7/15/2018

Employee Absenteeism

Analysis and Model Generation in Python and R

Lakshveer Singh

Table of Contents

1	Introduction 1.1 Problem Statement	2
2	Data Pre-processing	
	2.1 Data	
	2.2 Data Size and Structure	
	2.3 Completeness of the data	3
	2.4 Outlier Analysis	
	2.5 Correlation Plot	
	2.6 Feature Importance Ranking	8
3	1 0	
	3.1 Univariate Analysis	
	3.2 Bivariate Analysis	
	3.3 Grouping the data based on target variable	
	3.3 Inferences	14
4	Model Generation	
	4.1 Trend and Seasonality	16
	4.1.1 Decomposition	16
	4.2 Stationarity	17
	4.3 Linear Regression with Trend/TSLM	
	4.3.1 Forecasting in R	
	4.3.1 Forecasting in Python	
	4.3.2 Residuals	
	4.4 ARIMA	
	4.4.1 ACF & PACF	21
	4.4.2 Forecasting	
	4.4.3 Residuals	
	4.5 ETS	
	4.5.1 Forecasting	
	4.5.2 Residuals	
5	Accuracy	
	5.1 RMSE/MAPE/AIC	27
6	References	28

1. Introduction

1.1.Problem Statement

XYZ is a courier company. As we appreciate that human capital plays an important role in collection, transportation and delivery. The company is passing through genuine issue of Absenteeism. The company has shared it dataset and requested to have an answer on the following areas:

- 1. What changes company should bring to reduce the number of absenteeism?
- 2. How much losses every month can we project in 2011 if same trend of absenteeism continues?

2. Data Pre-processing

2.1. Data

Our first objective is to find the patterns which leads to number of absenteeism and how the changes can help the company reduce that. Given below is a sample of the data set that we are using to find the trend in the absenteeism.

	Reason for	Month of	Day of the		
ID	absence	absence	week	Seasons	Transportation expense
11	26	7	3	1	289
36	0	7	3	1	118
3	23	7	4	1	179
7	7	7	5	1	279
11	23	7	5	1	289

Distance from Residence to	Service		Work load	Hit	Disciplinary
Work	time	Age	Average/day	target	failure
36	13	33	239,554	97	0
13	18	50	239,554	97	1
51	18	38	239,554	97	0
5	14	39	239,554	97	0
36	13	33	239,554	97	0

Education	Son	Social drinker	Social	Pet	Weight	Height	Body mass index	Absenteeism time in hours
Laucation	DOII	dillikei	SHOKEI	1 Ct				nours
1	2	1	0	1	90	172	30	4
1	1	1	0	0	98	178	31	0
1	0	1	0	0	89	170	31	2
1	2	1	1	0	68	168	24	4
1	2	1	0	1	90	172	30	2

2.2. Data Size and Structure:

Size: 740 obs. of 21 variables:

Raw Structure:

VARIABLES	DATA TYPE
ID	num 11 36 3 7 11 3 10 20 14 1
Reason.for.absence	num 26 0 23 7 23 23 22 23 19 22
Month.of.absence	num 777777777
Day.of.the.week	num 3 3 4 5 5 6 6 6 2 2
Seasons	num 111111111
Transportation.expense	num 289 118 179 279 289 179 NA 260 155
Distance.from.Residence.to.Work	num 36 13 51 5 36 51 52 50 12 11
Service.time	num 13 18 18 14 13 18 3 11 14 14
Age	num 33 50 38 39 33 38 28 36 34 37
Work.load.Average.day.	num 239554 239554 239554 239554 239554
Hit.target	num 97 97 97 97 97 97 97 97 97
Disciplinary.failure	num 010000000
Education	num 111111113
Son	num 2102201421
Social.drinker	num 111111110
Social.smoker	num 0001000000
Pet	num 1000104001
Weight	num 90 98 89 68 90 89 80 65 95 88
Height	num 172 178 170 168 172 170 172 168 196
Body.mass.index	num 30 31 31 24 30 31 27 23 25 29
Absenteeism.time.in.hours	num 4 0 2 4 2 NA 8 4 40 8

