Contents

Preliminar	
Alfabeto	7
Palabra	í
Palabra Vacia.	
Longitud de la Palabra	
Concatenacion	
Principio de Induccion para ∑*	
Definicion de Recurrencia	
INVERSA	4
Definion de recurrencia	4
Potencia de una palabra	[
Por recurrencia	
Propiedades	
PREFIJOS SUFIJOS Y SUBPALABRAS	
LENGUAJES	:
OPERACIONES ENTRE LENGUAIES	6

Preliminar.

Alfabeto. Alfabeto ∑

Un alfabeto sigma es un *Conjunto finito NO Vacio* y sus elementos serán llamados **letras**.

Ejemplo: $\Sigma_1 = \{\text{Luis, Maria, Jaime}\}\$ //hay 3 letras $\sum_{2} = \{a, b\}$ //hay 2 letras $\sum_3 = \{+, -, *\}$ //hay 3 letras

Palabra.

Sea Σ un alfabeto. Una palabra sobre Σ es una sucesión finita de símbolos de Σ .

Es decir w = S_1 , S_2 , ..., S_n ; $S_i \in \sum$ // w = palabra

Ejemplo: $\Sigma = \{0, 1\}$ Solucion: $w_1 = 01$ //longitud = 2 $w_4 = 111101$ //longitud = 6 $W_2 = 10$ //longitud = 2 $w_5 = 0$ //longitud = 1 $W_3 = 00000$ //longitud = 5 $w_6 = 1$ //longitud = 1 Ejemplo: $\Sigma = \{0, 10\}$ Solucion: $w_1 = 0.10$ //longitud = 2 //longitud = 3 $w_2 = 10 \ 10 \ 0$

Palabra Vacia.

Sea Σ un alfabeto. La palabra vacia es la sucesión vacia de símbolos de Σ y se denota por: λ

Longitud de la Palabra.

Sea Σ un alfabeto y sea $w \in \sigma_1, \sigma_2, ..., \sigma_n$; $\sigma_i \in \Sigma$, se dice es la longitud de la palabra w y se denota por: |w| = n

w = bbbbaEjemplo: $\Sigma = \{a, b\}$ Solución: $|\lambda| = 0$ |w| = 5

Ejemplo: $\Sigma = \{\text{Joquin, Saturnino, Fabiola}\}\$ w = Joquin Saturnino Fabiola

Solución: |w| = 3

NOTACIONES.

Vamos a denotar como Σ *. Es el conjunto de todas las palabras sobre Σ , excepto la palabra vacia. Σ^* El conjunto de todas las palabras sobre Σ de longitud K.

Σ^*	$\Sigma^* = \Sigma^+ U \{\lambda\}$
$\sum_{}^{+}$	$\Sigma^+ = \Sigma^* - \{\lambda\}$
\sum K	$\sum^{K} = \{ w \in \sum^{*} / w = K \}$

 $\Sigma^2 = \{ w \in \Sigma^* / |w| = 2 \}$

 $\Sigma^2 = \{ w \in \Sigma^* / |w| = 1 \}$

 $\sum_{0}^{\infty} = \{ w \in \sum_{i=1}^{\infty} / |w_{i}| = 0 \}$

 $\sum_0 = \{\lambda\}$

 $\Sigma^3 = \{ w \in \Sigma^* / |w| = 3 \}$

Ejemplo: $\Sigma = \{a, b\}$

Solucion: $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, aaa, bbb, ...\}$

 $\Sigma^2 = \{aa, bb, ab, ba\}$ $//2^2 = 4$ $\Sigma^1 = \{a, b\}$ $//2^1 = 2$ $\Sigma^3 = \{$ aaa, bbb, abb, aab, aba, baa, bab, bba $\}$ $//2^3 = 8$

Concatenacion.

