}\right)z}\right) \tag{16}$$

where $r \in [0,1]$ is a random number and z is a user defined parameter.

- ii. EndFor
- (b) EndFor
- 4. **Goto** Termination check step.

Local Search step

- 1. Set C^* the best chromosome of the population.
- 2. **Apply** a local search procedure $C^* = \mathcal{L}(C^*)$. The local search procedure used was a BFGS method of Powell [39].

3 Experiments

The proposed method is evaluated on a series of classification and regression problems from the relevant literature. The classification problems used for the experiments were found in most cases in two internet databases:

- 1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php
- 2. Keel repository, https://sci2s.ugr.es/keel/datasets.php[40].

The regression datasets are in most cases available from the Statlib URL ftp://lib.stat.cmu.edu/datasets/index.html. The proposed method is compared against a neural network trained by a genetic algorithm and the results are reported.

3.1 Experimental datasets

The following classification datasets were used:

- 1. **Appendictis** a medical dataset, proposed in [41].
- 2. Australian dataset [42], the dataset is related to credit card applications.
- 3. Balance dataset [43], which is used to predict psychological states.
- 4. Cleveland dataset, a dataset used to detect heart disease used in various papers[44, 45].
- 5. **Bands** dataset, a printing problem used to identify cylinder bands.
- 6. **Dermatology** dataset [46], which is used for differential diagnosis of erythemato-squamous diseases.
- 7. **Hayes roth** dataset. This dataset [48] contains 5 numeric-valued attributes and 132 patterns.
- 8. Heart dataset [47], used to detect heart disease.
- 9. **HouseVotes** dataset [49], which is about votes in the U.S. House of Representatives Congressmen.
- 10. **Ionosphere** dataset. The ionosphere dataset contains data from the Johns Hopkins Ionosphere database and it has been studied in a bunch of papers [50, 51].

- 11. **Liverdisorder** dataset [52], used for detect liver disorders in peoples using blood analysis.
- 12. **Mammographic** dataset [53]. This dataset be used to identify the severity (benign or malignant) of a mammographic mass lesion from BI-RADS attributes and the patient's age. It contains 830 patterns of 5 features each.
- 13. Page Blocks dataset [54], used to detect the page layout of a document.
- 14. **Parkinsons** dataset. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD)[55].
- 15. **Pima** dataset [56], used to detect the presence of diabetes.
- 16. **Popfailures** dataset [57], that is related to climate model simulation crashes of simulation crashes.
- 17. **Regions2** dataset. It is created from liver biopsy images of patients with hepatitis C [58]. From each region in the acquired images, 18 shape-based and color-based features were extracted, while it was also annotated form medical experts. The resulting dataset includes 600 samples belonging into 6 classes.
- 18. Saheart dataset [59], used to detect heart disease.
- 19. **Segment** dataset [60]. This database contains patterns from a database of 7 outdoor images (classes).
- 20. **Wdbc** dataset [61], which contains data for breast tumors.
- 21. Wine dataset, used to detect through chemical analysis determine the origin of wines and is been used in various research papers [62, 63].
- 22. Eeg datasets. As an real word example, consider an EEG dataset described in [9] is used here. The dataset consists of five sets (denoted as Z, O, N, F and S) each containing 100 single-channel EEG segments each having 23.6 sec duration. With different combinations of these sets the produced datasets are Z F S, ZO NF S, ZONF S.
- 23. **Zoo** dataset [64], where the task is classify animals in seven predefined classes.

Also, the following regression datasets were used:

- 1. **Abalone** dataset [66]. This data set can be used to obtain a model to predict the age of abalone from physical measurements.
- 2. **Airfoil** dataset, which is used by the NASA for a series of aerodynamic and acoustic tests [67].
- 3. Baseball dataset, a dataset to predict the salary of baseball players.

- 4. **BK** dataset. This dataset comes from Smoothing Methods in Statistics [68] and is used to estimate the points scored per minute in a basketball game.
- 5. **BL** dataset: This dataset can be downloaded from StatLib. It contains data from an experiment on the affects of machine adjustments on the time to count bolts.
- 6. Concrete dataset. This dataset is taken from civil engineering [69].
- 7. **Dee** dataset, used to predict the daily average price of the electricity energy in Spain.
- 8. Diabetes dataset, a medical dataset.
- 9. **Housing** dataset. This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University and it is described in [70].
- 10. **FA** dataset, which contains percentage of body fat and ten body circumference measurements. The goal is to fit body fat to the other measurements.
- 11. **MB** dataset. This dataset is available from Smoothing Methods in Statistics [71] and it includes 61 patterns.
- MORTGAGE dataset, which contains the Economic data information of USA.
- 13. **PY** dataset, (Pyrimidines problem). The source of this dataset is the URL: https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html and it is a problem of 27 attributes and 74 number of patterns. The task consists of Learning Quantitative Structure Activity Relationships (QSARs) and provided by [72].
- 14. **Quake** dataset. The objective here is to approximate the strength of a earthquake.
- 15. **Treasure** dataset, which contains Economic data information of USA from 01/04/1980 to 02/04/2000 on a weekly basis.
- 16. Wankara dataset, which contains weather information.

