Applied Statistics for Public Health Professionals

Dr. Inayat Ullah

Assistant Professor Dept. of Govt & Public Policy, NUST Islamabad

September 4, 2025

A Policy Context

Nearly 33 million people, i.e. every 4th adult above the age of 20 years is suffering from diabetic and 33% of our adult population above the age of 45 has high blood pressure (PIDE 2021).

A Policy Context

- Nearly 33 million people, i.e. every 4th adult above the age of 20 years is suffering from diabetic and 33% of our adult population above the age of 45 has high blood pressure (PIDE 2021).
- Every year, nearly 471 billion PKR is being spent on Benazir Income Support Program as part of the broader social protection policy (MoF, 2024).

A Policy Context

- Nearly 33 million people, i.e. every 4th adult above the age of 20 years is suffering from diabetic and 33% of our adult population above the age of 45 has high blood pressure (PIDE 2021).
- Every year, nearly 471 billion PKR is being spent on Benazir Income Support Program as part of the broader social protection policy (MoF, 2024).
- Currently, Pakistan has the world's second-highest number of out-of-school children (OOSC) with an estimated 22.8 million children aged 5-16 not attending school, representing 44 percent of the total population in this age group—(UNICEF, 2024).

• What are the socio-economic determinants of Maternal and Child health inequality in rural areas of Pakistan?

- What are the socio-economic determinants of Maternal and Child health inequality in rural areas of Pakistan?
- How effective are BISP cash transfer programs in reducing malnutrition in Pakistan?

- What are the socio-economic determinants of Maternal and Child health inequality in rural areas of Pakistan?
- How effective are BISP cash transfer programs in reducing malnutrition in Pakistan?
- How does access to clean drinking water affect health outcomes in urban vs. rural populations of Pakistan?

- What are the socio-economic determinants of Maternal and Child health inequality in rural areas of Pakistan?
- How effective are BISP cash transfer programs in reducing malnutrition in Pakistan?
- How does access to clean drinking water affect health outcomes in urban vs. rural populations of Pakistan?
- Does the Sehat Sahulat Program reduce household health expenditure? If so, how much?

- What are the socio-economic determinants of Maternal and Child health inequality in rural areas of Pakistan?
- How effective are BISP cash transfer programs in reducing malnutrition in Pakistan?
- How does access to clean drinking water affect health outcomes in urban vs. rural populations of Pakistan?
- Does the Sehat Sahulat Program reduce household health expenditure? If so, how much?
- What is the impact of extreme weather events on child malnutrition and the prevalence of waterborne diseases in rural communities?
- Think about recent floods in Punjab!

What is Research?

Systematic investigation

• It is a conscious effort to concentrate our thinking, to do it in a rational, careful manner.

What is Research?

Systematic investigation

• It is a conscious effort to concentrate our thinking, to do it in a rational, careful manner.

Empirical endeavor

 an effort that is based upon systematic observation yielding data that we can use in our decision making.

What is Research?

Systematic investigation

• It is a conscious effort to concentrate our thinking, to do it in a rational, careful manner.

Empirical endeavor

 an effort that is based upon systematic observation yielding data that we can use in our decision making.

Public Good

- Research contributes to a broader base of knowledge than just researchers own interest.
- Consequently, it is important that research procedures are described in a way that enables other people to understand them, duplicate them and make judgments about their quality (think about 600 years back).

Empirical Research

 Research based on observation and measurement of phenomena as directly (impartially) experienced by the researcher.

Empirical Research

- Research based on observation and measurement of phenomena as directly (impartially) experienced by the researcher.
- Science, as a method, relies on both logic, as captured by theory, and empirical observation of the world to determine whether the theory we have developed conforms to what we observe.

Empirical Research

- Research based on observation and measurement of phenomena as directly (impartially) experienced by the researcher.
- Science, as a method, relies on both logic, as captured by theory, and empirical observation of the world to determine whether the theory we have developed conforms to what we observe.
- Using data and Experiments.

• We seek to explain the world with our theories.

- We seek to explain the world with our theories.
- And we test our theories by deducing and testing hypotheses.

- We seek to explain the world with our theories.
- And we test our theories by deducing and testing hypotheses.
- When a working hypothesis is supported, we have more confidence in our theory.

- We seek to explain the world with our theories.
- And we test our theories by deducing and testing hypotheses.
- When a working hypothesis is supported, we have more confidence in our theory.
- When the null hypothesis is supported, it undermines our proposed theory.

The Research-Practice Continuum

Figure: Research-Practice Continuum

The risk in generalization

• Science seeks a particular kind of knowledge and has certain biases.

The risk in generalization

- Science seeks a particular kind of knowledge and has certain biases.
- When we are engaging in scientific research, we are interested in reaching generalizations.