2.3. Completeness of data:

VARIABLES	MISSING COUNT
ID	0
Reason.for.absence	3
Month.of.absence	0
Year	0
Day.of.the.week	0
Seasons	0
Transportation.expense	7
Distance.from.Residence.to.Work	3
Service.time	3
Age	3
Work.load.Average.day.	10
Hit.target	6
Disciplinary.failure	6
Education	10
Son	6
Social.drinker	3
Social.smoker	4
Pet	2
Weight	1
Height	14
Body.mass.index	31
Absenteeism.time.in.hours	22

2.4.Outlier Analysis

By looking at the below probability distribution we can clearly see that the most of the variables are skewed. The skew in the distribution can be most likely explained by the presence of outliers in the data. Let's plot a box to check this.

There seems to be many outlier in our target variable Absenteeism_time_in_hours. There are value of 120, 100, 80, 60 which is not possible.

Reason: The data set is a daily data set with no of absent hour per day. A day has max 24 hours, so all these values seems redundant and we need to eliminate these out. Logically the absenteeism hours should be less than the service time of that employee. We will use KNN imputation to impute these outliers.

2.5. Correlation Plot

										Pearsor	n Correla	tion of f	eatures									
ID -	1	-0.067	-0.0017	-0.0048	0.031	0.095	-0.24	-0.49	-0.32	0.077	0.11	-0.028	0.0033	-0.037	0.0039	-0.45	-0.011	-0.032	-0.25	-0.059	-0.3	-0.13
Reason_for_absence -	-0.067	1	-0.1	0.074	0.12	-0.12	-0.11	0.17	0.066	-0.047	-0.093	0.065	-0.55	-0.052	-0.054	0.068	-0.12	-0.037	0.0094	-0.028	0.048	-0.16
Month_of_absence -	-0.0017	-0.1	1	-0.45	-0.0044	0.41	0.15	-0.001	-0.073	0.018	-0.18	-0.49	0.1	-0.07	0.082	0.058	-0.041	0.066		-0.0025	0.059	-0.0099
Year -	-0.0048	0.074	-0.45	1	-0.0072	-0.092	-0.09	-0.065	0.03	-0.011	-0.17	0.29	-0.072	0.22	-0.14	-0.1	0.018	0.016	-0.044	0.064	-0.057	-0.042
Day_of_the_week	0.031	0.12	-0.0044	-0.0072	1	0.045	0.041	0.12	0.016	0.019	0.034	0.047	-0.0069	0.059	0.098	0.045	0.014	-0.025	0.13	-0.049	-0.1	-0.075
Seasons -	0.095	-0.12	0.41	-0.092	0.045	1	0.037	-0.063	-0.023	0.0051	0.14	-0.13	0.15	-0.0038	0.048	-0.043	-0.049	0.024	-0.022	-0.022	-0.009	-0.062
Transportation_expense -	-0.24	4.11	0.15	-0.09	0.041	0.037	1	0.27	-0.39	-0.27	-0.029	-0.084	0.09	40.05	0.4	0.16	0.047	0.43	0.21	-0.0084	-0.13	0.19
Distance_from_Residence_to_Work -	-0.49	0.17	-0.001	-0.065	0.12	-0.063	0.27	1	0.1	-0.11	-0.085	0.018	-0.066	-0.25	0.052	0.45	-0.076	0.22	-0.05	-0.099	0.12	0.0061
Service_time -	-0.32	0.066	-0.073	0.03	0.016	-0.023	-0.39	0.1	1	0.66	-0.052	0.059	0.0087	-0.21	-0.025	0.4	0.084	-0.5	0.42	-0.03	0.46	-0.066
Age -	0.077	-0.047	0.018	-0.011	0.019	0.0051	-0.27	-0.11	0.66	1	-0.051	-0.019	0.13	-0.21	0.02	0.28	0.14	-0.27	0.5	-0.08	0.55	-0.075