3.2 Experimental results

The method is compared against three other methods:

A genetic algorithm with the same parameters that are shown in Table
 Also, after the termination of the genetic algorithm the local search procedure of BFGS is applied to the best chromosome of the population, in order to enhance the quality of the solution. The column GENETIC in the experimental tables denotes the results from the application of this method.

- 2. The Adam stochastic optimization method [?] as implemented in Optim-Lib, freely available from https://github.com/kthohr/optim. The results for this method are listed in the column ADAM in the relevant tables.
- 3. The Rprop method [21] as implemented in the FCNN software package [?]. The results for this method are listed in the column RPROP in the relevant tables.
- 4. The NEAT method (NeuroEvolution of Augmenting Topologies) [?] as implemented in EvolutionNet package freely available from https://github.com/BiagioFesta/EvolutionNet. The maximum number of generations is the same as in the case of the Genetic algorithm.

All the experiments were conducted 30 times with different seeds for the random number generator each time and averages were taken. To perform the experiments, the software Interval Genetic which is freely available from https: //github.com/itsoulos/IntervalGenetic was utilized. The experimental results for classification datasets are shown in Table 2 and the results for the regression datasets are outlined in Table 3. For classification problems, the average classification error on the test set is shown and for regression datasets the average mean squared error on the test set is displayed. In all cases, 10 fold cross validation was used and the number of hidden nodes (parameter H) was set to 10. The column DATASET stands for the name of the Dataset incorporated, the column D = 50 represents the application of the proposed method with D = 50as the initial value for the interval of weights, the column D = 100 stands for the results of the proposed method with D=100 and finally the column D=200represents the results of the proposed method with D=200. In both tables, an additional row was added at the end showing the average classification or regression error for all datasets and it is denoted by the name AVERAGE. All the experiments were conducted on an AMD Ryzen 5950X equipped with 128GB of RAM. The operating system used was OpenSUSE Linux and all the programs are compiled using the GNU C++ compiler.

As can be seen from the experimental results, the proposed method is significantly superior than the other methods, especially in the case of regression data. The RPROP training method seems to overcome ADAM in most cases of classification datasets and the simple Genetic method is better thank ADAM and RPROP for classification datasets but not for regression datasets. Also, the change of the parameter D does not seem to have a significant effect on the performance of the algorithm and the proposed algorithm achieves high performance even for small values of this parameter.

In addition, the average execution times for all the problems of this publication were compared between the proposed method and the methods ADAM, RPROP, GENETIC and NEAT mentioned above. The average execution times are presented graphically in Figure ??. In order to speed up the proposed method, the genetic algorithm used was parallelized using the open source library OpenMP [36]. The column THREAD1 stands for the average time execution of the proposed method with one thread, the column THREADS 2 rep-

Table 1: Experimental parameters.

PARAMETER	VALUE
K	20
Н	10
N_C	200
N_S	50
N_t	200
P_s	0.10
P_m	0.01

resents the average execution time of the proposed method using two threads in the OpenMP implementation, the column THREADS 4 denotes the average execution time of the proposed method for four threads and finally the column THREADS 8 denotes the average execution time for eight threads for the OpenMP implementation. The proposed method has slow execution times when performed on one thread, but as the number of threads used increases the execution time decreases dramatically. This is very important, because it means that it could be used in large problems if the computer in use has enough execution threads. Obviously all methods of training artificial neural networks could be parallelized in one way or another. The parallelization of the proposed method is done since it is by nature an extremely slow method, since it requires the use of two genetic algorithms in series. By using parallel techniques this problem is alleviated, however the computational cost remains high. But this is the only substantial price for using this technique. Also, a time comparison is made for the PageBlocks dataset between the proposed method and a parallel imlementation of the Adam algorithm named DADAM for number of threads ranging from 1 to 8. The time comparison is graphically illustrated in Figure

To make the dynamics of the proposed method clearer, another series of experiments was performed. In these, the maximum number of generations (parameter N_t) received three values: 20, 40 and 100 and for each value all experiments for classification and regression datasets were performed. The results for the classification datasets are listed in Table ?? and the results for regression datasets are shown in Table ??. As expected, the proposed method improves its performance as the maximum number of generations increases, but even for a small number of generations it has a satisfactory performance.

