Personalized Singing Voice Beautifier

林泳鵬、汪宣甫、陳韋傑

Outline

- The Team
- Motivation
- Method
- Goals

The Team

Team Members

- R11944074 汪宣甫(Student)
- R11922016 林泳鵬(Student)
- R12922051 陳韋傑(Auditor)

GPU resources

- Tesla V100-SXM2-16GB/32GB x(1 ~ 2)
- Music-related background : None
- **Previous ML experiences**: Machine Learning / Deep Learning related courses

Motivation

- Our innovation aims to train a personalized voice beautifier.
- We referred to the relevant paper [1], but identified some limitations in its training data.
 - The training pair data: (professional, amateur) singing voice.
 - We observed that amateur singing surpasses that of ordinary individuals.
- So we want to investigate some methods that can generate data pairs which are more suitable to our scenarios.
- And use those optional datas to train a personalized voice beautifier.

Motivation (cont.)

- Example of their dataset.
 - Professional
 - Amateur
 - o Mine

Method (cont.)

Learning the Beauty in Songs: Neural Singing Voice Beautifier

Figure 1: The overview of NVSB. The training process consists of 2 stages, and the second stage shares the same pipeline with the inference stage. "VAE Enc" means the encoder of CVAE; "VAE Dec" means the decoder of CVAE; "Mel" means the mel-spectrogram; " \mathbf{z} " means the latent variable of the vocal tone; the "a"/"p" subscript means the amateur/professional version.

Method (cont.)

Method (cont.)

Goals

- Goal 1 : Train our simple Beautifier
 - Use public dataset
 - Style transfer to match our timbre
- Goal 2: Inverse Beautifier training to get more pair data
 - Data collection from public music platform
- Goal 3: Train our Powerful Beautifier
 - Use more data from Inverse Beautifier training to fine-tune model