Work load Average/day	0.11	-0.093	-0.18	-0.17	0.034	0.14	-0.029	-0.085	-0.052	-0.051	1	0.025	0.0011	-0.052	0.039	-0.085	0.027	-0.0055	-0.09	-0.06	-0.12	0.043
Hit target	-0.028	0.065	40.49	0.29	0.047	0.13	-0.084	0.018	0.059	-0.019	0.025	1	4.11	0.081	0.033	-0.039	0.035	-0.021	0.012	-0.00096	-0.05	0.022
Disciplinary failure	0.0033	0.55	0.1	-0.072	-0.0069	0.15	0.09	-0.066	0.0087	0.13	0.0011	0.11	1	40.058	0.057	0.047	0.12	0.025	0.081	-0.029	0.087	-0.26
Education -	-0.037	-0.052	-0.07	0.22	0.059	-0.0038	-0.05	-0.25	-0.21	-0.21	-0.052	0.081	-0.058	1	-0.19	-0.42	0.032	-0.051	-0.3	0.15	-0.37	0.029
Son -	0.0039	-0.054	0.082	-0.14	0.098	0.048	0.4	0.052	-0.025	0.02	0.039	-0.033	0.057	-0.19	1	0.21	0.16	0.11	-0.14	-0.29	-0.15	0.16
		0.068	0.058	-0.1	0.045	-0.043	0.16				-0.085		0.047	-0.42		1	-0.11	-0.13		0.015		0.08
Social_drinker -	-0.45							0.45	0.4	0.28		-0.039			0.21				0.38		0.32	
Social_smoker	-0.011	0.12	-0.041	0.018	0.014	-0.049	0.047	-0.076	0.084	0.14	0.027	0.035	0.12	0.032	0.16	-0.11	1	0.11	-0.2	0.13	-0.19	0.039
Pet -	-0.032	-0.037	0.066	0.016	-0.025	0.024	0.43	0.22	-0.5	-0.27	-0.0055	-0.021	0.025	-0.051	0.11	-0.13	0.11	1	-0.12	0.062	-0.095	0.046
Weight -	-0.25	0.0094	0.031	-0.044	-0.13	-0.022	-0.21	40.05	0.42	0.5	-0.09	-0.012	0.081	-0.3	-0.14	0.38	-0.2	-0.12	1	0.071	0.9	-0.011
Height -	-0.059	-0.028	-0.0025	0.064	-0.049	-0.022	-0.0084	-0.099	-0.03	-0.08	-0.06	-0.00096	-0.029	0.15	-0.29	0.015	0.13	0.062	0.071	1	-0.086	0.054
Body_mass_index -	-0.3	0.048	0.059	-0.057	-0.1	-0.009	-0.13	0.12	0.46	0.55	-0.12	-0.05	0.087	-0.37	-0.15	0.32	-0.19	-0.095	0.9	-0.086	1	-0.033
Absenteeism_time_in_hours	-0.13	-0.16	-0.0099	-0.042	-0.075	-0.062	0.19	0.0061	-0.066	-0.075	0.043	0.022	-0.26	0.029	0.16	0.08	0.039	0.046	-0.011	0.054	-0.033	1
	Q	Reason_for_absence	Month of absence	Year	Day_of_the_week	Seasons	Transportation_expense.	stance from Residence to Work	Service_time	Age	Work_load_Average/day_	Hit target	Disciplinary_failure	Education	Son	Social drinker	Social_smoker	190d	Weight	Height	Body_mass_index .	Absenteeism_time_in_bours

Looking at the above correlation plot looks like no feature is related much with our target variable.

2.6. Feature Importance Ranking:

I've used the scores of stability selection via Randomized Lasso method, Recursive feature elimination, linear model feature coefficients(Linear Regression, Lasso and Ridge) and random forest feature selection to come up with the below ranking. The mean of these scores is used to rank the features.

Our top 5 feature are Disciplinary failure, Reason of Absence, Social Drinker, Social Smoker and Son.

