Resumo para a P2

Thiago de Gouveia Nunes

19 de outubro de 2011

1 afnd Normalizado

Um afnd $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, i, f)$ é normalizado se:

- 1. $F = \{f\}$ e $f \neq i$ (para algum $f \in \mathcal{Q}$)
- 2. $\forall \sigma \in (\Sigma \cup {\sigma}), \delta(f, \sigma) = \emptyset$ (Não existem transições com **origem** em f)
- 3. \forall q $\in \mathcal{Q}, \forall \sigma \in (\Sigma \cup \{\sigma\}), i \notin \delta(q, \sigma)$ (Não exisem transições com **término** em i)

1.1 Lema 7

Para cada $\mathit{afnd}\ \mathcal{A}$ existe um afnd normalizado \mathcal{B} tal que $L(\mathcal{A}) = L(\mathcal{B})$. $\underline{\mathrm{Dem.}}\ \mathrm{Seja}\ \mathcal{A} = (\mathcal{Q}, \Sigma, \delta, i, f)$ um afnd . Considere o $\mathit{afnd}\ \mathcal{B} = (\mathcal{Q} \cup \{i, f\}, \Sigma, \delta_{\mathcal{B}}, i, \{f\})$, onde $\{i, j\} \cap \mathcal{Q} = \notin \mathrm{e}\ \delta_{\mathcal{B}}$ é definida por:

$$\begin{split} &\delta_{\mathcal{B}}(i,\lambda) = \{S\} \\ &\forall \sigma \in \Sigma, \delta_{\mathcal{B}}(i,\sigma) = \emptyset \\ &\forall q \in \mathcal{Q}, \forall \sigma \in \Sigma, \delta_{\mathcal{B}}(q,\sigma) = \delta(q,\sigma) \\ &\forall q \in (\mathcal{Q} \setminus F), \delta_{\mathcal{B}}(q,\lambda) = \delta(q,\lambda) \end{split}$$