

This book is provided in digital form with the permission of the rightsholder as part of a Google project to make the world's books discoverable online.

The rightsholder has graciously given you the freedom to download all pages of this book. No additional commercial or other uses have been granted.

Please note that all copyrights remain reserved.

About Google Books

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Books helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

ed.

LIBRARY
NATIONAL RE - ARCH COUNCIL
2101 CONSTITUTION AVENUE
WASHINGTON 25, D.C.

INTERNATIONAL CRITICAL TABLES OF NUMERICAL DATA PHYSICS, CHEMISTRY AND TECHNOLOGY

INTERNATIONAL CRITICAL TABLES OF

NUMERICAL DATA, PHYSICS, CHEMISTRY AND TECHNOLOGY

Prepared under the Auspices of the International Research Council and the National Academy of Sciences

BY THE

NATIONAL RESEARCH COUNCIL

OF THE

UNITED STATES OF AMERICA

EDWARD W. WASHBURN, Ph.D.

ASSOCIATE EDITORS

CLARENCE J. WEST, Ph.D.
Director, Research Information Service
National Research Council

N. ERNEST DORSEY, Ph.D. Formerly Physicist, U. S. Bureau of Standards

ASSISTANT EDITORS

F. R. BICHOWSKY, Ph.D.

Associate in Chemistry, Johns
Hopkins University

ALFONS KLEMENC, Ph.D.

Professor of Chemistry, University
of Vienna

FIRST EDITION

PUBLISHED FOR THE NATIONAL RESEARCH COUNCIL

BY THE

McGRAW-HILL BOOK COMPANY, Inc. NEW YORK: 370 SEVENTH AVENUE LONDON: 6 & 8 BOUVERIE ST., E. C. 4 1926

Digitized by Google

COPYRIGHT, 1926, BY THE
NATIONAL ACADEMY OF SCIENCES

PRINTED IN THE UNITED STATES OF AMERICA

THE MAPLE PRESS COMPANY, YORK, PA.

BOARD OF TRUSTEES

GEORGE P. ADAMSON, Chairman, Director of Research, The General Chemical Company.

HARRISON E. Howe, Secretary to May 21, 1922, Editor, Industrial and Engineering Chemistry.

WILLIAM M. CORSE, Secretary (since May 21, 1922), Vice-President and General Manager, Research Service, Inc.

EDWARD B. CRAFT, Executive Vice-President, Bell Telephone Laboratories, Inc.

HUGH K. MOORE, D.Sc., Technical Director, Brown Company.

CHARLES L. REESE, Ph.D., Sc.D., Chemical Director, E. I. du Pont de Nemours & Co.; President, American Institute of Chemical Engineers.

REPRESENTING THE AMERICAN CHEMICAL SOCIETY

JULIUS STIEGLITZ, Ph.D., D.Sc., Chem.D., Professor and Chairman, Department of Chemistry, University of Chicago; Past President, The American Chemical Society.

REPRESENTING THE AMERICAN PHYSICAL SOCIETY

EDWARD P. HYDE, Ph.D. (until June, 1923), Director of Research (until July 1, 1923), National Lamp Works of General Electric Company.

F. B. Jewett, Ph.D. (September, 1923 to January, 1925), American Telephone and Telegraph Company.

MICHAEL I. PUPIN, Ph.D., Sc.D. (since January, 1925), Professor of Electro-Mechanics, Columbia University.

BOARD OF EDITORS

EDWARD W. WASHBURN, Chairman.

GEORGE K. BURGESS, D.Sc., D.Eng., Director, U.S. Bureau of Standards.

SAUL DUSHMAN, Ph.D., Physicist, General Electric Company.

John Johnston, D.Sc., Sterling Professor of Chemistry, Yale University.

S. C. Lind, Ph.D., Associate Director, Fixed Nitrogen Research Laboratory.

CHARLES E. MENDENHALL, Professor of Physics, University of Wisconsin.

RICHARD B. MOORE, D.Sc., General Manager, The Dorr Company, New York.

CORRESPONDING EDITORS

AND

ADVISORY COMMITTEES

Austria

PROF. DR. RUDOLF WEGSCHEIDER, University of Vienna, Vienna, Austria.

Belgium (and its dependencies)

Prof. Dr. Jean Timmermans, University of Brussels (Solbosch), Brussels, Belgium. Prof. Dr. M. M. Strauven (until November, 1924), Ecole des Mines, Mons, Belgium

THE BRITISH EMPIRE (excluding British North America)

G. W. C. KAYE, O.B.E., M.A., D.Sc., National Physical Laboratory, Teddington, England.

Advisory Committee: Sir Robert Robertson, K.B.E., F.R.S.; W. Rosenhain, D.Sc., F.R.S.; Prof. A. W. Porter, D.Sc., F.R.S.; T.E. Stanton, C.B.E., D.Sc., F.R.S.; J. E. Sears, C.B.E., M.A.; A. C. Egerton, B.Sc.; W. F. Higgins, M.Sc. (Secretary).

BRITISH NORTH AMERICA

Prof. Otto Maass, McGill University, Montreal, Canada.

Advisory Committee: J. W. Bain, R. J. Durley, G. S. Whitby

DENMARK (Norway and Sweden)

Prof. Dr. Niels Bjerrum, Royal Veterinary and Agricultural College, Copenhagen, Denmark.

Advisory Committee: Martin Knudsen, Carl Jacobsen.

France (Spain and Portugal)

Dr. Charles Marie, Maître de Conférences adjoint à la Faculté des Sciences, Paris, France.

Advisory Committee: C. Moureu, Membre de l'Institut, Professeur au Collège de France, Paris, France; A. Fabry, Professeur à la Faculté des Sciences, Paris, France; A. Guillet, Directeur de l'Ecole Centrale des Arts et Manufactures, Paris, France.

HOLLAND (and its dependencies)

Dr. W. J. van Heteren, Chemist, Royal Mint, Utrecht, Holland.

Advisory Committee: Dr. E. Cohen, Professor of Chemistry, University of Utrecht; Dr. C. A. Crommelin, Assistant Director, Physical Laboratory, University of Leiden; H. Baucke, Chemical Engineer, Director of the Laboratory, "Koning and Bienfait," Amsterdam.

ITALY (and its dependencies)

Prof. Dr. Nicola Parravano, Director of the Chemical Institute of the Royal University of Rome, Rome, Italy.

*Advisory Committee: Prof. Ugo Bordoni, R. Scuola di Ingegneria di Roma, Rome, Italy; Prof. Francesco Giordani, R. Politecnico di Napoli, Naples, Italy; Prof. Luigi Rolla, R. Università di Firenze, Florence, Italy.

JAPAN (and Eastern Asia)

PROF. KOTARO HONDA, Tohoku University, Sendai, Japan.

SWITZERLAND

Prof. A. Berthoud, University of Neuchâtel, Neuchâtel, Switzerland.

*Advisory Committee: Prof. Ch. E. Guye, Genève; Prof. H. Rupe, Basel; Prof. F. Schüle, Zürich.

PREFACE BY THE BOARD OF TRUSTEES

The publication of International Critical Tables at a price that would make possible a world-wide distribution required that the undertaking be financed by those appreciating its importance and in a position to make the necessary investment. Some 244 firms and individuals and two of the larger Foundations have provided the sum of \$170,000 required for the compilation.

Many individuals have given freely of their time and effort in helping to obtain the funds necessary for the compilation of this work. In addition to those who have been responsible for assigned territory, there are a large number of others in industrial organizations which have supported the enterprise, and grateful acknowledgment is made of their interest and help, quite as much as if it were possible to give here the complete list of names. Indeed, it is impossible for the trustees to know of all those who at different stages of the work have rendered valuable assistance.

Special acknowledgment is due to the Carnegie Corporation of New York and to the International Education Board, whose appropriations in the support of this work were a large factor in making its successful completion possible.

It is appropriate to give here special recognition to those who assumed and carried out definite responsibility in the solicitation of funds, as well as to those whose financial support enabled the project to be made a reality.

LIST OF THOSE WHOSE SUPPORT HAS MADE POSSIBLE THE COM-PLETION OF INTERNATIONAL CRITICAL TABLES

Carnegie Corporation of New York. International Education Board. The Abbott Laboratories, Chicago, Ill. Acheson Graphite Company, Niagara Falls, N. Y. Aluminum Company of America, Pittsburgh, Pa. American Cyanamid Company, New York City American Gas Association, New York City The American Gas Company, Philadelphia, Pa. American Institute of Chemical Engineers, Brooklyn, N. Y. American Institute of Electrical Engineers, New York City American Institute of Mining and Metallurgical Engineers, New York City

The American Leather Chemists' Association, New York City American Nitrogen Products Company, Seattle, Wash. The American Rolling Mill Co., Middletown, Ohio American Society of Civil Engineers, New York City The American Society of Mechanical Engineers, New York City American Trona Corporation, New York City Anheuser-Busch, Inc., St. Louis, Mo.

The Arco Company, Cleveland, Ohio Armstrong Cork Company, Pittsburgh, Pa. Edward E. Arnold, Providence, R. I. The Atlantic Refining Company, Philadelphia, Pa. Atlas Powder Co., Wilmington, Delaware The Ault & Wiborg Company, Cincinnati, Ohio

The Babcock & Wilcox Company, New York City E. B. Badger and Sons Company, Boston, Mass.

Bakelite Corporation, 247 Park Avenue, New York City. J. T. Baker Chemical Company, Phillipsburg, N. J.

Joseph Bancroft & Sons Company, Rockford, Wilmington, Delaware

The Barrett Company, New York City

Beckett Paper Company, Hamilton, Ohio

Bell Telephone Laboratories, Incorporated, New York City

H. K. Benson, Seattle, Wash.

David Berg Industrial Alcohol Company, Philadelphia, Pa.

The Biggs Boiler Works Company, Akron, Ohio

C. T. Bragg, Detroit, Mich.

Brown Company, Portland, Maine

C. F. Burgess Laboratories, Madison, Wis.

Samuel Cabot, Inc., Boston, Mass.

The Calco Chemical Company, Bound Brook, N. J.

Calumet Baking Powder Co., Chicago, Ill.

Calumet and Hecla Consolidated Copper Company, Calumet, Mich.

The Carborundum Company, Niagara Falls, N. Y.

H. A. Carpenter, Rochester, N. Y.

Central Dyestuff & Chemical Co. (H. A. Metz, Successor), New York City.

Central Scientific Company, Chicago, Ill.

Edward S. Chapin, Boston, Mass.

Chemical Foundation, 85 Beaver St., New York City

Cheney Brothers, South Manchester, Conn.

Chicago, North Shore & Milwaukee Railroad Company, Chicago, III.

Chicago Rapid Transit Company, Chicago, Ill.

G. H. Clamer, Philadelphia, Pa.

F. O. Clements, Dayton, Ohio

Cleveland-Cliffs Iron Co., Cleveland, Ohio

The Cleveland Electric Illuminating Company, Cleveland, Ohio

The Cleveland Twist Drill Company, Cleveland, Ohio

Galen H. Clevenger, Boston, Mass.

Colgate & Company, Jersey City, N. J.

Columbia Can Company, St. Louis, Mo.

Commonwealth Edison Company, Chicago, Ill.

Commonwealth Steel Company, St. Louis, Mo.

Corning Glass Works, N. Y.

Corn Products Refining Company, New York City

Crane Company, Chicago, Ill.

Crescent Manufacturing Company, Seattle, Wash.

F. T. Crowe, Seattle, Wash.

The Davison Chemical Company, Baltimore, Md.

Dearborn Chemical Company, Chicago, Ill.

De Laval Separator Company, Poughkeepsie, N. Y.

The Detroit Edison Company, Detroit, Mich.

Devoe & Reynolds, Inc., New York City

Dill & Collins Co., Philadelphia, Pa.

The Dorr Company, New York City

Dow Chemical Company, Midland, Mich.

L. C. Drefahl, Cleveland, Ohio

E. I. du Pont de Nemours & Company, Wilmington, Delaware

Winthrop C. Durfee, Boston, Mass.

The Duriron Company, Inc., Dayton, Ohio

Eastern Manufacturing Company, Boston, Mass.

Eastman Kodak Company, Rochester, N. Y.

Eimer & Amend, New York City

The Electric Storage Battery Company, Philadelphia, Pa.

Ethyl Gasoline Corporation, New York City

Euston Process Company, Scranton, Pa.

Everett Pulp and Paper Company, Everett, Wash.

Fansteel Products Company, Inc., North Chicago, Ill. Fels & Co., Philadelphia, Pa. Finch, Pruyn & Co., Inc., Glens Falls, N. Y. The Firestone Tire & Rubber Company, Akron, Ohio The Fleischmann Laboratories, New York City Ford Motor Company, Detroit, Mich. W. H. Fulweiler, Philadelphia, Pa. A. F. Gallun & Sons Company, Milwaukee, Wis. W. C. Geer, Akron, Ohio General Chemical Company, New York City General Electric Company, Schenectady, N. Y. General Motors Corporation, Detroit, Mich. The General Tire & Rubber Company, Akron, Ohio The Globe Soap Company, Cincinnati, Ohio B. F. Goodrich Company, Akron, Ohio The Goodyear Tire & Rubber Company, Akron, Ohio M. B. Graff, Cincinnati, Ohio The Grasselli Chemical Company, Cleveland, Ohio Great Western Electro Chemical Company, San Francisco, Calif. The Great Western Sugar Co., Denver, Colo. Gulf Refining Company, Pittsburgh, Pa. Hamersley Manufacturing Company, Inc., Garfield, N. J. Hammermill Paper Company, Erie, Pa. The Harshaw Fuller & Goodwin Co., Cleveland, Ohio Hercules Powder Company, Wilmington, Delaware Hood River Apple Vinegar Company, Hood River, Oregon Hood Rubber Company, Watertown, Mass. Hynson, Westcott & Dunning, Baltimore, Md. Illinois Glass Company, Alton, Ill. Imperial Candy Company, Seattle, Wash. The Institute of Medicine of Chicago, Chicago, Ill. The International Nickel Company, 67 Wall St., New York City The Jessup & Moore Paper Co., Wilmington, Delaware John Finn Metal Works, Seattle, Wash. Bjarne Johnsen, Erie, Pa. The Kalbfleisch Corporation, 200 Fifth Avenue, New York City Kalmus, Comstock & Wescott, Inc., Boston, Mass. Kimble Glass Company, Vineland, N. J. Maurice A. Knight, Akron, Ohio H. Kohnstamm & Company, Inc., New York City The Koppers Company, Pittsburgh, Pa. The Krebs Pigment & Chemical Co., Newport, Delaware Lapp Insulator Co., Inc., LeRoy, N. Y. Larkin Co., Inc., Buffalo, N. Y. Launderyowners National Association, La Salle, Ill. Leary's, Cleansers, Rochester, N. Y. Leeds & Northrup Company, Philadelphia, Pa. Lehn & Fink, Inc., Bloomfield, N. J. Victor Lenher, Madison, Wis. Max Levy & Company, Philadelphia, Pa. Eli Lilly and Company, Indianapolis, Ind. Lindsay Light Company, Chicago, Ill. Arthur D. Little, Inc., Cambridge, Mass. The Lowe Brothers Company, Dayton, Ohio Lumen Bearing Company, Buffalo, N. Y. The Lunkenheimer Company, Cincinnati, Ohio H. N. McCoy, Chicago, Ill. Harvey F. Mack, Easton, Pa. Charles T. Main, Engineer, Boston, Mass. E. Mallinckrodt, Jr., St. Louis, Mo. Mallinckrodt Chemical Works, St. Louis, Mo. A. E. Marshall, Baltimore, Md. Marx & Rawolle, Inc., New York City The Mathieson Alkali Works (Inc.), New York City Merck & Co., New York City Merrell-Soule Company, Syracuse, N. Y.

Merrimac Chemical Company, Boston, Mass. Meyer Brothers Drug Company, St. Louis, Mo. Middle West Utilities Company, Chicago, Ill. John B. Miller, Los Angeles, Calif. The Miller Rubber Company, Akron, Ohio Missouri Portland Cement Company, St. Louis, Mo. Monsanto Chemical Works, St. Louis, Mo. Paul Moore, Washington, D. C. H. W. Moseley, New Orleans, La. H. K. Mulford Company, Philadelphia, U. S. A. Munroe Felt and Paper Company, Boston, Mass. Mutual Chemical Company of America, New York City National Biscuit Company, New York City National Canners Association, Washington, D. C. The National Cash Register Company, Dayton, Ohio The National Electrolytic Company, Niagara Falls, N. Y. National Foundry Company, Erie, Pa. National Lead Company, New York City National Lime Association, Washington, D. C. National Research Council, Washington, D. C. The Naugatuck Chemical Company, Naugatuck, Conn. Newport Chemical Works, Inc., Passaic, N. J. North East Electric Company, Rochester, N. Y. Northwest Lead Company, Seattle, Wash. Norton Company, Worcester, Mass. George Oenslager, Akron, Ohio Oglebay Norton & Company, Cleveland, Ohio The Ohio Brass Company, Mansfield, Ohio The Ohio Match Company, Wadsworth, Ohio Oldbury Electro-Chemical Company, Niagara Falls, N. Y. Olympic Portland Cement Company, Ltd., Bellingham, Wash. Pacific Ammonia and Chemical Company, Seattle, Wash. Pacific Car and Foundry Company, Seattle, Wash. Pacific Coast Biscuit Company, Seattle, Wash. Pacific Coast Coal Company, Seattle, Wash. Pacific Creosoting Company, Seattle, Wash. Park Drop Forge Company, Cleveland, Ohio Parke, Davis & Company, Detroit, Mich. The Peerless Motor Car Company, Cleveland, Ohio Pennsylvania Salt Manufacturing Company, Philadelphia, Pa. Penobscot Chemical Fibre Company, Boston, Mass. The Peoples Gas Light and Coke Company, Chicago, Ill. Chas. Pfizer & Co., Inc., New York City The Philadelphia Electric Co., Philadelphia, Pa. Philadelphia Quartz Company, Philadelphia, Pa. The Philadelphia Rubber Works Company, Akron, Ohio Pittsburgh Plate Glass Company, Pittsburgh, Pa. (including Columbia Chemical and Patton Pitcairn Divisions) Plaut Research Laboratory, Bloomfield, N. J. Powers-Weightman-Rosengarten Co., Philadelphia, Pa. The Procter & Gamble Company, Cincinnati, Ohio Public Service Company of Northern Illinois W. P. Putnam, Detroit, Mich. The Quaker Oats Company, Chicago, Ill. Raecolith Floor & Stucco Co., Seattle, Wash. Rasmussen & Company, Portland, Oregon H. W. Rhodehamel, Indianapolis, Ind. The Richardson Company, Lockland, Ohio Rochester Gas and Electric Corporation, Rochester, N. Y. The Roessler & Hasslacher Chemical Company, New York City Roxana Petroleum Corporation, St. Louis, Mo. The Rubber Service Laboratories Company, Akron, Ohio Rumford Chemical Works, Providence, R. I. St. Joseph Lead Company, 60 Wall St., New York City St. Louis Independent Packing Company, St. Louis, Mo. Walter A. Schmidt, Los Angeles, Calif.

Schmidt & Ault Paper Company, York, Pa. Seattle Lighting Company, Seattle, Wash. Semet-Solvay Company, Syracuse, N. Y. The Sharples Specialty Company, Philadelphia, Pa. The Sherwin-Williams Company, Cleveland, Ohio H. J. Skinner, Boston, Mass. Skinner, Sherman & Esselen, Inc., Boston, Mass. A. W. Smith, Cleveland, Ohio Solvay Process Company, Syracuse, N. Y. The Southern Cotton Oil Co., New Orleans, La. A. G. Spalding & Bros., Chicopee, Mass. Standard Oil Company of Indiana, Chicago, Ill.

Standard Oil Company (New Jersey), 26 Broadway, New York

Edwin H. Steedman, St. Louis, Mo.

Stewart & Homes Drug Company, Seattle, Wash.

Stone & Webster, Inc., Boston, Mass.

C. B. Stowe, The Stowe-Fuller Refractories Company, Cleveland, Ohio

Strietman Biscuit Company, Cincinnati, Ohio Stromberg-Carlson Telephone Mfg. Co., Rochester, N. Y. Superior Portland Cement Company, Seattle, Wash. Swenson Evaporator Company, Harvey, Ill. Swift & Company, Chicago, Ill. A. P. Sy, Buffalo, N. Y.

Tacoma Gas & Fuel Company, Tacoma, Wash. Texas Gulf Sulphur Company, New York City Arthur H. Thomas Company, Philadelphia, Pa.

Ticonderoga Pulp and Paper Company, Ticonderoga, N. Y.

Maximilian Toch, New York City

The Twitchell Process Company, Cincinnati, Ohio

The W. S. Tyler Company, Cincinnati, Ohio

The U. G. I. Contracting Company, Philadelphia, Pa. Union Carbide & Carbon Corporation, New York City Union Electric Light and Power Company, St. Louis, Mo.

The Union Switch & Signal Company, Swissvale, Pa. United Fruit Company, Boston, Mass.

U. S. Industrial Alcohol Co., New York City

U. S. Industrial Chemical Company, New York City

United States Rubber Company, New York City

United States Smelting, Refining & Mining Company, Boston, Mass.

W. R. Veazey, Cleveland, Ohio

S. D. Warren Company, Cumberland Mills, Maine

Washington Brick, Lime & Sewer Pipe Company, Spokane, Wash.

The Washington Water Power Company, Spokane, Wash.

E. R. Weidlein, Pittsburgh, Pa.

W. M. Welch Manufacturing Company, Chicago, Ill.

West Coast Lumbermen's Association, Seattle, Wash.

Western Electric Company, Incorporated; Hawthorne Works; Chicago, Ill.

Western Precipitation Company, Los Angeles, Calif.

Westinghouse Electric & Manufacturing Company, East Pittsburgh, Pa.

West Virginia Pulp & Paper Company, New York City

A. E. White, Ann Arbor, Mich.

The White Motor Company, Cleveland, Ohio

Willard Storage Battery Company, Cleveland, Ohio

R. B. Wolf, New York City

J. E. Zanetti, New York City

The work of the trustees began with the appointment of Hugh K. Moore in 1920, with whom were later associated Julius Stieglitz, representing the American Chemical Society, and E. P. Hyde, representing the American Physical Society. After a substantial sum had been procured, the number was enlarged to include H. E. Howe and later George P. Adamson and Charles L. Reese. Mr. Hyde resigned to go abroad and was succeeded by Frank B. Jewett, who has lately been succeeded by Michael Pupin as representative of the American Physical Society. Upon relinquishing his active duties in the National Research Council, H. E. Howe was succeeded as Secretary of the Board of Trustees by W. M. Corse, but remained a member of the Board; and a little later Edward B. Craft was added to the Board.

The trustees have been obliged to place a maximum limit on the cost of this work, but they realize that other material which could not be included because of financial limitations should be made available and that International Critical Tables, if it is to render maximum service, should become an established institution, with supplements and revisions published from time to time, in order that these fundamental data may be made available as rapidly as the values are established through further research. An endowment therefore should be sought for International Critical Tables, and with the appearance of the completed set it is believed the enterprise will appeal to many of those able to make such an endowment a reality.

The trustees wish to express their gratitude to the many industrialists who have given of their time to become acquainted with this enterprise, for the courtesy which they have everywhere met, and for the widespread cooperation without which International Critical Tables could not have been brought into existence.

> George P. Adamson William M. Corse Edward B. Craft Harrison E. Howe

Hugh K. Moore Michael I. Pupin Charles L. Reese Julius Stieglitz

PREFACE BY THE BOARD OF EDITORS

At the organization meeting of the International Union of Pure and Applied Chemistry, held in London in June 1919, the Union approved as one of its projects the compilation of International Critical Tables of Numerical Data of Physics, Chemistry, and Technology, and assigned to the United States of America the financial and editorial responsibility for the undertaking. The project was later given the patronage of the International Research Council at its Brussels meeting in 1923.

On behalf of the National Academy of Sciences, the National Research Council of the United States accepted the executive, editorial and financial responsibilities of the project, and with the cooperation of the American Chemical Society and the American Physical Society, created a Board of Trustees to take charge of the financial and business administration, and a Board of Editors to supervise and carry out the preparation of the text.

The first action of the Board of Editors, early in 1922, was to approve the appointment of Corresponding Editors in different parts of the world, particularly in all those countries in which conditions were such that they might be expected to take a really active part in the undertaking. In making these appointments, the Board first sought the advice of competent individuals in the several countries, and in accordance with the suggestions thus received, appointed ten Corresponding Editors and empowered them to arrange for Advisory Committees to assist in the work. In the case of certain countries, the Board was unsuccessful in its efforts to secure cooperation, usually either because of the receipt of no reply or an unfavorable reply, or through failure of the Corresponding Editor, after appointment, to perform his duties.

The general plan of preparation of the Tables was as follows: The subject matter was first divided into some 300 different sections. The Corresponding Editors were then asked to recommend for the several sections one or more persons who should either have some special knowledge of the subject matter of the section, or be otherwise qualified to pass critical judgment upon the available information on the subject. On the basis of the recommendations thus received, the Board of Editors selected the Cooperating Experts, to whom was intrusted the task of critically compiling, and displaying in suitable form, the available quantitative information upon the several topics. In making these selections, the Board consistently endeavored to secure the best man available in the light of all the information which it possessed. In certain special fields composed of closely related topics, the Board provided also for the appointment of Special Editors to supervise the work and to assist in the final arangement of the material.

In the course of its labors the Board of Editors has enjoyed the cooperation of numerous organizations and individuals whose advice, suggestions, and assistance, in many ways have greatly aided it in its complex and difficult task. It is especially indebted to the several Corresponding Editors and their Advisory Committees, who have generously contributed their time and thought to the success of the work; to the Special Editors; to the U. S. Bureau of Standards, the National Physical Laboratory of Great Britain and the Physical Society of France; to the International Commission in charge of Annual Tables; and to various organizations and individuals who made available unpublished data for the use of the Cooperating Experts.

PREFACE PAR LE COMITÉ DES RÉDACTEURS

Lors de l'Assemblée d'organisation de l'Union internationale de Chimie pure et appliquée, qui eut lieu à Londres en Juin 1919, l'Union approuva comme l'un de ses projets l'élaboration de Tables critiques de valeurs numériques de physique, chimie et technologie, et elle chargea les Etats-Unis d'Amérique de la responsabilité financière et d'édition de l'entreprise. Le projet fut, plus tard, placé sous le patronage du Conseil international de Recherches, à son assemblée de Bruxelles en 1923.

Chargé de ces attributions, le Conseil national de Recherches des Etats-Unis, agissant en collaboration avec la Société chimique américaine et la Société physique américaine, nomma un Conseil d'Administration et un Comité des Rédacteurs.

La première activité que manifesta le Comité des Rédacteurs, au début de 1922, fut d'approuver la nomination de Rédacteurs-correspondants dans les différentes parties du monde, particulièrement dans tous les pays dont les conditions autorisaient l'espoir d'une collaboration active dans cette entreprise. Pour procéder à ces nominations, le Comité sollicita d'abord l'avis de personnalités compétentes dans les divers pays, et c'est en tenant compte des suggestions ainsi obtenues qu'il nomma dix Rédacteurs-correspondants et leur donna les pouvoirs nécessaires pour organiser des Comités-consultatifs dans le but d'aider à l'accomplissement du travail. Dans le cas de certains pays, les efforts du Comité en vue de s'assurer leur coopération furent vains, soit qu'il n'y eût pas de réponse ou que celle-ci fut défavorable, soit encore que le Rédacteur-correspondant, après sa nomination, eût manqué à ses engagements.

Le plan général de préparation de ces Tables fut le suivant: l'ensemble des matières à traitér fut d'abord divisé en quelque 300 différentes sections. Les Rédacteurs-correspondants furent alors priés de recommander, pour les différentes sections, une ou plusieurs personnes qui eussent des connaissances spéciales du sujet traité dans la section ou qui fussent qualifiées pour formuler un jugement critique sur les informations à disposition concernant le sujet. Sur la base des recommandations ainsi reçues, le Comité des Rédacteurs choisit les Experts-coopérants qui furent chargés de la compilation critique et de la disposition sous une forme convenable des informations quantitatives disponibles sur les différents sujets. En faisant cette sélection, le Comité s'efforça de s'assurer la collaboration de la personne qui, d'après les renseignments recueillis, était la plus qualifiée et qui se trouvait alors disponible. Dans certains domaines spéciaux, composés de sujets étroitement apparentés, le Comité se chargea aussi de nommer des rédacteurs spéciaux pour diriger le travail et pour aider à l'arrangement final de la matière.

Au cours de ses travaux, le Comité des Rédacteurs a eu le plaisir d'enregistrer la coopération de nombreuses organisations et de particuliers dont les conseils, les suggestions et l'aide lui ont été, en maintes circonstances, d'un grand secours dans l'accomplissement de sa tâche complexe et difficile. Il est spécialement reconnaissant aux nombreux Rédacteurs-correspondants et à leurs Comités-consultatifs qui ont généreusement donné leur temps et leur pensée pour assurer le succès de l'oeuvre; aux Rédacteurs spéciaux, au U. S. Bureau of Standards, au National Physical Laboratory of Great Britain et à la Société de Physique de France; à la Commission internationale chargée des Tables annuelles; ainsi qu'aux

VORWORT DER REDAKTIONS-KOMMISSION

An der geschäftlichen Sitzung der Internationalen Union für reine und angewandte Chemie in London, Juni 1919 billigte die Union, als eine ihrer Aufgaben, die Abfassung Internationaler kritischer Tafeln, numerischer Daten der Physik, Chemie und Technologie und betraute die Vereinigten Staaten von Amerika sowohl mit dem finanziellen als auch mit dem redaktionellen Teil dieser Aufgabe. Der Plan erhielt später die Förderung durch International Research Council an der Tagung in Brüssel 1923.

Entsprechend dieser Betraung errichtete National Research Council der Vereinigten Staaten, zusammenwirkend mit American Chemical Society und American Physical Society vorgehend, eine geschäfts-führende Kommission und eine Redaktions-Kommission.

Die ersten Schritte, welche die Redaktions-Kommission zu Beginn des Jahres 1922 machte, war, sich korrespondierende Mitglieder in allen Teilen der Welt zu sichern, besonders in denjenigen in welchen die Bedingungen vorhanden waren, die eine lebhafte Beteiligung an dem Unternehmen erwarten liessen. Nach diesem nahm die Kommission zuerst den Rat massgebender Persönlichkeiten verschiedener Länder entgegen; in Übereinstimmung mit den so erhaltenen Vorschlägen, wurden zehn korrespondierende Mitglieder bestimmt, welche nun einen beratenden Ausschuss zu bilden hatten, um der Arbeit ihre Unterstützung zu zuwenden. In einigen Ländern gelang es der Kommission nicht Mitarbeiter zu erlangen, meistens deshalb weil keine, oder eine ablehnende Gegenäusserung erfolgte, oder, dass das korrespondierende Migglied, nach der entsprechenden Zusage nicht vorging.

Die Grundlinien für die Bearbeitung der Tafeln waren die folgenden. Das Material wurde zuerst in etwa dreihundert verschiedene Abschnitte zerlegt. Die korrespondierenden Mitglieder wurden dann gebeten, für einige dieser Abschnitte, einen oder mehrere Mitarbeiter zu empfehlen, die entweder besondere Kenntnisse über den Gegenstand des Abschnittes besitzen, oder imstande waren, kritisch, vorhandenes Material durchzugehen. Auf Grund der so erhaltenen Empfehlungen, wählte die Redaktionskommission die Mitarbeiter aus, die mit der Aufgabe betraut wurden, kritisch die numerischen Daten des betreffenden Gegenstandes durchzuarbeiten und in entsprechender Form darzustellen. Bei dieser Auswahl war die Kommission ganz besonders bestrebt, nach den vorhandenen Mitteilungen, den besten zur Verfügung stehenden Mitarbeiter zu erhalten. In gewissen nahe verwandten Gebieten war man darauf bedacht, besondere Redaktions-mitglieder zu erhalten, um die Arbeit hier zu überwachen und tätigen Anteil der Schlussredaktion des Materials zu nehmen.

Im Laufe ihrer Bestrebungen konnte sich die Redaktion-Kommission der Mitarbeit zahlreicher Vereinigungen und einzelner Personen erfreuen, deren Ratschläge, Winke and Beihilfe ihnen bei der verwickelten und schweren Aufgabe von grossem Nutzen waren. Die Redaktionskommission ist besondren Dank ihren verschiedenen korrespondierenden Mitgliedern und dem beratendem Ausschuss schuldig, die in grossmütiger Weise ihre Zeit und Arbeit dem Erfolg dieser Tafeln gewidmet haben, ferner auch den Mitgliedern, die die Arbeit an den besonderen Kapiteln überwachten. Der Dank gebührt U. S. Bureau of Standards, National Physical Laboratory of Great Britain und Société de Physique de France, der Internationalen Kommission betraut mit der Herausgabe der Tables annuelles und den verschiedenen Ver-

PREFAZIONE DELL' UFFICIO DI REDAZIONE

Nella conferenza tenuta a Londra nel giugno 1919 per organizzare la Unione Internazionale della Chimica Pura ed Applicata venne, tra gli altri, formulato il progetto di compilare delle Tabelle Critiche Internazionali contenenti dati numerici di fisica, chimica e tecnologia, e venne affidata agli Stati Uniti la responsabilità finanziaria ed editoriale dell'impresa. Al progetto fu in seguito accordato il patronato del Consiglio Internazionale di Ricerche nella riunione del 1923 a Bruxelles.

In seguito all'incarico ricevuto, il Consiglio Nazionale di Ricerche degli Stati Uniti, d'accordo con la American Chemical Society e con la American Physical Society, nominò un Consiglio di Amministrazione ed un Ufficio Editoriale.

Come suo primo atto, l'Ufficio, nel 1922, nominò Redattori Corrispondenti in tutto il mondo, scegliendoli di preferenza nei Paesi dove poteva ritenersi che essi avvebbero preso parte attiva al lavoro. Le nomine furono fatte dopo aver sentito il parere di persone competenti. A questo modo furono scelti dieci Redattori Corrispondenti e ad essi venne data facoltà di nominare ciascuno un Comitato consultivo col compito di assisterli nel lavoro. In alcuni Paesi l'Ufficio non riuscì ad assicurarsi collaborazione di sorta, o perchè addirittura non gli fu possibile ottenere una risposta, o perchè la risposta fu negativa, o perchè il Redattore Corrispondente scelto, dopo essere stato nominato, mancò agli obblighi assunti.

Il piano generale di preparazione delle tabelle è stato il seguente. Si è divisa la materia in circa 300 capitoli differenti, e i Redattori Corrispondenti sono stati invitati a suggerire per ogni singolo capitolo il nome di una o più persone le quali o avessero una speciale competenza nell'argomento o potessero ritenersi capaci di vagliare criticamente tutto quello che si conosce al riguardo. In base alle proposte ricevute, l'Ufficio di Redazione scelse gli Esperti, e a questi affidò l'incarico di raccogliere, vagliare ed esporre in forma opportuna i dati quantitativi che si sono potuti riunire sui diversi argomenti.

Nel fare la scelta degli Esperti l'Ufficio cercò sempre di assicurarsi la collaborazione degli uomini che, in base alle informazioni avute, dovevano ritenersi i migliori di cui si potesse disporre. In certi campi speciali, comprendenti argomenti strettamente connessi, l'Ufficio nominò anche dei Redattori Speciali col compito di sorve gliare il lavoro e collaborare alla disposizione definitiva del materiale.

Nell'espletare il suo compito, l'Ufficio di Redazione ha potuto giovarsi della collaborazione di numerouse organizzazioni e di numerose persone, le quali con consigli e suggerimenti vari sono state di grande aiuto nel portare a fine un lavoro che è stato certamente complesso e difficile. L'Ufficio è specialmente grato ai vari Redattori Corrispondenti e ai rispettivi Comitati Consultivi i quali hanno generosamente dato il loro tempo e la loro intelligenza al successo dell'opera, ai Redattori Speciali, al Bureau of Standards degli Stati Uniti, al National Physical Laboratory inglese e alla Société de Physique francese, alla Commissione Internazionale in carica per le Tabelle annuali e alle varie organizzazioni e persone che misero a disposizione degli Esperti dati inediti.

Infine i Membri dell'Ufficio desiderano manifestare l'alto apprezzamento che fanno dei contributi di tutti gli Esperti, il lavoro dei quali, compiuto in larga misura con entusiasmo e disinteressatamente, ha reso possibile queste tabella; ed in particolar modo

Finally, the members of the Board desire to record their appreciation of the work of all of the Cooperating Experts whose contributions, largely a labor of love, have made these tables possible; and in particular, of the work of the Editorial Staff, Messrs. Washburn, Dorsey, and West, to whom indeed the utility of this collection of tables should be largely accredited.

George K. Burgess

S. C. Lind

Saul Dushman

C. E. Mendenhall

John Johnston

R. B. Moore.

organisations diverses et aux personnes qui ont procuré des données inédites à l'usage des Experts-coopérants.

Efin, les membres du Comité désirent exprimer leur appréciation pour le travail de tous les Experts-coopérants dont les contributions, pour une large part désintéressées, ont rendu possible l'élaboration de ces Tables, et en particulier pour le travail des Rédacteurs, MM. Washburn, Dorsey et West, auxquels nous sommes en grande partie redevables des services que rendra cette collection de Tables.

George K. Burgess

S. C. Lind

Saul Dushman

C. E. Mendenhall

John Johnston R. B. Moore.

INTRODUCTION

International Critical Tables is the result of the cooperative labors of a large number of specialists, each of whom has been charged with the responsibility for the critical compilation of the quantitative information available on his topic. The word "critical" in this connection means that the Cooperating Expert was requested to give in each instance the "best" value which he could derive from all the information available, together, where possible, with an indication of its probable reliability.

Through a cooperative arrangement with International Annual Tables, the Board of Editors has been able to place in the hands of each Cooperating Expert the literature references belonging to his topic for the years 1910–1923 inclusive, as compiled by the staff of International Annual Tables. For the period preceding 1910, each Cooperating Expert was directed to collect the necessary literature references from the various published handbooks, special treatises, works of reference, and other sources known to him as a specialist in the field. No attempt has been made to systematically cover the literature since 1923, although a certain amount of information published since then has been utilized.

In preparing the various sections, the Cooperating Experts were instructed,—

- 1. To include in the bibliography only (a) the sources of the data upon which their reported values actually rest, and (b) the sources of available data of the same kind pertaining to those systems for which no numerical value is given. It is not intended to be a complete bibliography of the field.
- 2. To omit from the tables of numerical data all those systems for which the available data (a) were of slight scientific or practical interest, or (b) were so discordant as to be of little, if any, value.
- 3. To set forth the results of their work in the form of text, equations, tables, graphs, or charts, as seemed most appropriate under the circumstances, having regard to the necessity of space economy.
- 4. To give only selected samp' illustrating types in the case of very large and heterogeneous holds, such as colloids, chemical kinetics, and certain classes of industrial materials.
- 5. To restrict the accompanying explanatory text to the amount necessary for the intelligent use of the data. (Under this restriction, the Expert is given no opportunity to present a general discussion of his subject or of the methods by which he obtained the values given.)

In preparing the textual material for publication the Editors have been compelled, in the interest of economy of space, to enforce the restrictions imposed by sections 3 and 5 of the preceding paragraph and have freely rearranged and rewritten the text, whenever it was evident that a compression or an improvement in logical order could be so secured. With few exceptions, which are duly

INTRODUCTION

Les Tables critiques internationales sont le résultat du travail coopératif d'un grand nombre de spécialistes, chacun de ceux-ci ayant été chargé de la responsabilité de la compilation critique des informations disponibles sur son sujet. Le mot "critique" dans ce cas signifie que l'expert coopérant fut invité à donner dans chaque circonstance la "meilleure" valeur qu'il pouvait recueillir de toutes les informations disponibles, en ajoutant si possible une indication au sujet de la confiance probable qu'on pouvait avoir en alle

Par le fait d'un arrangement coopératif avec les Tables annuelles internationales, le Comité des Rèdacteurs a été en mesure de mettre à la disposition de chaque expert coopérant les références bibliographiques appartenant à son sujet de l'année 1910 à l'année 1923 inclusivement, celles-ci ayant été compilées par le Bureau des Tables annuelles internationales. Pour la période précédant 1910, chaque expert coopérant fut chargé de recuillir les références bibliographiques nécessaires en usant des manuels variés publiés, des traités spéciaux, des ouvrages de références, et d'autres sources connues de lui en sa qualité de spécialiste du sujet traité. En ce qui concerne la littérature depuis 1923, aucune tentative n'a été faite pour la couvrir d'une façon systématique; un certain nombre d'informations postérieures à 1923 ont cependant été utilisées.

Pour la préparation des différentes sections, il fut recommandé aux experts coopérants:

- 1. D'inclure dans la bibliographie seulement (a) les sources de valeurs sur lesquelles reposent actuellement leurs valeurs reportées, et (b) les sources des données de même nature appartenant aux systèmes pour lesquels aucune valeur numérique n'est donnée. Le but poursuivi n'est pas de constituer une bibliographie complète du sujet.
- 2. De ne pas introduire dans les tables de valeurs numériques tous les systèmes pour lesquels les valeurs disponibles (a) sont de peu d'intérêt scientifique ou pratique, ou (b) sont par trop discordantes pour être d'une valeur quelconque, si toutefois elles en présentent une.
- 3. De disposer les résultats de leur travail sous la forme d'un texte, d'équations, de tables, de graphiques ou de cartes, en employant le moyen qui leur parut le mieux approprié suivant les circonstances, en ayant en vue la nécessité d'économiser de la place.
- 4. De ne donner que des exemples choisis, illustrant les types, dans le cas d'un champ très vaste et hétérogène, tel que: les colloides, la cinétique chimique et certaines classes de matières industrielles.
- 5. De restreindre le texte explicatif accompagnant les données au strict nécessarie pour la compréhension de celles-ci. (Vu cette restriction, l'expert n'a donc pas l'occasion de présenter une discussion générale de son sujet et des méthodes par lesquelles il a obtenu les valeurs données).

einigungen und Freunden, die noch nicht veröffentlichten Daten den Mitarbeiteren zur Verfügung stellten.

Schliesslich möchte die Redaktions-Kommission ihre Anerkennung den Mitarbeiteren ausdrücken, deren Arbeitsfreudigkeit diese Tafeln möglich machten, im besondrem aber auch der Mühewaltung des Redaktionsstabes der Herrn Washburn, Dorsey und West, denen man vorwiegend den Erfolg und die Nützlichkeit dieses Tabellenwerkes schulden muss.

George K. Burgess

S. C. Lind

Saul Dushman John Johnston C. E. Mendenhall

R. B. Moore.

ricordano l'opera dei dirigenti dell'Ufficio di Redazione, Sigg. Washburn, Dorsey, e West ai quali sopratutto si deve essere grati per l'utilità che si avrà dalla presente raccolta di tabelle.

George K. Burgess Saul Dushman John Johnston

8. C. Lind

C. E. Mendenhall

R. B. Moore.

EINLEITUNG

Die Internationalen kristischen Tafeln stellen die Ergebnisse des Zusammenwirkens einer grossen Zahl von Mitarbeiteren mit besonderen Erfahrungen dar, die mit der Aufgabe betraut wurden, die erreichbaren Daten des entsprechenden Gebietes kritisch darzustellen. In dieser Verbindung bedeutet das Wort kritisch soviel, dass der Mitarbeiter gebeten wurde, in jedem einzelnem Fall die "besten" Werte zu geben, die er auf Grund aller zur Verfügung stehenden Literaturstellen, ableiten konnte, zugleich ferner, wenn möglich, alle Angaben mit dem Grade ihrer Zuverlässlichkeit zu vermerken.

Durch ein Übereinkommen mit der Redaktion der Tables annuelles konnte die Redaktionskommission jedem einzelnem Mitarbeiter, über seinen Gegenstand die Literatur der Jahre 1910 bis einschliesslich 1923 soweit übergeben, als sie durch die Redaktion der Tables annuelles ausgearbeitet worden ist. Für die Zeit vor 1910 wurde ein jeder Mitarbeiter gebeten, die notwendigen Literaturstellen und Daten aus den verschieden vorhandenen Handbüchern Spezial-und Nachschlagewerken und anderen, ihm als besonderem Kenner auf diesem Gebiete erreichbaren Quellen, zu sammeln. Es ist nicht versucht worden, die Literatur seit 1923 noch systematisch darzustellen, obwohl ein gewisser Teil davon noch Berücksichtigung finden konnte.

Bei der Bearbeitung der verschiedenen Abschnitte erhielt der Mitarbeiter folgende Anweisungen:

- 1. Als Literatur sind (a) nur diejenigen Stellen anzugeben, auf Grund deren die angegebenen Werte besonders folgerten, (b) die Quellen, über denselben Gegenstand, die aber keine numerischen Daten enthalten, die Verwendung gefunden haben.
- 2. Es sind in den Zahlenangaben der Tafeln alle diejenigen Systeme wegzulassen, deren vorliegende Daten, (a) von geringem wissenschaftlichen und praktischen Werte sind, order (b) die Daten sind so wiedersprechend, dass sie, wenn überhaupt, von geringem Werte sind.
- 3. Die Ergebnisse ihrer Arbeit sind in einer solchen Form darzustellen, dass durch den Text, die Gleichungen, Tabellen und Tafeln mit Rücksichtnahme auf Raumersparnis, der Zweck am besten erfüllt wird.
- 4. In sehr grossen, heterogenen Gebieten wie in denen der Kolloide, der chemischen Kinetik und in gewissen Fällen von technischer Bedeutung, sind nur ausgewählte Beispiele zu geben, die das Gebeit charakterisieren sollen.
- 5. Der erläuternde Text ist soweit zu beschränken, dass eine sachgemässe Verwertung der Tafeln noch möglich ist. (Bei dieser Einschränkung hat der Experte nicht die Gelegenheit allgemein seine Aufgabe, noch die Methode, darzustellen, nach welchen er seine Angaben erhalten hat.)

INTRODUZIONE

Le Tabelle Critiche internazionali sono il frutto della collaborazione di un gran numero di specialisti a ciascuno dei quali è stato affidato il compito di vagliare i dati disponibili sopra un determinato soggetto. La denominazione di tabelle "critiche" indica che l'esperto è stato incaricato di dare in ogni caso il valore "migliore," deducibile da tutte le notizie che si hanno a disposizione. Tutte le volte che è stato possibile l'esperto è stato incaricato anche di dare indicazioni sul grado di attendibilità dei valori numerici.

In seguito ad accordi intervenuti con le Tabelle annuali internazionali, l'ufficio di Redazione ha potuto fornire a ciascun esperto le indicazioni bibliografiche riferentisi agli anni dal 1910 al 1923 incluso, quali vengono compilate dalla direzione delle Tabelle internazionali. Per gli anni precedenti al 1910, gli esperti vennero consigliati a raccogliere la letteratura dai vari manuali, trattati speciali, lavori bibliografici e da altre fonti ad essi note data la qualità di ognuno di specialista in un determinato campo. Dei dati pubblicati dopo il 1923 si è tenuto conto solo in parte.

E' stato raccomandato agli esperti che, nel preparare le varie parti:

- 1. Includessero nella Bibliografia soltanto: (a) le fonti delle indicazioni sulle quali sono basati i valori riportati, e (b) le fonti delle indicazioni riguardanti i sistemi per i quali non viene dato nessun valore. Non si è riportare inteso una bibliografia completa del soggetto.
- 2. Omettessero nelle tabelle delle grandezze numeriche tutti quei sistemi per i quali i dati disponibili; (a) fossero di poco interesse scientifico o pratico, oppure (b) fossero così in disaccordo da essere di poco o di nessum valore.
- 3. Esponessero, a seconda dei casi, i risultati del loro lavoro in forma di testo, di equazioni, di tabelle, di grafici, o di tavole tenendo presente la necessità di economia di spazio.
- 4. Riportassero soltanto esempi tipici nei campi molto vasti ed eterogenei come colloidi, cinetica chimica ed alcune classi di prodotti industriali.
- 5. Limitassero il testo esplicativo a quel tanto sufficiente per un uso intelligente delle tabelle (data questa limitazione, all' esperto non è stato consentito di redigere una esposizione generale del suo soggetto o dei metodi con i quali egli ha ottenuto i valori che riporta).

Nel preparare il testo per la pubblicazione i Redattori sono stati obbligati, per economia di spazio, ad applicare le restrizioni imposte nei capoversi 3 e 5 del precedente paragrafo, ed hanno liberamente cambiato disposizione e forma al testo, ogni qualvolta era evidente che potesse derivarne un miglioramento. Salvo poche eccezioni, tutte indicate la forma definitiva del testo è stata sottoposta alla approvazione dell'Esperto.

noted, the final form of the rewritten text was submitted to the Expert and was accepted by him.

In preparing the numerical data for publication the Editors have made no change except in their arrangement and in their mode of presentation. In making such changes the Editors have been guided by the necessity of saving space. The numerical data are in all cases those submitted by the Expert, excepting that (a) a few additional values, all duly indicated, have been inserted, and (b) when an Expert has submitted a number of values for the same nominal quantity, these have been grouped so as to make a single entry with an indication of the range covered by the values submitted, whenever such grouping seemed justifiable. In these cases, the final manner of grouping was in every case where possible submitted to and accepted by the Expert. The exceptional cases are noted as they occur.

Owing to the method of publication, i.e., one volume at a time, a strictly logical arrangement of subject matter is not always followed. Among such a large number of Cooperating Experts a few instances of greatly delayed reports, arising from illness, accident, or other unforeseen causes, are to be expected; and certain sections or parts of sections, therefore, may not appear in their logical places but will be found in a later volume. The whole set of volumes is very completely indexed, however, and the user who consults the index should have no difficulty in locating any information given.

Chemical compounds are arranged in the tables by formula according to a definite system, called the "Standard Arrangement." This system is based upon a set of key numbers for the chemical elements and is fully explained in Volume One.

In order to find a given substance in the longer tables it is therefore necessary to know its chemical formula, at least approximately. If only the name is known, the formula, for most organic compounds or minerals, may be found with the aid of the name indices in Volume One, p. 174 and 280.

Pour la préparation du texte destiné à la publication, les rédacteurs se sont vu obligés, afin d'économiser encore de la place, d'accentuer encore les restrictions imposées dans les sections 3 et 5 du paragraphe précédent et ils ont pris la liberté de ré-arranger et de ré-écrire le texte partout où il était évident qu'une compression ou une amélioration dans l'ordre logique pouvait ainsi être réalisée. A part de rares exceptions, qui sont du reste dûment notées, la forme définitive du texte ré-ècrit fut soumise à l'expert et acceptée par lui.

En disposant les données numériques pour la publication, les rédacteurs n'ont fait aucune modification, excepté en ce qui concerne l'arrangement et le mode de présentation. En faisant ces changements, les rédacteurs ont été guidés par la nécessité d'épargner de la place.

Les données numériques sont dans tous les cas celles fournies par les experts, à l'exception (a) d'un petit nombre de valeurs, toutes dûment indiquées, qui ont été insérées, et (b) lorsqu'un expert à soumis un certain nombre de valeurs pour la même quantité nominale, ces valeurs ont été groupées de façon à constituer une entrée unique, avec une indication du range occupé par les valeurs fournies, toutes les fois qu'un tel groupement paraissait indiqué. Dans ces cas, la forme définitive du groupement fut, partout où cela était possible, soumise a l'expert et acceptée par lui. Les cas exceptionnels sont notés lorsqu'ils se présentent.

Etant donné le mode de publication par un volume à la fois, un arrangement strictement logique de la matière traitée n'est pas toujours possible. En effet, avec un tel nombre d'experts coopérants, il faut s'attendre à ce qu'il y ait quelques circonstances imprévues, telles que maladies, accidents ou autres causes, occasionnat un grand retard dans la remise des rapports; c'est pourquoi certaines sections ou parties de sections ne peuvent paratre à leur place logique mais se trouveront dans un volume suivant. Cependant, la série complète des volumes étant indexée d'une façon très détaillée, le lecteur qui consulte la table des matières n'aura aucune difficulté pour repérer toute information donnée.

Les composés chimiques sont disposés dans les tables suivant leurs formules et cela d'après un système défini appelé "arrangement type." Ce système est basé sur une suite de "nombres clés" pour les éléments chimiques, et il est expliqué d'une façon complète dans le volume I.

Afin de trouver une substance donnée dans les longues tables, il est nécessaire de connaître sa formule chimique au moins approximativement. Si le nom seul est connu, la formule peut être trouvée pour la plupart des composés organiques ou des minéraux au moyen des noms indices qui se trouvent dans le volume I, p. 174 et 280.

Bei der Zusammenstellung des Textes für die Veröffentlichung waren die Herausgeber gezwungen, im Interesse der Raumersparnis die unter 3 und 5 oben angegebenen Richtlinein besonders zu betonen. Sobald erkannt wurde, dass eine Zusammenziehung und eine Verbesserung in der logische Anordnung möglich sei, wurde der Text frei zusammengestellt und frisch geschrieben. Mit wenigen Ausnahmen, welche besonders bezeichnet sind, wurde die entgültige Form des neu geschriebenen Textes dem Experten vorgelegt und von ihm angenommen.

Bei der Vorbereitung des Zahlenmaterials für die Veröffentlichung änderten die Herausgeber nichts, ausgenommen war nur
dessen Anordnung und die Form der Darstellung, wobei man sich
von der Notwendigkeit, Raum zu sparen, leiten liess. Die Zahlenwerte sind in allen Fällen dieselben, welche vom Experten vorlagen, ausgenommen, (a) dass einige ergänzende, besonders
bezeichnete Werte hinzugefügt wurden und (b), wenn der Experte
für dieselbe quantitative Grösse mehrere Werte angegeben hat.
Diese wurden dann, sobald ein solches Vorgehen gerechtfertigt
war, zusammengestellt, so, dass nur eine Zahl, mit den Grenzen
hingeschrieben werden konnte, welche durch die Werte gegeben
sind. In so einem Falle wurde die Endform der Anordnung
jedesmal dem Experten, wo möglich vorgelegt und von ihm angenommen. Die Ausnahmsfälle sind dorten wo sie vorgekommen
bezeichnet.

Entsprechend der Publikationsmethode, der Herausgabe eines Bandes zu einer bestimmten möglichen Zeit, konnte eine genaue logische Anordnung eines bestimmten Kapitels nicht immer erreicht werden. Unter einer so grossen Zahl von Mitarbeiteren sind Fälle zu erwarten, wo sich einige Artikel stark verzögern werden, sei es durch Krankheit oder andere unvorhergesehene Ursachen. Deshalb werden gewisse Abschnitte oder deren Teile nicht an ihren richtigen Plätzen erscheinen, sonderen sie können in einem späteren Band gefunden werden. Die ganze Bänderfolge ist mit einem sehr vollständigem Verzeichnis versehen und der Leser, welcher das Verzeichnis benützt, wird keine Schwierigkeit haben, Vorhandenes aufzufinden.

Die chemischen Verbindungen sind in den Tafeln nach einem Formelsystem angeordnet, das als "Normalanordnung" (Standard Arrangement) bezeichnet wird. Dieses System, das im ersten Bande vollständig erklärt wird, beruht darauf, dass für die chemischen Elemente Schlüsselnummern gewählt werden.

Um im den längeren Tafeln eine gegebene Substanz aufzufinden, ist es notwendig, deren chemische Formel wenigstens annähernd zu kennen. Ist nur der Name bekannt, so kann die Formel der meisten organischen Verbindungen und der Minerale, mit Hilfe des englischen Namenverzeichnisses im Bande 1 Seite 174 und 280 gefunden werden.

Nell'allestire i dati numerici per la pubblicazione i Redattori hanno fatto cambiamenti solo nel modo di disporli e di presentarli. Nel fare questi cambiamenti i Redattori sono stati guidati dalla necessità di risparmiare spazio. I dati numerici sono in tutti i casi quelli forniti dall'Esperto; solo qualche volta sono stati aggiunti alcuni pochi valori, tutti bene indicati, e qualche altra, avendo l'Esperto riportato parecchi valori per una stessa grandezza, questi—allorchè è sembrato giustificato il farlo—sono stati raggruppati indicando un solo numero ed i limiti entro i quali oscillano i valori considerati. In questi casi, la disposizione finale fu sempre, quando possibile, sottoposta all'approvazione dell' Esperto. Tutte le volte che è stato fatto diversamente, lo si è indicato.

Siccome le tabelle vengono pubblicate un volume alla volta, non sempre la disposizione della materia è fatta in modo strettamente logico.

Dato il numero grande di Esperti, è da aspettarsi che qualche rapporto sarà presentato con grande ritardo a causa di malattie o di incidenti imprevedibili. Certe parti periciò potranno comparire non nel posto che logicamente ad esse spetterebbe, ma in volumi posteriori. Tutti i volumi sono però muniti di indici accurati e il lettore, consultandoli, non avrà difficoltà a rintracciare una notizia qualunque.

I composti chimici sono disposti nelle tabelle in base alle formule seguendo un sistema chiamato "disposizione Standard." Questo sistema è fondato sopra una serie di numeri chiave assegnati agli elementi chimici ed è esaurientemente spiegato nel primo volume.

Per poter quindi trovare una data sostanza nelle tabelle più lunghe, è necessario conoscerne la formula chimica, almeno approssimativamente. Se si conosce solo il nome, la formula si può trovare (per la massima parte dei composti organici o minerali) con l'aiuto degli indici per nome centenuti nel 1° volume p. 174 e 280.

CONTENTS

MATIÈRES .

Preface by the Board of Trustees	vii	Préface, Conseil d'Administration	
Preface by the Board of Editors	x	Préface, Comité des Rédacteurs	x
Introduction	xii	Introduction	xii
Cooperating Experts—Volume One	xx	Experts coopérants pour le Vol. I	хx
 (a) Symbols and abbreviations. (b) Fundamental constants of nature, accepted and conventional values. (c) Conversion factors and dimensional formulae. (d) Hydrometers. (e) Technical efflux viscometers (f) Selected scientific and technical terms. Definitions, 	1 2 14 16 16 17 18 31 32 34 43 43	Symboles, constantes de base, facteurs de conversion, dimensions, définitions (a) Symboles et abréviations. (b) Constantes fondamentales de la nature. Valeurs acceptées et conventionnelles. (c) Facteurs de conversion et formules de dimensions. (d) Hydromètres. (e) Viscosimètres techniques à écoulement. (f) Terms scientifiques et techniques choisis. Définitions, formules de dimensions, etc. Eléments chimiques et atomes. (a) Nombres atomiques. Poids atomiques pour chaque année depuis 1880.	
(c) Isotopes	46 45 47	(-,	45 47
	45	(d) Structure de l'atome isolé	47
(d) Structure of the isolated atom LABORATORY TECHNIQUE Thermometry (a) Thermometric scales (b) Fixed points (c) Resistance thermometers (d) Liquid-in-glass thermometers (e) Thermocouples (f) Optical pyrometry	45	(d) Structure de l'atome isolé TECHNIQUE DU LABORATOIRE Thermométrie (a) Echelles thermométriques (b) Points fixes (c) Thermomètres à résistance (d) Thermomètres de verre à colonne liquide (e) Couples thermo-électriques (f) Pyrométrie optique Méthodes de laboratoire pour la production et le maintien de	
LABORATORY TECHNIQUE Thermometry	45 47 52 52 53 54 54 57	TECHNIQUE DU LABORATOIRE Thermométrie (a) Echelles thermométriques (b) Points fixes (c) Thermomètres à résistance (d) Thermomètres de verre à colonne liquide (e) Couples thermo-électriques (f) Pyrométrie optique Méthodes de laboratoire pour la production et le maintien de températures constantes (a) Température au-dessous de 0° (b) Production du froid (c) Température au-dessus de 0° (d) Production de hautes températures Méthodes de laboratoire pour maintenir une humidité con-	52 52 53 54 54 57 59 61 62 62
LABORATORY TECHNIQUE Thermometry (a) Thermometric scales. (b) Fixed points (c) Resistance thermometers. (d) Liquid-in-glass thermometers. (e) Thermocouples. (f) Optical pyrometry Laboratory Methods for Producing and Maintaining Constant Temperatures. (a) Temperatures below 0°C. (b) Production of cold. (c) Temperatures above 0°C. (d) Production of high temperatures Laboratory Methods for Maintaining Constant Humidity.	45 47 52 52 53 54 54 57 59 61 61 62 66 67 67	TECHNIQUE DU LABORATOIRE Thermométrie (a) Echelles thermométriques (b) Points fixes (c) Thermomètres à résistance (d) Thermomètres de verre à colonne liquide (e) Couples thermo-électriques (f) Pyrométrie optique Méthodes de laboratoire pour la production et le maintien de températures constantes (a) Température au-dessous de 0° (b) Production du froid (c) Température au-dessus de 0° (d) Production de hautes températures Méthodes de laboratoire pour maintenir une humidité constante.	52 52 53 54 54 57 59 61 62 66 67
LABORATORY TECHNIQUE Thermometry	52 52 53 54 54 57 59 61 62 66 67	TECHNIQUE DU LABORATOIRE Thermométrie (a) Echelles thermométriques (b) Points fixes (c) Thermomètres à résistance (d) Thermomètres de verre à colonne liquide (e) Couples thermo-électriques (f) Pyrométrie optique Méthodes de laboratoire pour la production et le maintien de températures constantes (a) Température au-dessous de 0° (b) Production du froid (c) Température au-dessus de 0° (d) Production de hautes températures Méthodes de laboratoire pour maintenir une humidité con-	52 52 53 54 57 59 61 62 66 67
LABORATORY TECHNIQUE Thermometry (a) Thermometric scales. (b) Fixed points. (c) Resistance thermometers. (d) Liquid-in-glass thermometers. (e) Thermocouples. (f) Optical pyrometry. Laboratory Methods for Producing and Maintaining Constant Temperatures. (a) Temperatures below 0°C. (b) Production of cold. (c) Temperatures above 0°C. (d) Production of high temperatures. Laboratory Methods for Maintaining Constant Humidity. Barometry and Manometry. Psychrometry, Density of Moist Air, Change in Barometric Pressure with Altitude. Volume of Liquid Menisci. Weights and Weighing. Adjustment and Constancy of Weights; Correction for Air Buoyancy; Determination	45 47 52 52 53 54 54 57 59 61 61 62 66 67 67 68	TECHNIQUE DU LABORATOIRE Thermométrie	52553545545759616162667717273
LABORATORY TECHNIQUE Thermometry (a) Thermometric scales. (b) Fixed points. (c) Resistance thermometers. (d) Liquid-in-glass thermometers. (e) Thermocouples. (f) Optical pyrometry. Laboratory Methods for Producing and Maintaining Constant Temperatures. (a) Temperatures below 0°C. (b) Production of cold. (c) Temperatures above 0°C. (d) Production of high temperatures. Laboratory Methods for Maintaining Constant Humidity. Barometry and Manometry. Psychrometry, Density of Moist Air, Change in Barometric Pressure with Altitude. Volume of Liquid Menisci. Weights and Weighing. Adjustment and Constancy of	52 52 52 53 54 54 57 59 61 61 62 66 67 67 68 71 72	TECHNIQUE DU LABORATOIRE Thermométrie	52 52 53 54 54 57 59 61 62 66 67 72

INHALTSVERZEICHNIS

INDICE

Ser			LG B
Vorwort der geschäftsführenden Kommission	vii	Prefazione degli editori	vii
Vorwort der Redaktions-Kommission	x	Prefazione dei redattori	x
Einleitung	····	Introduzione	
Mitarbeiter des I. Bandes	xx	Collaboratori del volume primo	хх
Mass- und Gewichtssysteme in den verschiedenen Ländern		Sistemi nazionale e regionali di pesi e misure	1
und Gebieten	1	(a) sistema metrico internazionale	1
(a) Das internationale metrische System	1	(b) sistemi moderni	2
(b) Moderne Systeme	2	(c) sistemi dell'antichità	14
(-, -, -,	14	Simboli, costanti fondamentali, coefficienti di riduzione, di-	
Zeichen, Grundkonstanten, Umrechnungsgrössen, Dimen-			16
Diolion, 2 of the control of the con	16	("/ """""" " " " " " " " " " " " " " " "	16
(4) 2000000000000000000000000000000000000	16	(b) costanti fondamentali della natura. Valori stabiliti e	17
(b) Naturkonstanten, festgelegte und konventionelle Grös-			17 18
	17	(-,	31
(0)	18		32
(11) 110 110 110 110 110 110 110 110 110	31	(f) termini scelti scientifici e tecnici. Definizioni, formule	32
(0) 2001111100110 112021111	32	• •	34
(f) Ausgewählte wissenschaftliche und technische Aus-			
,,,,	34		43
	43	(a) numeri atomici. Pesi atomici per tutti gli anni a partire	40
(-,	43		43
(", " = " P " " " " " " " "	46		46
(c) 200 to po =================================	45	•	
(d) Aufbau der einzelnen Atome	47	(d) struttura dell'atomo	41
HILFSTAFEL PHYSIKALISCH CHEMISCHER MESSUNGEN		TECNICA DI LABORATORIO	
	52		52
Thermometrie	52 52	Termometria	
Thermometrie	52	Termometria	52
Thermometrie	52 53	Termometria	52 53
Thermometrie	52 53 54	Termometria	52 53 54
Thermometrie	52 53	Termometria	52 53 54 54
Thermometrie	52 53 54 54	Termometria	52 53 54 54
Thermometrie	52 53 54 54 57	Termometria	52 53 54 54 57
Thermometrie	52 53 54 54 57	Termometria (a) scale termometriche (b) punti fissi (c) termometri a resistenza (d) termometri a liquidi (in vetro) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrre e mantenere temperature	52 53 54 54 57 59
Thermometrie	52 53 54 54 57 59	Termometria	52 53 54 54 57 59
Thermometrie	52 53 54 54 57 59 61	Termometria	52 53 54 54 57 59 61 61
Thermometrie	52 53 54 54 57 59 61 61	Termometria	52 53 54 54 57 59 61 61 62
Thermometrie	52 53 54 54 57 59 61 61 62	Termometria	52 53 54 54 57 59 61 61 62 66
Thermometrie	52 53 54 54 57 59 61 61 62 66	Termometria	52 53 54 54 57 59 61 61 62 66 67
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit.	52 53 54 54 57 59 61 61 62 66	Termometria (a) scale termometriche. (b) punti fissi (c) termometri a resistenza (d) termometri a liquidi (in vetro) (e) coppie termoelettriche. (f) pirometria ottica Metodi di laboratorio per produrre e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate Metodi di laboratorio per mantenere una umidità costante	52 53 54 54 57 59 61 61 62 66 67
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit.	52 53 54 54 57 59 61 61 62 66 67	Termometria (a) scale termometriche. (b) punti fissi (c) termometri a resistenza (d) termometri a liquidi (in vetro) (e) coppie termoelettriche. (f) pirometria ottica Metodi di laboratorio per produrre e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro)	52 53 54 54 57 59 61 61 62 66 67
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhen-	52 53 54 54 57 59 61 62 66 67 67 68	Termometria	52 53 54 54 57 59 61 62 66 67 67 68
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale.	52 53 54 54 57 59 61 62 66 67 67 68	Termometria	52 53 54 54 57 59 61 62 66 67 67 68
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus.	52 53 54 54 57 59 61 62 66 67 67 68	Termometria	52 53 54 54 57 59 61 62 66 67 67 68
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der	52 53 54 54 57 59 61 62 66 67 67 68	Termometria	52 53 54 54 57 59 61 62 66 67 68 71 72
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes,	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72	Termometria	52 53 54 54 57 59 61 62 66 67 68 71 72
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes, Bestimmung der Dichte	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72	Termometria	52 53 54 54 57 59 61 62 66 67 68 71 72
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes, Bestimmung der Dichte. Kalibrierung von Gefässen in der Volumetrie.	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72	Termometria. (a) scale termometriche. (b) punti fissi (c) termometri a resistenza (d) termometri a liquidi (in vetro) (e) coppie termoelettriche. (f) pirometria ottica Metodi di laboratorio per produrre e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro) Psicrometria, densità dell'aria umida, variazioni della pressione barometrica con l'altezza Volume dei menischi liquidi Pesi e pesare. Rettifica e costanza dei pesi; correzione per la spinta dell'aria; determinazione della densità Taratura di recipienti per la misura di volumi	52 53 54 54 57 59 61 62 66 67 67 68 71 72
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes, Bestimmung der Dichte Kalibrierung von Gefässen in der Volumetrie. Standard Puffer-Lösungen und Indikatoren für Säuren und	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72	Termometria	52 53 54 54 57 59 61 62 66 67 67 68 71 72 73 80
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes, Bestimmung der Dichte Kalibrierung von Gefässen in der Volumetrie. Standard Puffer-Lösungen und Indikatoren für Säuren und Basen.	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72 73 80 81	Termometria. (a) scale termometriche. (b) punti fissi (c) termometri a resistenza (d) termometri a liquidi (in vetro) (e) coppie termoelettriche. (f) pirometria ottica Metodi di laboratorio per produrre e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro) Psicrometria, densità dell'aria umida, variazioni della pressione barometrica con l'altezza Volume dei menischi liquidi Pesi e pesare. Rettifica e costanza dei pesi; correzione per la spinta dell'aria; determinazione della densità Taratura di recipienti per la misura di volumi Soluzioni a concentrazione constante di ioni idrogeno e indicatori per acidi e basi	52 53 54 54 57 59 61 62 66 67 67 68 71 72 73 80
Thermometrie (a) Temperaturskalen. (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flüssigkeits-Thermometer. (e) Thermoelemente (f) Optische Pyrometrie. Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen. (a) Temperaturen unter 0°C. (b) Erzeugung von Kälte (c) Temperaturen über 0°C. (d) Erzeugung hoher Temperaturen. Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit. Barometrie und Manometrie. Psychrometrie, Dichte feuchter Luft, barometrische Höhenskale. Volumen des Flüssigkeits-Meniskus. Gewichte und Wägen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes, Bestimmung der Dichte Kalibrierung von Gefässen in der Volumetrie. Standard Puffer-Lösungen und Indikatoren für Säuren und Basen. Technique der luftleerer Raum.	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72	Termometria	52 53 54 54 57 59 61 62 66 67 68 71 72 73 80 81 91

P	AGE	I	PAGE
METHOD OF ARRANGEMENT OF CHEMICAL SUBSTANCES AND)	METHODE POUR L'ARRANGEMENT DES SUBSTANCES CHIMIQUES	
Systems in I. C. T.	96	et systèmes employès dans les T. C. I.	96
Physical Properties of Chemical Substances		Propriétes physiques des substances chimiques	
Deader Patersones Walles	98	Tables de références rapides	98
Ready Reference Tables		(a) Introduction explicative	
(a) Explanatory introduction	98	(b) Substances élémentaires et air atmosphérique	
(b) Elementary substances and atmospheric air		(c) Composés chimiques (minéraux inclus)	
(c) Chemical compounds (including minerals)	106	(d) Composés chimiques arrangés dans l'ordre de leurs	100
(d) Chemical compounds arranged in the order of their	- 1	propriétés	208
properties	306		
(e) Liquid crystals	314	(e) Cristaux liquides	
	320	(f) Cristallographie des composés du carbone	320
Crystal Structure. X-Ray Diffraction Data for Crystals and	ı	Structure cristalline. Données relatives à la diffraction des	
	338	rayons X pour les cristaux et les liquides	33 8
Disperse Systems ("Colloids")		Systèmes dispersifs ("colloides")	354
Sweetening Agents		Agents de sucrage	357
		Substances odoriférantes	358
Odoriferous Materials	338		
RADIOACTIVITY		RADIOACTIVITÉ	
		Table internationale des éléments radioactifs et de leurs con-	900
International Table of the Radioactive Elements and their		stantes	
Constants	362	Propriétés physiques des éléments radioactifs	
Physical Properties of Radioactive Elements	364	Désintégration artificielle des éléments	365
Artificial Disintegration of the Elements	365	Emissions électroniques sous l'influence des rayonnements	
Electron Emission Produced by Radiations from Radioactive		radioactives	36 5
Substances	365	Energie des processus radioactifs	366
	366	Effets chimiques des particules α	366
	366	Courant de saturation	367
	367	Absorption dans les liquides et les solides	36 8
	368	Radiations radioactives dans les gaz	
	369	Rayons β ; absorption et diffusion dans les liquides et les	
		solides	370
β-Rays: Absorption and Diffusion in Liquids and Solids		Longueurs d'onde des rayons γ	
Wave Lengths of γ-Rays		• •	
Ionizing Radiations from Ordinary Substances	372	Rayonnements d'ionisation des corps ordinaires	312
Distribution of Radioactive Materials in the Atmosphere, the		Distribution des substances radioactives dans l'atmosphère,	070
Hydrosphere and the Lithosphere		l'hydrosphère et la lithosphère	
Age of Rocks and Minerals	381	Age des roches et des minèraux	381
ASTRONOMICAL AND GEODETIC DATA		Données astronomiques et géodésiques	
ABIRONOMICAL AND GEODETIC DATA		Etoiles et nébuleuses	384
Stars and Nebulae	384	(a) Classes spectrales; masses, densités, températures,	•••
(a) Spectral classes, masses, densities, temperatures,		diamètres	284
diameters	384	(b) Distribution	
(b) Distribution			
(c) Motions		(c) Mouvements	389
· ·	งอง	Temps. Unités. Corrélation des ères chronologiques, Angle	
Time. Units, Correlation of Chronological Eras, Equation of		horaire de soleil moyen	391
Time	991	Le système solaire, Données relatives aux orbites. Caractér-	
The Solar System. Orbital Data, Selected Characteristics of		istiques choisies des membres	392
the Members		La terre. Forme, Dimension, Densité	393
Composition of the Atmosphere		Composition de l'atmosphère	393
The Earth. Figure, Size, Density	393	Intensité de la pesanteur à plus de 400 stations choisies. Cor-	
Gravity Data. At Over 400 Selected Stations. Correction		rection pour la profondeur et la hauteur. La constante	
for Depth and Height. The Gravitation Constant	395	de gravitation	395
AERODYNAMICS	402	AERODYNAMIQUE	402
LIST OF JOURNALS AND THEIR KEY NUMBERS	412	Liste des journaux et leurs nombres-clés	412

Saira	PAGE
DIE METHODEN DER ANORDNUNG CHEMISCHER STOFFE UND SYSTEME IN I. C. T. 96	METODI ADOTTATI PER L'ORDINAMENTO DELLE SOSTANZE NELLE T. C. I. 96
Physikalische Eigenschaften chemischer Stoffe	PROPRIETA' FISICHE DEI CORPI
Kurse Übersichts-Tafeln. 98 (a) Erklärende Einleitung. 98 (b) Elementare Stoffe und atmosphärische Luft 102 (c) Chemische Verbindungen (einschliesslich Minerale) 106 (d) Chemische Verbindungen in der Reihenfolge ihrer Eigenschaften. 306 (e) Flüssige Kristalle 314 (f) Kristallographie der Kohlenstoffverbindungen 320 Kristallbau, Zerstreuung der Röntgenstrahlen an Kristallen und dürch Flüssigkeiten 338 Disperse Systeme (Kolloide). 354	Tabelle di riferimento. 98 (a) introduzione esplicativa. 98 (b) elementi e aria atmosferica. 102 (c) composti (minerali inclusi). 106 (d) composti ordinati secondo le loro proprietà. 306 (e) cristalli liquidi. 314 (f) cristallografia dei composti del carbonio. 320 Struttura cristallina. Valori della diffrazione dei raggi X in cristalli e liquidi. 338 Sistemi dispersi ("colloidi"). 354 Sostanze dolcificanti. 357
Süss-Stoffe :	Profumi
Geruchs-Stoffe	Radioattivita'
RADIOAKTIVITÄT	ICADIOA FITATIA
Internationale Tafeln der radioaktiven Elemente und deren Konstanten	Tabelle internazionali degli elementi radioattivi e loro costanti
Elektronen-Emission radioaktiver Stranier	attive
ASTRONOMISCHE DATEN UND DIE ERDE	DATI ASTRONOMICI E GEODETICI
Sterne und Nebel	Stelle e nebulose
Verzeichnis der Zeitschriften und deren Schlüssel-	_
Nummern 412	ELENCO DEI PERIODICI E NUMERO CHIAVE DI ESSI 412

COOPERATING EXPERTS—VOLUME ONE

- Adams, Leason H., B.S.: Physical Chemist, Geophysical Laboratory, Carnegie Institute of Washington, Washington, D. C.
- -Aston, F. W., D.Sc., F.R.S., F.I.C.: Fellow, Cavendish Laboratory, Trinity College, Cambridge, England.
- -Auger, Pierre: Agrégé des sciences physiques, Faculté des Sciences de Paris, France.
- BARDWELL, D. C., Ph.D.: Associate Physical Chemist, Fixed Nitrogen Research Laboratory, U. S. Department of Agriculture, Washington, D. C.
- BIGG, PHILIP, H., B.Sc.: Junior Assistant, The National Physical Laboratory, Teddington, Middlesex, England.
 - Briggs, Lyman J., Ph.D.: Chief, Division of Mechanics and Sound, Bureau of Standards, Washington, D. C.
- -CLARK, MANSFIELD, Ph.D.: Professor of Chemistry, Hygienic Laboratory, U. S. Public Health Service, Washington, D. C.
- DRYDEN, HUGH L., Ph.D.: Chief, Aerodynamical Physics Section, Bureau of Standards, Washington, D. C.
- 91 DUSHMAN, SAUL, Ph.D.: Physicist, General Electric Co., Schenectady, N. Y.
- 😽 Fairchild, Charles O., M. S.: Physicist, Bureau of Standards, Washington, D. C.
 - FOOTE, HARRY W., Ph.D.: Professor of Chemistry, Yale University, New Haven, Connecticut.
- 47 Forsythe, William E., Ph.D.: Director, Nela Research Laboratory, Cleveland, Ohio.
- 7 GOULD, F. A., M.A.: Assistant, Metrology Department, The National Physical Laboratory, Teddington, Middlesex, England.
- -GUILLAUME, CHARLES-EDOUARD: Directeur du Bureau international des Poids et Mesures, Sèvres, France.
- HANN, RAYMOND M., B.S.: Bureau of Chemistry, Washington, D. C. 320
- JY —HERSCHEL, WINSLOW H., A.B.: Associate Physicist, Bureau of Standards, Washington, D. C.
 - -Hevesy, G., Ph.D.: Professor, Universitetets Institut for Teoretiskfysik, Copenhagen, Denmark.
 - -HOUGEN, OLAF A., Ph.D.: Assistant Professor of Chemical Engineering, Univ. of Wisconsin, Madison, Wisconsin.
- -Humphreys, William J., Ph.D.: Professor of Meteorological Physics, U.S. Weather Bureau, Washington, D.C.
- -Joy, Alfred H., M.A.: Astronomer, Mount Wilson Observatory of the Carnegie Institution of Washington, Pasadena, California.
- KANOLT. C. W., Ph. D.: Physicist, Bureau of Standards, Washington, D. C.
 - KEENAN, GRORGE L., M.A.: Bureau of Chemistry, Washington, D. C.
- 3:4 -KLEEMAN, RICHARD D., D.Sc.: Consulting and Research Physicist and Physical Chemist; Associate Professor of Physics, Union College, Schnectady, N. Y.
 - 47-Kramers, H. A.: Institut for Teoretiskfysik, Copenhagen, Denmark.
- ³ -LAMBERT, WALTER D., A.M.: Mathematician, U. S. Coast and Geodetic Survey, Washington, D. C.
- -Lind, S. C., Ph.D.: Assistant Director, Fixed Nitrogen Research Laboratory, U. S. Department of Agriculture, Washington, D. C.
- ? MEYER, STEFAN, Ph.D.: O. Ö. Prof. d. Physik, Universität, Vienna, Austria.
- Moore, Richard B., Sc.D.: General Manager, The Dorr Company, New York City, N. Y.
- 5v ... MUELLER, EUGENE F.: Physicist; Chief, Heat Measurement Section, Bureau of Standards, Washington, D. C.
- 🤼 Рівикоwsку, Актник Т., Ph.B.: Associate Physicist, Bureau of Standards, Washington, D. C.
- RAGATZ, ROLAND A., M.S.: Instructor in Chemical Engineering, University of Wisconsin, Madison, Wisconsin.
- RUDORF, G.: Air Ministry, Kingsway, London, England.

Later Commence

- 3 ~ SCHLUNDT, HERMAN, Ph.D.: Chairman, Department of Chemistry, University of Missouri, Columbia, Missouri.
- 301 Schweidler, Egon, Ph.D.: O. Ö. Professor der Physik, Physikalisches Institut der Universität, Innsbruck, Austria.
- SEARES, FREDERICK H., B.S.: Assistant Director, Mt. Wilson Observatory of the Carnegie Institution of Washington, Pasadena, California.
 - SODDY, FREDERICK, M.A., F.R.S.: Professor, Chemical Department, University Museum, Oxford, England.
 - Spencer, Hugh M., Ph.D.: Instructor in Chemistry, Yale University, New Haven, Connecticut.
 - STOTT, VERNEY, B.A., F. Inst. P.: Assistant, The National Physical Laboratory, Teddington, Middlesex, England.
- Strömberg, Gustaf, Ph.D.: Astronomer, Mt. Wilson Observatory of the Carnegie Institution of Washington, Pasadena, California.
- -Swick, Clarence E., C.E.: Geodetic Mathematician, U.S. Coast and Geodetic Survey, Washington, D.C.
 - VOLET, CHARLES: Licencié ès-Sciences, Adjoint au Bureau international des Poids et Mesures, Sèvres, France.
 - -WALTON, C. F., JR.: Research Chemist, Bureau of Chemistry, Washington, D. C.
- 3 WEIMARN, P. P., von: Professor of Physical Chemistry; Mining Engineer; Head, Dispersoidological Department, Imperial Industrial Research Institute, Osaka, Japan.
 - -Wells, Roger C., Ph.D.: Physical Chemist, U.S. Geological Survey, Washington, D.C.
 - WENSEL, H. T., Ph.D.: Associate Physicist, Bureau of Standards, Washington, D. C.
 - WHERRY, EDGAR T., Ph.D.: Senior Chemist, Bureau of Chemistry, Washington, D. C.
 - ' I-WHIPPLE, F. J. W., M.A., F. Inst. P.: Superintendent, Kew Observatory, Richmond, Surrey, England. -Woodworth, Robert S., Ph.D.: Professor of Psychology, Columbia University, New York City, N. Y.
 - WYCKOFF, RALPH W. G.: Research Associate, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D. C.
 - ZWAARDEMAKER, H., M.D.: Professor of Physiology, Univ. of Utrecht, Holland.

INTERNATIONAL CRITICAL TABLES

NATIONAL AND LOCAL SYSTEMS OF WEIGHTS AND MEASURES

CHARLES-ÉDOUARD GUILLAUME AND CHARLES VOLET

Plan.—Section A: International Metric System; list of countries in which its use was compulsory on January 1, 1925; list of those in which its use was either legally optional or partially compulsory on same date.

Section B: Other modern systems; the more important units at present in use or in use before adoption of metric system.

Section C: Weights and measures of antiquity.

Style and Abbreviations.—Only the singular number of the names of the units are used; ten meters will appear as 10 meter. Units of area and of volume will be written in the form centimeter² (=cm²) and centimeter³ (=cm³), respectively.

ca.	Value :	given	is only	appro	ximat	te.	
ch.	Units l	have o	changed	${\bf from}$	time	to	time

cm² Square centimeter = centimètre carré = Quadratzentimeter = centimetro quadrato.

current Units, other than metric, which are now in use; some of the units included in this class are practically

obsolete. (See Local.)

local

Units of local or native origin or derivation which are in use, but which are embraced neither by the metric system nor by that of the central government. Applies mainly to colonial possessions.

Cubic meter = mètre cube = Kubikmeter = metro cubico.

m.c. International metric system compulsory since . . . m.o. International metric system legally optional since . .

older Units used before adoption of international metric

older = The older units were those of . . .

provincial Units vary from one province or city to another.

since . . . = . . . Since . . . the units have been the same

v. Vide = see.

 m^3

var. Units are variable, not rigidly defined.

A. INTERNATIONAL METRIC SYSTEM

The decimal metric system, established in France by the Loi du 7 Avril, 1795, and represented by standards deposited in the Archives de France, became international on May 20, 1875, by the action of the Convention Internationale du Mètre. The new standards, of platinum-iridium, constructed at that time and serving as the basis of the international system, were copied from those of the Archives.

On January 1, 1925, the metric system was compulsory in:

Algeria	Greece	Peru
Allemagne	Guam	Poland
Argentina	Guatemala	Porto Rico
Austria	Haiti	Portugal and colonies
Autriche	Holland	Rumania
Belgium	Honduras	Russia
Bolivia	Hungary	Salvador
Brasil	Iceland	Schweden
Bulgaria	Italy & colonies	Schweis
Chile	Japan	Serbie-Croatie-Slovénie
Colombia	Kolumbien	Seychelles Islands
Congo, Belgian	Kongo, Belgisch	Siam
Costa Rica	Kuba	8pain
Cuba	Luxemburg	Suède
Czechoslovakia	Malta	Suisse
Denmark	Mauritius	Svézia
Deutschland	Mexico	Svissera
Ecuador	Netherlands & colonies	8weden
Equateur	Nicaragua	Switzerland
Espagne	Norway	Tchécoslovaquie
Filippine	Olanda	Tunis
Finland	Österreich	Ungarn
		Ungheria
France	Panama	Uruguay
Germany	Pay-Bas & colonies	Venezuela
Gioppóne	Philippine Islands	Yugoslavia

On the same date, it was legally optional or partially compulsory in:

Canada Great Britian Irish Free State
China India, British Paraguay
Egypt India, Northern United States of America

The fundamental units are: Meter (m), which is the distance at 0°C between the axes of two lines ruled on the prototype deposited at the Bureau international des Poids et Mesures, Sèvres, France; Kilogram (kg), which is the mass of the prototype deposited at the same Bureau; and Liter (l), which is the volume of one kilogram of pure water at the temperature of its maximum density, under the pressure of one normal atmosphere.

The primary units of the system are the meter (m), micron $(\mu) = 10^{-6}$ meter, gram (g) = 10^{-3} kilogram, liter (l), are (a) = area of a square with a side 10 meter long, and stere (s) = volume of a cube with an edge one meter long. The units of area [of volume], characterized by the adjective square [cubic], are not derived from a primary unit, but are each defined as the area [volume] of a square [cube] with side [edge] equal to the stated unit of length. The names of other secondary units are formed by attaching to the name of a primary unit certain prefixes of unvarying significance.

¹ Normal atmosphere, v. p. 18.

econdary units.			Leny	
	Length $m = meter$		1 pic (dzera à tor	• .
μ	micron* = 1	0-6 m	1 pic (dzera à ral	bry) = 0.480
mm	millimeter = 1	.0⁻₃ m	Unit	Pic
cm	centimeter = 1	.0⁻² m	1 termin	= 1
dm		0 ⁻¹ m	1 rebia	= 1
dkm		0 m	1 nus	= }
hm	hectometer = 1		Ma	
km		03 m		
Mm	myriameter = 1		1 ukkia	= 34.13
MIII	megameter = 1		1 metical	= ca. 4.7
			Unit	Ukki
* mµ millimicron =	· 10 ⁻⁹ m	nicron = 10 ⁻¹² m	1 rottolo à thary	r = 16
	Mass g = gram		1 rottolo à khad	hary = 18
μg*	microgram	$= 10^{-6} g$	1 rottolo à keby	r = 24
· -	milligram	$= 10^{-3} \text{ g}$	1 cantar	= 100
mg	<u> </u>	•		rotto
cg	centigram	= 10 ⁻² g	Q	J
dg	decigram	$= 10^{-1} g$	Capacii	
dkg	dekagram	= 10 g	1 caffiso $= 317.4$	17 1
hg	hectogram	$= 10^{2} g$	1 saah = 58 l	
kg	kilogram	$= 10^3 \mathrm{g}$	$1 \text{ tarri } = \frac{1}{16} \text{ ca}$	affiso
q	metric quintal = 10 ³	$kg = 10^s g$		
t	metric ton = 10^3 kg	$= 10^6 \mathrm{g}$	Capacity	
c	metric carat	= 200 mg	$1 \text{ khoull} = 16\frac{2}{3}$	l or 16 l
Symbol y also used.			Allemagne v.	Germany.
CARAC	TY 1 = liter = 1.000 027	dm³	Anam.—var.:	ch., current:
	microliter = 10		Len	adh.
μl*				
ml	milliliter = 10		1 thuoc moc	= 0.425 m
cl	centiliter = 10		1 thuoc de ruone	g = 0.470 m
dl	deciliter = 10	-	1 thuoc vai	= 0.644 m
dkl	dekaliter = 10		Unit	Thuoc
hl	hectoliter = 10)2]	1 ly	= 0.001
Symbol \(\lambda\) also used.			1 phan	= 0.01
	REA m ² = square meter		1 tat	= 0.1
		10-4 1	1 tam	0.1
mm²	square millimeter =		1 ngu	= 5
cm²	square centimeter =		1 truong	= 10
dm²	square decimeter =	: 10 ⁻² m ²	1 sao	= 15
8.	_	10 ² m ²		- 15
ha		: 10 ² a	1 chai vai }	= 30
km²	square kilometer =	: 10 ⁶ m ²	1 that	1.50
V	or war mil — oubic motor		1 mao	= 150
v	OLUME m ² = cubic meter		1 gon	= 300
mm³	cubic millimeter =		Ma	188
cm³	cubic centimeter =	: 10 ⁻⁶ m³	1 dong = 3.775	~
		: 10 ⁻³ m³	1 picul = 60 kg	•
dm³	cubic decimeter =		I Prom - OO Kg	
dm³ km³	cubic decimeter = cubic kilometer =			
I		: 10° m³	Unit Dong	
km³	cubic kilometer = decistere = 0.1 s =	: 10° m³	1 hao = 0.001	
km³ ds	cubic kilometer = decistere = 0.1 s =	= 10° m³ = 10 ⁻¹ m³ = 1 m³		
km³ ds s	cubic kilometer = decistere = 0.1 s = stere	= 10° m³ = 10 ⁻¹ m³ = 1 m³	1 hao = 0.001	
km³ ds s dks	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s =	= 10° m³ = 10 ⁻¹ m³ = 1 m³	1 hao = 0.001 1 li = 0.01	
km³ ds s dks	cubic kilometer = decistere = 0.1 s = stere	= 10° m³ = 10 ⁻¹ m³ = 1 m³	1 hao = 0.001 1 li = 0.01 1 fan = 0.1	
km³ ds s dks	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = 3. MODERN SYSTEMS	: 10° m³ : 10 ⁻¹ m³ : 1 m³ : 10 m³	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10	
km³ ds s dks	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekas	10° m³ = 10 ⁻¹ m³ = 1 m³ = 10 m³	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160	
km³ ds s dks	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = 3. MODERN SYSTEMS	10° m³ = 10 ⁻¹ m³ = 1 m³ = 10 m³	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600	
km³ ds s dks dks	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekas	10° m³ 10° m³ 1 m³ 10 m³ 10 m³	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160	
km³ ds s dks dks byssinia.—var.: c Length ic = 0.686 m	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekastere = 10 s = dekastere = 10 wakea = 1 mocha = Capaci	10° m³	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600 1 binh = 8000 1 ta = 16 000	0
km³ ds s dks byssinia.—var.: c Length ic = 0.686 m arsang = 5.07 km	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekastere = dekastere = 10 s = dekastere =	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 160 1 yen = 1600 1 ta = 16 00 1 quan = 18 000	0 0
km³ ds s dks byssinia.—var.: c Length ic = 0.686 m ursang = 5.07 km	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekas	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600 1 binh = 8000 1 ta = 16 000	0 0
km ³ ds s dks byssinia.—var.: c Length ic = 0.686 m arsang = 5.07 km erri = $\frac{1}{3}$ farsan	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekastere = dekastere = 10 s = dekastere =	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 160 1 yen = 1600 1 ta = 16 00 1 quan = 18 000	0 0 ea
km³ ds s dks byssinia.—var.: c Length ic = 0.686 m arsang = 5.07 km	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekas	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600 1 binh = 8000 1 ta = 16 00 1 quan = 18 00 Are 1 ngu ² = 4.515	0 0 ea
km³ ds s dks byssinia.—var.: c Length ic = 0.686 m arsang = 5.07 km erri = $\frac{1}{3}$ farsan Mass	cubic kilometer = decistere = 0.1 s = stere = dekastere = 10 s = dekas	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600 1 binh = 8000 1 ta = 16 00 1 quan = 18 00 Ard 1 ngu ² = 4.515 Unit Ngu ²	0 0 ea
km ³ ds s dks dks byssinia.—var.: c Length $c = 0.686 \text{ m}$ erri $= \frac{1}{3} \text{ farsan}$ Mass ottolo $= 311 \text{ g}$	cubic kilometer = decistere = 0.1 s = stere = edekastere = 10 s = color stere = dekastere = 10 s = color stere = c	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600 1 binh = 8000 1 ta = 16 00 1 quan = 18 00 Ard 1 ngu ² = 4.515 Unit Ngu ² 1 thuoc = 6	0 0 ea
km ³ ds s dks byssinia.—var.: c Length ic = 0.686 m arsang = 5.07 km erri = $\frac{1}{3}$ farsan	cubic kilometer = decistere = 0.1 s = stere = edekastere = 10 s = color stere = dekastere = 10 s = color stere = c	10° m³ 10° m° 10	1 hao = 0.001 1 li = 0.01 1 fan = 0.1 1 luong = 10 1 neu = 100 1 can = 160 1 yen = 1600 1 binh = 8000 1 ta = 16 00 1 quan = 18 00 Ard 1 ngu ² = 4.515 Unit Ngu ²	0 0 ea 6 m²

```
1 \text{ mau } = 900
1 \text{ quo} = 1800
             Capacity
1 \text{ hao or shita} = 28.26 \text{ l}
              = 2 hao
1 tao
  Angola.—m.c. 1910.
  Arabia.—Provincial, current:
              Length
1 \text{ covid} = 0.482 \text{ m}
1 guz
            = 0.635 \text{ m}
1 \text{ cassaba} = 3.84 \text{ m}
1 \text{ farsakh} = 4.83 \text{ km}
   Unit
              Farsakh
1 \text{ baryd} = 4
1 \text{ marhala} = 8
               Mass
1 maund
               = 1350 g
1 ratl
               = ca. 460 g
   Unit
                 Maund
1 coffilas
               = \frac{1}{400}
1 vakias
1 tukeas
1 farzil
               = 10
1 farecella
1 bahar
               = 150
1 bokard
          Capacity, dry
1 téman
                 = 851
                   Téman
   Unit
1 mecmeda (
1 kella
1 mec dema = \frac{1}{80}
         Capacity, liquid
1 \text{ nusfiah} = 0.79 \text{ l or}
           = 0.951
              Nusfiah
   Unit
1 vakia = \frac{1}{16}
1 \text{ cuddy } = 4
1 \text{ zudda} = 8
   Argentine Republic.—m.c.
1887; m.o. 1863. Older,* pro-
vincial:
              Length
            = 0.8666 \text{ m}
1 vara
               Vara
  Unit
1 linéa
             = 487
1 pulgada = \frac{1}{86}
1 pié
1 braza
            = 2
1 \text{ cuadra} = 150
1 legua
            = 6000
               Mass
1 libra†
            = 459.4 g
  Unit
               Libra
1 grano
             = 9216
1 adarme
             = 756
             =\frac{1}{16}
1 onza
  * National system derived from old
Spanish. Units given are those of
province of Buenos Aires.
 † 1 libra de farmacia - ‡ libra -
344.5 g.
```

Unit Ngu²

Unit Libra	Capacity, dry	Mass	Unit Guz
1 arroba = 25		1 livre = 489.5 g	1 hath
1 quintal = 100	1 Metze = 61.489 1	Unit Livre	1 covid \ = \frac{2}{3}
1 tonelada = 2000	Unit Metze	$\begin{array}{ccc} \text{Offit} & \text{Livre} \\ 1 \text{ loth} & = \frac{1}{82} \end{array}$	1 cubit
Area	1 Probmetze = $\frac{1}{1024}$	$\begin{array}{ccc} 1 & \text{form} & = \frac{87}{87} \\ 1 & \text{once} & = \frac{1}{16} \end{array}$	Mass
	1 Becher = 1 1 2 8	1 marc = 18	
$1 \text{ vara}^2 = 0.75 \text{ m}^2$	1 Futtermassel = $\frac{1}{3}$ 1 Muthmassel = $\frac{1}{3}$	1 stein = 8	1 seer = 317.5147 g
Capacity, dry	1 Achtel = 16	1 quintal = 100	Unit Seer
1 fanega = 137.1977 l	1 Viertel = 1	1 chariot = 165	$\begin{array}{ccc} 1 & \tan k & = \frac{1}{72} \\ 1 & = -i \\ \end{array}$
Unit Fanega	1 Muth = 30	1 balle = 200	$ \left\{ \begin{array}{l} 1 \text{ pice} \\ 1 \text{ parah} \end{array} \right\} = \left\{ \begin{array}{l} 1 \text{ or } \frac{1}{15} \end{array} $
1 cuartilla = 1		1 schiffpfund = 300	1 maund = 40
1 tonelada = 7.5	Capacity, liquid	1 charge = 400	1 candy = 800
1 lastre = 15	1 Mass = 1.4151 l	Area	Area
Capacity, liquid	Unit Mass	1 arpent = 400 perche ²	Unit Are
	1 Pfiff = 1	= 130.6 a	1 ground = 2.03
1 frasco = 2.375 l	1 Seidel $=\frac{1}{4}$	Birmanie v. British India,	1 biggah = 24.68
Unit Frasco	1 Halbe $=\frac{1}{2}$	Rangoon.	1 kani = 30.75
$1 \text{ octava } = \frac{1}{16}$	1 Viertel = 10	Bolivia.—m.c. 1893; m.o.	1 cawnie = 54
1 cuarta = 1	1 Eimer = 40	1871. Older = Spain.	1 chahar = 2962
1 baril = 32 1 cuarter = 48	1 Fass = 400	Brazil.—m.c. 1862. Older:*	Capacity
1 pipa = 192	1 Dreiling = 1200	Length	1 parah = 110.1 l
• •	1 Fuder = 1280	1 pé = 0.33 m	Unit Parah
Austria.—m.c. 1876; m.o.	Balearic Islands.—v. Spain.	Unit Pé	1 tipree = $\frac{1}{128}$
1873. Older:	Local:	1 palmo = 3	$1 \text{ seer } = \frac{128}{64}$
Length	Length	$1 \text{ vara} = 3\frac{1}{3}$	1 adoulie = $\frac{6.4}{16}$
1 Fuss* = 0.316 08 m	1 canna = 1.564 m	1 passo geometrico = 5	1 candy = 8
1 Ell = 0.7792 m	1 palmos = 1 canna	$1 \text{ braca} = 6\frac{2}{3}$	1 garce = 80
Unit Fuss	1 paintes — 8 canna	1 legoa = 20 000	CALCUTTA.
$ \begin{array}{ll} \text{Ont} & \text{Fuss} \\ \text{1 Punkt} & = \frac{1718}{1718} \end{array} $	Mass	Mass	Length
$\begin{array}{ccc} 1 & \text{Linie} & = & \frac{1}{144} \\ 1 & \text{Linie} & = & \frac{1}{144} \end{array}$	1 rottolo = 408 g	1 libra = 459.05 g	1 guz* = 0.9144 m
1 Zoll = 12	Unit Rottolo	Unit Libra	Unit Guz
1 Klafter = 6		1 onza = 16	
1 Ittalivel — U	I I libra major = 3		
1 Meile = 24 000	1 libra major = 3	1 marco = ½	$\left\{\begin{array}{c} 1 \text{ jsob} \\ 1 \text{ jow} \end{array}\right\} = \frac{1}{144}$
1 Meile = 24 000	1 corta = 9		1 jow } = 144
1 Meile = 24 000 Mass, (1) ordinary	1 corta = 9	$1 \text{ marco} = \frac{1}{2}$	$ \begin{array}{c} 1 \text{ jow} \\ 1 \text{ unglee} \\ = \frac{1}{48} \end{array} $
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g	1 corta = 9 1 quartano = 9	$ \begin{array}{rcl} 1 \text{ marco} &= \frac{1}{2} \\ 1 \text{ arroba} &= 32 \end{array} $	$ \begin{array}{c} 1 \text{ jow} \\ 1 \text{ unglee} \\ = \frac{1}{48} \end{array} $
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund	1 corta = 9 1 quartano = 9 1 arroba = 26	1 marco = ½ 1 arroba† = 32 1 quintal = 128	$\begin{array}{ccc} 1 \text{ jow} & = 144 \\ 1 \text{ unglee} & = \frac{1}{48} \\ 1 \text{ moot} & = \frac{1}{12} \\ 1 \text{ span} & = \frac{1}{4} \end{array}$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig = 1	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104	1 marco = ½ 1 arroba† = 32 1 quintal = 128 1 tonelada = 1728	$\begin{array}{ccc} 1 \text{ jow} & > & = 144 \\ 1 \text{ unglee} & = & \frac{1}{18} \\ 1 \text{ moot} & = & \frac{1}{12} \\ 1 \text{ span} & = & \frac{1}{4} \end{array}$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig 1 Denat = 512	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area	$\begin{array}{ll} 1 \text{ jow} & = 144 \\ 1 \text{ unglee} & = \frac{1}{48} \\ 1 \text{ moot} & = \frac{1}{12} \\ 1 \text{ span} & = \frac{1}{4} \\ 1 \text{ covid} \\ 1 \text{ haut} & = \frac{1}{2} \\ 1 \text{ danda} & = 2 \end{array}$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a	1 jow
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity	1 jow
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l	1 jow
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l	1 jow
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = 16	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728	1 jow \
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12}	1 jow
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = $\frac{1}{8}$ 1 almude = $\frac{1}{8}$	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = 16 1 almude = 16 Capacity, liquid	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30	1 jow = 144 1 unglee = $\frac{1}{18}$ 1 moot = $\frac{1}{12}$ 1 span = $\frac{1}{4}$ 1 covid = $\frac{1}{2}$ 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer = 933.04 g Unit Seer 1 ruttee = $\frac{1}{7680}$ 1 masha = $\frac{1}{960}$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{6} 1 almude = \frac{1}{36} Capacity, liquid 1 quartin = 27.14 l	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{86} Capacity, liquid 1 quartin = 27.14 l Unit Quartin	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain.	1 jow = 144 1 unglee = \frac{1}{16} 1 unglee = \frac{1}{16} 1 moot = \frac{1}{14} 1 span = \frac{1}{4} 1 covid = \frac{1}{2} 1 haut = \frac{1}{2} 1 danda = 2 2 1 niranga = 10 1 coss = 2000 Mass 1 seer = 933.04 g Unit Seer 1 ruttee = \frac{70}{10} \frac{1}{6} 1
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{8} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{8}	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{18} 1 span = \frac{1}{4} 1 span = \frac{1}{2} 1
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = 1/6 1 almude = 1/8 Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = 1/3 1 quarta = 1/16	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local.	1 jow = 144 1 unglee = \frac{1}{15} 1 unglee = \frac{1}{15} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer = 933.04 g Unit Seer 1 ruttee = \frac{70}{10} \frac{1}{50} \text{ masha} = \frac{1}{50} \text{ tolah} 1 sicca 1 chittack = \frac{1}{15} 1 chittack = \frac{1}{4} 1 raik 1 ra
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{8} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} Bavaria v. Germany.	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great British India.—m.o. 1920.	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{18} 1 span = \frac{1}{4} 1 span = \frac{1}{2} 1
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = 1/6 1 almude = 1/8 Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = 1/3 1 quarta = 1/16	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{2} 1 pipa = 15 1 tonel = 30 Britain, British v. Great British India.—m.o. 1920. Current: British and local. Local, † provincial: BOMBAY.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{86} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{18} 1 quarta = \frac{1}{18} Bavaria v. Germany. Belgiam Congo.—m.c. 1911. Belgium.—m.c. 1820; at first	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\pmathrm{\text{toruth}}\) provincial: BOMBAY. Length	1 jow = 144 1 unglee = \frac{1}{16} 1 moot = \frac{1}{14} 1 span = \frac{1}{4} 1 covid 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass seer
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{36} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} Bavaria v. Germany. Belgian Congo.—m.c. 1911. Belgium.—m.c. 1820; at first with the names: aune = m,	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\frac{1}{2}\) provincial: BOMBAY. Length 1 guz = 0.6858 m	1 jow = 144 1 unglee = \frac{1}{16} 1 unglee = \frac{1}{16} 1 moot = \frac{1}{14} 1 span = \frac{1}{4} 1 covid = \frac{1}{2} 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer = 933.04 g Unit Seer 1 ruttee = \frac{70}{16} \frac{1}{6} \frac{1}{
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig 1 Denat 1 Quentchen = \frac{1}{12}\frac{1}{8} 1 Loth = \frac{1}{32} 1 Unse = \frac{1}{16} 1 Vierding = \frac{1}{4} 1 Stein = 20 1 Zentner = 100 1 Saum = 275 1 Karch = 400 Mass, (2) for drugs 1 Pfund apoth. = \frac{3}{4} Pfund = 420.01 g Unit Pfund apoth. 1 Gran = \frac{5}{16}\frac{5}{6}\frac{1}{6} 1 Unse = \frac{1}{12}	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{8} 1 quarta = 27.14 l Unit Quartin 1 quarte = \frac{1}{18} 1 quarta = \frac{1}{18} 1 puarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\frac{1}{2}\) provincial: BOMBAY. Length 1 guz = 0.6858 m Unit Guz	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{36} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 kelgium.—m.c. 1820; at first with the names: aune = m, litron = l, livre = kg, once = hg, lood = dg, wigtje = g,	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, † provincial: BOMBAY. Length 1 guz = 0.6858 m Unit Guz 1 tassoos = \frac{1}{24}	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig 1 Denat	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{16} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{38} 1 quarta = \frac{1}{16} Bavaria v. Germany. Belgian Congo.—m.c. 1911. Belgium.—m.c. 1820; at first with the names: aune = m, litron = l, livre = kg, once = hg, lood = dg, wigtje = g, Older:	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\frac{1}{2}\) provincial: BOMBAY. Length 1 guz = 0.6858 m Unit Guz	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig 1 Denat	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{36} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 kelgium.—m.c. 1820; at first with the names: aune = m, litron = l, livre = kg, once = hg, lood = dg, wigtje = g,	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{2} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\frac{1}{2}\) provincial: BOMBAY. Length 1 guz = 0.6858 m Unit Guz 1 tassoos = \frac{1}{24} * Those of Portugal, with notable local differences. \(\frac{1}{2}\) tarroba metrica = 15 kg.	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig 1 Denat	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{16} Capacity, liquid 1 quartin = 27.14 l Unit Quartin 1 quarte = \frac{1}{38} 1 quarta = \frac{1}{16} Bavaria v. Germany. Belgian Congo.—m.c. 1911. Belgium.—m.c. 1820; at first with the names: aune = m, litron = l, livre = kg, once = hg, lood = dg, wigtje = g, Older:	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{12} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\frac{1}{2}\) provincial: BOMBAY. Length 1 guz = 0.6858 m Unit Guz 1 tassoos = \frac{1}{24} * Those of Portugal, with notable local differences. \(\frac{1}{2}\) 1 arroba metrica = 15 kg. \(\frac{1}{2}\) Local or national measures are	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid 1 haut = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer
1 Meile = 24 000 Mass, (1) ordinary 1 Pfund = 560.01 g Unit Pfund 1 Pfennig 1 Denat	1 corta = 9 1 quartano = 9 1 arroba = 26 1 misura = 36 1 cantaro barbaresco = 100 1 cantaro = 104 1 cargo = 312 Capacity, dry 1 quartera = 71.97 l Unit Quartera 1 barcella = \frac{1}{8} 1 almude = \frac{1}{8} 1 quarter = 27.14 l Unit Quartin 1 quarte = \frac{1}{3} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 l quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 quarta = \frac{1}{18} 1 l quarte = \frac{1}{18} 1 l quarte = \frac{1}{18} 1 l quarte = \frac{1}{18} 1 l quarta = \frac	1 marco = \frac{1}{2} 1 arroba † = 32 1 quintal = 128 1 tonelada = 1728 Area 1 tarefa = 30 to 40 a 1 alqueire = 242 or 484 a Capacity 1 almude = 31.944 l 1 alqueire = 40 to 320 l Unit Almude 1 canada = \frac{1}{2} 1 pipa = 15 1 tonel = 30 Britain, British v. Great Britain. British India.—m.o. 1920. Current: British and local. Local, \(\frac{1}{2}\) provincial: BOMBAY. Length 1 guz = 0.6858 m Unit Guz 1 tassoos = \frac{1}{24} * Those of Portugal, with notable local differences. \(\frac{1}{2}\) tarroba metrica = 15 kg.	1 jow = 144 1 unglee = \frac{1}{18} 1 moot = \frac{1}{12} 1 span = \frac{1}{4} 1 covid = \frac{1}{2} 1 danda = 2 1 niranga = 10 1 coss = 2000 Mass 1 seer

-			
British India.—Cont'd.	Mass	Ceylon v. British India.	Unit Tchi
Capacity	1 tical = 16.32 g	Chile.—m.c. 1848. Older	1 hao = 10→
1 pally = $5.0 \text{ to } 5.5 \text{ l}$	Unit Tical	were from Spanish; legal values:	$1 \text{ lf} = 10^{-3}$
Unit Pally	$1 \text{ ruay } = \frac{1}{64}$	Length	1 fen = 10^{-2}
$1 \text{ chattack } = \frac{1}{80}$	1 pai $= \frac{1}{16}$	1 bara = 0.836 m	$1 \text{ tsouen } = 10^{-1}$
$\begin{array}{c} 1 \text{ khoonke} = \frac{1}{6} & \\ 1 \text{ khoonke} \end{array}$	$1 \text{ moo} = \frac{1}{8}$	Unit Bara	1 pou = 5
$1 \text{ kunk} = \frac{1}{16}$	$1 \text{ mat } = \frac{1}{4}$	$1 \text{ linea } = \frac{248}{482}$	1 tchang = 10
$1 \text{ raik} = \frac{1}{2}$	$1 \text{ cattie } = 33\frac{1}{3}$	1 pulgada = $\frac{1}{36}$	$\begin{bmatrix} 1 & yin \\ 1 & yan \end{bmatrix} = 100$
1 soally $= 20$	1 viss = 100	$1 \text{ pié} = \frac{3}{4}$	1 fen = 120
1 khahoon = 320	1 candy = 15000	1 cuadra = 150	1 kyo = 300
Ceylon.	Capacity	1 legua = 5400	1 li = 1800
Length	1 byee = 0.505 l	Mass	1 poù = 18000
1 covid = 0.464 m	Unit Byee	1 libra = 460.093 g	1 thsan = 144 000
	$1 \text{ lamany} = \frac{1}{8}$	Unit Libra	1 tou = 450 000
Mass	$\begin{array}{ccc} 1 \text{ zalay} & = \frac{1}{4} \end{array}$	$1 \text{ granos } = \frac{1}{9216}$	Mass
$\begin{cases} 1 \text{ candy} \\ 1 \text{ below} \end{cases} = 226.8 \text{ kg}$	1 zayoot = 2	$\begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & &$	1 liang = 37.301 g
1 bahar 220.5 kg	1 seit = 4	1 castellano = $\frac{256}{100}$	Unit Liang
Capacity	1 kwai = 8	$1 \text{ onza} \qquad = \frac{1}{16}$	1 hao = 0.0001
1 ammonam = 203.4 l	STRAITS SETTLEMENTS.	1 arroba = 25	1 lii = 0.001
Unit Ammonam		1 quintale = 100	1 fen $= 0.01$
$1 \text{ parrah} = \frac{1}{8}$	Mass	Area	1 tsien = 0.1
$1 \text{ seer } = \frac{1}{288}$	1 kati = 604.79 g	1 bara ² = 0.698 896 m ²	$\left \begin{array}{c} 1 \text{ kin} \\ \end{array}\right = 16$
Madras.	Unit Kati		1 tchin / = 10
Length	$1 \text{ tahil } = \frac{1}{16}$	Capacity, dry	1 kwan = 480
1 covid = 0.472 m	1 pikul = 100	1 almude = 8.083 l	$1 \tan = 1600$
Mass	1 bhara = 300	1 fanega = 12 almude	1 shih = 1920
	1 koyan = 4000	Capacity, liquid	Area
1 seer = 283.495 g 1 cafh = $1.230 447$ mg	Capacity	1 cuartillo = 1.111 l	$1 \text{ meou} = 6000 \text{ tchi}^2$
Unit Cafh	1 gantang* = 4.545 96 1	1 arroba = 32 cuartillo	$= 614.4 \text{ m}^2$
1 fanam = 80	Unit Gantang	China.—m.o. 1903 with the	Unit Meou
$ \begin{array}{rcl} 1 & \text{pagoda} & = 2880 \\ \end{array} $	1 para = 10	following names:	1 hao = 1000
Unit Seer	1 koyan = 800	Length	$\left \begin{array}{c} 1 \text{ pou}^2 \\ 1 \text{ long} \end{array}\right = \frac{1}{240}$
$1 \text{ pagoda} = \frac{1}{80}$	Bulgaria.—m.c. 1892.	kilometer = sin li	1 Kung)
1 pollom	Burma v. British India.	hectometer = sin in	$1 \text{ lyi} = 1 \frac{1}{100}$
$\begin{array}{c} 1 \text{ poliaria} \\ 1 \text{ varahan} \end{array} = \frac{1}{8}$	Cambodia v. Indo-China.	dekameter = sin tchang	1 fen = 10
1 powe = 1	Canada.—m.o. 1871. Cur-	meter = sin tchi	$1 \text{ kish} = \frac{1}{4}$
1 vis = 5	rent = British,† French names	decimeter = sin tshwen	1 king = 10 1 ching = 100
1 maund = 40	are:	centimeter = sin fen	
1 candy = 800	Length	millimeter = sin li	Volume
Area		Area	$1 \text{ tchi}^3 = 32.768 \text{ dm}^3$
1 cawnie = 53.41 a	1 pouce = 1 inch 1 chainon = 1 link	hectare = sin khing	$\left \begin{array}{c} 1 \text{ ma} \\ 1 \text{ c} \end{array}\right = 100 \text{ tchi}^2$
1 maoney = $\frac{1}{24}$ cawnie	1 pied = 1 foot	are = sin meou	1 fang 5
Capacity	1 verge = 1 yard	centare = sin li	Capacity
1 puddy = 1.533 l	1 perche = 1 rod, pole		1 cheng = 1.035 44 l
Unit Puddy	1 chaine = 1 chain ;	Capacity	Unit Cheng
1 olluck $=\frac{1}{4}$	Mass	kiloliter = sin ping hectoliter = sin chi	1 quei = 0.0001
1 measure = 1	1 livre = 1 pound av.	dekaliter = sin teou	1 go = 0.001
1 marcal = 8	1 cent	liter = sin cheng	1 chao = 0.01
1 parah = 40	$\left \begin{array}{c} 1 \text{ quintal} \\ 1 \text{ quintal} \end{array}\right = 1 \text{ hundred weight}$	deciliter = sin ho	$\begin{array}{ccc} 1 \text{ yo} &= 0.5 \\ 1 \text{ bh A} &= 0.1 \end{array}$
1 garce = 3200	1 tonneau = 1 short ton	centiliter = sin cho	$\begin{array}{ccc} 1 \text{ kh} \delta &= 0.1 \\ 1 \text{ to} &= 10 \end{array}$
Rangoon.		milliliter = sin tshwo	1 hou = 50
Length	Area	Great diversity in national	1 chai)
1 sandong = 0.5588 m	1 arpent = 34.196 a	system; since 1908, defined by	$\left \begin{array}{c} 1 \text{ cher} \\ 1 \text{ sei} \end{array}\right = 100$
·	Capacity	metric equivalents. (The or-	1 ping = 500
_	1 pinte = 1 quart	thography here employed is	Capacity, liquid
1 taim	1 chopine = 1 pint	arbitrary; there is diversity in	Liquids are measured by
$\begin{cases} 1 \text{ cubit} \end{cases} = 1^9 \text{ T}$	1 boisseau = 8 gallons	provincial pronunciation.)	weight.
1 lan = 4	1 minot = 39.025 1	Length	Chypre, Cipro v. Cyprus.
1 hamboo	* Gantang = British gallon.	1 tchi = 0.32 m	Cochin-China v. Indo-China.
1 dha $= 7$	† Old French measures have been	Unit Tchi	Columbia.—m.c. 1854, but
1 oke thapal = 140	used, but only minot and arpent are now in use.	1 hoé = 10 ⁻⁶	following, derived from metric
$1 \ dain = 7000$	now in use. ‡ Gunther's.	1 su = 10 ⁻⁵	system, are current:
	4		9

T an arth		1 0 "	I II-ia Deut
$ \begin{array}{rcl} Length \\ 1 \text{ vara} &= 0.8 \text{ m} \end{array} $	Capacity	Capacity	Unit Pott 1 viertel = 8
	1 bocoy = 136.27 l	1 merice* = 70.6 l	1 fod = 32
Unit Vara	1 barrile = \(\frac{1}{6}\) bocoy Cyprus.—British system.	$\left\{\begin{array}{c} 1 \text{ korec} \\ 1 \text{ otruck} \end{array}\right\} = 93.592 \text{ l}$	1 anker* = 40
1 pulgada = $\frac{1}{32}$ 1 cuarta = $\frac{1}{4}$	Accepted equivalents:	1 strych 5	1 ohm* = 160
1 cuadra = 100		Denmark.—m.c. 1912; m.o.	1 oxhoft* = 240
1 legua = 6250	Length	1910. Older:	1 pipe* = 480
Mass	1 pic = 2 foot	Length	1 fuder* = 960
$ \begin{array}{rcl} mass \\ & 1 \text{ libra} & = 500 \text{ g} \end{array} $	= 0.6096 m	1 fod = 0.313 857 m	Deutschland v. Germany.
<u> </u>	Mass	Unit Fod	Dutch East Indies.—Same as
Unit Libra	$\int = 2.8 \text{ pound av}$	1 linie = $\frac{1}{144}$	Netherlands. Old Dutch and
$ \begin{array}{rcl} 1 \text{ onza} & = \frac{1}{16} \\ 1 \text{ arroba} & = 25 \end{array} $	$\begin{array}{c} 1 \text{ oke} \\ = 1270.06 \text{ g} \end{array}$	$1 \text{ tomme} = 1^{\frac{1}{2}}$	local measures are also used.
$ \begin{array}{rcl} 1 & \text{alloba} & = 20 \\ 1 & \text{quintal} & = 100 \end{array} $	1 moosa * = 50 700 g	1 aln = 2	Latter very variable; recently
1 saco = 125	Unit Oke	1 faon, favn = 6	they have been legally defined
1 carga = 250	$1 drachme = \frac{1}{400}$	1 ruthe = 10	by their metric equivalents. Current:
1 tonelada = 2000	1 rottolo = 0.44	1 miil = 24 000	Length
Area	1 stone = 5	Mass	1 depa = 1.70 m
$1 \text{ vara}^2 = 0.64 \text{ m}^2$	1 kantar = 44	1 pund = 500 g	Unit Depa
$1 \text{ fanegada} = 10 000 \text{ vara}^2$	1 kantar (Aleppo) = 180	Unit Pund	$\begin{array}{c} \text{I hasta} = \frac{1}{2} \end{array}$
Cirénaïque v. Tripoli.	1 ton = 800	1 es = 9162	1 kilan = 1
Congo, Belgian.—m.c. 1911.	Area	$1 \text{ ort } = \frac{1}{5\sqrt{12}}$	Mass. (1) Ordinary
Costa Rica, Guatemala,	$1 \text{ donum} \begin{cases} = 1600 \text{ yard}^2 \end{cases}$	1 quintin = $1\frac{1}{28}$	1 nikol)
Honduras, Nicaragua, Salva-	(=13.378 a)	$1 loth = \frac{1}{82}$	$\left\{\begin{array}{c} 1 \text{ pecul} \\ 1 \text{ pecul} \end{array}\right\} = 61.761\ 3025 \text{ kg}$
dor.—m.c. 1912 by a joint con-	1 scala = 1 donum	$1 \text{ unze } = \frac{1}{16}$	Unit Pikol
vention; in partial use at earlier	Capacity	1 mark = 1	$1 \text{ thail} = \frac{1}{1600}$
dates. Older (modified Span-	1 oke = 1.278 55 l	1 bismerpund = 12	1 catti
ish, English, and local):	1 cass = 4.73 l	1 lispund = 16	1 kabi } = 100
Length	1 kile† = 36.368 l	$\left \begin{array}{c} 1 \text{ wog} \\ 1 \text{ waag} \end{array}\right = 36$	1 kulack = 0.0725
1 vara = 0.8393 m (Costa Rica)	1 medimno = 75.05 l	1 quintal	1 amat = 2
= 0.8359 m (Guatemala)	1 kartos = 4 oke 1 kouza = 8 oke	$\begin{vmatrix} 1 & \text{quintar} \\ 1 & \text{centner} \end{vmatrix} = 100$	1 small bahar = 3
= 0.8128 m (Honduras)	1 gomari = 128 oke	1 skippund = 320	1 large bahar = 4.5
Unit Vara	_	1 skyplast = 5200	1 timbang = 5
1 cuarta = 1	Cyrenaica v. Tripoli. Czechoslovakia.—m.c. 1876. ‡	1 quint = 0.1	1 kojang (Batavia) = 1667.555 kg
$ \begin{array}{rcl} 1 \text{ tercia} &= \frac{1}{8} \\ 1 \text{ mecate} &= 24 \end{array} $	Local:	1 ort = 0.01	1 kojang
	Length	1 kvint = 0.001	(Semarang) = 1729.316 kg
Mass	1 latro = 1.917 m	Area	1 kojang
1 caja = 16 kg 1 fanega = 92 kg	Вонеміа.	1 tondelande = 55.162 a	(Soerabaya) = 1852.839 kg
$1 \operatorname{carga} = 32 \operatorname{kg}$ $1 \operatorname{carga} = 161 \operatorname{kg}$	1 stopa = 0.296 m	1 tonde = 283.69 a	Mass. (2) For precious metals
Area	1 sah = 1.778 m	Unit Tonde	1 thail = 54.090 g
1 manzana = 10 000 vara ²	1 mile = 7.003 km	1 penge = $\frac{1}{3}\frac{1}{8}$	Unit Thail
$= 6960.5 \text{ m}^2 \text{ (Costa}$	Prague.	1 album = $\frac{1}{96}$	$1 \text{ wang } = \frac{1}{48}$
Rica)	1 loket = 0.593 m	1 fjerdingar = $\frac{1}{32}$	$1 \text{ tali } = \frac{1}{16}$
$= 6987.4 \text{ m}^2 \text{ (Guat-}$	Moravia.	1 skiepper = 1	$1 \text{ soekoe} = \frac{1}{8}$
emala)	1 stopa§ = 0.284 m	1 pflug = 32	$1 \text{ reaal } = \frac{1}{2}$
$= 6987.4 \text{ m}^2 \text{ (Nica-}$	1 loket = 0.594 m	Capacity, dry	Mass. (3) For opium
ragua)	Silesia. 1 loket = 0.579 m	1 korntonde = 139.12 l	1 thail = 38.601 g
1 caballeria = 64 manzana	1 mile = 6.483 km	Unit Korntonde	Unit Thail
Capacity		1 pott = $\frac{1}{144}$	1 tji = 0.1
1 botella = 0.63 to 0.67 l	Area Вонеміл.	1 achtel = $\frac{1}{64}$	$\left \begin{array}{c} 1 \text{ tjembang Mata} \\ 1 \text{ hoen} \end{array}\right = 0.001$
1 cajuela = 16.6 l	1 merice = 19.99 a	1 viertel $= \frac{1}{82}$. ′
Cuartillo is very variable.	1 korec	$\left \begin{array}{c} 1 \text{ skieppe} \\ 1 \text{ skiephe} \end{array}\right = \frac{1}{8}$	Area 1 bahoe
Cuba.—m.c. 1858, but others	1 strych = 28.78 a	1 ottingkar 5 8	$\left \begin{array}{c} 1 \text{ bande} \\ 1 \text{ bouw} \end{array}\right = 70.965 \text{ a}$
(old Spanish, American, and	1 mira	$ \begin{array}{rcl} 1 & \text{fjerdingkar} &= \frac{1}{4} \\ 1 & \text{last} &= 22 \end{array} $	1 lieue ² † = 55.0632 km
local) are current:	Unit Korec		Volume
Mass	1 jitro = 2	Capacity, liquid	1 kojang = 1.976 362 m ²
1 tonelada = 1015.65 kg	1 lan = 60	1 pott = 0.9661 1	1 toembak = 6.684 m ³
1 tercio = 72.22 kg	* Moosa = hundredweight.	Unit Pott	Capacity, dry
Area	† Kile = bushel.	1 paegel = 1	1 kojang = 2011.2679 1
1 caballeria	Cold Vienna (v. Austria) and some local measures were still in use when	1 kande = 2	$1 \text{ pikol} = \frac{1}{3^{1}} \text{ kojang}$
Cubana = 1342.02 a 1 cordele = $\frac{1}{824}$ caballeria	the state was established.	1 stubchen = 4	* Variable.
2 00 acro — 824 cananana	§ Stopa = strevic.	* Moravian.	† Geographic.

-			
Dutch East Indies.—Cont'd.	England v. Great Britain.	Mass	Unit Livre
Capacity, liquid	Equateur v. Ecuador.	1 kasm = 3.90 g	1 quintal = 100
(Legal equivalents)	Eritrea.—m.o. Local, pro-	1 neter = 336 g	1 millier = 1000
	vincial:	1 farasula* = 13.478 kg	Unit Livre (Ch)
Unit Liter	Length	$1 \text{ farasula} \dagger = 16.85 \text{ kg}$	$1 \text{ sol} \qquad = \frac{1}{20}$
1 takar* = 25.770	1 cubi = 0.32 m	1 farasula	1 denier = $\frac{1}{240}$
1 kit* = 15.159	1 emmet)	Unit Kasm	1 obole = $\frac{1}{480}$
1 koelak* = 3.709 $1 \text{ kan} \dagger = 1.5751$	$\left \begin{array}{c} 1 \text{ derah} \\ 1 \text{ derah} \end{array}\right = 0.46 \text{ m}$	1 mutagalla = 2	$1 \text{ grain} = \frac{1}{6760}$
$1 \text{ kan} \dagger = 1.5751$ $1 \text{ mutsje} \dagger = 0.1516$	Mass	1 alada = 4	Area
1 pintje* = 0.1310 $1 pintje* = 0.0758$	1 rotolo = 448 g	1 wogiet = 8	1 pied ² = $0.10552 \mathrm{m}^2$
Ecuador.—m.c. 1865, but the	1 okia = $\frac{1}{18}$ rotolo	Capacity	Unit Pied ²
British and, more generally the	1 gisla = 163 kg	1 menelik = 1 l (approximate)	1 toise ² = 36
old Spanish, measures are		Filippine v. Philippine.	1 perche de Paris = 324
currently used.	Capacity 1 messé = 1.50 l	Finland.—m.c. 1892; m.o.	1 perche des Eaux
Egypt.—m.o. 1873; m.c. in		1887. Older (Russian and	et Forêts = 484
government use, 1891. Cur-	Unit Messé	local):	1 arpent de Paris = 32 400
rent:‡	1 cabaho = 4	Area	1 arpent des Eaux
Length	1 tanica = 12 1 ghebeta = 16	1 tunnland = 46.54 a	et Forêts = 48 400
1 diraa baladi = 0.58 m	1 entelam = 128	Capacity	Capacity, dry
1 kassabah = 3.55 m		1 tunna = 163.49 l	1 boisseau = 1.862 78 1*
Unit Diraa	Espagne v. Spain. Esthonia.—Russian and local.	$1 \text{ kannor } = \frac{1}{68} \text{ tunna}$	
	Current:	1 ottingar = 15.71 l	Unit Boisseau
$ \begin{array}{rcl} 1 & \text{kirat} & = \frac{1}{24} \\ 1 & \text{abdat} & = \frac{1}{8} \end{array} $		$1 \text{ sextingkar} = \frac{1}{2} \text{ ottingar}$	$1 \text{ litron} = \frac{1}{16}$
$ \begin{array}{rcl} 1 & \text{kadam} & = \frac{1}{2} \\ \end{array} $	Length	France.—m.c. 1794. Other	$\begin{array}{ccc} 1 \text{ quart} &= \frac{1}{4} \\ 1 \text{ minot} &= 3 \end{array}$
1 pic = 1	1 archine (Rusingler) = 0.7112 m	legal units:	1 mine = 6
1 gasab = 4		Length	1 setier = 12
1 mil hachmi = 1000		1 mille marin = 1852 m	1 muid = 144
1 farsakh = 3000	Unit Archine 1 elle (Kuunar) = 0.75	Volume	Capacity, liquid
Mass	1 faden = 3	1 tonneau de jauge = 2.83 m²	
1 oke = 1248 g		1 tonneau de mer = 1.44 m ³	1 muid = 274.239 l† 1 muid = 268.241 l‡
Unit Oke	Mass	Old measures derived from	1 muid = 268.241 l‡ 1 pinte = 0.931 389 l§
$1 \text{ kirat } = \frac{1}{6400}$	1 pfund = 430 g	the system of Charlemagne are:	
$1 \text{ dirhem } = \frac{6400}{400}$	Unit Pfund	Length	Unit Pinte
$1 \text{ miskal} = \frac{100}{880}$	$1 \text{ quent} = \frac{1}{128}$	1 toise§ = 1.949 0365 m	$\begin{array}{ll} 1 \text{ roquille} &= \frac{1}{82} \\ 1 \text{ posson} &= \frac{1}{8} \end{array}$
1 okieh = 0.03	$\begin{array}{ccc} 1 & \text{loth} & = \frac{1}{32} \\ 1 & \text{location d} & & & \\ \end{array}$	1 toise§ = 1.949 090 m ¶	$\begin{array}{ccc} 1 & \text{posson} & -\frac{\pi}{8} \\ 1 & \text{demi-setier} & = \frac{1}{4} \end{array}$
1 rotoli = 0.36	1 liespfund = 20 1 centner = 120	Unit Toise	$\begin{array}{ccc} 1 & \text{definese } & = & \frac{1}{4} \\ 1 & \text{chopine} & = & \frac{1}{4} \end{array}$
1 kantar = 36	1 tonne = 240	1 ligne = $\frac{1}{864}$	1 pot = 2
1 helm = 200	1 schiffspfund = 400	1 pouce $=\frac{1}{72}$	1 velte = 8
Area		1 pied = $\frac{1}{6}$	1 quarteau = 72
1 feddan = 42.008 a	Area	1 aune = 0.6064	1 feuillette = 144
Unit Feddan	Reval	1 lieue = 2280.3	1 muid = 288
1 sahme = $\frac{1}{576}$	1 lofstelle = 18.55 a 1 tonnland = 54.627 a	1 mille marin = 950.13	Fráncia, Isola di v. Mauritius.
1 kirat kamel $=\frac{376}{24}$	Livonian	1 lieue marine = 2850.4	Frankreich v. France.
1 feddan masri = 1	1 lofstelle = 37.1 a	Mass	Germany.—m.c. 1872. Since
Capacity	1 tonnland = 51.94 a	1 livre** = 489.505 85 g	the beginning of the nineteenth
1 keddah = 2.0625 l		Unit Livre	century, the other units and
Unit Keddah	Capacity	$1 \text{ grain} = \frac{1}{9216}$	their interrelations have been
$1 \text{ kirat } = \frac{1}{82}$	1 hulmit = 11.48 l	1 scruple $=\frac{1}{884}$	fairly definite, but before that
$\begin{array}{ccc} 1 & \text{khanoubah} & = \frac{3}{16} \\ 1 & \text{khanoubah} & = \frac{1}{16} \end{array}$	Unit Hulmit	1 gros	there was great diversity.
$\begin{array}{ccc} 1 & \text{tournah} & = \frac{1}{8} \\ 1 & \text{tournah} & = \frac{1}{8} \end{array}$	1 lof (Reval) = 3 1 lof (Livonian) = 6	1 drachme $= 128$	Length: fundamental unit was
1 robhah $=\frac{1}{2}$	1 tonne (Livonian) = 0	1 once $=\frac{1}{16}$	Fuss (foot), its value, depend-
1 nisf keddah $=\frac{1}{2}$	i i i i i i i i i i i i i i i i i i i	1 marc $\dagger\dagger$ = $\frac{1}{2}$	ing upon the state, varied from 0.280 to 0.320 m. The one
1 malouah = 2	Etablissements des Détroits	* For ivory. † For coffee.	most extensively used was the
1 rob \	v. British India. Etats-Unis v. United States.	‡ For rubber.	Rheinlandischer Fuss (Rhenish
1 roubouh } = 4	Ethiopia.—var. Current:	Toise de Perou at 16.25°C.	foot) = 0.313 857 m. Mass:
1 keila = 8	-	Equivalent made legal in 1799.	fundamental unit was Pfund
1 ardeb = 96	Length	¶ By measurement, in 1887, by J. R. Benoit.	*From 1 muid = 268.241 l by
1 daribah = 768	(Approximate only)	** One livre de Charlemagne =	relation 144 boisseau = 1 muid (see
*For oil.	Unit cm	367.128 g.	Capacity, Liquid).
† For various products. ‡ In national system, units and	1 tat = 2.5	††1 Marc de la Rochelle = 244.75 g 1 Marc de Limoges = 240.93 g	† Legal value. ‡ Derived from concrete stand-
their interrelations were very variable,	1 gat = 8	1 Marc de Tours = 237.87 g	ards.
but since 1891, have been defined by	1 sinzer = 16	1 Marc de Troyes et	§ From 1 muid = 268.241 l by
their metric equivalents.	1 kend = 49	Paris = 260.05 g	relation 288 pinte = 1 muid.

(pound), its value generally	Capacity, dry	set in a bronze bar preserved at	Avoirdupois (av.)
varied little from 467 g; during	1 Metze = 3.435 89 l	the Standards Department of	(General use)
transition period preceding 1872	Unit Metze	the Board of Trade. Mass:	Unit P
the accepted equivalents were	1 Quart $=\frac{1}{3}$	The pound avoirdupois is the	$1 \text{ dram (dm.)} = \frac{1}{2}$
Pfund = 30 Loth = 300 Zeut = 3000 Korn; Centner = 100	$1 \text{ Zoll}^2 = \frac{1}{192}$	mass of a certain platinum	1 ounce (oz.) $= \frac{1}{1}$
Pfund. Older:	1 Scheffel = 16	standard, similarly preserved.	1 clove or customary
	Capacity, liquid	Capacity: The gallon is the	stone = 8
BAVARIA.	1 Quart = 64 Zoll ²	volume of 10 pounds avoirdu- pois of pure water, as weighed	$1 \text{ stone (legal)} \qquad = 1$
Length	1 Quart = 1.145031	in air against brass weights, the	1 quarter = 2
1 Fuss = 0.291 86 m	Unit Quart	water and air being at the tem-	1 cental = 10
1 Elle = 0.833 01 m	1 Anker = 30	perature of 62°F and the bar-	1 hundred-weight
Unit Fuss	1 Eimer = 60	ometer at 30 inches. In official	(cwt.) = 1
1 Linie = $\frac{1}{144}$	1 Ohm = 120	comparisons, the density of	1 wey = 2
$\begin{array}{ccc} 1 \text{ Zoll} & = \frac{1}{12} \\ 1 \text{ Postbarrian} \end{array}$	1 Oxhoft = 180	brass is taken as 8.143 g/cm ² .	1 load 5
1 Ruthe = 10	1 Fuder = 720	Some of the units in the follow-	1 ton = 2
1 Chauseemeile = 25 406	Württemberg.	ing tables are not in current use.	Troy (t.)
Mass	Length	Length	(For precious metals
1 Pfund = 560 g	1 Fuss = 0.286 49 m	· · · · · · · · · · · · · · · · · · ·	Unit
Unit Pfund	Unit Fuss	$1 \text{ yard}^*(\text{yd.}) = 0.914 3992 \text{ m}$	1 pennyweight (dwt.) = 2
1 Gran = $\frac{1}{7680}$	1 Linie = 0.01	1 foot (ft.) = $\frac{1}{3}$ yd.	1 ounce (oz.) = 4
1 Pfennig = $\frac{1}{5}\left\{\frac{1}{2}\right\}$	1 Zoll = 0.1	= 30.479 97 cm	1 pound (lb.) = 5
$1 \text{ Quint } = \frac{1}{128}$	1 Elle = 2.144	1 inch (in.) = $\frac{1}{86}$ yd. = 2.539 998 cm	• ` ` `
1 Loth $=\frac{1}{32}$	1 Ruthe = 10	Unit Inch	A pothecary (ap.)
$1 \text{ Unze } = \frac{1}{16}$	1 Meile = 26 000	1 mil = 0.001	(For dispensing drugs
1 Zentner = 100	Mass		Unit Grain
Area	1 Pfund = $467.728 g$	1	1 scruple (s.) = 20
1 Morgen	1 Apotheker-Pfund = 357.647 g	$\begin{array}{ccc} 1 & \text{line} & = \frac{1}{2} \\ 1 & \text{barleycorn} & = \frac{1}{2} \end{array}$	1 drachm (dr.) = 60
1 Tagwerk \ = 34.072 a	Unit Pfund	1 nail = 2.25	1 ounce (oz.) = 480
1 Juchert	1 Quentlein = 36	1 palm = 3	1 pound (lb.) = 5760
= 400 Ruthe ²	1 Loth = 32	1 hand = 4	Area
Capacity, dry	1 Mark = 1	1 span	1 inch² (sq. in.)
1 Metzen = 37.0596 1	1 Zentner = 104	1 quarter = 9	= 6.451 589
	Area	1 foot = 12	1 foot ² (sq. ft.)
Unit Metzen	$1 \text{ Ruthe}^2 = 8.207 66 \text{ m}^2$	1 cubit = 18	= 929.0289
1 Dreissiger = $\frac{1}{32}$ 1 Mässel = $\frac{1}{3}$	1 Morgen = 384 Ruthe ²	1 pace = 30	1 yard² (sq. yd.)
1 Mässel = $\frac{1}{8}$ 1 Scheffel = 6	1 Juchart } = 576 Ruthe ²	1 yard = 36	= 0.836 1259
	1 Tagwerk 5 = 576 Ruthe-	1 ell = 45	1 acre (A.) = 4046.849
Capacity, liquid	Capacity, dry	Unit Foot	Unit Foot ²
1 Masskanne = 1.069 03 l	1 Simri = 942.125 Zoll ³	1 fathom = 6	$1 \text{ inch}^2 = \frac{1}{144}$
Unit Masskanne	= 22.1533 l	1 pole	$1 \text{ yard}^2 = \frac{1}{3}$
$1 \text{ Zoll}^2 \qquad = \frac{1}{48}$	Unit Simri	1 rod (rd.) } = 16.5	Unit Yard ²
1 Eimer = 60 or 64	1 Viertelein = 1 1 8	1 perch	1 pole ² (sq. po.)
1 Fass = 1600	1 Erklein = 1	1 rope = 20	$\begin{array}{ccc} 1 & \text{pole}^2 & (\text{sq. po.}) \\ 1 & \text{rod}^2 & & & \\ & & & \\ \end{array}$
PRUSSIA.	1 Vierling $=\frac{1}{4}$	1 chain † = 66	1 perch ²
Length	1 Scheffel = 8	1 skein = 360	1 chain ² †
1 Fuss $= 0.313 857 \text{ m}$	Capacity, liquid	1 furlong = 660	(ch.) = 484
Unit Fuss	1 Maass = 78.125 Zoll ²	1 cable length = 720	1 rood = 1210
1 Linie = $1\frac{1}{4}$	= 1.837 05 1	1 mile (statute) = 5280	
$1 \text{ Zoll } = \frac{1}{12}$	Unit Maass	$\frac{1 \text{ mile (nautical)}}{1 \text{ mile (nautical)}} = 6080$	
1 Ruthe = 12	$1 \text{ Schoppe} = \frac{1}{4}$	1 knot	Unit = Acre
1 Meile = 24 000	1 Imi = 10	1 league = 15 840	1 mile ² (sq. mi.)
1 Meile = 24 000 1 Elle = 25.5 Zoll	1 Eimer = 160	Mass	= 640
	1 Eimer = 160 1 Fuder = 960		• • '
1 Elle = 25.5 Zoll Mass	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan.	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g	= 640
1 Elle = 25.5 Zoll <i>Mass</i> 1 Pfund = 467.711 g	1 Eimer = 160 1 Fuder = 960 Gioppône v. Japan. Great Britain, Irish Free	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain	= 640 Volume
1 Elle = 25.5 Zoll	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.—	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg	= 640 Volume 1 yard² (cu. yd.)
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = ½6	1 Eimer = 160 1 Fuder = 960 Gioppône v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg (Three systems: avoirdupois,	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = $\frac{1}{96}$ 1 Loth = $\frac{1}{82}$	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the national measures are convert-	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8 1 foot ² (cu. ft.) = 28 316.77 (1 inch ² (cu. in.)
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = $\frac{1}{96}$ 1 Loth = $\frac{1}{82}$ 1 Stein = 22	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the national measures are convertible to metric by the legally	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg (Three systems: avoirdupois, troy, apothecary.) * This is the present legal equivalent	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8 1 foot ² (cu. ft.) = 28 316.77 c
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = 1/96 1 Loth = 1/82 1 Stein = 22 1 Centner = 110	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the national measures are convertible to metric by the legally sanctioned factors given below.	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg (Three systems: avoirdupois, troy, apothecary.) * This is the present legal equivalent of the imperial yard; recent compari-	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8 1 foot ² (cu. ft.) = 28 316.77 (1 inch ² (cu. in.)
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = $\frac{1}{98}$ 1 Loth = $\frac{1}{82}$ 1 Stein = 22 1 Centner = 110 1 Schiffspfund = 330	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the national measures are convertible to metric by the legally sanctioned factors given below. National fundamental units de-	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg (Three systems: avoirdupois, troy, apothecary.) * This is the present legal equivalent of the imperial yard; recent comparisons by the National Physical Laboratory show that the yard as defined	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8 1 foot ² (cu. ft.) = 28 316.77 c 1 inch ² (cu. in.) = 16.387 025 Unit Foot ²
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = $\frac{1}{98}$ 1 Loth = $\frac{1}{82}$ 1 Stein = 22 1 Centner = 110 1 Schiffspfund = 330 Area	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the national measures are convertible to metric by the legally sanctioned factors given below. National fundamental units defined thus: Length: The yard is	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg (Three systems: avoirdupois, troy, apothecary.) • This is the present legal equivalent of the imperial yard; recent comparisons by the National Physical Lab-	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8 1 foot ² (cu. ft.) = 28 316.77 c 1 inch ² (cu. in.) = 16.387 025 Unit Foot ²
1 Elle = 25.5 Zoll Mass 1 Pfund = 467.711 g Unit Pfund 1 Quentchen = $\frac{1}{98}$ 1 Loth = $\frac{1}{82}$ 1 Stein = 22 1 Centner = 110 1 Schiffspfund = 330	1 Eimer = 160 1 Fuder = 960 Gioppone v. Japan. Great Britain, Irish Free State, and Northern Ireland.— m.o. 1864. Since 1898, the national measures are convertible to metric by the legally sanctioned factors given below. National fundamental units de-	Mass 1 pound avoirdupois (lb. av.) = 453.592 45 g = 7 000 grain 1 grain (gr.) = 64.798 182 mg (Three systems: avoirdupois, troy, apothecary.) * This is the present legal equivalent of the imperial yard; recent comparisons by the National Physical Laboratory show that the yard as defined by the Weights and Measures Act of	= 640 Volume 1 yard ² (cu. yd.) = 0.764 552 8 1 foot ² (cu. ft.) = 28 316.77 c 1 inch ² (cu. in.) = 16.387 025 Unit Foot ² 1 inch ² = 1.728

(General use) Pound (dm.) 250 (oz.) or customary = 8 (legal) = 14= 28= 100ed-wei**g**ht = 112 t.) = 252*= 2240Troy (t.) r precious metals) Grain weight (dwt.) = 24= 480 (oz.) (lb.) = 5760A pothecary (ap.) r dispensing drugs) Grain e(s.) = 20n (dr.) = 60(oz.) = 480(lb.) = 5760Area (sq. in.) $= 6.451 5898 \text{ cm}^2$ (sq. ft.) = 929.0289 cm² (sq. yd.) = 0.836 1259 m² $A.) = 4046.849 \text{ m}^2$ Foot² = 114 Yard² (sq. po.) = 30.25= 484= 1210= 4840= Acre (sq. mi.) = 640Volume (cu. yd.) = 0.764 552 85 m³ (cu. ft.) = 28 316.77 cm³ (cu. in.) = 16.387 0253 cm³ Foot³ - 1728 = 27 ole. t Gunther's chain.

Great Britain.—Cont'd.	Capacity	Iceland.—m.c. 1907. Older	Length
Unit Foot ³	• •	(analogous to Danish) were	
1 register	1 oka = 1.333 to 1.340 l	defined by their metric equiva-	1 muoi mètre = 1 m
ton = 100	1 baril = 74.236 l	lents.	Mass
1 rod = 1000	Grossbritannien v. Great	Length	1 pram rôi = 1 kg
Capacity, dry	Britain.	1 fet = 0.313 85 m	1 muoi gramme = 1 g
1 gallon (gal.) = 4.545 9631 l	Guam.—Metric is compul-	1 sjomila = 1855 m	1 hocsep = 60 kg
1 bushel (bu.) = 8 gallon	sory.	•	Capacity
= 35.367 7048 l	Guatemala v. Costa Rica.	Unit Fet $1 \text{ lina} = \frac{1}{144}$	1 muoi litre = 1 l
Unit Gallon	Guinea.—m.c. 1910. Older =	$ \begin{array}{ccc} 1 & \text{ma} & -144 \\ 1 & \text{pumlungur} & = \frac{1}{12} \end{array} $	1 sesep litre = 40 l
1 quartern $=\frac{1}{2}$	Portugal, England, and local:	1 alin = 2	Irish Free State v. Great
$ \begin{array}{rcl} 1 & \text{peck} & = 2 \\ \end{array} $	Length	1 faðmur = 6	Britain.
1 bucket = 4	1 pik = 0.578 m	1 mila a landi = 24 000	Islande v. Iceland.
1 bushel = 8	1 jacktan = 3.658 m	Mass	Italian colonies.—Metric
1 firkin = 9	•		compulsory.
1 kilderkin = 18	Mass		Italy.—m.c. 1861; adopted in
1 barrel = 36	1 benda = 64.2 g	Unit Pund 1 mark = 2	Milan as early as 1803, with the
1 hogshead = 63	1 kantar = 977 kg	1 mark = 2 1 fisk = 8	following names:
1 puncheon = 84	1 gammell = $\frac{1}{5}$ kantar	1 fierding = 40	Length
1 butt = 126	Unit Benda	1 liespund = 64	metro = m
Unit Bushel	$1 \text{ akey} \qquad = \frac{1}{48}$	1 tunna smjörs = 224	palmo = dm
1 strike = 2	$1 \text{ mediatabla} = \frac{1}{82}$	1 skinnund	dito = cm
1 sack	1 aguirage = 16	$\left\{\begin{array}{c} 1 \text{ salppand} \\ 1 \text{ batt} \end{array}\right\} = 320$	atomo = mm
1 bag 1 coomb = 4	$\begin{array}{ccc} 1 \text{ quinto} & = \frac{3}{82} \\ 1 & -i \end{array}$	Area	Mass
1 quarter = 8	$\left \begin{array}{c} 1 \text{ piso} \\ 1 \text{ uzan} \end{array}\right\} = \frac{1}{8}$		libbra nuova = kg
1 seam = 8	$\begin{array}{ccc} 1 & \text{uzan} \\ 1 & \text{seron} \end{array} = \begin{array}{c} 3 \\ 1 & \text{seron} \end{array}$	1 ferfaðmur = 3.546 m ² 1 fermila = 56.7383 km ²	oncia = kg
1 chaldron = 32*	$\begin{array}{c} 1 \text{ benda (offa)} = \frac{16}{2} \\ 1 \text{ benda (offa)} = \frac{1}{2} \end{array}$		grosso = dkg
1 wev	· · · · ·		denar = g
1 load = 40*	Haiti.—m.c. 1921. Older =	1 ferpumlungur = $\frac{1}{5184}$ 1 ferfet = $\frac{1}{36}$	grano = dg
$1 \text{ last} = 80^*$	British, old French, and Span- ish; legal equivalents during	$\begin{array}{ccc} 1 & \text{feralin} & -\frac{36}{4} \\ 1 & \text{feralin} & -\frac{1}{4} \end{array}$	Capacity
Capacity, Liquid	transition period:	1 tundagslatta = 900	• 1
1 gallon (gal.) = 4.545 9631 1	transition period.	1 engiateigur = 1600	soma = hl mina = dkl
Unit Gallon	Length	<u> </u>	pinta = l
1 gill	1 toise = 1.9488 m	Capacity	coppo = dl
1 quartern $= \frac{1}{32}$	1 aune = 1.188 m	$1 \text{ pottar} = \frac{1}{32} \text{ fet}^3$	Older, provincial:
1 noggin	Area	= 0.9661 l	
1 pint $=\frac{1}{8}$	1 carreau = 1292.3 m	Unit Pottar	Length
1 quart $=\frac{1}{4}$	1 carreau = 1202.0 m	1 kornskeppa = 18 1 anker = 39	1 piede liprando = 0.513 77 m
1 pottle $=\frac{1}{2}$	Volume	1 almenn turma = 120	Unit Piede lip.
Greece.—m.c. 1922; m.o.	1 baril = 0.1 m ³	1 öltunna = 136	$\begin{array}{ccc} 1 \text{ punto} & = & 1 & 1 \\ 1 \text{ oncion} & = & 1 & 1 \end{array}$
1836. Older:	$1 \text{ corde} = 3.84 \text{ m}^3$	1 korntunna = 144	$\begin{array}{ccc} 1 \text{ oncia} & = \frac{1}{2} \\ 1 \text{ canna} & = 4 \end{array}$
Length	1 toise = 8 m ³	India v. British India; v. Indo-	1 trabucco = 6
1 piki varies 0.640 to 0.670 m	Holland v . Netherlands.	China.	$1 \text{ miglio} = 4333\frac{1}{3}$
1 pic = 1 piki 1 small piki of Con-	Honduras v. Costa Rica.	Indies, East v. British India;	Mass
stantinople = 0.648 m	Hungary.—m.c. 1876. Older	v. Dutch East Indies.	
1 large piki of Con-	= old Vienna:	Indo-China, British v. British	
stantinople = 0.669 m	Length	India.	Unit Libbra
1 piki (masonry) = 0.750 m	1 mertföld	Indo-China, French:	$ \begin{array}{rcl} 1 \text{ grano} &= \frac{1}{6912} \\ 1 \text{ denaro} &= \frac{1}{788} \end{array} $
Mass	$\left \begin{array}{c} 1 \text{ mel tota} \\ 1 \text{ meile} \end{array}\right = 8.3536 \text{ km}$	Cochin China.—m.c. 1911,	$\begin{array}{rcl} 1 \text{ denaro} &= \frac{1}{288} \\ 1 \text{ ottavo} &= \frac{1}{96} \end{array}$
1 dramme = 3.2 g	$\left \begin{array}{c} 1 \text{ marok} \\ 1 \end{array}\right = 0.105 36 \text{ m}$	with the names:	$1 \text{ oncia} = \frac{1}{12}$
1 livre (Venetian) = 450 g	1 faust - 0.100 30 m	Length	1 rubbo = 25
1 mna = 1.5 kg	Area	1 môt thuoc = 1 m	1 cantaro = 150
1 mine (royal) = 1.5 kg	1 hold = 43.16 a	Mass	Area
$1 \text{ oka}^{\dagger} = 1.280 \text{ kg}$	1 joch = 43.16 a	1 một cần tây = 1 kg	1 quadrag)
1 oka $= 1.250$ to	$1 \text{ meile}^2 = 6978 \text{ ha}$	1 môt dông cân tây = 1 g $1 môt dông cân tây = 1 g$	$\left \begin{array}{c} 1 \text{ quadrate} \\ 1 \text{ giornata} \end{array}\right = 38 \text{ a}$
1.333 kg		1 picul = 60 kg	1 tavola = $\frac{1}{100}$ giornata
1 stater = 56.32 kg	Volume	_	Capacity, dry
1 talanton = 150 kg	1 eimer = 54.30 l	Capacity	1 mine = varies 12 to 120 l
Area	$\left \begin{array}{c} 1 \text{ halbe} \\ 1 \text{ ideas} \end{array}\right = \left \begin{array}{c} 1 \\ 6 \end{array}\right \text{ eimer}$	1 vuông một bat tây = 1 l	Capacity, liquid
1 stemma = 10 a	1 licze	1 vuông một gia = 40 l Cambodia.—m.c. 1914, with	1 barile da vino = 45.6 l
* Variable.	$ \begin{vmatrix} 1 \text{ metzen} \\ 1 \text{ ako} \end{vmatrix} = 62.53 \text{ l} $	the names:	1 barile da vino = 45.6 1 1 barile da olio = 33.4 l
† 0.85331 royal mine.	, j		

1901 6	ersity; since
1891, fundamente	
fined by metric eq	uivaients.
Length	1
$1 \text{ shaku}^* = \frac{10}{33} \text{ m}$	
= 0.303	0303 m
Unit Shaku	
1 shi = 10^{-6}	
$1 \text{ m} \delta = 10^{-4}$	
$1 \text{ rin} = 10^{-3}$	
1 bu = 10^{-2}	
$1 \text{ sun } = 10^{-1}$	
1 yabiki = 2.5	
1 hiro = 5	
1 ken = 6	
$1 j\delta = 10$	
1 cho = 360	
1 rif = 12 960	•
- 12 000	
Mass	
1 kwan	$=\frac{1.5}{4}$ kg
	= 3.75 kg
TT 24	•
Unit	Kwan
1 shi	$= 10^{-7}$
1 mô	$= 10^{-6}$
1 rin	$= 10^{-5}$
1 fun	$= 10^{-4}$
1 candareen	$= 10^{-4}$
1 mommé	$= 10^{-3}$
1 niyo	= 0.004
l hyaku-mé	= 0.10
1 kin	= 0.16
1 ninsoku-ichi-nin	
1 kiyak-kin	= 16
1 karus hiri-ichi-da	
1 komma-ichi-da	= 40
L Aumina-iom-da	- 10
Area	
(Land Mea	sure)
(Land Mea	
. 100	
1 bu $=\frac{100}{30.25}$ m	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 go = 0.1	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 g\ddot = 0.1 1 tsubo = 1	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 go = 0.1 1 tsubo = 1 1 se = 30	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 go = 0.1 1 tsubo = 1 1 se = 30 1 tan = 300	,2
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\ddot = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000	,2
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 gô = 0.1 1 tsubo = 1 1 sé = 30 1 tan = 300 1 chô = 3000 1 ri ² = 46 656	. ² 35 12 m ²
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri ² = 46 656 Capacit	. ² 35 12 m ²
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 gô = 0.1 1 tsubo = 1 1 sé = 30 1 tan = 300 1 chô = 3000 1 ri ² = 46 656	. ² 35 12 m ²
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri ² = 46 656 Capacit	² 55 12 m ²
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri2 = 46 656 Capacit 1 sh\delta = \frac{2401}{451} 1	2 55 12 m ² V 968 1
1 bu = $\frac{100}{30.25}$ m = 3.305 78 Unit Bu 1 gô = 0.1 1 tsubo = 1 1 sé = 30 1 tan = 300 1 chô = 3000 1 ri² = 46 656 Capacit 1 shô = $\frac{2401}{100}$ 1 shô = 64827 to	2 55 12 m ² V 968 1
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri2 = 46 656 Capacit 1 sh\delta = \frac{24 65}{4 81} 1 = 1.803 90 = 64827 b Unit Sh\delta	2 55 12 m ² V 968 1
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri2 = 46 656 Capacit 1 sh\delta = \frac{24 0 1}{45 1} 1 = 1.803 90 = 64827 t Unit Sh\delta 1 sh\delta = 10^2	2 55 12 m ² V 968 1
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri2 = 46 656 Capacit 1 sh\delta = \frac{24 \delta 1}{48 \delta 1} 1 = 1.803 90 = 64827 t Unit Sh\delta 1 sh\delta = 10^{-2} 1 g\delta = 10^{-1}	2 55 12 m ² V 968 1
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri2 = 46 656 Capacit 1 sh\delta = \frac{24 \delta 1}{48 \delta 1} 1 = 1.803 90 = 64827 t Unit Sh\delta 1 shaku = 10^{-2} 1 g\delta = 10^{-1} 1 to = 10	2 55 12 m ² V 968 1
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri^2 = 46 656 Capacit 1 sh\delta = \frac{2 \frac{4}{3} \frac{1}{3} \frac{1}{3}}{1} = 1.803 90 = 64827 t Unit Sh\delta 1 sh\delta = 10^{-2} 1 g\delta = 10^{-1} 1 to = 10 1 koku = 100	y 068 l
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri² = 46 656 Capacit 1 sh\delta = \frac{2 \frac{4}{9} \frac{1}{1}}{1} = 1.803 90 = 64827 ft Unit Sh\delta 1 shaku = 10^{-2} 1 g\delta = 10^{-1} 1 to = 10 1 koku = 100 Kanada v. Canada	2 55 12 m ² y 968 l yu ²
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri² = 46 656 Capacit 1 sh\delta = \frac{24 91}{481} 1 = 1.803 90 = 64827 t Unit Sh\delta 1 shaku = 10^2 1 g\delta = 10^1 1 to = 10 1 koku = 100 Kanada v. Canada Kolumbien v. Co	2 55 12 m ² y 968 l yu ²
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri² = 46 656 Capacit 1 sh\delta = \frac{2 \frac{4}{9} \frac{1}{1}}{1} = 1.803 90 = 64827 ft Unit Sh\delta 1 shaku = 10^{-2} 1 g\delta = 10^{-1} 1 to = 10 1 koku = 100 Kanada v. Canada	2 55 12 m ² y 968 l yu ²
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\ddot = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\ddot = 3000 1 ri^2 = 46 656 Capacit 1 sh\ddot = \frac{7 \frac{4}{3} \frac{1}{3} \frac{1}{3}}{1} = 1.803 90 = 64827 t Unit Sh\ddot 1 shaku = 10^{-2} 1 g\dot = 10^{-1} 1 to = 10 1 koku = 100 Kanada v. Canac Kolumbien v. Co Kongo v. Congo.	2 55 12 m ² 9 968 l ou ² la.
1 bu = \frac{100}{30.25} m = 3.305 78 Unit Bu 1 g\delta = 0.1 1 tsubo = 1 1 s\delta = 30 1 tan = 300 1 ch\delta = 3000 1 ri² = 46 656 Capacit 1 sh\delta = \frac{24 91}{481} 1 = 1.803 90 = 64827 t Unit Sh\delta 1 shaku = 10^2 1 g\delta = 10^1 1 to = 10 1 koku = 100 Kanada v. Canada Kolumbien v. Co	y 068 l la. clumbia. (kujirajaku) = fabrics.

Japan.—m.o. 1893. Before

```
Kuba v. Cuba.
   Latvia.-m.o. Russian and
local measures since 1845. Old
measures were those of Hol-
land.
              Length
1 elle
                     = 0.537 \text{ m}
1 quartier
                     = \frac{1}{2} elle
1 meile
                     = 7 verste
                        (Russian)
                     = 7.468 \text{ km}
               Mass
1 \text{ pfund} = 419 \text{ g}
  For secondary units, see Es-
thonia.
               Area
1 kapp
                = 1.4864 a
  Unit
                  Kapp
1 pourvete \
                = 25
1 loofstelle
1 tonnstelle
               = 35
              Volume
1 \text{ faden} = 4.077 \text{ s}
             Capacity
1 stoof
            = 1.2752 l
  Unit
               Stoof
1 kanne
            = 2
1 \text{ kulmet} = 9
1 anker
            = 30
1 poure
            = 54
1 loof
1 tonne
            = 108
  Lettonie v. Latvia.
  Luxemburg.-m.c. 1820. Pre-
viously used a local unit:
1 \text{ malter} = 191 \text{ l.}
  Malacca.-
              Length
1 asta
          = 0.457 \text{ m}
1 depa = 4 asta
1 \text{ jumba} = 8 \text{ asta}
               M ass
1 catty
             = 0.61 \text{ kg}
  Unit
                Catty
1 miam
             = 820
             = 20
1 buncal
1 \text{ tampang} = 1
1 bedur
             = 2
1 kip
             = 15
1 pecul
             = 100
1 bahar
             = 300
               Area
              = 13.38 \text{ m}^2
1 jumba<sup>2</sup>
             = 400 jumba<sup>2</sup>
1 orlong {
             = 53.52 a
            Capacity
1 \text{ chupa} = ca. 1 1
1 gantang = 4 chupa
  Malaysia v. British India; v.
Dutch East Indies.
  Malta.-m.c. 1914.
                            Older.
```

```
Length
                                         1 foot
                                                    = 0.2836 \text{ m}
                                         1 \text{ canna} = 2.088 \text{ m}
                                         1 \text{ palmo} = \frac{1}{8} \text{ canna}
                                                         Mass
                                         1 \text{ rottolo} = 1.75 \text{ lb. av.}
                                                     = 0.79379 \text{ kg}
                                            Unit
                                                        Rottolo
                                         1 parto =\frac{1}{480}
                                         1 ounce =\frac{1}{80}
                                         1 \text{ cantaro} = 100
                                                       Capacity
                                         1 \text{ caffiso} = 20.457 \text{ l}
                                         1 \text{ baril} = 43.162 \text{ l}
                                         1 \text{ salma} = 290.944 1
                                            Marokko v. Morocco.
                                            Mauritius and Seychelles
                                         Islands.—m.c. Older = old
                                         French, British, and the follow-
                                                       Capacity
                                         1 cash = 227.11 l
                                         1 \text{ velt} = \frac{1}{80} \text{ cash}
                                            Mexico.—m.c. 1896; m.o.
                                         1857. Older (from Spanish,
                                         Castillian), legally defined, dur-
                                         ing transition period, in terms
                                         of metric equivalents:
                                                        Length
                                         1 vara
                                                      = 0.838 \text{ m}
                                            Unit
                                                         Vara
                                         1 linea
                                                      =4\frac{1}{32}
                                         1 pulgada =
                                         1 pie
                                         1 legua
                                                      = 5000
                                                         Mass
                                         1 libra
                                                      = 460.24634g
                                            Unit
                                                        Libra
                                         1 tomin = 788
                                         1 \text{ adarme} = \frac{1}{256}
                                         1 \text{ ochava} = \frac{1}{128}
                                         1 onza
                                         1 \text{ arroba} = 25
                                         1 \text{ quintal} = 100
                                         1 \text{ tercio} = 160
                                                         Area
                                         1 fanega
                                                        = 356.628 a
                                            Unit
                                                           Fanega
                                         1 caballeria = 12
                                         1 labor
                                                        = 18
                                         1 sitio
                                                        = 492.28
                                                    Capacity, dry
                                         1 \text{ cuartillo} = 1.8918 1
                                           Unit
                                                         Cuartillo
                                         1 almud
                                                      = 4
                                         1 fanega
                                                      = 48
                                                      = 96
                                         1 carga
                                                  Capacity, liquid
                                         1 cuartillo
                                                            = 0.456 264 1
                                         1 cuartillo for
                                           oil
                                                             = 0.506 162 1
British and local (old Sicilian):
                                                             = 18 cuartillos
                                        1 jarra
```

```
9
  Morocco.—m.o.; local, var.:
             Length
1 cubit
            = 0.533 \text{ m}
1 canna
         = 0.61 \text{ m}
1 pic
1 tonni = \frac{1}{k} pic
              Mass
1 rotal
          = 507.5 g
1 artal
1 gerbe
          = 3 \text{ kg}
1 kula
           = 22 rotal
1 \text{ kantar} = 100 \text{ rotal}
            Capacity
1 sahh
             - 56 1
1 fanega
1 mudd
             = 141
1 almude
  Mozambique v. Portuguese
East Africa.
  Netherlands,-m.c.
                            1820,
with the names:
             Length
streep = mm
duim = cm
palm - dm
elle
      = m
roede = dkm
mijle = km
              Mass
korrel = dg
wigtje = g
lood = dkg
once = hg
pond = kg
        Capacity, dry
maatje = dl
kop
        = 1
schepel = dkl
mudde = hl
        = hl
zak
last
        =30 hl
        Capacity, liquid
vingerhoed = cl
maatje
            = dl
kan
             = 1
dekaliter
            = dkl
             = h1
  Old national system is more
or less current in some of the
old colonies:
             Length
         (Amsterdam)
1 \text{ roeden} = 3.67977 \text{ m}
1 elle
         = 0.687 813 m
1 \text{ voeten} = 0.283 0594 \text{ m}
1 duime = 25.733 mm
1 \text{ lyne} = 2.144 \text{ mm}
              Mass
1 \text{ pond} = 492.16772 g
1 \text{ pond}^* = 494.090 32 g
 * Amsterdam.
```

exclusively used. m.o. 1899. | 1 gandum | 1 grain | 1 abbas

Netherlands.—Cont'd.	Length	Unit Miskal	Poland.—Metric in process
1 pond (Apothecary)	1 vara (old) = 0.838 56 m	$\left \begin{array}{c} 1 \text{ nakhod} \\ 1 \text{ nakhod} \end{array}\right = \frac{1}{24}$	of adoption; in some provinces
$=\frac{8}{4}$ pond	1 marda)	1 carat	it has been in use since 1872.
= 369.126 g	$\begin{vmatrix} 1 & \text{cordel} \\ 1 & \text{cordel} \end{vmatrix} = 83\frac{1}{3} \text{ vara} = 69.88 \text{ m}$	$1 \text{ dung} = \frac{1}{6}$	Russian system legalized in
Unit Pond	1 vara = 0.866 m	1 dartung = 0.22	1849, without displacing
$1 \text{ mark} = \frac{1}{2}$	Unit Vara	1 dirhem = 2	national measurements. Since
1 unze $= \frac{1}{16}$	1 piede = $\frac{1}{3}$	1 sir = 16	1819 these have been defined by
$1 \text{ drachme } = \frac{1}{128}$	1 pouce $=\frac{1}{36}$	1 pinar = 20 1 danar = 40	their metric equivalents. National:
$1 \text{ engel} = \frac{1}{820}$	1 ligne $=\frac{1}{482}$	1 danar = 40 1 abbassi = 80	
$1 \text{ vierling } = \frac{1}{1280}$	1 cuadra = 100	1 rottel = 100	Length
$1 \text{ grein } = \frac{1}{7680}$	1 lieue = 5000	1 tcheirek = 160	1 stopa = 0.288 m
Area	Mass	1 saddirham = 320	Unit Stopa
	1 libra (old) = 460.08 g	1 batman (Tauris) = 640	$1 \lim_{\to 1} = \frac{1}{14}$
$1 \text{ morgen} = 81.244 \ 346 \ a$	1 libra = 459 g	1 batman (Shirez) = 1280	$1 \text{ cal } = 1^{\frac{1}{2}}$
Capacity, dry	Unit Libra	1 batman = 600 to	1 lokiec = 2
1 schepel = 27.26 l	1 once $=\frac{1}{16}$	1000	1 sazen = 6
Unit Schepel	$ \begin{array}{rcl} 1 \text{ arrobe} & = 25 \end{array} $	1 karvar = 100 bat-	1 pret = 15
$1 \text{ kop} = \frac{1}{82}$	1 quintal = 100	man	Old measures
1 vierd = $\frac{1}{4}$	1 tonne = 2000	Area	1 pied (Warsaw) = 0.2978 m
1 zak = 3	Area	1 jerib = 1082 m^2 to 1153 m^2	1 pied (Cracow) = 0.3564 m
1 mud = 4	1 liño (old) = 48.832 a	$= 1000 \text{ to } 1066 \text{ zar}^2$	1 aune = 0.620 m
1 last = 108	1 liño = 100 vara ²	Capacity	Mass
Capacity, liquid	$1 \text{ liño} = 75 \text{ m}^2$	1 chenica = 1.32 l	1 funt = 405.504 g
1 mingelen = 1.200 to 1.237 l	Capacity, dry	Unit Chenica	Unit Funt
Unit Mingelen	1 fanega = 288 l	1 sextario = 0.25	$ \begin{array}{rcl} \text{Offit} & \text{Full} \\ \text{1 gran} & = \frac{1}{9218} \end{array} $
1 vat = 768	$1 \text{ almude} = \frac{1}{12} \text{ fanega}$	1 capichas = 2 1 sabbitha = 5.5	$\begin{array}{ccc} 1 & \text{gran} & -9218 \\ 1 & \text{skrupul} & = \frac{1}{3} & \frac{1}{4} & & & & & \\ \end{array}$
1 oxhooft = 192	7.7	$\begin{array}{c} 1 \text{ sabbitha} = 5.5 \\ 1 \text{ colluthun} = 6.25 \end{array}$	$1 \text{ drachma} = \frac{384}{128}$
1 aam = 128	Capacity, liquid 1 frasco = 3.029 1	$\begin{array}{ccc} 1 \text{ continum} &= 0.25 \\ 1 \text{ legana} &= 30 \end{array}$	$1 \text{ lut} \qquad = \frac{128}{32}$
1 anker = 32		1 artaba = 50	$1 \text{ uncja} = \frac{32}{16}$
1 steekan = 16	Unit Frasco	Peru.—m.c. 1869. Older	1 kamian = 25
1 stoop = 2	$\begin{array}{ccc} 1 \text{ cuarta} &= \frac{1}{4} \\ 1 \text{ baril} &= 32 \end{array}$	(from Spanish, Castillian):	1 centnar = 100
$1 \text{ pint } = \frac{1}{2}$	1 pipe = 192	Length	Old measures
$1 \text{ mutsje} = \frac{1}{8}$	Pays-Bas v. Netherlands.	1 vara = 0.835 98 m	1 funt = 404 g
Nicaragua v. Costa Rica.	Persia.—Metric is in process	Mass	1 centner = 16 funt
Niederlande v. Netherlands.	of adoption. By 1924 the fol-	1 libra = 460.09 g	1 stein = 3.2 funt
Northern Ireland v. Great	lowing assimilation had occur-	Unit Libra	
Britain.	red: 1 zar = 1 m, 1 dram = 1 g,	1 arroba = 25	Area
Norway.—m.c. 1882; m.o.	1 ralte = 1 l. National meas-	1 quintal = 100	$1 \text{ pret}^2 = 18.6624 \text{ m}^2$
1879. Older differed very little	ures, provincial, var.; even to-	1 fanega = 140	1 morga = 300 pret ²
from Danish; legal equivalents:	day, in retail commerce, cereal	Area	1 wloka = 9000 pret ²
Length	grains are used as weights:	1 topo = 27.06 a	Capacity
1 fod = 0.3137 m	Length	1 fanegada = 64.596 a	1 kwarta = 1 l
Mass	1 guerze (common) = 0.63 to	Philippine Islands.—m.c.	Unit Kwarta
	0.97 m	1860. Older = Spain. Local:	$1 \text{ kwarterka} = \frac{1}{4}$
1 skaalpund = 0.4981 kg	= 1 monk-	Mass	1 garniec = 4
Area	elzer	1 catty = about 600 g	1 cwierc = 32
1 mal = 10 a	1 zar = 1.04 m	Unit Catty	1 korzec = 128
Capacity, dry	Unit Zar	$\begin{array}{ll} 1 \text{ punto} &= \frac{1}{3} \\ 1 \text{ chinanta} &= 10 \end{array}$	Porto Rico.—m.c. 1860. Older = Spain:
1 korntonde = 138.97 l	$ \begin{array}{lll} 1 \text{ gireh} & = \frac{1}{16} \\ 1 \text{ ouroub} & = \frac{1}{8} \end{array} $	1 lachsa = 48	•
Capacity, liquid	$\begin{array}{ccc} 1 \text{ outour} & -8 \\ 1 \text{ charac} & = \frac{1}{4} \end{array}$	1 caban = 97	Area
• • • •	1 gez	1 pecul = 100	1 cuerdo = 2250 vara ²
1 pot = 0.9651 l	1 guerze = 1	Area	= 15.72 a
Oceania.—British measures.	1 farsakh	1 balita = 27.95 a	Portugal.—m.c. 1872; m.o.
Olanda v. Netherlands.	$\begin{vmatrix} 1 & \text{narsann} \\ 1 & \text{parasang} \end{vmatrix} = 6000$	Unit Balita	1852. Older:*
Osterreich v. Austria. Paési Bássi v. Netherlands.	Mass	1 loan = 0.1	Length
Panama.—Metric compul-	1 miskal = 4.60 g	1 quignon = 10	1 pe = 0.3285 m
sory.	Unit Miskal	Capacity	1 estadio = 258 m
Paraguay.—Metric almost	$1 \text{ una} = \frac{1}{384}$	1 kaban = 99.90 l	1 milha = 8 estadio
exclusively used. m.o. 1899.	1 gandum \	1 chupa = 3.75 cm ³	1 legoa = 24 estadio

1 chupa = 3.75 cm^3 1 ganta = $\frac{1}{25} \text{ kaban}$ 1 apatan = $\frac{1}{4} \text{ chupa}$

* In some of the older colonies the old Portuguese system, more or less modified, is still in use.

Length

= 2 m

= 788

 $=\frac{1}{384}$

= 1

 $=\frac{1}{2}$

= 20

Mass

= 2000

= 8000

= 1200 g

Tchang

10240

21,32

2560

= 1280

= 8 1 8

 $=\frac{1}{80}$

 $=\frac{1}{20}$

= 20

= 50

= 400

Capacity

Tanan

= 160

= 1

= 20

= 40

= 400

= 800

= 1600

= 32000

Length

Mass

= 2000 or 3200

local.

= 11

Area

820

96

Wah

$1 \text{ vara} = \frac{1}{3}$	1 mirze
Mass	1 Kilo
1 libra* = 459 g	
Unit Libra	1 viack
$1 \text{ grao} = \frac{1}{9218}$	
$ \begin{array}{rcl} 1 & \text{escrupulo} & = \frac{1}{8} \frac{1}{4} \\ 1 & \text{outava} & = \frac{1}{128} \end{array} $	Russ tions of
1 outava = $\frac{1}{128}$ 1 onca = $\frac{1}{16}$	units:
1 marco)	tance a
1 meio ∫ — ½	of two
1 arratel = 1	platinu
1 arroba = 32 1 quintal = 128	marked Fount
	iridium
$Area$ $1 \text{ vara}^2 = 1.2 \text{ m}^2$	1894."
Unit Vara*	is volu
$ \begin{array}{ccc} \text{1 ferrado} &= 605 \end{array} $	water dry: G
1 geira = 4840	ary. G
Capacity, dry	
1 fanga = 54 l	1 archi
Unit Fanga	1 totch Unit
$1 \text{ outava} = \frac{1}{3^{1/2}}$	1 ligne
1 quarto $=\frac{1}{16}$	1 palet
1 meio = 1	1 sotka
$ \begin{array}{rcl} 1 & \text{alqueira} &= \frac{1}{4} \\ 1 & \text{moio} &= 15 \end{array} $	1 duim
Capacity, liquid	1 verch
1 almude = 16.5 l	1 foute 1 archi
Unit Almude	Unit
1 quartillo = $\frac{1}{48}$	1 sagèn
1 meio $=\frac{1}{24}$	1 verste
1 canada = $\frac{1}{2}$ 1 alqueira = $\frac{1}{6}$	1
1 hada 1	1 fount
1 pipa $= 20$	1 doli
1 tonelada = 52	Unit
Portuguese Colonies.—Met-	1 sol
ric compulsory.	1 zolotr 1 lote
Portuguese East Africa (Mozambique).—m.c. 1910. Older,	1 once
mainly of Portugal; one bahar	1 lana
is considered equivalent to	1 fount
109 kg.	Unit
Prussia v. Germany. Rumania.—m.c. 1884; m.o.	1 poud 1 berko
Rumania.—m.c. 1884; m.o. 1866. In old Bessarabia, Rus-	1 tonne
sian measures replaced by met-	_
ric in 1922. Older:	<i>M</i>
Length	Unit 1 grain
1 halibiu = 0.701 m	1 scrup
1 endere = 0.662 m	1 drach
1 stringene = 1.96 m	1 once
Mass $1 cantar = ca. 56 kg$	1 livre
$1 \text{ oke } = \frac{1}{4} \text{ cantar}$	
*For drugs 1 libra = i libra =	1 archin
344.25 g.	1 ligne ²

Unit

1 pollegada =

1 linha

1 palmo

1 covada

Pe

144

```
Capacity
1 \text{ dimerla} = 24.6 \text{ l}
  Unit
            Dimerla
1 oke
            18
1 mirze
  kilo
          = 16
       Capacity, liquid
  viacka = 14.15 l
         = 0.1 viacka
  oke
  Russia.-m.o. 1900. Defini-
  ons of fundamental national
  nits: Length: Archine is dis-
  nce at 17°C between the axes
   two lines drawn on the
  atinum-iridium
                    prototype
  arked "H 1894." Mass:
  ount is mass of the platinum-
  dium prototype marked "H
  94." Capacity, liquid: Vedro
  volume of 30 founts of pure
  ter at 163%°C. Capacity,
  y: Garnetz is 1/15 vedro.
           Length
  archine = 0.711 200 m
  totchka = 0.254 0000 mm
  Unit
              Totchka
  igne
          = 10
  paletz
         = 50
  otka
         = 84
  duïme
         = 100
  verchoc = 175
  oute
       = 1200
  rchine = 2800
  Unit
              Archine
  agène
         =3
  erste
         = 1500
     Mass (1) Ordinary
  count = 409.51241 g
  loli = 44.434 9403 mg
  Unit
                   Doli
  юl
               = 96
  olotnik (
  ote
               = 288
  nce
               = 576
  ana
               = 768
               = 9216
  ount
  Unit
                   Fount
  oud
               = 40
  erkovets
               = 400
  onne marine = 2400
     Mass (2) For drugs
  Unit
                   Doli
  rain
               = 1.4
  crupule
              = 28
  lrachme
              = 84
              = 672
  nce
                                tius.
  vre
              = 8064
            Area
  rchine^2 = 0.505 8054 m^2
```

 $= 6.451 600 \text{ mm}^2$

```
Unit
                    Ligne<sup>2</sup>
 1 duime<sup>2</sup>
               = 100
                                        1 wah
 1 \text{ verchoc}^2 = 306.25
                                          Unit
 1 foute2
               = 14 400
                                        1 anukabiet
 1 \text{ archine}^2 = 78400
                                        1 kabiet
    Unit
                    Archine<sup>2</sup>
                                        1 niou
 1 \text{ sagène}^2 = 9
                                        1 keup
 1 \text{ déciatine} = 21600
                                       1 sawk
 1 \text{ verste}^2 = 2250000
                                       1 sock
                                       1 ken
               Volume
                                       1 sen
 1 archine3
                 = 0.3597288 \,\mathrm{m}^3
                                       1 roeneng
 1 ligne<sup>3</sup>
                  = 16.38706 \text{ mm}^3
                                       1 yote
    Unit
                       Ligne<sup>3</sup>
 1 duime<sup>3</sup>
                   = 1000
 1 verchoc*
                  = 5359.375
                                       1 tchang*
 1 foute<sup>3</sup>
                  = 1728000
                                          Unit
 1 archine3
                  = 21952000
                                       1 klom
                                       1 klam
    Unit
                        Archine<sup>3</sup>
                                       1 pai
 1 sagène<sup>3</sup>
                  = 27
                                       1 sompay
 1 tonne marine = 7.87172
                                       1 grani
 1 last marin
                  = 15.74344
                                       1 fuang
           Capacity, dry
                                       1 salung
 1 garnetz
                  = 3.2798421
                                       1 baht
 1 tchast
                  = 0.109328071
                                       1 tamlung
   Unit
                       Tchast
                                       1 doon
 1 polougarnetz = 15
                                       1 hap
 1 garnetz
                  = 30
                                       1 bara
 1 lof
                  = 592
   Unit
                        Garnetz
 1 tchetverik
                  = 8
                                       1 \text{ wah}^2 = 4 \text{ m}^2
 1 \text{ polouosmina} = 16
                                       1 \text{ ngan} = 100 \text{ wah}^2
 1 osmina
                  = 32
                                       1 \text{ rai} = 400 \text{ wah}^2
 1 tchetvert
                  = 64
         Capacity, liquid
                                       1 tanan†
 1 vedm
                    = 12.299 41 1
                                         Unit
 1 tcharka
                    = 0.12299411
                                       1 niou
   Unit
                         Tcharka
                                       1 chai meu
 1 chkalik
                    = 0.5
                                       1 kam meu
 1 bottle (vodka) = 5
                                       1 laang
 1 bottle (wine) = 6.25
                                       1 chang awn
 1 krouchka
                    = 10
                                       1 kanahn
 1 shtoff
                    = 12.5
                                       1 sat
 1 vedro
                    = 100
                                       1 tang
   Unit
                         Vedro
                                      1 tamlaum
 1 stekar
                    = 1.5
                                      1 seste
 1 anker
                    = 3
                                      1 ban
 1 pipe
                    = 36
                                      1 kwien )
1 fass
                                       1 koyan
                    = 40
1 botchka
                                      1 cohi
   Salvador v. Costa Rica.
                                         Siria v. Syria.
   Schottland v. Great Britain.
                                         Somaliland.-m.o.;
   Schweden v. Sweden.
                                      vary with material and prov-
   Schweiz v. Switzerland.
                                      ince:
   Scotland, Scozia v. Great
Britain.
                                                = 3.92 \text{ m}
   Serbie-Croatie-Slovénie
                                      1 top
                                      1 cubito = \frac{1}{7} top
Yugoslavia,
   Seychelles Islands v. Mauri-
                                      1 \text{ rottolo} = 448 g
   Siam.—m.c. 1923; m.o. 1889.
Older now defined by metric
                                        * Previously, 1 tchang = 600 to
                                      1300 g.
equivalents; those of transition
                                        † Previously, 1 tanan = 0.9 to 1.2
period:
```

,	17		
Somaliland.—Cont'd.	Area	Mass	Unit Pied
Unit Rottolo	$1 \text{ vara}^2 = 0.698 7372 \text{ m}^2$	1 skälpund = 425.076 g	1 perche = 16
$1 \text{ okia} = \frac{1}{16}$	Unit Vara ²	Unit Skälpund	1 lieue = 16 000
1 frasla = 36	1 cuartilla = 25	1 as $=\frac{1}{8848}$	Mass (1) Ordinary
1 gisla = 360	1 calemin = 768	1 quintin = $\frac{1}{128}$	1 livre = 500 g
Area	1 aranzada = 6400	$1 \log = \frac{1}{32}$	Unit Livre
1 darat = 80 a	1 fanega } = 9216	$1 \text{ untz} = \frac{1}{16}$	$1 \text{ loth } = \frac{1}{32}$
Capacity, dry	1 fanegada $\int = 9210$	1 lispund $= 20$	$ \begin{array}{ccc} 1 & \text{once} & = \frac{82}{16} \\ 1 & \text{once} & = \frac{1}{16} \end{array} $
• • •	1 yugada = 460 800	1 sten = 32	
1 chela = 1.359 l	Capacity, dry	1 centner = 100 or 120	Mass (2) For medicine
Unit Chela	1 fanega = 55.501 l	1 waag = 165	1 livre = 375 g
1 tabla = 15	Unit Fanega	1 skeppund = 400	Unit Livre
1 gisla = 120	1 ochavillo = $\frac{768}{108}$	1 nyläst = 12 000	$1 \text{ grain } = \frac{1}{5765}$
Capacity, liquid	$1 \text{ racion } = \frac{768}{192}$	Area	1 scruple $=\frac{1}{288}$
1 caba = 0.453 l	1 cuartillo = $\frac{192}{48}$	$1 \text{ fot}^2 = 0.088 149 61 \text{m}^2$	$1 \text{ drachme} = \frac{1}{96}$
	$1 \text{ medio } = \frac{16}{24}$	1 kappland $\begin{cases} = 1.54261817 \text{ a} \\ = 1750641 \end{cases}$	$1 \text{ once } = \frac{1}{12}$
Soudan v. Sudan. South Africa v. Union of	1 calemin = $\frac{1}{12}$	(= 1750 101	Syria.—m.o.; current:
South Africa	1 almude = 1	$1 \text{ ref}^2 = 8.814 961 \text{ a}$ = $49.363 781 6 \text{ a}$	Length
Spain.—m.c. 1860. Older,*	1 cuartilla = $\frac{1}{4}$	$\begin{array}{c c} 1 \text{ tunland} & = 49.3037810 \text{ a} \\ & = 56000 \text{ fot}^2 \end{array}$	/
var., provincial; Castillian:	1 cahiz = 12	` '	1 pic = 0.582 m
	Capacity, liquid	Capacity, dry	M ass
Length	(Arroba was defined as vol-	1 kanna = 2.617 l	1 rottolo = 1785 g
1 vara = 0.835 905 m	ume of 34 libra of river water.	Unit Kanna	Unit Rottolo
(Other vara comprised be-	The arroba for oil was volume	$1 \text{ ort } = \frac{1}{82}$	1 drachme \ 1
tween 0.768 m and 0.912 m)	of 25 libra of oil)	$1 \text{ junkfra} = \frac{1}{3} \frac{1}{2}$	$\begin{array}{c} 1 \text{ pesi} \end{array} \right\} = \overline{600}$
Unit Vara	1 arroba (wine) = 16.133 l	1 quarter = \$	1 metecali = 400
$1 \text{ punto } = \frac{1}{6912}$	1 arroba (oil) = 12.563 l	$ \begin{array}{rcl} 1 \text{ stop} & = \frac{1}{2} \\ 1 \text{ kappar} & = \frac{7}{4} \end{array} $	1 mitcal = $\frac{1}{100}$
1 linea = $\frac{1}{576}$	Unit Arroba	$ \begin{array}{rcl} 1 & \text{kappar} &= \frac{1}{4} \\ 1 & \text{fjerdingar} &= 7 \end{array} $	$1 \text{ once } = \frac{1}{60}$
$1 \text{ diedo} = \frac{1}{48}$	$1 \text{ copas} = \frac{1}{128}$	1 spanna = 28	1 zurbo = 27.5
1 pulgada = 1/8	1 quarterone	1 tunna = 56	1 cola = 35
1 sesma = 6	1 panilla* } = 100	1 koltunna = 63	1 cantar = 100
$1 \text{ palma} = \frac{1}{2}$	$\left\{\begin{array}{c} 1 \text{ libra} \\ 1 \text{ coordillo} \end{array}\right\} = \frac{1}{82}$	1 kolläst = 756	Capacity
$1 \text{ pie} = \frac{1}{3}$	1 cuartino	Capacity, liquid	1 rotl = 3.2 1
1 codos = ½	1 azumbre = $\frac{1}{8}$		Unit Rotl
1 magga — 12	1		
1 passo = 1	1 cuartilla* = 1		
1 estado = 2	1 cantara = 1	= 2.617 162 l	1 makuk = 250
1 estado = 2 1 estadal = 4	1 cantara = 1 1 moio = 16	= 2.617 162 l Unit Kanna	1 makuk = 250 1 garava = 450
1 estado = 2 1 estadal = 4 1 milla \dagger = $1666\frac{2}{3}$	1 cantara = 1 1 moio = 16 1 pipa = 27	= 2.617 162 l Unit Kanna 1 jungfrur = 1	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho-
1 estado = 2 1 estadal = 4 1 milla† = $1666\frac{2}{3}$ 1 legua = 5000 or 8000	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30	$= 2.617 162 l$ Unit Kanna $1 \text{ jungfrur } = \frac{1}{82}$ $1 \text{ jungfer } = \frac{1}{82}$	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho-slovakia.
1 estado = 2 1 estadal = 4 1 milla \dagger = $1666\frac{2}{3}$	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States.	$= 2.617 162 l$ Unit Kanna $\begin{vmatrix} 1 \text{ jungfrur} \\ 1 \text{ jungfer} \end{vmatrix} = \frac{1}{82}$ $\begin{vmatrix} 1 \text{ quarter} \\ = \frac{1}{8} \end{vmatrix}$	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam
1 estado = 2 1 estadal = 4 1 milla† = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 <i>Mass</i> 1 libra = 460.093 g	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British	$= 2.617 162 l$ Unit Kanna $1 \text{ jungfrur } = \frac{1}{82}$ $1 \text{ jungfer } = \frac{1}{82}$	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia.
1 estado = 2 1 estadal = 4 1 milla† = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised be-	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India.	$= 2.617 162 l$ Unit Kanna $\begin{vmatrix} 1 \text{ jungfrur} \\ 1 \text{ jungfer} \end{vmatrix} = \frac{1}{82}$ $\begin{vmatrix} 1 \text{ quarter} \\ 1 \text{ stop} \end{vmatrix} = \frac{1}{2}$	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho-slovakia. Tonkin.—Same as Anam (q.v.)
1 estado = 2 1 estadal = 4 1 milla† = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g)	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v.	$ = 2.617 \ 162 \ 1 $ Unit Kanna $ \begin{vmatrix} 1 & \text{jungfrur} \\ 1 & \text{jungfer} \end{vmatrix} = \frac{1}{82} $ $ \begin{vmatrix} 1 & \text{quarter} \\ 1 & \text{stop} \end{vmatrix} = \frac{1}{8} $ $ \begin{vmatrix} 1 & \text{stop} \\ 1 & \text{ankar} \end{vmatrix} = 15 $ $ \begin{vmatrix} 1 & \text{eimer} \\ 1 & \text{stop} \end{vmatrix} = 30 $	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho-slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o.,
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa.	$ = 2.617 \ 162 \ 1 $ Unit Kanna $ \begin{vmatrix} 1 & \text{jungfrur} \\ 1 & \text{jungfer} \end{vmatrix} = \frac{1}{82} $ $ \begin{vmatrix} 1 & \text{quarter} \\ 1 & \text{stop} \end{vmatrix} = \frac{1}{8} $ $ \begin{vmatrix} 1 & \text{stop} \\ 1 & \text{ankar} \end{vmatrix} = 15 $ $ \begin{vmatrix} 1 & \text{am} \\ 1 & \text{ohm} \end{vmatrix} = 60 $	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenalca.—m.o., current defined by metric equi-
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9 \frac{1}{2} \frac{1}{16}	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use.	$ = 2.617 162 1 $ Unit Kanna $ \begin{vmatrix} 1 & \text{jungfrur} \\ 1 & \text{jungfer} \\ 1 & \text{quarter} \end{vmatrix} = \frac{1}{82} $ $ \begin{vmatrix} 1 & \text{quarter} \\ 1 & \text{stop} \\ 1 & \text{stop} \end{vmatrix} = \frac{1}{2} $ $ \begin{vmatrix} 1 & \text{ankar} \\ 1 & \text{eimer} \\ 1 & \text{othm} \end{vmatrix} = 60 $ $ \begin{vmatrix} 1 & \text{am} \\ 1 & \text{othufud} \end{vmatrix} = 90 $	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9 \frac{1}{2} \frac{1}{16} 1 arienzo = 2 \frac{3}{10} \frac{1}{4}	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden.	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 jungfer = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}$ 16 1 arienzo = $23\frac{1}{04}$ 1 tomin = $7\frac{1}{0}$ 8	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use.	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 jungfer = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9\frac{1}{2}16 1 arienzo = 2\frac{1}{3}04 1 tomin = 7\frac{1}{6}\frac{1}{3} 1 dinero = \frac{1}{3}\frac{1}{3}4	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland.	$ = 2.617 \ 162 \ 1 $ Unit Kanna	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9\frac{1}{2}16 1 arienzo = 2\frac{1}{3}04 1 tomin = 7\frac{1}{6}\frac{1}{3} 1 dinero = \frac{1}{3}\frac{1}{4} 1 adarme \(\) = \frac{1}{3}\frac{1}{4} \(\) = \frac{1}{3}\frac{1}{4} \(\)	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden.	= 2.617 162 l Unit Kanna 1 jungfrur	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = 2304 1 tomin = 763 1 dinero = 384 1 adarme 1 dracma $= 2166$	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland.	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9\frac{1}{2}16 1 arienzo = 2\frac{1}{3}04 1 tomin = 7\frac{1}{6}\frac{1}{3} 1 dinero = \frac{1}{3}\frac{1}{3}4 1 adarme 1 dracma 1 ochava 1 = 1\frac{1}{2}\frac{1}{3}\frac{1}{3}	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older:	= 2.617 162 l Unit Kanna 1 jungfrur	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g = 2.5 rottolo
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}\frac{1}{10}$ 1 arienzo = $2\frac{1}{3}\frac{1}{04}$ 1 tomin = $7\frac{1}{6}\frac{1}{8}$ 1 dinero = $3\frac{1}{8}\frac{1}{4}$ 1 adarme dracma = $3\frac{1}{2}\frac{1}{8}$ 1 ochava caracter = $3\frac{1}{2}\frac{1}{8}$	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length	= 2.617 162 l Unit Kanna 1 jungfrur	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka = 2.5 rottolo
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = 2304 1 tomin = 763 1 dinero = 384 1 adarme 1 dracma 1 caracter 1 escrupulo = 634	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam $(q.v.)$ Tripoli and Cyrenaica.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = $\frac{1}{3}$ pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka = 2.5 rottolo = 1282 g
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = 2304 1 tomin = 763 1 dinero = 384 1 adarme 1 dracma 1 caracter 1 escrupulo = 634	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot†	= 2.617 162 l Unit Kanna 1 jungfrur	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = $23\frac{1}{0}4$ 1 tomin = $76\frac{1}{8}$ 1 dinero = $38\frac{1}{8}4$ 1 adarme 1 dracma 1 caracter 1 escrupulo = $6\frac{3}{4}$ 1 onza = $1\frac{1}{6}$	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 144	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am = 60 1 ohm = 90 1 oxhoft = 180 1 fuder = 360 Switzerland.—m.c. 1877; m.o. 1868. Older, var.; during transition were fixed as follows: Length 1 pied 1 fuss = 30 cm Unit Pied	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka \{ = 2.5 rottolo = 1282 g 1 metical = 4.76 g Unit Rottolo
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = $23\frac{1}{0}4$ 1 tomin = $76\frac{1}{8}$ 1 dinero = $38\frac{1}{8}4$ 1 adarme 1 dracma 1 dracma 1 caracter 1 escrupulo = $6\frac{1}{4}$ 1 onza = $1\frac{1}{6}$ 1 marco = $\frac{1}{2}$	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 14/4 1 tum = 11/2	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = 2304 1 tomin = 768 1 dinero = 384 1 adarme 1 dracma 1 dracma 1 caracter 1 escrupulo = 634 1 onza = 168 1 marco = $\frac{1}{2}$ 1 arroba = 25	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 14/4 1 tum = 11/2 1 alm = 2	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = 2304 1 tomin = 768 1 dinero = 384 1 adarme 1 dracma 1 dracma 1 caracter 1 escrupulo = 634 1 onza = 168 1 marco = $\frac{1}{2}$ 1 arroba = 25 1 barril = 50	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 14/4 1 tum = 11/2 1 alm = 2 1 famm = 6	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka \{ = 2.5 rottolo = 1282 g 1 metical = 4.76 g Unit Rottolo 1 kharouba = \frac{1}{2500} \text{0} 1 dram = 100
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}\frac{1}{10}$ 1 arienzo = $2\frac{1}{3}\frac{1}{04}$ 1 tomin = $7\frac{1}{6}\frac{1}{3}$ 1 dinero = $\frac{1}{3}\frac{1}{8}\frac{1}{4}$ 1 adarme = $\frac{1}{2}\frac{1}{5}\frac{1}{5}$ 1 cescrupulo = $\frac{3}{6}\frac{4}{4}$ 1 onza = $\frac{1}{15}$ 1 marco = $\frac{1}{2}$ 1 arroba = 25 1 barril = 50 1 quintal = 100	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 144 1 tum = 12 1 alm = 2 1 famm = 6 1 stang = 16	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka \{ = 2.5 rottolo
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9 \frac{1}{2} 16 1 arienzo = 23 \frac{1}{3} 04 1 tomin = 7 \frac{1}{6} 8 1 dinero = 3 \frac{1}{8} 4 1 adarme 1 dracma 1 ochava 1 caracter \text{ 1 escrupulo} = \frac{3}{6} 4 1 onza = \frac{1}{16} 1 marco = \frac{1}{2} 1 arroba = 25 1 barril = 50 1 quintal = 100 1 quintalmacho = 150 1 tonelada = 2000	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 14/4 1 tum = 11/2 1 alm = 2 1 famm = 6	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka \{ = 2.5 rottolo
1 estado = 2 1 estadal = 4 1 milla † = $1666\frac{2}{3}$ 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = $9\frac{1}{2}16$ 1 arienzo = 2304 1 tomin = 768 1 dinero = 384 1 adarme 1 dracma 1 dracma 1 caracter 1 escrupulo = 634 1 onza = 168 1 marco = 168 1 marco = 168 1 arroba = 168 1 quintal = 100 1 quintalmacho = 150	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 14 1 tum = 12 1 tamm = 6 1 stang = 16 1 ref = 100 or 160 1 mil = 18 000 Oils.	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am = 60 1 oxhufud = 90 1 oxhufud = 90 1 fuder = 360 Switzerland.—m.c. 1877; m.o. 1868. Older, var.; during transition were fixed as follows: Length 1 pied = 30 cm Unit Pied 1 linie = \frac{1}{14} 1 pouce = \frac{1}{12} 1 aune = \frac{1}{12} 1 toise	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka \{ = 2.5 rottolo
1 estado = 2 1 estadal = 4 1 milla † = 1666\frac{2}{3} 1 legua = 5000 or 8000 Mass 1 libra = 460.093 g (Other libra comprised between 350 g and 575 g) Unit Libra 1 grano = 9\frac{1}{2}16 1 arienzo = 23\frac{1}{3}4 1 tomin = 7\frac{1}{6}3 1 dinero = 3\frac{1}{3}4 1 adarme 1 dracma 1 caracter \ = \frac{1}{2}56 1 escrupulo = \frac{3}{6}4 1 onza = \frac{1}{16} 1 marco = \frac{1}{2} 1 arroba = 25 1 barril = 50 1 quintal = 100 1 quintalmacho = 150 1 tonelada = 2000 * Old national system, more or less	1 cantara = 1 1 moio = 16 1 pipa = 27 1 bota = 30 Stati Uniti v. United States. Straits Settlements v. British India. Sud-Africaine, Union v. Union of South Africa. Sudan.—Egyptian in use. Suède v. Sweden. Suisse v. Switzerland. Svézia v. Sweden. Svizzera v. Switzerland. Sweden.—m.c. 1889; m.o. 1879. Older: Length 1 fot = 0.296 90 m Unit Fot† 1 linie = 1447 1 tum = 112 1 alm = 2 1 famm = 6 1 stang = 16 1 ref = 100 or 160 1 mil = 18 000	= 2.617 162 l Unit Kanna 1 jungfrur = \frac{1}{82} 1 quarter = \frac{1}{8} 1 stop = \frac{1}{2} 1 ankar = 15 1 eimer = 30 1 am	1 makuk = 250 1 garava = 450 Tchéco-Slovaquie v. Czecho- slovakia. Tonkin.—Same as Anam (q.v.) Tripoli and CyrenaIca.—m.o., current defined by metric equi- valents: Length 1 pik = 0.68 m = 1 handaze 1 palmo = \frac{1}{3} pik 1 draa = 0.46 m Mass 1 rottolo = 512.8 g 1 oka \{ = 2.5 rottolo

		is of Whiching Middle	13
Unit Pik²	Length	Length	1 4
1 denum = 1600	•	_	Area
1 jabia = 1800	1 archine = 64 to 76 cm 1 archine (for	1 yard (yd.) = $\frac{8600}{8987}$ m	1 inch² (sq. in.)
	architecture) = 75.77 cm	= 0.914 401 83 m	$= 6.451 6258 \text{ cm}^2$
Capacity, dry	1 nul = 1 km	$1 \text{ foot (ft.)} = \frac{1}{3} \text{ yd.}$	1 foot ² (sq. ft.)
1 orba = 7.6 l		= 30.480 061 cm	$= 929.0341 \text{ cm}^2$ 1 yard ² (sq. yd.)
Unit Orba		1 inch (in.) = $\frac{1}{36}$ yd.	$= 0.836 130 71 \text{ m}^2$
$1 \text{ nufsorbah} = \frac{1}{2}$	0,700	= 2.540 005 08 cm	1 acre (A.)
1 temen = 4	$\begin{array}{ll} 1 \text{ hatt} & = \frac{1}{288} \\ 1 \text{ parmack} & = \frac{1}{24} \end{array}$	Unit Inch	$= 4046.873 \text{ m}^2$
1 ueba = 16	$\begin{array}{ccc} 1 & \text{purmack} & & & & \\ 1 & \text{ouromb} & & & & \\ & & & & & \\ \end{array}$	1 mil = 0.001	Unit Foot
(Measured by weight)	1 pic = 1	1 hand = 4 1 span = 9	$\begin{array}{ccc} 1 & \text{inch}^2 & = \frac{1}{144} \end{array}$
1 oka = 1282 g	•	1 span = 9 1 foot = 12	$\begin{array}{ccc} 1 & \text{inch} & -144 \\ 1 & \text{yard}^2 & = 9 \end{array}$
1 marta = 11 to 14 oka	Mass	1 yard = 36	Unit Yard ²
1 kele = 2 marta	1 oka = 1283 g		1 rod2 (an rd)
	Unit Oka	Unit Foot 1 fathom = 6	$\left \begin{array}{c} 1 \text{ fod (sq. 1d.)} \\ 1 \text{ perch} \end{array}\right = 30.25$
Capacity, liquid	$\begin{array}{ccc} 1 \text{ karat} & = \frac{1}{6400} \end{array}$	1 rod)	1 chain ^{2*} = 484
1 barile = 64.8 l	$\begin{array}{ccc} 1 \text{ denke} & = 16^{1} \\ 1 & 1 & 1 \end{array}$	1 pole = 16.5	1 rood = 1210
1 bozze = $\frac{1}{24}$ barile	$\left \begin{array}{c} 1 \text{ dirhem} \\ 1 \text{ drachme} \end{array}\right = \frac{1}{400}$	1 perch	1 acre (A.) = 4840
(Measured by weight)	I diacimie)	1 chain* (Gunther's) = 66	Unit Acre
1 oka = 1282 g	1 000001	1 chain*	$1 \text{ mile}^2 \text{ (sq. mi.)} = 640$
Unit Oka	$\left \begin{array}{c} 1 \text{ cequi} \\ 1 \text{ yusdrum} \end{array}\right = \frac{1}{4}$	(engineer's) = 100	$1 \text{ township} \dagger = 23 040$
1 gorraf = 9.75	1 rottel = 0.44	1 bolt = 120	-
1 giarra = 58.5	1 batman = 6	1 furlong $= 660$	Volume
Tschechoslovak v. Czechoslo-	1 kantar = 44	1 cable length = 720	1 yard ³ (cu. yd.)
vakia.	1 tcheki = 176 to 195	1 mile (statute) = 5280	$= 0.764 559 45 \text{ m}^3$
Tunis.—m.c. 1895. Current:	Area	1 mile (nautical) \dagger = 6080.20	1 foot ³ (cu. ft.)
Length	$\int = 1600 \text{ archine}^2$	1 league (statute) = 3 st. mile	$= 28 \ 317.0 \ \text{cm}^3$
1 pic arabe = 48.8 cm	$\begin{array}{c c} 1 \text{ deunum} & = 1000 \text{ archine}^2 \\ = 913 \text{ m}^2 \end{array}$	$\begin{array}{ccc} 1 \text{ league} \\ & \text{(nautical)} & = 3 \text{ n. mile} \end{array}$	1 inch² (cu. in.)
1 pic ture = 63.7 cm	1 djeril = 100 a	(maducar) — 5 n. mne	= 16.387 162 cm ³
1 pic endazé = 67.3 cm		Mass	Unit Foot ³
The pic used depends upon	Capacity	1 pound avoirdupois	1 inch ³ = $\frac{1}{1728}$ 1 board foot (bd. ft.) = $\frac{1}{12}$
the object measured.	1 kile = 32 to 43 l	(lb. av.) = $453.592 4277 g$	1 yard ³ = 27
Mass	$1 zira^3 = 0.435 m^3$	= 7000 grain (gr.)	$\begin{array}{ccc} & 1 \text{ shipping ton} & = 27 \\ & 1 \text{ shipping ton} & = 40 \end{array}$
	Unit Kile	1 grain = 64.79891824 mg	1 register ton = 100
1 uckir = 31.495 g	$1 \text{ chinik} = \frac{1}{4}$	(Three systems: avoirdupois,	1 cord (cd.) = 128
Unit Uckir	1 fortin = 4	troy, apothecary.)	, ,
1 rottolo attari = 16 1 rottolo sucki = 18	Ungarn, Ungheria v. Hun-	4	Capacity, dry
1 rottolo sucki = 18 1 rottolo khaddari = 20	gary. Union of South Africa.—Met-	Avoirdupois (av.)	1 bushel (bu.) = 2150.42 inch^3
$\begin{array}{ccc} 1 & \text{contains a final dail } & = 20 \\ 1 & \text{cantaro} & = 100 \end{array}$	ric, British, and old Dutch:	(General use)	= 35.238 329 1
_		Unit Pound	Unit Bushel
Capacity	Length	1 dram (dr.) $= \frac{1}{256}$	$1 \text{ pint (pt.)} = {}_{6}^{1} {}_{4}$
1 cafisso = 496 1	1 elle = 0.685 m	1 ounce (oz.) $= \frac{1}{16}$	$1 \text{ quart (qt.)} = \frac{1}{32}$
1 millerole (Marseilles)	Mass	1 hundred-weight (cwt.)	$\begin{array}{ccc} 1 \text{ peck (pk.)} &= \frac{1}{4} \\ 1 \text{ be well } & \text{chl.} \end{array}$
= ca. 64 1	1 bundle = 3175 g	(long) = 112	1 barrel‡ (bbl.) = 3.281
Unit Cafisso	Area	1 ton (short) (sh. tn.) = 2000 1 ton (long) (l. tn.) = 2240	1 chaldron
$1 \text{ saah } = \frac{1}{129}$	1 morgen = 85.5 a	1 ton (long) (l. tn.) = 2240	
$1 \text{ whiba} = \frac{1}{16}$	Capacity	Troy (t.)	Capacity, liquid
Turkestan.	1 gantang = 9.2 1	(For precious metals)	1 gallon (gal.) $\begin{cases} = 231 \text{ inch}^3 \\ = 2.785, 222.1 \end{cases}$
Length	1 balli = 5 gantang	Unit Grain	(= 3.760 332 1
1 hasch = 0.7112 m	1 muid = 109.1 l	1 pennyweight (dwt.) = 24	1 minim (min. or M)
Unit Hasch	1 legger = 516 l	1 ounce (oz.) $= 480$	$= \frac{1}{6} \frac{1}{1} \frac{1}{16} \text{ gal.}$
1 archine* $= 1$	Unit Legger	1 pound (lb.) = 5760	= 0.061 6102 ml Unit Minim
1 altschin \(\)	$1 \text{ kanne } = \frac{1}{388}$	Apothecary (ap.)	1 fluid dram (fl. dr.) = 60
Mass	$1 \text{ ahm } = \frac{1}{4}$	· · · · · · · · · · · · · · · · · · ·	1 fluid ounce (fl. oz.) = 480
1 batman = 125 kg to 128 kg	United States of America.—	(For dispensing drugs)	1 gill (gi.) = 1920
Unit Batman	m.o. 1866; m.c. for certain	Unit Grain	
$\begin{array}{ccc} \text{Ont} & \text{Batman} \\ 1 & \text{sir} & = \frac{1}{8} \end{array}$	governmental purposes. Fun-	1 scruple (s. or \mathfrak{D}) = 20	* Gunther's chain. † 36 mile ³ .
1 tscharik $= \frac{1}{6}$	damental units of national	1 dram (dr. or 3) = 60	‡ For dry commodities, except
$1 \text{ mimtscha} = \frac{64}{256}$	system are defined in terms of	1 ounce (oz. or 3) = 480	cranberries, barrel = 7056 inch ³ ; cran-
Turkey.—m.o.; current, var.:	metric units. For less common	1 pound (lb.) = 5760	berry barrel = 5826 inch ³ ; lime barrel contains 180 lb. av. or 280 lb. av.; by
*Russian.	and obsolescent units, see Great Britain.	* 1 link = 0.01 chain.	custom, flour barrel = 196 lb. av.
a- 4501 th Li	Diream.	† 1 nautical mile = 1853.249 m	§ Variable.

Unit

United States.—Cont'd.	Length
Unit Gallon 1 gill (gi.) = $\frac{1}{3}\frac{1}{2}$ 1 pint (pt.) = $\frac{1}{8}$ 1 quart (qt.) = $\frac{1}{4}$ 1 barrel* = 31.5 1 hogshead = 63	1 linija = 21.95 mm 1 palaz = 36.34 mm 1 archine = 660 mm to 3 1 khvat = 1.896 m 1 stopa = \frac{1}{6} kvat
Uruguay.—m.c. 1894; m.o. 1866. Older = Spain (Castillian), more or less modified. Venezuela.—m.c. 1914; m.o. 1857. Older = Spain (Castillian), more or less modified, and the following of Granada:	1 oka = 1280 g Unit Oka 1 dramm = 100 1 satlijk = 1 1 litra = 1 1 akov = 40 1 tovar = 100
Length 1 vara = 0.8 m 1 meile = 6280 vara Mass	Area 1 stopa

Vereinigte Staaten v. United States. Württemberg v. Germany Yugoslavia.-m.c. 1883. Older:

1 libra = 1 kg

1 bag = 62.5 kg

1 archine = $660 \mathrm{mm}$ to $712 \mathrm{mm}$
1 khvat = 1.896 m
$1 \text{ stopa} = \frac{1}{6} \text{ kvat}$
Mass
1 oka = 1280 g
Unit Oka
$1 \text{ dramm} = \frac{1}{4 \cdot 0}$
$1 \text{ satlijk } = \frac{1}{4}$
1 litra $=\frac{1}{4}$
1 akov = 40
1 tovar = 100
Area
$1 \text{ stopa}^2 = 998.56 \text{ cm}^2$
Unit m²
1 dunum = 700
1 motyka = 800
1 raliza = 2500
$1 \mathrm{dan} \mathrm{oranja} = 3597$
$\begin{cases} = 5760 \end{cases}$
$\begin{cases} 1 \text{ lanaz} \\ = 1600 \text{ khvat}^2 \end{cases}$
Capacity
(Liquids are measured by weight.)

C. SYSTEMS OF ANTIQUITY

Our knowledge of the measures of antiquity is derived from the texts and monuments which have persisted to modern times, and some actual standards which have come down to us. The latter enable us to establish quite exact equivalence between the measures which they represent and ours. But most frequently such equivalence is only very roughly known, or is actually unknown. In this section are given only the more important or the best studied of these systems. The values given must not be taken too literally. Indeed, especially in antiquity, systems do not succeed one another; they evolve. Several may coexist among a single people; it is generally impossible to fix the dates at which these systems were used. The ancients had no capacity measures, such as ours; they weighed liquids and grains in terms of standards forming a second system of weights.

Arabian System	m.	1	Mass		
Leng 1 foot	= 0.320 m	(So-called	system Prophet)	of	the
Unit 1 assbaa (finger) 1 cabda (palm) 1 cubit (new) 1 cubit† 1 orgye (pace) 1 qasab 1 seir 1 ghalva 1 mille 1 parasang 1 barid 1 veredus 1 marhala * Wine barrel. † Hachemic.	Foot = 16 = 16 = 1 12 = 2 = 6 = 12 = 600 = 720 = 6000 = 18 000 = 72 000 = 144 000	Unit Unit dirhem nevat nasch oukia man mine locque qanthar kikkar	$= 340 g$ Rotl $= \frac{1}{20} = \frac{1}{24}$ $= \frac{1}{6}$ $= \frac{1}{3}$ $= 2$ $= 4$ $= 100$ $= 125$ Area $= 14 400$ $= 59 a$	cubit	²†

```
1 achir
             = 480
1 qasaba
1 qamha
1 habbah
1 cafiz
1 qirat
1 daneq
1 djarib
           Capacity
     (Measured by weight)
1 cafiz
              = 32.64 \text{ kg}
  Unit
                Cafiz
1 mudd
1 kiladja
1 caphite
1 kist
1 såa
1 makuk
1 ferk
1 woëbe
1 khoull
1 modius
1 artabe
1 amphora
1 gariba
1 den
```

Feddan

Assyro-Chaldean-Persian System.

```
Length
1 foot
               = 0.320 \text{ m}
                  Foot
  Unit
1 finger
1 palm
1 zereth
               = 1
1 cubit
1 pace
               = 6
1 qasab
               = 12
1 cane
               = 80
1 chebel
1 stadion
               = 720
1 ghalva
1 mille
               = 5400
1 parasang
               = 20000
               = 21600
1 schoëme
1 stathmos
               = 80 000
1 mansion
              Mass
            = 32.6 \text{ kg}
1 talent
(Talent divided into 50, 60 or
           100 mina)
1 drachma = 0.01 mina
              Area
             144 foot<sup>2</sup>
  Unit
             Gar
1 \text{ dizaine} = 10
           = 100
1 gan
```

= 1000

1 gur

```
Capacity
     (Measured by weight)
1 amphora
                  =32.6 \text{ kg}
  Unit
                    Amphora
1 cados
1 makuk
1 woëbe
1 modius
1 small artaba
1 large artaba
                  = 2
1 \text{ large amphora} = 3
1 gariba
  Egypt: System of the Pha-
rachs.
            Length
```

= 0.349 m

1 pied

- p	0.0.0
Unit	Pied
1 doigt, finger	_ 1
1 theb ∫	- T6
1 palme \	1
1 choryos ∫	$=\frac{1}{4}$
1 dichas	= 1 = 1
1 spithame	= 1
1 pied royal \	
1 zereth	= 1
1 pigon	$=1\frac{1}{4}$
1 coudée royale \	•1
1 derah	= 13
1 coudée longue	= 2
1 pas	$=2\frac{1}{3}$
1 xilon	$=4\frac{1}{2}$
1 orgye	= 6
1 canne	$=11\frac{2}{3}$
1 senus	= 150
1 stade	= 500 or 600
1 mille	= 5000
1 atour vulgaire	= 15 000
1 schoëme	= 18 000
1 parasange	= 20 000
1 atour royal	= 30 000
-	

Mass

1	mine	=850 g
	Unit	Mine
	gerah	$= \frac{1500}{1500}$
	sicle	$= e^{1}$
l	kikkar	} = 50
L	talent)

	Area
1 pekeis	= 27.405 m ²
Unit	Pekeis
1 coudée ²	$= \frac{1}{6} \frac{1}{6} \frac{1}{6} = \frac{1}{6} \frac{1}{6} = \frac{1}{6} \frac{1}{6} \frac{1}{6} = \frac{1}{6} = \frac{1}{6} \frac{1}{6} = \frac{1}{6} = \frac{1}{6} \frac{1}{6} = $
1 sû	= 6.25
1 dizaine	= 10
1 rema	= 50
1 aurure }	= 100
1 aroure ∫	- 100
1 setta	= 1000

Capacity	Unit Chenica	Hindu System.	1 decempeda
(Measured by weight)	1 maris = 2	1	(perch) = 10
1 khar = 34 kg	1 choüs = 3	Length	1 actus (chain) = 120
	1 hemiektos = 4	1 hasta = 0.457 m	1 millarium (mile) = 5000
Unit Khar	1 hektos	Unit Hasta	2 mmarium (mne) – 5000
1 outen $=\frac{1}{160}$	1 modius = 8	1 angula (finger) = $\frac{1}{24}$	Mass
$ \begin{array}{c} 1 \text{ man} \\ 1 \text{ mine} \end{array} = \frac{1}{40} $	1 metretes = 36	1 vitasti (span) = $\frac{1}{2}$	1 podium = 326 g
i mine)	1 medimnos = 48	1 cubit = 1	Unit Podium
1 hecte = 18	Hebrew System.	1 dhanush = 4	1 scrupulus $=\frac{1}{288}$
$ \begin{array}{lll} 1 \text{ apt} & = \frac{1}{4} \\ 1 \text{ keramion} & = 1 \end{array} $	•	l orgyla.	$1 \text{ denier*} = \frac{288}{96}$
1 metretes d'Héron = $1\frac{1}{4}$	Length 1 sacred cubit = 0.640 m	1 crosa = 8000	1 denier $=\frac{1}{90}$
1 artabe des septante = $1\frac{1}{2}$	1 cubit* = 0.555 m	1 gavyuti = 16 000	1 denarius = $\frac{1}{8}$
1 artaha)		1 yodjana = 32 000	1 solidue)
$ \begin{array}{c} 1 \text{ letech} \\ 1 \text{ letech} \end{array} $	Unit Cubit* 1 finger = $\frac{1}{24}$	Mass	$\begin{cases} 1 \text{ solidas} \\ 1 \text{ sextula} \end{cases} = \frac{1}{72}$
	1	1 motti	1 miliaresium = $\frac{1}{6}$
Greek System.	$\begin{array}{ccc} 1 \text{ palm} & = \frac{1}{6} \\ 1 \text{ zereth} & = \frac{1}{2} \end{array}$	$\begin{vmatrix} 1 & \text{rettr} \\ 1 & \text{ratica} \end{vmatrix} = 0.147 \text{ g}$	1 sicilium = $\frac{1}{48}$
Length	i ·	1 pala = 47 g	1 duella = $\frac{1}{36}$
1 pous* = 0.308 56 m	Mass (Sacred system)		1 semuncia $=\frac{1}{2}I$
Unit Pous	$1 \min = 850 g$		1 ounce $=\frac{1}{12}$
	Unit Mina		$1 \text{ mina} = 1\frac{2}{3}$
1 daktylos (finger) = $\frac{1}{16}$ 1 condylos = $\frac{1}{8}$	1 obol }	1 masha = 2, 5, 6, or 8 1 tank-sala = 24	1 centum-
$\begin{array}{ccc} & - & & & & & & & & & & & & & & & & & $	1 gerah = 1200	1 kona = 48	podium = 100
1 dichas $=\frac{1}{3}$	$1 \text{ rabah} = \frac{1}{2} \frac{1}{0}$	1 tola = 80	Area
1 spithame (span) = $\frac{3}{4}$	$1 \text{ bekah} = \frac{1}{120}$	1 karsha = 96	$1 \text{ common pes}^2 = 0.102 14 \text{ m}^2$
1 cubit \uparrow = $1\frac{1}{2}$	$1 \text{ shekel } = 8_0$	(32 (silver)	1 legal pes ² (1st) = 0.08773 m^2
1 Grecian cubit = 2	$1 \text{ talent} \dagger = 50$	$\begin{array}{c} 1 \text{ dharana} = \begin{cases} 3200 \text{ (gold)} \end{cases}$	1 legal pes $(1st) = 0.08773 \text{ m}^2$ 1 legal pes ² $(2nd) = 0.08803 \text{ m}^2$
1 bema (pace) = $2\frac{1}{2}$	Mass (Talmudist or Rabbinical	1 pala = 320	Unit Pes ²
1 orgyia = 6	system)	Unit Pala	$1 \frac{\text{res}^2}{1 \text{ decempeda}^2} = 100$
1 amma (corde) = 60	1 mina = 354.2 g	1 tuba = 100	1 actus (small) = 400
1 plethron $= 100$	Unit Mina	1 hara = 200	1 clima = 3600
1 stadion = 600	1 pondiuscule = $\frac{1}{1200}$	1 bara = 2000	1 versum = 10 000
1 mille = 4500	1 mehah	1 achita = 20 000	1 actus = 14 400
l kiloorgyia $= 6000$	$\begin{array}{ccc} 1 \text{ gerah} & = \frac{1}{6} \frac{1}{9} \end{array}$		1 jugerum = 28 800
Mass	1 obol	Capacity	1 heredium = 57 600
	1 zuzah	(Measured by weight)	1 centuria = 5 760 000
$1 \min = 425 g$	$ \begin{array}{c} 1 \text{ drachma} \\ \end{array} $	1 drona = 13.2 kg	1 saltus = 23 040 000
Unit Mina	$\left\{\begin{array}{c} 1 \text{ shekel} \\ 1 \text{ tetradraphma} \end{array}\right\} = \frac{1}{2.5}$	Unit Drona	
$1 \text{ chalque} = \frac{1}{4800}$	1 bediadrachina)	1 pala \	Capacity, dry
$1 \text{ obol} = \frac{1}{600}$	1 talent = 60	$\begin{vmatrix} 1 & \text{pair} \\ 1 & \text{musti} \end{vmatrix} = \frac{1}{258}$	1 sextarius = 544 g
$1 \text{ diobol} = \frac{1}{800}$	Capacity, dry	$1 \text{ cudava} = \frac{1}{32}$	Unit Sextarius
1 drachma = 0.01	(Measured by weight)	1 prastha = $\frac{32}{10}$	1 modius = 16
1 tetradrachma = 0.04	(614) - 00 276 1 -	$1 \text{ adhaka} = \frac{1}{4}$	1 quadrantal = 48
1 talent = 60	$\begin{array}{c c} 1 \text{ ephah} & (\text{old}) = 29.376 \text{ kg} \\ (\text{new}) = 21.420 \text{ kg} \end{array}$	1 cumbha (small) = 2	1 pes^3 ; (of water) = 48
Area	Unit Ephah	1 shari = 16	Committee 12 and 12
$1 \text{ pous}^2 = 0.095 \ 209 \ \text{m}^2$	$1 \log = \frac{1}{72}$	1 cumbha = 20	Capacity, liquid
Unit Pous ²	$1 \text{ cab} = \frac{1}{18}$	1 baha = 200	(Measured by weight)
$1 \text{ dekapode}^2 = 100$	1 gomor = 0.1	Persian System v. Assyrio-	$\left \begin{array}{c} 1 \text{ sextarius} \\ 1 \text{ sextus} \end{array}\right = 544 \text{ g}$
$1 \text{ plethron}^2 = 10000$	$\begin{cases} 1 \text{ sath} \\ 1 \text{ sath} \end{cases} = 0.3$	Chaldean-Persian.	1 sextus
1 pictinon = 10 000	1 modius ∫ = 0.5	Roman System.	Unit Sextarius
Capacity	$1 \operatorname{cor} = 10$		1 cyathus $=\frac{1}{12}$
(Measured by weight)	Capacity, liquid	Length	$1 \text{ acetabulum } = \frac{1}{8}$
1 chenica = 816 g	(Measured by weight)	1 pes (common or	1 quartus $=\frac{1}{4}$
Unit Chenica	1 bath (old) = 29.376 kg	Drusian) (foot) = 0.3196 m	$\begin{array}{ccc} 1 \text{ hemina} & = \frac{1}{2} \\ 1 \text{ conging} & = 6 \end{array}$
1 cyanthos $=\frac{1}{2L}$	1 bath (new) = 21.420 kg	1 legal pes (1st) = 0.2962 m	1 congius = 6
$ \begin{array}{ll} 1 \text{ cyanthos} & = \frac{1}{24} \\ 1 \text{ oxybaphon} & = \frac{1}{3} \\ \end{array} $	Unit Bath	1 legal pes (2nd) = 0.2967 m	1 urna = 24
$ \begin{array}{ll} 1 \text{ cotyle} &= \frac{1}{4} \\ \end{array} $	$1 \log = \frac{1}{72}$	Unit Pes	1 amphora = 48 1 culeus)
1 sexte $=\frac{1}{2}$	$ \begin{array}{ccc} & & & & & & \\ 1 & & & & & & \\ \end{array} $	1 digitus (finger) = 1^{1}	1 dolium = 960
* The Olympic foot of Egyptian	1 cor = 10	1 uncia (inch) = $\frac{1}{12}$	'
origin.	* Talmudist.	1 cubitus (cubit) = $1\frac{1}{2}$	* Silver. + Neronian.
† Lapidary.	† Of Moses.	1 passus (pace) = 5	‡ Legal pes (2).
		•	

SYMBOLS, BASIC CONSTANTS, CONVERSION DATA, DIMENSIONS, DEFINITIONS

Symbols and Abbreviations	16
Fundamental Constants	
Conversion Factors and Dimensional Formulae, N. Ernest Dorsey	18
Technical Efflux Viscometers: Interpretation and Inter- conversion of Readings, W. H. HERSCHEL	32

BASES OF DATA CONTAINED IN I. C. T.

When many experts are cooperating in the assembling of data, it is essential that the same values for the fundamental constants and for the necessary conversion factors shall be employed by all. Consequently, at the very beginning of the work, the Editors compiled a set of accepted, or I. C. T., values for such constants and factors; and the Experts were instructed to base all their data upon these values. In the few cases in which it was not feasible to follow these instructions, the data were to be accompanied by a statement of the actual basis upon which they rest.

In compiling this list, and in choosing the accepted values of such of the quantities as were independently chosen, the Editors secured and utilized the advice of the United States Bureau of Standards, the National Physical Laboratory of Great Britain, and the Société Française de Physique. Acknowledgments are also due to Dr. F. E. Fowle, of the Smithsonian Institution, for his valued assistance in preparing the initial table of fundamental constants, and to Professors T. W. Richards and G. P. Baxter for their recommendations concerning the table of atomic weights.

The list so prepared comprised (1) a table of atomic weights (p. 43), (2) a set of nine basic constants (p. 17) (the estimated uncertainties were added at a later date), (3) twenty-one derived constants (computed directly from the nine basic constants), five conventional constants, and two experimental constants (p. 18) and (4) certain conversion factors selected from Tables 1 to 79 (p. 20-32). Although the accepted values were close approximations to the best values at that time available, it was not claimed that they were such best values.

SYMBOLS AND ABBREVIATIONS

Except as the contrary is definitely stated, the following symbols and abbreviations will always be used in the sense here indicated. Other symbols will be defined in the sections in which they are used. For those quantities which are included in the list of symbols approved by the International Association of Chemical Societies (4, 119: 502; 21), the symbols so approved have, in general, been used; in some cases, this has necessitated the use of the same symbol to represent two distinct quantities; the context will serve to indicate which interpretation is correct. For explanations of the several technical terms, consult Selected Technical Terms, p. 34.

Å	Ångstrom unit	ap.	Apothecaries
A.	Acre	Av.	Average
A _n	Normal atmosphere	av.	Avoirdupois
Au A	Atmosphere, 45° latitude Atomic weight. Maximum work of a thermodynamic system	a	Van der Waal's pressure constant. Capillary con- stant.
8.	Are	BTU	British Thermal Unit
(a)	Based on Int. ohm and Int.	bbl.	Barrel
	ampere as defined by sil-	bd.	Board
	ver voltameter. (See	bu.	Bushel
	Int. elec. units, p. 27)	b	Van der Waal's volume
abs.	Absolute		constant

C	Centigrade	fir.	Firkin
CTU	Centigrade thermal unit	fl.	Fluid
C	Concentration. Molecular	fps	Foot-pound-second system
		. po	
	heat		of units
C_1, C_2	Radiation constants of	fpse	Fps electrostatic system
	black body. (See defini-	fpsm	Fps electromagnetic system
l	tion of black body.)	ft.	Foot
		ft.²	
C_i	Intensity coefficient. (See		Square foot
	definition of black body.)	ft.³	Cubic foot
C_{P}, C_{\bullet}	Molecular heat at constant	fur.	Furlong
1	pressure, at constant		
	-	G	Gravitation constant
ŀ	volume	_	
C	Velocity of light in vacuo	g	Gram
c	Carat. Centi-	gal.	Gallon
CB.	Candle	gi.	Gill
ca.		gr.	Grain
l			
	mately	0	Acceleration due to gravity
cal	Calorie (gram)	0.	Standard gravity
cd.	Cord		
cf.	Confer = compare	ΗP	Horse-power
		 H	
cgs	Centimeter-gram-second		Atomic weight of hydrogen
	system of units	h	Planck's constant of action
cgse	Cgs electrostatic system	h	Hecto-
cgsm	Cgs electromagnetic system	ha	Hectare
7			
ch.	Chain	hhd.	Hogshead
cm	Centimeter	Ь.р.	Horse-power
cm²	Square centimeter	hr	Hour
cm ³	Cubic centimeter	h	Height
	Candle power		
с.р.	_		
cu.	Cubic	Int.	International
cu. ft.	Cubic foot	I. C. T.	International Critical
cwt.	Hundredweight		Tables
		I	Electric current
l c	Specific heat = heat capac-		
ĺ	ity of the substance	ibid.	Ibidem = in the same place
Cp, Cp	Specific heat at constant	i.e.	Id est = that is
1	pressure, at constant vol-	in.	Inch
	ume	in.	Cubic inch
	ame.	346.	Oubic men
Ì		_	
D	Density	J	Radiance
d	Derivative. Deci-	J_{λ}	Intensity of monochromatic
	_	- ^	radiance of wave-length \(\lambda \)
da	Day		_
da deg	Day Thermometric degree, abso-	J _m	Value of J_{λ} for $\lambda = \lambda_{m}$
		$J_{\mathfrak{m}}$	_
	Thermometric degree, abso- lute C unless contrary is		Value of J_{λ} for $\lambda = \lambda_{m}$
deg	Thermometric degree, abso- lute C unless contrary is indicated	J _m R	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute
de g dk	Thermometric degree, abso- lute C unless contrary is indicated Deka-	R	 Value of J_λ for λ = λ_m Karat. Kelvin, or absolute C, scale of temperature
deg dk dm³	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter		Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute
de g dk	Thermometric degree, abso- lute C unless contrary is indicated Deka-	R	 Value of J_λ for λ = λ_m Karat. Kelvin, or absolute C, scale of temperature
deg dk dm³	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram	R. K	Value of J _λ for λ = λ _m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium
dk dm³ dr. dwt.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight	R. K	Value of J _λ for λ = λ _m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-
dk dm³ dr. dwt.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter	R K k	Value of J _λ for λ = λ _m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram
dk dm³ dr. dwt. d de	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density	R K k kg km	Value of J _λ for λ = λ _m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-
deg dk dm² dr. dwt. d de de de d'2	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper-	R K k	Value of J _λ for λ = λ _m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram
dk dm³ dr. dwt. d de	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper-	R K k kg km km²	Value of J _λ for λ = λ _m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer
deg dk dm² dr. dwt. d de de de d'2	Thermometric degree, absolute C unless contrary is indicated Deka-Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper-rature t ₁₂ , with reference	R K k kg km	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of
deg dk dm² dr. dwt. d de de de d'2	Thermometric degree, absolute C unless contrary is indicated Deka-Cubic decimeter Dram Pennyweight Density. Diameter Critical density at temper-rature tis, with reference to water at temperature	R K k kg km km²	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction
deg dk dm² dr. dwt. d de de de d'2	Thermometric degree, absolute C unless contrary is indicated Deka-Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper-rature t ₁₂ , with reference	R K k kg km km²	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of
deg dk dm² dr. dwt. d de d	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature t12, with reference to water at temperature t1	R K k kg km km²	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction
deg dk dm² dr. dwt. d de de de d'2	Thermometric degree, absolute C unless contrary is indicated Deka-Cubic decimeter Dram Pennyweight Density. Diameter Critical density at temper-rature tis, with reference to water at temperature	R. K k kg km km² k	 Value of J_λ for λ = λ_m Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant
dk dm² dr. dwt. d de de d'2 '':	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature ti	R. K k kg km km km k L	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole
deg dk dm² dr. dwt. d de d	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper- rature t ₁₂ , with reference to water at temperature t ₁	R. K k kg km km² k L	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter
dk dm² dr. dwt. d de de d'2 '':	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper- rature tis, with reference to water at temperature tis described by the second of the secon	R. k kg km km² k L l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long
deg dk dm² dr. dwt. d de de d'2 '1 E E E 0	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature t _{1s} , with reference to water at temperature t ₁ Electromotive force Mean translational energy of molecule of ideal gas at 0°C	R. K k kg km km² k L	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter
dk dm² dr. dwt. d de de d'2 '':	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature t _{1s} , with reference to water at temperature t ₁ Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge	R. k kg km km² k L l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude
deg dk dm² dr. dwt. d de de d'2 '1 E E E 0	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature t _{1s} , with reference to water at temperature t ₁ Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge	R. K k kg km km² k L l l. lat.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound
dk dm² dr. dwt. d de d²2 d²1	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of	K. k. kg. km. km² k. L. l. lat. lb. li.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link
dk dm² dr. dwt. d dc d'² '':	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temper- rature t ₁₂ , with reference to water at temperature t ₁ Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 +	K k kg km km² k L l l l li lic,	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid
dk dm² dr. dwt. d de d²2 d²1	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for	K. k. kg. km. km² k. L. l. lat. lb. li.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link
dk dm² dr. dwt. d dc d'² '':	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example	K k kg km km² k L l l l li lic,	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude
dk dm² dr. dwt. d dc d'² '':	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example	R. k kg km km² k k l l l. lat. lb. li. liq. long.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per
dk dm² dr. dwt. d de d²2 d¹1	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of	R. k kg km km² k k l l l. lat. lb. li. liq. long.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude
deg dk dm² dr. dwt. d de d'² '1 E E e e e.g.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature tillelectromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity	R. k kg km km² k ke L l l. lat. lb. li. liq. long.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram
deg dk dm² dr. dwt. d de d'² '' E E o e e.g.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgm unit of quantity of electricity Electromotive force	R. k kg km km² k k l l l. lat. lb. li. liq. long.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per
deg dk dm² dr. dwt. d de d'² '1 E E e e e.g.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature tillectromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Ezempli gratia = for example Cgm unit of quantity of electricity Electromotive force Electrochemical equivalent	R. k kg km km² k ke L l l. lat. lb. li. liq. long.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight
deg dk dm² dr. dwt. d de d'² '' E E o e e.g.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature tillectromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Ezempli gratia = for example Cgm unit of quantity of electricity Electromotive force Electrochemical equivalent	K k kg km km² k L l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power
deg dk dm² dr. dwt. d de d'² ' ' E E o e e e e e c.g.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electromotive force Electrochemical equivalent Cgse unit of quantity of	R. k kg km km² k k l l l. lat. lb. li. liq. long. l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rota-
deg dk dm² dr. dwt. d de de d'2 d'1 E Ee e e e e e e e e e e e e e e e e	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature tillelectromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electromotive force Electrochemical equivalent Cgse unit of quantity of electricity	K k kg km km² k l l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power
deg dk dm² dr. dwt. d de d'² '' E E o e e e.g. em emf equiv es	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti t Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electrometric equivalent Cgse unit of quantity of electricity Et cetera = and so forth	K k kg km km² k L l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rota-
deg dk dm² dr. dwt. d de de d'2 d'1 E Ee e e e e e e e e e e e e e e e e	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature tillelectromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electromotive force Electrochemical equivalent Cgse unit of quantity of electricity	K k kg km km² k l l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power
deg dk dm² dr. dwt. d de d'² '' E E o e e e.g. em emf equiv es	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti t Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electrometric equivalent Cgse unit of quantity of electricity Et cetera = and so forth	K k kg km km² k L l l l long. l M M [α] M [ω]	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo-Kilogram Kilometer Square kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity
deg dk dm³ dr. dwt. d de d'2 '1 E E 0 e e e.g. em emf equiv es etc. et seq.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature till temperature till temperature described by the second of the secon	K k kg km km² k l l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity Meter. Milli-
deg dk dm² dr. dwt. d de d'² '' E E o e e e.g. em emf equiv es	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature tight of the second of the s	K k kg km km² k l l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity Meter. Milli- Square meter
deg dk dm² dr. dwt. d de de d'2 d'1 E Ee e e e.g. em emf equiv es etc. et seq.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tiz, with reference to water at temperature till temperature till temperature described by the second of the secon	K k kg km km² k l l l l l l l l l l l l l l l l l l	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity Meter. Milli-
deg dk dm³ dr. dwt. d de d'2 '1 E E 0 e e e.g. em emf equiv es etc. et seq.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electromotive force Electrochemical equivalent Cgse unit of quantity of electricity El cetera = and so forth Et sequentes = and the following Ratio of E ₀ to T ₀	K k kg km km² k ke L l l. lat. lb. li. liq. long. l M [α] M [ω] mo m m² max.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity Meter. Milli- Square meter Maximum
deg dk dm² dr. dwt. d de d² d² '1 E E o e e e.g. em emf equiv es etc. et seq.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature tis Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electrometricity Electrometricity Electrochemical equivalent Cgse unit of quantity of electricity Et cetera = and so forth Et sequentes = and the following Ratio of Eo to Te	K k kg km km² k ke L l l. lat. lb. li. liq. long. l M M [α] M [ω] mo m m² max. mg	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Square kilometer Velocity coefficient of chemical reaction Boltzmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity Meter. Milli-Square meter Maximum Milligram
deg dk dm² dr. dwt. d de de d'2 d'1 E Ee e e e.g. em emf equiv es etc. et seq.	Thermometric degree, absolute C unless contrary is indicated Deka- Cubic decimeter Dram Pennyweight Density. Diameter Critical density Specific gravity at temperrature tis, with reference to water at temperature ti Electromotive force Mean translational energy of molecule of ideal gas at 0°C Electronic charge Base of natural system of logarithms = 2.71828 + Exempli gratia = for example Cgsm unit of quantity of electricity Electromotive force Electrochemical equivalent Cgse unit of quantity of electricity El cetera = and so forth Et sequentes = and the following Ratio of E ₀ to T ₀	K k kg km km² k ke L l l. lat. lb. li. liq. long. l M [α] M [ω] mo m m² max.	Value of J_{λ} for $\lambda = \lambda_m$ Karat. Kelvin, or absolute C, scale of temperature Constant of chemical equilibrium Kilo- Kilogram Kilometer Square kilometer Velocity coefficient of chemical reaction Boltsmann's gas constant Latent heat per mole Liter Long Latitude Pound Link Liquid Longitude Length. Latent heat per gram Molecular weight Molecular rotatory power Molecular magnetic rotatory power Mass of electron at low velocity Meter. Milli- Square meter Maximum

Minute

Fathom

min. Minim, Minimum min. Milliliter may Magnetomotive force may Millimicron. Millimicro- may Mass mass of a hydrogen atom Mass of a hydrogen atom Noumeric Noum				
mmf Magnetomotive force mµ Millimicron. Millimicro- m Mass mµ Mass of a hydrogen atom t. Troy N Numeric No Avogadro's number No Rydberg's universal series constant Refractive index na, na Transport number for anion, kation No Atomic weight of oxygen O Atomic weight of oxygen Ounce P Pressure Pint P Pressure P Pint P Pressure P Pint P Pressure P Pressure P Pint P Pressure P Pint P Pressure P Pint P Pressure P Pressure P Pint P Pressure P Pint P Pressure P Pint P Pressure P	min.	Minim, Minimum	T.	Ice point, absolute C
m Mass of a hydrogen atom No Numeric No Avogadro's number Refractive index Refractive index No Loschmidt's number O Atomic weight of oxygen O Ounce P Pressure pc. p. Critical pressure, reduced pressure pc. p. Critical pressure pc. p. p. p. Critical pressure pc. p.	ml	Milliliter	T	Temperature on absolute
m Mass of a hydrogen atom No Numeric No Avogadro's number Refractive index Refractive index No Loschmidt's number O Atomic weight of oxygen O Ounce P Pressure pc. p. Critical pressure, reduced pressure pc. p. Critical pressure pc. p. p. p. Critical pressure pc. p.	mmf	Magnetomotive force		C scale
Mass Mass Mass of a hydrogen atom t. Troy	mμ	_	T_{\bullet}	Critical temperature, abso-
m _H Mass of a hydrogen atom t Metric ton N Numeric t. Troy No Avogadro's number t Time. Temperature C (above ice point) No Rydberg's universal series constant t Citical temperature C (above ice point) Critical temperature C no Refractive index U.S. United States of America no Loschmidt's number Volume Volume O Atomic weight of oxygen vo Volume O Atomic weight of oxygen vo Volume per gram-mole of ideal gas at 0°C and An volt as defined by standard cell. (See Int. elec. units, p. 27.) P Pressure (v) Based on Int. ohm and Int. volt as defined by standard cell. (See Int. elec. units, p. 27.) P Pressure volume volume P Pressure volume volume Q Quantity W Electrical resistance Q Quantity W Electrical resistance q.* Volume Volume Volume q.* Quod vide which see w Weight <th< td=""><td>173</td><td>Mass</td><td>•</td><td>- · · · · · · · · · · · · · · · · · · ·</td></th<>	173	Mass	•	- · · · · · · · · · · · · · · · · · · ·
N Numeric No	m		t	Metric ton
N Numeric tn. Ton No Avogadro's number constant t Time. Temperature C (above ice point) n Refractive index name constant to Critical temperature C (above ice point) n Refractive index namber for anion, kation U. S. United States of America n Loschmidt's number V Volume O Atomic weight of oxygen on. v. Volume P Pressure (v) Based on Int. ohm and Int. volt as defined by standard cell. (See Int. election of ideal gas at 0°C and An ard cell. (See Int. election of ideal gas at 0°C and An ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal can of ideal can of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard cell. (See Int. election of ideal gas at 0°C and ard	H		t.	Troy
No Avogadro's number t Time. Temperature C (above ice point) No Rydberg's universal series constant te Cabove ice point) n Refractive index te Critical temperature C (above ice point) ne Loschmidt's number V Volume O Atomic weight of oxygen ve Volume Ounce ve Volume P Pressure (v) Based on Int. ohm and Int. volt as defined by standard edell. (See Int. electrical pressure volume P Pressure volt as defined by standard edell. (See Int. electrical pressure volume volume volume Q Quantity W Electrical resistance volume Q Quantity W Electrical resistance volume Q Quantity W Electrical resistance Q Quantity W Electrical resistance Q Quantity W Electrical resistance Q Quart wt. Weight Year q.* Quart yd. Yard Yard Year R Réaumur Z Atomic number	M	Numania		-
Rydberg's universal series constant I			Ł	Time. Temperature C
Refractive index Refractive index Transport number for anion, kation Refractive index Vuel as tace of America Volume Volume Volume Presure volume An Vide = see (v) Based on Int. ohm and Int. volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Vide = see Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Vide = see Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Vide = see Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Volume Pride Transport units, p. 27.) Volume Volume Presure volt as defined by standard cell. (See Int. elec. units, p. 27.) Volume Vide = see Volume Volume Volume Volume Volume Volume Volume		_		_
Refractive index ne, ne, ne anion, kation ne Loschmidt's number O Atomic weight of oxygen os. Ounce P Pressure pt. Pint p Pressure pc. pr. Critical pressure, reduced pressure q Quintal qt. Quantity q Quintal qt. Quart q. Quod vide = which see R Réaumur R Gas constant per mole of ideal gas at 0°C and An order and order	A	-	t.	
Transport number for anion, kation No. 7 Transport number for anion, kation No. 1 Loschmidt's number O Atomic weight of oxygen Ounce P Pressure P Volume P Vide see Not ard cell. (See Int. elec. units, p. 27.) Volume C Critical volume, reduced volume W Electrical resistance W Wien's displacement constant W Wien's displacement constant S Specific refractivity (Gladaston) A Atomic number P Specific rotatory power Specific rotatory power P Pressure P Vide see Not ad Can Price Volume P Pressure P P P Pressure P Pressure P P P P P P P P P P P P P P P P P P P			•	
anion, kation Loschmidt's number O Atomic weight of oxygen Ounce Ounce Pressure Presure Pressure Presure Pressure Pressure Pressure Presure Pressure Pressure Pre	n			(
Atomic weight of oxygen O. Atomic weight of oxygen O. Ounce P. Pressure P. Prosure P. Pressure P. Prosure P. Pressure P. Pressure P. Prosure P. Pressure P. Pressure P. Pressure P. Pressure P. Pressure P. Prosure P. Pressure P. Pressure P. Prosure P. Pressure P. Press	ne, ne		II. S.	United States of America
O Atomic weight of oxygen Os. Ounce Ounce P Pressure P Vide = see P Pressure P Vide = see Vide Presure Volume P Critical prestuded volume P Viewish Viewish Viewish Viespit Viewish Viewish Viewish Viewish Viewish Viewish Viewish Viewish Viewish Visuosity Angle (plane). Temper- P Volume P Visuosity Angle (plane). Temper-			0. 5.	
O Atomic weight of oxygen O Atomic weight of oxygen O Ounce P Pressure P Pressure Pint Pint Pressure P Volume P Specific pressure, reduced P Volume P Pressure P Volume P Pressure P Volume P Specific value P Pressure P Volume P Specific refuction P Volume P Pressure P Volume P Pressure P Volume P Pressure P Visual Cell. (See Int. elec. units, p. 27.) Volume P Pressure P Volume P Volume P Pressure P Volume P Volume P Pressure P Volume P Pressure P Volume P Pressure P Volume P Volume P Volume P Volume P Volume P Volume P Velex Interpolation P Visume P Visume P Valume P Visume P Vin	n _e	Loschmidt's number	v	Volume
os. Ounce P Pressure pk. Peck pt. Pint p Pressure pc. p. Critical pressure, reduced pressure pressure pc. p. Critical volume, reduced pressure pc. p. Critical volume, reduced pressure pc. p. p. Critical volume, reduced pressure pc. p. p. Critical resistance pc. p. p. Weight	•	Atomic mainht of announ	٧.	
P Pressure plant v. Vide = see Note = see P Pressure plant (v) Based on Int. ohm and Int. ohm	_		•	
P Pressure (v) Based on Int. ohm and Int. volt as defined by standard cell. (See Int. electurity pressure reduced pressure reduced pressure reduced pressure reduced redu	OZ.	Ounce		
pk. Peck pt. Pint Pint Pint Pressure Preduce Pressure Pr	P	Pressure		-
pt. Pint p Pressure presure pressure pressure pressure pressure pressure pressure pressure pressure presure pressure pressure presure pressure presure pressure presure president presistance Weight Wien's displacement constant pressure president presistance president presistance president p	-		(*)	
Pressure	-			
pe, pr Critical pressure reduced volume ν Volume Q Quantity W Electrical resistance qt. Quart wt. Weight qs. Quod vide = which see w Wien's displacement constant R Réaumur R Yard R Gas constant per mole of ideal gas. yr Yard Year sistance. Year Year rd. Rod Z Atomic number r Radius α Degree of dissociation. rand Lorenz α Degree of dissociation. Angle of optical rotation specific refraction (Lorents and Lorenz) γ Specific rotatory power r Radius of first Bohr ring, hydrogen γ Surface tension. Ratio of cp/cp. Gamma (magnetic unit) S.E. Siemens unit α Diffusion coefficient S.E. Siemens unit α Dielectric constant. Electrode potential s. Stere α _A , α _a Electrode potential above that of normal hydrogen, of normal calomel, electrode sh. Short η Vis	-			
Pressure ve, vr Critical volume, reduced volume	-			
Q Quantity Q Quintal Qt. Quart Quot vide = which see R Réaumur R Gas constant per mole of ideal gas. Electrical resistance rd. Rod R Radius R Radius R Radius R Radius R Radius R Rod	P P.	=		
q Quintal W Electrical resistance qt. Quart wt. Weight q.s. Quod vide = which see wt. Weight R Réaumur Wien's displacement constant R Gas constant per mole of ideal gas. yd. Yard Year Year Year sistance. Z Atomic number r Radius α Degree of dissociation. Angle of optical rotation specific refractivity (Gladaton and Lorenz) Specific refraction (Lorents β Specific retactory power r Specific refraction (Lorents β Specific heat constant surface tension. Ratio of replacement constant r Radius of first Bohr ring, hydrogen α hydrogen Δ Diffusion coefficient S.E. Siemens unit α Dielectric constant. Electrode potential s Stere α A s. Scruple Electrode potential above that of normal hydrogen, of normal calomel, electrode sh. Short η Viscosity sq. Square Angle (plane). Temper-			· · · · ·	
qt. Quart q.s. Quod vide = which see R Réaumur R Gas constant per mole of ideal gas. Electrical resistance. rd. Rod r Radius rg Specific refractivity (Gladstones and Dale) rL Specific refraction (Lorents β Specific rotation (Lorents β Specific refraction (Lorents β Specific refraction (Lorents β Specific refraction (Lorents β Specific refraction (Lorents β Specific rotatory power Specific heat constant γ Surface tension. Ratio of c _p /c _p . Gamma (magnetic unit) S.E. Siemens unit ε Diffusion coefficient S.E. Siemens unit ε Dielectric constant. Electrode potential s Stere ε ε λ, ε Electrode potential above that of normal hydrogen, of normal calomel, electrode sh. Short η Viscosity sq. Square θ Angle (plane). Temper-	-	-	w	Flactrical registance
R. Réaumur R. Gas constant per mole of ideal gas. Electrical resistance. rd. Rod r Radius r _G Specific refractivity (Gladstone and Dale) r _L Specific refraction (Lorents and Lorenz) r _I Radius of first Bohr ring, hydrogen S.E. Siemens unit S. Entropy s. Scruple s. Scruple s. Scruple s. Scruple sh. Short sq. Square Wien's displacement constant Wien's displacement constant Yard Year Year Year Atomic number Degree of dissociation. Angle of optical rotation Specific rotatory power Specific refraction (Lorents β Specific heat constant Surface tension. Ratio of c _p /c _p . Gamma (magnetic unit) Diffusion coefficient Electrode potential Electrode potential Electrode potential Electrode potential above that of normal hydrogen, of normal calomel, electrode trode Viscosity Angle (plane). Temper-	-	=		
R Réaumur R Gas constant per mole of yd. Yard ideal gas. Electrical resistance. rd. Rod Z Atomic number r Radius α Degree of dissociation. Angle of optical rotation stone and Dale) [α] Specific refractivity (Gladstone and Lorenz) γ Specific refraction (Lorents and Lorenz) γ Specific heat constant surface tension. Ratio of cp/cr. Gamma (magnetic unit) S.E. Siemens unit α Diffusion coefficient S.E. Siemens unit α Diffusion coefficient S.E. Stere α α Diffusion coefficient S.E. Scruple Entropy Entropy Electric constant. Electrode potential S.E. Scruple Electrode potential above that of normal hydrogen, of normal calomel, electrode Sh. Short η Viscosity Sq. Square θ Angle (plane). Temper-	-	•		•
R Gas constant per mole of ideal gas. Electrical resistance. rd. Rod Z Atomic number r Radius α Degree of dissociation. Angle of optical rotation Angle of optical rotation stone and Dale) [α] Specific refraction (Lorents and Lorens) γ Specific heat constant r_1 Radius of first Bohr ring, hydrogen Δ Diffusion coefficient S.E. Siemens unit α Diffusion coefficient S.E. Siemens unit α Diffusion coefficient S.E. Stere α α Dielectric constant. Electrode potential s Stere α α A Degree of dissociation. Angle of optical rotation Specific rotatory power γ Specific refraction (Lorents β Specific heat constant γ Surface tension. Ratio of cp/cp. Gamma (magnetic unit) Diffusion coefficient S.E. Siemens unit α Dielectric constant. Electrode potential s Stere α α A Gamma (magnetic unit) s Stere α α A Gamma (magnetic unit) s Stere α α A Gamma (magnetic unit) Stere α α α Degree of dissociation. Angle of optical rotation Surface tension. Ratio of cp/cp. Gamma (magnetic unit) Diffusion coefficient Electrode potential above that of normal hydrogen, of normal calomel, electrode trode sh. Short η Viscosity Angle (plane). Temper-	q.v.	•	•	-
rd. Rod Z Atomic number r Radius α Degree of dissociation. r Radius α Degree of dissociation. Angle of optical rotation Specific rotatory power rL Specific refraction (Lorents and Lorenz) γ Surface tension. Ratio of radius of first Bohr ring, hydrogen S.E. Siemens unit α Diffusion coefficient S. Entropy α Stere α α Degree of dissociation. Angle of optical rotation Specific rotatory power specific heat constant of cp/cp. Gamma (magnetic unit) Diffusion coefficient S. Entropy α Diffusion coefficient A Diffusion coefficient Diffusion coefficient The coefficient α Diffusion coefficient The coefficient α Diffusion coefficient A Diffusion coefficient A Diffusion coefficient Diffusion coefficient Diffusion coefficient A Diffusion coefficient Diffusion coefficient A Diffusion coefficient A Diffusion coefficient A Diffusion coefficient Diffusion coefficient A			,	373
rd. Rod Z Atomic number r Radius α Degree of dissociation. r _G Specific refractivity (Gladatone atone and Dale) [α] Specific rotatory power r _L Specific refraction (Lorents β Specific heat constant and Lorenz) γ Surface tension. Ratio of r ₁ Radius of first Bohr ring, hydrogen S.E. Siemens unit α Ω Diffusion coefficient S.E. Siemens unit α Ω Diffusion coefficient S.E. Strope S.E.	R		-	
rd. Rod Z Atomic number r Radius α Degree of dissociation. r _G Specific refractivity (Gladaton atone and Dale) [α] Specific rotatory power r _L Specific refraction (Lorents β Specific heat constant and Lorenz) γ Surface tension. Ratio of r ₁ Radius of first Bohr ring, hydrogen S.E. Siemens unit α α Diffusion coefficient S.E. Siemens unit α α Diffusion coefficient S.E. Strope s. Struple s. Struple s. Scruple see Second (mean solar unless contrary is stated) sh. Short η Viscosity sq. Square θ Angle (plane). Temper-		_	yr	1 ear
r Radius α Degree of dissociation. r Radius stone and Dale) [α] Specific refractivity (Gladstone and Dale) [α] Specific rotatory power r Specific refraction (Lorentz β Specific rotatory power and Lorenz) γ Specific rotatory power r Radius of first Bohr ring, hydrogen			-	Advanta www.bas
r _G Specific refractivity (Gladstone and Dale) [α] Angle of optical rotation Specific rotatory power r _L Specific refraction (Lorentz β Specific retatory power and Lorenz) Specific refraction (Lorentz β Specific heat constant specific refraction) Specific refractory power r ₁ Radius of first Bohr ring, hydrogen γ Surface tension. Ratio of c _p /c _p . Gamma (magnetic unit) S.E. Siemens unit a Diffusion coefficient S. Entropy trode potential s Stere e _h , e _s Electrode potential above that of normal hydrogen, of normal calomel, electode contrary is stated) sh. Short η Viscosity sq. Square θ Angle (plane). Temper-	rd.	Rod	Z	
stone and Dale) [α] Specific rotatory power r _L Specific refraction (Lorents β Specific heat constant r ₁ Radius of first Bohr ring, hydrogen	r		α	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r _G	•		
and Lorenz) γ Surface tension. Ratio of γ Radius of first Bohr ring, hydrogen S.E. Siemens unit S.E. Siemens unit S.E. Stere Second (mean solar unless contrary is stated) sh. Short γ Square γ Surface tension. Ratio of c _p /c _p . Gamma (magnetic unit) Diffusion coefficient Dielectric constant. Electrode potential Electrode potential Electrode potential above that of normal hydrogen, of normal calomel, electrode trode Viscosity Angle (plane). Temper-			[a]	
r_1 Radius of first Bohr ring, hydrogen c_p/c_r . Gamma (magnetic unit) S.E. Siemens unit Φ Diffusion coefficient Diffusion coefficient S.E. Siemens unit Φ S.E. Entropy trode potential S.E. Stere Φ S.E. Scruple Electrode potential above that of normal hydrogen, of normal calomel, electory contrary is stated) Sh. Short Φ Square Φ Angle (plane). Temper-	r_L		β	
hydrogen A Diffusion coefficient S.E. Siemens unit S Entropy S Stere S Scruple S Second (mean solar unless contrary is stated) sh. Short Square A Dielectric constant. Electrode potential Electrode potential above that of normal hydrogen, of normal calomel, electrode trode Viscosity Angle (plane). Temper-			γ	
S.E. Siemens unit S.E. Siemens unit S.E. Siemens unit S.Entropy S.Entropy S.Ere Scruple S.Ecruple That of normal hydrogen, of normal calomel, electrode trode sh. Short Tode Viscosity Sq. Square Angle (plane). Temper-	r ₁	- -		
S.E. Siemens unit S Entropy s Stere s. Scruple contrary is stated) sh. Short sq. Square Siemens unit sq. Siemens unit sq. Siemens unit sq. Dielectric constant. Electrode potential sclictrode potential above that of normal hydrogen, of normal calomel, electrode trode Viscosity Angle (plane). Temper-		hydrogen		
S Entropy s Stere s. Scruple see Second (mean solar unless contrary is stated) sh. Short sq. Square stated sh. Square stated sh. Square stated state			Δ	
Stere s. Scruple Sec Second (mean solar unless contrary is stated) sh. Short sq. Square Stere stated sh. Square Stere stated sh. Square Electrode potential above that of normal hydrogen, of normal calomel, electrode trode Viscosity Angle (plane). Temper-		Siemens unit	•	
s. Scruple that of normal hydrogen, see Second (mean solar unless contrary is stated) of normal calomel, elec- trode sh. Short η Viscosity sq. Square θ Angle (plane). Temper-	S			
Second (mean solar unless contrary is stated) sh. Short η Viscosity sq. Square θ Angle (plane). Temper-	8		¢,, ¢,	
contrary is stated) trode sh. Short η Viscosity sq. Square θ Angle (plane). Temper-	8.			
sh. Short η Viscosity sq. Square θ Angle (plane). Temper-	sec	•		
eq. Square θ Angle (plane). Temper-				
· · · · · · · · · · · · · · · · · · ·	sh.			
eq. ft. Square foot ature C above ice point	-	-	0	
	sq. ft.	Square foot		ature C above ice point

¹ In every computation it is tacitly assumed that the values employed are exact. If but three digits are employed, it is assumed that all others are sero; if a computing machine is used, the assumption is carried out to the extreme limit of the machine; if logarithms are used, it is carried to the limit within which the logarithms are interpolated. To adopt an accepted or a conventional

K	Susceptibility (magnetic). Electrical (volume) con-	m 5	Minim Apothecaries' ounce
	ductivity	3	Apothecaries' dram
Λ	Equivalent conductivity	Э	Apothecaries' scruple
	(electrical)	۰	Degree (arc or temperature)
λ	Wave-length. $\lambda 5890 =$,	Minute of arc (sexagesimal)
	spectral line of wave-		Second of arc (sexagesimal)
	length = 5890Å	%	Percent = per hundred
λm	Wave-length of maximum	%	Per thousand = 0.1 %
	monochromatic radiance of black-body at stated • temperature	[]	Dimensional expressions are inclosed in []. In text, [] is used to inclose
μ	Permeability (magnetic).		a second reading. $(E.g.,$
	Micron, Micro-, Molec-		Length [diameter] of the
	ular conductivity (elec- trical)		bar is 10 cm [1 cm] = length of bar is 10 cm,
μμ	Micromicron. Micromicro-		diameter of bar is 1 cm)
v	Frequency	<	A < B [A > B] denotes
* m	Rydberg's fundamental fre-		that A is less than
_	quency		[greater than] B
T	Ratio of circumference of a	≮	Negative of $<$; $A \leq B$ denotes that A is not less
	circle to its diameter		than B
σ	Stefan's constant (radi- ation)	≤	Combination of $<$ and $=$; $A \le B$ denotes that A is
φ	Fluidity. Angle		equal to or less than, B
ψ	Luminous flux	≠	Is not equal to
Ω	Ohm		Identically equal to; used
{Ω }	Relative molecular mag-	_	in defining symbols, etc.
	netic rotatory power with reference to water	<u>~</u>	Approximately (or essen- tially) equal to
ω	Solid angle		Infinity
[ω]	Specific magnetic rotatory power		Luamty

FUNDAMENTAL CONSTANTS

By an accepted, conventional, or defined value, is meant one which is to be regarded as exactly correct for purposes of computation. Thus, errors from computational approximations are avoided and do not enter into consideration in any future revision of the computed result for a discovered difference between the true and the accepted value. When the computation involves several accepted values, it is especially important that each shall be regarded as exactly correct, for only then can the result be independently revised (without complete recalculation) for changes in the values of each. For this reason the logarithms of the several accepted values are given to the full precision of Vega's seven-place table. The degree of uncertainty in the value accepted is indicated by the number of significant figures retained in the value itself, not by the logarithm.

value, and to give as its logarithm an abbreviated value, is to introduce an ambiguity of a magnitude determined by the degree of abbreviation of the logarithm. But the sole object in adopting accepted or conventional values is to avoid ambiguity.

ACCEPTED BASIC CONSTANTS Units: cgs, °C, liter, An, absolute electric

	Quantity	Value	Uncertainty	Log ₁₀ (value)
c	Velocity of light	$2.9986 \times 10^{10} \mathrm{cm \ sec^{-1}}$	0.0003	10.476 9185
G	Gravitation constant	$6.66 \times 10^{-8} \mathrm{cm^3 g^{-1} sec^{-2}}$	0.01	8.8234742
e	Electronic charge	$4.774 \times 10^{-10} \text{ es}$	0.005	10.678 8824
e	Electronic charge	*1.592 \times 10 ⁻²⁰ em		$\overline{20}.2019639$
e/mo	Electronic ratio	$5.305 \times 10^{17} \mathrm{\ es\ g^{-1}}$	0.010	17.724 6854
e/m_0	Electronic ratio	*1.769 $\times 10^7 \text{ emg}^{-1}$		7.247 7669
F	Faraday	9.6500×10^4 coulombs	0.0010	4.984 5273
F	Faraday	$^*2.893~65 imes 10^{14}~{ m es}$		14.461 4458
V ₀	Volume 1 mole at 0°C, A _n	$†22.4115 \times 10^{3} \mathrm{cm^{3} mole^{-1}}$	0.002	4.350 4709
h	Planck's constant	$6.554 \times 10^{-27} \text{ erg sec}$	0.001	$\overline{27}.816 5064$
To	Ice point, absolute	273.1 deg C	+0.15 to -0.05	2.436 3217
0	Atomic weight of oxygen	16.000 (by definition)	(definition)	1.204 1200

^{*} This value is derived from the preceding one, which is the value actually accepted.

[†] Derived from volume at 0°C, A45 = 22.412 liters/g-mole on assumption log₁₀ (An/A4) = 0.000 0214, liter = 1000.027 cm³.

ACCEPTED CONSTANTS:—CONVENTIONAL AND NON-BASIC Units: cgs, °C, liter, An absolute electric, international angstrom

	Quantity	Value	Log ₁₀ (value
	A.	Derived Constants	
R	Gas constant	$8.315 \times 10^7 \mathrm{erg} \mathrm{deg}^{-1} \mathrm{mole}^{-1}$	7.919 8658
8	Gas constant	0.082 06 liter atm deg ⁻¹ mole ⁻¹	. 2.914 1375
?	Gas constant	$1.9869 \text{ cal}_{1b} \text{ deg}^{-1} \text{ mole}^{-1}$	0.298 1703
70	Avogadro's number	$6.061 \times 10^{23} \mathrm{mole^{-1}}$	23.782 5634
0	Loschmidt's number	$2.705 \times 10^{19} \text{ cm}^{-3} \text{ (at 0°C, An)}$	19.432 0925
0	Molecular gas constant	$1.372 \times 10^{-16} \mathrm{erg deg^{-1}}$	16.137 3024
7.	Translational energy of molecules, 0°C	$5.620 \times 10^{-14} \text{ erg}$	14.749 715
,	Ratio of E_0 to T_0	$2.058 \times 10^{-16} \mathrm{erg}\mathrm{deg}^{-1}$	16.313 3937
н	Mass of hydrogen atom	1.663 × 10 ⁻⁵⁴ g	24.220 7679
0	Electronic mass	$8.999 \times 10^{-28} \mathrm{g}$	28.954 1970
	Radius 1st Bohr ring of hydrogen	$0.5305 \times 10^{-8} \text{ cm}$	9.724 6912
/e	Photo-electric constant		77.137 6240
/e	Photo-electric constant	*4.117 × 10 ⁻¹⁵ volt sec	15.614 542
	Photo-electric constant	$4.117 \times 10^{-7} \text{ erg cm es}^{-1}$	7.614 542
,	Photo-electric constant	1.2344 × 10 ⁴ volt Å	4.091 4610
C/ C	Specific heat constant	$4.778 \times 10^{-11} \text{ sec deg}$	11.679 204
	Stefan's constant	$5.709 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ deg}^{-4}$	5.756 5410
			5.568 523
1	Radiation constant, first	3.703 × 10 ⁻⁵ erg cm ² sec ⁻¹	
2	Radiation constant, second	1.433 cm deg	0.156 122
	Wien's displacement constant	0.2885 cm deg	1.460 1933
i	Intensity coefficient	1.301 × 10 ⁻⁴ erg cm ⁻³ sec ⁻¹ deg ⁻⁵	4.114 2762
0	Rydberg frequency		15.515 5372
/ _∞	Rydberg wave number		5.038 6187
		onventional Constants	
n	Normal atmosphere		6.005 7160
46	Atmosphere, latitude 45°		6.005 6952
	Wave-length of red Cd line is	6438.4696 Å	4.808 782
,	Standard gravity	980.665 cm sec ⁻²	2.991 5207
	Aberration constant		1.311 1178
		perimental Constants	
	ng space in calcite		0.481 1559
[Atomic weight of hydrogen	1.0077	0.003 3313
Lite	r	1000.027 cm ²	3.000 0117
	m calorie (20°C)	4.181 joule	0.621 2802
Gra	m calorie (15°C)	4.185 joule	0.621 695
Gra	m calorie (mean)	4.186 joule	0.621 7992
Brit	ish Thermal Unit (39°F)	1060.4 joule	3.025 4697
Brit	ish Thermal Unit (mean)	1054.8 joule	3.023 170
	ish Thermal Unit (60°F)		3.023 0878
	rnational ohm	1.000 52 ohm	0.000 2259
	rnational ampere (v)§		0.999 9560
	rnational ampere (a)§		0.999 9696

^{*} This value is derived from the preceding one, which is the value actually accepted.

CONVERSION FACTORS AND DIMENSIONAL FORMULAE

N. Ernest Dorsey

In the following tables are given the factors by which values expressed in other units must be multiplied in order to obtain their equivalents in units of the centimeter-gram-second (cgs) system. To convert in the reverse direction, divide by the factor given. The dimensional formula in the cgs, or any similarly constructed, system is given in the title of each table.

Conversion Factors.—With few exceptions, the values given are based exclusively upon legal definitions, conventional con-

¹ The exceptions are (1) astronomical unit of distance, (2) parsec, (3) sidereal second, (4) certain units of luminous intensity, (5) international electrical units prior to 1911, and (6) the data for hydrometers.

stants, and the I. C. T. accepted values (p. 16). Consequently, they are computable to as extreme a precision as may be desired. They have been computed by means of Vega's seven-place logarithms, and it is hoped that their logarithms as given are correct to a unit in the last digit. Obviously, those factors which involve the accepted value of an experimentally determined constant will be in error by an amount determined by the error in the accepted value; but quantities converted by means of the logarithms given will retain their same relative precision, however great this may be, within the limit set by the seven-place table, and may at any time be as exactly corrected for a revision of the accepted value. This would not be true if an abbreviated logarithm were used, unless the exact value of the abbreviated logarithm itself were given. The latter would be equivalent merely to the adoption of another accepted value for the experimental constant involved;

In the original list, this quantity was included solely in the list of conversion factors; its value, however, is an independently selected, accepted constant, and, consequently, is treated as exact in all computations.

^{§ (}v) = Based on Int. ohm and Weston normal cell = 1.018300 Int. volts at 20°C; (a) = based on deposit of 1.11800 mg of silver per Int. ampere second.

and the new value so fixed would, in general, be expressible only by an indefinite number of digits. The former procedure is to be preferred.

Frequently, the same factor applies to more than one type of physical quantity; if the units of the several types have distinctive names, separate tables are given, otherwise, not. In general, the tables are arranged in the order of increasing complexity of the dimensional formulae. Some quantities for which conversion factors are seldom required, and a few dimensionless quantities have been grouped together in Table 78. The dimensional formulae of the more important electric and magnetic units, and the numerical relations connecting these units in the three systems most frequently used, are assembled in Table 77. To find the conversion factor for a given quantity, consult the index below.

Dimensions.—Two types of dimensional equations need to be considered, viz.: (1) Those in which the dimensions are expressed in terms of the quantities directly involved in the phenomenon under consideration, and (2) those in which the dimensions are expressed in terms of certain fundamental units.

As an illustration of the first we may consider the force of repulsion between two point charges (e, e') of electricity situated at a distance, r, apart in a medium of dielectric constant ϵ . If this force is denoted by f, then $f = ee'/\epsilon r^2$, and we may write $[e^2] = [f \epsilon l^2]$, $[\epsilon] = [e^2 f^{-1} l^{-2}]$, etc., where $[\cdot]$ denotes that we are concerned with dimensions only; [l] denotes the dimension of length, [f] that of force, etc. These dimensional equations are true whatever be the system of units employed. As they involve quantities, such as force, which can be expressed in terms of other units that are usually considered more fundamental, such dimensional equations will be referred to as "unreduced," in order to distinguish them from those of the second class in which the dimensions are expressed solely in terms of a small number of fundamental units.

It is evident that the dimensions of a quantity in terms of fundamental units can be assigned only in relation to a specific system of units and to a specific method of derivation. For example, (1) if the unit of volume is defined as the volume occupied by a unit mass of water when at its greatest density under a pressure of one atmosphere, then the volume so defined will be independent of the units of length and time, and will vary directly as the unit of mass: we will have [v] = [m]. (2) If the unit of

volume is defined as the volume occupied by a mass of water (when at its greatest density, etc.) which is equal to the mass of a specified block of platinum, then the volume so defined will not change as we change our units of length, of mass, and of time: that is [v] = [v]. In this case [v] is an independent unit and must be so regarded in all dimensional equations. (3) If the unit of volume is defined as the volume of a cube of which the edge is equal to the unit of length then $[v] = [l^2]$. A unit may be defined in any desired unambiguous manner and, in general, the dimensions of the unit will vary from definition to definition.

Dimensional equations of the second type stand in marked contrast to those of the former, in being far less general and in implying the acceptance of a very exactly defined system of units. This, however, is the type of equation which is commonly in mind when dimensional equations are mentioned, and is probably the one which is the more generally useful; the unreduced dimensional expressions (the first type), however, are often simpler, convey more detailed information, and in many cases are to be preferred. For these reasons, unreduced dimensional expressions are to be found in explanations of technical terms (p. 34); they are followed by others, the final one in each case being the fully reduced dimensions on the centimeter, gram, second, degree centigrade absolute, electrostatic system. Wherever necessary, this system of units will be denoted by the symbol case in order to distinguish it from the corresponding electromagnetic system, which will be denoted by cgsm. In the conversion tables, dimensional formulae only of the cgse and of the cgsm systems are given. In the cgse system, the fundamental units and their symbols are those of length [l] the centimeter, of mass [m] the gram, of time [t] the mean solar second, of temperature [T] the absolute centigrade degree, and of dielectric constant [4], that of a vacuum. The fundamental units in the cgsm system differ from those in the cgse system only by the replacement of dielectric constant by magnetic permeability $[\mu]$, the unit being the permeability of a vacuum.

It should be realized that dimensional expressions give no positive information regarding the ultimate nature of the quantity to which they refer; e.g., energy and torque have the same dimensions, but differ vastly in their nature.

Symbols.—(U. S.) before a logarithm denotes that it is based upon the U. S. yard; for explanation of other symbols, see Symbols and Abbreviations, p. 16.

INDEX TO TABLES OF CONVERSION FACTORS

Absorption (Radiation), Coefficient of, Absorption (Radiation). Index of, 78 Absorptivity (Radiation), 2 Acceleration, Angular, 26 Acceleration, Linear, 24 Action, 37 Angle, Plane, 7, 8 Angle, Solid, 9, 10 Annealed Copper, Electrical Constants, 61 Area, 16, 17 Area-1 Time-1, 22 Brightness, Surface, 48 Bulk Modulus, 33 Capacity, Electrical, 56, 77 Capacity, Heat, 78 Capacity, Polarisation, 77, 78 Capacity (Volume), 18, 19 Capillary Constant, 43 Charge, Electric, 49, 50, 77 Compressibility, 34 Compression, Modulus of, 33, 34 Concentration (Mass), 29 Concentration (Volume), 28 Conductivity, Electrical (Mass), 60, 77 Conductivity, Electrical (Surface), 77 Conductivity, Electrical (Volume), 58,

Conductivity, Thermal, 44 Copper, Electrical Constants of Annealed, 61 Curie's Constant (Magnetic), 12 Current, Electric, 51, 77 Degree (Thermometric), 11, 12 Degree-1 Length (Thermometric), 20 Degree -1 Mass -1 (Thermometric), 21 Density, 28 Density, Surface (Electric), 78 Density, Volume (Electric), 78 Dielectric Constant, 14, 77 Dielectric Strength, 52, 53 Diffusivity, 41 Diffusion, Coefficient of, 41 Displacement, Electric (Local), 77 Displacement, Electric (Integral), 49, 50.77 Elastic Moduli. 33 Electric Units, Fundamental, 77 Electromotive Force, 52, 77 Energy, 35 Ettinghausen Effect, Coefficient of, 74 Expansivity, 12 Field Intensity, Electric, 53, 77 Field Intensity, Magnetic, 67, 68, 77 Fluidity, 38 Flux, Electric Induction, 49, 50 Flux, Luminous, 13

Flux, Magnetic, 71, 77 Force, 30, 31 Force, Electromotive, 52, 77 Force, Magnetising, 67, 77 Force, Magnetomotive, 69, 77 Frequency, 6 Hall Effect, Coefficient of, 73 Heat, 35 Heat Capacity, 78 Heat Conductivity, 44 Heat, Latent, 78 Heat, Reaction, 78 Heat, Superficial Latent, 78 Heat, Transformation, 78 Hydrometers, 79 Illumination, 47 Inductance (Electrical), 55, 77 Induction, Flux of Electric, 49, 50, 77 Induction, Flux of Magnetic, 71, 77 Induction, Magnetic, 70, 77 Inductivity, Electrical, 14, 77 Intensity, Luminous, 46 Intensity of Magnetisation, 70, 77 Intensity of Radiation, 45, 78 Kerr's Constant, 78 Kinematic Viscosity, 40, 78 Leduc Effect, Coefficient of, 68 Length, 1, 2

Flux, Magnetic Induction, 71, 77

Length Degree-1, 20 Luminous Flux, 13 Magnetic Flux, 71, 77 Magnetic Induction, 70, 77 Magnetic Induction, Flux of, 71, 77 Magnetic Units, Fundamental, 77 Magnetism, Quantity of, 71, 77 Magnetisation, Intensity of, 70, 77 Magnetising Force, 67, 68, 77 Magnetomotive Force, 69, 77 Mass, 3, 4 Mass-1 Degree-1, 21 Mobility, Ionic, 62, 77 Moduli, Elastic, 33 Moment of Force or Couple, 32 Nernst Effect, Coefficient of, 75 Peltier Coefficient, 64 Permeability, Magnetic, 15, 77, Piesoelectric Constant, 66 Polarisation Capacity, 77, 78 Pole Strength (Magnetic), 71, 77 Potential (Electric), 52, 77 Potential (Magnetic), 69, 77 Potential Gradient (Electric), 53 Potential Gradient (Magnetic), 67, 68 Power, 36 Power, Thermoelectric, 63, 78 Pressure, 33, 34 Pyroelectric Constant, 78

INDEX TO TABLES OF CONVERSION FACTORS.—Continued

Quantity of Electricity, 49, 50, 77 Quantity of Magnetism, 71, 77 Reflectivity, 78 Refraction, Index of, 78 Reluctance (Magnetic), 72, 77 Resistance, Electrical, 54, 77 Resistivity, Electrical (Mass), 59, 77 Resistivity, Electrical (Surface), 54, 77 Resistivity, Electrical (Volume), 57, 77 Rigidity, Modulus of, 33 Rotatory Power, 27 Skin Friction, Coefficient of, 33
Solubility (Gases), 78
Solubility (Non-gases), 28
Specific Heat, 78
Specific Heat of Electricity (Thomson), 65, 77
Specific Inductive Capacity, 14, 77, 78
Stress, 33, 44
Surface Tension, 42
Susceptibility (Magnetic), 15, 77
Temperature, 11, 12

Tension, 33, 34
Tension, Surface, 42
Thermal (See Heat)
Thermoelectric Power, 63, 78
Thomson's Coefficient (Thermoelectric), 65
Time, 5, 6
Time-1 Area-1, 22
Transmission, Coefficient of (Radiation), 2

Twist, 27
Velocity, Angular, 25
Velocity, Linear, 23
Velocity of a Process, 6
Verdet's Constant, 76
Viscosity, 39
Viscosity, Kinematic, 40, 78
Volume, 18, 19
Weight, 3, 4, 30, 31
Work, 35
Young's Modulus, 33, 34

CONVERSION FACTORS

1. Length [l] (see also p. 1)

		1. Designs [1] (see disto p. 1)	
Unit		Value	Log ₁₀ (value)
1 angström unit	=	$1.0000 \times 10^{-8} \text{ cm}$	8.000 0000
1 micron	=	1.0000 × 10 ⁻⁴ cm	4.000 0000
1 mil	=	2.5400 × 10 ⁻³ cm	3.404 8346
1 inch	=	2.5400 cm	(U. S.) 0.404 8346
1 foot	=	30.480 cm	(U. S.) 1.484 0158
1 yard (U. S.)	=	91.44018 cm	1.961 1371
1 yard (British)	=	91.43992 em	1.961 1350
1 mile, statute	=	1.6093 km	(U. S.) 0.206 6497
1 light year	=	9.4627 × 10 ¹² km	12.976 0131
1 astronomical unit	_	$1.495 \times 10^8 \text{ km}$	8.174 6712
1 parsec	=	$3.084 \times 10^{13} \text{ km}$	13.489 09
	2. Length ⁻¹ ;	Absorptivity; Coefficient of Absorption* [l-	-1]
1 angström ⁻¹	=	$1.0000 \times 10^8 \text{ cm}^{-1}$	8.000 0000
1 micron ⁻¹	=	1.0000 × 10 ⁴ cm ⁻¹	4.000 0000
1 mil ⁻¹	=	393.70 cm ⁻¹	2.595 1654
1 inch ⁻¹	=	0.39370 cm ⁻¹	(U. S.) 1.595 1654
1 foot ⁻¹	=	$3.2808 \times 10^{-2} \mathrm{cm}^{-1}$	$(U. S.) \overline{2.515} 9842$
1 mile ⁻¹	=	0.62137 km ⁻¹	$\overline{1.793}$ 3503
* Coefficient of transmission (r) is so		<u>' </u>	1.750 0000
Coefficient of transmission (7) is se		Mass [m]; Weight (see also p. 1)	
1 grain		1 2 2 2 2	1.811 5677
1 grain 1 carat (metric)	=		
	=	22.272	2.301 0300
1 ounce (avoirdupois)	==	28.350 g	1.452 5458
1 ounce (apothecary) or (troy)	=	31.103 g	1.492 8090
1 pound (avoirdupois)	=	453.59243 g	2.656 6658
1 pound (apothecary) or (troy)	=	373.2417 g	2.571 9902
1 ton, short (2000 pounds)	-	907.185 kg	2.957 6958
1 ton, long (2240 pounds)	-	1016.047 kg	3.006 9138
1 slug (g.)	=	14.594 kg	1.164 1707
1 gram mole	=	M. W.†	
1 molecule/M. W.†	=	$1.6498 \times 10^{-24} \mathrm{g}$	24.217 4366
1 assay ton	=	29.1667 g	1.464 8868
† M. W. denotes the molecular weight	of the substance.	4. Mass ⁻¹ $[m^{-1}]$	
1 grain ⁻¹	=	$1.5432 \times 10^{-2} \text{ mg}^{-1}$	2.188 4323
•		_	$\frac{2.166}{2.547}$
1 ounce ⁻¹ (avoirdupois)	=	$3.5274 \times 10^{-2} \mathrm{g}^{-1}$	
1 ounce ⁻¹ (troy)	=	$3.2151 \times 10^{-2} \mathrm{g}^{-1}$	2.507 1910 3 343 3343
1 pound ⁻¹ (avoirdupois)	=	$2.2046 \times 10^{-3} \mathrm{g}^{-1}$	3.343 3342 5.442 8442
1 ton ⁻¹ (2000 pounds)	=	11.0231 × 10 ⁻⁴ kg ⁻¹	3.042 3042
1 ton ⁻¹ (2240 pounds)	=	$9.8421 \times 10^{-4} \text{ kg}^{-1}$	4.993 0862
1 (gram mole) ⁻¹		$\dagger (M. W.)^{-1} g^{-1}$	
† M. W. denotes the molecular weight	of the substance.	5. Time [t]	
1 second, mean solar	=	1.00273791 sidereal sec	0.001 1874
1 second, sidereal	=	0.997270 sec (mean solar)	1.998 8126
1 hour (tropical, mean solar)	=	$3.6000 \times 10^3 \text{ sec (mean solar)}$	3.556 3025
1 day (tropical, mean solar)	=	8.6400 × 10 ⁴ sec (mean solar)	4.936 5137
1 day (tropical, mean solar) 1 day (sidereal)	=	$8.6164 \times 10^4 \text{ sec (mean solar)}$	4.935 3263
1 day (sidereal) 1 year (tropical, mean solar)	=	$31.5569 \times 10^6 \text{ sec (mean solar)}$	7.499 0946
1 year (tropical, mean solar) 1 year (tropical, mean solar)	=	365.2422 day (mean solar)	2.562 5809
i year (tropical, mean solar)		500.2722 day (mean solar)	2.002 0009

		ONVERSION FACIORS.—Commune	
	6. Tim	e^{-1} ; Frequency; "Velocity" of a Process [t^{-1}	
1 second ⁻¹ (sidere	al) =	1.002738 sec ⁻¹ (mean solar)	0.001 1874
1 minute ⁻¹ (mean	solar) =	$1.66667 \times 10^{-2} \text{ sec}^{-1} \text{ (mean solar)}$	2.221 8487
1 hour-1 (mean so	olar) =	$2.77778 \times 10^{-4} \text{ sec}^{-1} \text{ (mean solar)}$	4.443 6975
1 day ⁻¹ (mean so	ar) =	$1.15741 \times 10^{-5} \text{ sec}^{-1} \text{ (mean solar)}$	5.063 4863
1 year ⁻¹ (mean so		$3.16888 \times 10^{-8} \text{ sec}^{-1} \text{ (mean solar)}$	8.500 9054
1 year ⁻¹ (mean so	•	$2.73791 \times 10^{-3} \mathrm{day^{-1}} \mathrm{(mean solar)}$	3.437 4191
1 electron-volt, qu	ıantum ⁻¹ =	$2.4292 \times 10^{14} \text{ sec}^{-1} \text{ (mean solar)}$	14.385 4575
1 joule per mole,	N_0^{-1} quantum ⁻¹ =	$2.5173 \times 10^9 \text{ sec}^{-1} \text{ (mean solar)}$	9.400 9301
1 velocity of light	, $(angström\ unit)^{-1} =$	$2.9986 \times 10^{18} \text{ sec}^{-1} \text{ (mean solar)}$	18.476 9185
1 velocity of light		$2.9986 \times 10^{17} \text{ sec}^{-1} \text{ (mean solar)}$	17.476 9185
1 velocity of light		$2.9986 \times 10^{14} \text{ sec}^{-1} \text{ (mean solar)}$	14.476 9185
I velocity of light		$2.9986 \times 10^{11} \text{ sec}^{-1} \text{ (mean solar)}$	11.476 9185
1 velocity of light	, meter-1 =	2.9986 × 10 ⁸ sec ⁻¹ (mean solar)	8.476 9185
		7. Angle $[\theta]$	
1 radian		57.29578 degree	1.758 1226
1 circumference	=	6.28319 radian	0.798 1799
1 quadrant	=	1.57080 radian	0.196 1199
1 degree	=	1.74533×10^{-2} radian	2.241 8774
1 minute	=	2.90888×10^{-4} radian	4.463 7261
1 second	=	4.84814×10^{-6} radian	6.685 5749
			·
ī .:		8. Angle ⁻¹ [θ ⁻¹]	1 1.201 8201
1 circumference ⁻¹		0.159155 radian-1	
1 degree ⁻¹	=	57.29578 radian ⁻¹	1.758 1226
1 minute ⁻¹	=	3.43775 × 10 ³ radian ⁻¹	3.536 2739
1 second ⁻¹	. =	2.06265 × 10 ⁵ radian ⁻¹	5.314 4251
		9. Solid Angle $[\omega]$	
Entire space	=	12.5664 steradian	1.099 2099
1 hemisphere	=	6.2832 steradian	0.798 1799
1 square degree	=	3.0462×10^{-4} steradian	4.483 7548
		10. Solid Angle ⁻¹ [ω ⁻¹]	
Entire space ⁻¹	=	$7.9577 \times 10^{-2} \text{ steradian}^{-1}$	2.900 7901
1 hemisphere ⁻¹	=	1.5916×10^{-1} steradian ⁻¹	1.201 8201
1 square degree ⁻¹		3.2828×10^{3} steradian ⁻¹	3.516 2452
- rquare degree			<u> </u>
	Fahrenheit	mperature [T] (See also Thermometry, p. 52)	
	Réaumur	, , ,	<i>02)</i>
	Absolute (Centigrade)		v.C
		$x^{\circ} \text{ Rankine } = (\frac{x}{9})(x - \frac{x}{9})$	
		nometric); Expansivity; Curie's Constant (m	
1 per degree F	= 12. Degree · (Inem	1.8000 per degree C	0.255 2725
1 per degree R	=	0.8000 per degree C	ī.903 0900
1 per degree K	=	1.000 per degree C	0.000 0000
*			·
D., J.C., '4'	41 - 4-4-1 1	13. Luminous Flux [\psi]	man in A - luman
by definition	, the total luminous nux emitted	d by a point source of one spherical candle por	WCL 13 TH (UIIICI).
		ric Constant; Electrical Inductivity $[\epsilon]$; $[\mu^{-1}l]$	
Specific inductive		is numerically equal to the dielectric constant express	
1 cgsm unit	=	8.9916 × 10 ²⁰ cgse unit	20.953 8370
1 fpee unit	=	1.0000 cgse unit	0.000 0000
1 fpcm unit	=	1.0764×10^{-3} cgsm unit	3.031 9684
1 fpem unit	=	9.6784×10^{17} cgse unit	17.985 8054
	15. Mac	metic Permeability; Susceptibility $[\epsilon^{-1}l^{-2}t^2]$;	[4]
1 area unit			20.953 8370
1 cgse unit 1 fpsm unit	=	8.9916 × 10 ²⁰ cgsm unit 1.0000 cgsm unit	0.000 0000
1 ipsm unit 1 fpse unit	=	1.0000 cgsm unit 1.0764 × 10 ⁻³ cgse unit	3.031 9684
1 fpse unit	=	9.6784 × 10 ⁻¹ cgse unit	17.985 8054
A LUCK WILLS	=	1 9.0104 V 10., cksm min	11.000 0001

	CO	NVERSION FACTORS.—Commue	\boldsymbol{a}
		16. Area [l²]	E 002 0000
1 Oll Calair Illiani	=	$7.8540 \times 10^{-3} \mathrm{cm}^2$	3.895 0899
I dilumin min	=	$5.0671 \times 10^{-6} \mathrm{cm}^2$	(U. S.) 6.704 7591
1 square inch	=	6.4516 cm ²	(U. S.) 0.809 6692
1 square foot	=	9.2903 × 10 ² cm ²	(U. S.) 2.968 0316
1 square yard	=	8.3613 × 10 ³ cm ²	(U. S.) 3.922 2742
1 square mile	=	2.5900 km ²	(U. S.) 0.413 2995 2.000 0000
1 are	=	1.0000 × 10 ² m ²	4.000 0000
1 hectare	=	1.0000×10^4 m ² 4.0469×10^3 m ²	3.607 1196
1 acre	=	4.0409 X 10° m°	3.007 1100
		17. Area ⁻¹ [l ⁻²]	
- (=	127.324 cm ⁻²	2.104 9101
1 millimeter ⁻²	=	100.0000 cm ⁻²	2.000 0000
1 meter ⁻²	=	0.0001 cm ⁻²	4.000 0000
1 (circular mil) ⁻¹	=	$1.9735 \times 10^{5} \text{ cm}^{-2}$	(U. S.) 5.295 2409
1 inch ⁻²	=	0.15500 cm ⁻²	(U. S.) 1.190 3308
1 foot-2	=	1.0764 × 10 ⁻² cm ⁻²	(U. S.) 3.031 9684
1 yard-2	-	$1.19599 \times 10^{-4} \text{ cm}^{-2}$	(U. S.) $\overline{4}$.077 7258 (U. S.) $\overline{1}$.586 7005
1 mile-2	<u> </u>	0.38610 km ⁻²	(U. S.) 1.380 7003
		18. Volume [l ³] or [v]	
1 liter	=	1000.027 cm ²	3.000 0117
1 cubic inch	=	16.387 cm ³	(U. S.) 1.214 5038
1 cubic foot	=	$2.8317 \times 10^4 \text{ cm}^3$	(U. S.) 4.452 0474
1 cubic yard	=	$7.6456 \times 10^{5} \text{ cm}^{3}$	(U. S.) 5.883 4112
1 gallon (U.S.)	=	$3.7854 \times 10^{3} \text{ cm}^{3}$.	3.578 1157
1 gallon (British)	=	$4.5461 \times 10^{3} \text{ cm}^{3}$	3.657 6376
1 bushel (U.S.)	=	$3.5239 \times 10^4 \mathrm{cm}^3$	4.547 0271
1 bushel (British)	=	$3.6369 \times 10^4 \mathrm{cm}^2$	4.560 7276
1 quart, dry (U.S.)	=	1101.23 cm ³	3.041 8771
1 quart, liquid (U. S.)	==	946.358 cm ³	2.976 0557
1 quart (British)	=	1136.521 cm ⁸	3.055 5776
1 fluid ounce (U. S.)	=	29.5737 cm ³	1.470 9057
1 fluid ounce (British)		28.4130 cm ³	1.453 5176
		19. Volume ⁻¹ $[l^{-3}]$ or $[v^{-1}]$	
1 liter ⁻¹	=	$9.9997 \times 10^{-4} \mathrm{cm}^{-8}$	<u>4</u> .999 9883
1 inch-s	=	$6.1023 \times 10^{-2} \mathrm{cm}^{-2}$	$(U. S.) \overline{2}.785 4962$
1 foot-*	=	$3.5314 \times 10^{-5} \mathrm{cm}^{-3}$	$(U. S.) \overline{5}.547 9526$
1 yard ⁻²	=	1.3079 m ⁻³	(U. S.) 0.116 5888
1 gallon ⁻¹ (U. S.)	-	$2.6417 \times 10^{-4} \text{ cm}^{-3}$	<u>4</u> .421 8843
1 gallon ⁻¹ (British)	=	$2.1997 \times 10^{-4} \mathrm{cm}^{-3}$	4.342 3624
1 quart ⁻¹ , dry (U. S.)	-	$9.0808 \times 10^{-4} \mathrm{cm}^{-3}$	<u>4</u> .958 1229
1 quart ⁻¹ , liquid (U.S.)	-	$1.0567 \times 10^{-3} \mathrm{cm}^{-3}$	3.023 9443
1 quart ⁻¹ (British)	-	$8.7988 \times 10^{-4} \mathrm{cm}^{-3}$	4.944 4224
1 (fluid ounce)-1 (U. S.)	=	$3.3814 \times 10^{-2} \mathrm{cm}^{-3}$	2.529 0943
1 (fluid ounce) ⁻¹ (British)	=	$3.5195 \times 10^{-2} \mathrm{cm}^{-2}$	2.546 4824
		20. Length Degree ⁻¹ [lT ⁻¹]	
1 inch per °F	=	4.5720 cm per °C	0.660 1071
1 foot per °F	=	54.864 cm per °C	1.739 2883
1 meter per °C	-	100.00 cm per °C	2.000 0000
		21. Mass ⁻¹ Degree ⁻¹ $[m^{-1}T^{-1}]$	
1 per gram °F	=	1.8000 per gram °C	0.255 2725
1 per pound °F	=	$3.9683 \times 10^{-3} \mathrm{per \ gram \ ^{\circ}C}$	$\bar{3}.598 6067$
1 per pound °C	=	$2.2046 \times 10^{-3} \mathrm{per \ gram \ ^{\circ}C}$	3.343 3342
		22. Area ⁻¹ Time ⁻¹ $[l^{-2}t^{-1}]$	
1 foot ⁻² second ⁻¹	=	3.8750 cm ⁻² hr ⁻¹	(U. S.) 0.588 2709
1 foot second	_	$1.0764 \times 10^{-3} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$	(U. S.) 3.031 9684
1 mile ⁻² second ⁻¹	=	$1.2184 \times 10^{-3} \mathrm{cm}^{-2} \mathrm{yr}^{-1}$	(U. S.) 3.085 7951
1 meter ⁻² second ⁻¹	=	$3.600 \times 10^{-1} \mathrm{cm^{-2} hr^{-1}}$	1.556 3025

23. Velocity $[lt^{-1}]$

		and. Velocity [st]	
1 foot per second	=	30.4801 cm sec ⁻¹	(U. S.) 1.484 0158
1 foot per minute	=	0.5080 cm sec ⁻¹	(U. S.) 1.705 8645
1 mile per hour	=	44.7041 cm sec ⁻¹	(U. S.) 1.650 3472
1 mile per minute	=	$2.6822 \times 10^{3} \text{ cm sec}^{-1}$	(U. S.) 3.428 4984
1 meter per minute	=	1.6667 cm sec ⁻¹	0.221 8487
1 kilometer per hour	=	27.7778 cm sec ⁻¹	1.443 6975
Velocity of light	=	$2.9986 \times 10^{10} \mathrm{cm \ sec^{-1}}$	10.476 9185
		24. Acceleration [lt ⁻²]	
1 foot per second ²	=	30.480 cm sec ⁻²	(U. S.) 1.484 0158
1 mile per hour second	=	44.704 cm sec ⁻²	(U. S.) 1.650 3472
1 mile per hour minute	_	$0.74507 \text{ cm sec}^{-2}$	$(U. S.) \overline{1}.872 1959$
1 meter per second ²	=	100.000 cm sec ⁻²	2.000 0000
1 kilometer per hour second	=	27.778 cm sec ⁻²	1.443 6975
Gravity, standard	=	980.665 cm sec ⁻²	2.991 5207
Gravity, standard	=	32.174 ft.sec ⁻²	(U. S.) 1.507 5049
		25. Angular Velocity $[\theta t^{-1}]$	
1 revolution per day	=	$7.2722 \times 10^{-5} \text{ radian sec}^{-1}$	5.861 6662
1 revolution per minute	=	$1.0472 \times 10^{-1} \mathrm{radian sec^{-1}}$	1.020 0286
1 revolution per second	=	6.2832 radian sec ⁻¹	0.798 1799
1 degree per second	=	$1.7453 \times 10^{-2} \text{ radian sec}^{-1}$	$\overline{2}.2418774$
		26. Angular Acceleration $[\theta t^{-2}]$	
1 revolution per second ²	=	6.2832 radian sec-2	0.798 1799
1 revolution per minute ²	=	$1.7453 \times 10^{-3} \text{ radian sec}^{-2}$	$\bar{3}.241 8773$
1 revolution per minute second	=	0.10420 radian sec ⁻²	1.020 0286
		27. Twist; Rotatory Power $[\theta l^{-1}]$	
1 degree per inch	=	$6.8714 \times 10^{-3} \text{ radian cm}^{-1}$	(U. S.) 3.837 0428
1 degree per foot	_	5.7261 × 10 ⁻⁴ radian cm ⁻¹	$(U. S.) \overline{4}.757 8616$
1 degree per centimeter	_	$1.7453 \times 10^{-2} \text{ radian cm}^{-1}$	$\bar{2}.2418774$
1 minute per centimeter	==	$2.9089 \times 10^{-4} \mathrm{radian cm^{-1}}$	$\overline{4}.4637261$
28. Density; Volume Co	oncentratio	on; Solubility (Non-gases) $[ml^{-3}]$ or $[mv^{-1}]$ (See	e also Hydrometer Tables, p. 31)
1 gram per milliliter*	=	0.999973 g cm ⁻³	Ī.999 9883
1 pound per inch ²	=	27.680 g cm ⁻³	' (U. S.) 1.442 1621
1 pound per foot ²	=	0.016018 g cm ⁻³	(U. S.) 2.204 6183
1 pound per gallon (U.S.)	=	0.119826 g cm ⁻³	1.078 5502
1 pound per gallon (British)	=	0.099776 g cm ⁻³	$\overline{2}.999 0282$
1 slug per foot (g_*)		0.5154 g cm ⁻³	$(U. S.) \bar{1}.712 1233$
Mercury † at 0°C	=	15.5951 g cm ⁻³	1.192 9882
		Internationally accepted conventional value to be used	

^{*} Numerically equal to specific gravity $t^{\circ}/4^{\circ}$. † Internationally accepted conventional value to be used in expressing pressures in terms of columns of mercury.

29. Mass Concentration $[m_1m_2^{-1}]$

(This quantity involves two distinct units of mass; when the two units are the same, the concentration is called the "titer," or is denoted as a per cent.)

denoted as a per cent.)			
1 gram per ton (2000 pound)	-	1.1023 mg per kilogram	0.042 3042
1 gram per ton (2240 pound)	=	0.9842 mg per kilogram	1.993 0862
1 milligram per assay ton	=	*34.286 mg per kilogram	1.535 1132
1 ounce (av.) per ton (2000 lb.)	=	31.2500 mg per kilogram	1.494 8500
1 ounce (av.) per ton (2240 lb.)	=	27.9018 mg per kilogram	1.445 6320
1 pound (av.) per ton (2000 lb.)	=	500.000 mg per kilogram	2.698 9700
1 pound (av.) per ton (2240 lb.)	=	446.429 mg per kilogram	2.649 7520
1 gram per ton (metric)	=	1.0000 mg per kilogram	0.000 0000
1 karat†	=	41.667 mg per gram	1.619 7888

^{*} Equals one troy ounce per 2000 lb. av. † 1 of gold to 24 of mixture.

30. Force [mlt-2]

1 gram weight (g _s)	=	980.665 dyne	2.991 5207			
1 poundal	=	$1.3825 \times 10^4 \mathrm{dyne}$	(U. S.) 4.140 6816			
1 pound weight (g_*)	-	4.4482×10^{5} dyne	5.648 1864			
1 ton weight (2000 lb.) (g_s)	=	$8.8964 \times 10^{8} \mathrm{dyne}$	8.949 2164			
1 ton weight (2240 lb.) (g_s)	. =	$9.9640 \times 10^8 \mathrm{dyne}$	8.998 4344			

31. Force⁻¹ $[m^{-1}l^{-1}t^2]$

		31. Force ⁻¹ $[m^{-1}l^{-1}t^2]$					
1 (gram weight) $^{-1}$ (g.)	=	$1.0917 \times 10^{-2} \mathrm{dyne^{-1}}$	3.008 4793				
1 poundal ⁻¹	=	$7.2330 \times 10^{-6} \mathrm{dyne^{-1}}$	5.859 3184				
1 (pound weight) ⁻¹ (g_*)		$2.2481 \times 10^{-6} \mathrm{dyne^{-1}}$	6 .351 8136				
32. Torque; Moment of a Force [ml²t-²]							
1 pound-foot (g_s)	=	1.3558×10^7 dyne cm	(U. S.) 7.132 2022				
1 pound-inch (g _s)	=	1.1298 × 10 ⁶ dyne cm	(U. S.) 6.053 0210				
1 kilogram-meter (g _s)	=	9.8066 × 10 ⁷ dyne cm	7.991 5207				
1 poundal-foot	-	4.2140 × 10 ⁵ dyne cm	(U. S.) 5.624 6974				
33. Stress; Pressure; Tension; Young's Mo	•	[odulus of Rigidity; Modulus of Compression $[ml^{-1}l^{-2}]$	on; Bulk Modulus; Coefficient of				
1 barye	=	1.0000 dyne cm ⁻²	0.000 0000				
1 bar	=	*1.0000 \times 106 dyne cm ⁻²	6.000 0000				
1 gram weight per cm ² (g.)	=	980.665 dyne cm ⁻²	2.991 5207				
1 kilogram weight per m² (g _s)	=	98.0665 dyne cm ⁻²	1.991 5207				
1 kilogram weight per mm² (g.)	=	$9.8066 \times 10^7 \text{dyne cm}^{-2}$	7.991 5207				
1 pound weight per in. ² (g.)	=	$6.8947 \times 10^4 \mathrm{dyne} \mathrm{cm}^{-2}$	(U. S.) 4.838 5173				
1 pound weight per ft. ² (g _s)	-	4.7880 × 10 ² dyne cm ⁻²	(U. S.)2.680 1548				
1 ton (2000 lb.) weight per in. ² (g _s)	=	1.3789 × 108 dyne cm ⁻²	(U. S.) 8.139 5473				
1 ton (2240 lb.) weight per in. ² (g _s) 1 ton (2000 lb.) weight per ft. ² (g _s)	=	$1.5444 \times 10^8 \text{ dyne cm}^{-2}$ $9.5760 \times 10^5 \text{ dyne cm}^{-2}$	(U. S.) 8.188 7653 (U. S.) 5.981 1848				
1 ton (2240 lb.) weight per ft. (g.)	=	$10.7251 \times 10^{5} \text{ dyne cm}^{-2}$	(U. S.) 6.981 1848 (U. S.) 6.030 4028				
1 centimeter of water at 4°C (g _s)	=	$9.80638 \times 10^{2} \text{dyne cm}^{-2}$	2.991 5090				
1 inch of water at 4°C (g _s)	=	$2.49082 \times 10^{4} \mathrm{dyne} \mathrm{cm}^{-2}$	(U. S.) 3.396 3436				
1 centimeter of mercury at 0°C (g _s)	=	$1.33322 \times 10^{4} \mathrm{dyne \ cm^{-2}}$	4.124 9031				
1 inch of mercury at 0°C (g _s)	=	$3.38639 \times 10^4 \mathrm{dyne} \mathrm{cm}^{-2}$	(U. S.) 4.529 7377				
1 normal atmosphere (g.)	=	$1.01325 \times 10^6 \mathrm{dyne} \mathrm{cm}^{-2}$	6.005 7166				
* This value accords with the only internationally	-	e of this term; but "bar" has also been used to den	ote a pressure of one dyne per cm ² .				
	34. Str	ress ⁻¹ ; Compressibility $[m^{-1}lt^2]$	•				
1 centimeter ² per gram weight (g _s)	=	$1.0197 \times 10^{-3} \mathrm{cm^2 dyne^{-1}}$	$\bar{3}.0084793$				
1 centimeter ² per kilogram weight (g.)	=	$1.0197 \times 10^{-6} \text{ cm}^2 \text{ dyne}^{-1}$	<u>6.008 4793</u>				
1 millimeter ² per kilogram weight (g.)	=	$1.0197 \times 10^{-8} \text{ cm}^2 \text{ dyne}^{-1}$	8.008 4793				
1 inch ² per pound weight (g _s)		$1.4504 \times 10^{-5} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 5.161 4827				
1 inch ² per ton weight (2000 lb.) (g _s) 1 inch ² per ton weight (2240 lb.) (g _s)	=	$7.2519 \times 10^{-9} \text{ cm}^2 \text{ dyne}^{-1}$ $6.4749 \times 10^{-9} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 9.860 4527 (U. S.) 9.811 2347				
1 foot ² per pound weight (g _s)	=	$2.0886 \times 10^{-3} \text{ cm}^2 \text{ dyne}^{-1}$	$\begin{array}{c} (U. S.) \ \overline{3}.311 \ 2347 \\ (U. S.) \ \overline{3}.319 \ 8452 \end{array}$				
1 (centimeter of water at 4° C) ⁻¹ (g _s)	_	$1.0197 \times 10^{-3} \text{ cm}^2 \text{ dyne}^{-1}$	3.008 4910				
1 (inch of water at 4°C) ⁻¹ (g _s)	-	$4.0147 \times 10^{-4} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 4.603 6564				
1 (centimeter of mercury at 0°C) ⁻¹ (g _s)	=	$7.5006 \times 10^{-6} \mathrm{cm^2 dyne^{-1}}$	5.875 0969				
1 (inch of mercury at 0°C) ⁻¹ (g _s)	=	$2.9530 \times 10^{-6} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 5.470 2623				
1 (normal atmosphere) ⁻¹ (g_s)	=	$9.8692 \times 10^{-7} \mathrm{cm^2 dyne^{-1}}$	7.994 2834				
	35. V	Vork; Energy; Heat $[ml^2t^{-2}]$					
1 centimeter-dyne	=	1.0000 erg	0.000 0000				
1 joule (absolute)	=	1.0000 × 10 ⁷ erg	7.000 0000				
1 joule (International) (v)	-	1.00032 joule (abs.)	0.000 1390				
1 meter-kilogram (g.)	=	9.80665 joule (abs.)	0.991 5207				
1 foot-pound (g _s)	=	1.35582 joule (abs.)	(U. S.) 0.132 2022				
1 liter-atmosphere (normal) (g _s) 1 liter-atmosphere (45° lat.)	=	101.328 joule (abs.) *101.323 joule (abs.)	2.005 7283 2.005 7067				
1 cubic centimeter-atmosphere (normal) (g_s)	=	0.101325 joule (abs.)	7.005 7166 7.005 7166				
1 horse-power hour (HP hr.) (g.)	=	2.6845×10^6 joule (abs.)	(U. S.) 6.428 8674				
1 horse-power hour (electrical, U. S., British)	=	2.6856×10^6 joule (abs.)	6.429 0413				
1 cheval-vapeur heure (g.)	=	2.6478 × 10 ⁶ joule (abs.)	6.422 8845				
1 kilowatt-hour (abs.)	=	3.6000 × 10° joule (abs.)	6.556 3025				
1 International volt (v) faraday	=	9.6541 × 104 joule (abs.)	4.984 7097				
1 International volt (v) electronic charge	=	1.5927 \times 10 ⁻¹⁹ joule (abs.)	<u>19</u> .202 1463				
1 gram calorie (20°C)	=	4.181 joule (abs.)	0.621 2802				
1 gram calorie (15°C)	=	4.185 joule (abs.)	0.621 6955				
1 gram calorie (mean)	=	4.186 joule (abs.)	0.621 7992				
1 British Thermal Unit (39°F)	=	1060.4 joule (abs.)	3.025 4697				
1 British Thermal Unit (mean) 1 British Thermal Unit (60°F)	=	1054.8 joule (abs.) 1054.6 joule (abs.)	3.023 1701 3.023 0878				
1 British Thermal Unit (60°F) 1 Centigrade Thermal Unit (15°C)	=	1054.6 joule (abs.) 1.8983 × 10 ³ joule (abs.)	3.023 0878				
* a. = 980 616 cm sec-2		1 T. Gage V 10. louie (sps.)	0.210 0010				

 $[*]g_{45} = 980.616 \text{ cm sec}^{-1}$.

