1.Napięcie niskie, to napięcie a) 400V b) 4000V c)400KV
2.Napięcia wysokie to napięcia na poziomie (IEC) A) >=450V B) >=4500V c) >=45kV
3) Napięcie znamionowe jest napięciem A)fazowym b)międzyprzewodowym c) maksymalnym
4)
5)Współczynnik spadku napięcia dla napięcia znamionowego 60kV ma wartość: 1.2
6)Maksymalna wartość współczynnika zwarcia spełnia warunek: kzd
7)Maksymalne napięcie robocze fazowe Umrf dla napięcia znamionowego U=60kV, w przypadku linii trójfazowej z izolowanym punktem zerowym będzie a)42kV b)72Kv C)120 Kv
{bo Umrf=[kzd/pier(3)]*ksn*Un, a kzd w przypadku izolowanego punktu zerowego wynosi pier(3), a ksn dla 60kV wynosi 1,2}
8) Maksymalne napięcie robocze fazowe U?? dla napięcia znamionowego Un=60kV, w przypadku linii trójfaowej z uziemionym punktem zerowym będzie: a)42kV b)72 kV c) 120 kkV
9) Czas trwania czoła normalnego udaru piorunowego jest: a) krótszy b)dłuższy
c)taki sam jak czas trwania czoła normalnego udaru łączeniowego
10) Czas do półszczytu normlanego udaru piorunowego jest:

a) 1,2 mikrosek b) 50 mikrosek c)250 mikrosek d) 2500 mikrosek
11) Czas do półszczytu normlanego udaru łączeniowego jest: a) 1,2 mikrosek b) 50 mikrosek c)250 mikrosek d) 2500 mikrosek
12) Czas trwania czoła normlanego udaru piorunowegojest: a) 1,2 mikrosek b) 50 mikrosek c)250 mikrosek d) 2500 mikrosek
13) Przepięcia udarowe o stromym czole mają czas narostu Ti(0,1 – 0,9): a) Tj b)Tj c)Tj>=20 mikrosek
14) Dla przepięć łączeniowych wartość współczynnika przepięcia kp: a)wzrasta b) male je c)nie zależy od/ze wzrostem napięcia znamionowego linii
15)Wzrost wartości współczynnika przepięć prowadzi do: a)wzrostu b) zmniejszenia c)nie ma wpływu na wymiary geometryczne linii
16) Prąd wyładowania piorunowego którego prawdopodobieństwo wystąpienia P>=50% ma wartość: a)5kA b)30kA c)70kA d)150kA
17) Wzrost promienia przewodu odgromowego prowadzi do: A) wzrostu

b)zmniejszenia

c)nie ma wpływu

na wartość współczynnika sprzężenia i napięcia indukowanego w linii przy uderzaniu w przewód pioruna

- 18)jeżeli odległośc kanałupioruna od lini zmniejszy się 2 krotnie to przepięcie indukowane w lini:a) wzrośnie 3 krotnieb)zmaleje 2 krotniec) pozostanie bez zmian
- 19) Wzrost wysokości linii prowadzi do:
- a)wzrostu
- b)zmniejszenia
- c)nie ma wpływu

na wartość przepięcia indukowanego w linii

- 20) Przepięcia indukowane stanowią znaczące narażenie dla linii:
- a)najwyższych napięć
- b) średnich i niskich napięć
- 21)???? Charakteryzuje czas trwania rzędu:
- a)mikrosekund
- b)milisekund
- c) sekund i dłuższe
- 22) Współczynnik przepięć kp dla przepięć ziemnozwarciowych SA według teorii Petersa-Slepiana (faza zdrowa/chora)
- a) 2,0/1,5
- b)3,5/2,0
- c)2,5/3,5
- d) 7,5/6,0
- 23) Prędkość falii napięciowej linni kablowej jest:
- a)większa
- b)mnie jsza
- c)taka sama

jak w linii napowietrznej.

