Mathe B Klausurzettel

Henri Paul Heyden stu240825

Sei K Körper, zum Beispiel \mathbb{R} .

Analysis

Folgen

Folgen sind Funktionen aus $K^{\mathbb{N}_{\mu}}$ für $\mu \in \mathbb{N}$ als Startindex. Die Menge an Folgen nach K bezeichnen wir als $\mathcal{S}(K)$

Umgebungen

Eine Umgebung von $x \in K$ ist eine Menge an Intervallen, in denen x innerer Punkt ist.

Eine Umgebung von x ist die Kugel mit Radius $\delta \in K$: $B(x, \delta) := (x - \delta, x + \delta)$. $\mathcal{U}(x)$ ist die Menge aller Umgebungen um x.

Limes

Der Limes einer Folge ist die Zahl, für die nur endlich viele Umgebungen existieren, in denen keine Folgekomponenten liegen.

Es gilt für eine Folge $(x_n)_n$:

$$\lim_{n} x_n = p \in \overline{\mathbb{R}} \iff \forall \epsilon > 0 : \exists n_0 : \forall n \ge n_0 : |x_n - p| < \epsilon$$

Sandwichsatz für die Folge $(x_n)_n$:

$$\exists a_n, b_n \in \mathcal{S}(\mathbb{R}) : a_n \ge x_n \ge b_n \land p = \lim_n a_n = \lim_n b_n \Longrightarrow \lim_n x_n = p$$

Teilfolge:

Ist $(x_n)_n$ Folge mit Limes p, dann haben alle Folgen mit $o \in \mathbb{N}^{\mathbb{N}}$ streng monoton steigend und $a_n := x_{o(n)}$ Limes p.

Kombinationssätze:

- 1) $\lim_{n} c \cdot x_n = c \cdot \lim_{n} x_n$
- $2) \lim_{n} (x_n + y_n) = \lim_{n} x_n + \lim_{n} y_n$
- 3) $\lim_n x_n \cdot y_n = \lim_n x_n \cdot \lim_n y_n$

Reihen

Reihen sind Folgen über Folgen. Sei $(x_n) \in \mathcal{S}(\mathbb{R})$.

Dann bezeichnen wir die Reihe über $(x_n)_{\mu}$ als $\left(\sum_{k=\mu}^n x_k\right)_n$

Wurzelkriterium:

Sei
$$(x_n)_n$$
 Folge. Sei $p = \lim_n \sqrt[n]{|x_n|}$

 $p < 1 \Longrightarrow$ die Reihe über x_n konvergiert absolut.

 $p > 1 \Longrightarrow$ die Reihe über x_n divergiert.

Quotientenkriterium:

Sei
$$(x_n)_n$$
 Folge. Sei $p = \lim_n \lim_n \left| \frac{x_n}{x_{n-1}} \right|$

Sei $(x_n)_n$ Folge. Sei $p = \lim_n \lim_n \left| \frac{x_n}{x_{n-1}} \right|$ $p < 1 \Longrightarrow$ die Reihe über x_n konvergiert absolut.

 $p > 1 \Longrightarrow$ die Reihe über x_n divergiert.

Topologie

Wir bezeichnen x einen HP, wenn $\exists a_n \in \mathcal{S}(\mathbb{R} \setminus \{x\}) : \lim_n a_n = x$ gilt.

Funktionslimes

Sei $x \text{ HP von } \Omega \subseteq \mathbb{R} \text{ und } f \in \Omega^{\mathbb{R}}$. Dann bezeichnen wir den Funktionslimes von f in x als $\lim_n f(z_n)$ für alle $z_n \in \mathcal{S}(\Omega \setminus \{x\})$ mit Limes x, wenn er existiert.

Wir schreiben das dann auch: $\lim_{z\to x} f(z)$.

Die Kombinationssätze für den Limes gelten auch für den Funktionslimes.

Stetigkeit

Wir nennen eine Funktion stetig in x, wenn x kein HP ist,

oder wenn $\lim_{z\to x} f(z) = f(x)$ gilt.

Stetigkeit von f in x ist äquivalent zu:

 $\forall \epsilon > 0 : \exists \delta > 0 : \forall z \in B(x, \delta) \cap \Omega : f(z) \in B(f(x), \epsilon)$

Differenzierbarkeit

Sei $\Omega \subseteq \mathbb{R}$. Wir nennen eine Funktion $f \in \mathbb{R}^{\Omega}$ differenzierbar in einem HP x, wenn gilt: $\lim_{z \to x} \frac{f(z) - f(x)}{z - x} \in \mathbb{R}$.

Differenzierbarkeit impliziert Stetigkeit.

Somit sind rationale Funktionen und Polynome differenzierbar und stetig.