Classification and Energetics of Cosmological Gamma-Ray Bursts

Amir Shahmoradi
Department of Physics / IFS / ICMB
The University of Texas at Austin

Robert J. Nemiroff
Department of Physics
Michigan Technological University

Presented at 223rd American Astronomical Society Meeting Washington, D.C., January 5-9, 2014

The Amati relation

One of the most cited topics in the field of Gamma-Ray Bursts (GRBs)

Do all GRBs obey in the Amati relation?

Hardness as a spectral peak estimator for GRBs

(Shahmoradi & Nemiroff, 2010, MNRAS, 407, 2075–2090)

The peak energy distribution of 2130 BATSE GRBs

(Shahmoradi & Nemiroff, 2010, MNRAS, 407, 2075–2090)

Classification of BATSE GRBs: fuzzy clustering vs. cutoff line

(Shahmoradi & Nemiroff, 2011, MNRAS, 411, 1843–1856)

Model Construction - There is a need for multivariate Luminosity Functions (Shahmoradi, 2013, ApJ, 411, 1843–1856)

- Goal: constraining GRB energetics and prompt emission correlations
- Data: 1966 BATSE GRBs
- Model: multivariate (4-dimensional) log-normal distribution subject to BATSE trigger threshold
- Parameters in the model:
 - isotropic peak luminosity (L_{iso})
 - total Isotropic gamma-ray emission (E_{iso})
 - $-\,\,\,$ rest-frame spectral peak energy ($E_{P,Z}$)
 - $-\,\,\,$ rest-frame duration ($T_{90,z}$)
 - redshift (z) → unknown for BATSE GRBs
 - Star Formation Rate + metallicity evolution + binary merger delay (for short GRBs)
- Method: Maximum Likelihood via Metropolis-Hastings algorithm

Colors bear the same meaning in all plots:

- simulation: predicted underlying LGRB population
- simulation: predicted underlying SGRB population

- 1366 BATSE LGRBs detected
- 600 BATSE SGRBs detected
- simulation: BATSE detectable

The Amati relation

Larger dispersion is predicted (Shahmoradi, 2013, ApJ, 766, 111)

Short and long GRBs exhibit similar prompt correlations

Short and long GRBs exhibit similar prompt correlations

Correlating Parameters	Long GRBs Pearson correlation	Short GRBs Pearson correlation
Peak Luminosity – Isotopic Emission $L_{iso}-E_{iso}$	0.93	0.92
Peak Luminosity - Peak Energy $L_{iso}-E_{P,z}$	0.47	0.54
Peak Luminosity - Duration $L_{iso}-T_{90,z}$	0.43	0.55
Isotropic Emission - Peak Energy $E_{iso} - E_{P,z}$	0.58	0.61
Isotropic Emission - Duration $E_{iso}-T_{90,z}$	0.58	0.63
Peak Energy – Duration $E_{P,z}-T_{90,z}$	0.29	0.14

Intrinsic prompt duration and peak energy are **similarly** positively correlated with the peak luminosity and isotropic emission.

Summary

- Multivariate log-normal distribution provides good fit to BATSE short and long GRB prompt emission data (peak luminosity, isotropic emission, intrinsic peak energy, intrinsic duration).
- The Amati (E_{iso}-E_{P,Z}) relation is confirmed, but with significantly higher dispersion and shallower slope of the regression line (0.25 vs. 0.55).
- Short GRBs exhibit very similar prompt emission correlations to long GRBs prompt correlations.
- BATSE Long GRBs data favor, though do not necessitate, a cosmic rate tracing metallicity evolution consistent with a cutoff $Z/Z_{\odot} \sim 0.2-0.5$, assuming no luminosity–redshift evolution.
- This methodology can be used as a quantified method of GRB classification based on prompt emission data.