3. Exploring some of the most important variables

3.1. Univariate Analysis based on number of absent hours on a new day

Quick Observation:

The above count plots are based on the employee count. There doesn't seem to be of a much difference in the employee absenteeism hours based on **new day**, month and season. There is no specific day or month or season where the employees are absent. It is distributed uniformly.

But there is something we can see in "reason of absence" plot, the reason of absence on a new day seems to be max for 23 followed by 28, 27, and 13 and so on. (Descending order)

23: Medical Consultation. 28: Dental consultation 27: Physiotherapy 13: Disease of musculoskeletal system and connective tissue.

The point to be noted here is the reason of absence from 1 to 21 are absences attested by the International code of diseases. Reason of absence for 22 to 28 have no attested medical proof.

Out univariate analysis shows that the no attested are the top 3 reason of absence given by the employee on a new day.

3.2. Bivariate Analysis with Absenteeism time

Grouping based on total absenteeism time in hours for all the years

Quick Insight:

Based on Season Plot: We can see that season 3 has the max absentees hours and season 2 lowest but the difference is not much.

Based on Day Plot: Monday has the highest absentees' s hours followed by Tuesday and Wednesday. Thursday and Friday being the lowest. The difference here is quite a lot. **Monday has 1390 hours** whereas Thursday and Friday has 550 and 700. Looks like people don't want to go to work on time after a good weekend.

Based on Month of Absence: March and August sees the highest absentee's hours.

Based on ID: There are 11 employees with more than 200 hours of absence in 3 years. The highest seems to be above 400 by employee with ID 3.

3.3. Grouping the variables based on total absenteeism time

```
Disciplinary.failure Absenteeism.time.in.hours
                                      3198.25398
                    0
                    1
                                        22.91581
aggre.absent.son
Son Absenteeism.time.in.hours
                     1202.3555
  1
                      875.3949
                      839.9455
                       87.5853
                      215.8886
aggre.absent.drinker
Social.drinker Absenteeism.time.in.hours
                                  1312.857
                                  1908.313
aggre.absent.smoker
Social.smoker Absenteeism.time.in.hours
                                 2943.729
                                  277.441
             1
```

Count of Reason of absence based on day of week

Observation: There doesn't seem to be a specific pattern based on the reason and day of week. Monday and Tuesday seems to be favorite days for the employee to come late/ miss office hours

3.4. Inference

3.4.1. Current Trend of Absentee's:

- The maximum people taking the absent hours are from category 23 followed by 28 and 27. These category are not attested by doctors.
 - 23: Medical Consultation. 28: Dental consultation 27: Physiotherapy
- These reasons seems to be absurd as these are consultation which people might give as an excuse as they don't have a medical certificate to show.
- Monday, Tuesday and Wednesday have the highest absentees' hours (In Descending Order), which seems obvious after weekend.
- The employee who doesn't have any kids seems to be highest in term of total absentee's hours.
- When there is a disciplinary action, the absentees hours are very low almost negligible. Looks like people become serious once they have been warned for disciplinary issues.

3.4.2.Measures that company can implement:

- As the majority of the reason are *consultation*, company can organize a free health checkup once in 6 months to keep the track of the medical history of employee. This will also keep a good company environment for the employees and an added perk which can help the company loses in the important business hours.
- As people take disciplinary actions seriously, they can implement a rule where a person being absent for more than 15 hours quarterly will be given a warning. After three warnings employer has the right to fire that employee based on professional ethics.
- As Monday have the highest hours, may be company can extend the service hours for Friday and Thursday and decrease a bit on Monday by opening the office 1 or 2 hours later than usual.
- Company can also introduce a policy where in the Top 5 disciplined employees, holding the least
 Absentee's hours will be rewarded. This Reward can be in form of some Reward points that they
 can redeem later or some gift voucher. This action will encourage employees to strive for
 excellence in Discipline.

4. Model Generation

We have grouped the total absentee's hours based on month of the year, as we need to forecast the total absentee's hours for 2011.

The line chart shows the total absentee's hours per month from July 2007 to July 2010.