Sea Σ un alfabeto y sea $u = \sigma_1, \sigma_2, ..., \sigma_n$ y $v = \zeta_1, \zeta_2, ..., \zeta_n$; $\sigma_i, \zeta_i \in \Sigma$

Se define la concatenación de u y v por: uv = σ_1 , σ_2 , ..., σ_n ζ_1 , ζ_2 ,..., ζ_n ; σ_i , ζ_i

Ejemplo: $\Sigma = \{a, b\}$ u = bba v = ab

son distiintos uv <> vu Solución: uv = bba ab |u| = 3|v|=2 vu = ab bba |uv| = 5

- uv ≠ vu
- (uv)w = u(vw)
- $u\lambda = u = \lambda u$
- |uv| = |u| + ||v|

Denotamos por: Al numero de ocurrencias de a el w.

 $|w|_{\sigma}$ = al numero de ocurrencias de σ en la palabra w

Ejemplo: $\Sigma = \{a, b\}$ u = bba Solucion: $|u|_a = 1$ $|u|_{b} = 2$

```
Ejercicio: \Sigma = \{a, b\}
    1) A_3 = \{ w \in \Sigma^* / |w| = 3 \land |w|_a = 2 \}
    2) A_4 = \{w \in \Sigma^* / |w| = 4 \land |w|_a = 2\}
    3) A_5 = \{ w \in \Sigma^* / |w| = 5 \land |w|_a = 2 \}
    4) A_n = \{ w \in \Sigma^* / |w| = n ^ |w|_a = 2 \}
    Se pide:
         a) Escribir a cada conjunto A3, A4, A5, An por extensión
         b) |A_i| = ?
                          para i=3,4,5,n
Solucion:
a)
    1) A_3 = \{aaa, bbb, aab, aba, abb, baa, bba, bab, \}.
        A_3 = \{ aab, aba, baa \}
                                                                                                          //3 palabras
    2) A_4 = \{aaaa, bbbb, aaab, abba, abbb, abab, baaa, bbaa, baba, ... \}.
         A_4 = \{aabb, abab, abba, baab, baba, bbaa\}.
                                                                                                          //6 palabras
    3) A_5 = \{aaaaa, bbbbb, ...\}
         A_5 = {aabbb, ababb, abbab, abbba, babab, babab, babab, bbaab, bbaba, bbbaa}.
                                                                                                          //10 palabras
    4) A_n = \{b^i a b^{j-i-1} a b^{n-j} : 1 \le i < j \le n\}
b)
        |Ai| = \binom{i}{2} \ (i \ge 2)
                                                             |A_n| = {n \choose 2}
         |A_3|=3,
                          |A_4| = 6,
                                            |A_5|=10,
Principio de Induccion para ∑*
Sea L un conjunto de palabras sobre \sum con las propiedades:
    I. \lambda \in L
    II. \lambda \in L ^ a \in \Sigma \Rightarrow wa \in L
Entonces L = \sum^* (es decir todas las palabras de \sum^* están en L).
  I.
        1 \in P
  II.
         K \in P \Rightarrow k+1 \in P
La definición de longitud no nos sirve para la demostración.
Definicion de Recurrencia
|\cdot|: \Sigma^* \to \mathbb{N} // los naturales comienzan desde el 0, ya que |\lambda|=0
    a) |λ|=0
    b) |wa|=|w|+1
    c) |uwa| = |u|+|wa|
Ejemplo: \Sigma = \{a, b\} w = bbabb
Solución: |w| = 5
Demostrando: |w| = |bbabb|
                                                     def. de recurrencia
                      = |bbab| + 1
                                                     def. de recurrencia
                      = |bba| + 1 + 1
                                                     def. de recurrencia
                      = |bb|+1+1+1
                                                     def. de recurrencia
                      = |b|+1+1+1+1
                                                     operando
                      = |b| + 4
                                                     def. de concatenacion
                                                     def. de recurrencia
                      = | \lambda b | +4
                      = |\lambda| + 1 + 4
                                                     def. de |\lambda|=0
                      = 0+1+4
                                                     operando
                      =5
Demostrar: |uv|=|u|+|v|;
                                   \forall u, v \in \Sigma^*
\underline{Solucion}: |uv| =
                                            |uv| =
         = |abba baab|
                                            = | abba |+| baab |
                                            = 4 + 4
         =8
                                            =8
                         iguales
```

