32 Quad 2-Input

MM54HC132/MM74HC132 Quad 2-Input NAND Schmitt Trigger

General Description

The MM54HC132/MM74HC132 utilizes advanced silicongate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.

The 54HC/74HC logic family is functionally and pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 12 ns
- Wide power supply range: 2V-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 μ A maximum
- Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC}=4.5V

Connection and Logic Diagrams

Dual-In-Line Package

TL/F/5309-1

Order Number MM54HC132 or MM74HC132

TL/F/5309-2

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) -1.5 to $\ensuremath{V_{CC}} + 1.5\ensuremath{\text{V}}$ DC Output Voltage (V_{OUT}) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) $\pm\,20~mA$ DC Output Current, per pin (I_{OUT}) $\pm\,25~\text{mA}$

DC V_{CC} or GND Current, per pin (I_{CC}) \pm 50 mA Storage Temperature Range (T_{STG}) -65°C to $+150^{\circ}\text{C}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		Vcc	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
							Guaranteed		
V _{T+}	Positive Going Threshold Voltage	ľ	Min	2.0V 4.5V 6.0V		1.0 2.0 3.0	1.0 2.0 3.0	1.0 2.0 3.0	V V V
		N	Max	2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V
V _T -	Negative Going Threshold Voltage	N	Min	2.0V 4.5V 6.0V		0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V V V
		N	Max	2.0V 4.5V 6.0V		1.0 2.2 3.0	1.0 2.2 3.0	1.0 2.2 3.0	V V V
V _H	Hysteresis Voltage	N	Min	2.0V 4.5V 6.0V		0.2 0.4 0.5	0.2 0.4 0.5	0.2 0.4 0.5	V V
		N	Max	2.0V 4.5V 6.0V		1.0 1.4 1.5	1.0 1.4 1.5	1.0 1.4 1.5	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$		2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 4.0 \text{ mA}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 5.2 \text{ mA}$		4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$		2.0V 4.5V 6.0V	0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$		4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND)	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$		6.0V		2.0	20	40	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V}, T_{A}\!=\!25^{\circ}\text{C}, C_{L}\!=\!15\,\text{pF}, t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		12	20	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ V \ \text{to 6.0V}, \ C_L = 50 \ \text{pF}, \ t_r = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units	
				Тур	Guaranteed Limits				
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V 4.5V 6.0V	63 13 11	125 25 21	158 32 27	186 37 32	ns ns ns	
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns	
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		130				pF	
C _{IN}	Maximum Input Capacitance				5	10	10	pF	

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$.

Physical Dimensions inches (millimeters) 0.785 (19.939) MAX 14 13 12 11 10 9 8 0.025 (0.635) RAD 0.220-0.310 (5.588-7.874) 1 2 3 4 5 6 7

Dual-In-Line Package (J) Order Number MM54HC132J or MM74HC132J NS Package J14A

Dual-In-Line Package (N) Order Number MM74HC132N NS Package N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408