We will build three models for forecasting and will pick the model with better AIC score. We have converted the grouped data based on month of the year into a time series data. We will train the model using this data.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
2007							91.60233	107.37544	62.04002	75.14784	81.35927	65.14982
2008	60.00000	87.00000	193.65489	83.66371	62.17858	99.46827	113.00000	66.20641	82.20104	122.10755	96.66075	69.00000
2009	43.61238	86.34231	129.38262	57.88039	75.00000	63.00223	96.55055	76.00000	41.00000	99.00000	87.56481	59.90210
2010	71.00000	101.00000	135.14268	95.51763	131.27025	78.98077	75.20516					

4.1. Trend and Seasonality

Rolling Mean

As we can see in the below plot that our means remains constant with not much variation, there seems to be no trend in the data.

4.1.1. Decomposition

The below plot shows that there is no trend and seasonality also doesn't seems to be there. We will confirm the seasonality in our statistical test

Multiplicative model

Additive Model

As we can see in rolling mean plot, the mean seems to be constant with time which means there is not much trend in the data i.e. time series seems to be stationary.

In the decomposition plot we can see the trend and seasonality, trend doesn't seem to be there. The seasonal plot show 3 high peaks in the model. We will confirm about seasonality in are stationarity test.

4.2. Stationarity

We will perform Dicker Full Test to check the stationarity in the dataset. This is one of the statistical tests for checking stationarity. Here the null hypothesis is that the TS is non-stationary. The test results comprise of a Test Statistic and some Critical Values for difference confidence levels. If the 'Test Statistic' is less than the 'Critical Value', we can reject the null hypothesis and say that the series is stationary

As our p-value is less than 0.05 we can reject our null hypothesis and accept the alternate which says the time series is stationary i.e there is not much trend and seasonality in the data set.

4.3. Linear Regression with Trend/TSLM

NOTE: Model building and forecasting in all the model is done using complete data. Accuracy has been measured by dividing into train and test

To forecast using linear regression, I've used different linear regression models in R and Python.

Python: I've used simple linear regression with trend to forecast the values:

Approach:

- Converted the months into a sequence of number till 37(As we have 37 months data to forecast.
- Calculated the trend series where the value at the current time step is calculated as the difference between the original observation and the observation at the previous time step.
- Forecasting the trend value till 2011
- Then I've build the model using trend and month as predictor and absentees hours as target.
- Forecasted the absentees hours values using the forecasted trend and month variables for the year 2011

R: I've used time series linear regression with trend to build a model.

Below is the summary using tslm in R.

```
Call:
tslm(formula = ts_complete_data ~ trend + season)
Residuals:
  Min
         10 Median
                       3Q Max
-28.544 -14.592 -0.774 10.793 43.027
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 60.1675 13.8987 4.329 0.000229 ***
trend
         -0.1033 0.3414 -0.303 0.764771
season2
          33.3466 17.3866 1.918 0.067091 .
          94.7293 17.3967 5.445 1.35e-05 ***
season3
          21.1265 17.4134 1.213 0.236848
season4
season5
          31.6922 17.4368 1.818 0.081641 .
          22.7963 17.4669 1.305 0.204228
season6
          35.8854 16.2605 2.207 0.037132 *
season7
          24.4732 17.4669 1.401 0.173977
season8
          3.1296 17.4368 0.179 0.859068
season9
season10 40.2377 17.4134 2.311 0.029754 *
season11
          30.1175 17.3967 1.731 0.096250.
season12 6.3765 17.3866 0.367 0.717020
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 21.29 on 24 degrees of freedom
Multiple R-squared: 0.6472, Adjusted R-squared: 0.4708
F-statistic: 3.669 on 12 and 24 DF, p-value: 0.003253
```

The estimated trend value is in negative, which means there is no trend. We have observed that in our stationarity test as well. As you can see the adjusted r-square value, we can explain 47% data using time series linear regression.

In python score comes around 54, as we have forecasted trend and then forecasted the absentee hours.

The Akaike Information Criteria (AIC) is 343.2952. We will use this information to compare the robustne ss of the models.

