This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C12N 15/57, 9/64, 5/10, C07K 16/40, G01N 33/573, C12Q 1/68, 1/37	A1	 (11) Numéro de publication internationale: WO 99/53077 (43) Date de publication internationale: 21 octobre 1999 (21.10.99)
(21) Numéro de la demande internationale: PCT/FR9 (22) Date de dépôt international: 7 avril 1999 (0)		CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(30) Données relatives à la priorité: 98/04389 8 avril 1998 (08.04.98)	F	Publiée R Avec rapport de recherche internationale.
(71) Déposant (pour tous les Etats désignés sauf US): INS NATIONAL DE LA SANTE ET DE LA RECH MEDICALE (INSERM) [FR/FR]; 101, rue de F-75013 Paris (FR).	IERCH	E
(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): OUIMET, [CA/FR]; 3, rue Jules César, F-75012 Paris (FR). Claude [FR/FR]; 31, rue de Flers, F-75015 Pari ROSE, Christiane [FR/FR]; 20, place Henri IV, F Le Mesnil Saint Denis (FR). BONHOMME, Marie- [CA/FR]; 910 Lapointe, Saint-Laurent, Québec F (CA). FACCHINETTI, Patricia [FR/FR]; 31, avec Général de Gaulle, F-94420 Le Plessis Trévis SCHWARTZ, Jean-Charles [FR/FR]; 9, villa F-75014 Paris (FR).	GROS F-7832 -Chant H4L L enue c se (FR	5,). O al 8 u u
(74) Mandataires: OBOLENSKY, Michel etc.; Cabinet La place d'Estienne d'Orves, F-75441 Paris Cedex 09		2.

- (54) Title: NOVEL NEP II MEMBRANE METALLOPROTEASE AND ITS USE FOR SCREENING INHIBITORS USEFUL IN THERAPY
- (54) Titre: NOUVELLE METALLOPROTEASE MEMBRANAIRE NEP II ET SON UTILISATION POUR LE CRIBLAGE D'INHIBITEURS UTILES EN THERAPIE

(57) Abstract

The invention concerns an isolated polypeptide comprising an amino acid sequence selected among the sequence SEQ ID n° 2 or n° 4, a sequence derived from or homologous with said sequence SEQ ID n° 2 or n° 4, or a biologically active fragment of said sequence SEQ ID n° 2 or n° 4, said isolated polypeptide being designated as "NEP II", and the use of said NEP II polypeptide for screening inhibitors useful in therapy.

(57) Abrégé

Cette invention concerne un polypeptide isolé comprenant une séquence d'acides aminés choisie parmi la séquence SEQ ID n° 2 ou n° 4, une séquence dérivée ou homologue de ladite séquence SEQ ID n° 2 ou n° 4, ou un fragment biologiquement actif de ladite séquence SEQ ID n° 2 ou n° 4, ledit polypeptide isolé étant désigné par "NEP II", ainsi que l'utilisation dudit polypeptide NEP II pour le criblage d'inhibiteurs utiles en thérapie.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
ΛM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
ΑZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	ТJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL.	Israë!	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

20

PCT/FR99/00807 WO 99/53077

" Nouvelle métalloprotéase membranaire NEP II et son utilisation pour le criblage d'inhibiteurs utiles en thérapie".

- 1 -

La présente invention a pour objet une nouvelle métalloprotéase membranaire appelée NEP II et son utilisation, notamment pour le criblage d'inhibiteurs utiles en thérapie.

Les métalloprotéases membranaires telles que la néprilysine (NEP I, EC 3.4.24.11) jouent un rôle important dans l'activation ou l'inactivation des messagers peptidiques neuronaux ou hormonaux. Leur inhibition sélective par des composés synthétiques a déjà conduit à des médicaments couramment utilisés en thérapeutique ou en cours de développement clinique, 10 notamment dans les domaines gastroentérologique (Baumer et coll., Gut, 1992, 33: 753-758) et cardiovasculaire (Gros et coll., Proc. Natl. Acad. Sci. USA, 1991, 88 : 4210-4214). L'isolement des ADNc de gènes de nouvelles métalloprotéases apparentées est de nature à permettre le développement de nouvelles classes d'inhibiteurs spécifiques à applications thérapeutiques 15 prometteuses. C'est ainsi que le clonage et l'expression du gène de l'enzyme de conversion de l'endothéline (ECE) (Xu et coll., Cell, 1994, 78 : 473-485) a permis la mise au point d'inhibiteurs potentiellement utiles dans certaines affections cardiovasculaires.

Les auteurs de la présente invention ont mis en évidence une nouvelle métalloprotéase membranaire appartenant à la famille ECE/NEP/Kell (Lee S. et coll., 1991, PNAS 88(14):6353-57), qu'ils ont appelée NEP II.

La présente invention a donc pour objet un polypeptide isolé comprenant une séquence d'acides aminés choisie parmi la séquence SEQ ID 25 n°2 ou SEQ ID n° 4, une séquence dérivée ou homologue de ladite séquence SEQ ID n°2 ou SEQ ID n° 4, ou un fragment biologiquement actif de ladite séquence SEQ ID n°2 ou SEQ ID n° 4, ledit polypeptide isolé étant désigné par «NEP II ».

La séquence SEQ ID n° 2 est la séquence d'acides aminés de 30 NEP II identifiée chez le rat.

La séquence SEQ ID n° 4 est une séquence (partielle) d'acides aminés de NEP II identifiée chez l'homme.

Par polypeptide "dérivé", on entend tout polypeptide résultant d'une modification de nature génétique et/ou chimique de la séquence SEQ ID n° 2 ou SEQ ID n° 4, c'est-à-dire par mutation, délétion, addition, substitution et/ou modification chimique d'au moins un acide aminé, ou toute isoforme ayant une séquence identique à la séquence SEQ ID n° 2 ou SEQ ID n° 4 mais contenant au moins un acide aminé sous la forme D.

Lesdites substitutions sont de préférence des substitutions conservatives, c'est-à-dire des substitutions d'acides aminés de même classe, tels que des substitutions d'acides aminés aux chaînes latérales non chargées (tels que l'asparagine, la glutamine, la serine, la thréonine, et la tyrosine), d'acides aminés aux chaînes latérales basiques (tels que la lysine, l'arginine, et l'histidine), d'acides aminés aux chaînes latérales acides (tels que l'acide aspartique et l'acide glutamique) ; d'acides aminés aux chaînes latérales apolaires (tels que la glycine, l'alanine, la valine, la leucine, l'isoleucine, la proline, la phénylalanine, la méthionine, le tryptophane, et la cystéine).

Par polypeptide "homologue", on entend plus particulièrement tout polypeptide isolable chez d'autres espèces de mammifères que le rat ou l'homme.

15

Lesdits polypeptides homologues présentent préférentiellement une homologie de séquence supérieure à 70 %, de préférence encore supérieure à 75 %, avec la séquence SEQ ID n° 2 ou SEQ ID n° 4 complète, l'homologie étant particulièrement élevée dans la partie dudit polypeptide, contenant le site actif.

L'homologie est généralement déterminée en utilisant un logiciel d'analyse de séquence (par exemple, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). Des séquences d'acides aminés similaires sont alignées pour obtenir le maximum de degré d'homologie (i.e. identité). A cette fin, il peut être nécessaire d'introduire de manière artificielle des espaces (« gaps ») dans la séquence. Une fois l'alignement optimal réalisé, le degré d'homologie (i.e. identité) est établi par enregistrement de toutes les positions pour lesquelles les acides aminés des

deux séquences comparées sont identiques, par rapport au nombre total de positions.

Lesdits polypeptides dérivés, homologues ou les fragments polypeptidiques du polypeptide de séquence SEQ ID n° 2 ou SEQ ID n° 4 sont biologiquement actifs, c'est-à-dire présentent des propriétés biologiques identiques ou similaires des propriétés biologiques du polypeptide NEP II de séquence SEQ ID n° 2 ou SEQ ID n° 4, à savoir une activité métalloprotéasique.

Les fragments polypeptidiques préférés comprennent la séquence du site actif responsable de la liaison de l'atome de zinc indispensable à la catalyse. Ce site actif a été identifié comme englobant les résidus HEX₁X₂H, X₁ et X₂ représentant des acides aminés variables. Il s'agit en particulier de la séquence HEITH (acides aminés 608 à 612 de la séquence SEQ ID n° 2) dans le polypeptide NEP II chez le rat et l'homme.

10

15

20

30

La présente invention a également pour objet un acide nucléique isolé comprenant une séquence nucléotidique choisie parmi la séquence SEQ ID n°1 ou SEQ ID n° 3, une séquence dérivée ou homologue de ladite séquence SEQ ID n°1 ou SEQ ID n° 3, ou leurs séquences complémentaires.

