

Description

The VSM8N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_D = 8A$
 - $R_{DS(ON)} < 20m\Omega$ @ $V_{GS}=10V$ (Typ:15.6m Ω)
 - $R_{DS(ON)} < 28m\Omega$ @ V_{GS} =4.5V (Typ:20m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Load switch

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM8N06-S8	VSM8N06	SOP-8	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	8	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	5.6	А	
Pulsed Drain Current	I _{DM}	32	А	
Maximum Power Dissipation	P _D	2.1	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	60	°C/W

Electrical Characteristics (TC=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.0	1.6	2.2	V
Dunin Course On Chata Benintana	R _{DS(ON)}	V _{GS} =10V, I _D =8A	-	15.6	20	mΩ
Drain-Source On-State Resistance		V_{GS} =4.5V, I_D =8A	-	20	28	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =8A	18	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =30V,V _{GS} =0V,	-	1600	-	PF
Output Capacitance	Coss		-	112	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	98	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	7	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =1 Ω	-	5.5	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =3 Ω	-	29	-	nS
Turn-Off Fall Time	t _f		-	4.5	-	nS
Total Gate Charge	Qg	\/ 00\/ L 0A	-	38.5	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=8A,$	-	4.7	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	10.3	-	nC
Drain-Source Diode Characteristics	- '		•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =8A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	8	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =8A	-	28	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	40	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)