Python:

Summary:

Estimated intercept coefficient 87.9454542938 Number of coefficients 2

Coefficients Values

Month Trend [0.01493117 0.49195177]

AIC of Model: 265.86

4.3.1 Forecasting in R using TSLM

Below is the forecast line plot for 2011. Forecasting in all the model is done by training the model on the **complete time series data**.

Forecasted values

		Point Forecast	Lo 80	ні 80	Lo 95	ні 95
Aug	2010	80.71395	46.56432	114.86357	27.231295	134.1966
Sep	2010	59.26701	25.11739	93.41663	5.784360	112.7497
Oct	2010	96.27179	62.12217	130.42141	42.789140	149.7544
Nov	2010	86.04827	51.89865	120.19789	32.565620	139.5309
Dec	2010	62.20397	28.05434	96.35359	8.721315	115.6866
Jan	2011	55.72412	21.57450	89.87374	2.241468	109.2068
Feb	2011	88.96743	54.81780	123.11705	35.484778	142.4501
	2011	150.24673	116.09710	184.39635	96.764075	203.7294
Apr	2011	76.54057		110.69020	23.057921	130.0232
May	2011	87.00294		121.15256	33.520285	140.4856
Jun	2011	78.00375	43.85412	112.15337	24.521096	131.4864
Jul	2011	90.98950	56.83988	125.13912	37.506850	144.4722
Aug	2011	79.47394	43.25280	115.69509	22.747024	136.2009
Sep	2011	58.02701	21.80586	94.24815	1.300090	114.7539
Oct	2011	95.03179	58.81064	131.25293	38.304869	151.7587
Nov	2011	84.80827	48.58712	121.02941	28.081350	141.5352
Dec	2011	60.96396	24.74282	97.18511	4.237045	117.6909
Jan	2012	54.48412	18.26297	90.70526	-2.242802	111.2110

4.3.2. Forecasting in Python using Linear Regression with manually forecasted Trend

Forecasted Values:

Jan 2011	87.68970383
Feb 2011	87.67519849
March 2011	87.66069316
April 2011	85.88377786
May 2011	85.82916699
June 2011	85.77455612
July 2011	85.71994525
August 2011	85.66533438
September 2011	85.61072352
October 2011	85.55611265
November 2011	85.50150178
December 2011	85.44689091

4.3.3. Residuals

We will test the residual as it's an important measure for the performance of the measure. There should be no pattern in the residuals. As we can see no lag is above the threshold level and the residual seems to be unrelated to each other which is what we wanted.

4.4. Auto Regressive Integrated Moving Average (ARIMA)

ARIMA model there are 3 parameters that are used to help model the major aspects of a times series: seasonality, trend, and noise. These parameters are labeled \mathbf{p} , \mathbf{d} , and \mathbf{q} .

AR: Autoregressive part: Summation of lags, p

I: Integration, degree of differencing: d

MA: Moving Average: Summation of forecasting errors, q

4.4.1. ACF And PACF Plot

ACF plot tells about q: Moving average part PACF plot tells about p; auto regression part

The ACF Plot shows two significant lags and PACF Plot show only one significant lag. We can start with ARIMA (1, 0, 1) to start with and then change the parameters and select the one with least AIC score.

We are using auto.arima which will automatically take the best model by comparing the different AIC values at different level of p, d and q.

```
Summary:
ARIMA(2,0,2)(1,1,1)[12] with drift
                                        : Inf
ARIMA(0,0,0)(0,1,0)[12] with drift
                                        : 243.3661
ARIMA(1,0,0)(1,1,0)[12] with drift
                                        : 245.8594
ARIMA(0,0,1)(0,1,1)[12] with drift
                                        : 243.8133
ARIMA(0,0,0)(0,1,0)[12]
                                     : 241.0087
ARIMA(0,0,0)(1,1,0)[12] with drift
                                        : 243.6941
ARIMA(0,0,0)(0,1,1)[12] with drift
                                        : 243.4169
ARIMA(0,0,0)(1,1,1)[12] with drift
                                        : Inf
ARIMA(1,0,0)(0,1,0)[12] with drift
                                        : 244.2708
ARIMA(0,0,1)(0,1,0)[12] with drift
                                        : 243.3077
ARIMA(1,0,1)(0,1,0)[12] with drift
                                        : 243,4347
Best model: ARIMA(0,0,0)(0,1,0)
Series: ts_complete_data
ARIMA(0,0,0)(0,1,0)[12]
sigma<sup>2</sup> estimated as 825.1: log likelihood=-119.42
AIC=240.83 AICc=241.01 BIC=242.05
```

