Vision transformer Proiect IAVA

Sociu Daniel

Ce este un transformer?

- Un transformer este un model de învățare adâncă care se bazează pe mecanismul de self-attention folosit în aplicații de sequence to sequence (encoder - decoder), diferit de rețelele neuronale recursive acesta este capabil de a procesa datele de intrare (secvența) în paralel.
- Este folosit cel mai des în aplicații de procesare de limbaj natural (traducerea unui text, NER (Named Entity Recognition)), dar recent este folosit și în aplicații de vedere artificială

Output **Probabilities** Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embeddina Embeddina Inputs Outputs (shifted right)

Structura unui transformer

- Este format din două părți:
 - Encoder contine 2 sub-layers
 - Decoder conține 3 sub-layers
- De obicei este folosit doar encoder-ul, iar pe output-ul acestuia se adaugă clasificatori
- Sunt foarte importante şi legăturile reziduale dintre sub-layere

Figure 1: The Transformer - model architecture.

Intrarea unui transformer

- Intrarea este o secvență de o lungime maximă (teoretică) (e.g.
 BERT 512 tokeni) iar acești tokeni este trecut printr-un layer de embedding care transforma tokenii în vectori de lungime fixă
- Deoarece secvența este calculată în paralel se pierde noțiunea de ordine din secvență, de aceea se adaugă stratul de positional encoding
- Intrarea în blocul encoder este de forma (N, d) unde N este lungimea secvenței iar d este lungimea embedding-ului

Multi-head attention (self-attention)

Multi-Head Attention

- Primește ca input un querry (Q), chei (K)
 care corespund unor valori (V), acestea
 sunt obținute în general prin 3 straturi
 liniare din embedding-uri
 - Vectorii V, K, Q sunt împărțiți în h
 "head-uri" care sunt la final combinate la
 loc în stratul Concat

Scaled Dot-Product Attention

Scaled Dot-Product Attention

- Acest layer reprezintă atenția transformer-ului
- Diagrama din stânga este reprezentată de următoarea formulă:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

• În produsul Q*K^T, Q reprezintă unde acordăm atenție pe cheile K.

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

BERT - Transformer but bidirectional

- BERT folosește aceeași structură a transformer-ului, doar că adaugă câteva idei în plus:
 - Modifică intrarea adăugând 2 tokeni: [CLS] și [SEP], primul este folosit pentru noul task de NSP iar SEP separa 2 propoziții
 - Adaugă task-ul de NSP (Next Sentence Prediction)
 - Se folosește de MLM (masked LM) pentru a prezice tokenii în mod bidirecțional

BERT

Pre-training

Fine-Tuning

Intrare BERT

Vision Transformer(ViT)

- Este un transformer bazat pe BERT care a obținut unele rezultate state of the art, deci având o performantă mai bună decât CNN
- Folosește același token [CLS] ca la BERT pentru a prezice clasa imaginii, dar nu mai folosește [SEP]
- Pentru a primi ca input o imagine, aceasta este împărțită în patch-uri (e.g. modelul de pe huggingface primește imagini de 224x224 cu patch-size 16, adică un sequence 14*14 + 1 = 197)

Vision Transformer

Positional Encoding (ViT)

Figure 10: Position embeddings of models trained with different hyperparameters.

Pre-training ViT

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	111 <u>11</u>
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

ViT pe clasificare si bounding box

- În proiectul acesta am folosit dataset-ul din laboratorul 5,
 American sign language letters, care implică clasificare și bounding box prediction
- Ideea principală este de a compara rezultatele obținute în laboratorul 5 cu cele obținute folosind un vision transformer
- Am luat modelul google/vit-base-patch16-224-in21k care e antrenat on imagenet-21k cu patch-uri de 16x16 si input image size 224

Model pre-antrenat cu clasificator

- Am încercat inițial doar clasificare folosind clasa
 VitForImageClassification care adaugă un clasificator la BERT
- Acest model obţine 88.88% pe validare

Model cu clasificator custom

```
class ClassificationBBoxTransformer(nn.Module):
   def __init__(self, backbone, num classes):
        super(ClassificationBBoxTransformer, self). init ()
        self.backbone = backbone
       self.classifier = nn.Sequential(
           nn.Linear(backbone.config.hidden size, 512).
           nn.ReLU().
           nn.Dropout(0.2),
           nn.Linear(512, num classes)
        self.bounding box = nn.Sequential(
            nn.Linear(backbone.config.hidden size, 512),
           nn.ReLU(),
           nn.Dropout(0.2),
           nn.Linear(512, 4),
           nn.Sigmoid()
   def forward(self, x):
       features = self.backbone(x)
        features = features.last hidden state[:, 0, :]
       # print(features[:, 0, :].shape)
       return self.classifier(features), self.bounding box(features)
```