In addition, to make a better and fairer comparison of the results, another set of experiments was performed with the genetic algorithm, in which the maximum number of generations was varied from 100 to 800, and the results are presented in Table ?? for the classification datasets and in Table ?? for the regression datasets. Observing these results, we can say that after 200 generations there is no significant difference in the efficiency of the genetic algorithm.

Table 2: Experiments for classification datasets

DATASET	GENETIC	ADAM	RPROP	NEAT	D = 50	D = 100	D = 200
Appendicitis	18.10%	16.50%	16.30%	17.20%	15.00%	14.00%	16.07%
Australian	32.21%	35.65%	36.12%	31.98%	24.85%	30.20%	28.52%
Balance	8.97%	7.87%	8.81%	23.14%	7.42%	7.42%	7.67%
Bands	35.75%	36.25%	36.32%	34.30%	32.00%	32.25%	33.06%
Cleveland	51.60%	67.55%	61.41%	53.44%	41.64%	44.66%	44.39%
Dermatology	30.58%	26.14%	15.12%	32.43%	15.49%	11.00%	10.80%
Hayes Roth	56.18%	59.70%	37.46%	50.15%	28.72%	28.84%	32.05%
Heart	28.34%	38.53%	30.51%	39.27%	15.58%	17.07%	16.22%
HouseVotes	6.62%	7.48%	6.04%	10.89%	3.92%	3.78%	3.26%
Ionosphere	15.14%	16.64%	13.65%	19.67%	12.25%	9.71%	7.12%
Liverdisorder	31.11%	41.53%	40.26%	30.67%	30.90%	29.54%	30.70%
Lymography	23.26%	29.26%	24.67%	33.70%	18.98%	17.52%	17.67%
Mammographic	19.88%	46.25%	18.46%	22.85%	17.01%	17.60%	15.97%
PageBlocks	8.06%	7.93%	7.82%	10.22%	7.73%	7.01%	6.71%
Parkinsons	18.05%	24.06%	22.28%	18.56%	14.81%	13.86%	12.53%
Pima	32.19%	34.85%	34.27%	34.51%	23.51%	25.31%	27.49%
Popfailures	5.94%	5.18%	4.81%	7.05%	6.13%	5.93%	5.30%
Regions2	29.39%	29.85%	27.53%	33.23%	24.01%	23.14%	23.62%
Saheart	34.86%	34.04%	34.90%	34.51%	28.94%	29.04%	29.93%
Segment	57.72%	49.75%	52.14%	66.72%	47.38%	49.49%	40.61%
Wdbc	8.56%	35.35%	21.57%	12.88%	6.23%	5.28%	5.49%
Wine	19.20%	29.40%	30.73%	25.43%	5.51%	6.55%	6.22%
Z_F_S	10.73%	47.81%	29.28%	38.41%	4.70%	5.61%	6.01%
ZO_NF_S	8.41%	47.43%	6.43%	43.75%	5.39%	4.67%	5.81%
ZONF_S	2.60%	11.99%	27.27%	5.44%	1.85%	2.07%	2.24%
ZOO	16.67%	14.13%	15.47%	20.27%	14.83%	11.40%	8.50%
AVERAGE	23.47%	30.81%	25.37%	28.87%	17.49%	17.42%	17.08%

Table 3: Experiments for regression datasets.

DATASET	GENETIC	ADAM	RPROP	NEAT	D = 50	D = 100	D = 200
ABALONE	7.17	4.30	4.55	9.88	4.22	4.18	3.89
AIRFOIL	0.003	0.005	0.002	0.067	0.003	0.003	0.003
BASEBALL	103.60	77.90	92.05	100.39	49.47	51.07	53.57
BK	0.027	0.03	1.599	0.15	0.017	0.017	0.019
BL	5.74	0.28	4.38	0.05	0.0019	0.0016	0.0016
CONCRETE	0.0099	0.078	0.0086	0.081	0.0053	0.0044	0.0042
DEE	1.013	0.63	0.608	1.512	0.187	0.205	0.203
DIABETES	19.86	3.03	1.11	4.25	0.31	0.31	0.29
HOUSING	43.26	80.20	74.38	56.49	19.28	18.50	17.75
FA	1.95	0.11	0.14	0.19	0.011	0.012	0.012
MB	3.39	0.06	0.055	0.061	0.048	0.047	0.047
MORTGAGE	2.41	9.24	9.19	14.11	0.57	0.70	0.53
PY	105.41	0.09	0.039	0.075	0.016	0.014	0.014
QUAKE	0.040	0.06	0.041	0.298	0.036	0.036	0.036
TREASURY	2.929	11.16	10.88	15.52	0.473	0.677	0.622
WANKARA	0.012	0.02	0.0003	0.005	0.0003	0.0002	0.0002
AVERAGE	18.55	11.70	12.44	12.70	4.67	4.74	4.81

Figure 1: Execution time comparison between the proposed algorithm and the other mentioned methods.

