

ヒューマンインタフェース

西崎友規子 yukikon@kit.ac.jp

レポートについて

【受理/差し戻し】を確認し、「差し戻し」の人は速やかに 再提出すること。

3つのレポート全ての最終〆切は 【11/5(火)12:45】

やむを得ない事情がある人は、 速やかに相談にくる or メール連絡すること!!

本実習の目的

より良いインタフェースを実現するための設計手順を 学ぶこと。

目的1

人間の認知特性の特徴を明らかにするための実験を体験し,認知特性の測定方法や分析方法の一端を学ぶ。

<u>目的2</u>

インタフェースの開発手順を学ぶ。

本実習の目的

より良いインタフェースを実現するための設計手順を 学ぶこと。

目的1

人間の認知特性の特徴を明らかにするための実験を体験し,認知特性の測定方法や分析方法の一端を学ぶ。

目的2

インタフェースの開発手順を学ぶ。

5週間の予定

目的1:人間の認知特性の測定方法や分析方法の一端を学ぶ

第1週(12/11):認知課題実験(1),統計分析

第2週(12/18):認知課題実験(2),統計分析

目的2:インタフェースの開発手順を学ぶ

第3週(1/15):インタフェースの分析的評価,

要求獲得,設計

第4週(1/22): インタフェースの実装

第5週(1/29):インタフェース実験,統計分析

自前Windows PC, 実習室PCともに, 以下のアプリケーションがインストールされているか確認

- Visual Studio 2022
- ・R,Rコマンダー

R, Rコマンダー, エクセル(表計算)は, 自前PCで操作することを推奨(実験結果は自分のPCでまとめた方がレポートにする時に便利なため)

・ エクセルなどの表計算ソフト

実習室PCのアカウント: hi (パスワード hi8312)

スパイラルモデル

スパイラルモデル

本日の予定

~14:40 〈実験〉

実験的手法による評価

14:40~16:20 〈講義と実習〉

一要因分散分析の復習 各自でRを使って統計分析

報告書はあとで配布

16:20~17:40 <報告書作成と発表>

各自で報告書をまとめる。

その後、結果について, 班内で発表し合う。

本日の予定

~14:40 〈実験〉

実験的手法による評価

14:40~16:20 <講義と実習>

一要因分散分析の復習 各自でRを使って統計分析

16:20~17:40 〈発表〉

各自の結果について, 班で発表し合う

インタフェースのユーザ評価

- より良いインタフェースを目指すため
- →設計の早い段階からユーザ評価を行い, <u>問題点を抽</u>出してその解決を心がけることが大事

- 【1】分析的評価 ヒューリスティック評価を実施
- 【2】実験的評価 パフォーマンス評価(客観的評価,主観的評価)

実験的評価に必要なもの

- 【1】客観的評価に使用するタスク
- 【2】主観的評価に使用する質問紙(アンケート)
- 【3】実施順(カウンターバランスを考慮)
- 【4】自分が再設計したインタフェース(ATM_X)
- 【5】比較するインタフェース(ATM_F) →moodleからexeファイルをダウンロード
- **→**3つの銀行ATMインタフェースを比較 自分が再設計したX, プロトタイプA, & F

実験的評価

全員が以下のインタフェース操作実験(パフォーマンス評価&主観評価)を実施

- ①ATM_X 班員が再設計したインタフェース12-15種類(自分のもの は除く)
- ②ATM_F ←各自で実施し,データを相互に共有
- ③ATM_A ←既に3週目に実施済なので, そのログを確認。 評価内容によって再度ログ取得する必要があれば実施。

実験的評価の流れ

- (1) ATM_Xを操作できる状態にして, PC画面を開いておく。 その際, 暗証番号, 口座番号は, 付箋に書いて操作するPC に貼る。
- (2) 自班でカウンターバランスして全てのATM_Xの操作実験を実施。<u>+ 主観評価も実施</u>
- (3) 隣の班のATM_Xについて, カウンターバランスして操作実験を実施。<u>+主観評価も実施</u>
- (4) ATM_Fを各自で実施。<u>+ 主観評価も実施</u>
- (5) ATM_Aのログを含む全てのデータを,2班で共有する。
- +主観評価も実施

実験的評価のデータ

■客観評価(ログを使用するパフォーマンス評価)

- 各評価項目について、<mark>2 班分</mark>のデータを収集する。
- 3つのATM (X, A, F) のうちどのATMが優れているか、 1要因分散分析と多重比較によって明らかにする。

■主観評価(アンケート)

- 各評価項目について、<mark>1班分</mark>のデータを収集する。
- 3つのATM(X, A, F) それぞれについて、1班分のデータの平均値と標準偏差を算出し、差異の傾向を考察する。
- *データ数が少ないので統計的検定は行わない

本日の予定

~14:40 〈実験〉

実験的手法による評価

14:40~16:20 <講義と実習>

一要因分散分析の復習 各自でRを使って統計分析

16:20~17:40 <報告書作成と発表>

各自で報告書をまとめる。

その後、結果について, 班内で発表し合う。

統計的分析(統計的仮説検定)