36. Power $[ml^2t^{-2}]$

1 watt (absolute)	=	1.0000 × 1	07 erg sec-1	7.000 0000
1 watt (International) (v)	=	1.00032	watt (abs.)	0.000 1390
1 meter-kilogram per second (g_s)	=	9.80665	watt (abs.)	0.991 5207
1 foot-pound per second (g.)	-	1.35582	watt (abs.)	(U. S.) 0.132 2022
1 horsepower, electrical (U. S., British)	-	*746.00	watt (abs.)	2.872 7388
1 horsepower, electrical (Continental Europe)	=	*736.00	watt (abs.)	2.866 0778
1 horsepower (IP) (g _s)	-	†745.70	watt (abs.)	2.872 5649
1 cheval-vapeur (g _s)	=	735.499	watt (abs.)	2.866 5820

^{*} Defined in terms of the watt, commonly used in rating electrical machinery. † Defined as 550 ft. lb. per sec.

37. Action $[ml^2t^{-1}]$

1 Planck's quantum	=	$6.554 \times 10^{-27} \text{ erg sec}$	27.816 5064
1 volt electronic-charge second	=	2.4292×10^{14} quanta	14.385 4575
l volt faraday second	=	1.4724×10^{28} quanta	38.168 0209
l joule second	=	1.5258 × 1022 quanta	33.183 4936
l calorie (15°C) second	_	6.3854 × 10 ¹³ quanta	33.805 1891
i joule second/No*	_	2.5173 × 10° quanta	9.400 9302
1 calorie (15°C) second/N ₀ *	=	1.0535×10^{10} quanta	10.022 6257

^{*} No denotes Avogadro's number, the number of molecules per gram mole.

38. Fluidity $[m^{-1}lt]$ (See also 39)

1 rhe	=	1.0000 poise ⁻¹	0.000 0000
	39.	Viscosity $[ml^{-1}t^{-1}]$	
1 poise	=	1.000 gram cm ⁻¹ sec ⁻¹	0.000 0000
1 gram weight sec cm ⁻² (g _s)	=	980.665 poise	2.991 5207
1 pound weight sec inch ⁻² (g _s)	=	6.895×10^4 poise	(U. S.) 4.838 5173
1 pound weight sec foot ⁻² (g _s)	=	4.788 × 10 ² poise	(U. S.) 2.680 1548
	40. Kin	ematic Viscosity [l²t-1]	
1 poise centimeter ³ gram ⁻¹	=	1.000 cm ² sec ⁻¹	0.000 0000

1 poise centimeter³ gram⁻¹ = 1.000 cm² sec⁻¹ 0.000 0000 1 poise inch³ gram⁻¹ = 16.387 cm² sec⁻¹ 1.214 5038 1 inch² second⁻¹ = 6.451 cm² sec⁻¹ (U. S.) 0.809 6692 1 poise foot³ pound⁻¹ = 62.43 cm² sec⁻¹ (U. S.) 1.795 3817

41. Diffusivity; Diffusion, Coefficient of $[l^2t^{-1}]$

All quantities of the thing diffusing are to be expressed in terms of the same units. Heat diffusivity is numerically equal to heat conductivity divided by the product of the density times the heat capacity (per unit of mass); all must be expressed in the same system of units.

1 liter centimeter ⁻¹ day ⁻¹	=	$1.1574 \times 10^{-2} \mathrm{cm^2 sec^{-1}}$	2.063 4980
1 centimeter ² day ⁻¹	-	$1.1574 \times 10^{-6} \text{ cm}^2 \text{ sec}^{-1}$	5.063 4863
1 inch ² sec ⁻¹	=	6.4516 cm ² sec ⁻¹	(U. S.) 0.809 6692

42. Surface Tension [mt-1] (See also Capillary Constant, Table 43)

1 milligram weight per mm (g.)	=	9.80665 dyne cm ⁻¹	0.991 5207
1 milligram weight per inch (g.)	=	$0.38609 \text{ dyne cm}^{-1}$	(U. S.) 1.586 6861
1 erg per centimeter ²	=	$1.00000 \mathrm{dyne} \mathrm{cm}^{-1}$	0.000 0000
1 erg per millimeter ²	=	100.00000 dyne cm ⁻¹	2.000 0000

43. (Capillary Constant)² [l²]

The term "Capillary Constant" is used in two different senses; vis., either to denote $a_1 = \sqrt{\gamma/\rho g}$, or to denote $a_1 = \sqrt{2\gamma/\rho g}$. English authors generally follow the former practice, and German authors the latter; neither use the subscript. γ denotes the surface tension, g the acceleration of gravity, and ρ the positive difference in the densities of the adjacent fluids.

1: 10		0.451		0.000.000
1 inch²	=	6.451	cm²	0.809 6692
1 millimeter ² (a_1^2) (g_s)	=	*9.807	dyne cm^{-1} per (g cm^{-2})	0.991 5207
1 millimeter ² (a_2^2) (g_*)	=	*4.903	dyne cm ⁻¹ per (g cm ⁻²)	0.690 4907
1 inch ² (a_1^2) (g_s)	=	*6.327 >	(10° dyne cm ⁻¹ per (g cm ⁻²)	(U. S.) 3.801 1899
1 inch ² (a_2^2) (g_4)	=	*3.163 >	(10 ³ dyne cm ⁻¹ per (g cm ⁻³)	(U. S.) 3.500 1599

^{*} To convert a^2 , when referred to g_a , to surface tension in dynes per cm, multiply a^2 by the factor given in this table and by the difference in the densities (gram per cm³) of the adjacent fluids; if a^2 is referred to g, multiply the resulting product by g/g_a .

44. Thermal Conductivity $[T^{-1}mlt^{-2}]$

The dimensions practically employed in expressing this property are (Heat Area⁻¹ Time⁻¹ per Degree Length⁻¹). Other conversion factors may be obtained by combining those of Tables 35 (Heat), 22 (Area⁻¹ Time⁻¹) and 20 (Length Degree⁻¹).

1 calorie (15°) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	=	4.185 joules (abs.) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	0.621 6955
1 calorie (20°) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	=	4.181 joules (abs.) $cm^{-2} sec^{-1}$ (°C, cm^{-1}) ⁻¹	0.621 2802

44. Thermal Conductivity $[T^{-1}mlt^{-1}]$.—Continued

1 British Thermal Unit (39°F) ft. ⁻² sec ⁻¹ (°F, in. ⁻¹) ⁻¹ = 5.218 joules (abs.) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	0.717 5452
1 British Thermal Unit (mean) ft. $^{-2}$ sec $^{-1}$ (°F, in. $^{-1}$) $^{-1}$ = 5.191 joules (abs.) cm $^{-2}$ sec $^{-1}$ (°C, cm $^{-1}$) $^{-1}$	0.715 2456
1 British Thermal Unit (60°F) ft. ⁻² sec ⁻¹ (°F, in. ⁻¹) ⁻¹ = $ 5.190$ joules (abs.) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	0.715 1633

45. Intensity of Radiation $[mt^{-2}]$ or $[ml^{-1}t^{-2}]$

The dimensions depend upon the point of view; when the receptor is considered, they are [Energy, Area-1, Time-1]; when the radiation itself is considered they are [Energy, Volume-1]. Conversion from one to the other involves the velocity of propagation; if this is the velocity of light in vacuo, the factors are as given below; if the velocity is a cm sec-1, the factors given must be multiplied by s/(2.9986 × 1016). For other units, combine these factors with those of Tables 19 (Volume-1), 22 (Area-1 Time-1), and 35 (Energy).

1 erg cm ^{-s}	=	$2.9986 \times 10^{10} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$	10.476 9185
1 foot-pound ft3 (g.)		$1.4357 \times 10^{13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$	(U. S.) 13.157 0733

46. Luminous Intensity of a Source in a Given Direction $[\psi\omega^{-1}]$

of the selection of the second series and the second secon

1 candle, International	=	1.0000 Int. lun	nen per steradian	0.000	0000
1 pentane candle	=	1.0 Int. can	ıdle [*])		
1 Hefner unit	=	0.90 Int. can	dle		
1 Carcel unit	=	9.6 Int. can	dle Approximate		
l bougie decimale	=	1.0 Int. can	dle		
1 English sperm candle	=	1.0 Int. can	dle		
	4'	7. Illumination of a	Surface $[\psi l^{-2}]$		
1 lux	=	1.000	lumen meter-2	0.000	0000
1 meter-candle	=	1.000	lumen meter-2	0.000	0000
l phot	=	1.000 ×	104 lumen meter ⁻²	4.000	0000
l foot-candle	-	10.764	lumen meter ⁻²	(U. S.) 1.031	9684
l lumen foot ⁻²		10.764	lumen meter-2	(U. S.) 1.031	9684
		48. Surface Brightr	ness $[\psi l^{-2}\omega^{-1}]$		
l lumen centimeter- steradian-1	=	1.0000	lambert	0.000	0000
l lumen foot ⁻² steradian ⁻¹	-	1.0764	millilambert	(U. S.) 0.031	9684
l candle centimeter ⁻²	=	3.1416 >	< 10 ^a millilambert	3.497	1499
l candle inch-2	=	4.8695 >	< 10 ² millilambert	(U. S.) 2.687	4807
49. Electrical Quantity	; Charge; 1	otal Electric Displa	acement; Flux of Induction	$[e^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}]; [\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}]$	
1 absolute coulomb	=	1.00010	Int. coulomb (v)	0.000	0434
1 absolute coulomb		1 00007	Int coulomb (a)	0.000	0304

1 absolute coulomb	=	1.00010 Int. coulomb (v)	0.000 0434
1 absolute coulomb	=	1.00007 Int. coulomb (a)	0.000 0304
1 International coulomb (v)	=	0.99990 abs. coulomb	1.999 9566
1 International coulomb (a)	=	0.99993 abs. coulomb	1.999 9696
1 cgsm unit	-	10.0000 abs. coulomb	1.000 0000
1 cgsm unit	=	*2.9986 × 10 ¹⁰ cgse unit	10.476 9185
1 cgse unit	=	3.3349×10^{-10} abs. coulomb	$\overline{10}.523 0815$
1 fpsm unit	=	1.1758 × 10 ² cgsm unit	2.070 3408
1 fpse unit	=	3.5839 × 10 ³ cgse unit	3.554 3566
1 fpse unit	=	1.1952 × 10 ⁻⁶ abs. coulomb	$\overline{6}.077 4381$
1 ampere-hour (abs.)	=	3.6000 × 10 ³ abs. coulomb	3.556 3025
1 electronic charge	=	1.5921 × 10 ⁻¹⁹ abs. coulomb	$\overline{19}.2019639$
1 electronic charge	=	4.774×10^{-10} cgse unit	$\overline{10}.678 8824$
1 faraday	=	9.6500 × 104 abs. coulomb	4.984 5273
1 faraday	=	9.6510 × 104 Int. coulomb (v)	4.984 5707
1 faraday	=	9.6507 × 104 Int. coulomb (a)	4.984 5577
1 faraday	=	2.89365 × 10 ¹⁴ cgse unit	14.461 4458

^{*} Value of c; experimental value = 2.9979 × 1016 (Rosa and Dorsey, Bull. U. S. Bur. Standards, 3: 433; 07).

50. Electrical Quantity⁻¹: Charge⁻¹: Total Electric Displacement⁻¹: Flux of Induction⁻¹ $\left[e^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t\right]: \left[u^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t\right]$

ov. Dicenten Quantity	, onlinge , re	otal Diecuic Displacemen	it, Flux of Induction	[e - πε - ε - ε], [μ- πε - ε -]
1 absolute coulomb ⁻¹	=	0.99990 Ir	t. coulomb ⁻¹ (v)	1.999 9566
1 absolute coulomb ⁻¹	=	0.99993 In	t. coulomb ⁻¹ (a)	1.999 9696
1 cgsm unit ⁻¹	=	0.1000 ab	s. coulomb ⁻¹	ī.000 0000
1 cgse unit ⁻¹	=	2.9986×10^9 ab	s. coulomb ⁻¹	9.476 9185
1 ampere-hour ⁻¹	=	2.7778×10^{-4} ab	s. coulomb ⁻¹	$\overline{4}.4436975$
1 faraday ⁻¹	=	1.0363×10^{-6} ab	s. coulomb ⁻¹	$\overline{5}.0154727$
1 electronic charge ⁻¹	=	6.281 × 1018 ab	s. coulomb ⁻¹	18.798 0361

51. Electrical Current $[e^{\frac{1}{2}m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}}]; [\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}]$

absolute ampere	=	1.00010 Int. ampere (v)	0.000 0434
1 absolute ampere	=	1.00007 Int. ampere (a)	0.000 0304
1 International ampere (v)	=	0.99990 abs. ampere	<u>1</u> .999 9566
1 International ampere (a)	=	0.99993 abs. ampere	1.999 9696
l cgsm unit	=	10.0000 abs. ampere	1.000 0000
cgse unit	=	3.3349×10^{-10} abs. ampere	10.523 0815
faraday second ⁻¹	=	9.6500×10^4 abs. ampere	4.984 5273
International ampere (U. S. before 1911)	=	0.99916 Int. ampere (v)	$\bar{1}.999 6353$
International ampere (England before 1906)	-	0.99870 Int. ampere (v)	1.999 4358
International ampere (England 1906–8)	-	0.99894 Int. ampere (v)	1.999 5399
International ampere (England 1909–10)	-	0.99990 Int. ampere (v)	<u>1</u> .999 9566
International ampere (France before 1911)	-	0.9998 Int. ampere (v)	$\overline{1}.9999131$
International ampere (Germany before 1911)	=	0.99968 Int. ampere (v)	1.999 8610
	ectrical P	Potential $[e^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}]; [\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}]$	
absolute volt	=	0.99958 Int. volt (v)	1.999 8176
absolute volt	=	0.99955 Int. volt (a)	1.999 8046
International volt (v)	=	1.00042 abs. volt	0.000 1824
International volt (a)	-	1.00045 abs. volt	0.000 1954
cgsm unit	-	1.0000 × 10 ⁻⁸ abs. volt	8.000 0000
cgse unit	=	299.86 abs. volt	2.476 9185
International volt (U. S. before 1911)	=	0.99916 Int. volt (v)	1.999 6353
International volt (England before 1906)	-	0.99870 Int. volt (v)	1.999 4358
International volt (England 1906-8)	=	0.99894 Int. volt (v)	1.999 5399
International volt (England 1909–10)		0.99990 Int. volt (v)	1.999 9566
International volt (Germany and France, before 1		0.99968 Int. volt (v)	1.999 8610
	Potential	Gradient; Dielectric Strength $[\epsilon^{-\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}]; [\mu^{\frac{1}{2}}t^{-\frac{1}{2}}t^{-\frac{1}{2}}t^{-\frac{1}{2}}t^{-\frac{1}{2}}];$	
cgsm centimeter ⁻¹	=	$1.0000 \times 10^{-8} \text{ abs. volt cm}^{-1}$	8.000 0000
cgsm inch ⁻¹	==	$3.9370 \times 10^{-9} \text{ abs. volt cm}^{-1}$	(U. S.) 9.595 1654
cgse centimeter-1	-	2.9986×10^{2} abs. volt cm ⁻¹	2.476 9185
egse inch-1	==	1.1805 × 10 ² abs. volt cm ⁻¹	(U. S.) 2.072 0839
volt inch ⁻¹	102	3.9370×10^{-1} volt cm ⁻¹	(U. S.) 1.595 1654
	Resistan	ce; Surface Resistivity $[\epsilon^{-1}l^{-1}t]$; $[\mu lt^{-1}]$	
absolute ohm	200	0.99948 Int. ohm	1.999 7741
International ohm	=	1.00052 abs. ohm	0.000 2259
cgsm unit	=	$1.0000 \times 10^{-9} \text{ abs. ohm}$	9.000 0000
cgse unit	=	8.9916 × 10 ¹¹ abs. ohm	11.953 8370
International ohm (France before 1911)	-	0.9999 Int. ohm	1.999 9566
Board of Trade unit (England 1903)	-	0.99984 Int. ohm	<u>1</u> .999 9306
B. A. unit	=	0.98660 Int. ohm	1.994 1420
"Legal ohm" of 1884 (England)	=	0.99718 Int. ohm	$\bar{1}.998 7727$
Siemens unit	=	0.94073 Int. ohm	1.973 4667
55.	. Electric	al Inductance $[\epsilon^{-1}l^{-1}t^2]$; $[\mu l]$	
absolute henry	=	0.99948 Int. henry	1.999 7741
International henry	-	1.00052 abs. henry	0.000 2259
cgsm unit*	=	1.0000×10^{-9} abs. henry	9.000 0000
cgse unit	=	8.9916 × 10 ¹¹ abs. henry	11.953 8370
Occasionally called a centimeter.	6 Bi	tool Consider (7): [=17=1:0]	
		ical Capacity [d]; $[\mu^{-1}l^{-1}t^2]$	0.000.00=0
absolute farad	=	1.00052 Int. farad	0.000 2259
International farad	-	0.99948 abs. farad	1.999 7741
cgsm unit	=	1.0000 × 10° abs. farad	9.000 0000
cgse unit*	-	1.1121 × 10 ⁻¹² abs. farad	12.046 1630
cgsm unit	-	8.9916 × 10 ²⁰ cgse unit	20.953 8370
	==	8.9916 × 10 ¹¹ cgse unit	11.953 8370
• Frequently called a centimeter.		olume Resistivity $[\epsilon^{-1}t]$; $[\mu l^2t^{-1}]$	
• Frequently called a centimeter. 57. Ele		olume Resistivity [e ⁻¹ t]; [µt ² t ⁻¹] 0.99948 Int. ohm-cm	1.999 7741
• Frequently called a centimeter. 67. Eleabsolute ohm-centimeter	ectrical V		
	ectrical V	0.99948 Int. ohm-cm	1.999 7741 0.000 2259 10.999 7741

57. El	ectrical Volum	e Resistivity	7 [e ⁻¹ t]; [μ	l^2t^{-1}].—Continued.
--------	----------------	---------------	---------------------------	---------------------------

		2, 2, 4,	
1 microhm-centimeter	=	1.0000 × 10 ⁻⁶ ohm-cm	6.000 0000
1 microhm-inch	=	2.5400 microhm-cm	(U. S.) 0.404 8346
1 ohm-inch	=	2.5400 × 10 microhm-cm	(U. S.) 6.404 8346
1 ohm (meter, millimeter ²)	=	100.0000 microhm-cm	2,000 0000
1 ohm (meter, millimeter)	=	78.540 microhm-cm	1.895 0899
1 ohm (mil, foot)	=	1.6624 × 10 ⁻¹ microhm-cm	(U. S.) 1.220 7433
International Annealed Copper Standard (20°C)	=	1.7241 microhm-cm	0.236 5720
58.	Volu	ume Conductivity $[\epsilon t^{-1}]$; $[\mu^{-1}l^{-2}t]$	
1 absolute *ohm-1-centimeter-1	=	1.00052 Int.* ohm-1 cm-1	0.000 2259
1 International ohm ⁻¹ -centimeter ⁻¹	=	0.99948 abs. ohm ⁻¹ cm ⁻¹	$\overline{1}.9997741$
1 cgsm unit	==	1.00052×10^9 Int. ohm ⁻¹ cm ⁻¹	9.000 2259
1 cgse unit	=	1.11273×10^{-12} Int. ohm ⁻¹ cm ⁻¹	12.046 3889
1 microhm ⁻¹ -centimeter ⁻¹	=	$1.0000 \times 10^6 \text{ ohm}^{-1} \text{ cm}^{-1}$	6.000 0000
1 microhm ⁻¹ -inch ⁻¹	-	$3.9370 \times 10^{-1} \text{ microhm}^{-1} \text{ cm}^{-1}$	(U. S.) 1.595 1654
1 ohm ⁻¹ -inch ⁻¹	=	$3.9370 \times 10^{-7} \text{ microhm}^{-1} \text{ cm}^{-1}$	(U. S.) 7.595 1654
1 ohm ⁻¹ (meter, millimeter ²) ⁻¹	=	$1.000 \times 10^{-2} \text{ microhm}^{-1} \text{ cm}^{-1}$	$\overline{2}.000\ 0000$
1 ohm ⁻¹ (meter, millimeter) ⁻¹	_	1.2732 × 10 ⁻² microhm ⁻¹ cm ⁻¹	$\bar{2}.1049101$
1 ohm ⁻¹ (mil, foot) ⁻¹	=	6.0153 microhm ⁻¹ cm ⁻¹	(U. S.) 0.779 2567
International Annealed Copper Standard (20°C)	=	0.5800 microhm ⁻¹ cm ⁻¹	1.763 4280
100% conductivity (20°C)	=	0.5800 microhm ⁻¹ cm ⁻¹	ī.763 4280
* "Mho" is occasionally used instead of ohm-1.			
59. Elect	rical	Mass Resistivity $[\epsilon^{-1}ml^{-1}t]$; $[\mu ml^{-1}t^{-1}]$	
1 absolute ohm (meter, gram)	200	0.99948 Int. ohm (meter, gram)	1.999 7741
1 International ohm (meter, gram)	=	1.00052 abs. ohm (meter, gram)	0.000 2259
1 cgsm unit	=	9.9948 × 10 ⁻⁶ Int. ohm (meter, gram)	$\overline{6}.9997741$
1 cgse unit	=	8.9869×10^{15} Int. ohm (meter, gram)	15.953 6111
1 ohm (mile, pound)	=	1.7513×10^{-4} ohm (meter, gram)	(U. S.) $\overline{4}.243 \ 3663$
1 ohm (centimeter, gram)	==	1.0000 × 104 ohm (meter, gram)	4.000 0000
1 ohm (centimeter, gram)	=	D* ohm-cm	
†International Annealed Copper Standard at 20°C	=	0.15328 ohm (meter, gram)	1.185 4738
* D represents the density in grams per centimeter ³ .		† Density = 8.89 grams per centimeter. See	lable 61.
60. Electr	ical M	Iass Conductivity $[\epsilon m^{-1}l^3t^{-1}]$; $[\mu^{-1}m^{-1}lt]$	
1 absolute ohm ⁻¹ (meter, gram)	=	1.00052 Int. ohm ⁻¹ (meter, gram)	0.000 2259
1 International ohm ⁻¹ (meter, gram)	=	0.99948 abs. ohm ⁻¹ (meter, gram)	1.999 774 1
1 cgsm unit ⁻¹	-	1.00052×10^5 Int. ohm ⁻¹ (meter, gram)	5.000 2259
1 cgse unit ⁻¹	-	$1.1127 \times 10^{-16} \text{Int. ohm}^{-1} (\text{meter, gram})$	$\overline{16}.046 3889$
1 ohm ⁻¹ (mile, pound)	-	$5.7100 \times 10^{-3} \text{ ohm}^{-1} \text{ (meter, gram)}$	3.756 6337
1 ohm ⁻¹ (centimeter, gram)	=	$1.0000 \times 10^{-4} \text{ ohm}^{-1} \text{ (meter, gram)}$	4.000 0000
1 ohm ⁻¹ (centimeter, gram)	=	* D^{-1} (ohm-centimeter) $^{-1}$	
* D^{-1} = reciprocal of the density in grams per centimeter ³			

^{*} D-1 = reciprocal of the density in grams per centimeters.

61. Constants of Annealed Copper as Accepted at Various Times

		Data	taken from U.S.	Bur. Standards C	ircular No. 31			
Temperature °C	England (Eng. Stds. Com. 1904)	Germany (Old "Normal Kupfer" density = 8.91)	Germany (Old "Normal Kupfer" assuming density 8.89)	Lindeck, Matthiessen, assuming density 8.89	A. I. E. E. before 1907 (Matthies- sen value)	A. I. E. E. 1907 to 1910	Bureau Standards and A. I. E. E. 1911	Inter. Annealed Copper Standard 1913
		R	esistivity in	ohms (meter,	grams)		_	
0	0.141362	0.139590	0.139277	0.141571	0.141729	0.14172s	0.141068	0.141332
15	0.150437	0.148502	0.148164	0.149974	0.150141	0.150658	0.150034	0.150290
15.6	0.1508							
20	0.15346з	0.151470	0.151130	0.152851	0.153022	0.153634	0.153022	0.15328
2 5	0.156488	0.154440	0.154098	0.155765	0.155938	0.156610	0.156010	0.156262
		Temperatu	re coefficient	of resistance	(mass consta	int)		
0	0.00428	0.004255	0.004255	1 1 1 2	07014 > 10-1	0.0042	0.004277	0.004265
15	0.004022	0.004	0.004		$.8701t \times 10^{-3}$	0.003951	0.004019	0.004009
20	0.003943	0.003922	0.003922	+ 9.009	$t^2 \times 10^{-6}$	0.003875	0.00394	0.00393
25	0.003866	0.003846	0.003846	}		0.003801	0.003864	0.003854
			-	Density		•		
	8.89	8.91	(8.89)	(8.89)	8.89	8.89	8.89	8.89
	15.6°	Ì		[20°	20°

CONVERSION FACTORS.—Continued 62. Ionic Mobility $[\epsilon^{\frac{1}{2}}m^{-\frac{1}{2}}l^{\frac{3}{2}}]; [\mu^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{\frac{3}{2}}t]$

	62. 10I	ic modulty $[\epsilon^{j}m^{-j}l^{j}]; [\mu^{-j}m^{-j}l^{j}l]$	
1 centimeter ² second ⁻¹ per cgse unit of po		$3.3349 \times 10^{-2} \text{ cm}^2 \text{ sec}^{-1} \text{ volt}^{-1} \text{ (abs.)}$	3.523 0815
1 inch ² second ⁻¹ per cgse unit of potential	=	$2.1515 \times 10^{-2} \text{ cm}^2 \text{ sec}^{-1} \text{ volt}^{-1} \text{ (abs.)}$	$(U. S.) \overline{2}.332 7507$
1 inch² second ⁻¹ volt ⁻¹ (absolute)	=	6.4516 cm ² sec ⁻¹ volt ⁻¹ (abs.)	(U. S.) 0.809 6692
	83. Thermoe	lectric Power $[\epsilon^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}T^{-1}]; [\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}T^{-1}]$	
l cgsm unit of potential per °C	=	1.0000×10^{-2} microvolt per °C (abs.)	2.000 0000
cgsm unit of potential per °F	=	1.8000×10^{-2} microvolt per °C (abs.)	$\overline{2}.255 2725$
cgse unit of potential per °C	=	2.9986 × 10 ^s microvolt per °C (abs.)	8.476 9185
cgse unit of potential per °F	=	5.3975 × 10 ^s microvolt per °C (abs.)	8.732 1910
I microvolt per °F	=	1.8000 microvolt per °C	0.255 2725
6-	4. Peltier Co	efficient $[\epsilon^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}]; [\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}]$	
joule per ampere-hour (absolute)	=	2.7778×10^{-8} joule em ⁻¹	3.443 6975
l joule per ampere-hour (absolute)	=	$9.2636 \times 10^{-14} \text{ joule es}^{-1}$	14.966 7790
joule per coulomb	=	10.000 joule em ⁻¹	1.000 0000
joule per faraday	=	1.0363×10^{-4} joule em ⁻¹	4.015 4727
joule per electron	-	6.2811×10^{19} joule em ⁻¹	19.798 0361
calorie (15°C) per ampere-hour	=	1.1625×10^{-2} joule em ⁻¹	$\overline{2}.065\ 3930$
calorie (15°C) per coulomb	=	41.850 joule em ⁻¹	1.621 6955
millivolt	-	1.0000 × 10 ⁻² joule em ⁻¹	2.000 0000
65. Thomson Effect, C	oefficient of;	Specific Heat of Electricity $[\epsilon^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}T^{-1}]; [\mu^{\frac{1}{2}}$	$m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}T^{-1}$
joule coulomb ⁻¹ per °F	=	1.8000 joule coulomb ⁻¹ per °C	0.255 2725
joule es ⁻¹ per °F	=	5.3975 × 10° joule coulomb ⁻¹ per °C	9.732 1910
joule em ⁻¹ per °F	=	0.1800 joule coulomb ⁻¹ per °C	$\overline{1}.255 2725$
joule es⁻¹ per °C	-	2.9986 × 10° joule coulomb ⁻¹ per °C	9.476 9185
joule faraday ⁻¹ per °C	=	1.0363 × 10 ⁻⁶ joule coulomb ⁻¹ per °C	5 .015 4727
joule electron ⁻¹ per °C	_	6.2811 × 10 ¹⁸ joule coulomb ⁻¹ per °C	18.798 0361
volt per °C	=	1.0000 joule coulomb ⁻¹ per °C	0.000 0000
66.	Piezoelectric	Constant $[\epsilon^{\frac{1}{2}}m^{-\frac{1}{2}}l^{\frac{1}{2}}t]$; $[\mu^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t^{2}]$	
em per kilogram weight (g.)	=	3.0577 × 104 es per dyne	4.485 3978
em per pound weight (g.)	=	6.7411×10^4 es per dyne	4.828 7321
es per kilogram weight (g.)	-	1.0197×10^{-6} es per dyne	$\overline{6}.0084793$
les per pound weight (g.)	-	2.2481×10^{-6} es per dyne	6 . 35 1 81 36
coulomb per kilogram weight (g _s)	-	3.0577×10^3 es per dyne	3.485 3978
faraday per kilogram weight (g _s)	-	2.9507×10^{s} es per dyne	8.469 9251
electron per kilogram weight (g.)	=	4.868×10^{-16} es per dyne	16.687 3617
67. Magnetic Field Intens	it y ; Magn etic	Potential Gradient; Magnetizing Force $[\epsilon^{rac{1}{2}}m^{rac{1}{2}}]$	$l^{\frac{1}{2}}t^{-2}]; [\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}]$
gauss, absolute	=	1.00010 Int. gauss (v)	0.000 0434
gauss, absolute	-	1.00007 Int. gauss (a)	0.000 0304
International gauss (v)	-	0.99990 abs. gauss	1.999 9566
International gauss (a)	=	0.99993 abs. gauss	1.999 9696
cgsm unit	=	1.0000 abs. gauss	0.000 0000
cgse unit	=	3.3349 × 10 ⁻¹¹ abs. gauss	11.523 0815
gilbert per centimeter	_	1.0000 gauss	0.000 0000
ampere-turn per centimeter	-	1.2566 gauss	0.099 2099
ampere-turn per inch	=	0.49474 gauss	(U. S.) 1.694 3753
gamma, γ	-	1.0000 × 10 ⁻¹ gauss	5.000 0000
68. (Magnetic Field)	Intensity)-1;	Coefficient of Leduc Effect $[\epsilon^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}l^2]; [\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^2]$	- 1 [1]t]
gauss ⁻¹ (absolute)	=	0.99990 Int. gauss ⁻¹ (v)	Ī.999 9566
International gauss ⁻¹ (v)	=	1.00010 gauss ⁻¹ (abs.)	0.000 0434
cgsm unit-1	=	1.0000 gauss ⁻¹ (abs.)	0.000 0000
cgse unit ⁻¹	=	$2.9986 \times 10^{10} \text{ gauss}^{-1} \text{ (abs.)}$	10.476 9185
centimeter per gilbert	_	1.0000 gauss ⁻¹	0.000 0000
centimeter per ampere-turn	_	$7.9577 \times 10^{-1} \mathrm{gauss^{-1}}$	1.900 7901
l inch per ampere-turn	_	2.0213 gauss ⁻¹	0.305 6246
i mon per ampere tutti		z.oz.o gauso	0.000 0210

units Practical units (abs.) Cgse system Cgsm system Electric:	·	otive Force	; Magı	netic Potential [cimil				
International gilbert (v)	bert, absolute	=		1.00010 Int	. gilbert (v	7)	0.000	0434
International gilbert (a)	bert, absolute	=	i	1.00007 Int	. gilbert (s	1)	0.000	0304
1,0000 abs. gilbert 0,0000 campere-turn 0,00	ternational gilbert (v)	200		0.99990 abs	s. gilbert		1.999	9566
3,349 \ \ \ 10^{-11} abs. gilbert Ti.529 \ 0,099 2 2 2 2 2 2 2 2 2 2	ternational gilbert (a)	=		0.99993 abs	s. gilbert		1.999	9696
	sm unit	=	ļ	1.00000 abs	s. gilbert		0.000	0000
To Magnetic Induction; Intensity of Magnetization e^-im^1p^-1 ; \(\begin{align*}{\text{induction}} \) \(Units of Magnetization are not named maxwell per centimeter*, absolute	se unit	=		3.3349×10^{-11} abs	s. gilbert			
Maxwell per centimeter*, absolute 0.99955	pere-turn			1.2566	gilbert		0.099	2099
	70. Magnetic	Induction Un	; Intendits of Ma	sity of Magnetization	n [e ^{-}} m³]- ed]; $[\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}]$		
International maxwell per centimeter¹ (v)		=				-	1 =	
International maxwell per centimeter* (a)	•					•	1	
	<u>-</u>					•	1	
1,0000 abs. maxwell per cm² 0,000 cgse unit - 1,0000 maxwell per cm² 0,000 0,000 maxwell per cm² 0,000 0,000 maxwell per cm² 0,000 maxwell maxwell, absolute - 0,99955 Int. maxwell (v) 1,999 maxwell, absolute - 0,99955 Int. maxwell (a) 1,0004 abs. maxwell 0,000 m) =		1.00045 al		•	1	
Company	xwell per inch ²	=		0.15500	maxwel	l per cm²	(U. S.) 1.190	3308
	sm unit	=		1.00000 al	bs. maxwel	l per cm²	0.000	0000
	e unit	=	ļ	2.9986 × 1010 al		•	10.476	9185
Till Flux of Magnetic Induction; Magnetic Flux; Pole Strength; Quantity of Magnetism [e ⁻¹ m ¹ l ¹]; [μ ¹ m ¹ l ¹ l ¹ l ¹ l Units of Pole Strength and Quantity of Magnetism are not named maxwell, absolute	e per centimeter ²	-	1	1.00000				
Units of Fole Strength and Quantity of Magnetism are not named maxwell, absolute	· · · · · · · · · · · · · · · · · · ·							
Maxwell absolute		. –			-	-	$n^{\frac{1}{2}}l^{\frac{1}{2}}]; [\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}]$	
Maxwell absolute	xwell, absolute	=		0.99958	Int. m	axwell (v)	1.999	8176
International maxwell (v)		===	1				_	
International maxwell (a)	•	-				, ,	0.000	1824
Comparison		=			abs. m	axwell	0.000	1954
10.476 2.9986 10.10 2.9986 10.	• •	= ,						
Inc		==					1	
Volt-second		=			_			
Description Company		-					1	
International oersted		72. M	agnetic	Reluctance [elt-2]; [$\mu^{-1}l^{-1}$			
Common	sted, absolute	=		1.00052	Int. o	ersted	0.000	2259
Table Tab	ternational oersted	=		0.99948	abs. o	ersted	l .	
T3. Hall Effect, Coefficient of $[e^{-\frac{1}{4}m^{-\frac{1}{4}}l^{-\frac{1}{4}}t^{\frac{1}{4}}]}; [\mu^{\frac{1}{4}m^{-\frac{1}{4}}l^{\frac{1}{4}}}]$ volt centimeter per ampere gauss (absolute) = 1.0000 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.5400 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit (U. S.) 9.404 s cgse unit = 2.6962 × 10° cgsm unit = 2.6962 × 10°	nn unit	-	1	1.0000	abs. o	ersted		
Volt centimeter per ampere gauss (absolute) = 1.0000 × 10° cgsm unit 2.5400 × 10° cgsm unit 2.5400 × 10° cgsm unit 2.6962 × 10° cgsm unit 31.430 31.43			!				21.046	1630
volt inch per ampere gauss (absolute) = 2.5400 \times 10° cgsm unit 2.6962 \times 10° cgsm unit 31.430 7 74. Ettinghausen Effect, Coefficient of $[\epsilon^{-1}m^{-1}l^{-1}l^{2}T]$; $[\mu m^{-1}ll^{-1}T]$ °C centimeter per ampere gauss (absolute) = 10.000 °C cm per cgsm unit 1.000 0°C centimeter per ampere gauss (absolute) = 45.720 °C cm per cgsm unit 1.660 1°C centimeter per cgse unit = 8.9916 \times 10° °C cm per cgsm unit 20.953 8 75. Nernst Effect, Coefficient of $[\epsilon^{-1}l^{-1}l]$; $[\mu l^{2}l^{-1}T^{-1}]$ volt per gauss °C (absolute) = 1.0000 \times 10° cgsm unit per °C 8.000 0°C or per cgsm unit per °C 8.255 2°C or per cgsm unit 9°C or per cgsm unit 9°C 0°C			ect, Co				0.000	0000
cgse unit = 2.6962×10^{31} cgsm unit 31.430 $^{\circ}$ 74. Ettinghausen Effect, Coefficient of $[\epsilon^{-1}m^{-1}l^{-1}l^{4}T]$; $[\mu m^{-1}ll^{2}T]$ °C centimeter per ampere gauss (absolute) = 10.000 °C cm per cgsm unit 1.000 0°F inch per ampere gauss (absolute) = 45.720 °C cm per cgsm unit 1.660 1°C centimeter per cgse unit = 8.9916×10^{20} °C cm per cgsm unit 20.953 8 75. Nernst Effect, Coefficient of $[\epsilon^{-1}lT^{-1}]$; $[\mu l^{2}l^{-1}T^{-1}]$ volt per gauss °C (absolute) = 1.0000×10^{3} cgsm unit per °C 8.205 0°C cgse unit per °C 8.255 2°C cgse unit per °C 8.295 8.9916 $\times 10^{20}$ cgsm unit per °C 8.255 2°C cgse unit per °C 8.295 8.9916 $\times 10^{20}$ cgsm unit per °C 20.953 8.9916 $\times 10^{20}$ cgsm unit per cgsm unit 20.000 0°C cgsm unit							1	
74. Ettinghausen Effect, Coefficient of $[\epsilon^{-1}m^{-1}l^{-1}l^{4}T]$; $[\mu m^{-1}l^{12}T]$ °C centimeter per ampere gauss (absolute) = 10.000 °C cm per cgsm unit 1.000 0 °C centimeter per ampere gauss (absolute) = 45.720 °C cm per cgsm unit 1.660 1 °C centimeter per cgse unit = 8.9916 × 10 ³⁰ °C cm per cgsm unit 20.953 8 °C (absolute) = 1.0000 × 10 ³ cgsm unit per °C 8.000 0 °C tm per cgsm unit 20.953 8 °C (absolute) = 1.0000 × 10 ³ cgsm unit per °C 8.255 2 cgse unit per °C 8.255 2 cgse unit per °C 8.9916 × 10 ³⁰ cgsm unit per °C 8.255 2 cgse unit per °C 8.9916 × 10 ³⁰ cgsm unit per °C 20.953 8 °C (absolute) = 1.0000 × 10 ³ cgsm unit per °C 8.255 2 cgse unit per °C 8.255 2 cgse unit per °C 9.953 8 °C (absolute) = 1.0000 minute per cgsm unit 10.000 0 °C cm per cgsm unit 10.000 0 °C					•		1'	
C centimeter per ampere gauss (absolute) = 10.000 °C cm per cgsm unit 1.000 °C cm per ampere gauss (absolute) = 45.720 °C cm per cgsm unit 1.660 °C centimeter per cgse unit = 8.9916 × 10 ²⁰ °C cm per cgsm unit 20.953 8 75. Nernst Effect, Coefficient of $[e^{-1}tT^{-1}]$; $[\mu l^2t^{-1}T^{-1}]$ volt per gauss °C (absolute) = 1.0000 × 10 ³ cgsm unit per °C 8.000 0 volt per gauss °F (absolute) = 1.8000 × 10 ³ cgsm unit per °C 8.255 2 cgse unit per °C 9.8916 × 10 ²⁰ cgsm unit per °C 20.953 8 76. Verdet's Constant $[e^{-\frac{1}{2}m^{-\frac{1}{2}}l^2\theta}]$; $[\mu^{\frac{1}{2}m^{-\frac{1}{2}}l^2\theta}]$ minute per gilbert = 1.0000 minute per cgsm unit 0.000 0 minute per cgsm unit 1.2566 2 77. Fundamental Electric and Magnetic Units Name of quantity 1 °Cgsm unit equals Dimensions Cgse units Practical units (abs.) Cgse system Cgsm system 1 clectric:							31.43	7555
PF inch per ampere gauss (absolute) = 45.720 °C cm per cgsm unit 1.660 Inch per ampere gauss (absolute) = 8.9916×10^{30} °C cm per cgsm unit 20.953 8 75. Nernst Effect, Coefficient of $[e^{-1}tT^{-1}]$; $[\mu^{1}z^{t-1}T^{-1}]$ volt per gauss °C (absolute) = 1.0000×10^{3} cgsm unit per °C 8.000 0 volt per gauss °F (absolute) = 1.8000×10^{3} cgsm unit per °C 8.255 2 cgse unit per °C 8.9916 $\times 10^{30}$ cgsm unit per °C 20.953 8 76. Verdet's Constant $[e^{-\frac{1}{2}m^{-\frac{1}{2}}t^{2}\theta}]$; $[\mu^{\frac{1}{2}m^{-\frac{1}{2}}t^{-\frac{1}{2}}t\theta}]$ minute per gilbert = 1.0000 minute per cgsm unit 0.000 0 minute per cgsm unit 1.2566 minute per			Effect				1 1 000	0000
°C centimeter per cgse unit= 8.9916×10^{20} °C cm per cgsm unit 20.953 875. Nernst Effect, Coefficient of $[\epsilon^{-1}tT^{-1}]$; $[\mu]^2t^{-1}T^{-1}]$ volt per gauss °C (absolute)= 1.0000×10^8 cgsm unit per °C 8.000×10^8 cgsm unit per °Cvolt per gauss °F (absolute)= 1.8000×10^8 cgsm unit per °C 8.255×20^8 cgse unit per °C76. Verdet's Constant $[\epsilon^{-1}m^{-1}t^{-1}t^2\theta]$; $[\mu^{\frac{1}{2}}m^{-1}t^{-1}t\theta]$ minute per gilbert= 1.0000 minute per cgsm unit 0.000 0minute per ampere-turn= 1.2566 minute per cgsm unit 0.099×20^8 cgsm unit per cgsm unitradian per gilbert= 3.4377×10^3 minute per cgsm unit 0.099×20^8 cgsm unit equalsTr. Fundamental Electric and Magnetic UnitsName of quantity $\frac{1}{2}$ °Cgsm unit equalsDimensionsCgse systemCgsm system $\frac{1}{2}$ °Cgsm units (abs.)Cgse systemCgsm system		, -	. İ					
volt per gauss °C (absolute) = 1.0000 × 10 ^s cgsm unit per °C 8.000 0 volt per gauss °F (absolute) = 1.8000 × 10 ^s cgsm unit per °C 8.255 2 cgse unit per °C = 8.9916 × 10 ^s 0 cgsm unit per °C 20.953 8		=						
volt per gauss °F (absolute) = 1.8000 × 10 ^s cgsm unit per °C 8.255 2 cgse unit per °C = 8.9916 × 10 ^{2o} cgsm unit per °C 20.953 8 76. Verdet's Constant $[e^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t^{\frac{1}{2}}]; [\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t^{\frac{1}{2}}]$ minute per gilbert = 1.0000 minute per cgsm unit 0.000 0 minute per ampere-turn = 1.2566 minute per cgsm unit 0.099 2 radian per gilbert = 3.4377 × 10 ³ minute per cgsm unit 3.536 2 77. Fundamental Electric and Magnetic Units 1 °Cgsm unit equals Dimensions Name of quantity $Cgsm$ Practical units (abs.) $Cgsm$ system $Cgsm$ system lectric:		75. Nernst	Effect,	Coefficient of $[\epsilon^{-1}tT]$	⁻¹]; [μ l²t ⁻¹]	r-1]		
cgse unit per °C = 8.9916×10^{20} cgsm unit per °C 20.953 8 76. Verdet's Constant $[\epsilon^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}l^{2}]$; $[\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}l^{2}]$ minute per gilbert = 1.0000 minute per cgsm unit 0.000 0 minute per cgsm unit 0.099 2 1.2566 minute per cgsm unit 0.099 2 2 3.4377 $\times 10^{3}$ minute per cgsm unit 3.536 2 77. Fundamental Electric and Magnetic Units 1 °Cgsm unit equals Dimensions Name of quantity $Cgsm$ Practical units (abs.) $Cgsm$ system 1 clectric:		=						
T6. Verdet's Constant $[e^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t\theta]$; $[\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t\theta]$ minute per gilbert = 1.0000 minute per cgsm unit 0.000 0 minute per ampere-turn = 1.2566 minute per cgsm unit 0.099 2 and 2 minute per gilbert = 3.4377 × 10 ³ minute per cgsm unit 3.536 2 T7. Fundamental Electric and Magnetic Units 1 *Cgsm unit equals Dimensions Cgse units Practical units (abs.) Cgse system Cgsm system in the control of th		=	1				1	
minute per gilbert							20.953	8370
minute per ampere-turn			t's Con			<u> </u>	0.000	0000
radian per gilbert = 3.4377 × 10³ minute per cgsm unit 3.536 2 77. Fundamental Electric and Magnetic Units 1 °Cgsm unit equals Dimensions Cgse units Practical units (abs.) Cgse system Cgsm system the control of th		•					1	
77. Fundamental Electric and Magnetic Units 1 *Cgsm unit equals Cgse units Practical units (abs.) Cgse system Cgsm system Cgsm system Cgsm system								
Name of quantity Cgse unit equals Dimensions	her Breeze		lament			opon ann	1 0.000	
lectric:							Dimensions	
lectric:	Name of quantity			Practical units	(abs.)	Cgse system	Cgsm system	‡Practic systen
Conscity es 100 fored J -17-12			İ	İ		·		•
Charge, quantity	pacity		C2	10° farad		d	$\mu^{-1}l^{-1}t^2$	$IE^{-1}t$

77. Fundamental Electric and Magnetic Units.—(Continued)

Conductivity (mass)	C ²	10° ohm ⁻¹ (cm, g)	em-1231-1	$\mu^{-1}m^{-1}lt$	$R^{-1}m^{-1}l^2$
Conductivity (surface)	C ²	10° ohm-1	elt-1	$\mu^{-1}l^{-1}t$	R^{-1}
Conductivity (volume)	C2	10° ohm ⁻¹ cm ⁻¹	el ⁻¹	$\mu^{-1}l^{-2}t$	$R^{-1}l^{-1}$
Current	С	10 ampere	elmille-2	$\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}$	1
Dielectric constant	C2	†10° ohm ⁻¹ per (cm sec ⁻¹)		$\mu^{-1}l^{-2}\ell^{2}$	†IE-11-1t
Displacement (local)	c	10 coulomb per cm ²	e mil-it-1	μ-1m1l-1	Il-2l
Displacement (integral)	C	10 coulomb	e milit-1	$\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}$	It
Electromotive force	C-1	10 ⁻⁸ volt	e-1m1/1-1	u1m1l1t-2	E
Field strength	C-1	10 ⁻⁸ volt cm ⁻¹	e-1m1l-1t-1	$\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-2}$	El^{-1}
Inductance	C-3	10 ^{-•} henry	e-11-1t2	иl	Rı
Inductivity	C2	† 10° ohm ⁻¹ per (cm sec ⁻¹)		$\mu^{-1}l^{-2}l^{2}$	†IE-11-1t
Ionic mobility	С	108 cm sec ⁻¹ per (volt cm ⁻¹)	e1m-111	$\mu^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{\frac{1}{2}}t$	$E^{-1}l^2l^{-1}$
Polarization capacity	C²	10° farad cm ⁻²	e^{l-1}	$\mu^{-1}l^{-3}t^{2}$	$IE^{-1}l^{-2}t$
Potential	C-1	10-8 volt	e-1m1/1-1	$\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{3}{2}}l^{-2}$	E
Resistance	C-2	10→ ohm	$e^{-1}l^{-1}t$	μlt−1	R
Resistivity (mass)	C-2	10 ⁻¹ ohm (cm, g)	$e^{-1}ml^{-3}t$	$\mu m l^{-1} l^{-1}$	Rml^{-2}
Resistivity (surface)	C-2	10 ⁻⁰ ohm	e-1/-1t	μlt^{-1}	R
Resistivity (volume)	C-2	10 ⁻⁹ ohm-cm	e ⁻¹ t	$\mu l^2 t^{-1}$	Rl
Specific heat of electricity (Thomson)	c-1	10 ⁻⁸ volt deg ⁻¹	e-imilit-1T-1	$\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-2}T^{-1}$	ET^{-1}
Specific inductive capacity	1	1	zero	zero	zero
Magnetic:					
Field intensity	С	1 gauss	eimilit-2	$\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-1}$	Il-1
Flux of induction (integral)	c-1	1 maxwell	e-1m1l1	u 1 m 1 lt l-1	Et
Induction (local)	c-1	1 maxwell cm ⁻²	e-1m11-1	u1m1l-11-1	El-2t
Intensity of magnetization (volume)	C-1	1	4-1m11-1	$\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-1}$	El-2t
Magnetic flux (integral)	c-1	1 maxwell	e-1m1/1	u1m1/1-1	Et
Magnetizing force	С	1 gauss	e3m313t-2	$\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}$	Il^{-1}
Magnetomotive force	C	1 gilbert	$e^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}$	$\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}$	I
Permeability	C-2	1 maxwell cm ⁻² per gauss	4-11-2t2	μ	$I^{-1}El^{-1}t$
Pole strength	C-1	1	e-1m1l1	$\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}$	Et
Potential	c	1 gilbert	e3m312t-2	$\mu^{-1}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}$	I
Quantity	c-1	1	e-1m111	µ1m121-1	Et
Reluctance	C2	1 oersted	elt-2	$\mu^{-1}l^{-1}$	$IE^{-1}t^{-1}$
Susceptibility	C-2	1/4 maxwell cm-2 per gauss	e-1/-2/2	•	$I^{-1}El^{-1}t$

^{*}For the purposes of International Critical Tables, c has been taken as 2.9986 × 10¹⁰ cm per sec, log₁₀ c = 10.476 9185, log₁₀ c⁻¹ = 11.523 0815. This is the accepted value for the velocity of light in vacuo. The best directly determined value of the ratio of the two electrical units of quantity gives c = 2.9979 × 10¹⁰ cm per sec. (Rosa and Dorsey, Bull. U. S. Bur. Standards, 3: 433; 07.)

78. Indicated Conversion Factors

a= area, C= electrical capacity, T= thermometric degree, d= density, E= electrical potential, e= electric charge, F= electrical field intensity, h= heat, m= mass, Q= quantity of magnetism, R= electrical resistance, t= time, v= volume, e= dielectric constant, n= viscosity, n= plane angle.

Name of quantity	Dimen- sions	Tables
Electricity		
Electric displacement	€F	14, 53
Polarization capacity	Ca^{-1}	56, 17
Pyroelectric constant	$ea^{-1}T^{-1}$	49, 17, 12
Specific inductive capacity	zero] ' '
Surface density of charge	ea^{-1}	49, 17
Thermoelectric power	ET^{-1}	52, 12
Volume density of charge	ev^{-1}	49, 19
Heat, capacity	$hm^{-1}T^{-1}$	35, 21
Latent	hm^{-1}	35, 4
Reaction	hm^{-1}	35, 4
Superficial latent	ha-1	35, 17
Transformation	hm^{-1}	35, 4

Name of quantity	Dimen- sions	Tables
Radiation, index of absorption Intensity of	$ha^{-1}l^{-1}$ $\theta Q^{-1}a$ zero zero zero	35, 22 7, 71, 16 39, 28

79. Hydrometer Scales

Unless the hydrometer is used in the liquid and at the temperature for which it is graduated, corrections must be applied for the changed capillary depression and for the expansion (or contraction) of the instrument. (The following table does not include all scales which have been used.)

T = temperature at which the instrument is to be used; r = reading of instrument; the specific gravity is with reference to water at temperature T unless another temperature is indicated in the last column.

[†] In practice this unit is not used; the quantity given in essentially every instance is the dimensionless "specific inductive capacity," which is numerically equal to the dielectric constant expressed in egge units.

[‡] In this column are given the dimensions in terms of the practical electrical units, as these generally enter into the actual determinations of the several quantities. As three basic electrical units are employed, alternative expressions are possible. T = thermometric degree, B = potential, I = current, R = resistance.

79. Hydrometer Scales.—Continued

Hydrometer	T	Specific	gravity	Remarks
		Dense	Light	Itemat As
A. P. I. = American Petroleum Institute.	= 60°F = 15.56°C		$\frac{141.5}{131.5 + r}$	Petroleum
Balling	17.5℃	$\frac{200}{200-r}$	200 200 + r	
Bates	= 60°F = 15.56°C	$\frac{1000 + 2.78r}{1000}$		V
Baumé	10°R = 12.5°C	$\frac{145.88}{145.88 - r}$	$\frac{145.88}{135.88 + r}$	
Baumé	15°C	$\frac{146.3}{146.3-r}$	$\frac{146.3}{136.3 + r}$	
Baumé	17.5°C	$\frac{146.78}{146.78 - r}$	$\frac{146.78}{136.78 + r}$	
Baumé	15°C	$\frac{144.3}{144.3-r}$		"Rational"
Baumé	15°C	$\frac{144.3}{144.3-r}$		"Rational" (water at 4°C
Baumé-Lunge	12.5°C	$\frac{144.32}{144.32 - r}$	$\frac{144.32}{144.32 + r}$	"Rational"
Baumé	15°C	$\frac{144.32}{144.32 - r}$	$\frac{144.32}{144.32 + r}$	French (water at 4°C
Baumé	60°F = 15.56°C	$\frac{145}{145-r}$	$\frac{140}{130+r}$	American
Beck	12.5°C	$\frac{170}{170-r}$	$\frac{170}{170 + r}$	
Brix	12.5°R = 15.625°C	$\frac{400}{400-r}$	$\frac{400}{400 + r}$	
Cartier	12.5°C	$\frac{136.8}{126.1-r}$	$\frac{136.8}{126.1+r}$	
Fischer	12.5°R = 15.625°C	$\frac{400}{400-r}$	$\frac{400}{400 + r}$	
Fleischer		$\frac{1000+10r}{1000}$	333 , ,	
Gay-Lussac		$\frac{100}{100-r}$	$\frac{100}{100 + r}$	
Gerlach, or "new"	17.5°C	$\frac{146.78}{146.78 - r}$	222 , .	
Holland, or "old".	12.5°C	$\frac{144}{144-r}$		
Stoppani	12.5°R = 15.625°C	$\frac{166}{166-r}$		
Twaddell	60°F = 15.56°C	$\frac{1000 + 5r}{1000}$		British (water at 4°C

TECHNICAL EFFLUX VISCOMETERS: INTERPRETATION AND INTERCONVERSION OF READINGS

WINSLOW H. HERSCHEL

Since changes are made from time to time in the standardization or method of operation of these instruments, and many old instruments are still in use, it is believed that in general the determination of kinematic viscosity from the readings of the instruments, and direct interconversions between instruments, when used at the same temperature, may be made by the use of Fig. 1, with as great precision (about 5%) as the data will warrant. It is assumed that the instruments are used in the normal manner. For the Saybolt instruments, a higher precision is occasionally justified, and may be obtained by the use of Table 2.

If the instruments are used at different temperatures, appropriate temperature corrections must be applied. For lubricating oils, the viscosity at one temperature may be estimated from that at another by the approximate empirical rule, applicable between 100° and 212°F (37.8° and 100°C), that the logarithmic viscosity-temperature graphs are straight and meet at a point, temperatures being expressed in degrees Fahrenheit. (For other temperatures see (1, 7, 8)). The location of the point of intersection for several classes of oils is given in Table 1.

Table 1.—Coordinates of Points of Intersection of Logarithmic Graphs (5)

	,				•	
77 ^ =	TIRANSITY:	In noises:	<i>t</i> . =	temperature	าท	٠,

Class of oils	log10 70	70	$\log_{10} t_0$	t _o
Paraffin base	3.58	0.0038	2.77	589
Naphthene base	3.88	.0076	2.57	371
Mixed base		. 0027	2.78	605
Fatty oils	3.75	.0056	2.82	661

In estimating the viscometer reading at a given temperature for a certain type of instrument, from an observed reading at another temperature with another type of instrument, the following steps may be taken.

- 1. Determine the kinematic viscosity corresponding to the observed reading by means of Fig. 1.
- 2. Multiply by the density (g/cm^2) so as to obtain the absolute viscosity (η) in poises; find the logarithm of the absolute viscosity and the logarithm of the temperature (t) of test $(^{\circ}F)$.
- 3. Plot the observed η , t and the η_0 , t_0 of the point of intersection, as given in Table 1, on logarithmic paper. Or plot the corresponding logarithms on equispaced coordinate paper. In either case, these two points locate a straight graph upon which the viscosity at the desired temperature will be found.
- 4. Divide the absolute viscosity at the desired temperature by the density at that temperature to get the kinematic viscosity. From this, determine, by means of Fig. 1, the corresponding time of flow on the desired viscometer.

It will be noted that the density under (2) and (4) must be the density at the temperature under consideration, and not the density at 60°F (15.6°C), which is generally the standard for such density determinations.

If an instrument is used in an irregular manner, appropriate corrections must be applied (2.3.6.9).

Table 2.—Saybolt Universal and Saybolt Furol Viscometers Units: Time (t), sec; kinematic viscosity = (η/d) , poise/(g per cm³).

Saybolt	Universal	Saybolt Furol		
t	η/d	t		
32	0.0115	25	0.486	
40	0.0417	26	0.512	
50	0.0740	27	0.537	
60	0.103	28	0.562	
70	0.130	29	0.586	
80	0.156	30	0.610	
90	0.181	35	0.730	
100	0.206	40	0.846	
125	0.266	45	0.960	
150	0.324	50	1.072	
175	0.381	60	1.292	
200	0.437	70	1.507	
225	0.492	80	1.724	
250	0.548	90	1.939	
275	0.603	100	2.155	
300	0.658			

For higher viscosities the kinematic viscosity is equal to 0.00220t for the Saybolt Universal, or to 0.0216t for the Saybolt Furol.

LITERATURE

(For a key to the periodicals see end of volume)

Fortsch and Wilson, 45, 16: 789; 24. (2) Gans, 252, 6: 218; 99. (3) Herschel, 52, No. 100; 17. (4) Herschel, 244, 10: 31; 22. (5) Herschel, 45, 14: 715; 22. (6) Holde, Examination of hydrocarbon oils, 1917. (7) Lane and Dean, 45, 16: 905; 24. (8) MacCoull, 253, 7: No. 6; 21. (9) Ubbelohde, Tabellen sum Englerschen Viskosimeter, 1907.

SELECTED TECHNICAL TERMS

N. ERNEST DORSEY

In this section are given the definitions of numerous units, and very brief explanations of such technical terms as occur in many sections of the I. C. T. or are for other reasons more suitably considered here than elsewhere. Other terms will be explained where they occur in the body of the work. Symbolical explanations will be given wherever they appear to be satisfactory. In many cases, dimensional formulae (see p. 18) are given; these are enclosed in []. Symbols are enclosed in (). The sequence will be: Name, symbol or symbols, dimensional formula, definition or explanation; but the symbol or formula, or both may be omitted. For the explanation of the symbols employed in the formulae and explanations, see p. 16.

Aberration, Constant of.— $[\theta]$. tan (V-v)/c. V, v = maximum and minimum velocity of earth in its orbit, c = velocity of light in vacuo.

Absolute.—(abs.). 1. An adjective, descriptive of a system of units which is based upon the smallest possible number of independent units. In this connection, every specification of a definite substance or of a vacuum is to be regarded as the introduction of an independent unit. 2. Absolute zero. The temperature at which the pressure of a fixed mass of an ideal gas, maintained at a constant volume, becomes zero. 3. Absolute temperature. The temperature reckoned from the absolute zero.

Absorption.—When the absorption of radiation by a substance is such that $J = J_o e^{-kt}$, J, $J_o =$ intensity, l = length of path, k is the coefficient of absorption. k/d = coefficient of mass absorption. Writing $k = (4\pi k'n)/\lambda$, n = index of refraction, $\lambda =$ wave length in vacuo, k' = index of absorption. (Some call k'n the index.)

Absorptivity.—Ratio of radiant energy absorbed to that absorbed, under same conditions, by a black body.

Action, Planck's constant of .- See Planck.

Ampere.—Unit of electric current. Abs. ampere = 0.1 cgs unit.

Int. ampere is that unvarying electric current which, when passed through a solution of silver nitrate in water, in accordance with certain specifications, deposits silver at the rate of 0.00111800 gram per second.

Ampere-turn.—Unit of mmf. Difference in magnetic potential between the faces of a coil of one turn carrying one ampere.

Ångstrom unit.—(Å). [l]. 10^{-10} meters. International Ångstrom defined as such a length that wave-length of red cadmium line in air at 15°C, A_n, is exactly 6438.4696 Int. Å; it = 10^{-10} m within experimental error.

Anomalistic.—Anom. year [month] = time between successive passages of earth [moon] through perihelion [perigee].

Aphelion.—Point of planet's orbit farthest from sun.

Apogee.—Point of moon's orbit farthest from earth.

Aries, First point of.—Designation of position of vernal equinox (see Celestial sphere); not at present in constellation Aries.

Assay ton.—[m]. 29½ grains; as many mg as there are troy

Astronomical unit of length.—Mean distance (q.v.) earth to sun; 149.50×10^6 km.

Astronomical unit of mass.—Mass of sun.

ounces in short ton.

Astronomical unit of time. Mean solar day.

Atmosphere.—[force area⁻¹], $[m/l^2]$. 1. Normal atmosphere (A_n) defined as pressure exerted by vertical column of liquid 76 cm long, density 13.5951 grams per cm³, acceleration of gravity being 980.665 cm sec⁻². 2. Atmosphere at 45° (A_{45}) differs from A_n only in use of acceleration of gravity at sea level

and lat. 45° instead of 980.655 cm sec⁻². 3. British atmosphere is based on 30 inches instead of 76 cm.

Avogadro's number.— (N_0) . $[m^{-1}]$. Number of molecules in a mole.

Bar.—[force/area], $[m/U^2]$. Internationally accepted unit of pressure; = 10^6 dyne/cm². Has also been used to denote one dyne/cm² (cf. Barye).

Barye.—[force/area], $[m/k^2]$. The cgs unit of pressure, one dyne/cm². (In accordance with recommendation of special committee of International Congress of Physicists, Paris, 1900, and with the usage of the International Bureau of Weights and Measures.) (cf. Bar).

B. A. unit.—A unit of electrical resistance based on certain coils prepared in 1863-1864 by British Association for Advancement of Science.

Black Body.—One which absorbs all radiant energy incident upon it. Its radiance of wave-length λ is J_{λ} d λ ; the intensity, $J_{\lambda} = C_1 \lambda^{-5} [e^{C_2 / \lambda} T - 1]^{-1}$, T = absolute temperature, C_1 , C_2 are radiation constants. Total radiance (J) is $\int J_{\lambda}$ d λ taken over all wave-lengths. $J = \sigma T^4$, $\sigma =$ Stefan, or Stefan-Boltzmann constant of total radiation. For each T there is a wave-length (λ_m) for which $J_{\lambda}(=J_m)$ is a maximum; $J_m = C_i T^5$, $C_i =$ intensity coefficient; $\lambda_m = w/T$, w = Wien's displacement constant.

Board of Trade unit.—1. A unit of electrical resistance based upon certain coils preserved by British Board of Trade. 2. (B.T.u.). Unit of work. Generally used in England as equivalent of one kilowatt-hour. (To be distinguished from British thermal unit (BTU).)

Boltzmann's molecular gas constant.— (k_o) . $[ml^2/t^2T]$. Gas constant (q.v.) per molecule.

Bougie decimale.— $[\psi\omega^{-1}]$. An old unit of luminous intensity, 0.05 Violle unit.

Brightness.— $[\psi/l^2\omega]$. Luminous intensity per unit of apparent area of the luminous surface; if emission follows Lambert's law, brightness is independent of direction of line of sight, otherwise it is not; in latter case, line of sight is assumed to be normal to the surface unless the contrary is stated.

British Thermal Unit.—(BTU). [energy], $[ml^2/t^3]$. Heat per pound, per °F of rise, required to produce small rise in temperature of water under pressure A_n ; varies with temperature, which must be stated. "Mean" BTU = $\frac{1}{16}$ 80 of heat required to raise one lb. of water from 32°F to 212°F, pressure A_n . (To be distinguished from Board of Trade unit (B.T.u.).)

Bulk modulus.—[stress], $[m/l^2]$. Hydrostatic pressure divided by resulting decrease in volume per unit volume. Also called volume elasticity, cubical elasticity, resistance to compression, modulus of compression (cf. compressibility).

Calorie.—[Heat], $[ml^2/t^2]$. 1. Heat per unit of mass, per °C of rise, required to produce small rise in temperature of water under pressure A_n ; varies with temperature, which must be stated. If unit of mass is gram, it is called small calorie, gram calorie, or calorie; symbol is cal. If unit of mass is kilogram, it is called large calorie, kilogram calorie, or Calorie; symbol, Cal. (2) Mean calorie = $\frac{1}{100}$ of heat required to raise unit mass of water from 0°C to 100°C, pressure A_n .

Candle.—(ca). $[\psi\omega^{-1}]$. Basic photometric unit of luminousintensity. A value determined by international agreement, and maintained at certain national laboratories by means of incandescent electric lamps is known as the "International candle."

Candle per square centimeter.— $[\psi/l^2\omega]$. Brightness of surface which, in direction considered, has a luminous intensity of one

candle per cm² of apparent area; π lamberts. Similarly: Candle per sq. in., etc.

Candlepower.—(c.p.). Luminous intensity in terms of candles.

Capacity, heat.—1. Of a substance, is heat per unit of mass, per degree of rise, required to produce a very small rise in temperature, also called specific heat, and thermal capacity.

2. Of a body, is heat, per degree of rise, required to heat the body.

Capacity, electrical.—Of body A with reference to body B is $Q/(V_A - V_B)$, all other bodies in the field being insulated and uncharged; Q = charge on A; V_A , V_B = potential of A, B.

Capacity, polarization.—Of one electrode with reference to another is its electrical capacity per unit of area.

Capillary constant.—(a). [l]. 1. British usage: $a_1^2 = \gamma/(d_1 - d_2)g$; $\gamma = \text{surface tension}$, g = acceleration of gravity, $(d_1 - d_2) = \text{positive difference}$ in the densities of the fluids separated by the surface. 2. German usage: $a_2^2 = 2\gamma/(d_1 - d_2)g$. (The subscripts to the a are usually omitted.)

Carat fine.—See Karat.

Carcel unit.—A superseded unit of luminous intensity; approximately = 9.6 Int. candles.

Celestial sphere.—Sphere, concentric with earth, serving to locate angular positions of celestial bodies; its intersection with plane of earth's orbit [equator] is called ecliptic [celestial equator]; intersections of ecliptic and equator are called equinoxes; motion of equinoxes with reference to stars is called precession of equinoxes, it is resultant of an oscillatory and a nearly uniform motion, a fictitious equinox possessing only the latter motion is called mean equinox. The mean equinox through which sun passes in spring of northern terrestrial hemisphere is called mean vernal equinox, and is point from which celestial longitude (along the ecliptic) and mean right ascension (R. A.) (along the equator) are measured—positive to the east. Intersections of the sphere and the axis of rotation of earth are called celestial poles; that of the sphere and its diameter perpendicular to plane of ecliptic called poles of the ecliptic. Declinations are measured from equator along great circles passing through the poles-positive towards north; celestial latitudes, from ecliptic along great circles passing through poles of eclipticpositive towards north. The pole of the sphere has a motion compounded of a nearly uniform progressive motion and a rotation about a point having the former motion; that point is called mean pole, its motion is the precession of the pole, the rotation of the true pole about the mean pole is called the nutation of the pole; mean (angular) distance between mean pole and true pole is called constant of nutation.

Centi-.—Prefix denoting $\frac{1}{100}$.

Centigrade.—(C). Thermometric system in which freezing point of water is called 0° and its boiling point is called 100° ; pressure = A_n .

Centigrade thermal unit.—(CTU). [energy], $[ml^2/t^2]$. Differs from British Thermal Unit only in the substitution of Centigrade for Fahrenheit scale.

Centimeter.—(cm). 1. The cgs unit of length, 0.01 meter. 2. Often used to denote cgse unit of electrical capacity. 3. Occasionally used to denote cgsm unit of electrical inductance. Centimeter-dyne.—[work], $[ml^2/t^2]$. One erg.

Centimeter of water [of mercury, etc.] at t° .—[force/area], $[m/lt^{2}]$. Denotes pressure exerted by a vertical column of water [of mercury, etc.] one cm long, temperature t° , at a place where acceleration of gravity is g_{\bullet} (=980.665 cm/sec²).

Cheval-vapeur.—[work/time], [ml²/t²]. 1. Primary definition, 75 meter-kilograms per second. Also called force de cheval, continental horsepower, Pferdekraft. 2. For electrical purposes, generally regarded as exactly 736 watts; may be called continental electrical horsepower.

Circular inch.—(cir. in.). [l²]. Area of a circle one inch in diameter. Similarly for circular mil (cir. mil), circular millimeter (cir. mm), etc.

Compressibility.— $[lt^2/m]$. Reciprocal of bulk modulus.

Compression, modulus of.— $[m/lt^2]$. See Bulk modulus.

Concentration.—1. The amount per unit of volume; may be called volume concentration. If amount is measured by mass, the symbol is C. 2. The mass of the material per unit of mass of the mixture containing it; may be called mass concentration. If both masses are expressed in terms of the same unit, this concentration is generally called the titer of the mixture.

Conductance.—Reciprocal of resistance.

Conductance, Specific.—See Conductivity, electrical.

Conductivity, Electrical.—Reciprocal of electrical resistivity (q.v.).

1. (κ) Volume conductivity = reciprocal of volume resistivity; specific conductance. 2. Mass conductivity = κ/d ; d = density. 3. Equivalent conductivity (Λ) is κ/c ; c = equivalents of solute per unit volume of solution. 4. Molecular conductivity (μ) is κ/m ; m = moles of solute per unit volume of solution.

Conductivity, Thermal.—[(heat/area-time)/(T/l)]; $[ml/Tt^3]$.

 $dQ/dt = -kdxdy\frac{d\theta}{dz}$; k =thermal conductivity, dQ =amount of heat through dxdy, in direction dz, in time dt, $d\theta =$ increase in temperature in distance dz.

Coulomb.—The quantity of electricity transferred in one second by a current of one ampere.

Critical.—1. Any point, line, or region serving to locate a well marked transition may be described as critical. 2. As regards condensation of vapors, the temperature corresponding to the isotherm above which liquefaction is impossible is called the critical temperature; the vapor pressure at which the two phases are in equilibrium at the critical temperature is the critical pressure; volume of unit mass at the critical pressure and temperature is the critical volume. These three values are called the critical constants.

Cubic.—(cu.), (*). Used in conjunction with name of unit of length to form name of a related unit of volume; e.g., cubic meter (cu. m) (m*) is name of a unit of volume equivalent to volume of a cube with edges one meter long.

Cubic centimeter atmosphere.—See Liter-atmosphere.

Curie.—Internationally defined as amount of radon (radium emanation) which can exist in equilibrium with one gram of radium.

Current.—(I). The current of x through a surface S is I = dx/dt, where dx is the amount of x which passes through S in time dt. The density of the current through S at a given point is $\sigma_s = dI/dS$, where dI is the current at that point through an element of S of area dS. The value of σ varies with the orientation of dS, and for a certain orientation it is a maximum. The normal, in the direction of the flux, to the element so oriented is the direction of the current; and this maximum value of σ is called the density, or the intensity, of the current at that point.

Dalton.—[m]. A unit of mass, $\frac{1}{16}$ mass of atom of oxygen. Approximately 1.650 \times 10⁻¹⁴ grams.

Day.—(da). [t]. 1. Solar day = interval between successive transits of sun across same meridian. It is not of uniform length.
2. Mean solar day = average length of all the solar days in a tropical year. This is the basis of all our time measurements and is what is meant by day unless the contrary is definitely indicated.
3. Sidereal day = interval between successive transits of true vernal equinox.
4. The day defined by successive transits of same fixed star is not used in astronomical computations, and appears to have no name.

Deci-.—Prefix denoting 1/10.

Declination.—1. Of celestial objects. See Celestial sphere. 2.

Magnetic declination = angular deviation of horizontal com-

ponent of earth's magnetic field from northerly measured geographic meridian; easterly deviations, positive.

Degree.—1. (°), (deg). Unit of difference in temperature; size depends upon thermometric scale employed. 2. (°). Unit of angle, ½60 of complete circumference. 3. (°). Hydrometer degree is an arbitrary unit of difference in specific gravity; its value depends upon type of hydrometer (see p. 31).

Deka -. — Prefix denoting 10.

Demal.—A concentration of one g-equivalent per dm³.

Density.—1. Volume density = dQ/dv, dQ = amount of the physical quantity considered which is contained in the element of volume dv. 2. Density of a substance, (d), (D), is dm/dv, m = mass. When, on a particular scale of operation, the density varies from point to point, it may be that on a larger scale it will not; then the density on the larger scale may properly be called the apparent density (sometimes called bulk density) when operations on the smaller scale are being considered. 3. Surface density = dQ/ds, ds = element of area of surface over which dQ is distributed.

Dielectric constant.—(ϵ). $[t^2/\mu l^2]$, $[\epsilon]$. The force (f) of repulsion between two point charges (e, e') of electricity at a distance (r) apart in a uniform medium of great extent is $f = ee'/er^2$; ϵ depends upon the nature of the medium, and is called its dielectric constant.

Diffusion, Coefficient of .- See Diffusivity.

Diffusivity.—1. (Δ). $\left[\begin{array}{c} \frac{\text{quantity}}{\text{area time}} \right]$, $\left[l^2/t\right]$. dQ/dt = $-\Delta(dc/dx)dydz$. dQ = amount of Q passing through area dydz in direction of x in time dt, dc/dx = rate of increase, in direction of x, of volume concentration of Q. Also called coefficient of diffusion. 2. Heat diffusivity. $\left[\begin{array}{c} heat \\ area \times time \end{array}\right]$

+ specific heat × density × temp.], [heat conductivity distance], distance], [heat conductivity × specific heat],

 $[l^2/t]$. $dQ/dt = -\Delta_t cd(dT/dx)dydz$, Δ_t = heat diffusivity, c = specific heat, d = density, T = temperature. $\Delta_t cd$ = thermal conductivity. Δ_t also called temperature conductivity.

Displacement constant, Wien's.—See Black body.

Displacement, Electric.—See Induction, electrostatic.

Draconic month.—See Nodical month.

Dyne.—[ml/t²]. The cgs unit of force. The force which, when acting continuously upon a mass of one gram and not opposed by another, will impart to the mass a uniform acceleration of one cm per sec.²

Dyne-centimeter.—[force length], $[ml^2/t^2]$. The torque of one dyne acting on a lever-arm of one cm.

Ecliptic.—See Celestial sphere.

Elastic modulus.—Ratio of stress to resulting elastic strain. There are as many types of moduli as there are types of strain. 2. Occasionally used to denote Young's modulus.

Elasticity.—1. Cubical; see Bulk modulus. 2. Longitudinal; see Young's modulus. 3. Shear; see Rigidity. 4. Torsional; see Rigidity. 5. Modulus of; see Elastic modulus.

Electric displacement, field strength, etc.—See corresponding nouns.

Electromagnetic unit of quantity of electricity.—See Quantity of electricity.

Electromotive force.—(E), (emf). See Potential.

Electron.—Negative electrons are very small negatively charged particles observed under many, very diverse conditions. All appear to be alike in every way, including amount of charge carried. They appear to be one of the basic elements of which atoms are made.

Electronic charge.—(e). A quantity of electricity, of either sign, which is numerically equal to the electric charge carried by an electron.

Electronic mass.—(m_o). The mass of a negative electron when moving with a velocity much less than that of light.

Electronic ratio.—(e/m_o). Ratio of electronic charge to electronic

Electrostatic unit of quantity of electricity.—See Quantity of electricity.

Elongation.—Distance of an oscillating, or of a revolving, body from a point of reference; e.g., the distance of an electron from the nucleus about which it revolves.

Emissivity.—Ratio of radiance of the body to that of a black body at same temperature. If radiation of only one wave-length is considered, it is monochromatic emissivity; if all wave-lengths, it is total emissivity. The ratio of the radiances (or of the emissivities) of two non-black bodies is called relative emissivity of first with respect to second.

English sperm candle.—See Sperm candle.

Equation of time.—See Time.

Equator.—1. The intersection of surface of the earth, or other rotating spheroid, with the plane through its center perpendicular to its axis of rotation. 2. The intersection of the surface of a spheroid with a plane through its center and perpendicular to any diameter chosen as axis. 3. Celestial equator. See Celestial sphere.

Equinox.—See Celestial sphere.

Equivalent.—(equiv). Electrochemical equivalent (briefly equivalent) of an ion—actual or potential—is its formula weight divided by its valence.

Erg.—[force · distance], $[ml^2/t^2]$. Work done by a force of one dyne while acting through a distance of one centimeter in its own direction.

Erg-second.—[work · time], $[ml^2/t]$. The action produced by one dyne acting through one cm in one sec.

Expansion, coefficient of.—See Expansivity.

Expansivity.— $[T^{-1}]$. 1. Volume expansivity = dv/(vdT). 2. Linear expansivity = dl/(ldT). v, l, T = volume, length, temperature; dv[dl] is change in v[l] produced by change dT in temperature.

Fahrenheit.—(F). A thermometric system in which 32° denotes the freezing, and 212°, the boiling point of water under pressure of A_n.

Farad.—Capacity of electrical condenser which is charged to a potential difference of one volt by one coulomb.

Faraday.—(F). A subsidiary unit, the electrical charge carried in electrolysis by one gram-equivalent.

Field.—The field of a physical quantity is the region of space within which phenomena characteristic of the quantity exist. The strength, or intensity, of the field at any point is measured by the magnitude at that point of some chosen, characteristic phenomenon, and the complete designation of the field includes an indication of this phenomenon; e.g., electrical field of force. As force is the phenomenon most frequently chosen, and in other cases the context indicates what is intended, the explicit designation of the chosen phenomenon is quite frequently omitted.

Field intensity.—The strength, or intensity, of a field of force at any point is df/dm, where df is the mechanical force experienced by dm, a vanishingly small amount of m placed at that point. For an electrical field, m is positive electricity; for a magnetic field it is a north magnetic pole; for a gravitational field it is mass. Magnetic field strength is frequently called magnetizing force.

Fluidity.— (φ) . Reciprocal of viscosity. Also called coefficient of fluidity.

Flux.—1. Flux (ψ) of vector (V) through surface S is $\psi = \int_S V_n dS$; $V_n = \text{component of } V \text{ normal to } dS$, integral is to be taken over S. 2. Flux of a quantity Q through surface is $\psi = dQ/dt$,

dQ= amount of Q which passes through S in time dt. 3. From point source. If $V=I/r^2$, where r= distance from source and I is a constant independent of direction, I is called intensity of the source, and $\psi=I\omega$; $\omega=$ solid angle subtended, at the source, by S (cf. Intensity, luminous).

Flux, Luminous.— (ψ) . Flux of radiant energy expressed in terms of its power to produce luminous sensation in the human eye.

Flux, Magnetic.—Flux of magnetic induction.

Foot-candle.— $[\psi/l^2]$. Unit of illumination, one lumen per square foot.

Foot-lambert.— $[\psi/l^2\omega]$. Unit of brightness; see Lambert.

Foot-pound.— $[ml^2/t^2]$. Work required to raise one pound a vertical distance of one foot, where g = 980.665 cm/sec² (cf. meter-kilogram).

Foot-poundal.— $[ml^2/t^2]$. Work done by force of one poundal (q.v.) acting through a distance of one foot.

Force.— $[ml/t^2]$. That which imparts acceleration to material bodies.

Force, Electromotive.—See Potential.

Force, Magnetizing.—See Field intensity.

Force, Magnetomotive.—See Potential.

Force de cheval.—See Cheval-vapeur.

Frequency.— (ν) . [N/t]. Number per unit of time. In case of vibrations, waves, etc., the frequency is the number of complete vibrations, of complete waves, etc., per unit of time.

Gamma.—(γ). $[\sqrt{m/\mu l t^2}]$, $[\sqrt{m l \epsilon}/\bar{t^4}]$. A unit of magnetic field intensity; 0.000 01 gauss.

Gas constant.—1. (R). [work/mass-degree], $[l^2/t^2T]$. The coefficient R in the ideal gas equation pv = RTm; p = pressure, v = volume of the mass m at absolute temperature T. 2. (R). [work/mole-degree]. Gas constant per mole obtained by expressing m in moles. 3. (k). [work/molecule-degree], $[ml^2/t^2T]$. Boltzmann's molecular gas constant: obtained by expressing m in terms of number of molecules.

Gas, Ideal.—One which strictly satisfies the equation (pr = RTm) and other relations deduced from the classical kinetic theory of gases on the assumption that the molecules are infinitely small and devoid of mutual attraction.

Gauss.— $[\sqrt{m/\mu l t^2}]$, $[\sqrt{m l \epsilon/t^4}]$. The cgsm unit of magnetic field intensity.

Gaussian gravitation constant.—The square root of the intensity of the gravitational field of force of the sun at a point whose distance from the sun is the astronomical unit of length (cf. Gravitation constant).

Geepound.—See Slug.

Gilbert.— $[\sqrt{ml/\mu t^2}]$, $[\sqrt{\epsilon ml^3/t^4}]$. Electromagnetic unit of magnetic potential, of magnetomotive force. Unless contrary is indicated, it is the cgsm unit. In precise work, the International gilbert, based upon the Int. elec. units, should be distinguished from the absolute, or cgsm, gilbert.

Grade.— $[\theta]$. Unit of plane angle, $\frac{1}{100}$ of complete circumference. **Gram atom.**—See Mole.

Gram calorie. - See Calorie.

Gram equivalent.—See Mole.

Gram formula weight.—See Mole.

Gram weight .- See Weight.

Gravitation constant.—(G). $[l^2/mt^2]$. The coefficient G occurring in the equation $f = G(mm')/r^2$; f = force of gravitational attraction between two point masses (m, m') in vacuo, r = distance between m and m' (cf. Gaussian gravitation constant).

Gravity, Acceleration of.—(g), (g_*) . $[l/t^2]$. Unless the contrary is indicated, this expression refers specifically to the earth, and denotes the resultant acceleration downward experienced by a freely falling body placed at the point considered. It includes centrifugal effects arising from the rotation of the

earth, as well as the effects of gravitational attraction (cf. Gravity, standard).

Gravity, Specific.—See Specific gravity.

Gravity, Standard.— (g_1) . $[l/t^2]$. Standard gravity is the value adopted by the International Committee on Weights and Measures as the "accepted" value of the acceleration of gravity to which all measurements involving this quantity are to be referred. Thus a pressure of x cm of mercury at t° C is to be understood as denoting the pressure exerted by x cm of mercury at t° C at a place where the acceleration of gravity is g_1 . The accepted value is $g_2 = 980.665$ cm/sec² (= 32.174 ft./sec²).

Heat.—1. By the heat of a process is meant the amount of heat evolved, per unit quantity of material involved, during the isothermal process, the process proceeding in the direction indicated. The quantity of material may be expressed in terms of mass, of moles, of equivalents, etc., as may seem desirable. 2. By the latent heat of a transformation is meant the amount of heat absorbed per unit quantity of material transformed, the transformation proceeding in the direction indicated. Latent heat of transformation of A to B = - (heat of transformation of B to A.

Heat diffusivity.—See Diffusivity.

Heat, Specific.—See Capacity, and Specific heat.

Hecto-.-Prefix denoting 100.

Hefner unit.—A superseded unit of luminous intensity; approximately = 0.9 Int. candles.

Henry.— $[\mu l]$, $[l^2/\ell l]$. Unit of electromagnetic inductance. Defined as that inductance for which an induced electromotive force of one volt is produced when the inducing current is changed at the uniform rate of one ampere per second.

Horsepower.—(h.p.). [work/time], $[ml^2/t^3]$. 1. (HP) Primary definition of the term is work done at the rate of 550 foot-pounds per second. 2. For electrical purposes it is regarded as exactly = 746 watts, which is frequently called the electrical horsepower. 3. Continental horsepower. See Cheval-vapeur.

Humidity.—1. Absolute humidity of a gas is the actual amount of water vapor per unit volume of the gas. Usually expressed in terms of the actual pressure of the water vapor present. 2. Relative humidity of a gas = ratio of the pressure of water vapor present to the pressure of water vapor which is in equilibrium with water at the same temperature. 3. Dew-point of a gas is the temperature at which the pressure of water vapor in equilibrium with water is equal to the actual pressure of the water vapor contained in the gas. If the temperature of the gas be varied while its absolute humidity remains unchanged, then the dew-point is that temperature at which the relative humidity is 100%. 4. If the bulb of a thermometer be encased in a fabric which is kept wet with water (wet-bulb), the thermometer will record a lower temperature than if the bulb were dry (drybulb). If the circulation over the wet bulb is sufficiently rapid. the difference in the temperatures depends solely upon the total pressure of the gas, its absolute humidity, and its temperature. Hence the humidity of the atmosphere, or of any other very large volume of gas, can be readily determined by the use of wet- and dry-bulb thermometers.

Hydrometer.—An instrument which, by the extent of its submergence, indicates the specific gravity of the liquid in which it floats. Frequently, its readings are expressed in degrees (°). Various systems of graduations are in use, see p. 31.

Hygrometric.—Pertaining to humidity of atmosphere.

Hypsometry.—The art of measuring the elevation above sea-level.

More specifically, the use of the boiling-point of water for such measurements.

Ice point.—(T₀). Temperature at which water freezes when under the pressure of one normal atmosphere.

Ideal gas. - See Gas, ideal.

Illumination.— $[\psi/l^2]$. The illumination at a point of a surface is the surface density of the luminous flux incident at that point.

Inch of water [of mercury, etc.] at t° .—Analogous to cm of water (q.v.)

Index of absorption.—See Absorption.

Index of refraction.—See Refraction.

Inductance.—The electrical inductance of circuit A with reference to circuit B is ψ_A/I_B ; $\psi_A = \text{flux of magnetic induction through } A$ as a result of the current I_B in B. A and B may be the same circuit.

Induction.—1. That modification which is acquired by a medium when it becomes the seat of a field of force, and which is evidenced by the fact that its boundaries with other media exhibit distinctive properties which they do not possess in the absence of the field. 2. The distinctive properties mentioned in (1); as in magnetization by induction, induced electric charges, etc.

3. Electrostatic induction. $[\sqrt{m/\mu^2}]$, $[\sqrt{\epsilon m/U^2}]$. ϵF , $\epsilon =$ dielectric constant, F = intensity of electrostatic field of force. Electric displacement = $\epsilon F/4\pi$.

4. Magnetic induction (B). $[\sqrt{\mu m/U^2}]$, $[\sqrt{m/\epsilon^2}]$. $B = \mu H$, $\mu =$ magnetic permeability, H = intensity of magnetic field of force.

5. Electromagnetic induction is the phenomenon which is characterized by the appearance, in every circuit, of a cyclical emf which is proportional to the rate of change of the flux of magnetic induction through that circuit.

Intensity coefficient.—See Black body.

Intensity. Field.—See Field intensity.

Intensity, luminous.—1. Of a point source in a given direction = amount of luminous flux, per unit of solid angle, which the source emits in the direction considered. 2. Of a point of an extended source = brightness of that point of the source; also called intrinsic brightness. 3. Of an extended source, in a given direction, is its intensity at a point so distant in the stated direction that the source may be regarded as a point. For nearer points the apparent intensity will depend upon the distance, and is defined as the intensity of that point source which at the same distance will produce the same illumination (cf. flux).

Intensity of magnetization.—See Magnetization.

Intensity of radiation.—1. The intensity of the radiation emitted in a specified direction by a body is the amount of radiant energy emitted in that direction, per unit of time, per unit of area, and per unit of solid angle of emission. For spectral, or monochromatic, intensity, See Radiance. 2. Of received radiation, See Irradiation. 3. Of radiation in transit. The amount of radiant power per unit area which passes through an element of area which is normal to the direction of propagation; this equals the volume density of radiant energy at the point considered.

International electrical units.—A system of electrical and magnetic units based upon the ohm, the ampere, and secondarily upon the volt, all as realized by certain concrete standards which have been internationally agreed upon, and upon the cgs units for such other quantities as may be involved. The concrete standards have been so chosen as to make the international system nearly identical with the practical system; as now defined, the outstanding discrepancy in no case exceeds 52 parts in 100 000. In distinguishing between the two systems, the units of the practical system are described as absolute, those of the other, as international. The introduction of the volt as a secondary unit defined by a concrete standard (Weston normal cell = 1.018300 Int. volts at 20°C) introduces confusion when measurements of high precision are to be recorded. In these Tables, values based upon the Int. ohm and the Int. ampere (as defined by the silver voltameter) are denoted by (a). Those based on the Int. ohm and the Int. volt (as defined by the standard cell) are denoted by (v).

Irradiation.—The radiant power, per unit of area, incident upon a surface.

Joule.— $[ml^2/t^2]$. 1. Absolute joule = 10^7 ergs. 2. International joule = work expended per second by an Int. ampere in an Int. ohm.

Karat.—(K). Denotes the "fineness of gold" in terms of parts (by weight) of gold per 24 parts of the alloy. Twenty-four g of an n karat alloy contains n g of gold, the alloy is "n carats fine."

Kelvin.—(K). Name applied to the absolute centigrade scale of temperature.

Kilo-.—Prefix denoting 1000.

Kilogram calorie.—See Calorie.

Kilogram-meter.—A torque equivalent to that of one kilogram weight acting on a lever-arm one meter long.

Kilowatt-hour.—Work expended by one kilowatt in one hour.

In Great Britain it is quite generally called Board of Trade unit (B.T.u.).

Kinematic viscosity.— $[l^2/t]$. Ratio of viscosity to density.

Lambert.— $[\psi/l^2\omega]$. The brightness of a surface which, radiating in accordance with Lambert's law, emits a total luminous flux of one lumen per cm². For such a surface, brightness is independent of direction of the line of sight and equals $1/\pi$ lumen, per steradian, per cm² = $1/\pi$ candles per cm². If the total emission is one lumen per sq. ft., the brightness is called one foot-lambert.

Lambert's law.— $I = I_o \cos \theta$; $I_o[I] = \text{intensity of radiation}$ emitted in direction normal [at angle θ with normal] to the surface. In many cases this law does not express the facts.

Latent heat.—(l, L). See Heat.

Latitude.—(lat.). 1. The angular distance of a point from the equator of a spheroid, measured along a great circle passing through the poles. 2. Celestial latitude. See Celestial sphere.

Legal ohm.—A unit of resistance; so designated by the International Conference of 1884, and defined as the resistance of a column of mercury 1 mm² in cross-section and 106 cm in length at the temperature of melting ice. It was never legalized.

Light-year.—Distance traveled by light in free space in one year.

Line.—Unit of flux of magnetic induction = one maxwell.

Liter-atmosphere.—The amount of external work done when a volume is increased by one liter against an external pressure of one atmosphere.

Longitude.—(long.). 1. The longitude of a point is the angle which its axial plane makes with a fiducial one. For the earth, angles measured from the fiducial plane towards the west are usually considered positive. 2. Celestial or astronomical longitude. See Celestial sphere.

Loschmidt's number.— (n_o) . $[l^{-2}]$. Number of molecules per unit volume of an ideal gas at 0° C and pressure A_n .

Lumen.— $[\psi]$. Fundamental unit of luminous flux. A uniform point source of one candle emits 4π lumens.

Luminous flux.—See Flux, luminous.

Luminous intensity.—See Intensity, luminous.

Lunar month.—The time which elapses between successive new moons. Also called synodical month.

Lux.—A unit of illumination, one lumen per square meter.

Magnetic flux.—See Flux, magnetic.

Magnetic induction.—See Induction.

Magnetic moment.—See Moment.

Magnetization, Intensity of.—Magnetic moment per unit of volume (cf. moment).

Magnetomotive force.—(mmf). See Potential.

Magnitude.—The magnitude, or apparent magnitude, (m) of a star is primarily an indication of the amount of light the earth receives from it. The value to be assigned to the latter depends upon the characteristics of the perceptive apparatus: visual, photovisual, photographic, and radiometric magnitudes are to be distinguished. Certain stars near the north pole have been chosen as standards; the numerical magnitudes assigned to them are such as represent satisfactorily the range covered by early naked-eye estimates, and satisfy the equation m = 2.5 ($\log_{10}I_0 - \log_{10}I$), I = intensity of light from a star of magnitude m, and $I_0 =$ that from one of magnitude zero. For Vega, m = 0.2; a star of m = 6 is near the limit of naked-eye visibility. The absolute magnitude M is internationally defined as the apparent magnitude the star would have if its distance were 0.1 parsec; $M = m + 5 + 5 \log_{10}\pi$, $\pi =$ parallax expressed in ".

Mass, Engineers' unit of .- See Slug.

Maxwell.—The cgsm unit of flux of magnetic induction.

Mean distance.—In astronomical parlance, the mean distance of a planet from the sun denotes the mean of the greatest and the least distance from the sun to the path of the planet. Similarly in other cases.

Mean spherical candlepower.—Average candlepower of a source, in all directions.

Mega-.-Prefix = 1 000 000.

Megmho.—Conductance of one reciprocal microhm.

Meter-candle.—The illumination of an element of surface one meter distant from a uniform source of one candle situated upon the normal to the center of the element. One lux.

Meter-kilogram.— $[ml^2/t^2]$. Work required to raise one kilogram a vertical distance of one meter at a place where the acceleration of gravity is 980.665 cm/sec.²

Mho.—An electrical conductance of one reciprocal ohm.

Micro-.—Prefix denoting 1/10.

Microhm.-10-6 ohm.

Micromicro-.—Prefix denoting 1/1012.

Micron.—(μ). Unit of length = $1/10^6$ m = 0.001 mm.

Mil.—0.001 in. (cf. Circular inch).

Milli-.—Prefix = 0.001.

Millimicro-.—Prefix = 0.000 000 001.

Minute.—1. (min). Time, $\frac{1}{1440}$ of a day. 2. ('). Unit of angle, $\frac{1}{160}$ degree. 3. ('). Centesimal minute = unit of angle = 0.01 grade.

Modulus.—1. See Elastic modulus. 2. For the several elastic moduli—bulk, compression, elasticity, rigidity, torsion, Young's—see distinguishing name.

Mohs.—An arbitrary scale of hardness based upon a selected list of 10 native minerals.

Mole.—A variable, derived unit of mass; its mass is numerically equal to the molecular weight of the substance measured. The expressions gram-mole, kilogram-mole, etc. are used to designate the basic unit of mass employed. Similarly derived units based upon the atomic weight, the formula weight, or the equivalent are called the gram-atom, gram-formula weight or gram-equivalent when the gram is the basic unit, and correspondingly in other cases.

Molecular.—For molecular properties, see appropriate properties.

Molecular volume.—Volume occupied by one mole. Molecular weight divided by density.

Molecular weight.—(M). The sum of the atomic weights of all the atoms contained in a molecule.

Moment.—1. Of force (F) about a point = Fl, l = perpendicular distance from the point to the line of F. 2. Of a couple = product of either force times perpendicular distance between them. 3. Of a magnet = moment of couple acting upon it when it is at right angles to a magnetic field of unit intensity. 4. Of inertia about an axis = sum of the products

of each element of mass times the square of its distance from the axis.

Month.—1. Period of time determined by motion of moon. See lunar, synodical, tropical, sidereal, anomalistic, nodical, draconic.
2. Solar month = 1/12 of tropical year.
3. Calendar month = conventional subdivision of year.

Myria-.—Prefix = 10 000.

Node.—1. A point of a standing wave where the displacement is independent of the time. 2. In astronomy, the points where an orbital, or other, plane cuts the ecliptic; the rising node is the one at which the passage across the plane of the ecliptic is from south to north.

Nodical month.—Time required by the moon to pass from one rising node to the next. Also called draconic month.

Noon.-See Time.

Normal.—1. The normal to a surface is a line drawn perpendicular to the surface at the point considered. 2. Any line perpendicular to another may be said to be normal to it. 3. A concentration of one gram-equivalent per liter.

Normal atmosphere.— (A_n) . See Atmosphere.

Numeric.—(N). A pure number. A dimensionless quantity.

Nutation.—See Celestial sphere.

Oersted.—The cgsm unit of magnetic reluctance.

Ohm.—(Ω). A unit of electrical resistance. 1. Absolute ohm = 10° cgsm units. 2. International ohm is the resistance, at the temperature of melting ice, offered to an unvarying electric current by a column of mercury, of constant sectional area, having a mass of 14.4521 grams and a length, at the temperature mentioned, of 106.300 cm.

Ohm-centimeter.—Unit of electrical volume resistivity. The resistivity of a material of which a uniform bar one cm² in sectional area has a longitudinal resistance of one ohm per cm of length. Frequently called one ohm per centimeter cube.

Ohm (cm, gram).—Unit of electrical mass resistivity. The resistivity of a material of which a bar, having such a uniform section that its mass per linear cm is one gram, has a longitudinal resistance of one ohm per cm of length.

Ohm (meter, mm).—Unit of electrical volume resistivity. The resistivity of a material of which a circular cylinder one mm in diameter has a longitudinal resistance of one ohm per meter.

Ohm (meter, mm²).—Unit of electrical volume resistivity. The resistivity of a material of which a circular cylinder one square mm in sectional area has a longitudinal resistance of one ohm per meter.

Ohm (mil, ft.).—Analogous to ohm (meter, mm). Cylinder one mil in diameter, resistance of one ohm per foot.

Ohm (mile, pound).—Analogous to ohm (cm, gram).

Ohm-inch.—Analogous to ohm-centimeter.

Parallax.—1. The annual parallax of a star is defined as the maximum angle subtended by one astronomical unit of length at the distance of the star from the sun. 2. The equatorial horizontal parallax of a member of the solar system is the maximum angle subtended by the equatorial radius of the earth at the distance of the earth from the member considered.

Parsec.—The distance of a star for which the annual parallax is one second of arc.

Pentane candle.—A superseded unit of luminous intensity = one Int. candle.

Percent.—(%). The number of units of the constituent in 100 units of the mixture containing it. If units of volume are used, the ratio is called volume percent; if units of mass, it is called mass percent, weight percent, or simply percent. (% must be distinguished from %, which is frequently used to denote per thousand.)

Perigee.—That point of the moon's orbit which is nearest to the earth (cf. apogee).

Perihelion.—That point of a planet's, or comet's, orbit which is nearest to the sun (cf aphelion).

Permeability.—(μ .) The force (f) of repulsion between two rigidly magnetized poles (m, m') at a distance r apart is $f = (mm')/(\mu r^2)$; μ depends upon the material in which the poles are immersed, and is called its permeability.

Pferdekraft.—See Cheval-vapeur.

Phot.—An illumination of one lumen per cm².

Photoelectric constant.—1. h/e. It is $1/\nu$ of the rise in potential required to impart to a negative electron the energy it has when emitted under the action of radiation of frequency ν . 2. hc/e. This is λ times the rise in potential mentioned in (1). λ = wave-length in vacuo.

Planck's constant of action.—(h). $[ml^2/t]$. A universal constant which fixes the amount of energy contained in the individual bundles, or quanta, of radiation emitted by a radiating body. Each such bundle contains an amount of energy = $h\nu$, ν = vibration frequency of the radiation. h is also called Planck's quantum.

Poise.—[m/lt]. The cgs unit of viscosity. If the tangential force, per unit area, which one layer of a fluid exerts upon an adjacent one is one dyne when the space rate of variation of the tangential velocity from layer to layer is unity, the viscosity of the fluid is one poise.

Poisson's ratio.—If a bar of uniform section be subjected to a pure tensile stress, the ratio of its transverse contraction per unit of transverse thickness to its elongation per unit of length is called the Poisson's ratio of the material.

Pole strength.—See Quantity of magnetism.

Poncelet.—Unit of power = 100 meter-kilograms per second.

Potential.—The excess of the potential at the point A over that at B, with reference to any quantity m, is the mechanical work per unit of m which must be done in carrying a very small positive amount of m from B to A. The difference in electrical potential is called electromotive force, emf, potential difference; in magnetic potential, is called magnetomotive force, mmf.

Potential gradient.—The space rate of increase in the potential.

If the direction in which the rate to be measured is not stated, that corresponding to the maximum gradient is to be understood.

Pound weight.—See Weight.

Poundal.—The unit of force in the fps system. It is the force which, if acting continuously upon a mass of one pound, will impart to it a uniform acceleration of one foot per second² (cf. Dyne).

Power.—1. The time rate of doing work. 2. If when the two junctions of a bimetallic circuit differ in temperature by a small amount (dt), there is an open circuit emf (dE) around the circuit, then (dE)/(dt) is called the thermoelectric power of the circuit, corresponding to the average temperature of the two junctions. 3. The ability to do some specific thing; as in rotatory power.

Practical electric units.—A system of electrical units based upon 10° cm, 10^{-11} gram, sec, and the permeability of a vacuum, as fundamental units. The units of most interest are the ohm $(=10^{\circ}$ cgsm), ampere (=0.1 cgsm), and volt $(=10^{\circ}$ cgsm). Frequently described as absolute (cf. Int. elec. units).

Precession of the equinoxes.—See Celestial sphere.

Pressure.—(p), (P). $[m/lt^2]$. Normal force per unit of area. A hydrostatic pressure is a pressure which is the same in all directions. For critical pressures, see Critical.

Quadrant.—1. Unit of angle = 90°. 2. Formerly used occasionally to denote the henry.

Quantity of electricity.—1. (es). The electrostatic unit is that quantity which when concentrated to a point and placed at unit distance from an equal point charge will exert upon it a

unit force, the surrounding medium being a vacuum. 2. (em). The electromagnetic unit is that quantity which is transferred per unit of time across any section of an infinitely long, straight, linear conductor when the current is such that the intensity of the resulting magnetic field at unit distance from the conductor is unity. 3. For other units—coulomb, electronic charge, faraday—see corresponding names.

Quantity of magnetism.—Also called pole strength. 1. The electromagnetic unit is that quantity which when concentrated to a point pole and placed at a unit distance from an equal point pole will exert upon it a unit force, the surrounding medium being a vacuum. 2. The electrostatic unit is that quantity which when concentrated to a point pole and placed at a unit distance from an infinitely long, straight, linear conductor would experience a unit force as a result of a current in the conductor such that one electrostatic unit of electricity per second is transferred across each section of the conductor. 3. The Int. electric unit is not named, it is the same as the cgsm unit.

Quantum.—1. Certain processes are essentially discrete, and consequently parcel out into bundles the several quantities involved. If for a certain quantity and a particular process these bundles are all alike, it is now customary to call them quanta, without implying that the quantity so bundled has in itself any atomistic properties. 2. Planck's quantum. See Planck.

Radian.—An angle which encloses, of the circumference of a concentric circle, an arc = radius.

Radiance.—The radiance of a body, within the spectral range λ_1 to λ_2 , is defined as the intensity of the radiant energy, having wave-lengths lying between λ_1 and λ_2 , which the body emits in a direction perpendicular to its radiating surface. If the spectral range is not mentioned, all wave-lengths are to be included; this is frequently called the total radiance. The spectral, or monochromatic, intensity of the radiance of wave-length λ is defined as the ratio of the radiance within the range $(\lambda - \frac{1}{2}d\lambda)$ to $(\lambda + \frac{1}{2}d\lambda)$ to $d\lambda$, when the latter is indefinitely small (cf. Emissivity).

Radiation constants.—See Black body.

Rankine.—A name sometimes applied to the absolute Fahrenheit scale of temperature.

Réaumur.—(R). A thermometric system in which the freezing point of water is called 0°, and the boiling point, 80°.

Reflectivity.—The ratio of the intensity of the light specularly reflected from a surface to the intensity of the light incident upon it. It is a pure numeric.

Refraction.—1. The index of refraction, refractive index, or refractive exponent is $n = \sin i/\sin r$; i = angle of incidence from a vacuum upon the substance, and r = angle of refraction, each measured from the normal to the surface. 2. Refractivity is (n-1). 3. Specific refractivity (r_G) is (n-1)/d. Specific refraction (r_L) is $(n^2-1)/d(n^2+2)$. d = mass per unit of volume. 4. Molecular refractivity $= Mr_G$. Molecular refraction $= Mr_L$. M = molecular weight. By replacing M by the atomic weight, the corresponding atomic values are obtained. 5. Refractive constant of a solute is its specific refractivity computed on the assumption that the refractivity of the solution is equal to the sum of the refractivities of its pure constituents each multiplied by the ratio of its mass per unit volume of the solution to its own density when pure.

Reluctance.—The magnetic reluctance of a body between two specified equipotential surfaces is the ratio of the difference in the two potentials divided by the flux of magnetic induction from [to] either surface to [from] the body. It has no significance unless these two fluxes are the same.

Resistance.—1. The electrical resistance of a body between two specified equipotential surfaces is E/I, where E is the unchanging difference in the potentials of the surfaces and I is the result—

ing current across any transverse section between them. 2. Specific resistance. See Resistivity.

Resistivity.—1. [resistance × length]. Resistivity, or volume resistivity, of a substance is the longitudinal resistance per unit of length of a uniform bar of the substance of unit sectional area. 2. [resistance × mass/(length)²]. Mass resistivity of a substance is the longitudinal resistance per unit of length of a uniform bar of the substance of such a sectional area that it contains one unit of mass per unit of length. 3. [resistance]. Surface resistivity is the resistance per unit of length of a strip of the surface of unit width. It has reference solely to the current which is restricted to the surface.

Rhe.—Name proposed for cgs unit of fluidity; = one reciprocal poise.

Right ascension.—See Celestial sphere.

Rigidity.—If to the four faces of a cube which are parallel to a given edge there be applied tangential stresses which are equal in absolute value, perpendicular to the given edge, and so directed as to produce a pure distortion, the other two faces will be deformed into diamond shaped figures if the material is isotropic. The modulus of rigidity is defined as the quotient of the stress on any one of the faces divided by the resulting change in any one of the angles of a distorted face. Also called modulus of shear, Coulomb's modulus, modulus of torsion (the last is undesirable).

Rotation.—See Rotatory power.

Rotatory power, Optical.—1. The natural rotatory power is θ/l , where θ is the rotation of the plane of polarization which occurs in a path of length l. The specific rotatory power ($[\alpha]$) is θ/dl , d = density. The molecular [or atomic] rotatory power is $M\theta/dl$ [or $A\theta/dl$]; M = molecular, A = atomic weight. 2. The magnetic rotatory power is $\theta/(lH\cos\alpha)$, where H = intensity of the magnetic field and α = angle between H and the path of the light. It is commonly called Verdet's constant. From the magnetic rotatory power, the specific ($[\alpha]$), molecular, and atomic magnetic rotatory powers are derived exactly as in the case of natural rotation. The ratio of any one of these quantities to the corresponding one for a chosen reference substance is called the relative power. Water is the reference substance commonly chosen, and $[\Omega]$ is used to denote the molecular magnetic rotatory power relative to water.

Rydberg's fundamental frequency, and series constant.—See Series, spectral.

Secohm.—A superseded name for the henry.

Second.—1. (sec). Time, ½6400 day. Mean solar day, unless contrary is indicated. 2. ("). Unit of angle, ½600 degree.
3. ("). Centesimal second = 0.0001 grade.

Seger cone.—One of a graded series of cones of refractory material which, by their softening and the resultant deformation, indicate the heat treatment to which they have been subjected.

Series, Spectral.—Spectral lines, or groups of lines, which occur in orderly sequence. Most of these sequences can be represented by an equation of the form $\frac{1}{\lambda} = A - \frac{BN}{(m+\alpha+\beta/m^2)^2}$; $\lambda = \text{wave-length}$ in vacuo; m is an integer varying from one line (or group) to another; for any one series, A, B, N, α and β are constants; B is an integer; N is known as Rydberg's constant, its value is determined by the constitution of the radiating atom. On Bohr's theory, $N = N_{\infty} \frac{M}{M+m_{\bullet}}$, where M = mass of the atom, $m_0 = \text{electronic mass}$, and $N_{\infty} = 2\pi^2 m_0 e^4/h^3 c_{\bullet/2}$; N_{∞} is known as Rydberg's universal series constant; $\epsilon_0 = \text{electronic charge}$; h = Planck's constant; $\epsilon_0 = \text{dielectric constant}$ of vacuum; $\mathbf{c} = \text{velocity of light in vacuo}$. On this theory, B denotes the number of electrons displaced from their normal positions, m is the principal quantum number, α depends

upon the subordinate, or azimuthal, quantum number, and $\beta=0$. For atoms of the type of hydrogen, $\alpha=0$, $\beta=0$; for others $(m+\alpha+\beta/m^2)$ is frequently called the effective quantum number, generally it is not an integer. Rydberg's fundamental frequency is $\nu_{\infty}=cN_{\infty}$.

Sidereal month.—The time required for the moon to complete one apparent circuit among the stars.

Siemens unit.—(S.E.). A superseded unit of electrical resistance proposed in 1860 by Werner von Siemens; defined as the resistance at 0°C of a column of mercury one meter long and of a uniform cross section = one mm².

Slug.—A unit of mass. 1. The mass which will acquire an acceleration of one foot per sec² when continuously acted upon by a force of one pound weight. Also called geepound, and engineer's unit of mass. 2. The metric slug is the mass which will acquire an acceleration of one meter per sec² when continuously acted upon by a force of one kilogram weight.

Solar month.— $\frac{1}{12}$ tropical year.

Solubility.—1. By solubility of the non-gas a in b is meant the mass of a per unit mass of b which is contained in the mixture which is in equilibrium with an excess of a. In this mixture b is said to be saturated with a. Data are frequently restricted to mass of a per unit mass of mixture, mass of a per unit volume of mixture, or moles of a per mole of mixture. 2. Solubility of a gas is C_*/C_p , C_* = concentration of gas in the solution, C_p = concentration of gas in overlying gas phase. 3. Solubility product of an ionized substance $(A_n B_m)$ in a stated solvent = $[A]^n \cdot [B]^m$, where [A] and [B] denote the concentrations of the two ions when the solution is saturated with the substance.

Specific gravity.— $(d_{t_1}^{t_2})$. The ratio of the mass of a certain volume of the substance at the temperature t_2 to that of the same volume of a reference substance (usually water) at temperature t_1 . Frequently, but incorrectly, called density.

Specific heat.—1. Heat capacity. See Capacity. 2. Specific heat of electricity.—See Thomson effect. 3. Einstein's specific heat constant (β) = ratio of Planck's constant (h) to Boltzmann's molecular gas constant (k_0) . 4. Ratio of specific heats = $\gamma = c_p/c_1$; c_p , c_r = specific heat at constant pressure and at constant volume, respectively.

Specific inductive capacity.—The ratio of the dielectric constant of the substance to that of a vacuum.

Specific refractive power.—Used indifferently to denote several of the refractive constants (cf. Refraction).

Sperm candle, English.—A superseded unit of luminous intensity = one Int. candle.

Spheradian.—See Steradian.

Spherical candlepower, Mean.—See Mean spherical candlepower. Square.—(sq.), (2). Used in conjunction with the name of a unit of length to form the name of a related unit of area; e.g., square foot (sq. ft.), (ft.2) is the name of a unit of area equivalent to the area of a square with edges one foot long.

Square degree.—The solid angle enclosed by a cone of vanishingly small vertex angle 2θ is $k\pi\theta^2$. If θ is expressed in radians and the unit of solid angle is so chosen that k=1, that unit is called a steradian. If θ is expressed in degrees, and k=1, the corresponding unit of solid angle is called a square degree. One square degree = $(\pi/180)^2$ steradians. This procedure defines a definite unit of solid angle although the solid angles enclosed in cones of finite vertex angles are not proportional to the squares of those angles.

Stefan's constant.—See Black body.

Steradian.—The solid angle which encloses on the surface of a concentric sphere an area = (radius)².

Stoichiometric.—Pertaining to the ratio of the masses of the several elements contained in a pure chemical compound.

Strain.—1. For pure distortion the strain is measured by the change in a significant angle. 2. The ratio of change in size to original size.

Stress.—The force per unit of area over which it acts.

Surface tension.— (γ) . $[m/t^2]$. Owing to molecular attraction, two fluids in contact adjust themselves so that the area of their interface is a minimum, consistent with other requirements. This adjustment may be pictured as arising from a tension residing in the surface itself; to this is given the name surface tension. Its value is defined as the normal, tensile force, per unit of length, across any line traced on the surface.

Susceptibility.—(κ). In the electromagnetic systems of units, $4\pi\kappa$ is the excess of the magnetic permeability of the substance over that of a vacuum.

Synodical.—In astronomy, the synodical period of a body is the interval between its successive returns to the same position with reference to the plane which is perpendicular to the plane of the ecliptic and which continuously passes through the centers of the earth and the sun.

Synonical month.—See Lunar month.

Temperature conductivity.—See Diffusivity.

Tension, Surface.—See Surface tension.

Tenth-meter.—10⁻¹⁰ meter; one Angstrom unit.

Thermal.—See Heat.

Thermoelectric power.—See Power.

Thomson effect.—In a region in which the temperature of a homogeneous metallic conductor varies from section to section, there exists a potential gradient which is proportional to the product of the temperature and its gradient. This is the Thomson (or Kelvin) thermoelectric effect. The constant of proportionality is called the coefficient of the effect. If the coefficient is positive, a positive electric current flowing from hot section to cooler section tends to make the temperature more uniform; it is as if the current carried heat from hot portion to cooler portion, as if the electricity had a certain specific heat. This is what Thomson called the specific heat of electricity. It may be either positive or negative, depending upon the metal.

Time.—True noon, or local true noon, is the instant at which the sun is bisected by the meridional plane of the observer. Mean noon, or local mean noon, is the instant at which a fictitious mean sun is bisected by the meridional plane. This mean sun is one endowed with such a uniform, apparent angular velocity in the equatorial plane that in one tropical year it will make exactly the same number of apparent revolutions around the earth as are made by the true sun. Time measured from the true noon is called true, or apparent, solar time; that from mean noon is called mean time. The excess of mean time over true time is called equation of time. The earth has been divided into a series of time zones, each 15° of longitude in width, so that intercourse may be facilitated by all places in each zone using the mean time corresponding to the center of the zone; this is known as standard time. The first zone is centered on Greenwich, England.

Titer .- See Concentration.

Torque.—The moment of a force.

Tropical month.—The yearly average of the time required for the moon to traverse 360° of astronomical longitude.

Twist.—If a uniform bar of free length l be clamped rigidly at one end and the other end be twisted, about the axis of the bar, through an angle θ , the twist of the bar is defined as θ/l . Similarly for other cases.

Units, Systems of.—The fundamental units in most absolute systems are those of mass, length, time, thermometric degree, and the dielectric constant (or the magnetic permeability) of a vacuum. Other units are defined in terms of these by the use of established relations, arbitrary factors being made unity.

The most common systems are the centimeter-gram-second-degree Centigrade (cgs), and the foot-pound-second-degree Fahrenheit (fps) systems. See also International electric units, practical electric units, and absolute.

Van der Waals. - See Waals.

Violle unit.—A superseded unit of luminous intensity based upon the brightness of fused platinum at the temperature of solidification.

Viscosity.—If a fluid is flowing in the plane yz with velocity v it exerts upon an adjacent plane a tangential drag = $\eta(dv)/(dx)$, per unit of area. η is called the viscosity, coefficient of viscosity, or coefficient of internal friction. Unit: poise.

Viscosity, Kinematic.—Viscosity divided by density.

Volt.—The electrical potential difference which, when steadily applied to a conductor having a resistance of one ohm, will produce in it a current of one ampere (cf. absolute and international units). The Int. Committee authorized by the London Conference, 1908, agreed to regard the emf of the Weston normal cell at 20°C as exactly 1.0183 Int. volts. This furnishes a subsidiary definition which is slightly discordant with the primary one. These tables distinguish between the two, and between units derived from them, by using (a) to denote those based on ampere and ohm, and (v) to denote those based on volt as defined by the Weston cell.

Volt-electronic charge.—Analogous to volt-faraday.

Volt-faraday.—The work which must be done in order to transfer one faraday of positive electricity from any point to another having a potential one volt higher than the former.

Volt-second.—Unit of flux of magnetic induction. The amount defined by the change per second, of the magnetic induction through an area, required to induce around the area an emf of one volt.

Volume, Specific.—Reciprocal of the density.

Waals, Van der.—In the equation $(p + a/v^2)(r - b) = 1 + at$, a and b are known as Van der Waals' constants; a[b] = pressure [volume] constant.

Watt.—Unit of power; work done at rate of one joule per second. Watt-hour.—Work expended by one watt in one hour (cf. kilowatt-hour).

Wave-length.—(λ). Distance between consecutive corresponding points in a monofrequent wave train. Occasionally applied to complex waves.

Wave number.—Reciprocal of wave-length.

Weight.—The force with which a body, left to itself, is urged towards the earth. In the absolute systems of units it is numerically equal to the mass of the body multiplied by the acceleration of gravity (g) at the position considered; hence varies with position. Such expressions as gram weight [pound weight] are to be interpreted as meaning the weight of a gram [a pound] at a place where g has the standard value, 980.665 cm/sec.²

Wien's displacement constant.—(w). See Black body.

Year.—(yr). Time required for earth to make one complete circuit of its orbit, as defined by its return to the same position as determined by the sun and some celestial point of reference. For the tropical, equinoctial, or ordinary year the reference point is the mean vernal equinox; for the sidereal, or true, year, it is a fixed star; for anomalistic year, it is perihelion of earth's orbit; for eclipse year, it is ascending node of moon's orbit.

Young's modulus.—If a bar of uniform section be subjected to a longitudinal tension, the ratio of this stress to the resulting elongation per unit of length is called its Young's modulus. Also called modulus of elasticity, elastic modulus, longitudinal elasticity, coefficient of resistance to extension, modulus of traction.

ELEMENTS AND ATOMS

	PAGE	
Atomic Numbers. Atomic Weights for Each Year Since 1882	43	
Isotopes. F. W. Aston	45	
Periodic Table	46	
Radioactive Elements. FREDERICK SODDY	46	•
Structure of the Isolated Atom. H. A. Kramers	47	
AMONETO WINTOWAY		

ATOMIC WEIGHTS

The values given in column four were compiled for International Critical Tables (I. C. T.) by Prof. G. P. Baxter in 1923 and are those upon which all the data given in International Critical Tables are based.

Following these are shown the accepted atomic weights back to 1882. For the period since 1903 these are taken from the reports of the International Committee on Atomic Weights; for the period 1894 to 1903, from the reports of the American Chemical Society's Committee on Atomic Weights; for the year 1882, from F. W. Clarke's "A Recalculation of the Atomic Weights," reproduced in the first (1883) edition of "Landolt-Börnstein." These 1882 values (to two decimals) are given in parentheses. A date in parentheses indicates the first appearance of the element in the atomic weight table. All the values given are based upon O = 16.000.

Symbol	Atomic number	Name	I. C. T. at. wt.	Atomic weights (1925–1882)
A		Argon	39.91	'25, 39.91; '24-'19, 39.9; '18-'11, 39.88; '10-'03, 39.9; '02, 39.96 (1902)
Ac	89	Actinium	?	
Ag	47	Silver	107.880	'25, 107.880; '24-'09, 107.88; '08-'03, 107.93;
Al	13	Aluminium	26.96	'02-'94, 107.92 (107.92) '25, 26.97; '24-'22, 27.0; '21-'00, 27.1; '99-'96, 27.11; '95-'94, 27 (27.08)
As	33	Arsenic	74.96	'25-'10, 74.96; '09-'00, 75.0; '99-'97, 75.01; '96, 75.09; '95-'94, 75.0 (75.09)
Au	79	Gold	197.2	25-'00, 197.2; '99-'97, 197.23; '96, 197.24;
В	5	Boron	10.82	'95-'94, 197.3 (196.61) '25, 10.82; '24-'19, 10.9; '18-'00, 11.0; '99-'96,
Ba	56	Barium	137.37	10.95; '95-'94, 11 (10.97) '25-'09, 137.37; '08-'00, 137.40; '99-'94, 137.43
Ве	4	Beryllium	9.02	(137.01) '25, 9.02; '24-'00, 9.1; '99-'96, 9.08; '95-'94, 9
Bi	83	Bismuth	209.00	(9.11) '25-'22, 209.0; '21-'07, 208.0; '06-'03, 208.5; '02-'00, 208.1; '99-'96, 208.11; '95, 208; '94, 208.9 (208.00)
Br	35	Bromine	79.916	'25, 79.916; '24-'09, 79.92; '08-'03, 79.96; '02-'94, '79.95 (79.95)
C	6	Carbon	12.000	'25, 12.000; '24-'16, 12.005; '15-'98, 12.00; '97-'96, 12.01; '95-'94, 12 (12.00)

Symbol	Atomic number	Name .	I. C. T. at. wt.	Atomic weights (1925–1882)
Ca	20	Calcium	40.07	25-'12, 40.07; '11-'09, 40.09; '08-'00, 40.1; '99-'97, 40.07; '96, 40.08;
Cb	41	Columbium	93.1	'95-'94, 40 (40.08) '25-'17, 93.1; '16-'09, 93.5; '08-'03, 94; '02-'00, 93.7; '99-'97, 93.73; '96-'94, 94.0 (94.03)
Cd	48	Cadmium	112.41	'25, 112.41; '24-'09, 112.40; '08-'00, 112.4; '99, 112.38; '98-'97, 111.95; '96, 111.93; '95-'94, 112 (112.09)
Се	58	Cerium	140.25	'25-'04, 140.25; '03, 140; '02-'00, 139; '99-'98, 139.35; '97-'94, 140.25 (140.75)
Cl	17	Chlorine	35.458	'25, 35.457; '24-'09, 35.46; '08-'94, 35.45 (35.45)
Co	27	Cobalt .	58.97	'25, 58.94; '24-'09, 58.97; '08-'00, 59.0; '99-'98, 58.99; '97, 58.93; '96, 58.95; '95, 59.5; '94, 59 (59.02)
Ср	71	Cassiopeium	175.0	See Lu
Cr	24	Chromium	52.01	'25, 52.01; '24-'10, 52.0; '09-'00, 52.1; '99-'96, 52.14; '95-'94, 52.1 (52.13)
Cs	55	Cesium	132.81	'25-'09, 132.81; '08-'04, 132.9; '03, 133.0; '02-'00, 132.9; '00-'96, 132.89; '95-'94, 132.9 (132.92)
Ct Cu	72	Celtium	63.57	Same as Hf '25-'09, 63.57; '08-'94,
Ds \	66	Copper Dysprosium	162.52	63.6 (63.32) '25, 162.52; '24-'08, 162.5
Dy J Em	86	Ra-emanation	222.	(1908) See Rn
Er	68	Erbium	167.7	'25-'12, 167.7; '11-'09, 167.4; '08-'00, 166.0; '99-'97, 166.32; '96-'94, 166.3 (166.27)
Eu F	63	Europium Fluorine	152.0	'25-'07, 152.0 (1907) '25-'03, 19.0; '02-'00, 19.05; '99-'97, 19.06; '96, 19.03; '95-'94, 19 (19.03)
Fe	26	Iron	55.84	'25-'12, 55.84; '11-'09, 55.85; '08-'01, 55.9; '00, 56.0; '99-'96, 56.02; '95-'94, 56 (56.04)
Ga	31	Gallium	69.72	'25, 69.72; '24-'19, 70.1; '18-'09, 69.9; '08-'00, 70.0; '99-'97, 69.91; '96-'94, 69.0 (68.96)
Gd	64	Gadolinium	157.26	'25, 157.26; '24-'09, 157.3; '08-'03, 156; '02, 156.4; '01-'00, 157.0; '99-'97,
				156.76; '96-'94, 156.1

	10 5	1			. —	100 H	1		
Symbol	Atomic number	Name	I. C. T. at. wt.	Atomic weights (1925–1882)	Symbol	Atomic number	Name	I. C. T. at. wt.	Atomic weights (1925–1882)
Ge	32	Germanium	72.38	25, 72.60; '24-'00, 72.5;	Nd	60	Neodymium	144.27	'25, 144.27; '24-'09,
				'99-'97, 72.48; '96-'94, 72.3					144.3; '08-'99, 143.6; '98-'97, 140.80; '96-'94,
Gl	4	Glucinium	9.02	See Be					140.5
H	1	Hydrogen	1.0077	(1.00)	Ne	10	Neon	20.2	25-'09, 20.2; '10-'04, 20.0 (1904)
He	2	Helium	4.00	'25-'16, 4.00; '15-'11, 3.99; '10-'03, 4.0; '02, 3.96 (1902)	Ni	28	Nickel	58.69	'25, 58.69; '24-'09, 58.68; '08-'00, 58.7; '99-'96, 58.69; '95-'94, 58.7
Hf	72	Hafnium	178.6						(58.06)
Hg	80	Mercury	200.61	'25, 200.61; '23–'12, 200.6; '11–'94, 200.0	Nt O	86	Niton Oxygen	222. 16.000	See Rn '25-'94, 16.000 (16.00)
Но	67	Holmium	163.4	(200.17) '25, 163.4; '23–'13, 163.5	Os	76	Osmium	190.8	25, 190.8; '23-'09, 190.9; '08-'00, 191.0; '99-'96,
I (J)	53	Iodine	126.932	(1913) '25, 126.932; '24–'09,	16				190.99; '95-'94, 190.8 (198.95?)
				126.92; '08-'05, 126.97; '04-'94, 126.85 (126.85)	P	15	Phosphorus	31.024	25, 31.027; '24-'11, 31.04; '10-'00, 31.0;
In	49	Indium	114.8	'25-'09, 114.8; '08-'05, 115; '04-'00, 114;					'99-'94, 31.02; '95-'94, 31 (31.03)
				'99-'97, 113.85; '96-'94,	Pa	91	Protoactinium	?	== (=====,
		. . ,.	1.00	113.7 (113.66)	Pb	82	Lead	207.20	'25–'16, 207.20; '15–'09,
Ir	77	Iridium	193.1	25-'09, 193.1; '08-'03, 193.0; '02-'00, 193.1;					207.10; '08-'03, 206.9; '02-'96, 206.92; '95-'94,
				'99-'96, 193.12; '95-'94,					206.95 (206.95)
				193.1 (193.09)	Pd	46	Palladium	106.7	'25-'09, 106.7; '08-'03,
K	19	Potassium	39.095	'25, 39.096; '24-'09, 39.10;					106.5; '02-'00, 107.0;
	Ì			'08-'03, 39.15; '02-'94, 39.11 (39.11)			ı		'99-'96, 106.36; '95, 106.5; '94, 106.6 (105.98)
Kr	36	Krypton	82.9	'25, 82.9; '24-'11, 82.92;	Po	84	Polonium	(210)	100.0, 01, 100.0 (100.00)
				'10, 83.0; '09–'03, 81.8;	Pr	59	Praseodymium	140.92	'25, 140.92; '24–'16,
La	57	Lanthanum	138.91	'02, 81.76 (1902) '25, 138.90; '24–'09, 139.0;					140.9; '15-'09, 140.6;
LA	"	Danthandin	130.91	'08-'03, 138.9; '02-'00,					'08-'00, 140.5; '99-'97, 143.60; '96-'94, 143.5
			1	138.6; '99-'97, 138.64;	Pt	78	Platinum	195.23	'25, 195.23; '24–'11,
				'96, 138.6; '95–'94, 138.2					195.2; '10-'09, 195.0;
Li	3	Lithium	6.939	(138.84) '25, 6.940; '24-'11, 6.94;					'08-'03, 194.8; '02-'00, 194.9; '99-'96, 194.89;
			0.000	'10-'09, 7.00; '08-'96,		!			'95-'94, 195 (194.87)
				7.03; '95-'94, 7.02 (7.02)	Ra	88	Radium	225.95	'25, 225.95; '24-'16, 226;
Lu	11	Lutecium	175.0	'25–'16, 175.0; '15-'09, 174.0 (1909)					'15-'09, 226.4; '08-'03, 225 (1903)
Ma	43	Masurium		11 1.0 (1000)	Rb	37	Rubidium	85.44	25, 85.44; '24-'09, 85.45;
Mg	12	Magnesium	24.32	'25-'09, 24.32; '08-'03,					'08–'05, 85.5; '04–'00,
				24.36; '02-'00, 24.3; '99-'97, 24.28; '96,					85.4; '99-'96, 85.43; '95-'94, 85.5 (85.53)
				24.29; '95-'94, 24.3	Re	75	Rhenium		90- 94, 00.0 (00.00)
				(24.01)	Rh	45	Rhodium	102.91	'25, 102.91; '24–'09,
Mn	25	Manganese	54.93	'25-'09, 54.93; '08-'00,					102.9; '08-'00, 103.0;
		•		55.0; '99-'96, 54.99; '95-'94, 55 (54.03)					99-'96, 103.01; '95-'94, 103 (104.29)
Mo	42	Molybdenum	96.0	'25-'00, 96.0; '99-'97,	Rn	86	Radon	222.	25, 222; '24-'12, 222.4
				95.99; '96, 95.98; '95-'94,					(1912)
N	7	Nitrogen	14.008	96 (95.75)	Ru	44	Ruthenium	101.7	'25-'00, 101.7; '99-'9 6 ,
11	'	Mittogen	14.000	'25-'19, 14.008; '18-'07, 14.01; '06-'96, 14.04;					101.68; '95-'94, 101.6 (104.46?)
				'95, 14.05; '94, 14.03	s	16	Sulfur	32.065	'25, 32.065; '24-'16, 32.06;
NY		Qd;	00.00=	(14.03)			Sin of		'15-'09, 32.07; '08-'03,
Na	11	Sodium	22.997	'25, 22.997; '24-'09, 23.00; '08-'94, 23.05			M 13		32.06; '02-'96, 32.07; '95-'94, 32.06 (32.06)
	9 4			(23.05)	Sa	62	Samarium	150.43	'25, 150.43; '24-'09,
Nb	41	Niobium	93.1	See Cb		l	b.	1	150.4; '08-'05, 150.3;

Symbol	Atomic number	Name	I. C. T. at. wt.	Atomic weights (1925–1882)
Sa	62	Samarium	150.43	'04-'03, 150; '02-'00, 150.3; '99-'97, 150.26; '96-'94, 150.0
Sb	51	Antimony	121.77	'25, 121.77; '24-'03, 120.2; '02-'00, 120.4; '99-'96, 120.43; '95-'94, 120 (120.23)
Sc	21	Scandium	45.10	'25-'21, 45.10; '20-'00, 44.1; '99-'97, 44.12; '96-'94, 44.0 (44.08)
Se	34	Selenium	79.2	'25-'00, 79.2; '99, 79.17; '98-'97, 79.02; '96-'94, 79.0 (78.98)
Si	14	Silicon	28.06	'25, 28.06; '24-'22, 28.1; '21-'09, 28.3; '08-'94, 28.4 (28.26)
Sm	62	Samarium	150.43	See Sa
Sn	50	Tin	118.70	'25-'16, 118.70; '15-'00,
				119.0; '99-'96, 119.05; '95-'94, 119 (117.97)
Sr	38	Strontium	87.62	'25-'11, 87.63; '10-'09, 87.62; '08-'00, 87.6; '99-'96, 87.61; '95, 87.66; '94, 87.6 (87.58)
Та	73	Tantalum	181.5	'25-'10, 181.5; '11-'07, 181.0; '06-03, 183; '02-'00, 182.8; '99-'97, 182.84; '96-'94, 182.6 (182.56)
Ть	65	Terbium	159.2	'25-'07, 159.2; '06-'94, 160
Те	52	Tellurium	127.5	'25-'09, 127.5; '08-'03, 127.6; '02, 127.7; '01-'00, 127.5; '99-'97, 127.49; '96, 127; '95-'94, 125 (128.252)
Th	90	Thorium	232.15	'25-'19, 232.15; '18-'11, 232.4; '10-'09, 232.42; '08-'03, 232.5; '02-'00, 232.6; '99-'96, 232.63; '95-'94, 232.6 (233.95)
Ti	22	Titanium	47.9	'25-'03, 48.1; '02-'96, 48.15; '95-'94, 48 (49.96?)
TI	81	Thallium	204.4	'25, 204.39; '24-'09, 204.0; '08-'03, 204.1; '02-'96, 204.15; '95-'94, 204.18 (204.18)
Tm }	69	Thulium	169.4	'25, 169.4; '24-'22, 169.9; '21-'09, 168.5; '08-'03, 171; '02-'94, 170.7
, ń	92	Uranium	238.17	'25, 238.17; '24-'16, 238.2; '15-'03, 238.5; '02-'00, 239.6; '99-'96, 239.59; '95-'94, 239.6 (239.03)
UX2 V	91 23	Uranium-X ₂ Vanadium	(234) 50.96	Isotope of Pa '25, 50.96; '24-'12, 51.0; '11, 51.06; '10-'03, 51.2;
				'02-'00, 51.4; '99-'96, 51.38; '95-'94, 51.4 (51.37)

Symbol	Atomic number	Name	I. C. T. at. wt.	Atomic weights (1925–1882)
W	74	Tungsten	184.0	25-'00, 184.0; '99-'97, 184.83; '96, 184.84; '95, 184.9; '94, 184 (184.03)
Xe	54	Xenon	130.2	'25-'11, 130.2; '10, 130.7; '09-'02, 128 (1902)
$\left\{f{Y}_{\mathbf{Yt}} ight\}$	39	Yttrium	89.0	'25, 88.9; '24-'19, 89.33; '18-'16, 88.7; '15-'00, 89.0; '99-'97, 89.02; '96, 88.95; '95-'94, 89.1 (90.027)
Yb	70	Ytterbium	173.6	'25, 173.6; '24-'16, 173.5; '15-'09, 172.0; '08-'03, 173; '02-'00, 173.2; '99-'97, 173.19; '96-'94, 173.0 (173.16)
Zn	30	Zinc	65.38	'25, 65.38; '24-'10, 65.37; '09, 65.7; '08-'00, 65.4; '99-'96, 65.41; '95-'94, 65.3 (65.05)
Zr	40	Zirconium	91.	'25, 91; '24-'09, 90.6; '01-'97, 90.4; '96-'94, 90.6 (89.57)

TABLE OF ISOTOPES

F. W. Aston

Element	Atomic number	I. C. T. atomic weight	Minimum number of isotopes	Mass numbers in order of the intensities of the mass-spectrum lines	Lit.
A	18	39.91	2	40, 36	(3, 5, 21)
Ag	47	107.880	2	107, 109	(15, 26)
Al	13	26.96	1	27	(10)
As	33	74.96	1	75	(4, 22)
В	5	10.82	2	11, 10	(4, 22)
Ba	56	137.37	1	138, 186	(17, 18)
Be	4	9.02	1	9	(33)
Bi	83	209.00	1	209	(19)
Br	35	79.916	2	79, 81	(4, 22)
\mathbf{C}	6	12.000	1	12	(2, 21)
Ca	20	40.07	2	40, 44	(31, 32)
Cd	48	112.41	6	110, 111, 112, 113, 114, 116	(19)
Се	58	140.25	2	140, 142	(18)
Cl	17	35.458	2	35, 37	(2, 21, 23)
Co	27	58.97	1	59	(15, 26)
\mathbf{Cr}	24	52.01	1	52	(15, 26)
Cs	55	132.81	1	133	(6, 24)
Cu	29	63.57	2	63, 65	(14, 26)
\mathbf{F}	9	19.00	1	19	(4, 22)
Fe	26	55.84	2	56, 54	(9, 17)
Ga	31	69.72	2	69, 71	(15, 26)
Ge	32	72.38	3	74, 72, 70	(13, 26)
Gl	4	9.02	1	9	(33)
H	1	1.0077	1	1	(3, 21)
He	2	4.00	1	4	(3, 21)
Hg	80	200.61	2,6	197-200, 202, 204	(2, 3, 21)
Ĭ	53	126.932	lí	127	(5, 23)
In	49	114.8	1	115	(16)
K	19	39.095	2	39, 41	(6, 24)
Kr	36	82.9	6	84, 86, 82, 83, 80, 78	(3, 21)
La	57	138.91	1	139	(17)

PERIODIC CHART OF THE ELEMENTS WITH ATOMIC NUMBERS AND ATOMIC WEIGHTS

6.939			PERIC	DIC CH	AKI OF	I HE ELE	MENIS	WIIII AI	OMIC IN	OMIDEKS AND	ATOMIC WEIG	415		
The color of the									VIII		57 58		59	
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I		II	III	IV	v	VI	VII	or	*				
H 1.0077 3 4 Be B B C 10.82 12.00 14.008 15 16 17 18														?
1.0077 Li Be 9.02 10.82 11.00 11.00 12.00 14.008 15.00 16.000 19.00 17. 19 22.997 24.32 26.96 28.06 30.095 29 Cu 63.57 30 30 30 Cu 65.38 65.48 65.38 65.48 65.38 65.48 66.48 67.00		1									1 .			63
Li Be B C 10.82 12 13.02 14.008 15 D 16.000 19.00 18 Mg 24.32 26.96 24.32 21 22 23 34 31.024 32.065 35.458 39.91 167.7 169.4 173.6 175.0 175.0 18 Mg 24.32 26.96 24.52 163.4 175.0 18 Mg 24.32 26.96 24.52 21 22 23 22 23 24 25 25 24 25 25 24 25 25										11				
Li Be	1.007													
6.939		3	_	1	1	l'	I ·	Į.	1		65 66		1	
Na	Li													
Na			1	_			_							
22.997				1	1	i		i		EI				71
The color of the		_	Mg											
Ca Sc Ti V 50.96 33 34 35 36 36 37 37 37 38 39 39 31 38 39 40 47.9 39.1 39.09									1				175.0	
39.095				1	L .		1		26		i			-
29 Cu 63.57				l .	-	1 '						0		Ni
Cu		-								55.84	58.97		58.69	
Column C	29		1	ł										
Rb Sr Sr Yt Zr Cb Mo Ma														
Rb Sr Yt Zr Cb Mo Ma Ru Ru Rh Pd 48 48 49 50 51 52 53 54 107.880 112.41 114.8 118.70 121.77 73 74 126.932 130.2 75 76 0s 177 78 Pt 132.81 137.37 138.91 (178.6) 181.5 184.0 85 86 Rn 190.8 193.1 195.23 79 80 81 82 83 84 85 86 Rn 190.8 110.2 193.1 195.23 87 88 89 90 90 91 92 209.00 (210) 222 *Indicates rare earths. See above	63.57											1		
85.44	L.							1	44					
Ag Cd In Sn Sb Te 12.75 126.932 130.2 Cs Ba La Hf Ta W Re 190.8 190.8 193.1 195.23 Au Hg 200.61 204.4 207.20 209.00 (210) 91 92 Ra Ac Th Pa U				Yt	Zr			Ma				h	100 7	Po
Ag Cd In 114.8 118.70 121.77 127.5 126.932 130.2 Cs Ba La Hf Ta W Re 190.8 193.1 193.1 195.23 Au Hg 200.61 204.4 207.20 209.00 (210) 91 92 Ra Ac Th Pa U	L									101.7	102.91	1	100.7	
107.880	 * ′			1		i	i							
Cs Ba 137.37	107 90	-												
Cs Ba La Hf Ta W Re 190.8 193.1 195.23 195.23 197.2 197.2 197.2 197.2 Ra Ac Th Pa U	107.00										177	178		_
132.81	Ca									0	•	1		D
79 Au Hg T1 Pb Bi Po (210)					1			-				1	195 23	- 1
Au		_							86	200.0	1 200.2	'	100.20	
197.2 200.61 88 204.4 207.20 209.00 (210) 222 Ra Ac Th Pa U						ľ								
87 88 89 90 91 92 Ra Ac Th Pa U	197.2		_							★ Indic	ates rare earths. See a	DOAG		
Ra Ac Th Pa U										,				
				Ac	Th	Pa	ט							
			225.95		232.15		238.17							

α − ray →				THE		CTIVE ELEMENTS					≻ β-ra	y (or rayless)
Group	Ш	1V	v	VI	VII	VIII or 0	I	II	пі	IV	v	VI
Principal element	Tl	Pb	Bi	Po	_	Rn		Ra	Ac	Th	Pa	υ
Atomic number	81	82	83	84	85	86	87	88	89	90	91	92
U-Ra Series	Ra-C'	Ra-B $= Ra-\Omega''$ Ra-D $= Ra-\Omega'$	Ra-C	Ra-A -		Rn=Ra-Em (or Radon)		Ms-Th ₁	Hs-Th 2	UX ₁	¥UX2	U1 ≥> U2
Th Series	Th-C	Th-B Th-Ω΄	È Th-C	Th-A		Th-Em Thoron		- Th-X -	Ac 🛳	UY	≥ Pa	U10r U2
Ac Series	Ac-C	Ac-Ω' Ac-Ω'	Ž Ac-C	Ac-A		Actinon		Ac-X -				

TABLE OF ISOTOPES.—Continued

Element	Atomic number	I. C. T. atomic weight	Minimum number of isotopes	Mass numbers in order of the intensities of the mass-spectrum lines	Lit.
Li	3	6.939	2	7, 6	(24, 27, 29,
			1 _		30)
Mg	12	24.32	3	24, 25, 26	(28, 30)
Mn	25	54.93	1	55	(15, 26)
N	7	14.008	1	14	(3, 21)
Na	11	22.997	1	23	(6, 24)
Nd	60	144.27	3	142, 144, 146, 145	(17, 18)
Ne	10	20.2	2	20, 22	(1, 20, 21)
Ni	28	58.69	2	58, 60	(7)
0	8	16.000	1	16	(2, 21)
P	15	31.024	1	31	(4, 22)
Pr	59	140.92	1	141	(17)
$\mathbf{R}\mathbf{b}$	37	85.44	2 1	85, 87	(6, 24)
\mathbf{s}	16	32.065		32	(4, 22)
$\mathbf{S}\mathbf{b}$	51	121.77	2	121, 123	(11, 25)
Sc	21	45.10	1	45	(15, 26)
Se	34	79.2	6	80, 78, 76, 82, 77, 74	(10)
Si	14	28.06	3	28, 29, 30	(4, 18, 22)
\mathbf{Sn}	50	118.70	7,8	120, 118, 116, 124, 119,	(8)
				117, 122, 121	
Sr	38	87.62	2	88, 86	(15, 17, 26)
Te	52	127.5	3	128, 130, 126	(19)
Tì	22	47.9	1	48	(15, 26)
V	23	50.96	1	51	(15, 26)
Xe	54	130.2	7,9	129, 132, 131, 134, 136,	(3, 5, 10, 21,
		·	1	128, 130, 126, 124	23)
Yt	39	89.0	1	89	(15, 26)
$\mathbf{Z}_{\mathbf{n}}$	30	65.38	4	64, 66, 68, 70	(31)
Zr	40	91	3	90, 94, 92	(18)
				<u> </u>	··· /

LITERATURE

(For a key to the periodicals see end of volume)

```
(1) Aston, 58, 104: 334; 19. (2) Ibid., 104: 393; 19. (3) Ibid., 105: 8; 20. (4) Ibid., 105: 547; 20. (5) Ibid., 105: 468; 20. (6) Ibid., 107: 72; 21. (7) Ibid., 107: 520; 21. (8) Ibid., 109: 843; 22. (9) Ibid., 110: 312; 22. (19) Aston, 58, 110: 664; 22. (11) Ibid., 110: 732; 22. (12) Ibid., 111: 739; 23. (13) Ibid., 111: 731; 23. (14) Ibid., 112: 162; 23. (15) Ibid., 112: 449; 23. (16) Ibid., 113: 192; 24. (17) Ibid., 112: 856; 24. (18) Ibid., 114: 273; 24. (19) Ibid., 114: 717; 24. (20) Aston, 5, 39: 449; 20. (21) Ibid., 39: 611; 20. (22) Ibid., 40: 628; 20. (23) Ibid., 42: 140; 21. (24) Ibid., 42: 436; 21. (25) Ibid., 45: 924; 23. (26) Ibid., 47: 385; 24. (27) Aston and Thomson, 58, 106: 827; 21. (28) Dempster, 166, $2: 559; 20. (28) Dempster, 166, $3: 559; 20. (29) Dempster, 166, $3: 363; 21. (30) Dempster, 2, 18: 415; 21. (31) Ibid., 19: 431; 22. (32) Ibid., 20: 631; 22. (33) Thomson, 5, 42: 837; 21.
```

THE STRUCTURE OF THE ISOLATED ATOM

(Symbols, p. 50)

H. A. KRAMERS

According to the fundamental postulates of Bohr's atomic theory, a series of discrete "stationary states" has to be correlated with each atom. A definite "energy-content" can be assigned to every state, and an atom in a given state can change its energy only by performing a process of "transition" to another state. The emission of a spectral line of frequency ν is correlated with a spontaneous transition from a stationary state of energy content E_1 to another of energy content E_2 by equation (1)

$$\nu = \frac{1}{h} (E_1 - E_2) \tag{1}$$

The stationary state with the smallest energy is termed the "normal state" of the atom. The properties of the stationary states can, to a considerable extent, be accounted for by assuming that the electrons surrounding the nucleus have definite motions, characterized by integral values of certain quantities. These integers are called the "quantum numbers" of the stationary state in question; by their values the energy of the state is completely fixed. For general treatment of the subject, see (1, 3, 4, 10, 11, 18).

Of special interest are the recent attempts (21) to develop a rational "quantum mechanics" of the atom. This work clearly demonstrates the limited applicability of a picture of atomic structure, in which the behavior of the electrons inside the atom is visualized by orbits possessing definite kinematical properties.

Atoms Containing One Electron.—Only for atoms containing a single electron, can a fairly complete description of the electronic motion in the stationary state, and of the significance of the quantum numbers be given. The motion of the electron obeys quite approximately the laws of electrodynamics, and can be described as a Keplerian elliptic motion, with the centre of gravity of the nucleus and the electron in one focus. On this motion, a slow uniform precession in the plane of motion is superposed (effect of variability of mass or "relativity-effect"). Two quantum numbers (n, k) define the stationary states $(n, k = 1, 2, 3 \ldots; k \le n)$, k/n being the ratio of the minor to the major axis of the ellipse. The states are denoted by the symbol n_k .

In the normal state, $1_1(n = k = 1)$, the orbit is circular; and, omitting the correction due to the relativity effect, its constants are given by equations (2)

given by equations (2)
$$a_{1} = \frac{1}{Z} \cdot \frac{h^{2}}{4\pi^{2}e^{2}m_{0}} \equiv \frac{r_{1}}{Z} = \frac{0.53}{Z} \times 10^{-8} \text{ cm}$$

$$\omega_{1} = \frac{Z^{2}}{1 + \frac{m_{0}}{M}} \times \frac{4\pi^{2}e^{4}m_{0}}{h^{3}} \equiv \frac{2\nu_{\infty}Z^{2}}{1 + \frac{m_{0}}{M}} = \frac{6.6Z^{2}}{1 + \frac{m_{0}}{M}} \times 10^{15} \text{ sec}^{-1}$$

$$W_{1} = \frac{Z^{2}}{1 + \frac{m_{0}}{M}} \times \frac{2\pi^{2}e^{4}m_{0}}{h^{2}} = \frac{Z^{2}\nu_{\infty}h}{1 + \frac{m_{0}}{M}} = \frac{2.15Z^{2}}{1 + \frac{m_{0}}{M}} \times 10^{-11} \text{ erg.}$$
(2)

In higher quantum states, the orbital constants are, with the same approximation, given by (3, 4):

$$a_{n} = n^{2}a_{1} = \frac{n^{2}}{Z}r_{1}$$

$$\omega_{n} = \frac{\omega_{1}}{n^{3}} = \frac{2Z^{2}\nu_{\infty}}{n^{2}\left(1 + \frac{\mathbf{m}_{0}}{M}\right)}$$

$$W_{n} = \frac{W_{1}}{n^{2}} = \frac{Z^{2}\nu_{\infty}h}{n^{2}\left(1 + \frac{\mathbf{m}_{0}}{M}\right)}$$

$$b_{n,k} = nka_{1} = \frac{nkr_{1}}{Z}; p_{k} = k^{2}a_{1} = \frac{k^{2}r_{1}}{Z}$$
(4)

The number of revolutions corresponding to one rotation of the major axis, is, to a first approximation, given by (5):

$$\frac{\omega_n}{\sigma_{n,k}} = \frac{k^2}{Z^2} \times \frac{2}{\alpha^2} = \frac{k^2}{Z^2} \times 37,700$$

$$\left(\alpha = \frac{2\pi e^2}{hc} = 7.30 \times 10^{-2} \cong \frac{1}{137}; \alpha^2 = 5.31 \times 10^{-6}\right)$$
(5)

The exact energy formula, neglecting terms containing \mathbf{m}_0/M , is given by (6):

$$W_{n,k} = \mathbf{m_0} c^2 \left[\left\{ 1 + \left(\frac{\alpha Z}{n - k + \sqrt{k^2 - \alpha^2 Z^2}} \right)^2 \right\}^{-\frac{1}{2}} - 1 \right]$$

$$= \frac{Z^2}{n^2} \times \frac{2\pi^2 e^4 \mathbf{m_0}}{\mathbf{h}^2} \left\{ 1 + \alpha^2 Z^2 \left(\frac{1}{kn} - \frac{3}{4n^2} \right) + \dots \right\}$$
(6)

(For general formula for W, including terms in \mathbf{m}_0/M , see (9).) Figure 1 illustrates the stationary states in the hydrogen atom for which n = 1, 2, 3, 4. The arrows indicate the transitions giving

rise to the fine-structure components of the spectral lines, H_{α} and H_{β} . The numerical constants for these states are given in Table 1.

Table 1.—Hydrogen Orbits; $r_1 = 5.286 \times 10^{-9}$ cm (11)

n_k	a/r_1	b/r_1	p/r_1	$\omega \times 10^{-14}$	$\sigma imes 10^{-8}$	ω/σ
11	1	1	1	65.78	1746	37 700
21	4	2	1	8.222	218.3	37 700
22	4	4	4	8.222	54.57	150 700
31	9	3	1	2.436	64.68	37 700
32	9	6	4	2.436	16.17	150 700
33	9	9	9	2.436	7.187	339 300
41	16	4	1	1.029	27.29	37 700
42	16	8	4	1.029	6.822	150 800
43	16	12	9	1.029	3.032	339 300
44	16	16	16	1.029	1.705	603 200

Fig. 1.—Orbits in hydrogen to n = 4. (Reproduced by permission from The Journal of the Franklin Institute.)

Atoms Containing More than One Electron.—A complete theory of stationary states is lacking. Many properties of these states can be accounted for, however, on the basis of the principles applied to atoms containing one electron. As a first approximation, each electron may be considered as moving in a central field of force due to the nucleus and the other electrons, its motion being characterized by a "principal quantum number" n and a "subordinate quantum number" k. The electronic orbit can be described as a plane periodic orbit on which a uniform precession in the plane is superposed ("central orbit" cf. Fig. 2).

If the position of the electron in the orbital plane is defined by polar coordinate (r, φ) , the quantum numbers are defined by Sommerfeld's quantum conditions (7)

$$k = \frac{2\pi \mathbf{m}_0 \beta r^2}{\mathbf{h}} \frac{d\phi}{dt} = \frac{2\pi P}{\mathbf{h}} \qquad (n - k) = \frac{1}{\mathbf{h}} \mathcal{F} \mathbf{m}_0 \beta \left(\frac{dr}{dt}\right)^2 dt \quad (7)$$

where the factor β becomes equal to 1 if the relativity effect is neglected. P is equal to the angular momentum of the electron with respect to the nucleus; the integral has to be taken over a complete period of the radial motion, from A to B (Fig. 2).

In the normal state the electrons are distributed in groups, each of which is characterized by its quantum numbers (n, k). On passing from the nucleus to the surface of the atom, the successive groups correspond to successive integral values of the main quantum number n ("n-quantum group"), the innermost group being characterized by n = 1; each group is divided into subgroups corresponding to the different values which k may take. The possibility of reconciling such a picture with the dynamical properties of quantized central orbits is closely connected with the fact that in an orbit for which k < n the electron will, in each revolution, dive into and leave again all regions occupied by

electronic orbits for which the principal quantum number is smaller than n but equal to or greater than k (conception of "penetrating orbits").

The maximum number of electrons which an n-quantum group can contain is equal to $2n^2$. If it contains this number, it contains sub-groups corresponding to all possible values for k (k = 1, $2 \ldots n$), and it is said to be a "finally completed" group. If a group, due to the dynamical properties of the atom under consideration, contains only sub-groups corresponding to k = 1,

Fig. 2.—Central orbit.

2... k_0 $(k_0 < n)$ it will be in a state which is termed "provisionally completed," if it contains $2k_0^2$ electrons. For example, the 4-quantum group has reached the state of a 2-group $(k_0 = 1)$ in Ca (20), the state of an 8-group or 8-shell $(k_0 = 2)$ in Kr (36), the state of an 18-group or 18-shell ($k_0 = 3$) in Ag (47), and its final state of a completed 32-group or 32-shell $(k_0 = 4)$ in Lu (71). With the exception of the 2-groups it seems impossible to assign definite values to the number of electrons in the several sub-groups of a provisionally, or finally, completed group; in fact, the actual properties of the electronic groups seem to show that the simple conception of central orbits characterized by the symbol n_k is essentially insufficient for their description. (Originally Bohr assumed that a group of $2k_0^2$ electrons contained $2k_0$ electrons in each sub-group.) Closely connected herewith is the impossibility of assigning definite spatial arrangements to the orbits belonging to one and the same group. In Table 2 the number of electrons in each group is given as far as the theory allows of a definite statement; those in parentheses are uncertain.

From calculations based on Sommerfeld's quantum conditions and certain simplifying assumptions, a rough estimate of the dimensions of the different types of orbits may be made. Such estimates for neutral atoms and for positive ions containing only finally, or provisionally, completed groups are schematically represented in Fig. 3. The small vertical lines are so drawn that their distances from the dot at the left are proportional to the radius of the sphere inside which the electrons belonging to the respective groups are moving. The symbols $g(n_1, 2 \dots k_0)$ means that the corresponding groups contain g electronic orbits of principal quantum number n, and of subordinate quantum numbers from 1 to k_0 .

For the calculation of the dimensions of the outermost groups it has been necessary to consider also experimental data relative to the effective gas-kinetic radii of the atoms of the inert gases, the effective radii of ions in crystals, ionic refraction, etc. As a rule the effective radii are 1.5 to 2.5 times larger than the orbital dimensions. As regards the inner groups, the estimate is rather accurate; for the outer groups, errors of the order of 10% might be expected Special mention must be made of the uncertainty in the radius of the 5-quantum group for elements heavier than barium; the radii of this group as given in Fig. 3 for the elements (72), 79, 80, 81, 82 are perhaps some 10% too high, as compared with radii of the homologous elements 47, 48, 49, 50.

For atoms containing only one electron in the outermost group, the dimensions of the orbit of this electron, and its frequency of revolution can with considerable accuracy be derived from the

TABLE 2

	11	21 22	31 32 38	41 42 48 44	51 52 58 54 58	61 62 68 64 65 66	71 72
1 H 2 He	1 2						
3 Li	2	1					
4 Be 5 B	2 2	2					
6 C	2	2 1 2 (2)					1
	-						
10 Ne	2	8					
11 Na 12 Mg	2 2	8	1 2				
13 Al	2	8	2 1				
14 %	2	8	2(2)				
	_		-				
18 A	2	8	8				
19 K	2	8	8	1			
20 Ca	2	8	8	2			
21 Sc 22 Ti	2 2	8	8 1 8 2	(2) (2)			
	-			-			
29 Cu	2	8	18	1	- 4		
30 Zn	2 2	8	18	2 2 1	- 13		
31 Ga	_		18		0 1		
36 Kr	2	8	18	8	01		
	_			-			
37 Rb	2	8	18	8	1		
38 Sr	2	8	18	8	2		
39 Y 40 Zr	2 2	8	18 18	8 1 8 2	(2) (2)		
	-				_		
47 Ag	2	8	18	18	1		
48 Cd	2	8	18	18	2		
49 In	2	8	18	18	2 1		
			••	••	-		
54 X	8	8	18	18	8		
55 Ca	2	8	18	18	8	1	
56 Ba	2	8	18	18	8	2	
57 La 58 Ce	2 2	8	18 18	18 18 1	8 1 8 1	(2) (2)	
50 Pr	2	8	18	18 2	8 1	(2)	
	-			====		_	
71 Lu	2	8	18	32	8 1	(2)	
73 Hf	2	8	18	32	8 2	(2)	
						_	
79 Au	2	8	18	32	18	1	
80 Hg 81 Tl	2 2	8 8	18 18	32 32	18 18	2 2 1	
	-						
86 Rn	2	8	18	32	18	8	
			-			-	
87 —	2	8	18	32	18	8	1
88 Ra 89 Ac	2 2	8	18 18	32 32	18 18	8 8 1	2 (2)
90 Tb	2	8	18	82	18		(2)
							_
				_		<u></u>	_
[118	2	8	18	32	32	18	8]

frequency of the lowest frequency term in the corresponding spectral series, provided we may adhere to the simple central orbit model. Figure 4 contains a schematic picture of the orbits of the outer electron in the normal state of neutral atoms of the alkali metals, and of Cu, Ag, Au. They are all penetrating orbits, since they correspond to k = 1. The regions inside which the electrons of the completed groups are moving are designated by circles. The atoms of the inert gases are added for the sake of comparison. The numbers at the left of the nucleus indicate the number of electrons contained in each group; the symbols $n_{1,2}$... at the right indicate the quantum numbers of the orbits contained in each group.

[For detailed calculations of electronic orbits, based on simplifying assumptions, see (12, 13, 20) (Cs and U); the work is semi-empirical. For detailed calculations on purely theoretical basis, see (15) (Ne, Na, Mg⁺, Al⁺⁺, Si⁺⁺⁺, P⁺⁺⁺⁺) and (16) (alkali metals); in Lindsay's work, the radii of outer groups in K⁺, Rb⁺, and Cs⁺ seem too large, probably on account of inadequacy of assumptions regarding numbers of electrons in sub-groups, as well as of the simplifying assumptions made. For critical review of work on effective atomic radii, see (14) and for recent work (8). There is no simple direct connection between effective atomic radii and the magnitude of the space occupied by electronic orbits.]

In experiments on optical and X-ray spectra, we meet neutral atoms or atomic ions in higher quantum states. Several features of these states can be described on the simple central orbit model. In the case of "single excitation" all electronic orbits except one remain normal, and the other electron describes an orbit with quantum numbers which differ from those of the normal state. "Double excitation" corresponds to two electrons describing orbits different from those in the normal state, etc. We will here consider only singly-excited states.

In the stationary states (energy levels) involved in the emission of the ordinary X-ray spectra, one electron in the inner groups of the atom is lacking. In the states involved in the emission of the ordinary series-spectra, one electron belonging to the outermost group of the atom, the "series electron," moves in a central n_k orbit the dimensions of which are large as compared with those of the rest of the atom. It may move either quite outside the atomic residue or it may penetrate into it in each revolution.

As a first approximation, a non-penetrating orbit may be described as a Keplerian elliptical orbit performing a uniform precession in its plane, the shape of the ellipse being very nearly that of an n_k -orbit in an atom containing only one electron and having a nuclear charge Z^*e equal to the net-charge of the atomic residue. If the electron orbit is of the penetrating type, it may, as a first approximation, be described as a set of congruent outer Keplerian elliptical loops, connected by congruent inner loops, the angular distance between successive loops being the same. The semi-major axis, the semi-parameter p, and the semi-minor axis p of the outer loop can be found from the value of the corresponding spectral term p by means of the formulae

$$a = \frac{Z^*Nr_1}{T} \qquad p = \frac{k^2}{Z^*}r_1 \qquad b = \sqrt{ap} \qquad (8)$$

where
$$N = \frac{v_{\infty}}{c} \times \frac{1}{1 + m_0/M}$$
 is the Rydberg constant for

the element in question, and Z^*e is the net-charge of the atomic residue. If we introduce the effective quantum number n^* $(n^{*2} = Z^{*2}N/T)$, these formulae may be written:

$$(n^{*2} = Z^{*2}N/T)$$
, these formulae may be written:

$$a = \frac{n^{*2}}{Z^*}r_1 \qquad p = \frac{k^2}{Z^*}r_1 \qquad b = \frac{n^*k}{Z^*}r_1 \qquad (9)$$

The greater the ratio n^*/k (or a/b) the closer the approximation to which this description of the outer loops may be considered to hold. The maximum distance of the electron from the nucleus is equal to $a + \sqrt{a^2 - b^2}$, or very nearly equal to $2a - \frac{1}{2}p$.

Fig. 3.—Maximum elongations of electrons of several groups.

The values to be assigned to the precessional frequency characterizing the penetrating central orbits are very uncertain. For the alkali elements, the ratio ω/σ for the n_1 orbits probably lies between 0.3 and 0.5, for the n_2 orbits (except lithium) between 0.5 and 1.0. Based on the above formulae, an illustration of the shapes of the orbits of the series electron corresponding to the stationary states of the K-atom, is given in Fig. 5. [For connection between spectra and the group structure of atoms, see (6.5); for spectra and central field of force, see (12.13); for series spectra and electronic orbits, see (2.7); for recent development of formal theory of electronic groups, see (17.19)].

SYMBOLS

The symbols c, e, h, m_0 , λ have their usual significance (see p. 16); others which occur more than once are:

- a_n Semi-major axis of electronic orbit, state n.
- $b_{n,k}$ Semi-minor axis of electronic orbit, state n, k.
- k Subordinate, or azimuthal, quantum number defining a stationary state.
- M Nuclear mass.
- n Principal quantum number defining a stationary state.

Fig. 5. —Orbits of the series electron of potassium. (Reproduced by permission from The Journal of the Franktin Institute.)

Fig. 4.—Normal orbit of outer electron.

- n^* Effective quantum number = Z^*N/T .
- n_k Designation of the state characterized by the numbers n, k.
- N_m Rydberg constant.
- p Semi-parameter of the electronic orbit (semi-latus rectum).
- r₁ Radius of first Bohr ring for hydrogen.
- T Spectral term = a wave number $(1/\lambda)$ of a spectral series.
- v Speed of electron in its orbit.
- W_n Energy expenditure required to remove the electron to infinity.
- Z Atomic number: Ze = nuclear charge.
- Z*e Charge of atomic residue.
- α $2\pi e^2/hc$.
- β $(1 v^2/c^2)^{-\frac{1}{2}}$
- Frequency of emitted radiation.
- ▶ ∞ Rydberg fundamental frequency.
- $\sigma_{n,k}$ Frequency of precession of electronic orbit.

Frequency of revolution of electron; for penetrating orbits, the radial frequency, one revolution being from A to B, Fig. 2.

LITERATURE

(For a key to the periodicals, see end of volume)

- (1) Andrade, The Structure of the Atom, 1923. (2) Birge and Blackett, 48, 8: 213; 24. (3) Bohr, The Theory of Spectra and Atomic Constitution, 2nd ed., 1924. (4) Bohr, 58, 112: 29; 23. \$18, 11: 606; 23. (5) Bohr, 5, 71: 228; 23. (6) Bohr and Coster, 96, 12: 342; 23. (6) Born, Vorlesungen über Atommechanik. (7) Born and Heisenberg, 96, 23: 388; 24. (3) Davey, 8, 22: 211; 23. (6) Darwin, 5, 39: 537; 23.
- (10) Foote and Mohler, Origin of Spectra, 1923. (11) Foote, 143, 198: 344, 517; 24. (12) Fuess, 96, 11: 364; 22. 12: 1; 22. 21: 265; 24. 8, 76: 299; 25. (13) Hartree, 801, 21: 630; 23. 22: 409, 464; 24. 6, 106: 552; 24. (14) Hersfeld, 200, 19: 259; 23. (15) Kramers and Urey, O. (16) Lindsay, 8, 23: 552; 24. 285, 3: 191; 24. 2, 25: 239; 25. (17) Pauli, Jr., 96, 31: 765; 25. (13) Sommerfeld, Atombau und Spektrallinien, 4th ed., 1925. (13) Stoner, 3, 45: 719; 24.
- (20) Urey, O. (21) Heisenberg, 96, 33: 879; 25.

THERMOMETRY

E. F. MUELLER, L. H. ADAMS, F. O. FAIRCHILD AND H. T. WENSEL

		P	AG:
	Thermometric Scales		52
2.	The Standard Thermodynamic Scale		52
3.	Fixed Points	E. F. MUELLER	53
	Resistance Thermometers		54
5.	Liquid-in-glass Thermometers	j	54
	Thermo-couples. L. H. ADAMS		
7.	Optical Pyrometry C. O. FAIRCHILD		59

1. THERMOMETRIC SCALES

E. F. MUELLER

Centigrade or Celsius scale, °C Fahrenheit scale, °F Réamur scale, °R Centigrade absolute or Kelvin scale, °K Fahrenheit absolute or Rankine scale, °R'

By definition or as basic values adopted for I. C. T., the ice and steam points under a pressure of $1A_n$ have the following values:

Ice point: $0^{\circ}C = 32^{\circ}F = 0^{\circ}R = 273.1^{\circ}K = 491.58^{\circ}R'$. Steam point: $100^{\circ}C = 212^{\circ}F = 80^{\circ}R = 373.1^{\circ}K = 703.58^{\circ}R'$. ${}^{\circ}C = \frac{5}{4}({}^{\circ}F - 32) = \frac{5}{4}{}^{\circ}R = {}^{\circ}K - 273.1$. ${}^{\circ}F = \frac{9}{4}{}^{\circ}C + 32 = {}^{\circ}R' - 459.58$.

2. THE STANDARD THERMODYNAMIC SCALE

E. F. MUELLER

The thermodynamic scale, which is based solely on the laws of thermodynamics and is independent of the properties of any material substance, is accepted as the standard scale of temperature. Temperatures on the thermodynamic scale are proportional to the pressures (or to the volumes) of an ideal gas in a perfect constant volume (or constant pressure) gas thermometer. The standard scale is realized in practice by use of gas thermometers, the indications of which can be reduced to the standard scale, or for higher temperatures, by use of the relations between the intensity of radiation from a black body and its temperature.

The experimental difficulties in the use of gas thermometers and the relatively low precision attainable in a single measurement have led to the introduction of a standard practical or working scale. This working scale is defined by certain base points, the temperatures of which have been determined by gas thermometer measurements, and by the indications of suitable instruments used for interpolation between the base points or for extrapolation to higher temperatures. It is possible in this way, without actually using a gas thermometer, to establish a working scale which does not differ to a demonstrable extent from the standard scale at any temperature within the range of the working scale. The practice of the various national standardizing laboratories in defining the working scale is substantially uniform at present, and it requires only minor adjustments and formal agreement to give the working scales of these laboratories the status of an international temperature scale. Such a scale would bear essentially the same relation to the standard scale, as do the international electric units to the absolute units.

The standard working scale may be defined by assigning numerical values to the temperatures defined by the boiling point of oxygen, the melting point of ice, the boiling point of water, the boiling point of sulfur, and the freezing points of antimony, silver and gold. The platinum resistance thermometer is the standard for interpolation in the range -195° to 0°C and from 0° to 650°C; the platinum-platinum rhodium thermocouple for the range from 650° to 1063°; and the luminous filament pyrometer above 1063°C.

Wien's law is accepted as expressing the brightness-temperature relation for a black body. For the purpose of defining the temperature scale above 1063°C the present practice of the national laboratories tends to favor the use of the value 1.430 cm degrees for the constant C₂ in this equation but the value 1.433 cm degrees has been adopted for I. C. T.

LITERATURE

(For a key to the periodicals, see end of volume)

Reichsanstalt, 8, 48: 1034; 15. (2) Griffiths and Schofield, 85, 13: 222; 18.
 Waidner, Mueller and Foote, Pyrometry, p. 46 (pub. by Am. Soc. Min. and Met. Engrs., 1920). (4) Day and Somman, Dictionary of Applied Physics, 1: 836; 22. (5) Henning, 843, 44: 349; 24. (6) Riechsanstalt, 843, 44: 517; 24.

Reduction of Gas Thermometer Indications to the Thermodynamic Scale

The temperature t_0 on the scale of a constant volume or constant pressure gas thermometer filled with any real gas, is proportional to the pressure the gas would exert or the volume it would occupy, respectively, if all of the gas were at the uniform temperature to be measured, and if the volume or the pressure, respectively, were the same at all temperatures. At 0° and 100° C, the temperature t_0 is by definition identical with the thermodynamic temperature t_0 while at other temperatures t_0 departs from t by amounts which are proportional to the pressure at 0° , called the initial pressure. The tabular values are accordingly given only for an initial pressure equivalent to 1 m of mercury.

The values of $t-t_{\theta}$ obtained by various methods cover a wide range, so that only the order of magnitude of the values can be considered as known with any certainty. The tendency in modern work in gas thermometry has been to employ hydrogen or helium as the thermometric gas, and for these gases the magnitude of $t-t_{\theta}$ is comparable with the experimental error of the gas thermometer itself, so that the importance of an exact knowledge of the departure of the scales of these gas thermometers from the thermodynamic scale is correspondingly reduced.

Reduction of Gas Thermometer Indications, t_{σ} , to the Thermodynamic Centigrade Scale, t

Values of $t - t_0$ for	r an	initial	pressure	of 1	l meter of	mercury
-------------------------	------	---------	----------	------	------------	---------

	Hel	ium	Hvdi	rogen	Nitrogen	
t	Const.	Const.	Const.	Const.	Const.	Const.
${}^{\circ}\mathbf{C}$	vol.		vol.		vol.	
		press.		press.	į voi.	press.
- 250	+0.04		+0.12			
– 200	+ .02	+0.04	+ .06	+0.3	+0.5	
- 150	+ .01	+ .02	+ .03	+ .1	+ .2	+1.3
- 100	+ .005	+ .005	+ .015	+ .04	+ .06	+ .4
- 50	+ .002	+ .002	+ .005	+ .02	+ .03	+ .12
0	.000	.000	.000	.000	.00	.00
+ 25	001	001	001	003	008	02
50	001	.000	002	004	010	03
75	001	.000	001	003	005	02
100	.000	.000	.000	.000	.000	.00
150	+ .002	+ .001	+ .01	+ .01	+ .01	+ .05
200	+ .006	+ .001	+ .02	+ .02	+ .02	+ .12
250	+ .01	+ .002	' ' ' ' '	+ .03	+ .04	+ .2
300	+ .02	+ .003		+ .04	+ .07	+ .3
350	+ .03	+ .005		' .02	+ .10	+ .4
400	+ .04	+ .006			+ .14	+ .5
450	+ .05	+ .008	·····		+ .17	+ .6
500	T .00	T .000			+ .2	+ .7
600						1 *
	;			[
800					+ .5	+1.3
1000					+ .7	+1.8
1200	1				+1.0	+2.3

LITERATURE

(For a key to the periodicals see end of volume)

(1)Rose-Innes, 5, 2: 131; 01. 15: 301; 08. (2)Callendar, 5, 5: 48; 03. (3) Berthelot, 238, 13B: 113p.; 07. (4)Buckingham, 31A, 3: 237; 07. (5)Cath and Onnes, 168, No. 156a; 22. 18, 6: 1; 22. (6)Holborn and Otto, 96, 23: 77; 24. 30: 320; 24. (7)Keesom and Onnes, B60: 15; 24.

8. FIXED POINTS

E. F. MUELLER

- t = Temperature on standard scale.
- p = Pressure in millimeters of Hg (1 mm Hg = $\frac{1}{160}$ A_n) where p is between 680 and 780 mm.

BASE POINTS USED IN DEFINING THE STANDARD WORKING SCALE
(I. C. T. temperature scale)

Substance	Phenomenon	Temperature, °C		
Liquid Os	Vapor pressure	$t = \begin{bmatrix} -183.00 + 0.245 (t + 273.1) \log_{10} p/760 \text{ or} \\ -183.00 + 0.0126 (p - 760) \\ -0.0000065 (p - 760)^2 \end{bmatrix}$		
Solid CO:	Vapor pressure	$t = \begin{bmatrix} -78.51 + 0.1443 & (t + 278.1) & \log_{10} p / 760 & \text{or} \\ -78.51 + 0.01595 & (p - 760) \\ -0.000011 & (p - 760)^2 \end{bmatrix}$		
Mercury*	_	t = -38.87°		
Ice	Weiring	t = 0.000°		
Steam	Condensing	$t = \begin{bmatrix} 100.000 + 0.1727 & (t + 273.1) \log_{10} p / 760 \text{ or} \\ 100.000 + 0.0367 & (p - 760) - 0.000023 & (p - 760)^2 \end{bmatrix}$		
Sulfur	Condensing	$t = \begin{bmatrix} 444.60 + 0.2215 & (t + 273.1) & \log_{10} p/760 & \text{or} \\ 444.60 + 0.0909 & (p - 760) \\ -0.000048 & (p - 760)^2 \end{bmatrix}$		
Antimony	Freesing	To be determined with resistance thermometer. $t = approx. 630.5^{\circ}$		
Silver	Freezing	$t = 960.5^{\circ}$ (reducing atmosphere).		
Gold		t = 1063°		

^{*} Not needed according to one suggested definition of the scale.

SECONDARY FIXED POINTS USEFUL IN CALIBRATING TEMPERATURE MEASURING INSTRUMENTS

(I. C. T. temperature scale)

Substance	Phenomenon	Temperature °C			
Hydrogen	Boiling	t = -252.7s + 0.0044 (p - 760)			
Nitrogen	Vapor pressure	t = -195.80 + 0.0109 (p - 760)			
Naphthalene	Condensing	t = 217.96 + 0.207s (t + 273.1) $log_{10}(p/760)$			
Tin	Freezing	t = 231.85			
Bensophenone	Condensing	$t = 305.9 + 0.194 (t + 273.1) \log_{10}(p/760)$			
Cadmium	Freezing	t = 320.9			
Lead	Freesing	t = 327.4			
Zinc	Freesing	t = 419.4s			
Aluminum (99.85 %)	Freesing	t = 658.9			
Copper	Freesing	t = 1083 (reducing atmosphere)			
Palladium		$t = 1555 \pm 2$			
Platinum	_	$t = 1755 \pm 6$			
Tungsten	_	$t = 3370 \pm 30$			

The above values are in accord with the temperature scale used throughout I. C. T. For the last three points the following slightly different values have been suggested for future adoption as secondary points on an international practical scale.

Palladium	Freesing	t -	$\begin{bmatrix} 1555 \text{ for } C_1 = 1.430 \\ 1554 \text{ for } C_2 = 1.433 \end{bmatrix}$
Platinum	Melting	· -	$\begin{bmatrix} 1765 \text{ for } C_2 = 1.430 \\ 1763 \text{ for } C_1 = 1.433 \end{bmatrix}$
Tungsten	Melting	ι -	$\begin{bmatrix} 3400 & \text{for } C_2 = 1.430 \\ 3386 & \text{for } C_2 = 1.433 \end{bmatrix}$

Additional Useful Secondary Points

Substance	Formula	Phenomenon	Temper- ature, °C	
Isopentane	C ₄ H ₁₂	Freesing	- 159.6	
Methylcyclohexane	C ₆ H ₁₁ CH ₈	Freezing	- 126.3	
Ether	(C ₂ H ₆) ₂ O	Slow freesing (un- stable)	- 123.3	
Ether	(C ₇ H ₄) ₂ O	Rapid freezing or slow melting	- 116.3	
Carbon disulfide	CS ₂	Freesing	- 111.6	
Toluene	C7Hs	Freesing	- 95.1	
Ethyl acetate	CH ₂ CO ₂ C ₂ H ₄	Freesing	- 83.6	
Chloroform	CHCl ₃	Freezing	- 63.5	
Chlorobensene	C ₆ H ₄ Cl	Freesing	- 45.2	
Carbon tetrachloride	CCI	Freezing	- 22.9	
Sodium sulfate	Na ₂ SO ₄ ·10H ₂ O	Transition	32.38	
Potassium dichromate	K ₂ Cr ₂ O ₇	Melting	397.5	
30.5 NaCl + 69.5 Na ₂ 8O ₄		Melting	637.0	
Potassium chloride	KCI	Melting	770.3	
Sodium chloride	NaCl	Melting	800.4	
Sodium sulfate	Na ₂ SO ₄	Melting	884.7	
Potassium sulfate	K2SO4	Inversion	583.0	
Potassium sulfate	K28O4	Melting	1069.1	
Nickel	Ni	Melting or freezing	1452	
Cobalt	Co	Melting or freezing	1490	
Lithium metasilicate	Li ₂ SiO ₃	Melting	1202	
Diopside	CaMgSi ₂ O ₆	Melting	1395	
Anorthite	CaAl ₂ Si ₂ O ₃	Melting	1555	

LITERATURE

(For a key to the periodicals see end of volume)

(1) Holborn and Day, 8, 2: 505; 00. 12, 10: 171; 00 (Sb, Ag, Au, Cu). (2) Buckingham, \$1 A, \$: 281; 07 (Review of values for S boiling point). (3) Waidner and Burgess, 31 A, 7:1; 11 (Naphthalene, bensophenone, Sn, Cd, Zn). (4) Holborn and Henning, 8, 35: 761; 11 (Naphthalene, bensophenone, S, Sn, Cd, Zn). (5) Day and Sosman, 162, No. 157; 11 (Zn, Sb, Ag, Au, Cu, Pd, Pt). (6) Day and Sosman, 12, 33: 517; 12. 8, 38: 849; 12 (Bensophenone, Zn, Sb, S). (7) Henning, 8, 43: 282; 14 (O, CO₂, Hg). (8) Eumorfopoulous, 5, 90A: 189; 14 (S). (9) Wilhelm, 31A, 13: 655; 16. (Hg).

(10) Chappuis, 238, 16: 17 (S). (11) Bureau of Standards, Cir. No. 66; 17 (Sn, Zn, Al, Cu). (12) Cath, 168, No. 182d; 18. 64P, 21: 656; 19 (O, N). (13) Martines and Onnes, 168, No. 166b; 22. 18, 6: 31; 22 (H), (14) Worthing, 96, 22: 9; 24 (W). (15) Henning and Heuse, 8, 28: 104; 24 (O, N, H). (16) Finck and Wilhelm, 1, 47: 25 (Naphthalene, benzophenone). See also References under Standard Scale of Temperature.

Additional Fixed Points: Timmermans, Van der Horst and Onnes, 168, No. 157; 22 (Organic liquids below 0°). Dickinson and Mueller, 31A, 3: 641; 07 (Na₂SO₄ transition). Roberts, 2, 23: 386; 24 (Salts). Day and Sosman, Dictionary of Applied Physics, 1: 836; 22 (Metals and silicates). Richards, et al, 1, 36: 485; 14 (Na₂CO₂ hydrates transitions). 40: 89; 18 (SrCl₂ and SrBr2 transitions). 41: 2019; 19 (C6He).

THE LEIDEN TEMPERATURE SCALE

In certain sections of International Critical Tables (where so indicated) the Leiden temperature scale will be employed. (Onnes and Hoist, 168, No. 141a. 64V, 23: 175; 14. Cath and Onnes, 168, No. 152a. 64V, 26: 437, 490; 17. Cath, 168, No. 152d. 64V, 27: 553; 18.) The relation between the Leiden and the I. C. T. scales is shown by the following table:

Point	I. C. T.	Leiden	Leiden – I. C. T.
H ₂ (B. P.) O ₂ (B. P.)		-252.74° -182.95°	+0.06° +0.05°
ca40°	-183.0	-182.93	+0.05

4. RESISTANCE THERMOMETERS

E. F. MUELLER

Standard methods of calibration have been developed only for platinum resistance thermometers. Data on the resistancetemperature relation for particular thermometers of other metals, such as gold and lead, are available, and formulae to represent the relation have been published, but standardized methods for the calibration of such thermometers have not been developed.

The standard working scale, in the interval 0° to 650°C, is defined by means of a resistance thermometer of pure platinum, for which the relation between resistance R and temperature tis given by the equation:

$$R = R_0(1 + at + bt^2). (1)$$

This may be transformed into the Callendar equations:
$$(pt) = \left(\frac{R - R_0}{R_{100} - R_0}\right) 100; t - (pt) = \delta \left[\left(\frac{t}{100} - 1\right) \frac{t}{100}\right]$$
(2)
The three constants in these equations, namely R_0 , a, and b or

 R_0 , R_{100} and δ respectively, are determined by calibration at the ice point, the steam point, and the sulfur boiling point.

The purity of the platinum must be such that $R_{100}/R_0 > 1.390$ and $R_{444.6}/R_0 > 2.645$, the latter requirement being equivalent to $\delta < 1.50$.

The Callendar equations were devised to facilitate computations by the method of successive approximations. The platinum temperature, symbol (pt), is proportional to the resistance above R_0 and the amount by which it differs from the true temperature is given by the correction term,

 $\delta\left(\frac{t}{100}-1\right)\frac{t}{100}.$

Consequently, a value of t sufficiently exact for use in computing the value of the correction term is readily obtained, if not by the first, then certainly by a second or third approximation.

In the interval -195° to 0°C the standard reference scale is defined by means of the platinum resistance thermometer, using the equation

$$t - (\text{pt}) = \delta \left[\left(\frac{t}{100} - 1 \right) \frac{t}{100} \right] + \beta \left[\left(\frac{t}{100} - 1 \right) \frac{t^2}{100^3} \right].$$
 (3)
The constants R_0 , R_{100} and δ are determined just as for the

range above 0° and the additional constant β is determined by a calibration at the boiling point of oxygen. A criterion for the purity of the platinum is that $R_{-182}/R_0 < 0.250$.

Thermometers which are not to be heated above ordinary temperatures may be calibrated at the freezing point of mercury, the CO₂ point and the oxygen point, using the interpolation formula:

$$R = R_0(1 + at + bt^2 + ct^4). (4)$$

The constant c in the equation is approximately equal to 5×10^{-12} and when this value is assumed, calibration at the CO₂ point may be omitted.

Equations (3) and (4) will yield substantially equivalent results, but they are not algebraically interconvertible.

Equation (1) or equation (2) may be used for temperatures up to 1000° or even 1100°C and the temperatures so determined will not depart appreciably from the standard scale.

LITERATURE

(For a key to the periodicals see end of volume)

(1) Callendar, 62, 175: 160; 87. (2) Waidner and Burgees, 31A, 6: 149; 09. (3) Holborn and Henning, 8, 35: 761; 11. (4) Henning, 8, 40: 635; 13 (Pt and Pb at low temperatures). (*) Henning, 8, 43: 282; 14. (*) Cath, Onnes and Burgers, 168, No. 182c; 17. 64P, 20, 1163; 18 (Pt and Au at low temperatures). (7) Henning and Heuse, 96, 23: 95; 24. (8) Van Dusen, 1, 47: 326; 25.

5. TEMPERATURE SCALES DEFINED BY LIQUID-IN-GLASS THERMOMETERS

E. F. MUELLER

The readings of any particular thermometer, taken when all of the liquid in the thermometer is at a uniform temperature, may be reduced to those which would have been obtained if the thermometer had been perfect and used under ideal conditions, by applying corrections for non-uniformity of the capillary bore, corrections for the change of reading due to departure of the external and internal pressures from arbitrary constant values, a correction for the departure of the ice-point reading, taken immediately after the temperature measurement, from the 0° mark, and

a correction to allow for the value of the mean scale degree, in case the difference between the readings of the thermometer taken first at 100°C and then at 0°C, does not correspond to 100 scale degrees. The reading of a thermometer, when so corrected, may be defined as the temperature on the liquid-in-glass scale for the particular liquid and the particular kind of glass of which the thermometer is made.

The temperature scales of mercury thermometers made of French hard glass (verre dur), Jena 16^{III}, Jena 59^{III}, Jena 1565^{III} and Jena combustion tubing are defined as above. For Kew glass, the temperature scale is defined in a somewhat different way, in that the point of reference is the (single) ice point reading taken after the thermometer has been held for a sufficiently long period at ordinary temperature (about 10°C) instead of the (variable) ice point reading taken immediately after each temperature measurement. It is apparent that temperatures on the mercury-in-glass scale are not proportional to the relative increase of volume of mercury-in-glass.

Constants characteristic of the several glasses are the ice-point depression, the softening point, and the average coefficient of expansion of mercury-in-glass, between 0° and 100°C.

The ice point depression is the difference between the ice point reading of the thermometer taken after it has been kept a sufficiently long time (a few days or weeks) at 0° and the ice point reading taken immediately after the thermometer has been kept a sufficiently long time (a few minutes or hours) at 100°C. Good thermometric glasses are characterized by small ice point depression (less than 0.1°C) and rapid recovery. Some glasses have an ice point depression of nearly 1°C.

The softening point determines the upper limit of temperature at which thermometers made of the glass can be used.

The expansion coefficient is useful in calculating corrections for emergent stem.

Values of these characteristic constants are:

Glass	Ice point depression °C	Softening point °C	Coefficient of cubical exp. of mercury-in-glass 0° to 100°C
Verre dur	0.07-0.11	500	0.000158
"Kew" glass	0.20		
Jena 16 ^m	0.04-0.08	505	0.000158
Jena 59 ¹¹¹	0.03-0.04	510	0.000164
Jena 1565 ¹¹¹	0.01	660	0.000172
Jena combustion	0.03	560	

Thermometers containing alcohol, toluene or pentane are not adapted for observation at 100° C, and for such thermometers the mean scale degree is conveniently referred to the interval 0° to -78.5° , the sublimation temperature of carbon dioxide serving to fix the latter temperature.

The tabular values are the result of comparisons of mercuryin-glass thermometers with gas thermometers or platinum resistance thermometers which served to establish the standard scale of temperature. The data for Jena 16^{III} glass and Jena 59^{III} glass may be used for Corning normal and Corning borosilicate thermometer glasses respectively.

Data of this kind were of great importance during the latter part of the 19th and even during the early part of this century, when calibrated mercury-in-glass thermometers were used to distribute the standard scale of temperature. At present the data are useful principally for minor purposes, such as calculation of factors for determining emergent stem correction, calculation of setting factors for metastatic thermometers, such as the Beckmann thermometer, graduation of thermometers by mercury thread calibration in the absence of standards and thermally controlled baths, etc.

In the tables, t represents the temperature on the standard working scale (platinum resistance thermometer) except for verre dur, where t represents temperatures on the former International hydrogen scale, which in practice is not distinguishable from the standard reference scale, while t_{vl} represents corresponding temperatures on the several liquid-in-glass scales.

Values of $t - t_{gl}$ for Mercury-in-glass Thermometers $t = \text{temperature on standard scale}, t_{gl} = \text{temperature on mercury-in-glass scale}$

eury-in-glass scale.							
t°C	French hard (verre dur)	Kew glass	Jena 16 ^{III}	Jena 59 ¹¹¹	Jena 1565 ¹¹¹	Jena com- bustion	
- 39 - 30 - 20 - 10 0 + 10 20 30 40 50	+0 .420 + .290 + .172 + .073 .000 052 085 102 107 103	0.00 .00 .00 + .005 + .01 + .01	12 12	+ 0.13 + .07 + .03 .00 02 04 04 03 03	0.00 03 05 06 06	0.00	
60 70 80 90 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400	090 072 050 026 .000 + .06 + .07 + .03 04 12	+ .015 + .02 + .025	06	0201 .00 + .02 .000516315284 - 1.3 - 1.9 - 2.6 - 3.4 - 4.4 - 5.8 - 7.2 - 8.8 - 10.6 - 12.6	03 02 01 .00 + .06 + .03 13	0.00 - 1.13 - 1.6 - 2.2 - 3.0 - 4.0 - 5.1 - 6.4 - 7.8 - 9.5 - 11.4 - 13.5	
420 440 460 480 500 550 600 650				-14.9 -17.4 -20.2 -23.3 -26.9	-12.4 -14.7 -17.2 -20.0 -23.1 -32. -44. -58.	-15.9 -18.6 -21.5 -24.8 -28.4 -39.	

Values of $t-t_g$ for Liquid-in-glass Thermometers

t	Pentane in 16 ^{III} glass	Toluene in verre dur	Alcohol in verre dur
-190	-23.4		
-180	-21.0		
-170	-18.6		
-160	-16.2		
-150	-13.9		
-140	-11.6	,	
-130	- 9.4		
-120	- 7.3		
-110	- 5.3		

Values of $t-t_1$ for Liquid-in-glass Thermometers.—Continued

ı	Pentane in 16 ¹¹¹ glass	Toluene in verre dur	Alcohol in verre dur
-100	- 3.4	1	
- 90	- 1.7		
- 80	- 0.2	0.0	
- 78.5	0.0	0.0	0.0
– 70	+ 1.0	+ .4	+0.3
- 60	+ 2.0	+ .8	+ .6
- 50	+ 2.6	+ 1.1	+ .7
- 40	+ 3.0	+ 1.2	+ .9
- 30	+ 2.9	+ 1.2	+ .9
- 20	+ 2.4	+ 1.0	+ .8
- 10	+ 1.5	+ 0.6	+ .5
0	0.0	0.0	.0
+ 10	- 2.0		
20	- 4.4		
30	- 7.6		-3.6
100		-24.4	

LITERATURE

(For a key to the periodicals see end of volume)

Guillaume, Traite pratique de la thermometerie. Gauthier-Villars, Paris, 1889 (General). Chappuis, 238, 6: 1; 88 (Verre dur - 25° to 100°). Harker, 5, 78A: 225; 06 (Kew glass). Scheel, Deut. Mechan. Ziq., 1916: 170 and Holborn, Scheel and Henning, B63 (Jena glasses and organic liquids in glass).

Emergent Stem Correction for Liquid-in-glass Thermometers

If a liquid-in-glass thermometer standardized for total immersion is used with a portion of the liquid column at a temperature below that of the bulb, the reading will be too low for this reason, and an emergent stem correction should be applied to the observed reading.

The emergent stem correction is calculated by the formula,

Correction = $Kn(t - t_*)$

in which

K = coefficient of cubical expansion of mercury-in-glass, per ${}^{\circ}\text{C}$.

t = temperature of bulb, °C,

 t_* = average temperature ${}^{\circ}$ C of the mercury column n° C degrees in length.

The value of t is to be determined by means of an auxiliary thermometer or thermometers, preferably with a capillary thermometer. The sign as well as the magnitude of the correction is given by the formula.

For many purposes, in using mercury-in-glass thermometers K may be treated as a constant of the glass, using the values given above for the apparent coefficient of expansion of mercury-inglass. The value of K does, however, change with temperature. For purposes of computing the emergent stem correction, it may be considered as depending on the average of t and t_s , that is

 $\frac{t+t_0}{2}$ and is here so tabulated.

If the coefficients of expansion of mercury and of glass were both constant, K would also be constant. Most of the change in K is the result of the varying coefficient of the mercury, so that the change in K with temperature for one glass may with some certainty be inferred from the change for some other glass.

The use of the formula requires that t, the temperature of the bulb, be known. In case t is not known, but is to be determined from the indication of the thermometer, the reading of the thermometer may be substituted in the formula in place of t, as a first approximation and the true magnitude of the correction then calculated by means of a second, or if necessary, a third approximation.

In many cases, in calculating the emergent stem correction for thermometers containing organic liquids, it is sufficient to use the approximate value, K=0.001. The tables show to what extent this is justified for pentane, toluene, and alcohol. In such thermometers, K is practically independent of the kind of glass used.

With the abandonment of the mercury-in-glass thermometer as an instrument of high precision there has been an increasing tendency to use partial immersion thermometers, graduated and standardized for a particular depth of immersion, thus avoiding the necessity of determining and applying the correction for emergent stem.

Table of Emergent Stem Correction Factors
Mercury-in-glass Thermometers

$\frac{t+t}{2}$ °C	Verre dur	Jena 16 ^m	Jena 59 ¹¹¹	Jena 1 56 5 ¹¹¹	Jena combus- tion
50	0.000158	0.000158	0.000164	0.000172	0.000164
100	158	158	164	172	164
150	158	158	165	173	165
200	159	159	167	175	167
250		161	170	177	171
300		164	174	180	174
350	1		177	184	178
400			182	188	182
450			187	194	188
500	•		195	200	195

Liquid-in-glass Thermometers

$\frac{t+t_{\bullet}}{2}$	Pentane	Toluene	Alcohol
-180	0.0009		
-160	09		ì
-140	09		
-120	10		
-100	10		
- 80	10	0.0009	0.0010
- 60	11	09	10
- 40	12	10	10
- 20	13	10	10
0	14	10	10
+ 20	15	11	10

LITERATURE

(For a key to the periodicals see end of volume) Buckingham, \$1a, \$: 239; 12.

Example: A thermometer of Jena 59^{III} (or Corning borosilicate glass) indicated a temperature, t, of 470° after application of corrections peculiar to the instrument. The thermometer was immersed to the 150° mark, and the average temperature t, of the 320° (n°) of exposed mercury column was found to be 190° . The average of t and t, is 330° and the value of the factor K for this temperature is 0.000176. Accordingly

Correction = $0.000176(320)(470 - 190) = 15.8^{\circ}$

The corrected temperature is therefore $470^{\circ} + 15.8^{\circ} = 485.8^{\circ}$. Since the bulb temperature was considerably higher than 470° a second approximation may be tried:

Correction = $0.000176(320)(486 - 190) = 16.7^{\circ}$

The second approximation yields a corrected temperature of 470° + 16.7° = 486.7° which in view of the rather large emergent stem correction, may properly be reported as 487°.

Possible short cuts in making the second approximation will be readily apparent.

The example given is purposely somewhat exaggerated by assuming an unusually high temperature (190°) for the emergent

stem, in order to show that the factor K may differ appreciably from the conventional value of 0.00016.

For computations in Fahrenheit temperatures, the proper value of K is 5% of the tabulated value.

6. THERMOCOUPLES

L. H. Adams

"Standard" Calibration Tables (for Use with Deviation Curve)

Standard tables such as these do not necessarily have any absolute significance; primarily, they are arbitrary reference curves which, although representing fairly well the temperature-emf functions for certain thermocouples, are intended for use with an appropriate deviation-curve. This correction-curve is determined for each couple by calibration at several—preferably

three or more—fixed points within the "applicability range of the couple." This curve is constructed by plotting ΔE as ordinate ($\Delta E = E_{obs.} - E_{stand.}$) against $E_{stand.}$ as abscissa. In order to obtain the temperature corresponding to the emf indicated by the couple, the appropriate value of ΔE (as obtained from its deviation curve) is subtracted algebraically from the observed value of E before the latter is converted into degrees by means of the table. Example: At a certain temperature a copper-constantan couple gave an emf of 8720 microvolts. From the previously determined deviation curve of the particular couple the value of ΔE at 8720 microvolts is found to be 12 microvolts. The "standard" emf is therefore 8720 — 12 or 8708 microvolts and from the copperconstantan table this may be seen to correspond to 189.0s°, which is the required temperature.

The fixed (i.e., cold) junction is supposed to be maintained at 0°C.

TEMPERATURES AND TEMPERATURE DIFFERENCES FOR EVERY 100 MICROVOLTS

Platinum: Platinrhodium (90-10). Standard range, 630°-1083°C. Applicability range, 0-1754°C

Ε μν	0	1000	2000	8000	4000	5000	5000	7000	2000	2000	E µv
0	0	147.1	265.4	374.3	478.1	578.3	675.3	769.5	861.1	950.4	0
100	17.8 17.8	159.7	276.6	384.9	488.3	588.1	684.8	9.5 778.8	870.1	959.2	100
200		172.1	287.7	395.4 10.5	498.4	9.8 597.9	694.3	788.0	9.0 879.1 9.0	968.0	200
300	50.3	184.3	298.7 11.0	405.9	508.5	9.8 607.7 9.7	703.8	797.2	888.1	976.7	300
400	65.4	196.3	309.7	416.3 10.4	518.6	617.4	713.3	806.4	897.1	985.4	400
300	80.0	208.1	320.6 10.9	426.7 10.4		627.1 9.7	722.7	815.6	906.1 8.9	994.1 8.7	300
600	94.1	219.7	•	437.1	538.6	636.8		824.7		1002.8	600
700	107.8	231.2	342.3	447.4 10.5	548.6	646.5	741.5	833.8	923.9	1011.5	700
300	121.2	242.7	353.0	457.7 10.8	558.5	656.1	750.9	842.9	932.8	1020.1 8.6	800
900	134.3 12.8	254.1	363.7	467.9	568.4	665.7	760.2	852.0	941.6	1028.7	900
1000	147.1	265.4	374.3	478.1	578.3	675.3	769.5	861.1	950.4	1037.3	1000
E µV	10,000	11,000	12,000	18,000	14,000	15,000	16,000	17,000	15,000		E av
			l .		ì	'			20,000		μν
0					1372.4			1620.9	1704.3		0
0 100	8.6 1045.9	8.4 1130.6	8.3 1214.2	8.4 1297.7	8.3 1380.7	8. 2 1463.0	8. 5 1545.8	1620.9 8.5 1629.2	1704.3 8.5 1712.6		
Ā	8.6 1045.9 8.6 1054.4	8.4 1130.6 8.4 1139.0	8.3 1214.2 8.4 1222.6	8.4 1297.7 8.5 1306.0	8.3 1380.7 8.3 1389.0	8.2 1463.0 8.2 1471.2	8.3 1545.8 8.3 1554.1	1620.9 8.3 1629.2 8.4	1704.3 8.5 1712.6 8.4	· · · · · • · · · · ·	0
100	8.6 1045.9 8.5 1054.4 8.5 1062.9	8.4 1130.6 8.4 1139.0 8.4 1147.4	8.3 1214.2 8.4 1222.6 8.3 1230.9	8.4 1297.7 8.3 1306.0 8.5 1314.3	8.3 1380.7 8.3 1389.0 8.3 1397.3	8.2 1463.0 8.2 1471.2 8.2 1479.4	8.3 1545.8 8.3 1554.1 8.3 1562.4	1620.9 8.3 1629.2 8.4 1637.6 8.5	1704.3 8.3 1712.6 8.4 1721.0 8.5 1729.3		0
100 200	8.6 1045.9 8.5 1054.4 8.5	8.4 1130.6 8.4 1139.0 8.4 1147.4 8.4	8.3 1214.2 8.4 1222.6 8.3 1230.9 8.4	8.4 1297.7 8.3 1306.0 8.5 1314.3	8.5 1389.0 8.5 1397.3 8.3 1405.6	8.2 1463.0 8.2 1471.2 8.2 1479.4 8.3	8.5 1545.8 8.5 1554.1 8.5 1562.4 8.4	1620.9 8.3 1629.2 1637.6 8.3 1645.9 8.4	1704.3 8.3 1712.6 8.4 1721.0 8.3 1729.3 8.4 1737.7		0 100 200
100 200 300	8.6 1045.9 8.5 1054.4 8.5 1062.9 8.5 1071.4 8.5	8.4 1139.0 8.4 1147.4 1155.8 8.4 1164.2	8.5 1214.2 8.4 1222.6 8.5 1230.9 8.4 1239.3 8.5	8.4 1297.7 8.3 1306.0 8.3 1314.3 8.3 1322.6 8.3	8.5 1389.0 8.3 1397.3 1405.6 8.8	8.8 1463.0 8.8 1471.2 8.8 1479.4 8.3 1487.7 8.3	8.5 1545.8 8.3 1554.1 8.5 1562.4 1570.8 8.3	1620.9 1629.2 1637.6 8.3 1645.9 8.4 1654.3 8.3 1662.6	1704.3 1712.6 8.4 1721.0 8.5 1729.3 8.4 1737.7 8.5 1746.0		0 100 200
100 200 300 400	8.6 1045.9 8.5 1054.4 8.5 1062.9 8.5 1071.4 8.6 1079.9 8.6 1088.4	8.4 1139.0 8.4 1147.4 1155.8 8.4 1164.2 8.3 1172.5	8.3 1214.2 8.4 1222.6 8.3 1230.9 1239.3 8.4 1247.6 8.5 1247.6	8.4 1297.7 8.3 1306.0 8.3 1314.3 8.3 1322.6 8.3 1330.9 8.3 1339.2	8.3 1380.7 8.3 1389.0 8.3 1405.6 8.2 1413.8 1422.0	8.2 1463.0 8.2 1471.2 8.2 1479.4 8.3 1487.7 8.3 1496.0 8.3 1504.3	8.5 1545.8 8.5 1554.1 8.5 1562.4 8.4 1570.8 8.5 1579.1 8.4	1620.9 8.3 1629.2 8.4 1637.6 8.3 1645.9 8.4 1654.3 8.3 1662.6 8.3	1704.3 8.3 1712.6 8.4 1721.0 8.5 1729.3 1737.7 8.3 1746.0 8.5 1754.3		0 100 200 300 400
100 200 300 400	8.6 1045.9 8.5 1054.4 8.5 1062.9 8.5 1071.4 8.5 1079.9 8.6 1088.4 8.5 1096.9	8.4 1139.0 8.4 1147.4 8.4 1155.8 8.4 1164.2 8.3 1172.5 8.4 1180.9	8.5 1214.2 8.4 1222.6 8.5 1230.9 8.4 1239.3 8.5 1247.6 8.5 1255.9 8.4	8.4 1297.7 8.3 1306.0 8.5 1314.3 8.3 1322.6 8.3 1330.9 8.3 1339.2 8.3 1347.5	8.3 1380.7 8.3 1389.0 8.3 1397.3 8.3 1405.6 8.2 1413.8 8.2 1422.0 8.2	8.2 1471.2 8.2 1479.4 8.3 1487.7 8.3 1496.0 8.3 1504.3 8.3 1512.6	8.5 1545.8 8.5 1554.1 8.5 1562.4 8.4 1570.8 8.3 1579.1 8.4 1587.5 8.5 1595.8	1620.9 1629.2 1637.6 8.4 1645.9 1654.3 8.5 1662.6 1670.9 8.4	1704.3 1712.6 8.4 1721.0 8.3 1729.3 1737.7 8.3 1746.0 1754.3		0 100 200 300 400
100 200 300 400 500	8.6 1045.9 8.5 1054.4 8.5 1062.9 8.5 1071.4 8.5 1079.9 8.5 1088.4 8.5 1096.9 8.5 1105.4	8.4 1139.0 8.4 1147.4 8.4 1155.8 8.4 1164.2 8.3 1172.5 8.4 1180.9 8.3	8.3 1214.2 8.4 1222.6 8.3 1230.9 8.4 1239.3 8.5 1247.6 8.5 1255.9 1264.3 8.5 1272.6	8.4 1297.7 8.3 1306.0 8.3 1314.3 8.3 1322.6 8.3 1330.9 8.3 1339.2 8.3 1347.5 8.3 1355.8	8.3 1380.7 8.3 1389.0 8.3 1397.3 8.3 1405.6 8.2 1413.8 1422.0 8.2 1430.2 8.2	8.2 1471.2 8.2 1479.4 8.3 1487.7 8.3 1496.0 8.5 1504.3 8.5 1512.6 8.3 1520.9	8.5 1545.8 8.3 1554.1 8.3 1562.4 8.4 1570.8 8.3 1579.1 1587.5 8.3 1595.8 8.4	1620.9 1629.2 8.4 1637.6 8.3 1645.9 1654.3 8.4 1652.6 8.5 1670.9 1679.3 8.5 1687.6	1704.3 1712.6 8.4 1721.0 8.5 1729.3 8.4 1737.7 8.3 1746.0 8.5 1754.3		0 100 200 300 400 500
100 200 300 400 500 500	8.6 1045.9 8.5 1054.4 8.5 1062.9 8.7 1071.4 8.6 1079.9 8.6 1088.4 8.6 1096.9 8.5 1105.4 8.6 1105.4 8.6	8.4 1139.0 8.4 1147.4 8.4 1155.8 8.4 1164.2 8.3 1172.5 8.4 1180.9 8.3	8.3 1214.2 8.4 1222.6 8.3 1230.9 1239.3 8.4 1247.6 1255.9 8.4 1264.3 8.3 1272.6 8.4 1281.0	8.4 1297.7 1306.0 8.3 1314.3 8.3 1322.6 8.3 1330.9 8.3 1347.5 8.3 1355.8	8.3 1380.7 8.3 1389.0 8.3 1397.3 1405.6 8.8 1413.8 1422.0 8.8 1430.2 8.8 1430.2	8.2 1463.0 8.2 1471.2 8.2 1479.4 8.3 1487.7 8.3 1496.0 8.3 1504.3 8.3 1512.6 8.3 1520.9 8.3 1529.2	8.5 1545.8 8.5 1554.1 8.5 1562.4 8.4 1570.8 8.3 1579.1 1587.5 8.5 1595.8 1604.2 8.3 1612.5	1620.9 1629.2 1637.6 8.3 1645.9 1654.3 8.3 1662.6 1670.9 8.4 1679.3 1687.6 8.4 1696.0	1704.3 8.3 1712.6 8.4 1721.0 8.5 1729.3 1737.7 8.5 1746.0 8.3 1754.3		0 100 200 300 400 500 500

TEMPERATURES AND TEMPERATURE DIFFERENCES FOR EVERY 100 MICROVOLTS

1.99 153.97 19,000 146.00 148.00 150.00 151.99 376.17 381.06 8 155.95 379.43 382.69 377.80 95 385. \$.07 123.63 1.66 \$.06 129.80 1.66 1.66 1.66 358.06 8.08 **8**.08 **8**.08 \$.04 121.56 119.48 127.75 363.02 125.69 훓 353.08 361.37 6 369 1.68 1.67 \$.15 | 98.38 \$.14 | 100.52 1.67 8.14 8.10 8.18 17,000 102.66 106.91 109.02 341.40 104.79 348.08 흫 336.36 344.74 115.31 8 353. 8.81 1.69 8.88 16,000 80.97 78.76 322.88 324.57 326.26 331.32 333.00 88.17 85.37 8 87.56 329.64 319.49 327.95 6 336 1.71 #.30 | 58.46 8.87 | 65.31 8.30 8.88 8.87 1.70 2.31 307.56 309.27 56.16 314.39 8 63.04 312.69 310.98 302.42 **4**9 8 ij 319. 1.73 1.74 | 8.48 2.36 8.41 14,000 290.35 30.15 32.57 34.98 44.51 46.86 295.54 8 39.77 42.15 37.38 285.13 293.81 297.26 298.98 42 8 302. 1.76 8.66 | 10.27 2.67 2.58 8.63 2.62 8.61 8.40 8.48 1.78 13,000 5.16 7.72 7.1.12 2.59 12.80 15.32 17.83 20.32 274.64 278.15 279.90 281.65 22.80 276.40 267.60 23 • K 285. Copper: Constantan 1.78 2.62 - 5.22 2.69 -15.86 \$.73 -21.30 1.79 2.71 -18.57 1.77 \$.65 -10.50 2.63 - 7.85 11,000 255.18 260.52 258.74 -13.178 8 -26. 287 £.81 -82.42 2.86 2.93 £.99 -52.79 8.79 #.84 -35.26 \$.96 -49.80 1.3**2** 237.20 1.81 239.01 8.90 11,000 235.38 233.56 244.43 246.23 -41.01 242.63 -26.82-43.91 -55.81231.74 240.82 82 249. \$.16 -68.20 9.28 -74.61 8.28 -77.87 1.84 220.75 10,000 -65.05 218.91 224.43 226.26 -81.16 -71.39 228.09 8 74 -87 22 231 3.67 (-101.82 3.68 5.30 3.86 (-120.53 5.48 91.28 5.74 |-112.87 3.46 94.74 5.51 • 98.25 1.87 9008-198.40 200.28 202.16 207.78 8 196.51 20:04 205.91 194.62 200.64 87.86 -105.45-124.46 8 213. 4.18 4.73 4.88 4.60 4.61 4.87 4.01 4.09 -132.56 14000 188.93 179.36 181.28 183.20 187.02 190.83 -169.14 900 185.11 -124.4662 -145.41₹ 2.40 5.84 6.88 1.94 1.94 -5000 157.92 159.89 161.86 -174.34 -185.38 171.62 -179.748 155.95 165.78 167.73 169.68 -203.95-210.9283 -169.14- 191.27 -197.44 8 163. 175. 8 욡 8 8 3 8 8 8 8 3 3 ş 8 1000 8 욡 3 8 8 2 M & M

Digitized by Google

TEMPERATURES AND TEMPERATURE DIFFERENCES FOR EVERY 0.5
MILLIVOLT

Chromel-alumel									
E mv	0	10	20	30	40				
0		I .		719.2	970.4				
0.5	12.3 12.1	256.7	494.5	731.4	983.4				
1.0	24.4	268.9	506.2	743.7	15.1 996.5				
1.5	12.0 36.4 12.0	281.0	517.9	756.0	18.2 1009.7				
2.0	48.4	293.1	529 .6	768.3	13.3 1023.0				
2.5	12.0 60.4 12.0	305.1	541.3	780.7	13.3				
8.0	72.4	317.1	553.0	12.4 793.1	13.4 1049.7				
3.5	12.0 84.4 12.0		564.7	12.5 805.6	13.5 1063.2				
4.0	96.4	341.0	576. 4	818.1	13.6 1076.8				
4.5	12.1 108.5 12.1	11.9 352.9 11.9	11 .8 588 .2 11 .8	830.6	13.7 1090.5 13.7				
5.0	120.6	364.9		843.2	1104.2				
5.5	12.2 132.8 12.4	11.9 376.8 11.9	11.8 611.8 11.8	12.6 855.8 12.6	15.8 1118.0 13.8				
6.0	145.2	388.6	623.6	868.4	1131.8				
6.5	12.6 157.7 12.6	11.8 400.4 11.8	11.8 635.4 11.8	12.6 881.0 12.7	13.9 1145.7 13.9				
7.0	170.2	412.2	647.2	893.7	1159.6				
7.5	12.5 182.7 12.5		11.9 659.1 11.9	12.7 906.4	(1174.)				
8.0		11.8 435.8		<i>18.7</i> 919.1	14. (1188.)				
8.5				12.8 931.9	14. (1 202 .)				
9.0	12.5 220.0		12.0 695.0	12.8 944.7					
9.5		<i>11.7</i> 47 1.1	12.1 707.1	12.8 957.5					
10.0	12.2 244.5	11.7 482.8	12.1 719.2	12.9 970.4					

Fixed-junction Corrections

If the fixed or "cold" junction be not maintained at 0°C, a correction must be applied. This may be done by any one of several methods, of which the following are suggested:

A. Let the temperature of the fixed junction be t_c and that of the variable or "hot" junction be t. Then to the emf as read E_{t-tc} , add the emf corresponding to t_c . This gives E_t which may at once be converted into degrees by means of the proper table.

B. Multiply the fixed-junction temperature by the factor, $f = (dE/dt)_0/(dE/dt)$, which is the ratio of the mean emf-temperature gradient between 0° and t_c to the gradient at t_c , and add the product to t', the uncorrected temperature. That is, $t = t' + ft_c$. These emf-temperature gradients may be obtained by taking the reciprocals of the numbers appearing in the difference columns of the calibration tables.

COMPARISON OF THE MORE COMMON THERMOCOUPLES

	7	empera	ature, °	С		Tem	peratur	e, °C
E mv	Iron: constantan	Chromel (X): copel	Chromel (P): alumel	Platinrhodium:* gold-palladium	E mv	Platinum: platinrho- dium (Heraeus)	Platinum: Platinrhodium (Johnston-Matthey)	Copper: constantan
0	0	0	0	0	0	0	0	0
5	95	105	121	131	1	147	146	25
10	186	195	244	237	2	265	260	49
15	277	277	365	335	3	374	364	72
20	367	353	483	429	4	478	461	94
25	457	425	600	513	5	578	553	115
30	546	495	719	607	6	675	641	136
35	632		843	694	7	769	725	156
40	713		970	779	8	861	806	176
45	792		1104	866	9	950	884	195
50	871			954	10	1037	959	213
55	950			1044	11	1122	1032	232
60				1136	12	1206	1103	250
			67	i	13	1289	1173	268
					14	1372	1242	285
					15	1455	1311	302
		ļ			16	1537	1379	320
			11		17	1620	1447	336
		1	(1)	1	18	1704	1515	353

* 10 % Rh; 40 % Pd.

LITERATURE

(For a key to the periodicals see end of volume)

Adams, 188, 3: 469; 13. 1, 36: 65; 14. 255, 1919: 2111. (2) Adams, O.
 Adams and Johnston, 18, 32: 534; 12. (4) Foote, Fairchild and Harrison, 38, No. 170; 21. (5) Hoskins Mfg. Co., Catalog D; 24. (6) Roberts, O. (7) Sosman, 12, 30: 7; 10.

OPTICAL PYROMETRY

C. O. FAIRCHILD AND H. T. WENSEL

The temperature scale above the melting point of gold is based

upon Wien's Law, $J_{\lambda} = c_1 \lambda^{-1} e^{\frac{-C_1}{\lambda T}}$, in which the constant C_1 (1.433 cm deg) and the value 1336°K for the melting point of gold determine the scale. In optical pyrometry temperatures are usually measured by comparing the brightness of a glowing object with that of the filament of a lamp mounted in the image plane of a simple telescope. For highest accuracy the current through the lamp is kept at or near the value corresponding to 1336°K and higher temperatures are measured by reducing the brightness of the image of the object to match that of the filament by means of a suitable screen such as a rotating sector or an absorption glass of known transmission. The temperature is then found from the following formula derived from Wien's Law:

$$\frac{1}{T} = \frac{1}{1336} + \lambda_0 \cdot \frac{\log_{10} R}{6222},$$

in which R is the transmission of the absorption device and λ_0 is the "mean effective wave-length" of a color filter in the pyrometer for the temperature interval 1336° to T. Values of λ_0 can be obtained in some cases by the use of Table 2.

For practical purposes the pyrometer is ordinarily calibrated in the range 700° to 1400° C (occasionally to 1550° C) in terms of filament current. A satisfactory empirical relation between the current I through the lamp filament and temperature t° C is:

 $I=a+bt+ct^2+dt^2$. For tungsten lamps with short 3 mil filaments dI/dt varies from about 0.00015 ampere per degree at 700°C (I=0.3) to 0.0003 ampere per degree at 1400° (I=0.5). For measurements above 1400° an absorption glass of such type is employed that $A(=\lambda_e \log_{10} R/6223)$ is a constant or varies slightly with temperature. If the spectral transmission, Tr, of the

absorption device is of the form $Tr_{\lambda} = e^{\frac{\Lambda}{\lambda}}$, A will be a constant and equal to K/c_3 . For sector discs $A = \text{constant} \cdot \lambda_6$.

TABLE I

Temperatures extrapolated from 1336°K, using Wien's Law, compared with those obtained using Planck's Law. The values in this table were computed from the relation:

$$T_{p} = \frac{C_{2}}{\lambda \log_{e} \left[1 + e^{\lambda T_{w}^{-}}\right]}$$

taking $\lambda = 0.65\mu$.

	T_{ullet}	T _p	$ T_{w}-T_{p} $	$T_{m{v}}$	T_{p}	$T_{\varphi} - T_{p}$
_	1336	1336.000		4500	4493	7
	2000	1999.997	0.003	5000	4986	14
	2500	2499.958	.042	6000	5959	41
	3000	2999.74	.26	8000	7825	175
	3500	3499.0	1.0	10 000	9550	450
	4000	3997	3	∞	31 800	- ∞

TABLE 2

Effective wave-length and mean effective wave-length of optical pyrometer red glass filters. The effective wave-length λ_T is found from the formula

$$\frac{1}{\lambda_T} = \mathbf{a} - \frac{\mathbf{b}}{T}.$$

Equation*	Cor				
Equation	A	В	l C	D	
8	1.5509	1.5415	1.5369	1.5319	Visibility
b	29.6	28.2	28.0	26.8	Visibility
Wave-length		Trong	mission		
microns		1 ransı	IIII		
0.615	0.000	0.000	0.000	0.000	0.442
. 625	.085	.007	.000	.000	.323
. 635	. 520	.270	.141	.080	.220
. 645	.730	. 533	.389	.350	. 141
. 655	.798	.637	.508	. 520	.084
. 665	.815	.664	.541	. 580	.046
.675	.823	.677	.557	. 605	.024
.685	.828	.686	.567	.605	.0126
.695	.830	.689	.572	.603	.0061
.705	. 830	. 689	. 572	.598	.0031
.715	. 826	.682	. 564	. 590	.00158
.725	.824	.679	.559	. 580	.00078
.735	.822	.676	. 555	.572	.00038
.745	.820	.672	. 551	. 567	.00018
.755	.818	.669	.547	.550	.00009
. 765	.815	.664	.541	.535	.00003
. 775	.813	.661	. 537	.510	.00000

^{*} The constants a and b are given for four typical red glasses of the transmissions indicated. The change in effective wave-length with temperature of glass filter itself is closely 0.00009µ per deg C at ordinary room temperatures.

Angular apertures required in the telescope of the disappearing filament type of optical pyrometer for a balance between reflection and diffraction at the filament. Under such conditions disappearance of the filament is obtained without resorting to low magnification or very low resolving power.

TABLE 3.—TUNGSTEN FILAMENT OF CIRCULAR CROSS-SECTION

T7	Entrance aperture, radians					
Exit aperture radians	Filament diameter 0.04 to 0.06 mm	Filament diameter 0.1 mm				
0.005	very low resolving pov	very low resolving power				
.01	0.04 and larger	0.04 and larger				
. 02	.06 to .16	.055 to .07				
.04	.08 to .13					
. 06	non-disappearance					

Table 4.—Brightness Temperature versus true Temperature for Red Light($\gamma = 0.65 \mu$)

			True	temper	ature		
Observed brightness temperature	Platinum(1)	Iron(2)	Iron oxide(3)	Nickel oxide(4)	Copper(5)	Copper oxide(5)	Nichrome or chromel(6)
700	745	l	700	701		l	702
800	857		801	802			804
900	972	İ	902	904		903	906
950		1		j	1083	958	
975		1]	1181		
1000	1090]	1004	1007	1156	1020	1010
1025		1		į.	1193		
1050			l	İ	1231	1087	
1100	1210	1183	1106	1110		1159	1116
1150						1233	,
1200	1332	1296	1210	1215			1224
1300	1455	1410		1320]	
1400		1525				}	1
1500		1641					
1600		1758					
1700		1877					
1750		1936	1			4	

LITERATURE

(For a key to periodical see-end of volume)

Waidner and Burgess, \$1a, \$: 163; 07.
 Computed for an emissivity of 0.4; cf. Burgess, \$2, No. 91: 17.
 Burgess and Foote, \$1a, 12: 83; 15.
 Burgess and Foote, \$1a, 11: 41; 15.
 Burgess, \$1a, \$: 111; 09.
 Burgess and Standards, O. For data on C, Ta, W and other substances see sections on emissivity, color temperature, etc.

GENERAL REFERENCES

Burges and Le Chatelier, Measurement of High Temperature, 1912. Pyrometry: Symposium of American Institute of Mining and Metallurgical Engineers, 1919. Foote, Fairchild and Harrison, 32, No. 170: 21. Foote, Mohler and Fairchild, 128, 7: 18; 17. Foote, 83, 18: 3; 18. Forsythe, 83, 18: 3; 20. Fairchild and Hoover, 48, 7: 7; 23.

LABORATORY METHODS FOR PRODUCING AND MAINTAINING CONSTANT TEMPERATURE

C. W. KANOLT, OLAF A. HOUGEN, ROLAND A. RAGATZ AND W. E. FORSYTHE

	PAGE
Temperatures below 0°C. C. W. Kanolt	61
Laboratory Methods for the Production of Cold. C. W.	
KANOLT	62
Temperatures above 0°C. O. A. HOUGEN AND R. A. RAGATZ	66
Production and Maintenance of High Temperatures. W. E.	
Forsythe	67

The successful application of the methods described in this section involves careful attention to the details of construction and operation of the auxiliary apparatus. For these details the reader is referred to the original literature.

1. TEMPERATURES BELOW 0°C

C. W. KANOLT

(a) Bath Liquids Boiling at Constant Pressure.—The temperaturepressure data for a number of suitable liquids are displayed graphically in Fig. 1. For further data concerning these liquids consult the index of I. C. T. Solid CO₂ mixed with a suitable low-freezing liquid may also be used. Cf. Sec. (b) infra, also (42).

Bath liquids for the maintenance of constant temperatures by boiling at a constant pressure.

(b) Bath Liquids with Thermostatic Control.—In some cases the liquid-solid mixture with proper thermal insulation may be conveniently used to automatically maintain the temperature of the invariant point (M.P. or eutectic). For general discussion of low temperature baths v. (16). The systems given below are arranged approximately in ascending order of their minimum working temperatures.

Abbreviations and Signs.—B. = "boils;" Cor. = "corrosiveness" or "corrosive;" E. = "eutectic composition;" Fl. = "flammable," hazardous, especially if cooled by means of liquid air. S. = "solidifies" or "solidification;" SS. = "suggested for use at its solidifying temperature;" η = "viscosity;" + = "high," - = "moderate or low," thus, η - = "moderate or low viscosity."

Below -150° .—1. Petroleum distillate, d_4^{16} 0.647: S. < -190° (3). Ibid., $d_4^{17} = 0.651$: S. < -190° . B. 33°. $\eta + \text{at} -190^{\circ}$ (22). 2. Anylene, techn.: S. < -188° . Fl. $\eta > \text{petrol}$ ether, q.v. (18, 22). 3. Propane: S. at -187.8° . B. at -37° . Fl. 4. Propylene: S. at -185.2° . B. at -47° . Fl. May be used -190° to -160° . Moisture causes turbidity (25). 5. Butane, techn.: $\eta - \text{at} -180^{\circ}$. Fl. Gas at ordinary temp. (24). 6. Methyl chloride 25% + methyl ether 75%, E.: S. at -154° . B. < -20° . Fl(4). 7. Isopentane: S. at -159.6° . B. at 28.0°. Fl. SS. (37).

From -150° to -125° .—8. Pentane, techn.: S. $<-190^{\circ}$ for some samples. B. ca. 25°. Fl. (16). 7 varies with diff. samples. Cf. (5, 7, 16, 17, 22, 24, 31). 9. Petroleum ether: one sample S. at -160° (7). Other samples used down to -130° (16); -135° (5); -150° (15, 30); -160° (25). Fl. 9a. Chloroform 18% + trans-dichloroethylene 13% + trichloroethylene 20% + ethyl bromide 41% + ethyl chloride 8%: S < -150°. Non-Fl. η_{-140} 0.71 poises, η_{-150} 6.3 poises (21). 10. Chloroform 15% + methylene chloride 25% + trans-dichloroethylene 11% + trichloroethylene 16% + ethyl bromide 33 %: S. ca. -150° . Non-Fl. $\eta_{-140} = 0.85$ poises, $\eta_{-150} =$ 15 poises (21). 11. Ethyl chloride: S. at -138.7°. B. 12.2°. Fl. η - at -138.7° (21). Cor. - (20, 19). Non-Fl. by adding methyl bromide (13). 12. Chloroform 20% + trans-dichloroethylene 14% + trichloroethylene 21% + ethyl bromide 45%. E.: S. at -139°. Non-Fl. $\eta_{-130} = 0.29$ poises; $\eta_{-140} = 0.81$ poises (21). 13. Methyl ether: S. at -138.5°. B. at -23.7°. Fl. 14. n-Pentane: S. at -130.8°. Fl. Very volatile. 15. Ethyl ether 75 vol. % + toluene 25 vol. %: S. ca. -130° (7). 16. Methylcyclohexane: S. at $-126.3.^{\circ}$ Fl. SS. (37). 17. Petroleum distillate, d_4° 0.713: pasty ca. -125°. S. ca. -147° (6).

From -125° to -100° .—18. Chloroform 23% + ether 77%, E.: S. at -121.7° (35). 19. Ethyl bromide: S. at -119° . Non-Fl. Becomes Cor. under action of light (10). $\eta_{-119} = 0.053$ poises (21). 20. Ethyl ether: S. at -116.3° and (metastable) at -123.3° . Fl. SS. (37). 21. Carbon disulfide: S. at -111.6° . Fl. toxic. SS. (37). 22. Chloroform 27% + methylene chloride 60% + carbon tetrachloride 13%. E.: S. at -111° . Non-Fl. η – at -111° (21).

From -100° to -90° .—23. Chloroform 31% + trichloroethylene 69%. E.: S. at -100° . Non-Fl. η - at -100° (21). 24. Chloroform 71% + ether 29%. E.: S. at -97.4° (35). 25. Methylene chloride: S. at -97° . Volatile but non-Fl. η - at -97° (21). Addition of alcohol recommended to avoid formation of HCl in light (28). 26. Chloroform 79% + ether 21%. E.: S. at -95° (35). 27. Toluene: S. at -95.1° . Fl. η + at -80° (24). SS. (37). 28. Acetone: S. at -94.6° . Fl. η -89.7 = 0.0205 poise (1). 29. Methyl chloride: S. at -91.5° . B. at -24.1° . Fl.-, and non-Fl. by adding methyl bromide (14). Cor.—.

From -90° to -80° .—30. Ethyl alcohol: S. at -114.1° . Fl. $\eta+$ near -114° (18 , 39). η increased by presence of $H_{2}O$ (24). Used down to -80° (15 , 16) and to -90° (24). 31. Trichloroethylene: S. at -86.4° . Non-Fl. $\eta-$ at -86° . Cor.—, when pure but + when ox. by air. 32. Ethyl acetate: S. at -83.6° . Fl. SS. (37). 33. Carbon tetrachloride 49%+ chloroform 51%. E.: S. at -81° . Non-Fl. $\eta-$ at -81° (21). 34. trans-Dichloroethylene: S. at -80.5° . Fl. (9), but less so than vol. hydrocarbons (21). Cor—.

From -80° to -50° .—35. Ethyl ether 80% + ethyl alcohol 20%: Fl. Used down to -78° . η < alcohol. Less turbid from moisture than is ether (25). 36. H_2SO_4 , 38% in H_2O , E.: S. at -75° . η + at low temps. Cor. (23). 37. Chloroform: S. at -63.5° . Non-Fl. η - at -63° (21). Cor -. SS. (37). A small quantity of alcohol prevents decomposition. 38. $CaCl_2$ 29.8% in H_2O . E.: S. at -55° : η + at -55° (38). Cor. + (32, 41). Cor. diminished by addition of K_2CrO_4 (27).

From -50° to -25° .—39. Gasolene + CCl₄: Depending upon the density of the gasolene the following %'s of CCl₄ should be used to reduce Fl. 0.765, 30%; 0.725, 45%; 0.700, 60%; 0.680, 70% (2.28). The 65% CCl₄ may be used at -50° . Flash pt. ca. 50°. Cor-(8). 40. Chlorobenzene: S. at -45.2° . Fl. SS. (37). 41. NaCNS 500 g per 1 H₂O, E.: S. at ca. -33° . Cor. < NaCl or CaCl₂ (36). 42. Ethyl alcohol 25% + glycerine 25% + water 50%: Used to -30° (49).

From -25° to 0° .—43. Carbon tetrachloride: S. at -22.9° . Non-Fl. η — at -23° (21). Cor—. SS. (37). 44. NaCl 22.4% in water, E.: S. at -21.2° . η —. Cor.

DISTILLATES FROM GALICIAN PETROLEUM(11)

Fractionation temp.	24°-40°	40°60°	60°-80°	80°-100°	100°-120°
d. 6	0.6324	0.6593	0.7005	0.7851	0.7495
8. at	- 203°	- 198°	- 185°	-170°	-151°

Fractionation temp.	120°-140°	140°-160°	160°-180°	180°-200°	200°-220°
d	0.7625	0.7788	0.7872	0.7962	0.8072
8. at		-127°	-112°	-104°	-93°

LITERATURE

(For a key to the periodicals see end of volume)

- Archibald and Ure, 4, 125: 726; 24.
 Associated Factory Mutual Fire Insurance Cos., Quart. Nat. Fire Protect. Assoc. 11: 173; 17.
 Baudin, 54, 138: 1207; 01.
 Baume, 48, 13: 216; 14.
 Beckmann and Waentig, 93, 67: 17; 10.
 Cabot, 54, 26: 813; 07.
 Cragoe, McKelvy and O'Connor, 31A, 18: 707; 23.
 Fabre, 48, 21: 268; 20.
- Fischer, Die neueren Arsneimittel, 6th ed., p. 74. (11) Formánek, Knop and Korber, 136, 41: 731; 17. (12) Hammerl, 75, 78: 59; 78. (13) Hennig, U. S. Pat. 1,393,124; Brit. Pat. 158,494; 20. (14) Henning, U. S. Pat. 1,386,497; Canadian Pat. 213,825. (16) Henning, 243, 33: 33; 13. (16) Henning, B68, p. 261. (17) Hoffmann and Rothe, 243, 27: 265; 07. (16) Holborn and Wien, 8, 59: 213; 96. (19) Jenkin, 83, 18: 197; 22.
- (20) Jenkin and Shorthose, 115, 116: 761; 23. \$46, 66: 347; 24. (21) Kanolt, Bur. Stands., O. (22) Kohlrausch, 8, 60: 463; 97. (23) Pickering, 4, 87: 331; 90. (24) Loomis and Walters, Bur. Mines, O. (25) Maass and Wright, 1, 43: 1098; 21. (26) Meyerhoffer and Saunders, 7, 31: 381; 99. (27) Pedersen, U. S. Pat. 1,405,320. (28) Remington and Wood, U. S. Dispensstory, 20th ed.; 18. (29) Rooseboom, 7, 4: 42; 99.
- Dispensatory, 20th ed.; 18. (29) Rooseboom, 7, 4: 42; 99. (30) Rothe, \$43, 22: 14, 33; 02. (31) Rothe, \$43, 22: 192;02. (32) Rudnick, 45, 11: 668; 19. (33) Ruff and Fischer, \$5, 36: 421; 03. (34) Saposhinikov, \$45, 6: 384. (38) Smits and Berckmans, 64P, 21: 401; 19. (36) Sperr, U. S. Pat. 1,473,327. (37) Timmermans, Van der Horst and Onnes, 54, 174: 365; 22. Timmermans, \$8, 32: 95; 23. (38) Tucker, 67, 25: 111; 13. (39) Wahl, 5, 87: 371; 12.
- (40) Walton and Judd, 50, 18: 717; 14. (41) Zimmerman, 244, 9: 307; 21. (42) Thiele and Schulte, 7, 96: 312; 20.

LABORATORY METHODS FOR THE PRODUCTION OF COLD

C. W. KANOLT

(a) Liquids for Cooling by Vaporization into the Atmosphere

The liquid may be sprayed onto the object to be cooled (2.3,4); it may be vaporized by a current of air passed through it, forming a bath in which the object to be cooled is immersed (5); it may be vaporized from a porous vessel (1); or in other ways. The temperatures obtainable from the liquids are approximately in the order of their boiling points given below, but are much lower. Gases with critical temperatures above 20° are not included.

The data given below are, in the order given; boiling point, name of liquid, remarks, and literature.

Remarks: 1. Harmless. 2. Harmful. 3. Flammable. 4. Non-flammable. 5. Anaesthetic.

100°, Water (1, 4). 61.2°, Chloroform (4, 5). 46.2°, Carbon disulphide (2, 3). 40°, Methylene chloride (4, 5). 38.4°, Ethyl bromide (4, 5). 35°-39°, Amylene, techn. (3, 5). 34.6°, Ethyl ether (3, 5) produces -15° to -20° (2.5). 13.1°, Ethyl chloride (3, 5) produces -35° (2). 0°-70°, Volatile petroleum distillates (1, 3). -10.0° , Sulfur dioxide (2, 4). -24.1° , Methyl chloride (3, 5) produces -55° to -60° (1.2). -33.4° , Ammonia (2, 3). Carbon dioxide (1, 4). (The liquid can not exist at atmospheric pressure. Solid can be obtained by the release of liquid from pressure. Sublimation temperature -78.5° . Used mixed with a liquid (6), produces -112° to -115° (1). -89.8° , Nitrous oxide (4, 5).

LITERATURE

(For a key to the periodicals see end of volume)

d'Arsonval, 34, 133: 980; 01.
 Braun, Die Lokalanästhesie, Chapt. 4.
 Kanolt, 48, 9: 416; 24.
 Krause, B61, 6: 635; 19.
 Lawrence, 247, No. 18: 10; 16.
 Thiele and Schulte, 7, 96: 312; 20.

(b) Freezing Mixtures

To absorb the largest amount of heat, an aqueous freezing mixture should be made with ice, rather than with water, and the other substance used should be cooled to 0°, or as low as possible, before mixing with the ice. To absorb at a given temperature the maximum amount of heat per unit mass of mixture, the proportions of ice and the other cooling agent should be those of a solution, the freezing point of which is the required temperature (8). The eutectic (cryohydric) temperature is the lowest attainable, if the ingredients are precooled sufficiently. Most, if not all, salts when mixed at room temperature with ice, produce sufficient cooling to reach this temperature.

For more extensive information than given here relative to the freezing points of solutions, together with the literature references, see the separate tables of freezing points.

The following mixtures are among the most useful:

- (a) Sodium chloride with ice for temperatures down to -21.2° .
- (b) Hydrated calcium chloride, $CaCl_2.6H_2O$, with ice, for temperatures down to -55° .

Aqueous solutions of sulfuric acid or hydrochloric acid with ice have an advantage over salts with ice in avoiding the delay incident to the solution of the salt.

Substances	Composition of mix- ture (% anhydrous salt, unless other- wise stated). E = eutectic composition	Freesing point of solution	Initial condition of freezing mixture	Lowest attained temperature recorded	Heat absorbed at temperature of mixing, cal. per g of mixture	Heat absorbed (at freesing or satur- ation point of solu- tion) from objects to be cooled, cal. per g of mixture. The "values are heats of fusion of the eutectic, v. (*)
	22.4 (E for NaCl.2H ₂ O)	-21.2°				56.4*
NaCl—H ₂ O (4, 12)	23.1 (E for NaCl)	-22.4°				
	24.8		salt and ice at -1°	-21.8°		
			with ice	-21°		
	33.3		salt and ice at -1°	-17.75°		
NaNO ₃ —H ₂ O (12, 13)	87.E	-18.5°				57.5*
	42.9		water and salt 13.2°	- 5.3°		
Na ₂ CO ₂ .10H ₂ O—H ₂ O (12)	5.93E	- 2.1°				77.2*
Najeoj.ionjo—njo ()	16.7		salt and ice at -1°	- 2.0°		
Na ₂ SO ₄ .10H ₂ OH ₂ O	3.8E	- 1.2°				80.1*
Na ₃ S ₂ O ₂ .5H ₂ O—H ₂ O (13)	30.0E	-11°				
Najor.onio—njo (1-)	52.4		water and salt 10.7°	- 8.0°		
NaOOCCH2.H2O—H2O (13)	45.9		water and salt 10.7°	- 4.7°		
	19.3	- 9.0°				71.2*
KCl—H ₂ O (12)	23. 1,		salt -1° ice 0°	-10.9°		
KNO ₂ —H ₂ O (12)	11.2E	- 3.0°				80.7*
ANOPHIO (**)	11.5		salt and ice at -1°	- 2.85°		
K ₂ 80 ₆ —H ₆ O (12)	6.54E	- 1.55°				·
V300(U40 ()	9.1		salt and ice at -1°	- 1.9°		
K8CN—H ₂ O (18)	60.0		water and salt 10.8°	-23.7°		
NH ₄ Cl—H ₂ O (12)	18.7E	-15.8°				75.0*
NINCE—INC ()	20.0		salt and ice at -1°	-15.4°		
	16.6	- 6°	water and salt 0°	-14.0°	12.2 78.8	73.6
	31.0		ice and salt at -1°	-16.75°	- 10.0	73.0
			water and salt 0°	-26.0°	19.7	6.8
	31.2	-12°	ice and salt 0°	-20.0	74.6	65.6
	37.5		water and salt 13.6°	-13.6°		
	41.2	-17.4°			-	68.4*
			water and salt 0°	-33.9°	24.3	8.2
	43.3E	-17.5°	ice and salt 0°		69.5	57.1
		-	water and salt 0°	-36.4°	25.5	13.6
NH ₄ NO ₂ —H ₂ O (12, 13, 16)	46.8	-12°	water and salt 20°			3.1
			ice and salt 0°		68.1	59.8
			water and salt 0°	-39.3°	26.5	19.0
	50.3	_6°	water and salt 20°			8.9
		6°	ice and salt 0°		66.2	62.1
				-42.2°	27.6	24.3
	54.1	0° a	water and salt 20°		·	14.5
			ice and salt 0°		64.4	64.4
			water and salt 0°	-44.7°	28.4	28.4
	57.1	5°	water and salt 20°			18.8
NH ₄ SCN—H ₂ O (13)	57.1		water and salt at 13.2°	-18.0°		
Ca ₂ Cl ₂ 6HO—H ₂ O(⁶)	% of hydrated salt 16.9	- 4.0°	ice and salt 0°		69.9	66.2

Substances	Composition of mix- ture (% anhydrous salt, unless other- wise stated). E = eutetic composition	Freesing poin solution	t of	Initial condition of freezing mixture	Lowest attained temperature recorded	Heat absorbed at temperature of mixing, cal. per g of mixture	Heat absorbed (at freezing or satur- ation point of solu- tion) from objects to be cooled, cal. per g of mixture. The * values are heats of fusion of the eutectic, v. (5)
	26.8	- 8.1°		ice and salt 0°		63.8	57.3
	34.6	-12.4°		ice and salt 0°		59.3	50.2
	45.7	-22.7°		ice and salt 0°		53.0	38.4
	54.9	-39.9°		ice and salt 0°		48.0	26.0
	58.8E	- 54 · 9°		ice and salt 0°		45.8	17.7
	22.7	00.00	}	ice and salt 0°		43.7	27.9
	63.7	-33.3°		water and salt 0°		14.4	none
CaCl:6H:0-H:0 (6)	67.1	-19.7°	ļ	ice and salt 0°		41.9	33.2
Continued	67.1	-19.7		water and salt 0°		15.4	6.7
			t e	ice and salt 0°		41.0	35.0
	69.0	-14.1°	separates	water and salt 0°		16.0	10.1
				water and salt 20°		none	1.5
			Salt	ice and salt 0°		38.7	38.7
	74.1	0°		water and salt 0°		17.7	17.7
				water and salt 20°		none	10.2
	77.5	7.6°		water and salt 0°		19.0	21.6
			J	water and salt 20°		none	14.7
Mg8O ₄ .12H ₂ O—H ₂ O(⁵)	% anhyd. salt 19.0	- 3.9°				58.2	
CuSO ₄ .5H ₂ O—H ₂ O(¹⁵)	11.9	- 1.6°				69.0	
ZnSO ₄ .7H ₂ O—H ₂ O(⁵)	27.2	- 6.55°				50.9	
FeSO ₄ .7H ₂ O—H ₂ O(⁵)	13.0	- 1.8°	_			67.2	
	% of 66.19% H ₂ SO ₄ 7.1			ice and acid at 0°	- 16°	- 2.1°†	68.6
	11.2			ice and acid at 0°	- 20°	- 3.1°†	62.0
	17.2			ice and acid at 0°	-24°	- 5.5°†	52.9
66.19% H ₂ SO ₄ —H ₂ O (11)	23.9			ice and acid at 0°	- 28°	- 9.5°†	43.0
	33.6			ice and acid at 0°		-16.5°†	24.5
	44.2			ice and acid at 0°	-36°	- 30.2°†	7.5
	47.7			ice and acid at 0°	- 37°	-37°†	0
HCl—H ₂ O	% HCl 24.8E	-86°					
	% of Na ₂ SO ₄ .10H ₂ O 21.05			0°		6.09	
	30.33			0°		9.17	
	36.59			0°		11.15	
	37.69			21.2°	- 8.1°		
	42.37			0°		13.15	
	50.22			21.6°	-12.2°		
	62.67			15°			{ 21.2 at 0° 12.0 at -15°
Na ₂ SO ₄ .10H ₂ O—36.69 % HCl (14)	62.96			21.6°	- 15.3°		
	63.88			0°		28.89	
	74.64			15°			$\begin{cases} 30.6 \text{ at } 0^{\circ} \\ 19.1 \text{ at } -15^{\circ} \end{cases}$
	74.68			0°		30.85	
	75.30			21.5°	-14.8°		
	78.90					27.43	
	86.63			15°			24.5 at 0° 13.4 at -15°
	86.72			0°		19.44	
	88.53			20.1°	-15.6°	1	GA ME

[†] Temperature when all ice is melted.

Substances	Composition of mix- ture (% anhydrous salt, unless other- wise stated). E = eutectic composition	Freezing point of solution	Initial condition of freezing mixture	Lowest attained temperature recorded	Heat absorbed at temperature of mixing, cal. per g of mixture	Heat absorbed (at freezing or saturation point of solution) from objects to be cooled, cal. per g of mixture. The * values are heats of fusion of the eutectic, v. (5)
	% of Na ₂ 8O ₄ .10H ₂ O 46.04		19.7°	-11.8°		
	49.74		19.7°	-11.8°		
	63.46		19.7°	-14.4°		
Na ₂ SO ₄ .10H ₂ O-30.13% HCl (14)	65.23		20.4°	-15.6°		
	75.43		20.0°	-14.8°		
	82.54		19.9°	-17.2°		
	86.31		20.0°	-12.6°		
	89.88		20.4°	ca. 0°		
	% of Na ₂ SO ₄ .10H ₂ O 35.54		0°		12.67	
•	38.16		19.9°	- 8.2°		
	50.42		19.8°	-10.0°		
	62.22		0°		26.84	
Na ₂ SO ₄ .10H ₂ O—24.47 % HCl (14)	63.86		20.5°	-12.0°		
	67.57		0°		27.18	
	71.46		0°		25.72	
	75.36		21.0°	-11.8°		
	78.40		0°		20.21	
	m ala		alc. at 2° ice at 0°	-24.2°		
C ₂ H ₄ OH—H ₂ O (10)	% alc. 50	− 37°	alc. at 1.5° ice at	-29.4°		
	51.3	-38°	alc. at 4° ice at 0°	ca30°		
CS ₂ —(CH ₃) ₂ CO	A temperature of — hour, using a heat i	13.5° in a volume of nterchanger (3).	20 cc was maintained	by mixing 100 cc of	carbon disulfide and	70 cc of acetone per

Salts	Temperature produced by mix- ing salts with water	Lit.	Reduction of temperature produced by water with an equal weight of a salt or of a mixture of salts in equal parts (7)	Temperature produced by mixing salts with water	Reduction of temperature produced by water with an equal weight of a salt or of a mixture of salts in equal parts (7)
NH ₄ Cl. NaCl. KCl. NH ₄ NO ₃ . NaNO ₃ . KNO ₃ . KNO ₃ . NH ₄ SO ₄ . Na ₂ SO ₄ .10H ₂ O K ₂ SO ₄ . NH ₄ Cl—KNO ₃ . NH ₄ Cl—NBNO ₄ . NH ₄ Cl—NBNO ₄ . NH ₄ Cl—NH ₄ NO ₃ .	18.2° B1.5°	(9) (9)	14° 4° 12° 25° .9.5° 10° 8° 7.5° 4.5° 20° 17° 22°	NaNO ₃ —KCNS.	17°-23° 16°-27° 17°-26°
NH ₄ Cl—Na ₂ SO ₄ .10H ₂ O. —1 NH ₄ Cl—K ₂ SO ₄ . —1 NaCl—KNO ₃ . —2 NaCl.2H ₂ O—KNO ₃ . —2 KCl—NaNO ₃ . —2 KCl—NH ₄ NO ₃ . —NH ₄ NO ₃ —KNO ₃ . —1 NH ₄ NO ₃ —Na ₂ SO ₄ .10H ₂ O. —1 Na ₂ NO ₃ —NaSO ₄ .10H ₂ O.	18.0° 24.9°	(9) (9) (9)	19° 10° 11° 20° 22° 26° 10°	LITERATURE (For a key to the periodicals see end of volume) (1) Brendel, Diss., Charlottenburg; 92. (2) Bruni, 36, 27, I: 5 Duclaux, 34, 151: 715; 10. (4) Gortner, 166, 39: 584; 14. Diss., Techn. Hochschüle, München; 08. (6) Hammerl, 75, (7) Hanamann, 112, 173: 314; 64. (8) Kanolt, 48, 9 (9) Mazzotto, 72, 23: 545, 633; 90. (10) Moritz, 136, 6: 1374; 82. (11) Pfaundler, 75, 71: 509; 75. (8, 122: 337; 64. (13) Rüdorff, 8, 136: 276; 69. 25, 2: 68 Szydlowski, 75, 116: \$55: 07, (15) Thilipper, 75, 72: 578; 578; 78.	(5) Gröber, 78 : 59; 78. : 416; 24. 12) Rüdorff, 3; 69. (14)

2. TEMPERATURES ABOVE 0°C

OLAF A. HOUGEN AND ROLAND A. RAGATZ

(a) Bath Liquids or Vapor Baths with Boiling under Constant External Pressure.—For heterogeneous systems and solutions v. (13). For fire hazards on certain of these liquids v. p. 61. For a more extensive series of liquids arranged in order of boiling points v. p. 310.

	Boiling	point	Actual range	
Substance	At 760	At 100	used	Lit.
	mm	mm	useu	
Ethyl chloride	12.2°	-31.3°	13° to -30°	(23)
Ethyl ether	34.5°	-12.1°		(2, 11, 13)
Carbon disulfide	46.3°	-4.8°	46° to -26°	(3, 11, 13, 26, 27,
				31, 41)
Acetone	56.1°	7.5°		(13, 21)
Chloroform	61.2°	9.7°		(11, 21)
Methyl alcohol	64.5°	20.62°	65° to 49°	(2, 10, 11, 13, 21,
		1		30)
Ethyl alcohol	78.5°	34.4°	78° to 40°	(2, 10, 11, 13, 21,
				31)
Bensene	79.8°	25.8°	81° to 40°	(10, 11, 13, 39)
Water	100°	51.7°	145° to 25°	(2, 3, 9, 11, 13,
				16, 18, 26, 27,
				29, 30, 32, 43)
Toluene	110.5°	51.8°	130° to 70°	(10, 13, 21, 29,
				32, 39, 48)
Chlorobenzene	132.1°	70.3°	132° to 70°	(31, 39)
m-Xylene	139.0°	77.8°	140° to 70°	(10, 21, 28, 32,
				39, 45)
Isoamyl acetate	142.5°		141° to 119°	(30, 45)
Bromobensene	156.2°	90.7°	160° to 120°	(28, 31)
Aniline	184.4°	119.4°	184° to 150°	(27, 31, 32, 39,
			l	42, 45)
Ethyl benzoate	213.2°	142°	1	(21, 27, 45)
Naphthalene	217.9°	144.3°		(28, 39)
Methyl salicylate	223.3°	151°	225° to 175°	(31)
Quinoline	237.7°	166.7°	238° to 170°	(15, 21, 39, 45)
Isoamyl bensoate	262°			(21, 28, 45)
a-Bromonaphthalene	281.1°	198.8°	281° to 215°	(28, 31)
Diphenylamine	302.0°	221°		(5, 15, 28, 39, 45)
Bensophenone	305.4°	224°	306° to 257°	(28, 39)
Mercury	356.9°	261.5°	Various	(2, 5, 31, 39)
	1		ranges	
Sulfur	444.6°	330.7°	Various	(2, 5, 8, 39)
		1	ranges	
Phosphorus pentasulfide				(5)
Zine	907°	758°		(2)

(b) Solid-liquid Non-variant Points.—1. Ice-water, v. (11. 24. 29. 46). 2. Transformation temperatures of crystalline hydrates.

		•
Salt	Hydration temperature °C	Lit.
Sodium chromate	19.71	(12, 33)
Sodium sulfate	32.383	(11, 12, 32, 33, 34, 35)
Sodium carbonate	35.3	(12, 33)
Sodium thiosulfate	48.0	(12, 33)
Sodium bromide	50.8	(12, 33)
Manganese chloride	57.8	(12, 33)
Trisodium phosphate	73.4	(12, 33)
Barium hydroxide	78.0	(12, 33)

(c) Bath Liquids with Thermostatic Control.

Liquid	Useful range	Lit.
Water	0° to 90°	(17, 18, 21, 40)
Mineral oils		(5, 19, 22, 37,
	the flash point	38, 40)
Paraffin	M.P. to 300°	(5, 27, 29, 40)
10 parts cottonseed oil, 1 part		
beeswax	M.P. to 300°	(7)
Hydrogenated sesame oil	60° to 300°	(36)
Hydrogenated cottonseed oil		(36)

Fused salts	Melting point	Lit.
NaNO ₃ (45%), KNO ₃ (55%)	218°	(8, 14, 21, 32, 44)
NaNO ₂ (55%), NaNO ₂ (45%)	221°	(44)
KNO	337°	(1)
NaCl (28%), CaCl ₂ (72%)	500°	(44)
NaCl (50%), K2CO2 (50%)	560°	(44)
Na ₂ CO ₂ (50 %), KCl (50 %)	560°	(44)
CaCl ₂ (50%), BaCl ₂ (50%)	600°	(44)
NaCl (35%), Na ₂ CO ₂ (65%)	620°	(44)
NaCl (22%), BaCl ₂ (78%)	654°	(44)
NaCl (44%), KCl (56%)	663°	(44)

Molten metals	Useful range	Lit.
Lead	327° to 700°	(4, 5, 6, 29)
Lead (30%), Tin (70%)	Above 183°	(14)
Lead (50%), Tin (50%)		(5)

Other liquids	Useful range	Lit.
Naphthalene	80° to 217°	(20, 21, 25)
Benzophenone	49° to 305°	(20, 21, 25)
Benzophenone	113° to 444°	(20, 25)

- (d) Metal Blocks.—Aluminum and copper blocks have been used up to 600°, with a uniformity of temperature of 1° (39).
- (e) Gas Baths and Furnaces.—For temperatures above 900°, an electrically heated gas bath is usually employed, although for the higher temperatures a bath material is not essential since heat transfer takes place primarily by radiation. For lower temperatures, heat transfer and temperature uniformity are promoted by packing with a granular non-oxidizing metal.

The following references (compiled by the Geophysical Laboratory) deal with the construction and temperature regulation of high temperature furnaces: Kolovrat, 51, 8: 495; 09. Haughton and Hanson, 47, 14: 145; 15. 18: 173; 17. White and Adams, 2, 14: 44; 19. Haagn, 101, 40: 670; 19. Roberts, 128, 11: 409; 21. 48, 6: 965; 22. Bunting, 38, 6: 1209; 23. Adams, 48, 9: 599; 24. Roberts, 48, 10: 723; 25.

LITERATURE

(For key to the periodicals see end of volume)

- Aten, 7, 78: 13; 12. (2) Barus and Hallock, 156, No. 54; 89. (3) Brown, 5, 7: 411; 79. (4) Bodenstein, 7, 29: 665; 99. (5) Bodenstein, 7, 30: 113; 99. (4) Bodenstein, 7, 30: 125; 99. (7) Bosart, 1, 31: 724; 09. (6) Day and Sosman, 8, 38: 849, 853; 12. (9) Dupre, 173, 28: 308; 13.
- (10) Forster, 135, 106: 80; 12.
 (11) Freas, Thesis, Chicago; 11.
 (12) Geer, 50,
 6: 85; 02.
 (13) Goldets, 136, 38: 1253; 14.
 (14) Goodwin and Mailey, 2,
 25: 469; 07.
 (15) Gordon, 7, 28: 305; 99.
 (16) Grutsmacher, Deutsch. Mech.-Ztg. 1902: 193.
 (17) Grutsmacher, Deutsch. Mech.-Ztg. 1902: 184.
 (18) Grutsmacher, 89, 3: 248, 260; 00.
 (19) Holborn and Henning, 8, 23: 810; 07.
- (2°) Holborn and Henning, 8, 26: 860; 08. (2¹) Holborn, Scheel and Henning, B65. (2²) Holborn and Schultze, 8, 47: 1101; 15. (2²) Jenkin, 85, 18: 197; 22. (2⁴) Marshall, 85, 7: 249: 11. (2⁵) Meisner, 8, 39: 1230; 12. (2⁴) Meyer, 15, 165: 303; 73. (2⁻) Moser, 9£, 34: 625; 21. (2²) Noyes, 16£, No. 63: 12, 73, 194, 240; 07. (2²) Ostwald-Luther, B64, p. 100.
- (20) Pomplun, 243, 11: 1; 91. (21) Ramsay and Young, 4, 47: 640; 85. (22) Richards, 45, 4: 910; 12. (33) Richards and Churchill, 7, 23: 313; 99. (24) Richards and Mark, 65, 38: 417; 02. (25) Richards and Wells, 65, 38: 431; 02. (26) Robertson, 46, 15: 701; 23. (27) Rothe, 243, 19: 144; 99. (28) Shaw, 69, 11, III: 129; 17. (29) Stähler, B65, 1: 501.
- (40) Stähler, B65, 1: 498. (41) Stock, Henning and Kuss, 25, 54: 1119; 21.
 (42) Sudborough, 54, 18: 16; 99. (42) Thiesen, Schoel and Sell, 89, 2: 140; 95. (44) Tour, 212, 6: 171; 24, (45) Wiebe and Böttcher, 243, 10: 16; 90. (46) Washburn and Williams. 1, 35: 741; 13.

MAXIMUM TEMPERATURES THAT CAN BE REACHED AND MAINTAINED FOR OBSERVATIONAL PURPOSES BY VARIOUS MEANS

W. E. FORSYTHE

	Maximum temperature °C
Electric furnaces operating in open air	
Iron tube or iron wire wound furnace	500
Nicrome wound refractory tube	800
Platinum wound refractory tube—double wind-	
ing (2)	1580
Iridium tube	1900
Carbon resistor furnace	2200
Carbon arc furnace	3200
Electric furnaces operating in vacuo or inert gas	
Tungsten wound refractory tube limited by re-	
fractory tube	2000
Carbon tube furnace	2700
Tungsten tube furnace (in vacuo)	2200
Tungsten tube furnace (in inert gas)	2800
Gas-fired furnaces	
Special makes of furnaces(5) with flames enter-	
ing the furnace in tangential direction so as	
to give a good distribution of the heat, if	
gas and air are well mixed, can be raised up	
to about	1700

	Maximum temperature °C
The regenerative furnaces, such as are used in open hearth steel furnaces, can be heated up to about the same temperature of	1700
Special furnaces and methods	1700
High-frequency induction furnace. Limited only by melting point of refractory or metal used	
Filament in vacuum or inert gas limited only by rate of vaporization or melting point of fila- ment used	
Arc under pressure	
Carbon (4)	5790
Tungsten (3) Exploding fine wires by discharging a condenser charged to high voltage through them gives a	4785
temperature up to about (1)	19700

LITERATURE

(For a key to the periodicals see end of volume)

Anderson, 21, 51: 37; 20.
 Hyde and Forsythe, 21, 51: 247; 20.
 Luckey, 2, 3: 134; 17.
 Lummer, 254, 21: 8; 17.
 McCauley, Corning Glass Works, Corning, N. Y., O. Spencer, National Lamp Works, Nela Park, Cleveland, Ohio, O.

LABORATORY METHODS FOR MAINTAINING CONSTANT HUMIDITY

HUGH M. SPENCER

A saturated aqueous solution in contact with an excess of a definite solid phase at a given temperature will maintain a constant humidity within any enclosed space around it. By properly selecting the salt to be used almost any desired degree of humidity can be secured and controlled in this way. A number of salts suitable for this purpose are displayed in the accompanying chart and tables, together with the % humidity prevailing above their saturated solutions at different temperatures. To convert "% humidity" into "aqueous tension" multiply it by the vapor pressure of pure water at the same temperature.

SOLID PHASE

1. CaCl ₂ .2H ₂ O (¹⁹).	11. MgCl ₂ .6H ₂ O (8, 13).
2. CoCl ₂ .6H ₂ O (8).	12. MgSO ₄ .6H ₂ O (⁷).
3. CoSO ₄ .6H ₂ O (7).	13. MnSO ₄ .H ₂ O (7).
4. CuCl ₂ .2H ₂ O (8, 13, 22).	14. NH ₄ NO ₂ (9, 18).
5. CuSO ₄ .5H ₂ O (11, 16).	15. NaCl (4, 5, 18, 21).
6. K ₂ C ₄ H ₄ O ₆ . ½H ₂ O (4).	16. Na ₂ CO ₃ .H ₂ O (10, 22).
7. KCl (4, 5, 9, 18, 21).	17. Na ₂ C ₄ H ₄ O ₆ .2H ₂ O (14).
8. KClO ₂ (5, 11, 16).	18. NaKC ₄ H ₄ O ₆ .4H ₂ O (14).
9. KNO ₃ (4, 5, 9, 16).	19. NaNO, (4, 5, 9, 18, 21).
10. K ₂ SO ₄ (4, 5, 15, 20).	20. Na ₂ SO ₄ (4, 16, 24, 26).

Solid phases	t, °C	% humidity	Lit.
BaCl ₂ .2H ₂ O	. 24.5	88	(15)
CaCl ₂ .6H ₂ O	. 5	39.8	(20)
	10	38	(19)
	18.5	35	(15)
	20.0	32.3	(19)
	24.5	31	(15)
Ca(NO ₂) ₂ .4H ₂ O	. 18.5	56	(15)
, , , , , ,	24.5	51	(15)

Solid phases	t, °C	% humidity	Lit.	
CaSO _{4.5} H ₂ O	20	98	(15)	
CrO:	20	35	(15)	
H ₂ C ₂ O ₄ .2H ₂ O	20	76	(15)	
H ₂ PO ₄ . ½H ₂ O	24.5	9	(15)	
KC ₂ H ₂ O ₂	20	20	(15)	
	168	13	(11)	
KBr	20	84	(15)	
	100	69.2	(5)	

Solid phases	<i>t</i> , °C	% humidity	Lit.
K ₂ CO ₃ .2H ₂ O	. 18.5	44	(15)
	24.5	43	(15)
KCNS	. 20	47	(15)
K ₂ CrO ₄	. 20	88	(15)
KF	. 100.0	22.9	(5)
K ₂ HPO ₄	. 20	92	(15)
KHSO4	. 20	86	(15)
KI		56.2	(5)
KNO ₂		45	(15)
LiCl.H ₂ O		15	(15)
$Mg(C_2H_3O_2)_2.4H_2O$. 20	65	(15)
$Mg(NO_3)_2.6H_2O$		56	(15)
	24.5	52	(15)
NH ₄ Cl	. 20.0	79.2	(9)
	25.0	79.3	(9)
	30.0	79.5	(9)
NH ₄ Cl and KNO ₃	. 20.0	72.6	(9)
	25.0	71.2	(9)
	30.0	68.6	(9)
NH ₄ H ₂ PO ₄	20.0	93.1	(9)
	25.0	93.0	(9)
	30.0	92.9	(9)
(NH ₄) ₂ SO ₄	20.0	81.0	(9)
	25.0	81.1	(9)
	30.0	81.1	(9)
	108.2	75	(11)
NaBr	100.0	22.9	(5)
NaBr.2H ₂ O	20	58	(15)
NaBrO ₂	20	92	(15)
NaCl and KClO ₂	16.39	36.58	(6)
NaCl and KNO	16.39	32.57	(6)
NaCl, KNO2 and NaNO2		30.49	(6)
NaC ₂ H ₂ O ₂ .3H ₂ O		76	(15)
Na ₂ CO ₂ .10H ₂ O	18.5	92	(15)
	24.5	87	(15)
NaClO ₂	. 20	75	(15)
	100.0	54	(5)

Solid phases	t, °C	% humidity	Lit.
Na ₂ Cr ₂ O ₇ .2H ₂ O	20	52	(15)
NaF	100.0	96.6	(5)
Na ₂ HPO ₄ .12H ₂ O	20	95	(15)
NaHSO ₄ .H ₂ O	20	52	(15)
NaI	100.0	50.4	(5)
NaNO ₂	20	66	(15)
Na ₂ SO ₃ .7H ₂ O	20	95	(15)
Na ₂ S ₂ O ₃ .5H ₂ O	20	78	(15)
Na ₂ SO ₄ .10H ₂ O	20	93	(15)
Pb(NO ₃) ₂	20	98	(15)
	103.5	88.4	(11)
T1C1	100.097	99.7	(4)
TINO:	100.317	98.7	(4)
Tl ₂ SO ₄	104.7	84.8	(4)
ZnCl ₂ .1½H ₂ O*	20	10	(15)
Zn(NO ₃) ₂ .6H ₂ O	20	42	(15)
ZnSO ₄ .7H ₂ O	5	94.7	(20)
	20	90	(15)

^{*} Unstable at this temperature.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Badger and Baker, 33, 23: 569; 20. (2) Baker and Waite, 35, 25: 1137: 21. (3) Baker and Waite, 33, 25: 1174; 21. (4) Berkeley and Appleby. 5, 85A: 489; 11. (5) Brönsted, 7, 82: 633; 03. (6) Brönsted, 137, 1: 5; 18. (7) Carpenter and Jette, 1, 45: 578; 23. (8) Derby and Ingve, 1, 38: 1439; 16. (*) Edgar and Swan, 1, 44: 570; 22.
- (10) Gerasimov, 53, 45: 1666; 13. (11) Gerlach, 91, 26: 413; 87. (12) Lescouer, 34, 103: 1260; 86. (13) Lescouer, 6, 2: 78; 94. (14) Lowry and Morgan, 1, 45: 2192; 24. (15) Obermiller, 7, 109: 145; 24. (16) Pawlowitsch, 7, 84: 169; 13. (17) Prideaux, 54, 89: 182; 20. (18) Rodebush, 1, 40: 1204; 18. (19) Rooseboom, 7, 4: 31; 89.
- (20) Sidgwick and Ewbank, 4, 125: 2268; 24. (21) Speranski, 7, 70: 519; 10. (22) Speranski, 7, 78: 86; 12. (23) Speranski, 7, 84: 166; 13. (24) Tammann, 8, 24: 530; 85. (25) van't Hoff, 7, 45: 288; 03. (26) Wuite, 7, 86: 369: 14.

BAROMETRY AND MANOMETRY

H. H. KIMBALL

1. Gravity Correction.—The equivalent barometric, or other manometric, height (B_{\bullet}) corresponding to standard gravity $(g_{\bullet} =$ 980.665 cm \sec^{-2}) is related to the height (B_i) corresponding to local gravity (g_l) as shown by equation (1):

$$B_{\bullet} = B_{l} \frac{g_{l}}{g_{\bullet}} = B_{l} + C_{g}; \quad C_{g} = B_{l} \frac{g_{l} - g_{\bullet}}{g_{\bullet}}$$
 (1)

When
$$g_l$$
 and g_s are expressed in cm sec⁻²,
$$C_g = B_l \left[\frac{(g_l - g_s)(1.0197)}{1000} \right]$$

Any desired unit may be used for B_l ; C_q and B_s are in the same unit as B_l. [For most barometric purposes, a sufficiently accurate correction (within $\pm 0.01\%$ of B_l) is obtained by the use of the

approximate correction $C_{g'} = B_n \frac{g_i - g_s}{g_s}$, in which B_n is the usual

barometric pressure at the station.]

Example: $B_l = 29.851$, $g_l = 978.053$ cm sec⁻². Then $(g_l - g_s)$ $= -2.612 \text{ cm sec}^{-2}$; $0.0197(g_l - g_s) = -0.0515 \text{ cm sec}^{-2}$; $1000 C_g$ $= -2.663B_1 = -79.49$. $\therefore B_s = 29.851 - 0.079 = 29.772$.

2. Temperature Correction.—The equation by which the equivalent barometric, or other manometric, height (B) at the standard temperature (t_m) can be computed from the nominal height (B') at the temperature t, is generally written in the form

$$B = B' + C_t; \quad C_t = B' \frac{l(t - t_*) - m(t - t_m)}{1 + m(t - t_m)}$$
 (2)

where t_m = standard temperature of the manometric liquid, t_s = temperature at which the scale, after correction for errors of graduation, reads correctly, m = coefficient of cubical expansion of the manometric liquid, l = coefficient of linear expansion of the material on which the scale is engraved.

The value of m which is generally used for mercury, and which has been adopted by the International Meteorological Tables. is $m = 181.8 \times 10^{-6}$ per °C. For temperatures between 0°C and 30°C this value appears (5, 6, 8, 15, 17) to be correct within $\pm 0.1 \times 10^{-6}$ per °C. The value of l, for brass, which has been adopted by the International Meteorological Tables, is $l = 18.4 \times$ 10⁻⁶ per °C. The best determinations (1, 2, 11) of this coefficient for temperatures between 0° and 30° yield values varying from

 17.5×10^{-6} per °C to 19.3×10^{-6} per °C, or by $\pm 5\%$. For glass scales the approximate value $l=8.5 \times 10^{-6}$ per °C is usually satisfactory. (For silicate flint glasses (13) l varies from 7.88×10^{-6} per °C to 9.35×10^{-6} per °C; for crown glasses (13) it varies from 6.75×19^{-6} to 9.54×10^{-6} per °C.

For barometers with metric scales, the combined effect of an error of $\pm 0.1 \times 10^{-6}$ per °C in m and of $\pm 0.9 \times 10^{-6}$ per °C in l

will cause an error in C_t of $\pm \frac{B't \times 10^{-6}}{1+mt}$. For $t=30^{\circ}$ C and B'=

760 mm, the error would be ± 0.023 mm; while for $t = 10^{\circ}$ C, B' = 100 mm, it would be only ± 0.001 mm. At ordinary room temperatures, the error so produced in C_t will be less for barometers graduated in inches than for one graduated in millimeters. (For barometers graduated in inches $t_t = 62^{\circ}$ F, $t_m = 32^{\circ}$ F).

Table 1.—Temperature Correction (C_i) for Mercurial Manometers and Barometers $B = B' + C_i$; $(B' = \text{nominal height at } t^\circ; B = \text{equivalent height for mercury at } 0^\circ\text{C}; B, B', \text{ and } C_i$ are all in the same unit, which may be anything desired)

A. Brass scale correct at 62°F, inches, °F; $t_m = 32$ °F, $t_t = 62$ °F, $m = 181.8 \times 10^{-6}$ per °C, $l = 18.4 \times 10^{-6}$ per °C (Applies directly to commercial barometers graduated in inches)

t(°F) B'	10	20	30	40	50	60	70	80	90
+12	+0.015	+0.030	+0.045	+0.061	+0.076	+0.091	+0.106	+0.121	+0.136
22	+0.006	+0.012	+0.018	+0.024	+0.030	+0.036	+0.042	+0.048	+0.054
32	-0.003	-0.006	-0.009	-0.012	-0.015	-0.018	-0.021	-0.024	-0.028
42	-0.012	-0.024	-0.036	-0.049	-0.061	-0.073	-0.085	-0.097	-0.109
52	-0.021	-0.042	-0.064	-0.085	-0.106	-0.127	-0.148	-0.169	-0.191
62	-0.030	-0.060	-0.091	-0.121	-0.151	-0.181	-0.211	-0.242	-0.272
72	-0.039	-0.078	-0.118	-0.157	-0.196	-0.235	-0.275	-0.314	-0.353
82	-0.048	-0.096	-0.145	-0.193	-0.241	-0.289	-0.338	-0.386	-0.434
92	-0.057	-0.114	-0.172	-0.229	-0.286	-0.343	-0.400	-0.458	-0.515

B. Brass scale correct at 0°C, millimeters, °C; $t_m = t_s = 0$ °C, $m = 181.8 \times 10^{-6}$ per °C, $l = 18.4 \times 10^{-6}$ per °C

		,	-, -,			F,			
$\iota(^{\circ}C)$	100	200	300	400	500	600	700	800	900
-10	+0.16	+0.33	+0.49	+0.65	+0.82	+0.98	+1.15	+1.31	+1.47
- 5	+0.08	+0.16	+0.25	+0.33	+0.41	+0.49	+0.57	+0.65	+0.74
0	0.00	Ī							
+ 5	-0.08	-0.16	-0.24	-0.33	-0.41	-0.49	-0.57	-0.65	-0.73
10	-0.16	-0.33	-0.49	-0.65	-0.82	-0.98	-1.14	-1.30	-1.47
15	-0.24	-0.49	-0.73	-0.98	-1.22	-1.47	-1.71	-1.96	-2.20
20	-0.33	-0.65	-0.98	-1.30	-1.63	-1.95	-2.28	-2.60	-2.93
25	-0.41	-0.81	-1.22	-1.63	-2.03	-2.44	-2.85	-3.25	-3.66
30	-0.49	-0.98	-1.46	-1.95	-2.44	-2.93	-3.41	-3.90	-4.39
35	-0.57	-1.14	-1.70	-2.27	-2.84	-3.41	-3.98	-4.55	-5.11
40	-0.65	-1.30	-1.95	-2.60	-3.24	-3.89	-4.54	-5.19	-5.84

C. Glass scale correct at 0°C, $t_m = t_s = 0$ °C, $m = 181.8 \times 10^{-6} \text{ per °C}$, $l = 8.5 \times 10^{-6} \text{ per °C}$

o. a				-,					
<i>l</i> (°C)	100	200	300	400	500	600	700	800	900
-10	+0.17	+0.35	+0.52	+0.69	+0.87	+1.04	+1.22	+1.39	+1.56
- 5	+0.09	+0.17	+0.26	+0.35	+0.43	+0.52	+0.61	+0.69	+0.78
0	0.00								
+ 5.	-0.09	-0.17	-0.26	-0.35	-0.43	-0.52	-0.61	-0.69	-0.78
10	-0.17	-0.35	-0.52	-0.69	-0.86	-1.04	-1.21	-1.38	-1.56
15	-0.26	-0.52	-0.78	-1.04	-1.30	-1.56	-1.81	-2.07	-2.33
20	-0.34	-0.69	-1.04	-1.38	-1.73	-2.07	-2.42	-2.76	-3.11
25	-0.43	-0.86	-1.29	-1.73	-2.16	-2.59	-3.02	-3.45	-3.88
30	-0.52	-1.03	-1.55	-2.07	-2.59	-3.10	-3.62	-4.14	-4.65
35	-0.60	-1.21	-1.81	-2.41	-3.01	-3.62	-4.22	-4.82	-5.42
40	-0.69	-1.38	-2.06	-2.75	-3.44	-4.13	-4.82	-5.51	-6.19

Example: Barometer graduated in inches, brass scale correct at 62°F; B' = 29.564 in., t = 76.8°F. From section A it is found that at 72°, C_t for B' = 29.564 is -0.1155, at 82° it is -0.1421; hence at 76.8°, $C_t = -0.1155 + \frac{4.8}{10}(-0.0266) = -0.1155 - 0.0128 = -0.128$. Hence B = 29.564 - 0.128 = 29.436 in.

3. Capillary Corrections.—The curvature of the surfaces of the manometric liquid introduces pressures directed towards the centers of curvature of the surfaces. For each surface, this pressure is

$$\gamma \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$
 dynes cm⁻² = $\frac{\gamma}{dg} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ cm of the manometric liquid.

 $[\gamma = \text{surface tension (in dynes cm}^{-1}), d = \text{density of the liquid (in g cm}^{-2}), g is the acceleration of gravity (in cm sec}^{-2}), and <math>r_1$ and r_2 are the principal radii of curvature (in cm) of the surface at the point considered.] At the vertex of the meniscus in a tube of circular section, $r_1 = r_2 = r$, and if the angle of contact of the liquid with the tube is either 0° or 180°, and if the tube is not too large, r is practically equal to the internal radius of the tube. If

the liquid surface is in an annular space between coaxial, circular cylinders (as in the reservoir of a Fortin barometer), if the angle of contact is 0° , and if neither r_1 nor $(r_3 - r_2)$ is very great as compared with the capillary constant, (18), then $h' = \frac{2dhr_1}{(r_1 - r_2)^2}$, approximately; h' and h are the respective capillary pressures (in terms of unit column of the liquid) at the vertices of the surfaces in the annular space of width $(r_2 - r_2)$, and in a tube of radius r_1 ; and d is the depth of the annular meniscus.

Laplace (12) has shown that, except for sign, the equations for a convex meniscus are the same as those for a concave one. Hence, this expression can probably be accepted as a first approximation to the value for h' for any liquid, provided that the angle of contact of the liquid with the solid is the same at all three surfaces, and that r_1 and $(r_2 - r_2)$ are not too great. In the case of the ordinary mercurial cistern barometers, $(r_3 - r_2)$ is quite large as compared with the capillary constant of mercury, and the angles of contact may not be the same at all three surfaces; for these reasons, no great confidence can be placed in the actual value of h', as so computed, for such barometers, but its order of magnitude will probably be correct.

Table 2.—Capillary Depression of the Apex of a Mercurial Column in a Glass Tube of Circular Section*

Depression in millimeters							
Radius of the tube,	Height of the meniscus, mm						
mm	0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8						
1.0	2.46 4.40						
1.4	1.26 2.36 3.22						
1.8	0.75 1.44 2.02 2.48						
2.2	0.49 0.95 1.36 1.70 1.98						
2.6	0.34 0.66 0.96 1.22 1.44 1.61						
3.0	0.24 0.48 0.70 0.90 1.07 1.21 1.32						
3.5	0.17 0.34 0.49 0.64 0.76 0.87 0.96 1.04						
4.0	0.12 0.24 0.35 0.46 0.56 0.64 0.71 0.77 0.82						
4.5	0.09 0.18 0.26 0.34 0.41 0.47 0.53 0.58 0.62						
5.0	0.07 0.13 0.19 0.25 0.30 0.35 0.40 0.44 0.47						
5.5	0.05 0.10 0.14 0.19 0.23 0.27 0.30 0.33 0.36						
6.0	0.04 0.07 0.11 0.14 0.18 0.20 0.23 0.25 0.27						
6.5	0.03 0.06 0.09 0.11 0.14 0.16 0.18 0.20 0.21						

* From the Schleiermacher-Delcros (4, 9, 10) table, as revised by Süring (14). The values are about 5 % larger than those obtained from Bravais's (3) table, in which the arguments are the diameter of the tube, and the angle of incidence of the meniscus of the mercurial column with the walls of the tube.

0.020.040.060.080.100.120.140.150.16

Example: In a barometer cistern for which $r_2 = 6$ mm, $r_3 = 16$ mm, d was found to be 0.5 mm.; the radius of the barometer tube was $r_1 = 5$ mm, and the height of the meniscus in it was 1.0 mm. From Table 2 it is found that the depression h, due to the meniscus in the 5 mm tube, is 0.30 mm; hence h' = 0.015 mm. That is, the pressure due to the annular surface is of the order of 0.02 mm; and the total depression of the column is H = 0.30 - 0.02 = 0.28 mm, subject to the uncertainty regarding the actual value of h'.

4. Possible Residual-gas Error in Good Barometers.—Under ordinary laboratory conditions, errors amounting to as much as 4.1 mm (0.163 in.) have been observed, and errors of 1.1 mm (0.043 in.) are not uncommon; but in most barometers, this error

does not exceed 0.25 mm (0.010 in.) when the instrument is shipped by the manufacturer. Air may be introduced during shipment and by handling. The smaller the tube of the barometer, the more likely is the error to be large. The magnitude of the error varies with the temperature and with the volume of the space above the mercury column, as indicated by equation (3):

$$x = x_0 \frac{V_0}{V} [1 + 0.00367(t - t_0)]$$
 (3)

where x_0 and x are, respectively, the errors corresponding to the volume V_0 temperature t_0 , and to the volume V temperature t_0 ; temperatures being expressed in °C.

5. Conversion of Water Column at $t^{\circ}C$ to the Equivalent Water Column at $4^{\circ}C$.—If h_i and h_4 are the equivalent true heights (corrected for scale errors of graduation and expansion, and for capillary pressures), and if d_i and d_4 are the respective densities (7, 16) then, if $\delta = (d_4 - d_1)/d_4$, $h_4 = h_i(1 - \delta)$.

TABLE 3.-VALUES OF 1008

t (°C)			Units of	!	
<i>i</i> (C)	0	2	4	6	8
tens			1		
0	0.013	0.003	0.000	0.003	0.012
1	0.027	0.048	0.073	0.103	0.138
2	0.177	0.221	0.268	0.320	0.375
3	0.435	0.497	0.563	0.633	0.706

Example.— $h_{2\delta} = 67.53$ cm. At 25°, $100\delta = 0.294$. $\therefore \delta h_{2\delta} = 0.199$, $h_4 = h_{2\delta}(1 - \delta) = 67.53 - 0.20 = 67.33$ cm.

6. Conversion of Water Column at 4° C to Equivalent Mercury Column at Standard Density (13.5951 g cm⁻²); and the Reverse.—
If h_w and h_m are the equivalent true heights (corrected for the scale errors of graduation and expansion, and for all capillary effects) of the water and the mercury, respectively, $h_m = 0.073554h_w$.

Table 4.—Equivalent Columns of Water (h_w) and of Mercury (h_m)

(Density of water = 0.999973 g cm⁻³; of mercury = 13.5951 g cm⁻³)

h _w	h _m	h.	h _m	h _m	h _w	h _m	ho
100	7.3554	600	44.132	1	13.5955	6	81.573
200	14.7108	700	51.488	2	27 . 1909	7	95.168
300	22.0662	800	58.843	3	40.7864	8	108.764
400	29.4216	900	66.199	4	54.3818	9	122.359
500	36.7770	1000	73.554	5	67.9773	10	135.955

LITERATURE

(For a key to the periodicals see end of volume)

- Bein, 88, 14: 1113; 12.
 Benoit, 238, 6: 190; 88.
 Bravais, 6, 5: 492; 42.
 Bravais and Martins, 259, 14: 47; 41.
 Broch, 238, 2: 21; 83.
 Chappuis, 238, 18: 28; 07.
 Chappuis, 238, 18: 31; 17.
 Delcros, Annaire Météorologique de la France, 169-170; 49.
- (1°) Delcros, 240, 8:3; 18.
 (11) Dittenberger, 98, 46: 1535; 02.
 (12) Laplace, Mécanique Céleste (Bowditch translation) 4: 737.
 (13) Pulfrich, 8, 45: 661; 92.
 (14) Süring, Ber. u. d. Tätigk. d. Kgl. Pruss. Meteor. Inst., 24-42; 16.
 (15) Thiessen, 89, 4: 4; 04.
 (16) Thiessen, Schoel and Dusselhorst, 89, 3: 68; 00.
 (17) Thiessen, Scheel and Sell, 89, 2: 180; 95.
 (18) Verschaffelt, 168, No. 32.
 64V, 24: 175; 86.

PSYCHROMETRY; DENSITY OF MOIST AIR; CHANGE IN BAROMETRIC PRESSURE WITH ALTITUDE

F. W. J. WHIPPLE

B; B₄	Barometric pressure, in general; at h
\boldsymbol{c}	Instrumental constant
d; d,; d.	Density of air, in general; at h ; at T_o and A_n
e; e'	Pressure of water vapor, present; when in equilibrium with water (or ice) at temperature t'
g; g.	Acceleration of gravity, actual; standard value
h; H	Altitude above sea level, cm; meters
t; t'	Readings of dry bulb; of wet bulb
$T; T_{\bullet}; T'$	Absolute temperatures in °C, general; of ice point; "virtual"
x	Ratio (mass of vapor)/(mass of dry air)

1. Psychrometry.—The pressure of the water vapor contained in the air is commonly deduced from the simultaneous readings of wet bulb and of dry bulb thermometers. The difference in these two readings depends upon the heat received by radiation as well as upon that furnished directly by the air. When the air flow is slow, the radiation is an important factor. In the Assmann psychrometer the bulb is surrounded by a double metal sheath; this largely eliminates radiation effects. It is important to secure adequate ventilation by the use of a thermometer with a bulb much smaller than the sheath. The standard bulb is 12 mm long and 4 mm in diameter. Alternatively, the thermometers may be "slung," i.e., whirled on a suitable holder. In this case, direct radiation from sun or sky should be avoided as it affects the drybulb readings and therefore the psychometric difference.

The general formula for the computation of vapor pressure is

$$e' - e = CB(t - t') \times 10^{-4}$$

B, e, and e' are expressed in the same units, which may be anything desired. Within the order of accuracy of psychrometer observations, C is constant for a given velocity of the air-flow past the wet bulb. The relation of C to the air velocity has not been determined very precisely. The variation of C with temperature is negligible. If temperatures are expressed in °C, the value of C for thermometers with adequate ventilation (a relative velocity of 3 m per second or more) is 6.6 when the cover of the wetbulb is saturated with water. On theoretical grounds, a lower factor, 5.8, is appropriate for an ice-covered bulb, but in the tables in general use 6.6 is adopted in this case as well. (Aspirations Psychrometer Tafeln, Braunschweig. 1908. Ferrel, Report of Chief Signal Officer, p. 248. Washington, 1886.) For the reduction of the readings of thermometers exposed in a Stevenson screen, Regnault's values of C, 8 for water and 7 for ice, are generally recommended (Études sur l'Hygrométrie, p. 102. Paris, 1845.) As, however, the ventilation is indeterminate, the accuracy obtainable is of a lower order.

Relative Humidity is computed by expressing e, determined by the psychrometric formula, as a percentage of the pressure of vapor in equilibrium with water (not ice) at the temperature of the dry bulb.

2. Density of Moist Air*

$$T$$
, T_{\bullet} = absolute temperature in °C

* If $d_w,d_a=$ density of vapor and of dry air at same pressure and temperature, $d_w/d_a=0.6217$ and $(d_a-d_w)/d_a=0.3783$.

Pressure unit	d
Any unit	$\left \frac{d_{o}T_{\bullet}}{T}\left(\frac{B-0.3783e}{A_{n}}\right);\right $
	$\frac{d_{\bullet}T_{\bullet}B}{TB_{\bullet}}\left(\frac{0.6217(1+x)}{0.6217+x}\right)$
Mm Hg	$\frac{464.6}{10^6} \left(\frac{B - 0.3783e}{T} \right) g/cm^3;$
	$\frac{288.9}{10^6} \left(\frac{B(1+x)}{(0.6217+x)T} \right) g/cm^3$
Kilodynes per cm²	$\frac{348.5}{10^4} \left(\frac{B - 0.3783e}{T} \right) g/cm^3$
	$\frac{216.7}{10^4} \left(\frac{B(1+x)}{(0.6217+x)T} \right) g/cm^3$

$$x = \frac{\text{mass of vapor}}{\text{mass of dry air}} = \frac{0.6217 e}{B - e}$$

Tables in Dictionary of Applied Physics 3: 76, and in paper by Shaw and Fahmy in Quart. J. Roy. Meteorological Soc., 1925, 210.

Specific humidity =
$$\frac{\text{mass of vapor}}{\text{total mass}} = \frac{0.6217 \text{ e}}{B - 0.3783 \text{ e}}$$

3. Relations Connecting Pressure and Altitude.—V. Bjerknes defines "virtual" temperature (T') as T' = TB/(B - 0.3783e).

$$\frac{dB}{B} = d (\log_e B) = -\frac{gd}{B} dh = -0.03416 \frac{g}{g_*} \cdot \frac{dH}{T'} = -\frac{g}{29.26 \ g_*} \cdot \frac{dH}{T'}$$
(1)

$$d(\log_{10} B) = -\frac{0.014842 g}{g_{\bullet}} \cdot \frac{dH}{T'} = -\frac{g}{67.38 g_{\bullet}} \cdot \frac{dH}{T'}$$
 (2)

If suffix 1 refers to the lower station and 2 to the upper, then

$$\log_{10} \frac{B_1}{B_2} = 0.014842 \frac{g}{g_*} \cdot \frac{2(H_2 - H_1)}{T_1 + T_2}, \text{ approx.}$$
 (3)

$$B_1 = B_2 \left[1 + 0.03416 \frac{g}{g_s} \cdot \frac{2(H_2 - H_1)}{T'_1 + T'_2 - 0.03416 (H_2 - H_1) \frac{g}{g_s}} \right],$$

$$H_2 - H_1 = \frac{29.26 \ g_s}{g} \cdot \frac{B_1 - B_2}{B_1 + B_2} (T'_1 + T'_2), \text{ approximately.} (5)$$

For $(H_2 - H_1)$ not exceeding 1000 m, equations (4) and (5) are equivalent to the logarithmic formula. The factor $g/g_* = (1 - 0.002640 \cos 2\phi)(1 - 3.14H \times 10^{-7})$ may generally be taken as unity. The distinction between virtual and actual temperature may be ignored except when high temperatures are involved.

In the determination of heights in an extended barometric survey of a country, allowance must be made for the horizontal pressure gradient. When daily weather maps are available, B_1 may be taken from them as the pressure at sea-level in the neighborhood. If T_1 is not known, the conventional value (adopted by Intern. Meterological Conference, Innsbruck, 1905) $T_1 = T_2 + 0.005$ ($H_2 - H_1$) may be used, but in hot weather $T_1 = T_2 + 0.01$ ($H_2 - H_1$) is a better approximation. Value of T_2 observed at a mountain station may differ considerably from the temperature of free atmosphere at same level; this is especially true in calm weather, at night, and in the early morning. (cf. Hesselberg, Int. Meterol. Conference, Utrecht, 1923, App. L.) Tables of

virtual temperatures: V. Bjerknes, Dynamic Meteorology, etc., Washington, 1911. Values of 0.01484/T: Computer's Handbook of Meteorological Office, London, 2: 45.

Graduation of Aneroids.—The height scales on aneroids designed for the use of travellers, are graduated on the assumption that the temperature of the atmosphere is constant and independent of the altitude. Various standard temperatures, such as 50°F and 0°C have been used. For such scales, especially when applied to aircraft use, the difference between the indicated and the true height may be excessive.

The International Commission for Aerial Navigation adopted in 1925 a scale based on the following conventions (cf. Dict. Applied Physics 3: 182): (a) Pressure at sea-level is $A_n = 1.0132 \times 10^6$ dynes/cm²; (b) temperature at sea-level is 15°C; (c) temperature decreases by 6.5°C per km, up to 11 km; and above 11 km is constant at -56.5°C; (d) humidity may be ignored; (e) value of g is same at all heights and $= g_{45}$ (essentially g_s). Whence, denoting the pressure and density at sea-level by B_1 , and d_1 ; those at 11 000 m by $B_{11 000}$ and $d_{11 000}$:

$$\begin{split} \frac{B}{B_1} &= \left(\frac{288 - 0.0065}{288} \frac{H}{}\right)^{5.256}; \frac{d}{d_1} = \left(\frac{288 - 0.0065}{288} \frac{H}{}\right)^{4.256}; \\ &\qquad \qquad \text{if H} \gg 11\ 000\ \text{m.} \\ &\log_{10} \frac{B_{11\ 000}}{B} = \log_{10} \frac{d_{11\ 000}}{d} = \frac{H - 11\ 000}{14\ 600}, \text{if } H > 11\ 000\ \text{m} \end{split}$$

	Unit	Value ·	Log10
B_1	mm	760	2.88081
B_1	kilodyne/cm²	1013.2	3.00570
d_1	g/m³	1226	3.08849
$B_{11\ 000}$	mm	169.6	2.22943
$B_{11\ 000}$	kilodyne/cm²	226.1	2.35432
$d_{11\ 000}$	g/m³	364	2.56104

As the regulations drawn up by the I. C. A. N. are ambiguous, attention must be drawn to the fact that whilst the altimeter reading, H, gives the pressure uniquely, it cannot give the temperature and density of the air. Hence the formulae for d are on quite a different footing from those for B. (Cf. Section on Aerodynamics, Ed.)

VOLUMES OF LIQUID MENISCI

F. A. GOULD

As used in this section, the volume (V_m) of the liquid meniscus in a vertical, circular cylinder = volume of the liquid which lies below the capillary surface and between two horizontal planes, one tangent to the meniscus, and the other passing through the line in which the meniscus meets the wall of the tube. The value of V_m depends upon the surface tension (γ) , the acceleration of gravity (g), the difference (ρ) in the densities of the fluids separated by the surface, the radius (r) of the cylinder, and the angle (θ) at which the capillary surface meets the wall of the cylinder. If θ is variable and not too small, it is more convenient to use the height (h_m) of the meniscus (= distance between the planes mentioned), than θ , as one of the variables. This has been done in Tables 1 and 2, which give the volume of the mercury meniscus for $\gamma = 400$ mg wt./cm (= 392.27 dynes/cm, g = 980.665), $\rho =$

13.55g/cm³. This value of γ is close to the mean of the values corresponding to the experimental determinations of V_m by Scheel and Heuse (8, 33: 295; 10) (425 mg/cm), and by Palacios (139, 17: 295; 19. 63, 24: 152; 23) (406 to 326 mg/cm); an idea of the error which is associated with a departure of the actual value of γ from that assumed may be obtained by comparing their values with those here given. (See also Schalkwijk, 168, No. 67, and 64 V, 8: 462; 00. 9: 512; 01.)

If $\theta=0$, it is convenient to tabulate the dimensionless quantities V_m/r^3 and $h_c/r=V_m/\pi r^2$ as functions of $g\rho r^2/\gamma$, as is done in Table 3. $[g\rho r^2/\gamma=r^2/a_1^2]$, where a_1 is capillary constant (British usage), see section Technical Terms (p. 34); $h_c=$ length of circular cylinder of radius r and volume V_m].

Table 1.—Volume (V_m) of Mercury Meniscus h_m = height of meniscus, d = internal diameter of tube. Accuracy for the larger menisci = 0.3%, for the smaller = 1%. Unit of V_m = 0.001 cm³; of h_m and d = 1 mm. Assumes γ = 400 mg wt./cm

hm	d 1 1 :	2	3	4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	d hm
0.1	0.040 0.	159	0.360	0.	646	1.02	1.50	2.08	2.75	3.55	4.46	5.49	6.67	7.97	9.42	11.1	12.8	14.8	16.9	19.2	21.6	24.2	27.0	30.0	33.1	0.1
0.2	0.083 0.	321	0.723	1.	30	2.05	3.00	4.16	5.53	7.12	8.95	11.0	13.4	16.0	18.9	22.2	25.7	29.6	33.9	38.5	43.4	48.6	54.1	60.0	66.3	0.2
0.3	0.134 0.	490	1.09	1.	95	3.09	4.52	6.26	8.32	10.7	13.5	16.6	20.2	24.1	28.5	33.4	38.7	44.6	51.0	57.8	65.2	73.0	81.3	90.2	99.6	0.3
0.4	0.195 0.	669	1.47	2.	63	4.14	6.04	8.37	11.1	14.3	18.0	22.3	27.0	32.3	38.1	44.7	51.8	59.6	68.1	77.3	87.1	97.5	109	120	133	0.4
0.5	0.	861	1.87	3.	31	5.21	7.59	10.5	14.0	18.0	22.7	28.0	33.9	40.6	47.9	56.1	65.0	74.7	85.4	96.9	109	122	136	151	167	0.5
0.6	1.0	07	2.29	4.	01	6.30	9.16	12.7	16.8	21.7	27.3	33.7	40.9	48.9	57.8	67.6	78.3	90.0	103	117	131	147	164	181	200	0.6
0.7	1.3	31	2.72	4.	74	7.43	10.8	14.9	19.7	25.4	32.0	39.5	47.9	57.4	67.8	79.2	91.7	105	120	136	154	172	191	212	234	0.7
0.8	1	56	3.17	5.	50	8.58	12.4	17.1	22.6	29.2	36.8	45.4	55.1	65.9	77.8	91.0	105	121	138	156	176	197	219	243	268	0.8
0.9	1.3	85	3.67	6.	29	9.77	14.1	19.4	25.6	33.0	41.6	51.4	62.3	74.5	88.0	103	119	137	160	177	199	222	248	274	303	0.9
1.0			4.19	7.	12	11.0	15.8	21.7	28.6	36.9	46.5	57.3	69.6	83.2	98.3	115	133	153	174	197	222	248	276	306	337	1.0
1.1			4.76	7.5	99	12.3	17.6	24.1	31.8	40.9	51.4	63.5	77.0	92.1	109	127	147	169	192	218	245	274	305	338	372	1.1
1.2			5.39	8.	90	13.6	19.5	26.6	35.0	44.9	56.5	69.7	84.5	101	119	139	161	185	211	238	268	300	334	369	407	1.2
1.3			6.07	9.	88	15.0	21.4	29.1	38.2	49.1	61.7	76.0	92.1	110	130	152	176	201	229	260	292	326	363	402	443	1.3
1.4				10.	9	16.4	23.4	31.7	41.7	53.3	66.9	82.4	99.9	119	141	164	190	218	248	281	316	353	392	434	478	1.4
1.5				12.	1	18.0	25.4	34.5	45.2	57.8	72.3	89.0	108	129	152	177	205	235	268	303	340	380	422	468	515	1.5
1.6				13.	3	19.6	27.6	37.3	48.8	62.3	77.8	95.7	116	138	163	190	220	253	287	325	365	407	453	501	552	1.6
1.7						21.4	29.8	40.2	52.6	67.0	83.6	103	124	148	175	204	236	270	307	347	390	436	484	535	589	1.7
1.8						23.2	32.2	43.3	56.4	71.7	89.5	110	133	158	186	218	251	288	328	370	415	464	515	570	628	1.8
1.9							34.8	46.5	60.4	76.7	95.5	117	141	168	199	232	268	306	349	393	441	493	547	605	666	1.9
2.0							37.4	49.8	64.6	81.9	102	124	150	179	211	246	284	325	370	417	468	522	580	641	706	2.0
2.1								53.4	69.1	87.3	108	132	159	190	224	261	301	344	391	441	495	552	614	678	746	2.1
2.2									73.7	93.0	115	140	169	201	237	276	318	364	413	466	523	583	648	716	787	2.2
2.3										98.9	122	149	179	213	250	291	336	384	436	492	552	615	683	754	829	2.3
2.4		ĺ									130	158	189	225	264	307	354	405	459	518	581	648	719	794	872	2.4
2.5												167	200	237	279	324	373	427	484	546	612	681	755	833	915	

Table 2.—Height (h_c) of Cylinder Equivalent to Volume (V_m) of Mercury Meniscus

 $h_e = V_m/\pi r^2$ = length of tube of radius r and volume V_m ; h_m = height of meniscus; d = 2r = diameter of tube. Accuracy and basis are same as for Table 1

Unit of h_c , h_m , and d = 1 mm. Assumes $\gamma = 400$ mg wt./cm

d	1	1 2	2	3	1	4		5	6		7	1	8	9		10	1	1	12	13		14	15	1	6	17	1	8	19	20	0	21	2	2	23	24	d h
0.1	0.051	0.0	510	.05	10.	051	0.	052	0.0	53 0	.05	40.	055	0.0	560	.057	0.0	0580	.059	0.06	600	061	0.063	0.0	064 0	.065	0.0	0660	.068	0.0	69 (0.070	0.0	71 (.072	0.073	0.1
0.2	0.106	0.1	020	. 10	20.	103	0.	104	0.1	060	.10	80.	110	0.1	120	.114	0.1	1160	.118	0.12	210.	123	0.126	0.	1280	.131	0.1	330	.136	0.1	38	0.140	0.1	420	.144	0.147	0.2
0.3	0.171	0.1	1560	.15	50.	155	0.	157	0.1	60 0	.16	30.	165	0.1	680	.172	0.1	1750	.178	0.18	820.	185	0.189	0.	1920	.196	0.2	0000	. 204	0.2	080	0.211	0.5	214 0	.217	0.220	0.3
0.4	0.248	0.2	2130	. 20	90.	209	0.	211	0.2	140	.21	80.	221	0.2	250	. 230	0.2	234 0	.239	0.24	430	.248	0.253	0.	2570	.263	0.2	2680	.273	0.2	77 (.281	0.5	286 0	,290	0.294	0.4
0.5		0.2	2740	. 26	50.	263	0.	265	0.2	2680	.27	30.	278	0.2	83 0	.288	0.2	2940	.300	0.30	060	.311	0.318	0.	3230	.329	0.3	3360	.342	0.3	480	353	0.3	3580	. 363	0.368	0.5
0.6		0.3	3410	.32	30.	319	0.	321	0.3	324 0	.32	90.	335	0.3	410	.348	0.3	3550	.362	0.36	680	. 375	0.383	0.	3890	.397	0.4	1040	.411	0.4	180	.424	0	300	.437	0.443	0.6
0.7		0.4	1160	.38	50.	377	0.	378	0.3	8810	.38	60.	392	0.4	000	.408	80.4	1160	.424	0.43	320	.440	0.448	0.	4560	.465	0.4	730	.481	0.4	89 (0.496	0.5	04 (.511	0.518	0.7
0.8	1	0.4	4970	.44	90.	438	0.	437	0.4	1400	.44	40	450	0.4	590	.468	0.4	1780	.487	0.49	960	. 506	0.515	0.	524 0	.533	0.8	5420	.551	0.5	610	0.569	0.5	770	. 585	0.593	0.8
0.9		0.4	5880	.51	90.	.501	0.	497	0.4	199,0	.50	30.	510	0.5	190	.530	00.	5400	.551	0.50	610	. 572	0.582	0.	5920	.602	0.6	3130	.623	0.6	33 (0.642	0.6	351 0	.660	0.669	0.9
1.0			0	. 59	30.	. 567	0.	559	0.4	5600	.56	30	.570	0.5	800	.592	20.6	6040	.615	0.63	270	.638	0.650	0.	6610	. 673	0.6	3840	. 695	0.7	060	0.716	0.7	726	736	0.746	1.0
1.1			0	.67	40.	636	0.	624	0.6	323 (0.62	60	.632	0.6	3430	. 655	50.6	6680	. 681	0.69	940	.706	0.719	0.	7310	.743	0.7	7560	.767	0.7	79 0	790	0.8	802	.812	0.823	1.1
1.2			0	.76	20.	.708	0.	692	0.6	3890	.69	10	696	0.7	070	.720	0.1	7330	.747	0.7	610	.775	0.788	0.	8020	.815	0.8	3280	.841	0.8	54 (0.866	0.8	378	.889	0.900	1.2
1.3			0	. 85	90	.786	0.	763	0.7	7560	.75	70	.761	0.7	720	.785	50.	7990	.815	0.8	290	.844	0.859	0.	873,0	.887	0.8	9020	.915	0.9	29 (0.942	0.9	55 (.967	0.979	1.3
1.4					0	. 896	0.	837	0.8	3260	.82	50	. 829	0.8	390	.852	20.	867 0	.883	0.89	990	.915	0.930	0.	9460	.961	0.8	760	.991	1.0	1 1	1.02	1.0	03 1	. 05	1.06	1.4
1.5			-1		0	.961	0.	915	0.8	8990	. 89	60	.900	0.9	080	.921	10.1	9360	.953	0.9	690	.986	1.00	1.	02 1	.04	1.0	05 1	. 07	1.0	8 1	1.10	1.1	1 1	. 13	1.14	1.5
1.6					1	.06	1.	00	0.9	976	96.0	90	.972	0.9	800).991	11.0	01 1	.02	1.0	4 1	.06	1.08	1.	10 1	.11	1.	13 1	. 15	1.1	6	1.18	1.5	19	.21	1.22	1.6
1.7					н		1.	09	1.0	06 1	.04	1	.05	1.0)5 1	.06	1.0	08 1	.10	1.13	2 1	. 13	1.15	1.	17 1	.19	1.3	21 1	. 22	1.2	4 1	1.26	1.5	27 1	.29	1.30	1.7
1.8					1		1.	18	1.	14 1	1.12	1	.12	1.1	3 1	.14	1.	15 1	.17	1.19	9 1	.21	1.23	1.	25 1	. 27	1.3	29 1	. 31	1.3	2 1	1.34	1.3	36	.37	1.39	1.8
1.9									1.5	23 1	1.21	1	. 20	1.2	21 1	.22	1.	23 1	. 25	1.2	7 1	. 29	1.31	1.	33 1	. 35	1.3	37 1	. 39	1.4	0	1.42	1.4	14 1	.46	1.47	1.9
2.0		П							1.3	32	1.30	1	. 29	1.2	19 1	. 30	1.3	31 1	. 33	1.3	5 1	. 37	1.39	1.	41 1	. 43	1.	45 1	.47	1.4	9 1	1.51	1.3	53	. 54	1.56	2.0
2.1										1	1.39	1	.37	1.3	37 1	.38	1.3	39 1	.41	1.4	3 1	.45	1.47	1.	50 1	. 52	1.	54 1	. 56	1.5	8	1.59	1.6	31	. 63	1.65	2.1
2.2	1											1	.47					1			_		1.56														2.2
2.3	1													1.5							-		1.65														2.3
2.4															1								1.74				1						10				2.4
2.5			- 1		1												1.	76 1	.77	1.7	9 1	.81	1.83	1.	86 1	.88	1.5	90 1	.92	1.9)5	1.97	1.5	99 2	2.01	2.02	2.5

Table 3.—Volume (V_m) of Liquid Meniscus, $\theta = 0$ (Meniscus concave upwards)

As quantities tabulated are dimensionless, any consistent system of units may be used. $g = \text{acceleration of gravity}, r = \text{radius of tube}, h_c = \text{length of tube of radius } r \text{ and volume } V_m$. (Computed from tables of Bashforth and Adams as given in their "Capillary Action.")

$g ho r^2/\gamma$	V_m/r^3	h_c/r	$g ho r^2/\gamma$	V_m/r^3	h_c/r
0	1.048	0.333	4.0	0.649	0.206
0.1	1.029	0.327	4.5	0.623	0.198
0.2	1.010	0.321	5.0	0.599	0.190
0.4	0.978	0.311	5.5	0.578	0.184
0.6	0.947	0.301	6.0	0.557	0.177
0.8	0.919	0.292	6.5	0.537	0.171
1.0	0.894	0.284	7.0	0.518	0.165
1.5	0.837	0.266	7.5	0.501	0.159
2.0	0.789	0.251	8.0	0.484	0.1540
2.5	0.747	0.238	8.5	0.470	0.1493
3.0	0.711	0.226	9.0	0.456	0.1449
3.5	0.678	0.216	9.5	0.442	0.1406
			10.0	0.429	0.1365

Example 1: A gas is collected in a eudiometer over mercury. The volume to the plane through the line of contact of the mercury with the wall of the tube $= V_o$. If this portion of the eudiometer is a vertical, circular cylinder of diameter d = 10 mm, and if height of meniscus is $h_m = 1.5$ mm, then $V_m = 0.0723$ cm² (Table 1), and the actual volume of the gas is $V = V_o = 0.072$ cm².

If volumes are expressed in terms of a linear scale engraved upon the cylindrical portion of the eudiometer, and if the scale reading at the line of contact is h_o , and if d = 10 mm, $h_m = 1.5$ mm, then $h_c = 0.921$ mm (Table 2), and the actual volume of the gas corresponds to $h_o - h_c = h_o - 0.921$ mm.

Example 2: A gas is collected in a eudiometer over water. The volume to the plane tangent to the bottom of the meniscus = V_o . If this portion of the eudiometer is a vertical, circular cylinder of radius r=0.5 cm, if $\gamma=73$ dynes/cm, g=980.7 cm/sec², $\rho=1.000$, and $\theta=0$ (the tube is perfectly wetted by the water), then $g\rho/\gamma=13.43$ cm⁻², $g\rho r^2/\gamma=3.36$. Hence $V_m/r^2=0.689$ (Table 3), and $V_m=0.086$ cm². Hence the actual volume of the gas is $V_o-V_m=V_o-0.086$ cm³.

If volumes are expressed in terms of a linear scale engraved upon the cylindrical portion of the eudiometer, and if the scale reading corresponding to the bottom of the meniscus is h_o , then for $g\rho r^2/\gamma = 3.36$, $h_c/r = 0.219$ (Table 3), and if r = 5 mm, $h_c = 1.10$ mm, and the actual volume of the gas corresponds to $h_o - h_c = h_o - 1.10$ mm.

WEIGHTS AND WEIGHING

A. T. PIENKOWSKY

In this section are considered:—(A) Weights—the basis upon which they are adjusted or tested, and their constancy; (B) the correcting of weighings for the buoyant effect of the air, including the weighing of substances in containers; and (C) the correcting of density determinations for the buoyant effect of the air.

WEIGHTS

Basis of Adjustment.—Most weights are adjusted by the maker according to their apparent weight in air against brass standards. This is equivalent to adjusting brass weights according to their real mass (or "weight in vacuo"), but the true mass values of other

weights (e.g., those of platinum, aluminum, or quartz) may be much different from their nominal values. When a set of weights is calibrated, however, the values found may be either true mass or apparent values, depending on the standard used and the method of conducting the test. Certificates from different standardizing laboratories may give values on either basis, or on both.

"Weight in Air against Brass."—Commercial weighing is all based on apparent weight in air against brass standards, this basis being more or less accurately defined in some countries. Precise scientific weighing is based on true mass values (i.e., on "weight in vacuo"), but weights below one gram may be tested and used as if they were of brass, even for work of rather high precision. In so testing these weights, their apparent "values" are computed on the assumption that their density is Δ_b = density of brass (generally Δ_b is taken as 8.4 g per cm³); and in using them the apparent values so found are used as though they were the true masses of the weights, Δ_b being at the same time used just as though it were the true density of the weights. In such cases the error $(m_f - m)$ so introduced, arises solely from the fact that the density (σ_1) of the air at the time the values of the weights were determined differs from that (σ) at the time they were used in weighing the object. This error is given approximately by equation (1) in which m is the correct, and m_f is the false mass, s is the nominal value of the weight, Δ_b is the density assumed for brass weights and Δ the actual density of the weights used.

$$m_f - m = s\left(\frac{1}{\Delta_b} - \frac{1}{\Delta}\right)(\sigma_1 - \sigma)$$
 (1)

Example: If the value of a platinum 500 mg weight ($\Delta = 21.5 \text{ g/cm}^3$) is determined according to "weight in air against brass" ($\Delta_b = 8.4 \text{ g/cm}^3$) at sea level ($\sigma_1 = 0.0012 \text{ g/cm}^3$), and this value is used at an altitude of 5000 ft. ($\sigma = 0.0010 \text{ g/cm}^3$) the error in the mass of a body as so weighed will be $m_f - m = 0.007 \text{ mg}$.

"Apparent" densities or specific gravities determined according to apparent "weight in air against brass" are subject not merely to variations in the density of the air, but also to differences in experimental technique (see p. 78 to 80).

Constancy.—Data on changes in weights can indicate only the order of magnitude of such changes, and as a rule can show only what may happen, since such changes are extremely irregular.

Ordinary brass weights with knobs screwed in (whether gold plated, platinum plated, or lacquered) may continue to gain in weight for many years, and may do so without developing any visible signs of such change. The following examples are typical of extreme changes that sometimes occur. Larger changes have been recorded.

Denomination	g	100	50	20	10	5	2	1
Gain in 6 yr	mg	1.7	1.2	0.8	0.7	0.6	0.8	0.3
Gain in 14 yr	mg	3.3	3.9	1.8	2.5	0.8	0.3	1.1

The following is typical of what has often happened when new weights were not used and were carefully protected.

