

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte

Campus de Natal

Lista de Cálculo 1: Integral Definida

Prof. Dr. Irineu Lopes Palhares Junior

Lista de exercícios

Natal

Novembro de 2022

Sumário

1	1º Teorema Fundamental do Cálculo	2
2	Cálculo de áreas	6

i i icoicilla i allaaliicillal ao calcalo	Ĺ	1^o	Teorema	Fundamental	do	Cálculo
---	---	-------	----------------	--------------------	----	---------

$$\int_0^{\frac{\pi}{8}} \sin 2x \, dx = \left[-\frac{1}{2} \cos 2x \right]_0^{\frac{\pi}{8}} = -\frac{1}{2} \cos \frac{\pi}{4} + \frac{1}{2}$$

ou seja,

$$\int_0^{\frac{\pi}{8}} \sin 2x \, dx = \frac{2 - \sqrt{2}}{4}.$$

EXEMPLO 7. Calcule $\int_0^1 e^{-x} dx$.

Solução

$$\int_0^1 e^{-x} dx = \left[-e^{-x} \right]_0^1 = 1 - \frac{1}{e}.$$

Exercícios 11.5

Calcule.

$$1. \int_0^1 (x+3) \ dx$$

$$2. \int_{-1}^{1} (2x+1) \ dx$$

$$3. \int_0^4 \frac{1}{2} \, dx$$

$$4. \int_{-2}^{1} (x^2 - 1) dx$$

$$5. \int_{1}^{3} dx$$

6.
$$\int_{-1}^{2} 4 dx$$

7.
$$\int_{1}^{3} \frac{1}{x^3}$$

8.
$$\int_{-1}^{1} 5 dx$$

$$9. \int_0^2 (x^2 + 3x - 3) \ dx$$

$$10. \int_0^1 \left(5x^3 - \frac{1}{2} \right) dx$$

11.
$$\int_{1}^{1} (2x+3) dx$$

12.
$$\int_{1}^{0} (2x+3) dx$$

13.
$$\int_{-2}^{-1} \left(\frac{1}{x^2} + x \right) dx$$

$$15. \int_1^4 \frac{1}{\sqrt{x}} dx$$

17.
$$\int_{-1}^{0} (x^3 - 2x + 3) dx$$

19.
$$\int_{1}^{2} \left(x^3 + x + \frac{1}{x^3} \right) dx$$

21.
$$\int_{1}^{3} \left(5 + \frac{1}{x^2}\right) dx$$

23.
$$\int_{-1}^{1} (x^7 + x^3 + x) dx$$

25.
$$\int_{1}^{4} (5x + \sqrt{x}) dx$$

27.
$$\int_{1}^{2} \frac{1+x}{x^3} dx$$

29.
$$\int_{1}^{4} \frac{1+x}{\sqrt{x}} dx$$

$$31. \int_0^2 (t^2 + 3t - 1) dt$$

33.
$$\int_{\frac{1}{2}}^{1} (s+2) ds$$

35.
$$\int_{1}^{2} (s^2 + 3s + 1) ds$$

37.
$$\int_{1}^{3} \left(1 + \frac{1}{x}\right) dx$$

39.
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{2}} \cos 2x \, dx$$

41.
$$\int_{-1}^{1} e^{2x} dx$$

43.
$$\int_0^{\frac{\pi}{4}} \sin x \, dx$$

14.
$$\int_0^4 \sqrt{x}$$

16.
$$\int_0^8 \sqrt[3]{x} \ dx$$

18.
$$\int_0^1 \sqrt[8]{x} \ dx$$

20.
$$\int_0^1 (x + \sqrt[4]{x}) dx$$

22.
$$\int_{-3}^{3} x^3 dx$$

24.
$$\int_{\frac{1}{2}}^{1} (x+3) dx$$

26.
$$\int_{1}^{0} (x^7 - x + 3) dx$$

28.
$$\int_0^1 (x+1)^2 dx$$