The risk in generalization

- Science seeks a particular kind of knowledge and has certain biases.
- When we are engaging in scientific research, we are interested in reaching generalizations.
- Making generalization underlies the risk of Biases.

Science-vs Non-Science

• We also look for generalizations that are *causal* in nature.

Science-vs Non-Science

- We also look for generalizations that are *causal* in nature.
- Scientists actively seek explanations grounded in causation rather than correlation.

Science-vs Non-Science

- We also look for generalizations that are *causal* in nature.
- Scientists actively seek explanations grounded in causation rather than correlation.
- Scientific Knowledge should be replicable- Other scientists should reach the same conclusion in different contexts (following the same design).

What is Theory?

 Theory broadly is defined as a set of interrelated propositions that seek to explain and, in some cases, predict an observed phenomenon.

What is Theory?

- Theory broadly is defined as a set of interrelated propositions that seek to explain and, in some cases, predict an observed phenomenon.
- Characteristics of Good Theories:
 - Coherent and internally consistent
 - Causal in nature
 - Generate testable hypotheses

Concepts and Variables

• A concept is a commonality across observed individual events or cases.

Concepts and Variables

- A concept is a commonality across observed individual events or cases.
- It is a regularity that we find in complex world.

Concepts and Variables

- A concept is a commonality across observed individual events or cases.
- It is a regularity that we find in complex world.
- Concepts are our building blocks to understanding the world and to developing theory that explains the world.

 Once a concept has been quantified, it is employed in modeling as a variable.

- Once a concept has been quantified, it is employed in modeling as a variable.
- Dependent Variable Y –the concept we are trying to explain or predict.

- Once a concept has been quantified, it is employed in modeling as a variable.
- Dependent Variable Y –the concept we are trying to explain or predict.
- Independent Variable- X –The concept that is used to predict the dependent variable.

- Once a concept has been quantified, it is employed in modeling as a variable.
- Dependent Variable Y –the concept we are trying to explain or predict.
- Independent Variable- X –The concept that is used to predict the dependent variable.
- The expected relationship is called THEORY.

Measurement

• Measurement is the assignment of numbers to some phenomenon that we are interested in analyzing.

Measurement

 Measurement is the assignment of numbers to some phenomenon that we are interested in analyzing.

Examples:

- The effectiveness of public officer is measured by having senior officers rate junior officers on various traits.
- Educational attainment may be measured by how well a student scores on standardized achievement tests.
- Good performance by a city bus driver might be measured by the driver's accident record and by his or her record of running on time.
- The success of a nonprofit agency's fund-raising drive might be measured by the amount of money raised.

Thought-Provoking Question!

• The District Health Officer(DHO) of District Mardan reports that the number of maternal and neonatal mortality cases has increased by 20% over a period of one month.

Thought-Provoking Question!

 The District Health Officer(DHO) of District Mardan reports that the number of maternal and neonatal mortality cases has increased by 20% over a period of one month.

Does this indicate poor performance of district health department?

• First, we define concept, *Dictionary definition*.

- First, we define concept, *Dictionary definition*.
- Then concepts are measured indirectly through indicators specified by operational definitions.

- First, we define concept, Dictionary definition.
- Then concepts are measured indirectly through indicators specified by operational definitions.
- An operational definition is a statement that describes how a concept will be measured.

- First, we define concept, Dictionary definition.
- Then concepts are measured indirectly through indicators specified by operational definitions.
- An operational definition is a statement that describes how a concept will be measured.
- An indicator is a variable, or set of observations, that results from applying the operational definition.

Examples of Operational Definition

 Officer effectiveness is defined by subjective evaluations by senior officers using ACRs.

Examples of Operational Definition

- Officer effectiveness is defined by subjective evaluations by senior officers using ACRs.
- Education attainment is defined by the scores on a standardized test.

Examples of Operational Definition

- Officer effectiveness is defined by subjective evaluations by senior officers using ACRs.
- Education attainment is defined by the scores on a standardized test.
- Patients' satisfaction with the service of the Hospital is measured according to the response categories that patients check on a questionnaire item (high satisfaction, medium satisfaction, and low satisfaction).

The goodness of Indicators

 Sometimes, an observed indicators may not offer a complete measure of the underlying concepts.

Indicator = concept + error

The goodness of Indicators

 Sometimes, an observed indicators may not offer a complete measure of the underlying concepts.

$$Indicator = concept + error$$

 A good indicator of a concept contains very little error; a poor indicator is only remotely related to the underlying concept.

The goodness of Indicators

 Sometimes, an observed indicators may not offer a complete measure of the underlying concepts.

Indicator = concept + error

- A good indicator of a concept contains very little error; a poor indicator is only remotely related to the underlying concept.
- One reason for using multiple indicators is that a concept may have more than one dimension.

• When measuring concepts, the indicators that are used in building and testing theories should be both valid and reliable.