- 24) Przy odbiciu fali od rozwartego końcka linni napięcia fal padającej i odbitej:
- a) dodaję się
- b)odejmują się
- 25) Przy odbiciu fali od zwartego końcalinni napięcia fali padającej i odbitej
- a) dodaję się
- b)odejmują się

- 26)Przy przechodzeniu fali z linii o dużej impedancji falowej do linii o małej impedancji falowej:
- a) występuje narażenie przepięciowe
- b)nie ma narażenia przepięciowego
- 27) Przy przechodzeniu fali z linii o małej impedancji falowej do linii o dużej impedancji falowej a) występuje narażenie przepięciowe
- b) nie ma narażenia przepięciowego
- 28. Jeżeli Z1>>Z2 to współczynnik przejścia fali z linii o impedancji Z1 do linii o impedancji z2 alfa12:

a)wrośnie

b)zmaleje

c)pozostanie bez zmian

Przy wzroście impedancji z2

alfa12=2*Z2/(Z1+Z2)

29. Stała czasu Maxwell'a to:

t=e/v

Gdzie e i y przenikalność elektryczna i i konduktywność medium, wktórym wystepuje pole

30. Dielektryk w rozważaniach dot rozkładu pola el. Możne być rozważany jako idealny, kiedy okres zmiany natężenia pola spełnia warunek:

a)

b)tm>>t0

v)t?=tm

31. Pola elektryczne jednorodne to ted la których

a)beta=1

- b)beta
- c)beta>1 gdzie beta współczynnik jednorodności
- 32. Współczynnik wykorzystania izolacji jest największy dla układu z polem:

a) jednorodnym

- b)niejednorodnym
- c)silie niejednorodnym
- 33. Krzywizny Rogowskiego
- a) obniżają watość wsp. Beta
- b)podwyższają wartość wsp. Beta
- c)nie wpływają na wartość wsp. Beta

34. Maksymalna wartość natężenia pola w układnie elektrod cylindrycznych, koncentrycznych występuje: a) przy elektrodzie wewnn. b)przy elektr. Zewnętrznej c) w obszarze pomiędzy elektrodami
35. Energia jonizacji molekuł gazów wchodzących w skład powietrza jest: a) >10e V b) c) >100eV
36) Energia jonizacji dla pierwszego elektronu jest w stosunku do energii jego wiązania z jąd rem atomu: a) większa b) mnie jsza c) równa Od energii wiązania
37.Elektron zderzając się z obojętną cząsteczką gazu: a)praktycznie nie traci energii kinetycznej b) traci połową energii kinetycznej
38. Współczynnik zderzenia Kzderz dla zderzenia elektronu z cząsteczką gazu ma wartość: a) K=0 b) k=1/2 c) K=1 D)K=n
39. Współczynnik zderzenia Kzderz dla zderzenia jonu z cząsteczką gazu ma wartość: a) K=0 b) k=1/2 c) K=1 D)K=n
40. Jon gazu zderzając się z obojętną cząsteczka gazu a) praktycznie nie traci energii kinetycznej b) traci połowę energii kinetycznej c) traci całą energię kinetyczną
41.Ruchliwość nośnika ładunku zdefiniowana jest jako: a) Stosunek prędkości całkowitej nośnika do natężenia pola b)stosunek prędkości dryftowej nośnika do natężenia pola c)stosunek natężenia pola do prędkości całkowitej nośnika

d)stosunek natężenia pola do prędkości dryftowej nośnika

- 42. Ruchliwość elektronów w gazie jest:
 - a) taka sama jak ruchliwość jonów
 - b) większa od ruchliwości jonów
 - c) mniejsza od ruchliwości jonów
- 43. Ruchliwość jonów powietrza jest na poziomie
 - a) 2-3×10-4 m2/Vs
 - b) 2-3×10-2 m2/Vs
 - c) 2-3×102 Vs/ m2
 - d) 2-3×104 Vs/ m2
- 44. jeśli energia jonizacji jonu wzrośnie 2-krotnie, prędkość elektronu zdolnego go zjonizować musi wzrosnąć.
 - a) 2-krtonie
 - b) 4-krotnie
 - c) 8-krotnie
 - d) 16-krotnie
- 45.) jeśli energia jonizacji jonu wzrośnie 2-krotnie, temperatura gazu, przy założeniu jonizacji cieplnej, musi wzrosnąć:
 - a) 2-krotnie
 - b) 4-krotnie
 - c) 8-krotnie
 - d) 16-krotnie

Aby umożliwić jego jonizację.