30.
$$\int_0^1 (x-3)^2 dx$$

$$32. \int_{1}^{2} \frac{1+t^2}{t^4} dt$$

$$34. \int_0^3 (u^2 - 2u + 3) du$$

36.
$$\int_{-1}^{1} \sqrt[3]{t} \ dt$$

38.
$$\int_{1}^{2} \frac{1+3x^2}{x} dx$$

$$40. \int_{-\pi}^{0} \sin 3x \ dx$$

42.
$$\int_0^1 \frac{1}{1+t^2} dt$$

44.
$$\int_{-1}^{0} e^{-2x} dx$$

45.
$$\int_0^{\frac{\pi}{3}} (3 + \cos 3x) \, dx$$

46.
$$\int_0^1 \sin 5x \, dx$$

$$47. \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} \, dx$$

48.
$$\int_0^2 2^x dx$$

49.
$$\int_0^1 2x e^{x^2} dx$$

50.
$$\int_0^1 \frac{2x}{1+x^2} \, dx$$

51.
$$\int_0^1 \frac{1}{1+x} dx$$

52.
$$\int_{-1}^{1} x^3 e^{x^4} dx$$

53.
$$\int_0^{\frac{\pi}{3}} (\sin x + \sin 2x) dx$$

$$54. \int_0^{\frac{\pi}{2}} \left(\frac{1}{2} + \frac{1}{2} \cos 2x \right) dx$$

55.
$$\int_0^{\frac{\pi}{2}} \cos^2 x \ dx \ \left(\text{Sugestão} : \text{Verifique que } \cos^2 x = \frac{1}{2} + \frac{1}{2} \cos 2x. \right)$$

56.
$$\int_0^{\frac{\pi}{2}} \sin^2 x \, dx$$

57.
$$\int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx$$

58.
$$\int_{0}^{1} 3^{x} dx$$

59.
$$\int_0^1 3^x e^x dx$$

60.
$$\int_0^{\frac{\pi}{4}} tg^2 x \, dx$$

11.6. CÁLCULO DE ÁREAS

Seja f contínua em [a, b], com $f(x) \ge 0$ em [a, b]. Estamos interessados em definir a *área* do conjunto A do plano limitado pelas retas x = a, x = b, y = 0 e pelo gráfico de y = f(x).

2 Cálculo de áreas

a)
$$x(3) - x(1) = \int_{1}^{3} (2 - t) dt = \left[2t - \frac{t^{2}}{2} \right]_{1}^{3} = 0.$$

Em [1, 2 [, v(t) > 0, o que significa que no intervalo de tempo [1, 2] a partícula avança no sentido positivo; em]2, 3], v(t) < 0, o que significa que neste intervalo de tempo a partícula recua, de tal modo que no instante t = 3 ela volta a ocupar a mesma posição por ela ocupada no instante t = 1.

b) O espaço percorrido entre os instantes t = 1 e t = 3 é

$$\int_{1}^{3} |2-t| \ dt = \int_{1}^{2} (2-t) \ dt - \int_{2}^{3} (2-t) \ dt = 1.$$

Observe que o espaço percorrido entre os instantes 1 e 2 é

$$\int_{1}^{2} (2-t) dt = \frac{1}{2}$$

e que o espaço percorrido entre os instantes 2 e 3 é

$$\int_{2}^{3} |2 - t| dt = -\int_{2}^{3} (2 - t) dt = \frac{1}{2}.$$

Exercícios 11.6 =====

Nos Exercícios de 1 a 22, desenhe o conjunto *A* dado e calcule a área.

