1. Suppose that a time series follows a following horizontal process:

$$X_t = c + a_t$$

where a_t is a white noise with mean 0 and variance σ_a^2 .

Show for a simple moving average with span N that

a)
$$Cov[M_t, M_{t-k}] = \sigma_a^2(N-k)/N^2$$
 , $k < N$

b)
$$Corr[M_t, M_{t-k}] = 1 - \frac{k}{N}$$
, $k = 1, ..., N-1$

1-a)

$$(ou [M_{t}, M_{t-k}] = \frac{1}{N^2} (ou [(X_t + X_{t-1} + \dots + X_{t-N+1})(X_{t-k} + X_{t-k+1} + \dots + X_{t-k-N+1})]$$

(ov [Xi, Xj] old i=je en oa2, i = je en o.

*< 사일 대 같은 X항이 (n-k)개 있으므로

$$Cov [Mt, Mt-k] = \frac{N-k}{N^2} \cdot \sigma_a^2$$

1-6)

$$\left(\left[M_{t}, M_{t-k} \right] = \frac{Cov \left[M_{t}, M_{t-k} \right]}{Var \left[M_{t} \right] Var \left[M_{t-k} \right]} \quad \left(Var \left[M_{t} \right] = Var \left[M_{t-k} \right] = \frac{\Gamma_{a}}{\sqrt{N}} \right)$$

$$=\frac{g_{A}^{2}(N-k)/N^{2}}{\sqrt{g_{A}^{2}}\cdot\sqrt{g_{A}^{2}}}=\frac{N-k}{N}=1-\frac{k}{N}$$

2. Suppose that a time series follows a following linear trend process:

$$X_t = c + bt + a_t$$

where b and c are constants. The term a_t is a white noise with mean 0 and variance σ_a^2 .

a) Prove for a simple exponential smoothing

$$E[S_T] = c + b\,T - \frac{1-\alpha}{\alpha}b = E[X_T] - \frac{1-\alpha}{\alpha}b$$

b) Prove for a double exponential smoothing

$$E[S_T^{(2)}] = E[S_T] - \frac{1 - \alpha}{\alpha} b$$

2-(a)

$$E[S_{T}] = \chi \cdot \sum_{\lambda=0}^{\infty} (I-\alpha)^{\lambda} E[X_{T-\lambda}] = \chi \sum_{\lambda=0}^{\infty} (I-\alpha)^{\lambda} [C+b(T-\lambda)]$$

$$= \alpha((+bT) \stackrel{\sim}{=} (-a)^{i} - \alpha \cdot b \stackrel{\sim}{=} i(-a)^{i}$$

$$= \alpha((+bT) (-a) + b\alpha \cdot (-a) \stackrel{\sim}{=} i(-a)^{i-1}$$

$$= \alpha((+bT)(1/a) + b\alpha(1-d)(-1/a^2)$$

$$= (+bT - b(1-\alpha)/\alpha) = E[X_T] - \frac{1-\alpha}{\alpha}b$$

2-(6)

$$\Rightarrow S_{T}^{(2)} = \alpha \cdot S_{T}^{(1)} + (1-\alpha) S_{T-1}^{(2)} = \alpha \cdot \sum_{j=0}^{N-1} (1-\alpha)^{j} S_{T-j}^{(1)} + (1-\alpha)^{T} S_{0}^{(2)}$$

(i)
$$\lim_{T\to\infty} \alpha \cdot \int_{j=0}^{n-1} (1-\alpha)^{j} = \frac{\alpha}{1-(1-\alpha)} = 1$$

$$\lim_{T\to\infty} (-\alpha)^T S_0^{(2)} = 0$$

: By (i), (ii),
$$S_{T}^{(2)} = \alpha \sum_{j=0}^{T-1} (i-\alpha)^{j} S_{n-T}^{(i)}$$

$$E[S_{T}^{(2)}] = E[A \stackrel{=}{\subseteq} (I-A)^{j} S_{T-j}^{(1)}] = A \stackrel{=}{\subseteq} (I-A)^{j} E[S_{T-j}^{(1)}]$$

$$= A \stackrel{=}{\subseteq} (I-A)^{j} E[C+b(n-j+1) - \frac{1}{A}b]$$

$$= A \stackrel{=}{\subseteq} (I-A)^{j} E[C+b(n+1) - \frac{1}{A}b] - Ab \stackrel{=}{\subseteq} (I-A)^{j} j$$

$$= A \stackrel{=}{\subseteq} (I-A)^{j} E[C+b(n+1) - \frac{1}{A}b] - Ab \stackrel{=}{\subseteq} (I-A)^{j} j$$

①: By (i), ① = E[(+b(n+1)-
$$\frac{1}{\alpha}$$
] = E[$S_n^{(i)}$]

②:
$$A = \sum_{i=0}^{\infty} (1-\alpha)^{i} = 0 + (1-\alpha) + 2 \cdot (1-\alpha)^{2} + \cdots$$

$$) \alpha \cdot A = (-\alpha)^2 + \cdots$$

$$(-A)A = (-A) + (-A)^{2} + \cdots$$

$$A = \frac{1-\alpha}{\alpha^2}$$

$$\therefore \Theta = \alpha \cdot b = \frac{1-\alpha}{\alpha^2} = b \cdot \frac{1-\alpha}{\alpha}$$

- 3. Consider series J05 (gold prices in US dollars).
- a) Obtain double moving averages with N=3 and N=6, respectively and make graphs comparing with the original series.
- b) Obtain double exponential smoothing with $\alpha=0.1$ and $\alpha=0.3$, respectively and make graphs comparing with the original series.
- c) Apply Holt's model with $\alpha=0.1$ to the data until 1999 and make one-step-ahead forecasts from 2000 to 2017. Calculate forecasting performance measures based on the forecast errors.

