MATH 651: PROBLEM SET 4 SOLUTIONS ARE IN CLASS ON WED. OCT 24.

- 1. (10 points) Prove that $[0,1]^{\mathbb{N}}$ with the box topology is not compact. Box topology on a product is the smallest topology in which any product of open sets is open, more precisely it is the topology where sets of the form $\prod_{i=1}^{\infty} U_i$, for U_i open in [0,1], form a subbase.
- 2. (10 points) Let $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in \Lambda}$ be a collection of nonempty topological spaces, and let $E_{\alpha} \subset X_{\alpha}$ be nonempty for every $\alpha \in \Lambda$. Fix $g \in \prod_{\alpha \in \Lambda} E_{\alpha}$ and consider the set

$$E:=\left\{ f\in\prod_{\alpha\in\Lambda}E_{\alpha}:\,f\left(\alpha\right)=g\left(\alpha\right)\text{ for all but finitely many }\alpha\in\Lambda\right\} .$$

Prove that

$$\overline{E} = \overline{\prod_{\alpha \in \Lambda} E_{\alpha}}.$$

- 3. (15 points)
 - (i) Show that the product of any (nonempty) family of nonempty Hasudorff topological spaces is Hausdorff.
 - (ii) Show that the product of any (nonempty) family of nonempty completely regular topological spaces is completely regular.
 - (iii) Let (\mathbb{R}, τ) be the Sorgenfrey line (that is τ is the topology with basis [a, b) for $a, b \in \mathbb{R}$). Recall that (\mathbb{R}, τ) is a normal space. Show that the product topology on $\mathbb{R} \times \mathbb{R}$ is not normal.
- 4. (10 points) Prove that in $\mathbb{R}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{R}\}$ with the box topology, the set

$$U := \{ f : \mathbb{N} \to \mathbb{R} : f \text{ is bounded} \}$$

is both open and closed, so that $\mathbb{R}^{\mathbb{N}}$ is not connected.

5. (15 points) Show that if $\gamma: \mathbb{R} \to \mathbb{R}^2$ is a bounded continuous injection then the closure of $\gamma(\mathbb{R})$ in \mathbb{R}^2 is a compactification of \mathbb{R} if $\gamma((a,b))$ is open in $\gamma(\mathbb{R})$ for all $a,b\in\mathbb{R}$.

Find a compactification X of \mathbb{R} which is homeomorphic to a subset of \mathbb{R}^2 such that the function $\cos: \mathbb{R} \to \mathbb{R}$ has a continuous extension to X. [Hint: Find γ such that the function $\cos \circ \gamma^{-1}: \gamma(\mathbb{R}) \to \mathbb{R}$ has a continuous extension to $X = \overline{\gamma(\mathbb{R})}$.]

6. (5 points) Show that $[0,1]^{\mathbb{N}}$ is sequentially compact.