- 46) jeśli energia jonizacji jonu wzrośnie 2-krotnie, długość fali promieniowania przy założeniu występowania fotojonizacji:
 - a) musi wzrosnąć 2-krotnie
 - b) musi wzrosnąć 4-krotnie
 - c) musi zmaleć 2-krotnie
 - d) musi zmniejszyć się 4 krotnie

Aby wystąpiło jego fotojonizacja

47.) Praca wyjścia elektronów z metali jest na poziomie:

a)0,2-0,5 eV

b)2-5 eV

c)20-50 eV

48) W modelu przebicia gazu Tawnsenda, dla wystąpienia wyładowania samoistnego:

- a) konieczne jest występowanie jonizacji powierzchniowej
- b) Jonizacja powierzchniowa wspomaga zjawisko wyładowania samoistnego
- c) Jonizacja powierzchniowa nie odgrywa żadnej roli.
- 49) Zgodnie z prawem Paschena, 2-krotny wzrost ciśnienia fazy przy 2-krotnym zmniejszeniu odległości pomiędzy elektrodami będzie prowadził do.
 - a) 2 krotnego wzrostu napięcia wył. samoistnych
 - b) 2 krotengo zmniejszenia napięcia wył samoistnych
 - c) Utrzymania napięcia wył samoistnych bez zmian
- 50. Minimum paschena dla wyładowań w powietrzu jest przy napięciu
 - a) 3V
 - b)30V
 - c)300V
 - d)3000V
- 51. Wytrzymałość elektryczna powietrza dla pola jednorodnego
- a) nie zależy od odległości pomiędzy elektronami
- b) rośnie ze zmniejszaniem odległości pomiędzy elektrodami
- c) rośnie ze wzrostem odległości pomiędzy elektrodami
- 52. W polu jednorodnym, przy stałej temperaturze, napięcie przebicia układu w powietrzu
 - a) rośnie ze wzrostem ciśnienia
 - b) Maleje ze wzrostem ciśnienia
 - c) ci

śnienie nie ma wpływu

- 53. W polu jednorodnym przy stałym ciśnieniu, napięcie przebicia układu w powietrzu
 - a) rośnie ze wzrostem temp
 - b) Male je ze wzrostem temp
 - c) temperatura nie ma wpływu
- 54. Jeżeli pomiędzy umieszczone w powietrzu elektrody, wytwarzające pole jednorodne, wstawić izolator cylindryczny, jednorodny, o powierzchni przekroju mniejszym niż powierzchnia elektrody, napięcie przebicia układu:
 - a) wzrośnie
 - b) zmale je
 - c) pozostanie bez zmian

55. Napięcie wyładowań ślizgowych a) rośnie b) male je c) pozostaje bez wpływu przy wzroście pojemności izolacji przypadającej na jednostkę powierzchni
56. Siła elektroforetyczna działa na cząstki a) obciążone ładunkiem elektrycznym b) nieobciążone ładunkiem
57. siła dielektroforetyczna działa na cząstki: a) Obdarzone ładunkiem elektrycznym b)Nieobdarzone ładunkiem elektrycznym c)jedne i drugie
58. Siła dielektroforetyczna występuje w polu a) jednorodnym b) nie jednorodnym c)w obu
59. Siła elektroforetyczna występuje w polu: a) jednorodnym b) niejednorodnym c) w obu
60. Wytrzymałość oleju transformatorowego: a) rośnie ze wzrostem odstępu elektrod b) Maleje ze wzrostem odstępu elektrod c) odstęp elektrod nie ma wpływu na wytrzymałość
19) W polu silnie niejednorodnym napięcie wyładowania Uo(-) dla ostrza a o biegunowość ujemnej oraz Uo(+) dla ostrza o biegunowości dodatniej są: a) U0(-) jest mniejsze od U0(+) b) U0(-)=Uo(+) c) U0(-)>Uo(+)