Denomination.	g	100	50	20	10	5	2	1
Gain in 5 mo								0.0
Gain in 1 vr	mg	0.2	0.1	0.0	0.0	0.1	0.0	0.0

Lacquered weights of good quality are less subject to spotting and general surface tarnishing than are the gold or platinum plated weights often sold. Lacquered weights, however, are subject to rapid variations caused by changes in the relative humidity of the air. Lacquered weights of about 20 to 100 g may be expected to vary 0.1 or 0.2 mg with large variations in humidity. Changes of over 0.5 mg have been recorded.

Sets of weights of the ordinary type may, however, be very constant. For example, one set was used for over a year with changes less than 0.02 mg and few changes over half that amount; and two sets were used occasionally for 17 and 18 yr, respectively, with no changes over 0.2 mg.

For reference standards, one-piece weights are very much more reliable than the common screw-knob type. The following changes in a high grade, gold plated, bronze set of this type are typical for weights used little and with great care. Positive changes are gains, negative changes losses.

Denomination	8	50	20	20	10	5	2	2	1
Changes in 15 yr	mg	-0.12	0.00	0.02	-0.01	-0.006	0:001	0.008	-0.007

Solid platinum or platinum-iridium weights of moderate size may be expected to remain constant within about 0.01 mg if handled with sufficient care and protected from dust and other deposits. The sheet metal weights below one g are not much more constant than this; very good weights kept with extreme care as reference standards may stay within 0.001 mg for some years, but this cannot safely be assumed. If these small weights are much used, even with good care, losses of 0.01 mg may soon be expected in the larger ones.

CORRECTING OF WEIGHINGS FOR BUOYANT EFFECT OF THE AIR

("Reduction of Weighings to Vacuo")

In addition to a sufficiently sensitive balance, accurate weighing requires (1) that the balance itself maintain a sufficiently constant zero point and ratio of arms of the beam; (2) that the effect of inequality of the arms of the beam be eliminated by the method of weighing, since it cannot as a rule be corrected for with sufficient accuracy; (3) that the object and the weights have definite constant values, free from such effects as variable surface films, evaporation, magnetic attractions, etc.; (4) that surrounding conditions be maintained free from sources of disturbance and error, such as electrostatic attractions, convection currents, variable or unsymmetrical heat radiations, etc.; and (5) that proper correction be made for the buoyant effect of the air.

The first four types of requirements are matters of technique, and no general methods of correction can be used for errors arising from them. They are therefore outside the scope of these tables.

The fifth requirement demands definite formulae and facts, some of the most fundamental or general of which are given below.

The phrase "apparent weight" is commonly used for the result of a weighing in which no correction has been made for the buoyant effect of the air. The phrase is ambiguous¹ and often leads to a confusion of ideas. Therefore this term is not used in the equations of this section, but reference is made directly to the weights that would be used on an equal-arm balance to make the weighings. The phrase "weights needed" must be understood to include the proper fraction of the rider or other small weights needed to make up the total amount; and it refers to actual values of the weights, which may or may not equal the nominal values marked on them.

- a mass of the contents of the "empty" portions of the container.

 (In weighing gases a is zero. In weighing solids or liquids it may be the mass of air or of vapor of the solid or liquid. In weighing a pyknometer with the liquid which fills it at a temperature different from that at which it is weighed, the volume occupied by a results from the unequal expansion of pyknometer and liquid)
- $b = (v_{\bullet} v_{c})/v_{\bullet}$. Relative size of the container and its counterpoise c = c mass of counterpoise
- k buoyancy reduction factor
- l mass of liquid that fills the pyknometer at the established filling temperature
- m mass of object; in general or where its volume is not fixed by the volume of a pyknometer
- p mass of pyknometer or other container
- r error resulting from use of approximate buoyancy formula

¹Compare equations (8) and (9); in each case s'' - s' would be called the apparent weight, but its value in (9) is $v_{m'}\sigma$ greater than in (8).

- mass of weights needed on an equal arm balance, whether with or without special counterpoise, to balance the objects being weighed. (Regarding use of other than true mass values, see p. 73)
- $-v_s\sigma = s(1 \sigma/\Delta)$. This is not "weight in vacuo" as that phrase is often used
- temperature. If accented it is the temperature at the time of the indicated weighing; if unaccented, it is the temperature at which the pyknometer is filled. In so far as their temperatures have any effect upon the operation considered, all objects (e.g., the balance, its loads, and the surrounding air) are assumed to be at the same temperature
- volume or capacity; when without subscript it is capacity of the container at time of weighing; with one of the subscripts a, c, l, m, p, s, or w, it is volume of the object whose mass is indicated by the subscript (e.g., v_m = volume of the object whose mass is m)
- capacity of the pyknometer at the temperature of filling
- volume of the pyknometer itself, excluding the space that would be filled by liquid at the temperature of filling. (Ordinarily v_p = volume of the material of which the pyknometer is constructed)
- exterior volume" of the pyknometer or other container. With pyknometers, at temperature of filling, $v_e = v_p + v_t$; at another temperature, t'', $v_a'' - v_p'' + v'' = v_p'' + v_w'' + v_a''$
- mass of the calibrating liquid (e.g., water) which is used to determine a volume or to serve as a standard of density
- cubical coefficient of thermal expansion
- density of the weights at the time of weighing
- density of the air at the time of weighing
- density of object being studied or of calibrating liquid. If accented it is density at time of weighing; if unaccented it is density at temperature (t) at which the pyknometer was filled

Density is true mass per unit of volume.

Accents denote the weighing to which the quantity applies. In general 'denotes the weighing of the object alone or of the container; "denotes the weighing of the combined container and object studied, or of the container filled with the calibrating liquid or of the object suspended in the calibrating liquid; "denotes the weighing of the pyknometer "filled" with liquid to be studied, or "filled" with object studied plus calibrating liquid.

Subscripts.—, denotes false or erroneous values. For , see above (s. and ve). Other subscripts indicate the object to which the quantity applies; e.g., ρ_a = density of material whose mass is a.

Fundamental Exact Equation.—The use of the direct, fundamental, exact equation (2) avoids many complications and approximations introduced by most formulae based on densities.

$$m = s + (v_m - v_s)\sigma \tag{2}$$

The equation using densities, in one of the exact forms (3) given below, is useful chiefly for computing exact tables, or the effect of errors, approximations, etc. As a rule, either the densities are not known well enough to warrant its use, or the volumes involved will have been measured, thus going back to equation (2).

$$m = s \left(\frac{1 - \frac{\sigma}{\Delta}}{1 - \frac{\sigma}{\rho_{m}}} \right) = s \frac{\rho_{m}(\Delta - \sigma)}{\Delta(\rho_{m} - \sigma)} = s \left\{ 1 + \frac{\sigma(\Delta - \rho_{m})}{\Delta(\rho_{m} - \sigma)} \right\} = s + s \frac{\sigma(\Delta - \rho_{m})}{\Delta(\rho_{m} - \sigma)}$$
(3)

In the last form of (3), the second term is the exact "buoyancy correction term," and in this correction term the factor (fraction) by which s is multiplied is the exact "buoyancy reduction factor" (k). See Tables 2 and 3.

Common Equation Using Densities.—Some form of equation (4) is commonly used for reducing weighings. This equation is not exact. It is entirely inapplicable to weighing gases, but is amply accurate for much work with solids and liquids.

$$m = s + s \sigma \left(\frac{1}{\rho_m} - \frac{1}{\Delta}\right) \tag{4}$$

 $m = s + s \sigma \left(\frac{1}{\rho_m} - \frac{1}{\Delta}\right)$ (4)
The factor $\sigma \left(\frac{1}{\rho_m} - \frac{1}{\Delta}\right)$ is the "buoyancy reduction factor" commonly given. When $\Delta t = 1$ monly given. When the densities lie between 0.5 and 21.5 g per cm², and are known with sufficient accuracy, the error (r) introduced by the use of this formula does not exceed one part in 100 000 of the mass of the object weighed. Its value, and that of the proportional error (r' = r/s) may be calculated by formula (5); their orders of magnitude may readily be determined from Table 1, which is based on $\sigma = 0.0012 \text{ g/cm}^3$.

$$r' = \frac{r}{s} = \frac{\sigma^2(\Delta - \rho_m)}{\Delta \rho_m(\rho_m - \sigma)}$$
 (5)

Unit of Density is g/cm³

		100 r'	
ρm	$\Delta = 21.5$	$\Delta = 8.4$	$\Delta = 2.65$
1.00	0.0001	0.0001	0.0001
0.5	0.0006	0.0005	0.0005
0.05	0.06	0.06	0.06
0.005	8.	8.	7.

Density of the Air.—Variations in the density of the air under standard conditions,1 as well as the uncertainties of its experimental determination, limit the precision with which very large or extremely precise buoyancy corrections can be calculated from tables of air density. The former seems at present to be the larger, and therefore sets a fixed limit which can be exceeded only by eliminating or reducing the size of the correction, or by making an experimental determination of the density of the air at the time of the weighing. These limiting uncertainties are of the order of 5 in 104 and affect the total buoyancy correction in the same ratio. Since they affect only the fourth significant figure in the buoyancy reduction factor they are negligible in the use of Tables 2 and 3.

In weighing gases, the density of the air must be found from precise tables (consult index). When the volume of the gas is not compensated by a counterpoise of the same size, the density of the air must be known with approximately the same precision as is desired for that of the gas; when it is so compensated, the buoyancy correction is generally the total buoyancy on the weights, and therefore is still relatively large.

For most work with solids and liquids an approximate value of the density of the air is sufficient. The precision to which it must be known can be found from an examination of Table 2. It should be noted that a precision of 1 in 10° in the mass to be determined requires a precision of 1 in the n'th decimal place of the buoyancy reduction factor (i.e., in the actual factor k, not in the printed value of 1000k). In getting the buoyancy reduction factor from Table 2, and in similar work, to a precision not greater than one in about 10⁵, the density of the air may be found from the "Air Density Chart," Fig. 1.

The precision to which temperature, pressure, and humidity must be known in order to find the density of the air to the necessary precision, may be inferred from Fig. 1, except in the case of very large corrections, or of corrections to be determined with extreme precision. In the latter cases this information must be sought in other places.

Density of the Weights.—If the density of the air in which the weights are used is the same as that in which their values were determined, errors in the density assumed for the weights will have

¹ Treuthart, 34, 172: 1598; 21. Moles, 34, 172: 1600; 21.

no effect on the accuracy with which the mass of the object may be determined, provided the same density that was assumed for them in determining their values is assumed for them when they are used. It is not necessary, therefore, to know the density of the weights as accurately as that of the object weighed.

If weights are used in air whose density differs by not more than 20% from that of the air in which their values were determined, the amount by which the density of ordinary weights is likely to differ from the values used in Tables 2 and 3 will not cause errors greater than one part in about 100,000 in the determination of the mass of the object weighed; provided that the density used in determining the value of the weight is the same as that used in the computation of the mass.

For a precision above one part in a million, it is frequently necessary to measure the volume or density of each weight.

Fig. 1.—Air density chart. (For use with Tables 2 and 3.)

Ordinary two-piece weights are not used for such work because they cannot safely be put into liquids for hydrostatic weighing.

Aluminum is not used for weights above 0.02 g in high quality weights, nor above 0.5 g in second quality sets. When the values of such weights have been determined on the assumption of a density of 2.7 g per cm³ at 0°C, the use of the buoyancy reduction factors given for quartz in Table 2 introduces an error in the mass of the object weighed, of less than 0.0002 mg for amounts up to 0.02 g, and of less than 0.005 mg for amounts up to 0.5 g.

The densities of most gold alloys used for weights lie between 16 and 18 g per cm². For gold within this range, the use of the factors given in Tables 2 and 3 will not introduce errors greater than one part in 200,000, or not over 0.005 mg in weighing amounts under one g.

In Tables 2 and 3, the densities used for weights of platinum or platinum-iridium, for those of brass or bronze, and for those of aluminum, are those which were adopted many years ago for certifying weights at the National Bureau of Standards of the United States of America, and were assumed as the densities at 0°C. The following coefficients of cubical expansion are assumed in reducing the volumes of such weights to the volumes at 20°C.

Platinum and Platinum-iridium	0.000	026	per	deg.	C
Brass or bronze	0.000	054	per	deg.	\mathbf{C}
Aluminum	0.000	069	per	deg.	C

The densities of gold and of crystal quartz are assumed as the densities at 20°C. All buoyancy reduction factors are based on differences in volume at 20°C.

Density of Object Weighed.—A change of one in 10° of the mass of the object corresponds to a change of one in the n'th decimal place of the buoyancy reduction factor. Therefore, to the precision obtainable by the use of Table 2, the precision required in the density of the object may be found by noting in that table what change in density (at approximately the density under consideration) corresponds to the allowable variation in the buoyancy reduction factor.

The use of "standard" or "adopted" densities for the object weighed may give an accuracy which is entirely fictitious. There is no compensation as in the case of weights, and the actual error or uncertainty in the density of the particular object weighed has its full effect in the error or uncertainty of the calculated mass

A fictitious "apparent" density derived from weighings uncorrected for buoyancy of the air must be corrected to true density before being inserted in the formulae given in this section unless only an approximate value of density is needed (see p. 78).

Temperature of Objects and Weights.—In weighing gases, and to secure the highest precision in many other cases, it is necessary to compute all volumes or densities at the actual temperature of the observations, unless the coefficient of expansion of the object happens to be nearly the same as that of the weights. If the temperature is entirely neglected, and weighings are made at room temperatures, the extreme error likely to be introduced in the mass calculated for solids and liquids is less than three in 10⁴. (This would be the error for material having a density of 0.2 g per cm³ at 0°C, and a coefficient of cubical expansion of 1.6 × 10³, when compared with weights whose actual volumes or densities are those used in the calculation.)

Example 1: The actual mass of the weights used was s = 10.0105 g; the corrected barometric height was 758 mm; air temperature, 19.6°C; relative humidity 25%; density of object 3.5 g/cm³; weights were of brass.

Referring to Fig. 1, the air density corresponding to these conditions is seen to be close to 0.0012 g/cm^3 . Entering Table 2 with $\rho_m = 3.5$ and the column for brass weights, under $1000\sigma = 1.2$, it is found that 1000 k is 0.20; hence the mass of the object is $m = s + ks = 10.0105 + 0.00020 \times 10.0105 = 10.0105 + 0.0020 = 10.0125 \text{ g}$.

Example 2: The factor for $\rho_m = 3.0$ differs by 6 in the fifth decimal place from that for $\rho_m = 3.5$. The error in mass produced by using 3.0 in place of 3.5 as the density of the object is therefore 6 parts in 10⁵. For the object in Example 1 this would be an error of 0.000 6 g. Similarly the use of 7.0 instead of 7.5 for ρ_m would produce an error of about one part in 10^4 in the mass of the object.

Example 3: In Fig. 1 the point corresponding to barometric height 720 mm, air temperature 21°C, and relative humidity 50%, lies to the right of the line for 0.0011 g/cm³, 50%, by $^{1}\%_{32}$ of the distance between the 0.0011 and the 0.0012 lines. Hence, $\sigma = 0.0011 + 0.0001 \times ^{1}\%_{32} = 0.001131$ g/cm³. (For most work for which Table 2 is suited the density can be estimated by eye with sufficient accuracy; as in this case, 0.00113 g/cm³.) The factor from Table 2 may then be found either by multiplying the factor for $1000\sigma = 1.0$ by 1.13 or by interpolating between the factor for $1000\sigma = 1.1$ and that for $1000\sigma = 1.2$. For brass weights and $\rho_m = 3.5$ the former gives $0.17 \times 1.13 = 0.192$ as the value of 1000k. A calculated interpolation between 0.18 and 0.20 gives 0.18¢, which agrees with the other value within the accuracy of such tabular interpolations.

Weighing Objects in Containers.—Two weighings are required; one of the container alone and the other with the object in the

Table 2.—Buoyancy Reduction Factor (k) m = s + ks, where $k = \frac{\sigma(\Delta - \rho_m)}{\Delta(\rho_m - \sigma)}$

(Cf. equation (3). Symbols, p. 74.) Unit of density is g/cm³ or, to precision of this table, g/ml)

Density of object weighed	i	Δ = 21.5 Pt or Pt-I	r		Δ = 17 Gold		1000 k	$\Delta = 8.4$ rass or bron	se	Crystal o	$\Delta = 2.65$ uarts or alu	minum*
Pm	1.0	1000 σ =	1.2	1.0	1000 σ =	1.2	1.0	1000 σ =	1.2	1.0	1000 σ =	1.2
0.2	4.98	5.48	5.98	4.97	5.47	5.97	4.91	5.40	5.89	4.65	5.11	5.58
0.3	3.30	3.63	3.96	3.29	3.62	3.95	3.22	3.55	3.87	2.97	3.26	3.56
0.4	2.46	2.71	2.95	2.45	2.69	2.94	2.39	2.63	2.87	2.13	2.84	2.55
0.5	1.96	2.15	2.35	1.95	2.14	2.34	1.88	2.07	2.26	1.63	1.79	1.95
0.6	1.62	1.79	1.95	1.61	1.77	1.93	1.55	1.71	1.86	1.29	1.42	1.55
0.7	1.38	1.52	1.66	1.37	1.51	1.65	1.31	1.44	1.57	1.05	1.16	1.26
0.75	1.29	1.42	1.55	1.28	1.40	1.53	1.22	1.34	1.46	0.96	1.05	1.15
0.80	1.20	1.33	1.45	1.19	1.31	1.43	1.13	1.25	1.36	0.87	0.96	1.05
0.82	1.17	1.29	1.41	1.16	1.28	1.39	1.10	1.21	1.32	0.84	0.93	1.01
0.84	1.15	1.26	1.37	1.13	1.25	1.36	1.07	1.18	1.29	0.81	0.90	0.98
0.86	1.12	1.23	1.34	1.11	1.22	1.33	1.04	1.15	1.25	0.79	0.86	0.94
0.88	1.09	1.20	1.31	1.08	1.19	1.29	1.02	1.12	1.22	0.76	0.88	0.91
0.90	1.07	1.17	1.28	1.05	1.16	1.26	0.99	1.09	1.19	0.73	0.81	0.88
0.91	1.05	1.16	1.26	1.04	1.15	1.25	0.98	1.08	1.18	0.72	0.79	0.87
9.92	1.04	1.15	1.25	1.03	1.13	1.24	0.97	1.06	1.16	0.71	0.78	0.85
0.93	1.03	1.13	1.24	1.02	1.12	1.22	0.96	1.05	1.15	0.70	0.77	0.84
0.94	1.02	1.12	1.22	1.01	1.11	1.21	0.95	1.04	1.13	0.69	0.76	0.82
0.95	1.01	1.11	1.21	0.99	1.09	1.19	0.93	1.03	1.12	0.68	0.74	0.81
0.96	1.00	1.10	1.20	0.98	1.08	1.18	0.92	1.02	1.11	0.67	0.73	0.80
0.97	0.99	1.08	1.18	0.97	1.07	1.17	0.91	1.00	1.09	0.65	0.72	0.79
0.98	0.97	1.07	1.17	0.96	1.06	1.16	0.90	0.99	1.08	0.64	0.71	0.77
0.99	0.96	1.06	1.16	0.95	1.06	1.14	0.89	0.98	1.07	0.63	0.70	0.76
1.00	0.95	1.05	1.15	0.94	1.04	1.13	0.88	0.97	1.06	0.62	0.69	0.75
1.01	0.94	1.04	1.13	0.93	1.03	1.12	0.87	0.96	1.05	0.61	0.67	0.74
1.02	0.93	1.03	1.12	0.92	1.01	1.11	0.86	0.95	1.03	0.60	0.66	0.72
1.03	0.93	1.02	1.11	0.91	1.00	1.10	0.85	0.94	1.02	0.59	0.65	0.71
1.04	0.92	1.01	1.10	0.90	0.99	1.08	0.84	0.93	1.01	0.58	0.64	0.70
1.05	0.91	1.00	1.09	0.89	0.98	1.07	0.83	0.92	1.00	0.58	0.63	0.69
1.06	0.90	0.99	1.08	0.89	0.97	1.06	0.82	0.91	0.99	0.57	0.62	0.68
1.07	0.89	0.98	1.07	0.88	0.96	1.05	0.82	0.90	0.98	0.56	0.61	0.67
1.08	0.88	0.97	1.06	0.87	0.95	1.04	0.81	0.89	0.97	0.55	0.60	0.66
1.09	0.87	0.96	1.05	0.86	0.94	1.03	0.80	0.88	0.96	0.54	0.59	0.65
1.10	0.86	0.95	1.04	0.85	0.94	1.02	0.79	0.87	0.95	0.53	0.59	0.64
1.12	0.85	0.93	1.02	0.83	0.92	1.00	0.77	0.85	0.93	0.52	0.57	0.62
1.14	0.83	0.91	1.00	0.82	0.90	0.98	0.76	0.88	0.91	0.50	0.55	0.60
1.16	0.82	0.90	0.98	0.80	0.88	0.96	0.74	0.82	0.89	0.49	0.53	0.58
1.18	0.80	0.88	0.96	0.79	0.87	0.95	0.73	0.80	0.87	0.47	0.52	0.56
1.20	0.79	0.87	0.95	0.78	0.85	0.93	0.71	0.79	0.86	0.46	0.50	0.55
1.25	0.75	0.83	0.91	0.74	0.82	0.89	0.68	0.75	0.82	0.42	0.47	0.51
1.30	0.72	0.80	0.87	0.71	0.78	0.85	0.65	0.72	0.78	0.39	0.43	0.47
1.35	0.69	0.76	0.83	0.68	0.75	0.82	0.62	0.68	0.75	0.36	0.40	0.44
1.40 1.50 1.6 1.7 1.8	0.67 0.62 0.58 0.54 0.51 0.48	0.74 0.68 0.64 0.60 0.56 0.53	0.80 0.74 0.69 0.65 0.61 0.58	0.66 0.61 0.57 0.53 0.50 0.47	0.72 0.67 0.62 0.58 0.55 0.51	0.79 0.73 0.68 0.64 0.60 0.56	0.60 0.55 0.51 0.47 0.44 0.41	0.66 0.60 0.56 0.52 0.48 0.45	0.71 0.66 0.61 0.56 0.52 0.49	0.34 0.29 0.25 0.21 0.18 0.15	0.37 0.32 0.27 0.23 0.20 0.16	0.40 0.35 0.30 0.25 0.21 0.18
2.0	0.45	0.50	0.54	0.44	0.49	0.53	0.38	0.42	0.46	0.12	0.14	0.15
2.2	0.41	0.45	0.49	0.40	0.44	0.48	0.34	0.37	0.40	0.08	0.08	0.09
2.4	0.37	0.41	0.44	0.36	0.39	0.43	0.30	0.33	0.36	0.04	0.04	0.05
2.6	0.34	0.37	0.41	0.33	0.36	0.39	0.27	0.29	0.32	0.01	0.01	0.01
2.8	0.31	0.34	0.37	0.30	0.33	0.36	0.24	0.26	0.29	-0.02	-0.02	-0.02
3.0	0.29	0.32	0.34	0.27	0.30	0.33	0.21	0.24	0.26	-0.04	-0.05	-0.05
3.5	0.24	0.26	0.29	0.23	0.25	0.27	0.17	0.18	0.20	-0.09	-0.10	-0.11
4 5 6 7 8	0.20 0.15 0.12 0.10 0.08 0.06	0.22 0.17 0.13 0.11 0.09 0.07	0.24 0.18 0.14 0.12 0.09 0.08	0.19 0.14 0.11 0.08 0.07 0.05	0.21 0.16 0.12 0.09 0.07 0.06	0.23 0.17 0.13 0.10 0.08 0.06	0.13 0.08 0.05 0.02 0.01 -0.01	0.14 0.09 0.05 0.03 0.01 -0.01	0.16 0.10 0.06 0.03 0.01 -0.01	-0.13 -0.18 -0.21 -0.23 -0.25 -0.27	-0.14 -0.20 -0.23 -0.26 -0.28 -0.29	-0.15 -0.21 -0.25 -0.28 -0.30 -0.32
10 12 14 16 18 20	0.05 0.04 0.02 0.02 0.01 0.00	0.06 0.04 0.03 0.02 0.01 0.00	0.06 0.04 0.03 0.02 0.01 0.00 0.00	0.04 0.02 0.01 0.00 0.00 -0.01 -0.01	0.05 0.03 0.01 0.00 0.00 -0.01 -0.01	0.05 0.03 0.02 0.00 0.00 -0.01 -0.02	-0.02 -0.04 -0.05 -0.06 -0.06 -0.07 -0.07	-0.02 -0.04 -0.05 -0.06 -0.07 -0.08 -0.08	-0.02 -0.04 -0.06 -0.07 -0.08 -0.08 -0.09	-0.28 -0.29 -0.31 -0.31 -0.32 -0.33 -0.33	-0.31 -0.32 -0.34 -0.35 -0.35 -0.36 -0.37	-0.33 -0.35 -0.37 -0.38 -0.39 -0.39

*See Density of Weights, p. 75.

container. The exact equations connecting the masses and corresponding to equation (2) are:

$$(p' + a') = (s' + c') + [v_{e'} - (v_{e'} + v_{c'})]\sigma'$$

and

$$(p'' + m + a'') = (s'' + c'') + [v_{\bullet}'' - (v_{\bullet}'' + v_{c}'')]\sigma''$$

Assuming p and c to be constant, as must generally be done, and subtracting, gives the general equation (6).

$$m = (s'' - s') - (a'' - a') + [v_{\bullet}'' - (v_{\bullet}'' + v_{c}'')]\sigma'' - [v_{\bullet}' - (v_{\bullet}' + v_{c}')]\sigma'$$
 (6)

If also v_{σ} , v_{c} , Δ and σ are the same for both weighings, which requires the same temperature and equivalent atmospheric conditions,

$$m = (s'' - s') - (a'' - a') - (v_s'' - v_s')\sigma \tag{7}$$

Table 3.—Buoyancy Reduction Factor (k) for Use in Intercomparison of Weights (For other factors and for symbols, see Table 2 and p. 74)

Unity of density = g/cm^3 m = s + ks

	1000k													
Density of weight tested	$\Delta^* = 21.5$ Pt or Pt-Ir	$\Delta \uparrow = 17$ Gold	$\Delta^* = 8.4$ Brass or bronze	$\Delta^* = 2.7$ Aluminum	$\Delta \dagger = 2.65$ Crystal quartz									
	1000σ =	1000σ =	1000σ =	1000σ =	1000σ =									
ρm	1.0 1.1 1.2	1.0 1.1 1.2	1.0 1.1 1.2	1.0 1.1 1.2	1.0 1.1 1.2									
21.5*	0.000 0.000 0.000	-0.012 -0.014 -0.015	-0.073 -0.080 -0.087	-0.324 -0.357 -0.389	-0.331 -0.364 -0.397									
17†	0.012 0.014 0.015	0.000 0.000 0.000	-0.060 -0.066 -0.072	-0.312 -0.343 -0.374	-0.319 -0.350 -0.382									
8.4*	0.073 0.080 0.087	+0.060 +0.066 +0.072	0.000 0.000 0.000	-0.252 -0.277 -0.302	-0.258 -0.284 -0.310									
2.7*	0.324 0.357 0.389	0.312 0.343 0.375	+0.252 +0.277 +0.302	0.000 0.000 0.000	-0.006 -0.007 -0.008									
2.65†	0.3310.3640.397	0.319 0.351 0.382	0.258 0.284 0.310	+0.006 +0.007 +0.008	0.000 0.000 0.000									

* Density at 0°C, see "Density of Weights," p. 75. † Density at 20°C, see "Density of Weights," p. 75.

If also $\rho_{a}'' = \rho_{a}' = \sigma$, as when the "empty" portion of the container is filled with air of the same density as the surrounding atmosphere, and the vapor of the "object" weighed is negligible or should be included in m,

$$m = (s'' - s') + (v_m - v_{s''-s'})\sigma$$
 (8)

$$m = (s'' - s')\left(1 - \frac{\sigma}{\Delta}\right) + v_m\sigma = (s'' - s')\left(\frac{1 - \frac{\sigma}{\Delta}}{1 - \frac{\sigma}{\rho_m}}\right) \quad (8')$$

In equations (8) and (8') the effect of the container has been eliminated; the equation is of the form of equation (2), and the buoyancy reduction factor from Table 2 may be used.

If the container is exhausted when weighed alone; and if, when the object is being weighed there is in the container only material whose mass should be part of m, then a' = a'' = 0 and instead of equations (8) and (8') we have

$$m = (s'' - s') - v_{s''-s'} \sigma = (s'' - s') \left(1 - \frac{\sigma}{\Delta}\right)$$
 (9)

In this case the buoyant effect of the air on the object weighed has been eliminated, and the ordinary buoyancy reduction factors or equations do not apply (cf. (2) and (3)); Table 2 can not be used.

CORRECTING DENSITY DETERMINATIONS FOR THE BUOYANT EFFECT OF THE AIR

Correcting "Apparent" Values.—Radical differences in the constancy of temperatures or air densities, or such differences as that between equations (8) and (9) above, make it impossible to develop any single correction formula for correcting what are often called "apparent" values of specific gravity, or of densityvalues which have been determined without proper correction for the buoyant effect of the air. Such values can, however, be corrected in so far as the method and conditions of their determination are known.

Limitations.—In general: (1) It is impossible to correct each weighing on which the determination depends, because some unknown mass, volume, or density will generally be needed in order to find the volume of the air displaced. In some cases, however, approximate values may be known with sufficient accuracy for this purpose.

(2) Some special experimental requirements are always involved. Among these may be equal temperatures for two operations, constant volumes (e.g., of pyknometer), negligible changes in the density of the air, etc., or a combination of several of them. A variety of combinations of such requirements may be used, each

 $^1\,\mathrm{As}\,v_e$ is assumed to remain constant, pressure effects must be suitably elimi-

having its peculiar advantages, and each leading to a different

(3) If the number of experimental requirements is made very small, the resulting equation for true density is very complex. Simplification of the final solution can be accomplished only by increasing the experimental requirements or by introducing approximations into the solution.

No method can be selected as "best." Hence, the material given here is limited to the general fundamental equations, and to the exact solutions for certain cases that are of wide applicability in work of moderate precision. From these it is possible to arrange procedures suited to many different conditions, and to determine the accuracy of the corresponding solutions, and the effects of different errors under various circumstances.

In every case, ρ_m is obtained in the same units as those in which $\rho_{\mathbf{w}}$ is expressed. For the purposes of the following equations, σ may, in general, be expressed either as g/cm² or as g/ml.

Density of Gases.—The general equations for weighing gases are the same as those for pyknometer determinations of liquids. particularly those for cases in which the pyknometer is exhausted when weighed alone, as in equation (17).

Experimental Requirements.—All the following equations involve two general requirements: (1) That in any one weighing or other operation all objects involved are at the same temperature (in weighing, the temperature of the atmosphere is involved); and (2) that changes in pressure produce no change in any of the volumes; e.g., the volume of the pyknometer or other container must not change when it is exhausted. In addition, each equation involves one or more of the following special requirements:

A. Mass of pyknometer and its counterpoise remains constant: p' = p'' = p''' and c' = c'' = c'''.

B. Coefficient of expansion of counterpoise is the same as that of the pyknometer: $\beta_p = \beta_c$. This makes b the same for all weighings.

C. Temperature at which pyknometer is filled is the same for the material being studied as for the calibrating liquid. Therefore $w^{\prime\prime} = \rho_w v_t$ and $l^{\prime\prime\prime} = \rho_l v_t$.

D. Temperature for all three weighings is the same as that at which the pyknometer is filled. This results in all volumes being constant, in $v_{w''} = v_{l'''} = v'' = v'''$, in a'' = a''' = 0, and in the density of each material being constant.

E. Density of the atmosphere the same for all three weighings: $\sigma' = \sigma'' = \sigma'''$.

F. Density of the weights the same in all weighings. This demands that the temperature be the same for all three weighings. See also p. 75.

¹ The advantages and disadvantages of different experimental arrangementa, such as the size and mass of the counterpoise used, or the temperature control, do not depend on the form of solution of the equations so much as on the effect of variations and errors that are not shown in the fundamental equations.

G. Density of air or other material in the "empty" portion of the pyknometer equal to that of the surrounding atmosphere: $\rho_{\mathbf{a}}' = \sigma', \; \rho_{\mathbf{a}}'' = \sigma'', \; \rho_{\mathbf{a}}''' = \sigma'''.$

H. Pyknometer evacuated when weighed empty.

I. Volume of counterpoise equal to "exterior" volume of pyknometer. $v_c = v_e$.

J. Volume of counterpoise equals that of the pyknometer itself, excluding the space that would be filled by liquid at the temperature of filling: $v_c = v_p$.

Pyknometer Determinations.—(1) Liquids.—Three weighings are required, from which, under experimental requirement A, w" and l"" are obtained directly by equation (6). Under requirement C, $\rho_l = \frac{l^{\prime\prime\prime}}{w^{\prime\prime}} \rho_w$

Therefore under requirements A and C:

$$\rho_{l} = \frac{(s''' - s') - (a''' - a') + [v_{e}''' - (v_{s}''' + v_{c}''')]\sigma''' - [v_{e}' - (v_{s}' + v_{c}')]\sigma'}{(s'' - s') - (a'' - a') + [v_{s}'' - (v_{s}'' + v_{c}'')]\sigma'' - [v_{c}' - (v_{s}' + v_{c}')]\sigma'}\rho_{\omega}$$
(10)

$$v_{t} = \frac{(s'' - s') - (a'' - a') + [v_{\bullet}'' - (v_{\bullet}'' + v_{c}'')]\sigma'' - [v_{\bullet}' - (v_{\bullet}' + v_{c}')]\sigma'}{\rho_{\bullet}}$$
(11)

Under requirement B, b may be introduced for $\frac{v_e - v_c}{v_a}$. If also a part of the buoyancy correction for each weighing is made by calculating so', so", and so", then the remaining buoyancy reduction terms can be combined and simplified. Then under requirements A, B, and C the equations may be put in the form

$$\rho_{l} = \frac{s_{e}''' - s_{e}'}{s_{e}'' - s_{e}'} \left[\rho_{w} + \frac{a'' - a'}{v_{t}} - \frac{b}{v_{t}} (v_{e}''\sigma'' - v_{e}'\sigma') \right] - \frac{a''' - a'}{v_{t}} + \frac{b}{v_{t}} (v_{e}'''\sigma''' - v_{e}'\sigma') \quad (12)$$

and

$$v_t = \frac{(s_s'' - s_s') - (a'' - a') + b(v_s''\sigma'' - v_s'\sigma')}{\rho_w}$$
Under the conditions noted, these equations are perfectly

general. They do not involve any mathematical approximations in their derivation and therefore show the proper effect of each quantity. However, in using them, approximate data must, in general, be used, because v_e which is needed in computing v_t cannot be accurately known until after v_t has been computed. If a first approximation is not sufficiently accurate the accuracy may be increased by successive approximations.

{The values of v_{\bullet}' , v_{\bullet}'' and v_{\bullet}''' may be computed from the relation $v_t = v_p + v_t = \frac{p}{\rho_p} + \frac{w}{\rho_w}$ and if the capacity depends solely on temperature (and not on pressure or other factors),

$$v_{\epsilon'} = v_{\epsilon}[1 + \beta_{p}(t' - t)]; v_{\epsilon''} = v_{\epsilon}[1 + \beta_{p}(t'' - t)]; v_{\epsilon'''} = v_{\epsilon}[1 + \beta_{p}(t''' - t)]$$
(14)

The values of a', a", and a'" may be computed from known values of ρ_a and the equations

$$v_{a'}' = v' = v_{l}[1 + \beta_{p}(t' - t)]$$

$$v_{a''}' = v'' - v_{\omega''}' = v_{l}(\beta_{p} - \beta_{\omega})(t'' - t)$$

$$v_{a'''} = v''' - v_{l}''' = v_{l}(\beta_{p} - \beta_{l}) (t''' - t)$$
Under requirements $D, E, F,$ and G , in addition to A, B , and C ,

(12) becomes

$$\rho_{l} = \frac{s''' - s'}{s'' - s'} (\rho_{w} - \sigma) + \sigma \tag{16}$$

And under requirement H in addition to A, B, C, D, E, F, and G

$$\rho_l = \frac{s^{\prime\prime\prime} - s^{\prime}}{s^{\prime\prime} - s^{\prime}} \rho_{\psi} \tag{17}$$

As shown in equations (16) and (17), experimental requirements A to G inclusive render the results independent of the size or nature of the counterpoise and of the value of the density of the weights used, though these quantities must be the same for all observations. Including requirement H renders the results independent of the actual value of the density of the air also, but still requires that this value shall be the same for all three weighings.

Under requirement I, with A, B, and C, (10) becomes

$$\rho_{l} = \frac{(s_{s}^{\prime\prime\prime} - s_{s}^{\prime}) - (a^{\prime\prime\prime} - a^{\prime})}{(s_{s}^{\prime\prime} - s_{s}^{\prime}) - (a^{\prime\prime} - a^{\prime})} \rho_{w}$$
(18)

and its equivalent (12), and (13) become

$$\rho_{l} = \frac{s_{e}^{\prime\prime\prime} - s_{e}^{\prime}}{s_{e}^{\prime\prime\prime} - s_{e}^{\prime}} \left[\rho_{w} + \frac{a^{\prime\prime\prime} - a^{\prime}}{v_{t}} \right] - \frac{a^{\prime\prime\prime} - a^{\prime}}{v_{t}}$$
(19)

and

$$v_t = \frac{(s_e'' - s_e') - (a'' - a')}{a_{rr}}$$
 (20)

Under requirement J, with A, B, and C, (10) becomes

$$=\frac{(s'''-s')-(a'''-a')+[v'''-v_*''']\sigma'''-[v'-v_*']\sigma'}{(s''-s')-(a'''-a')+[v''-v_*'']\sigma''-[v'-v_*']\sigma'}\rho_{\omega}$$
(21)

and its equivalent (12), and (13) become

$$\rho_{t} = \frac{s_{\epsilon^{\prime\prime\prime}} - s_{\epsilon^{\prime}}}{s_{\epsilon^{\prime\prime}} - s_{\epsilon^{\prime}}} \left[\rho_{w} + \frac{a^{\prime\prime} - a^{\prime}}{v_{t}} - \frac{1}{v_{t}} (v^{\prime\prime}\sigma^{\prime\prime} - v^{\prime}\sigma^{\prime}) \right] - \frac{a^{\prime\prime\prime} - a^{\prime}}{v_{t}} + \frac{1}{v_{t}} (v^{\prime\prime\prime}\sigma^{\prime\prime\prime} - v^{\prime}\sigma^{\prime}) \quad (22)$$

$$v_{t} = \frac{(s_{s}'' - s_{s}') - (a'' - a') + v''\sigma'' - v'\sigma'}{\rho_{w}}$$
 (23)

Pyknometer Determinations.—(2) Solids.—The following equations are based on two pyknometer weighings and a separate determination of the mass of the object. If the pyknometer is used as a container for weighing the object this requires two weighings. (See p. 76 to 78.)

The symbol " refers to the weighing with the calibrating liquid alone; " to the weighing with both this liquid and the object being studied.

Under requirements A and C only,
$${}^{\rho_{m''}} = \frac{{}^{m\rho_{w''}}}{m - (s''' - s'') + (a''' - a'') - [v_s''' - v_s''' - v_s'''] \sigma''' + [v_s'' - v_s'' - v_s''] \sigma''}$$
(24)

Under requirement B, in addition to A and C, equation (24) may be put into the form (25) by combining the terms in s with those

$$\rho_{m}^{"} = \frac{m\rho_{w}^{"}}{m - (s_{\epsilon}''' - s_{\epsilon}'') + (a''' - a'') - b(v_{\epsilon}'''\sigma''' - v_{\epsilon}''\sigma'')}$$
(25)

Under requirements D and E, in addition to A, B, and C.

$$\rho_{m} = \frac{m\rho_{w}}{m - (s_{\bullet}^{"'} - s_{\bullet}^{"})} \tag{26}$$

This equation is independent of the magnitudes of σ , c, and v_c , merely requiring their constancy.

Hydrostatic Weighings for Density of Solids.—These equations are based on two weighings; one with the object in air and one with it suspended in a liquid (e.g., water) of known density. The equilibrium equations for these weighings are

$$m' - v_m'\sigma' = s' - v_s'\sigma'$$

and

$$m^{\prime\prime} - v_m^{\prime\prime} \rho_w^{\prime\prime} = s^{\prime\prime} - v_s^{\prime\prime} \sigma^{\prime\prime}$$

the notation being similar to that used for pyknometer weighings. If the mass of the object remains constant (i.e., m' = m''), (27) is an exact solution of these equations.

$$\rho_{m'} = \frac{s_{a'}}{s_{a'} - s_{a''}} (\rho_{w'}'[1 + \beta_{m}(t'' - t')] - \sigma') + \sigma'$$
 (27)

If also all temperatures, the air density, and the density of the weights are the same in the two weighings,

$$\rho_{\mathbf{m}} = \frac{s'}{s' - s''} \left(\rho_{\mathbf{w}} - \sigma \right) + \sigma \tag{28}$$

Correction Formula.—When the result of a density determination is calculated without any correction for the buoyant effect of the air, a false value (ρ_f) is obtained except for pyknometer determinations in which the conditions of the work are those specified for equation (17).

If for pyknometer determinations, these false values were computed by means of the equation $\rho_f = \frac{s''' - s'}{s'' - s'} \rho_{\varpi}$ and for hydrostatic weighings of solids by means of the equation $\rho_f = \frac{s'}{s' - s''} \rho_{\omega}$, then to the precision attainable by assuming that the conditions were those specified for equations (16) or (28) the values may be corrected by the equation

$$\rho = \rho_f \left(1 - \frac{\sigma}{\rho_w} \right) + \sigma \tag{29}$$

VOLUME OF A MASS OF LIQUID OF KNOWN WEIGHT IN AIR (See also p. 73)

VERNEY STOTT AND PHILIP H. BIGG

Symbols.— $F = \frac{1 - \frac{\sigma}{\Delta}}{\rho - \sigma}$; t = temperature of the liquid when itsvolume is V; t_o = temperature of the liquid when weighed; V = volume of the liquid at temperature t; W = weight of the liquid in air against weights of density Δ ; ρ , ρ_o = density of the liquid at t^{σ} and at t_{σ}^{σ} , respectively; $\sigma = \text{density of air at time of weighing.}$ If densities are expressed in g/cm^3 , and W in g, V is in cm^2 ; if densities are in g/ml and W in g, V is in ml; if densities are in lb./gal., and W in lb., V is in gal.; etc.

The exact relations connecting these quantities are given by

$$V = \frac{W}{\rho} \left(\frac{1 - \frac{\sigma}{\Delta}}{1 - \frac{\sigma}{\rho_{\bullet}}} \right) = \frac{W}{\rho} \left(\frac{1 - \frac{\sigma}{\Delta}}{1 - \frac{\sigma}{\rho}} \right) \left(\frac{1 - \frac{\sigma}{\rho}}{1 - \frac{\sigma}{\rho_{\bullet}}} \right) = FW \left(\frac{1 - \frac{\sigma}{\rho}}{1 - \frac{\sigma}{\rho_{\bullet}}} \right)$$

VALUES OF F FOR WATER AND MERCURY (Liquids are air-free)

$$V = FW \frac{1 - \frac{\sigma}{\rho}}{1 - \frac{\sigma}{\rho}}$$

In many cases the factor $\left(\frac{1-\frac{\tau}{\rho}}{1-\frac{\sigma}{\rho}}\right)$ does not differ significantly from unity. If $t_o = 20^{\circ}$ C, the greatest value of this factor for the

temperature range covered by the following table differs from unity by only 7.3 × 10⁻⁶ for water and by 0.48 × 10⁻⁶ for mercury.

If
$$t_0 = t$$
, $V = FW$. For water, $F = 1 + 0.001 K_{H_2O}$; for mercury, $F = 0.07 + 0.001 K_{Hg}$

Unit of F = milliliter per g of W; of $t = ^{\circ}\text{C}$. Assumes* $\sigma = 0.0012 \text{ g/ml}$; $\Delta = 8.3 \text{ g/ml}$.

t	K _{H2O}	K _{Hg}	t	$K_{\rm H_2O}$	K_{Hg}	t	K _{H2} O	K_{Hg}	t	K _{H₂O}	K _{Hg}	t	K _{H2O}	$K_{\mathbf{Hg}}$
0	1.189	3.550	10	1.330	3.688	20	2.832	3.817	30	5.410	3.951	40	8.890	4.085
1	1.130	3.563	11	1.425	3.697	21	3.044	3.830	31	5.720	3.964	41		4.098
2	1.089	3.576	12	1.533	3.710	22	3.267	3.844	32	6.038	3.977	42		4.111
3	1.065	3.590	13	1.654	3.723	23	3.501	3.857	33	6.366	3.991	43		4.125
4	1.057	3.60s	14	1.788	3.737	24	3.744	3.870	34	6.702	4.004	44		4.138
5	1.065	3.616	15	1.933	3.750	25	3.998	3.884	35	7.046	4.018	45		4.152
6	1.089	3.630	16	2.090	3.763	26	4.261	3.897	36	7.399	4.031	46		4.165
7	1.127	3.643	17	2.259	3.777	27	4.534	3.910	37	7.760	4.044	47		4.178
8	1.181	3.656	18	2.438	3.790	28	4.817	3.924	38	8.129	4.058	48		4.192
9	1.248	3.670	19	2.630	3.80s	29	5.109	3.937	39	8.505	4.071	49		4.205
												50		4.219

* The increase (dK) produced in K by changing Δ to $\Delta(1+\delta)$ and σ to $\sigma(1+\epsilon)$ is closely given $(\pm ca\ 1\ \%)$ for the range of this table by the equations:

$$dK_{H_2O} = 0.145(7.3s + 0.997\delta + 8.3s\delta)\frac{1}{1+\delta}$$

$$K_{H_2C} = 0.00078(-5.3s + 13.6\delta + 8.3s\delta)\frac{1}{1+\delta}$$

 $dK_{\text{H}_2\text{O}} = 0.145(7.3s + 0.997\delta + 8.3s\delta)\frac{1}{1+\delta}$ $dK_{\text{Hg}} = 0.00078(-5.3s + 13.6\delta + 8.3s\delta)\frac{1}{1+\delta},$ units being those of this table. For uncertainties in σ , and for the variation of σ with pressure, temperature, and humidity, see p. 78. When brass weights are not used, δ will, in general, be large; in such cases it is desirable to transform the equations once for all by inserting the proper value for δ ; they will take the convenient form dK = a + bs. If $\delta = 0$, $dK_{H_2O} = 1.06s$; $dK_{H_2} = 0.00416s$. If s = 0, $dK_{H_2O} = 0.14s \frac{\delta}{1 + \delta}$; $dK_{H_2} = 0.0106 \frac{\delta}{1 + \delta}$.

Example.—(1) If
$$\sigma = 0.00132$$
 and $\Delta = 8.383$, $\delta = 0.1$, $\delta = 0.01$ and $dK_{\text{H}_2\text{O}} = 0.145(0.73 + 0.01 + 0.008)\frac{1}{1.01} = 0.144(0.75) = 0.108$. Hence, if $t = 19^{\circ}\text{C}$, $K_{\text{H}_2\text{O}} = 2.63 + 0.108 = 2.74$. (2) If $\sigma = 0.00132$ and $\Delta = 2.65$ (quartz), $\delta = 0.1$, $\delta = 0.$

STANDARD BUFFER SOLUTIONS AND ACID-BASE INDICATORS

Mansfield Clark

In the following tables pH represents (formalistically) \log_{10} $\frac{1}{[H^+]}$ where $[H^+]$ is the symbol for grams of hydrogen ions per liter. Since there is a disagreement concerning the precise interpretation of experimental values, the experimental meaning of pH is defined by the set of conditions described below (8, 57).

The normal hydrogen-electrode is regarded as a properly coated, noble metal, under one atmosphere partial-pressure of hydrogen, immersed in a solution normal with respect to hydrogen ions. The difference of potential between electrode and solution is regarded as zero at all temperatures.

The following values are regarded as standard differences of potential (E_c) (liquid-junction potential-difference being eliminated) between the tenth-normal KCl—Hg₂Cl₂—Hg half-cell and the hypothetical, normal hydrogen-electrode.

$$T^{\circ}$$
 18 20 25 30 37.5 40 50 60 E_{e} 0.3380 0.3379 0.3376 0.3372 0.3364 0.3360 0.3341 0.3317

For present purposes it is assumed that the liquid-junction potential-difference between an Hg_2Cl_1 half-cell solution and the solution the pH of which is under measurement has been eliminated when there has been interposed a saturated solution of KCl, or when there has been employed the Bjerrum extrapolation (4) from measurements made with 3.5N KCl and 1.75N KCl as interposed solutions.

When the electromotive force, e.m.f., of the "chain":

is measured under the above conditions, and the Hg is positive to the Pt, pH is calculated from the equation

$$\frac{E.M.F. - E_c}{0.000 \ 198 \ 37(273.09 + t)} = pH.$$

(See (8, 37, 45, 64) and references therein on potentiometric measurement of pH.)

The chief modes of employing indicators for the determination of pH may be illustrated by the following examples.

I. A solution having been found to induce a blue color with brom thymol blue (see No. 139, Table 3A), a yellow color with thymol blue (No. 129), and a color intermediate between yellow and red with phenol red (No. 142) is judged to have a pH value between 7.0 and 7.8. Then to 10 ± 0.05 cc of solution are added 5 drops 0.04% phenol red solution (made by dissolving 0.1 g phenol red in 28.5 cc 0.01N NaOH solution and diluting to 250 cc). The resulting mixture is then compared with standards made by adding 5 drops of the same phenol red solution to each of 10 ± 0.05 cc portions of buffers having pH values of 7.0, 7.2, 7.4, 7.6, etc. (See Table 1A.)

The comparison is made in containers of identical dimensions and under uniform illumination. It is found that the tested solution has a color intermediate and half-way between those of buffers 7.4 and 7.6, and since the total salt contents of the tested solution and of the buffers are of the same order of magnitude, and since the solution contains no protein or substance known to affect the indicator, 7.5 is judged to be the true pH value of the tested solution (8, 11, 31, 37, 45, 53, 54, 56).

- II. A solution is found to induce a partial color transformation of phenol red. Using uniform containers (e.g., test tubes) there are prepared:
- (1) A mixture of 10 ± 0.05 cc solution under test and 10 drops standard phenol red solution (see I).

- (2) A mixture of x drops of indicator and sufficient buffer solution of the value shown in column B of Table 3A to equal the total volume of solution 1.
- (3) A mixture of 10 x drops of indicator and sufficient buffer of the value shown in column C of Table 3A to equal the total volume of solution 1.

X is varied and there is found at x = 4 a match in color between solution 1 and superposed solutions 2 and 3. From the relation:

pH = pK +
$$\log \frac{x}{10 - x}$$
, and the value 7.8 for pK given in Table

3A it is calculated that the value of the tested solution is 7.6 (see in addition to the general references under I (2. 19, 20, 22, 34, 63).

III. A solution is found to induce a partial color-transformation in m-nitrophenol (No. 15, Table 3C). It is found that 10 cc of the tested solution plus 1 cc of 0.3% m-nitrophenol matches in color 11 cc of an alkalinized solution containing 0.2 cc of 0.3% m-nitrophenol. It is thus shown that the tested solution has induced a 20% transformation. If a is the percentage transformation of the indicator, pH is calculated from

$$pH = pK + \log \frac{a}{100 - a}$$

In the case at hand a = 20, the temperature of the measurement was 25° and the total salt content of the solution was of the order of magnitude of 0.15M. Hence from Table 3C, pK is taken as 8.16. By the above equation pH = 7.56.

The equation $pH = pK + \log \frac{a}{100 - a}$ cannot be used with picric acid, phenolphthalein or Alizarine yellow GG listed in Table 3C, since these indicators do not behave as monoacidic within the range of pH specified. Empirical data (38) for phenolphthalein and Alizarine yellow GG are shown in Table 4. It is best to vary the amounts of indicator used till the most favorable color-differences are found. (In addition to the material found in the general

references under I see (30, 31, 38, 39) for method III.)
pK in the tables represents the pH at which there is an apparent
half-transformation of the indicator. For indicators behaving as
monoacidic or monobasic, within the zone of pH designated, pK is
log 1/Ka when Ka is the "apparent dissociation constant" (43).
When an indicator, such as phenolphthalein, is known not to
behave as monoacidic within the range of pH designated, pK is
bracketed.

pK values listed in Tables 3A and 3C are uniform with respect to the bases of reference. Those of the indicators in the general list (Table 2) are referred to such a variety of bases that tabulation is impracticable. The reader is therefore referred to original articles (8, 31, 37, 43, 45, 51, 58, 59, 60, 61, 67).)

The values assigned to useful pH ranges are somewhat arbitrary, depending upon concentration of indicator, the spectral distribution of illumination, and psychological preferences.

Indicator solutions are affected to various degrees by

- a. Total salt content.
- b. Specific ions: e.g., alizarine red S is affected by borates differently than by phosphates (67).
- c. Colloidal suspensions, protein solutions, etc.: e.g., congo red in a gelatine solution of pH 3.6 behaved as if the pH were 5.6 (53). Neutral red in soap solutions forms a fatty acid complex (27).
- d. Presence of immiscible solvents: e.g., chloroform used for disinfection removes benzene-azo-benzyl-aniline from the aqueous phase (53).

- e. Mixed solvents and change of solvent (3, 31, 32, 40, 62).
- f. Temperature. See Table 3A, 3C.
- g. Time: e.g., water blue changes color slowly and propyl red precipitates.
- h. Destructive agents: e.g., methyl red is irreversibly reduced in some bacterial cultures.

Since it is impracticable to tabulate all available data, only representative "salt" and temperature effects are given in Tables 3A. 3B and 4.

The indicators of Table 3 include the better of those which may be used in acidimetric and alkalimetric titration. (For principles see (5, 31, 42, 45).)

TABLE 1.—STANDARD BUFFER SOLUTIONS

The following tables give the compositions of solutions which furnish, at the temperatures indicated, values of pH which conform in essential respects to the specifications listed in the general notes above. Recalculation to make the conformity rigid would involve changes in the original data which would be less than the uncertainties of the working standards used in the experiments. The solutions listed may serve as standards for the colorimetric measurements of pH. The solutions suffer relatively slight displacement of pH with addition or subtraction of small proportions of acid or alkali. This property is referred to as that of a buffer (puffer, tampon). (For buffer solutions see (8.37.45.64).)

A. STANDARD BUFFER SOLUTIONS OF CLARK AND LUBS (10) AT 20° 50 cc A + x cc B diluted to 200 cc

A = 0.2 B = 0.2	M KCI*	KH a	0.2M -phthal- ate 0.2M ICl	KH a	0.2M -phthal- ate 0.2M aOH	KI B =	0.2M H ₂ PO ₄ 0.2M aOH	$A = 0.2M$ $H_3BO_3\dagger$ $+ 0.2M KCl$ $B = 0.2M$ $NaOH$		
pН	cc B	pH	cc B	pH	cc B	pН	oc B	pН	oc B	
1.2	64.5	2.2	46.70	4.0	0.40	5.8	3.72	7.8	2.61	
1.4	41.5	2.4	39.60	4.2	3.70	6.0	5.70	8.0	3.97	
1.6	26.8	2.6	82.95	4.4	7.50	6.2	8.60	8.2	5.90	
1.8	16.6	2.8	26.42	4.6	12.15	6.4	12.60	8.4	8.50	
2.0	10.6	3.0	20.32	4.8	17.70	6.6	17.80	8.6	12.00	
2.2	6.7	3.2	14.70	5.0	23.85	6.8	23.65	8.8	16.30	
		3.4	9.90	5.2	29.95	7.0	29.63	9.0	21.30	
	1	3.6	5.97	5.4	35.45	7.2	35.00	9.2	26.70	
	l .	3.8	2.63	5.6	39.85	7.4	39.50	9.4	32.00	
				5.8	43.00	7.6	42.80	9.6	36.85	
	1			6.0	45.45	7.8	45.20	9.8	40.80	
		1		6.2	47.00	8.0	46.80	10.0	43.90	

B. Sørensen's Glycocoll-NaCl-HCl Mixtures (56)

Glycocoll solution: 0.1M Glycocoll + 0.1M NaCl per 1; HCl: 0.1N. Values hold between 10°-70° (66)

0.22			• ••	,	
Glycocoll (cc) 0.0	1.0	2.0	3.0	4.0	5.0
HCl (cc)10.0	9.0	8.0	7.0	6.0	5.0
Glycocoll (ce) 0.0 HCl (ce) 10.0 pH 1.04	1.15	1.25	1.42	1.65	1.93
Glycocoll (cc)	6.0	7.0	8.0	9.0	9.5
HCl (cc)	4.0	3.0	2.0	1.0	0.5
pH	2.28	2.61	2.92	3.34	3.68

C. SØRENSEN'S CITRATE-HCL MIXTURES (56)

Citrate solution: 21.008 g crystn. citric acid + 200 cc N NaOH per l; HCl: 0.1N. Values hold between 10°-70° (66)

Citrate (cc)	0.0	7	1.0	2.0	3.0	3.33	4.0	4.5	4.75
HCl (cc)	10.0)	9.0	8.0	7.0	6.67	6.0	5.5	5.25
pH	1.0	14	1.17	1 . 42	1.93	2.27	2.97	3.36	3.53

^{*} The pH values of these mixtures are given by Clark and Lube as preliminary measurements.

Citrate (cc)	5.0	5.5	6.0	7.0	8.0	9.0	9.5	10.0
HCl (cc)	5.0	4.5	4.0	3.0	2.0	1.0	0.5	0.0
Citrate (cc)	3.69	3.95	4.16	4.45	4.65	4.83	4.89	4.96

D. SØRENSEN'S PHOSPHATE MIXTURES (55, 56)

9.078 g KH₂PO₄, 11.876 g Na₂HPO₄.2H₂O each per l. Values hold between 10°-70° (⁶⁶).

noid between 10 -10 ().												
Na ₂ HPO ₄ (cc)	0.25	0.5	1.0	2.0	3.0	4.0						
KH ₂ PO ₄ (cc)	9.75	9.5	9.0	8.0	7.0	6.0						
KH ₂ PO ₄ (cc) pH	5.29	5.59	5.91	6.24	6.47	6.64						
Na ₂ HPO ₄ (cc)	5.0	6.0	7.0	8.0	9.0	9.5						
Na ₂ HPO ₄ (cc) KH ₂ PO ₄ (cc)	5.0	4.0	3.0	2.0	1.0	0.5						
рН												

E. Sørensen's Citrate-NaOH Mixtures (56); Walbum's Values (66)

Citrate solution; 21.008 g crystn. citric acid + 200 cc N NaOH per l; NaOH: 0.1N

Volum	e parts	Temperature									
Citrate	NaOH	10° 20° 30° 40° 50° 60° 70°									
10.0	0.0	4.93 4.96 5.00 5.04 5.07 5.10 5.14									
9.5	0.5	4.99 5.02 5.06 5.10 5.13 5.16 5.20									
9.0	1.0	5.08 5.11 5.15 5.19 5.22 5.25 5.29									
8.0	2.0	5.27 5.31 5.35 5.39 5.42 5.45 5.49									
7.0	3.0	5.53 5.57 5.60 5.64 5.67 5.71 5.75									
6.0	4.0	5.94 5.98 6.01 6.04 6.08 6.12 6.15									
5 .5	4.5	6.30 6.34 6.37 6.41 6.44 6.47 6.51									
5.25	4.75	6.65 6.69 6.72 6.76 6.79 6.83 6.86									

F. Sørensen's Borate-HCL Mixtures (56); Walbum's Values (66)

Borate: 12.404 g H₂BO₂ + 100 cc N NaOH per l; HCl: 0.1N

Volume	parts	Temperature
Borate	HCl	10° 20° 30° 40° 50° 60° 70°
10.0	0.0	[9.30 9.23 9.15 9.08 9.00 8.93 8.86
9.5	0.5	9.229.159.089.018.948.878.80
9.0	1.0	9.149.079.018.948.878.808.74
8.5	1.5	9.06 8.99 8.92 8.86 8.80 8.73 8.67
8.0	2.0	8.96 8.89 8.83 8.77 8.71 8.65 8.59
7.5	2.5	8.848.798.728.678.618.558.50
7.0	3.0	8.72 8.67 8.61 8.56 8.50 8.45 8.40
6.5	3.5	8.548.498.448.408.358.308.26
6.0	4.0	8.32 8.27 8.23 8.19 8.15 8.11 8.08
5.75	4.25	8.178.138.098.068.027.987.95
5.5	4.5	7.96 7.93 7.89 7.86 7.82 7.79 7.76
5.25	4.75	7.64 7.61 7.58 7.55 7.52 7.49 7.47

H. SØRENSEN'S BORATE-NAOH MIXTURES (56); WALBUM'S VALUES (66)

Borate: 12.404 g H₂BO₂ + 100 cc N NaOH per 1; NaOH: 0.1N

Volum	e parts	1	Temperature											
Borate	NaOH	10°	14°	18°	22°	26°	30°	34°	37°					
10	0.0	9.30	9.27	9.24	9.21	9.18	9.15	9.13	9.11					
9	1	9.42	9.39	9.36	9.33	9.29	9.26	9.23	9.20					
8	2	9.57	9.54	9.50	9.46	9.43	9.39	9.35	9.32					
7	3	9.76	9.72	9.68	9.63	9.59	9.55	9.50	9.47					
6	4	10.06	10.02	9.97	9.91	9.86	9.80	9.75	9.71					
5	5	11.24	11.16	11.08	10.99	10.91	10.82	10.74	10.68					
4	6	12.64	12.51	12.38	12.25	12.13	12.00	11.87	11.77					

Continued on p. 84.

[†] The old atomic weight (11.0) of boron is used throughout these tables.

G. Sørensen's Glycocoll-NaCl-NaOH Mixtures (56); Walbum's Values (66) Glycocoll: 7.505 g glycocoll + 5.85 g NaCl per l; NaOH: 0.1N

Volume	parts	Γ				3-3		Ter	nperatu							
Glycocoll	NaOH	10°	12°	14°	16°	18°	20°	22° ·	24°	26°	28°	30°	32°	34°	37°	40°
9.5	0.5	8.75	8.70	8.66	8.62	8.58	8.53	8.49	8.45	8.40	8.37	8.32	8.28	8.24	8.18	8.12
9.0	1.0	9.10	9.06	9.02	8.97	8.93	8.88	8.84	8.79	8.75	8.71	8.67	8.62	8.58	8.52	8.45
8.0	2.0	9.54	9.50	9.45	9.40	9.36	9.31	9.26	9.22	9.17	9.13	9.08	9.04	9.00	8.92	8.85
7.0	3.0	9.90	9.85	9.80	9.75	9.71	9.66	9.61	9.56	9.51	9.46	9.42	9.37	9.32	9.25	9.18
6.0	4.0	10.34	10.29	10.24	10.18	10.14	10.09	10.03	9.98	9.93	9.88	9.83	9.78	9.73	9.66	9.58
5.5	4.5	10.68	10.63	10.58	10.53	10.48	10.42	10.37	10.32	10.27	10.22	10.17	10.12	10.07	9.99	9.91
5.1	4.9	11.29	11.24	11.18	11.12	11.07	11.01	10.96	10.90	10.85	10.79	10.74	10.68	10.62	10.54	10.46
5.0	5.0	11.53	11.48	11.42	11.36	11.31	11.25	11.20	11.14	11.09	11.03	10.97	10.92	10.86	10.78	10.70
4.9	5.1	11.80	11.74	11.68	11.62	11.57		11.45		11.33	11.27	11.22	11.16	11.10	11.02	10.93
4.5	5.5	12.34	12.28	12.22	12.16	12.10	12.04			11.86	11.80	11.74	11.68	11.62	11.53	11.44
4.0	6.0	12.65	12.59	12.52	12.46	12.40	12.33	12.27	12.21	12.15	12.09	12.03	11.96	11.90	11.81	11.72
3.0	7.0	12.92	12.86	12.80	12.73	12.67	12.60	12.54	12.48	12.42	12.35	12.29	12.23	12.17	12.07	11.98
2.0	8.0	13.12		12.99	12.92			12.73						- 1		
1.0	9.0	13.23	13.16	13.09	13.03	12.97	12.90	12.83	12.77	12.70	12.64	12.57	12.51	12.45	12.35	12.25
Volume	parts							Ten	peratu	re						
Glycocoll	NaOH	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°	62°	64°	66°	68°	70°
9.5	0.5	8.07	8.03	7.99	7.95	7.91	7.86	7.82	7.78	7.74	7.69	7.65	7.61	7.56	7.52	7.48
9.0	1.0	8.41	8.37	8.32	8.28	8.24	8.19	8.14	8.10	8.06	8.02	7.97	7.93	7.88	7.84	7.79
8.0	2.0	8.81	8.76	8.72	8.67	8.63	8.58	8.53	8.49	8.44	8.40	8.35	8.30	8.26	8.21	8.16
7.0	3.0	9.13	9.08	9.03	8.99	8.94	8.89	8.84	8.79	8.74	8.70	8.65	8.60	8.55	8.50	8.45
6.0	4.0	9.53	9.48	9.43	9.38	9.33	9.28	9.23	9.18	9.13	9.08	9.03	8.98	8.93	8.88	8.82
5.5	4.5	9.86	9.81	9.76	9.71	9.66	9.61		9.51	9.46	9.41	9.35	9.30	9.25	9.20	9.15
5.1	4.9	10.40	10.35	10.29	10.24	10.18	10.13	10.07	10.02	9.96	9.90	9.85	9.79	9.74	9.68	9.62
5.0	5.0	10.64	10.59	10.54	10.48	10.43	10.37	10.32	10.26	10.20	10.14	10.09	10.04	9.98	9.93	9.87
4.9	5.1	10.87	10.81	10.75		10.64					10.35	10.29	10.23	10.17	10.11	10.05
4.5	5.5	11.38				11.14	-		10.96		10.84	10.78	10.72	10.66	10.60	10.54
4.0	6.0	11.65							11.22	11.16	1	- 1	10.97	10.91	10.84	10.78
3.0	7.0	11.91	11.85			11.66				11.41		11.28	11.22	11.16	11.09	11.03
2.0	8.0	12.08									11.51		11.38			11.18
1.0	9.0	12.19	12.13	12.06	12.00	11.94	11.87	11.80	11.74	11.67	11.61	11.54	11.48	11.41	11.35	11.28

J. pH Values of Borax-borate Mixtures at 18°C and "Salt-effects" for Phenolphthalein and α-Naphtholphthalein Palitzsch (44)

Borax solution: 19.108 g Na₂B₄O₇.10H₂O in 1 l. Boric acid solution: 12.404 g H₂BO₂ + 2.925 g NaCl in 1 l

Standard solutions			True pH values of sea water containing S parts per 1000 salinity at color-match with standard											
Borax	Boric acid cc	pН	S = 36	S = 30	S = 26	S = 22	S = 18	S = 14	8 = 10	S = 6	8 = 4	S = 2	S = 1	
6.0 5.5 5.0 4.5 4.0 3.5	4.0 4.5 5.0 5.5 6.0 6.5	8.69 8.60 8.51 8.41 8.31 8.20	8.48 8.39 8.30 8.20 8.10 7.99	8.49 8.40 8.31 8.21 8.11 8.00	8.50 8.41 8.32 8.22 8.12 8.01	8.52 8.43 8.34 8.24 8.14 8.03	8.54 8.45 8.36 8.26 8.16 8.05	8.57 8.48 8.39 8.29 8.19 8.08	8.59 8.50 8.41 8.31 8.21 8.10	8.63 8.54 8.45 8.35 8.25 8.14	8.66 8.57 8.48 8.38 8.28 8.17	8.69 8.60 8.51 8.41 8.31 8.20	8.72 8.63 8.54 8.44 8.34 8.23	Phenolphthalein
4.5 4.0 3.5 3.0 2.5 2.3 2.0 1.5 1.0 0.6	5.5 6.0 6.5 7.0 7.5 7.7 8.0 8.5 9.0 9.4 9.7	8.41 8.31 8.20 8.08 7.94 7.88 7.78 7.60 7.36 7.09 6.77	8.19 8.09 7.98 7.86 7.72 7.66 7.56 7.38 7.14 6.87 6.55	8.20 8.10 7.99 7.87 7.73 7.67 7.57 7.39 7.15 6.88 6.56	8.21 8.11 8.00 7.88 7.74 7.68 7.58 7.40 7.16 6.89 6.57	8.23 8.13 8.02 7.90 7.76 7.70 7.60 7.42 7.18 6.91 6.59	8.25 8.15 8.04 7.92 7.78 7.72 7.62 7.44 7.20 6.93 6.61	8.28 8.18 8.07 7.95 7.81 7.75 7.65 7.47 7.23 6.96 6.64	8.32 8.22 8.11 7.99 7.85 7.79 7.69 7.51 7.27 7.00 6.68	8.37 8.27 8.16 8.04 7.90 7.84 7.74 7.56 7.32 7.05 6.73	8.40 8.30 8.19 8.07 7.93 7.87 7.77 7.59 7.35 7.08 6.76	8.45 8.35 8.24 8.12 7.98 7.92 7.82 7.64 7.40 7.13 6.81	8.48 8.38 8.27 8.15 8.01 7.95 7.85 7.67 7.43 7.16 6.84	a-Naphtholphthalein

H. SØRENSEN'S BORATE-NAOH MIXTURES.—(Continued)

Volum	e parts	Temperature							
Borate	NaOH	40°	44°	48°	52°	56°	60°	64°	70°
10	0.0	9.08	9.05	9.02	9.00	8.97	8.93	8.90	8.86
9	1	9.18	9.15	9.11	9.08	9.05	9.01	8.98	8.94
8	2	9.30	9.26	9.22	9.18	9.15	9.11	9.08	9.02
7	3	9.44	9.40	9.35	9.31	9.27	9.22	9.18	9.12
6	4	9.67	9.62	9.56	9.51	9.46	9.40	9.35	9.28
. 5	5	10.61	10.53	10.44	10.36	10.27	10.19	10.10	9.98
4	6	11.68	11.55	11.42	11.29	11.17	11.04	10.91	10.72

I. ACETIC ACID-ACETATE MIXTURES; WALPOLE'S VALUES (RECALCULATED) (68)

CH ₂ CO ₂ H M	. 0	. 185	0.	176	0	. 164	0.	147	0.	126	0.102
CH ₂ CO ₂ Na M	. 0	.015	0	024	0	.036	0.	053	0.	074	0.098
CH ₂ CO ₂ H M CH ₂ CO ₂ Na M pH	. 3	.6	3	8	4	.0	4.	2	4.	4	4.6
				_			_				
CH ₂ CO ₂ H M	.		0.	080	0.	059	0.	042	0.	029	0.019
CH ₂ CO ₂ H M CH ₂ CO ₂ Na M pH			0.	080 120	0.	.059 .141	0. 0.	042 158	0. 0.	029 171	0.019 0.181

TABLE 2.—GENERAL LIST OF INDICATORS

The following list of indicators includes all those for which data on the pH-ranges have been found. Many of the data of this table are to be regarded with caution, because in some cases the names proposed are inadequate for complete identification, and in others names have been given to materials of uncertain composition (8, 11, 31, 37, 45, 53, 54, 56, 64).

The Schultz (S.....) and Rowe (R.....) numbers are taken from the 1923 (52) and 1924 (48) editions, respectively, of these works. Delicate shades of meaning in the color nomenclature have been avoided, as data regarding the purity of the compounds have often been lacking. The abbreviations used are as follows: b, blue; br, brown; c, colorless; f, fades; fl, fluorescent; g, green; o, orange; p, pink; pu, purple; r, red; v, violet; y, yellow. pK is the pH at which there is an apparent half-transformation of the indicator. * indicates that the indicator has been studied in sufficient detail to be used in supplementing the lists of Table 3.

NITRO COMPOUNDS

	NITRO COMPOUNDS		
Index No.	Indicator	Color and useful range pH	Lit.
1	2, 4, 6-Trinitrophenol; Picric acid [S. 5; R. 7]	с 0.0- 1.3 у	(31, 39)
2	2, 6-Dinitrophenol [Michaelis' β]	c 2.0-4.0 y	(31, 38, 39)
3	2, 4-Dinitro-α-naphthol; Manchester yellow [S. 6; R. 9]	y 2.0-4.0 y	(9)
4	2, 4-Dinitrophenol [Michaelis' a]	c 2.6-4.4 y	(31, 38, 39)
5	Dinitrohydroquinol	3-10	(23, 46)
6	Nitrohydroquinol	3-11	(46)
7	2, 3-Dinitrophenol [Michaelis' 6]	c 3.9-5.9 y	(31, 38, 39)
8	2, 5-Dinitrophenol [Michaelis' γ]	c 4.0-5.8 y	(31, 38, 39)
9	2, 6-Dinitro-4-aminophenol; Isopicramic acid	p 4.1-5.6 y	(67)
10	3, 4-Dinitrophenol [Michaelis' 8]	c 4.3-6.3 y	(38, 39)
11	4-Nitro-6-aminoguaiscol	y 4.5-8.0 r	(35)
12	<i>p</i> -Nitrophenol	c 5.6-7.6 y	(31, 38, 39, 56)
13	o-Nitrophenol	c 5.0-7.0 y	(46)
14	* Dinitroben zoylene urea	c 6.0-8.0 y	(6)
15	m-Nitrophenol	c 6.8-8.6 y	(31, 38, 39)
16	2, 4, 6-Trinitrophenyl-methyl-nitroamine; Nitramine	c 10.8-13.0 br	(31, 33)
17	symTrinitrobenzene	c 12.0-14.0 o; f	(50)
18	2, 4, 6-Trinitrotoluene	р 11.5-14.0 о	(9)
	Mono-azo Compounds		
19	p-Toluene-azo-phenyl-aniline	1.0- 2.0	(53, 54, 56)
20	p-Carboxybenzene-azo-dimethylaniline; Para methyl red	r 1.0-3.0 y	(9, 60)
21	p-Toluene-azo-phenyl-α-naphthylamine		(53, 54, 56)
22	Benzene-azo-diphenylamine		(56)
23	m-Benzenesulfonic acid-azo-diphenylamine; Metanil yellow [S. 134; R. 138]	r 1.2-2.3 y	(56)
24	Benzene-azo-phenyl-α-naphthylamine	v 1.4-2.6 o	(53, 54, 56)
25	p-Benzenesulfonic acid-azo-diphenylamine; Tropaeolin OO [S. 139; R. 143]	r 1.4-2.6 v	(56, 60)
26	o-Toluene-azo-o-toluidine; Spirit yellow R [S. 68; R. 17]		(53, 54, 56)
27	p-Toluene-azo-benzyl-a-naphthylamine	1.6-2.6	(53, 54, 56)
28	p-Toluene-azo-benzyl-aniline	1.6-2.8	(53, 54, 56)
29	Benzene-azo-benzyl-a-naphthylamine	1.9- 2.9	(53, 54, 56)
30	Benzene-azo-aniline; Amino-azo-benzene [S. 31; R. 15]		(53, 54, 56, 60)
31	p-Benzenesulfonic acid-azo-aniline		(52, 53, 54, 60)
32	p-Benzenesulfonic acid-azo-benzylaniline	•	(56, 60)
33	m-Carboxybenzene-azo-dimethylaniline		(11)
34	Benzene-azo-benzylaniline.	p 2.3-3.3 y	(56)
35	p-Benzenesulfonic acid-azo-m-chlorodiethylaniline.		(56, 60)
36	m-Nitrobenzene-azo-β-naphthol-3, 6-disulfonic acid; Orange III [S. 47; R. 39]	•	(9)
37	Benzene-azo-dimethylaniline; Töpfer's indicator [S. 32; R. 19]		(56, 60)
٠.	o-Carboxybenzene-azo-α-naphthylamine.		(61)

p-Benzenesulfonic acid-azo-o-toluidine mid-point 2.9

(60)

	Mono-azo Compounds.—(Continued)		
Index No.	Indicator	Color and useful range pH	Lit.
	zenesulfonic acid-azo-m-xylidine	mid-point 2.9	(60)
	boxy benzene-azo-diphenylamine	р 3.0-4.6 у	(11)
1 •	zenesulfonic acid-azo-methylaniline	r 3.1-4.2 y	(53, 54, 56, 60)
	zenesulfonic acid-azo-ethyl aniline		(53, 54, 56, 60)
	zenesulfonic acid-azo-dimethylaniline; Methyl orange [S. 138; R. 142]	r 3.1-4.4 y	(56, 60)
	zenesulfonic acid-azo-diethylaniline; Ethyl orange		(53, 54, 56, 60)
	zenesulfonic acid-azo-dimethylaniline	mid-point 3.5	(60)
	zenesulfonic acid-azo-m-toluidine	mid-point 3.5	(60)
	senesulfonic acid-azo-p-xylidine	mid-point 3.6	(60)
	lfo-o-methoxybenzene-azo-dimethyl-a-naphthylamine	b 3.5-4.9 o	(42)
	zenesulfonic acid-azo-α-naphthylamine	r 3.5- 5.7 y	(56, 61)
	zenesulfonic acid-azo-phenyl-a-naphthylamine	v 3.5- 6.5 o	(61)
	boxybenzene-azo-phenyl-α-naphthylamine	v 3.5- 6.5 o	(61)
	ne-azo-α-naphthylamine	r 3.7- 5.0 y	(56, 61)
	uene-azo-α-naphthylamine	3.7- 5.0	(53, 54, 56)
	boxybenzene-azo-methylaniline	r 4.0-6.0 y	(11)
56 Benze	ne-azo-m-phenylenediamine; Chrysoidine [S. 33; R. 20]	o 4.0-7.0 y	(9)
	boxybenzene-azo-ethylaniline		(11)
	boxybenzene-azo-n-propylaniline		(11)
	boxybenzene-azo-dimethylaniline; Methyl red [R. 211]		(11, 14, 56, 60)
	boxybenzene-azo-diethylaniline; Ethyl red		(11, 60)
	rboxybenzene-azo-di-n-propylaniline; Propyl red		(11)
	boxybenzene-azo-m-phenylenediamine		(9)
	ne-azo-dimethyl-a-naphthylamine		(53, 54, 56)
	zenesulfonic acid-azo-dimethyl-α-naphthylamine		(53, 54, 56, 61)
	boxybenzene-azo-a-naphthylamine		(11)
	boxybenzene-azo-(di or mono?)-amyl aniline		(11)
	boxybenzene-azo-dimethyl-a-naphthylamine		(11, 61)
	α -naphthalene-azo- α -naphthol; Naphthylamine brown [S. 160; R. 175]		(9)
	eolin?	1 (= 0 0 0 1	(50)
70 6-Sulf	'o-α-naphthol-1-azo-m-hydroxybenzoic acid	o 7.0-8.0 b v 12 -13 r	(67)
71 Curcu	ımine?	y 7.4-8.6 b	(31)
72 <i>p</i> -Ber	zenesulfonicacid-azo-α-naphthol; Tropaeolin OOO No. 1 [S. 144; R. 150]	у 7.6-8.9 р	(56)
	zenesulfonicacid-azo-β-naphthol; Tropaeolin OOO No. 2 [S. 145; R. 151]		(45)
	robenzene-azo-salicylic acid; Alizarine yellow GG [S. 48; R. 36]		(38, 39)
	robenzene-azo-salicylic acid; Alizarine yellow R [S. 58; R. 40]		(56)
	ohthylaminosulfonic acid-azo-β-naphthol; Red I [S. 161; R. 176]		(53, 54, 56)
	ohthalene-azo-β-naphthol-3, 6-disulfonic acid; Bordeaux B [S. 112; R. 88]		(9)
	zenesulfonic acid-azo-resorcinol; Tropaeolin O [S. 143; R. 148]		(56)
	me-azo-β-naphthol-6, 8-disulfonic acid; Orange GG [S. 38; R. 27]		`(9)
	in ?	p 12.0–14.0 v	(\$0)
	nthin (Grübler)?		`(•)
	nthin I?		(\$0)
	nthin II?		(50)
		(- 00 10-	1
84 Curcu	ımein?	y 13.0-15.0 g	(50)
	Dis-azo Compounds		
		b 0.3-1.0 v	[
85 Ditoly	vl-disazo-bis-β-naphthylamine-6-sulfonic acid; Benzopurpurin B [S. 365; R. 450]	v 1.0-5.0 y	(50)
		y 12.0-14.0 r	11
86 Ditoly	rl-disazo-bis-α-naphthylamine-4-sulfonic acid; Benzopurpurin 4B [S. 363; R. 448]		(31)
87 Diphe	enyl-disazo-bis-α-naphthylamine-4-sulfonic acid; Congo red [S. 307; R. 370]	b 3.0- 5.0 r	(50)
	vl-disazo-bis-α-naphthol-4-sulfonic acid; Azo blue [S. 377; R. 463]		(9)
	min W [Probably Rowe, 364 (21)]	((49)
89 Curcu	milli w [rrobably rowe, 304 (**)]	mid-point 7.6	(18)

	Triphenylmethane Derivatives		
Index No.	Indicator	Color and useful range pH	Lit.
90	Methylated pararosaniline; Crystal violet [S. 516; R. 681]		(9)
91	p, p'-Tetramethyldiamino-triphenylcarbinol; Malachite green [S. 495; R. 657]	(y 0.0-2.0g	(50)
92	Hofmann's violet; Methylated rosanilines and pararosanilines [S. 514; R. 679]	0 11.5-14.01	(9)
93	Tetraethyl-diamino-triphenyl-carbinol; Brilliant green [S. 499; R. 662]		(9)
94	Heptamethylrosaniline; Iodine green [R. 686]		(9)
95	Hexaethylpararosaniline; Ethyl violet [S. 518; R. 682]	y 0.0-3.6b	(9)
96	Ethyl-hexamethyl-pararosaniline; Ethyl green [R. 685]		(31)
97	Methyl violet 6B; Benzylated tetra- and pentamethyl-pararosaniline [S. 517; R. 683]		(56)
98	Gentian violet; mixture		(53, 54, 56)
99 100	Red violet 5RS; Di- and tri-sulfonate of ethylrosaniline [S. 525; R. 693]		(9) (9)
101	Resazurin [R. 727 note]		(31)
102	China blue [S. 539; R. 707]; Mixture		`(9) [′]
103	Rosolic acid [S. 555; R. 724]; Mixture	br 6.9-8.0 r	(56)
104	Alkali blue 4B [S. 536; R. 704]; Mixture		(9)
105	XL Soluble blue [S. 538; R. 706]; Mixture		(9)
106	Poirrier's blue		(8)
107	Acid fuchsin; Di- and tri-sulfonic acids of rosaniline and pararosaniline [S. 524; R. 692] Phthaleins and Related Compounds	F12.0-14.01	(50)
108	Diethyl-m-amino-phenolphthalein; Rhodamine B [S. 573; R. 749]	o 0.1-1.2 p	(9)
109	Pyrogallol-phthalein; Gallein [S. 599; R. 781]		(50)
110	Tetrabromofluorescein; Eosine Y S [S. 587; R. 768]		(9)
111	Erythrosin (iodeosin); Di- or tetra iodated fluorescein [S. 591, 592?; R. 772, 773?]		(°)
112	Phloxin red B.H. (Grübler)?		(9)
113	Dihydroxyfluoran; Uranin (fluorescein) [S. 585; R. 766]		(9)
114	Dichlorofluorescein		(9)
115 116	o-α-Naphthol phthalein		(17) (56)
117	Tetrabromophenol phthalein	•	(45)
118	o-Cresoltetrachlorophthalein		(1)
119	o-Cresolphthalein		(11, 14)
120	Phenolphthalein [R. 764]	1	(38, 39, 56)
121	*1, 2, 3-Xylenolphthalein		(17)
122 123	Thymolphthalein	c 9.3–10.5b(f)	(56)
123	R = SCH ₂ OH		(⁹) (25)
125			(25)
126	B - SC H	c 9.0-10.0 v	(25)
	Sulfonphthaleins	0.0.01	
	OUDFORFATRADBING	[p 0.2- 0.8 o	7
127	Catecholsulfonphthalein	y 4.0-7.0 g	(41)
	_	v 8.5–10.2 b	
128	m-Cresolsulfonphthalein; Metacresol purple	r 0.8-2.4 y	(11, 14)
120	m-Cresonsumon purple interacresor purple	y 7.6-9.2 pu	(,,
129	Thymolsulfonphthalein; Thymol blue	$\begin{cases} \mathbf{r} & 1.2 - 2.8 \mathbf{y} \\ \mathbf{y} & 8.0 - 9.6 \mathbf{b} \end{cases}$	(11, 14)
130	Tetranitrophenolsulfonphthalein	2.8- 3.8?	(11)
131	Tetrabromophenolsulfonphthalein; Bromphenol blue		(11, 14)
132	*Tetrachlorophenolsulfonphthalein		`(11) ´
133	*Dichloro-dibromo-phenol-sulfonphthalein; Brom-chlorphenol blue	y 3.2-4.8b	(14)
134	Tetrabromo-m-cresolsulfonphthalein; Bromcresol green	y 3.8-5.4 b	(11, 14)
	Dichlorophenolsulfonphthalein; Chlorphenol red	y 5.0-6.6r	(11, 14) (11, 14)
135	Dibrama a areadoulformhéhalaina Bramanani		[4 4 4 4 7 1
135 136	Dibromo-o-cresolsulfonphthalein; Bromcresol purple	y 5.2-6.8 pu	,
135 136 137	Dibromophenolsulfonphthalein; Bromphenol red	y 5.4-7.0r	(11, 14)
135 136	Dibromophenolsulfonphthalein; Bromphenol red*Diiodophenolsulfonphthalein		,
135 136 137 138	Dibromophenolsulfonphthalein; Bromphenol red	y 5.4- 7.0 r y 5.7- 7.3 pu	(11, 14) (9)

SULFONPHTHALEINS.—(Continued)

Index No.	Indicator	Color and useful range pH	Lit.
142	Phenolsulfonphthalein; Phenol red	y 6.8-8.4r	(11, 14)
143	o-Cresolsulfonphthalein; Cresol red	у 7.2-8.8 г	(11, 14)
144	Salicylsulfonphthalein	у 7.2- 9.2 р	(9)
145	*1.4-Dimethyl-5-hydroxybenzenesulfonphthalein; Xylenol blue	y 8.0-9.6b	(12)
146	α-Naphtholsulfonphthalein		(11)
147	Carvacrolsulfonphthalein		(11)
148	Orcinsulfonphthalein		(11)
149	Nitro-thymolsulfonphthalein	v 9.2-11.5 y	(11)
	Quinoline Compounds		
150	∞(p-Dimethylaminophenylethylene)-quinoline ethiodide; Quinaldine red. Eastman Kodak	1000	(2.2)

Index No. 152 Indophenols (15)

Quinoline blue (cyanin); 1, 1' Disoamyl-4, 4'-quinocyanine iodide [S. 611; R. 806]......

Color changes: from brownish or clear red in acid to deep blue in alkali. All indophenols are somewhat unstable

c 7.0-8.0 v

Indophenol

Orthoindophenol

Indonaphthol-2'-sulfonic acid

Substituents	pK	Substituents	рK	Substituents	рK
2, 6, 3' Tribromo	5.1	3' Bromo	7.1		6.1
2, 6-Dibromo-3'-chloro	5.4	Orthoindophenol	8.4	Indonaphthol-2'-sulfonic acid	8.7
2, 6-Dibromo-3'-methyl	5.4	2'-Methyl		2-Methyl	
2, 6-Dichloro-3'-chloro	5.8				
2, 6-Dichloro-3'-methyl	5.5				
2, 6-Dibromo-3'-methoxy					
2, 6-Dichloro-	5.7				
2, 6-Dibromo-	5.7				
2, 6-Dibromo-2'-methyl	5.9				
2, 6-D ibromo-2'-bromo					
2-Chloro	7.0				
2-Bromo	7.1				
3-Bromo	7.8				
Indophenol	8.1				
2-Methyl	8.4				
3-Methyl	8.6				
2-Methoxy					
2-Isopropyl-5-methyl					
2-Methyl-5-isopropyl	8 0				

Azines

Index No.	Indicator	Color and useful range pH	Lit.
153	Safranine (Which?)	b-0.3-1.0r	(50)
154	Amino-dimethylamino-phenyl-diphenazonium chloride; Methylene violet B.N. [S. 680; R. 842]	pu 0.0- 1.2 v	(9)
155	Amino-phenylamino-p-tolyl-ditolazonium sulphate; Mauve [S. 688; R. 846]	0.1-2.9	(56)
156	Magdala red; Mixture amino- and diamino-naphthyl-dinaphthazonium chlorides [S. 694; R. 857]	p 3.0- 4.0 fl	(50)
157	Induline, spirit soluble [S. 697; R. 860]; Mixture	b 5.6-7.0 v	(9)
158	Amino-dimethylamino-toluphenazonium chloride; Neutral red [S. 670; R. 825]		(56)
159	Dimethylamino-phenyl-naphtho-phenazonium chloride; Neutral blue [S. 676; R. 832]	9.3-10.2	(52, 54, 56)
	ON ANTINE COMPONENTS		

OXAZINE COMPOUNDS

160	Dihydroxy-dinaphthazoxonium sulfonate; Alizarin green B [S. 657; R. 918]	v-0.3-1.0 p y 12.0-14.0 br	(60)
	Diethylamino-benzylamino-naphtho-phenazoxonium chloride; Nile blue 2B [S. 654; R. 914]	b 7.2-8.6 p	` (9)
162	Diethylamino-aminonaphtho-phenazoxonium sulfate; Nile blue A [S. 653; R. 913]	b 10.2-13.0 p	(9)

ANTHRAQUINONE COMPOUNDS

Index No.	Indicator	Color and useful range pH	Lit.
163	1, 2-Dihydroxy-anthraquinone-β-quinoline; Alizarin blue ABI [S. 803; R. 1066]	$ \begin{cases} p & 0.0-1.6 y \\ y & 6.0-7.6 g \end{cases} $	(9)
164	1, 2, 4-Trihydroxy-anthraquinone; Purpurin [S. 783; R. 1037]	y 0.0- 4.0 o o 4.0- 8.0 p	(9)
165	Alizarin sulfonic acid; Alizarin red S [S. 780; R. 1034]	y 3.7-4.2 p	(67)
166	1, 2-Dihydroxy-anthraquinone; Alizarin [S. 778; R. 1027]	y 5.5-6.8 r v 10.1-12.1 pu	(53, 54, 56)
167	Alizarin blue S		(45)
	Indigos		
168	Indigo disulfonate; Indigo carmine [S. 877; R. 1180]	b 11.6-14.0 y	(9)
	MISCELLANEOUS AND NATURAL INDICATORS	·	
169	Echtrot?	y 0 - 1.0 r	(50)
170	Logwood [S. 938; R. 1246]		(45)
171	*Red cabbage extract		(65)
172	1-Oxynaphtho-quinomethane; Nierenstein's indicator		(67)
173	Tröger and Hille's Indicator, C14H16N4SO3H.		(67)
174	Phenacetolin	1 20 60-	(45)
175	Lacmosol	r 4.4-5.5 b	(26)
176	Lacmoid [R. 908 note]	r 4.4-6.2 b	(53, 54, 56)
177	Azolitmin (litmus) [R. 1242]		(53, 54, 56)
178	Cochineal [S. 932; R. 1239]		(53, 54, 56)
179	Archil (orchil) [S. 934; R. 1242]	p 5.6- 7.6 v	` (9)
180	Brazilein [S. 935; R. 1243]		(9)
181	Di-o-hydroxy-styryl ketone; Lygosine		(67)
182	Mimosa flower extract		(67)
183	Turmeric (curcuma) [S. 927; R. 1238]		(31)
184	Alkannin [R. 1240, note] cf. alizarin		(53, 54, 56)
185	a-Naphtholbenzein	y 8.5- 9.8 g	(53, 54, 56)

COMMON SYNONYMS OF INDICATORS

Among synonyms given in this table are several which apply to dyes which are not listed in preceding table or which have been applied to two or more of the indicators listed. Such cases are indicated by *.

Acid bordeaux, 77 Acid brown R. * 68 Acid fuchsin,* 107 Acid magenta II, 107 Acid roseine, 107 Alizarin, 166 Alizarin blue ABI, 163 Alizarin blue 8, 167 Alizarin blue X, 163 Alisarin carmine, 165 Alisarin green B, 160 Alisarin red S. 165 Alizarin sulfonate or S. 165 Alisarin yellow GG, 74 Alisarin yellow R, 75 Alkali blue 4B, 104 Alkanet, 184 Alkanin, Alkannin, 184 Alphanaphtholbensein, 185 Alphanaphtholphthalein,* 116 Amido-aso-bensol, 30 Amido-aso-toluol, 26 Amino-aso-bensene, 30 Amino-aso-toluene, 26 Amyl red, 66 Anchusin, 184 Aniline orange, * 31 Aniline red, 99 Aniline yellow,* 3, 25, 30 Archil, 179

Aurin, 103

Aso blue, 88

Asolitmin, 177 Asoresorcin, 101 Bensopurpurin B, 85 Bensopurpurin 4B, 86 Benzyl violet, 97 Beta naphthol orange, 73 Bitter almond oil green, 91 Blauhols, 170 Boettger's indicator, 184 Bordeaux B, 77 Brasilein, brasilin, brasilin, 180 Brazil wood, 180 Brilliant green, 93 Brilliant yellow,* 89 Brom-chlor-phenol blue, 133 Brom cresol green, 134 Brom cresol purple, 136 Brom phenol blue, 131 Brom phenol red, 137 Brom thymol blue, 139 Brom xylenol blue, 140 Butter yellow, * 26, 37 Cabbage red, 171 Campeachy wood, 170 Carmine, 178 Carminic acid. 178 Catechol sulphonphthalein, 127 China blue, 102 Chlor phenol red, 135 Chrome printing orange R, 75 Chrome printing yellow G, 74 Chrysoidine, * 56

Chrysoine, 78 Eccine YS, 110 Coccus, 178 Erythrosine,* 111 Cochenille, cochineal, 178 Ethyl green,* 96 Congo, 87 Ethyl orange, 45 Congo red, 87 Ethyl red,* 60 Corallin, 103 Ethyl violet, 95 Cresol red. 143 Fast red A. 76 Fast red B,* 77 Cresolphthalein. * 119 Cresolsulphonphthalein,* 143 Fluorescein, 113 Crismer's indicator, 101 Formanek's indicator, 160 Crocein,* 80 Fuchsia, 154 Crystal violet, 90 Fuchsin,* 99 Curcuma, 183 Fuchsin 8, 107 Curcumein,* 84 Galeine, 109 Curcumin,* 183 Gallein, 109 Curcumin W, 89 Gentian violet, 98 Curcummin,* 183 Golden orange, 44 Haematein,* 1 170 Cyanin, 151 Dechan's indicator, 109 Haematoxylin,* 1 haematoxylon,* 170 Degener's indicator, 174 Helianthine,* 44, 81, 82, 83 Dianil red. * 87 Hematein, * 1 hematine, * 1 170 Dichlorofluorescein, 114 Hematoxylin, * 1 170 Henderson & Forbes' indicator, 5 Diethylaniline orange, 45 Dihydroxyanthraquinone, 166 Hersberg's indicator, 87 Dimethylaniline orange, 44 Hofmann's violet, 92 Holt & Reid's indicators, 124-126 Dimethyl orange, 44 Dimethyl yellow, 37 Indigo carmine, 168 Dinitroaminophenol, 9 Indigo disulphonate, 168 Dinitrohydroquinone, 5 Indophenols, 152 Echtrot,* 169 Induline spirit-soluble, 157 Echtrot A, 76 Iodeosine,* 111 Echtrot B. 77 Isopicramic acid. 9 Eosine, 110 Iodine green, 94 Eosine BN, 123 Kosmos red. 87

¹ Haematoxylin is the leuco-compound of Haematein or Hematine as obtained from logwood although the name is sometimes given to the oxidized form. Haematein or Hematine should not be confused with Hematin of the blood pigment.

Kroupa's indicator, 99 Krüger's indicator, 113 Lackmoid, lacmoid, 176 Lacmosol, 175 Lacmus, 177 Litmus, 177 Logwood, 170 Luck's indicator, 120 Lunge's indicator, 44 Lygosine, 181 McClendon's indicator, 11 Magdala red, 156 Magenta, * 99 Malachite green, 91 Manchester vellow, 3 Martius vellow, 3 Mauve, mauveine, 155 Mellet's indicator, 70 Meta cresol purple, 128 Meta methyl red, 33 Metanil yellow, 23 Metanitrophenol, 15 Methyl blue,* 105 Methylene violet BN, 154 Methyl green, * 96 Methyl orange, 44 Methyl red, 59 Methyl violet 5B or 6B, 97 Methyl yellow, 37 Michaelis' nitro indicators, 1, 2, 4, 7, 8, 10, 12, 15 Mimosa flower extract, 182 Moir's "Improved methyl orange," 49 Moir's polychromatic indicator, 127 Monobensyl orange, 32 Monoethyl orange, 43 Monoethyl red, 57 Monomethyl orange, 42 Monomethyl red, 55 Monopropyl red, 58 Naphthol bensein, 185 Naphthol orange, 72 Naphtholphthalein,* 115, 116 Naphthylamine brown, 68 Neutral blue, 159 Neutral red, 158 Nierenstein's indicator, 172 Nile blue A, 162 Nile blue B, 161 Nitramine, 16 Nitroaminoguaiscol, 11 Nitrobensene (tri), 17 Nitrobensoylene urea, 14 Nitronaphthol. 3 Nitrotoluene, 18 Oil yellow,* 37 Oil yellow B, 30 Orange G,* 79 Orange GG, 79 Orange I, 72 Orange II, 73 Orange III,* 36, 44 Orange IV, 25 Orchil, 179 Omeille, 179 Parabelianthine, 44 Para methyl red. 20 Paranitrophenol, 12 Paraphthalein, 120 Pernambuco, 180 Phenacetolin, 174

Phenol red. 142 Phenolphthalein, 120 Phenoleulphonphthalein, 142 Phloxin red BH, 112 Phosphine substitute, 78 Picric acid. 1 Poirrier's blue C4B, 106 Poirrier's orange III, 44 Propyl red, 61 Purpurin, 164 Pyrogallol phthalein, 109 Quinaldine red, 150 Quinoline blue, 151 Red I. 76 Red cabbage extract, 171 Red violet 5R.* 92 Red violet 5RS, 100 Red wood, 180 Resasurin, 101 Resorcin blue,* 176 Resorcin phthalein, 113 Resorcin yellow, 78 Rhodamine B, 108 Riegel's indicator, 87 Rosaniline, 99 Roseine, 99 Rose magdala, 156 Rosolane, 155 Resolic acid, 103 Rothols, 180 Rubine 8, 107 Safranine,* 153 Salicyl yellow,* 74 Schaal's indicator, 166 Soluble blue 3M, 2R, 102 Soluble red woods, 180 Spirit yellow, 30 Spirit yellow G, 30 Spirit yellow R. 26 Tetra brom fluorescein, 110 T. N. T., 18 Thymol blue, 129 Thymolphthalein, 122 Toluidine orange* (ortho), 39 Toluidine orange* (meta), 47 Toluylene red,* 158 Töpfer's reagent, 37 Tournesol, 177 Tröger and Hille's indicator, 173 Tropacolin*,? 69 Tropacolin D, 44 Tropacolin G,* 23, 72 Tropacolin O, 78 Tropacolin OO, 25 Tropacolin OOO No. 1, 72 Tropacolin OOO No. 2, 73 Tropacolin R, 78 Turmeric, 183 Turnsole, 177 Uranin, 113 von Müller's indicator?, 25 Weselsky's indicator, 101 Water blue, 102 XL Soluble blue, 105 Xvlenol blue, 145 Xylenol phthalein,* 121 Xylidine orange* (meta), 40 Xylidine orange* (para), 48 Yellow B, 37 Yellow T, 78

Zellner's indicator, 113

TABLE 3

A. Clark and Lubs' Selection of Indicators Supplemented by Cohen (11, 14)

A = Cubic centimeters of 0.01N NaOH required per 0.1 g acid indicator to form sodium salt. Dilute to 250 cc for 0.04% reagent. Use alcoholic solutions of methyl red (59) and cresolphthalein (119).

B = Approximate pH value of solution required for full "acid color" appertaining to range indicated.

C = Approximate pH value of solution required for full "alkaline color" appertaining to range indicated.

Index No.	A	В	C	Useful range pH	p K †
129	see below	conc. HCl	6	1.2-2.8	1.5
131	15.0	0	7	3.0-4.6	4.0
134	14.5	1	8	4.0-5.6	4.7*
59		?	9	4.4-6.0	[5.0]
135	23.5	3	10	5.0-6.6	6.2*
136	18.5	3	10	5.2-6.8	6.3
139	16.0	4	10	6.0-7.6	7.1
142	28.5	5	11	6.8-8.4	7.8
143	26.3	5	11	7.2-8.8	8.2
128	26.5	5	11	7.6-9.2	8.4*
129	21.5	6	12	8.0-9.6	8.9
119		6	12	8.2-9.8	[9.4]

* No salt and protein errors determined.

† pK values are weighted means of values found in (2, 7, 11, 14, 19, 26, 24, 34).

Representative Corrections of Colorimetric Readings with Indicators of Table 3A to Bring Readings to Electrometric pH

	Peptone- beef infusion	10 % gelatine sol.	2% egg- white	Urine
131 Brom phenol blue	0.05			
59 Methyl red	-0.10		0.24	0.05
136 Brom cresol purple	0.01	0.04		0.01
139 Brom thymol blue	0.10	0.04		0.02
142 Phenol red	0.04	0.20		0.00
143 Cresol red	0.03	0.20		
129 Thymol blue	0.04	0.20		
119 Cresolphthalein	-0.03	0.20		

Corrections at different salt content [after Kolthoff (29)] Thymol blue (acid range) 0.1N KCl... -0.061.0N KCl..... +0.050.1N KCl..... Brom phenol blue -0.051.0N KCl..... -0.350.5N NaCl..... Methyl red ± 0.10 Brom cresol purple 0.5N NaCl..... -0.25Phenol red 0.5N NaCl..... -0.150.5N NaCl..... Thymol blue

With color match between a solution at 70° and a standard buffer at 20° the solution at 70° will have the pH of the standard corrected by the following values according to Kolthoff (28).

 Thymol blue (acid range)
 0.0

 Brom phenol blue
 0.0

 Methyl red
 -0.2

 Brom cresol purple
 0.0 to +0.2

 Phenol red
 -0.3

 Thymol blue (alk.)
 -0.4

Corrections in sea water of salinity S [parts per 1000] after Ramage and Miller 1925 (unpublished).

8	5	10	15	20	25	30	35
Cresol red	<u> </u>	. 17	- .21	24	25	26	- . 27

B. Sørensen's Selection of Indicators (56)

				Uı	efulness in p	resence of	
Index No.	Composition of test solution	Useful range pH	Sensitivity to neutral salts	True proteins	High conc. of products of pro- teolysis		Stability on standing
97	0.01 %-0.05 % aqueous	0.1-3.2	high	fair	good	with chloroform not, with tolu- ene useful	acid solutions fade
155	0.01 %-0.05 % aqueous	0.1-2.9	high	fair	good	as above	as above
22	0.01 g in 1 cc N HCl + 50 cc alco-						
	hol + 49 cc water	1.2-2.1	low	not	fair	not	moderate
25	0.01 % aqueous	1.4-2.6	low	not	fair	good	good
23	0.01 % aqueous	1.2-2.3	low	not	fair .	good	good
34	0.02 g in 1 cc N/10 HCl + 50 cc				i		
	alcohol + 49 cc water	2.3-3.3	low	not	good	not	moderate
32	0.01 % aqueous	1.9-3.3	low	not	fair	good	good
35	0.01% aqueous	2.6-4.0	low	not	fair	good	good
37	0.01 g 0.1 cc N/10 HCl + 80 cc						
	alcohol + 20 cc water	2.9-4.0	low	not	good	not	moderate
44	0.01 % aqueous	3.1-4.4*	low	not	fair	good	good
53	0.01 g in 0.4 cc N/10 HCl + 30 cc		ì	1			
	alcohol + 70 cc water	3.7-5.0	low	not	good	not	moderate
50	0.01 g in 60 cc alcohol + 40 cc water	3.5-5.7	low	not	good	good	good
59	0.02 g in 60 cc alcohol + 40 cc water	4.2-6.3*	low	8.C.	good	good	moderate
12	0.04 g in 6 cc alcohol + 94 cc water	5.0-7.0*	moderate	good	good	good	good
158	0.01 g in 50 cc alcohol + 50 cc water.	6.8-8.0*	low	S.C.	good	S.C.	good
103	0.04 g in 40 cc alcohol + 60 cc water.	6.9-8.0	low	fair	good	fair	good
72	0.01 % aqueous	7.6-8.9	low	good	good	good	good
116	$0.1 \mathrm{g}$ in 150 cc alcohol $+$ 100 cc water		moderate	S.C.	good	good	fair
120	0.05 g in 50 cc alcohol + 50 cc water.	8.3-10.0*	moderate	S.C.	good	good	good—fades in strong alkali
122	0.04 g in 50 cc alcohol + 50 cc water.	9.3-10.5	moderate	S.C.	good	good	fades in moderate alkali
75	0.01 % aqueous	10.1-12.1		•	good		good
78	0.01 % aqueous	11.1-12.7	K I		fair		good

S.C. = useful in special cases.

Representative average corrections of colorimetric readings with indicators of Table 3B to bring readings to electrometric pH (see also Table 2).

		ons (after en (⁵³))	
Index No.	In 2%	In 2%	Corrections in solutions con-
of indicator	peptone	egg-white	taining salts
	0.01 – 0.3 <i>N</i>	0.07-0.3 <i>N</i>	
	salt	salt	
97	-0.02	-0.19	
155	-0.04	-0.19	
22	-0.06	> -0.90	
25	-0.27	>-1.40	
23	-0.30	>-1.40	
34	+0.01	>-0.80	
32	-0.22	>-0.80	
35	-0.41		
37	-0.08	-0.53	
44	-0.18		0.1N KCl, -0.08; 1.0N KCl, +0.23 Kolthoff
53	-0.02		
50	-0.03	+0.15	0.5N NaCl, $+0.10$ Sørensen
12	-0.06	-0.04	0.5N NaCl, -0.15 Sørensen $(-0.05$ Kolthoff)
158	+0.13	+0.68	0.5N NaCl, + 0.09 Sørensen

				ns (after en (53))						
Index	No.	In 2	%	In 2 %	Corr	ections	in solut	ions con-		
of indica	tor	pept	one	egg-white	l	tain	ing salt	8		
		0.01-0).3 <i>N</i>	0.07-0.3 <i>N</i>	1					
		sa.l	t	salt						
103		+0.	08	+0.44	0.5N	NaCl,	- 0.06	Sørensen		
72		-0.	12	+0.10	0.5N	NaCl,	-0.12	Sørensen		
120		-0.	01	+0.18		0.5N NaCl, -0.12 Sørenser $(-0.17 Kolthoff)$				
122		+0.	01	+0.40	'					
75		'		+0.29						
78	78		-0.30		0.1N KCl, + 0.38; 1.0N KCl, + 0.62 Kolthoff					
C.	Mı	CHAELI	s' Se	LECTION OF	ONE-	COLOR	INDICAT	ors		
			Conc	1 -	naelis :		orkers	pK (Kol- thoff		
Index No.	_	seful ge pH	% in H ₂ O	In low conter		In 0.15 <i>M</i> salt	In 0.5 <i>M</i> salt	(31) at 15° and 0.05 <i>M</i> salt)		
1	0.0	03-1.3		[0.26]						
2	2.0	0-4.0	sat.	3.71 + (15 -		3.59	3.41	3.58		

^{*}Apparent pK values referred to standard buffers: Methyl orange (44) 3.7 (24 cf. 60). Methyl red (59) see Table 3A (59, 60). Paranitrophenol (12) see Table 3C. Neutral red (158) 6.85 (24). Phenolphthalein see Table 3C.

C. Michaelib' Selection of One-color Indicators.—(Continued)

		Conc.	pK (Michaelis a		orkers	pK(Kol- thoff
Index No.	Useful range pH	% in H ₂ O	In low salt content	In 0.15 <i>M</i> salt	In 0.5M salt	(31) at 15° and 0.05 <i>M</i> salt)
4	2.6-4.4	0.05	4.08 + 0.006		1	
			$(15-t^{\circ})$	3.98	3.88	3.95
7	1		4.87	4.76	4.71	İ
8	4.0-5.8	0.025	5.16 + 0.005			
			$(15-t^{\circ})$	5.08	5.01	5.15
10	İ		5.35	5.30	5.25	
12	5.6-7.6	0.10	7.22 + 0.011	i]	ļ
	1		$(15-t^{\circ})$	7.22	7.17	7.03
15	6.8-8.6	0.30	8.35 + 0.008			
		1	$(15-t^{\circ})$	8.24	8.19	8.30
120	8.0-10.0	0.04	[9.76] + 0.011			1
	l		$(18 - t^{\circ})$	9.6	9.5	1
74	10.0-12.0)	[11.2] + 0.013	1	1	1
	<u> </u>	}	$(20-t^{\circ})$	<u> </u>		

TABLE 4

RELATION BETWEEN PERCENTAGE, A, OF AVAILABLE COLOR AND PH (AFTER MICHAELIS AND GYEMANT (38))

Phenolphthalein..... 18° a 1.0 1.4 3.0 4.7 6.9 9.0 pH 8.45 8.5 8.6 8.7 8.8 8.9

Phenolphthalein..... 18° a 12.0 16.0 21.0 27.0 34.0 40.0 pH 9.0 9.1 9.2 9.3 9.4 9.5

Phenolphthalein..... 18° a 45.0 50.0 55.0 60.0 65.0 pH 9.6 9.7 9.8 9.9 10.0

Phenolphthalein..... 18° a 70.0 75.0 80.0 84.5 87.3 pH 10.1 10.2 10.3 10.4 10.5

Alizarine yellow GG.. 20° a 13 16 22 29 36 pH 10.0 10.2 10.4 10.6 10.8 11.0

Alizarine yellow GG.. 20° a 56 pH 11.2 11.4 11.6 11.8 12.0

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Arnold, 1, 46: 489; 24. (2) Barnett and Barnett, 227, 18: 127; 21. (3) Bishop, Kittredge and Hildebrand, 1, 44: 135; 22. (4) Bjerrum, 9, 17: 58, 389; 11. (5) Bjerrum, 196, 21: 1; 14. (6) Bogert and Scatchard, 1, 38: 1606; 16. (7) Brode, 1, 46: 581; 24. (8) Clark, The Determination of
- Hydrogen Ions, 2nd. ed., 1922. (*) Clark, Cohen and Elvove, O; cf. (*). (10) Clark and Lube, 141, 25: 479; 16. (11) Clark and Lube, 229, 2: 1, 109, 191; 17. (13) Cohen, A., \$30, 16: 31; 22. (13) Cohen, A., \$30, 17: 535; 23. (14) Cohen, B., \$51, \$8: 199; 23. (18) Cohen, B., Gibbe and Clark, 251, 29: 381, 804; 24. (14) Cohn, Indicators and Test Papers, 1914. (17) Ceanyi, 9, 27: 64; 21. (18) Fels, 9, 10: 208; 04. (19) Gillespie, 252, 9: 115; 20.
- (36) Gillespie, 1, 42: 742; 20. (31) Glaser, Indikatoren der Acidimetrie und Alkalimetrie, 1901. (22) Hatfield, 1, 46: 940; 23. (33) Henderson and Forbes, 1, 32: 687; 10. (34) Holmes and Snyder, 1, 47: 221, 226; 25. (35) Holt and Reid, 1, 46: 2333; 24. (36) Hottinger, 205, 65: 177; 14. (27) Jarisch, 205, 134: 177; 22. (28) Kolthoff, 70, 40: 775; 21. (29) Kolthoff, 70, 41: 54; 22.
- (20) Kolthoff, 233, 59: 104; 22. 60: 949; 23. (21) Kolthoff, Der Gebrauch von Farbenindicatoren, 1923. (32) Kolthoff, 70, 42: 251; 23. (23) Kolthoff, 70, 42: 964; 23. (34) Kolthoff, 70, 42: 144; 24. (35) McClendon, 227. 21: 348; 24. (36) McClendon, 141, 59: 437; 24. (27) Michaelis, Die Wasserstoffonenkonsentration, 1914. (35) Michaelis and Gyemant, 205, 109: 165; 20. (39) Michaelis and Krüger, 208, 119: 307; 21.
- (40) Michaelis and Misutani, 205, 147: 7; 24. (41) Moir, 254, 3: no. 2; 20. (43) Moir, 254, 6: no. 2; 23. (43) Noyes, 1, 32: 815; 10. (44) Palitzsch, Bull. Inst. Océanographie, No. 409: 22. (48) Prideaux, The Theory and Use of Indicators, 1917. (48) Prideaux and Nunn, 4, 128: 2110; 24. (47) Ramage and Miller, O. (48) Rowe, Color Indez, 1924. (49) Salessky, 9. 10: 204: 04.
- (56) Salm, 7, 57: 471; 06. (51) Soudder, Electrical Conductivity and Ionisation Constants of Organic Compounds, 1914. (52) Schultz, Farbetofftabellen, 1923. (53) Sgrensen, 235, 8: 1; 09. (54) Sgrensen, 205, 21: 131, 201; 09. (#5) Sørensen, 205, 22: 352; 09. (**) Sørensen, 236, 12: 393; 12. (**7)
 Sørensen and Linderstrøm-Lang, 235, 15: no. 6; 24. (**8) Thiel, 196, 16: 307; 11. (59) Thiel and Dassler, 25, 56: 1667; 23.
- (66) Thiel, Dassler and Wülfken, 237, 18: 1; 24. (61) Thiel and Wülfken 95, 186: 398; 24. (62) Thiel, Wülfken and Dassler, 95, 186: 406; 24. (63) Van Alstine, 238, 10: 467; 20. (04) Vincent, La concentration en ione hydrogène et sa measure par la méthode électrométrique, 1924. (65) Walbum, 205, 48: 291; 13. (66) Walbum, 205, 187: 209; 20. (67) Walpole, 230, 8: 628; 14. (68) Walpole, 4, 165: 2501, 2521; 14.

HIGH VACUUM TECHNIQUE

SAUL DUSHMAN

SELECTED FORMULAE

1. Amount of Gas Striking 1 Cm2 per Sec-

$$m = \frac{1}{4}\rho\Omega = p\sqrt{\frac{M}{2\pi RT}},$$

where ρ = density and Ω = average velocity

- = $43.74 \times 10^{-4} \times p\sqrt{M/T}$ g cm⁻² sec⁻¹ (p in baryes)
- = $58.32 \times 10^{-3} \times p\sqrt{M/T}$ g cm⁻² sec⁻¹ (p in mm of Hg)

n = number of molecules

- = $6.062 \times 10^{23} \frac{m}{M}$ = $2.653 \times 10^{19} \frac{p}{\sqrt{MT}} \text{cm}^{-2} \text{sec}^{-1}$ (p in
- = $3.535 \times 10^{22} \ p/\sqrt{MT} \ \mathrm{cm}^{-2} \ \mathrm{sec}^{-1} \ (p \ \mathrm{in} \ \mathrm{mm} \ \mathrm{of} \ \mathrm{Hg})$
- 2. Laws of Molecular Flow (Flow of Gases at Very Low Pressures).—Q = amount of gas flowing through any tube or opening in cm³ per sec

$$=\frac{p_1-p_1}{W\sqrt{\rho_1}},$$

where $p_* - p_* = \text{difference of pressure}$

$$\rho_1 = \text{density at 1 barye pressure}$$

$$M$$

W = "resistance" of tube or opening

For a circular opening (diam., d cm) in a thin plate

$$W = \frac{3.184}{d^2}$$

For a tube of diameter d and length l

$$W = \frac{2.394l}{d^3} + \frac{3.184}{d^2}$$

3. Speed of Exhaust (S) of Given Volume (v).—

$$S = \frac{v}{t} \log_{\epsilon} \frac{p_2}{p_1}$$

For $p_2/p_1 = 10$, t in sec and v in cm²

$$S = \frac{2.303v}{t} \, \text{cm}^3 \, \text{sec}^{-1}$$

For pump exhausting through resistance $\frac{1}{S_{\bullet}} = \frac{1}{S_{p}} + \frac{1}{F}$

$$\frac{1}{S_{\bullet}} = \frac{1}{S_{\bullet}} + \frac{1}{F}$$

where S_{\bullet} = observed speed of exhaust,

 S_p = speed of pump through negligible resistance, and F = rate of flow through resistance (cm³/sec)

$$S = \frac{Q}{p_2 - p_1} = \frac{1}{W\sqrt{\rho_1}}$$

TABLE OF MOLECULAR DATA

	H ₂	He	N ₂	O ₂	A	Hg	CO	CO ₂	O _t H
Mean Free path (cm) at 25°C and 1 barye	19.2	29.6	10.0	10.7	10.6	[3.24]*	9.92	6.68	[6.03]*
$(1/d^2) \times 10^{-15}$ (Number of molecules per cm ²)	1.74	2.74	1.01	1.11	1.19	1.11	0.98	0.92	1.19
Micrograms (10 ⁻⁶ g) of gas striking 1 cm ² per					,				
sec at 25°C and 1 barye	3.597	5.062	13.42	14.33	16.01	35.89	13.42	16.81	10.76
Number of molecules striking 1 cm ² per sec at					1				l
25°C and 1 barye. Unit = 1015	1082	769.3	283 . 7	271.7	243.3	10.85	283.7	231.7	362.0

^{*} Values in square brackets refer to 0°C. Note: 1 barye = 0.75 × 10⁻³ mm mercury. Values of mean free path calculated from viscosity coefficients.

RATE OF FLOW OF AIR AND HYDROGEN AT LOW PRESSURES AND

l	d	W	F (air)	F (H ₂)
1 cm	1 cm	5.58	5 204	197 10
10	1	27.12	1 070	40 53
1	0.1	2 712.4	10.70	40.53
10	0.1	24 258	1.196	3.60

(Note.—These relations are valid only for pressures so low that the mean free path is equal to or greater than d.)

DATA ON VARIOUS TYPES OF PUMPS

	(S_p cm ³ sec ⁻¹	For pun	np	Min press attain	ure
Gaede rotary mercury		100 (max.)	ca. 1			
Gaede molecular	1	400			<10-6	
Gaede diffusion Langmuir condensation		80	0.01	mm	<10-6	mm
(metal)	4	000	0.01	mm	< 10-4	mm
Gaede two stage metal	60	000	20	mm	< 10-4	mm

Evolution of Gas from Glass.—For rate at which gas is evolved at different temperatures, v. R. G. Sherwood (1, 40:1645; 18) and J. E. Shrader (2, 13:434; 19).

Chemical Clean-up Reagents for Producing Low Pressures.—
1. Charcoal in liquid air. 2. Ca or Mg volatilized in sealed-off device, cleans up all gases except those of group 0. 3. P₂O₅, efficient for water vapor. 4. Palladium black at low temperatures, very good for hydrogen.

Some Vapor Pressures at Low Temperatures

Substance	t°C	p, mm	p, baryes
Hg	- 78	3 × 10-•	4 × 10 ⁻⁶
H ₂ O		0.75×10^{-6}	1×10^{-3}
CO ₂	-182	0.75×10^{-6}	1×10^{-2}
CO ₂	-193	0.75×10^{-6}	1 × 10-
CO	-190	863	
CH4	-185.8	79.8	
C ₂ H ₄	-188	0.076	
C ₂ H ₄	- 180	0.076	
Vaseline (Stopcock			
grease)	-190		< 10-6
	(fresh		
	liquid air)		

PSYCHOLOGICAL DATA PERTAINING TO ERRORS OF OBSERVATION

R. S. Woodworth

(Additional data pertaining to sight and hearing are given in other sections of International Critical Tables treating of the mechanical equivalent of light, colorimetry, and the physical aspects of audition. Consult index. Editor.)

SIGHT

Much of the available data pertaining to the sensitivity of the eye have been obtained under such conditions that the exact value of the stimulus cannot satisfactorily be determined. Some are expressed in terms of the illumination, others in terms of the brightness, of a screen; the latter procedure is to be preferred. If the illuminated screen were a perfect diffuser of the light, and also a perfect reflector, if illuminated from the front, or a perfect transmitter, if illuminated from the rear, then its brightness (B) expressed in millilamberts would be numerically equal to 0.1 of its illumination (I) expressed in meter-candles. In the following data, this relation has been used to reduce to the basis of B, data which have been given in terms of I. Although in many cases the screens surely did not possess the properties thus assumed, it seems probable that the error so introduced is of less importance than those arising from other sources. Data for reaction times will be found near the end of this report.

Spectral range (41) for daylight vision is $\lambda = 397 \text{m} \mu$ to 760 m μ ; for twilight vision (illumination too low for color perception), $\lambda = 440 \text{ m} \mu$ to 670 m μ .

Threshold value = minimum stimulus which can be visually perceived as light; the perception of form is not involved. For

white light and a thoroughly light-adapted eye, luminous area subtending an angle of 10°, it is that corresponding to a brightness of 0.1 millilambert (37). For white light and a dark-adapted eye, it varies with the area of the luminous area and with the duration of stimulus as shown in Table 1.

TABLE 1.—THRESHOLD OF VISION FOR DARK-ADAPTED EYE (45)

D= distance; $\theta=$ visual angle subtended by shortest dimension of area; B= brightness required for perception; P= power entering eye; t= duration of exposure. Diameter of pupil = 8.3 mm.

Unit of: Area = 1 cm²; D = 1 cm; B = 1 microlambert; P = 1 milliwatt = 10^{-10} erg sec⁻¹; t = 1 sec.

Form	Area	D	θ	В	P	t	B‡
Star*	0.00785	300	1.2'	7.20	17.1	0.002	0.362
Star*	0.00785	150	2.30	2.60	24.8	0.006	0.098
Star*	0.00785	35	9.8	0.24	42.1	0.011	0.0446
Square	0.04	35	19.6	0.028 3	25.3	0.020	0.0239
Square	0.25	35	50	0.006 62	37	0.034	0.0123
Square	1.00	35	1° 30′	0.002 41	54	0.160	0.0071
Square	4.00	35	3 16	0.001 02	91	0.250	0.0051
Square	9.00	35	4 54	0.000 45	91	0.500	0.003 54
Square	36.0	35	9 44	0.000 258	208	1.000	0.002 62
Square	144.0	35	18 56	0.000 175	564	2.000†	0.000 77

^{*} Circle, Diameter = 1 mm.

[†] If $t = \infty$, $B = 0.000 \ 45$; t = 4, $B = 0.000 \ 63$.

[‡] For square, area = 9 cm², D = 35 cm, $\theta = 4.9^{\circ}$.

TABLE 2.—CHANGE IN THRESHOLD DURING ADAPTATION

Threshold = brightness (B) of a surface which can just be seen. Sensitivity (S) = 1/B. In light adaptation, I = illumination to which dark adapted eye was subjected for the time t; S was measured 10 see after this exposure. Unit of: t = 1 min; B = 1 microlambert; S = 0.1 millilambert—; I = meter-candle.

*Dar	k adaptation	(38)		†Light adaptation (34, 39)						
		s	1	5	25	60	Day:			
ı	В	8	1	8	S	S	S			
0 0.5 4 9 14 19 23 26 31 39 51 61	0.000 48		2 3 6 10 15 60 80	23 000 17 500 10 400 8130 5200 3470 3000	9950 7440 5200 3360 2740 2040 1450 1000 95 54 54	5800 3700 3250 2600 2038 1600 1130 312 36 28 24	435 230 200 115 87 48 40			

*Following nearly complete light adaptation. Luminous surface was 10 cm in diameter and 57 cm from eye $(\theta=10^{\circ})$. †Following nearly complete dark adaptation. Luminous surface was 1 m square and 1 m from eye $(\theta=45^{\circ})$; initial S, just before exposure to I, was 10 000 millilambert. ! Moderate diffused day-light.

The rates of adaptation to darkness and to light are indicated in Table 2 in which are given the threshold values at various intervals (1) after removal from daylight, and (2) immediately (10 seconds) after removal from a specified exposure, the eye before exposure having been kept in darkness for 45 min. The visibility of monochromatic light varies with the wave-length, and the relative risibility of lights of different wave-lengths depends upon their intensities. (Figs. 1, 2.) For a large surface with a brightness of

Fig. 1.—Relative visibility (V) (28, 40).

B =brightness, unit = 1 millilambert: abscissae = wavelengths.

Fig. 2.—Position $(\lambda_{max.})$ of maximum visibility (28, 40).

Unit of brightness = 1 millilambert.

5 to 80 millilamberts, the maximum visibility for the average observer, is near (9) $\lambda = 557.6 \text{ m}\mu$, but even normal subjects exhibit individual differences; out of 125 subjects, the percentage finding the maximum at each of the several wave-lengths was as follows (9):

λ	%	λ	%	λ	%	λ	%	λ	%	λ	%
549	2	553	4	557	12	561	2	565	2	569	0
550	2	554	7	558	13	562	3	566	2	570	2
551	5	555	9	559	12	563	2	567	0		
552	3	556	8	560	7	561 562 563 564	1	568	2		

All of the preceding refer to direct vision. The sensitivity of other portions of the retina is greater.

Complementary colors are those pairs of colors which, when superposed upon the retina in suitable proportions, produce the sensation of white. Grunberg states that if their wave-lengths are λm_{μ} , $\lambda' m_{\mu}$, then $(\lambda - 559)(498 - \lambda') = 424$, $\lambda > 559$, $\lambda' < 498$ (47); there are no complementaries to the colors in the range 498mμ to 559mμ.

Stable, or invariable, colors are those which do not change in hue, except to become gray, as they are moved from the fovea to the periphery of the retina. They are: yellow of $\lambda = 570 \text{m}\mu$; bluish green of $\lambda = 490 \text{m}\mu$; blue of $\lambda = 460 \text{m}\mu$; and a non-spectral bluish red (21).

Discrimination of Brightnesses.—For large adjacent fields, differences of 1 % or even of 0.8 % in the brightness can be detected (31) if the brightness is of the order of 100 millilamberts. Under such conditions the color of the light has no effect upon the discrimination. At lower brightnesses, the sensitiveness to change in brightness depends upon both the color and the brightness (Fig. 4).

Resolving power of the eye is the smallest angular separation at which two points, under the best illumination, can be seen as distinct. For different observers, it varies from 50" to 93" (20); the generally accepted normal value is 1'. It varies with the color of the light. In day-light and on a bright background, a dark line a few minutes long can be seen if it is 1.2" wide; but, on a dark background, a bright line is not visible unless it is at least 3.5" wide (48).

Aligning power, the ability to detect a lack of alignment of two similar, adjacent lines of the same width, as in setting a vernier, exceeds the resolving power. The average error (48) of skilled observers under best conditions corresponds to a visual error of not over 3"; in coincidence range-finders, the images can be aligned with an error not greater than 12" and sometimes as small as 2".

Fig. 4.—Discrimination of brightnesses (29, 40). ΔB = least noticeable increase in the brightness (B). is 1 millilambert; of wave-length (Δ) is 1m μ .

Acuity, or discrimination of form, is closely related to the resolving power, but differs from that in dealing, in general, with extended, interpenetrating, bright and dark areas, and frequently with low brightnesses. The absolute acuity (A) is the reciprocal of the smallest visual angle for which neighboring contrasted portions of the field can be seen as separated. Its variation with the brightness (B) of the brighter portions of the field is given by the equation (25) $A = c + k \log B$; the values of the constants c and k are determined by the units, the character of the field, and the eye; some values are given in Table 3. The unit commonly employed for A is 1 reciprocal minute.

Table 3.—Absolute Acuity (A) and Brightness (B) $A = c + k \log_{10} B (cf. Fig. 5)$ Unit of: $A = 1 \text{ minute}^{-1}$; B = 1 millilambert

Limits of B	c	k	Field	Lit.
0.01 to 43.5	1.05	0.415	Snellen and similar charts	(27)
40 to 1000	1.69	0.000	Snellen and similar charts	(27)
0.1 to 18	1.44	0.573	Snellen and similar charts	(12)
0.02 to 21	1.23	0.282	Crossed gratings	(8)
0.06 to 26	1.33	0.262	Crossed gratings	(7)

When the test field is a Snellen test chart, the acuity is commonly expressed as the ratio of the maximum distance (d_m) , at which the characters can be distinguished, to the standard distance (d_*) . This ratio (d_m/d_*) may be called the Snellen acuity; it is numerically equal to the reciprocal of the visual angle (in minutes) subtended by the sides of the elementary squares of the chart. As expressed in these units, the acuity of the average good eye exceeds 1.00; for the E-hooks, the mean of 100 subjects was 1.74, ranging from 1.00 to 2.45 (54).

Fig. 5.—Acuity in white and in chromatic illumination (46).
Unit of acuity = 1 Snellen unit; of illumination = 1 meter-candle.

Fig. 6.—Relative acuity in indirect vision (20).

Abscissa indicates angular position of image upon the retina.

The effect of dark adaptation upon acuity may be obtained by determining, at various intervals (t) after the light adapted eye had been placed in darkness, the minimum illumination (I) in which it can distinguish Snellen test characters placed at a known distance. For a distance corresponding to a Snellen acuity of $\frac{4}{20}$ (=0.2), the median values of I for 6 observers having in daylight a Snellen acuity of $\frac{4}{20}$ (=1.5) were found to be as follows (13):

t	0	5	10	15	25	35	45 minutes
I	1.09	0.79	0.56	0.40	0.34	0.42	0.42 meter-candles

The acuity depends also upon the color of the light, and upon the position of the image upon the retina. See Figs. 5, 6.

Detection of Differences in Length.—About 1% of the length is the least noticeable difference for simultaneously presented parallel lines which are relatively displaced (result of several old investigations). More recent work shows that a variable line, 1 to 5 cm long, can, by eye, be set to equality with a standard line with a probable error, for a single setting, of only 0.4%; for shorter lines the error is greater, attaining 0.5% for lines 1 mm long (36). When the time allowed for observation and judgment is short, the differences which can be detected with certainty are considerably greater. If the sign of the difference is to be judged correctly in 75% of the trials, then, for a 10 cm line, the difference must be 3.5 mm if the time is 4 seconds, and over 5 mm if the time is only 0.5 second (18).

Decimal Subdivision of a Small Distance.—When a fine line is set on a millimeter scale to successive positions in random order, and the subject is required to estimate its position to the nearest 0.1 mm, the average actual setting, for each tenth as estimated by 10 subjects (total of 6000 readings), for horizontal and for vertical scales was as follows (3, 52):

Estimate																			
Horisontal																			
Vertical	Ю.	106	lo.	202	lo.	308	lo.	39 5	lo.	486	lo.	576	lo.	652	lo.	757	lo.875	O.	992

The lines of the scale were presumably of the same width as the "fine line" of variable position. Settings were distributed over a length of 30 mm, the illumination was good, and the distance was that for best reading.

SENSES OTHER THAN SIGHT

Range of audible tones is from 18 to 18 600 double vibrations per second (44, 53); at high intensities the lower limit may be reduced

¹ For each value of t, the 6 observed values of I are arranged in order of magnitude; the mean of the third and the fourth of the values is by definition the *median* of the set.

to 12. At the upper limit, individuals varied from 15 000 to 22 000 d.v. per sec. As the age increases, the upper limit becomes lower (Fig. 7).

Fig. 7.—Dependence of highest audible tone upon age of subject (4).

* It is probable that these frequencies should be divided by two.

J= minimum audible power, unit = 1 erg cm⁻² sec⁻¹. Data in terms of effective, or r.m.s., pressure (P) in dynes cm⁻² have been reduced to erg cm⁻² sec⁻¹ (E) by means of the relation $P=\sqrt{dvE}=6.5\sqrt{E}$; d= density of air, v= velocity of sound in air, both in cgs units.

REACTION TIMES

The simple reaction time, or, briefly, the reaction time, is the interval which elapses between the application of a definite,

Fig. 9.—Discrimination of pitch.

N= number of double vibrations per sec; $\Delta N=$ smallest noticeable change in N. o= Knudsen (26), x= Stücker (51), $\Delta=$ Vance & Schaefer (52).

expected stimulus and the performance of a prescribed movement (usually a finger movement) indicating that it has been perceived.

Light.—For foveal stimulation of medium intensity, reaction time is $0.190 (\pm 0.008)$ sec; individuals range from 0.150 to 0.225sec. It is the same for withdrawal as for initiation of stimulus (22). For faint stimulation, near threshold, interval is increased by 0.04 to 0.05 sec (16); reaction to withdrawal is 0.005 to 0.025sec quicker than to initiation of stimulus (22). For photo-

Fig. 11.—Discrimination of differences in lifted weights. $\Delta W = \text{smallest noticeable change in the weight } W$.

- Weights had horizontal handles, were lifted successively with same hand. ** Cylindrical boxes lifted successively with same hand; ΔW is change for which 50 % of the estimates were of proper sign.
- \S Cylindrical boxes lifted successively with same hand; ΔW is change for which 75 % of the estimates were of proper sign.
- † Weights lifted by downward pressure of finger on a lever; several series of observations; curves represent the extremes.

Fig. 12.—Discrimination of differences in temperature (1).

Both hands were adapted by immersion in water of temperature To; they were then separately placed simultaneously in water at temperatures T and T_1 ; ΔT = least value of $(T_1 - T)$ which could be detected.

metrically equal stimuli of different colors, reaction time is independent of the color (22). Reaction time for eye to turn towards a stimulus in indirect vision is 0.151 sec (or 1.181 sec) if stimulus lies 1° (or 5°) from fixation point (10). For medium intensity, reaction time to monocular stimulation is about 0.015 sec greater than for binocular (43).

Table 4.—Discrimination Reaction Time Unit of: T = 0.001 sec; L_1 , $L_2 = 1 \text{ cm}$; $\lambda = 1 \text{m}\mu = 10 \text{Å}$

Position	Lengths; (21)							
Contrast (21)		T	Contrast (21)	T L1	1 L2 T			
	1 λ	1 1		1 λ 1 - 11	1 1			
Black and	1	1	Red (640) and	1 1 11				
White		205	Orange red	. 627 270 1	1.3 312			
	640	222	Orange	. 614 257 1	1.25 313			
Orange	614	218	Yellow		1.2 318			
Yellow	585	211	Green		1.15 326			
Green	521	218	Blue	452 231 1	1.1 335			
Blue	453	226	Yellow and					
			Green	521 232 1	1.05 351			
†Circles (24)		296	Blue		001			

*Two colored squares each 3 by 3 cm, placed side by side; observer was to react with corresponding hand to indicate on which side the previously specified square was placed. This type of discrimination reaction is the quickest. The same procedure was used in the discrimination of lengths.

† On a background of approximately 2.6 millilamberts and at a visual angle of 45° to each side of fixation point was a circle of angular diameter = 24°, brightness = 3.5% greater than that of background. Either circle could be made to disappear, and the subject, by a reaction with the corresponding hand, indicated which disappeared.

Sound.—For finger reaction to sound of medium intensity, reaction time = $0.136 \ (\pm 0.002)$ sec; individuals range from 0.082 to 0.195 sec. For very faint sound, the interval is increased by 0.06 to $0.07 \sec (16)$.

Touch.—For finger reaction to tactile stimulus of medium intensity, reaction time is 0.148 sec (23).

The discrimination reaction time is the interval which elapses between the application of one of two possible, definite, expected stimuli and the performance of the prescribed movement indicating which of the two stimuli has been applied. For printed letters, 10-point type, average for the alphabet, the reaction time for Roman capitals is 0.327 sec, Roman lower case 0.325, for short words 0.353, for long words 0.355, for small (1 cm square) pictures of familiar objects 0.336 sec (6). For other data, see Table 4.

Number Limitation and Span of Apprehension.—For college students, the greatest number of digits which an individual can repeat correctly immediately after a single auditory presentation averages 7.6 (5, 19), individuals range from 5 to 11 (5); for visual presentation the average is 8.0 (19).

Fig. 13.—Reaction time for nonfoveal stimulation (43).

 ΔT = excess of reaction time over that required for foveal excitation. Abscissa indicates angular position of image upon the retina. Finger reaction.

Fig. 14.—Span of apprehension (41). N = number of dots

exposed; ordinates = % of judgments which were

When a number of black dots irregularly arranged upon a well illuminated white background were exposed to view for a very short interval (0.038 sec) and the subject was required to determine the number of dots presented, the average number of correct iudgments made after considerable, but not extreme, practice was as shown in Fig. 14. The visual angle subtended by the dots was well above the threshold value.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Abbot, 350, No. 65; 14. (2) Baird, Color Sensitivity of the Peripheral Retina, Washington, 1905. (3) Bauch, Fortschritte d. Psychol., 1: 169; 13. (4) Bruner, 551, 11: 46; 08. (5) Carothers, 551, 46: 29, 36; 21. (6) Cattell, 358, 3: 463; 86. (7) Cobb, 555, 21: 23; 14. (8) Cobb and Geissler, 555, 20: 425; 13. (*) Coblents and Emerson, 31 A, 14: 167; 18.
- (10) Dodge, Psych. Rev., Monograph Suppl., 35: 19; 07. (11) Fechner, Psychophysik, 1: 193; 89. (12) Ferree and Rand, Trans. Illum. Eng. Soc., 15: 769; 20. (13) Ferree, Rand and Buckley, 354, 3: 352; 20. (14) Fernberger, 555, 21: 346; 14. 555, 27: 269; 16. 554, 1: 515; 16; 3: 141; 20. 4: 71; 21. (18) Fletcher and Wegel, 8, 19: 533; 22. (16) Froeberg, 531, 8: (17) Fullerton and Cattell, On the Perception of Small Differences, 00: 07. 1892. (18) Garrett, 331, 56: 56; 22. (19) Gates, U. of Cal. Publ. in Psych., 1: 327: 16.
- (20) Helmholtz, B69, 2: 36; 24. (21) Henmon, Time of Perception, etc., New York, 1906. (22) Holmes, Diss., Columbia Univ., 1923. (23) Jastrow, Time Relations of Mental Phenomena, 1890. (24) Johnson, 334, 7: 34; 24. (25) Johnson, 334, 7: 5; 24. (26) Knudsen, 8, 21: 84; 23. (27) König, 76, 1397: 559. (28) König, in Helmholtz Festgruss, 1891. (29) König and Brodhun, 76, 1888: 000.
- (30) Koester, Centralbl. f. Physiol., 10: 433; 96. (31) Kraepelin, 352, 2: 306; 85. (32) Krans, 2, 22: 66; 23. (33) Lane, 2, 19: 492; 22. (34) Lohmann, Z. Sinnesphysiologie, 41: 307; 06. (38) Merkel, 352, 5: 253; 89. (36) Merkel, 352, 9: 409; 94. (37) Nagel, B69, 2: 318; 24. (38) Nagel, B69, 2: 320; 24. (39) Nagel, B69, 2: 325; 24.
- (40) Nutting, 51A, 5: 261; 08-09. (41) Oberly, 555, 35: 336-338; 24. (42) Parsons, B70, 28, 54, 59; 15. (43) Poffenberger, 551, 23: 48; 12. (44) Pratt, 335, 31: 404; 20. (48) Reeves, 21, 47; 143, 145; 18. (46) Rice, 331, 20: 30; 12. (47) Southall, B69, 2: 128 (footnote); 24. (45) Southall, B69, 2: 33 (footnote): 24. (49) Steindler, 75, 115: 115: 06.
- (50) Stratton, 352, 12: 538; 96. (81) Stücker, 75, 96: 367; 07. (52) Urban, Arch. ges. Psychol., 31: 1; 14. (53) Vance and Schaefer, 550, 69: 114, 115; 14. (54) Woodworth and Bruner, O.

ARRANGEMENT OF CHEMICAL SUBSTANCES

Throughout I. C. T., except when otherwise indicated, the tabular arrangement of all chemical substances and of all systems capable of representation by formula is in accordance with a system called the "Standard Arrangement," which will now be explained and which should be learned by every user of I. C. T.

Elementary Substances

All tables containing only elementary substances (A-Tables) are arranged in alphabetical order of the symbols of the elements. In tables containing both elements and compounds (AB-Tables) the elements follow the "standard arrangement," v. infra.

Chemical Compounds and Other Systems Represented by Formula

The arrangement is based upon the following table of "Keynumbers" of the elements:

ARRANGEMENT OF CHEMICAL SUB-

ARRANGEMENT DES SUBSTANCES CHIMIQUES

L'arrangement tabulaire de toutes les substances chimiques et de tous les systèmes susceptibles d'une représentation par formule est, dans les T. C. I., excepté lorsqu'il y a une autre indication, en accord avec un système appelé "arrangement type," (standard arrangement) expliqué ci-dessous, qui devra être appris par chaque personne qui veut utiliser les T. C. I.

Substances Élémentaires

Toutes les tables ne contenant que les substances élémentaires (Tables A) sont arrangées dans l'ordre alphabétique des symboles des éléments. Dans les tables contenant les éléments et les corps composés (Tables AB) les éléments se trouvent suivant l' "arrangement type" voir infra.

Composés Chimiques et Autres Systèmes Représentés Par Formule

L'arrangement est basé sur la table suivante des "nombres clés" des éléments:

			K	EY-NUI	MBERS OF	THE	ELEM	ENTS								Nom	BRES	CLÉS	DES ÉI	LEMENTS				
-6 -	5 -4	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(He l	Ne A	Kr	Xe	Rn)	0	H	F	Cl	Br	I	(85)	8	Se	Те	N	P	As	Sb	Bi	C	Po	Si	Ti	Ge
					46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
					Cr	Мо	W	U	V	Cb(Nb)	Та	Pa	В	Al	Sc	Y	La	Ce	Pr	Nd	(61)	Sa	Eu	Gd
Ac	Ag	Al	As	Au	В	Ba	Ве	Bi	Br	C	Ca	Cb	Cd	Се	Cl	Co	Cr	Св	Cu	Dy	Er	Eu	F	Fe
74	32	55	13	33	54	79	75	15	5	16	77	51	29	59	4	44	46	85	31	67	69	64	3	43
		•			Os	P	Pa	Pb	Pd	Po	Pr	Pt	Ra	Rb	Re	Rh	Ru	8	Sa	Sb	Sc	Se	Si	Sn
					35	12	53	23	41	17	60	37	80	84	34	40	39	8	63	14	56	9	18	22

To locate a given compound, first write its "key-formula," neglecting water of crystallization, thus:

Afin de situer un composé donné, il faut d'abord écrire sa "formule-clé," en négligeant l'eau de cristallisation, ainsi:

Compound	Composé	Na ₂ SO ₄	HClO ₄ .3H ₂ O	Hg(C ₁₈ H ₃₂ O ₂) ₂	2Fe ₂ O ₂ .P ₂ O ₄ .12H ₂ O	Ni ₂ Pr ₂ (NO ₂) ₁₂ .24H ₂ O	I ₂ C ₄ H ₂ SO ₄ H	(NH ₄) ₂ CO ₃
Key formula	Formule- clé	82-8-1	4-2-1	30-16-2-1	43-12-1	60-45-11-1	16-8-6-2-1	16-11-2-1

In writing a key-formula the key-numbers must be written in descending order.

All chemical compounds (\mathfrak{B} -Tables) are arranged in the inverse numerical order of their key-formulae. Example: to find the compound $Hg(C_{18}H_{18}O_2)_2=30-16-2-1$; First, turn to section 30 of the table. Then follow down the column of chemical formulae until element 16 (C) is first encountered. From this point continue until element 2 (H) is found, and then on until element 1 (O) is reached. At this point will be found all the compounds composed of the four elements Hg, C, H, and O and these compounds are arranged in an obvious manner according to the subscripts in the chemical formula. To facilitate the use of the tables, key-numbers are inserted at frequent intervals either along the top of the page or down the left hand column or both.

In looking for a chemical compound always consult the $\mathfrak{B} ext{-}Table$, the scope of which provides for all chemical compounds except those of the radioactive elements, of which only compounds of U, Th and Ra are given in the $\mathfrak{B} ext{-}Table$. For the others see p. 364. In certain of the $\mathfrak{B} ext{-}Table$ s, at the point where key-formulae beginning with 16 occur, there will be found frequently only a few of the simpler compounds, and the reader will be referred to a

Lorsqu' on écrit une formule-clé, les nombres clés doivent être écrits dans l'ordre des valeurs décroissantes.

Tous les composés chimiques dans toutes les tables (Tables 3.) sont arrangés d'après l'ordre numérique inverse de leurs formules-clés. Exemple: pour trouver le composé Hg (C₁₈H₁₂O₂)₂ = 30-16-2-1; il s'agit premièrement de chercher la section 30 de la table; ensuite de suivre en descendant la colonne des formules chimiques jusqu'à ce qu'on trouve l'élément 16 (C). De ce point, on continue jusqu'à ce qu'on rencontre l'élément 2 (H), et ensuite jusqu'à ce que l'élément 1 (O) soit atteint. On trouvern alors à ce point tous les composés renfermant les quatre éléments Hg, C, H et O et ces composés sont arrangés d'une manière apparante en relation avec les indices de leurs formules chimiques. Afin de faciliter l'usage des tables, les nombres-clés sont inscrits, à de fréquents intervalles, ou au haut de la page ou le long de la colonne gauche, ou aux deux places.

Pour la recherche d'un composé chimique, il s'agit de consulter toujours la Table B dont le but est de renseigner sur tous les composés chimiques, à l'exception des éléments radio-actifs, dont seuls ceux de U, Th et Ra sont donnés dans la Table B. Pour les autres, voir p. 364. Dans certaines des Tables B, au point où les

STANCES AND SYSTEMS IN I. C. T.

DIE ANORDNUNG DER CHEMISCHEN VERBINDUNGEN

Durch die ganzen I. C. T., ausgenommen es ist etwas anderes angegeben, ist die tabellarische Anordnung aller chemischen Verbindungen und aller durch chemische Zeichen oder Formeln darstellbarer Systeme, nach der "Normal-Anordnung" (standard arrangement), durchgeführt. Sie ist im folgenden dargelegt und soll von jedem Leser der I. C. T. erlernt werden.

Elementare Stoffe

Alle Tafeln, welche nur elementare Stoffe (A-Tabellen) enthalten, sind in alphabetischer Reihenfolge nach den Symbolen der Elemente angeordnet. In den Tafeln, welche beides, Elemente und Verbindungen (AB-Tabellen), enthalten, folgen die Elemente der "Normal-Anordnung." Siehe weiter unten.

Die chemischen Verbindungen und andere durch Formein darstellbare Systeme

Die Anordnung ist auf der folgenden Tafel begründet, welche die "Schlüsselnummern" der Elemente enthält:

ORDINE DI ELENCAZIONE DELLE SOSTANZE

In tutti i volumi delle T. C. I. l'ordine in cui le sostanze ed i sistemi rappresentabili con formule sono disposti nelle tabelle è (tranne che non sia diversamente indicato) quello "standard" illustrato più avanti. Chiunque voglia servirsi delle T. C. I. deve anzitutto apprendere in che consiste questo sistema "standard."

Sostanze Elementari

Tutte le Tabelle contenenti soltanto sostanze elementari (tabelle λ) sono disposte secondo l'ordine alfabetico dei simboli degli elementi. Nelle tabelle che comprendono elementi e composti (tabelle λ - \mathfrak{B}) gli elementi sono ordinati secondo la disposizione "Standard." $v.\ infra.$

Composti Chimici ed Altri Sistemi Rappresentati da Formule

La disposizione è basata sul quadro seguente di "numeri chiave" degli elementi.

			8	CHLÖSSELNU	MMER	N DER	ELE	MENT	2						N	UME	RI CHI	AVE	DEGLI	ELEM	ENTI				
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		41	42	43	44	45
Zr	Sn	Pb	Th	Ga	In	Tl	Zn	Cd	Hg	Cu	Ag	Au	Re	Os	Ir	Pt	Ma	Ru	Rh		Pd	Мn	Fe	Co	Ni
66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86					
Tb	Dу	Но	Er	Tm	Yb	Lu	Hf	Ac	Be(Gl)	Mg	Ca	Sr	Ba	Ra	Li	Na	K	Rb	Св	(87)					
Ga	Gd	Ge	Gl	H	Hf	Hg	Но	I	In	Ir	K	La	Li	Lu	Ma	Mg	Mn	Мо	N		Na	Nb	Nd	Ni	0
25	65	20	75	2	73	30	68	6	26	36	83	58	81	72	38	76	42	47	11		82	51	61	45	1
8r	Та	Тъ	Te	Th	Ti	Tl	Tm	U	v	w	Y	Yb	Zn	Zr	(61)	(75) (8	5) (87)						
78	52	66	10	24	19	27	70	49	50	48	57	71	28	21	62	34	7	•	86						

Um eine gegebene Verbindung aufzufinden, hat man zuerst seine Schlüsselformel aufzuschreiben, wobei man das Kristallwasser auslässt. z.B.:

Per trovare il posto di un dato composto bisogna prima scrivere la formula chiave trascurando l'acqua di cristallizzazione, p. es.:

Verbin- dungen	Composto	Na ₂ SO ₄	HClO ₄ .3H ₂ O	Hg(C ₁₆ H ₂₅ O ₂) ₂	2Fe ₂ O ₃ .P ₂ O ₄ .12H ₂ O	Ni ₂ Pr ₂ (NO ₂) ₁₂ .24H ₂ O	I ₂ C ₄ H ₂ SO ₄ H	(NH ₄) ₂ CO ₂
Schlüssel- formel	Formula chiave	82-8-1	4-2-1	30-16-2-1	43-12-1	60-45-11-1	16-8-6-2-1	16-11-2-1

In die Schlüssselformel müssen die Schlüsselnummern in absteigender Reihenfolge geschrieben werden.

Alle chemischen Verbindungen (3-Tabellen) sind in der umgekehrten Reihenfolge der Schlüsselformeln angeordnet. Z. B.: Um die Verbindung $Hg(C_{18}H_{13}O_2)_2 = 30-16-2-1$ zu finden, hat man zuerst den Abschnitt 30 aufzusuchen. Dann hat man den Kolonnen der chemischen Verbindungen abwärts zu folgen, bis man zuerst das Element 16 (C) antrifft, von da an setzt man weiter fort, bis das Element 2 (H) gefunden ist und dann weiter, bis das Element 1 (O) erreicht ist. Bei dieser Stelle werden alle Verbindungen gefunden werden, welche sich aus den 4 Elementen Hg, C, H, und O zusammensetzen. Diese Verbindungen sind in deutlicher Art, entsprechend der Bezeichnungsweise chemischer Formeln, angeordnet. Um den Gebrauch der Tafeln möglichst zu erleichtern, sind die Schlüsselnummern häufig an verschiedenen Stellen eingefügt. Sie befinden sich entweder am Kopf der Seiten, oder auf der linken Seite unten, oder an beiden Stellen.

Um eine chemische Verbindung zu suchen, benütze man immer die 28-Tabellen: die alle chemischen Verbindungen enthalten, ausgenommen jene der radioaktiven Elemente. Von diesen sind

Nella formula chiave, i numeri chiave devono essere scritti in ordine decrescente.

Tutti i composti in tutte le tabelle (Tabelle 3) sono disposti nell'ordine numerico inverso delle loro formule chiavi.

Supponiamo ad es. di voler trovare il composto Hg $(C_{18}H_{17}O_{2})_{2}=30-16-2-1$. Prima si cerca la sezione 30 della Tabella, poi si scorre la colonna delle formule fino ad incontrare l'elments 16 (C). Da questo punto si continua finchè si trova l'elemento 2 (H), e quindi fino a raggiungere l'elemento 1 (O). Qui si trovano tutti i composti risultanti dai quattro elementi Hg, C, H e O ordinati secondo gli indici delle formule. Per facilitare l'uso delle tabelle i numeri chiave sono inseriti ad intervalli frequenti nella testata o lungo il margine sinistro della pagina, o nell'una e nell'altro.

Per cercare un composto bisogna sempre consultare la tabella 35 che contiene tutti i composti tranne quelli degli elementi radioattivi; di questi sono riportati nella tabella 25 soltanto i composti di U, Th, Ra. Per gli altri vedi p. 364. In alcune tabelle 25, laddove si trovano formule chiave che cominciano con 16, si troveranno spesso soltanto pochi composti fra i più semplici e il lettore

C-Table where the remainder of such compounds will be found listed under a different arrangement known as

The C-Arrangement

In this arrangement the compounds are arranged according to their empirical formulae (including water of crystallization), in the order C, H, with the remaining symbols alphabetical, e.g., $C_6H_4I_2O_4S$. The C-Tables, however, will not contain any carbon compound whose key-formula contains a number greater than 16.

SYSTEMS OF MORE THAN ONE COMPONENT

The components of each system are first arranged according to the standard arrangement, giving the order A, B, C, etc. The systems are then arranged, according to the standard arrangement, in the order of their A-components. All systems having the same A-component will be found (under that component) in the order of their B-components, etc.

In certain tables, the above plan will be based upon the C-arrangement instead of the standard arrangement. Such cases will always be so indicated.

Name Indices

The chemical formulae of nearly all of the organic compounds and minerals whose properties are given in I. C. T. can be found with the aid of the extensive indices of names given on p. 174 and 280. If the name is not found there, other works of reference must be consulted for the formula. It should be noted, however, that the exact formula is not required. The compound can be readily located if only the elements composing it are known (in the case of inorganic compounds) or if only the number of carbon atoms are known (in the case of organic compounds) provided only that the user can recognize either name or formula when he sees it.

PHYSICAL PROPERTIES OF CHEMICAL SUBSTANCES

INTRODUCTION

The following tables (p. 96 to 314) are intended to serve as a source of ready reference for the approximate values of certain properties of chemical substances, displayed in such a manner as to be of the greatest utility. The values given may be uncertain by one or more units in the last significant figure. Non-significant figures are given in small type. Thus, 2300 indicates that the correct value lies between 1800 and 2800, with 2300 as most probable value.

More accurate values for these properties, if known, will be found in subsequent sections of I. C. T., together with their literature references.

A. ELEMENTARY SUBSTANCES AND ATMOSPHERIC AIR

A-Tables, p. 102. Values in parentheses are estimated, usually with the aid of the Periodic Law.

S. CHEMICAL COMPOUNDS. STANDARD ARRANGE-MENT (v. p. 96)

3-Tables, p. 106

- 1. Formula or formula and name.
- 2. Gram-formula-weight. (I. C. T. atomic weights, v. p. 43.)
- 3. Crystal system.

3-Table.

Special tables.

formules-clés commençant par 16 se présentent, on ne trouvera fréquemment qu'un petit nombre de composés plus simples, et le lecteur sera alors renvoyé à une Table C, où le reste de ces composés se trouvera disposé d'une façon différente nommé

L'Arrangement C

Dans cet arrangement, les composés sont disposés en relation avec leurs formules empiriques (l'eau de cristallisation inclusivement) dans l'ordre C, H, les symboles restants venant ensuite dans l'ordre alphabétique; par ex: C₆H₄I₂O₄S. Cependant les Tables C ne contiendront aucun composé dont la formule-clé renferme un nombre supérieur à 16.

SYSTÈMES DE PLUS D'UN COMPOSANT

Les composants de chaque système sont premièrement disposés d'après l'arrangement type suivant l'ordre A, B, C, etc. Les systèmes sont alors arrangés, en accord avec l'arrangement type, dans l'ordre de leurs composants A. Tous les systèmes ayant le même composant A seront trouvés sous ce composant dans l'ordre de leurs composants B, etc.

Dans certaines tables, le plan sera basé sur l'arrangement C au lieu de l'arrangement type. De tels cas seront toujours mentionnés.

Noms Indices (Anglais)

Les formules chimiques de presque tous les composés organiques et les minéraux dont les propriétés sont données dans les T. C. I. peuvent être trouvées au moyen des indices extensifs des noms donnés aux p. 174 et 280.

Si l'on ne trouve pas le nom à cette place, il faudra consulter d'autres ouvrages de références pour la formule. Il faut noter, cependant, que la formule exacte n'est pas nécessaire. Le composé peut être immédiatement situé si l'on ne connait que les éléments qui le composent (dans le cas des composés inorganiques), ou que les nombres des atomes de C (dans le cas des composés organiques); à la seule condition que le lecteur puisse reconnaître ou le nom ou la formule lorsqu'il la voit.

PROPRIÈTÈS PHYSIQUES DES SUBSTANCES CHIMIQUES

INTRODUCTION

Les tables suivantes (p. 96 à 314) ont été établies dans le but de servir de source de référence rapide pour les valeurs approximatives de certaines propriétés des substances chimiques, et sont disposées de manière à être de la plus grande utilité possible. Les valeurs données puivent être incertaines par une ou plusieurs unités de leur dernier chiffre significatif. Les chiffres non signicatifs sont donnés en petits caractères. Ainsi, 2300 indique que la valeur correcte se trouve entre 1800 et 2800, avec 2300 comme valeur la plus probable. Si l'on connait des valeurs plus précises pour ces propriétés, on les trouvers dans les sections suivantes des T. C. I., accompagnées de leurs références bibliographiques.

A. SUBSTANCES ÉLÉMENTAIRES ET AIR ATMOS-PHÉRIQUE

Tables A, p. 102. Les valeurs entre parenthèses sont estimées ordinairement à l'aide de la Loi périodique.

3. COMPOSES CHIMIQUES. ARRANGEMENT TYPE (v. p. 96)

Tables 3, (p. 106)

- 1. Formule ou formule et nom.
- 2. Poids moléculaire en grammes (Poids atomiques des T. C. I., v. p. 43.)

in den 33-Tabellen nur die Verbindungen des U, Th und Ra enthalten. Für die anderen siehe Seite 364. In einigen 33-Tabellen, dort wo die Schlüsselnummern mit 16 beginnen, findet man häufig nur einige wenige einfache Verbindungen. Der Leser wird dann auf die C-Tabellen verwiesen, wo die restlichen derartigen Verbindungen gefunden werden können. Diese Tabellen sind nach anderen Gesichtspunkten zusammengestellt. Es ist das die

C-Anordnung (C-Arrangement)

Bei dieser Anordnung sind die Verbindungen nach ihrer empirischen Formel gegeben (einschliesslich Kristallwasser) und zwar in der Ordnung C, H, die restlichen Zeichen dann in alphabetischer Ordnung, z.B. C₆H₄I₂O₃S. Die C-Tabellen enthalten jedoch keine Kohlenstoffverbindung, in deren Schlüsselformel eine Zahl grösser als 16 vorkommt.

SYSTEME MIT MEHR ALS EINER KOMPONENTE

Die Komponenten jedes einzeln Systemes sind zuerst in der Reihenfolge A, B, C, u. s. w., entsprechend des "Standard-Arrangement" anzuordnen. Die Systeme sind dann, entsprechend des "Standard-Arrangement," in der Reihenfolge ihrer A-Komponenten angegeben. Alle Systeme, welche dieselbe A-Komponente haben, werden unter dieser Komponente in der Reihenfolge ihrer B-Komponenten gefunden.

In gewissen Tabellen wird dieser Plan entsprechend der C-Anordnung, an Stelle des "Standard Arrangement," gewahlt. Solche Fälle werden immer entsprechend bemerkt.

Namenverzeichnis (Englisch)

Die chemischen Formeln von so ziemlich allen organischen Verbindungen und Mineralien, deren Eigenschaften in den I. C. T. enthalten sind, können mit Hilfe des ausgedehnten Namenverzeichnisses auf Seite 174 und 280 gefunden werden. Ist der Name hier nicht auffindbar, so müssten andere Quellen für die Formel nachgesehen werden. Es soll aber bemerkt werden, dass eine genaue Formel nicht nötig ist. Die Verbindung kann bei anorganischen Verbindungen leicht aufgefunden werden, wenn nur die Elemente, die sie zusammensetzen, bekannt sind, bei organischen Verbindungen, wenn nur die Zahl der Kohlenstoffatome bekannt ist. Nötig ist es, dass der Leser entweder den Namen oder die Formel beim Ansehen erkennt.

DIE PHYSIKALISCHEN EIGENSCHAFTEN CHEMISCHER STOFFE

EINFÜHRUNG

Die folgenden Tafeln (s. 96 bis 314) sollen zur raschen Orientierung über angenäherte Werte gewisser Eigenschaften chemischer Verbindungen dienen. Sie sind in einer solchen Art angeordnet, um vom grösstmöglichem Nutzen zu sein. Die angegebenen Werte können auf einer und mehreren Stellen der letzten grossgeschriebenen Ziffer unsicher sein. Z.B. sagt die Zahl 2300 aus, dass der zwischen 1800 und 2800 liegende Wert am wahrscheinlichsten 2300 sein wird.

Genauere Werte für diese Eigenschaften können, wenn sie bekannt sind, in den weiter unten vorhandenen Abschnitten der I. C. T. zusammen mit der Literatur gefunden werden.

A. ELEMENTARE STOFFE UND DIE ATMOSPHÄRISCHE LUFT

A-Tabellen, Seite 102. Werte, die in den Klammern sich befinden, sind geschätzt gewöhnlich nach dem periodischem System der Elemente.

≫. CHEMISCHE VERBINDUNGEN. NORMAL-ANORDNUNG [STANDARD-ARRANGEMENT] (siehe S. 97)

3-Tabellen, Seite 106

- 1. Formel oder Formel und Name.
- 2. Gramm-Formel-Gewicht (Atomgewichte der I. C. T. siehe S. 43.)

sarà rimandato a una tabella C dove si troveranno gli altri disposti con criterio differente che viene chiamato

La Disposizione C

Secondo questa i composti sono disposti in base alle formule empiriche (compresa l'acqua di cristallizzazione) nell'ordine C, H e con i rimanenti simboli ordinati alfabeticamente P. es. $C_6H_4I_2O_2S$. Le tabelle $\mathcal C$ non comprendono però composti del carbonio che hanno un numero chiave piu grande di 16.

SISTEMI DI PIU' D'UN COMPONENTE

I componenti di ciascun sistema sono dapprima disposti secondo la disposizione tipo, nell'ordine A, B, C, etc. I sistemi sono quindi disposti, secondo la disposizione tipo, nell'ordine dei loro componenti A. Tutti i sistemi aventi lo stesso componente A verranno trovati, sotto questo componente, nell'ordine dei loro componenti B, etc.

In alcune tavole il piano sara' basato sulla disposizione C in luogo della disposizione tipo. Di cio' verra' sempre fatta menzione.

Indici Per Nome (Inglese)

Le formule chimiche di quasi tutti i composti organici e minerali di cui sono riportate le proprietà nelle T. C. I. si possono trovare con l'aiuto di estesi indici di nomi dati a p. 174, e 280. Se negli indici non si trova il nome bisogna consultare altre opere per trovare la formula. Deve tuttavia notarsi che non è necessaria la formula esatta. Il composto può essere facilmente ritrovato se si conoscono solo gli elementi componenti (nel caso di composti inorganici) o se si conosce solo il numero di atomi di carbonio (nel caso di composti organici) purchè il lettore sia in grado di riconoscerne il nome o la formula quando li vede.

PROPRIETA' FISICHE DELLE SOSTANZE

INTRODUZIONE

Le tabelle seguenti (p. 96 a 314) hanno lo scopo di fornire per una serie di sostanze valori approssimati di certe proprietà disposti in modo da essere della più grande utilità. I valori riportati pòs sono essere incerti per una o più unità nelle ultime cifre significative. Le cifre non significative sono indicate in caratteri piccolli. Così 2300 indica che il valore esatto si trova fra 1800 e 2800, e che 2300 è il valore più probabile.

Valori più precisi di queste proprietà quando sono conosciuti, sono riportati nelle sezioni successive delle T. C. I. insieme con le relative indicazioni bibliografiche.

A. SOSTANZE ELEMENTARI ED ARIA ATMOSFERICA

Tabelle A, p. 102. I valori fra parentesi sono calcolati generalmente con l'aiuto della legge periodica.

33. COMPOSTI, DISPOSIZIONE STANDARD (v. p. 97) Tabelle 33, p. 106

- 1. Formula oppure formula e nome.
- 2. Peso della formula in grammi. (T. C. I. pesi atomici v. p. 43.)
- 3. Sistema cristallino. Tabella 3.
 - Tabelle speciali.
- 4. Punto di fusione. (Alla pressione di una atmosfera, tranne che non sia diversamente indicato dalla soprascritta; così 125^{17atm.} = fonde a 125° alla pressione di 17 atmosfere.)

Tabella 🕉

- 4. Melting point. (Under 1 atm. unless otherwise indicated by superscript, thus 125^{17atm.} melts at 125° under 17 atm.)
 - ℜ-Table.
- 5. Boiling point. (Under 760 mm Hg unless otherwise indicated by superscript, thus 321¹²⁶ = boils at 321° under 125 mm Hg.)

33-Table.

6. Density, g cm⁻³. (At 20° unless otherwise indicated by superscript, thus $1.853^{40} = 1.853$ g cm⁻³ at 40° C.)

33-Table.

7. Refractive index and dispersion, $(n_D \text{ and } H_{\beta} - H_{\alpha})$ for 20° unless otherwise indicated.

ABBREVIATIONS AND CONVENTIONS

at, or atm. atmosphere C. cubic or regular d. decomposes, e.g., d. 335 = decomposes at ca. 335°; 335 d. = melts (resp. boils) at 335° with decomposition diss. a dissociation temperature explodes exp. liquid l. H. hexagonal M. monoclinic Ρ. under pressure sublimation 8. s. d. slight decomposition R. rhombic or orthorhombic Tet. tetragonal Tr. transition temperature Tri. triclinic Trig. trigonal in vacuo vac. variable var.

THE PROPERTY-SUBSTANCE TABLES

Following the General Tables will be found (p. 308) the Property-substance Tables, in each of which the substances, identified by Index Number, are arranged in ascending order of the values of the property, the intervals on the scale of values of the property being given in black-face type.

To Identify a Substance by Means of Its Properties.—Example: A liquid is found to have the following properties: B. P. = 81.1° at 745 mm, d = 0.783, $n_D = 1.347$. What is the substance? With the aid of Craft's rule, first correct the boiling point to 760 mm. If the general nature of the substance is unknown, put $c = 10^{-4}$ in the Craft's equation, $\Delta t = cT_B(760 - P)$. Thus in the present instance, we should have $\Delta t = 10^{-4} \times (81.1 +$ 273) $(760 - 745) = 0.3^{\circ}$, and $t_B = 81.1 + 0.3^{\circ} = 81.4^{\circ}$. Next turn to the special B. P. (p. 310), d (p. 313), and n (p. 276) tables and read off from these tables the index numbers of substances having values of the above properties in the neighborhood of those for the unknown substance. Thus, for the present example, the following index numbers will be obtained: For B. P., 130, 758, 727, 1612, 168, 277, 1535, 506, 792; for d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; for n_D , 141, 168, 213. The only index number common to each of these properties is 168; and on turning to this index number in the General C-Table, we can readily identify our substance as acetonitrile. The identification can then be further checked by appropriate chemical tests, if desired.

3. Système cristallin.

Table 3.

Tables spéciales.

- 4. Point de fusion. (Sous 1 atm. à moins d'une indication par exposant, ainsi 125^{17atm.} = fond à 125° sous 17 atm.)
 Table 39.
- 5. Point d'ebullition. (Sous 760 mm Hg à moins d'une indication par exposant, ainsi 321¹²⁶ = boût à 321° sous 125 mm Hg.)
 Table 33.
- 6. Densité, g cm⁻². (A 20° à moins d'une indication par exposant, ainsi $1.853^{40} = \text{g cm}^{-3}$ à 40°C .)

Table 33.

7. Indice de réfraction, et dispersion $(n_p$ et $H_\beta - H_\alpha)$ à 20° à moins d'une indication.

ABRÉVIATIONS ET CONVENTIONS

at. ou atm.	atmosphère
C.	cubique ou régulier
d.	Se décompose, par ex., d. 335 = se décompose à environ 335°; 335 d. = fond (resp. bout) à 335° avec décomposition
diss.	une température de dissociation
exp.	exploser
1.	liquide
Н.	hexagonal
M.	monoclinique
Р.	sous pression
8.	sublimation
s.d.	légère décomposition
R.	rhombique ou orthorhombique
Tet.	tétragonal ou quadratique
Tr.	température de transition
Tri.	triclinique
Trig.	trigonal
vac.	dans le vide
var.	variable

TABLES DES PROPRIÉTÉS DES SUBSTANCES

On trouvera (p. 306) à la suite des Tables générales, les Tables des Propriétés des Substances, dans chacune desquelles, les substances identifiées par leur Nombre-Index, sont arrangées dans l'ordre ascendant des valeurs de la propriété; les intervalles de l'échelle des valeurs de la propriété sont donnés en caractères gras.

Pour identifier une substance au moyen de ses propriétés.-Exemple: On a trouvé qu'un liquide a les propriétés suivantes: P.E. = 81.1° à 745 mm, d = 0.783, $n_p = 1,344$. Quelle est la substance? Au moyen de la règle de Craft, on corrige premièrement le point d'ébullition à 760 mm. Si la nature générale de la substance est inconnue, on pose $c = 10^{-4}$ dans l'équation de Craft, $\Delta t = cT_E$ (760 - P). Ainsi dans le cas présent, nous aurions $\Delta t = 10^{-4} \times$ $(81.1 + 273)(760 - 745) = 0.3^{\circ}$, et $t_{2} = 81.1^{\circ} + 0.3^{\circ} = 81.4^{\circ}$. Ensuite on cherche dans les tables spéciales des P.E. (p. 310), des d(p. 313) et des n(p. 276) et on note les nombres-index des substances ayant les valeurs des propriétés ci-dessus dans le voisinage de celles de la substance inconnue. Ainsi, pour l'exemple présent, les nombres-index suivants seront obtenus; Pour le P.E., 130, 758, 727, 1612, 168, 277, 1535, 506, 792; pour d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; pour np, 141, 168, 213. Le seul nombreindex commun à chacune de ces propriétés est 168; en revenant à ce nombre-index dans la Table générale C, et en notant les autres propriétés, on peut rapidement identifier notre substance comme étant acétonitrile. L'identification peut être alors poussée plus loin au moyen d'essais chimiques appropriés, si on le désire.

- 3. Kristall-System 3-Tabellen.
 - Besondere Tabellen.
- 4. Schmelzpunkt. (Bei 1 Atmosphäre: wird dem Werte eine Zahl rechts hinaufgesetzt, so bedeutet diese den Druck unter welchem der Schmelzpunkt angegeben ist. Es bedeutet 125^{17atm}.: der Schmelzpunkt ist bei einem Druck von 17 Atm. bei 125°.) 3-Tabellen.
- 5. Siedepunkt. (Unter 760 mm Quecksilber: wird dem Werte eine Zahl rechts hinaufgesetzt, so bedeutet diese Zahl den Druck, unter welchem der Siedepunkt angegeben ist. Es bedeutet 321¹³⁸; der Siedepunkt liegt bei einem Druck von 125 mm Hg bei 321°.) 3-Tabellen.
- 6. Dichte, g cm⁻². (Bei 20°C: wird dem Wert eine Zahl rechts hinaufgesetzt, so bedeutet diese Zahl die Temperatur, für welche die Dichte angegeben ist. Es bedeutet 1.853⁴⁰: die Dichte bei 40° beträgt 1.853).
 - 3-Tabellen.
- 7. Brechungs-Index und Dispersion, $(n_D \text{ und } H_{\beta} H_{\alpha})$ für 20°, wenn nichts anderes angegeben ist.

wenn nichts an	ideres angegeben ist.
	ABKÜRZUNGEN UND ZEICHEN
at. oder atm.	Atmosphäre
C.	kubisch oder regulär
d.	zersetzt sich, z. B. d335 bedeutet, zersetzt sich bei ungefähr 335°; 335d bedeutet, schmilzt (oder siedet) bei ungefähr 335° unter Zersetzung
dies.	Dissoziations Temperatur
exp.	explodiert
1.	flüssig
H.	hexagonal
M.	monoklin
P.	unter Druck
8.	Sublimation
s.d.	schwache Zersetzung
R.	rhombisch oder orthorhombisch
Tet.	tetragonal
Tr.	Umwandlungstemperatur
Tri.	triklin

STOFF-EIGENSCHAFTS TAFELN

im Vacuum

variabel

vac.

VAI.

Den Haupttabellen folgend, findet man Seite 306 Stoff-Eigenschafts Tafeln. In jeder dieser Tafeln, in welcher die Stoffe durch ihre Indexzahlen bezeichnet sind, werden die Stoffe in aufsteigender Ordnung der Werte dieser Eigenschaften dargestellt. Die Intervalle an der Scala der Eigenschaftswerte sind in fettgedruckten Ziffern angegeben.

Die Erkennung eines Stoffes mit Hilfe seiner Eigenschaften.-Beispiel: Es ist eine Flüssigkeit gefunden, welche folgende Eigenschaften hat: Siede-Punkt 81.1° bei 745 mm, d = 0.783, $n_D = 1.344$. Welcher Stoff ist das? Mit Hilfe der Regel von Craft corrigiere man zuerst den Siede-Punkt auf 760 mm. Ist die allgemeine Natur des Stoffes nicht bekannt, setze man c = 10-4 in die Gleichung von Craft ein: $\Delta t = cT_B(760 - P)$. Im gegenwärtigen Falle ist also $\Delta t = 10^{-4} \times (81.1 + 275)(760 - 745) = 0.3^{\circ}$, wonach dann der Siede-Punkt $t_B = 81.1^{\circ} + 0.3^{\circ} = 81.4^{\circ}$ sich ergibt. Dann verwende man die Sd.P. Tabellen (Seite 310), die d-Tabellen (Seite 313) und die n-Tabellen (Seite 276), suche in diesen die Indexzahlen jener Stoffe heraus, deren oben genannte Eigenschaften solche Werte haben, die in der Nähe der Eigenschafts Zahlen des unbekannten Stoffes liegen. So erhält man für das gewählte Beispiel, folgende Indexnummern: für Sd. P. 130, 758, 727, 1612, 168, 277, 1535, 506, 792, für d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; für n_D 141, 168, 213. Die einzige Index-Nummer, die alle drei Eigenschaften vereinigt, ist 168. Diese Index-Nummer wird in der Haupt C-Tabelle aufgesucht; mit Beachtung noch anderer Eigenschaften kann man leicht die Flüssigkeit als Azetonitril erkennen. Die Identifizierung kann dann noch weiter durch eine chemische Untersuchung, wenn nötig, bestätigt werden.

- 5. Punto di ebollizione. (Alla pressione di 760 mm Hg tranne che non sia altrimenti indicato dalla soprascritta; così 321¹³⁶ = bolle a 321° alla pressione di 125 mm Hg.)
 - Tabella 3.
- 6. Densità, g cm⁻³. (A 20°, tranne che non sia altrimenti indicato dalla soprascritta; così $1.853^{40}=1.853$ g cm⁻³ a 40°C.)
 - Tabella 33.
- 7. Indice di rifrazione e dispersione $(n_D \in H_{\theta} H_{\alpha})$ per 20° tranne che non sia altrimenti indicato.

ABBREVIAZIONI E CONVENZIONI

at. oppure atm.	atmosiera
C.	cubico o regolare
d.	si decompone; per es. d335 = si decompone a ca. 335°; 355d = fonde (o bolle) a 335° con decomposizione
diss.	una temperatura di dissociazione
exp.	esplode
1.	liquido
H.	esagonale
M.	monoclino
P.	sotto pressione
8.	sublimazione
s.d.	leggera decomposizione
R.	rombico od ortorombico
Tet.	tetragonale
Tr.	temperatura di trasformazione
Tri.	triclino
Trig.	trigonale
Vac.	nel vuoto
var.	variable

LE TABELLE DELLE PROPRIETA' DELLE SOSTANZE

Seguendo le tabelle generali si troveranno (p. 306) le tabelle delle proprietà in ciascuna delle quali le sostanze, indicate col numero indice, sono disposte secondo l'ordine ascendente dei valori della proprietà. Gli intervalli nella scala dei valori della proprietà sono indicati in grassetto.

Identificazione di una sostanza a mezzo delle sue proprietà.— Esempio: si supponga che un liquido abbia le seguenti proprietà: B.P. = 81.1° a 745 mm, d = 0.783, n_p = 1.344. Che sostanza è?

Con l'aiuto della regola di Craft, bisogna anzitutto ridurre il punto di ebollizione a 760 mm. Se non si conosce la natura della sostanza bisogna mettere, nella equazione di Craft, c = 10^{-4} , $t = cT_B(760 - P)$. Così, nel caso nostro, si avrebbe $t = 10^{-4} \times (81.1 + 273)$ (760 - 745) = 0.3° , e $t_B = 81.1^{\circ} + 0.3^{\circ} = 81.4^{\circ}$. Dopo bisogna guardare alle tabelle speciali per il B. P. (p. 310), per d (p. 313) e per n (p. 276), e ricavare da queste tabelle inumeri indici delle sostanze aventi valori delle suddette proprietà vicini a quelli della sostanza sconosciuta. Così, per il nostro esempio, si otterranno i seguenti numeri indici: per B.P., 130, 758, 727, 1612, 168, 277, 1535, 506, 792; per d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; per n_D 141, 168, 213. L'unico numero indice comune a ciascuna di queste proprietà è 168; tornando a questo numero indice nella Tabella Generale \mathcal{L} , e osservando le altre proprietà, si può prontamente identificare la sostanza nel acetonitrile.

La identificazione può quindi essere ulteriormente comprovata da appropriati saggi chimici, se si desidera.

ELEMENTARY SUBSTANCES AND ATMOSPHERIC AIR. A-TABLE

THE GASEOUS STATE

Chem. symb.	Stand- ard density 0°, 1A _n g l-1	Density of the saturated vapor at the nor- mal boil- ing point g l-1	Criti	cal constar	nts	Specific heat joules per gram atom at 15°	Viscosity		
	d _g	d.	t₄ °C	p _e atm.	d _e g cm ^{−4}	<i>C</i> ,	A	1	
A	1.7824	5.89	-122.4	48.0	0.531	20.2	221	20	
As			>1400.			1			
Br			302 .		1.18		155	20	
Cl	3.214		144.	76.	0.573	17.2	132	20	
F	1.695							1	
H	0.08987	1.33	-239.9		0.0310				
He	0.1785	(11.2)	-267.9		0.069	20.9	197	20	
Hg		0.020 at	1650	3500	5 .		494	273	
		320°	V					}	
I			553.				184	124	
Kr	3.708	(8.3)	- 62 .6				248	20	
N	1.2506	4.61	-147.1	33.5	0.311	14.56	176.5	ı	
Ne	0.9002	9.46	-228.7		0.484		312	20	
0	1.4290	4.74	-118.8	49.7	0.430	14.60	203.9	23	
0,	3.03 at		- 5.0	(67.)	0.54				
1	−80°								
P			721 .	10o.					
Rn	9.73	(12.6)	104.4	62.4			229	20	
S			104 0.						
Tl		14.8							
Xe	5.851	(9.7)	16.6	58.2	1.15		225	20	
Air	1.2930						284.2	20	

THE LIQUID STATE

Chem. symb.	gc	nsity m - I	$\frac{1}{v}\frac{\mathrm{d}v}{\mathrm{d}t}$	l expansion A × 10-4	Normal boiling point (s = "solid")	Latent heat of vapori- sation at ts. Kilo-joules per gram atom (s = "solid")
	d	1 1	A	at to	t _B	$L_{ m v}$
A	1.402	-185.7	4500.	-183	-185.7	6.3
Ac					(>1700.)	
Ag	9.4	960.	11o.	960-1200	1950.	249.
Al	2.40	658 .	113.	658-1100	1800.	225.
As					615.8	139.8
Au	17.	1063.			26 00.	368 .
В					(2550.)	
Ba					1140.	361.
Be					(1500.)	
Bi	10.1	27 0.	122 .	270-630	1450.	193.
Br	3.119	20.	1100.	0–30	58.78	15.0
\mathbf{C}				İ	4200.	600.
Ca					117o.	399.
Cb					(>3300.)	
Cd	8.0	320 .	150.	320-540	767 .	107.
Се					1400.	
Cl	1.557	- 33.6	150o.	-34	-34.6	10.0
Co					2900.	380 .
Cr					2200 .	320.
Cs	1.84	26 .	37 0 .	27-123	67o.	73 .
Cu	8.3	1083.	19o.	1083-1295	2300.	467.

THE LIQUID STATE.—(Continued)

Chem.	ď	t l	A	at to	t _B	$L_{\mathtt{V}}$
F	1.11	-187.	3000.	-200	-187 .	(6.)
Fe	6.9	1530.			300 0.	380.
Ga	6.095	29.7			>1600.	
Ge					(2700.)	(500.)
Н	0.0709	-252.7	13000.	-255	-252.7	0.450
- 1	0.126	-268.9				
He	0.147	١,				
	dmaz	-270.8			-268.9	0.10
Hf					(>3200.)	
Hg	13.546	20.	182.	20	356.90	59. s
I	4.00	107.	80o .	107-150	184.35	22.0
In		()			>1450.	
Ir					(>4800.)	
\mathbf{K}	0.83	62 .	29 0.	62-150	760.	84.
Kr	2.6	146.			-151.8	(9.4)
La					1800.	
Li			18o .	186-230	>1200.	(170.)
Mg	1.57	650.	38 0.	650-800	111o.	262 .
$\mathbf{M}\mathbf{n}$					1900.	24 0.
Mo					3700.	71o.
N	0.808	-195.8	6000.	-195	-195.8	2.80
Na	0.93	97.5	280 .	100-200	880.	105.
Ne	1.204	-245.9			-245.9	1.74
Ni					2900.	38 0.
О	1.14	-183 .	4100.	-195	-183.00	3.415
O,	1.71	-183 .	2000.	-183	-112.	4.88
Os					(>53oo.)	
P	1.745	44.5	520 .	50-60	2 80.	
Pa					(6200.)	
$\mathbf{P}\mathbf{b}$	10.3	327.	12o .	327-825	162o .	193 .
Pd	11.	1550.			2200.	
Pt	19.	1755.			4300.	520 .
Ra		1			(1140.)	
Rb	1.475	38.5	340 .	40–140	700.	74 .
Rh					(>2500.)	
Rn	4.4	-62 .			-61.8	(18.1)
Ru					(>2700.)	
S	1.808	115.	43 0 .	115	444.6	8.98
Sb	6.55	631.	10o .	630–1050	1380.	190.
Sc					(2400.)	
Se					6 88.	31.
Si	0.00	999	10-	000 1000	2600.	170?
Sn	6.98	232.	100 .	232-1600	2260.	325 .
Sr		j			1150.	383 .
Ta. Te					(>4100.)	0.5
Th	1				1390.	85 .
Ti	1 1				(>3000.) (>3000.)	
Tl	11.0	200	140.	200 250	1650.	1009
11	11.0	300.	140.	300-350	1000.	120?
v		!			(2000)	256?
W					(3000.) 5900.	91o.
Xe	3.06	-109.1			-109.1	
Yt	3.00	- 109.1			(2500.)	(13.4)
Zn	6.7	463	15o .	419-543		00.2
Zn	0.1	200.	130.	410-040	907.	99.2
2r 87					(>2900.) (620.)	(80 -)
01	R .	ļ		F.1		(69.6)
85	1 !			1	(520.)	(83.7)

			AIR		
Mole % O2 in liquid	d	t	A at to	t _B	L _V
10	0.831	-195.0		-195.0	1
20	.856	-194.3		-194.3	
20.94	.861	-194.2		-194.2	0.185
					(pergram)
30	. 893	-193.5		-193.5	
40	.932	-192.6		-192.6	
50	. 974	-191.5		-191.5	

Chem. symb.	per gr	heat joules am atom	Electrical resistivity $ \begin{array}{rcl} \text{ohm-cm} \\ R &= A \times 10^{\text{n}} \end{array} $			
	$C_{\mathbf{p}}$	l t	A	n	t	
A	22.4	-100.				
$\mathbf{A}\mathbf{g}$	33.8	907-1100	17.0	- 6	1000.	
Al	28.	660	20.1	- 6	657.	
, Au	27 .	1100	30.8	- 6	1063.	
Bi	31.	400	127.		269 .	
Br	36.	13-45	7.8	12	17.	
Cd	36.	321	34.	- 6	400.	
Cl	33.5	0-24	>10.	15	-70 .	
\mathbf{Cs}	32.	50	36.6	- 6	28.	
$\mathbf{C}\mathbf{u}$	27.	1084	21.3	- 6	1083.	
Ga	23.	119	27.	- 6	30.	
Н	0.975	-252				
$\mathbf{H}\mathbf{g}$	27.9	20	95.8	- 6	20.	
I	8.01	114-185	78.	6	110.5	
In			29.	- 6	155.	
K	30.	63	13.	- 6	62.	
Li			45.	- 6	230 .	
N	27.8	-200			1	

100

1452

-200

9.7

109.

32.

33. 26.4

Na

Ni

Chem. symb.	$C_{\mathbf{p}}$	t	A	n	t
P			2.3	6	25.
Pb	1		98.	- 6	400.
$\mathbf{R}\mathbf{b}$	32.	50	23.5	- 6	50.
S	30.4	100	95.	10	115.
Sb	28	630	12.	- 6	860.
Se			76.6	- 9	390.
Sn	31.	232	49.	- 6	300.
Tl			74.	- 6	300.
$\mathbf{Z}\mathbf{n}$			43.	- 6	440.
Air	1.91*	-200.			

[•] Per gram, for liquid containing 20.94 mole % O₂.

		SURFACE	TENSION		
Chem. symb.	γ dyne cm ⁻¹	t	Chem. symb.	γ dyne cm ⁻¹	t
A	12.5	-185.8	N	8.85	-195.8
Al	520.	750.	0 1	13.2	-183.
Bi	376.	300.	Pb	442.	350.
Br	36.	58.6	s	60 .	120.
Cd	628.	350.	Se	72 .	217.
Cl	27.	- 34.5			
Ga	358.	30(CO ₂)	Air, with 50		
H	1.91	-252.7	mole % O2	11.6	-190.3
Hg	476.	20.			

		REFRACTIV	E INDEX		
Chem. symb.	n_D	t	Chem. symb.	n_D	t
В	2.5*		N	1.2053	-190.
Br	1.661	15.	Na	0.0045	
\mathbf{Cd}	0.82*		0	1.221	-181.
Cl	1.385	20.	Pb	2.6*	
н	1.097*	-252.8	8	1.929	110.
Hg	1.6-1.9	20.	Se	2.9	220.
N	1.1975*	-195.8	Sn	2.1	

^{*} These values are for the Hg line 5790 Å.

THE CRYSTALLINE STATE

100.

1500.

Chem. symb. (At. wt. v. p. 43)	Crystal system or form	Density,	g cm ⁻³	expa	rmal nsion A × 10 ⁻⁶	Melting point °C	per	c heat joules gram atom c = 4.185 cal.	Latent heat of fusion at t _F Kilo- joules per gram atom	Electric resistivit ohm-cr $R = A \times$	ty n
		d	t	A a	it t°	t _P		C _p at t°	L_{P}	A	t
A Ac	. C .	1.65	-233			-189.2 (1800.)	25.9	-223	1.12		
Ag	C.	10.5	20	18.9	20	960.5	25.2	20	11.	1.62	20
Al	C.	2.702	20	23.03	20	660.o	24.2	20	8.0	2.62	20
As	Met.H.	5.7		4.7	20	814 ^{368tm}	25.8	0–100		35	0
	Black	4.7	20				27.0	0–100			
	Yel. C.	2.0	20								
Au	C.	19.3	20	14.2	20	1063.0	25.7	18	13.3	2.4	20
В		2.		2		2300.	14.	0-100		1.8×10^{12}	0
Ba	ì	3.5	20			850.					
Be	H.	1.8	20			1350.	16.1	0-100	12.	18.5	20
Bi	H.	9.80	20	13.3	20	27 1.	25.6	20	10.9	115	20
Br	R.	(3.4)				-7.2	23.5	-192 to -108	5.4	>1014	
\mathbf{C}	Dia. C.	3.51	20	0.9	20		6.1	20		5×10^{20}	15
Graphite Graphite	C. Single c	2.255 rystal	20	3	20	3500.	8.5	20		1400. 39-60	20 20

 $\begin{tabular}{ll} \textbf{THE CRYSTALLINE STATE.} & --(Continued) \\ \end{tabular}$

Chem.	Crystal		· · · · · · · · ·			E STATE.—(C					
symb.	system	d	t	A a	t t°	t _P		C _p at t°	L_{F}	A	t
Ca	C.	1.55	20	25 .	0-21	810.	26.0	20		4.6	20
СЬ		8.4	20	00.0		1950.	00	00			00
Cd	H.	8.6	20	29.8	20	320 .9	28	20	6.2	7.5	20
Се	С. Н.	6.90 (6.7)	20			640 .	24.8	0–100		78	20
Cl	R.	(1.9)				-101.6	28.	-113	3.40		
Co	C.	8.9	20	12.3	20	1480.	24.8	20	14.4	9.7	20
Cr	C.	7.1	-0	8.2	20	1615.	23.	20	6.9	2.6	0
Cs		1.90	20	97.	0-26	26 .	29.	20	2.1	20.	20
Cu	C.	8.92	20	16.6	20	1083 .	24.5	20	11.5	1.69	20
F		(1. 3)				-223.			(0.8)		
Fe	C.	7.86	20	11.7	20	153s.	24.9	20	11.2	10.0	20
Ga	Tet.	5.91	20	18	0-30	29.75	23	12–23	5.55	53	0
Ge	C.	5.36	20			958.5	22.3	0–100		89×10^{3}	0
H	C.	0.0808	-262			-259.14	2.4	-260.6	0.059		
He					į	<-272.2					
Hf	H.?	14 10	-38.9	90	-190 to	$(1700) \\ -38.87$	99.0	-4 0	2.33	01.2	50
Hg	н.,	14.19	-36.9	90	-190 to	-30.01	28.0	-40	2.33	21.3	-50
I	R.	4.93	20	93	20-100	113.5	27.8	20	8.38	1.3×1015	20
In	Tet.	7.3	20	33	20	155	27.3	0-100		9	20
Ir	C.	22.4	20	6.5	20	2350.	26.1	0–100		6.	20
K	C.	0.86	20	83.	20	62 . s	29	14	2.38	7.0	20
Kr		(2)				-169			(1.5)		
La	_	6.15	20			826	26	0–100	<i>"</i>	59	18
Li	C.	0.53	20	56 .	20	186	23	0	(3.5)	9.3	20
Ma M=	17	1 74		05.6	00	(2300)	25	90	7 12	4.40	90
Mg Mn	H.	1.74 7.2	20 20	25.6 23.	20 20	651 1260	24.6	20 0	7.13 8.4	4.46	20
Mo	C.	10.2	20	4	20	2620 ± 10	26	20-100	0.4	5 4.77	20
N	C.	1.026	-252.5	-		-209.86	23	-212	0.356	2.00	20
Na	C.	0.97	20	71	20	97.5	28.4	20	2.65	4.6	20
Nd]	6.9	20			840	27	0-100		79.	20
Ne	1	(1.0)				-248.67			(0.24)		
Ni	C.	8.90	20	12.8	20	1452	25.8	20	18.17	6.9	20
Ο	H.	1.426	-252.5			-218.4	22.5	-221 .8	0.22		
O ₃	Ozone					-251.					
Os	H.	22.48	20	6.1	20	2700.	25	20-100		9	20
P	Yel. H.	1.82	20	125.	0-40	44.1 590 ^{428tm}	23	9	0.654	1017	11
	Red, C. Black	2.20	20			59012	24	-21 to +7		710×10^3	0
Pb	C.	11.34	20	29.1	20	327 . 5	26.5	20	4.70	21.9	20
Pd	C.	12.0	20	11.8	20	1555.	26.2	18	16	10.8	20
Po			-		-	(1800.)				33.0	
Pr		6.5	20			940.	27	0-100		88	18
Pt	C.	21.45	20	8.9	20	1755.	26.5	20	22	10.5	20
Ra		(5.)				(960.)					
Rb		1.53	20	90.	20	38.5	28.7	0	2.18	12.5	20
Re	_					(3000)					
Rh	C.	12.5	20	8.4	20	1955 .	25	0–100	(a)	5.1	20
Rn	H.	(4.)	90		90	-71.	06	0.100	(3.25)	10	
Ru S	R.	12.2 2.07	20 20	9.1 64.	20 40	2450. 112.8	26 23	0-100 0- 30		10. 2 × 10 ²³	20 20
В	M.	1.96	20	04.	10	119.0	24	0- 30	1.18	2 × 10	20
Sa	2,7	7.7	-0			>1800.		0 00	1.10		
Sb	H.	6.684	25	11.4	20	630.5	25	20	19.5	39 .	20
Sc		(2.5)	-]	1	1200.					
Se	Gray, Trig.	4.80	25	37	40	220 .	28	0- 41	(2.2)	1.2	20
	Red, H.?	4.50	25				1				
Si	C.	2.4	20	2.8-7.3		1420.	20.7	20		85 × 10 ³	20
\mathbf{Sn}	White, Tet.	7.31	20	20.	20	231.85	26.9	18	(7.)	11.4	20
	Gray, C.?	5.750	20	5.	-163 to		25.6	20			
	1	(l	I	-18	Į.	l	I	ł	l l	l

READY REFERENCE TABLES

THE CRYSTALLINE STATE.—(Continued)

Chem. symb.	Crystal system	d	t	A	at t°	t_F	(C _p at t°	L_F	A	l t
Sr		2.6				800.			1	23.	20
Ta	C.	16.6		7	20	2850.	27	20	•	15	20
Te	α Met. H.?	6.24	20	16.8	40	452.	25	20	3.9	$ \begin{array}{c c} [5.8 - 33 \\ \times 10^{2}] \end{array} $	
	<i>в</i> Н.?	6.00	20							_	
Th	C.	11.2				1845.	26.8	0-100	1	18.	20
Ti	C.	4.5	20			1800.	29	0-100	1	3	20
Tl	Tet.	11.85	20	28	20	303.5	26.6	20	6.15	18.1	20
f v		18.7		1		<1850.	28	0-100		60.	20
\mathbf{v}	C.	5.96				1710.	24.6	0-100			
\mathbf{w}	C.	19.3		4	20	3370.	26	20-100		5.48	20
Xe	1	(2.7)		1		-140.			(2.05)		
Yt	ĺ	5.51				149o.			1	İ	
$\mathbf{Z}\mathbf{n}$	H.	7.140	20	33	20	419.43	25.3	20	7.1	6	20
Zr	C.	6.4	20			1700.	25.2	0-100	1	170.	0
85						(470.)			1		
87						(23.)			1	I	

CHEMICAL COMPOUNDS

33-TABLE

Compiled with the cooperation of Raleigh Gilchrist, F. W. Smithers and Edward Wichers, Bureau of Standards, Washington D. C.; J. A. Almquist, J. M. Braham and E. W. Guernsey, Fixed Nitrogen Laboratory, Washington, D. C.; H. E. Merwin, H. S. Roberts, R. B. Sosman and E. G. Zies, Geophysical Laboratory, Washington, D. C.; John C. W. Frazer, F. O. Rice and H. C. Urey, Johns Hopkins Univ., Baltimore, Md., Robert D. Coghill, Florence Fenwick, Donald M. Hetler, Norman W. Krase and Hugh M. Spencer, Yale Univ., New Haven, Conn. The list of minerals was supplied by E. T. Wherry, Bureau of Chemistry, Washington, D. C.

General index number	Formula	Molecular weight (I. C. T. atomic weights, v. p. 43)	Crystal system	Normal melting point, °C	Specific gravity 20°/4° (or at other indicated temperature)	Refractive index find ing number, v. p. 165
1	H ₂ O			0 .	0.917°	203
				· ·	1. 0.9982	8
2	H ₂ O ₂	34.0154		- 1.7	1.643 ₄ -4.45 l. 1.442	16
3	H ₂ O ₂ .2H ₂ O	70.0462		- 51	1. 1. 112	10
4	HF	20.0077		- 83	1. 0.98813.6	
5	Cl ₂ .8H ₂ O	215.039	R.	d. 9.6	1.23	
6	ClO ₂	67.4580		- 76		
7	Cl ₂ O	86.9160		- 20?		
7.1	Cl ₂ O ₆	166.916		- 1	1.65	
8	Cl ₂ O ₇	182.916				
9	HC1	36.4657		-111	l. 1.194-85.8	3
. 10	HCl.H₂O	54.4811		- 15.35	1.48	
11	HCl.2H ₂ O	72.4965		- 17.7	l. 1.4648.3	
12	HCl.3H₂O	92.6119		-24.4		
13	HClO4	100.466		-112	1. 1.768	
14	HClO ₄ .H ₂ O	118.481		50	1.88	
					l. 1.776 ₄ 50	
15	HClO4.2H2O	136.497		- 17.8	· ·	
16	HClO ₄ .3H ₂ O	154.512		$-43.2(\alpha)$		
				- 37 (β)		
17	HBr	80.9237		- 86	l. 2.16-68	5
18	HBr.2H ₂ O.	116.955		- 11	2.11-15	
19	HBr.3H ₂ O.	134.970		- 47.5		
20	HBr.4H ₂ O.	152.985		- 55.8		
21	HBrO	96.9237		00.0	-	
22	HBrO ₂	128.924		d. 100		
23	BrF ₃	136.916	1	5		
24	IO ₂	158.932	ł	d. 130	4.2_{10}^{10}	
25	I ₂ O ₅	333.864		d. 300	4.7994	
26	HI	127.940		- 50.8	1. 2.847-4.7	27
27	HI.2H ₂ O	145.955	1	- 43	2.01.	
28	HI.3H ₂ O	163 970	l	- 48		
29	HI.4H ₂ O	181.985	I	- 36.5		
30	HIO:	175.940	R.	110	4.6290	
31	HIO4.	191.940		110	1.020	
32	HIO4.2H ₂ O	227.971	M. ?	d. 110		
33	I ₂ O ₆ .HIO ₂	509.804		Tr. 170		
34	IF.	221.932	ļ	8	1. 3.5	
35	ICl (α).	162.390	Ī	27 . 2	1. 3.24 ³⁴	
50	(w)	102.000	ł	21.2	3.182^{0}_{4}	
35.1	ICl (β)	162.390	R.	13.9	1. 3.2434	
0.0	ICI	022 206		00	1. 3.1824	
36	ICl ₃	233.306	R.	ca. 33	$rac{3 \cdot 11^{16}}{4 \cdot 414^{10}}$	
37	IBr	206.848	D D D D D	ca. 42		7. Y 7 Y Y
Al As Au 55 13 33	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Cs Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 8 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li I 36 83 58 81

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind
38	SO ₂	64.0650		- 72.7		15
39	SO ₃	80.0650		16.83	1. 1.923	Ì
40	S ₂ O ₇	176.130		0		Í
41	H ₂ S	34.0804]	- 82.9	1. 0.96-60	10
42	H ₂ S ₂	66.1454	l	- 88	1. 1.376	65
43	H ₂ S ₁	98.2104	ļ	- 53	l. 1.49618	
44	H ₂ S ₄	162.340		00	l. 1.71 ¹⁵	ŀ
45	H ₂ SO ₄	98.0804	İ	10.49	l. 1.834	18
						10
46	H ₂ SO ₄ .H ₂ O	116.095		8.62	1. 1.8424	1
47	H ₂ SO ₄ .2H ₂ O	134.019		- 38.9	l. 1.650 ₄	
48	H ₂ SO ₄ .4H ₂ O	170.142		- 25		
49	H ₂ SO ₅	114.080		45	1	
50	H ₂ S ₂ O ₇	178.145		35	l. 1.9 ²⁰	I
51	H ₂ S ₂ O ₈	194.145		<60		
52	SF6	146.065		- 55	1	
53	SOF ₂	86.0650		-110	1	1
54	SO ₂ F ₂	102.065		-12066mm		
55			1		l. 1.62115	50
	SCl ₂	102.981	1	– 78	1. 1.02115	56
56	SC14	173.897	1	- 30		
57	S_2Cl_2	135. 046		80	l. 1.678	61
58	SOCl ₂	118.981			l. 1.638	52
59	SO ₂ Cl ₂	134.981		- 54.1	1. 1.667	22
60	SO ₃ .SO ₂ Cl ₂	215.046		- 37.5	1. 1.837	
61	S ₂ O ₃ Cl ₄	253.962	R.	57 d.		
62	SO ₂ OHCl	116.531		- 80	l. 1.753	20
63	S ₂ Br ₂	223.962		- 46	1. 2.635	64
						0 4
64	SOBr ₂	207.897		- 50	1. 2.6818	
65	SOCIBr	163 . 439			1. 2.310	
66	SeO ₂	111.200		340 .	3.95315	
67	HSe	80.2077			1	1
68	H ₂ Se	81.2154		- 64	l. 2.12 ⁻⁴²	1
69	H ₂ SeO ₂	129.215	H.	d.	3.00445	
70	H ₂ SeO ₄	145.215	H.	58	2.9504	
••	1120004	110.210		•	1. 2.6084	.
71	H ₂ SeO ₄ .H ₂ O	161.230		25	2.6274	
11	n ₂ SeO ₄ .n ₂ O	101.200		20		Į.
	-		ŀ	00	1. 2.3564	1
72	SeF ₄	155.200		- 80		
7 3	SeF ₆	193.200	ĺ		1	
74	SeCl ₄	221.032				
75	Se ₂ Cl ₂	229.316			l. 2.90647.5	
76	SeOCl ₂	166.116		8.5	1. 2.44	
77	Se ₂ Br ₂	318.232			1. 3.60416	
78	SeOBr.	255.032		41.7	1. 3.3860	
79	H ₂ SeO ₄ .SO ₃	225.280	ļ	6.6	1	į
						l
80	H ₂ SeO ₄ .2SO ₃	305.345	1	20	ì	
81	SO ₃ .SeCl ₄	301.097		165	1	
82	TeO ₂ —Tellurite	159.500	Tet. P.		Tet. 5.66°	
					R. 5.89°	1056
83	TeO:	175.500		d.	5.0810.5	
84	H ₂ Te	129.515		- 48	1. 2.57_{4}^{-20}	ļ
85	H ₂ TeO ₄	193.515		d. 160	3.4419.2	j
86	Te(OH) ₆ (α)	229.546	C.	u. 100	3.053	l
			M.		1	
86.1	$Te(OH)_{\delta}(\beta)$	229.546	141.		3.071	
87	TeF	241.500	1			1
88	TeCl ₂	198.416	1	175		
89	TeCl4	269 . 332		214		
90	TeCl ₄ .HCl.5H ₂ O	395.875	1	- 20	1	
91	TeBr ₂	287.332	i	ca. 280		
92	TeBr ₄	447.164	[ca. 380	4.314	1
93	TeI ₄	635.228	1	259	8.40316	l
	1 -		_B			1
94	2TeO ₂ .SO ₃	399.065	R.	d. 500	4.7	_
95	NO	30.0080	l	-161	l. 1.269 ₄ ^{-160.2}	7
96	NO ₂	46.0080	1	- 9.3	l. 1.448	1

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind. finding No
97	N ₂ O	44.0160		-102.4	l. 1.226-89	1 2
98	N ₂ O ₃	76.0160		-102	l. 1.4472	
99	N ₂ O ₄	108.016	R.	30		
100	2N ₂ O ₄ .H ₂ O	234.047		5	l. 1.68218	
101	N ₄ O ₆	152.032		"	1. 1.002	•
102	NH.	17.0311		- 77.7	0.817-79	1
102	14113	17.0311		- ""		
100	TT N N TT	00.0400		.,	1. 0.607	6
103	H ₂ N.NH ₂			1.4	1. 1.0114	28
104	N ₂ H ₄ .H ₂ O			< - 40	l. 1.03 ²¹	
105	N ₃ H			- 80		
106	NH,.HN,			110		
107	2NH ₂ .H ₂ O			- 78		1
108	N ₂ H ₄ .HN ₃	75.0785		65		}
109	HNO:	63.0157	İ	- 42	l. 1.502	12
110	HNO3.H2O	81.0311		- 38		
110.1	HNO3.3H3O		1	- 18.5		
111	NH ₂ OH	33.0311		34	1.35	
		00.0011		04	l. 1.204 ^{23.5}	21
110	11 110	01 0011	-	04	1. 1.2044	21
112	H ₁ NO ₄		R.	- 34		
113	NH40H			- 77		
114	H ₅ NO ₅			- 35		İ
115	(OH) ₄ NON(OH) ₄	180.078	1	- 39		
116	NH2NO2	62.0314		72 d.		
117	NH4NO2	64.0468		d.		1
118	NH4NO1	80.0468	R.	169.6	$\alpha 1.66_4^{25}$	İ
		,			$\beta 1.725_4^{25}$	
119	NH4ONNOH	79.0625		65		
120	N ₂ H ₄ .HNO ₃	95.0625		70.7		
	11,323,222	50.0020		62.1		
121	NH4NO3.HNO2	143.063		12		İ
122	The state of the s	1	İ			
	N ₂ H ₄ .2HNO ₂	1		104		
123	NH4NO3.2HNO3	206.078		30		
124	NH ₄ NO ₃ .3NH ₃			ca 40		
125	NOF			-134		1
126	NO ₂ F	65.0080		-139		
127	NH4F.HF		R.		l. 1.211 12	l
128	N ₂ H ₄ (HF) ₂	72.0622	C.	105		1
129	NCl3	120.382			l. 1.653	1
130	NOC1	65.4660		- 64.5	l. 1.417-12	
131	NO ₂ Cl	81.4660		< - 30	1. 1.3214	ł
132	NH4Cl—Salammoniac		C.	`	1.536	145
133	N ₂ H ₄ .HCl] 0.	89	1.000	***
134	N ₂ H ₄ .2HCl	104.978	C.	198	1.42	
135	NH ₄ Cl.3NH ₃		0.	1	1.42	
136				10.7		
	NH ₄ Cl.6NH ₃			- 18	4	1
137	NH ₂ OH.HCl	69.4968	М.	151	1.67^{17}	
138	NH ₄ ClO ₄		R.	d.	1.95	489
139	N ₂ H ₄ .HClO ₃	116.513	l	exp. 80		
140	N ₂ H ₄ .HClO ₄ .2H ₂ O	168.543		132		
141	NOBr	109.924		- 55.5		
142	NOBr ₃	269.756		- 40	l. 2.637	
143	NH4Br	97.9548	C.		2.548	
144	N ₂ H ₄ .HBr	112.971	ļ	80		
145	HBr.2NH:		1			
146	NH ₄ Br.3NH ₄	149.048	R.	13.7		
147	NH ₄ Br.6NH ₂		1	- 20		
148			C.	- 20	0 549	159
	NH.I		١ ٠.		2.563	153
149	NH ₃ I ₂	270.895	l _	- 2	l. 2.4615	Ī
150	NH ₄ I ₂		R.		3.749	
151	NH4I.NH4	1				
152	N₂H₄.HI		I	exp. 127		
153	N ₂ H ₄ .2HI		}	220		
154	NI ₃ .NH ₃	411.835		d.>20	3.5	
101	1419-14113	111.000	1	u., 20	0.0	

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
155	NH ₄ I.3NH ₄	196.064	l System	- 8	<u> </u>	iniding 140
156	NH.I.4NH.	213.095	İ	- 5.1		i
157	3N ₂ H ₄ .2HI	352.020	İ	90		
158	NH4I.6NH2	247.157		28		
159	NH4IO3	192.971	R.	d. 150	3.3094	
160	NH4IO4	208.971	Tet.	exp.	3.0564	
161	2NH4IO3.H2O	403.957	Tri.	exp. 150	,	
162	3NH ₂ OH.HI	227.033		104		
163	N ₂ S ₅	188.341		11	1. 1.90148	
164	N ₄ S ₄	184.292	R.	178	2.2215	1
165	N ₂ O ₃ .2SO ₃	236.146		230	2.14	
166	NH4SH	51.1115	l			
167	(NH ₄) ₂ S	68.1426		d.		
168	NO ₂ SO ₂ H	127.081	R.	73 d.		
169	NH ₂ SO ₃ H	97.0961	R.	2 05 d.	2.0342	ĺ
170	NH4HSO4	115.112		146.9	1.78	ļ
171	SO ₂ (NH ₂) ₂	96.112	R.	92		
172	NH ₂ SO ₂ NH ₄	114.127		125		
173	N ₂ H ₄ .H ₂ SO ₄	130.127	R.	254	1.37	
174	(NH ₄) ₂ SO ₄ —Mascagnite	132.143	R.	513 d.	1.769	602
175	(NH ₂ OH) ₂ .H ₂ SO ₄	164.143	М.	170		
176	(NH ₄) ₂ S ₂ O ₂	148.208	M.	d. 150		
177	(NH ₄) ₂ S ₂ O ₅	180.208	R.	d.		
178	(NH ₄) ₂ S ₂ O ₆	196.208	M.	d. 130		
179	(NH ₄) ₂ S ₂ O ₈	228.208	M.	d. 120	1.982	543
181	NH(SO ₂ NH ₄) ₂	179.223				
182	NH(SO ₂ NH ₄) ₂	211.223	M.	357	1.965	
183	$(N_2H_4)_2.H_2SO_4$	162.174		117		
184	NH ₄ SO ₃ F	117.104		245		
185	NSe	93.2080		exp. 200		
186	$SeO_2(NO_2)_2$	203.216	_	- 13		
187	NH ₄ HSeO ₄	162.247	R.	d.	2.162	
188	(NH ₄) ₂ SeO ₄	179.278	М.	d.	2.194	686
189	(NH ₄) ₂ SeBr ₆	594.774	C.		3.326	
190	(NH ₄) ₂ TeO ₄	227.578			3.0125	
191	P ₂ O ₃	110.048	М.	22.5	2.1354	
192	P ₂ O ₄	126.048	R.?	> 100	2.53742.6	
193	P ₂ O ₆	142.048		563 var.	2.387	
194	P40	140.096		100 =	1.9124	
195	PH:	34.0471		-132.5	l. 0.746-90	4
196	P ₁ H	63.0557			1.8319	İ
197	P ₂ H ₄	66.0788			l. 1.012	1
198	P ₉ H ₂	281.231			1.9516	
199	P ₁₂ H ₆	378.334		0.5	1.8319	
200 201	H ₁ PO ₁	81.0394		35	1 400100	
201	H ₃ PO ₂	66.0471 82.0471		70 6	1.49318.8	1
202	H ₃ PO ₃			73.6	1.651 ^{21.2} 1.834 ^{18.2}	
203 204	PF _a	98.0471 88.0240		42.35 -160	1.004****	
204 205	PF.	126.024		- 100 - 83		1
205 206	POF ₃	104.024		– 83 – 68		
200 207	PCl ₁	137.398	İ	- 08 -111.8	1. 1.57440.8	47
207 208	PCls.	208.314	Tet.	-111.8 148 P.	1. 1.0/4	""
209	P ₂ Cl ₄ .	203.880	100.	- 28		
210	POCI.	153.398	l	1.25	1. 1.675	25
211	P ₂ O ₂ Cl ₄ .	251.880		< - 50	l. 1.58 ⁷	20
212	PH.Cl.	70.5128		2846 atm.	1. 1.00	
213	PF ₂ Cl ₂	158.940		2 0		
214	PBr ₁	270.772		- 40	l. 2.85245	62
215	PBr	430.604	R.	-0		02
216	POBr.	286.772	•••	56	2.822	
217	PH ₄ Br	114.971		00	3.022	
218	POCl ₂ Br	197.856		13	1. 2.104	
	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80			-0		

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
219	POCIBr ₂	242.314	<u> </u>	30	1. 2.4560	
220	PI3	411.820	H.	61		
221	P ₂ I ₄	569.776	Tri.	110		ĺ
222	PH.I	161.987				
223	P ₂ S ₂	158.243		290		.
224	P ₂ S ₅	222.373	1	276	2.03	
225	P ₂ S ₆	285.462		298		j
226	P.S	220.291		172.5	2.03^{17}	
227	P ₄ S ₇	348.551	1	310	2.1917	
228	P ₆ S ₁₀	444.746		290		
229	P2O2S1	190.243		300		1
230	P4O ₆ S ₄	348.356		102		i
231	PSF ₂	120.089		3.87.6at.		
232	PSCls	169.463	Į	- 35	l. 1.635	193
233	PS2Cl5	272.444		<- 17		
234	PSBr:	302.837		38	2.8517	
235	P.SBr.	573.609	1	- 5		
236	P ₂ S ₂ Br ₄	477.907			l. 2.26217	
237	PSCl ₂ Br	213.921		- 30	l. 2.12°	
238	PSClBr ₂	258.379	I	- 60	l. 2.48°	
239	P ₂ SI ₂	347.977	1	75		
240	P ₂ N ₅	163.112			2.5118	
241	NH ₄ H ₂ PO ₂	83.0782		100	2.01	
242	NH ₄ H ₂ PO ₄	99.0782		ca, 123		
243	NH ₄ H ₂ PO ₄	115.078	Tet.	CG. 120	1.803	250
244	N ₂ H ₄ .H ₂ PO ₃ .	114.094	100.	36	1.000	250
245	N ₂ H ₄ .H ₂ PO ₄	130.094		82		- 1
246	(NH ₄) ₂ HPO ₄	118.091		02	1.619	
247	(N ₂ H ₄)H ₄ P ₂ O ₆	194.126		152	1.019	l
248	(NH ₄) ₂ H ₂ P ₂ O ₆	196.141		170		
249	N ₂ H ₄ (H ₂ PO ₃) ₂	196.141		82		
250	P ₃ N ₃ Cl ₆	347.844	R.		1.00	
		463.792	n.	114	1.98	
251 252	P ₄ N ₄ Cl ₈	579.740	1	123.5	2.1824	
	PsN sCl ₁₀			41		
253	P ₆ N ₆ Cl ₁₂	695.688	i	91		
254	P ₂ N ₇ Cl ₂	603.322	ļ	237.5		
255	P ₇ N ₇ Cl ₁₄	811.636	.	< - 18		
256	PNBr ₂	204.864	R.	190	1 4 7014 5	
257	PS ₃ NH ₄	145.258			1. 1.7816.5	
258	As ₂ O ₃	197.920	_	275	3.71	
259	As ₂ O ₃ —Arsenite	197.920	C.		3.8654	
260	As ₂ O ₃ —Arsenolite	197.920	C.		3.86	160
261	As ₂ O ₃ —Claudetite	197.920	M.	315	4.15	986
262	As ₂ O ₆	229.920			4.086	
263	AsH ₂	77.9831		-113.5		j
264	AsF ₃	131.960			1. 2.6664	
265	AsF ₅	169.960		- 80		
266	AsCl ₃	181 . 334		- 18	l. 2.163	191
267	AsCl	252 . 250		ca 40		
268	AsBr:	314.708		32.8	1. 3.540 ₄ 25	
269	AsIa	455.756		146	4.39_4^{18}	1
270	AsI ₅	709 . 620		76	3.93	
271	As ₂ S ₂ —Realgar	214.050	М.	307 (β)	$\alpha \ 3.506^{19}$	1067
			Λ	Tr. 267	$\beta \ 3.254^{19}$	
272	As ₂ S ₃ —Orpiment	246.115	М.	300	3.43	1071
	 			Tr. 170		
273	As ₄ S ₃	396.035			3.6010	
274	2AsSCl.As ₂ S ₃	531.081		120		!
275	2AsI ₃ .SI ₆	1705.17		72		
276	NH4H2AsO4	159.014	Tet.		2.3110.1	283
277	(NH ₄) ₂ HA ₈ O ₄	176.045	M.		1.989	
278	SbO ₂ —Cervantite	153.770	C.		4.07	174
279	Sb ₂ O ₃ —Valentinite	291.540	R.	656	5.67	1024
g Al As Au 2 55 13 83	· · · · · · · · · · · · · · · · · · ·	Co Cr Cs Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I h 73 30 68 6 26	FKLLLL

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind
280	Sb ₂ O ₃ —Senarmontite	291.540	C.		5.2	178
281	Sb ₂ O ₅	323.540	1		3.78	
282	SbH ₁	124.793	1	- 88	l. 2.26-26	
283	SbF	178.770	R. ?	292	4.37920.9	
284	SbF.	216.770		7	1. 2.99022.8	
285	SbF ₄ .2SbF ₄	574.310		390	4.18821	
286	SbCl.	228.144		73.4	3.1404	
287	SbCl ₄	299.060	1	2.8	l. 2.336	58
288			1		1. 2.330	1 30
	SbOC1	173.228	1 24 1	170 d.	5 014	
289	Sb ₄ O ₄ Cl ₂	637.996	M.		5.014	
290	SbF ₂ Cl ₃	266.144		55		
291	SbBr ₃	361.518	1	96.6	4.14823	
					1. 3.8454	
292	SbI ₃	502 . 566	Trig. M. R.	167	M. 4.76822	
	•	•	1	Tr. 114	Trig. 4.84826	
	1			(R. to Trig.)		
				Tr. 125		į.
			1	(M. to Trig.)		
293	SbI ₄	756.430	1	79		
294	SbF _a I	343.702			1	
				ca. 80		
295	(SbF ₆) ₂ I	560.472	_	ca. 115		4
296	Sb ₂ S ₃ —Stibnite	339.735	R.	550	4.64	1032
					red 4.120°	
					gray 4.284°	
					black 4.652°	
297	Sb ₂ (SO ₄) ₃	531.735			3.6254	
298	Sb ₂ O ₃ .2Sb ₂ S ₃ —Kermesite	971.010	М.		4.6	1073
299	SbF ₄ S	248.835	1	230		
300	SbSe	200.970	i	542		
301	Sb ₂ Se ₃ .	481.140		611		
		682.110	1			
302	SbS ₃ e ₄			605		
303	Sb Se	883.080	1	590		
304	Sb ₂ Te ₂	626.040		629		
305	BiO	225.000	1		7.5	
306	BiO ₂	241.000			5.6	
306.1	BiO ₂ .2H ₂ O	277.031		d. 110	5.6	
307	Bi ₂ O ₃ (I)	466.000	R.	820	8.9	
308	Bi ₂ O ₂ (II)	466.000	1	Tr. 704	8.20	
309	Bi ₂ O ₂ (III)	466.000	R.	860	8.5	
310	Bi ₂ O ₃ .3H ₂ O—Bismite	520.046	R.	d. 415	4.36	393
311	Bi ₂ O ₄	498.000	10.	u. 410	1	000
	1			J 100	5.10	
312	HBiO ₁	258.008]	d. 1 20	5.75	
313	BiF ₃	266.000	l		5.32	
314	BiOF	244.000			7.5	
315	BiCl	244.458	1	320		
316	BiCl ₂	315.374]]	230	4.7	1
317	BiCl ₄	350.832		225		1
318	BiOCl	260.458	1		7.72	
319	BiBr	288.916	1	287		
320	BiBr ₃	448.748	i	218	5.7	
321	BiOBr	304.916		-10	8.08	
322	BiI.	589.796	н.	439	5.7	
323	BiOI	351.932	R.	100	7.92	
	1		n.	405	1	
324	BiS	241.065	_	685	7.7	1
325	Bi ₂ S ₃ —Bismuthinite	514.195	R.		7.39	1
326	BiSe	288.200	1 1	625		1
327	Bi ₂ Se ₃ —Guanajuatite	655.600	R.	710	6.82	ł
328	Bi ₂ Te ₂	800.500	+ 1	573	7.7	1
329	Bi ₂ TeO ₆ .2H ₂ O—Montanite	677.531	1		3.79	1002
330	Bi ₂ Te ₂ S—Tetradymite	705.065	R.		7.5	
331	Bi(NO ₂) ₂ .5H ₂ O.	485.101	Tri.	d. 30	2.83	1
332	Bi(NO ₂) ₁ .6H ₂ O	503.116	****	u. 00	2.76	1
333		304.024	1		3.23	
000	BiPO ₄	JU4.U24	M.		ე ა. 4ა	l .

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{26}	Ref. inc
334	BiAsO ₄	347.960	M.	i i	7.14	<u> </u>
335	Bi ₂ AsH ₂ O ₈ —Atelestite	831.975	M.		6.4	1009
336	5Bi ₂ O ₃ .2As ₂ O ₃ .9H ₂ O?—Rhagite	2887.98			6.82	
337	CO	28.0000	1	-207	1. 0.8138_4^{-195}	
338	CO ₂	44.0000		- 56,66.2at.	1.53-70	ĺ
00 0			İ	00,0	l. 1.101-17	
339	C ₂ O ₂	68.0000		-107	1.1140	23
	Compounds of C with ele	ements of key	numbers 2	to 15 in C-Table, p.	176	!
340	SiO ₂ —Cristobalite	60.0600	C. Tet. ?	1710	2.32	228
341	SiO ₂ —Lechatelierite	60.0600			2.20	24
342	SiO ₂ —Quartz	60.0600	Trig.	<1470 m.	2.651	267
343	SiO ₂ —Tridymite	60.0600	R.	1670	2.26	463
344	SiO ₂ .H ₂ O—Opal	60.0600			2.1 to 2.3	69, 82
345	SiH4.	32.0908	1	-185	l. 0.68 ⁻¹⁸⁵	00, 02
346	Si ₂ H ₆	62.1662		-132.5	l. 0.69 ⁻²⁵	
347	Si ₂ H ₆	92.2416		-102.5 -117	1. 0.7250	
				93.5		
348	Si_4H_{10}	122.317			1. 0.79	
349	Si ₂ H ₆ O	78.1662	1	-144	l. 0.881 ⁻⁸⁰	
350	SiF ₄	104.060	1	- 77		
351	SiHF ₃	86.0677	İ	ca110		
352	SiCl4	169.892	İ	- 70	l. 1.483	192
353	Si ₂ Cl ₆	268 . 868		- 1	l. 1.58°	
354	Si ₃ Cl ₈	367 . 844		- 67		
357	Si ₄ Cl ₁₀	466.820				
358	Si ₆ Cl ₁₂	565.796				İ
359	Si ₆ Cl ₁₄	664.772		170 s. d.		1
360	Si ₂ OCl ₆	284.868		- 33		1
3 61	Si ₄ O ₄ Cl ₈	459.904	1			1
362	Si ₄ O ₃ Cl ₁₀	514.820				ì
	Si ₈ O ₁₀ Cl ₁₂	809.976				
363	1 * ·· · · · · · · · · · · · · · · · · ·			110	1 1 145-118	-
364	SiH ₃ Cl	66.5411		-118	l. 1.145 ₄ -118	
365	SiH ₂ Cl ₂	100.991	ļ	-122	l. 1.424-122	
366	SiHCl ₂	135.442		-134	l. 1.34	
367	SiBr ₄	347.724		5	2.8124	190
368	Si ₂ Br ₆	535.616		95		
369	Si ₂ Br ₈	723.508		133		į
370	Si ₄ Br ₁₀	911.400		185 d.		
371	SiH ₂ Br	110.999		- 94	l. 1.533°	·
372	SiH ₂ Br ₂	189.907	1	- 77	1. 2.170	
373	SiHBr	268.816		< - 60	1. 2.717	
374	Si ₂ H ₄ Br	141.075		-100		•
375	Si ₂ HBr ₄	456.708		89		
376	SiCl.Br.	214.350		< - 60		
377	SiCl ₂ Br ₂	258.808		< - 60		
378	SiClBr ₃	303.266		- 39	1. 2.432	
	, , ,				1. 2.402	- 1
379	SiI ₄	535.788		120.5		
380	Si ₂ I ₆	817.712		250	1 0 044	
381	SiHI ₂	409.864		8	l. 3.314	
382	SiCl ₃ I	261.366		< - 60		
383	SiCl ₂ I ₂	352.840		< - 60		i i
384	SiClI:	444.314		2		
385	SiBr ₂ I	394.740	i	14		
386	SiBr ₂ I ₂	441.756		38		
387	SiBrI,	488.772		ca. 53		
388	SiS	60.1250			1.853_4^{15}	
389	SiSCl ₂ .	131.041		75		
390	SiCl ₄ .SII	167.507				
391	SiSBr.	219.957		93		
392	SiN	42.0680			3.17	
		98.1440			3.64	
393	Si ₂ N ₂					
394 395	Si ₂ N ₄	140.212 99.1517			3.44	
		WU 1517			2.01517	

ndex No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. inc
396	Si ₂ H ₂ N	107.257	-J-550III		1. 0.895-106	1
397	N ₂ H ₄ .H ₂ SiF ₆ .	176.122	1	186 d.	1. 0.030	
	(NH ₄) ₂ SiF ₆ —Cryptohalite		c.	160 u.	2.01	60
398		178.138	· · ·		2.30717	68
399	SiBr ₄ .6NH ₃	449.911	İ			ı
400	SiO ₂ .P ₂ O ₅	202.108			3.1	1
401	3SiO ₂ .2Bi ₂ O ₃ —Agricolite	1112.18	М.		6	994
402	3SiO ₂ .2Bi ₂ O ₃ —Eulytite	1112.18	C.		6.11	175
403	SiC—Carborundum	40.0600	H.	> 2700	3.17	410
404	Si(CH ₂)H ₂	46.1062		-156.4	1. 0.62_4^{-57}	ļ.
405	Si(CH ₂) ₂ H ₂	60.1216		-149.9	1. 0.68_4^{-80}	
406	Si(CH ₂) ₄	88.1524		220.0	l. 0.64541.9	
407	Si(CH ₂) ₃ C ₂ H ₄	102.168			1. 0.684	
		116.183			1. 0.7510	
408	Si(C ₂ H _b) ₃ H					
409	Si(CH ₃) ₂ [(C ₂ H ₅) ₂]	116.183	j		1. 0.7168	
410	$Si(CH_3)_3C_2H_7$	116.183			1. 0.7014	
411	Si(CH ₃) ₂ [(CH ₂) ₅]	128.183			1. 0.804	439
412	$Si(CH_3)_2(C_2H_4)(C_2H_7)$	130.199	Ì		1. 0.73247.6	
413	Si(CH ₃) ₃ (C ₄ H ₉)	130.199	i		1. 0.72147	
414	Si(CH ₃) ₃ (iso-C ₄ H ₉)	130.199	1		1. 0.7174	- 1
415	Si(CH ₂) ₂ (C ₂ H ₇) ₂	144.214	į.		l. 0.74147.6	- [
416	$Si(CH_2)_2(C_2H_5)(iso-C_4H_9)$	144.214	ŀ		1. 0.743	- [
417	Si(CH ₃) ₂ (C ₂ H ₅)(180-C ₄ H ₉)	144.214	ı		l. 0.73146	
		l i	1		1. 0.7664	1000
418	Si(C ₂ H ₅) ₄	144.214				1036
419	Si(C ₃ H ₇) ₃ H	158.229			1. 0.7624	
420	$Si(C_2H_5)_3(C_2H_7)$	158.229			l. 0.77447	
421	$Si(C_2H_5)_3(C_4H_9)$	172.245	Ī		l. 0.77948	
422	$Si(C_2H_4)_3(iso-C_4H_9)$	172.245			1. 0.78148.6	
423	Si(C ₂ H ₅) ₃ (iso-C ₅ H ₁₁)	186.260	1		1. 0.7824	
424	Si(C ₆ H ₅) ₄	336.214	1	233		l
425	Si ₂ (CH ₃) ₆	146.259			1. 0.72542.5	
426	Si(OCH ₂) ₄	152.152			l. 1.028 ²²	9
				_		, ,
427	Si(C ₂ H ₆) ₃ OH	132.183	1	•	1. 0.8710	
428	$Si(C_2H_5)_3OC_2H_5$	160.214	1		1. 0.8400	
429	Si(OC ₃ H ₇) ₄	264.276	1		1. 0.915	1034
430	$Si(C_6H_6)_3OH$	276.183			1.178	
431	Si(C ₆ H ₅ CH ₂) ₃ OH	318.229	i	106 .	1.177	
432	Si ₂ O(OC ₂ H ₇) ₆	426.443	ĺ		1. 0.97742.6	1035
433	Si(CH ₃)H ₂ Cl	80.5565		-134.1	1. 0.935480	
434	Si(CH ₂)HCl ₂	115.007		- 93	1. 0.934	
435	Si(C ₂ H ₄)Cl ₂	163.473		- 80	l. 1.2394	1
		177.488				1 .
436	Si(C ₂ H ₇)Cl ₃		l		l. 1.21040	1
437	$Si(C_2H_5)_2Cl_2$	157.053	1		l. 1.1064	1
438	$Si(C_4H_9)Cl_3$	191.503			l. 1.16248.8	Î
439	Si(iso-C ₄ H ₉)Cl ₃	191.503	l		l. 1.154	ľ
440	$Si(C_2H_5)(C_4H_9)Cl_2$	185.084	1		l. 1.042	ł
441	Si(C ₆ H ₅)Cl ₃	211.473	i		l. 1.326 ^{18.8}	- 1
442	Si(C ₆ H ₅ CH ₂)Cl ₃	225.488	1		1. 1.28949.8	- 1
443	Si(C ₂ H ₅)(C ₆ H ₅)Cl ₂	205.053	l		1. 1.1594	-
444	Si(SCN)4	260.352		143.8	10 212004	i
445	TiO ₂ —Anatase	79.9000	Tet.	110.0	3.84	407
446	TiO ₂ —Brookite	79.9000	R.	10 - 1	4.17	1028
447	TiO _r —Rutile	79.9000	Tet.	1640 d.	4.26	409
448	Ti ₂ O ₃	143.800	Trig.		4.6	1
449	TiF4	123.900			2.79820.5	
450	TiCl4	189.732		- 30	l. 1.726	59
451	TiBr4	367.564	1	39		- 1
452	TiBrCl.	234 . 190	1	-		1
453	Til.	301.764	į		4.30	1
454	Til4.	555.628	l	150	1.00	1
			l	150		1
455	TiCl ₄ .SCl ₄	363.629		64		1
456	Ti ₂ N ₂	123.816	ì	2930	5.1818	- 1
457	TiP	78.9240	i		3.954	- 1
458	TiCl ₄ .PCl ₃	327.130	ı	85.5		- 1
**	Na Nb Nd Ni O Os P Pb Pd Pr Pt Rs 82 51 61 45 1 35 12 23 41 60 37 80	Rb Rh Ru 84 40 39	0 0 0 0	e Se Si Sn Sr Ta T	bTeTh TiTlTm UV	W Y Yb 2

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
459	TiCl4.POCl3	343 . 130	1 1	110		1
460	TiCl ₄ .2POCl ₃	496.528	1	107		
461	TiC	59.9000	1	3180	4.25	
462	Ti ₁₀ C ₂ N ₈	615.064	1	0.00	5.29	.
463	Ti ₂ Si.	123.860	1 1	į	4.02	
464	GeO ₂	104.380	R.	}		
465			n.	105	4.703	
	GeH ₄	76.4108	1 1	-165	l. 1.523 ⁻¹⁴²	
466	Ge ₂ H ₆	150.806	1 1	-109	l. 1.98 ⁻¹⁰⁹	
467	Ge ₃ H ₈	225.202	1	-105.6	l. 2.20 ⁻¹⁰⁶	1
468	GeCl ₄	214.212	1	- 49.5	l. 1.87425	
469	GeHCl ₃	179.762	1 1	V		
470	GeBr ₄	392 .044	1	26.1	l. 3.13222	
471	GeI4	580.108	1	144	4.322_{26}^{26}	
472	Ge(C ₂ H ₅) ₄	188.534	1	- 90	$0.991_{24.5}^{24.5}$	13
	· · · · · · · · · · · · · · · · · · ·			1 1 For TTE		<u> </u>
473	All Zr salts r	123.000	M.	2700	5.49	1012
			IVI.	2100		1012
473.1	ZrO ₂ (free from Hf)	123.000	1		5.73	
474	ZrF ₄	167.000	1 1		4.48	
475	ZrCl ₄	232.832				1
475 .5	ZrOCl ₂ .8H ₂ O	322 . 039				274.5
476	ZrO S	139.065	1		4.87	
477	4ZrO ₂ .3SO ₂	732 . 195			4.1	i
478	4ZrO ₂ .3SO ₃ .15H ₂ O	1002.43	M.		2.5	j
478.5	(NH ₄) ₂ ZrF ₇	278.034	C.			70.2
479	ZrP ₂ .	153.048	"		4.774	10.2
480	2ZrCl ₄ .PCl ₅ .	673.978	1	164.5	3.174	
			1	104.0	•	
481	ZrC ₂	115.000	1			
482	ZrSi ₂	147.120			4.8822	
483	ZrO ₂ .SiO ₂ —Zircon	183.060	Tet.	2500	4.5	382, 387
484	SnO	134 . 700	C.	· ·	6.95	
485	SnO ₂ —Cassiterite	150.700	Tet. H. R.		7.0	391
486	SnF4	194.700	1		4.78	
487	SnCl.	189.616	1	246.8		
488	SnCl4.	260.532		- 30.2	12 . 226	
489	H ₂ SnCl ₆ .6H ₂ O,	441.556		- 50.2		į
				017	1.92527	
490	SnBr ₂	278.532		215.5	5.1217	
491	SnBr ₄	438.364		31.0	l. 3.3425	
492	SnCl ₂ Br	304.990	1	- 31	l. 2.513	
493	$SnCl_2Br_2$	349.448		- 20	l. 2.8 ¹³	
494	SnClBr ₂	393.906		1	l. 3.113	
495	Sn I ₂	372.564		320		
496	SnI ₄	626.428		143.5	4.46	
497	SnCl ₂ I ₂ .	443 . 480		110.0	l. 3.29	
498	SnBr ₂ I ₂	532.396	1	50 d.		
		1			3.6	
499	SnS	150.765	1 1	880	5.080°	į.
500	SnS_2	182.830			4.5	
501	SnSe	197.900	1 1	861	6.180	1
502	SnSe ₂	277 . 100			5.0	
503	SnTe	246.200		780	6.48	
504	SnCl.2NOCl	391 . 464		180	2.6	1
505	2NH ₄ Cl.SnCl ₄	367.526	1		2.4	1
506	(NH ₄) ₂ SnBr ₄	634.274	1		3.50	
		567.872	1			
507	Sn ₄ P ₃		1	, I	5.18	
508	SnCl ₄ .POCl ₃	413.930	1	58		ĺ
509	Sn ₂ As ₃	462.280			6.56	1
510	SnC ₂ O ₄	206.700	1		3.56^{18}	1
512	$\operatorname{Sn}(\operatorname{C}_2\operatorname{H}_6)_2\ldots\ldots$	176.777	1		l. 1.654	
513	Sn(CH ₃) ₄	178.792	1 L		l. 1.314°	50
514	$\operatorname{Sn}(\operatorname{CH}_3)_2(\operatorname{C}_2\operatorname{H}_5)_2$	206.823			l. 1.232	
	$\operatorname{Sn}(C_2H_b)_4$	234.854			l. 1.18722	44
515					1. 4.401	77
515 516	$\operatorname{Sn}(C_6H_5)_2$	272.777		225.7		0

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d ₄ ²⁰	Ref. ind
517	$\operatorname{Sn}(\mathbf{C}_{6}\mathbf{H}_{5})_{4}$	426.854		226		
518	$\operatorname{Sn}_2(\operatorname{C}_2\operatorname{H}_b)_6$	411.631			l. 1.412°	
519	$\operatorname{Sn}(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2$	236.746		182		
520	$SnCl(C_2H_b)_3$	241.274			l. 1.4288	ł
521	$\operatorname{SnBr}(C_2H_4)_3$	285.732			l. 1.630	
522	SnI(CH ₂) ₃	290 .701			l. 2.10918	Ī
523	SnI(C ₂ H ₆) ₃	332.748			l. 1.833 ²²	
524	PbO-Litharge	223 . 200	Tet.	888	9.58	423
525	PbO—Massicotite	223.200	R.		8.0	1068
526	PbO ₂ —Plattnerite	239 . 200	Tet.		9.375	417
527	Pb ₃ O ₄ —Minium	685.600			9.1	
528	PbF ₂	245.200		855	8.24	
529	PbCl ₂ —Cotunnite	278.116	R.	501	5.85	1016
530	PbCl ₄	349.032	ł	- 15	l. 3.184	
531	Pb(ClO ₂) ₂	342 .116		exp. 126		
532	Pb(ClO ₃) ₂	374.116]		3.89	
533	Pb(ClO ₃) ₂ .H ₂ O	392 . 131	М.	d. 110		
534	Pb(ClO ₄) ₂ .3H ₂ O	460.162	R.	d. 100	2.6	
535	PbO.PbCl ₂ —Matlockite	501.316	Tet.	524 d.	7.21	1008
536	2PbO.PbCl ₂ —Mendipite	724 . 516	R.	693	7.08	1022
537	PbO.2PbCl ₂ —Penfieldite	779.432	H.		1	398
538	6PbO.PbCl ₂ —Lorettoite	1617.32	Tet.	\	7.6	418
539	PbCl ₂ .PbO.H ₂ O—Laurionite	519.331	R.	d. 142	6.24	1006
540	PbCl ₂ .PbO.H ₂ O—Paralaurionite	519.331	M.	d. 150	6.05	
541	2PbCl ₂ .PbO.H ₂ O—Fiedlerite	797 . 447	M.	d. 150	5.88	1005
542	PbFC1	261.658	Tet.	601		
54 3	PbBr ₂	367.032	R.	373	6.66	
544	Pb(BrO ₃) ₂ .H ₂ O	481.047	M.	d. 180	5.53	
545	PbO.PbBr ₂ .H ₂ O	608.248	R.		6.72	
546	PbClBr	322.574	1		5.74	
547	PbI	334.132	İ	d. 300		
548	PbI ₂	461.064	H.	402	6.16	
549	Pb(IO ₃) ₂	557.064	I	d. 300		
550	PbO.PbI ₂	684.264		300 d.	1	1
551	PbI ₂ .PbO.H ₂ O	702.280	R.	d. <100	6.83	
552	PbS-Galena	239.265	C.	1114	7.5	189
553	PbSO ₅ —Anglesite	303.265	R. M.	1170	6.2	981
				Tr. 864		
554	PbS ₂ O ₃	319.330		•	5.18	
556	PbS ₂ O ₆ .4H ₂ O	439.392		1	3.22	311
557	Pb ₂ O(SO ₄)—Lanarkite	526 . 465	M.	977	6.92	995
558	PbSe—Clausthalite	286.400	C.	1065	8.10	
55 9	PbSeO ₄	350.400	R.	d.	6.37	
560	PbTe—Attaite	334.700	C.	917	8.16	
561	PbN ₆	291.248		ехр. 350		
562	Pb(NO ₁) ₂	331.216	C. M.	470	4.53	162
563	2PbO.N ₂ O ₄ .1.5H ₂ O	581.439	M.	d. 100		
564	4PbO.N ₂ O ₃ .N ₂ O ₄ .2H ₂ O	1112.86	R.	d. 100		
565	2PbO.N.O.H.O	572.431	R.	d. 180	5.98	
566	(NH ₄) ₂ PbCl ₄	456.026	C.	d. 120	0.00	
567	Pb(PO ₃) ₂	365.248		800		
568	Pb ₂ P ₂ O ₇	588.448	R.	824	5.8	
569	3PbO.P ₂ O ₅	811.648		1014	•	389
000	01 00.12 20 8.111111111111111111111111111111111111			Tr. 782		
570	4PbO.P ₂ O ₈	1034.85	1	982		
571	5PbO.2P ₂ O ₄	1400.10	1	946		
571 572	8PbO.P ₂ O ₄	1927.65	1	860		
573	PbCl ₂ .3Pb ₄ (PO ₄) ₂ —Pyromorphite	2713.06	H.	1156	6.8	1000
573 574	Pb(AsO ₂) ₂	421.120	11.	1100	5.85	1000
574 575	Pb(AsO ₂) ₂	453 . 120	H.		6.42	l
	Pb ₂ As ₂ O ₇	676.320	п.	802	6.85	998
576 577	Pb ₂ (AsO ₄) ₂	899.520	1	1042	- 7.30	888
577 570		908.528		1042		
578	Pb ₈ (AsO ₄) ₂ .0.5H ₂ O	000.040	1	1	7.00	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind finding N
579	5PbO.Pb ₂ (AsO ₄) ₂	2015.52		862		
580	5PbO.Pb ₃ (AsO ₄) ₂ .0.5H ₂ O	2024.53	R.		8.04	
581	10PbO.3As ₂ O ₅ .3H ₂ O	2975.81	H.		6.86	179
582	PbHAsO ₄		М.	d. >200	5.79	1054
583	Pb(H ₂ A ₈ O ₄) ₂	1	Tri.	d. 140	4.46	963
584	Pb ₄ (PbOH) ₂ (AsO ₄) ₄	2040.26			7.08	
585	2Pb ₃ (AsO ₄) ₂ .2Pb(OH) ₂ .10H ₂ O	2461.62			7.1	
586	65PbO.21As ₂ O ₄ .12H ₂ O	19552.5		d. >200	7.10	
587	9PbO.3As ₂ O ₅ .PbCl ₂ —Mimetite	2976.68	н.	1140		ļ
				Tr. 395	7.18	399
588	4PbO.As ₂ O ₃ .2PbCl ₂ —Ecdemite	1646.15	R.		7.0	
589	3PbCl ₂ .3PbO.As ₂ O ₅ —Georgiadesite	1733.87	R.	d.	7.1	- 1
590	5PbO.2PbCl ₂ .As ₂ O ₃	1870.15	Tet.		7.14	
591	PbS.As ₂ S ₂ —Sartorite	1	R.	<700 d.	4.6	ľ
592	2PbS.As ₂ S ₃ —Dufrenoysite	i e	R.	,,,,,	5.50	
593	3PbS.2As ₂ S ₃ —Rathite	1210.03	R.		5.41	
594	4PbS.As ₂ S ₃ —Jordanite	1203.18	M.		6.10	
595	4PbS.3As ₂ S ₃ —Baumhauerite	1695.41	M.		5.38	
596	7PbS.2As ₂ S ₃ —Lengenbachite	2167.09	Tri.	1	5.8	
597	10PbS.3As ₂ S ₃ —Guitermanite	3131.00			5.94	
598	3PbO.Sb ₂ O ₅ —Monimolite	1236.68	C.		6.58	
599	PbO.PbCl ₂ .Sb ₂ O ₃ —Nadorite	1	R.		7.02	1059
600	PbS.Sb ₂ S ₃ —Zinkenite	(R.		5.3	1000
601	2PbS.Sb ₂ S ₃ —Plumosite	818.265	M.		5.62	
602	3PbS.Sb ₂ S ₃ —Dürfeldtite	1057.53	****		5.9	
603	3PbS.2Sb ₂ S ₂ —Domingite	1397.27			5.62	
604	4PbS.Sb ₂ S ₃ —Meneghinite	1296.80	R.		6.30	
605	5PbS.Sb ₂ S ₃ —Geocronite	1536.06	R.		6.4	
606	5PbS.2Sb ₂ S ₃ —Boulangerite	1	R.	!	6.18	
607	5PbS.2Sb ₂ S ₃ —Boulangerite	1875.80	R.		6.3	
608	5PbS.4Sb ₂ S ₄ —Plagionite	2555.27	M.		5.47	
609	6PbS.Sb ₂ S ₃ —Kilbrickenite	1775.33	142.	1	6.5	
610	PbS.Bi ₂ S ₃ —Galenobismutite		1		6.9	
611	2PbS.Bi ₂ S ₃ —Cosalite, Bjelkite	992.725	R.		6.6	
612	2PbS.3Bi ₂ S ₄ —Cosante, Bjerkite	2021.12	10.		6.92	
613	3PbS.Bi ₂ S ₃ —Lillianite	1231.99	R.	,	7.0	
614	4PbS.5Bi ₂ S ₃ —Rezbanyite	3528.04	10.		6.2	
615	6PbS.Bi ₂ S ₃ —Beegerite	1949.79	C.		7.27	
616	2BiSCl.PbS.Bi ₂ S ₃	1306.51	0.	500 d.	6.42	
617	PbCO ₂ —Cerussite		R.	d. 315	6.6	1001
618	PbC ₂ O ₄	295.200	10.	u. 518	5.28 .	1001
619	Pb(CH ₃) ₄	267.292	1	- 27.5	l. 1.995	42
621	$Pb(CH_2)_3(C_2H_4)$.	281.308		- 21.5	l. 1.889	43
622	$Pb(CH_2)_2(C_2H_4)_2$	295.323		}	l. 1.790	48
623	$Pb(CH_2)_3(C_2H_3)_2$	į .	1		l. 1.760 ²⁸	37
624	Pb(C ₂ H ₄) ₄ (CH ₃)	309.339	1		1. 1.7004 1. 1.7124	46
625	$Pb(CH_2)_3(CH_3)$.	309.339			l. 1.674 ²⁴	34
626	Pb(CH ₂) ₂ (<i>i</i> 80-C ₄ H ₂)	309.339	1		l. 1.668 ₄ ^{23.5}	32
627	Pb(CH ₃) ₂ (C ₂ H ₇) ₂	323.354	1		l. 1.623 ^{24.4}	35
628	Pb(C ₂ H ₄) ₄	323.354			l. 1.659 ¹⁸	51
629	Pb(CH ₂) ₂ (iso-C ₅ H ₁₁)	323.354			l. 1.524 ^{21.4}	30
630	$Pb(C_2H_4)_3(C_2H_7)$	337.369	1		1. 1.595 ₄ ^{22.5}	49.
631	$Pb(C_2H_4)_2(C_3H_7)_2$	351.385			l. 1.5294	41
632	Pb(CH ₃) ₂ (i80-C ₄ H ₉) ₂	351.385		1	l. 1.504 ^{20.6}	33
633		351.385			l. 1.530 ^{22.6}	40
634	$Pb(C_2H_5)_3(iso-C_4H_0)$ $Pb(CH_2)_2(iso-C_5H_{11})_2$	379.416			l. 1.430	31
635	$Pb(C_{14})_{2}(180-C_{4}H_{11})_{2}$ $Pb(C_{2}H_{4})_{2}(180-C_{4}H_{9})_{2}$	379.416 379.416		1	l. 1.456 ²²	36
		365.400			1. 1.480 1. 1.482	38
636	$Pb(C_2H_6)_3(C_6H_{11})$	365.400 365.400	of a		1. 1.482 1. 1.50641.8	39
637	$Pb(C_2H_b)_3(iso-C_bH_{11})$		ľ	997 7	1. 1.0004	98
638	Pb(C ₆ H ₆) ₄	515.354	ъ	227.7	A 69	072
639	Pb(CHO ₂) ₂	297.215	R.	d. 190	4.63	973
640	Pb(dl-C ₄ H ₄ O ₆)	355.231	B	1	2.5301° 3.8711°	
641	$Pb(d-C_4H_4O_6)$	355.231	R.	1	0.5/14	į.

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
642	Pb(C ₂ H ₃ O ₂) ₂	325.246		280	3.251	<u> </u>
643	Pb(C ₂ H ₃ O ₂) ₂ .3H ₂ O	379.292	М.	75	2.55	710
644	Pb(C ₂ H ₂ O ₂) ₂ .10H ₂ O	505.400	R.	22	1.689	'
645	Pb(C ₂ H ₂ O ₂) ₄	459.292	20.	180	2.2318	l
					2.204	
646	Pb(C ₂ H ₄ O ₂) ₄	515.354		132		1
647	Pb(C ₆ H ₁₁ O ₂) ₂	437.369		74		ł
648	Pb(C ₇ H ₁₃ O ₂) ₂	465.400		91.5		
649	$Pb(C_0H_{10}O_2)_2$	493.431		84.5		
650	Pb(C ₉ H ₁₇ O ₂) ₂	521.416		95		
651	Pb(C ₁₀ H ₁₉ O ₂) ₂	549.493		100		
652	Pb(C ₁₂ H ₂₂ O ₂) ₂	605.554		104		
653	Pb(C ₁₄ H ₂₇ O ₂) ₂	661.616		107		
						1
654	Pb(C ₁ •H ₃₁ O ₂) ₂	717.677		112		
655	$Pb(C_{18}H_{48}O_2)_2$	769.708		ca. 80		
656	$Pb(C_{16}H_{3\delta}O_2)_2$	773.739		125		1
657	3PbO.2CO ₂ .H ₂ O—Hydrocerusite	775.615	Н.	d. 400	6.14	395
658	PbCl ₂ .PbCO ₃ —Phosgenite	545.316	Tet.		6.13	396
659	PbBr ₂ .PbCO ₃	634 . 232	Tet.	d.	6.55	
660	Pb(OH) ₂ .PbSO ₄ .2PbCO ₄ —Leadhillite	1078.88	M.		6.5	996
	Pb(OH) ₂ .PbSO ₄ .2PbCO ₃ —Maxite	1078.88	R.	•	6.9	880
661	•					
662	Pb(SCN) ₂	323 . 346	M.		3.82	
663	PbSiO Alamosite	283.260	M.	766	6.49	992
664	2PbO.SiO₂	506 . 460		746		ŀ
665	3PbO.SiO ₂ ?	729.660		717		1
666	3PbO.2SiO ₂ —Barysilite	789.720	Trig.		6.72	394
667	SnPbS-Teallite	390.030	R.		6.4	001
	ThO ₂ —Thorianite		C.	> 0000		100
668		264.150		>2800	9.69	182
669	ThCl4	373 . 982	R.	820	4.59	
670	ThBr4	551.814			5.67	
671	ThS2	296.280		d.	6.8	Ì
672	ThOS	280.215		d.	6.44	i
673	Th(SO ₄) ₂ .9H ₂ O	602.419	м.	d.	2.77	į
-		•		u.		
674	Th(PO ₃) ₄	548.246	R.		4.08	
675	ThC ₂	256 . 150			8.96	
676	ThSi ₂	288.270			7.9616	
677	ThO ₂ .SiO ₂ —Thorite	324.210	Tet.		5.3	
678	GaCl ₂	140.636		175		
679	GaCla	176.094		75.5	l. 2.36%	
680	(NH ₄) ₂ Ga ₂ (SO ₄) ₂ .24H ₂ O	992.147		10.0	1.77	89
		l .	ا رس			OB
681	In ₂ O ₃	277.600	Trig.		7.179	ì
682	InCl ₃	221.174			4.0	
683	In(ClO ₄) ₃ .8H ₂ O	557.297		80		ì
684	InI	241.732		351		
685	InI	368.664		212	I	
-	InI ₂	495.596	[199	1	1
686		1		128	9.49-	
687	$In_2(SO_4)_3$	517.795	_		3.438	1
688	(NH ₄) ₂ InCl ₄ .H ₂ O	346 . 183	R.		2.281	1
689	$(NH_4)_2InBr_5.H_2O$	568.473	R.		3.167	1
690	(NH ₄) ₂ In(SO ₄) ₂ .12H ₂ O	541 . 154			2.011	88
691	Tl ₂ O.	424 . 800		300		"
692	T1 ₂ O ₂	456.800		759	brown 9.65 ²¹	
092	11203	400.000		759		
	l muora				black 10.1942	
693	TIOH	221 . 408			1	1
694	T1(OH) ₃	255 . 423		>340	1	1
695	TIF	223.400			1	1
696	TICI	239.858		43 o	7.00	
	TiCl ₃ .4H ₂ O.	382.836	1	37	1	1
697	l ·		1	91	1	1
698	TIClO ₃	287.858			5.0479	1
699	T1ClO4	303.858]	501	4.89	
700	T1Br	284.316		460	7.55747.8	
701	TlBr ₃ .4H ₂ O	516.210		40	1.00.1	1
					1	4
702	TlBr ₂ Cl.4H ₂ O	471.752		40 d.		1
703	TII	331.332		440	$7.09^{14.7}_{4}$	
***	Na Nb Nd Ni O Ou P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80	Rb Rh Ru 84 40 39	0 0 0 0	Se Se Si Sa Sr Ta	The Th Till Time UV	W Y Yb Zi 48 57 71 2

Index No.	Formula	Mol. wt.	Crystal system	M . P.	d_4^{20}	Ref. ind.
704	Tl ₂ S	440.865		448	8.0	
705	Tl ₂ S ₆	569.125		125		
706	T1.S7	185.966		127		
707	Tl ₂ SO ₄	504.865	R.	632		975
708	Tl ₂ S ₂ O ₆	568.930	M.		5.57	
		301.473		120 d.	0.01	
709	TiHSO ₄					
710	Tl ₂ Se	488.000		340		
711	Tl ₂ Se.Tl ₂ Se ₃	1134 . 40		338		
712	Tl₂SeO₄	552 . 000	R.		6.875	991
713	Tl ₂ Te	536.300		412		
714	Tl.TeO4	600.300			5.712	
715	TIN.	246.424		334		
716	TINO.	266.408	γR.	206	$5.556_4^{21.4}$	1053
710	111.03	200.100	β Trig.	Tr. 75 (γ to β)	0.0004	1000
			αC.	Tr. 145 (β to α)		j
717	(NH ₄),TlCl ₄ .2H ₂ O	507.295		1 111 110 (11 11 11)	2.389	l
	Tl.PO4.	708.224			6.89	
718						
719	Tl ₄ P ₂ O ₇	991.648	M.	>120	6.786	
72 0	TlH ₂ PO ₂	269.439	M .	190		ł
72 1	TlH ₂ PO ₄	301 . 439	M .	190	4.723	
72 2	Tl ₂ H ₂ P ₂ O ₇	584.863		270		
72 3	Tl ₂ S.As ₂ S ₃ —Lorandite	686.980	M.		5.53	1072
724	TlSbAs,S.—Vrbaite	636.415	R.	İ	5.30	
725		468.800	10.	1	7.11	
	Tl ₂ CO ₃			110		
72 6	$ \operatorname{Tl}(C_2H_3O_2)\dots$	263.423	ļ	110	3.68	
					1. 3.9	
72 7	T1(CHO ₂) ₃	339.423	M.	95		
72 8	$ \operatorname{Tl}(C_2H_3O_2) $	277.439		140	2.8	
729	Tl(d-C ₄ H ₅ O ₆)	353.439	R.	1	3.496	
730	Tl(dl-C ₄ H ₅ O ₆)	353.439	Tri.		3.494	
		362.446	Tri.		3.518	
731	Tl(meso-C ₄ H ₅ O ₆).0.5H ₂ O		111.		9.919	
732	$\left \text{TlH}(C_2H_3O_2)_2, \dots \right $	323 . 454		64		
733	$ \operatorname{Tl}_2(d-\operatorname{C}_4\operatorname{H}_4\operatorname{O}_6) \dots $	556 . 83 1	Trig.		4.80	558
734	$Tl_2(meso-C_4H_4O_6)$	556 . 831	Tri.		5.110	899
735	Tl ₂ (dl-C ₄ H ₄ O ₆)	556.831	M.	165	4.66	957
736	Tl ₂ (d-C ₄ H ₄ O ₆).0.5H ₂ O	565.838	M.		4.60	
738	TlH(Cl ₂ CCO ₂) ₂	530.156	Tet.	i i	2.82218	
	,	796.904	M.		3.92318	
739	TIH(CBr ₂ CO ₂) ₂					
740	$ \text{TlOC}_{6}\text{H}_{2}(\text{NO}_{2})_{8}$ —Picrate	432.440	M. (red)		3.16447	
			Tri.		2.993_4^{28}	i
			(yellow)			
741	$T1(SbO)(d-C_4H_4O_6).H_2O$	508.216	R.		3.990	
742	TiCl.2PbCl ₂	796.090	C.	435		
743	TlGa(SO ₄) ₂ .12H ₂ O	682 . 435		100	2.477	110
	ZnO—Zincite	81.3800	H.	>1800	5.606	392
744			п.	>1800		392
745	ZnO	81.3800	_	i	5.47	
746	Zn(OH) ₂	99.3954	R.	d. 125	3 .053	1
747	ZnF ₂	103.380	M. Tri. ?	872	4.84_4^{15}	İ
748	ZnF ₂ .4H ₂ O	175.442	R.	Tr. 100	2.5354	
749	ZnCl ₂	136.296	C.	365	2.91_4^{25}	
750	Zn(ClO ₂) ₂ .4H ₂ O	304.357			2.15	
751	Zn(ClO ₄) ₂ .6H ₂ O	372.388		004	2.15	1
752	ZnBr ₂	225.212	R.	394	4.219	
753	Zn I ₂	319.244	C.	446	$4.666_4^{14.2}$	1
754	Zn(IO ₃) ₂	415.244		d.	4.98	ļ
755	ZnS(\alpha)—Würzite	97 . 4450	H.	1850 150at.	4.087	404
756	ZnS(β)—Sphalerite	97.4450	C.	Tr. 1020	4.10225	187
757	ZnSO ₄ —Zinkosite	161 . 445	R.	d. 740	3.744	860
			1	d. 238		500
758	ZnSO ₄ .H ₂ O	179.460	1 34		3.284	1
759	ZnSO ₄ .6H ₂ O	269.537	M.	Tr. 70.0	2.0724	
760	ZnSO ₄ .7H ₂ O—Goslarite	287 . 553	R.	Tr. 39.0	1.97	490
761	ZnS ₂ O ₆ .6H ₂ O	333 . 602	Tri.		1.915	
762	ZnSe	144.580	H.		5.42_4^{15}	188.1
		Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 4	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li L 36 53 58 81 7

Index No.	· Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. inc
763	ZnSeO ₄ .5H ₂ O	298.657	Tri.	d. >50	2.591	1
764	ZnSeO ₄ .6H ₃ O	316.672	Tet.	d.	2.325	252
765	ZnTe	192.880	C.	1238.5	5.544	188.2
			l C.		0.044	100.4
766	Zn(NO ₃) ₂	189.396		44.07	ł	
767	$Zn(NO_3)_2.3H_2O$	243 . 442		45.5		
768	$Z_n(NO_3)_2.6H_2O$	297.488	Tet.	36.4	2.0654	İ
769	ZnCl ₂ .NH ₃	153.377				
770	ZnCl ₂ .2NH ₃	170.358	R.	210.8	ĺ	.
771	ZnCl ₂ .2NH ₄ Cl	243.290	R.		1.82	- 1
772	Zn(ClO ₂) ₂ .4NH ₃	300.420		exp. 205	1.84	
773	ZnBr,2NH,Br	421.122		CAP. 200	2.625	1
				100		
774	Zn(BrO ₃) ₂ .4NH ₃	389.336		exp. 169	2.27	1
775	Zn(IO ₃) ₂ .4NH ₈	483.368		exp. 215	2.82	
776	ZnSO ₄ .(NH ₄) ₂ SO ₄	293.588	1		2.25	
777	ZnSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O	401.680	M.	d.	1.931	516
778	$Zn(SeO_4).(NH_4)_2SO_4.6H_2O$	495.950	М.		2.20	620
779	Zn.P.	258.188	C.	>420	4.554	020
780	Zn ₂ (PO ₄) ₂	386.188	R.	900	3.9984	
781	Zn ₃ (PO ₄) ₂ .4H ₂ O—α Hopeite	458.250	R.	Tr. >105	3.04	734
782	Zn ₂ (PO ₄) ₂ .4H ₂ O—β Hopeite	458.250	R.	Tr. >140	3.03	720
783	Zn ₃ (PO ₄) ₂ .4H ₂ O—Parahopeite	458.250	Tri.	Tr. >163	ı	793
784	ZnH ₄ (PO ₄) ₂ .2H ₂ O	295.490	Tri.	100 d.	İ	
785	Zn ₂ (OH)PO ₄ —Tarbuttite	242.792	Tri.		4.18	898
		539.630	M.	4 100	3.14	
786	$Zn_3(PO_4)_2.Zn(OH)_2.3H_2O$ —Spencerite			d. 100		755
787	Zn ₂ P ₃ S ₆	385.198	Н.		2.2	
788	ZnAs ₂	215.300		771		
789	Zn ₁ As ₂	346.060	C.	1015		
790	Zn ₂ As ₂ O ₇	392.680			4.7014	
791	Zn ₃ As ₂ O ₉	474.060	R.		4.9134	1
		618.183	M.	d. 100	3.30915	001
792	Zn ₂ (AsO ₄) ₂ .8H ₂ O—Koettigite					881
79 3	4ZnO.As ₂ O ₄ .H ₂ O—Adamite	573 . 455	R.	d. >100	4.345	918
794	ZnCOSmithsonite	125.380	Trig.	d. 300	4.44	369
795	ZnC ₂ O ₄	153.380			$2.58_4^{17.5}$	
796	ZnC ₂ O ₄ .2H ₂ O	189.411		d. 100	2.562	1
797	Zn(CH ₂) ₂	95.4262		- 40	l. 1.38610	İ
798	$Z_{\rm n}(C_2H_4)_2$.	123.457		- 28	l. 1.18218	İ
			1	- 20	1. 1.162-	
799	Zn(C ₂ H ₇) ₂	151.488				-
800	Zn(iso-C ₅ H ₁₁) ₂	207.549			l. 1.022°	1
801	Zn(CHO ₂) ₂	155.395			2.36	
802	Zn(CHO ₂) ₂ .2H ₂ O	191.426	М.		2.205	
803	$Zn(C_2H_2O_2)_2$	183.426		142	1.840	
804	Zn(C ₂ H ₂ O ₂) ₂ ,2H ₂ O	219.457	М.	237	1.735	518
	1 - 1 - 7 - 7 - 1			201		010
805	Zn(LC ₄ H ₅ O ₅) ₂ .2H ₂ O—L-Malate	367.488	Tet.		1.70120	
806	Zn(C ₂ H ₇ CO ₂) ₂	239 . 488	M.			535
807	5ZnO.2CO ₂ .3H ₂ O—Hydrozincite	548.947	M. ?		3.7	920
808	Zn(CH2SO2)2.3H2O—Ethane disulfonate	307.587	Tri.		2.043	
809	ZnC ₁₀ H ₆ O ₆ S ₂ .6H ₂ O-1, 5-Naphthalene					
550	disulfonate	459.649	М.		1.793	791
010			R.	4 800	1.750	'61
810	Zn(CN) ₂	117.396	n.	d. 800	0.50	
811	ZnO.SiO ₂	141 . 440		1437	3.52	
					l. 3.86 gls	
812	2ZnO.SiO ₂ —Willemite	222 . 820	Trig.	1509	3.9	341
813	2ZnO.SiO ₂ .H ₂ O—Calamine	240.835	R.		3.45	780
814	ZnSiF ₄ .6H ₂ O.	315.532	H.		2.104	209
	1 -		11.			208
815	ZnSiS	125.505		1	3.41	
816	ZnO.TiO ₂	161.280		1	3.17	
817	ZnO.3TiO ₂	321.080		1	4.92_4^{15}	1
818	3ZnO.2TiO ₂	403.940			3.83	
819	4ZnO.5TiO ₂	725.020			3.6849	
	· - !		M	d 190	1 7	771
820	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	774 . 402	M.	d. 120	3.720	771
821	CdO	128.410	C.		8.15	
822	Cd ₂ O	240.820		d.	8.1924	
82 3	Cd(OH)2	146.425	Trig.	d. 300	4.79_4^{15}	
Ma Mo N	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80	Rb Rh Ru 84 40 39		So Se Si Sn Sr Ta 7 56 9 18 22 78 52 6		7 W Y Yb Z 0 48 57 71 2

			system		$d_{\mathbf{i}}^{\mathbf{i}}$	finding No
824	CdF ₂	150.410	i C.	1100	6.64	i
825	CdCl ₂	183.326	C.	568	4.047_4^{25}	1
826	CdCl, 2.5H,O	228.364	М.	Tr. 34	3.327	829
827	Cd(ClO ₃) ₂ .2H ₂ O	315.357		80		
828	CdCl ₂ .CdO.H ₂ O	329.751	H.	d. 280	4.56_4^{16}	
829	CdBr ₂	272.242		583	5.192^{25}_{4}	i
830	Cd(BrO ₃) ₂ .2H ₂ O	404.273	R.	000	3.758	
	CdO.CdBr ₂ .H ₂ O	418.667	10.		4.874	Ì
831		ı	H.	200	5.670 ³⁰	
832	$CdI_2(\alpha)$	366.274 366.274	11.	388	5.305 ²⁰	ľ
832.1	CdI ₂ (β)		!			1
833	Cd(IO ₃) ₂	462.274		m 100	6.48	
834	Cd(IO ₃) ₂ .H ₂ O	480.289		Tr. 160	6.43	400
835	CdS—Greenockite	144 . 475	H.	1750 100 at.	4.820	406
836	CdSO ₄	208.475	R.	1000	4.6914	
837	CdSO ₄ .H ₂ O	226 . 490	М.	Tr. 108	3.786	
838	CdSO ₄ .2.66H ₂ O	256.583	M.	Tr. 41.5	3.090	688
839	CdSO ₄ .7H ₂ O	334.583	M .	Tr. 4	2.48	
840	CdS ₂ O ₆ .6H ₂ O	380.632	Tri.	d.	2.272	ł
841	CdSe	191.610	H.		5.81^{15}_{4}	
842	CdSeO4.2H2O	291.641	R.	d. 100	3.632	
843	CdTe	239.910	C.	1041	6.20^{15}	
844	Cd(NO ₃) ₂	236.426	1	350		1
845	Cd(NO ₂) ₂ .4H ₂ O	308.488		59.4	2.455_4^{17}	1
846	CdCl ₂ .NH ₄ Cl	236.823	R.		2.93	1
847	CdCl ₂ .4NH ₄ Cl	397.313	Trig.	Tr 20	2.01	296
	CdCl ₂ .2NH ₂ OH	249.388	111g.	d. 130	2.72_{18}^{18}	200
848				exp. 184	1.78	
849	Cd(ClO ₃) ₂ .6NH ₃	381.513			2.53	
850	Cd(BrO ₃) ₂ .4NH ₃	436.366	1	exp. 192		1
852	Cd(IO ₃) ₂ .4NH ₃	530.398		exp.	3.23	
853	CdSO ₄ .(NH ₄) ₂ SO ₄	340.618		d.	3.11	
854	CdSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O	448.710	M.	d. 100	2.067	500
855	$CdSeO_4.(NH_4)_2SeO_4.2H_2O$	470.918	Tri.		3.376	
856	$CdSeO_4.(NH_4)_2SeO_4.6H_2O$	542.980	M.	d. 20	2.307	İ
857	Cd ₂ P ₂ O ₇ .2H ₂ O	434.899		900	4.965_4^{16}	
858	Cd ₁ (PO ₄) ₂	527.278		1500		
859	5CdO.2P ₂ O ₃ .5H ₂ O	1016.22	M.	d. 550	4.13_4^{15}	
860	Cd(H ₂ PO ₄) ₂ .2H ₂ O	342.520	Tri.	d. 100	2.742_4^{16}	1
861	Cd ₃ (PO ₄) ₂ .2CdHPO ₄ .4H ₂ O	1016.22	М.	d. 600	4.06	
862	3Cd ₂ (PO ₄) ₂ .CdCl ₂	1765.16			5.46_4^{15}	
863	Cd ₂ As ₂	487.150	C.		6.211	
864	Cd ₂ As ₂ O ₇	486.740		1	5.974	
865	CdHAsO ₄ .H ₂ O	270.393		d. >120	4.16416	
866	Cd(H ₂ AsO ₄) ₂ .2H ₂ O	430.392	Tri.	d. 75	3.2414	
	CdSb	234.180	1 ****	455	0.2114	
867	CdCO ₂	172.410	Trig.	d. <500	4.258	
868	CdC•O4		Trig.		3.3218	1
869		200.410		d. 340	3.32**	
870	Cd(CH ₃) ₂	142.456			2.44	
871	Cd(CHO ₂) ₂ .2H ₂ O	238.456	М.		2.44	1
872	$\operatorname{Cd}(\operatorname{C}_2\operatorname{H}_3\operatorname{O}_2)$	171 . 433		256	2.341	1
873	$Cd(C_2H_3O_2).2H_2O$	207.464	М.		2.01	
874	Cd(CH ₂ SO ₃) ₂ .2H ₂ O	336.602	Tri.		2.570	-
875	Cd(CN)2	164 . 426	1	d. >200		•
876	CdO.SiO ₂	188.470		1242	4.93	
877	2CdO.SiO ₂	316.880		1243		1
878	HgO-Montroydite	216.610	R.	d. 100	11.14	1027
879	Hg ₂ O	417.220		d. 100	9.8	
880	HgF	219.610	C. ?	570	8.73	1
881	HgF ₂	238.610	C.	645 d.	8.95	
882	HgCl—Calomel	236.068	Tet.	302	7.150	390
	HgCl2—Corrosive sublimate	271.526	R.	277	5.44	0.00
883	11gO12—Corrosive sublimate	211.020	It.	""	1. 4.44 ²⁸⁰	
884	HgClO ₃	204 000	ъ	4 050	1. 4.44	
	H FI PO	284.068	R.	d. 250		1

886 Hg(i) 887 Hg(i) 888 HgC 889 HgC 889 HgC 891 HgC 892 HgC 893 HgB 894 HgB 895 HgI 897 HgI 898 HgI 899 Hgs 900 HgS 901 HgS 902 HgS 903 HgS 904 Hgs 904 1 Hgs 904 1 Hgs 904 1 Hgs 904 1 Hgs 904 1 Hgs 904 1 Hgs 905 HgS 906 Hgs 907 HgN 908 HgC 910 HgC 911 (HgC 913 HgC 914 1 Hgs 916 1 Hgs 916 1 Hgs 916 1 Hgs 916 1 Hgs 917 HgS 918 Hg(i) 920 Hg(i) 921 Hg(i) 922 Hg(i) 922 Hg(i) 923 Hg(i) 924 Hg(i) 924 Hg(i) 925 Hg(i)	ClO ₄ .6H ₂ O. (ClO ₄) ₂ .7H ₄ O. (ClO ₄) ₂ .7H ₄ O. (ClO—Terlinguaite. Cl ₂ .2HgO. 0.2HgCl ₂ . (0.2HgCl—Eglestonite. Cl ₂ .3HgO—Kleinite. Cl ₂ .4HgO. Br. Br ₄ . Br ₅ . Br ₄ . Br ₄ . Br ₄ . Br ₅ . Br ₅ . Br ₆ . Br ₇ . Br ₈ . Br ₈ . Br ₈ . Br ₉ . Br ₉ . Br ₉ . Br ₁ . Br ₁ . Br ₁ . Br ₁ . Br ₁ . Br ₁ . Br ₂ . Br ₃ . Br ₄ . Br ₂ . Br ₃ . Br ₄ . Br ₄ . Br ₅ . Br ₄ . Br ₅ . Br ₄ . Br ₅ . Br ₅ . Br ₅ . Br ₆ . Br ₆ . Br ₆ . Br ₇	889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	M. H. M. C. H. H. R. Tet. Tet. R. C. H. H. M.	d. 150 34 d. d. d. d. d. d. d. d. d. 260 237 d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79 d. 100	4.28 2.78 8.725 red 8.3 black 8.5 6.42 8.33 7.93 9.10 7.307 6.05s 1.5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1.5.24 ²³⁵ 7.50 8.10 7.78 6.47 7.56	1070 195
887 Hgd 888 HgC 889 HgC 890 Hgd 891 HgC 892 HgC 893 HgE 894 HgE 895 HgI 897 HgI 898 HgI 899 Hgd 900 HgS 900 HgS 901 HgS 902 HgS 904 Hgd 904 1 Hgd 904 2 Hgd 904 1 Hgd 904 1 Hgd 904 1 Hgd 904 1 Hgd 904 1 Hgd 904 1 Hgd 905 HgS 906 Hgd 907 HgM 908 HgC 907 HgM 908 HgC 910 HgC 911 HgC 913 HgC 914 Hgd 914 1 Hgd 915 HgC 916 HgC 917 HgS 918 HgC 918 HgC 919 HgC 921 HgC 921 HgC 921 HgC 922 HgC 922 HgC 923 HgC 924 HgC	1ClO—Terlinguaite Cl ₂ .2HgO 0.2HgCl ₂ . 10.2HgCl—Eglestonite Cl ₂ .3HgO—Kleinite Cl ₂ .4HgO Br Br ₃ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₅ . Br ₅ . Br ₆ . Br ₇ . Br ₈ . Br ₈ . Br ₉ . Br	452.678 704.746 759.662 889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	H. M. C. H. H. R. Tet. Tet. R. C. H. R. M.	d. d. d. d. d. 260 237 d. 230 290 d. Tr. 127 259 153 d. d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	8.725 red 8.3 black 8.5 6.42 8.33 7.93 9.10 7.307 6.053 1. 5.12*40 8.73 7.70 6.283 6.271 1. 5.24*** 7.50 8.10 7.73 6.47 7.56	195
888 HgC 889 HgC 890 Hg,4 891 HgC 891 HgC 892 HgC 893 HgE 894 HgE 895 HgI 897 HgI 898 HgI 899 Hg,4 900 HgS 900 HgS 901 HgS 902 HgS 904 Hg,5 904 Hg,5 904 Hg,6 907 Hg,6 907 Hg,6 907 Hg,6 907 Hg,6 910 Hg,6 911 (Hg,6 911 Hg,6 911 Hg,6 911 Hg,6 911 Hg,6 911 Hg,6 911 Hg,6 912 Hg,6 913 Hg,6 914 Hg,6 915 Hg,6 916 Hg,6 917 Hg,8 918 Hg,6 919 Hg,6 919 Hg,6 920 Hg,6 921 Hg,6 922 Hg,6 923 Hg,6 924 Hg,6 924 Hg,6 925 Hg,6	Cl ₂ .2HgO. 0.2HgCl ₃ . 0.2HgCl—Eglestonite. Cl ₂ .3HgO—Kleinite. Cl ₂ .4HgO. Br Br ₃ . Br ₄ . Br ₄ . Br ₅ . Br ₂ . Br ₄ . Br ₂ . Br ₃ . Br ₄ . Br ₅ . Br ₅ . Br ₆ . Br ₇ . Br ₈ . Br ₈ . Br ₉ . Br ₉ . Br ₁ . Br ₁ . Br ₂ . Br ₁ . Br ₂ . Br ₂ . Br ₃ . Br ₂ . Br ₃ . Br ₄ . Br ₄ . Br ₆ . Br ₆ . Br ₆ . Br ₆ . Br ₇ . Br ₇ . Br ₁ . Br ₂ . Br ₂ . Br ₂ . Br ₃ . Br ₂ . Br ₃ . Br ₄ . Br ₃ . Br ₄ . Br ₃ . Br ₄ .	704.746 759.662 889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	H. M. C. H. H. R. Tet. Tet. R. C. H. R. M.	d. d. d. d. 260 237 d. 230 290 d. Tr. 127 259 153 d. d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	red 8.3 black 8.5 6.42 8.33 7.93 9.10 7.307 6.053 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²³⁵ 7.50 8.10 7.73 6.47 7.56	195
889 HgC 890 Hg,4 891 HgC 892 HgC 893 HgE 894 HgE 895 HgI 897 HgI 898 HgI 899 Hg,4 900 HgS 901 HgS 902 HgS 903 HgS 904 1 Hg,4 904 2 Hg,5 904 3 Hg,5 905 HgS 906 Hg,5 907 HgN 908 Hg,6 907 HgN 909 Hg(1 911 (HgC 913 HgC 911 Hg,6 914 1 Hg,1 915 HgC 914 1 Hg,1 915 HgC 916 1 Hg,6 917 HgS 918 Hg(1 919 Hg(1 920 Hg(1 921 Hg(1 922 Hg(1 922 Hg(1 923 Hg(1 924 Hg(1 924 Hg(1 925 Hg(1	0.2HgCl ₁ . g0.2HgCl—Eglestonite. Cl ₂ .3HgO—Kleinite. Cl ₂ .4HgO Br Br ₃ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₅ . Br ₅ . Br ₆ . Br ₇ . Br ₇ . Br ₈ . Br ₈ . Br ₉ . B	759.662 889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	M. C. H. H. R. Tet. Tet. R. C. H. H. R.	d. d. 260 237 d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	black 8.5 6.42 8.33 7.93 9.10 7.307 6.053 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²³⁵ 7.50 8.10 7.73 6.47 7.56	
889 HgC 890 Hg,4 891 HgC 892 HgC 893 HgE 894 HgE 895 HgI 897 HgI 898 HgI 899 Hg,4 900 HgS 901 HgS 902 HgS 903 HgS 904 1 Hg,4 904 2 Hg,5 904 3 Hg,5 905 HgS 906 Hg,5 907 HgN 908 Hg,6 907 HgN 909 Hg(1 911 (HgC 913 HgC 911 Hg,6 914 1 Hg,1 915 HgC 914 1 Hg,1 915 HgC 916 1 Hg,6 917 HgS 918 Hg(1 919 Hg(1 920 Hg(1 921 Hg(1 922 Hg(1 922 Hg(1 923 Hg(1 924 Hg(1 924 Hg(1 925 Hg(1	0.2HgCl ₁ . g0.2HgCl—Eglestonite. Cl ₂ .3HgO—Kleinite. Cl ₂ .4HgO Br Br ₃ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₅ . Br ₅ . Br ₆ . Br ₇ . Br ₇ . Br ₈ . Br ₈ . Br ₉ . B	889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	M. C. H. H. R. Tet. Tet. R. C. H. H. R.	d. 260 237 d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	black 8.5 6.42 8.33 7.93 9.10 7.307 6.053 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²³⁵ 7.50 8.10 7.73 6.47 7.56	
890 Hg.s. 891 Hg.C. 892 Hg.C. 893 Hg.E. 894 Hg.E. 895 Hg.I. 897 Hg.I. 898 Hg.I. 899 Hg.s. 900 Hg.S. 901 Hg.s. 902 Hg.s. 904 1 Hg.s. 904 2 Hg.s. 904 3 Hg.s. 905 Hg.S. 906 Hg.s. 907 Hg.S. 908 Hg.S. 909 Hg.C. 910 Hg.s. 910 Hg.s. 911 (Hg.s. 912 Hg.C. 913 Hg.C. 914 Hg.s. 915 Hg.S. 916 Hg.S. 916 Hg.S. 917 Hg.S. 918 Hg.C. 919 Hg.C. 919 Hg.C. 919 Hg.C. 921 Hg.C. 922 Hg.C. 923 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 925 Hg.C.	30.2HgCl—Eglestonite Cl ₂ .3HgO—Kleinite Cl ₂ .4HgO Br Br ₃ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₅ . Br ₆ . Br ₆ . Br ₇ . Br	889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	C. H. H. R. R. Tet. R. C. H. H. R. M.	d. 260 237 d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	6.42 8.33 7.93 9.10 7.307 6.053 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²³⁵ 7.50 8.10 7.73 6.47 7.56	
890 Hg.s. 891 Hg.C. 892 Hg.C. 893 Hg.B. 894 Hg.B. 895 Hg.B. 896 Hg.I. 897 Hg.I. 898 Hg.I. 899 Hg.s. 900 Hg.S. 901 Hg.s. 902 Hg.s. 904 1 Hg.s. 904 2 Hg.s. 904 3 Hg.s. 905 Hg.S. 906 Hg.s. 907 Hg.S. 908 Hg.S. 909 Hg.C. 910 Hg.s. 910 Hg.s. 911 (Hg.s. 912 Hg.C. 913 Hg.C. 914 Hg.s. 915 Hg.S. 916 Hg.S. 916 Hg.S. 917 Hg.S. 918 Hg.C. 919 Hg.C. 919 Hg.C. 921 Hg.C. 921 Hg.C. 922 Hg.C. 923 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 924 Hg.C. 925 Hg.C.	30.2HgCl—Eglestonite Cl ₂ .3HgO—Kleinite Cl ₂ .4HgO Br Br ₃ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₄ . Br ₅ . Br ₆ . Br ₆ . Br ₇ . Br	889.356 921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	H. H. R. R. Tet. Tet. R. C. H. H. R.	237 d. 230	8.33 7.93 9.10 7.307 6.05s 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²³⁵ 7.50 8.10 7.78 6.47 7.56	
891 HgC 892 HgC 893 HgE 894 HgE 895 HgI 897 HgI 898 HgI 899 Hgs 900 HgS 901 HgS 902 Hgs 904 Hgs 904 1 Hgs 904 2 Hgs 904 3 Hgs 904 1 Hgs 905 HgS 906 Hgs 907 HgS 907 HgS 908 HgS 907 HgS 908 HgS 909 Hg(I 911 (Hgc 913 HgC 913 HgC 914 Hgs 915 HgC 917 HgS 916 Hgs 916 Hgs 916 Hgs 916 Hgs 917 HgS 918 Hg(I 919 Hg(I 920 Hg(I 921 Hg(I 922 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I 9	Cl ₂ .3HgO—Kleinite. Cl ₂ .4HgO Br Br ₁ . Br ₂ . Br ₃ .4HgO I I I ₂ (red). I ₃ (yellow) (Cl ₂ I ₂ . S—Metacinnabarite. S (α)—Cinnabarite. S (β). SO ₄ . (S	921.356 1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	H. H. R. R. Tet. Tet. R. C. H. H. R.	237 d. 230	7.93 9.10 7.307 6.053 1. 5.12*** 8.73 7.70 6.283 6.271 1. 5.24*** 7.50 8.10 7.78 6.47 7.56	
892 HgC 893 HgE 894 HgE 895 HgE 896 HgI 897 HgI 898 HgI 899 Hgs 900 HgS 901 Hgs 902 Hgs 904 Hgs 904 Hgs 904 Hgs 905 Hgs 906 Hgs 907 HgN 908 HgN 909 HgC 910 Hgc 911 (Hgc 912 HgC 913 HgC 914 Hgs 914 Hgc 915 HgB 916 Hgs 916 HgB 916 HgB 916 HgB 916 HgB 917 HgS 918 HgC 920 HgC 921 HgC 922 HgC 923 HgC	Cl ₂ .4HgO Br Br ₁ Br ₂ .4HgO I I I ₂ (red) I ₃ (yellow) ICl ₂ I ₂ S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ SO ₄ SO ₄ Cl ₂ SO ₄ Cl ₂ SO ₄ SO ₄ Cl ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₂ SO ₄ SO ₄ I ₃ C SO ₄ SO ₄ I ₄ O (NO ₃) ₂ O ₅ SO ₄ I ₄ O (NO ₃) ₂ O ₅ SO ₄ I ₂ O ₅ SO ₄ I ₄ O	1137.97 280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	H. R. R. Tet. Tet. R. C. H. H. R.	237 d. 230	9.10 7.307 6.053 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56	411
893 HgH 894 HgH 895 HgH 896 HgI 897 HgI 898 HgI 899 Hgi 900 HgS 901 HgS 902 HgS 903 Hgs 904 1 Hgi 904 2 Hgs 904 3 Hgs 905 HgS 906 Hgs 907 HgN 908 HgN 909 Hg(I 911 (HgC 913 HgC 914 Hgcl 915 HgB 916 Hgi 917 HgS 916 NHg 916 Hgi 917 HgS 918 Hg(I 917 HgS 919 Hg(I 919 Hg(I 920 Hg(I 921 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	Br Br ₁ . Br ₂ .4HgO I I I ₂ (red) I I ₂ (yellow) (Cl ₂ I ₂ . S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ . (SO	280.526 360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	R. R. Tet. R. C. H. H. R.	d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	7.307 6.053 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56 6.416 5.925 4.785 ^{2.9} 4.3	411
894 HgE 895 HgE 896 HgI 897 HgI 898 HgI 899 Hgi 900 HgS 901 HgS 902 HgS 904 Hgi 904 2 Hgi 904 2 Hgi 904 3 Hgi 905 HgS 906 Hgi 907 HgN 909 Hg(I 911 (Hgc 912 HgC 913 HgC 914 HgC 914 HgC 915 HgC 916 NHg 917 HgS 918 HgC 919 HgC 919 HgC 911 HgC 912 HgC 913 HgC 914 HgC 915 HgC 916 NHg 916 HgC 917 HgS 918 HgC 919 HgC 920 HgC 921 HgC 922 HgC 923 HgC 924 Hg(I 924 Hg(I 925 HgC	Br ₂ .4HgO I I. I ₂ (red) I ₃ (yellow) I ₄ Cl ₂ I ₂ S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₂ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₃ SO ₄ I ₄ SO ₄ I ₄ SO ₄ I ₄ SO ₄ I ₄ SO ₄ I ₄ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₄ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₄ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₄ I ₅ SO ₅ I ₅ SO ₅ I ₅ SO ₆ SO ₆ I ₅ SO ₆ SO ₆ SO ₆ SO ₆ SO ₆	360.442 1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	R. Tet. Tet. R. C. H. H. M.	d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	6.05s 1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56 6.416 5.925 4.785 ^{2.9} 4.3	411
895 HgB 896 HgI 897 HgI 898 HgI 899 Hgs 900 HgS 901 HgS 902 HgS 903 Hgs 904 1 Hgs 904 2 Hgs 904 2 Hgs 904 3 Hgs 905 Hgs 906 Hgs 907 HgN 910 Hgs 910 Hgs 911 (Hgs 912 HgC 913 HgC 914 1 Hgs 915 HgC 916 NHg 917 HgS 916 NHg 917 HgS 918 HgC 919 HgC 919 HgC 910 Hgc 911 Hgs 912 HgC 913 HgC 914 HgC 915 HgC 916 HgB 916 HgB 916 HgB 917 HgS 918 HgC 919 HgC 919 HgC 910 Hgc 911 Hgs 912 HgC 913 HgC 914 HgC 915 HgB 916 NHg 916 HgB 917 HgS 918 HgC 919 HgC 920 HgC 921 HgC 921 HgC 922 HgC 923 HgC 924 HgC 924 HgC	Br ₂ .4HgO. I. I ₂ (red). I ₂ (yellow). aCl ₂ I ₂ . S—Metacinnabarite. S (α)—Cinnabarite. S (β). SO ₄ . aSO ₄ . aSO ₄ I ₂ . aSO ₄ Br ₄ . aSO ₄ I ₂ . SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O. SO ₄ Al ₄ O.	1226.88 327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	R. Tet. Tet. R. C. H. H. M.	d. 230 290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	1. 5.12 ³⁴⁰ 8.73 7.70 6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56 6.416 5.925 4.785 ^{3.9} 4.3	411
896 HgI 897 HgI 898 HgI 899 Hgs 900 HgS 901 HgS 902 HgS 903 Hgs 904 Hgs 904 1 Hgs 904 2 Hgs 904 3 Hgs 905 HgS 906 Hgs 907 HgN 908 HgN 910 Hgc 911 (Hgc 912 HgC 913 HgC 914 1 Hgs 914 1 Hgs 915 HgB 916 NHs 916 NHs 916 NHs 916 NHs 917 HgS 918 Hg(920 Hg(921 Hg(922 Hg(923 Hg(924 Hg(924 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(926 Hg(927	I. I. (red) I. (yellow) aCl ₂ I ₂ . S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ . aSO ₄ . aSO ₄ I ₂ . sO ₄ Br ₄ . aSO ₄ I ₂ . SO ₄ J ₂ . SO ₄ J ₂ . SO ₄ J ₂ . SO ₄ J ₄ D ₄ . SO ₄ J ₄ D ₅ O ₄ D ₅ D ₆ D ₆ D ₆ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇	327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	Tet. Tet. R. C. H. R. M.	290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	8.73 7.70 6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56 6.416 5.925 4.785 ^{2.9} 4.3	411
896 HgI 897 HgI 898 HgI 899 Hgs 900 HgS 901 HgS 902 HgS 903 Hgs 904 Hgs 904 1 Hgs 904 2 Hgs 904 3 Hgs 905 HgS 906 Hgs 907 HgN 908 HgN 910 Hgc 911 (Hgc 912 HgC 913 HgC 914 1 Hgs 914 1 Hgs 915 HgB 916 NHs 916 NHs 916 NHs 916 NHs 917 HgS 918 Hg(920 Hg(921 Hg(922 Hg(923 Hg(924 Hg(924 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(925 Hg(926 Hg(927	I. I. (red) I. (yellow) aCl ₂ I ₂ . S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ . aSO ₄ . aSO ₄ I ₂ . sO ₄ Br ₄ . aSO ₄ I ₂ . SO ₄ J ₂ . SO ₄ J ₂ . SO ₄ J ₂ . SO ₄ J ₄ D ₄ . SO ₄ J ₄ D ₅ O ₄ D ₅ D ₆ D ₆ D ₆ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇	327.542 454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	Tet. Tet. R. C. H. R. M.	290 d. Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	7.70 6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56	411
897 HgI 898 HgI 899 Hgi 900 HgS 901 HgS 901 HgS 902 HgS 904 Hgi 904 2 Hgi 904 3 Hgi 904 3 Hgi 905 Hgs 906 Hgi 907 HgN 909 Hg(I 910 Hgi 911 (Hgi 912 HgC 913 HgC 914 1 Hgi 914 1 Hgi 915 HgB 916 NHg 916 NHg 917 HgS 918 Hg(I 919 Hg(I 919 Hg(I 919 Hg(I 919 Hg(I 919 Hg(I 919 Hg(I 919 Hg(I 920 Hg(I 921 Hg(I 921 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 924 Hg(I 925 Hg(I	I ₂ (red) I ₂ (yellow) aCl ₂ I ₂ S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ aSO ₄ aSO ₄ aSO ₄ I ₂ aSO ₄ I ₂ SO ₄ I ₂ SO ₄ I ₂ SO ₄ I ₃ SO ₄ I ₂ SO ₄ I ₄ ASO ₄ I ₂ SO ₄ I ₄ ASO ₄ I ₂ SO ₄ I ₄ SO ₄ I ₄ SO ₄ I ₅ SO ₅ I ₅ SO	454.474 454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	Tet. R. C. H. H. R. M.	Tr. 127 259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	6.283 6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56	411
898 HgI. 899 Hg. 900 HgS 901 HgS 901 HgS 902 HgS 903 Hg. 904 1 Hg. 904 2 Hg. 904 3 Hg. 905 HgS 906 Hg. 907 HgN 909 Hg. 910 Hg. 911 (Hg. 912 Hg. 913 Hg. 914 1 Hg. 915 HgB 916 NHg 916 NHg 917 HgS 918 Hg. 919 Hg. 919 Hg. 910 Hg. 911 Hg. 912 Hg. 913 Hg. 914 Hg. 915 HgB 916 Hg. 916 Hg. 917 HgS 918 Hg. 920 Hg. 921 Hg. 922 Hg. 923 Hg. 924 Hg. 924 Hg. 925 Hg.	I ₂ (yellow) aCl ₂ I ₂ . S—Metacinnabarite S (α)—Cinnabarite S (β). SO ₄ . aSO ₄ . aSO ₄ . aSO ₄ I ₂ . aSO ₄ I ₂ . aSO ₄ I ₂ . SO ₄ AI ₂ . SO ₄ AI ₂ . SO ₄ AI ₂ . SO ₄ AI ₂ . SO ₄ A ₁ A ₂ O ₄ . NO ₂ . NO ₃ . NO ₂ . NO ₃ .H ₂ O ₄ O ₄ . a(NO ₃) ₃ .0.5H ₂ O ₄ . a(NO ₁) ₃ .0.5H ₂ O ₄ . a(NO ₁) ₃ .0.5H ₂ O ₄ . a(NO ₁) ₃ .0.5H ₂ O ₄ . a(NO ₁) ₃ .0.5H ₂ O ₄ . a(NO ₁) ₃ .0.5H ₂ O ₄ . a(NO ₁) ₃ .0.5H ₂ O ₄ .	454.474 726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	R. R. C. H. R. M.	259 153 d. d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	6.271 1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56 6.416 5.925 4.785 ^{2.9} 4.3	411
899 Hg.s 900 HgS 901 HgS 901 HgS 902 HgS 903 HgS 904 Hg.s 904 1 Hg.s 904 2 Hg.s 904 3 Hg.s 905 HgS 906 Hg.s 907 HgN 908 HgN 910 Hg.s 911 (Hgs 912 HgC 913 HgC 914 1 Hg.s 914 Hg.s 915 HgB 916 NHg 916 NHg 916 NHg 916 NHg 916 HgC 917 HgS 918 Hg(s 920 Hg(s 921 Hg(s 922 Hg(s 923 Hg(s 924 Hg(s) 924 Hg(s	sCl ₂ I ₂ . S—Metacinnabarite. S (α)—Cinnabarite. S (β). SO ₄ . sSO ₄ . sSO ₄ Cl ₂ . sSO ₄ Br ₄ . sSO ₄ I ₂ . SO ₄ J ₂ . SO ₄ 3HgS. sSeO ₃ . NO ₂ . NO ₃ .H ₂ O. (NO ₃) ₃ .0.5H ₂ O. s(NO) ₂ . s(NO) ₂ . s(NO) ₂ . s(NO) ₂ .	726.000 232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	R. C. H. H. R. M.	d. d. 270 d. 125 248 d. 120 180 d. d. 140 70	1. 5.24 ²⁵⁵ 7.50 8.10 7.73 6.47 7.56 6.416 5.925 4.785 ^{2.9} 4.3	411
900 HgS 901 HgS 902 HgS 903 HgS 904 Hgs 904 1 Hgs 904 2 Hgs 904 3 Hgs 905 Hgs 906 Hgs 907 HgN 908 HgN 910 Hgs 911 (HgC 912 HgC 913 HgC 914 1 Hgs 914 1 Hgs 916 NHg 916 NHg 916 1 Hgs 916 NHg 917 HgS 918 Hg((920 Hg((921 Hg((922 Hg((924 Hg((925 Hg((925 Hg((925 Hg((925 Hg((925 Hg((925 Hg((925 Hg((925 Hg((925 Hg((926 Hg((926 Hg((927	S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ "SO ₄ "SO ₄ Cl ₂ "SO ₄ Br ₄ "SO ₄ I ₂ SO ₄ J ₂ SO ₄ J ₂ SO ₄ J ₂ SO ₄ J ₄ C (NO ₂),0.5H ₂ O "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₃ "(NO) ₄ »(NO) »	232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	C. H. H. R. M.	d. d. 270 d. 125 248 d. 120 180 d. d. 140 70	7.50 8.10 7.78 6.47 7.56 6.416 5.925 4.785 ^{2.9}	411
900 HgS 901 HgS 902 HgS 903 HgS 904 Hgs 904 1 Hgs 904 2 Hgs 904 3 Hgs 905 Hgs 906 Hgs 907 HgN 908 HgN 910 Hgs 911 (HgC 913 HgC 913 HgC 914 1 Hgs 914 1 Hgs 916 NHg 916 NHg 916 NHg 916 NHg 916 HgC 917 HgS 918 Hg(C 920 Hg(C) 921 Hg(C) 922 Hg(C) 923 Hg(C) 924 Hg(C) 924 Hg(C) 924 Hg(C) 925 Hg(C)	S—Metacinnabarite S (α)—Cinnabarite S (β) SO ₄ "SO ₄ "SO ₄ Cl ₂ "SO ₄ Br ₄ "SO ₄ I ₂ SO ₄ J ₂ SO ₄ J ₂ SO ₄ J ₂ SO ₄ J ₄ C (NO ₂),0.5H ₂ O "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₂ "(NO) ₃ "(NO) ₄ »(NO) »	232.675 232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	C. H. H. R. M.	d. d. 270 d. 125 248 d. 120 180 d. d. 140 70	8.10 7.78 6.47 7.56 6.416 5.925 4.785 ^{2.9}	411
901 HgS 902 HgS 903 HgS 904 Hgs 904 11 Hgs 904 2 Hgs 904 3 Hgs 905 HgS 906 Hgs 907 HgN 909 Hg() 910 Hgs 911 (HgC 913 HgC 914 1 Hgs 914 1 Hgs 915 HgB 916 NHg 916 NHg 916 1 Hgs 916 NHg 917 HgS 918 Hg() 920 Hg() 920 Hg() 921 Hg() 922 Hg() 923 Hg() 924 Hg() 924 Hg() 925 Hg()	S (α)—Cinnabarite S (β) SO ₄ "SO ₄ "SO ₄ Cl ₂ "SO ₄ Br ₄ "SO ₄ I ₂ SO ₄ J ₂ SO ₄ J ₂ SO ₄ J ₄ Cl ₂ "SO ₄ O ₃ HgS "SeO ₃ NO ₂ NO ₃ ,H ₂ O (NO ₃) ₃ .0.5H ₂ O "(NO) ₂ "SOH) ₂ ,NH ₂ OH	232.675 232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	Н. Н. R. М.	d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	8.10 7.78 6.47 7.56 6.416 5.925 4.785 ^{2.9}	411
902 HgS 903 HgS 904 Hgs 904 1 Hgs 904 2 Hgs 904 2 Hgs 904 3 Hgs 905 HgS 906 Hgs 907 HgN 908 HgN 909 Hg(I 911 (HgC 913 HgC 913 HgC 914 1 Hgs 915 HgB 916 1 Hgs 916 1 Hgs 916 1 Hgs 917 HgS 918 Hg(I 919 Hg(I 920 Hg(I 921 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	S (\$\beta\$)	232.675 296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	H. R. M.	d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	7.78 6.47 7.56 6.416 5.925 4.785 ^{2.9}	411
903 HgS 904 Hgs 904 1 Hgs 904 2 Hgs 904 3 Hgs 905 Hgs 906 Hgs 907 HgN 908 HgN 909 Hg(I 911 (Hgc 913 HgC 914 1 Hgs 915 HgB 916 1 Hgs 916 1 Hgs 916 1 Hgs 918 Hg(I 920 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	SO ₄	296.675 497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	R. M.	d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	6.47 7.56 6.416 5.925 4.785 ^{2.9} 4.3	
904 Hg si 904 1 Hg si 904 2 Hg si 904 2 Hg si 904 3 Hg si 905 Hg Si 906 Hg si 907 Hg Ni 908 Hg Ni 910 Hg si 911 (Hg Si 911 Hg Si 912 Hg Si 914 1 Hg si 915 Hg Si 916 1 Hg si 916 1 Hg si 916 1 Hg si 917 Hg Si 918 Hg (si 920 Hg (si 921 Hg (si 922 Hg (si 923 Hg (si 924 Hg (si 925 Hg (si	#SO4. #SO4Cl1. #SO4Br4. #SO4I2. SO4.3HgS. #SeO3. NO2. NO3.H2O. (NO)2.0.5H2O. #(NO)2 #SOH)2.NH2OH	497.285 568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	M.	d. 270 d. 125 248 d. 120 180 d. d. 140 70 79	7.56 6.416 5.925 4.785 ^{2.9} 4.3	
904 1 Hgri- 904 2 Hgri- 904 2 Hgri- 904 3 Hgri- 905 HgS 906 Hgri- 907 HgN 908 HgN 909 Hg(I 911 (HgC 913 HgC 914 1 Hgri- 915 HgB 916 1 Hgri- 916 1 Hgri- 917 HgS 918 Hg(I 920 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	3SO ₄ Cl ₁ . 3SO ₄ Cl ₂ . 3SO ₄ I ₂ . 3SO ₄ I ₂ . SO ₄ .3HgS. 3SeO ₃ . NO ₂ . NO ₃ .H ₂ O. (NO ₃) ₂ .0.5H ₂ O. ₁ (NO) ₂ 3OH) ₂ .NH ₂ OH	568.201 816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267		270 d. 125 248 d. 120 180 d. d. 140 70 79	6.416 5.925 4.785 ^{2.9} 4.3	
904.2 Hgsi 904.3 Hgsi 905 HgSi 906 Hgsi 907 HgN 908 HgN 909 Hg(I 910 Hgsi 911 (Hgc 913 HgC 914.1 Hgsi 915 HgB 916.1 Hgsi 916.1 Hgsi 918 Hg(I 920 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	aSO ₄ Br ₄ . aSO ₄ I ₂ . SO ₄ .3HgS. aSeO ₃ . NO ₂ . NO ₃ .H ₂ O. (NO ₃) ₂ .0.5H ₂ O. a(NO) ₂ sOH) ₂ .NH ₂ OH	816.949 751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	М.	d. 125 248 d. 120 180 d. d. 140 70 79	5.925 4.785 ^{3.0} 4.3	
904 .3 Hg signs 1 Hg signs 2 Hg s	aSO ₄ I ₂ SO ₄ .3HgS aSeO ₃ . NO ₂ NO ₃ .H ₂ O (NO ₃) ₂ .0.5H ₂ O a(NO) ₂ b(NO) ₂ b(NO) ₂ b(NO) ₂ b(NO) ₂ b(NO) ₂ b(NO) ₂ b(NO) ₃ .NH ₂ OH	751.149 994.700 528.420 246.618 280.633 333.634 461.236 468.267	M.	248 d. 120 180 d. d. 140 70 79	5.925 4.785 ^{3.0} 4.3	
905 HgS 906 Hgs 907 HgN 908 HgN 909 Hg(I 910 Hgs 911 (HgC 913 HgC 914 HgC 914 Hgs 915 HgB 916 1 Hgs 916 1 Hgs 917 HgS 918 Hg(I 920 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	SO ₄ .3HgS ₃ SeO ₃ . NO ₂ . NO ₃ .H ₂ O. (NO ₃) ₂ .0.5H ₂ O. ₃ (NO) ₂	994.700 528.420 246.618 280.633 333.634 461.236 468.267	М.	d. 120 180 d. d. 140 70 79	5.925 4.785 ^{3.0} 4.3	
905 HgS 906 Hgs 907 HgN 908 HgN 909 Hg(I 910 Hgs 911 (HgC 913 HgC 914 HgC 915 HgB 916 Hgs 916 Hgs 918 Hg(I 920 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	SO ₄ .3HgS ₃ SeO ₃ . NO ₂ . NO ₃ .H ₂ O. (NO ₃) ₂ .0.5H ₂ O. ₃ (NO) ₂	994.700 528.420 246.618 280.633 333.634 461.236 468.267	M.	180 d. d. 140 70 79	5.925 4.785 ^{3.0} 4.3	
906 Hgs 907 HgN 908 HgN 909 Hg(1) 910 Hgs 911 (HgC 913 HgC 914 HgC 915 HgB 916 NHg 916 Hgs 917 HgS 918 Hg(1) 920 Hg(1) 922 Hg(1) 923 Hg(1) 924 Hg(1) 924 Hg(1) 925 Hg(1)	aSeO ₃ . NO ₂ . NO ₃ .H ₂ O. (NO ₃) ₂ .0.5H ₂ O. ((NO) ₂	528.420 246.618 280.633 333.634 461.236 468.267	М.	d. 140 70 79	4.785 ^{2.9} 4.3	
907 HgN 908 HgN 909 Hg(I 910 Hgri 911 (Hgf 912 HgC 913 HgC 914 HgC 914 I Hgri 915 HgB 916 NHg 916 I Hgri 917 HgS 918 Hg(I 920 Hg(I 921 Hg(I 922 Hg(I 923 Hg(I 924 Hg(I 925 Hg(I	NO ₁ NO ₃ .H ₂ O (NO ₃) ₂ .0.5H ₂ O ₍ (NO) ₂ ₍ OH) ₁ .NH ₂ OH	246.618 280.633 333.634 461.236 468.267	М.	70 79	4.785 ^{2.9} 4.3	
908 HgN 909 Hg(1) 910 Hg(2) 911 (Hg(2) 913 HgC 914 HgC 914 HgG 915 HgB 916 NHg 916 1 Hgg(2) 917 HgS 918 Hg(2) 920 Hg(2) 921 Hg(2) 922 Hg(2) 923 Hg(2) 924 Hg(2) 925 Hg(2)	NO ₃ ,H ₂ O(NO ₃) ₂ ,0.5H ₂ O (NO) ₂ ,	280 . 633 333 . 634 461 . 236 468 . 267	М.	70 79	4.785 ^{2.9} 4.3	
909 Hg(1) 910 Hgs1 911 (Hgs 912 HgC 913 HgC 914 HgC 914 1 Hgs1 915 HgB 916 NHg 916 1 Hgs2 917 HgS 918 Hg(0 920 Hg(0 921 Hg(0 922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	(NO ₁) ₂ ,0.5H ₂ O ₄ (NO) ₂ ₅ OH) ₂ ,NH ₂ OH	333.634 461.236 468.267		79	4.3	
910 Hg/1 911 (Hg/9 912 Hg/C 913 Hg/C 914 Hg/C 914 1 Hg/1 915 Hg/B 916 NHg 916 1 Hg/1 917 Hg/S 918 Hg/C 920 Hg/C 921 Hg/C 922 Hg/C 923 Hg/C 924 Hg/C 925 Hg/C	(NO) ₂ 5OH) ₂ .NH ₂ OH	461 . 236 468 . 267				
911 (Hgd 912 HgC 913 HgC 914 HgC 914.1 Hggd 915 HgB 916.1 Hggd 917 HgS 918 Hg(0 920 Hg(0 921 Hg(0 922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	OH),.NH,OH	468.267	İ	u. 100	1.00	
912 HgC 913 HgC 914 HgC 914 1 Hgsi 915 HgB 916 NHg 916 1 Hgsi 917 HgS 918 Hg(i 920 Hg(i 921 Hg(i 922 Hg(i 923 Hg(i 924 Hg(i 925 Hg(i					4.083	
913 HgC 914 HgC 914 1 Hgsi 915 HgB 916 NHg 916 1 Hgsi 917 HgS 918 Hg(i 920 Hg(i 921 Hg(i 922 Hg(i 923 Hg(i 924 Hg(i 925 Hg(i			1	157	4.000	ļ
914 HgC 914.1 Hggl 915 HgB 916 NHg 916.1 Hggl 917 HgS 918 Hg(0 920 Hg(0 921 Hg(0 922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	$Cl_2.N_2H_4.HCl$		R.	107	9.04	
914.1 Hg1 915 HgB 916 NHg 916.1 Hg2 917 HgS 918 Hg(919 Hg(920 Hg(921 Hg(922 Hg(923 Hg(924 Hg(925 Hg(925 Hg(Cl_12NH4Cl.H2O		n.	0.70	2.84	
915 HgB 916 NHg 916 1 Hgs: 917 HgS 918 Hg(i 919 Hg(i 920 Hg(i 921 Hg(i 922 Hg(i 923 Hg(i 924 Hg(i 924 Hg(i 925 Hg(i	Cl ₂ .12NH ₂			- 9 P. d. 100		l l
916 NHg 916.1 Hggl 917 HgS 918 Hg(0 919 Hg(0 920 Hg(0 921 Hg(0 922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	(NO ₃) ₂ Cl ₄					
916.1 Hgg: 917 HgS 918 Hg(i 919 Hg(i 920 Hg(i 921 Hg(i 922 Hg(i 923 Hg(i 924 Hg(i 925 Hg(i	Br ₂ .2N ₂ H ₄ .HBr.H ₂ O		_	73		
917 HgS 918 Hg(0 919 Hg(0 920 Hg(0 921 Hg(0 922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	[g ₁ Br.3NH ₄ Br		R.	180 d.		
918 Hg(i 919 Hg(i 920 Hg(i 921 Hg(i 922 Hg(i 923 Hg(i 924 Hg(i 925 Hg(i	2(NO ₂) ₂ I ₄		_	250	1	
919 Hg(0 920 Hg(0 921 Hg(0 922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	S.2Sb ₂ S ₄ —Livingstonite		R.		4.81	1029
920 Hg(1 921 Hg(1 922 Hg(1 923 Hg(1 924 Hg(1 925 Hg(1	(CH ₃) ₂				l. 3.069	53
921 Hg(i 922 Hg(i 923 Hg(i 924 Hg(i 925 Hg(i	(C ₂ H ₄) ₂	258.687			l. 2.444	54
922 Hg(0 923 Hg(0 924 Hg(0 925 Hg(0	$(C_3H_7)_2$				l. 2.12416	Ì
923 Hg(0 924 Hg(0 925 Hg(0	(iso-C ₄ H ₉) ₂				l. 1.83515	
924 Hg(0 925 Hg(0	$(C_6H_5)_2$	354.687		121.8	2.318	i
925 Hg((C ₁₀ H ₇) _z —Mercury α -naphthyl	454.718	ł	188	1.929	
	$(C_2H_3O_2)_2$	318.656		d.	3.270	
926 Hg/	$(C_3H_5O_2)_2$	346.687		110		
	(C ₇ H ₆ O ₂) ₂		1	165		
	$(C_{18}H_{23}O_2)_2$ —Oleate		Ì	103		į
	$_{2}(C_{2}H_{5}O_{2})_{2}$	547.297		225 d.		
0-	CH.Cl			170	4.063	
	C.H.Cl			193	3.482	
	CH.I			143	0.102	Ì
	(C ₂ H ₄ S) ₂		1	77		
1 0,	(CN) ₂		Tet.		4.00	
	O—Paramelaconite	1	1 260.		l .	
	· ····································	79.5700		d. 1026153 mm C	6.4	1070
			C.	12350.6 mm C	、 I	1078
936 Cu ₂ C	O—Tenorite		C.		6.0	188
	O—Tenorite 2O—Cuprite			908		
	O—Tenorite O—Cuprite F	82.5700				
939 CuC	O—Tenorite 2O—Cuprite	82.5700 309.701	M. C.	d. 422	2.405 3.58	173