 Considerând că trebuie făcute două task-uri trebuie să definim un model custom, care folosește ca backbone clasa ViTModel (ViT doar ca fără clasificator)

Fine-tuning ViT

- ViT este un model pre-antrenat deci trebuie să facem fine-tuning pe datele noastre pentru a putea prezice cu acuratețe
- ViT este un model care ocupă foarte mult VRAM, și fiind limitat hardware am decis să dau freeze la unele straturi (primele 6) combinând ideea de feature extraction cu fine-tuning

```
for param in vit_backbone.embeddings.parameters():
    param.requires_grad = False
for layer in vit_backbone.encoder.layer[:NUM_LAYERS_FROZEN]:
    for param in layer.parameters():
        param.requires_grad = False
```

Problemă loss-uri

• Avem 2 task-uri deci prin urmare avem şi 2 loss-uri care de obicei tind să fie unbalanced:

```
Classification loss:
tensor(2.4068, device='cuda:0', grad_fn=<NllLossBackward0>)
Bounding box loss:
tensor(0.0210, device='cuda:0', grad_fn=<MseLossBackward0>)
```

 Deci loss-ul pentru clasificare este aproximativ 100x mai mare, deci vom introduce o constantă C care va echilibra loss-urile (împărţind classification loss la C)

Rezultate obținute cu resnet (lab5)

 Antrenare folosind resnet18 ca backbone pentru modelul definit cu un clasificator și un regressor

	Antrenare	Validare	IOU 50%	IOU 75%	IOU 90%
Acuratete	100%	88.19%	100%	84.72%	13.19%
Loss	0.0099	0.4073			

Rezultate ViT - fără C

- Folosind transformer-ul descris mai sus am obținut rezultatele:
- Aici am considerat ViT fără variabila C şi cu reducerea learning rate-ului (ReduceLROnPlateau) şi gradient clipping (mici optimizări)

	Antrenare	Validare	IOU 50%	IOU 75%	IOU 90%
Acuratete	100%	90.97%	100%	80.55%	12.5%
Loss	0.0854	0.3724			

Rezultate ViT - cu C

- Acum considerăm rezultatele obținute adăugând constanta C pentru echilibrarea loss-ului
- Se poate observa scăderea mică pe validare a acurateții clasificării dar crește foarte mult acuratețea pe bounding box, as expected

	(A)	Antrenare	Validare	IOU 50%	IOU 75%	IOU 90%
Cu Sigmoid	Acuratete	100%	87.50%	100%	99.3%	63.88%
	Loss	0.0006	0.4733			6 f
Fara Sigmoid	Acuratete	100%	88.19%	100%	99.3%	65.97%
	Loss	0.0006	0.3549			

Validation loss Validation accuracy 3.0 0.9 Fara Sigmoid: 0.8 2.5 0.7 2.0 0.6 accuracy 1.5 0.4 1.0 0.3 0.2 0.5 0.1 10 10 2 8 2 6 8 epochs epochs Validation iou 50% Validation iou 75% Validation iou 90% 1.00 1.04 0.6 0.98 1.02 0.5 accuracy 96.0 accuracy P.0 0.94 0.98 0.3 0.92 0.96 0.2 0.90 10 10 10

epochs

6

epochs

6

epochs

8

Alte experimente și observații

- Rezultatele prezentate mai sunt sunt cele mai bune obţinute, am încercat şi alţi parametrii precum: modificarea optimizatorului, diverse modele pentru clasificator şi regressor, diferite learning rate-uri, număr diferit de layere îngheţate
- Cel mai probabil se pot optimiza parametrii în așa fel încât acuratețea clasificatorului să fie 90%+ așa cum a fost înainte de adăugarea C-ului

Bibliografie

- https://arxiv.org/abs/1706.03762 (Vaswani et al. Transformer)
- https://arxiv.org/abs/1810.04805 (Devlin et al. BERT)
- https://arxiv.org/abs/2010.11929 (Dosovitskiy et al. ViT)
- https://huggingface.co/docs/transformers/model_doc/vit

Vă mulțumesc!