- 1. A é o conjunto do plano limitado pelas retas x = 1, x = 3, pelo eixo 0x e pelo gráfico de y = x³.
- 2. A é o conjunto do plano limitado pelas retas x = 1, x = 4, y = 0 e pelo gráfico de $y = \sqrt{x}$.
- 3. $A \notin o$ conjunto de todos (x, y) tais que $x^2 1 \le y \le 0$.
- 4. *A* é o conjunto de todos (x, y) tais que $0 \le y \le 4 x^2$.
- 5. *A* é o conjunto de todos (x, y) tais que $0 \le y \le |\sin x|$, com $0 \le x \le 2\pi$.
- 6. *A* é a região do plano compreendida entre o eixo 0x e o gráfico de $y = x^2 x$, com $0 \le x \le 2$.
- 7. *A* é o conjunto do plano limitado pela reta y = 0 e pelo gráfico de $y = 3 2x x^2$, com $-1 \le x \le 2$.
- 8. A é o conjunto do plano limitado pelas retas x = -1, x = 2, y = 0 e pelo gráfico de $y = x^2 + 2x + 5$.
- 9. $A \notin o$ conjunto do plano limitado pelo eixo 0x, pelo gráfico de $y = x^3 x$, $-1 \le x \le 1$.
- 10. A é o conjunto do plano limitado pela reta y = 0 e pelo gráfico de $y = x^3 x$, com $0 \le x \le 2$.
- 11. A é o conjunto do plano limitado pelas retas x = 0, $x = \pi$, y = 0 e pelo gráfico de $y = \cos x$.
- 12. A é o conjunto de todos (x, y) tais que $x \ge 0$ e $x^3 \le y \le x$.
- 13. A é o conjunto do plano limitado pela reta y = x, pelo gráfico de $y = x^3$, com $-1 \le x \le 1$.
- 14. $A = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \text{ e } \sqrt{x} \le y \le 3\}.$
- 15. A é o conjunto do plano limitado pelas retas x = 0, $x = \frac{\pi}{2}$ e pelos gráficos de $y = \operatorname{sen} x$ e $y = \cos x$.
- 16. $A \in \mathcal{A}$ o conjunto de todos os pontos (x, y) tais que $x^2 + 1 \le y \le x + 1$.
- 17. $A \in \mathcal{C}$ o conjunto de todos os pontos (x, y) tais que $x^2 1 \le y \le x + 1$.

- 18. A é o conjunto do plano limitado pelas retas x = 0, $x = \frac{\pi}{2}$ e pelos gráficos de $y = \cos x$ e $y = 1 \cos x$.
- 19. $A = \{ (x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ e } x^3 x \le y \le -x^2 + 5x \}.$
- 20. A é o conjunto do plano limitado pelos gráficos de $y = x^3 x$, $y = \text{sen } \pi x$, com $-1 \le x \le 1$.
- 21. *A* é o conjunto de todos os pontos (x, y) tais que $x \ge 0$ e $-x \le y \le x \le x^2$
- 22. *A* é o conjunto de todos (x, y) tais que x > 0 e $\frac{1}{x^2} \le y \le 5 4x^2$.
- 23. Uma partícula desloca-se sobre o eixo x com velocidade v(t) = 2t 3, $t \ge 0$.
 - *a*) Calcule o deslocamento entre os instantes t = 1 e t = 3.
 - *b*) Qual o espaço percorrido entre os instantes t = 1 e t = 3?
 - c) Descreva o movimento realizado pela partícula entre os instantes t = 1 e t = 3
- 24. Uma partícula desloca-se sobre o eixo 0x com velocidade $v(t) = \text{sen } 2t, t \ge 0$. Calcule o espaço percorrido entre os instantes t = 0 e $t = \pi$.
- 25. Uma partícula desloca-se sobre o eixo 0x com velocidade $v(t) = -t^2 + t$, $t \ge 0$. Calcule o espaço percorrido entre os instantes t = 0 e t = 2.
- 26. Uma partícula desloca-se sobre o eixo 0x com velocidade $v(t) = t^2 2t 3$, $t \ge 0$. Calcule o espaço percorrido entre os instantes t = 0 e t = 4.

11.7. MUDANÇA DE VARIÁVEL NA INTEGRAL

Veremos, no Vol. 2, que toda função~contínua~num intervalo I admite, neste intervalo, uma primitiva. Por ora, vamos admitir tal resultado e usá-lo na demonstração do próximo teorema.

Teorema. Seja f contínua num intervalo I e sejam a e b dois reais quaisquer em I. Seja $g:[c,d] \rightarrow I$, com g' contínua em [c,d], tal que g(c) = a e g(d) = b. Nestas condições

$$\int_{a}^{b} f(x) \, dx = \int_{c}^{d} f(g(u) g'(u) \, du.$$