- When measuring concepts, the indicators that are used in building and testing theories should be both valid and reliable.
- Validity refers to how well the measurement captures the concept.

- When measuring concepts, the indicators that are used in building and testing theories should be both valid and reliable.
- Validity refers to how well the measurement captures the concept.
- Reliability, by contrast, refers to how consistent the measure is with repeated applications.

- When measuring concepts, the indicators that are used in building and testing theories should be both valid and reliable.
- Validity refers to how well the measurement captures the concept.
- Reliability, by contrast, refers to how consistent the measure is with repeated applications.
- A measure is reliable if, when applied to the repeated observations in similar settings, the outcomes are consistent.

How important is the Quality of Measurement??

• Measurement is the process of assigning numbers to the phenomenon or concept that you are interested in.

How important is the Quality of Measurement??

- Measurement is the process of assigning numbers to the phenomenon or concept that you are interested in.
- Measurement is *straight-forward* when we can *directly observe the phenomenon*.

How important is the Quality of Measurement??

- Measurement is the process of assigning numbers to the phenomenon or concept that you are interested in.
- Measurement is straight-forward when we can directly observe the phenomenon.
- Measurement becomes more challenging when you cannot directly observe the concept of interest.

Validity of Measurement

 A valid indicator accurately measures the concept it is intended to measure.

Validity of Measurement

- A valid indicator accurately measures the concept it is intended to measure.
- In other words, if the indicator contains very little error, then the indicator is a valid measure of the concept.

Validity of Measurement

- A valid indicator accurately measures the concept it is intended to measure.
- In other words, if the indicator contains very little error, then the indicator is a valid measure of the concept.
- Question:
- Is the CSS examinations a valid indicators of on-the-job performance of civil servants?

Validity and Reliability

Figure: Validity and Reliability

Validity Types

• Convergent Validity: Do the indicator and the concept converge?

Validity Types

- Convergent Validity: Do the indicator and the concept converge?
- Measures of constructs that theoretically should be related to each other are, in fact, observed to be related to each other.
 - E.g. you should be able to show a correspondence or convergence between similar constructs

Convergent Validity

Figure: Convergent Validity

Discriminant Validity

• Discriminant validity asks whether the indicator allows the concept to be distinguished from other similar, but different, concepts.

Discriminant Validity

- Discriminant validity asks whether the indicator allows the concept to be distinguished from other similar, but different, concepts.
- Measures of constructs that theoretically should not be related to each other are, in fact, observed to not be related to each other.
 - e.g. you should be able to discriminate between dissimilar constructs

Discriminant Validity

Figure: Discriminant Validity

Figure: Construct Validity

Dealing with Errors in Measurement

- In reality, there is always some possibility that the number assigned does not reflect the true value for that case, i.e.:
 - Human Error e.g. 100 instead of 10
 - Mistakes in coding,
 - Subjective judgments,
 - Measuring instrument that lacks precision.

Dealing with Errors in Measurement

- In reality, there is always some possibility that the number assigned does not reflect the true value for that case, i.e.:
 - Human Error e.g. 100 instead of 10
 - Mistakes in coding,
 - Subjective judgments,
 - Measuring instrument that lacks precision.
- How to overcome?
 - Test-Retest Method
 - Cronbach's alpha or Kuder-Richardson Formula

What is Cronbach Alpha: https://statisticsbyjim.com/basics/cronbachs-alpha/

- Nominal: Just name the attributes uniquely
 - E.g, Republican (=1), Democrat (=2), etc.

- Nominal: Just name the attributes uniquely
 - E.g, Republican (=1), Democrat (=2), etc.
- Ordinal: the attributes can be rank-ordered e.g. Scales of education less than grade 10(=0), Grade ten (=1) etc.

- Nominal: Just name the attributes uniquely
 - E.g, Republican (=1), Democrat (=2), etc.
- Ordinal: the attributes can be rank-ordered e.g. Scales of education less than grade 10(=0), Grade ten (=1) etc.
- Interval: the distance between attributes does have meaning.

- Nominal: Just name the attributes uniquely
 - E.g, Republican (=1), Democrat (=2), etc.
- **Ordinal:** the attributes can be rank-ordered e.g. Scales of education less than grade 10(=0), Grade ten (=1) etc.
- Interval: the distance between attributes does have meaning.
- FE.g. when we measure temperature (in Fahrenheit), the distance from 30-40 is same as distance from 70-80.

- Nominal: Just name the attributes uniquely
 - E.g, Republican (=1), Democrat (=2), etc.
- Ordinal: the attributes can be rank-ordered e.g. Scales of education less than grade 10(=0), Grade ten (=1) etc.
- Interval: the distance between attributes does have meaning.
- FE.g. when we measure temperature (in Fahrenheit), the distance from 30-40 is same as distance from 70-80.
- Ratio: You can construct a meaningful fraction (or ratio) with a ratio variable.