Plan

- Homologie.
- Persistance topologique : définition et calcul [ELZ02].
- Stabilité de la persistance et applications.

Filtration

- a_i : valeurs critiques de f (i = 1..n).
- $X^i = f^{-1}(-\infty, a_i].$
- Filtration de $X : \emptyset \subset \cdots \subset X^i \subset X^{i+1} \subset \cdots \subset X^n = X$.
- Filtration simpliciale : \mathbb{X}^i est un complexe simplicial et $\mathbb{X}^{i+1} = \mathbb{X}^i \cup s$.

Comment évolue $H_*(X^i)$?

Premier cas : $\partial s \notin B_{k-1}^i$

- $lacksquare \partial s$ passe dans B_{k-1}^{i+1} .
- $lacksquare \partial s
 eq 0$ dans H^i_{k-1} , mais $\partial s = 0$ dans H^{i+1}_{k-1} : destruction.
- $f_{k-1}^i: H_{k-1}^i \longrightarrow H_{k-1}^{i+1}$ est surjective, de noyau $<\partial s>$.

Comment évolue $H_*(X^i)$?

Deuxième cas : $\partial s \in B_{k-1}^i$

- Soit $u \in C_k^i$ tel que $\partial s = \partial u$.
- $f_k^i: H_k^i \longrightarrow H_k^{i+1}$ est injective, $H_k^{i+1}/\mathrm{im}\, f_k^i = \langle u+s \rangle$.

Système de groupes d'homologie

$$H_k^1 \longrightarrow \ldots \longrightarrow H_k^i \xrightarrow{f_k^i} H_k^{i+1} \longrightarrow \ldots \longrightarrow H_k^n$$

- Donne l'évolution de la topologie des X^i .
- On va en extraire des invariants.

Persistance

$$H_k^1 \longrightarrow \ldots \longrightarrow H_k^i \xrightarrow{f_k^i} H_k^{i+1} \longrightarrow \ldots \longrightarrow H_k^n$$

Pour $u \in H_k^i$, on défi nit :

$$n(u) = \min\{j \le i \,|\, u \in \operatorname{im}(H_k^j \longrightarrow H_k^i)\}$$

- Pour $u \in \ker f_k^i$, on apparie a_{i+1} et $a_{n(u)}$.
 - \rightarrow intervalles de persistance $[a_{n(u)}, a_{i+1}]$
- Chaque intervalle représente la durée de vie d'une classe d'homologie dans la fi Itration.

Alternative

$$H_k^1 \longrightarrow \ldots \longrightarrow H_k^{i-1} \xrightarrow{f_k^{i-1}} H_k^i \longrightarrow \ldots \longrightarrow H_k^n$$

- Pour $u \in H_k^i \setminus \operatorname{im} f_k^{i-1}$, on apparie a_i et $a_{\operatorname{m}(u)}$.
- Pour $u \in H_k^i$, m(u) est défi ni par :

$$m(u) = \min \{\, j \geq i \, | \, n(\text{image de } u \text{ dans } H_k^j) < n(u) \}$$

→ mêmes intervalles.

Exemple

Lemme du triangle

- Le nombre d'intervalles contenant a est $\dim (H_k(\mathbb{X}^a))$
- Groupes d'homologie persistants :

$$F_a^b = \operatorname{im} (H_k(\mathbb{X}^a) \longrightarrow H_k(\mathbb{X}^b))$$

Le nombre d'intervalles contenant [a, b] est dim (F_a^b)

Algorithme incrémental

- Chaque simplexe créateur t stocke :
 - son simplexe destructeur associé, t_{-} (ou ∞).
 - un cycle qu'il a crée et que t_- a détruit, \bar{t} (ou rien).
- $\blacksquare \mathbb{X}^{i+1} = \mathbb{X}^i \cup s.$
 - s est-il créateur ou destructeur?
 - si s détruit, quand $\partial s \in H^i$ est-elle née?

Remarque

- Soit $t \in \mathbb{X}^j \subset \mathbb{X}^i$ le simplexe le plus jeune de ∂s .
- $\partial s \in H^i$ est née avant \mathbb{X}^j si et seulement si il existe une chaîne $c \in C^i$ dont le bord a t comme plus jeune simplexe.

Insertion de s

On pose $\bar{s} = \partial s$. while $(\bar{s} \neq 0)$ do $t \leftarrow \text{plus jeune simplexe de } \bar{s}.$ if $(t_- \neq \infty)$ then $\bar{s} \leftarrow \bar{s} + \bar{t}$ else $t_- \leftarrow s$; $\bar{t} \leftarrow \bar{s}$ exit end if end while $s_{-} \leftarrow \infty$

Cas d'une fonction PL

- Persistance de $f: \mathbb{X} \to \mathbb{R}$, linéaire par morceaux?
- lacksquare On ordonne les simplexes s en fonction de $\max_s f$.
- On applique l'algorithme précédent.
- On rend en sortie les intervalles $[\max_{s_-} f, \max_s f]$ non réduits à un point.