ARIMA (0,0,0)(0,1,0))[12], it's a special case and is known as Seasonal Random Walk. (0,0,0) is the non-seasonal part of the model and (0,1,0) is the seasonal part of the model. (0,1,0) show a seasonal difference.

A seasonal random walk model is a special case of an ARIMA model in which there is *one* order of seasonal differencing, a *constant* term, and *no* other parameters--i.e., an "ARIMA(0,0,0)x(0,1,0) model with constant.

As we have a monthly data, whose seasonal period is 12, the seasonal difference at period t is Y_tY_{t-12} . Applying the mean model to this series yields the equation:

$$\hat{\mathbf{Y}}_{t} - \mathbf{Y}_{t-12} = \mathbf{\mu}$$

This forecasting model will be called the *seasonal random walk* model, because it assumes that each season's values form an independent random walk. For example, the model assumes that September's value this year is a random step away from September's value last year, October's value this year is a random step away from October's value last year, etc., and the mean value of every step is equal to μ :

$$\begin{split} \hat{Y}_{Sep2010} &= YSep2009 + \mu \\ \hat{Y}_{Oct2010} &= YOct2009 + \mu \end{split}$$

The AIC of ARIMA model is better than the Time series model.

4.4.2. Forecasting

Forecasted values

		Point Forecast	Lo 80	ні 80	Lo 95	Hi 95
Aug	2010	76.00000	39.187742	112.81226	19.700509	132.29949
Sep	2010	41.00000	4.187742	77.81226	-15.299491	97.29949
Oct	2010	99.00000	62.187742	135.81226	42.700509	155.29949
Nov	2010	87.56481	50.752550	124.37707	31.265317	143.86430
Dec	2010	59.90210	23.089839	96.71436	3.602606	116.20159
Jan	2011	71.00000	34.187742	107.81226	14.700509	127.29949
Feb	2011	101.00000	64.187742	137.81226	44.700509	157.29949
Mar	2011	135.14268	98.330421	171.95494	78.843188	191.44217
Apr	2011	95.51763	58.705374	132.32989	39.218141	151.81712
May	2011	131.27025	94.457992	168.08251	74.970760	187.56974
Jun	2011	78.98077	42.168509	115.79303	22.681276	135.28026
Jul	2011	75.20516	38.392900	112.01742	18.905668	131.50465
Aug	2011	76.00000	23.939605	128.06039	-3.619503	155.61950
Sep	2011	41.00000	-11.060395	93.06039	-38.619503	120.61950
Oct	2011	99.00000	46.939605	151.06039	19.380497	178.61950
Nov	2011	87.56481	35.504413	139.62520	7.945305	167.18431
Dec	2011	59.90210	7.841702	111.96249	-19.717406	139.52160
Jan	2012	71.00000	18.939605	123.06039	-8.619503	150.61950

4.4.3. Residuals Check

There is no significant lag and the residuals seems to be normally distributed, there is no pattern in the residuals which we wanted.

4.5. ETS (Exponential Smoothing)

As we saw a seasonal parameter 'D' in arima model, let's forecast using ETS model as well as it works best with seasonal parameter even though there is no seasonality in the data. Let's check what ETS gives.

This model describes the time series with three parameters.

```
ETS(A,N,N)

Call:
    ets(y = train)

Smoothing parameters:
        alpha = 1e-04

Initial states:
        l = 84.4455

sigma: 30.2586

AIC AICC BIC
310.5530 311.4761 314.7566
```

ETS gives (A, N, N) model which means there is no trend and no seasonality in the data. A means we have an additive error.