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
940	CuCl ₂	134 . 486	<u> </u>	498	3.054	
941	CuCl ₂ .2H ₂ O	170.517	R	110 d.	2.39022.4	883
942	Cu(ClO ₃) ₂ .6H ₂ O	338.578	C. ?	65		
943	Cu(ClO ₄) ₂ .7H ₂ O	388.594			1.955	
944	3CuO.CuCl ₂ .3H ₂ O—Atacamite	427.242	R.	d. 200	3.94	1033
945	3CuO.CuCl ₂ .3H ₂ O—Paratacamite	427.242	Trig.	d. 200	3.74	172
946	4CuO.Cl ₂ O ₄ .3H ₂ O	523.242	R. M. ?	d.	3.55	
947	CuBr	143.486	C.	504	4.72	
948	CuBr ₂	223 . 402	M.	498		
949	CuBr ₂ .4H ₂ O	295.464	R.	Tr. 30		1
950	Cu(BrO ₃) ₂ .6H ₂ O	427.494	C.	d. 180	2.583	
951	Cu I—Marshite	190.502	C. Tet.	605	5.62	186
952	Cu(IO ₃) ₂	413.434	M.	d.	5.24118	
953	Cu(IO ₂) ₂ .H ₂ O	431.449	Tri.	d. 240	4.87615	
954	Cu(IO ₂)OH	255.510	R.	d. 290	4.87818	1
955	CuS—Covellite	95.6350	H. M. ?	Tr. 103	4.6	1
956	Cu ₂ S—Chalcocite	159.205	R.	1100	5.6	
957	Cu ₂ S	159.205	C.	1130	5.783	
958	CuSO - Hydrocyanite	159.635	R.	200	3.6	
959	CuSO ₄ .H ₂ O	177.650	1	d. 221	3.17	1
960	CuSO _{4.} 3H ₂ O	213.681	M.		2.663	
961	CuSO _{4.5} H ₂ O—Chalcanthite	249.712	Tri.	d. 20	2.2864	641
962	CuSO _{4.7} H ₂ O—Boothite	285.743	M.		1.944*1	
963	Cu.so	225.220	H.		3.831	
964	3CuO.SO ₃ .2H ₂ O—Antlerite	354.806	R.		3.9	921
965	Cu ₂ SO ₂ .CuSO ₂ .2H ₂ O	386.871		d. 150	3.57	
966	4CuO.SO ₃ .3H ₂ O—Brochantite	452.391	R.		3.907	944
967	4CuO.SO ₃ .4H ₂ O—Langite	470.407	R.		3.49	939
968	7CuO.2SO ₃ .5H ₂ O	807.197	R.		3.85	
969	20CuO.SO ₂ .2CuCl ₂ .20H ₂ O—Connellite	2300.75	H.		3.4	350
970	Cu ₂ Se	206.340	C.	1113	6.7494	
971	Cu ₂ Se ₂ —Umangite	349.110			5.620	
972	CuO.SeO ₂ .2H ₂ O—Chalcomenite	226.801	M. R. ?		3.76	916
973	CuSeO ₄ .5H ₂ O	296.847	Tri.		2.559	020
974	Cu(NO ₂) ₂ .3H ₂ O	241.631		114.49	2.047	
975	Cu(NO ₂) ₂ .6H ₂ O	295.678		26.4 d.	2.017	
976	4CuO.N ₂ O ₅ .3H ₂ O—Gerhardite	480.342	R.		3.43	903
977	CuCl ₂ .2NH ₄ Cl	241.480			1.90511.6	
978	CuCl ₂ .2NH ₄ Cl.2H ₂ O	277.510	Tet.	d. 110	1.98	354
979	CuCl.3NH.	150.121	1	123	00	
980	2CuCl.NH ₃	215.087	ŀ	162		
981	2CuCl.3NH.	249.149		144		
982	3CuCl ₂ .10NH ₈	573.769		270		
983	Cu(ClO ₃) ₂ .4NH ₃	298.610		d. 90	1.81	ł
984	CuBr.2NH.	257 . 464	İ	d. 200	2.02	
985	CuBr.3NH ₁	194.579		115		ł
986	2CuBr.3NH.	338.065		135		
987	Cu(BrO ₂) ₂ .4NH ₃	387.526		exp. 140	2.31	
988	CuI.3NH ₃	241.595		105	5.01	İ
989	2CuI.3NH ₂	432.097		117		l l
990	Cu(IO ₂) ₂ .5NH ₂	498.590	ĺ	exp. 215	2.72	Į
991	(NH ₄) ₂ SO ₄ .CuSO ₄	291.778			2.348	
992	(NH ₄) ₂ SO ₄ .CuSO ₄ .6H ₂ O	399.870	M.	d. 120	1.87	538
993	(NH ₄) ₂ SeO ₄ .CuSeO ₄ .6H ₂ O	494.140	M.		2.22	639
994	CuP	94.5940	,		5.14	
995	Cu ₂ P	158.164		d.	6.4	
996	Cu ₂ P ₂	252 . 758		d.	6.67	
997	4CuO.P ₂ O ₄ .H ₂ O—Libethenite	478.343	R.		3.7	932
998	4CuO.P ₂ O ₃ .2H ₂ O—Pseudolibethenite	496.359			4.0	
999	4CuO.P ₂ O ₄ .3H ₂ O—Tagilite	514.374			4.08	968
1000	5CuO.P ₂ O ₅ .2H ₂ O—Dihydrite	575.929	M. Tri.		4.2	940
1001	6CuO.P ₂ O ₄ .3H ₂ O—Phosphochalite	673.514			4.4	1 220
1002	Cu(H ₂ PO ₂) ₂	193.649		ехр. 90		
	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	 				

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
1003	CuPO ₄ .CuOH	239.172	R.		-	931
1004	Cu.As—Domeykite	1	H.	830	8.00	
1005	3CuO.As ₂ O ₄ .5H ₂ O—Trichalcite		R.		0.00	885
1006	4CuO.As ₂ O ₄ .H ₂ O—Olivenite	566.215	R.		4.3	951
1007	4CuO.As ₂ O ₄ .3H ₂ O—Leucochalcite	602.246	R.		4.0	960
1007	4CuO.As ₂ O ₄ .7H ₂ O—Euchroite	674 .308	R.		3.40	891
1009	5CuO.As ₂ O ₄ .H ₂ O—Erinite	645.785	16.		4.04	1
		1	1 34			964
1010	6CuO.As ₂ O ₄ .3H ₂ O—Clinoclasite	761.386	M.		4.37	976
1011	7CuO.As ₂ O ₅ .14H ₂ O—Chalcophyllite	1039.12	Trig.		2.66	306
1012	5CuO.As ₂ O ₅ .9H ₂ O—Tyrolite	789.909	R.		3.05	912
1013	2Cu ₂ S.As ₂ S ₃	564.525			4.289	
1014	3Cu ₂ S.As ₂ S ₅ —Enargite	787.860	C.		4.40	
1015	3Cu ₂ S.2As ₂ S ₂ —Binnite	969.845	C.		4.48	
1016	Cu ₃ (AsO ₄) ₂ .3NH ₃ .4H ₂ O	591.785	Tri.		3.05	
1017	Cu ₂ Sb (β)	312.480		687	8.51 (b)	
				Tr. 407 (β to α)	8.48 (a)	
1018	Cu ₄ Sb ₂	561.390	1	830		ĺ
1019	Cu ₂ S.Sb ₂ S ₂ —Chalcostibite	498.940	R.		4.932	
1020	Cu ₂ S.2Sb ₂ S ₂ —Guejarite	838.675	R.		4.814	
1021	3Cu ₂ S.Sb ₂ S ₄ —Stylotypite	817.350			5.147	
1022	Cu ₂ S.Bi ₂ S ₄ —Emplectite	673.400	R.		6.1016	1
1023	5Cu ₂ S.2Bi ₂ S ₃ —Wittichenite	1824.42	1		5.916	
1024	2Cu ₂ S.Bi ₂ S ₃ .2BiSCl	1385.7			6.78	
		1474.6				
1025	2Cu ₂ S.Bi ₂ S ₃ .2BiSBr				6.41	250
1025.1	20CuO.Bi ₂ O ₃ .5As ₂ O ₄ .22H ₂ O—Mixite	3603.34			3.79	352
1026	2CuO.CO ₂ —Mysorine	203.140			4.398	
1027	2CuO.CO ₂ .H ₂ O—Malachite	221.155	M.		4.0	977
1028	3CuO.2CO ₂ .H ₂ O—Azurite	344.725	M.	d. 220	3.88	938
1029	Cu(CHO ₂) ₂	153.585			1.831	
1030	Cu(CHO ₂) ₂ ,4H ₃ O	225.647	M		1.795	652
1031	$C_{\mathrm{u}}(C_{2}H_{2}O_{2})_{2}$	181.616			1.930	
1032	$C_{\mathrm{u}}(C_{2}H_{2}O_{2})_{2}.H_{2}O$	199.632	I	115	1.882	667
1033	Cu(C ₂ H ₂ O ₂) ₂ .2H ₂ O	217.647		d. 240	1.9	
1034	Cu(CH ₂ SO ₃) ₂ .4H ₂ O—Ethane disulfonate.	323.790	Tri.		2.061	
1035	CuC ₁₀ H ₆ O ₆ S ₂ .6H ₂ O—1, 5-Naphth alene			ļ .		
2002	disulfonate	457.839	М.		1.783	792
1036	CuCN.	89.5780	M.	474.5	100	1 .02
1037	CuC ₂ O ₄ .2NH ₂	185.632			2.305_4^{25} (a)	
100.	Ou 0304.211113	100.002			$2.225_4^{26} (\beta)$	
1038	CuSCN	121.643			2.846	
		277.348	10	1 200		1
1039	Cu ₂ (NH ₃) ₂ (SCN) ₂		R.	d. 20	1.02125	
1040	Cu ₂ Si	155.200	1	0.50	6.918	
1041	Cu ₄ Si	282.340		850	7.53	1
1042	Cu ₄ Si ₂	373 . 970	_	775		
1043	CuO.SiO ₂ .H ₂ O—Bisbeeite	157.645	R.			783
1044	CuO.SiO ₂ .H ₂ O—Dioptase	157.645	Trig.		3.05	319
1045	2CuO.2SiO ₂ .H ₂ O—Shattuckite	297.275	M.			948
1046	6CuO.5SiO2.2H2O—Plancheite	813.751	M.		3.36	320
1047	CuSiF ₆ .6H ₂ O	313.722	R.		2.15819	211
1048	CuCl ₂ .PbO.H ₂ O—Percylite	375.701	C.		4 . 6718.7	176
1049	2CuO.5PbO.3SO ₃ .CO ₂ .3H ₂ O—Linarite	1613.38	M.		5.4	967
1050	CuO.4PbO.P ₂ O ₈ —Tsumebite	1114.42	R.		6	987
1050	Cu ₂ S.2PbS.Bi ₂ S ₂ —Aikinite	1151.93	R.		6.45	""
1053	5Cu ₂ S.2ZnS.2As ₂ S ₂ —Tennantite	1483.14	C.		4.4	198
			U.			190
1054	Cu ₂ HgI ₄	835.478			6.0964	
1055	CuCl.HgS	331.703	_	ا مود	6.29	1
1056	Ag ₂ O	231.760	C.	d. 300	7.14316.6	•
1057	Ag ₂ O ₂	247.760	_ ا	d. >100	7.44	
1058	AgF	126.880	C .	435	$5.852^{15.5}$	j
1059	AgCl—Cerargyrite	143.338		455	5. 56	177
1060	AgClO ₃	191.338	Tet.	230	4.430	
1061	AgClO ₄	207.338		d. 486		
1062	AgBr—Bromyrite	187.796	C.	434	6.474	185
	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80					

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
1063	AgBrO ₂	235.796	Tet.	d.	5.206	372
1064	AgI—Iodyrite	234.812	H.	d. 552	5.67	400
1065	AgIO ₃	282.812	R.	>200	5.525	
1066	Ag ₂ S—Acanthite	247.825	R.	825	7.326	.
				Tr. 175		
1067	Ag ₂ S—Argentite	247.825	C.	Tr. 175	7.317	
1068	Ag ₂ SO ₄	311.825	R.	652	5.4549.2	
1069	Ag ₂ S ₂ O ₆ .2H ₂ O	411.921	R.		3.61	844
1070	Ag ₂ Se—Naumannite		ł	880	8.0	
1071	Ag ₂ SeO ₂	342.960			5.929	1
1072	Ag ₂ Te—Hessite	343.260	C.	955	8.5	
1073	AgN _a	149.904	1	exp. 251.5		
1074	AgNO2	153.888	R.	d. 140	4.45326	
1075	AgNO ₂	169.888	R.	212	4.35219	1050
1076	Ag2(NO)2	275.776	1	d. 110	5.7540	
1077	AgNO ₂ .NH ₂	170.919	Tet.	70 d.	-	
1078	NH4NO3.AgNO3	249.935	R.	109.6		ı
1079	Ag(NH ₃) ₂ NO ₃	203.950	R.	170 d.		
1080	AgCl.AgNO:	313.226	1	160		
1081	2AgCl.3NH.	337.769	R.	68 d.		
1082	AgI.AgNO ₃	404.700	R.	94		Ì
1083	AgI.2AgNO:	574.588	R.	119.1		!
1084	AgBr.NH ₄ Br.4(NH ₄) ₂ S ₂ O ₃	878.580	Tet.			336
1085	Ag_2P_3	308.832		d.	4.63	333
1086	AgPO:	186.904	ļ	482	6.370	
1087	Ag ₂ PO ₄	418.664	C.	849	6.3704	
1088	Ag ₄ P ₂ O ₇	605.568	Ŭ.	585	5.3067.5	
1089	Ag:HPO4	311.792	Trig.	d. 110	0.000	366
1099	Ag ₂ AsO ₂		****B.	150 d.		300
1091	Ag ₂ AsO ₄	462.600	C.	100 4.	6.6574	- 1
1092	Ag ₂ AsBr ₂	638.348	J .	d.	5.554	
1092	Ag ₂ S.As ₂ S ₃ —Smithite		M.	ļ u .	4.700	1066
1093	Ag ₂ S.As ₂ S ₂ —Trechmannite		Trig.		4.700	422
1095	3Ag ₂ S.As ₂ S ₃ —Proustite	989.590	Trig.		5.49	412
1095	3Ag ₂ S.As ₂ S _b —Xanthoconite		R.		5.2	1030
1097	Ag ₂ S.Sb ₂ S ₃ —Miargyrite	587.560	M.		5.36_{17}^{17}	1050
1098	3Ag ₂ S.Sb ₂ S ₂ —Pyrargyrite	1083.21	Trig.		5.76	425
1099	3Ag ₂ S.Sb ₂ S ₂ —Pyrostilpnite		M. Tri.		5.79017	420
1100	5Ag ₂ S.Sb ₂ S ₃ —Stephanite		R.		6.3	
1101	8Ag ₂ S.Sb ₂ S ₃ —Polybasite		R.		6.1	1031
1102	12Ag ₂ S.Sb ₂ S ₃ —Polyargyrite		R.		6.50	1001
1102	Ag ₂ S.Bi ₂ S ₃ —Matildite		R.		6.9	
1103	AgNO ₂ .Bi(NO ₂) ₂ .2NH ₄ NO ₂	629.006	10.		3.05514	
1104	Ag ₂ CO ₂	275.760	İ	218 d.	6.077	
1106	Ag ₂ C ₂ O ₄	303.760		exp. 140	5.0294	
1107	AgC ₂ H ₂ O ₂	166.903		d.	3.25915	
1107	$AgC_3H_4O_3.0.5H_2O$ —Lactate.	205.995		100	3.209**	
1108	$Ag_2(d-C_4H_4O_6)$	363.791	ĺ	d.	9 42015	
		363.791		u.	3.43215	
1110	$Ag_2(dl-C_4H_4O_6)$	133.888		320 d.	3.77515	
1111	AgCNO		1	d.	3.95	
1112	AgCN.NH ₂	149.888 150.919	M.	102 d.	4.00	
1113			R.	102 a.	3.48118.2	
1114	$Ag(SbO)(d-C_4H_4O_6).H_2O$	364.886				
1115	4Ag ₂ S.GeS ₂ —Argyrodite	1127.81	C.		6.08514	
1116	4Ag ₂ S.SnS ₂ —Canfieldite	1174.13	C.		6.28	1
1117	Ag ₂ S.2As ₂ S ₃ .6PbS—Lengenbachite	2175.65	Tri.		5.8	1
1118	3Ag ₂ S.4PbS.3Sb ₂ S ₂ —Diaphorite	2719.74	R. M.		5.9	
1119	3Ag ₂ S.4PbS.3Sb ₂ S ₃ —Freieslebenite	2719.74	IVI.		6.3	
1120	AgNO ₂ .2TlNO ₂ .Bi(NO ₂) ₃	1001.73]		4.874	
1121	AgCl.HgCl	379.406	[]	T- 45	6.495	
1122	2AgI.HgI ₂	924.098		Tr. 45	5.9984	100
1123	4AgI.CuI—Miersite	1129.75			5.64	183
1124 g Al As Au 2 55 13 33	Ag ₂ S.Cu ₂ S—Stromeyerite	407.030 Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	6.2 Hf Hg Ho I In 73 30 68 6 26	L L L L L L L L L L L L L L L L L L L

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
1125	Au ₂ O	410.400		d. 20s	1	
1126	Au ₂ O ₂	426.400		d. 180		
1127	Au ₂ O ₃	442.400		d. 160		
1128	AuCl	232.658		d. 289.5	7.4	
1129	AuCl ₃	303.574		254 d.	3.9	
1130	Au₂Cl₄	536.232		d. 250	5.1	
1131	AuBr	277.116		d. 115		
1132	AuBr ₃	436.948		160 d.		
1133	Au ₂ Br ₄	714.064		d. 115		
1134	AuHBr4.5H2O	607.949		27		
1135	AuI	324 . 132		d. 120		1
1136	Au ₂ S ₂	458.530		d. 140		-
1137	Au ₂ S ₂	490.595		d. 197	8.754	
1138	Au ₂ Se ₃	632.000			4 . 6522	
1139	AuTe-Calaverite	324.700	Tri.		9.04	
1140	Au ₂ Te ₄	904.400		472		1
1141	HAu(NO ₂) ₄ .3H ₂ O	500.286		72 d.	2.84	
1142	Au ₂ O ₂ .4NH ₂	510.524		exp. 143	3.00	1
1143	Au ₂ P ₃	487 .472		CAP: 110	6.67	1
1144	Au(CN) ₂ .3H ₂ O	329.270		d. 50	0.07	İ
1145	4AuCl ₂ .3AgCl.8NH ₄ Cl.	2072.28	R.	u. 50		159
1146	080 ₂	222.800	n.		7.91	109
1147	OsO ₄ (yellow)		3.6	4,	4.91	
1147	OsO ₄ (yenow)	254.800	M.	41	l. 4.44 ^{40.1}	57
1147 5	0.0 (11)	074 000		00.5	1. 4.44****	57
1147.5	OsO4 (white)	254.800		39.5		
1148	OsF ₆	304.800	1			İ
1149	OsF ₈	342.800		34.5		ł
1150	(NH ₄) ₂ O ₈ Cl ₆	439.626	C.		2.93	
1151	(NH ₄) ₂ OsBr ₆	706.374	1		4.09	
1152	IrCl	228.558	İ	d. 798	10.18	-
1153	IrCl ₂	264.016		d. 773		į.
1154	IrCla	299.474		d. 763	5.30]
1155	(NH ₄) ₂ IrCl ₆	441.926	C.		2.856	
1156	IrCl.4NH ₃ .H ₂ O	314.698	Trig.			327
1157	[Ir(NH ₂),Cl]Cl ₂	384.630	R.		2.675	1
1158	[Ir(NH ₂) ₄ Br]Br ₂	518.004	R.		3.24516.6	i
1159	[Ir(NH ₂) ₄ Cl]Br ₂	473.546	R.		3.01	
1160	[Ir(NH ₂) ₆ I]I ₂	659.052	R.		3.58613.4	
1161	[Ir(NH ₂) ₅ Cl]I ₂	567 . 578	R.		3.12	
1162	Ir ₂ (SO ₄) ₂ .(NH ₄) ₂ SO ₄ .24H ₂ O	1238.91	C.	106		
1163	PtCl	266.146		d. 581	5.87	
1164	PtCl4.8H2O	481.185			2.43	
1165	H ₂ PtCl ₆ .6H ₂ O	518.086	•	60	2.431	
1166	PtBr4	514.894		d. 180		
1167	H ₂ PtBr ₆ .9H ₂ O	838.880	M.	<100 d.		
1168	PtI.	702.958		d. 100		
1169	PtS	227 .295			8.897	
1170	PtSe.	353.630			7.65	
1171	PtSe.	432.830			7.15	
1172	Pt(NH ₃) ₄ (OH) ₂	297.370	1	110 d.	1.20	
1173	Pt(NH ₁),Cl ₁	300.208	R.	d. 270		
1174	(NH ₄) ₂ PtCl ₄	444.056	C.	u. 210	3.065	
1175	[Pt(NH ₃) ₄]Cl ₂ .H ₂ O	352.286	Tet.	d. 110	2.737	
1176	$(NH_4)_2$ PtBr ₆	710.804	C.	u. 110	4.265	1
1177	$(NH_4)_2PtI_6$	992.900	C.		4.61	
1177		1	0.	4 >800	4.856	
_	PtP ₂ O ₇	369.278		d. >600		
1179	PtAs ₂ —Sperrylite	345.150	C.	>800	10.60	_00
1180	[Pt(CO)Cl ₂] ₂	588.292	0.0	195		THE STATE OF THE S
1181	2PtCl ₂ 3CO	616.292	M.	130		1115
1182	[Pt(CO)Br ₂] ₂	766 . 124	M.	182		
1183	[Pt(CO)I,],	954 . 188		ca. 150 d.		
1184	[CH ₃ (C ₂ H ₄) ₂ SCl] ₂ PtCl ₄	618.308	M.	210		888
1185	$[(C_2H_5)_2SCl]_2PtCl_4$	646.339	M.	1	1	811

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
1186	[C ₂ H ₅ NH ₂] ₂ H ₂ PtCl ₆	500.117	<u> </u>	218 d.	2.27518	
1187	[(CH ₂) ₂ N] ₂ H ₂ PtCl ₄	528 . 148		245 d.	2.015	139
1188	[CH ₂ (C ₂ H ₆)NH] ₂ H ₂ PtCl ₆	528.148		208	2.11518	
1189	[C ₂ H ₇ NH ₂) ₂ H ₂ PtCl ₆	528.148		214	2.218	.
1190	$[(iso-C_2H_7)NH_2]_2H_2PtCl_6$	528 . 148		228	2.229	
1191	[(CH ₃) ₄ N] ₂ PtCl ₆	556.179	C.	278 d.	1.81116	
1192	[CH2(C2H7)NH]2H2PtCl6	556 . 179		200 d.	1.96815	
1193	[(CH2)2C2H5N]2PtCl6	584.210	C.	266 d.	1.76217	
1194	$[(C_2H_6)C_3H_7NH]_2H_2PtCl_6$	584.210		199	1.89	
1195	$[C_2H_6(iso-C_2H_7)NH]_2H_2PtCl_6$	584.210		180	1.885	
1196	$[C_2H_4(iso-C_4H_9)NH]_2H_2PtCl_6$	612.240		201 d.	1.804	
1197	$[(C_2H_4)_2N]_2H_2PtCl_6$	612.240		100	1.903	
1198	[(C ₂ H ₇) ₂ NH] ₂ H ₂ PtCl ₆	612.240		175 d.	1.70416	İ
1199	$[(CH_3)_3C_3H_7N]_2PtCl_6$	612.240	C.	252 d.	1.821	
1200	$[(CH_3)_3(iso-C_3H_7)N]_2PtCl_6$	612.240	C.	237	1.87116	
1201	$[(C_2H_7)(iso-C_4H_9)NH]_2H_2PtCl_6$	640.271		188	1.70216	
1202	[(CH3)(C2H6)3N]2PtCl6	640.271	C.	250 d.	1.731	
1203	[(CH3)2(C2H6)(C3H7)N]2PtCl6	640.271	C.	256 d.	1.812	
1204	[(CH2)2(C4H9)N]2PtCl6	640.271	C.	259 d.	1.795	
1205	[(CH ₃) ₃ (iso-C ₄ H ₉)N] ₂ PtCl ₆	640.271	C.	220	1.75117	
1206	[(CH3)(C3H7)2N]2H2PtCl6	640.271		>200	1.737	1
1207	[(C ₂ H ₅) ₄ N] ₂ PtCl ₅	668.302	C.	250 d.	1.776	i
1208	$[(iso-C_4H_9)_2NH]_2H_2PtCl_6$	668.302		213	1.621	
1209	$[(C_2H_6)(C_3H_7)_2N]_2H_2PtCl_6$	668.302	ļ	175	1.726	
1210	[(CH3)2(C3H7)2N]2PtCl6	668.302	Tet.	250	1.745	
1211	$[(C_2H_5)_3(C_2H_7)N]_2PtCl_6$	696.333	C.	235 d.	1.710	
1212	$[(CH_3)(C_2H_5)(C_2H_7)_2N]_2PtCl_6$	696.333	C.	228 d.	1.712	
1213	$[(C_2H_5)_2(C_2H_7)_2N]_2PtCl_6$	724.364	C.	220 d.	1.677	i
1214	$[(CH_3)(C_2H_5)(C_2H_7)(iso-C_4H_9)N]_2PtCl_6.$	724.364		236 d.	1.637	
1215	$[(C_2H_5)_3(C_4H_9)N]_2PtCl_6$	724.364	C.	220	1.629^{15}	
1216	$[(C_2H_5)_3(iso-C_4H_9)N]_2PtCl_6$	724.364	M.	215	1.602	. ↓
1217	$[(C_2H_5)(C_3H_7)_2N]_2PtCl_6$	752.394	Tri.	212	1.57117	
1218	[(C ₂ H ₇) ₄ N] ₂ PtCl ₆	780 . 424	Tri.	199	1.515	
1219	[(CH ₃)(iso-C ₄ H ₉) ₂ N] ₂ PtCl ₆	808.456	R. ?	174	1.696	
1220	$[(C_2H_5)(iso-C_4H_9)_2N]_2PtCl_6$	836 . 487	Tet.	170	1.56217	
1221	$[(C_2H_7)(iso-C_4H_9)_2N]_2PtCl_6$	864.518	C.	168	1.509	
1222	$Pt_x(NO_2)_y(C_aH_bS_c)_z$	Tschugaeff	and Chlopi	n, 93, 82:402;12.		1
1223	PtSi	223.290		1100	11.6315	
1224	Pt ₂ Si	418.520			13.818	
1225	Pt ₃ Si ₂	641.810			14.1	
1226	PtPbCl ₆ .4H ₂ O	687.240	C.		3.681	
1227	PtPbBr ₆	881.9 26		d. >120	6.025	
1228	PtZnCl ₆ .6H ₂ O	581.450	Trig.		2.717	
1229	PtZnBr ₆ .12H ₂ O	956.291	Trig.		2.877	
1230	PtZnI ₆ .9H ₂ O	1184.34	Trig.		3 .689	1
1231	PtCdCl ₆ .6H ₂ O	628 . 480	Trig.		2.882	
1232	PtCuCl ₆ .6H ₂ O	579.964	Trig.		2.734	
1233	RuO ₂	133.700	Tet.		7.2	1
1234	RuO4	165.700		25.5	5.77100	ł
1235	Ru ₂ S ₂ —Laurite	299.595	C.		6.99	
1236	RuSi	129.760			5.4	
1237	[Rh ₂ (NH ₃) ₁₀ Cl ₂]Cl ₄	588 . 879	R.	d. 200	2.07918	
1238	[Rh(NH ₃) ₅ Br]Br ₂	427 . 814	R.		2.65	
1239	[Rh(NH ₂),I]I ₂	568 . 862	R.		3.1210	1
1240	NH ₄ Rh(SO ₄) ₂ .12H ₂ O	529.264	C.	103		115
1241	TlRh(SO ₄) ₂ .12H ₂ O	715.625	C.			130
1242	RbRh(SO ₄) ₂ .12H ₂ O	5 96 . 665	C.	109		
1243	PdO	122.700		d. 877		
1244	PdCl ₂	177 . 616	1	500		
1245	PdI ₂	360.564		d. 350		1
1246	PdS	138.765	1	9 5 0		
1247	Pd ₂ S	245 . 465		800 d.	7.3	1
1248	PdSe	185.900		<960		
Ag Al As Au B2 55 13 33	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Cs Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Lu 36 53 58 81 72

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. in finding
1249	Pd(NH ₂) ₂ Cl ₂	211.678	Tet.		2.5	
1250	(NH ₄) ₂ PdCl ₄	284.610	Tet.		2.17	
1251	(NH ₄) ₂ PdCl ₆	355.526	C.		2.418	
1252	(NH ₄) ₂ PdSO ₂ Cl ₂ .H ₂ O	365.268	Trig.			316
1253	Pd(CO)Cl ₂	205.616		197		0.0
1254	Pd(CO) ₂ Cl ₂	i	1	142		
1255	2PdCl ₁ .3CO	439.232	1 1	132		
1256	PdSi	134.760		102	7.3115	
			1 17			l l
1257	ZnPdCl ₆ .6H ₂ O		H.	10	2.359	
1258	MnO—Manganosite		C.	1650	5.18	180
1259	MnO.H ₂ O—Pyrochroite	88.9454	Trig.		3.25813	349
1260	MnO ₂ —Polianite, Pyrolusite	86.9300	R.		5.026	
1261	MnO ₂ .H ₂ O	104.945	C.			171
1262	Mn ₂ O ₃	157.860	C.		4.50	
1263	Mn ₂ O ₂ .H ₂ O—Manganite	175.875	R.		3.258	1058
1264	Mn ₂ O — Hausmannite	228.790	Tet.		4.700	421
1265	MnF ₂	92.9300		856	3.98	
1266	MnF ₂	111.930			3.54	
1267	MnF ₂ .5HF.6H ₂ O	301.061			1.921	
	I	l .		650		1
1268	MnCl.—Scacchite	125.846	C.	650	2.9774	1
1269	MnCl ₂ .4H ₂ O	197.908	M.	58.01	2.01	İ
1270	Mn(ClO ₄) ₂ .8H ₂ O	397.969			1.99	
1270.1	MnCl ₂ .3MnO ₂ .3H ₂ O—Kempite	440.682	R.		2.94	889
1271	MnBr ₂	214.762	i I		4.385_4^{25} fused	
1272	MnBr ₂ .4H ₂ O	285.820	M.	64.3d	-	1
1273	MnS—Alabandite	86.9950	C.	d.	3.99	197
1274	MnS ₂ —Hauerite	119.060	C.		3.463	196
1275	MnSO ₄	150.995	0.	700	3.25	100
		1	M. ?	100		742
1276	MnSO ₄ .H ₂ O—Szmikite	169.010	W1. 1		2.954	142
1277	MnSO ₄ .2H ₂ O	187.026			2.526	
1278	MnSO ₄ .3H ₂ O	205.041			2.356	
1279	MnSO ₄ .4H ₂ O	223.057	M. R.		2.107	
1280	MnSO ₄ .5H ₂ O	241.072	Tri.		2.103	
1281	MnS ₂ O ₆ .6H ₂ O	323.152	Tri.		1.757	ł
1282	MnSe	134.130	C.		5.5915	
1283	MnSeO ₄ .2H ₂ O	234.161	R.		2.949	
1284	MnSeO ₄ .5H ₂ O	288.207	Tri.		2.334	
1285	Mn ₁ N ₂	302.666			6.63	
		1	l i	34.81	0.03	
1286	Mn(NO ₃) ₂ .3H ₂ O	232.992			1.00	
1287	Mn(NO ₂) ₂ .6H ₂ O	287.038	_	25 .8	1.82	
1 2 88	NH ₄ MnO ₄	136.969	R.		$2.208^{10.3}$	
1 2 89	(NH ₄) ₂ SO ₄ .MnSO ₄ .6H ₂ O	391.229	M.		1.831	484
1290	(NH ₄) ₂ SO ₄ .2MnSO ₄	434 . 133	C.		2.5614	
1291	(NH ₄) ₂ SO ₄ .Mn ₂ (SO ₄) ₂	530.196			2.4011	
1292	(NH ₄) ₂ SeO ₄ .MnSeO ₄ .6H ₂ O	485 . 500	М.		2.093	
1293	Mn ₆ P ₂	391.628	[4.94	1
1294	Mn ₂ P ₂ O ₇	283.908	M.		3.7074	897
12 91 1295	3MnO.P ₂ O ₃ .3H ₂ O—Reddingite	408.884	R.		3.1	842
	3MnO.P ₂ O ₄ .4H ₂ O ?—Stewartite	1	Tri.			
1296		426.898			2.94	846
1297	5MnO.2P ₂ O ₅ .4H ₂ O—Palaite	710.808	M.		3.17	843
1298	5MnO.2P ₂ O ₅ .5H ₂ O—Hureaulite	728.823	M.		3.18	835
1 29 9	3MnO.As ₂ O ₅ —Armangite	442.710	H. R.	•	4.23	
1300	4MnO.As ₂ O ₅ .H ₂ O—Sarkinite, Polyar-					1
	senite	531.655	M.		4.15	954
1301	Mn ₂ O ₃ .4MnO.As ₂ O ₅ .4H ₂ O—Flinkite	743 . 562	R.		3.87	959
1302	6MnO. As Os. 5H O-Hemafibrite	745.577	R.		3.6	980
1303	7MnO.As ₂ O ₅ .4H ₂ O—Allactite	798.492	M.		3.84	945
1304	MnSb	176.700			5.6 ¹⁷	040
	10MnO.Sb ₂ O ₅ —Manganostibite	1032.84	м.		J.U-'	000
1305	_		141.			989
1306	Mn ₂ C	176.790	ا ا		6.8917	
1307	MnCO ₃ —Rhodochrosite	114.930	Trig.		3.125	368
1308	MnC ₂ O ₄	142.930			$2.43^{21.7}$	-
1309	Mn(CHO ₂) ₂	144.945			2.205	
* 16 H		Rb Rh Ru 84 40 39	~ ~ ~ ~	Se Se Si Su Sr Ta Ti 6 9 18 22 78 52 66		W Y Yb 2 48 57 71

1310		•	system			finding No
	$Mn(CHO_2)_2.2H_2O$	180.976	R.	i i	1.953	
1311	$Mn(C_2H_3O_2)_2$	172.976			1.74	
1312	$Mn(C_2H_2O_2)_2.4H_2O$	245.038	M.		1.589	ł
1313	MnCl ₂ .2C ₅ H ₆ N.HCl	320 . 405		175		.
1314	MnSi	82.9900		1280	5.9015	[
1315	MnSi ₂	111.050			5.24^{16}	
1316	Mn ₂ Si	137 . 920		1316	6.2016	ŀ
1317	$MnO.SiO_2$	130.990		1273	3.48^{25}_{4}	63
1318	MnO.SiO ₂ —Rhodonite	130.990	Tri.	1323	3.724	929
1319	2MnO.SiO ₂ —Tephroite	201.920	R.	1300	4.0434	949
1320	3Mn ₂ O ₃ . MnO.SiO ₂ —Braunite	604.570	Tet.		4.78	
	8MnO.7SiO ₂ .5H ₂ O—Bementite	1077 . 94	R.		2.90	803
1322	12MnO.8SiO ₂ .7H ₂ O—Ectropite	1457.75	M. ?		2.46	1044
1323	MnSiF ₆ .6H ₂ O	305.082	Trig.	d.	1.90417.6	206
1324	5MnO.SiO ₂ .As ₂ O ₃ .H ₂ O—Dixenite	630.645	H.		4.2	385
1324 . 1	12MnO.9SiO ₂ .As ₂ O ₅ .7H ₂ O—Schallerite	1747.73	. .	1404	3.368	344
1325	MnO.TiO—Pyrophanite	150.830	Trig.	1404	4.54	405
	2MnO.6PbO.3As ₂ O ₅ .H ₂ O—Trigonite	2188.84	M.		8.28	1004
	2Mn ₂ O ₃ .3PbO.3SiO ₂ —Kentrolite	1165.44	R.		6.19	1014
1328	2Mn ₂ O ₃ .3CuO—Crednerite	554 . 430	m	ا ر	5.0	- [
1329	MnPtCl ₆ .6H ₂ O	571.000	Trig.	d.	2.692	
1330	MnPtCl ₆ .12H ₂ O	679.093	Trig.		2.112	I
1331	MnPtBr ₆ .12H ₂ O	945.841	Trig.	ا د ا	2.759	
1332	MnPtI ₆ .9H ₂ O FeO	1173.89	Trig.	d. 1420	3.604	
1333	Fe ₂ O ₂ —Hematite	71.8400	The same	1560 d.	E 10	424
1334		159.680	Trig.	1500 a.	5.1 ₂ 4.28	1026
1335 1336	Fe ₂ O ₃ .H ₂ O—Goethite Fe ₂ O ₃ .H ₂ O—Lepidocrocite	177 .695 177 .695	R. R.		4.09	1013
1337	Fe ₂ O ₄ —Magnetite	231.520	C.	1538 d.	5.2	1013
1338	FeF ₂	93.8400	<u> </u>	1000 u.	4.09	
1339	FeF ₂	112.840	•		3.18	
1340	FeCl ₂ —Lawrencite	126.756	H.		2.7	280
1341	FeCl ₂ .4H ₂ O	198.818			1.93	200
1342	FeCl.—Molysite	162.214	н.	282	2.8	
1343	2FeCl ₂ .2HCl.4H ₂ O.	469.421	***	45.7	2.0	
1344	FeBr.	215.672			4.6364	
1345	FeBr ₂ .6H ₂ O	403.680	ļ	27		
1346	FeI ₂	309.704		177		
1347	FeI ₂ .4H ₂ O	381.764			2.87	
1348	FeS—Troilite	87.9050	Н.	1193	4.8	
1349	FeS ₂ —Marcasite	119.970	R.	Tr. 450	4.87	
1350	FeS ₂ —Pyrite	119.970	C.		5.0	
1351	Fe ₂ S ₃	207.875			4.3	
1352	Fe ₃ S ₄	295.780	İ		4.55	
1353	Fe ₇ S ₈ —Pyrrhotite	647.400	H.	d. >700	4.6	
1354	FeSO ₄ .H ₂ O—Szomolnokite	169.920	M.		3.08	
1355	FeSO ₄ .5H ₂ O—Siderotilate	241.982	Tri.		2.2	642
1356	FeSO ₄ .7H ₂ O—Melanterite	278.012	M.		1.89	471
1357	Fe ₂ O ₂ .2SO ₂ .7H ₂ O—Amarantite	445.918	Tri.		2.11	762
1358	Fe ₂ O ₃ .2SO ₃ .10H ₂ O—Fibroferrite	499.964	R.		1.86	255
1359	Fe ₂ O ₃ .3SO ₃ .9H ₂ O—Coquimbite	562.014	Trig.		2.1	270
1360	Fe ₂ O ₃ .4SO ₃ .9H ₂ O—Rhomboclasite	642.079	R.			675
1361	FeO.Fe ₂ O ₃ .4SO ₃ .24H ₂ O—Bilinite	984 . 150			1.87	530
1362	2Fe ₂ O ₃ .SO ₃ .6H ₂ O—Glockerite	507.517	_			958
1363	2Fe ₂ O ₃ .5SO ₃ .18H ₂ O—Copiapite	1043.96	R.		2.1	654
1364	3Fe ₂ O ₃ .4SO ₃ .10H ₂ O—Carphosiderite	979.454	Trig.		2.6	371
1365	Fe ₂ O ₂ .3TeO.4H ₂ O—Durdenite	662.242	R.	.		990
1366	Fe ₂ N	125.688		d.	6.35	
1367	Fe(NO ₂) ₂ .6H ₂ O	349.956		35	1 004	
1368	(NH ₄) ₂ SO ₄ .FeSO ₄ .6H ₂ O	392.140	M.		1.864	513
1369	$(NH_4)_2SO_4$. Fe ₂ $(SO_4)_2$. 24H ₂ O	964.387	C.		1.71	102
1370	$(NH_4)_2SeO_4.FeSeO_4.6H_2O$	486.410	M.	1	2.160	612
1371	FeP	86.8640			5 .2	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
1372	Fe ₂ P.	142.704		1290	5.7	
1373	Fe ₂ P ₂	204.752			4.5	i
1374	Fe ₂ P	198.544		1110	6.74	
1375	Fe ₂ P ₄	291.616	1		5.04	
1376	Fe(PO ₂) ₃	292.912			3.02	l
1377	Fe ₂ O ₂ .P ₂ O ₅ .4H ₂ O—Strengite	373.790	R.		2.87	917
1378	3FeO.P ₂ O ₄ .8H ₂ O—Vivianite	501.691	M.		2.58	757
1379	2Fe ₂ O ₂ .P ₂ O _b .12H ₂ O—Cacoxenite	677.593	H.		3.38	285
1380	3Fe ₂ O ₃ .2P ₂ O ₅ .8H ₂ O—Beraunite	907.259	М.		2.9	950
1381	7FeO.2P ₂ O ₅ .9H ₂ O—Ludlamite	949 . 115	M.		3.72	873
1382	2Fe ₂ O ₄ .P ₂ O ₄ .2SO ₄ .2H ₂ O—Destinezite	657.569	Tri.		2.1	794
1383	2Fe ₂ O ₄ .P ₂ O ₄ .2SO ₃ .2H ₂ O—Diadochite	657.569	111.		2.0	142
1384	FeAs	130.800		1020	7.83	142
1385			C.		7.4	
	FeAs ₂ —Arsenoferrite	205.760	1 1	990	l e	1
1386	FeAs ₂ —Löllingite	205.760	R.		7	
1387	FeAsO ₄ .4H ₂ O—Scorodite	266.862	R.		3.2	941
1388	3FeO.As ₂ O _{5.8} H ₂ O—Symplesite	589.563	M.		2.96	857
1389	3Fe ₂ O ₃ .2As ₂ O ₂ .13H ₂ O—Pharmacosiderite	1109.08	M. ?, C.		3	874
1390	FeS ₂ .FeAs ₂ —Arsenopyrite	325.730	R.		6.2	
1 391	2FeO.Sb ₂ O ₅ —Tripuhyite	467.220			5.82	1015
1392	FeS.Sb ₂ S ₃ —Berthierite	427.640	R.		4.0	
1393	Fe ₂ C	179.520		1837	7.4	
1394	FeCO ₂ .H ₂ O—Siderite	133.855	Trig.		3.8	377
1395	FeC ₂ O ₄ .2H ₂ O	179.871	R.	d. 160	2.28	
1396	Fe(CO)4	167.840		d. 140	1.99618	
1397	Fe(CO)	195.840		- 21	1. 1.457	
1398	Fe ₂ (CO) ₉	363.680		d. 100	2.08518	
1399	FeC ₂₀ H ₁₄ O ₆ S ₂ .6H ₂ O—Naphthalene-β-sul-	000.000	1	4. 100	2.000	
1000	fonate	578.170	1			1039
1400	(NH ₄) ₄ Fe(CN) ₆ .2NH ₄ Cl.3H ₂ O	445.083	Trig.		1.490	301
1401	Fe ₄ (NO) ₇ S ₂ N(C ₂ H ₄) ₄	659.773	111g.		1.88319	001
		83.9000	1			
1402	FeSi				6.1 5.4	į .
1403	FeSi ₂	111.960			1	1
1404	Fe ₂ Si	139.740	1		7.0	
1405	Fe ₃ Si ₂	223.640			6.7	
1406	FeO.SiO ₂ —Gruenerite	131.900	M.	1550	3.5	890
1407	2FeO.SiO ₂ —Fayalite	203.740	R.	1255		978
1408	2Fe ₂ O ₃ .2SiO ₂ .3H ₂ O—Iddingsite	493 . 526	R.		2.8	928
1409	FeSiF ₆ .6H ₂ O	305.992	Trig.			207
1410	FeO.TiO ₂ —Ilmenite	151.740	Trig.		4.75	
1411	Fe ₂ O ₂ .3TiO ₂ —Arizonite	399.380	M. ?		4.25	1069
1412	2Fe ₂ O ₃ .3TiO ₂ —Pseudobrookite	559.060	R.		4.7	1061
1413	6FeO.Sb ₂ O ₂ .5TiO ₂ —Derbylite	1122.08	R.		4.53	420
1414	2Fe ₂ O ₂ .PbO.3SO ₂ .4H ₂ O—Vegasite	854.817	H.			555
1415	3Fe ₂ O ₂ .PbO.4SO ₂ .6H ₂ O—Plumbojarosite	1130.59	Trig.		3.63	378
1416	3Fe ₂ O ₃ .2PbO.P ₂ O ₅ .2SO ₃ .6H ₂ O—Corkite		Trig.		4.2	383
1417	5Fe ₂ O ₂ .3PbO.6As ₂ O ₄ —Carminite	2847.52			4.1	
1418	FeS.3Sb ₂ S ₁ .4PbS—Jamesonite	1967.98	м.		5.7	
1419	3Fe ₂ O ₄ .2PbO.As ₂ O ₆ .2SO ₄ .6H ₂ O—Beudan-					
1113		1423.58	Trig.		4.1	386
1400	tite	1420.00	1 rig.		4.1	360
1420	9Fe ₂ O ₃ .4PbO.6As ₂ O ₅ .4SO ₃ .33H ₂ O—	4000 01				050
4.04	Lossenite		R.		F 70	952
1421	2Fe ₂ O ₃ .3PbO.3SiO ₂ —Melanotekite	1169.14	R.		5.73	1010
1422	TlFe(SO ₄) ₂ .12H ₂ O	668 . 555	C.		2.38	124
1423	Zn(FeO ₂) ₂	241.060			5.33	
1424	Fe ₂ O ₃ .CuO	239.250		1458		
1425	FeS.CuS—Chalcopyrite	183 . 540	Tet.		4.2	
1426	FeS.2Cu ₂ S.CuS—Bornite	501.950	C.		5.0	İ
1427	2FeS.CuS—Cubanite	271.445	R.		4.0	
1428	4FeS.Cu ₂ S.2CuS	702.095			5.0	
1429	4FeS.3Cu ₂ S.3CuS				4.85	
1430	3Fe ₂ O ₂ .CuO.2P ₂ O ₅ .8H ₂ O—Chalcosiderite	986.829	Tri.	•	3.1	969
1431	Fe ₂ O ₂ .2CuO.As ₂ O ₅ .2H ₂ O—Chenevixite:	584.771			3.93	379
	No No Nd Ni O Oo P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80		1	Sc Se Si Sn Sr Ta 7 56 9 18 22 78 52 6		

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind finding N
1432	FeS.Cu ₂ S.SnS ₂ —Stannite	429.940	Tet.		4.4	
1433	Fe ₂ O ₃ .CuO.PbO.2SO ₃ .4H ₂ O—Beaverite	694.642	H.		4.36	373
1434	2Ag ₃ Fe(CN) ₆ .3NH ₃	1122.15			2.45	
1435	FePtCl ₆ .6H ₂ O.	571.910		1	2.7	
1436	FePtI ₆ .9H ₂ O	1174.80			3.45	
1437	FeO.MnO ₂ —Bixbyite	158.770	C.		4.95	
1438	Fe ₂ O ₃ .MnO—Jacobsite	230.610	C.		4.75	
1439	Fe ₂ O ₃ .9MnO.4P ₂ O ₅ .14H ₂ O—Salmonsite	1618.46	R.		2.88	848
1439.1	9(MnFe) O.8SiO ₂ . MnCl ₂ .7H ₂ O—Friedelite	1010.40	Trig.		3.1	329
	CoO	74 0700	1	d. 800	5.68	323
1440		74.9700	C.	a. 800		
1441	Co_2O_3	165.940			5.18	
1442	Co ₃ O ₄	240.970			6.073	
1443	Co(OH) ₂	92.9854		d.	3.59715	
1444	CoF ₂	96.9700	M.		4.43	
1445	CoF ₂ .3H ₂ O	151.016			2.583_{25}^{25}	
1446	CoF ₂ .5HF.6H ₂ O	305.101	Trig.		2.045	
1447	CoCl ₂	129.886			3.356	
1448	CoCl ₂ .2H ₂ O	165.917			2.47725	
1449	CoCl ₂ .6H ₂ O.	237.978	M.	86	1.924_{25}^{25}	
1450	Co(ClO ₃) ₂ .6H ₂ O	333.978		61	1.92	
1451	$C_0(ClO_3)_2.6H_2O$	365.978	H.	143	1.02	131
1452	Co(ClO ₄) ₂ .7H ₂ O.	383.994	11.	140	2.075	101
1453	CoBr ₂	218.802			4.909_4^{25}	4
1454	CoBr ₂ .6H ₂ O	326.894		100 d.		
1455	CoI ₂	312.834			5.68	
1456	Co(IO ₃) ₂ .6H ₂ O	516.926			3.689^{21}	
1457	CoS—Syepoorite	91.0350		>1100	5.45	
1458	Co ₃ S ₄ —Linnaeite	305.170	C.		4.9	
1459	CoSO ₄	155.035			3.710_{25}^{25}	
1460	CoSO ₄ .H ₂ O.	173.050		d.	1.92	
1461	CoSO ₄ .4H ₂ O	227.096		u.	2.368_{25}^{25}	
1462	CoSO ₄ .6H ₂ O.	263.127	M.		2.029_{25}^{25}	
						401
1463	CoSO ₄ .7H ₂ O—Bieberite	281.143	M. ?		1.948_{25}^{26}	481
1464	CoSe	138.170			7.65	
1465	CoSeO ₄ .5H ₂ O	292.247	Tri.	d.	2.512	
1466	$CoSeO_4.6H_2O$	310.262	M.		2.32	599
1467	CoSeO ₄ .7H ₂ O	328.278	M.		2.135	
1468	$C_0(NO_3)_2.3H_2O$	237.032		91		
1469	Co(NO ₃) ₂ .6H ₂ O	291.078	M.	<100	1.883_{25}^{25}	
1470	Co(NO ₂) ₃ .3NH ₃	248.087			2.001_4^{32}	
1471	[Co(NH ₃) ₄ (NO ₂) ₂]NO ₃	281.118	R.		1.92217	
	$Co(NO_3)_2.6NH_3.$	285.173	10.		1.473_{26}^{26}	
1472 1473	CoF ₂ .6NH ₃ .	199.157			1.744_{25}^{26}	
				201	1.74425	
1474	CoCl ₂ .NH ₃	146.917		ca. 321	0.00=25	
1475	CoCl ₂ .2NH ₃ (α)	163.948		273	2.097^{25}_{25}	
1476	CoCl ₂ .2NH ₃ (β)	163.948			2.073_{25}^{25}	
1477	CoCl ₂ .4NH ₃	198.010		d.	1.593_{25}^{25}	
1478	CoCl ₂ .5NH ₃	215.042			1.580_{25}^{25}	
1479	[Co(NH ₃) ₅ Cl]Cl ₂	250.500	R.		1.819_{25}^{25}	
1480	CoCl ₂ .6NH ₂	232.073		d.	1.497^{25}_{25}	
1481	CoCl ₃ .6NH ₃	267.531	M.		1.744_{25}^{25}	
1482	CoCl ₂ .10NH ₃ .	300.197			1.71_{25}^{25}	
1483	[Co(NH ₃) ₄ (OH ₂)Cl]Cl ₂	251.484	R.		1.847	
	[Co(NH3)4(OH2)CI]CI2 $[Co(NH3)5(NO2)]CI2$	261.050	M.		1.69818	
1484						
1485	$[Co(NH_3)_5(NO_2)](NO_3)Cl.$	287.500	R.	00-	1.800	
1486	CoBr ₂ .2NH ₃	252.864		260	0 10017 8	
1487	$[Co(NH_3)_{\delta}Br]Br_2$	383.874		d.	$2.483_4^{17.8}$	
1488	CoBr ₂ .6NH ₃	320.989			1.955	
1489	[Co(NH ₃) ₅ Br]Cl ₂	294.958	130		2.09516.8	
1490	CoI ₂ .2NH ₃	346.896		222		
1491	(NH ₄) ₂ SO ₄ .CoSO ₄ .6H ₂ O	395.270	M.		1.901	521
1492	Co(SO ₄) ₂ .4NH ₃ .2H ₂ O.	355.255			1.80425	
		336.256			1.703_{25}^{25}	
1493	Co(SO ₄) ₂ .5NH ₃	000.200			1.70026	

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
1494	[Co(NH ₂) ₅ (SO ₄)]SO ₄ H.2H ₂ O	373.294	R.		1.82818	
1495	[Co(NH ₂) ₅ (OH ₂)] ₂ (SO ₄) ₂ .3H ₂ O	666.523	Tet.		1.854	
1496	[Co(NH ₂) ₄]Cl(SO ₄).3H ₂ O	346.726	R.		1.765	
1497	(NH ₄) ₂ SeO ₄ .CoSeO ₄ .6H ₂ O	489.540	M.	d.	2.212	623
1498	Co(NH ₂) ₆ Cl(SeO ₄).3H ₂ O	393.861	R.		1.937	020
1499	Co(H ₂ PO ₂) ₂ .6H ₂ O	297.141	1		1.80948.6	
	CoAs ₂ —Safflorite	208.890		d.	6.970	
1500		208.890		d.	6.5	
1501	CoAs,—Smaltite			a.	6.79	
1502	CoAs,—Skutterudite	283.850		د ا	•	-
1503	Co ₂ As ₃	342.820	1	d.	7.35°	
1504	Co ₂ As ₂	326.830	1	d.	7.82°	0.50
1505	Co ₂ (AsO ₄) ₂ .8H ₂ O—Erythrite	598.953	M.	,	2.9	850
1506	CoAsS—Cobaltite	165.995	C.	d .	6.2	
1507	CoCO ₂ —Spherocobaltite	118.970	Trig.	1	2.81825	375
1508	CoC ₂ O ₄	146.970			2.3254	İ
1509	Co(CO)4	170.970		51	1.7318	
1510	Co(CHO ₂) ₃ .2H ₂ O	185.016			2.12922	
1511	CoC ₂ H ₂ O ₄ .2H ₂ O—Malonate	197.016			2.279	
1512	$C_0(C_2H_2O_2)_2.4H_2O$	249.078	M.		1.718.7	651
1513	Co(C ₅ H ₇ O ₂) ₈ —Acetylacetonate	356.132		<u> </u>		
1514	CoC ₁₀ H ₆ O ₄ S ₂ .6H ₂ O—1, 5-Naphthalene-				•	
	disulfonate	453.239	M.	ł	1.77	799
1515	Co(CO) ₂ NO	172.978		-1.05	l. 1.51314	
1516	$[C_0(NH_2)_{\delta}(C_2O_4)]NO_8.HNO_2$	357.149			1.26415	
1517	CoSi	87.0300		1393	6.30	ŀ
1518	CoSi.	115.090	ł	1277	5.30	- 1
1519	CoSi ₂	143.150		1307	0.0	- 1
1520	Co ₂ Si	146.000		1327	7.117	
	Co ₂ SiO ₄	210.000		1021	4.63	
1521			True		2.087	413
1522	CoSiF ₆ .6H ₂ O	309.122	Trig.			413
1523	CoSnCl ₆ .6H ₂ O	498.510	R. Trig.		2.699	1
1524	CoPtCl ₆ .6H ₂ O	575.040	Trig.	d.	2.699	- 1
1525	CoPtBr ₆ .12H ₂ O		Trig.		2.762	- 1
1526	CoPtI ₄ .9H ₂ O	1177.93	Trig.		3.618	
1527	CoPtI ₆ .12H ₂ O	1231.98	Trig.		3.048	
1528	NiO—Bunsenite	74.6900	C.		7.45	201
1529	Ni ₂ O ₃	165.380			4.83	Į
1530	Ni ₂ O ₄ .2H ₂ O	258.085			3.41232	
1531	NiF ₂	96.6900			4.63	Ì
1532	NiF ₂ .3H ₂ O	150.736			2.01419	
1533	NiF ₂ .5HF.6H ₂ O	304.821	Trig.	I	2.132	1
1534	NiCl ₂	129.606]	3.544	i
1535	Ni(ClO ₂) ₂ .6H ₂ O	333.698	l	80 d.	2.07	
1536	Ni(ClO ₄) ₂ .6H ₂ O	365.698	H.	149		132
1537	Ni(ClO ₄) ₂ .7H ₂ O	383.714	1		2.15	
1538	NiBr ₂	218.522			4.6428	
1 5 39	Ni(IO ₂) ₂	408.554			5.07	
	Ni(IO ₂) ₂ .4H ₂ O	480.616	H.	d. ca. 100	0.01	
1540	NiS—Millerite	90.7550	Trig.	797	4.60	
1541			Irig.	181	!	
1542	Ni ₂ S	149.445		704	5.52	
1543	Ni ₂ S ₂	240.200		794		
		004 000		Tr. 545		ŀ
1544	Ni ₂ S ₄ —Polydymite	304.330	C.	1	4.7	
1 54 5	NiSO ₄	154.755	1	İ	3.68	i
1 54 6	NiSO ₄ .H ₃ O	172.770			1.98	
1547	NiSO ₄ .6H ₂ O	262.847	Tet. M.	Tr. 53.3	2.07	246
1548	NiSO ₄ .7H ₂ O—Morenosite	280.863	R.		1.948	501
1549	NiS ₂ O ₄ .6H ₂ O	326.912	Tri.	d.	1.908	
1550	NiSe	137.890			8.46	
1551	NiSeO4.6H2O	309.982	Tet.	1	2.31	262
1552	Ni(NO ₂) ₂ .6H ₂ O	290.798	M.	56.7	2.05	
1553	NH ₄ Cl.NiCl ₂ .6H ₂ O	291.195	M.		1.645	1
1554	Ni(ClO ₁) ₂ .6NH ₂	327.793		180	1.52	9
1002	Na Nb Nd Ni O Ou P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80		S Sa Sb 8 63 14	Se Se Si Sn Sr Ta T 56 9 18 22 78 52 6	To To To To To To To To To To To To To T	

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
1555	Ni(BrO ₃) ₂ .6NH ₃	416.709	i i	exp. 195	1.99	
1556	Ni(IO ₂) ₂ .5NH ₂	493.710	1	- 1	2.97	
1557	(NH ₄) ₂ Ni(SO ₄) ₂ .6H ₂ O	394.990	M.		1.923	539
1558	(NH ₄) ₂ Ni(SeO ₄) ₂ .6H ₂ O	489.260	M.	d.	2.22	643
1559	NiP.	120.738	141.	u.	4.6218	0.20
				ì		
1560	NiP ₃	151.762		4	4.1918	
1561	Ni ₂ P	148.404		1112	6.3^{15}	
1562	Ni ₃ P ₂	238.118			5.99	
1 5 63	Ni(H ₂ PO ₂) ₂ .6H ₂ O	296.861	1	d.	1.824	
1564	NiAs—Nicollite	133.650	H.	968	7.570	
1565	NiAs2—Rammelsbergite	208.610	R.		7.1	
1566	Ni ₁ As ₂ —Maucherite	325.990	Tet.		7.860	
1567	Ni ₅ As ₂	443.370		998		Į
2001	11101107	110.010	1	Tr. 970		
1 200	Ni ₂ (AsO ₄) ₂	452 000	1	11. 810	4.982	
1568		453.990	1			045
1569	3NiO.As ₂ O ₄ .8H ₂ O—Annabergite	598.113	M.	•	3.0	845
1570	NiAsS—Gersdorffite	165.715		0.00	6.3	- 1
1571	NiSb—Breithauptite	180.460	H.	1158	7.70°	1
1572	Ni ₅ Sb ₂	536.990		1170		
1573	NiSbS-Ullmannite	212.525	C.		6.6	
1574	NiC ₂ O ₄	146.690			2.235	1
1575	Ni(CO)4.	170.690	1	-25	l. 1.310	
	3NiO.CO ₂ .H ₂ O—Zaratite	286.085	1	-20		128 142
1576			1	İ	2.6	136, 143
1577	Ni(CHO ₂) ₂ .2H ₂ O	184.736			2.154	<u>,</u>
1578	Ni(C ₂ H ₃ O ₂) ₂	176.736	1		1.798	
1579	$Ni(C_2H_3O_2)_2.4H_2O$	248.798	1		1.74416.7	1
1580	NiC ₁₀ H ₆ O ₆ S ₂ .6H ₂ O—1, 5-Naphthalene		1	1		
	disulfonate	452.959	М.		1.79	808
1581	Ni ₂ Si	145.440		1309	7.217	
1582	2NiO ₂ .3SiO ₂ .2H ₂ O—Connarite	397.590	н.	2000	2.5	292
1583	NiSiF ₆ .6H ₂ O	308.842		d.	2.134	210
			Trig.	a.		210
1584	NiPdCl ₆ .6H ₂ O	486.230	H.		2.353	
1585	3NiO.6CuO.2As ₂ O ₅ .SO ₃ .7H ₂ O—Lindac-		1			
	kerite	1367.50	M. ?		2.25	851
1586	NiPtCl4.6H2O	574.760	Trig.		2.798	
1587	NiPtBrs.6H2O	841.508	Trig.		3.715	
1589	CrO	100.010	R.	190 d.	2.7	
1590	Cr ₂ O ₃	152.020	H.	1900	5.21	
	Cr ₄ O ₂ .3H ₂ O	310.086	I I	1000	2.90	
1591	·	1				
1592	Cr ₆ O ₉	404.050			4	
1593	CrF ₂	90.0100	1	1100	4.11	
1594	CrF ₃	109.010	R.	>1000	3.8	}
1595	CrCl2	122.926	1		2.75	1
1596	CrCl	158.384			2.7	1
1597	CrO ₂ Cl ₂	154.926	1	- 96.5	l. 1.836	1
1598	(CrO ₂),Cl ₄	632.798	1		2.5	1
1599	CrS	84.0750]		4.1	
			1.			
1600	Cr ₂ S ₂	200.215			3.7	
1601	Cr ₂ (SO ₃) ₃	344.215	1		2.2	
1602	Cr ₂ (SO ₄) ₃	392.215			3.0	
1603	Cr ₂ (SO ₄) ₃ .17H ₂ O	698.476	1		1.7	1
1604	H ₂ CrSO ₇	198.090		190 d.		1
1605	H ₂ CrSeO ₇	245.225	1	200		-
1606	(NH ₄) ₂ CrO ₄	152.088	М.		1.8	
1607	CrO ₄ .3NH ₃	167.103	R.		1.96	
		1	1 1			
1608	(NH ₄) ₂ Cr ₂ O ₇	252.098	M.		2.15	
1609	(NH ₄) ₂ Cr ₃ O ₁₀		R.		2.33	1
1610	(NH ₄) ₂ Cr ₄ O ₁₃	452.117		170	2.34	
1611	NH4IO3.CrO3	292.981	R.		3.5	
1612	(NH ₄) ₂ CrSO ₇	232.153		160		
1613	Cr ₂ (SO ₄) ₂ .(NH ₄) ₂ SO ₄ .24H ₂ O	956.727	c.	100 d.	1.72	101
1614	CrP	83.0340	"		5.7	
			1	1	2.97	
1615	B Ba Be Bi Br C Ca Cb Cd Ce C		D.B. 7. 7.	0.0:0.0:=		1
Le Al As Au 2 55 13 83	B Ba Be Bi Br C Ca Cb Cd Ce C 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Pe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li L 36 83 58 81 7

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind finding N
1616	$Cr_4(P_2O_7)_2$	730.184	M.		3.2	
1617	Cr ₂ As ₂	328.900			6.2	
1618	4CrO ₃ .As ₂ O ₄ .2(NH ₄) ₂ O.H ₂ O	752.131	1	d. 175	1.83	
1619	Cr ₂ C ₂	180.030	1	1890	6.68	1
1620	Cr ₄ C	220.040	1 1		6.75	- 1
1621	Cr ₅ C ₂	284.050	1 1	1665	6.92	
1622	CrC ₂ O ₄ .H ₂ O	158.025	1 1		2.46	
1623	Cr(d-C ₄ H ₄ O ₆)	200.041	1 1		2.3315	1
1624	Cr[CH(COCH ₂) ₂] ₃ —Acetylacetonate	349.172	1 1	214		1
1625	$[Cr(CON_2H_4)_6]Cl_3.3H_2O$	572.711	1	150		
1626	[Cr(CON2H4)6](CN)2.5.5H2O	589.400	1 1	75		
1627	[Cr(CON ₂ H ₄) ₆](SCN) ₃	586.510	1	90 d.		1
1628	CrSi ₂	108.130	1		4.4	
1629	Cr ₃ Si	184.090]		6.52	
1630	Cr ₃ Si ₂	212.150			5.5	
1631	PbCrO_—Crocoitite	323.210	M.	844	6.3	1060
1632	3PbO.2CrO ₃ —Phoenicochroite	869.620			5.75	
1633	TlCr(SO ₄) ₂ .12H ₂ O	664.725	C.		2.38	122
1634	ZnCr ₂ O ₄	233 . 400	1		5.3	j
1635	(NH ₄) ₂ Cr ₂ O ₇ .HgCl ₂	523.624	М.		3.11	ļ
1636	Ag2CrO4	331.770			5.625	
1637	Ag ₂ Cr ₂ O ₇	431.780	1		4.770	
1638	MnO.Cr ₂ O ₃	222.950	1 1		4.87	
1639	FeCr ₂ O ₅ —Chromite	223.860	C.		4.5	181
1640	NiCr ₂ O ₄ Cl ₂ .9H ₂ O	491.765	1	47		
1641	MoO ₂	128.000	Tet.		4.51619.5	į.
1642	MoO ₂	144.000	R.	795	4.5019.5	
1643	Mo ₄ O ₁₄ .6H ₂ O	812.092			3.618	ı
1644	H ₂ MoO ₄	162.015	H.	d. 115		l l
1645	H ₄ MoO ₅	180.031	M. Tri. ?		3.12415	
1646	MoF ₆	210.000		17		1
1647	MoO ₂ F ₂	166.000	1		3.494	
1648	MoOF ₄	188.000		98	3.001	ĺ
1649	MoCls	273.290		194	0.002	
1650	MoI ₂	349.864		-0-	4.3	
1651	MoS ₂ —Molybdenite	160.130	H.	1185	4.8	i
1652	Mo ₂ S ₃	288.195			5.914	ł
1653	(NH ₄) ₂ MoO ₄	196.078	М.		2.270	i
1654	18MoO ₂ .14NH ₂ .3H ₂ O ₂ .18H ₂ O	3256.76	M.		2.975	
1655	Mo ₂ P ₂	254 . 048			6.17	
1656	Mo(PO ₂) ₂	333.072	1		3.280	ł
1658	MoCls.POCls.	426.688	1	127	5,25	i
1659	18MoO ₂ .As ₂ O ₄ .28H ₂ O	3326.35	Tri.		3.088	l l
1660	18MoO ₂ .As ₂ O ₄ .38H ₂ O		Tri.	d.	2.822	İ
1661	Bi ₂ O ₄ . MoO ₂ —Koechlinite		R.	~ ·		1065
1662	MoC	108.000	-"	2570	8.40	
1663	Mo ₂ C.	204.000		2380	8.9	1
1664	Mo(CO) ₆	1		-004	1.95	1
1665	3C ₂ H ₄ (NH ₂) ₂ .HSCN.Mo(OH)(SCN) ₂			128 d.	1.00	1
1666	MoSi ₂	152.120		120 u.	6.1	
1667	TiO ₂ .12MoO ₃ .22H ₂ O	I .	Tet.	60	0.1	1
1668	PbMoO ₄ —Wulfenite	367.200	Tet.	1068	6.7	419
1669	2PbO.MoO.	590.400	160.	951	0.1	***
1670	Fe ₂ O ₃ .3MoO ₃ .7.5H ₂ O—Molybdite	774.796	R.	301	4.5	919, 93
1070	re203.5M1003.7.51120—Moly batte	114.130	10.		4.0	953
1671	WO ₂ .H ₂ O—Tungstite	250.015	R.	1473	5.5 ?	1018
		298.000	It.	2.5	0.01	1010
1672	WF ₆	1				
1673	WOF4	276.000		110		ļ
1674	WCl _s	361.290		248		i
1675	WCl ₆	396.748		275		
1676	WO ₂ Cl ₂	286.916		•		
1677	WOCI.	341.832		211		
1678	WBrs	583.580	1	276	ļ	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
1679	WOBr4	519.664		277		
1680	WCl ₆ .3WBr ₆	2387.24	1	232		
1681	WI ₂	437.864	1 1		6.918	
1682	WI4	691.728	1 1		5.218	
1683	WS ₂	248.130	1 1		7.510	
1684	WP	215.024	1 1		8.5	
1685	WP ₂	246.048	1 1		5.8	
1686	W ₄ P ₂	798.048	1 1		5.21	j
1687	24WO ₃ .P ₂ O ₅ .45H ₂ O	6520.74	c.		4.68	
1688	WAs ₂	333.920	"		6.918	1
1689	WC	196.000		2777	15.718	İ
1690	W,C	380.000	1	2877	16.0618	1
1691	W,C	564.000	1 1	>2700	20.00	
1692	WSi ₂	240.120	1	72.00	9.30	
1693	W ₂ Si ₂	452.180	1		10.9	
1694	PbO.WO ₁ —Raspite	455.200	М.	1123	10.9	1023
1695	PbO.WO ₃ —Stolzite	455.200	Tet.	1120	8.23	401
1696			Tet.		0.20	
-	CuO.WO,—Cuprotungstite	311.570	1		7.0	1007
1697	MnO.WO _r —Hübnerite	302.930	M.		7.2	1017
1698	FeO.WO _r —Ferberite	303.845	Tet.		6.64	1062
1699	Fe ₂ O ₂ .WO ₂ .6H ₂ O—Ferritungstite	499.772	H.			364
1700	Nio.wo ₃	306.690	R.		6.8820.5	
1701	3Cr ₂ C ₃ ,W ₃ C	920.090	1 _ 1		8.412	
1702	UO ₂ —Uraninite	270.170	R.		10.5	
1703	UO ₃	286.170	i i	•	5.92	
1704	UO ₄ .2H ₂ O	338.201	1	d. 115		
1705	U ₃ O ₅ —Pitchblende	842.510			7.31	
1706	UF ₆	352.170	M.		4.68	- 1
1707	$(UO_2)(ClO_4)_2.4H_2O$	541.148	1	110 d.		- 1
1708	(UO ₂)(ClO ₄) ₂ .6H ₂ O	577 . 178	1	90		i
1709	UBr ₄	557.834	1 1		4.84	
1710	UI4	745.898	1	500	5.6	
1711	UO ₂ (IO ₂) ₂	620.034	R.	d. 250	5.2	
1712	UO ₂ (IO ₃) ₃ .H ₂ O	638.049			5.05	
1713	UO ₂ SO ₄ .3H ₂ O	420.281	1	d. 100	3.28	
1714	UO ₂ NO ₃ .6H ₂ O	440.270	R.	59	2.742	
1715	UO ₂ (NO ₃) ₂ .3H ₂ O	448.232		120		1
1716	UO ₂ (NO ₂) ₂ .6H ₂ O	502.278	R.	d. 100	2.81	525
1717	(NH ₄) ₂ (UO ₂)(NO ₃) ₄ .2H ₂ O		1	4. 100	2.78	020
1718	(NH ₄) ₂ (UO ₂)(SO ₄) ₂ .2H ₂ O	534.408	1		3.01	İ
1719	UO ₂ .2P ₂ O ₄	554.266	R.		3.9	
1720	3UO ₃ .P ₃ O ₃ .6H ₂ O—Phosphuranylite	1060.65	C.		J.8	906
1721	3UO ₃ .As ₂ O ₄ .12H ₂ O—Troegerite	1304.61	M.		0.0	
1721	Bi ₂ O ₁ .2UO ₂ .3H ₂ O—Uranospherite	1060.39	R.		3.3	802
	$5Bi_2O_3.3UO_3.2As_2O_4.12H_2O$ —Walpurgite.				6.36	993
1723			Tri.	00	5.76	997
1724	UC ₃	262.170	1	2260	11.818	
1725	U ₃ C ₃	512.340		2400	11.28	
1726	UO ₃ .CO ₂ —Rutherfordine	330.170	Tet.		5.6	935
1727	UO ₂ C ₂ O ₄	358.170		_	2.98	
1728	UO ₂ (CHO ₂) ₂ .H ₂ O	378. 20 1	l i	d. 110	3.6919	J
1729	$UO_2(C_2H_3O_2)_2.2H_2O$	424.247	R.	d. 275	2.8916	j
1730	$(NH_4)_4(UO_2)(CO_3)_3.2H_2O$	558.356	1		2.77	
1731	$UO_2(C_2H_3O_2)_2.NH_4C_2H_3O_2$	465.278	Tet.			223
1732	USi ₂	294.290			8.0	
1733	12U ₂ O ₃ .5SiO ₂ .14H ₂ O—Soddite	6844.60	R.		4.627	
1734	U ₅ Pb ₂ O ₁₇ .4H ₂ O—Curite	1949.31]		7.19	
1735	8UO ₃ .4PbO.3P ₂ O ₅ .12H ₂ O—Dewindtite	3824.49	1 . 1		4.8	
1736	UPbSiO ₆ .1.33H ₂ O—Kasolite	593.450	М.		5.96	
1737	Cu(UO ₂) ₂ P ₂ O _{8.8} H ₂ O—Metatorbernite I.	938.081	Tet.		3.5	303
1738	CuO.2UO ₃ .P ₂ O ₄ .8H ₂ O—Torbernite	938.081	Tet.		3.5	737
1739	CuO.2UO ₂ .As ₂ O ₄ .8H ₂ O—Zeunerite	993.953	Tet.		3.2	317
1740	VO	66.9600	1		5.758 ¹⁴	311
1741	VO ₂	82.9600		>1755	4.399	
4434	▼ → 2	U20.5000		/1100	T.000	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
1742	V ₂ O ₂	133.920	ĺ		3.64	i i
1743	V ₂ O ₃	149.920		1970	4.8718	1
1744	V ₂ O ₅	181.920		800	3.357	
	* *		5	000		1
1745	VF ₃	107.960	R.		3.36319	
1746	VF ₄	126 . 960	i i	d. 325	2.97523	
1747	VF ₅	145.960	1		2.17719	}
1748	VOF ₂	104.960	1	d.	3.39619	
1749	VOF	123.960		300	2.459	1
1750	VCl ₂ .	121 .876	l II.	•••	3.231	
1751	VCl.	157.334	***		3.0010	i
				100		
1752	VCl ₄	192.792		-109	l. 1.816 ²⁰	1
1753	VOC1	102.418			2.824	
1754	VOCl ₂	137 . 876			2.8813	
1755	VOCla	173.334		<-15	l. 1.829	
1756	V ₂ O ₂ Cl	201.378			3.64	
1757	VOBr	146.876		d. 480	4.0018	
	1		1	u. 1 00		
1758	VOBr ₃	306.708	1		2.93314.4	· ·
1759	V ₂ S ₂	166.050			4.200	1
1760	V ₂ S ₂	198.115			4.721	1
1761	V ₂ S ₄	262.245			3.000	1 _
1762	V ₂ O ₄ .3SO ₃ .16H ₂ O—Minasragrite	694.361	M. Tri.			619
1763	VN	64.9680	141. 111.	2050	5.630	0.0
				2050		i
1764	(NH ₄) ₈ VS ₄	233.336			1.620	ŀ
1765	$(NH_4)_4V_9S_6O$	382.465			1.716	
1766	Bi ₂ O ₃ .V ₂ O ₅ —Pucherite	647.920	R.		6.2524.5	1064
1767	vc	62.9600		2830	5.4	i
1768	V4C	239.840		2750 mm		1
1769	(NH ₄) ₂ VO(CNS) ₄ .5H ₂ O	425.407	R.			1
			R.	58	4.40	
1770	VSi ₂	107.080			4.42	i i
1771	V ₂ Si	129.980			5.48 ¹⁷	
1772	PbO.V ₂ O ₄	405.120		849		
1773	2PbO.V ₂ O ₅	628.320		722		
1774	3PbO.V ₂ O ₄	851.520		952		ł
1775	8PbO.V ₂ O ₆	1967.52		794		
1776	9PbO.3V ₂ O ₅ .PbCl ₂ —Vanadinite	2832.68	H.		6.8 63	403
1777	TIVO3	303.360	1	424		
1778	Tl ₂ VO ₄	728.160	1	566		1
1779	Tl ₄ V ₂ O ₇	315.200	i i	454		
1780	Tl, V, O11	1638.24			8.5917.5	İ
1781		1000.21	n.			1021
	4(PbZn)O.V ₂ O ₅ .H ₂ O—Descloisite	1004 50	R.		6.0	1021
1782	$Cd_{10}V_6Cl_2O_{24}$	1884.78	H.		5.26415	ŀ
1783	Cd ₁₀ V ₄ Br ₂ O ₂₄	1973.69	H.		5.45615	1
1784	2PbO.2CuO.V ₂ O ₅ .H ₂ O—Cuprodescloizite.	805.475	R.		6.1	1020
1785	Ag4V2O7	645.440		383		
1786	5(NH ₄) ₂ O.P ₂ O ₅ .3V ₂ O ₅ .15MoO ₅ .39H ₂ O	3810.80			2.410	1
1787	6(NH ₄) ₂ O.P ₂ O ₄ .6V ₂ O ₄ .12M ₀ O ₂ .41H ₂ O	4012.67			2.411	- 1
						- 1
1788	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₄ .9M ₀ O ₂ .20H ₂ O	2054.52			2.80218	
1789	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₅ .10M ₀ O ₃ .21H ₂ O	2216.54			2.80418	1
1790	$3(NH_4)_2O.SiO_2.V_2O_4.11M_0O_3.27H_2O$	2468.63	M. ?		2.807	1
1791	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₃ .15M ₀ O ₃ .24H ₂ O	2990.58			2.816	
1792	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₄ .9WO ₂ .24H ₂ O	2918.58			3.40	
1793	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₄ .10WO ₂ .21H ₂ O	3096.53			3.43	
					3.40	070
1794	2UO ₂ .3V ₂ O ₅ .15H ₂ O—Uvanite	1388.33	R.		41 4	979
1795	Cb ₂ O ₅	266.200	1	1520	$4.60_4^{61.2}$	
1796	CbF ₅	188.100		75.5	3.29	
1797	CbCls	270.390		194	2.75	1
1798	CbOCl.	215.474	1			1
						- 1
1799	CbC	105.100	_			
1800	Cb ₂ FeO ₆ —Ferroniobite	338.040	R.		6.26	1063
1801	Ta ₂ O ₅	443.000	R.	1470 d.	8.73541.2	1
1802	TaF	276.500		96.8	4.74	i
1803	TaCl	358.790	1	221	3.6827	
					J. U5	
1804	TaBr ₄	581.080	1	24 0		1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind. finding No.
1805	TaC	193.500				
1806	TaSi ₂				8.830	
1807	Ta ₂ O ₅ .MnO—Manganotantalate	513.930	R.		7.03	1019
1808	B ₂ O ₂	69.6400	1 1		l. 1.85 glass	26
1809	B ₂ O ₃ .3H ₂ O—Sassolite	123.686	Tri.	d.	1.49	448
1810	B ₂ H ₆	27.6862	1	-169		
1811	B ₄ H ₁₀	53.3570	1	-112		
1812	B ₁₀ H ₁₄	122.308	1 1	99.5	0.94	
1813	BF ₃	67.8200	1 1	-127		
1814	BCl ₂	117.194	1 1	-107	l. 1.4344	
1815	BBr ₂	250.568	1	- 45	1. 2.60	
1816	B ₂ HBr	102.564	1 1	-104		
1817	BI ₃	391.616		43	1. 3.350	ŀ
1818	B ₂ S ₃	117.835	1	310	1.55	
1819	BN ₂					ľ
1820	NH4BF4	104.859	1		1.85117	
1821	CB	76.9200	1	2350	2.6	
1822	B(CH ₂) ₂	1		56		Į.
1823	B(C ₂ H ₄) ₂	97.9355			1. 0.69623	
1824	B(OCH ₂) ₂	1			1. 0.915	
1825	B(OC ₂ H ₅) ₈	1	1		l. 0.86426.5	11
1826	B(OC ₂ H ₇) ₂				l. 0.86716	i
1827	B(OC ₄ H ₉) ₈ —Isobutyl		1		1. 0.8640	14
1828	B(OC ₅ H ₁₁) ₃ —Isoamyl				1. 0.8720	17
1829	SiB ₃		1 1		2.52	-
1830	SiB		1		2.47	
1831	Zr ₂ B ₄	316.280	1		3.7	
1833	ThB4	1	1		7.5	
1834	ThBa	1 111 111	1		6.4	
1835	TiBO ₂	247.220	1	472	0.1	
1836	Tl ₂ BO ₂		1	370 d.		
1837			1	434		
1838	$ \mathbf{TI_4B_2O_5} \dots \mathbf{B_2O_3} \dots B_2O_3$		1	875		
1839			1	d. 875	3.86	
1840	B ₂ O ₃ .CuO		1 1	u. 813	6.9	
1841	MnB ₂ Mn ₂ B ₄ O ₉	352.070	Tri.		3.61	923
1842			1 111.		7.15	923
1843	FeB				7.15	i
1844	FeB	77.4800	1		5.0	
1845	Fe-B ₄		1 1	1240	0.0	
	1	165.780	1 . 1	1340		1
1846 1847	Fe ₈ B ₂ CoB	300.840 69.7900	1	1351	7.25	
		I .			7.25	1
1848 1849	Co ₂ B	1	1			
	NiB		1	100-	7.4	
1850	Ni ₂ B			1225	8.0	
1851 1852	Ni ₂ B ₂			1160	r -	
	CrB		1		5.5	
1853	Cr ₁ B ₂	177.670			6.715	
1854	Mo ₂ B ₄		1		7	
1855	WB ₂		1 1	022	10.8	
1857	B ₂ O ₃ .9WO ₃ .2NiO.18H ₂ O	2631.30	M.	80	1. 3.680	
1858	Al ₂ O ₃ —Corundum	1	Trig.	2050	4.00	359
1859	Al ₂ O ₃ .H ₂ O—Diaspore		R.	d. 360	3.413	911
1860	Al ₂ O ₃ .3H ₂ O—Gibbsite		M.	d. 200	2.423	692
1861	Al(OH):		M.			632
1862	AlF ₃		Tri.	1040	3.07	
1863	AlF ₃ .H ₂ O—Fluellite	101.975	R.		2.17	507
1864	AlCl	133.334	H.	194	2.444	
			1		l. 1.31_4^{200}	
1865	AlBr ₃	266.708	Trig.	97.5	3.01 ²⁵ 1. 2.64 ¹⁰⁰	
1866	AlBr ₂ .15H ₂ O			- 7.5 m	2.014	
1867	Al(BrO ₃) ₃ .9H ₂ O		<u> </u>	62.3		<u> </u>
g Al As Au 2 55 13 38	B Ba Be Bi Br C Ca Cb Cd Ce C 54 79 75 15 5 16 77 51 29 59 4	1 Co Cr Cs Ca 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Lu 36 83 58 81 72

ndex No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. inc
1868	AlBrCl ₂	177.792		143	T	
1869	AlI ₂	407.756		191	3.98	
	•		ł		1. 3.20200	
1870	Al ₂ S ₃	150.115	H.	1100	2.02	1
1871	Al ₂ O ₃ .SO ₃ .9H ₂ O—Aluminite				l e	450
		344.124	M.	d.	1.705°	453
1872	Al ₂ O ₃ .2SO ₂ —Alumian	262.050	Trig.		2.74	286
1873	Al ₂ O ₃ .3SO ₃	342.115	İ	d. 770	2.71	
1874	Al ₂ O ₃ .3SO ₃ .18H ₂ O—Alunogenite	630.361	M .	ļ	1.69117	468
1875	2Al ₂ O ₃ .SO ₃ .10H ₂ O—Felsoebanyite	464.059	R.		2.33	587
1876	2Al ₂ O ₃ .SO ₃ .15H ₂ O—Paraluminite	554.136	l			462
1877	AlN	40.9680	R.	2150		.02
1878	Al(NO ₃) ₃ .9H ₂ O.	375.123	R.	73		
1879			16.	i e	i	İ
	AlCl ₂ .NH ₄ Cl	186.831		304		1
1880	AlCl ₃ .3NH ₃	184 . 427		280 d.		
1881	Al ₂ (SO ₄) ₃ .(NH ₄) ₂ SO ₄	474.258			2.039	
1882	Al ₂ O ₃ .(NH ₄) ₂ O.4SO ₃ .24H ₂ O—Tschermi-			i		
	gite	906.628	C.	93.5	1.64	81
1883	AlPO ₄	121.984	H.		2.59	"
1884	Al ₂ O ₂ .P ₂ O ₄ .4H ₂ O—Metavariscite	316.030	R.	>1500	2.54	200
1885				71000		680
	Al ₂ O ₂ .P ₂ O ₄ .6H ₂ O—Lucinite	352.060	R.		2.566	724
1886	Al ₂ O ₃ .P ₂ O ₅ .6H ₂ O—Zepharovichite	352.060		>1500	2.37	664
1887	Al ₂ O ₃ .3P ₂ O ₅	528.064			2.779	1
1888	2Al ₂ O ₃ . P ₂ O ₄ . 3H ₂ O—Augelite	399.934	M.	d.	2.77	712
1889	5Al ₂ O ₄ .2P ₂ O ₄ .9H ₂ O—Spherite	955.835	R.	d.	2.536	711
1890	Al(AsCl).	358.214			2.8542	'
1891	Al ₄ C ₂	143.840			2.36	i
			. .			
1892	Al ₂ O ₂ .C ₁₂ O ₃ .18H ₂ O—Mellite	714.197	Tet.		1.64	260
1893	Al(CH ₂) ₂	72.0293				19
1894	$Al(C_2H_6)_3$	114.076				29
1895	Al(C ₈ H ₇ O ₂) ₃ —Acetylacetonate	324.122		194		
1896	Al(OC ₄ H ₄) ₁	306.076		ca. 265	1.23	ł
1897	NH ₂ (CH ₂)Al(SO ₄) ₂ .12H ₂ O	467.329	C.	cu. 200	1.568	75
1898		-		٠		1
	Al ₂ O ₃ .SiO ₂ —Andalusite	161.980	R.	d.	3.2	815
1899	Al ₂ O ₃ .SiO ₂ —Cyanite	161.980	Tri.	d.	3.6	907
1900	Al ₂ O ₃ .SiO ₂ —Sillimanite	161.980	R.	d. <1550	3.23	819
1901	Al ₂ O ₃ .2SiO ₂ .2H ₂ O—Kaolinite	258.071	M.		2.6	690
1902	Al ₂ O ₃ .2SiO ₂ .4H ₂ O—Newtonite	294.102	Tet.		2.37	274
1903	Al ₂ O ₃ .4SiO ₂ .H ₂ O—Pyrophyllite	360.175	R.		2.85	727
1904	3Al ₂ O ₃ .2SiO ₂ —Mullite	425.880	R.	1810 d.	3.156	
1905		420.000		1610 u.		704
	2(AlF)O.SiO ₂ —Topas		R.		3.58	784
1906	Al ₄ Ti ₂	176.680	Tet.		3.348	
1907	3Al ₂ O ₃ .2PbO.2P ₂ O ₅ .7H ₂ O—P l u m b o-					
	gummite	1162.36	H.	d.	4.014	325
1908	3Al ₂ O ₄ .2PbO.2SO ₄ .P ₂ O ₄ .6H ₂ O—					
	Hinsdalite	1162.43	H.		3.65	865
1909	2Al(OH) ₃ .Pb(HCO ₃) ₂ —Dundasite	485.182	***		3.25	
			C	0.		107
1910	Al ₂ (SO ₄) ₃ .Tl ₂ SO ₄ .24H ₂ O	1279.35	C.	91	2.320	107
1911	Al ₂ O ₃ .ZnO—Automolite (Gahnite)	183.300	C.		4.58	161
1912	3Al ₂ O ₃ .6ZnO.2SO ₃ .18H ₂ O—Zincaluminite	1278.45	H.	d.	2.26	256
1913	Al ₂ O ₃ .4CuO.SO ₃ .8H ₂ O—Cyanotrichite	644.388	R.		2.737	779
1914	(AlCl)O.6CuO.SO ₁ .9H ₂ O—Spangolite		Trig.	d.	3.14	340
1915	3Al ₂ O ₃ ,CuO.2P ₂ O ₃ ,9H ₂ O—Turquoise	831.565	Tri.	d. 300	2.67	782
		-				
1916	4Al ₂ O ₃ .18CuO.5As ₂ O ₅ .55H ₂ O—Liroconite	3980.39	M.	d.	2.96	830
1917	Al ₂ O ₃ .MnO	172.850	C.		4.12	
1918	Al ₂ O ₃ . MnO.4SO ₃ .24H ₂ O—Apjohnite	925.480	M.		1.782	477
1919	Al ₂ O ₃ .2MnO.P ₂ O ₅ .4H ₂ O—Eosphorite	457.890	R.		3.13	837
1920	Al ₂ O ₃ . MnO.2SiO ₂ .2H ₂ O—Carpholite	329.001	R.		2.94	801
1921	Al ₂ O ₄ .3MnO.3SiO ₂ —Spessartite	494.890	C.		4.180	167
1922	- · ·					1
1	Al ₂ O ₃ .7MnO.8SiO ₂ .6H ₂ O—Ganophyllite	1187.00	M.		2.84	914
1923	Al ₂ O ₂ . FeO—Hercynite	173.760	C.		3.93	165
1924	Al ₂ O ₃ . FeO.4SO ₃ .24H ₂ O—Halotrichite	926.390	М.		2.04	505
1925	Al ₂ O ₃ .FeO.P ₂ O ₅ .11H ₂ O—Paravauxite	513.977	Tri.	d.	2.3	681
1926	Al ₂ O ₃ .2FeO.P ₂ O ₅ .4H ₂ O—Childrenite	459.710	R.	d.	3.23	876
Mn Mo N	Na Nb Nd Ni O Oa P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80			Se Se Si Sa Sr Ta Th 56 9 18 22 78 52 66		

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. in finding
1927	2Al ₂ O ₃ .4FeO.3P ₂ O ₅ .24H ₂ O—Vauxite	1349.71	Tri.	i i	2.45	677
1928	Al ₂ O ₂ .3FeO.3SiO ₂ —Almandite		C.		4.04	166
1929	Al ₂ O ₃ .3FeO.2SiO ₂ .3H ₂ O—Daphnite	491.606	M.			826
1930	5Al ₂ O ₂ .2FeO.4SiO ₂ .H ₂ O—Staurolite		R.		3.7	930
1931	Al ₂ O ₂ .CoO		C.		4.374	
1932	3Al ₂ O ₃ .4CoO	605.640	"		4.80	1
1933	AlB ₁₂		M.		2.5	- 1
1934	Al ₂ O ₂ .B ₂ O ₂ —Jeremejevite		H.		3.3	313
			R.		0.0	758
1935	BO ₂ (AlO) ₂	1	1		0.0	100
1936	$C_2B_{12}.3AlB_{12}$		Tet.		2.615	000
1937	8Al ₂ O ₃ .B ₂ O ₃ .6SiO ₂ .H ₂ O—Dumortierite		R.		3.3	886
1938	Sc ₂ O ₃	138.200	1 1		3.864	1
1939	ScCl ₃	151.474	1 1	939		
1940	ScBr ₂	284.848	1		3.91	
1941	Sc ₂ (SO ₄) ₂	378.395			$oldsymbol{2}$. $oldsymbol{579}$	1
1942	Sc(NO ₃) ₃	231.124	1	150		
1943	Sc(NO ₂) ₃ .4H ₂ O	303.186	1	d. 100		
1944	Sc ₂ O ₃ .2SiO ₂ —Thortveitite	1	R.		3.57	946
1945	Yt ₂ O ₂		"	2410	4.84	
1946	YtCl ₂			<686	2.848	1
1947	YtCl ₂ .H ₂ O			160	a. 04	
			1	74		
1948	Yt(BrO ₂) ₂ .9H ₂ O		1	74	0.61.	
1949	Yt ₂ (SO ₄) ₂		1		2.612	ccı
1950	Yt ₂ (SO ₄) ₂ .8H ₂ O		M.		2.558	661
1951	Yt ₂ O ₂ .P ₂ O ₅ —Xenotime		Tet.	<u> </u>	4.6	348
1952	Yt ₄ (P ₂ O ₇) ₂	878.144	1 1		3.059	
1953	YtC2	113.000	1		4.13	1
1954	Yt(CH ₂ CO ₂) ₃ .4H ₂ O	338.131	Tri.		1.696	
1955	Yt(C ₂ H ₅ SO ₄) ₆ .18H ₂ O		H.		1.764_4^{26}	238
1956	2Yt ₂ O ₂ .4SiO ₂ .H ₂ O—Thalenite		M.		4.23	925
1957	Yt ₂ Pt ₂ (CN) ₁₂ .21H ₂ O		R.		2.376	
1957.1	Yt ₂ (MoO ₄) ₃	658.000	1 1	1347	4.7916	415
1958	La ₂ O ₂		1 1	>2000	6.51	
			1 1	907	3.947_4^{18}	
1959	LaCl ₁	1	1	L L	3.8474	
1960	LaCl ₂ .7H ₂ O		1	d. 91		
1961	La(BrO ₃) ₃ .2H ₂ O		1 1	d. 150		
1962	La(BrO ₂) ₃ .9H ₂ O		1 1	37.5		
1963	LaS ₂	203.040	1 1	d. 650		
1964	La ₂ S ₂	374.015	i i		4.911^{11}	
1965	La ₂ (SO ₄) ₃	566.015	1 1		3.600	
1966	La ₂ (SO ₄) ₃ .9H ₂ O	728.154	1 1		2.821	
1967	(NH ₄) ₂ La ₂ (SO ₄) ₄ .8H ₂ O	842.281	M.		2.516	
1968	La ₂ O ₃ .5P ₂ O ₅	1036.06	M.		3.241	
1969	LaC.				5.02	
1970	La(C ₂ H ₆ SO ₄) ₆ .18H ₂ O		н.		1.8454	224
1970	$La(C_2H_5SO_4)_6.18H_2O$		***	72 d.	3.3184	
1971	Zn ₂ La ₂ (NO ₃) ₁₂ .24H ₂ O			98. o	2.1614	
			1 25	90.U		
1973	La ₂ Pt ₃ (CN) ₁₂ .18H ₂ O	·	M.	67	2.626	1
1974	Mn ₃ La ₂ (NO ₃) ₁₂ .24H ₂ O			87.2	2.0804	
1975	Co ₂ La ₂ (NO ₃) ₁₂ .24H ₂ O		1	101.8	2.1314	1
1976	Ni ₂ La ₂ (NO ₂) ₁₂ .24H ₂ O		1	110.5	2.146^{0}_{4}	
1976.1	La ₂ (MoO ₄) ₂	757.820	Tet.	1181	4.7716	
1977	CeO ₂	172.250	C.	1950	7.3	
1978	CeF ₃ —Fluocerite	197.250	H.	1324	5.8	298
1979	CeCl ₂		1	848	3.92^{0}_{4}	
1980	Ce(BrO ₃) ₃ .9H ₂ O	686.137	Н.	49	•	1
1981	Ce ₂ S ₃				5.02011	
1982	$Ce_2(SO_4)_2$				3.912	
			M		3.17	
1983	$Ce_2(SO_4)_2.5H_2O$		M.	620		
1984	Ce ₂ (SO ₄) ₂ .8H ₂ O		Tri.	630	2.88617	
1985	Ce ₂ (SO ₄) ₂ .9H ₂ O		H.		2.831	
1986	$Ce_2(S_2O_6)_3.15H_2O$		Tri.		2.288	560
1987	Ce₂SeO₄		R.		4.456	748
Al As Au 55 18 88	B Ba Be Bi Br C Ca Cb Cd Ce C 54 79 75 15 5 16 77 51 29 59 4	I Co Cr Cs Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 78 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La L 36 83 56 8

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind
1988	(NH ₄) ₂ Ce(NO ₂) ₅ .4H ₂ O	558.429	M.	74		
1989	(NH ₄) ₂ SO ₄ .Ce ₂ (SO ₄) ₂ .8H ₂ O	844.961	M.		2.523	
1990	CePO ₄	235.274	1		5.22	
1991	Ce(PO ₂) ₂	377.322			3.27	
1992	CeC ₂	164.250			5.23	i
1993	$Ce(C_2H_2O_2)_2$	258.296		308 d.		
1994	CeOF.CO ₂ —Bastnäsite	219.250	н.		5 .0	346
1995	Ce(C ₂ H ₅ SO ₄) ₆ .18H ₂ O	1215.15	H.		1.93045	225
1996	CeSi ₂	196.370			5.6717	
1997	Tl ₂ Ce(NO ₂) ₃ .4H ₂ O	931.152		64.5 d.	3.326°_{4}	ì
1998	Zn ₃ Ce ₂ (NO ₃) ₁₂ .24H ₂ O	1653.11	Trig.	92.8	2.1884	
1999	Ce ₂ Pt ₂ (CN) ₁₂ .18H ₂ O	1502.56	M.		2.657	
2000	Mn ₂ Ce ₂ (NO ₂) ₁₂ .24H ₂ O	1621.76		83.7	2.1024	
2001	Co ₂ Ce ₂ (NO ₂) ₁₂ .24H ₂ O	1633.88		98.5	2.1574	
2002	Ni ₂ Ce ₂ (NO ₂) ₁₂ .24H ₂ O	1633.04	ł	108.5	2.1734	1
2002.1	Ce ₂ (MoO ₄) ₂	760.480	R. Tet.	973	4.83	416
2003	Ce ₂ (WO ₄) ₂	1024.50	Tet.	1089	6.7716.5	
2004	Ce ₂ O ₃ .3Al ₂ O ₃ .2P ₂ O ₅ .6H ₂ O—Florencite	1026.45	Trig.		3.59	337
2005	Pr ₂ O ₂	329.840			6.87	
2006	Pr ₄ O ₇	675.680			6.715	
2007	Pr ₁₀ O ₁₈	1697.20	1 1		6.704	
2008	PrCl ₂	247.294	1 1	818	4.020_4^{25}	i
2009	Pr(BrO ₂) ₂	524.668		d. 150	•	ŀ
2010	Pr(BrO ₂) ₂ .9H ₂ O	686.807	II.	56.5		
2011	Pr ₂ S ₂	378.035			5.042^{11}	1
2012	Pr ₂ (SO ₄) ₂	570.035	1		3.72016	
2013	Pr ₂ (SO ₄) ₂ .5H ₂ O	660.112	М.		3.173	
2014	Pr ₂ (SO ₄) ₂ .8H ₂ O	714.158	М.		2.82	663
2015	Pr ₂ (SeO ₄) ₂	711.440			4.3016	000
2016	Pr ₂ (SeO ₄) ₂ .8H ₂ O.	855.563			3.09413.6	1
2017	PrC ₂ .	164.920			5.1	- 1
2018	Pr(C ₂ H ₆ SO ₄) ₆ .18H ₂ O	1215.82	H		1.8764	226
2019	Zn ₂ Pr ₂ (NO ₃) ₁₂ .24H ₂ O	1654.45	Trig.	91.5	2.2024	220
2020	Mn ₂ Pr ₂ (NO ₂) ₁₂ .24H ₂ O	1623.10	Trig.	81.0	2.1094	
2021	Co ₂ Pr ₂ (NO ₃) ₁₂ ,24H ₂ O	1635.22		97.0	2.1764	1
2022	Ni ₂ Pr ₂ (NO ₂) ₁₂ .24H ₂ O	1634.38		108.0	2.1954	
2023	Nd ₂ O ₂	336.540		100.0	7.24	1
2023	NdCl ₂ .	250.644		784	4.13426	
2024	=	358.736		124	$2.282_4^{16.5}$	
2026	NdCl ₂ .6H ₂ O				2.2824	
2020	Nd(BrO ₂) ₂ .2H ₂ O	564.049	н	d. 150		1
		690.157	-	66.7	E 17-11 9	
2028	Nd ₂ S ₂ Nd ₂ (SO ₄) ₂ .8H ₂ O	384.735			5.17911 ?	200
2029		720.858	M.		2.850	668
2030	NdC ₂	168.270	,,		5.15	207
2031	Nd(C ₂ H ₄ SO ₄) ₆ .18H ₂ O	1219.17	H.	00.5	1.8834	227
2032	Zn ₂ Nd ₂ (NO ₃) ₁₂ .24H ₂ O	1661.15		88.5	2.215_4^0	
2033	Mn ₂ Nd ₂ (NO ₃) ₁₂ .24H ₂ O	1629.80		77.0	2.114_4^0	
2034	Co ₂ Nd ₂ (NO ₂) ₁₂ .24H ₂ O	1641.92	1	95.5	2.1954	
2035	Ni ₂ Nd ₂ (NO ₃) ₁₂ .24H ₂ O	1641.08	m .	105.6	2.2024	
2035.1	Nd ₂ (MoO ₄) ₃	768.540	Tet.	1176	5.1418	414
2036	(NdPr) ₂ (SO ₄) ₂ .8H ₂ O		M.			658
2037	Sa ₂ O ₃	348.860			7.43	i
2038	SaCl ₂	221.346			3.6922	
2039	SaCl ₂	256.804		686	4.46^{18}_{4}	
2040	SaCl ₂ .6H ₂ O	364.896	Tri.		2.383	
2041	SaOCl	201.888			7.02	
2042	SaBr ₃ .6H ₂ O	498.270			2.971	
2043	Sa(BrO ₃) ₃ .2H ₂ O	570 . 209		d. 150		
2044	Sa(BrO ₂) ₂ .9H ₂ O	696.317	H.	75		
2045	Sa ₂ S ₂	397.055			3.7	
2046	Sa ₂ (SO ₄) ₃ .8H ₂ O	733.178	M.		2.930	670
2047	Sa(NO ₂) ₂ .6H ₂ O	444.546	Tri.		2.375	
2048	SaPO4	245.454			5.8317.5	
The Mo N	Na Nb Nd Ni O O P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80	Rb Rh Ru 84 40 39	R G. Sh	So Se Si Sn Sr Ta Tb 7 66 9 18 22 78 52 66 1	oTh TiTITm U V	W Y Yb Zn 0 48 57 71 28

2050 Sa(CH 2051 Sa(C,1) 2052 Sa(C,1) 2053 Sa(C,1) 2054 Sa(C,1) 2055 Zn,Sa, 2056 Mn,Sa, 2057 Co,Sa, 2058 Ni,Sa, 2059 Sa,O. F 2060 Eu,O, 2061 Eu(C,2) 2062 Gd,O, 2063 GdCl, 2064 GdCl, 2065 Gd,(Sc, 2066 Gd,(Sc, 2067 Gd,(Sc, 2068 Gd,(Nc, 2069 Gd,(Nc, 2070 Gd,(C, 2071 Gd,(C, 2072 Gd,(C, 2073 Zn,Gd 2074 Gd,Pt 2075 Co,Gd 2074 Gd,Pt 2075 Co,Gd 2074 Gd,Pt 2075 Co,Gd 2076 Ni,Gd 2077 TbCl, 2078 Tb(Nc, 2079 Dy,O, 2080 DyCl, 2081 Dy(C, 2082 Er,O, 2083 Er,(Sc, 2084 Er,(Sc, 2085 Er(C,2) 2086 Er(C,2) 2087 Yb,O, 2089 Yb,(Sc, 2090 Yb,(Sc, 2091 Yb,(Sc, 2092 Yb,(Sc, 2093 Yb,(C, 2095 Yb,(C, 2096 Yb,(C, 2097 Yb,(C, 2099 16 (NH,) 2009 16 (NH,) 2100 BeO. 2101 BeF,2.	HO ₂) ₂ . H ₁ O ₂) ₂ .4H ₂ O. H ₄ O ₂) ₂ .4H ₂ O. H ₄ O ₂) ₃ .3H ₂ O. H ₄ SO ₄) ₆ .18H ₂ O. 2(NO ₂) ₁₂ .24H ₂ O. 82(NO ₂) ₁₂ .24H ₂ O. 12(NO ₂) ₁₂ .24H ₂ O. 12(NO ₂) ₁₂ .24H ₂ O. 12(NO ₂) ₁₂ .24H ₂ O. 12(NO ₂) ₁₂ .24H ₂ O. 13(NO ₂) ₁₂ .24H ₂ O. 14(NO ₂) ₁₂ .24H ₂ O. 15(NO ₂) ₁₂ .24H ₂ O. 16(NO ₂) ₁₂ .24H ₂ O. 17(NO ₂) ₁₂ .24H ₂ O. 18(NO ₂) ₁₂ .24H ₂ O. 18(NO ₂) ₁₂ .24H ₂ O. 18(NO ₂) ₁₃ .24H	174.430 285.453 399.561 369.546 423.592 1225.33 1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361 451.376	н.	76.5 70.2 83.2 92.2	5.86 3.733 1.94 1.894 1.786 1.90424 2.2830 2.1880 2.2370 2.2720 6.05 7.42 1.90924 7.407	finding No
2050 Sa(CH 2051 Sa(C ₁) 2052 Sa(C ₁) 2053 Sa(C ₁) 2054 Sa(C ₂) 2055 Zn ₁ Sa ₂ 2056 Mn ₁ Sa ₂ 2057 Co ₂ Sa ₃ 2058 Ni ₂ Sa ₂ 2059 Sa ₂ O. F 2060 Eu ₂ O ₁ 2061 Eu(C ₂ 2062 Gd ₂ O ₁ 2063 GdCl ₁ 2064 GdCl ₂ 2065 Gd ₂ (Sc 2066 Gd ₂ (Sc 2067 Gd ₂ (Sc 2068 Gd(NC 2070 Gd ₂ (C) 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₁ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(NC 2079 Dy ₂ O ₃ 2078 Tb(NC 2079 Dy ₂ O ₃ 2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (Sc 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ (Sc 2087 Yb ₂ (Sc 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2091 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb(C ₂ 2095 Yb(C ₂ 2096 Co ₂ 2097 Yb(C ₂ 2098 LuCl ₂ 2099 Sh(C ₂	HO ₂) ₂ . H ₁ O ₂) ₂ .4H ₂ O. H ₆ O ₂) ₁ . H ₆ O ₂) ₁ .3H ₂ O. H ₆ SO ₄) ₆ .18H ₂ O. H ₆ SO ₄) ₆ .24H ₂ O. H ₆ SO ₄) ₁ :24H ₂ O. H ₆ SO ₄) ₁ :24H ₂ O. H ₆ SO ₄) ₁ :24H ₂ O. H ₆ SO ₄) ₆ :18H ₂ O. H ₆ SO ₄ :18H ₂ O.	399.561 369.546 423.592 1225.33 1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361		70.2 83.2 92.2	1.94 1.894 1.786 1.904 ²⁸ 2.283 ⁴ 2.188 ⁴ 2.237 ⁴ 2.272 ⁴ 6.05 7.42 1.909 ²⁵	
2052 Sa(C ₁ I 2053 Sa(C ₁ I 2054 Sa(C ₂ I 2055 Zn ₁ Sa ₂ 2056 Mn ₁ Sa 2057 Co ₁ Sa ₂ 2058 Ni ₂ Sa ₂ 2059 Sa ₂ O. F 2060 Eu ₂ O ₁ 2061 Eu(C ₂ 2062 Gd ₂ O ₂ 2063 GdCl ₁ 2064 GdCl ₂ 2065 Gd ₂ (Sc 2066 Gd ₂ (Sc 2067 Gd ₂ (Sc 2068 Gd(Nc 2070 Gd(C ₂ 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₁ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₂ Gd 2077 TbCl ₁ 2078 Tb(Nc 2079 Dy ₂ O ₃ 2078 Tb(Nc 2079 Dy ₂ O ₄ 2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (Sc 2084 Er ₂ (Sc 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ (Sc 2087 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2091 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 15 2099 6 (NH ₄) 2100 BeO 2101 BeF ₂ .	H ₆ O ₂) ₁ H ₆ O ₂) ₂ .3H ₂ O H ₆ SO ₄) ₆ .18H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 3(NO ₃) ₁₂ .24H ₂ O 3(NO ₃) ₁₂ .24H ₂ O 3(NO ₃) ₁₃ .24H ₂ O 3(NO ₃) ₁₄ .24H ₂ O 3(NO ₃) ₁₅ .24H ₂ O 3(NO ₃) ₁₅ .3H ₂ O 3(NO ₃) ₁₆ .3H ₂ O	369.546 423.592 1225.33 1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361		70.2 83.2 92.2	1.894 1.786 1.904 ²⁸ 2.283 ⁴ 2.188 ⁴ 2.237 ⁴ 2.272 ⁴ 6.05 7.42 1.909 ²⁵	
2052	H ₆ O ₂) ₁ H ₆ O ₂) ₂ .3H ₂ O H ₆ SO ₄) ₆ .18H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 2(NO ₃) ₁₂ .24H ₂ O 3(NO ₃) ₁₂ .24H ₂ O 3(NO ₃) ₁₂ .24H ₂ O 3(NO ₃) ₁₃ .24H ₂ O 3(NO ₃) ₁₄ .24H ₂ O 3(NO ₃) ₁₅ .24H ₂ O 3(NO ₃) ₁₅ .3H ₂ O 3(NO ₃) ₁₆ .3H ₂ O	423.592 1225.33 1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361		70.2 83.2 92.2	1.786 1.904 ²⁸ 2.283 ⁴ 2.188 ⁴ 2.237 ⁴ 2.272 ⁴ 6.05 7.42 1.909 ²⁸	
2053	H ₄ O ₂) ₃ .3H ₂ O. H ₄ SO ₄) ₆ .18H ₂ O. H ₂ (NO ₃) ₁₂ .24H ₂ O. B ₂ (NO ₂) ₁₂ .24H ₂ O. H ₂ (NO ₂) ₁₂ .24H ₂ O. H ₂ (NO ₂) ₁₂ .24H ₂ O. H ₂ (NO ₂) ₁₂ .24H ₂ O. H ₂ (NO ₃) ₁₂ .24H ₂ O. H ₂ (NO ₃) ₁₂ .24H ₂ O. H ₃ (NO ₃) ₁₃ .18H ₂ O. H ₄ (NO ₃) ₁₄ .18H ₂ O. H ₅ (H ₂ O. H ₆ (H ₂ O. H	1225.33 1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361		70.2 83.2 92.2	1.904 ²⁴ 2.283 ⁴ 2.188 ⁴ 2.237 ⁴ 2.272 ⁴ 6.05 7.42 1.909 ²⁵	
2054	.H ₄ SO ₄) ₆ .18H ₂ O ₂ (NO ₃) ₁₂ .24H ₂ O ₃ (NO ₃) ₁₂ .24H ₂ O ₄ (NO ₃) ₁₂ .24H ₂ O ₅ (NO ₃) ₁₂ .24H ₂ O ₇ (NO ₃) ₁₂ .24H ₂ O ₈ (NO ₃) ₁₂ .24H ₂ O ₈ (NO ₃) ₁₂ .24H ₂ O ₉ (NO ₃) ₁₂ .24H ₂ O ₉ (NO ₃) ₁₃ .24H ₂	1225.33 1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361		70.2 83.2 92.2	2 . 2834 2 . 1884 2 . 2374 2 . 2724 6 . 05 7 . 42 1 . 9094	
2055	2(NO ₃) ₁₂ .24H ₂ O. a ₂ (NO ₃) ₁₂ .24H ₂ O. a ₂ (NO ₃) ₁₂ .24H ₂ O. a ₂ (NO ₃) ₁₂ .24H ₂ O. a ₂ (NO ₃) ₁₂ .24H ₂ O. B ₂ O ₃ . a ₃ . a ₄ . a ₄ . a ₅ . a ₆ .	1673.47 1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361		70.2 83.2 92.2	2 . 2834 2 . 1884 2 . 2374 2 . 2724 6 . 05 7 . 42 1 . 9094	
2056	82(NO ₂) ₁₂ .24H ₂ O 12(NO ₂) ₁₂ .24H ₂ O 12(NO ₂) ₁₂ .24H ₂ O B ₂ O ₁ 1 1 1 1 1 1 1 1 1 1 1 1 1	1642.12 1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361	н.	70.2 83.2 92.2	2 .1884 2 .2374 2 .2724 6 .05 7 .42 1 .9094	239
2057 Co ₁ Sa ₂ 2058 Ni ₂ Sa ₂ O.H 2060 Eu ₂ O ₁ 2061 Eu(C ₂ 2062 Gd ₂ O ₂ 2063 GdCl ₃ 2064 GdCl ₃ 2065 GdBr ₂ 2066 Gd ₂ (Sc 2068 Gd(Nc 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Zn ₂ Gd 2076 Ni ₃ Gd 2077 TbCl ₃ 2078 Tb(Nc 2079 Dy ₂ O ₃ 2080 DyCl ₃ 2081 Dy(C ₂ 2083 Er ₂ (Sc 2084 Er ₂ (Sc 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 Yb ₂ (Sc 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2098 LuCl ₃ 2099 Sc 2	12(NO ₂) ₁₂ ·24H ₂ O 12(NO ₂) ₁₂ ·24H ₂ O 12-12-12-12-12-12-12-12-12-12-12-12-12-1	1654.24 1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361	н.	83 . 2 92 . 2	2.237 ⁴ 2.272 ⁴ 6.05 7.42 1.909 ²⁵	239
2058 Ni ₃ Sa ₂ O.H 2060 Eu ₂ O ₂ 2061 Eu(C ₂ 2062 Gd ₂ O ₃ 2063 GdCl ₃ 2064 GdCl ₃ 2065 GdBr ₂ 2066 Gd ₂ (Sc 2068 Gd(Nc 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₃ Gd 2077 TbCl ₃ 2078 Tb(Nc 2079 Dy ₂ O ₃ 2080 DyCl ₃ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (Sc 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 Yb ₂ (Sc 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2098 Yb ₂ (Sc 2099 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb ₂ (Sc 2096 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2098 LuCl ₁ 2099 Sc 2091 Sc 2099 Sc 2099 Sc 2099 Sc 2090 Sc 2091 Sc 2092 Sc 2093 Sc 2094 Sc 2095 Sc 2096 Sc 2097 Sc 2098 Sc 2099 Sc 2099 Sc 2090 Sc 2091 Sc 2092 Sc 2093 Sc 2094 Sc 2095 Sc 2096 Sc 2097 Sc 2098 Sc 2099 Sc 2090 Sc 2091 Sc 2091 Sc 2092 Sc 2093 Sc 2094 Sc 2095 Sc 2096 Sc 2097 Sc 2098 Sc 2098 Sc 2099 Sc 2090 Sc 2091 Sc 2092 Sc 2093 Sc 2094 Sc 2095 Sc 2096 Sc 2097 Sc 2098 Sc 2098 Sc 2098 Sc 2098 Sc 2099 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090 Sc 2090	2(NO ₂) ₁₂ .24H ₂ O B ₂ O ₂	1653.40 386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361	н.	92.2	2.2724 6.05 7.42 1.9094	239
2059 Sa ₂ O. F 2060 Eu ₂ O ₁ 2061 Eu(C ₂ 2062 Gd ₂ O ₂ 2063 GdCl ₃ 2064 GdCl ₃ 2065 GdBr ₃ 2066 Gd ₂ (St 2068 Gd(NO 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₃ Gd 2077 TbCl ₃ 2078 Tb(NO 2079 Dy ₂ O ₃ 2080 DyCl ₃ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (SO 2085 Er(C ₃) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₃ 2089 Yb ₂ (So 2091 Yb ₂ (So 2091 Yb ₂ (So 2092 Yb ₂ (So 2093 Yb(C ₂ 2094 Yb ₂ (So 2095 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₃ 2099 So 2090 So 2091 So 2099 So 2099 So 2099 So 2099 So 2090 So 2091 So 2091 So 2092 So 2093 So 2094 So 2095 So 2096 So 2097 So 2098 So 2099 So 2099 So 2090 So 2091 So 2091 So 2092 So 2093 So 2094 So 2095 So 2096 So 2097 So 2098 So 2099 So 2099 So 2090 So 2091 So 2092 So 2093 So 2094 So 2095 So 2096 So 2097 So 2097 So 2098 So 2099 So 2090 So 2090 So 2091 So 2092 So 2093 So 2094 So 2095 So 2096 So 2097 So 2097 So 2098 So 2098 So 2098 So 2099 So 2090 So 2	B ₂ O ₁ 1 2H ₃ SO ₄) ₆ .18H ₂ O 1 3.6H ₂ O 3.6H ₂ O 3.6H ₂ O 3.0 ₄) ₁ 3.0 ₄) ₂ 3.0 ₄) ₄ 3.0 ₄) ₄ 3.0 ₄) ₄ 3.0 ₄) ₄ 3.0 ₄) ₄ 3.0 ₄) ₄ 3.0 ₄) ₄ 3.0 ₄	386.500 352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361	н.		6.05 7.42 1.909 ²⁵	239
2060 Eu ₂ O ₁ 2061 Eu ₂ C ₂ 2062 Gd ₂ O ₂ 2063 GdCl ₂ 2064 GdCl ₃ 2065 GdBr ₃ 2066 Gd ₂ (Sc 2067 Gd ₂ (Sc 2068 Gd(Nc 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₁ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 TbCl ₃ 2078 Tb(Nc 2079 Dy ₂ O ₃ 2080 DyCl ₁ 2081 Dy(C ₁ 2082 Er ₂ O ₄ 2083 Er ₂ (Sc 2084 Er ₂ (Sc 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₁ 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb(C ₂ 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2099 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂ 2090 Ff(C ₂	1. 2H ₂ SO ₄) ₆ .18H ₂ O 2.6H ₂ O 3.6H ₂ O 3.6H ₂ O 3.6O ₄) ₁ 3.6O ₄) ₂ 3.6O ₄	352.000 1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361	Н.	628	7.42 1.909_4^{25}	239
2061	2H ₄ SO ₄) ₆ .18H ₂ O. 2. 3.6H ₂ O. 3.6H ₂ O. 50 ₄) ₃ 50 ₄) ₂ .8H ₂ O. (O ₂) ₃ .5H ₂ O. (O ₂) ₃ .6H ₂ O.	1226.90 362.520 263.634 371.726 505.100 602.715 746.838 433.361	н.	628	1.90945	239
2062 Gd ₂ O ₂ 2063 GdCl ₂ 2064 GdCl ₃ 2065 GdBr ₂ 2066 Gd ₂ (Sc 2068 Gd(NC 2070 Gd ₂ (C) 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₃ Gd 2076 Ni ₃ Gd 2077 TbCl ₃ 2078 Tb(NC 2079 Dy ₂ O ₃ 2080 DyCl ₄ 2081 Dy(C ₂ 2083 Er ₂ (Sc 2084 Er ₂ (Sc 2085 Er(C ₃) 2086 Er(C ₃) 2086 Er(C ₄) 2087 Yb ₂ O ₃ 2088 YbCl ₃ 2089 Yb ₂ (Sc 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb ₂ (Sc 2094 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2097 Yb ₂ (Sc 2098 LuCl ₂ 2099 St 2099 St 2099 St 2009 Se ₂ (Sc 2090 Se ₂ (Sc 2090 Se ₂	i, g.6H ₂ O, g.6H ₂ O, GO ₄) ₁ , GO ₄) ₂ , GO ₂) ₂ .5H ₂ O, GO ₂) ₂ .6H ₂ O, GO ₂) ₂	362.520 263.634 371.726 505.100 602.715 746.838 433.361	H.	628		238
2063 GdCla 2064 GdCla 2065 GdBra 2066 Gd2(Sc 2067 Gd2(Sc 2068 Gd(NC 2070 Gd2(C 2071 Gd(C2 2072 Gd(C2 2073 ZnaGd 2074 Gd2Pt 2075 CoaGd 2076 NiaGd 2077 TbCla 2078 Tb(NC 2079 DyaCa 2080 DyCla 2081 Dy(Ca 2081 Dy(Ca 2083 Era(Sc 2084 Era(Sc 2085 Er(Ca) 2085 Er(Ca) 2086 Er(Ca) 2087 YbaCa 2088 YbCla 2089 Yba(Sc 2090 Yba(Sc 2091 Yba(Sc 2091 Yba(Sc 2094 Yba(Ca 2095 Yba(Ca 2096 Yb(Ca 2097 Yb(Ca 2098 LuCla 2099 5 HfOCl 2099 6 (NHa) 2100 BeO 2101 BeF2.	\$	263.634 371.726 505.100 602.715 746.838 433.361		628	1.407	
2064 GdCl ₃ . 2065 GdBr ₁ . 2066 Gd ₂ (SdBr ₂ . 2068 Gd(NG 2069 Gd(NG 2070 Gd ₂ (C 2071 Gd(C ₂ . 2072 Gd(C ₂ . 2073 Zn ₂ Gd 2074 Gd ₂ Pt. 2075 Co ₂ Gd 2077 TbCl ₃ . 2078 Tb(NG 2079 Dy ₂ O ₃ . 2080 DyCl ₄ . 2081 Dy(C ₂ . 2083 Er ₂ (SG 2084 Er ₂ (SG 2084 Er ₂ (SG 2085 Er(C ₃). 2086 Er(C ₃). 2087 Yb ₂ O ₃ . 2088 Yb ₂ (Sd 2091 Yb ₂ (Sd 2091 Yb ₂ (Sd 2091 Yb ₂ (Sd 2091 Yb ₂ (Sd 2091 Yb ₂ (Sd 2094 Yb ₂ (Sd 2094 Yb ₂ (Sd 2094 Yb ₂ (Sd 2095 Yb ₂ (Sd 2096 Yb ₂ (Sd 2097 Yb(C ₂ . 2098 LuCl ₂ . 2099 HfO ₂ . 2099 HfO ₂ . 2099 HfO ₂ . 2099 BeO ₂ . 2101 BeF ₂ .	s.6H ₂ O	371.726 505.100 602.715 746.838 433.361		628		
2065 GdBr ₂ 2066 Gd ₂ (Sc 2067 Gd ₂ (Sc 2068 Gd(N) 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₂ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(N) 2079 Dy ₂ O ₃ 2080 DyCl ₂ 2081 Dy(C ₂ 2083 Er ₂ (Sc 2084 Er ₂ (Sc 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₂ 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2094 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb ₂ (Sc 2096 Yb ₂ (C ₂ 2097 Yb ₂ (C ₂ 2098 LuCl ₂ 2099 St 2099 SS	2.6H ₂ O	505.100 602.715 746.838 433.361			4.524	
2066 Gd ₂ (Section of the color	GO ₄) ₃	602.715 746.838 433.361			2.424^{0}_{4}	
2067 2068 2069 2070 2070 2071 2072 2072 2073 2074 2074 2075 2076 2076 2077 2078 2078 2079 2080 2081 2081 2081 2082 2083 2084 2085 2084 2085 2086 2076 2086 2077 2080 2080 2081 2081 2081 2082 2083 2084 2085 2084 2085 2085 2086 2087 2086 2087 2088 2089 2089 2089 2089 2089 2089 2090 2091 2092 2093 2094 2094 2094 2095 2094 2095 2096 2097 2098 2099 2099 2099 2099 2099 2099 2099	SO ₄) ₂ .8H ₂ O	746.838 433.361	1 1		2.844^{15}	
2068 Gd(NG 2069 Gd(NG 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₂ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(NG 2079 Dy ₂ O ₃ 2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (SG 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₂ 2089 Yb ₂ (SG 2090 Yb ₂ (SG 2091 Yb ₂ (SG 2091 Yb ₂ (SG 2094 Yb ₂ (C ₂ 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₂ 2099 6 (NH ₄) 2100 BeO. 2101 BeF ₂ .	O ₂) ₂ .5H ₂ O O ₂) ₂ .6H ₂ O	433.361	1		$4.139^{14.6}$	
2069 Gd(NG 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₂ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(NG 2079 Dy ₂ O ₃ 2080 DyCl ₁ 2081 Dy(C ₂ 2083 Er ₂ (SO 2084 Er ₂ (SO 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 Yb ₂ Cl ₂ 2089 Yb ₂ (SO 2091 Yb ₂ (SO 2091 Yb ₂ (SO 2091 Yb ₂ (SO 2091 Yb ₂ (SO 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2095 Yb ₂ (SO 2096 Yb ₂ (SO 2096 Yb ₂ (SO 2099 Sh(C ₂	O ₂) ₂ .6H ₂ O		M.		3.01014.6	
2069 Gd(NG 2070 Gd ₂ (C 2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₂ Gd 2074 Gd ₂ Pt 2075 Co ₂ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(NG 2079 Dy ₂ O ₃ 2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (SO 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₂ 2089 Yb ₂ (SO 2091 Yb ₂ (SO 2091 Yb ₂ (SO 2091 Yb ₂ (SO 2091 Yb ₂ (SO 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₂ 2099 HfO ₂ 2099 HfO ₂ 2099 HfO ₂ 2099 HfO ₂ 2099 HfO ₂ 2099 G (NH ₄) 2100 BeO ₂ 2101 BeF ₂ .	O ₂) ₂ .6H ₂ O	451 27R		92	2.40615	
2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₁ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(NC 2079 Dy ₂ O ₃ 2080 DyCl ₂ 2081 Dy(C ₂ 2082 Er ₂ O ₃ . 2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2088 Yb ₂ (Sc 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb(Nc 2094 Yb ₂ (Sc 2094 Yb ₂ (Sc 2095 Yb ₂ (Sc 2096 Yb ₂ (Sc 2097 Yb(C ₂ 2096 Yb ₂ (Sc 2097 Yb(C ₂ 2098 LuCl ₂ 2099 HfO ₂ . 2099 HfO ₂ . 2099 BeO ₂ . 2101 BeF ₂ .	C ₂ O ₄) ₂ .10H ₂ O	401.910	Tri.	91	2.332	
2071 Gd(C ₂ 2072 Gd(C ₂ 2073 Zn ₁ Gd 2074 Gd ₂ Pt 2075 Co ₂ Gd 2076 Ni ₂ Gd 2077 TbCl ₃ 2078 Tb(NC 2079 Dy ₂ O ₃ 2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ . 2083 Er ₁ (SC 2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₃ 2089 Yb ₂ (SC 2090 Yb ₂ (SC 2091 Yb ₂ (SC 2091 Yb ₂ (SC 2092 Yb ₂ (SC 2093 Yb(NC 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb ₂ (C 2097 Yb(C ₂ 2098 LuCl ₃ 2099 5 HfO ₂ 2099 6 (NH ₄) 2100 BeO ₃ 2101 BeF ₂ .		758.674		110		
2072 Gd(C ₂ 2073 Zn ₁ Gd 2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(NC 2079 Dy ₂ O ₃ 2080 DyCl ₂ 2081 Dy(C ₂ 2082 Er ₂ O ₃ . 2083 Er ₂ (SC 2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₂ 2089 Yb ₂ (SC 2090 Yb ₂ (SC 2091 Yb ₂ (SC 2091 Yb ₂ (SC 2091 Yb ₂ (SC 2092 Yb ₂ (SC 2093 Yb(NC 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₂ 2099 HfO ₂ . 2099 HC 2009 BeO. 2101 BeF ₂ .	2H ₂ O ₂) ₂ ,4H ₂ O	406.391	Tri.		1.611	
2073 ZniGd 2074 Gd2Pt 2075 CoiGd 2076 NiiGd 2077 TbCl; 2078 Tb(Ni 2079 Dy2O; 2080 DyCl; 2081 Dy(C; 2082 Er2O; 2083 Er2(Si 2084 Er2(Si 2085 Er(C;) 2086 Er(C;) 2087 Yb2O; 2089 Yb2(Si 2090 Yb2(Si 2090 Yb2(Si 2091 Yb2(Si 2092 Yb2(Si 2093 Yb(C; 2094 Yb2(C) 2095 Yb(C; 2096 Yb(C; 2097 Yb(C; 2097 Yb(C; 2098 LuCl; 2099 5 HfOC; 2099 6 (NH4) 2100 BeO 2101 BeF2.	2H ₅ SO ₄) ₆ .18H ₂ O	1232.16	H.		1.9194	235
2074 Gd ₂ Pt 2075 Co ₁ Gd 2076 Ni ₂ Gd 2077 TbCl ₂ 2078 Tb(N) 2079 Dy ₂ O ₃ 2080 DyCl ₃ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₃ 2089 Yb ₂ (SC 2090 Yb ₂ (SC 2091 Yb ₂ (SC 2091 Yb ₂ (SC 2092 Yb ₂ (SC 2093 Yb(N) 2094 Yb ₂ (C 2095 Yb(C ₂ 2097 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₃ 2099 HfO ₂ 2099 HCO ₂ 2099 HCO ₂ 2099 BeO ₃ 2100 BeO ₃ 2101 BeF ₂	d ₂ (NO ₂) ₁₂ .24H ₂ O			56.5	2.351	
2075 Co.Gdd 2076 Ni.gdd 2077 TbCl. 2078 Tb(NO 2079 Dy.O. 2080 DyCl. 2081 Dy(C. 2082 Er.O. 2083 Er.(SO 2084 Er.(SO 2085 Er(C.) 2086 Er(C.) 2087 Yb.O. 2089 Yb.(SO 2090 Yb.(SO 2091 Yb.(SO 2091 Yb.(SO 2092 Yb.(SO 2093 Yb(NO 2094 Yb.(C. 2095 Yb(C. 2096 Yb(C. 2097 Yb(C. 2098 LuCl. 2099 5 2099 6 2101 BeO. 2101 BeF.	t ₂ (CN) ₁₂ .21H ₂ O	1	R.	00.0	2.563	
2076 Ni;Gd 2077 TbCl; 2078 Tb(N) 2079 Dy;O; 2080 DyCl; 2081 Dy(C; 2082 Er;O; 2083 Er;(SC; 2084 Er;(SC; 2085 Er(C;) 2087 Yb;O; 2089 Yb;(SC; 2090 Yb;(SC; 2091 Yb;(SC; 2092 Yb;(SC; 2093 Yb(N) 2094 Yb;(C; 2095 Yb(C; 2096 Yb(C; 2097 Yb(C; 2097 Yb(C; 2098 LuCl; 2099 5 HfO; 2099 6 (NH;) 2100 BeO 2101 BeF;	$d_2(NO_2)_{12}.24H_2O$		10.	63.2	2.3154	
2077 TbCl ₁ 2078 Tb(NO 2079 Dy ₂ O ₂ 2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ 2083 Er ₄ (SO 2084 Er ₂ (SO 2085 Er(C ₂) 2086 Er(C ₂) 2088 YbCl ₁ 2089 Yb ₂ (SO 2090 Yb ₂ (SO 2091 Yb ₂ (SO 2092 Yb ₂ (SO 2093 Yb(C ₂ 2094 Yb ₂ (SO 2094 Yb ₂ (SO 2095 Yb(C ₂ 2096 Yb ₂ (SO 2097 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 HOO 2099 HOO 2101 BeO. 2101	d ₂ (NO ₂) ₁₂ .24H ₂ O			72.5	2.3564	
2078 Tb(NO 2079 Dy.O. 2080 DyCl. 2081 Dy(C. 2082 Er.O. 2083 Er.(SO 2084 Er.(SO 2085 Er(C.) 2087 Yb.O. 2088 YbCl. 2089 Yb.(SO 2091 Yb.(SO 2091 Yb.(SO 2092 Yb.(SO 2093 Yb(NO 2094 Yb.(C. 2095 Yb(C. 2097 Yb(C. 2097 Yb(C. 2098 LuCl. 2099 HfO. 2099 HfO. 2099 HfO. 2099 6 (NHa) 2100 BeO. 2101 BeF2.						
2079 Dy.O. 2080 Dy.Cl. 2081 Dy.Cl. 2081 Dy.Cl. 2082 Er.O. 2083 Er.(SC. 2084 Er.(SC. 2085 Er.(C.) 2087 Yb.O. 2088 Yb.Cl. 2089 Yb.(Sc. 2090 Yb.(Sc. 2091 Yb.(Sc. 2092 Yb.(Sc. 2093 Yb.(C. 2095 Yb.(C. 2095 Yb.(C. 2097 Yb.(C. 2097 Yb.(C. 2098 Lu.Cl. 2099 Hf.O. 2099 H.O. 2099 H.O. 2099 H.O. 2099 H.O. 2099 B.O. 2101 BeC.	1	265.574	1	588	4.35^0_4	
2080 DyCl ₁ 2081 Dy(C ₂ 2082 Er ₂ O ₃ . 2083 Er ₂ (SC 2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2088 YbCl ₁ 2089 Yb ₂ (SC 2090 Yb ₂ (SC 2091 Yb ₂ (SC 2093 Yb(NC 2094 Yb ₂ (SC 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ . 2099 6 (NH ₄) 2100 BeO ₂ 2010 BeF ₂ .	O ₃) ₂ .6H ₂ O	453.316	M.	89.3	M 01	
2081 Dy(C ₂ 2082 Er ₂ O ₃ . 2083 Er ₂ (SO 2084 Er ₂ (SO 2085 Er(C ₂) 2086 Er(C ₂) 2088 YbCl ₁ 2089 Yb ₂ (SO 2090 Yb ₂ (SO 2091 Yb ₂ (SO 2092 Yb ₂ (SO 2093 Yb(NO 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ . 2099 6 (NH ₄) 2100 BeO 2101 BeF ₂ .	3.	373.040			7.81	
2082 Er ₂ O ₃ . 2083 Er ₂ (SO 2084 Er ₂ (SO 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₃ 2090 Yb ₂ (SO 2091 Yb ₂ (SO 2092 Yb ₂ (SO 2093 Yb(NO 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₃ . 2099 HfO ₂ . 2099 HfO ₂ . 2099 BeO ₃ . 2101 BeF ₂ .	:			680	3.67^{0}_{4}	
2083 Er ₁ (SC 2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₁ 2089 Yb ₂ (SC 2090 Yb ₂ (SC 2091 Yb ₂ (SC 2092 Yb ₂ (SC 2093 Yb(NC 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 6 (NH ₄) 2100 BeO 2101 BeF ₂ .	² H ₄ SO ₄) ₆ .18H ₂ O	1237 . 42	H.		1.492_4^{25}	240
2084 Er ₂ (SC 2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₁ 2089 Yb ₂ (SC 2090 Yb ₂ (SC 2091 Yb ₂ (SC 2092 Yb ₂ (SC 2093 Yb(NC 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 6 (NH ₄) 2100 BeO 2101 BeF ₂ .		383.400			8.640	
2085 Er(C ₂) 2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₁ 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2093 Yb(Nc 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 6 (NH ₄) 2100 BeO 2101 BeF ₂ .	O ₄)3	623.595			3.678	
2086 Er(C ₂) 2087 Yb ₂ O ₃ 2088 YbCl ₁ 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb(Nc 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 HfO ₂ 2099 (NH ₄) 2100 BeO 2101 BeF ₂ .	O ₄) ₃ .8H ₂ O	767.718	1		3.180	
2086	H ₂ O ₂) ₂ .4H ₂ O	416.831	Tri.		2.114	
2087 Yb ₂ O ₃ 2088 YbCl ₁ 2089 Yb ₂ (Sc 2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb(Nc 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 HfO ₂ 2099 (NH ₄) 2100 BeO 2101 BeF ₂ .	H ₅ SO ₄) ₆ .18H ₂ O	1242.60	Н.		1.907_4^{26}	233
2088 YbCl ₁ 2089 Yb ₂ (Si 2090 Yb ₂ (Si 2091 Yb ₂ (Si 2092 Yb ₂ (Si 2093 Yb(Ni 2094 Yb ₂ (Ci 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099 HfO ₂ 2099 6 (NH ₄) 2100 BeO 2101 BeF ₂ .	3	395.200	1		9.17	
2089 Yb ₂ (Si 2090 Yb ₂ (Si 2091 Yb ₂ (Si 2092 Yb ₂ (Si 2093 Yb(No 2094 Yb ₂ (Ci 2095 Yb(Ci 2096 Yb(Ci 2097 Yb(Ci 2098 LuCli 2099 HfO ₂ . 2099 5 (NH ₄) 2100 BeO 2101 BeF ₂ .	.6H ₂ O	388.066	1		2.575	
2090 Yb ₂ (Sc 2091 Yb ₂ (Sc 2092 Yb ₂ (Sc 2093 Yb(No 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₂ . 2099 HfO ₂ . 2099.5 (NH ₄) 2100 BeO 2101 BeF ₂ .	504)2	635.395	1		3.793	ļ
2091 Yb ₂ (Section 2092 Yb ₂ (Section 2093 Yb)(No. 2094 Yb ₂ (Co. 2095 Yb)(Co. 2096 Yb)(Co. 2097 Yb)(Co. 2099 HfO ₂ . 2099 HfO ₂ . 2099 HfO ₂ . 2099 HfO ₂ . 2099 HfO ₂ . 2099 HfO ₂ . 2100 BeO ₂ . 2101 BeF ₂ .	SO ₄) ₂ .8H ₂ O	779.518	1		3.286	
2092 Yb ₂ (Sc 2093 Yb(No 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ . 2099 HfO ₂ . 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	SeO ₄) ₂	776.800	1 1		4.140	
2093 Yb(No 2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₂ 2099 HfO ₂ 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	$(SeO_4)_2$	920.923	1 1		3.30	
2094 Yb ₂ (C 2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ . 2099 HfO ₂ . 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .						1
2095 Yb(C ₂ 2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	[O ₃) ₃ .4H ₂ O	431.686	1	İ	2.682	
2096 Yb(C ₂ 2097 Yb(C ₂ 2098 LuCl ₁ 2099 HfO ₂ 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	CO ₂) ₂ .4H ₂ O	599.262		İ	3.67	
2097 Yb(C ₂ 2098 LuCl ₁ . 2099 HfO ₂ . 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	₂ O ₄) ₂	437.600			2.439	
2098 LuCl ₁ 2099 HfO ₂ 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	₂ O ₄) ₃ .10H ₂ O	617.754			2.644	
2099 HfO ₂ . 2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .	² ₂ H ₃ O ₂) ₃ .4H ₂ O	422.731			2.09	
2099.5 HfOCl 2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .		281.374	l l	>916	3.98	
2099.6 (NH ₄) 2100 BeO 2101 BeF ₂ .		211.000		2812	9.68	
2100 BeO 2101 BeF ₂ .	11 011 0	410.039				270.5
2100 BeO 2101 BeF ₂ .	N ₂ .8H ₂ O	366.034	C.			70.1
2101 BeF ₂ .	Л ₂ .8H ₂ O	25.0200	H.	2400	3.025	347
) ₂ HfF ₇	47.0200			l. 2.115	1
2102 2BeO.		285.140			2.3	1
)3HfF7	79.9360	1 1	440	1.899_4^{25}	
_	.5BeF₂.	168.852		490	0004	
) ₂ HfF ₇	1		510	4.2015	1
)₄HfF ₇ . .5BeF ₂ .	262 204		010		1
) ₂ HfF ₇	262.884	m.,		2.443	910
) ₂ HfF ₇	105.085	Tet.	ļ	1.71310.5	219
) ₂ HfF ₇	105.085 177.147	1 - 1		2.03	537
2109 Be ₃ N ₂ g Al As Au E 55 13 33 56) ₂ HfF ₇	105.085 177.147 224.282	R.	2200		1

index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. inc
2110	Be(NO ₂) ₂ .3H ₂ O	187.082	9,700022	60		
2111	Be ₂ C	30.0400	}		1.918	
2112	Be(C ₂ H ₅) ₂	67.0970	ľ			
2113	Be(C ₂ H ₇) ₂	95.1278				
2114	Be(C _b H ₇ O ₂) ₂ —Acetylacetonate	207.128	М.	108	1.1684	1
2115	BeO.3Be(C ₂ H ₃ O ₂) ₂	170.126		284	1.364	ľ
2116	BeO.3Be(C2H3O2)(C3H3O2)	448.265		127	1.00	İ
2117	BeO.3Be(C ₂ H ₁ O ₂) ₂	490.311		120		
2118	BeO.3Be(C ₄ H ₇ O ₂) ₂	574.403		120		
2119	BeO.Be(C ₂ H ₄ SO ₄) ₂ .4H ₂ O		T-4			990
		356.309	Tet.	. 1875		220
2120	BeO.SiO ₂	85.0800	m ·	>1755		200
2121	2BeO.SiO ₂ —Phenacite	110.100	Tri.		3.0	326
2122	4BeO.2SiO ₂ .H ₂ O—Bertrandite	238.215	R.		2.6	764
2123	BeOH.BeBO ₃ —Hambergite	93.8677	R.		2.35	733
2124	BeO.Al ₂ O ₃ —Chrysoberyl	126.940	R.		3.76	933
2125	3BeO.Al ₂ O ₃ .6SiO ₂ —Beryl	537.340	H.	1410	2.66	284
2126	2BeO.Al ₂ O ₃ .2SiO ₂ .H ₂ O—Euclase	290.095	М.		3.1	839
2127	2BeO.Yt ₂ O ₂ .FeO.2SiO ₂ —Gadolinite	468.000	M.		4.3	947
2128	MgO—Periclase	40.3200	C.	2800	3.65	158
2129	MgO.H ₂ O—Brucite	58.3354	Trig.		2.4	272
2130	MgF ₂ —Sellaite	62.3200	Tet.	1396	3.0	208
2131	MgCl _z —Chloromagnesite	95.2360	H.	712	2.325	335
2132	MgCl ₂ .6H ₂ O—Bischofite	203.328	M.	118 d.	1.56	562
2133	Mg(ClO ₂) ₂ .6H ₂ O	299.328		35 d.	1.80	002
2134	Mg(ClO ₄) ₂	223.236		d. 251	2.60_4^{25}	
213 5 2135						
	Mg(ClO ₄) ₂ .6H ₂ O	331.328		147	1.9704	1
2136	MgBr ₂	184.152		700	3.72	
2137	Mg(BrO ₃) ₂ .6H ₂ O	388.244	C.			117
2138	MgI ₂	278.184			4.25	ł
2139	Mg(IO ₃) ₂ ,4H ₂ O	446.246	М.		3.3124	
2140	MgS	56.3850			2.80	
2141	MgSO4	120.385		1185	2.66	
2142	MgO.SO ₂ .H ₂ O—Kieserite	138.400	M.		2.57	637
2143	MgSO4.5H ₂ O	210.462	Tri.		1.718	511
2144	MgSO4.6H2O—Hexahydrite	228.477	M.		1.76	
2145	MgO.SO ₂ .7H ₂ O—Epsomite	246.493	R.		1.68	447
2146	MgS ₂ O ₆ .6H ₂ O	292.542	Tri.		1.666	
2147	MgSeO ₄ .6H ₂ O	275.612	М.		1.928	503
2148	MgO.N ₂ O ₅ .H ₂ O—Nitromagnesite	166.351	****		1.320	558
2149	Mg(NO ₂) ₂ .6H ₂ O	256.428		95	1 464	1 300
21 43 2150] 0, -/	200.428		95	1.464	
2100	(NH ₄) ₂ O.MgO.2SO ₃ .6H ₂ O—	000 000		. 100		404
	Boussingaultite	360.620	М.	>120	1.70	464
2151	(NH ₄) ₂ O.MgO.2SeO ₃ .6H ₂ O	454.890	М.		2.04	568
2152	Mg ₂ P ₂ O ₇	222.688	_		2.59822	761
2153	2MgO.P ₂ O ₃ .7H ₂ O—Newberyite	348 . 796	R.		2.10	585
2154	3MgO.P ₂ O ₅ .8H ₂ O—Bobierite	407.131	М.		2.41	595
2155	Mg(H ₂ PO ₂) ₂ .6H ₂ O	262.491	Tet.		1.5913	1
2156	3MgO.P ₂ O ₄ .MgF ₂ —Wagnerite	325.328	M.		3.12	701
2157	(NH ₄) ₂ O.2MgO.P ₂ O ₅ .12H ₂ O—Struvite	490.950	R.		1.72	522
2158	3MgO.(NH ₄) ₂ O.2P ₂ O ₅ .10H ₂ O—		i			
	Hannayite	637.288	Tri.		1.89	703
2159	3MgO.As ₂ O ₅ .8H ₂ O—Hoernesite	495.003	M.		2.60	702
2160	(NH ₄)MgAsO ₄ .6H ₂ O	289.411			1.93215	'0-
2161	Mg ₂ Sb ₂	316.500		961	1.002	i
2162						i
	Mg2Bi2	490.960	_{TC-:-}	715	9 00#	0.40
2163	MgO.CO. Magnesite	84.3200	Trig.		3.037	342
2164	MgO.CO ₂ .3H ₂ O—Nesquehonite	138.366	R.		1.850	542
2165	MgO.CO ₂ .5H ₂ O—Lansfordite	174.397	M.		1.73	459
2166	2MgO.CO ₂ .4H ₂ O—Artinite	196.702	R.		2.02	630
2167	4MgO.3CO ₂ .4H ₂ O—Hydromagnesite	365.342	R.		2.16	622
2168	$Mg(d-C_4H_4O_6).5H_2O$	262.428	M.		1.67	
2169	Mg(d-C ₄ H ₅ O ₆) ₂ .4H ₂ O	394.459	R.		1.72	
2170	$Mg(C_2H_4O_2)_2$	142.366		323	1.42	
M M N	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80			Se Si Sa Sr Ta Tb		W Y Yb Z 0 48 57 71 2

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind. finding No
2171	Mg(C ₂ H ₂ O ₂) ₂ .4H ₂ O	214.428	M.		1.454	512
2172	Mg(CH ₂ SO ₂) ₂ .4H ₂ O—Ethane disulfonate	284.542	Tri.		1.727	
2173	MgC ₁₀ H ₆ O ₆ S ₂ .6H ₂ O—1, 5-Naphthalene		1	1		
	disulfonate	418.589	M.		1.64	777
2174	Mg ₂ Si	76.7000		1102		1
2175	MgO.SiO2—Clinoenstatite	100.380	М.	1557 d.	3.28	836
2176	MgO.SiO ₂ —Enstatite	100.380	R.	d.	3.19	832
2177	2MgO.SiO ₂ —Forsterite	140.700	R.	1890	3.26	828
2178	2MgO.3SiO ₂ .4H ₂ O—Parasepiolite	332 . 882	R.			557
2179	3MgO.2SiO ₂ .2H ₂ O—Chrysotile	277.111	R.		2.5	647
2180	3MgO.3SiO ₂ .2H ₂ O—Antigorite	337.171	R.	!	2.62	545
2181	3MgO.4SiO ₂ .H ₂ O—Talc	379.215	M.		2.75	728
2182	MgSiF ₆ .6H ₂ O	274.472	Trig.	1		204
2183	2MgO.SiO ₂ .Mg(F,OH) ₂ —Prolectite		M.		3.1	861
2184	4MgO.2SiO ₂ .Mg(F, OH) ₂ —Chondrodite		M.		3.15	781
2185	6MgO.3SiO ₂ .Mg(F, OH) ₂ —Humite		R.		3.15	790
2186	8MgO.4SiO ₂ .Mg(F, OH) ₂ —Clinohumite	100.000	M.		3.1	863
2187	MgO.TiO ₂ —Geikielite	120.220	Trig.		3.98	402
2188	MgSnCl ₆ .6H ₂ O	463.860	Trig.		2.08	289
2189	2(MgPb)O.SiO ₂ .H ₂ O—Molybdophyllite	470 070	H.		4.72	367
2190	MgCl ₂ .2CdCl ₂ .12H ₂ O	678.073	R.		9.00	629
2191	MgHg ₂ I ₆ .7H ₂ O	1313.24	m-:-		3.80	ŀ
2192	MgPtCl ₆ .6H ₂ O	540.390	Trig.		2.437	
2193	MgPtBr ₆ .12H ₂ O	915.231 451.860	Trig.		2.802	1
2194	MgPdCl ₆ .6H ₂ O		H.		2.12	
2195	Mg ₂ MnCl ₆ .12H ₂ O	532.503	H.		1.802	104
2196	MgO.Fe ₂ O ₃ —Magnesioferrite	200.000	С. М.		4.6 2.12	194 626
2197	MgO.Fe ₂ O ₃ .3SO ₃ .13H ₂ O—Quetenite	674.395	M.		2.12	660
2198 2199	2MgO.Fe ₂ O ₃ .4SO ₃ .15H ₂ O—Botryogenite. 6MgO.Fe ₂ O ₃ .CO ₂ .12H ₂ O—Pyroaurite	830.811 661.785	н.		2.1	275
2200	6MgO.Fe ₂ O ₃ .CO ₂ .12H ₂ O—Fyroaurite	661.785	H.		2.07	264
2200 2201	3(Fe, Mg)O.Fe ₂ O ₂ .2SiO ₂ .3H ₂ O—	001.700	11.		2.01	201
2201	Cronstedtite		Trig. ?		3.34	363
2202	MgO.CoO ₂	131.290	111g		5.06	000
2202 2203	Mg ₂ Ni ₂ O ₂ .3SiO ₂ .6H ₂ O—Genthite	486.292	R. ?		2.5	
2204	MgCrO ₄ .7H ₂ O	266.438	R.		1.695	665
2205	MgO.Cr ₂ O ₃	192.340	10.		4.50	
2206	MgCrO ₄ .(NH ₄) ₂ CrO ₄ .6H ₂ O	400.510	M.		1.84	813
2207	6MgO.Cr ₂ O ₂ .CO ₂ .12H ₂ O—Stichtite	654.125	н.		2.16	265
2208	MgW ₄ O ₁₃ .8H ₂ O	1112.44	M.			926
2209	3MgO.5V ₂ O ₅ .28H ₂ O	3407.09	Tri.		2.180	1
2210	4MgO.Cb ₂ O ₄		H.	ļ	4.4	
2211	MgO.B ₂ O ₃ .3H ₂ O—Pinnoite	164.006	Tet.		2.30	277
2212	2MgO.B ₂ O ₃ .H ₂ O—Ascharite	168.295			2.7	666
2213	2MgO.B ₂ O ₃ .H ₂ O—Camsellite	168.295	R. ?			1041
2214	3MgO.B ₂ O ₂	190.600	R.		2.99	833
2215	6MgO.8B ₂ O ₃ .MgCl ₂ —Boracite impure	894.276	R. C.	Tr. 265 R. to C.	2.9	856
2216	10MgO.4B ₂ O ₃ .3H ₂ O—Szaibelyite	735.806			3	321
2217	6MgO.2B ₂ O ₃ .2SO ₃ .9H ₂ O—Sulfoborite	703.469	R.		2.4	650
2218	3MgO.B ₂ O ₃ .P ₂ O ₅ .8H ₂ O—Lueneburgite	476.771	M.		2.1	649
2219	3MgO.B ₂ O ₂ .MnO.Mn ₂ O ₂ —Pinakiolite	419.390	R.		3.9	999
222 0	3MgO.B ₂ O ₃ .FeO.Fe ₂ O ₃ —Ludwigite	422.120	R.		4.0	972
2221	4MgO.B ₂ O ₃ .Fe ₂ O ₃ —Magnesioludwigite	390.600	R.		4.0	971
2222	MgO.Al ₂ O ₃ —Spinel	142.240	C.	2135	3.6	156
2223	MgO.Al ₂ O ₄ .4SO ₄ .22H ₂ O—Pickeringite	858.839	M.		1.85	473
2224	6MgO.Al ₂ O ₂ .CO ₂ .12H ₂ O—Hydrotalcite	604.025	H.		2.06	247
2225	3MgO.Al ₂ O ₃ .3SiO ₂ —Pyrope	403.060	C.		3.5	154
2226	4MgO.Al ₂ O ₃ .2SiO ₂ .5H ₂ O—Colerainite	473.397	H.		2.51	273
2227	5MgO.Al ₂ O ₃ .3SiO ₂ .4H ₂ O—					
	Leuchtenbergite	555. 762	M.		2.7	726
2228	5MgO.Al ₂ O ₃ .6SiO ₂ .4H ₂ O—Zebedassite	735.942			2.19	590
2229	5MgO.6Al ₂ O ₃ .2SiO ₂ —Sapphirine	933.240	M.		3.45	900
2230	(FeMg)O.Al ₂ O ₃ .P ₂ O ₅ .H ₂ O—Lazulite		M.		3.1	804
Ag Al As Au 22 55 13 33	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fo 67 69 64 8 4	Ga Gd Ge Gl H 8 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	2. 2. 2. 4. 4.

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
2231	Mg ₂ Gd ₂ (NO ₂) ₁₂ .24H ₂ O	1563.95	Trig.	77.5	2.1634	
2232	CaO—Lime.	56.0700	C.	2572	3.40	168
2233	CaH ₂		0.	d. 675	1.7	100
2234	Ca(OH) ₂	74.0854	R. Trig.	u. 010	2.343	318
2235	CaF ₂ —Fluorite	78.0700	C.	1360	3.180	71
2236	CaCl ₂ —Hydrophyllite	110.986	C.	772	2.1524 fused	120
2230 2237	CaCl ₂ -Hydrophymte.	219.078	Trig.	29.92		1
	1		Ing.		1.6817	212
2238	CaF ₂ .CaCl ₂	189.056		d. 737	3.07	1
2239	CaBr ₂	199.902	n	765	3.3534	
2240	CaBr ₂ .3H ₂ O	253.948	R.	80.5		
2241	CaBr ₂ .6H ₂ O	307.994	H.	38.2	0.000	1
2242	Ca(BrO ₃) ₂ .H ₂ O	313.917	M.	d.	3.329	ł
2243	CaF ₂ .CaBr ₂	277.972			3.1518	
2244	CaI ₂	293.934		575	3.956_4^{26}	1
2245	CaI ₂ .6H ₂ O	402.026	A.*	42		1
2246	Ca(IO ₂) ₂ —Lautarite	389.934	Tri.		4.59115	1
2247	CaS—Oldhamite	72.1350	C.		2.8^{15}	1
2248	CaSO ₄ —Anhydrite	136.135	R. M.	Tr. 1193	2.96	708
				(R. to M.)		
				M. 1450		1
2249	CaSO ₄ .2H ₂ O—Gypsum	172.166	М.		2.32	600
2250	CaS ₂ O ₆ .4H ₂ O	272.262	Trig.		2.176	269
2251	CaSeO4	183.270			2.93	
2252	CaSeO ₄ .2H ₂ O	219.301	M.	·	2.676	
2253	Ca ₂ N ₂	148.226		900	2.6317	Ì
2254	Ca(NO) ₂	100.086			2.53_4^{30}	
2255	Ca(NO ₂) ₂ .H ₂ O	150.101	H.		2.234	}
2256	Ca(NO ₂) ₂ .4H ₂ O	204 . 148			1.6740	
2257	Ca(NO ₃) ₂ —Nitrocalcite	164.086	c.	561	2.36	İ
2258	$Ca(NO_2)_2$ -Vinocalette	218.132	٥.	51.1	2.30	
2259	$Ca(NO_3)_2.4H_2O(\alpha)$	236.148	M.	42.7	1.82	526
			WI.		1.02	320
2260	Ca(NO ₂) ₂ .4H ₂ O (β)	236.148		39.7	0.5116	1
2261	Ca ₂ P ₂	182.258		>1600	2.5115	
2262	CaP ₂ O ₆	198.118		975	2.82	
2263	Ca ₂ P ₂ O ₇	254.188		1230	3.09	
2264	2CaO.P ₂ O ₅ .H ₂ O—Monetite	272.204	Tri.	d.	2.75	586
2265	2CaO.P ₂ O ₅ .5H ₂ O—Brushite	344.265	М.		2.25	656
2266	Ca ₂ (PO ₄) ₂	310.258		1670	3.14	(
2267	Ca ₄ P ₂ O ₉	366 . 328	М.	1630	3.06	148
2268	4CaO.P ₂ O ₅ .5H ₂ O—Isoclasite	456 . 405	M.		2.92	698
2269	5CaO.2P ₂ O ₅ .1.5H ₂ O—Martinite	591 . 469	M. ?		2.89	765
2270	10CaO.3P ₂ O ₅	986.844		1540	2.89	1
2271	Ca(H ₂ PO ₄) ₂	234.149	Tri.	d.	$2.546_4^{15.5}$	ı
2272	$C_{\mathbf{a}}(\mathbf{H_2PO_4})_{2}.\mathbf{H_2O}$	252 . 164	Tri.	d.	2.2204	1
2273	CaF ₂ .3Ca ₂ P ₂ O ₈ —Fluoroapatite	1008.84	H.	1630	3.18^{25}	309
2274	CasP2ClO12—Chloroapatite	520.880		1530	3.17^{20}	331
2275	3Ca ₂ (PO ₄) ₂ .CaFCl—Apatite	1025.30		1270	3.14	308
2276	(NH ₄)CaPO ₄ .7H ₂ O	279.241	M.	d.	1.56118	
2277	Ca ₂ As ₂	270.130			2.515	
2278	2CaO.As ₂ O ₄ .3H ₂ O—Haidingerite	396.106	R.		2.967	756
2279	2CaO.As ₂ O ₅ .5H ₂ O—Pharmacolite	432.137	M.		2.535	730
2280	2CaO.As ₂ O ₄ .8H ₂ O—Wapplerite	486.183	Tri.		2.48	621
2280 2281	9CaO.3As ₂ O ₄ .CaF ₂ —Svabite	1272.46	H.	*	3.80	345
	$5CaO.3Sb_2S_4$ —Romeite	1491.95	C.		5.04	1
2282 2283	CaC ₂	64.0700	Ŭ.	2300	2.22	169
	CaCO ₂ —Aragonite		R.	2000	2.22	900
2284		100.070		1339 ⁷⁷⁹ 000mm		880
2285	CaCO,—Calcite	100.070	H.	1999, , , , , , , , , , , , , , , , , ,	$2.711_4^{25.2}$	328
2286	CaCO ₂ .6H ₂ O	208.162	M.		0.04	633
2287	CaC ₂ O ₄	128.070			2.24	
2288	CaO.C ₂ O ₃ .H ₂ O—Whewellite	146.085	M.		2.23	674
2289	Ca(CHO ₂) ₂	130.085	R.	d.	2.015	577
2290	CaC ₄ H ₂ O ₄ .H ₂ O—Maleate	172.101	R.			706
2291	CaC ₄ H ₂ O ₄ .2H ₂ O—Fumarate	190.116	R.			754
Ma Mo N	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80	Rb Rh Ru 84 40 39	8 8a 8b 8	c Se Si Sn Sr Ta Tb 6 9 18 22 78 52 66	TeTh TiTmUV	W Y Yb Zn 2

Index No.	Formula	Mol. wt.	Crystal	M. P.	d_4^{20}	Ref. ind.
2292	CaC ₄ H ₄ O ₂ .3H ₂ O—Malate	194.147	system	<u> </u>		finding No.
2292 2293	CaC ₄ H ₄ O ₄ .3H ₂ O—Succinate	210.147	R.			676
2293 2294	$Ca(meso-C_4H_4O_6).3H_2O.$	242.147				648
229 4 2295	$Ca(meso-C_4H_4O_6).3H_2O$:	242.147 260.162	Tri. R.			609
2295 2296	$Ca(a-C_4H_4O_6).4H_2O$: $Ca(C_2H_3O_2)_2$		R.			638
2290 2297	$Ca(C_2H_1O_2)_2$	158.116	1	100		683
		218.147	i l	100		207
2298	Ca(C ₄ H ₄ O ₂) ₂ —Crotonate	210.147	5			695
2299	CaC ₅ H ₁₀ O ₁₀ .6H ₂ O—Acid malate	414.239	R.		1 400	561
2300 2301	$C_8(C_6H_6CO_2)_2.3H_2O$ $C_8H_2(C_4H_4O_6)_2.2C_4H_6O_6$	336 . 193	R.		1.436	
	d-Tetratartrate	638.239	R.		1.85119	ļ
2302	$Ca_3C_{12}H_6O_{12}$ —Aconitate	462.256	i i			636
2303	$Ca_3C_{12}H_{10}O_{14}.2H_2O$ —Citrate	534.318		130		ŀ
2304	$Ca_3C_{12}H_{10}O_{14}.4H_2O$ —Citrate	570.349				618
2305	$Ca(C_4H_2O_3NO_2)_2.xH_2O$ —Nitrotetronate		M.		1.745	822
2306	$Ca(C_9H_8NO_3)_2.3H_2O$ —Hippurate	450.255	R. ?		1.318	į
2307	7CaO.CO ₂ .2P ₂ O ₅ —Dahllite	720.586	H.		3.08	310
2308	10CaO.CO ₂ .3P ₂ O ₅ —Podolite	1030.84	H.		3.077	807
2309	10CaO. CaF ₂ . CO ₂ . 3P ₂ O ₅ . H ₂ O—Francolite.	1126.92	Н.		3.1	304
2310	CaSi	68.1300	1		2.3516	
2311	CaSi ₂	96.1900	1		2.5	
2312	Ca.Si.	176.330	ŀ		1.64	
2313	Ca. 6Si 10	521.020	[1200		İ
2314	CaSiO ₂	116.130	н.	1200	2.89	299
2315	CaO.SiO ₂ —Pseudowollastonite	116.130	M.	1540	2.00	773
2316	CaO.SiO ₂ —Wollastonite	116.130	M.	Tr. 1200	2.9	800
2317	CaO.2SiO ₂ -Wollastolite CaO.2SiO ₂ .H ₂ O-Okenite	194.205	R.	11. 1200	2.3	578
				0100	2.3	
2318	2CaO.SiO ₂ (α)	172.200	M. Tri.	2130		908
2319	2CaO.SiO ₂ (β)	172.200	M. R.	Tr. 1420 β to α		1049
2320	2CaO.SiO ₂ (γ)	172.200	M.	Tr. 675 γ to β	2 22	824
2321	2CaO.SiO ₂ .H ₂ O—Hillebrandite	190.215	R. ?		2.69	772
2322	2CaO.2SiO ₂ .3H ₂ O—Riversideite	286.306			2.61	751
2323	3CaO.2SiO ₂	288.330	R.	1475 d.		1046
2324	4CaO.4SiO ₂ .7H ₂ O—Crestmorite	590.628			2.22	759
232 5	CaSiF ₆ .2H ₂ O	2 18. 161	Tet.		2.25	1
2326	3CaO.CaF ₂ .3SiO ₂ .2H ₂ O—Zeophyllite	462.491	Trig.		2.76	276
2327	3CaO.CaF.2SiO ₂ .H ₂ O—Custerite	365.415	M.		2.96	732
2328	5CaO.SiO ₂ .P ₂ O ₅	482.458	!	1760	3.01	
2329	3CaO.SiO ₂ .CO ₂ .SO ₃ .15H ₂ O—Thaumasite	622 . 566	H.		1.87	243
2330	5CaO.2SiO ₂ .CO ₂ —Spurrite	444.470	M. ?		3.01	867
2331	CaO.TiO ₂ —Perovskite	135.970	R.		4.10	1025
2332	CaTi(SO ₄) ₃	376.165	C.			91
2333	5CaO.2TiO2.3Sb2O5—Lewisite	1410.77	C.		4.95	184
2334	CaO.TiO ₂ .SiO ₂ —Titanite	196.030	M.	1142	3.5	983
2335	CaO.SnO ₂ .3SiO ₂ .2H ₂ O—Stokesite	422.981	R.		3.2	776
2336	Ca. PbC ₁₈ H ₂₀ O ₁₂ —Propionate	725.571	Tet.		<u> </u>	251
2337	2CaO.PbO.3SiO ₂	515.520			3.99	955
2338	4CaO.6PbO.6SiO ₂ . H ₂ O—Ganomalite	1902.86	Tet.		5.74	985
2339	4CaO.5PbO.PbCl ₂ .6SiO ₂ —Nasonite		H.		5.7	380, 384
2340	CaO,ZnO.SiO ₂ .H ₂ O—Clinohedrite	215.525	M.		3.33	862
2340 2341	2CaO.ZnO.SiO ₂ —Hardystonite	253.580	Tet.		3.4	332
-		748.408	100.		3.4 3.30°	302
2342	CaHgI ₄	2710.43	į	1	4.69°	l
2343	CangaI ₁₂ .8H ₂ O		į			1
2344		3132.07	_D		3.610	1
2345	CaSO ₄ .3Cu(OH) ₂ .CuSO ₄ .3H ₂ O— Urvolgyite	574.542	R.		3.132	
0040	2CaO.2CuO.As ₂ O ₅ .H ₂ O—Higginsite	510 01E	R.		A 22	965
2346		519.215	1 1	}	4.33	
2347	CaCu(C ₂ H ₂ O ₂) ₄ .6H ₂ O	357.748	Tet.		1.42	213
2348	CaPt(CN) ₄ .5H ₂ O	429.409	R.		0.08	1045
2349	2CaO.MnO.P ₂ O ₅ .2H ₂ O—Fairfieldite	361.149	Tri.		3.07	823
2350	2CaO.MnO.As ₂ O ₅ .2H ₂ O—Brandtite	449.021	Tri.	1	3.671	902
23 51	CaO.MnO.SiO ₂ —Glaucochroite	187.060	R.		3.41	910
Ag Al As Au 32 55 13 33	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Ca 44 46 85 81	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li La 36 83 58 81 72

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. inc
2352	4CaO.2Mn ₂ O ₃ .5SiO ₂ .4H ₂ O—Orientite	912.362	R.		3.1	943
2353	4CaSiO ₃ .3MnSiO ₃ —Bustamite	857.490	Tri.			868
2354	CaO.Fe ₂ O ₃	215.750		1216 d.		408
2355	2CaO.Fe ₂ O ₂	271.820	1 1	1436 d.		1057
2356	2CaO.FeO.P ₂ O ₅ .4H ₂ O—Anapaite	398.090	Tri.	1100 4.	2.82	778
2357	6CaO.3Fe ₂ O ₂ .4P ₂ O ₅ .19H ₂ O—Calcioferrite		M.		2.53	282
2358		1120.01	141.		2.00	202
2338	3CaO.2Fe ₂ O ₂ .2As ₂ O ₄ .6H ₂ O—	1055 50			0.00	070
	Arseniosiderite	1055.50	R.		3.36	376
2359	FeCa ₂ (CN) ₆ .12H ₂ O	508.212	Tri.			718
2360	CaO.FeO.2SiO ₂ —Hedenbergite	248 . 030	M.	1100	3.7	922
2361	2CaO.4FeO.Fe ₂ O ₂ .4SiO ₂ .H ₂ O—Ilvaite	817.435	R.		4.0	984
2362	CaO.Cr ₂ O ₂	208.090	i		4.818	1
2363	15CaO.8CrO ₂ .7I ₂ O ₅ —Dietzeite	397.818	I м.		3.70	970
2364	3CaO.Cr ₂ O ₃ .3SiO ₂ —Uvarovite	500.410	C.		3.42	170
2365		200.070	Tet.		4.35	388
	CaMoO ₄ —Powellite					
2366	CaO.WO:-Scheelite	288.070	Tet.		6.06	381
2367	CaO.8UO ₃ .2SO ₃ .25H ₂ O—Uranopilite	2505.56	Tri. ?		3.8	788
236 8	CaO.2UO ₃ .P ₂ O ₅ .8H ₂ O—Autunite	914.581	R.		3.1	707
2369	CaO.2UO ₃ .P ₂ O ₄ .8H ₂ O—Bassetite	914.581	M.		3.10	705
2370	CaO.2UO ₃ . As ₂ O ₄ .8H ₂ O—Uranospinite	1002.45	R.		3.45	719
2371	2CaO.UO, 4CO, 10H ₂ O—Uranothallite	738.464	R.		2.8	547
2372	CaO.2UO ₃ .2SiO ₂ .6H ₂ O—Uranophane	856.622	Tri. ?		3.9	855
2373	CaV ₄ O ₁₁	419.910	[637		į
2374	CaO.3V ₂ O ₃ .9H ₂ O—Hewettite	763.969	R.		2.554	1011
2375	CaO.3V ₂ O ₅ .9H ₂ O—Metahewettite	763.969	R.		2.51	1003
2376	2CaO.3V ₂ O ₅ .11H ₂ O—Pascoite	856.069	M.		2.46	961
2377	CaCl ₂ .Ca ₂ (VO ₄) ₂	461.116	R.		4.01	1
2378	CaB ₆	104.990	***		2.3	
				1100	2.3	041
2379	CaO.B ₂ O ₃	125.710	R.,	1100		841
2380	2CaO.B ₂ O ₃	181.780		1304		
2381	2CaO.3B ₂ O ₂ .5H ₂ O—Colemanite	411.137	M.	d.	2.43	739
2382	2CaO.3B ₂ O ₂ .7H ₂ O—Meyerhofferite	447.168	Tri.	d.	2.12	635
2383	2CaO.3B ₂ O ₃ .13H ₂ O—Inyoite	555.260	М.	d.	1.875	570
2384	4CaO.5B ₂ O ₃ .9H ₂ O—Pandermite	734.619	M.	d.	2.43	738
2385	5CaO.6B ₂ O ₂ .9H ₂ O—Priceite	860.329	Tri.	u.	2.4	735
2386	CaO.2SiO ₂ .B ₂ O ₃ —Danburite	245.830	R.		3.0	806
2387	2CaO.2SiO ₂ .B ₂ O ₃ .H ₂ O—Datolite	319.915	1		3.0	831
2388	$4CaO.5B_2O_3.2SiO_2.5H_2O$ —Howlite	782 . 677	M.		2.6	746
2389	8CaO.5B ₂ O ₂ .6SiO ₂ .6H ₂ O—Bakerite	1265.21			2.8	721
2390	CaO.B ₂ O ₃ .SnO ₃ —Nordenskioeldine	276.410	Trig.		4.2	
2391	CaO.Al ₂ O ₂	157.990	M. ?, Tri.	1600		838
		270.130				155
2392	3CaO.Al ₂ O ₃		C.	1535 d.		
2393	3CaO.5Al ₂ O ₃	677.810	Tet. ?, R.	1720		300
2394	5CaO.3Al ₂ O ₃	586.110	C.	1455		141
2395	CaF ₂ .Al(F, OH) ₃ .H ₂ O—Gearksutite		M.		2.77	445
2396	CaF ₂ .2Al(F, OH) ₂ .H ₂ O—Prosopite		M. Tri.		2.88	548
2397	6CaO.Al ₂ O ₂ .3SO ₂ .33H ₂ O—Ettringite	1273.04	H.		1.75	231
2398	CaO.2CaF ₂ .2Al(F, OH) ₃ .SO ₃ .2H ₂ O—					
2000			1 M		2.73	470
	Creedite		M.			
2399	CaO.2Al ₂ O ₃ .P ₂ O ₅ .5H ₂ O—Crandallite	492.035	R.		3.5	294
2400	CaO.Al ₂ O ₃ .2SiO ₂ —Anorthite	27 8.110	Tri.	1551	2.765	723
2401	CaO.Al ₂ O ₃ .2SiO ₂ .2H ₂ O—Hibschite	314.141	C.		3.05	149
2402	CaO.Al ₂ O ₃ .2SiO ₂ .2H ₂ O—Lawsonite	314.141	R.		3.09	869
2403	CaO.Al ₂ O ₃ .3SiO ₂ .5H ₂ O—Levynite	428.247	Trig.		2.1	241
2404	CaO.Al ₂ O ₂ .4SiO ₂ .4H ₂ O—Gismondite	470.292	1 116.	1550	2.3	644
			,,	1000		
2405	CaO. Al ₂ O ₃ . 4SiO ₂ . 4H ₂ O—Laumontite	470.292	M.		2.3	605
2406	CaO.Al ₂ O ₃ .6SiO ₂ .5H ₂ O—Epistilbite	608 . 427	M.		2.25	572
2407	CaO.Al ₂ O ₂ .6SiO ₂ .5H ₂ O—Heulandite	608.427	M.		2.2	528
2408	CaO.Al ₂ O ₂ .7SiO ₂ .7H ₂ O—Stellerite	704.518	R.		2.12	509
2409	CaO.2Al ₂ O ₃ .2SiO ₂ .H ₂ O—Margarite	398.045	M.		3.0	820
2410	2CaO.Al ₂ O ₃ .SiO ₂ —Velardenite	274.120	Tet.	1590	3.04	333
				ากลก		
2411	2CaO.Al ₂ O ₃ .3SiO ₂ .H ₂ O—Prehnite	412.255	R.		2.9	796
2412	2CaO.Al ₂ O ₃ .5SiO ₂ .6H ₂ O—Laubanite	622.452	M. ?		2.2	221

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
2413	2CaO.3Al ₂ O ₃ .9SiO ₂ —Didymolite	958.440	M.	i	2.71	540
2414	3CaO.Al ₂ O ₂ .SiO ₂	330.190	R.			1048
2415	3CaO.Al ₂ O ₂ .3SiO ₂ —Grossularite	450.310	C.		3.530	157
2416	3CaO.Al ₂ O ₃ .6SiO ₂ .H ₂ O—Bavenite	648.505	M.		2.72	717
2417	4CaO.3Al ₂ O ₃ .6SiO ₃ —Meionite	890.400	Tet.		2.74	295
2417.1	4CaO.3Al ₂ O ₃ .6SiO ₃ . H ₂ O—Clinozoisite	908.415	M.		3.36	915
2417.1	4CaO.3Al ₂ O ₃ .6SiO ₂ .H ₂ O—Zoisite	908.415	R.		3.3	896
2419	3CaO.5Ce ₂ O ₄ .6P ₂ O ₄ .24H ₂ O—Churchite	3095.37	M.		3.14	785
2419		538.570	Trig.		4.32	279
2420 2421	CaO.2CeOF.3CO ₂ —Parisite CaPO ₄ .BeOH—Hydro-herderite		R.		3.00	774
		161.122		5 100 J		1
2422	CaCl ₂ .2MgCl ₂ .12H ₂ O—Tachyhydrite	517.643	H.	>168 d.	1.665	249 909
2423	2CaO.2MgO.As ₂ O ₆ .H ₂ O—Adelite	440.715	M.		3.76	
2424	2CaO.MgO.As ₂ O ₅ .MgF—Tilasite	425.700	M.		3.28	847
2425	CaO.MgO.2CO ₂ —Dolomite	184.390	Trig.	1 4400	2.872	339
2426	CaO.MgO.SiO ₂ —Monticellite	156.450	R.	d. 1498	3.2	852
2427	CaO.MgO.2SiO ₂ —Diopside	216.510	M.	1391	3.3	864
2428	CaO.3MgO.2SiO ₂ —Merwinite	297.150	M.		3.15	901
2429	CaO.3MgO.4SiO ₂ —Tremolite	417.270	M.		3.0	786
2430	2CaO.MgO.2SiO ₂ —Åkermannite	272.580	Tet.	1458	2.944	307
2431	5CaO.2MgO.6SiO ₂	721.350		d. 1365		797
2432	CaO, MgO.3B ₂ O ₂ .6H ₂ O—Hydroboracite	413.402	M.		2.0	631
2433	CaO.MgO.Al ₂ O ₂ .SiO ₂ —Gehlenite	258.370	Tet.		3.04	330
2434	SrO	103.620	R.	2430	4.7	1
243 5	Sr(OH) ₂	121.635			3.625	Ì
2436	Sr(OH) ₂ .8H ₂ O	265,758	Tet.		1.90	242
2437	SrF ₂	125.620	C.	1190	2.44	
2438	SrCl.	158.536	C.	873	3.052	140
2439	SrCl ₂ .6H ₂ O	266.628	Trig.	d. 61	1.93	257
2440	Sr(ClO ₃) ₂	254.536	R.	120 d.	3.152	763
2441	SrF ₃ .SrCl ₂	284.156	Tet.	962	4.18	324
2442	SrBr ₂	247.452	160.	643	4.21624	024
2443		355.544		d. 20	2.35818	1
	SrBr ₂ .6H ₂ O		l			
2444	Sr(BrO ₃) ₂ .H ₂ O	361.467	M.	d.	3.773	1
2445	SrBr ₂ .SrF ₂	373.072		100	4.06	
2446	SrI ₂	341.484		402	4.5494	
2447	$Sr(IO_8)_2$	437.484	Tri.		5.04516	
2448	SrI ₂ .SrF ₂	467.104			4.5	
2449	SrS	119.685	C.		3.70^{15}	İ
2450	SrS ₄ .6H ₂ O	323.972	ļ	25		1
2451	SrO.SO ₃ —Celestite	183.685	R.	1580 d.	3.96	789
2452	SrS ₂ O ₃ .5H ₂ O	289.827	M.	d.	2.17^{17}	i i
2453	SrS ₂ O ₆ .4H ₂ O	319.812	Trig.		2.373	253
2454	Sr(NO) ₂	147.636	_		2.683	i
2455	Sr(NO) ₂ .5H ₂ O	237.713			2.17340	1
2456	Sr(NO ₂) ₂	179.636			2.86727	ļ
2457	Sr(NO ₂) ₂ .H ₂ O	197.651		d.	2.4080	İ
2458	Sr(NO ₂) ₂	211.636	C.	570	2.986	135
2459	Sr(NO ₂) ₂ .4H ₂ O	283.698	M.	0.0	2.2	100
2460	Sr ₂ P ₂	324.908			2.68	
2461	SrHPO ₄	183.652	R.		3.544	1
2462	SrC ₂	111.620	10.		3.2	1
			R.	149760 at.	3.70	853
2463	SrO.CO ₂ —Strontianite	147.620	1			
2464	Sr(CHO ₂) ₂	177.635	R.	71.9	2.69	704
2465	Sr(CHO ₂) ₂ , H ₂ O	195.651	R.		2.25	
2466	Sr(CHO ₂) ₂ .2H ₂ O	213.666	R.		2.695	597
2467	$Sr(C_2H_3O_2)_2$	205.666			2.099	
2468	$Sr(CH_2SO_3)_2.H_2O$ —Ethane disulfonate	293.796	M.		$2.355(\alpha)$	
					$2.453 (\beta)$	
2469	Sr(C ₂ H ₅ O ₄ S) ₂ .2H ₂ O—Ethylsulfate	373.858	M.		2.032	554
2470	Sr(C ₄ H ₂ O ₃ NO ₂) ₂ .xH ₂ O—Nitrotetronate		M.		2.043	812
2471	$Sr(SbOC_4H_4O_6)_2$	627.222	H.			426
2472	SrSiO ₂	163.680		1580	3.65	60
2473	2SrO.SiO ₂	267.300		>1700	3.84	
~	amba		,	,		b.K.la.li

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind finding N
2474	SrSiF ₆ .2H ₂ O	265.711	M.	· i	2.9917.6	1
2475	SrCl ₂ .2CdCl ₂ .7H ₂ O	651.296	M.		2.71824	
2476		2757.98	141.			1
	SrHg,I12.8H2O	1			4.66°	1
2477	Sr ₂ Cu(CHO ₂) ₄ .8H ₂ O	562.964	Tri.			593
247 9	SrCrO4	203.630	M .	1	3.89515	
2480	SrCr ₂ O ₇ .3H ₂ O	357.686	M.			905
2481	Sr(OCrO ₂ Cl) ₂ .4H ₂ O	430.618		72		"
				1 '2	4 145	1
2482	SrMoO ₄	247.620		1	4.145	
2483	SrWO4	335.620		1	6.184	
2484	Sr ₂ W ₁₂ SiO ₄₀ .16H ₂ O	3339.55	M.	ł		934
2485	SrB ₆	152.540			3.3	
2486	SrO.B ₂ O ₃	173.260	1	1100	3.3	ŀ
						ł
2487	SrO.2B ₂ O ₃	242.900		930		1
2488	2SrO.B ₂ O ₃	276.880		1130		
24 89	2SrO.3Al ₂ O ₃ .2P ₂ O ₅ .7H ₂ O—Goyazite	923.204	Trig.		${\bf 3.2}$	305
2490	2SrO.3Al ₂ O ₃ .P ₂ O ₅ .2SO ₃ .6H ₂ O—		"			
2100		000 070	Tr_:_	i i	2 5	314
	Svanbergite	923.270	Trig.		3.5	314
2491	SrO.Al ₂ O ₃ .2SiO ₂	325.660		>1700		1
249 2	3SrO.2Ce ₂ O ₂ .7CO ₂ .5H ₂ O—Ancylite	1365.94	R.	1	3.95	974
2493	SrCa ₂ C ₁₈ H ₃₀ O ₁₂ —Propionate	605.991	Tet.	1		230
2494	BaO		C.	1923	5.72	-00
	1	153.370	1 .	1920		
24 95	BaO ₂	169.370	1	1	4.96	
2496	BaH ₂	139.385	1	d. 675	4.210	1
2497	Ba(OH) ₂	171.385	M.	1	4.495	İ
2498	Ba(OH) ₂ .8H ₂ O	315.509	M.	77.9	2.13	544
			1	1		011
2499	BaF ₂	175.370	C.	1280	4.83	1
2500	BaCl2	208.286	M .	Tr. 925	3.856_4^{24}	
			C.	962		i
2501	BaCl ₂ .2H ₂ O	244.317	R.		3.0974	825
			10.	1 202	3.0974	020
2502	Ba(ClO) ₂	240.286		d. 235		
2503	Ba(ClO ₃) ₂	304.286		414		
2504	Ba(ClO ₂) ₂ .H ₂ O	322.301	M.	d. 120	3.179	713
2505	Ba(ClO ₄) ₂	336.286		505		
		1		000	0.74	
2506	Ba(ClO ₄) ₂ .3H ₂ O	390.332	H.		2.74	
2507	BaClF	191.828	Tet.	1008	5.931	315
2508	BaCl ₂ ,BaF ₂	383.656			4.5118	
2509	BaBr	297.202		847	4.7814	ļ
2510	BaBr ₂ .2H ₂ O	333.233	M.	""	3.5824	913
			1		-	819
2511	Ba(BrO ₃) ₂ .H ₂ O	411.217	M.	1	3.99^{18}	1
2512	BaBr ₂ .BaF ₂	472.572			4.9618	ľ
2513	BaI:	391.234	1	740 d.	5.151	Į.
2514	BaI ₂ .6H ₂ O	499.326	H.	25.7	0.101	
			111.	20.7		1
2515	BaI ₂ .7H ₂ O	517.342	İ	1	3.67	1
2516	Ba(IO ₃) ₂	487.234	M .		5.23	1
2517	Ba(IO ₂) ₂ .H ₂ O	505.249	M.		5.0^{15}	
2518	BaI ₂ .BaF ₂	566.604	1		5.2118	- 1
		1				
2519	BaS	169 . 435	C.		4.25^{15}	
2520	BaS ₄ .2H ₂ O	301.661	R.	d.	2.988	l l
2521	BaO.SO ₂ —Barite	233.435	R.	Tr. 1149 to M. ?	4.49915	816
				1580		3
0.500	D.O. HO	007 515		1000	0.4514	1
2522	BaS ₂ O ₃ .H ₂ O		R.	1	3.45^{18}	i
2523	BaS ₂ O ₆ .2H ₂ O	333.531	R. M.		$4.536^{13.5}$	744
2524	BaS ₂ O ₆ .4H ₂ O	369.562	M.	1	3.142	1076
2525	BaSeO ₄	280.570	R.	d.	4.75	
		The state of the s	1	".		
2526	BaTeO ₄	328.870	l _	, , ,	4.4816	
2527	BaN6	221.418	R.	d. 219		
2528	Ba(NO) ₂	197.386			3.89123	
2529	Ba(NO ₂) ₂	229.386	1	217	3.2323	
			I	""		
2530	Ba(NO ₂) ₂ .H ₂ O	247 . 401	_		3.17329	
2531	Ba(NO ₃) ₂ —Nitrobarite	261.386	C.	592	3.24423	137
2532	Ba(NH ₂) ₂	169.417		280		
2533	Ba ₂ P ₂ O ₇	448.788	R.		4.1^{16}	
2533 2534	Ba ₂ (PO ₄) ₂					
	I MA · (P() ·) ·	602.158	! C.	1	4.1^{16}	

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
2535	BaHPO ₄	233.402	R.		4.16515	T T
2536	BaH ₄ (PO ₂) ₂ .H ₂ O	285.464	M.		2.90^{17}	
2537	BaF ₂ .3Ba ₃ P ₂ O ₈	1981.84	H.	1670		334
2538	BaCl ₂ .3Ba ₃ P ₂ O ₈	2014.76	H.	1584	5.949	343
2539	Ba ₂ As ₂	562.030			4.115	
2540	BaHAsO ₄ .H ₂ O	295.353	R. M.		3.9315	
2541	BaC ₂	161.370			3.75	
2542	BaCO ₃ —Witherite	197.370	R.	Tr. 811 to α	4.43	875
2543	BaCO ₃ (α)	197.370	H.	Tr. 982 to β		
2544	BaCO ₃ (β)	197.370	1	1740% at.		
2545	BaC ₂ O ₄	225.370			2.658	
2546	Ba(CHO ₂) ₂	227.385	R.		3.21	745
2547	BaC ₂ H ₂ O ₄ —Malonate	239.385			2.147^{18}_{4}	
2548	Ba(meso-C ₄ H ₄ O ₆).H ₂ O	303.416]		2.98	ł
2549	Ba(dl-C4H4O6).5H2O	375.478	M.			1051
2550	Ba(C ₂ H ₃ O ₂) ₂	255.416			2.468	
2551	Ba(C ₂ H ₂ O ₂) ₂ .H ₂ O	273.432	Tri.		2.19	582
2552	Ba(C ₂ H ₂ O ₂) ₂ .3H ₂ O	309.462	Tri.		2.021	
2553	Ba(C ₂ H ₄ CO ₂) ₂ .H ₂ O	301.462	R.			584
2554	Ba(CH ₂ SO ₂) ₂ —Ethane disulfonate	325.531	R.		2.779	551
2555	BaC ₆ H ₄ O ₇ S ₂ .4H ₂ O—Phenol-2, 4-disul-	020.001	•••		=0	
2000	fonate	461.592	M.			767
2556	BaC ₁₀ H ₆ O ₆ S ₂ .H ₂ O—Naphthalene-1, 5-	101.002	177.			10.
2000	disulfonate	441.562	R.		2.282	904
2557	BaSiO ₂	213.430	It.	1604	4.399	872
2558	BaSiO ₂ .6H ₂ O.	321.522	p	1004	2.59	659
			R.	1490		
2559	BaO.2SiO ₂	273.490	R.	1420	3.73	775
2560	2BaO.SiO ₂	366.800	1	>1755	0.00	1052
2561	2BaO.3SiO ₂	486.920		1450	3.93	795
2562	BaSiF ₆	279.430			4.27915	050
2563	BaO.TiO ₂ .3SiO ₂ —Benitoite	413.450	H.		3.7	356
2564	BaCdCl4.4H2O	463.674	Tri.		2.968	827
2565	BaCdBr ₄ .4H ₂ O	641.506	Tri.		3.687	894
2566	BaCd(CHO ₂) ₄ .2H ₂ O	465.842	M.			627
2567	BaHg ₆ I ₁₂	2692.60			4.630	
2568	Ba ₂ Hg ₅ I ₁₆ .16H ₂ O	3734.32	1		4.06	
2569	BaPtBr ₆ .10H ₂ O		M.		3.713	2110
2570	BaPt(CN) ₄ .4H ₂ O		M.		3.05	1047
2571	BaO.MnO ₂		l		5.85	1
2572	BaO.FeO.4SiO ₂ —Gillespite	465.450	Trig.		3.33	302
2573	4BaO.FeO.2Fe ₂ O ₃ .10SiO ₂ —Taramellite	1	R.		3.92	942
2574	BaNi ₂ O ₅	334.750	1		4.8	
2575	BaCrO ₄	253.380	1		4.498^{15}	!
2576	$Ba_3[Cr(C_2O_4)_3]_2$	1044.13			2.57	
2577	$Ba_3[Cr(C_2O_4)_3]_2.7H_2O$	1170.24	i		2.896^{28}	
2578	Ba ₃ [Cr(C ₂ O ₄) ₃] ₂ .12H ₂ O	1260.31	1		2.37227	1
2579	BaMoO ₄	297.370			4.65	
2580	BaWO4	385.370	1		6.35	
2581	BaO.4WO ₃ .9H ₂ O	1243.51	R.		4.30	
2582	Ba ₂ W ₁₂ SiO ₄₀ .16H ₂ O	3439.05	M.			962
2583	BaO.2UO ₂ .P ₂ O ₅ .8H ₂ O—Uranocircite	1011.88	R.		3.53	787
2584	Ba ₂ V ₂ O ₇	488.660	1	ca. 863		M
2585	3BaO.10WO ₃ .V ₂ O ₃ .SiO ₂ .28H ₂ O	3526.52]		3.66	
2586	BaB6	202.290		1	4.36	
2587	BaO.B ₂ O ₃	223.010		1060		
2588	2BaO.B ₂ O ₂	376.380	[i	1002		
2589	3BaO.B ₂ O ₃	529.750		1315		
2590	BaCl, 2AlCl,	474.954	1	290		
25 91	BaO.Al ₂ O ₃ .2SiO ₂ —Celsian	375.410	M.	>1700	3.37	727
2592	BaO.Al ₂ O ₃ .3SiO ₂ .3H ₂ O—Edingtonite	435.470	R.		2.7	662
2592 2593	4BaO.Al ₂ O ₃ .7SiO ₂ —Barylite	1135.82	R.	1	4.03	884
2593 2594	BaF ₂ .Ce ₂ O ₃ .3CO ₂ —Cordylite		H.		4.31	357
259 4 2595	BaO.CaO.2CO ₂ —Cordynte	297.440	M.		3.65	828
4000	Day. Oac. 2007 Dary weatere	401.TTU	1 141.		U.U0	040

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind finding N
2596	BaCa ₂ C ₁₈ H ₃₀ O ₁₂ —Propionate	655.741	C.			73
2597	BaO.2CaO.3SiO ₂	445.690	Н. ?	1320 d.		338
			M.		1 40-	000
2598	RaCl ₂	296.866	MI.	1000	4.91	1
				Tr. 870		
2599	RaBr ₂	385.782	M.	728	5.79	
2600	Li ₂ O	29.8780		>1700	2.01345.2	i
2601	LiH	7.94670	c.	680	0.820	
			0.		1	
2602	LiOH	23.9467		450	2.54	
2603	LiOH, H ₂ O	41.9621			1.83	
2604	LiF	25.9390	C.	870	2.29521.6	1
					l. 1.789870	
0005	LiCl	40 2070	C.	210		
2605		42.3970	U.	613	2.0684	
2606	LiClO ₃	90.3970		129		
2607	LiClO ₃ .0.5H ₂ O	99.4047		65		
2608	LiClO4	106.397		236	2.429	
	· -		ш			
2609	LiClO ₄ .3H ₂ O	160.443	H.	95	1.841	
2610	LiBr	86.8550	C.	547	3.4644	1
2611	LiBr.2H ₂ O	122.886		44		
2612	LiBr.3H ₂ O	140.901		3.5		
					4 00125	
26 13	Lil	133.871		446	4.0614	
					1. 2.827673.4	}
2614	LiI.3H ₂ O	187.917		73		ł
2615	Li ₂ S.	45.9430		· -	1.66	
	- 1			000		4
2616	Li ₂ SO ₄	109.943	M.	860	2.221	455
					1. 2.004860	i
2617	Li ₂ SO ₄ .H ₂ O	127.958	М.		2.06	469
2618	Li ₂ S ₂ O ₆ .2H ₂ O	210.039	R.			684
			n.		2.158	004
2619	LiHSO ₄	104.012			2.12313	
2620	LiNO ₂ ,H ₂ O	70.9624			1.6150	
2621	Lino.	68.9470	Trig.	255	l. 1.7742	
2021	111103	00.0110		200		050
					2.38	353
2622	Lino ₃ .3H ₂ O	122.993	İ	d. 29.6		
2623	LiNH.	22.9624		390	1.17817.5	
2624	Li ₂ NH.	28.8937	1	•••	1.30319	
			i		1.303	
2625	LiBr.NH ₁	103.886		97		
2626	LiNH ₄ SO ₄	121.043	Μ. (α)		1.204	
			Η. (β)			
			$M. (\gamma?)$		Į	
0007	T:00	05 000	WI. (7 ·)		0.401	
2627	LiPO ₃	85.963			2.461	
2628	Li ₂ PO ₄	115.841	R.	837	2.53717.6	
2629	Li ₂ PO ₄ .12H ₂ O	332.026	Trig.	100	1.645	
2630	LiH.PO4	103.978		>100	2.461	
				>100	1	
2631	Li ₂ AsO ₄	159.777	1		3.07	
2632	Li ₂ Sb	142.587		>950	3.217	
2633	Li ₂ C ₂	37.8780			1.6518	1
2634	Li ₂ CO ₂	73.8780	М.	618	2.11117.6	694
2003	1412003	10.0/00	171.	010		094
					l. 1.765900	
2635	Li ₂ C ₂ O ₄	101.878			2.12117.5	
2636	LiCHO ₂ .H ₂ O	69.9621	R.		1.46	1
		248.070			1.20	200
2637	LiHC ₄ H ₄ O _{5.6} H ₂ O—Malate		M.		1	682
2638	LiC ₂ H ₃ O ₂ .2H ₂ O	101.993	R.	70		533
2639	Li ₂ (CH ₂ SO ₃) ₂ .2H ₂ O—Ethane disulfonate.	238.070	M.		1.817	
2640	Li ₂ C ₁₀ H ₆ O ₆ S ₂ .2H ₂ O—Naphthalene 1, 5-					- 1
	- ·	336.085	М.		1.664	014
	disulfonate				1.004	814
2641	LiNH ₄ (dl-C ₄ H ₄ O ₆).H ₂ O	191.024	M.		1	614
2642	$LiNH_4(d-C_4H_4O_6).H_2O$	191.024	R.		1	693
2643	Li ₈ Si ₂	97.7540			1.12	
	1		D	1001		
2644	Li ₂ O.SiO ₂	89.9380	R.	1201	l. 2.334	55
					2.524	322, 104
2645	Li ₂ O.2SiO ₂	149.998		1032 d.	2.4544	
2646	2Li ₂ O.SiO ₂ .	119.816		1256	2.28	1043
				1200		1043
2647	Li ₂ SiF ₆ .2H ₂ O	191.969	M.		2.3	
264 8	TILi(dl-C ₄ H ₄ O ₆).2H ₂ O	395.401	Tri.		3.144	
We We N						

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
2649	2LiI.HgI2.6H2O	830.308	1		3.260	
265 0	2LiI.HgI ₂ .8H ₂ O	866.339		ľ	2.95°	
2651	Li ₂ O.2MnO.P ₂ O ₅ —Lithiophilite	313.786	R.		3.5	878
2652	Li ₂ O.2FeO.P ₂ O ₅ —Triphylite	315.606	R.		3.55	895
2653	Li(UO ₂)(C ₂ H ₃ O ₂) ₃ .3H ₂ O	508.224	M.	-	2.28015	
2654	Li ₂ O.B ₂ O ₃	99.5180		843		1
2655	Li ₂ O.B ₂ O ₃ .16H ₂ O	387.764	Trig.	47	1.38	
2656	Li ₂ O.2B ₂ O ₃	169.158		900		1
2657	Li ₂ O.Al ₂ O ₃	131.798		> 1625	$2.554_4^{25.1}$	
2658	2LiF.Al ₂ O ₂ .P ₂ O ₅ —Amblygonite	295.846	Tri.		3.05	740
2659	Li ₂ O.Al ₂ O ₃ .2SiO ₂ —Eucryptite	251.918	H.	1388	2.67	268
2660	Li ₂ O.Al ₂ O ₃ .4SiO ₂ —Spodumene	372.038	M.	1400	3.2	854
2661	Li ₂ O.Al ₂ O ₃ .5SiO ₂	432.098	1		2.40	
2662	Li ₂ O.Al ₂ O ₃ .6SiO ₂	492.158	1		2.41	
2663	Li ₂ O.Al ₂ O ₃ .8SiO ₂ —Petalite	612.278	M.	1370	2.4	573
2664	2Li ₂ O.7Al ₂ O ₂ .2B ₂ O ₃ .6SiO ₂ .12H ₂ O—					
	Manandonite	1489.02	H.		2.89	749
2665	Na ₂ O	61.9940	1		2.27	
2666	Na ₂ O ₂ .8H ₂ O	222.117	H.	d. 30	- · - ·	
2667	NaH	24.0047			0.92	
2668	NaOH	40.0047		318.4	2.130	
2669	NaOH.3.5H ₂ O	103.059		15.5	2.100	
2670	NaF—Villiaumite	41.9970	Tet.	980	2.79	66
2671	NaCl—Halite	58.4550	C.	804	2.163	129
2672	NaOCl.2.5H ₂ O.	119.494	0.	57.5	2.100	123
2673	NaOCl.5H ₂ O	164.532	1	24.5		
2674	NaClO:	106.455	C. Trig.	248	2.49016	119
2675	NaClO ₄	122.455	R.	482 d.	2.450	110
2676	NaClO ₄ .H ₂ O.	140.470	H.	d. 130	2.02	- 1
2677	NaBr	102.913	C.	755	3.205	l
2678	NaBr.2H ₂ O.	138.944	M.	50.7	2.176	į.
2679	NaBrO ₁	150.913	C.	381	3.33917.5	138
2680	NaI.		c.	651		138
2681	NaIO ₃ .	149.929 197.929	R.	d.	3.667 4.277	
2682	NaIO ₄		Tet.	d. 300		
		213.929		a. 300	3.865 ¹⁶	
2683 2684	NaIO4.3H2O	267.975	Trig.		3.21918	
2685	Na ₂ S	78.0590		445	1.856	į.
	Na ₂ S ₂	110.124	}	445		ł
2686	Na ₂ S ₃	142.189	_	223.5		
2687	Na ₂ S ₄	174.254	C.	275		- 1
2688	Na ₂ S ₄ .6H ₂ O	282.346		25		
2689	Na ₂ S ₅	206.319		251.8	4 704	
2690	Na ₂ SO ₃ .7H ₂ O	252.167	M.	m	1.561	
2691	Na ₂ SO ₄ (α)—Thenardite	142.059	R.	Tr. 100	2.69	466
2692	Na ₂ SO ₄	142.059	R.	Tr. 100 to M.	2.698	
			M.	Tr. 500 to H		
			H.	884		
2693	Na ₂ SO ₄ .10H ₂ O—Glaubers salt	322.213	M.	d. 32.4	1.464	434
2694	Na ₂ SO ₄ .10H ₂ O—Mirabilite	322.213	M.		1.48	428
2695	Na ₂ S ₂ O ₃	158.124	M.		1.667	
2696	Na ₂ S ₂ O ₃ .5H ₂ O	248.201	M.	d. 48.0	1.685	564
2697	Na ₂ S ₂ O ₆ .2H ₂ O	242 . 155	R.		2.189	520
26 98	NaHS.3H ₂ O	110.116	R.	22		1
2699	NaHSO4	120.070	Tri.	>315	2.742	
2700	2Na ₂ O.NaCl.NaF.2SO ₃ —Sulphohalite	384.570	C.		2.49	76
2701	Na ₂ Se ₄	362.794	1	-55		
2702	Na ₂ SeO ₄	189.194	R.		3.098	1
2703	Na ₂ SeO ₄ .10H ₂ O	369.348	M.	len n	1.58	
2704	Na NO ₂	69.0050	R.	271	2.1680	
2705	NaNO ₂ —Soda-niter	85.0050	Trig.	308	2.257	288
2706	Na ₂ (NO) ₂	106.010	- 1	300 d.	2.466^{30}	
2707	NaNH ₂	39.0204		210		1
2708	3Na ₂ O.N ₂ O ₅ .2SO ₃ .2H ₂ O—Darapskite	490.159	M.	-	2.2	- 456
g Al As Au 2 55 13 33		Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	b K La Li La 30 83 58 81 72

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d420	Ref. in finding
2709	6NaNO ₂ .2Na ₂ SO ₄ .3H ₂ O—Nitroglauberite	848.194	R.			534
2710	NaNH4SO4.2H2O—Lecontite	173.132	R.	d.	1.63	443
2711	NaPO	102.021		616 d.	2.476	
2712	Na.PO4	164.015		1340	2.53717.5	
2713	Na,PO4.12H,O	380.200	Trig.	d. 73.4	1.62	214
2714						214
	(NaPO ₂) ₂ .2H ₂ O	342.094	Tri.	d.	2.476	400
2715	Na ₄ P ₂ O ₆ .10H ₂ O	430.190	M.		1.832	480
2716	Na ₄ P ₂ O ₇	266.036		988	2.45	1
2717	Na ₄ P ₂ O ₇ .10H ₂ O	446.190	М.	d.	1.82	444
2718	NaH ₂ PO ₃ .2.5H ₂ O	149.075	M.	42		432
2719	NaH2PO4.H2O	138.052	R.	d. 190	2.040	487
2720	Na H ₂ PO _{4.2} H ₂ O	156.067	R.	ca. 60	1.91	450
2721	Na ₂ HPO _{3.5} H ₂ O	216.103	R.	t u . 00	1.01	438
2722	1	178.057	H.		1 040	400
	Na ₂ HPO ₄ .2H ₂ O				1.848	
2723	Na ₂ HPO ₄ .7H ₂ O	268.134	M.	d.	1.679	437
2724	Na ₂ HPO ₄ .12H ₂ O	358.211	R. M.	34.6	1.52	433
2725	Na ₂ H ₂ P ₂ O ₆ .6H ₂ O	314.150	M.		1.849	504
2726	Na ₂ H ₂ P ₂ O ₇	222.057	M.	d. 220	1.862	1
2727	Na ₂ H ₂ P ₂ O ₇ ,6H ₂ O	330 . 150	M.		1.848	454
2729	Na ₂ HP ₂ O ₆ .9H ₂ O	390.185	M.	d. 100	1.743	465
2730	Na ₂ PO ₄ .H ₂ PO ₄ .15H ₂ O	532.293	471.	u. 100 55	1.170	400
				99	0.010	I
2731	Na ₂ PO ₄ .NaF.12H ₂ O	422.197	C.		2.216	
2732	2Na ₂ PO ₄ .NaF.19H ₂ O	712.320	C.		2.217	74
2733	NH4NaHPO4.4H2O—Microcosmic salt,					
	Stercorite	209.129	М.	ca. 79 d.	1.574	436
2734	Na ₂ AsO ₄	207.951			2.835	
2735	Na ₃ AsO ₄ .12H ₂ O	424.136	Trig.	86.3	1.759	216
				00.0		1 -
2736	NaH ₂ AsO ₄ .H ₂ O	181.988	R.		2.535	672
2737	NaH ₂ AsO ₄ .2H ₂ O	200.003	R.		2.309	546
2738	Na ₂ HA ₅ O ₄ .7H ₂ O	312.070	M.		1.871	556
2739	Na ₂ HA ₈ O ₄ .12H ₂ O	402.147	M.	28	1.72	441
2740	2Na ₂ AsO ₄ .NaF.19H ₂ O	800.192	l c. l		2.8525	90
2741	Na ₃ AsS ₄ .8H ₂ O	416.334	M.	d.		879
2742	2Na ₂ O.As ₂ O ₅ .2SO ₃	514.038		u.	2.42521	0,0
						455
2743	(NH ₄)NaHAsO ₄ .4H ₂ O	253.065	M.		1.84517	457
2744	NaSb	144.767	1	465		- 1
2745	Na ₃ Sb	190.761		856		l
2746	NaSbO ₂ .3H ₂ O	230.813	R.	d.	2.864	İ
2747	Na ₃ SbS ₄ .9H ₂ O	481.160	C.		1.839	
2748	Na ₁ Bi	277.991		775	2.000	l l
2749	1		ļ.	110	1 27215	
	Na ₂ C ₂	69.9940			1.57515	
2750	Na ₂ CO ₃	105.994	_	851	2.533	i
2751	Na ₂ CO ₃ .H ₂ O—Thermonatrite	124.009	R.		1.55	
2752	Na ₂ CO ₃ .7H ₂ O	232.102	R. Trig.	d. 35.1	1.51	
2753	Na ₂ CO ₂ .10H ₂ O—Natron	286.148	М.		1.46	431
2754	NaCHO2	68.0047	M.	253	1.92	
2755	NaHCO ₁	84.0047	M.		2.20	ı
			171.	204		
2756	NaC ₂ H ₃ O ₂	82.0201		324	1.528	
27 57	NaC ₂ H ₃ O ₂ .3H ₂ O	136.063	M .	58; 78	1.45	452
275 8	NaHC ₃ H ₂ O ₄ .H ₂ O—Acid malonate	144.036	R.			604
27 59	$NaH(d-C_4H_4O_6).H_2O$	190.051	R.			628
2760	NaC4H7O4—Diacetate	142.051	C.			79
2761	NaC ₁₆ H ₃₁ O ₂ —Palmitate	278.236		ca. 270		
2762	NaC ₁₈ H ₂₈ O ₂ —Elaidate	304.251		227		
	1					- 1
2763	NaC ₁₈ H ₃₃ O ₂ —Oleate	304.251		235		- 1
2764	Na ₂ (d-C ₄ H ₄ O ₆).2H ₂ O	230 .056	R.		1.818	
276 5	Na ₂ CO ₃ .NaHCO ₃ .2H ₂ O—Tronite	226.030	M.		$2.147^{21.7}$	563
2766	Na ₃ C ₆ H ₅ O ₇ .5H ₂ O—Citrate	348.107	R.		$1.857_4^{23.5}$	- 1
2767	NaC ₁₀ H ₆ S ₂ O ₆ .2H ₂ O—Naphthalene 1, 5-				A A .	
	disulfonate	345.040	М.		1.777	809
2769	Na ₂ (CH ₂ SO ₃) ₂ .2H ₂ O—Ethane disulfonate		M.			809
276 8	anagion 2003/2.2020—Ethane disulionate	270.186	N1.		1.939 (a)	
	L	40			1.880 (\beta)	ı
2769	NaCN	49.0050		563.7		1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
2770	NaNH ₄ (meso-C ₄ H ₄ O ₆).H ₂ O	207.082	M.	i i	1.740	1074
2771	$NaNH_4(d-C_4H_4O_6).4H_2O$	261.128	R.		1.587	527
2772	NaC ₅ H ₈ NO ₄ —Glutamate	169.067	M.	İ		574
2773	NaSCN	81.0700	R.	562.3		
2774	NaC ₆ H ₄ (NH ₂)SO ₃ .2H ₂ O—Sulfanilate	231.147	R.			696
2775	NaC ₁₀ H ₈ NO ₃ S.4H ₂ O-1, 4-Naphthyl-					
	amine sulfonate	317.193	M.			747
2776	Na ₂ O.SiO ₂	122.054		1088		1040
2777	Na ₂ O.2SiO ₂	182.114	R.	874		571
2778	Na ₂ SiF ₆	188.054	н.	0.2	2.679	202
2779	Na ₂ O.3TiO ₂	301.694	M.		3.518	202
2780	Na ₂ O.ZrO ₂ .6SiO ₂ .3H ₂ O—Elpidite	599.400	R.		2.58	689
2781	Na ₂ O.Pb(OH)Cl.SO ₃ —Caracolite	401.725	R.		4.5	937
2782	TiNa(dl-C ₄ H ₄ O ₆).2H ₂ O	411.459	Tri.	İ	3.289	30.
2783	TlNa(meso-C ₄ H ₄ O ₆).2.5H ₂ O	420.466	Tri.		3.120	
2784	TiNa(d-C ₄ H ₄ O ₆).4H ₂ O	447.489	R.		2.580	
2785	NaTl ₃ (d-C ₄ H ₄ O ₆) ₂	932.259	R.	1	4.145	
2786	, , , , , , , , , , , , , , , , , , , ,					İ
	ZnNaPO.	183.401	R.		3.3	
2787	Zn(Na ₂ PO ₄) ₂	347.416	C.		2.8	
2788	Na ₂ SO ₄ .CdSO ₄	350.534	1 1	551	0.004	
2789	Na ₂ SO ₄ .CuSO ₄ .2H ₂ O—Kroehnkite	337.725	M.	1	2.064	715
2790	Na ₂ SO ₄ .Cu(OH) ₂ .3CuSO ₄ .3H ₂ O—					
	Natrochalcite	772.596	М.	d. 350	2.33	840
2791	NaCu(CN) ₂	138.583	1	d. 100	1.013	
2792	Na ₂ IrCl ₆ .12H ₂ O	691.024	1	50		
2793	Na ₂ PtCl ₄ .4H ₂ O	455.118	1	100 d.		
2794	Na ₂ PtCl ₆ .6H ₂ O	562 . 064	Tri.		2.50	
2795	Na ₂ PtBr ₆ .6H ₂ O	828.812	Tri.		3.323	
2796	Na ₂ PtI ₆ .6H ₂ O	1110.91	M. ?		3.707	
2798	Na ₂ Ru(NO ₂) ₅ .2H ₂ O	413.765	M.	1		741
2799	Na ₂ MnP ₂ O ₇	274.972			2.9	
2800	Na ₂ O.2MnO.P ₂ O ₅ —Natrophilite	345.902	R.		3.41	871
2801	Na ₄ Mn(PO ₄) ₂	336.966			2.7	
2802	Na ₂ O.3Fe ₂ O ₂ .4SO ₂ .6H ₂ O—Natrojarosite	969.386	R.		${\bf 3.2}$	966
2803	2Na ₂ O.Fe ₂ O ₃ .4SO ₃ .7H ₂ O—Sideronatrite	684.042	R.		${f 2} . {f 2}$	725
2804	3Na ₂ SO ₄ .Fe ₂ (SO ₄) ₃ .6H ₂ O—Ferrinatrite	934.144	Trig.		2.55	271
2805	Na ₆ Fe ₂ (C ₂ O ₄) ₆ .10H ₂ O	957.816	M.		1.97317.6	1
2806	Na ₂ Fe(CN) ₅ NO.2H ₂ O	297.913	R.	1	1.72	
2807	Na ₄ Fe(CN) _{6.12} H ₂ O	520.061	М.	i	1.458	616
2808	Na ₂ O.Fe ₂ O ₃ .4SiO ₂ —Aegirite	461.914	М.	i	3.5	956
2809	Na ₂ O.Fe ₂ O ₃ .FeO.5SiO ₂ —Riebeckite	593.814	М.		3.44	887
2810	Na ₂ O.2FeO.Fe ₂ O ₃ .6SiO ₂ —Crocidolite	725.714	М.		3.2	893
2811	Na ₂ CrO ₄	162.004	R.	392	2.723	
2812	Na ₂ CrO ₄ .4H ₂ O	234.066	M.	d. 64.8	2.720	1
2813	Na ₂ CrO ₄ .6H ₂ O	270.096	Tri.	d. 25.9		
2814	Na ₂ CrO ₄ .10H ₂ O.	342.158	M.	u. 20 .0	1.483	
2815	Na ₂ Cr ₂ O ₇ .2H ₂ O	298.045	M.	320	2.5213	892
2816	Na ₂ O.2CrO ₂ .I ₂ O ₄ .2H ₂ O	631.909	***.	320	3.21	002
2817	Na ₂ Cr ₂ S ₄	278.274	1 11	ا د	2.5515	
2818	NH ₄ NaCrO ₄ .2H ₂ O	193.077	H. R.	d. d.	1.84215	
2819	NaCrP ₂ O ₇		R.	a.	3	
2820	l - '	249.055	R.	007		
	Na ₂ MoO ₄	205.994		687	1. 2.590_4^{1026}	1
2821	Na ₂ Mo ₂ O ₇	349.994	1	612		1
2822	3Na ₂ O.7MoO ₂ .22H ₂ O	1590.32	M.	ca. 700		-
2823	3Na ₂ O.5MoO ₂ .P ₂ O ₅ .14H ₂ O	1300.25	R.		4 480	818
2824	Na ₂ WO ₄	293.994	R.	698	4.179	
0005	N W 0 0 0 0 0		_	1	l. 3.6134996.6	
2825	Na ₂ WO ₄ .2H ₂ O	330 . 025	R.		3.245	
2826	Na ₂ W ₂ O ₆	509.994		1	7.28	
2827	Na ₂ W ₃ O ₉	741.994	1	d.	6.617	
2828	Na ₂ W ₄ O ₁₂	973.994	1		7.1954	
2829	Na ₂ O.4WO ₂ .10H ₂ O	1170.15	C.	706.6	3.84713	1
2830	Na ₂ W ₅ O ₁₅	1205.99			7.28317	-1
A Al As Au 2 55 13 88		Co Cr Cs Cu	Dy Er Eu F Fe 67 69 64 8 48	Ga Gd Go Gl H		

lndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
2831	4Na ₂ O.10WO ₃ .23H ₂ O	2982.33	M.	680.8	4.3	
2832	5Na ₂ O.12WO ₃ .28H ₂ O	3598.40	Tri.	705.8		į
2833	9Na ₂ O.22WO ₃ .51H ₂ O	6580.73		683.3		
2834	Na.O.3UO	920.504	R. ?		6.912	
2835	NaU(C ₂ H ₂ O ₂) ₃	438.236	Tet.		2.56	109.1
2836	NaVO ₁	l	M. ?	562	2.79	
2837	Na ₂ O.V ₂ O ₄ .5V ₂ O ₄	1137.51	R. ?	ca. 800 d.	2.,0	
2838	Na ₃ VO ₄	183.951	1	ca. 866		
			С. Н.	(4. 800		197 96
2839	Na ₂ VO ₄ .10H ₂ O		1			127, 26
2840	Na ₅ VO ₄ .12H ₂ O		Trig.	05		245
2841	Na ₄ V ₂ O ₇	305.908	H.	654		100
2842	2Na ₂ VO ₄ .NaF.19H ₂ O		C.	1		123
2843	Na ₂ VSO ₃ .10H ₂ O	380.170	_	18	1.773	
2844	3Na ₂ O.V ₂ O ₅ .10WO ₃ .SiO ₂ .29H ₂ O	3270.41	C.		3.344	
2845	Na ₂ CbO ₂	187.094			4.19	i
2846	Na ₂ O.B ₂ O ₃	131.634		966		
2847	Na ₂ O.2B ₂ O ₃	201.274		741	l. 2.5 glass	45
					2.37	\triangle
2848	Na ₂ B ₄ O ₇ .10H ₂ O—Borax	381.428	M.	75	1.73	460
2849	Na ₂ O ₄ B ₂ O ₁	340.554		783		
2850	NaAlO ₂			1650		
2851	2NaF.AlF,—Chiolite	167.954	Tet.	1000	3.0	205
2852		209.950	M.	1000	2.90	427
2852	3NaF.AlF ₃ —Cryolyte	209.950	141.	1000	l. 2.10 ¹⁰⁸³	427
	N 0 11 0 100 1017 0 M	700 970	M m			404
2853	Na ₂ O.Al ₂ O ₃ .4SO ₃ .12H ₂ O—Tamarugite	700.359	M. Tri.		2.03	494
2854	Na ₂ O.Al ₂ O ₃ .4SO ₃ .22H ₂ O—Mendozite	880.513	M. ?		1.88	449
2855	Na ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O	916.544	C.	61	1.675	72
2856	Na ₂ O.3Al ₂ O ₃ .4SO ₃ .6H ₂ O—Natroalunite	796.106	Trig. C.		2.6	287
2857	Na ₂ O.Al ₂ O ₃ .P ₂ O ₅ .H ₂ O—Fremontite	323.977	M. ?		3.04	760
2858	Na ₂ O.2AlOF.As ₂ O ₅ —Durangite	396.834	M.	}	4.0	866
2859	Na ₂ O.Al ₂ O ₃ .2CO ₂ .2H ₂ O—Dawsonite	287.944	R.		2.4	653
2860	Na ₂ O.Al ₂ O ₂ .2SiO ₂ —Carnegieite	284.034	Tri. ?	1526	2.57	596
2861	Na ₂ O.Al ₂ O ₂ .2SiO ₂ —Nephelite	284.034	H.	Tr. 1248	2.67	266
2862	Na ₂ O.Al ₂ O ₃ .3SiO ₂ .2H ₂ O—Natrolite	380.125	R.		2.25	478
2863	Na ₂ O.Al ₂ O ₃ .4SiO ₂ —Jadeite	404.154	M.	1050	3.34	834
2864	_	440.185	C.	1030	2.25	229
	Na ₂ O.Al ₂ O ₃ .4SiO ₂ .2H ₂ O—Analcite	524.274	Tri.	1100	2.61	615
2865	Na ₂ O.Al ₂ O ₃ .6SiO ₂ —Albite			1100		248
2866	Na ₂ O.Al ₂ O ₃ .9SiO ₂ .2NaF—Leifite	788.448	H.		2.57	
2867	Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2H ₂ O—Paragonite	764.145	M.		2.8	750
2868	2Na ₂ O.Al ₂ O ₃ .6SiO ₂ .H ₂ O—Ussingite	604.283	Tri.		2.50	565
2869	2Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .7H ₂ O—					
	Hydronephelite	916.216	H.		2.3	236
2870	3Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2NaCl—Sodalite	969.012	C.		2.2	99
2871	3Na ₂ O.3Al ₂ O ₃ .18SiO ₂ .2NaCl—Marialite	1689.73	Tet.		2.56	261
2872	3Na ₂ O ₃ .3Al ₂ O ₃ .6SiO ₂ .2Na ₂ S—Lazurite	1008.22	C.		2.4	108
2873	5Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2SO ₃ —Noselite	1136.22	C.		2.3	105
2874	Na ₂ La(NO ₂) ₅ .H ₂ O	512.959	M.		2.634	
2875	Na ₂ Ce(NO ₂) ₆ .H ₂ O	514.299			2.654	- 1
2876	Na ₂ O.2BeO.P ₂ O ₅ —Beryllonite	254.082	R.		2.85	679
2877	Na ₂ O.2BeO.6SiO ₂ .H ₂ O—Epididymite	490.409	R.		3.55	700
	Na ₂ O.2BeO.6SiO ₂ .H ₂ O—Epididymite	490.409	M.		2.55	657
2878						657
2879	Na ₂ SO ₄ .MgSO ₄	262.444	R.	T. 71	2.729	000
2880	Na ₂ O.MgO.2SO ₂ .2.5H ₂ O—Loeweite	307.483	Trig.	Tr. 71	2.37	232
2881	Na ₂ O.MgO.2SO ₃ .4H ₂ O—Bloedite	334.506	M.		2.23	498
2882	3Na ₂ O.MgO.4SO ₃ —Vanthoffite	546.562	M. ?		2.69	497
2883	NaMgPO4	142.341			2.5	
2884	Na ₂ MgP ₂ O ₇	244.362	C. ?		2.2	,
2885	Na ₂ Mg(CO ₃) ₂	190.314	Tet.	1	2.72915	
2886	NaCl.Na ₂ CO ₃ .MgCO ₃ —Northrupite	248.769	C.		2.37716	118
2887	3Na ₂ O.2MgO.4CO ₂ .SO ₃ —Tychite	522.687	C.		2.52	113
2889	Na ₂ O.CaO.2SO ₃ —Glauberite	278.194	M.		2.83	625
2890	Na ₂ O.CaO.2SO ₃ —Glauberte Na ₂ O.CaO.2SO ₃ .4H ₂ O—Wattevillite	350.257	M.		1.81	446
	· ·	1	M.			140
2891	3Na ₂ O.3CaO.2P ₂ O ₅	638 .288	į IVI.	1	2.1	I .

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
2893	Na ₂ O.CaO.2CO ₂ .2H ₂ O—Pirssonite	242.095	R.	813	2.35	567
2894	Na ₂ O.CaO.2CO ₂ .5H ₂ O—Gaylussite	296.141	M.		1.94	580
2895	Na ₂ O.4CaO.6SiO ₂ .H ₂ O—Pectolite	664.650	M.		2.73	766
2896	Na ₂ O.2CaO.5B ₂ O ₃ .16H ₂ O—Ulexite	810.580	M.	d.	1.95	551
2897	NaF.CaF ₂ .AlF ₃ .H ₂ O—Pachnolite	222.042	M.	u.	2.98	429
2898	NaF.CaF ₂ .AlF ₃ .H ₂ O—Thomsenolite	222.042	M.		2.98	430
2899	Na ₂ O.CaO.2Al ₂ O ₃ .10SiO ₂ .20H ₂ O—					
2900	Faujasite	1282.81	C.		1.92	92
2901	Mesolite	1164.56	Tri.		2.27	555
2902	Pseudomesolite	1164.56	Tri.		2.22	531
	Haüynite		C.		2.4	106
2903	NaF.CaO.BeO.2SiO2—Leucophanite	243.207	R.		2.96	743
2904	NaF.2CaO.2BeO.3SiO ₂ —Meliphanite	384.357	Tet.		3.01	297
2905	NaCaMgAlSi ₄ O ₁₂ —Tuxtlite	418.587	M.		3.27	870
2906	Na ₂ SrSO ₇	277.679		280		
2907	$Na_2Sr(CO_3)_2$	253.614		750		
2908	Na ₄ SrCa(CO ₃) ₄ .	459.678		720		1
						1
2909 2910	$Na_2Ba(CO_3)_2$ $2Na_2O.BaO.2TiO_2.10SiO_2$ —	303.364		740		
	Leucosphenite	1037.76	M.		3.1	849
2911	Na ₄ BaCa(CO ₃) ₄	509.428		660		
2912	NaLi(dl-C ₄ H ₄ O ₆).2H ₂ O	213.998	M.			506
2913	3NaF.3LiF.2AlF ₃ —Cryolithionite	371.728	C.		2.78	
			C.			67
2914	K ₂ O	94.1900			2.32	
2915	K ₂ O ₄	142.190		>280		
2916	KH	40.1027		d.	0.80	
2917	кон	56.1027		Tr. 260 380	2.044 1. 1.87 ³³⁰	
2918	KF	58.0950		880	2.48 1. 1.869 ⁹¹⁸	
2919	KF.2HF.	98.1104		105		
2920	KF.3HF	118.118		100		
2921	KCl—Sylvite	74.5530	C.	200	1.988	103
2922	KClO ₃	122.553	М.	368.4	2.32	
						579
2923	KClO ₄	138.553	R.	d. 400	2.52	
2924	KBr	119.011		730	2.75	134
2925	KBrO ₃	167.011	Trig.	370 d.	$3.27^{17.5}$	
2926	KI	166.027	C.	773	3.123	150
2927	KI ₃	419.891	M.	45	3.498	
2928	KIO ₃	214.027	M.	560	3.89	
2929	KIO ₄	230.027	Tet.	582	3.618	
	K ₂ H ₃ IO ₆ .3H ₂ O.		1	362	3.018	- 11
2930		358.191	Tri.			541
2931	KICl ₂	236.943	M.	60		
2932	KIBr ₂	325.859	R.	60		
2933	K₂S	110.255		471 Tr. 146.4	1.805	
2934	K ₂ S.5H ₂ O	200.332		60		
2935	K_2S_3	174.385		252.0		
2936	K_2S_4	206.450		>145		
2937	K_2S_{δ}	238.515		206.0		
2938	K ₂ SO ₄ —Arcanite	174.255	R.	Tr. 588 1067	2.662	519
2939	K ₂ S ₂ O ₃	190.320	- C.	d. 400		
2940	K ₂ S ₂ O ₃ .0.33H ₂ O	196.325	M.	200	2.23	
						015
2941	$K_2S_2O_6$	238.320	Trig.		2.278	215
2942	$K_2S_2O_7$	254.320		>300	2.277	M The second
2943	$K_2S_2O_8$	270.320	Tri.			458
2944	K ₂ S ₃ O ₆	270.385	R.		2.304	472
2945	K ₂ S ₄ O ₆ .	302.450	M.		2.296	
2946	K ₂ S ₆ O ₆ .1.5H ₂ O	361.538			2.112	
Al As Au 55 13 33		Co Cr Cs Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Lu 36 83 58 81 72

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind
2947	KSH	72.1677	5,300000	455		
2948	KHSO ₄ —Misenite	136.168	R. M.	210	2.35	
2949	KHS ₂ O ₇	216.233		168		
2950	K ₂ SO ₄ .KHSO ₄	310.423	М.		2.5918	508
2951	4K ₂ SO ₄ .3H ₂ SO ₄	991.261		d. <25	2.27718	
2952	KSO ₂ F	138.160	ł	311		
2953	KI.4SO:	422.287	9	0.26		į
2954	K ₂ Se	157.390	10 (2.851	
2955	K ₂ SeO ₄	221.390	R.		3.066	646
2956	K ₂ SeSO ₇	301.455	1 10	120		
2957	K ₂ H ₂ TeI ₂ O ₁₀ .2H ₂ O	657.600	Trig.			397
2958	KNO ₂	85.1030		297	1.915	
2959	KNO ₃ —Niter	101.103	R. Trig.	Tr. 129 R. to Trig.	2.1110.6	556
				333		
2960	KNH ₂	55.1184		338		
2961	KNO.2HNO.	227.134		22		
2962	KBr.4NH.	187.135		45		
2963	KNO ₃ .KHSO ₄	237.271	į		2.38	
2964	5K ₂ O.(NH ₄) ₂ O.6SO ₄ —Taylorite	1003.42	İ		2.00	440
2965	KPO.	118.119		Tr. 450	2.25814.5	110
	O3	210.115		810	1. 2.068900	1
2966	K ₂ PO ₄	212.309		1340	1. 2.000	
2967	K ₄ P ₂ O ₇	330.428		Tr. 278	2.33	
2507	K4F2U7	000.420	ł	1090	2.33	
2968	KH ₂ PO ₄	196 194	Tot	1 1	0.220	944
	1	136.134	Tet.	96	2.338	244
2969	K ₂ H ₂ P ₂ O ₆ .2H ₂ O	274.284	M.	d.		624
2970	K ₂ H ₂ P ₂ O ₄ .3H ₂ O	292.300	R.	d.	0.00=	483
2971	KH ₂ AsO ₄	180.070	Tet.	288	2.867	278
2972	5K ₂ O.As ₂ O ₅ .8SO ₃ .6H ₂ O	1449.48			2.289	
2973	KSb	160.865		605		1
2974	K ₃ Sb	239.055		812		ì
2975	K ₂ CO ₃	138.190		891	2.29	
2976	(KCO) ₂	134 . 190		78		
2977	K ₂ C ₂ O ₄ .H ₂ O	184.205	M.		2.13	486
2978	K ₂ O.2CO ₂ .H ₂ O—Kalicinite	200.205	M .	d. <200	2.17	476
2979	2K ₂ CO ₃ .3H ₂ O	330.426	M.		2.043	
2980	KCHO ₂	84.1027		167.5	1.91	
2981	KHC ₂ O ₄	128.103	M.		2.0	655
2982	KHC ₂ O ₄ ,H ₂ O	146.118	ļ		2.044	
2983	KC ₂ H ₃ O ₂	98.1181		292	1.8	
2984	KC4H4O4—Acid succinate	156.134	М.	242 d.	1.767	
2985	KC ₄ H ₅ O ₄ .2H ₂ O—Acid succinate	192.164	R.		1.616	617
2986	$ KH(d-C_4H_4O_6)$	188.134	R.		1.956	
2987	$KH(dl-C_4H_4O_6)$	188.134	M.		1.954	
2988	KH(C ₂ H ₂ O ₂) ₂	158.149		142		
2989	KC ₆ H ₇ O ₇ —Citrate	230.149	Tri.		1.906	
2990	KC ₂ H ₂ O ₂ .2C ₂ H ₄ O ₂	218.180		112	1.47	
2991	KHC ₈ H ₄ O ₆ —Acid phthalate	204.134	R.		1.636	
2992	KH(C ₄ H ₅ O ₄) ₂ —Disuccinate	274.180	M.	162	1.56	
2993	KC ₂ H ₇ O ₄ .2H ₂ O—Acetylsalicylate	254.180		65		
2994	KC18H26O2-Oleate	320.349	•			1037
2995	K ₂ C ₄ H ₄ O ₄ .3H ₂ O—Succinate	248.267	R.		1.564	
2996	$K_2(d, L-C_4H_4O_6)$	226.221	M.		1.984	
2997	$K_2(d-C_4H_4O_4).0.5H_2O$	235.229	M.		1.98	610
2998	2K ₂ C ₂ O ₄ .H ₂ C ₂ O ₄ .2H ₂ O—Tetraoxalate	458.426	R.		1.21322	592
2999	KH(CCl ₂ CO ₂).	364.851	Tet.		2.00548	
3000	KC ₂ H ₄ O ₄ S—Ethyl sulfate	164.199	M.		1.843	
3001	KC ₂ H ₂ O ₄ S—p-Phenolsulfonate	212.199	R.	>260	1.87	770
3002	KC ₆ H ₆ O ₄ S.2H ₂ O—o-Phenolsulfonate	248.229	R.	- 200	1.734	697
3003	KC ₄ H ₄ O ₇ S ₂ .H ₂ O—2, 4-Phenoldisulfonate.	309.271	R.		1.104	768
3004	CH ₂ (SO ₂ K) ₂ —Methane disulfonate	252.335	M.		2.376	645
3005	K ₂ C ₁₀ H ₆ O ₂ S ₂ .2H ₂ O—Naphthalene 1, 5-	202.000	141.		2.010	0.40
5555	disulfonate	226 207	M.		1 707	ogn
	Ma Nb Nd Ni O Oa P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80	336.397 Rb Rh Rn 84 40 39		Sc Se Si Sn Sr Ta Tb 56 9 18 22 78 52 66	1.797	859

		Mol. wt.	system	M. P.	d_4^{20}	finding No
3006	KCN	65.1030		634.5	1.5216	
3007	KCNO	81.1030			2.048	ļ
3008	KNH ₄ (d-C ₄ H ₄ O ₆).0.5H ₂ O	214.172			1.700	
3009	KC ₆ H ₂ N ₄ O ₆ —Acid uroxasate					1038
3010	KC ₆ H ₂ O ₇ N ₃ —Picrate	267.134	R.		1.852	982
3011	KCNS			173.2	1.886	
3012	K(SbO)(d-C ₄ H ₄ O ₆).0.5H ₂ O—T a r t a r					ļ
_	emetic		R.		2.607	810
3013	K ₂ O.SiO ₂			976		
3014	K ₂ O.2SiO ₂		R. ?	1041		532
3015	K ₂ O.4SiO ₂ .H ₂ O	1	R.	d. 400	2.417	634
3016	K₂SiF ₆ —Hieratite	1	C.	000	2.665	İ
3017	K ₂ Ti ₂ O ₄		M.	980		1007.0
3017.5	K ₂ ZrF ₆		C.			1037.2
3017.6	K ₃ ZrF ₇				9 107	68.2
3 018 3 019	$K_2Sn(OH)_6$	1	Trig.		3.197 2.71	147
3020	K ₂ SnBr ₆		0.		3.783	147
3020 3021	K ₂ SnS ₂ .3H ₂ O				3.783 1.847 ¹⁸	
3021	KPb ₂ Cl ₅	1	R.	440	1.02/4	
3022	K ₂ PbCl ₆		C.	d. 190		
3024	KC ₂ H ₂ O ₂ .PbI(C ₂ H ₃ O ₂)	1	0.	208.5]
3025	KGa(SO ₄) ₂ .12H ₂ O	1	C.	208.0	1.895	86
3026	K ₂ InCl ₆ .2H ₂ O.	480.864	Tet.		2.483	8
3027	K ₂ InBr ₆ .2H ₂ O		Tet.		3.140	İ
3028	K ₁ TlCl ₆ .2H ₂ O		Tet.		2.859	ŀ
3029	K ₂ SO ₄ .ZnSO ₄ .6H ₂ O	443.792	M.	d. 121	2.245	482
3030	K ₂ Zn(SeO ₄) ₂ .2H ₂ O	466.001	Tri.		3.21	192
3031	$K_2Zn(SeO_4)_2.6H_2O$		M.	1	2.554	588
3032	K ₂ Zn(CN) ₄	247.602	C.	d. 150		70
3033	4KCl.CdCl ₂	481.538	Trig.		2.5	293
3034	K ₂ Cd(NO ₂) ₄		R.			691
3035	CdKPO4	246.529	R.		3.8	
3036	KCl.2HgCl ₂ .2H ₂ O	653.636	R.		4.11_{15}^{15}	İ
3037	2KCl.HgCl ₂ .H ₂ O	438.647	R.		3.58_{15}^{15}	877
3038	KBr.HgBr ₂	479.453			4.40	
3039	KBr.HgBr ₂ .H ₂ O	497.468			3.865	
304 0	KI.HgI ₂ .H ₂ O			104		
3041	2KCN.Hg(CN) ₂		Tet.		2.44721.3	
3042	2KCl.CuCl ₂ .2H ₂ O		Tet.		2.41	312
3043	K ₂ O.CuO.2SO ₃ .6H ₂ O—Cyanochroite		M.		2.22	491
3045	K ₂ SeO ₄ ,CuSeO ₄ .6H ₂ O		M.		2.527	603
3046	K ₂ CO ₃ .CuCO ₃	261.760	m.		1.356	
3047	K ₃ Cu(CN) ₄		Trig.	107		121
304 8	KNO ₃ .AgNO ₃		M.	125	3.219	
3049 3050	2KNO ₂ .AgNO ₂ .Bi(NO ₂) ₃ KAgCO ₃		j l	d.	3.33	1
3050 3051	KAuCl ₄		M.	a. 357	3.769	
3052	KAUCI4. K4Os(CN)6.3H2O		M.	301		769
3052 3053	K ₂ IrCl ₆		C.	d.	3.546	109
3054	K ₂ SO ₄ .Ir ₂ (SO ₄) ₃ .24H ₂ O.		C.	103	U . UTU	1
3055	K ₂ Ir(C ₂ O ₄) ₃ .4H ₂ O		Tri.	200	2.51019	1
3056	$K_3IrCl_2(C_2O_4)_2.H_2O$ —Chloroxalate		M.		2.01019	736
3057	K ₂ IrCl ₂ (NO ₂) ₂ C ₂ O ₄ .2H ₂ O—Dichloro dini-					'00
	tro oxalate		R.			716
3058	K ₂ PtCl ₄		Tet.		3.30	1
3059	K ₂ PtCl ₆		C.	d. 250	3.499	1
3060	K ₂ PtBr ₆		C.	>400 d.	4.66	
3061	K ₂ PtI ₆		C.		5.18	- }
3062	K ₂ S.3PtS.PtS ₂	1051.50		d.	6.4415	1
3063	[Pt(NH ₃)Cl ₃]K.H ₂ O	l .	R.			709
3064	$K_2Pt(NO_2)_2Br_2.H_2O$	543.283	Tri.			858
3065	K ₂ Pt(NO ₂) ₂ I ₂ .2H ₂ O		Tet.			363
Ag Al As Au 32 55 13 33	B Ba Be Bi Br C Ca Cb Cd Ce C 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li La 36 83 58 81 72

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
3066	K ₂ Pt(C ₂ O ₄) ₂ .2H ₂ O	485.451	M.		3.03	
3067	K₂Pt(CN)₄	377.452	R.		2.45	
3068	$K_2Pt(NO_2)_2C_2O_4.H_2O$	471.451	M.			817
3069	K ₂ Pt(SCN) ₆	621.858	H.		3.70^{19}	
3070	K ₂ Pt(SCN) ₆ .2H ₂ O	657.889	M. R.		2.342^{18}	
3071	$K_2Pt(SeCN)_6$	904.668	R.	d. 80	$3.378^{12.5}$	
3072	KRuO ₄ .H ₂ O	222.810	Tet.	d. 400 ^{vac.}		
3073	K ₄ Ru(CN) ₆ .3H ₂ O	468.174	M.			722
3074	$K_3Rh(CN)_6$	376.243	М.			669
3075	K₂PdCl₄	326.722			2.67	
3076	K₂PdCl ₆	397.638	C.		2.738	
3077	KMnO ₄	158.025	R.	d. <240	2.703	291
3078	K ₂ MnCl ₄ .2H ₂ O	310.983	Tri.		2.221	
3079	K ₄ MnCl ₆ —Chloromanganokalite	424.058	Trig.		2.31	ļ
3080	K ₂ SO ₄ .MnSeO ₄ .2H ₂ O	408.416	Tri.		3.07	
3081	K₃Mn(CN) ₆	328.695	M.			1055
3082	$K_2Fe(SO_4)_2$	326.160		1	2.177	
3083	$K_2Fe(SO_4)_2.6H_2O$	434.252	M.		2.169	479
3084	$K_2Fe_2(SO_4)_4.24H_2O$	1006.50	C.	33	1.831	97
3085	K ₂ O.3Fe ₂ O ₃ .4SO ₃ .6H ₂ O—Jarosite	1001.58	R.		3.2	370
3086	$K_6Fe_2(CrO_4)_4.6H_2O$		М.		$1.448^{17.5}$	678
3087	K ₂ Fe(CN) ₆	329.173	M.	1	1.89417	699
3088	$K_{\bullet}Fe(CN)_{\bullet}$	368.268			1.898^{17}	
3089	K ₄ Fe(CN) ₆ .3H ₂ O	422.314	M.			714
3090	2KF.CoF ₂	213.160	M.	5	3.22	
3091	K ₂ SO ₄ .CoSO ₄ .6H ₂ O	437.382	M.		2.218	492
3092	$K_2SeO_4.CoSeO_4.6H_2O$	531.652	M.		2.514	589
3093	$[C_0(NH_3)_2(NO_2)_4]K$	316.159	R.		2.076	
3094	$K_2C_0(C_3H_2O_4)_2$ —Malonate	341.191			2.234	ļ
3095	K ₂ C ₀ (CN) ₆	332.303	M.		1.906	
3096	K ₂ SO ₄ .NiSO ₄ .6H ₂ O	437.102	M.	d. <100	2.237	514
3097	K ₂ Ni(SeO ₄) ₂ .6H ₂ O	531.372	M.	d. <100	2.539	608
3098	K ₂ Ni(COS) ₄	377.140	M.		$2.132^{18.4}_{4}$	125
3099	2KCN.Ni(CN) ₂ .H ₂ O	258.927	M.		1.87114.5	
3100	K ₂ O.CrO ₂ —Tarapacaite	194.200	R.	975	2.732^{18}	927
3101	K ₂ Cr ₂ O ₇	294.210	Tri.	398	2.69	924
3102	K ₂ Cr ₃ O ₁₀	394 . 220	M.	250	2.648	
3103	K ₂ Cr ₄ O ₁₂	494.230	M.	215	2.649	1
3104	KCrClO ₂	174.563	M.	d.	2.49739	1
3105	K ₂ O.2CrO ₃ .I ₂ O ₆	628.074			3.66	
3106	K ₂ CrSO ₇	274.265		350		
3107	K ₂ SO ₄ .Cr ₂ (SO ₄) ₃ .24H ₂ O	998 . 8 40	C.		1.83	95
3108	K ₂ CrSeO ₇	321 . 400		120		1
3109	3K ₂ CrO ₄ .2(NH ₄) ₂ CrO ₄	886.775			2.403^{15}	
3110	K ₂ O.Cr ₂ O ₃ .2P ₂ O ₃	530.306	M.		3.5^{20}	
3111	K ₄ Cr(CN) ₆	325.343	M.	150 d.	1.71	607
3112	K ₂ Cr(SCN) ₆ .4H ₂ O	589 . 795	R.		1.71116	
3113	K ₂ Cr ₂ O ₇ .HgCl ₂	565 . 736	R.	[3.531^{11}	
3114	K ₂ Cr ₂ O ₇ .Hg(CN) ₂ .2H ₂ O	582 . 867	R.			1077
3115	K ₂ MoO ₄	238.190	1	919	l. 2.342464	
3116	K ₂ WO ₄	326.190	M.	921	3.120_4^{991}	
				Tr. 388		
3117	K ₂ W ₂ O ₇	558.190	1	555		
3118	K ₂ O.8WO ₂	1950.19			6.53	
3119	$K_2SeO_4.Cr_2(SeO_4)_3.24H_2O$	1187.38			$2.078^{17.5}$	
3120	K ₄ U(C ₂ O ₄) ₄ .5H ₂ O	772.627	M.		2.563	1
3121	KUO ₂ (C ₂ H ₃ O ₂) ₃ .H ₂ O	504.350	Tet.		2.396	
3122	KV(SO ₄) ₂ .12H ₂ O	498.370			1.782	
3123	K ₄ V ₂ S ₆ O.3H ₂ O	520 736			2.144	
3124	K ₂ O.2UO ₃ .V ₂ O ₃ .8H ₂ O—Carnotite	960.573	H. R.			988
3125	3K ₂ O.SiO ₂ .V ₂ O ₅ .10WO ₂ .22H ₂ O	3240.89	C.		3.664	
3126	7K ₂ O.2SiO ₂ .3V ₂ O ₄ .18WO ₁ .42H ₂ O	6257.86	M. Tri.		3.537	
3127	NH ₄ K ₅ O ₈ .SiO ₂ .V ₂ O ₅ .10WO ₂ .23H ₂ O	3237.85			3.74	
***	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80			Se Se Si Sn Sr Ta Tb 6 9 18 22 78 52 66		W Y Yb Zn Z 48 57 71 28 2

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind.
3128	2KF.TaF _s .	392.690	R.		4.56	
3129	K ₂ O.B ₂ O ₃	163.830	M.	947		
3130	KBF4	125.915	C. R.	500 d.	2.50	
3131	KBO ₂ .KPO ₃	200.034		872		İ
3132	3KF.AIF	258.245		1035 Tr. 300		
3133	K ₂ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O—Kalinite	948.740	М. С.	1r. 300	1.75	77, 442
3134	K ₂ O.3Al ₂ O ₃ .4SO ₃ .6H ₂ O—Alunite	828.302	Trig.		2.60	281
3135	KAl(SeO ₄) ₂ .12H ₂ O	568.640	C.		2.001	93
3136	K ₂ O.Al ₂ O ₃ .2SiO ₂ —Kaliophilite	316.230	H.	>1745	2.6	258
3137	K ₂ O.Al ₂ O ₃ .4SiO ₂ —Leucite	436.350		>1800	2.47	114
3138	K ₂ O.Al ₂ O ₃ .6SiO ₂ —Microcline	556.470	Tri.	1150	2.56	613
3139	K ₂ O.Al ₂ O ₃ .6SiO ₂ —Orthoclase	556.470	M.	1170 d.	2.56	606
3140	K ₂ O.3Al ₂ O ₃ .6SiO ₂ .2H ₂ O—Muscovite	796.341	M.	d.	2.9	731
3141	2Al ₂ O ₃ .3B ₂ O ₃ .K ₂ O—Rhodizite	506.950	C.		3.4	151
3142	K ₂ La(NO ₃) ₃ .1.5H ₂ O	554.163	R.	d. 60	2.54°_{4}	i
3143	K ₂ Ce(NO ₂) ₅ .2H ₂ O	564.511	R.	d. 180	•	
3143.5	K₂HfF₀	371.19	M.			1037.1
3143.6	K.HfF,	429.285	C.			68.1
3144	KMgF:	120.415			2.8	
3145	K ₂ MgF ₄	178.510			2.7	}
3146	KCl.MgCl ₂ .6H ₂ O—Carnallite	277.881	R.	167	1.60	467
3147	KI.MgI ₂ .6H ₂ O	552.303	1	101	2.547	10.
3148	K ₂ SO ₄ , MgSO ₄ , 4H ₂ O—Leonite	366.702	м.		2.25	493
3149	K ₂ O.MgO.2SO ₃ .6H ₂ O—Picromerite	402.732	M.	d. 72	2.15	451
3150			C.	u. 12	2.15 2.83	128
3151	K ₂ SO ₄ .2MgSO ₄ —Langbeinite	415.025	M.			553
3152	KCl. MgSO ₄ .3H ₂ O—Kainite	248.984			2.13	
	K ₂ Mg(SeO ₄) ₂ .6H ₂ O	497.002	M.		2.34	527
3153	KMgPO ₄	158.439	R.		2.6	· ·
3154	K ₂ Mg(P ₂ O ₆) ₂	576.654	M.	1 400	2.4	į.
3155	KHMg(CO ₃) ₂ .4H ₂ O	256.484	Tri.	d. 100	1.98	ľ
3156	K ₂ Mg(CrO ₄) ₂ .2H ₂ O	370.561	Tri.		2.6015	
3157	K ₂ O.4MgO.11B ₂ O ₃ .18H ₂ O—Heintzeite	1345.79	M.		2.1	611
3158	KCl.CaCl ₂ —Chlorocalcite	185.539	C.	754		591
3159	K ₂ O.CaO.2SO ₃ .H ₂ O—Syngenite	289.310	M.		2.60	581
3160	K ₂ CaP ₂ O ₇	292.308	H.		2.7	ļ
3161	K ₂ Ca(CO ₂) ₂	238.260	R.	790		
3162	K ₂ O.8CaO.16SiO ₂ .16H ₂ O—Apophyllite	1791.96	C.		2.35	259
3163	K ₂ CrO ₄ .CaCrO ₄ .2H ₂ O	386.311	Tri.		2.502	
3164	K ₂ O.4CaO.2Al ₂ O ₃ .24SiO ₂ .H ₂ O—Milarite	1981.77	H.		2.57	254
3165	K ₂ O.2CaO.MgO.4SO ₃ .2H ₂ O—Polyhalite.	602.941	R.		2.78	685
3166	K ₂ SO ₄ .4CaSO ₄ .MgSO ₄ .2H ₂ O—Krugite	875.211			2.801	ŀ
3167	KCl.2SrCl ₂	391.625		638		l l
3168	2KCl.SrCl ₂	307.642	R.	597		i
3169	K ₂ SrP ₂ O ₇	339.858	H.		2.9	l
3170	KSrCr(C ₂ O ₄) ₃ .6H ₂ O	550.817			2.15512.8	
3171	K ₂ Ba(CO ₃) ₂	335.560		800		j
3172	K ₄ BaCa(CO ₂) ₄	573.820		758		
3173	LiKSO4.	142.099	н.		2.393	218
3174	2KNO ₂ .LiNO ₂ .Bi(NO ₂) ₃	570.177			3.2145	
3175	LiKCO ₁	106.034		515	0.214	
3176	LiK(d-C ₄ H ₄ O ₆).H ₂ O	212.080	R.	010		601
3177	KLi(dl-C ₄ H ₄ O ₆).H ₂ O	212.080	M.		1.610	1075
3178	KLiPt(CN)4.3H ₂ O	399.342	R.	[1.010	798
3179	, , , -		M.			753
3180	K ₂ Li ₂ Fe(CN) ₆ .3H ₂ O	358.002			0.000	133
3181	KLiMoO ₄ .H ₂ O	224.049	R.	1000	2.696	027
	K ₃ Na(SO ₄) ₂ —Glaserite	332.412	Trig.	<1000	2.696	237
3182	KNaHAsO ₄ .7H ₂ O	328.168	1		1.884	
3183	KNa(dl-C ₄ H ₄ O ₆).3H ₂ O	264 . 169	M.		1.783	
3184	KNaC ₄ H ₄ O _{6.4} H ₂ O—Rochelle salt	282.184	R.		1.790	517
3185	KCl.11Na ₂ O.9SO ₃ .2CO ₂ —Hanksite	1565.07	Н.		2.56	222
3186	3KCl.NaCl.FeCl ₂ —Rinneite	408.870	Trig.		2.35	290
3187	$ K_3Na(CrO_4)_2$	372.302	Trig.		2.767	351
g Al As Au 2 55 13 83	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu	Dy Er Eu F Fe	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li L 36 83 58 81 7

Index No.	Formula	Mol. wt.	Crystal system	М. Р	d_4^{20}	Ref. ind
3188	5K ₂ W ₄ O ₁₂ .2Na ₄ W ₅ O ₁₅	7534.93			7.117	T
3189	(CaK ₂ Na ₂)O.Al ₂ O ₃ .6SiO ₂ .6H ₂ O—		1			• -
	Erionite		R.	1	2.0	435
3190	Rb ₂ O	186.880		d. 400	3.72	
3191	Rb ₂ O ₂ .	202.880	ļ	u. 100	3.65	
3192	Rb ₂ O ₂	218.880				
			ļ	00	3.53	
3193	Rb_2O_4	234.880	1	280	3.05°	
3194	RbH	86.4477		d. 300	2	
3195	RbOH	102.448		300	3.203^{11}	
3196	RbF	104.440		760	l. 2.88820	
3197	RbCl	120.898		715	2.76	104
				V.	l. 2.0884	
3198	RbClO ₂	168.898			3.19	- 1
3199	RbClO ₄	184.898	R.		2.9	
3200	RbBr	165.356	· C.	682	3.35	133
0200	TODI	100.000	J 0.	062	1. 2.795_4^{720}	100
9001	ni n	007 100	D	1.140	1. 2.1904	1
3201	RbBr ₃	325.188	R.	d. 140		
3202	RbBrO ₃	213.356	1	430	3.68	
3203	RbBrCl ₂	236 . 272	R.	d. 110		
3204	RbBr ₂ Cl	280.730	R.	76		
3205	RbI	212.372	C.	642	3.55	146
					l. 2.8734 25	
3206	RbI	466.236	R.	190		
3207	RbIO ₃ .	260.372	M. ?, C.	d.	4.3319.5	
3208				a.	3.91816	
	RbIO ₄	276.372	Tet.		3.918.	
3209	RbiCl ₂	283.288	R.	190		
3210	RbIBr ₂	372.204	R.	225		
3211	RbIBrCl	327 . 746	R.	205	,	
3212	Rb ₂ S	202.945			2.912	
3213	Rb ₂ S ₃	267.075		213		
3214	Rb ₂ S ₄	331.205		225	2.61815	
3215	Rb ₂ SO ₄	266.945	R.	106o	3.613	576
0210	1602004	200.510	1	Tr. 653	1. 2.529 ¹¹⁰⁰	0.0
3216	DL CO	001 010	17	11. 000	1. 2.0284	017
	$Rb_2S_2O_6$	331.010	H.			217
3217	Rb ₂ S ₂ O ₈	363.010	М.			502
3218	RbHSO ₄	182.513		1	2.892^{16}	
3219	RbI.4SO ₂	468.632		13.5		
3220	Rb ₂ SeO ₄	314.080	R.		3.90	673
3221	RbNO ₂	147.448	H.	Tr. 161.4 to C.	3.11	594
			C.	Tr. 219 to R.	l. 2.395400	
			R. Tri.	310	2.0004	
3222	RbNO.HNO.	210 464				ŧ
		210.464	Tet.	62		
3223	RbNO ₂ .2HNO ₃	273.479		45		ł
3224	Rb ₂ CO ₃	230.880		837		
3225	RbH ₂ (C ₂ O ₄) ₂ .2H ₂ O	300.494	Tri.		2.125^{18}	- 1
3226	Rb(dl-C ₄ H ₅ O ₆)	234.479	Tri.		2.282	
3227	Rb(meso-C ₄ H ₆ O ₆).0.5H ₂ O	243.486	Tri.		2.399	1
3228	RbHC ₈ H ₄ O ₄ —Phthalate	250.479	R.		1.933	
3229	$Rb_2(d-C_4H_4O_6)$	318.911	Trig.		2.692	1
3230	Rb ₂ (meso-C ₄ H ₄ O ₆).H ₂ O.	336.926	Tri.		2.584	569
					2.004	1
3231	Rb ₂ (meso-C ₄ H ₄ O ₆).2H ₂ O	354.942	M.			496
3232	Rb ₂ C ₆ H ₆ O ₇ —Citrate	360.926		212 d.		
3233	RbH(CCl ₃ CO ₂) ₂	411.196	М.		2.150^{18}	
3234	RbSCN	143.513		195		
3235	Rb ₂ SiF ₆	312.940			3.332	
3236	RbTi(SO ₄) ₂ .12H ₂ O	541.655	C.			199
3237	RbPbCl ₁	399.014	R.	440		
3238	RbPb ₂ Cl ₅	677.130	R.	423		1
				123	1 000	0=
3239	RbGa(SO ₄) ₂ .12H ₂ O	563.475	C.		1.962	87
3240	Rb ₂ InCl ₅ .H ₂ O	480.985	R.		3.087	
3241	Rb ₂ InBr ₅ .H ₂ O	703.275			3.409	
3242	RbIn(SO ₄) ₂ .12H ₂ O	608.555	C.	42	2.065	83
3243	Rb ₂ TlCl ₅ .H ₂ O	570.585			3.513	
Ma Mo N	Ma Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80		E	Se Se Si Sn Sr Ta Tb 7		V WYYbZn

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
3244	Rb ₂ TlBr ₆ .2H ₂ O	976.247			4.077	
3245	Rb ₂ Zn(SO ₄) ₂ .6H ₂ O	536.482	M.		2.591	499
3246	Rb ₂ Zn(SeO ₄) ₂ .6H ₂ O	630.752	M.		2.860	598
3247	Rb ₂ Cd(SO ₄) ₂ .6H ₂ O	583.512			2.695	485
3248	2RbCl.CuCl ₂ .2H ₂ O	412.313	1	į	2.895	100
3249	Rb ₂ Cu(SO ₄) ₂ .6H ₂ O	534.672	M.		2.57	510
		763.808	141.	į.	3.6716	310
3250	Rb ₂ AgBi(NO ₂) ₆	1373.71	C.	109	3.07	
3251	Rb ₂ SO ₄ .Ir ₂ (SO ₄) ₁ .24H ₂ O			109		100
3253	RbRh(SO ₄) ₂ .12H ₂ O	596.665	C.		0.005164	109
3254	RbMnO ₄	204.370		1	3.23510.4	
3255	Rb ₂ Mn(SO ₄) ₂ .6H ₂ O	526.032	M.		2.46	474
3256	RbFeCl ₃ .2H ₂ O	283.685			2.711	1
3257	Rb ₂ FeCl ₄ .2H ₂ O	404.583			2.850	1
3258	$Rb_2Fe(SO_4)_2.6H_2O$	526.942	M.		2.518	495
3259	$RbFe(SO_4)_2.12H_2O$	549.595	C.	į	1.92	98
3260	Rb ₂ FeSe ₂ O ₈ .6H ₂ O	621.212			2.819	1
3261	Rb ₂ SeO ₄ .Fe ₂ (SeO ₄) ₂ .24H ₂ O	1287.73	C.	45	2.13115	111
3262	Rb ₂ Co(SO ₄) ₂ .6H ₂ O	530.072	M.		2.567	515
3263	Rb ₂ Co(C ₂ H ₂ O ₄) ₂ .4H ₂ O—Malonate	505.942			2.131	
3264	Rb ₂ SO ₄ .NiSO ₄ .6H ₂ O	529.792	М.		2.586	523
3265	Rb ₂ SO ₄ .Cr ₂ (SO ₄) ₂ .24H ₂ O	1091.53	C.	107	1.946	96
3266	RbV(SO ₄) ₂ .12H ₂ O	544.715	~	10.	1.9154	50
	· · · · · · · · · · · · · · · · · · ·	397.280	1	985	1.810	ł
3267	Rh SO AL (SO) SAIL O			900	1 0070	78
3268	Rb ₂ SO ₄ .Al ₂ (SO ₄) ₂ .24H ₂ O	1041.43	C.		1.867°	/ 18
3269	Rb ₂ La (NO ₂) ₃ .4H ₂ O	691.892	M.	86	2.497	1
3270	Rb ₂ Ce(NO ₃) ₅ .4H ₂ O	693.232	M.	70	2.497	1
3271	$Rb_2Pr(NO_3)_5.4H_2O$	693.902	ł	63.5	2.500	
3272	Rb2Nd(NO2)5.4H2O	697.252		47	2.560	
3273	$Rb_2Mg(SO_4)_2.6H_2O$	495.422	M.		2.40	461
3274	$Rb_2Mg(SeO_4)_2.6H_2O$	589.692	M.		2.684	549
3275	Rb ₂ Mg(CrO ₄) ₂ .6H ₂ O	535.312	M.	j	2.466	805
3276	RbLi(d-C4H4O4).H2O	258.425	R.		2.281	671
3277	RbNa(meso-C4H4O4).2.5H2O	301.506	Tri.		2.20	
3278	Cs ₂ O	281.620			4.36	
3279	Cs ₂ O ₃	313.620		400	4.250	
3280	C ₈₂ O ₄	329.620		600	1.20	
3260	08204	323.020	1	515 (in O ₂)	2 400	
0001	l a rr	100 010		313 (III O2)	3.680	
3281	C ₈ H	133.818		m 000	2.7	- (
3282	CsOH	149.818		Tr. 223		1
				272.3	3.675	İ
3283	CsF	151.810		683	3.586_4^{750}	
			1		l. 2.549	į.
3284	CsCl	168.268	C.	646	3.97	144
					1. 2.732_4^{700}	ļ
3285	CsClO ₂	216.268	1		3.5719.5	l
3286	CsClO ₄	232.268			3.327	•
3287	CsBr	212.726	C.	636	4.44	152
0201	0821	212.720		000	1. 3.038 ₄ ⁷⁰⁰	102
3288	C ₈ Br ₂	372.558	R.	180	1. 0.0004	1
			R.		4 1010 6	
3289	CsBrO ₃	260.726		420	4.1019.5	
3290	CsBrCl ₂	283.642		205		
3291	CsBr ₂ Cl	328.100		191		
3292	CsI	259.742	C.	621	4.51	163
					l. 3.1144690	
3293	CsI ₃	513.606	R.	207.5		
3294	CsIO ₃	307.742	M.		4.85	1
3295	CsIO4	323.742	R.		4.259	
3296	CsICl,	330.658	R.	230	3.86	i
3297	CsIBr.	419.574		248	J.00	
3297 3298	CsI ₂ Br.	466.590	1	195.5		1
,						1
3299	CsIBrCl	375.116		235		1
3300	$C_{8_2}S_2$	329.750	1	460		1
3301	Cs ₂ S ₃	361.815		217		

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. ind finding N	
3302	Cs ₂ S ₄	393.880	i	160		i	
3303	C82S5	425.945		210	2.80616		
3304	C82S4	458.010	1	186			
3305	Cs ₂ SO ₄	361.685	R.	Tr. 660 to H.	4.243	687	
0000		0021000		1010	l. 3.034 ₄ 1040		
3306	CsHSO ₄	229.883	R.	d.	3.35216		
3307	Cs ₂ SeO ₄	408.820	R.			752	
3308	Cs ₂ (SeO ₄) ₂	552.020	R.		4.453		
3309	CsN ₁	174.834		315			
3310	CsNO ₃	194.818	H.	Tr. 161 to C.	3. 6 85		
0010		101.010		414	l. 2.7134500		
3311	CsNH ₂	148.833		260	2., 104		
3312	CsNO ₂ .HNO ₂	257.834	į	100			
3313	CsNO ₂ .2HNO ₂ .	320.849	ŀ	35		ļ	
	,	297.849	R.	30	2.178		
3314	CsHC ₈ H ₄ O ₄ —Phthalate						
3315	CsH(CCl ₃ CO ₂) ₂	458.566	M.		2.143		
3316	Cs ₂ SiF ₆	407.680			3.37217		
3317	CsGa(SO ₄) ₂ .12H ₂ O	610.845	C.		2.113	84	
33 18	Cs2InCl ₅ .H ₂ O	575.725			3.350	ì	
3319	Cs ₂ InBr ₅ .H ₂ O	798.015			3.776		
3320	CsIn(SO ₄) ₂ .12H ₂ O	65 5.9 25	C.		2.241	85	
3321	Cs ₂ TlCl ₄ .H ₂ O	665.325			3.879		
3322	Cs ₂ Tl ₂ Cl ₉	1126.35	H.			361	
3323	Cs ₂ Zn(SO ₄) ₂ .6H ₂ O	631.222	M.		2.875	552	
3324	Cs ₂ Zn(SeO ₄) ₂ .6H ₂ O	725.492	M.		3.115	640	
3325	Cs ₂ Cd(SO ₄) ₂ .6H ₂ O	678.252	M.		2.957	536	
3326	CsCd(CNS) ₂	419.439		213	2.00.		
3327	CsCl.HgCl ₂ .	439.794	C. R.	210		164	
3328	Cs ₂ HgI ₄	973.958	M.		4.806	104	
		1882.91	M.		5.14		
3329	Cs2Hg;Is						
3330	Cs.HgI	1233.70	R.		4.605		
3331	Cs ₂ Cu(SO ₄) ₂ .6H ₂ O	629.412	M.	1	2.858	559	
3332	2CsNO ₂ .AgNO ₂ .Bi(NO ₂) ₃	858.548			3.8815		
3333	CsSO ₄ .Ir ₂ (SO ₄) ₃ .24H ₂ O	1335.64	C.	110			
3334	$CsRh(SO_4)_2.12H_2O$	644.035	C.	111		112	
3335	CsMnO ₄	251.740			$3.597^{10.3}$		
3336	CsMn(SO ₄) ₂ .12H ₂ O	596.055	C.	1		200	
3337	$Cs_2Mn(SO_4)_2.6H_2O$	620.772	M.		2.740	524	
3338	CsFeCl ₂ .2H ₂ O	331.055			2.90717		
3339	Cs ₂ FeCl ₄ .2H ₂ O	499.323			3.275		
3340	CsFe(SO ₄) ₂ .12H ₂ O	596.965	C.		2.061	100	
3341	$Cs_2Fe(SO_4)_2.6H_2O$	621.682	M.		2.796	550	
3342	Cs ₂ FeSe ₂ O ₃ .6H ₂ O	715.952	M.		3.694		
3343	Cs ₂ SeO ₄ . Fe ₂ (SeO ₄) ₃ .24H ₂ O		C.	60	3.61815	116	
3344	Cs ₂ Co(SO ₄) ₂ .6H ₂ O	624.812	M.		2.844	566	
3345	$C_{82}C_0(C_2H_2O_4)_2.4H_2O$ —Malonate	600.682	1		2.682	333	
3346	Cs ₂ Ni(SO ₄) ₂ .6H ₂ O		М.		2.872	575	
3347	CsCr(SO ₄) ₂ .12H ₂ O	593.135	C.	116	2.043	94	
3348	CsV(SO ₄) ₂ .12H ₂ O	592.085	J	110	2.0334	""	
3349	3CsF.AlF ₂	539.390		823	2.000		
3350	Cs ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O	1136.17	C.	020	1.8670	80	
3351	2C ₈₂ O.2Al ₂ O ₃ .9SiO ₂ .H ₂ O—Pollucite	1325.64	C.		2.9	126	
3352	C ₈₂ La(NO ₂) ₆ .2H ₂ O		M.]	2.827		
3353	Cs ₂ Mg(SO ₄) ₂ .6H ₂ O		M.		2.676	488	
3354	$Cs_2Mg(SeO_4)_2.6H_2O$	684.432	M.	}	2.94	583	
3355	$Cs_2Mg(CrO_4)_2.6H_2O$		M.		2.747	821	
3356	$C_{8_2}Cu_2Sr(SCN)_7$	1019.69	Tet.		2.882	374	
3357	Cs ₂ Cu ₂ Ba(SCN) ₇		Tet.		2.92	365	
3358	Cs ₁ BaAg ₂ (SCN) ₇	1158.07	Tet.		3.026	360	
3359	CsLiCl ₂			356.5			

BOILING POINTS

	Boiling point under	1	Boiling point under	<u> </u>	Boiling point under	l,	Boiling point under
General	1 atm. (or mm of	General	1 atm. (or mm of	General	1 atm. (or mm of	General	1 atm. (or mm of
index No.	Hg indicated by	index No.	Hg indicated by	index No.	Hg indicated by	index No.	Hg indicated by
	superscript)	11002 110	superscript)	andex 110.	superscript)	Indux 110.	superscript)
1	100	89	414	204	- 95	294	d. <260
2	152.1	91	339	205	- 75	316	447
4	19.4	92	421	206	- 40	320	453
6	9.9731	95	-151.0	207	73.5	322	500 d.
7	3.8766	96	21.3	208	162	337	-192.0
8	82	97	- 89.5	209	180	338	s 78.5
9	- 85.0	98	3.5	210	107.23	339	6.3
13	1618	99	47	211	212	341	2230
17	- 67.0	101	42.5	213	- 8	845	-112.0
21	4050	102	- 33.35	214	172.9	346	- 15
23	135	103	113.5	215	106	347	53
26	- 35.54at.	104	118.5739.5	216	193	348	80
31	s. 110	105	37	217	s. 38.8 ⁷⁸⁴	349	- 15.2
34	97	109	86	218	137.6	350	- 65 ¹⁸⁰¹
35	ca. 97	111	56.5	219	ca. 165	351	- 80.2
	1		1: 4.10	200	0.1 0.70	0.50	
36	ca. 77 diss.	114	diss. 4013	222	s. 61.8 ⁷⁰⁸	352	57.57
	8. 10116at.	118	d. 210	223	490	353	139
37	ca. 116	120	8. ca. 140	224	514	356	213
38	- 10.0	125	- 56	226	407.5	357	15016
39	44.6	126	- 63.5	227	523	358	19015
40	s. 10	128	s. 105	228	515 .	360	137.0
41	- 59.6	129	<71	230	295	361	200
42	74.5		exp. 93	232	125	362	153
44	6040	130	- 5.5	233	ca. 118	363	ca. 300
46	290	131	5	235	205 s. d.	364	- 30
47	167	132	s. 520	237	150 d.	365	8
53	- 30	139	d. <100	238	95•0	` 366	33
54	- 52	140	exp. 240	250	12713	367	153
55	59	141	- 2	251	328.5	368	ca. 240
57	138	142	ca. 32	252	22413	371	2
58	78.8	143	s. 542	253	26218	372	66
59	69.1		235 vac.	254	25713	373	109
60	153766	148	8. 551	255	29113	374	046
62	151.5766		220 vac.	256	s. 150 vac.	376	80 .
63	540.18	149	d. 15	263	-55	377	104
64	6840	164	s. 135	264	63752	378	140.5
65	115 d.	165	357.3	265	- 53	379	290
66	s. 317	166	s. 120	266	122	381	220
67	- 41.2	170	490	268	221	382	113.5
68	- 42	172	d. 160	269	408	383	172
72	100	177	8. 140	271	565	384	235
	1	11	s. 140 s. 80 d.	271	707	385	192
73 74	s 39	181	1	274	ca. 300 d.	386	230.5
74 78	d. 288	186	d. > - 13 90***	282	- 17	380	255
76 77	176.4 227	191 192	s. ca. 180	284	149.5	388	8. 940 ²⁰
81	183	193	s. 347 (α)	285	390	389	9216.3
82	8. 450		600 (β)	286	220.2	390	96
84	- 1.8	195	- 87.4	287	92**	391	15018.3
87	- 35.5	197	57.5735	291	280	403	s. 2210 diss.
88	324	198	s. 2so d.	292	400.6	404	31

No.	B. P.	No.	В. Р.	No.	В. Р.	No.	В. Р.
406	27	488	114.1	716	430	1515	78.6
407	63.5	490	620	749	732	1534	973
408	107	491	202	752	650	1552	136.7
409	96.2	492	5030	753	624	1556	78 d.
410	90	493	6520	755	s. 1185	1575	43751
411	134752.9	494	6520	760	d. 280	1593	>1300
412	122	495	720	769	500	1597	176
413	115.5	496	340	770	d. 271	1610	d. 175
414	108	497	191 d.	779	1100	1619	3800
415	142	499	1230	797	46	1624	340
416	139.5	508	180	798	118	1646	35
417	132	513	78	799	160	1647	s. 270
418	153.7	514	146	800	220	1648	180
419	171	515	181	825	970	1649	268
420	172.5	517	>420	829	963	1658	170 d.
421	191	518	270 d.	832	713	1664	35 (in H ₂)
422	187	519	240	845	132	1672	19.5
423	205784	520	210	870	105	1673	187
425	114.3766	521	224	881	650	1674	275.6
426	122	522	170	882	383.7	1675	346.7
427	154	523	231	883	304	1676	266
428	153	528		893		1676	
429	227		1290		s. 345 322	1677	227.5
432	19520	529	950	894		1678	333
		530	exp. 105	896	310 d.	1679	327
435	100.5745.7	543	916		s. 140	1689	6000
436	125	548	954	898	354	1690	6000
437	130	600	8. 475	901	s. 580	1706	69 2at.
438	149764.3	619	110	915	d. 150		s. 56
439	141.5	621	130751	918	96	1714	118
440	154.5	622	5314	919	159	1724	4100
441	201.5739.4	623	152766	920	191	1747	111.2
442	10718	624	70.516	921	135∞	1749	480
443	230	625	64.514	922	> 306 d.	1752	148.5755
444	314.2	626	166769	939	1366	1753	127
449	284	627	7813	940	998	1755	127.19
450	136.4	628	8314	947	1345	1758	130
451	230	629	7013	951	1290	1767	3900
452	154	630	99.510	958	d. 400	1796	219
454	>360	631	10513	974	170 d.	1797	240.5
459	140	632	9613	1032	²⁴⁰ d.	1798	s. 400
460	138	633	108.216	1059	1550	1799	4300
461	4800	634	12313	1075	444 d.	1802	229 . 5
465	- 90	635	12413	1129	s. 265	1803	242
466	29	636	12114	1147	134	1804	320
467	110.5	637	144.518	1148	203	1805	5500
468	86.5	670	s. 610	1149	47.3	1810	87.5
469	72		725	1180	s. 240	1811	17
470	185.9	675	5000	1234	100.8188	1812	d. 200
471	375	678	535	1268	1190	1813	-101
472	163.5	679	217	1334	s. 1200 diss.	1814	12.5
480	416	693	139 diss.	1342	315	1815	90.6
481	5100	695	300	1397	102.8749	1817	210
485.5	- 52	696	806	1447	1049	1819	1230 ^{9.4}
486	705	700	815	1509	d. 52	1821	> 3500
			,		V=	,,	- 3000

No.	B. P.	No.	В. Р.	No.	В. Р.	No.	В. Р.
1823	95	2010	d. 10o	2500	1560	2921	1416
1824	65	2044	d. 100	2601*		2924	1380
1825	120	2105	5 90	2604	1670	2926	1330
1826	175	2112	188	2605	1353	2927	d. 225
1827	212	2113	245	2606	d. 270	2931	d. 215
1828	255	2114	270	2608	d. 410	2932	d. 180
1858	2210	2115	331	2610	1265	2936	d. 850
1864	182.7752	2116	330	2613	1190	2958	d. 350
	s. 177.8	2117	341	2625	d. > 170	2959	d. 400
1865	268	2118	23919	2668	1390	3196	1410
1866	d. 7	2131	1412	2670	1700	3197	1390
1869	382	2232	2850	2671	1413	3200	1340
1870	s. 1550 (in N ₂)	2234	450 diss.	2677	1390	3205	1300
1879	600 (in H ₂)	2236	> 1600	2680	1300	3283	1250
1893	130	2244	718	2769	1496	3284	1290
1894	194	2285	s. 898.6	2846	>1400	3287	1300
1895	315	2495	795 diss.	2917	1320	3292	1280
1953	4600	2499	1400	2918	1500		

^{*} Hüttig, 93, 141: 133; 24.

REFRACTIVE INDICES

A. LIQUIDS

Serial No.	Gen. index No.	Refractive index n_D	Serial No.	Gen. index No.	Refractive index n_D	Serial No.	Gen. index No.	Refractive index n _D	Serial No.	Gen. index No.	Refractive index n _D
1	436	1.83340.3	18	45	1.429	34	625	1.503522.6	50	513	1.5201
2	97	1.19310	19	1893	1.43212	35	627	1.506223.1	51	628	1.521818
3	9	1.256	20	62	1.43714	36	635	1.508122	52	58	1.52710
4	195	1.31717.5	21	111	1.44023.5	37	623	1.508221	53	918	1.532722.2
5	17	1.32510	22	59	1.444	38	636	1.5097	54	919	1.539923.2
6	102	1.32514.5	23	339	1.454	39	637	1.511821	55	2644	1.54825
7	95	1.330-90	24	341	1.46	40	633	1.512021.6	56	55	1.55714
8	1	1.333	25	210	1.46025.1	41	631	1.512725	57	1147	1.5645
9	426	1.368	26	1808	1.464	42	619	1.5128	58	287	1.60114
10	41	1.374	27	26	1.46612	43	621	1.513219	59	450	1.6110.5
11	1825	1.381	28	103	1.47022	44	515	1.5143	60	2472	1.618
12	109	1.39714.4	29	1894	1.4804.5	45	2847	1.515	61	57	1.66614
13	472	1.400	30	629	1.4926	46	624	1.515824.3	62	214	1.69724.4
14	1827	1.408	31	634	1.5005	47	207	1.51614	63	1317	1.700
15	38	1.410	32	626	1.502121.2	48	622	1.5174	64	63	1.736
16	2	1.41422	33	632	1.5023	49	630	1.517519.7	65	42	1.885
17	1828	1.421				1					l.F.

B. SOLIDS

I. Isotropic Group. m. = mean value

						,		7			
Serial	Gen.	Refractive index	Serial	Gen.	Refractive index	Serial	Gen.	Refractive index	Serial	Gen.	Refractive index
No.	index	n_D	No.	index	n_D	No.	index	n _D	No.	index	n_D
	No.		<u> </u>	No.			No.		1	No.	
66	2670	1.336	11	3107	1.4814	127	2839	1.5305	160	260	1.7550
67	2913	1.339	96	3265	1.4815		3150	1.5329	161	1911	1.780
68	398	1.370	97	3084	1.4817		2671	1.5442	162	562	1.782
	3143.6		98	3259	1.4823	130	1241	1.548	163	3292	1.7876
68.2	3017.6	1.408	99	2870	1.483	131	1451	1.55 (m.)	164	3327	1.792
69	344	1.41	100	3340	1.4839	132	1536	1.55 (m.)	165	1923	1.800
70	3032	1.4115	101	1613	1.4842	133	3200	1.5530	166	1928	1.801
70.1	2099.6	1.426	102	1369	1.4854	134	2924	1.5590	167	1921	1.811
70.2	478.5	1.433	103	2921	1.4903	135	2458	1.5667	168	2232	1.83
71	2235	1.4339	104	3197	1.493	136	1576	1.57	169	2282	1.83
72	2855	1.4388	105	2873	1.495	137	2531	1.5717	170	2364	1.838
73	2596	1.444	106	2902	1.496		2679	1.5943	171	1261	1.862?
74	2732	1.452	107	1910	1.4976	139	1187	1.6000	172	945	1.864 (m.)
75	1897	1.454	11	2872	1.50		2438	<1.6	173	939	1.93
76	2700	1.454	11	3253	1.5004	l .	2394	1.608	174	278	2.0
77	3133	1.4562	109.5	2835	1.501	142	1383	1.61	175	402	2.05
	3268	1.4566	110	743	1.5066	1	1576	1.61	176	1048	2.05
79	2760	1.457	11	3261	1.507010		3284	1.6418	177	1059	2.0710
80	3350	1.4587	112	3334	1.5077	145	132	1.642	178	280	2.087
81	1882	1.4594	113	2887	1.508	1	3205	1.6474	179	581	2.09?
82	344	1.46	114	3137	1.509	147	3019	1.6574	180	1258	2.16
83	3242	1.4638	11	1240	1.5103		2267	1.660 (m.)	181	1639	2.16
84	3317	1.4649	11	3343	1.511618	1	2401	1.67	182	668	2.20
85	3320	1.4652	11	2137	1.514		2926	1.6770	183	1123	2.20
86	3025	1.4653	11	2886	1.5144	1	3141	1.69	184	2333	2.20
87	3239	1.4658	119	2674	1.5151	152	3287	1.6984	185	1062	2.253
88	690	1.4664		2236	1.52	153	148	1.7031	186	951	2.346
89	680	1.4684	11	3047	1.522 (m.)		2225	1.705	187	756	2.3682
90	2740	1.4693	122	1633	1.5228		2392	1.710	188	936	2.705
91	2332	1.4736	!!	2842	1.5230		2222	1.723	100	300	2.100
92	2899	1.48	124	1422	1.5236		2415	1.735	188.1		2.89
93	3135	1.4801	11	3098	1.54 (m.)	I	2128	1.7364	188.2		2.89 3.56
94	3347	1.4810		3351	5.521		1145	1.7304 1.74 (m.)	189	552	
	0021	1.2010	120	0001	0.021	198	1140	1.74 (III.)	198	1 002	3.912

Miscellaneous

Serial No.	Gen. index No.	Refractive index n	Serial No.	Gen. index No.	Refractive index n	Serial No.	Gen. index No.	Refractive index n	Serial No.	Gen. index No.	Refractive index n
190	367	1.57916.6 (F)	193	232	1.563 ¹¹ (C)	196	1274	2.69 (Li)	199	3236	1.46 (red)
191	266	1.62114 (F)	194	2196	2.35 (Li)	197	1273	2.70 (Li)	200	3336	1.48 (red)
192	352	1.412 (C)	195	890	2.49 (Li)	198	1053	>2.72 (Li)	201	1528	2.18 (red)

II. Uniaxial Group

Serial No.	Gen. Index	Refrac	tive index	Serial No.	Gen. index	Refract	tive index
201141 2101	No.	ω	•		No. -	ω	· •
202	2778	1.300	1.296	247	2224	1.512	1.498
203	1	1.309	1.313	248	2866	1.518	1.522
204	2182	1.3439	1.3602	249	2422	1.522	1.513
205	2851	1.349	1.342	250	243	1.5246	1.4792
206	1323	1.3570	1.3742		1		1
200	1323	1.3970	1.3742	251	2336	1.527	1.539
207	1409	1.3638	1.3848	252	764	1.5291	1.5039
208	2130	1.378	1.390	253	2453	1.5296	1.5252
209	814	1.3824	1.3992	254	3164	1.532	1.529
210	1583	1.3910	1.4066	255	1358	1.533	1.575
2 11	1047	1.4092	1.4080	256	1912	1.534	1.514
212	2237	1.417	1.393	257	2439	1.5364	1.4866
213	2347	1.436	1.478	III	1		
	1 1			258	3136	1.537	1.533
214	2713	1.4458	1.4524	259	3162	1.537	1.535
215	2941	1.455	1.515	260	1892	1.539	1.511
216	2735	1.4567	1.4662	261	2871	1.539	1.537
217	3216	1.4574	1.5078	262	1551	1.5393	1.5125
218	3173	1.4715	1.4721	263	2839	1.5398	1.5475
2 19	2107	1.4720	1.4395	264	2200	1.540	1.510
220	2119	1.473	1.435	265	2207	1.542	1.516
221	2412	1.475	1.486	266	2861	1.542	1.538
222	3185	1.481	1.461	267	342	1.544	, , , ,
22 3				II II			1.553
	1731	1.481	1.493	268	2659	1.545	
224	1970	1.482	1.473	269	2250	1.5496	
225	1995	1.482	1.474	270	1359	1.5519	1.5575
226	2018	1.486	1.479	270.5	2099.5	1.557	1.543
227	2031	1.487	1.479	271	2804	1.558	1.613
22 8	340	1.487	1.484	272	2129	1.559	1.580
229	2864	1.487	1.486	273	2226	1.56	
230	2493	1.487	1.496	274	1902	1.560	1.580
231	2397	1.49	1.100	274.5	475.5	1.563	1.552
232	2880	1.490	1 471	075	9100	1 505	
232 233	2086		1.471	275	2199	1.565	
		1.490	1.480	276	2326	1.565	1.560
234	2054	1.490	1.481	277	2211	1.565	1.575
235	2072	1.490	1.482	278	2971	1.567	1.518
236	2869	1.490	1.502	279	2420	1.5690	1.6700
237	3181	1.4901	1.4996	280	1340	1.57	
23 8	1955	1.493	1.480	281	3134	1.572	1.592
239	2061	1.494	1.484	282	2357	1.575	1.57
240	2081	1.495	1.480	283	276	1.5766	1.5217
241	2403	1.496	1.491	284	2125	1.581	1.575
949	0420	1 4001	1 4770	907	1070	1 700	
242	2436	1.4991	1.4758	285	1379	1.582	1.645
243	2329	1.507	1.468	286	1872	1.583	1.602
244	2968	1.5095	1.4684	287	2856	1.585	
245	2840	1.5095	1.5232	288	2705	1.5874	1.3361
246	1547	1.5109	1.4873	289	2188	1.5885	1.5970

erial No.	Gen. index	Refract	ive index	Serial No.	Gen. index	Kefrac	tive index
enai 110.	No.	ω	e	Deritar 110.	No.	ω	é
290	3186	1.589	1.590	346	1994	1.717	1.817
291	3079	1.59		347	2100	1.719	1.733
292	1582	1.59	1.56	348	1951	1.721	1.816
	1 1			11			
293	3033	1.5906	1.5907	349	1259	1.723	1.681
294	2399	1.595	1.585	350	969	1.724	1.746
295	2417	1.597	1.560	351	3187	1.7278	1.7361
296	847	1.6038	1.6042	352	1025.1	1.730	1.810
297	2904	1.612	1.593	353	2621	1.735	1.435
298	1978	1.613	1.607	354	978	1.744	1.724
299	2314	1.6150	1.6360	355	1414	1.755	1.82
200	9202	1 017	1 650	250	2563	1 757	1 204
300	2393	1.617	1.652	356	1	1.757	1.804
301	1400	1.6198	1.5922	357	2594	1.760	1.577
302	2572	1.621	1.619	358	733	1.768	1.812
303	1737	1.623	1.625	359	1858	1.773	1.773
304	2309	1.625		360	3358	1.7761	1.6788
305	2489	1.629	1.639	361	3322	1.784	1.774
	1011	1.632	1.575	362	3065	1.7909	1.6527
306	1 1				1		1.0027
307	2430	1.633	1.639	363	2201	1.80	
30 8	2275	1.634	1.631	364	1699	1.80	1.72
309	2273	1.634	1.632	365	3357	1.8013	1.6882
310	2307	1.635	1.631	366	1089	1.8036	1.7983
311	556	1.635	1.653	367	2189	1.815	1.761
312	3042	1.636	1.615	368	1307	1.817	1.5973
			1.015	11	794		
313	1934	1.640		369	1 1	1.818	1.618
314	2490	1.64		370	3085	1.820	1.715
315	2507	1.640	1.633	371	1364	1.82	1.73
316	1252	1.6430		372	1063	1.8466	1.9200
317	1739	1.643	1.623	373	1433	1.85	
318	2234	1.644	1.446	374	3356	1.8535	1.6982
319	1044	1.644	1.697	375	1507	1.855	1.60
320	1046	1.644	1.702	376	2358	1.870	1.792
321	2216	1.65	1.59	377	1394	1.875	1.633
322	2644	1.65	1.67	378	1415	1.875	1.784
324	2441	1.651	1.627	379	1431	1.88	
325	1907	1.654	1.676	380	2339	1.913	1.923
200	0101	1 0540	1.6700	201	2366	1 010	1.934
326	2121	1.6542		381	1 1	1.918	1
327	1156	1.6576	1.6666	382	483	1.923	1.968
328	2285	1.6583	1.4864	383	1416	1.93	
329	1439.	1.664	1.629	384	2339	1.945	1.971
330	2433	1.666	1.661	385	1324	1.96	
331	2274	1.667	1.666	386	1419	1.96	
332	2341	1.669	1.657	387	483	1.960	2.015
	2410	1.669	1.658	388	2365	1.967	1.978
333			1				
334	2537	1.669	1.665	389	569	1.970	1.936
335	2131	1.675	1.59	390	882	1.9733	2.6559
336	. 1084	1.6769	1.6294	391	485	1.997	2.093
337	2004	1.680	1.685	392	744	2.008	2.029
338	2597	1.681	1.668	393	310	2.01	1.82
			1	394	666	2.07	2.05
339 340	2425 1914	1.6817 1.694	1.5026 1.641	394	657	2.07 2.09	1.94
				ll .			1.01
341	812	1.694	1.723	396	658	2.114	2.140
342	2163	1.700	1.509	397	2957	2.12	2.00
343	2538	1.701	1.699	398	537	2.13	2.21
344	1324.1	1.704	1.679	399	587	2.135	2.118
345	2281	1.706	1.698	400	1064	2.21	2.22

Serial No.	Gen. index	Refractive index		Serial No.	Gen. index	Refractive index		
seriai No.	No.	ω	e	Serial No.	No.	ω		
401	1695	2.2685	2.182	407	445	2.554	2.493	
402	2187	2.31	1.95	408	2354	2.58	2.43	
403	1776	2.354	2.299	409	447	2.616	2.903	
404	755	2.356	2.378	410	403	2.654	2.697	
405	1325	2.481	2.210	411	901	2.854	3.201	
406	835	2.506	2.529	412	1095	3.0877	2.7924	

TROPETT		

413	1522	1.3817 (C)	1.3872 (C)	420	1413	2.45 (Li)	2.51 (Li)
414	2035.1	2.005 (667)	2.004 (667)	421	1264	2.46 (Li)	2.15 (Li)
415	1957.1		2.013 (667)	422	1094	2.6 (Li)	
416	2002.1	2.019 (667)	2.007 (667)	423	524	2.665 (Li)	2.535 (Li)
417	526	2.3 (Li)		424	1334	3.01 (Li)	2.94 (Li)
418	538	2.35 (Li)	2.33 (Li)	425	1098	3.084 (Li)	2.881 (Li)
419	1668	2.402 (Li)	2.304 (Li)	426	2471	1.683 (red)	1.587 (red)

III. Biaxial Group

Serial	Gen.		Refractive ind	lex	Serial	Gen.		Refractive ind	ex
No.	index No.	α	β	γ	No.	index No.	α	β	γ
427	2852		1.364		462	1876	1.462	1.470	1.471
428	2694	1.394	1.396	1.398	463	343	1.469	1.47	1.473
429	2897		1.413		464	2150	1.4716	1.4730	1.4786
430	2898	1.407	1.414	1.415	465	2729	1.4653	1.4738	1.4804
431	2753	1.405	1.425	1.440	466	2691	1.464	1.474	1.485
432	2718	1.4193	1.4309	1.4493	467	3146	1.466	1.475	1.494
433	2724	1.4321	1.4361	1.4373	468	1874	1.474	1.476	1.483
434	2693		1.44		469	2617	1.460	1.477	1.488
435	3189	1.438	1.44	1.452	470	2398	1.461	1.478	1.485
436	2733	1.439	1.441	1.469	471	1356	1.4713	1.4782	1.4856
437	2723	1.4412	1.4424	1.4526	472	2948	1.475	1.480	1.487
438	2721		1.4434	Į.	473	2223	1.476	1.480	1.483
439	411	1.4368	1.4458	1.4510	474	3255	1.4767	1.4807	1.4907
440	2964	1.447	1.448	1.459	475	2708	1.391	1.481	1.486
441	2739	1.4453	1.4496	1.4513	476	2978		1.482	
442	3133	1.430	1.452	1.458	477	1918	1.478	1.482	1.482
443	2710	1.440	1.452	1.453	478	2862	1.480	1.482	1.493
444	2717	1.4499	1.4525	1.4604	479	3083	1.4759	1.4821	1.4969
445	2395	1.448	1.454	1.456	480	2715	1.4777	1.4822	1.5036
446	2890	1.435	1.455	1.459	481	1463	1.477	1.483	1.489
447	2145	1.4326	1.4554	1.4609	482	3029	1.4775	1.4833	1.4969
448	1809	1.340	1.456	1.459	483	2970	1.4768	1.4843	1.4870
449	2854	1.432	1.457	1.458	484	1289	1.4801	1.4840	1.4913
450	2720	1.4401	1.4629	1.4815	485	3247	1.4798	1.4848	1.4948
451	3149	1.4607	1.4629	1.4755	486	2977	1.440	1.485	1.550
452	2757		1.464		487	2719	1.4557	1.4852	1.4873
453	1871	1.459	1.464	1.470	488	3353	1.4857	1.4858	1.4916
454	2727	1.4599	1.4645	1.4649	489	138		1.486	!
455	2616		1.465		· 490	760	1.4620	1.4860	1.4897
456	2738	1.4622	1.4658	1.4782	491	3043	1.4836	1.4864	1.5020
457	2743	1.4649	1.4663	1.4791	492	3091	1.4807	1.4865	1.5004
458	2943	1.4609	1.4669	1.5657	493	3148	1.483	1.487	1.490
459	2165	1.456	1.468	1.507	494	2853	1.484	1.487	1.496
460	2848	1.4468	1.4686	1.4715	495	3258	1.4815	1.4874	1.4977
461	3273	1.4672	1.4689	1.4779	496	3231		1.488	

Serial	Gen.		Refractive inc	dex	Serial	Gen.		Refractive ind	ex
No.	index No.	α	β	γ	No.	index No.	α	β	γ
497	2882	1.485	1.488	1.489	552	3323	1.5022	1.5048 .	1.5093
498	2881	1.486	1.488	1.489	553	3151	1.494	1.505	1.516
499	3245	1.4833	1.4884	1.4975	554	2469	1.497	1.505	1.509
500	854	1.4847	1.4887	1.4959	555	2900	1.505	1.505	1.506
501	1548	1.4669	1.4888	1.4921	556	2959	1.3346	1.5056	1.5064
301	1040	1.4009	1.4000	1.4821	550	2909	1.0040	1.5050	1.5004
502	3217	1.4812	1.4888	1.5719	557	2178		1.506	
503	2147	1.4856	1.4892	1.4911	558	2148	1.344	1.506	1.506
504	2725	1.4855	1.4897	1.5041	559	3331	1.5048	1.5061	1.5153
505	1924	1.4000	1.49	1.5041	560	1986	1.0040	1.507	1.0100
		i		}	11		. 400		1 545
506	2912		1.490		561	2299	1.493	1.507	1.545
507	1863	1.473	1.490	1.511	562	2132	1.495	1.507	1.528
508	2950	1.479	1.490	1.526	563	2765	1.100	1.5073	1.020
							1 4000		1 5260
509	2408	1.484	1.49	1.495	564	2696	1.4886	1.5079	1.5360
510	3249	1.4886	1.4906	1.5036	565	2868	1.504	1.508	1.545
511	2143		1.491		566	3344	1.5057	1.5085	1.5132
	0171	Į.	1 401		F.07	0000	1 5040	1 5000	, ,,,,
512	2171	1 4000	1.491	1 4000	567	2893	1.5043	1.5093	1.5751
513	1368	1.4870	1.4915	1.4989	568	2151	1.5070	1.5093	1.5169
514	3096	1.4836	1.4916	1.5051	569	3230		1.510	
515	3262	1.4859	1.4916	1.5014	570	2383	1.495	1.51	1.520
516	777	1.4888	1.4930	1.4994	571	2777	1.500	1.510	1.515
517	3184	1.492	1.493	1.496	572	2406	1.502	1.510	1.512
518	804		1.494		573	2663	1.504	1.510	1.516
519	2938	1.4935	1.4947	1.4973	574	2772		1.511	
520	2697	1.4820	1.4953	1.5185	575	3346	1.5087	1.5129	1.5162
521	1491	1.4902	1.4953	1.5032	576	3215	1.5131	1.5133	1.5144
					l				
522	2157	1.495	1.496	1.504	577	2289	1.510	1.514	1.578
52 3	3264	1.4895	1.4961	1.5052	578	2317	1.512	1.514	1.515
524	3337	1.4946	1.4966	1.5025	579	2922	1.440	1.515	1.525
525	1716		1.4967		580	2894	1.4435	1.5156	1.5233
52 6	2259	1.465	1.498	1.504	581	3159	1.500	1.5170	1.5183
					II A		\ (
527	2771	1.495	1.498	1.499	582	2551	1.500	1.517	1.525
52 8	2407	1.498	1.499	1.505	583	3354	1.5178	1.5179	1.5236
529	3152	1.4969	1.4991	1.5139	584	2553		1.518	
530	1361		1.500		585	2153	1.514	1.518	1.533
531	2901		1.5	İ	586	2264	1.515	1.518	1.525
532	3014		1.500	ļ	587	1875	1.516	1.518	1.533
533	2638	1.40	1.50	1	588	3031	1.5121	1.5181	1.5335
534	2709	1.418	1.500	1.543	589	3092	1.5135	1.5195	1.5358
535	806	1.480	1.500	1.530	590	2228	1	1,52	
536	3325	1.498	1.500	1.506	591	3158	l	1.52	i
					ł				
537	2108	1.4664	1.5007	1.5027	592	2998	1.48	1.52	1.55
538	992	1.4910	1.5007	1.5054	593	2477	1.500	1.520	1.580
539	1557	1.4949	1.5007	1.5081	594	3221	1.51	1.52	1.524
540	2413		1.501		595	2154	1.510	1.520	1.543
541	2930		1.501		596	2860	1.516	1.52	1.520
				1	1				
542	2164	1.495	1.501	1.526	597	2466	1.484	1.521	1.538
543	179	1.4981	1.5016	1.5866	598	3246	1.5162	1.5222	1.5331
544	2498	1.4710	1.5017	ca. β	599	1466		1.5225	1.5227
545	2180	1.490	1.502	1.511	600	2249	1.5205	1.5226	1.5296
546	2737	1.4794	1.502	1.5265	601	3176	1.0200	1.523	1.0200
010	2.01	1.2102	1.00#1	1.0200	"	31.0		1.020	
547	2371	1.499	1.503	1.538	602	174	1.5209	1.5230	1.5330
548	2396	1.501	1.503	1.510	603	3045	1.5096	1.5235	1.5387
	3274	1.501	1.5031	1.5135	604	2758	1.407	1.524	1.541
540									
549 550	3341	1.5003	1.5035	1.5094	605	2405	1.513	1.524	1.525

1.518 | 1.524 | 1.526

Digitized by Google

Serial	Gen.		Refractive in	dex	Serial	Gen.		Refractive ind	lex
No.	index No.	α	β	γ	No.	index No.	α	β ·	γ
607	3111	1.5221	1.5244	1.5373	662	2592	1.538	1.549	1.554
608	3097	1.5199	1.5248	1.5339	663	2014	1.5399	1.5494	1.5607
609	2294	1.470	1.525	1.555	664	1886	1.0000	1.55	1.000
		1.470		1.000	III		1 5011		1 5000
610	2997	4 700	1.526	4	665	2204	1.5211	1.5500	1.5680
611	3157	1.508	1.526	1.550	666	2212	1.53	1.55	1.55
612	1370	1.5201	1.5260	1.5356	667	1032	1.545	1.55	
613	3138	1.522	1.526	1.530	668	2029	1.5413	1.5505	1.5621
614	2641	2.022	1.529	1.000	669	3074	1.5498	1.5513	1.5634
615	2865	1.525	1.529	1.536	670	2046	1.5427	1.5519	1.5629
616	2807	1.5193	1.529	1.5436	671	3276	1.0421	1.552	1.5029
617	2985	1.417	1.530	1.533	672	2736	1.5382	1.5535	1.5607
618	2304	1.515	1.530	1.580	673	3220	1.5515	1.5537	1.5582
619	1762	1.518	1.530	1.542	674	2288	1.491	1.555	1.650
620	778	1.5240	1.5300	1.5385	675	1360	1.533	1.555	1.635
621	2280	1.525	1.53	1.550	676	2292	1.545	1.555	1.575
200	0107	1 505	1 700	. 540	077	1007		1	1 500
622 623	2167 1497	1.527 1.5246	1.530 1.5311	1.540 1.5396	677 678	1927 3086	1.551	1.555 1.556	1.562
624	2969	1.4893	1.5311	1.5363	679	2876	1.5520	1.5579	1.5608
	1				11				
625	2889	1.515	1.532	1.536	680	1884	1.551	1.558	1.582
626	2197	1.527	1.532	1.583	681	1925	1.554	1.558	1.573
627	2566		1.533		682	2637	1.530	1.560	1.590 ?
628	2759		1.533		683	2296	1.55	1.56	1.57
629	2190		1.533	1.5769	684	2618	1.5487	1.5602	1.5788
		1 400							
630	2166	1.489	1.534	1.557	685	3165	1.548	1.562	1.567
631	2432	1.517	1.534	1.565	686	188	1.5607	1.5630	1.5846
632	1861	1.5347	1.5347	1.5577	687	3305	1.5598	1.5644	1.5662
633	2286	1.460	1.535	1.545	688	838		1.565	
634	3015	1.495	1.535	1	689	2780	1.560	1.565	1.574
635	2382	1.500	1.535	1.560	690	1901	1.561	1.565	1.567
636	2302	1.515	1.535	1.575	691	3034	1.001	1.565	1.608
637	2142	1.523	1.535	1.586	692	1860	1.566	1.566	1.587
638	2295	1.525	1.535 ?	1.550	693	2642		1.567	
639	993	1.5213	1.5355	1.5395	694	2634	1.428	1.567	1.572
640	3324	1.5326	1.5362	1.5412	695	2298	1.450	1.567	1.600
641	961	1.5140	1.5368	1.5433	696	2774	1.536	1.567	1.649
0.40	1055	. 500	1 505	1 740	207	0000	1 505	1 500	
642	1355	1.528	1.537	1.543	697	3002	1.527	1.568	1.647
643	1558	1.5291	1.5372	1.5466	698	2268	1.565	1.568	1.580
644	2404	. !	1.539		699	3087	1.5660	1.5689	1.5831
645	3004		1.539		700	2877	1.565	1.569	1.569
646	2955	1.5352	1.5390	1.5446	701	2156	1.569	1.570	1.582
647	2179		1.54		702	2159	1.563	1.571	1.596
648	2293	1 400		1 410					1.575
		1.460	1.540	1.610	703	2158	1.555	1.572	
649	2218	1.520	1.54	1.545	704	2464	1.559	1.574	1.598
650	2217	1.527	1.540	1.544	705	2369	1.56	1.574	1.580
651	1512		1.542		706	2290	1.495	1.575	1.640
652	1030	1.413	1.542	1.557	707	2368	1.553	1.575	1.577
653	2859	1.466	1.542	1.596	708	2248	1.5693	1.5752	1.6130
654	1363	1.530	1.542					1.5754	1.0100
				1.595	709	3063	1.5438		
655 656	2981 2265	1.415 1.539	1.545 1.545	1.565 1.551	710 711	643 1889	1.562	1.576 1.576	1.588
000	2200	1.000	1.020	1.551	'''	1000	1.002	1.070	1.000
657	2878	1.545	1.546	1.551	712	1888	1.574	1.576	1.588
658	2036	1.5392	1.5479	1.5592	713	2504	1.5622	1.577	1.635
659	2558	1.542	1.548	ca. 1.548	714	3089		1.5772	
660	2198	1.544	1.548	1.572	715	2789	1.544	1.578	1.601
661	1950	1.5433	1.5490	1.5755	716	3057	1.569	1.579	1.669

Serial	Gen.		Refractive in	dex	Serial	Gen.		Refractive inc	lex
No.	index No.	α	β	γ	No.	index No.	α	β	γ
717	2416	1.578	1.579	1.583	772	2321	1.605	1.61	1.612
718	2359	1.5700	1.5818	1.5961	773	2315	1.610	1.611	1.654
719	2370	1.560	1.582	1.587	774	2421	1.592	1.612	1.621
	1				11				
720	782	1.574	1.582	1.582	775	2559	1.597	1.612	1.621
721	2389		1.583		776	2335	1.609	1.6125	1.619
722	3073		1.5837		777	2173	1.520	1.613	1.639
723	2400	1.576	1.584	1.588	778	2356	1.602	1.613	1.649
724	1885	1.563	1.585	1.592	779	1913	1.588	1.617	1.655
725	2803	1.508	1.586	1.525	780	813	1.614	1.617	1.636
726	2227	1	1.586	1.596	781	2184	1.607	1.617	1.639
120	2221	1.585	1.000	1.590	/81	2104	1.007	1.019	1.039
727	1903	1.552	1.588	1.600	782	1915	1.61	1.62	1.65
728	2181	1.539	1.589	1.589	783	1043	1.61	1.62	1.71
729	2591	1.584	1.589	1.594	784	1905	1.619	1.620	1.627
730	2279	1.5825	1.5891	1.5937	785	2419	1.620	1.620	1.654
731	3140	1.561	1.590	1.594	786	2429	1.609	1.623	1.635
732 733	2327 2123	1.586 1.5595	1.59 1.5908	1.598	787 788	2583 2367	1.610 1.621	1.623 1.623	1.623 1.631
				1.6311	11				
734	781	1.572	1.591	1.59	789	2451	1.6220	1.6237	1.6309
735	2385	1.572	1.591	1.594	790	2185	1.617	1.624	1.652
736	3056	ļ	1.592		791	809	1.531	1.625	1.659
737	1738	1.582	1.592	1.592	792	1035	1.541	1.625	1.660
738	2384	1.582	1.592	<1.606	793	783	1.614	1.625	1.637
739	2381	1.5863	1.5920	1.6139	794	1382	1.615	1.625	1.665
				1	11				
740	2658	1.579	1.593	1.597	795	2561	1.620	1.625	1.645
741	2798	1.5889	1.5943	1.7163	796	2411	1.616	1.626	1.649
742	1276	1.562	1.595	1.632	797	2431	1.621	1.627	1.635
743	2903	1.571	1.595	1.598	798	3178	1.6237	1.6278	2.2916
744	2523	1.5860	1.5951	1.6072	799	1514	1.532	1.628	1.665
745	2546	1.573	1.597	1.636	800	2316	1.616	1.629	1.631
746	2388	1.586	1.598	1.605	801	1920	1.010	1.63	1.001
								2.00	
747	2775	1.573	1.599	1.657	802	1721	1.585	1.630	1.630
748	1987	1.5989	1.5999	1.6003	803	1321	1.602	1.632	1.632
749	2664		1.6		804	2230	1.603	1.632	1.639
750	2867	1	1.60		805	3275	1.622	1.633	1.644
751	2322	1.595	1.60	1.603	806	2386	1.632	1.634	1.636
750	2207	1 500	1 000	1 000	007	0000		1 005	
752	3307	1.599	1.600	1.600	807	2308		1.635	
753	3179	1.5883	1.6007	1.6316	808	1580	1.541	1.636	1.669
754	2291	1.413	1.602	1.611	809	2767	1.577	1.636	1.639
755	786	1.586	1.602	1.608	810	3012	1.620	1.636	1.638
756	2278	1.590	1.602	1.638	811	1185		1.637	[
757	1378	1.579	1.603	1.633	812	2470	1.453	1.637	1.707
758	1935	1.586	1.603		11				1.653
				1.623	813	2206	1.636	1.637	
759	2324	1.593	1.603	1.607	814	2640	1.507	1.638	1.698
760	2857	1.594	1.603	1.615	815	1898	1.632	1.638	1.643
761	2152	1.602	1.604	1.615	816	2521	1.6369	1.6381	1.6491
762	1357	1.51	1.605	1.611	817	3068	1.545	1.641	1.760
763	2440	1.567	1.605	1.626	818	2823	1.596	1.641	1.652
764	2122	1.591	1.605	1.614		1900			1.653
		1.001		1.014	819		1.638	1.642	
765 766	2269 2895	1.595	1.606 1.606	1.634	820 821	2409 3355	1.632 1.637	1.643 1.643	1.645 1.655
		1.000	1.300	2.002		0000	2.001	1.010	1.000
767	2555		1.607		822	2305	1.462	1.643	1.722
768	3003	ļ	1.607		823	2349	1.636	1.644	1.654
769	3052	1	1.6071		824	2320	1.642	1.645	1.654
770	3001	1.571	1.608	1.694	825	2501	1.635	1.646	1.660
771	880	1.617	1.609	1.593	826	1929	1.643	1.649	1.649

Serial	Gen.		Refractive ind	lex	Serial	Gen.		Refractive ind	lex
No.	index No.	α	β	γ	No.	index No.	α	β	γ
827	2564	i	1.651		882	2595	1.525	1.684	1.686
828	2177	1.635	1.651	1.670	883	941	1.020	1.685	1.000
		1.050		1.070	11 -		1 001		1 005
829	826		1.6513		884	2593	1.681	1.685	1.695
830	1916	1.612	1.652	1.675	885	1005	1.67	1.686	1.698
831	2387	1.625	1.653	1.669	886	1937	1.678	1.686	1.689
832	2176	1.650	1.653	1.658	887	2809		1.687	
833	2214	1.6527	1.6537	1.6748	888	1184	1.687	1.687	1.704
834	2863		1.654		889	1270.1	1.684	1.695	1.698
835	1298	1.647	1.654	1.660	890	1406	1.672	1.697	1.717
836	2175	1.651	1.654	1.660	891	1008	1.695	1.698	1.733
837	1919	1.633	1.655	1.662	892	2815	1.6610	1.6994	1.7510
838	2391	1.643	1.655	1.663	893	2810	1	1.70	
839	2126	1.652	1.655	1.671	894	2565		1.702	
840	2790	1.6491	1.6555	1.7143	895	2652	1	1.702	
841	2379	1.540	1.656	1.682	896	2418	1.700	1.702	1.706
842	1295	1.651	1.656	1.683	897	1294	1.695	1.704	1.710
843	1297	1.652	1.656	1.660	898	785	1.660	1.705	1.713
844	1069	1.6272	1.6573	1.6601	899	734	1.000	1.707	1.713
	l I				11				
845	1569	1.622	1.658	1.687	900	2229	1.705	1.709	1.711
846	1296	1.63	1.66	1.69	901	2428	1.708	1.711	1.718
847	2424	1.640	1.660	1.675	902	2350	1.709	1.711	1.724
848	1439	1.655	1.66	1.670	903	976	1.703	1.713	1.722
849	2910	1.645	1.661	1.688	904	2556	1.614	1.714	1.729
850	1505	1.6263	1.6614	1.6986	905	2480	1.7146	1.7174	1.812
851	1585	1.629	1.662	1.727	906	1720	1.691	1.720	1.720
			4 222						
852 853	2426 2463	1.651 1.5155	1.662 1.664	1.668 1.666	907 908	1899 2318	1.712 1.715	1.720 1.720	1.728 1.737
	1	1			n				
854	2660	1.660	1.666	1.676	909	2423	1.712	1.721	1.731
855 856	2372 2215	1.642 1.662	1.667 1.667	1.669 1.673	910 911	2351 1859	1.686 1.702	1.722 1.722	1.735 1.750
-		1.002	1.00	1.0.0		1000	1.102	1.122	100
857	1388	1.635	1.668	1.702	912	1012	1.694	1.726	1.730
858	3064	1.626	1.6684	1.757	913	2510	1.7129	1.7266	1.744
859	3005	1.485	1.669	1.697	914	1922	1.705	1.729	1.730
860	757	1.658	1.669	1.670	915	2417.1	1.724	1.729	1.734
861	2183		1.670		916	972	1.710	1.731	1.732
862	2340		1.670		917	1377	1.730	1.732	1.762
863	2186	1.668	1.670	1.690	918	793	1.708	1.732	1.758
864 864									
	2427	1.664	1.671	1.694	919	1670	1.720	1.733	1.935
865 866	1908 2858	1.670 1.634	1.671 1.673	1.689 1.685	920 921	807 964	1.640 1.730	1.736 1.737	1.750 1.785
200	2000	1.001	1.010	1.000	821		1.100	1.101	1.760
867	2330	1.640	1.674	1.679	922	2360	1.732	1.737	1.751
868	2353	1.662	1.674	1.676	923	1841	1.617	1.738	1.776
869	2402	1.665	1.674	1.684	924	3101	1.7202	1.7380	1.819
870	2905	1.666	1.674	1.688	925	1956	1.731	1.738	1.744
871	2800	1.671	1.674	1.684	926	2208		1.74	
872	2557	1.673	1.674	1.678	927	2100		1 74	}
						3100	, ,,	1.74	1 70
873	1381	1.653	1.675	1.697	928	1408	1.71	1.74	1.76
874	1389		1.676		929	1318	1.733	1.740	1.744
875	2542	1.529	1.676	1.677	930	1930	1.736	1.741	1.746
876	1926	1.643	1.678	1.684	931	1003		1.743	
877	3037	1.648	1.678	1.699	932	997	1.702	1.745	1.789
	2651	1.676	1.679	1.687	933	2124	1.747	1.748	1.757
979		1.010	1.010	1.00/	11 500		1.121	1.130	1.707
		ı	1 6000		024	0404	1	1 740	
878 879 880	2741 2284	1.5299	1.6802 1.6809	1.6854	934 935	2484 1726	1.72	1.749 1.75	1.80

Serial	Gen.		Refractive inc	lex	Serial	Gen.		Refractive ind	lex
No.	index No.	α	β	γ	No.	index No.	α	β	γ
937	2781	1.743	1.754	1.764	985	2338	1.910	1.91	1.945
938	1028	1.730	1.758	1838	986	261	1.871	1.92	2.01
939	967	1.708	1.760	1.798	987	1050	1.885	1.920	1.956
940	1000	1.719	1.762	1.805	988	3124	1.750	1.925	1.95
941	1387	1.765	1.774	1.797	989	1305	1.92	1.95	1.96
942	2573	1.770	1.774	1.783 ?	990	1365	1.702	1.955	1.965
943	2352	1.758	1.776	1.795	991	712	1.9493	1.9592	1.9640
944	966	1.730	1.778	1.803	992	663	1.947	1.961	1.968
945	1303	1.760	1.779	1.779	993	1722	1.955	1.985	2.05
946	1944	1.757	1.78	1.803	994	401		1.99	
947	2127	1.78	1.78	1.785	995	557	1.93	1.99	2.02
948	1045	1.752	1.782	1.815	996	660	1.87	2.00	2.01
949	1319	1.759	1.786	1.797	997	1723	1.90	2.00	2.05
950	1380	1.775	1.786	1.815	998	576		2.03	
951	1006	1.747	1.788	1.829	999	2219	1.908	2.05	2.065
952	1420	1.783	1.788	1.818	1000	573	2.042	2.050	2.050
953	1670	1.78	1.79	2.04	1001	617	1.8037	2.0763	2.0780
954	1300	1.780	1.793	1.802	1002	329		2.09	•
955	2337		1.795		1003	2375	1.70	2.10	2.23
956	2808	1.763	1.799	1.813	1004	1326	2.08	2.1	2.16
957	735		1.80		1005	541	1.816	2.102	2.126 ?
958	1362	1.76	1.8	1.81	1006	539	2.0767	2.1161	2.1580
959	1301	1.783	1.801	1.834	1007	1696		2.15	
960	1007	1.79	1.807	1.84	1008	535	2.04	2.15	2.15
961	2376	1.775	1.815	1.825	1009	335	2.14	2.15	2.18
962	2582		1.816		1010	1421	2.12	2.17	2.31
963	583	1.74	1.82		1011	2374	1.77	2.18	2.35
964	1009	1.820	1.826	1.88	1012	473	2.13	2.19	2.20
965	2346	1.800	1.831	1.846	1013	1336	1.94	2.20	2.51
966	2802	1.750	1.832	1.832	1014	1327	2.10	2.20	2.31
967	1049	1.8090	1.8380	1.8593	1015	1391	2.19	2.20	2.33
968	999	1.69	1.84	1.85	1016	529	2.1992	2.2172	2.2596
969	1430	1.773	1.840	1.845	1017	1697	2.17	2.22	2.32
970	2363	1.825	1.842	1.857	1018	1671	2.09	2.24	2.26
971	2221	1.85	1.85	1.99	1019	1807	2.22	2.25	2.29
972	2220	1.85	1.85	2.02	1020	1784	2.17	2.26	2.32
973	639	1.789	1.852	1.877	1021	1781	2.18	2.27	2.35
974	2492		1.865		1022	536	2.24	2.27	2.31
975	707	1.8600	1.8671	1.8853	1023	1694	2.27	2.27	2.30
976	1010	1.73	1.870	1.91	1024	279	2.18	2.35	2.35
977	1027	1.655	1.875	1.909	1025	2331		2.38	0.40
978	1407	1.835	1.877	1.886	1026	1335	2.26	2.39	2.40
979	1794	1.817	1.879	2.057	1027	878	2.37	2.5	2.65
980	1302	1.87	1.88	1.93	1028	446	2.583	2.586	2.741
981	553	1.8771	1.8823	1.8937	1029	917		3	
982	3010	1.527	1.903	1.952	1030	1096		3	
983	2334	1.900	1.907	2.034	1031	1101		3	
984	2361		1.91	1.91	1032	296	3.194	4.046	4.303

MISCELLANEOUS

								
1033	944	1.831	1.861 (green)	1.880	1037.1	3143.5	1.461	1.449
1034	429	1.3996		1.4102	1037.2	3017.5	1.466	1.455
1035	432	1.4057		1.4165	1038	3009	1.4676	1.620
1036	418	1.4248		1.4382	1039	1399	1.500	1.660
1037	2994	1.452		1.465	1040	2776	1.518	1.527

B | 1.518 | 1.021

Digitized by Google

Serial	Gen.		Refractive inc	lex	Serial	Gen.		Refractive inc	lex
No.	index No.	α	β	γ	No.	index No.	α	β	γ
1041	2213	1.575		1.649	1061	1412	2.38	2.39 (Li)	2.42
1042	2644	1.584		1.604	1062	1698		2.40 (Li)	
1043	2646	1.594		1.614	1063	1800		2.40 (Li)	
1044	1322	1.62		1.63	1064	1766	2.41	2.50 (Li)	2.51
1045	2348	1.6226		1.7643	1065	1661		2.55 (Li)	
1046	2323	1.641		1.650	1066	1093	2.48	2.58 (Li)	2.60
1047	2570	1.6704			1067	271	2.46	2.59 (Li)	2.61
1048	2414	1.675		1.685	1068	525	2.51	2.61 (Li)	2.71
1049	2319	1.717		1.735	1069	1411		2.62 (Li)	
1050	1075	1.729		1.788	1070	887	2.35	2.64 (Li)	2.66
1051	2549			1.789	1071	272		> 2.72 (Li)	
1052	2560	1.810		1.830	1072	723	>2.72	>2.72 (Li)	
1053	716	1.817			1073	298	2.74(Li)		>2.72 (Li)
1054	582	1.90		1.97	1074	2770		1.473 (red)	
1055	3081	1.553	1.555 (Li)	1.571	1075	3177		1.5226 (red)	
1056	82	2.00	2.18 (Li)	2.35	1076	2524		1.532 (red)	
1057	2355	2.200	2.200 (Li)	2.290	1077	3114		1.591 (red)	
1058	1263	2.24	2.24 (Li)	2.53	1078	935		2.63 (red)	
1059	599	2.30	2.35 (Li)	2.40				, ,	
1060	1631	2.31	2.37 (Li)	2.66	11			12	

INDEX OF MINERAL NAMES

Acanthite, 1066 Acmite, 1808 Adamite, 793 Adelite, 2423 Aegirite, 2808 Agricolite, 401 Aikinite, 1051 Akermanite, 2430 Alabandite, 1273 Alamosite, 663 Albite, 2865 Allactite, 1303 Almandite, 1928 Altaite, 560 Alumian, 1872 Aluminite, 1871 Alunite, 3134 Alunogenite, 1874 Amarantite, 1357 Amblygonite, 2658 Analcite, 2864 Anapaite, 2356 Anatase, 445 Ancylite, 2492 Andalusite, 1898 Anglesite, 553 Anhydrite, 2248 Annabergite, 1569 Anorthite, 2400 Antigorite, 2180 Antlerite, 964 Apatite, 2275 Apiohnite, 1918 Apophyllite, 3162 Aragonite, 2284 Arcanite, 2938 Argentite, 1067 Argyrodite, 1115 Arisonite, 1411 Armangite, 1299 Arsenic siderite, 2357 Arseniosiderite, 2358 Amenoferrite, 1385 Arsenolite, 260

Arsenopyrite, 1390 Artinite, 2166 Ascharite, 2212 Atacamite, 944 Atelestite, 335 Augelite, 1888 Automolite, 1119 Autunite, 2368 Asurite, 1028 Baddeleyite, 473 Bakerite, 2389 Barite, 2521 Barylite, 2593 Barvailite, 666 Barytocalcite, 2595 Bassetite, 2369 Bastnäsite, 1994 Baumhauerite, 595 Bavenite, 2416 Beaverite, 1433 Beegerite, 615 Bementite, 1321 Benitoite, 2563 Beraunite, 1380 Berthierite, 1392 Bertrandite, 2122 Beryl, 2125 Beryllonite, 2876 Beudantite, 1419 Bieberite, 1463 Bilinite, 1361 Binnite, 1015 Bisbecite, 1043 Bischofite, 2132 Bismite, 310 Bismuthinite, 325 Bismutospherite, C1 Bixbyite, 1437 Blödite (= Bloedite), 288 Bobierrite, 2154 Boothite, 962 Boracite, 2215 Borax, 2848 Bornite, 1426

Botryogenite, 2198 Boulangerite, 606 Boussingaultite, 2150 Brandtite, 2350 Braunite, 1320 Breithauptite, 1571 Brochantite, 966 Bromyrite, 1062 Brookite, 446 Brucite, 2129 Brugnatellite, 2200 Brushite, 2265 Bunsenite, 1528 Bustamite, 2353 Cacoxenite, 1379 Calamine, 813 Calaverite, 1139 Calcioferrite, 2357 Calcite, 2285 Calomel, 882 Camsellite, 2213 Canfieldite, 1116 Caracalite, 2781 Carborundum, 403 Carminite, 1417 Carnallite, 3146 Carnegieite, 2860 Carnotite, 3124 Carpholite, 1920 Carphosiderite, 1364 Cassiterite, 485 Celestite, 2451 Celsian, 2591 Cerargytite, 1059 Cerussite, 617 Cervantite, 278 Chalcanthite, 961 Chalcocite, 956 Chalcomenite, 972 Chalcophyllite, 1011 Chalcopyrite, 1425 Chalcoeiderite, 1430 Chalcostibite, 1019

Chenevizite, 1431

Childrenite, 1926 Chiolite, 2851 Chiviatite, 612 Chlorapatite, 2274 Chlormanganokalite, 3079 Chlorocalcite, 3158 Chloromagnesite, 2131 Chondrodite, 2184 Chromite, 1639 Chrysoberyl, 2124 Chrysotite, 2179 Churchite, 2419 Cinnabarite, 901 Claudetite, 261 Clausthalite, 558 Clinochlore, 2227 Clinoclasite, 1010 Clinoenstatite, 2175 Clinohedrite, 2340 Clinohumite, 2186 Clinosoisite, 2417.1 Cobaltite, 1506 Colemanite, 2381 Colerainite, 2226 Connarite, 1582 Connellite, 969 Copiapite, 1363 Coquimbite, 1359 Cordylite, 2594 Corkite, 1416 Corundum, 1858 Cosalite, 611 Cotinnite, 529 Covellite, 955 Crednerite, 1328 Creedite, 2399 Crestmoreite, 2324 Cristobalite, 340 Crocidolite, 2810 Crocoite, 1631 Cronstedtite, 2201 Cryolite, 2852 Cryptohalite, 398

Cubanite, 1427 Cuprite, 936 Cuprodescloizite, 1784 Cuprotungstite, 1696 Custerite, 2327 Cyanite, 1899 Cyanochroite, 3043 Cyanotrichite, 1913 Dahllite, 2307 Danburite, 2386 Daphnite, 1929 Darapskite, 2708 Datolite, 2387 Dawsonite, 2859 Derbylite, 1413 Descloisite, 1781 Destinesite, 1382 Dewindtite, 1735 Diadochite, 1383 Diaphorite, 1118 Diaspore, 1859 Didymolite, 2413 Dietseite, 2363 Dihydrite, 1000 Diopside, 2427 Dioptasite, 1044 Dixenite, 1324 Dolomite, 2425 Domevkite, 1004 Domingite, 603 Dufrenoysite, 592 Dumortierite, 1937 Dundasite, 1909 Durangite, 2858 Durdenite, 1365 Durfeidtite, 602 Ecdemite, 588 Ectropite, 1322 Edingtonite, 2592 Eglestonite, 890 Elpidite, 2780 Emplectite, 1022 Enargite, 1014

Enstatite, 2176

Epididymite, 2877 Epistilbite, 2406 Epsomite, 2145 Erinite, 1009 Eriochalite, 940 Erionite, 3189 Erythrite, 1505 Ettringite, 2397 Euchroite, 1008 Euclase, 2126 Eucryptite, 2659 Eudidymite, 2878 Eulytite, 402 Fairfieldite, 2349 Faujasite, 2899 Fayalite, 1407 Felsoebanyite, 1875 Ferberite, 1698 Ferrinatrite, 2804 Ferritungstite, 1699 Ferrocolumbite, 1800 Fibroferrite, 1358 Fiedlerite, 541 Flinkite, 1301 Florencite, 2004 Fluellite, 1863 Fluocerite, 1978 Fluorapatite, 2273 Fluorite, 2235 Forsterite, 2177 Francolite, 2309 Freieslebenite, 1119 Fremontite, 2857 Friedelite, 1439.1 Gadolinite, 2127 Gahnite, 1911 Galena, 552 Galenobismutite, 610 Ganomalite, 2338 Gano-hyllite, 1922 Gaylussite, 2894 Gearksutite, 2395 Gehlenite, 2433

Ecsphorite, 1919

Geikielite, 2187 Genthite, 2203 Geocromite, 605 Georgiadesite, 589 Gerhardtite, 976 Geradorffite, 1570 Gibbsite, 1860 Gillespite, 2572 Giemondite, 2404 Glascrite, 3181 Glauberite, 2889 Glaubers salt, 2693 Glaucochroite, 2351 Glockerite, 1362 Goethite, 1335 Goslarite, 760 Goyazite, 2489 Greenockite, 835 Grossularite, 2415 Grunerite, 1406 Guanajuatite, 327 Guejarite, 1020 Guitermanite. 597 Gypsum, 2249 Haidingerite, 2278 Halite, 2671 Halotrichite, 1924 Hambergite, 2123 Hanksite, 3185 Hannayite, 2158 Hardystonite, 2341 Hauerite, 1274 Hausmannite, 1264 Hauynite, 2902 Hedenbergite, 2360 Heintsite, 3157 Hemafibrite, 1302 Hematite, 1334 Hercynite, 1923 Hessite, 1072 Heulandite, 2407 Hewettite, 2374 Hexahydrite, 2144 Hibschite, 2401 Hieratite, 3016 Higginsite, 2346 Hillebrandite, 2321 Hinadalite, 1908 Hoernesite, 2159 a-Hopeite, 781 8-Hopeite, 782 Howlite, 2388 Huebnerite, 1697 Humite, 2185 Hureaulite, 1298 Hydroboracite, 2432 Hydrocerusite, 657 Hydrocyanite, 958 Hydroherderite, 2421 Hydromagnesite, 2167 Hydronephelite, 2869 Hydrophilite, 2236 Hydrotalcite, 2224 Hydrosincite, 807 Iddinguite, 1408 Ilmenite, 1410 Ilvaite, 2361 Invoite, 2383 Iodyrite, 1064 Isoclasite, 213 Jacobeite, 1438 Jadeite, 2863 Jamesonite, 1418 Jarosite, 3085 Jeremejerite, 1934 Jordanite, 594 Kainite, 3151 Kalicinite, 2978

Kalinite, 3133 Kaliophilite, 3136 Kaolinite, 1901 Kasolite, 1736 Kempite, 1270.1 Kentrolite, 1327 Kermesite, 298 Kieserite, 2142 Kilbrickenite, 609 Kleinit, 891 Koechlinite, 1661 Koettigite, 792 Kroehnkite, 2789 Krugite, 3166 Lanarkite, 557 Langbeinite, 3150 Langite, 967 Lansfordite, 2165 Laubanita, 2412 Laumontite, 2405 Laurionite, 539 Laurite, 1235 Lautarite, 2246 Lawrencite, 1340 Lawsonite, 2402 Lasulite, 2230 Lasurite, 2872 Leadhillite, 660 Lechatelierite, 341 Lecontite, 2710 Leifite, 2866 Lengenbachite, 596, 1117 Leonite, 3148 Lepidocrocite, 1336 Leucite, 3137 Leucochalcite, 1007 Leucophanite, 2903 Leucosphenite, 2910 Levynite, 2403 Lewisite, 2333 Libethenite, 997 Lillianite, 613 Lime, 2232 Linarite, 1049 Lindackerite, 1585 Linnacite, 1458 Liroconite, 1916 Litharge, 524 Lithiophilite, 2651 Livingstonite, 917 Lollingite, 1386 Lorandite, 723 Lorettoite, 538 Lossenite, 1420 Löweite, 2880 Lucinite, 1885 Ludlamite, 1381 Ludwigite, 2220 Lueneburgite, 2218 Magnesioferrite, 2196 Magnesioludwigite, 2221 Magnesite, 2163 Magnetite, 1337 Malachite, 1027 Manandonite, 2664 Manganite, 1263 Manganosite, 1258 Manganostibite, 1305 Manganotantalite.