Table 4: Experiments with N_t for the classification datasets.

DATASET	$N_t = 20$	$N_t = 40$	$N_t = 100$
Appendicitis	15.23%	15.37%	15.77%
Australian	32.85%	33.15%	30.18%
Balance	11.92%	7.61%	8.71%
Bands	35.61%	33.86%	32.96%
Cleveland	43.91%	43.35%	41.29%
Dermatology	28.41%	21.28%	14.33%
Hayes Roth	50.33%	38.56%	36.80%
Heart	20.61%	21.16%	19.99%
HouseVotes	4.07%	4.31%	3.58%
Ionosphere	12.14%	11.19%	9.23%
Liverdisorder	31.47%	33.01%	31.24%
Lymography	22.24%	22.57%	20.74%
Mammographic	18.66%	17.37%	15.71%
PageBlocks	7.95%	7.68%	6.81%
Parkinsons	17.28%	17.44%	13.86%
Pima	33.19%	31.94%	30.71%
Popfailures	6.65%	5.81%	5.24%
Regions2	26.33%	26.03%	22.25%
Saheart	36.11%	32.96%	34.45%
Segment	66.37%	58.33%	49.85%
Wdbc	7.38%	6.95%	7.68%
Wine	13.49%	11.55%	8.39%
Z_F_S	7.77%	7.59%	8.38%
ZO_NF_S	8.21%	7.52%	7.28%
ZONF_S	2.26%	1.87%	1.99%
ZOO	14.70%	12.30%	13.50%
AVERAGE	$\boldsymbol{22.12\%}$	$\boldsymbol{20.41\%}$	18.88%

Figure 2: Time comparison between the proposed method and a parallell implementation of Adam algorithm. The comparison is made for the dataset Page Blocks.

Table 5: Experiments with different values of N_t parameter for the regression datasets.

DATASET	$N_t = 20$	$N_t = 40$	$N_t = 100$
ABALONE	4.88	4.77	4.63
AIRFOIL	0.004	0.004	0.004
BASEBALL	69.83	65.37	69.72
BK	0.02	0.02	0.02
BL	0.006	0.005	0.007
CONCRETE	0.008	0.006	0.005
DEE	0.224	0.225	0.199
DIABETES	0.357	0.343	0.321
HOUSING	26.43	25.88	20.65
FA	0.019	0.019	0.017
MB	0.05	0.05	0.05
MORTGAGE	2.11	1.76	1.44
PY	0.02	0.018	0.022
QUAKE	0.042	0.037	0.037
TREASURY	2.37	2.12	1.48
WANKARA	0.0004	0.0003	0.0003
AVERAGE	6.65	6.29	6.16

4 Conclusions

An innovative method of training artificial neural networks was presented in this paper. The method consists of two important phases: in the first phase through a hybrid genetic algorithm, an attempt is made to identify the optimal interval of initialization and training of the network parameters and at the second phase the training of the parameters in the optimal intervals of the first phase is done using a genetic algorithm. The optimization of the optimal interval in the first phase is done by using partition rules of the initial interval that are applied in order. This technique aims to reduce the parameter search space and then significantly speed up network configuration training.

The proposed method was tested on a series of classification and regression datasets from the relevant literature and the experimental results seem to be very promising compared to the genetic algorithm procedure. However, since the method consists of two computational phases, it is much slower than other training techniques of artificial neural networks and therefore, the use of parallel processing techniques is considered necessary.

Future improvements to the proposed method may include the incorporation of additional global optimization techniques instead of genetic algorithms, the usage of more advanced stopping rules and the application of the method to other types of neural networks such as Radial Basis Function networks (RBF).

Table 6: Experiments with the Genetic method and various values of N_t for the classification datasets.