La séquence SEQ ID n° 1 est la séquence d'ADNc comprenant la phase codante pour NEP II identifiée chez le rat.

La séquence SEQ ID n° 3 est la séquence d'ADNc comprenant (partiellement) la phase codante pour NEP II identifiée chez l'homme.

Par séquence nucléotidique "dérivée", on entend toute séquence nucléotidique codant pour un polypeptide dérivé de NEP II tel que défini précédemment, c'est-à-dire une séquence résultant d'une modification de la séquence SEQ ID n° 1 ou SEQ ID n° 3, notamment par mutation, délétion, addition ou substitution d'au moins un nucléotide. Sont en particulier comprises les séquences dérivées de la séquence SEQ ID n° 1 ou SEQ ID n° 3 par dégénérescence du code génétique.

Par séquence "homologue", on entend plus particulièrement toute séquence nucléotidique codant pour un polypeptide NEP II homologue

du polypeptide NEP II de séquence SEQ ID n° 2 ou SEQ ID n° 4 chez d'autres espèces de mammifères que le rat ou l'homme.

Une telle séquence homologue présente préférentiellement une homologie supérieure à 70 %, de préférence encore supérieure à 75 %, avec la séquence SEQ ID n° 1 ou SEQ ID n° 3, l'homologie étant particulièrement élevée dans la partie centrale de la séquence codant pour le polypeptide NEP II.

De manière préférentielle, une telle séquence nucléotidique homologue hybride spécifiquement aux séquences complémentaires de la séquence SEQ ID n° 1 ou n° 3, dans des conditions stringentes. Les paramètres définissant les conditions de stringence dépendent de la température à laquelle 50% des brins appariés se séparent (Tm).

Pour les séquences comprenant plus de 30 bases, Tm est définie par la relation : Tm=81,5+0,41(%G+C)+16,6Log(concentration en cations) – 0,63(%formamide) –(600/nombre de bases) (Sambrook et al, Molecular Cloning, A laboratory manual, Cold Spring Harbor laboratory Press, 1989, pages 9.54-9.62).

Pour les séquences de longueur inférieure à 30 bases, Tm est définie par la relation : Tm=4(G+C)+2(A+T).

20

25

Dans des conditions de stringence appropriées, auxquelles les séquences aspécifiques n'hybrident pas, la température d'hybridation est approximativement de 5 à 30°C, de préférence de 5 à 15°C en dessous de Tm, de préférence encore de 5 à 10°C en dessous de Tm (forte stringence), et les tampons d'hybridation utilisés sont de préférence des solutions de force ionique élevée telle qu'une solution 6xSSC par exemple.

Les séquences nucléotidiques selon l'invention peuvent être utilisées pour la production d'une protéine recombinante NEP II selon l'invention, selon des techniques de production de produits recombinants connues de l'homme du métier

Un système efficace de production d'une protéine recombinante nécessite de disposer d'un vecteur, par exemple d'origine plasmidique ou virale, et d'une cellule hôte compatible.

L'hôte cellulaire peut être choisi parmi des systèmes procaryotes, comme les bactéries, ou eucaryotes, comme par exemple des levures, des cellules d'insectes, de mammifères, telles que les cellules CHO (cellules d'ovaires de hamster chinois) ou tout autre système avantageusement disponible.

Le vecteur doit comporter un promoteur, des signaux d'initiation et de terminaison de la traduction, ainsi que les régions appropriées de régulation de la transcription. Il doit pouvoir être intégré dans la cellule et peut éventuellement posséder des signaux particuliers spécifiant la sécrétion de la protéine traduite.

Ces différents signaux de contrôle sont choisis en fonction de l'hôte cellulaire utilisé. A cet effet, les séquences nucléotidiques selon l'invention peuvent être insérées dans des vecteurs à réplication autonome au sein de l'hôte choisi, ou des vecteurs intégratifs de l'hôte choisi. De tels vecteurs seront préparés selon les méthodes couramment utilisées par l'homme du métier, et les clones en résultant peuvent être introduits dans un hôte approprié par des méthodes standard, telles que par exemple l'électroporation.

Des exemples de vecteurs d'intérêt sont les plasmides pcDNA 3.1, PCR2.1 (Invitrogen), ou pMbac (Stratagene).

L'invention vise les vecteurs de clonage et/ou d'expression contenant une séquence nucléotidique selon l'invention, et vise en outre les 25 cellules hôtes transfectées par ces vecteurs. Ces cellules peuvent être obtenues par l'introduction dans des cellules hôtes d'une séquence nucléotidique insérée dans un vecteur tel que défini ci-dessus, puis la mise en culture desdites cellules dans des conditions permettant la réplication et/ou l'expression de la séquence nucléotidique transfectée.

Ces cellules sont utilisables dans une méthode de production d'un polypeptide recombinant selon l'invention.

La méthode de production d'un polypeptide de l'invention sous forme recombinante est elle-même comprise dans la présente invention, et se caractérise en ce que l'on cultive les cellules transfectées dans des conditions permettant l'expression d'un polypeptide recombinant selon l'invention, et que l'on récupère ledit polypeptide recombinant.

Les procédés de purification utilisés sont connus de l'homme du métier. Le polypeptide recombinant peut être purifié à partir de lysats et extraits cellulaires, du surnageant du milieu de culture, par des méthodes utilisées séparément ou en combinaison, telles que le fractionnement, les méthodes de chromatographie, les techniques d'immunoaffinité à l'aide d'anticorps monoclonaux ou de sérum polyclonal, etc.

La présente invention a également pour objet les sondes nucléotidiques, capables de s'hybrider fortement et spécifiquement avec une séquence d'acide nucléique, d'un ADN génomique ou d'un ARN messager, codant pour un polypeptide selon l'invention. Les conditions d'hybridation appropriées correspondent aux conditions de température et de force ionique usuellement utilisées par l'homme du métier (Sambrook et al., 1989), de préférence à des conditions de forte stringence, c'est-à-dire des conditions de température comprises entre (T_m moins 5° C) et (T_m moins 15° C) et de préférence encore, à des conditions de température comprises entre T_m et (T_m moins 10° C) (forte stringence).

15

25

Les sondes préférées sont notamment les sondes oligonucléotidiques choisies parmi les séquences SEQ ID n°5 à SEQ ID n°27.

De telles sondes sont utiles pour des réactions de séquençage ou d'amplification spécifique selon la technique dite de PCR (réaction en chaîne par polymérase) ou toute autre variante de celle-ci.

De telles sondes sont également utiles dans un procédé de détection de l'expression du polypeptide NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu par hybridation *in situ*, comprenant les étapes consistant à :

- préparer l'ARN dudit échantillon ou desdites cellules ou dudit tissu;

- mettre en contact ledit ARN obtenu avec au moins une sonde ayant une séquence nucléotidique capable de s'hybrider spécifiquement avec une séquence nucléotidique selon l'invention, ladite sonde pouvant être notamment une sonde oligonucléotidique de séquence SEQ ID n° 5 à SEQ ID n° 27 :
 - détecter la présence d'ARNm hybridant avec ladite sonde indicatrice de l'expression du polypeptide NEP II.

10

L'invention a également pour objet les anticorps mono- ou polyclonaux ou leurs fragments, anticorps chimériques ou immunoconjugués, caractérisés en ce qu'ils sont obtenus à partir d'un polypeptide selon l'invention administré à un animal, et sont capables de reconnaître spécifiquement un polypeptide selon l'invention. L'invention a en outre pour objet l'utilisation de ces anticorps pour la purification ou la détection d'un polypeptide NEP II dans un échantillon biologique.

Les anticorps polyclonaux peuvent être obtenus à partir du sérum d'un animal immunisé contre la protéine NEP II, produite par exemple par recombinaison génétique suivant la méthode décrite ci-dessus, selon les modes opératoires usuels.

Les anticorps monoclonaux peuvent être obtenus selon la méthode classique de culture d'hybridomes décrite par Köhler et Milstein (Nature, 1975, vol. 256, pp 495-497).

Les anticorps peuvent être des anticorps chimériques, des anticorps humanisés, des fragments Fab et F(ab')2. Ils peuvent également se présenter sous forme d'immunoconjugués ou d'anticorps marqués.

Les anticorps selon l'invention sont particulièrement utiles pour détecter la présence de NEP II.

30

25

La présente invention a donc pour objet un procédé de détection immunologique de NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu comprenant les étapes consistant à :

- mettre en contact ledit échantillon cellulaire ou tissulaire, lesdites cellules ou ledit tissu avec un anticorps détectable selon l'invention ;
- détecter la présence dudit anticorps, indicatrice de la présence du polypeptide NEP II.

Par "anticorps détectable", on entend soit un anticorps marqué par un groupement détectable, tel qu'un groupement radioactif, enzymatique, fluorogène ou fluorescent, etc., soit un anticorps auquel se lie un autre anticorps lui-même marqué de manière détectable.