母集団(全ユーザ)から標本(選ばれた被験者)を抽出し, その結果を元に母集団の傾向を確率的に推測する手法

- 1. 仮説を設定(帰無仮説)
- 2. 標本統計量を選択
- 3. 判断基準の確立を設定
- 4. 実現値を求める
- 5. 仮説の成否を判断

統計的分析(統計的仮説検定)

被験者#		課題 1	課題 2
	1	109.88	87.66
	2	124.53	122.43
	3	78.96	102.11
	4	132.66	145.76
	5	452.89	99.09
	6	97.34	131.72
平均		166.04	114.80

被験者#	インタフェースA	インタフェースA'	インタフェースB	インタフェースC
1	0.56390	0.72922	0.67895	0.98765
2 0.47409		0.42243	0.45700	0.59455
3	0.36140	0.25796	0.42557	0.78608
4	0.62905	0.48879	0.56671	0.74030
5	0.45788	0.36140	0.42956	0.92211
6	0.48293	0.22359	0.61915	0.82315
7	0.32222	0.36140	0.57897	0.77652
平均	0.47021	0.40640	0.53656	0.80434

2つの標本の差を比較 **t検定** 3つの標本以上の差を比較 分散分析

一元配置(要因が1つ)

分散分析(ANOVA)

3標本以上の平均値の差を比較する検定

- ・データの分散をもとに行う分析方法
- ・標本ごとのばらつきをもとに、F分布を用いて検定
- ・帰無仮説は「N標本間の平均値に差がない」と設定
- ・どの標本とどの標本に差があるかは、分散分析だけではわからず、分散分析の後に<u>多重比較(post hoc test)</u>を行なって明らかにする

A-X F-X

A-F

Rによる分析

Rコマンダーを開く >library(Rcmdr)

Excelデータを読み込む

統計量→平均→一元配置分散分析を選択

多重比較のために, 2組ずつの平均の比較(多 重比較)

Rによる分析(一元配置分散分析)

一元配置分散分析のためのデータの並べ方

- ・要因は1つであるため,1つの要因は一列に並べる
- ・わかりやすいラベル(ATMA, ATMF, ATMXなど)をつけて一列に並べたデータと対応させる

,		
,	ATM type	RT_1
	A	0.56390
	A	0.47409
	A	0.36140
	A	0.62905
	A	0.45788
	A	0.48293
	Α'	0.72922
	Α'	0.42243
	Α'	0.25796
	Α'	0.48879
	Α'	0.36140
	Α'	0.22359
	В	0.67895
	В	0.45700
	В	0.42557
	В	0.56671
	В	0.42956
	В	0.61915
	С	0.98765
	С	0.59455
	С	0.78608
	С	0.74030
	С	0.92211
	C	0.82315

Rによる分析(一元配置分散分析)

有意水準5%で,インタフェースの効果は有意 F(2,21)=16.19, p<.001)

Rによる分析(多重比較 Tukey法)

```
Simultaneous Confidence Intervals
   Multiple Comparisons of Means: Tukey Contrasts
   Fit: aov(formula = RT_1 ~ ATM.type, data = Dataset)
   Quantile = 2.5213
   95% family-wise confidence level
2条件の差
                           95% 信頼区間
   Linear Hypotheses:
             Estimate lwr
                                        多重比較の結果
   C - A == 0 124.5025
                      68, 4122 180, 5928
                                         ( 各条件の組み合わせ結果)
              42, 4075 -13, 6829
                              95% 信頼区間(lwrとuprの間) にゼロが含
                              まれなければ、5%水準で差があるといえる
```

95% family-wise confidence level

B-A, C-A 間は有意差があるが, C-B間には有意な差があるとは いえない 23

本日の予定

~14:40 〈実験〉

実験的手法による評価

14:40~16:20 <講義と実習>

一要因分散分析の復習 各自でRを使って統計分析

報告書は最後に提出

16:20~17:40 <報告書作成と発表>

各自で報告書をまとめる。

その後、結果について, 班内で発表し合う。

実験結果の報告書作成(各自での作業)

報告書内の____箇所を埋める形で完成させること。

- ◆客観評価(パフォーマンス評価) 全ての項目について,項目内容と統計分析の結果を記入すること。
- ◆主観評価

全質問項目の中から,3種類のインタフェース間で平均値や標準偏差を比較し,特に気になる項目を3-4項目選び,平均値と標準偏差を報告すること。

◆考察

結果で得られた数値から,何がわかるのか,どのような可能性が考えられるのか,なぜそのような結果となったのか等を解釈して,記述すること。

実験結果の報告(班の中で共有)

結果と考察について、班内で、1人ずつ、報告する。

- ・結果は,詳細な値を全て報告する必要はなく,特に,意味のある結果が得られた項目を中心に説明する。
- ・考察は,結果に関する説明と解釈を述べる。 中でも特に,自分が作成したATM_Xが,どの点で優れていた (劣っていた)のか,それは意図通りであったのか,もし違って いた場合は,どの段階で誤ってしまったのか等について,考えを 述べる。

再掲

レポートについて

【受理/差し戻し】を確認し、「差し戻し」の人は速やかに 再提出すること。

3つのレポート全ての最終〆切は 【11/5(火)12:45】

やむを得ない事情がある人は、 速やかに相談にくる or メール連絡すること!!