Problem 6: Differing Distributions

Assigned: 3 November Due: 18 November

Maximum Mark: 15 Points

Maximum Submission Length: 4 pages

- 1. Using a simulation, confirm that R's implementation of the Shapiro-Wilk normality test has a false positive rate of α =0.05 when testing with a p-value threshold of 0.05. (i.e.: confirm that when repeatedly running a Shapiro-Wilk test on data randomly generated from a normal distribution, the null hypothesis of normality is rejected ~5% of the time.)
- 2. Using a simulation, estimate the *statistical power* (1-β) of the Shapiro-Wilk normality test (i.e., the proportion of the time it correctly rejects an incorrect null hypothesis) for the following scenarios, when testing at α =0.05:
 - (a) A uniform distribution with sample size n=10.
 - (b) A uniform distribution with n=50.
 - (c) A uniform distribution with n=200.
 - (d) A Student t-distribution with 3 degrees of freedom and sample size n=10.
 - (e) A Student t-distribution with 3 d.o.f. and n=50.
 - (f) A Student t-distribution with 3 d.o.f. and n=200.

Summarize your results in a table with the following structure:

3. Using a simulation, estimate the statistical power (1-β) of the Komogorov-Smirnov twosample test for distinguishing data sampled from a uniform distribution (min=-1.75,max=1.75; sample size n_1) from data sampled from a standard normal distribution (σ =1, μ =0; sample size n_2), testing at α =0.05. Calculate this for various sample sizes: $n_1 = n_2 = 20$, $n_1 = n_2 = 50$, $n_1 = n_2 = 200$, $n_1 = n_2 = 500$. Collect the results in a table as below:

<u>n</u> 1	<u>n</u> 2	1-β _{κs}
20	20	
50	50	
200	200	
500	500	

- 4. Repeat Question 3 above, but this time use the Anderson-Darling test instead of the K-S test. (Note: the Anderson-Darling test can be very slow, so avoid using too many trials – a precise measurement of 1-β is not crucial for this problem.) Produce a new table.
- 5. Based on these results, which two-sample test would you recommend, and why? Justify your conclusion quantitatively.