DATASET	$N_t = 100$	$N_t = 200$	$N_t = 400$	$N_t = 800$
Appendicitis	17.70%	18.10%	18.87%	18.97%
Australian	33.00%	33.21%	33.16%	33.03%
Balance	9.09%	8.97%	9.43%	9.36%
Bands	34.87%	35.75%	33.92%	33.88%
Cleveland	54.91%	51.60%	57.25%	55.83%
Dermatology	33.59%	30.58%	24.83%	20.07%
Hayes Roth	58.44%	56.18%	57.21%	55.51%
Heart	30.20%	28.34%	29.65%	29.43%
HouseVotes	7.45%	6.62%	8.22%	8.02%
Ionosphere	14.69%	15.14%	10.02%	9.84%
Liverdisorder	33.30%	31.11%	33.24%	33.19%
Lymography	23.48%	23.26%	23.95%	25.45%
Mammographic	20.83%	19.88%	21.19%	21.13%
PageBlocks	8.28%	8.06%	8.04%	7.42%
Parkinsons	19.55%	18.05%	18.81%	19.14%
Pima	34.64%	32.19%	33.54%	33.62%
Popfailures	5.37%	5.94%	5.30%	5.38%
Regions2	29.11%	29.39%	28.54%	28.47%
Saheart	35.25%	34.86%	34.60%	34.93%
Segment	56.07%	57.72%	52.43%	51.00%
Wdbc	9.08%	8.56%	9.02%	9.19%
Wine	30.43%	19.20%	25.35%	21.55%
Z_F_S	18.23%	10.73%	11.94%	11.49%
ZO_NF_S	16.61%	8.41%	10.85%	10.09%
ZONF_S	2.70%	2.60%	2.75%	2.10%
ZOO	16.37%	16.67%	13.47%	13.33%
AVERAGE	25.12%	23.47%	23.68%	23.13%

Table 7: Experiments with the Genetic method and various values of N_t for the regression datasets.

DATASET	$N_t = 100$	$N_t = 200$	$N_t = 400$	$N_t = 800$
ABALONE	6.88	7.17	6.28	6.49
AIRFOIL	0.008	0.003	0.04	0.01
BASEBALL	106.47	103.60	107.04	107.30
BK	0.65	0.027	0.038	0.097
BL	9.80	5.74	1.38	2.85
CONCRETE	0.017	0.01	0.29	0.42
DEE	0.36	1.01	0.48	0.25
DIABETES	38.04	19.86	13.70	13.50
HOUSING	38.44	43.26	36.51	35.81
FA	1.55	1.95	0.74	2.06
MB	0.61	3.39	1.13	0.62
MORTGAGE	2.12	2.41	1.94	1.84
PY	151.49	105.41	96.79	90.59
QUAKE	0.22	0.04	0.05	0.04
TREASURY	2.72	2.93	2.28	2.19
WANKARA	0.065	0.012	0.001	0.003
AVERAGE	22.47	18.55	16.74	16.51

Compliance with Ethical Standards

All authors declare that they have no has no conflict of interest.

Acknowledgments

The experiments of this research work was performed at the high performance computing system established at Knowledge and Intelligent Computing Laboratory, Dept of Informatics and Telecommunications, University of Ioannina, acquired with the project "Educational Laboratory equipment of TEI of Epirus" with MIS 5007094 funded by the Operational Programme "Epirus" 2014-2020, by ERDF and national finds.

References

- [1] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
- [2] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control Signals and Systems 2, pp. 303-314, 1989.
- [3] P. Baldi, K. Cranmer, T. Faucett et al, Parameterized neural networks for high-energy physics, Eur. Phys. J. C 76, 2016.