4.5.1. Forecasting

^{*}Error - additive, multiplicative(x>0)

^{*}Trend - non present, additive, multiplicative.

^{*}Seasonality - non present, additive, multiplicative.

Points Forecasted

		Point	Forecast	Lo 80	ні 80	Lo 95	ні 95
Aug	2010		87.05682	49.01538	125.0983	28.87745	145.2362
Sep	2010		87.05682	49.01538	125.0983	28.87745	145.2362
Oct	2010		87.05682	49.01538	125.0983	28.87745	145.2362
Nov	2010		87.05682	49.01538	125.0983	28.87745	145.2362
Dec	2010		87.05682	49.01538	125.0983	28.87745	145.2362
Jan	2011		87.05682	49.01538	125.0983	28.87745	145.2362
Feb	2011		87.05682	49.01538	125.0983	28.87745	145.2362
	2011				125.0983		
	2011		87.05682				
May	2011		87.05682	49.01537	125.0983	28.87745	145.2362
Jun	2011		87.05682				
	2011		87.05682	49.01537	125.0983	28.87745	145.2362
	2011				125.0983		
Sep	2011		87.05682	49.01537	125.0983	28.87745	145.2362
oct	2011		87.05682	49.01537	125.0983	28.87745	145.2362
	2011				125.0983		
	2011				125.0983		
Jan	2012		87.05682	49.01537	125.0983	28.87745	145.2362

4.5.2. Residuals

There is one significant lag in the ACF which makes the model weak as compared to the other once we have used.

5. Accuracy of three models

We divided the time series on train and test 80:20, keeping recent month's i.e. from Jan 2010 to July 2010 into test and training the model on the previous data. We are using RMSE and MAPE to determine the model performance.

```
> accuracy(forecast_tslm, test)
                                                    MPE
                                                            MAPE
                                                                                  ACF1 Theil's U
                        ME
                               RMSE
                                         MAE
                                                                      MASE
Training set -9.475855e-16 14.20167 11.53323 -2.571463 13.85181 0.5014775 0.06472768
              1.881355e+01 33.98896 27.67494 18.475412 27.29737 1.2033371 -0.02280608
Test set
                                                                                         1.07769
> #Accuracy
> accuracy(arimafore, test)
                    ME
                           RMSE
                                     MAE
                                              MPE
                                                       MAPE
                                                                 MASE
                                                                           ACF1 Theil's U
Training set -5.077805 21.86004 13.83472 -9.48517 18.45262 0.6015489 0.1025744
             19.478002 29.98083 25.57669 18.78091 26.89030 1.1121026 0.1268127 0.9062453
Test set
> #Accuracy
> accuracy(ets_forecast, test)
                                                   MPE
                                                                                 ACF1 Theil's U
                      ME
                             RMSE
                                       MAE
                                                           MAPE
                                                                     MASE
Training set -0.01455468 29.23262 20.80664 -10.545035 26.54799 0.9046957 -0.01526695
             13.85686556 27.91680 21.89988
                                            9.003352 19.90141 0.9522309 -0.08741275 0.9146704
Test set
```

Linear Regression with trends in python with the manual approach of predicting the trend and forecasting has RMSE 18.5194 and MAPE 19.2891 with AIC value 265.0752

It is not correct to select the random data for checking the accuracy in time series model. There was a drastic increase in absentee's hours in the month of May and a bit in March and April which we have taken into test set. We trained the data which have not seen this pattern and was unable to predict such as high increase which resulted in less RMSE and MAPE value then the Linear Regression with trend using python.

Seeing the patterns and doing some exhaustive testing on data, ARIMA models looks good with the best AIC score among else. Results of exhaustive testing using different set of train and test with the three model are placed in the Results folder.

The best approach if we want to give estimates to the client will be to train the data on the complete set and then predict for next month as there is no seasonality and trend in employees absentees behaviors.

6. References

- Forecasting principles and practices by Rob J Hyndman
 Blog article by Ando Sabaas on feature selection