5

25

Les anticorps selon l'invention peuvent ainsi permettre d'évaluer une surexpression du polypeptide II, qui peut être indicatrice de cellules tumorales neuroendocriniennes notamment.

L'invention a également pour objet un procédé d'identification de composés substrats du polypeptide NEP II tel que défini précédemment, dans lequel on met en contact lesdits composés, éventuellement marqués, avec le polypeptide NEP II, et on évalue la coupure desdits composés par NEP II, indicatrice de l'activité métalloprotéasique de NEP II envers lesdits composés substrats.

De tels substrats spécifiques de NEP II peuvent être en particulier utilisés dans un procédé de détection de l'activité métalloprotéasique de NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu comprenant les étapes consistant à :

- mettre en contact ledit échantillon cellulaire ou tissulaire, lesdites cellules ou ledit tissu avec un composé substrat du polypeptide NEP II obtenu selon l'invention, ledit composé substrat étant éventuellement marqué;
- évaluer la coupure dudit composé substrat, indicatrice de l'activité métalloprotéasique de NEP II.

Les cellules susceptibles d'être ainsi testées sont notamment les cellules transfectées par un polynucléotide codant pour le polypeptide NEP II tel que défini précédemment. Les extraits tissulaires susceptibles d'être testés sont en particulier les membranes de testicule, particulièrement riches en

métalloprotéase NEP II.

L'invention a par ailleurs pour objet un procédé de criblage de composés susceptibles d'inhiber l'activité métalloprotéasique du polypeptide NEP II selon l'invention, dans lequel on met en contact lesdits composés avec ledit polypeptide NEP II et on évalue le taux d'inhibition de l'activité métalloprotéasique de NEP II.

Les composés susceptibles d'inhiber l'activité métalloprotéasique de NEP II sont de préférence des peptides courts de 2 ou 3 acides aminés naturels ou modifiés.

Les peptides synthétiques identifiés comme inhibiteurs de l'activité métalloprotéasique de NEP II par ce procédé de criblage peuvent être couplés à un groupe chélateur de zinc tels que les groupes thiol, phosphate ou acide hydroxamique, selon les techniques classiques connues de l'homme du métier. Le composé inhibiteur obtenu est un bon candidat en tant que principe actif d'un médicament, en association avec un véhicule pharmaceutiquement acceptable. Ledit groupe chélateur peut éventuellement être protégé de manière transitoire, par exemple par un ester de thiol, pour améliorer la biodisponibilité dudit principe actif.

Le polypeptide NEP II selon l'invention est particulièrement utile pour le criblage de composés inhibiteurs de l'activité métalloprotéasique de NEP II utiles pour la fabrication de médicament destiné à traiter les troubles impliquant les transmissions peptidergiques auxquelles participe NEP II.

Parmi les troubles en cause, on peut citer notamment les maladies cardiovasculaires, neurodégénératives, les troubles de la croissance d'origine endocrinienne, les perturbations de l'axe hypothalamo-hypophysaire et les affections endocriniennes. Sont plus particulièrement visés les troubles affectant le métabolisme des neurohormones ou facteurs de la sphère corticotrope.

Les composés substrats de NEP II ou inhibiteurs de l'activité métalloprotéasique de NEP II obtenus selon les procédés décrits précédemment peuvent également être utiles pour détecter la protéine NEP II.

La présente invention a donc également pour objet un procédé de détection de NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu comprenant les étapes consistant à :

- mettre en contact ledit échantillon cellulaire ou tissulaire, lesdites cellules ou ledit tissu avec un composé substrat du polypeptide NEP II obtenu tel que défini précédemment ou avec un composé inhibiteur de l'activité métalloprotéasique de NEP II obtenu selon le procédé de criblage tel que défini précédemment, ledit composé substrat ou ledit composé inhibiteur étant marqué;
 - détecter la présence dudit composé substrat ou dudit composé inhibiteur, indicatrice de la présence du polypeptide NEP II
- Par "composé substrat marqué" ou "inhibiteur marqué", on entend un composé substrat ou un composé inhibiteur marqué de manière détectable, par exemple par un groupement radioactif, enzymatique, fluorogène ou fluorescent, etc.

Les exemples suivants illustrent l'invention sans la limiter.

EXEMPLE 1:

20

Clonage de l'ADNc codant pour NEP II chez le rat

Des oligonucléotides dégénérés ont été obtenus à partir de l'alignement des séquences peptidiques des enzymes ECE, NEP I et Kell et de la délimitation des zones de forte homologie.

L'ARN total de différents tissus de rat (cerveau, intestin et testicules) a été soumis à une transcription inverse (RT) et amplifié par réaction en chaîne à la polymérase (PCR), à l'aide d'une paire d'oligonucléotides dégénérés sur la région N-terminale riche en résidus cystéine :

Les séquences de ces oligonucléotides dégénérés sont les suivantes :

DCYS2 CCC AAG (G/T)CG (A/G)G(A/G) CTG GTC

DCYS3 T(A/T)(C/T) GC(A/C/T/G) GG(A/T) GG(A/C) TGG

Ceci a permis d'amplifier un fragment de 420 paires de bases à partir de l'ARNt de testicule codant pour une phase ouverte de lecture qui présente une homologie de 76% avec la protéine NEP I. Cette séquence a été complétée par 3' et 5' RACE (rapid amplification of cDNA ends), à partir d'ARNt de cerveau de de testicules. Les séquences ont été confirmées par la vérification de cinq clones différents pour chaque tissu et chaque amplification. L'ADNc complet (SEQ ID n° 1) a alors été cloné dans les vecteurs PCR2.1 et pcDNA3.1 (Invitrogen).

15

EXEMPLE 2:

Caractéristiques du polypeptide NEP II de rat

Le nouveau gène isolé code pour une protéine de 774 acides aminés (SEQ ID n° 2) qui, outre de fortes homologies avec les enzymes NEP I, ECE et Kell (52%, 40% et 28% d'identité en acides aminés, respectivement) possède la séquence consensus du site actif HEXXH, une région transmembranaire (acides aminés 24 à 40 sur la séquence SEQ ID n° 2) suivie de quatre résidus cystéine caractéristiques de cette famille, et sept sites potentiels de glycosylation. Trois épissages alternatifs ont été identifiés par séquençage des RACE et par RT-PCR. Un de ces épissages alternatifs élimine un site potentiel de glycosylation et pourrait affecter le transit de la protéine à la surface de la cellule ou son activité. Chaque épissage correspond par ailleurs à un exon de la NEP I, ce qui suggère une structure de gène similaire. Ces données démontrent une appartenance de cette nouvelle enzyme à la famille des métalloprotéases ECE/NEP/Kell. Son homologie marquante avec NEP I a conduit à la nommer NEP II.

EXEMPLE 3:

Clonage de l'ADNc codant pour NEP II chez l'homme

- Afin de cloner l'homologue humain de NEP II, deux oligonucléotides ont été conçus, basés sur la séquence protéique de NEP II de rat. Les séquences ont été choisies d'une part pour leur faible dégénérescence (comme par exemple un tryptophane, représenté par un seul codon dans le code génétique) et d'autre part pour leur degré de conservation (comme le site de liaison du zinc).
 - 1- (H)EITHFD (SEQ ID $n^{\circ}28$) ou 5' CGA GAT CAC ACA TGG CTT TGA TGA 3' (S) (SEQ ID $n^{\circ}22$)
 - 2- QVWCGS (SEQ ID n°29) ou 5'- GGA CCC ACA CCA CAC CTG 3' (AS) (SEQ ID n°23)
- Une réaction en chaîne à la polymérase a été effectuée sur de l'ADNc d'hippocampe humain obtenu à partir d'une banque (Stratagene), et une bande de 330 pb a été amplifiée, sous-clonée et séquencée (SEQ ID n°3). La séquence obtenue présente une homologie de séquence de 82 % avec la NEPII de rat, ce qui permet d'affirmer qu'elle code pour l'homologue humain.
- La présence du site de liaison du zinc HEITH a été confirmée par 5' RACE à l'aide des oligonucléotides HNII-2 et HNII-3, spécifiques à l'humain. De même, les oligonucléotides HNII-1 et HNII-2 permettront l'amplification de la région 3' par la technique de 3' RACE.
 - HNII-1 5'- CGG CCT GGA TCT CAC CCA TGA G 3' (SEQ ID n°24)
- 25 HNII-2 5'- CTG ACT GCT CCC GGA AGT GCT GGG TG 3' (SEQ ID n°25)
 - HNII-3 5'- GAG CAG CTC TTC TTC ATC 3' (SEQ ID n°26)
 - HNII-4 5'- CTC CAC CAA TCC ATC ATG TTG C 3' (SEQ ID n°27).