- [4] J. J. Valdas and G. Bonham-Carter, Time dependent neural network models for detecting changes of state in complex processes: Applications in earth sciences and astronomy, Neural Networks 19, pp. 196-207, 2006
- [5] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science **355**, pp. 602-606, 2017.
- [6] Y. Shirvany, M. Hayati, R. Moradian, Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations, Applied Soft Computing 9, pp. 20-29, 2009.
- [7] A. Malek, R. Shekari Beidokhti, Numerical solution for high order differential equations using a hybrid neural network—Optimization method, Applied Mathematics and Computation 183, pp. 260-271, 2006.
- [8] A. Topuz, Predicting moisture content of agricultural products using artificial neural networks, Advances in Engineering Software 41, pp. 464-470, 2010.
- [9] A. Escamilla-García, G.M. Soto-Zarazúa, M. Toledano-Ayala, E. Rivas-Araiza, A. Gastélum-Barrios, Abraham, Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development, Applied Sciences 10, Article number 3835, 2020.
- [10] Lin Shen, Jingheng Wu, and Weitao Yang, Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks, Journal of Chemical Theory and Computation 12, pp. 4934-4946, 2016.
- [11] Sergei Manzhos, Richard Dawes, Tucker Carrington, Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces, Int. J. Quantum Chem. 115, pp. 1012-1020, 2015.
- [12] Jennifer N. Wei, David Duvenaud, and Alán Aspuru-Guzik, Neural Networks for the Prediction of Organic Chemistry Reactions, ACS Central Science 2, pp. 725-732, 2016.
- [13] Lukas Falat and Lucia Pancikova, Quantitative Modelling in Economics with Advanced Artificial Neural Networks, Procedia Economics and Finance 34, pp. 194-201, 2015.
- [14] Mohammad Namazi, Ahmad Shokrolahi, Mohammad Sadeghzadeh Maharluie, Detecting and ranking cash flow risk factors via artificial neural networks technique, Journal of Business Research 69, pp. 1801-1806, 2016.
- [15] G. Tkacz, Neural network forecasting of Canadian GDP growth, International Journal of Forecasting 17, pp. 57-69, 2001.
- [16] Igor I. Baskin, David Winkler and Igor V. Tetko, A renaissance of neural networks in drug discovery, Expert Opinion on Drug Discovery 11, pp. 785-795, 2016.

- [17] Ronadl Bartzatt, Prediction of Novel Anti-Ebola Virus Compounds Utilizing Artificial Neural Network (ANN), Chemistry Faculty Publications 49, pp. 16-34, 2018.
- [18] I.G. Tsoulos, D. Gavrilis, E. Glavas, Neural network construction and training using grammatical evolution, Neurocomputing **72**, pp. 269-277, 2008.
- [19] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning representations by back-propagating errors, Nature **323**, pp. 533 536, 1986.
- [20] T. Chen and S. Zhong, Privacy-Preserving Backpropagation Neural Network Learning, IEEE Transactions on Neural Networks 20, , pp. 1554-1564, 2009.
- [21] M. Riedmiller and H. Braun, A Direct Adaptive Method for Faster Back-propagation Learning: The RPROP algorithm, Proc. of the IEEE Intl. Conf. on Neural Networks, San Francisco, CA, pp. 586–591, 1993.
- [22] T. Pajchrowski, K. Zawirski and K. Nowopolski, Neural Speed Controller Trained Online by Means of Modified RPROP Algorithm, IEEE Transactions on Industrial Informatics 11, pp. 560-568, 2015.
- [23] Rinda Parama Satya Hermanto, Suharjito, Diana, Ariadi Nugroho, Waiting-Time Estimation in Bank Customer Queues using RPROP Neural Networks, Procedia Computer Science 135, pp. 35-42, 2018.
- [24] Neural Networks, Procedia Computer Science 135, pp. 35-42, 2018.
- [25] B. Robitaille and B. Marcos and M. Veillette and G. Payre, Modified quasi-Newton methods for training neural networks, Computers & Chemical Engineering 20, pp. 1133-1140, 1996.
- [26] Q. Liu, J. Liu, R. Sang, J. Li, T. Zhang and Q. Zhang, Fast Neural Network Training on FPGA Using Quasi-Newton Optimization Method, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, pp. 1575-1579, 2018.
- [27] F. H. F. Leung, H. K. Lam, S. H. Ling and P. K. S. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm, IEEE Transactions on Neural Networks 14, pp. 79-88, 2003
- [28] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9), pp. 1423-1447, 1999.
- [29] C. Zhang, H. Shao and Y. Li, Particle swarm optimisation for evolving artificial neural network, IEEE International Conference on Systems, Man, and Cybernetics, , pp. 2487-2490, 2000.
- [30] Jianbo Yu, Shijin Wang, Lifeng Xi, Evolving artificial neural networks using an improved PSO and DPSO 71, pp. 1054-1060, 2008.