Por tanto, para demostrar correctamente usamos el principio de inducción

```
• Primero definimos L:
         Tomamos la variable v para mas facilidad:
         L = \{ v \in \Sigma^* / |uv| = |u| + |v| \}
                ↑ comentario
                   Sea V = \{x / x \text{ es vocal}\}\
                  x \text{ es vocal} \Rightarrow x \in V
                  si z \in V \Rightarrow z es vocal
              \lambda \in L?
     (i)
              |\mathbf{u} \lambda| = |\mathbf{u}| = |\mathbf{u}| + 0 = |\mathbf{u}| + |\lambda|
              |u \lambda| = |u| + |\lambda|
         \therefore \lambda \in L
                       w \in L \quad ^{\wedge} \quad a \in \Sigma \implies wa \in L
Por demostrar:
          w \in L \land a \in \Sigma
|uw| = |u| + |w| ^ a \in \Sigma
                                     (H.I) Hipotesis Inductiva
Por demostrar:
                            wa ∈ L
Por demostrar:
                            |u(wa)|=|u|+|wa|
                                     Asociativa
         |u(wa)|
                                     HI
         = |(uw)a|
         = |(uw)| + 1
                                     Def de concatenacion
         = (|u|+|w|)+1
                                     Asociativa, ya que u,w son números
         = |u| + (|w| + 1)
                                     Def de recurrencia
         = |u(wa)|
                                     Def de concatenacion
         = |\mathbf{u}| + |\mathbf{wa}|
∴ wa ∈ L
Por demostración Condicional:
                                              w \in L \quad \land \quad a \in \Sigma \implies wa \in L
ENTONCES: L = \sum^*
INVERSA
Sea u = a_1, a_2, ...,a_n \in \sum^* a la palabra u prima (u')
u' = a_n, a_{n-1}, ..., a_2, a_1 se llama inversa o transpuesta de u, (es decir a la escrita de orden inverso).
Ejemplo: \Sigma = \{a, b\} u=bba
Solución:
                  u' = abb
Definion de recurrencia. ': \Sigma^* \rightarrow \Sigma^*
     a) \lambda' = \lambda
    b) (wa)'=aw'
Ejemplo: u =bba
                            u'=?
Solucion:
                   u' = (bba)'
                                     Def de inversa
                   = abb'
                                      Def de concatenacion
                   = ab(\lambda b)'
                                     Def de inversa
                                     Def de recurrencia \lambda' = \lambda
                   = abb\lambda'
                   = abb
Ejercicio: Demostrar |w'| = |w|;
                                               \forall w \in \Sigma^*
Solucion:
Llamamos
                   L = \{w \in \Sigma^* / |w'| = w\}
                                                                                                                              def de concatenación
                                                                                                 = |au'|
     (i)
              Por definición (\lambda)' = \lambda
                                             luego |\lambda'| = |\lambda| \Rightarrow \lambda \in L
                                                                                                 = |a| + |u'|
                                                                                                                              H.I. u'=u
              Sea u \in L \land a \in \Sigma
                                                                                                 = |a| + |u|
     (ii)
                                                                                                                              conmutativa
              Por definición (ua)' = au', luego
                                                                                                 = |\mathbf{u}| + |\mathbf{a}|
              |(ua)'|
                                      def de inversa
                                                                                        Sucesivamente por propiedad de longitud |ua|=|u|+|a|
                                      def de concatenacion
              =|au'|
                                                                                        Luego |(ua)'|
              =|a|+|u'|
                                                                                                 = |\mathbf{u}| + |\mathbf{a}|
                                                                                                 = |ua|
                                                                                                                    osea ua ∈ L
Aplicamos hipótesis de inducción, w \in L, tenemos |u'| = |u|
                                                                                        ∴ L \in \Sigma^*
Entonces: |(ua)'|
                                      def de inversa
                                                                                       Si queremos verificar:
                                                                                        |w'| = |w|;
                                                                                                          \forall w \in \Sigma^*
                                                                                        w=hola
                                                                                       |w'| = |hola|
                                                                                        =|hol|+1
                                                                                                          def recureencia
                                                                                       =|ho|+1+1
                                                                                                          def recurencia
                                                                                       =|h|+1+1+1
                                                                                                          def recurencia
                                                                                        =|\lambda h|+4
                                                                                                          def h = \lambda h
                                                                                        =|\lambda|+1+4
                                                                                                          def recurencia
                                                                                       =0+5
                                                                                                          def | \lambda | = 0
                                                                                        =5
```