EXEMPLE 4:

5

10

20

Expression tissulaire de NEP II

Des études de Northern-blot et de RT-PCR montrent que NEP II est codé par un transcrit de 2,8 Kb très fortement exprimé dans les testicules de rat et, modérément, dans le coeur, le foie, le système digestif et le cerveau. Des études de RT-PCR semi-quantitatives montrent un profil d'expression similaire dans ces tissus ainsi qu'une prédominance des formes longues.

Toutes ces caractéristiques indiquent clairement que la protéine identifiée pour la première fois est une métalloprotéase membranaire (ectoprotéase) responsable du métabolisme de peptides messagers neuronaux et/ou hormonaux.

Le polypeptide NEP II natif est exprimé de manière hétérogène dans le système nerveux, les glandes (hypophyse, testicule), l'appareil digestif (intestin grêle notamment), l'appareil cardiovasculaire (coeur notamment).

Les techniques d'hybridation *in situ* indiquent en outre une forte expression de la protéine NEP II dans les neurones et les cellules adénohypophysaires exprimant le gène de la POMC (propiomélanocortine), précurseur de l'ACTH.

Ces localisations indiquent la participation de NEP II dans la protéolyse d'hormones et de neurotransmetteurs peptidergiques ou de leurs précurseurs émanant de ou agissant sur ces divers organes. Il devient dès lors intéressant dans un but thérapeutique d'affecter les transmissions peptidergiques correspondantes en inhibant NEP II.

15

REVENDICATIONS

PCT/FR99/00807

- 1. Polypeptide isolé comprenant une séquence d'acides aminés choisie parmi la séquence SEQ ID n°2 ou SEQ ID n° 4, une séquence dérivée ou homologue de ladite séquence SEQ ID n°2 ou SEQ ID n° 4, ou un fragment biologiquement actif de ladite séquence SEQ ID n°2 ou SEQ ID n° 4, ledit polypeptide isolé étant désigné par «NEP II ».
- Acide nucléique isolé comprenant une séquence nucléotidique choisie parmi la séquence SEQ ID n°1 ou SEQ ID n°3, une séquence dérivée ou homologue de ladite séquence SEQ ID n°1 ou n° 3, ou leurs séquences complémentaires.
 - 3. Sonde oligonucléotidique hybridant spécifiquement avec une séquence nucléotidique selon la revendication 2, ladite sonde ayant une séquence nucléotidique choisie parmi les séquences SEQ ID n°5 à SEQ ID n°27.
 - 4. Vecteur de clonage et/ou d'expression contenant une séquence nucléotidique selon la revendication 2.
 - 5. Cellule hôte transfectée par un vecteur selon la revendication 4.
- 6. Anticorps mono- ou polyclonaux ou leurs fragments, anticorps chimériques ou immunoconjugués, caractérisés en ce qu'ils sont obtenus à partir d'un polypeptide selon la revendication 1 administré à un animal, et sont capables de reconnaître spécifiquement un polypeptide selon la revendication 1.
- 7. Procédé de détection immunologique de NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu comprenant les étapes consistant à :
 - mettre en contact ledit échantillon cellulaire ou tissulaire, lesdites cellules ou ledit tissu avec un anticorps détectable selon la revendication 6 ;
- détecter la présence dudit anticorps, indicatrice de la présence du polypeptide NEP II.

- 8. Procédé de détection de l'expression du polypeptide NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu par hybridation in situ, comprenant les étapes consistant à :
- préparer l'ARN dudit échantillon ou desdites cellules ou dudit 5 tissu;
 - mettre en contact ledit ARN obtenu avec au moins une sonde ayant une séquence nucléotidique capable de s'hybrider spécifiquement avec une séquence nucléotidique selon la revendication 2, ladite sonde pouvant être notamment une sonde oligonucléotidique selon la revendication 3;
- détecter la présence d'ARNm hybridant avec ladite sonde, indicatrice de l'expression du polypeptide NEP II.
 - 9. Procédé d'identification de composés substrats du polypeptide NEP II selon la revendication 1, dans lequel on met en contact lesdits composés, éventuellement marqués, avec le polypeptide NEP II, et on évalue la coupure desdits composés par NEP II, indicatrice de l'activité métalloprotéasique de NEP II envers lesdits composés substrats.

- 10. Procédé de détection de l'activité métalloprotéasique de NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu comprenant les étapes consistant à :
 - mettre en contact ledit échantillon cellulaire ou tissulaire, lesdites cellules ou ledit tissu avec un composé substrat du polypeptide NEP II obtenu selon le procédé de la revendication 9, ledit composé substrat étant éventuellement marqué;
- évaluer la coupure dudit composé substrat, indicatrice de l'activité métalloprotéasique de NEP II.
 - 11. Procédé de criblage de composés susceptibles d'inhiber l'activité métalloprotéasique du polypeptide NEP II selon la revendication 1, dans lequel on met en contact lesdits composés avec ledit polypeptide NEP II et on évalue le taux d'inhibition de l'activité métalloprotéasique de NEP II.
- 30 12. Procédé de détection de NEP II dans un échantillon cellulaire ou tissulaire ou dans des cellules ou un tissu comprenant les étapes consistant à :

- mettre en contact ledit échantillon cellulaire ou tissulaire, lesdites cellules ou ledit tissu avec un composé substrat du polypeptide NEP II obtenu selon le procédé de la revendication 9 ou avec un composé inhibiteur de l'activité métalloprotéasique de NEP II obtenu selon le procédé de criblage de la revendication 11, ledit composé substrat ou ledit composé inhibiteur étant marqué;
- détecter la présence dudit composé substrat ou dudit composé inhibiteur, indicatrice de la présence du polypeptide NEP II.
- 13. Utilisation du polypeptide NEP II selon la revendication 1 pour le criblage de composés inhibiteurs de l'activité métalloprotéasique de NEP II utiles pour la fabrication de médicament destiné à traiter les troubles impliquant les transmissions peptidergiques auxquelles participe NEP II.

15

14. Utilisation selon la revendication 13 dans laquelle lesdits troubles sont choisis parmi les maladies cardiovasculaires, neurodégénératives, les troubles de la croissance d'origine endocrinienne, les perturbations de l'axe hypothalamo-hypophysaire et les affections endocriniennes.

LISTE DE SEQUENCES

<110>	INSERM	
<120>	Nouvelle métalloprotéase membranaire NEP II et son utilisation pour le criblage d'inhibiteurs utiles en thérapie	
<130>	BET 99/0150	
<140> <141>		
	FR/9804389 1998-04-08	
<160>	29	
<170>	PatentIn Ver. 2.1	
<220> <221>	2765 DNA Rattus rattus CDS (107) (2428)	
GCAAAG	CACT AGCTTCAGTG TGCTCAAGGC ATCCAAGCTC CAGCTGCCTC CCTCCTGGCC	60
CTGGCC	CTGG GTGCTCAGCT GTGTGCCTTC CACCCAGAAC CGGCTG ATG GGG AAG Met Gly Lys 1	115
ser GT	G AGC TCA GTG GGG ATG ATG GAG AGA GCG GAC AAC TGT GGG AGG u Ser Ser Val Gly Met Met Glu Arg Ala Asp Asn Cys Gly Arg 5 10 15	163
AGG CG Arg Ar 20	C CTA GGC TTC GTG GAG TGT GGG CTG CTG GTA CTG CTG ACA CTG g Leu Gly Phe Val Glu Cys Gly Leu Leu Val Leu Leu Thr Leu 25 30 35	211

