Definizione di forma differenziale

$$\omega(x,y) := \alpha(x,y)dx + \beta(x,y)dy$$

$$\int_{\varphi} w := \int_{b}^{a} [\alpha(\varphi_{1}(t), \varphi_{2}(t)) \cdot \varphi'_{1}(t) + \beta(\varphi_{1}(t), \varphi_{2}(t)) \cdot \varphi'_{2}(t)]dt$$

$$t \in [a,b] \to \varphi(t) = [\varphi_{1}(t), \varphi_{2}(t)]$$

Esempio

$$\omega(x,y) = y^{3}dx + 3xy^{2}dy$$

$$\varphi : [0,1] \to R^{2}, \ t \in [0,1] \to \varphi(t) = (2t,2t)$$

$$\alpha(x,y) = y^{3}, \quad \alpha(\varphi_{1}(t), \varphi_{2}(t)) = \alpha(2t,2t) = 8t^{3}$$

$$\beta(x,y) = 3xy^{2}, \quad \beta(\varphi_{1}(t), \varphi_{2}(t)) = \beta(2t,2t) = 24t^{3}$$

$$\varphi_{1}' = \varphi_{2}' = 2$$

$$\int_{0}^{1} (16t^{3} + 48t^{3}) dt = 64 \left[\frac{t^{4}}{4}\right]_{0}^{1} = 16$$

Dominio forma differenziale

Il dominio della forma differenziale e' quel dominio che mi rende definite le due funzioni α e β

Esempio

$$w = \frac{1}{x}dx + \frac{1}{y}dy$$

$$dom \ alpha = R - \{0\}$$

$$dom \ betha = R - \{0\}$$

$$D \ w = R^2 - \{0, 0\}$$

FORMA CHIUSA

Una w si dice chiusa se vale :

$$\frac{\delta}{\delta y}\alpha(x,y) = \frac{\delta}{\delta x}\beta(x,y)$$

Esempio

$$\omega(x,y) = y^3 dx + 3xy^2 dy$$

 $3y^2 = 3y^2$ e' chiusa per definizione

SE UNA FORMA NON E' CHIUSA NON E' ESATTA SE UNA FORMA E' ESATTA ALLORA E' CHIUSA

FORMA ESATTA

Teorema di Poincare'

Se una forma differenziale e' chiusa e il suo dominio e' un insieme semplicemente connesso allora essa e' esatta

Esercizio sull'esattezza

$$w = \frac{[xy - (1 - xy)\ln(1 - xy)]}{1 - xy}dx + \frac{x^2}{1 - xy}dy$$

Dominio

$$xy \neq 1$$

$$xy < 1$$

$$A = \left\{ (x, y) \in R^2 \text{ tale che } xy < 1 \right\}$$

Il dominio e' semplicemente connesso (non ci sono buchi)

Verifichiamo se w e' chiusa

$$w = \frac{[xy - (1 - xy)\ln(1 - xy)]}{1 - xy}dx + \frac{x^2}{1 - xy}dy$$

$$w = \left[\frac{xy}{1 - xy} - \ln(1 - xy)\right] dx + \frac{x^2}{1 - xy} dy$$

derivata rispetto a y di alpha =

$$\frac{x(1-xy) + x^2y}{(1-xy)^2} + \frac{x}{1-xy}$$

$$\frac{2x(1-xy)+x^2y}{(1-xy)^2}$$

$$\frac{2x - x^2y}{(1 - xy)^2}$$

 $derivata\ di\ beta\ rispetto\ a\ x=$

$$\frac{2x(1-xy)+yx^2}{(1-xy)^2} = \frac{2x-x^2y}{(1-xy)^2}$$

quindi la forma e' chiusa, ed essendo il dominio semplicemente connesso possiamo dire per il teorema di Poincare' che la forma e' esatta

Definizione forma differeziale esatta

Una forma differenziale:

$$\omega(x,y) = \alpha(x,y)dx + \beta(x,y)dy$$

Si dice esatta se esiste una funzioen differenziabile f(x, y) tale che:

$$\frac{\delta}{\delta x}f(x,y) = \alpha(x,y) \ AND \ \frac{\delta}{\delta y}f(x,y) = \beta(x,y)$$

Esempio flash

$$\omega(x,y) = y^3 dx + 3xy^2 dy$$
$$f(x,y) = xy^3$$
$$\frac{\delta}{\delta x} f(x,y) = y^3$$
$$\frac{\delta}{\delta y} f(x,y) = 3xy^2$$