20) w polu silnie niejednorodnym napięcie przebicia Up(-) dla ostrza o biegunowości ujemnej oraz Up(+) dla ostrza o biegunowośći dodatniej są a) Up(-) b)Up(-)=Up(+)c)Up(-)>Up(+)21) W polu jednorodnym, przy stałej temperaturze, napięcie przebicia układu w powietrzu a) rośnie ze wzrostem ciśnienia b) Maleje ze wzrostem ciśnienia c) ciśnienie nie ma wpływu 22) W polu jednorodnym przy stałym ciśnieniu, napięcie przebicia układu w powietrzu a) rośnie ze wzrostem temp b) Male je ze wzrostem temp c) temperatura nie ma wpływu 23) Napięcie przebicia układu zasilanego napięciem o częstotliwości 50Hz jest: a) wyższe b) niższe c) takie samo jak przy zasilaniu napięciem udarowym 24) Jeżeli promień przewodu (pod HV) maleje a jego odległość od ziemi pozostaje stała napięcia ulotu: a) rośnie b) male je c) pozostaje bez wpływu 31) Jeżeli promień kropli R wody w oleju rośnie, krytyczna wartość natężenia pola, przy której następuje jej rozpad a) rośnie b) male je c) pozostaje bez zmian 33) w przypadku cieplnego mechanizmu przebicia, napięcie przebicia zmierzone dla napięcia stałego jest a) większe b) mniejsze c) takie same

niż dla napięcia przemiennego

34) Napięcie przebicia dielektryka stałego mierzone w polu jednorodnym przy napięciu udarowym jest: a) wyższe b) niższe c) takie samo jak przy napięciu stałym
37) wytrzymałość elektryczna przy przebiciu jonizacyjnym a) zależy b) nie zależy
od czasu działania napięcia
38) Przy przebiciu jonizacyjnym czas do przebicia dielektryka td jest: a)krótszy b)dłuższy c)taki sam
jak czas rozwoju kanału przebicia t0.
39) W izolatorze przebijalnym spełniony jest warunek: a) ap>2as b) ap c) as>2ap d) as>2ap
 40) W ochronie odgromowej lini 110kV kąt osłony zewnętrznej α powinien spełniać warunek: a) a jest mniejsze bądź równe 30° b)a>=30° c)a=
 41)W ochronie odgromowej lini 110kV kąt osłony wnętrznej β powinien spełniać warunek a) a jest mniejsze bądź równe 60° b) a>= 60° c) a=
 42) Iskierniki a) przerywają prąd zastępczy b) posiadają stromą charakterystykę udarową c) są symetryczne napięciowo
43) napięcie zapłonu iskiernika Uz jest a) Wyższe od napięcia obniżonego U0

b) niższe od napięcia obniżonego U0
c) równe napięciu obniżonemu U0
44) Osłona elektrod w odgromniku wydmuchowym może być wykonana:
a) ze szkła
b) ze szkła organicznego
c)z ceramiki
45) charakterystycznymi elementami odgromnika zaworowego są:
a) iskierniki
b) elementy warystorowe SiC
c) Elementy warystorowe ZnO
18) W polu niejednorodnym, dla elektrod zasilanych niesymetrycznie względem ziemi, napięcie
przebicia jest.
a) wyższe
b) niższe
c) takie samo
jak dla elektrod zasilanych symetrycznie względem ziemi
35) Wytrzymałość elektryczna dielektryków stałych przy przebiciu cieplnym:
a) rośnie
b) male je
c) pozostaje bez zmian
ze wzrostem temperatury układu
36) wytrzymałość elektryczna dielektryków stałych przy przebiciu cieplnym
a) rośnie
b) male je
c) pozostaje bez zmian
ze wzrostem grubości warstwy izolacyjnej
46) Współczynnik nieliniowości a dla parametrów SiC jest:
a) 10< a
b) 5< a