1807

Marcasite, 1349

Margarite, 2409

Marialite, 2871

Martinite, 2269

Mascagnite, 174

Marshite, 951

Massicotite, 525 Matildite, 1103 Matlockite, 535 Maucherite, 1566 Maxite, 661 Meionite, 2417 Melanotekite, 1421 Melanterite, 1356 Meliphanite, 2904 Mendipite, 536 Mendosite, 2854 Meneghinite, 604 Merwinite, 2428 Mesolite, 2900 Metacinnabarite, 900 Metahewettite, 2375 Meta-torbernite, 1737 Meta-variscite, 1884 Meyerhofferite, 2382 Miargyrite, 1097 Microcline, 3138 Microcoamic salt, 2733 Miersite, 1123 Milarite, 3164 Millerite, 1541 Mimetite, 587 Minasragrite, 1762 Miniumite, 527 Mirabilite, 2694 Misenite, 2948 Mixite, 1025.1 Molybdenite, 1651 Molybdite, 1670 Molybdophillite, 2189 Molymite, 1342 Monetite, 2264 Monimolite, 598 Montanite. 329 Monticellite, 2426 Montroydite, 878 Morenosite, 1548 Mullanite, 607 Mullite, 1904 Muscovite, 3140 Mysorine, 1026 Nadorite, 599 Nantokite, 939 Nasonite, 2339 Natroalunite, 2856 Natrochalcite, 2790 Natrojarosite, 2802 Natrolite, 2862 Natron, 2753 Natrophilite, 2800 Naumannite, 1070 Nephelite, 2861 Nesquehonite, 2164 Newberyite, 2153 Newtonite, 1902 Niccolite, 1564 Niter, 2959 Nitrobarite, 2531 Nitrocalcite, 2257 Nitroglauberite, 2709 Nitromagnesite, 2148 Nordenskioeldine, 2390 Northupite, 2886 Noselite, 2873 Okenite, 2317 Oldhamite, 2247 Olivenite, 1006 Opal, 344 Orientite, 2352 Orpiment, 272 Orthoclase, 3139 Pachnolite, 2897 Palaite, 1297 Pandermite, 2384

Paragonite, 2867 Parahopeite, 783 Paralaurionite, 540 Paraluminite, 1876 Paramelaconite, 934 Parasepiolite, 2178 Paravauxite, 1925 Parisite, 2420 Pascoite, 2376 Pectolite, 2895 Penfieldite, 537 Percylite, 1048 Periclase, 2128 Perovakite, 2331 Petalite, 2663 Pharmacolite, 2279 Pharmacosiderite, 1389 Phenacite, 2121 Phoenicochroite, 1632 Phosgenite, 658 Phosphochalite, 1001 Phosphuranylite, 1720 Pickeringite, 2223 Picromerite, 3149 Pinakiolite, 2219 Pinnoite, 2211 Pirasonite, 2893 Pitchblende, 1705 Plagionite, 608 Plancheite, 1046 Plattnerite, 526 Plumbogummite, 1907 Plumbojarosite, 1415 Plumosite, 601 Podolite, 2308 Polianite (Pyrosulite), 1260 Pollucite, 3351 Polyargyrite, 1102 Polybasite, 1101 Polydymite, 1544 Polyhalite, 3165 Powellite, 2365 Prehnite, 2411 Priceite, 2385 Prolectite, 2183 Prosopite, 2396 Proustite, 1095 Pseudobrookite, 1412 Pseudolibethenite, 998 Pseudomesolite, 2901 Pseudowollastonite, 2315 Pucherite, 1766 Pyrargyrite, 1098 Pyrite, 1350 Pyroaurite, 2199 Pyrochroite, 1259 Pyromorphite, 573 Ругоре, 2225 Pyrophanite, 1325 Pyrophyllite, 1903 Pyrostilpnite, 1099 Pyrrhotite, 1353 Quarts, 342 Quetenite, 2197 Rammelsbergite, 1565 Raspite, 1694 Rathite, 593 Realgar, 271 Reddingite, 1295 Resbanyite, 614 Rhagite, 336 Rhodisite, 3141 Rhodochrosite, 1307 Rhodonite, 1318 Rhomboclasite, 1360

Riebeckite, 2809

Rinneite, 3186 Riversideite, 2322 Romeite, 2282 Rutherfordine, 1726 Rutile, 447 Safflorite, 1500 Salammoniac, 132 Salmonsite, 1439 Sapphirine, 2229 Sarkinite, 1300 Sartorite, 591 Samolite, 1809 Scacchite, 1268 Schallerite, 1324 Scheelite, 2366.1 Scorodite, 1387 Sellaite, 2130 Senarmontite, 280 Shattuckite, 1045 Siderite, 1394 Sideronatrite, 2803 Siderotilite, 1355 Sillimanite, 1900 Skutterudite, 1502 Smaltite, 1501 Smithite, 1093 Smithsonite, 794 Sodalite, 2870 Soda-niter, 2705 Soddite, 1733 Spangolite, 1914 Spencerite, 786 Spessartite, 1921 Sphalerite, 756 Spherite, 1889 Spherocobaltite, 1507 Spinel, 2222 Spodumene, 2660 Spurrite, 2330 Stannite, 1432 Staurolite, 1930 Stellerite, 2408 Stephanite, 1100 Stercorite, 2733 Stewartite, 1296 Stibnite, 296 Stichtite, 2207 Stokesite, 2335 Stolsite, 1695 Strengite, 1377 Stromeyerite, 1124 Strontianite, 2463 Struvite, 2157 Stylotypite, 1021 Sulphoborite, 2217 Sulphohalite, 2700 Svabite, 2281 Svanbergite, 2490 Syepoorite, 1457 Sylvite, 2921 Symplesite, 1388 Syngenite, 3159 Szaibelyite, 2216 Samikite, 1276 Szomolnokite, 1354 Tachy hydrite, 2422 Tagilite, 999 Talc. 2181 Tamarusite, 2853 Taramellite, 2573 Tarapacaite, 3100 Tarbuttite, 785 Taylorite, 2964 Teallite, 667 Tellurite, 82 Tennanite, 1053 Tenorite, 935 Tephroite, 1319

Terlinguaite, 887 Tetradymite, 330 Thalenite, 1956 Thaumasite, 2329 Thenardite, 2691 Thermonatrite, 2751 Thomsenolite, 2898 Thorianite, 668 Thorite, 677 Thortveitite, 1944 Tilasite, 2424 Titanite, 2334 Topas, 1905 Torbernite, 178. Trechmannite, 1094 Tremolite, 2429 Trichalcite, 1005 Tridymite, 343 Trigonite, 1326 Triphylite, 2652 Tripuhyite, 1391 Troegerite, 1721 Troilite, 1348 Tronite, 2765 Techermigite, 1882 Tsumebite, 1050 Tungstite, 1671 Turquois, 1915 Tuxtlite, 2905 Tychite, 2887 Tyrolite, 1012 Ulexite, 2896 Ullmannite, 1573 Umangite, 971 Uraninite, 1702 Uranocircite, 2583 Uranophane, 2372 Uranopilite, 2367 Uranospherite, 1722 Uranospinite, 2370 Uranothallite, 2371 Uruölggite, 2345 Ussingite, 2868 Uvanite, 1794 Uvarovite, 2364 Valentinite, 279 Vanadinite, 1776 Vanthoffite, 2882 Vauxite, 1927 Vegasite, 1414 Velardefite, 2410 Villiaumite, 2670 Vivianite, 1378 Vrbaite, 724 Wagnerite, 2156 Walpurgite, 1723 Wapplerite, 2280 Wattevillite, 2890 Whewellite, 2288 Willemite, 812 Witherite, 2542 Wittichenite, 1023 Wollastonite, 2316 Wulfenite, 1668 Würtzite, 755 Xanthoconite, 1096 Xenotime, 1951 Zaratite, 1576 Zebedassite, 2228 Zeophyllite, 2326 Zepharovichite, 1886 Zeunerite, 1739 Zincaluminite, 1912 Zincite, 744 Zinkenite, 600 Zinkosite, 757 Zircon, 483 Zoisite, 2418

C-TABLE

[Compounds of carbon with elements having key-numbers below 16]

Acknowledgement is made to Prof. E. E. Reid for advice in connection with nomenclature and for his reading of the manuscript of this section.

ndex No.	4	در. Table,	ular weight . T. atomic hts. e. p. 43)	al melting	g point rlatm. (or of Hg indi-	Specific gravity, 20°4* (or at other indicated temperature)	otive index ng No. e. e, p. 276
Gen. index	Formula	. Маше. р. 280	Molecular (I. C. T. 1 weights.	Normal point.	Boiling under 1 under 1 under 1 cated beaript)	Specifi 20°/4 other temp	Refractive finding N Table, p. 2
1	CBi ₂ O ₆	Bismutospherite	510.00	d.	1	7.35	-
1.1	CBrClO	Carbonyl bromochloride	143.37		25	1.821	1
2	CBrCl ₂	Bromotrichloromethane	198.29	-21	172	1.95944.6	697
3	CBrN	Cyanogen bromide	105.92	52	61.6	2.015	
4	CBr ₂ O	Carbonyl bromide	187.83		64.5	2.44	
5	CBr.NO.	Bromopicrin	297.76	10.3	127118	2.799	826
6	CBr ₄	Carbon tetrabromide	331.66	{ α48.4 β90.1	189.5	3.42	
7	CCIN	Cyanogen chloride.	61.466	-6	13.8	1.186	1
8	CCl ₂ N ₂ O ₄	Dichlorodinitromethane Cl ₂ C(NO ₂)	174.93	122.5	1		1
9	CCl ₂ O	Carbonyl chloride (Phosgene)	98.916	-104	8.3	1.392	
10	CCl ₂ S	Thiophosgene	114.98		73.5	1.50915	721
11	CCl ₂ NO ₂	Chloropicrin Cl ₂ CNO ₂	164.38	-64	112.4	1.6920	470
12	CCI.	Carbon tetrachloride	153.83	-23.0	76.8	1.595	476
13	CF.	Carbon tetrafluoride	88.00	-80	-15		1
14	CIN	Cyanogen iodide	152.94	146.5		1	
15	CIN ₂ O ₄	Iodotrinitromethane CI(NO ₂) ₃	276.96	56			1
16	CI.	Carbon tetraiodide	519.73	d.		4.32	
17	CN ₄ O ₈	Tetranitromethane C(NO ₂) ₄	196.03	13	125.7	1.6504	364
17.1	COS	Carbonyl sulfide	64.065	-138	-48	1.24-87	
17.2	CSSe	Carbon sulfoselenide	123.265		84.5		
17.3	CS ₂	Carbon disulfide	76 . 130	-111.6	46.3	1.26122	1
17.4	CHBrCl ₂	Bromodichloromethane	163.84	İ	92	1.92516	
18	CHBr ₂	Bromoform	252.76	7.7	150.4	2.890	772
19	CHCl ₂	Chloroform	119.38	-63.5	61.2	1.489	417
20	CHF:	Fluoroform	70.008		20 ⁴⁰ at.	2.53	
21	CHI:	Iodoform	393.80	119		4.1	1189
22	CHN	Hydrocyanic acid HCN	27.016	-14	26	0.699	809
23	CHNO	Cyanic acid HCNO	43.016	d.		1.1400	
24	CHNS	Thiocyanic acid HCNS	59.081	5	d.		
25	CHN ₂ O ₆	Nitroform CH(NO ₂) ₃	151.032	15	> 100 d.		
26	CH ₂ Br ₂	Methylene bromide	173.85	-52.8	97.8	2.4616	1
27	CH2CINO	Carbamyl chloride ClCONH ₂	79.481	50	62		
28	CH ₂ Cl ₂	Methylene chloride	84.931	-96.7	40.1	1.336	273
29	CH,I,	Methylene iodide	267.88	5.2; 5.7	180 d.	3.325	870
3 0	CH ₂ N ₂	Cyanamide CN.NH2	42.031	44	14019 d.	1.083	1073
31	CH ₂ N ₂	Diazomethane H ₂ C:N ₂		-145	-23		1
32	CH ₂ N ₂ O ₃	Methylnitrolic acid O2NCHNOH	90.031	64			1
33	CH ₂ N ₂ O ₄	Dinitromethane H ₂ C(NO ₂) ₂	106.031	<-15	100 d.		
34	CH ₂ N ₄	Tetrazole	70.047	155			1
35	CH ₂ O	Formaldehyde HCHO	30.015	-92	-21	0.815-20	
36	(CH ₂ O) _x	Paraformaldehyde	$(30.015)_{x}$	160			
37	CH ₂ O ₂	Formic acid HCO ₂ H	46.015	8.4	100.5	1.220	25
38	CH ₂ A ₈ Cl ₂	Methylarsine dichloride	160.90	-59	136	1.838	
39	CH;AsO	Methylarsinous oxide	105.98	95		4 7000	1
40	CH ₃ Br	Methyl bromide	94.939	-93	4.6	1.7320	1
41	CH,Cl	Methyl chloride	50.481	-97.6	-23.7	0.92018	1
42	CH,ClO	Methyl hypochlorite CH ₂ OCl	66.481	1	13.4	1 510	1
43	CH ₂ ClO ₂ S	Methylsulfone chloride	114.546		160	1.510	
44	CH.F	Methyl fluoride	34.023	_ 66 1	-78.0	2.279	696
45 46	CH ₂ I CH ₂ NO	Formamide HCONH ₂	141.96 45.031	-66.1 -5	42.6 193	1.139	995
		Formaldoxime H ₂ C:NOH	45.031 45.031	-3	84	1.108	990
47			40 HSI		i 04		
47 48	CH ₂ NO ₂	Nitromethane CH ₂ NO ₂	61.031	-29.2	101.9	1.139	43

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
50	CH,NO,	Methyl nitrate CH2ONO2	77.031		exp. 65	1.21715	T
51	CH ₂ NS	Thioformamide HCSNH2	61.096	29	1		
52	CH,N,	Methyl azide	57.047		21	0.86916	Ì
5 3	CH ₂ N ₂ O ₂	Nitrourea O2NNHCONH2	105.05	150 d.			
54	CH ₄	Methane	16.0308	-184	-161.4	0.415-164	1
55	CH ₄ N ₂ O	Urea H ₂ NCONH ₂	60.047	132.7		1.335	1167
56	CH ₄ N ₂ O ₂	Methylnitramine CH ₂ NHNO ₂	76.047	38	,	1.24343.6	1077
57	CH ₄ N ₂ S	Ammonium thiocyanate	76.112	149.6	d. 160	1.305	1
58	CH ₄ N ₂ S	Thiourea H ₂ NCSNH ₂	76.112	182		1.405	1
59	CH ₄ N ₄ O ₂	Nitroguanidine H ₂ NC(:NH)N.HNO ₂	104.063	231	0.5	0.700	١,
60	CH ₄ O	Methyl alcohol CH ₂ OH	32.031	-97.8	64.5	0.792	1 2
81 80	CH ₄ O ₄ S	Methylsulfonic acid CH ₃ SO ₃ H	96.096	- 20	16710	1.481	1
62	CH ₄ O ₄ S	Methyl sulfuric acid CH ₂ SO ₄ H	112.09	< -30	7.0	0.000	1
63 04	CH ₄ S	Methylmercaptan CH ₂ SH	48.096	-121.0	7.6	0.868	ļ
64	CH ₄ As	Methylarsine CH ₂ AsH ₂	91.999		2	}	1,00
64.1	CH ₄ A ₈ O ₈	Methyl arsenate CH ₂ AsO(OH) ₂	139.999	161	0.5	0.00-11	1234
65 00	CH,N	Methylamine CH ₂ NH ₂	31.047	-92.5	-6.5	0.699-11	
86	CH,NO	N-Methylhydroxylamine CH,NHOH	47.047	42	62.516	1.0003	220
B7	CH,NO2	Ammonium formate HCO ₂ NH ₄	63.047	116		1.266	1,000
67.1	CH,NO,	Ammonium hydrogen carbonate	79.047	d.	00 1	1.573	1223
68	CH,N,	Diazoaminomethane	59.063	-12	92 s. d.		1
69 70	CH,N,O	Semicarbazide H ₂ NCONHNH ₂	75.063	96		1 004	1
70	CH ₄ N ₂ O ₄	Urea nitrate H ₂ NCONH ₂ .HNO ₃	123.06	153 d.		1.664	1
71	CH,N,S	Thiosemicarbazide H ₂ NCSNHNH ₂	91.128	183			1
72	CH,O,P	Methylphosphinic acid CH ₂ PO(OH) ₂	96.063	105	1 14		ł
73	CH,P	Methylphosphine CH ₂ PH ₂	48.063	000	-14		1
74	CH ₆ CIN	Methylamine hydrochloride	67.512	226	23016	ì	100
75 76	CH CIN	Guanidine hydrochloride	95.528 111.53	170 4	İ		1333
76 77	CH CINO	Semicarbazide hydrochloride	46.062	173 d.	87.5		
	CH ₄ N ₂ CH ₄ N ₄	Methylhydrazine CH ₂ NHNH ₂ Methyltetrazine CH ₂ NHN:NNH ₂	74.078		130		1
78 79			106.08	78.5	130	}	1 .
80	CH ₄ N ₄ O ₂ CH ₄ N ₄ O ₃	Guanidine nitrite (NH ₂) ₂ C(:NH).HNO ₂ Guanidine nitrate	122.079	18.0	i		1333
81	CH ₄ N ₄ O ₄	Semicarbazide nitrate	138.08	123	1	ļ	1000
82	CH ₇ ClNH ₄	1	110.54	163			
83	C ₂ Br ₂	Aminoguanidine hydrochloride Dibromoacetylene BrC:CBr	183.83	103	76	2	
84	C ₂ Br ₂ Cl ₂	1, 2-Dibromo-1, 2-dichloroethylene	254.75	4.4	172	2.304	894
84.1	C ₂ Br ₂ Cl ₄	1, 2-Dibromo-1, 1, 2, 2-tetrachloroethane.	325.66	*.*	112	2.713	1308
85	C ₂ Br ₂ O ₂	Oxalyl bromide (COBr) ₂	215.83	-19.5	104.4	2.110	1000
86	C ₂ Br ₄	Tetrabromoethylene Br ₂ C:CBr ₂	343.66	57.5	227		
8 7	C ₂ Br ₆	Hexabromoethane Br ₂ CCBr ₂	503.50	07.0	210	3.823	1316
88	C ₂ Cl ₂	Dichloroacetylene ClC:CCl	94.916	-50	210	0.020	1310
89	C ₂ Cl ₂ O ₂	Oxalyl chloride (COCl) ₂	126.916	-12	64	1.4884	822
90	C ₂ Cl ₄	Tetrachloroethylene Cl ₂ C:CCl ₂	165.83	-22.4	120.8	1.623	623
91	C ₂ Cl ₄ O ₂	Trichloromethyl chloroformate	197.83	-57	127.5	1.65314	02
92	C ₂ Cl ₆	Hexachloroethane Cl ₂ CCCl ₂	236.75	185	185	2.091	1
93	C ₂ I ₂	Diiodoacetylene IC:CI.	277.86	82	100	2.001	1
94	C ₂ I ₄	Tetraiodoethylene I ₂ C:CI ₂	531.73	187	i	2.983	
95	C ₂ N ₂	Cyanogen CN.CN.	52.016	-34.4	-20.5	0.86617.2	
96	C ₂ N ₂ S	Cyanogen sulfide (CN) ₂ S	84.081	60	20.0	0.000	
97	C ₂ N ₄ O ₄	Trinitroacetonitrile	176.03	41.5	exp. 220	1	1
98	C ₂ N ₄ O ₁₂	Hexanitroethane (O ₂ N) ₃ CC(NO ₂) ₃	300.05	142 d.			
99	C ₂ HBr	Bromoacetylene BrC:CH	104.924		-2	1	
00	C ₂ HBrCl ₂	1, 2-Dichloro-1-bromoethylene	175.84	-83.5	113.8	1.9134	867
01	C ₂ HBr ₂	Tribromoethylene Br ₂ C:CHBr	264.76	33.0	164	2.708	778
02	C.HBr.Cl.	1, 2, 2-Tribromo-1, 2-dichloroethane	335.67	6	11216	2.6354	781
03	C ₂ HBr ₂ O	Bromal Br ₂ CCHO	280.76		174	2.3014	
04	C ₂ HBr ₂ O ₂	Tribromoacetic acid Br ₂ CCO ₂ H	296.76	130	245 d.		1
05	C ₂ HBr ₄	Pentabromoethane Br ₂ CCHBr ₂	424.59	57	210300	3.312	
106	C.HCl.	Trichloroethylene Cl ₂ C:CHCl	131.38	-86.4	88	1.477	525
107	C ₂ HCl ₂ O	Chloral Cl.CCHO	147.38	-57.5	98.1	1.512	455
108	C,HCl,O	Dichloroacetyl chloride Cl ₂ CHCOCl	147.38	3	108	-	
109	C ₂ HCl ₃ O ₂	Trichloroacetic acid Cl ₂ CCO ₂ H	163.38	57.5	195.3	1.61746	1

No.	Formula	Name	Mol. wt.	M. P.	B. P.	d	R. I. No.
110	C2HCl3O2	Dichloromethyl chloroformate	163.38		116	1.55814	
111	C ₂ HCl ₄	Pentachloroethane Cl ₂ CCHCl ₂	202.298	-29.0	162	1.7094	614
112	C ₂ HF ₃	Trifluoroethylene	82.008		-51	1.26-78	
112.1	C ₂ HF ₄ O ₂	Trifluoroacetic acid F ₄ CCO ₂ H	114.01	-15.6	72 .5	1.5350	
113	C ₂ HI	Iodoacetylene IC:CH	151.94		32		
114	C ₂ HI ₂ O ₂	Triiodoacetic acid I ₂ CCO ₂ H	437.80	150 d.			l
115	C ₂ H ₂	Acetylene HC:CH	26.015	-81.8	-83.6	Liq. 0.613-80 Sol. 0.730-84	
116	C ₂ H ₂ A ₈ Cl ₃	2-Chlorovinylarsine dichloride	207.35	1	190	1.888	
117	C ₂ H ₂ BrCl	cis-1-Bromo-2-chloroethylene	141.39	1	84.7	1.7974	863
118	C ₂ H ₂ BrCl	trans-1-Bromo-2-chloroethylene	141.39	41	75.4	1.7774	864
119	C ₂ H ₂ BrClO	Chloroacetyl bromide ClCH2COBr	157.39		135	1.9130	
120	C ₂ H ₂ BrClO ₂	Bromochloroacetic acid BrClCHCO ₂ H	183.39	23.8	211.7 s. d.	1.9854	
121	C ₂ H ₂ BrCl ₃	1-Bromo-1, 2, 2-trichloroethane	212.31	-21	104.1	2.05540	
122	C ₂ H ₂ Br ₂	1, 1-Acetylene dibromide CH2:CBr2	185.85		92	2.178	
123	C ₂ H ₂ Br ₂	1, 2-Acetylene dibromide BrCH:CHBr.	185.85	1	110.2	2.256	719
124	C ₂ H ₂ Br ₂ O	Bromoacetyl bromide BrCH2COBr	201.85		150	2.31721.5	
125	C ₂ H ₂ Br ₂ O ₂	Dibromoacetic acid Br ₂ CHCO ₂ H	217.85	48	232		
126	C ₂ H ₂ Br ₂ Cl	1, 2, 2-Tribromo-1-chloroethane	301.22	20.6	220 d.	2.6524	780
127	C ₂ H ₂ Br ₄	1, 1, 1, 2-Tetrabromoethane BrCH ₂ CBr ₂	345.68	0.0	103.513.6	2.875	794
128	C ₂ H ₂ Br ₄	1, 1, 2, 2-Tetrabromoethane	345.68	0.1	151**	2.964	796
129	C,H,ClIO,	Chloroiodoacetic acid ClICHCO2H	220.41	90			
130	C.H.CINO	Chloromethyl isocyanate ClCH2CNO	91.481		81		
132	C ₂ H ₂ Cl ₂	cis-1, 2-Acetylene dichloride	96.931	-50.0	48.4	1.2654	853
133	C ₂ H ₂ Cl ₂	trans-1, 2-Acetylene dichloride	96.931	-80.5	60.3	1.29115	854
134	C ₂ H ₂ Cl ₂ O	Dichloroacetaldehyde Cl ₂ CHCHO	112.931	00.0	90.5	1.2014	00-
135	C ₂ H ₂ Cl ₂ O	Chloroacetyl chloride ClCH2COCl	112.931		105	1.4950	
136	C ₂ H ₂ Cl ₂ O ₂	Dichloroacetic acid Cl ₂ CHCO ₂ H	128.931	10; -4	193.5	1.563	490
137	C ₂ H ₂ Cl ₂ O ₂	Chloromethyl chloroformate	128.931	10, 1	108	1.516	100
138	C ₂ H ₂ Cl ₂ NO	Trichloroacetamide Cl ₂ CCONH ₂	162.40	141	240	1.010	
139	C ₂ H ₂ Cl ₄	1, 1, 1, 2-Tetrachloroethane	167.85	***	130.5	1.588	528
140	C ₂ H ₂ Cl ₄	1, 1, 2, 2-Tetrachloroethane	167.85	-43.8	146.3	1.600	567
141	C ₂ H ₂ F ₂ O ₂	Difluoroacetic acid F ₂ CHCO ₂ H	96.015	-0.35	134.2766	1.526	4
142	C ₂ H ₂ F ₄ NO	Trifluoroacetamide F ₂ CCONH ₂	113.023	74.8	162.5	1.020	•
143	C ₂ H ₂ I ₂ O ₂	Diiodoacetic acid I ₂ CHCO ₂ H	311.88	110	102.0		
144	C ₂ H ₂ N ₄	1, 2, 4, 5-Tetrazine	82.047	99			
145	C ₂ H ₂ O	Ketene CH ₂ :CO	42.015	-151	-56	}	
146	C ₂ H ₂ O ₂	Glyoxal CHO.CHO.	58.015	15	50.4	1.14	46
147	C ₂ H ₂ O ₄	Oxalic acid HO ₂ CCO ₂ H	90.015	189	30.4	2	1194
148	C ₂ H ₂ Br	Vinyl bromide CH ₂ :CHBr	106.939	-137.8	15.8	1.5174	415
149	C ₂ H ₂ BrO	Acetyl bromide CH ₂ COBr	122.939	-96.5	76.7	1.529.6	410
150	C ₂ H ₂ BrO ₂	Bromoacetic acid CH ₂ BrCO ₂ H	138.939	50	208	1.934	
151	C ₂ H ₁ Br ₂	1, 1, 2-Tribromoethane BrCH ₂ CHBr ₂	266.77	1 1	208 188.4		7779
152	C ₂ H ₁ Br ₂ O	Tribromoethyl alcohol Br ₂ CCH ₂ OH	282.77	-26	9411	2.579	773
		Bromal hydrate	298.77	80	94		1222
152.1	C ₂ H ₂ Br ₂ O ₂	Vinyl chloride CH ₂ :CHCl		53	15	1	1333
153	C ₂ H ₂ Cl		62.481	1	-15 50	1 104	70
154	C ₂ H ₄ ClO	Acetyl chloride CH ₂ COCl	78.481	-112.0	5 2	1.104	76
155	C ₂ H ₂ ClO ₂	Methyl chloroformate ClCO ₂ CH ₂	94.481	∫ α61.2	71.4	1.23616	
156	C ₂ H ₃ ClO ₂	Chloroacetic acid CH2ClCO2H	94.481	β56.3 γ50.1 δ43.8 (?)	189.5	1.3704	1099
157	C ₂ H ₂ Cl ₂ NO	Dichloroacetamide Cl2CHCONH2	127.947	98	234.6		
158	C ₂ H ₂ Cl ₂	1, 1, 1-Trichloroethane CH ₂ CCl ₂	133.397		74.1	1.334	350
159	C ₂ H ₂ Cl ₃	1, 1, 2-Trichloroethane ClCH ₂ CHCl ₂	133.397	-36.7	113.5	1.443	506
160	C ₂ H ₄ Cl ₄ O	Trichloroethyl alcohol Cl ₂ CCH ₂ OH	149.397	17.8	152.2	1.55023.3	000
161	C ₂ H ₁ Cl ₂ O ₂	Chloral hydrate Cl ₂ CCH(OH) ₂	183.41	47.4	98 d.	1.908	1258
162	C ₂ H ₄ FO	Acetyl fluoride CH ₃ COF	62.023	> -60	98 d. 20.5	0.99320	1200
163	C ₂ H ₄ FO ₂	Fluoroacetic acid CH ₂ FCO ₂ H	78.023	33	20.5 165	0.000	
164	C ₂ H ₃ FO ₂ C ₂ H ₃ I	Vinyl iodide CH ₂ :CHI	18.023 153.96	00	165 56	2.080	
165	C ₂ H ₂ IO	Iodoacetaldehyde CH ₂ ICHO	153.90 169.96	1	80 d.	2.00	, i
166		Acetyl iodide CH ₂ COI				1 0017	
100	C ₂ H ₄ IO	Acetyl louide OligOUL	169.96 185.96	82	108	1.9817	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
168	C ₂ H ₂ N	Acetonitrile CH ₂ CN	41.031	-41	82	0.783	6
169	C ₂ H ₂ N	Methyl isocyanide CH ₂ NC	41.031	-45	59.6	0.7564	
170	C ₂ H ₂ NO	Glycollic nitrile HOCH ₂ CN	57.031	ł	183	1.104	952
172	C ₂ H ₄ NO	Methyl isocyanate CH ₂ N:CO	57.031	Į.	43		
173	C ₂ H ₂ NO ₂	Nitroethylene CH ₂ :CHNO ₂	73.031		98.5	1.07313.5	
174	C ₂ H ₃ NO ₃	Oxamic acid HO ₂ CCONH ₂	89.031	210 d.	Ì	1	
175	C ₂ H ₄ NO ₄	Nitroacetic acid O2NCH2CO2H	105.03	89			
176	C ₂ H ₃ NS	Methyl thiocyanate CH ₂ CNS	73.096	-51	133	1.068	501
177	C.H.NS	Methyl isothiocyanate CH ₂ N:CS	73.096	35	119	1.0694	1052
178	C,H,N,	1, 2, 4-Triazole	69.047	121	260		
179	C ₂ H ₃ N ₃ O ₆	1, 1, 1-Trinitroethane (O ₂ N) ₂ CCH ₃	165.05	56	100.0	0 500-102	}
180	C ₂ H ₄	Ethylene H ₂ C:CH ₂	28.0308	-169.4	-103.8	0.566-102	Ì
181 182	C ₂ H ₄ BrCl	1-Bromo-2-chloroethane ClCH ₂ CH ₂ Br	143.405	-16.6	103.7	1.790	
183	C ₂ H ₄ BrNO	Acetobromoamide CH ₂ CONHBr	137.96	108	110	0.050	0.47
	C ₂ H ₄ Br ₂	1, 1-Dibromoethane CH ₂ CHBr ₂	187.86	10.0	110	2.056	647
184 185	C ₂ H ₄ Br ₂	Ethylene bromide BrCH ₂ CH ₂ Br	187.86 203.86	10.0	131.7	2.182	710
186	C ₂ H ₄ Br ₂ O C ₂ H ₄ Br ₂ O	Dibromoethyl alcohol Br ₂ CHCH ₂ OH symDibromomethyl ether (BrCH ₂) ₂ O.	203.86	24	181 155	2.350	
187	C ₂ H ₄ GlNO	Acetochloroamide CH ₂ CONHCl	93.497	-34 110	155	2.201	İ
188	C ₂ H ₄ ClNO	Chloroacetamide ClCH2CONH2	93.497	119.5	225.6		
189	C ₂ H ₄ Cl ₂	1, 1-Dichloroethane CH ₂ CHCl ₂	98.947	-96.7	57.3	1.174	227
190	C ₂ H ₄ Cl ₂	Ethylene chloride ClCH ₂ CH ₂ Cl	98.947	-35.3	83.7	1.174	400
191	C ₂ H ₄ Cl ₂ O	Dichloroethyl alcohol Cl ₂ CHCH ₂ OH	114.947	-35.3	146	1.14516	400
192	C ₂ H ₄ Cl ₂ O	symDichloromethyl ether (ClCH ₂) ₂ O	114.947		106	1.315	349
193	C ₂ H ₄ Cl ₂ OS	Di-(chloromethyl) sulfoxide	147.01	40	100	1.515	348
194	C ₂ H ₄ Cl ₂ S	symDichloromethyl sulfide	131.012	1 40	58.518	1.41414	ł
195	C ₂ H ₄ Cl ₂ NO	Chloral ammonia ClaCCHO.NHa	164.41	74	100 d.	1.414	
196	C ₂ H ₄ I ₃	1, 1-Diiodoethane CH ₂ CHI ₂	281.9	'*	179	2.840	
197	C ₂ H ₄ I ₂	Ethylene iodide ICH ₂ CH ₂ I	281.9	82	d.	2.13210	
199	C ₂ H ₄ N ₂ O ₂	Oxamide H ₂ NOCCONH ₂	88.047	419 d.	<u> </u>	1.667	
200	C ₂ H ₄ N ₂ O ₂	Glyoxime NOH:CHCH:NOH	88.047	178		1	
201	C ₂ H ₄ N ₂ O ₈	Ethylnitrolic acid CH ₂ C(NO ₂):NOH	104.047	88	d.		
202	C ₂ H ₄ N ₂ O ₄	1, 1-Dinitroethane CH ₂ CH(NO ₂) ₂	120.047		186	1.35023	1
203	C ₂ H ₄ N ₂ O ₄	Ethylene dinitrite ONOCH2CH2ONO	120.047	37.5	98	1.2160	
204	C ₂ H ₄ N ₂ O ₄	Ethylene nitrite nitrate	136.047	d.		1.472	1
205	C2H4N2O6	Dinitroglycol (CH2ONO2)2	152.047	-20	exp. 116	1.49616	
207	C ₂ H ₄ N ₄	Dicyandiamide H2NC(:NH)NHCN	84.063	207	1		
208	C ₂ H ₄ O	Acetaldehyde CH ₂ CHO	44.031	-123.5	20.2	0.781	3
209	C ₂ H ₄ O	Ethylene oxide	44.031	-111.3	10.7	0.8874	803
210	C ₂ H ₄ OS	Thioacetic acid CH ₂ COSH	76.096	<-17	93	1.07410	
211	C ₂ H ₄ O ₂	Glycollic aldehyde HOCH2CHO	60.031	97			
212	C ₂ H ₄ O ₂	Acetic acid CH ₂ CO ₂ H	60.031	16.6	118.1	1.049	26
213	C ₂ H ₄ O ₂	Methyl formate HCO ₂ CH ₂	60.031	-99.8	31.8	0.975	5
214	C ₂ H ₄ O ₃	Glycollic acid HOCH2CO2H	76.031	∫ α63.0			
				\ β79			
215	C ₂ H ₄ O ₃	Methyl acid carbonate CH ₂ HCO ₃	76.031	-57			1
216	C,H,O,	Ethylene ozonide	76.031		1816	ł	
217	C ₂ H ₄ O ₄ S	Sulfoacetic acid HO ₂ SCH ₂ CO ₂ H	140.10	86	0_		
218	C ₂ H ₄ S	Ethylene sulfide	60.096	1.00	55	1.034	1
219	C ₂ H ₄ AsO ₄	Arsonoacetic acid (OH)2AsOCH2COOH	184.00	152	00.0		
220	C ₂ H ₄ Br	Ethyl bromide	108.955	-119.0	38.0	1.430	275
221	C ₂ H ₄ BrO	2-Bromoethyl alcohol BrCH ₂ CH ₂ OH	124.955	ł	150.3	1.685	555
222	C ₂ H ₄ BrO	Bromomethyl methyl ether	124.955	120 7	87	1.53112.3	458
224	C ₂ H ₄ Cl	Ethyl chloride	64.497 160.56	-138.7	12.2	0.910	
225	C.H.ClO.S	Chloromethyl methyl sulfate		ŀ	92 ¹⁸ 89	1.473	1
226	C ₂ H ₄ Cl ₂ N	Ethyl dichloramine C ₂ H ₄ NCl ₂	113.963	-69.0		1 010	
227	C,H,ClO		80.497	-09.0	128.8	1.213	107
228	C.H.ClO	Chloromethyl methyl ether Ethyl hypochlorite	80.497 80.497		59.5	1.06310	107
229	C.H.ClO.S	Ethylsulfone chloride CH ₂ CH ₂ SO ₂ Cl	80.497 128.562	ł	36.6 177.5	1 257	1
230 231	C ₂ H ₄ ClO ₂ S C ₂ H ₄ ClO ₄	Ethyl perchlorate	128.302 128.497		74	1.357	1
231	C ₂ H ₃ ClO ₄ C ₂ H ₃ F	Ethyl fluoride	48.039]	-32	1.7	
~ 04	2118L	2-Fluoroethyl alcohol FCH ₂ CH ₂ OH	64.039	-26.5	103.4	1.114	21

No.	Formula	Name	Mol. wt.	M. P.	B. P.	d	R. I
234	C ₂ H ₄ I	Ethyl iodide	155.97	-108.5	72.2	1.933	64
235	C ₂ H ₄ IO	2-Iodoethyl alcohol ICH ₂ CH ₂ OH	171.97		177 s. d.	2.905	
236	C ₂ H ₄ IO	Iodomethyl methyl ether ICH2OCH3	171.97		125	2.02516	72
237	C ₂ H ₄ N	Vinylamine H ₂ C:CHNH ₂	43.047		56	0.832	1
238	C ₂ H ₄ NO	Acetamide CH ₄ CONH ₂	59.047	81.0 69.4	222	1.159	1107 1173 119
239	C ₂ H ₄ NO	Acetaldoxime CH ₂ CH:NOH	59.047	47	115	0.966	107
240	C ₂ H ₄ NO ₂	Acetohydroxamic acid CH2CONHOH	75.047	88			ł
241	C.H.NO.	Aminoacetic acid H2NCH2CO2H	75.047	233 d.	1	1.161	127
242	C ₂ H ₅ NO ₂	Nitroethane CH ₂ CH ₂ NO ₂	75.047	<-50	114.8	1.05615	8
243	C.H.NO.	Ethyl nitrite CH ₂ CH ₂ ONO	75.047		17	0.90015.5	1
244	C.H.NO.	Methyl carbamate CH ₂ CONH ₂	75.047	52	177		1
245	C ₂ H ₆ NO ₂	Glycollicamide HOCH2CONH2	75.047	120			1
246	C.H.NO.	Nitroethyl alcohol O2NCH2CH2OH	91.047	<-80	193.8	1.27015	1
247	C.H.NO.	Ethyl nitrate CH ₂ CH ₂ ONO ₂	91.047	-102.0	88.7	1.105	5
248	C ₂ H ₅ NO ₄ (H ₂ O)	Ammonium hydrogen oxalate	107.047	102.0		1.556	`
249	C ₂ H ₆ NO ₄	Nitroglycol HOCH2CH2NO3	107.047	d.		1.3111	1
250	C ₂ H ₄ NS	Thioacetamide CH ₂ CSNH ₂	75.112	108.5		1.01	
251	C ₂ H _b N ₂ O ₂	Biuret NH(CONH ₂) ₂	103.063	193	1	i	
252	C ₂ H ₆	Ethane CH ₁ .CH ₂	30.0462	-172.0	-88.3	0.546-55	1
253	C ₂ H ₆ AsBr .	Cacodyl bromide (CH ₂) ₂ AsBr	184.92	1.2.0	130	0.010	1
254	C ₂ H ₆ AsCl	Cacodyl chloride (CH ₂) ₂ AsCl	140.464		106.5	>1	ł
255	C ₂ H ₆ AsCl ₂	Cacodyl trichloride (CH ₂) ₂ AsCl ₂	211.38	50 d.	100.0	-	ł
256	C ₂ H ₆ AsI	Cacodyl indide (CH ₃) ₂ AsI	231.94] 00 u.	160		- 1
257	C ₂ H ₆ NO	Aminoacetamide H2NCH2CONH2	74.06	65	100		ı
258	C ₂ H ₆ N ₂ O	Dimethylnitrosamine (CH ₂) ₂ N.NO	74.062	00	152.5	1.003	35
259	C ₂ H ₆ N ₂ O	N-Methylurea CH ₂ NHCONH ₂	74.062	101	102.0	1.204	~
260	C ₂ H ₆ N ₂ O C ₂ H ₆ N ₄ O ₂	Oxalyl dihydrazide (CONHNH ₂) ₂	118.08	235 d.		1.204	
261	C ₂ H ₆ N ₄ O ₂ C ₂ H ₆ N ₄ S	Guanidine thiocyanate	118.143	118		1	
262	C ₂ H ₆ O	Ethyl alcohol C ₂ H ₄ OH.	46.046	-117.3	78.5	0.789	1
263	C ₂ H ₆ O	Methyl ether CH ₂ OCH ₂	46.046	-138.0	-24.9	1.617	1 1
264	C ₂ H ₆ O ₂	Glycol HOCH ₂ CH ₂ OH	62.046	-17.4	197.5	1.115	30
265	C ₂ H ₆ O ₂ S	Dimethyl sulfone (CH ₂) ₂ SO ₂	94.111	193	238	1.110	"
266	C ₂ H ₆ O ₂ S	Methyl sulfite (CH ₂) ₂ SO ₂	110.111	100	126.5	1.046	
267	C ₂ H ₆ O ₄	Acetyl peroxide (CH ₂ CO) ₂ O ₂	94.046	30	6321	1.010	
268	C ₂ H ₆ O ₄ S	Ethylsulfuric acid C ₂ H ₄ SO ₄ H	126.111	30	d.	1.31617	-
269	C ₂ H ₆ O ₄ S C ₂ H ₆ O ₄ S	Methyl sulfate (CH ₃) ₂ SO ₄	126.111	-31.8	188.8	1.33315	e
209 270	C ₂ H ₆ O ₆	Oxalic acid dihydrate	126.111	101.5	100.0	1.64	120
270 271	C ₂ H ₆ O ₆ S ₂	Ethane-1, 2-disulfonic acid	190.18	101.5		1.01	120
271 272	C ₂ H ₆ O ₆ S ₂ C ₂ H ₆ S	Methyl sulfide (CH ₄) ₂ S.	62.111	-83.2	36.2	0.849	i i
273	C ₂ H ₆ S	Ethylmercaptan C ₂ H ₂ SH	62.111	-121.0	34.7	0.840	32
		Methyl disulfide CH ₂ SSCH ₂	94.176	-121.0	118	1.046	32
274	C ₂ H ₆ S ₂	Ethylenemercaptan HSCH ₂ CH ₂ SH			146	1.123	1
275	C ₂ H ₆ S ₂	1	94.176	i		1.395	1
276	C ₂ H ₆ Se	Ethylhydroselenide C ₂ H ₄ SeH	109.246	ľ	53.5	1.383	i
277	C ₂ H ₆ Te	Methyl telluride (CH ₂) ₂ Te	157.546	f	82	1.213**	
278	C ₂ H ₇ As	Dimethylarsine (CH ₁) ₂ AsH	106.014		36		
279	C ₂ H ₇ As	Ethylarsine C ₂ H ₆ AsH ₂	106.014	000	36	1.217	
280	C ₂ H ₇ AsO ₂	Cacodylic acid (CH ₂) ₂ AsO.OH	138.014	200			
281	C ₂ H ₇ AsO ₃	Ethylarsonic acid C ₂ H ₆ AsO(OH) ₂	154.014	95	7.4	0.6804	1
282	C ₂ H ₇ N	Dimethylamine (CH ₃) ₂ NH	45.062	-96.0	7.4		1
283	C ₂ H ₇ N	Ethylamine C ₂ H ₅ NH ₂	45.062	-80.6	16.6	0.68918	1
284	C ₂ H ₇ NO	Acetaldehyde ammonia CH ₂ CHO.NH ₂ .	61.062	97	110 s. d.	1 00000	133
285	C ₂ H ₇ NO	2-Aminoethyl alcohol H2NCH2CH2OH.	61.062		171	1.02220	44
286	C ₂ H ₇ NO	Dimethylhydroxylamine (CH ₂) ₂ NOH	61.062	[42.4	0.000**	1
287	C ₂ H ₇ NO	α-Ethylhydroxylamine NH ₂ OC ₂ H ₄	61.062	٠	68	0.8837.5	
288	C ₂ H ₇ NO	β-Ethylhydroxylamine C ₂ H ₄ NHOH	61.062	59 d.	1	0.908	109
289	C ₂ H ₇ NO ₂	Ammonium acetate CH ₃ CO ₂ NH ₄	77.062	114		1.073	1
290	C ₂ H ₇ NO ₃ S	Taurine H ₂ NCH ₂ CH ₂ SO ₃ H	125.127	88			
290.1	C ₂ H ₇ N ₃	Diazoaminoethane C ₂ H ₄ N.N.NH ₂	73.08	-12	92 s. d.		
							
291 292	C ₂ H ₇ N ₃ O ₄ C ₂ H ₇ O ₂ P	Methylurea nitrate	137.08 94.08	128 76		1	1

No.	Formula	Name	Mol. wt.	M. P.	B. P.	d	R. I. No.
294	C ₂ H ₇ P	Dimethylphosphine (CH ₂) ₂ PH	62.078		25	İ	Ì
29 5	C ₂ H ₇ P	Ethylphosphine C ₂ H ₄ PH ₂	62.078		25	<1	1
296	C ₂ H ₈ BrN	Ethylamine hydrobromide	125.986	159.5		1.741	İ
297	C ₂ H ₄ ClN	Dimethylamine hydrochloride	81.528	171			
298	C.H.CIN	Ethylamine hydrochloride	81.528	109		1.216	1
299	C ₂ H ₈ IN	Ethylamine hydroiodide C ₂ H ₄ NH ₂ .HI.	173.00	188.5		2.100	
300	C ₂ H ₄ N ₂	Ethylenediamine H2NCH2CH2NH2	60.078	8.5	117	0.89246.1	1032
301	C ₂ H ₈ N ₂	unsymDimethylhydrazine	60.078		64	0.794	987
302	C ₂ H ₈ N ₂	Ethylhydrazine C ₂ H ₄ NHNH ₂	60.078		101.5		1000
303	C ₂ H ₈ N ₂ O ₄ (H ₂ O)	Ammonium oxalate	124.078		140.1	1.501	1233
304	C ₂ H ₈ N ₄	Ethyltetrazine	88.094	<-20	140 d.	ļ	
305	C ₂ H ₈ N ₄ O ₃	Methylguanidine nitrate	136.09	150			1284
306	C ₂ H ₁₀ Cl ₂ N ₂	Ethylenediamine hydrochloride	133.01	10	110	0.082	433
307	C ₂ H ₁₀ N ₂ O	Ethylenediamine hydrate	78.093	10	118	0.963	433
308	C ₂ H ₁₄ N ₅ O ₄ S	Aminoguanidine sulfate	246.24	161		1 20	
308.1	C ₂ Cl ₂ N ₃	Cyanuric trichloride	184.40	146	000	1.32	
309	C ₁ Cl ₁	Octachloropropane Cl ₂ CCCl ₂ CCl ₃	319.66	160	269	1 1140	900
310	C,O,	Carbon suboxide OC:C:CO	68.00	-107	6.3	1.1140	802
311	C.HCl.O.	Trichloroacrylic acid Cl ₂ C:CClCO ₂ H	175.38	72.9	223	1 00534	
312	C ₂ HCl ₇	Heptachloropropane Cl ₂ CHCCl ₂ CCl ₃	285.21	30	248	1.8054	011
313	C ₁ HN	Cyanoacetylene HC:CCN	51.016	5	42.5	0.816	911
313.1	C ₂ H ₂ Br ₂ N ₂ O	Dibromocyanoacetamide	245.86	123	5004	2.375	1000
314	C ₁ H ₂ Cl ₂ O ₂	Malonyl chloride H ₂ C(COCl) ₂	140.93	0.1	5826	1.450	1009
315	C ₁ H ₂ Cl ₂ NO	2, 2, 2-Trichlorolactic nitrile	174.40	61	220	1 04034.3	1040
316	C ₁ H ₂ N ₂	Malonic nitrile H ₂ C(CN) ₂	66.031	32.1	220	1.0494.2	1042
317	C ₁ H ₂ N ₂ O ₃	Parabanic acid CO < (NHCO) ₂ >	114.031	227 d.	٠.	ľ	1333
318	C ₂ H ₂ O	Propargyl aldehyde HC:CCHO	54.015	١ .	61	1 10015	
319	C,H,O,	Propiolic acid HC:C.CO ₂ H	70.015	9	144 d.	1.13915	
320	C ₁ H ₁ BrO ₂	1-Bromoacrylic acid CH ₂ :CBrCO ₂ H	150.94	70			
321	C ₂ H ₂ BrO ₂	2-Bromoacrylic acid BrCH:CHCO ₂ H	150.94	116			
322	C ₁ H ₁ BrO ₄	Bromomalonic acid BrCH(CO ₂ H) ₂	182.94	112 d.	0.5	1 0455	
323	C,H,Cl	3-Chloroallylene ClCH ₂ C;CH	74.481	,	65	1.045	
323.1	C.H.CIO	Acryl chloride H ₂ C:CHCOCl	90.481	05	76	1.140	
324	C ₂ H ₂ ClO ₂	1-Chloroacrylic acid CH ₂ :CClCO ₂ H	106.48	65			1
25	C,H,ClO,	2-Chloroaerylic acid ClCH:CHCO ₂ H Chloromalonic acid ClCH(CO ₂ H) ₂	106.48	85	1		1
326	C.H.ClO	1, 1, 1-Trichloroacetone CH ₂ COCCl ₂	138.48 161.40	133	149		1
327 328	C ₂ H ₃ Cl ₂ O C ₂ H ₃ Cl ₂ O	1, 1, 1'-Trichloroacetone Chicocci	161.40		172	1	
329	C ₃ H ₃ Cl ₃ O ₃	Methyl trichloroacetate Cl ₂ CCO ₂ CH ₂	177.40	-17.5	153.8	1.48919.2	1
330	C ₃ H ₃ Cl ₃ O ₃	2, 2, 2-Trichlorolactic acid	193.40	124	17046	1.40019.2	
331	C ₃ H ₃ Cl ₄	Pentachloropropane	216.31	124	198	1.6074	645
332	C ₃ H ₃ O ₁	Acrylic nitrile CH ₂ :CHCN	53.031	-82.0	79	1.0074	040
332 . 1	C _i H _i NO	Pyruvic nitrile CH ₂ COCN	69.04	-62.0	93		1
333	C ₃ H ₃ NO ₂	Cyanoacetic acid NCCH ₂ CO ₂ H	85.031	66	1080.15		1
334	C.H.NS	Thiazole	85.096	00	116.8	1.198	1
335	C ₁ H ₁ N ₁ O ₁	Cyanuric acid	129.047	>360	110.0	1.130	1333
336	C ₁ H ₁ N ₁ O ₁	Fulminuric acid (CNOH)	129.05	145 d.			1000
337	C ₁ H ₄	Allene H ₂ C:C:CH ₂	40.031	-146 d.	-32		
338	C ₁ H ₄	Allylene HC:CCH;	40.031	-104.7	-27.5	0.660-12.9	
339	C ₂ H ₄ Br ₂	cis-1, 2-Dibromopropylene	199.86	104.7	135.2	2.024	924
340	C ₁ H ₄ Br ₂	trans-1, 2-Dibromopropylene	199.86		126	2.024	925
341	C ₁ H ₄ Br ₂	2, 3-Dibromopropylene	199.86		142.3	1.934	1 020
342	C ₁ H ₄ Br ₂ O ₂	1, 1-Dibromopropionic acid	231.86	61	221	1.001	1
343	C ₁ H ₄ Br ₂ O ₂	1, 2-Dibromopropionic acid	231.86	64; 51	16020		
344	C ₃ H ₄ Br ₄	1, 1, 2, 2-Tetrabromopropane	359.69	01,01	230 s. d.	2.940	
345	C ₂ H ₄ Br ₄	1, 2, 2, 3-Tetrabromopropane	359.69	11	230 d.	2.65318	
346	C ₂ H ₄ Cl ₂ O	symDichloroacetone (ClCH ₂) ₂ CO	126.947	45	173.4	1.38346	
347	C ₂ H ₄ Cl ₂ O	unsymDichloroacetone	126.947	30	120	1.23416	1
348	C ₂ H ₄ Cl ₂ O ₂	2, 2-Dichloropropionic acid	142.947	56	190	1.202	1
349	C ₂ H ₄ Cl ₂ O ₂	Chloral formamide Cl ₂ CCHO.HCONH ₂	192.41	116	100		1
350	C ₂ H ₄ C ₁ NO ₂	Imidazole	68.047	90	256		1
351	C ₂ H ₄ N ₂	Pyrazole	68.047	70	188		1
	: ~3AA4A12	A J 4000UIU	UG. UZ1	,,,	1 100	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
353	C ₂ H ₄ N ₂ O	Pyrazolone - NHCOCH2CH:N	84.047	165	i i	ĺ	
354	C ₂ H ₄ N ₂ O ₂	Hydantoin —NHCONHCH2CO—	100.047	220	İ	1	1 _
355	C ₃ H ₄ O	Propargyl alcohol HC:CCH2OH	56 .031	-17	115	0.972	324
356	C ₃ H ₄ O	Acrolein H ₂ C:CH.CHO	56.031	-87.7	52.5	0.841	119
357	C.H.O	Allylene oxide	56.031		63		
58	C ₁ H ₄ O ₂	Acrylic acid H ₂ CCHCO ₂ H	72.031	12.3	141.9	1.051	264
359	C ₃ H ₄ O ₃	Pyruvic acid CH ₂ COCO ₂ H	88.031	13.6	165	1.267	873
60 61	C ₁ H ₄ O ₄	Malonic acid CH ₂ (CO ₂ H) ₂	104.031 104.031	135.6	163.3	1.42244	119
362	C ₂ H ₄ O ₄ C ₂ H ₄ O ₅	Tartronic acid HOCH(CO ₂ H) ₂	120.031	54 158 d.	103.3	1.422	1333
363	C ₃ H ₄ O ₄	Mesoxalic acid (HO) ₂ C(CO ₂ H) ₂	136.03	121			100
364	C ₂ H ₄ Br	1-Bromopropylene CH ₃ CH:CHBr	120.955	-116.6	60.2	1.42819.6	452
65	C ₃ H ₃ Br	2-Bromopropylene CH ₂ CBr:CH ₂	120.955	-124.8	48.4	1.36220	10.
66	C ₂ H ₃ Br	3-Bromopropylene BrCH ₂ CH ₂ CH ₂	120.955	-119.4	71.3	1.398	489
67	C ₄ H ₄ BrO	Bromoacetone CH ₂ COCH ₂ Br	136.955	-54	127	1.603	1
68	C ₁ H ₄ BrO ₂	dl-1-Bromopropionic acid	152.955	25.7	203.5	1.700	52
69	C ₂ H ₂ BrO ₂	2-Bromopropionic acid	152.96	61			
70	C ₂ H ₄ Br ₂	1, 1, 2-Tribromopropane	280.79		201	2.356	
71	C,H,Br,	1, 2, 2-Tribromopropane	280.79		191	2.3312	
72	C ₂ H ₄ Br ₂	1, 2, 3-Tribromopropane	280.79	17	222	2.43623	76
73	C ₃ H ₅ Cl	1-Chloropropylene CH ₂ CH:CHCl	76.497		36		
74	C ₃ H ₅ Cl	2-Chloropropylene CH ₃ CCl:CH ₂	76.497	-137.4	22.7	0.931	
75	C ₂ H ₆ Cl	3-Chloropropylene ClCH ₂ CH:CH ₂	76.497	-136.4	44.6	0.938	22
76	C ₂ H ₆ ClN ₂ O ₆	Chlorodinitrohydrin	200.51	6.8	12315	1.5415	
77	C ₃ H ₅ ClO	Chloroacetone CH ₂ COCH ₂ Cl	92.497	-44.5	121	1.16216	1
78	C ₃ H ₄ ClO	Propionyl chloride C ₂ H ₄ COCl	92.497	-94.0	80	1.065	15
79	C ₃ H ₄ ClO	α-Epichlorohydrin	92.497	-25.6	117	1.184	89
80	C ₂ H ₅ ClO ₂	Chloroacetyl carbinol	108.497	74 d.			1
81	C ₃ H ₄ ClO ₂	1-Chloropropionic acid	108.497		186	1.3069	1
82	C ₃ H ₃ ClO ₂	2-Chloropropionic acid	108.497	61	204		
83	C ₃ H ₅ ClO ₃	Ethyl chloroformate ClCO ₂ C ₂ H ₅	108.497	-80.6	95	1.13918.2	
84	C ₃ H ₅ ClO ₂	Methyl chloroacetate ClCH2CO2CH3	108.497	-32.7	131.5	1.22	1
85	C ₂ H ₅ Cl ₂	1, 1, 2-Trichloropropane	147.413		137	1.37225	1
86	C ₃ H ₅ Cl ₃	1, 1, 3-Trichloropropane	147.413		148	1.36216	1
87	C ₃ H ₄ Cl ₃	1, 2, 2-Trichloropropane	147.413	14.7	123	1.31826	
88 89	C ₃ H ₄ Cl ₃ C ₃ H ₅ Cl ₃ O	1, 2, 3-Trichloropropane	147.413 163.413	-14.7	156	1.41715	1
190 190	C ₁ H ₁ C ₁ C	1, 1, 1-Trichloroisopropyl alcohol		50	161.3 103	1 925	1
91	C ₁ H ₄ I	2-Iodopropylene CH ₂ CI:CH ₂	167.97 167.97	-99.3	103.1	1.835 1.848 ¹²	1
92	C ₁ H ₄ IO	Iodoacetone CH ₂ COCH ₂ I	183.97	-99.5	58.411	2.1716	
93	C.H.IO.	1-Iodopropionic acid CH ₂ CHICO ₂ H	199.97	45.5	1050.3	2.17	1
94	C.H.IO.	2-Iodopropionic acid ICH ₂ CH ₂ CO ₂ H	199.97	82	100		
95	C.H.N	Propionitrile C ₂ H ₅ CN	55.047	-91.9	97.1	0.783	2
96	C.H.N	Ethyl isocyanide C ₂ H ₆ NC	55.047	< -66	79	0.74221.8	li
97	C.H.NO	Ethyl isocyanate C ₂ H ₆ CNO	71.047	\ 00	60	0.898	1 -
98	C ₂ H ₂ NO	Acrylamide CH ₂ :CHCONH ₂	71.047	85		0.000	1
99	C ₃ H ₄ NO	2-Hydroxypropionitrile HOCH ₂ CH ₂ CN	71.047		221	1.059	1
.00	C ₄ H ₄ NO	Lactonitrile CH ₂ CH(OH)CN	71.047	-40.0	184 s. d.	0.992	94
01	C ₂ H ₅ NO ₂	Isonitrosoacetone CH ₂ COCH(:NOH)	87.407	69		1	"
02	C ₂ H ₅ NO ₂	Allyl nitrite C ₂ H ₄ ONO	87.047		44	0.9550	1
.03	C ₃ H ₅ NS	Ethyl thiocyanate C ₂ H ₅ CNS	87.112	-85.5	144.4	0.996	49
04	C ₂ H ₄ NS	Ethyl isothiocyanate C2H4CSN	87.112	-5.9	132	0.995	65
05	C ₂ H ₂ NS ₂	μ -Mercaptothiazoline	119.177		217		1
06	C ₃ H ₄ N ₂ O ₆	Glycerol trinitrite	179.06		154	1.29110.6	1
07	C ₂ H ₄ N ₂ O ₉	Glycerol trinitrate	227.06	2.9	16016	1.60114	1
				13.2	exp. 260	1	
.08	C ₂ H ₆	Cyclopropane	42.046	-126.6	-34.4	0.720-79	
09	C ₃ H ₆	Propylene CH ₂ CH:CH ₂	42.046	-185.2	-47.0	0.609-47	1
10	C ₃ H ₄ AsN	Cacodyl cyanide (CH ₂) ₂ AsCN	131.014		138		
11	C ₂ H ₆ Br ₂	1, 1-Dibromopropane CH ₃ CH ₂ CHBr ₂	201.88		130	1	
12	C ₂ H ₆ Br ₂	1, 2-Dibromopropane CH ₃ CHBrCH ₂ Br	201.88	-55.5	140	1.933	66
13	C ₃ H ₆ Br ₂	1, 3-Dibromopropane	201.88	-34.4	167.0	1.979	671
14	C ₂ H ₆ Br ₂ C ₂ H ₆ Br ₂ O	2, 2-Dibromopropane CH ₃ CBr ₂ CH ₃	201.88		114.5	1.783	
115		1, 1'-Dibromoisopropyl alcohol	217.88	,	219	2.1118	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
416	C ₂ H ₆ Br ₂ O	2, 3-Dibromopropyl alcohol	217.88		219	2.1680	ī
417	C.H.Cl.	1, 1-Dichloropropane CH ₂ CH ₂ CHCl ₂	112.962	4.5	87	1.14310	1
418	C,H,Cl,	1, 2-Dichloropropane CH, CHClCH, Cl.	112.962		96.8	1.16614	
419	C ₂ H ₆ Cl ₂	1, 3-Dichloropropane ClCH ₂ CH ₂ CH ₂ Cl	112.962		125	1.20116	
420	C ₂ H ₆ Cl ₂	2, 2-Dichloropropane CH ₂ CCl ₂ CH ₂	112.962		69.7	1.093	177
421	C ₃ H ₆ Cl ₂ O	1, 1-Dichloroisopropyl alcohol	128.96		147.8	1.333	
422	C,H,Cl,O	1, 1'-Dichloroisopropyl alcohol	128.96		174	1.367	532
423	C,H,Cl,O	2, 3-Dichloropropyl alcohol	128.96		183	1.355	
424	C,H,Cl,O,	Dichloromethylal H ₂ C(OCH ₂ Cl) ₂	144.96		166	1.35211	
425	C ₂ H ₆ Cl ₂ N ₃	cis-Chloralimide	403.19	155			
426	C,H,INO	Iodoacetoxime ICH ₂ C(:NOH)CH ₂	198.99	64.5			
427	C,H,I,	1, 2-Diiodopropane CH ₂ CHICH ₂ I	295.91		d.	2.490	
428	C,H ₆ I,	1, 3-Diiodopropane ICH ₂ CH ₂ CH ₂ I	295.91	-13.0	224	2.57615	797
429	C ₂ H ₆ I ₂	2, 2-Diiodopropane (CH ₂) ₂ CI ₂	295.91	10.0	148 d.	2.4460	'''
431	C ₂ H ₆ N ₂	Pyrazoline	70.062		144	2.410	1
		Ethyleneurea — CH ₂ NHCONHCH ₂ —	86.062	131	111	1	
432	C ₃ H ₄ N ₂ O	Ethylideneurea CH ₂ CH:NCONH ₂	86.062	154	160 d	1	
433	C,H,N,O				100 u	1	
434	C,H6N2OS	Acetylthiourea CH ₂ CONHCSNH ₂	118.13	165	1	1	
435	C ₂ H ₆ N ₂ O ₂	Acetylurea NH(COCH ₁) ₂	102.062	217		1	
436	C ₃ H ₆ N ₂ O ₂	Malonamide H ₂ C(CONH ₂) ₂	102.062	170			
437	C ₂ H ₆ N ₂ O ₂	Methylglyoxime	102.06	153	ľ		
438	C ₂ H ₄ N ₂ O ₃	Hydantoic acid	118. 062	171	1		
439	C ₂ H ₆ N ₂ O ₃	Propylnitrolic acid	118.06	66		1	
440	C ₂ H ₆ N ₂ O ₃	Methyl allophanate	118.06	208	ŀ	İ	
441	C,H,N,O,	Propylpseudonitrole	118.06	76	ļ		1
442	C,H,N,O,	Nitrourethane C ₂ H ₅ CO ₂ NHNO ₂	134.06	64			
443	C2H6N2O7	Glycerol-1, 3-dinitrate	182.06	< -30	14815	1.4715	
444	C ₁ H ₄ N ₄ O ₃	Ammonium fulminurate	146.078	d.			1166
445	C ₂ H ₆ N ₆	Melamine (CNNH ₂) ₃	126.094	<250	}	1.573260	1311
446	C,HO	Allyl alcohol CH2:CHCH2OH	58.046	-129	97.0	0.855	204
447	C,HO	Propionaldehyde C ₂ H ₅ CHO	58.046	-81	48.8	0.807	20
448	C,HO	Acetone CH ₃ COCH ₃	58.046	-94.3	56.1	0.7915	14
449	C ₁ H ₄ O ₂	Acetyl carbinol CH ₂ COCH ₂ OH	74.046	-17	146	1.08220	315
450	C ₁ H ₄ O ₂	Propionic acid C ₂ H ₅ CO ₂ H	74.046	-22	141.1	0.992	63
451	C ₂ H ₄ O ₂	Ethyl formate HCO ₂ C ₂ H ₄	74.046	-80.5	54.3	0.906	15
452	C ₂ H ₄ O ₂	Methyl acetate CH ₂ CO ₂ CH ₂	74.046	-98.1	57.1	0.933	18
453	C ₂ H ₄ O ₂	Glycide C ₂ H ₂ OCH ₂ OH.	74.046	1 00.1	162 d.	1.165	
454	C ₁ H ₆ O ₂	Glyceric aldehyde HOCH, CHOHCHO.	90.046	138	102 4.	1.200	
		Dihydroxyacetone HOCH ₂ COCH ₂ OH	90.046	75	1		1
455	C ₁ H ₄ O ₃	$d(l)$ -Lactic acid $CH_1CH(OH)CO_2H$	90.046	27		•	
456	C ₃ H ₆ O ₃	dl-Lactic acid CH ₂ CH(OH)CO ₂ H		18	12215	1.24945	381
457	C ₂ H ₄ O ₃		90.046		89.7	1.06922	991
458	C ₁ H ₄ O ₃	Dimethyl carbonate (CH ₂ O) ₂ CO	90.046	0.5	89.7	1.009	
459	C ₁ H ₄ O ₃	Ethyl acid carbonate C ₂ H ₄ HCO ₃	90.046	-57	1,51 0	1 1001	-
460	C,H ₆ O,	Methyl glycollate HOCH2CO2CH3	90.046		151.2	1.16818	- {
461	C ₃ H ₆ O ₃	α-Trihydroxymethylene	90.046	64	s. 46	1	1
462	C ₂ H ₆ S	Allyl mercaptan CH2:CHCH2SH	74.111		90		1
463	C ₃ H ₇ A ₈ O ₃	Allylarsonic acid	166.01	128			1
464	C ₂ H ₇ Br	n-Propyl bromide CH ₂ CH ₂ CH ₂ Br	122.97	-110.0	70.9	1.353	346
465	C ₂ H ₇ Br	Isopropyl bromide (CH ₁) ₂ CHBr	122.97	-89.0	59.6	1.310	289
466	C ₂ H ₇ BrO	Bromoisopropyl alcohol	138.97		148		1
467	C ₂ H ₇ BrO	3-Bromopropyl alcohol	138.97		112185	1.537	
468	C ₂ H ₇ Cl	n-Propyl chloride CH ₂ CH ₂ CH ₂ Cl	78.512	-122.8	46.6	0.890	71
469	C ₂ H ₇ Cl	Isopropyl chloride (CH ₃) ₂ CHCl	78.512	-117.0	36.5	0.860	
470	C,H,ClO	Chloroisopropyl alcohol	94.512		126	1.11520	371
471	C ₂ H ₇ ClO	2-Chloropropyl alcohol	94.512		134	1.103	354
472	C ₂ H ₇ ClO ₂	2-Chloro-1, 3-dihydroxypropane	110.512		124 . 514.6	1.321	
473	C ₁ H ₇ ClO ₂	3-Chloro-1, 2-dihydroxypropane	110.512		213 d.	1.322	1
474	C ₂ H ₇ F	n-Propyl fluoride CH ₂ CH ₂ CH ₂ F	62.054		210 tt.	1.022	1
	C ₂ H ₇ I	n-Propyl indide CH ₂ CH ₂ CH ₂ I	169.99	-101.4	102.4	1.747	621
475 478			169.99	-90.8	89.5	1.703	
476	C,H,I	Isopropyl iodide (CH ₃) ₂ CHI		-80.8	1056	1.703	597
477	C,H,IO	Iodoisopropyl alcohol	185.99	1		0.040**	1
478	C ₂ H ₇ IO	3-Iodopropyl alcohol	185.99	1	225.4	2.34918	ı
479	C ₂ H ₇ N	Allylamine CH ₂ :CHCH ₂ NH ₂	57.062		53.2	0.761	237

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
480	C ₂ H ₇ NO	Aminoacetone CH ₂ COCH ₂ NH ₂	73.062		189 d.	1	Ī
481	C ₃ H ₇ NO	Acetoxime CH ₃ CH:NOH	73.062	61	136.3	0.9720	1162
482	C ₂ H ₇ NO	Propionamide C ₂ H ₅ CONH ₂	73.062	79	213	1.042	1153
483	C ₂ H ₇ NOS	Thiourethane C ₂ H ₆ COSNH ₂	105.13	108		•	
484	C ₂ H ₇ NO ₂	d-Alanine CH ₃ CH(NH ₂)CO ₂ H	89.062			1	1225
485	C ₂ H ₇ NO ₂	dl-Alanine	89.062	295	s. >200	1	1
486	C ₂ H ₇ NO ₂	Sarcosine CH ₃ NHCH ₂ CO ₂ H	89.062	210 d.			
487	C ₂ H ₇ NO ₂	1-Nitropropane C ₂ H ₄ CH ₂ NO ₂	89.062	}	131.5	1.01115	136
488	C ₂ H ₇ NO ₂	2-Nitropropane CH ₂ CH(NO ₂)CH ₂	89.062		120	1.0240	
489	C ₂ H ₇ NO ₂	Propyl nitrite C ₃ H ₇ ONO	89.062		57	0.935	16
490	C ₃ H ₇ NO ₂	Isopropyl nitrite (CH ₃) ₂ CHONO	89.062		45	0.84426	
491	C ₂ H ₇ NO ₂	Lactamide CH ₃ CH(OH)CONH ₂	89.062	74		1.1384	
492	C ₂ H ₇ NO ₂	Urethane C ₂ H ₅ OCONH ₂	89.062	48	180	1.1120	1
493	C ₂ H ₇ NO ₂	dl-Serine HOCH ₂ CH(NH ₂)CO ₂ H	105.062	246 d.	1		
493.1	C ₂ H ₇ NO ₂	d-Serine HOCH ₂ CH(NH ₂)CO ₂ H	105.062	228 d.			1249
494	C ₂ H ₇ NO ₂	Isoserine H ₂ NCH ₂ CH(OH)CO ₂ H	105.062	242 d.	1		1
495	C ₂ H ₇ NO ₃	Propyl nitrate C ₂ H ₇ ONO ₂	105.062		100.5	1.05325	105
496	C ₃ H ₇ NO ₃	Isopropyl nitrate (CH ₂) ₂ CHONO ₂	105.062		102	1.036	
497	C ₃ H ₇ NO ₅	Glycerol-1-nitrate	137.06	58	160	1.40	1
498	C ₂ H ₇ NO ₅	Glycerol-2-nitrate	137.06	54	160	1.40	1
499	C ₂ H ₇ N ₃ O	Acetaldehyde semicarbazone	101.08	162			
500	C ₂ H ₃	Propane CH ₂ CH ₂ CH ₃	44.062	-189.9	-44.5	0.585-44.5	
501	C.H.CINO.S	Cysteine hydrochloride	157.59	175			
502	C ₂ H ₈ N ₂ O	1, 2-Dimethylurea CO(NHCH ₃) ₂	88.078	102.5	270	1.142	
503	C ₂ H ₈ N ₂ O	1, 1-Dimethylurea (CH ₂) ₂ NCONH ₂	88.078	182		1.255	1
504	C ₂ H ₈ N ₂ O	Ethylurea C ₂ H ₆ NHCONH ₂	88.078	92		1.21318	
505	C.H.O	n-Propyl alcohol C ₂ H ₄ CH ₂ OH	60.062	-127	97.8	0.804	59
506	C ₂ H ₃ O	Isopropyl alcohol (CH ₂) ₂ CHOH	60.062	-85.8	82.3	0.786	37
508	C.H.O	Methyl ethyl ether CH ₂ OC ₂ H ₅	60.062		7.9	0.697	
509	C ₂ H ₈ OS ₂	1, 2-Dithioglycerol	124.192	130 d.		1.34214.4	
510	C.H.O.	1, 2-Propyleneglycol	76.062		189	1.03823	
511	C ₂ H ₈ O ₂	Trimethyleneglycol HO(CH ₂) ₂ OH	76.062		214 d.	1.053	
512	C.H.O.	Glycol methyl ether HOCH2CH2OCH3.	76.062		124.6	0.96915	
513	C.H.O.	Methylal HCH(OCH ₁) ₂	76.062	-104.8	44	0.862	8
514	C ₂ H ₈ O ₂ S	1-Thioglycerol HOCH ₂ CH ₂ (OH)CH ₂ SH	108.127		d.	1.29514.4	
515	C.H.O.	Glycerol HOCH(CH ₂ OH) ₂	92.062	17.9	290	1.260	512
516	C ₂ H ₈ S ₃	Trithioglycerol HSCH(CH ₂ SH) ₂	140.257	d.		1.39114.4	1
517	C ₃ H ₈ S	Methyl ethyl sulfide CH ₃ SC ₂ H ₅	76.127	-104.8	66	0.837	1
518	C.H.S	n-Propyl mercaptan C ₂ H ₇ SH	76.127	-111.5	68		1
519	C.H.S	Isopropyl mercaptan (CH ₃) ₂ CHSH	76 . 127		60		1
520	C.H.As	Trimethylarsine (CH ₂),As	120.029		52.8	1.12422	1
521	C ₂ H ₂ AsO ₂	Propylarsonic acid C ₂ H ₇ AsO ₂ H	168.03	126			1
522	C ₂ H ₂ Bi	Trimethyl bismuthine (CH ₂) ₃ Bi	254.07		110	2.30018	
523	C.H.CIN.O	Lactamidine hydrochloride	124.54	171			
524	C ₂ H ₂ N	n-Propylamine C ₂ H ₇ NH ₂	59.077	-83.0	48.7	0.719	72
525	C ₂ H ₂ N	Leopropylamine (CH ₂) ₂ CHNH ₂	59.077	-101.2	34	0.694	875
526	C ₂ H ₂ N	Trimethylamine (CH ₂) ₂ N	59.077	-124.0	3.5	0.662-5.2	1
527	C ₂ H ₂ N ₂ O ₂	Guanidine acetate	119.09	230			
528	C ₂ H ₂ O ₄ P	Trimethyl phosphate (CH ₂) ₂ PO ₄	140.09		193	1.22015	ļ
529	C ₂ H ₂ P	Propylphosphine C ₃ H ₇ PH ₂	76.093		53.5	ł	1
530	C.H.P	Trimethylphosphine (CH ₃) ₃ P	76.093	•	42	>1	1
531	C ₂ H ₂ Sb	Trimethylstibine (CH ₃) ₃ Sb	166.84		80.6	1.52314	
532	C ₂ H ₁₀ ClN	Trimethylamine hydrochloride	95.543	275 d.			
533	C ₂ H ₁₀ N ₂	dl-Propylenediamine CH ₂ (CH ₂ NH ₂) ₂	74.093		119	0.878	
534	C ₃ H ₁₀ N ₂	Trimethylenediamine H ₂ N(CH ₂) ₃ NH ₂	74.093		135.5		1
535	C ₂ H ₁₂ N ₆ O ₃	Guanidine carbonate	180.14	197		1.2514	1169
537	C ₄ Br ₄ S	Thiophene tetrabromide	399.73	112			1
538	C ₄ Cl ₁₀ O	Perchloroether (C ₂ Cl ₅) ₂ O	418.58	69	1	1.90014	I
539	C4F6O3	Trifluoroacetic anhydride (F ₃ CCO) ₂ O	210.00	-65	40.5		1
540	C ₄ I ₂	Diiododiacetylene IC:CC:CI	301.86	101	1	1	1
541	C ₄ HBr ₄ N	Tetrabromopyrrole	382.68	250			1
542	C ₄ HI ₄ N	Tetraiodopyrrole	570.74	150 d.		1	1
U24	1 04111414	Cyanoform CH(CN) ₂	91.032	93.5	I	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I
544	C4H2ClN2O2	5, 5-Dichlorobarbituric acid	196.95	211 d.			Ì
545	C ₄ H ₂ Cl ₂ O ₂	Fumaryl chloride ClOCCH:CHCOCl	152.93		160	1.410	938
546	C ₄ H ₂ I ₂ S	Thiophene diiodide	335.94	40			
547	C ₄ H ₂ N ₂ O ₄	Alloxan OC(NHCO) ₂ CO	142.03	256 d.			
548	C4H2O3	Maleic anhydride (:CHCO) ₂ O	98.015	57	202	0.934	1
549	C ₄ H ₂ O ₄	Acetylenedicarboxylic acid	114.02	179			
550	C ₄ H ₄ BrO ₄	Bromofumaric acid	194.94	186			
551	C ₄ H ₂ BrO ₄	Bromomaleic acid HO2CCBr:CHCO2H.	194.94	141			1
552	C4H2CIN2O2	5-Chlorobarbituric acid	162.50	295 s. d.			
553	C4H1NO2S	2-Nitrothiophene	129.096	46.5	225		
554	C.H.N.O.	Violuric acid	157.05	224 d.			
555	C4H4AsCl	bis-2-Chlorovinyl chloroarsine	233.36		230	1.702	
556	C ₄ H ₄ BrNS	2-Bromoallyl isothiocyanate	178.02		200		
557	C ₄ H ₄ Br ₂ O ₄	1, 2-Dibromosuccinic acid	275.86	255		1	1
558	C ₄ H ₄ Cl ₂ O ₂	Succinyl chloride (CH ₂ COCl) ₂	154.95	17	192	1.395	87
559	C ₄ H ₄ Cl ₂ O ₂	Chloroacetic anhydride (ClCH ₂ CO) ₂ O	170.95	46	163116	1.000	"
			80.047	54.5	267	0.98541.1	109
60	C ₄ H ₄ N ₂	Succinyl nitrile (CH ₂ CN) ₂				-	
61	C ₄ H ₄ N ₂	Pyridazine (1, 2-Diazine)	80.047	-8	208	1.107	101
62	C ₄ H ₄ N ₂	Pyrimidine (1, 3-Diazine)	80.047	22	124	4 00461	100
63	C ₄ H ₄ N ₂	Pyrazine (1, 4-Diazine)	80.047	53	118	1.0314	109
64	C ₄ H ₄ N ₂ O ₂	Uracil —NHCONHCH:CHCO—	112.05	338			
65	C ₄ H ₄ N ₂ O ₃	Barbituric acid OC(NHCO) ₂ CH ₂	128.047	245	260 d.		1
67	C ₄ H ₄ N ₄	Hydrocyanic acid (tetramer)	108.063	179 d.			
68	C ₄ H ₄ O	Tetrolic aldehyde CH ₂ C:CCHO	68.031	-26	107	0.92717	91
69	C ₄ H ₄ O	Furfural (Furan)	68.031		31	0.937	26
70	C4H4O2	Tetrolic acid CH2C:CCO2H	84.031	76.5	203		1
71	C4H4O2	Succinic anhydride	100.031	119.6	261	1.104	1
72	C ₄ H ₄ O ₃	Tetronic acid —OCH2C(OH):CHCO—.	100.03	141			
73	C,H,O,	Fumaric acid (:CHCO ₂ H) ₂	116.031	287	290	1.635	1
74	C.H.O.	Maleic acid (:CHCO ₂ H) ₂	116.031	130.5	135 d.	1.590	
75	C.H.O.	Hydroxymaleic acid	132.03	152	100 4.	1 2.000	1
		Thiophene	84.096	-40.0	85	1.065	69
76	CHAS				00	1.005	00
77 70	C ₄ H ₄ BrO ₄	Bromosuccinic acid	196.95	159	125	1.091	ı
78	C.H.ClO	Crotonyl chloride CH ₂ CH:CHCOCl	104.497		120	1.091	1
79	C ₄ H ₄ ClO ₂	1-Chloro-a-crotonic acid	120.50	99			1
80	C ₄ H ₄ ClO ₂	1-Chloro-β-crotonic acid	120.50	66			- 1
81	C ₄ H ₄ ClO ₂	2-Chloro-β-crotonic acid	120.50	61			
82	C,H,Cl,O	1, 1, 2-Trichlorobutyraldehyde	175.41		165.4	1.396	52
83	C ₄ H ₅ Cl ₃ O ₂	1, 1, 2-Trichlorobutyric acid	191.41	60	238		
84	C4H4Cl3O2	1, 1, 3-Trichlorobutyric acid	191.41	75			1
85	C4H4Cl2O2	Ethyl trichloroacetate Cl ₂ CCO ₂ C ₂ H ₃	191.41		168	1.383	43
86	C4H4F3O2	Ethyl trifluoroacetate F ₂ CCO ₂ C ₂ H ₅	142.039		61.7	1.19518	
87	C ₄ H ₄ N	Allyl cyanide CH2:CHCH2CN	67.047		116.1	0.832	21
88	C ₄ H ₅ N	Allyl isocyanide CH2:CHCH2NC	67.047		106	0.79417	1
89	C ₄ H ₄ N	Pyrrole	67.047		131	0.948	61
90	C ₄ H ₅ NO ₂	Ethyl cyanoformate NCCO ₂ C ₂ H ₅	99.047		116	1.013	
91	C.H.NO.	Methyl cyanoacetate NCCH ₂ CO ₂ CH ₂	99.047		200	1.12316	1
92	C ₄ H ₄ NO ₂	Succinimide	99.047	124	288	1.41216	133
93	C ₄ H ₄ NS	Allyl thiocyanate CH ₂ :CHCH ₂ CNS	99.112	124	161	1.050	100
				100.0	150.7		68
94	C.H.NS	Allyl isothiocyanate CH2:CHCH2CSN	99.112	-100.0		1.01020	00
95	C ₄ H ₄	1, 2-Butadiene CH ₂ :C:CHCH ₂	54.046		19	İ	
96	C ₄ H ₄	1, 3-Butadiene CH ₂ :CHCH:CH ₂	54.046		-2.6		
97	C ₄ H ₄	Dimethylacetylene (CH ₃ C:) ₁	54.046		28.9		
98	C ₄ H ₄	Ethylacetylene C ₂ H ₄ C:CH	54.046	-130	18.5	0.6680	10
99	C ₄ H ₆ As ₂ O ₄	Diarsenodiacetic acid	267.97	205 d.		You?	1
00	C ₄ H ₆ Br ₂ O ₂	Ethyl dibromoacetate Br ₂ CHCO ₂ C ₂ H ₅	245.88		194	1.903	58
01	C ₄ H ₆ Br ₄	1, 1, 4, 4-Tetrabromobutane	373.71		14510	2.529	78
02	C4H6Br4	1, 2, 3, 4-Tetrabromobutane	373.71	19; 39	18160		
03	C4H6Br4	2, 2, 3, 3-Tetrabromobutane	373.71	39	230	1	
04	C ₄ H ₆ Cl ₂ O ₂	Ethyl dichloroacetate	156.96		158.2	1.282	30
04.1	C ₄ H ₄ Cl ₂ O ₂	Methyl 1, 2-dichloropropionate	156.96		9250	1.328	~
0 1 .1	C4H6Cl4O	1, 2, 2, 2-Tetrachloroethyl ether	211.88		189.7	1.422	1
		I I A. A. A. A. I CHIMCHIUM BUILD CHIEF	£11.00		100.1	1	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
607	C ₄ H ₆ N ₂	4-Methylimidazole	82.062	56	262.9	1.008	T
608	C4H6N2	1-Methylpyrazole	82.062		127	0.9934	828
608.1	C ₄ H ₆ N ₂	3-Methylpyrazole	82.062			1.020	898
608.2	C ₄ H ₆ N ₂	5-Methylpyrazole	82.062		204	1.022	
609	$C_4H_6N_2O_2$	Ethyl diazoacetate	114.062	-22	5912	1.08517.6	927
609.1	$C_4H_6N_2O_3S$	3-Methylpyrazole-4-sulfonic acid	162.22	258			1267
610	C ₄ H ₆ N ₄ O ₃	Allantoin	158.08	235			1328
611	C4H6N4O12	Erythritol tetranitrate	302.08	61	1		1
612	C ₄ H ₄ O	Methyl propargyl ether	70.046		62	0.8312.5	1
613	C ₄ H ₆ O	Vinyl ether (CH ₂ :CH) ₂ O	70.046		39		1
614	C ₄ H ₆ O	Crotonaldehyde CH ₃ CH:CHCHO	70.046	-75	104	0.85944	361
615	C ₄ H ₆ O	Dimethylketene (CH ₂) ₂ C:CO	70.046	-97.5	34.3		
616	C ₄ H ₆ O ₂	Succinic dialdehyde (CH ₂ CHO) ₂	86.046		5710	1.064	290
617	C ₄ H ₆ O ₂	α-Crotonic acid CH ₂ CH:CHCO ₂ H	86.046	72	185	0.96479.7	1112
619	C4H6O2	β-Crotonic acid CH ₂ :C(CH ₂)CO ₂ H	86.046	14.6	171.9 d.	1.027	411
620	C ₄ H ₆ O ₂	1-Methylacrylic acid	86.046	16	163	1.015	333
621	C4H6O2	Trimethylenecarboxylic acid	86.046	17	182.5	1.088	ļ
622	C ₄ H ₆ O ₂	Vinylacetic acid CH2:CHCH2CO2H	86.046	-39	163	1.01315	849
623	C4H4O2	Allyl formate HCO ₂ C ₂ H ₅	86.046		83	0.94813	
624	C4H6O2	Methyl acrylate CH2:CHCO2CH3	86.046		80.5	0.95618	113
625	C4H6O2	Diacetyl CH ₂ COCOCH ₂	86.046		88	0.975	85
626	C4H6O3	Acetic anhydride (CH2CO)2O	102.046	-73.0	139.6	1.082	81
627	C4H4O	1-Ketobutyric acid C ₂ H ₅ COCO ₂ H	102.046	32	8521	Α 📟	
628	C4H6O2	Methyl pyruvate CH ₂ COCO ₂ CH ₃	102.046		137	1.1540	
629	C4H6O4	Succinic acid (CH ₂ CO ₂ H) ₂	118.046	185	235	1.562	1220
630	C ₄ H ₆ O ₄	Isosuccinic acid CH ₂ CH(CO ₂ H) ₂	118.046	135		1.455	
631	C ₄ H ₆ O ₄	Dimethyl oxalate (CO ₂ CH ₂) ₂	118.046	54.0	163.3	1.12042	1122
632	C ₄ H ₄ O ₄	Ethyl hydrogen oxalate HO ₂ CCO ₂ C ₂ H ₅ .	118.046		11715	1.218	
633	C4H6O	Diglycollic acid O(CH ₂ CO ₂ H) ₂	134.05	148			
634	C ₄ H ₄ O ₄	Glycollic anhydride (CH2OHCO)2O	134.05	130	i		
635	C,H,O,	l-Malic acid HO ₂ CCH ₂ CH(OH)CO ₂ H	134.05	100	140 d.	1.595	
636	C ₄ H ₆ O ₆	dl-Malic acid	134.05	129	150 d.	1.601	
637	C ₄ H ₆ O ₅	Isomalic acid CH ₃ C(OH)(CO ₂ H) ₂	134.05	160 d.	100 a.	1.001	
638	C ₄ H ₆ O ₆	Mesotartaric acid	150.05	140		1.666	1224
639	C4H6O6	d-Tartaric acid	150.05	170	1	1.760	1222
640	C ₄ H ₆ O ₆	dl-Tartaric acid	150.05	206	1	1.687	1222
641	C4H6O6	Dihydroxytartaric acid	182.05	114	1	1.007	
642	C ₄ H ₄ S	Divinyl sulfide (CH ₂ :CH) ₂ S	86.111	114	101	0.912	
643	C ₄ H ₇ Br	Vinylethyl bromide CH ₂ :CHCH ₂ CH ₂ Br	134.97		99.0	0.312	
644	C ₄ H ₇ BrO	Bromomethyl ethyl ketone	150.97		146		
645	C ₄ H ₇ BrO ₂	1-Bromobutyric acid C ₂ H ₂ CHBrCO ₂ H.	166.97	-4	11520	1.57415	
646	C ₄ H ₇ BrO ₂ C ₄ H ₇ BrO ₂	2-Bromobutyric acid	166.97	18	12216	1.0/418	
		1		32	122.		
647	CH7BrO2	3-Bromobutyric acid	166.97	32	6339	1 4690	205
648	C ₄ H ₇ BrO ₂	1-Bromoethyl acetate	166.97		7027	1.4620	395
648.1	C ₄ H ₇ BrO ₂	2-Bromoethyl acetate	166.97			1.5140	450
648.2	C ₄ H ₇ BrO ₂	Ethyl bromoacetate BrCH ₂ CO ₂ C ₂ H ₅	166.97		159	1.5144	438
648.3	C ₄ H ₇ BrO ₂	Methyl 1-bromopropionate	166.97		68.548	1.4917	436
648.4	C ₄ H ₇ BrO ₂	Methyl 2-bromopropionate	166.97		7936	1.5192	460
649	C ₄ H ₇ Br ₃	1, 2, 3-Tribromobutane	294.80		11319	2.190	752
650	C ₄ H ₇ Br ₃ O	1, 1, 1-Tribromo-tertbutyl alcohol	310.80	176			
651	C ₄ H ₇ ClO	Butyryl chloride C ₂ H ₇ COCl	106.51	-89.0	102	1.028	194
652	C ₄ H ₇ ClO	Isobutyryl chloride (CH ₃) ₂ CHCOCl	106.51	-90.0	. 92	1.017	168
653	C ₄ H ₇ ClO ₂	1-Chlorobutyric acid C ₂ H ₅ CHClCO ₂ H	122.51		101.318		1
654	C ₄ H ₇ ClO ₂	d-2-Chlorobutyric acid	122.51	44	10013		
655	C ₄ H ₇ ClO ₂	dl-2-Chlorobutyric acid	122.51	16.5	11622	1.186	386
656	C ₄ H ₇ ClO ₂	3-Chlorobutyric acid	122.51	16	19622	1.25010	
657	C ₄ H ₇ ClO ₂	1-Chloroethyl acetate	122.51		4635	1.1124	190
657.1	C ₄ H ₇ ClO ₂	2-Chloroethyl acetate	122.51		145	1.1780	285
658	C4H7ClO2	Ethyl chloroacetate ClCH ₂ CO ₂ C ₂ H ₅	122.51		144.2	1.159	267
659	C ₄ H ₇ ClO ₂	Methyl 2-chloropropionate	122.51		148	1.187	
660	C ₄ H ₇ ClO ₂	n-Propyl chloroformate ClCO ₂ C ₂ H ₇	122.51		116	1.08325	
001	C ₄ H ₇ Cl ₂ O	1, 2, 2-Trichloroethyl ethyl ether	177.43		170	1.33014	
661	0411/0110	1, 2, 2 11.01.01.0001.j1 conj1 concr		97			

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
663	C ₄ H ₇ Cl ₂ O ₂	Chloral alcoholate Cl ₂ CCHO.C ₂ H ₃ OH	193.43	55	115	1.14340	
664	C4H7Cl3O2	1, 1, 2-Trichlorobutyraldehyde hydrate	193.43	78		1.6944	
665	C ₄ H ₇ FO ₂	Ethyl fluoroacetate FCH ₂ CO ₂ C ₂ H ₄	106.054			1.093	33
666	C ₄ H ₇ IO ₂	Ethyl iodoacetate ICH2CO2C2H5	213.99		180	1.81712.7	618
667	C ₄ H ₇ N	n-Butyronitrile C ₂ H ₇ CN	69.062	-112.6	118	0.794	47
668	C ₄ H ₇ N	Isobutyronitrile (CH ₃) ₂ CHCN	69.062		108	1	İ
669	C ₄ H ₇ N	Isopropylisocyanide (CH ₃) ₂ CHNC	69.062		87	0.760	1
67 0	C ₄ H ₇ N	Pyrroline	69.062		91	0.910	
671	C ₄ H ₇ NO	Acetonecyanhydrin (CH ₂) ₂ C(OH)CN	85.062	-19	8223	0.93219	117
672	C ₄ H ₇ NO	a-Pyrrolidone	85.062	25	250.8	1.116	
673	C ₄ H ₇ NO ₂	Diacetamide NH(COCH ₂) ₂	101.062	78	223.5		ł
674	C4H7NO2	Diacetylmonoxime CH ₃ COC(:NOH)CH ₃	101.062	74	186	j	•
675	C4H7NO2S	Ethyl thiooxamate H ₂ NCSCO ₂ C ₂ H ₅	133.13	63		i	
676	C ₄ H ₇ NO ₃	Acetylaminoacetic acid	117.062	206		<u> </u>	
677	C4H7NO3	Diacetohydroxamic acid	117.06	89			ŀ
678	C4H7NO3	Ethyl oxamate H ₂ NCO.CO ₂ C ₂ H ₅	117.06	115	ļ		
679	C4H7NO4	L-Aspartic acid	133.06	270		1.66112.5	
679.1	C4H7NO7	Nitrotetronic acid dihydrate	181.06	d. 184		1.684	1190
680	C ₄ H ₇ NO ₆	Ammonium tetraoxalate	197.06	130.5		1.607	ŀ
681	C4H7NS	Propyl isothiocyanate	101.127		153	0.991	İ
682	C ₄ H ₇ N ₂ O	Creatinine	113.078	260 d.			
683	C ₄ H ₅	Cyclobutane (CH ₂) ₄	56.062	-50	13	0.7034	801
684	C ₄ H ₄	1, 1-Dimethylethylene CH2:C(CH2)2	56.062		-6		1
685	C ₄ H ₈	1, 2-Dimethylethylene CH ₂ CH:CHCH ₂	56.062		1.4		
686	C ₄ H ₄	Ethylethylene C ₂ H ₄ CH:CH ₂	56.062	-130	-18	0.6680	102
687	C ₄ H ₄	Methylcyclopropane (CH ₂) ₂ CHCH ₃	56.062		5	0.691-20	
688	C4H8Brs	1, 2-Dibromobutane C2H4CHBrCH2Br.	215.89		166	1.820	
689	C ₄ H ₈ Br ₂	1, 3-Dibromobutane	215.89	l	174	1.807	632
690	C ₄ H ₄ Br ₂	1, 4-Dibromobutane Br(CH ₂) ₄ Br	215.89	-20	198 d.	1.7916	
691	C ₄ H ₅ Br ₂	2, 3-Dibromobutane CH ₂ (CHBr) ₂ CH ₂ .	215.89		158	1.830	
693	C.H.Br.	1, 2-Dibromo-2-methylpropane	215.89	-70.3	149.0	1.759	639
694	C ₄ H ₅ Br ₂ S	Di-(1-bromoethyl) sulfide	247.96	1	8716	1.742	
695	C ₄ H ₄ Cl ₂	1, 2-Dichloro-2-methylpropane	126.98		108		
696	C ₄ H ₄ Cl ₂ O	2-Chloroethyl ether (ClCH ₂ CH ₂) ₂ O	142.98		178	1.21320	461
697	C ₄ H ₄ Cl ₂ O	1, 2-Dichloroethyl ethyl ether	142.98		145	1.17423	
697.1	C ₄ H ₄ Cl ₂ O ₂	Dichlorobutylene glycol	158.98	126		1	1177
698	C.H.Cl.S	Di-(1-chloroethyl) sulfide	159.04		67.527	1.19914	
699	C.H.Cl.S	Di-(2-chloroethyl) sulfide (CH ₂ CHCl) ₂ S	159.04	13.5	12034	1.285	701
700	C ₄ H ₄ Cl ₂ OS	Di-(2-chloroethyl) sulfoxide	175.04	110	14028 d.	1.500	
701	C.H.Cl.O.S	Di-(2-chloroethyl) sulfone	191.04	53.5	18115		
701	C ₄ H ₄ N ₂	2-Methyl-4, 5-dihydroimidazole	84.078	106	198		
703	C ₄ H ₄ N ₂ O ₂	1-Acetyl-2-methylurea	116.08	180	100	1	
703 704	C ₄ H ₈ N ₂ O ₂	Dimethyloxamide (CONHCH ₂) ₂	116.08	210		Ì	
705	C ₄ H ₄ N ₂ O ₂	Dimethylglyoxime	116.08	246			
	C4H ₈ N ₂ O ₂	Succinamide (CH ₂ CONH ₂) ₂	116.03	243	ł		
706 707	C ₄ H ₈ N ₂ O ₂ C ₄ H ₈ N ₂ O ₃	Ethyl allophanate H2NCONHCO2C2H3	132.08	192	i	1	
	C ₄ H ₈ N ₂ O ₃	l-Asparagine	132.08	226	235 d.	1.54345	1254
708 700	C4H ₈ N ₂ O ₄	d-Tartaramide [CH(OH)CONH ₂] ₂	148.08	195	200 u.	1.0404	1201
709	C ₄ H ₈ N ₂ S	Allylthiourea CH ₂ :CHCH ₂ NHCONH ₂	116.143	78.4		1.21920	İ
710 711	C ₄ H ₈ O	Crotonyl alcohol CH ₂ CH:CHCH ₂ OH	72.062	> -30	118	0.854	276
		Cyclobutanol (CH ₂) ₂ CHOH	72.062	/ -30	124.1	0.92314	343
712	C ₄ H ₄ O	Cyclopropyl carbinol (CH ₂) ₂ CHCH ₂ OH			124.1	0.899	850
713	C ₄ H ₄ O		72.062				000
714	C ₄ H ₆ O	Vinylethyl alcohol CH ₂ :CHCH ₂ CH ₂ OH	72.062		114	0.856	ŀ
715	C ₄ H ₄ O	Methyl allyl ether CH ₂ :CHCH ₂ OCH ₂	72.062		46	0.7711	
716	C ₄ H ₄ O	Vinyl ethyl ether CH ₂ :CHOC ₂ H ₅	72.062	00.0	35.5	0.76314.5	
717	C ₄ H ₄ O	n-Butyraldehyde C ₂ H ₇ CHO	72.062	-99.0	75.7	0.817	50
718	C ₄ H ₄ O	Isobutyraldehyde (CH ₂) ₂ CHCHO	72.062	-65.9	61	0.794	30
719	C ₄ H ₄ O	Methyl ethyl ketone CH ₂ COC ₂ H ₅	72.062	-86.4	79.6	0.805	40
720	C ₄ H ₈ O ₂	Erythrol	88.062	1	196.5	1.047	
72 1	C ₄ H ₄ O ₂	Methylacetyl carbinol (Acetoin)	88.062	15	142	1.0024	303
	CC. H.O.	2-Hydroxybutyraldehyde (Aldol)	88.0 62	1	8320	1.103	1
722	C ₄ H ₅ O ₂			- ^	100 =		
722 723 724	C ₄ H ₄ O ₂ C ₄ H ₄ O ₂	n-Butyric acid C ₈ H ₇ CO ₂ H	88.062	-7.9 -47.0	163.5 154.4	0.959 0.949	109 88

No.	Formula	Name	Mol. wt.	М. Р.	B. P.	d	R. L. No.
725	C ₄ H ₈ O ₂	Ethyl acetate CH ₂ COC ₂ H ₅	88.062	-83.6	77.1	0.899	29
726	C ₄ H ₈ O ₂	Methyl propionate C ₂ H ₄ CO ₂ CH ₄	88.0 62	-87.5	79.9	0.917	36
727	C ₄ H ₈ O ₂	n-Propyl formate HCO ₂ C ₂ H ₇	88.062	-92.9	81.3	0.901	35
72 8	C ₄ H ₈ O ₂	Isopropyl formate HCO ₂ CH(CH ₃) ₂	88. 062		71.3	0.883	
729	C ₄ H ₈ O ₃	Ethoxyacetic acid C ₂ H ₅ OCH ₂ CO ₂ H	104.062		206		
730	C ₄ H ₈ O ₃	1-Hydroxybutyric acid	104.062	42.5	260		
731	C ₄ H ₈ O ₃	1-Hydroxyisobutyric acid	104.062	79	212		
732	C ₄ H ₈ O ₃	2-Hydroxybutyric acid	104.062	1	13014		
733	C ₄ H ₈ O ₃	Ethyl glycollate HOCH ₂ CO ₂ C ₂ H ₅	104.062		160	1.08328	
734	C ₄ H ₈ O ₃	Glycol acetate HOCH2CH2OCOCH3	104.062		182		
735	C4H4O3	Methylethyl carbonate CH ₃ (C ₂ H ₅)CO ₃ .	104.062	-14.5	109.2	1.00227	
736	C ₄ H ₅ O ₅	Methyl hydracrylate	104.062	ļ	7912	1.118	336
737	C ₄ H ₈ O ₈	Methyl lactate CH ₂ CH(OH)CO ₂ CH ₂	104.062		144.8	1.0816	883
738	C ₄ H ₈ O ₄	1, 2-Dihydroxybutyric acid	120.06	75			
739	C ₄ H ₈ O ₄	d-Methyl glycerinate	120.06		12014	1.28015	
740	C ₄ H ₈ S ₂	Diethylene disulfide	120.192	112	200		
741	C ₄ H ₉ Br	n-Butyl bromide C ₄ H ₉ Br	136.99	-112.4	101.6	1.275	372
742	C ₄ H ₉ Br	Isobutyl bromide (CH ₂) ₂ CHCH ₂ Br	136.99	-118.5	91.5	1.264	352
743	C ₄ H ₉ Br	secButyl bromide C ₂ H ₅ CHBrCH ₃	136.99		91.3	1.2514	347
44	C ₄ H ₉ Br	tertButyl bromide (CH ₃) ₃ CBr	136.99	-20	73.3	1.222	309
745	C ₄ H ₉ BrO	2-Bromoethyl ethyl ether	152 . 99		128.2	1.370	
746	C ₄ H ₉ Cl	n-Butyl chloride C ₄ H ₂ Cl	92.527	-123.1	78.0	0.884	132
747	C ₄ H ₉ Cl	Isobutyl chloride (CH ₂) ₂ CHCH ₂ Cl	92.527	-131.2	68.9	0.875	98
748	C ₄ H ₉ Cl	secButyl chloride C ₂ H ₅ CHClCH ₃	92.527		68	0.871	110
749	C ₄ H ₉ Cl	tertButyl chloride (CH ₂) ₂ CCl	92.527	-28.5	51.0	0.840	60
751	C ₄ H ₄ ClO	1-Chloroethyl ethyl ether	108.527	ļ	98		
752 ·	C ₄ H ₉ ClO	tertButyl hypochlorite (CH ₂) ₂ CClO	108.527		80	0.958	
753	C ₄ H ₅ ClS	2-Chloroethyl ethyl sulfide	124.59		157	i	
754	C ₄ H ₄ I	n-Butyl iodide C ₄ H ₂ I	184.00	-103.5	127	1.617	600
755	C ₄ H ₄ I	Isobutyl iodide (CH ₂) ₂ CHCH ₂ I	184.00	-93.5	120.4	1.605	578
756	C ₄ H ₉ I	secButyl iodide C2H4CHICH2	184.00	-104.0	117.5	1.595	
757	C ₄ H ₄ IO	2-Iodoethyl ethyl ether C ₂ H ₆ OCH ₂ CH ₂ I	200.00		155	1.670	
758	C ₄ H ₉ N	Crotonylamine CH ₂ CH:CHCH ₂ NH ₂	71.077	ł	81		
759	C ₄ H ₉ N	Tetrahydropyrrole (Pyrrolidine)	71.077		88.5	0.87110	
760	C ₄ H ₉ NO	n-Butyramide C ₂ H ₇ CONH ₂	87.077	116	216	1.032	
761	C ₄ H ₄ NO	Isobutyramide (CH ₂) ₂ CHCONH ₂	87.077	129	220	1.013	
762	C ₄ H ₉ NO	N-Dimethylacetamide CH ₂ CON(CH ₂) ₂ .	87.077		165.7	0.943	365
763	C ₄ H ₉ NO	N-Ethylacetamide CH ₂ CONHC ₂ H ₅	87.077		205	0.942	
764	C ₄ H ₉ NO	Methyl ethyl ketoxime	87.077		152	0.923	393
765	C ₄ H ₉ NO ₂	Iminoethyl alcohol HN(CHCH ₂ O ₂ H) ₂	103.077	28	270		
766	C ₄ H ₉ NO ₂	1-Aminobutyric acid	103.077	285			
767	C4H,NO2	2-Aminobutyric acid	103.077	184			
7 6 8	C ₄ H ₉ NO ₂	3-Aminobutyric acid	103.08	193		•	
769	C ₄ H ₉ NO ₂	1-Aminoisobutyric acid	103.077		280		
770	C ₄ H ₉ NO ₂	Ethylaminoacetic acid	103.08	> 160	i		
771	C ₄ H ₉ NO ₂	Propyl carbamate C ₂ H ₇ OCONH ₂	103.077	53	- 200		
772	C ₄ H ₉ NO ₂	n-Butyl nitrite C ₄ H ₂ ONO	103.077		75	0.9110	
773	C ₄ H ₉ NO ₂	Isobutyl nitrite (CH ₂) ₂ CHCH ₂ ONO	103.077	1	67	0.87716	28
773.1	C ₄ H ₉ NO ₂	Methy urethane CH ₂ NHCO ₂ C ₂ H ₅	103.077		170	1.00948.9	950
774	C ₄ H ₉ NO ₃	n-Butyl nitrate C ₄ H ₉ ONO ₂	119.077	ĺ	136	1.0480	
775	C ₄ H ₉ NO ₃	Isobutyl nitrate (CH ₂) ₂ CHCH ₂ ONO ₂	119.077		122.9	1.01425	137
776	C ₄ H ₉ NO ₅	d-Ammonium hydrogen malate	151.077	170			1205
777	C ₄ H ₉ NO ₅	l-Ammonium hydrogen malate	151.077	161		1.509	
778	C ₄ H ₉ NO ₆	Ammonium hydrogen tartrate	167.077	d.		1.680	1241
779	C ₄ H ₉ NS	1, 4-Thiazan	103.142		169		
780	C4H9N3O2	Creatine	131.093	295			
781	C4H10ClNO2	Ethylaminoacetic acid hydrochloride	139.54	144	1		
781.1	C4H10	n-Butane CH ₂ CH ₂ CH ₂ CH ₃	58.077	-135.0	0.6	0.601° (liq.)	
781.2	C ₄ H ₁₀	Trimethylmethane (Isobutane)	58.077	-145.0	-10.2	` ''	
782	C4H10N2	Diethylenediamine (Piperazine)	86.093	105.6	146		1156
783	C4H10N2O	Nitrosodiethylamine (C ₂ H ₅) ₂ NNO	102.093		175.4	0.95117.6	
784	C4H10N2O	Trimethylurea (CH ₂) ₂ NCONHCH ₃	102.093	75.5	232.5		
785	C4H10N2S	Propylthiourea C ₃ H ₇ NHCSNH ₂	118.16	110		1	

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
786	C4H10N3O2	Guanidine lactate	132.10	d.		1	1236
788	C ₄ H ₁₀ N ₄ S ₂	Ethylenediamine thiocyanate	178.24	1			1285
789	C ₄ H ₁₀ O	n-Butyl alcohol C ₄ H ₆ OH	74.077	-89.8	117.7	0.810	116
790	C ₄ H ₁₀ O	Isobutyl alcohol (CH ₃) ₂ CHCH ₂ OH	74.077	-108	107.3	0.802	99
791	C ₄ H ₁₀ O	secButyl alcohol C ₂ H ₅ CH(OH)CH ₃	74.077	ļ	99.5	0.808	104
792	C ₄ H ₁₀ O	tertButyl alcohol (CH ₃) ₃ COH	74.077	25.5	82.8	0.789	64
793	C ₄ H ₁₀ O	Ether (C ₂ H ₆) ₂ O	74.077	$\left \left\{ \begin{array}{l} \alpha - 116.3 \\ \beta - 123.3 \end{array} \right\} \right $	34.5	0.714	7
794	C ₄ H ₁₀ O	Methyl propyl ether CH ₂ OC ₂ H ₇	74.077	(38.9	0.738	13
794 .1	C ₄ H ₁₀ O	Methyl isopropyl ether	74.077	1	32.5^{777}	0.735_{20}^{20}	12
79 5	C ₄ H ₁₀ O ₂	1, 4-Dihydroxybutane (CH ₂ CH ₂ OH) ₂	90.077	16	230	1.020	ŀ
796	C ₄ H ₁₀ O ₂	2, 3-Dihydroxybutane (CH ₃ CHOH) ₂	90.077		184	1.0480	i
797	C ₄ H ₁₀ O ₂	1, 2-Dihydroxy-2-methylpropane	90.0 77	Ì .	177	1.003	
798	C ₄ H ₁₀ O ₂	Glycol dimethyl ether (CH ₂ OCH ₂) ₂	90.077		84.5	0.873	
79 9	C ₄ H ₁₀ O ₂	Glycol ethyl ether HOCH2CH2OC2H5	90.077	ļ	135.3	0.935	
800	C4H10O2	Diethyl peroxide (C ₂ H ₅ O) ₂	90.077		65	0.827	
801	C4H10O2	Dimethyl acetal CH ₃ CH(OCH ₂) ₂	90.077	1	64.4	0.866	
802	C4H10O2S	Ethyl sulfone (C ₂ H _b) ₂ SO ₂	122.142	70	248	1.357	
803	C4H10O2S2	Diethyl disulfoxide C ₂ H ₅ (SO) ₂ C ₂ H ₅	154.21	1	140 d.	1.24	
804	C4H10O3	1, 2, 3-Trihydroxybutane	106.077	1	13628	1.23217	
805	C4H10O3	Di-(2-hydroxyethyl) ether	106.077		250	1.132	
806	C4H10O2	Glycerol 1-methyl ether	106.077		197	1.27025	
807	C4H10O3S	Diethyl sulfite (C ₂ H ₅) ₂ SO ₃	138.14		161.3	1.077	811
808	C4H10O4	dl-Erythritol HOCH2(CHOH)2CH2OH.	122.08	126	331	1.451	1174
809	C4H10O4S	Diethyl sulfate (C ₂ H ₅ O) ₂ SO ₂	154.14	-26.0	208 s. d.	1.17245	78
810	C4H10S	n-Butyl mercaptan C ₄ H ₉ SH	90.142	> -74	98	0.83620	
811	C4H10S	Isobutyl mercaptan (CH ₃) ₂ CHCH ₂ SH.	90.142	< -79	88	0.836	368
812	C4H10S	secButyl mercaptan C2H4CH(SH)CH3.	90.142	, , ,	85	0.83017	
813	C4H10S	tertButyl mercaptan (CH ₂) ₂ CSH	90.142		67	0.000	
814	C ₄ H ₁₀ S	Ethyl sulfide (C ₂ H _b) ₂ S	90.142	-102.1	91.6	0.837	390
815	C4H10S2	Ethyl disulfide (C ₂ H _b S) ₂	122.21		153.5	0.993	630
816	C ₄ H ₁₀ Se	Ethyl selenide (C ₂ H ₅) ₂ Se	137.28		108	1.23047.5	1035
817	C ₄ H ₁₀ Te	Ethyl telluride (C ₂ H ₆) ₂ Te	185.58		138	1.2004	-000
818	C4H11A8O2	Diethylarsonic acid (C ₂ H ₆) ₂ AsO(OH)	166.05	190	200		
819	C ₄ H ₁₁ AsO ₃	N-Butylarsonic acid C ₄ H ₂ AsO(OH) ₂	182.05	159			
820	C ₄ H ₁₁ N	n-Butylamine C ₄ H ₉ NH ₂	73.093	-50.5	76	0.74020	131
821	C ₄ H ₁₁ N	Isobutylamine (CH ₂) ₂ CHCH ₂ NH ₂	73.093	-85.5	68	0.736	111
822	C ₄ H ₁₁ N	secButylamine C ₂ H ₅ CH(NH ₂)CH ₃	73.093	-104.5	63	0.71820	93
823	C ₄ H ₁₁ N	tertButylamine (CH ₃) ₃ CNH ₂	73.093	-67.5	43.8	0.696	39
824	C ₄ H ₁₁ N	Diethylamine (C ₂ H ₆) ₂ NH	73.093	-50.0	56.0	0.711	65
825	C ₄ H ₁₁ P	Diethylphosphine (C ₂ H ₆) ₂ PH	90.109	00.0	85	0.711	00
826	C ₄ H ₁₂ As ₂	Cacodyl (CH ₃) ₂ As.As(CH ₃) ₂	210.01	-6	170	>1	
827	C ₄ H ₁₂ As ₂ O	Cacodylic oxide [(CH ₃) ₂ As] ₂ O	226.01	-25	120	1.46216	ı
828	C ₄ H ₁₂ As ₂ S	Cacodylic sulfide [(CH ₂) ₂ As] ₂ S	242.08	_20	211	1.402	1
829	C ₄ H ₁₂ BrN	Tetramethylammonium bromide	154.02		211	1.56	
830	C ₄ H ₁₂ BrNO	Diethylbromoacetamide	170.02	67		1.00	1
831	C ₄ H ₁₂ ClN	Diethylamine hydrochloride	109.56	217	330	1.048	1
832	_	Tetramethylammonium chloride	109.56	217	330	1	1
	C ₄ H ₁₂ ClN	Tetramethylammonium chioride		07	150	1.169	
833	C ₄ H ₁₂ N ₂	Ammonium succinate	88.108	27	158	1 90710	
834	C ₄ H ₁₂ N ₂ O ₄		152.11			1.36710	1000
835	C ₄ H ₁₂ N ₂ O ₆	Ammonium d-tartrate	184.11	d.		1.608	1253
835.1	C ₄ H ₁₂ N ₂ O ₆	Ammonium dl-tartrate	184.11	1 ,,,		1.601	1323
836	C ₄ H ₁₂ N ₄	Tetramethylammonium trinitride	116.124	125 d.			1
837	C ₄ H ₁₂ OS	Dimethylethylsulfonium hydroxide	108.15	-99.5	93	0.837	
838	C ₄ H ₁₈ NO	Tetramethylammonium hydroxide	91.108	63	d.	1	
839	C ₄ H ₁₆ N ₆ O ₄ S	Methylguanidine sulfate	244.24	240		1	1
840	C ₆ HCl ₃ N ₄	2, 6, 8-Trichloropurine	223.41	187		1	
841	C ₄ HCl ₄ N	2, 3, 4, 5-Tetrachloropyridine	216.85	21	13724	1	
842	C,HCl,N	2, 3, 4, 6-Tetrachloropyridine	216.85	75	13520	1	
843	C.HCl.N	2, 3, 5, 6-Tetrachloropyridine	216.85	91	13020	1	1
844	C ₄ H ₂ Cl ₃ N	2, 3, 5-Trichloropyridine	182.40	50	12016		
845	C ₆ H ₂ Cl ₂ N	3, 5-Dichloropyridine	147.95	67			1
846	C.H.N.	1, 1, 1-Tricyanoethane CH ₂ C(CN) ₂	105.05	93.5		0.760	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
847	C ₄ H ₄ BrN	3-Bromopyridine	157.96		173	1.63210	
848	C ₄ H ₄ ClN	2-Chloropyridine	113.50		167.5	1.2051	
849	C.H.CIN	3-Chloropyridine	113.50	1	148.5		1
850	C.H.CIN	4-Chloropyridine	113.50		148		1
851	C.H.N.	Glutaconic nitrile NCCH2CH:CHCN	92.047	31.5	13012	Ì	1
852	C.H.N.O.	3-Nitropyridine	124.05	41	216		
853	C ₆ H ₄ N ₂ O ₄	Methylalloxan	156.05	156 d.			
853.1	C ₆ H ₄ N ₂ O ₄ (H ₂ O)	3, 5-Pyrazoledicarboxylic acid	156.05		İ	1.626	1239
854	C ₄ H ₄ N ₄	Purine	120.06	217	i .		
855	C ₄ H ₄ N ₄ O	Hypoxanthine	136.06	> 150	1		
857	C ₄ H ₄ N ₄ O ₃	Uric acid	168.06	d.		1.893	1
858	C ₄ H ₄ OS	Thiophene-2-aldehyde	112.10	1	198	1.215	İ
859	C ₄ H ₄ O ₂	Furfural	96.031	-38.7	161.7	1.159	685
860	C ₄ H ₄ O ₂	1, 4-Pyrone	96.031	32.5	217.7	1.19040.3	1063
861	C ₄ H ₄ O ₂ S	Thiophene-2-carboxylic acid	128.10	126.5	260 d.		
862	C ₄ H ₄ O ₂ S	Thiophene-3-carboxylic acid	128.10	136			
863	C ₄ H ₄ O ₃	Citraconic anhydride	112.03	7	228	1.245	508
864	C ₄ H ₄ O ₃	Glutaconic anhydride	112.03	87	15215		
865	C ₄ H ₄ O ₃	Itaconic anhydride	112.03	68			
866	C ₄ H ₄ O ₂	Pyromeconic acid	112.03	117	228	1	-
867	C ₄ H ₄ O ₃	Pyromucic acid	112.03	133			
868	C ₄ H ₄ O ₄	Aconic acid	128.03	164	1		1324
869	C ₄ H ₄ O ₄	Glutinic acid HO ₂ CC:CCH ₂ CO ₂ H	128.03	146	ł	1	
870	C _s H _s N	Pyridine	79.047	-42	115.3	0.982	641
871	C.H.NO	2-Hydroxypyridine	95.047	107	281		
872	C.H.NO	3-Hydroxypyridine HOC, H, N	95.047	129		-	
873	C.H.NO	4-Hydroxypyridine	95.047	148.5			
874	C,H,NO	Pyrrole-2-aldehyde CHOC ₄ H ₄ N	95.047	47			İ
875	C.H.NO.	2, 4-Dihydroxypyridine (HO) ₂ C ₄ H ₂ N	111.05	265	Į.		
876	C.H.NO.	2, 6-Dihydroxypyridine (HO) ₂ C ₄ H ₂ N	111.05	195		1	
877	C.H.NO.	Pyrrole-2-carboxylic acid HO ₂ C.C ₄ H ₄ N.	111.05	191.5	1		
878	C.H.NO.	2, 4, 6-Trihydroxypyridine	127.05	230 d.			
879	C.H.N.	Adenine	135.08	365			•
880	C.H.	Cyclopentadiene	66.046		42.5	0.805	903
881	C.H.	2-Methyl-1, 3-butenine (Valylene)	66.046	1	50	0.000	""
882	C.H.N.	2-Aminopyridine	94.062	56	204	1	
883	C.H.N.	3-Aminopyridine	94.062	64	252		
884	C.H.N.	4-Aminopyridine H ₂ NC ₅ H ₄ N	94.062	157	1	1	
886	C.H.N.	Glutaric nitrile NC(CH ₂) ₂ NC	94.062	-29	287.4	0.99514	1007
887	C.H.N.O	2-Hydroxyglutaric nitrile	110.06		20311	1.181	534
888	C.H.N.O.	Thymine	126.06	335 d.	200	1.101	001
889	C.H.N.O.	Dimethylparabanic acid	142.06	145	277		1
890	C.H.N.O.	Pyridine nitrate	142.06	***	1	ł	1333
891	C ₄ H ₄ O	2-Methylfurfuran	82.046		64.3	0.916	1.000
892	C ₆ H ₆ OS	Thiophene-2-alcohol	114.11		207	0.010	1
893	C ₄ H ₆ O ₂	Furfuryl alcohol	98.046		170.2	1.136	996
894	C ₄ H ₆ O ₂	Pentinoic acid.	98.046	103	170.2	1.100	""
895	C ₁ H ₄ O ₂	Ethyl propiolate CH:CCO ₂ C ₂ H ₄	98.046	105	119.5	0.96815	
896	C ₄ H ₆ O ₂	Propargyl acetate CH:CCH ₂ O ₂ CCH ₃	98.046	}	125	1.005	252
				=7		1.005	202
897	C,H ₄ O ₃	Glutaric anhydride	114.05	57	287	1 817	1
898	C _b H ₆ O ₄		130.05	91	1	1.617	İ
899	C ₅ H ₆ O ₄	Glutaconic acid	130.05	134	Ì	1	1
900	C _b H ₆ O ₄	Itaconic acid CH ₂ :C(CO ₂ H)CH ₂ CO ₂ H	130.05	161 d.	050	1.632	1
901	C ₆ H ₆ O ₄	Mesaconic acid CH ₂ (CO ₂ H)C:CHCO ₂ H	130.05	202	250		1
902	C'H'O'	Paraconic acid	130.05	58	0.00		1
903	C ₅ H ₆ O ₄	Trimethylene-1, 1-dicarboxylic acid	130.05	175	21030		
904	C ₅ H ₆ O ₅	Acetone-1-1'-dicarboxylic acid	146.05	135 d.	1		
905	C _s H ₆ O _s	1-Ketoglutaric acid	146.05	113		1	
906	C ₄ H ₆ N ₂ O ₃	1-Methylbarbituric acid	142.06	132	1		1
907	C ₄ H ₇ Cl ₄ O ₂	Chloral acetone	205.43	76			
908	C ₄ H ₇ N	1-Methylpyrrole	81.062	1	115.4	0.911	892
909	C ₅ H ₇ N	2-Methylpyrrole	81.062	1	148	0.945	
910	C ₆ H ₇ N	3-Methylpyrrole	81.062	Ī	143	i	1

No.	Formula	Name	Mol. wt.	м. Р.	В. Р.	d	R. I. No.
911	C ₆ H ₇ NO ₂	Ethyl cyanoacetate NCCH ₂ CO ₂ C ₂ H ₆	113.06	-22.5	206	1.063	232
912	C ₆ H ₇ NS	Crotonyl isothiocyanate	113.13		8550	0.9930	
913	C ₄ H ₄	Cyclopentene	68.062		43.6	0.776	1
914	C ₆ H ₉	2, 3-Pentadiene CH ₂ CH:C:CHCH ₃	68.082	1	51	0.702	ł
915	C ₆ H ₆	unsymDimethylallene (CH ₂) ₂ C:C:CH ₂	68.062	-120	40.5	0.678	1
916	C ₄ H ₄	Isoprene CH ₂ :C(CH ₃)CH:CH ₂	68.062	-120	34	0.679	943
917	C ₄ H ₄	Methylethylacetylene CH ₂ C:CC ₂ H ₅	68.062	ĺ	56	0.687	12
918	C ₄ H ₄	1, 3-Pentadiene CH ₂ CH:CHCH:CH ₂	68.062		44	0.696	90:
920	C ₄ H ₄	Propylacetylene C ₂ H ₇ C:CH	68.062	-95	40	0.722	932
921	C ₄ H ₄	Isopropylacetylene (CH ₃) ₂ CHC:CH	68.062		29.3	0.685	١.,
921.1	C ₄ H ₄ Cl ₂ O ₂	Ethyl 1, 2-dichloropropionate	170.98	F0	184	1.246	42
921.2	CHN	3, 4-Dimethylpyrazole	96.078	58	200	0.93340.3	113
922	CHN.	3, 5-Dimethylpyrazole	96.078 220.09	107 162 d.	220	1	
923	$C_6H_8N_4O_6$ C_6H_8O	Cyclopentanone	220.09 84.062	162 d.	120.6	0.951	250
924	C _i H _i O	Ethyl propargyl ether CH:CCH2OC2H4	84.062		130.6 80	0.833	35
925	C _s H _s O	Tiglic aldehyde CH ₂ CH:C(CH ₂)CHO			116.5		324
926 927	C ₅ H ₅ O	Ethylideneacetone CH ₂ CH:CHCOCH ₁ .	84.062 84.062		124	0.870 0.856	430 370
921 928	C ₅ H ₅ O ₂	Levulinic aldehyde	100.062		188	1.018	29
	C ₄ H ₄ O ₂	Acetylacetone CH ₂ COCH ₂ COCH ₃	100.062	-23.2	137	0.976	
929 930	C ₄ H ₄ O ₂	Allylacetic acid CH ₂ :CH(CH ₂) ₂ CO ₂ H	100.062	<-18	189	0.984	439 808
	C ₅ H ₅ O ₂	Angelic acid	100.062	45	185	0.98346.7	1069
931 932	C ₄ H ₄ O ₂	2, 2-Dimethylacrylic acid	100.062	70	195	0.983	1008
933	C ₅ H ₅ O ₂	1-Ethylacrylic acid CH ₂ :C(C ₂ H ₄)CO ₂ H.	100.062	45	180		1
934	C ₅ H ₅ O ₂	1, 2-Pentenic acid C ₂ H ₄ CH:CHCO ₂ H.	100.062	10	10817	0.990	904
935	C ₄ H ₄ O ₂	2, 3-Pentenic acid	100.062	10	9516	0.987	941
936	C ₄ H ₂ O ₂	Tiglic acid CH ₂ CH:C(CH ₂)CO ₂ H	100.062	64	198.5	0.872	112
937	C ₄ H ₄ O ₂	Allyl acetate CH ₂ CO ₂ C ₂ H ₄	100.062	04	105	0.928	146
938	C _i H _i O _i	Ethyl acrylate C ₂ H ₂ COC ₂ H ₃	100.062	ł	99.8	0.924	140
939	C ₅ H ₅ O ₂	Methyl a-crotonate	100.062		120.7	0.9814	1
941	C _i H _i O _i	Levulinic acid CH ₂ COCH ₂ CH ₂ CO ₂ H	116.06	33.1	246	1.14317	383
942	C.H.O.	Ethyl pyruvate CH ₂ COCO ₂ C ₂ H ₄	116.06	33.1	144	1.06046	882
943	C ₄ H ₄ O ₄	Methyl acetoacetate	116.06		170	1.077	241
944	C.H.O.	Dimethylmalonic acid (CH ₃) ₂ C(CO ₂ H) ₂	132.06	193	***	1.0	
945	C.H.O.	Ethylmalonic acid C ₂ H ₆ CH(CO ₂ H) ₂	132.06	111.5	160 d.		1
946	C ₄ H ₂ O ₄	Glutaric acid CH ₂ (CH ₂ CO ₂ H) ₂	132.06	97.5	304	1.192106	1151
947	C.H.O.	Pyrotartaric acid	132.06	111	001	1.411	1333
947.1	C.H.O.	Methyltetronic lactone	132.06	123	ŀ	1	1213
948	C.H.O.	Dimethyl malonate H ₂ C(CO ₂ CH ₂) ₂	132.06	-62	181.5	1.154	206
949	C.H.O.	Ethyl hydrogen malonate	132.06	"-	14721	1.176	301
950	C.H.O.	Methyl ethyl oxalate	132.06		173.7	1.1560	"
951	C.H.O.	Methylene diacetate CH ₂ (CO ₂ CH ₂) ₂	132.06		170	1	
952	C.H.O.	a-Citramalic acid	148.06	95		Ì	
953	C.H.O.	dl-Citramalic acid	148.06	117	1		1
954	C.H.O.	β-Methylmalic acid	148.06	123			
955	C.H.O.	Arabonic lactone	148.06	98			
956	C.H.O.	Dimethyl tartronate	148.06	53.3	1		
957	C ₆ H ₆ O ₆ (H ₂ O)	d-Methyl hydrogen tartrate	164.06	76			
958	C.H.O.	Aposorbinic acid	180.06	110			
959	C.H.BrO.	1-Bromovaleric acid C ₂ H ₇ CHBrCO ₂ H	180.99		10510		
960	C.H.BrO.	2-Bromovaleric acid	180.99	60			
961	C.H.BrO.	3-Bromovaleric acid	180.99	40	}		
962	C.H.BrO.	2-Bromoisovaleric acid	180.99	73.5	1		1
963	C.H.BrO.	Ethyl 1-bromopropionate	180.99		160	1.393	419
964	C.H.Br.	1, 2, 3-Tribromopentane	308.82	1	12821	2.09544	74
965	C,H,Cl	Isoprene hydrochloride	104.53	I	109	0.933	
966	C.H.ClO	n-Valeryl chloride C ₄ H ₆ COCl	120.53	1	128	1.01616	223
967	C.H.ClO	Isovaleryl chloride (CH ₂) ₂ CHCH ₂ COCl	120.53	1	113		
968	C.H.ClO.	Ethyl 1-chloropropionate	136.53	1	146	1.087	23
969	C.H.ClO.	Ethyl 2-chloropropionate	136.53	<u> </u>	162.5	1.114	236
969.1	C.H.ClO.	n-Butyl chloroformate ClCO ₂ C ₄ H ₇	136.53	1	138.9	1.078	807
970	C.H.ClO.	Isobutyl chloroformate	136.53	i	130	1.04026	
971	C.H.IO.	Ethyl 2-iodopropionate	228.00	1	202	1.67916	1

No.	Formula	Name	Mol. wt.	, M. P.	B. P.	d	R. I. No.
972	C,H,N	n-Valeryl nitrile C ₄ H ₂ CN	83.077		141	0.801	82
973	C.H.N	Isovaleryl nitrile (CH ₃) ₂ CHCH ₂ CN	83.077		129.3	0.802	1
974	C.H.NO	Piperidone	99.077	40	256		
975	C.H.NO.	Acetylurethane CH ₂ CONHCO ₂ C ₂ H ₅	131.08	78	215		
975.1	C ₄ H ₉ NO ₃	α-Acetylaminopropionic acid	131.08	133			1215
976	C.H.NO.	dl-Glutaminic acid	147.08	198		1.460	1261
977	C.H.NO.	d-Glutaminic acid	147.08	208 d.	444	1.538	1266
978	C.H.NS	Isobutyl isothiocyanate	115.14		162	0.943	
979	C ₅ H ₁₀	Cyclopentane CH ₂ <(CH ₂ CH ₂) ₂ >	70.077	-93.3	49.5	0.754	843
980	C ₄ H ₁₀	1, 1-Dimethyltrimethylene	70.077		21	0.660	1
981	C ₅ H ₁₀	Methylcyclobutane	70.077	120	42 36.4	0.051	001
982	C ₅ H ₁₀	β-Amylene CH ₂ CH:CHC ₂ H ₅	70.077	-139		0.651	921
983	C ₅ H ₁₀	α-Amylene C ₂ H ₅ C(CH ₃):CH ₂	70.077	1	32	0.6670	880
984	C ₆ H ₁₀	n-Propylethylene C ₂ H ₇ CH:CH ₂	70.077	,,,	40	0.00015	31
985	C ₅ H ₁₀	2-Methyl-3-butene CH ₂ :CHCH(CH ₃) ₂	70.077	-135	20.1	0.63215	
986	C ₆ H ₁₀	2-Methyl-2-butene CH ₂ CH:C(CH ₂) ₂	70.077 229.91	-124	38.4 224	0.668 ¹⁸ 1.706 ¹⁸	1
987	CH B	1, 5-Dibromopentane CH ₂ (CH ₂ CH ₂ Br) ₂		-35		1.7087	000
988 988.1	$C_{\delta}H_{10}Br_{2}$ $C_{\delta}H_{10}ClNO_{4}$	2, 3-Dibromopentane C ₂ H ₅ (CHBr) ₂ CH ₂	229.91	100	175	1.7007	866 1240
989	C ₅ H ₁₀ ClNO ₄ C ₅ H ₁₀ Cl ₂	d(l)-Glutaminic acid hydrochloride	183.54 140.99	193	145	1.065	1240
999 990	C ₅ H ₁₀ Cl ₂ C ₅ H ₁₀ Cl ₂	3, 3-Dichloro-2-methylbutane	140.99	1	145 61 ¹⁷	1.005	
990 991	C ₅ H ₁₀ Cl ₂ C ₅ H ₁₀ Cl ₂	1, 5-Dichloropentane CH ₂ (CH ₂ CH ₂ Cl) ₂ .	140.99		178		i
991	C ₅ H ₁₀ Cl ₂ C ₅ H ₁₀ Cl ₂	2, 3-Dichloropentane C ₂ H ₄ (CHCl) ₂ CH ₃ .	140.99		139		
992 993	C ₅ H ₁₀ Cl ₂ C ₅ H ₁₀ N ₂	Diethylcyanamide NCN(C ₂ H ₅) ₂	98.093		139 187 d.	0.854	1072
993 994			130.09	→ 5.5	187 d. 245	1.158	1072
994 994.1	$C_{5}H_{10}N_{2}O_{2}$ $C_{5}H_{10}N_{2}O_{2}$	1-Nitropiperidine	130.09	198	240	1.100	1208
994.1 995	C ₅ H ₁₀ N ₂ O ₃	dl-Glutamine	146.09	256			1200
996	C ₄ H ₁₀ N ₂ O ₄	Amylene nitrosate	162.09	99		ŀ	1207
997	C ₄ H ₁₀ O	Cyclopentanol	86.077	88	141	0.946	1201
998	C ₅ H ₁₀ O	Methylallyl carbinol	86.077		116.4	0.834	1
999	C _b H ₁₀ O	Vinylethyl carbinol	86.077		114.7	0.837	277
1000	C ₄ H ₁₀ O	2-Pentene-4-ol.	86.077		6462	0.838	933
1001	C ₄ H ₁₀ O	Ethyl allyl ether C ₂ H ₄ OCH ₂ CH:CH ₂	86.077		67.6	0.765	69
1002	C _b H ₁₀ O	Isovaleraldehyde (CH ₂) ₂ CHCH ₂ CHO	86.077	-51	92.5	0.80317	79
1003	C ₆ H ₁₀ O	Trimethylacetaldehyde (CH ₂) ₂ CCHO	86.077	3	75	0.793	'
1004	C _b H ₁₀ O	n-Valeric aldehyde C ₄ H ₉ CHO	86.077		103.4	0.81911	70
1005	C ₅ H ₁₀ O	Diethyl ketone (C ₂ H ₅) ₂ CO	86.077	-42.0	101.7	0.814	86
1006	C ₅ H ₁₀ O	Methyl propyl ketone CH ₃ COC ₃ H ₇	86.077	-77.8	101.7	0.81215	75
1007	C ₆ H ₁₀ O	Methyl isopropyl ketone	86.077	-92.0	93	0.81515	62
1008	C ₅ H ₁₀ O	Pentamethylene oxide	86.077	1	87	0.880	
1009	C ₆ H ₁₀ O ₂	3-Acetylpropyl alcohol	102.08		209	1.0160	
1010	C.H10O2	dl-Methylethylacetic acid	102.08	<-80	174	0.941	153
1011	C4H10O2	Trimethylacetic acid (CH ₂) ₂ CCO ₂ H	102.08	35.5	163.8	0.905	1050
1012	C4H10O2	n-Valeric acid C ₆ H ₁₁ CO ₂ H	102.08	-59; -34.5	187.0	0.942	175
1013	C ₅ H ₁₀ O ₂	Isovaleric acid (CH ₂) ₂ CHCH ₂ CO ₂ H	102.08	-37.6	176.7	0.9374	145
1014	C ₈ H ₁₀ O ₂	n-Butyl formate HCO ₂ C ₄ H ₉	102.08	-90.0	106 .8	0.9110	74
1015	C ₅ H ₁₀ O ₂	d-secButyl formate	102.08		97	0.882	48
1016	C ₄ H ₁₀ O ₂	Isobutyl formate (CH ₃) ₂ CHCH ₂ CO ₂ H.	102.08	-95.3	98.2	0.875	58
1017	C5H10O2	Ethyl propionate C ₂ H ₅ CO ₂ C ₂ H ₅	102.08	-72.6	99.1	0.891	51
1018	C ₅ H ₁₀ O ₂	Methyl n-butyrate C ₂ H ₇ CO ₂ CH ₂	102.08	<-95	102.3	0.898	68
1019	C ₅ H ₁₀ O ₂	Methyl isobutyrate (CH ₂) ₂ CHCO ₂ CH ₃ .	102.08	-84.7	92 .6	0.891	49
1020	C ₅ H ₁₀ O ₂	n-Propyl acetate CH ₂ CO ₂ C ₂ H ₇	102.08	-92.5	101.6	0.887	52
1021	C ₅ H ₁₀ O ₂	Isopropyl acetate CH ₂ COCH ₂ (CH ₃) ₂	102.08	-73.4	89	0.87716 6	
1022	C ₅ H ₁₀ O ₂ S	Ethyl thiocarbonate $CS(OC_2H_5)_2$	134.14	'	162	1.028	939
1023	C ₆ H ₁₀ O ₃	1-Hydroxyvaleric acid	118.08	31			
1024	C ₅ H ₁₀ O ₃	1-Hydroxyisovaleric acid	118.08	86			
1025	C.H10O3	2-Hydroxyvaleric acid	118.08	<-32			
1026	C.H10O.	Diethyl carbonate (C ₂ H ₅ O) ₂ CO	118.08	-43.0	125.8	0.979	57
1027	C.H10O.	Ethyl hydracrylate	118.08		8412	1.0644	313
1028	C ₅ H ₁₀ O ₃	Ethyl lactate CH ₂ CH(OH)CO ₂ C ₂ H ₅	118.08]	154	1.031	
1028.1	C.H10O.	Methyl 1-1-methoxypropionate	118.08		131	0.998616.4	1
1029	C.H.10O.	Propyl glycollate HOCH ₂ CO ₂ C ₂ H ₇	118.08	, l	170.5	1.06218	1
1030	C ₆ H ₁₀ O ₄	Ethyl glycerate	134.08	1	12114	1.191_{15}^{15}	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1031	C _b H ₁₀ O ₄	Glycerol acetate (Monoacetin)	134.08	Ì	158165	1.20	
1032	C.H10O.	$d(l)$ - α -Arabinose	150.08	159.5	İ	1.585	1243
1033	CaH10Os	$d(l)$ - β -Arabinose	150.08			1.605	1248
1034	C ₅ H ₁₀ O ₅	dl-Arabinose	150.08	164.5	İ		i
1035	C ₅ H ₁₀ O ₅	d-Lyxose	150.08	105		1.545	1228
1036	C5H10O5	d-Ribose	150.08	87			
1037	C ₅ H ₁₀ O ₅	<i>L</i> -Xylose	150.08	153		1.525	1231
038	C5H10O5	dl-Xylose	150.08	131			
039	C ₅ H ₁₀ O ₆	Arabonic acid HO ₂ C(CHOH) ₃ CH ₂ OH.	166.08	89			1
1040	C ₅ H ₁₁ Br	n-Amyl bromide CH ₂ (CH ₂) ₄ Br	151.00		127.9	1.223	401
041	C ₆ H ₁₁ Br	Isoamyl bromide (CH ₂) ₂ CHCH ₂ CH ₂ Br.	151.00		121	1.215	378
042	C ₆ H ₁₁ Br	tertAmyl bromide (CH ₂) ₂ (C ₂ H ₅)CBr	151.00		109.2	1.190	389
043	C ₄ H ₁₁ Cl	n-Amyl chloride CH ₃ (CH ₂) ₄ Cl	106.54		105.7	0.883	191
044	C ₄ H ₁₁ Cl	Isoamyl chloride (CH ₂) ₂ CHCH ₂ CH ₂ Cl.	106.54		99.1	0.893	181
045	C _i H ₁₁ Cl	tertAmyl chloride (CH ₃) ₂ (C ₂ H ₅)CCl	106.54	-72.9	85.7	0.87015	155
046	C ₄ H ₁₁ Cl	secAmyl chloride C ₂ H ₇ (CH ₂)CHCl	106.54		105	0.870	157
047	C ₄ H ₁₁ Cl	3-Chloropentane (C ₂ H ₅) ₂ CHCl	106.54		105	0.895	
048	C ₅ H ₁₁ ClO	tertAmyl hypochlorite	122.54		76.3	0.855	
049	C.H.i.F	n-Amyl fluoride CH ₂ (CH ₂) ₄ F	90.085	> -80	62.8	0.788	11
050	C ₆ H ₁₁ F	Isoamyl fluoride (CH ₂) ₂ CHCH ₂ CH ₂ F	90.085	<-11	53.5	••	
051	C ₄ H ₁₁ I	n-Amyl iodide CH ₂ (CH ₂) ₄ I	198.02	`	156	1.517	572
052	CiHiiI	Isoamyl iodide (CH ₂) ₂ CHCH ₂ CH ₂ I	198.02		148	1.510	""
		tertAmyl iodide (CH ₂) ₂ (C ₂ H ₄)CHI	198.02	i	125	1.49719	
053	CHuI					1	444
1054	C ₄ H ₁₁ N	Piperidine	85.093	-9	105.8	0.860	444
.055	C ₄ H ₁₁ NO	Diethylketoxime (C ₂ H ₄) ₂ C:NOH	101.09		168.3	0.914	407
056	C ₄ H ₁₁ NO	Methylpropylketoxime	101.09	100	168	0.909	403
.057	C ₄ H ₁₁ NO	Valeramide C ₄ H ₉ CONH ₂	101.09	106		1.023	
058	C ₆ H ₁₁ NO	Isovaleramide (CH ₃) ₂ CHCH ₂ CONH ₂	101.09	137	232	0.965	j
.059	C ₄ H ₁₁ NO ₂	1-Aminovaleric acid	117.09	291.5			1
060	C ₆ H ₁₁ NO ₂	3-Aminovaleric acid	117.09	193	i		
061	C ₅ H ₁₁ NO ₂	4-Aminovaleric acid	117.09	157			1
1062	C ₄ H ₁₁ NO ₂	2-Aminoisovaleric acid	117.09	217			1
1063	C ₅ H ₁₁ NO ₂	n-Amyl nitrite CH ₂ (CH ₂) ₄ ONO	117.09		10476	0.853	56
1064	C ₄ H ₁₁ NO ₂	Isoamyl nitrite (CH ₂) ₂ CH(CH ₂) ₂ ONO.	117.09		99	0.872	67
065	C ₆ H ₁₁ NO ₂	tertAmyl nitrite (CH ₂) ₂ (C ₂ H ₅)CONO.	117.09		93	0.9030	
1066	C ₅ H ₁₁ NO ₂	n-Butyl carbamate C ₄ H ₂ CO ₂ NH ₂	117.09	54			1
1067	C ₆ H ₁₁ NO ₂	Isobutyl carbamate H2NCO2C4H2	117.09	67	206		
067.1	C.H.INO	Ethylurethane C ₂ H ₅ NHCO ₂ C ₂ H ₅	117.09		176	0.981	262
068	C.H.INO.	Betaine	117.09	273 d.	i		
069	C ₅ H ₁₁ NO ₂	dl-Valine (CH ₂) ₂ CHCH(NH ₂)CO ₂ H	117.09	298 d.		ŀ	
069.1		d-Valine	117.09	315		1	1327
070	C.H.INO.	Isoamyl nitrate	133.09	""	148	0.99621.7	200
070.1	C.H.iNO.	Bios	133.09	223	120	0.000	1163
070.1		Methyltetronic amide	149.09	135 d.			1218
	CH ₁₁ NO ₄	L-Arabinose oxime	165.09	139 d.	ł.		1210
.071	C ₄ H ₁₁ NO ₅	l l			28.0	0.62119.1	9
072	C ₄ H ₁₂	2-Methylbutane (Isopentane)	72.092	-159.7		0.631	10
073	C ₆ H ₁₂	n-Pentane CH ₃ (CH ₂) ₃ CH ₃	72.092	-131.5	36.2	0.031	10
074	C ₅ H ₁₂	2, 2-Dimethypropane (CH ₃) ₄ C	72.092	-20	9.5	į	
075	C ₆ H ₁₂ ClN	Piperidine hydrochloride	121.56	237	1	ŀ	
076	C ₆ H ₁₂ ClNO ₂	Betaine hydrochloride	153.56	235	1	1 040	
077	C ₆ H ₁₂ N ₂ O	1, 2-Diethylurea CO(NHC ₂ H ₄) ₂	116.11	106	263	1.042	
.078	C ₆ H ₁₂ O .	n-Amyl alcohol CH ₃ (CH ₂) ₃ CH ₂ OH	88. 092	-78.5	137.9	0.81720	823
079	C ₄ H ₁₂ O	Isoamyl alcohol* (CH ₃) ₂ CHCH ₂ CH ₂ OH	88.092	-117.2	130.5	0.812	166
.080	C ₅ H ₁₂ O	Diethyl carbinol (C ₂ H ₄) ₂ CHOH	88. 092	ļ	115.6	0.8154	179
081	C4H12O	tertAmyl alcohol (CH ₃) ₂ (C ₂ H ₅)COH	88.09 2	-11.9	101.8	0.809	158
082	C4H12O	tertButyl carbinol	88. 092	53	114		
083	C.H.20	d-Amyl alcohol CH ₂ (C ₂ H ₅)CHCH ₂ OH	88.092		128	0.816	
084	C.H.2O	secAmyl alcohol CH ₂ (C ₂ H ₇)CH ₂ OH	88.092	1	119.5	0.809	165
084.1	C.H ₁₂ O	d-secAmyl alcohol	88.092		118	0.8103	154
085	C ₄ H ₁₂ O	Methyl isopropyl carbinol	88.092		114	0.819	
085.1	C ₆ H ₁₂ O	d-Methyl isopropyl carbinol	88.092	1		0.818	106
.086	C ₅ H ₁₂ O	Ethyl propyl ether C ₂ H ₄ OC ₃ H ₇	88.092	<-79	61.4	0.732	24
1087	C ₄ H ₁₂ O	Ethyl isopropyl ether C ₂ H ₄ OCH(CH ₃) ₂ .	88.092		54	0.732	_ ~×
		The state of the s	oo. UU2	1	1 472	U. 120	

*Commercially known as "Amyl alcohol."

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	. d	R. I. No.
1088	C ₆ H ₁₂ O	Methyl n-butyl ether CH ₂ OC ₄ H ₂	88.092		70.3	0.7640	i
1089	C ₆ H ₁₂ O ₂	Pentane-1, 2-diol C ₂ H ₇ CHOHCH ₂ OH	104.09		211.8	0.98020	376
1090	C ₃ H ₁₂ O ₂	Pentane-1, 5-diol CH ₂ (CH ₂ CH ₂ OH) ₂	104.09		239.4	0.99420	432
1091	C ₅ H ₁₂ O ₂	Methylene diethyl ether CH ₂ (OC ₂ H ₅) ₂ .	104.09		89	0.851	
1092	C,H12O2	Glycerol 1-ethyl ether	120.09		230	1.091	
1093	C ₆ H ₁₂ O ₄	Pentaerythritol	136.09	253			1178
1094	C ₅ H ₁₂ O ₅	Adonitol	152.09	102			1333
1095	C _b H ₁₂ O _b	d-Arabitol	152.09	103	100		
1096	C ₅ H ₁₂ S	n-Amyl mercaptan C ₅ H ₁₁ SH	104.16		126	0.85720	396
1097	C _i H _i S	actAmyl mercaptan	104.16		118	0.84813	270
1098 1099	C ₄ H ₁₂ S C ₄ H ₁₂ N	Isoamyl mercaptan	104.16 87.108	EE 0	129.5	0.835 0.76610	379
1100		Isoamylamine (CH ₃) ₂ CHCH ₂ CH ₂ NH ₂	87.108 87.108	-55.0	104 95	0.766.	176
1101	C ₃ H ₁₃ N C ₃ H ₁₃ N	secAmylamine CH ₂ (C ₂ H ₇)CH ₂ NH ₂	87.108 87.108		91	0.731	170
1102	C.H.:N	tertAmylamine (CH ₂) ₂ (C ₂ H ₄)CNH ₂	87.108 87.108	-105.0	78	0.749	l
1102	C ₁ H ₁₂ NO ₂	Ammonium valerate	119.11	-105.0	10		1333
1105	C ₁ H ₁₄ N ₂	Pentamethylenediamine	102.12	9	178	0.88514	482
1106	C ₆ Br ₄ O ₂	Bromanil OC:(CBrCBr)2:CO	423.66	300	110	0.00018	102
1107	C ₆ Br ₆	Hexabromobenzene	551.50	306			
1108	C ₆ Br ₆ O	"Hexabromophenol"	367.50	128			
1109	C ₆ Cl ₄ O ₂	Chloranil OC:(CClCCl) ₂ :CO	245.83	290			
1110	C ₆ Cl ₆	Hexachlorobenzene	284.75	226	326	1.569224	
1111	C ₆ Cl ₆ O	"Hexachlorophenol"	300.75	46	020	1.000	
1111.1	C ₄ Cl ₄ O	β-Octachlorocyclohexenone	371.67	90		2.016	1292
1111.2	C _e Cl _e O	γ-Octachlorocyclohexenone	371.67	89		2.058	1305
1112	C ₆ I ₆	Hexaiodobenzene	833.59	350 d.		2.000	2000
1113	CeHBrs	Pentabromobenzene	472.59	293			
1114	C ₆ HBr ₆ O	Pentabromophenol C(Br ₅)OH	488.59	225			ļ
1115	C.HCl.O.	Trichloroquinone	211.38	168			ŀ
1116	C.HCl.NO2	2, 3, 4, 5-Tetrachloronitrobenzene	260.85	64.5			1
1117	C.HCI.NO.	2, 3, 4, 6-Tetrachloronitrobenzene	260.85	22			1
1118	C.HCl.NO	2, 3, 5, 6-Tetrachloronitrobensene	260.85	99	304 d.		}
1119	C.HCl.	Pentachlorobenzene	250.30	86	277	1.84210	
1120	C ₆ HCl ₆ O	Pentachlorophenol HOC ₆ Cl ₅	266.30	188	310.2	1.978	i
1121	C ₄ HN ₄ O ₁₁	Pentanitrophenol C ₆ (NO ₂) ₅ OH	319.05	190 d.			-
1122	C ₆ H ₂ BrN ₂ O ₆	Picryl bromide 2, 4, 6(NO ₂) ₂ C ₆ H ₂ Br	291.96	123			
1122.1	C ₄ H ₂ Br ₂ N ₂ O ₄	1, 2-Dinitro-4, 5-dibromobenzene	325.86	115		2.313	1
1122.2	C ₄ H ₂ Br ₂ N ₂ O ₄	1, 3-Dinitro-4, 6-dibromobenzene	325.86	117		2.295	
1123	C ₆ H ₂ Br ₄	1, 2, 3, 5-Tetrabromobenzene	393.68	98.5	329		
1124	C ₆ H ₂ Br ₄	1, 2, 4, 5-Tetrabromobenzene	393.68	178		3.027	1
1125	C ₆ H ₂ Br ₄ O	2, 3, 4, 6-Tetrabromophenol	409.68	120	ł		
1126	C ₆ H ₂ Br ₅ N	Pentabromoaniline C ₆ (Br ₅)NH ₂	487.60	222			
1127	C ₆ H ₂ ClN ₂ O ₆	Picryl chloride (NO ₂) ₃ C ₄ H ₂ Cl	247.50	83		1.797	į
1128	C ₆ H ₂ ClN ₂ O ₆	5-Chloro-1, 2, 4-trinitrobenzene	247.50	116	ł		
1129	C ₆ H ₂ Cl ₂ O ₂	2, 5-Dichloroquinone	176.93	161	1		
1130	C ₄ H ₂ Cl ₂ O ₃	2, 6-Dichloroquinone	176.93	121			
1131 1132	C.H.Cl.NO	2, 3, 4-Trichloronitrobenzene	226.40	56	İ		
1132	C.H.Cl.NO	2, 3, 6-Trichloronitrobenzene	226.40 226.40	89 57	288	1.790	
1134	C ₆ H ₂ Cl ₂ NO ₂ C ₆ H ₂ Cl ₂ NO ₂	2, 4, 6-Trichloronitrobenzene	226.40 226.40	68	200	1.780	
1135	C ₄ H ₂ Cl ₄	1, 2, 3, 4-Tetrachlorobenzene	215.85	47.5	254		
1136	C ₆ H ₂ Cl ₄	1, 2, 3, 5-Tetrachlorobenzene	215.85	51	246		
1137	C ₆ H ₂ Cl ₄	1, 2, 4, 5-Tetrachlorobenzene	215.85	138	246	1.73410	
1138	C ₆ H ₂ Cl ₄ O	2, 3, 4, 6-Tetrachlorophenol	231.85	69	16423	1	1
1139	C ₆ H ₂ Cl ₄ O ₂	Tetrachlorohydroquinone	247.85	232		1	1
1140	C _t H ₂ Cl _t N	Pentachloroaniline C ₆ (Cl ₈)NH ₂	265.31	232			
1141	C ₆ H ₂ IN ₂ O ₆	Picryl iodide (NO ₂) ₃ C ₆ H ₂ I	338.97	165	1	2.28522.5	
1142	C ₄ H ₂ I ₂ N ₂ O ₄	2, 4-Diiodo-1, 3-dinitrobenzene	419.90	162	1		1315
1143	C ₄ H ₂ I ₂ N ₂ O ₄	4, 6-Diiodo-1, 3-dinitrobenzene	419.90	168.4	1	2.744	
1144	C.H.I.	1, 2, 3, 4-Tetraiodobensene	581.74	136	1	1	
1145	C ₆ H ₂ I ₄	1, 2, 3, 5-Tetraiodobenzene	581.74	148	1		
	C.H.I.	1, 2, 4, 5-Tetraiodobenzene	581.74	254	1		
1146	1 0811314	11, 2, T, U-1 CHAIDUUD CHECHO					

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1148	C ₄ H ₂ O ₄	Diacetylenedicarboxylic acid	138.02	178 exp.	İ	<u> </u>	†
1149	C ₆ H ₃ BrN ₂ O ₄	3-Bromo-1, 2-dinitrobenzene	246.96	101.5	320	1	1302
1150	C ₆ H ₂ BrN ₂ O ₄	4-Bromo-1, 2-dinitrobenzene	246.96	59.4		ł	
1151	C ₆ H ₂ BrN ₂ O ₄	4-Bromo-1, 3-dinitrobenzene	246.96	75.3			
1152	C ₆ H ₂ Br ₂ NO ₂	2, 4-Dibromonitrobenzene	280.86	62		2.356	
1153	C ₆ H ₄ Br ₂ NO ₂	2, 5-Dibromonitrobenzene	280.86	85		2.368	
1154	C ₆ H ₂ Br ₂ NO ₂	3, 4-Dibromonitrobenzene	280.86	58	296	2.354	
1155	C6H2Br2NO2	3, 5-Dibromonitrobenzene	280.86	106		ļ	
1155.1	C ₆ H ₂ Br ₂ NO ₂	4, 6-Dibromo-2-nitrophenol	296.86	117.5		2.434	
1156	C.H.Br.	1, 2, 3-Tribromobensene	314.77	87.4		2.658	
1157	C.H.Br.	1, 2, 4-Tribromobenzene	314.77	44	276		
1158	C ₄ H ₄ Br ₂	1, 3, 5-Tribromobenzene	314.77	119.6	278		
1159	C ₄ H ₄ Br ₄ O	2, 3, 5-Tribromophenol Br ₂ C ₆ H ₂ OH	330.77	92.5			
1160	C ₆ H ₉ Br ₂ O	2, 4, 6-Tribromophenol Br ₂ C ₆ H ₂ OH	330.77	96		2.55	
1161	C.H.Br.O.	2, 4, 6-Tribromoresorcinol	346.77	111			ł
1162	C.H.CIN.O.	3-Chloro-1, 2-dinitrobenzene	202.50	86.8			
			202.00	(a 36.3	1		l
				β 37.1		[
1163	C ₄ H ₃ ClN ₂ O ₄	4-Chloro-1, 2-dinitrobenzene	202.50	γ 38.8	315 d.		
				8 28		1	
1164	C ₆ H ₂ ClN ₂ O ₄	2-Chloro-1, 3-dinitrobenzene	202.50	87		ł	1
1165	C.H.CIN,O.	α-4-Chloro-1, 3-dinitrobenzene	202.50	53.4	315	1.697	
1166	C.H.CIN.O.	β-4-Chloro-1, 3-dinitrobenzene	202.50	43	315	1.680	
1167	C ₄ H ₃ ClN ₂ O ₄	5-Chloro-1, 3-dinitrobenzene	202.50	59	310	1.000	1
1168	C.H.CIN.O.	2-Chloro-1, 4-dinitrobenzene	202.50	60	}		i
1169	C.H.Cl.NO.	2, 3-Dichloronitrobenzene.	191.95	62	258	1.72114	1
1170	C.H.Cl.NO.	2, 4-Dichloronitrobenzene.	191.95	33	200	1.439**	1
1171	C.H.Cl.NO.	2, 5-Dichloronitrobenzene		54.5	266	1.66922	
1172	C ₄ H ₄ Cl ₂ NO ₂		191.95				i
1172		2, 6-Dichloronitrobenzene	191.95	72.5	130*	1.60317	Į.
1174	C.H.Cl.NO	3, 4-Dichloronitrobenzene	191.95	43	256	1.451**	l
1174	C.H.Cl.NO	3, 5-Dichloronitrobenzene	191.95	65.4		1.69214	
	C.H.Cl.NO.	4, 6-Dichloro-2-nitrophenol	207.95	122	010	1.822	1
1175	C.H.Cl.	1, 2, 3-Trichlorobenzene	181.40	52	219		
1176	C ₆ H ₄ Cl ₅	1, 2, 4-Trichlorobenzene	181.40	17	213	1.57410	754
1177	C.H.Cl.	1, 3, 5-Trichlorobenzene	181.40	63	208.5	1	
1178	C ₆ H ₃ Cl ₃ O	2, 3, 5-Trichlorophenol	197.40	53.4	253		1
1179	C.H.Cl.O	2, 4, 6-Trichlorophenol	197.40	68	244.5	ł	1
1180	C ₄ H ₄ Cl ₃ O ₃	2, 3, 5-Trichlorohydroquinone	213.40	134	1	i	
1181	C ₆ H ₃ Cl ₃ O ₃	2, 4, 6-Trichlororesorcinol	213.40	83	Į.		1
1182	C.H.Cl.O.S.	Benzene-1, 3, 5-trisulfonyl chloride	373.59	184			1
1183	C.H.Cl.N	2, 3, 4, 5-Tetrachloroaniline	230.86	118			1
1184	C ₄ H ₄ Cl ₄ N	2, 3, 4, 6-Tetrachloroaniline	230.86	88	1		1
1185	C ₄ H ₄ Cl ₄ N	2, 3, 5, 6-Tetrachloroaniline	230.86	90			
1186	C.H.I.	1, 2, 3-Triiodobenzene	455.82	116	1		1
1187	C ₆ H ₂ I ₃	1, 2, 4-Triiodobenzene	455.82	84	1		1
1188	C ₆ H ₂ I ₃	1, 3, 5-Triiodobenzene	455.82	181	ł		1
1189	C ₆ H ₂ I ₃ O	2, 4, 6-Triiodophenol I ₂ C ₆ H ₂ (OH)	471.82	156			
1190	C ₆ H ₂ N ₂ O ₆	1, 2, 3-Trinitrobenzene	213.05	127.5	1		
1191	C ₆ H ₂ N ₂ O ₆	1, 2, 4-Trinitrobenzene	213.05	61	ł	1.7315.5	
1192	C ₆ H ₂ N ₂ O ₆	1, 3, 5-Trinitrobenzene	213.05	121; 61	d.	1.688	1
1193	C ₆ H ₂ N ₂ O ₆ S	Thiopicric acid	245.11	114	exp. 115		
1194	C ₄ H ₃ N ₂ O ₇	2, 3, 5-Trinitrophenol C ₆ H ₂ (NO ₂) ₂ OH	229,05	120			
1195	C ₄ H ₂ N ₂ O ₇	2, 3, 6-Trinitrophenol C ₆ H ₂ (NO ₂) ₂ OH.	229.05	118			
1196	C ₆ H ₂ N ₂ O ₇	2, 4, 5-Trinitrophenol C ₆ H ₂ (NO ₂) ₂ OH.	229.05	96			
1197	C4H2N2O7	Picric acid (NO ₂) ₂ C ₄ H ₂ OH	229.05	121.8	$\exp. > 300$	1.763	1313
1198	C ₆ H ₂ N ₈ O ₈	Styphnic acid	245.05	180		1.829	
1199	C ₆ H ₂ N ₂ O ₉ S	Picrylsulfonic acid	293.11	100			1
1200	C.H.N.O.	2, 3, 4, 6-Tetranitroaniline	273.06	170	exp. 237	1.89	1314
1200.1	C.H.BrCl	o-Bromochlorobenzene	191.40	-12.6	204744	1.65612.5	765
1200.2	C ₄ H ₄ BrCl	m-Bromochlorobenzene	191.40	-21.2	196	1.62714	764
1200.3		p-Bromochlorobenzene	191.40	67.4	196.3		
					•		1
1200.4	C ₄ H ₄ BrI	o-Bromoiodobenzene	282.88	2.1	257.4764	l	ı

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1200.6	C ₆ H ₄ BrI	p-Bromoiodobenzene	282.88	92	251.6754		Ī
1201	C ₆ H ₄ BrNO ₂	o-Bromonitrobenzene	201.96	43.0	261	1.62340	
1202	C ₆ H ₄ BrNO ₂	m-Bromonitrobenzene	201.96	56.0	256.5	1.704	777
1203	C ₆ H ₄ BrNO ₂	p-Bromonitrobenzene	201.96	127	256	•	
1204	C ₆ H ₄ Br ₂	o-Dibromobenzene	235.86	1.8	221	1.96645	787
1205	C ₆ H ₄ Br ₂	m-Dibromobenzene	235 . 86	-6.9	217	1.955	783
1206	C ₆ H ₄ Br ₂	p-Dibromobenzene	235 . 86	86.8	219	1.954	1132
1207	C ₆ H ₄ Br ₂ O	2, 4-Dibromophenol	251.86	36	239		
1208	C ₆ H ₄ Br ₂ O	2, 6-Dibromophenol	251.86	56			1
1209	C ₆ H ₄ Br ₂ O	3, 4-Dibromophenol	251.86	80			
1210 1211	CH Br2O	3, 5-Dibromophenol	251.83 267.86	76.5 92.5			
1211	C ₆ H ₄ Br ₂ O ₂ C ₆ H ₄ Br ₂ O ₂	2, 4-Dibromoresorcinol	267.86	112	130 (in CO ₂)		
1212	C ₆ H ₄ Br ₂ O ₂ C ₆ H ₄ Br ₃ N	2, 4, 6-Tribromoaniline	329.79	112	300		
1213	C ₆ H ₄ Br ₃ N	3, 4, 5-Tribromoaniline	329.79	118	300		ĺ
1214.1	C ₆ H ₄ ClI	p-Chloroiodobenzene	238.42	57	227.6751		1
1215	C ₆ H ₄ ClNO ₂	o-Chloronitrobenzene	157.50	32.5	245.7	1.365	
1216	C ₆ H ₄ ClNO ₂	m-Chloronitrobenzene	157.50	44.4;23.7	235.6	1.534	
1217	C ₆ H ₄ ClNO ₂	p-Chloronitrobenzene	157.50	83.5	242	1.520	1
1218	C6H4CINO3	4-Chloro-2-nitrophenol	173.50	87			
1219	C.H.CINO	5-Chloro-2-nitrophenol	173.50	38.9			l
1220	C6H4CINO	6-Chloro-2-nitrophenol	173.50	70			1
1221	C.H.CINO.	2-Chloro-3-nitrophenol	173.50	120	ļ		
1222	C6H4CINO3	4-Chloro-3-nitrophenol	173.50	127			
1223	C ₆ H ₄ ClNO ₃	5-Chloro-3-nitrophenol	173.50	147			
1224	C ₆ H ₄ ClNO ₃	6-Chloro-3-nitrophenol	173.50	118			
1225	C ₆ H ₄ ClNO ₃	2-Chloro-4-nitrophenol	173.50	111			
1226	C ₆ H ₄ ClNO ₃	3-Chloro-4-nitrophenol	173.50	133			
1227	C.H.CINO.S	2-Chloronitrobenzene-5-sulfonic acid	237.56	>200 d.			
1228	C ₆ H ₄ ClNO ₅ S	5-Chloronitrobenzene-3-sulfonic acid	237.56	200 d.			
1229	C ₆ H ₄ Cl ₂	o-Dichlorobenzene	146.95	-17.6	179	1.298	731
1230	C ₆ H ₄ Cl ₂	m-Dichlorobenzene	146.95	-24.8	173	1.288	723
1231	C ₆ H ₄ Cl ₂	p-Dichlorobenzene	146.95	52.9	173	1.458	1101
1232	C ₆ H ₄ Cl ₂ O	2, 3-Dichlorophenol	162.95 162.95	57	010		
1233 1234	C ₆ H ₄ Cl ₂ O	2, 4-Dichlorophenol	162.95 162.95	45 58	210 211.7		
1235	C ₆ H ₄ Cl ₂ O C ₆ H ₄ Cl ₂ O	2, 6-Dichlorophenol	162.95	67	220		
1236	C ₆ H ₄ Cl ₂ O	3, 4-Dichlorophenol	162.95	68	253.5		
1237	C ₆ H ₄ Cl ₂ O	3, 5-Dichlorophenol	162.95	68	233.1		
1238	C ₆ H ₄ Cl ₂ O ₂	2, 3-Dichlorohydroquinone	178.95	145	200.1		
1239	C ₆ H ₄ Cl ₂ O ₂	2, 5-Dichlorohydroquinone	178.95	170		1.824	1
1240	C ₆ H ₄ Cl ₂ O ₂	2, 6-Dichlorohydroquinone	178.95	164			1
1241	C ₆ H ₄ Cl ₂ O ₃ S	2, 5-Dichlorobenzenesulfonic acid	227.01	97			
1242	C.H.Cl2O.S.	o-Benzenedisulfonyl chloride	275.08	105			į.
1243	C.H.Cl2O.S.	m-Benzendisulfonyl chloride	275.08	63			
1244	C6H4Cl2O4S2	p-Benzenedisulfonyl chloride	275.0 8	131	1		
1245	C ₆ H ₄ Cl ₃ N	2, 3, 4-Trichloroaniline	196.41	67.5	291.5		
1246	C ₆ H ₄ Cl ₃ N	2, 4, 5-Trichloroaniline	196.41	96	270		
1247	C ₆ H ₄ Cl ₂ N	2, 4, 6-Trichloroaniline	196.41	77.5	262.4		
1248	C ₆ H ₄ Cl ₂ N	3, 4, 5-Trichloroaniline Cl ₃ C ₆ H ₂ NH ₂	196.41	100			
1249	C ₆ H ₄ FNO ₂	o-Fluoronitrobenzene	141.04	-5.9	214.6	1.338	700
1250	C ₆ H ₄ FNO ₂	m-Fluoronitrobenzene	141.04	1.7	205	1.327	688
1251	C ₆ H ₄ FNO ₂	p-Fluoronitrobenzene	141.04	26.5;	205	1.326	1084
				21.5			
1252	C ₆ H ₄ F ₂	m-Difluorobenzene	114.03		83	1.172	384
1253	C ₆ H ₄ F ₂	p-Difluorobenzene	114.03	-23.7	88.9	1.164	362
1254	C ₆ H ₄ INO ₂	o-Iodonitrobenzene	248.97	49.4	290	1.81045.5	
1255	CH4INO2	m-Iodonitrobenzene	248.97	36	280	1.804	
1256	CHINO	p-Iodonitrobenzene	248.97	171.5	288.1	1.80945.5	
1257	CHINO,	4-Iodo-6-nitrophenol IC ₆ H ₃ (NO ₂)OH	264.97	81	208.0		
1258 1259	C ₆ H ₄ I ₂	o-Diiodobenzene	329.90	23.4	286.8		1
1259 1260	C ₆ H ₄ I ₂ C ₆ H ₄ I ₂	p-Diiodobenzene	$329.90 \\ 329.90$	34.2 129.4	284.8 285		1
1200	1 0611412	p-Dhodobenzene	J27. JU	128.4	1 200	1	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1261	C ₆ H ₄ I ₂ O	2, 4-Diiodophenol	345.90	72	100	Ī	
1262	C ₆ H ₄ I ₂ O	2, 6-Diiodophenol I ₂ C ₆ H ₃ OH	345.90	68		ł	
1263	C ₆ H ₄ I ₂ O	3, 4-Diiodophenol I ₂ C ₆ H ₃ OH	345.90	83			1
1264	C ₆ H ₄ I ₂ O	3, 5-Diiodophenol I ₂ C ₆ H ₃ OH	345.90	104			
1265	C ₆ H ₄ I ₂ O ₄ S	2, 6-Diiodophenol-4-sulfonic acid	425.96	120	190 d.		
1266	C ₆ H ₄ I ₃ N	2, 4, 6-Triiodoaniline I ₂ C ₆ H ₂ NH ₂	470.84	185.5			1
1267	C6H4N2	Pyridyl-2-cyanide CN.C.H.AN	104.05	29		ł	
1268	C ₆ H ₄ N ₂	Pyridyl-3-cyanide CN.C.H.N	104.05	50			
1269	C ₆ H ₄ N ₂	Pyridyl-4-cyanide CN.C ₅ H ₄ N	104.05	79			
1270	C ₆ H ₄ N ₂ O	p-Diazophenol	120.05	exp. 38		1	
1271	C ₆ H ₄ N ₂ O ₄	o-Dinitrobenzene	168.05	116.5	319	1.59	
1272	C ₆ H ₄ N ₂ O ₄	m-Dinitrobenzene	168.05	89.7	302	1.575	
1273	C ₆ H ₄ N ₂ O ₄	p-Dinitrobenzene	168.05	172.1	299	1.625	
1274	C6H4N2O6	2, 3-Dinitrophenol (NO ₂) ₂ C ₆ H ₃ OH	184.05	144			
1275	C ₆ H ₄ N ₂ O ₅	2, 4-Dinitrophenol	184.05	111.6		1.683	
1276	C ₆ H ₄ N ₂ O ₅	2, 5-Dinitrophenol (NO ₂) ₂ C ₆ H ₃ OH	184.05	104	1	1.000	
1277	C ₆ H ₄ N ₂ O ₅	2, 6-Dinitrophenol (NO ₂) ₂ C ₆ H ₃ OH	184.05	61.8	İ		į
1278	C ₆ H ₄ N ₂ O ₅	3, 4-Dinitrophenol (NO ₂) ₂ C ₆ H ₃ OH	184.05	134	1		
	C ₆ H ₄ N ₂ O ₅ C ₆ H ₄ N ₂ O ₅	3. 5-Dinitrophenol	184.05	126.1	1	l	
1279	1		200.05	148	d.	ì	
1280	C ₆ H ₄ N ₂ O ₆	2, 4-Dinitroresorcinol			u.]	
1281	C ₆ H ₄ N ₂ O ₆	4, 6-Dinitroresorcinol	200.05	215	l .		
1282	C ₆ H ₄ N ₂ O ₇ S	2, 4-Dinitrobenzenesulfonic acid	248.11	108	000		
1283	C ₆ H ₄ N ₂ S	Benzisothiodiazole	136.11	44	206		
1284	C ₆ H ₄ N ₄ O ₆	Picramide 2, 4, 6- $(NO_2)_3C_6H_2NH_2$	228.06	188		ì	
1285	C ₆ H ₄ N ₄ O ₇	2, 4, 6-Trinitroaminophenol	244.06	178	1	1	ı
1286	C ₆ H ₄ N ₆	Hexaazobenzene	160 .08	83	1		
1287	C ₆ H ₄ O ₂	Quinone	108.03	115.7		1.318	
1288	C ₆ H ₄ O ₄	2, 5-Dihydroxyquinone	140.03	220	1		
1289	C ₆ H ₄ O ₆	Sarsapic acid	172.03	305		ļ	
1290	C ₆ H ₄ O ₈	Ethanetetracarboxylic acid	204.03	169 d.		1	1
1291	C ₆ H ₆ AsCl ₂	Phenyl dichloroarsine	222.92		253		1
1292	C ₆ H ₈ AsO	Phenylarsine oxide	168.00	120		1	
1294	C ₆ H ₄ Br	Bromobenzene	156.96	-30.6	156.2	1.497	747
1295	C4H4BrN2O2	4-Bromo-2-nitroaniline	216.97	111		1	1
1296	C ₆ H ₅ BrO	o-Bromophenol	172.96	5.6	195	1.55380	
1297	C ₆ H ₅ BrO	m-Bromophenol	172.96	33	236.5		
1298	C ₆ H ₆ BrO	p-Bromophenol	172.96	63.5	238	1.58890	
1299	C.H.BrO.	Bromohydroquinone	188.96	115			
1300	C ₆ H ₄ BrO ₂	2(4)-Bromoresorcinol	188.96	91	1		
1301	C ₆ H ₄ BrO ₂ S	p-Bromobenzenesulfonic acid	237.02	88			
1302	C ₆ H ₆ Br ₂ N	2, 4-Dibromoaniline	250.88	79.5		İ	
1303	C6H6Br2N	2. 5-Dibromoaniline.	250.88	52	1		
1304	C6H6Br2N	2, 6-Dibromoaniline	250.88	84	264		
		3, 4-Dibromoaniline	250.88	80.4	201	į	
1305	CH B- N	3, 5-Dibromoaniline	250.88	56.5	1		
1306	C ₆ H ₆ Br ₂ N	, ·			132.1	1.107	681
1307	C ₆ H ₆ Cl	Chlorobenzene	112.50	-45.2	132.1	1.107	091
1308	C ₆ H ₆ ClN ₂ O ₂	2-Chloro-4-nitroaniline	172.51	105	1		
1309	C ₆ H ₅ ClN ₂ O ₂	2-Chloro-5-nitroaniline	172.51	118	Į.		ł
1310	C ₆ H ₅ ClN ₂ O ₂	3-Chloro-4-nitroaniline	172.51	157			
1311	C6H6ClN2O2	3-Chloro-6-nitroaniline	172.51	125	1		
1312	C ₆ H ₅ ClN ₂ O ₂	4-Chloro-2-nitroaniline	172.51	115			
1313	C ₆ H ₅ ClN ₂ O ₂	4-Chloro-3-nitroaniline	172.51	103			
1314	C ₆ H ₄ ClO	o-Chlorophenol	128.50	α 7; β 0; γ -4.1	173	1.24118.2	1058
1915	C ₆ H ₅ ClO	m Chlorophonol	128.50	$\frac{7-4.1}{32.8}$	214		1059
1315		m-Chlorophenol	128.50	37	217	1.306	1060
1316	C ₆ H ₆ ClO	p-Chlorophenol			1	1.000	1000
1317	C ₆ H ₆ ClO ₂	Chlorohydroquinone	144.50	106	263	1 20214	
1318	C ₆ H ₆ ClO ₂ S	Benzenesulfone chloride	176.56	14.5	247	1.38314	
1319	C ₆ H ₆ ClO ₃ S	p-Chlorobenzenesulfonic acid	192.56	67	14626		
1320	C ₆ H ₅ Cl ₂ N	2, 3-Dichloroaniline	161.96	24	252		
1321	C ₆ H ₅ Cl ₂ N	2, 4-Dichloroaniline	161.96	63	245	1.567	
1322	C ₆ H ₅ Cl ₂ N	2, 5-Dichloroaniline	161.96	50	251		
1323	C ₆ H ₆ Cl ₂ N	2, 6-Dichloroaniline Cl ₂ C ₆ H ₃ NH ₂	161.96	39			

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1324	C ₆ H ₄ Cl ₂ N	3, 4-Dichloroaniline	161.96	71.5	272		Ī
1325	C ₆ H ₆ Cl ₂ N	3, 5-Dichloroaniline	161.96	50.5	260		
1326	C ₆ H ₆ Cl ₂ OP	Phosphenyl oxychloride	194.98		258	1.375	
1327	C ₆ H ₆ Cl ₂ P	Phosphenyl chloride	178.98		224.6	1.319	804
1328	C ₆ H ₆ F	Fluorobenzene	96.039	-41.2	86	1.024	487
1329	C ₆ H ₅ FO	o-Fluorophenol FC ₆ H ₄ OH	112.04	16.1			
1330	C ₆ H ₄ FO	m-Fluorophenol	112.04	13.8	18369	1.222	652
1331	C ₆ H ₆ FO	<i>p</i> -Fluorophenol	112.04	28.5;	188	1.1894	1083
1332	C ₆ H ₆ F ₂ N	2, 5-Difluoroaniline	129.05	·48.2 13.5	85.810	1.28817.2	
1333	C ₆ H ₆ I	Iodobenzene	203.97	-31.4	188.6	1.832	792
1334	C.H.IO	o-Iodophenol.	219.97	-31.4 40.4	187160	1.87680	102
1335	C.H.IO	m-Iodophenol IC ₆ H ₄ OH	219.97	40	10.	1.0.0	
1336	C.H.IO	p-Iodophenol IC ₄ H ₄ OH	219.97	94			
1337	C ₆ H ₆ IO	Iodosobenzene	219.97	exp. 210			1
1338	C.H.IO.	Iodoxybenzene	235.97	exp. 238	Ì		
1339	C.H.IO2S	Benzenesulfone iodide C ₆ H ₆ SO ₂ I	268.04	45		1	
1340	C ₆ H ₆ I ₂ N	2, 4-Diiodoaniline I ₂ C ₆ H ₃ NH ₂	344.91	96			1
1341	C ₆ H ₆ NO	Pyridyl-a-aldehyde	107.05	V	181	1.126	947
1342	C ₆ H ₆ NO	Pyridyl-β-aldehyde	107.05		9716		
1343	C ₆ H ₆ NO	Nitrosobenzene	107.05	68	5918		
1344	C ₆ H ₄ NO ₂	Picolinic acid	123.05	137			
1345	C ₆ H ₄ NO ₂	Nicotinic acid	123.05	232			
1346	C ₆ H ₆ NO ₂	Isonicotinic acid	123.05	317		1 005	700
1347	CH NO	Nitrobenzene	123.05	5.7	210.9	1.207	736
1348 1349	C ₆ H ₆ NO ₂ C ₆ H ₆ NO ₃	p-Nitrosophenol ONC ₆ H ₄ OH	123.05 139.05	126	214.5	1 447	
1350	C ₆ H ₅ NO ₃	o-Nitrophenol	139.05	45 96	194 ⁷⁰	1.447	1
1351	C ₆ H ₆ NO ₃	p-Nitrophenol.	139.05	113	194.	1.468	1
1352	C ₆ H ₆ NO ₄	2-Nitroresorcinol m-(OH) ₂ C ₆ H ₃ NO ₂	155.05	85		1.400	
1353	C6H6NO	4-Nitroresorcinol $m-(OH)_2C_6H_3NO_2$	155.05	115			ļ
1354	C ₆ H ₅ NO ₄	Nitrohydroquinone	155.05	134			
1355	C.H.NO.S	2-Nitrophenol-4-sulfonic acid	219.11	141		1	İ
1356	C.H.N.	Aziminobenzene	119.06	99			
1357	C ₆ H ₆ N ₃	Triazobenzene	119.06		73.524	1.09810	991
1358	C6H6N3O4	2, 3-Dinitroaniline (NO ₂) ₂ C ₆ H ₂ NH ₂	183.06	127			
1359	C ₆ H ₅ N ₃ O ₄	2, 4-Dinitroaniline	183.06	188			
1360	C ₆ H ₆ N ₂ O ₄	2, 5-Dinitroaniline (NO ₂) ₂ C ₆ H ₂ NH ₂	183.06	137		1	
1361	C ₆ H ₆ N ₃ O ₄	2, 6-Dinitroaniline	183.06	138			
1362	C ₆ H ₆ N ₄ O ₄	3, 4-Dinitroaniline (NO ₂) ₂ C ₆ H ₃ NH ₂	183.06	154			
1363 1364	CHNO	3, 5-Dinitroaniline (NO ₂) ₂ C ₆ H ₂ NH ₂	183.06	159	1		1320
1365	C ₆ H ₆ N ₂ O ₆ C ₆ H ₆	Picramic acid	199.06 78.046	165 5.5	79.6	0.878	606
1366	C ₆ H ₆	Dipropargyl	78.046	-6	85.4	0.805	380
1367	C ₆ H ₆ AsCl ₂	Tri- (2-chlorovinyl)arsine	259.38	_0	260	1.572	000
1368	C ₆ H ₆ BrN	o-Bromoaniline.	171.97	31.5	251	1.0.2	
1369	C ₆ H ₆ BrN	m-Bromoaniline	171.97	18.5	251	1.58716.3	793
1370	C ₆ H ₆ BrN	p-Bromoaniline BrC ₆ H ₄ NH ₂	171.97	66.4			
1371	C.H.Br2N2	3, 4-Dibromophenylhydrazine	265.89	75		1	
1372	C ₆ H ₆ Br ₂ N ₂	3, 5-Dibromophenylhydrazine	265.89	95.5	İ	ĺ	
1373	C ₆ H ₆ Br ₆	α-trans-Benzenehexabromide	557.54	212		İ	
1374	C6H6Br6	β-cis-Benzenehexabromide	557.54	253			
1375	C ₆ H ₆ ClN	o-Chloroaniline ClC ₆ H ₄ NH ₂	127.51	0	210.5	1.213	774
1376	C ₆ H ₆ ClN	m-Chloroaniline	127.51	-10.4	229.8	1.215	776
1377	C.H.CIN	p-Chloroaniline	127.51	71	231	1.1704	
1378 1379	C.H.CINO	2-Chloro-3-aminophenol2-Chloro-4-aminophenol	143.51	87 152			1
1379	C ₆ H ₆ ClNO C ₆ H ₆ ClNO ₃ S	p-Chlorometanilic acid	143.51 207.58	153 280 d.		1 .	1
1381	C ₆ H ₆ Cl ₂ N ₂	2, 4-Dichlorophenylhydrazine	207.58 176.98	280 a. 94			1
1382	C ₆ H ₆ Cl ₂ N ₂	2, 5-Dichlorophenylhydrazine	176.98	105			
1383	C ₆ H ₆ Cl ₂ N ₂	3, 5-Dichlorophenylhydrazine	176.98	118			
1384	C ₄ H ₆ Cl ₄	α-trans-Benzenehexachloride	290.79	157	288	1.87	1
			290.79				

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
1386	C ₆ H ₆ Cl ₆	γ-Benzenehexachloride	290.79	112	İ	İ	<u> </u>
1387	C ₆ H ₆ Cl ₆	8-Benzenehexachloride	290.79	129	1	1	
388	C ₆ H ₆ FN	o-Fluoroaniline	111.05	-34.6	68.514	1.151	716
389	C ₆ H ₆ FN	m-Fluoroaniline	111.05		186.3	1.160	722
390	C ₆ H ₆ FN	p-Fluoroaniline	111.05	-1.9	189	1.152	707
391	C ₆ H ₆ IN	o-Iodoaniline	218.99	56.5			
392	C ₆ H ₆ IN	m-Iodoaniline	218.99	27		1	
393	C ₆ H ₆ IN	p-Iodoaniline	218.99	62		1	
1394	C.H.N.O	p-Nitrosoaniline	122.06	174	i		
395	C ₆ H ₆ N ₂ O ₂	Phenylnitrosmine	138.06	46	į		1
1 39 6	C ₆ H ₆ N ₂ O ₂	o-Nitroaniline	138.06	71.5	ļ		
397	C6H6N2O2	m-Nitroaniline O2NC4H4NH2	138.06	111.8	286	1.430	
398	C.H.N.O.	p-Nitroaniline	138.06	148		1.424	
399	C.H.N.O.	Quinonedioxime p-C ₄ H ₄ (NOH) ₂	138.06	240	Ì		
400	C.H.N.O.	3-Nitro-2-aminophenol	154.06	136	1		
401	C.H.N.O.	4-Nitro-2-aminophenol	154.06	143			1
402	C.H.N.O.	5-Nitro-2-aminophenol	154.06	202	ļ		
403	C.H.N.O.	6-Nitro-2-aminophenol	154.06	111	ļ		
404	C ₆ H ₆ N ₂ O ₃	5-Nitro-3-aminophenol	154.06	165	1	1	
405	C ₆ H ₆ N ₂ O ₂	2-Nitro-4-aminophenol	154.06	206		l	
				148	1		
406	C ₄ H ₄ N ₂ O ₃	3-Nitro-4-aminophenol	154.06	_	İ		
407	C.H.N.O.	5-Acetylbarbituric acid	170.06	300	ľ		
408	C ₆ H ₆ N ₂ O ₄	Dimethylalloxan	170.06	255 d.	ļ	1	1
409	C ₄ H ₄ N ₄ O ₃	1-Methyluric acid	182.08	400 d.	ļ		
410	C.H.N.O.	3-Methyluric acid	182.08	>360 d.	į		
411	C ₆ H ₆ N ₄ O ₃	7-Methyluric acid	182.08	370 d.	ľ		
412	C ₄ H ₄ N ₄ O ₇	Ammonium picrate	246.08	d.		1.719	1318
413	C ₆ H ₆ O	Phenol	94.046	41	182	1.0714	1064
414	C ₆ H ₆ O ₂	o-Dihydroxybenzene 1, 2-C ₆ H ₄ (OH) ₂ *	110.05	105	245	1.344	1272
415	C ₆ H ₆ O ₂	Resorcinol 1, 3-C ₆ H ₄ (OH) ₂	110.05	110	276.5	1.28515	1275
1416	C ₆ H ₆ O ₂	Hydroquinol 1, 4-C ₄ H ₄ (OH) ₂	110.05	170.5	286.2	1.33216	1184
1417	C ₆ H ₆ O ₂	5-Methylfurfural	110.05		187	1.1091	
1418	C ₆ H ₆ O ₂ S	Benzenesulfinic acid	142.11	84	100 d.		i
1419	C ₄ H ₆ O ₂	Pyrogallol 1, 2, 3-C ₄ H ₂ (OH) ₂	126.05	134	309	1.453	1333
1420	C ₆ H ₆ O ₃	Hydroxyhydroquinone	126.05	140.5			
1421	C ₄ H ₄ O ₂	Phloroglucinol	126.05	219			
1422	C.H.O.	Acrylic anhydride	126.05		9736	1.0940	1
423	C.H.O.S	Benzenesulfonic acid	158.11	46	d.	1 21332	
424	C ₆ H ₆ O ₄	Apionol 1, 2, 3, 4-C ₃ H ₂ (OH) ₄	142.05	161		1	
425	C ₆ H ₆ O ₄	1, 2, 3, 5-Tetrahydroxybenzene	142.05	165	ĺ	1	
426	C.H.O.	1, 2, 4, 5-Tetrahydroxybenzene	142.05	220		1	
427	C ₄ H ₄ O ₄	Muconic acid (CH:CHCO ₂ H) ₂	142.05	320 d.		1	
1428		o-Phenolsulfonic acid		50 d.			
	C.H.O.S		174.11		l		
1429	C ₄ H ₄ O ₄	Aconitic acid	174.05	191	100 5	1.074	1,000
1430	C ₆ H ₆ S	Thiophenol C. H.SH	110.11		169.5	1.074	1002
431	C ₆ H ₆ Se	Selenophenol C ₆ H ₆ SeH	157.25		183.6	1.48718	
432	C.H.S.	Dithioresorcinol 1, 3-C ₆ H ₄ (SH) ₂	142.18	27	243		
1433	C.H.S.	Dithiohydroquinone 1, 4-C ₆ H ₄ (SH) ₂	142.18	98			i
1434	C ₆ H ₇ As	Phenylarsine C ₆ H ₅ AsH ₂	154.01		148]
435	C ₆ H ₇ AsO ₈	Phenylarsonic acid	202.01	158 d.		1.840	
436	C ₆ H ₇ BrN ₂	p-Bromophenylhydrazine	186.99	107			1
437	C ₄ H ₇ ClN ₂	4-Chloro-o-phenylenediamine	142.53	72		1	1
438	C ₆ H ₇ ClN ₂	4-Chloro-m-phenylenediamine	142.53	86	1	1	-
439	C ₆ H ₇ ClN ₂	o-Chlorophenylhydrazine	142.53	47	1	1	
440	C ₆ H ₇ ClN ₂	p-Chlorophenylhydrazine	142.53	90	1	1	1
441	C ₆ H ₇ ClO	Sorbic chloride	130.51		7815	1.065	74
441.1	C ₆ H ₇ ClO ₄	Methyl chloromaleate	178.51		106.518	1.27825	
441.2	C ₄ H ₇ ClO ₄	Methyl chlorofumarate	178.51		115.518	1.29026	1
442	C.H.N	Aniline	93.062	-6.2	184.4	1.022	769
11 2 443	C ₄ H ₇ N	α-Picoline	93.062	-69.9	128.0	0.950	60
444	C ₆ H ₇ N	β-Picoline	93.062	03.8	143.5	0.950	
445	C ₆ H ₇ N		93.062		1		1018
TIU	C ₄ H ₇ NO	γ -Picoline		170	143.1	0.957	}
1446							

• Commonly known as catechol, pyrocatechol, catechin, pyrocatechin.

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1447	C ₆ H ₇ NO	m-Aminophenol	109.06	123			1
1448	C ₆ H ₇ NO	p-Aminophenol	109.06	184			1333
1449	C ₆ H ₇ NO	Methyl 2-pyrryl ketone	109.06	90	220		
1450	C ₆ H ₇ NO	β-Phenylhydroxylamine	109.06	82			
1451	C ₆ H ₇ NO ₂	Phloramine 3, 5-(OH) ₂ C ₆ H ₂ NH ₂	125.06	152	}		,
1452	C ₆ H ₇ NO ₂ S	Benzenesulfoneamide	157.13	156			
1455	C ₆ H ₇ NO ₃ S	p-Anilinesulfonic acid	173.13	288	004		1
1458	C ₆ H ₇ NS	2-Aminothiophenol	125.13	26	234		
1459	C ₆ H ₇ N ₃ O ₂	4-Nitro-o-phenylenediamine	153.08 153.08	198 161	1		
1460 1461	C ₆ H ₇ N ₂ O ₂ C ₆ H ₇ N ₂ O ₂	4-Nitro-m-phenylenediamine2-Nitro-p-phenylenediamine	153.08	135			
1462	C6H7N6O16	d-Glucose pentanitrate	405.09	135 d.			
1463	C ₆ H ₇ O ₂ P	Phenylphosphenous acid	142.08	70			
1464	C ₆ H ₇ O ₂ P	Phenylphosphenic acid	158.08	158	250 d.	1.475	
1465	C ₆ H ₇ P	Phenyl phosphine C ₆ H ₅ PH ₂	110.08	100	160	1.00115	
1466	C ₆ H ₈	1, 3-Cyclohexadiene	80.062	-98	80.5	0.842	519
1467	C ₆ H ₈	Diallylene (CH ₂ C:CH) ₂	80.062		70	0.85818.2	
1468	C ₆ H ₈	o-Dihydrobenzene	80.062		78.5	0.848	1
1469	C ₆ H ₈	m-Dihydrobenzene	80.062		80.5	0.830	
1470	C ₆ H ₈	p-Dihydrobenzene	80.062		85.5	0.848	
1471	C ₆ H ₈ A ₈ NO ₃	Arsanilic acid p-NH ₂ C ₆ H ₄ AsO(OH) ₂	217.03	<200			
1471.1	C ₆ H ₈ BrN	Aniline hydrobromide	173.99	286			1
1472	C ₆ H ₈ ClN	Aniline hydrochloride	129.53	198	245	1.2224	1245
1474	C ₆ H ₈ ClNO	m-Aminophenol hydrochloride	145.53	229	i		
1475	C ₆ H ₈ ClNO	p-Aminophenol hydrochloride	145.53	306 d.			1333
1476	C ₆ H ₈ Cl ₂ O ₂	Adipyl dichloride	182.98		13218 s. d.		
1477	C ₆ H ₈ N	Piturine	94.070	_	244		
1478	C ₆ H ₈ N ₂	Adipyldinitrile	108.08	1	295	0.95119	471
1479	C ₆ H ₈ N ₂	o-Phenylenediamine	108.08	103.8	252	1 10557 7	1000
1480	C ₆ H ₈ N ₂	m-Phenylenediamine	108.08	62.8	287	1.10747.7	1086
1481	C ₆ H ₈ N ₂	p-Phenylenediamine	108.08	139.7	267	0.000	1017
1482	C ₆ H ₆ N ₂	2, 5-Dimethylpyrazine (Ketine)	108.08	15	155	0.990	1017 784
1483	CHN.	Phenylhydrazine C ₆ H ₆ NHNH ₂	108.08 124.08	19.6 68	243.5	1.098	104
1484 1485	C ₆ H ₈ N ₂ O C ₆ H ₈ N ₂ O	2, 5-Diaminophenol	124.08 124.08	168			1
1486	C ₆ H ₈ N ₂ O	3, 5-Diaminophenol	124.08	170			
1487	C ₆ H ₈ N ₂ O ₃	1, 3-Dimethylbarbituric acid	156.08	123			
1488	C ₆ H ₈ N ₂ O ₃	1-Ethylbarbituric acid	156.08	120			
1489	C ₆ H ₈ N ₂ O ₃	Aniline nitrate	156.08		190 d.	1.3584	1
1490	C ₆ H ₈ N ₂ O ₃ S	o-Phenylenediamine-3-sulfonic acid	188.14	d.	100 -	3.333	
1491	C ₆ H ₈ N ₂ O ₄ S	p-Phenylhydrazinesulfonic acid	188.14	286	İ		1
1492	C6H8N2O4S2	o-Benzenedisulfoneamide	236.21	233			
1493	C ₆ H ₈ N ₂ O ₄ S ₂	m-Benzenedisulfoneamide	236.21	229	į.		ł
1494	C6H8N2O4S2	p-Benzenedisulfoneamide	236.21	188			1
1495	C6H8N6O18	Mannitol hexanitrate	452.11	113	ĺ	1.8	i
1496	C ₆ H ₈ O	2, 5-Dimethylfuran	96.062		94	0.888	974
1497	C ₆ H ₈ O ₂	Dihydroresorcinol m -(OH) ₂ C ₆ H ₆	112.06	104		ļ	1
1498	C ₆ H ₈ O ₂	Sorbic acid CH ₂ (CH:CH) ₂ CO ₂ H	112.06	134.5	228 d.		1333
1499	C ₆ H ₈ O ₄	Dimethyl fumarate	144.06	102	192		
1500	C ₆ H ₈ O ₄	Dimethyl maleate	144.06	Λ	203	1.15314	382
1501	C ₆ H ₈ O ₄	Ethyl fumarate CO2HCH:CHCO2C2H5.	144.06	70			1
1502	C ₆ H ₈ O ₄	Lactide	144.06	125	255	0.862	
1503	C ₆ H ₈ O ₆	Acetonylmalonic acid	160.06	150			
1504	C ₆ H ₆ O ₅	Acetylmalic acid	160.06	134	1		
1504.1	C ₆ H ₆ O ₆	1-Ketoadipic acid	160.06	124			
1505	C ₆ H ₈ O ₆	Tricarballylic acid	176.06	166	d.	1 220	373
1506 1507	CH ₈ O ₆	Glycerol triformate (Triformin) Citric acid (HO ₂ CCH ₂) ₂ C(OH)CO ₂ H	176.06 192.06	18 153	266	1.320 1.542	1202
1507	$C_6H_8O_7$ $C_6H_8O_8$	Hydroxycitric acid	208.06	160	1	1.542	1202
1508	C ₆ H ₈ O ₈ C ₆ H ₈ S	2, 3-Dimethylthiophene	112.13	100	137	0.994	
1510	C ₆ H ₉ S	2, 4-Dimethylthiophene	112.13		138	0.994	
	C ₆ H ₉ S	2, 5-Dimethylthiophene	112.13		137.5	0.97617.6	
1511							

No.	Formula	Name	Mol. wt.	М. Р.	B. P.	d	R. I. No.
1513	C ₆ H ₉ AsO ₆	Arsenic acetate	252.03	82	17031		T
1514	C ₆ H ₉ ClN ₂	Phenylhydrazine hydrochloride	144.54	243			1
1515	C ₆ H ₉ ClO ₃	Ethyl chloroacetoacetate	164.53	1	200	1.17925	
1516	C ₆ H ₉ N	1, 2-Dimethylpyrrol	95.077		6514		
1517	C ₆ H ₉ N	2, 3-Dimethylpyrrol	95.077		165		
1518	C ₆ H ₉ N	2, 4-Dimethylpyrrol	95.077		171	0.9274	829
1519	C ₆ H ₉ N	2, 5-Dimethylpyrrol	95.077	į	169	0.935	909
1520	C.H.N	1-Ethylpyrrol	95.077	907.1	131	0.88816	-
1521	C ₆ H ₉ NO ₂	Guavacine	127.08	285 d.			
1522	C.H.NO.	Triacetamide (CH ₂ CO) ₂ N	143.08 175.14	79 256			
1523 1524	C ₆ H ₂ NO ₂ S C ₆ H ₂ NO ₂ S	m-Aminophenol sulfate	207.14	152			
1524 1525		1, 2, 3-Triaminobenzene	123.09	103	336		
1525 1526	C ₆ H ₉ N ₂ C ₆ H ₉ N ₂	1, 2, 4-Triaminobenzene	123.09	100	340		
1526	C ₆ H ₉ N ₂ O	2, 4, 6-Triaminophenol	139.09	100	257		
1528	C ₆ H ₉ N ₂ O ₂	Cupferron	155.09	164	201		
1529	C ₆ H ₂ N ₂ O ₂	Histidine	155.09	253 d.			
1530	C ₆ H ₉ N ₂ O ₂	Phloroglucinol trioxime	171.09	155 exp.			
1531	C ₆ H ₉ N ₂ O ₄	Caffuric acid	187.09	220			
1532	C ₆ H ₁₀	n-Butylacetylene C ₄ H ₂ C:CH	82.077	-150	71.5		
1533	C ₆ H ₁₀	Diisopropenyl (CH ₂ C:CH ₂) ₂	82.077	100	69.6	0.73115	852
1534	C ₆ H ₁₀	1, 5-Hexadiene (CH ₂ CH:CH ₂) ₂	82.077		60	0.688	127
1535	C ₆ H ₁₀	2, 4-Hexadiene (CH:CHCH ₂) ₂	82.077		82	0.718	819
1536	C ₆ H ₁₀	Methylpropylacetylene CH ₂ CC:C ₂ H ₇	82.077		84	0.749	
1537	C ₆ H ₁₀	1, 2, 3, 4-Tetrahydrobenzene	82.077	-103.7	83	0.810	404
1539	C ₆ H ₁₀ ClN ₂ O ₂	Histidine hydrochloride	191.56	251 d.			
1540	C ₆ H ₁₀ N ₄ O ₁₃	Tetranitrodiglycerol	346.11		250*	1.33	1
1541	C ₆ H ₁₀ O	Cyclohexanone	98.077		156.7	0.949	874
1542	C ₆ H ₁₀ O	1, 2, 3, 4-Tetrahydrophenol	98.077		166 d.		
1543	C ₆ H ₁₀ O	1, 2, 3, 6-Tetrahydrophenol	98.077		166		
1544	C ₆ H ₁₀ O	Allyl ether (CH ₂ :CHCH ₂) ₂ O	98.077		94.3	0.805	
1545	C ₆ H ₁₀ O	1-Ethyl-2-methylacrolein	98.077	1	137.3	0.858	
1546	C ₆ H ₁₀ O	Allylacetone CH2:CH(CH2)2COCH2	98.077		1 29 .5	0.846	876
1547	C ₆ H ₁₀ O	Diethylketene (C ₂ H ₅) ₂ C:CO	98.077		89.5	0.831	
1548	C ₆ H ₁₀ O	Mesityl oxide (CH ₂) ₂ C:CHCOCH ₂	98.077	-59.0	135	0.863	899
1549	C6H10O2	Adipyl dialdehyde OCH(CH ₂) ₄ CHO	114.08		949		
1550	C6H10O2	Propionylpropionic aldehyde	114.08	40	166		
1551	C ₆ H ₁₀ O ₂	Acetonylacetone (CH ₂ COCH ₂) ₂	114.08	-9	194	0.970	428
1552	C ₆ H ₁₀ O ₂	α-Ethylcrotonic acid	114.08	45	209		
1553	C ₆ H ₁₀ O ₂	1, 2-Hexenic acid C ₂ H ₇ CH:CHCO ₂ H	114.08	32	217	0.965	1055
1554	C ₆ H ₁₀ O ₂	2, 3-Hexenic acid	114.08		208	0.962	953
1555	C ₆ H ₁₀ O ₂	1, 2-Isohexenic acid	114.08		10812	0.959	885
1556	C ₆ H ₁₀ O ₂	Crotonyl acetate	114.08		129	0.934	
1557	C ₆ H ₁₀ O ₂	Ethyl a-crotonate	114.08		139	0.919	283
1558	C ₆ H ₁₀ O ₂	Ethyl isocrotonate	114.08		131.2	0.925	
1559	C ₆ H ₁₀ O ₃	Glyceryl ether	130.08		173	1.091	1
1560	C ₆ H ₁₀ O ₃	Propionic anhydride (CH ₂ CH ₂ CO) ₂ O	130.08	-45.0	196.0	1.012	142
1561	C ₆ H ₁₀ O ₃	Ethyl acetoacetate	130.08	<-80	180	1.025	243
1562	C ₆ H ₁₀ O ₄	Adipic acid HO ₂ C(CH ₂) ₄ CO ₂ H	146.08	151	265100		
1563	C ₆ H ₁₀ O ₄	1, 1-Dimethylsuccinic acid	146.08	142	165 d.		
1564	C ₄ H ₁₀ O ₄	Ethylsuccinic acid	146.08	98			
1565	C ₆ H ₁₀ O ₄	Methylethylmalonic acid	146.08 146.08	117.5 96		1	
1566	C ₄ H ₁₀ O ₄	Propylmalonic acid C ₂ H ₇ CH(CO ₂ H) ₂		87			
1567 1568	C ₆ H ₁₀ O ₄	Isopropylmalonic acid	146.08 146.08	19.5	192.8	1.121	942
	C ₆ H ₁₀ O ₄	Dimethyl isosuccinate (CH ₂ CO ₂ CH ₁ / ₂	146.08	19.5	179	1.02825	342
1569 1570	C ₄ H ₁₀ O ₄	Dimethyl isosuccinate	146.08	-40.6	186.1	1.02025	182
1570	$\begin{array}{c} C_6H_{10}O_4 \\ C_6H_{10}O_4 \end{array}$	Glycol diacetate (CH ₂ OCOCH ₂) ₂	146.08	-40.0 -31	190.5	1.104	216
1571 1572	C ₆ H ₁₀ O ₄	Ethylidene diacetate	146.08	"	169	0.852	2.0
1572 1572.1	C ₆ H ₁₀ O ₄	Methyl l-1-acetoxypropionate	146.08		172	1.089	
1573	C ₆ H ₁₀ O ₄	Mannide	146.08		317	1	
1574	C ₆ H ₁₀ O ₄	Isomannide	146.08	87	274	ļ	
				, ,,			

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	, d	R. I. No.
1576	C ₆ H ₁₀ O ₅	Dimethyl malate	162.08		242	1.233	391
1577	C6H10O6	β-Glucosan	162.08	178			
1578	$(C_{\delta}H_{10}O_{\delta})_{x}$	Glycogen	$(162.08)_{x}$	240	•		
1578.1	$(C_6H_{10}O_5)_x$	Starch	$(162.08)_{x}$	d.	1	1.5021	. 1164
1579	C ₆ H ₁₀ O ₅	d-Saccharine	162.08	161	900		1
1580 1581	C ₆ H ₁₀ O ₆	Dimethyl dl-tartrate (CH(OH)CO ₂ CH ₂) ₂	178.08	85	282 280	1 200	
1582	$\begin{array}{c} C_6H_{10}O_6 \\ C_6H_{10}O_6 \end{array}$	Dimethyl d-tartrate	178.08 178.08	48; 61.5 90	280	1.328	1
1583	C ₅ H ₁₀ O ₈	Allomucic acid	210.08	171 d.			1
1584	C ₆ H ₁₀ O ₈	Mucic acid HO ₂ C(CHOH) ₄ CO ₂ H	210.08	206 d.			
1585	C ₆ H ₁₀ O ₈	d(l)-Talomucic acid	210.08	158 d.			1
1586	C ₆ H ₁₀ O ₈	Isosaccharic acid	210.08	185			1
1587	$C_6H_{10}S$	Diallyl sulfide (CH ₂ :CHCH ₂) ₂ S	114.14	-83.0	138.7	0.8884 8	1034
1588	C ₆ H ₁₁ Br	Cyclohexyl bromide	163.00		165.5	1.333	575
1589	C ₆ H ₁₁ BrN ₂ O ₂	Bromural	223.02	154			
1590	C ₆ H ₁₁ BrO ₂	1-Bromocaproic acid C ₄ H ₉ CHBrCO ₂ H	195.00		13110		
1591	C ₄ H ₁₁ BrO ₂	2-Bromocaproic acid	195.00	35	150	1 00525	1
1592	CH ₁₁ BrO ₂	Ethyl 1-bromobutyrate	195.00		179 d.	1.32525	1
1593 1595	$C_6H_{11}BrO_2$ $C_6H_{11}Cl$	Ethyl 1-bromoisobutyrate	195.00 118.54		164 d. 142.5	1.31525 0.973	451
1596	C ₆ H ₁₁ ClO	n-Caproyl chloride C ₅ H ₁₁ COCl	118.54 134.54		153	0.973	543
1597	C ₆ H ₁₁ ClO ₂	Isoamyl chloroformate	150.54		156	1.02426	010
1598	C ₆ H ₁₁ Cl ₂ N ₂ O ₂	Histidine dihydrochloride	228.03	235 d.	100	1.02126	
1599	C ₆ H ₁₁ Cl ₂ O ₂	Trichloroacetal Cl ₂ CCH(OC ₂ H ₅) ₂	221.46	200 u.	197	1.26615	
1600	C6H11Cl2O2	Trichloroacetal (solid)	221.46	83	230 d.		1
1601	C ₆ H ₁₁ I	Cyclohexyl iodide	210.02		192	1.626	
1602	$C_6H_{11}N$	Capronitrile C ₅ H ₁₁ CN	97.09		163	0.809	188
1603	C ₆ H ₁₁ N	Isocapronitrile (CH ₂) ₂ CH(CH ₂) ₂ CN	97.09	-51.1	155.5	0.806	159
1604	$C_6H_{11}N$	Isocaproisonitrile (CH ₂) ₂ CH(CH ₂) ₂ NC.	97.09		137		
1605	C ₄ H ₁₁ NO ₂	Hygric acid	129.09	169			
1606	C ₆ H ₁₁ NO ₂	Nitrocyclohexane	129.09	-34	205.5	1.068	}
1607 1608	CH NS	Adipyl amide HO ₂ C(CH ₂) ₄ CONH ₂	145.09 129.16	130	182		1
1609	C ₆ H ₁₁ NS C ₆ H ₁₁ N ₂ O ₄	Isoamyl isothiocyanate	189.10	215	102		l
1610	C ₆ H ₁₂	Butylethylene C ₄ H ₉ CH:CH ₂	84.092	-98.5	64.1	0.683	44
1611	C ₆ H ₁₂	2, 2-Dimethyl-4-butene	84.092	00.0	42.3	0.000	1
1612	C6H12	Cyclohexane	84.092	6.5	81.4	0.779	304
1613	C ₆ H ₁₂	2-Methyl-2-pentene (CH ₂) ₂ C:CHC ₂ H ₅	84.092		67.1	0.692	881
1615	C ₆ H ₁₂	Methylcyclopentane	84.092	-140.5	73	0.750	
1616	C ₆ H ₁₂	3-Methyl-2-pentene (isomer 1)	84.092		65.7	0.72215	848
1617	C ₆ H ₁₂	3-Methyl-2-pentene (isomer 2)	84.092		70.2	0.698	128
1618	C ₆ H ₁₂	2, 3-Dimethyl-1-butene	84.092		59	0.680	
1619	C ₆ H ₁₂	Tetramethylethylene	84.092		73 84.516	0.712	199
1620 1621	C ₆ H ₁₂ As ₂ C ₆ H ₁₂ As ₂ BiO ₆	Bismuth cacodylate (8H ₂ O)	234.01 613.97	82	04.5**	ì	1
1622	C ₆ H ₁₂ Cl ₂ O ₂	Dichloroacetal Cl ₂ CHCH(OC ₂ H ₂) ₂	187.01	02	184	1.13814	1
1623	C ₆ H ₁₂ N ₂ O ₂	Adipic diamide H ₂ NOC(CH ₂) ₄ CONH ₂	144.11	220	.01	1.100	
1624	C ₆ H ₁₂ N ₂ O ₂	symDiethyloxamide	144.11	190			1
1625	C.H.2N2O4S2	<i>L</i> -Cystine	240.24	258 d.		1	1187
1626	C.H.2N4	Hexamethylenetetramine	140.12		263		1
1627	C ₆ H ₁₂ O	Cyclohexanol	100.09	23.9	161.5	0.962	1051
1628	C ₆ H ₁₂ O	2-Hexene-4-ol	100.09		5927	0.837	1008
1629	C ₆ H ₁₂ O	Dimethyl propenyl carbinol	100.09		112	0.835	321
1630	C ₆ H ₁₂ O	Pinacolin (CH ₃) ₃ CCOCH ₃	100.09	-52.5	106.2	0.811	
1631 1632	C ₆ H ₁₂ O C ₆ H ₁₂ O	Ethyl isocrotonyl ether	100.09 100.09		94 84.2	0.776	
1633	C ₆ H ₁₂ O	n-Caproic aldehyde C ₈ H ₁₁ CHO	100.09		129	0.834	l l
1634	C ₆ H ₁₂ O	Isobutylacetaldehyde	100.09		121.7	V.50-x	
1635	C ₆ H ₁₂ O	Methylpropylacetaldehyde	100.09		121		
1636	C ₆ H ₁₂ O	Ethyl propyl ketone C ₂ H ₅ COC ₃ H ₇	100.09		124	0.81817.6	124
1637	C6H12O	Ethyl isopropyl ketone	100.09		114.5	0.8300	
1638	C ₆ H ₁₂ O	Methyl n-butyl ketone CH ₂ COC ₄ H ₂	100.09	-56.9	127.2	0.830	
1639	C ₆ H ₁₂ O	Methyl isobutyl ketone	100.09	-84.7	119	0.803	96

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1640	C ₆ H ₁₂ O	Methyl secbutyl ketone	100.09		117.8	0.815	115
1641	C ₆ H ₁₂ O ₂	Diacetone alcohol	116.09		166	0.93124	
1642	C ₆ H ₁₂ O ₂	tertButylacetic acid	116.09	-11	190		
1643	C ₆ H ₁₂ O ₂	Caproic acid C ₆ H ₁₁ CO ₂ H	116.09	-9.5	202	0.929	207
1644	C ₆ H ₁₂ O ₂	Isocaproic acid	116.09	-35	207.7	0.925	217
1645	C ₆ H ₁₂ O ₂	Diethylacetic acid (C ₂ H ₆) ₂ CHCO ₂ H	116.09	<-15	197	0.93340.2	201
1646	C ₆ H ₁₂ O ₂	Dimethylethylacetic acid	116.09	-14	187		
1647	C ₆ H ₁₂ O ₂	Methylpropylacetic acid	116.09	ŀ	193.5	0.928	
1648	C ₆ H ₁₂ O ₂	n-Amyl formate HCO ₂ C ₃ H ₁₁	116.09		130.4	0.9020	
1649	C ₆ H ₁₂ O ₂	Isoamyl formate	116.09		123.5 113	0.871	83
1650	C ₅ H ₁₂ O ₂	tertAmyl formate	116.09	70.0		0.882	95
1651	C ₄ H ₁₂ O ₂	n-Butyl acetate CH ₂ CO ₂ C ₄ H ₂	116.09 116.09	-76.8 -98.9	126.5 118.3	0.871	118
1652	C ₄ H ₁₂ O ₂	Isobutyl acetate CH ₂ CO ₂ CH ₂ CH(CH ₂) ₂	116.09	-90.9	112.2	0.871	73
1653	C ₄ H ₁₂ O ₂	secButyl acetate	116.09	-93.3	121.3	0.879	91
1654	C.H.19O2	Ethyl n-butyrate C ₂ H ₇ CO ₂ C ₂ H ₅	116.09	-93.3 -88.2	111.7	0.879	80
1655 1656	C ₆ H ₁₂ O ₂ C ₆ H ₁₂ O ₂	Ethyl isobutyrate	116.09	-00.2	102	1.044	~
			116.09		127.3	0.910	l
1657 1658	C ₆ H ₁₂ O ₂ C ₆ H ₁₂ O ₂	Methyl n-valerate C ₄ H ₉ CO ₂ CH ₃ Methyl isovalerate	116.09		116.7	0.881	į
1659	C ₆ H ₁₂ O ₂	n-Propyl propionate C ₂ H ₅ CO ₂ C ₃ H ₇	116.09	-75.9	123.4	0.883	92
1660	C ₆ H ₁₂ O ₂	Isopropyl propionate	116.09	-10.8	111.3	0.893	32
1661	C ₆ H ₁₂ O ₃	Phloroglucite	132.09	185	111.0	0.000	1
1662	C ₆ H ₁₂ O ₂	Paraldehyde (CH ₂ CHO) ₂	132.09	10.5	124	0.994	244
1663	C ₆ H ₁₂ O ₂	1-Hydroxy-n-caproic acid	132.09	62	121	0.001	
1664	C ₆ H ₁₂ O ₂	1-Hydroxyisocaproic acid	132.09	81	1		
1665	C ₆ H ₁₂ O ₂	dl-1-Hydroxyisocaproic acid	132.09	76	1	Ì	ł
1666	C ₅ H ₁₅ O ₅	1-Hydroxy-1, 1-diethylacetic acid	132.09	74.5		ı	ł
1667	C.H ₁₂ O ₂	Methyl n-butyl carbonate	132.09	1	151	1	1
1668	C ₆ H ₁₂ O ₆	Fucose	164.09	145	101		-
1669	C ₆ H ₁₅ O ₅	Mannitan	164.09	137	1	ŀ	1
1670	C ₆ H ₁₂ O ₆	d-Quercitol	164.09	234	1	1.58518	
1671	C ₆ H ₁₂ O ₆	<i>l</i> -Quercitol	164.09	174			
1672	C ₆ H ₁₂ O ₆ (H ₂ O)	β-Rhamnose	164.09	126		1.471	1219
1673	C ₆ H ₁₂ O ₆	Rhodeose	164.09	144			
1674	C6H12O6	d-Fructose (Levulose)	180.09	104		1.66917.6	
1675	C.H.2O.	d, a-Galactose	180.09	168	'		1
1675.1	C ₆ H ₁₂ O ₆	d, \beta-Galactose	180.09	168	1		
1676	C6H12O6	dl-Galactose	180.09	144		1	1
1677	C ₆ H ₁₂ O ₆	d, a-Glucose	180.09	146		1.54426	}
1678	C ₆ H ₁₂ O ₆	d, β-Glucose	180.09	150			1
1679	C ₆ H ₁₂ O ₆	d(l)-Inosite	180.09	247	250 vac.		
1680	C ₆ H ₁₂ O ₆	Dambose	180.09	224	d.	1.752	
1681	C6H12O6	a-Mannose	180.09	133	205 d.	İ	1
1682	C6H12O6	d-Mannose	180.09	132		1.539	ľ
1683	C ₆ H ₁₂ O ₆	dl-Mannose	180.09	133	1		
1684	C ₆ H ₁₂ O ₆	d(l)-Sorbose	180.09	154	i	1.612	
1685	C ₆ H ₁₂ O ₆	<i>dl</i> -Sorbose	180.09	154		1.638	
1686	C ₆ H ₁₂ O ₆	d-Tagatose	180.09	124		1	1
1687	C ₆ H ₁₂ S	Cyclohexyl mercaptan	116.16		160		
1688	$C_6H_{12}S_8$	a-Trithioacetaldehyde	180.29	101	247	1	
1689	C ₆ H ₁₂ S ₂	β-Trithioacetaldehyde (C ₂ H ₄ S) ₃	180.29	126	1	}	
1690	C ₆ H ₁₂ S ₃	γ-Trithioacetaldehyde	180.29	81	100	1 100	
1690.1	C ₆ H ₁₃ Se	Hexamethyl selenide	163.29		172	1.122	1
1691	C ₆ H ₁₂ Br	2-Bromo-2, 3-dimethylbutane	165.02	13	132		
1692	C ₆ H ₁₂ Br	n-Hexyl bromide C ₄ H ₁₁ CH ₂ Br	165.02		156	1.173	422
1693	C ₆ H ₁₂ BrO ₂	Bromoacetal BrCH ₂ CH(OC ₂ H ₅) ₂	197.02		170	0.077	1
1694	C ₆ H ₁₃ Cl	2-Chloro-2, 3-dimethylbutane	120.56	-10.4	112.1	0.87525	000
1695	C ₆ H ₁₃ Cl	n-Hexyl chloride C ₆ H ₁₁ CH ₂ Cl	120.56	1.50	134	0.872	238
1696	C ₆ H ₁₂ ClN ₄ O ₄	Hexamethylenetetramine perchlorate	240.59	158	100	1,44	
1697	C ₆ H ₁₈ I	n-Hexyl iodide C ₃ H ₁₁ CH ₂ I	212.03		180	1.441	560
1698	C ₄ H ₁₂ IO ₂	Iodoacetal ICH ₂ CH(OC ₂ H ₄) ₂	244.03		13290	1.49416	410
1699	C ₆ H ₁₈ N	1-Methylpiperidine	99.108		107	0.818	416 1016
1699 1700	C ₆ H ₁₂ N C ₆ H ₁₂ N	1-Methylpiperidine (α-Pipecoline)	99.108 99.108		119	0.818	3.6

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1701	C ₆ H ₁₈ N	3-Methylpiperidine (\$\beta\$-Pipecoline)	99.108		126	0.84524.3	1020
1702	C ₆ H ₁₂ N	4-Methylpiperidine (γ-Pipecoline)	99.108		129	0.867	
1703	C ₄ H ₁₂ NO ₂	Hedonal H ₂ NCO ₂ CH(CH ₂)C ₂ H ₇	131.11	74	215		
1704	C ₆ H ₁₂ NO ₂	Isoamyl carbamate	131.11	63.5	220		
1704.1	C ₆ H ₁₂ NO ₂	Propyl urethane C ₂ H ₇ NHCO ₂ C ₂ H ₅	131.11		186	0.99215	
1705	C ₆ H ₁₂ NO ₂	l-Leucine (CH ₂) ₂ CHCH(NH ₂)CO ₂ H	131.11	295		1.293	1221
1706	C ₆ H ₁₂ NO ₂	dl-Leucine	131.11	290		Ĭ	
1707	C ₆ H ₁₂ NO ₂	d(l)-Isoleucine	131.11	280 d.		ļ ·	
1708	C ₆ H ₁₂ NO ₂	dl-Isoleucine	131 . 11	275			
1709	C ₆ H ₁₂ NO ₅	d-Glucosamine	179.11	110 d.			
1710	C ₆ H ₁₂ NO ₄	d-Glucosimine	179.11	128		l l	
1711	C ₆ H ₁₃ NO ₆	d-Glucosoxime	195.11	138			
1712	C ₆ H ₁₄	Diisopropyl (CH ₃) ₂ CHCH(CH ₃) ₂	86.108	-135.1	58.1	0.66615	38
1713	C ₆ H ₁₄	n-Hexane CH ₂ (CH ₂) ₄ CH ₂	86.108	-94.3	69.0	0.660	32
1714	C ₆ H ₁₄	3-Methylpentane (C ₂ H ₄) ₂ CHCH ₂	86.108	}	64	0.668	34
1715	C ₆ H ₁₄	2-Methylpentane (CH ₃) ₂ CHC ₃ H ₇	86.108		60.0	0.654	27
1716	C6H14	2, 2-Dimethylbutane (CH ₂) ₃ CC ₂ H ₅	86.108	-98.2	49.7	0.649	23
1717	C ₆ H ₁₄ INO ₆	d-Glucosamine hydroiodide	307.05	165 d.			
1718	C ₆ H ₁₄ N ₂	α, 2, 5-Dimethylpiperazine	114.12	119	162	į	
1719	C ₆ H ₁₄ N ₂ O	Diacetoneamineoxime	130.12	58	13517		
1720	C ₆ H ₁₄ N ₂ O	Dipropylnitrosamine (C ₃ H ₇) ₂ NNO	130.12		205		
1721	C ₆ H ₁₄ N ₂ O ₇	Ammonium citrate	226.12			1.483	
1722	C ₆ H ₁₄ N ₄ O ₂	Arginine	174.14	207.5 d.			1
1723	C ₆ H ₁₄ O	tertAmyl carbinol	102.11	i	135	0.844	
1724	C ₆ H ₁₄ O	Isohexyl alcohol	102.11		165	0.8404	429
1725	C ₆ H ₁₄ O	Dimethylisopropyl carbinol	102.11	-14	122	0.823	
1726	C ₆ H ₁₆ O	Ethylpropyl carbinol	102.11		135	0.819	
1726.1	C ₆ H ₁₄ O	l(d)-Ethylpropyl carbinol	102.11		134733	0.82513.5	211
1727	C ₆ H ₁₄ O	Ethylisopropyl carbinol	102.11		128	0.824	
1728	C ₆ H ₁₄ O	n-Hexyl alcohol C ₆ H ₁₈ OH	102.11	-51.6	155.8	0.820	1
1730	C ₆ H ₁₄ O	Methylbutyl carbinol	102.11		131.9	0.8034	183
1730.1	C ₆ H ₁₆ O	d-Methylbutyl carbinol	102.11	1	138	0.815	205
1732	C ₆ H ₁₄ O	Methyl-secbutyl carbinol	102.11		134	0.83118	245
1733	C ₆ H ₁₄ O	Pinacolyl alcohol (CH ₃) ₂ CH(OH)CH ₃	102.11	5.5	121	0.81225	
1733.1	C ₆ H ₁₄ O	d-Pinacolyl alcohol	102.11		120	0.820	214
1734	C ₆ H ₁₄ O	Methyldiethyl carbinol	102.11	-22	122.6	0.824	242
1735	C ₄ H ₁₄ O	3-Methyl-3-ethylpropyl alcohol	102.11		152.1	0.83015	
1736	C ₆ H ₁₄ O	2-Methyl-2-propylethyl alcohol	102.11		147.9	0.829	231
1737	C ₆ H ₁₄ O	Ethyl n-butyl ether C ₄ H ₅ OC ₂ H ₅	102.11		91.4	0.752	
1738	C ₆ H ₁₄ O	Ethyl isobutyl ether	102.11		80	0.751	
1739	C ₆ H ₁₄ O	Methyl n-amyl ether C ₅ H ₁₁ OCH ₂	102.11		88.5	0.754	53
1740	C ₆ H ₁₄ O	Methyl isoamyl ether	102.11		91	0.6874	
1741	C ₆ H ₁₄ O	Propyl ether (C ₃ H ₇) ₂ O	102.11	-122.0	89	0.747	41
1742	C ₆ H ₁₄ O	Isopropyl ether [(CH ₂) ₂ CH] ₂ O	102.11		68.7	0.73516.3	
1743	C ₆ H ₁₄ O ₃	Pinacone [(CH ₃) ₂ COH] ₂	118.11	38	172.8		
1744	C ₆ H ₁₄ O ₂	Hexane-1, 5-diol	118.11		233	0.9810	
1745	C ₆ H ₁₄ O ₂	Hexane-1, 6-diol HOCH ₂ (CH ₂) ₄ CH ₂ OH	118.11	42	250		
1746	C ₆ H ₁₄ O ₂	Acetal CH ₂ CH(OC ₂ H ₄) ₂	118.11		102.2	0.831	42
1747	C ₄ H ₁₄ O ₄	Diglycerol [(HO) ₂ C ₃ H ₆] ₂ O	166.11	l	23010	i	
1748	C ₆ H ₁₄ O ₅	Fucitol	166.11	153		1	1
1749	C ₆ H ₁₄ O ₅	Rhamnitol	166.11	121			1.000
1750	C ₆ H ₁₄ O ₆	Dulcitol	182.11	188	2953.6	1.46615	1333
1751	C ₆ H ₁₄ O ₆	d-Mannitol	182.11	166.1	2953.5	1.489	1333
1752	C ₆ H ₁₄ O ₆	d-Sorbitol	182.11	110		ł	1333
1753	C ₆ H ₁₄ O ₆	d-Talitol	182.11	86	1.10		
1754	C ₆ H ₁₄ S	Dipropyl sulfide (C ₂ H ₇) ₂ S	118.17		142	0.814	
1755	C ₆ H ₁₄ S	Diisopropyl sulfide [(CH ₃) ₂ CH] ₂ S	118.17		120.4		40-
1756	C ₆ H ₁₈ As	Triethyl arsine (C ₂ H ₅) ₂ As	162.08		141 d.	1.150	495
1757	C ₆ H ₁₅ AsO ₂	Triethyl arsenite (C ₂ H ₅ O) ₂ As	210.08		166	1.2244	
1758	C ₆ H ₁₆ AsO ₄	Triethyl arsenate (C ₂ H ₅ O) ₂ AsO	226.08		238	1.3260	
1759	C ₆ H ₁₈ Bi	Triethyl bismuthine (C ₂ H ₅) ₃ Bi	296.12	00.0	10779	1.82	
1760	C ₆ H ₁₈ N	Di-n-propylamine (C ₂ H ₇) ₂ NH	101.12	-39.6	110.7	0.738	149
1761	C ₆ H ₁₆ N	Diisopropylamine [(CH ₂) ₂ CH] ₂ NH	101.12	ı l	84	0.72222	I

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1762	C ₆ H ₁₆ N	n-Hexylamine C ₆ H ₁₈ NH ₂	101.12		128		1
1762.1	C ₆ H ₁₆ N	2-Hexylamine C ₄ H ₉ CH(NH ₂)CH ₂	101.12	-19	130742	0.76720.4	
1763	C ₆ H ₁₆ N	Isohexylamine (CH ₃) ₂ CH(CH ₂) ₃ NH ₂	101.12	-94.4	123.9		
1764	C ₆ H ₁₅ N	Triethylamine (C ₂ H ₅) ₂ N	101.12	-114.8	89.5	0.728	129
1765	C ₆ H ₁₈ NO ₂	Aminoacetal H ₂ NCH ₂ CH(OC ₂ H ₅) ₂	133.12		163		
1766	C ₆ H ₁₆ N ₃	Acetaldehydeammonia (trimeric)	129.14	85			
1767	C ₆ H ₁₅ O ₅ P	Triethyl phosphite (C ₂ H ₃ O) ₃ P	166.14		156.5	1.07613.4	169
1768	C ₆ H ₁₆ O ₄ P	Triethyl phosphate (C ₂ H ₆ O) ₂ PO	182.14	1	216	1.07212	150
1769	C ₆ H ₁₆ P	Triethylphosphine (C ₂ H ₅) ₈ P	118.14		128	0.800	413
1769.1	C ₆ H ₁₈ PS	Triethyl phosphinesulfide	150.20	94			1182
1770	C ₄ H ₁₄ Sb	Triethyl stibine (C ₂ H ₆) ₂ Sb	208.89	054	159.5	1.32416	
1771	C ₆ H ₁₆ ClN	Triethylamine hydrochloride	137.59	254	100	1.069	
1772	C ₆ H ₁₆ N ₂	Hexamethylenediamine H ₂ N(CH ₂) ₆ NH ₂	116.14	39	196		1
1773	C ₆ H ₁₆ N ₆ O ₄ S	1, 1-Dimethylguanidine sulfate	270.25	288 d.	1		i
1775	C,HCl,O,	Pentachlorobenzoic acid C ₆ Cl ₅ CO ₂ H	294.30	201		1	
1776	C ₇ H ₂ Br ₄ O ₂	2, 3, 4, 6-Tetrabromobenzoic acid	437.68	174		1	
1777	C ₇ H ₂ Cl ₄ O ₂	2, 3, 4, 5-Tetrachlorobenzoic acid	259.85	186	1	Ĭ	ı
1778	C ₇ H ₄ Br ₄ O ₂	2, 3, 4-Tribromobenzoic acid	358.77	198			ł
1779	C ₇ H ₂ Br ₂ O ₂	2, 3, 5-Tribromobenzoic acid	358.77	194			1
1780	C ₇ H ₂ Br ₂ O ₂	2, 4, 5-Tribromobenzoic acid	358.77	196			1
1781	C ₇ H ₂ Br ₂ O ₂	2, 4, 6-Tribromobenzoic acid	358.77	187		1	1
1782	C ₇ H ₂ Br ₂ O ₂	3, 4, 5-Tribromobenzoic acid	358.77	235			
1783	C ₇ H ₃ Cl ₃ O ₂	2, 3, 4-Trichlorobenzoic acid	225.40	129			1
1784	C ₇ H ₃ Cl ₃ O ₂	2, 3, 5-Trichlorobenzoic acid	225.40	163			
1785	C ₇ H ₃ Cl ₃ O ₂	2, 4, 5-Trichlorobenzoic acid	225.40	163			
1786	C7H3Cl3O2	2, 4, 6-Trichlorobenzoic acid	225.40	160	ł		
1787	C7H3Cl3O2	3, 4, 5-Trichlorobenzoic acid	225.40	203			
1788	C7H2N2O7	2, 4, 6-Trinitrobenzaldehyde	241.05	119	į	i	
1789	C ₇ H ₂ N ₂ O ₈	2, 4, 6-Trinitrobenzoic acid	257.05	190		1	
1790	C ₇ H ₄ BrClO	o-Bromobenzoyl chloride	219.41	!	243		
1791	C ₇ H ₄ BrClO	m-Bromobenzoyl chloride	219.41		239	1	I
1792	C ₇ H ₄ BrClO	p-Bromobenzoyl chloride	219.41	42	247 s. d.	İ	1
1793	C ₇ H ₄ BrN	o-Bromobenzonitrile	181.96	51	253	1	
1794	C ₇ H ₄ BrN	m-Bromobenzonitrile	181.96	38	225	1	
1795	C ₇ H ₄ BrN	p-Bromobenzonitrile	181.96	113	237		
1796	C ₇ H ₄ Br ₂ O ₂	2, 3-Dibromobenzoic acid	279.86	150			
1797	C ₇ H ₄ Br ₂ O ₂	2, 4-Dibromobenzoic acid	279.86	169			
1798	C ₇ H ₄ Br ₂ O ₂	2, 5-Dibromobenzoic acid	279.86	153		1	}
1799	C ₇ H ₄ Br ₂ O ₂	2, 6-Dibromobenzoic acid	279.86	147		1	,
1800	C ₇ H ₄ Br ₂ O ₂	3, 4-Dibromobenzoic acid	279.86	230		ł	
1801	C ₇ H ₄ Br ₂ O ₂	3, 5-Dibromobenzoic acid	279 .86	214			1
1802	C7H4Br2O5	2, 6-Dibromo-3, 4, 5-trihydroxybenzoic		1			
1000	G 77 G770	acid	327.86	150		1	1
1803	C,H,ClFO	o-Fluorobenzoyl chloride	158.49		206		-
1804	C ₇ H ₄ ClFO	m-Fluorobenzoyl chloride	158.49		189		
1805	C,H,CIFO	p-Fluorobenzoyl chloride p-FC ₆ H ₄ COCl			193	İ	1
1806	C,H,CINO	o-Nitrobenzoyl chloride	185.50	75	205106		1
1807	C,H,CINO	m-Nitrobenzoyl chloride	185.50	34	278	1	1
1808	C,H,CINO	p-Nitrobenzoyl chloride	185.50	72	15416		ì
1809	C ₇ H ₄ Cl ₂ O	2, 4-Dichlorobenzaldehyde	174.95	71	000	1 00170	l
1810	C ₇ H ₄ Cl ₂ O	2, 5-Dichlorobenzaldehyde	174.95	58	233	1.23170	l
1811	C ₇ H ₄ Cl ₂ O	3, 4-Dichlorobenzaldehyde	174.95	44	248	1	
1812	C ₇ H ₄ Cl ₂ O	o-Chlorobenzoyl chloride	174.95	-4	238]
1813	C ₇ H ₄ Cl ₂ O	m-Chlorobenzoyl chloride	174.95	1	117.526	1	
1814	C ₇ H ₄ Cl ₂ O	p-Chlorobenzoyl chloride	174.95	100	11927.6	1	
1815	C ₇ H ₄ Cl ₂ O ₂	2, 3-Dichlorobenzoic acid	190.95	166	1	1	1
1816	C ₇ H ₄ Cl ₂ O ₂	2, 4-Dichlorobenzoic acid	190.95	164.2	201	1	1
1817	C ₇ H ₄ Cl ₂ O ₂	2, 5-Dichlorobenzoic acid	190.95	154.4	301	1	1
1818	C ₇ H ₄ Cl ₂ O ₂	2, 6-Dichlorobenzoic acid	190.95	143.7		1	
1819	C ₇ H ₄ Cl ₂ O ₂	3, 4-Dichlorobenzoic acid	190.95	204.1	1	I	1
1820	C ₇ H ₄ Cl ₂ O ₂	3, 5-Dichlorobenzoic acid	190.95	188.1	1	1	1
1821	C ₇ H ₄ Cl ₂ NO ₂	2, 3, 4-Trichloronitrotoluene	240.41	60	000	1	
1822	C7H4Cl4	2-Chloro-1-trichloromethylbenzene	229.86	30	260	1.51	1

		·					, , ,
No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1823	C7H4FNO4	2-Fluoro-5-nitrobenzoic acid	185.04	139			1
1824	C7H4FNO4	3-Fluoro-4-nitrobenzoic acid	185.04	122			İ
1825	C7H4FNO4	3-Fluoro-6-nitrobenzoic acid	185.04	134.5			}
1826	C ₇ H ₄ FNO ₄	4-Fluoro-2-nitrobenzoic acid	185.0 4	130	[1
1827	C7H4FNO4	4-Fluoro-3-nitrobenzoic acid	185.0 4	121.5			1
1828	C7H4I2O2	3, 5-Diiodosalicylic acid	389.90	230 d.			
1829	C7H4N2O2	o-Nitrobenzonitrile	148.05	109			
1830	C7H4N2O2	m-Nitrobenzonitrile	148.05	118			
1831	C7H4N2O2	p-Nitrobenzonitrile	148.05	147			
1832	C7H4N2O6	2, 4-Dinitrobenzaldehyde	196.05	72			
1833	C ₇ H ₄ N ₂ O ₅	2, 6-Dinitrobenzaldehyde	196.05	123		Ì	
1834	C ₇ H ₄ N ₂ O ₄	2, 3-Dinitrobenzoic acid	212.05	201	ĺ	<u> </u>	
1835	C ₇ H ₄ N ₂ O ₄	2, 4-Dinitrobenzoic acid	212.05	179	1		
1836	C ₇ H ₄ N ₂ O ₄	2, 5-Dinitrobenzoic acid	212.05	177			
1837	C ₇ H ₄ N ₂ O ₄	2, 6-Dinitrobenzoic acid	212.05	202 d.		İ	
1838	C ₇ H ₄ N ₂ O ₄	3, 4-Dinitrobenzoic acid	212.05	163			
1839	C ₇ H ₄ N ₂ O ₄	3, 5-Dinitrobenzoic acid	212.05	205 174			
1840	CHAN2O7	3, 5-Dinitro-2-hydroxybenzoic acid	228.05 288.06				
1841	CH4N4Os	2, 3, 5, 6-Tetranitroanisol	288.00 184.10	154; 112 130			1
1842	C ₇ H ₄ O ₄ S C ₇ H ₄ O ₇	o-Sulfobenzoic anhydride Meconic acid	200.03	130	d.		1333
1843 1844	C ₇ H ₄ D ₇ C ₇ H ₄ BrO	Benzoyl bromide C ₆ H ₆ COBr	200.03 184.96	0	219	1.570	1000
1845	C ₇ H ₄ BrO ₂	o-Bromobenzoic acid	200.96	148	219	1.570	
1846	C ₇ H ₄ BrO ₂	m-Bromobenzoic acid	200.96	152			
1847	C ₇ H ₄ BrO ₂	p-Bromobenzoic acid	200.96	251			
1848	C ₇ H ₄ BrO ₂	3-Bromo-2-hydroxybenzoic acid	216.96	220			
1849	C ₇ H ₄ BrO ₃	5-Bromo-2-hydroxybenzoic acid	216.96	165			
1850	C7H4Br	2, 3, 4-Tribromotoluene	328.79	45		i	
1851	C,H,Br.	2, 3, 5-Tribromotoluene	328.79	54			
1852	C,H,Br.	2, 3, 6-Tribromotoluene	328.79	59			
1853	C7H4Bra	2, 4, 5-Tribromotoluene	328.79	113			
1854	C,H,Br,	2, 4, 6-Tribromotoluene	328.79	66			1
1855	C7H4Brs	3, 4, 5-Tribromotoluene	328.79	89			
1856	C7H4ClO	o-Chlorobenzaldehyde	140.50	-3	205	1.252	753
1857	C7H4ClO	m-Chlorobenzaldehyde	140.50	18	204	1.241	751
1858	C7H6ClO	p-Chlorobenzaldehyde	140.50	47.5	214	1.1964	1092
1859	C7H4ClO	Benzoyl chloride C.H.COCl	140.50	-0.8	197.2	1.211	737
1860	C ₇ H ₆ ClO ₂	o-Chlorobenzoic acid	156.50	140.7	ļ		
1861	C ₇ H ₄ ClO ₂	m-Chlorobenzoic acid	156.50	154.9	1	ł	1
1862	C7H4ClO2	p-Chlorobenzoic acid	156.50	241.5			1
1863	C ₇ H ₆ ClO ₂	Salicyl chloride o-HOC ₆ H ₆ COCl	156.50	18.0	59 ^{1.0} s. d.	l	
1864	C,H,ClO,	5-Chloro-2-hydroxybenzoic acid	172.50	167.5		i	
1865	C ₇ H ₄ Cl ₂ NO ₂	m-Nitrobenzal chloride	205.96	65	ĺ	İ	1
1866	C,H,Cl,NO,S	Halazoneo-Chlorobenzal chloride	270.03	213	000 5	1 20015	
1868	C ₇ H ₆ Cl ₈		195.41	1	228.5	1.39916	1
1869	C,H,Cl	p-Chlorobenzal chloride Benzotrichloride C ₄ H ₄ CCl ₂	195.41 195.41	-4.8	234 220.7	1.3784	1
1870 1871	C ₇ H ₆ Cl ₂ C ₇ H ₆ Cl ₂	2, 3, 4-Trichlorotoluene	195.41	41	234	1.0104	
1872	C7H 6Cls	2, 4, 5-Trichlorotoluene	195.41	82	232		
1873	C ₇ H ₄ Cl ₈	3, 4, 5-Trichlorotoluene	195.41	42.5	247	l	l .
1874	C ₇ H ₄ Cl ₄ O	2, 4, 6-Trichloro-3-hydroxytoluene	211.41	46	1		
1875	C7H ₄ Cl ₄ O	2, 4, 6-Trichloroanisol	211.41	60.5	240.7		1
1876	C,H,FO	Benzoyl fluoride C ₆ H ₆ COF	124.04	1	162		
1877	C ₇ H ₄ FO ₂	o-Fluorobenzoic acid	140.04	122		1	1
1878	C ₇ H ₄ FO ₂	m-Fluorobenzoic acid	140.04	124	I	ŀ	1
1879	C,H,FO,	p-Fluorobenzoic acid	140.04	182	1	1	
1880	C ₇ H ₄ IO	Benzoyl iodide C.H.COI	231.97	3	13524	1	1
1881	C7H4IO2	o-Iodobenzoic acid	247.97	162			1
1882	C7H4IO2	m-Iodobenzoic acid	247.97	185	1	ļ.	1
1883	C7H4IO2	p-Iodobenzoic acid	247.97	266	1	ł	1
1884	C7H4IO4	3-Iodo-2-hydroxybenzoic acid	263.97	198			1
1885	C ₇ H ₄ N	Benzonitrile C ₆ H ₆ CN	103.05	-13.1	190.7	1.00816.8	1028
1886	C7H4N	Phenyl isocyanide C ₄ H ₄ NC	103.05	l	166 d.	0.9781	I

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1887	C ₇ H ₄ NO	Anthranil	119.05	>-18	215	1.1874	768
1888	C ₇ H ₄ NO	Benzoxazol	119.05	30.5	182.5		
1889	C ₇ H ₄ NO	Phenyl isocyanate C ₄ H ₄ N:CO	119.05		165.6	1.095	
1890	C ₇ H ₄ NO	Salicylic nitrile o-OHC ₄ H ₄ CN	119.05	98			
1891	C ₇ H ₄ NOS	1-Hydroxybensothiazole	151.11	136		İ	
1892	C7H4NOS	1-Mercaptobenzoxazole	151.11	193			
1893	C ₇ H ₆ NO ₈	o-Nitrobenzaldehyde	151.05	α40.9; β37.9	15618	1	
18 94	C.H.NO.	m-Nitrobenzaldehyde	151.05	58.0	16423	1	
1895	C7H4NO	p-Nitrobenzaldehyde	151.05	106.5			1
1896	C7H4NO3S	o-Benzoicsulfimide (Saccharin)	183.11	228 d.			
1897	C7H4NO4	o-Nitrobenzoic acid	167.05	147.5		1.5754	
1898	C7H4NO4	m-Nitrobenzoic acid	167.05	141.4		1.4944	İ
1899	C7H4NO4	p-Nitrobenzoic acid	167.05	242.4		1.55042	
1900	C ₇ H ₄ NO ₄	Quinolinic acid	167.05	190 d.		1	
1901	C7H4NO4	Lutidinic acid	167.05	248		1	
1902	C7H4NO4	Isocinchomeronic acid	167.05	237		i	
1903	C7H4NO4	Dipicolinic acid	167.05	226 d.			
1904	C7H4NO4	Cinchomeronic acid	167.05	258 d.		1	1
1905	C ₇ H ₄ NO ₄	Dinicotinic acid	167.05	323 d.			
1906	C,H,NO,	Ammonchelidonic acid	183.05	220 d.		1	
1907	C7H.NO.	3-Nitro-2-hydroxybenzoic acid	183.05	144			1
1908	C7H4NO4	4-Nitro-2-hydroxybenzoic acid	183.05	235		1	
1909	C ₇ H ₄ NO ₄	5-Nitro-2-hydroxybenzoic acid	183.05	228		1	ł
1910	C ₇ H ₄ NO ₄	6-Nitro-2-hydroxybenzoic acid	183.05	130		i	- [
1911	C,H,NO,	2-Nitro-3-hydroxybenzoic acid	183.05	178			ł
1912	C ₇ H ₄ NO ₄		183.05	230			1
1913		4-Nitro-3-hydroxybenzoic acid					1
1913	C,H,NO,	5-Nitro-3-hydroxybenzoic acid	183.05	167			1
1915	C,H,NO,	6-Nitro-3-hydroxybenzoic acid	183.05	169		1	
	C,H,NO,	3-Nitro-4-hydroxybenzoic acid	183.05	185	000	1 040	
1916	C,H,NS	Benzothiazol	135.11		230	1.248	ŀ
1917	C,H,NS	Phenyl thiocyanate C. H. CNS	135.11	1	232	1.155	
1918	C,H,NS	Phenyl isothiocyanate C.H.N:CS	135.11	-21	218.5	1.13515.5	798
1919	C ₇ H ₄ N ₄	1, 2, 3-Benzotriazin	131.06	75	240		
1920	C7H4N4O4	Chrysanisic acid	227.06	259			
1921	C7H4N4O4	2, 3, 4-Trinitrotoluene	227.06	112	302 d.	1.620	
1922	C7H4N4O4	2, 3, 5-Trinitrotoluene	227.06	97	33 5 d.		İ
1923	C7H4N2O4	2, 3, 6-Trinitrotoluene	227.06	111	333 d.		
1924	C7H4N4O4	2, 4, 6-Trinitrotoluene (T. N. T.)	227.06	80.7	240 exp.	1.654	1
1925	C7H4N2O4	3, 4, 5-Trinitrotoluene	227.06	137.5	313 d.		1
1926	C7H6N2O6	3, 4, 6-Trinitrotoluene	227.06	104	291 d.	1.620	
1927	C ₇ H ₆ N ₈ O ₇	2, 3, 4-Trinitroanisol	243.06	155	exp.		ł
1928	C7H4N2O7	2, 3, 5-Trinitroanisol	243.06	104		1.61816	
1929	C7H4N2O7	2, 4, 6-Trinitroanisol	243.06	68.4		1.408	ì
1930	C7H4N4O7	3, 4, 5-Trinitroanisol	243.06	120		1	
1931	C7H4N4O7	3, 4, 6-Trinitroanisol	243.06	107		1	
1932	C7H4N4O7	2, 4, 6-Trinitro-3-hydroxytoluene	243.06	106		1	1
1933	C7H4N6O8	2, 4, 6-Trinitrophenylmethylnitramine		1		1	
		(Tetryl)	287.08	130	exp. 187		
1934	C ₇ H _e BrCl	o-Bromobenzyl chloride	205.42		11516		
1935	C ₇ H ₄ BrCl	p-Bromobenzyl chloride	205.42	51		1	
1936	C7H4BrCl	o-Chlorobenzyl bromide	205.42		12010	1	
1937	C7H4BrCl	p-Chlorobenzyl bromide	205.42	48		1	
1938	C ₇ H ₄ BrNO	o-Bromobenzamide	199.97	156			
1939	C ₇ H ₄ BrNO	m-Bromobenzamide	199.97	150		1	}
1940	C ₇ H _e BrNO	p-Bromobenzamide	199.97	190			i
1941	C ₇ H ₄ BrNO ₂	o-Nitrobenzyl bromide	215.97	46		1	1
1942	C ₇ H ₄ BrNO ₂	m-Nitrobenzyl bromide	215.97	58		1	
1943	C ₇ H ₄ BrNO ₂	p-Nitrobenzyl bromide	215.97	100		1	1
1944	C ₇ H ₄ Br ₂	Bensal bromide C ₄ H ₄ CHBr ₂	249.88	100	14020	1.5114	716.1
1945	C ₇ H ₄ Br ₂	o-Bromobenzyl bromide	249.88	30	140 ,	1.01.	1,10.1
1946	C ₇ H ₄ Br ₂	m-Bromobenzyl bromide	249.88	41			
		p-Bromobenzyl bromide	249.88	61		I I	
1 94 7	C ₇ H ₄ Br ₂	I M. KEAMANANENI NEAMAA					

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1949	C7H4Br2	2, 6-Dibromotoluene	249.88	5.5	246	1.81222	
1950	C7H4Br2	3, 5-Dibromotoluene	249.88	39			
	C7H6CINO	o-Chlorobenzamide	155.51	141			
1952	C7H6CINO	m-Chlorobenzamide	155.51	134.5		1	
1953	C,H,CINO	p-Chlorobenzamide	155.51	178.3			1
1954	C7H4CINO2	3-Chloro-2-nitrotoluene	171.51	23	0.40	4 0700	
1955	C7H4CINO2	4-Chloro-2-nitrotoluene	171.51	38.2	242	1.25680	
1956	C,H,ClNO	5-Chloro-2-nitrotoluene	171.51 171.51	44 37	250 238		
1957 1958	C ₇ H ₆ ClNO ₂ C ₇ H ₆ ClNO ₂	2-Chloro-3-nitrotoluene.	171.51	31 21.5	263		
1959	C7H ₆ CINO ₂	4-Chloro-3-nitrotoluene	171.51	7	260.5	1.29722	
1960	C7H6CINO2	5-Chloro-3-nitrotoluene.	171.51	61	200.5	1.281-	
1961	C7H6CINO2	o-Nitrobenzyl chloride	171.51	49			1093
1962	C ₇ H ₆ ClNO ₂	m-Nitrobenzyl chloride	171.51	44.5	183**	i	1094
1963	C7H6CINO2	p-Nitrobenzyl chloride	171.51	71	100		1095
1964	C7H6Cl2	Benzal chloride C ₆ H ₅ CHCl ₂	160.96	-17.4	214	1.29516	1000
1965	C7H6Cl2	o-Chlorobenzyl chloride	160.96		214		1
1966	C7H6Cl2	p-Chlorobenzyl chloride	160.96	29	214		1
1967	C7H6Cl4O	1, 1-Dichloro-2-hydroxytoluene	176.96	82			1
1968	C7H6Cl2O	3, 5-Dichloro-2-hydroxytoluene	176.96	55			1
1969	C7H4Cl2O	4, 6-Dichloro-3-hydroxytoluene	176.96	46			
1970	C7H4Cl2O2	4, 5-Dichloro-2-methoxyphenol	192.96	72	270		1
1971	C7H4FNO	o-Fluorobenzamide	139.05	116			1
1972	C7H4FNO	m-Fluorobenzamide	139.05	130			
1973	C7H4FNO	p-Fluorobenzamide	139.05	154.5		i	1
1974	C7H4INO	o-Iodobenzamide	246.99	183.6	1		1
1975	C ₆ H ₆ INO	m-Iodobenzamide	246.99	186.5			
1976	C ₇ H ₆ INO	p-Iodobenzamide	246.99	217.6			
1977	C7H6N2	Benzimidazol	118.06	170	<360		1270
1978	C ₇ H ₆ N ₂	Cyanilide CNNHC ₆ H ₅	118.06	47			1
1979	C ₇ H ₆ N ₂	Indazole	118.06	146.5	270.6	}	1
1980	C ₇ H ₆ N ₂ O ₂	Ricininic acid	150.06	298	217	1.4624	1
1981 1982	C ₇ H ₆ N ₂ O ₃	o-Nitrobenzamide	166.06	176.6 142.7	317 315	1.4024	}
1982	C7H6N2O2 C7H6N2O2	p-Nitrobenzamide	166.06 166.06	201.4	315		1
1984	C7H6N2O4	2, 3-Dinitrotoluene.	182.06	59.3		1.263111	[
1985	C7H6N2O4	2, 4-Dinitrotoluene	182.06	69.6	300 s. d.	1.52115	1297
1986	C7HeN2O4	2, 5-Dinitrotoluene	182.06	50.5	000 5. 4.	1.282111	
1987	C7HeN2O4	2, 6-Dinitrotoluene	182.06	61	1	1.283111	1300
1988	C7H6N2O4	3, 4-Dinitrotoluene	182.06	59.8		1.259111	
1989	C7H6N2O4	3, 5-Dinitrotoluene	182.06	93	İ	1.277111	i
1990	C7H6N2O6	2, 4-Dinitroanisol	198.06	95.2		1.341	1
1991	C7H6N2O6	2, 5-Dinitroanisol	198.06	97.0	360	1.476	
1992	C7H6N2O6	2, 6-Dinitroanisol	198.06	117.5		1.319	
1993	C7H6N2O6	3, 4-Dinitroanisol	198.06 ·	69.3		1.334110	
1994	C7H6N2O6	3, 5-Dinitroanisol	198.06	105.8		1.55812	
1995	C7H6N2O6	2, 4-Dinitro-3-hydroxytoluene	198.06	99			
1996	C7H6N2O6	3, 5-Dinitro-4-hydroxytoluene	198.06	85.8		1	
1997	C7H6N2O6	4, 6-Dinitro-2-methoxyphenol	214.06	123			1
1998	C7H6N2O7S	2, 6-Dinitrotoluene-4-sulfonic acid	262.13	165		1	•
1999	C7H ₆ N ₂ S	1-Aminobenzothiazole	150.13	127	1	į	
2000	C7H ₆ N ₄ O ₇	2, 4, 6-Trinitro-3-aminoanisol	258.08	131	170 5	1 040	725
2001	C ₇ H ₆ O	Benzaldehyde C ₆ H ₆ CHO	106.05	-56.0	179.5	1.046	123
2002 2003	C7H6OS C7H6O2	Thiobenzoic acid C ₆ H ₅ COSH	138.11 122.05	24 51	200		
2003	C7H6O2 C7H6O2	Salicyl aldehyde o-HOC ₆ H ₄ CHO	122.05	-7	196.5	1.167	759
2005	C7H6O2 C7H6O2	m-Hydroxybenzaldehyde	122.05	106.0	240	1.10/	''
2006	C7H6O2 C7H6O2	p-Hydroxybenzaldehyde	122.05	116.0		1.129120	
2007	C ₇ H ₆ O ₂	Benzoic acid C ₄ H ₄ CO ₂ H	122.05	121.7	249.2	1.2664	1160,
	- ,						1333
	C7H6O2	Phenyl formate HCO ₂ C ₆ H ₅	122.05		173	1.088	
2008	C7II6U2	I Melly I formate II O 2 O all a					
2008 2009	C ₇ H ₆ O ₂ C ₇ H ₆ O ₂	Toluquinone CH ₂ C ₆ H ₂ O ₂	122.05	69			

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2011	C7H6O8	2, 3-Dihydroxybenzaldehyde	138.05	108	235	Ī	Ì
2012	C7H6O3	3, 4-Dihydroxybenzaldehyde	138.05	154			
2013	C7H6O3	Salicylic acid o-HOC ₆ H ₄ CO ₂ H	138.05	159	s. 76	1.443	1333
2014	C7H6O8	m-Hydroxybenzoic acid	138.05	201.3	1	1.4734	
2015	C7H6O8	p-Hydroxybenzoic acid	138.05	213		1.4684	ļ
2016	C ₇ H ₆ O ₄	2, 3-Dihydroxybenzoic acid	154.05	204			
2017	C ₇ H ₆ O ₄	2, 4-Dihydroxybenzoic acid	154.05	206		1	1
2018	C7H6O4	2, 5-Dihydroxybenzoic acid	154.05	200			
2019	C ₇ H ₆ O ₄	2, 6-Dihydroxybenzoic acid	154.05	167 d.		1.5424	ļ
2020 2021	C ₇ H ₆ O ₄	3, 4-Dihydroxybenzoic acid	154.05 154.05	199 227		1.342	
2021	C ₇ H ₄ O ₄	Pyrogallolcarboxylic acid	170.05	200 d.			
2022	C7H6O6	Gallic acid 3, 4, 5-(HO) ₂ C ₄ H ₂ CO ₂ H	170.05	200 d. 220 d.	d.	1.6944	1333
2024	C7H6O6	o-Sulfobenzoic acid	202.11	141	u.	1.051	1000
2025	C7H ₆ O ₄ S	m-Sulfobenzoic acid HO ₂ SC ₂ H ₄ CO ₂ H	202.11	141			
2026	C7H ₂ O ₂ S	p-Sulfobenzoic acid HO ₂ SC ₄ H ₄ CO ₂ H	202.11	200			
2027	C7H ₆ O ₆ S	Salicylsulfonic acid	218.11	120			
2028	C7H7A8Cl2	Benzyl arsine dichloride	236.93	120	175**	1	
2029	C ₇ H ₇ Br	Benzyl bromide	170.97	-4.0	199	1.43802	
2030	C ₇ H ₇ Br	o-Bromotoluene	170.97	-28.1	181.8	1.422	738
2031	C ₇ H ₇ Br	m-Bromotoluene	170.97	-39.8	183.7	1.410	734
2032	C ₇ H ₇ Br	p-Bromotoluene	170.97	28	183.6	1.310	732
2033	C ₇ H ₇ BrO	5-Bromo-2-hydroxytoluene	186.97	64	235	1.510	102
2034	C ₇ H ₇ BrO	5-Bromo-3-hydroxytoluene	186.97	62	200		1
2035	C ₇ H ₇ BrO	3-Bromo-4-hydroxytoluene	186.97	02	214	1.54724.5	1
2036	C ₇ H ₇ BrO ₂	6-Bromo-2-methoxyphenol	202.97	63	214	1	1
2037	C ₇ H ₇ BrO ₂	4-Bromo-2-methoxyphenol	202.97	46	18260	1	
2038	C ₇ H ₇ Cl	Benzyl chloride	126.51	-39	179.4	1.10318	711
2039	C ₇ H ₇ Cl	o-Chlorotoluene	126.51	-35.1	159.4	1.080	691
2040	C ₇ H ₇ Cl	m-Chlorotoluene	126.51	-47.8	162.4	1.072	672
2041	C ₇ H ₇ Cl	p-Chlorotoluene	126.51	7.8	162.5	1.07118	666
2042	C ₇ H ₇ ClO	o-Chlorobenzyl alcohol	142.51	72	230	1	
2043	C ₇ H ₇ ClO	m-Chlorobenzyl alcohol	142.51	"	234		
2044	C ₇ H ₇ ClO	p-Chlorobenzyl alcohol	142.51	70.5	235		
2045	C,H,ClO	3-Chloro-2-hydroxytoluene	142.51	86	225	1	
2046	C ₇ H ₇ ClO	4-Chloro-2-hydroxytoluene	142.51	49	225		
2047	C,H,ClO	5-Chloro-2-hydroxytoluene	142.51	49	220		
2048	C ₇ H ₇ ClO	4-Chloro-3-hydroxytoluene	142.51	66	235		
2049	C ₇ H ₇ ClO	6-Chloro-3-hydroxytoluene	142.51	53	235		}
2050	C ₇ H ₇ ClO	2-Chloro-4-hydroxytoluene	142.51		196	1.21125	
2051	C ₇ H ₇ ClO	3-Chloro-4-hydroxytoluene	142.51	55	228		
2052	C ₇ H ₇ ClO ₂	4(5)-Chloro-2-methoxyphenol	158.51	<-18	241.5		
2053	C,H,ClO,S	Toluene-o-sulfonechloride	190.58	10	12621	1.339	
2054	C7H7ClO2S	Toluene-p-sulfonechloride	190.58	69	14615		
2055	C7H7ClO2S	2-Chlorotoluene-5-sulfonic acid	206.58	78		1	
2056	C7H7Cl2NO2S	Toluene-p-sulfonedichloroamine	240.04	83			
2057	C ₇ H ₇ F	o-Fluorotoluene	110.05	<-80	114	1.001	505
2058	C ₇ H ₇ F	m-Fluorotoluene	110.05	-110.8	116	0.999	500
2059	C,H,F	p-Fluorotoluene	110.05		117	1.00115.3	502
2060	C,H,I	Benzyl iodide	217.99	24.1	d.	1.73325	
2061	C,H,I	o-Iodotoluene	217.99		211	1.697	785
2062	C,H,I	m-Iodotoluene	217.99		204	1.698	
2063	C,H,I	p-Iodotoluene	217.99	35	211.5	1	
2064	C,H,IO	o-Iodoanisol o-CH ₂ OC ₆ H ₄ I	233.99		240	1.800	1
2065	C,H,IO ₂	5-Iodo-2-methoxyphenol	249.99	88	100 3	1. 5	1
2066	CHNO	4-Iodo-2-methoxyphenol	249.99	43	180 d.	1.5	
2067	C ₇ H ₇ NO	o-Aminobenzaldehyde	121.06	40	1	1	
2068 2069	C-H-NO	m-Aminobenzaldehyde	121.06	71.5	1		
	C.H.NO	p-Aminobenzaldehyde	121.06	71	1		
2070 2071	C ₇ H ₇ NO C ₇ H ₇ NO	sym-Benzaldoxime C ₆ H ₆ C:NOH anti-Benzaldoxime C ₆ H ₅ C:NOH	121.06 121.06	130 35	153**	1.111	972
AUI I	U711711U				1		1 812
2072	C ₇ H ₇ NO	Benzamide C ₆ H ₅ CONH ₂	121.06	130	290	1.3414	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2074	C7H7NO2	Anthranilic acid o-H2NC4H4CO2H	137.06	145	1		Ī
2075	C7H7NO2	m-Aminobenzoic acid	137.06	174	1	1.5114	
2076	C7H7NO2	p-Aminobenzoic acid	137.06	187			
2077	C7H7NO2	Benzohydroxamic acid	137.06	125			
2078	C7H7NO2	o-Hydroxybenzamide	137.06	140	270 d.		
2079	C7H7NO2	m-Hydroxybenzamide	137.06	170.5			
2080	C7H7NO2	p-Hydroxybenzamide	137.06.	162			
2081	C7H7NO2	o-Nitrotoluene	137.06	$\alpha - 10.6;$ $\beta - 4.1$	222.3	1.16815	724
2082	C7H7NO2	m-Nitrotoluene	137.06	15.5	231	1.16415	729
2083	C7H7NO2	p-Nitrotoluene	137.06	51.3	238	1.098**	1096
2084	C ₇ H ₇ NO ₂	Phenylnitromethane	137.06		227	1.160	702
2085	C,H,NO;	o-Nitrobenzyl alcohol	153.06	74	16820		
2086	C7H7NO3	m-Nitrobenzyl alcohol	153.06	27	180³	Į.	l.
2087	C7H7NO3	p-Nitrobenzyl alcohol	153.06	93	18512		
2088	C7H7NO	3-Nitro-o-cresol	153.06	145		Ì	
2089	C ₇ H ₇ NO ₈	4-Nitro-o-cresol	153.06	94.6		ŀ	
2090	C,H,NO.	5-Nitro-o-cresol	153.06	118		ļ	1
2091	C,H,NO.	6-Nitro-o-cresol	153.06	69.5		İ	
2093	C,H,NO.	4-Nitro-m-cresol	153.06	129		i	
2094	C,H,NO	5-Nitro-m-cresol	153.06	91	ŀ	ŀ	
2095	C,H,NO	6-Nitro-m-cresol	153.06 153.06	56 36.5	125n	1.24039	1053
2096	C,H,NO ₈	3-Nitro-4-hydroxytoluene	153.06	9.4	277	1.2404	749
2098 2099	C ₇ H ₇ NO ₈ C ₇ H ₇ NO ₈	o-Nitroanisol	153.06	38	258	1.373	149
2100	C7H7NO8	p-Nitroanisol.	153.06	54	260	1.233	1
2101	C7H7NOs	4-Amino-2-hydroxybenzoic acid	153.06	220	200	1.200	
2102	C7H7NO	5-Amino-2-hydroxybenzoic acid	153.06	280 d.			
2102	C7H7NO4	6-Nitro-2-methoxyphenol	169.06	62		Į.	
2104	C ₇ H ₇ NO ₄	5-Nitro-2-methoxyphenol	169.06	104		į	
2105	C ₇ H ₇ NO ₄	3-Nitro-2-methoxyphenol	169.06	103		ļ	
2106	C,H,NO,S	o-Sulfoaminobenzoic acid	201.13	167		ŀ	
2107	C7H7NO4S	m-Sulfoaminobenzoic acid	201.13	238		į	
2108	C7H7NO4S	p-Sulfoaminobenzoic acid	201.13	280 d.		ĺ	
2109	C7H7NO.8	p-Nitrotoluene-o-sulfonic acid	217.13	130		ļ	
2110	C,H,NS	Thiobenzamide C.H.CSNH2	137.13	116			
2111	C7H8	Tropylidene	92.062		118	0.888	686
2112	C7H8	Toluene	92.062	-95.1	110.5	0.866	579
2114	C7H4BrN	4-Bromo-o-toluidine	185.99	32	257 d.		
2115	C7H4BrN	5-Bromo-o-toluidine	185.99	59.5	240	1	1
2116	C ₇ H ₄ BrN	5-Bromo- <i>m</i> -toluidine	185.99	36	260	1.14419	
2117	C ₇ H ₄ BrN	6-Bromo- <i>m</i> -toluidine	185.99	78.8	240		
2118	C ₇ H ₄ BrN	2-Bromo-p-toluidine	185.99	26	257	1 400	
2119	C ₇ H ₄ BrN	3-Bromo-p-toluidine	185.99	26	240	1.498	
2120	C ₇ H ₆ ClN	4-Chloro-o-toluidine	141.53 141.53	22 30	238.5		
2120.1	C,H,CIN	5-Chloro-o-toluidine6-Chloro-o-toluidine	141.53	30	239.2 245		
2121	C ₇ H ₆ ClN	2-Chloro- <i>m</i> -toluidine	141.53		229		
2122 2123	C ₇ H ₀ ClN C ₇ H ₂ ClN	4-Chloro-m-toluidine	141.53	30	230		
2123 2124	C7HaCIN	5-Chloro-m-toluidine	141.53] 00	243		
2125	C ₇ H ₈ ClN	6-Chloro- <i>m</i> -toluidine	141.53	83	241		
2126	C7H ₈ CIN	2-Chloro-p-toluidine	141.53	26	245		
2127	C ₇ H ₆ ClN	3-Chloro-p-toluidine	141.53	-	219	1.151	
2128	C ₇ H ₈ N ₂	Benzalhydrazine C.H.CH2NHNH2	120.08	16	14014		1
2129	C ₇ H ₈ N ₂	Benzamidine C ₆ H ₅ C(:NH)NH ₂	120.08	80	1		
2130	C ₇ H ₂ N ₂ O	o-Aminobenzamide	136.08	108			1
2131	C ₇ H ₂ N ₂ O	m-Aminobenzamide	136.08	79	[1
2132	C7H8N2O	p-Aminobenzamide NH ₂ C ₆ H ₄ CONH ₂	136.08	183	1		1
2133	C7H8N2O	Benzoylhydrazine C.H.CONHNH2	136.08	112	1		
2134	C7H8N2O	Nitrosomethylaniline	136.08	15	225 d.	1.121422.7	998
2135	C7H8N2O	Phenylurea C ₆ H ₈ NHCONH ₂	136.08	147			1330
2136	C7H8N2O2	o-Nitromethylaniline	152.08	34	1		
2137	C7H8N2O2	m-Nitromethylaniline	152.08	66	1		1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2138	C7H8N2O2	p-Nitromethylaniline	152.08	152		1.201165.2	T
2139	C7H2N2O2	3-Nitro-o-toluidine	152.08	96		1.190100	
2140	C7H ₀ N ₂ O ₂	4-Nitro-o-toluidine	152.08	105		1.36516	
2141	C7H2N2O2	5-Nitro-o-toluidine	152.08	127.5		1.36616	
2142	C7H.N2O2	6-Nitro-o-toluidine	152.08	91.5		1.37816	1
2143	C ₇ H ₈ N ₂ O ₂	2-Nitro-3-aminotoluene	152.08	53	· .	1	i
2144	C7H4N2O2	4-Nitro-3-aminotoluene	152.08	109	1		
2145	C ₇ H ₈ N ₂ O ₂	5-Nitro-3-aminotoluene	152.08	98.4		1	
2146	C ₇ H ₈ N ₂ O ₂	6-Nitro-3-aminotoluene	152.08	138	1	1	ł
2147	C7H ₈ N ₂ O ₂	2-Nitro-4-aminotoluene	152.08	77.5		1	1
2148	C ₇ H ₈ N ₂ O ₂	3-Nitro-p-toluidine	152.08	117	1	1.31217	
2149	C7H ₈ N ₂ O ₃	5-Nitro-3-amino-4-hydroxytoluene	168.08	110			1
2150	C ₇ H ₈ N ₂ S	Phenylthiourea C ₄ H ₄ NHCSNH ₂	152.14	154			i
2151 2152	C ₇ H ₈ N ₄ O ₂	Theophylline	180.09	272			
2152 2153	C ₇ H ₈ N ₄ O ₂	Theobromine	180.09	299			
2153 2154	C ₇ H ₈ N ₄ O ₂ C ₇ H ₈ N ₄ O ₂	1, 3-Dimethyluric acid	180.09 196.09	337 410 d.		1	1
2155	C7H ₄ N ₄ O ₃	1, 7-Dimethyluric acid	196.09	390 d.		1	1
2156	C ₇ H ₂ N ₄ O ₃	1, 9-Dimethyluric acid	196.09	400 d.			1
2157	C ₇ H ₂ N ₄ O ₃	3, 9-Dimethyluric acid	196.09	340 d.		İ	1
2158	C7H ₈ N ₆ O ₇	Guanidine picrate	288.11	290 a.			1
2159	C7H ₀ O	Benzyl alcohol C ₄ H ₄ CH ₂ OH	108.06	-15.3	205.8	1.046	713
2160	C ₇ H ₄ O	o-Cresol	108.06	30.1	190.8	1.051	727
2161	C7HO	m-Cresol.	108.06	10	202.8	1.035	714
2162	C ₇ H ₂ O	p-Cresol.	108.06	34.8	201.1	1.03915.5	715
2163	C ₇ H ₄ O	Phenyl methyl ether (Anisol)	108.06	-37.3	155.8	0.994	659
2164	C ₇ H ₄ O	4, 6-Dihydrobenzaldehyde	108.06	<-20	171.5 d.	1.02014.5	000
2165	C ₇ H ₄ OS	Thioguaiacol CH ₂ OC ₆ H ₄ SH	140.13	\ _20	219	1.020	
2166	C ₇ H ₈ O ₂	o-Hydroxybenzyl alcohol	124.06	86	210	1.161	
2167	C ₇ H ₂ O ₂	m-Hydroxybenzyl alcohol	124.06	67	300 d.	1	ľ
2168	C7H2O2	p-Hydroxybenzyl alcohol	124.06	110	000 a.		
2169	C ₇ H ₈ O ₂	2, 4-Dihydroxytoluene	124.06	104	Į.		
2170	C7H2O2	2, 5-Dihydroxytoluene	124.06	125		1	
2171	C7H2O2	2, 6-Dihydroxytoluene	124.06	66		1	
2172	C7H2O2	Homocatechol 3, 4-(HO) ₂ C ₆ H ₃ CH ₂	124.06	65	252	1.1294	1103
2173	C7H ₈ O ₂	Orcinol 3, 5-(HO) ₂ C ₄ H ₂ CH ₂	124.06	108	290	1.2904	
2174	C7HgO2	Guaiacol o-HOC ₆ H ₄ OCH ₂	124.06	28	205.1	1.14315	1179
2175	C7H2O2	Resorcinol methyl ether	124.06	<-17.5	244.3	>1	
2176	C7H ₈ O ₂	Hydroquinol methyl ether	124.06	53	243		
2176.1	C7H4O2	Dimethyl-γ-pyrone	124.06	132		0.9953187	
2178	C7H6O2	Furfurylacetone	124.06	40	229		
2179	C7H2O2S	Toluene-o-sulfinic acid	156.13	80		1	1
2180	C7H2O2 ·	2, 5-Dimethylfurfurane-3-carboxylic acid					1
	l	(Uvinic acid)	140.06	135			ì
2181	C ₇ H ₂ O ₂ S	Toluene-o-sulfonic acid	172.13		128.825		1
2183	C7H6O3S	Toluene-p-sulfonic acid	172.13	105	14020		1
2184	C ₇ H ₂ O ₄	Iretol 2, 4, 6-(OH) ₂ C ₂ H ₂ OCH ₂	156.06	186			
2185	C ₇ H ₂ O ₄	Hydrochelidonic anhydride	156.06	69	210		1
2186	C ₇ H ₂ O ₄ S	4-Hydroxytoluene-2-sulfonic acid	188.13	188			
2187	C,H,O,8	2-Hydroxytoluene-6-sulfonic acid	188.13	118		1	
2188	C ₇ H ₂ O ₆	Cinchonic acid	188.06	169	105	1 05000	1
2189	CH ₂ S	Benzyl mercaptan C ₄ H ₄ CH ₂ SH	124.13	٠,,	195	1.05820	
2190	CH-S	o-Thiocresol o-CH ₂ C ₄ H ₄ SH	124.13	15	194.3	1 05013	
2191 2192	C ₇ H ₂ S C ₇ H ₂ S	m-Thiocresol m-CH ₂ C ₄ H ₄ SH p-Thiocresol p-CH ₂ C ₄ H ₄ SH	124.13 124.13	<-20	195.4	1.05242	1
2192 2193	C7H ₂ A5O ₂	p-Thiocresol p-CH ₂ C ₆ H ₄ SH		43 167	195	1	1
2193 2194	C7H ₉ ABO ₂ C7H ₉ ClN ₄ O ₂	Theobromine hydrochloride	216.03 216.56	101	1		1333
219 4 2195	C7H ₀ CIN ₄ O ₂ C7H ₀ N	Benzylamine C ₆ H ₅ CH ₂ NH ₂	210.50 107.08		184	0.980	720
2196	C7H ₂ N	2, 4-Lutidine.	107.08		157	0.9494	1.20
2197	C7H ₉ N	2, 6-Lutidine	107.08	1	143	0.9494	1
2198	C ₇ H _• N	3, 4-Lutidine	107.08		164.5	0.012	1
2199	C ₇ H _• N	2-Ethylpyridine	107.08		148.8	0.950	990
2200	C ₇ H ₀ N	3-Ethylpyridine.	107.08		165.3	0.959	333
	· · ·	v *v ==================================		•			•

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2201	C7H9N	4-Ethylpyridine	107.08		166	0.936	1
2202	C ₇ H ₉ N	α-Lutidine	107.08		156.5	0.9470	
2203	C ₇ H ₉ N	Methylaniline C ₆ H ₆ NHCH ₂	107.08	-57.0	195.70	0.986	757
2204	C ₇ H ₉ N	o-Toluidine o-CH ₂ C ₆ H ₄ NH ₂	107.08	$\alpha - 24.4;$ $\beta - 16.3$	200.7	0.998	758
2205	C7H9N	m-Toluidine m-CH ₂ C ₆ H ₄ NH ₂	107.08	-31.5	203.3	0.989	989
2206	C ₇ H ₉ N	p-Toluidine p-CH ₂ C ₆ H ₄ NH ₂	107.08	43.7	200.5	1.046	1087
2207	C ₇ H ₉ NO	o-Aminobenzyl alcohol	123.08	82	280 s. d.		1
2208	C ₇ H ₉ NO	p-Aminobenzyl alcohol	123.08	95			
2209	C ₇ H ₉ NO	4-Amino-2-hydroxytoluene	123.08	161	i		
2210	C ₇ H ₉ NO	5-Amino-2-hydroxytoluene	123.08	175			1
2211	C,H,NO	6-Amino-2-hydroxytoluene	123.08	128			1
2212	C ₇ H ₉ NO	5-Amino-m-cresol	123.08	79	345		1
2213	C,H,NO	4-Amino-3-hydroxytoluene	123.08	174	İ		1
2214	C,H,NO	2-Amino-4-hydroxytoluene	123.08	144.5			1
2215	CH,NO	3-Amino-4-hydroxytoluene	123.08	135	004	1.10826	1
2216	C ₇ H ₉ NO	o-Anisidine o-CH ₂ OC ₆ H ₄ NH ₂	123.08	5.2	224	1.108**	1
2217 2218	C ₇ H ₉ NO C ₇ H ₉ NO	m-Anisidine m-CH ₂ OC ₆ H ₄ NH ₂ p-Anisidine p-CH ₂ OC ₆ H ₄ NH ₂	123.08 123.08	57.7	251 245	1.07145	}
2218 2219	C ₇ H ₉ NO	Benzylhydroxylamine C ₆ H ₄ NH ₂	123.08	37.7	12340	1.0/14	1
2219	C ₇ H ₉ NO	Salicylamine o-OHC ₆ H ₄ CH ₂ NH ₂	123.08	129	120		1
2220 2221	C ₇ H ₉ NO	m-Tolylhydroxylamine	123.08	68	1		1
2222	C ₇ H ₂ NO	p-Tolylhydroxylamine	123.08	94		1	
2223	C ₇ H,NO	4, 6-Dihydrobenzaldoxime	123.08	44			1
2224	C ₇ H ₂ NO ₂	6-Amino-2-methoxyphenol	139.08	127			1
2225	C ₇ H ₂ NO ₂	Ammonium benzoate C ₆ H ₆ CO ₂ NH ₄	139.08	198		1.2624	1
2226	C7H9NO2S	Toluene-o-sulfoneamide	171.14	156.3	Į.		
2227	C7H,NO2S	Toluene-m-sulfoneamide	171.14	108		1	1
2228	C7H,NO2S	Toluene-p-sulfoneamide	171.14	137.5		ì	İ
2229	C7H,NO.	Ammonium salicylate	155.08				1333
2234.1	C7H9NO3S	Ammonium o-sulfobenzoate	219.14	> 250		1.524	1200
2235	C ₇ H ₉ N ₂ O	1-Phenylsemicarbazide	151.09	172			
2236	C ₇ H ₉ N ₈ O	4-Phenylsemicarbazide	151.09	122		1	1
2237	C ₇ H ₁₀	2, 3-Dihydrocycloheptene	94.077		121		1
2238	C7H10	1, 2-Dihydrotoluene	94.077		108		
2239	C7H10	1, 3-Dihydrotoluene	94.077	1	110.1	0.835	524
2240	C ₇ H ₁₀	2, 4-Dihydrotoluene	94.077		106	0.827	498
2241	C ₇ H ₁₀	1, 3, 5-Heptatriene	94.077		114	0.764	1
2243	C ₇ H ₁₀ ClN	o-Toluidine hydrochloride	143.54	214.5	242		1
2244	C ₇ H ₁₀ ClN	m-Toluidine hydrochloride	143.54	228	249.8		1
2245	C ₇ H ₁₀ ClN	p-Toluidine hydrochloride	143.54	239	257.5	1	
2247	C ₇ H ₁₀ N ₂	Methyl-p-phenylenediamine	122.09	35.5	259.5	1	
2248 2249	C ₇ H ₁₀ N ₂ C ₇ H ₁₀ N ₂	Benzylhydrazine C ₆ H ₅ CH ₂ NHNH ₂ 2, 3-Diaminotoluene	122.09 122.09	26 62	103 ⁴¹ 255		ļ
2249 2250	C ₇ H ₁₀ N ₂ C ₇ H ₁₀ N ₂	2, 4-Diaminotoluene	122.09	99	280		1
2251	C7H10N2	2, 5-Diaminotoluene	122.09	64	274]
2252	C ₇ H ₁₀ N ₂	Toluylene-2, 6-diamine	122.09	105	212		
2253	C ₇ H ₁₀ N ₂	3, 4-Diaminotoluene	122.09	88.5	265		l
2254	C ₇ H ₁₀ N ₂	3, 5-Diaminotoluene	122.09	00.0	285		İ
2255	C7H10N2	1, 1-Methylphenylhydrazine	122.09		227.5	1.040	766
2256	C7H10N2	o-Tolylhydrazine o-CH ₂ C ₆ H ₄ NHNH ₂	122.09	56		1	
2257	C7H10N2	m-Tolylhydrazine	122.09		224	1	ĺ
2258	C7H10N2	p-Tolylhydrazine p-CH ₂ C ₆ H ₄ NHNH ₂	122.09	61			1
2259	C7H10N2O3	5-Ethyl-5-methylbarbituric acid	170.09	212		1	1
2260	C7H10N2O3	Trimethylbarbituric acid	170.09	165	ì	İ	1
2260.1	C7H10N4O5	Dimethyl ureindihydroxysuccinate	234.10	203		1	1204
2260.2	C7H10N2O7	Isohydroxydimethylurea	230.11	180		1	1212
2261	C7H10O	1, 2, 3, 4-Tetrahydrobenzaldehyde	110.08	[212	1.0090	1
2262	C7H10O2	Δ'-Tetrahydrobenzoic acid	126.08			1.07247.2	552
2263	C ₇ H ₁₀ O ₈	Diacetylacetone CO(CH ₂ COCH ₃) ₂	142.08	49	12110	1.06840	1090
2264	C7H10O4	cis-Pentamethylene-1, 2-dicarboxylic acid	158.08	140			
2265	C7H10O4	Teraconic acid	158.08	161 d.			1
2266	C7H10O4	Terebic acid	158.08	175	I	0.816	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2267	C7H10O4	Dimethyl citraconate	158.08	1	210.5	1.110	922
2268	C7H10O5	3-Ketopimelic acid	174.08	143			
2269	C7H10O8	Ethyl mesoxalate (HO) ₂ C(CO ₂ C ₂ H ₅) ₂ .	174.08	< -31	220	1.11920	
2270	C7H10O6	Quinic lactone	174.08	187			
2271	C ₇ H ₁₁ BrO ₄	Diethyl bromomalonate	239.00	1	235	1.42615	i
2272	C ₇ H ₁₁ NO	Nortropinone	125.09	70			
2273	C ₇ H ₁₁ NO ₂	Arecaidine	141.09	224 d.			
2274	C ₇ H ₁₁ NO ₂	Arecaine	141.09	214 d.	110 5	0.73842.6	160
2275	C ₇ H ₁₂ C ₇ H ₁₂	n-Amylacetylene C ₆ H ₁₁ C:CH	96.092 96.092	> -70	110.5 93.3	0.738_4 0.749_4^{12}	815
2276 2277	C ₇ H ₁₂	2, 4-Dimethyl-1, 3-pentadiene	96.092		70	0.7484	010
2278	C7H12	3-Heptine C ₂ H ₇ C:CC ₂ H ₅	96.092		106	0.760	
2279	C ₇ H ₁₂	2, 4-Heptadiene	96.092		107	0.731	896
2280	C ₇ H ₁₂	2-Heptine CH ₂ C:CC ₄ H ₉	96.092		113.3	0.763	
2281	C ₇ H ₁₂	4-Methylcyclohexene	96.092	ì	102.2	0.800	385
2282	C7H12	Δ'-Tetrahydrotoluene	96.092		111	0.809	431
2283	C ₇ H ₁₂	Δ²-Tetrahydrotoluene	96.092		105	0.805	408
2284	C7H12	Δ²-Tetrahydrotoluene	96.092		103	0.799	394
2284.1	C7H12Cl2O2	Isobutyl 1, 2-dichloropropionate	199.01			1.15621	
2285	C7H12N2O	Sinapoline	140.11	100			
2286	C7H12N4O	Caffeidine	168.12	94		1	
2287	C7H12N4O3	Caffoline	200.12	197			
2288	C7H12O	Diallyl carbinol (CH ₂ :CHCH) ₂ CHOH.	112.09		151	0.857	
2289	C7H12O	Hexahydrobenzaldehyde	112.09		161	0.926	
2289.1	C7H12O	o-Methylcyclohexanone	112.09	ļ	167740	0.93015.1	842
2289 .2	C7H12O	m-Methylcyclohexanone	112.09		6016	0.91425.2	1027
2289.3	C7H12O	p-Methylcyclohexanone	112.09		56.410.5	0.91224.4	1021
2290	C7H12O	Suberone <(CH ₂ CH ₂ CH ₂) ₂ > CO	112.09	1	179.5	0.969°	
2291	C ₇ H ₁₂ O ₂	Pimelic aldehyde OCH(CH ₂) ₅ CHO	128.09	4 40	11213		1
2292	C ₇ H ₁₂ O ₂	Teracrylic acid	128.09	<-18	218	1 040	1040
2293	C ₇ H ₁₂ O ₂	Hexahydrobenzoic acid	128.09	31	233	1.048	1040
2294 2295	C ₇ H ₁₂ O ₂	1, 2-Isoheptenic acid	128.09 128.09	16.5	227 143	0.942	442
2296	C ₇ H ₁₂ O ₂ C ₇ H ₁₂ O ₂	Allyl isobutyrate	128.09	ļ	133.5		
2297	C7H11O1	Cyclohexyl formate HCO ₂ C ₆ H ₁₁	128.09	<0	162.5	1.0100	
2298	C ₇ H ₁₂ O ₂	Ethyl angelate	128.09	\	142	0.918	963
2299	C ₇ H ₁₂ O ₂	Ethyl tiglate CH ₂ CH:C(CH ₂)CO ₂ C ₂ H ₅ .	128.09		152	0.924	964
2300	C ₇ H ₁₂ O ₃	Hexahydrosalicylic acid	144.09	111	102	0.022	""
2301	C7H12O3	Ethyl levulinate	144.09		205.3	1.01746	263
2302	C7H12O3	Ethyl methylacetoacetate	144.09		186.8	1.019	239
2303	C7H12O3	Methyl dimethylacetoacetate	144.09		174	0.99925	
2304	C7H12O4	Butylmalonic acid C ₄ H ₉ CH(CO ₂ H) ₂	160.09	101.5	150 d.		1
2305	C7H12O4	Isobutylmalonic acid	160.09	107			İ
2306	C7H12O4	secButylmalonic acid	160.09	76			
2307	C7H12O4	Diethylmalonic acid (C ₂ H ₅) ₂ C(CO ₂ H) ₂ .	160.09	121			1
2308	C7H12O4	n-Pimelic acid HO ₂ C(CH ₂) ₅ CO ₂ H	160.09	103	272100	1	1
2308 .1	C7H12O4	Trimethylsuccinic acid	160.09	152		1.242	
2309	C7H12O4	Diethyl malonate CH ₂ (CO ₂ C ₂ H ₃) ₂	160.09	-49.9	198.9	1.054	208
23 10	C7H12O4	Dimethyl pyrotartrate	160.09		198	1.078	
2311	C7H12O4	Methyl ethyl succinate	160.09	<-20	208.2	1.0930	1
2312	C7H12O4	Glycerol diacetate (Diacetin)	176.09		17640	1.17816	
2313	C ₇ H ₁₂ O ₆	Quinic acid	192.09	163	d.	1.637	1333
2314	C ₇ H ₁₂ O ₆	Diethyl mesoxalate	192.09	57	200		
2315	C ₇ H ₁₂ BrN ₂ O ₂	Adalin CH ₂ BrCONHCON(C ₂ H ₆) ₂	237.03	116	100	1 00012	1
2316	C ₂ H ₁₂ BrO ₂	Ethyl 1-bromo-n-valerate Ethyl 1-bromoisovalerate	209.02	l	192	1.2264	1
2317 2318	C ₇ H ₁₂ BrO ₂ C ₇ H ₁₂ ClO ₂	Amyl chloroacetate ClCH ₂ CO ₂ C ₅ H ₁₁	209.02 164.56	1	186 192	1.27812	245
2318	C ₇ H ₁₂ ClO ₂ C ₇ H ₁₂ ClO ₂	Isoamyl chloroacetate CiCH ₂ CO ₂ C ₈ H ₁₁	164.56	1	192	1.055	345
2320	C7H12ClO2	Heptylnitrile C ₄ H ₁₂ CN	111.11	}	183	1.041 ²⁵ 0.815	240
2321	C ₇ H ₁₃ NO	Nortropanol	127.11	161	100	0.010	240
2322	C ₇ H ₁₂ NO	Suberoxime (CH ₂ CH ₂ CH ₂) ₂ C:NOH	127.11	23	230	1.023	
2323	C ₇ H ₁₂ NO ₂	Stachydrine	143.11	210	200	1.020	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
2325	C ₇ H ₁₄	2, 4-Dimethyl-2-pentene	98.108		84	0.69925	1
2326	C7H14	3-Ethyl-2-pentene (C ₂ H ₄) ₂ C:CHCH ₂	98.108	•	98	0.72545	192
2327	C7H14	Heptamethylene (Cycloheptane)	98.108	-12	118.1	0.811	405
2328	C7H14	Hexahydrotoluene	98.108	-147.5	103	0.764	910
2329	C7H14	2-Heptene CH ₂ CH:CHC ₄ H ₂	98.108		98.5		1
2330	C7H14	Methylcyclohexane	98.108	-126.4	100.8	0.764	272
2331	C7H14	3-Methyl-2(3)-hexene	98.108		97.4	0.718	186
2332	C7H14	1-Heptene C _b H ₁₁ CH:CH ₂	98.108		99		
2333	C7H14	2, 2, 3-Trimethyl-1-butene	98.108		80		
2334	C7H14	2, 3-Dimethyl-2-pentene	98.108		95.1	0.719	
2335	C ₂ H ₁₄ O	Cycloheptanol	114.11		185.2	0.958	
2336	C7H14O	2-Heptene-4-ol	114.11		6311	0.84214.4	838
2337	C ₇ H ₁₄ O	Hexahydrobenzyl alcohol	114.11		181.2	0.916	816
2338	C ₇ H ₁₄ O	1-Methylcyclohexane-1-ol	114.11	26	168.3	0.91946	1029
2339	C ₇ H ₁₄ O	o-Hexahydrocresol	114.11	20	169	0.923	478
2340	C ₇ H ₁₄ O	m-Hexahydrocresol	114.11	-47	176	0.914	466
2341	C ₇ H ₁₄ O	dl-m-Hexahydrocresol	114.11	-41	175	0.923	467
2342	C ₇ H ₁₄ O	p-Hexahydrocresol	114.11		174	0.92414	833
2343	C ₇ H ₁₄ O	Heptaldehyde C ₆ H ₁₃ CHO	114.11	-45.0	155	0.850	202
2344	C ₇ H ₁₄ O	Dipropyl ketone (C ₂ H ₇) ₂ CO	114.11	-43.0 -32.6	143.5	0.830	173
	1			-32.0		•	1/3
2345	C ₇ H ₁₄ O	Diisopropyl ketone [(CH ₃) ₂ CH] ₂ CO	114.11		123.7	0.806	1
2346	C ₇ H ₁₄ O	Ethyl n-butyl ketone C ₂ H ₆ COC ₄ H ₉	114.11		148.5	0.015	
2347	C ₇ H ₁₄ O	Ethyl isobutyl ketone	114.11		136	0.815	
2348	C ₇ H ₁₄ O	Methyl n-amyl ketone CH ₂ COC ₅ H ₁₁	114.11		150	0.82215	ł
2349	C ₇ H ₁₄ O	Methyl isoamyl ketone	114.11		144	0.82117	ļ
2350	C ₇ H ₁₄ O ₂	Isoamylacetic acid	130.11	••	216.5	0.92615	
2351	C ₇ H ₁₄ O ₂	Heptylic acid C ₆ H ₁₂ CO ₂ H	130.11	-10	223.5	0.922	269
2353	C7H14O2	n-Amyl acetate CH ₂ CO ₂ C ₄ H ₁₁	130.11		147.6	0.87920	130
2354	C7H14O2	Isoamyl acetate	130.11		142.5	0.875	122
2354.1	C ₇ H ₁₄ O ₂	d-β-Amyl acetate	130.11		131	0.868	100
2355	C ₇ H ₁₄ O ₂	tertAmyl acetate	130.11		124.8	0.87419	
2356	C7H14O2	Ethyl n-valerate C ₄ H ₉ CO ₂ C ₂ H ₆	130.11		145.5	0.877	1109
2357	C7H14O2	Ethyl isovalerate	130.11	-99.3	135	0.866	126
2358	C7H14O2	n-Hexyl formate HCO ₂ C ₆ H ₁₂	130.11		153.6	0.8980	
2359	C7H14O2	Isobutyl propionate	130.11	-71.4	138	0.869	108
2359.1	C7H14O2	d-secButyl propionate	130.11		132	0.8657	
2360	C7H14O2	Methyl n-caproate C ₈ H ₁₁ CO ₂ CH ₂	130.11		149.5	0.904	
2361	C7H14O2	Propyl n-butyrate C ₂ H ₇ CO ₂ C ₃ H ₇	130.11	-95 .2	143	0.8791	123
2362	C7H14O2	Propyl isobutyrate (CH ₃) ₂ CHCO ₂ C ₃ H ₇ .	130.11		135.4	0.8844	97
2363	C7H14O2	Isopropyl butyrate C ₂ H ₇ CO ₂ CH(CH ₃) ₂ .	130.11		128	0.86513	
2364	C7H14O2	Isopropyl isobutyrate	130.11		120.8	0.8694	
2365	C7H14O8	Di-n-propyl carbonate CO(OC ₃ H ₇) ₂	146.11		168.2	0.96822	İ
2366	C7H14O8	Ethyl butyl carbonate	146.11		169	1	i
2367	C7H14O4	Glycerol 1-butyrate	162.11		271	1	
2367.1	C7H14O5	l-Methyl rhamnoside	178.11	109	1		1227
2368	C7H14O6	α-Methyl galactoside	194.11	112	1		
2369	C7H14O6	β-Methyl galactoside	194.11	176			
2370	C7H14O6	α-Methyl glucose	194.11	161			
2371	C7H14O4	β-Methyl glucose	194.11	135	1		
2372	C7H14O4	α-Methyl glucoside	194.11	168	2000.2		1230
2373	C7H14O4	β-Methyl glucoside	194.11	104			1171
2373.1	C7H14O4	α-Methyl mannoside	194.11	194			1217
2374	C7H14O6	d-Inosite methyl ether (β-Pinite)	194.11	187		1.52	
2375	C7H14O6	l-Inosite methyl ether (Quebrachite)	194.11	191	210vac.	1.54	ł
2376	C7H14O7	d , β -Galaheptose	210.11	199			
2377	C7H14O7	d, α-Glucoheptose	210.11	215 d.	1		1
2378	C7H14O8	d-Mannoheptonic acid	226.11	175 d.		ĺ	1
2379	C ₇ H ₁₄ S	m-Hexahydrothiocresol	130.17		174		1
2380	C ₇ H ₁₈ Br	n-Heptyl bromide C ₇ H ₁₄ Br	179.03		178.8	1.13314	1
2381	C ₇ H ₁₈ Cl	n -Heptyl chloride $C_7H_{18}Cl$	134.57		159.5	0.88114	
~UO X			118.12	-73	119.2		61
9389	I C'-HR'						
2382 2383	$C_7H_{16}F$ $C_7H_{16}I$	n -Heptyl fluoride $C_7H_{1\bullet}F$	226.05	-73	203.8	0.804 1.401°	469

VOLUME I

ERRATA

		3-12	
PAGE		PAGE	
zviii & ziz	Ready Reference Tables. Between (c) and (d) insert Boiling points (inorganic)	155	Index No. 2968. For 96 read 256 d.
	Between (d) and (e) insert Index to minerals	165	Index No. 2994. For KC ₁₈ H ₃₈ O ₂ read KC ₁₈ H ₃₈ O ₂ . Serial No. 1. For 1.833 read 1.1833.
	Index to C-Table280.	174	Column 1. For Apiohnite read Apiohnite.
4	Column 4. For Columbia read Colombia.		Delete Arsenic siderite.
7	Column 3, under Mass. For 453.592 45 read 453.592 43. For 64.798 182 read 64.798 9182.		Column 2, Automolite. For 1119 read 1911. Column 3. For Cerargytite read Cerargyrite.
8	Column 1, 1 bushel. For 35.367 7048 l read 36.367 7048 l.	l n	Column 4. For Chrysotite read Chrysotile.
10	Column 1. For 1 mal = 10 a read 1 mal or maal = 9.843 or 10 a.		For Cotinnite read Cotunnite.
12	Column 2. For 1 alm read 1 aln 1 famm 1 famm		Golumn 5. For Durfeidtite read Dürfeldtite. Column 6. For Eriochalite read Eriochalcite.
	1 stang = 16 1 stang = 10 or 16		For Gano-hyllite read Ganophyllite.
	Column 3, under Mass.	175	Column 1. For Geocromite read Geocromite.
	For skålpund read skålpund 1 as 1 ass	l	For Jeremejerite read Jeremejevite. Column 3. For Molybdophillite read Molybdophyllite.
	1 quintin 1 kvintin		After Molysite insert Monasite, 1990.
	1 unts 1 uns	l	Column 4. For Phosphochalite read Phosphochalcite.
	1 nyläst = 12 000 1 nyläst = 10 000 or 12 000 Add 1 korn = 1000		Polianite. For (Pyrosulite) read (Pyrolusite). Column 5, Scheelite. For 2366.1 read 2366.
	1 ort = 188		After Spencerite insert Sperrylite, 1179.
	Column 3, under Capacity, dry.	175	Column 5. For Szomolnokite read Szomolnikite.
	Delete 1 ort = 11.		For Tennanite read Tennantite.
	For 1 junkfra read 1 jungfru or jumfru 1 quarter 1 kvarter	1	Column 6. After Tsumebite insert Tungstenite, 1683. For Uruölggite read Urvölgyite.
	1 kappar 1 kappe	176	Index No. 20. Delete 2.53.
	1 fjerdingar 1 fjärding	179	Index No. 232. Delete 1.7.
13	1 spanna 1 spann Column 1, 1 saah For she read she	180 183	Index No. 263. For 1.617 read 0.6606. Index No. 435. For NH(COCH ₂) ₂ read NH ₂ CONHCOCH ₃ .
13 17	Column I, I saah. For you read req. Column I, (v). For p. 27 read p. 38.	187	Index No. 686. For -18 read -5 .
	Accepted Basic Constants. Regarding Uncertainty column add	188	Index No. 725. For CH ₂ COC ₂ H ₄ read CH ₂ CO ₂ C ₂ H ₄ .
	These values are rough estimates and those for e, e/m ₀ and h should probably be several times as great as the values given.	192	Index No. 773.1. For Methy read Methyl. Index No. 1012. For C ₆ H ₁₁ CO ₂ H read C ₆ H ₂ CO ₂ H.
18	Section A. These Derived Constants have been computed from	193	Index No. 1074. For Dimethy read Dimethyl.
	the Accepted Basic Constants on p. 17, and are vitiated by the	200	Index Nos. 1466, 1468, and 1470. Data probably not for pure
	errors in those values. The greatest errors occur in r_{∞} and N_{∞} , which differ from the best experimental values by about		compounds. o-Dihydrobenzene and 1, 3-cyclohexadiene are two names for the same compound.
	0.4%, the computed value of ν_{∞} being too small.	214	Index No. 2328. Delete entry.
	For v o read v o.		Index No. 2330. For -126.4 read -126.3
	Section B, log10 A. For 4.808 7827 read 3.808 7827.		100.8 100.3 0.764 0.78642
23	Table 28, last line. For 15.5951 read 13.5951. For 1.192 9882 read 1.133 3824.	220	Index Nos. 2719, 2720, and 2721. For Cresyl read Tolyl.
26	Table 48. For 1.0000 lambert 0.000 0000	224	Index No. 2942. For 2-Ethylhexane CH ₂ (C ₂ H ₅)CHC ₄ H ₅ read
	1.0764 millilambert 0.031 9684		3-Ethylhexane (C ₂ H ₃) ₂ CHC ₃ H ₇ . Index No. 2942.1. Delete entry.
	read 3.1416 lambert 0.497 1499 3.3816 millilambert 0.529 1183	227	Index No. 3123. For CoH10Os read CoH10N2Os.
34	Column 2. line 1. For 980.655 read 980.665.		Index Nos. 3150, 3151, and 3152. For Cresyl read Tolyl.
42	Column 1. For Synonical read Synodical. Column 1. For X read Xe.	234 235	Index No. 3576. For CsH ₄ CH:CHC ₂ H ₄ read CsH ₄ CH ₄ C:CCH ₄ . Index No. 3635. For Bensacetin read 5-Acetylamino-2-methoxy-
49 52	For F O Fairchild read C O Fairchild		benzene-1-carboxylic acid.
34 42 49 52 62 66	For F. O. Fairchild read C. O. Fairchild. Column 2. For above 20° read below 20°. Section (a), Phosphorus pentasulfide. For 52° read 522°.	238	Index No. 3848. For C10H16O read (C10H16O):
66 91	Section (a), Phosphorus pentasulfide. For 52° read 522°. High Vacuum Technique.		152.12 456.36 295 310
91	line 1, for Amount read Mass.		Index No. 3862. For [C10H16O]x read (C10H16O):
	line 6. after molecules add striking 1 cm ² sec ⁻¹ .		[152.12]x 456.36 264 285
102	line 11. for Q = amount read Q = volume. The Gaseous State, viscosity column. A. for 221 read 222.	242	Index No. 4078. Add 5-Acetylamino-2-ethoxybensene-1-car-
105	A, for 221 read 222.	0.47	boxylic acid.
	Br, for 155 read 154.	247 253	Index No. 4394. 1.525 is the density for the monohydrate. Index No. 4734. For Cresyl read Tolyl. For p-CH ₂ C ₄ H ₄ O ₂ CC ₄ H ₅
106	Air, for 284.2 read 180.8. Line 1. For Smithers read Smither.		read p-CH ₂ C ₂ H ₄ O ₂ CC ₂ H ₄ .
	Line 1. Fer Smithers read Smither. Line 3. Fer John C. W. Fraser read J. C. W. Fraser. Lindex No. 6. For -76 read -59. Index No. 35.1. Delete I in density column for 3.182?	254	Index Nos. 4736, 4741, 4742, and 4744. For Cresyl read Tolyl . Index Nos. 4778, 4779, and 4780. For Cresyl read Tolyl.
	Index No. 6. For -76 read -59.	258	Index No. 5057. For C16H12N2 read C6H12N2. For 233.12 read
109	Index No. 35.1. Detate 1 in density column for 3.1827. Index No. 204, 41°. Add 3.022. Index No. 205, 41°. Add 4.49. Index No. 206, 40°. Add 4.63. Index No. 259. Delete entry. Index No. 559. Ere Attaits read Ataits.		127.124.
	Index No. 205, d ¹⁰ . Add 4.49.	260 262	Index No. 5152. For capronate read caproate.
110	Index No. 206, d. Add 3.63.	266	Index No. 5291. For Chinosol read Quinosol. Index Nos. 5547, 5550. For Jelsemine read Gelsemine.
110 115	Index No. 560. For Attaite read Altaite.	268	Index No. 5653. For Strychine read Strychnine.
119	Index No. 766. Delte entry.	269 270	Index No. 5711. For Gelsemine read Gelseminine.
122	Index No. 767. For 45.5 read 44.07. Index No. 940. Add Eriochalcite.	271	Index No. 5779. For o-Cresol read o-Tritolyl. Index No. 5902. Delete entry.
144	Index No. 1001. For Phosphochalite read Phosphochalcite.	272	Index No. 5928. For CnH22O16 read CnH20O16.
128	Index No. 1354. For Szomolnokite read Szomolnikite.		612.25 610.23 183 190
129	Index No. 1355. For Siderotilate read Siderotilite. Index No. 1394. For FeCO ₂ . H ₂ O read FeCO ₂ . For 133.855 read		Index No. 5967. For Octocosane read Octacosane.
	115.84.	274	Index No. 6054. For capronate read caproate.
131	Index No. 1507. For 2.8183 read 4.13.		Index No. 6082. For Filixic read Filicic. Index No. 6096. Delete entry.
133 134	Index No. 1631. For Crocoitite read Crocoite. Index No. 1683. Insert Tungstenite.	275	Index No. 6096. Delete entry. Index No. 6110. For caprinate read caprate.
101	Index No. 1683. Insert Tungstenite. Index No. 1726. For UO ₂ .CO ₂ read UO ₂ .CO ₃ .	278	Serial No. 910. Delete entry.
136	Index No. 1819. For BN: read BN. For 38.8360 read 24.8280.	280	Column 3. After p-Acetylaminobenzoic acid insert
139	Index No. 1990. Insert Monazite. Index No. 2236. For Hydrophyllite read Hydrophilite.		5-Acetylamino-2-ethoxybensene-1-carboxylic acid, 4078. Column 4. After o-Acetylaminomethoxybensene insert
143 149	Index No. 2236. For Hydrophyllite read Hydrophilite. Index No. 2622. For d. 29.6 read 29.88.		5-Acetylamino-2-methoxybensene-1-carboxylic acid, 3635.
152	Index No. 2807. Probably a decahydrate, v. Conroy, 54, 17: 104;	282	Column 4, Benzacetin. Delete 3635.
153	98. Index No. 2877. For 3.55 read 2.55.	285	Column 1. For Cerebrin, 5931, 6153 read Cerberin, 5931 Cerebrin, 6153
		71.1	0.000, 0.000

D		PAGE			
Page 286	Column 3. Delete 14 entries, beginning with o-Cresyl acetate 3150 and ending with p-Cresyl salicylate, 4743. Delete o-Cresol orthoacetate, 5779.	362	Column 2, line 8. For V = 0.0342a ^{1/2} read V = 0.034 Above Remarks Concerning the Nomenclature ther rule extending across entire page.	42a ³⁴ . e shoul	d be a
000	Column 4. After m-Cymene insert p-Cymene, 3728.1.	363	Column 2, Note 9. For DAI read DAI. Series of Thorium, Thoron. For 0.574 read 0.0574.		
290 291	Column 4, Ergosterol. Delete 5902. Column 3. Delete 2-Ethylhexane, 2942.	364	Column 2, Tables (b) and (c). For cm ⁻² read cm ² .		
	3-Ethylhexane. For 2942.1 read 2942.	366	Chemical Effects of α -Particles, column 1, line 3. A	fter a-p	articles
292	Ethyl hippurate. For 4516 read 4077.1. Column 2, Filicic acid. For 6096 read 6082.		insert in the time the M are reacting. equation, line 12. For ln read loge.		
202	Filixic acid. Delete entry.	368	Column 1, line 4. For T14 read T (cf. p. 362, column 1	1, line 1	4).
	Column 3. For Gelsemine, 5711 read Gelsemine, 5547 Gelseminine, 5711	372	Column 2, Literature.		
295	Column 4, Jelsemine, 5547 and Jelsemine hydrochloride, 5550.		(4). For 151:1751 read 150:1750.		
300	Delete entries.	373	(10) 10:11 11:628 Lit. column. For (99) read (90). Lit. column. For (97) read (98).		
301	Column 4, N-Phenylthiourethane. For 321 read 3201. Column 4, Pyrene. For 5206 read 5026.	375	Lit. column. For (97) read (98).		
302	Column 4, Pyrene. For 5206 read 5026. Column 2. After Quinoneoxime insert Quinosol, 5291.	376 377	Column 2. For Japan (42) read Japan (41). Column 2, Hokutolite. For (42) read (41).		
303 304	Column 1, Terephthalic acid. Delete entry. Column 2. After Toluylene-3, 5-diamine insert		Column 2, S. For Skaldowskite read Sklodowskite.	. .	
-	o-Tolyl acetate, 3150		Column 2, Torbernite. For (UCaPOxaq) read (UCul Column 2, Y. For Yitrotantalite read Yttrotantalite.	POxaq)	•
	m-Tolyl acetate, 3151 p-Tolyl acetate, 3152	379	Oceanic Deposits. Data from (138) have been supe	rseded	by the
	After p-Tolylantipyrene insert		the author's later work (Joly, 5, 24:694;12) and sho	ould rea	d:
	m-Tolyl bensoate, 4736. p-Tolyl bensoate, 4734.			No.	
	After p-Tolyldimethylpyrasolone insert			speci-	Ra mean
	o-Tolyl ether, 4778. m-Tolyl ether, 4779.			mens	mean .
	p-Tolyl ether, 4780.		Blue mud 1240 fath	1	1.5
	After p-Tolyl isothiocyanate insert		"Ooze"		
	o-Tolyl methyl ether, 2719. m-Tolyl methyl ether, 2720.		720 fath	1	1.7
	p-Tolyl methyl ether, 2721.		199 to 2493 fath	4	3.3
	After p-Tolyl mustard oil insert o-Tolyl salicylate, 4741.		3 of above sampl.s		3.1
	m-Tolyl salicylate, 4742.		2600 to 2750 fath	2	13.1
305	p-Tolyl salicylate, 4743. Column 3. After Trithioglycerol insert o-Tritolyl orthoacetate,		Red clay	,	
	5779.		2350 fath	1	11.0
306	Column 2, Xanthine. Delete entry. Property-Substance Tables, -150: Delete 2328.	380	The Loetschberg Tunnel. For Aplete read Aplite.		
307	50: For 4516 read 4077.1.		Meteorites, Remarks. For hexahydrite read hexahed	drite.	
308	96: Delete 32968 116: After 33347 insert 67.	381	Column 1, line 2 of table. For Anondoga read Onon Column 2, (138). For Joly, 3, 16:190;18 read Joly,	9 18.	100-08
310	255: After 4931 insert 252968.	382	Lines 2 and 3 of table. For Felixtowe read Felixstow Line 16 of table. For Frier read Friar. Line 29 of table. For Charnokite read Charnockite.	ve.	150,00.
	261: Delete 3862. 285: After 2620 insert 3862.		Line 16 of table. For Frier read Friar.		
	292: Delete 3848.	392	Characteristics of Members of Solar System.		
311	310: After 1385 insert 3846. 93: Delete 171.		Sidereal rotation of Sun. For 25.3 read 25.0. Number of satellites. Mars For 0 read 2		
311	106: Delete 2328.		Jupiter 7 9		
	115: Delete 2942.1. 116: Delete 67.		Saturn 9 10 Column 1, line 2 bottom. For 24 da and 30 da rea	J 94 E	
	180: For 4516 read 4077.1.		30.6 da, respectively.	4 24.3	an ana
313	0.760: Delete 2328 and 2330.		Column 2. Constant of notation. For notation read	nutatio	n.
319	C ₂₂ H ₄₆ O ₂ . For capronate read caproate. C ₂₁ H ₄₄ O ₂ . For caprinate read caprate.	l	Column 2, Constant of aberration. Add this note now generally accept a value near 20.52, but the Pa	: Astro aris con	nomers ierence
322	SrC ₂ H ₄ O ₆ S ₂ .H ₂ O. For Strontium disulfonate read Strontium		value is used in the computation of the national e	phemer	ides.
331	ethane disulfonate. C11H11O2N. For Glutaric aniline read Glutaricanilide.	l	Column 2, Solar parallax. Add this note: The direct (8.806") is by far the most reliable; the one from	determ n the v	ination relocity
353	(188), Sasahara. For 329 read 210.		of light is based upon the value for the constant	ofabe	rration
358	Odoriferous Materials, Classification. For fragante: read fragrantes		adopted at the Paris conference of 1896, which is the value now generally accepted. The two other	s small	or than
	Allyl Alliaceous	l	nature of the case somewhat uncertain.		
	empyreumatic empyreumatici tetri tebri		Column 2, Inclination of Moon's orbit to ecliptic. read 5° 8′ 43″.	For a	bout 5°
	nauseois nauseosi	394	Table 1, item 6. For meridonal read meridional.		
360	Column 1, line 3. For 6.06 × 1021 read 6.06 × 1023.	398	Column 1, Greenwich, g. For 981.184 read 981.188.		
	Columns 1 and 2, table heading. For Molecules per cc read Molecules per 0.01 cm ³ .		Column 1, Kew, g. For 981.144 read 981.201.		