La funzione f(x, y) e' detta POTENZIALE [PRIMITIVA FORMA DIFFERENZIALE]

COME CALCOLARE IL POTENZIALE

1) Si sceglie una delle due componenti della forma differenziale e la si integra

$$\int [\alpha(x,y)]dx = f(x,y) + c(y)$$
 (2)

2) Si deriva il risultato rispetto all'altra variabile e lo si pone uguale all'altra componente della forma di f ferenziale

$$\frac{d}{dy}[f(x,y) + c(y)] = \beta(x,y)$$

ottenendo cosi' un'equazione in c'(y) che ci permette di trovare c(y)

3) Si sostituisce il valore trovato della c nella 2 ed cosi otteniamo la famiglia di funzioni che sono potenziale

Esempi

(trovare il potenziale)

$$w(x,y) = \frac{[xy - (1-xy)\ln(1-xy)]}{1-xy} dx + \frac{x^2}{1-xy} dy$$

$$Dominio$$

$$1-xy > 0$$

$$D\left\{(x,y) \in R^2 \mid 1-xy > 0\right\}$$

$$\int \frac{x^2}{1-xy} dy = -x \int -x(1-xy)^{-1} dy = -x \ln(1-xy) + c(x)$$

$$\frac{d}{dx} [-x \ln(1-xy) + c(x)] = \frac{[xy - (1-xy)\ln(1-xy)]}{1-xy}$$

$$-\ln(1-xy) + \frac{xy}{1-xy} + c'(x) = \frac{xy - (1-xy)\ln(1-xy)}{1-xy}$$

$$-\ln(1-xy) + \frac{xy}{1-xy} + c'(x) = \frac{xy}{1-xy} - \frac{\ln(1-xy)}{1-xy}$$

$$c'(x) = 0$$

$$\left[c'(x) = g(x) \to \int g(x) = c(x) caso \ generale\right]$$

$$c(x) = k$$

$$f(x,y) = -x \ln(1-xy) + k$$

Esercizio trovare potenziale

$$w(x,y) = \left(2xy - \frac{1}{x}\right)dx + x^2dy$$

....

Il dominio viene SPACCATO in due dalla retta y=0 quindi non sarebbe semplicemente connesso ma posso trattare il dominio come l'unione di due domini semplicemente connessi

$$D_1\{(x,y) \in R^2 | x > 0\}$$

 $D_2\{(x,y) \in R^2 | x < 0\}$
....
.... E' ESATTA...

Calcolo potenziale:

$$\int x^2 dy = x^2 y + c(x)$$

$$\frac{d}{dx} \left[x^2 y + c(x) \right] = 2xy - \frac{1}{x}$$

$$2xy + c'(x) = 2xy - \frac{1}{x}$$

$$c'(x) = -\frac{1}{x}$$

$$c(x) = -\int \frac{1}{x} dx = -\ln(|x|) + k$$

$$f(x, y) = x^2 y - \ln(|x|) + k$$

$$f(x, y) = x^2 y - \ln(x) + k \quad per D_1$$

$$f(x, y) = x^2 y - \ln(-x) + k \quad per D_2$$

TEOREMA

Se una forma differenzia e' esatta l'integrale curvilineo lungo una curva e' dato da

$$\int_{\gamma} w(x, y) dx dy = f(P_f) - f(P_i)$$

TEOREMA per escludere l'esattezza

w e' esatta se e solo se per ogni curva regolare chiusa vale:

$$\int_{\gamma_{chiusa}} w = 0$$

ESERCIZIO STUDIO FORMA DIFFERENZIALE E CALCOLO INTEGRALE CURVILINEO

$$w(x,y) = \left[\ln(x^2 + y^2) + \frac{2x^2}{x^2 + y^2} \right] dx + \left(\frac{2xy}{x^2 + y^2} \right) dy$$

calcolare l'integrale sulla curva : γ (2 + cos(t), 2sin(t)) per t [0, π]

 Dimostrare che e' esatta dominio + chiusura = Poincare'
 Determinare potenziale
 Calcolare integrale
 Veri ficare risultato col potenziale

Dominio:

$$D = \left\{ (x, y) \in R^2 \mid x^2 + y^2 > 0 \right\}$$

Rappresentare una curva:

Abbiamo due strumenti da utilizzare:

- -Tabellino con t x y per vedere i punti (importante per farsi una idea e vedere il verso di percorrenza)
 - Fare sistema delle due equazioni parametriche ed eliminare il parametro t, in questo modo ottengo una equazione "normale" y = f(x)
 - Se non vengono cose semplici con gli altri due utilizzare geometria analitica