Sprawozdanie PAMSI

Drzewo binarne czerwono-czarne

Wstęp teoretyczny i cel ćwiczenia

Celem ćwiczenia jest implementacja struktury drzewa binarnego czerwono-czarnego, sprawdzenie złożoności obliczeniowej dodawania nowych węzłów do drzewa i wyszukiwania elementów w drzewie.

Drzewo czerwono-czarne jest specyficzną odmianą drzewa binarnego. Dzięki algorytmom zachowującym cechy drzewa czerwono-czarnego, otrzymujemy równomiernie rozgałęzioną strukturę drzewa, o długości maksymalnie $2(\lg n+1)$. Dla porównania najgorszym przypadkiem długości drzewa binarnego, bez zachowania cech czerwono-czarnych, jest drzewo o długości n (w takim wypadku drzewo praktycznie staje się listą). Stosowanie algorytmu zachowania cech czerwono-czarnych umożliwia nam szybsze wykonywanie operacji dodawania i wyszukiwania w drzewie. Niestety algorytm zachowania cech czerwono-czarnych zwiększa złożoność obliczeniową kodu, ponieważ po każdym dodaniu węzła konieczne jest sprawdzenie czy właściwości drzewa nie zostały zaburzone. Dzięki równomiernemu rozgałęzieniu drzewa czerwono-czarnego złożoność obliczeniowa wykonywania podstawowych operacji wynosi $O(\log n)$.

Zachowanie cech czerwono-czarnych drzewa binarnego wymaga stosowania algorytmu rozważającego trzy przypadki i ich odbicia lustrzane, co utrudnia implementację struktury.

Pomiary

Pomiary czasu dodawania węzłów do drzewa i czasu wyszukiwania ostatniego dodanego elementu zostały wykonane w zależności od ilości węzłów w drzewie.

Wykresy pokazujące zależność czasu wykonywania operacji od ilości węzłów zostały przedstawione w skali logarytmicznej na osi y.

Ilość elementów	Czas dodawania Węzłów [ms]	Czas wyszukiwania [ms]
10	0,15	0,04
10	0,13	0,04
	0,9	0,03
	0,16	0,05
	0,11	0,03
100	0,87	0,05
100	0,82	0,05
	1,05	0,05
	0,82	0,04
	0,86	0,04
1000	11,47	0,05
	11,01	0,05
	9,95	0,06
	10,57	0,05
	10,89	0,04
10000	137,89	0,06
	136,81	0,08
	144,52	0,07
	132,26	0,07
	137,81	0,09
100000	1983,15	0,11
	2246,05	0,07
	2476,05	0,13
	2318,97	0,11
	2086,48	0,09
1000000	9104,151	0,16
	8337,389	0,23
	8054,428	0,17
	9028,188	0,14
	8500,686	0,14

Tabela 1

Uśrednione wartości pomiarów z Tabela 1.

llość elementów	czas dodawania Węzłów [ms]	czas wyszukiwania [ms]
10	0,286	0,034
100	0,884	0,046
1000	10,778	0,05
10000	137,858	0,074
100000	2222,14	0,102
1000000	8604,9684	0,168

Tabela 2

Dodawanie węzłów

Czas dodawania węzłów w zależności od ilości węzłów

Wyszukiwanie węzła

Czas wyszukiwania węzła w zależności od ilości węzłów

Wykres 2

Wnioski

Zgodnie z przewidywaniami czas zapisu elementu do drzewa jest dłuższy od czasu wyszukiwania elementu w drzewie. W przypadku przeszukiwania drzewa wiąże się to z brakiem konieczności sprawdzania czy została zachowana struktura czerwono-czarna (przeszukiwanie nie modyfikuje drzewa, więc nie ma możliwości zaburzenia struktury).

Na bazie wykresów *Wykres 1* i *Wykres 2* widać, że złożoność obliczeniowa dodawania i przeszukiwania drzewa wzrasta wraz z ilością elementów w drzewie. Jest to spodziewany efekt, wiążący się z potrzebą wykonania większej ilości operacji "przemieszczania" się po wskaźnikach wraz ze wzrostem węzłów w drzewie.

Z kształtów wykresów *Wykres 1* i *Wykres 2* oraz wyników zawartych w tabeli *Tabela 2*, wynika że złożoność obliczeniowa dla algorytmów wyszukiwania i dodawania węzłów wynosi około *O(log n)*, co zgadza się z teoretyczną złożonością obliczeniową.