Elementy kryptografii

Materiały pomocnicze do wykładu

Elementy kryptografii

BSI - kryptografia Zbigniew Suski

Kryptologia

jawny) jest przekształcana w inną wiadomość (kryptogram – tekst zaszyfrowany) za pomocą funkcji matematycznej oraz hasła szyfrowania (klucza)

Szyfrowanie - proces, w którym wiadomość (tekst

Deszyfrowanie - proces, w którym kryptogram jest przekształcany z powrotem na oryginalny tekst jawny za pomocą pewnej funkcji matematycznej i klucza.

Klucz kryptograficzny - ciąg symboli, od którego w sposób istotny zależy wynik przekształcenia kryptograficznego

BSI - kryptografia Zbigniew Suski

Zbigniew Suski

Podstawowe procesy

BSI - kryptografia

Zastosowanie kryptografii

- ochrona przed nieautoryzowanym ujawnieniem informacji przechowywanej na komputerze,
- ochrona informacji przesyłanej między komputerami,
- potwierdzanie tożsamości użytkownika,
- potwierdzanie tożsamości programu żądającego obsługi.
- uniemożliwianie nieautoryzowanej modyfikacji danych.

Szyfrowanie jest tylko jednym z elementów strategii utrzymywania bezpieczeństwa

BSI - kryptografia Zbigniew Suski

Przestrzeń kluczy kryptograficznych

Długość klucza (w bitach)	llość kombinacj
40	$2^{40} \approx 1.1 * 10^{12}$
56	$2^{56}\approx 7.2*10^{16}$
64	$2^{64} \approx 1.8 * 10^{19}$
112	$2^{112} \approx 5.2 * 10^{33}$
128	$2^{128} \approx 3.4 * 10^{38}$

BSI - kryptografia Zbigniew Suski

Zdolność systemu kryptograficznego do ochrony danych przed atakami

Warunkuje ją:

- tajność klucza
- trudność odgadnięcia klucza
- trudność odwrócenia algorytmu szyfrowania bez znajomości klucza
- istnienie sposobów odszyfrowania danych bez znajomości klucza
- możliwość odszyfrowania kryptogramu na podstawie znajomości części tekstu jawnego

Zbigniew Suski

BSI - kryptografia

Szyfrowanie symetryczne

Algorytmy z kluczem prywatnym

Szyfr Cezara skipjack IDEA RC2 RC4 RC5 DES 3DES

Tryby pracy

- ECB (Electronic Code Book) elektroniczna książka kodów.
- CBC (Cipher Block Chaining) wiązanie bloków zaszyfrowanych.
- CFB (Cipher FeedBack) szyfrowanie ze sprzężeniem zwrotnym.
- OFB (Output FeedBack) szyfrowanie ze sprzężeniem zwrotnym wyjściowym.

Zbigniew Suski

BSI - kryptografia

Szyfrowanie asymetryczne

Algorytmy z kluczem publicznym

DSA EIGamal RSA

Algorytmy haszujace

MD2 MD4 MD5 SHA Snefru Haval

Zbigniew Suski BSI - kryptografia

Dystrybucja kluczy – protokół Cerbera

- 1. Abonent 1 wysyła żądanie do KDC.
- KDC generuje klucz sesyjny, szyfruje go kluczami abonentów. Szyfruje kluczem Abonenta 2 informacje dotyczące tożsamości Abonenta 1:

 $E_{A1,KDC}(K_{SES}, E_{A2,KDC}(K_{SES}, I_{A1}))$

i wysyła utworzony w ten sposób komunikat do Abonenta 1.

- 3. Abonent 1 deszyfruje: $D_{A1,KDC}(K_{SES}, E_{A2,KDC}(K_{SES}, I_{A1}))$
- Abonent 1 wysyła Abonentowi 2 jego kopię klucza oraz informację o swojej tożsamości: $\mathbf{E}_{A2,KDC}(\mathbf{K}_{SES}, \mathbf{I}_{A1})$)
- 5. Abonent 2 deszyfruje swoją kopię klucza i informacje o nadawcy: $\mathbf{D}_{\mathsf{A2,KDC}}(\mathbf{K_{SES}},\,\mathbf{I_{A1}})$
- Abonenci realizują wymianę wiadomości, gdyż każdy z nich dysponuje kluczem sesyjnym K_{SES}

Dystrybucja kluczy – protokół Shamira

Komutatywność szyfru symetrycznego: $E_A(E_B(P)) = E_B(E_A(P))$

Abonent 1 generuje klucz sesyjny do komunikacji z Abonentem 2. Szyfruje ten klucz swoim kluczem i przesyła do Abonenta 2 szyfrogram C1:

 $C_1 = E_{A1}(K_{SES})$

2. Abonent 2 szyfruje wiadomość swoim kluczem i wysyła szyfrogram C₂ do Abonenta

 $C_2 = E_{A2}(E_{A1}(K_{SES}))$

Abonent 1 deszyfruje szyfrogram C_2 za pomocą swojego klucza i przesyła szyfrogram C_3 Abonentowi 2:

 $C_3 = D_{A1}(E_{A2}(E_{A1}(K_{SES}))) = D_{A1}(E_{A1}(E_{A2}(K_{SES}))) = E_{A2}(K_{SES})$

Abonent 2 deszyfruje szyfrogram C₃ w celu otrzymania klucza sesyjnego

 $D_{A2}(E_{A2}(K_{SES}))$

5. Każdy z abonentów dysponuje kluczem sesyjnym K_{ses}

Zbigniew Suski

BSI - kryptografia

Zbianiew Suski

12

BSI - kryptografia

Dystrybucja kluczy - EKE (Encrypted Key Exchange) -1

Abonenci ustalają wspólne hasło P.

Abonent 1 generuje klucz jawny **K**' do komunikacji z Abonentem 2. Szyfruje ten klucz algorytmem symetrycznym wykorzystując klucz **P** i przesyła do Abonenta 2:

 $E_{P}(K')$

Abonent 2 deszyfruje wiadomość (zna hasło P), wytwarza klucz sesyjny, szyfruje go kluczem jawnym K' i kluczem tajnym P oraz wysyła szyfrogram do Abonenta 1:

 $D_P(K'); E_P(E_{K'}(K_{SES}))$

Abonent 1 deszyfruje wiadomość i uzyskuje klucz sesyjny. Wytwarza następnie ciąg losowy R_{A1} szyfruje go kluczem sesyjnym i przesyła szyfrogram Abonentowi 2:

 $D_P(D_{K'}(K_{SES})); E_{SES}(R_{A1})$

Dystrybucja kluczy - EKE (Encrypted Key Exchange) -2

Abonent 2 deszyfruje szyfrogram w celu otrzymania $R_{\rm A1}$. Wytwarza następnie ciąg $R_{\rm A2}$ szyfruje oba ciągi kluczem sesyjnym i przesyła Abonentowi 1:

 $D_{SES}(R_{A1});$ $E_{SES}(R_{A1},R_{A2})$

Abonent 1 deszyfruje szyfrogram w celu otrzymania R_{A1} i R_{A2} Porównuje wysłany i odebrany ciąg R_{A1} Jeżeli są zgodne, to szyfruje R_{A2} kluczem sesyjnym i przesyła Abonentowi 2:

 $D_{SES}(R_{A1},R_{A2});$ E_{SES} (R_{A2})

Abonent 2 deszyfruje szyfrogram w celu otrzymania R_{A2} Porównuje wysłany i odebrany ciąg R_{A2} Jeżeli są zgodne, to oznacza, że obie strony mogą komunikować się przy pomocy klucza sesyjnego.

Zbianiew Suski

BSI - kryptografia

14 Zbigniew Suski BSI - kryptografia

15

Dystrybucja kluczy - protokół PODSTAWOWY dla systemów asymetrycznych

1. Abonent 2 przesyła do Abonenta 1 swój klucz jawny:

2. Abonent 1 generuje losowy klucz sesyjny, szyfruje go używając klucza jawnego Abonenta 2 i przesyła do Abonenta 2:

E_{JA2} (K_{SES})

3. Abonent 2 deszyfruje wiadomość za pomocą swojego klucza tajnego (prywatnego) i uzyskuje klucz sesyjny.

D_{PA2} (K_{SES})

Dystrybucja kluczy – protokół blokujący

1. Abonent 1 przesyła swój klucz jawny Abonentowi 2:

2. Abonent 2 przesyła swój klucz jawny Abonentowi 1:

Abonent 1 generuje losowo klucz sesyjny, szyfruje go używając klucza jawnego Abonenta 2 i przesyła połowę zaszyfrowanej wiadomości do Abonenta 2:

1/2 E_{JA2} (K_{SES})

4. Abonent 2 szyfruje swoją wiadomość za pomocą klucza jawnego Abonenta 1 i też przesyła połowę wiadomości:

 $^{1}I_{2}$ $\mathbf{E}_{\mathsf{JA1}}$ ($\mathbf{K}_{\mathsf{SES}}$)

BSI - kryptografia

BSI - kryptografia

16 Zbigniew Suski Zbianiew Suski

Dystrybucja kluczy – protokół blokujący 2

 Abonent 1 przesyła drugą połowę zaszyfrowanej wiadomości do Abonenta 2:

 Abonent 2 składa razem dwie połowy wiadomości i deszyfruje je, używając swego klucza prywatnego. Przesyła też drugą połowę swojej wiadomości:

$$D_{PA2} ({}^{1}\!/_{2} E_{JA2} (K_{SES})) + {}^{1}\!/_{2} E_{JA2} (K_{SES})));$$
 ${}^{1}\!/_{2} E_{JA1} (K_{SES})$

 Abonent 1 składa razem dwie połowy wiadomości i deszyfruje je, używając swego klucza prywatnego:

$$D_{PA1} ({}^{1}/_{2} E_{JA1} (K_{SES})) + {}^{1}/_{2} E_{JA1} (K_{SES})));$$

8. Abonenci realizują wymianę wiadomości, gdyż każdy z nich dysponuje kluczem sesyjnym $\mathbf{K}_{\mathtt{SES}}$

BSI - kryptografia

18

Algorytm Diffie-Hellmana

- 1. Abonent 1 wybiera dużą liczbę \underline{x} i oblicza $\underline{X} = \underline{q}^x \mod \underline{n}$
- 2. Abonent 2 wybiera dużą liczbę \underline{y} i oblicza $\underline{Y} = \underline{g}^y \mod \underline{n}$
- 3. Abonent 1 wysyła liczbę X do Abonenta 2

(x jest utrzymywana w tajemnicy)

4. Abonent 2 wysyła liczbę Y do Abonenta 1

(y jest utrzymywana w tajemnicy)

- Abonent 1 oblicza: <u>k</u> = <u>Y</u>^x mod <u>n</u>
- 6. Abonent 2 oblicza: $\underline{\mathbf{k'}} = \underline{\mathbf{X}}^{\mathbf{y}} \mod \underline{\mathbf{n}}$

Czyli: $k = k' = g^{xy} \mod n$

to jednakowe klucze tajne (sesyjne)

obliczone przez abonentów niezależnie od siebie

Zbigniew Suski BSI - kryptografia 19

Infrastruktura klucza publicznego

Zbiór sprzętu, oprogramowania, ludzi, polityki oraz procedur niezbędnych do tworzenia, zarządzania, przechowywania, dystrybucji oraz odbierania certyfikatów opartych na kryptografii z kluczem publicznym.

Celem infrastruktury klucza publicznego (PKI -Public Key Infrastructure) jest zapewnienie zaufanego i wydajnego zarządzania kluczami oraz certyfikatami. PKI jest zdefiniowana w dokumencie Internet X.509 Public Key Infracture

Zbigniew Suski BSI - kryptografia

Komponenty PKI

- Wydawcy certyfikatów CA (Certification Authorities), którzy przydzielają i odbierają certyfikaty.
- <u>Autorytety rejestracji</u> ORA (Organizational Registration Authorities), poręczający za powiązania pomiędzy kluczami publicznymi, tożsamością posiadaczy certyfikatów i innymi atrybutami.
- Posiadacze certyfikatów którzy mogą używać podpisu cyfrowego.
- ➡ Klienci którzy weryfikują i zatwierdzają podpisy cyfrowe oraz ich ścieżki certyfikowania prowadzące od znanych publicznych kluczy zaufanych CA.
- Magazyny które przechowują i udostępniają certyfikaty oraz listy unieważnień certyfikatów CRL (Certification Revocation List).

20 Zbigniew Suski

BSI - kryptografia

٠.

Funkcje PKI

Zbigniew Suski

- Rejestracja
- Inicjacja
- Certyfikowanie
- Odzyskiwanie par kluczy
- Generowanie kluczy
- Uaktualnianie kluczy
- Certyfikowanie przechodnie
- Unieważnienie

Zbigniew Suski BSI - kryptografia

Struktura certyfikatu X.509

- Numer wersji numer wersji formatu certyfikatu
- Numer seryjny numer przydzielony certyfikatowi przez CA. Unikalny w obrebie funkcjonowania CA.
- Identyfikator algorytmu określa algorytm użyty do podpisania certyfikatu i jego parametry
- Identyfikator wystawcy nazwa CA, który wydał i podpisał certyfikat
- Okres ważności data początku i końca ważności certyfikatu
- <u>Użytkownik certyfikatu</u> określa użytkownika
- Informacja o kluczu publicznym klucz publiczny użytkownika oraz identyfikator algorytmu, który będzie ten klucz wykorzystywał.
- Rozszerzenia informacje dodatkowe
- Podpis cyfrowy uwierzytelnia pochodzenie certyfikatu. Funkcja skrótu jest stosowana do wszystkich pól certyfikatu (oprócz pola podpisu). Wynik haszowania jest szyfrowany kluczem prywatnym CA.

Zbianiew Suski

BSI - kryptografia

23

Opracował: Zbigniew Suski 4

22

Proces poświadczania certyfikatu

- 1. Sprawdzenie czy tożsamość nadawcy jest zgodna z opisem w certyfikacie.
- 2. Sprawdzenie czy żaden certyfikat na ścieżce uwierzytelnienia nie został unieważniony.
- 3. Sprawdzenie czy dane mają atrybuty, do których podpisujący nie jest upoważniony.
- 4. Sprawdzenie czy dane nie zostały zmienione od momentu ich podpisania.

Zbigniew Suski

BSI - kryptografia

24