AGENDA

- 1. recap reviews and consider ways forward
- 2. select a journal
- 3. suggest reviewers

RECAP

- **Paper II:** median flood estimation. Predicts **η** (median flood, also GEV location parameter). Compares GAM to existing models.
- Paper III: regional frequency estimation (get values for all return periods, not just the 2-year return period).

Uses the model from paper II to predict η and predicts in addition β , ξ using independent regression models.

Compared two different model architectures («PRT» and «QRT»). Did not compare to existing models.

WAYS FORWARD (?)

Reviewer themes:

- (i) confusion about «durations»
- (ii) hesitation towards predictor selection method

Also: wanted more return periods than just 2 year (median), didn't like use of mean annual streamflow (from a hydrologic model) as a predictor in a statistical model

Today:

- (a) discuss combining papers II & III
- (b) discuss testing / framing? performance on small catchments in addition to multiple durations

*testing for NEVINA

PAPER II

- INTRODUCTION
- DATA
 - Data quality control
 - Catchment descriptors
- STUDY DESIGN
- METHODS
 - ldentification of promising predictors using a machine learning-based algorithm
 - Predictor selection for floodGAM
 - Generalized Additive Models
 - o Benchmark models
 - RFFA_2018
 - XGBoost
 - Evaluation methods
 - Error metrics
 - Permutation test
 - Probability integral transform
- RESULTS
 - o Predictive performance
 - Model reliability
 - Explaining the model
- DISCUSSION
 - Hydrologic interpretation of predictor-response relationships in floodGAM
 - o Duration-specific differences in median flood estimation
 - Predictor selection
- CONCLUSIONS
- Computation of minimizing quantity for relative error and absolute percent error
- Hyperparameter tuning for XGBoost models within the IIS algorithm
- Details of the machine learning based pre-selection step
 - Full grid output
- Supplementary figures for model evaluation metrics
- Regional assessment
- Seasonal variations in hydro-climatic predictors

PAPER III

- INTRODUCTION
- DATA
 - Streamflow data
 - Catchment descriptors
- METHODS
 - At-site flood frequency analysis
 - Generalized additive models for the quantile and parameter regression techniques
 - Post-processing for quantile consistency
 - Model evaluation
- RESULTS
 - Internal model consistency
 - Predictive accuracy
 - Duration consistency
- DISCUSSION
 - Return level plots for the QRT-specific duration inconsistencies
 - Catchment descriptors for duration-inconsistent stations
 - o Smooth components for GAMs in the PRT and the QRT
- CONCLUSIONS

PRT vs QRT (robustness to transformation)

J	Pred	ictor	se	lect	ion

		Mode	el arc	hite	cture
--	--	------	--------	------	-------

Checking internal model consistency

■ Benchmark models

☐ Evaluation @ rp where we have data

Evaluation @ rp where we do not have data

Explaining the model

Regional flood frequency analysis with generalized additive models: approaches for short(?) (/or mulitple) durations and small (/varying) catchment sizes

Questions

- Are we cutting out too much of our earlier analysis if we combine like this? what options do we have for presenting some of the earlier work in, for example, a small internal publication?
- What journal?
- Which reviewers?

beta χį eta -1.00 -1.25 -1.50 -1.75 0.10 0.05 0.00 -0.05 0 -1.00 2000 3000 4000 -1.50 1000 -1.75 -1.25