PRUEBA: |uv| = |u| + |v|;

 $\forall u,v \in \Sigma^*$

```
Ejercicio: Demostrar: |uv| = |u'| + |v'|;
                                                      \forall w \in \Sigma^*
L{=}\{v \in \Sigma^*/|uv| = |u'|{+}|v'|\}
Crecimiento por izquierda
(u)' \in L \land a \in \Sigma \Rightarrow aw \in \Sigma
Potencia de una palabra
w^n = w^*w^*w...w
w^1 = w
w^0 = \lambda
Por recurrencia
w^0 = \lambda
w^{n+1} = w^*w^n
Ejemplo: \Sigma = \{a, b\}
                           w=ba
Solucion:
w^4 = ba ba ba ba
w^4 = w w^3
    = ba w w<sup>2</sup>
    = ba ba w^2
    = ba ba w w
    = ba ba ba ba
Propiedades
    a) |w^n| = n|w|
    b) w^n w^m = w^{n+m}
    c) (w^n)^m = w^{n+m}
    d) \lambda^n = \lambda
Ejercicios: Demostraciones
Demostrar las propiedades desde a) hasta d) y buscar palabras u,v sobre \Sigma = \{a, b\} tales que u^2v^2 \neq (uv)^2
PREFIJOS SUFIJOS Y SUBPALABRAS
Sean v,z ∈ \Sigma*
    1) Se dice que <u>v es prefijo de z</u> si y solo si existe w \in \Sigma^* tal que z=vw y se escribe v <u>pref</u> z
    2) Se dice que <u>v</u> es sufijo de <u>z</u> si y solo si existe u \in \Sigma^* tal que z=uv y se escribe v <u>suf</u> z
    3) Se dice que <u>v es subpalabra de z</u> si y solo si existe u_1u_2 \in \Sigma^* tal que z=u_1vu_2 y se escribe v <u>subp</u> z
Ejemplo: \Sigma = \{a, b\}
Solucion:
z = babbab
v = bab
                  w = bab
v = b
                  w = abbab
v = \lambda
                 w = babbab
v = babbab
                 w= λ
Ejercicio
    1) Cuantos prefijo, sufijo, subpalabras, tiene la palabra z=a_1,a_2,...,a_n \in \Sigma
    2) Demostrar:
         X pref y
                                    y pref x
                                                               x = y
         X pref y
                                   y pref z
                                                               x pref z
Solucion:
Demostracion Condicional: Sobre el antecendente, mostra el concecuente
LENGUAJES
Definicion matematica. Sea \Sigma un alfabeto. Un lenguaje sobre \Sigma es un subconjunto de \Sigma^*
Ejemplo:
Ø
         //El vacio es subconjunto de \Sigma^*
Σ*
         //El \Sigma^* es subconjunto de \Sigma^*
Ejemplo: \Sigma = \{a, b\}
                           \Sigma^* = {\lambda, a, b, aa, ba, ab, bb, ...}
Solucion:
L_1 = \{ab\}
                           L_4 = \sum^+
```

 $L_5 = \{ \lambda, a, aa, aaa, ... \}$

 $L_5 = \{ w \in \sum^* / w = a^n, n \in \mathbb{N} \}$

 $L_2 = \{\lambda\}$

 $L_3 = \{ \lambda, a, aa, b \}$

OPERACIONES ENTRE LENGUAJES. Sean A,B, $\in \Sigma^*$

Union. A U B = $\{w \in \Sigma^* / w \in A \lor w \in B\}$ Interseccion. A \cap B = $\{w \in \Sigma^* / w \in A \land w \in B\}$ Diferencia. A - B = $\{w \in \Sigma^* / w \in A \land w \notin B\}$ Complemento. $A^C = \{w \in \Sigma^* / w \notin A\}$

Concatenacion. AB = $\{w \in \Sigma^* / w = xy, x \in A \land y \in B\}$

Transposicion. A' = $\{w' \in \Sigma^* / w \in A\}$

Estrella de kleene. $A^* = \{w \in \Sigma^* / w = w_1, w_2, ..., w_k, \text{ para algunas } w_{11}, w_{21}, ..., w_k \in A \text{ para algun } k \in N\}$