- [31] I. Ivanova, M. Kubat, Initialization of neural networks by means of decision trees, Knowledge-Based Systems 8, pp. 333-344, 1995.
- [32] J.Y.F. Yam, T.W.S. Chow, A weight initialization method for improving training speed in feedforward neural network, Neurocomputing **30**, pp. 219-232, 2000.
- [33] K. Chumachenko, A. Iosifidis, M. Gabbouj, Feedforward neural networks initialization based on discriminant learning, Neural Networks **146**, pp. 220-229, 2022.
- [34] M.D. Shahjahan, M. Kazuyuki, Neural network training algorithm with possitive correlation, IEEE Trans. Inf & Syst. 88, pp. 2399-2409, 2005.
- [35] N.K. Treadgold, T.D. Gedeon, Simulated annealing and weight decay in adaptive learning: the SARPROP algorithm, IEEE Trans. on Neural Networks 9, pp. 662-668, 1998.
- [36] C.S. Leung, K.W. Wong, P.F. Sum, L.W. Chan, A pruning method for the recursive least squared algorithm, Neural networks 14, pp. 147-174, 2001.
- [37] J. lonen, J.K. Kamarainen, J. Lampinen, Differential Evolution Training Algorithm for Feed-Forward Neural Networks, Neural Processing Letters 17, pp. 93–105, 2003.
- [38] M. Baioletti, G. Di Bari, A. Milani, V. Poggioni, Differential Evolution for Neural Networks Optimization, Mathematics 8, 2020.
- [39] K.M. Salama, A.M. Abdelbar, Learning neural network structures with ant colony algorithms, Swarm Intell 9, pp. 229–265, 2015.
- [40] I.G. Tsoulos, D. Gavrilis, E. Glavas, Solving differential equations with constructed neural networks, Neurocomputing 72, pp. 2385-2391, 2009.
- [41] M. Martínez-Zarzuela, F.J. Díaz Pernas, J.F. Díez Higuera, M.A. Rodríguez, Fuzzy ART Neural Network Parallel Computing on the GPU. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg, 2007.
- [42] A.A. Huqqani, E. Schikuta, S. Ye Peng Chen, Multicore and GPU Parallelization of Neural Networks for Face Recognition, Procedia Computer Science 18, pp. 349-358, 2013.
- [43] E. Hansen and G.W. Walster.Global Optimization using Interval Analysis.Marcel Dekker Inc., New York, 2004.
- [44] M.Cs. Markót, Fernández L.G. and Casado T. Csendes, New interval methods for constrained global optimization, Mathematical Programming 106, pp. 287-318, 2006.

- [45] A. Žilinskas, and J. Žilinskas, Interval Arithmetic Based Optimization in Nonlinear Regression, Informatica 21, pp. 149-158, 2010.
- [46] P. Rodriguez, J. Wiles, J.L. Elman, A Recurrent Neural Network that Learns to Count, Connection Science 11, pp. 5-40, 1999.
- [47] R. Chandra, M. Zhang, Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction, Neurocomputing 86, pp. 116-123, 2012.
- [48] A. Yamazaki, M. C. P. de Souto, T. B. Ludermir, Optimization of neural network weights and architectures for odor recognition using simulated annealing, In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 1, pp. 547-552, 2002.
- [49] Y. Da, G. Xiurun, An improved PSO-based ANN with simulated annealing technique, Neurocomputing **63**, pp. 527-533, 2005.
- [50] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering 5, pp. 46-55, 1998.
- [51] Z. Michaelewicz, Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, Berlin, 1996.
- [52] P. Kaelo, M.M. Ali, Integrated crossover rules in real coded genetic algorithms, European Journal of Operational Research 176, pp. 60-76, 2007.
- [53] M.J.D Powell, A Tolerant Algorithm for Linearly Constrained Optimization Calculations, Mathematical Programming 45, pp. 547-566, 1989.
- [54] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, F. Herrera. KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. Journal of Multiple-Valued Logic and Soft Computing 17, pp. 255-287, 2011.
- [55] Weiss, Sholom M. and Kulikowski, Casimir A., Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, Morgan Kaufmann Publishers Inc, 1991.
- [56] J.R. Quinlan, Simplifying Decision Trees. International Journal of Man-Machine Studies 27, pp. 221-234, 1987.
- [57] T. Shultz, D. Mareschal, W. Schmidt, Modeling Cognitive Development on Balance Scale Phenomena, Machine Learning 16, pp. 59-88, 1994.
- [58] Z.H. Zhou, Y. Jiang, NeC4.5: neural ensemble based C4.5," in IEEE Transactions on Knowledge and Data Engineering 16, pp. 770-773, 2004.