CTG Leu	TTG Leu	ATG Met	GGA Gly	GCC Ala 40	ATA Ile	GTG Val	ACT Thr	CTG Leu	GGT Gly 45	GTC Val	TTC Phe	TAC Tyr	AGC Ser	ATA Ile 50	GGG Gly	259
AAG Lys	CAG Gln	CTG Leu	CCC Pro 55	CTC Leu	TTA Leu	AAT Asn	AGC Ser	CTG Leu 60	CTG Leu	CAC His	GTC Val	TCC Ser	CGG Arg 65	CAT His	GAG Glu	307
AGG Arg	ACG Thr	GTT Val 70	GTA Val	AAA Lys	CGA Arg	GTC Val	CTC Leu 75	AGA Arg	GAT Asp	TCA Ser	TCG Ser	CAG Gln 80	AAG Lys	AGT Ser	GAC Asp	355
ATC Ile	TGT Cys 85	ACT Thr	ACC Thr	CCA Pro	AGC Ser	TGC Cys 90	GTG Val	ATA Ile	GCA Ala	GCT Ala	GCC Ala 95	AGA Arg	ATC Ile	CTC Leu	CAG Gln	403
AAC Asn 100	ATG Met	GAC Asp	CAG Gln	TCA Ser	AAG Lys 105	AAA Lys	CCC Pro	TGC Cys	GAC Asp	AAC Asn 110	TTC Phe	TAT Tyr	CAG Gln	TAT Tyr	GCT Ala 115	451
TGC Cys	GGA Gly	GGC Gly	TGG Trp	CTA Leu 120	CGG Arg	CAC His	CAT His	GTG Val	ATC Ile 125	CCC Pro	GAG Glu	ACC Thr	AAC Asn	TCC Ser 130	AGA Arg	499
TAC Tyr	AGC Ser	GTC Val	TTT Phe 135	GAC Asp	ATC Ile	CTT Leu	CGG Arg	GAT Asp 140	GAG Glu	CTG Leu	GAG Glu	GTC Val	ATC Ile 145	CTC Leu	AAA Lys	547
GGG Gly	GTG Val	CTG Leu 150	GAG Glu	GAT Asp	TCC Ser	TCT Ser	GTC Val 155	CAG Gln	CAC His	CGC Arg	CCA Pro	GCT Ala 160	GTG Val	GAG Glu	AAG Lys	595
GCC Ala	AAG Lys 165	ACA Thr	CTG Leu	TAC Tyr	CGC Arg	TCC Ser 170	TGC Cys	ATG Met	AAC Asn	CAG Gln	AGT Ser 175	GTG Val	ATA Ile	GAG Glu	AAG Lys	643
AGA Arg 180	GAC Asp	TCT Ser	GAG Glu	CCC Pro	CTG Leu 185	CTG Leu	AAC Asn	GTC Val	TTA Leu	GAT Asp 190	ATG Met	ATA Ile	GGA Gly	GGT Gly	TGG Trp 195	691
CCT	GTA	GCC	ATG	GAC	AAG	TGG	AAT	GAG	ACC	ATG	GGC	CCC	AAG	TGG	GAA	739

Pro	Val	Ala	Met	Asp 200		Trp	Asn	Glu	Thr 205	Met	Gly	Pro	Lys	Trp 210		
												AAC Asn				787
CTC Leu	ATC Ile	GAC Asp 230	CTC Leu	TTC Phe	ATC Ile	TGG Trp	AAT Asn 235	GAT Asp	GAC Asp	CAG Gln	AAC Asn	TCC Ser 240	AGC Ser	CGG Arg	CAC His	835
GTC Val	ATC Ile 245	TAC Tyr	ATA Ile	GAC Asp	CAG Gln	CCC Pro 250	ACC Thr	TTG Leu	GGC Gly	ATG Met	CCC Pro 255	TCC Ser	CGG Arg	GAG Glu	TAC Tyr	883
TAT Tyr 260	TTC Phe	AAG Lys	GAA Glu	GAC Asp	AGC Ser 265	CAC His	CGG Arg	GTA Val	CGG Arg	GAA Glu 270	GCC Ala	TAC Tyr	CTG Leu	CAG Gln	TTC Phe 275	931
ATG Met	ACA Thr	TCA Ser	GTG Val	GCC Ala 280	ACT Thr	ATG Met	CTG Leu	AGG Arg	AGA Arg 285	GAC Asp	CTG Leu	AAC Asn	CTG Leu	CCC Pro 290	GGG Gly	979
GAG Glu	ACC Thr	GAT Asp	TTG Leu 295	GTG Val	CAG Gln	GAG Glu	GAA Glu	ATG Met 300	GCA Ala	CAG Gln	GTG Val	CTG Leu	CAT His 305	CTG Leu	GAG Glu	1027
ACA Thr	CAT His	CTG Leu 310	GCC Ala	AAC Asn	GCC Ala	ACG Thr	GTC Val 315	CCC Pro	CAG Gln	GAG Glu	AAA Lys	AGG Arg 320	CAT His	GAT Asp	GTC Val	1075
ACC Thr	GCC Ala 325	CTG Leu	TAT Tyr	CAC His	CGA Arg	ATG Met 330	GGC Gly	CTG Leu	GAG Glu	GAG Glu	CTG Leu 335	CAG Gln	GAA Glu	AGG Arg	TTT Phe	1123
GGT Gly 340	CTG Leu	AAG Lys	GGG Gly	TTT Phe	AAC Asn 345	TGG Trp	ACT Thr	CTC Leu	TTC Phe	ATA Ile 350	CAA Gln	AAC Asn	GTG Val	CTG Leu	TCT Ser 355	1171
TCT Ser	GTG Val	CAA Gln	GTT Val	GAG Glu 360	CTG Leu	CTC Leu	CCG Pro	AAT Asn	GAG Glu 365	GAG Glu	GTG Val	GTG Val	GTC Val	TAT Tyr 370	GGC Gly	1219

ATC Ile	CCC Pro	TAC Tyr	CTG Leu 375	GAG Glu	AAT Asn	CTT Leu	GAG Glu	GAG Glu 380	ATC Ile	ATT Ile	GAC Asp	GTC Val	TTC Phe 385	CCA Pro	GCA Ala		1267
CAG Gln	ACC Thr	TTG Leu 390	CAA Gln	AAC Asn	TAC Tyr	CTG Leu	GTG Val 395	TGG Trp	CGC Arg	CTG Leu	GTG Val	CTA Leu 400	GAT Asp	CGC Arg	ATC Ile		1315
GGC Gly	AGC Ser 405	CTG Leu	AGC Ser	CAG Gln	AGA Arg	TTC Phe 410	AAA Lys	GAA Glu	GCG Ala	CGT Arg	GTG Val 415	GAC Asp	TAC Tyr	CGC Arg	AAG Lys		1363
GCG Ala 420	CTG Leu	TAC Tyr	GGT Gly	ACA Thr	ACC Thr 425	ATG Met	GAG Glu	GAA Glu	GTA Val	CGC Arg 430	TGG Trp	CGG Arg	GAG Glu	TGT Cys	GTC Val 435		1411
AGC Ser	TAT Tyr	GTC Val	AAC Asn	AGC Ser 440	AAC Asn	ATG Met	GAG Glu	AGT Ser	GCC Ala 445	GTG Val	GGC Gly	TCC Ser	CTC Leu	TAC Tyr 450	ATC Ile		1459
AAG Lys	CGG Arg	GCC Ala	TTC Phe 455	TCC Ser	AAG Lys	GAC Asp	AGC Ser	AAG Lys 460	AGC Ser	ATA Ile	GTC Val	AGT Ser	GAG Glu 465	CTT Leu	ATC Ile		1507
GAG Glu	AAG Lys	ATA Ile 470	CGG Arg	TCC Ser	GTG Val	TTT Phe	GTG Val 475	GAT Asp	AAC Asn	CTG Leu	GAC Asp	GAG Glu 480	TTG Leu	AAC Asn	TGG Trp		1555
ATG Met	GAT Asp 485	GAG Glu	GAA Glu	TCC Ser	AAG Lys	AAA Lys 490	AAG Lys	GCC Ala	CAG Gln	GAA Glu	AAG Lys 495	GCC Ala	TTG Leu	AAT Asn	ATC Ile		1603
CGG Arg 500	GAA Glu	CAG Gln	ATC Ile	GGC Gly	TAC Tyr 505	CCT Pro	GAC Asp	TAC Tyr	ATT Ile	TTG Leu 510	GAA Glu	GAC Asp	AAT Asn	AAC Asn	AGA Arg 515	:	1651
CAC His	CTG Leu	GAT Asp	GLu	GAA Glu 520	TAC Tyr	TCC Ser	AGT Ser	CTG Leu	ACT Thr 525	TTC Phe	TCA Ser	GAG Glu	GAC Asp	CTG Leu 530	TAT Tyr	:	1699
TTT	GAG	AAC	GGG	CTT	CAG	AAC	CTC	AAG	AAC	AAT	GCC	CAA	AGG	AGC	CTC]	1747