Ejemplo:

- Sea ∑={a, b} y sea P={a, ab}; P={ λ, a, ba}
 - a) PUQ e) P' i) P^{c} b) $P \cap Q$ f) Q' j) Q^{c}
 - c) P-Q g) PQ d) Q-P h) P²=PP

Solucion:

- a) $\{\lambda, a, ab, ba\}$ e) $\{a, ba\}$ h) $\{aa, aab, aba, abab\}$ b) $\{a\}$ f) $\{\lambda, a, ab\}$ i) $P^{C} = \sum^{*} P = \sum^{*} \{a, ab\}$ c) $\{ab\}$ g) $\{a\lambda, aa, ba, ab\lambda, aba, abba\} =$ j) $Q^{C} = \sum^{*} Q = \sum^{*} \{\lambda, a, ba\}$
- d) $\{\lambda, ba\}$ {a, aa, ba, ab, aba, abba}
- 2) Sea L1, L2, L3 $\subseteq \Sigma^*$. Demostrar:
 - a) $L_1 \Phi = \Phi L_1 = A$
 - b) $L_1 \{\lambda\} = \{\lambda\} L_1 = L_1$
 - c) $L_1(L_2L_3) = (L_1L_2) L_3$
 - d) $(L_1UL_2) L_3 = L_1L_3U L_2L_3$
 - e) $L_1(L_2UL_3) = L_1L_2U L_1L_3$
- 3) Sean P,Q,R $\subseteq \Sigma^*$. Demostrar
 - a) (PUQ)' = P'UQ'
 - b) (PQ)' = Q'P'
 - c) $(PUQ)^2 = P^2UPQUQPUQ^2$
- 4) Dar ejemplo de lenguaje P,Q,R sobre ∑ = {a,b} tales que (P∩Q)R ≠ (PR) ∩ (QR)
 ¿Cuál de las inclusiones es valida?

Ejemplo: Sean A, B $\subseteq \Sigma^*$. Demostrar

A ⊆ AUB

Solucion:

PRUEBA.

• Por demostrar: $w \in A \Rightarrow w \in (AUB)$ Sea $w \in A$ Regla Premisa $= w \in A \ v \ w \in B$ Adicion

= weAvweb Adicion = weAUB Union

 $= w \in A \Rightarrow w \in (AUB)$ Demostracion Condicional

 $= A \subseteq B$ Inclusion

Ejemplo: Sean A, B $\subseteq \Sigma^*$. Demostrar

 $(A-B)^C = A^C U B$

Solucion:

PRUEBA

- Por demostrar: $(A-B)^C = A^CUB$
- Por demostrar: $(A-B)^C \subseteq A^C \cup B$ ^ $A^C \cup B \subseteq (A-B)^C$ | I) | II)
- Por demostrar: I) $w \in (A-B)^C \Rightarrow w \in A^C \cup B$

1) $w \in (A-B)^c$ Regla premisa 2) $w \notin (A-B)^c$ Complemento 3) $\sim [w \in (A-B)]$ Notacion 4) $\sim [w \in A \land w \notin B]$ Diferencia 5) $w \notin A \lor w \in B$ Morgan 6) $w \in A^c \lor w \in B$ Complemento

7) w∈AcUB Union

8) $w \in (A-B)^C \Leftrightarrow w \in A^C \cup B$ Demostracion Condicional **1al 7**

9) $(A-B)^C \subseteq A^C \cup B$ Incucion

• Por demostrar: II) $w \in A^{c}UB \Rightarrow w \in (A-B)^{c}$

1) $w \in A^C \cup B$ Regla Premisa2) $w \in A^C \cup w \in B$ Union3) $w \notin A \cup w \in B$ Complemento4) $\sim (w \in A \land w \notin B)$ Morgan5) $\sim [w \in (A-B)]$ Diferencia

6) $w \in (A-B)^c$ Complemento 7) $w \in A^c \cup B \Leftrightarrow w \in (A-B)^c$ Demostracion Condicional **1 al 6**

8) $A^{C}UB \subseteq (A-B)^{C}$