- [59] R. Setiono , W.K. Leow, FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks, Applied Intelligence 12, pp. 15-25, 2000.
- [60] G. Demiroz, H.A. Govenir, N. Ilter, Learning Differential Diagnosis of Eryhemato-Squamous Diseases using Voting Feature Intervals, Artificial Intelligence in Medicine. 13, pp. 147–165, 1998.
- [61] I. Kononenko, E. Šimec, M. Robnik-Šikonja, Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF, Applied Intelligence 7, pp. 39–55, 1997
- [62] B. Hayes-Roth, B., F. Hayes-Roth. Concept learning and the recognition and classification of exemplars. Journal of Verbal Learning and Verbal Behavior 16, pp. 321-338, 1977.
- [63] R.M. French, N. Chater, Using noise to compute error surfaces in connectionist networks: a novel means of reducing catastrophic forgetting, Neural Comput. 14, pp. 1755-1769, 2002.
- [64] J.G. Dy, C.E. Brodley, Feature Selection for Unsupervised Learning, The Journal of Machine Learning Research 5, pp 845–889, 2004.
- [65] S. J. Perantonis, V. Virvilis, Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component Analysis, Neural Processing Letters 10, pp 243–252, 1999.
- [66] J. Garcke, M. Griebel, Classification with sparse grids using simplicial basis functions, Intell. Data Anal. 6, pp. 483-502, 2002.
- [67] M. Elter, R. Schulz-Wendtland, T. Wittenberg, The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process, Med Phys. **34**, pp. 4164-72, 2007.
- [68] F. Esposito F., D. Malerba, G. Semeraro, Multistrategy Learning for Document Recognition, Applied Artificial Intelligence 8, pp. 33-84, 1994.
- [69] M.A. Little, P.E. McSharry, E.J. Hunter, J. Spielman, L.O. Ramig, Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans Biomed Eng. 56, pp. 1015-1022, 2009.
- [70] J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, R.S. Johannes, Using the ADAP learning algorithm to forecast the onset of diabetes mellitus, In: Proceedings of the Symposium on Computer Applications and Medical Care IEEE Computer Society Press, pp.261-265, 1988.
- [71] D.D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, Y. Zhang, Failure analysis of parameter-induced simulation crashes in climate models, Geoscientific Model Development 6, pp. 1157-1171, 2013.

- [72] N. Giannakeas, M.G. Tsipouras, A.T. Tzallas, K. Kyriakidi, Z.E. Tsianou, P. Manousou, A. Hall, E.C. Karvounis, V. Tsianos, E. Tsianos, A clustering based method for collagen proportional area extraction in liver biopsy images (2015) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, art. no. 7319047, pp. 3097-3100.
- [73] T. Hastie, R. Tibshirani, Non-parametric logistic and proportional odds regression, JRSS-C (Applied Statistics) **36**, pp. 260–276, 1987.
- [74] M. Dash, H. Liu, P. Scheuermann, K. L. Tan, Fast hierarchical clustering and its validation, Data & Knowledge Engineering 44, pp 109–138, 2003.
- [75] W.H. Wolberg, O.L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to breast cytology, Proc Natl Acad Sci U S A. 87, pp. 9193–9196, 1990.
- [76] M. Raymer, T.E. Doom, L.A. Kuhn, W.F. Punch, Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and Cybernetics Society, 33, pp. 802-813, 2003.
- [77] P. Zhong, M. Fukushima, Regularized nonsmooth Newton method for multi-class support vector machines, Optimization Methods and Software 22, pp. 225-236, 2007.
- [78] M. Koivisto, K. Sood, Exact Bayesian Structure Discovery in Bayesian Networks, The Journal of Machine Learning Research 5, pp. 549–573, 2004.
- [79] R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E **64**, pp. 1-8, 2001.
- [80] W. J Nash, T.L. Sellers, S.R. Talbot, A.J. Cawthor, W.B. Ford, The Population Biology of Abalone (_Haliotis_ species) in Tasmania. I. Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait, Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288), 1994.
- [81] T.F. Brooks, D.S. Pope, A.M. Marcolini, Airfoil self-noise and prediction. Technical report, NASA RP-1218, July 1989.
- [82] J.S. Simonoff, Smooting Methods in Statistics, Springer Verlag, 1996.
- [83] I.Cheng Yeh, Modeling of strength of high performance concrete using artificial neural networks, Cement and Concrete Research. 28, pp. 1797-1808, 1998.

- [84] D. Harrison and D.L. Rubinfeld, Hedonic prices and the demand for clean ai, J. Environ. Economics & Management 5, pp. 81-102, 1978.
- [85] J.S. Simonoff, Smooting Methods in Statistics, Springer Verlag, 1996.
- [86] R.D. King, S. Muggleton, R. Lewis, M.J.E. Sternberg, Proc. Nat. Acad. Sci. USA 89, pp. 11322–11326, 1992.
- [87] D. P. Kingma, J. L. Ba, ADAM: a method for stochastic optimization, in: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), pp. 1–15, 2015.
- [88] Grzegorz Klima, Fast Compressed Neural Networks, available from http://fcnn.sourceforge.net/.
- [89] K. O. Stanley, R. Miikkulainen, Evolving Neural Networks through Augmenting Topologies, Evolutionary Computation 10, pp. 99-127, 2002.