- 1. Shahmoradi, Amir and Nemiroff, Robert J, 2015, MNRAS, 451, 126-143
- 2. Shahmoradi, Amir, 2013, The Astrophysical Journal (ApJ), 766, 111
- 3. Shahmoradi, Amir, 2013, Stanford eConf Proc. C1304143, paper 14; arXiv:1308.1097
- 4. Shahmoradi, Amir and Nemiroff, Robert J, 2010, MNRAS, 407, 2075–2090
- 5. Shahmoradi, Amir and Nemiroff, Robert J, 2011, MNRAS, 411, 1843–1856
- 6. Shahmoradi, Amir and Nemiroff, Robert J, 2009, AIP Conf Proc, 1133, 425
- 7. Shahmoradi, Amir and Nemiroff, Robert J, 2009, AIP Conf Proc, 1133, 323

```
@article{shahmoradi2015short,
 title={Short versus long gamma-ray bursts: a comprehensive study of energetics and prompt gamma-
ray correlations},
 author={Shahmoradi, Amir and Nemiroff, Robert J},
journal={Monthly Notices of the Royal Astronomical Society},
 volume=\{451\},
number=\{1\},
 pages=\{126-143\},
 year = \{2015\},\
 publisher={Oxford University Press}
@inproceedings{shahmoradi2014similarities,
title={On the similarities of the prompt gamma-ray emissions in Short and Long Gamma-Ray
Busts},
 author={Shahmoradi, Amir},
 booktitle={APS April Meeting Abstracts},
 year = \{2014\}
```

```
@inproceedings{nemiroff2009causes,
title={What Causes GRB Time Dilation?},
 author={Nemiroff, Robert and Shahmoradi, Amir},
 booktitle={AIP Conference Proceedings},
volume={1133},
number=\{1\},
pages=\{323--327\},
year = \{2009\},\
organization={AIP}
@inproceedings{shahmoradi2009real,
title={How Real detector thresholds create false standard candles},
 author={Shahmoradi, Amir and Nemiroff, Robert},
 booktitle={AIP Conference Proceedings},
volume={1133},
number=\{1\},
pages=\{425-427\},
year = \{2009\},\
organization={AIP}
```

```
@inproceedings { nemiroff2010 detection,
 title={Detection Threshold Effects on GRBs as a Cosmological Standard Candle},
 author={Nemiroff, Robert J and Shahmoradi, A},
 booktitle={Bulletin of the American Astronomical Society},
 volume={42},
 pages=\{228\},\
 year = \{2010\}
@article{shahmoradi2010hardness,
 title={Hardness as a spectral peak estimator for gamma-ray bursts},
 author={Shahmoradi, Amir and Nemiroff, Robert J},
 journal={Monthly Notices of the Royal Astronomical Society},
 volume = \{407\},\
 number=\{4\},
 pages=\{2075-2090\},
 year = \{2010\},\
 publisher={Blackwell Publishing Ltd Oxford, UK}
```

```
@inproceedings{miller2011quantifying,
  title={Quantifying GRB Pulse Shape Evolution to Study the Pulse Scale Conjecture},
  author={Miller, Daniel and Nemiroff, RJ and Holmes, J and Shahmoradi, A},
  booktitle={Bulletin of the American Astronomical Society},
  volume={43},
  year={2011}
}

@inproceedings{shahmoradi2011cosmological,
  title={A Cosmological Discriminator Designed to Avoid Selection Bias},
  author={Shahmoradi, Amir and Nemiroff, RJ},
  booktitle={Bulletin of the American Astronomical Society},
  volume={43},
  year={2011}
}
```

```
@article{shahmoradi2011vizier,
 title={VizieR Online Data Catalog: Gamma-ray bursts spectral peak estimator (Shahmoradi+,
2010),
 author={Shahmoradi, A and Nemiroff, RJ},
 journal={VizieR Online Data Catalog},
 volume=\{740\},
 year = \{2011\}
@article{shahmoradi2011possible,
 title={The possible impact of gamma-ray burst detector thresholds on cosmological standard
candles},
 author={Shahmoradi, A and Nemiroff, RJ},
 journal={Monthly Notices of the Royal Astronomical Society},
 volume={411},
 number=\{3\},
 pages={1843--1856},
 year = \{2011\},\
 publisher={Blackwell Publishing Ltd}
```

```
@article{shahmoradi2013multivariate,
 title={A Multivariate Fit Luminosity Function and World Model for Long Gamma-Ray Bursts},
 author={Shahmoradi, Amir},
 journal={The Astrophysical Journal},
 volume=\{766\},
 number=\{2\},
 pages = \{111\},\
 year = \{2013\},\
 publisher={IOP Publishing}
@article{shahmoradi2013gamma,
 title={Gamma-Ray bursts: Energetics and Prompt Correlations},
 author={Shahmoradi, Amir},
 journal={arXiv preprint arXiv:1308.1097},
 year = \{2013\}
@inproceedings{shahmoradi2014classification,
 title={Classification and Energetics of Cosmological Gamma-Ray Bursts},
 author={Shahmoradi, Amir and Nemiroff, RJ},
 booktitle={American Astronomical Society Meeting Abstracts\# 223},
 volume=\{223\},
 year = \{2014\}
```