3-a) see the R code (HWI-3.r)

DMA(n=3)

> df_ts_dma.3										
	[1]	NA	NA	NA	NA	437.7911	453.9689	429.6689	391.0778	
	[9]	367.4900	364.3378	380.9144	405.1333	412.8967	399.0867	379.7389	364.7156	
	[17]	360.4133	364.6633	374.6678	376.3667	363.6144	335.6011	307.6622	287.1578	
	[25]	282.2544	292.5078	320.6700	360.3500	417.3889	490.8822	596.9022	717.1589	
	[33]	864.4056	1041.8800	1255.8044	1431.6822	1495.9289	1426.2256	1317.9511	1242.5511	

DMA (n=6)

> df_ts_dma.6										
							NA			
	[9]	410.7294	397.0033	385.9961	386.3117	388.6172	390.0006	392.4361	388.8061	
[17]	379.7500	372.2011	369.6917	368.3900	364.1389	355.1344	342.0144	325.3861	
[25]	308.9278	300.0850	303.9139	321.3022	354.9483	405.7761	478.6261	567.2739	
[33]	677.6439	819.3911	986.4817	1148.0439	1268.9044	1341.0150	1374.8167	1369.2400	

Graph

3-b) see the R code (HWI-3.r)

d=0-1, n=21 登習

> dema. 0.1										
[1]	NA	NA	303.8760	335.0434	345.5788	363.5981	366.8471	361.1570		
[9]	365.7139	384.3167	398.2255	399.2304	400.3809	397.0976	390.6109	387.9053		
[17]	390.0556	391.7193	393.7160	384.5247	369.4794	353.5900	340.0700	326.9778		
[25]	323.1553	330.1159	344.7976	364.0367	410.6952	467.8272	549.9281	638.7242		
[33]	761.8976	932.2243	1095.0992	1183.7943	1230.3939	1248.2950	1279.1532	1305.0713		

d=0.3, n=23 /22

> dema. 0. 3										
[1]	NA	NA	413.5080	448.3529	423.5889	431.7722	402.9831	362.9033		
_ [9]	364.9405	406.1692	425.2023	406.9973	397.1183	380.1943	360.9494	358.0831		
[17]	369.2433	376.0024	381.9868	356.5929	322.9006	295.8832	281.3568	269.9251		
[25]	284.1304	320.7468	365.9039	409.9177	515.8455	622.3896	771.2169	904.4081		
- [33]	1104.3932	1390.1673	1596, 2230	1572.2859	1472.1984	1350.4003	1319,8660	1301.9267		

Graph

3-C) see the R code (HWI-3.r)

SST SSE MSE RMSE MAPE MPE 1.366073e+05 3.418239e+05 1.709119e+04 1.307333e+02 2.389962e+01 -3.634062e+00 MAE ME R.squared R.adj.squared RW.R.squared AIC

9.260834e+01 1.205199e+00 -1.502238e+00 -1.627350e+00 1.597243e+19 2.163222e+02 SBC APC

2.185043e+02 1.864494e+04

> forecast\$accurate

- 4. Consider series J04 (electricity consumption in residential & commercial use). We would like to apply Winters' model.
 - a) Obtain suitable initial values for this model using data in first three years.
 - b) Obtain smoothed values of level, trend, and seasonality using data from 2000 to 2004.
 - c) Make one-step-ahead forecasts from year 2004 to 2017 and calculate forecast errors.

4-a) See the R code (HWI-4.r)

$$b_0 = 21.968$$

4-6) See the R code CHW 1-4.r)

$$b_0 = 64.375$$

$$5_1 = 301.413$$

$$52 = -211.33$$

$$54 = -202.47$$

4-C) See the R code.

> (x.2004_2017-hw.2004_2017.pred)

	. (
	Qtr1	Qtr2	Qtr3	Qtr4					
6	728.677859	497.108754	456.177797	594.500000					
-7	774.177859	466.608754	563.677797	487.000000 -					
8	723.677859	235.108754	233.177797	191.500000					
9	490.177859	6.608754	101.677797	45.000000					
_10	203.677859	-211.891246	-89.822203	-262.500000 _					
11	-228.822141	-560.391246	-505.322203	-466.000000					
12	-369.322141	-735.891246	-613.822203	-756.500000					
13	-521.822141	-943.391246	-536.322203	-872.000000					
14	-778.322141	-1145.891246	-710.822203	-984.500000					