

<u>Help</u>

HuitianDiao 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

★ Course / Unit 4 Hypot... / Lecture 16: Goodness of Fit Tests Continued: Kolmogorov-Smirnov t...

()

8. Kolmogorov-Smirnov Test Statistic Pivotal Under Null

□ Bookmark this page

Non-asymptotic Distribution, Generating Data from a Given Distribution

Start of transcript. Skip to the end.

So It turns out that this result is also true.
So what did we want?
Why did we use the Donsker's theorem?
Because Donsker's theorem tells us
that no matter what the true f is,
asymptotically,
or even what f0 is, asymptotically,
square root of n, fn minus f not, if f not
equal to f,

▶ 1.50x

will converge to compthing which is

Video

Download video file

0:00 / 0:00

Transcripts

X

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

CC

66

CDF as a Random Function

3 points possible (graded)

Let X be a random varible with invertible cdf F_X . Define another random variable $Y=F_X\left(X\right)$. Find the cdf F_Y of Y .

For t < 0:

$$F_{Y}\left(t
ight) =% {\displaystyle\int\limits_{t=0}^{\infty }} {\displaystyle$$

For $t \geq 1$:

$$F_{Y}\left(t
ight) =% {\displaystyle\int\limits_{t=0}^{\infty }} {\displaystyle$$

For $0 \leq t < 1$:

$$F_{Y}\left(t
ight) =% {\displaystyle\int\limits_{t=0}^{\infty }} {\displaystyle$$

(What is the distribution of Y?)

STANDARD NOTATION

Submit

You have used 0 of 3 attempts

omogorov-3mmov rest statistic as a Pivotai Distribution onder Num hypothesis

Let X_1,\ldots,X_n be iid samples with unknown cdf F_X . For simplicity, restrict to the cases when F_X is invertible.

Recall the goal of the Kolmogorov-Smirnov Test goodness of fit test is to decide between the hypotheses

$$H_0$$
 : $F_X = F^0$

$$H_1 : F_X \neq F^0.$$

Recall also the Kolmogorov-Smirnov test statistic:

$$T_{n} \ = \ \sqrt{n} \sup_{t \in \mathbb{R}} \left| F_{n} \left(t
ight) - F^{0} \left(t
ight)
ight|$$

Assuming H_0 is true, then T_n becomes

$$T_{n} \, = \, \sqrt{n} \sup_{t \in \mathbb{R}} \left| F_{n} \left(t
ight) - F_{X} \left(t
ight)
ight|$$

We will see that under the null hypothesis, the distribution of T_n does not depend on the distribution of the data X_i , i.e. T_n is pivotal, and this is true for any n, not only for large n.

The trick is to make a change of variables. Let $ilde{t}=F_{X}\left(t
ight)$, then $\,t=F_{X}^{-1}\left(ilde{t}\,
ight)$. We have

$$egin{aligned} T_n &=& \sqrt{n} \sup_{t \in \mathbb{R}} \left| F_n\left(t
ight) - F_X\left(t
ight)
ight| \ &=& \sqrt{n} \sup_{t \in \mathbb{R}} \left| \left(rac{1}{n} \sum_{i=1}^n \mathbf{1}\left(X_i \le t
ight)
ight) - F_X\left(t
ight)
ight| \qquad ext{(definition of empirical cdf)} \ &=& \sqrt{n} \sup_{t \in \mathbb{R}} \left| \left(rac{1}{n} \sum_{i=1}^n \mathbf{1}\left(F_X\left(X_i
ight) \le F_X\left(t
ight)
ight)
ight) - F_X\left(t
ight)
ight| \qquad ext{(apply F_X to both sides of inequality)} \ &=& \sqrt{n} \sup_{ ilde{t} \in (0,1)} \left| \left(rac{1}{n} \sum_{i=1}^n \mathbf{1}\left(Y_i \le ilde{t}
ight)
ight) - ilde{t}
ight| \qquad ext{where $Y_i \sim \mathsf{Unif}\left(0,1
ight)$.} \end{aligned}$$

Discussion

Hide Discussion

Topic: Unit 4 Hypothesis testing:Lecture 16: Goodness of Fit Tests Continued: Kolmogorov-Smirnov test, Kolmogorov-Lilliefors test, Quantile-Quantile Plots / 8. Kolmogorov-Smirnov Test Statistic Pivotal Under Null

Add a Post

Show all posts 💙	by recent activity 🗸
Any hint for the excersice?	4

Previous

Next >

EUV

About

<u>Affiliates</u>

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>