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2385	C7H18NO	n-Heptylamide C ₆ H ₁₈ CONH ₂	129.12	96			ì
2386	C7H18NO	Heptaldoxime C ₆ H ₁₈ CH:NOH	129.12	55.5	195	0.8344	1124
2386.1	C7H15NO2	Isobutylurethane C ₄ H ₂ NHCO ₂ C ₂ H ₅	145.12	< -65	9617	0.943	311
2387	C7H16 .	2, 4-Dimethylpentane CH ₂ [CH(CH ₃) ₂] ₂ .	100.12		83.9	0.681	45
2388	C ₇ H ₁₆	3, 3-Dimethylpentane	100.12	000	87	0.7110	
2389	C ₇ H ₁₆	n-Heptane CH ₂ (CH ₂) ₆ CH ₂	100.12	-90 .0	98.4	0.684	55
2390	C ₇ H ₁₆	2-Methylhexane (CH ₀) ₂ CHC ₄ H ₉	100.12 100.12	İ	90.4 92	0.707 ⁰ 0.687	
2391 2392	C ₇ H ₁₆ C ₇ H ₁₆	d, 3-Methylhexane $C_2H_7CH(CH_2)C_2H_4$. 3-Ethylpentane $(C_2H_4)_2CH$	100.12		93.8	0.670	89
2392 2393	C ₇ H ₁₆	2, 2, 3-Trimethylbutane	100.12	-25	80.8	0.69516	77
2394	C ₇ H ₁₆	2, 2-Dimethylpentane (CH ₃) ₃ CC ₃ H ₇	100.12	20	78.6	0.674	''
2396	C ₇ H ₁₆ O	Dimethylbutyl carbinol	116.12		142.2	0.816	224
2397	C ₇ H ₁₆ O	Dimethylisobutyl carbinol	116.12	,	130	0.816	228
2398	C ₇ H ₁₆ O	Dimethyl-tertbutyl carbinol	116.12	17	132	0.020	
2399	C ₇ H ₁₆ O	Dipropyl carbinol (C ₂ H ₇) ₂ CHOH	116.12		155.4	0.820	256
2400	C ₇ H ₁₆ O	Diisopropyl carbinol	116.12		140	0.829	265
2400.1	C7H16O	d-Ethylbutyl carbinol	116.12	1	6618	0.823	251
2401	C7H16O	Ethylisobutyl carbinol	116.12	i	148.2		
2402	C7H16O	Ethyl-secbutyl carbinol	116.12		150	0.8520	
2403	C7H16O	n-Heptyl alcohol C7H15OH	116.12	-34.6	175.8	0.81722	287
2404	C7H16O	2-Hydroxy-3-ethylpentane	116.12		152	0.8530	
2405	C ₇ H ₁₆ O	1-Hydroxy-2-methylhexane	116.12		162.5	0.83148	266
2406	C ₇ H ₁₆ O	Isoheptyl alcohol	116.12	l	167.2	0.8310	291
2407	C ₇ H ₁₆ O	Methyl-n-amyl carbinol	116.12		158	0.819	259
2407.1	C7H16O	d-Methylamyl carbinol	116.12		73.520	0.819	253
2408	C7H16O	Methylisoamyl carbinol	116.12		150	0.81917.6	
2409	C7H16O	Methylethylpropyl carbinol	116.12		141	0.823	270
2410	C ₇ H ₁₆ O	Methylethylisopropyl carbinol	116.12		140	0.833	1
2411	C ₇ H ₁₆ O	Propylisopropyl carbinol	116.12		141	0.82117	215
2412	C ₇ H ₁₆ O	Triethyl carbinol (C ₂ H ₅) ₅ COH	116.12		142	0.840	334
2413	C ₇ H ₁₆ O	Ethyl isoamyl ether	116.12		112	0.76418	
2414	C ₇ H ₁₆ O	Propyl butyl ether C ₄ H ₉ OC ₂ H ₇	116.12 148.12	-76.1	117.1 145.9	0.777° 0.897	1
2415 2416	C ₇ H ₁₆ O ₂ C ₇ H ₁₆ O ₄ S ₂	Ethyl orthoformate $HC(OC_2H_4)_3$ Sulfonal $(CH_4)_2C(SO_2C_2H_4)_2$	228.25	128	300 d.	0.097	
2410 2417	C7H16O4S2	d-Mannoheptitol	212.12	188	300 u.		
2418	C7H16O7	Volemitol	212.12	155			
2419	C7H17N	n-Heptylamine C ₇ H ₁ ,NH ₂	115.14	-23.0	155.1	0.777	278
2420	C.Cl.O.	Tetrachloro-o-phthalic anhydride	285.83	257	2001.2]
2421	C ₈ H ₂ Cl ₂ O ₈	3, 6-Dichloro-o-phthalic anhydride	216.93	191	339	1	
2422	C ₄ H ₂ Cl ₄ O ₄	Tetrachloro-o-phthalic acid	303.85	250			ŀ
2422.1	C.H.BrNO.	m-Bromoisatine	225.96	255			
2422.2	C ₂ H ₄ ClNO	Isatine chloride	165. 50	180 d.	j		
2423	C ₈ H ₄ Cl ₂ O ₂	o-Phthalyl dichloride o-C ₆ H ₄ (COCl) ₂	202.95	0	276.7	1.408	755
2424	C ₈ H ₄ Cl ₂ O ₂	Isophthalyl dichloride m-C ₆ H ₄ (COCl) ₂ .	202 .95	41	276		
2425	C ₈ H ₄ Cl ₂ O ₂	Terephthalyl dichloride p-C ₆ H ₄ (COCl) ₂ .	202.95	78	259		1
2426	C ₅ H ₄ Cl ₂ O ₄	3, 6-Dichloro-o-phthalic acid	234.95	185			
2427	C ₃ H ₄ Cl ₄ O	Trichloromethyl p-chlorophenylketone	257.86	28	18146		
2428	C ₈ H ₄ N ₂	Isophthalic nitrile m-C ₆ H ₄ (CN) ₂	128.05	161			
2429	C ₂ H ₄ N ₂	Terephthalic nitrile p-C ₆ H ₄ (CN) ₂	128.05	222			İ
2430	C ₁ H ₄ N ₂ O ₄	Nitroisatine	192.05	230		1	1
2431	C ₈ H ₄ O ₃	o-Phthalic anhydride	148.03	130.8	284.5	1.5274	
2432	C ₄ H ₄ Cl ₄ O	Dichloromethyl p-chlorophenyl ketone	223.41	51	1784	i	1
2433	C.H.Cl.NO	2, 3, 4, 6-Tetrachloroacetanilide	272.88	181	000	İ	ł
2434 2435	C.H.NO	Benzoyl cyanide C ₆ H ₅ .COCN	131.05 147.05	34 190	208		
2435 2436	C ₈ H ₆ NO ₂ C ₈ H ₆ NO ₂	m-Cyanobenzoic acid	147.05 147.05	190 217		1	
2436 2437	C ₈ H ₅ NO ₂	p-Cyanobenzoic acid	147.05 147.05	217		1	1
2437 2438	C ₈ H ₆ NO ₂	Isatine	147.05	201		1	1
2438 2439	C ₈ H ₄ NO ₂	o-Phthalimide o-C ₆ H ₆ (CO) ₂ NH	147.05	238	1	1	
2439 2440	C ₈ H ₄ NO ₄	3-Nitro-o-phthalic acid	211.05	220	1	1	1
2440 2441	C ₈ H ₄ NO ₄	4-Nitro-o-phthalic acid	211.05 211.05	164	1	1	
2442	C ₈ H ₄ NO ₄	2-Nitroisophthalic acid	211.05	300	1		
				300	i		

2444 2445 2446 2447 2448 2449 2450 2451 2452	C ₈ H ₆ NO ₆ C ₅ H ₆ NO ₆ C ₆ H ₆ NO ₆ C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆	5-Nitroisophthalic acid	211.05 211.05	255 270			
2446 2447 2448 2449 2450 2451	C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆ C ₈ H ₆ NO ₆	Pyridine-2, 3, 4-tricarboxylic acid		270	1	1	
2447 2448 2449 2450 2451	C ₅ H ₅ NO ₆ C ₅ H ₅ NO ₆ C ₅ H ₆ NO ₆	1 - ' '	014 05	1	1	1	İ
2448 2449 2450 2451	C ₅ H ₅ NO ₆ C ₅ H ₆ NO ₆	Pyridine 2. 3. 5-tricarboxylic acid	211.05	250 d.		ì	1
2449 2450 2451	C ₈ H ₄ NO ₆		211.05	323		· .	ŀ
2450 2451		Pyridine-2, 3, 6-tricarboxylic acid	211.05	100		I	
2451	C ₈ H ₅ NO ₆	Pyridine-2, 4, 5-tricarboxylic acid	211.05	235			
	C II NO	Pyridine-2, 4, 6-tricarboxylic acid	211.05	227	Í	1	
Z45Z	C ₄ H ₄ NO ₄	Pyridine-3, 4, 5-tricarboxylic acid	211.05	261	100 4	1	İ
9459	C ₈ H ₅ N ₈ O ₈	Picryl acetate	271.06	76	120 d. 143	0.930	820
2453 2454	C ₈ H ₆ C ₈ H ₆ BrN		102.05 195.97	> -17	231.7	1.519	1185
2455	CaHaBra	Bromobenzyl cyanide C ₆ H ₅ CHBrCN Styrene-1, 2-dibromide	261.88	73.5	13415	1.519	1100
2456	C ₈ H ₆ Br ₂ O	p-Bromophenacyl bromide	277.88	109.7	104	1	
2457	C ₂ H ₆ Cl ₂ O ₂	Piperonal chloride	204.96	108.7	240 s. d.		
2458	C ₈ H ₆ Cl ₂ O ₂ C ₈ H ₆ Cl ₂ NO	2, 3, 4-Trichloroacetanilide	238.43	122	240 S. U.		
2459	C ₈ H ₆ Cl ₂ NO	2, 4, 5-Trichloroacetaniide	238.43	190	İ		
2460	C ₂ H ₄ Cl ₂ NO	2, 4, 6-Trichloroacetaniide	238.43	204	1		
2461	C ₂ H ₄ C ₁₂ NO	Methyl 3, 5-diiodosalicylate	403.91	110.5		1	
2462	C ₈ H ₆ N ₂	Phthalazine	130.06	91	317	1	
2463	C ₈ H ₆ N ₂	Quinazoline	130.06	48	243		
2464	C ₈ H ₆ N ₂	Quinoxaline	130.06	30.5	226	1.13348	1075
2465	C ₈ H ₆ N ₂ O ₂	Isatoxime (Nitrosooxindol)	162.06	202	220	1.1004	10.0
2466	C ₆ H ₆ N ₂ O ₂	p-Nitrobenzyl cyanide	162.06	117			
2467	C ₈ H ₆ N ₄ O ₈	Alloxantin	286.08	170 d.			
2468	C _t H _t O	Coumarone	118.05	> -18	175	1.091	997
2469	C ₈ H ₆ O ₂	Phenylglyoxal C.H.CO.CHO	134.05	73	142125	1.031	33.
2470	C ₈ H ₆ O ₂	o-Phthalic aldehyde o-C ₄ H ₄ (CHO) ₂	134.05	56	1		
2471	C ₈ H ₆ O ₂	Isophthalic aldehyde m-C ₆ H ₄ (CHO) ₂	134.05	89.5		1	
2472	C ₈ H ₆ O ₂	Terephthalic aldehyde p-C ₆ H ₄ (CHO) ₂	134.05	116	248		
2473	C ₈ H ₆ O ₂	Phthalide	134.05	73; 65	290		
2474	C ₈ H ₆ O ₈	Piperonal (Heliotropin)	150.05	37	263		
2475	C ₅ H ₆ O ₅	o-Aldehydobenzoic acid	150.05	100.5	200	1.404	
2476	C ₈ H ₆ O ₈	m-Aldehydobenzoic acid	150.05	175		1.101	1
2477	C ₈ H ₄ O ₈	p-Aldehydobenzoic acid	150.05	250	1	1	
2478	C ₈ H ₆ O ₈	Phenylglyoxylic acid	150.05	66	1486	1	
2479	C ₈ H ₆ O ₄	o-Phthalic acid o-C ₆ H ₄ (CO ₂ H) ₂	166.05	191 d.		1.593	
2480	C ₈ H ₆ O ₄	Isophthalic acid m-C ₆ H ₄ (CO ₂ H) ₂	166.05	330		1	
2482	CaHoO4	Piperonylic acid CH ₂ :O ₂ :C ₄ H ₂ .CO ₂ H	166.05	228		l l	
2483	CaHoOs	2-Hydroxy-o-phthalic acid	182.05	244			1
2485	C ₅ H ₆ O ₅	4-Hydroxy-o-phthalic acid	182.05	181 d.		ł	1
2486	C ₈ H ₆ O ₅	2-Hydroxyisophthalic acid	182.05	239		ł	
2487	C ₈ H ₆ O ₈	4-Hydroxyisophthalic acid	182.05	306			Ì
2488	C ₈ H ₆ O ₅	5-Hydroxyisophthalic acid	182.05	288			
2489	C ₈ H ₆ O ₅	Noropianic acid	182.05	171		ļ	
2490	C ₈ H ₆ S	Thionaphthene	134.11	32	221	1.165	1049
2491	C ₈ H ₇ Br	α-Bromostyrene C ₆ H ₆ CBr:CH ₂	182.97	-43.5	16075	1.4057	770
2492	C ₈ H ₇ Br	ω-Bromostyrene (isomer 1)	182.97	7	221	1.4224	786
2493	C ₈ H ₇ Br	ω-Bromostyrene (isomer 2)	182.97	-7.5	10826	1.427	992
2493.1	C ₈ H ₇ BrN ₂ O ₂	α-Bromonitroacetanilide	258 .99	131		1.765	
2494	C ₈ H ₇ BrO	ω-Bromoacetophenone	198.97	50	119	1.647	
2495	C ₈ H ₇ Cl	α-Chlorostyrene C ₆ H ₅ C.Cl:CH ₂	138.51		199		-
2496	C ₈ H ₇ Cl	ω-Chlorostyrene C ₆ H ₅ CH:CHCl	138.51		198.8	1.11223	
2497	C ₃ H ₇ ClO	ω-Chloroacetophenone	154.51	59	247	1.32416	1
2498	C ₈ H ₇ ClO	p-Chloroacetophenone	154.51	20	232	1.188	1
2499	C ₈ H ₇ ClO	Phenylacetyl chloride C.H.CH2COCl	154.51		102.517	1.168	
2500	C ₈ H ₇ ClO ₂	p-Anisyl chloride p-CH ₄ COc ₄	170.51	27			
2501	C ₈ H ₇ ClO ₂	Phenyl chloroacetate ClCH ₂ CO ₂ C ₆ H ₆	170.51	45	235	1	
2502	C ₅ H ₇ F ₂ NO	2, 5-Difluoroacetanilide	171.06	122.5			
2503	C ₈ H ₇ N	Benzyl cyanide C ₆ H ₅ CH ₂ CN	117.06	-23.8	233.9	1.01518	679
2504	C ₈ H ₇ N	Indole	117.06	52.5	254	0.05-05	1333
2505	C ₈ H ₇ N	o-Tolunitrile o-CH ₃ C ₆ H ₄ CN	117.06	1	204	0.99525	1004
2506 2507	C ₈ H ₇ N C ₈ H ₇ N	m-Tolunitrile m-CH ₂ C ₄ H ₄ CN	117.06 117.06	29.5	214 217	0.98425	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2508	C ₈ H ₇ NO	p-Anisonitrile p-CH ₂ OC ₆ H ₄ CN	133.06	60	256	Ì	i
2509	C ₈ H ₇ NO	dl-Mandelonitrile C ₆ H ₆ CH(OH)CN	133.06	-10	d.	1.124	
2510	C ₈ H ₇ NO	Indoxyl	133.06	85	110		
2511	C ₈ H ₇ NO	Oxindol	133.06	120			
2512	C ₈ H ₇ NO ₂	Hydrindic acid (Dioxindol)	149.06	180	195 d.		
2513	C ₈ H ₇ NO ₂	o-Nitrostyrene o-NO ₂ .C ₆ H ₄ .CH;CH ₂	149.06	13.5			1
2514	C ₆ H ₇ NO ₂	m-Nitrostyrene m-NO ₂ .C ₆ H ₄ .CH:CH ₂	149.06	-5	1		
2515	CHNO	p-Nitrostyrene p-NO ₂ .C ₄ H ₄ .CH:CH ₂	149.06	29			j
2516	CH,NO	Oxanilic acid CO ₂ H.CONHC ₆ H ₅	165.06	150	100 1		
2517 2518	C ₈ H ₇ NO ₈ C ₈ H ₇ NO ₄	o-Phthalamic acid	165.06	149	155 d. 269	1 00425	
2518 2519	C ₈ H ₇ NO ₄	Methyl o-nitrobenzoate Methyl m-nitrobenzoate	181.06 181.06	-8 7 0	279	1.28425	
2519 2520	C ₈ H ₇ NO ₄	Methyl p-nitrobenzoate	181.06	96	219		1
2520 2521	C ₈ H ₇ NO ₄	Uvitonic acid	181.06	90 274			
2521 2522	C ₈ H ₇ NS	Benzyl isothiocyanate	149.13	214	243		
2522 · 1	C ₈ H ₇ NS	Benzyl thiocyanate	149.13	41	235		
2523	C ₈ H ₇ NS	o-Tolyl isothiocyanate	149.13	41	239	1.10425	1
2524	C ₈ H ₇ NS	m-Tolyl isothiocyanate	149.13		245	1.10125	
2525	CaH7NS	p-Tolyl isothiocyanate	149.13	26	237	1.08725	
2526	C ₈ H ₇ N ₃ O ₅	2, 3-Dinitroacetanilide	225.08	186	201	1.00726	1
2527	C ₃ H ₇ N ₃ O ₃	2, 4-Dinitroacetanilide	225.08	120	ł	1	
2528	CaH7NaO4	2, 6-Dinitroacetanilide	225.08	197			1
2529	C ₆ H ₇ N ₃ O ₅	3, 4-Dinitroacetanilide	225.08	144			
2530	C6H7N3O	3, 6-Dinitroacetanilide	225.08	121			
2531	C ₈ H ₇ N ₃ O ₆	3, 4, 5-Trinitro-o-xylene	241.08	115	ļ		1
2532	C ₈ H ₇ N ₂ O ₆	3, 4, 6-Trinitro-o-xylene	241.08	72			
2533	CaH7N2O4	2, 4, 5-Trinitro-m-xylene	241.08	90			ł
2534	CaH7N2O6	2, 4, 6-Trinitro-m-xylene	241.08	181.5			1
2535	C.H.N.O.	4, 5, 6-Trinitro-m-xylene	241.08	125			1
2536	C.H.N.O.	2, 3, 6-Trinitro-p-xylene	241.08	14020			1
2537	C ₈ H ₇ N ₈ O ₇	Ethyl picrate	257.08	78.5			
2538	C ₈ H ₈	Styrene (Phenylethylene)	104.06		146	0.903	907
2539	C ₈ H ₈ BrNO	o-Bromoacetanilide	213.99	99			
2540	C ₈ H ₈ BrNO	p-Bromoacetanilide	213.99	165			İ
2540 .1	C.H.Br.	o-Xylenedibromide o-C ₆ H ₄ (CH ₂ Br) ₂	263.89	94.5	d.	1.988	į
2540.2	C ₈ H ₈ Br ₂	m-Xylenedibromide m -C ₆ H ₄ (CH ₂ Br) ₂	263.89	77	140	1.959	1
2541	C ₈ H ₈ Br ₂	p-Xylenedibromide p -C ₈ H ₄ (CH ₂ Br) ₂	263.89	144	245	2.1020	1
2542	C.H.CINO	o-Chloroacetanilide	169.53	88			
2543	C ₅ H ₅ CINO	m-Chloroacetanilide	169.53	72.5			
2544	C ₂ H ₃ ClNO	p-Chloroacetanilide	169.53	172.5			1
2544.1	C.H.Cl.	o-Xylenedichloride o-C ₆ H ₄ (CH ₂ Cl) ₂	174.98	55	241	1.393	1
2544.2	C ₁ H ₁ Cl ₂	m-Xylenedichloride m-C ₆ H ₄ (CH ₂ Cl) ₂	174.98	34.2	255	1.302	
2545	C ₁ H ₁ Cl ₂	p-Xylenedichloride p-C ₆ H ₄ (CH ₂ Cl) ₂	174.98	100.5	12020	1.4170	
2546	CH,INO	p-Iodoacetanilide p-CH ₂ CONHC ₂ H ₄ I Apoharmine	261.00	184	i		ļ
2547 2548	$C_8H_8N_2$ $C_8H_8N_2$	1-Methylindazole	132.08 132.08	183	10715	1.032499.2	1129
2549	C ₂ H ₂ N ₂ OS	Benzoylthiourea C ₄ H ₄ CONHCSNH ₂	180.14	169	107.5	1.0024	1129
2550	C ₂ H ₂ N ₂ O ₂	Benzoylurea C ₆ H ₅ CONHCONH ₂	164.08	200			
2551	C ₈ H ₈ N ₂ O ₂	o-Phthalic diamide o-C ₆ H ₄ (CONH ₂) ₂	164.08	220			
2552	C ₆ H ₈ N ₂ O ₂	Isophthalic diamide $m-C_6H_4(CONH_2)_2$	164.08	265			1
2553	C ₈ H ₈ N ₂ O ₂	N-Nitrosoacetanilide	164.08	41			
2554	C ₂ H ₃ N ₂ O ₂	Ricinine	164.08	201	İ		1
2555	C ₂ H ₂ N ₂ O ₃	o-Nitroacetanilide	180.08	93	İ		1
2556	C ₂ H ₂ N ₂ O ₃	m-Nitroacetanilide	180.08	150.5			1
2557	C ₂ H ₂ N ₂ O ₃	p-Nitroacetanilide	180.08	214			1
2558	C ₈ H ₈ N ₂ O ₄	3, 4-Dinitro-o-xylene	196.08	82			1
2559	C ₈ H ₈ N ₂ O ₄	3, 6-Dinitro-o-xylene	196.08	56			1
2560	C ₂ H ₈ N ₂ O ₄	4, 5-Dinitro-o-xylene	196.08	115			
2561	C ₈ H ₈ N ₂ O ₄	4, 6-Dinitro-o-xylene	196.08	75			1
2562	C ₈ H ₈ N ₂ O ₄	2, 5-Dinitro- <i>m</i> -xylene	196.08	101			1
2563	C ₈ H ₈ N ₂ O ₄	4, 5-Dinitro- <i>m</i> -xylene	196.08	132	1		
2564	C ₈ H ₈ N ₂ O ₄	2, 3-Dinitro-p-xylene	196.08	93			
2565	C ₆ H ₂ N ₂ O ₄	2, 5-Dinitro-p-xylene	196.08	147	I .	1	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
2566	C ₈ H ₈ N ₂ O ₄	2, 6-Dinitro-p-xylene	196.08	124		İ	i
25 66 . 1	C ₈ H ₈ N ₂ O ₆	4, 5-Dinitro-1, 2-dimethoxybenzene	228.08	130.5		1.326131	1
2566.2	C ₈ H ₈ N ₄ O	4-Methoxyphenyltetrazole	128.09	228	İ		1306
2567	C ₈ H ₈ O	Phenylacetaldehyde C ₆ H ₅ CH ₂ CHO	120.06		194	1.027	
2568	C ₈ H ₈ O	o-Toluic aldehyde o-CH ₂ C ₆ H ₄ CHO	120.06		195.5	1.039	960
2569	C ₈ H ₈ O	m-Toluic aldehyde m-CH ₃ C ₆ H ₄ CHO	120.06		195.5	1.019	971
570	C ₈ H ₈ O	p-Toluic aldehyde p-CH ₂ C ₆ H ₄ CHO	120.06		204	1.020	814;
F71	CHO	Acetonhomena CH COC H	100.00	10.7	000 0	1 000	906
571	C ₈ H ₈ O C ₈ H ₈ O	Acetophenone CH ₂ COC ₆ H ₄	120.06 120.06	19.7	202.3 189.5	1.026	705
572 573	C ₈ H ₈ O ₂	Phenacyl alcohol C ₆ H ₆ COCH ₂ OH	136.06	86	189.5	1.074	1
574	C _t H _t O ₂	5-Hydroxytoluene-2-aldehyde	136.06	108.9		1.013	1
575	C ₁ H ₁ O ₂	4-Hydroxytoluene-3-aldehyde	136.06	55.1	21.8		1
576	C _t H _t O ₂	6-Hydroxytoluene-3-aldehyde	136.06	117.4	21.0		1
577	C ₈ H ₈ O ₂	3-Hydroxytoluene-4-aldehyde	136.06	54	223		ì
578	C ₈ H ₈ O ₂	o-Methoxybenzaldehyde	136.06	35	242	1.133	745
579	C ₁ H ₁ O ₂	m-Methoxybenzaldehyde	136.06	00	230	1.118	836
580	C ₁ H ₁ O ₂	p-Methoxybenzaldehyde	136.06	2.5	247	1.123	821
581	C ₁ H ₁ O ₂	o-Hydroxyacetophenone	136.06	2.0	213	1.120	621
582	C ₈ H ₈ O ₂	m-Hydroxyacetophenone	136.06	95	2.0		1
583	C ₈ H ₈ O ₂	p-Hydroxyacetophenone	136.06	109			
584	C ₈ H ₈ O ₂	Phenylacetic acid C ₆ H ₆ CH ₂ CO ₂ H	136.06	76.7	265.5	1.078*3	
585	C ₈ H ₈ O ₂	o-Toluic acid o-CH ₂ C ₆ H ₄ CO ₂ H	136.06	102.4	259.2	1.062114.6	1157
586	C ₈ H ₈ O ₂	m-Toluic acid m-CH ₂ C ₆ H ₄ CO ₂ H	136.06	110.5	263	1.054111.6	640
587	C ₃ H ₈ O ₂	p-Toluic acid p-CH ₂ C ₆ H ₄ CO ₂ H	136.06	176.8	275	2.002	""
588	C ₈ H ₈ O ₂	Benzyl formate HCO2CH2C6H6	136.06	2.0.0	203.4	1.081	1
589	C ₃ H ₈ O ₂	Methyl benzoate C.H.CO.CH	136.06	-12.5	199.6	1.094	656
590	C ₂ H ₈ O ₂	Phenyl acetate CH ₂ CO ₂ C ₆ H ₅	136.06		195.5	1.078	610
591	C ₈ H ₈ O ₂	o-Xyloquinone 1, 2-(CH ₂) ₂ C ₆ H ₂ O ₂ -3, 6	136.06	55			
592	C ₈ H ₈ O ₂	m-Xyloquinone 1, 3-(CH ₂) ₂ C ₆ H ₂ O ₂ -2, 5.	136.06	73			
593	C ₃ H ₅ O ₂	p-Xyloquinone 1, 4-(CH ₃) ₂ .C ₆ H ₂ O ₂ -2, 5.	136.06	125			
594	C ₈ H ₈ O ₃	Piperonyl alcohol	152.06	51			
595	C ₈ H ₈ O ₈	Isovanillin 4, 3-CH ₃ OC ₆ H ₃ (OH)CHO	152.06	116		1.196	1
596	C ₂ H ₂ O ₂	Vanillin 3, 4-CH ₂ OC ₆ H ₂ (OH)CHO	152.06	81	285		1
597	C ₈ H ₈ O ₈	o-Hydroxymethylbenzoic acid	152.06	120		1	1
598	C ₂ H ₂ O ₃	m-Hydroxymethylbenzoic acid	152.06	111	19011	1	
599	C ₂ H ₂ O ₂	p-Hydroxymethylbenzoic acid	152.06	181		1 1	
300	C ₈ H ₈ O ₈	o-Hydroxyphenylacetic acid	152.06	137		1	
601	C ₈ H ₈ O ₈	m-Hydroxyphenylacetic acid	152.06	129	ł		1
302	C ₃ H ₅ O ₃	p-Hydroxyphenylacetic acid	152.06	148	ł		İ
803	C ₈ H ₈ O ₈	3-Hydroxytoluene-2-carboxylic acid	152.06	167	•	i	1
604	C ₈ H ₈ O ₈	4-Hydroxytoluene-2-carboxylic acid	152.06	172.4	İ		
305	C ₈ H ₈ O ₈	5-Hydroxytoluene-2-carboxylic acid	152.06	178	j		
606	C ₃ H ₄ O ₃	6-Hydroxytoluene-2-carboxylic acid	152.06	183	İ		
807	C ₈ H ₈ O ₈	4-Hydroxytoluene-3-carboxylic acid	152.06	152.5	1		
808	C ₈ H ₈ O ₃	5-Hydroxytoluene-3-carboxylic acid	152.06	208	1		
609	C ₈ H ₈ O ₈	6-Hydroxytoluene-3-carboxylic acid	152.06	172			
610	C ₁ H ₁ O ₁	2-Hydroxytoluene-4-carboxylic acid	152.06	207	1		
611	C _t H _t O _t	3-Hydroxytoluene-4-carboxylic acid	152.06	177.8		İ	}
812	C ₁ H ₂ O ₃	d(l)-Mandelic acid C ₆ H ₆ CH(OH)CO ₂ H.	152.06	133			1
813	C ₁ H ₂ O ₂	dl-Mandelic acid C ₆ H ₆ CH(OH)CO ₂ H	152.06	118	200	1.3614	1
314	C ₃ H ₃ O ₃	o-Methoxybenzoic acid	152.06	98	200	ĺ	
815	C _t H _t O _t	m-Methoxybenzoic acid	152.06	100	200	1 0054	1000
816 817	C ₈ H ₈ O ₈	p-Methyoxybenzoic acid	152.06	184.2	280	1.3854	1333
61 <i>7</i> 618	$C_8H_8O_8$ $C_8H_8O_8$	Phenoxyacetic acid C ₆ H ₄ OCH ₂ CO ₂ H Methyl salicylate HOC ₆ H ₄ CO ₂ CH ₃	152.06	99	285 s. d.	1 104	704
619	C ₈ H ₈ O ₃	Resorcinol acetate	152.06	-8.6	223.3	1.184	708
620	C ₈ H ₈ O ₄	Phloroacetophenone	152.06 168.06	OOE	283	1	
320 321	C ₈ H ₈ O ₄	Berberonic acid 2, 4, 5-C ₂ H ₄ N(CO ₂ H) ₂ .	168.06	285 165			
822	C ₈ H ₈ O ₄	Dehydracetic acid	168.06	165 109	270		
622 823	C ₈ H ₈ O ₄	Δ ^{1, 4} -Dihydro-o-phthalic acid	168.06		210		
624	C ₈ H ₈ O ₄	Δ ² · ⁴ -Dihydro-o-phthalic acid	168.06	153 215			
JUT	0811804	- Dinjuro-o-primaric aciu	168.06	215 215	1	I	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2626	C ₈ H ₈ O ₄	Homogentisinic acid	168.06	147			İ
2627	C ₈ H ₄ O ₄	Isovanillic acid	168.06	250	İ	i	1
2628	C ₈ H ₈ O ₄	Vanillic acid	168.06	207			1
2630	C ₈ H ₈ O ₆	Methyl gallate	184.06	192 d.	İ		1
2631	C ₈ H ₈ O ₈	Tetramethylene-1, 1, 2, 2-tetracarboxylic				}	
		acid	232 .06	203			1
2632	C ₈ H ₉ Br	o-Xylyl bromide	184.99	21	217.7	1.38123	
2633	C ₂ H ₂ Br	4-Bromo-o-xylene	184.99	0.2	214.5	1.369	740
2634	C ₈ H ₉ Br	m-Xylyl bromide	184.99		215.8 s. d.	1.37123	
263 5	C ₈ H ₉ Br	2-Bromo-m-xylene	184.99	>-10	206	ļ	
2636	C ₈ H ₉ Br	4-Bromo-m-xylene	184.99		207		
2637	C ₈ H ₉ Br	5-Bromo-m-xylene	184.99	>-20	204	1.362	
263 8	C ₈ H ₉ Br	p-Xylyl bromide	184.99	38	220.7	1.324	
2639	C ₈ H ₉ Br	2-Bromo-p-xylene	184.99	10	205.7	1.356	735
2640	C ₈ H ₉ Cl	o-Xylyl chloride	140.53		199		
2641	C ₈ H ₉ Cl	3-Chloro-o-xylene	140.53	>-20	189.5		
2642	C ₈ H ₉ Cl	4-Chloro-o-xylene	140.53	>-20	191.5	1.069215	1
2643	C ₈ H ₉ Cl	m-Xylyl chloride	140.53		196		1
2644	C ₈ H ₉ Cl	p-Xylyl chloride	140.53		202		1
2645	C ₈ H ₉ N	2-Allylpyridine	119.08		190	0.9590	}
2646	C ₈ H ₉ NO	o-Aminoacetophenone	135.08		252 s. d.		
2647	C ₂ H ₂ NO	m-Aminoacetophenone	135.08	96.5	290		1
2648	C ₈ H ₉ NO	p-Aminoacetophenone	135.08	106	295	}	i
2649	C ₈ H ₉ NO	Acetanilide (Antifebrin)	135.08	114.2	303.8	1.214	1
2650	C ₈ H ₉ NO	Acetophenoneoxime CH ₂ C(:NOH)C ₆ H ₅	135.08	58			
2651	C ₈ H ₉ NO	Phenylacetamide C ₆ H ₄ CH ₂ CONH ₂	135.08	155	284	1	į
2652	C ₈ H ₉ NO	o-Toluic amide o-CH ₂ C ₆ H ₄ CONH ₂	135.08	138			1
2653	C ₄ H ₄ NO	m-Toluic amide m-CH ₈ C ₆ H ₄ CONH ₂	135.08	97		1	
2654	C _s H _s NO	p-Toluic amide p-CH ₂ C ₄ H ₄ CONH ₂	135.08	159			1
2655	C.H.NO.	o-Acetoaminophenol	151.08	203			-
2656	C ₈ H ₉ NO ₂	m-Acetoaminophenol	151.08	149		1	İ
2657	C.H.NO.	p-Acetoaminophenol	151.08	168			
2658	C.H.NO.	dl-Aminophenylacetic acid	151.08	256	265		ł
2659	C.H.NO.	Homoanthranilic acid	151.08	177 d.			
2660	C ₈ H ₉ NO ₂ .	N-Methylanthranilic acid	151.08	179			ľ
2661	C ₅ H ₅ NO ₂	dl-Phenylaminoacetic acid	151.08	127		ļ	1
2662	C.H.NO.	Benzyl carbamate C.H.CH.CO.NH2	151.08	86			1
2663	C.H.NO.	Ethyl nicotinate	151.08		105		
2664	C.H.NO.	Methyl o-aminobenzoate	151.08	8.2; 24.3	135.515	1.16816	1
2665	C.H.NO.	Methyl p-aminobenzoate	151.08	112			1
2666	C.H.NO.	3-Nitro-o-xylene	151.08		250.8	1.14715	1
2667	C.H.NO.	4-Nitro-o-xylene	151.08	30	258	1.139**	1
2668	C.H.NO.	2-Nitro-m-xylene	151.08		225.5	1.11216	1
2669	CaHaNO	4-Nitro-m-xylene	151.08	2	246	1.12617.6	1
2670	C.H.NO.	5-Nitro-m-xylene	151.08	71	273.7	}	1
2671	C,H,NO,	2-Nitro-p-xylene.	151.08	'-	239.9	1.13216	1
2672	C ₈ H ₂ NO ₂	α-Anisaldoxime CH ₃ OC ₆ H ₄ CH:NOH	151.08	64	200.0	1	1
2673	C.H.NO.	β-Anisaldoxime CH ₂ OC ₆ H ₄ CH:NOH	151.08	133	1	ļ	
2674	C ₈ H ₉ NO ₂	o-Methoxybenzamide	151.08	129	ļ		
2675	C ₈ H ₉ NO ₂	p-Methoxybenzamide	151.08	162.3	ł		1
2676	C ₈ H ₉ NO ₃	3-Nitro-4-methoxytoluene	167.08	8.5	274 d.		
2677	C ₈ H ₂ NO ₃	o-Nitrophenetol o-C ₂ H ₆ OC ₆ H ₄ NO ₂	167.08	0.0	268	1.19015	718
2678	C ₈ H ₉ NO ₃	p-Nitrophenetol p-C ₂ H ₄ OC ₄ H ₄ NO ₂	167.08	60	283	1	''
2679	C ₈ H ₉ NO ₃	Methyl 3-hydroxy-4-aminobenzoate	167.08	120	200		1
2680		Methyl 3-amino-4-hydroxybenzoate	167.08	143			1
	C ₈ H ₉ NO ₈					1	1
2681	C.H.NO.	Biliverdic acid	183.08	114 75	د ا	1	1
2682	CHNS		151.14		d.	1 470	1
2682.1	C ₅ H ₅ N ₅ O ₄	2, 4-Dinitrodimethylaniline	221.09	87	190 2774 7	1.476	E 777
2683	C ₈ H ₁₀	Ethylbenzene C ₆ H ₆ CH ₂ CH ₂	106.08	-92.8	136.5776.7	0.868	577
2684	C ₂ H ₁₀	o-Xylene o-C ₆ H ₄ (CH ₂) ₂	106.08	-27.1	144	0.879	626
2685	C ₆ H ₁₀	m-Xylene m -C ₆ H ₄ (CH ₃) ₂	106.08	-53.6	139.0	0.865	584
2686	C ₈ H ₁₀	p-Xylene p -C ₆ H ₄ (CH ₃) ₂	106.08	13.2	137.7	0.861	573

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
2688	C ₈ H ₁₀ ClN	p-Chlorodimethylaniline	155.54	35.5	231	1	
2689	C ₈ H ₁₀ N ₂ O	N-Acetyl- o -phenylenediamine	150.09	144.8		-	
2690	C ₈ H ₁₀ N ₂ O	N-Acetyl-m-phenylenediamine	150.09	279		1	
2691	C ₈ H ₁₀ N ₂ O	N-Acetyl-p-phenylenediamine	150.09	160.5			
2692	C ₈ H ₁₀ N ₂ O	Benzylurea C ₆ H ₅ CH ₂ NHCONH ₂	150.09	147.5			
2693	C ₈ H ₁₀ N ₂ O	Hydracetine CH ₃ COHN.NHC ₆ H ₅	150.09	128			
2694	C ₈ H ₁₀ N ₂ O	1-Methyl-1-phenylurea	150.09	82	ł		
2695	C ₈ H ₁₀ N ₂ O	p-Nitrosodimethylaniline	150.09	85	1	1 170	İ
2696 2697	C ₈ H ₁₀ N ₂ O ₂	o-Nitrodimethylaniline	166.09	00	15424	1.179	
2698	C ₈ H ₁₀ N ₂ O ₂ C ₈ H ₁₀ N ₂ O ₂	m-Nitrodimethylaniline	166.09 166.09	66 163	285	1.31317	
2699	C ₈ H ₁₀ N ₂ O ₂ C ₈ H ₁₀ N ₂ O ₃	3-Amino-4-methoxy-6-nitrotoluene	182.09	131.5			
2700	C ₈ H ₁₀ N ₂ S	Benzylthiourea C ₆ H ₅ CH ₂ NHCSNH ₂	166.16	162			
2701	C ₈ H ₁₀ N ₄ O ₂	Caffeine (Theine)	194.11	237		1.23	
2702	C ₈ H ₁₀ N ₄ O ₃	1, 3, 9-Trimethyluric acid	210.11	320 d.		1.20	
2703	C ₃ H ₁₀ N ₄ O ₃	1, 7, 9-Trimethyluric acid	210.11	340 d.			
2704	C ₈ H ₁₀ N ₄ O ₃	2, 7, 9-Trimethyluric acid	210.11	380			
2705	C ₈ H ₁₀ O	2, 3-Dimethylphenol	122.08	75	218		
2706	C ₈ H ₁₀ O	2, 4-Dimethylphenol	122.08	26	211.5	1.036	1
2707	C ₈ H ₁₀ O	2, 6-Dimethylphenol	122.08	49	212	1.000	
2708	C ₈ H ₁₀ O	3, 4-Dimethylphenol	122.08	65	225.1		
2709	C ₈ H ₁₀ O	3, 5-Dimethylphenol	122.08	68	219.5		
2710	C ₈ H ₁₀ O	o-Ethylphenol	122.08	>-18	207.5	1.037°	
2711	C ₈ H ₁₀ O	m-Ethylphenol	122.08	-4	214	1.0250	
2712	C ₈ H ₁₀ O	p-Ethylphenol	122.08	46	219		
2713	C ₈ H ₁₀ O	Methylphenyl carbinol	122.08		205	1.00325	
2713.1	C ₈ H ₁₀ O	d-Methylphenyl carbinol	122.08		10018	1.014	668
2714	$C_8H_{10}O$	2-Phenylethyl alcohol C ₆ H ₅ CH ₂ CH ₂ OH	122.08	•	221	1.02415	677
2715	$C_8H_{10}O$	o-Tolyl carbinol o-CH ₂ C ₆ H ₄ CH ₂ OH	122.08	34	223.3	1.02340	
2716	$C_8H_{10}O$	m-Tolyl carbinol m-CH ₂ C ₆ H ₄ CH ₂ OH	122.08	> -20	217	1.0360	
2717	C ₈ H ₁₀ O	p-Tolyl carbinol p-CH ₃ C ₆ H ₄ CH ₂ OH	122.08	59.5	217		
2718	C ₈ H ₁₀ O	Benzyl methyl ether C ₆ H ₅ CH ₂ OCH ₃	122.08		174	0.98720	
2719	C ₈ H ₁₀ O	o-Cresyl methyl ether o-CH ₂ C ₆ H ₄ OCH ₂	122.08	ì	171.3	0.981	619
2720	C ₈ H ₁₀ O	m-Cresyl methyl ether	122.08	1	177.2	0.9784	627
2721	C ₈ H ₁₀ O	p-Cresyl methyl ether	122.08		176.5 .	0.970	646
2722	C ₈ H ₁₀ O	Phenetol C ₆ H ₆ OC ₂ H ₆	122.08	-30.2	172	0.965	633
2723	C ₈ H ₁₀ O ₂	Anis alcohol p-CH ₂ OC ₆ H ₄ CH ₂ OH	138.08	45	258.8	1.10926	1
2724	C ₈ H ₁₀ O ₂	Caffeel	138.08		197		
2725 2726	C ₃ H ₁₀ O ₂	Creosol 3, 4-CH ₂ O(OH)C ₆ H ₂ CH ₂	138.08	5.5	221.8	1.092	709
2726 2727	C ₈ H ₁₀ O ₂ C ₈ H ₁₀ O ₂	3, 5-Dimethyl-o-dihydroxybenzene	138.08	74			ŀ
2728	C ₈ H ₁₀ O ₂ C ₈ H ₁₀ O ₂	4, 5-Dimethyl-o-dihydroxybenzene 2, 4-Dimethylresorcinol	138.08 138.08	82 150		}	
2729	C ₈ H ₁₀ O ₂	2, 5-Dimethylresorcinol.	138.08	5	990	Ì	
2730	C ₈ H ₁₀ O ₂	4, 5-Dimethylresorcinol.	138.08	163 137	280		
2731	C ₈ H ₁₀ O ₂	4, 6-Dimethylresorcinol.	138.08	125	279		
2732	C ₈ H ₁₀ O ₂	2, 3-Dimethylhydroquinone	138.08	221 s. d.	219	1	
2733	C ₈ H ₁₀ O ₂	2, 5-Dimethylhydroquinone	138.08	213 s. d.	l	İ	
2734	C ₈ H ₁₀ O ₂	2, 6-Dimethylhydroquinone	138.08	151	ŀ	İ	
2735	C ₈ H ₁₀ O ₂	p-Homosaligenin	138.08	105		1	
2736	C ₈ H ₁₀ O ₂	Styrolene alcohol HOCH2CH2OC6H5	138.08	68	274.2	1	
2737	C ₈ H ₁₀ O ₂	o-Dimethoxybenzene o-C ₆ H ₄ (OCH ₃) ₂	138.08	22.5	206	1.08616	
2738	C ₈ H ₁₀ O ₂	o-Ethoxyphenol o-HOC ₆ H ₄ OC ₂ H ₅	138.08	28	241		
2739	C ₈ H ₁₀ O ₂	Hydroquinone dimethyl ether	138.08	56	212.6	1.05355	
2740	C ₈ H ₁₀ O ₂	Hydroquinone monoethyl ether	138.08	66	247		
2741	C ₈ H ₁₀ O ₂	Resorcinol dimethyl ether	138.08	-55.3	215	1.0804	
2742	C ₈ H ₁₀ O ₂	Resorcinol monoethyl ether	138.08		247		
2743	$C_8H_{10}O_2S$	Ethylphenylsulfone C ₂ H ₅ SO ₂ C ₆ H ₅	170.14	42	>300	1.01022	
2744	C ₈ H ₁₀ O ₃	3-Methoxy-4-hydroxybenzyl alcohol	154.08	115	d.	ĺ	
2745	C ₈ H ₁₀ O ₃	Crotonic anhydride	154.08		247.8	1.040	520
2746	C ₈ H ₁₀ O ₄	Δ¹-Tetrahydro-o-phthalic acid	170.08	120			
2747	C ₈ H ₁₀ O ₄	Δ³-Tetrahydro-o-phthalic acid	170.08	215			
	1 / 1 TT A	1 Dialial analysis (CO II)	170.08		217	1 1 055	1
2748 2749	C ₈ H ₁₀ O ₄ C ₈ H ₁₀ O ₄	Diallyl oxalate $C_2O_4(C_2H_5)_2$		75 u.; 156 st.	1	1.055	

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
2750	C ₈ H ₁₀ O ₈	Succinic peroxide	234.08	127 d.			
2751	C ₈ H ₁₁ BrN ₄ O ₂	Caffeine hydrobromide	275.03		ł	1	1333
2752	C ₈ H ₁₁ ClN ₂ O	p-Nitrosodimethylaniline hydrochloride	186.56	177	j	1	
2753	C ₈ H ₁₁ ClN ₄ O ₂	Caffeine hydrochloride	230.58				1333
2753.1	C ₈ H ₁₁ ClO ₄	Ethyl chloromaleate	206.54		125.519	1.19126	
2754	C ₅ H ₁₁ Cl ₅ O ₆	a-Chloralose	309.46	230			
2755	C ₆ H ₁₁ I ₈ N ₄ O ₂	Caffeine triiodide	575.91	171			
2756	C ₄ H ₁₁ N	Dimethylaniline C ₆ H ₄ N(CH ₂) ₂	121.09	1.67	193.50	0.956	771
2757	C ₈ H ₁₁ N	2, 3-Dimethylaniline	121.09	> -15	223.8	0.992	756
2758	C ₈ H ₁₁ N	2, 4-Dimethylaniline	121.09	1,5,5	216	0.974	744
2759	C ₄ H ₁₁ N	2, 5-Dimethylaniline	121.09	15.5	217	0.98018	968
2760	C ₈ H ₁₁ N	2, 6-Dimethylaniline	121.09	40	216.9	0.979	748
2761	CH ₁₁ N	3, 4-Dimethylaniline	121.09	49	226	1.076	740
2762	CH ₁₁ N	3, 5-Dimethylaniline	121.09	60.5	221	0.972	742 739
2763	CH N	N-Ethylaniline C ₆ H ₈ NH.C ₂ H ₈	121.09 121.09	-63.5	204.72 216	0.963	198
2764 2765	CH ₁₁ N	o-Ethylaniline o-C ₂ H ₆ C ₆ H ₄ NH ₂	121.09		216	0.983**	1
2766 2766	$C_8H_{11}N$ $C_8H_{11}N$	m-Ethylaniline m-C ₂ H ₄ C ₄ H ₄ NH ₂ p-Ethylaniline p-C ₂ H ₄ C ₆ H ₄ NH ₂	121.09	-5	216.5	0.990	1
2767		Methyl-o-toluidine CH ₂ C ₄ H ₄ NCH ₂	121.09	-5	207		750
2767 2768	$C_8H_{11}N$ $C_8H_{11}N$	Methyl-m-toluidine CH ₂ C ₄ H ₄ NCH ₂	121.09		207	0.977	130
2769	C ₈ H ₁₁ N	Methyl-p-toluidine p-CH ₂ C ₄ H ₄ NHCH ₂ .	121.09		206		1
2709 2770	C ₈ H ₁₁ N	α-Phenylethylamine C ₆ H ₄ CH(NH ₂)CH ₃	121.09		187.4	0.9401	
2771	C ₈ H ₁₁ N	ω-Phenylethylamine C ₄ H ₄ CH ₂ CH ₂ NH ₂ .	121.09		198.2	0.940-	761
2772	C ₈ H ₁₁ N	2-Isopropylpyridine	121.09		159	0.934	701
2773	C ₈ H ₁₁ N	4-Isopropylpyridine	121.09		178	0.944	
2774	C ₈ H ₁₁ N	2-Methyl-5-ethylpyridine	121.09	1	174	0.91828	
2775	C ₈ H ₁₁ N	Nicotoine.	121.09		208	0.955	643
2776	C ₈ H ₁₁ N	2-Propylpyridine (Conyrine)	121.09		165	0.955	040
2777	C ₈ H ₁₁ N	2, 3, 4-Trimethylpyridine	121.09		188	0.913	
2778	C _s H ₁₁ N	2, 4, 5-Trimethylpyridine	121.09		168	0.966	
2779	C ₈ H ₁₁ N	2, 4, 6-Trinethylpyridine	121.09		172	0.900	
2780	C _s H ₁₁ NO	Hydroxyethylaniline	137.09		286	1.110	
2781	C ₈ H ₁₁ NO	o-Dimethylaminophenol	137.09	45	200	1.110	
2782	C ₅ H ₁₁ NO	o-Ethylaminophenol o-HOC ₆ H ₆ NHC ₂ H ₈	139.09	107.5	200	1	
2783	C _s H ₁₁ NO	m-Ethylaminophenol	137.09	62	17612]	
2784	C ₄ H ₁₁ NO	3-Amino-2-methoxytoluene	137.09	02	223	1	
2785	C _b H ₁₁ NO	5-Amino-2-methoxytoluene	137.09	53		İ	
2786	C ₂ H ₁₁ NO	o-Phenetidine o-NH ₂ C ₆ H ₄ OC ₂ H ₅	137.09	> -21	229.2		
2787	C ₄ H ₁₁ NO	m-Phenetidine m-NH ₂ C ₆ H ₄ OC ₂ H ₅	137.09		248		
2788	C ₈ H ₁₁ NO	p-Phenetidine p-NH ₂ C ₆ H ₄ OC ₂ H ₄	137.09	2.4	254.2	1.061	
2789	C ₄ H ₁₁ NO	Dimethylaniline oxide C ₄ H ₄ N(CH ₂) ₂ O.	137.09	153			}
2790	C ₄ H ₁₁ NO	Tyramine p-HOC ₄ H ₄ CH ₂ CH ₂ NH ₂	137.09	161			
2791	C ₈ H ₁₁ NO ₈ S	m-Dimethylanilinesulfonic acid	201.16	266 d.			
2792	C ₈ H ₁₁ NO ₈ S	p-Dimethylanilinesulfonic acid	201.16	257	ł	Ì	
2793	C,H11NO,8	m-Ethylaniline sulfonic acid	201.16	294 d.	ļ		
2794	C ₈ H ₁₁ N ₈ O	Maretin m-CH ₈ .C ₆ H ₄ NH.NHCONH ₂ .	165.11	184			
2795	C.H12	Dihydro-o-xylene	108.09		135		
2796	C.H12	$\Delta^{1.5}$ -5-Dihydro- <i>m</i> -xylene	108.09	1	130	0.823	497
2797	C ₈ H ₁₂	$\Delta^{1,2}$ -3-Dihydro- p -xylene	108.09		135.6	0.830	529
2798	C ₈ H ₁₂ ClN	ω-Phenylethylamine hydrochloride	157.56	217			
2799	C ₈ H ₁₂ N ₂	Dimethylketine	136.11	86	189		
2800	C ₈ H ₁₂ N ₂	1, 1-Dimethyl-m-phenylenediamine	136.11		258	0.99525	1
2801	C ₂ H ₁₂ N ₂	1, 1-Dimethyl-p-phenylenediamine	136.11	41	262.3	1.036	1
2802	C ₈ H ₁₂ N ₂	2, 6-Dimethylphenylhydrazine	136.11	46			
2803	C ₈ H ₁₂ N ₂	1-Ethyl-1-phenylhydrazine	136.11	1	237	1.01814	1
2804	C ₈ H ₁₂ N ₂	1-Ethyl-2-phenylhydrazine	136.11		240	1	
2805	C ₈ H ₁₂ N ₂ O ₂	Phenylhydrazine acetate	168.11	69		i	
2806	C ₈ H ₁₂ N ₂ O ₃	n-Butylbarbituric acid	184.11	215	ĺ	1	
2807	C ₈ H ₁₂ N ₂ O ₃	1, 3-Diethylbarbituric acid	184.11	52	16719	1	
2808	C ₈ H ₁₂ N ₂ O ₃	5, 5-Diethylbarbituric acid	184.11	191	1		
2808.1	C ₈ H ₁₂ N ₂ O ₄	Tetraacetylhydrazine [(CH ₂ CO) ₂ N] ₂	200.11	86	1	1	1203
2809	C ₈ H ₁₂ O	Amylpropiolic aldehyde	124.09		187	0.890	
2810	$C_8H_{12}O_2$	Ethyl sorbate CH ₈ (CH:CH) ₂ CO ₂ C ₂ H ₆	140.09	I	76.512	0.936	608

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2811	C ₈ H ₁₂ O ₄	Terpenylic acid	172.09	89			
2812	C ₈ H ₁₂ O ₄	Diethyl fumarate (:CHCO ₂ C ₂ H ₅) ₂	172.09	0.6	218.5	1.052	377
2813	C ₈ H ₁₂ O ₄	Diethyl maleate (:CHCO ₂ C ₂ H ₅) ₂	172.09	i	225	1.067	375
2814	C ₈ H ₁₂ O ₄	Ethyl diacetoacetate	172.09		211 s. d.	1.09	492
2815	C ₈ H ₁₂ O ₄	Dimeric diacetyl	172.09	58	ĺ	1.56049.8	
2816	C ₈ H ₁₂ O ₅	Ethyl oxalacetate	188. 09		13224	1.172	905
2816.1	C ₈ H ₁₃ BrO ₄	Diethyl bromoisosuccinate	253.02	1	12213	1.318325	
2817	C ₈ H ₁₈ N	Granatic acid	123.11	270			
2818	C ₈ H ₁₃ N	Tropidine	123.11	ļ	163	0.946	946
2819	C ₈ H ₁₃ NO	Tropinone	139.11	41	218.5	0.98799.6	1141
2820	C ₈ H ₁₃ NO ₂	Arecolidine	155.11	110			
2 821	C ₈ H ₁₃ NO ₂	Arecoline	155.11		220	İ	
2822	C ₂ H ₁₂ NO ₂	Scopoline	155.11	110	243	1.016406	
2823	C.H.,N.O.	Iminodiethylbarbituric acid	183.12	295			
2824	C ₈ H ₁₄	n-Hexylacetylene C ₆ H ₁₃ C:CH	110.11	-00	125	0.770	818
2825	C ₈ H ₁₄	d-Laurolene	110.11	1	120.5	0.797	397
2826	C ₈ H ₁₄	Methyl-n-amylacetylene	110.11		134	0.131	"
2827	C ₈ H ₁₄	1, 2, 3, 4-Tetrahydro-m-xylene	110.11		124	0.801	398
2828	C ₈ H ₁₄ BrNO ₂	Arecoline hydrobromide	236.03	168	127	0.301	030
			230.03 191.57	98	250 d.		
2829	C ₄ H ₁₄ ClNO ₂	Arecolidine hydrochloride		98		0.000	000
2830	C ₄ H ₁₄ O	1, 1-Dimethylcyclohexene-3-ol	126.11	1	7516	0.933	926
2831	C ₀ H ₁₄ O	2, 2-Dimethylcyclohexanone	126.11	1	172.5	0.913	426
2832	C ₈ H ₁₄ O	2, 6-Dimethylcyclohexanone	126.11		55.310	0.914	813
2833	C ₈ H ₁₄ O	Crotonyl ether (CH ₃ CH:CHCH ₂) ₂ O	126.11		145	0.890	
2834	C ₈ H ₁₄ O	2-Methyl-2-heptene-6-one	126.11	-67.3	174	0.860	
2835	C ₈ H ₁₄ O	Homomesityl oxide	126.11	İ	160625	0.863	406
2836	C ₈ H ₁₄ O ₂	Allyl isovalerate C ₄ H ₆ CO ₂ C ₃ H ₅	142.11		155	İ	
2837	C ₈ H ₁₄ O ₂	Cyclohexyl acetate CH ₂ CO ₂ C ₆ H ₁₁	142.11		177		
2838	C ₈ H ₁₄ O ₂	Methyl hexahydrobenzoate	142.11		183	0.9954	
2839	C ₈ H ₁₄ O ₃	Dialdan	158.11	130			
2840	C ₈ H ₁₄ O ₃	n-Butyric anhydride (C4H9CO)2O	158.11	-75.0	198.2	0.969	
2841	C8H14O3	Isobutyric anhydride [(CH ₂) ₂ CHCO] ₂ O.	158.11	-53.5	182.5	0.950	1
2842	C ₈ H ₁₄ O ₃	1-Ethyl-3-acetylbutyric acid	158.11		1589	ŀ	
2843	C ₈ H ₁₄ O ₄	n-Amylmalonic acid C ₅ H ₁₁ CH(CO ₂ H) ₂ .	174.11	82	140 d.		1
2844	C ₈ H ₁₄ O ₄	2, 2'-Dimethyladipic acid	174.11	76	321		İ
2845	C ₈ H ₁₄ O ₄	Suberic acid HO ₂ C(CH ₂) ₆ CO ₂ H	174.11	140	279100		
2846	C ₈ H ₁₄ O ₄	Diethyl methylmalonate	174.11		201.4	1.018	203
2847	C ₄ H ₁₄ O ₄	Diethyl succinate (CH2CO2C2H4)2	174.11	-20.8	216.5	1.042	246
2848	C ₂ H ₁₄ O ₄	Di-n-propyl oxalate (CO ₂ C ₃ H ₇) ₂	174.11		211	1.01822	1
2849	C ₄ H ₁₄ O ₄	Ethyl isopropyl malonate	174.11		217 d.	0.98725	1
2849.1	C ₈ H ₁₄ O ₆	Diethyl malate	190.11		253	1.128	355
2850	C ₈ H ₁₄ O ₆	Diethyl d-tartrate [CH(OH)CO ₂ C ₂ H ₅] ₂ .	206.11	17	280	1.202	421
2851	C ₈ H ₁₆ ClO	Capryl chloride C ₇ H ₁₅ COCl	162.57	•••	196	0.9758	
2852	C ₈ H ₁₅ N	n-Caprylonitrile C ₇ H ₁₈ CN	125.12	٠	200	0.82013.3	1
2853	C ₈ H ₁₈ N	α-Coniceine	125.12	-16	158	0.89314	
		β-Coniceine.		-10 41	169	0.090	1
2854	C ₈ H ₁₆ N	l ·	125.12			0.872	945
2855	C ₈ H ₁₆ N	γ-Coniceine	125.12	> -50	172	0.872	930
2856	C ₈ H ₁₆ N	δ-Coniceine	125.12	۰,	161.5	0.8014	1
2857	C ₈ H ₁₅ N	Granatinine	125.12	60	1.50	0.070	1
2858	C ₈ H ₁₈ N	Pseudoconiceine	125.12		172	0.878	077
2859	C ₈ H ₁₈ N	Tropane	125.12		167	0.930	975
2860	C ₈ H ₁₅ NO	Granatoline	141.12	134			
2861	C ₈ H ₁₈ NO	Hygrine	141.12		195	0.935	j
2862	C ₈ H ₁₈ NO	Pelletierine	141.12		195 d.	0.988	1
2863	C ₈ H ₁₈ NO	Pseudotropine	141.12	108	243	1	
2864	C ₈ H ₁₅ NO	Tropine	141.12	63	233	1.016400	1146
2865	C8H16	Cyclooctane (CH ₂) ₈	112.12	14.4	150.6	0.839	1
2866	C ₈ H ₁₆	Diisobutylene (CH ₂) ₂ C:CHC(CH ₃) ₃	112.12		102.6	0.71515	
2867	C ₈ H ₁₆	o-Dimethylcyclohexane	112.12	-57.5	129.4	0.779	317
2868	C ₈ H ₁₆	m-Dimethylcyclohexane	112.12	-85	123.7	0.771	288
2869	C ₈ H ₁₆	p-Dimethylcyclohexane	112.12	-86	120.5	0.769	257
		Ethylcyclohexane C ₂ H ₅ .C ₆ H ₁₁	112.12		128	1	1
2870	C ₈ H ₁₆	Ethylcyclonexane CaHaCaHaa	112.12		1 128	1	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.		R. I.
2872	C ₈ H ₁₆	2-Methyl-2-heptene (CH ₂) ₂ C:CHC ₄ H ₂	112.12		125.2	0.816	No.
2873	C ₈ H ₁₆	4-Methyl-3-heptene (C113) 2C.C11C4113	112.12		120.4	0.810	219
2 874	C ₈ H ₁₆	n-Octylene CH ₂ (CH ₂) ₅ CH:CH ₂	112.12		123	0.72217	213
2875	C ₈ H ₁₈ BrNO	Pelletierine hydrobromide	222.05	140	120	0.122	
2 876	C ₈ H ₁₆ ClNO	Pelletierine hydrochloride	177.59	145			
2877	C ₈ H ₁₆ N ₂ O ₄	Ethylidene diurethane	204.14	126			
2878	C ₈ H ₁₆ O	1, 2-Dimethylcyclohexanol	128.12		166	0.9264	834
2879	C ₈ H ₁₆ O	d-1, 3-Dimethylcyclohexanol	128.12	72	6914		
2880	C ₈ H ₁₆ O	dl-1, 3-Dimethylcyclohexanol	128.12		169	0.9114	832
2 881	C ₈ H ₁₆ O	1, 4-Dimethylcyclohexanol	128.12	50	170		
2882	C ₈ H ₁₆ O	2, 2-Dimethylcyclohexanol	128.12	8	72.212	0.923	496
2883	C ₈ H ₁₆ O	2, 4-Dimethylcyclohexanol	128.12		179	0.912	888
2884	C ₈ H ₁₆ O	2, 5-Dimethylcyclohexanol	128.12		178.5	0.907	887
2885	C ₈ H ₁₆ O	2, 6-Dimethylcyclohexanol	128.12		174.7		
2886	C ₈ H ₁₆ O	3, 3-Dimethylcyclohexanol	128.12	11	99.535	0.9134	468
2887	C ₈ H ₁₆ O	3, 4-Dimethylcyclohexanol	128.12		189.2	0.907	889
2888	C ₈ H ₁₆ O	cis-3, 5-Dimethylcyclohexanol	128.12		185	0.911	447
2889	C ₈ H ₁₆ O	trans-3, 5-Dimethylcyclohexanol	128.12		187.5	0.90216	463
2890	C ₈ H ₁₆ O	2-Methyl-2-heptene-6-ol	128.12		176	0.854	434
2891	C ₈ H ₁₆ O	Isoamyl allyl ether	128.12		120		
2892	C _a H ₁₆ O	n-Caprylic aldehyde C7H18CHO	128.12		8132	0.821	261
2893	C ₈ H ₁₆ O	Ethyl n-amyl ketone C ₂ H ₅ COC ₅ H ₁₁	128.12		168	0.8500	
2894	C ₈ H ₁₆ O	Ethyl isoamyl ketone	128.12		163.5		
2895	C ₈ H ₁₆ O	Methylbutyrone	128.12		180	0.82716	
2896	C ₈ H ₁₆ O	Methyl hexyl ketone CH ₂ COC ₆ H ₁₂	128.12	-21.6	172.7	0.818	225
2897	C ₈ H ₁₆ O	Methyl isohexyl ketone	128.12		204	0.817	
2898	C ₈ H ₁₆ O	Propyl isobutyl ketone	128.12		155	0.813	ł
2899	C ₈ H ₁₆ O ₂	n-Caprylic acid CH ₂ (CH ₂) ₆ CO ₂ H	144.12	16	237.5	0.910	296
2900	C ₈ H ₁₆ O ₂	Triethylacetic acid (C ₂ H ₄) ₂ CCO ₂ H	144.12	39.5	202		
2901	C ₈ H ₁₆ O ₂	Isoamyl propionate	144.12		160.2	0.870	163
2901.1	C ₈ H ₁₆ O ₂	d-β-Amyl propionate	144.12		5816	0.866	133
2902	C ₈ H ₁₆ O ₂	tertAniyl propionate	144.12		143.5	0.85515	
2903	C ₈ H ₁₆ O ₂	Butyl n-butyrate C ₃ H ₇ CO ₂ C ₄ H ₉	144.12		166.4	0.872_{20}^{20}	148
2904	C ₈ H ₁₆ O ₂	Isobutyl n-butyrate	144.12		156.9	0.866_{16}^{16}	140
2905	C ₂ H ₁₆ O ₂	Isobutyl isobutyrate	144.12	-80.7	148.7	0.8754	120
2906	C ₈ H ₁₆ O ₂	tertButylethyl acetate	144.12		157		
2907	C ₈ H ₁₆ O ₂	Ethyl n-caproate C ₅ H ₁₁ CO ₂ C ₂ H ₅	144.12		166.6	0.8754	1
2908	C ₈ H ₁₆ O ₂	Heptyl formate HCO ₂ (CH ₂) ₆ CH ₃	144.12		176.7	0.8940	1
2909	C ₈ H ₁₆ O ₂	n-Hexyl acetate CH ₂ CO ₂ (CH ₂) ₅ CH ₃	144.12		169.2	0.8900	
2909.1	C ₈ H ₁₆ O ₂	d-β-Hexyl acetate	144.12		5720	0.864	139
2910	C ₈ H ₁₆ O ₂	Methyl n-heptylate C ₂ H ₁₁ CO ₂ CH ₃	144.12		172.1	0.881	187
2911	C ₈ H ₁₆ O ₂	n-Propyl n-valerate C ₄ H ₉ CO ₂ C ₃ H ₇	144.12		167.5	0.889	
2912	C ₈ H ₁₆ O ₂	n-Propyl isovalerate	144.12		155.9	0.863	141
2913	C ₈ H ₁₆ O ₈	1-Hydroxy-n-caprylic acid	160.12	69.5			1
2914	C ₈ H ₁₆ O ₈	Amyl l-lactate CH ₂ CH(OH)CO ₂ C ₅ H ₁₁	160.12		110.521.6	0.9644	4450
2915	C ₈ H ₁₆ O ₄	Metaldehyde (C ₂ H ₄ O) ₄	176.12		150		1172
2916	C ₆ H ₁₆ O ₄	Paraldol (C ₄ H ₈ O ₂) ₂	176.12	82			1000
2916.1	C ₈ H ₁₆ O ₄	Bismethoxyacetal	176.12	127	010		1238
2917	C ₆ H ₁₆ O ₆	Dambonite (Inosite dimethyl ether)	208.12	195	210		
2918	C ₈ H ₁₆ O ₆	2, 3-Dimethyl-α-glucose	208.12	87 110			
2919	C ₆ H ₁₆ O ₆	2, 3-Dimethyl-β-glucose	208.12	110			1197
2920	C ₈ H ₁₆ O ₆	d, \alpha-Ethylglucoside	208.12 224.12	114 65			1197
2921	C ₈ H ₁₆ O ₇	Ethyl d-gluconate	193.05	00	204	1 11016	
2922	C ₅ H ₁₇ Br	n-Octyl bromide CH ₂ (CH ₂) ₆ CH ₂ Br	193.05		7114	1.11616	
2922.1	CH D-N	l-2-Bromooctane	193.03		'1	1.091.	
2923	C ₈ H ₁₇ BrN ₄	Hexamethylenetetramine bromoethylate	240.00	200		1	1
2024	CHC	(Bromalin)	249.08	200	184 4	0.87915	Ja o
2924	C ₈ H ₁₇ Cl	n-Octyl chloride CH ₂ (CH ₂) ₆ CHCl	148.59 148.59		184.6 173	0.87915	1
2925 2926	CH F	2-Chlorooctane C ₆ H ₁₂ CHClCH ₂	132.13		142.5	0.8714.1	04
2926 2927	C ₈ H ₁₇ F	n-Octyl fluoride CH ₂ (CH ₂) ₆ CH ₂ F n-Octyl iodide CH ₂ (CH ₂) ₆ CH ₂ I	240.06	-45.9	225.5	1.3414.4	94 549
2921 2928	C ₈ H ₁₇ I	d-Coniine	127.14	$-43.9 \\ -2.5$	166.5	0.845	978
2928 2929	C ₈ H ₁₇ N C ₈ H ₁₇ N	2, 4, 6-Trimethylpiperidine	127.14	-2.0	147	0.843	954
4048	1 -8111714	1 2, 2, 0-11 memy ipiperiume	101.1T		1 441	1 0.001	903

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2 930	C ₈ H ₁₇ NO	Conhydrine (Hydroxyconiine)	143.14	118	226		1333
2931	C ₈ H ₁₇ NO	α-Pseudoconhydrine	143.14	106	236.5		
2932	C ₈ H ₁₇ NO ₂	1-Hydroxy-n-caprylic amide	159.14	150			ا
2933	C ₈ H ₁₈	2, 5-Dimethylhexane	114.14	-91.0	109.2	0.693	87
2934	C ₈ H ₁₈	2, 3-Dimethylhexane	114.14		114.0 109.9	0.725 ₁₅ 0.708 ₁₅	178 138
2935	C ₈ H ₁₈	2, 4-Dimethylhexane	114.14 114.14		116.5	0.70816	156
2936 2937	CaH ₁₈ CaH ₁₈	3, 4-Dimethylhexane	114.14		116.0	0.70415	103
2938	C _a H ₁₈	2-Methyl-3-ethylpentane	114.14		114	0.70816	134
2939	CaH ₁₈	3-Methylheptane C ₂ H ₈ CH(CH ₂)C ₄ H ₉	114.14		122.2	0.707	1 -0-
2940	C _a H ₁	4-Methylheptane (C ₁ H ₇) ₂ CHCH ₃	114.14		118.0	0.722	114
2941	C ₈ H ₁₈	n-Octane CH ₂ (CH ₂) ₆ CH ₂	114.14	-56.5	124.6	0.70715	112
2942	C.H.	2-Ethylhexane CH ₃ (C ₂ H ₅)CHC ₄ H ₉	114.14		118.8	0.7174	135
2942.1		3-Ethylhexane (C ₂ H ₆) ₂ CHC ₂ H ₇	114.14		115	0.715	
2943	C8H16	2, 2, 3, 3-Tetramethylbutane	114.14	104	106.8		
2944	C ₈ H ₁₈	2, 2, 3-Trimethylpentane	114.14		110.8	0.72215	233
29 4 5 ·	C ₈ H ₁₈ BrN	d-Coniine hydrobromide	208.06	211			
2946	C ₈ H ₁₈ ClN	d-Coniine hydrochloride	163.61	217			1
2947	C ₈ H ₁₈ ClNO	Pseudoconhydrine hydrochloride	179.61	213		ł	l
2948	C ₈ H ₁₈ IN	Coniine hydroiodide	255.08	146			Ì
2949	C ₈ H ₁₈ N ₂ O	Nitrosodiisobutylamine	158.16	-5	221	0.89325	1
2950	C ₈ H ₁₈ N ₂ O ₃	Coniine nitrate	190.16	83	101.0	0.0400	
2951	C ₈ H ₁₈ O	Dibutyl alcohol	130.14		181.2	0.8480	000
2952	C ₈ H ₁₈ O	Diethylpropyl carbinol	130.14		160.5	0.838	339
2953	C ₈ H ₁₈ O	Dimethyl-n-amyl carbinol	130.14		162	0.879	254
2954	C ₈ H ₁₈ O	Dimethylisoamyl carbinol	130.14	-61	154 166	0.823 0.808	247
2955	C ₈ H ₁₈ O C ₈ H ₁₈ O	Ethylisoamyl carbinol	130.14 130.14	-61	179.5	0.828	23'
2956 2957	C ₈ H ₁₈ O	2-Hydroxy-2, 4-dimethylhexane	130.14		151	0.020	1
2958	C ₈ H ₁₈ O	4-Hydroxy-3-ethylhexane	130.14		164	0.835	- [
2959	C ₈ H ₁₈ O	2-Hydroxy-4-methylheptane	130.14		168	0.000	- 1
2960	C ₈ H ₁₈ O	d-6-Hydroxy-3-methylheptane	130.14		169	0.817	1
2961	C ₈ H ₁₈ O	4-Hydroxy-2, 2, 4-trimethylpentane	130.14	-20	147.5	0.8420	1
2962	C ₈ H ₁₈ O	Methyl dipropyl carbinol	130.14		161.5	0.823	297
2963	C ₈ H ₁₈ O	Methylethylbutylcarbinol	130.14		160.6	0.827	298
2964	C8H18O	Methylethylisobutyl carbinol	130.14		152.4	0.83018	308
2965	C ₈ H ₁₈ O	Methylisohexyl carbinol	130.14		172	0.813	274
2966	C ₈ H ₁₈ O	n-Octyl alcohol CH ₃ (CH ₂) ₇ OH	130.14	-16.3	194	0.827	318
2967	C ₈ H ₁₈ O	d-secOctyl alcohol C ₆ H ₁₃ CH(OH)CH ₂ .	130.14		8620	0.822	279
2968	C ₈ H ₁₈ O	dl-secOctyl alcohol C ₆ H ₁₂ CH(OH)CH ₂		-38.6	178.5	0.819	357
2969	C ₈ H ₁₈ O	Propylbutyl carbinol	130.14		7110	0.8384	0.00
2970	C ₈ H ₁₈ O	Propylisobutyl carbinol	130.14		164	0.821	248
2971	C ₈ H ₁₈ O	Isopropylbutyl carbinol	130.14		154	0.825	249
2972	C ₈ H ₁₈ O	Isopropylisobutyl carbinol	130.14		163 140.9	0.82015 0.76920	1
2973 2974	C ₈ H ₁₈ O	n-Butyl ether $C_4H_9OC_4H_9$ Isobutyl ether $[(CH_2)_2CHCH_2]_2O$	130.14 130.14		122.5	0.76920	ŀ
2974 2975	C ₈ H ₁₈ O C ₈ H ₁₈ O	secButyl ether (C ₂ H ₃ CHCH ₂) ₂ O	130.14		121	0.75621	
2976	C ₈ H ₁₈ O	Ethyl hexyl ether C ₂ H ₆ OC ₆ H ₁₃	130.14		137	0.100	ł
2977	C ₈ H ₁₈ O	Methyl n-heptyl ether CH ₃ OC ₇ H ₁₅	130.14		149.8	0.795	
2978	C ₈ H ₁₈ O ₂ S	n-Butylsulfone (C ₄ H ₉) ₂ SO ₂	178.20	43.5	110.0	000	ŀ
2979	C ₈ H ₁₈ O ₂	Ethyl orthoacetate CH ₂ CH(OC ₂ H ₅) ₂	162.14		142	0.9422	- 1
2980	C8H18O4S2	Trional C ₂ H ₅ (CH ₃)C(SO ₂ C ₂ H ₅) ₂	242.27	76	1	1	1
2981	CaH ₁₈ S	Di-n-butyl sulfide (C4H9)2S	146.20	-79.7	182	0.8520	
2982	C ₈ H ₁₀ S	Diisobutyl sulfide [(CH ₃) ₂ CHCH ₂] ₂ S	146.20		171	0.83610	
2983	C ₈ H ₁₈ S	Di-secbutyl sulfide [C ₂ H ₅ CHCH ₃] ₂ S	146.20		165	0.83223	
2984	C ₈ H ₁₉ N	Di-n-butylamine (C ₄ H ₉) ₂ NH	129.15		161		
2985	C ₀ H ₁₀ N	Diisobutylamine [(CH ₃) ₂ CHCH ₂] ₂ NH	129.15	-70.0	138.8	0.745	180
2986	C ₈ H ₁₉ N	n-Octylamine C ₈ H ₁₇ NH ₂	129.15		180	0.77727	319
2987	C ₈ H ₁₉ N	secOctylamine C ₆ H ₁₃ CH(CH ₃)NH ₂	129.15		164	0.771	292
2988	CaH20A82	Ethylcacodyl (C ₂ H ₅) ₂ As ₂ (C ₂ H ₅) ₂	266.07	100 1	190		
2989	C ₆ H ₂₁ NO	Tetraethylammonium hydroxide	147.17	190 d.			
2990	C ₄ H ₄ O ₄	Phthalonic anhydride	176.03	186	1	1	
2991 2992	C ₂ H ₄ Cl ₂ N C ₂ H ₄ Cl ₂ N	2, 3-Dichloroquinoline	197.96	105 67	1	1	
	I I A PLOU LA IN	1 & 4-1 ACDIOTOGIII DOUDE	197.96	0/			

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2993	C ₂ H ₄ Cl ₂ N	5, 6-Dichloroquinoline	197.96	85		İ	i -
2994	C ₉ H ₅ Cl ₂ N	5, 7-Dichloroquinoline	197.96	117			
2 995	C ₂ H ₄ Cl ₂ N	5, 8-Dichloroquinoline	197.96	93	ł	1	ļ
2996	C ₂ H ₄ Cl ₂ N	6, 8-Dichloroquinoline	197.96	104	į	1	
2997	C ₉ H ₅ Cl ₂ N	7, 8-Dichloroquinoline	197.96	85.5			
2 998	C ₀ H ₀ Br ₂ O ₂	cis-1, 2-Dibromocinnamic acid	216.96	100	124 0.8		
2999	C ₀ H ₀ Br ₂ O ₂	trans-2, 2-Dibromocinnamic acid	216.96	136	1380.6		ł
3000	C ₂ H ₄ ClN	2-Chloroquinoline	163.51	38	275	1	
3001	C ₉ H ₆ ClN	3-Chloroquinoline	163.51		255.5		1
3002	C ₂ H ₄ ClN	4-Chloroquinoline	163.51	34	260.4	1.251	
3003	C ₀ H ₀ ClN	5-Chloroquinoline	163.51	32	268		
3004	C ₂ H ₆ ClN	6-Chloroquinoline	163.51	41	262		1
3005	C ₂ H ₄ ClN	7-Chloroquinoline	163.51	45	256		
3006	C.H.CIN	8-Chloroquinoline	163.51	> -20	288		
3007	C ₂ H ₆ Cl ₂ O ₂	cis-1, 2-Dichlorocinnamic acid	216.96	121			
3008	C ₂ H ₆ Cl ₂ O ₂	trans-1, 2-Dichlorocinnamic acid	216.96	101			
3009	C.H.INO.S	Loretin	351.05	d.			1
3010	C ₀ H ₆ N ₂ O ₂	5-Nitroquinoline	174.06	72		1	İ
3011	C ₂ H ₄ N ₂ O ₂	6-Nitroquinoline	174.06	150			
3012	C ₂ H ₄ N ₂ O ₂	7-Nitroquinoline	174.06	133			
3013	C ₂ H ₄ N ₂ O ₂	8-Nitroquinoline	174.06	89		1	
3014	C ₂ H ₄ O ₂	Phenylpropiolic acid C ₆ H ₅ C:CCO ₂ H	146.04	137			
3015	C ₂ H ₄ O ₂	Chromone	146.04	58		1	
3016	C ₂ H ₄ O ₂	Coumarine	146.04	67	301.7	0.935	1
3017	C ₉ H ₆ O ₃	Umbelliferon	162.04	227	301.7	0.955	1
		Daphnetin	178.05	256		1	Ì
3018	C ₅ H ₆ O ₄	1 -					
3019	C ₂ H ₄ O ₄	Esculetin	178.05	270 d.			
3020	C ₂ H ₆ O ₆	Hemimellitic acid 1, 2, 3-C ₆ H ₃ (CO ₂ H) ₃ .	210.04	190			i
3021	G ₂ H ₄ O ₄	Trimellitic acid 1, 2, 4-C ₆ H ₈ (CO ₂ H) ₃	210.05	216			}
3022	C ₉ H ₆ O ₆	Trimesic acid 1, 3, 5-C ₂ H ₂ (CO ₂ H) ₂	210.05	350			
3023	C ₂ H ₄ O ₇	1, 3, 5-Tricarboxyphenol	226.05	180 d.	11100		ł
3024	C ₂ H ₇ BrO ₂	cis-Allo-1-bromocinnamic acid	226.97	120	1110.6		ł
3025	C ₀ H ₇ BrO ₂	cis-Allo-2-bromocinnamic acid	226.97	160	1110.6		1
3026	C ₂ H ₇ BrO ₂	trans-1-Bromocinnamic acid	226.97	131	1210.6	1	1
3027	C ₉ H ₇ BrO ₂	trans-2-Bromoeinnamic acid	226.97	135	1220.6		1
3028	C ₂ H ₇ ClO	Cinnamyl chloride C ₆ H ₆ CH:CHCOCl	166.51	36	257.5		
3029	C ₀ H ₇ ClO ₂	cis-Allo-1-chlorocinnamic acid	182.51	111	990.6	1	1
3030	C ₉ H ₇ ClO ₂	cis-Allo-2-chlorocinnamic acid	182.51	132	970.5		
3031	C ₀ H ₇ ClO ₂	trans-1-Chlorocinnamic acid	182.51	137	1090.5		
3032	C ₂ H ₇ ClO ₂	trans-2-Chlorocinnamic acid	182.51	142	1130.5		
3033	C ₀ H ₇ ClO ₂	o-Chlorocinnamic acid	182.51	211			
3034	C ₉ H ₇ Cl ₈ O ₂	Benzyl trichloroacetate	253 . 43	1	178.550	1.389	692
3035	C ₂ H ₇ N	Cinnamic nitrile C ₆ H ₆ CH:CHCN	129.06	11	255	1.0370	
3036	C ₂ H ₇ N	Isoquinoline	129.06	23	243	1.099	1026
3037	C ₂ H ₇ N	Quinoline	129.06	-19.5	237.7	1.093	941
3038	C ₂ H ₇ NO	p-Cyanoacetophenone CN.C ₆ H ₄ COCH ₂	145.06	61			
3039	C ₉ H ₇ NO	2-Hydroxyquinoline	145.06	200			
3040	C ₀ H ₇ NO	4-Hydroxyquinoline	145.06	201	300		
3041	C ₂ H ₇ NO	5-Hydroxyquinoline	145.06	224			
3042	C ₂ H ₇ NO	6-Hydroxyquinoline	145.06	193	360		
3043	C ₉ H ₇ NO	7-Hydroxyquinoline	145.06	238 d.			
3044	C ₉ H ₇ NO	8-Hydroxyquinoline	145.06	76	266.9		
3045	C ₂ H ₇ NO ₂	3-Aminocoumarine	161.06	130			i
3046	C ₂ H ₇ NO ₂	Indole-2-carboxylic acid	161.06	203 d.			i
3047	C ₂ H ₇ NO ₂	Indole-3-carboxylic acid	161.06	218 d.			
3048	C.H.NO.	Indoxylic acid	177.06	1	123	1	
3049	C.H.NO.	Kynuric acid	177.06	189		1	1
3050	C ₂ H ₇ NO ₄	o-Nitrocinnamic acid	193.06	240		1	
3051	C ₂ H ₇ NO ₄	m-Nitrocinnamic acid	193.06	197		1	
3052	C ₂ H ₇ NO ₄	p-Nitrocinnamic acid	193.06	286			
3053	C.H.NO.S	Diaphthol	225.13	295		1	
3054	C ₉ H ₈	Indene	116.06	295 -2	182.4	1.006	806
OUUT			116.06		182.4	1.000	000
3055	C ₉ H ₈	Phenylallylene C ₆ H ₅ C:CCH ₂					

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
3057	C ₉ H ₈ Cl ₂ O ₂	Benzyl dichloroacetate	218.98		17960	1.3134	684
3058	C ₉ H ₈ I ₂ O ₃	Ethyl 3, 5-diiodosalicylate	417.93	132			i
3059	C ₉ H ₈ N ₂	2-Aminoquinoline	144.08	129		1	
3060	C ₉ H ₈ N ₂	3-Aminoquinoline	144.08	94	1		1319
3061	C ₉ H ₈ N ₂	4-Aminoquinoline	144.08	154		Į.	
3062	C ₉ H ₈ N ₂	5-Aminoquinoline	144.08	110		1	
3063	C ₉ H ₈ N ₂	6-Aminoquinoline	144.08	114			i
3064	C ₉ H ₈ N ₂	7-Aminoquinoline	144.08	189		1	
3065	C ₉ H ₈ N ₂	8-Aminoquinoline	144.08	70	1		ı
3066	C ₉ H ₈ N ₂	3-Phenylpyrazolone	144.08	240	İ		ŀ
3067	C ₉ H ₈ N ₂ O	Cyanoacetanilide CNCH2CONHC6H6	160.08	200			Ī
3068	C ₂ H ₈ N ₂ O	Pyrrone (Dipyrryl ketone)	160.08	160	051.0		701
3069	C ₉ H ₈ O	Cinnamic aldehyde C.H.CH:CHCHO	132.06	-7.5	251.0	1.049	791
3070	C ₉ H ₈ O	α-Hydrindone	132.06	41	244	1.1014	1100
3071	C ₉ H ₉ O	β-Hydrindone	132.06	61	225 d.	1.07167	1100
3072 3073	C ₉ H ₈ O ₂	o-Coumaric aldehyde	148.06	133			
3073 3074	C ₉ H ₈ O ₂	p-Coumaric aldehyde	148.06	134	10510		
3075	C ₉ H ₈ O ₂ C ₉ H ₃ O ₂		148.06	68	12510	1 0044	
3076	C ₂ H ₃ O ₂ C ₂ H ₃ O ₂	Cinnamic acid C ₆ H ₅ CH:CHCO ₂ H Isocinnamic acid	148.06	133 57	300 256 d.	1.2844	
3077	C ₂ H ₃ O ₂	Atropic acid	148.06 148.06	107	267 d.		
3078	C ₂ H ₃ O ₂	Melilotic anhydride	148.06	25	207 d.		
3079	C ₉ H ₈ O ₂	Chromanone	148.06	25 38.5	16050		
3080	C ₂ H ₂ O ₃	Acetopiperone	164.06	83	10050		
3081	C ₂ H ₂ O ₃	o-Acetylsalicylic aldehyde	164.06	37	253	ł	
3082	C ₂ H ₂ O ₂	Benzoylacetic acid C ₆ H ₄ COCH ₂ CO ₂ H.	164.06	104	200		
3083	C ₂ H ₃ O ₃	o-Coumaric acid	164.06	208			
3084	C ₉ H ₈ O ₃	m-Coumaric acid	164.06	191			
3085	C ₉ H ₈ O ₂	p-Coumaric acid	164.06	206			
3086	C ₂ H ₈ O ₂	Phenylpyruvic acid C ₆ H ₆ CH ₂ COCO ₂ H.	164.06	157			
3087	C ₀ H ₈ O ₄	o-Acetylsalicylic acid (Aspirin)	180.06	133.5			1290
3088	C ₂ H ₈ O ₄	Caffeic acid	180.06	195			1200
3089	C ₂ H ₈ O ₄	Phenylmalonic acid C ₆ H ₅ CH(CO ₂ H) ₂	180.06	153		1	
3090	C ₉ H ₈ O ₄	Uvitic acid 3, 5(CO ₂ H) ₂ C ₆ H ₃ CH ₂	180.06	290			1
3091	C ₂ H ₈ O ₄	Methyl phthalate o-CO2HC6H4CO2CH2	180.06	82.5			
3092	C ₉ H ₈ O ₄	Benzoyl acetyl peroxide	180.06	36.6	13019		
3093	C9H8O8	Esculetinic acid	196.06	168			ł
3094	C ₉ H ₈ O ₅	Myristicinic acid	196.06	210	300		
3095	C ₉ H ₉ BrO	Indene oxybromide	212.99	130.5			
3096	C ₉ H ₉ ClO ₂	Benzyl chloroacetate	184.53		147.5	1.2224	675
3097	C ₉ H ₉ N	Dihydroquinoline	131.08	226			
3098	C ₉ H ₉ N	1-Methylindole	131.08		242.4	1.0710	
3099	C ₉ H ₉ N	2-Methylindole	131.08	60	272.3		
3100	C ₉ H ₉ N	3-Methylindole (Scatole)	131.08	95	266.2		
3101	C ₉ H ₉ N	5-Methylindole	131.08	58 .5	İ		
3102	C ₉ H ₉ NO	Cinnamamide C ₆ H ₈ CH:CHCONH ₂	147.08	141.5			i
3103	C ₉ H ₉ NO	Hydrocarbostyril	147.08	163	1		1309
3104	C ₉ H ₉ NO ₂	o-Aminocinnamic acid	163.08	159 d.		1	
3105	C ₉ H ₉ NO ₂	m-Aminocinnamic acid	163.08	181			1
3106	C ₉ H ₉ NO ₂	p-Aminocinnamic acid	163.08	176 d.			
3107	C ₉ H ₉ NO ₂	Benzoylacetaldehydeoxime	163.08	87		1	1
3108	C ₉ H ₉ NO ₃	o-Acetylaminobenzoic acid	179.08	185			
3109	C ₂ H ₂ NO ₃	m-Acetylaminobenzoic acid	179.08	250			1
3110	C,H,NO,	p-Acetylaminobenzoic acid	179.08	252	1 .		
3111	C,H,NO,	Hippuric acid C ₆ H ₆ CONHCH ₂ CO ₂ H	179.08	187.5	d.	1.371	1256
3112	C,H,NO,	Methyl oxanilate C ₆ H ₆ NHCOCO ₂ CH ₃	179.08	114	1		
3113	C,H,NO;	Acetylsalicylamide	179.08	144	1	1	
3114	C,H,NO4	Salicyluric acid	195.08	160	000	1	
3115	C ₂ H ₂ NO ₄	Ethyl m-nitrobenzoate	195.08	47	298	1	
3116	C,H,NO4	Ethyl p-nitrobenzoate	195.08	57 156	1		
3117	C ₉ H ₉ N ₃	5, 8-Diaminoquinoline	159.09	156	1	1	1
3118	C,H,N,	6, 8-Diaminoquinoline	159.09	163	155	0.000	054
3119	$C_{0}H_{10}$	Benzylethylene C ₆ H ₅ CH ₂ CH:CH ₂	118.08		155	0.909	654

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
3120	C ₉ H ₁₀	Isoallylbenzene C.H.CH:CHCH	118.08		175	0.92416	
3121	C9H10	Hydrindene	118.08		176.5	0.965	970
3122	C9H10N2	1-Ethylindazole	146.09		12015	1.064	878
3123	C ₉ H ₁₀ O ₃	2-Acetamino-4-nitrotoluene	194.09	96			
3124	C ₉ H ₁₀ O	Anol p-(CH ₃ CH:CH)C ₆ H ₄ OH	134.08	93	250 d.		
3125	C ₉ H ₁₀ O	Chavicol p-(CH2:CHCH2)C6H4OH	134.08	> -25	237	1.03318	935
3126	$C_0H_{10}O$	Cinnamyl alcohol C.H.CH:CHCH2OH.	134.08	33	258.5	1.044	1039
3127	C ₉ H ₁₀ O	Allyl phenyl ether C ₃ H ₅ OC ₆ H ₅	134.08		192		
3128	C ₉ H ₁₀ O	Methyl styryl ether	134.08		213	1.001	877
3129	C ₉ H ₁₀ O	2, 4-Dimethylbenzaldehyde	134.08	-8	216		
3130	C ₉ H ₁₀ O	Hydrocinnamaldehyde	134.08	47	280		
3131	C ₂ H ₁₀ O	o-Xylene-4-aldehyde	134.08		225		
3132	C ₉ H ₁₀ O	Ethyl phenyl ketone C ₂ H ₅ COC ₆ H ₅	134.08	21	218	1.010	689
3133	C ₉ H ₁₀ O	Methyl benzyl ketone CH ₂ COCH ₂ C ₆ H ₆	134.08	-15.4	216.7	1.028	
3134	C ₉ H ₁₀ O	p-Methylacetophenone (Melilot)	134.08	1 20.2	222	1.01313	703
3135	C ₉ H ₁₀ O	Chromane	134.08	Ĭ	9512	1.064	''
3135.1	C ₉ H ₁₀ OS	Ethyl thiobenzoate	166.14	Ì	253763	1.09425	
3136	C ₉ H ₁₀ O ₃	o-Coumaral alcohol	150.08	119	200	1.001	1
3137	C ₉ H ₁₀ O ₂	Hesperetol	150.08	57			
		2, 3-Dimethylbenzoic acid	150.08	144	İ		
3138	C ₂ H ₁₀ O ₂	2, 4-Dimethylbenzoic acid	150.08	126	268	1	
3139	C ₉ H ₁₀ O ₂	2, 5-Dimethylbenzoic acid	150.08	132	268	1.069	
3140	C ₉ H ₁₀ O ₂	2, 6-Dimethylbenzoic acid	150.08	116	200	1.009	
3141	C ₉ H ₁₀ O ₂						
3142	C ₉ H ₁₀ O ₂	3, 4-Dimethylbenzoic acid	150.08	165		-	
3143	C ₂ H ₁₀ O ₂	o-Ethylbenzoic acid	150.08	68	ļ	1.042400	1140
3144	C ₉ H ₁₀ O ₂	m-Ethylbenzoic acid	150.08	47		1.0424	1148
3145	C ₂ H ₁₀ O ₂	p-Ethylbenzoic acid	150.08	113	005		
3146	C ₉ H ₁₀ O ₂	Hydratropic acid C ₂ H ₄ (C ₄ H ₅)CO ₂ H	150.08	40.0	265	1 07148.7	
3147	C ₀ H ₁₀ O ₂	Hydrocinnamic acid	150.08	48.6	279.8	1.071048.7	
3148	C ₉ H ₁₀ O ₂	Mesitylinic acid 3, 5-(CH ₂) ₂ C ₆ H ₂ CO ₂ H.	150.08	166		1.070	
3149	C ₉ H ₁₀ O ₂	Benzyl acetate CH ₂ CO ₂ CH ₂ C ₆ H ₅	150.08	-51.5	213.5	1.058	673
3150	C ₉ H ₁₀ O ₂	o-Cresyl acetate o-CH ₃ CO ₂ C ₈ H ₄ CH ₃	150.08		208		
3151	C ₉ H ₁₀ O ₂	m-Cresyl acetate m-CH ₂ CO ₂ C ₂ H ₄ CH ₂	150.08		212		
3152	C ₉ H ₁₀ O ₂	p-Cresyl acetate p-CH ₂ CO ₂ C ₆ H ₄ CH ₂	150.08		212.5	1.050	599
3154	C ₉ H ₁₀ O ₂	Ethyl benzoate C ₆ H ₅ CO ₂ C ₂ H ₅	150.08	-34.6	213.2	1.047	628
3155	C ₉ H ₁₀ O ₂	Methyl phenylacetate	150.08	į	220	1.04416	
3156	C ₉ H ₁₀ O ₂	Methyl p-toluate p-CH ₂ C ₆ H ₄ CO ₂ CH ₂	150.08	33	217		
3157	C9H10O2	Phenyl propionate C ₂ H ₅ CO ₂ C ₆ H ₅	150.08	20	211	1.05415	
3158	C ₉ H ₁₀ O ₃	Acetovanillone	166.08	115	300		
3159	C ₉ H ₁₀ O ₃	Paeonol 4, 2-CH ₂ O(OH)C ₆ H ₂ COCH ₂	166.08	50	i		
3160	C ₉ H ₁₀ O ₃	o-Ethoxybenzoic acid	166.08	22			
3161	C ₉ H ₁₀ O ₃	m-Ethoxybenzoic acid	166.08	137			l
3162	C ₉ H ₁₀ O ₃	p-Ethoxybenzoic acid	166.08	195			
3163	C ₉ H ₁₀ O ₃	dl-Atrolactic acid	166.08	91		İ	
3164	C ₉ H ₁₀ O ₃	m-Hydrocoumaric acid	166.08	111			Ì
3165	C ₉ H ₁₀ O ₃	Melilotic acid	166.08	83			1
3166	C ₉ H ₁₀ O ₃	d(l)-2-Phenyllactic acid	166.08	125			1
3167	C ₉ H ₁₀ O ₃	Phloretic acid HOC ₆ H ₄ CH(CH ₂)CO ₂ H.	166.08	129			
3168	C ₉ H ₁₀ O ₈	d(l)-Tropic acid	166.08	128			
3169	C.H10O3	dl-Tropic acid	166.08	123			1
3169.1	C ₂ H ₁₀ O ₂	Anisyl acetate p-CH ₂ OC ₆ H ₄ O ₂ CCH ₂	166.08		13912	1.101	
3170	C ₉ H ₁₀ O ₂	Ethyl salicylate OHC6H4CO2C2H6	166.08	1.3	231.5	1.131	670
3171	C ₂ H ₁₀ O ₂	Guaiacyl acetate (Eucol)	166.08		240	1.138	
3172	C ₂ H ₁₀ O ₃	Methyl anisate p-CH ₂ OC ₂ H ₄ CO ₂ CH ₃	166.08	48	256		1
3173	C ₉ H ₁₀ O ₂	Methyl o-cresotinate	166.08	30	235	1	1
3174	C ₉ H ₁₀ O ₃	Methyl p-cresotinate	166.08		242	1	
3175	C ₉ H ₁₀ O ₂	Methyl dl-mandelate	166.08	58	14420		
3176	C ₉ H ₁₀ O ₄	Hydrocaffeic acid	182.08	139	1	1	1
3176	C ₉ H ₁₀ O ₄	d(l)-Phenylglyceric acid	182.08	164			
			182.08	141	1	1.451	1
3178 3179	C ₉ H ₁₀ O ₄	dl-Phenylglyceric acid	182.08	105		1.354	
31/9	C9H10O4	d(l)- p -Methoxymandelic acid		1	1	1.00%	ı
3181	C ₉ H ₁₀ O ₄	Veratric acid 3, 4-(CH ₂ O) ₂ C ₆ H ₂ CO ₂ H	182.08	181		1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3183	C ₉ H ₁₀ O ₄	Methyl vanillate	182.08	63	287	Ī	
3184	C ₉ H ₁₀ O ₄	Glycol salicylate (Spirosal)	182 .08	İ	17012		
3185	C ₉ H ₁₀ O ₅	Syringic acid	198.08	245		1 .	
3186	C ₉ H ₁₀ O ₅	Ethyl gallate	198.08	160			
3187	C ₉ H ₁₀ O ₆	2, 3, 4, 5-Dimethoxydihydroxybenzoic					
		acid	214.08	148			
3187.1	C ₉ H ₁₀ S ₂	Ethyl dithiobenzoate	182. 2 1		18026	1.143925	
3188	C ₀ H ₁₁ N	Allyl aniline C ₆ H ₅ NHCH ₂ CH:CH ₂	133.09		209	0.98225	
3189	C ₀ H ₁₁ N	Benzylideneethylamine	133.09		195.4		
3190	C ₉ H ₁₁ N	Styrylamine C ₆ H ₅ CH:CHCH ₂ NH ₂	133.09		237		
3191	C ₀ H ₁₁ N	1, 2, 3, 4-Tetrahydroisoquinoline	133.09		233	1.064	1012
3192	C ₉ H ₁₁ N	1, 2, 3, 4-Tetrahydroquinoline	133.09	20	251	1.055	1013
3193	C ₉ H ₁₁ NO	p-Dimethylaminobenzaldehyde	149.09	75			
3194	C ₀ H ₁₁ NO	o-Acetotoluide o-CH3CONHC4H4CH3	149.09	110	296		1255
3195	C ₂ H ₁₁ NO	m-Acetotoluide m-CH ₂ CONHC ₆ H ₄ CH ₂ .	149.09	65.5	303		
3196	C ₉ H ₁₁ NO	p-Acetotoluide p-CH ₂ CONHC ₆ H ₄ CH ₂ .	149.09	153	307		1276
3197	C ₀ H ₁₁ NO	N-Benzylacetamide CH ₃ CONHC ₇ H ₇	149.09	61	300		
3198	C ₉ H ₁₁ NO	N-Ethylbenzamide C ₆ H ₅ CONHC ₂ H ₅	149.09	71	290		
3199	C ₀ H ₁₁ NO	N-Methylacetanilide (Exalgin)	149.09	102	254.7		1250
3200	C ₉ H ₁₁ NO	Propionanilide C ₂ H ₅ CONHC ₆ H ₅	149.09	104			
3201	C ₉ H ₁₁ NOS	N-Phenylthiourethane	181.1 6	69		ı	
3202	C ₀ H ₁₁ NO ₂	4-Acetylamino-2-hydroxytoluene	165.09	225			
3203	C ₉ H ₁₁ NO ₂	3-Acetylamino-4-hydroxytoluene	165.09	160	ł		
3204	C ₉ H ₁₁ NO ₂	p-Acetylmethylaminophenol	165.09	240			1
3205	C ₉ H ₁₁ NO ₂	1-Anilinopropionic acid	165.09	162			
3206	C ₂ H ₁₁ NO ₂	o-Dimethylanthranilic acid	165.09	175	1		
3207	C ₉ H ₁₁ NO ₂	m-Ethylaminobenzoic acid	165.09	101			
3208	C ₉ H ₁₁ NO ₂	l-Phenylalanine	165.09	283 d.			1269
3209	C ₉ H ₁₁ NO ₂	dl-Phenylalanine	165.09	265 d.			
3210	C ₉ H ₁₁ NO ₂	o-Tolylaminoacetic acid	165.09	150			i i
3211	C ₉ H ₁₁ NO ₂	p-Tolylaminoacetic acid	165.09	118			
3212	C ₂ H ₁₁ NO ₂	2, 4, 6-Trimethylpyridine-3-carboxylic					
		acid	165.09		155		
3213	C ₉ H ₁₁ NO ₂	Ethyl p-aminobenzoate	165.09	91			
3214	C ₂ H ₁₁ NO ₂	Ethyl anthranilate	165.09		260	ľ	1
3216	C ₂ H ₁₁ NO ₂	o-Acetaniside o-CH ₂ OC ₆ H ₄ NHCOCH ₃ .	165.09	84	305	i	1
3217	C ₂ H ₁₁ NO ₂	p-Acetaniside CH ₂ CONHC ₄ H ₄ OCH ₂	165.09	127			
3218	C ₀ H ₁₁ NO ₂	p-Formylphenetidine	165.09	60			
3219	C ₀ H ₁₁ NO ₂	Nitrocumene (CH ₂) ₂ CHC ₆ H ₄ NO ₂	165.09	-35	224 d.		1
3220	C ₂ H ₁₁ NO ₂	Nitromesitylene	165.09	44	255		
3221	C ₀ H ₁₁ NO ₂	N-Phenylurethane C ₂ H ₆ CO ₂ NHC ₆ H ₅	165.09	52	238		l
3222	C ₉ H ₁₁ NO ₈	l-Tyrosine	181.09	295 d.		1.456	1259
3223	C9H13	Cumene (CH ₃) ₂ CHC ₆ H ₆	120.09		153.4	0.864	561
3224	C9H12	o-Ethyltoluene o-C ₂ H ₅ C ₆ H ₄ CH ₂	120.09	> -17	162	0.882	615
3225	C9H12	m-Ethyltoluene m-C ₂ H ₅ C ₆ H ₄ CH ₂	120.09		162.5	0.867	585
3226	C.H.12	p-Ethyltoluene p-C ₂ H ₅ C ₆ H ₄ CH ₂	120.09	<-20	162	0.862	568
3227	C.H12	Hemimellitene 1, 2, 3-(CH ₃) ₄ C ₆ H ₃	120.09		176.5	0.895	650
3228	C,H12	Mesitylene 1, 3, 5-(CH ₃) ₃ C ₆ H ₂	120.09	-52.7	164.6	0.863	580
3229	C,H12	n-Propylbenzene CH ₃ (CH ₂) ₂ C ₆ H ₅	120.09	-101.6	157.5	0.862	556
3230	C ₂ H ₁₂	Pseudocumene 1, 2, 4-(CH ₂) ₂ C ₆ H ₂	120.09	-61.0	169.8	0.87	622
3231	C,H12N2O	1-Ethyl-2-phenylurea	164.11	99	100.0	0.00	"-
3232	C,H12N2O2	p-Phenetylures C ₂ H ₄ OC ₆ H ₄ NHCONH ₂ .	180.11	173			
3233	C,H12N2O2	Pilosinine	180.11	79	300*5		
3234	C,H ₁₂ N ₄ O ₂	1, 3, 7, 9-Tetramethyluric acid	224.12	228	d.		1268
3235	C,H ₁₂ O	Benzylmethyl carbinol	136.09	220	212	0.994	1200
3235.1	C ₂ H ₁₂ O	d-Benzylmethyl carbinol	136.09		12525	0.991	660
3236	C ₉ H ₁₂ O	Ethylphenyl carbinol.	136.09		219	0.996	1 000
3237	C ₉ H ₁₂ O	Hydrocinnamyl alcohol	136.09	<-18	237.4	1.008	706
3238	C ₉ H ₁₂ O	Mesitol 2, 4, 6-(CH ₂) ₂ C ₄ H ₂ OH	136.09	1	237.4	1.000	100
3238 3239				69		1 0150	
3239 3240	C ₂ H ₁₂ O	o-n-Propylphenol o-C ₈ H ₇ C ₄ H ₄ OH	136.09	94	226.6	1.0150	
04 4 U	C ₉ H ₁₂ O	m - n -Propylphenol m - $C_2H_7C_6H_4OH$	136.09	26	228	1	1
3241	C ₉ H ₁₂ O	$p-n$ -Propylphenol $p-C_3H_7C_6H_4OH$	136.09	61	232.6	1.009	

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I No.
3243	C ₉ H ₁₂ O	Ethyl benzyl ether C ₂ H ₅ OC ₇ H ₇	136.09	i	226	0.99817.8	<u> </u>
3244	C ₉ H ₁₂ O	Ethyl m-cresyl ether	136.09	l	192	0.949	648
3245	C ₉ H ₁₂ O	Ethyl p-cresyl ether p-CH ₂ C ₄ H ₄ OC ₂ H ₄ .	136.09		189.9	0.8740	928
3246	C ₉ H ₁₉ O	Propyl phenyl ether C ₅ H ₇ OC ₆ H ₅	136.09		190.5	0.968	
3247	C ₉ H ₁₂ O	Isopropyl phenyl ether	136.09	ľ	177.2	0.94615	i
3248	C ₉ H ₁₂ O ₂	Mesorcinol	152.09	150	275.5		1
249	C ₉ H ₁₂ O ₂	Guaiacyl ethyl ether	152.09		213		1
3250	C ₂ H ₁₂ O ₃	Phloroglucinol trimethyl ether	168.09	52	255.5		1
3251	C ₂ H ₁₂ O ₃	Pyrogallol trimethyl ether	168.09	47	241	1.09975	1
3252	C ₉ H ₁₂ O ₃	Metacrolein (C ₃ H ₄ O) ₃	168.09	46	l	1	ĺ
253 254	C.H.12O2	Caryophyllenic acid	168.09	~~		1.140	1
255	C ₂ H ₁₂ O ₂ S C ₂ H ₁₂ O ₂ S	Mesitylenesulfonic acid	200.16 200.16	77	17011	. 1741	1
256	C ₉ H ₁₂ O ₅ S	Anhydrocamphoronic acid	200.16	33	17318	1.174**	1
257	C ₉ H ₁₃ N	Cumidine p-(CH ₂) ₂ CHC ₆ H ₄ NH ₂	135.11	133	225	0.057	133
258	C ₂ H ₁₂ N	Dimethyl-o-toluidine	135.11	-61.0	184.6	0.957 0.929	68
259	C ₂ H ₁₂ N	Dimethyl-m-toluidine	135.11	-61.0	212.5	0.929	733
260	C ₂ H ₁₂ N	Dimethyl-p-toluidine	135.11		212.5	0.941	720
261	C ₁ H ₁₂ N	Ethyl-o-toluidine	135.11		211.5	0.95315.5	1 '2
262	C ₂ H ₁₂ N	Ethyl-m-toluidine	135.11	İ	222	0.955	
263	C ₂ H ₁₅ N	Ethyl-p-toluidine	135.11		217	0.939	ı
264	C ₀ H ₁₂ N	Mesidine 1, 3, 5-(CH ₂) ₂ C ₆ H ₂ NH ₂	135.11		233	0.963	
265	C ₂ H ₁₈ N	ω-Mesitylamine	135.11		218.2	0.950	69
266	C ₂ H ₁₂ N	Parvoline	135.11		234	0.330	00
267	C ₂ H ₁₂ N	n-Propylaniline C ₆ H ₅ NHC ₃ H ₇	135.11		222	0.94918	1
268	C ₂ H ₁₂ N	Isopropylaniline C ₆ H ₆ NHCH(CH ₂) ₂	135.11		213	0.040	
269	C ₀ H ₁₂ N	Pseudocumidine	135.11	66	235		1
270	C ₂ H ₁₅ NO ₂	Anhydroecgonine	167.11	235 d.	200		1
271	C ₂ H ₁₂ NO ₂	Adrenaline	183.11	207 d.			ļ
272	C,H14	Apocyclene	122.11	43	138.9	0.87140	105
273	C ₂ H ₁₄	Santene	122.11	1	142	0.86914	486
274	C,H,CINO2	Anhydroecgonine hydrochloride	203.57	241		0.000	1
275	C ₂ H ₁₄ N ₂ O ₈	Ethylpropylbarbituric acid	198.12	146			i
276	C ₀ H ₁₄ O	Nopinone	138.11	0	209		1
277	C ₂ H ₁₄ O	Phorone	138.11	28	198.5	0.885	59
278	C9H14O2	Lauronolic acid	154.11		12911.5		
279	C ₉ H ₁₄ O ₂	Methyl amylpropiolate	154.11		11118	0.99115	1
280	C9H14O8	Castelamarin	170.11	269			
281	C ₉ H ₁₄ O ₄	cis-Hexahydrohomophthalic acid	186.11	146			1
282	C ₉ H ₁₄ O ₄	trans-Hexahydrohomophthalic acid	186.11	157			1
282.1	C ₂ H ₁₄ O ₄	dl-Pinic acid	186.11	102.5	21610	1.093109.4	115
282.2	C ₀ H ₁₄ O ₄	d-Pinic acid	186.11	136	21610		
283	C ₉ H ₁₄ O ₄	Diethyl citraconate	186.11		230.3	1.062	84
284	C ₉ H ₁₄ O ₄	Diethyl glutaconate	186.11	1	238	1.050	
285	C ₉ H ₁₄ O ₄	Diethyl itaconate	186.11		227.9	1.045	36
286	C ₉ H ₁₄ O ₄	Diethyl mesaconate	186.11		229	1.047	59
287	C ₉ H ₁₄ O ₅	4-Ketoazelaic acid	202.11	102; 109			1
288	C ₉ H ₁₄ O ₆	l-Camphoronic acid	218.11	165			1
289	C ₂ H ₁₄ O ₆	Glycerol triacetate	218.11		259	1.161	32
290	C ₀ H ₁₄ O ₇	Trimethyl citrate	234.11	79	287 d.		
291	C ₂ H ₁₄ NO	Pseudopelletierine	153.12	49	246	1.00199.6	113
292	C ₂ H ₁₅ NO ₂	d-Ecgonine	185.12	257			
293	C ₂ H ₁₅ NO ₂	<i>l</i> -Ecgonine	185.12	198 d.	İ	1.3704	1
294	C ₅ H ₁₅ NO ₅	dl-Ecgonine	185.12	212	1		1
294.1	C ₂ H ₁₄ N ₂ O ₂ S	Ergothioneine	229.21	290	1.00	0.000	1
295	C ₉ H ₁₆	Campholene	124.12	>-20	133	0.803	39
296	C ₈ H ₁₆	Nopinane	124.12	1	149.5	0.86122	47
297	CH CINO	Pulegene	124.12	240	139	0.79122	97
298 200	CH NOS	l-Ecgonine hydrochloride	221.59	246	000 .		
299	C ₉ H ₁₆ N ₂ O ₆ S ₃	Cheiroline	328.33	48	200 d.		
300	C ₉ H ₁₆ O	Camphorol	140.12		8116	1	1
301	C ₉ H ₁₆ O	α-Nopinol	140.12	102	205		1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
3303	C ₉ H ₁₆ O ₂	Amyl l-α-crotonate	156.12			0.896	360
3304	C ₉ H ₁₆ O ₂	Ethyl hexahydrobenzoate	156.12		196.5	0.9674	886
3305	C ₉ H ₁₆ O ₂	Methyl cyclohexylacetate	156.12		202	0.990014	.
3306	C ₉ H ₁₆ O ₃	Ethyl isopropylacetoacetate	172.12		205 d.	0.96026	
3307	C ₉ H ₁₆ O ₄	Azelaic acid HO ₂ C(CH ₂) ₇ CO ₂ H	188.12	106.5	360	1.029	1155
3308	C ₉ H ₁₆ O ₄	n-Butyl ethyl malonate	188.12		13012	0.97625	284
3309	C ₉ H ₁₆ O ₄	Isobutyl ethyl malonate	188.12 188.12		1208	0.96826	286
3310	C ₉ H ₁₆ O ₄	secButyl ethyl malonate Diethyl dimethylmalonate	188.12 188.12		160** 196	0.98625	310 196
3311 3312	C ₉ H ₁₆ O ₄ C ₉ H ₁₆ O ₄	Diethyl glutarate CH ₂ (CH ₂ COC ₂ H ₆) ₂	188.12		237	0.995 1.025	190
3313	C ₉ H ₁₆ O ₄	Dipropyl malonate CH ₂ (CO ₂ C ₃ H ₇) ₂	188.12		228.3	1.023	ł
3314	C ₉ H ₁₆ O ₄	Propyl isopropyl malonate	188.12		14342	0.98025	293
3314.1	C ₂ H ₁₇ BrO	l-Amyl bromobutyrate	221.05		10511	1.19625	250
3315	C ₂ H ₁₇ NO	Homotropine	155.14	85	100	1	
3316	C ₂ H ₁₇ NO	Methylpelletierine	155.14		215	ļ	
3317	C ₂ H ₁₇ NO	Triacetoneamine	155.14	39.6		ł	
3318	C ₉ H ₁₈	Cyclononane	126.14	00.0	172	0.77346	
3319	C ₉ H ₁₈	Ethylcycloheptane C ₂ H ₅ C ₇ H ₁₈	126.14	< -30	199	0.952	
3320	C.H.18	Hexahydrocumene (CH ₃) ₂ CHC ₅ H ₁₁	126.14		150	0.787	
3321	C,H18	2-Methyl-1-octene C.H12C(CH2):CH2	126.14		143		
3322	C9H18	Nonylene C ₆ H ₁₈ CH:CHCH ₈	126.14		149.9	0.75415	
3323	C ₉ H ₁₈	Propylcyclohexane C ₂ H ₇ C ₆ H ₁₁	126.14		149.5	0.767	
3324	C ₂ H ₁₈ O	dl-Pulenol	142.14		187.5	0.908	902
3325	C ₉ H ₁₈ O	Pelargonic aldehyde CH ₂ (CH ₂) ₇ CHO	142.14		93.522	0.82815	280
3326	C ₉ H ₁₈ O	Diisobutyl ketone [(CH ₂) ₂ CHCH ₂] ₂ CO.	142.14		182	0.833	,
3327	C ₉ H ₁₈ O	Isopropyl isoamyl ketone	142.14		172		
3328	C9H18O2	Pelargonic acid CH ₂ (CH ₂) ₇ CO ₂ H	158.14	12	254	0.907	340
3329	C ₉ H ₁₈ O ₂	Amyl n-butyrate C ₄ H ₉ CO ₂ C ₉ H ₁₁	158.14		184.8	0.883	184
3330	C9H18O2	Isoamyl n-butyrate	158.14		178.6	0.8824	
3330.1	C ₉ H ₁₈ O ₂	d - β -Amyl n -butyrate	158.14		7116	0.869	161
3331	C ₀ H ₁₈ O ₂	Amyl isobutyrate (CH ₃) ₂ CHCO ₂ C ₅ H ₁₁ .	158.14		155	0.859	167
3332	C ₉ H ₁₈ O ₂	Butyl n-valerate C ₄ H ₉ CO ₂ C ₄ H ₉	158.14		185.8	0.8850	1
3333	C9H18O2	Isobutyl n-valerate	158.14		167	0.854	
3333.1	C ₉ H ₁₈ O ₂	d-secButyl valerate	158.14		6718	0.860	164
3334	C ₉ H ₁₈ O ₂	Isobutyl isovalerate	158.14		168.5	0.854	162
3335	C ₉ H ₁₃ O ₂	Ethyl n-heptylate C ₆ H ₁₃ CO ₂ C ₂ H ₅	158.14		187.1	0.8724	195
3336	C ₉ H ₁₈ O ₂	n-Heptyl acetate CH ₂ CO ₂ C ₇ H ₁₅	158.14	49	191.5	0.87416	221
3337	C ₉ H ₁₈ O ₂	Methyl caprylate C ₇ H ₁₆ CO ₂ CH ₂	158.14	-41	192.9 8220	0.887	000
3338	C ₉ H ₁₈ O ₂	d - β -Octylformate Propyl caproate $C_{\delta}H_{11}CO_{2}C_{2}H_{7}$	158.14 158.14		185.5	0.87212.5	209
3339	C ₉ H ₁₈ O ₂ C ₉ H ₁₈ O ₃	Parapropional dehyde (C ₂ H ₄ O) ₂	174.14		170	0.884	
3340 3341	C ₉ H ₁₈ O ₂	Di-n-butyl carbonate (C ₄ H ₂ O) ₂ CO	174.14		207.7	0.924	
3342	C ₉ H ₁₈ O ₃	Diisobutyl carbonate	174.14		190.3	0.91916	
3343	C ₉ H ₁₈ O ₄	1, 2-Dihydroxypelargonic acid	190.14	123	100.0	0.010	
3344	C ₉ H ₁₈ O ₇	Galactite	238.14	120	142		1214
3345	C ₉ H ₁₉ N	l-1-Methylconiine	141.15		175.5	0.83224	1
3346	C ₉ H ₁₉ NO	N-Diethyl-n-valeramide	157.15		210		
3347	C ₂ H ₂₀	2, 4-Dimethylheptane	128.15		133.3	0.716	143
3348	C9H20	d-2, 5-Dimethylheptane	128.15		137	0.71516	
3349	C ₉ H ₂₀	dl-2, 5-Dimethylheptane	128.15		135.9	0.71915	144
3350	C9H20	2, 6-Dimethylheptane	128.15		132.0	0.71216	l .
3351	C ₉ H ₂₀	4-Ethylheptane (C ₂ H ₇) ₂ CHC ₂ H ₅	128.15	1	139	0.741	170
3352	C9H20	d-3-Methyloctane	128.15		143.4	0.72117	1
3353	C9H20	4-Methyloctane C ₃ H ₇ (CH ₃)CHC ₄ H ₉	128.15	1	141.6	0.73216	147
3354	C9H20	n-Nonane CH ₃ (CH ₂) ₇ CH ₃	128.15	-51 `	150.6	0.718	151
3355	C ₉ H ₂₀ O	Butyl-secbutyl carbinol	144.15		180	0.834	335
3356	C ₉ H ₂₀ O	Dibutyl carbinol (C ₄ H ₉) ₂ CHOH	144.15		194	0.823	320
3357	C ₉ H ₂₀ O	Diisobutyl carbinol	144.15		174.3	0.81642	271
3358	C,H20O	Di-secbutyl carbinol	144.15	1	171	0.836	338
3359	C ₉ H ₂₀ O	Diethylisobutyl carbinol	144.15	1	172		1
3360	C ₀ H ₂₀ O	4, 6-Dimethylheptane-2-ol	144.15		195	0.879	
3361	C ₉ H ₂₀ O	Methylethylisoamyl carbinol	144.15		175	0.829	329
3362	C ₉ H ₂₀ O	Methylethyl-tertamyl carbinol	144.15	l	166	0.832	348

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3363	C ₉ H ₂₀ O	Methylpropylisobutyl carbinol	144.15		171.3	0.826	330
3364	C ₉ H ₂₀ O	n-Nonyl alcohol CH ₂ (CH ₂) ₈ OH	144.15	-5	215	0.828	344
3365	C ₉ H ₂₀ O	Isobutyl-d-amyl ether	144.15		148.2	0.773	125
3366	C ₉ H ₂₀ O	Ethyl n-heptyl ether C ₂ H ₅ OC ₇ H ₁₅	144.15		166.6	0.79016	
3367	C ₉ H ₂₀ O	Methyl n-octyl ether CH ₃ OC ₃ H ₁₇	144.15		173	0.802	ł
336 8	C ₉ H ₂₀ O ₂	Propylidene dipropyl ether	136.15		166.2	0.849	
3369	C ₉ H ₂₀ O ₄	Ethyl orthocarbonate C(OC ₂ H ₅) ₄	192.15		159	0.917	90
3370	C ₂ H ₂₀ O ₄ S ₂	Tetronal $(C_2H_6)_2C(SO_2C_2H_6)_2$	256.28	85	105		!
3371	C ₂ H ₂₁ N	n-Nonylamine C ₉ H ₁₉ NH ₂	143.17	00.5	195	0.777	000
3372	C ₉ H ₂₁ N	Tri-n-propylamine (C ₂ H ₇) ₃ N	143.17	-93.5	156	0.757	230
3373 3374	C ₁₀ H ₂ Cl ₆ C ₁₀ H ₄ Cl ₄	a-Tetrachloronaphthalene	334.76 265.86	143 130		1	
3375	C ₁₀ H ₄ Cl ₄	β-Tetrachloronaphthalene	265.86	194	1		ļ
3376	C ₁₀ H ₄ Cl ₄	γ-Tetrachloronaphthalene	265.86	176	1		
3377	C ₁₀ H ₄ Cl ₄	8-Tetrachloronaphthalene	265.86	141			ł
3378	C ₁₀ H ₄ Cl ₄	e-Tetrachloronaphthalene	265.86	180			ļ
3379	C ₁₀ H ₄ Cl ₄	ζ-Tetrachloronaphthalene	265.86	160.5	ì		
3380	C ₁₀ H ₄ Cl ₄	vicTetrachloronaphthalene	265.86	140			ł
3381	C ₁₀ H ₄ N ₄ O ₈	α-Tetranitronaphthalene	308.06	259	exp.		
3382	C10H4N4O8	1, 2, 5, 8-Tetranitronaphthalene.:	308.06	270 d.	•		
3383	C10H4N4O8	1, 2, 6, 8-Tetranitronaphthalene	308.06	<300	1		
3384	C10H4N4O8	1, 3, 5, 8-Tetranitronaphthalene	308.06	195	Į.		-
3385	C10H4N4O8	1, 3, 6, 8-Tetranitronaphthalene	308.06	203	exp.		ĺ
3386	C10H4N4O9	2, 4, 5, 7-Tetranitro-a-naphthol	324.06	180			
3387	C ₁₀ H ₅ Cl ₂	1, 2, 3-Trichloronaphthalene	231.41	81	İ		
3388	C ₁₀ H ₆ Cl ₂	1, 2, 4-Trichloronaphthalene	231.41	92			
3389	C ₁₀ H ₆ Cl ₈	1, 2, 5-Trichloronaphthalene	231.41	78			
3390	C ₁₀ H ₄ Cl ₂	1, 2, 6-Trichloronaphthalene	231.41	97			
3391	C ₁₀ H ₆ Cl ₂	1, 2, 7-Trichloronaphthalene	231.41	88	1		
3392	C ₁₀ H ₅ Cl ₂	1, 2, 8-Trichloronaphthalene	231.41	83.5			
3393	C ₁₀ H ₅ Cl ₅	1, 3, 5-Trichloronaphthalene	231.41	103]		
3394	C ₁₀ H ₄ Cl ₂	1, 3, 6-Trichloronaphthalene	231.41	80.5	1		
3395	C ₁₀ H _s Cl ₂	1, 3, 7-Trichloronaphthalene	231.41	113			l
3396 3397	C ₁₀ H ₅ Cl ₅	1, 3, 8-Trichloronaphthalene	231.41 231.41	89.5 131			Ì
3398	C ₁₀ H ₅ Cl ₂ C ₁₀ H ₅ Cl ₂	1, 4, 5-Trichloronaphthalene	231.41	66			1
3399	C ₁₀ H ₅ Cl ₂	1, 6, 7-Trichloronaphthalene	231.41	109.5	ŀ	i	
3400	C ₁₀ H ₅ Cl ₂	2, 3, 6-Trichloronaphthalene	231.41	91			1
3401	C ₁₀ H _s Cl ₂	2, 3, 7-Trichloronaphthalene	231.41	90			
3402	C ₁₀ H ₆ NO ₁₀	Pyridinepentacarboxylic acid	299.05	220 d.			
3403	C10H6N2O6	1, 2, 5-Trinitronaphthalene	263.06	113		i	
3404	C10H6N8O6	1, 3, 5-Trinitronaphthalene	263.06	123		i	
3405	C10H5N2O6	1, 3, 8-Trinitronaphthalene	263.06	218	1		
3406	C10H6N8O6	1, 4, 5-Trinitronaphthalene	263.06	247	l		
3407	C10H5N3O7	2, 4, 5-Trinitro-a-naphthol	279.06	189.5	į		
3408	C10H5N3O7	2, 4, 7-Trinitro-a-naphthol	279.06	145			
3409	C ₁₀ H ₆ N ₂ O ₇	2, 4, 8-Trinitro-\alpha-naphthol	279.06	175	ł		
3410	C ₁₀ H ₆ ClNO ₂	4-Chloro-1-nitronaphthalene	207.51	84	ì		
3411	C ₁₀ H ₆ ClNO ₂	7-Chloro-1-nitronaphthalene	207.51	116			
3412	C ₁₀ H ₆ Cl ₂	1, 2-Dichloronaphthalene	196.96	37	282	1.31548.6	1076
3413	C ₁₀ H ₆ Cl ₂	1, 3-Dichloronaphthalene	196.96	61	289		
3414	C ₁₀ H ₆ Cl ₂	1, 4-Dichloronaphthalene	196.96	68	287.6	1.3004	1104
3415	C ₁₀ H ₆ Cl ₂	1, 5-Dichloronaphthalene	196.96	107	İ	1	
3416	C ₁₀ H ₆ Cl ₂	1, 6-Dichloronaphthalene	196.96	48	000	1 001100	1
3417	C ₁₀ H ₆ Cl ₂	1, 7-Dichloronaphthalene	196.96	62	286	1.261400	1149
3418	C ₁₀ H ₆ Cl ₂	1, 8-Dichloronaphthalene	196.96	88	d.	1.292400	1150
3419 3420	C ₁₀ H ₆ Cl ₂	2, 3-Dichloronaphthalene	196.96 196.96	120 135	285		1
3420 3421	C ₁₀ H ₆ Cl ₂ C ₁₀ H ₆ Cl ₂	2, 7-Dichloronaphthalene	196.96	135	200		1
3421 3422	C ₁₉ H ₆ Cl ₂ O	2, 3-Dichloro- α -naphthol	212.96	101			1
3422 3423	C ₁₀ H ₆ Cl ₂ O	2, 4-Dichloro-α-naphthol	212.96	101	I		1
3424	C ₁₀ H ₆ Cl ₂ O	5, 7-Dichloro-\are naphthol.	212.96	132	1		1
- TOT	C ₁₀ H ₆ Cl ₂ O	5, 8-Dichloro-α-naphthol	212.96	115	I	ı	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
3426	C ₁₀ H ₆ Cl ₂ O	6, 7-Dichloro-\alpha-naphthol	212.96	151	1		
3427	C ₁₀ H ₆ Cl ₂ O	7, 8-Dichloro-α-naphthol	212.96	95			
3428	C ₁₀ H ₆ Cl ₂ O	1, 3-Dichloro-β-naphthol	212.96	81		1 .	
3429	C ₁₀ H ₆ Cl ₂ O	1, 4-Dichloro-β-naphthol	212.96	124			
3429.1	C ₁₀ H ₆ Cl ₂ O	3, 6-(6, 8)-Dichloro-β-naphthol	212.96	125	1		
3430	C10H6Cl2O4S2	Naphthalene-1, 5-disulfonechloride	325.09	183			
3431	C ₁₀ H ₆ Cl ₂ O ₄ S ₂	Naphthalene-1, 6-disulfonechloride	325.09	129			İ
3432	C ₁₀ H ₆ Cl ₂ O ₄ S ₂	Naphthalene-2, 6-disulfonechloride	325.09	226			1
34 33	C ₁₀ H ₆ Cl ₂ O ₄ S ₂	Naphthalene-2, 7-disulfonechloride	325.09	162 269	i		
3434	C ₁₀ H ₆ N ₂ O ₂	Pyrocoll	186.06		i		
3435 3436	C ₁₀ H ₆ N ₂ O ₄	1, 3-Dinitronaphthalene	218.06 218.06	103 145	l		
3437	C ₁₀ H ₆ N ₂ O ₄ C ₁₀ H ₆ N ₂ O ₄	1, 4-Dinitronaphthalene	218.06	143 129			
3438	C ₁₀ H ₆ N ₂ O ₄	1, 5-Dinitronaphthalene	218.06	216	1		i
343 9	C ₁₀ H ₆ N ₂ O ₄	1, 6-Dinitronaphthalene	218.06	162			
3440	C ₁₀ H ₆ N ₂ O ₄	1, 7-Dinitronaphthalene	218.06	156	1		1
3441	C ₁₀ H ₆ N ₂ O ₄	1, 8-Dinitronaphthalene	218.06	170			1
3442	C ₁₀ H ₆ N ₂ O ₅	2, 4-Dinitro-α-naphthol	234.06	138			
3443	C ₁₀ H ₆ N ₂ O ₆	4, 5-Dinitro- α -naphthol	234.06	230 d.			
3444	C ₁₀ H ₆ N ₂ O ₆	4, 8-Dinitro-α-naphthol	234.06	235 d.			
3445	C ₁₀ H ₆ N ₂ O ₆	1, 6-Dinitro-β-naphthol	234.06	235 d. 195			
3446	C ₁₀ H ₆ N ₂ O ₆	1, 8-Dinitro-β-naphthol	234.06	198			
3447	C ₁₀ H ₆ O ₂	1, 2-Naphthoquinone	158.05	120 d.	i		
3448	C ₁₀ H ₆ O ₂	1, 4-Naphthoquinone	158.05	125 d. 125			
3449	C ₁₀ H ₆ O ₂	2, 6-Naphthoquinone	158.05	135			
3450	C ₁₀ H ₆ O ₃	Mellophanic acid	254.05	238			
3451	C ₁₀ H ₆ O ₈	Prehnitic acid	254.05	237 d.	ł		
3452	C ₁₀ H ₆ O ₈	Pyromellitic acid	254.05	264	ľ		
3453	C ₁₀ H ₇ Br	a-Bromonaphthalene	206.97	5	281.1	1.476	799
3454	C ₁₀ H ₇ Br	8-Bromonaphthalene	206.97	59	282	1.6050	''
3455	C ₁₀ H ₇ Cl	a-Chloronaphthalene	162.51	30	258	1.191	795
3456	C ₁₀ H ₇ Cl	β -Chloronaphthalene	162.51	56	264.3	1.13840.7	1102
3457	C ₁₀ H ₇ ClO	2-Chloro-a-naphthol	178.51	70			
3458	C ₁₀ H ₇ ClO	4-Chloro-a-naphthol	178.51	117			
3459	C ₁₀ H ₇ ClO	5-Chloro-\a-naphthol	178.51	131.5			ŀ
3460	C ₁₀ H ₇ ClO	6-Chloro-a-naphthol	178.51	94			1
3461	C ₁₀ H ₇ ClO	7-Chloro-a-naphthol	178.51	123	İ		j
3462	C ₁₀ H ₇ ClO	1-Chloro-β-naphthol	178.51	71]		
3463	C ₁₀ H ₇ ClO	5-Chloro-β-naphthol	178.51	128			
3464	C ₁₀ H ₇ ClO	6-Chloro-β-naphthol	178.51	115	Ì		
3465	C ₁₀ H ₇ ClO	7-Chloro-β-naphthol	178.51	126.5			1
3466	C ₁₀ H ₇ ClO	8-Chloro-β-naphthol	178.51	101	308		
3467	C ₁₀ H ₇ ClO ₂ S	Naphthalene-1-sulfonechloride	226.58	68	19513		
3468	C ₁₀ H ₇ ClO ₂ S	Naphthalene-2-sulfonechloride	226.58	76	20113		
3469	$C_{10}H_7F$	α-Fluoronaphthalene	146.05		216.5	1.1350	
3470	$C_{10}H_7F$	β -Fluoronaphthalene	146.05	59	212.5		
3471	C ₁₀ H ₇ IO	1-Iodo-β-naphthol	269.99	94.5	•		
3472	C ₁₀ H ₇ NO	Cinnamyl cyanide C.H.CH:CH2COCN.	157.06	115	1		
347 3	C ₁₀ H ₇ NO ₂	α-Nitronaphthalene	173.06	58 .8	304	1.3314	
3474	C ₁₀ H ₇ NO ₂	β-Nitronaphthalene	173.06	79	16516		
3475	C ₁₀ H ₇ NO ₂	2-Nitroso-α-naphthol	173.06	152			
3476	C ₁₀ H ₇ NO ₂	4-Nitroso-α-naphthol	173.06	194		'	1
3477	C ₁₀ H ₇ NO ₂	1-Nitroso-β-naphthol	173.06	109.5		1	1
3478	C ₁₀ H ₇ NO ₂	Cinchoninic acid	173.06	254			1
3479	C ₁₀ H ₇ NO ₂	Quinaldinic acid	173.06	156		1	1
3480	C ₁₀ H ₇ NO ₂	Quinoline-3-carboxylic acid	173.06	275	ŀ	1	1
3481	C ₁₀ H ₇ NO ₂	Quinoline-6-carboxylic acid	173.06	292			1
3482	C ₁₀ H ₇ NO ₂	Quinoline-7-carboxylic acid	173.06	249		1	
3483	C ₁₀ H ₇ NO ₂	Quinoline-8-carboxylic acid	173.06	187.5		1	[
3484	C ₁₀ H ₇ NO ₂	a-Kynurenic acid	189.06	283		1	
3485	C H NO	2-Nitro- α -naphthol	189.06	128 168		1	
3486 2487	C ₁₀ H ₇ NO ₃	3-Nitro-a-naphthol	189.06	164		1	
3487	C ₁₀ H ₇ NO ₈	4-Nitro-α-naphthol	189.06	104	I	I .	•

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3488	C ₁₀ H ₇ NO ₈	5-Nitro-α-naphthol	189.06	171	İ	İ	i i
3489	C ₁₀ H ₇ NO ₃	1-Nitro-β-naphthol	189.06	103			
3490	C ₁₀ H ₇ NO ₈	5-Nitro-β-naphthol	189.06	147			
3491	C ₁₀ H ₇ NO ₃	6-Nitro-β-naphthol	189.06	158			
3492	C ₁₀ H ₇ NO ₃	8-Nitro-β-naphthol	189.06	145			
3493	C ₁₀ H ₇ NO ₄	Indoledicarboxylic acid	205.06	>250 d.			
3494	C ₁₀ H ₈	Naphthalene C ₁₀ H ₃	128.06	80.1	217.9	1.145	1143
3495	C ₁₀ H ₈ Cl ₄	Naphthalenetetrachloride	269.89	182			
3496	C ₁₀ H ₁₀ IN	Quinoline methiodide C ₂ H ₇ N.CH ₂ I	271.02	133	000		
3497	C ₁₀ H ₈ N ₂	2, 3'-Dipyridyl	156.08		289	1 104	
3498 3499	C ₁₀ H ₈ N ₂ C ₁₀ H ₈ N ₂	3, 3'-Dipyridyl	156.08 156.08	68	296.5 304.8	1.164	
3500	C ₁₀ H ₈ N ₂	4, 4'-Dipyridyl	156.08 156.08	112 148	<304.8 <300		
3501	C ₁₀ H ₈ N ₂ O ₂	3-Nitro-α-naphthylamine	188.08	137	<300		
3502	C ₁₀ H ₈ N ₂ O ₂	6-Nitro-α-naphthylamine	188.08	143			
3502 3503	C ₁₀ H ₈ N ₂ O ₃	7-Nitro-α-naphthylamine	188.08	122			· I
3504	C ₁₀ H ₈ N ₂ O ₂	1-Nitro-β-naphthylamine	188.08	127			
3505	C ₁₀ H ₈ N ₂ O ₂	5-Nitro-β-naphthylamine	188.08	143			
3506	C ₁₀ H ₈ N ₂ O ₂	8-Nitro-β-naphthylamine	188.08	105			
3507	C ₁₀ H ₈ O	α-Naphthol C ₁₀ H ₇ OH.	144.06	96	280	1.099***	1126
3508	C ₁₀ H ₈ O	β-Naphthol C ₁₀ H ₇ OH	144.06	122	286	1.2174	1333
3509	C ₁₀ H ₈ O ₂	1, 2-Dihydroxynaphthalene	160.06	60	200	1.217	1000
3510	C ₁₀ H ₈ O ₂	1, 3-Dihydroxynaphthalene	160.06	125			
3511	C ₁₀ H ₈ O ₂	1, 4-Dihydroxynaphthalene	160.06	176			
3512	C ₁₀ H ₈ O ₂	1, 5-Dihydroxynaphthalene	160.06	258			
3513	C ₁₀ H ₈ O ₂	1, 6-Dihydroxynaphthalene	160.06	138			
3514	C ₁₀ H ₈ O ₂	1, 7-Dihydroxynaphthalene	160.06	178			
3515	C ₁₀ H ₈ O ₂	1, 8-Dihydroxynaphthalene	160.06	140			
3516	C ₁₀ H ₈ O ₂	2, 3-Dihydroxynaphthalene	160.06	159			
3517	C ₁₀ H ₈ O ₂	2, 6-Dihydroxynaphthalene	160.06	216	1		1
3518	C10H8O2	2, 7-Dihydroxynaphthalene	160.06	190			
3519	C ₁₀ H ₈ O ₂ S	Naphthalene-1-sulfinic acid	192.13	85			
3520	C10H2O2S	Naphthalene-2-sulfinic acid	192.13	105			
3521	C ₁₀ H ₈ O ₈	1, 4, 5-Trihydroxynaphthalene	176.06	170			
3522	C ₁₀ H ₈ O ₈	1, 3, 6-Trihydroxynaphthalene	176.06	97	1		
3523	C ₁₀ H ₈ O ₈	2-Benzoylacrylic acid	176.06	99	13.0		
3524	C10H8O3S	Naphthalene-1-sulfonic acid	208.13	90			
3525	C10H8O3S	Naphthalene-2-sulfonic acid	208.13	102			
3526	C ₁₀ H ₈ O ₄	Anemonin	192.06	189 s. d.	300 d.		
3527	C ₁₀ H ₈ O ₄	o-Carboxycinnamic acid	192.06	175			1
3528	C ₁₀ H ₈ O ₄	Furoin	192.06	135			
3529	C10H8O4	β -Methylesculetin	192.06	204			1
3530	C ₁₀ H ₈ O ₄	Scopoletin	192.06	204	İ		
3531	C ₁₀ H ₈ O ₄	1, 4, 5, 6-Tetrahydroxynaphthalene	192.06	154			1
3532	C ₁₀ H ₈ O ₄ S	α-Naphthol-2-sulfonic acid	224.13	<250			
3533	C ₁₀ H ₈ O ₄ S	α-Naphthol-4-sulfonic acid	224.13	170 d.			
3534	C ₁₀ H ₈ O ₄ S	α-Naphthol-5-sulfonic acid	224.13	120			
3535	C ₁₀ H ₈ O ₄ S	a-Naphthol-8-sulfonic acid	224.13	107			
3536	C ₁₀ H ₈ O ₄ S	β-Naphthol-6-sulfonic acid	224.13	125			
3537	C ₁₀ H ₈ O ₄ S	β-Naphthol-7-sulfonic acid	224.13	89			
3538	C ₁₀ H ₈ O ₆	Fraxetin	208.06	227			1202
3539	C ₁₀ H ₂ O ₆ S ₂	Naphthalene-1, 5-disulfonic acid	288.19	d.			1303
3540 3541	C ₁₀ H ₂ O ₆ S ₂ C ₁₀ H ₂ O ₇	Naphthalene-1, 6-disulfonic acid	288.19 240.06	125 d. 178			1271
3542	C ₁₀ H ₈ O ₇	α-Thionaphthol C ₁₀ H ₇ SH	240.06 160.13	110	285 d.	1.14623	
3543	C ₁₀ H ₂ S	β-Thionaphthol C ₁₀ H ₇ SH	160.13	81	285 a. 288 s. d.	1.550	
3544	C ₁₀ H ₉ Cl ₈ O ₂	Chloralacetophenone	267.44	77	200 8. U.	1.000	1
3545	C ₁₀ H ₉ N	3-Methylquinoline	143.08	14	250	1.074	
3546	C ₁₀ H ₉ N	4-Methylquinoline (Lepidine)	143.08	14	262	1.086	
3547	C ₁₀ H ₉ N	6-Methylquinoline	143.08		255	1.066	1003
3548	C ₁₀ H ₉ N	7-Methylquinoline	143.08		252.5	1.072	788
3549	C ₁₀ H ₉ N	8-Methylquinoline	143.08		143*4	1.073	789

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3551	C10H9N	β-Naphthylamine C ₁₀ H ₇ NH ₂	143.08	110.2	306.1	1.0614	
3552	C ₁₀ H ₉ NO	3-Amino-β-naphthol	159.08	234]
3553	C ₁₀ H ₉ NO	7-Amino-β-naphthol	159.08	163		1	1
3554	C ₁₀ H ₉ NO	2-Hydroxyquinaldine	159.08	205	}		1
3555	C ₁₀ H ₉ NO	4-Hydroxyquinaldine	159.08	231			1
3556	C ₁₀ H ₉ NO	6-Hydroxyquinaldine	159.08	213	1		1
3557	C ₁₀ H ₉ NO	7-Hydroxyquinaldine	159.08	234			ł
3558	C ₁₀ H ₉ NO	8-Hydroxyquinaldine	159.08	74	267		1
3559	C ₁₀ H ₉ NO	Echinopsine	159.08	152			1
3560	C ₁₀ H ₉ NO ₂	α-Scatolecarboxylic acid	175.08	165		1	1
3572	C ₁₀ H ₉ N ₈ O ₄	Anilalloxan	235.09	248 d.	04 516	0.007	
3573	C ₁₀ H ₁₀	1, 2-Dihydronaphthalene	130.08	-9	84.516	0.997	
2574	C ₁₀ H ₁₀	1, 4-Dihydronaphthalene	130.08	15.5	212	0.998	844
3575	C ₁₀ H ₁₀	1-Ethyl-2-phenylacetylene	130.08		203	0.923	
3576	C ₁₀ H ₁₀	Phenylcrotonylene C ₆ H ₅ CH:CHC ₂ H ₅	130.08		190		
3578	C ₁₀ H ₁₀ Cl ₂ NO ₃	Chloral-p-acetaminophenol	298.46	160 d.			
3579	C ₁₀ H ₁₀ NO ₄	Oxycannabin	208.09	182			
3580	C ₁₀ H ₁₀ N ₂	Naphthylene-1, 2-diamine	158.09	96		1	
3581	C ₁₀ H ₁₀ N ₂	Naphthylene-1, 4-diamine	158.09	120		1	1
3582	C ₁₀ H ₁₀ N ₂	Naphthylene-1, 5-diamine	158.09	189.5			
3583	C ₁₀ H ₁₀ N ₂	1, 6-Naphthylenediamine	158.09	77.5		1.1474	1137
3584	C ₁₀ H ₁₀ N ₂	1, 8-Naphthylenediamine	158.09	66.5		1.1274	1135
3585	C ₁₀ H ₁₀ N ₂ O	N-Phenyl-3-methylpyrazolone	174.09	127	19117	ì	1287
3586	C ₁₀ H ₁₀ N ₂ O ₄ S	N-Sulfophenyl-3-methylpyrazolone	254.16	320 d.			
3587	$C_{10}H_{10}O$	Benzylideneacetone	146.08	42	262	1.008	1068
3588	C ₁₀ H ₁₀ O	1, 2-Dihydro-β-naphthol	146.08	35	16428	1	
3589	C ₁₀ H ₁₀ O ₂	cis-Isosafrol	162.08	>-18	243	1.1174	868
3590	C ₁₀ H ₁₀ O ₂	trans-Isosafrol	162.08		248	1.1234	869
3591	C ₁₀ H ₁₀ O ₂	Safrol CH ₂ :O ₂ :C ₆ H ₃ C ₂ H ₆	162.08	11	234.5	1.096	812
3592	C ₁₀ H ₁₀ O ₂	Benzoylpropionaldehyde	162.08	ŀ	244.4	0.99815	
3593	C ₁₀ H ₁₀ O ₂	Benzoylacetone C ₆ H ₅ COCH ₂ COCH ₃	162.08	61	262	1.09060	1106
3594	C ₁₀ H ₁₀ O ₂	1-Benzylacrylic acid CH ₂ :C(C ₇ H ₇)CO ₂ H		69			
3595	C ₁₀ H ₁₀ O ₂	1-Benzylidenepropionic acid	162.08	74	288		
3596	C ₁₀ H ₁₀ O ₂	2-Benzylidenepropionic acid	162.08	86	302		
3597	C ₁₀ H ₁₀ O ₂	3-Phenylcrotonic acid	162.08	65		1	
3598	C ₁₀ H ₁₀ O ₂	Allyl benzoate C ₆ H ₅ CO ₂ C ₃ H ₅	162.08	ŀ	230	1.05816	
3599	C ₁₀ H ₁₀ O ₂	Benzyl acrylate C ₂ H ₃ CO ₂ CH ₂ C ₆ H ₅	162.08		110*	1.0694	
3600	C ₁₀ H ₁₀ O ₂	Methyl cinnamate	162.08	36	259.6	1.0420	973
3601	C ₁₀ H ₁₀ O ₂	Phenylvinyl acetate	162.08		12110	1.065	999
3602	C ₁₀ H ₁₀ O ₃	o-Coniferylaldehyde		131			
3603	C ₁₀ H ₁₀ O ₃	p-Coniferylaldehyde	178.08	82.5			ļ
3604	C ₁₀ H ₁₀ O ₃	m-Methoxycinnamic acid	178.08	115			
3605	C ₁₀ H ₁₀ O ₈	p-Methoxycinnamic acid	178.08	169			
3606	C ₁₀ H ₁₀ O ₃	Methyl benzoylacetate	178.08	ļ	265 d.	1.158	712
3607	C ₁₀ H ₁₀ O ₄	1-Benzoyllactic acid	194.08	112		İ	1
3608	C ₁₀ H ₁₀ O ₄	Benzylmalonic acid	194.08	117			l l
3609	C ₁₀ H ₁₀ O ₄	Ferulic acid	194.08	169			l l
3610	C ₁₀ H ₁₀ O ₄	Hesperetinic acid	194.08	228			1
3611	C ₁₀ H ₁₀ O ₄	o-Phenylenediacetic acid	19 4 . 08	150		1	1
3612	C ₁₀ H ₁₀ O ₄	m-Phenylenediacetic acid	19 4 .08	170		1	
3613	C ₁₀ H ₁₀ O ₄	p-Phenylenediacetic acid	194.08	241	1	ł	
3614	C ₁₀ H ₁₀ O ₄	Dimethyl isophthalate	194.08	68			
3615	C ₁₀ H ₁₀ O ₄	Dimethyl o-phthalate	194.08		282	1.18926	
3616	C ₁₀ H ₁₀ O ₄	Dimethyl terephthalate	19 4 .08	140	>300		1
3617	C ₁₀ H ₁₀ O ₄	Ethyl hydrogen o-phthalate	194.08	48			
3618	C ₁₀ H ₁₀ O ₄	Hydroquinone diacetate	194.08	124	1		
3619	C ₁₀ H ₁₀ O ₄	Methyl acetylsalicylate	194.08	54		ł	1
3620	C ₁₀ H ₁₀ O ₄	Resorcinol diacetate	194.08		278 s. d.		1
3621	C ₁₀ H ₁₀ O ₄	Meconin	194.08	101	155		
3622	C ₁₀ H ₁₀ O ₄	Salacetol o-HOC ₆ H ₄ CO ₂ CH ₂ COCH ₃	194.08	71	1		ł
3623	C10H10O6	Larixinic acid	210.08	153	1		1
3624	C ₁₀ H ₁₀ O ₆	Opianic acid	210.08	150	1		1333
3625	C ₁₀ H ₁₀ O ₆	Apiolic acid	226.08	175	1	ļ	I

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
3626	C10H10O6	Hemipinic acid	226.08	186			T
3627	C10H11NO2	Acetoacetanilide	177.09	85			
362 8	C ₁₀ H ₁₁ NO ₂	Diacetanilide (CH ₂ CO) ₂ N.C ₆ H ₅	177.09	37	14211		
362 9	C ₁₀ H ₁₁ NO ₃	p-Diacetylaminophenol	193.09	118			1
3630	C10H11NO	Ethyl oxanilate	193.09	67	300	1	
3631	C ₁₀ H ₁₁ NO ₂	Methyl hippurate	193.09	80.5	ł	ļ	
3632	C ₁₀ H ₁₁ NO ₂	dl-Benzoylalanine	193.09	166			
3635	C ₁₀ H ₁₁ NO ₄	Benzacetin	209.09	205	1		
3636	C ₁₀ H ₁₁ N ₂ O ₄	4-Nitro-1, 3-diacetylphenylenediamine	237.11	246	207.2	0.071	931
3637 3638	C ₁₀ H ₁₂	1, 2, 3, 4-Tetrahydronaphthalene	132.09 132.09	-30	207.2	0.971	930
3639	C ₁₀ H ₁₂ C ₁₀ H ₁₂	β-Phenyl-β-butylene	132.09	-30	189	0.90121	966
3640	C ₁₀ H ₁₂ Br ₂ O	2, 4-Dibromothymol	307.92	4	17525	1.65917.4	300
3641	C ₁₀ H ₁₂ Br ₂ O ₂	Isoeugenol-1, 2-dibromide	323.92	102	173	1.00917.4	
3642	C ₁₀ H ₁₂ N ₂	Isonicoteine	160.11	102	293	1.098	760
3643	C ₁₀ H ₁₂ N ₂	Nicoteine	160.11	1	267	1.07812	100
3643.1	C ₁₀ H ₁₂ N ₂ O	1-Allyl-2-phenylurea	176.11	115.5	201	1.075	
3644	C ₁₀ H ₁₂ N ₂ O ₂	Diacetyl-o-phenylenediamine	192.11	186		1	
3645	C ₁₀ H ₁₂ N ₂ O ₂	Diacetyl-m-phenylenediamine	192.11	191			
3646	C ₁₀ H ₁₂ N ₂ O ₂	Diacetyl-p-phenylenediamine	192.11	160	1		
3647	C ₁₀ H ₁₂ N ₂ O ₂	5, 5-Diallylbarbituric acid	208.11	171			
3648	C ₁₀ H ₁₂ O	p-Anethol p-CH ₂ OC ₆ H ₄ CH:CHCH ₂	148.09	22.5	235.3	0.986	1044
3649	C ₁₀ H ₁₂ O	1, 2, 3, 4-Tetrahydro- α -naphthol	148.09	22.0	14017	1.090	917
3650	C ₁₀ H ₁₂ O	5, 6, 7, 8-Tetrahydro-a-naphthol	148.09	68	265.3	1.000	""
3651	C ₁₀ H ₁₂ O	1, 2, 3, 4-Tetrahydro-β-naphthol	148.09	00	265.5	1.071	
3652	C ₁₀ H ₁₂ O	5, 6, 7, 8-Tetrahydro- β -naphthol	148.09	57.5	276	1.011	
3653	C ₁₀ H ₁₂ O	Benzyl allyl ether C ₆ H ₅ CH ₂ OC ₂ H ₅	148.09	01.0	204	1	
3654	C ₁₀ H ₁₂ O	Ethyl styryl ether C ₀ H ₆ CH:CHOC ₂ H ₆	148.09	1	226	0.982	893
3655	C ₁₀ H ₁₂ O	Methyl chavicyl ether	148.09		216	0.965	676
3656	C ₁₀ H ₁₂ O	Cumic aldehyde (CH ₃) ₂ CHC ₆ H ₄ CHO	148.09		235	0.978	698
3657	C ₁₀ H ₁₂ O	Mesitylinic aldehyde	148.09		237		
3658	C ₁₀ H ₁₈ O	3, 4, 5-Trimethylbenzaldehyde	148.09	52			
3659	C ₁₀ H ₁₂ O	Benzyl acetone C ₆ H ₅ (CH ₂) ₂ COCH ₃	148.09		236	0.98918	
3660	C10H18O	Ethyl benzyl ketone	148.09		230.2	1.002	
3661	C ₁₀ H ₁₂ O	Phenyl isopropyl ketone	148.09		217	0.984	879
3662	C10H12O	Phenyl n-propyl ketone	148.09	11	232.3	0.988	
3663	C10H12O	p-Tolylacetone	148.09	51	233		
3664	C10H12O	p-Tolyl ethyl ketone	148.09		239768	0.993	690
3665	C10H12O2	3, 5, 6-Trimethyl-2-hydroxybenzaldehyde	164.09	106			
3666	C10H12O2	Eugenol	164.09		253	1.07115	841
3667	C10H12O2	Isoeugenol	164.09	-10	267.5	1.080	936
366 8	C ₁₀ H ₁₂ O ₂	Cumic acid (CH ₂) ₂ CHC ₄ H ₄ CO ₂ H	164.09	116.5		1.1634	
3669	C ₁₀ H ₁₂ O ₂	o-Isopropylbenzoic acid	164.09	51		1	
3670	C ₁₀ H ₁₈ O ₂	3-Phenylbutyric acid C ₆ H ₅ (CH ₂) ₅ CO ₂ H	164.09	47.5	290		
3671	C ₁₀ H ₁₂ O ₂	o-Propylbenzoic acid o-C ₂ H ₇ C ₂ H ₄ CO ₂ H.	164.09	58	273		
3672	C ₁₀ H ₁₂ O ₂	p-Propylbenzoic acid	164.09	141		1	
3673	C ₁₀ H ₁₂ O ₂	3, 4, 5-Trimethylbenzoic acid	164.06	215	1		
3674	C ₁₀ H ₁₂ O ₂	2, 4, 5-Trimethylbenzoic acid	164.09	149.5			
3675	C10H12O2	2, 4, 6-Trimethylbenzoic acid	164.09	152			
3676	C ₁₀ H ₁₂ O ₂	Benzyl propionate	164.09	•	220	1.03617-8	
3677	C ₁₀ H ₁₈ O ₂	Ethyl phenylacetate C.H.CH2CO2C2H5	164.09		226	1.031	589
3678	C ₁₀ H ₁₈ O ₂	Ethyl o-toluate CH ₂ C ₂ H ₄ CO ₂ C ₂ H ₅	164.09		221.3	1.033	629
3679	C ₁₀ H ₁₂ O ₂	Ethyl m-toluate CH ₂ C ₆ H ₄ CO ₂ C ₂ H ₅	164.09		226.4	1.028	624
3680	C ₁₀ H ₁₂ O ₂	Ethyl p-toluate CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₅	164.09		228	1.026	636
3681	C ₁₀ H ₁₂ O ₂	Isopropyl benzoate	164.09		218.5	1.01716	-0-
3681.1	C ₁₀ H ₁₈ O ₂	d-Methylbenzylcarbinyl formate	164.09		11019	1.02722	595
3682	C ₁₀ H ₁₈ O ₂	Methyl hydrocinnamate	164.09		239	1.01849	.1
3683	C ₁₀ H ₁₂ O ₂	Phenyl n-butyrate C ₃ H ₇ CO ₂ C ₆ H ₅	164.09	P4 A	228	1.02715	į
3684	C ₁₀ H ₁₂ O ₂	n-Propyl benzoate C ₆ H ₅ CO ₂ C ₈ H ₇	164.09	-51.6	231.2	1.027	
3685	C ₁₀ H ₁₂ O ₂	Thymoquinone	164.09	45.5	232	1	
3686 3687	C ₁₀ H ₁₂ O ₂ C ₁₀ H ₁₂ O ₂	Coniferyl alcoholBenzyl lactate	180.09 180.09	74	1306	1	1025
			1241 (124)		1.5119		

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
3689	C ₁₀ H ₁₂ O ₈	Ethyl mandelate	180.09	34	255		
3690	C10H12O3	Propyl salicylate o-HOC ₆ H ₄ CO ₂ C ₂ H ₇	180.09		240	1.09916	
3691	C ₁₀ H ₁₂ O ₄	Cantharic acid	196.09	278			
3692	C ₁₀ H ₁₂ O ₄	Ethyl vanillate	196.09	44	293		
3693	C ₁₀ H ₁₂ O ₄	Cantharidin	196.09	212			
3694	C10H12O4	Guaiacyl methyl glycollate	196.09	Δ.	15615	1.180	-
3695	C ₁₀ H ₁₂ O ₄	Sparassol	196.09	68			
3696	C ₁₀ H ₁₂ O ₆	Asaronic acid	212.09	144	300	1 000	
3697	C ₁₀ H ₁₂ O ₅	Glycerol monosalicylate	212.09	76		1.366	
3698	C ₁₀ H ₁₂ O ₆	β-Anemoninic acid	228.09 184.56	189			
3699	C ₁₀ H ₁₂ ClO	4-Chlorothymol		64 64			
3700	C ₁₀ H ₁₃ ClO	6-Chlorothymol	184.56	04			
3701	C ₁₀ H ₁₂ N	Kairoline (1-Methyl-1, 2, 3, 4-tetrahydro-	147 11	ļ	245.5	1.021	1005
9700	CHN	quinoline)	147.11 147.11	1	276.8	1.021	1005
3702	C ₁₀ H ₁₁ N		147.11	38	278.5	1.034	986
3703	C ₁₀ H ₁₁ N	5, 6, 7, 8-Tetrahydro-β-naphthylamine	147.11 163.11	56	2/8.5	1.0294	900
3704	C ₁₀ H ₁₁ NO	o-Acetylmethyltoluidine	163.11	80	1		
3705	C ₁₀ H ₁₁ NO	p-Acetylmethyltoluidine		92	18916		
3706	C ₁₀ H ₁₂ NO		163.11		199.		
3707	C ₁₀ H ₁₁ NO	3, 5-Dimethylacetanilide ω-Dimethylaminoacetophenone	163.11 163.11	174			
3708	C ₁₀ H ₁₈ NO	N-Ethylacetanilide		59	259	0.9944	
3709	C ₁₀ H ₁₂ NO		163.11	54.5		0.9944	
3710	C ₁₀ H ₁₁ NO	Thalline	163.11 179.11	43	283.8		
3711	C ₁₀ H ₁₂ NO ₂	1-Anilinobutyric acid		141			
3712	C ₁₀ H ₁₂ NO ₂	Propyl p-aminobenzoate	179.11	76 79	<250		
3713 3714	C ₁₀ H ₁ ,NO ₂	o-Acetphenetidine	179.11 179.11		\ 250		
	C ₁₀ H ₁₂ NO ₂	m-Acetphenetidine		96	15218	1.08514	
3715	C ₁₀ H ₁₂ NO ₂	2-Nitrocymene	179.11 179.11	195	d.	1.085**	1246
3716 3717	C ₁₀ H ₁₂ NO ₂	Phenacetin C ₂ H ₆ OC ₆ H ₄ NHCOCH ₁ Damascenine	179.11	135 27	168		1240
3717 3718	C ₁₀ H ₁₂ NO ₂	2-Nitrothymol	195.11	119	108		İ
	C ₁₀ H ₁₂ NO ₂	4-Nitrothymol	195.11 195.11	142			1
3719 3720	C ₁₀ H ₁₂ NO ₃	Ratanhine	195.11	252			İ
3720 3721	C ₁₀ H ₁₂ NO ₂	Surinamine (N-Methyltyrosine)	195.11	280 d.	1		1
3721 3722	C ₁₀ H ₁₂ NO ₃	2, 4-Dinitro-N-diethylaniline	239.12	80 d.	-		1
3722 3723	C ₁₀ H ₁₂ N ₂ O ₄ C ₁₀ H ₁₂ N ₂ O ₅	Vernine	283.14	240	1		1
3723 3724	C ₁₀ H ₁₄	n-Butylbenzene CH ₃ (CH ₂) ₃ C ₆ H ₅	134.11	240	180	0.862	554
3725	C10H14	secButylbenzene C ₂ H ₆ (CH ₂)CHC ₆ H ₅	134.11		175	0.860	550
3726	C ₁₀ H ₁₄	tertButylbenzene (CH ₃) ₂ C.C ₆ H ₆	134.11		168.7	0.867	582
3727	C ₁₀ H ₁₄	o-Cymene o-CH ₂ (CH ₂) ₂ C ₆ H ₄ CH ₂	134.11		157	0.85818	601
3728	C ₁₀ H ₁₄	m-Cymene m-CH ₂ (CH ₂) ₂ C ₄ H ₄ CH ₄	134.11	> -25	175	0.860	559
3728.1		p-Cymene p -CH ₃ (CH ₂) ₂ C ₆ H ₄ CH ₃	134.11	-73.5	176	0.857	1022
3729	C ₁₀ H ₁₄	o -Diethylbenzene o - $(C_2H_4)_2C_6H_4$	134.11	<-20	184.5	0.866	1022
3730	C ₁₀ H ₁₄	m -Diethylbenzene m - $(C_2H_4)_2C_6H_4$	134.11	<-20	182	0.860	1
3731	C ₁₀ H ₁₄	p -Diethylbenzene p - $(C_2H_6)_2C_6H_4$	134.11	-35	183	0.865	569.1
3732	C ₁₀ H ₁₄	1, 2, 4, 5-Tetramethylbenzene	134.11	80	195	0.83841.8	1273
3733	C ₁₀ H ₁₄	4-Ethyl-m-xylene $C_2H_4C_6H_4(CH_4)_2$	134.11	<-20	183	0.878	
3734	C ₁₀ H ₁₄	5-Ethyl- m -xylene $C_2H_4C_6H_4(CH_4)_2$	134.11	< -20	185	0.861	Į
3735	C ₁₀ H ₁₄	Hexahydronaphthalene	134.11	`	205.5	0.934	1
3736	C ₁₀ H ₁₄	Isobutylbenzene (CH ₂) ₂ CHCH ₂ C ₆ H ₅	134.11		171.4	0.85816	562
3739	C ₁₀ H ₁₄	1, 2, 3, 5-Tetramethylbenzene	134.11		197	0.8962	
3740	C ₁₀ H ₁₄	1, 2, 3, 4-Tetramethylbenzene	134.11	-4	204	0.901	662
3741	C ₁₀ H ₁₄	Verbenene	134.11	_	159	0.88615	593
3742	C ₁₀ H ₁₄ Br ₂ O	d-α, α'-Dibromocamphor	309.94	61			1209
3743	C ₁₀ H ₁₄ ClN	Thermin (Tetrahydro-β-naphthylamine		1			
		hydrochloride)	183.57	237			
3744	C ₁₀ H ₁₄ Cl ₂ O	α-Dichlorocamphor	221.02	96	200 d.	4.2	
3745	C ₁₀ H ₁₄ Cl ₂ O	β-Dichlorocamphor	221.02	77			
3746	C10H14N2	Isonicotine	162.12	78	260 d.		
3747	C10H14N2	Nicotine	162.12		274.3	1.009	695
3748	C10H14N2	Nicotimine.	162.12		250		
3749	C10H14N2O2	6-Nitroso-3-(diethylamino) phenol	194.12	84			1
3750	C ₁₀ H ₁₄ N ₂ O	p-Nitroso-N-diethylaniline	178.12	84			1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3751	C10H14N2O2	Phenocoll p-C ₂ H ₆ OC ₆ H ₄ NHCOCH ₂ NH ₂	194.12	100.5		ĺ	Ī
3752	C ₁₀ H ₁₄ O	Carvacrol	150.11	0.5	237.9	0.976	678
3753	C ₁₀ H ₁₄ O	d-Carvol	150.11		225	0.960	940
3754	C ₁₀ H ₁₄ O	Cuminal alcohol	150.11		246.6	0.97816	
3754 . 1	C ₁₀ H ₁₄ O	Methyl d-methylbenzyl carbinol	150.11		8512	0.92727	
3754.2	C ₁₀ H ₁₄ O	Methyl <i>l</i> -phenylethyl carbinol	150.11		13214	0.9767	658
3755	C ₁₀ H ₁₄ O	3-Methyl-2-hydroxyisopropylbenzene	150.11		226	0.98715-2	669
3756	C ₁₀ H ₁₄ O	Thymol (CH ₃) ₂ CHC ₆ H ₄ (OH)CH ₄	150.11	51.5	231.8	0.969	1170
3757	C ₁₀ H ₁₄ O	5-Methyl-2-hydroxyisopropylbenzene.	150.11	36	229	0.98217-8	674
3758	C ₁₀ H ₁₄ O	Benzyl propyl ether C ₆ H ₅ CH ₂ OC ₈ H ₇	150.11		196	0.0500	
3759 3760	C ₁₀ H ₁₄ O C ₁₀ H ₁₄ O	n-Butyl phenyl ether C ₀ H ₆ OC ₄ H ₅ Isobutyl phenyl ether	150.11 150.11		210.3 198	0.950° 0.93916	
3760 3761	C ₁₀ H ₁₄ O	Myrtenal (Myrtenic aldehyde)	150.11		9010	0.988	616
3761 3762	C ₁₀ H ₁₄ O	Eucarvol	150.11		10620	0.958	845
3762 3763	C ₁₀ H ₁₄ O	Pinocarvol	150.11		224	0.932	620
3764	C ₁₀ H ₁₄ O	d(l)-Piperitone	150.11		235	0.934 vac.	542
3765	C ₁₀ H ₁₄ O	Umbellulone	150.11		220	0.958	551
3766	C ₁₀ H ₁₄ O ₂	o-Diethoxybenzene o-(C ₂ H ₅ O) ₂ C ₆ H ₄	166.11	45	220	0.800	991
3767	C ₁₀ H ₁₄ O ₂	Coërulignol	166.11	10	246	1.04915	
3768	C ₁₀ H ₁₄ O ₂	Hydroquinone diethyl ether	166.11	72	210	1.010	
3769	C ₁₀ H ₁₄ O ₂	Resorcinol diethyl ether	166.11	12.4	235.2		
3770	C ₁₀ H ₁₄ O ₂	d-Camphorquinone	166.11	198	200.2		
3771	C ₁₀ H ₁₄ O ₂	Thymohydroquinone	166.11	143	290		
3772	C ₁₀ H ₁₄ O ₂	Crocetin	166.11	104			
3773	C10H14O1	dl-Camphoric anhydride	182.11	221	270		
3774	C10H14O4	1, 2, 3, 5-Tetramethoxybenzene	198.11	47	271		
3775	C10H14O4	Guaiamar	198.11	75			
3776	C10H14O4	Diethyl muconate	198.11	13; 62	64	0.98349.1	
3777	C10H14O6	Pinoylformic acid	214.11	80			İ
3777.1	C10H14O6	Diallyl tartrate	230.11		19120	1.18726-6	
3778	C ₁₀ H ₁₅ BrO	α-Bromocamphor	231.03	78	274	1.449	1252
3779	C ₁₀ H ₁₅ BrO	β-Bromocamphor	231.03	61	13010		
3780	C ₁₀ H ₁₆ Cl	Myrtenyl chloride	170.57		9012	1.015	586
3782	C ₁₀ H ₁₅ ClO	a-Chlorocamphor	186.57	125	220 s. d.		
3783	C ₁₀ H ₁₅ ClO	β-Chlorocamphor	186.57	92.5	247		1
3784	C ₁₀ H ₁₅ ClO	γ-Chlorocamphor	186.57	100	237 s. d.		
3785	C10H15N	n-Butylaniline C ₀ H ₅ NHC ₄ H ₅	149.12		240.9		040
3786	C ₁₀ H ₁₅ N	2-Dimethylamino-m-xylene	149.12		196.2	0.915	649
3787	C ₁₀ H ₁₅ N	4-Dimethylamino-m-xylene	149.12		232.2	0.939	730
3788	C ₁₀ H ₁₅ N	4-Dimethylamino-o-xylene	149.12	24.4	205 216.27	0.916	663
3789 3790	C ₁₀ H ₁₆ N	Diethylaniline $C_2H_5N(C_2H_5)_2$ Isobutylaniline $C_6H_5NHCH_2CH(CH_4)_2.$	149.12	-34.4	242	0.934	1 '11'
3790 3791	C ₁₀ H ₁₅ N C ₁₀ H ₁₅ N	Prehnidine 1, 2, 3, $4-C_6H_2(CH_3)_4$	149.12 149.12	70	260	0.840	
3792	C ₁₀ H ₁₅ NO	m-Diethylaminophenol	165.12	78	278		1
3793	C ₁₀ H ₁₅ NO	Ephedrine	165.12	40	255		
3794	C ₁₀ H ₁₄ NO	Hordenine	165.12	118	17411	1	
3795	C ₁₀ H ₁₅ NO	Pseudoephedrine	165.12	117			
3796	C ₁₀ H ₁₅ NO ₂ S	Diethylaniline-m-sulfonic acid	229.19	270 d.	İ	l	1
3797	C10H16N2O6	Pilocarpidine nitrate	257.14	137			1333
3800	C10H16	<i>l</i> -Bornylene	136.12	111	147		
3801	C10H16	dl-Camphene	136.12	50	160	0.822	1116
3802	C10H16	d(l)-Camphene	136.12	42.7	159		1074
3803	C10H16	Camphilene	136.12		156	0.8716	
3804	C10H16	$d(l)$ - Δ -Carene	136.12		167707	0.85530	1037
3805	C10H16	Cyclofenchene	136.12		144	0.861	445
3806	C ₁₀ H ₁₆	Dipentene	136.12		176	0.86518	515
3807	C10H16	d(l)-Fenchene	136.12		150	0.869	955
3808	C10H16	Fenchylene	136.12		142	0.840	435
3809	C ₁₀ H ₁₆	Geraniene	136.12		164	0.843	
3810	C ₁₀ H ₁₆	d(l)-Limonene	136.12	-96.9	177	0.842	510
3811	C ₁₀ H ₁₆	Myrcene	136.12		167	0.802	503
3812	C ₁₀ H ₁₆	Ocimene	136.12		7421	0.799	835
3813	$C_{10}H_{16}$	cis-β-Octalin	136.12		7316	0.915	984

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I No.
3814	C ₁₀ H ₁₆	trans-β-Octalin	136.12		190	0.90918	1
3815	C10H16	$d(l)$ - α -Phellandrene	136.12		175	0.843	98
8816	C10H16	β -Phellandrene	136.12		171	0.852	52
3817	C10H16	dl-α-Pinene	136.12	 55	154	0.878	
818	C10H16	<i>l-β</i> -Pinene	136.12		164	0.87315	82
819	C10H16	Sabinene	136.12		165	0.842	91
820	C10H16	d(l)-Sylvestrene	136.12		177	0.863	91
821	C10H16	α-Terpinene	136.12		175	0.834	91
8822	C10H16	β-Terpinene	136.12		174	0.840	98
823	C10H16	Δ¹. 5-Terpinene	136.12		182	0.855	54
3824	C10H16	Terpinolene	136.12		185	0.855	53
825	C10H16	Terpinylene	136.12		175		1
826	C10H16	α-Thujene	136.12		151	0.830	44
827	C ₁₀ H ₁₆	β-Thujene	136.12		147.7	0.821	42
828	C ₁₀ H ₁₆ ClNO	Ephedrine hydrochloride	201.59	210			1
829	C ₁₀ H ₁₆ ClNO	α-Limonene nitrosylchloride	201.60	104		-	1
830	C ₁₀ H ₁₆ ClNO	Pseudoephedrine hydrochloride	201.59	175		1	
831	C ₁₀ H ₁₆ Cl ₂	α-Camphordichloride	207.04	148	ļ		į
832	C ₁₀ H ₁₆ Cl ₂	β-Camphordichloride	207.04	178	İ		l
1833	C ₁₀ H ₁₆ C ₁₂ C ₁₀ H ₁₆ N ₂	p-Aminodiethylaniline	164.14	170	262		İ
		o-Tetramethylphenylenediamine	164.14		218		ŀ
8834	C ₁₀ H ₁₆ N ₂		164.14	-2	262	0.98815.8	ł
3835	C ₁₀ H ₁₆ N ₂	m-Tetramethylphenylenediamine	ľ			0.985	1
836	C ₁₀ H ₁₆ N ₂	p-Tetramethylphenylenediamine	164.14	51	260	1	ļ
3837	C ₁₀ H ₁₆ N ₂ O ₂	a-Camphordioxime	196.14	182 d.	i		
838	C ₁₀ H ₁₆ N ₂ O ₂	γ-Camphordioxime	196.14	132			
839	C10H16N2O8	5, 5-n-Butylethylbarbituric acid	212.14	128			i
840	C ₁₀ H ₁₆ N ₂ O ₂	5, 5-secButylethylbarbituric acid	212.14	157			
841	C ₁₀ H ₁₆ N ₂ O ₃	5, 5-Dipropylbarbituric acid	212.14	145			į.
842	C10H16N2O2	5, 5-Isobutylethylbarbituric acid	212.14	176			1
3843	C10H16N2O3	5, 5-n-Propylisopropylbarbituric acid	212.14	162			1
3844	C10H16O	Alantol	152.12		200	1	1
3845	C10H16O	dl-Camphor	152.12	174			
3846	C10H16O	d-Camphor	152.12	179	209.1	0.99025	
847	C10H16O	Carvenone	152.12		233	0.926	89
848	C ₁₀ H ₁₆ O	Caryophyllin	152.12	295		1	
849	C ₁₀ H ₁₆ O	α-Citral	152.12		229	0.89314	92
8850	C ₁₀ H ₁₆ O	β-Citral	152.12		10412	0.888	95
851	C ₁₀ H ₁₆ O	Cyclocitral	152.12		11429	0.9574	82
852	C ₁₀ H ₁₆ O	d-Fenchone	152.12	6	195	0.944	83
3853		Hartin	152.12	. 230	130	1.120	30
	C ₁₀ H ₁₆ O	Isopulegon	152.12	. 250	9012	0.92117.5	49
854	C ₁₀ H ₁₆ O		152.12		218	0.921	1 33
855	C ₁₀ H ₁₆ O	Myristicol				0.076	•
3856	C ₁₀ H ₁₆ O	Myrtenol	152.12		224	0.976	58
3857	C ₁₀ H ₁₆ O	Phellandral	152.12		230	0.945	55
3858	C ₁₀ H ₁₆ O	Pinol	152.12		184	0.942	50
8859	C ₁₀ H ₁₆ O	Pulegon	152.12		224	0.937	86
3860	$C_{10}H_{16}O$	Sabinol	152.12		209	0.943	54
861	C ₁₀ H ₁₆ O	α-Thujone	152.12		200	0.913	82
3862	$[C_{10}H_{16}O]_{x}$	Urson	$[152.12]_{x}$	264			1
3863	C ₁₀ H ₁₆ O ₂	Acetylmethylheptenone	168.12	-6	234	0.94515	86
3864	C10H16O2	Ascaridol	168.12		845	1.00815	51
3865	C ₁₀ H ₁₆ O ₂	Geranic acid	168.12		11920	0.952	54
8866	C ₁₀ H ₁₆ O ₂	Hydroxycamphor	168.12	205			
8867	C ₁₀ H ₁₆ O ₃	d(l)-Pinonic acid	184.12	99	18012		
8867.1	C ₁₀ H ₁₆ O ₃	dl-Pinonic acid	184.12	105		1.216	
3868	C ₁₀ H ₁₆ O ₄	dl-Camphoric acid	200.12	202			-
3869	C ₁₀ H ₁₆ O ₄	d-Camphoric acid	200.12	187	1		
		Cyclohexyl acid succinate	200.12	44		1	1
3870 2071	C ₁₀ H ₁₆ O ₄		200.12	191			1
871	C ₁₀ H ₁₆ O ₄	dl-Isocamphoric acid		171	1209	1 055	1
3872	C ₁₀ H ₁₆ O ₄	d-Methyl pinate	200.12	100	130°	1.055	
3873	C ₁₀ H ₁₆ O ₅	l-Cineolic acid	216.12	196	050	1 001	132
3874	C ₁₀ H ₁₆ O ₅	Diethyl acetylsuccinate	216.12	80	256 d.	1.081	884
3875	C10H17Br	d-Pinene hydrobromide	217.05				

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3876	C ₁₀ H ₁₇ Cl	Camphene hydrochloride	172.59	156.5	i	i	i
3877	$C_{10}H_{17}Cl$	cis-β-Chlorodecalin	172.59		11215		1
8878	$C_{10}H_{17}Cl$	Fenchyl chloride	172.59		8514	0.983	
3879	C10H17Cl	Geranyl chloride	172.59	1	10314	0.91826	517
880	C10H17Cl	Isobornyl chloride	172.59	161.5			
881	C10H17Cl	d-Pinene hydrochloride	172.59	128	207.4		
8882	C10H17N	Camphenamine	151.14		205.5	0.940	564
8883	C10H17N	Pinylamine	151.14		207	0.940	613
884	C ₁₀ H ₁₇ NO	Camphoroximė	167.14	119.5	249		
8885	C10H17NO	d-Fenchoneoxime	167.14	165	240		
8886	C ₁₀ H ₁₇ NO ₂	l-Ecgonine methyl ester	199.14			1.147	547
886.1	C10H17NO	dl-α-Pinone oxime	199.14	150		1.210	
887	C10H17NO6	Phaseolunatin	247.14	144			1
888	C ₁₀ H ₁₈	Camphane	138.14	152	160		
889	C ₁₀ H ₁₈	Carane	138.14	-0-	50•	0.83820	459
890	C ₁₀ H ₁₈	cis-Decahydronaphthalene	138.14	-125	193.3	0.898	539
891	C ₁₀ H ₁₈	trans-Decahydronaphthalene	138.14	120	185.3	0.872	504
892	C ₁₀ H ₁₈	d-Menthene	138.14		168	1.4481	423
893	C ₁₀ H ₁₈	d-Pinane	138.14	-45	169.4	0.839	448
1894		1		-45		1	
	C ₁₀ H ₁₈	Pinocamphane	138.14	İ	164.9	0.856	477
895	C ₁₀ H ₁₈	Thujane	138.14		157	0.814	363
8896	C10H18Cl2N2	o-Tetramethylphenylenediamine hydro-			1		
		chloride	237.07	180			
3897	C ₁₀ H ₁₀ O	Apopinol	154.14		199	0.89418	
3899	$C_{16}H_{18}O$	Aurantiol	154.14	1	9515	0.86920	1
900	$C_{10}H_{10}O$	dl-Borneol	154.14	210.5			
901	$C_{10}H_{10}O$	d(l)-Borneol	154.14	208.6	213.5	1.011	
902	C ₁₀ H ₁₈ O	Cineol	154.14	-1	176.4	0.90118	474
8903	C10H18O	d-Citronellal	154.14		208	0.856	
904	C10H18O	dl-Fenchyl alcohol	154.14	33	204.6	0.953	
3905	C ₁₀ H ₁₈ O	dl, (d)-Fenchyl alcohol	154.14	42	201	0.93540	
906	C ₁₀ H ₁₈ O	dl, (l)-Fenchyl alcohol	154.14	47	201	0.933*0	
3907	C ₁₀ H ₁₈ O	d, (l)-Fenchyl alcohol	154.14	49	209	0.000	
3 90 8	C ₁₀ H ₁₈ O	Geraniol	154.14	<-15	229	0.881	531
8909	C ₁₀ H ₁₈ O	dl-Isoborneol	154.14	212	220	0.001	001
3910	C ₁₀ H ₁₈ O	d(l)-Isoborneol	154.14	216			
3911	C ₁₀ H ₁₈ O	dl-Isofenchyl alcohol	154.14	210	204		
3912	C ₁₀ H ₁₈ O	l-Isofenchyl alcohol	154.14	62	202	0.96115	859
3913	C ₁₀ H ₁₈ O	Isopulegol	154.14	02	10212	0.901	513
					9411		1
8913.1	C ₁₀ H ₁₈ O	<i>L</i> -Isopulegol	154.14		I.	0.9110	509
914	C ₁₀ H ₁₈ O	Lavendol	154.14		199	0.87315	
3915	C ₁₀ H ₁₈ O	d-Linalool	154.14	l	198.3	0.875	480
3916	C ₁₀ H ₁ O	l-Linalool	154.14		195	0.86615	981
3917	C ₁₀ H ₁₈ O	dl-Menthone	154.14		210	0.897	441
3918	$C_{10}H_{18}O$	l-Menthone	154.14	ļ	207	0.896	
3919	$C_{10}H_{18}O$	Myrcenol	154.14	l	10110	0.90114.6	840
3920	$C_{10}H_{18}O$	Nerol	154.14	1	225.2	0.881	
3921	C10H18O	Pinen hydrate (Homopinol)	154.14	59	205		
3922	C10H18O	dl, a-Terpineol	154.14	35	219.8	0.936	538
923	C ₁₀ H ₁₆ O	$d(l)$, α -Terpineol	154.14	40	217.7	0.919	890
924	C10H18O	β-Terpineol	154.14	33	210.3	0.819_{20}^{20}	521
925	C10H18O	γ-Terpineol	154.14	70			
926	C10H18O	dl-Terpinen-4-ol	154.14		214	0.929	533
927	C ₁₀ H ₁₈ O	d-Terpinen-4-ol (Origanol)	154.14	1	212	0.926	526
928	C ₁₀ H ₁₈ O	Thujyl alcohol	154.14	1	212	0.921	923
39 2 9	C ₁₀ H ₁₈ O ₂	Acetylmethyl hexyl ketone	170.14	-6	237 d.	0.90725	"20
3930	C ₁₀ H ₁₈ O ₂	d(l)-Campholic acid	170.14	107	260	0.80116	}
				10'		0.021	1
931	C ₁₀ H ₁₈ O ₂	d-Citronellic acid	170.14	1	257	0.931	
3932	C ₁₀ H ₁₈ O ₂	9, 10-Decylenic acid	170.14	<0	1424	0.00000	1
3933	C ₁₀ H ₁₈ O ₂	Fencholic acid	170.14	18	255	0.97018.9	462
3934	C ₁₀ H ₁₈ O ₃	Pinol glycol	186.14	129			1
3935	C10H18O8	n-Valeric anhydride (C ₄ H ₉ CO) ₂ O	186.14	1	215	0.929	
3936	C10H18O2	Isovaleric anhydride	186.14		215	0.933	229

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3937	C ₁₀ H ₁₈ O ₈	Ethyl diethylacetoacetate	186.14	1	158.2	1.282	327
3938	C ₁₀ H ₁₈ O ₄	Sebacic acid HO ₂ C(CH ₂) ₈ CO ₂ H	202.14	127	294.5100		1161
3939	C ₁₀ H ₁₈ O ₄	Isoamyl ethyl malonate	202.14		15020	0.95425	306
3940	C ₁₀ H ₁₈ O ₄	n-Butyl isopropylmalonate	202.14	ĺ	13614	0.97426	331
3941	C ₁₀ H ₁₈ O ₄	Di-n-butyl oxalate (CO ₂ C ₄ H ₉) ₂	202.14		243.4	1.0108	
3942	C ₁₀ H ₁₈ O ₄	Diisobutyl oxalate	202.14		229	1.00214	
3943	C10H18O4	Dipropyl succinate	202.14		250.8	1.00616	
3944	C ₁₀ H ₁₈ O ₅	Dipropyl malate	218.14	10.5	15110	1.075	366
3945	C ₁₀ H ₁₈ O ₆	Dipropyl d-tartrate [HOCHCO ₂ C ₃ H ₇] ₂	234.14		303	1.139	1
3945.1	C ₁₀ H ₁₈ O ₆	Di-secpropyl tartrate	234.14 282.14	000	15816	1.11613.7	
3946 3947	C ₁₀ H ₁₈ O ₉	ArabinsecMenthyl chloride	282.14 174.60	260	915	0.041	405
394 <i>1</i> 3948	C ₁₀ H ₁₉ Cl	tertMenthyl chloride	174.60		215 9418.5	0.941 0.948	485 488
3948 3949	C ₁₀ H ₁₉ Cl	Bornylamine	153.15	163	200	0.948	400
3950	C ₁₀ H ₁₉ N C ₁₀ H ₁₉ N	Camphylamine	153.15	103	198		
3951	C ₁₀ H ₁₉ N	L-Fenchylamine	153.15		195	0.91022	
3952	C ₁₀ H ₁₉ N	Geranylamine	153.15		10519	0.82925	511
3953	C ₁₀ H ₁₉ NO	Lupinine	169.15	68	257	0.028	311
3954	C ₁₀ H ₁₉ NO ₃	Sebamic acid	201.15	170	201		1
3955	C ₁₀ H ₂₀	α-Decylene CH ₂ :CH(CH ₂) ₇ CH ₃	140.15	110	172	0.7630	912
3956	C ₁₀ H ₂₀	γ-Decylene C ₃ H ₇ CH:CHC ₅ H ₁₁	140.15		161	0.700	""
3957	C ₁₀ H ₂₀	2, 3-Dimethyl-2-octene	140.15		162650	0.748	1
3958	C ₁₀ H ₂₀	2, 6-Dimethyl-1(2)-octene	140.15		169	0.789	993
3959	C ₁₀ H ₂₀	o-Menthane	140.15	1	171	0.814	965
3960	C ₁₀ H ₂₀	m-Menthane	140.15		168.2	0.790	387
3961	C ₁₀ H ₂₀	p-Menthane	140.15	1	170	0.793	358
3962	C ₁₀ H ₂₀	2-Methyl-5-ethyl-5-heptene	140.15		158.4	0.7610	302
3963	C ₁₀ H ₂₀	3, 3, 5-Trimethyl-4-heptene	140.15		157.5	0.7880	
3964	C ₁₀ H ₂₀ ClNO	Lupinine hydrochloride	205.62	213			1244
3965	C10H20N2O6	Lycetol (Dimethylpiperazine tartrate)	264.17	250	Ì	1	
3966	C ₁₀ H ₂₀ O	α-Carvacromenthol	156.15		219		ł
3967	C10H20O	β-Carvacromenthol	156.15		222	0.9180	}
3968	C10H20O	d-Citronellol	156.15		221.7	0.85715	410
3969	C ₁₀ H ₂₀ O	l-Citronellol	156.15		11416	0.861	464
3970	C ₁₀ H ₂₀ O	d-Isomenthol	156.15	83			
3971	C ₁₀ H ₂₀ O	o-Menthan-2-ol	156.15		9525	1	I
3972	C ₁₀ H ₂₀ O	p-Menthan-8-ol	156.15	36	207.4		i i
3973	C ₁₀ H ₂₀ O	<i>l-α</i> -Menthol	156.15	42.5	212	0.89015	1168
3974	C ₁₀ H ₂₀ O	<i>l-β</i> -Menthol	156.15	35.5	212	0.890_{16}^{16}	
3974.1	C ₁₀ H ₂₀ O	<i>L</i> -Neomenthol	156.15	<-15	10521	0.8995	473
3975	C ₁₀ H ₂₀ O	n-Capric aldehyde CH ₁ (CH ₂) ₅ CHO	156.15		209.2	0.82816	307
3976	C ₁₀ H ₂₀ O	Isocapric aldehyde	156.15		169.6	0.828	1
3977	C ₁₀ H ₂₀ O	Isopropyl n-hexyl ketone	156.15		210	0.84117	ı
3978	C ₁₀ H ₂₀ O	Methyl n-octyl ketone CH ₂ COC ₈ H ₁₇	156.15	3.5	211	0.825	}
3978.1	C ₁₀ H ₂₀ O	Propyl hexyl ketone C ₂ H ₇ COC ₆ H ₁₂	156.15	-9 104.7	207	0.824	1
3979	C ₁₀ H ₂₀ O ₂	cis-Terpine	172.15	104.7	258	1	1
3980 3981	C ₁₀ H ₂₀ O ₂	trans-Terpine	172.15 172.15	158 31	265 268.4	0.895**	1038
3981.1	C ₁₀ H ₂₀ O ₂	Di-n-butylacetic acid	172.15 172.15	91	14016	0.89818.4	1000
3982	C ₁₀ H ₂₀ O ₂ C ₁₀ H ₂₀ O ₂	n-Amyl valerate C ₄ H ₉ CO ₂ C ₅ H ₁₁	172.15		203.7	0.8810	213
3983	C ₁₀ H ₂₀ O ₂	n-Butyl caproate C ₄ H ₁₂ CO ₂ C ₄ H ₂	172.15		204.3	0.882	210
3984	C ₁₀ H ₂₀ O ₂	Ethyl n-caprylate C ₇ H ₁₆ CO ₂ C ₂ H ₅	172.15	-44.8	205.8	0.87817	1
3985	C ₁₀ H ₂₀ O ₂	n-Heptyl propionate C ₂ H ₅ CO ₂ C ₇ H ₁₅	172.15	11.0	208	0.885	1
3986	C ₁₀ H ₂₀ O ₂	Isoamyl isovalerate	172.15		194	0.870	198
3987	C ₁₀ H ₂₀ O ₂	Methyl pelargonate C ₈ H ₁₇ CO ₂ CH ₂	172.15		214	0.87717.6	100
3988	C ₁₀ H ₂₀ O ₂	$d-\gamma$ -Nonyl formate	172.15	1	9522	0.869	258
3989	C ₁₀ H ₂₀ O ₂	n-Octyl acetate CH ₃ CO ₂ C ₈ H ₁₇	172.15	-38.5	210	0.8854	250
3991	C ₁₀ H ₂₀ O ₃	1-Hydroxycapric acid	188.15	70.5			
3992	C ₁₀ H ₂₁ N	<i>l</i> -Menthylamine	155.17		208.2	0.860	475
3993	C ₁₀ H ₂₂	n-Decane CH ₃ (CH ₂) ₈ CH ₃	142.17	-32.0	174	0.747	220
3994	C ₁₀ H ₂₂	2, 6-Dimethyloctane	142.17		159	0.734	185
0001				I			
3995	C10H22	2, 7-Dimethyloctane	142.17	-52.8	160	0.722	171

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3997	C10H22	d, 3, 6-Dimethyloctane	142.17		160.8	0.73513	i
399 8	C10H22	2-Methylnonane (CH ₂) ₂ CH(CH ₂) ₆ CH ₃ .	142.17		160	0.72845.1	174
3999	C ₁₀ H ₂₂	3-Methylnonane C ₂ H ₅ (CH ₃)CHC ₃ H ₁₃	142.17		166.9	0.735	197
4000	C10H22	5-Methylnonane (C ₄ H ₉) ₂ CHCH ₃	142.17	ł	166.2	0.732	189
4001	C ₁₀ H ₂₂	Tripropylmethane (C ₁ H ₇) ₃ CH	142.17	_	161.7	0.74015.2	210
4002	C ₁₀ H ₂₂ O	n-Decyl alcohol CH ₂ (CH ₂) ₃ OH	158.17	7	231	0.829	
4003	C ₁₀ H ₂₂ O	3, 7-Dimethyl-n-octyl alcohol	158.17	ĺ	11815	0.8494	
4004	C ₁₀ H ₂₂ O	Methylethylisohexyl carbinol	158.17		8914	0.8344	851
4005	C ₁₀ H ₂₂ O	Propyl-n-hexyl carbinol	158.17	Į.	211	0.826	
4006 4007	C ₁₀ H ₂₂ O	n-Amyl ether (C ₆ H ₁₁) ₂ O	158.17 158.17		190 172.2	0.774	170
4007	C ₁₀ H ₂₂ O C ₁₀ H ₂₂ O ₃	Isoamyl ether [(CH ₃) ₂ CHCH ₂ CH ₂] ₂ O cis-Terpine hydrate	190.15	117.1	172.2	0.78311.4	172 1210
4009	C ₁₀ H ₂₂ O ₄ S ₂	d-Glucosediethylmercaptal	286.30	128	1	1	1210
4010	C ₁₀ H ₂₂ S	Diisoamyl sulfide	280.30 174.23	120	214	0.042	442
4010	C ₁₀ H ₂₂ S	n-Decylamine CH ₂ (CH ₂),NH ₂		17	216	0.843	443
4012	C ₁₀ H ₂₂ N	Diisoamylamine CH ₂ (CH ₂) ₂ NH ₂	157.19	17	218	0.707	901
4012	C ₁₀ H ₂₂ Sb	Pentaethyl stibine (C ₂ H ₄) ₄ Sb	157.19 266.96	1	190 100	0.767	281
4014	C ₁₀ H ₂₀ O	$\alpha(\beta)$ -Lactucerol	166.23	181	100		
4015	C ₁₀ H ₃₀ O ₅	Agaric acid	230.23	142 d.			
4016	C ₁₀ H ₅ O ₁₀	Benzenepentacarboxylic acid		233 d.	1		
4017	C ₁₁ H ₇ ClO	α-Naphthoyl chloride C ₁₀ H ₇ COCl	298.05 190.51	233 a.	297.5		1
4017	C ₁₁ H ₇ ClO	β-Naphthoyl chloride C ₁₀ H ₇ COCl		43	306	1	1
4019	C ₁₁ H ₇ C ₁₀	α-Naphthylcyanide	190.51 153.06	33.5	296.5	1 1175	
4019	C ₁₁ H ₇ N	β-Naphthylcyanide	153.06	33.3 66.5	305	1.1175	1
4020	C ₁₁ H ₇ NO ₄	Quinoline-2, 3-dicarboxylic acid	217.06	130 d.	303	1.09460	ŀ
4021	C ₁₁ H ₇ NO ₄					1	
4022	C ₁₁ H ₄ O	Quinoline-2, 4-dicarboxylic acid	217.06 156.06	246	291.6	1.148	962
4024	C ₁₁ H ₈ O	β-Naphthaldehyde	156.06	60.5	291.0	1.07899.4	1133
4025	C ₁₁ H ₈ N ₂ O ₄	Benzoylbarbituric acid	232.08	275		1.078	1100
4026	C ₁₁ H ₈ O ₂	2-Hydroxy-α-naphthaldehyde	172.06	81	192*7		
4027	C ₁₁ H ₂ O ₂	4-Hydroxy-α-naphthaldehyde	172.06	178	192	ŀ	
4028	C ₁₁ H ₈ O ₂	8-Hydroxy-a-naphthoic acid	188.06	169	1	1	
4029	C ₁₁ H ₈ O ₂	α-Naphthoic acid	172.06	160	300		-
4030	C ₁₁ H ₈ O ₂	β-Naphthoic acid	172.06	185	>300	1.077400	1
4031	C ₁₁ H ₈ O ₈	3-Hydroxy-β-naphthoic acid	188.06	219	/300	1.0774	1
4032	C ₁₁ H ₂ N	2-Phenylpyridine	155.08	210	270	>1	1
4033	C ₁₁ H ₄ N	3-Phenylpyridine	155.08		270.4	>1	1
4034	C ₁₁ H ₂ N	4-Phenylpyridine	155.08	78	275		}
4035	C ₁₁ H ₂ NO ₂	Aniluvitonic acid	187.08	241	1 2.0		1
4036	C ₁₁ H ₂ NO ₂	Quininic acid	203.08	280			1
4037	C ₁₁ H ₂ NO ₆	Hydrastininic acid	251.08	164			
4038	C11H10	α-Methylnaphthalene	142.08	-22	243	1.025	790
4039	C ₁₁ H ₁₀	β-Methylnaphthalene	142.08	35.1	245	1.029	1062
4040	C ₁₁ H ₁₀ I ₂ NO ₃	Thyroxin	584.88	250	220	1.020	1002
4041	C ₁₁ H ₁₀ O	Methyl α-naphthyl ether	158.08	<-10	258	1.096413.9	831
4042	C11H10O	Methyl β-naphthyl ether	158.08	72	274		333
4043	C11H10O2	Ethyl phenylpropiolate	174.08		270 d.		
4043.1	C ₁₁ H ₁₁ BrN ₂ O	4-Bromoantipyrine	267.02	117			1181
4044	$C_{11}H_{11}N$	2, 4-Dimethylquinoline	157.09		264	ł	
4045	$C_{11}H_{11}N$	2, 6-Dimethylquinoline	157.09	58	261		
4046	$C_{11}H_{11}N$	2, 7-Dimethylquinoline	157.09	61	265		1
4047	$C_{11}H_{11}N$	3, 4-Dimethylquinoline	157.09	65	291		1
4048	C11H11N	4, 6-Dimethylquinoline	157.09		256	1	1
4049	C11H11N	4, 7-Dimethylquinoline	157.09	55	259	1	
4050	C ₁₁ H ₁₁ N	Methyl-a-naphthylamine	157.09		293	1	
4051	C ₁₁ H ₁₁ NO	Physostigmol	173.09	108	1		1
4052	C ₁₁ H ₁₁ NO ₂	Indole-2-propionic acid	189.09	136	İ		1
4053	C ₁₁ H ₁₁ NO ₄	Ethyl o-nitrocinnamate	221.09	44			1
4054	C ₁₁ H ₁₁ NO ₄	Ethyl p-nitrocinnamate	221.09	141			
4055	C11H12BrNO2S	p-Bromophenylmercapturic acid	318.08	153			
4056	C11H12IN	Quinaldine methiodide	285.03	190			
4057	C11H12IN	Quinoline ethiodide	285.03	157	d.		1
4058	C11H12N2O	Antipyrine	188.11	109; 113	319174	1	1307

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
4059	C11H12N2O2	4, 4-Phenylethylhydantoin	204.11	199			i
4060	C ₁₁ H ₁₂ N ₂ O ₂	l-Tryptophane	204.11	289	1		
4060.1	$C_{11}H_{12}O$	Benzylidene methyl ethyl ketone	160.09	37.5		0.98750	1061
4061	$C_{11}H_{12}O_2$	Ethyl atropate	176.09		124 . 416	1.051	
4062	$C_{11}H_{12}O_2$	trans-Ethyl cinnamate	176.09	6.5	271	1.049	746
4063	C11H12O2	3-Benzoylbutyric acid	192.09	126	1	ļ	
4064	C11H12O2	Ethyl benzoylacetate	192.09		270 d.	1.122	704
4065	$C_{11}H_{12}O_{2}$	α-Ethyl phenylpyruvate	192.09	52	154.516		į.
4066	C11H12O3	β -Ethyl phenylpyruvate	192.09		15215	İ	İ
4067	C11H12O2	γ-Ethyl phenylpyruvate	192.09	79			
4068	C11H12O2	Eugenol formate	192.09		15020		
4069	C11H12O2	Isoeugenol formate	192.09		16020		
4071	C11H12O4	Benzylsuccinic acid	208.09	161			1
4072	C11H12O4	α-Hydropiperic acid	208.09	76		1	
4073	C11H12O5	Sinapic acid	224.09	191			1
4074	C ₁₁ H ₁₂ BrN ₂ O	Antipyrine hydrobromide	269.03	150		1	
4075	C ₁₁ H ₁₃ ClN ₂ O	Antipyrine hydrochloride	224.57	160		1	
4076	C ₁₁ H ₁₃ N	Lilolidine	159.11	100	15616		1
4077	C ₁₁ H ₁₂ NO ₂	Hydrastinine	207.11	116	100		
4077.1	C ₁₁ H ₁₂ NO ₃	Ethyl hippurate	207.11	60.5	180	1.043**	
4078		Benzacetin	223.11	190	180	1.045	-
4079	C ₁₁ H ₁₃ NO ₄ C ₁₁ H ₁₃ NO ₄	Neurodin	223.11				
				87			1
4080	C11H11N2O	4-Aminoisoantipyrine	203.12	109		1	
4081	C ₁₁ H ₁₃ N ₃ O	Benzylcreatinine	203.12	225	Ì	,	1
4082	C11H13N3O6	2, 4, 6-Trinitro-tertbutyltoluene	283.12	97		1	
4083	$C_{11}H_{14}CINO_3$	Hydrastinine hydrochloride	243.57	210		1	1
4084	C ₁₁ H ₁₄ N ₂	Calycanthine	174.12	243		1	
4085	C11H14N2	Isocalycanthine	174.12	235			
4086	C ₁₁ H ₁₄ N ₂ O	Cytisine	190.12	153]		1333
4087	$C_{11}H_{14}N_2O_2$	Antithermine (Acetopropionylphenylhy-					
		drazone)	206.12	108	1	Ì	ł
4088	C ₁₁ H ₁₄ O	Butyl phenyl ketone C ₆ H ₅ COC ₄ H ₉	162.11		239.5		
4089	C11H14O	Isobutyl phenyl ketone	162.11		225	0.967	
4090	$C_{11}H_{14}O$	Isopropyl benzyl ketone	162.11		237	0.9854	
4090.1	C11H14O	p-Methylbutyrophenone	162.11		252789	1.026	683
4091	C11H14O	Propyl benzyl ketone	162.11		244	0.984	
4091.1	C11H14O	2, 4, 6-Trimethylacetophenone	162.11		240.5735	0.975	661
4092	C11H14O2	Eugenol methyl ether	178.11		249	1.05515	""
4093	C ₁₁ H ₁₄ O ₂	Isoeugenol methyl ether	178.11		264	1.055	i
4094	C ₁₁ H ₁₄ O ₂	p-Isopropylphenylacetic acid	178.11	52	201	1.000	
4095	C ₁₁ H ₁₄ O ₂	n-Butyl benzoate C ₆ H ₅ CO ₂ C ₄ H ₉	178.11	-22.4	250.3	1.00020	1
4096		Benzyl butyrate C ₂ H ₂ CO ₂ CH ₂ C ₆ H ₅		-22.4		1.01617.8	1
4090 4097	C ₁₁ H ₁₄ O ₂		178.11		240		
4097	C ₁₁ H ₁₄ O ₂	Benzyl isobutyrate	178.11		228	1.01618	557
	C ₁₁ H ₁₄ O ₂	d-\$\text{\text{\$\begin{align*} \delta -\text{\$\begin{align*} \delta -\text{\$\begin{align*} \delta -\$\text{\$\delta -\text{\$\del\text{\$\delta -\text{\$\delta -\text{\$\delta -\text{\$\delta -\text{\$\delta -\text{\$\del\text{\$\del\to -\text{\$\del\to -\text{\$\del\to -\text{\$\del\to -\text{\$\del\to -\text{\$\	178.11		12020	1.000	563
4098	C ₁₁ H ₁₄ O ₂	Ethyl hydrocinnamate	178.11		249	1.015	571
4099	C ₁₁ H ₁₄ O ₂	Isobutyl benzoate	178.11		237	1.00215	
4100	C ₁₁ H ₁₄ O ₂	Phenyl isovalerate	178.11		226		
4101	$C_{11}H_{14}O_3$	n-Butyl salicylate	194.11		15516	1	
4102	C11H14O3	Propyl anisate p-CH ₂ OC ₆ H ₄ CO ₂ C ₃ H ₇	194.11		17646	1.09	653
4103	C11H14O3	Zingerone	194.11	41	18814	1	
4104	$C_{11}H_{15}NO$	p-Diethylaminobenzaldehyde	177.12	41	1747		
4105	C ₁₁ H ₁₅ NO	Isovaleroanilide	177.12	115	1		
4106	$C_{11}H_{15}NO$	n-Valeroanilide	177.12	49	267		
4107	C ₁₁ H ₁₅ NO ₂	p-Diethylaminobenzoic acid	193.12	193			
4108	C11H15NO2	Isobutyl p-aminobenzoate	193.12	65			
4109	C11H15NO2	Methylacetophenetidine	193.12	40	300	1	1
4110	C11H15NO2	Triphenin	193.12	120			
4111	C ₁₁ H ₁₅ NO ₃	Anhalamine	209.12	188	İ		
4112	C ₁₁ H ₁₅ NO ₃	Lactophenine	209.12	118	i		1
4113	C ₁₁ H ₁₅ NO ₃	Methoxyacetophenetidin	209.12	98	1		
4114	C ₁₁ H ₁₅ NO ₇ S	Hydrastinine bisulfate	305.19	216	1		1
4115	C ₁₁ H ₁₆	n-Amylbenzene CH ₂ (CH ₂) ₄ C ₆ H ₅	148.12	210	202.1	0.860	514
					1		1 014
4116	$C_{11}H_{16}$	tertAmylbenzene	148.12		189.3	0.87415	ı

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4117	C11H16	3, 5-Diethyltoluene	148.12		200	0.879	i i
4118	C11H16	Isoamylbenzene (CH ₃) ₂ CH(CH ₂) ₂ C ₆ H ₅ .	148.12		194	0.885	
4119	C11H16	Pentamethylbenzene (CH ₃) ₆ C ₆ H	148.12	53	230	0.847407.2	1152
4120	C11H16	4-Propyl-o-xylene C ₂ H ₇ C ₀ H ₃ (CH ₃) ₂	148.12	<-20	209		
4121	C11H16	4-Propyl-m-xylene C ₂ H ₇ C ₂ H ₃ (CH ₂) ₂	148.12	<-20	208.5	1	
4122	C11H16	2-Propyl-p-xylene C ₆ H ₇ C ₀ H ₃ (CH ₃) ₂	148.12	< -20	207		
4123	C ₁₁ H ₁₆ Br ₂ N ₂ O ₃	N-2, 3-Dibromopropyl-5, 5-diethylbarbituric acid	383.97	125			
4124	C11H16CINO	Anhalamine hydrochloride	245.59	258			
4125	C ₁₁ H ₁₆ N ₂ O ₂	Pilocarpine	208.14	34			
4126	C ₁₁ H ₁₆ N ₂ O ₂	Isopilocarpine	208.14	34	26110		
4127	C ₁₁ H ₁₆ O	p-Isoamylphenol	164.12	93	255		
4128	C ₁₁ H ₁₆ O	Pentamethylphenol	164.12	125	267	1	
4129	$C_{11}H_{16}O$	Benzyl n-butyl ether C ₆ H ₅ CH ₂ OC ₄ H ₉	164.12	120	216	İ	
4130		Benzyl isobutyl ether Canachacter			213	0.92819.3	
	C ₁₁ H ₁₈ O	Phenyl isoamyl ether	164.12	1	225	0.928	EAE
4131	C ₁₁ H ₁₆ O	Thenyl isoamyl ether	164.12 164.12	1	1		545
4132	C ₁₁ H ₁₆ O	Thymyl methyl ether		1.47	216.2	0.954	
4133	C ₁₁ H ₁₇ BrN ₂ O ₂	Isopilocarpine hydrobromide	289.06	147		1	1000
4134	C ₁₁ H ₁₇ BrN ₂ O ₂	Pilocarpine hydrobromide	289.06	185		1	1333
4135	C ₁₁ H ₁₇ ClN ₂ O ₂	Isopilocarpine hydrochloride	244.61	127	i		1000
4136	C11H17ClN2O2	Pilocarpine hydrochloride	244.61	196.7			1333
4137	C11H17N	o-Diethyltoluidine	163.14		206		1
4138	C11H17N	m-Diethyltoluidine	163.14		228		
4139	C11H17N	p-Diethyltoluidine	163.14		229	0.92416.6	
4140	C11H17N	Isoamylaniline	163.14		254.5	0.9284	1
4141	C11H17NO3	Mescaline	211.14	151	1		
4142	C11H17N3O5	Isopilocarpine nitrate	271.16	159		1	
4143	C11H17N3O5	Pilocarpine nitrate	271.16	173			1333
4144	C11H17O2	Citronellyl formate	181 . 13		9811	0.884	453
4145	C11H18N2O3	5, 5-n-Butylisopropylbarbituric acid	226.16	210			
4146	C ₁₁ H ₁₈ N ₂ O ₃	5, 5-Isoamylethylbarbituric acid	226 . 16	156			
4147	C ₁₁ H ₁₈ O ₂	d-Bornyl formate	182.14		230	1.009	858
4148	C11H18O2	Geranyl formate	182.14		9811	0.909	491
4149	C11H18O2	Isobornyl formate	182.14		10014	1.01716	
4150	C ₁₁ H ₁₈ O ₂	Methyl geranate	182.14	ľ	11714	0.922	961
4151	C11H18O2	d , α -Terpinyl formate	182.14		13640	0.9990	
4152	$C_{11}H_{18}O_4$	Ethyl camphorate	214.14	87			
4153	$C_{11}H_{18}O_{\delta}$	Diethyl ethylacetylmalonate	230 . 14		137.520	1.053	316
4154	C ₁₁ H ₁₉ N ₃ O	d-Camphor semicarbazone	209.17	238		1	
4155	C ₁₁ H ₂₀ O	Geranyl methyl ether	168.15		212		
4156	C ₁₁ H ₂₀ O	Methyl d-bornyl ether	168.15		195.3	0.916	1011
4157	C11H20O2	l-Menthyl formate	184.15	9	217	0.936	
4158	C11H20O2	Undecylenic acid	184.15	24.5	295	0.907	
4159	C11H20O3	Isoamyl ethylacetoacetate	200.15		236 d.	0.95126	
4160	C11H20O4	Di-n-butyl malonate $CH_2(CO_2C_4H_9)_2$	216.15		251.5	1.0050	
4161	C11H20O4	Diethyl diethylmalonate	216.15	1	223	0.990	282
4162	C ₁₁ H ₂₀ O ₄	Isoamyl isopropyl malonate	216.15	1	14025	0.95825	314
4163	C11H20O6	Glycerol 1, 2-dibutyrate	232 . 15		282		1
4164	C11H21NO2	Menthyl carbamate	199.17	165	>200 d.		1
4165	C11H22	α-Undecylene CH ₂ :CH(CH ₂) ₈ CH ₂	154.17		188	0.763	
4166	C11H22	β-Undecylene CH ₂ CH:CH(CH ₂) ₇ CH ₂	154.17	1	193	0.77415	341
4167	C11H22N3O4	Clavine	260.19	263			
4168	C11H22O	Methyl <i>l</i> -menthyl ether	170.17			0.861	1
4169	C11H22O	Undecylic aldehyde	170.17	-4	11718	0.82523	342
4170	C ₁₁ H ₂₂ O	Diamyl ketone (C ₆ H ₁₁) ₂ CO	170.17	14.6	226.3	0.82620	
4171	C ₁₁ H ₂₂ O	Diisoamyl ketone	170.17	1	226		1
4172	C ₁₁ H ₂₂ O	Methyl n-nonyl ketone	170.17	12.1	228	0.826	312
4173	C ₁₁ H ₂₂ O ₂	Umbellulic acid	186.17	23	280	1	
4174	C ₁₁ H ₂₂ O ₂	Undecylic acid CH ₂ (CH ₂) ₁₁ CO ₂ H	186.17	29.3	228160		1066
4175	C ₁₁ H ₂₂ O ₂	Ethyl pelargonate C ₂ H ₁₇ CO ₂ C ₂ H ₄	186.17	-44.5	219	0.86617.5	-333
4176	C ₁₁ H ₂₂ O ₂	Methyl caprate C ₂ H ₁₉ CO ₂ CH ₂	186.17	-18	224	1	
4177	C ₁₁ H ₂₂ O ₃	Diisoamyl carbonate	202.17	-	228.7	0.91216	
321//							

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4178.1	C11H24	←Ethylnonane	156.18		7116	0.75119	
4179	C11H24O	n-Undecyl alcohol CH ₃ (CH ₂) ₉ CH ₂ OH.	172.19	19	146*0	0.833	374
4179.1	C11H24O	n-Undecan-6-ol	172.19	16	235754	0.833	1
4180	C11H25N	n-Undecylamine CH ₃ (CH ₂) ₂ CH ₂ NH ₂	171.20	16.5	234		
4181	C12H4N7O13	Dipicrylamine [2, 4, 6-(NO ₂) ₂ C ₆ H ₂] ₂ NH	439.10	250 d.			
4182	C12H6O12	Mellitic acid C ₆ (CO ₂ H) ₆	342.05	286			
4183	C12H7N2O7	Phenyl picrate	305 .08	153		Ī	
4184	C ₁₂ H ₈	Acenaphthylene	152.06	93	275		1192
4185	C ₁₂ H ₈ AsN	Phenarsazine	241.03	310	i		
4185.1	C12H8Br2	p, p'-Di-(bromophenyl)	311.89	164		1.897	1
4186	C ₁₂ H ₈ Cl ₂	1, 2-Dichloracenaphthene	222.98	115			ł
4187	C12H8N2	Phenanthroline	180.08	78.5	>360		1
4188	C12H8N2	Phenazine	180.08	171	>360		1
4189	C12H8N2	Phenazone	180.08	156	>360	1	1
4190	C12H8N2	Pseudophenanthroline	180.08	173		i	}
4191	C12H8N2O4	Dinitroacenaphthene	244.08	206 d.	1	ŀ	
4192	C12H8N2O4	o, o'-Dinitrodiphenyl	244 . 0 8	124			ı
4193	C12H8N2O4	m, m'-Dinitrodiphenyl	244 . 0 8	198		1	1
4194	C12H8N2O4	p, p'-Dinitrodiphenyl	244.08	233			ł
4195	C ₁₂ H ₈ O	Diphenylene oxide	168.06	87	288		1
4196	C12H8O2	2-Phenylbenzoquinone	184.06	107	•		1
4197	C12H8O4	1, 8-Naphthalic acid	216.06	270			1
4198	C12H8O4	Bergaptene	216.06	188			1
4199	C12H8O4	Paracotoin	216.06	152			İ
4200	C12H8O4	Xanthotoxin	216.06	146			İ
4201	C12H8S2	Thianthrene	216.19	160	366		Į.
4202	C12H2A8CIN	Phenarsazine chloride	277.50	193			
4203	C ₁₂ H ₈ Br	3-Bromoacenaphthene	232.99	51.2	336.4	1.4374	
4204	C ₁₉ H ₉ Cl	3-Chloroacenaphthene	188.53	69.8	319		1
4205	C ₁₂ H ₉ Cl	o-Chlorodiphenyl o-ClC ₆ H ₄ C ₆ H ₅	188.53	34	268		1
4206	C ₁₂ H ₉ Cl	m-Chlorodiphenyl m -ClC ₆ H ₄ C ₆ H ₅	188.53	89		Ì	ł
4207	C ₁₂ H ₉ Cl	p-Chlorodiphenyl p -ClC ₆ H ₄ C ₆ H ₅	188.52	75.5	282		İ
420 8	C ₁₂ H ₉ ClN ₂	m-Chloroazobenzene	216.54	67.5			ł
4209	C ₁₂ H ₉ ClN ₂	p-Chloroazobenzene p-ClC ₆ H ₄ NNC ₆ H ₅ .	216.54	89	1		
4210	C ₁₂ H ₉ I	3-Iodoacenaphthene	280.00	65	180 d.	1.6744	
4211	C ₁₂ H ₂ N	Carbazole	167.08	244.8	354.8		1333
4212	C ₁₂ H ₂ NO ₂	o-Nitrodiphenyl o-NO ₂ C ₆ H ₄ C ₆ H ₅	199.08	37	320		
4213	C ₁₂ H ₉ NO ₂	m-Nitrodiphenyl m-NO ₂ C ₆ H ₄ C ₆ H ₅	199.08	61			i
4214	C ₁₂ H ₉ NO ₂	p -Nitrodiphenyl p -NO ₂ C _{δ} H _{δ} C _{δ} H _{δ}	199.08	113	340		
4215	C ₁₂ H ₉ NS	Thiodiphenylamine	199.14	180	371 d.		
4216	C12H9N3O2	p-Nitroazobenzene	227 . 09	129.9			1
4217	C12H9N3O5	2, 4-Dinitro-4'-hydroxydiphenylamine	275.09	190	1 .		
4218	C12H10	Acenaphthene	154.08	95	277.5	1.02499.2	1127,
					1		1193
4219	C12H10	Diphenyl C ₆ H ₅ C ₆ H ₅	154.08	69.0	254.9	1.041	1105
4220	C ₁₂ H ₁₀ AsCl	Diphenyl arsine chloride	264.50	42.8	327 d.	1.58340	1
4221	C12H10A82	Arsenobenzene C ₆ H ₅ AsAsC ₆ H ₅	304.00	196			ł
4221.1	C ₁₂ H ₁₀ ClI	Diphenyliodonium chloride	316.47	d. 230	1	1.67	
4222	C ₁₂ H ₁₀ Cl ₂ N ₂	Dichlorobenzidine [2, 4-Cl(NH ₂)C ₆ H ₃] ₂ .	253.01	163	1		ı
4223	C ₁₂ H ₁₀ Cl ₂ N ₂	p, p-Dichlorbenzidine	253.01	60			}
4224	C12H10N2	Aribine	182.09	237	205.4	1 000	1
4225	C ₁₂ H ₁₀ N ₂	Azobenzene C ₆ H ₅ NNC ₆ H ₅	182.09	67	297.4	1.203	1001
4226	C ₁₂ H ₁₀ N ₂ O	Azoxybenzene	198.09	36		1.246	1031
4227	C ₁₂ H ₁₀ N ₂ O	p-Hydroxyazobenzene	198.09	152		}	1
4228	C ₁₂ H ₁₀ N ₂ O	N-Nitrosodiphenylamine (C ₆ H ₆) ₂ NNO	198.09	66.5	1		
4229	C ₁₂ H ₁₀ N ₂ O	p-Nitrosophenylaniline	198.09	143	1	1	
4230	C ₁₂ H ₁₀ N ₂ O ₂	o, o'-Azophenol	214.09	172			
4231	C12H10N2O2	m, m'-Azophenol HOC ₆ H ₄ NNC ₆ H ₄ OH.	214.09	205		ŀ	1
4232 4233	C ₁₂ H ₁₀ N ₂ O ₂	p, p'-Azophenol	214.09	215	1	1	I
4233 4234	C ₁₂ H ₁₀ N ₂ O ₂	o-Nitrodiphenylamine	214.09	75	1		1
4234 4235	C ₁₂ H ₁₀ N ₂ O ₂	p-Nitrodiphenylamine Benzidinesulfone	214.09	133	1	1	
4235 4236	C12H10N2O2S		246.16	>350		1	1
7200	$C_{12}H_{10}N_{2}O_{3}$	o, o'-Azoxyphenol	288.17	102	I	1	ı

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4237	C12H10N2O3	p, p'-Azoxyphenol	288.17	156; 107		Ī	İ
4238	C ₁₂ H ₁₀ O	o -Phenylphenol $C_6H_6C_6H_4OH$	170.08	56	275		1
4239	C ₁₂ H ₁₀ O	m-Phenylphenol C ₀ H ₄ C ₄ H ₄ OH	170.08	78	>300	1	-
4240	$C_{12}H_{10}O$	p -Phenylphenol $C_{\bullet}H_{\bullet}C_{\bullet}H_{\bullet}OH$	170.08	165	308		
4241	C12H10O	Phenyl ether C ₄ H ₅ OC ₄ H ₅	170.08	26.9	259	1.072	1019
4242	C12H10OS	Diphenyl sulfoxide (C ₄ H ₅) ₂ SO	202.14	70.5	340		
4243	C12H10O2	o, o'-Diphenol OHC ₄ H ₄ .C ₄ H ₄ OH	186.08	109	326		-
4244	C12H10O2	o, p'-Diphenol OHC ₆ H ₄ .C ₆ H ₄ OH	186.08	161	342		
4245	C12H10O2	m, m'-Diphenol OHC ₄ H ₄ .C ₄ H ₄ OH	186.08	123.5			
4246	C12H10O2	p, p'-Diphenol OHC H. C. H. OH	186.08	272			
4247	C12H10O2	α-Naphthyl acetate CH ₂ CO ₂ C ₁₀ H ₇	186.08	44.8			
424 8	C12H10O2	β-Naphthyl acetate CH ₂ CO ₂ C ₁₀ H ₇	186.08	68.5			
4249	C12H10O2S	Diphenyl sulfone (CoHs)2SO2	218.14	129	377.8		i
4250	C12H10O2S	Phenyl benzenesulfonate	234.14	35			
4251	C12H10O4	2, 2'-Diresorcinol	218.08	268		1	
4252	C12H10O4	4, 4'-Diresorcinol	218.08	222			
4253	C ₁₂ H ₁₀ O ₄	5, 5'-Diresorcinol	218.08	310	1		1
4254	C ₁₂ H ₁₀ O ₄	Piperic acid	218.08	217	220 d.		
4255	C ₁₂ H ₁₀ O ₄	Quinhydrone	218.08	171	220 u.		
4256	C ₁₂ H ₁₀ O ₄ S	4, 4'-Dihydroxydiphenylsulfone	250.14	239			
4257	C ₁₂ H ₁₀ O ₄ S	Paracotoic acid	234.08	108			
					240¹º d.	1	
4258	C12H10O4S2	Benzenesulfonic anhydride	298.21	90	240° a.		
4259	C ₁₂ H ₁₀ P ₂	Phosphobenzene C ₆ H ₆ P.PC ₆ H ₆	216.13	149	1		
4260	C12H16S	Diphenyl sulfide (C ₆ H ₆) ₂ S	186.14		293	1.11915	948
4261	C12H16S2	Diphenyl disulfide (C ₆ H ₅) ₂ S ₂	218.21	61	310		
4262	$C_{12}H_{10}Se$	Diphenyl selenide (C ₄ H ₅) ₂ Se	233.28		302	1.35616	
4263	$C_{12}H_{10}Te$	Diphenyl telluride (C ₆ H ₅) ₂ Te	281.58		320	1.55616	800
4264	C12H11A8	Diphenylarsine (C ₆ H ₆) ₂ AsH	230.05	1	155*7		
4265	C12H11A8O2	Diphenylarsonic acid (C ₆ H ₅) ₂ AsOOH	262 .05	178			
4266	C12H11N	o-Aminodiphenyl C ₆ H ₆ C ₀ H ₄ NH ₂	169.09	45.5	299		ı
4267	C12H11N	2-Benzylpyridine	169.09		276		
4268	$C_{12}H_{11}N$	3-Benzylpyridine	169.09	34	286		
4269	C12H11N	4-Benzylpyridine	169.09		287	{	
4270	C12H11N	Diphenylamine (C ₆ H ₆) ₂ NH	169.09	53	302	1.159	1333
4271	C ₁₂ H ₁₁ NO	m-Phenylaminophenol	185.09	82	340		
4272	C ₁₂ H ₁₁ NO ₂ S	Benzenesulfanilide	233.16	110		l	1183
4273	C ₁₂ H ₁₁ N ₂	m-Aminoazobenzene	197.11	59	1	1	1
4274	C ₁₂ H ₁₁ N ₂	p-Aminoazobenzene C ₆ H ₄ N ₂ C ₄ H ₄ NH ₂	197.11	126	> 360		ŀ
4275	C ₁₂ H ₁₁ N ₂	Diazoaminobenzene C ₆ H ₆ N ₂ NHC ₆ H ₆	197.11	96	exp.		1
4276	C ₁₂ H ₁₁ N ₂ O ₂	o-Nitrobenzidine	229.11	143	exp.		1
4277		m-Nitrobenzidine	229.11	190	1		ł
	C ₁₂ H ₁₁ N ₄ O ₂			190	000	1.0716	
4278	C ₁₂ H ₁₁ P	Diphenylphosphine (C ₆ H ₆) ₂ PH	186.11	1 10	280		000
4279	C12H12	1, 4-Dimethylnaphthalene	156.09	<-18	264.3	1.016	900
4280	C12H12	2, 3-Dimethylnaphthalene	156.09		266		
4281	C ₁₂ H ₁₃	2, 6-Dimethylnaphthalene	156.09	111			
4282	C12H12	α-Ethylnaphthalene	156.09	<-14	258 d.	1.06415	
4283	C12H12	β -Ethylnaphthalene	156.09	-19	251	1.0080	
4284	$C_{12}H_{12}ClN$	Diphenylamine hydrochloride	205 . 56	i			1333
4285	C12H12N2	p-Aminodiphenylamine	184.11	75	354		
4286	C12H12N2	Benzidine $(p-NH_2C_0H_4)_2$	184.11	128.7	401.7		
4287	C12H12N2	β-Benzidine	184.11	45	363		
4288	C12H12N2	1, 1-Diphenylhydrazine (C ₆ H ₅) ₂ NNH ₂ .	184.11	36	22040		
4289	C12H12N2	Hydrazobensene CaHaNHNHCaHa	184.11	131	d.		
4290	C12H12N2O	Harmalol	200.11	212 d.		1	
4291	C ₁₂ H ₁₂ N ₂ O ₂	Luminal (5,5-Phenylethylbarbituric acid)	232.11	173			
4292	C ₁₂ H ₁₂ N ₅ O ₆ S ₂)	Benzene-o, o'-disulfonic acid	344.24	> 175 d.		1	1
4293	C ₁₂ H ₁₂ N ₄ O ₄ S ₂)	Chrysoidine	212.12	117.5	1	1	1333
					1	1	1000
4294	C ₁₂ H ₁₂ N ₄	p, p'-Diaminoazobenzene	212.12	241	1		ł
4295	C ₁₂ H ₁₂ N ₄ O ₄)	Urocanic acid	276.12	213 d.	076 4	1 001	880
4296	C ₁₂ H ₁₂ O	Ethyl a-naphthyl ether	172.09	5.5	276.4	1.061	779
4297	C12H12O	Ethyl β-naphthyl ether	172.09	37.5	282	1.064	1071
4297 .1	C12H12O	L-Methyl-a-naphthyl carbinol	172.09	47	11611	1.115	1
4298	C12H12O2	Benzylideneacetylacetone	188.09		18816		

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4299	C12H12O2	Allyl cinnamate	188.09		286 d.	1.05225	T
4300	C12H12O3	Benzoylacetylacetone	204.09	35	16722	1.15215	İ
4301	C12H12O6	Brasilic acid	252 .09	129			
4302	C ₁₂ H ₁₂ O ₆	Phloroglucinol triacetate	252 . 09	106		1	ł
4303	C ₁₂ H ₁₂ O ₆	Pyrogallol triacetate	252 . 09	165			
4304	C ₁₂ H ₁₈ N	Dimethyl-α-naphthylamine	171.11		276	1.04515	810
4305	C ₁₂ H ₁₈ N	Dimethyl-β-naphthylamine	171.11	46	305	1.028453.2	1081
4306	C ₁₂ H ₁₈ N	Ethyl a-naphthylamine	171.11		17615	1.060	871
4307	C ₁₂ H ₁₃ N	Ethyl β-naphthylamine	171.11		18315	1.057	969
4308	C ₁₂ H ₁₂ N	2, 6, 8-Trimethylquinoline	171.11	46	261 . 4	1	ļ
4309	C ₁₂ H ₁₂ NO ₃	Pyrantin	219.11	155		1	
4310	C ₁₂ H ₁₂ N ₃	p, p'-Diaminodiphenylamine	199.12	158			ŀ
4311	C ₁₂ H ₁₄ A ₈₂ Cl ₂ N ₂ O ₂	Arsphenamine:	438.96	160 d.			l
4312	C ₁₂ H ₁₄ IN	Quinaldine ethiodide	299.05	234		İ	ļ
4313	C ₁₂ H ₁₄ N ₂ O	p-Tolylantipyrine	202.12	137 278			
4314 4315	C ₁₂ H ₁₄ N ₄ O ₄ S ₂	Benzidine-o, o'-disulfoneamide	342.27	260 s. d.		1	ł
4315 4316	C ₁₂ H ₁₄ N ₄ O ₆	Desoxyamalic acid	310.14 342.14	200 s. d. 221 d.			
4317	C ₁₂ H ₁₄ N ₄ O ₈	n-Propyl cinnamate	190.11	221 d.	285.1	1.0440	1
4317	C ₁₂ H ₁₄ O ₂ C ₁₂ H ₁₄ O ₂	Eugenol acetate	206.11	31	282.4	1.044	665
4318.1	C ₁₂ H ₁₄ O ₃	Ethyl p-methoxycinnamate	206.11	52	202.4	1.004	1232
4319	C ₁₂ H ₁₄ O ₃	Isoeugenol acetate	206.11	80	283		1202
4322	C ₁₂ H ₁₄ O ₄	Apiol	222.11	29.5	294	1.015	1310
4323	C ₁₂ H ₁₄ O ₄	Isoapiol	222.11	56	304	1.19712	817
4324	C ₁₂ H ₁₄ O ₄	Diethyl o-phthalate o-C ₆ H ₄ (CO ₂ C ₂ H ₅) ₂ .	222.11	%	296.1	1.122	607
4325	C ₁₂ H ₁₅ N	Carbazoline	173.12	99	297	1.122	001
4326	C ₁₂ H ₁₆ N	Diallylaniline C ₆ H ₈ N(CH ₂ CH:CH ₂) ₂	173.12	88	245	0.954	
4327	C ₁₂ H ₁₆ N	Julolidine	173.12	40	280	0.503	1
4328	C ₁₂ H ₁₅ NO	Benzoylpiperidine	189.12	48	18417		1
4329	C ₁₂ H ₁₅ NO	Naphthalanmorpholine	189.12	63	312	1	
4330	C ₁₂ H ₁₅ NO ₂	Dipropionanilide C ₆ H ₅ N(OCC ₂ H ₅) ₂	205.12	44	179.530	1	
4330.1	C ₁₂ H ₁₅ NO ₂	Ethyl phenaceturate	221.12	79	170.0		1280
4331	C ₁₂ H ₁₅ NO ₅	Anhalonidine	221.12	160			1200
4332	C ₁₂ H ₁₅ NO ₅	Anhalonine	221.12	85.5			
4333	C ₁₂ H ₁₅ NO ₃	Hydrocotarnine	221.12	55	100 d.		1
4334	C ₁₂ H ₁₅ NO ₄	Cotarnine	237.12	133			1
4335	C12H16N2O	Methylcytisine (Caulophylline)	204.14	137			1
4336	C12H16N2O4S	Aniline sulfate (C.H.NH2)2H2SO4	284.20			1.3774	1
4337	C12H16O	Isoamyl phenyl ketone	176.12	1	242.5		1
4338	C12H16O	Isobutyl benzyl ketone	176.12		250.5	0.969	ł
4339	C12H16O2	Eugenol ethyl ether	192.12		254	1.0219.5	808
4340	C12H16O2	Isoeugenol ethyl ether	192.12	64			
4341	C12H16O2	Pentamethylbenzoic acid	192.12	210.5			
4342	C12H16O2	Amyl benzoate C ₆ H ₅ CO ₂ C ₅ H ₁₁	192.12		d.	0.989	566
4343	C12H16O2	Benzyl isovalerate	192.12		13625		
4344	C12H16O2	Benzyl d-valerate	192.12		250780	0.98222	558
4345	C12H16O2	Isoamyl benzoate	192.12		262	0.993	
4345.1	C12H16O2	Isopropyl hydrocinnamate	192.12	1	12611	0.98625	1
4346	C12H16O2	Thymyl acetate	192.12		24 3	1.0090	1
4347	C12H16O3	n-Amyl salicylate o-HOC ₆ H ₄ CO ₂ C ₅ H ₁₁ .	208.12		265	1.06515	İ
4348	C12H16O3	Butyl anisate $p-CH_3OC_6H_4CO_2C_4H_9$	208.12		18340	1.054	635
4349	C ₁₂ H ₁₆ O ₃	Isoamyl salicylate	208.12	1	273	1.04525	
4350	C12H16O8	Isobutyl anisate	208.12	i l	17046	1.052	634
4351	C ₁₂ H ₁₆ O ₃	Guaiacyl valerate C ₄ H ₉ CO ₂ C ₅ H ₄ OMe	208 . 12		265		
4352	C ₁₂ H ₁₆ O ₃	Asaron	208.12	67	296	1.165	1333
4353	C12H16O3	Elemicin	208.12		14710	1.063	694
4354	C ₁₂ H ₁₆ O ₄	Aspidinol	224.12	161			1
4355	C ₁₂ H ₁₆ O ₆	Diethyl succinylsuccinate	256.12	128		1	1
4356	C ₁₂ H ₁₆ O ₆	d, β-Phenylglucoside	256.12	175			1000
4357	C ₁₂ H ₁₆ O ₇	Arbutin	272.12	. 195			1333
4358	C ₁₂ H ₁₇ AsN ₂ O ₄	Aniline arsenate (C ₆ H ₅ NH ₂) ₂ H ₂ AsO ₄	328.11	140	070 5	1	
4359	C ₁₂ H ₁₇ NO	N-n-Butylacetanilide	191.14	0.5	276.5	1	
4360	C ₁₂ H ₁₇ NO	Caproanilide CH ₃ (CH ₂) ₄ CONHC ₆ H ₅	191.14	95 l		I	ı

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4361	C12H17NO	C-Diethylacetanilide	191.14	124	İ		
4362	C ₁₂ H ₁₇ NO ₂	Ethyl-N-phenacetine	207.14	38	298		1
4363	C12H17NO2	Ethyl-o-tolylurethane	207.14		255		•
4364	C12H17N5O9	Lysine picrate	375.17	252 d.	ļ		1
4365	C12H18	Hexamethylbenzene	162.14	166	265		
4365.1	C12H18	1-Methyl-3-tertamylbenzene	162.14		208	0.8673	1
4366	C12H18	1, 2, 4-Triethylbenzene	162.14		218	0.882	583
4367	C12H18	1, 3, 5-Triethylbenzene	162.14		218	0.863	565
4367.1	C12H18N2O4	Rhamnose phenylhydrazone	254.16	159			
4367.2	C12H18N2O5	d, α-Glucosephenylhydrazone	270.16	160	1		l
4367.3	C12H12N2O5	d, β-Glucosephenylhydrazone	270.16	141		1	l
4367.4	C12H18N4O	Phenylhydrazine hydrate	234.17	24			ļ
4367.5	C12H18N4O2	Hexamethylenetetramineresorcinol	250.17	200 d.			İ
4367.6	C12H18O	Benzyl isoamyl ether	178.14		237.5	į	
4367.7	C12H18O	Thymyl ethyl ether	178.14		226.9	0.9330	İ
4367.8	C ₁₂ H ₁₈ O	Mellithyl alcohol (CH ₂) ₅ C ₆ CH ₂ OH	178.14	160.5	220.0	0.000	ľ
4367.9	C ₁₂ H ₁₈ O ₂	Phloroglucinol triethyl ether	210.14	43	17524		i
4368	C ₁₂ H ₁₈ O ₂	Pyrogallol triethyl ether	210.14	39	173	ļ	
4368.1	C ₁₂ H ₁₈ O ₄	Cascarillin	226.14	205			
4368.2					000.1		ŀ
	C ₁₂ H ₁₆ O ₆	Trimeric diacetyl	258.14	105	280.1		
4368.3	C12H18O6	Diethyl 1, 1'-diacetylsuccinate	258.14	88		1.209 (st.) 1.176 (met.)	1196, 1201
4368.4	C12H18O6	Triethyl aconitate	258.14	Į	253250	1.106 (met.)	454
4368.41		Diethyl diacetyltartrate	290.14	20	17015		434
4368.5	C ₁₂ H ₁₉ Br ₂ O ₂	Bromal d-borneolate		68	170.	1.10971	
4368.6			434.89	109	1.4570	1.868°	
	C ₁₂ H ₁₉ ClO ₂	d-Bornyl chloroacetate	230.60		14730		
4368.7	C12H19Cl3O2	Chloral-d-borneolate	301.52	56			l
4368.8	C12H19N	n-Dipropylaniline C ₆ H ₅ N(C ₂ H ₇) ₂	177.15		241	0.910	1
4368.9	C12H20N2O2	Isoamylisopropylbarbituric acid	240.17	175	1		
4369	C12H20N2O3	Isoamylpropylbarbituric acid	270 .1 7	132			
4369.1	C ₁₂ H ₂₀ N ₄ O ₇	Hexamethylenetetraminemethylene			}	i	ŀ
		citrate	332.19	175			
4369.2	C ₁₂ H ₂₀ O	Ballanophorin	180.15	56		1	
4370	C ₁₂ H ₂₀ O	Homophorone	180.15]	210*25	0.886	530
4371	C ₁₂ H ₂₀ O ₃	Geranylacetic acid	196.15		17919	0.938	516
4372	C ₁₂ H ₂₀ O ₂	dl-Bornyl acetate	196.15		11422	0.985	483
4 373	C ₁₂ H ₂₀ O ₂	d-Bornyl acetate	196.15	29	226	0.99115	994
4374	C12H20O2	Geranyl acetate	196.15		242	0.91716	493
4375	C12H20O2	Isobornyl acetate	196.15		899	0.981	1010
4375.1	C ₁₂ H ₂₀ O ₂	Isopulegyl acetate	196.15		10314	0.93518	934
4376	C12H20O2	l-Linalyl acetate	196.15		220	0.895	414
4377	C12H20O2	Neryl acetate	196.15		13425	0.91615	
4378	C12H20O2	dl, a-Terpinyl acetate	196.15	<-50	220 d.	0.957	
4379	C12H20O2	d (l), α-Terpinyl acetate	196.15	' "	14040	0.9830	İ
4380	C12H20O5	Diethyl 1-ethyl-1'-acetylsuccinate	244.15		263	1.06416	
4381	C12H20O7	Triethyl citrate	276.15		294	1.137	409
4382	C12H20O10	Maltosan	324.15	150 (?)	201	1.10	409
4383	C ₁₂ H ₂₁ ClO ₂	l-Menthyl chloroacetate	232.62	38	13712	1.056	
4384	C ₁₂ H ₂₁ N ₂	Kyanpropine	207.19	116	10,1	1.000	
4385	C12H22O	Ethyl d-bornyl ether	182.17	110	205	0.901	1002
4386	C ₁₂ H ₂₂ O	Hexenyl ether			1	0.901	1023
4387	C ₁₂ H ₂₂ O ₂	d-Citronellyl acetate	182.17		118	0.00015	400
			198.17		12115	0.9034	402
4388	C ₁₂ H ₂₂ O ₂	l-Menthyl acetate (HOCHCO ₂ C ₄ H ₉) ₂	198.17	7-	227	0.919	418
4389	C ₁₂ H ₂₂ O ₃	Lanolic acid	214.17	77			l
4390	C12H22O4	l-Menthyl glycollate	214.17	87		0.005	1
4391	C12H22O4	Diisoamyl oxalate	230.17		265	0.96811	ŀ
4392	C12H22O6	Di-n-butyl d-tartrate	262 . 17	22.5	20318	1.09815	Ì
4393	C12H22O6	Diisobutyl d-tartrate	262.17	69	325		ļ
4393.1	C12H22O6	Diisobutyl l-tartrate	262 . 17	74	18521	1.02979	
4394	C12H22O11	Lactose	342.17	201.6	d.	1.525	1229
4395	$C_{12}H_{22}O_{11}(H_2O)$	Maltose	360.19		1	1.540	1333
4396 4397	C ₁₂ H ₂₂ O ₁₁ C ₁₂ H ₂₂ O ₁₁	Saccharose	342 . 17	186		1.5884	1242

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
4398	C12H22C1O	Lauryl chloride CH ₂ (CH ₂) ₁₀ COCl	218.64	-17	14518	1	1
4399	C12H22N	Lauronitrile CH ₂ (CH ₂) ₁₀ CN	181.19	4	198100	0.82715	
4400	C12H24	n-Dodecylene CH2:CH(CH2),CH2	168.19	-31.5	9615	0.7624	
4401	C12H24N2O10	d-Glucosealdazine	356.20	100			1
4402	C12H24O	n-Amyl hexyl ketone C ₆ H ₁₁ COC ₆ H ₁₂	184.19	9	1120		
4403	C12H24O	Ethylmenthol	184.19		854	0.90417	
4404	C12H24O	l-Ethyl menthyl ether	184.19		212.9	0.854	918
4405	C12H24O	Lauric aldehyde CH ₂ (CH ₂) ₁₀ CHO	184.19	44.5	185100	1	
4406	C12H24O2	Lauric acid CH ₂ (CH ₂) ₁₀ CO ₂ H	200.19	48.0	225100	0.883	1123
4407	C12H24O2	n-Decyl acetate CH ₂ CO ₂ C ₁₆ H ₂₁	200.19		191.5		1082
4408	C12H14O2	Ethyl n-caprate C ₂ H ₁₉ CO ₂ C ₂ H ₅	200.19		245	0.862	
4409	C12H24O2	n-Parabutyraldehyde	216.19		100*5		
4410	C ₁₂ H ₂₆ NO	Lauramide CH ₂ (CH ₂) ₁₀ CONH ₂	199.20	102	20012.5	1	1
4411	C ₁₂ H ₂₆	n-Dodecane CH ₂ (CH ₂) ₁₀ CH ₂	170.20	-12	216	0.768	255
4412	C12H26	5-Propylnonane (C ₄ H ₂) ₂ CHC ₃ H ₇	170.20		205	0.756	268
4413	C12H26	2, 4, 5, 7-Tetramethyloctane	170.20		210	"""	
4414	C ₁₂ H ₂₆ O	n-Amylhexyl carbinol	186.20	30	119•		
4415	C ₁₂ H ₂₆ O	n-Dodecyl alcohol CH ₂ (CH ₂) ₁₀ CH ₂ OH	186.20	24	259	0.831	1
4416	C ₁₂ H ₂₆ O	n -Boulety i alcohol $OH_2(OH_2)$ $OH_2(OH$	186.20		208.8	0.502	
4417	C ₁₂ H ₂₇ N	Dodecylamine C ₁₂ H ₂₆ NH ₂	185.22	28	13516	İ	١.
4418	C ₁₂ H ₂₇ N	Tri-n-butylamine (C ₄ H ₉) ₃ N	185.22	20	214	0.77820	
4419	C ₁₂ H ₂₇ N	Triisobutylamine [(CH ₃) ₂ CHCH ₂] ₃ N	185.22	-21.8	191.5	0.76625	294
4420	C ₁₂ H ₂₈ N ₂ O ₄	Ethylenediamine isovalerate	264.23	129	191.5	0.70026	201
4421	C ₁₂ H ₂₈ N ₂ O ₄ C ₁₂ H ₇ Br ₂ O ₂	Tribromosalol	450.80	195			
				145		1	
4422 4423	C ₁₄ H ₄ Cl ₂ O	p, p'-Dichlorobenzophenone	250.98 272.08	190			i
	C ₁₄ H ₈ N ₂ O ₅	p, p'-Dinitrobenzophenone	392.11	189			i
4424	C ₁₆ H ₂ N ₆ O ₉	o, o', p, p'-Tetranitrodiphenylurea			341.5		
4425	C ₁₈ H ₄ O	Fluorenone	180.06	84	341.5		
4426	C ₁₁ H ₄ O	Pyrene ketone	180.06	142	051	İ	
4427	C ₁₃ H ₈ O ₂	Xanthone	196.06	174	351	1	
4428	C ₁₈ H ₈ O ₃ S	Benzophenonesulfone	244.13	187			1
4429	C13H3O4	Euxanthone	228.06	240			
4430	C ₁₂ H ₂ BrO ₂	p-(p-Bromophenyl) benzoic acid	276.99	194	000	ł	
4431	C ₁₃ H ₃ ClO	o-Chlorobenzophenone	216.53	45.5	330	1	
4432	C ₁₃ H ₃ ClO	m-Chlorobenzophenone	216.53	83			
4433	C ₁₃ H ₉ ClO	p-Chlorobenzophenone	216.53	78	> 300		
4434	C ₁ ,H,N	Acridine	179.08	108	346	1	
4435	C ₁₈ H ₉ N	α-Naphthoquinoline	179.08	52	351	1	1
4436	C ₁₆ H ₉ N	β -Naphthoquinoline	179.08	93	351		
44 37	C ₁₈ H ₉ N	Phenanthradine	179.08	104	360	İ	
4438	C ₁₈ H ₉ NO	9-Acridone	195.08	354			
4439	C18H10	Fluorene	166.08	116	295		
444 0	C ₁₈ H ₁₀ AsN	Diphenylcyanoarsine (C ₄ H ₅) ₂ AsCN	255.05	30			1
4441	C13H10Cl2	Benzophenone chloride	236.99		305	1.23518.6	
4442	C ₁₃ H ₁₀ Cl ₂	m, m'-Dichlorodiphenylmethane	236.99	8	318	1.23421	1
4443	C13H10Cl2	p, p'-Dichlorodiphenylmethane	236.99	55	21015	1	
4444	C13H10N2O3	Benzeneazosalicylic acid	242.09	218 d.			
4445	C13H10O	p-Diphenylaldehyde p -C ₆ H ₆ C ₆ H ₄ CHO	182.08	60		1	
4446	C ₁₃ H ₁₀ O	Fluorenol	182.08	156			
4447	C ₁₃ H ₁₀ O	α -Benzophenone $(C_6H_5)_2CO$	182.08	48.5	305.4	1.08353.5	
4448	C12H10O	β-Benzophenone	182.08	26 .5	306	1.10823	1014
4449	C18H10O	γ-Benzophenone	182.08	45-48			
4450	C13H10O	8-Benzophenone	182.08	-51			1
4451	C12H10O	Xanthene	182.08	100.5	315	ŀ	
4452	C18H10O2	o-Hydroxybenzophenone	198.08	41	250***	1	
4453	C ₁₂ H ₁₀ O ₂	m-Hydroxybenzophenone	198.08	116			
4454	C13H10O2	p-Hydroxybenzophenone	198.08	134			ì
4455	C ₁₈ H ₁₀ O ₂	o-Phenylbenzoic acid	198.08	111	344		
4456	C ₁₂ H ₁₀ O ₂	m-Phenylbenzoic acid	198.08	161			1
4457	C ₁₃ H ₁₀ O ₂	p-Phenylbenzoic acid	198.08	219			1
		Phenyl benzoate C ₄ H ₅ CO ₂ C ₄ H ₅	198.08	70	314	1.235**	1
44 5₽			100.00				
4458 4459	C ₁₂ H ₁₀ O ₂ C ₁₂ H ₁₀ O ₃	2, 5-Dihydroxybenzophenone	214.08	122			

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4461	C ₁₂ H ₁₀ O ₂	2, 3'-Dihydroxybenzophenone	214.08	126	<u>'</u>	i	
4462	C12H10O2	2, 4'-Dihydroxybenzophenone	214.08	144			
4463	C13H10O3	3, 4'-Dihydroxybenzophenone	214.08	197		i	
4464	C12H10O2	4, 4'-Dihydroxybenzophenone	214.08	210		İ	
4465	C18H10O3	o-Phenoxybenzoic acid	214.08	114.5	355 d.		
4466	C13H10O3	Diphenyl carbonate (C ₂ H ₅ O) ₂ CO	214.08	81	302		
4467	C13H10O3	Salol o-HOC ₆ H ₄ CO ₂ C ₆ H ₅	214.08	43	17312	1.250	
4468	C12H10O4	2, 6, 2'-Trihydroxybenzophenone	230.08	133			
4469	C13H10O5	Pimpinellin	246.08	119			
4470	C12H10O6	Maclurin	262.08	220 d.		i	Ì
4471	C ₁₈ H ₁₀ O ₆	Sordidin	294.08	210	İ		i
4472	C ₁₃ H ₁₀ S	Thiobenzophenone (C ₆ H ₅) ₂ CS	198.14	146.5		ļ	
4473	C14H11N	Benzylideneaniline C ₆ H ₅ N:CHC ₆ H ₅	181.09	54	300		Ì
4474	C ₁₄ H ₁₁ N	5, 10-Dihydroacridine	181.09	169		1	
4475	C ₁₁ H ₁₁ NO	o-Aminobenzophenone	197.09	108		1	
4476	C ₁₁ H ₁₁ NO	m-Aminobenzophenone	197.09	86			
4477 4478	C ₁ H ₁₁ NO	p-Aminobenzophenone Benzanilide C ₄ H ₅ NHCOC ₄ H ₅	197.09 197.09	124 161		1 0014	
4479	C ₁₂ H ₁₁ NO C ₁₂ H ₁₁ NO	Benzophenoneoxime (C ₆ H ₅) ₂ C:NOH	197.09	142		1.3214	
4480	C ₁₂ H ₁₁ NO	N-Phenylformanilide (C ₄ H ₄) ₂ NOCH	197.09	74	220	1.230	
4481	C ₁ H ₁ NO ₁	o-Benzoylaminophenol	213.09	167 d.	220	1.230	
4482	C ₁₂ H ₁₁ NO ₂	m-Benzoylaminophenol	213.09	174		1	
4483	C ₁₂ H ₁₁ NO ₂	p-Benzoylaminophenol	213.09	227			
4484	C ₁₈ H ₁₁ NO ₂	p-Nitrodiphenylmethane	213.09	31			
4485	C ₁₃ H ₁₁ NO ₂	Salicylanilide o-OHC ₆ H ₄ CONHC ₆ H ₅	213.09	135			
4486	C ₁ ,H ₁₁ NO,	p-Aminosalol	229.09	152		ŀ	ı
4487	C ₁₃ H ₁₁ NO ₄	Gallanilide	245.09	205		ł	
4488	C13H11N3	2, 8-Diaminoacridine	209.11	284		1	
4489	C13H11O5	Gelsemic acid	247.09	206			
4490	C ₁₃ H ₁₃	Diphenylmethane (C ₆ H ₅) ₂ CH ₂	168.09	27	262	1.006	1030
4491 4492	C ₁₂ H ₁₂ C ₁₂ H ₁₂	o-Phenyltoluene CH ₂ C ₄ H ₄ C ₄ H ₅ m-Phenyltoluene CH ₂ C ₄ H ₄ C ₄ H ₅	168.09 168.09		260 277	1.0310	
4493	C ₁₃ H ₁₃	p-Phenyltoluene CH ₂ C ₄ H ₄ C ₄ H ₅	168.09	-3	267	1.031	
4494	C ₁₃ H ₁₂ N ₂	Benzaldehyde phenylhydrazone	196.11	156	20.	1.010	
4495	C13H12N2O	1-Benzoyl-1-phenylhydrazine	212.11	70			
4496	C12H12N8O	1-Bensoyl-2-phenylhydrasine	212.11	168			
4497	C13H12N8O	o, o'-Diaminobenzophenone	212.11	135	ļ		
4498	C13H12N2O	m, m'-Diaminobensophenone	212.11	174			
4499 4500	C ₁₃ H ₁₂ N ₂ O	p, p'-Diaminobenzophenone	212.11	237	000		1000
4500 4501	C ₁₂ H ₁₂ N ₂ O C ₁₃ H ₁₂ N ₂ O	1, 2-Diphenylurea CO(NHC ₂ H ₅) ₂ 1, 1-Diphenylurea (C ₆ H ₅) ₂ NCONH ₂	212.11 212.11	235 189	260		1329
4502	C ₁₃ H ₁₂ N ₂ O	Harmine	212.11	257 d.			
4503	C13H12N2O2	o-Nitrobenzylaniline	228.11	44; 57		1	1
4504	C12H12N2S	1, 2-Diphenylthiourea	228.17	154	d.	1.3214	
4505	C12H12O	o-Benzylphenol C ₆ H ₅ CH ₂ C ₆ H ₄ OH	184.09	21	312		
4506	C13H13O	p-Benzylphenol C ₆ H ₅ CH ₂ C ₆ H ₄ OH	184.09	84	322		
4507	C18H18O	Diphenyl carbinol (C ₆ H ₆) ₂ CHOH	184.09	68	298.5	İ	i
4508 4509	C ₁₁ H ₁₂ O	Bensyl phenyl ether C ₆ H ₆ OCH ₂ C ₆ H ₅ Phenyl-p-toluenesulfonate	184.09	39	287	1	1
4512	C ₁₂ H ₁₂ O ₂ S C ₁₂ H ₁₂ N	Benzylaniline C ₄ H ₅ NHCH ₂ C ₄ H ₅	248.16 183.11	96 37	300	1.0384	
4513	C ₁₂ H ₁₂ N	N-Methyldiphenylamine (C ₄ H ₅) ₂ NCH ₂ .	183.11	-7.6	293.4	1.04725	
4514	C ₁₈ H ₁₈ NO	m-(o-Tolylamino) phenol	199.11		375		
4515	C ₁₃ H ₁₃ NO	p-(m-Tolylamino) phenol	199.11	91	350		
4517	C13H13NO3S	Toluene-p-sulfoneanilide	247.17	103		1	
4518	C13H13N3	Diphenylguanidine	211.12	148		Ī	
4519	C ₁₈ H ₁₄ N ₂	o, p'-Diaminodiphenylmethane	198.12	88	1		1
4520 4521	C ₁₃ H ₁₄ N ₂ C ₁₃ H ₁₄ N ₂	m, m'-Diaminodiphenylmethane m, p'-Diaminodiphenylmethane	198.12	48	l	1	
4521 4522	C ₁₂ H ₁₄ N ₂ C ₁₂ H ₁₄ N ₂	p, p'-Diaminodiphenylmethane	198.12 198.12	90 89	!	1	
4523	C13H14N2	1-Phenyl-2-benzylhydrazine	198.12	26		1	
4524	C13H14N2O	Harmaline	214.12	238		1	

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
4525	C12H14N2O2	Analgen (5-Acetylamino-8-ethoxyquino-	i			İ	
		line)	230.12	155			
4526	$C_{14}H_{14}N_4S$	1, 2-Di(p-aminophenyl) thiourea	258.21	195			1
4526 .1	C13H14O2	Isobutyl phenylpropiolate	202.11		17612	1.15825	İ
4527	C ₁₃ H ₁₄ O ₄	Drimine	234.11	256			1
4528	C13H15Cl2N2O2	Chloralantipyrine	353.51	68	i		1
4529	C ₁₃ H ₁₄ N	2, 5, 6, 8-Tetramethylquinoline	185.12	20	300		
4530	C ₁₈ H ₁₆ IN	2, 4-Dimethylquinoline ethiodide	313.06	225			100=
4530.1	C ₁₂ H ₁₆ N ₂ O	4-Ethyl antipyrine	216.14	6 8			1237
4530.2 4530.3	C ₁₃ H ₁₆ N ₂ O	1-Phenyl-2-propyl-3-methylpyrazolone	216.14	93		0.939**	1262
4531	C ₁₂ H ₁₀ O C ₁₂ H ₁₄ O ₂	BenzalpinacolineEthyl benzylacetoacetate	188.12 220.12	39.5	290 d.		1048
4532	C13H16O3	Isoeugenol propionate	220.12 220.12		290 d. 292	1.03616	
4533	C ₁₂ H ₁₄ O ₄	Ethyl phenylmalonate	236.12		285 d.	1.09525	
4534	C11H16O7	l-Helicin	284.12	175	200 u.	1.00025	
4535	C ₁₃ H ₁₆ O ₇	Salinigrin	284.12	195			į
4536	C1.H17NO4	Thermodin	251.14	88			1333
4537	C1.H17N.O	Pyramidon	231.16	108		Į.	
4538	C12H19BrNO2	Phenoval	300.06	150	1		
4539	C12H18N2O	Eseroline	218.16	127	ł	1	ŀ
4541	C16H18N4O6S	Hexamethylenetetramine salicylsulfonic					
		acid (Hexal)	358.24	190 d.		ì	
4542	C16H18O	Phenyl hexyl ketone C ₆ H ₅ COC ₆ H ₁₃	190.14	17	271.5	1	
4543	C13H18O2	Eugenol propyl ether	206.14		270.5	1.002	
4544	C13H18O2	Phenyl heptylate C ₆ H ₁₃ CO ₂ C ₆ H ₅	206.14		282.3	0.982^{16}_{16}	
454 5	C13H13O3	Isoamyl anisate	222.14		18820	1.040	638
4546	C13H18O7	Methylarbutin	286.14	175			
4547	C13H18O7	Salicin	286.14	201.5	240	1.43426	
4548	C13H18O8	Calmatambetin	302.14	148	į		
4549	C16H19NO	Heptanilide CH ₃ (CH ₂) ₅ CONHC ₆ H ₅	205.15	71		ļ	
4550	C ₁₂ H ₁₉ NO ₂	Benzalaminoacetal	221.15		220150		1
4551	C ₁₂ H ₁₉ NO ₂	Dioscorine	221.15	43.5			
4552	C ₁ H ₁ NO ₂	Pellotine	237.15	111	1		1333
4553 4554	C ₁₃ H ₁₉ NO,	Gynocardine	333.15	162	ľ		
4555	C ₁₂ H ₁₉ O ₈ C ₁₂ H ₂₀ ClNO ₂	Aucubine Dioscorine hydrochloride	303.15 257.62	181 204			1
4556	C ₁₆ H ₂₀ ClNO ₂	Gujasanol (Diethylaminoacetic acid guai-	257.02	204	İ		
2000	Clerizociiios	acol hydrochloride)	273.62	184	1		
4557	C12H20N2O2	Novocaine.	236.17	60	ľ		1
4558	C ₁₂ H ₂₀ N ₂ O ₂ (2H ₂ O)		272.19	51	į	1	1
4559	C ₁₃ H ₃₀ O	a-Ionone.	192.15	01	147.528	0.930	988
4560	C ₁₂ H ₂₀ O	β-Ionone.	192.15		1401	0.944	667,
			102.10		1.0	0.022	951
4561	C12H20O	Irone	192.15		14416	0.939	605
4562	C12H20O	Lactucol	192.15	160			
4563	C16H20O	Pseudoionone	192.15		17028	0.897	1001
4564	C12H20O2	Galbanic acid	208.15	156			
4565	C13H21ClN2O2	Novocaine hydrochloride	272.64	156			
4566	C12H21ClN2O2	Procaine	272.64	155			1
4567	$C_{13}H_{21}N$	N-Ethyl-isoamylaniline	191.17		262		
4568	C12H21NO4	Meteloidine	255.17	141			
4569	C ₁₃ H ₂₂ BrNO ₄	Meteloidine hydrobromide	336.09	250			į
4570	C ₁₃ H ₂₂ N ₂ O ₃	Ethylheptylbarbituric acid	254.19	119			
4571	C1.H22O	Zeorin	194.17	251			1
4572	C12H22O2	d-Bornyl propionate	210.27		11011	0.97916	857
4573	C ₁₃ H ₂₂ O ₃	L-Menthyl pyruvate	226.17	484	14022	0.985	
4574	C ₁₃ H ₂₂ O ₇	Taxicatin	290.17	171	15000		
4575 4578	C ₁₃ H ₂₄ NO ₂	Cuscohygrine	226.19		17023	0.050	
4576 4577	C ₁₂ H ₂₄ O	Allyl <i>L</i> -menthyl ether	196.19		10413	0.876	
4577 4578	C ₁₃ H ₂₄ O	Geranylacetone	196.19		13919	0.010	ļ
4578 4579	C ₁₃ H ₂₄ O ₃	L-Menthyl propionate	212.19	20	118 ¹⁵ 142 ¹⁵	0.918	1
4579 4580	C ₁₂ H ₂₄ O ₃ C ₁₂ H ₂₄ O ₄	l-Menthyl dl-lactate	228.19	32 114	142.	0.984	
200U	U13E134U4	Brassylic acid	244.19	114	I	I	ı

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
4580.1	C12H24O4	Di-l-amyl malonate	244.19	Ì	15413	0.96225	İ
4581	C13H26	Tridecylene	182.20		232.7	0.8450	-
4582	C13H26O2	Tridecylic acid CH ₂ (CH ₂) ₁₁ CO ₂ H	214.20	51	236100		1
4583	C ₁₂ H ₂₆ O ₂	Isoamyl caprylate	214.20		13610		
4584	C ₁₃ H ₂₆ O ₂	Methyl laurate C ₁₁ H ₂₂ CO ₂ CH ₂	214.20	5	14818		
45 85	C12H22	Dipropylhexylmethane (C ₃ H ₇) ₂ CHC ₄ H ₁₃	184 . 22		221.2	0.7654.4	299
4586	C13H28	Tributylmethane (C ₄ H ₉) ₃ CH	184.22		1	0.760	300
4587	C13H28	n-Tridecane CH ₂ (CH ₂) ₁₁ CH ₂	184 . 22	-6.2	234	0.757	908
4588	C13H23O	Di-n-hexylcarbinol (C ₀ H ₁₂) ₂ CHOH	200.22	42			
4589 4500	C ₁₃ H ₂₆ O	n-Tridecyl alcohol CH ₂ (CH ₂) ₁₁ CH ₂ OH.	200.22	30.5	15615	0.8224	·
4590 4501	C ₁₂ H ₂₉ N	Tridecylamine CH ₂ (CH ₂) ₁₁ CH ₂ NH ₂	199.23	27	265		
4591 4592	C ₁₄ H ₂ Cl ₈	Octachloroanthracene Heptachloroanthracene	453.68	>350	l		
4592 4593	C ₁₄ H ₄ Cl ₇ C ₁₄ H ₄ Cl ₄ O ₂	1, 2, 3, 4-Tetrachloroanthraquinone	419.23	>350	1		1
4594	C ₁₄ H ₄ Cl ₄ O ₂		345.86	191			
4595	C ₁₄ H ₄ Cl ₄	β-Tetrachloroanthraquinone	345.86 384.78	330 330			ł
4596	C ₁₄ H ₄ Cl ₂ O ₂	α-1, 2-Dichloroanthraquinone	276.96	161	1		i
4597	C ₁₄ H ₄ Cl ₂ O ₂	β-1, 2-Dichloroanthraquinone	276.96	207			
4598	C ₁₄ H ₄ Cl ₂ O ₂	1, 4-Dichloroanthraquinone	276.96	187.5	1		
4599	C ₁₄ H ₄ Cl ₂ O ₂	1, 5-Dichloroanthraquinone	276.96	232	İ		
4600	C ₁₄ H ₄ Cl ₂ O ₂	1, 6-Dichloroanthraquinone	276.96	204	1		
4601	C ₁₄ H ₄ Cl ₂ O ₂	1, 8-Dichloroanthraquinone	276.96	199	1		
4602	C ₁₄ H ₄ Cl ₂ O ₂	2, 3-Dichloroanthraquinone	276.96	267	1		
4603	C ₁₄ H ₄ Cl ₂ O ₂	2, 6-Dichloroanthraquinone	276.96	282	1		
4604	C ₁₄ H ₄ Cl ₂ O ₂	2, 7-Dichloroanthraquinone	276.96	211	1		
4605	C14H4Cl4	1, 2, 3, 4-Tetrachloroanthracene	315.88	149	1		
4606	C1.H.Cl.	α-Tetrachloroanthracene	315.88	220			
4607	C14H4Cl4	β-Tetrachloroanthracene	315.88	152			1
4608	C14H6N2O6	1, 3-Dinitroanthraquinone	298.06	240	1		
4609	C ₁₄ H ₈ O ₈	Ellagic acid	302.05			1.66718	1
4610	C ₁₆ H ₇ ClO ₂	1-Chloroanthraquinone	242.51	162	1		
4611	C ₁ ,H ₇ ClO ₂	2-Chloroanthraquinone	242.51	208			
4612	C ₁₄ H ₇ ClO ₂	3-Chloroanthraquinone	242.51	204	1		1
4613	C ₁₄ H ₇ NO ₄	1-Nitroanthraquinone	253.06	230	1		1
4614	C ₁₄ H ₇ NO ₄	2-Nitroanthraquinone	253.06	181	1		ł
4615	C16H7NO6	4-Nitro-α-alizarin	285.06	289			
4616	C ₁₄ H ₇ NO ₄	3-Nitro-β-alizarin	285.06	244	1		1
4617	C ₁₄ H ₉ Br ₂	9, 10-Dibromoanthracene	335.89	221	1		1
4618	C ₁₄ H ₈ Cl ₂	1, 2-Dichloroanthracene	246.98	255			1
4619	C ₁₄ H ₈ Cl ₂	9, 10-Dichloroanthracene	246.98	209			
4620 4621	C ₁₄ H ₈ O ₂	Anthraquinone C ₄ H ₄ :(CO) ₂ :C ₄ H ₄	208.06	285	379.8	1.438	1
4621 4622	C ₁₄ H ₄ O ₂	Isoanthraquinone	208.06	212	200	1.405	
4623	C ₁₄ H ₈ O ₂ C ₁₄ H ₈ O ₂	Phenanthraquinone	208.06 208.06	207	360	1.405	
4624	C14H8O2	2-Hydroxyanthraquinone	208.00	133 302	I		1
4625	C ₁₄ H ₈ O ₈	Diphenic anhydride	224.06 224.06	219	1	j	
4626	C ₁₄ H ₈ O ₄	Alizarin	240.06	290	430		
4627	C ₁₄ H ₆ O ₄	Anthraflavic acid.	240.06	330	430	į	
4628	C14H8O4	Anthrarufin.	240.06	280			
4629	C ₁₄ H ₈ O ₄	1, 6-Dihydroxyanthraquinone	240.06	272		l	
4630	C ₁₄ H ₈ O ₄	1, 7-Dihydroxyanthraquinone	240.06	292			
4631	C14H8O4	Chrysazin	240.06	191			
4632	C14H8O4	Hystazarin (2, 3-Dihydroxyanthraqui-				ļ	1
	" ' '	none)	240.06	>280	1		
4633	C14H8O4	Quinizarin	240.06	195			1
4634	C14H8O4	Xanthopurpurin	240.06	263	1		
4635	C14H8O5	Anthragallol	256.06	310	s. 290		1
4636	C ₁₄ H ₈ O ₅	Anthrapurpurin	256.06	330	462		1
4637	C14H8O5	Flavopurpurin	256.06	>360	459		
4638	C14H8O5	Purpurin	256.06	256	1		1
4639	C14H8O5	1, 4, 6-Trihydroxyanthraquinone	256 .06	>300	1		1
4640	C ₁₄ H ₉ Cl	1-Chloroanthracene	212.53	82	1	1.171***	1140
4641	C ₁₄ H ₄ Cl	9-Chloroanthracene	212.53	103	1		l

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4642	C14H,NO2	1-Aminoanthraquinone	223.08	256			Ì
4643	C ₁₄ H ₂ NO ₂	2-Aminoanthraquinone	223.08	302		3 1 1	
4644	C ₁₆ H ₉ NO ₂	9-Nitroanthracene	223.08	146	}		
4645	C ₁₆ H ₉ NO ₂	2-Nitrophenanthrene	223.08	99	1		
4646	C14H6NO2	3-Nitrophenanthrene	223.08	170			
4647	C ₁₄ H ₉ NO ₂	4-Nitrophenanthrene	223.08	80	1		
4648	C ₁₄ H ₉ NO ₂	9-Nitrophenanthrene	223.08	116			1
4649	C16H10	Anthracene $C_6H_4:(CH)_2:C_6H_4$	178.08	218	342	1.2547	
4650	C14H10	Diphenylacetylene $C_6H_5CC:C_6H_5$	178.08	60	300		
4651	C14H10	Isoanthracene	178.08	134.5			
4652	C14H10	Phenanthrene	178.08	99.6	340.2	1.025	1158
4653	C16H10Cl2	Dichlorostilbene	248.99	170			
4654	C14H10Cl2	a-Tolane dichloride	248.99	143	18318		1
4655	C14H10Cl2	β-Tolane dichloride	248.99	63	17818		
4656	$C_{14}H_{10}Cl_4$	Tolane tetrachloride	319.91	163			
4656 .1	C14H10N2O2	Phthalylphenylhydrazine	238.09	179	i	1.356	1
4657	C14H10N2O2	α-Diaminoanthraquinone	238.09	236	1		
4658	C14H10N2O2	β -Diaminoanthraquinone	238.09	>300	1		
4659	C14H10N2O2	p, p'-Azoxybenzaldehyde	254.09	194	1		1 .
4660	C14H10N2O4	o, o'-Azobenzoic acid	270.09	237	ŀ		
4661	C14H10N2O4	m, m'-Azobenzoic acid	270.09	340			
4662	C14H10N2O4	α -p, p'-Dinitrostilbene	270.09.	285	į		
4663	C14H10N2O4	β -p, p'-Dinitrostilbene	270.09	216			
4664	C14H10N2O5	o, o'-Azoxybenzoic acid	286.09	240			
4665	C14H10N2O5	m, m'-Azoxybenzoic acid	286.09	320			
4666	C14H10N2O5	p, p'-Azoxybenzoic acid	286.09	240 d.	1		
4667	C14H10O	Anthranol	194.08	170 d.			
4668	$C_{10}H_{10}O$	1-Anthrol (1-Hydroxyanthracene)	194.08	153	i		
4669	C14H10O	2-Anthrol	194.08	200 d.			
4670	C ₁₄ H ₁₀ O	Diphenylketene (C ₆ H ₅) ₂ C:CO	194.08		14612	1.104	
4671	C14H10O	Phenanthrone	194.08	152			
4672	C14H10O2	Benzil C ₄ H ₅ COCOC ₄ H ₅	210.08	95.2	348	1.521413.3	1186
4673	C14H10O2	Chrysazol	210.08	220 d.	ł ·		
4674	C14H10O2	Flavene	210.08	270			
4675	C14H10O2	3, 4-Dihydroxyphenanthrene	210.08	143			1
4676	C14H10O2	Benzoic anhydride (C ₆ H ₅ CO) ₂ O	226.08	43	360	1.1994	
4677	C14H10O3	o-Benzoylbenzoic acid	226.08	127			
4678	C14H10O3	m-Benzoylbenzoic acid	226.08	162			1
4679	C14H10O2	p-Benzoylbenzoic acid	226.08	194			
4680	C14H10O3	Desoxyalizarin	226.08	208			
4681	C14H10O3	Disalicylic aldehyde	226.08	128		ı	
4682	C14H10O4	Benzoylsalicylic acid	242.08	207			
4683	C14H10O4	1, 8-Diphenic acid	242.08	252	- 4		1
4684	C14H10O4	1, 9-Diphenic acid	242.08	216			1
4685	C14H10O4	1, 10-Diphenic acid	242.08	228			1
4686	C14H10O4	2, 9-Diphenic acid	242.08	340			
4687	C14H10O4	Diphenyl oxalate (CO ₂ C ₆ H ₅) ₂	242.08	136 d.	325 s. d.		
4688	C14H10O4	Benzoyl peroxide (C ₄ H ₅ CO ₂) ₂	242.08	104	d.		1235
4689	C14H10O4S2	Dithiosalicylic acid	306.21	290			
4690	C14H10O5	Gentianin	258.08	267	400		
4691	C14H10O5	Gentienin	258.08	225			
4692	C14H10O4	Salicylosalicylic acid	258.08	148			
4693	C14H10O6	Aponic acid	274.08	252 d.			
4694	C14H10O9	Tannin	322.08	200 d.	1		
4695	C ₁₄ H ₁₁ N	a-Anthramine C ₆ H ₄ :(CH) ₂ :C ₆ H ₂ NH ₂	193.09	130			
4696	C ₁₄ H ₁₁ N	β-Anthramine C ₀ H ₄ :(CH) ₂ :C ₀ H ₂ NH ₂	193.09	238			
4697	C ₁₄ H ₁₁ N	o-Benzylbenzonitrile	193.09	19	314		
4698	C ₁₄ H ₁₁ N	1-Methylacridine	193.09	88			
4699	C ₁₄ H ₁₁ N	3-Methylacridine	193.09	134			
4700	C ₁₄ H ₁₁ N	5-Methylacridine	193.09	114	360740		
4701	C ₁₄ H ₁₁ N	α-Naphthoquinaldine	193.09		> 300		
	C ₁₄ H ₁₁ N	β-Naphthoquinaldine	193.09	82	> 300	1	
4702	CIADIIN	D-Naphthodumaidine			/ AR.		1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4704	C14H11NO2	α-Benziloxime C ₄ H ₄ COC(:NOH)C ₄ H ₅	225.09	138			
4705	C ₁₄ H ₁₁ NO ₂	Dibenzohydroxamic acid	241.09	161		i	
4706	C14H11NO4	Disalicylamide	257.09	200 d.			
4707	C14H12	1, 1-Diphenylethylene (C ₆ H ₅) ₂ C:CH ₂	180.09	9	277	1.0384	837
4708	C14H12	Stilbene C.H.CHC.H.	180.09	124	307	0.970125	
4709	C14H12N2	Benzalazine C.H.CH:N.NCH:C.H	208.11	93		1	
4710	C14H12N2	Orexine	208.11	95		1.2904	
4711	C ₁₄ H ₁₂ N ₂	Tolazone	208.11	187	>360		-
4712	C ₁₄ H ₁₂ N ₂ O ₂	α-Benzildioxime (C ₆ H ₆ C:NOH) ₂	240.11	105	237 d.		1
4713 4714	C ₁₄ H ₁₂ N ₂ O ₂	β-Benzildioxime	240.11 240.11	105			
4714 4715	C ₁₄ H ₁₂ N ₂ O ₂ C ₁₄ H ₁₂ N ₂ O ₂	Oxanilide (CONHC ₆ H ₆) ₂	240.11 240.11	165 250	320	1	
4716	C ₁₄ H ₁₂ N ₂ O ₄	Di-o-aminophenyl oxalate	272.11	167.5 d.	320	1	1
4717	C ₁₄ H ₁₂ N ₂ O ₄	Di-m-aminophenyl oxalate	272.11	180 d.			
4718	C14H12N2O4	Di-p-aminophenyl oxalate	272.11	220 d.			
4719	C ₁₄ H ₁₂ N ₂ O ₄	Hydrazo-o-benzoic acid	272.11	205 d.			
4722	C ₁₄ H ₁₂ N ₂ S	Dehydrothio-p-toluidine	240.17	191	434	}	
4723	C ₁₆ H ₁₂ O	Diphenylacetaldehyde	196.09		19327	1.100	775
4724	C14H12O	Phenyl benzyl ketone	196.09	60	322	100	
4725	C14H12O	Phenyl o-tolyl ketone	196.09	>-18	316		1
4726	C16H12O	Phenyl m-tolyl ketone	196.09		316.5	1.08817.8	į
4727	C14H12O	Phenyl p-tolyl ketone	196.09	60	326.5		1188
4728	C14H12O2	Benzoin C ₆ H ₅ COCH(OH)C ₆ H ₅	212.09	133	344	1	
4729	C16H18O2	o-Benzylbenzoic acid	212.09	114			1
4730	C14H12O2	m-Benzylbenzoic acid	212.09	108			l
4731	C14H12O2	p-Benzylbenzoic acid	212.09	155			1
4732	C14H12O2	Diphenylacetic acid (C ₆ H ₆) ₂ CHCO ₂ H	212.09	148			
4733	C14H12O2	Benzyl benzoate C ₆ H ₅ CO ₂ CH ₂ C ₆ H ₅	212.09	18.5	324	1.11418.5	
4734	C ₁₄ H ₁₂ O ₂	p-Cresyl benzoate p-CH ₂ C ₆ H ₅ O ₂ CC ₆ H ₅ .	212.09	71.5	316		
4735	C14H12O2	Benzyl salicylate	228.09	1	21422.6		Ì
4736	C14H12O2	m-Cresyl benzoate C ₆ H ₄ CO ₂ C ₆ H ₄ CH ₃	212.09	55		1	
4737	C ₁₄ H ₁₂ O ₃	Trihydroxydihydroanthracene	228.09	256			1
4738	C14H12O3	Benzilic acid (C ₆ H ₅) ₂ C(OH)CO ₂ H	228.09	150			
4739	C ₁₄ H ₁₂ O ₈	Amyrolin	228.09	124		1.35118	1312
4740	C ₁₄ H ₁₈ O ₈	Benzosol C ₄ H ₅ CO ₂ C ₆ H ₄ (OCH ₂)-o	228.09	61			1
4741 4742	C ₁₄ H ₁₂ O ₃	o-Cresyl salicylate	228.09	35		}	1
4742	C ₁₄ H ₁₂ O ₃	m-Cresyl salicylate	228.09 227.09	74 39		ì	1
4744	$C_{14}H_{18}O_{8}$ $C_{14}H_{18}O_{4}$	p-Cresyl salicylate	224.09	129		ļ	1
4745	C ₁₄ H ₁₂ O ₄	Isocotoin	244.09	162			1
4746	C ₁₄ H ₁₂ O ₄	Guaiacyl salicylate	244.09	65			[
4747	C14H12O6	Gardenin	276.09	164			
4748	C ₁₄ H ₁₂ NO	N-Benzoyl-o-toluidine	211.11	143		1	1296
4749	C ₁₄ H ₁₂ NO	N-Benzoyl-m-toluidine	211.11	125		ŀ	1299
4750	C ₁₄ H ₁₂ NO	N-Benzoyl-p-toluidine	211.11	158	232		1291
4751	C ₁₄ H ₁₂ NO	o-Benzylbenzamide	211.11	163		1	
4752	C ₁₄ H ₁₁ NO	N-Diphenylacetamide	211.11	103		i	1281
4753	C ₁₄ H ₁₂ NO	Phenylacetanilide	211.11	117		1	1
4754	C14H13NO2	Benzoylanisidine	227.11	154		1	1
4755	C14H12N2O	m-Acetylaminoazobenzene	239.12	131			ŀ
4756	C14H14	Dibenzyl (C ₆ H ₅ CH ₂) ₂	182.11	52.5	284	0.94240.6	1118
4757	C14H14	1, 1-Diphenylethane (C ₄ H ₅) ₂ CHCH ₂	182.11		272	1.00601	763
4758	C14H14	o, o' -Ditolyl $(CH_2C_6H_4)_2$	182.11	17.8	272	0.95510	1
4759	C14H14	o, m' -Ditolyl (CH ₂ C ₆ H ₄) ₂	182.11		287.5		1
4760	C14H14	o, p'-Ditolyl (CH ₂ C ₆ H ₄) ₂	182.11	j _	281	1	1
4761	C14H14	m, m'-Ditolyl (CH ₂ C ₄ H ₄) ₂	182.11	7	288	0.999	1
4762	C14H14	p, p'-Ditolyl (CH ₂ C ₂ H ₄) ₂	182.11	121	295	1	1
4763	C ₁₄ H ₁₄ N ₂	o, o'-Azotoluene (o-CH ₃ C ₂ H ₄ N) ₂	210.12	55		1	1
4764	C ₁₄ H ₁₄ N ₂	o', p'-Azotoluene	210.12	71			
4765	C ₁₄ H ₁₄ N ₂	m, m'-Azotoluene (m-CH ₂ C ₄ H ₄) ₂ N ₂	210.12	55			
4766	C ₁₄ H ₁₄ N ₂	p, p'-Azotoluene (p-CH ₂ C ₆ H ₄) ₂ N ₂	210.12	144		1	1
4767	C ₁₄ H ₁₄ N ₂	o, o'-Diaminostilbene	210.12	170		1	1
4768	C ₁₄ H ₁₄ N ₂	p, p'-Diaminostilbene	210.12	231		l	ı

No.	Formula.	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
4769	C14H14N2O	Agathin o-OHC.H.CH:N.N(CH.)C.H.	226.12	74			+
4770	C14H14N2O	o, o'-Azoxytoluene	226.12	59		1	
4771	C14H14N2O	m, m'-Azoxytoluene	226.12	37			
4772	C14H14N2O	p, p'-Azoxytoluene	226 .12	70		1	•
4773	C14H14N8O2	o, o'-Azoanisol (o-CH ₃ OC ₆ H ₄) ₂ N ₂	242.12	164.0			1
1774	C14H14N2O3	p, p' -Azoxyanisol $(p-CH_3OC_4H_4)_2N_2$	258.12	117.4			İ
4775	C14H14N4	"Cyanaline"	238.14	220		4.0	
4776	C16H14N4O5	Theobromine salicylate	318.14				1333
4777	C ₁₆ H ₁₆ O	Benzyl ether (C ₆ H ₄ CH ₂) ₂ O	198.11		298	1.03616	
4778	C ₁₄ H ₁₄ O	o-Cresyl ether (CH ₂ C ₆ H ₄) ₂ O	198.11		278	1.04724.3	1
4779	C ₁₄ H ₁₄ O	m-Cresyl ether (CH ₃ C ₆ H ₄) ₈ O	198.11		288	1	
4780	C ₁₆ H ₁₄ O	p-Cresyl ether (p-CH ₃ C ₆ H ₄) ₂ O	198.11	50	}		1
4781	C14H14O2	dl-Hydrobenzoin [C ₀ H ₃ CH(OH)] ₂	214.11	139	> 300		I
4782	C ₁₆ H ₁₄ O ₂	Guaiacyl benzyl ether	214.11	62		1	
4783	C14H14O2	Isohydrobenzoin	214.11	121		1	
4784	C14H14O2S	Dibenzylsulfone (C ₆ H ₅ CH ₂) ₂ SO ₂	246.17	150	290 s. d.	1	ł
4785	C14H14O2S	p-Ditolylsulfone (CH ₃ C ₆ H ₄) ₂ SO ₂	246.17	158	405714	1	
4786	C14H14S2	Dibenzyl disulfide (C ₆ H ₅ CH ₂) ₂ S ₂	246 . 24	72		1	İ
4787	C14H14S	Dibenzylsulfide (C ₆ H ₅ CH ₂) ₂ S	214.17	49		1.07150	
4788	C ₁₄ H ₁₄ Se	Dibenzyl selenide (C ₆ H ₅ CH ₂) ₂ Se	261.31	45.5			
4789	$C_{14}H_{18}N$	Dibenzylamine (C ₆ H ₄ CH ₂) ₂ NH	197.12	-26.0	300	1.02641.6	976
4790	$C_{14}H_{15}N$	o-Ditolylamine (o-CH ₂ C ₆ H ₄) ₂ NH	197.12		313.4		
4791	$C_{14}H_{15}N$	m-Ditolylamine (m-CH ₃ C ₄ H ₄) ₂ NH	197.12		320	1	ı
4792	C14H18N	p-Ditolylamine $(p$ -CH ₃ C ₆ H ₄) ₂ NH	197.12	79	330.5		İ
4793	$C_{14}H_{18}N$	Ethyldiphenylamine (C ₆ H ₅) ₂ NC ₂ H ₅	197.12		297		ł
4794	C14H15N	N-Methylbenzylaniline	197.12	9.2	306		
4795	C14H15NO2S	p-Toluenesulfonemethylanilide	261.19	95			1
4796	C16H15N2	4-Amino-2, 4'-dimethylazobenzene	225.14	127	ŀ	ı	
4797	C14H15N2	4'-Amino-2, 3'-dimethylazobenzene	225.14	100	ļ		1
4798	C14H15N2	4-Amino-2, 3'-dimethylazobenzene	225.14	80	l		1
4799	C14H15N2	4-Amino-3, 4'-dimethylazobenzene	225.14	127			1
4800	C14H15N2	o, o'-Diazoaminotoluene	225.14	51	ł	ļ	ł
4801	C14H15N2	p, p'-Diazoaminotoluene	225.14	116		į	
4802	C14H16 ·	Hexahydroanthracene	184.12	63	290		1
4803	C14H16N2	o-Hydrazotoluene (o-CH ₂ C ₆ H ₄ NH) ₂	212.14	165			1
4805	C14H16N2	p -Hydrazotoluene $(CH_3C_6H_4NH)_2$	212.14	126	d.	0.957	
4806	C16H16N2	o-Tolidine [4, 3- $H_2N(CH_2)C_6H_3$]2	212.14	129		1	1
4807	C16H16N2	m-Tolidine $[4, 2-H_2N(CH_3)C_4H_3]_2$	212.14	107		1	
4808	C16H16N8O	3-Ethoxybenzidine	228.14	139		1	ı
4809	C14H16N2O2	3, 3'-Dimethoxybenzidine	244.14	172	ļ		ł
4810	C14H19N4	2, 2'-Diamino-4, 4'-azotoluene	240.16	203			
4 811	C16H16N4	3, 3'-Diamino-2, 2'-azotoluene	24 0.16	a, 145; b, 133;			
				c, 159			
4812	C14H16N4O9	Oscine picrate	384.16	238			1
4813	C ₁₆ H ₁₇ N	Diethyl-a-naphthylamine	199.14		160.618	1.005	937
4814	C ₁₆ H ₁₇ N	Diethyl-β-naphthylamine	199.14	1	19219	1.026	977
4815	C14H17NO	Etheserolene	215.14	48		1	1
4816	C ₁₄ H ₁₇ NO ₄	Indican	295.14	57		}	i
4817	C14H17NO4	L-Mandelonitrile glucoside	295.14	147	ł		
4818	C14H17NO6	Prulaurasin	295.14	122	ļ		
4819	C14H17NO6	Sambunigrin	295.14	152			1
4820	C14H18O3	Apocynamarin	234.14	175 d.			1
4821	C14H18O7	Picein	298.14	194		1	1
4822	C16H20N2O6S	Methylamino-p-phenol sulfate	344.24	260 d.			
4823	C14H20O2	Isanic acid	220.15	41	1	1	
$\boldsymbol{4823.1}$	C14H20O2	L-Amyl hydrocinnamate	220.15		1722	0.9721	
4824	C14H20O3	Helleboretin	236.15	> 200	1		1
4825	C14H21ClN2O4	Nirvanin	316.64	185	1		
4826	C14H21NO2	Thymacetine	235.17	136	1		
4827	C14H22	1, 2, 3, 4-Tetraethylbenzene	190.17		254	0.887	637
4828	C14H22	1, 2, 4, 5-Tetraethylbenzene	190.17	13	250	0.888	609
4829	C14H22ClNO2	Stovain	271.64	175			
1020							