47) Współczynnik nieliniowości a dla warystorów ZnO jest

a)

c)a

b) 20< a < 50

c)

- I) A/cm2
- II) 10-4 10 A/cm2
- III) >10A/cm2
- o właściwościach ochronnych warystora przy przepięciach wewnętrznych decyduje
 - a) obszar I A dla piorunowych obszar III
 - b) obszar II
 - c) obszar III
- 49) Największa nieliniowość charakteryzowana współczynnikiem "a" warystory tlenkowe wykorzystują w obszarze:
 - a) I
 - b) II
 - c) III

E0 = 20 & V/cm D= const. nat pale pried wiorenian

$$E_1 d_1 + E_2 d_2 = (E_1 + E_2) \frac{d}{2}$$

$$D = D$$
bo $d_1 = d_2 = \frac{1}{2} d$

$$E_o = \frac{\mu}{d} = 20 \frac{kV}{cm}$$

$$\frac{\mathcal{L}}{d} = \frac{1}{2} \left(\bar{E}_{\Lambda} + \frac{\bar{E}_{\Lambda}}{\bar{\epsilon}_{2}} \right) = \bar{E}_{0}$$

$$E_1\left(1+\frac{1}{\epsilon_2}\right)=2E_0$$

$$E_1 = \frac{2}{(1 + \frac{1}{E_2})} E_0 = \frac{2}{1.2} E_0 = 1.8 E_0 = 36 \text{ eV/cm} \implies \frac{0.05 \text{ topi}}{\text{probleme}}$$

Zad 2 Przy jakim stosunku promienie walców koncoutrycznych uzyskamy mats. wytrymatość lub mats. napięcie ?

$$\mathcal{L} = \mathbb{E}_{\text{max}} \cdot \ln\left(\frac{2}{r}\right) = \mathbb{E}_{\text{max}} \cdot 2 \cdot \frac{\Gamma}{2} \cdot \ln\left(\frac{2}{r}\right)$$

$$\frac{dU}{d\left(\frac{2}{r}\right)} = \mathbb{E}_{max} \mathcal{R}\left(\frac{r^2}{\mathcal{R}^2} - \frac{r^2}{\mathcal{R}^2} \ln\left[\frac{\mathcal{P}}{F}\right]\right) = \mathbb{E}_{max} \mathcal{R}\frac{r^2}{\mathcal{R}^2}\left(1 - \ln\left[\frac{\mathcal{P}}{r}\right]\right) = 0$$

$$1 - \ln\left(\frac{\mathcal{P}}{r}\right) = 0$$

$$\ln\left(\frac{\mathcal{P}}{F}\right) = 1$$

ezyli
$$\left(\frac{\ell}{r}\right)_{\text{optymolny}} = e = 2,718...$$

Lad 3 Mdensuie pionuna w stup bez linii adgromang Oblivaji amplitude fali prepiquionej

h=10m

$$L_{S'} = 1$$
 $\frac{\mu H}{m}$
 $L_{S'} = 1$ $\frac{\mu H}{m}$

25 - resystange usianiemia

$$L_{s} = L_{s}' \cdot h = 40\mu H$$

$$\mathcal{U}_{Pm} = \mathcal{I}_{pm} \mathcal{P}_{s} = 400kV$$

$$\mathcal{U}_{Lm} = L_{s} \left(\frac{dip}{dt}\right)_{msx} = 500kV$$

$$\mathcal{U}_{wm} \cong \mathcal{J}_{um} + \sqrt{\frac{1}{4}} \mathcal{U}_{em}^{2} + \mathcal{U}_{lm}^{2} \cong 740kV$$