Phe	Glu	Asn	Gly 535	Leu	Gln	Asn	Leu	Lys 540	Asn	Asn	Ala	Gln	Arg 545	Ser	Leu		
AAG Lys	AAA Lys	CTT Leu 550	CGG Arg	GAA Glu	AAG Lys	GTG Val	GAC Asp 555	CAG Gln	AAT Asn	CTC Leu	TGG Trp	ATC Ile 560	ATT Ile	GGG Gly	GCT Ala	179	∌5
GCA Ala	GTG Val 565	GTC Val	AAT Asn	GCA Ala	TTC Phe	TAC Tyr 570	TCC Ser	CCA Pro	AAC Asn	AGA Arg	AAC Asn 575	CTG Leu	ATC Ile	GTC Val	TTT Phe	184	13
CCA Pro 580	GCG Ala	GGG Gly	ATC Ile	CTC Leu	CAG Gln 585	CCA Pro	CCC Pro	TTC Phe	TTC Phe	AGC Ser 590	AAG Lys	GAC Asp	CAA Gln	CCA Pro	CAG Gln 595	189	}1
GCC Ala	TTG Leu	AAT Asn	TTC Phe	GGG Gly 600	GGC Gly	ATC Ile	GGG Gly	ATG Met	GTG Val 605	ATT Ile	GGA Gly	CAC His	GAG Glu	ATC Ile 610	ACA Thr	193	39
CAC His	GGC Gly	TTT Phe	GAT Asp 615	GAT Asp	AAC Asn	GGT Gly	CGG Arg	AAC Asn 620	TTT Phe	GAC Asp	AAG Lys	AAT Asn	GGC Gly 625	AAC Asn	ATG Met	198	17
CTG Leu	GAC Asp	TGG Trp 630	TGG Trp	AGC Ser	AAC Asn	TTC Phe	TCG Ser 635	GCC Ala	CGG Arg	CAC His	TTC Phe	CGA Arg 640	CAG Gln	CAG Gln	TCA Ser	203	15
CAG Gln	TGT Cys 645	ATG Met	ATT Ile	TAT Tyr	CAG Gln	TAC Tyr 650	AGC Ser	AAC Asn	TTC Phe	TCT Ser	TGG Trp 655	GAA Glu	CTA Leu	GCA Ala	GAC Asp	208	13
AAC Asn 660	CAG Gln	AAT Asn	GTG Val	AAC Asn	GGA Gly 665	TTC Phe	AGC Ser	ACC Thr	CTC Leu	GGG Gly 670	GAG Glu	AAC Asn	ATC Ile	GCC Ala	GAC Asp 675	213	1
AAC Asn	GGC Gly	GGT Gly	GTG Val	CGG Arg 680	CAG Gln	GCA Ala	TAC Tyr	AAG Lys	GCT Ala 685	TAC Tyr	CTA Leu	CAG Gln	TGG Trp	CTA Leu 690	GCT Ala	217	9
GAA Glu	GGC Gly	GGC Gly	AGA Arg 695	GAC Asp	CAG Gln	AGA Arg	CTG Leu	CCG Pro 700	GGA Gly	CTG Leu	AAC Asn	CTG Leu	ACC Thr 705	TAT Tyr	GCT Ala	222	7

6

CAG Gln	CTT Leu	TTC Phe 710	TTC Phe	ATT Ile	AAC Asn	TAT Tyr	GCC Ala 715	CAG Gln	GTG Val	TGG Trp	TGT Cys	GGG Gly 720	TCC Ser	TAC Tyr	AGG Arg	2275
CCG Pro	GAG Glu 725	TTC Phe	GCC Ala	ATC Ile	CAG Gln	TCC Ser 730	ATC Ile	AAG Lys	ACA Thr	GAT Asp	GTC Val 735	CAC His	AGT Ser	CCT Pro	CTT Leu	2323
AAG Lys 740	TAC Tyr	AGG Arg	GTG Val	CTG Leu	GGC Gly 745	TCA Ser	CTA Leu	CAG Gln	AAC Asn	CTA Leu 750	CCA Pro	GGC Gly	TTC Phe	TCT Ser	GAG Glu 755	2371
GCG Ala	TTC Phe	CAC His	TGC Cys	CCA Pro 760	CGA Arg	GGC Gly	AGC Ser	CCC Pro	ATG Met 765	CAC His	CCT Pro	ATG Met	AAT Asn	CGA Arg 770	TGT Cys	2419
CGC Arg	ATC Ile	TGG Trp	TAGO	CAAG	GC I	'GAGC	TATO	C TO	CGGC	CCAC	GCC	ccgc	CAC			2468
CCAG	AGGC	TT C	GTGA	ATGG	T GT	'AGCC	GGCA	TAG	ATGI	'GCA	GGTT	GTTG	сс т	'GAAG	GCCAC	2528
TGGA	.GCCA	CC A	AGCCA	.GCCC	т сс	GCGC	CCAG	CCT	'AGAG	GGC	AGCC	ACCC	GC C	CACA	TCTGG	2588
GATG	AGTG	GT G	GTGC	CTGG	T CC	TGCG	CCTT	TTC	CGGC	CAG	TGAG	GGTC	AG C	GGCC	CGGTA	2648
GGAG	CAGT	CA G	CTGT	cccc	C AC	CCTC	TTCA	. TAG	TGTG	TGG	CTAA	ATGT	CC T	CGAG	CTTCA	2708
GACT	TGAG	CT A	AGTA	AACG	C TT	CAAA	GA AG	GCA	AAAA	AAA	AAAA	AAAA	AA A	AAAG	GG	2765

<210> 2

<211> 774

<212> PRT

<213> Rattus rattus

<400> 2

Met Gly Lys Ser Glu Ser Ser Val Gly Met Met Glu Arg Ala Asp Asn $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

- Cys Gly Arg Arg Leu Gly Phe Val Glu Cys Gly Leu Leu Val Leu 20 25 30
- Leu Thr Leu Leu Met Gly Ala Ile Val Thr Leu Gly Val Phe Tyr 35 40 45
- Ser Ile Gly Lys Gln Leu Pro Leu Leu Asn Ser Leu Leu His Val Ser 50 60
- Arg His Glu Arg Thr Val Val Lys Arg Val Leu Arg Asp Ser Ser Gln 65 70 75 80
- Lys Ser Asp Ile Cys Thr Thr Pro Ser Cys Val Ile Ala Ala Ala Arg 85 90 95
- Ile Leu Gln Asn Met Asp Gln Ser Lys Lys Pro Cys Asp Asn Phe Tyr 100 105 110
- Gln Tyr Ala Cys Gly Gly Trp Leu Arg His His Val Ile Pro Glu Thr 115 120 125
- Asn Ser Arg Tyr Ser Val Phe Asp Ile Leu Arg Asp Glu Leu Glu Val 130 140
- Ile Leu Lys Gly Val Leu Glu Asp Ser Ser Val Gln His Arg Pro Ala
 145 150 155 160
- Val Glu Lys Ala Lys Thr Leu Tyr Arg Ser Cys Met Asn Gln Ser Val 165 170 175
- Ile Glu Lys Arg Asp Ser Glu Pro Leu Leu Asn Val Leu Asp Met Ile 180 185 190
- Gly Gly Trp Pro Val Ala Met Asp Lys Trp Asn Glu Thr Met Gly Pro 195 200 205
- Lys Trp Glu Leu Glu Arg Gln Leu Ala Val Leu Asn Ser Gln Phe Asn 210 215 220
- Arg Arg Val Leu Ile Asp Leu Phe Ile Trp Asn Asp Asp Gln Asn Ser 225 235 235

Ser Arg His Val Ile Tyr Ile Asp Gln Pro Thr Leu Gly Met Pro Ser 245 Arg Glu Tyr Tyr Phe Lys Glu Asp Ser His Arg Val Arg Glu Ala Tyr 260 265 Leu Gln Phe Met Thr Ser Val Ala Thr Met Leu Arg Arg Asp Leu Asn 280 Leu Pro Gly Glu Thr Asp Leu Val Gln Glu Glu Met Ala Gln Val Leu 295 His Leu Glu Thr His Leu Ala Asn Ala Thr Val Pro Gln Glu Lys Arg 310 His Asp Val Thr Ala Leu Tyr His Arg Met Gly Leu Glu Glu Leu Gln 325 Glu Arg Phe Gly Leu Lys Gly Phe Asn Trp Thr Leu Phe Ile Gln Asn Val Leu Ser Ser Val Gln Val Glu Leu Leu Pro Asn Glu Glu Val Val 360 Val Tyr Gly Ile Pro Tyr Leu Glu Asn Leu Glu Glu Ile Ile Asp Val 375 Phe Pro Ala Gln Thr Leu Gln Asn Tyr Leu Val Trp Arg Leu Val Leu 385 390 Asp Arg Ile Gly Ser Leu Ser Gln Arg Phe Lys Glu Ala Arg Val Asp 405 Tyr Arg Lys Ala Leu Tyr Gly Thr Thr Met Glu Glu Val Arg Trp Arg 420 Glu Cys Val Ser Tyr Val Asn Ser Asn Met Glu Ser Ala Val Gly Ser Leu Tyr Ile Lys Arg Ala Phe Ser Lys Asp Ser Lys Ser Ile Val Ser