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
4831	C14H22O4	Dicyclohexyl oxalate	254.17	45	19118		i
4831.1	C14H22ClO4	Di-l-amyl chlorofumarate	290.65		18518	1.05225	
4832	C14H23N	N -Dibutylaniline $C_{\bullet}H_{\bullet}N(C_{\bullet}H_{\bullet})_{2}$	205.19		262.8		
4832.1	C14H22N	Diisobutylaniline	205.19		14621	0.90926	
4833	C14H24O2	Kersyl alcohol	224 . 19	85	15611		
4834	C14H24O2	d-Bornyl n-butyrate	224 . 19		12111	0.96615	856
4835	C14H24O2	Geranyl butyrate	224.19		15318	0.901	İ
4836	C14H24O2	L-Menthyl crotonate	224 . 19		140.514	0.833	Ì
4837	C14H24O3	l-Menthyl acetoacetate	240.19	45	14511	0.98615	1
4837.1	C14H24O4	Di-l-amyl maleate	256.19		16525	0.970825	1
4838	C14H24O4	L-Menthyl acid succinate	256.19	62	300 d.		-
4839	C14H24NO2	Carpaine	239.20	121		1	1333
4840	C14H26CINO2	Carpaine hydrochloride	275.67	225		1	
4841	C14H26O2	l-Menthyl n-butyrate	226.20		12915	0.911	1
4842	C14H26O2	L-Menthyl isobutyrate	226.20		11712	0.906	i
4843	C1.H20O2	n-Heptylic anhydride (C ₄ H ₁₃ CO) ₂ O	242.20	17	258	0.932	332
4844	C14H20O8	Menthyl ethyl glycollate	242.20		15520	0.002	002
4845	C14H20O4	Diamyl succinate	258.20		293	0.95235	ł
4845.1	C ₁₄ H ₂₀ O ₄	Di-l-amyl succinate	258.20		1291	0.95725	
4846	C ₁₄ H ₂₀ O ₄		258.20	1	308	0.96514	
4846.1	C H O	Diethyl sebacate		1			
	C ₁₄ H ₂₀ O ₆	Diisoamyl tartrate	290.20	•	19516	1.06315	
4847	C ₁₄ H ₂₇ ClO	Myristyl chloride CH ₂ (CH ₂) ₁₂ COCl	246.67	-1	16815		
4848	C14H27N	Myristic nitrile CH ₂ (CH ₂) ₁₂ CN	209.22	19	226100	0.828	
4849	C14H28	n-Tetradecylene	196.22	-12	246	0.775	
4850	C14H25O	Myristic aldehyde CH ₂ (CH ₂) ₁₂ CHO	212.22	52.5	16624		
4851	C14H28O2	Myristic acid CH ₂ (CH ₂) ₁₂ CO ₂ H	228.22	58	250.5100	0.8584	1088
4852	C14H22O2	Ethyl laurate C ₁₁ H ₂₂ CO ₂ C ₂ H ₅	228.22	-10.7	269	0.8684	337
4853	C14H28O8	Hydroxymyristic acid	244.22	51			
4854	C14H28O4	Ipurolic acid	260.22	101	ŀ		
4855	C ₁₄ H ₂₉ NO	Myristic amide CH ₂ (CH ₂) ₁₂ CONH ₂	227.23	103			
4856	C14H30	n-Tetradecane CH ₂ (CH ₂) ₁₂ CH ₂	198.23	5.5	252.5	0.765	412
4857	C14H20O	n -Heptyl ether $(C_7H_{15})_2O$	214.23		260	0.8150	
4858	C14H20O	n-Tetradecyl alcohol C12H27CH2OH	214.23	38	16715	0.8244	
4859	C14H1N	Tetradecyl amine C12H27CH2NH2	213.25	37	16213		1
4860	C12H4O4	Anthraquinone-α-carboxylic acid	252.06	294			
4861	C13HO4	Anthraquinone-β-carboxylic acid	252.06	288			
4862	C15HO4	Anthraquinone-γ-carboxylic acid	252.06	285	ļ	1	
4863	C18HO6	Alizarin-β-carboxylic acid	284.06	305			
4864	C16H6O7	Pseudopurpurin	300.06	220	ł		
4865	C ₁ ,H ₀ N	Thebenidine	203.08	148			
4866	C16H10	Fluoranthene	190.08	110	25160		
4867	C ₁₆ H ₁₀	Succisterene	190.08	160	300	1	
4868	C16H10O2	Flavone	222.08	97	000	1	1
4869	C ₁₆ H ₁₀ O ₂	Anthracene-1-carboxylic acid	222.08	260		1	1
4870	C ₁₆ H ₁₀ O ₂	Anthracene-2-carboxylic acid	222.08	280			}
4871		Anthracene-9-carboxylic acid		206			
4872	C ₁₆ H ₁₈ O ₂		222.08				
4873	C ₁₆ H ₁₀ O ₂	1-Methylanthraquinone	222.08	171	i		
	C ₁ ,H ₁₀ O ₂	2-Methylanthraquinone	222.08	175			
4874	C ₁₆ H ₁₀ O ₄	Chrysine	254.08	275			
4875	C15H10O4	Chrysophanic acid	254.08	193			
4876	C15H10O4	a-Methylalizarin	254.08	229			
4877	C14H10O4	β-Methylalizarin	254.08	179			
4878	C16H10O4	Rumicin	254.08	182	i		
4879	C15H10O5	Aloe-emodin	270.08	218	1		1
4880	C12H18O5	Emodin	270.08	250			
4881	C15H10O5	Galangin	270.08	217			
4882	C15H10O5	Morindon	270.08	275	1	1	1
4883	C ₁₅ H ₁₀ O ₆	Fisetin	286.08	360			
4884	C15H10O6	Kaempferol	286.08	274			1
4885	C18H10O6	Luteolin	286.08	320		1	
4886	C16H10O6	Rhein	286.08	314		1	
			1		1	1	1
4887	C ₁₅ H ₁₀ O ₆	Scutellarein	286.08 J	300 d.	į.	ı	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4889	C16H10O7	Quercetin	302.08	310	İ	İ	i
4890	C18H10O8	Gossypetin	318. 0 8	230	1		
4891	C16H10O8	Quercetagetin	318.08	318			1
4892	C1.H11N	2-Phenylquinoline	205.09	86	363		1
4893	C ₁ H ₁₁ N	4-Phenylquinoline	205.09	62		1	1
4894	C ₁₆ H ₁₁ N	6-Phenylquinoline	205.09	111	26077	1.195	1
4895 4806	C ₁₆ H ₁₁ N	8-Phenylquinoline	205.09	۰	283187		
4896	C ₁ H ₁₁ NO	Benzoylphenylacetonitrile	221.09	99	2000	1 047004	1.04
4897 4898	C ₁₆ H ₁₂ C ₁₆ H ₁₂	a-Methylanthracene	192.09	86 207	200	1.047**.4	1134
4899	C14H12	2-Methylanthracene9-Methylanthracene	192.09 192.09	80		1 000004	1120
4900	C ₁ ,H ₁ ,N ₂ O ₃	Furfuramide	268.11	121	250 d.	1.066**.4	1136
4901	C ₁ ,H ₁ ,N ₂ O ₃	Furfurine	268.11	116	250 u.	V	1
4902	C ₁₆ H ₁₂ O	Benzylideneacetophenone	208.09	62	348	1.07142	
4903	C14H12O2	Benzoylacetophenone	224.09	81	>200	1.0714	
4904	C ₁₄ H ₁₂ O ₂	p-Toluyl-o-benzoic acid	240.09	139	/200	1	1
4905	C ₁₄ H ₁₂ O ₂	Chrysophanol	240.09	204			1
4906	C ₁₄ H ₁₂ O ₄	Acetylsalol o-CH ₂ CO ₂ C ₆ H ₄ CO ₂ C ₆ H ₅	256.09	97	198	1	
4907	C14H12O4	Benzosalin.	256.09	85	385		
4908	C14H12O4	Diphenyl malonate $CH_2(CO_2C_6H_6)_2$	256.09	50	21018 d.		
4909	C16H12O6	Eriodictyol	288.09	267	210 u.		
4910	C16H12O6	Methylenedisalicylic acid	288.09	238 d.			
4911	C16H18NO	Salophen	271.11	188			
4912	C ₁₄ H ₁₄ O	Benzylacetophenone	210.11	73	360		
4913	C14H14O	Benzyl p-tolyl ketone	210.11	109	360		
4914	C14H14O	Dibenzyl ketone (C ₆ H ₅ CH ₂) ₂ CO	210.11	33.9	330.5		
4915	C16H16O	p, p'-Dimethylbenzophenone	210.11	92	335.1		
4916	C15H14O2	Benzyl o-toluate	226.11	1	315	1.1217	
4917	C14H14O2	Benzyl phenylacetate	226.11	}	319	1.101	
4918	C16H14O8	Benzyl mandelate	242.11	93			
4919	C16H14O8	Methyl benzilate	242.11	73			
4920	C1.H14O2	Lapachol	242.11	140			İ
4921	C14H14O4	Hydrocotoin	258.11	95.5			ł
4922	C15H14O4	Peucedanin	258.11	109			
4923	C16H14O4	N-Xanthoxyllin	258.11	132.5			
4924	C15H14O5	Guaiacyl carbonate (o-CH ₂ OC ₆ H ₄ O) ₂ CO.	274.11	86			
4925	C15H14O5	Kavaiin (Methysticin)	274.11	137	ľ		
4926	C15H14O5	Phloretin	274.11	255 d.			1333
4927	C ₁₅ H ₁₅ NO	p-Dimethylaminobenzophenone	225.12	90			
4928	C ₁₅ H ₁₅ NO ₈	Malakin	257 . 12	92			
4929	C16H15NO8	Narceinic acid	337.12	184			
4930	C ₁₅ H ₁₆	Dibenzylmethane (C ₆ H ₆ CH ₂) ₂ CH ₂	196.12	<-20	299	1.007	762
4931	$C_{15}H_{16}N_2O$	symDi-o-tolylurea	240.14	256			
4932	C16H16N2O	symDi-m-tolylurea	240.14	203	1		
4933	C16H16N2O	symDi-p-tolylurea	240.14	263			
4934	C16H16N2S	1, 2-Di-o-tolylthiourea	256.20	156	218		
4935	C16H16N2S	symDi-m-tolylthiourea	256.20	111.5			
4936	C15H16O2	Santinic acid	228.12	132.5			
4936.1	C16H16O6	Picrotoxinin	292.12	206			1265
4937	C ₁₆ H ₁₆ O ₉	Daphnin	340.12	200			
4938	C15H16O9	Esculin	340.12	205			1
4939	C15H17N	Ethylbenzylaniline	211.14		298	1.03418.6	1
4940	C16H17N3	Di-o-tolylguanidine	239.16	179			
4941	C ₁₅ H ₁₈	Azulene	198.14		168.411	0.988	1
4942	C ₁₆ H ₁₆ N ₂	p, p'-Diamino-o, o'-ditolylmethane	226.16	149			1
4943	C ₁₆ H ₁₆ O ₃	Santonin	246.14	170		1.187	1282
4944	C13H13O4	Artemisin	262.14	202	1		1333
4944.1	C16H15O4	Corismyrtin	262 . 14	225			1
4945	C ₁₆ H ₁₆ O ₇	Hyenanchin	310.14	234 d.	1		
4946	C ₁₆ H ₁₈ O ₇	Picrotin	310.14	250	1 .	1 040100	
4947	C ₁₆ H ₁₉ NO ₂	Tropacocaine	245.15	49	d.	1.043400	1147
4948	C ₁₂ H ₁₉ NO ₉	Lithuric acid	357.15	204.5	I		
4949	$C_{13}H_{20}CINO_{2}$	Tropacocaine hydrochloride	281.62	271	J	1	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
4950	C15H20O2	Alantolactone	232.15	76	19210	İ	i
951	C15H20O2	Perezone	248.15	105			İ
952	C15H20O3	Pipitzol	248.15	141			1
953	C15H20O4	Absinthiin	264.15	68			
954	C15H20O4	Isosantonic acid	264 .15	155	1604		1
955	C15H20O4	dl-Santonic acid	264.15	120 d.			
956	C16H20O4	d(l)-Satonic acid	264.15	179	2605	1.251	133
957	C16H20O8	Androsin	328.15	220			
958	C1.H21NO	β-Eucaine	247.17	91			
959	C13H21NO4	Ajacine	279.17	143			1
960	C1.H21N2O2	Physostigmine	275.19	105			126
961	C ₁₈ H ₂₁ N ₂ O ₂	Geneserine	291.19	129	Į.		i
962	C12H22BrN2O2	Physostigmine hydrobromide	356.11				133
963	C ₁₆ H ₂₂ ClNO ₂	β-Eucaine hydrochloride	283.64	268	ļ	1	
964	C ₁₅ H ₂₂ ClNO ₄	Ajacine hydrochloride	315.64	93			1
965	C16H22ClN2O2	Physostigmine hydrochloride	311.65	20		i	133
966	C ₁₆ H ₂₂ O ₂	Santalic acid	234.17		195•	1	100
		Eugenol isoamyl ether	234.17		302.2 d.	0.976	84
967	C ₁₆ H ₂₂ O ₂					0.95915	01
968	C15H22O2	Thymyl isovalerate	234.17		249	0.95915	1
969	C15H22O3	Alantic (Alantolic) acid	250.17	94		1	
970	C18H22Cl	Santalyl chloride	238.64		15510	1.040	1 00
1971	C15H24	Atractylene	204.19		14114.5	0.927	62
1972	C ₁₆ H ₂₄	<i>l</i> -Cadinene	204.19		275	0.918	63
1973	C15H24	Cannibene	204.19		259	0.89716	
1974	C13H24	a-Caryophyllene	204.19		260	0.906	59
1975	C15H24	Cedrene	204.19		264	0.929	59
1976	C15H24	Clovene	204.19		263	0.930	60
1977	C15H24	Guajene	204.19		1249	0.908	60
1978	C12H24	Patschoulene	204.19		256	0.930	59
1979	C15H24	a-Santalene	204.19		252	0.91315	86
1980	C15H24	β-Santalene	204.19		1267	0.894	569
1981	C15H24	γ-Santalene	204.19		12010	0.936	61
982	C ₁₈ H ₂₄	α-Selinene.	204.19		13516	0.914	"
983	C16H24	Zingiberene	204.19		270	0.87216	57
1984	C ₁₄ H ₂₄ N ₂ O	d(l)-Lupanine	248.20	44		0.0.2	"
1985	C14H24N2O	Oxysparteine	248.20	84	20912.6		1
1986	C ₁₅ H ₂₄ O	Betulol.	220.19	01	15813	0.97816	86
1987	C ₁₂ H ₂₄ O	a-Santalol.	220.19		300	0.97915	95
	C ₁₅ H ₂₄ O			1	309	0.97315	95
1988		β-Santalol	220.19			0.973-	904
1989	C ₁₂ H ₂₄ BrO ₂	Bornyl bromoisovalerate	317.11	010	16310		1
990	C15H25NO7	Senecifolidine	331.20	212	11010	0.000	1
1991	C15H26	Elemone	206.20		11910	0.883	1
1992	C15H26	Ferulene	206.20		1267	0.870	
1993	C16H26N2	Isosparteine	234.22		17916.6	1.02817	91
1994	C16H26N2	Sparteine	234 . 22		325.2	1.023	95
1995	C15H26N2O	Retamine	250.22	162		1	1
1996	C12H26O	Atractylol	222.20	59	292	1.511	1
1997	C16H26O	Cedrol	222.20	87	294	ļ	1
1998	C16H26O	α-Elemol	222.20	46	14310	0.94121.3	96
1999	C15H25O	β-Elemol	222.20		14410	0.94213	61
000	C15H25O	Eudesmol	222.20	78	15610	0.988	65
5001	C16H26O	Farnesol	222.20		1200.2	0.895	54
002	C ₁₆ H ₂₆ O	Guajol	222.20	93	289 s. d.	0.000	117
5003	C15H25O	Nerolidol	222.20		277	0.880	89
003	C ₁₆ H ₂₆ O	Zingiberol	222.20		15714.5	0.000	"
i004 i005			238.20		260	0.949	98
	C ₁₂ H ₂₆ O ₂	Bornyl isovalerate				l	1 99
006	C12H22O2	Isobornyl isovalerate	238.20		13811	0.95716	_~
007	C ₁₅ H ₂₆ O ₂	d-Bornyl n-valerate	238.20		13011	0.95615	85
008	C15H28O2	-Menthyl angelate	238.20		14110		1
009	C ₁₅ H ₂₆ O ₃	l-Menthyl levulinate	254 . 20		16912	0.977	
5010	C16H26O6	Tributyrin	302.20	<-75	310	1.027	35
5011	C16H27ClN2	Sparteine hydrochloride	270.68				1333
	C15H27IN2	Sparteine hydroiodide	362.16		1	1	1333

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5013	C15H28O2	l-Menthyl isovalerate	240.22		12711	0.90714	427
5014	C15H28O2	Cimicic acid	240.22	44.2		44.5	
5015	C15H28O2	l-Menthyl n-valerate	240.22		14115	0.907	
5016	C15H30O3	Pentadecylic acid	242.23	54	257100		
5017	C15H20O2	Methyl myristate	242.23	19	295.3		
5018	C15H32	n-Pentadecane CH ₂ (CH ₂) ₁₃ CH ₃	212.25	10	270.5	0.772	
5019	C15H22O	n-Pentadecyl alcohol CH ₂ (CH ₂) ₁₄ OH	228.25	46	1		
5020	C ₁₆ H ₁₈ N	Pentadecylamine	227.26	36.5	301		ł
5021	C15H33N	Triisoamylamine	227.26		237	0.78525	ı
5022	C16H6O6	Anthraquinone-1, 3-dicarboxylic acid	296.06	330		1	
5023	C16H6O6	Anthraquinone-1, 4-dicarboxylic acid	296.06	300			
5024	C ₁₆ H ₂ O ₆	Anthraquinone-2, 3-dicarboxylic acid	296.06	340			1
5025	C15H10	Diphenyldiacetylene	202.08	88			
5026	C16H10	Pyrene	202.08	150	>360		
5027	C16H10N2	α, β-Naphthophenazine	230.09	142.5	>360		
5028	C10H10N2O2	Indigotin	262.09	392 d.		1.35	
5028.1	C14H10O8	Diphenylmaleic anhydride	250.08	155	ı	1.340	1211
5029	C16H10O4	Anthracene-1, 3-dicarboxylic acid	266.08	330	ı		
5030	C16H10O4	Anthracene-1, 4-dicarboxylic acid	266.08	320		ł	
5031	$C_{1}H_{10}O_{4}$	Anthracene-2, 3-dicarboxylic acid	266.08	345	į.		
5032	C12H10O6	Trifolitin	298.08	275	ł		
5033	$C_{16}H_{11}N$	Amaron	217.09	240			
5034	$C_{13}H_{11}N$	Aminopyrene	217.09	116	İ		
5035	C ₁₆ H ₁₁ NO ₂	Atophan (2-Phenylquinoline-4-carboxylic					
		acid	249.09	209			
5036	C16H11N2O2	Indigoxime	277.11	205			
5037	C16H12	α -Phenylnaphthalene	204.09	•	325	1	
5038	C16H12	β -Phenylnaphthalene	204.09	102.5	345		
5039	C10H12	Pseudophenanthrene	204.09	115		'	
5040	C10H12ClNO2	Chloroxyl (Phenylcinchoninic acid hydro-			1	i	
		chloride)	285.56	223	İ		
5041	C16H12N2O4	Isatid	296.11	237.5		1	
5042	C16H12N4O	Azoxytolunitrile	276.12	182			
5043	C10H12O	Phenyl a-naphthyl ether	220.09	55	340	1	
5044	C16H12O	Phenyl β-naphthyl ether	220.09	45; 93	335.8		
5045	C16H12O2S	Atronylenesulfonic acid	284.16	258			
5046	C16H12O4	α-Ethylalizarin	268.09	189			
5047	C16H12O4	Pratol	268.09	253			
5048	C16H12O6	Physcion (Physcic acid)	284.09	207			
5049	C16H12O6	Chrysoeriol	300.09	>337			
5050	C16H12O6	Emodine methyl ether	300.09	195			ŀ
5051	C15H12O6	Hematein	300.09	250 d.			1
5052	C1.H12O.	Laccainic acid	332.09		180 d.		ļ
5053	C16H12N	Flavoline	219.11	65	375		
5054	C1.H1.N	N-Phenyl-α-naphthylamine	219.11	62	335288		İ
5055	C ₁₆ H ₁₈ N	N-Phenyl-β-naphthylamine	219.11	108	399.5	1	
5056	C ₁ H ₁ NO ₇	Papaveric acid	331.11	233 d.			
5057	C16H12N2	Galegine	233.12	65			
5058	C1.H1.N.	Hydrazoindole	247.12	1 4 0			
5059	C16H14	Atronene	206.11		326		
5060	C12H14	2, 3-Dimethylanthracene	206.11	246		1	
5061	C14H14	2, 4-Dimethylanthracene	206.11	71	l		
5062	C16H14	2, 6-Dimethylanthracene	206.11	231			
5062.1	C ₁₆ H ₁₄	Distyrene C.H.CH:CHCH:CHC.H	206.11	124			
5063	C16H14	9-Ethylanthracene	206.11	59		1.04199.2	1130
5064	C16H14Cl2N2O2	3, 3'-Dichlorodiacetylbenzidine	337.04	302			
5065	C ₁₆ H ₁₄ N ₂	α-Flavaniline	234.12	97		1	
5066	C ₁₀ H ₁₄ N ₂	Indolin	234.12	-	245	1	
5066.1	C ₁₄ H ₁₄ N ₂	1, 5-Diphenyl-3-methylpyrazole	234.12	63		1	1199
5067	C ₁₆ H ₁₆ O	Dypnone	222.11		22522	1	
5067.1	C ₁₆ H ₁₆ O	Benzylidene-p-tolyl ketone	222.11	77	1	1	1289
5068	C ₁₆ H ₁₄ O ₂	Benzyl cinnamate	238.11	34	24426	1	
2000	-10**140.2	Diphenacyl C ₆ H ₅ COCH ₂ CH ₂ COC ₆ H ₅ .	238.11	145		1	1

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5082 1 5082 2	C16H16O2 C16H16O2 C16H16O2 C16H16O3 C16H16O4 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O7	Guaiacyl cinnamate Phenylacetic anhydride o-Toluic anhydride (o-CH ₂ C ₆ H ₄ CO) ₂ O. Dibenzyl oxalate (CO ₂ CH ₂ C ₆ H ₅) ₂ . Diphenyl succinate (CH ₂ CO ₂ C ₆ H ₅) ₂ . Brasilin Sakuranetin Diphenyl tartrate (CHOHCO ₂ C ₆ H ₅) ₂ . Hematoxylin Hesperetin Homoeriodyctiol	254.11 254.11 254.11 270.11 270.11 286.11 286.11 302.11 302.11	130 117.5 39 81 121 250 150 102	325 235 ¹⁴ 330		No.
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5082 .1	C16H16O2 C16H16O4 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6	o-Toluic anhydride (o-CH ₂ C ₆ H ₄ CO) ₂ O Dibenzyl oxalate (CO ₂ CH ₂ C ₆ H ₆) ₂ Diphenyl succinate (CH ₂ CO ₂ C ₆ H ₆) ₂ Brasilin Sakuranetin Diphenyl tartrate (CHOHCO ₂ C ₆ H ₆) ₂ Hematoxylin Hesperetin Homoeriodyctiol	254.11 270.11 270.11 286.11 286.11 302.11	39 81 121 250 150	23514		
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5082 .1	C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6	Dibenzyl oxalate (CO ₂ CH ₂ C ₆ H ₆) ₂ Diphenyl succinate (CH ₂ CO ₂ C ₆ H ₆) ₂ Brasilin Sakuranetin Diphenyl tartrate (CHOHCO ₂ C ₆ H ₆) ₂ Hematoxylin Hesperetin Homoeriodyctiol	270.11 270.11 286.11 286.11 302.11	81 121 250 150	23514		
5074 5075 5076 5077 5078 5079 5080 5081 5082 5082.1	C16H16O4 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O02 C16H16NO2	Diphenyl succinate (CH ₂ CO ₂ C ₆ H ₆) ₂ Brasilin	270.11 286.11 286.11 302.11 302.11	121 250 150			
5075 5076 5077 5078 5079 5080 5081 5082 5082.1	C ₁₆ H ₁₆ O ₅ C ₁₆ H ₁₆ O ₅ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ NO ₂ C ₁₆ H ₁₆ NO ₂	Brasilin Sakuranetin Diphenyl tartrate (CHOHCO ₂ C ₆ H ₅) ₂ Hematoxylin Hesperetin Homoeriodyctiol	286.11 286.11 302.11 302.11	250 150	330		İ
5076 5077 5078 5079 5080 5081 5082 5082.1	C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O6 C16H16O0 C16H16NO2 C16H16NO2	Sakuranetin Diphenyl tartrate (CHOHCO ₂ C ₆ H ₅) ₂ Hematoxylin Hesperetin Homoeriodyctiol	286.11 302.11 302.11	150			
5077 5078 5079 5080 5081 5082 5082.1	C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ NO ₂ C ₁₆ H ₁₆ NO ₂	Diphenyl tartrate (CHOHCO ₂ C ₆ H ₅) ₂ Hematoxylin	302.11 302.11				
5078 5079 5080 5081 5082 5082.1	C16H14O6 C18H14O6 C16H14O6 C16H16NO2 C16H16NO2	Hematoxylin	302.11	102	1	l l	
5079 5080 5081 5082 5082 . 1	C16H14O6 C16H14O6 C16H16NO2 C16H16NO2	HesperetinHomoeriodyctiol			1	}	
5080 5081 5082 5082 . 1	C ₁₆ H ₁₆ O ₆ C ₁₆ H ₁₆ NO ₂ C ₁₆ H ₁₆ N ₂ O ₂	Homoeriodyctiol	302.11	140	1	į.	1333
5081 5082 5082.1	C ₁₆ H ₁₆ NO ₂ C ₁₆ H ₁₆ N ₂ O ₂		200 11	226	1		
5082 5082.1	C16H16N2O2		302.11	223	100		
5082.1		Anisaldazine Diacetylbenzidine (p-CH ₂ CONHC ₆ H ₄) ₂	254.12 268.14	169	180	1.031185	
		o-Aminophenyl tartrate	332.14	331 211 d.			
	C16H16N2O6 C16H16N2O6	m-Aminophenyl tartrate	332.14 332.14		1	1	
5082.3	C16H16N8O6	p-Aminophenyl tartrate	332.14	175 d. 220 d.		1	
5082.4	C16H16N2O2	Diacetylhydrazobenzene	268.15	220 a. 105			1000
5083	C ₁₆ H ₁₆ N ₂ S	Dehydrothioxylidine	268.20	105	197		1293
5084	C16H16N4O10	Damascenine picrate	424 . 16	150	197		
5085	C ₁₆ H ₁₆ O ₂	p-Dimethylbenzoin	240.12	159 89			
5086	C ₁₆ H ₁₆ O ₆	Anisilic acid	288.12	164			
5087	C ₁₆ H ₁₆ O ₁	Ethyl benzilate	256.12	34	20121		
5088	C ₁₄ H ₁₇ NO ₁	Amygdophenine	271.14	141	201		
5089	C ₁₄ H ₁₇ NO ₄	Lycorine	287.14	235 d.	1		
5090	C ₁₄ H ₁₇ NO ₄	Phenetidine salicylacetate	287.14	233 u. 182	İ		
5091	C16H18CINO4	Lycorine hydrochloride	323.61	208			
5092	C ₁₆ H ₁₈ N ₂	Azo-o-ethylbenzene	238.16	46.5	1		
5093	C16H16N2	Azo-p-ethylbenzene	238.16	63	>340		1
5094	C16H18N2	3, 3'-Azo-o-xylene	238.16	111	7010		
5095	C1.H1.N2	4, 4'-Azo-o-xylene	238.16	141			
5096	C16H18N2	4, 4'-Azo-m-xylene	238.16	129	i		
5097	C1.H1.N.	4, 5'-Azo-m-xylene	238.16	47			ł
5098	C14H18N2	5, 5'-Azo-m-xylene	238.16	137	ı		1
5099	C16H18N2	2, 2'-Azo-p-xylene	238 16	119			
5100	C16H18N2	Diphenylpiperazine	238.16	163.5	24220		
5101	C1.H1.N2O	Paricine	254.16	130			
5102	C16H18N2O2	o-Azophenetol (C ₂ H ₅ OC ₆ H ₄ N:) ₂	270.16	131	240		
5103	$C_{16}H_{18}N_2O_2$	p -Azophenetol $(C_2H_4OC_4H_4N:)_2$	270.16	160.2			1
5104	C14H18N2O3	3, 3'-Azoxy-4-methoxytoluene	286.16	149	1		1
5105	C10H18N2O3	p-Azoxyphenetol	286.16	136.9	l		
5106	$(C_{18}H_{18}N_2O_3)_x$	Bilirubin	[286.16] _x	192.5	1		1
5107	C16H18N2O8	Carpiline	286.16	185			
5108	C16H18N2O8	Hematoporphyrin	286.16	<100 d.	ł		
5109	C16H18N2O8	Pilosine	286.16	187	İ		1
5110	C16H18O	Thymyl phenyl ether	226.14		296.8	1.011	1
5111	C16H18O28	Di-m-xylylsulfone	274.20	121			1
5112	C16H18O7	Barbaloin	322.14	148			}
5113	C16H19NO4	Benzoylecgonine	289.15	195			
5114	C16H20N2	3-Hydrazo-o-xylene	240.17	141	j		1
5115	C16H20N2	4-Hydrazo-o-xylene	240.17	107			
5116	C ₁₆ H ₂₀ N ₂	4-Hydrazo-m-xylene	240.17	122	Į.		
5117	C ₁₆ H ₂₀ N ₂	5-Hydrazo-m-xylene	240.17	125			1
5118	C ₁₆ H ₂₀ N ₂	2-Hydrazo-p-xylene	240.17	145		•	1
5119 5123	C ₁₆ H ₂₀ N ₂ O ₂	o-Hydrazophenetol (o-C ₂ H ₆ OC ₃ H ₆ NH) ₂	272.17	89		1	
5123 5124	C ₁₆ H ₂₀ N ₄	m-Tetramethyldiaminoazobenzene	268.19	118		1	
5124 5125	C16H20O4	Phenyl acid camphorate	276.15	100		1	
5125 5126	C ₁₆ H ₂₀ O ₉	Gentiopicrinp-(Tetramethyldiamino)diphenylamine	356.15	191		1	
5127	C ₁₄ H ₂₁ N ₂ C ₁₄ H ₂₁ NO ₂	Camphoranilic acid	255.19	119	1		
5127	C ₁₆ H ₂₁ NO ₂	Homoatropine	275.17	204	1	1	1200
5129	C ₁₆ H ₂₁ NO ₂	Noratropine	275.17 275.17	97.5 114	1		1333
5130	C ₁₄ H ₂₁ NO ₃	Norhyoscyamine	275.17 275.17	114 140.5	1		
	C ₁₂ H ₂₂ BrNO ₃	Homoatropine hydrobromide	356.09	212 d.	1	0 74	1333

No.	Formula	Name	Mol. wt.	М. Р.	B. P.	d	R. I. No.
5132	C ₁₆ H ₂₂ ClNO ₈	Homoatropine hydrochloride	311.64	217		Ì	1333
5133	C16H22N4	m-Hydrazodimethylaniline	270.20	100		1	
5134	C16H22N8O8S	Caffeine sulfate	486.30			i .	1333
5135	C16H22O4	Di-n-butyl phthalate	278 . 17		340		
5135.1	C16H22O4	Methyl santoate	278.17	ŀ	86	1.167	1321
5136	C16H22O6	Bilinic acid	310.17	190			
5137	C16H22O3	Coniferin	342.17	185			
5138	C14H22O11	d-Glucose pentacetate	390.17	113			
5139	C ₁₆ H ₂₁ NO ₈	Bakankosin	357.19	157	10410	1 000	
5140	C16H24O2	Methyl santalate	248.19	ا مما	164 ¹⁰ 277	1.002 0.896	655
5141 5142	C ₁₆ H ₂₆	Pentaethylbenzene	218.20 234.20	<-20 56	271 d.	0.890	055
5142 5142.1	C ₁₆ H ₂₆ O C ₁₆ H ₂₆ O	Guaiol	234.20	91	211 u.	0.994	1176
5142.1	C ₁₆ H ₂₆ O ₂	Menthyl Leorbinate	250.20	91	17314		1110
5143.1	C16H26O2	Diisobutyl d-diacetyl tartrate	346.20	ì	1578.5	1.086417	1
5144	C16H27ClN2O2	Alypin hydrochloride	314.68	169	101	1.0001	
5145	C ₁₆ H ₂₇ N ₂ O ₅	Alypin nitrate	341.23	152		1	
5146	C16H21N2	Genisteine	248.23	60.5	17822	1	
5147	C16H26O2	Hydrocarpic acid	252.22	60			
5148	C16H28O2	Palmitolic acid	252.22	47	24018		
5149	C16H28O4	Palmitoxylic acid	284 . 22	67		1	
5150	C10H20O2	Gaidic acid	254.23	39			
5151	C16H20O2	Hypogaeic acid	254.23	33	23615		l
5152	C16H26O2	l-Menthyl n-capronate	254.23		15316	0.903	1
5153	C16H20O2	n-Caprylic anhydride (C ₈ H ₁₈ CO) ₂ O	270.23	-1	285		1
5154	C16H20O2	7-Ketopalmitic acid	270.23	74		:	
5155	C16H11N	Palmitonitrile CH ₂ (CH ₂) ₁₂ CH ₂ CN	237 . 25	29	251.5^{100}	0.82241	
5156	C16H32	α -Hexadecylene $CH_2:CH(CH_2)_{12}CH_2$	224 . 25	4	274	0.789	388
5157	C16H32N3O6S	Pelletierine sulfate	380.33	133			
5158	C16H12O	Palmitic aldehyde C ₁₈ H ₃₁ CHO	240.25	58.5	20229		
5159	C16H22O2	Palmitic acid C ₁₈ H ₂₁ CO ₂ H	256 . 25	64	21515	0.85342	1113
5160	C16H32O2	Ethyl myristate C ₁₂ H ₂₇ CO ₂ C ₂ H ₅	256.25	10.5	295		
5161	C16H22O2	Jalapinolic acid	272.25	68			
5162	C ₁₆ H ₃₂ O ₃	Juniperic acid	272.25 272.25	95 88			
5163 5164	C16H22O2 C16H22I	Lanopalmic acid	352.19	22	212.515	1.123	535
5165	C ₁₆ H ₃₃ NO	Palmitic amide C ₁₅ H ₂₁ CONH ₂	255.26	106	23612	1.120	999
5166	C ₁₆ H ₂₄	7, 8-Dimethyltetradecane	235.26 226.26	100	267.5	0.79214	
5167	C16H34	n-Hexadecane	226.26	20	287.5	0.775	
5168	C ₁₆ H ₂₄ O	Cetyl alcohol C ₁₅ H ₂₁ CH ₂ OH	242.26	49.3	344	0.79848.9	1108
5169	C ₁₆ H ₂₄ O	n -Octyl ether $(C_0H_{17})_2O$	242.26	20.0	291.8	0.820	1.00
5171	C ₁₇ H ₁₀ O	Benzanthrone	230.08	170		1	
5172	C17H11N	α-Anthraquinoline	229.09	170	446		
5173	C ₁₇ H ₁₂ O	Phenyl a-naphthyl ketone	232.09	75.5	385		
5174	C ₁₇ H ₁₂ O	Phenyl β-naphthyl ketone	232.09	82		1	
5175	C17H12O2	Chrysenic acid	248.09	186.5		ł	
5176	C ₁₇ H ₁₂ O ₂	α-Naphthyl benzoate	248.09	56		1	
5177	C ₁₇ H ₁₂ O ₂	β-Naphthyl benzoate	248.09	110		1	
5178	C ₁₇ H ₁₂ O ₃	α-Naphthyl salicylate	264 . 09	83		1	
5179	C ₁₇ H ₁₂ O ₈	β-Naphthyl salicylate	264 . 09	95		ļ	
5180	C17H12O5	Alpinin	296.09	174		{	
5181	C17H12O5	Pratonsol	296.09	225		ł	
5182	C ₁₇ H ₁₈ NO ₂	6-Methyl-2-phenylquinoline-4-carboxylic	000 **				
****	0.77	acid	263.11	228	950	1 *0**	
5183	C ₁₇ H ₁₄	α-Benzylnaphthalene	218.11	59	350	1.1650	
5184	C ₁₇ H ₁₄	β-Benzylnaphthalene	218.11	35.5	350	1.176	
5185	C ₁₇ H ₁₄ O	Dibenzylideneacetone	234.11	112			
5186	C ₁₇ H ₁₄ O ₂	Atronic acid	250.11 250.11	164 157			1
5187	C ₁₇ H ₁₄ O ₂	Nepalin	282.11	136		.]	1
5188	C ₁₇ H ₁₄ O ₄	Tryptophane picrate	433.16	196 s. d.			1
5190			100.10	, 100 b. u.		1	1
5189 5190	C ₁₇ H ₁₆ N ₅ O ₉ C ₁₇ H ₁₆	1, 2, 4-Trimethylanthracene	220.12	243			ŀ

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
5192	C ₁₇ H ₁₆	1, 4, 6-Trimethylanthracene	220.12	227	İ		1
5193	C ₁₇ H ₁₆ O ₃	Eugenol benzoate	268.12	70	360		
5194	C17H16O2	Isoeugenol benzoate	268.12	104]	
5195	C17H16O4	Dibenzyl malonate	284.12		234.514 d.		
5196	C17H17NO2	Apomorphine	267.14	170 d.	i		1
5197	C ₁₇ H ₁₈ ClNO ₂	Apomorphine hydrochloride	303.61	210			1333
5198	C17H18N2O8	Antipyrine resorcinate	298.16	115			
5199	C ₁₇ H ₁₈ O	Dibenzylacetone CO(CH ₂ CH ₂ C ₆ H ₅) ₂	238.14		22418		
5200	C ₁₇ H ₁₈ O ₂	Eugenol benzyl ether	254.14	30	235 d.		
5201	C ₁₇ H ₁₈ O ₂	Isoeugenol benzyl ether	254.14	59	200 4.		
5202	C ₁₇ H ₁₉ NO ₈	Morphine	285.15	d.	193 vac.	1.317	1277
5203	C ₁₇ H ₁₉ NO ₃	a-Isomorphine	285.15	247	100	1.011	12
5204	C ₁₇ H ₁₀ NO ₂	Piperine	285.15	129.5			
5205	C ₁₇ H ₂₀ BrNO ₈	Morphine hydrobromide	366.08	120.0			1333
5206	C ₁₇ H ₂₀ ClNO ₈	Morphine hydrochloride	321.62	250 d.			1333
5207	C ₁₇ H ₂₀ N ₂ O	Tetramethyldiaminobenzophenone	268.17	174	>360 s. d.		1000
5208	C17H20N2O8	Nicotine salicylate	300.17	117.5)	31	1333
5209	C17H20N2O4	l-Arabinose diphenylhydrazone	316.17	218			1000
5211	C17H20N2S	3, 3-Tetramethyldiaminothiobenzophe-					
		none	284.24	202			
5212	C17H20N4O2	l-Arabinosazone	340.19	166	200 d.		
52 13	C17H20N4O2	d-Xylosephenylosazone	328.19	164	167 d.		
5213.1	C ₁₇ H ₂₀ O ₂	Di-(p-dianisyl)dimethylmethane	256.15	60.5		1.150	1294
5214	C17H20O7	Tutin	336.15	208			
5215	C17H20O10	Patellaric acid	384.15	100			
5216	C17H21NO2	Apoatropine	271.17	62			
5217	C17H21NO3	Dihydromorphine	287.17	157			
5218	C17H21NO4	Atroscine	303.17	50			
5219	C17H21NO4	α-Cocaine	303.17	88			
5220	C ₁₇ H ₂₁ NO ₄	dl-Cocaine	303.17	80			
5221	C17H21NO4	d(l)-Cocaine	303.17	98	İ		1326
5222	C17H21NO4	Hyoscine	303.17	55			1333
5223	C ₁₇ H ₂₁ NO ₄	dl-Pseudococaine	303.17	81.5		1.103**.5	1139
5224	C ₁₇ H ₂₁ NO ₄	d-Pseudococaine	303.17	41	1	1.10299.6	1142
5225	C ₁₇ H ₂₁ N ₃	Auramine	267.19	136			
5226	C ₁₇ H ₂₂ BrNO ₄	Hyoscine hydrobromide	384.09	194	1		1333
5227	C ₁₇ H ₂₂ ClNO ₂	Apoatropine hydrochloride	307.64	239			1333
5228	C ₁₇ H ₂₂ ClNO ₄	Cocaine hydrochloride	339.64	187			1257
5229	C ₁₇ H ₂₂ ClNO ₄	Hyoscine hydrochloride	339.64		ł		1333
5230	C ₁₇ H ₂₂ N ₂	p-(Tetramethyldiamino)-diphenyl-	254.19	01		1	
5231	C17H22N2O	methanep-(Tetramethyldiamino)-diphenyl carbi-	254.19	91			1
0201	01711221120	nol [p-(CH ₂) ₂ NC ₆ H ₄] ₂ CHOH	270.19	96			
5232	C17H22O4	Podocarpic acid	274.17	188			
5233	C ₁₇ H ₂₂ O ₅	Guaiacyl acid camphorate	306.17	112			
5234	C ₁₇ H ₂₂ O ₂	Syringin	370.17	192			
5235	C ₁₇ H ₂₈ NO ₈	Atropine	289.19	115.5		ļ	1333
5236	C ₁₇ H ₂₈ NO ₈	d-Hyoscyamine	289.19	106	1	}	1000
5237	C ₁₇ H ₂₈ NO ₈	Pseudoatropine	289.19	120		l	
5238	C ₁₇ H ₂₄ BrNO ₂	Atropine hydrobromide	370.11	162			1333
5239	C ₁₇ H ₂₄ BrNO ₂	Hyoscyamine hydrobromide	370.11	152		1	1333
5240	C17H24CINO	Atropine hydrochloride	325.65	165			1333
5241	C ₁₇ H ₂₄ ClNO ₃	Hyoscyamine hydrochloride	325.65		1		1333
5242	C17H24N2O4S	Sinapine thiocyanate	368.27	176	1	1	
5243	C17H24N2O6	Atropine nitrate	352.20		1		1333
5244	C ₁₇ H ₂₄ O ₂	Menthyl benzoate	260.19	54.5	288	0.808	
5244 . 1	C ₁₇ H ₂₄ O ₄	Ethyl santoate	292.19	89		1.148	1322
5245	C ₁₇ H ₂₄ O ₁₀	Verbenalin	388.19	181 . 6	1		1
5246	C ₁₇ H ₂₅ NO ₃	Euphthalmine	291.20	113	1		
5247	C17H25O6	Scillitin	325.19	154	1		1
5248	C ₁₇ H ₂₆ ClNO ₈	Euphthalmine hydrochloride	327.67	183	1	1	
5249	C17H26O	Benzylmenthol	246.20	111	18310		1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5250	C ₁₇ H ₂₈ O	Phellyl alcohol	248.22	100			Ì
5251	C ₁₇ H ₂₉ NO ₂	Ajaconine	279.23	163	1		
5252	C17H20O,	Jalapic acid	378.23	120			
5253	C ₁₇ H ₃₂ O ₂	l-Menthyl heptylate	268.25	1	16515	0.901	
5254	C17H24	8-Heptadecene C ₇ H ₁₅ CH:CHC ₈ H ₁₇	238.26		160 9.5	0.79810	1
5255	C17H24O	Margaric aldehyde C ₁₆ H ₃₃ CHO	254.26	36	20426		
5256	C ₁₇ H ₃₄ O ₂	Daturic acid	270.26	60	227100		
5257	C ₁₇ H ₃₄ O ₃	Margaric acid C ₁₆ H ₁₂ CO ₂ H	270.26	59.9	227100	0.85360	1
5258 5259	C ₁₇ H ₂₄ O ₂ C ₁₇ H ₂₅ NO ₂	Methyl palmitate C ₁₅ H ₃₁ CO ₂ CH ₃	270.26 285.28	29.5	19615 250 d.		1119
5260	C ₁₇ H ₃₆ NO ₂	Sphingosinen-Heptadecane CH ₂ (CH ₂) ₁₆ CH ₃	240.28	244 22.5	303	0.778	359
5261	C ₁₇ H ₂₆ O	Heptadecane-9-ol C ₈ H ₁₇ CH(OH)C ₈ H ₁₇ .	256.28	61	303	0.778	338
5262	C ₁₇ H ₂₇ N	Heptadecylamine $C_{17}H_{28}NH_{2}$	255.29	49	340	İ	1
5263	C ₁₈ H ₁₂	Benzanthrene	228.09	84	0.0		
5264	C ₁₈ H ₁₂	Chrysene	228.09	251	448		1
5265	C18H12	Triphenylene	228.09	198:5			1
5266	C18H12	Truxene	228.09	>360			
5267	C18H12N2	2, 3'-Diquinolyl	256.11	176			
5268	C18H12N2	2, 7'-Diquinolyl	256.11	193			
5269	C18H12N2	6, 6'-Diquinolyl	256.11	178			-
5270	C18H12N2	8, 8'-Diquinolyl	256.11	205			1
5271	C18H12O2	o-(a-Naphthoyl) benzoic acid	276.09	173.5			
5272	C18H12O5	Calycin	308.09	240	1		1
5273	C18H18N	Aminochrysene	243.11	203			
5274	C ₁₈ H ₁₄	p-Diphenylbenzene C ₆ H ₄ (C ₆ H ₅) ₂	230.11	205	427		İ
5275	C ₁₅ H ₁₄ O ₃	Cinnamic anhydride (C ₆ H ₆ CH:CHCO) ₂ O	278.11	135			
5276	C ₁₈ H ₁₄ O ₄	Epicarin	294.11	195			
5277 5278	C ₁₈ H ₁₄ O ₇	Xanthoeridol	342.11 358.11	258 178			
5278 5279	C ₁₈ H ₁₄ O ₈ C ₁₈ H ₁₅ As	Diaspirin (Succinyldisalicylic acid) Triphenylarsine (C ₆ H ₆) ₂ As	306.08	60			
5280	C ₁₈ H ₁₈ Bi	Triphenyl bismuthine (C ₆ H ₅) ₃ Bi	440.16	78		1.58520	
5281	C ₁₈ H ₁₈ N	Triphenylamine (C ₆ H ₅) ₂ N	245.12	126.5	365	0.7740	
5282	C ₁₈ H ₁₈ O ₂ P	Triphenyl phosphite (C.H.O).P	310.14	120.0	22011	1.18418	
5283	C ₁₈ H ₁₈ O ₄ P	Triphenyl phosphate (C ₆ H ₅ O) ₂ PO	326.14	49.9	24511		İ
5284	C ₁₈ H ₁₈ P	Triphenylphosphine (C ₆ H ₅) ₂ P	262.14	79	>360	1.194	1
5285	C18H18Sb	Triphenylstibine (C.H.) Sb	352.89	48	>360	1.50012	-
5286	C18H16NO2	Aporheine	278.13	89	290 d.		
5287	C18H16N2	Diphenyl-m-phenylenediamine	260.14	95			
5288	C ₁₈ H ₁₆ N ₂	Triphenylhydrazine (C ₆ H ₈) ₂ NNHC ₆ H ₈	260.14	142		0.8694	
5289	C ₁₈ H ₁₆ N ₂ O ₂	Analgen	292.14	210	1		1
5290	C ₁₈ H ₁₆ N ₂ O ₃	5, 5'-Dibenzylbarbituric acid	308.14	222			1
5291	C ₁₈ H ₁₆ N ₂ O ₆ S	Chinosol	388.20	177.5			
5292	C ₁₈ H ₁₆ O ₂	Cinnamyl cinnamate	264.12	44		1.08516.5	
5293	C ₁₈ H ₁₆ O ₄	α-Isatropic acid	296.12	237	İ		1
529 4	C ₁₈ H ₁₆ O ₄	β-Isatropic acid	296.12 296.12	206 272			
5295 5296	C ₁₈ H ₁₆ O ₄	Isotruxillic acid	296.12 296.12	206			
5290 5297	C ₁₈ H ₁₆ O ₄ C ₁₈ H ₁₆ O ₄	γ-Truxillic acid	296.12 296.12	228	1		
5298	C ₁₈ H ₁₆ O ₄	&Truxillic acid	296.12	174			ļ
5299	C ₁₈ H ₁₈ O ₄	←Truxillic acid	296.12	192			
5300	C ₁₈ H ₁₆ O ₄	η-Truxillic acid	296.12	260	1	}	}
5301	C ₁₈ H ₁₆ O ₄	Dibenzyl fumarate	296.12	59.5	2116		1
5302	C18H16O4	Nepodin	296.12	158			1
5303	C18H16O7	dl-Usnic acid	344.12	193		-	ļ
5304	C18H16O7	d(l)-Usnic acid	344.12	203	1		1295
5305	C18H16O14	Igasuric acid (Chlorogenic acid)	456.12	207		}	
5306	C18H18	Retene	234.14	98.5	394	1.1316	
5307	C18H18	1, 3, 5, 7-Tetramethylanthracene	234.14	280 d.		1	
5308	C18H18N2O4	Antipyrine salicylate	326.16	92		1	
5308.1	C18H18N8	Vesuvin	346.20	143.5		1	1
5310	C ₁₈ H ₁₈ O ₄	Dibenzyl succinate	298.14	45	23814	1	
5312	C ₁₈ H ₁₉ NO ₃	Berbamine	297.15	200		1	
5313	C ₁₆ H ₁₉ N ₈ O ₂	Dimazon (Diacetylaminoazotoluene)	309.17	75			1
5314	C ₁₈ H ₂₀ BrNO ₂	Apomorphine methobromide	362.08	180	l	I	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
					D. 1.	"	No.
5315	C ₁₈ H ₂₀ N ₂ O ₃	Cinchotenine	312.17	198			1
5316	C ₁₈ H ₂₁ NO ₃	Bebeerine	299.17	214	170	1	
5317	C ₁₈ H ₂₁ NO ₃	Codeine	299.17	155	179	1.31514	1283, 1286
5318	C18H21NO3	Isobebeerine	299.17	297		l	
5319	C18H21NO3	Isocodeine	299.17	144	d.		1288
5320	C ₁₈ H ₂₁ NO ₂	Pseudocodeine	299.17	181	i	1.290180	1264
5321	C18H22BrNO3	Codeine hydrobromide	380.09		İ		1333
5322	C18H22BrNO3	Morphine methylbromide	380.09	265 d.			
5323	C18H22CINO3	Bebeerine hydrochloride	335.64	260			
5324	C18H22CINO	Codeine hydrochloride	335.64	264			1333
5325	C18H22N2O2	Holocaine	298.19	117			
5325.1	C18H22N2O6	Pilocarpine salicylate	346.19	120			1333
5326	C18H22N4O4	Galactosazone	358.20	201	202 d.	1	
5327	C18H22N4O4	d-Glucosazone	358.20	208 d.			
5328	C18H22N4O4	L-Glucosazone.	358.20	205 d.	1	ł	
5329	C14H22N4O4	Gulososazone	358.20	168	180 d.	•	İ
5330	C ₁₈ H ₂₂ O ₁₀	Murrayin	398.17	170	100 4.	1	
5331	C18H22ClN2O2	Holocaine hydrochloride	334.65	189	i	1	
5332	C ₁₈ H ₂₂ NO ₆	Cocaine formate	349.19	42	Ì	•	
5333	C ₁₈ H ₂₄ NO ₇ P	1	397.22	235		i	1333
5334		Codeine phosphate	274.20	200	205.525	1.002	1000
	C ₁₈ H ₂₆ O ₂	Menthyl phenylacetate				1.002	
5335	C ₁₈ H ₂₆ O ₄	Diamyl phthalate	306.20	0.5	344		1000
5336	C ₁₈ H ₂₇ NO ₃	Capsaicin	305.22	65	İ		1226
5337	C ₁₈ H ₂₇ NO ₈	Senecifoline	385.22	194			
5338	C ₁₈ H ₂₈ ClNO ₈	Senecifoline hydrochloride	421.68	260		İ	
5339	C18H28O4	Embellic acid	308.22	142		0 001180 4	
5340	C18H10	Hexaethylbenzene $C_6(C_2H_5)_6$	246.23	129	298	0.8314180.4	1159
5341	C18H30O	Sycoceryl alcohol	262.23	90			
5342	C ₁₈ H ₃₀ O ₂	Linolenic acid	278.23	1	23217	0.914	
534 3	C ₁₉ H ₂₁ ClN ₂ O ₄	dl-Ecgonine hydrochloride	406.71	247	l		
5343.1	C18H22	Fichtelite	248.25	46		1.010	1247
5344	C18H32O2	Chaulmoogric acid	280.25	69	24820	ł	
5345	C ₁₈ H ₃₂ O ₂	α-Eleostearic acid	280 . 25	49	23512		
5346	C18H22O2	Linoleic acid	280.25	<-18	23016	0.903	
5347	C ₁₈ H ₃₂ O ₂	Stearolic acid C ₈ H ₁₇ C;C(CH ₂) ₇ CO ₂ H	280.25	48	260		
5348	C18H32O3	Tariric acid	280.25	50.5			
5349	C18H32O4	Stearoxylic acid	312.25	86			
5350	C ₁₈ H ₃₂ O ₁₆	Raffinose	504 . 25	119	130 d.	1.465	1
5351	C ₁₈ H ₃₂ O ₁₆	Procellose	504 . 25	210	1		
5352	C ₁₈ H ₃₃ N ₂ O ₁₂	Piperazine quinate (Sidonal)	469.27	171	İ		İ
5353	C18H34	Hexadecylacetylene C ₁₆ H ₃₃ C:CH	250.26	26	18015	0.79826	
5354	C18H84	1-Methyl-2-pentadecylacetylene	250.26	30	18415	0.802	
5355	C18H24O	Chaulmoogryl alcohol	266.26	36			
5356	C ₁₈ H ₈₄ O	Oleic aldehyde	266 .26	1	1694	0.85115	456
5357	C18H34O3	Elaidic acid	282.26	51.5	288100	0.85179.4	
5 358	C18H34O3	Gynocardic acid	282.26	67.5	1		1
5 359	C18H34O2	Oleic acid C ₈ H ₁₇ CH:CH(CH ₂) ₇ CO ₂ H	282.26	14	286100	0.89547.7	929
5 360	C16H14O2	Petroselinic acid	282.26	34	}	0.86840	1057
5361	C18H34O2	Rapic acid	282.26	14	1	0.89715	
5362	C18H24O2	<i>l</i> -Menthyl <i>n</i> -caprylate	282.26	1	17515	0.898	
5363	C18H34O3	3-Ketostearic acid	298.26	97		İ	
5364	C18H34O3	6-Ketostearic acid	298.26	75			
5365	C18H34O3	8-Ketostearic acid	298.26	83	}	1	i
5366	C18H34O3	9-Ketostearic acid	298.26	76	1	1	1
5367	C18H14O3	10-Ketostearic acid	298.26	65	l .		1
5368	C18H14O1	Ricinelaidic acid	298.26	53	25015		
5369	C18H24O3	Ricinic acid	298.26	81	25215	1	1
5370	C18H24O3	Ricinoleic acid	298.26	17	25013	0.94516	
5371	C1.H.O.	Oleic acid ozonide	330.26			1.022	472
5371.1	C16H14O6	Di-n-heptyl tartrate	346.26	35	23514	0.99941	
5372	C18H24O16	Clavisepsin	506.26	198			
5373	C ₁₈ H ₃₅ ClO	Stearyl chloride C ₁₇ H ₃₆ COCl	302.73	23	21515	1	
5374	C ₁₆ H ₁₅ N	Stearonitrile C ₁₇ H ₃₅ CN	265.28	41	21413		
						•	,

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5375	C ₁₈ H ₁₅ NO	Oleicamide	281.28	76		Ì	
5376	C18H25NO2	Oleohydroxamic acid	297.28	61			ł
5377	C18H36	n-Octodecylene	252.28	18	17915	0.791	
5378	C18H26O	Stearic aldehyde C ₁₇ H ₃₅ CHO	268.28	63.5	261100		
5379	C18H26O2	Stearic acid C ₁₇ H ₂₅ CO ₂ H	284.28	69.3	383	0.84769.3	1117
5380	C18H26O2	Cetyl acetate CH ₃ CO ₂ C ₁₆ H ₃₈	284.28	18.5	200.515	0.858	1041
5381	C18H26O2	Ethyl palmitate C ₁₅ H ₃₁ CO ₂ C ₅ H ₅	284.28	24.2	185.510	1	1043
5382	C ₁₈ H ₃₆ O ₂	Methyl margarate	284.28	29 85	ł		1
5383	C18H16O1	1-Hydroxystearic acid	300.28 300.28	85 85		1	1
5384 5385	C ₁₈ H ₃₆ O ₃	9-Hydroxystearic acid	300.28	81.5		1	-
5386	C ₁₈ H ₂₆ O ₂ C ₁₈ H ₂₆ O ₂	10-Hydroxystearic acid	300.28	79	-		1
5387	C18H26O2	11-Hydroxystearic acid	300.28	78	1		
5388	C ₁₈ H ₁₆ O ₄	4, 9-Dihydroxystearic acid	316.28	136.5			İ
5389	C ₁₈ H ₂₇ I	n-Octodecyl iodide	380.22	34	1700.5	1	
5390	C ₁₈ H ₂₇ NO	Stearic amide C ₁₅ H ₂₁ CONH ₂	283.29	109	25112		1
5391	C ₁₈ H ₂₈	n-Octadecane CH ₂ (CH ₂) ₁₆ CH ₂	254.29	28	317	0.777	1047
5392	C18H28O	n-Octadecyl alcohol	270.29	58.5	210.516	0.8124	
5394	C ₁₉ H ₁₉ O	Benzylideneacenaphthenone	256.09	107			1
5395	C ₁₀ H ₁₈ N	9-Phenylacridine	255.11	181	404		
5396	C18H13N2O6	Tri-p-nitrophenylmethane	379.12	207			}
5397	C19H14O3	Aurine	290.11	> 220			ì
539 8	C19H14O6	Oroxylin	338.11	225			
5399	C19H18	Triphenylmethyl (C ₄ H ₅) ₂ C	243.12	147			
5400	C ₁₉ H ₁₆ Cl	Triphenylchloromethane (C ₈ H ₅) ₂ CCl	278.57	112	310		
5401	C19H18N8	Chrysaniline	285.14	270			
5402	C19H16	Triphenylmethane (C ₆ H ₅) ₂ CH	244.12	92.5	359.2	1.0144	1128
5403	C19H16N2	Benzophenone phenylhydrazone	272.14	137		4 400	
5404	C19H16O	Triphenyl carbinol (C ₆ H ₆) ₈ COH	260.12	162.5	> 360	1.188	
5405	C ₁ ,H ₁ ,O ₃	Triphenyl orthoformate HC(OC ₆ H ₆) ₃	292.12	77	27755	ļ	
5406	C19H17N	m-Aminotriphenylmethane	259.14	120			
5407	C ₁₉ H ₁₇ N	p-Aminotriphenylmethane	259.14	84 87			
5408	C ₁₉ H ₁₇ N	Diphenylbenzylamine	259.14 259.14	105		1	
5409 5410	C ₁₉ H ₁₇ N C ₁₉ H ₁₇ NO ₂	Novatophan	291.14 291.14	76	1		
5410 5411	C ₁₉ H ₁₇ NO ₃	Cusparidine	307.14	79		İ	
5412	C ₁₉ H ₁₇ NO ₃	Cusparine	307.14	92	1 .	1	
5413	C ₁₉ H ₁₇ NO ₂	Isocusparine	307.14	194		į.	
5414	C19H17N3	α-Triphenylguanidine	287.16	145	d.	Į.	
5415	C1.H17N2	β -Triphenylguanidine	287.16	131			1
5416	C19H13ClN3	a-Triphenylguanidine hydrochloride	323.62	241		0.8754	
5417	C1.H1.N2	p, p'-Diaminotriphenylmethane	274.16	140			1
5418	C19H18O8	Eugenol cinnamate	294.14	90		ļ	
5419	C19H18O7	Eriodonol	358.14	199			
5420	C16H18O8	Atranoric acid	374.14	197		i	
5421	C19H18O11	Euxanthic acid	422.14	162	d.		
5422	C ₁₉ H ₁₉ NO ₂	Ditamine	293.15	75		· ·	1
5423	C ₁₉ H ₁₉ NO ₈	Galipidine	309 . 15	111		ŀ	
5424	C19H19NO4	Bulbocapnine	325 . 15	199	1	-	1332
5425	C ₁₉ H ₁₉ NO ₅	Stylopine	341.15	202		1	
5426	C19H19N3	o-Leucaniline (NH ₂ C ₆ H ₄) ₃ CH	289.17	165		1	
5427	C ₁₉ H ₁₉ N ₃	p-Leucaniline (NH ₂ C ₄ H ₄) ₂ CH	289.17	148	i	1	1
5428	C ₁ ,H ₁ ,N ₂ O	Pararosaniline (NH ₂ C ₅ H ₄) ₂ C(OH)	305.17	189 •		1 000	1201
5428.1	C ₁₈ H ₂₀ N ₂ O	Cinchoninone	292.17	127		1.226	1301
5429	C ₁₉ H ₂₀ N ₂ O ₄	Antipyrine mandelate	340.17	53		i	ŀ
5430 5431	C ₁₈ H ₂₀ N ₂ O ₄	dl-Ornithuric acid	340.17	183	1		1
5431 5422	C ₁₉ H ₂₀ O ₄	Diethyl diphenylmalonate	312.15 328.15	59 100	1	1	İ
5432 5433	C ₁₉ H ₂₀ O ₅ C ₁₉ H ₂₁ NO ₂	Isothebaine	328.15 311.17	204			1
5434	C ₁₉ H ₂₁ NO ₃	Oxyacanthine	311.17	210	1	1	1
5435	C ₁₉ H ₂₁ NO ₂	Thebaine	311.17	193	1	1.305	
UIUU	~13AAZIATUS	AMOUGHIO	O11.11	1 -00	I	1	ı
5436	C19H21NO	Eupyrin	343.17	88			Į.

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5438	C15H22N2	Desoxycinchonine	278.19	92	Ì	i	i -
5439	C19H22N2O	Apocinchonine	294 .19	228			1
5440	C19H22N2O	Cinchonicine	294.19	59			
544 1	C19H22N2O	Cinchonidine	294 .19	210		ļ	1278
5442	C19H22N2O	α-Cinchonine	294.19	264.3		1	1304
5443	C ₁₈ H ₂₂ N ₂ O	Homocinchonidine	294 .19	207.6		ļ	
5444	C19H22N2O	β-Isocinchonine	294.19	126			
5445	C19H22N2O2	Apoconquinine	310.19	137	1		
5446	C19H22N2O2	Apoquinine	310.19	210 d.			
5447	C19H22N2O2	Cupreine	310.19	202	1	1	i
5448	C19H22N2O4	Chitenine	342.19	286 d.			
5451	$C_{19}H_{22}ClN_2O$	Cinchonidine hydrochloride	330.65	242 d.		1	
5452	$C_{19}H_{23}CIN_2O$	Cinchonine hydrochloride	330.65	218 d.			1333
5453	C19H23NO3	Codethyline	313.19	93			
5454	C19H22NO4	Cinnamylcocaine	329.19	121			
5455	C19H22NO4	Corytuberine	329.19	240			
5456	C19H22NO4	Porphyroxime	329.19	135			
5457	C19H23NO4	Sinomenine	329.19	161			
5458	C19H21NO5	Morphine acetate	345.19	200 d.			
5459	C19H22N2O4	Cinchonine nitrate	357 . 20				1333
5460	C ₁₉ H ₂₄ BrNO ₃	Eucodine (Methylcodeine bromide)	394.11	261			
5461	C ₁₉ H ₂₄ ClNO ₃ (2H ₂ O)	Dionine	349.65	123	170 d.		
5462	C19H24N2O	Cinchamidine (Hydrocinchonidine)	296.20	230			
5463	C19H24N2O	Cinchonamine	296.20	185			
5464	C18H24N2O	Cinchotine	296.20	286			
5465	C19H24N2O	Pereirine	296.20	124			1
5466	C19H24N2O2	Conquinamine	312.20	123	i		
5467	C19H24N2O2	Geissospermine	312.20	189			
5468	C19H24N2O2	Hydrocupreine	312.20	230			
5469	C19H24N2O2	Quinamine	312.20	172	1	1	
5473	C19H25N4O4	Ionidine	373.23	156			ļ
5474	C19H26N2O	Aspidosine	298.22	. 245		,	
5475	C18H27NO4	α-Eucaine	333.22	103			
5476	C ₁₉ H ₂₆ ClNO ₄	α-Eucaine hydrochloride	369.68	200			
5477	$C_{19}H_{28}O_{2}$	Abietic acid	288 . 22	161	1		1251
5478	C19H28O4	Convallaretin	320.22	>255			
5479	C19H28O18	Calmatambin	464.22	144			
5480	C ₁₉ H ₃₀ O ₂	Benzyl laurate C ₁₁ H ₂₂ CO ₂ CH ₂ C ₆ H ₅	290.23	8.5	21112	0.94625	540
5481	C19H34O3	Methyl chaulmoograte	294.26	22	22720	0.912_{26}^{25}	
5482	C19H26O3	Methyl ricinolate	312.28		24510	0.924	465
5483	C19H28O2	Nondecylic acid CH ₃ (CH ₂) ₁₇ CO ₂ H	298.29	66	299100		İ
5484	C19H23O2	Ethyl margarate CH ₂ (CH ₂) ₁₅ CO ₂ C ₂ H ₅	298.29	27			
5485	C19H33O2	Methyl stearate C ₁₇ H ₂₆ CO ₂ CH ₃	298.29	38	21514		
5486	C ₁₉ H ₄₀	n-Nondecane CH ₃ (CH ₂) ₁₇ CH ₂	268.31	32	·330	0.77742	1045
5487	C ₂₀ H ₁₀ I ₄ O ₄	Nosophen (Tetraiodophenolphthalein)	821.81	225			
5488	C ₂₀ H ₁₂	Perylene	252.09	264		1	
5489	C ₂₀ H ₁₂ O ₃	Fluoran	300.09	175		İ	
5490	C29H12O6	Fluorescein	332.09		290 d.		
5491	C20H14	α, α' -Dinaphthyl $C_{10}H_7.C_{10}H_7$	254.11	160.5	360		
5492	C20H14	α, β'-Dinaphthyl	254.11	80	1	1	
5493	C20H14	β , β' -Dinaphthyl $C_{10}H_7$. $C_{10}H_7$	254.11	187.8	452		
5494	C20H14	9-Phenylanthracene	254.11	153	417	1	
5495	C ₂₀ H ₁₄ N ₂	α, α'-Azonaphthalene	282.12	190			ľ
5496	C ₂₀ H ₁₄ N ₂	β, β'-Azonaphthalene	282.12	204		1	ĺ
5497	C ₂₀ H ₁₄ N ₂ O	α, α'-Azoxynaphthalene	298.12	127	1	1	
5498	C ₂₀ H ₁₄ N ₂ O	β, β'-Azoxynaphthalene	298.12	167			
5499	C ₂₀ H ₁₄ O	α -Naphthyl ether $(C_{10}H_7)_2O$	270.11	110	>360	1	1
5500	C ₂₀ H ₁₄ O	β-Naphthyl ether (C ₁₀ H ₇) ₂ O	270.11	105	25019		1
5501	C ₂₀ H ₁₄ O	α, β' -Naphthyl ether	270.11	81	26415		
5502	C ₂₀ H ₁₄ O ₂	α-Dinaphthol	286.11	300		1	
5503	C20H14O2	β-Dinaphthol	286.11	218			
5504	C20H14O4	Phenolphthalein	318.11	261	1	1.27742	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. L. No.
5505	C50H14O6	Fluorescin	334.11	127		İ	T
5506	C26H14O9	Psoromic acid	398.11	264		ł	l
5507	C20H14S	α, α'-Dinaphthyl sulfide (C ₁₀ H ₇) ₂ S	286.17	110	29015		
550 8	C20H15N	β , β' -Dinaphthylamine $(C_{10}H_7)_2NH$	269.12	172.2	471	1	.
5509	C20H15NO4	Sanguinarine	333.12	213		ļ	
5510	C20H15NO8	Berilic acid	397.12	200			
5511	C20H15N2	p-Amino-α-azonaphthalene	297.14	175		1	i
5512	C20H15N2	Amino-β-azonaphthalene	297.14	156		1	- 1
5513	C20H16N2	α, α'-Hydrazonaphthalene	284.14	α 271; β 274		1	1
5514	C20H16N2	β , β' -Hydrazonaphthalene	284.14	164		ı	İ
5515	C20H16N2O	Benzilphenylhydrazone	300.14	134		İ	İ
5516	C20H16N4	Nitron	312.16	189 d.			1
5517	C20H16O2	Triphenylacetic acid (C ₂ H ₅) ₂ C.CO ₂ H	288.12	265			
5518	C20H16O2	Rosolic acid	304.12	270	d.		1
5519	C29H17N5O2	Rubazonic acid	359.17	181			
5520	C20H18	Diphenyl-m-tolylmethane	258.14	61.5	356	1.0714	
5521	C20H18	1, 1, 2-Triphenylethane	258.14	54	349.4		
5522	C20H18CINO4	Berberine hydrochloride	371.61			1.397	1333
5523	C20H18N2O	α-Benzoinphenylhydrazone	302.16	155			
5524	C20H18N2O	β-Benzoinphenylhydrazone	302.16	106		-	
5525	C20H18N4S	Triphenylguanylthiourea	346.24	157		1	
5526	C ₂₀ H ₁₉ N	Dibenzylaniline C ₆ H ₅ N(CH ₂ C ₆ H ₅) ₂	273.15	70		1	
5527	C ₂₀ H ₁₀ NO ₆	Chelidonine	353.15	136			
5528	C ₂₀ H ₁₉ NO ₅	Papaveraldine	353.15	210		İ	
5529	C ₂₀ H ₁₉ NO ₆	Protopine.	353.15	207		ł	
5530	C ₂₀ H ₁₉ NO ₉	Berberilic acid	417.15	182		ł	
5532	C20H20N2O5	Antipyrine acetylsalicylate	368.17	65		1	
5533	C ₂₀ H ₂₀ O ₆	Cubebinol	340.15	92			
5534	C20H20O6	Cubebin	356.15	132		1	
5535	C ₂₀ H ₂₀ O ₇	Coccelic acid	372.15	178			
5536	C ₂₀ H ₂₀ O ₁₀	Scoparin.	420.15	219 d.		1	
5537	C20H20O10	Luteic acid.	452.15	274 d.		1	
5538	C20H21NO2	Galipeine	323.17	115		ı	
5539		L-Canadine	339.17	134		1	
5540	C ₂₀ H ₂₁ NO ₄	Dicentrine	339.17 339.17			ļ	
5541	C ₂₀ H ₂₁ NO ₄		339.17 339.17	169 147	d.	1.337	1331
5542	C ₂₀ H ₂₁ NO ₄ C ₂₀ H ₂₁ NO ₄	Papaverinedl-Canadine	339.17	167	u.	1.557	1991
5544	C ₂₀ H ₂₂ ClNO ₄	Papaverine hydrochloride	375.64	221 d.		ļ	
5545	C ₂₉ H ₂₂ N ₂ O	Quinene	306.19	82 d.			
5546		Dehydroquinine.	322.19	181		ł	
	C ₂₀ H ₂₂ N ₂ O ₂		322.19 322.19	178			
5547	C ₂₀ H ₂₂ N ₂ O ₂	JelsemineLysuric acid		145			- 1
5548	C ₂₀ H ₂₂ N ₂ O ₄	1-3	354.19				
5549	C ₂₆ H ₂₂ O ₈	Populin	390.17	180			
5550	C ₂₀ H ₂₃ ClN ₂ O ₂	Jelsemine hydrochloride	358.65	300			
5551	C ₂₀ H ₂₂ NO ₄	Acetylcodeine	341.19	133.5		i b	
5552	C ₂₀ H ₂₃ NO ₄	Corypalmine	341.19	236		ļ	
5553	C23H23N3O4	Pyramidon salicylate	369.20	70		1	
5554	C20H22O4	Naphthyl acid camphorate	327.18	122		i	
5555	C26H24Cl2N2O2	Quinene dichloride	395.12	97		İ	
5556	C20H24NO4	Staphisagroine	342.19	275		1	
5557	C20H24N2O	Desoxyquinine	308.20	52			
5558	C20H24N2O2	Isoconquinine	324.20	142		1	
5 559	C20H24N2O2	Isoquinine	324.20	185		ĺ	
5560	C26H24N2O2	Quinicine	324 . 20	60		1	
5561	C20H24N2O2	Quinidine	324.20	168			1298
5562	C20H24N2O2	Quinine	324.20	175			1279
5563	C20H24N2O2	Quinine (isomer A)	324.20	193.5			
5564	C20H24N2O2	Quinine (isomer B)	324.20	189			
5566	C20H24BrN2O2	Quinine hydrobromide	405.13	200			
5567	C20H25ClN2O2	Quinidine hydrochloride	360.67	259 d.			
5568	C20H25ClN2O2	Quinine hydrochloride	360.67	.160	259 d.		
5570	C20H25NO2	Lobelidine	311.20	106		1	
9970							

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
5572	C20H25NO4	Laudanidine	343.20	177		1 .	
5573	C20H25NO4	Laudanine	343.20	164.5		1.256	ļ
5575	C20H26N2O6S	Quinine disulfate	422.28	160 d.			
5577	C20H26N2O2	Hydroquinidine	326.22	167			
5578	C20H26N2O2	Hydroquinine	326 . 22	172.3		j	
5579	C20H27NO5	Diversine	361.22	93			
5580	C20H27NO11	Amygdalin	457.22	200	İ	i	ł
5581	C20H27N2O4P	Quinine hypophosphite	390.25	181	}	Į.	
5583	C20H28O4	Thymyl acid camphorate	332.22	89		1	
5584	C20H28O6	Eugenol acid camphorate	348.22	116		1	
5585	C20H28O6	Cholanic acid	364.22	285	1	1	
5586	C20H28O13	Primeverin	476.22	206	1	ļ	
5587	C20H20N2O5	Quinine hydrate	378.25	57	d.	İ	
5588	C20H20O2	d-Pimaric acid	302.23	212	28220	1	Ì
5589	C20H30O4	Onoceric acid	334.23	120		1	
5590	C28H20O5	Andrographolide	350.23	218		1	i
5591	C28H32O6	Andrographolic acid	368.25	188	1	İ	
5592	C20H22NO	Myristic anilide	303.26	84	1	 .	
5593	C20H12N2	Ormosine	315.28	87		ŀ	1
5594	C20H12N2	Ormosinine	315.28	205	1	1	
5595	C20H24O	Ambrosterol	290.26	147	1		
5596	C20H24O	Cinchol	290.26	139		İ	
5597	C20H24O	Cupreol	290.26	140	1		1
5598	C ₂₀ H ₂₄ O	Quebrachol	290.26	125		1	
5599	C20H24O10	Cyclamin	434.26	236		ļ	1333
5600	C20H26N8O16	Vicine	628.34	242 d.	1	i	1000
5601	C ₁₀ H ₁₆ O	Excretin	292.28	96		1	
5602	C20H26O2	Eicosinic acid	308.28	69	27015	1	
5603	C20H26O2	Ethyl chaulmoograte	308.28	08	23020	0.906	1036
5604	C20H28O2	Eicosenic acid	310.29	50	26715	0.800	1000
5605		Ethyl ricinoleate	326.29	50	25813	0.914	481
5606	C ₂₀ H ₂₈ O ₂		296.31		20410	0.856	484
	C ₂₈ H ₄₀ O	PhytolArachidic acid	312.31	77	328	0.800	203
5607	C ₂₀ H ₄₀ O ₂		312.31	33.7	224	1	
5608	C ₂₀ H ₄₀ O ₂	Ethyl stearate C ₁₇ H ₃₆ CO ₂ C ₂ H ₆		33.7 42	1	1	
5609	C20H41I	n-Eicosyl iodide	408.25		1920.6	0.77086.7	1005
5610	C ₂₀ H ₄₂	n-Eicosane CH ₂ (CH ₂) ₁₈ CH ₃	282.32	38	20515	0.7784	1065
5611	C ₂₀ H ₄₂ O	Eicosyl alcohol CH ₂ (CH ₂) ₁₈ CH ₂ OH	298.32	71	220³		1
5612	C21H14O	α, β'-Dinaphthyl ketone	282.11	135			
5613	C21H14O	β , β' -Dinaphthyl ketone	282.11	a 125.5			1
-011	0 77 0	D	000 11	b 164.5		1	1
5614	C21H14O2	Picenic acid	298.11	201	1	1	1
5615	C21H16Bi2O9	Bismuth salicylate	829.12	135 d.		1	
5616	C21H16	α, α'-Dinaphthylmethane	268.12	109	360	1	
5617	C21H16	α , β' -Dinaphthylmethane $(C_{10}H_7)_2CH_2$.	268.12	95		1	1
5618	C21H16	β , β' -Dinaphthylmethane $(C_{10}H_7)_2CH_2$	268.12	93		i	
5619	C21H16N2	Lophine	296.14	275	1	j	
5620	C21H16O11	Methylenecitrylsalicylic acid	444.12	154		i	
562 1	C21H13N2	Amarin	298.16	129	1		1
5622	C21H18N2	Hydrobenzamide	298.16	101	1	1	
5623	C21H18O12	Scutellarin	462.14	200 d.		}	
5624	C21H19NO4	Fumarine	349.15	199	}		
5625	C21H20	Phenylditolylmethane	272.15	56		ì	
5626	C21H20N2O4	Alstonine (Chlorogenine)	364.17	195	1		
5627	C21H20O6	Curcumin	368.15	183			1333
5628	C21H20O0	Aloin	416.15	147.9	1		
5629	C21H20O9	1, 2-Dihydro-3, 5-dihydroxy-4-(a, 3, 4-			1		
		trihydroxybenzylbenzofuran)*	416.15	217	ł		
5630	C21H20O9	Frangulin	416.15	226	1		
5631	C21H20O11	Quercitrin	448.15	185	1	1	
5632	C21H20O12	Incarnatrin	464.15	245			1
5633	C21H21N	Tribenzylamine (C ₆ H ₅ CH ₂) ₂ N	287.17	92		0.9914	1
		d-Corcycavamine	367.17	149	1	'	1
5634	C22H21NO	a-Corcycavamme	001.11		1	I I	

^{*} Also commonly known as Catechol, Pyrocatechol, Catechin, Pyrocatechin. See #1414.

No.	Formula	Name	Mol. wt.	M. P.	B. P.	d	R. I. No.
5636	C21H21NO6	Rhoeadine	383.17	232 d.			Ī
5637	C21H21N3	Anhydroformaldehydeaniline	315.19	45.5	185		1
5638	C21H21O4P	Tri-p-cresyl phosphate	368.19	77	ŀ		
5639	C21H21O4P	Triguaiacyl phosphite	400.19	78	1		
5640	C21H21O7P	Triguaiacyl phosphate	416.19	98			1
5641	C21H22N2O2	Isostrychnine	334.19	214.5			
5642	C21H22N2O2	Strychnine	334.19	268	2705	1.35918	1
5645	C21H22Cl2N2O2	Benzamide hydrochloride	436.12	178			-
5646	C21H22NO4	Meconidine	353.19	58	ł		
5647	C21H22NO5	Cryptopine	369.19	218		1.351	
5648	C21H28NO	Diacetylmorphine	369.19	172			1260
5649	C21H28NO5	α-Homochelidonine	369.19	182			
5650	C21H22NO	β-Homochelidonine	369.19	159			
5651	C21H22NO	γ-Homochelidonine	369.19	171			
5652	C21H22NO6	Colchiceine	385.19	172			1
5653	C21H22N2O5	Strychine nitrate	397.20				1333
5654	C21H24ClNO4	Diacetylmorphine hydrochloride	405.65	230		ļ	
5655	C21H24N2O	Paytine	320.20	156		į	1
5656	C21H24N2O	Strychnidine	320.20	250 .5	29514	i	
5657	C21H24N6O10	Geneserine picrate	520.23	175		ł	l
5658	C21H24O9	Glycyphylline	420.19	180			
5659	C21H24O10	Phloridzin	436.19	170 d.		1.430	1
5660	C21H24O11	Datiscin	452.19	180			1
5661	C21H24O12	Saponarin	468.19	232	ł		
5663	C21H24NO4	Corybulbine	355.20	239			
5664	C21H25NO4	Corydine	355.20	105			1165
5665	C21H26NO4	Glaucine	355.20	120			
5666	C21H25NO4	Isocorybulbine	355.20	180			
5667	C21H25N2O2	Porphyrine	351.22	97	į		1
5668	C21H26N2O	Desoxystrychnine	322.22	172			
5669	C21H26N2O8	Corynanthine	354.22	242	ì		
5670	C21H26N2O3	Quebrachine	354.22	248			1333
5671	C21H26N2O4	Quinine formate	370.22	113	l		ł
5672	C21H27ClN2O2	Quebrachine hydrochloride	390.68	290	1		1
5673	C21H27NO4	d(l)-Laudanosine	357.22	89	1	ŀ	
5674	C21H27NO10	d-Cocaine bitartrate	453.22	112	1	1	
5675	C ₂₁ H ₂₈ N ₂ O	Tetraethyldiaminobenzophenone	324.23	96		1	
5676	C21H22O4	Marrubiin	344.22	154.5	29715		
5677	C21H20N2O4	Struxine	374.25	250 d.			
5678	C21H20O2	Cannabinol	314.23		315100	1.04218	1
5679	C21H20O4	Euonymol	346.23	250		1	
5680	C21H20O8	Antiarin	410.23	215			ł
5681	C21H24O	Pyrethrol	302.27	199	290	0.0001	
5682	C21H24O2	Benzyl myristate C ₁₈ H ₂₇ CO ₂ CH ₂ C ₆ H ₅	318.26	20.5	23111	0.93225	536
5683	C21H24O2	Di-d-bornyl carbonate	334.26	216	1		
5684	C21H24O4	Ipurganol	350.26	225			
5685	C21H24O10	Helleborein	446.26	230 d.	1		ł
5686	C21H26O4	Trifolianol	352.28	300			i
5687	C21H28O3	Di-l-menthyl carbonate	338.29	106			
5688	C21H38O6	Tricaproin	386.29	-25		0.988	392
5689	C ₂₁ H ₄₀ O ₂		324.31	57	337		i
5690	C ₂₁ H ₄₂	9-Heneicosene C ₈ H ₁₇ CH: CHC ₁₁ H ₂₈	294.32	3	20211	0.80518	
5691	C ₂₁ H ₄₂ O ₂	Cluytinic acid	326.32	69		i	ļ
5692	C ₂₁ H ₄₂ O ₂	Heneicosonic acid CH ₂ (CH ₂) ₁₉ CO ₂ H	326.32	74		1	1
5693	C ₂₁ H ₄₂ NO	Heneicosamide CH ₂ (CH ₂) ₁₉ CONH ₂	325.34	110	01.515	0. 57744.3	1007
5694	C21H44	n-Heneicosane CH ₈ (CH ₂) ₁₉ CH ₈	296.34	40.4	21515	0.77545.8	1067
5695	C ₂₂ H ₁₄	Picene	278.11	364	520	1	
5696	C ₂₂ H ₁₄ N ₂ O	Rosindon (Rosindulon)	322.12	262			
5697	C ₂₂ H ₁₆ NO ₆	Colchinine	389.12	146			
5698	C ₂₂ H ₁₆ N ₃	Rosinduline	321.14	199		Į.	
5699	C ₂₂ H ₁₈ O ₄	o-Cresolphthalein	346.14	216			
5700	C ₂₂ H ₂₀ O ₁₈	Carminic acid	492.15	136 d. 250	1		1
5701	C22H22O11	Isotrifolin	462.17				

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
5702	C22H22O11	Trifolin	462.17	260		i	†
5703	C22H23NO7	Gnoscopine	413.19	233			
5704	C22H23NO7	Narcotine	413.19	175		1.374	
5705	C22H23N2O7	Pyrene picrate	431.12	218			
5706	C ₂₂ H ₂₄ O ₁₀	Sakuranin	448.19	212			
5707	C ₂₂ H ₂₄ NO ₄	Corycavidine	367.20	213			
5708	C ₂₂ H ₂₆ NO ₆	l-Colchicine	399.20	146			1333
5709 5710	C ₂₂ H ₂₆ N ₂ O ₂	Apoyohimbine	350.22	252			
5710 5711	C ₂₂ H ₂₆ N ₂ O ₃	AcetylquinineGelsemine	366.22	108			
5711 5712	C ₂₂ H ₂₆ N ₂ O ₂ C ₂₂ H ₂₆ N ₂ O ₄	Chaimaridine	366.22	178		ł	
5712 5713	C22H26N2O4	Chaimarine	382.22 382.22	128 233			
5714	C22H26N2O4	Conchaimarine	382.22	233 120			
5715	C22H26N2O4	Conchairamidine	382.22	115	Į.		
5716	C22H26N2O4	Mitraversine	382.22	237	1		
5718	C ₂₂ H ₂₆ O ₁₂	Hesperidin	482.20	171	251 d.		
5719	C ₂₂ H ₂₇ AsNO ₅	Strychnine methylarsinate	460.18	60 d.	201 U.		
5720	C22H27BrN2O3	Gelseminine hydrobromide	447.14	00 u.			1333
5721	C22H27ClN2O2	Apoyohimbine hydrochloride	386.68	300			1000
5722	C ₂₂ H ₂₇ ClN ₂ O ₃	Gelseminine hydrochloride	402.68	330 .			1333
5723	C22H27NO4	dl-Corydaline	369.22	136			1000
5724	C22H27N3O4	Physostigmine salicylate	413.23	178.9			1333
5725	C22H28N2O2	Aspidosamine	352.23	100			1000
5726	C22H28N2O2	Aspidospermatine	352.23	162			1
5727	C22H28N2O4	Ditaine (Echitamine)	384.23	206			1333
5728	C22H28N2O4	Quinine acetate	384.23	126			1000
5729	C22H28N4	Camphorosazone	348.25	55			İ
5730	C22H28O3	Santalyl salicylate	340.22	•	126.620	1.07016	
5732	C22H29IO2	Europhen (Diisobutyl-p-cresol iodide)	452.16	110			
5733	C22H30N2O2	Aspidospermine	354.25	208	220²		
5734	C22H31NO5 (?)	Mitragynine	389.25	106	2405		
5735	C22H32O3	Anacardic acid	344.25	26			
5736	C22H32O4	Digitoxigenin	360.25	230			
5737	C22H32O6	Genin	392.25	206			
5738	C22H22NO	Atropine isovalerate	391.26	32			
5739	C22H33NO3	Atropine valerate	391.26	42	1		1333
5741	C22H24N4O8S	Pilocarpine sulfate	514.36	132			1333
5742	C22H36NO6	Delphinine	409.28	187.5	1		
5743	C22H36O4	Bryonol	364.28	212	1		İ
5744	C22H36O8	Capsularin	428.28	176			
5745	C22H37NO	Palmitic anilide	331.29	90.5	28417		1
5746	C22H28O	Cholestol	318.29	139	360		
5747	C22H38O	Ilicyl alcohol	318.29	175	350		
5748	C22H38O4	Citrullol	366.29	290			1
5759	C ₂₂ H ₃₈ O ₄	Di-l-menthyl oxalate	366.29	68	22512		1
5760	C ₂₂ H ₃₉ ClO	Behenolyl chloride C ₂₁ H ₃₉ COCl	354.76	29	1		
5761	C ₂₂ H ₄₀ O ₂	Behenolic acid C21H29CO2H	336.31	57.5	1		
5762	C ₂₂ H ₄₁ NO	Behenolyl amide C ₂₁ H ₂₉ CONH ₂	335.32	90			
5763	C ₂₂ H ₄₂ O ₂	Brassidic acid	338.32	61.5	28230	0.85967.1	1085
5764	C ₂₂ H ₄₂ O ₂	Erucic acid	338.32	33 .5	28130	0.86045.4	
5765 5765.1	C ₂₂ H ₄₂ O ₃	14-Ketobehenic acid	354.32	84	0000	0.00000	000
5766	C ₂₂ H ₄₂ O ₃	Isobutyl ricinoleate	354.32	00	2629	0.90322	980
	C ₂₂ H ₄₂ NO	Erucamide C ₂₁ H ₄₁ CONH ₂	337.34	83	0000		
5767 5768	C22H44O C22H44O2	Erucyl alcoholBehenic acid	324.34	34.6	2000.2		1
5769			340.34	84	306**		
5770	C ₂₂ H ₄₄ O ₂ C ₂₂ H ₄₄ I	Methyl heneicosate C ₂₀ H ₄₁ CO ₂ CH ₃ Docosyl iodide CH ₂ (CH ₂) ₂₀ CH ₂ I	340.34 436.28	49 40		i	1
5770 5771	C ₂₂ H ₄₅ NO	Behenamide C ₂₁ H ₄₃ CONH ₂	436.28 339.36	49]		
5772	C22H46	n-Docosane CH ₃ (CH ₂) ₂₀ CH ₃	310.35	112 44 4	224.515	0.77844.4	
5773	C22H46O	Docosyl alcohol CH ₂ (CH ₂) ₂₀ CH ₂ OH	326.35	44.4 74	44.0	0.1184	1
5774	C23H20O2	Amaric anhydride	328.15	140.5	ļ		
	C23H23NO6	Corycavine	409.19	216	1		ļ
5775	\ / 0 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5777	C22H24N4O2	Methylenediantipyrine	388.22	177			Ī
5778	C22H24N4O11	Hyoscine picrate	532.22	188			
5779	C23H24O3	o-Cresol orthoacetate	348.19	89			
5780	C22H24O9	Picropodophyllin	444.19	227			1
5781	C22H24O9	Podophyllotoxin	444.19	94			i
5782	C22H25NO4	Lanthopine	379.20	200	1		
5783	C ₂₂ H ₂₆ ClN ₂ O ₃	Acoin	427.68 394.22	178 188 d.	i		
5784	C ₂₂ H ₂₆ N ₂ O ₄	Aricine	394.22	178 u.	1	1	
5785 5786	C22H26N2O4 C22H26N2O4	Concusconine	394.22	208	ŀ		
5787	C22H26N2O4	Cusconine	394.22	110		I	
5788	C23H26N2O4	Allobrucine oxide	410.22	189	İ	1	
5789	C22H27NO6	Homoatropine salicylate	413.22	100		1	1333
5790	C22H27NO	Narceine	445.22	170	į.	İ	1
5791	C22H27N2O7	Brucine nitrate	457.23	230 d.			
5792	C23H28CINO8	Narceine hydrochloride	481.68	192	ļ		1333
5793	C22H28N2O4	Vellosine	396.23	189 d.			
5794	C21H11NO1	Lobeline	351.23	131			
5795	C22H20N2O4	Quinine propionate	398.25	111	1		
5796	C22H20N2O6	dl-Quinine lactate	414.25	165.5	1	1	
5797	C22H30N2O5	d-Quinine lactate	414.25	175		1	
5798	C22H20N2O5	l-Quinine lactate	414.25	171			1
5799	C28H31NO2	Atisine	353.25	85			
5801	C22H22N2O4	Quinine ethyl carbonate (Equinine)	401.27	91	1		
5802	C22H22N2O6	Pyramidon acid camphorate	431.28	94	Ì		į
5803	C28H36O2	Lactucon (Lactucol acetate)	344.28	184			
5804	C22H26O4	Calabarol	376.28	245	1		
5804.1	C28H28N2	Conessine	342.31	125		0.0148	1333
5805	C22H28O2	Benzyl palmitate	346.29	36		0.91425	1079
5806	C22H28O4	Anonol	378.29	298			į
5807	C38H36O4	Grindelol (Phytosterol glucoside)	378.29	257	ļ		
5808	C ₂₂ H ₄₀ O	Ambrein	332.31 332.31	82 214			ł
5809 5810	C22H40O C22H40O4	Xanthosterin	380.31	62	1701	0.94476	
5811	C22H40O4	Ipuranol	380.31	290	110	0.0114	ı
5812	C22H42O2	Methyl behenolate C ₂₁ H ₃₀ CO ₂ CH ₃	350.32	22			
5813	C22H44O2	Methyl erucate C ₂₁ H ₄₁ CO ₂ CH ₂	352.34		222	0.870	457
5814	C28H46O	Laurone (C ₁₁ H ₂₂) ₂ CO.	338.35	69		0.78940.9	1111
5815	C28H46O2	Methyl behenate C ₂₁ H ₄₃ CO ₂ CH ₂	354.35	54.5	225	,	
5816	C28H48	n-Tricosane CH ₂ (CH ₂) ₂₁ CH ₃	324.37	47.7	320.7	0.77947.7	1120
5817	C24H16	Crackene	306.14	308	500		
5818	C24H18	1, 3, 5-Triphenylbenzene	306.14	170		1.206	1317
5819	C24H12A82N2O	Phenarsazine oxide	500.08	350			
5820	C26H18N2	p, p'-Diphenylazobenzene	334.16	250	ľ		į.
5821	C24H18N2O	p, p'-Diphenylazoxybenzene	350.16	205	i		
5822	C24H20N2	p, p'-Diphenylhydrazobenzene	336.17	247		1	
5823	C24H20O6	Glycerol tribenzoate	404.15	76.5	ļ		1
5824	C24H20O,	Glycerol trisalicylate	452.15	79			
5826	C24H25N2O	Benzoylauramine	371.22	179		i	
5829	C24H23O6	Diguaiacyl camphorate	412.22	124	1		
5830	C24H28O8	α-Flavaspidic acid	444.22	92	ļ		
5831	C ₂₄ H ₂₆ O ₆	β-Flavaspidic acid	444.22	156	Ì	1	1333
5832	C ₂₄ H ₂₉ NO ₆	Atropine salicylate	427.23 398.23	300	1		1999
5834	C24H20O4	Elaterone	430.23	79		1	
5835	C ₂₄ H ₃₀ O ₇		558.23	218	İ		
5836 5837	C24H30O14 C24H32N2O4	Scopolin	338.23 412.26	218 77.5	1	1	
5838	C24H32N4O3	Maltosazone	520.28	206		1	
58 39	C24H35N2O	Holarrhenine	370.31	198	1		
5840	C24H28O4	Di-d-bornyl succinate	390.29	83.7			
5841	C24H40N2	Conessine	356.32	125		1	
5842	C24H40O4	Choleic acid	392.31	190		1	
		Cucurbitol		260	1		1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5844	C24H40O5	Cholic acid	408.31	195			
5845	C24H41NO	Stearic anilide CH ₂ (CH ₂) ₁₆ CONHC ₆ H ₅ .	359.32	93.6			1
5846	C24H42O4	Di-l-menthyl succinate	394.32	63	220 d.	0.9474	İ
5847	C24H42O4	Di-l-menthyl d-tartrate	426.32	75		1.054	1
5848	C24H42O4	Di-L-menthyl L-tartrate	426.32	42		1.04516	
5849	C24H44O5	Lithofellinic acid	412.34	206			
5850	C24H44I2O2	Ethyl diiodobrassidate	618.20	37			
5851	C24H44O2	Ethyl behenolate C ₂₁ H ₃₉ CO ₂ C ₂ H ₅	364.34	15			1040
5852	C24H46O2	Ethyl brassidate	366.35	3 0.5	000	0.005	1046
5853	C ₂₄ H ₄₆ O ₂	Ethyl erucate C ₂₁ H ₄₁ CO ₂ C ₂ H ₅	366.35	72	230	0.865	449
5854 5855	C ₂₄ H ₄₈ O ₂ C ₂₄ H ₄₈ O ₂	Lignoceric acid C ₂₂ H ₄₇ CO ₂ H	368.37 368.37	81			1
5856	C24H45O2	Paraffinic acid C ₂₃ H ₄₇ CO ₂ H	368.37	46	1		
5857	C ₂₄ H ₄₈ O ₂	Pisangcerylic acid C ₂₂ H ₄₇ CO ₂ H	368.37	72		· I	
5858	C ₂₄ H ₄₈ O ₂	Tetraconic acid CH ₂ (CH ₂) ₂₂ CO ₂ H	368.37	85.5	1		1
5859	C24H48O2	Ethyl behenate C ₂₁ H ₄₅ CO ₂ C ₂ H ₅	368.37	50.5	231		1
5860	C24H48O2	Isotetracosane	338.39	50.5 51	24315		
5861	C24H50	n-Tetracosane CH ₃ (CH ₂) ₂₂ CH ₃	338.39	54	324.1	0.77941.1	}
5862	C24H50	Carnaubyl alcohol C ₂₄ H ₄₉ OH	354.39	69	021.1	0.1104	
5863	C24H20	Tetraphenylmethane C(C ₆ H ₆) ₄	320.15	285	431		
5864	C25H21N2	Tetraphenylguanidine	363.19	131	101		
5865	C25H26O11	Ononin	502.20	210	ì		Ì
5866	C25H25O11	Gentiin	552.22	274			ŀ
5867	C24H29NO8	Codeine o-guaiacolsulfonate	503.30	165			
5868	C24H22O8	Albaspidin	460.25	147	ŀ		İ
5869	C25H22O5	Aspidin	460.25	124			-
5871	C25H24O14	Loganin	558.26	215		1	
5872	C26H29NO8	Pseudoaconine	481.31	95	}		1
5873	C26H40O	Fungisterin	356.31	144			ļ
5874	C25H40O	Homotaraxasterol	356.31	164		1	
5875	C25H40O2	Benzyl oleate	372.31		2377	0.93325	1024
5876	C24H42O2	Benzyl stearate C ₁₇ H ₃₅ CO ₂ CH ₂ C ₆ H ₅	374.32	45.8		0.90825	1078
5877	C25H44O4	Di-l-menthyl glutarate	408.34		24320		
5878	C25H50O2	Neocerotic acid	382.39	77.8			
5879	C25H50O2	Hyenic acid	382.39	78			
5880	C25H50O3	Cerebronic acid	398.39	100			
5881	C25H52	Pentacosane CH ₃ (CH ₂) ₂₃ CH ₃	352.40	54	28440	0.779	ļ
5882	C29H14	Rubicene	326.11	306		1	1
5883	C26H20	Tetraphenylethylene	332.15	221	425		ľ
5884	$C_{26}H_{20}O$	α-Benzopinacoline	348.15	205	}		
5885	C26H20O	β-Benzopinacoline	348.15	181			
5886	C ₂₆ H ₂₁ NO ₁₁	Aconine	523.17	132	000		1
5887	C26H22	1, 1, 2, 2-Tetraphenylethane	334.17	209	383	1.182	
5888	C24H22N4	Benzilosazone	390.20	225	1		1
5889	C ₂₆ H ₂₂ O ₂	Benzopinacone	366.17 405.22	186 d. 136	1		ì
5890	C ₂₆ H ₂₂ N ₅	Tetraphenyldiguanidine	398.22	106		-	
5891	C ₂₆ H ₂₆ N ₂ O ₂	Benzoylcinchonine	434.68	207			
5892 5893	C ₂₆ H ₂₇ ClN ₂ O ₂ C ₂₆ H ₂₈ N ₂ O ₄	Benzoyleinchonine hydrochloride Cinchonidine salicylate	432.23	70			1
5895	C26H28N2U4 C26H28O14	Ruberythric acid	564.22	260	1		
5896	C26H28O14	Morindin	564.22	245	247		
5897	C26H30N2O6S	Quinine phenolsulfonate	498.31	210			1333
5898	C26H20O4	Bixin	406.23	189		ľ	1000
5899	C26H32N2O2	Ibogine	404.26	152		1	1
5900	C25H37NO3	Jervine	411.29	241		1	
5901	C26H28	Carotin	350.29	167.8			
5902	C ₂₆ H ₄₀ O	Ergosterin	368.31	154	18520	1.040	
5903	C26H40O7	Laserpitin	464.31	117.5	240¹º d.		
5904	C26H41NO10	Japaconine	527.32	97		1	
5905	C26H42O3	Sarsasapogenin	402.32	183		1	1
5906	C26H42O3	Smilacin	402.32	160 d.	1	1	
5907	C26H41NO2	Rubijervine	401.34	236	ĺ	1	1
			465.34	134			1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
5909	C26H44O	Caulosterol	372.34	159	İ		Ť
5910	C26H44O2	Onocerin	388.34	232			
5911	C26H44O4	Gitogenin	420.34	272	1		
5912	C26H44O10	Parillin	516.34	176.1		'	1
5913	C26H45NO8	Protoveratridine	499.36	265			
5914	C26H46O	Mochyl alcohol C ₂₆ H ₄₅ OH	374.35	234			
5915	C26H46O4	Di-1-menthyl adipate	422.35	61		0.00079	
5916	C ₂₆ H ₅₂ O ₂	Cerotic acid	396.40	82.5	0.000	0.83649	
5917	C ₂₆ H ₅₂ O ₂	Ethyl lignocerate	396.40	56	31020	0.550	
5918	C26H64	n-Hexacosane CH ₃ (CH ₂) ₂₄ CH ₃	366.42	60	29640	0.779	
5919 5920	C ₂₆ H ₅₄ C ₂₆ H ₅₄ O	Isohexacosane	366.42 382.42	61 80	2070.7		
5920 5921	C27H28Br2N2O5	Quinine dibromosalicylate	620.06	198			
5922	C27H28D12N2O6	Diphenylguanidine trithiocarbonate	532.46	89			
5925	C ₂₇ H ₂₀ N ₂ O ₃	Quinine salicylate	462.25	187			1333
5926	C ₂₇ H ₂₀ O ₁₅	Apiin	594.23	228			1000
5927	C ₂₇ H ₂₀ O ₁₆	Sophorin	610.23	166			1
5928	C ₂₇ H ₃₂ O ₁₆	Rutin	612.25	183	d.		
5929	C27H28O7	Strophantidin	474.29	195			
5930	C27H29N5O5	Paucine	513.34	126			
5931	C27H40O8	Cerberin	492.31	192			
5932	C27H42O	Ergosterin	382.32	165			1
5933	C27H46O	Cholesterin	386.35	148	> 360	1.067	1
5934	C27H46O	Phytosterol	386.35	136			
5935	C27H46O	Sitosterol	386.35	140			1
5936	C27H46O2	Atropurol	402.35	285		İ	
5937	C27H47N	Cholesterylamine	385.37	104			
5938	C27H47NO,	Indaconine	529.37	94			
5939	C ₂₇ H ₄₈ O	Coprosterol	388.37	105			
5940	C27H50O6	Tricaprylin	470.39	8		0.954	425
5941	C ₂₇ H ₅₄ O	Myristone (C ₁₂ H ₂₇) ₂ CO	394.42	76 50 5	0701	0.7924	
5942	C27H56	n-Heptacosane CH ₃ (CH ₂) ₂₅ CH ₃	380.43	59.5	27015	0.779459.5	
5943	C ₂₈ H ₁₈	9, 9'-Dianthrapyl	354.14 384.17	300 240			
5944 5945	C ₂₈ H ₂₀ N ₂ C ₂₈ H ₂₂ N ₂ O	Amaron (Tetraphenylpyrazine) Benzoylamarin	402.19	180			
5946	C28H22O2	Anthrapinacone	390.17	182 d.			1
5947	C ₂₈ H ₂₄ N ₂	Benzylamarin	388.20	102 d. 124		l	i
5948	C28H28N2O8	Strychnine salicylate	472.23				1333
5949	C28H30O2	Columbin	398.23	182			1
5950	C28H24O11	Phillirin	546.26	160		İ	
5951	C28H36N2O4	Ipecamine	464.29	90		j	ļ
5952	C28H36N2O4	Psychotrine	464.29	138		i	
5953	C28H36O7	Digitogenic acid	484.28	210	}		
5954	C28H28N2O4	Cephaeline	466.31	99		1	
5955	C28H28N2O4	Hydroipecamine	466.31	92			i
595 6	C28H38O7	α-Elaterin	486.29	232			
5957	C28H28O7	β-Elaterin	486.29	195			
595 8	C28H44O2	Lactucerin	412.34	210			
5959	C28H45NO	Behenolic anilide C21H29CONHC6H5	411.36	72			
5960	C ₂₈ H ₄₆ NO ₉	Isopyroine	540.36	160		1	.014
5961	C ₂₈ H ₄₆ O ₂	Cholesteryl formate	414.35 413.37	70			1216
5962	C ₂₈ H ₄₇ NO	Brassidic anilide C ₂₁ H ₄₁ CONHC ₆ H ₆		78 ee			
5963 5064	C ₂₈ H ₄₇ NO	Erucic anilide C ₂₁ H ₄₁ CONHC ₆ H ₅ Gitalin	413.37 544.37	66 253	1		
5964 5965	C ₂₈ H ₄₈ O ₁₀ C ₂₈ H ₄₉ NO	Behenic anilide CH ₃ (CH ₂) ₂₀ CONHC ₆ H ₅	415.39	255 102	1	1	
5966	C ₂₈ H ₅₄ O ₂	l-Menthyl stearate	422.42	39			
5967	C ₂₈ H ₅₈	Octocosane CH ₃ (CH ₂) ₂₆ CH ₃	394.45	65	31840	0.779	1
5968	C28H58	Cluytyl alcohol	410.45	82.5	""	""	1
5969	C ₂₉ H ₂₄ O ₈	Fortoin (Methylenedicotoine)	500.19	213	1		
5970	C29H26O12	Aromadendrin	566.20	216			
5971	C29H32N2O6	Quinine acetylsalicylate	504.26	157			
5972	C29H26NO7	Paniculatine	509.28	263	1		
			476.29			1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5974	C29H40N2O4	Isoemetine	480.32	98		i	İ
5975	C29H42Cl2N2O4	Isoemetine hydrochloride	553.26	310 d.		İ	
5976	C29H43NO7	Pseudojervine	517.34	307	i		
5977	C29H42NO8	Sabadenine	533.34	160	197 d.		1333
5978	C29H48	Spinacene	396.37	<-20	260°	0.859_{20}^{20}	570
59 79	C29H48O	Taraxasterol	412.37	222	ł		
5980	C29H49O3	Phytosterol acetate	445.38	122			
5981	C29H50O5	Cluytianol	478.39	300			
5982 5983	C ₂₉ H ₅₁ NO ₅	SabadineSapotin	541.40	240			
5984	C ₂₉ H ₅₂ O ₂₀ C ₂₉ H ₅₈ O ₂	Montanic acid	720.40 438.45	240 86.8	ł	Ì	
5985	C29H60	Nonacosane CH ₂ (CH ₂) ₂₇ CH ₂	408.46	63.6	34840	0.780	
5986	C291160 C20H20NO	Adlumidine	538.16	234	040-	0.780	
598 7	C ₃₀ H ₂₈ O ₁₀	Santalin	548.22	226	1959		
5989	C30H34O13	Picrotoxin	602.26	200	130	1	1
5990	C ₁₀ H ₁₆ O ₄	Hellesboresin	462.29	150 d.			1
5991	C30H40N2O5	Emetine.	508.32	74			
5993	C30H42Cl2N2O4	Emetine dihydrochloride.	581.26	53			1333
5994	C ₂₀ H ₄ ,I ₂ N ₂ O ₅	Emetine dihydroiodide	764.20	238		1	1000
5995	C10H42N2O14S2	Sinalbin	734.47	138.5			
5996	CaoHaANaOaS	Physostigmine sulfate	648.45	140	}	1	
5997	C20H44O9	Cymarin	548.34	138 d.			
5998	C20H46O12	Ouabain	598.35	185			
5999	C30H48O2	Echicerin	440.37	157	·	Ì	
6000	C30H48O2	Mycosterol	440.37	160			
6001	Ca0H48O8	β-Quinovin	536.37	235			
6002	C ₂₀ H ₆₀ O	α-Amyrin	426.39	185	> 300		
6003	C ₂₀ H ₆₀ O	β-Amyrin	426.39	195			
6004	C ₈₀ H ₆₀ O	Androsterol	426.39	208			
6005	C ₂₀ H ₅₀ O	Stigmasterol	426.39	140			
6006	C ₁₀ H ₆₀ O ₂	Betulin	442.39	252		i	
6007	C ₃₀ H ₆₀ O ₂	Cholesterol propionate	442.39	98.7			
6008	C ₃₀ H ₅₂ O ₄	Menthyl camphorate	476.40	86			
6009	C ₃₀ H ₅₄ N ₄ O ₄ S	Sparteine sulfate	566.51				1333
6010	C ₃₀ H ₆₀	Melene	420.46	63	380	0.890	
6011	C ₂₀ H ₆₀ O ₂	Melissic acid CH ₂ (CH ₂) ₂₅ CO ₂ H	452.46	91			
6012	C ₂₀ H ₆₀ O ₄	Lanoceric acid	484.46	105	0000		
6013	C ₃₀ H ₆₂	Melissane	422.48	74	2220.3	0.700	
6014	C ₂₀ H ₆₂	n-Triacontane CH ₃ (CH ₂) ₂₈ CH ₃	422.48	70	2351.0	0.780	
6015	C ₂₀ H ₆₂ O C ₂₀ H ₆₂ O ₂	Melissyl alcohol	438.48 454.48	88 104	ļ	0.777**	
6016 6017	C ₂₁ H ₁₅ NO ₄	Apomorphine dibenzoate	465.12	156	}		
6018	C31H26O10	Tephrosin	558.20	187		, ·	
6019	C ₃₁ H ₂₇ NO ₅	Dibenzoylmorphine	493.22	190.5			
6020	C31H38O10	Kosin	570.29	142		}	1333
6021	C ₁₁ H ₄₂ NO ₁₁	Napelline	603.36	165			1000
6022	C ₃₁ H ₄₃ O	Lupeon	431.33	170	ļ	į	
6023	C ₃₁ H ₆₀ O	Lupeol	438.39	215			
6024	C21H22O2	Cholesterol butyrate	456.40	92.8			1
6025	C21H22O2	Euonysterol	456.40	138			
6026	C21H62O	Palmitone (C ₁₈ H ₂₁) ₂ CO	450.48	83		0.79540.9	1125
6027	C12H62O2	Cocceric acid	482.48	93	İ		
6028	C21H64	n-Hentriacontane CH ₃ (CH ₂) ₂₉ CH ₃	436.49	68.1	30215	0.78148.1	
6029	C22H22O10	Heraclin	566 . 17	185			
6030	C22H26	Pentaphenylethane	410.20	173			1
6031	C22H27N2O	Benzacine	469.23	150		1	
6032	C32H41NO9	Pyraconitine	583.32	171		1	
6032.1	C32H42N2O9	Lappaconitine	598.34	223		1	
6033	C22H44N2O10S	Homoatropine sulfate	648.42			ł	1333
6034	C22H44O10	Quassiin	588.34	211			
6035	C ₂₂ H ₄₅ NO ₉	Indobenzaconine	587.36	130		1	
6036	C32H46BrNO10	Benzaconine hydrobromide	684.28	282			
6037	C ₃₂ H ₄₆ ClNO ₁₀	Benzaconine hydrochloride	639.82	$\alpha 217; \beta 268$		I	l l

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
6038	C32H48N2O14S	Sinapine sulfate	716.45	193			
6039	C32H49NO9	Veratrine	591.39	205			
6040	C32H31NO11	Protoveratrine	625.40	250	ł		
6041	C32H32N2O3	Lycopodine	512.42	115	ļ		
6042	C ₃₂ H ₅₂ O ₂	Echitin	468.40	170	l.		ł
6043	C ₃₂ H ₃₄ O ₂	Cholesterol valerate	470.42	89.6			1
6044	C ₂₂ H ₅₄ O ₂	Phytosterol valerate	470.42	30		İ	
6045	C ₃₂ H ₆₂ O ₃	Palmitic anhydride (C ₁₅ H ₂₁ CO) ₂ O Convolvulin (Rhodeoretin)	494.48 702.48	64 158			
6046 6047	C ₂₂ H ₆₂ O ₁₆ C ₂₂ H ₆₄ O ₂	Cetyl palmitate C ₁₈ H ₃₁ CO ₂ C ₁₆ H ₃₂	480.49	54		0.8324	
6048	C ₁₂ H ₄₆ C ₂	n-Dotriacontane CH ₂ (CH ₂) ₂₀ CH ₃	450.49	75	31016	0.77579.4	1110
6049	C32H40O19	Robinin	740.31	195	310	0.773	1111
6050	C33H43NO11	Anhydroaconitine	629.34	186	i	i	
6051	C22H46N2O9	Septentrionaline	614.37	131		- 1	- [
6052	C33H46N3O3	Tormentol	606.39	228			
6053	C22H22NO7	Solangustine	575.42	235 d.		1	
6054	C32H34O2	Cholesterol capronate	484.43	91.2	l	1	1
6055	C22H66O6	Phytosteroline	548.43	290			
6056	C33H42O4	Tricaprin	554.48	31.1	ł	0.92140	1054
6057	C32H66O2	Psyllostearylic acid	494.51	95		•	
6058	C22H48O	Psyllostearyl alcohol	480.52	69.5	İ	1	1
6059	C14H22O4	Isoeugenol dibenzoate	536.25	161		ĺ	-
6060	C34H36N2O4	Pseudomorphine	568.29	327 d.		1	
6061	C24H26N2O9	Sekisanine	616.29	200		ì	1
6062	C14H40N2O10S	Morphine sulfate	668.39	250 d.		I	1333
6063	C14H40N2O12S2	Quinine diguaiacolsulfonate	732.45	130 d.	ł		
6064	C14H44N2O2S	Apoatropine sulfate	640.42		ł		1333
6065	C14H44O8	d-Camphor salicylate	580.34	60			
6066	C24H47NO10	Indaconitine	629.37	203			1
6067	C14H47NO11	Aconitine	645.37	195	ł		
6068	Ca4H48BrNO11	Aconitine hydrobromide	726.29	163			1333
6069	C34H46CINO11	Aconitine hydrochloride	681.84	149		}	1333
6070	C24H48N2O10S	Atropine sulfate	676.45	194			1333
6071	C24H48N2O10S	Hyoscyamine sulfate	676.45	206	Ì	ł	1333
6072	C24H48N2O14	Aconitine nitrate	708.39			i	1333
6073	C34H49NO11	Japaconitine	647.39	204.2	Í		ŀ
6074	C ₃₄ H ₅₀ ClNO ₁₁	Japaconitine hydrochloride	683.85	149		ŀ	1
6075	C34H50O2	Cholesterol benzoate	490.39	145.5	1		
6076	C34H50O3	Cholesterol salicylate	506.39	180		ļ	1180
6077	C24H44O11	Digitoxin	638.42	244			1
6078	C24H46O16	Jalapin	720.43	150		- [1
6079	C24H37NO2	Solanidine	511.45	215			ı
6080	C34H70	n-Tetratriacontane	478.54	76.5	2551.0	0.781	İ
6081	C34H70O	Incarnatryl alcohol	494.54	74			ŀ
6082	C16H18O12	Filixic acid	650.29	184			1000
6083	CasHanNaOs	Ergotinine	609.34	229 d.		1	1333
6084	C35H41N5O6	Ergotoxine	627.36	164	ľ	ł	
6085	C ₃₅ H ₄₄ N ₅ O ₁₀ P	Ergotoxine phosphate	725.40	187			
6086	C35H56O2	Echiretin	508.43	52		l .	1
6087	C25H56O14 C25H56O8	DigitalinPhytosterolene acetate	700.43 607.45	217 160		1	
6088 6089	C35H60NO4	Imperialine	558.47	254 d.		ł	1
6090	C35H60NO4 C35H70O	Stearone (C ₁₇ H ₂₈) ₂ CO	506.54	88		0.793	1
6091	C ₃₅ H ₇₂	n-Pentatriacontane	492.55	74.7	33116	$0.782^{74.7}_{4}$	
6092	C ₁₆ H ₅ O ₆	Lophopetalin	533.04	230	001	0.1024	
6093	C ₁₆ H ₁₄ N ₂ O ₈ S	Aporheine sulfate	654.34	75			
6094	C ₁₆ H ₁₄ N ₂ O ₁₃	Cynoctonine	702.28	137			
6095	C ₁₆ H ₄₂ O ₆	Helleborin	570.32	> 250 d.			
6096	C ₂₆ H ₄₂ O ₁₂	Filicic acid	682.32	125 d.			
6097	C26H44N2O10S	Codeine sulfate	696.42	278		i	1333
6098	C26H48O10	α-Picrasmin.	640.37	204	İ		1.000
	C36H48O10	β-Picrasmin.	640.37	212		1	1
6099	Line H sel lin						

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
6101	CaeHa1NO11	Bikhaconitine	673.40	113		T	
6102	C36H51NO12	Pseudaconitine	689.40	211			
61 04	C36H62O21	Inulin	990.48	178 d.		1.35	1
6105	C26H66O2	Oleic anhydride	546.51	22.2			
6106	C36H70O3	Stearic anhydride [CH ₂ (CH ₂) ₁₆ CO] ₂ O	550.54	72		- 0	
6107	C26H74	Hexatriacontane	506.57	76.5	2651.0	0.78276	
6108	C37H36N2O9	Xanthaline	652.29	208			1
6109	C37H51NO11	Taxine	685.40	82 d.		1	
6110	C37H64O2	Cholesterol caprinate	540 . 49	82.2			
6111	C ₈₆ H ₄₄ N ₂ O ₁₂	Morphine tartrate	720.36				1333
6112	C25H44N4O2	Dicinchonine	588.37	40			
6113	C28H46N2O8	α-Truxilline	658.37	80		Ī	1
6114	C28H46N2O8	β-Truxilline	658.37	45		1	
6115	C18H46N4O6S	Cinchonidine sulfate	686.45	242			
6116	C38H46N4O6S	Cinchonine sulfate	686.45	198.5		1	
6117	CasH46N4OaS	Cupreine sulfate	718.45	257 d.		i	
6119	C29H41NO12	Adlumine	715.32	188		1	
6120	C ₃₉ H ₆₄ NO ₁₀	Zygadenine	705.49	200			
6120.1	C ₃₉ H ₇₄ O ₆	Trilaurin	638.57	46.5		0.89165	
6122	C40H40N2O10S2	Quinine-β-naphtholsulfonate	772.45	186		1	
6124	C ₄₀ H ₄₀ N ₄ O ₄ S	Quinine sulfate	746.48	235.2			
6125	C40H54O15	Strophantin	776.43	179			
6126	C40H70O2	Homoeuonysterol	582.54	134			
6127	C41H60N4O7	Quinine carbonate	710.42	169			
6129	C42H44N4O4S	Strychnine sulfate	766.45	200			
6131	C42H44N2O7	Tritopine	698.43	182			
6133	C ₄₂ H ₆₆ O ₆	Caulosapogenin	666.51	315		1	
6135	C ₄₂ H ₇₀ O ₂	Echitein	606.54	195		1	
6136	C41H41N1O14	Quinoline tartrate	987.37	125			
6137 6138	C48H47N4O10P	Quinine glycerophosphate	820.50	181			
	C46H4N4O4	Quinine succinate	766.45	192		1	
6139 6141	C44H4N4O4	Quinine malate	782.45	177.5		1	4222
6142	C44H64N6010	Quinine tartrate	798.45 910.50	202.5 220		1	1333
6143	C44H64NO19	Sarsasaponin	910.50	248		1	
6144	C44H78O20	Brassidic anhydride	658.63	64		0.83540	1145
6145	C44H22O2	Erucic anhydride	658.63	48 .		0.0004	1144
6147	C48H86O6	Trimyristin	722.66	55		0.8854	1089
6148	C46H50N4O10	Strychnine d-tartrate	818.42	228		1.429	1000
6150	C46H46N2O20S	Narceine sulfate	988.51	""		1.120	1333
6151	C47H64O16	Filmaron	874.42	60			1000
6153	C48H92NO9	Phrenosin	827.72	215 s. d.			
6154	C49H30O23	Gitonin	1036.6	272 d.			
6155	C50H56O50	Hyssopin	1146.5	275		ŀ	
6156	CaoH70Os	Lupulinic acid	798.54	93			
6157	C.1H,00	Tripalmitin	806.76	65.1; 46		0.8664	1114
6158	C ₁₂ H ₂₁ NO ₁₈	Solanine	1017.7	254 d.			
6159	C ₅₂ H ₉₂ ClNO ₁₈	Solanine hydrochloride	1054.2	212		1	
6160	C ₅₂ H ₁₀₄ O ₂	Ceryl cerotate	760.80	84			
6161	Cs4Hs8O17	Caulosaponin (Leontin)	1008.7	255			1
6163	C46H74N4O12S	Psychotrine sulfate	1026.7	217			· I
6164	C56H85O9	Caulophyllosapogenin	904.68	315			
6165	C ₅₇ H ₁₀₄ O ₆	Glycerol trielaidate	884.80	32			
6166	C ₅₇ H ₁₀₄ O ₆	Glycerol trioleate	884.80	-17	24018	0.915	
6167	C ₅₇ H ₁₀₄ O ₉	Glycerol triricinoleate	932.80			0.959	
6168	C ₅₇ H ₁₁₀ N ₂ O ₁₅	Pyosin	1062.9	238		1	
6169	C ₆₇ H ₁₁₀ O ₆	Tristearin.	890.85	54.5; 70.8		0.8624	1115
6170	C42H46O22	Fustin	1110.4	219		1.	
6172	C66H104O17	Caullophyllosaponin	1168.8	260			18
6173	C68H96N2O28	Aconitine sulfate	1388.8				1333
6175	C72H88N6O20	Quinine citrate	1356.7	183.5		1	

REFRACTIVE INDEX

A. LIQUIDS

							A. DIQ	012							
Serial No.	Gen. index No.	Refrac- tive index ng	$\begin{array}{c} \text{Dispersion} \\ \text{H}_{\pmb{\beta}} - \text{H}_{\pmb{\alpha}} \end{array}$	Serial No.	Gen. index No.	Refrac- tive index n _D ²⁰	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index n ²⁰	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index n _D ²⁰	Dispersion $H_{\beta} - H_{\alpha}$
1 2 3 4 5	586 60 208 141 213	1.306 1.329 1.3316 1.3419 1.344	0.0045 0.0054 0.0061 0.0051 0.0060	86 87 88 89 90	1005 2933 724 2392 3369	1.3927 1.3929 1.3930 1.393 1.393	0.0070 0.0080 0.0070 0.0068 0.0062	171 172 173 174 175	3995 4007 2344 3998 1012	1.408 1.408 1.4082 1.408 1.4086	0.0072 0.0068 0.0072 0.0072	258 259 260 261 262	3988 2407 569 2892 1067.1	1.421 1.4213 1.4216 1.4217 1.4219	0.0113 0.0071
6 7 8 9 10	168 793 513 1072 1073	1.3474 1.3526 1.3534 1.355 1.3564	0.0058 0.0061 0.0058 0.0062 0.0040	91 92 93 94 95	1654 1659 822 2926 1651	1.3932 1.3935 1.394 1.3947 1.3951	0.0068 0.0074 0.0066 0.0068	176 177 178 179 180	1100 420 2934 1080 2985	1.4088 1.4093 1.4095 1.410 1.410	0.0074 0.0070 0.0076	263 264 265 266 267	2301 358 2400 2405 658	1.4223 1.4224 1.4226 1.4226 1.4227	0.0076 0.0070 0.0075
11 12 13 14 15	1049 794.1 794 448 451	1.3574 1.3576 1.3579 1.3591 1.3597	0.0056 0.0062 0.0068 0.0063	96 97 98 99 100	1639 2362 747 790 2354.1	1.3959 1.3959 1.3960 1.396 1.3960	0.0074 0.0068	181 182 183 184 185	1044 1570 1730 3329 3994	1.4103 1.4104 1.411 1.4110 1.411	0.0074	268 269 270 271 272	4412 2351 2409 3357 2330	1.4228 1.423 1.423 1.423 1.423	0.0075 0.0072 0.0075
16 17 18 19 20	489 262 452 396 447	1.3613 1.361 1.3619 1.363 1.3636	0.0079 0.0061 0.0062 0.0070 0.0067	101 102 103 104 105	598 686 2937 791 495	1.3962 1.3962 1.3964 1.397 1.3972	0.0068 0.0081	186 187 188 189 190	2331 2910 1602 4000 657	1.4114 1.4114 1.4115 1.4116 1.4118		273 274 275 276 277	28 2965 220 711 999	1.4237 1.4238 1.4239 1.4240 1.4240	0.0080 0.0093
21 22 23 24 25	233 395 1716 1086 37	1.3639 1.3664 1.369 1.3695 1.3714	0.0062 0.0060 0.0064 0.0063 0.0072	106 107 108 109 110	1085.1 228 2359 723 748	1.3973 1.3974 1.3975 1.3979 1.398	0.0073 0.0070	191 192 194 195 196	1043 2326 651 3335 3311	1.4119 1.412 1.4121 1.4122 1.4123	0.0073 0.0090 0.0081 0.0071	278 279 280 281 282	2419 2967 3325 4012 4161	1.424 1.424 1.424 1.424 1.424	0.0078 0.0193 0.0078 0.0073
26 27 28 29 30	212 1715 773 725 718	1.3719 1.372 1.3723 1.3727 1.3730	0.0066 0.0065 0.0078 0.0064 0.0070	111 112 113 114 115	821 2941 624 2940 1640	1.398 1.3980 1.3984 1.398 1.399	0.0074 0.0069 0.0086 0.0070	197 198 199 200 201	3999 3986 1619 1070 1645	1.4126 1.4127 1.4128 1.4129 1.4130	0.0072 0.0118 0.0073	283 284 285 286 287	1557 3308 657.1 3309 2403	1.4242 1.4242 1.4247 1.4248 1.425	0.0106 0.0074
31 32 33 34 35	984 1713 665 1714 727	1.3758 1.376 1.3767 1.377 1.3771	0.0080 0.0065 0.0051 0.0065 0.0066	116 117 118 119 120	789 671 1652 356 2905	1.3993 1.3996 1.3997 1.3998 1.3999	0.0069 0.0068 0.0127	202 203 204 205 206	2343 2846 446 1730.1 948	1.4131 1.4131 1.4134 1.4135 1.4136	0.0073 0.0073 0.0094 0.0051	288 289 290 291 292	2868 465 616 2406 2987	1.425 1.4251 1.4254 1.4254 1.4254	0.0093 0.0071
36 37 38 39 40	726 506 1712 823 719	1.3779 1.378 1.3783 1.3786 1.3791	0.0065 0.0065 0.0064 0.0070 0.0071	121 122 123 124 125	917 2354 2361 1636 3365	1.4004 1.4005 1.4005 1.4006 1.4008	0.0096 0.0069 0.0069 0.0071	207 208 209 210 211	1643 2309 3338 4001 1726.1	1.4138 1.4138 1.414 1.414 1.4141	0.0074 0.0072 0.0072	293 294 295 296 297	3314 4419 928 2899 2962	1.4259 1.426 1.4263 1.4268 1.427	0.0081 0.0076 0.0073
41 42 43 44 45	1741 1746 48 1610 2387	1.3807 1.3819 1.382 1.3821 1.3825	0.0066 0.0065 0.0089	126 127 128 129 130	2357 1534 1617 1764 2353	1.4009 1.4010 1.401 1.401 1.4012	0.0070 0.0098 0.0090 0.0081	212 213 214 215 216	587 3982 1733.1 2411 1571	1.4144 1.4145 1.4146 1.4149 1.415		298 299 300 301 302	2963 4585 4586 949 3962	1.4270 1.427 1.427 1.4271 1.4271	0.0075 0.0074
46 47 48 49 50	146 667 1015 1019 717	1.3828 1.383 1.384 / 1.3840 1.3843	0.0071	131 132 133 134 135	820 746 2901.1 2938 2942	1.401 1.4015 1.4015 1.4016 1.402	0.0075 0.0071 0.0070	217 219 220 221 222	1644 2873 3993 3336 375	1.4150 1.415 1.415 1.4153 1.4154	0.0073 0.0090 0.0075 0.0073 0.0100	303 304 305 306 307	721 1612 264 3939 3975	1.4272 1.4273 1.4274 1.4275 1.4275	0.0075 0.0072
51 52 53 54 55	1017 1020 1739 247 2389	1.3844 1.3844 1.3849 1.385 1.385	0.0068 0.0067 0.0091	136 137 138 139 140	487 775 2935 2909.1 2904	1.4022 1.4026 1.4026 1.4030 1.4035	0.0080	223 224 225 226 227	966 2396 2896 66 189	1.4156 1.4159 1.4161 1.4164 1.4166	0.0081 0.0075 0.0076 0.0080	308 309 310 311 312	2964 744 3310 2386.1 4172	1.4278 1.428 1.4284 1.4288 1.4289	0. 0095 0. 0077
56 57 58 59 60	1063 1026 1016 505 749	1.3851 1.3852 1.3858 1.386 1.386	0.0068 0.0068 0.0066	141 142 143 144 145	2912 1560 3347 3349 1013	1.4036 1.4038 1.404 1.4040 1.4043	0.0071 0.0071	228 229 230 231 232	2397 3936 3372 1736 911	1.4172 1.4174 1.4176 1.4178 1.4179	0.0194 0.0084 0.0044	313 314 315 316 317	1027 4162 449 4153 2867	1.429 1.4293 1.4295 1.4299 1.430	0.0075 0.0076
61 62 63 64 65	2382 1007 450 792 824	1.3861 1.3862 1.3868 1.387 1.387	0.0064 0.0070 0.0068 0.0067 0.0075	146 147 148 149 150	937 3353 2903 1760 1768	1.4045 1.4047 1.4049 1.405 1.405	0.0085	233 234 235 236 237	2944 4178 968 969 479	1.4184 1.4184 1.4185 1.4185 1.4186	0.0075 0.0105 0.0104	318 319 320 321 322	2966 2986 3356 1629 2953	1.430 1.430 1.430 1.4302 1.4303	0.0075 0.0076 0.0074
66 67 68 69 70	269 1064 1018 1001 1004	1.3874 1.3874 1.3879 1.3881 1.3882	0.0074 0.0066 0.0131 0.0072	151 152 153 154 155	3354 378 1010 1084.1 1045	1.405 1.4051 1.4051 1.4053 1.4056	0.0080 0.0071 0.0084	238 239 240 241 242	1695 2302 2320 943 1734	1.4194 1.419 1.4195 1.4196 1.4196	0.0073 0.0091 0.0071	323 324 325 326 327	273 355 925 3289 3937	1.4306 1.4306 1.4306 1.4306 1.4309	0.0102 0.0094 0.0094 0.0077
71 72 73 74 75	468 524 1653 1014 1006	1.3886 1.389 1.389 1.3891 1.3895	0.0065 0.0074 0.0068 0.0071	156 157 158 159 160	2936 1046 1081 1603 2275	1.4058 1.4060 1.406 1.406 1.406	0.0070 0.0069 0.0087	243 244 245 246 247	1561 1662 1732 2847 2955	1.4198 1.4198 1.420 1.420 1.4201	0.0081 0.0081 0.0071	329 330 331 332 333	3361 3363 3940 4843 620	1.4310 1.431 1.4311 1.4312 1.4314	0.0114
76 77 78 79 80	154 2393 809 1002 1655	1.3898 1.390 1.3902 1.3902 1.3903	0.0084 0.0068 0.0060 0.0080 0.0070	161 262 163 164 165	3330.1 3334 2901 3333.1 1084	1.4060 1.4060 1.4065 1.4070 1.4072	0.0071 0.0070	248 249 250 251 252	2970 2971 3989 2400.1 896	1.4203 1.4204 1.4204 1.4206 1.4207	0.0074 0.0087	334 335 336 337 338	2412 3355 736 4852 3358	1.4314 1.4317 1.432 1.4321 1.4322	0.0073 0.0076
81 82 83 84 85	626 972 1649 242 625	1.3904 1.3909 1.391 1.392 1.3927	0.0069	166 167 168 169 170	1079 3831 652 1767 3851	1.4075 1.4076 1.4079 1.4079 1.408	0.0071 0.0080 0.0069 0.0071	253 254 255 256 257	2407.1 2954 4411 2399 2869	1.4209 1.4209 1.4209 1.421 1.421	0.0073 0.0076	339 340 341 342 343	2952 3328 4166 4169 712	1.433 1.4330 1.4333 1.4334 1.4335	0.0073 0.0076

Serial No.	Gen. index No.	Refrac- tive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index	Dispersion $H_{\beta} - H_{\alpha}$
844 345 346 347 348	3364 2318 464 743 3362	ny 1.4338 1.434 1.4341 1.4344 1.4345	0.0092	434 435 436 437 438	2890 3808 648.3 585 648.2	1.4503 1.4505 1.4506 1.4507 1.451	0.0087 0.0092	524 525 526 527 528	2239 106 3927 3816 139	nb 1.4763 1.4777 1.4785 1.4788 1.479		616 617 618 619 620	3761 4981 666 2719 3763	1.5042 1.5042 1.5046 1.505 1.5050	0.0159
349 350 351 352 853	192 158 5010 742 924	1.4346 1.4349 1.4359 1.436 1.436	0.0089 0.0092 0.0080	439 440 441 442 443	929 3826 3917 2294 4010	1.4512 1.4515 1.4521 1.4524 1.4524	0.0176 0.0121 0.0095	529 530 531 532 533	2797 4370 3908 422 3926	1.4792 1.4792 1.4798 1.4801 1.4803	0.0116	621 622 623 624 625	475 3230 90 3679 4971	1.5051 1.5051 1.5055 1.5057 1.5057	0.0148 0.0158 0.0137 0.0163
354 355 356 357 358	471 2849.1 258 2968 3961	1.4362 1.4362 1.4364 1.437 1.437	0.0126 0.0074 0.0078	444 445 446 447 448	1054 3805 285 2888 3893	1.4530 1.4532 1.4539 1.4540 1.4540	0.0089 0.0035	534 535 536 537 538	887 5164 5682 3824 3922	1.4805 1.4806 1.482 1.4823 1.4827	0.0102	626 627 628 629 630	2684 2720 3154 3678 815	1.5058 1.506 1.506 1.506 1.506	0.0161 0.0161 0.0161 0.0162 0.0130
359 360 361 362 363	5260 3303 614 1253 3895	1.437 1.4371 1.4373 1.4375 1.4376	0.0076 0.0149 0.0126	449 450 451 452 453	5853 648.1 1595 364 4144	1.4543 1.4550 1.455 1.4554 1.4556	0.0084	539 540 541 542 543	3890 5480 3823 3764 1596	1.4828 1.483 1.4846 1.4848 1.4867		631 632 633 634 635	4972 689 2722 4350 4348	1.5065 1.507 1.507 1.507 1.508	0.0164
364 365 366 367 368	17 762 3944 604 811	1.438 1.438 1.4380 1.4386 1.4386	0.0096 0.0082 0.0097	454 455 456 457 458	4368.4 107 5356 5813 222	1.4556 1.4557 1.4557 1.4558 1.4562	0.0107 0.0094 0.0110	544 545 546 547 548	3865 4131 3860 3886 5001	1.4870 1.4872 1.488 1.488 1.488	0.0147 0.0140	636 637 638 639 640	3680 4827 4545 693 2586	1.5081 1.5083 1.5085 1.509 1.509	0.0169 0.0140 0.0127 0.0188
369 370 371 372 373	3285 927 470 741 1506	1.4388 1.4390 1.4392 1.4398 1.4404	0.0092 0.0131 0.0089	459 460 461 462 463	3889 648.4 696 3933 2889	1.4567 1.4570 1.457 1.457 1.4574	0.0081	549 550 551 552 553	2927 3725 3765 2262 3857	1.489 1.4890 1.4895 1.4903 1.4911	0.0120	641 643 644 645	870 2775 234 331	1.509 1.5105 1.512 1.512	0.0163 0.0163
374 375 376 377 378	4179 2813 1089 2812 1041	1.4404 1.4407 1.441 1.4410 1.4412	0.0098 0.0112 0.0083	464 465 466 467 468	3969 5482 2340 2341 2886	1.4579 1.4580 1.4581 1.4590 1.459	0.0082	554 555 556 557 558	3724 221 3229 4097 4344	1.4914 1.4915 1.4920 1.4922 1.4922	0.0147	646 647 648 649 650	2721 183 3244 3786 3227	1.512 1.5128 1.513 1.5131 1.5132	0.0169 0.0132 0.0171 0.0163 0.0157
379 380 381 382 383	1098 1366 457 1500 941	1.4412 1.4413 1.4414 1.4415 1.4416	0.0091 0.0122 0.0077 0.0103 0.0082	469 470 471 472 473	2383 11 1478 5371 3974.1	1.4594 1.4595 1.4597 1.4602 1.4603	0.0079 0.0084	559 560 561 562 563	3728 1697 3223 3736 4097.1	1.4925 1.4929 1.4930 1.493 1.4930	0.0144 0.0125 0.0146 0.0140	651 652 653 654 655	404 1330 4102 3119 5141	1.5134 1.514 1.514 1.5143 1.516	0.0168 0.0169 0.0143
384 385 386 387 388	1252 2281 655 3960 5156	1.4417 1.4419 1.442 1.4420 1.442	0.0131 0.0084 0.0084	474 475 476 477 478	3902 3992 12 3894 2339	1.4606 1.4606 1.4607 1.4609 1.461	0.0097	564 565 566 567 568	3882 4367 4342 140 3226	1.4935 1.4939 1.494 1.4942 1.4943	0.0160	656 657 658 659 660	2589 5000 3754.2 2163 3235.1	1.5164 1.5164 1.5168 1.517 1.5174	0.0132
389 390 391 392 393	1042 814 1576 5688 764	1.4421 1.4425 1.4425 1.4427 1.4428	0.0099	479 480 481 482 483	3296 3915 5605 1105 4372	1.4614 1.4623 1.4626 1.463 1.4630	0.0088	569 569.1 570 571 572 573	4980 3731 5978 4098 1051 2688	1.4946 1.495 1.4951 1.4954 1.4955 1.4956	0.0144 0.0133 0.0131 0.0158	661 662 663 664 665	4091.1 3740 3788 412 4318	1.5175 1.5187 1.5201 1.5203 1.5207	0.0157 0.0117 0.0131
394 395 396 397 398	2284 648 1096 2825 2827	1.443 1.4433 1.4437 1.4438 1.444		484 485 486 487 488	5606 3947 3273 1328 3948	1.4636 1.4642 1.4643 1.4646 1.4649	0.0145	574 575 577 578 579	4983 1588 2683 755 2112	1.4956 1.4959 1.4959 1.4960 1.4962	0.0104 0.0152 0.0137 0.0160	666 667 668 669 670	2041 4560 2713.1 3755 3170	1.521 1.521 1.5211 1.5218 1.5226	0.0164
399 400 401 402 403	3295 190 1040 4387 1056	1.4441 1.4443 1.4444 1.4445 1.4450	0.0084 0.0089 0.0094	489 490 491 492 493	366 136 4148 2814 4374	1.4655 1.4659 1.4659 1.4660 1.4660	0.0132	580 581 582 583 584	3228 3856 3726 4366 2685	1.4967 1.4967 1.4969 1.4972 1.4973	0.0113	671 672 673 674 675	413 2040 3149 3757 3096	1.523 1.523 1.5232 1.5234 1.523	0.0124 0.0165
404 405 406 407 408	1537 2327 2835 1055 2283	1.4451 1.4452 1.4453 1.4454 1.4454	0.0095	494 495 496 497 498	403 1756 2882 2796 2240	1.4666 1.467 1.467 1.4675 1.4680	0.0107 0.0084	585 586 588 589	3225 3780 600 3677	1.4975 1.4976 1.498 1.498	0.0152 0.0117 0.0137	676 677 678 679 680	3655 2714 3752 2503 3688	1.5236 1.5240 1.524 1.5242 1.5249	0.0157 0.0196
409 410 411 412 413	4381 3968 619 4856 1769	1.4455 1.4456 1.4457 1.4459 1.446	0.0083 0.0129	499 500 501 502 503	3854 2058 176 2059 3811	1.4690 1.4691 1.4697 1.470 1.4700	0.0144 0.0112 0.0142	590 591 593 594 595	4975 4978 3741 3286 3681.1	1.4981 1.4984 1.4986 1.4993 1.4995	0.0116	681 682 683 684 685	1307 3258 4090.1 3057 859	1.525 1.525 1.5250 1.526 1.5261	0.0172
414 415 416 417 418	4376 148 1699 19 4388	1.4460 1.4462 1.4464 1.4467 1.4468	0.0120 0.0089	504 505 506 507 508	3891 2057 159 3858 863	1.4701 1.4704 1.4711 1.4715 1.4717	0.0153 0.0094 0.0141	596 597 598 599 600	4974 476 3277 3152 754	1.4996 1.4997 1.4998 1.500 1.5001	0.0058 0.0213 0.0140	686 687 688 689 690	2111 594 1250 3132 3664	1.5261 1.5266 1.5267 1.527 1.5271	0.0198 0.0173 0.0232 0.0183 0.0189
419 420 421 422 423	963 3827 2850 1692 3892	1.4469 1.4471 1.4476 1.4478 1.4481	0.0088 0.0092	509 510 511 512 513	3913.1 3810 3952 515 3913	1.4723 1.4727 1.4727 1.4729 1.4729	0.0114 0.0078	601 602 603 604 605	3727 4977 4976 1443 4561	1.5003 1.5005 1.5007 1.501 1.5011	0.0146 0.0160	691 692 693 694 695	2039 3034 576 4353 3747	1.528 1.5282 1.5285 1.5285 1.5286	0.0166 0.0173 0.0160
424 425 426 427 428	921.1 5940 2831 5013 1551	1.4482 1.4482 1.4486 1.4486 1.449	0.0083 0.0082 0.0169	514 515 516 517 518	4115 3806 4371 3879 3864	1.473 1.473 1.4739 1.4741 1.4743	0.0118	606 607 608 609 610	1365 4324 2810 4828 2590	1.5014 1.5019 1.5023 1.5025 1.503	0.0167 0.0147 0.0245 0.0149	696 697 698 699 700	45 2 3656 3265 1249	1.5297 1.5300 1.5301 1.5305 1.5311	0.0221 0.0117 0.0204 0.0232
429 430 431 432 433	1724 926 2282 1090 307	1.4490 1.4495 1.4496 1.4499 1.4500	0.0090	519 520 521 522 523	1466 2745 3924 368 582	1.4744 1.4745 1.4747 1.4753 1.4755	0.0131 0.0105 0.0094	611 612 613 614 615	4999 589 3883 111 3224	1.5030 1.5035 1.5036 1.504 1.5042	0.0154 0.0104 0.0153	701 702 703 704 705	699 2084 3134 4064 2571	1.5313 1.5323 1.5335 1.5338 1.5339	0.0122 0.0202 0.0217

Digitized by Google

Serial No.	Gen. index No.	Refrac- tive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index nB	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index nB	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index nb	Dispersion H _{\beta} - H _{\alpha}
706 707 708 709 710	3237 1390 2618 2725 184	1.5357 1.536 1.5369 1.537 1.5379	0.0168 0.0216 0.0222 0.0180 0.0140	731 732 733 734 735	1229 2032 3259 2031 2639	1.549 1.5490 1.5492 1.551 1.551	0.0176 0.0229 0.0189	756 757 758 759 760	2757 2203 2204 2004 3642	1.570 1.5714 1.5728 1.5735 1.5749	0.0217 0.0249 0.0230 0.0315	781 782 783 784 785	102 601 1205 1483 2061	1.6062 1.6077 1.608 1.6081 1.609	0.0217 0.0256 0.0234
711 712 713 714 715	2038 3606 2159 2161 2162	1.539 1.5394 1.5399 1.540 1.540	0.0175 0.0210 0.0173 0.0181 0.0184	736 737 738 739 740	1347 1859 2030 2763 2633	1.5529 1.5537 1.555 1.5559 1.556	0.0252 0.0221 0.0225 0.0182	761 762 763 764 765	2771 4930 4757 1200.2 1200.1	1.575 1.576 1.5761 1.577 1.5814	0.0162	786 787 788 789 790	2492 1204 3548 3549 4038	1.6094 1.611 1.6149 1.616 1.618	0.0296 0.0296 0.0303
716 716.1 717 718 719 720	1388 1944 3789 2677 123 2195	1.5407 1.541 1.5421 1.5425 1.5437 1.5440	0.0213 0.0220 0.0165 0.0175	741 742 743 744 745	1441 2762 964 2758 2578	1.5562 1.558 1.559 1.559 1.559	0.0375 0.0214 0.0217 0.0270	766 767 768 769 770	2255 372 1887 1442 2491	1.583 1.584 1.5861 1.5863 1.588	0.0248 0.0286 0.0249	791 792 793 794 795	3069 1333 1369 127 3455	1.6195 1.621 1.6260 1.6277 1.633	0.0424 0.0253 0.0265 0.0189 0.0309
721 722 723 724 725	10 1389 1230 2081 2001	1.5442 1.5455 1.546 1.5462 1.5464	0.0219 0.0202 0.0178 0.0232	746 747 748 749 750	4062 1294 2760 2098 2767	1.5598 1.560 1.561 1.5620 1.5649	0.0283 0.0193 0.0214 0.0227 0.0230	771 772 773 774 775	2756 18 151 1375 4723	1.5887 1.589 1.5890 1.5895 1.5921	0.0248 0.0176 0.0162 0.0240 0.0195	796 797 798 799 800	128 428 1918 3453 4263	1.638 1.642 1.6509 1.658 1.6913	0.0183 0.0349 0.0325 0.0356
726 727 728 729 730	3260 2160 236 2082 3787	1.5469 1.547 1.5472 1.5475 1.5481	0.0185 0.0204 0.0224	751 752 753 754 755	1857 649 1856 1176 2423	1.5650 1.567 1.567 1.5671 1.5692	0.0209 0.0230 0.0207 0.0214	776 777 778 779 780	1376 1202 101 4296 126	1.5931 1.5979 1.5992 1.602 1.603	0.0243 0.0161 0.0193 0.0290 0.0162				

Serial No.	Gen. index No.	Tem- pera- ture t°C	Refractive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Tem- pera- ture t°C	Refractive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Tem- pera- ture	Refractive index	Dispersion $H_{\beta} - H_{\alpha}$
801 802 803 804 805	683 310 209 1327 930	0 0 7 7 7 7.5	1.3752 1.4538 1.3597 1.6053 1.4341	0.0058 0.0094	857 858 859 860 861	4572 4147 3912 3863 3859	15 15 15 15 15 15	1.4644 1.4708 1.4801 1.4849 1.4871	0.0130	912 913 914 915 916	3955 568 3819 3821 4993	17 17 17 17 17 17	1.4385 1.4467 1.4674 1.4784 1.5332	0.0090
806 807 808 809 810	3054 969.1 4339 22 4304	8.2 8.4 9.5 10 10.8	1.571 1.417 1.5301 1.2675 1.6265	0.0234 0.0171 0.0052 0.0337	862 863 864 865 866	4979 117 118 4986 988	15 15 15 15 15	1.4921 1.4982 1.4998 1.5018 1.5094	0.0233 0.0227 0.0071	917 918 919 920 921	3649 4404 3820 3849 982	17 17.1 17.1 17.1 17.2	1.5671 1.4435 1.4774 1.4895 1.3817	0.0072 0.0116 0.0157 0.0085
811 812 813 814 815	807 3591 2832 2570 2276	11 11 11.9 11.9	1.4198 1.5425 1.4519 1.5503 1.4468	0.0077 0.0188 0.0084 0.0229	867 868 869 870 871	100 3589 3590 29 4306	15 15 15 15 15 15	1.5219 1.5632 1.5736 1.7425 1.6477	0.0148 0.0404	922 923 924 925 926	2267 3928 339 340 2830	17.2 17.2 17.4 17.4 17.5	1.4511 1.4638 1.5337 1.5369 1.4771	0.0111 0.0085 0.0104
816 817 818 819 820	2337 4323 2824 1535 2453	12 12 12.5 12.5 12.5	1.467 1.5703 1.4208 1.4559 1.5524	0.0253 0.0089 0.0167 0.0338	872 873 874 875 876	558 359 1541 525 1546	15.2 15.3 15.3 15.4 15.4	1.4735 1.4302 1.4526 1.3770 1.4213	0.0103 0.0084 0.0071 0.0092	927 928 929 930 931	609 3245 5359 3638 3637	17.6 17.6 17.7 17.8 17.8	1.4588 1.5058 1.463 1.4804 1.5451	0.0157 0.0157 0.0092 0.0085 0.0169
821 822 823 824 825	2580 89 1078 3818 3851	12.7 12.9 13 13	1.5764 1.4340 1.414 1.479 1.4971	0.0298 0.0101 0.0135	877 878 879 880 881	3128 3122 3661 983 1613	15.5 15.7 15.8 16 16	1.5647 1.5747 1.5196 1.378 1.4013	0.0236 0.0274 0.0090	932 933 934 935 936	920 1000 4375.1 3125 3667	18 18 18 18 18	1.4079 1.4282 1.4565 1.5441 1.5680	0.0094 0.0180 0.0251
826 827 828 829 831	5 3861 608 1518 4041	13 13.6 13.7 13.7 13.9	1.5831 1.4540 1.4786 1.4993 1.6232	0.0083 0.0128 0.0141 0.0312	882 883 884 885 886	942 737 3874 1555 3304	16 16 16 16 16	1.4083 1.4156 1.438 1.4506 1.452	0.0076	937 938 939 940 941	4813 545 1022 3753 3037	18 18.1 18.2 18.2 18.2	1.5933 1.5004 1.4513 1.4999 1.6283	0.0280 0.0168 0.0136 0.0312
832 833 834 835 836	2880 2342 2878 3812 2579	14 14 14 14 14	1.458 1.462 1.463 1.4883 1.5566	0.0172 0.0248	887 888 889 890 891	2884 2883 2887 3923 5003	16 16 16 16 16	1.455 1.458 1.458 1.4762 1.480		942 943 944 945 946	1568 916 400 2855 2818	18.3 18.3 18.4 18.4 18.4	1.4198 1.4221 1.4058 1.4607 1.4904	0.0148 0.0070 0.0090 0.0124
837 838 839 840 841	4707 2336 3852 3919 3666	14 14.4 14.5 14.5 14.5	1.610 1.4397 1.4647 1.4787 1.5439	0.0092 0.0084 0.0189	892 893 894 895 896	908 3654 84 379 2279	16 16 16 16.1 16.3	1.4888 1.5514 1.580 1.4397 1.4554	0.0149 0.0079 0.0159	947 -948 949 950 951	1341 4260 935 773.1 4560	18.5 18.5 18.8 18.9 18.9	1.5389 1.635 1.4357 1.4200 1.5198	0.0211 0.0096 0.0195
842 843 844 845 846	2289.1 979 3574 3762 4967	14.6 14.7 14.7 14.8 14.8	1.4505 1.4098 1.5740 1.5104 1.5128	0.0083 0.0071 0.0222 0.0201 0.0153	897 898 899 900 901	3847 608.1 1548 4279 918	16.3 16.3 16.4 16.4 16.5	1.4846 1.4971 1.4458 1.6157 1.4402	0.0126 0.0133 0.0136 0.0296	952 953 954 955 956	170 1554 2929 3807 3850	19 19 19 19 19	1.4117 1.4375 1.4435 1.4724 1.4900	0.0087
847 848 849 850 851	3283 1616 622 713 4004	14.9 15 15 15 15	1.4463 1.4065 1.4257 1.4313 1.4372	0.0103 0.0090	902 903 904 905 906	3324 880 934 2816 2570	16.5 16.6 16.6 16.6 16.6	1.4632 1.4470 1.4527 1.4561 1.5469	0.0090 0.0129 0.0127 0.0104 0.0230	957 958 959 960 961	4987 4988 4994 2568 4150	19 19 19 19 19	1.4992 1.5092 1.5289 1.5485 1.4714	0.0111 0.0227 0.0134
852 853 854 855 856	1533 132 133 5007 4834	15 15 15 15 15	1.4421 1.4490 1.4519 1.4628 1.4638	0.0116 0.0101	907 908 909 910 911	2538 4587 1519 2328 313	16.6 16.8 16.8 16.9	1.5485 1.4419 1.5077 1.425 1.3870	0.0240 0.0147 0.0076 0.0104	962 963 964 965 966	4023 2298 2299 3959 3639	19.3 19.5 19.5 21 21	1.6546 1.4310 1.4355 1.447 1.5390	0.0409 0.0102 0.0105

Serial No.	Gen. index No.	Tem- pera- ture t°C	Refractive index	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Tem- pera- ture t°C	Refractive index	$\begin{vmatrix} \text{Dispersion} \\ \mathbf{H}_{\beta} - \mathbf{H}_{\alpha} \end{vmatrix}$	Serial No.	Gen. index No.	Tem- pera- ture t°C	Refractive index	Dispersion $H_{\beta} - H_{\alpha}$
967 968 969 970 971	4998 2759 4307 3121 2569	21.3 21.3 21.3 21.4 21.4	1.4979 1.5591 1.6544 1.5370 1.5407	0.0408 0.0168 0.0223	1032 1033 1034 1035 1036	300 994 1587 816 5603	26.1 26.4 26.8 27.5 30	1.4540 1.4954 1.4877 1.4769 1.4559	0.0095 0.0137 0.0140 0.0126	1097 1098 1099 1100 1101	560 288 156 3071 1231	63.1 63.9 65 66 69.9	1.4165 1.4152 1.4297 1.5377 1.5266	0.0169 0.0171
972 973 974 975 976	2071 3600 1496 2859 4789	21.4 21.4 21.6 21.6 21.6	1.5637 1.5766 1.4351 1.4766 1.5743	0.0247 0.0311 0.0114 0.0089 0.0193	1037 1038 1089 1040 1041	3804 3981 3126 2293 5380	30 31 33 33.8 33.9	1.474 1.4308 1.5758 1.4561 1.4358	0.0295 0.0082 0.0077	1102 1103 1104 1105 1106	3456 2172 3414 4219 3593	70.7 74 76 77.1 77.8	1.6079 1.5425 1.6228 1.588 1.5678	0.0295 0.0187 0.0303 0.0265 0.0375
977 978 979 980 981	4814 2928 3297 5765.1 3916	21.6 21.9 22 22 22 22	1.6321 1.4512 1.4380 1.4538 1.4604	0.0400	1042 1043 1044 1045 1046	316 5381 3648 5486 5852	34.2 34.3 34.4 34.6 35	1.4146 1.4347 1.5537 1.436 1.4587	0.0076 0.0249 0.0076	1107 1108 1109 1110 1111	238 5168 2356 6048 5814	78.3 78.9 79 79.4 79.5	1.4274 1.4283 1.3732 1.4331 1.4283	0.0098 0.0075 0.0064 0.0077 0.0076
982 983 984 985 986	3822 3815 3813 5005 3703	22 22 22 22 22.2 22.2	1.4754 1.4770 1.4959 1.4600 1.5604	0.0085 0.0081	1047 1048 1049 1050 1051	5391 4530.3 2490 1011 1627	35.2 35.2 36 36.5	1.4349 1.5526 1.6332 1.3931 1.4606	0.0075 0.0292 0.0293 0.0070 0.0078	1112 1113 1114 1115 1116	617 5159 6157 6169 3801	79.7 79.8 80 80 80	1.4228 1.4273 1.4381 1.4399 1.4402	0.0126 0.0075 0.0089
987 988 989 990 991	301 4559 2205 2199 1357	22.3 22.3 22.4 22.5 22.5	1.4075 1.4984 1.5711 1.5021 1.5642	0.0093 0.0140 0.0242	1052 1053 1054 1055 1056	177 2096 6056 1553 3272	37.2 38.6 40 40 40	1.5258 1.5763 1.4446 1.4467 1.4514	0.0181 0.0118 0.0150	1117 1118 1119 1120 1121	5379 4756 5258 5816 936	80.2 80.6 80.7 80.8 81	1.4299 1.539 1.4175 1.4236 1.4342	0.0076 0.0187 0.0073 0.0075 0.0123
992 993 994 995 996	2493 3958 4373 46 893	22.5 22.6 22.6 22.7 22.7	1.5990 1.4484 1.4623 1.4453 1.4852	0.0083 0.0113 0.0166	1057 1058 1059 1060 1061	5360 1314 1315 1316 4060.1	40 40 40 40 40	1.4533 1.5473 1.5565 1.5579 1.5726	0.0327	1122 1123 1124 1125 1126	631 4406 2386 6026 3507	82.1 82.1 83.9 93.5 98.7	1.379 1.4183 1.421 1.4297 1.6206	0.0067 0.0074 0.0083 0.0076 0.0324
997 998 999 1000 1001	2468 2134 3601 2384 4563	22.7 22.7 22.9 23 23	1.5645 1.5760 1.5494 1.4531 1.5300	0.0231 0.0268 0.0264	1062 1063 1064 1065 1066	4089 860 1418 5610 4174	40 40.3 41 42.9 45.2	1.6026 1.5238 1.5425 1.434 1.4294	0.0289 0.0189 0.0075 0.0076	1127 1128 1129 1130 1131	4218 5402 2548 5063 921.2	98.8 99 99.2 99.2 99.3	1.6048 1.5839 1.5522 1.6762 1.4657	0.0293 0.0219 0.0242 0.0556 0.0121
1002 1008 1004 1005 1006	1430 3547 2505 3701 3702	23 23 23.1 23.1 23.1	1.5861 1.6141 1.5272 1.5802 1.5898	0.0231 0.0298 0.0244	1067 1068 1069 1070 1071	5694 8587 931 239 4297	45.3 46 46.7 47 47.3	1.4344 1.5836 1.4434 1.415 1.5932	0.0076 0.0123 0.0098 0.0281	1132 1133 1134 1135 1136	1206 4024 4897 3584 4899	99.3 99.4 99.4 99.4 99.4	1.5743 1.6211 1.6803 1.6828 1.6959	0.0204 0.0387 0.0541 0.0591
1007 1008 1009 1010 1011	886 1628 314 4375 4156	23.2 28.3 23.4 23.4 23.4	1.4365 1.4329 1.4597 1.4619 1.4624	0.0147 0.0094 0.0102 0.0082	1072 1073 1074 1075 1076	993 30 3802 2464 3412	48 48 48 48 48.5	1.4126 1.4418 1.4621 1.6231 1.6338	0.0079 0.0085 0.0343 0.0305	1137 1138 1139 1140 1141	3583 3291 5223 4640 2819	99.4 99.5 99.5 99.5 99.6	1.7083 1.4760 1.5021 1.6959 1.4621	0.0515 0.0094 0.0133 0.0561 0.0094
1012 1013 1014 1015 1016	3191 3192 4448 561 1700	23.4 23.4 23.4 23.5 23.6	1.5798 1.5933 1.6060 1.5231 1.4464	0.0302 0.0278 0.0170	1077 1078 1079 1080 1081	56 5876 5805 3550 4305	48.6 50 50 51.2 53.2	1.4616 1.4663 1.4689 1.6703 1.6443	0.0149 0.0424 0.0439	1142 1143 1144 1145 1146	5224 3494 6145 6144 2864	99.6 99.6 100 100 100	1.5022 1.5827 1.4347 1.4366 1.4811	0.0134 0.0287 0.0085
1017 1018 1019 1020 1021	1482 1444 4241 1701 2289.3	23.6 24 24 24.3 24.4	1.4992 1.5043 1.5826 1.4463 1.4432	0.0175	1082 1083 1084 1085 1086	4447 1331 1251 5763 1480	58.5 56 56 57.1 57.7	1.5975 1.5010 1.5150 1.448 1.6339	0.0268 0.0173 0.0225 0.0084 0.0305	1147 1148 1149 1150 1151	4947 3144 3417 3418 946	100 100 100 100 100 106.4	1.5080 1.5345 1.6092 1.6235 1.4188	0.0060 0.0177 0.0291 0.0313 0.0065
1022 1023 1024 1025 1026	3728.1 4385 5875 3687 3036	24.5 25 25 25 25 25.1	1.4877 1.4555 1.4875 1.5252 1.6223	0.0139 0.0080 0.0302	1087 1088 1089 1090 1091	2206 4851 6147 2263 563	59.1 60 60 60 61	1.5532 1.4308 1.4429 1.4787 1.4953	0.0228	1152 1153 1154 1155 1156	4119 482 3282.1 3307 782	107.2 107.8 109.4 110.6 113	1.489 1.4161 1.4482 1.4303 1.446	0.0145 0.0090 0.0085 0.0077 0.0097
1027 1028 1029 1030 1031	2289.2 1885 2338 4490 4226	25.2 25.5 26 26 26	1.4481 1.5257 1.4558 1.575 1.6644	0.0082 0.0191 0.0205	1092 1093 1094 1095 1096	1858 1961 1962 1963 2083	61 61.5 61.5 61.5 62.5	1.5553 1.5557 1.5577 1.5647 1.5846	0.0246	1157 1158 1159 1160 1161	2585 4652 5340 2007 3938	114.6 129 130.4 131.9 133.3	1.512 1.6567 1.480 1.504 1.422	0.0187 0.0133 0.0191 0.0073

B. SOLIDS

I. Mean Values

Serial No.	Gen. index No.	Refractive index	Serial No.	Gen. index No.	Refractive index	Serial No.	Gen. index No.	Refractive index	Serial No.	Gen. index No.	Refractive index
1162 1163	481 1070.1	1.4156 1.525	1164	1578.1	1.53	1165	5664	1.635	1166	444	1.755

II. Uniaxial Group

									•						
Serial	Gen.	Refract	tive index	Serial	Gen.	Refract	ive index	Serial	Gen.	Refracti	ve index	Serial	Gen.	Refracti	ve index
No.	index No.	ω		No.	index No.	ω		No.	index No.	ω	• _	No.	index No.		•
1167	55	1.484		1173	238*	1.54	1.46	1179	2174	1.569	1.666	1184	1416	1.633	1.626
1168	3973	1.497	1.476	1174	808	1.544	1.521	1180	6075	1.579	1.540	1185	2454	1.646	1.642
1169	535	1.499	1.49	1175	5002	1.545	1.548	1181	4043.1	1.581	1.493	1186	4672	1.6588	1.6784
1170	3756	1.525	1.609	1176	5142.1	1.545	1.548	1182	1769.1	1.590	1.650	1187	1625	1.700	1.640
1171	2373	1.529	1.513	1177	697.1	1.554	1.515	1183	4272	1.600	1.649	1188	4727	1.717	1.563
1172	2915	1.530	1.430	1178	1093	1.559	1.548				1	1189	21	1.800	1.750

^{*} Stable modification.

III. Biaxial Group

Serial	Gen. index	F	lefractive inde	x	Serial	Gen. index	I	defractive inde	x	Serial	Gen. index		Refractive in	dex
No.	No.	α	β	Ι γ	No.	No.	α	β	Ι γ	No.	No.	α	β	Ι γ
1190 1191 1192 1193 1194	679.1 361 4184 4218 147	1.367 1.4162 1.402 1.407 1.440	1.409 1.4603 1.463 1.468 1.475	1.536 1.5502 1.617 1.620 1.625	1235 1236 1237 1238 1239	4688 786 4530.1 2916.1 853.1	1.545	1.546 1.547 1.548 1.550 1.555	1.837	1280 1281 1282 1283 1284	4330.1 4752 4943 5317 306	1.564 1.621 1.590 1.620	1.628 1.629 1.630 1.630 1.633	1.661 1.640 1.650
1195 1196 1197 1198 1199	4397* 4368.3† 2920 238† 5066.1	1.471 1.370	1.478 1.479 1.484 1.485 1.488	1.519 1.585	1240 1241 1242 1243 1244	988.1 778 4396 1032 3964	1.546 1.519 1.5376 1.551	1.559 1.561 1.5651 1.567 1.570	1.591 1.5705 1.571	1285 1286 1287 1288 1289	788 5317* 3585 5319 5067.1	1.543 1.607 1.621	1.635 1.636 1.637 1.642 1.643	1.684 1.675 1.648
1200 1201 1202 1203 1204	2234.1 4368.3‡ 1507* 2808.1 2260.1	1.479 1.493 1.487 1.488	1.496 1.496 1.498 1.499 1.501	1.524 1.509 1.566 1.527	1245 1246 1247 1248 1249	1472 3716 5343.1 1033 493.1	1.56 1.54 1.544 1.555 1.515	1.57 1.571 1.572 1.573 1.575	1.60 1.59 1.577 1.586	1290 1291 1292 1293 1294	3087 4750 1111.1 5082.4 5213.1	1.505 1.587 1.626 1.612	1.645 1.646 1.646 1.647 1.650	1.655 1.769 1.712 1.662
1205 1206 1207 1208 1209	776 270 996 994.1 3742	1.445	1.503 1.505 1.509 1.510 1.512	1.540 1.607	1250 1251 1252 1253 1254	3199 5477 3778 835 708	1.560 1.510 1.5535 1.55 1.549	1.576 1.578 1.5787 1.581 1.583	1.647 1.618 1.5912 1.625	1295 1296 1297 1298 1299	5304 4748 1985 5561 4749	1.463 1.621 1.442 1.580 1.586	1.653 1.654 1.662 1.665 1.668	1.780 1.691 1.756 1.690 1.680
1210 1211 1212 1213 1214	4008 5028.1 2260.2 947.1 3344	1.505 1.511 1.495 1.500	1.512 1.512 1.513 1.515 1.520	1.524 1.836 1.672 1.535	1255 1256 1257 1258 1259	3194 3111 5228 161 3222	1.556 1.535 1.522 1.538 1.550	1.587 1.592 1.594 1.600 1.600	1.700 1.760 1.616 1.602 1.680	1300 1301 1302 1303 1304	1987 5428.1 1149 3539 5442	1.479 1.529 1.640 1.493 1.570	1.669 1.670 1.670 1.675 1.685	1.734 1.716 1.810 1.739 1.690
1215 1216 1217 1218 1219	975.1 5961 2373.1 1070.2 1672	1.413 1.528 1.510 1.523	1.520 1.524 1.529 1.530 1.531	1.589 1.566 1.537 1.566 1.534	1260 1261 1262 1263 1264	5648 976 4530.2 4960 5320	1.560	1.600 1.6015 1.602 1.602 1.602	1.610 1.6187 1.647	1305 1306 1307 1308 1309	1111.2 2566.2 4058 84.1 3103	1.619 1.597 1.5697 1.631 1.479	1.688 1.692 1.6935 1.698 1.710	1.696 1.806 1.7324 1.713 1.810
1220 1221 1222 1223 1224	629 1705 639 67.1 638	1.450 1.525 1.4955 1.4227 1.495	1.534 1.535 1.5352 1.5358 1.536	1.610 1.560 1.6045 1.5545 1.605	1265 1266 1267 1268 1269	4936.1 977 609.1 3234 3208	1.526 1.490 1.530 1.538 1.600	1.603 1.605 1.605 1.609 1.610	1.620 1.658 1.754 1.675	1310 1311 1312 1313 1314	4322 445 4739 1197 1200	1.583 1.490 1.464 >1.56 1.650	1.73 1.743 1.748 1.75 1.760	1.872 1.946 >1.95 1.870
1225 1226 1227 1228 1229	484 5336 2367.1 1035 4394*	1.515 1.520 1.536 1.532 1.517	1.540 1.540 1.540 1.541 1.542	1.575 1.580 1.541 1.549 1.555	1270 1271 1272 1273 1274	1977 3540 1414 3732 241	1.609 1.460 1.604 1.495	1.612 1.614 1.614 1.615 1.615	1.616 1.697 1.734 1.650	1315 1316 1317 1318 1319	1142 87 5818 1412 3060	1.763 1.740 1.524 1.508 1.535	1.787 1.847 1.867 1.870 1.873	1.857 1.863 1.873 1.907 1.893
1230 1231 1232 1233 1234	2372 1037 4318.1 303 64.1	1.517 1.4386 1.507	1.543 1.544 1.545 1.5457 1.546	1.546 1.5942 1.546	1275 1276 1277 1278 1279	1415 3196 5202 5441 5562	1.578 1.495 1.580 1.610 1.620	1.620 1.625 1.625 1.625 1.625	1.627 1.807 1.645 1.675 1.630	1320	1364	1.54	>1.95	1.505
							Miscell	ANEOUS						
1321 1322 1323 1324 1325	5135.1 5244.1 835.1 868 3873*	1.529 1.385 1.480	1.524 (red) 1.533 (red) 1.564 (red)	1.530 1.522	1326 1327 1328 1329 1330	5221 1069.1 610 4500 2135	1.49 1.495 1.579 1.583 1.602		1.58 1.565 1.660 1.747 1.627	1331 1332 1333	5541 5424 Bolland,	1.625 1.652 57, 31: 39	0; 10, appron	1.690 1.768 rimate data

*Hydrated form.

602 † Metastable modification.

\$Stable modification.

INDEX TO C TABLE

Abietic acid, 5477 Abietin, 5137 Abeinthiin, 4953 Acenaphthene, 4218 Acenaphthylene, 4184 Aceta | 1746 Acetaldehyde, 208 Acetaldehyde ammonia, 284, 1766 Acetaldehydecyanhydrin, 400 Acetaldehyde semicarbasone, 499 Acetaldoxime, 239 Acetamide, 288 Acetamide chloride, 226 Acetaminoethylsalicylic acid, 4078 2-Acetamino-4-nitrotoluene, 3123 o-Acetaminophenetol, 3713 m-Acetaminophenetol, 3714 p-Acetaminophenetol, 3716 o-Acetaminophenol, 2655 m-Acetaminophenol, 2656 p-Acetaminophenol, 2657 Acetanilide, 2649 o-Acetaniside, 3216 p-Acetaniside, 3217

Acetic acid, 212

Acetic anhydride, 626 Acetoacetanilide, 3627 Acetoacetic ester, 1561 Acetobromosmide, 182 Acetochloroamide, 187 Acetohydroxamic acid, 240 Acetoin, 721 Acetol, 449 Acetone, 448 Acetone alcohol, 449 Acetonebromoform, 650 Acetone chloride, 420 Acetonechloroform, 662 Acetonecyanhydrin, 671 Acetonediacetic acid, 2268 Acetonediacetic anhydride, 2185 Acetone-1, 1'-dicarboxylic acid, 904 Acetone diethylaulfone, 2416 Acetonedi-2-propionic acid, 3287 Acetone salicylate, 3622 Acetonitrile, 168 Acetonylacetone, 1551 Acetonyl chloride, 377 Acetonylmalonic acid, 1503 Acetophenone, 2571

Acetophenoneoxime, 2650 Acetopiperone, 3080 Acetopropionylphenylhydrasone, 4087 Acetopyrine, 5532 o-Acettoluide, 3194 m-Acettoluide, 3195 p-Acettoluide, 3196 Acetvanillone, 3158 Acetoxime, 481 o-Acetphenetidine, 3713 m-Acetphenetidine, 3714 p-Acetphenetidine, 3716 Aceturic acid, 676 Acetylacetone, 929 Acetylaminoscetic scid, 676 m-Acetylaminoasobensene, 4755 m-Acetylaminobensoic acid, 3109 p-Acetylaminobensoic acid, 3110 6-Acetylamino-3-ethcxy-4-isopropyltoluene, 4826 5-Acetylamino-8-ethoxyquinoline, 4525 A cetylamino-2-hydroxyquinoline,

3202

3-Acetylamino-4-hydroxytoluene, 3203 o-Acetylaminomethoxybenzene, 3215 Acetylamino-2-methoxy-4-bensoie acid, 3635 p-Acetylaminophenyl salicylate, 4911 α-Acetylaminopropionic acid, 975.1 Acetyl-o-anisamine, 3215 N-Acetylanthranilic acid, 3108 5-Acetylbarbituric acid, 1407 Acetylbensoylaconine, 6067 Acetyl bromide, 149 Acetyl carbinol, 449 Acetyl chloride, 154 Acetylcodeine, 5551 Acetyl cyanide, 332.1 Acetylene, 115 Acetylene dibromide, 123 Acetylenedicarboxylic acid, 549 cis-Acetylene dichloride, 132 trans-Acetylene dichloride, 133 Acetylene tetrabromide, 128 Acetylenetetrachloride, 140 Acetylenyl carbinol, 355 Acetyl-p-ethoxyphenylurethane, 4536

Acetyl fluoride, 162 Acetylformic acid, 359 Acetylglycine, 676 Acetylglycocoll, 676 N-(Acetyl-p-hydroxyphenyl)-urethane, 4079 Acetyl iodide, 166 Acetylmalic acid, 1504 p-Acetylmethylaminophenetol, 4109 p-Acetylmethylaminophenol, 3204 Acetylmethylheptenone, 3863 Acetylmethyl hexyl ketone, 3929 Acetylmethyl-o-toluidine, 3704 Acetylmethyl-p-toluidine, 3705 1, 2-Acetylmethylurea, 703 Acetyl peroxide, 267 N-Acetyl-o-phenylenediamine, 2689 N-Acetyl-m-phenylenediamine, 2690 N-Acetyl-p-phenylenediamine, 2691 sym-Acetylphenylhydrazine, 2693 Acetylphenyl salicylate, 4906 3-Acetylpropyl alcohol, 1009 Acetylouinine, 5710 o-Acetylsalicylaldehyde, 3081 Acetylsalicylamide, 3113 o-Acetylsalicylic acid, 3087 Acetylsalol, 4906 Acetylthioures, 434 Acetylurea, 435 Acetylurethane, 975 Acidol, 1076 Acoin, 5783 Aconic acid, 868 Aconine, 5886 Aconitic acid, 1429 Aconitine, 6067 Aconitine hydrobromide, 6068 Aconitine hydrochloride, 6069 Aconitine nitrate, 6072 Aconitine salicylate, 6128 Aconitine sulfate, 6173 Acridine, 4434 Acridinic acid, 4021 9-Acridone, 4438 Acrolein, 356 Acrylamide, 398 Acryl chloride, 823.1 Acrylic acid, 358 Acrylic aldehyde, 356 Acrylic anhydride, 1422 Acrylic nitrile, 332 Adalin, 2315 Adenine, 879 Adipie acid, 1562 Adipylamide, 1607 Adipyl dialdehyde, 1549 Adipyl diamide, 1623 Adipyl dichloride, 1476 Adipyl dinitrile, 1478 Adirin, 3721 Adlumidine, 5986 Adlumine, 6119 Adonitol, 1094 Adrenaline, 3271 Assculetinic acid, 3093 Agaric acid, 4015 Agathin, 4769 Aglycon, 4889 Ajacine, 4959 Ajacine hydrochloride, 4964 Ajaconine, 5251 d-Alanine, 484 dl-Alanine, 485 Alantic acid, 4969 Alantol, 3844 Alantolactone, 4950 Alantolic acid, 4969 Albaspidin, 5868 Aldehydine, 2774 e-Aldehydobensoic acid, 2475 m-Aldehydobensoic acid, 2476 p-Aldehydobensoic acid, 2477 Aldehydocollidine, 2774

Aldol, 722 Alisarin, 4626 Alisarın-β-carboxylic acid, 4863 Allantoin, 610 Allene, 337 Allene tetrabromide, 345 cis-Allo-1-bromocinnamic acid, 3024 cis-Allo-2-bromocinnamic acd, 3025 Allobrucine oxide, 5788 cis-Allo-1-chlorocinnamic acid, 3029 cis-Allo-2-chlorocinnamic acid, 3030 Allocinchonine, 5439 Allocinnamic acid, 3074 Allomucic acid, 1583 Alloxan, 547 Alloxantin, 2467 Allyl acetate, 937 Allylacetic acid, 930 Allylacetone, 1546 Allyl alcohol, 446 Allylamine, 479 Allylaniline, 3188 Allylarsonic acid, 463 Allylbensene, 3119 Allyl bensoate, 3598 Allyl butyrate, 2295 Allyl chloride, 375 Allyl cinnamate, 4299 Allyl cyanide, 587 Allylene, 338 Allylene hydroiodide, 390 Allylene oxide, 357 Allylene tetrabromide, 344 Allyl ether, 1544 Allyl formate, 623 Allyl iodide, 391 Allyl isobutyrate, 2296 Allyl isocyanide, 588 Allyl isothiocyanate, 594 Allyl isovalerate, 2836 Allyl I-menthyl ether, 4576 Allyl mercaptan, 462 Allyl mustard oil, 594 Allyl nitrite, 402 p-Allylphenol, 3125 Allyl phenyl ether, 3127 1-Allyl-2-phenylures, 3643.1 2-Allylpyridine, 2645 Allyl sulfocarbamide, 710 Allyl sulfocarbimide, 594 Allyl sulfocyanate, 593 Allyl thiocyanate, 593 Allylthiourea, 710 Aloe-emodin, 4879 Aloin, 5628 Alphol, 5178 Alphosone, 2750 Alpinin, 5180 Alstonine, 5626 Aluminium acetylacetonate, 231895 Aluminium phenolate, 331896 Aluminium triethyl, 331894 Aluminium trimethyl, \$1893 Alypin, 5145 Alypin hydrochloride, 5144 Amalic acid. 4316 Amaric anhydride, 5774 Amarin, 5621 Amaron, 5033, 5944 Ambrein, 5808 Ambrosterol, 5595 Aminoacetal, 1765 Aminoacetamide, 257 Aminoacetic acid, 241 Aminoacetone, 480 o-Aminoacetophenone, 2646 m-Aminoacetophenone, 2647 p-Aminoacetophenone, 2648 2-Amino-5-(p-aminophenyl)-acridine, 5401

o-Aminoanisol, 2216

m-Aminoanisol, 2217

p-Aminoanisol, 2218 1-Aminoanthraquinone, 4642 2-Aminoanthraquinone, 4643 m-Aminoasobensene, 4273 p-Aminoasobensene, 4274 p-Amino-α-asonaphthalene, 5511 Amino-β-asonaphthalene, 5512 Aminoasotoluene, 4796 o-Aminoasotoluene, 4797 o-Aminobensamide, 2130 m-Aminobensamide, 2131 p-Aminobensamide, 2132 o-Aminobensaldehyde, 2067 m-Aminobenzaldehyde, 2068 p-Aminobensaldehyde, 2069 o-Aminobensoic acid. 2074 m-Aminobensoic acid, 2075 p-Aminobensoic acid, 2076 o-Aminobensophenone, 4475 m-Aminobensophenone, 4476 p-Aminobensophenone, 4477 1-Aminobensothiasole, 1999 p-Aminobensoyl-dibutylamino-propanol sulfate, 6103 p-Aminobensoyl-diethylaminoethanol, 4557 Aminobensovl-diethylaminoethanol hydrochloride, 4566 o-Aminobensyl alcohol, 2207 p-Aminobensyl alcohol, 2208 d(l)-1-Amino-sec-butylacetic acid, 1707 1-Aminobutyric acid, 766 2-Aminobutyric acid, 767 3-Aminobutyric acid, 768 l-1-Aminocaproic acid, 1705 dl-1-Aminocaproic acid, 1706 Aminochrysene, 5273 o-Aminocianamic acid, 3104 m-Aminocinnamic acid. 3105 p-Aminocinnamic acid. 3106 3-Aminocoumarine, 3045 4-Amino-o-cresol, 2209 5-Amino-e-cresol, 2210 6-Amino-o-cresol, 2211 5-Amino-m-cresol, 2212 6-Amino-m-cresol, 2213 2-Amino-p-cresol, 2214 3-Amino-p-cresol, 2215 p-Aminodiethylaniline, 3833 4-Amino-2, 3'-dimethylasobensene, 4798 4'-Amino-2, 3'-dimethylasobensene, 4797 4-Amino-2. 4'-dimethylasobensene. 4796 4-Amino-3. 4'-dimethylasobensene, 4700 o-Aminodiphenyl, 4266 p-Aminodiphenylamine, 4285 1-Aminododecane, 4417 2-Aminoethyl alcohol, 285 6-Amino-5-ethyl-2, 4-dipropyl-1, 3diazine, 4384 dl-1-Aminoglutaric acid, 976 d-1-Aminoglutaric acid. 977 5-Aminoguaiscol, 2224 Aminoguanidine hydrochloride, 82 Aminoguanidine sulfate, 308 1-Amino-4-guanidino-n-valeric acid. 1722 1-Aminoheptadecane, 5262 1-Amino-2-(p-hydroxyphenyl)-propionic acid, 3222 dl-1-Amino-2-hydroxypropionic acid, 2-Amino-1-hydroxypropionic acid. 494 4-Aminoisoantipyrine, 4080 1-Aminoisobutyric acid, 769 p-Aminoisopropylbensene, 3257 2-Aminoisovaleric acid. 1062

Amino-J acid, 3570

3-Amino-4-methoxy-6-nitrotoluene, 2699 3-Amino-2-methoxytoluene, 2784 5-Amino-2-methoxytoluene, 2785 4-Amino-1-methylaminobensene, 2247 3-Amino-\$-naphthol, 3552 7-Amino-\$-naphthol, 3553 1-Aminopentadecane, 5020 o-Aminophenol, 1446 m-Aminophenol, 1447 p-Aminophenol, 1448 m-Aminophenol hydrochloride, 1474 p-Aminophenol hydrochloride, 1475 m-Aminophenol sulfate, 1524 dl-Aminophenylacetic acid, 2658 p-Aminophenylarsonic acid, 1471 p-Aminophenyl salicylate, 4486 o-Aminophenyl tartrate, 5082.1 m-Aminophenyl tartrate, 5082.2 p-Aminophenyl tartrate, 5082.3 d-1-Aminopropionic acid, 484 dl-1-Aminopropionic acid, 485 6-Aminopurine, 879 Aminopyrene, 5034 2-Aminopyridine, 882 3-Aminopyridine, 883 4-Aminopyridine, 884 2-Aminoquinoline, 3059 3-Aminoquinoline, 3060 4-Aminoquinoline, 3061 5-Aminoquinoline, 3062 6-Aminoquinoline, 3063 7-Aminoquinoline, 3064 8-Aminoquinoline, 3065 5-Aminoresorcinol, 1451 4-Aminosalicylic acid, 2101 5-Aminosalicylic acid, 2102 p-Aminosalol, 4486 m-Aminotriphenylmethane, 5406 5-Amino-1, 2, 4-trimethylbensene, 3289 1-Aminotridecane, 4590 3-Aminotoluene-4-carbox vlic acid. 2659 2-Aminothiophenol, 1458 1-Aminotetradecane, 4859 5-Amino-1, 2, 3, 4-tetramethylbensene, 3791 1-Aminovaleric acid, 1059 3-Aminovaleric acid, 1060 4-Aminovaleric acid, 1061 3-Amino-o-xylene, 2757 4-Amino-o-xvlene, 2761 2-Amino-m-xylene, 2760 4-Amino-m-xylene, 2758 5-Amino-m-xylene, 2762 2-Amino-p-xylene, 2759 Ammonchelidonic acid, 1906 Ammonium acetate, 289 d-Ammonium acid malate, 776 I-Ammonium acid malate, 777 Ammonium acid oxalate, 248 Ammonium acid tartrate, 778 Ammonium bensenesulfonate, 1523 Ammonium bensoate, 2225 Ammonium citrate, 1721 Ammonium formate, 67 Ammonium fulminurate, 444 Ammonium hydrogen carbonate, 67.1 d-Ammonium hydrogen malate, 776 l-Ammonium hydrogen malate, 777 Ammonium hydrogen oxalate, 248 Ammonium hydrogen tartrate, 778 Ammonium nitrosophenylhydroxylamine, 1528 Ammonium oxalate, 303 Ammonium picrate, 1412 Ammonium salicylate, 2229 Ammonium succinate, 834 Ammonium o-sulfobensoate, 2234.1 Ammonium tartrate, 835, 835,1 Ammonium tetraoxalate, 680

Ammonium thiocyanate, 57 Ammonium valerate, 1103 n-Amyl acetate, 2353 d- β -Amyl acetate, 2354.1 tert.-Amyl acetate, 2355 n-Amylacetylene, 2275 d-act.-Amyl alcohol, 1083 n-Amyl alcohol, 1078 sec.-Amyl alcohol, 1084, 1084.1 tert.-Amyl alcohol. 1081 n-Amylamine, 1099 sec.-Amylamine, 1101 tert.-Amylamine, 1102 n-Amylbensene, 4115 tert.-Amylbensene, 4116 Amyl bensoate, 4342 n-Amyl bromide, 1040 tert.-Amyl bromide, 1042 I-Amyl bromobutyrate, 3314.1 Amyl n-butyrate, 3329 d-6-Amyl n-butyrate, 3330.1 tert.-Amyl carbinol, 1723 n-Amyl chloride, 1043 sec.-Amyl chloride, 1046 tert.-Amyl chloride, 1045 Amyl chloroacetate, 2318 Amyl l-a-crotonate, 3303 Amyl cyanide, 1602 a-Amylene, 984 β-Amylene, 982 γ-Amylene, 983 Amylene dibromide, 988 Amylene nitrite, 996 Amylene nitrosate, 996 n-Amyl ether, 4006 n-Amyl fluoride, 1049 n-Amyl formate, 1648 tert.-Amyl formate, 1650 n-Amyl n-hexyl carbinol, 4414 n-Amyl n-hexyl ketone, 4402 I-Amyl hydrocinnamate, 4823.1 tert.-Amyl hypochlorite, 1048 n-Amyl iodide, 1051 tert.-Amyl iodide, 1053 Amyl isobutyrate, 3331 Amyl I-lactate, 2914 n-Amylmalonic acid, 2843 n-Amyl mercaptan, 1096 act.-Amyl mercaptan, 1097 n-Amyl nitrite, 1063 tert .- Amyl nitrite, 1065 Amylpropiolic aldehyde, 2809 d-6-Amyl propionate, 2901.1 tert.-Amyl propionate, 2902 n-Amyl salicylate, 4347 n-Amyl valerate, 3982 Amygdalin, 5580 Amygdophenine, 5088 a-Amyrin, 6002 6-Amyrin, 6003 Amyrolin, 4739 Anacardic acid, 5735 Analgen, 4525, 5289 Anapyralgin, 3629 Andrographolic acid, 5591 Andrographolide, 5590 Androsin, 4957 Androsterol, 6004 Anemonin, 3526 β-Anemonic acid, 3698 Anesthesin, 3213 p-Anethol, 3648 Angelic acid, 931 Anhalamine, 4111 Anhalamine hydrochloride, 4124 Anhalondine, 4331 Anhalonine, 4332 Anhydroaconitine, 6050 Anhydrocamphoronic acid, 3256 Anhydroecgonine, 3270 Anhydroecgonine hydrochloride, 3274 Anhydroformaldehydeaniline, 5637

Anhydroglucochloral, 2754 Anilalloxan, 3572 Aniline, 1442 Aniline arsenate, 4358 1-Anilinebutyric acid, 3711 Aniline gallate, 4487 Aniline hydrobromide, 1471.1 Aniline hydrochloride, 1472 Aniline nitrate, 1489 Aniline sulfate, 4336 p-Anilinesulfonic acid. 1455 1-Anilinopropionie acid, 3205 Aniluvitonic acid, 4035 Anis alcohol, 2723 Anisaldazine, 5081 Anisaldehyde, 2580 a-Anisaldoxime, 2672 β-Anisaldoxime, 2673 Anisic acid, 2616 o-Anisidine, 2216 m-Anisidine, 2217 p-Anisidine, 2218 Anisilic acid, 5086 Anisol, 2163 p-Anisonitrile, 2508 Anisyl acetate, 3169.1 p-Anisyl chloride, 2500 Anol, 3124 Anonol, 5806 Anthamantin, 5835 Anthracene, 4649 Anthracene-1-carboxylic acid, 4869 Anthracene-2-carboxylic acid, 4870 Anthracene-9-carboxylic acid, 4871 Anthracene-1, 3-dicarboxylic acid, 5029 Anthracene-1, 4-diearboxylic acid. 5030 Anthracene-2. 3-dicarboxylic acid. 5031 Anthraflavic acid, 4627 Anthragallol, 4635 α-Anthramine, 4695 β-Anthramine, 4696 Anthranil, 1887 Anthranilic acid, 2074 Anthranol, 4667 Anthrapinacone, 5946 Anthrapurpurin, 4636 α-Anthraquinoline, 5172 Anthraquinone, 4620 Anthraquinone-g-carboxylic acid, 4860 Anthraquinone-6-carboxylic acid. 4861 Anthraquinone-γ-carboxylic acid, 4862 Anthraquinone-1, 3-dicarboxylic acid, 5022 Anthraquinone-1, 4-dicarboxylic acid, 5023 Anthraquinone-2, 3-dicarboxylic acid, 5024 Anthrarufin, 4628 1-Anthrol, 4668 2-Anthrol, 4669 Antiarin, 5680 Antifebrin, 2649 Antimony pentaethyl, 4013 Antimony triethyl, 1770 Antimony trimethyl, 531 Antimony triphenyl, 5285 Antipyrine, 4058 Antipyrine acetylsalicylate, 5532 Antipyrine hydrobromide, 4074 Antipyrine hydrochloride, 4075 Antipyrine mandelate, 5429 Antipyrine resorcinate, 5198 Antipyrine salicylate, 5308 Antithermine, 4087

Apidosamine, 5725

Apiolic acid, 3625

Apiin, 5926

Apiol. 4322

Apidospermatine, 5726

Apionol, 1424 Apoatropine, 5216 Apostropine hydrochloride, 5227 Apoatropine sulfate, 6064 Apocinchonine, 5439 Aposconitine, 6050 Apoconquinine, 5445 Apocyclene, 3272 Apocynamarin, 4820 Apoharmine, 2547 Apomorphine, 5196 Apomorphine dibenzoate, 6017 Apomorphine hydrochloride, 5197 Apomorphine methobromide, 5314 Aponic acid, 4693 Apopinol, 3897 Apoquinidine, 5445 Apoquinine, 5446 Aporheine, 5286 Aporheine sulfate, 6093 Aposorbinic acid. 958 Apovohimbine, 5709 Apoyohimbine hydrochloride, 5721 Arabin, 3946 l-Arabinosasone, 5212 d(l)-a-Arabinose, 1032 d(l)-\$-Arabinose, 1033 dl-Arabinose, 1034 l-Arabinose diphenylhydrasone, 5209 l-Arabinoscoxime, 1071 d-Arabitol, 1095 Arabonic acid, 1039 Arabonic lactone, 955 Arachidic acid, 5607 Arachidic alcohol, 5611 Arbutin, 4357 Arecaidine, 2278 Arecaine, 2274 Arecolidine, 2820 Arecolidine hydrochloride, 2829 Arecoline, 2821 Arecoline hydrobromide, 2828 Arginine, 1722 Aribine, 4224 Aricine, 5784 Aromadendrin, 5970 Arsanilic acid, 1471 Arsenic acetate, 1513 Arsenoacetic acid, 219 Arsenobensene, 4221 Arsphenamine, 4311 Artemisin, 4944 Asaron, 4352 Asaronic acid, 3696 Ascaridol, 3864 l-Asparagine, 708 I-Aspartic acid, 679 Aspidin, 5869 Aspidinol, 4354 Aspidosine, 5474 Aspidospermine, 5733 Aspirin, 3087 Atesine, 5799 Atisine, 5799 Atophan, 5035 Atractylene, 4971 Atractylol, 4996 Atranoric acid, 5420 dl-Atrolactic acid, 3163 Atrolactyltropeine, 5237 Atronene, 5059 Atronic acid, 5186 Atronol, 5059 Atronylenesulfonic acid, 5045 Atropic acid, 3077 Atropine, 5235 Atropine hydrobromide, 5238 Atropine hydrochloride, 5240 Atropine isovalerate, 5738 Atropine nitrate, 5243 Atropine salicylate, 5832 Atropine sulfate, 6070

Atroscine, 5218 Aubepin, 2580 Aucubine, 4554 Auramine, 5225 Aurantiol, 3899 Aurine, 5397 Azelaic acid, 3307 Aziminobensene, 1356 o, o'-Asoanisol, 4773 p, p'-Azoanisol, 4774 Asobensene, 4225 o, o'-Asobensoic acid, 4660 m, m'-Asobensoic acid, 4661 p-Asodiphenyl, 5820 o-Asoethylbensene, 5092 p-Asoethylbensene, 5093 α, α'-Asonaphthalene, 5495 β, β'-Asonaphthalene, 5496 o-Asophenetol. 5102 p-Asophenetol, 5103 o, o'-Asophenol, 4230 m, m'-Azophenol, 4231 p. p'-Asophenol, 4232 o, o'-Asotoluene, 4763 2, 4'-Asotoluene, 4764 3, 3'-Asotoluene, 4765 4, 4'-Asotoluene, 4768 4, 4'-Asoxyanisol, 4774 p, p'-Asoxybensaldehyde, 4659 Asoxybensene, 4226 o, o'-Asoxybensoic acid, 4664 m. m'-Asoxybensoic acid. 4665 p, p'-Asoxybensoic acid, 4666 p-Asoxydiphenyl, 5821 2, 2'-Aso-p-xylene, 5099 3, 3'-Aso-o-xylene, 5094 4, 4'-Aso-o-xylene, 5095 4, 4'-Aso-m-xylene, 5096 4, 5'-Aso-m-xylene, 5097 5, 5'-Azo-m-xylene, 5098 3, 3'-Asoxy-4-methoxytoluene, 5104 a, a'-Asoxynaphthalene, 5497 β, β'-Asoxynaphthalene, 5498 p-Asoxyphenetol, 5105 o, o'-Asoxyphenol, 4236 p, p'-Asoxyphenol, 4237 o, o'-Asoxytoluene, 4770 4, 4'-Asoxytoluene, 4772 Asoxytolunitrile, 5042 Azulene, 4941 Bakankosin, 5139 Ballanophorin, 4369.2 Barbaloin, 5112 Barbital, 2808 Barbituric acid, 565 Barium acetate, 382550 Barium calcium propionate, \$2596 Barium ethane disulfonate, \$2554 Barium formate, 32546 Barium malonate, 32547 Barium mesotartrate, \$2548 Barium naphthalene-1, 5-disulfonate, ¥2556 Barium oxalate, \$2545 Barium 282555 phenol-2, 4-disulfonate. Barium propionate, \$2553 Barium dl-tartrate, 32549 Barosmin, 5928 Bebeerine, 5316 Bebeerine hydrochloride, 5323 Bebirine, 5316 Behenamide, 5771 Behenanilide, 5965 Behenic acid, 5768 Behenolic acid, 5761 Behenolic anilide, 5959 Behenolylamide, 5762 Behenolyl chloride, 5760 Bensacetin, 3635, 4078

Atropine valerate, 5739

Atropurol, 5936

Bensyl sulfide, 4787

Bensacine, 6031 Bensaconine hydrobromide, 6036 Benzaconine hydrochloride, 6037 Benzalaminoacetal, 4550 Benzalazine, 4709 Benzal bromide, 1944 Bensal chloride, 1964 Benzaldehyde, 2001 Benzaldehydephenylhydrasone, 4494 syn-Bensaldoxime, 2070 anti-Bensaldoxime, 2071 Bensalhydrasine, 2128 Bensalpinacoline, 4530.3 Benzamide, 2072 Bensamide hydrochloride, 5645 Bensamidine, 2129 Bensanalgen, 5289 Benzanilide, 4478 Bensanthracene, 5263 Benzanthrene, 5263 Bensanthrone, 5171 Bensene, 1365 Benseneasosalicylic acid, 4444 o-Benzenediaulfonylamide, 1492 m-Bensenedisulfonylamide, 1493 p-Bensenedisulfonylamide, 1494 o-Bensenedisulfonyl chloride, 1242 m-Benzenediaulfonyl chloride, 1243 p-Bensenedisulfonyl chloride, 1244 a-trans-Benzenehexabromide, 1373 β-cis-Bensenehexabromide, 1374 a-trans-Bensenehexachloride, 1384 β-cis-Bensenehexachloride, 1385 γ-Bensenehexachloride, 1386 8-Benzenehexachloride, 1387 Bensenepentacarboxylic acid, 4016 Bensenesulfanilide, 4272 Bensenesulfinic acid, 1418 Bensenesulfonesmide, 1452 Bensenesulfone chloride, 1318 Bensenesulfone iodide, 1339 Bensenesulfonic acid. 1423 Benzenesulfonic anhydride, 4258 Bensene-1, 2, 3, 4-tetracarboxylic acid, 3451 Bensene-1, 2, 3, 5-tetracarboxylic acid, 3450 Bensene-1, 2, 4, 5-tetracarboxylic acid. 3452 Bensene-1, 2, 3-triacetate, 4303 Bensene-1, 3, 5-triacetate, 4302 Bensene-1, 2, 3-tricarboxylic acid, 3020 Bensene-1, 2, 4-tricarboxylic acid, 3021 Benzene-1, 3, 5-tricarboxylic acid, 3022 Bensene-1, 3, 5-trisulfonyl chloride, 1182 Bensidine, 4286 β-Bensidine, 4287 Benzidine-o, o'-disulfoneamide, 4313 Benzidine-o, o'-disulfonic acid, 4292 Benzidinesulfone, 4235 Benzil, 4672 a-Bensildioxime, 4712 8-Benzildioxime, 4713 7-Benzildioxime, 4714 Bensilic acid, 4738 Benzilosazone, 5888 a-Bensiloxime, 4704 Benzilphenvlhydrasone, 5515 Bensimidasol, 1977 Benzisothiodiasole, 1283 Bensocaine, 3213 Benzohydroxamic acid, 2077 Bensoic acid, 2007 Bensoic anhydride, 4676 o-Bensoic sulfimide, 1896 Bensoin, 4728 a-Bensoinphenylhydrasone, 5523 8-Benzoinphenvlhydrazone, 5524

Bensoisonitrile, 1886 Bensonaphthol, 5177 Bensonitrile, 1885 a-Bensophenone, 4447 7-Bensophenone, 4448 β-Bensophenone, 4449 8-Bensophenone, 4450 Bensophenone chloride, 4441 Benzophenoneoxime, 4479 Bensophenone phenylhydrasone, 5403 Bensophenonesulfone, 4428 a-Benzopinacoline, 5884 8-Benzopinacoline, 5885 Bensopinacone, 5889 1, 2-Bensopyrone, 3016 1, 4-Bensopyrone, 3015 Bensosalin, 4907 Benzosol, 4740 Bensothiasol, 1916 1, 2, 3-Bensotriasine, 1919 Bensotrichloride, 1870 Bensoxasol, 1888 Bensoylacetic acid, 3082 Bensoylacetaldehydeoxime, 3107 Benzoylacetone, 3593 Bensovlacetophenone, 4903 Bensoylacetylacetone, 4300 Benzoyl acetyl peroxide, 3092 Bensovlaconine, 6021 2-Bensoylacrylic acid, 3523 dl-Bensoylalanine, 3632 Bensoylamarin, 5945 Bensoylaminoacetic acid, 3111 p-Bensoylaminoanisol, 4754 5-Bensoylamino-8-ethoxyquinoline, o-Bensoylaminophenol, 4481 m-Bensoylaminophenol, 4482 p-Benzoylaminophenol, 4483 dl-1-Bensoylaminopropionic acid, 3632 Bensoylaniline, 4478 Bensoylanisidine, 4754 Bensoylauramine, 5826 Bensoylbarbituric acid, 4025 o-Benzoylbenzamide, 4751 o-Bensoylbensoic acid, 4677 m-Bensoylbensoic acid, 4678 p-Bensoylbensoic acid, 4679 Bensoyl bromide, 1844 3-Bensoylbutyric acid, 4063 Bensoyl carbinol, 2573 Benzovl chloride, 1859 Bensoyleinchonine, 5891 Bensoylcinchonine hydrochloride. 5892 Bensoyl cyanide, 2434 Bensoyl-1-dimethylamino-1-methylpropanol hydrochloride, 4829 Bensoylecgonine, 5113 Bensoyl fluoride, 1876 1-Bensoylhexshydropyridine, 4328 Bensoylhydrasine, 2133 Bensoyl iodide, 1880 1-Bensoyllactic acid, 3607 Bensoyl peroxide, 4688 o-Bensoylphenol, 4452 Bensovlphenylacetonitrile, 4896 1-Bensoyl-1-phenylhydrasine, 4495 1-Bensoyl-2-phenylhydrasine, 4496 Bensoylpiperidine, 4328 Bensoylpropionaldehyde, 3592 Bensoylpseudotropine, 4947 Benzoylsalicin, 5549 Bensoylsalicylic acid, 4682 Bensoylthiourea, 2549 Bensoyl o-toluste, 4916 N-Bensoyl-o-toluidine, 4748 N-Bensoyl-m-toluidine, 4749 N-Benzoyl-p-toluidine, 4750 Benzoylurea, 2550 N-Bensylacetamide, 3197

Benzyl acetate, 3149

Benzylacetic acid, 3147 Benzylacetone, 3659 Bensylacetophenone, 4912 Bensyl acrylate, 3599 1-Bensylaerylic acid, 3594 Benzyl alcohol, 2159 Bensyl allyl ether, 3653 Bensylamarin, 5947 Bensylamine, 2195 Benzylaniline, 4512 Bensylarsenochloride, 2028 Bensylarsonic acid, 2193 Bensyl bensoate, 4733 o-Bensylbensoic acid, 4729 m-Bensylbensoic acid, 4730 p-Bensylbensoic acid, 4731 →Benzylbenzonitrile, 4697 Bensyl bromide, 2029 Bensyl n-butyl ether, 4129 Bensyl butyrate, 4096 Bensylcarbamate, 2662 Bensyl chloride, 2038 Bensyl chloroacetate, 3090 Bensyl cinnamate, 5068 Bensylcreatinine, 4081 Bensyl cyanide, 2503 Bensyl dichloroacetate, 3057 Bensyldichloroarsine, 2028 Bensyl ether, 4777 Bensylethylene, 3119 Bensyl formate, 2588 Bensylhydrasine, 2248 Bensylhydroxylamine, 2219 Bensylideneacenaphthenone, 5394 Bensylideneacetone, 3587 Bensylideneacetophenone, 4902 Benzylideneacetylacetone, 4298 2-Bensylideneamino-1, 1-diethoxyethane, 4550 Benzylidenesniline, 4473 Benzylidene bromide, 1944 Bensylidene chloride, 1964 Benzylideneethylamine, 3189 Benzylidenehydrasine, 2128 ketone, Bensylidene methylethyl 4060.1 1-Benzylidenepropionic acid, 3595 2-Bensylidenepropionic acid, 3596 Bensylidene-p-tolyl ketone, 5067.1 Bensyl iodide, 2060 Bensyl isoamyl ether, 4367.6 Bensyl isobutyl ether, 4130 Bensyl isobutyrate, 4097 Bensyl isothiocyanate, 2522 Bensyl isovalerate, 4343 Benzyl lactate, 3687 Bensyl laurate, 5480 Bensylmalonic acid, 3608 Bensyl mandelate, 4918 Bensylmenthol, 5249 Bensyl mercaptan, 2189 Bensylmethyl carbinol, 3235, 3235.1 Benzyl methyl ether, 2718 Benzyl mustard oil, 2522 Bensyl myristate, 5682 g-Bensylnaphthalene, 5183 6-Bensylnaphthalene, 5184 Benzyl oleate, 5875 Bensyl palmitate, 5805 o-Bensylphenol, 4505 p-Bensylphenol, 4506 Bensyl phenylacetate, 4917 Bensyl phenyl ether, 4508 Bensyl propionate, 3676 Bensyl propyl ether, 3758 2-Bensylpyridine, 4267 3-Bensylpyridine, 4268 4-Benzylpyridine, 4269 Benzyl salicylate, 4735 Bensylailicon trichloride, 28442 Bensyl stearate, 5876

Benzylauccinic acid. 4071

Bensyl thiocyanate, 2522.1 Bensylthiourea, 2700 Bensyl p-tolyl ketone, 4913 Benzyl trichloroscetate, 3034 Bensylurea, 2692 Bensylurethane, 2662 Bensyl valerate, 4344 Berbamine, 5312 Berberine hydrochloride, 5522 Berberlilic acid, 5530 Berberonic acid, 2621 Bergaptene, 4198 Berilic acid, 5510 Beryllium acetate, \$2115 Beryllium acetate propionate, 22116 Beryllium acetylacetonate, \$2114 Beryllium butyrate, 22118 Beryllium diethyl, \$2112 Beryllium dipropyl, \$2113 Beryllium ethyl sulfate, 22119 Beryllium propionate, 32117 Betaine, 1068 Betaine hydrochloride, 1076 Betol, 5179 Betulin, 6006 Betulol, 4986 Bikaconitine, 6101 Bilinic acid. 5136 Biliphaine, 5106 Bilirubin, 5106 Biliverdic acid, 2681 Bios, 1070.1 Bis-methoxyacetal, 2916.1 Bismuth ammonium citrate, 1774 Bismuth cacodylate, 1621 Bismuth salicylate, 5615 Bismuth triethyl, 1759 Bismuth trimethyl, 522 Bismuth triphenyl, 5280 Bismutospherite, 1 Biuret, 251 Bixin, 5898 Borneol, 3900, 3901 dl-Bornyl acetate, 4372, 4373 Bornylamine, 3949 Bornyl bromoisovalerate, 4989 d-Bornyl n-butyrate, 4834 Bornyl d-chloroscetate, 4368.6 l-Bornylene, 3800 d-Bornvl formate, 4147 Bornyl isovalerate, 5005 d-Bornyl propionate, 4572 d-Bornyl n-valerate, 5007 Bornyval, 5005 Boron triethyl, \$1823 Boron trimethyl, \$31822 Brazilic acid, 4301 Brazilin, 5075 Brassidic acid, 5763 Brassidic anhydride, 6144 Brassidic anilide, 5962 Brassylic acid, 4580 Brenzcain, 4782 Bromacetal, 1693 Bromacetol, 414 Bromal, 103 Bromal d-borneolate, 4368.5 Bromal hydrate, 152.1 Bromalin, 2923 Bromanil, 1106 Brometone, 650 3-Bromoacenaphthene, 4203 o-Bromoacetanilide, 2539 p-Bromoscetanilide, 2540 Bromoacetic acid, 150 Bromoacetone, 367 ω-Bromoscetophenone, 2494 Bromoacetyl bromide, 124 Bromoscetylene, 99 1-Bromoacrylic acid, 320 2-Bromoacrylic acid, 321

2-Bromoallyl isothiocyanate, 556 Bromoallyl mustard oil, 556 e-Bromoaniline, 1368 m-Bromoaniline, 1369 p-Bromoaniline, 1370 4-Bromoantipyrine, 4043.1 o-Bromobenzamide, 1938 m-Bromobensamide, 1939 p-Bromobensamide, 1940 Bromobensene, 1294 p-Bromobensenesulfonic acid, 1301 o-Bromobensoic acid, 1845 m-Bromobenzoic acid, 1846 p-Bromobensoic acid, 1847 o-Bromobensonitrile, 1793 m-Bromobensonitrile, 1794 p-Bromobensonitrile, 1795 o-Bromobensoyl chloride, 1790 m-Bromobensoyl chloride, 1791 p-Bromobensoyl chloride, 1792 o-Bromobensyl bromide, 1945 m-Bromobensyl bromide, 1946 p-Bromobensyl bromide, 1947 o-Bromobensyl chloride, 1934 p-Bromobensyl chloride, 1935 Bromobensyl cyanide, 2454 1-Bromobutyric acid, 645 2-Bromobutyric acid, 646 3-Bromobutyric acid, 647 a-Bromocamphor, 3778 β-Bromocamphor, 3779 1-Bromo-n-caproic acid. 1590 2-Bromocaproic acid, 1591 Bromochloroacetic acid, 120 o-Bromochlorobensene, 1200.1 m-Bromochlorobensene, 1200.2 p-Bromochlorobensene, 1200.3 1-Bromo-2-chloroethane, 181 cis-1-Bromo-2-chloroethylene, 117 trans-1-Bromo-2-chloroethylene, 118 trans-1-Bromocinnamic acid, 3026 trans-2-Bromocinnamic acid, 3027 3-Bromo-p-cresol, 2035 5-Bromo-o-cresol, 2033 5-Bromo-m-cresol, 2034 Bromodichloromethane, 17.4 2-Bromo-2, 3-dimethylbutane, 1691 3-Bromo-1, 2-dinitrobensene, 1149 4-Bromo-1, 2-dinitrobensene, 1150 4-Bromo-1, 3-dinitrobensene, 1151 p'-Bromodiphenyl-p-carboxylic acid, 4430 1-Bromoethyl acetate, 648 2-Bromoethyl acetate, 648.1 2-Bromoethyl alcohol, 221 Bromoethylene, 148 2-Bromoethyl ethyl ether, 745 Bromoethyl ethyl ketone, 644 Bromoform, 18 Bromofumaric acid. 550 3-Bromoguaiacol, 2036 5-Bromoguaiacol, 2037 Bromohydroquinone, 1299 5-Bromo-2-hydroxybensoic acid, 1849 5-Bromo-2-hydroxymethoxybenzene. 3-Bromo-4-hydroxytoluene, 2035 5-Bromo-2-hydroxytoluene, 2033 5-Bromo-3-hydroxytoluene, 2034 1-Bromo-2-hydroxypropane, 466 3-Bromo-1-hydroxypropane, 467 o-Bromoiodobensene, 1200.4 m-Bromoiodobensene, 1200.5 p-Bromoiodobensene, 1200.6 m-Bromoisatine, 2422 Bromoisopropyl alcohol, 466 2-Bromoisovaleric acid, 962 Bromomaleic acid, 551 Bromomalonic acid, 322 Bromomethyl methyl ether, 222

a-Bromonaphthalene, 3453

8-Bromonaphthalene, 3454

α-Bromonitroacetanilide, 2493.1 4-Bromo-2-nitroaniline, 1295 o-Bromonitrobensene, 1201 m-Bromonitrobensene, 1202 p-Bromonitrobensene, 1203 1-2-Bromooctane, 2922.1 p-Bromophenacyl bromide, 2456 o-Bromophenol, 1296 m-Bromophenol, 1297 p-Bromophenol, 1298 p-(p-Bromophenyl)-bensoic acid, 4430 p-Bromophenylhydrasine, 1436 p-Bromophenylmercapturic acid, 4055 Bromopicrin, 5 2-Bromopropane, 465 dl-1-Bromopropionic acid, 368 2-Bromopropionic acid, 369 3-Bromopropyl alcohol, 467 1-Bromopropylene, 364 2-Bromopropylene, 365 3-Bromopropylene, 366 3-Bromopyridine, 847 Bromoquinol, 5921 2(4)-Bromoresorcinol, 1300 3-Bromosalicylic acid, 1848 5-Bromosalicylic acid, 1849 a-Bromostyrene, 2491 △Bromostyrene, 2492, 2493 Bromosuccinic acid, 577 o-Bromotoluene, 2030 m-Bromotoluene, 2031 p-Bromotoluene, 2032 4-Bromo-o-toluidine, 2114 5-Bromo-o-toluidine, 2115 5-Bromo-m-toluidine, 2116 6-Bromo-m-toluidine, 2117 2-Bromo-p-toluidine, 2118 3-Bromo-p-toluidine, 2119 1-Bromo-1, 2, 2-trichloroethane, 121 Bromotrichloromethane, 2 2-Bromo-1, 3, 5-trinitrobensene, 1122 1-Bromovaleric acid, 959 2-Bromovaleric acid, 960 3-Bromovaleric acid. 961 Bromovalervlphenetidine, 4538 1-Bromo-o-xylene, 2632 1-Bromo-m-xylene, 2634 1-Bromo-p-xylene, 2638 2-Bromo-m-xylene, 2635 2-Bromo-p-xylene, 2639 4-Bromo-o-xylene, 2633 4-Bromo-m-xylene, 2636 5-Bromo-m-xylene, 2637 Bromural, 1589 Brovalol, 4989 Brucine, 5785 Brucine nitrate, 5791 Bryonol, 5743 Bulbocannine, 5424 Buphnatine, 5776 1, 2-Butadiene, 595 1. 3-Butadiene, 596 n-Butane, 781.1 1-Butene-3, 4-diol, 720 2-Butinal, 568 2-Butine, 597 3-Butine, 598 N-n-Butylacetanilide, 4359 n-Butyl acetate, 1651 sec-Butyl acetate, 1653 tert-Butylacetic acid, 1642 n-Butylacetylene, 1532 n-Butyl alcohol, 789 sec-Butyl alcohol, 791 tert-Butyl alcohol, 792 n-Butylamine, 820 sec-Butylamine, 822 tert-Butylamine, 823 n-Butylaniline, 3785 Butyl anisate, 4348 n-Butylarsonic acid, 819 n-Butylbarbituric acid, 2806

n-Butylbensene, 3724 sec-Butylbensene, 3725 tert-Butvlbensene, 3726 n-Butyl benzoate, 4095 d-6-Butvl bensoate, 4097.1 n-Butyl bromide, 741 sec-Butyl bromide, 743 tert-Butyl bromide, 744 Butyl-sec-butyl carbinol, 3355 n-Butyl n-butyrate, 2903 n-Butyl caproate, 3983 n-Butyl carbamate, 1066 tert-Butyl carbinol, 1082 Butyl carbonate, 3341 Butylchloral, 582 Butylchloral hydrate, 664 n-Butyl chloride. 746 sec-Butyl chloride, 748 tert-butyl chloride, 749 n-Butyl chlorocarbonate, 969.1 n-Butyl chloroformate, 969.1 n-Butyl cyanide, 972 a-Butylene, 686 β-Butylene, 685 γ-Butylene, 684 2, 3-Butyleneglycol, 796 n-Butyl ether, 2973 sec-Butyl ether, 2975 tert-Butylethyl acetate, 2906 5, 5-n-Butylethylbarbituric acid, 3839 5, 5-sec-Butylethylbarbituric acid, 8840 n-Butvlethylene, 1610 tert-Butylethylene, 1611 n-Butyl formate, 1014 d-eec-Butyl formate, 1015 tert-Butyl hypochlorite, 752 Butylideneacetic acid, 1553 n-Butyl iodide, 754 sec-Butyl iodide, 756 5, 5-n-Butylisopropylbarbituric acid, 4145 n-Butyl isopropyl malonate, 3940 n-Butvl malonate, 4160 n-Butyl mercaptan, 810 sec-Butyl mercaptan, 812 tert-Butyl mercaptan, 813 Butylmalonic acid, 2304 sec-Butylmalonic acid, 2306 n-Butyl nitrate, 774 n-Butyl nitrite, 772 n-Butyl oxalate, 3941 n-Butyl phenyl ether, 3759 Butyl phenyl ketone, 4088 n-Butyl phthalate, 5135 d-sec-Butyl propionate, 2359.1 n-Butyl salicylate, 4101 Butylsilicon trichloride, 28438 Butyl sulfide, 2981 n-Butylsulfone, 2978 n-Butyl n-valerate, 3332 d-sec-Butyl valerate, 3333.1 n-Butyraldehyde, 717 n-Butyramide, 760 n-Butyranilide, 3706 n-Butyric acid, 723 n-Butyric anhydride, 2840 γ-Butyrolactam, 672 n-Butyronitrile, 667 Butyryl chloride, 651 Buxine, 5316 Cacodyl, 826 Cacodyl bromide, 253 Cacodyl carbide, 1620 Cacodyl chloride, 254 Cacodyl cyanide, 410 Cacodyl iodide, 256 Cacodyl oxide, 827 Cacodyl sulfide, 828 Cacodyl trichloride, 255 Cacodylic acid, 280 Cadaverine, 1105

Cadinene, 4972 Cadmium acetate, 2872 Cadmium dimethyl, 2870 Cadmium ethanedisulfonate, 28874 Cadmium formate, 3871 Caffeic acid, 3068 Caffeidine, 2286 Caffeine, 2701 Caffeine hydrobromide, 2751 Caffeine hydrochloride, 2753 Caffeine sulfate, 5134 Caffeine triiodide, 2755 Caffeol, 2724 Caffoline, 2287 Caffuric acid, 1531 Cajeputol, 3902 Calabarine, 4960 Calabarol, 5804 Calcium acetate, 32296 Calcium acid malate, 382299 Calcium aconitate, 382302 Calcium benzoate, 382300 Calcium citrate, 22303 Calcium crotonate, 382298 Calcium formate, 332289 Calcium fumarate, 382291 Calcium hippurate, 282306 Calcium lactate, 382297 Calcium lead propionate, \$2330 Calcium malate, \$2292 Calcium maleate, \$2290 Calcium mesotartrate, 282294 Calcium nitrotetronate, \$2305 Calcium oxalate. 32287 Calcium succinate, \$2293 Calcium d-tartrate, \$2295 Calcium d-tetratartrate, 32301 Calcon, 4902 Calmatambetin, 4548 Calmatambin, 5479 Calycanthine, 4084 Calycin, 5272 Camphane, 3888 Camphenamine, 3882 Camphene, 3801, 3802 Camphene hydrochloride, 3876 Camphilene, 3803 Campholene, 3295 Campholic acid, 3930 Camphor, 3846 dl-Camphor, 3845 Camphoranilie acid, 5127 a-Camphor dichloride, 3831 *B***-Camphor dichloride**, 3832 Camphor di-o-methoxybenzoate, 5829 a-Camphordioxime, 3837 γ-Camphordioxime, 3838 Camphoric acid, 3868, 3869 Camphoric anhydride, 3773 Camphor 6-isopropyl-3-methylbensoste, 5583 Camphor 3-methoxy-4-allybensoate. 5584 Camphorol, 3300 I-Camphoronic acid, 3288 Camphorosasone, 5729 Camphoroxime, 3884 d-Camphorquinone, 3770 d-Camphor salicylate, 6065 d-Camphor semicarbazone, 4154 Camphylamine, 3950 I-Canadine, 5539 dl-Canadine, 5542 Cane sugar, 4396 Cannabinol, 5678 Cannibene, 4973 Cantharic acid. 3691 Cantharidin, 3693 Cantharene, 2795 n-Capric acid, 3981 n-Capric aldehyde, 3975

n-Caprilonitrile, 2852

Caprylidene, 2824 Caproanilide, 4360 n-Caproic acid, 1643 n-Caproic aldehyde, 1633 Caprone, 4170 n-Capronitrile, 1602 n-Caproyl chloride, 1596 n-Capryl chloride, 2851 Caprylene, 2874 n-Caprylic acid, 2899 n-Caprylic aldehyde, 2892 n-Caprylic anhydride, 5153 Capsaicin, 5336 Capsularin, 5744 Carane, 3889 Carbamyl chloride, 27 Carbanil, 1889 Carbanilide, 4500 Carbazole, 4211 Carbasoline, 4325 Carbolic acid, 1413 Carbon dioxide, 2338 Carbon disulfide, 17.3 Carbon monoxide, 3337 Carbon suboxide, 28339 Carbon sulfoselenide, 17.2 Carbon tetrabromide, 6 Carbon tetrachloride, 12 Carbon tetrafluoride, 13 Carbon tetraiodide, 16 Carbonyl bromide, 4 Carbonyl bromochloride, 1.1 Carbonyl chloride, 9 Carbonyl sulfide, 17.1 Carbostyril, 3039 o-Carboxycinnamic acid, 3527 Δ-Carene, 3804 Carminic acid, 5700 Carnaubic acid, 5854 Carnaubyl alcohol, 5862 a-Carophyllene, 4974 Carotin, 5901 Carpaine, 4839 Carpaine hydrochloride, 4840 Carpiline, 5107 Carvacrol, 3752 a-Carvacromenthol, 3966 B-Carvacromenthol, 3967 Carvenone, 3847 d-Carvol, 3753 Carvomenthol, 3966 Caryophyllenic acid, 3253 Caryophyllin, 3848 Cascarillin, 4368.1 Castelamarin, 3280 Catechol, 1414 Catechol methyl ether, 2174 Caullophyllosaponin, 6172 Caulophylline, 4335 Caulophyllosapogenin, 6164 Caulosapogenin, 6133 Caulosaponin, 6161 Caulosterol, 5909 Cederucamphor, 4997 Cedrene, 4975 Cedrol, 4997 Cephaeline, 5954 Cerane, 5919 Cerebrin, 5931, 6153 Cerebronic acid, 5880 Cerin, 5250 Cerotic acid, 5916 n-Ceryl alcohol, 5920 n-Ceryl cerotate, 6160 Cesium acid phthalate, 33314 Cesium acid trichloroacetate, 283315 Cesium cobalt malonate, 383345 Cetane, 5167 n-Cetyl acetate, 5380 Cetyl alcohol, 5168 Cetylene, 5156 n-Cetyl iodide, 5164

Cetyl palmitate, 6047 Cevine, 5977 Chaimaridine, 5712 Chaimarine, 5713 Champacol, 5002 Chaulmoogrie acid, 5344 Chaulmoogryl alcohol, 5355 Chavicol, 3125 Cheiroline, 3299 Chelidamic acid, 1906 Chelidonine, 5527 Chinosol, 5291 Chitenine, 5448 Chloracetol, 420 Chloral, 107 Chloral-p-acetaminophenol, 3578 Chloralacetone, 907 Chloralacetophenone, 3544 Chloral alcoholate, 663 Chloramide, 349 Chloral ammonia, 195 Chloralantipyrine. 4528 Chloral d-borneolate, 4368.7 Chloral cyanohydrin, 315 Chloral formamide, 349 Chloral hydrate, 161 cie-Chloralimide, 425 α-Chloralose, 2754 Chloranil, 1109 a-Chlorhydrin, 473 β-Chlorhydrin, 472 3-Chloroacenaphthene, 4204 Chloroscetamide, 188 o-Chloroacetanilide, 2542 m-Chloroacetanilide, 2543 n-Chloroscetanilide, 2544 Chloroscetic acid, 156 Chloroacetic anhydride, 559 Chloroacetone, 377 ∞-Chloroacetophenone, 2497 p-Chloroacetophenone, 2498 Chloroacetyl bromide, 119 Chloroacetyl carbinol, 380 Chloroacetyl chloride, 135 1-Chloroacrylic acid, 324 2-Chloroacrylic acid, 325 3-Chloroallylene, 323 2-Chloro-3-aminophenol, 1378 2, 4-Chloroaminophenol, 1379 4-Chloroaniline-3-sulfonic acid, 1380 o-Chloroaniline, 1375 m-Chloroaniline, 1376 p-Chloroaniline, 1377 1-Chloroanthracene, 4640 9-Chloroanthracene, 4641 1-Chloroanthraquinone, 4610 2-Chloroanthraquinone, 4611 3-Chloroanthraquinone, 4612 m-Chloroasobensene, 4208 p-Chloroasobensene, 4209 5-Chlorobarbituric acid, 552 o-Chlorobensal chloride, 1868 p-Chlorobensal chloride, 1869 o-Chlorobensaldehyde, 1856 m-Chlorobensaldehyde, 1857 p-Chlorobensaldehyde, 1858 o-Chlorobensamide, 1951 m-Chlorobensamide, 1952 p-Chlorobensamide, 1953 Chlorobensene, 1307 p-Chlorobensenesulfonic acid, 1319 o-Chlorobenzoic acid, 1860 m-Chlorobensoic acid, 1861 p-Chlorobensoic acid, 1862 o-Chlorobensophenone, 4431 m-Chlorobensophenone, 4432 p-Chlorobensophenone, 4433 o-Chlorobensoyl chloride, 1812 m-Chlorobenzoyl chloride, 1813 p-Chlorobensoyl chloride, 1814

o-Chlorobensyl alcohol, 2042

m-Chlorobenzyl alcohol, 2043

p-Chlorobensyl alcohol, 2044 o-Chlorobensyl bromide, 1936 p-Chlorobensyl bromide, 1937 o-Chlorobensyl chloride, 1965 p-Chlorobensyl chloride, 1966 o-Chlorobensylidene chloride, 1868 p-Chlorobensylidene chloride, 1869 1-Chlorobutyric acid, 653 d-2-Chlorobutyric acid, 654 dl-2-Chlorobutyric acid, 655 3-Chlorobutyric acid, 656 a-Chlorocamphor, 3782 β-Chlorocamphor, 3783 γ-Chlorocamphor, 3784 o-Chlorocinnamic acid, 3033 trans-1-Chlorocinnamic acid, 3031 trans-2-Chlorocinnamic acid, 3032 2-Chloro-p-cresol, 2050 3-Chloro-o-cresol, 2045 3-Chloro-p-cresol, 2051 4-Chloro-o-cresol, 2046 4-Chloro-m-cresol, 2048 5-Chloro-o-cresol, 2047 6-Chloro-m-cresol, 2049 1-Chloro-a-crotonic acid, 579 1-Chloro-\$-crotonic acid, 580 2-Chloro-6-crotonic acid, 581 Chlorodecahydronaphthalene, 3877 cis-β-Chlorodecalin, 3877 4-Chloro-1, 2-diaminobenzene, 1437 4-Chloro-1, 3-diaminobensene, 1438 2-Chloro-1, 3-dihydroxypropane, 472 3-Chloro-1, 2-dihydroxypropane, 473 o-Chlorodimethylaniline, 2687 p-Chlorodimethylaniline, 2688 2-Chloro-2, 3-dimethylbutane, 1694 α-4-Chloro-1, 3-dinitrobensene, 1165 β-4-Chloro-1, 3-dinitrobensene, 1166 2-Chloro-1, 3-dinitrobensene, 1164 2-Chloro-1, 4-dinitrobensene, 1168 3-Chloro-1, 2-dinitrobensene, 1162 4-Chloro-1, 2-dinitrobensene, 1163 5-Chloro-1, 3-dinitrobensene, 1167 Chlorodinitrohydrin, 376 o-Chlorodiphenyl, 4205 m-Chlorodiphenyl, 4206 p-Chlorodiphenyl, 4207 1-Chloroethyl acetate, 657 2-Chloroethyl acetate, 657.1 2-Chloroethyl alcohol, 227 Chloroethylene, 153 1-Chloroethyl ethyl ether, 751 2-Chloroethyl ethyl sulfide, 753 Chloroform, 19 Chlorogenie acid, 5305 Chlorogenine, 5626 4(5)-Chloroguaiacol, 2052 4(5)-Chloro-2-hydroxymethoxybensene, 2052 1-Chloro-2-hydroxypropane, 470 2-Chloro-1-hydroxypropane, 471 Chlorohydroquinone, 1317 2-Chloro-4-hydroxytoluene, 2050 3-Chloro-2-hydroxytoluene, 2045 3-Chloro-4-hydroxytoluene, 2051 4-Chloro-2-hydroxytoluene, 2046 4-Chloro-3-hydroxytoluene, 2048 5-Chloro-2-hydroxytoluene, 2047 6-Chloro-3-hydroxytoluene, 2049 Chloroiodoacetic acid, 129 p-Chloroiodobensene, 1214.1 Chloroisopropyl alcohol, 470 Chloroisopropylidene chloride, 387 Chloromalonic acid, 326 p-Chlorometanilic acid, 1380 Chloromethyl chloroformate, 137 Chloromethyl isocyanate, 130 Chloromethyl methyl ether, 228 Chloromethyl sulfate, 225 a-Chloronaphthalene, 3455 β-Chloronaphthalene, 3456 1-Chloro-6-naphthol, 3462

2-Chloro-a-naphthol, 3457 4-Chloro-a-naphthol, 3458 5-Chloro-c-naphthol, 3459 5-Chloro-β-naphthol, 3463 6-Chloro-a-naphthol, 3460 6-Chloro-6-naphthol, 3464 7-Chloro-a-naphthol, 3461 7-Chloro-\$-naphthol, 3465 8-Chloro-\$-naphthol, 3466 2-Chloro-4-nitroaniline, 1308 2-Chloro-5-nitroaniline, 1309 3-Chloro-4-nitroaniline, 1310 3-Chloro-6-nitroaniline, 1311 4-Chloro-2-nitroaniline, 1312 4-Chloro-3-nitroaniline, 1313 o-Chloronitrobensene, 1215 m-Chloronitrobensene, 1216 p-Chloronitrobensene, 1217 2-Chloronitrobensene-5-sulfonic acid, 1227 5-Chloronitrobensene-3-sulfonic acid, 1228 4-Chloro-1-nitronaphthalene, 3410 7-Chloro-1-nitronaphthalene, 3411 2-Chloro-3-nitrophenol, 1221 2-Chloro-4-nitrophenol, 1225 3-Chloro-4-nitrophenol, 1226 4-Chloro-2-nitrophenol, 1218 4-Chloro-3-nitrophenol, 1222 5-Chloro-2-nitrophenol, 1219 5-Chloro-3-nitrophenol, 1223 6-Chloro-2-nitrophenol, 1220 6-Chloro-3-nitrophenol, 1224 2-Chloro-3-nitrotoluene, 1958 3-Chloro-2-nitrotoluene, 1954 4-Chloro-2-nitrotoluene, 1955 4-Chloro-3-nitrotoluene, 1959 5-Chloro-2-nitrotoluene, 1956 5-Chloro-3-nitrotoluene, 1960 6-Chloro-2-nitrotoluene, 1957 2-Chloropentane, 1046 3-Chloropentane, 1047 o-Chlorophenol, 1314 m-Chlorophenol, 1315 p-Chlorophenol, 1316 4-Chloro-o-phenylenediamine, 1437 4-Chloro-m-phenylenediamine, 1438 o-Chlorophenylhydrasine, 1439 p-Chlorophenylhydrasine, 1440 Chloropierin, 11 2-Chloropropane, 469 1-Chloropropionic acid, 381 2-Chloropropionic scid, 382 2-Chloropropyl alcohol, 471 1-Chloropropylene, 373 2-Chloropropylene, 374 3-Chloropropylene, 375 1-Chloropropylidene chloride, 385 2-Chloropropylidene chloride, 386 2-Chloropyridine, 848 3-Chloropyridine, 849 4-Chloropyridine, 850 2-Chloroquinoline, 3000 3-Chloroquinoline, 3001 4-Chloroquinoline, 3002 5-Chloroquinoline, 3003 6-Chloroquinoline, 3004 7-Chloroquinoline, 3005 8-Chloroquinoline, 3006 5-Chlorosalicylic acid, 1864 a-Chlorostyrene, 2495 ω-Chlorostyrene, 2496 4-Chlorothymol, 3699 6-Chlorothymol, 3700 o-Chlorotoluene, 2039 m-Chlorotoluene, 2040 p-Chlorotoluene, 2041 2-Chlorotoluene-5-sulfonic acid, 2055 2-Chloro-m-toluidine, 2122 2-Chloro-p-toluidine, 2126 3-Chloro-p-toluidine, 2127 4-Chloro-o-toluidine, 2120

4-Chloro-m-toluidine, 2123 5-Chloro-o-toluidine, 2120.1 5-Chloro-m-toluidine, 2124 6-Chloro-o-toluidine, 2121 6-Chloro-m-toluidine, 2125 2-Chloro-e-trichlorotoluene, 1822 2-Chloro-1, 3, 5-trinitrobensene, 1127 5-Chloro-1, 2, 4-trinitrobensene, 1128 2-Chlorovinylarsine dichloride, 116 2-Chlorovinyldichloroarsine, 116 Chloroxyl, 5040 1-Chloro-o-xylene, 2640 1-Chloro-m-xylene, 2643 1-Chloro-p-xylene, 2644 3-Chloro-o-xylene, 2641 4-Chloro-o-xylene, 2642 Cholanic acid, 5585 Choleic acid, 5842 Cholesterol, 5933 Cholesterol benzoate, 6075 Cholesterol butyrate, 6024 Cholesterol caprinate, 6110 Cholesterol capronate, 6054 Cholesterol formate, 5961 Cholesterol propionate, 6007 Cholesterol salicylate, 6076 Cholesterol valerate, 6043 Cholesterylamine, 5937 Cholestol, 5746 Cholestrophane, 889 Cholic acid, 5844 Chromane, 3135 Chromanone, 3079 Chromium acetylacetonate, 31624 Chromium oxalate, 31622 Chromium tartrate, \$1623 Chromone, 3015 Chrysaniline, 5401 Chrysanisic acid, 1920 Chrysatropic acid, 3530 Chrysasin, 4631 Chrysasol, 4673 Chrysene, 5264 Chrysenic acid, 5175 Chrysine, 4874 Chrysoeriol, 5049 Chrysoidine, 4293 Chrysophanic acid, 4875 Chrysophanol, 4905 Ciba. 5850 Cimicic acid, 5014 Cinchamidine, 5462 Cinchol, 5596 Cinchomeronic acid, 1904 Cinchonamine, 5463 Cinchonic acid, 2188 Cinchonicine, 5440 Cinchonidine, 5441 Cinchonidine hydrochloride, 5451 Cinchonidine salicylate, 5893 Cinchonidine sulfate, 6115 a-Cinchonine, 5442 Cinchonine hydrochloride, 5452 Cinchonine nitrate, 5459 Cinchonine sulfate, 6116 Cinchoninic acid. 3478 Cinchoninone, 5428.1 Cinchotenine, 5315 Cinchotine, 5464 Cinchotoxine, 5440 Cineol, 3902 Cineolic acid, 3873 Cinnamal chloride, 3056 Cinnamaldehyde, 3069 Cinnamamide, 3102 Cinnamic acid, 3075 Cinnamic anhydride, 5275 Cinnamic nitrile, 3035 Cinnamoyl chloride, 3028 Cinnamyl alcohol, 3126

Cinnamyl cinnamate, 5292

Cinnamylcocaine, 5454

Cinnamyl cyanide, 3472 Citraconic acid, 898 Citraconic anhydride, 863 a-Citral, 3849 8-Citral, 3850 d-Citramalic acid, 952 dl-Citramalic acid, 953 Citramide, 1609 Citric acid. 1507 Citronellal, 3903 Citronellic acid, 3931 Citronellol, 3968, 3969 d-Citronellyl acetate, 4387 Citronellyl formate, 4144 Citrullol, 5748 Clavine, 4157 Clavisepsin, 5372 Clovene, 4976 Cluytianol, 5981 Cluytinic acid, 5691 Cluytyl alcohol, 5968 Cobalt acetate, 281512 Cobalt acetylacetonate, 281513 Cobalt formate, 281510 Cobalt malonate, 281511 Cobalt naphthalene-1, 5-disulfonate, 331514 Cobalt oxalate, 231508 Cocaine, 5221 a-Cocaine, 5219 dl-Cocaine, 5220 Cocaine formate, 5332 Cocaine hydrochloride, 5228 d-Cocaine tartrate, 5674 Cocamine, 6113 Coccelic acid. 5535 Cocceric acid, 6027 Coccervi alcohol, 6016 Codamine, 5571 Codeine, 5317 Codeine o-guaiacolsulfonate, 5867 Codeine hydrobromide, 5321 Codeine hydrochloride, 5324 Codeine phosphate, 5333 Codeine sulfate, 6097 Codethyline, 5453 Coerulignol, 3767 Colchiceine, 5652 1-Colchicine, 5708 Colchinine, 5697 Collidine, 2777 Collidine-3-carboxylic acid, 3212 Columbin, 5949 Conchaimarine, 5714 Conchairamidine, 5715 Concusconine, 5786 Concesine, 5804.1, 5841 Conhydrine, 2930 a-Coniceine, 2853 β-Coniceine, 2854 γ-Coniccine, 2855 &-Coniceine, 2856 Coniferin, 5137 Coniferyl alcohol, 3686 o-Coniferylaldehyde, 3602 p-Coniferylaldehyde, 3603 d-Coniine, 2928 Coniine hydrobromide, 2945 Conine hydrochloride, 2946 Conine hydroiodide, 2948 Coniine nitrate, 2950 Conquinamine, 5466 Convallaretin, 5478 Convoyulin, 6046 Conyrine, 2776 sym-Copellidine, 2929 Coposterin, 5939 Copper naphthalene-1, 5-disulfonate, 201035 Coralline, 5397

Cordol, 4421

Coriamyrtin, 4944.1

Coriandrol, 3915 Corybulbine, 5663 d-Corycavamine, 5634 Corycavidine, 5707 Corveavine, 5775 dl-Corydaline, 5723 Corydine, 5664 Coryfin, 4844 Corynanthine, 5669 Corypalmine, 5552 Corytuberine, 5455 Cotarnic acid, 3541 Cotarnine, 4334 Cotoin, 4744 o-Coumaral alcohol, 3136 p-Coumarhydrin, 3080 o-Coumaric acid, 3083 m-Coumaric acid, 3084 p-Coumaric acid, 3085 o-Coumaric aldehyde, 3072 p-Coumaric aldehyde, 3073 Coumarine, 3016 Coumarone, 2468 Crackene, 5817 Creatine, 780 Creatinine, 682 Creceol, 2725 Cressiol, 4741 o-Cresol, 2160 m-Cresol, 2161 p-Cresol, 2162 o-Cresol orthosostate, 5779 o-Cresolphthalein, 5699 o-Cresol-6-sulfonic acid, 2187 p-Cresol-2-sulfonic acid, 2186 o-Cresyl acetate, 3150 m-Cresyl acetate, 3151 p-Cresyl acetate, 3152 m-Cresyl bensoate, 4736 p-Cresyl bensoate, 4734 o-Cresyl ether, 4778 m-Creayl ether, 4779 p-Cresyi ether, 4780 o-Cresyl methyl ether, 2719 m-Cresyl methyl ether, 2720 p-Cresyl methyl ether, 2721 o-Cresyl salicylate, 4741 m-Cresyl salicylate, 4742 p-Creavl salicylate, 4743 Crocetin, 3772 Crotonaldehyde, 614 a-Crotonic acid, 617 8-Crotonic acid. 618 Crotonic anhydride, 2745 Crotonyl acetate, 1556 Crotonyl alcohol, 711 Crotonylamine, 758 Crotonyl chloride, 578 Crotonylene, 597 Crotonyl ether, 2833 Crotonyl isothiocyanate, 912 Crotonyl mustard oil, 912 Cryptopine, 5647 Cubebin, 5534 Cubebinol, 5533 Cucurbitol, 5843 Cumarane, 2572 Cumene, 3223 Cumenol, 3656 Cumic acid, 3668 Cumic aldehyde, 3656 Cumidine, 3257 Cuminal alcohol, 3754 Cupferron, 1528 Cupreine, 5447 Cupreine sulfate, 6117 Cupreol, 5597 Cupric acetate, 281031 Cupric formate. 331029 Cuscohygrine, 4575 Cusconine, 5787 Cusparidine, 5411

Cusparine, 5412 Curcumin. 5627 Cvanamide, 30 Cyananiline, 4775 Cvanic acid. 23 Cyanilide, 1978 Cyanoscetamide, 352 Cyanoacetanilide, 3067 Cyanoacetic acid, 333 p-Cyanoacetophenone, 3038 Cyanoacetylene, 313 o-Cyanoben soic acid, 2435 m-Cyanobensoic acid, 2436 p-Cyanobensoic acid, 2437 Cyanoform, 543 Cyanogen, 95 Cyanogen bromide, 3 Cyanogen chloride, 7 Cyanogen iodide, 14 Cyanogen sulfide, 96 Cyanoguanidine, 207 Cyanuric acid. 335 Cyanuric trichloride, 308.1 Cyclamin, 5599 Cyclobutane, 683 Cyclobutanol, 712 Cyclocitral, 3851 Cyclofenchene, 3805 Cycloform, 4108 Cycloheptadiene, 2237 Cycloheptane, 2327 Cycloheptanol, 2335 Cycloheptanone, 2290 Cycloheptatriene, 2111 1. 3-Cyclohexadiene, 1466 Cyclohexane, 1612 Cyclohexane-1, 3, 5-triol, 1661 Cyclohexanol, 1627 Cyclohexanone, 1541 Cyclohexyl acid succinate, 3870 Cyclohexyl acetate, 2837 Cyclohexyl bromide, 1588 Cyclohexyl carbinol, 2337 Cyclohexyl chloride, 1595 Cyclohexyl formate, 2297 Cyclohexylene, 1537 Cyclohexyl iodide, 1601 Cyclohexyl mercaptan, 1687 Cyclononane, 3318 Cyclooctane, 2865 Cyclopentadiene, 880 Cyclopentane, 979 Cyclopentanol, 997 Cyclopentanone, 924 Cyclopentylene, 913 Cyclopropane, 408 Cyclopropyl carbinol, 713 Cymarin, 5997 o-Cymene, 3727 m-Cymene, 3728 Cynoctonine, 6094 Cysteine hydrochloride, 501 I-Cystine, 1625 Cystisine, 4086 Damascenine, 3717 Damascenine picrate, 5084 Dambonite, 2917 Dambose, 1680 Daphnetin, 3018 Daphnin, 4937 Datiscin, 5660 Daturic acid, 5256 Daturine, 5235 cis-Decahydronaphthalene, 3890 trans-Decahydronaphthalene, 3891 Decaline, 3890 n-Decane, 3993 n-Decyl acetate, 4407 n-Decyl alcohol, 4002 n-Decylamine, 4011 n-Decylic aldehyde, 3977

α-Decylene, 3955

γ-Decylene, 3956 9, 10-Decylenic acid, 3932 Dehydracetic acid. 2622 Dehydromorphine, 6060 Dehydroquinine, 5546 Dehydrothio-p-toluidine, 4722 m-Dehydrothioxylidine, 5083 Delphinine, 5742 Desoxyalizarin, 4680 Desoxyamilic acid, 4315 Desoxybensoin, 4724 Desoxycholic acid, 5842 Desoxycinchonidine, 5437 Desoxycinchonine, 5438 Desoxyquinine, 5557 Desoxystrychnine, 5668 Dextrose, 1677, 1678 Discetamide, 673 Diacetanilide, 3628 Diacetin, 2312 Diacetohydroxamic acid, 677 Discetone alcohol, 1641 Diacetoneamineoxime, 1719 Diacetyl, 625, 2815, 4368.2 Diacetylacetone, 2263 Diacetylaminoasotoluene, 5313 p-Diacetylaminophenol, 3629 Discetylbensidine, 5082 Diacetylenedicarboxylic acid, 1148 Diacetylhydrasobensene, 5082.4 Diacetylmonoxime, 674 Diacetylmorphine, 5648 Diacetylmorphine hydrochloride, 5654 Diacetyl-o-phenylenediamine, 3644 Diacetyl-m-phenylenediamine, 3645 Diacetyl-p-phenylenediamine, 3646 Dialdan, 2839 Diallyl, 1534 Diallylaniline, 4326 5, 5-Diallylbarbituric acid, 3647 Diallyl carbinol, 2288 Diallylene, 1467 Diallyl oxalate, 2748 Diallyl sulfide, 1587 Diallyl tartrate, 3777.1 sym-Diallylurea, 2285 2, 8-Diaminoacridine, 4488 a-Diamionanthraquinone, 4657 β-Diaminoanthraquinone, 4658 p, p'-Diaminoasobensene, 4294 2, 4-Diaminoasobensene, 4293 2'-Diamino-4, 4'-asotoluene, 4810 3, 3'-Diamino-2, 2'-asotoluene, 4811 o-Diaminobenzene, 1479 m-Diaminobensene, 1480 p-Diaminobensene, 1481

1, 2-Diaminobensene-3-sulfonic acid, 1490 2, 2'-Diaminobensophenone, 4497

3, 3'-Diaminobensophenone, 4498 4, 4'-Diaminobensophenone, 4499

3, 3'-Diamino-4, 4'-dihydroxyarsenobensene dihydrochloride, 4311

4. 4'-Diamino-2, 2'-dimethyldiphenyl, 4807

4, 4'-Diamino-3, 3'-dimethyldiphenyl, 4808

o, p-Diaminodiphenyl, 4287 p, p'-Diaminodiphenylamine, 4310

2, 4'-Diaminodiphenylmethane, 4519

3, 3'-Diaminodiphenylmethane, 4520 3, 4'-Diaminodiphenylmethane, 4521

4, 4'-Diaminodiphenylmethane, 4522

p, p'-Diamino-o, o'-ditolylmethane, 4942

1, 5-Diaminopentane, 1105

2, 5-Diaminophenol, 1484

3, 4-Diaminophenol, 1485

3, 5-Diaminophenol, 1486

Di-(p-aminophenylene) sulfone, 4235 1, 2-Di-(o-aminophenyl)-ethylene, 4767

1, 2-Di-(p-aminophenyl)-e thylene,

1, 2-Diamino-1, 2-di(phenylimino)ethane, 4775 Di-o-aminophenyl oxalate, 4716

Di-m-aminophenyl oxalate, 4717 Di-p-aminophenyl oxalate, 4718

1, 2-Di-(p-aminophenyl) thiourea, 4526

5, 8-Diaminoquinoline, 3117 6, 8-Diaminoquinoline, 3118

2, 2'-Diaminostilbene, 4767 4, 4'-Diaminostilbene, 4768

2, 3-Diaminotoluene, 2249

2, 4-Diaminotoluene, 2250 2, 5-Diaminotoluene, 2251

2, 6-Diaminotoluene, 2252

3, 4-Diaminotoluene, 2253

3. 5-Diaminotoluene, 2254

p. p'-Diaminotriphenylmethane, 5417 Di-l-amyl chlorofumarate, 4831.1

Diamyl ketone, 4170 Di-l-amyl maleate, 4837.1

Di-l-amyl malonate, 4580.1 Diamyl o-phthalate, 5335

Diamyl succinate, 4845, 4845.1 o-Dianisidine, 4809

Di-(p-anisyl)dimethylmethane, 5213.1 Di-p-anisyl-p-phenetylguanidine hydrochloride, 5783

9, 9'-Dianthranyl, 5943 Diapthol, 3053

Diarsenodiacetic acid, 599

Diaspirin, 5278 Diathesin, 2166 1, 2-Diasine, 561

1, 3-Diazine. 562 1. 4-Diazine, 563

Diazoaminobensene, 4275 Diasoaminoethane, 290.1

o, o'-Diasoaminotoluene, 4800

p, p'-Diasoaminotoluene, 4801 Diasomethane, 31

p-Diasophenol, 1270

1, 1-Di(bensalamino)-phenylmethane,

Dibensohydroxamic acid, 4705 sum-Dibensoylethane, 5069 Dibensoyl-d-lysine, 5548 Dibensoylmorphine, 6019

Dibensyl, 4756 Dibensylacetone, 5199

Dibensylamine, 4789 Dibensylaniline, 5526

5, 5-Dibensylbarbituric acid, 5290 Dibensyl disulfide, 4786

Dibensyl fumarate, 5301 Dibensylideneacetone, 5185

Dibensyl ketone, 4914 Dibensyl malonate, 5195

Dibensylmethane, 4930 Dibensyl oxalate, 5073

Dibensyl selenide, 4788

Dibensyl succinate, 5310 Dibensyl sulfide, 4787

Dibenzyl sulfone, 4784

Di-d-bornyl carbonate, 5683 Di-d-bornyl succinate, 5840

a-Dibromhydrin, 415 β-Dibromhydrin, 416

Dibromoacetic acid, 125 Dibromoacetylene, 83

2, 4-Dibromoaniline, 1302 2, 5-Dibromoaniline, 1303

2, 6-Dibromoaniline, 1304 3, 4-Dibromoaniline, 1305

3, 5-Dibromoaniline, 1306 9, 10-Dibromoanthracene, 4617

o-Dibromobensene, 1204 m-Dibromobensene, 1205

p-Dibromobensene, 1206 2, 3-Dibromobenzoic acid, 1796 2, 4-Dibromobensoic acid, 1797

2, 5-Dibromobensoic acid, 1798 2. 6-Dibromobensoic acid, 1799

3. 4-Dibromobensoic acid. 1800

3. 5-Dibromobensoic scid. 1801

1. 2-Dibromobutane, 688 1, 3-Dibromobutane, 689

1. 4-Dibromobutane, 690

2, 3-Dibromobutane, 691 α, α'-Dibromocamphor, 3712

cis-1, 2-Dibromocinnamic acid, 2998 trans-1, 2-Dibromocinnamic acid, 2999 Dibromocyanoacetamide, 313.1

1, 2-Dibromo-1, 2-dichloroethylene, 84

1, 1-Dibromoethane, 183 1, 2-Dibromoethane, 184

2, 2-Dibromoethyl alcohol, 185

1, 1-Dibromoethylene, 122

1. 2-Dibromoethylene, 123 Di-(1-bromoethyl) sulfide, 694

Dibromogallic acid, 1802 1, 3-Dibromo-2-hydroxypropane, 415

2, 3-Dibromo-1-hydroxypropane, 416 1, 1'-Dibromoisopropyl alcohol, 415 Dibromomethane, 26

sym-Dibromomethyl ether, 186

2, 4-Dibromo-3-m e t h y l-4-isopropylphenol, 3640

1, 2-Dibromo-2-methylpropane, 693 2, 4-Dibromonitrobensene, 1152

2, 5-Dibromonitrobensene, 1153

3, 4-Dibromonitrobensene, 1154 3, 5-Dibromonitrobensene, 1155

4, 6-Dibromo-2-nitrophenol, 1155.1 1, 5-Dibromopentane, 987

2, 3-Dibromopentane, 988

2, 4-Dibromophenol, 1207 2, 6-Dibromophenol, 1208

3, 4-Dibromophenol, 1209 3, 5-Dibromophenol, 1210

p, p'-Di-(bromophenyl), 4185.1 3, 4-Dibromophenylhydrasine, 1371

3, 5-Dibromophenylhydrasine, 1372

1, 1-Dibromopropane, 411 1, 2-Dibromopropane, 412

1, 3-Dibromopropane, 413 2, 2-Dibromopropane, 414

1. 1-Dibromopropionic acid, 342 1, 2-Dibromopropionic acid, 343

2, 3-Dibromopropyl alcohol, 416 N-2, 3-Dibromopropyl-5, 5-diethyl-

barbituric acid, 4123 cis-1, 2-Dibromopropylene, 339 trans-1, 2-Dibromopropylene, 340

2, 3-Dibromopropylene, 341 2, 4-Dibromoresorcinol, 1211

4, 6-Dibromoresorcinol, 1212 1, 2-Dibromosuccinic acid, 557

1, 2-Dibromo-1, 1, 2, 2-tetrachloromethane, 84.1

2, 4-Dibromothymol, 3640 2, 3-Dibromotoluene, 1948

2, 6-Dibromotoluene, 1949

3, 5-Dibromotoluene, 1950

2, 6-Dibromo-3, 4, 5-trihydroxyben-soic acid, 1802

ω, ω'-Dibromo-p-xylene, 2541 Di-n-butylacetic acid, 3981.1 Di-n-butyl alcohol, 2951

Di-n-butylamine, 2984 Di-n-butylaniline, 4832

Di-n-butyl carbinol, 3356 Di-sec-butyl carbinol, 3358 Di-n-butyl carbonate, 3341

Di-n-butyl malonate, 4160 Di-n-butyl oxalate, 3941

Di-n-butyl phthalate, 5135 Di-n-butyl sulfide, 2981 Di-sec-butyl sulfide, 2983

Di-n-butyl d-tartrate, 4392 Dibutyrin, 4163

Dicentrine, 5540

Dicetyl, 6048

a-Dichlorhydrin, 422 β-Dichlorhydrin, 423

1, 2-Dichloroacenaphthene, 4186

Dichloroscetal, 1622

Dichloroacetaldehyde, 134 Dichloroacetamide, 157

Dichloroacetic acid, 136 1, 1-Dichloroacetone, 346

1, 1'-Dichloroacetone, 347

Dichloroacetyl chloride, 108 Dichloroacetylene, 88 2, 3-Dichloroaniline, 1320

2, 4-Dichloroaniline, 1321

2, 5-Dichloroaniline, 1322 2, 6-Dichloroaniline, 1328

3, 4-Dichloroaniline, 1324

3, 5-Dichloroaniline, 1325 1. 2-Dichloroanthracene, 4618

9. 10-Dichloroanthracene, 4619 a-1, 2-Dichloroanthraquinone, 4596

8-1, 2-Dichloroanthraquinone, 4597 1, 4-Dichloroanthraquinone, 4598

1, 5-Dichloroanthraquinone, 4599 1, 6-Dichloroanthraquinone, 4600

1, 8-Dichloroanthraquinone, 4601 2, 3-Dichloroanthraquinone, 4602

2, 6-Dichloroanthraquinone, 4603 2, 7-Dichloroanthraquinone, 4604

5, 5-Dichlorobarbituric acid, 544 2, 4-Dichlorobensaldehyde, 1809

2, 5-Dichlorobensaldehyde, 1810 3, 4-Dichlorobensaldehyde, 1811

o-Dichlorobensene, 1229 m-Dichlorobensene, 1230 p-Dichlorobensene, 1231

2, 5-Dichlorobensenesulfonic acid, 1241

2, 2-Dichlorobenzidine, 4222 4, 4-Dichlorobensidine, 4223

2, 3-Dichlorobensoic acid, 1815 2, 4-Dichlorobensoic acid, 1816

2, 5-Dichlorobensoic acid, 1817 2, 6-Dichlorobensoic acid, 1818

3, 4-Dichlorobensoic acid, 1819 3, 5-Dichlorobensois acid, 1820

p, p'-Dichlorobenzophenone, 4422 1. 2-Dichloro-1-bromoethylene, 100 Dichlorobutylene glycol, 697.1

a-Dichlorocamphor, 3744 β-Dichlorocamphor, 3745

cis-1, 2-Dichlorocinnamic acid, 3007 trans-1, 2-Dichlorocinnamic acid, 3008 1, 1-Dichloro-o-cresol, 1967

3, 5-Dichloro-o-cresol, 1968 4, 6-Dichloro-m-cresol, 1969

3, 3-Dichlorodiacetylbensidine, 5064 Dichlorodinitromethane, 8 Dichloro-1, 2-diphenylethylene, 4653 1, 2-Dichloro-1, 2-diphenylethylene,

m, m'-Dichlorodiphenylmethane, 4442 p, p'-Dichlorodiphenylmethane, 4443

1, 1-Dichloroethane, 189 1, 2-Dichloroethane, 190

2, 2-Dichloroethyl alcohol, 191 1, 1-Dichloroethylene, 131 cis-1, 2-Dichloroethylene, 132

trans-1, 2-Dichloroethylene, 133 Di-(2-chloroethyl) ether, 696 1, 2-Dichloroethyl ethyl ether, 697

Di-(1-chloroethyl) sulfide, 698 Di-(2-chloroethyl) sulfide, 699 Di-(2-chloroethyl) sulfone, 701

Di-(2-chloroethyl) sulfoxide, 700 4, 5-Dichloroguaiacol, 1970 2, 3-Dichlorohydroquinone, 1238

2, 5-Dichlorohydroquinone, 1239 2, 6-Dichlorohydroquinone, 1240

1, 1-Dichloro-2-hydroxypropane, 421 1, 3-Dichloro-2-hydroxypropane, 422 2, 3-Dichloro-1-hydroxypropane, 423 3, 3-Dichloroisopentane, 989 1, 1-Dichloroisopropyl alcohol, 421 1, 1'-Dichloroisopropyl alcohol, 422 Dichloromethane, 28 Dichloromethylal, 424 Dichloromethylarsine, 38 3, 3-Dichloro-2-methylbutane, 989 Dichloroniethyl chloroformate, 110 Dichloromethyl-p-c hlorophenyl ketone, 2432 sum-Dichloromethyl ether, 192

1, 2-Dichloro-2-methylpropane, 695 Di-(chloromethyl) sulfide, 194 Di-(chloromethyl) sulfoxide, 193 1, 2-Dichloronaphthalene, 3412 1, 3-Dichloronaphthalene, 3413 1, 4-Dichloronaphthalene, 3414 1, 5-Dichloronaphthalene, 3415 1, 6-Dichloronaphthalene, 3416 1, 7-Dichloronaphthalene, 3417 1, 8-Dichloronaphthalene, 3418 2, 3-Dichloronaphthalene, 3419 2, 6-Dichloronaphthalene, 3420 2, 7-Dichloronaphthalene, 3421 2. 3-Dichloro-g-naphthol, 3422 2, 4-Dichloro-a-naphthol, 3423 5, 7-Dichloro-α-naphthol, 3424 5, 8-Dichloro-α-naphthol, 3425 6, 7-Dichloro-a-naphthol, 3426 7, 8-Dichloro-a-naphthol, 3427 1, 3-Dichloro-6-naphthol, 3428 1, 4-Dichloro-6-naphthol, 3429 3, 6-Dichloro-6-naphthol, 3429.1 2, 3-Dichloronitrobensene, 1169 2, 4-Dichloronitrobensene, 1170 2, 5-Dichloronitrobenzene, 1171

3, 4-Dichloronitrobensene, 1173 3, 5-Dichloronitrobensene, 1174 4, 6-Dichloro-2-nitro phenol, 1174.1 1, 4-Dichloropentane, 990 1, 5-Dichloropentane, 991 2, 3-Dichloropentane, 992 2, 3-Dichlorophenol, 1232 2, 4-Dichlorophenol, 1233 5-Dichlorophenol, 1234

2, 6-Dichloronitrobenzene, 1172

2, 6-Dichlorophenol, 1235 3, 4-Dichlorophenol, 1236 3, 5-Dichlorophenol, 1237

2, 4-Dichlorophenylhydrazine, 1381 2, 5-Dichlorophenylhydrazine, 1382 3, 5-Dichlorophenylhydrasine, 1383

3, 3-Dichloro-1-phenylpropene, 3056 3, 6-Dichlorophthalic acid, 2426

3, 6-Dichlorophthalic anhydride, 2421

1, 1-Dichloropropane, 417 1, 2-Dichloropropane, 418 1, 3-Dichloropropane, 419

2, 2-Dichloropropane, 420 2, 2-Dichloropropionic acid, 348 2, 3-Dichloropropyl alcohol, 423

3, 5-Dichloropyridine, 845 2, 3-Dichloroquinoline, 2991

2, 4-Dichloroquinoline, 2992 5, 6-Dichloroquinoline, 2993 5, 7-Dichloroquinoline, 2994

5, 8-Dichloroquinoline, 2995 6, 8-Dichloroquinoline, 2996

7, 8-Dichloroquinoline, 2997 2, 5-Dichloroquinone, 2911

2, 6-Dichloroquinone, 1130 Dichlorostilbene, 4653

Di-(2-chlorovinyl)-arsine chloride, 555

ω, ω'-Dichloro-p-xylene, 2545 Dicinchonine, 6112 Dicyandiamide, 207 Dicyclohexyl oxalate, 4831 o, o'-Diethoxyasobensene, 5102

p, p'-Diethoxyasobensene, 5103

p, p'-Diethoxyasoxybensene, 5105

o-Diethoxybenzene, 3766 p-Diethoxyethenyldiphenylamidine, 5325

C-Diethylacetanilide, 4361 Diethylacetic acid, 1645 Diethyl acetylethylmalonate, 4153 Diethyl acetylsuccinate, 3874 Diethylamine, 824 Diethylamine hydrochloride, 831 Diethylaminoacetic acid guaiacol hydrochloride, 4556

p-Diethylaminobensaldehyde, 4104 p-Diethylaminobensoic acid, 4107 m-Diethylaminophenol, 3792 Diethylaniline, 3789

Diethylaniline-m-sulfonic acid, 3796 Diethylarsonic acid, 818 o, o'-Diethylazobenzene, 5092

p, p'-Diethylasobensene, 5093 1, 3-Diethylbarbituric acid, 2807 5, 5-Diethylbarbituric acid, 2808

o-Diethylbensene, 3729 m-Diethylbenzene, 3730 p-Diethylbenzene, 3731

Diethylbromoacetamide, 830 N-Diethylbromoacetylurea, 2315 Diethyl bromoisosuccinate, 2816.1

Diethyl bromomalonate, 2271 Diethyl carbinol, 1080 Diethyl carbonate, 1026

Diethyl chloromaleate, 2753.1 Diethyl citraconate, 3283 Diethylcyanamide, 993

Diethyl diacetyltartrate, 4368.41 Diethyl diethylmalonate, 4161 Diethyl diphenylmalonate, 5431

Diethyldipropylammonium chloroplatinate, \$1213

Diethyl disulfide, 815 Diethyl disulfoxide, 803 Diethylenediamine, 782 Diethylene disulfide, 740 Diethyleneglycol, 805

Diethyl 1-ethyl-1'-acetylsuccinate, 4380

Diethyl fumarate, 2812 Diethyl glutaconate, 3284 Diethyl glutarate, 3312

Diethylisobutyl carbinol, 3359 Diethylisopropylmethane, 2938

Diethyl itaconate, 3285 Diethylketene, 1547

Diethyl ketone, 1005 Diethyl ketoxime, 1055 Diethyl malate, 2849.1

Diethyl maleate, 2813 Diethyl malonate, 2309 Diethylmalonic acid, 2307 Diethyl mesaconate, 3286

Diethyl mesoxalate, 2314 Diethyl methylmalonate, 2846

Diethyl muconate, 3776 Diethyl-a-naphthylamine, 4813

Diethyl-6-naphthylamine, 4814 Diethyl oxalate, 1570 Diethyloxamide, 1624

Diethyl peroxide, 800 Diethylphosphine, 825 Diethyl o-phthalate, 4324 Diethylpropyl carbinol, 2952

Diethylpropylmethane, 2942 Diethyl sebacate, 4846 Diethyl selenide, 816 Diethylsilicon dichloride, 33437

Diethyl succinate, 2847 Diethyl succinylsuccinate, 4355

Diethyl sulfate, 809 Diethyl sulfide, 814 Diethyl sulfite, 807 Diethyl sulfone, 802

Diethylsulfonediethylmethane, 3370 Diethylsulfonedimethylmethane, 2416 Diethylsulfonemethylethylmethane, 2980

Diethyl d-tartrate, 2850 Diethyl telluride, 817 Diethyl thiocarbonate, 1022 3, 5-Diethyltoluene, 4117 o-Diethyltoluidine, 4137 m-Diethyltoluidine, 4138

p-Diethyltoluidine, 4139 2-Diethylurea, 1077

N-Diethylvaleramide, 3346 2, 5-Difluoroscetanilide, 2502 Difluoroacetic acid, 141

2, 5-Difluoroaniline, 1332 m-Difluorobensene, 1252 p-Difluorobensene, 1253

Digitalin, 6087 Digitoflavone, 4885 Digitogenic acid, 5953 Digitoxigenin, 5736

Digitoxin, 6077 Diglycerol, 1747 Diglycolic acid, 633

Diguaiacyl camphorate, 5829 Di-n-heptyl tartrate, 5371.1 Di-n-hexyl carbinol, 4588

5, 10-Dihydroacridine, 4474 4, 6-Dihydrobensaldehyde, 2164

4, 6-Dihydrobensaldoxime, 2223 o-Dihydrobensene, 1468 m-Dihydrobensene, 1469

p-Dihydrobenzene, 1470 3, 4-Dihydrobensopyran, 3135 Dihydrocumarin, 3078

2, 3-Dihydrocycloheptene, 2237 1, 2-Dihydro-3, 5-dihydroxy-4-(α, 3, 4-trihydroxybensylbensofuran), 5629

Dihydroharmine, 4524 Dihydromorphine, 5217

1, 2-Dihydronaphthalene, 3573 1, 4-Dihydronaphthalene, 3574 1, 2-Dihydro-\$-naphthol, 3588

Δ1, -Dihydro-o-phthalic acid, 2623 Δ2, -Dihydro-o-phthalic acid, 2624

Δ2, -Dihydro-o-phthalic acid, 2625 Dihydroquinoline, 3097 Dihydroresorcinol, 1497

1, 2-Dihydrotoluene, 2238 1, 3-Dihydrotoluene, 2239 2, 4-Dihydrotoluene, 2240

Dihydroxyacetone, 455 6-Dihydroxy-o-aldehydobensoic

acid, 2489

1, 8-Dihydroxyanthracene, 4673 1, 3-Dihydroxyanthraquinone, 4634

1, 4-Dihydroxyanthraquinone, 4633 1, 5-Dihydroxyanthraquinone, 4628

1, 6-Dihydroxyanthraquinone, 4629 1, 7-Dihydroxyanthraquinone, 4630

1, 8-Dihydroxyanthraquinone, 4631 2, 3-Dihydroxyanthraquinone, 4632

2, 6-Dihydroxyanthraquinone, 4627

2, 3-Dihydroxybensaldehyde, 2011 3, 4-Dihydroxybensaldehyde, 2012

o-Dihydroxybensene, 1414 m-Dihydroxybensene, 1415 p-Dihydroxybensene, 1416

o-Dihydroxybensene dimethyl ether, 2737

o-Dihydroxybensene ethyl ether, 2738

2. 3-Dihydroxybensoic acid, 2016 2, 4-Dihydroxybensoic acid, 2017 2, 5-Dihydroxybensoic acid, 2018

2, 6-Dihydroxybenzoic acid, 2019 3, 4-Dihydroxybensoic acid, 2020

3, 5-Dihydroxybensoic acid, 2021 2'-Dihydroxybensophenone, 4460

2, 3'-Dihydroxybensophenone, 4461

2, 4'-Dihydroxybenzophenone, 4462 2, 5-Dihydroxybensophenone, 4459

3, 4'-Dihydroxybensophenone, 4463 4. 4'-Dihydroxybenzophenone, 4464

7-Dihydroxy-1, 2-bensopyrone. 3019

7, 8-Dihydroxy-1, 2-benzopyrone. 3018

1, 4-Dihydroxybutane, 795

2, 3-Dihydroxybutane, 796

1, 2-Dihydroxybutyric acid, 738 3, 4-Dihydroxycinnamic acid, 3088

2, 3-Dihydroxycoumarin, 3018 4, 5-Dihydroxycoumarin, 3019

4, 4'-Dihydroxy- β , β '-dinaphthyl, 55021, 2-Dihydroxy-1, 2-diphenylethane.

4, 4'-Dihydroxydiphenylsulfone, 4256 Di-(2-hydroxyethyl) ether, 805

5, 7-Dihydroxyflavone, 4874 5-Dihydroxy-4-isopropyltoluene,

3771 Dihydro-o-xylene, 2795 Dihydro-m-xylene, 2796

Δ1, 2-Dihydro-p-xylene, 2797 Dihydroxymalonic acid, 363

2, 4-Dihydroxymesitylene, 3248 1, 2-Dihydroxy-2-methylpropane, 797

1, 2-Dihydroxynaphthalene, 3509 1, 3-Dihydroxynaphthalene, 3510

1, 4-Dihydroxynaphthalene, 3511

1, 5-Dihydroxynaphthalene, 3512

1, 6-Dihydroxynaphthalene, 3513 1, 7-Dihydroxynaphthalene, 3514 1, 8-Dihydroxynaphthalene, 3515

2, 3-Dihydroxynaphthalene, 3516

2, 6-Dihydroxynaphthalene, 3517 2, 7-Dihydroxynaphthalene, 3518

1, 2-Dihydroxynonylic acid, 3313 1, 2-Dihydroxypelargonic acid, 3313

3, 4-Dihydroxyphenanthrene, 4675 2, 5-Dihydroxyphenylacetic acid, 2626 2-(3, 4-Dihydroxyphenyl)-propionic acid, 3176

2, 4-Dihydroxypyridine, 875

2, 6-Dihydroxypyridine, 876 2, 6-Dihydroxypyrimidine, 564

2, 5-Dihydroxyquinone, 1288

4, 9-Dihydroxystearic acid, 5388 Dihydroxytartaric acid, 641

1, 2-Dihydroxy-1, 1, 2, 2-tetraphenylethane, 5889

2, 4-Dihydroxytoluene, 2169 2, 5-Dihydroxytoluene, 2170

2, 6-Dihydroxytoluene, 2171 3, 4-Dihydroxytoluene, 2172

3, 5-Dihydroxytoluene, 2173
1, 2-Dihydroxytricarballylic acid, 1508

1, 7-Dihydroxyxanthone, 4429

Diindole, 5066 Diiodoacetic acid, 143 Diiodoacetylene, 93

2, 4-Diiodoaniline, 1340 o-Diiodobensene, 1258 m-Diiodobensene, 1259

p-Diiodobensene, 1260 2, 4-Diiodo-1, 3-dinitrobensene, 1142

4, 6-Diido-1, 3-dinitrobenzene, 1143 Diiododiacetylene, 540

1, 1-Diiodoethane, 196 1, 2-Diiodoethane, 197 Dijodomethane, 29

2, 4-Diiodophenol, 1261 2, 6-Diiodophenol, 1262

3, 4-Diiodophenol, 1263

3, 5-Diiodophenol, 1264 2, 6-Diiodophenol-4-sulfonic acid. 1265

1, 2-Diiodopropane, 427

1, 3-Diiodopropane, 428

2, 2-Diiodopropane, 429 3, 5-Diiodosalicylic acid, 1828

Diiodothiophene, 546 Diisoamylamine, 4012 Diisoamyl carbonate, 4177 Diisoamyl ketone, 4171

Diisoamyl oxalate, 4391 Diisoamyl sulfide, 4010 Diisoamyl tartrate, 4846.1 Diisobutyl, 2933 Diisobutylamine, 2985 Diisobutylammonium chloroplatinate, Diisobutylaniline, 4832.1 Dissobutyl carbinol, 3357 Diisobutyl carbonate, 3342 Diisobutyl-o-cresol iodide, 5732 Diisobutyl d-diacetyltartrate, 5143.1 Diisobutylene, 2866 Diisobutyl ketone, 3326 Dissobutyl oxalate, 3942 Diisobutyl sulfide, 2982 Diisobutyl d-tartrate, 4393 Diisobutyl l-tartrate, 4393.1 Diisopropenyl, 1533 Diisopropyl, 1712 Diisopropylamine, 1761 Diisopropyl carbinol, 2400 Disopropyl ketone, 2345 Diisopropylmethane, 2387 Diisopropyl sulfide, 1755 Dimazon, 5313 Dimercaptoglucose diethyl ether, 4009 Dimentholformol, 5689 Di-l-menthyl adipate, 5915 Di-l-menthyl carbonate, 5687 Di-l-menthyl glutarate, 5877 Di-l-menthyl malonate, 5810 Di-l-menthyl oxalate, 5759 Di-l-menthyl succinate, 5846 Di-l-menthyl d-tartrate, 5847 Di-l-menthyl l-tartrate, 5848 3, 4-Dimethoxyallylbensene, 4092 2, 2'-Dimethoxyasobensene, 4773 4, 4'-Dimethoxyazobenzene, 4774 3, 4-Dimethoxybenzene-1, 2-dicarboxylic acid, 3626 3, 3'-Dimethoxybensidine, 4809 3, 4-Dimethoxybensoic acid, 3181 Di-(2-methoxyphenyl) carbonate, 4924 2, 3, 4, 5-Dimethoxydihydroxybenzoic 6, 7-Dimethoxy-1-(3, 4-dimethoxybensoyl)-isoquinoline, 5528 5-Dimethoxy-4-hydroxybenzoic acid, 3185 4-Dimethoxy-6-hydroxydiphenyl ketone, 4921 sym-Di-(o-methoxyphenyl)-hydrazine, 5119 6, 7-Dimethoxyphthalide, 3621 3, 4-Dimethoxypropenylbenzene, 4093 Dimethylacetal, 801 N-Dimethylacetamide, 762 3, 5-Dimethylacetanilide, 3707 Dimethylacetylene, 597 Dimethylacetylene tetrabromide, 603 2, 2-Dimethylacrylic acid, 932 2, 2'-Dimethyladipic acid, 2844 1, 1-Dimethylallene, 915 1, 3-Dimethylallene, 914 Dimethylalloxan, 1408 Dimethylamine, 282 Dimethylamine hydrochloride, 297 ω-Dimethylaminoacetophenone, 3708 4-Dimethylaminoantipyrine, 4537 p-Dimethylaminobensaldehyde, 3193 p-Dimethylaminobensophenone, 4927 2-Dimethylamino-1-(p-h y d r o x y phenyl)-ethane, 3794 o-Dimethylaminophenol, 2781 2-Dimethylamino-m-xylene, 3786 4-Dimethylamino-o-xylene, 3788 4-Dimethylamino-m-xylene, 3787 Dimethyl-n-amyl carbinol, 2953

Dimethylamylmethane, 2937

Dimethylaniline, 2756

o-Dimethylanthranilic acid, 3206

2, 3-Dimethylaniline, 2757 2, 4-Dimethylaniline, 2758 2, 5-Dimethylaniline, 2759 2, 6-Dimethylaniline, 2760 3, 4-Dimethylaniline, 2761 3, 5-Dimethylaniline, 2762 Dimethylaniline oxide, 2789 Dimethylaniline-m-sulfonic acid, 2791 Dimethylaniline-p-sulfonic acid, 2792 2, 3-Dimethylanthracene, 5060 2, 4-Dimethylanthracene, 5061 2, 6-Dimethylanthracene, 5062 Dimethylarsine, 278 o, o'-Dimethylasobensene, 4763 2, 4'-Dimethylazobensene, 4764 3, 3'-Dimethylasobensene, 4765 4, 4'-Dimethylazobensene, 4766 2, 2'-Dimethylasoxybensene, 4770 3, 3'-Dimethylasoxybenzene, 4771 4, 4'-Dimethylazoxybenzene, 4772 1, 3-Dimethylbarbituric acid, 1487 2, 4-Dimethylbensaldehyde, 3129 2, 3-Dimethylbensoic acid, 3138 2, 4-Dimethylbenzoic acid, 3139 2, 5-Dimethylbenzoic acid, 3140 2. 6-Dimethylbensoic acid, 3141 3, 4-Dimethylbensoic acid, 3142 p-Dimethylbensoin, 5085 p, p'-Dimethylbensophenone, 4915 3, 5-Dimethylbenzylamine, 3265 2, 3-Dimethyl-1, 3-butadiene, 1533 2, 2-Dimethylbutane, 1716 2, 3-Dimethylbutane, 1712 2, 2-Dimethylbutyl alcohol, 1723 Dimethylbutyl carbinol, 2396 Dimethyl-tert-butyl carbinol, 2398 2, 2-Dimethyl-4-butylene, 1611 2, 3-Dimethyl-1-butylene, 1618 2, 3-Dimethyl-2-butylene, 1619 1, 1-Dimethyl-2-n-butylethylene, 2872 Dimethyl carbonate, 458 Dimethyl chlorofumarate, 1441.2 Dimethyl chloromaleate, 1441.1 Dimethyl citraconate, 2267 o-Dimethylcyclohexane, 2867 m-Dimethylcyclohexane, 2868 p-Dimethylcyclohexane, 2869 1, 2-Dimethylcyclohexanol, 2878 1, 3-Dimethylcyclohexanol, 2879, 2880 1, 4-Dimethylcyclohexanol, 2881 2, 2-Dimethylcyclohexanol, 2882 2, 4-Dimethylcyclohexanol, 2883 2, 5-Dimethylcyclohexanol, 2884 2, 6-Dimethylcyclohexanol, 2885 3, 3-Dimethylcyclohexanol, 2886 3, 4-Dimethylcyclohexanol, 2887 cie-3, 5-Dimethylcyclohexanol, 2888 trans-3, 5-Dimethylcyclohexanol, 2889 2, 2-Dimethylcyclohexanone, 2831 2, 6-Dimethylcyclohexanone, 2832 1, 1-Dimethylcyclohexene-3-ol, 2830 Dimethylcyclopentamethylene cane, 28411 o'-Dimethyldiasoaminobenzene, 4800 p'-Dimethyldia soa minoben zene, 1, 2-Dimethyl-1, 2-diethylethane, 2936 sym-Dimethyldiethylethylene, 2871 Dimethyldiethylsilicane, 33409 Dimethyldiethylmethane, 2388 5-Dimethyl-o-dihydroxybenzene, 2726 5-Dimethyl-o-dihydroxybenzene, 2727 Dimethyldiisobutylethane, 4413 3, 8-Dimethyldiphenazone, 4711 o, o'-Dimethyldiphenyl, 4758 Dimethyldipropylammonium chloroplatinate, 331210 Dimethyldipropyl silicane, 28415 Dimethyl disulfide, 274

Dimethylenemethane, 337 Dimethyl ether, 263 Dimethylethylacetic acid, 1646 Dimethyl ethyl carbinol, 1081 1, 1-Dimethylethylene, 684 sym-1, 2-Dimethylethylene, 685 sym-1, 2-Dimethylethyleneglycol, 796 1. 1-Dimethyl-2-ethylethylene, 1613 1, 2-Dimethyl-2-ethylethylene, 1614 Dimethylethylisopropyl silicane, 38416 Dimethylethylpropyl silicane, 38412 Dimethylethylsulfonium hydroxide, 837 Dimethyl fumarate, 1499 2, 5-Dimethylfuran, 1496 5-Dimethylfurfurane-3-carboxylic acid, 2180 2, 3-Dimethyl-a-glucose, 2918 2, 3-Dimethyl-6-glucose, 2919 Dimethylglyoxime, 705 1, 1-Dimethylguanidine sulfate, 1773 2, 6-Dimethyl-1, 5-heptadiene-1-aldehyde, 3849 2, 4-Dimethylheptane, 3347 2, 5-Dimethylheptane, 3348, 3349 2, 6-Dimethylheptane, 3350 2, 4-Dimethylheptane-4-ol, 3363 3, 5-Dimethylheptane-4-ol, 3358 3, 6-Dimethylheptane-3-ol, 3361 4, 6-Dimethylheptane-2-ol, 3360 2, 5-Dimethylhexane, 2933 2, 3-Dimethylhexane, 2934 2, 4-Dimethylhexane, 2935 3, 4-Dimethylhexane, 2936 1, 1-Dimethylhydrazine, 301 2, 3-Dimethylhydroquinone, 2732 2, 5-Dimethylhydroquinone, 2733 2, 6-Dimethylhydroquinone, 2734 4, 4-Dimethyl-1-hydroxybutane, 1724 2, 4-Dimethyl-2-hydroxyhexane, 2957 2, 5-Dimethyl-1-hydroxyhexane, 2956 2, 5-Dimethyl-2-hydroxyhexane, 2954 2, 5-Dimethyl-3-hydroxyhexane, 2972 3, 5-Dimethyl-3-hydroxyhexane, 2964 Dimethylhydroxylamine, 286 Dimethylisoamyl carbinol, 2954 Dimethylisobutyl carbinol, 2397 Dimethyl isophthalate, 3614 Dimethylisopropyl carbinol, 1725 Dimethyl isosuccinate, 1569 Dimethylketene, 615 Dimethylketine, 2799 Dimethyl ketol, 721 Dimethyl malate, 1576 Dimethyl maleate, 1500 Dimethylmalonamide, 994.1 Dimethyl malonate, 948 Dimethylmalonic acid, 944 Dimethyl-p-methylhexylcarbinol, 3972 Dimethyl muconate, 2749 1, 4-Dimethylnaphthalene, 4279 2, 3-Dimethylnaphthalene, 4280 2, 6-Dimethylnaphthalene, 4283 Dimethyl-a-naphthylamine, 4304 Dimethyl-6-naphthylamine, 4305 1-(5, 8-Dimethyl-2-naphthyl) - propionic acid, 4936 Dimethylnitrosamine, 258 2, 6-Dimethyloctane, 3994 2, 7-Dimethyloctane, 3995 3, 6-Dimethyloctane, 3996, 3997 2, 3-Dimethyl-2-octene, 3957 2, 6-Dimethyl-1(2)-octene, 3958 3, 7-Dimethyl-n-octyl alcohol, 4003

Dimethyl oxalate, 631

Dimethyloxamide, 704

Dimethylparabanic acid, 889

2, 2-Dimethylpentane, 2394

2, 4-Dimethylpentane, 2387

2, 4-Dimethyl-1, 3-pentadiene, 2276

2, 4-Dimethyl-2, 3-pentadiene, 2277

3, 3-Dimethylpentane, 2388 2, 3-Dimethyl-2-pentene, 2334 2, 4-Dimethyl-2-pentene, 2325 2, 3-Dimethylphenol, 2705 2, 4-Dimethylphenol, 2706 2, 6-Dimethylphenol, 2707 3, 4-Dimethylphenol, 2708 3, 5-Dimethylphenol, 2709 1, 1-Dimethyl-m-phenylenediamine, 2800 1-Dimethyl-p-phenylenediamine, 2801 2, 6-Dimethylphenylhydrasine, 2802 Dimethylphosphinic acid, 292 Dimethyl o-phthalate, 3615 a-2, 5-Dimethylpiperasine, 1718 Dimethylpiperasine tartrate, 3985 2, 2-Dimethylpropane, 1074 2, 2-Dimethylpropane-1-ol, 1082 Dimethyl propenyl carbinol, 1629 2, 5-Dimethylpyrasine, 1482 3, 4-Dimethylpyrazole, 921.2 3. 5-Dimethylpyrasole, 922 2, 4-Dimethylpyridine, 2196 2. 6-Dimethylpyridine, 2197 3, 4-Dimethylpyridine, 2198 3, 5-Dimethylpyrocatechol, 2726 4, 5-Dimethylpyrocatechol, 2727 Dimethyl-7-pyrone, 2176.1 Dimethyl pyrotartrate, 2310 1, 2-Dimethylpyrrole, 1516 2, 3-Dimethylpyrrole, 1517 2, 4-Dimethylpyrrole, 1518 2. 5-Dimethylpyrrole, 1519 Dimethylphosphine, 294 2, 4-Dimethylquinoline, 4044 2, 6-Dimethylquinoline, 4045 2, 7-Dimethylquinoline, 4046 3, 4-Dimethylquinoline, 4047 4, 6-Dimethylquinoline, 4048 4, 7-Dimethylquinoline, 4049 2, 4-Dimethylquinoline methiodide, 4530 1, 2-Dimethylquinone, 2591 1, 3-Dimethylquinone, 2592 1, 4-Dimethylquinone, 2593 Dimethyl racemate, 1580 2, 4-Dimethylresorcinol, 2728 2, 5-Dimethylresorcinol, 2729 4, 5-Dimethylresorcinol, 2730 4, 6-Dimethylresorcinol, 2731 Dimethylsilicane, 33405 Dimethyl succinate, 1568 1. 1-Dimethylsuccinic acid, 1563 Dimethyl sulfate, 269 Dimethyl sulfide, 272 Dimethyl sulfite, 266 Dimethylsulfone, 265 Dimethyl d-tartrate, 1581 Dimethyl tartronate, 956 Dimethyl telluride, 277 Dimethyl terephthalate, 3616 7, 8-Dimethyltetradecane, 5166 2, 3-Dimethylthiophene, 1509 2, 4-Dimethylthiophene, 1510 2, 5-Dimethylthiophene, 1511 3, 4-Dimethylthiophene, 1512 o-Dimethyltoluidine, 3258 m-Dimethyltoluidine, 3259 p-Dimethyltoluidine, 3260 Dimethyltriazene, 290.1 1, 1-Dimethyltrimethylene, 980 p, p'-Dimethyltriphenylmethane, 5625 1, 1-Dimethylurea, 502 1, 2-Dimethylurea, 503 Dimethyl ureindihydroxysuccinate, 1, 3-Dimethyluric acid, 2154 1, 7-Dimethyluric acid, 2155 1, 9-Dimethyluric acid, 2156 3, 9-Dimethyluric acid, 2157 1, 3-Dimethylxanthine, 2151

1, 7-Dimethylxanthine, 2152 3, 7-Dimethylxanthine, 2153 a-Dinaphthol, 5502 8-Dinaphthol, 5503 a, a'-Dinaphthyl, 5491 α, β'-Dinaphthyl, 5492 β, β'-Dinaphthyl, 5493 β, β'-Dinaphthylamine, 5508 sym-Di-(a-naphthyl)hydrazine, 5513 sym-Di-(β-naphthyl)hydrazine, 5514 α, β'-Dinaphthyl ketone, 5612 β, β'-Dinaphthyl ketone, 5613 α, α'-Dinaphthylmethane, 5616 a, B'-Dinaphthylmethane, 5617 8, 8'-Dinaphthylmethane, 5618 α, α'-Dinaphthyl sulfide, 5507 Dinicotinic acid, 1905 Dinitroacenaphthene, 4191 2, 3-Dinitroacetanilide, 2526 2. 4-Dinitroacetanilide, 2527 2. 6-Dinitroacetanilide, 2528 3, 4-Dinitroacetanilide, 2529 3. 6-Dinitroa cetanilide, 2530 3, 5-Dinitro-4-aminobenzoic acid, 1920 4, 6-Dinitro-2-aminophenol, 1364 2, 3-Dinitroaniline, 1358 2, 4-Dinitroaniline, 1359 2, 5-Dinitroaniline, 1360 2, 6-Dinitroaniline, 1361 3, 4-Dinitroaniline, 1362 3, 5-Dinitroaniline, 1363 2, 4-Dinitroanisol, 1990 2, 5-Dinitroanisol, 1991 2, 6-Dinitroanisol, 1992 3. 4-Dinitroanisol, 1993 3. 5-Dinitroanisol, 1994 1, 3-Dinitroanthraquinone, 4608 2, 4-Dinitrobensaldehyde, 1832 2, 6-Dinitrobenzaldehyde, 1833 o-Dinitrobenzene, 1271 m-Dinitrobensene, 1272 p-Dinitrobensene, 1273 1, 3-Dinitrobenzene-4-sulfonic acid, 2, 3-Dinitrobensoic acid, 1834 2, 4-Dinitrobenzoic acid, 1835 2, 5-Dinitrobensoic acid, 1836 2, 6-Dinitrobenzoic acid, 1837 3. 4-Dinitrobensoic acid, 1838 3. 5-Dinitrobensoic acid, 1839 p, p'-Dinitrobensophenone, 4423 3, 5-Dinitrocresol, 1996 2, 4-Dinitro-m-cresol, 1995 2-Dinitro-4, 5-dibromobenzene, 1122.1 1, 3-Dinitro-4, 6-dibromobenzene, 1122.2 2, 4-Dinitro-N-diethylaniline, 3722 4, 5-Dinitro-1, 2-dimethoxybenzene, 2566.1 2, 4-Dinitrodimethylaniline, 2682.1 o, o'-Dinitrodiphenyl, 4192 m, m'-Dinitrodiphenyl, 4193 p, p'-Dinitrodiphenyl, 4194 1. 1-Dinitroethane, 202 Dinitroglycerine, 443 3, 5-Dinitroguaiacol, 1997 2,4-Dinitro-4'-hydroxydiphenylamine, 4217 Dinitromethane, 33 1, 2-Dinitronaphthalene, 3435 1, 3-Dinitronaphthalene, 3436 1, 4-Dinitronaphthalene, 3437 1, 5-Dinitronaphthalene, 3438 1, 6-Dinitronaphthalene, 3439 1, 7-Dinitronaphthalene, 3440 1. 8-Dinitronaphthalene, 3441

1, 6-Dinitro-β-naphthol, 3445

1, 8-Dinitro-β-naphthol, 3446

2, 4-Dinitro-α-naphthol, 3442

4, 5-Dinitro-α-naphthol, 3443

4, 8-Dinitro-α-naphthol, 3444

2, 3-Dinitrophenol, 1274 2, 4-Dinitrophenol, 1275 2, 5-Dinitrophenol, 1276 2, 6-Dinitrophenol, 1277 3, 4-Dinitrophenol, 1278 3, 5-Dinitrophenol, 1279 2. 4-Dinitroresorcinol, 1280 4. 6-Dinitroresorcinol, 1281 3, 5-Dinitrosalicylic acid, 1840 α-p, p'-Dinitrostilbene, 4662 β-p, p'-Dinitrostilbene, 4663 2, 3-Dinitrotoluene, 1984 2, 4-Dinitrotoluene, 1985 2, 5-Dinitrotoluene, 1986 2, 6-Dinitrotoluene, 1987 3, 4-Dinitrotoluene, 1988 3, 5-Dinitrotoluene, 1989 2. 6-Dinitrotoluene-4-sulfonic acid. 1998 2, 3-Dinitro-p-xylene, 2564 2, 5-Dinitro-m-xylene, 2562 2, 5-Dinitro-p-xylene, 2565 2, 6-Dinitro-p-xylene, 2566 3, 4-Dinitro-o-xylene, 2558 3, 6-Dinitro-o-xylene, 2559 4, 5-Dinitro-o-xylene, 2560 4, 5-Dinitro-m-xylene, 2563 4, 6-Dinitro-o-xylene, 2561 Di-n-octyl carbinol, 5261 Dioform, 132 Diogonal, 4123 Dionine, 5461 Dioscorine, 4551 Dioscorine hydrochloride, 4555 Diosmin, 5928 Dioxindol, 2512 Dipentene, 3806 Diphenacyl, 5069 1, 8-Diphenic acid, 4683 1, 9-Diphenic acid, 4684 1, 10-Diphenic acid, 4685 2, 9-Diphenic acid, 4686 Diphenic anhydride, 4625 o, o'-Diphenol, 4243 o, p'-Diphenol, 4244 m, m'-Diphenol, 4245 p, p'-Diphenol, 4246 Diphenyl, 4219 Diphenyla cetaldehyde, 4723 N-Diphenylacetamide, 4752 Diphenylacetic acid, 4732 Diphenylacetylene, 4650 p-Diphenylaldehyde, 4445 Diphenylamine, 4270 Diphenylamine hydrochloride, 4284 Diphenylammonium chloroplatinate, 331198 Diphenylarsine, 4264 Diphenylarsine chloride, 4220 Diphenylarsonic acid, 4265 p. p'-Diphenylasobensene, 5820 p, p'-Diphenylazoxybenzene, 5821 p-Diphenylbensene, 5274 Diphenylbenzylamine, 5408 Diphenyl carbinol, 4507 Diphenyl carbonate, 4466 Diphenylchloroarsine, 4220 Diphenylcyanoarsine, 4440 Diphenyldiacetylene, 5025 Diphenyl-2, 3'-dicarboxylic acid, 4684 Diphenyl-2, 4'-dicarboxylic acid, 4683 Diphenyl disulfide, 4261 Diphenylene disulfide, 4201 Diphenyleneketone, 4425 Diphenylene oxide, 4195 o-Diphenylenemethane, 4439 1, 1-Diphenylethane, 4757 1, 2-Diphenylethane, 4756 1, 1-Diphenylethylene, 4707 1, 2-Diphenylethylene, 4708 Diphenylformamide, 4480 α-Diphenylglyoxime, 4712

Diphenylguanidine, 4518 Diphenylguanidine trithiocarbonate, 5922 1. 1-Diphenvlhydrasine, 4288 1, 2-Diphenylhydrasine, 4289 p, p'-Diphenylhydrasobensene, 5822 Diphenylimide, 4211 Diphenyliodonium chloride, 4221.1 Diphenylketene, 4670 Diphenylmaleic anhydride, 5028.1 Diphenyl malonate, 4908 Diphenylmethane, 4490 Diphenylmethane-o-nitrile, 4697 1, 5-D i p h e n y l-3-methylpyrasole, 5066.1 Diphenyl-m-phenylenediamine, 5287 Diphenylphosphine, 4278 Diphenylpiperasine, 5100 Diphenyl selenide, 4262 Diphenyl succinate, 5074 Diphenyl sulfide, 4260 Diphenylsulfone, 4249 Diphenyl sulfoxide, 4242 Diphenyl tartrate, 5077 Diphenyl telluride, 4263 1, 2-Diphenylthioures, 4504 Diphenyl-m-tolylmethane, 5520 1, 1-Diphenylurea, 4501 1, 2-Diphenylurea, 4500 Dipicolinic acid, 1903 Dipicrylamine, 4181 Dipropargyl, 1366 Dipropionanilide, 4330 n-Dipropylamine, 1760 Di-n-propylaniline, 4368.8 5, 5-Dipropylbarbituric acid, 3841 Dipropyl carbinol, 2399 Di-n-propyl carbonate, 2365 Dipropylhexylmethane, 4585 Dipropyl ketone, 2344 Dipropyl malate, 3944 Dipropyl malonate, 3313 Dipropylnitrosamine, 1720 Di-n-propyl oxalate, 2848 Dipropyl succinate, 3943 Dipropyl sulfide, 1754 Dipropyl tartrate, 3945 Di-sec.-propyl tartrate, 3945.1 2, 3'-Dipyridyl, 3497 3, 3'-Dipyridyl, 3498 4, 4'-Dipyridyl, 3499 Dipyrryl ketone, 3068 2, 3'-Diquinolyl, 5267 2, 7'-Diquinolyl, 5268 6, 6'-Diquinolyl, 5269 8, 8'-Diquinolyl, 5270 2, 2'-Diresorcinol, 4251 4, 4'-Diresorcinol, 4252 5, 5'-Diresorcinol, 4253 Disalicylamide, 4706 Disalicylic aldehyde, 4681 Displosal, 4692 Distyrene, 5062.1 Ditaine, 5727 Ditamine, 5422 1, 2-Dithioglycerol, 509 Dithiohydroquinone, 1433 Dithioresorcinol, 1432 Dithiosalicylic acid, 4689 Ditolaneasotide, 5033 o, o'-Ditolyl, 4758 o, m'-Ditolyl, 4759 o, p'-Ditolyl, 4760 m, m'-Ditolyl, 4761 p, p'-Ditolyl, 4762 o-Ditolylamine, 4790 m-Ditolylamine, 4791 p-Ditolylamine, 4792 Di-o-tolylguanidine, 4940 Di-p-tolyl ketone, 4915 Ditolyl sulfone, 4785 1, 2-Di-o-tolyl thiourea, 4934

1, 2-Di-m-tolylthiourea, 4935 1, 2-Di-o-tolylurea, 4931 1, 2-Di-m-tolylurea, 4932 1. 2-Di-p-tolylurea, 4933 Diversine, 5579 Divinyl, 596 Divinyl sulfide, 642 Di-m-xylylsulfone, 5111 n-Docosane, 5772 Docosanic acid, 5768 Docosyl alcohol, 5773 Docosyl iodide, 5770 n-Dodecane, 4411 n-Dodecyl alcohol, 4415 n-Dodecylamine, 4417 n-Dodecylene, 4400 n-Dotriacontane, 6048 Drimine, 4527 Dulcin, 3232 Dulcitol, 1750 Duotal, 4924 Durene, 3732 Dypnone, 5067 Dysprosium ethyl sultate, 282081 d-Ecgonine, 3292 l-Ecgonine, 3293 dl-Ecgonine, 3294 l-Ecgonine hydrochloride, 3298 dl-Ecgonine hydrochloride, 5343 Ecgonine methyl ester, 3886 Echicerin, 5999 Echinopsine, 3559 Echiretin, 6086 Echitamine, 5727 Echitein, 6135 Echitin, 6042 n-Eicosane, 5610 Eicosenic acid, 5604 Eicosinic acid, 5602 Eicosyl alcohol, 5611 n-Eicosyl iodide, 5609 Elaidie acid, 5357 a-Elaterin, 5956 6-Elaterin, 5957 Elaterone, 5834 Elemicin, 4353 a-Elemol, 4998 6-Elemol, 4999 Elemone, 4991 Eleomargaric acid, 5345 α-Eleostearic acid, 5345 Ellagic acid, 4609 Embelic acid, 5339 Emetamine, 5973 Emetine, 5991 Emetine dihydrobromide, 5992 Emetine dihydrochloride, 5993 Emetine dihydroiodide, 5994 Emodin methyl ether, 5050 Endermol, 830 Ephedrine, 3793 Ephedrine hydrochloride, 3828 Epicarin, 5276 a-Epichlorhydrin, 379 Enihydrin alcohol, 453 Erbium acetate, \$2085 Erbium ethyl sulfate, \$2086 Ergosterol, 5902, 5932 Ergothioneine, 3294.1 Ergotinine, 6083 Ergotoxine, 6084 Ergotoxine phosphate, 6085 Ericin, 3182 Eriodictyol, 4909 Eriodictyonone, 5080 Eriodonol, 5419 Erucamide, 5766 Erucio acid. 5764 Erucic anhydride, 6145 Erucic anilide, 5963 Erucyl alcohol, 5767 Erythrene, 596

#-Erythrital 808 Erythritol tetranitrate, 611 Erythrol, 720 Esculetin, 3019 Faculetinic acid, 3093 Esculin, 4938 Esdragol, 3655 Escrine, 4960 Escroline, 4539 Ethane, 252 Ethane-1, 2-disulfonic acid, 271 Ethanetetracarboxylic acid, 1290 Ether, 793 Etheserolene, 4815 Ethocaine, 4557 Ethoxyacetic acid, 729 p-Ethoxy-N-aminoacetylaniline, 3751 m-Ethoxyaniline, 2787 p-Ethoxyaniline, 2788 3-Ethoxybenzidine, 4808 o-Ethoxybensoic acid, 3160 m-Ethoxybensoic acid, 3161 p-Ethoxybenzoic acid, 3162 m-Ethoxy-p, p'-diaminodiphenyl, 4808 3-Ethoxy-4-isopropyltoluene, 4367.8 p-Ethoxyphenylsuccinimide, 4309 N-Ethylacetamide, 763 N-Ethylacetanilide, 3709 Ethyl acetate, 725 Ethyl acetoacetate, 1561 1-Ethyl-3-acetylbutyric acid, 2842 Ethylacetylene, 598 Ethyl acid carbonate. 459 Ethyl acrylate, 938 1-Ethylacrylic acid, 933 Ethyl alcohol, 262 a-Ethylalisarin, 5046 Ethyl allophanate, 707 Ethyl allyl ether, 1001 Ethylamine, 283 Ethylamine hydrobromide, 296 Ethylamine hydrochloride, 298 Ethylamine hydroiodide, 299 Ethylaminoacetic acid, 770 Ethylaminoacetic acid hydrochloride, Ethyl p-aminobensoate, 3213 m-Ethylaminobensoic acid, 3207 o-Ethylaminophenol, 2782 m-N-Ethylaminophenol, 2783 chloroplatinate, Ethylammonium ₩1186 Ethyl n-amyl ketone, 2893 Ethyl angelate, 2298 o-Ethylaniline, 2764 m-Ethylaniline, 2765 p-Ethylaniline, 2766 N-Ethylaniline, 2763 Ethylaniline-m-sulfonic acid, 2793 Ethylantipyrine, 4530.1 Ethyl anisate, 3688 9-Ethylanthracene, 5063 Ethyl anthranilate, 3214 Ethylarsine, 279 Ethylarsonic acid, 281 Ethyl atropate, 4061 1-Ethylbarbituric acid, 1488 Ethyl behenate, 5859 Ethyl behenolate, 5851 N-Ethylbensamide, 3198 Ethylbensene, 2683 Ethyl bensilate, 5087 Ethyl bensoate, 3154 o-Ethylbensoic acid, 3143 m-Ethylbensoic acid, 3144 p-Ethylbensoic acid, 3145 Ethyl benzoylacetate, 4064 Ethyl bensylacetoacetate, 4531 Ethylbenzylaniline, 4939 Ethyl benzyl ether, 3243 Ethyl benzyl ketone, 3660 Ethyl borate, 331825

Ethyl d-bornyl ether, 4385 Ethyl brassidate, 5852 Ethyl bromide, 220 Ethyl 1-bromo-n-butyrate, 1592 Ethyl 1-bromoisobutyrate, 1593 Ethyl 1-bromoisovalerate, 2317 Ethyl 1-bromopropionate, 963 Ethyl 1-bromo-n-valerate, 2316 d-Ethylbutyl carbinol, 2400.1 Ethyl-sec-butyl carbinol, 2402 Ethyl butyl carbonate, 2366 Ethyl n-butyl ether, 1737 Ethyl n-butyl ketone, 2346 Ethyl n-butylmalonate, 3308 Ethyl sec-butylmalonate, 3310 Ethyl n-butyrate, 1654 Ethylcacodyl, 2988 Ethyl camphorate, 4152 Ethyl n-caprate, 4408 Ethyl n-caproate, 2907 Ethyl n-caprylate, 3984 Ethyl carbamate, 492 Ethyl carbonate, 1026 Ethyl chaulmoograte, 5608 Ethyl chloride, 224 Ethyl chloroacetate, 658 Ethyl chloroacetoacetate, 1515 Ethyl chlorocarbonate, 383 Ethyl chloroformate, 383 Ethyl chloromaleate, 2753.1 Ethyl 1-chloropropionate, 968 Ethyl 2-chloropropionate, 969 Ethyl trans-cinnamate, 4062 Ethyl m-cresyl ether, 3244 Ethyl p-cresyl ether, 3245 Ethyl a-crotonate, 1557 Ethyl \$-crotonate, 1558 1-Ethylcrotonic acid, 1552 Ethyl cyanide, 395 Ethyl cyanoacetate, 911 Ethyl cyanocarbonate, 590 Ethyl cyanoformate, 590 Ethylcycloheptane, 3319 Ethylcyclohexane, 2870 Ethyl diacetoacetate, 2814 Ethyl diasoacetate, 609 Ethyl dibromoacetate, 600 Ethyl dichloroacetate, 604 Ethyl 1, 2-dichloropropionate, 921 1 Ethyl diethylacetoacetate, 3937 Ethyl diiodobrassidate, 5850 Ethyl 3, 5-diiodosalicylate, 3058 4-Ethyl-1, 3-dimethylbensene, 3733 5-Ethyl-1, 3-dimethylbenzene, 3734 Ethyl dimethylmalonate, 3311 Ethyldiphenylamine, 4793 Ethyldipropylammonium chloroplatinate, \$1209 Ethyldipropylmethane, 3351 Ethyl dithiobensoate, 3187.1 Ethylene, 180 Ethylenebromhydrin, 221 Ethylene bromide, 184 Ethylenechlorhydrin, 227 Ethylene chloride, 190 Ethylene chlorobromide, 181 Ethylenecyanhydrin, 399 Ethylene cyanide, 560 Ethylene diacetate, 1571 Ethylene-1, 2-diamine, 300 Ethylenediamine hydrate, 307 Ethylenediamine hydrochloride, 306 Ethylenediamine isovalerate, 4420 Ethylenediamine thiocyanate, 788 Ethylene dibromide, 184 Ethylene dichloride, 190 Ethylene diiodide, 197 Ethylene dinitrate, 205 Ethylene dinitrite, 203 Ethylene-ethenyldiamine, 702

Ethylene iodide, 197 Ethyleneiodohydrin, 235

Ethylene mercaptan, 275 Ethylene nitrite nitrate, 204 Ethylene oxide, 209 Ethylene osonide, 216 Ethylene sulfide, 218 Ethyleneurea, 432 Ethyl erucate, 5853 Ethyl ether, 793 Ethylethylene, 686 Ethyl fluoride, 232 Ethyl fluoroacetate, 665 Ethyl formate, 451 Ethyl fumarate, 2812 Ethyl gallate, 3186 Ethyl d-gluconate, 2921 d-α-Ethylglucoside, 2920 Ethyl glutaconate, 3284 Ethyl glutarate, 3312 Ethyl glycerate, 1030 Ethylglycine, 770 Ethylglycine hydrochloride, 781 Ethylglycocoll, 770 Ethylglycocoll hydrochloride, 781 Ethyl glycolate, 733 4-Ethylheptane, 3351 Ethyl heptylate, 3335 5, 5-Ethylheptylbarbituric acid, 4570 Ethyl n-heptyl ether, 3366 Ethyl hexahydrobensoate, 3304 2-Ethylhexane, 2942 3-Ethylhexane, 2942.1 Ethyl hexyl ether, 2976 Ethyl hippurate, 4516 Ethylhydrasine, 302 Ethyl hydroacrylate, 1027 Ethyl hydrocinnamate, 4098 Ethyl hydrogen fumarate, 1501 Ethyl hydrogen malonate, 949 Ethyl hydrogen mesoxalate, 2269 Ethyl hydrogen oxalate, 632 Ethyl hydrogen phthalate, 3617 Ethyl hydrogen d-tartrate, 1582 Ethyl hydroselenide, 276 Ethyl 1-hydroxydiphenylacetic acid, 5087 3-Ethyl-3-hydroxyhexane, 2952 4-Ethyl-3-hydroxyhexane, 2958 a-Ethylhydroxylamine, 287 6-Ethylhydroxylamine, 288 Ethyl 1-hydroxyphenylacetate, 3689 Ethyl hypochlorite, 229 Ethylideneacetone, 927 Ethylidene bromide, 183 Ethylidene chloride, 189 Ethylidene diacetate, 1572 Ethylidene diethyl ether, 1746 Ethylidene dimethyl ether, 801 Ethylidene diurethane, 2877 Ethylidene iodide, 196 Ethylidene nitrite, 202 Ethylideneurea, 433 1-Ethylindasole, 3122 Ethyl iodide, 234 Ethyl iodoacetate, 666 Ethyl 2-iodopropionate, 971 N-Ethylisoamylaniline, 4567 Ethylisoamyl carbinol, 2955 Ethyl isoamyl ether, 2413 Ethyl isoamyl ketone, 2894 Ethylisobutylammonium chloroplatinate, 231196 Ethylisobutyl carbinol, 2401 Ethyl isobutyl ether, 1738 Ethyl isobutyl ketone, 2347 Ethyl isobutylmalonate, 3309 Ethyl isobutyrate, 1655 Ethyl isocrotonyl ether, 1631 Ethyl isocyanate, 397 Ethyl isocyanide, 396 Ethyl isopropylacetoacetate, 3306 Ethylisopropylammonium chloroplatinate, \$1195

Ethylisopropyl carbinol, 1727 Ethyl isopropyl ether, 1087 Ethyl isopropyl ketone, 1637 Ethyl isopropyl malonate, 2849 Ethyl isothiocyanate, 404 Ethyl isovalerate, 2357 Ethyl itaconate, 3285 Ethyl lactate, 1028 Ethyl laurate, 4852 Ethyl levulinate, 2301 Ethyl lignocerate, 5917 Ethyl malate, 2849.1 Ethyl maleate, 2813 Ethyl malonate, 2309 Ethylmalonic acid, 945 Ethyl mandelate, 3689 Ethyl margarate, 5484 Ethylmenthol, 4403 Ethyl I-menthyl ether, 4404 Ethyl mercaptan, 273 Ethyl mesaconate, 3286 Ethyl mesoxalate, 2314 Ethyl p-methoxybensoate, 3688 Ethyl p-methoxycinnamate, 4318.1 Ethyl 3-methoxy-4-hydroxybensoate, 3692 Ethyl methylacetoacetate, 2302 1-Ethyl-2-methylacrolein, 1545 5-Ethyl-5-methylbarbituric acid, 2259 Ethyl 6-methyl-2-phenylquinoline-4carboxylate, 5410 Ethylmorphine hydrochloride, 5461 Ethyl mustard oil, 404 Ethyl muconate, 3776 Ethyl myristate, 5160 a-Ethylnaphthalene, 4282 β-Ethylnaphthalene, 4283 Ethyl-a-naphthylamine, 4306 Ethyl-6-naphthylamine, 4307 Ethyl a-naphthyl ether, 4296 Ethyl β-naphthyl ether, 4297 Ethyl nicotinate, 2663 Ethyl nitrate, 247 Ethyl nitrite, 243 Ethyl m-nitrobensoate, 3115 Ethyl p-nitrobensoate, 3116 Ethyl o-nitrocinnamate, 4053 Ethyl p-nitrocinnamate, 4054 Ethylnitrolic acid, 201 Ethyl o-nitrophenyl ether, 2677 Ethyl p-nitrophenyl ether, 2678 Ethvinonane, 4178.1 Ethyl orthoacetate, 2979 Ethyl orthocarbonate, 3369 Ethyl orthoformate, 2415 Ethyl oxalacetate, 2816 Ethyl oxalate, 1570 Ethyl oxamate, 678 Ethyl oxanilate, 3630 Ethyl palmitate, 5381 Ethyl pelargonate, 4175 3-Ethylpentane, 2392 3-Ethyl-2-pentene, 2326 Ethyl perchlorate, 231 Ethyl-N-phenacetine, 4362 Ethyl phenaceturate, 4330.1 o-Ethylphenol, 2710 m-Ethylphenol, 2711 p-Ethylphenol, 2712 Ethyl phenylacetate, 3677 1-Ethyl-2-phenylacetylene, 3575 Ethyl a-phenylacrylate, 4061 Ethylphenyl carbinol, 3236 Ethyl phenyl ether, 2722 1-Ethyl-1-phenylhydrazine, 2803 1-Ethyl-2-phenylhydrazine, 2804 Ethyl phenyl ketone, 3132 Ethyl phenylmalonate, 4533 Ethyl phenylpropiolate, 4043 a-Ethyl phenylpyruvate, 4065 β-Ethyl phenylpyruvate, 4066 γ-Ethyl phenylpyruvate, 4067

Ethylphenyl sulfone, 2743

1-Ethyl-2-phenylurea, 3231

Ethylphosphine, 295 Ethylphosphinic acid, 293 Ethyl o-phthalate, 4324 Ethyl picrate, 2537 Ethylpiperidine, 2384 Ethyl propargyl ether, 925 Ethyl propiolate, 895 Ethyl propionate, 1017 Ethyl-n-propylacetylene, 2278 Ethylpropylammonium chloroplatinate, 231194 Ethylpropylbarbituric acid, 3275 Ethyl propyl carbinol, 1726, 1726.1 Ethyl propyl ether, 1086 Ethyl propyl ketone, 1636 Ethyl propyl silicon dichloride, 28440 2-Ethylpyridine, 2199 3-Ethylpyridine, 2200 4-Ethylpyridine, 2201 Ethylpyridine-3-carboxylate, 2663 Ethyl pyroracemate, 942 1-Ethylpyrrole, 1520 Ethyl pyruvate, 942 Ethyl rhodanide, 403 Ethyl ricinoleate, 5605 Ethyl salicylate, 3170 Ethyl santoate, 5244.1 Ethyl sebacate, 4846 Ethyl selenide, 816 Ethyl silicon trichloride, 23435 Ethvl sorbate, 2810 Ethyl stearate, 5608 Ethyl styryl ether, 3654 Ethyl succinate, 2847 Ethylsuccinic acid, 1564 Ethyl sulfate, 809 Ethyl sulfide, 814 Ethyl sulfite, 817 Ethyl sulfocyanate, 403 Ethyl sulfone, 802 Ethylsulfone chloride, 230 Ethylsulfuric acid, 268 Ethyl d-tartrate, 2850 Ethyl telluride, 817 Ethyltetrazene, 304 Ethyl thiobensoate, 3135.1 Ethyl thiocyanate, 403 Ethyl thiooxamate, 675 Ethylthionyl chloride, 230 Ethyl tiglate, 2299 Ethyl o-toluate, 3678 Ethyl m-toluate, 3679 Ethyl p-toluate, 3680 o-Ethyltoluene, 3224 m-Ethyltoluene, 3225 p-Ethyltoluene, 3226 o-Ethyltoluidine, 3261 m-Ethyltoluidine, 3262 p-Ethyltoluidine, 3263 Ethyl o-tolylurethane, 4363 Ethyl trichloroscetate, 585 Ethyl trifluoroacetate, 586 Ethyl 3, 4, 5-trihydroxybensoate, 3186 Ethyltriisobutylammonium chloroplatinate, 331220 Ethyltripropylammonium chloroplatinate, 281217 Ethylurea, 504 Ethylurethane, 1067.1 Ethyl n-valerate, 2356 Ethyl vanillate, 3692 4-Ethyl-m-xylene, 3733 5-Ethyl-m-xylene, 3734 a-Eucaine, 5475 B-Eucaine, 4958 a-Eucaine hydrochloride, 5476 β-Eucaine hydrochloride, 4963 Eucalvotol, 3902 Eucarvol, 3762 Eucatropine, 5248

Eucodine, 5460 Eucol. 3171 Eudesmol. 5000 Eugenol, 3666 Eugenol acetate, 4318 Eugenol acid camphorate, 5584 Eugenol bensoate, 5193 Eugenol bensyl ether, 5200 Eugenol cinnamate, 5418 Eugenol ethyl ether, 4339 Eugenol formate, 4068 Eugenol isoamyl ether, 4967 Eugenol methyl ether, 4092 Eugenol propyl ether, 4543 Euonymol, 5679 Euonysterol, 6025 Euphthalmine, 5246 Euphthalmine hydrochloride, 5248 Eupophine, 5314 Eupyrin, 5436 Euquinine, 5801 Euresol, 2619 Europhen, 5732 Europium ethyl sulfate, \$2061 Euxanthic acid, 5421 Euxanthone, 4429 Exalgin, 3199 Excretin, 5601 Farnesol, 5001 Fenchene, 3807 Fencholic acid, 3933 Fenchone, 3852 Fenchone oxime, 3885 Fenchyl alcohol, 3904, 3905, 3906. 3907 Fenchylamine, 3951 Fenchyl chloride, 3878 Fenchylene, 3808 Ferrous naphthalene-β-sulfonate, 31399 Ferulene, 4992 Ferulic acid, 3609 Ferulicaldehyde, 3603 Fichtelite, 5343.1 Fiestin, 4883 Filicic acid, 6096 Filixic acid, 6082 Filmaron, 6151 a-Flavaniline, 5065 a-Flavaspidic acid, 5830 β-Flavaspidic acid, 5831 Flavene, 4674 Flavoline, 5053 Flavon, 4868 Flavopurpurin, 4637 Fluoran, 5489 Fluoranthene, 4866 Fluorene, 4439 Fluorene ketone, 4425 Fluorenol, 4446 Fluorenone, 4425 Fluorescein, 5490 Fluorescin, 5505 Fluoroacetic acid, 163 o-Fluoroaniline, 1388 m-Fluoroaniline, 1389 p-Fluoroaniline, 1390 o-Fluorobensamide, 1971 m-Fluorobenzamide, 1972 p-Fluorobenzamide, 1973 Fluorobensene, 1328 o-Fluorobenzoic acid, 1877 m-Fluorobenzoic acid, 1878 p-Fluorobensoic acid, 1879 o-Fluorobensoyl chloride, 1803 m-Fluorobensoyl chloride, 1804 p-Fluorobenzoyl chloride, 1805 Fluoroethyl alcohol, 233 Fluoroform, 20 α-Fluoronaphthalene, 3469 β-Fluoronaphthalene, 3470

o-Fluoronitrobensene, 1249

m-Fluoronitrobensene, 1250 p-Fluoronitrobensene, 1251 2-Fluoro-5-nitrobenzoic acid. 1823 3-Fluoro-4-nitrobensoic acid, 1824 3-Fluoro-6-nitrobensoic acid, 1825 4-Fluoro-2-nitrobensoic acid, 1826 4-Fluoro-3-nitrobensoic acid, 1827 o-Fluorophenol, 1329 m-Fluorophenol, 1330 p-Fluorophenol, 1331 o-Fluorotoluene, 2057 m-Fluorotoluene, 2058 p-Fluorotoluene, 2059 Formal, 513 Formaldehyde, 35 Formaldehyde cyanhydrin, 170 Formaldoxime, 47 Formanilide, 2073 Formamide, 46 Formic acid, 37 Formopyrine, 5777 p-Formylphenetidine, 3218 Fortoin, 5969 Frangulin, 5630 Fraxetin, 3538 d-Fructose, 1674 Fucitol, 1748 Fucose, 1668 Fulminuric acid, 336 Fumaric acid, 573 Fumarine, 5624 Fumaryl chloride, 545 Fungisterin, 5873 Furan, 569 Furfurylacetone, 2178 Furfuracrolein, 2003 Furfural, 859 Furfuramide, 4900 Furfuran, 569 Furfurine, 4901 Furfuryl alcohol, 893 Furoin, 3528 Fustin, 6170 Gadolinium acetate, 232071 Gadolinium ethyl sulfate, 32072 Gadolinium oxalate, 382070 Gaidic acid, 5150 Galactite, 3314 Galactosazone, 5326 d-α-Galactose, 1675 d-β-Galactose, 1675.1 dl-Galactose, 1676 d-β-Galaheptose, 2376 Galangin, 4881 Galbanic acid, 4564 Galegine, 5057 Galipeine, 5538 Galipidine, 5423 Gallanilide, 4487 Gallanol, 4487 Gallie acid. 2023 Gallobromol, 1802 Gardenin, 4747 Geissospermine, 5467 Gelsemic acid, 4489 Gelsemine, 5711 Gelseminic acid, 3530 Gelseminine hydrobromide, 5720 Gelseminine hydrochloride, 5722 Geneserine, 4961 Geneserine picrate, 5657 Genin, 5737 Genisteine, 5146 Gentianin, 4690 Gentienin, 4691 Gentiin, 5866 Gentiopicrin, 5125 Gentisin, 4690 Geoffrovin, 3721 Geranial 3849 Geranic acid, 3865 Geraniene, 3809

Geraniol, 3908 Geranyl acetate, 4374 Geranylacetic acid, 4371 Geranylacetone, 4577 Geranylamine, 3952 Geranyl butyrate, 4835 Geranyl chloride, 3879 Geranyl formate, 4148 Geranyl methyl ether, 4155 Gitalin, 5964 Gitogenin, 5911 Gitonin, 6154 Glaucine, 5665 d-a-Glucoheptose, 2377 d-Glucosamine, 1709 d-Glucosamine hydroiodide, 1717 6-Glucosan, 1577 d-Glucosazone, 5327 l-Glucosazone, 5328 d-a-Glucose, 1677 d-β-Glucose, 1678 d-Glucoscaldasine, 4401 d-Glucosediethylmercaptal, 4009 Glucose pentascetate, 5138 d-Glucose pentanitrate, 1462 α-Glucose phenylhydrasone, 4367.2 β-Glucose phenylhydrasone, 4367.3 d-Glucosimine, 1710 d-Glucosoxime, 1711 Glutaconic acid, 899 Glutaconic anhydride, 864 Glutaconic nitrile, 851 Glutamine, 995 d-Glutaminic acid, 977 d(l)-Glutamic acid hydrochloride. 988.1 dl-Glutaminic acid, 976 Glutaric acid, 946 Glutario anhydride, 897 Glutaric nitrile, 886 Glutinic acid, 869 Glyceric aldehyde, 454 Glycerol, 515 Glyceryl acetate, 1031 Glyceryl bromide, 371 Glyceryl 1-butyrate, 2367 Glyceryl chloride, 388 Glyceryl diacetate, 2312 Glyceryl-1, 2-dibutyrin, 4163 Glyceryl 1, 3-dinitrate, 443 Glyceryl ether, 1559 Glyceryl 1-ethyl ether, 1092 Glyceryl 1-methyl ether, 806 Glyceryl monosalicylate, 3697 Glyceryl 1-nitrate, 497 Glyceryl 2-nitrate, 498 Glyceryl triacetate, 3289 Glyceryl tribensoate, 5823 Glyceryl tributyrate, 5010 Glyceryl tricaprate, 6056 Glyceryl tricaproate, 5688 Glyceryl tricaprylate, 5940 Glyceryl trielaidate, 6165 Glyceryl triformate, 1506 Glyceryl trimyristate, 6147 Glyceryl trinitrate, 407 Glyceryl trinitrite, 406 Glyceryl trioleate, 6166 Glyceryl tripalmitate, 6157 Glyceryl triricinoleate, 6167 Glyceryl trisalicylate, 5824 Glyceryl tristearate, 6169 Glycide, 453 Glycine, 241 Glycocholic acid, 5908 Glycocoll, 241 Glycogen, 1578 Glycol, 264 Glycol acetate, 734 Glycolbromhydrin, 221 Glycolchlorhydrin, 227 Glycol diacetate, 1571

C-TABLE: INDEX

Glycol dimethyl ether, 798 Glycol dinitrate, 205 Glycol ethyl ether, 799 Glycoliodohydrin, 235 Glycolic acid, 214 Glycolic aldehyde, 211 Glycolic amide, 245 Glycolic anhydride, 634 Glycolic nitrile, 170 Glycol methyl ether, 512 Glycol salicylate, 3184 Glycoluric acid, 438 Glycosal, 3697 Glycyphylline, 5658 Glycyrrhisic acid, 6142 Glyoxal, 146 Glyoxaline, 350 Glyoxime, 200 Gnoscopine, 5703 Gossypetin, 4890 Granatic acid, 2817 Granatinine, 2857 Granatoline, 2860 Grindelol, 5807 Guacamphol, 5233 Guaethol, 2738 Guaiscol, 2174 Guaiscolsalol, 4746 Gusiaconic acid, 5432 Guaiacyl acetate, 3171 Guaiacyl acid camphorate, 5233 Guaiacyl benzoate, 4740 Guaiacyl benzyl ether, 4782 Guaiacyl carbonate, 4924 Guaiacyl cinnamate, 5070 Guaiacyl ethyl ether, 3249 Guaiacyl glyceryl ether, 3775 Guaiacyl methyl glycolate, 3694 Guaiacyl salicylate, 4746 Guaiacyl valerate, 4351 Guaiadol, 2066 Gusiamar, 3775 Guaiaquin, 6063 Guaiol, 5142.1 Guajene, 4977 Guajol, 5002 Guanidine acetate, 527 Guanidine carbonate, 535 Guanidine hydrochloride, 75 Guanidine lactate, 786 Guanidine nitrate, 80 Guanidine nitrite, 79 Guanidine picrate, 2158 Guanidine thiocyanate, 261 Gujasanol, 4556 Gulososazone, 5329 Guvacine, 1521 Gynocardic acid, 5358 Gynocardine, 4553 Gynoval, 5006 Halasone, 1866 Harmaline, 4524 Harmalol, 4290 Harmine, 4502 Hartin, 3853 Hedonal, 1703 Helleborein, 5685 Helleboresin, 5990 Helleboretin, 4824 Helleborin, 6095 Helenin, 4950 l-Helicin, 4534 Heliotropin, 2474 Helmitol, 4369 Hematein, 5051 Hematoporphyrin, 5108 Hematoxylin, 5078 Hemimelitic acid, 3020 Hemimellitene, 3227 Hemipinic acid, 3626 Heneicosamide, 5693 n-Heneicosane, 5694

9-Heneicosene, 5690 Heneicosonic acid, 5692 n-Hentriacontane, 6028 Heptachloroanthracene, 4592 Heptachloropropane, 312 n-Heptacosane, 5942 n-Heptadecane, 5260 Heptadecan-9-ol, 5261 8-Heptadecene, 5254 Heptadecylamine, 5262 Heptadecylic acid, 5257 2, 4-Heptadiene, 2279 Heptaldehyde, 2343 Heptamethylene, 2327 n-Heptane, 2389 Heptane-1, 7-dicarboxylic acid, 3307 Heptanilide, 4549 1, 3, 5-Heptatriene, 2241 a-Heptene, 2332 β-Heptene, 2329 2-Heptene-4-ol, 2336 a-Heptine, 2275 β-Heptine, 2280 γ-Heptine, 2278 n-Heptyl acetate, 3336 n-Heptyl alcohol, 2408 n-Heptylamine, 2419 n-Heptyl bromide, 2380 n-Heptyl chloride, 2381 n-Heptylene, 2332 n-Heptyl ether, 4857 n-Heptyl fluoride, 2382 n-Heptyl formate, 2908 n-Heptylic acid, 2351 n-Heptylic amide, 2385 n-Heptylic anhydride, 4843 n-Heptylic oxime, 2386 n-Heptyl iodide, 2383 n-Heptyl nitrile, 2320 n-Heptyl propionate, 3985 Heraclin, 6029 Heroine, 5648 Heroine hydrochloride, 5654 Hesperetin, 5079 Hesperetinic acid, 3610 Hesperetol, 3137 Hesperidin, 5718 Hetralin, 4367.5 Hexaasobensene, 1286 Hexabromobenzene, 1107 Hexabromoethane, 87 Hexabromophenol, 1108 Heaxehloroanthracene, 4595 Hexachlorobensene, 1110 Hexachloroethane, 92 Hexachloronaphthalene, 3373 Hexachlorophenol, 1111 n-Hexacosane, 5918 n-Hexadecane, 5167 Hexadecylacetylene, 5353 n-Hexadecyl alcohol, 5168 a-Hexadecylene, 5156 1, 5-Hexadiene, 1534 2, 4-Hexadiene, 1535 Hexaethylbenzene, 5340 Hexahydroanthracene, 4802 Hexahydrobensaldehyde, 2289 Hexahydrobensene, 1612 Hexahydrobenzoic acid, 2293 Hezahydrobenzyl alcohol, 2337 Hexahydro-o-cresol, 2339 Hexahydro-p-cresol, 2342 l-Hexahydro-m-cresol, 2340 dl-Hexahydro-m-cresol, 2341 Hexahydrocumene, 3320 Hexahydro-p-cymene, 3961 cis-Hexabydrohomophthalic a c i d, 3281 trans-Hexahydrohomophthalic acid,

Hexahydronaphthalene, 3735

Hexahydropyridine, 1054

Hexahydrosalicylic acid, 2300 m-Hexahydrothiocresol, 2379 Hexahydrothiophenol, 1687 Hexahydrotoluene, 2330 Hexaiodobensene, 1112 Hexal, 4541 Hexamethylbensene, 4365 Hexamethyldisilicane, 28425 Hexamethylenediamine, 1772 Hexamethyleneglycol, 1745 Hexamethylenetetramine, 1626 ethobro-Hexamethylenetetramine mide, 2923 Hexamethylenetetraminemethy lene citrate, 4369.1 Hexamethylenetetramine perchlorate. 1696 Hexamethylenetetramineresorcinol, 4367.5 Hexamethylenetetraminesalicylsulfonic acid, 4541 Hexamethylethane, 2943 Hexamethyl selenide, 1690.1 Hexamine, 1626 n-Hexane, 1713 Hexane-1, 5-diol, 1744 Hexane-1, 6-diol, 1745 Hexanitrodiphenylamine, 4181 Hexanitroethane, 98 Hexapropoxydisilicane oxide, 23432 Hexatriacontane, 6107 2-Hexene-4-ol, 1628 1, 2-Hexenic acid, 1553 4, 5-Hexenic acid, 1554 Hexenyl alcohol, 1629 Hexenyl ether, 4386 n-Hexine, 1532 n-Hexyl acetate, 2909 d-\$-Hexyl acetate, 2909.1 n-Hexviscetviene, 2824 n-Hexyl alcohol, 1728 n-Hexylamine, 1762 2-Hexylamine, 1762.1 n-Hexyl bromide, 1692 Hexylbutylene, 3956 n-Hexyl chloride, 1695 n-Hexylene, 1610 n-Hexyl ether, 4416 n-Hexyl formate, 2358 n-Hexyl iodide, 1697 Hippuric acid, 3111 Histidine, 1529 Histidine dihydrochloride, 1598 Histidine hydrochloride, 1539 Holarrhenine, 5839 Holocaine, 5325 Holocaine hydrochloride, 5331 Homoanthranilic acid, 2659 Homostropine, 5128 Homoatropine hydrobromide, 5131 Homoatropine hydrochloride, 5132 Homoatropine salicylate, 5789 Homoatropine sulfate, 6033 Homocatechol, 2172 a-Homochelidonine, 5649 6-Homochelidonine, 5650 γ-Homochelidonine, 5651 Homocinchonidine, 5443 Homocinchonine, 5442 Homoeriodyctiol, 5080 Homoeuonysterol, 6126 Homogentisinic acid, 2626 Homomesityl oxide, 2835 Homonopinol, 3921 Homophorone, 4370 Homopyrocatechol, 2172 p-Homosaligenin, 2735 Homotaraxasterol, 5874 Homotropine, 3315 Hordenine, 3794 Hydantoic acid, 438 Hydantoin, 354

Hydracetine, 2693 Hydrastine, 5635 Hydrastinine, 4077 Hydrastinine hydrochloride, 4083 Hydrastinine sulfate, 4114 Hydrastininic acid, 4037 Hydratropic acid, 3146 Hydrasobensene, 4289 o-Hydrasobensoic acid, 4719 m-Hydrasodimethylaniline, 5133 p-Hydrasodiphenyl, 5822 Hydrasoindole, 5058 α, α'-Hydrasonaphthalene, 5513 β, β'-Hydrasonaphthalene, 5514 o-Hydrasophenetol, 5119 o-Hydrasotoluene, 4803 p-Hydrasotoluene, 4805 2-Hydraso-p-xylene, 5118 3-Hydraso-o-xylene, 5114 4-Hydraso-o-xylene, 5115 4-Hydrazo-m-xylene, 5116 5-Hydraso-m-xylene, 5117 Hydrindene, 3121 Hydrindic acid, 2512 a-Hydrindone, 3070 6-Hydrindone, 3071 Hydrobenzamide, 5622 dl-Hydrobensoin, 4781 Hydrocaffeic acid, 3176 Hydrocarbostyril, 3103 Hydrocarpic acid, 5147 Hydrochelidonic acid, 2268 Hydrochelidonic anhydride, 2185 Hydrocinchonidine, 5462 Hydrocinchonine, 5464 Hydrocinna maldehyde, 3130 Hydrocinnamic acid, 3147 Hydrocinnamyl alcohol, 3237 Hydroconquinine, 5577 Hydrocotarnine, 4333 Hydrocotoin. 4921 m-Hydrocoumaric acid, 3164 Hydrocupreine, 5468 Hydrocyanic acid, 22 Hydrocyanic acid (Tetramer), 567 Hydroipecamine, 5955 a-Hydrojuglon, 3521 β-Hydrojuglon, 3522 α-Hydropiperic acid, 4072 Hydroquinidine, 5577 Hydroquinine, 5578 Hydroquinol, 1416 Hydroquinol diacetate, 3618 Hydroquinol diethyl ether, 3768 Hydroquinol dimethyl ether, 2739 Hydroguinol ethyl ether, 2740 Hydroquinol methyl ether, 2176 Hydrotropilidene, 2287 Hydroxyacetamide, 245 Hydroxyacetic acid, 214 Hydroxyacetone, 449 o-Hydroxyacetophenone, 2581 m-Hydroxyacetophenone, 2582 p-Hydroxyacetophenone, 2583 3-Hydroxy-2-amylene-1, 4-naphthoquinone, 4920 1-Hydroxyanthracene, 4668 2-Hydroxyanthracene, 4669 9-Hydroxyanthracene, 4667 2-Hydroxyanthraquinone, 4624 p-Hydroxyasobensene, 4227 o-Hydroxybenzaldehyde, 2004 m-Hydroxybenzaldehyde, 2005 p-Hydroxybensaldehyde, 2006 o-Hydroxybenzamide, 2078 m-Hydroxybensamide, 2079 p-Hydroxybensamide, 2080 o-Hydroxybensoic scid, 2013 m-Hydroxybensoic acid, 2014 p-Hydroxybensoic acid, 2015 o-Hydroxybenzophenone, 4452 m-Hydroxybensophenone, 4453

p-Hydroxymethylbensoic acid, 2599

1-Hydroxy-2-methylhexane, 2405

1-Hydroxy-5-methylhexane, 2406

2-Hydroxy-2-methylhexane, 2396

2-Hydroxy-5-methylhexane, 2408

3-Hydroxy-2-methylhexane, 2411

3-Hydroxy-3-methylhexane, 2409

3-Hydroxy-4-methylhexane, 2402

3-Hydroxy-5-methylhexane, 2401

3-Hydroxy-2-methylpentane, 1727

2-Hydroxy-2-methylquinoline, 3554

4-Hydroxy-4-methylquinoline, 3555

6-Hydroxy-4-methylquinoline, 3556

7-Hydroxy-2-methylquinoline, 3557

8-Hydroxy-2-methylquinoline, 3558

2-Hydroxy-α-naphthaldehyde, 4026

4-Hydroxy-α-naphthaldehyde, 4027

3-Hydroxy-\$-naphthoic acid, 4031

8-Hydroxy-α-naphthoic acid, 4028

o-Hydroxyphenylacetic acid, 2600

m-Hydroxyphenylacetic acid, 2601

p-Hydroxyphenylacetic acid, 2602

1-Hydroxyphenylacetonitrile, 2509

1-Hydroxyphenylacetic acid, 2612,

2-(p-Hydroxyphenyl)-ethylamine,

2-(2-Hydroxyphenyl)-propionic acid,

2-Hydroxy-o-phthalic acid, 2483

3-Hydroxy-o-phthalic acid, 2484

4-Hydroxy-o-phthalic acid, 2485

2-Hydroxypyridine, 871

3-Hydroxypyridine, 872

4-Hydroxypyridine, 873

9-Hydroxyphenanthrene, 4671

carboxylic acid, 5161

d-2-Hydroxyoctane, 2967

4-Hydroxyoctane, 2969

2613

2790

3165

Hydroxymyristic acid, 4853

4-H y d r o x y-3-methyltetradecane-6-

p-Hydroxybensophenone, 4454 7-Hydroxy-1, 2-bensopyrone, 3017 1-Hydroxybensothiasole, 1891 o-Hydroxybensyl alcohol, 2166 m-Hydroxybensyl alcohol, 2167 p-Hydroxybensyl alcohol, 2168 2-Hydroxybutyraldehyde, 722 1-Hydroxybutyric acid, 730 2-Hydroxybutyric acid, 732 Hydroxycamphor, 3866 1-Hydroxycapric acid, 3991 l-1-Hydroxycaproic acid, 1664 d-1-Hydroxycaproic acid, 1663 dl-1-Hydroxycapric acid, 1665 1-Hydroxy-n-caprylic acid, 2913 1-Hydroxy-n-caprylic amide, 2932 o-Hydroxycinnamic acid, 3083 m-Hydroxycinnamic acid, 3084 p-Hydroxycinnamic acid, 3085 o-Hydroxycinnamyl aldehyde, 3072 p-Hydroxycinnamyl aldehyde, 3073 Hydroxycitric acid, 1508 Hydroxyconiine, 2930 1-Hydroxy-1, 1-diethylacetic acid, 1666 2-Hydroxy-2, 3-dimethylbutane. 1725 1-Hydroxy-1, tane, 2876 1-Hydroxy-1,

2-dimethylcyclohep-

3-dimethylcycloheptane, 2879, 2880

1-Hydroxy-2, 2-dimethylcyclohexane, 2882

2-Hydroxy-1, 3-dimethylcyclohexane,

2-Hydroxy-1, 4-dimethylcyclohexane,

2884 3-Hydroxy-1, 1-dimethylcyclohexane, 2886

4-Hydroxy-1, 2-dimethylcyclohexane, 2887

4-Hydroxy-1, 3-dimethylcyclohexane, 2883

cis-5-Hydroxy-1, 3-dimethyleyclohexane, 2888

trans-5-Hydroxy-1, 3-dimethylcyclohexane, 2889

1-Hydroxy-1, 4-dimethylhexane, 2881 2-Hydroxy-2, 4-dimethylpentane,

2397 3-Hydroxy-2, 3-dimethylpentane,

2410 3-Hydroxy-2, 4-dimethylpentane,

2400 1-Hydroxydiphenylacetic acid, 4738

N-Hydroxyethylaniline, 2780 2-Hydroxy-3-ethylpentane, 2404

3-Hydroxy-3-ethylpentane, 2412

9-Hydroxyfluorene, 4446 2-Hydroxyglutaric nitrile, 887

2-Hydroxyheptane, 2407 4-Hydroxyheptane, 2399

3-Hydroxyhexane, 1726 p-Hydroxyhydratropic acid, 3167

Hydroxyhydroquinone, 1420 4-Hydroxy-3-hydroxymethyltoluene,

2735

3-Hydroxyindole-2-carboxylic 3048

1-Hydroxyisobutyric acid, 731

2-Hydroxyisophthalic acid, 2486 4-Hydroxyisophthalic acid, 2487

5-Hydroxyisophthalic acid, 2488 2-Hydroxy-4-isopropyl-1-methylhexa-

hydrobensene, 3966 1-Hydroxyisovaleric acid, 1024

Hydroxymaleic acid, 575 4-Hydroxy-3-methoxypropylbenzene,

4-Hydroxy-3-methoxytoluene, 2725 o-Hydroxymethylbensoic acid, 2597 m-Hydroxymethylbenzoic acid, 2598

4-Hydroxypyridine-2, 6-dicarboxylic acid, 1906 β-Hydroxy-γ-pyrone, 866 d-1-Hydroxypyrotartaric acid, 952 dl-1-Hydroxypyrotartaric acid, 953 2-Hydroxypropionitrile, 399 2-Hydroxyquinaldine, 3554

4-Hydroxyquinaldine, 3555 6-Hydroxyquinaldine, 3556

7-Hydroxyquinaldine, 3557 8-Hydroxyquinaldine, 3558 2-Hydroxyquinoline, 3039

4-Hydroxyquinoline, 3040 5-Hydroxyquinoline, 3041 6-Hydroxyquinoline, 3042

7-Hydroxyquinoline, 3043 8-Hydroxyquinoline, 3044

3-Hydroxyquinoline-2-carboxylic acid,

7-Hydroxyquinoline-3-sulfonic acid, Hydroxysantonin, 4944

1-Hydroxystearic acid, 5383 2-Hydroxystearic acid, 5384

9-Hydroxystearic acid, 5385 10-Hydroxystearic acid, 5386

11-Hydroxystearic acid, 5387

3-Hydroxytoluene-4-aldehyde, 2577 4-Hydroxytoluene-3-aldehyde, 2575 5-Hydroxytoluene-2-aldehyde, 2574

6-Hydroxytoluene-3-aldehyde, 2576 2-Hydroxytoluene-4-carboxylic acid,

2610 3-Hydroxytoluene-2-carboxylic acid, 2603

3-Hydroxytoluene-4-carboxylic acid, 2611

4-Hydroxytoluene-2-carboxylic acid, 2604

4-Hydroxytoluene-3-carboxylic acid, 2607

5-Hydroxytoluene-2-carboxylic acid, 2605

6-Hydroxytoluene-3-carboxylic 2608 6-Hydroxytoluene-2-carboxylic

6-Hydroxytoluene-3-carboxylic acid,

2609 3, 2-Hydroxytoluic acid, 2603

3, 4-Hydroxytoluic acid, 2611

4, 2-Hydroxytoluic acid, 2604 4, 3-Hydroxytoluic acid, 2607

5, 3-Hydroxytoluic acid, 2608

Hydroxytoluic aldebyde, 2574, 2575, 2576, 2577

1-H y d r o x y t r i -(p-aminophenyl)methane, 5428

2-Hydroxy-2, 8, 3-trimethylbutane.

