Mathématiques Financières

Licence 3

2021 - 2022

Table des matières

1	Intr	roduction	2					
2	Rés	sumé des formules	2					
3	Versement initial unique							
	3.1	Capitalisation	3					
		3.1.1 Au bout de 1 période	3					
		3.1.2 Au bout de n périodes	3					
	3.2	Passage période annuelle à période mensuelle	4					
	3.3	Actualisation	4					
		3.3.1 Au bout de 1 période	4					
		3.3.2 Au bout de n périodes	4					
4	Versements constants							
	4.1	Définitions	5					
	4.2	En début de période	5					
		4.2.1 Capitalisation	5					
		4.2.2 Actualisation	5					
	4.3	En fin de période	5					
		4.3.1 Capitalisation	6					
		4.3.2 Actualisation	6					
4	Situation financière d'un projet							
	5.1	VAN	6					
		5.1.1 Un exemple	6					
	5.2	TRI	7					

1 Introduction

Ce cours traite la valeur acquise par un capital, avec soit :

- un versement initial unique,
- des versements constants à chaque période.

2 Résumé des formules

$$V_n = C \cdot (i+1)^n$$

$$i_m = (i+1)^{\frac{1}{12}} - 1$$

$$V_{act} = \frac{V_f}{(\tau+1)^n}$$

$$V_{acq}^{deb} = a(i+1) \cdot \frac{(i+1)^n - 1}{i}$$

$$V_{act}^{deb} = a(\tau+1) \cdot \frac{1 - \frac{1}{(\tau+1)^n}}{\tau}$$

$$VAN(\tau) = -V_0 + \sum_{i=1}^n \frac{V_i}{(1+\tau)^{p_i}}$$

3 Versement initial unique

3.1 Capitalisation

On investit un capital de départ et on cherche à savoir combien on gagnera plus tard : c'est la **capitalisation**.

On raisonne par unité de temps : les **périodes** (une année en général).

3.1.1 Au bout de 1 période

On cherche la valeur à droite

$$V = C \cdot (i+1)$$

avec:

- C : capital de départ à la date 0
- V : capital après 1 période de temps

- i : taux d'intérêt

3.1.2 Au bout de n périodes

On cherche la valeur à droite

$$V_n = C \cdot (i+1)^n$$

avec:

- C: capital initial

- V_n : valeur capitalisée finale du placement

3.2 Passage période annuelle à période mensuelle

Soit i le taux d'intérêt annuel et i_m le taux d'intérêt mensuel.

On cherche i_m à partir de i

$$C(i_m + 1)^{12} = C(i + 1)$$

$$\implies i_m = (i + 1)^{\frac{1}{12}} - 1$$

3.3 Actualisation

On veut savoir combien investir pour obtenir plus tard un capital défini : c'est l'actualisation.

Capitalisation et actualisation

3.3.1 Au bout de 1 période

$$V_{act} \times (\tau + 1) = V_f$$

avec:

- V_{act} : valeur actualisée (valeur aujourd'hui de $V_f)$

- V_f : capital futur

- τ : taux d'actualisation

3.3.2 Au bout de n périodes

$$V_{act} \times (\tau + 1)^n = V_f$$

$$\implies V_{act} = \frac{V_f}{(\tau + 1)^n}$$

4 Versements constants

4.1 Définitions

- Terme à échoir : paiement en début de période.
- \mathbf{Terme} échu : paiement en fin de période.

4.2 En début de période

Ici, on ne suppose plus un versement initial, mais des versements constants en **début de période**, de valeur constante a.

4.2.1 Capitalisation

On cherche la valeur à droite

$$V_{acq}^{deb} = a(i+1) \cdot \frac{(i+1)^n - 1}{i}$$

4.2.2 Actualisation

On cherche la valeur à gauche

$$V_{act}^{deb} = a(\tau + 1) \cdot \frac{1 - \frac{1}{(\tau + 1)^n}}{\tau}$$

4.3 En fin de période

Les versements constants sont désormais en fin de période, de valeur constante a. Cela revient seulement à diviser par (i+1) ou $(\tau+1)$.

4.3.1 Capitalisation

$$V_{acq}^{deb} = a \cdot \frac{(i+1)^n - 1}{i}$$

4.3.2 Actualisation

$$V_{act}^{deb} = a \cdot \frac{1 - \frac{1}{(\tau + 1)^n}}{\tau}$$

5 Situation financière d'un projet

Nous cherchons à évaluer la situation financière de projets étant donné un tableau résumant l'investissement de départ et les différents flux.

5.1 VAN

Voici la formule générale :

$$VAN(\tau) = -V_0 + \sum_{i=1}^{n} \frac{V_i}{(1+\tau)^{p_i}}$$

5.1.1 Un exemple

Pour mieux comprendre, voici un exemple de projet, décrit par un tableau :

Années	0	1	2	3	4
Flux	-10000	2000	5000	5500	5000

Représentation graphique des flux

La VAN est donc de :

$$VAN(\tau) = -10000 + \frac{2000}{(1+\tau)} + \frac{5000}{(1+\tau)^2} + \frac{5500}{(1+\tau)^3} + \frac{5000}{(1+\tau)^4}$$

6

5.2 TRI

Le Taux de Rendement Interne τ_{tri} est une solution de l'équation

$$VAN(\tau_{tri}) = 0$$

Il signifie (pour les cas simples que nous voyons) que le taux d'actualisation τ doit être inférieur à τ_{tri} pour que le projet soit rentable, soit :

 $\tau < \tau_{tri} \implies$ Le projet est rentable.