G1u 465	Leu	Ile	Glu	Lys	Ile 470	Arg	Ser	Val	Phe	Val 475	Asp	Asn	Leu	Asp	Glu 480
Leu	Asn	Trp	Met	Asp 485	Glu	Glu	Ser	Lys	Lys 490	Lys	Ala	Gln	Glu	Lys 495	
Leu	Asn	Ile	Arg 500	Glu	Gln	Ile	Gly	Tyr 505		Asp	Tyr	Ile	Leu 510	Glu	Asp
Asn	Asn	Arg 515	His	Leu	Asp	Glu	Glu 520	Tyr	Ser	Ser	Leu	Thr 525	Phe	Ser	Glu
Asp	Leu 530	Tyr	Phe	Glu	Asn	Gly 535	Leu	Gln	Asn	Leu	Lys 540	Asn	Asn	Ala	Gln
Arg 545	Ser	Leu	Lys	Lys	Leu 550	Arg	Glu	Lys	Val	Asp 555	Gln	Asn	Leu	Trp	Ile 560
Ile	Gly	Ala	Ala	Val 565	Val	Asn	Ala	Phe	Tyr 570	Ser	Pro	Asn	Arg	Asn 575	Leu
Ile	Val	Phe	Pro 580	Ala	Gly	Ile	Leu	Gln 585	Pro	Pro	Phe	Phe	Ser 590	Lys	Asp
Gln	Pro	Gln 595	Ala	Leu	Asn	Phe	Gly 600	Gly	Ile	Gly	Met	Val 605	Ile	Gly	His
Glu	Ile 610	Thr	His	Gly	Phe	Asp 615	Asp	Asn	Gly	Arg	Asn 620	Phe	Asp	Lys	Asn
Gly 625	Asn	Met	Leu	Asp	Trp 630	Trp	Ser	Asn	Phe	Ser 635	Ala	Arg	His	Phe	Arg 640
Gln	Gln	Ser	Gln	Cys 645	Met	Ile	Tyr	Gln	Tyr 650	Ser	Asn	Phe	Ser	Trp 655	Glu
Leu	Ala	Asp	Asn 660	Gln	Asn	Val	Asn	Gly 665	Phe	Ser	Thr	Leu	Gly 670	Glu	Asn
Ile	Ala	Asp 675	Asn	Gly	Gly	Val	Arg 680	Gln	Ala	Tyr	Lys	Ala 685	Tyr	Leu	Gln

WO 99/53077 PCT/FR99/00807

Trp Leu Ala Glu Gly Gly Arg Asp Gln Arg Leu Pro Gly Leu Asn Leu 690 695 700	
Thr Tyr Ala Gln Leu Phe Phe Ile Asn Tyr Ala Gln Val Trp Cys Gly 705 710 715 720	
Ser Tyr Arg Pro Glu Phe Ala Ile Gln Ser Ile Lys Thr Asp Val His 725 730 735	
Ser Pro Leu Lys Tyr Arg Val Leu Gly Ser Leu Gln Asn Leu Pro Gly 740 750	
Phe Ser Glu Ala Phe His Cys Pro Arg Gly Ser Pro Met His Pro Met 755 760 765	
Asn Arg Cys Arg Ile Trp 770	
<210> 3 <211> 327 <212> DNA <213> Homo sapiens	
<400> 3	
GGGCACGAGA TCACGCACGG CTTTGATGAC AATGGCCGGA ACTTCGACAA GAATGGCAAC	60
ATGATGGATT GGTGGAGTAA CTTCTCCACC CAGCACTTCC GGGAGCAGTC AGAGTGCATG	120
ATCTACCAGT ACGGCAACTA CTCCTGGGAC CTGGCAGACG AACAGAACGT GAACGGATTC	180
AACACCCTTG GGGAAAACAT TGCTGACAAC GGAGGGGTGC GGCAAGCCTA TAAGGCCTAC	240
CTCAAGTGGA TGGCAGAGGA CAGCAGCTGC CCGGCCTGGA TCTCACCCAT	300
GAGCAGCTCT TCTTCATCAA CTATGCC	327
<210> 4 <211> 116	

<212> PRT

<213> Homo sapiens

< 40	0> 4																
Gly 1	His	Glu	Ile	Thr 5	His	Gly	Phe	Asp	Asp 10	Asn	Gly	Arg	Asn	Phe 15	Asp		
Lys	Asn	Gly	Asn 20	Met	Met	Asp	Trp	Trp 25	Ser	Asn	Phe	Ser	Thr 30	Gln	His		
Phe	Arg	Glu 35	Gln	Ser	Glu	Cys	Met 40	Ile	Tyr	Gln	Tyr	Gly 45	Asn	Tyr	Ser		
Trp	Asp 50	Leu	Ala	Asp	Glu	Gln 55	Asn	Val	Asn	Gly	Phe 60	Asn	Thr	Leu	Gly		
Glu 65	Asn	Ile	Ala	Asp	Asn 70	Gly	Gly	Val	Arg	Gln 75	Ala	Tyr	Lys	Ala	Tyr 80		
Leu	Lys	Trp	Met	Ala 85	Glu	Gly	Gly	Lys	Asp 90	Gln	Gln	Leu	Pro	Gly 95	Leu		
Asp	Leu	Thr	His 100	Glu	Gln	Leu	Phe	Phe 105	Ile	Asn	Tyr	Ala	Gln 110	Val	Trp		
Cys	Gly	Cys 115	Lys														
<213 <213	l> 20 2> DN 3> sé	IA equer	nce a nuclé	artif eotic	icie le	elle											
<400)> 5																
		CA C	STTGG	CTGT	`G											20	,
<212 <213	> 21 > DN > sé	A quen	ice a	rtif otid	icie le	lle											
<400																	
AGTT	CCCA	CT T	'GGGG	CCCA	TG											21	

<210> 7 <211> 20 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 7 GCTGGAGGAT TCCTCTGTCC	20
<210> 8 <211> 19 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 8 CGGGGATCAC ATGGTGCCG	19
<210> 9 <211> 21 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 9 CTACCCCAAG CTGCGTGATA G	21
<210> 10 <211> 21 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 10 CGGCACCATG TGATCCCCGA G	21
<210> 11 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide	-

<400> 11 GCAAAGCACT AGCTTCAGTG TG	22
<210> 12 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 12 GGTCATCATT CCAGATGAAG AG	22
<210> 13 <211> 20 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 13 CGATGAGGAC GCGCCTGTTG	20
<210> 14 <211> 20 <212> DNA <213> séquence artificielle <223> oligonucléotide	
<400> 14 TGCAGGAAAG GTTTGGTCTG	20
<210> 15 <211> 20 <212> DNA <213> séquence artificielle <223> oligonucléotide	20
<400> 15 GAACGCCTCA GAGAAGCCTG	20
<210> 16 <211> 20	20

<213	PNAséquence artificielleoligonucléotide	
	> 16 CCAGAA CTCCAGCCGG	20
<211 <212	> 17 > 21 > DNA	
<223	> sequence artificielle > oligonucléotide	
	> 17 ATGCTT TTTCTCCTGG G	21
<213		
<400:	> 18 AAGTTT CTTGAGGCTC C	21
<213		
<4000 GATC	> 19 GGCTAC CCTGACTAC	19
<213>		
<400>		

<pre><210> 21</pre>	GTTCGCCATC CAGTCCATC	19
<pre><212> DNA <213> sequence artificielle <223> oligonucléotide <400> 21</pre>		
<pre><213> sequence artificielle <223> oligonucléotide <400> 21 CGAAGCCTAG GCGCCTCCTC 20 <210> 22 <211> 24 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 22 cgagatcaca catggctttg atga 24 <210> 23 <211> 18 <212> DNA <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggaccacac catggcttig atga 39 <400> 23 ggaccacac cacacctg 49 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggaccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 <211> 25 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 <210> 25 <211> 26 <211> 26 <211> 26 <211> 26 <211> DNA</pre>		
<pre><223> oligonucléotide <400> 21 CGAAGCCTAG GCGCCTCCTC</pre>		
<pre><400> 21 CGAAGCCTAG GCGCCTCCTC <210> 22 <211> 24 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 22 cgagatcaca catggctttg atga <210> 23 <211> 18 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 cgagatcaca catggcttg atga <210> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 cgagatcacac cacacctg 20 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cgacctggat ctcacccatg ag 22 <210> 25 <211> 26 <211> 26 <211> DNA</pre>	<213> séquence artificielle	
CGAAGCCTAG GCGCCTCCTC <210> 22 <211> 24 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 22 cgagatcaca catggctttg atga	<223> oligonucléotide	
<pre></pre>	• • • • • • • • • • • • • • • • • • • •	
<pre><211> 24 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 22 cgagatcaca catggctttg atga</pre>	CGAAGCCTAG GCGCCTCCTC	20
<pre><212> DNA <213> séquence artificielle <223> oligonucléotide <400> 22 cgagatcaca catggctttg atga <210> 23 <211> 18 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cg13> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <211> 26 <212> DNA</pre>		
<pre><213> séquence artificielle <223> oligonucléotide <400> 22 cgagatcaca catggctttg atga</pre>		
<pre><223> oligonucléotide <400> 22 cgagatcaca catggctttg atga</pre>		
<pre><400> 22 cgagatcaca catggctttg atga 24 <210> 23 <211> 18 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide 24 <210> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA</pre>	<pre><213> séquence artificielle</pre>	
cgagatcaca catggctttg atga 24 <210> 23 211> 18 <212> DNA 213> séquence artificielle <223> oligonucléotide 18 <400> 23 18 <210> 24 22 <211> 22 22 <212> DNA 213> séquence artificielle <223> oligonucléotide 22 <400> 24 24 cggcctggat ctcacccatg ag 22 <210> 25 211> 26 <212> DNA 212> DNA	<223> oligonucléotide	
<pre></pre>		
<pre><211> 18 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg</pre>	cgagatcaca catggctttg atga	24
<pre><212> DNA <213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA</pre>		
<213> séquence artificielle <223> oligonucléotide <400> 23 ggacccacac cacacctg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA		
<pre><223> oligonucléotide <400> 23 ggacccacac cacactg 18 <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA</pre>		
<pre><400> 23 ggacccacac cacactg</pre>	<213> séquence artificielle	
ggacccacac cacacctg <pre> <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA</pre>	<223> oligonucléotide	
<pre> <210> 24 <211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA </pre>	<400> 23	
<211> 22 <212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag <210> 25 <211> 26 <212> DNA	ggacccacac cacacctg	18
<212> DNA <213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag <210> 25 <211> 26 <212> DNA	<210> 24	
<213> séquence artificielle <223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag <210> 25 <211> 26 <212> DNA	<211> 22	
<223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA		
<223> oligonucléotide <400> 24 cggcctggat ctcacccatg ag 22 <210> 25 <211> 26 <212> DNA	<213> séquence artificielle	
<pre>cggcctggat ctcacccatg ag <210> 25 <211> 26 <212> DNA</pre> 22	<223> oligonucléotide	
<210> 25 <211> 26 <212> DNA	<400> 24	
<210> 25 <211> 26 <212> DNA	cggcctggat ctcacccatg ag	22
<211> 26 <212> DNA	<210> 25	
	<212> DNA	

```
<223> oligonucléotide
<400> 25
ctgactgctc ccggaagtgc tgggtg
                                                                     26
<210> 26
<211> 18
<212> DNA
<213> séquence artificielle
<223> oligonucléotide
<400> 26
gagcagetet tetteate
                                                                     18
<210> 27
<211> 22
<212> DNA
<213> séquence artificielle
<223> oligonucléotide
<400> 27
ctccaccaat ccatcatgtt gc
                                                                     22
<210> 28
<211> 6
<212> PRT
<213> séquence artificielle
<223> séquence protéique correspondant à la sonde oligonucléotidique SEQ ID n^{\circ}22
<400> 28
Glu Ile Thr His Phe Asp
 1
<210> 29
<211> 6
<212> PRT
<213> séquence artificielle
<223> séquence protéique correspondant à la sonde oligonucléotidique SEQ ID n^{\circ}23
<400> 29
Gln Val Trp Cys Gly Ser
```

INTERNATIONAL SEARCH REPORT

I. ational Application No

					700807
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/57 C12N9/64 C12O1/68 C12O1/37	C12N5/10	C07K16/4	40 GO1N	33/573
According to	o International Patent Classification (IPC) or to both	national classification a	nd IPC		
B. FIELDS	SEARCHED		<u> </u>		
Minimum do IPC 6	ocumentation searched (classification system follow C12N C07K G01N C12Q	ed by classification sym	nbols)		
Documental	tion searched other than minimum documentation to	the extent that such do	ocuments are inclu	ded in the fields s	earched
Electronic d	ata base consulted during the international search	name of data base and	, where practical.	search terms used	1)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category	Citation of document, with indication, where appro	opriate, of the relevant p	oassages		Relevant to claim No.
Α	EP 0 272 928 A (GENENTEC 29 June 1988	H INC)			
Furt	her documents are listed in the continuation of box	с. Г у	Patent tamily o	nembers are listed	in annex
<u> </u>		С. <u>[X</u>	Patent family n	nembers are listed	in annex.
"A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume later th	int which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"X" do	or priority date and cited to understand nvention ocument of particul cannot be consider nvolve an inventive ocument of particul cannot be consider document is combiled.	not in conflict with I the principle or the lar relevance; the ed novel or canno a step when the de lar relevance; the red to involve an in- ned with one or manation being obvio- of the same patent	t be considered to ocument is taken alone claimed invention iventive step when the ore other such docu- us to a person skilled
1	July 1999		08/07/19	999	
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan; NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx, 31 651 epo nl. Fax: (+31-70) 340-3016		uthorized officer	Schaal, C	

INTERNATIONAL SEARCH REPORT

Information on patent family members

I ational Application No
PCT/FR 99/00807

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0272928 A	29-06-1988	US	4960700 A	02-10-1990
		AT	11 99 36 T	15-04-1995
		AU	616876 B	14-11-1991
		AU	8305787 A	30-06-1988
		AU	623845 B	28-05-1992
		AU	8305887 A	30-06-1988
		DE	3751169 D	20-04-1995
		DE	3751169 T	26-10-1995
		DK	684087 A	03-10-1988
		EP	0272929 A	29-06-1988
		EP	0596355 A	11-05-1994
		ES	2072251 T	16-07-1995
		ΙE	66333 B	27-12-1995
		IL	84928 A	27-02-1994
		JP	1172344 A	07-07-1989
		JP	2685468 B	03-12-1997
		US	5780025 A	14-07-1998
		CA	1322160 A	14-09-1993
		DE	3751748 D	25-04-1996
		DE	3751748 T	14-11-1996
		DK	684487 A	07-10-1990

RAPPORT DE RECHERCHE INTERNATIONALE

C ade Internationale No PCT/FR 99/00807

CIB 6	C12N15/57 C12N9/64 C12N5/10 C12Q1/68 C12Q1/37	C07K16/40	G01N33/573
Selon la cla	ssification internationale des brevets (CIB) ou à la fois selon la classifi	cation nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE		
Documenta CIB 6	tion minimale consultée (système de classification suivi des symboles C12N C07K G01N C12Q	de classement)	
Documenta	tion consultee autre que la documentation minimale dans la mesure of	ù ces documents relèvent des do	omaines sur lesquels a porté la recherche
Base de do	nnées électronique consultée au cours de la recherche internationale (nom de la base de données, et	si réalisable, termes de recherche utilisés)
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Catégorie [,]	Identification des documents cités, avec. le cas échéant, l'indication	des passages pertinents	no. des revendications visees
A	EP 0 272 928 A (GENENTECH INC) 29 juin 1988		
Voir	la suite du cadre C pour la fin de la liste des documents	X Les documents de fami	lles de brevets sont indiqués en annexe
: Catégories	s spéciales de documents cités:		
"A" docume	nt définissant l'état général de la technique, non éré comme particulièrement pertinent	date de priorité et n'apparte	té pour comprendre le principe
"E" docume ou apr	ent antérieur, mais publié à la date de dépôt international ") ès cette date ")	C" document particulièrement pe	ertinent; l'inven tion revendiquée ne peut
priorité	nt pouvant jeter un doute sur une revendication de t ou cité pour déterminer la date de publication d'une	être considérée comme nou inventive par rapport au doc "document particulièrement particuli	velle ou comme impliquant une activité ument considéré isolément artinent; l'inven tion revendiquée
"O" docume une ex	ent se référant à une divulgation orale. à un usage, à position ou tous autres moyens	lorsque le document est ass	nme impliquant une activité inventive socié à un ou plusieurs autres ,, cette combinaison etant évidente
postéri	int publié avant la date de dépôt international, mais eurement à la date de priorité revendiquée "¿	3" document qui fait partie de la	
Date à laque	elle la recherche internationale a été effectivement achevee	Date d'expédition du présen	t rapport de recherche internationale
1	juillet 1999	08/07/1999	
Nom et adre	sse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Fonctionnaire autorise	
	Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Van der Scha	al, C

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

PCT/FR 99/00807

Document brevet cite au rapport de recherch	e	Date de publication		mbre(s) de la lle de brevet(s)	Date de publication
EP 0272928	Α	29-06-1988	US	4960700 A	02-10-1990
			ΑT	119936 T	15-04-1995
			ΑU	616876 B	14-11-1991
			AU	8305787 A	30-06-1988
			AU	623845 B	28-05-1992
			AU	8 3058 87 A	30 - 06-1988
			DE	37 5 1169 D	20-04-1995
			DE	3751169 T	26-10-1995
			DK	684087 A	03-10-1988
			EP	0272929 A	29-06-1988
			EP	0596355 A	11-05-1994
			ES	2072251 T	16-07-1995
			ΙE	66333 B	27-12-1995
			IL	84928 A	27-02-1994
			JP	1172344 A	07-07-1989
			JP	2685468 B	03-12-1997
			US	5780025 A	14-07-1998
			CA	1322160 A	14-09-1993
			DE	3751748 D	25-04-1996
			DE	3751748 T	14-11-1996
			DK	684487 A	07-10-1990