1-Hydroxyvaleric acid, 1023 2-Hydroxyvaleric acid, 1025 Hyenanchin, 4945

Hyenic acid, 5879 Hygric acid, 1605 Hygrine, 2861

Hyoscine, 5222 Hyoscine hydrobromide, 5226 Hyoscine hydrochloride, 5229 Hyoscine picrate, 5778

Hyoscyamine, 5236 Hyoscyamine hydrobromide, 5239 Hyoscyamine hydrochloride, 5241 Hyoscyamine sulfate, 6071

Hypogaeic acid, 5151 Hypotonin, 4420 Hypoxanthine, 855 Hyssopin, 6155 Hystasarin, 4632

Hypnal, 4528

Ibogine, 5899 Idryl, 4866 Igasuric acid, 5305

Ilicic alcohol, 6002 Ilicyl alcohol, 5747 Imidasole, 350

Iminodiethylbarbituric acid, 2823 Iminoethyl alcohol, 765 Iminoveronal, 2823

Imperialine, 6089 Incarnatrin, 5632 Incarnatryl alcohol, 6081

Indaconine, 5938 Indaconitine, 6066

Indasole, 1979 Indene, 3054

Indene oxybromide, 3095 Indican, 4816 Indigo blue, 5208

Indigotin, 5208 Indigoxime, 5036 Indobenzaconine, 6035

Indole, 2504

Indole-2-carboxylic acid, 3046 Indole-3-carboxylic acid, 3047 Indoledicarboxylic acid, 3493

Indole-2-propionic acid, 4052 Indolin, 5066 Indoxyl, 2510 Indoxylic acid, 3048

dl-Inosite, 1680 Inosite dimethyl ether, 2917 d-Inosite methyl ether, 2374

l-Inosite methyl ether, 2375 Inulin, 6104 3-Iodoacenaphthene, 4210

Iodoacetal, 1698 Iodoacetaldehyde, 165 p-Iodoacetanilide, 2546

Iodoacetic acid, 167 Iodoacetol, 429 Iodoacetone, 392

d(l)-Inosite, 1679

Iodoacetoxime, 426 Iodoacetylene, 113 o-Iodoaniline, 1391 m-Iodoaniline, 1392 p-Iodoaniline, 1393 o-Iodoanisol, 2064 o-Iodobensamide, 1974 m-Iodobensamide, 1975 p-Iodobensamide, 1976 Iodobensene, 1333 o-Iodobensoic acid, 1881 m-Iodobensoic acid, 1882 p-Iodobensoic acid, 1883 2-Iodoethyl alcohol, 235 Iodoethylene, 164 2-Iodoethyl ethyl ether, 757 Iodoform, 21 4-Iodoguaiacol, 2065 5-Iodoguaiacol, 2066 5-Iodo-2-hydroxymethoxyb e n z e n e, 2066 1-Iodo-2-hydroxypropane, 477 3-Iodo-1-hydroxypropane, 478 9-Iodo-8-hydroxyquinoline-5-sulfonic acid, 3009 Iodoisopropyl alcohol, 477 Iodol, 542 Iodomethyl methyl ether, 236 1-Iodo-6-naphthol, 3471 o-Iodonitrobensene, 1254 m-Iodonitrobensene, 1255 p-Iodonitrobensene, 1256

4-Iodo-6-nitrophenol, 1257 o-Iodophenol, 1334 m-Iodophenol, 1335 p-Iodophenol, 1336 Iodopierin, 15 1-Iodopropionic acid, 393 2-Iodopropionie acid, 394 3-Iodopropyl alcohol, 478 2-Iodopropylene, 390

3-Iodopropylene, 391 3-Iodosalicylic acid, 1884 Iodosobensene, 1337 o-Iodotoluene, 2061 m-Iodotoluene, 2062 p-Iodotoluene, 2063 2-Iodo-1, 3, 5-trinitrobensene, 1141

Iodotrinitromethane, 15 Iodoxybensene, 1338 Ionidine, 5478 a-Ionone, 4559 6-Ionone, 4560 Inecamine, 5951 Ipuranol, 5811 Ipurganol, 5684 Ipurolic acid, 4854 Iretol, 2184

Irone, 4561 Isanic acid, 4823 Isatid, 5041 Isatine, 2438 Isatine chloride, 2422.1 Isatoxime, 2465 Isatronic acid, 5187 a-Isatropic acid, 5293

6-Isatropic acid, 5294 γ-Isatropic acid, 5295 Isoacetonitrile, 169 Isoallylbensene, 3120 Isoamyl acetate, 2354 Isoamylacetic acid, 2350 Isoamyl alcohol, 1079 sec.-Isoamyl alcohol, 1085 Isoamyl allyl ether, 2891

Isoamylamine, 1100 Isoamylaniline, 4140 Isoamyl anisate, 4545 Isoamylbensene, 4118 Isoamyl benzoate, 4345 Isoamyl borate, 331828

Isoamyl bromide, 1041

C-TABLE: INDEX

Isoamyl n-butyrate, 3330 Isoamyl caprylate, 4583 Isoamyl carbamate, 1704 Isoamyl carbinol, 1729 Isoamyl carbonate, 4177 Isoamyl chloride, 1044 Isoamyl chloroacetate, 2319 Isoamyl chlorocarbonate, 1597 Isoamyl chloroformate, 1597 Isoamyl cyanide, 1603 a-Isoamylene, 985 \$-Isoamylene, 986 Isoamyl ether, 4007 Isoamyl ethylacetoacetate, 4159 5, 5-Isoamylethylbarbituric acid, 4146 Isoamyl ethyl malonate, 3939 Isoamyl fluoride, 1050 Isoamyl formate, 1649 Isoamyl iodide, 1052 Isoamyl isocyanide, 1604 Isoamylisopropylbarbituric a c i d. 4368.9 Isoamyl isopropyl malonate, 4162 Isoamyl isothiocyanate, 1608 Isoamyl isovalerate, 3986 Isoamyl mercaptan, 1098 Isoamyl mustard oil, 1608 Isoamyl nitrate, 1070 Isoamyl nitrite, 1064 Isoamyl oxalate, 4391 p-Isoamylphenol, 4127 Isoamyl phenyl ketone, 4337 Isoamyl propionate, 2901 Isoamylpropylbarbituric acid, 4369 Isoamyl salicylate, 4349 Isoamyl sulfide, 4010 Isoamyl tartrate, 4846.1 Isoanthracene, 4651 Isoanthraquinone, 4621 Isoapiol, 4323 Isobebeerine, 5318 Isoborneol, 3910 dl-Isoborneol, 3909 Isobornyl acetate, 4375 Isobornyl chloride, 3880 Isobornyl formate, 4149 Leobornyl isovalerate, 5006 Isobutane, 781.2 Isobutylacetaldehyde, 1634 Isobutyl acetate, 1652 Isobutyl alcohol, 790 Isobutylamine, 821 Isobutyl p-aminobensoate, 4108 Isobutyl amyl ether, 3365 Isobutylaniline, 3790 Isobutyl anisate, 4350 Isobutylbensene, 3736 Isobutyl bensoate, 4099 Isobutyl bensyl ketone, 4338 Isobutyl bromide, 742 Isobutyl n-butyrate, 2904 Isobutyl carbamate, 1067 Isobutyl carbinol, 1079 Isobutyl carbonate, 3342 Isobutyl chloride, 747 Isobutyl chlorocarbonate, 970 Isobutyl chloroformate, 970 Isobutyl cyanide, 973 Isobutyl 1, 2-dichloropropionate, 2284.1 Isobutylene, 684 Isobutylene dibromide, 693 Isobutylene dichloride, 695 Isobutyleneglycol, 797 Isobutyl ether, 2974 5, 5-Isobutylethylbarbituric acid, 3842 Isobutyl formate, 1016 Isobutylidene bromide, 693 Isobutylidene chloride, 695 Leobutyl iodide, 755 Isobutyl isobutyrate, 2905 Isobutyl isothiocyanate, 978

Isobutyl isovalerate, 3334 Isobutylmalonic acid, 2305 Isobutyl mercaptan, 811 Isobutyl mustard oil, 978 Isobutyl nitrate, 775 Isobutyl nitrite, 773 Isobutyl oxalate, 3942 Isobutyl phenyl ether, 3760 Isobutyi phenyl ketone, 4089 Isobutyl phenylpropiolate, 4526.1 Isobutyl propionate, 2359 Isobutyl ricinoleste, 5765.1 Isobutylsilicon trichloride, 28439 Isobutyl tartrate, 4393 Isobutylurethane, 2386.1 Isobutyl n-valerate, 3333 Isobutyraldehyde, 718 Isobutyramide, 761 Isobutyric acid, 724 Isobutyric anhydride, 2841 Isobutyroisonitrile, 669 Isobutyronitrile, 668 Isobutyryl chloride, 652 Isocalycanthine, 4085 Isocamphoric acid, 3871 Isocapric aldehyde, 3976 Isocaproic acid, 1644 Isocaproisonitrile, 1604 Isocapronitrile, 1603 Isochrysene, 5265 Isocinchomeronic acid, 1902 8-Isocinchonine, 5444 Isocinnamic acid, 3076 Isocodeine, 5319 Isoconquinine, 5558 Isocorybulbine, 5666 Isocorydaline, 5723 Isocotoin, 4745 Isocrotonic acid, 619 Isocusparine, 5413 Isocyanuric acid, 336 Isodecylic aldehyde, 3978 Isodibutol, 2961 Isodulcitol, 1672 6-Isodurene, 3739 Isodurylic acid, 3673 Isoemetine, 5974 Isoemetine hydrochloride, 5975 Isoephedrine, 3795 Isoeugenol, 3667 Isomurenol acetate, 4319 Isoeugenol bensoate, 5194 Isoeugenol bensyl ether, 5201 Isoeugenol dibenzoate, 6059 Isoeugenol 1, 2-dibromide, 3641 Isoeugenol ethyl ether, 4340 Isoeugenol formate, 4069 Isoeugenol methyl ether, 4093 Isoeugenol propionate, 4532 Isofenchyl alcohol, 3911, 3912 Isoferulic acid, 3610 Isoheptane, 2390 1, 2-Isoheptenic acid, 2294 Isoheptyl alcohol, 2406 Isohexacosane, 5919 Isohexane, 1715 1, 2-Isohexenic acid, 1555 Isohexyl alcohol, 1724 Isohexvlamine, 1763 Isohydrobensoin, 4783 Isohydrosorbic acid, 1553 Isohydroxydimethylures, 2260.2 d(l)-Isoleucine, 1707 dl-Isoleucine, 1708 Isomalic acid, 637 Isomannide, 1574 d-Isomenthol, 3970 a-Isomorphine, 5203 Isonicoteine, 3642 Isonicotine, 3746 Isonicotinic acid, 1346

Isonitrosoacetone, 401

Isonitrosobarbituric acid, 554 Isooctane, 2937 Isopentane, 1072 Isophthalic acid, 2480 Isophthalic aldehyde, 2471 Isophthalic diamide, 2552 Isophthalic nitrile, 2428 Isophthalyl dichloride, 2424 Isopilocarpine, 4126 Isopilocarpine hydrobromide, 4133 Isopilocarpine hydrochloride, 4135 Isopilocarpine nitrate, 4142 Isopral, 389 Isoprene, 916 Isoprene hydrochloride, 965 Isopropenyl chloride, 373 Isopropyl acetate, 1021 Isopropylacetylene, 921 Isopropyl alcohol, 506 Isopropyl allyl ether, 1632 Isopropylamine, 525 Isopropylammonium chloroplatinate, 381190 N-Isopropylaniline, 3268 p-Isopropylaniline, 8257 p-Isopropylbensaldehyde, 3656 Isopropylbensene, 3223 Isopropyl bensoate, 3681 o-Isopropylbensoic acid, 3669 p-Isopropylbensoic acid, 3668 p-Isopropylbensyl alcohol, 3754 Isopropyl bensyl ketone, 4090 Isopropyl borate, 331827 Isopropyl bromide, 465 Isopropylbutyl carbinol, 2971 Isopropyl butyrate, 2363 Isopropyl chloride, 469 Isopropyl oyanide, 668 Isopropyl ether, 1742 Isopropylethylene, 985 Isopropyl formate, 728 Isopropylhexahydrobensene, 3320 Isopropyl n-hexyl ketone, 3977 Isopropyl hydrocinnamate, 4345.1 Isopropylidene chloride, 420 Isopropyl iodide, 476 Isopropyl isoamyl ketone, 3327 Isopropylisobutyl carbinol, 2972 Isopropyl isobutyrate, 2364 Isopropyl isocyanide, 669 Isopropylmalonic acid, 1567 Isopropyl mercaptan, 519 Isopropyl nitrate, 496 Isopropyl nitrite, 490 p-Isopropylphenylacetic acid, 4094 Isopropyl phenyl ether, 3247 Isopropyl phenyl ketone, 3661 Isopropyl propionate, 1660 2-Isopropylpyridine, 2772 4-Isopropylpyridine, 2773 Isopropyl sulfide, 1755 m-Isopropyltoluene, 3737 p-Isopropyltoluene, 3738 Isopulegol, 3913, 3913.1 Isopulegon, 3854 Isopulegyl acetate, 4375.1 Isopyroine, 5960 Isoquinine, 5559 Leoquinoline, 3036 Isosaocharic acid, 1586 cis-Isosafrol, 3589 trans-Isosafrol, 3590 Isosantonic acid, 4954 Isoserine, 494 Isosparteine, 4998 Isostrychnine, 5641 Leosuccinic acid, 630 Isotetracosane, 5860 Isothebaine, 5433 Isotrifolin, 5701 Isotropylcocaine, 6113

Isotruxillic acid, 5296

Isovaleraldehyde, 1002 Isovaleramide, 1058 Isovaleric acid, 1013 Isovalerie anhydride, 3936 Isovaleroanilide, 4105 Isovaleryl chloride, 967 Isovalervi nitrile, 973 Isovanillic acid. 2627 Isovanillin 2505 Itaconic acid, 900 Itaconic anhydride, 865 Jalapic acid, 5252 Jalapin, 6078 Jalapinolic acid, 5161 Japaconine, 5904 Japaconitine, 6078 Japaconitine hydrochloride, 6074 Jelsemine, 5547 Jelsemine hydrochloride, 5550 Jervine, 5900 Julolidine, 4327 Juniperic acid, 5162 Kaempferol, 4884 Kairoline, 3701 Kavaiin, 4925 Kersyl alcohol, 4833 Ketene, 145 Ketine, 1482 1-Ketoadipic acid, 1504.1 4-Ketoaselaic acid, 3287 14-Ketobehenic acid, 5765 7-K e t o-8-bensylidenescenaphthene. 5394 1-Ketobutyric acid, 627 1-Ketoglutaric acid, 905 7-Ketopalmitic acid, 5154 8-Ketopimelic acid, 2268 3-Ketostearic acid, 5363 6-Ketostearic acid, 5364 8-Ketostearic acid, 5365 9-Ketostearic acid, 5366 10-Ketostearic acid, 5367 μ-Ketotricosane, 5814 Kosin, 6020 Kryofine, 4113 Kyanpropine, 4384 Kynurenic acid, 3484 Kynuric acid, 3049 Kynurine, 3040 Laccainic acid, 5052 Lactamide, 491 Lactamidine hydrochloride, 523 d(l)-Lactic acid. 456 dl-Lactic acid. 457 Lactic anhydride, 1575 Lactide, 1502 Lactophenine, 4112 Lactonitrile, 400 Lactose, 4394 Lactucerin, 5958 Lactucerol, 4014 Lactucol, 4562 Lactucol acetate, 5803 Lactucon, 5803 Lactyl-p-phenetidine, 4112 Laevoglucosan, 1577 Lanoceric acid, 6012 Lanolic acid, 4389 Lanthanum ethyl sulfate, 231970 Lanthopine, 5782 Lapachol, 4920 Lappaconitine, 6032.1 Larixinic acid, 3623 Larycin, 5137 Laserpitin, 5903 Laudanidine, 5572 Laudanine, 5573 Laudanosine, 5673 Lauramide, 4410 Lauric acid, 4406 Lauric aldehyde, 4405 d-Laurolene, 2825

Laurone, 5814 Lauronitrile, 4399 Lauronolic acid, 3278 Lauryl chloride, 4398 Lavendol, 3914 Lead acetate, 3642 Lead caprate, 28651 Lead caproate, 38647 Lead diethyl dipropyl, 2631 Lead dimethyl diethyl, 28622 Lead dimethyl diisoamyl, 2634 Lead dimethyl diisobutyl, 3632 Lead dimethyl dipropyl, 28627 Lead formate, 3639 Lead heptoate, 2648 Lead laurate, 3652 Lead methyl triethyl, 3624 Lead myristate, 3653 Lead nonylate, 38650 Lead octoate, 2649 Lead oleate, 28655 Lead oxalate, 2618 Lead palmitate, 2654 Lead stearate, 38656 Lead tartrate, 2640, 2641 Lead tetrascetate, 28645 Lead tetraethyl, 2628 Lead tetramethyl, 3619 Lead tetraphenyl, 3638 Lead tetrapropionate, 2646 Lead triethyl amyl, 2636 Lead triethyl isoamyl, 28637 Lead triethyl isobutyl, 28633 Lead triethyl propyl, 38630 Lead trimethyl butyl, 28625 Lead trimethyl ethyl, 3621 Lead trimethyl isoamyl, 28629 Lead trimethyl isobutyl, 28626 Lead trimethyl propyl, 28623 Lenopalmic acid, 5163 Leontin, 6161 Lepidine, 3546 o-Leucaniline, 5426 p-Leucaniline, 5427 I-Leucine, 1705 dl-Leucine, 1706 Leucinic acid, 1664 Levulinic acid, 941 Levulinic aldehyde, 928 Levulose, 1674 Licarcol, 3916 Lignoceric acid, 5855 Lilolidine, 4076 Limonene. 3810 α-Limonene nitrosylchloride, 3829 Linalool, 3915, 3916 Linalyl acetate, 4376 Linoleic acid, 5346 Linolenic acid, 5342 Lipoiodine, 5850 Lithium acetate, 32638 Lithium ammonium tartrate, \$2641.2 Lithium ethanedisulfonate, 32639 Lithium formate, 32636 Lithium malate, 332637 Lithium naphthalene-1, 5-disulfonate, 332640 Lithium oxalate, 32635 Lithium thallium tartrate, 32648 Lithofellinic acid, 5849 Lithuric acid, 4948 Lobelidine, 5570 Lobeline, 5794 Loganin, 5871 Longifolic acid, 4830 Lophine, 5619 Lophopetalin, 6092 Loretin, 3009 Loturine, 4224 Luminal, 4291

Lupanine, 4984

Lupeol, 6023

Lupeon, 6022 Lupinidine, 4994 Lupinine, 3953 Lupinine hydrochloride, 3964 Lupulinic acid. 6156 Luteic acid, 5537 Luteolin, 4885 a-Lutidine, 2202 2, 4-Lutidine, 2196 2, 6-Lutidine, 2197 3, 4-Lutidine, 2198 Lutidinic acid, 1901 Lycetol, 1718 Lycopodine, 6041 Lycorine, 5089 Lycorine hydrochloride, 5091 Lysidine, 702 Lysine picrate, 4364 Lysuric acid, 5548 d-Lyxose, 1035 Maclurin, 4470 Magnesium acetate, 232170 Magnesium acid d-tartrate, 32167 Magnesium ethanedisulfonate, 32172 Magnesium naphthalene-1, 5-disulfonate, 332173 Magnesium d-tartrate, 32168 Malakin, 4928 Maleic acid, 574 Maleic anhydride, 548 I-Malic acid, 635 dl-Malie acid, 636 Malonamide, 436 Malonie acid, 360 Malonic nitrile, 316 Malonyl chloride, 314 Malonylurea, 565 Maltosan, 4382 Maltosasone, 5838 Maltose, 4395 d(l)-Mandelic acid, 2612 dl-Mandelonitrile, 2509 l-Mandelonitrileglucoside, 4817 Manganese acetate, 231311, 231312 Manganese formate, \$1309, \$1310 Manganese oxalate, 231308 Mannide, 1573 Mannitan, 1669 d-Mannitol, 1751 Mannitol hexanitrate, 1495 d-Mannoheptitol, 2417 d-Mannoheptonic acid, 2378 a-Mannose, 1681 d-Mannose, 1682 dl-Mannose, 1683 Maretin, 2794 Margaric acid, 5257 Margaric aldehyde, 5255 Marrubiin, 5676 Meconic acid, 1843 Meconidine, 5646 Meconin, 3621 Melamine, 445 Melampyrin, 1750 Melaniline, 4518 Melene, 6010 Melilot, 3134 Melilotic acid, 3165 Melilotic anhydride, 3078 Melissane, 6013 Melissic acid, 6011 Melissyl alcohol, 6015 Mellithyl alcohol, 4367.6 Mellitic acid, 4182 Mellophanic acid, 3450 o-Menthane, 3959 m-Menthane, 3960 p-Menthane, 3961 Menthanediol, 3975 o-Menthan-2-ol, 3971

p-Menthan-8-ol, 3972

Menthene, 3892

Menthenol, 3922 a-Menthol, 3973 β-Menthol, 3974 l-Menthol methylene ether, 5689 Menthone, 3917, 3918 l-Menthyl acetate, 4388 l-Menthyl acetoacetate, 4837 l-Menthyl adipate, 5915 Menthylamine, 3992 l-Menthyl angelate, 5008 Menthyl bensoate, 5244 l-Menthyl n-butyrate, 4841 Menthyl camphorate, 6008 l-Menthyl n-caproate, 5152 l-Menthyl n-caprylate, 5362 Menthyl carbamate, 4164 l-Menthyl carbonate, 5687 sec-Menthyl chloride, 3947 tert-Menthyl chloride, 3948 I-Menthyl chloroacetate, 4383 l-Menthyl crotonate, 4836 I-Menthyl glutarate, 5877 Menthyl ethyl glycoliate, 4844 l-Menthyl formate, 4157 I-Menthyl glycollate, 4390 Menthyl heptylate, 5253 l-Menthyl hydrogen succinate, 4838 Menthyl hydroxyacetate, 4390 I-Menthyl isobutyrate, 4842 I-Menthyl isovalerate, 5013 l-Menthyl dl-lactate, 4579 I-Menthyl levulinate, 5009 l-Menthyl malonate, 5810 l-Menthyl oxalate, 5759 Menthyl phenylacetate, 5334 l-Menthyl propionate, 4578 l-Menthyl pyruvate, 4573 Menthyl sorbinate, 5143 l-Menthyl stearate, 5966 I-Menthyl succinate, 5846 I-Menthyl tartrate, 5847.8 l-Menthyl n-valerate, 5015 1-Mercaptobensoxasole, 1892 2-Mercaptomethoxybensene, 2165 μ-Mercaptothiasoline, 405 Mercuric acetate, 3924 Mercuric benzoate, 2926 Mercuric ethyl chloride, 3930 Mercuric methyl chloride, 28929 Mercuric propionate, 28925 Mercuric stearate. 28927 Mercurous propionate, 3928 Mercury di-(ethyl sulfide), 2932 Mercury ethyl, 3919 Mercury isobutyl, 38921 Mercury methyl, 2918 Mercury α-naphthyl, 28923 Mercury phenyl, 38922 Mercury propyl, 3920 Mesaconic acid, 901 Mescaline, 4141 Mesidine, 3264 Mesitol, 3238 ω-Mesitylamine, 3265 Mesitylene, 3228 Mesitylenesulfonic acid, 3254 Mesitylinic acid, 3148 Mesitylinic aldehyde, 3657 Mesityl oxide, 1548 Mesorcinol, 3248 Mesotan, 3182 Mesotartaric acid, 638 Mesoxalic acid, 363 Metacrolein, 3252 Metaldehyde, 2915 Metanilic acid, 1454 Meteloidine, 4568 Meteloidine hydrobromide, 4569 Methane, 54 Methanethiol, 63 Methoxyacetophenetidine, 4113 4-Methoxy-1-allybensene, 3655

3-Methoxyallylphenyl 4-bensoate, 5193 3-Methoxyallylphenyl 4-benzyl ether, 5200 3-Methoxyallylphenyl 4-cinnamate, 5418 3-Methoxyallylphenyl 4-formate, 4068 o-Methoxybenzaldehyde, 2578 m-Methoxybenzaldehyde, 2579 p-Methoxybenzaldehyde, 2580 o-Methoxybenzamide, 2674 p-Methoxybensamide, 2675 o-Methoxybenzoic acid, 2614 m-Methoxybensoic acid, 2615 p-Methoxybenzoic acid, 2616 p-Methoxybensonitrile. 2508 m-Methoxycinnamic acid, 3604 p-Methoxycinnamic acid, 3605 4-Methoxy-2, 6-dihydroxydiphenyl-ketone, 4744 3-Methoxy-1, 7-dihydroxyxanthone, 4690 3-Methoxy-4-ethoxypropenylbenzene, 4340 3-Methoxy-4-hydroxyallylbenzene, 3-Methoxy-i-hydroxybenzaldehyde, -Methoxy-3-hydroxybenzaldehyde, 3-Methoxy-4-hydroxybensoic a c i d, 2628 4-Methoxy-3-hydroxybenzoic a c i d. 2627 6-Methoxy-7-hydroxy-1, 2-b e n s opyrone, 3530 3-Methoxy-4-hydroxybensyl alcohol, 2744 3-M e t h o x y-4-hydroxypropenylbenzene, 3667 4-Methoxy-3-hydroxyvinylbensene. 3137 d(l)-p-Methoxymandelic acid, 3179 Methoxymethyl salicylate, 3182 o-Methoxyphenol, 2174 m-Methoxyphenol, 2175 p-Methoxyphenol, 2176 p-Methoxyphenyl acetate, 3153 o-Methoxyphenyl bensoate, 4740 p-Methoxyphenyl benzoate, 4736 o-Methoxyphenyl bensyl ether, 4782 4-Methoxyphenyltetrasole, 2566.2 3-Methoxypropenylbensene-4-acetate, 4319 3-Methoxypropenylbensene-4-bensoate, 5194 3-Methoxypropenylbensene-4-bensyl ether, 5201 3-Methoxypropenylbense n e - 4 - f o r mate, 4069 3-Methoxypropenylbensene-4-p r o pionate, 4532 6-Methoxyquinoline-4-c arboxylic acid. 4036 6-Methoxy-1, 2, 3, 4-tetrahydroquinoline, 3710 o-Methylacetanilide, 3194 N-Methylacetanilide, 3199 Methyl acetate, 452 Methyl acetoacetate, 943 p-Methylacetophenone, 3134 Methyl 1-1-acetoxypropionate, 1572.1 Methylacetyl carbinol, 721 Methylacetylene, 338 Methyl acetylsalicylate, 3619 Methyl acid carbonate, 215 1-Methylacridine, 4698 3-Methylacridine, 4699 5-Methylacridine, 4700 Methyl acrylate, 624 Methylacrylic acid, 620

3-Methoxyallylphenyl 4-acetate, 4318

Methylal, 513 Methyl alcohol, 60 a-Methylalizarin, 4876 β-Methylalizarin, 4877 Methylallene, 595 Methyl allophanate, 440 Methylalloxan, 853 Methylallyl carbinol, 998 Methyl allyl ether, 715 Methylamine, 65 Methylamine hydrochloride, 74 Methylaminoacetic acid, 486 Methyl o-aminobensoate, 2664 Methyl p-aminobensoate, 2665 Methyl 3-amino-4-hydroxybensoate, 2680 1-Methylamino-2-hydroxy-1-phenylpropane, 3793 Methylamino-p-phenol sulfate, 4822 Methyl o-aminophenyl ketone, 2646 Methyl m-aminophenyl ketone, 2647 Methyl p-aminophenyl ketone, 2648 4-Methyl-2-(p-aminophenyl)-quinoline, 5065 Methyl-n-amylacetylene, 2826 3-Methyl-n-amyl alcohol, 1735 1-Methyl-3-tert-amylbensene, 4365.1 Methyl n-amyl carbinol, 2407 d-Methyl amyl carbinol, 2407.1 Methyl n-amyl ether, 1739 Methyl n-amyl ketone, 2348 Methyl amylpropiolate, 3279 Methylaniline, 2203 Methyl anisate, 3172 1-Methylanthracene, 4897 2-Methylanthracene, 4898 9-Methylanthracene, 4899 Methyl anthranilate, 2664 N-Methylanthranilic acid, 2660 1-Methylanthraquinone, 4872 2-Methylanthraquinone, 4873 Methylarbutin, 4546 Methyl arsenate, 64.1 Methylarsine, 64 Methylarsinous oxide, 39 Methylaspirin, 3619 Methylatophan, 5182 Methyl azide, 52 1-Methylbarbituric acid, 906 Methyl behenate, 5815 Methyl behenolate, 5812 Methyl benzilate, 4919 Methyl benzoate, 2589 Methyl benzoylacetate, 3606 Methyl bensoylaminoacetate, 3631 Methyl o-benzoylbenzoate, 4907 Methyl bensoylecgonine, 5221 N-Methylbenzylaniline, 4794 d-Methylbenzylcarbinyl formate, 3681.1 Methyl bensyl ketone, 3133 Methyl borate, 331824 Methyl d-bornyl ether, 4156 Methyl bromide, 40 Methyl 1-bromopropionate, 648.3 Methyl 2-bromopropionate, 648.4 2-Methylbutane, 1072 2-Methyl-1, 3-butenine, 881 4-Methyl-1-butine, 921 Methyl-n-butylacetylene, 2280 d-2-Methylbutyl alcohol, 1083 Methylbutyl carbinol, 1730, 1730.1 Methyl-sec-butyl carbinol, 1732 Methyl-tert-butyl carbinol, 1733 Methyl z-butyl carbonate, 1667 Methyl n-butyl ether, 1088 1-Methyl-2-butylethylene, 2329 Methyl n-butyl ketone, 1638 Methyl sec-butyl ketone, 1640 Methyl n-butyrate, 1018 Methylbutyrone, 2895

p-Methylbutyrophenone, 4090.1

Methyl caprate, 4176 Methyl n-caproate, 2360 Methyl caprylate, 3337 Methyl carbamate, 244 Methyl carbonate, 458 Methyl chaulmoograte, 5481 Methyl chavicyl ether, 3655 Methyl chloride, 41 Methyl chloroacetate, 384 Methylchloroform, 158 Methyl chloroformate, 155 Methyl 2-chloropropionate, 659 Methyl cinnamate, 3600 Methyl citraconate, 2267 Methylcodeine bromide, 5460 l-1-Methylconiine, 3345 Methyl o-cresotinate, 3173 Methyl p-cresotinate, 3174 Methyl a-crotonate, 939 Methyl cyanide, 168 Methyl cyanoacetate, 591 Methylcyclobutane, 981 Methylcyclohexane, 2330 1-Methylcyclohexane-1-ol, 2338 1-Methylcyclohexane-2-ol, 2339 1-Methylcyclohexane-4-ol, 2342 l-1-Methylcyclohexane-3-ol, 2340 dl-1-Methylcyclohexane-3-ol, 2341 o-Methylcyclohexanone, 2289.1 m-Methylcyclohexanone, 2289.2 p-Methylcyclohexanone, 2289.3 4-Methylcyclohexene, 2281 Methyl cyclohexylacetate, 3305 Methylcyclopentane, 1615 Methylcyclopropane, 687 Methylcytisine, 4335 Methyldichloroarsine, 38 Methyl 1, 2-dichloropropionate, 604.1 Methyl diethyl carbinol, 1734 1-Methyl-2, 2-diethylethylene, 2326 2-Methyl-4, 5-dihydroimidasole, 702 Methyl 3, 5-diiodosalicylate, 2461 Methyl dimethylacetoacetate, 2303 N-Methyldiphenylamine, 4513 Methyldipropylammonium chloroplatinate, 31206 Methyldipropyl carbinol, 2962 2-Methyldivinyl, 916 Methylene bromide, 26 Methylene chloride, 28 Methylenecitrylsalicylic acid, 5620 Methylene diacetate, 951 Methylenediantipyrine, 5777 Methylenedicotoine, 5969 Methylene diethyl ether, 1091 Methylene dimethyl ether, 513 o-Methylenediphenylene oxide, 4451 Methylenedisalicylic acid, 4910 Methylene iodide, 29 Methyl erucate, 5813 β-Methylesculetin, 3529, 4489 Methyl ether, 263 dl-Methylethylacetic acid, 1010 Methylethylacetylene, 917 Methylethylammonium chloroplatinate, 231188 Methylethyl-tert-amyl carbinol, 3362 Methylethylbutyl carbinol, 2963 Methylethyl carbinol, 791 Methylethyl carbonate, 735 Methylethyldipropylammonium chloroplatinate, 31212 Methylethyleneglycol, 510 Methyl ethyl ether, 508 sym-Methylethylethylene, 982 unsym-Methylethylethylene, 983 6-Methyl-3-ethylheptene-2, 3962 5-Methyl-3-ethyl-3-hydroxyhexane, Methylethylisoamyl carbinol, 3361 Methylethylisobutyl carbinol, 2964 Methylethylisohexyl carbinol, 4004

Methylethylisopropyl carbinol, 2410 Methyl ethyl ketone, 719 Methyl ethyl ketoxime, 764 Methylethylmalonic acid, 1565 Methyl ethyl oxalate, 950 2-Methyl-3-ethylpentane, 2938 2-Methyl-3-ethyl-2-pentene, 2871 3-Methyl-3-ethylpropyl alcohol, 1735 Methylethylpropylammonium chloroplatinate, 331213 Methylethylpropylisobutylammonium chloroplatinate, 31214 Methylethylpropyl carbinol, 2409 Methylethylpropylene, 1614 1-Methyl-2-ethyl-1-n-propylethylene, 2-Methyl-5-ethylpyridine, 2774 Methyl ethyl succinate, 2311 Methyl ethyl sulfide, 517 Methylethylsulfonium chloroplatinate, 331184 Methyl fluoride, 44 Methyl formate, 213 2-Methylfuran, 891 5-Methyl furfural, 1417 Methyl fumarate, 1499 a-Methylgalactoside, 2368 8-Methylgalactoside, 2369 Methyl gallate, 2630 Methyl geranate, 4150 α-Methylglucose, 2370 6-Methylglucose, 2371 α-Methylglucoside, 2372 B-Methylglucoside, 2373 d-Methyl glycerinate, 739 Methylglycine, 486 Methylglycocoll, 486 Methylglycocyamine, 780 Methyl glycollate, 460 Methylglyoxalidine, 702 1-Methylglyoxaline, 606 4-Methylglyoxaline, 607 Methylglyoxime, 437 Methylguanidineacetic acid, 780 Methylguanidine nitrate, 305 Methylguanidine sulfate, 839 Methyl heneicosate, 5769 2-Methylheptane, 2937 3-Methylheptane, 2939 4-Methylheptane, 2940 2-Methyl-2-heptene, 2872 4-Methyl-3-heptene, 2873 2-Methyl-2-heptene-6-ol, 2890 2-Methyl-2-heptene-6-one, 2834 Methyl n-heptylate, 2910 d-Methyl-n-heptyl carbinol, 2967 Methyl hexahydrobenzoate, 2838 2-Methylhexane, 2390 d-3-Methylhexane, 2391 2-Methylhexan-1-ol, 2405 2-Methylhexan-2-ol, 2396 2-Methylhexan-3-ol, 2411 3-Methylhexan-3-ol. 2409 4-Methylhexan-3-ol, 2402 5-Methylhexan-1-ol, 2406 5-Methylhexan-2-ol, 2408 5-Methylhexan-3-ol, 2401 3-Methyl-2(3)-hexene, 2331 dl-Methyl-n-hexyl carbinol, 2968 Methyl n-hexyl ether, 2977 Methyl hexyl ketone, 2896 Methyl hippurate, 3631 Methylhydrasine, 77 Methyl hydroacrylate, 736 Methyl hydrocinnamate, 3682 Methyl hydrogen oxalate, 361 Methyl hydrogen tartrate, 957 Methyl 3-hydroxy-4-aminobenzoate. 2679 2-Methyl-2-hydroxyheptane, 2953 2-Methyl-3-hydroxyheptane, 2971 3-Methyl-3-hydroxyheptane, 2963

3-Methyl-4-hydroxyheptane, 2970 4-Methyl-2-hydroxyheptane, 2959 4-Methyl-4-hydroxyheptane, 2962 α-5-Methyl-2-hydroxyheptane, 2960 6-Methyl-2-hydroxyheptane, 2965 6-Methyl-3-hydroxyheptane, 2955 3-Methyl-2-hydroxyisopropylbenzene, 5-Methyl-2-hydroxyisopropylbensene, 1-Methyl-4-hydroxyquinoline, 3559 N-Methylhydroxylamine, 66 Methyl hypochlorite, 42 1-Methylimidasole, 606 4-Methylimidasole, 607 1-Methylindazole, 2548 1-Methylindole, 3098 2-Methylindole, 3099 3-Methylindole, 3100 5-Methylindole, 3101 Methyl iodide, 45 Methylisoamyl carbinol, 2408 Methyl isoamyl ether, 1740 Methyl isoamyl ketone, 2349 Methylisobutyl carbinol, 1731 Methyl isobutyl ketone, 1639 Methyl isobutyrate, 1019 Methyl isocyanate, 172 Methyl isocyanide, 169 Methyl isohexyl carbinol, 2965 Methyl isohexyl ketone, 2897 Methyl isophthalate, 3164 Methyl isopropyl carbinol, 1085, 1085.1 Methyl isopropyl ether, 794.1 1-Methyl-1-isopropylethylene, 1618 1-M ethyl-2-isopropylhexahydrobenzene, 3959 1-Methyl-3-isopropylhexahydrobensene, 3960 1-Methyl-4-isopropylhexahydrobensene, 3961 Methyl isopropyl ketone, 1007 2-Methyl-5-isopropylphenol, 3752 2-Methyl-6-isopropylphenol, 3755 3-Methyl-6-isopropylphenol, 3756 4-Methyl-6-isopropylphenol, 3757 3-Methyl-6-isopropylphenoxybenzene, 5110 2-Methyl-5-isopropylquinone, 3685 Methyl isosuccinate, 1569 Methyl isothiocyanate, 177 Methyl isovalerate, 1658 Methyl lactate, 737 Methyl laurate, 4584 Methyl malate, 1576 Methyl maleate, 1500 Methyl malonate, 948 Methyl dl-mandelate, 3175 Methyl margarate, 5382 d-1-Methylmalic acid, 952 dl-1-Methylmalic acid, 953 2-Methylmalic acid, 954 α-Methylmannoside, 2373.1 Methyl meconate, 2749 Methyl I-menthyl ether, 4168 Methylmercaptan, 63 Methyl 3-methoxy-4-hydroxyphenyl ketone, 3158 Methyl 4-methoxy-2-hydroxyphenyl ketone, 3159 Methyl l-1-methoxypropionate, 1028.1 Methyl d-methylbensyl carbinol. 3754.1 Methyl mustard oil, 177 Methyl myristate, 5017 a-Methylnaphthalene, 4038 8-Methylnaphthalene, 4039 2-Methyl-g-paphthoguinoline, 4701 3-Methyl-\$-naphthoquinoline, 4702 Methyl-a-naphthylamine, 4050 l-Methyl-α-naphthyl carbinol, 4297.1

Methyl a-naphthyl ether, 4041 Methyl β-naphthyl ether, 4042 Methyl nitramine, 56 Methyl nitrate, 50 Methyl nitrite, 49 Methyl o-nitrobensoate, 2518 Methyl m-nitrobensoate, 2519 Methyl p-nitrobensoate, 2520 Methylnitrolic acid, 32 N-Methylnitrosoaniline, 2134 2-Methylnonane, 3998 3-Methylnonane, 3999 5-Methylnonane, 4000 2-Methyl-2-nonen-6, 8-dione, 3863 Methyl n-nonyl ketone, 4172 Methylnopinol, 3921 d-3-Methyloctane, 3352 4-Methyloctane, 3353 3-Methyloctane-4-ol, 3355 2-Methyl-1-octene, 3321 Methyl n-octyl ether, 3367 Methyl n-octyl ketone, 3978 Methyl oxalate, 631 Methyl oxanilate, 3112 Methyl palmitate, 5258 Methyl pelargonate, 3987 Methylpelletierine, 3316 1-Methyl-2-pentadecylacetylene, 5354 1-Methylpentamethyleneglycol, 1744 2-Methylpentane, 1715 3-Methylpentane, 1714 2-Methylpentan-3-ol, 1727 2-Methyl-2-pentene, 1613 8-Methyl-2-pentene, 1616, 1617 Methyl phenylacetate, 3155 Methylphenyl carbinol, 2713, 2713.1 N-Methyl-p-phenylenediamine, 2247 Methyl l-phenylethyl carbinol, 3754.2 1, 1-Methylphenylhydrasine, 2255 Methyl phenyl ketone, 2571 Methylphenylnitrosamine, 2134 4-Methyl-2-phenylquinoline, 5053 6-M e t h y l-2-phenylquinoline-4carboxylic acid, 5182 N-Methylphenyltoluene-4-sulfonsmide, 4795 1-Methyl-1-phenylurea, 2694 Methylphosphine, 73 Methylphosphinic acid, 72 Methyl phthalate, 3091, 3615 Methyl picrate, 1929 Methyl d-pinate, 3872 1-Methylpiperidine, 1699 2-Methylpiperidine, 1700 3-Methylpiperidine, 1701 4-Methylpiperidine, 1702 Methyl propargyl ether, 612 Methyl propionate, 726 Methylpropylacetaldehyde, 1635 Methylpropylacetic acid, 1647 Methylpropylacetylene, 1536 Methylpropylammonium chloroplatinate, 331192 Methylpropyl carbinol, 1084 Methylpropylcarbinolurethane, 1703 Methylpropylene, 684 Methyl propyl ether, 794 2-Methyl-2-propylethyl carbinol, 1736 Methylpropylisobutyl carbinol, 3363 Methyl propyl ketone, 1006 Methyl propyl ketoxime, 1056 1-Methylpyrasole, 608 3-Methylpyrasole, 608.1 5-Methylpyrasole, 608.2 3-Methylpyrasole-4-sulfonic a c i d , 609.1 2-Methylpyridine, 1443 3-Methylpyridine, 1444 4-Methylpyridine, 1445 2-Methylpyridine-4, 6-dicarboxylic acid, 2521

Methyl pyrotartrate, 2310

1-Methylpyrrole, 908 2-Methylpyrrole, 909 3-Methylpyrrole, 910 Methyl 2-pyrryl ketone, 1449 Methyl pyruvate, 628 3-Methylquinoline, 3545 4-Methylquinoline, 3546 6-Methylquinoline, 3547 7-Methylquinoline, 3548 8-Methylquinoline, 3549 2-Methylquinoline-4-carboxylic acid, 4035 2-Methylquinoline ethiodide, 4312 2-Methylquinoline methiodide, 4056 Methyl racemate, 1580 l-Methyl rhamnoside, 2367.1 Methyl rhodanide, 176 Methyl ricinolate, 5482 Methyl salicylate, 2618 Methyl santalate, 5140 Methyl santoate, 5135.1 Methylsilicane, 33404 Methylsilicane chloride, 23433 Methylsilicane dichloride, 28434 Methyl stearate, 5485 Methyl styryl ether, 3128 Methyl succinate, 1568 Methyl sulfate, 269 Methyl sulfide, 272 Methyl sulfite, 266 Methyl sulfocyanate, 176 Methylsulfone chloride, 43 Methylsulfonic acid, 61 Methylsulfuric acid, 62 Methyl tartrate, 1581 Methyl tartronate, 956 Methyl telluride, 277 Methyl terephthalate, 3616 1-Methyl-1, 2, 3, 4-tetrahydroquinoline, 3701 Methyltetramethylene, 981 Methyltetrasene, 78 Methyltetronic amide, 1070.2 Methyltetronic lactone, 947.1 Methylthiocyanate, 176 Methylthionyl chloride, 43 Methyl p-toluate, 3156 N-Methyl-o-toluidine, 2767 N-Methyl-m-toluidine, 2768 N-Methyl-p-toluidine, 2769 Methyl trichloroacetate, 329 Methyltriethylammonium chloroplatinate, 31202 Methyl 3, 4, 5-trihydroxybensoate, 2630 Methyl 2, 4. 6-trihydroxyphenyl ketone, 2620 Methyltriisobutylammonium chloroplatinate, 331219 Methyl trimethylacetate, 1656 Methyltrimethylene, 687 N-Methyltyrosine, 3721 5-Methyluracil, 888 N-Methylurea, 259 Methylures nitrate, 291 Methylurethane, 773.1 1-Methyluric acid, 1409 3-Methyluric acid, 1410 7-Methyluric acid, 1411 Methyl n-valerate, 1657 Methyl vanillate, 3183 Methysticin, 4925 Metol, 4822 Michler's ketone, 5207 Milk sugar, 4394 Mitragynine, 5734 Mitraversine, 5716

Mochyl alcohol, 5914

Monacetin, 1031

Monotal, 3694

Monobutyrin, 2367

Montanic acid, 5984

Morin, 4888 Morindin, 5896 Morindon, 4882 Morphine, 5202 Morphine acetate, 5458 Morphine ethyl ether, 5453 Morphine hydrobromide, 5205 Morphine hydrochloride, 5206 Morphine methyl bromide, 5322 Morphine methyl ether, 5317 Morphine sulfate, 6062 Morphine tartrate, 6111 Morphol, 4675 Morphosan, 5322 Mucic acid, 1584 Muconic acid, 1427 Murrayin, 5330 Musk, 4082 Mustard gas, 699 Mycosterol, 6000 Mykose, 4397 Myrcene, 3811 Myroenol, 3919 Myricyl alcohol, 6015 Myristic acid, 4851 Myristic aldehyde, 4850 Myristic amide, 4855 Myristic anilide, 5592 Myristicinic acid, 3094 Myristic nitrile, 4848 Myristicol, 3855 Myristone, 5941 Myristyl chloride, 4847 Myrtenal, 3761 Myrtenol, 3856 Myrtenyl chloride, 3780 Napelline, 6021 Naphthalanmorpholine, 4329 a-Naphthaldehyde, 4023 6-Naphthaldehyde, 4024 Naphthalene, 3494 Naphthalene-1, 8-dicarboxylic acid, 4197 Naphthalene-1, 5-disulfone chloride, 3430 Naphthalene-1, 6-disulfone chloride, 3431 Naphthalene-2, 6-disulfone chloride, 3432 Naphthalene-2, 7-disulfone chloride, 3433 Naphthalene-1, 5-disulfonic acid, 3539 Naphthalene-1, 6-disulfonic acid, 3540 Naphthalene-1-sulfinic acid, 3519 Naphthalene-2-sulfinic acid, 3520 Naphthalene-1-sulfone chloride, 3467 Naphthalene-2-sulfone chloride, 3468 Naphthalene-1-sulfonic acid, 3524 Naphthalene-2-sulfonic acid, 3525 Naphthalene tetrachloride, 3495 1. 8-Naphthalic acid. 4197 Naphthionic acid, 3562 a-Naphthoic acid, 4029 β-Naphthoic acid, 4030 a-Naphthol, 3507 B-Naphthol, 3508 α-Naphthol-2-sulfonic acid, 3532 α-Naphthol-4-sulfonic acid, 3533 a-Naphthol-5-sulfonic acid, 3534 a-Naphthol-8-sulfonic acid, 3535 β-Naphthol-6-sulfonic acid, 3536 8-Naphthol-7-sulfonic acid, 3537 α, β-Naphthophenazine, 5207 α-Naphthoquinaldine, 4701 8-Naphthoquinaldine, 4702 γ -Naphthoquinaldine, 4703 α-Naphthoquinoline, 4435 β-Naphthoquinoline, 4436 1, 2-Naphthoquinone, 3447 1, 4-Naphthoquinone, 3448 2, 6-Naphthoquinone, 3449 o-(a-Naphthoyl)-bensoic acid, 6271

a-Naphthoyl chloride, 4017 6-Naphthoyl chloride, 4018 α-Naphthyl acetate, 4247 6-Naphthyl acetate, 4248 Naphthyl acid camphorate, 5554 α-Naphthylamine, 3550 β-Naphthylamine, 3551 a-Naphthyl bensoate, 5176 β-Naphthyl bensoate, 5177 α-Naphthyl cyanide, 4019 6-Naphthyl cyanide, 4020 Naphthylene-1, 2-diamine, 3580 Naphthylene-1, 4-diamine, 3581 Naphthylene-1, 5-diamine, 3582 Naphthylene-1, 6-diamine, 3583 Naphthylene-1, 8-diamine, 3584 a-Naphthyl ether, 5499 a, &-Naphthyl ether, 5501 \$-Naphthyl ether, 5500 α-Naphthyl salicylate, 5178 β-Naphthyl salicylate, 5179 Narceine, 5790 Narceine hydrochloride, 5792 Narceine sulfate, 6150 Narceinic acid, 4929 Narcotine, 5704 dl-Narcotine, 5703 Neocerotic acid, 5878 Neodymium ethyl sulfate, 32031 Neoisocodeine, 5320 I-Neomenthol, 3974.1 Nepalin, 5188 Nepodin, 5302 Neral, 3850 Nerol, 3920 Nerolidol, 5003 Nerolin, 4042 Neryl acetate, 4377 Neurine perchlorate, 1104 Neurodin, 4079 Neuronal, 830 Nickel acetate, 331578 Nickel formate, 231577 Nickel naphthalene-1, 5-disulfonate. 381580 Nicoteine, 3643 Nicotelline, 3500 Nicotimine, 3748 Nicotine, 3747 Nicotine salicylate, 5208 Nicotinic acid, 1345 Nicotoine, 2775 Nirvanin, 4825 Nirvanol, 4059 o-Nitroacetanilide, 2555 m-Nitroacetanilide, 2556 p-Nitroacetanilide, 2557 Nitroscetic acid. 175 3-Nitro-\$-alisarin, 4616 4-Nitro-q-alisarin, 4615 5-Nitro-3-amino-p-cresol, 2149 2-Nitro-4-aminophenol, 1405 3-Nitro-2-aminophenol, 1400 3-Nitro-4-aminophenol, 1406 4-Nitro-2-aminophenol, 1401 5-Nitro-2-aminophenol, 1402 5-Nitro-3-aminophenol, 1404 6-Nitro-2-aminophenol, 1403 o-Nitroaniline, 1396 m-Nitroaniline, 1397 p-Nitroaniline, 1398 o-Nitroanisol, 2098 m-Nitroanisol, 2099 p-Nitroanisol, 2100 9-Nitroanthracene, 4644 1-Nitroanthraquinone, 4613 2-Nitroanthraquinone, 4614 p-Nitroasobensene, 4216 m-Nitrobenzal chloride, 1865 o-Nitrobenzaldehyde, 1893 m-Nitrobensaldehyde, 1894 p-Nitrobenzaldehyde, 1895

o-Nitrobensamide, 1981 m-Nitrobensamide, 1982 p-Nitrobensamide, 1983 Nitrobensene, 1347 o-Nitrobensidine, 4276 m-Nitrobensidine, 4277 o-Nitrobensoic acid, 1897 m-Nitrobensoic seid, 1898 p-Nitrobensoic acid, 1899 o-Nitrobensonitrile, 1829 m-Nitrobensonitrile, 1830 p-Nitrobensonitrile, 1831 o-Nitrobensoyl chloride, 1806 m-Nitrobensoyl chloride, 1807 p-Nitrobensoyl chloride, 1808 o-Nitrobensyl alcohol, 2085 m-Nitrobensyl alcohol. 2086 p-Nitrobensyl alcohol, 2087 o-Nitrobensylaniline, 4503 o-Nitrobensyl bromide, 1941 m-Nitrobensyl bromide, 1942 p-Nitrobensyl bromide, 1943 o-Nitrobensyl chloride, 1961 m-Nitrobenzyl chloride, 1962 p-Nitrobensyl chloride, 1963 p-Nitrobensyl cyanide, 2466 o-Nitrocinnamic acid, 3050 m-Nitrocinnamic acid, 3051 p-Nitrocinnamic acid, 3052 2-Nitro-p-cresol, 2096 3-Nitro-o-cresol, 2088 4-Nitro-o-cresol, 2089 4-Nitro-m-cresol, 2093 5-Nitro-o-cresol, 2090 5-Nitro-m-cresol, 2094 6-Nitro-e-cresol, 2091 6-Nitro-m-cresol, 2095 Nitrocresol methyl ether, 2676 Nitrocumene, 3219 Nitrocyclohexane, 1606 2-Nitrocymene, 3715 4-Nitro-1, 3-diacetylphenyl e n e diamine, 3636 2-Nitro-1, 4-diaminobensene, 1461 4-Nitro-1, 2-diaminobensene, 1459 4-Nitro-1, 3-diaminobensene, 1460 o-Nitrodimethylaniline, 2696 m-Nitrodimethylaniline, 2697 p-Nitrodimathyleniline, 2698 o-Nitrodiphenyl, 4212 m-Nitrodiphenyl, 4213 p-Nitrodiphenyl, 4214 o-Nitrodiphenylamine, 4283 p-Nitrodiphenylamine, 4234 p-Nitrodiphenylmethane, 4484 Nitroethane, 242 o-Nitroethoxybensene, 2677 p-Nitroethoxybenzene, 2678 Nitroethyl alcohol, 246 Nitroethylene, 173 Nitroform, 25 Nitroglycerine, 407 Nitroglycerol, 497, 498 Nitroglycol, 249 3-Nitroguaiacol, 2103 4-Nitroguaiacol, 2104 5-Nitroguaiacol, 2105 Nitroguanidine, 59 Nitrohydroquinone, 1354 2-Nitro-3-hydroxybensoic acid, 1911 3-Nitro-2-hydroxybensoic acid, 1907 3-Nitro-4-hydroxybensoic acid, 1915 4-Nitro-2-hydroxybenzoic acid, 1908 4-Nitro-3-hydroxybenzoic acid, 1912 5-Nitro-2-hydroxybensoic acid, 1909 5-Nitro-3-hydroxybensoic acid, 1913 6-Nitro-2-hydroxybenzoic acid, 1910 6-Nitro-3-hydroxybensoic acid, 1914 Nitroisatine, 2430 2-Nitroisophthalic acid, 2442 4-Nitroisophthalic acid, 2443 5-Nitroisophthalic acid, 2444

1-Nitroisopropylbensene, 8219 2-Nitro-4-isopropyltoluene, 8715 Nitromannite, 1495 Nitromesitylene, 3220 Nitromethane, 48 3-Nitro-4-methoxytoluene, 2676 o-Nitromethylaniline, 2136 m-Nitromethylaniline, 2137 p-Nitromethylaniline, 2138 2-Nitro-3-methyl-6-isopropylphenol, 8718 4-Nitro-3-methyl-6-isopropylphenol, 3719 Nitron, 5516 a-Nitronaphthalene, 3478 6-Nitronaphthalene, 3474 1-Nitro-6-naphthol, 3489 2-Nitro-a-naphthol, 3485 3-Nitro-a-naphthol, 3486 4-Nitro-a-naphthol, 3487 5-Nitro-a-naphthol, 3488 5-Nitro-6-naphthol, 3490 6-Nitro-6-naphthol, 3491 8-Nitro-6-naphthol, 3492 1-Nitro-β-naphthylamine, 3504 3-Nitro-a-naphthylamine, 3501 5-Nitro-6-naphthylamine, 3505 6-Nitro-a-naphthylamine, 3502 7-Nitro-a-naphthylamine, 3503 8-Nitro-6-naphthylamine, 3506 2-Nitrophenanthrene, 4645 3-Nitrophenanthrene, 4646 4-Nitrophenanthrene, 4647 9-Nitrophenanthrene, 4648 o-Nitrophenetol, 2677 p-Nitrophenetol, 2678 o-Nitrophenol, 1349 m-Nitrophenol, 1350 p-Nitrophenol, 1351 2-Nitrophenol-4-sulfonic acid, 1355 2-Nitro-p-phenylenediamine, 1461 4-Nitro-o-phenylenediamine, 1459 4-Nitro-m-phenylenediamine, 1460 3-Nitro-o-phthalic soid, 2440 4-Nitrophthalic acid, 2441 1-Nitropiperidine, 994 1-Nitropropane, 487 2-Nitropropane, 488 3-Nitropyridine, 852 5-Nitroquinoline, 3010 6-Nitroquinoline, 3011 7-Nitroquinoline, 8012 8-Nitroquinoline, 3013 2-Nitroresorcinol, 1352 4-Nitroresorcinol, 1353 2-Nitrosalicylic acid, 1911 3-Nitrosalicylic acid, 1907 4-Nitrosalicylic acid, 1908 5-Nitrosalicylic acid, 1909 6-Nitrosalicylic acid, 1910 n-Nitrosoacetanilide, 2553 p-Nitrosoaniline, 1394 Nitrosobensene, 1348 Nitrosodiethylamine, 783 6-Nitroso-3-(diethylamino)-phenol, 3749 p-Nitrosodiethylaniline, 3750 Nitrosodiisobutylamine, 2949 p-Nitrosodimethylaniline, 2695 p-Nitrosodimethylaniline hydrochloride, 2752 N-Nitrosodiphenylamine, 4228 p-Nitrosodiphenylamine, 4229 Nitrosodipropylamine, 1720 1-Nitroso-6-naphthol, 3477 2-Nitroso-a-naphthol, 3475 4-Nitroso-a-naphthol, 3476 Nitrosooxindol, 2465 p-Nitrosophenol, 1348 p-Nitrosophenylaniline, 4229

o-Nitrostyrene, 2513

m-Nitrostyrene, 2514

p-Nitrostyrene, 2515 2-Nitroterephthalic acid, 2445 Nitrotetronic acid dihydrate, 679.1 2-Nitrothiophene, 553 2-Nitrothymol, 3718 4-Nitrothymol, 8719 o-Nitrotoluene, 2081 m-Nitrotoluene, 2082 p-Nitrotoluene, 2083 p-Nitrotoluene-o-sulfonic acid, 2109 2-Nitro-m-toluidine, 2143 2-Nitro-p-toluidine, 2147 3-Nitro-o-toluidine, 2139 3-Nitro-p-toluidine, 2148 4-Nitro-o-toluidine, 2140 4-Nitro-m-toluidine, 2144 5-Nitro-o-toluidine, 2141 5-Nitro-m-toluidine, 2145 6-Nitro-o-toluidine, 2142 6-Nitro-m-toluidine, 2146 2-Nitro-1, 3, 5-trimethylbensene, 3220 Nitrourea, 53 Nitrourethane, 442 2-Nitro-m-xylene, 2668 2-Nitro-p-xylene, 2671 3-Nitro-o-xylene, 2666 4-Nitro-o-xylene, 2667 4-Nitro-m-xylene, 2669 5-Nitro-m-xylene, 2670 Nonacceane, 5985 Nonadecine-1-carboxylic acid, 5602 n-Nonane, 8354 n-Nondecane, 5486 Nondecylic acid, 5483 n-Nonylic acid, 3328 n-Nonyl alcohol, 3364 n-Nonyl aldehyde, 3325 n-Nonylamine, 8371 Nonylene, 3322 d-a-Nonyl formate, 3988 Nopinane, 3296 a-Nopinol, 8301 Nopinone, 3276 Noratropine, 5129 Norhyoscyamine, 5130 Noropianic acid, 2489 Nortropanol, 2321 Nortropinone, 2272 Nosophen, 5487 Novaspirin, 5620 Novatophan, 5410 Novocaine, 4557, 4558 Novocaine hydrochloride, 4565 Ocimene, 3812 Octachloroanthracene, 4591 β-Octachlorocyclohexenone, 1111.1 γ-Octachlorocyclohexenone, 1111.2 Octachloropropane, 309 Octaoosane, 5967 n-Octadecane, 5391 n-Octadecyl alcohol, 5392 n-Octadecyl iodide, 5389 n-Octadecylene, 5377 cis-6-Octalin, 3813 trans-6-Octalin, 3814 n-Octane, 2941 n-Octyl acetate, 3989 n-Octyl alcohol, 2966 d-sec-Octyl alcohol, 2967 dl-sec-Octyl alcohol, 2968 n-Octyl aldehyde, 2892 n-Octylamine, 2986 sec-Octylamine, 2987 n-Octyl bromide, 2922 n-Octyl chloride, 2924 sec-Octyl chloride, 2925 Octylene, 2874 n-Octyl ether, 5169 n-Octyl fluoride, 2926 d-6-Octyl formate, 3338 n-Octyl iodide, 2927 Oenanthaldoxime, 2386

Oenanthol, 2348. Oenanthylic acid, 2351 Oenanthylic aldehyde, 2843 Oenanthylidene, 2275 Oleic acid, 5359 Oleic acid osonide, 5371 Oleic aldehyde, 5356 Oleicamide, 5375 Oleic anhydride, 6105 Oleohydroxamic acid, 5376 Onceric acid, 5589 Onocerin, 5910 Onocol, 5910 Ononin, 5865 Opianic acid, 8624) Orcin, 2173 B-Orcinol, 2729 Orexine, 4710 Origanol, 3926, 3927 Ormosine, 5593 Ormoginine, 5594 dl-Ornithuric acid, 5480 Oroxylin, 5398 Orthoform, 2679 Orthoform, new, 2680 Oscine, 2822 Oscine picrate, 4812 Ouabain, 5998 Oxalic acid, 147 Oxalic acid dihydrate, 270 Oxalylanthranilic acid, 3049 Oxalyl bromide, 85 Ozalyl chloride, 89 Ozalyldihydraside, 260 Oxalylurea, 317 Oxamic acid. 174 Oxamide, 199 Oxanilic acid, 2516 Ozanilide, 4715 Oxindol, 2511 Oxyacanthine, 5434 Oxycannabin, 3579 Oxyquinoline sulfate, 5291 Oxysparteine, 4985 Oxytoluyltropeine, 5128 Paeonol, 8159 Palmitic acid, 5159 Pamitic aldehyde, 5158 Palmitic amide, 5165 Palmitic anhydride, 6045 Palmitic anilide, 5745 Palmitolic acid, 5148 Palmitone, 6026 Palmitonitrile, 5155 Palmitoxylic acid, 5149 Paniculatine, 5972 Papaveraldine, 5528 Papaverio acid, 5056 Papaverine, 5541 Papaverine hydrochloride, 5544 Parabanic acid, 317 n-Parabutyraldehyde, 4409 Paraconic acid, 902 Paracotoic acid, 4257 Paracotoin, 4199 Paraffinie acid, 5856 Paraformaldehyde, 36 Paraldehyde, 1662 Paraldol, 2916 Param, 207 Paramorphine, 5435 Parapropionaldehyde, 8340 Pararosaniline, 5428 Parasalicyl, 4681 Paratophan, 5182 Paraxanthine, 2152 Paricine, 5101 Parillin, 5912 Parvoline, 3266 Patchouli alcohol, 5142 Patellaric acid, 5215 Patschoulene, 4978

Paucine, 5930 Paytine, 5655 Pelargonic acid, 3328 Pelargonic aldehyde, 3325 Pelletierine, 2862 Pelletierine hydrobromide, 2875 Pelletierine hydrochloride, 2876 Pelletierine sulfate, 5157 Pellotine, 4552 Pelosine, 5316 Pentabromoaniline, 1126 Pentabromobenzene, 1113 Pentabromoethane, 105 Pentabromophenol, 1114 Pentachloroaniline, 1140 Pentachlorobensene, 1119 Pentachlorobensoic acid, 1775 Pentachloroethane, 111 Pentachlorophenol, 1120 Pentachloropropane, 331 Pentacosane, 5881 n-Pentadecane, 5018 n-Pentadecyl alcohol, 5019 Pentadecyl amine, 5020 Pentadecylic acid, 5016 1, 3-Pentadiene, 918 2. 3-Pentadiene, 914 Pentaerythritol, 1093 Pentaethylbensene, 5141 Pentahydroxybensophenone, 4470 Pentamethylbenzene, 4119 Pentamethylbenzoic acid, 4341 Pentamethylbensyl alcohol, 4367.6 Pentamethylenediamine, 1105 cis-Pentamethylene-1, 2-dicarboxylic acid, 2264 Pentamethyleneglycol, 1090 Pentamethylene oxide, 1008 Pentamethylphenol, 4128 n-Pentane, 1073 Pentane-1, 2-diol, 1089 Pentane-1, 5-diol, 1090 Pentanitrophenol, 1121 Pentaphenylethane, 6030 n-Pentatriacontane, 6091 1-Pentene-3-ol, 999 2-Pentene-4-ol, 1000 2-Pentene-2, 3, 5-tricarboxylic acid 2, 3-imide, 2681 1, 2-Pentenic acid, 934 2, 3-Pentenic acid, 935 3, 4-Pentenic acid, 930 1-Pentine, 920 Pentinoic acid, 894 n-Pentylethylene, 2332 Perbromobensene, 1107 Perbromoethylene, 86 Perchlorobensene, 1110 Perchloroether, 538 Perchloroethylene, 90 Pereirine, 5465 Peresone, 4951 d-Perseitol, 2417 Perylene, 5488 Petronal, 3370 Petroselinic acid, 5360 Peucedanin, 4922 Phaseolunatin, 3887 Phellandral, 3857 α-Phellandrene, 3815 8-Phellandrene, 3816 Phellyl alcohol, 5250 Phenacetin, 3716 Phenamine, 3751 Phenanthraquinone, 4622 3, 4-Phenanthraquinone, 4623 Phenanthrene, 4652 Phenanthridine, 4437 Phenanthroline, 4187 Phenanthrone, 4671

Phenarsasine, 4185

Phenareazine chloride, 4202

Phenarsasine oxide, 5819 Phenazine, 4188 Phenasone, 4189 o-Phenetidine, 2786 m-Phenetidine, 2787 p-Phenetidine, 2788 Phenetidine salicylacetate, 5090 Phenetol, 2722 Phenetsal, 4911 p-Phenetylurea, 3232 Phenocaine, 5331 Phenocoll, 3751 Phenecoll salicylate, 5210 Phenol, 1413 Phenolphthalein, 5504 o-Phenolsulfonic acid, 1428 Phenosal, 5090 a-Phenotriasine, 1919 Phenoval, 4538 Phenoxyacetic acid, 2617 o-Phenoxybensoic acid, 4465 Phenylacetaldehyde, 2567 Phenylacetamide, 2651 Phenylacetanilide, 4753 Phenyl acetate, 2590 Phenylacetic acid, 2584 Phenylacetic anhydride, 5071 Phenylacetyl chloride, 2499 Phenylacetylene, 2453 Phenyl acid camphorate, 5124 9-Phenylacridine, 5395 Phenylalanine, 3208, 3209 3-Phenylallylamine, 3190 Phenylallylene, 3055 Phenylaminoacetic acid, 2661 m-Phenylaminophenol, 4271 2-Phenyl-1-aminopropionic acid, 3208, 3209 9-Phenylanthracene, 5494 Phonylarsine, 1434 Phenylarsenious oxide, 1292 Phenylarsonic acid, 1435 Phenyl bensenesulfonate, 4250 Phenyl bensoate, 4458 o-Phenylbensoic acid, 4455 m-Phenylbensoic acid, 4456 p-Phenylbensoic acid, 4457 2-Phenyl-1, 4-bensopyrone, 4868 2-Phenylbensoquinone, 4196 Phenylbensylamine, 4512 1-Phenyl-1-benzylhydrazine, 4523 Phenyl benzyl ketone, 4724 2-Phenylbutane, 3725 Phenylbutylene, 3639 Phenyl n-butyrate, 3683 3-Phenylbutyric acid, 3670 Phenyl carbonate, 4466 Phenyl chloroacetate, 2501 Phenylchloroform, 1870 Phenylcinchoninic acid hydrochloride, 5040 2-Phenylcrotonic acid, 3596 3-Phenylcrotonic acid, 3597 Phenylcrotonylene, 3576 Phenyl cyanide, 1885 Phenyldichloroarsine, 1291 3-Phenyl-3, 4-dihydroquinasoline, 4710 Phenyldimethylaminopyrasolone, 4537 1-Phenyl-2. 3-dimethylpyrazolone, 405R Phenylditolylmethane, 5625 o-Phenylenediacetic acid, 3611 m-Phenylenediacetic acid. 3612 p-Phenylenediacetic acid, 3613 o-Phenylenediamine, 1479 m-Phenylenediamine, 1480 p-Phenylenediamine, 1481 o-Phenylenediamine-3-sulfonic acid.

Phenyl ether, 4241

2-Phenylethyl alcohol, 2714 α-Phenylethylamine, 2770 ω-Phenylethylamine, 2771 ω-Phenylethylamine hydrochloride. 2798 5, 5-Phenylethylbarbituric acid, 4291 Phenylethylene, 2538 4, 4-Phenylethylhydantoin, 4059 Phenylethylsilicane dichloride, 28443 N-Phenylformamide, 2073 N-Phenylformanilide, 4480 Phenyl formate, 2008 β-Phenylglucoeide, 4356 Phenylglyceric acid, 3177, 3178 Phenylglycol, 2736 Phenylglycolic acid, 2612, 2613 Phenylglyoxal, 2469 Phenylglyoxylic acid, 2478 Phenyl heptylate, 4544 Phenyl hexyl ketone, 4542 Phenylhydrasine, 1483 Phenylhydrazine acetate, 2805 Phenylhydrazine hydrate, 4367.4 Phenyldrazine hydrochloride, 1514 p-Phenylhydrasinesulfonic acid, 1491 \$-Phenylhydroxylamine, 1450 3, 5-Phenylimino-1, 4-diphenyl-4, 5dihydro-1, 2, 4-triasol, 5516 Phenyl isoamyl ether, 4131 Phenyl isocyanate, 1889 Phenyl isocyanide, 1886 Phenyl isothiocyanate, 1918 Phenyl isovalerate, 4100 2-Phenyllactic acid, 3166 Phenyl malonate, 4908 Phenylmalonic acid, 3089 Phenyl methyl ether, 2163 1-Phenyl-5-methyl-3-methoxypyrasole, 4510 N-Phenyl-3-methylpyrasolone, 3585 Phenyl mustard oil, 1918 α-Phenylnaphthalene, 5037 β-Phenylnaphthalene, 5038 2-Phenylnaphthalene-2-carboxylic acid, 5175 N-Phenyl-a-naphthylamine, 5054 N-Phenyl-6-naphthylamine, 5055 Phenyl a-naphthyl ether, 5043 Phenyl &-naphthyl ether, 5044 Phenyl a-naphthyl ketone, 5173 Phenyl \(\beta\)-naphthyl ketone, 5174 Phenylnitroamine, 1395 Phenylnitromethane, 2084 Phenyl oxalate, 4687 o-Phenylphenol, 4238 m-Phenylphenol, 4239 p-Phenylphenol, 4240 Phenylphosphenic acid, 1464 Phenylphosphenous acid, 1463 Phenylphosphine, 1465 Phenyl picrate, 4183 Phenylpropiolic acid, 3014 Phenyl propionate, 3157 1-Phenylpropionic acid, 3146 Phenyl-sec-propyl alcohol, 3235 3-Phenylpropyl alcohol, 3237 1-Phenyl-2-propyl-3-methylpyrasolone, 4530.2 3-Phenylpyrasolone, 3066 2-Phenylpyridine, 4032 3-Phenylpyridine, 4033 4-Phenylpyridine, 4034 Phenylpyruvic acid, 3086 2-Phenylquinoline, 4892 4-Phenylquinoline, 4893 6-Phenylquinoline, 4894 8-Phenylquinoline, 4895 2-Phenylquinoline-4-carboxylic acid, 5035 Phenyl rhodanide, 1917 Phenyl salicylate, 4467 Phenyl selenide, 4262

1-Phenylsemicarbaside, 2235 4-Phenylsemicarbaside, 2236 Phenylailicon trichloride, 28441 Phenyl succinate, 5074 Phenyl sulfide, 4260 Phenyl tartrate, 5077 Phenyl telluride, 4263 Phenyl thiocyanate, 1917 Phenylthioures, 2150 N-Phenylthiourethane, 321 o-Phenyltoluene, 4491 m-Phenyltoluene, 4492 p-Phenyltoluene, 4493 Phenyl-p-toluenesulfonate, 4509 Phenyl o-tolyl ketone, 4725 Phenyl m-tolyl ketone, 4726 Phenyl p-tolyl ketone, 4727 Phenylurea, 2135 N-Phenylurethane, 3221 Phenylvinyl acetate, 3601 Phillirin, 5950 Phloramine, 1451 Phloretic acid, 3167 Phloretin, 4926 Phloridain, 5659 Phloroscetophenone, 2620 Phloroglucinol, 1421 Phloroglucinol triacetate, 4302 Phloroglucinol triethyl ether, 4367.9 Phloroglucinol trimethyl 3250 Phloroglucinol trioxime, 1530 Phloroglucite, 1661 Phlorone, 2593 Phorone, 3277 Phosgene, 9 Phosphenyl chloride, 1327 Phosphenyl oxychloride, 1326 Phosphobensene, 4259 o-Phthalamic acid, 2517 Phthalasine, 2462 o-Phthalic acid, 2479 o-Phthalic aldehyde, 2470 o-Phthalic anhydride, 2431 o-Phthalic diamide, 2551 Phthalide, 2473 o-Phthalimide, 2439 Phthalonic anhydride, 2990 o-Phthalyl dichloride, 2423 Phthalylphenylhydrasine, 4656.1 Phrenosin, 6153 Physcic acid, 5048 Physcion, 5048 Physostigmine, 4960 Physostigmine hydrobromide, 4962 Physostigmine hydrochloride, 4965 Physostigmine salicylate, 5724 Physostigmine sulfate, 5996 Physostigmol, 4051 Phytol, 5606 Phytosterol, 5934 Phytosterol acetate, 5980 Phytosterolene acetate, 6088 Phytosterol glucoside, 5807 Phytosteroline, 6055 Phytosterol valerate, 6044 Piasothiole, 1283 Picein, 4821 Picene, 5695 Picenio acid, 5614 a-Picoline, 1443 B-Picoline, 1444 γ-Picoline, 1445 Picolinic acid, 1344 Picramic acid, 1364 Picramide, 1284 a-Picrasmin, 6098 β-Picrasmin, 6099 Pierie acid, 1197 Picroaconitine, 6021 Picropodophyllin, 5780 Picrotin, 4946

Picrotoxin, 5989 Picrotoxinin, 4936.1 Picryl acetate, 2452 Picryl bromide, 1122 Picryl chloride, 1127 Picryl iodide, 1141 Picrylaulfonic acid, 1199 Pilocarpidine nitrate, 3797 Pilocarpine, 4125 Pilocarpine hydrobromide, 4134 Pilocarpine hydrochloride, 4136 Pilocarpine nitrate, 4143 Pilocarpine salicylate, 5325.1 Pilocarpine sulfate, 5741 Pilosine, 5109 Pilosinine, 3233 d-Pimaric acid, 5588 n-Pimelic acid, 2308 Pimelic aldehyde, 2291 Pimpinellin, 4469 Pinane, 3893 Pinacolin, 1630 Pinacolyl alcohol, 1733, 1733.1 Pinacolyl chloride, 1694 Pinacone, 1743 α-Pinene, 3817 β-Pinene, 3818 Pinene hydrate, 3921 d-Pinene hydrobromide, 3875 Pinene hydrochloride, 3881 Pinic acid, 3282.1, 3282.2 Pinite, 2374 Pinocamphane, 3894 Pinocarvol, 3763 Pinol, 3858 Pinol glycol, 3934 dl-a-Pinone oxime, 3886.1 Pinonie acid, 3867, 3867.1 Pinoylformic acid, 3777 Pinylamine, 3883 a-Pipecoline, 1700 β-Pipecoline, 1701 γ-Pipecoline, 1702 Piperasine, 782 Piperazine quinate, 5352 Piperic acid, 4254 Piperidine, 1054 Piperidine hydrochloride, 1075 Piperidone, 974 Piperine, 5204 Piperitone, 3764 Piperonal, 2474 Piperonal chloride, 2457 Piperonyl alcohol, 2594 Piperonylic acid, 2482 Piperylene, 918 Pipitsol, 4952 Pisangcerylic acid, 5857 Piturine, 1477 Podocarpic acid, 5232 Podophyllotoxin, 5781 Populin, 5549 Porphyrine, 5667 Porphyroxime, 5456 Potassium acetate, 332983 Potassium acetylsalicylate, 32993 Potassium acid acetate, 32988 Potassium acid chloroacetate, 32999 Potassium acid oxalate, 32981 Potassium acid phthalate, 32991 Potassium acid succinate, 32984 Potassium acid tartrate, 32986 Potassium acid uroxasate, 233009 Potassium ammonium d-tartrate, **33008** Potassium citrate, 32989 Potassium cobalt malonate. 23094 Potassium disuccinate, 32992 Potassium ethylsulfate, 23000 Potassium formate, 32980 Potassium lithium d-tartrate, 33176 Potassium methanedisulfonate, 23004

Potassium naphthalene-1, 5-disulfonate, \$3005 Potassium nickel dithioxalate, 233098 Potassium oleate, 332994 Potassium oxalate, 332977 Potassium phenol-2, 4-disulfonate. 33003 Potassium o-phenolaulfonate, 283002 Potassium p-phenolsulfonate, \$3001 Potassium sodium tartrate. 33183 Potassium succinate, 32995 Potassium tartrate, 332996 Potassium tetraoxalate, 32998 Potassium uranyl acetate, 23121 Potassium uranyl oxalate, \$3120 Praesodymium ethyl sulfate, 32018 Pratensol, 5181 Pratol, 5047 Prehnidine, 3791 Prehnitene, 3740 Prehnitic scid, 3451 Primeverin, 5586 Proceine, 4566 Procellulose, 5351 Propadiene, 337 Propassine, 3712 Propanal, 3841 Propane, 500 Propargyl acetate, 896 Propargyl alcohol, 355 Propargyl aldehyde, 318 p-Propenylanisol, 8648 Propenylbensene, 3120 Propenyl chloride, 374 Propioisonitrile, 396 Propiolic acid, 319 Prepionaldehyde, 447 Propional dehyde dipropylacetal, 3368 Propionamide, 482 Propionanilide, 3200 Propionic acid, 450 Propionic anhydride, 1560 Propionitrile, 395 Propionyl chloride, 378 Propionylphenetidine, 4110 Propionylpropionic aldehyde, 1550 Propine, 338 n-Propylacetanilide, 4106 n-Propyl acetate, 1020 Propylacetylene, 920 n-Propyl alcohol, 505 n-Propylamine, 524 Propyl p-aminobensoate, 3712 Propyl ammonium chloroplatinate, 31189 n-Propylaniline, 3267 Propyl anisate, 4102 Propylarsonic acid, 521 n-Propylbensene, 3229 Propyl benzoate, 3684 o-Propylbenzoic acid, 3671 p-Propylbenzoic acid, 3672 Propyl bensyl ketone, 4091 Propyl borate, 331826 n-Propyl bromide, 464 Propylbutyl carbinol, 2969 Propyl n-butyl ether, 2414 Propyl n-butyrate, 2361 Propyl caproate, 3339 Propyl carbamate, 771 Propyl carbonate, 2365 n-Propyl chloride, 468 n-Propyl chlorocarbonate, 660 n-Propyl chloroformate, 660 n-Propyl cinnamate, 4317 Propyl cyanide, 667 Propylcyclohexane, 3323 Propylene, 409 Propylene chloride, 418 dl-Propylenediamine, 533 a-Propyleneglycol, 510

1-Propyleneglycol-2-chlorhydrin, 471

Propyl ether, 1741 n-Propylethylene, 984 n-Propyl fluoride, 474 n-Propyl formate, 727 Propyl glycolate, 1029 Propyl-n-hexyl carbinol, 4005 Propyl hexyl ketone, 3978.1 Propylideneacetic acid, 934 Propylidene chloride, 417 Propylidene dipropyl ether, 3368 n-Propyl iodide, 475 Propylisobutylammonium chloroplatinate, 331201 Propylisobutyl carbinol, 2970 Propylisobutyl ketone, 2898 Propylisobutyrate, 2362 5, 5-n-Propylisopropylbarbituric acid, Propylisopropyl carbinol, 2411 Propylisopropyl malonate, 3314 Propylisothiocyanate, 681 n-Propyl isovalerate, 2912 Propyl malate, 3944 Propyl malonate, 3313 Propylmalonic acid, 1566 n-Propyl mercaptan, 518 Propyl p-methoxybensoate, 4102 3-Propyl-3-methylpropyl alcohol, 1736 Propyl mustard oil, 681 Propyl nitrate, 495 Propyl nitrite, 489 Propylnitrolic acid, 439 5-Propylnonane, 4412 3-n-Propylpentane, 2942 o-n-Propylphenol, 3239 m-n-Propylphenol, 3240 p-n-Propylphenol, 3241 Propyl phenyl ether, 3246 Propyl phenyl ketone, 3662 Propylphosphine, 529 n-Propyl propionate, 1659 Propylpseudonitrole, 441 2-Propylpyridine, 2776 Propyl salicylate, 3690 Propylailicon trichloride, 38436 Propyl succinate, 3943 Propyl sulfide, 1754 Propyl tartrate, 3945 Propylthioures, 785 o-Propyltoluene, 3727 m-Propyltoluene, 3728 Propyltriisobutylammonium chloroplatinate, 31221 Propylurethane, 1704.1 n-Propyl n-valerate, 2911 2-Propyl-p-xylene, 4122 4-Propyl-o-xylene, 4120 4-Propyl-m-xylene, 4121 Protocatechuic acid, 2020 Protocatechuic aldehyde, 2012 Protocatechuic aldehyde methylene ester, 2474 Protopine, 5529 Protoveratridine, 5913 Protoveratrine, 6040 Prulaurasin, 4818 Pseudosconine, 5872 Pseudoaconitine, 6102 Pseudoatropine, 5237 Pseudobutylene, 685 Pseudobutyleneglycol, 796 Pseudococaine, 5223, 5224 Pseudocodeine, 5320 a-Pseudoconhydrine, 2931 Pseudoconhydrine hydrochloride, 2947 Pseudoconiceine, 2858 Pseudocumene, 3230 Pseudocumenol, 3242 Pseudocumidine, 3289 Pseudoephedrine, 3795 Pseudoephedrine hydrochloride, 3830

Pseudoionone, 4563

Pseudojervine, 5976 Pseudomorphine, 6060 Pseudopelletierine, 3291 Pseudophenanthrene, 5039 Pseudophenanthroline, 4190 Pseudopurpurin, 4864 Pseudotropine, 2863 Paoromic acid, 5506 Psychotrine, 5952 Psychotrine sulfate, 6163 Psyllic acid, 6057 Psyllostearyl alcohol, 6058 Psyllostearylic acid, 6057 Pulegene, 3297 Pulegon, 3859 dl-Pulenol, 3324 Purine, 854 Purpurin, 4638 Putrescine, 833 Pyosin, 6168 Pyraconitine, 6032 Pyramidon, 4537 . Pyramidon acid camphorate, 5802 Pyramidon camphorate, 6100 Pyramidon salicylate, 5553 Pyrantin, 4309 Pyrasine, 563 Pyrasole, 351 3, 5-Pyrasoledicarboxylic acid, 835.1 Pyrasoline, 431 Pyrazolone, 353 Pyrene, 5206 Pyreneketone, 4426 Pyrene picrate, 5705 Pyrethrol, 5681 Pyridasine, 561 Pyridine, 870 Pyridine-2-carboxylic acid, 1344 Pyridine-3-carboxylic acid, 1345 Pyridine-4-carboxylic acid, 1346 Pyridine-2, 3-dicarboxylic acid, 1900 Pyridine-2, 4-dicarboxylic acid, 1901 Pyridine-2, 5-dicarboxylic acid, 1902 Pyridine-2, 6-dicarboxylic acid, 1903 Pyridine-3, 4-dicarboxylic acid, 1904 Pyridine-3, 5-dicarboxylic acid, 1905 Pyridine nitrate, 890 Pyridinepentacarboxylic acid, 3402 Pyridine-2, 3, 4-tricarboxylic acid, Pyridine-2, 3, 5-tricarboxylic acid, 2447 Pyridine-2, 3, 6-tricarboxylic acid, 2448 Pyridine-2, 4, 5-tricarboxylic acid, 2449 Pyridine-2, 4, 6-tricarboxylic acid, 2450 Pyridine-3, 4, 5-tricarboxylic acid, 2451 Pyridyl-2-aldehyde, 1341 Pyridyl-3-aldehyde, 1342 Pyridyl-2-cyanide, 1267 Pyridyl-3-cyanide, 1268 Pyridyl-4-cyanide, 1269 Pyrimidine, 562 Pyrocatechol, 1414 Pyrocatechol diethyl ether, 3766 Pyrocatechol ethyl ether, 2738 Pyrocatechol methyl ether, 2174 Pyrocoll, 3434 Pyrogallol, 1419 Pyrogallolcarboxylic acid, 2022 Pyrogallol triacetate, 4303 Pyrogallol triethyl ether, 4368 Pyrogallol trimethyl ether, 3251 Pyroglycerol, 1747 Pyromeconic acid, 866 Pyromellitic acid, 3452 Pyromucic acid, 867 1, 4-Pyrone, 860 Pyroracemic acid, 359

Pyroracemic alcohol, 449 Pyrotartaric acid, 947 Pyrotritaric acid, 2180 Pyrrole, 589 Pyrrole-2-aldehyde, 874 Pyrrole-2-carboxylic acid, 877 Pyrrolidine, 759 a-Pyrrolidone, 672 Pyrroline, 670 Pyrrolylene, 596 Pyrrone, 3068 Pyruvic acid, 359 Pyruvic nitrile, 332.1 Quassiin, 6034 Quebrachine, 5670 Quebrachine hydrochloride, 5672 Quebrachite, 2375 Quebrachol, 5598 Quercetagetin, 4891 Quercetin, 4889 d-Quercital, 1670 I-Quercitol, 1671 Quercitrin, 5631 Quinaldine ethiodide, 4312 Quinaldine methiodide, 4056 Quinaldinic acid, 3479 Quinalgan, 5289 Quinamine, 5469 Quinasoline, 2463 Quinene, 5545 Quinhydrone, 4255 Quinic acid, 2313 Quinic amide, 2324 Quinic lactone, 2270 Quinicine, 5560 Quinide, 2270 Quinidine, 5561 Quinidine hydrochloride, 5567 Quinine, 5562, 5563, 5564 Quinine acetate, 5728 Quinine acetylsalicylate, 5971 Quinine butyrate, 5837 Quinine carbonate, 6127 Quinine citrate, 6175 Quinine dibromosalicylate, 5921 Quinine dichloride, 5555 Quinine diguaiacolsulfonate, 6063 Quinine disulfate, 5575 Quinine ethyl carbonate, 5801 Quinine formate, 5671 Quinine glycerophosphate, 6137 Quinine hydrate, 5587 Quinine hydrobromide, 5566 Quinine hydrochloride, 5568 Quinine hypophosphite, 5581 Quinine lactate, 5796, 5797, 5798 Quinine malate, 6139 Quinine β-naphtholsulfonate, 6122 Quinine nitrate, 5574 Quinine phenolsulfonate, 5897 Quinine propionate, 5795 Quinine salicylate, 5925 Quinine succinate, 6138 Quinine sulfate, 6124 Quinine tartrate, 6141 Quininic acid. 4036 Quinisarin, 4633 Quinoline, 3037 Quinoline-2-carboxylic acid, 3479 Quinoline-3-carboxylic acid, 3480 Quinoline-4-carboxylic acid, 3478 Quinoline-6-carboxylic acid, 3481 Quinoline-7-carboxylic acid, 3482 Quinoline-8-carboxylic acid, 3483 Quinoline-2, 3-dicarboxylic acid, 4021 Quinoline-2, 4-dicarboxylic acid, 4022 Quinoline ethiodide, 4057 Quinoline methiodide, 3496 Quinoline tartrate, 6136 Quinolinic acid. 1900 Oninone 1287

Quinonedioxime, 1399

Quinoneoxime, 1348 Quinotoxine, 5560 β-Quinovin, 6001 Quinoxaline, 2464 Raffinose 5350 Rapic acid, 5361 Ratanhine, 3720 β-Resalgin, 5198 Resorcinol, 1415 Resorcinol acetate, 2619 Resorcinol antipyrine, 5198 Resorcinol diacetate, 3620 Resorcinol diethyl ether, 3769 Resorcinol dimethyl ether, 2741 Resorcinol ethyl ether, 2742 Resorcinol methyl ether, 2175 Retamine, 4995 Retene, 5306 Rhamnitol, 1749 B-Rhamnose, 1672 Rhamnose phenylhydrazone, 4367.1 Rheadine, 5636 Rhein, 4886 Rhisocholic acid, 4016 Rhodanic acid, 24 Rhodeoretin, 6046 Rhodeose, 1673 Rhodinol, 3908 Rhodinyl acetate, 4374 Rhodinyl butyrate, 4835 d-Ribose, 1036 Ricinelaidic acid, 5368 Ricinic acid, 5369 Ricinine, 2554 Ricininic acid. 1980 Ricinoleic acid, 5370 Robigenin, 4884 Robinin, 6049 Rochelle salt, 33184 Rosindon, 5696 Rosinduline, 5698 Rosindulon, 5696 Rosolic acid, 5518 Rubasonie acıd, 5519 Ruberythric acid, 5895 Rubicene, 5882 Rubidium acid chloroacetate, 33233 Rubidium acid oxalate, \$3225 Rubidium acid phthalate, 33228 Rubidium citrate, 33231 Rubidium cobalt malonate, 33263 Rubidium lithium d-tartrate, 33276 Rubidium sodium mesotartrate. **33277** Rubidium tartrate, 383229 Rubijervine, 5907 Rumicin, 4878 Rutin, 5928 Sabadenine, 5977 Sabadine, 5982 Sabinane, 3895 Sabinene, 3819 Sabinol, 3860 Saccharin, 1896 d-Saccharine, 1579 Saccharose, 4396 Safrol, 3591 Sakuranetin, 5076 Sakuranin, 5706 Salacetol, 3622 Salicin, 4547 Salicin bensoate, 5549 Salicitrin, 5620 Salicylaldehyde, 2004 Salicylaldehyde methylphenylhydrasone, 4769 Salicylamine, 2220 Salicylanilide, 4485 Salicyl chloride, 1863 Salicylic acid. 2013 Salicylic nitrile, 1890

Salicylosalicylic acid, 4692

Salicyl-p-phenetidin, 4928 Salicyl sulfonic acid, 2027 Salicyluric acid. 3114 Saliformin, 4540 Saligenin, 2166 Salinigrin, 4535 Salipyrine, 5308 Salocol, 5210 Salol, 4467 Salophen, 4911 Saloquinine, 5925 Salvarsan, 4311 Samarium acetate, 32051 Samarium ethyl sulfate, 332054 Samarium formate, 32050 Samarium propionate, \$2052, \$2053 Sambunigrin, 4819 Sanguinarine, 5509 a-Santalene, 4979 β-Santalene, 4980 ~-Santalene, 4981 Santalic acid, 5987 Santalin, 5987 g-Santalol, 4987 β-Santalol, 4988 Santalyl chloride, 4970 Santalyl salicylate, 5730 Santene, 3273 dl-Santenol, 3302 Santinic acid, 4936 Santonic acid, 4956 Santonin, 4943 dl-Santoninie acid, 4955 Santyl, 5730 Saponarin, 5661 Sapotin, 5983 Sarcosine, 486 Sarsapic acid, 1289 Sarsasapogenin, 5905 Sarsasaponin, 6143 Scatole, 3100 a-Scatolecarboxylic acid, 3560 Scillitin, 5247 Scoparin, 5536 Scopolamine, 5222 Scopoletin, 3530 Scopolin, 5836 Scopoline, 2822 Scutellarein, 4887 Scutellarin, 5823 Sebacic acid. 3938 Sebamic acid. 3954 Sekisanine, 6061 Selenophenol, 1431 a-Selinene, 4982 Semicarbaside, 69 Semicarbaside hydrochloride, 76 Semicarbaside nitrate, 81 Seminose, 1682 Senecifolidine, 4990 Senecifoline, 5337 Senecifoline hydrochloride, 5338 Septentrinaline, 6051 dl-Serine, 493 d-Serine, 493.1 Sidonal, 5352 Silicon tetraethyl. 23418 Silicon tetraphenyl, 28424 Silver acetate, 231107 Silver lactate, 281108 Silver oxalate, 231106 Silver tartrate, 251109, 251110 Sinalbin, 5995 Sinapic acid, 4073 Sinapine sulfate, 6038 Sinapine thiocyanate, 5242 Sinapoline, 2285 Sinomenine, 5457 Sitosterol, 5935 Smilacin, 5906 Sodium acetate, 382756 Sodium acid malonate, 32758

Sodium acid tartrate, 332759 Sodium citrate, 32766 Sodium diacetate, 32760 Sodium elaidate, 32762 Sodium ethanedisulfonate, \$2768 Sodium formate, 32754 Sodium glutamate, 382772 Sodium lithium tartrate, 32912 Sodium naphthalene-1, 5-disulfonate, 332767 Sodium 1, 4-naphthylaminesulfonate. 332775 Sodium oleate, 32763 Sodium palmitate, 32761 Sodium thallium tartrate, 32782 Sodium sulfanilate, \$2774 Sodium tartrate, \$2764 Sodium uranyl acetate, 32835 Solanguatine, 6053 Solanidine, 6079 Solanine, 6158 Solanine hydrochloride, 6159 Sophoretin, 4889 Sophorin, 5927 Sorbie acid, 1498 Sorbic chloride, 1441 d-Sorbitol, 1752 d(l)-Sorbose, 1684 dl-Sorbose, 1685 Sordidin, 4471 Sparassol, 3695 Sparteine, 4994 Sparteine hydrochloride, 5011 Sparteine hydroiodide, 5012 Sparteine sulfate, 6009 Sphingosine, 5259 Spinacene, 5978 Spirosal, 3184 Stachydrine, 2323 Stannous acetate, 2519 Staphisagroine, 5556 Starch, 1578.1 Stearic acid, 5379 Stearic aldehyde, 5378 Stearic amide, 5390 Stearic anhydride, 6106 Stearic anilide, 5845 Stearolic acid, 5347 Stearone, 6090 Stearonitrile, 5374 Stearoxylic acid, 5349 Stearyl chloride, 5373 Stercorin, 5939 Stigmasterol, 6005 Stilbene, 4708 Stovaine, 4829 Strontium acetate, 32467 Strontium antimony tartrate, 32471 Strontium calcium propionate, 32493 Strontium ethanedisulfonate, 32468 Strontium ethylsulfate, 32469 Strontium formate, 382464 Strontium nitrotetronate, 32470 Strophantidin, 5929 Strophantin, 5998, 6125 Struxine, 5677 Stryacol, 5070 Strychnidine, 5656 Strychnine, 5642 Strychnine methylarsinate, 5719 Strychnine nitrate, 5653 Strychnine salicylate, 5948 Strychnine sulfate, 6129 Strychnine d-tartrate, 6148 Stylopine, 5425 Styphnic acid, 1198 Styracin, 5292 Styrene, 2538 Styrene dibromide, 2455 Styrolene alcohol, 2736 Styryl alcohol, 3126 Styrylamine, 3190

Tetramethylhydrounlic acid, 4315

Suberane, 2327 Suberic acid, 2845 Suberone, 2290 Suberoxime, 2322 Suberyl alcohol, 2335 Succinamide, 706 Succinic acid, 629 Succinic anhydride, 571 Succinic dialdehyde, 616 Succinic peroxide, 2750 Succinimide, 592 Succinonitrile, 560 o, o'-Succinoxybensene-1-carbox y li c acid, 5278 Succinyl chloride, 558 Succinyldisalicylic acid, 5278 Succisterene, 4867 Sucrol, 3232 Sulfanilic acid, 1455 Sulfoacetic acid. 217 o-Sulfoaminobensoic acid, 2106 m-Sulfoaminobenzoic acid, 2107 p-Sulfoaminobenzoic acid, 2108 o-Sulfobensoic acid, 2024 m-Sulfobensoic acid, 2025 p-Sulfobensoic acid, 2026 o-Sulfobensoic anhydride, 1842 Sulfonal, 2416 p-Sulfonedichloroaminobensoic acid, N-Sulfophenyl-3-methylpyrasolone, 3586 5-Sulfosalicylic acid, 2027 Surinamine, 3721 Sycoceryl alcohol, 5341 Sylvestrene, 3820 Syringic acid, 3185 Syringin, 5234 d-Tagatose, 1686 d-Talitol, 1753 d(l)-Talomucic acid, 1585 Tanacetone, 3861 Tanacetyl alcohol, 3928 Tannic acid, 4694 Tannin, 4694 Taraxasterol, 5979 Tariric acid, 5348 d-Tartaramide, 709 Tartar emetic, 383012 d-Tartaric acid, 639 dl-Tartaric acid. 640 Tartronic acid, 362 Taurine, 290 Taxicatin, 4574 Taxine, 6109 Tephrosin, 6018 Teraconic acid, 2265 Teracrylic acid, 2292 Terebic acid, 2266 Terephthalic acid, 2481 Terephthalic aldehyde, 2472 Terephthalic nitrile, 2429 Terephthalyl dichloride, 2425 Terpan, 3902 Terpene hydrate, 3922 Terpenylic acid, 2811 cis-Terpine, 3979 trans-Terpine, 3980 a-Terpinene, 3821 6-Terpinene, 3822 Δ1, Terpinene, 3823 Terpinen-4-ol, 3926 α-Terpineol, 3922, 3923 B-Terpineol, 3924 ~Terpineol, 3925 cis-Terpin hydrate, 4008 Terpinolene, 3824 a-Terpinyl acetate, 4378, 4379 Terpinylene, 3825 d-a-Terpinyl formate, 4151 Tetraacetylhydrasine, 2808.1 1, 2, 3, 5-Tetrabromobensene, 1123

1, 2, 4, 5-Tetrabromobensene, 1124 2, 3, 4, 6- Tetrabromobenzoic acid, 1776 1, 1, 4, 4-Tetrabromobutane, 601 1, 2, 3, 4-Tetrabromobutane, 602 2, 2, 3, 3-Tetrabromobutane, 603 1, 1, 1, 2-Tetrabromoethane, 127 1, 1, 2, 2-Tetrabromoethane, 128 Tetrabromoethylene, 86 2, 3, 4, 6-Tetrabromophenol, 1125 1, 1, 2, 2-Tetrabromopropane, 344 1, 2, 2, 3-Tetrabromopropane, 345 Tetrabromopyrrole, 541 Tetrabromoquinone, 1106 Tetrabromothiophene, 537 2, 3, 4, 6-Tetrachloroacetanilide, 2433 Tetrachloroscetophenone, 2427 2, 3, 4, 5-Tetrachloroaniline, 1183 2. 3. 4. 6-Tetrachloroaniline, 1184 2. 3. 5. 6-Tetrachloroaniline, 1185 α-Tetrachloroanthracene, 4606 β-Tetrachloroanthracene, 4607 1, 2, 3, 4-Tetrachloroanthracene, 4605 β-Tetrachloroanthraquinone, 4594 1, 2, 3, 4-Tetrachloroanthraquinone, 4593 1, 2, 3, 4-Tetrachlorobensene, 1135 1, 2, 3, 5-Tetrachlorobensene, 1136 1, 2, 4, 5-Tetrachlorobensene, 1137 2, 3, 4, 5-Tetrachlorobensoic acid, 1777 1, 1, 1, 2-Tetrachloroethane, 139 1, 1, 2, 2-Tetrachloroethane, 140 Tetrachloroethylene, 90 1, 2, 2, 2-Tetrachloroethyl ethyl ether, 605 1, 1, 2, 2-Tetrachloro-1, 2-diphenylethane, 4656 Tetrachlorohydroquinone, 1139 a-Tetrachloronaphthalene, 3374 β-Tetrachloronaphthalene, 3375 ~Tetrachloronaphthalene, 3376 &-Tetrachloronaphthalene, 3377 e-Tetrachloronaphthalene, 3378 f-Tetrachloronaphthalene, 3379 vic-Tetrachloronaphthalene, 3380 2, 3, 4, 5-Tetrachloronitrobensene, 1116 2, 3, 4, 6-Tetrachloronitrobensene, 1117 2, 3, 5, 6-Tetrachloronitrobensene, 1118 2, 3, 4, 6-Tetrachlorophenol, 1138 Tetrachloro-o-phthalic acid, 2422 Tetrachlorophthalic anhydride, 2420 2, 3, 4, 5-Tetrachloropyridine, 841 2, 3, 4, 6-Tetrachloropyridine, 842 2, 3, 5, 6-Tetrachloropyridine, 843 Tetrachloroquinone, 1109 Tetraconic acid, 5858 n-Tetracosane, 5861 n-Tetradecane, 4856 n-Tetradecyl alcohol, 4858 Tetradecylamine, 4859 n-Tetradecylene, 4849 Tetraethylammonium chloroplatinate, 331209 Tetraethylammonium hydroxide, 2989 1, 2, 3, 4-Tetraethylbensene, 4827 1, 2, 4, 5-Tetraethylbensene. 4828 Tetraethyldiamino ben sophenone, 5875 Tetraethyl germanium, 28472 Tetraethylsilicane, 28418 1, 2, 3, 4-Tetrahydrobensaldehyde, 2261 1, 2, 3, 4-Tetrahydrobensene, 1537 Δ-Tetrahydrobensoic acid, 2262 Tetrahydroberberine, 5542 Tetrahydrogeraniol, 4003

1, 2, 3, 4-Tetrahydroisoquinoline, 3191

3, 4, 8, 9-Tetrahydrojulol, 4327

Tetrahydrolinalool, 4004 1, 2, 3, 4-Tetrahydronaphthalene, 3637 5, 6, 7, 8-Tetrahydronaphthalene, 3638 1, 2, 3, 4-Tetrahydro-α-naphthol, 3649 1, 2, 3, 4-Tetrahydro-β-naphthol, 3651 5, 6, 7, 8-Tetrahydro-α-naphthol, 3650 5, 6, 7, 8-Tetrahydro-6-naphthol, 3652 5, 6, 7, 8-Tetrahydro-a-naphthylsmine, 3702 5, 6, 7, 8-Tetrahydro-β-naphthylamine, 3703 Tetrahydro-β-naphthylamine hydrochloride, 3743 1, 2, 3, 4-Tetrahydrophenol, 1542 A2-Tetrahydrophenol, 1542 1, 2, 3, 6-Tetrahydrophenol, 1543 Δº-Tetrahydrophenol, 1543 Δ'-Tetrahydrophthalic acid, 2746 Δ2-Tetrahydro-o-phthalic acid, 2747 Tetrahydropyrrole, 759 1, 2, 3, 4-Tetrahydroquinoline, 3192 Δ-Tetrahydrotoluene, 2282 Δ2-Tetrahydrotoluene, 2283 Δº-Tetrahydrotoluene, 2284 1, 2, 3, 4-Tetrahydroxybensene, 1424 1, 2, 3, 5-Tetrahydroxybenzene, 1425 1, 2, 4, 5-Tetrahydroxybensene, 1426 2, 4, 2', 4'-Tetrahydroxydiphenyl, 4252 2, 6, 2', 6'-Tetrahydroxydiphenyl, 4251 3, 5, 3', 5'-Tetrahydroxydiphenyl, 4253 Tetrahydroxyhexahydrobensoic acid, 2313 1, 2, 3, 4-Tetrahydro-m-xylene, 2827 1, 4, 5, 6-Tetrahydroxynaphthalene, 3531 1, 2, 3, 4-Tetraiodobenzene, 1144 1, 2, 3, 5-Tetraiodobensene, 1145 1, 2, 4, 5-Tetraiodobensene, 1146 Tetraiodoethylene, 94 Tetraiodophenolphthalein, 5487 Tetraiodopyrrole, 542 1, 2, 3, 5-Tetramethoxybensene, 3774 Tetramethylalloxantine, 4316 Tetramethylallylene, 2277 Tetramethylammonium bromide, 829 Tetramethylammonium chloride, 832 Tetramethylammonium chloroplatinate. 31191 hydroxide, Tetramethylammonium 838 Tetramethylammonium trinitride, 836 2, 3, 4, 5-Tetramethylaniline, 3791 1, 3, 5, 7-Tetramethylanthracene, 5307 1, 2, 3, 4-Tetramethylbensene, 3740 1, 2, 3, 5-Tetramethylbensene, 3739 1, 2, 4, 5-Tetramethylbensene, 3732 2, 2, 3, 3-Tetramethylbutane, 2943 m-Tetramethyldiaminoasobensene, 5123 Tetramethyldiaminobensophenone, 5207 (p, p'-Tetramethyldiamino)-diphenyl carbinol, 5231 (p, p'-Tetramethyldiamino)-diphenylamine, 5126 (p, p'-Tetramethyldiamino)-diphenylmethane, 5230 Tetramethyldiaminothiobensophenone, 5211 Tetramethylene, 683 Tetramethylenediamine, 833 Tetramethyleneglycol, 795 Tetramethylene-1, 1, 2, 2-tetracarboxylic acid, 2631 Tetramethylethylene, 1619 Tetramethylethyleneglycol, 1743

Tetramethylmethane, 1074 2, 4, 5, 7-Tetramethyloctane. 4413 o-Tetramethylphenylenediamine, 3834 m-Tetramethylphenylenediamine, 3835 p-Tetramethylphenylenediamine, 3836 o-Tetramethylphen y l e n e d i a m i n e hydrochloride, 3896 2, 3, 4, 5-Tetramethylpyridine, 3266 2, 5, 6, 8-Tetramethylquinoline, 4529 Tetramethylsilicane, 23406 Tetramethyl silicate, 38426 1, 3, 7, 9-Tetramethyluric acid, 3234 2, 3, 4, 6-Tetranitroaniline, 1200 2, 3, 5, 6-Tetranitroanisol, 1841 Tetranitrodiglycerol, 1540 o, o', p, p'-Tetranitrodiphenylurea, 4424 Tetranitromethane, 17 a-Tetranitronaphthalene, 3381 1, 2, 5, 8-Tetranitronaphthalene, 3382 1, 2, 6, 8-Tetranitronaphthalene, 3383 1, 3, 5, 8-Tetranitronaphthalene, 3384 1, 3, 6, 8-Tetranitronaphthalene, 3385 2, 4, 5, 7-Tetranitro-α-naphthol, 3386 2, 3, 4, 6-Tetranitrophenol, 1147 Tetraphenylguanidine, 5890 1, 1, 2, 2-Tetraphenylethane, 5887 Tetraphenylethylene, 5883 Tetraphenylguanidine, 5864 Tetraphenylmethane, 5863 Tetraphenylpyrasine, 5944 Tetraphenylsilicane, \$3424 Tetrapropylammonium chloroplatinate, 331218 Tetrapropyl silicate, 33429 n-Tetratriacontane, 6080 1, 2, 4, 5-Tetrasine, 144 Tetrasole, 34 Tetrol, 569 Tetrolic acid, 570 Tetrolic aldehyde, 568 Tetronic acid, 572 Tetryl, 1933 Thalline, 3710 Thallium acetate, 28726 Thallium acid acetate, 28732 Thallium acid tartrate, 33729, 33730. 33731 Thallium acid tribromoscetate, 33739 Thallium acid trichloroacetate, 38738 Thallium antimonyl tartrate, 28741 Thallium formate, 23727 Thallium picrate, 28740 Thallium propionate, 23728 Thallium tartrate, 28733, 28734, 28735, **35736** Thallium trichloroscetate, 28737 Thebaine, 5435 Thebenidine, 4865 Theine, 2701 Theobromine, 2153 Theobromine hydrochloride, 2194 Theobromine salicylate, 4776 Theophylline, 2151 Thermin, 3743 Thermodin, 4536 Thianthrene, 4201 1, 4-Thiasan, 779 Thiasole, 334 Thioscetamide, 250 Thioscetanilide, 2682 Thioscetic acid. 210 Thioantipyrine, 4511 Thiobenzamide, 2110 Thiobensoic scid, 2002 Thiobensophenone, 4472 Thiocarbanilide, 4504 o-Thiocresol, 2190 m-Thiocresol, 2191 p-Thiocresol, 2192 Thiocyanic acid, 24

102

Thiodiphenylamine, 4215 Thioformamide, 51 1-Thioglycerol, 514 Thioguaiacol, 2165 Thionaphthene, 2490 a-Thionaphthol, 3542 β-Thionaphthol, 3543 Thiophene, 576 Thiophene-2-alcohol, 892 Thiophene-2-aldehyde, 858 Thiophene-2-carboxylic acid, 861 Thiophene-3-carboxylic acid, 862 Thiophene diiodide, 546 Thiophenetetrabromide, 537 α-Thiophenic acid, 861 β-Thiophenic acid, 862 Thiophenol, 1430 Thiophosgene, 10 Thiopieric acid, 1193 a-Thiosalicylic acid, 2010 Thiosemicarbazide, 71 Thiosineamine, 710 Thiourea, 58 Thiourethane, 483 Thujane, 3895 a-Thujene, 3826 B-Thujene, 3827 a-Thuione, 3861 Thuiyl alcohol, 3928 Thymacetine, 4826 Thymine, 888 Thymohydroquinone, 3771 o-Thymol, 3755 m-Thymol, 3756 p-Thymol, 3757 Thymoquinone, 3685 Thymyl acetate, 4346 Thymyl acid camphorate, 5583 Thymyl ethyl ether, 4367.7 Thymyl isovalerate, 4968 Thymyl methyl ether, 4132 Thymyl phenyl ether, 5110 Thyroxin, 4040 Tiglic acid, 936 Tiglic aldehyde, 926 Tin diethyl. 3512 Tin dimethyl diethyl, 3514 Tin diphenyl, 3516 Tin oxalate, 3510 Tin tetraethyl, 3515 Tin tetramethyl, 3513 Tin tetraphenyl, 3517 Tin triethyl, 3518 Tolane, 4650 a-Tolane dichloride, 4654 8-Tolane dichloride, 4655 Tolane tetrachloride, 4656 Tolazone, 4711 o-Tolidine, 4806 m-Tolidine, 4807 Toluene, 2112 5-dicarboxylic Toluene-3. acid. 3090 n-Toluene ethylsulfonate, 3255 Toluene-o-sulfinic acid, 2179 p-Toluenesulfonanilide, 4517 Toluene-o-sulfoneamide, 2226 Toluene-m-sulfoneamide, 2227 Toluene-p-sulfoneamide, 2228 Toluene-o-sulfonechloride, 2053 Toluene-p-sulfonechloride, 2054 Toluene-p-sulfonedichloroamide, 2056 Toluene-o-sulfonic acid, 2181 Toluene-p-sulfonic acid, 2183 p-Toluenesulfonemethylanilide, 4795 a-Toluic acid, 2584 o-Toluic acid, 2585 m-Toluic acid, 2586 p-Toluic acid, 2587 o-Toluic aldehyde, 2568 m-Toluic aldehyde, 2569

p-Toluic aldehyde, 2570

o-Toluic amide, 2652 m-Toluic amide, 2653 p-Toluic amide, 2654 o-Toluic anhydride, 5072 o-Toluidine, 2204 m-Toluidine, 2205 p-Toluidine, 2206 o-Toluidine hydrochloride, 2243 m-Toluidine hydrochloride, 2244 p-Toluidine hydrochloride, 2245 o-Tolunitrile, 2505 m-Tolunitrile, 2506 p-Tolunitrile, 2507 p-Toluoin, 5085 o-Toluquinoline, 3549 m-Toluquinoline, 3548 p-Toluquinoline, 3547 Toluquinone, 2009 4-Toluylbenzoic acid, 4904 Toluylene-2, 3-diamine, 2249 Toluylene-2, 4-diamine, 2250 Toluylene-2, 5-diamine, 2251 Toluylene-2, 6-diamine, 2252 Toluylene-3, 4-diamine, 2253 Toluylene-3, 5-diamine, 2254 p-Tolylacetone, 3663 o-Tolylaminoacetic acid, 3210 p-Tolylaminoacetic acid, 3211 m-(o-Tolylamino)-phenol, 4514 p-(m-Tolyamino)-phenol, 4515 m-Tolylaminourea, 2794 p-Tolylantipyrine, 4313 o-Tolvi carbinol, 2715 m-Tolyl carbinol, 2716 p-Tolyl carbinol, 2717 p-Tolyldimethylpyrasolone, 4313 p-Tolyl ethyl ketone, 3664 o-Tolylglycine, 3210 o-Tolylglycocoll, 3210 o-Tolylhydrazine, 2256 m-Tolyhydrasine, 2257 p-Tolylhydrazine, 2258 m-Tolylhydroxylamine, 2221 p-Tolylhydroxylamine, 2222 o-Tolyl isothiocyanate, 2523 m-Tolyl isothiocyanate, 2524 p-Tolyl isothiocyanate, 2525 o-Tolyl mustard oil, 2523 m-Tolyl mustard oil, 2524 p-Tolyl mustard oil, 2525 Tormentol, 6052 Trehalose, 4397 Triacetamide, 1522 Triacetin, 3289 Triacetoneamine, 3317 n-Triacontane, 6014 Triaminoazobensene, 5311 1, 2, 3-Triaminobenzene, 1525 1, 2, 4-Triaminobensene, 1526 2, 4, 6-Triaminophenol, 1527 Tri-(o-aminophenyl)-methane, 5426 Tri-(p-aminophenyl)-methane, 5427 Triazobenzene, 1357 1, 2, 4-Triazole, 178 Tribenzylamine, 5633 Tribenzylsilicol, 28431 Tribromhydrin, 372 Tribromoacetic acid, 104 Tribromoacetaldehyde, 103 2, 4, 6-Tribromoaniline, 1213 3, 4, 5-Tribromoaniline, 1214 2, 2, 3-Tribromobenzene, 1156 1, 2, 4-Tribromobenzene, 1157 1, 3, 5-Tribromobenzene, 1158 1, 3, 4-Tribromobenzoic acid, 1778 2, 3, 5-Tribromobenzoic acid, 1779 2, 4, 5-Tribromobenzoic acid, 1780 2. 4. 6-Tribromobenzoic acid. 1781 3. 4, 5-Tribromobenzoic acid, 1782 1. 2. 3-Tribromobutane, 649 Tribromo-tert-butyl alcohol, 650

1, 2, 2-Tribromo-1-chloroethane, 126

Tribromethyl alcohol, 152 Tribromoethylene, 101 1, 1, 1-Tribromo-2-hydroxy-2-methylpropane, 650 1, 1, 2-Tribromoethane, 151 Tribromonitromethane, 5 1, 2, 3-Tribromopentane, 964 2, 3, 5-Tribromophenol, 1159 2, 4, 6-Tribromophenol, 1160 2, 4, 6-Tribromophenyl salicylate, 4421 1, 1, 2-Tribromopropane, 370 1, 2, 2-Tribromopropane, 371 1, 2, 3-Tribromopropane, 372 2, 4, 6-Tribromoresorcinol, 1161 Tribromosalol, 4421 2, 3, 4-Tribromotoluene, 1850 2, 3, 5-Tribromotoluene, 1851 2, 3, 6-Tribromotoluene, 1852 2, 4, 5-Tribromotoluene, 1853 2, 4, 6-Tribromotoluene, 1854 3, 4, 5-Tribromotoluene, 1855 Tri-n-butylamine, 4418 Tributylmethane, 4586 Tributyrin, 5010 Tricaprin, 6056 Tricaproin, 5688 Tricaprylin, 5940 Tricarballylic acid, 1505 1, 3, 5-Tricarboxyphenol, 3023 Trichlorhydrin, 388 Trichloroacetal, 1599 Trichloroacetal (solid), 1600 Trichloroacetamide, 138 2, 3, 4-Trichloroacetanilide, 2458 2, 4, 5-Trichloroacetanilide, 2459 2, 4, 6-Trichloroacetanilide, 2460 Trichloroacetic acid, 109 1, 1, 1-Trichloroacetone, 327 1, 1, 1'-Trichloroacetone, 328 Trichloroacetophenone, 2432 Trichloroscrylic acid. 311 2, 3, 4-Trichloroaniline, 1245 2. 4. 5-Trichloroaniline, 1246 2, 4, 6-Trichloroaniline, 1247 3, 4, 5-Trichloroaniline, 1248 2. 4. 6-Trichloroanisol, 1875 1, 2, 3-Trichlorobenzene, 1175 1, 2, 4-Trichlorobenzene, 1176 1, 3, 5-Trichlorobenzene, 1177 2, 3, 4-Trichlorobensoic acid, 1783 2, 3, 5-Trichlorobenzoic acid, 1784 2, 4, 5-Trichlorobenzoic acid, 1785 2, 4, 6-Trichlorobenzoic acid, 1786 3, 4, 5-Trichlorobenzoic acid, 1787 1, 1, 1-Trichloro-tert-butyl alcohol, 662 1, 1, 2-Trichlorobutyraldehyde, 582 1, 1, 2-Trichlorobutyraldehyde hydrate, 664 1, 1, 2-Trichlorobutyric acid, 583 1. 1. 3-Trichlorobutyric acid, 584 2. 4. 6-Trichloro-m-cresol, 1874 1, 1, 1-Trichloroethane, 158 1, 1, 2-Trichloroethane, 159 Trichloroethyl alcohol, 160 Trichloroethylene, 106 1, 2, 2-Trichloroethyl ethyl ether, 661 2, 3, 5-Trichlorohydroquinone, 1180 1, 1, 1-Trichloro-2-hydroxy-2-methylpropane, 662 1, 1, 1-Trichloro-2-hydroxyprop a n e, 3, 3, 3-Trichloro-2-hydroxypropyl phenyl ketone, 3544 2, 4, 6-Trichloro-3-hydroxytoluene, 1874 1, 1, 1-Trichloroisopropyl alcohol, 389 2. 2. 2-Trichlorolactic acid. 330 2. 2. 2-Trichlorolactic nitrile, 315 Trichloromethyl chloroformate, 91

1, 1, 2-Tribromo-1, 2-dichloroethane,

Trichloromethyl p-chlorophenyl ketone, 2427 1, 2, 3-Trichloronaphthalene, 3387 1, 2, 4-Trichloronaphthalene, 3388 1, 2, 5-Triehloronaphthalene, 3389 1, 2, 6-Trichloronaphthalene, 3390 1, 2, 7-Trichloronaphthalene, 3391 1, 2, 8-Trichloronaphthalene, 3392 1, 3, 5-Trichloronaphthalene, 3393 1, 3, 6-Trichloronaphthalene, 3394 1, 3, 7-Trichloronaphthalene, 3395 1, 3, 8-Trichloronaphthalene, 3396 1, 4, 5-Trichloronaphthalene, 3397 1, 4, 6-Trichloronaphthalene, 3398 1, 6, 7-Trichloronaphthalene, 3399 2, 3, 6-Trichloronaphthalene, 3400 2, 3, 7-Trichloronaphthalene, 3401 2, 3, 4-Trichloronitrobensene, 1131 2, 3, 6-Trichloronitrobensene, 1132 2, 4, 5-Trichloronitrobenzene, 1133 2, 4, 6-Trichloronitrobensene, 1134 Trichloronitromethane, 11 2, 3, 4-Trichloronitrotoluene, 1821 2, 3, 5-Trichlorophenol, 1178 2, 4, 6-Trichlorophenol, 1179 1, 1, 2-Trichloropropane, 385 1, 1, 3-Trichloropropane, 386 1, 2, 2-Trichloropropane, 387 1. 2, 3-Trichloropropane, 388 2. 6. 8-Trichloropurine, 840 2, 3, 5-Trichloropyridine, 844 Trichloroquinone, 1115 2, 4, 6-Trichlororesorcinol, 1181 . Tri-c-chlorotoluene, 1870 2, 3, 4-Trichlorotoluene, 1871 2, 4, 5-Trichlorotoluene, 1872 3, 4, 5-Trichlorotoluene, 1873 Tri-(2-chlorovinyl)-arsine, 1367 n-Tricosane, 5816 Tri-p-cresyl phosphate, 5638 1, 1, 1-Tricyanoethane, 846 n-Tridecane, 4587 n-Tridecyl alcohol, 4589 Tridecylamine, 4590 Tridecylene, 4581 Tridecylic acid, 4582 Tridecyl ketone, 5941 Trielaidin, 6165 1, 2, 3-Triethoxybensene, 4368 1, 3, 5-Triethoxybensene, 4367.9 Triethylacetic acid, 2900 Triethyl aconitate, 4368.4 Triethylamine, 1764 Triethylamine hydrochloride, 1771 Triethylammonium chloroplatinate, 281197 Triethyl arsenate, 1758 Triethyl arsenite, 1757 Triethylarsine, 1756 1, 2, 4-Triethylbenzene, 4366 1. 3. 5-Triethylbensene, 4367 Triethylbutylammonium chloroplatinate. \$1215 Triethylbutyl silicane, 38421 Triethyl carbinol, 2412 Triethyl citrate, 4381 Triethylisoamyl silicane, 29425 Triethylisobutylammonium chloroplatinate, 31216 Triethylisobutyl silicane, 33422 Triethylmethane, 2392 Triethyl phosphate, 1768 Triethylphosphine, 1769 Triethylphosphine sulfide, 1769.1 Triethyl phosphite, 1767 Triethyl propene-1, 2, 3-tricarboxylate, 4368.4 Triethylpropylammonium chloroplatinate, 31211 Triethylpropyl silicane, 28420 Triethylsilicane, 23408 Triethyl silicol ether, 38428

C-TABLE: INDEX

Triethylstibine, 1770 Triethylsulfonium chloroplatinate, 281185 Triethyltin bromide, 3521 Triethyltin chloride, 2520 Triethyltin iodide, 3523 Trifluoracetamide, 142 Trifluoroacetic acid, 112.1 Trifluoroacetic anhydride, 539 Trifluoroethylene, 112 Trifolianol, 5686 Trifolin, 5702 Trifolitin, 5032 Triformin, 1506 Triguaiacyl phosphate, 5640 Triguaiscyl phosphite, 5639 1, 2, 10-Trihydroxyanthracene, 4680 1, 2, 3-Trihydroxyanthraquinonc, 4635 1, 2, 4-Trihydroxyanthraquinone. 4638 1, 2, 6-Trihydroxyanthraquinone, 4637 1, 7-Trihydroxyanthraquinone, 4636 1, 4, 6-Trihydroxyanthraquinone, 4639 3, 4, 5-Trihydroxybenzanilide, 4487 1, 2, 3-Trihydroxybenzene, 1419 1, 3, 5-Trihydroxybenzene, 1421 2, 3, 4-Trihydroxybensoic acid, 2022 3, 4, 5-Trihydroxybenzoic acid, 2023 2, 6, 2'-Trihydroxybensophenone, 4468 1, 2, 3-Trihydroxybutane, 804 Trihydroxydihydroanthracene, 4737 1, 3, 4-Trihydroxyflavonol, 4884 1, 3, 5-Trihydroxy-2-methoxybensene, Trihydroxymethylanthraquinone, 4879 α-Trihydroxymethylene, 461 1, 3, 6-Trihydroxynaphthalene, 3522 1, 4, 5-Trihydroxynaphthalene, 3521 3, 5, 7-Trihydroxy-2-phenyl-1, 4bensopyrone, 4881 2, 4, 6-Trihydroxyphenyl 4-hydroxy-3methoxystyryl ketone, 5080 2, 4, 6-Trihydroxypyridine, 878 Triiodoacetic acid, 114 2, 4, 6-Triiodoaniline, 1266 1, 2, 3-Triiodobensene, 1186 1, 2, 4-Triiodobenzene, 1187 1, 3, 5-Triiodobenzene, 1188 2, 4, 6-Triiodophenol, 1189 Triisoamylamine, 5021 Triisobutylamine, 4419 Trilaurin, 6120.1 Trimellitic acid, 3021 Trimesic acid, 3022 3, 4, 5-Trimethoxyallylbenzene, 4353 1, 2, 3-Trimethoxybenzene, 3251 1, 3, 5-Trimethoxybensene, 3250 2, 4, 5-Trimethoxybenzoic acid, 3696 2, 4, 5-Trimethoxypropenylbenzene, 4352 Trimethylacetaldehyde, 1003 Trimethylacetic acid, 1011 2, 4, 6-Trimethylacetophenone, 4091.1 1, 3, 6-Trimethylallantoin, 2287 Trimethylamine, 526 Trimethylamine hydrochloride, 532 Trimethylammonium chloroplatinate, 1, 3, 5-Trimethylaniline, 3264 1, 2, 4-Trimethylanthracene, 5190 1, 3, 6-Trimethylanthracene, 5191 1, 4, 6-Trimethylanthracene, 5192 Trimethylarsine, 520 Trimethylbarbituric acid, 2260 2, 4, 6-Trimethylbenzaldehyde, 3657 3, 4, 5-Trimethylbenzaldehyde, 3658

1, 2, 3-Trimethylbenzene, 3227

1, 2, 4-Trimethylbensene, 3230 1, 3, 5-Trimethylbenzene, 3228 1, 3, 5-Trimethylbensenesulfonic acid, 3254 2, 4, 5-Trimethylbenzoic acid, 3674 2, 4, 6-Trimethylbenzoic acid, 3675 3, 4, 5-Trimethylbenzoic acid, 3673 Trimethyl bismuthine, 522 2, 2, 3-Trimethylbutane, 2393 2, 2, 3-Trimethylbutan-3-ol, 2398 2, 2, 3-Trimethyl-3-butene, 2333 Trimethylbutylammonium chloroplatinate, \$1204 Trimethylbutyl silicane, 3413 Trimethyl carbinol, 792 Trimethyl citrate, 3290 1, 1, 4-Trimethylcyclohexane-2-ol, 3324 Trimethylene, 408 Trimethylenebromhydrin, 467 Trimethylenecarboxylic acid, 621 Trimethylene cyanide, 886 Trimethylenediamine, 534 Trimethylene-1, 1-dicarboxylic acid, 903 Trimethylene dichloride, 419 Trimethyleneglycol, 511 Trimethyleneiodohydrin, 478 Trimethylethylammonium chloroplatinate, 31193 Trimethylethylene, 986 1, 1, 2-Trimethyl-2-ethylethylene, 2334 Trimethylethylmethane, 1716 Trimethylethylsilicane, 28407 3, 3, 5-Trimethyl-4-heptene, 3963 3, 4, 4-Trimethylhexane-3-ol, 3362 3, 5, 6-Trimethyl-2-hydroxybenzaldehyde, 3665 2, 4, 4-Trimethyl-2-hydroxypentane, Trimethylisoamylsilicane, 33417 Trimethylisobutylammonium chloroplatinate, 231205 Trimethylisobutylsilicane, 23414 Trimethylisopropylammonium chloroplatinate, 281200 Trimethylmethane, 781.2 2, 2, 3-Trimethylpentane, 2944 2, 4, 5-Trimethylphenol, 3242 2, 4, 6-Trimethylphenol, 3238 Trimethylphenylmethane, 3726 Trimethyl phosphate, 528 Trimethylphosphine, 530 2, 4, 6-Trimethylpiperidine, 2929 Trimethylpropylammonium chloroplatinate, 231199 1, 1, 2-Trimethyl-2-propylethane, 2934 Trimethylpropylmethane, 2394 Trimethylpropylsilicane, 3410 2, 3, 4-Trimethylpyridine, 2777 2, 4, 5-Trimethylpyridine, 2778 2. 4. 6-Trimethylpyridine, 2779 2, 4, 6-Trimethylpyridine-3-carboxylic acid. 3212 2, 6, 8-Trimethylquinoline, 4308 Trimethylsilicol, 33427 Trimethylsuccinic acid, 2308.1 Trimethyltin iodide, 3522 Trimethylurea, 784 1, 3, 9-Trimethyluric acid, 2702 1, 7, 9-Trimethyluric acid, 2703 3, 7, 9-Trimethyluric acid, 2704 Trimethylxanthine, 2701 Trimyristin, 6147 Trinitroacetonitrile, 97 2, 4, 6-Trinitro-3-aminoanisol, 2000 2, 4, 6-Trinitroaminophenol, 1285 2, 4, 6-Trinitroaniline, 1284 2. 3. 4-Trinitroanisol, 1927 2, 3, 5-Trinitroanisol, 1928

2, 4, 6-Trinitroanisol, 1929

3, 4, 5-Trinitroanisol, 1930 3. 4. 6-Trinitroanisol, 1931 2, 4, 6-Trinitrobensaldehyde, 1788 1, 2, 3-Trinitrobenzene, 1190 1, 2, 4-Trinitrobenzene, 1191 1, 3, 5-Trinitrobenzene, 1192 1, 3, 5-Trinitrobenzene-2-sulfonic acid. 1199 2, 4, 6-Trinitrobensoic scid, 1789 2, 4, 6-Trinitro-tert-butyltoluene, 4082 2, 4, 6-Trinitro-m-cresol, 1932 Trinitrocyanomethane, 97 2, 4, 6-Trinitro-1, 3-dihydroxybensene, 1198 1, 1, 1-Trinitroethane, 179 Trinitromethane, 25 1, 2, 5-Trinitronaphthalene, 3403 1, 3, 5-Trinitronaphthalene, 3404 1, 3, 8-Trinitronaphthalene, 3405 1, 4, 5-Trinitronaphthalene, 3406 2, 4, 5-Trinitro-a-naphthol, 3407 2, 4, 7-Trinitro-α-naphthol, 3408 2, 4, 8-Trinitro-a-naphthol, 3409 2, 4, 6-Trinitrophenetol, 2537 2, 3, 5-Trinitrophenol, 1194 2, 3, 6-Trinitrophenol, 1195 2, 4, 5-Trinitrophenol, 1196 2, 4, 6-Trinitrophenol, 1197 Tri-(p-nitrophenyl)-methane, 5396 2, 4, 6-Trinitrophenylmethylnitra-mine, 1933 2. 4. 6-Trinitrothiophenol, 1193 2, 3, 4-Trinitrotoluene, 1921 2, 3, 5-Trinitrotoluene, 1922 2. 3. 6-Trinitrotoluene, 1923 2, 4, 6-Trinitrotoluene, 1924 3, 4, 5-Trinitrotoluene, 1925 3, 4, 6-Trinitrotoluene, 1926 2, 3, 6-Trinitro-p-xylene, 2536 2, 4, 5-Trinitro-m-xylene, 2533 2, 4, 6-Trinitro-m-xylene, 2534 3, 4, 5-Trinitro-o-xylene, 2531 3, 4, 6-Trinitro-o-xylene, 2532 4, 5, 6-Trinitro-m-xylene, 2535 Triolein, 6166 Trional, 2980 Tripalmitin, 6157 Triphenin, 4110 Triphenylacetic acid, 5517 Triphenylamine, 5281 Triphenylarsine, 5279 1, 3, 5-Triphenylbenzene, 5818 Triphenyl carbinol, 5404 Triphenylchloromethane, 5400 Triphenylene, 5265 1, 1, 2-Triphenylethane, 5521 α-Triphenylguanidine, 5414 β-Triphenylguanidine, 5415 a-Triphenylguanidine hydrochloride, Triphenylguanylthiourea, 5525 Triphenylhydrazine, 5288 2, 4, 5-Triphenylimidasole, 5619 Triphenylmethane, 5402 Triphenylmethyl, 5399 Triphenylmethylamine, 5409 Triphenyl orthoformate, 5405 Triphenyl silicol, 38430 Triphenyl phosphate, 5283 Triphenylphosphine, 5284 Triphenyl phosphite, 5282 Triphenylstibine, 5285 Tri-n-propylamine, 3372 Tripropylmethane, 4001 Tripropylsilicane, 38419 Triricinolein, 6167 Tristearin, 6169 Tritane, 5402 a-Trithioscetaldehyde, 1688 β-Trithioacetaldehyde, 1689 -Trithioacetaldehyde, 1690 Trithioglycerol, 516

Tritopine, 6131 Tropacocaine, 4947 Tropacocaine hydrochloride, 4949 Tropane, 2859 Tropic acid, 3168, 3169 Tropidine, 2818 Tropigenine, 2321 Tropilene, 2261 Tropilidene, 2111 Tropine, 2864 Tropine atropate, 5216 Tropinone, 2819 Tropoline, 2321 Truxene, 5266 α-Truxillic acid, 5295 3-Truxillic acid, 5296 γ-Truxillic acid, 5297 &Truxillic acid, 5298 e-Truxillic acid, 5299 η-Truxillic acid, 5300 a-Truxilline, 6113 8-Truxilline, 6114 l-Tryprophane, 4060 Tryptophane picrate, 5189 Tussol, 5429 Tutin, 5214 Tyramine, 2790 l-Tyrosine, 3222 Ulexine, 4086 Umbelliferon, 3017 Umbellulic acid, 4173 Umbellulone, 3765 n-Undecane, 4178 n-Undecan-6-ol, 4179.1 n-Undecyl alcohol, 4179 n-Undecylamine, 4180 α-Undecylene, 4165 β-Undecylene, 4166 Undecylenic acid, 4158 Undecylic acid, 4174 Undecylic aldehyde, 4169 Uracil, 564 Uranyl acetate, 331729 Uranyl formate, 231728 Uranyl oxalate, 331727 Urea, 55 Urea chloride, 27 Urea nitrate, 70 Urea oxalate, 787 Ureidoformamide, 251 Urethane, 492 Uric acid, 857 Urocanic acid, 4295 Urotropine, 1626 Uroxanic acid, 923 Urson, 3862 Usnic acid, 5304 dl-Usnic acid, 5303 Uvinic acid, 2180 Uvitic acid, 3090 Uvitonic acid, 2521 n-Valeraldehyde, 1004 Valeramide, 1057 n-Valeric acid, 1012 n-Valeric anhydride, 3935 n-Valeroanilide, 4106 n-Valeryl chloride, 966 Valerylene, 917 n-Valeryl nitrile, 972 Validol, 5013 dl-Valine, 1069 Valyl, 3346 Valylene, 881 Valzin, 3232 Vanillic acid, 2628 Vanillic alcohol, 2744 Vanillin, 2596 Vellosine, 5793 Veratric acid, 3181 Veratrine, 6039 Veratrol, 2737 Verbenalin, 5245

3, 4-Xylenol, 2706

p-Xylidine, 2759

Verbenene, 3741 Vernine, 3723 Vesipyrine, 4906 Vesuvin, 5308.1 Vicine, 5600 Vinylacetic acid, 622 Vinylamine, 237 Vinyl bromide, 148 Vinyl chloride, 153 Vinyl ether, 613 Vinylethyl alcohol, 714 Vinylethyl bromide, 643 Vinylethyl carbinol, 999 Vinvlethylene, 596 Vinyl ethyl ether, 716 Vinylguaiacol, 3137 Vinyl iodide, 164 Vinyl trichloride, 159 Violuric acid, 554 Volemitol, 2418 Wrightine, 5841 Xanthaline, 6108

Xanthene, 4451 Xanthine, 856 Xanthoeridol, 5277 Xanthone, 4427 Xanthopurpurin, 4634 Xanthosterin, 5809 Xanthotoxin, 4200 N-Xanthoxyllin, 4923 o-Xylene, 2684 m-Xylene, 2685 p-Xylene, 2686 o-Xylene-4-aldehyde, 3131 m-Xylene-5-carboxylic acid, 3148 o-Xvlene dibromide, 2540.1 m-Xylene dibromide, 2540.2 p-Xylene dibromide, 2540.3

vic-Xylidine, 2757 asym-Xylidine, 2758 m-Xylidine acetate, 3707 p-Xylohydroquinone, 2733 o-Xyloquinone, 2591 m-Xyloquinone, 2592 p-Xyloquinone, 2593 m-Xylorcin, 2731 Xylososazone, 5213 l-Xylose, 1037 dl-Xylose, 1038 o-Xylylaldehyde, 3131 o-Xvlvl bromide, 2632 m-Xylyl bromide, 2634 o-Xylene dichloride, 2544.1 p-Xylyl bromide, 2638 m-Xylene dichloride, 2544.2 o-Xylyl chloride, 2640 2, 3-Xylenol, 2705 m-Xylyl chloride, 2643 3, 2-Xylenol, 2707 p-Xylyl chloride, 2644 Yara-yara, 4042 3, 5-Xylenol, 2709 2, 4-Xylenol, 2708 Yohimbine, 5670

Yohimbine hydrochloride, 5672 Ytterbium acetate, 32097 Ytterbium oxalate, 382095 Yttrium acetate, 331954 Yttrium ethyl sulfate, 281955 Zeorin, 4571 Zinc acetate, 3802 Zinc butyrate, 3806 Zinc ethanedisulfonate, 3808 Zinc ethyl, 33798 Zinc formate, 3801 Zinc isoamyl, 3800 Zinc malate. 2805 Zinc methyl, 28797 Zinc naphthalene-1, 5-disulfonate. 38809 Zinc oxalate, 28795 Zinc propyl, 38799 Zingerone, 4103 Zingiberene, 4983 Zingiberol, 5004 Zygadenine, 6120

PROPERTY-SUBSTANCE TABLES

[All index numbers refer to the C-Tables (p. 176) except those preceded by B, which refer to the B-Table (p. 106)]

I. MELTING POINTS

-207: 3337. -189.9: 500, 409, 3345, 54. -172: 252, 180,**3**1810, **3**3465, **3**395. −**160: 3**204, 1072, **3**3404, 145. −**150: 33**485.5, 1532, **33**405, 2328, 337 **-145**: 31, 781.2, \$349, 1615, **3**5126, 982, 224, 17.1, 263, 148, 374, 375, 1712. **-135**: 781.1, 985, 35433, 35125, 35366, 35195, 35346, 1073, 747. **-130**: 598, 686, 446, \$\)1813, 505, 408, 2330. -125: 3890, 365, 526, 986, 208, 793, 746, 468, \$\)365, 1741, 63, 273. -120: 915, 916, 366, 220, 742, 3364, 9, 262, 1079, 3347, 469, 364, 793. -114.8: 1764, 3263, 667, 741, \$313, \$31811, 154, \$3207, 518, 209, \$39, 2058. -110: 353, 464, 351752, 35466, 234, 790, 35339, 351814, 310, 35467. -105: 1102, 513, 517, 338, 822, 331816, 756, 1537, 754, 3397, 814, 3398, 247, 3229, 475, 525. -100: \$374, 594, 213, 837, 391, 2357, 717, 1652, 1610, 1716, 452. -98: 1466, 60, 41, 615, 3810, 28, 189, 331597, 149, 282, 1016, 2361, 2112. **-95**: 920, 1763, 448, 1713, 3371, 378, 3348, 755, 3372, 979, 1654. **-93**: 33434, 40, 727, 2683, 65, 1020, 35, 1007, 395, 2933, 476. -90: 3342, 33472, 652, 1014, 2389, 789, 465, 651, 1655. -88: 3282, 356, 726, 106, 719, 3317, 2869, 506, 403, 821. -85: 2868, 1019, 1639, 725, 100, 272, 354, 35205, 524, 1587, 3541. -82: 332, 115, 447, 2905, 283, 383, 133, 451. -80: 357, 362, 3572, 35105, 35265, 13, 2981, 1078, 3555, 35107, 1006, 35102. -77: 35113, 35350, 35372, 1651, 2415, 356, 1659. -75: 614, 2840, 3728.1, 1021, 626, 2382, 1045, \$38, 1017, 2359, 693. -70: 3352, 2985, 1443, 227, 33206, 823, 2834, 3356, 45, 718. -65: 539, \$3130, \$368, 11, 19, 2763, 948, 2955, 3230, 3258. -60: 3238, 38, 1012, 1548, 107, 2867, 91, 215, 459, 2203, 1638, 2941. -56: 2001, \$20, \$141, 412, 2741, \$2701, \$52, 1099, 3817, **≫**59. **−54**: 367, 2685, 2841, **≫**43, 26, 3995, 3228, 1630, 1728, 3684, 3149, 1603. -51: 33, 176, 1002, 3354, 4450, 3526, 820, 364, 88, 132, 683, 824, 2309, 35468. **-48**: 3528, 3584, 2040, 3519, 724, 2340, 363, 2927, 1307. -45: 331815, 169, 1560, 2343, 3893, 3984, 377, 4175, 140, 2491, 3516. -43: 3527, 1026, 35109, 870, 1005, 1328, 168, 3337, 1570. -40: 35124, 35142, 35214, 35267, **3**797, 400, 576, 2031, 1760. **−39**: **3**3115, **3**378, 622, 2038, **3**347, 859, 2968, 3989. -38: 35110, 1013, 3560, 2163, 159, 3529, 190, 2039. -35: \$3114, \$232, 987, 1644, 3219, 3731, 1388, 2403, 3154, 95, 413, 3789. -34: 35112, 186, 1606, 35360, 384, 2344, 3993, 269, 2205, 4400, 1333. -31: 33492, 1294, 1571, 33488, 2722, 3356, 3237, 33450, 3638, 48. -29: 111, 886, 749, 2030, 33209, 33798, **3**619, 2684, 233, 4178, 151, 568, 809, 4789, 379. **−25: 3**548, **≫**1575, 827, 2393, 5688, 1230, **≫**12, 2204, 2503, 1253, 929. **−23**: 12, 2419, 911, 90, 4095, 450, 609, 1734, 4038, 4419, 2896, 1200.2. -21: 351397, 2, 121, 1918, 2847, 357, 3590, 35147, 35493, 205, 690,

744, 1074, 2961, 85, 3037. -19: 671, 1762.1, 4283, \$\mathbb{B}\$110.1, \$\mathbb{B}\$136, 3266, 4176, 3315, 3311, 1229, 329, 264, 1964. -17: 355, 449, 4398, 6166, 181, 2204, 2966, 2853, 112.1, 3133, **⅓**10, 2159. **-15**: 3530, 388, 735, 22, 1646, 1725, 1885, 35186, 428, 1200.1, 2589. -12: 68, 89, 290.1, 2327, 4411, 4849, 1081, 3518, 1642, 4852, 2081, 1376, 1694. -10: 2509, 2351, 3667, 1643, 3896, 1200.5, 38914, 1054, 1551, 3573, 3978.1, 2618. **-8**: 35155, 561, 2518, 3129, 723, 4513, 351866, 2493, 3069, 2004, 1205, 1442, 4587. **-6**: 7, 606, 826, 1366, 3863, 3929, 404, 1249, 994, \$156. -5: \$235, 46, 2514, 2766, 2949, 3364, 1870, 1314, 2081. -4: 645, 1812, 2029, 2711, 3740, 4169, 1856, 4493, 2928. **-2:** \$3149, 3054, 3835, 1390, \$32, 331515, 3353, 3902, 4847, 5153, 1859, 141. 0: 351, 3540, 127, 1314, 1375, 1844, 2423, 3276, 128, 2633, 32953, 458, 3752, 2812. 1: 33494, 1478, 4846, 33210, 3170, 33103, 2756, 1250, 1204. 3384, 2669, 1200.4, 2788, 331672, 2580, 33287, 407, 1003, 1880, 5690, \$2612, 3978. 4: 3640, 4399, 5156, 84, \$23, \$3100, \$367, 24, 313, 3453, 4584, 29, 2216, 1365, 1733, 1949, 2725, 4296, 4856, 1296, 1347. 6: 102, 3852, 1612, 4062, 3579, 376, 35284, 863, 1314, 1959, 2492, 4002, 4761, 18, 2041, 3688. 8: 3334, 33381, 2882, 4442, 5940, 3576, 300, 37, 2676, 5480, 3546. 9: 319, 1105, 4157, 4402, 4707, 4794, 2098, 355. 10: 136, 184, 307, 934, 2053, 2161, 2639, 5018, 5, 3845, 1662, 3944, 5160, 38135. 11: 38163, 345, 2886, 3035, 3591, 3662, \$3121, 3328, 4172, 358, 3769. 13: 3218, 17, 1691, 3776, 4828, 2686, 33219, 699, 1332, 2513, 359, 33146, 1330, 335.1. 14: 3385, 5359, 5361, 2865, 1318, 619, 4170. **15**: 25, 146, 721, 1482, 2134, 2190, 5851, 382669, 2082, 2759, 3574. 16: 620, 656, 795, 2128, 2899, 1329, 655, 2294, 4180, 212, 339. 17: 331646, 372, 558, 621, 1176, 2398, 2850, 4011, 4542, 4843, 5370, 160, 4758, 515. 18: 32843, 457, 646, 1506, 1857, 1863, 3933, 5377, 5380, 1369, 4733. 19: 602, 4179, 4697, 4848, 5017, 1568, 1483, 2571. 20: 380, 3856, 381039, 382443, 2498, 3157, 3192, 4529, 5167, 5682, 126. 21: 841, 2632, 3132, 4505, 1251, 1958. 22: 3644, 362698, 362961, 562, 1117, 2120, 3160, 5164, 5481, 5812, 6105, 35191, 2737, 3648, 4392, 5260. 23: 1954, 2322, 3036, 4173, 5373, 1258, 120, 1627. 24: 1320, 2002, 4367.4, 4415, 2060, 5381, 332673, 2664, 4158. 25: 3371, 332450, 32688, 672, 3078, 331234, 792, 332514, 368, 331287, 332813. 26: 1458, 2118, 2119, 2126, 2248, 2338, 2525, 2706, 3240, 4523, 5353, 5735, 33470, 33975, 1251, 4448, 4241. 27: 331134, 331345, 456, 833, 1392, 1432, 2086, 2500, 3717, 4490, 4590, 5484, 335. 28: **3**5158, **3**52739, 765, 1163, 2032, 2174, 2427, 2738, 3277, 4417, 5391, 1331. 29: 51, 1267, 1966, 2515, 4373, 5155, 5760, 7174, 2507, 4322, 5258, 32622, 2160, 32237. 30: 3599, 35123, 3219, 3331, 32666, 267, 312, 1822, 1945, 2120.1, 2123, 2667, 3173, 4414, 4440,

5200, 5354, 6044, 4321, 1888, 2464, 4589, 5852. **31**: 33491, 1023, 1948, 2293, 3981, 4318, 4484, 6056, 851, 1368. 32: 627, 647, 1553, 2114, 2490, 3003, 4579, 5486, 5738, 6165, 316, 32693, 860, 33: 336, 33084, 163, 1170, 1297, 3126, 3156, 3255, 3304, 3924, 5151, 941, 4019, 5764, 5608, 2162, 4914. 34: 35111, **35**886, 1807, 2136, 2434, 2715, 3002, 3689, 4125, 4205, 4268, 5068, 5087, 5360, 5389, 1259, 2544.2, \$1149, \$2724, 5767, \$1286. 35: 350, 3200, 331367, 32133, 33313, 177, 1591, 2063, 2071, 2578, 3588, 3922, 4250, 4300, 4741, 5371.1, 32752, 4039, 1011, 2247, 2688, 3974, 5184. **36**: 36244, 1207, 1255, 2116, 3028, 3600, 3757, 3972, 4226, 4288, 5255, 5355, 5805, 1163, 35768, 2096, 5020, 229, 3092. 37: 3697, 1316, 1957, 2474, 3081, 3412, 3628, 4212, 4512, 4771, 4859, 5850, 1163, \$31962, 203, 4060.1, 4297, 1893. 38: \$234, **3**386, 56, 1270, 1743, 1794, 2099, 2638, 3000, 3703, 4362, 4383, 4858, 5485, 5610, 352241, 1955, 3079, 1163, 1219. 39: 35451, 602, 603, 1323, 1772, 1950, 4368, 4508, 4743, 251147.5, 5072, 5150, 5966, 2900, 4530.3, 3317, 32260. 40: 35701, 35702, 193, 546, 961, 974, 1335, 1550, 2067, 2178, 3793, 3923, 4109, 4327, 6112, 331147, 1334, 5694, 1893. 41: 35252, 351147, 118, 852, 1413, 1871, 1946, 2424, 2522.1, 2553, 2801, 2819, 2854, 3004, 3070, 4103, 4104, 4452, 4823, 5224, 5374, 97, 3578. **42**: 3537, 352245, 352718, 353242, 35203, 66, 1745, 1792, 2743, 3587, 3905, 4588, 5332, 5609, 5739, 5848, 730, 1873, 3973, 392259, 3802, 4220. 43: 391817, 1166, 1173, 1201, 2066, 2192, 3272, 3710, 4018, 4367.9, 4467, 4676, 2978, 4551, 2206, 156. 44: 362611, 30, 293, 654, 1157, 1283, 1811, 1956, 2223, 3220, 3692, 3870, 4053, 4330, 4503, 4984, 5292, 33766, 5014, 1216, 5772, 1962, 4405, 4247. 45: 3349, 332927, 333223, 33261, 346, 931, 933, 1233, 1339, 1349, 1552, 1850, 2501, 2723, 2781, 3005, 3766, 4287, 4449, 4831, 4837, 5044, 5310, 6114, 35767, 393, 3685, 4266, 4431, 4788, 5637, 331343, 5876. 46: 559, 1111, 1395, 1423, 1874, 1941, 1969, 2037, 2712, 2802, 3252, 4305, 4308, 4998, 5019, 5343.1, 5856, 6157, 553, 5092, 6120.1 47: 3:1640, 3:2655, 3:3272, 239, 874, 1439, 1978, 3115, 3144, 3130, 3251, 3774, 3906, 4297.1, 5097, 5148, 161, 1135, 1858, 2073, 3670, 5816. 48: 352696, 125, 1581, 1937, 2463, 3172, 3299, 3617, 3416, 4328, 4406, 4520, 4815, 5285, 5347, 6145, 1331, 6, 4447, 3147. 49: 331980, 492, 1961, 2046, 2047, 2263, 2707, 2761, 3291, 3907, 4106, 4787, 4947, 5262, 5345, 5769, 5770, 5168, 1254, 5283. **50**: 3314, 33498, 331144, 332792, 27 150, 255, 389, 844, 1268, 1322, 1428, 2494, 2881, 3159, 3550, 3801, 4780, 4908, 5604, 5218, 156, 1325, 1986, 5348, 5859, 32678. 51: **3**51509, 343, 1136, 1793, 1935, 2003, 2432, 3663, 2594, 3669, 3836, 4558, 4582, 4800, 4853, 5860, \$2258, 4203, 2083, 3756, 5357. **52**: 3, 244, 1175, 1303, 2807, 3221, 3250, 3658, 4065, 4094, 4318.1, 4435, 5557, 6086, 2504, 4756, 4850, 1231. 53: 3387, 152.1, 563, 771, 1082, 2049, 2143, 2176, 2785, 4119, 4270, 5368, 5429, 5993, 956, 1165, 1178, 701. 54: 361, 498, 631, 1066, 1851, 2100, 2577, 3619, 4473, 5016, 5521, 5861, 5881, 6047, 560, 1171, 3709, 5244, 5815, 6169. **55**: 33290, 2730, 663, 1968, 2051, 2544.1, 2591, 4049 4333, 4443, 4736, 4763, 4765, 5043, 5222, 5729, 6147, 2575, 2386. **56**: 3216, 331822, 15, 179, 348, 607, 882, 1131, 1202, 1208, 2095, 2256, 2470, 2559, 2739, 3456, 3704, 4238, 4323, 4368.7, 4369.2 5142, 5176, 5625, 5917, 156, 352010, 352073, 1306, 1391, 351552. **57:** 361, 105, 548, 897, 1133, 1214.1, 1232, 2314, 3076, 3116, 3137, 4503, 4816, 5587, 5689, 32672, 86, 109, 3652, 5761, 2218. **58**: \$370, \$3508, \$31769, \$32757, \$31269, 497, 902, 921.2, 1154, 1234, 1719, 1810, 1894, 1942, 2650, 2815, 3015, 3175, 3671, 4045, 4851, 5646, 3056, 3101, 5158, 5392, 3473. **59**: 331714, 288, 1167, 1852, 2497, 3454, 3470, 3708, 3921, 4273, 4460, 4770, 4996, 5063, 5183, 5201, 5431, 5440, 1984, 3845, 1150, 2115, 2717, 5301, 5942, 1988, 5257. 60: 351165, 351667, 352110, 352720, 352931, 352932, 32934, 33142, 33343, 96, 583, 960, 1168, 1821, 2508, 2678, 2857, 3099, 3218, 3509, 4223, 4445, 4557, 4650, 4724, 4727, 5147, 5256, 5279, 5560, 5719, 5918, 6065, 6151, 1875, 4024, 4516, 5146, 5213.1. 61: 33220, 331450, 332439, 332855, 315, 342, 369, 382, 481, 581, 611, 1191, 1192, 1947, 1960, 1987, 2258, 3038, 3071, 3197, 3241, 3413, 3593, 3742, 3779, 4046, 4213, 4261, 4740, 5261, 5376, 5437, 5915,

5919, 156, 1581, 5520, 5763, 1277. **62**: 33222, 1152, 1169, 1393, 1663, 2034, 2103, 2249, 2783, 3417, 3776, 3912, 4782, 4838, 4893, 4902, 5054, 5216, 5810, 33120, 331867, 1480. 63: 214, 675, 838, 1177, 1243, 1321, 2036, 2864, 3183, 3257, 4329, 4655, 4802, 5066.1, 5093, 5846, 6010, 352075, 353271, 1298, 1704, 5378, 5985. 64: 3455, 3732, 32, 343, 442, 461, 883, 936, 2033, 2251, 2672, 3699, 3700, 4340, 5159, 6045, 6144, \$31272, \$31997, 426, 432, 1116, 352812. **65**: 35108, 35119, 35942, 352607, 352993, 257, 324, 1865, 2172, 2473, 2708, 2921, 3597, 4047, 4108, 4210, 4746, 5053, 5057, 5336, 5367, 5532, 5967, 6157, 1174, 3195. 66: 333, 439, 580, 1854, 2048, 2137, 2171, 2478, 2697, 2740, 3269, 3398, 5483, 5963, 1370, 3584, 4020, 4228, 332027. **67**: 830, 845, 1067, 1235, 1319, 2167, 2992, 3016, 3630, 4225, 4352, 5149, 1200.3, 1245, 4208, 5358. 68: 331081, 865, 1134, 1179, 1236, 1237, 1262, 1343, 1484, 2221, 2709, 2736, 3074, 3143, 3414, 3467, 3498, 3614, 3650, 3695, 3953, 4368.41, 4507, 4528, 4530.1, 4953, 5161, 5759, 6028, 1929, 4248. 69: 401, 538, 1138, 2009, 2054, 2185, 2805, 3201, 3238, 3594, 4219, 4393, 5344, 5602, 5691, 5814, 5862, 1993, 5379, 238, 2091, 2913, 6058, 1985, 4204. 70: 3908, 331077, 332638, 33270, 320, 351, 802, 932, 1220, 1463, 1501, 2272, 2519, 3065, 3457, 3791, 3925, 4458, 4495, 4772, 5193, 5526, 5553, 5893, 6014, 382056, 2044, 3991, 4242, 33120, 6169. 71: 1377, 1809, 1963, 2069, 2670, 3198, 3462, 3622, 4549, 4764, 5061, 5611, 1324, 1396, 2068, 4734, 32464. **72**: 33116, 33275, 331141, 331971, 332481, 33149, 617, 1261, 1437, 1808, 1832, 1970, 2042, 2532, 2879, 3010, 3242, 3768, 4042, 4786, 5854, 5857, 5959, 6106, 32076, 1172, 2543, 311. 73: **3**168, **3**915, **3**1878, **3**2614, 2469, 2473, 2592, 4912, 4919, **3**286, 32713, 962, 2455, 3202. 74: 3647, 351948, 351988, 195, 380, 491, 674, 1703, 2085, 2726, 3558, 3595, 3686, 4393.1, 4480, 4742, 4769, 5154, 5692, 5773, 5991, 6013, 6081, 1666, 6091, 142. **75**: 3239, 3389, 3643, 3866, 31626, 32044, 32848, 455, 584, 738, 842, 1371, 1806, 1919, 2561, 2682, 2705, 2749, 3193, 3775, 4233, 4285, 5313, 5364, 5422, 5847, 6048, 6093, 1151, 3679, 351796, 784, 4207, 5173. 76: 35270, 353204, 292, 441, 907, 957, 1665, 2306, 2452, 2844, 2980, 3044, 3468, 3697, 3712, 4072, 4950, 5366, 5375, 5410, 5941, 32055, 570, 1210, 5823, 6080, 6107, 2584. 77: 3932, 32033, 2540.2, 3254, 3544, 3745, 4389, 5067.1, 5405, 5607, 5638, 352231, 1247, 2147, 3583, 5837, 5878, 352498. **78**: 352757, 32976, 664, 673, 975, 2055, 2425, 3389, 3746, 3778, 3792, 4034, 4239, 4433, 5000, 5280, 5387, 5639, 5879, 5962, 710, 79, 2537, 4187, 2117. 79: 3293, 33909, 332733, 214, 482, 731, 1269, 1522, 2131, 2212, 3233, 3290, 3474, 3713, 4067, 4330.1, 4792, 5284, 5386, 5411, 5824, 5835, 1302. 80: 35139, 35144, 35181, 35655, 3683, 3827, 351535, 351857, 353071, 152, 1209, 2129, 2179, 3705, 3722, 3732, 3777, 3875, 4319, 4647, 4798, 4899, 5220, 5492, 5920, 6113, 3494, 1305, 352240, 3394, 3631, 1924. 81: 352020, 238, 1257, 1664, 1690, 2596, 3387, 3428, 3543, 4026, 4466, 4903, 5073, 5369, 5501, 5855, 5223, 5385. 82: 35245, 35249, 93, 167, 197, 394, 1450, 1513, 1621, 1872, 1967, 2207, 2558, 2694, 2727, 2843, 2916, 4271, 4640, 4702, 5174, 5545, 5808, 6109, 6110, 3091, 3603, 5968, 5916. 83: 1127, 1181, 1263, 1286, 1600, 2056, 2125, 2950, 3080, 3165, 3970, 4432, 5178, 5365, 5766, 6026, 352057, 1217, 3392, 352000, 5840. 84: 1187, 1304, 1418, 3216, 3410, 3749, 3750, 4425, 4506, 4985, 5263, 5407, 5592, 5765, 5768, 6160, 3649. 85: 325, 398, 1153, 1352, 1580, 1766, 2510, 2695, 2993, 3315, 3370, 3519, 3627, 4833, 4907, 5383, 5384, 5799, 33458, 2997, 4332, 5858, 1996. 86: 331449, 33269, 217, 1024, 1119, 1438, 1753, 2045, 2166, 2573, 2662, 2799, 2808.1, 3596, 4476, 4892, 4897, 4924, 5135.1, 5349, 6008, 352735, 1162, 1206, 5984. 87: 864, 1036, 1164, 1218, 1378, 1567, 1574, 2682.1, 2918, 3107, 4079, 4152, 4195, 4390, 4997, 5408, 5593, 331974, 1156. 88: 201, 240, 290, 1184, 1301, 2065, 2542, 3391, 3418, 4368.3, 4519, 4536, 4698, 5025, 5163, 5219, 5436, 6015, 6090, 352032, 2253. 89: 35133, 35375, 175, 677, 1039, 1111.2, 1132, 1855, 2811, 3013, 3537, 4206, 4209, 4522, 5085, 5119, 5244.1, 5286, 5583, 5673, 5779, 5922, 352078, 2471, 3396, 6043, 1272. 90: 33157, 33983, 331002, 331627, 331708, 129, 350,

1111.1, 1185, 1440, 1449, 1582, 2533, 3401, 3524, 4258, 4521, 4927, 5341, 5418, 5762, 5951, 6100, 5745. 91: 3253, 331468, 331910, **3**1960, **3**2069, 843, 898, 1300, 2094, 2462, 3163, 3213, 3400, 4515, 4958, 5142.1, 5230, 5801, 6011, 6054, 3648, 352019, 2142. 92: **3**5171, 504, 1200.6, 3388, 3706, 4703, 4915, 4928, 5308, 5412, 5438, 5533, 5633, 5830, 5955, \$2058, 1159, 1211, 3783, 5402, **3**31998, 6024. **93**: 3391, 1989, 2087, 2555, 2564, 2995, 3124, 4127, 4184, 4436, 4530.2, 5002, 5453, 4709, 4918, 4964, 5044, 5579, 5618, 6027, 6156, \$\)1882, 543, 846, 5845. **94**: \$\)1082, 1336, 1381, 1769.1, 2222, 2286, 3060, 3460, 4969, 5781, 5802, 5938, 2540.1, 3471, 2089. **95**: 3368, 3650, 3727, 32149, 32609, 39, 281, 952, 2139, 2208, 2582, 3100, 3427, 4218, 4360, 4710, 4795, **5162**, 5179, 5287, 5617, 5872, 6057, 1990, 4672, \$\frac{3}{2}2034\$, 1372, 4921. **96**: 352968, 69, 1160, 1196, 1246, 1340, 1350, 1566, 2139, 2385, 2520, 3123, 3507, 3580, 3714, 3744, 4275, 4509, 5231, 5601, 5675, 2647, \$291, \$31802. 97: \$32021, \$32625, 211, 284, 662, 1241, 1922, 1991, 2653, 3390, 3522, 4082, 4868, 4906, 5065, 5363, 5555, 5667, 5904, 351865, 946, 5128. 98: 351648, 351972, 157, 955, 1433, 1564, 1890, 2614, 2829, 3302, 4113, 5221, 5640, 5974, 2145, \$2001, 1123, 5306, 6007. 99: 144, 579, 996, 1118, 1356, 1995, 2250, 2539, 2617, 3231, 3523, 3867, 4325, 4645, 4896, 5954, 351812, 4652. 100: 322, 3241, 3534, 3563, 3564, 3651, 3784, 3786, **3**792, **3**796, **3**842, **3**854, **3**860, **3**878, **3**879, **3**910, **3**914.1, **2**31108, **2**31168, **2**31197, **2**31398, **2**31454, **2**31540, **2**31613, **2**31713, **3**31716, **3**31943, **3**32297, **3**32629, **3**32729, **3**32791, **3**32793, **3**32920, **3**3155, **3**3312, 635, 1199, 1248, 1526, 1943, 2285, 2448, 2615, 2998, 3784, 4013, 4401, 4797, 5124, 5133, 5215, 5250, 5432, 5725, 5880, 2475, 2545, 3751, 4451. 101: 259, 540, 1688, 2562, 3008, 3207, 3422, 3466, 3621, 4854, 5622, 270, 1149, 2304, 351975. **102**: \$230, \$31113, 1094, 1499, 3199, 3287, 3301, 3525, 3641, 4236, 4410, 5077, 5965, 2585, 502, 3282.1, 5038. 103: 39927, **3**1240, **3**3054, 894, 1095, 1313, 1525, 2105, 2308, 3393, 3435, 3489, 4517, 4641, 4752, 4855, 5475, 1479. 104: 33122, 33162, **3652**, **33040**, **271**, **1264**, **1276**, **1497**, **1674**, **1926**, **1928**, **2104**, 2169, 2373, 2943, 2996, 3082, 3200, 3772, 3829, 4437, 4688, 5194, 5937, 6016, 3979. 105: 33128, 33988, 332919, 72, 1035, 1242, 1308, 1382, 1414, 2140, 2183, 2252, 2735, 2991, 3179, 3506, 3520, 3867.1, 4368.2, 4713, 4951, 4960, 5082.4, 5409, 5500, 5664, 5939, 6012, 332035, 782, 1994. 106: 33431, 331162, 702, 1057, 1077, 1155, 1317, 1932, 2005, 2648, 2931, 3665, 4302, 5165, 5236, 5524, 5570, 5687, 5734, 5891, 1895, 3307. 107: 33460, 33653, 33265, 871, 922, 1436, 1931, 2305, 3077, 3415, 3535, 3930, 4196, 4237, 4807, 5115, 5394, 2782. 108: 32022, 32114, 182, 483, 1282, 2011, 2130, 2173, 2227, 2863, 3423, 4051, 4087, 4257, 4434, 4475, 4537, 4730, 5055, 5710, \$\,\(2002\), 250, 2574. 109: \$\,\(2002\), \$\,\(2002\), 298, 1829, 2144, 2367.1, 2583, 2622, 3287, 4058, 4080, 4243, 4368.5, 4913, 4922, 5390, 5616, 3399, 3477, 331078, 2456. 110: 330, 332, 35106, 35221, 35459, 35533, 35726, 35925, 35941, 35978, **3**51076, **3**51089, **3**51172, **3**51673, **3**51707, **3**51728, **3**52070, **3**53203, **3**3333, 143, 187, 700, 785, 958, 1415, 1709, 1752, 2149, 2168, 2820, 2822, 2919, 3062, 3194, 4272, 4866, 5177, 5499, 5507, 5693, 5732, 5787, 3551, 351976, 2461, 2586. 111: 353334, 947, 1161, 1225, 1295, 1403, 1923, 2300, 2598, 3029, 3164, 3800, 4281, 4455, 4552, 4894, 5094, 5249, 5423, 5795, 945, 4935, 1275, 1397. **112**: 3654, 32990, 322, 537, 740, 1212, 1386, 1841, 1921, 2133, 2368, 2665, 3499, 3607, 5185, 5233, 5400, 5674, 5771. 113: 905, 1351, 1495, 1795, 1853, 3145, 3395, 3403, 4058, 4214, 5138, 5246, 5671, 6101. 114: 3250, 289, 641, 1193, 2681, 2920, 3063, 3112, 3421, 4580, 4700, 4729, 5129, 2649, 3974, 4465. 115: 3295, 3985, **3**1032, **3**1131, **3**1133, **3**1644, **3**1704, 678, 1122.1, 1299, 1312, 1353, 2531, 2560, 2744, 3158, 3425, 3464, 3472, 3604, 4105, 4186, 5039, 5198, 5538, 5715, 6041, 3643.1, 5235, 1287. 116: 33347, 321, 349, 760, 1128, 1186, 1971, 2006, 2110, 2315, 2472, 2595, 3141, 3411, 4077, 4384, 4439, 4453, 4648, 4801, 4901, 5034, 5584, 1271, 3668. 117: 35183, 35989, 866, 953, 1122.2, 2148, 2466, 2994, 3458, 3608, 3795, 4043.1, 4753, 5325, 4008, 2576, 4774,

1155.1, 1565, 1992, 4293, 5071, 5208, 5903. 118: 332132, 261, 1183, 1195, 1214, 1224, 1309, 1383, 1830, 2090, 2187, 2613, 2930, 3211, 3629, 3794, 4112, 5123. 119: 21, 1213, 1718, 1788, 3136, 3718, 4469, 4570, 5099, 5126, 5350, 251083, 188, 3884, 571, 1158, 120: 35166, 35179, 35274, 35566, 35709, 35820, 35905, 35992, 351135, 31715, 32117, 32440, 32504, 32956, 33108, 245, 352, 1125, 1194, 1221, 1265, 1292, 1488, 1930, 2027, 2511, 2527, 2597, 2679, 2746, 3024, 3419, 3447, 3534, 3581, 4110, 4955, 5237, 5252, 5325.1, 5406, 5589, 5665, 5714, 3379. 121: 33029, 178, 363, 1130, 1192, 1749, 2307, 2530, 3007, 4762, 4783, 4839, 4900, 5074, 5111, 5454, 5571, 1827, 2007, 39922, 1197. 122: 313.1, 1174.1, 1824, 1877, 2236, 2458, 3503, 3508, 4459, 4818, 5116, 5554, 5980, 8, 2502. 123: 35242, 35979, 81, 947.1, 954, 1122, 1447, 1487, 1833, 1997, 3169, 3343, 3404, 3461, 5461, 5466, 3251, 4245. 124: 32025, 330, 592, 1686, 1878, 2566, 1504.1, 3429, 3618, 4192, 4361, 4477, 4708, 4739, 5062.1, 5465, 5829, 5869, 5947. 125: 35172, 3656, 36705, 36746, 36904.2, 363048, 836, 1311, 1502, 2077, 2170, 2535, 2593, 2731, 3166, 3429.1, 3448, 3510, 3536, 3782, 4123, 4128, 4749, 5117, 5598, 5804.1, 5841, 6096, 6136, 5613. **126**: 35531, 521, 697.1, 808, 1348, 1672, 1689, 2877, 3139, 4063, 4274, 4461, 4805, 5444, 5728, 5930, 1279, 861, 3465, 5281. 127: 35152, 35706, 351658, 352116, 1203, 1222, 1358, 1999, 2224, 2661, 2750, 2916.1, 3217, 3504, 3585, 3938, 4135, 4539, 4677, 4796, 4799, 5428.1, 5497, 5505, 1190, 2141. 128: 351665, 291, 463, 1108, 1710, 2211, 2416, 2693, 3463, 3485, 3839, 3881, 4009, 4355, 4681, 5712, 4286. 129: 352606, 636, 761, 872, 1387, 1783, 2093, 2220, 2601, 2674, 3059, 3167, 3431, 3437, 3934, 4249, 4301, 4420, 4744, 4806, 4961, 5096, 5340, 5621, 1260, 5204, 4216. 130: 3524, **3**178, **3**848, **3**1181, **3**2303, **3**2676, 104, 634, 1607, 1826, 1842, 1910, 1933, 1972, 2070, 2072, 2109, 2839, 3045, 3374, 4021, 4695, 5070, 5101, 6035, 6063, 574, 680, 2566.1, 3095, 2431. 131: 1038, 1244, 2000, 2493.1, 3026, 3397, 3602, 4289, 4755, 5102, 5415, 5794, 5864, 6051, 2699, 3459. **132**: 35140, 35646, 351255, 906, 1682, 2176.1, 2324, 2563, 3030, 3058, 3140, 3424, 3838, 4369, 5534, 5741, 5886, 4923, 4936, 55. 133: 3369, 326, 867, 975.1, 1226, 1681, 1683, 2612, 2673, 3012, 3072, 3075, 3256, 3496, 4234, 4334, 4468, 4623, 4728, 4811, 5157, 3087, 5551. 134: 899, 1180, 1278, 1354, 1419, 1504, 2860, 3073, 4454, 4699, 5515, 5539, 5908, 6126, 1498, 1825, 1952, 4651. 135: 35986, 630, 904, 1070.2, 1461, 1462, 2180, 2215, 2371, 3027, 3420, 3449, 3528, 3716, 4485, 4497, 5275, 5456, 5612, 5615, 360. **136**: 862, 1144, 1400, 1891, 2999, 3282.2, 4052, 4687, 4826, 5188, 5225, 5527, 5700, 5723, 5890, 5934, 5388, 5105. **137**: 1058, 1344, 1360, 1669, 2600, 2730, 3014, 3031, 3161, 3501, 3797, 4313, 4335, 4925, 5098, 5403, 5445, 6094, 1925, 2228. 138: 454, 1137, 1361, 1711, 2146, 2652, 3442, 3513, 4704, 5952, 5997, 6025, 5995. **139**: 1071, 1823, 3176, 4781, 4808, 4904, 5596, 5746, 1481. 140: 35583, 35728, 35907, 35987, 351074, 351106, **3**1136, **3**1396, **3**3201, 638, 1147, 2078, 2264, 2536, 2845, **2**875, 3380, 3515, 3616, 4358, 4920, 5058, 5078, 5417, 5597, 5935, 5996, 6005, 1420, 5130, 5774, 1860. 141: 138, 551, 572, 1355, 1951, 2024, 2025, 3178, 3377, 3672, 3711, 4054, 4367.3, 4568, 4952, 5088, 5095, 5114, 1898, 3102. 142: 3539, 3803, 331254, 32988, 98, 1563, 3032, 3344, 3719, 4015, 4426, 4479, 5288, 5339, 5558, 6020, 5027, 1982. 143: 35931, 351142, 351451, 351868, 1401, 2268, 2680, 3373, 3502, 3505, 3771, 4229, 4276, 4654, 4675, 4748, 4959, 38496, 5309, 1818, 38444. 144: 38471, 38981, 381864, 781, 1274, 1673, 1676, 1907, 2529, 2541, 3113, 3138, 3696, 3887, 4462, 4766, 5319, 5479, 5873, 2214, 2689. 145: 336, 889, 1238, 1668, 2074, 2088, 2876, 3408, 3436, 3492, 3841, 4422, 4811, 5069, 5118, 5414, 5548, 6075. **146**: 35269, 308.1, 869, 1677, 2948, 3275, 3281, 4200, 4644, 5697, 5708, 14, 1979, 4472, 33170. 147: 32135, 1223, 1799, 1831, 2135, 2565, 2626, 3490, 4133, 4817, 5399, 5541, 5595, 5868, 1897, 2692, 5628. 148: 633, 1145, 1280, 1398, 1406, 1845, 2602, 3187, 3500, 3831, 4518, 4548, 4692, 4732, 4865, 5112, 5427, 5933, 873, 149: 351536, 2517, 2656, 4259, 4605, 4942, 5104, 5634, 6069, 6074, 3674, 57. 150: 33159, 33161, 33454,

2540, **3541**, **3685**, **3965**, **361090**, **361183**, **361625**, **361942**, **361961**, 32009, 32026, 32043, 33032, 33111, 53, 114, 305, 542, 1503, 1678, 1796, 1802, 1939, 2516, 2728, 2932, 3011, 3210, 3248, 3611, 3624, 3886.1, 4074, 4382, 4538, 4738, 4784, 5026, 5076, 5990, 6031, 6078, 2556. 151: 35137, 1562, 2734, 3426, 4141. 152: **38247**, 70, 219, 575, 1451, 1524, 1846, 2138, 2308.1, 3475, 3559, 3675, 3888, 4199, 4227, 4486, 4607, 4671, 4819, 5145, 5239, 5899, **26**07. **153**: \$899, 437, 1037, 1379, 1507, 1748, 1798, 2623, 2789, 3089, 3196, 3623, 4055, 4086, 4183, 4668, 4830, 5494. 154: 433, 1362, 1589, 1684, 1685, 1841, 2012, 2150, 3061, 3531, 4504, 4754, 5247, 5620, 5902, 1817, 1973, 5676, 1861. 155: 34, 425, 1530, 1927, 2418, 2651, 4309, 4525, 4566, 4731, 4954, 5028.1, 5317, 5523. **156**: 853, 1189, 1452, 1938, 2749, 3117, 3440, 3479, 4146, 4189, 4237, 4446, 4494, 4564, 4565, 4934, 5473, 5512, 5655, 5831, 5973, 6017, 2226, 3876. 157: 35912, 884, 1061, 1310, 1384, 3086, 3282, **3840**, 4057, 5139, 5187, 5217, 5525, 5971, 5999. **158**: 362, 1435, 1464, 1585, 1696, 3491, 3980, 4310, 4750, 4785, 5302, 6046. 159: 577, 819, 1363, 2013, 2654, 3104, 3516, 4142, 4367.1, 4811, 5084, 5650, 5909, 296, 1032. 160: 385, 381080, 381127, 381132, 381395, **3**51612, **3**51947, **3**53302, 36, 309, 637, 1508, 1786, 3025, 3068, 3114, 3186, 3203, 3578, 3646, 4029, 4075, 4201, 4311, 4331, 4367.2, 4562, 4867, 5568, 5575, 5906, 5950, 5960, 5977, 6000, 6088, 5103, 2691, 3379, 5491. 161: 64.1, 308, 777, 900, 1129, 1424, 1460, 1579, 2209, 2265, 2321, 2370, 2428, 2790, 4071, 4244, 4354, 4456, 4478, 4596, 4705, 5457, 5477, 6059, 3880. 162: 3980, 32992, 499, 923, 1142, 1881, 2080, 2700, 3205, 3433, 3439, 3843, 4553, 4610, 4678, 4745, 4995, 5238, 5421, 5726, 2675, 5404. 163: 82, 1784, 1785, 1838, 2313, 2698, 2729, 3103, 3118, 3553, 3949, 4222, 4656, 4751, 5251, 6068, 5100. 164: 868, 1240, 1528, 2010, 2441, 3177, 3487, 4037, 4185.1, 4747, 4773, 5086, 5186, 5213, 5514, 5874, 6084, 1816, 39480, 1034, 5573, 5613. 165: 3981, 39735, **3**926, 353, 434, 1141, 1364, 1404, 1425, 1717, 1849, 1998, 2260, 2540, 2621, 3142, 3288, 3560, 3885, 4164, 4240, 4303, 4714, 4803, 5240, 5426, 5867, 5932, 6021, 5796. 166: 1505, 1815, 3148, 3632, 4365, 5212, 5927, 1751. 167: 3292, 33146, 1913, 2019, 2106, 2193, 2603, 4481, 5498, 5542, 5577, \$2980, 1864, 4716, 5901. **168**: 351221, 352949, 1115, 1485, 1675, 1675.1, 2372, 2657, 2828, 3093, 3486, 4496, 5329, 5561, 1143. 169: 35774, 1290, 1605, 1797, 1914, 2188, 2549, 3605, 3609, 4028, 4474, 5081, 5144, 5540, 6127. 170: \$175, \$248, \$288, \$359, \$929, \$1079, \$1220, **3**81610, 436, 639, 776, 1200, 1239, 1446, 1486, 1977, 2467, 3441, 3521, 3533, 3612, 3954, 4646, 4653, 4667, 4767, 4943, 5171, 5172, 5196, 5330, 5659, 5790, 5818, 6022, 6042, 1416, 2079. 171: 297, 438, 523, 1583, 2489, 2755, 3488, 3647, 4188, 4255, 4574, 4872, 5352, 5651, 5718, 5798, 6032, 1256. 172: 2235, 2609, 4230, 4809, 5469, 5648, 5652, 5668, 1273, 5508, 5578, 2604, 3226, 2544. 173: 76, 3232, 4143, 4190, 4291, 6030, 33011, 5271. 174: 351219, 1394, 1671, 1776, 1840, 2075, 2213, 3707, 3845, 4427, 4482, 4498, 5180, 5207, 5298. 175: 388, 3678, 331198, 331209, 331313, **3**1618, 501, 903, 2210, 2266, 2378, 2476, 3206, 3409, 3527, 3625, 3830, 4356, 4368.9, 4369.1, 4534, 4546, 4820, 4829, 4873, 5082.2, **5489**, 5511, 5562, 5657, 5704, 5747, 5797. **176**: 650, 2369, 3106, 3376, 3511, 3842, 5242, 5267, 5744, 5912, 1981, 2587. 177: **3**1346, 1836, 2659, 2752, 5572, 5777, 5291, 6139, 2611. **178**: **3**164, 200, 1124, 1148, 1285, 1577, 1911, 2605, 3514, 3541, 3832, 4027, 4265, 5269, 5278, 5535, 5547, 5645, 5711, 5783, 5785, 6104, 1953, 5724. 179: 549, 567, 1835, 2660, 3846, 4656.1, 4877, 4940, 4956, 5826, 6125. 180: 3504, 3544, 3565, 3645, 3906, 3916, 3950, 391126, 391166, 391195, 391554, 393143, 393288, 703, 1198, 2260.1, 2422.2, 2512, 3023, 3378, 3386, 3896, 4215, 4717, 5314, 5549, 5658, 5660, 5666, 5945, 6076. 181: 1188, 2433, 2485, 2599, 3105, 3181, 4014, 4554, 4614, 5320, 5395, 5519, 5546, 5581, 5885, 6137, 2534, 5245. 182: 3519, 351182, 58, 503, 1879, 3495, 3579, 3837, 4878, 5042, 5090, 5530, 5649, 5946, 5949, 6131. **183**: 71, 2132, 2547, 2606, 3430, 5248, 5430, 5627, 5905, 5928, 6175, 1974. **184**: 3849, 679.1, 767, 1182, 1448, 2546, 2794, 4556, 4929, 5803,

6082, 2616. **185**: \$370, 92, 629, 1586, 1661, 1882, 1915, 2426, 3108, 4030, 4134, 4825, 5107, 5137, 5463, 5559, 5631, 5998, 6002, 6029, 1266. 186: 3397, 33304, 550, 1777, 2184, 2526, 2990, 3626, 3644, 4396, 5889, 6050, 6122, 1975, 5175. 187: 94, 840, 1781, 2076, 2270, 2374, 3869, 4428, 4711, 5109, 5228, 5925, 6018, 6085, 3111, 3483, 4598, 5742, 5493. 188: 3923, 391201, 1120, 1284, 1359, 1750, 2186, 2417, 4111, 4198, 4911, 5232, 5591, 5778, 5784, 6119, 1820, 299. 189: 147, 8049, 3064, 3526, 3698, 4424, 4501, 5046, 5331, 5428, 5467, 5516, 5564, 5788, 5793, 5898, 3407, 3582. 190: \$256, \$639, \$720, \$721, \$1589, \$1604, \$3023, **3**3206, **3**3209, 818, 1121, 1624, 1789, 1900, 1940, 2435, 2459, 2989, 3020, 3518, 4056, 4078, 4217, 4277, 4423, 4541, 5136, 5495, 5842, 6019. 191: \$\, 1869, \$\, 3291, 1429, 2375, 2421, 2479, 2808, 3084, 3645, 3871, 4073, 4593, 4631, 4722, 5125, 877. 192: 3850, 707, 2630, 5234, 5299, 5792, 5931, 6138, 5106. 193: 35930, 251, 265, 768, 944, 988.1, 1060, 1892, 3042, 4107, 4202, 4875, 5268, 5303, 5435, 6038, 5563. 194: 351649, 351797, 351895, 1779, 2373.1, 3375, 3476, 4430, 4659, 4679, 4821, 5226, 5337, 5413, 6070. 195: 351180, 351555, 353234, 709, 876, 2917, 3088, 3162, 3384, 3445, 4357, 4421, 4526, 4535, 4633, 5050, 5113, 5276, 5626, 5844, 5929, 5957, 6003, 6049, 6067, 6135, 33298. 196: 1780, 3873, 4221, 5189, 4136, \$31137, \$31253, 535, 2287, 2528, 3051, 4463, 5420. **198**: 33134, 976, 994.1, 1459, 1472, 1778, 1884, 2225, 3293, 3446, 3770, 4193, 5315, 5372, 5839, 5921, 5265, 6116. 3686, 331194, 331218, 2020, 2376, 4059, 4601, 5419, 5424, 5624, 5681, 5698. **200**: \$3185, \$3945, \$3958, \$3984, \$31192, \$31237, **3**1605, **3**1860, 280, 461, 1228, 2018, 2022, 2026, 2550, 2923, 3039, 3067, 4367.5, 4669, 4694, 4706, 4937, 5312, 5458, 5476, 5510, 5566, 5580, 5623, 5782, 5989, 6061, 6120, 6129. **201**: **3**51196, 1775, 1834, 2438, 2554, 3040, 5326, 5614, 2014, 1983, 4547, 4394. **202**: 901, 1402, 1837, 2465, 3868, 4944, 5211, 5425, 5447, 6141. **203**: 1787, 2260.2, 2631, 2655, 3046, 3385, 4810, 4932, 5273, 5304, 6066. **204**: 2016, 2460, 3529, 3530, 4555, 4600, 4612, 4905, 5127, 5433, 5496, 6098, 1819, 6073, 4948. **205**: 366, 3635, 3866, 36722, 36722, 3672, 4231, 4368.1, 4487, 4719, 4938, 5036, 5270, 5274, 5328, 5594, 5821, 5884, 6039. **206**: 35716, 352937, 640, 676, 1405, 1584, 2017, 3085, 4191, 4489, 4871, 4936.1, 5294, 5296, 5586, 5727, 5737, 5838, 5849, 6071. **207**: 207, 2610, 2628, 3271, 4597, 4622, 4682, 4898, 5048, 5305, 5396, 5529, 5892, 33293, 1722, 5443. 208: 331188, 440, 977, 2608, 3083, 4611, 4680, 5091, 5214, 5327, 5733, 5786, 6004, 6108, 33024, 3901, 4619, 5035, 5887. 210: 35118, 351184, 32707, 32948, 33303, 174, 486, 704, 1337, 2323, 3094, 3828, 4083, 4145, 4397, 4464, 4471, 5197, 5289, 5351, 5434, 5441, 5446, • 5528, 5865, 5953, 5958, 3900, 4341, 35770. 211: 351677, 544, 2945, 3033, 4604, 5082.1, 6034, 6102. 212: 3685, 391217, 393232, 1373, 2259, 3294, 3693, 3909, 4290, 4621, 4990, 5131, 5588, 5706, 5743, 6099, 6159. **213**: \$\)3213, \$\)3326, 1866, 2015, 2733, 2947, 3556, 3964, 4295, 5509, 5707, 5969. 214: 389, 381189, 3624, 1801, 2274, 2437, 2557, 5316, 5809, 2243, 5641. 215: 36775, 36990, 361216, 363103, 1281, 1609, 2377, 2624, 2625, 2747, 2806, 3673, 4232, 5680, 5871, 6023, 6079, 6153, \$\(\)\$490. **216**: 3021, 3438, 3517, 3910, 4114, 4663, 4684, 5683, 5699, 5775, 5970. **217:** \$2529, \$3301, 435, 831, 854, 1062, 2436, 2798, 2946, 4254, 4881, 5132, 5629, 6037, 6087, 6163, 1976. 218: 3320, 331105, **3**1186, 3047, 3405, 4444, 4649, 4879, 5209, 5452, 5503, 5590, 5647, 5705, 5836. **219**: 32527, 1421, 4031, 4457, 4625, 5536, 6170. **220**: 35153, 35968, 351028, 351205, 351213, 351215, 352726, 354, 1288, 1426, 1531, 1623, 1848, 1906, 2023, 2101, 2440, 2551, 3402, 4470, 4606, 4673, 4718, 4775, 4864, 4957, 5082.3, 6142. 221: 3959, 391803, 2732, 3773, 4316, 4617, 5544, 5883, 391490, 1126, 2429, 4252, 5191, 5290, 5979. 223: 1070.1, 5040, 5080, 6032.1, 32686. 554, 1680, 2273, 3041. 225: 3317, 3928, 33210, 33214, 1114, 3202, 4081, 4530, 4691, 4840, 4944.1, 5181, 5398, 5487, 5684, 5888, 35516. 226: 35517, 74, 708, 1110, 1903, 3097, 3432, 5079, 5630, 5987. **227**: 352762, 317, 2021, 2450, 3017, 3538,

4483, 5192, 5780, \$638. 228: \$31190, \$31212, 1896, 1909, 2244, 2482, 2566.2, 3234, 3610, 4685, 5182, 5297, 5439, 5926, 6052, 6148, 1474, 1493, 4876, 6083. 230: 35165, 35299, 35316, 35895, 351060, **3**3296, 527, 878, 1800, 1828, 1912, 2430, 2754, 3443, 3853, 4613, 4890, 5462, 5468, 5654, 5685, 5736, 5791, 6092. 231: 59, 3555, 4768, 5062, \$31680, 1139, 1140, 1345, 4599, 5636, 5661, 5910, 5956. 233: 36424, 241, 1492, 4016, 4194, 5056, 5703, 5713, 1670, 3552, 3557, 4312, 4945, 5914, 5986. 235: 351211, 352502, 352763, **3**3299, 260, 610, 1076, 1598, 1782, 1908, 2449, 3270, 3444, 4085, 4500, 5089, 5333, 6001, 6053, 6124. **236**: 351214, 352608, 4657, 5552, 5599, 5907, \$\mathbb{2}804, \$\mathbb{2}894, \$\mathbb{2}1200, 1075, 1902, 2701, 3451, 3743, 4224, 4499, 4660, 4712, 5293, 5716, \$\cdot 254, 5041. 238: **3**758, 1338, 2107, 2439, 3043, 3450, 4154, 4524, 4696, 4812, 4910, 5994, 6168, 2245, 2486, 4256, 5227, 5663. 240: 351033, 351804, 839, 1399, 1578, 3050, 3066, 3204, 3723, 4429, 4608, 4664, 4666, 5033, 5272, 5455, 5776, 5944, 5982, 5983. 241: 3274, 3613, 4035, 4294, 5416, 5900, 1862, 352984, 494, 5451, 5600, 5669, 6115, 1899, 706, 1514, 4084, 5190. 244: 2483, 4616, 5259, 6077, 4211, 35184, 361187, 565, 2443, 3185, 5474, 5632, 5804, 5896. 246: 493, 705, 3298, 3636, 4022, 5060, 35487, 1679, 3406, 5203, 5343, 5822. 248: 3674, 362674, 363297, 904.3, 1901, 3572, 5670, 6143, 3482. 250: 3380, 3884, 3916.1, 331130, 331202, 331207, 331210, 331711, **≫**3059, **≫**3102, 541, 2422, 2446, 2477, 2627, 3109, 3965, 4040, 4181, 4569, 4715, 4880, 4946, 5051, 5075, 5206, 5677, 5679, 5701, 5820, 6040, 6062, 5656. **251:** 352134, 1539, 1847, 4571, 5264, **3**1073, **3**2689, **3**1199, **3**2935, 3110, 3720, 4364, 4683, 4693, 5709, 6006. **253:** 352754, 1093, 1374, 1529, 5047, 5964, 35173, 351129, 1146, 1771, 3478, 6089, 6158. 255: 352621, 557, 1408, 2422.1, 2444, 4618, 4926, 6161, 3872, 391203, 547, 995, 1523, 2658, 3018, 4527, 4638, 4642, 4737, 4931. 257: 2420, 2792, 3292, 4502, 5807, 6117, 609.1, 1625, 1904, 3512, 4124, 5045, 5277. **259**: \$393, \$3898, \$31204, 1920, 3381, 5567, \$3891, \$31486, \$33311, 682, 1575, 3946, 4315, 4822, 4869, 5300, 5323, 5338, 5702, 5843, 5895, 6172. **261**: 2451, 5460, 5504, 5696, 4167, 4634, 4933, 5972, 3452, 3862, 5324, 5488, 5506, 5442. **265**: 391896, 875, 2552, 3209, 5322, 5517, 5913, 391193, 1883, 2791, 4602, 4690, 4909. **268**: 4251, 4963, 5642, 6037, 3280, 3434. **270**: 35722, 35904.1, 3982, 331173, 332761, 679, 2445, 2817, 3019, 3382, 3796, 4197, 4674, 5401, 5518. **271**: 352704, 4949, 5513, 2151, 4246, 4629, 5295, 5911, 6154, 353282. **273**: 351475, 1068, 2521, 4884, 5513, 5537, 5866. **275**: 351675, 351729, 352687, 532, 1708, 3480, 4025, 4874, 4882, 5032, 5556, 5619, 6155. **276**: 3224, 331678, 3883, 351679, 351191, 3691, 4314, 6097, 2690. 280: 3591, 35642, 35828, . 351880, 352532, 352906, 353193, 1380, 1707, 2102, 2108, 3721, 4036, 4628, 4870, 5307. **282**: \$\)1342, 4603, 6036, 3208, 3484, 32115, 4488. 285: 766, 1521, 2620, 4620, 4662, 4862, 4888, 5585, 5863, 5936. **286**: 1471.1, 1491, 3052, 4182, 5448, 5464, **3**319, 573, **3**2971, 1455, 1494, 1773, 2488, 4861, 4060, 4615, 351128. **290**: 35223, 35228, 35896, 35954, 352590, 1109, 1706, 2158, 3090, 3294.1, 4626, 4689, 5672, 5748, 5811, 6055, 1059. **292:** 35283, 352983, 3481, 4630, 1113, 2793, 4860, 485, 552, 780, 1705, 2823, 3053, 3222, 3848. 297: 352958, 5318, 35225, 1069, 1980, 5806, 2152. 300: 3325, 33229, 33272, 33549, 33550, 33691, 35794, 35823, 351056, 351749, 351915, 352682, 352706, 353194, **3**3195, 1106, 1407, 2442, 4887, 5023, 5502, 5550, 5686, 5721, 5834, 5943, 5981. **302**: \$3882, 4624, 4643, 5064, \$31879, 1289, 4863, 1107, 1475, 2487, 5882, 3271, 5976, 331993, 32705, 5817. **310**: 35227, 351818, 353221, 1385, 4185, 4253, 4635, 4889, 5975, 32952, 4886. 315: 3617, 363309, 1069.1, 6133, 6164, 1346, 4891, 32668. 320: 3315, 33495, 331111, 332815, 1427, 2702, 3586, 4665, 4885, 5030. **321**: 351474, 352170, 1905, 2447, 352756, 330: 2480, 4594, 4595, 4627, 4636, 5022, 5029, 5722, 5082, 33715, 888, 2153, 33711, 332960, 564. 340: 3366, 35710, 3869, 2157, 2703, 4661, 4686, 5024, 5031. 350: 3561, 3844, 351245, 352790, 353106, 1112, 3022, 5819, 35684, 4438, 351836, 352922, 352925, 1411, 35543. 380: 3592, 352917, 2704, 32679, 331785, 38832, 332623, 2155, 332811, 5028, 33752, 333101. 400: \$657, \$2923, \$2939, \$2959, \$3015, \$3190, \$3279, 1409, 2156, 3548, 352446, 2154, 35713, 352503, 353310, 35310, 199. 420: 353289, 35939, 353238, 351777, 35696, 353202, 351062, 351837, 3742, 331058, 3322, 33703, 332103, 33022, 33237, 331075, 332685, 36753, 362615, 36704. 450: 3682, 362602, 361779, 3667, 361059, \$2947, \$3700, \$3300, \$2744, \$562, \$2933, \$1140, \$1835, 351036. 480: 351757, 351086, 352675, 351061, 352104, 35948, 3940. **500**: 394, 3529, 3616, 391244, 391710, 393130, 39699, 32505, 32105, 33174, 33175, 3535, 3300, 32610. **550**: 3296, 3859, 32788, 351064, 353117, 352928, 352257, 352836, 352773, 35193, 351778, 35825, 35880, 352458, 35328. 575: 352244, 351163, \$2929, \$2929, \$21088, \$22077, \$2303, \$2531, \$23168. **600**: 3861, 33280, 3542, 33006, 3302, 3951, 32973, 3301, 32821, 32605, 32711, 32634, 33292. 625: 3326, 32063, 3304, 351984, 35707, 353287, 352373, 353167, 353205, 352442, 35881, 33284. 650: 351268, 351963, 352680, 351068, 352841, 35279, 32911. 675: 32233, 32496, 32080, 32601, 32831, 33200, 32833, 3324, 32039, 331017, 32820, 3536, 32824. **700**: \$1275, \$2136, \$2822, \$2832, \$2829, \$327, \$2131, \$2162, 33197, 3665, 32908, 31773. **725**: 32599, 32924, 32238, 3664. **750**: 32907, 33158, 326677, 33172, 3692, 351154, 353196, 352239, 35663, 352921, 351873, 35788, 32236, 31153, 32926. **775:** 31042, 32748, 3503, 32849, 32024, 33161, 351543, 351775, 351642, 351541. **800**: 35567, 3810, 351247, 351440, 351744, 352837, 353171, 35576, 352671, 352965, 352974, 352893, 352008, 35307, 35669, 353349, 35568. **825**: 31066, 31004, 31018, 32628, 33224, 32654, 31631, 32509, 31979, 31087, 31772. 850: 31041, 3528, 31265, 32745, 3309, 3572, 32616, 3501, 3579, 32584, 32838, 32604, 35747, 33131, 32438, 32777. 875: 351838, 351839, 351243, 35499, 351070, 352918, 352692, 35524, 352975. 900: 35780, 35857, 352253, 32656, 351959, 35937, 35560, 353115, 353116, 352487, 351939, 3571, 33129. 950: 351246, 351669, 351774, 351072, 352161, 32441, 32500, 32846, 331564, 32002.1, 32262, 33100, 33013, 3557, 352670, 353017, 35570, 353267, 352716, 351385, 351567. 1000: 3836, 32598, 32852, 32588, 32507, 33305, 3569, 3789, \$\bar{1}384, \$\bar{2}2645, \$\bar{3}3132, \$\bar{2}1862, \$\bar{2}843, \$\bar{3}3014, \$\bar{2}577. \$\bar{2}605, \$\bar{2}2863, \$\bar{2}2863, \$\bar{2}287, \$\bar{2}3215, \$\bar{2}558, \$\bar{2}2938, \$\bar{2}1668, \$\bar{2}2776, \$\bar{2}2003, \$\bar{2}2967. \$\bar{1}100: \$\bar{2}824, \$\bar{2}956, \$\bar{2}123, \$\bar{2}1593, \$\bar{2}1870, \$\bar{2}2360 32379, 32486, 32865, 32174, 331374, 331561, 33970, 33552, 3694, 36957, 362488, 36587, 362334. 1150: 363138, 36573, 351571, 351851, 35553, 351572, 353139, 352035.1, 351976,1. 351651, 32141, 32437, 351348. 1200: 352313, 352644, 352354, 351850, 32263, 33765, 38876, 38877, 33283, 331407, 32646, 32275, 331317, 351518, 351314, 352499, 351372. 1300: 351319, 352380, 351519, 351581, 352589, 351316, 352597, 351318, 351978, 351520, 351845, 352712, 352966, 35947, 351957.1. 1351: 351846, 352235, 352431, \$2663, \$2659, \$2427, \$1517, \$2130. **1400**: \$2660, \$1325, \$2125, \$1333, \$2559, \$2355, \$811, \$2248, \$2561, \$2394, \$1424, \$2430, \$1801, \$1671, \$2323, \$2426. **1500**: \$3858, 3812, 391795, 392860, 392274, 392392, 391337, 392270, 392315, 391406, 392404, 392400, 392175, 391334, 392451, 392472, 392521, 32538, 32410. 1600: 32391, 32557, 32267, 32273, 33447, 351258, 352850, 351621, 35343, 352266, 352537. 1700: 352600, 3340, 32393, 32544, 32328. **1800:** 321904, 321393, 32755, 361619, 362177. 1900: 361590, 362494, 361743, 361977, 361763, 351858, 352318, 352222, 351877. 2200: 352109, 351724, 352283, 31821, 31663. 2400: 31725, 32100, 31945, 32434, 31662, 3483, 32232. 2700: 3473, 331689, 331767, 32099, 32128, 33456, 331690. 3000: 33461.

II. BOILING POINTS

2844, 281245, 282790, 283106, 1112, 3022, 5819, 28684, 4438, -192: 28337, 54, 2895, 28345, 180, 281813. -95: 28204, 28465, 283359, 28182, 283051. 360: 281859, 4883, 5695, 28749, 879, 2897, 252, 28195, 289, 115, 28351, 44. -75: 28205, 2817, 28350,

39126, 3941, 39125, 145, 39263, 39265, 39485.5, 112. -48: 17.1, 409, 500, 368, 367, 3206, 373, 326, 387, 408, 33102, 232, 337. **-30:** №53, №364, 338, 263, 41, 31, 35, 95. **-18:** 686, №282, **3**349, **3**346, 13, 153, 73, 49, 781.2. **−10**: **3**38, **3**213, 65, 684, 33130, 596, 33141, 99, 3384. 0.6: 781.1, 685, 33371, 64, 474, 3398, 526, 40. **5**: \$3131, 687, \$3339, 310, 282, 63, 508, \$3365, 9, 1074. **10:** \$\mathref{9}40, 209, 224, \$\mathref{9}1814, 683, 42, 7, \$\mathref{9}149, 148, 283, \$\mathref{9}1811, 243, 598, 595, 394, 391672. 20.1: 985, 208, 162, 52, 980, 3996, 374, 1.1, 294, 295, 22, 1072, 597, 39466, 921. 31: 39404, 569, 213, 33142, 113, 983, 3366, 525, 916, 615, 793, 273. 35: 331646, 716, 278, 279, 373, 272, 1073, 982, 469, 33105, 220, 986, 794, 613. **40**: 920, 28, 984, 539, 915, 530, 981, 1611, 286, 33101, 313, 880, 45, 172, 913, 823. 44: 402, 513, 918, 3339, 375, 490, 33797, 461, 715, 468. 47: 399, 391149, 132, 365, 524, 447, 979, 1716. 50: 881, 146, 749, 914, \$31509, 154, 356, 520. 53: \$347, 479, 276, 529, 1050, 1087, 451. 55: 218, 164, 237, 824, 917, 448, 33111. 57: 489, 452, 189, 3352, 1712, 355, 1618, 228, 169, 465. 60: 397, 519, 1534, 1715, 364, 133, 318, 718, 19, 1086, 3, 586. **62**: 27, 612, 1049, 357, 822, 89, 301, 1714, 3776, 1610, 891, 801, 4, 60. **65**: 50, 323, 800, 1616, \$3372, 517, 773, 813, 1613, 1001. **68**: 287, 518, 748, 821, 1742, 747, 1713, 3559, 1533, 420. **70**: 2277, 1617, 1088, 464, 366, 728, 155, 1532, 39469, 234, 112.1, 1615, 1619, 744, 39207, 10. **74**: 231, 158, 3942, 772, 1003, 118, 717, 83, 323.1, 820, 1048, 149, 12, 725. **78**: 39513, 746, 1102, 262, 1468, 331515, 2394, 3358, 332, 396, 719, 1365, 726. 80: 33348, **3**376, 165, 378, 752, 925, 1738, 2333, 624, 1466, 1469, 531, 2393. **81**: 130, 758, 727, 1612, 238, 168, 277, 1535, 506, 792, **83**: 623, 1252, 1537, 190, 2387, 47, 1536, 1761, 2325, 1632, 798, 117. 85: 576, 812, 825, 1366, 1470, 1045, \$\)3109, 1328, \$\)3468. 87: 222, 417, 669, 1008, 2388, 231810, 77, 106, 625, 811, 759, 1739, 247, 1253. 89: 226, 1021, 1091, 1741, 462, 476, 1547, 1764, 458, 2390, 134, 231815. 91: 670, 1101, 1740, 743, 1737, 742, 814, 17.4, 68, 122, 290.1, 652, 2391, 1002, 1019. 93: 171, 210, 332.1, 837, 1007, 1065, 2276, 2392, 1496, 1631, 1544. 95: 383, 1100, 2334, 3390, 3918, 418, 334, 335, 446, 1015, 395, 505, 2331, 26. 98: 161, 203, 751, 810, 2326, 107, 1016, 2389, 173, 2329. 99: 643, 1064, 2332, 1017, 1044, 791, 938. 100: 331, 3372, 33455, 332010, 332044, 33, 195, 1261, 1418, 1690, 4013, 4333, 37, 2330. 101: 642, 302, 741, 1020, 1005, 1006, 1081, 48. 102: 496, 651, 1656, 1746, 2281, 1018, 475, 2866. 103: 390, 2284, 2328, 391, 233, 1004, 181, 3377, 614, 1099, 121, 85. 105: 35128, 3530, 3870, 135, 937, 1046, 1047, 2283, 1043, 1054. 106: 35215, 192, 588, 2240, 2278, 1630, 254, 1014, 2943, 568, 1699, 2279, 3210, 790. 108: 108, 137, 166, 668, 695, 816, 2238, 965, 735, 1042, 2933, 2935. 110: **3**619, **3**1822, 183, 284, 522, 2510, 2239, 123, **3**3467, 495, 2112, 2275, 1760, 2944. 111: 2282, 1660, 1655, 1629, 2413, 1694, 1653, 11, 967, 1650, 2280, 33103, 3382, 159, 100. 114: 714, 1082, 1085, 2057, 2241, 2934, 2938, 33488, 414, 1637, 999, 242. 115: 239, 355, 663, 1193, 2942.1, 870, 908, 1080. 116: 337, 67, 110, 205, 590, 660, 2058, 2937, 587, 998, 926, 2936, 1658, 334. 117: 300, 379, 2059, 2414, 2871, 756, 789, 1640. 118: 3233, 35798, **3**1714, 274, 563, 667, 307, 711, 1084.1, 1097, 2111, 2940, 4386, 212, 2327, 1652, 2942. 119: 177, 533, 1639, 1700, 2494, 2382, 895, 1084. 120: 351825, 347, 488, 827, 1733.1, 2452, 2891, 1755, 2873, 755, 2825, 2869, 939, 90, 2364. 121: 377, 1041, 1635, 1733, 2237, 2975, 1654, 1634. 122: 3266, 32426, 1725, 2974, 1734, 775. 128: 387, 2874, 3048, 1659, 1649, 2345, 2868, 1763. 124: 562, 927, 1636, 1662, 2827, 712, 713, 512, 2941, 2355. **3**232, **3**436, 236, 419, 578, 896, 1053, 2824, 2872, 17, 1026. 340, 470, 1096, 1701, 266, 1651. 127: \$250, 367, 608, 754, 1638, 1657, 91, 1040. 128: 966, 1083, 1443, 1727, 1762, 1769, 2363, 2384, 2870, 745, 227. 129: 1556, 1633, 1702, 973, 2867, 1098, 1546. 130: 351893, 78, 253, 411, 970, 1212, 2397, 2796, 5350, 1648, 139, 924. 131: 589, 1028.1, 1520, 2354.1, 1558, 1079, 384, 487, 184, 1730. **132**: \$3845, 404, 1691, 2359.1, 2398, 3350, 1307, 176, 3295, 3347, \$\mathbf{3}1147, 2296, 471, 1695, 1732, 2826. 135: \$\mathbf{3}23,

35164, 119, 574, 1548, 1723, 1726, 2357, 2795, 339, 799, 2362, 534, 2797, 3349. 186: 38, 774, 2347, 481, 35450, 351552. 187: 35360, 385, 628, 929, 1509, 1604, 2976, 3348, 1545, 1511, 2683, 35218, 2686, 1078. 138: 357, 35460, 410, 817, 1510, 1730.1, 2359, 1587, 2985, 969.1, 3272. 139: 3353, 33693, 992, 1557, 2685, 3297, 3351, 626. 140: 35120, 35177, 35378, 35459, 304, 412, 635, 803, 2400, 2410, 2843, 2973. 141: 972, 997, 1756, 2409, 2411, 450, 3353, 358. 142: 721, 1754, 2298, 2412, 2979, 3273, 3808, 2396, 341, 1595, 2354, 2926. 143: 910, 2197, 2295, 2453, 3321, 1445, 3352, 1444, 2344, 2902, 2361. 144: 319, 431, 942, 2349, 2684, 3805, 658, 403, 737. 145: 657.1, 697, 989, 2833, 2356, 2415. **146**: 191, 275, 449, 644, 782, 968, 1512, 2538, 140. **147**: 2929, 3800, 2961, 2353, 3827, 421, 1736. 148: 386, 429, 466, 659, 850, 909, 1052, 1070, 1434, 2401, 3365, 849, 2346, \$\$1752, 2905, 2199. **149**: 327, 693, \$284, 2360, 3296, 3323, 2977, 3322. **150**: \$237, 3915, 124, 636, 2304, 2348, 2402, 2408, 2915, 3320, 3807, 221, 18, 2865, 3354, 594. 151: 1667, 2288, 2957, 3826, 460, 362. 152: 764, 2299, 2404, 352, 1735, 160, 2964, 258. 153: 3560, 1596, 3223, 815, 3362, 3367, 681, 2358, 329. 154: 33452, 406, 1028, 2954, 2971, 3817, 724. 155: 186, 757, 1482, 2343, 2517, 2836, 2898, 3119, 3212, 3331, 3621, 2419, 2399, 1603, 1728, 2163, 2912. **156**: 388, 1051, 1597, 1692, 3372, 3803, 1294, 1767, 2202, 1541, 2904. 157: 753, 2196, 2906, 3727, 3895, 3229, 3963. 158: 691, 833, 2407, 2853, 604, 3937, 3962. 159: 35919, 648.2, 2772, 3369, 3741, 3802, 3994, 2039, 1770, 2381. 160: 35799, 43, 256, 433, 497, 498, 545, 733, 945, 963, 1465, 1687, 3801, 3888, 3995, 3998, 2901, 2952, 2963, 3997. 161: 593, 2289, 2984, 3956, 389, 807, 1627, 2856, 2962, 859, 4001. **162**: 35208, 111, 453, 978, 1022, 1718, 1876, 2953, 3224, 3226, 3996, 2040, 142, 969, 2041, 2297, 2405, 3225. 163: 620, 622, 1602, 1765, 2818, 2972, 361, 631, 33472, 723, 2894, 1011. 164: 101, 1593, 2958, 2970, 2987, 3809, 3818, 5213, 2198, 3228, 3894. 165: 35219, 163, 359, 1517, 1563, 1724, 2776, 2983, 3819, 2200, 582, 1588, 1889, 762. 166: 424, 688, 1542, 1543, 1550, 1641, 1757, 1886, 2201, 2878, 2955, 3362, 3368, 4000, 662, 2903, 2928, 2907, 3366, 3999. 167: 3347, 413, 2859, 3333, 3811, 2406, 848, 2911. 168: 585, 1056, 2778, 2893, 2959, 3717, 3892, 2365, 3960, 1055, 2338, 3334, 3726. 169: 779, 1519, 1572, 2339, 2366, 2854, 2880, 2960, 3958, 2909, 3893, 1430, 3976, 3230. 170: 3974, 391658, 661, 773.1, 826, 943, 951, 1693, 2881, 3340, 3961, 893, 1029. 171: 285, 1518, 2982, 3358, 3816, 3959, 2719, 3363, 2164, 619. 172: 3383, 2, 84, 328, 1572.1, 2722, 2779, 2855, 2858, 2965, 3318, 3327, 3369, 3955, 2910, 4007, 2831, 2896, 1743, 39214. 173: 847, 1230, 1231, 1314, 1559, 2008, 2925, 3367, 346, 950. 174: 103, 422, 689, 1010, 2303, 2342, 2379, 2718, 2774, 2834, 3822, 3993, 3357, 3736, 2885. 175: 351610, 988, 2341, 2468, 3120, 3361, 3725, 3728, 3815, 3821, 3825, 783, 3345, 2403. 176: 351597, 1067.1, 2340, 2890, 3728.1, 3806, 3576, 3902, 2721, 3121, 3227, 1013, 2908. 177: 235, 244, 797, 2837, 3810, 3820, 2720, 3247, 230. 178: 696, 991, 1105, 2773, 2884, 2968, 3330, 2380. 179: 196, 1229, 1569, 1592, 2883, 5317, 2038, 2001, 2290, 2956. 180: 33209, 33508, 331648, 332932, 29, 492, 666, 933, 1561, 1697, 2066, 2895, 2986, 3355, 3724, 4210, 4516, 5052, 5081, 5329. **181**: 3515, 185, 1341, 2337, 2951, 948, 2030. **182:** 734, 1413, 1608, 2981, 3326, 3730, 3823, 3054, 621, 1888, 2841, 351864. 183: 3581, 170, 423, 2320, 2838, 3731, 3733, 1431, 2032, 2031. 184: 400, 796, 921.1, 1622, 2195, 3858, 1442, 3729, 2924, 3258, 3329. 185: 92, 617, 931, 2888, 3055, 3734, 3824, 5637, 2335, 3891, 3339, 3332, 39470. 186: 202, 381, 674, 1704.1, 2317, 1570, 1389, 2302. 187: 351673, 993, 1012, 1417, 1646, 1933, 2809, 3335, 2770, 2889, 3324. 188: 32112, 351, 928, 1331, 2777, 4165, 151, 1333, 269. 189: 480, 510, 930, 1390, 1804, 2799, 3639, 2887, 4116, 6, 156, 2572, 2641, 605, 3245. 190: 116, 348, 1265, 1489, 1642, 2645, 2988, 3576, 3814, 4006, 4012, 3342, 1571, 3246, 1885, 2160. 191: 371, 2642, 3336, 4407, 4419. 192: **3385**, 558, 1499, 1601, 2316, 2318, 2319, 3127, 3244, 3303, 1568, 3337. **198**: \$216, 46, 528, 1805, 4166, 3890, 136, 1647, 246.

194: 351894, 600, 1551, 2567, 2756, 2966, 3356, 3986, 4118, 2190. **195**: 932, 1296, 2189, 2192, 2386, 2512, 2861, 2862, 3360, 3371, 3732, 3852, 3916, 3961, 109, 4156, 2191, 3189, 2568, 2569, 2590. **196**: 1200.2, 1560, 1772, 2050, 2643, 2851, 3302, 3311, 3758, 2203, 3786, 1200.3, 720, 2004, 3304. 197: 806, 1599, 1645, 2724, 3739, 4178, 5083, 5977, 1859, 264. 198: 331, 690, 702, 858, 2310, 3760, 3950, 4906, 2771, 2840, 3915, 936, 3277, 2496, 2309. 199: 606, 2029, 2495, 2640, 3319, 3897, 3914, 2589. **200**: 3361, 351812, 556, 591, 740, 771, 1515, 2003, 2314, 2614, 2781, 2852, 3299, 3744, 3844, 3861, 3949, 4117, 5212, 4897, 2206, 2204. **201**: 370, 3905, 3906, 2162, 2846, \$3491, 548, 971, 1643, 2644, 2900, 3305, 3912, 5326, 4115, 2571, 2161. 203: 351148, 570, 1500, 3575, 2205, 2588, 368, 3982, 2383, 382, 608.2, 882, 1857, 2062, 2505, 2570, 2637, 2897, 2922, 3653, 3740, 3911, 3983, 3904. 205: 35235, 763, 1250, 1251, 1681, 1720, 1856, 2713, 3301, 3306, 3788, 3921, 4385, 4412, 2174, 2301, 1606, 3735, 2639, 3882, 2159, 3984. **206**: 729, 911, 1067, 1283, 1803, 2635, 2737, 2768, 2769, 4137, 2763. 207: 892, 2636, 2767, 3638, 3883, 3918, 3978.1, 4122, 3637, 3881, 3972, 2710, 1644, 3341. 208: 150, 561, 809, 1554, 2434, 2775, 3150, 3903, 3985, 4365.1, 2311, 3992, 1177, 2687, 4121, 4416, **209**: 1009, 1552, 3188, 3276, 3860, 3907, 3975, 4120, 3846, 210: **3**1817, 87, 1233, 2185, 2917, 3346, 3917, 3924, 3977, 3989, 4413, 3759, 1375, 2267, 1347. **211**: 828, 2061, 2814, 2848, 3157, 3978, 4005, 2063, 2706, 3260, 120, 1234, 1089. **212**: \$211, \$31827, 731, 2261, 2707, 3151, 3235, 3574, 3927, 3928, 3973, 3974, 4155, 3152, 3259, 3470, 2739, 4404. 213: 3356, 473, 482, 1176, 2581, 3128, 3249, 3268, 4130, 3154, 3149, 3901. 214: 511, 1315, 1858, 1964, 1965, 1966, 2035, 2506, 2711, 3261, 3926, 3987, 4418, 1349, 2633, 1249. **215**: 392931, 975, 1703, 1887, 2741, 2765, 3316, 3364, 3935, 3936, 3947, 2634. **216**: 760, 852, 1768, 2758, 2764, 3129, 3655, 4010, 4129, 4411, 4132, 2350, 2766, 2847, 3469, 3789, 3133, 2760. **217**: 3679, 405, 1205, 1316, 1553, 2507, 2716, 2717, 2748, 2759, 2849, 3156, 3263, 3661, 4157, 860, 2632, 3923, 3494. 218: 2292, 2575, 2705, 3132, 3834, 3855, 4011, 4366, 4367, 4934, 3265, 1918, 2812, 2819, 3681. 219: 351796, 415, 416, 1175, 1206, 1844, 2127, 2165, 2712, 3236, 3922, 3966, 4175, 2709. 220: \$381, \$800, 97, 126, 315, 316, 761, 922, 1235, 1449, 1704, 2047, 2269, 2821, 3155, 3238, 3676, 3765, 3782, 4254, 4376, 4378, 4480, 5846, \$286, 1870, 2638. **221**: 35268, 342, 399, 1204, 2490, 2492, 2714, 2762, 2949, 4585, 3678, 3968, 2725. 222: 238, 372, 2081, 3134, 3262, 3267, 3967, 311, 2577, 2784, 4161, 2618, 2715, 673, 2351, 2757. 224: 428, 987, 2216, 2257, 3219, 3763, 3856, 3859, 4176, 5608, 1327. **225**: 553, 1794, 2045, 2046, 2134, 2813, 3071, 3131, 3257, 3753, 4089, 4131, 5815, 2708, 3920, 478, 2668, 2927, 188. **226**: 2464, 2761, 2930, 3243, 3654, 3677, 3755, 4100, 4171, 4373, 4170, 3679, 3239, 4367.7. **227**: 86, 2084, 2294, 4388, \$\mathbf{3}1677, 2255, 3285, 863, 866. **228**: 1498, 2051, 3240, 3680, 3683, 4097, 4138, 4172, 3313, 1868, 4177. **229**: 2122, 2178, 3286, 3757, 3849, 3908, 3942, 4139, 2786, 351802, 1376. 230: 35451, 344, 345, 555, 603, 795, 1092, 1600, 1916, 2042, 2123, 2322, 2579, 3857, 4119, 4147, 5853, 3660, 3283, 35386. 231: 1377, 2082, 2688, 3170, 4002, 3598, 5859, 3684, 2454, 3756. 232: 125, 1058, 1872, 1917, 2498, 3685, 4750, 3787, 3662, 784, 3241, 4581. 233: 1744, 1810, 2293, 2864, 3191, 3264, 3663, 3847, 1237, 2503. 234: 1458, 1869, 1871, 2043, 3266, 3863, 4180, 4587, 3591, 157. 235: 3384, 629, 708. 2011, 2033, 2044, 2048, 2049, 2271, 2501, 2522.1, 3173, 3242, 3269, 3656, 3764, 5200, 3769, 3648, 1216. 236: 3659, 4159, 1297. 2931, 1200, 1795, 2525, 2803, 3125, 3190, 3312, 3657, 3784, 3929, 4090, 4099, 5021, 3237, 2899, 4367.6, 3037, 3752. 238: 265, 583, 1298, 1758, 1812, 1957, 2083, 3221, 3284, 2120, 1207, 1791, 2523, 3682, 2120.1, 1090, 4088, 2671. 240: 3368, 3519, 351032, **3**31180, **3**31513, 138, 1919, 1924, 2005, 2064, 2115, 2117, 2119, 2457, 2804, 3171, 3690, 3885, 4096, 4547, 5033, 5102, 331797, 1875, 3785. **241**: 2125, 2544.1, 2738, 3251, 4368.8, 2052, 1217, 1576, 1955, 2243, 2578, 3174, 3790, 4374, 3098, 4337. 243: 1432, 1790, 2124, 2176, 2463, 2522, 2822, 2863, 3036, 3589, 4038,

4346, 5860, 3941, 1483. 244: 1477, 3070, 4091, 2175, 3592, 1179, 32113, 104, 994, 1321, 1414, 1472, 2121, 2126, 2218, 2524, 2541, 4039, 4326, 4408, 5066, 3701. 246: 941, 1136, 1137, 1949, 2669, 3291, 3767, 4849, 3754, 1318, 1688, 1792, 1873, 2497, 2580, 2740, 2742, 3783, 5896, 2745. **248**: 312, 802, 1811, 2472, 2787, 3590 3884, 4092, 4098, 4968, 2007, 2244. 250: 805, 901, 1464, 1745, 1956, 2829, 3124, 3748, 4828, 4900, 5259, 4095, 4338, 672, 2666, 3943. 251: 1322, 1368, 1369, 2217, 3069, 3192, 4283, 5718, 4160, 883, 1320, 1479, 2172, 2646, 4856, 4979, 3548. 253: 1178, 1291, 1793, 2849.1, 3081, 3135.1, 3666, 1236, 1135, 2504, 3328, 4339, 4827, 2788, 4140, 3199, 4219. **255**: 3387, 331828, 1502, 2249, 2544.2, 3035, 3220, 3547, 3689, 3793, 3933, 4127, 4363, 3001, 3250. 256: 350, 974, 1173, 1203, 2508, 3005, 3172, 3874, 4048, 4978, 1202, 35254, 1527, 2118, 3931, 3953, 2245, 3028. 258: 1169, 1326, 2099, 2667, 2890, 3455, 3979, 4041, 4282, 4843, 3126, 2723, 2425, 3289, 3709, 4049, 4241, 4415, 4973, 5568, 2585, 2247, 3600. **260**: 178, 565, 730, 861, 1325, 1367, 1822, 2100, 2116, 3214, 3746, 3791, 3836, 3930, 4491, 4500, 4974, 4857, 5005, 5347, 3002, 1959. 261: 571, 1201, 4045, 4308, 33253, 3004, 3546, 3587, 3593, 3833, 3835, 4345, 4490, 4567, 2801, 1247, 4832, 607. **263**: 1077, 1317, 1626, 1958, 2474, 2586, 3688, 4380, 4976, 1304, 4044, 4093, 4975, 3456, 4279. **265**: 351129, 2253, 2658, 3076, 3146, 3606, 3980, 4046, 4347, 4351, 4365, 4391, 4590, 3650, 2584, 3651. **266**: **3**51676, 1171, 1506, 4280, 3100, 3044, 560, 1481, 3077, 3558, **3643**, 4128, 4106, 4493, 3667, 5166. 268: 351649, 351865, 2677, 3003, 3139, 3140, 4205, 3981, 309, 2518, 4852. 270: 32114, 32606, 502, 765, 1246, 1970, 2078, 2622, 3773, 4032, 4043, 4064, 4983, 4033, 4543, 5018, 1979. **271**: **3**5770, 2073, 2367, 3774, 4062, 4542, 5142, 1324, 3078, 4757, 4758, 3099. **273**: 3671, 4349, 2670, 1574, 2251, 2676, 3778, 4042, 5156, 2736, 3747. 275: 2587, 3000, 4034, 4184, 4238, 4972, 3248, 351674, 1157, 2424, 3652, 4267, 4304, 4296, 1415, 4359, 2423, 3702. 277: 889, 1119, 2098, 4492, 4707, 5003, 5141, 4218, 1158, 1807, 3620, 3792, 4778, 3703, 2519, 2731, 3147. 280: 769, 1255, 1581, 2207, 2250, 2616, 2729, 2850, 3130, 3507, 4173, 4278, 4327, 4368.2. **281**: 871, 4760, 3453, 1580, 3412, 3454, 3615, 4163, 4207, 4297, 4544, 4318. 283: 2619, 2678, 3710, 4319, 2651, 4756, 2431, 1259, 1260, 2254, 2596, 2617, 2697, 3420, 3542, 4533, 5153, 4317. 286: 1397, 2780, 3417, 3508, 4268, 4299, 1416, 1258, 897, 1480, 3183, 3290, 4269, 4508, 886, 4759, 5167, 3414. 288: 3574, 592, 1133, 3006, 4779, 1384, 3543, 3595, 4195, 4761, 5244, 1256, 3413, 3497, 5002. **290**: **3546**, **3**379, 515, 573, 1254, 2072, 2173, 2473, 2647, 3198, 3670, 3771, 4531, 4635, 4784, 4802, 5286, 5490, 5681. **291**: 33255, 1926, 4047, 1245, 4023, 5169, 4532, 4996, 3642, 3692, 4050, 4260, 4845, 4513. 294: 4322, 4381, 4997, 35230, 1478, 2648, 4158, 4439, 4762, 5160, 5017. 296: 1154, 3194, 4352, 4324, 3498, 4019, 5110, 4325, 4793, 4225, 4017, 3115, 4362, 4777, 4939, 5340, 4507, 1273, 4266, 4930. **300**: \$363, \$3695, 1213, 1985, 2167, 2416, 3040, 3075, 3094, 3158, 3197, 3526, 3630, 3696, 4029, 4109, 4473, 4512, 4529, 4650, 4789, 4838, 4867, 4987. **301**: 1817, 3550, 5020, 3016, 1272, 1921, 3596, 4262, 4270, 4466, 4967, 3195, 3945, 5260, 2649. **304**: **306**: **3473**, 4323, 3499, 3216, 4020, 4305, 4441, 4447. **306**: 4018, 4448, 4794, 3551, 3196, 4708, 3466, 4240, 4846, 1419, 4988, 310: 3896, 4261, 5010, 5400, 1120, 4329, 4505, 1925, 4790, 38444, 4458, 4697. 315: 331342, 331895, 1163, 1165, 1166, 1982, 4451, 4916, 4725, 4734, 4726. 317: 366, 1573, 1981, 2462, 5391, 4442, 1271, 4204, 4917. 320: 331804, 1149, 4212, 4263, 4715, 4791, 5816, 2844, 3894, 4506, 4724, 388, 5861. 325: 4393, 4687, 5037, 5072, 4994, 1110, 4243, 5059, 4727, 331679, 4220, 5607, 330: 32116, 831, 4431, 5074, 5486, 4792, 4914, 335: 1922, 4915, 5044, 1525, 4203, 5689, 391, 2421. 340: 33496, 331624, 1526, 4214, 4242, 4271, 4460, 5043, 5135, 5262, 4652, 392117, 4425, 4244, 4649, 4455, 4728, 5168, 5335. **345**: 2212, 5038, 4434, 351675, 4672, 4902, 5521. **350**: 4515, 5183, 5184, 5747, 4427, 4435, 4436, \$\&\\$898 4285, 4211, 4465, 5520, 5402. 360: 1991, 3042, 3307, 4437, 4622,

4676, 4912, 4913, 5193, 5491, 5746, 5616, 4287, 4892, 5281, 4012. **371:** 4215, 33471, 4514, 5053, 4249, 4620, 6010, 331869, 5379, 5887, 3882, 4907, 5173, 5306, 5055. **400**: 38958, 381798, 382959, **4690**, \$\mathrm{3}292\$, 4286, 5395, \$\mathrm{3}226\$, \$\mathrm{3}2608\$, \$\mathrm{3}89\$, \$\mathrm{3}480\$, 5494. **421**: **3**92, 5883, 5274, **3**9716, 4626, 5863, 4722, **3**91075, 5172, **3**9316, 5264. 452: 5493, 3320, 4637, 4636, 5508, 331749, 33170, 33223. **500**: \$322, \$3769, 5817, \$3224, \$3228, 5695, \$3227, \$3678, \$3271, 352105. 600: 35193, 351879, 35490, 35487, 35753, 35752, 35881. **707:** \$272, \$832, \$2495, \$2749, \$2696, \$2700, \$2703, \$2936. **916:** 3543, 3548, 3529, 3829, 3825, 3940, 3779, 31268, 32613. **1230**: 33499, 33283, 332610, 33528, 33951, 33284, 332680, 33205, **3**3287, **3**2917, **3**2926, **3**3200, **3**947, **3**2605, **3**939, **3**2924, 32668, 32677, 33197. 1400: 32499, 33196, 32131, 32671, \$2921, \$2769, \$2918, \$1337, \$1059, \$1870, \$1334, \$2500. 1670: 32604, 32670, 331858, 3341. 3800: 331619, 331724, **3**51799, **3**5481, **3**51805, **3**51689, **3**51690.

III. DENSITY

A. Liquids

0.415: 54, 409, 39102, 1072, 1073, 39406, 1716, 1715, 980, 1713, 1714. **0.670**: 2392, 2394, 915, 916, 2387, 1610, 38407, 2389, 917, 2391, 1534. 0.692: 1613, 2933, 525, 823, 918, 1617, 22, 35410, 914, 2939, 824. 0.712: 1619, 35409, 35414, 822, 1535, 2331, 3354, 524, 2334, 2936, 1761, 2940, 3995. **0.724**: 2873, 38425, 1764, 2279, 33412, 1086, 4000, 3994, 794.1, 3999, 821, 794, 1760. **0.740**: 820, \$3415, 3351, 4178, 396, \$3416, 2985, 1741, 3993, 3957, 1101. **0.750**: 1615, 1100, 1738, 1737, 979, 1739, 2975, 4412, 3372, 4587. 0.760: 669, 4586, 479, 2974, 4165, 2241, 2328, 2330, 2413, 1001, 4856, \$3418, 1099, 1762.1, 3323, 4012, 4411, 2869, 2973. **0.771**: 2868, 2987, 5018, 3365, \$2420, 4006, 4849, 5167, 913, 1632, 2419, 4418, 5260, \$3421, 1612, 2867. **0.781**: \$3422, 208, \$3423, 168, **395**, 506, 3320, 1049, 262, 792, 5156. **0.790**: 3960, 3297, 5377, 60, 1003, 3961, 301, 667, 718, 448, 2825, 2284, 3812. 0.800: 790, 1769, 2281, 972, 1603, 2827, 973, 3811, 1639, 3295, 505, 38411, 2382. 0.805: 719, 880, 1366, 1544, 2283, 2345, 447, 791, 2955. 1081, 1084, 1602, 2282. **0.810**: 789, 1537, 1084.1, 1630, 2327, 2898, 2965, 1754, 3895, 3959, 1640, 1730.1, 2320, 2347, 313, 1083, 2396, 2397, 2872. **0.817**: 717, 1078, 2403, 2897, 2960, 1005, 1085.1, 1636, 1699, 2896, 1085, 1726, 1733.1, 2407, 2407.1, 2408, 2968. 0.820: 1728, 2399, 5169, 2892, 2970, 3827, 2967, 1725, 2400.1, 2409, 2796, 2954, 2962, 3356, 1727, 1734, 3978.1. 0.825: 2971, 3978, 4005, 4170, 4172, 4848, 800, 2240, 2963, 2966, 2956, 3364, 1736, 2400, 3361, 4002. 0.830: 1469, 2797, 3826, 1547, 1732, 1746, 2929, 4415, 237, 587, 3362, 925, 2410, 3326, 4179, 4836, 998, 1633, 3355, 3821. 0.835: 1098, 1629, 2239, 810, 811, 3358, 517, 814, 837, 999, 1628, 1000, 2952, 3889, 2865, 3893. 0.840: 273, 749, 2412, 3808, 3822, 356, 1466, 3810, 3809, 3815, 4010, 2928, 1546, 1468, 1470, 272. 0.850: 2343, 1572, 3816, 1063, 711, 993, 2890, 3333, 3334, 446, 1048, 3823, 3824. 0.856: 927, 3894, 3903, 5606, 1096, 2288, 3728.1, 1545, 3727, 5380, 3331, **5978. 0.860**: 469, 1054, 2834, 3333.1, 3725, 3728, 3730, 3992, 4115, 2686, 3734, 3805, 3969, 4168, 513, 3226, 3228, 3724, 4408, 3229.1. 0.863: 1548, 2835, 2912, 3820, 4367, 2909.1, 3223, 2685, 3731, 3806, 5853, 2359.1. 0.866: 801, 2112, 2357, 2901.1, 3729, 4175, 3225, 3726, 4365.1, 2354.1, 3229, 3740.1, 3330.1, 3807, 3899, 3988, 2359. **0.870**: 926, 1046, 1653, 4992, 5813, 2901, 748, 1649, 1652, 1655, 1064, 1695, 2855, 2903, 3891, 798, 2355, 2683, 0.875: 2354, 3915, 3230, 4576, 2356, 3987, 533, 2858, 3733, 747. 3817, 1654, 2353, 2684, 2953, 4117. 0.880: 1365, 5003, 1658, 3908, 3920, 1015, 1651, 3224, 4366, 1016, 1043, 1659, 3329, 4991. 0.884: 746, 4144, 4118, 4370, 1020, 3337, 4827, 1496, 2111, 3850, 4828. **0.890**: 468, 1017, 1019, 3119, 1044, 3897, 4980, 1047, 3227, 4376, 5001, 3303, 3918, 5141, 2415, 3917, 397, 1018, 3890, 5362, 713, 725, 3974.1. **0.901**: 727, 3639, 3740, 3902, 4385, 4835, 5253, 2538, 5152, 5346, 451, 4842, 4974, 2884, 3328, 4158, 5015, 3324,

4977, 1056, 4148. 0.910: 670, 2899, 3961, 4368.8, 908, 2888, 3913.1, 4841, 642, 2883, 2777, 3861, 1055, 2340, 4982, 5342, 5605. **0.915**: \$\mathref{9}429\$, \$\mathref{9}1824\$, 2831, 3786, 3813, 3913, 6166, 891, 2337, 3788, 4156, 726, 3369, 2298, 4578, 4972, 1557, 3923, 3924, 4388. **0.920:** 4131, 3854, 3928, 2351, 764, 2339, 2341, 3575, 938, 2299, 3341, 5482. 0.925: 1558, 1644, 2289, 3847, 3927, 4971, 452, 937, 1647, 4130, 1643, 2882, 3258, 3926, 3935, 4975. 0.930: 2453, 2859, 4976, 4978, 3931, 671, 4843, 965, 2830, 3936, 3735, 3764, 3789. **0.935**: 489, 799, 1519, 2861, 2201, 2810, 3922, 4157, 4981, 569, 3260, 3787, 3859, 375, 4371, 3263, 4561. **0.94**: 2979, 3790, 3882, 3883, 1010, 3259, 3947, 4999, 763, 1012, 2294, 3858, 762, 978, 2386.1, 3860, 3852, 4560. **0.945**: 909, 3857, 997, 2818, 589, 623, 3948, 724, 1541, 3244, 3267, 5005. **0.950**: 1443. 2199. 2841, 3265, 783, 924, 1478, 1444, 3319, 3762, 3865, 3904, 4132, 4326, 5940. **0.955**: 2775, 624, 1445, 2756, 4378, 752, 2335, 3765, 723, 1555, 2200, 6167. **0.960**: 3753, 1554, 307, 2763, 3264, 2914, 1553, 2722, 3121, 3655, 2778, 4089, 2365, 3246, 2840. 0.970: 1551, 2721, 3933, 3637, 355, 2762, 4823.1, 1595, 2758, 213, 625, 2766, 3638, 4091.1. **0.976**: 929, 1511, 3752, 3856, 4967, 38432, 2767, 3754.2, 5009, 3656, 1026, 2760. **0.980**: 1089, 2195, 1067.1, 2719, 870, 3654, 4344, 2764, 3878, 930, 3661, 3763, 4579. **0.985**: 4372, 4573, 2203, 3648, 935, 2718, 3662, 3761, 4941, 5000, 5688, 4342. 0.990: 934, 1482, 4161, 681, 3235.1, 400, 450, 2757, 162, 815, 3664, 4345, 1090, 1509, 1662, 2163, 3235. 0.995: 3311, 403, 1070, 1510, 3236, 3573, 2204, 3243, 3574, 351, 2058, 4761. 1.000: 4095, 4097.1, 66, 3128, 4543, 5140, 5334, 258, 797, 896, 3134, 3054, 4490, 4757, 4930, 3237, 773.1, 3747, 4147. 1.010: 594, 2743, 3132, 5110, \$\frac{3}{2}197, 1560, 590, 2713.1, 620, 2503, 4098, 3780, 4096, 4097, 4279, 652, 928, 2846, 2848, 2302, 2569. 1.020: 608.1, 795, 2570, 3701, 285, 608.2, 1442, 5371, 2322, 4994, 1328, 1561, 3312, 4038, 4789. **1.026**: 2571, 3680, 4090.1, 619, 2567, 3681.1, 3684, 5010, 35426, 651, 1022, 3133, 3679, 3703. 1.03: **3**5104, 1028, 3677, 3125, 3678, 218, 4939, 2161, 496, 2706, 3676, 2568. 1.040: 2255, 2745, 4545, 4970, 39440, 2847, 5678, 3285, 266, 274, 2001, 2159, 720, 3154, 3286, 212, 3069, 4062. 1.050: 593, 3152, 3284, 358, 2812, 4350, 511, 4153, 2309, 4348, 2318, 2748, 3192, 3872, 4093, 4383, 2189, 3149, 399. **1.061**: 2788, 4296, 1029, 3283, 911, 4353, 616, 3135, 3191, 378, 576, 989, 1441, 3601, 3547, 2813, 176, 1606, 458. 1.071: 2041, 2040, 3548, 3549, 1430, 2572, 3944, 807, 943, 969.1, 2310, 2590. 1.080: 737, 1570, 2039, 3667, 2588, 449, 626, 609, 3546, 968, 621, 2008, 4726, 1572.1. 1.090: 3649, 4102, 578, 1092, 1559, 2468, 2725, 420, 665, 2814, 3037, 2589, 1889, 3591, 1357, 1483, 3642, 3036. 1.100: 4723, 3169.1, 4917, 471, 722, 2038, 154, 170, 1571, 4670, 247, 3688, 4368.4, 561, 1307, 2687, 1417. **1.11**: 492, 2267, 2071, 657, 233, 969, 4733, 264, 470, 4297.1, 672, 736, 2579, 2269. **1.121**: 1568, 2134, 4064, 4324, 275, 2580, 5164, 520, 2509, 1341, 2669, 2849.1. 1.131: 3170, 805, 2578, 893, 4381, 3171, 46, 48, 383, 3945, 146, 3253, 3886, 4023, 1.150: 1756, 1388, 2127, 1390, \$3439, 948, 1917, 994, 2284.1, 3606, 658, 859. 1.160: 2084, 3289, 33438, 1253, 453, 2004, 460, 2499, 1252, 1692, 189, 949, 2696. **1.180**: 3694, 887, 36798, 379, 2618, 5282, 655, 659, 2498, 1042, 3455, 334. 1.200: 1031, 2850, 1347, 1859, 227, 696, 1375, 858, 1041, 1376, 279, 632, 710. **1.220**: 37, 384, 744, 1040, 2316, 3514, 1576, 4442, 4441, 35435, 803, 1314, 1857, 863, 921.1, 1916. 1.252: 190, 1856, 515, 742, 67, 359, 2098, 741, 604, 3937, 1230, 38442, 1959, 1229. **1.310**: 351575, 465, 192, 1327, 1506, 472, 473, 35441, 1251, 1250, 604.1, 1540, 421, 1588, 158, 28, 1249, 2053. 1.340: 3366, 464, 423, 2639, 230, 365, 2637, 422, 2633, 1326, 3842, 585, 963, 276, 558, 582, 366. **1.400**: 497, 2491, 2423, 545, 2031, 605, 2030, 2492, 2493, 364, \$634, 2029, 1697, \$2, 159, \$96, \$635, 220, 331397. 1.460: 3311, 648, 5350, 1672, 225, 3453, 106, 3310, 61, 3636, 3352, 19, 329, 648.3, 1053, 1294, 2119. 1.500: 1578.1, **3**632, **3**637, 43, 1052, 1822, 107, 648.1, 137, 1051, 2454, 648.4, 3629. **1.526**: 141, 3633, 467, 136, 1844, 1367, 35207, 645, 139, 3630, 12, 756. **1.600**: 140, 367, 755, 754, 90, 1601, 3521, 3232,

\$\\$58, 2494, \$\\$129, \$\\$512, \$\\$628, \$\\$59, 757, \$\\$210, \$\\$57, \$\\$100, 221, 2061, 2062. \$\\$1.700: 368, 555, 476, 987, 694, 475, \$\\$62, 693, \$\\$13, 414, \$\\$622, 690. \$\\$1.800: 2064, 689, 1949, 688, 1759, 1333, \$\\$523, \$\\$45, 390, \$\\$1597, \$\\$60, 38, \$\\$1808, 116, \$\\$621. \$\\$1.901: \$\\$163, 600, \$\\$39, 412, 341, 234, 1205, 413, \$\\$619, 83, 339, 340, 183, \$\\$218, \$\\$522. \$\\$2.110: 415, 122, 184, 649, 186, \$\\$488, 123, \$\\$236, 45, 522, 370, \$\\$378, \$\\$76, \$\\$919, 4, 427. \$\\$2.529: 601, 20, 151, \$\\$1815, \$\\$63, \$\\$142, 345, \$\\$64, 101, 5, 127, 18, 235, 128. \$\\$3.022: \$\\$204, \$\\$918, \$\\$497, \$\\$381, 29, \$\\$34, \$\\$206, 87, \$\\$205. \$\\$4.49.

B. Solids

0.760: 846, 5881, 5918, 5967, 5985, 6014, 6080, 32916, 5244, 2266, 32601, 1502, 936, 4406, 6010. **0.919**: 32667, 548, 3016, 331812, 3257, 4805, 1058, 239, 3756, 481, 3302. 1.008: 607, 5343.1, 3901, \$2791, 761, 2573, 4322, 1057, 4652, 3307, 760, 2801, 5902, 482, 1077, 2206, 831. 1.051: 2160, 5847, 5933, 1771, 3140, 289, 571, 32643, 3853, 3550, 502, 2116, 3494, 5244.1. 1.150: 5213.1, 238, 4270, 2166, 3498, 4352, 832, 33431, 33430, 332623, 5887, 4943, 5404, 5284, 4894, 2595. 1.208: 4225, 352626, 259, 5818, 3886.1, 32998, 504, 298, 3867.1, 5428.1, 355, 351896, 2701, 4480, 2308.1, 4226. 1.250: 4467, 4956, 503, 5573, 1705, 352624, 5435, 2032, 5202, 352306, 1287, 1992, 308.1, 1581, 55, 5541, 5028.1, 1990, 1414. 1.35: 6104, 4739, 5647, 25111, 5028, 4656.1, 802, 3697, 33173, 3111, 5704, 332655, 5522. 1.40: 498, 2475, 58, 4622, 1929, 947, 35134, 352170, 352347, 1398, 6148, 1397, 5659, 352300, 4620, 2013, 1349, 353086, 3778. **1.45**: 352757, 808, 3178, 1419, 352171, 630, 352807, 1231, 352636, 976, 352149, 352693, 1351. 1.47: 352990, 204, 1464, 1991, 2682.1, 352814, 1172, 1350, 351400, **3**31809, **3**3201, **3**32855. **5.0:** \$3502, \$31328, \$31350, \$31426, 31428, 31844, 31994, 3289, 31969, 31260, 31375, 32282, 31712, 32202, 331539, 33499. 5.10: 3311, 331130, 32017, 33734, 331334, 3994, 32035.1, 33329, 31021, 32030, 32513, 3456, 3507, 3554, 351258, 351441, 353061, 35829. **5.2**: 35280, 351096, 351337, **3**51682, 351711, 351063, 351371, 351590, 351686, 352518, 351990, 351992, 352516, 35618, 35462. **5.3:** 35600, 35677, 35716, 35724, 351154, 351634, 35313, 35595, 351423, 35593, 351049, 351236, 351403, 351767, 35883, 351457, 35862, 35608, 35745, 35864, 35473, 351095. 3550: 35592, 351630, 351671, 351852, 351542, 351065, 35544, 35723, 3956, 391059, 39708. **5.6**: 39306, 39306.1, 391304, 391710, 391726,

35744, 35601, 35603, 35951, 35971, 351636, 351763, 351123, 35279, 3670, 351064, 351996, 351440, 351455. **5.7**: 35320, 35322, 351372, 31418, 31614, 32339, 3714, 32494, 3473.1, 31421, 3546, 32338, 331632, 331098, 331723, 33957, 33582, 332599. 5.8: 33568, 3596, 351117, 351685, 351978, 351391, 352048, 3529, 3574, 352571, 32049, 331163, 3541. 5.9: 35602, 331118, 331652, 331703, 33907, 351071, 3565, 352507, 35597, 352538, 351736, 351562. 6.0: 35401, 3936, 31050, 31506, 31781, 31227, 3540, 32059, 3894, 32366, 351442, 351105. **6.1**: 35594, 351022, 351101, 351402, 351666, **3**31784, 33402, 33658, 33657, 33548, 331655, 33501, 33606, 332483, 351327. **6.2**: 35553, 35614, 351124, 351390, 351617, 35863, 35539, 351800, 35898, 351116, 35897, 351055. **6.3**: 35604, 35607, 351100, **31119**, **31517**, **31570**, **31631**, **31366**, **32580**, **31722**, **3559**, 351086. **6.4:** 35335, 35605, 35667, 35934, 35935, 35995, 351834, 351025, 35905, 35575, 35616, 35889, 35834, 35672, 351051, 351062, 3503, 3833, 3663, 331121. 6.5: 3609, 3660, 331102, 331501, 331958, 331629, 333118, 33659, 33509, 33598. 6.6: 33611, 33617, 31573, 32827, 31285, 3824, 31698, 3543, 3996, 31143, 31619. 6.7: 331405, 332007, 332006, 33545, 33666, 331374, 331620, 331024, 35719, 351502. 6.8: 35573, 36671, 35327, 35336, 35551. 35576. 3581, 351776, 352005, 35712, 351700, 351306. 6.9: 35610, 35661, **31040**, **31103**, **31681**, **31688**, **31840**, **32834**, **3557**, **3612**, 31621, 33484, 331235. 7.0: 33485, 33578, 33588, 33613, 33696, 351386, 351404, 351854, 35599, 352041, 351807, 3536, 3584. **7.1**: 3586, 3589, 351565, 3585, 35725, 353188, 3587, 35334, 35590, 3882, 31171, 31842, 3681, 31734, 32828. **7.2**: 31233, 31697, **3535, 32023, 331847, 3615, 32826, 32830, 3577, 331247, 331977,** 3893, 391705, 391067, 391066, 39910, 39325. **7.4**: 391128, 391385, 351393, 351843, 351849, 352062, 352060, 352037, 351057, 351528. **7.5**: \$305, \$314, \$330, \$552, \$900, \$1833, \$1041, \$700, \$904, 3538, 351170, 351464, 35324. 7.7: 35328, 35896, 35318, 35902, 32079, 331384, 331848, 331146, 3323, 3891, 3676. 8.0: 3525, 35704, 351004, 351070, 351732, 351850, 3580, 35321, 35558, 35901, 3821, 3560, 3822. **8.2:** 3308, 351695, 3528, 351326, 38888, 3890, 31662, 31701, 31550, 3888, 31017, 3309, 31072, 31684, 351780. **8.64**: 352082, 35887, 35880, 35895, 351137, 351806, 351169, 3307, 351663, 35881, 35675. 9.04: 351139, 35527, 35892, 352087, 3526, 3524, 32099, 3668, 3879, 31152, 31702, 31179, 31855, 351693. 11.1: 35878, 351725, 351724, 351224, 351225, 351689, 31690. 16.06.

LIQUID CRYSTALS

H. W. FOOTE

The term "transition temperature" refers in the tables to the temperature at which the solid and crystalline-liquid phases are in equilibrium at a pressure of one atmosphere; by "melting point," is meant the corresponding temperature at which the crystalline-liquid and isotropic liquid phases are in equilibrium. In some cases, more than one stable liquid crystal phase exists, giving an additional transition temperature for each additional liquid crystal phase. These transition temperatures between two liquid crystal phases are indicated by *. In most cases, they are only approximate. Melting points which are quite uncertain, usually due to partial decomposition, have "d." written after the value. No attempt has been made to estimate the accuracy of values obtained by a single investigator, as the methods of determination are the same in nearly every case and the result obviously depends on the skill of the investigator and the purity of the compounds.

A series of apparently good determinations by different observers is apt to vary by considerably more than one degree, and it seems unlikely that any transition temperature or melting point of liquid crystals is known with an accuracy much better than one degree.

For this reason, the weighted average of a number of different determinations is usually given to the nearest whole degree. When the number of determinations is sufficient, the weighted average deviation, usually to the nearest whole degree, is given also.

The melting points of unstable liquid crystals, in monotropic systems, are not included in the tables, and transition temperatures, in the ordinary sense, do not exist in this case. Many observations on monotropic compounds will be found in nearly all the Halle dissertations and in the publications by Vorländer, which are listed at the end of the tables.

For the effect of pressure on the transition temperature and melting point of liquid crystals, see G. Hulett, 7, 28: 629; 99. For approximate data on liquid crystals of alkali salts of higher fatty acids (chiefly) see Vorlander, 25, 43: 3120; 10. For similar data regarding compounds which are optically active, see H. Stoltzenberg, Diss., Halle (1911). For qualitative data regarding liquid crystals, see E. Wolferts, Diss., Halle (09), R. Wilke, Diss., Halle (09); K. Mattenklodt, Diss., Halle (11); and Vorlander, 25, 40: 1415, 1966; 07.

Index formula	Formula	Name	Trans.	М. Р.	Lit.
C ₁₀ H ₁₀ O ₈	CH ₂ OC ₂ H ₄ CH:CHCOOH	p-Methoxycinnamic acid	170 ± 1	186 ± 1	(7, 11, 30
					33, 34, 42
				ł	43, 45)
C11H12O2	C ₂ H ₄ OC ₄ H ₄ CH:CHCOOH	p-Ethoxycinnamic acid	192	197	(43)
C12H14O2	C ₂ H ₄ OC ₄ H ₄ CCH ₂ :CHCOOH	p-Ethoxy-β-methylcinnamic acid	122.5	159	(37)
C14H10BrNO2	BrC.H.4CH:NC.H.4COOH	p-Bromobenzal-p-aminobenzoic acid.	272	274	(12)
C ₁₄ H ₁₀ ClNO ₂	CIC.H.CH:NC.H.COOH	p-Chlorobenzal-p-aminobenzoic acid.	260	263	(12)
C ₁₄ H ₁₀ INO ₂	IC.H.CH:NC.H.COOH	p-Iodobenzal-p-aminobenzoic acid	279	287	(12)
C14H10O6	HOC'H'COOC'H'COOH	p-(p-Hydroxybenzoxy)-benzoic acid	258	266 ±	(45)
C14H11NO2	C ₄ H ₄ CH:NC ₄ H ₄ COOH	Benzal-p-aminobenzoic acid	183	191	(26)
C14H12N2O2	O2NC4H4CH:NC4H4OCH	p-Nitrobenzalanisidine	135		(26)
C14H14N2O2	CH ₅ OC ₆ H ₄ NONC ₆ H ₄ OCH ₈	p-Azoxyanisol	116 ± 1	135 ± 1	(1, 3, 6, 7,
				İ	9, 11, 14,
					19, 23, 30,
					32, 35, 36,
0 II N	OH NHO H OH NNHO H	N. 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			42, 45)
C14H15N2	CH ₂ NHC ₄ H ₄ CH:NNHC ₄ H ₄	p-Methylaminobenzalphenylhydra-	150	100	(24)
	GNG H GH NG H GOOH	zone	170	190	(34)
C ₁₅ H ₁₀ N ₂ O ₂	CNC,H,CH:NC,H,COOH	p-(p-Cyanobenzalamino)-benzoic acid	247	>320	(17)
C16H12N2O	CNC,H,CH:NC,H,OCH,	p-Cyanobenzalanisidine	115	125	(17)
C ₁₆ H ₁₂ N ₂ O	CH ₂ OC ₄ H ₄ CH:NC ₄ H ₄ CN	Anisal-p-cyanoaniline	103	113.5	(12)
C14H12N2O4	CH ₄ COOC ₄ H ₄ N:NC ₄ H ₄ COOH	p-Acetoxyazobenzoic acid	254	d.	(31)
C16H12O2	C ₄ H ₄ C ₄ H ₄ CH:CHCOOH	p-Phenylcinnamic acid	221	236	(2)
C16H12O6	CH,OC,H,COOC,H,COOH	p-(p-Methoxybenzoxy)-benzoic acid.	223	272	(45)
$C_{15}H_{15}NO_2$	CH ₂ C ₄ H ₄ CH:NC ₄ H ₄ COOH	p-(p-Methylbenzalamino)-benzoic	220	243	(26)
a n n	GT 0 G T GT NG T G00T	acid	107	000	(15.46)
C ₁₆ H ₁₈ NO ₈	CH ₄ OC ₄ H ₄ CH:NC ₄ H ₄ COOH	p-(Anisalamino)-benzoic acid	197	298 d.	(15, 46)
C16H14N2O3	O ₂ NC ₆ H ₄ CH:NC ₆ H ₄ OC ₆ H ₆	p-Nitrobenzalphenetidine	124		(26)
C16H16N2O5	CH ₂ OC ₂ H ₄ NONC ₂ H ₄ OC ₂ H ₅	p-Anisylazoxyphenetol	94 ± 1	149 ± 1	(4, 7, 32)
C15H17N3	C ₂ H ₄ NHC ₄ H ₄ CH:NNHC ₄ H ₄	p-Ethylaminobenzalphenylhydrazone	160	182	(34)
$C_{16}H_{12}O_6$	CH4COOC4H4COOH	p-Hydroxybenzoic acid p-acetoxy-	000 1		(45)
0 11 0	CH OGOOG H GOOG H GOOH	benzoate	228 d.	>250	(45)
C16H12O7	CH4OCOOC4H4COOH	p-Hydroxybenzoic acid p-carbometh-	010.3	,	(45)
CHNO	CNC H CH-NC H OC H	oxyoxybenzoate	218 d.	d.	(45)
C ₁₆ H ₁₄ N ₂ O	CNC ₄ H ₄ CH:NC ₅ H ₄ OC ₂ H ₅	p-Cyanobenzalphenetidine	115	132	(17)
C ₁₆ H ₁₆ N ₂ O	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CN O ₂ NC ₄ H ₄ CH:CHCH:NC ₄ H ₄ CH ₂	p-Ethoxybenzal-p-cyanoaniline	105	124	(12)
C ₁₄ H ₁₄ N ₂ O ₂	O ₂ NC ₄ H ₄ CH:CHCH:NC ₄ H ₄ OCH ₂	p-Nitrocinnamal-p-toluidine	130	141	(26)
C ₁₄ H ₁₄ N ₂ O ₃		p-Nitrocinnamalanisidine	155	160 135	(26)
C ₁₆ H ₁₆ NO ₂	CH ₂ OC ₂ H ₄ CH:NC ₄ H ₄ COCH ₄	Anisal-p-aminoacetophenone p-Acetoxybenzalanisidine	121.5 112	128	(15) (15)
C ₁₆ H ₁₆ NO ₈	CH ₁ COOC ₁ H ₄ CH:NC ₁ H ₄ OCH ₁		81.5	108	(15)
C ₁₆ H ₁₆ NO ₅	CH COC H N:NC H OC H	p-(Anisalamino)-phenol acetate	130	108	(47)
C ₁₆ H ₁₆ N ₂ O ₂	CH ₁ COC ₄ H ₄ N:NC ₄ H ₄ OC ₂ H ₄ CH ₂ OC ₄ H ₄ CH:NN:CHC ₄ H ₄ OCH ₂	p-Acetophenoneazophenetol		180 ± 1	(5, 6, 7, 19)
C ₁₆ H ₁₆ N ₂ O ₃			165 ± 3		(46, 47)
C ₁₆ H ₁₆ N ₂ O ₃	C ₂ H ₄ OC ₅ H ₄ N:NC ₅ H ₄ OCOCH ₅ CH ₂ OC ₅ H ₄ N:NC ₅ H ₄ OCOOC ₂ H ₅	p-Phenetolazophenol acetate	121 90	138 114	(46, 47)
C16H16N2O4 C16H18N2O2	C ₂ H ₄ OC ₄ H ₄ NONC ₄ H ₄ OC ₂ H ₄	p-Ansylazocarbethoxyphenoi	137 ± 1	167 ± 1	(3, 14, 19,
Clerran 201	Cinfochilochilochi	p-Azoxy phenetor	101 1	10. 11	23, 30, 32,
					35, 42, 45)
C16H20N2	C2H4NHC4H4C4H4NHC2H4	Diethylbenzidine	115.5	120.5	(34)
C ₁₇ H ₁₅ NO ₂	CH ₁ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CHCOOH	p-(Anisalamino)-cinnamic acid	208	d.	(15)
C ₁₇ H ₁₆ N ₂ O ₃	O ₂ NC ₄ H ₄ CH:CHCH:NC ₄ H ₄ OC ₂ H ₄	p-Nitrocinnamalphenetidine	134	137	(26)
C ₁₇ H ₁₆ N ₂ O ₄	CH ₂ COC ₂ H ₄ N:NC ₂ H ₄ OCOOC ₂ H ₄	p-Acetophenoneazocarbethoxyphenol	120	126	(47)
C ₁₇ H ₁₆ N ₂ O ₄	CH ₂ COOC ₂ H ₄ N:NC ₂ H ₄ COOC ₂ H ₄	Ethyl p-acetoxyazobenzoate	99	102	(31)
C ₁₇ H ₁₇ NO ₃	CH ₂ OC ₂ H ₄ CH:NC ₄ H ₄ CH ₂ CH ₂ COOH		136	162	(45)
C ₁₇ H ₁₈ N ₂ O ₄	C ₂ H ₄ OC ₄ H ₄ N:NC ₄ H ₄ OCOOC ₂ H ₄	p-Phenetolazocarbethoxyphenol	96	137	(47)
C15H16N2O4 C16H16ClO4	CH,COOC,H,CH:CCIC,H,OCOCH,	p-Dihydroxychlorostilbene diacetate.	125	138	(11, 29)
C18H18C1O4 C18H18N2O4	CH ₂ COOC ₆ H ₄ CH:NN:CHC ₆ H ₄ OCO-	Di-(p-acetoxybenzalazine)	185	192	(16, 40)
O18171914304	CH ₁ COOC ₄ H ₄ CH:NN:CHC ₄ H ₄ OCO-		100	-~-	` ,
C18H17NO8	CH ₂ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CHCOOCH ₂	Methyl anisal-p-aminocinnamate	156	176	(43, 47)
C ₁₇ H ₁₇ N ₂ O ₃	CH ₂ OC ₄ H ₄ N:NC ₄ H ₄ CH:CHCOOC ₂ H ₄		116, 123*	143	(46, 47)
C15H15N2O2	C ₂ H ₄ OCOC ₄ H ₄ NONC ₄ H ₄ COOC ₂ H ₄	p-Azoxyethyl benzoate	116, 126 114 ± 0.6	121 ± 0.5	(7, 11, 19, 27,
~18TT181430\$		Demonstration		0.0	40,42, 45)
C18H18N2O6	C2H4OCOOC4H4N:NC4H4OCOOC2H4	n-Azocarbethoxynhenol	97	118	(15)
~19**12~1	1 almin and almitrary attition of the	·	••		,

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C18H18N2O7	C ₂ H ₄ OCOOC ₄ H ₄ NONC ₄ H ₄ OCOOC ₂ H ₄	p-Azoxycarbethoxyphenol	95	130	(15)
C12H18O2	CH ₂ OC ₆ H ₄ CH:CHCH:CHC ₆ H ₄ OCH ₂		225	238	(34)
C18H20N2O2	C2H4OC4H4CH:NN:CHC4H4OC2H4	Di-(p-ethoxybenzalazine)	172	195	(13, 24, 45)
C18H20N2O2	CH ₃ OC ₆ H ₄ C(CH ₂):NN:C(CH ₂)C ₆ H ₄ -OCH ₃	Di-(p-methoxyacetophenoneazine)	195	202	(16)
$C_{18}H_{20}N_2O_4$	HOC ₂ H ₄ OC ₂ H ₄ CH:NN:CHC ₂ H ₄ -OC ₂ H ₄ OH	Di-(hydroxyethoxybenzalazine)	184	207	(13)
C ₁₂ H ₂₂ N ₂ O ₃ C ₁₂ H ₁₆ N ₂ O ₂	C ₂ H ₇ OC ₂ H ₄ NONC ₂ H ₄ OC ₂ H ₇ CNC ₂ H ₄ CH:NC ₂ H ₄ CH:CHCOOC ₂ H ₄	Di-(p-n-propoxyazoxybenzene) Ethyl p-cyanobenzal-p-aminocinna-	116	122	(4, 40)
01111111101	One mile mine mile mile medecim,	mate	131	179	(17)
$C_{16}H_{18}N_2O_4$	CH ₄ COOC ₆ H ₄ N:NC ₆ H ₄ CH:CHCOO- C ₂ H ₄	Ethyl p-acetoxyphenylazocinnamate.	132	152	(47)
C19H19NO2	CH,C,H,CH:NC,H,CH:CHCOOC,H,	Ethyl p-(p-methylbenzalamino)-cinnamate	96, 107*	118	(46, 47)
C19H19NO3	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CCH ₄ - COOH	p-(p-Ethoxybenzalamino)-α-methyl- cinnamic acid	180	265	(20)
C19H19NO3	CH ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CH- COOC ₂ H ₆	Ethyl (p-anisalamino)-cinnamate	100, 108*, 117*	138	(9, 43, 46, 47)
$C_{19}H_{19}NO_{8}$	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CH- COOCH ₄	Methyl p-(p-ethoxybenzalamino)-	132	107	(43, 47)
C18H22N2O2	C ₂ H ₄ OC ₄ H ₄ N:NC ₄ H ₄ OCOC ₄ H ₄	cinnamate p-Phenetolazophenol n-valerate	78-83	187 125	(47)
C ₂₀ H ₁₂ N ₂ O ₂	CNC.H.N:NC.H.OCOC.H.	p-Cyanobenzeneazophenol benzoate	181	226	(12)
C ₂₀ H ₁₄ Br ₂ N ₂	BrCeH4N:CHCeH4CH:NCeH4Br		208	288	(17)
		p-Phthalal-di-(p-bromoaniline)		282	(17)
C ₂₀ H ₁₄ Cl ₂ N ₂	CIC.H.AN:CHC.H.CH:NC.H.CI	p-Phthalal-di-(p-chloroaniline)	176		1 '
C ₂₀ H ₁₄ I ₂ N ₂	IC.H.AN:CHC.H.CH:NC.H.I	p-Phthalal-di-(p-iodoaniline)	262	268	(12)
C ₂₀ H ₁₄ N ₄ O ₄	O2NC4H4CH:NC4H4N:CHC4H4NO2	(Di-p-nitrobenzal)-p-phenylenedia- mine	242	315	(46)
C20H16N2O2	CH2OC4H4N:NC4H4OCOC4H4	p-Anisylazophenol benzoate	159-163	178	(47)
$C_{20}H_{17}NO$	CH,OC,H,CH:NC,H,C,H,	Anisal-p-aminodiphenyl	161	177	(12, 46)
C20H17N2O	CH2OC4H4CH:NC4H4N:NC4H4	Anisal-p-aminoazobenzene	151	182	(15, 39, 46)
C20H18N2O5	CH ₂ OCOCH:CHC ₆ H ₄ NONC ₆ H ₄ CH:- CHCOOCH ₂	Methyl azoxycinnamate	221	257	(40)
C ₂₀ H ₂₀ N ₂ O ₂	CH ₂ OC ₄ H ₄ CH:CHCH:NN:CHCH:- CHC ₄ H ₄ OCH ₄	Di-p-methoxycinnamicaldazine	210	218	(34)
C ₂₀ H ₂₀ N ₂ O ₄	C ₂ H ₆ COOC ₆ H ₄ CH:NN:CHC ₆ H ₄ OCO- C ₂ H ₆	Di-p-propionylhydroxybenzalazine	160	187	(16)
$C_{20}H_{20}N_2O_5$	C ₂ H ₄ OCOOC ₆ H ₄ N:NC ₈ H ₄ CH:CHCO- OC ₂ H ₄	Ethyl p-carbethoxyphenolazocin- namate	114	152	(47)
C20H21NO2	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CHCOO-	Ethyl p-(p-ethoxybenzalamino)-cin-	69, 113,*	159	(43, 45, 46,
a	C ₂ H ₄	namate	152*		47)
C20H21NO3	CH ₂ OC ₂ H ₄ CH:H ₄ CH:NC ₄ CCH ₂ COO-		00	00	(20 42)
C20H21NO3	C ₂ H ₄ C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CCH ₂ CO-	namate Methyl p-(p-ethoxybenzalamino)-α-	90	93	(20, 43)
~	OCH:	methylcinnamate	105	147	(20, 43)
C ₂₀ H ₂₄ N ₂ O ₂	C ₂ H ₄ OC ₄ H ₄ CCH ₃ :NN:CCH ₃ C ₄ H ₄ O- C ₂ H ₄	Di-p-ethoxyacetophenoneazine	142	163	(16)
C ₂₁ H ₁₄ O ₇	HOC,H,COOC,H,COOC,H,COOH	p-Hydroxybenzoic acid p -(p -hydroxybenzoxy) benzoate	283	d.	(45)
$C_{21}H_{16}N_{2}O_{3}$	CH,COC,H,N:NC,H,OCOC,H,	p-Acetophenoneazophenol benzoate	211 d.		(47)
C21H17NO	C.H.C.H.CH:NC.H.COCH.	p-(p-Phenylbenzalamino)-a c e t o - phenone	187.5		(2)
C21H18N2O3	C2H4OC4H4N:NC4H4H4OCOC4H4	p-Phenetolazophenol benzoate	173	193	(46, 47)
C ₂₁ H ₁₉ NO	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ C ₆ H ₆	p-(p-Ethoxybenzalamino) diphenyl	145	184	(12)
C21H19NO	C.H.C.H.CH:NC.H.OC.H.	p-Phenylbenzal-p-phenetidine	164	189.5	(2)
C21H19N3O	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ N:NC ₄ H ₄	p-(p-Ethoxybenzalamino)-azoben-			1
C21H21NO6	C ₂ H ₄ OCOOC ₆ H ₄ CH:NC ₆ H ₄ CH:CH-	E t h y l p-[(p-carbethoxyoxybenzal)-	131.5	199	(2)
	COOC ₂ H ₆	amino] cinnamate	80	151	(47)
C21H28NO8	CH,OC,H,CH:NC,H,CH:CH- COOC,H,	n-Butyl anisal-p-aminocinnamate	58	76	(43)
$C_{21}H_{23}NO_3$	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CCH ₂ CO-OC ₂ H ₄	Ethyl p-(p-ethoxybenzalamino)-a-methylcinnamate.	95	122 ± 2	(9, 19, 20, 39, 43, 46)

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C21H22NO3	CH4OC4H4CH:NC4H4CH:CCH4-	n-Propyl p-(anisalamino)-a-methyl-			
	COOC,H7	cinnamate	50	85	(20, 43)
C22H14H4	CNC,H,N:CHC,H,CH:NC,H,CN	p-Phthalal-di-(p -cyanoaniline)	16 4	209	(12)
C22H17NO4	C ₄ H ₄ CH:NC ₅ H ₄ COOC ₄ H ₄ COOCH ₅	Methyl benzal-p-aminobenzoyl-p-			
C22H19NO2	C.H.C.H.CH:NC.H.COOC.H.	hydroxybenzoate Ethyl p -(p -phenylbenzalamino)-ben-	174	177	(45)
G 77 17		zoate	121.5	128.5	(2)
C ₂₂ H ₂₀ N ₂	CH ₂ C ₄ H ₄ CH:NC ₄ H ₄ N:CHC ₄ H ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH ₄	Di-(p-tolual)-p-phenylenediamine'	194	266	(46)
C ₂₂ H ₂₀ N ₂	CH ₂ C ₄ H ₄ N:CHC ₄ H ₄ CH:NC ₄ H ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH	p-Phthalal-di-(p-toluidine)	186	238	(17)
C ₂₂ H ₂₀ N ₂₂	CH,OC,H,CH:NC,H,N:CHC,H,OCH,	Dianisal-p-phenylenediamine	210	338	(46)
C22H22N2O2	CNC,H,C:HNC,H,CH:CHCOOC,H11	act-Amyl p-(p-cyanobenzalamino)- cinnamate	95	107	(17, 38, 46)
C22H22N2O4	C ₂ H ₄ OCOCH:CHC ₄ H ₄ N:NC ₄ H ₄ CH:- CHCOOC ₂ H ₄	Ethyl p-azocinnamate	155	230	(15, 43)
C22H22N2O6	C ₂ H ₆ OCOCH:CHC ₆ H ₄ NONC ₆ H ₄ - CH:CHCOOC ₂ H ₆	Ethyl p-asoxycinnamate	140 ± 1	249 ± 1	(7, 15, 25, 40, 43, 45)
C22H22O2	CH,OC,H,CH:C,H,O:CHC,H,OCH,	Dianisalcyclohexanone	159	170	(2, 28, 44)
C22H24N2O4	C ₃ H ₇ COOC ₄ H ₄ CH:NN:CHC ₄ H ₄ O-Di-p-butyryloxybenzalazine		146	181	(16)
C22H25NO3	CH ₃ OC ₆ H ₄ CH:NC ₈ H ₄ CH:CH- COOC ₈ H ₁₁ act-Amyl anisal-p-aminocinnamate		49	90	(43)
C22H25NO3	CH4OC4H4CH:NC4H4CH:CH- COOC4H11	iso-Amyl anisal-p-aminocinnamate	52	90	(43)
C22H25NO2	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CHCOO-	n-Butyl p-(p-ethoxybenzalamino)-			Į
	C ₄ H ₉	cinnamate	68, 88*	125	(43)
C22H24NO4	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CHCOH ₂ COO-	n-Propyl p -(p -ethoxybenzalamino)-			
	C₃H₁	α-methylcinnamate	88	121	(20, 43)
C22H16O8	CH,COOC,H,COOC,H,COO-	p-Hydroxybenzoic acid p-(p-acetoxy-		_	
a ==a	C ₄ H ₄ COOH	benzoxy)-benzoate	248	d.	(45)
C ₂₅ H ₁₉ NO ₂	C ₆ H ₆ C ₆ H ₄ CH:NC ₅ H ₆ CH:CHCOOCH ₅		200 2121		(0)
O II NO	CH OC H CH NO H COOC H COO	cinnamate	208, 216*	247	(2)
C22H19NO5	CH ₂ OC ₂ H ₄ CH:NC ₄ H ₄ COOC ₄ H ₄ COO-	Methyl p-(anisalamino)-benzoyl-p-	017	900	(45)
C22H21NO4	CH ₄ CH ₄ CH ₄ CH ₄ CH ₄ CO ₄ H ₄ CO ₋		217	300	(45)
C231121NO4	OCH.	hydroxybenzoate	157	165	(45)
C25H24O2	C ₂ H ₄ OC ₄ H ₄ CH:C ₄ H ₄ O:CHC ₄ H ₄ OC ₂ H ₄	Di-(p-ethoxybenzal)-cyclopentanone.	189, 194*	200	(44)
C25H27NO2	C.H.OC.H.CH:NC.H.CH:CHCOO-	act-Amyl p-(p-ethoxybenzalamino)-	68, 114*	121	(43)
O34113/11/O4	C ₄ H ₁₁	cinnamate	00, 111	121	()
C28H27NO8	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CHCOO-	iso-Amyl p - $(p$ -ethoxybenzalamino)-			i
-2,-2,1	C ₄ H ₁₁	cinnamate	81	137	(43)
C28H27NO8	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CCH ₂ CO-	n-Butyl p-(p-ethoxybenzalamino)-			` ′
	OC4H,	α-methylcinnamate	55, 65*	82	(20, 43)
C22H27NO2	CH ₂ OC ₄ H ₄ CH:NC ₄ H ₄ CH:CCH ₂ COO	act-Amyl p-(anisalamino)-α-methyl-			
	C ₆ H ₁₁	cinnamate	62	69	(46)
C24H18O6 `	C ₂ H ₄ OCOOC ₄ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ -	p-Hydroxybenzoic acid p -(p -carbeth-			
	СООН	oxyoxybenzoxy) benzoate	215	d.	(45)
C24H20N2O4	C ₆ H ₆ COOC ₆ H ₆ N:NC ₆ H ₆ CH:CHCOO-	Ethyl p-benzoyloxyphenylazocin-			
	C ₂ H ₅	namate	135	212	(47)
C24H21NO2	C ₄ H ₄ C ₆ H ₄ CH:NC ₄ H ₄ CH:CH-	Ethyl p-(p-phenylbenzalamino)-cin-	145, 180,*	219	(2, 39, 43,
~ ** ^	COOC ₂ H ₆	namate.	205,* 210*		46)
C24H22N2O4	CH,OC,H,CH:NC,H,CONHC,H,-	Ethyl p-(anisalamino)-benzoyl-p-			(47.48)
	COOC,H,	aminobenzoate	212, 220*	247	(45, 46)
C24H24Br2N2O5	C ₂ H ₄ OCOCCH ₂ :CBrC ₄ H ₄ NONC ₄ H ₄ -	Ethyl p-azoxy-α-methyl-β-bromcin-	110 100*	100	(20)
0 H N 0	CBr:CCH ₂ COOC ₂ H ₄	namate	110, 132*	138	(20)
C24H24N2O2	C ₂ H ₄ OC ₄ H ₄ CH:NC ₄ H ₄ N:CHC ₄ H ₄ O-	Di-(p-ethoxybenzal)-p-phenylenedi-	200		(2)
CHYO	CH OCH NCHCH CH NCHO	amine	200	204	(2)
C24H24N2O2	C ₂ H ₄ OC ₄ H ₄ N:CHC ₄ H ₄ CH:NC ₆ H ₄ O-	p-Phthalal-di-(p-phenetidine)	197	324	l (**)
C. H. N.O.	C.H.OCOCH:CHC.H.NONC.H.	Allyl p-azoxycinnamate	124	235	(40)
C24H24N2O5	C ₂ H ₄ OCOCH:CHC ₄ H ₄ NONC ₄ H ₄ - CH:CHCOOC ₂ H ₄	Anyi p-azoxycumamate	144	200	(35)
	1 011.011.00001116				1
C24H26N2O5	C ₂ H ₄ OCOCCH ₂ :CHC ₆ H ₄ NONC ₂ H ₄ -	Ethyl p-azoxy-a-methylcinnamate	109, 134*	140	(20, 21)

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C26H26N2O6	C ₂ H ₇ OCOCH:CHC ₂ H ₄ NONC ₂ H ₄ - CH:CHCOOC ₂ H ₇	iso-Propyl p-azoxycinnamate	150	184	(40)
C24H26N2O5	C ₂ H ₇ OCOCH:CHC ₄ H ₄ NONC ₄ H ₄ - CH:CHCOOC ₂ H ₇	n-Propyl p-azoxycinnamate	123	243	(40)
C24H26O3	C ₂ H ₄ OC ₆ H ₄ CH:C ₆ H ₆ O:CHC ₆ H ₄ -OC ₂ H ₄	Di-(p-ethoxybenzal)-cyclohexanone	146	176	(44)
C24H28N2O4	C4H,COOC4H4CH:NN:CHC4H4- OCOC4H,	Di-(p-valerylhydroxy)-benzalazine	145	160	(16)
C24H28N2O4	C4H,COOC4H4CH:NN:CHC4H4- OCOC4H,	Di-(p-isovalerylhydroxy)-benzalazine	131	156	(16)
C24H29NO3	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CCH ₂ - COOC ₆ H ₁₁	act-Amyl p-(p-ethoxybenzalamino)- a-methylcinnamate	86	100	(20, 43)
C24H29NO3	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CCH ₃ - COOC ₄ H ₁₁	iso-Amyl p-(p-ethoxybenzalamino)- α-methylcinnamate	83	90	(20, 43)
C25H18N2O2	C.H.C.H.N:NC.H.OCOC.H.	p-Diphenylazophenol benzoate	194	240	(12)
C ₂ ,H ₁ ,N ₂	CoHoCoHoCHONCOHON:NCoHo	p-(p-Phenylbenzalamino)-azobenzene	207	252	(2)
C ₂₆ H ₂₀ O ₈	CH ₂ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ - COOC ₂ H ₆	Ethyl p-hydroxybenzoate p-(p-acet-oxybenzoxy) benzoate	142	282	(45)
C25H21NO4	C.H.COOC.H.CH:NC.H.CH:-	Ethyl p-(p-benzoxybenzalamino)-			` ′
C26H22NO2	CHCOOC ₂ H ₄ C ₄ H ₄ C ₄ CH:NC ₄ H ₄ CH:CCH ₃ -	cinnamate Ethyl p-(p-phenylbenzalamino)-a-	125	217	(47)
	COOC,H,	methylcinnamate	120, 148*	175	(20, 43)
C25H25N2O5	C ₂ H ₇ OCOCCH ₂ :CHC ₄ H ₄ NONC ₄ H ₄ - CH:CHCOOC ₄ H ₇	n-Propyl p-azoxy-α-methylcinnamate	70, 125*?	128	(20)
C26H18Br2N2	BrC.H.CH:NC.H.C.H.N:CHC.H.Br	Di-(p-bromobenzal)-benzidine	285	312	(12)
C26H18Cl2N2	CIC.H.CH:NC.H.C.H.N:CHC.H.CI	Di-(p-chlorobenzal)-benzidine	265	318	(12)
C ₂₆ H ₁₈ Cl ₂ N ₄ O	CIC,H,N:CHC,H,NONC,H,CH: NC,H,Cl	p-Azoxybenzaldi-m-chloraniline	174, 181,* 198*	213	(46)
C26H18I2N2	IC.H.CH:NC.H.C.H.N:CHC.H.I	Di-(p-iodobenzal)-benzidine	>300		(12)
C26H18N2O4	C6H6COOC6H6N:NC6H6OCOC6H6	p-Dibenzoylazophenol	208	250	(15, 39)
C26H18N2O6	C.H.COOC.H.NONC.H.OCOC.H.	p-Dibenzoylazoxyphenol	192	280	(15)
C26H18N4O6	O ₂ NC ₆ H ₄ CONHC ₆ H ₄ C ₆ H ₄ NHCO- C ₆ H ₄ NO ₂	Di-(p-nitrobenzoyl)-benzidine	365	d.	(45)
C26H18O4	C.H.OCOC.H.C.H.COOC.H.	Diphenyl p, p'-diphenylcarboxylate .	213	245	(45)
C26H20N2	C ₆ H ₅ CH:NC ₆ H ₄ C ₆ H ₄ N:CHC ₆ H ₅	Dibenzalbenzidene	234	260	(6, 24)
C26H20N2	C6H6C6H4CH:NN:CHC6H4C6H6	Di-p-phenylbenzalazine	245	271	(2)
C26H22N2	CH ₂ C ₆ H ₄ CH:NC ₁₀ H ₆ N:CHC ₆ H ₄ CH ₅	Di-p-tolual-1, 5-naphthylenediamine	210	230	(46)
C26H22N2O2	CH ₄ OC ₆ H ₄ CH:NC ₁₀ H ₆ N:- CHC ₆ H ₄ OCH ₂	Dianisal-1, 5-naphthylenediamine	206	313	(46)
C26H22N4O2	H ₂ NC ₆ H ₄ CONHC ₆ H ₄ C ₆ H ₄ NHCO- C ₆ H ₄ NH ₂	Di-(p-aminobenzoyl)-benzidine	312	d.	(45)
C26H24N2O4	C ₆ H ₄ (CH:NC ₆ H ₄ COOC ₂ H ₄) ₂	Ethyl p-phthalal-di-(p-aminobenzo-ate)	189	230	(17)
C26H36NO2	C ₆ H ₄ C ₆ H ₄ CH:NC ₆ H ₄ CH:- CHCOOC ₄ H ₉	n-Butyl p-phenylbenzal-p-aminocin- namate	167	203	(43)
C26H26N2O5	C ₂ H ₄ OCOCCH ₂ :CHC ₄ H ₄ NONC ₄ H ₄ - CH:CCH ₂ COOC ₂ H ₄	Allyl p-azoxy-α-methylcinnamate	75	115	(20)
C26H26N2O9	C ₂ H ₄ OCOCH ₂ OCOCH:CHC ₄ H ₄ - NONC ₄ H ₄ CH:CHCOOCH ₂ - COOC ₂ H ₄	p-Azoxycinnamic acid ethyl glyco- late ester	148	23 5	(40)
$C_{26}H_{30}N_{2}O_{5}$	C4H,OCOCH:CHC4H4NONC4H4- CH:CHCOOC4H4	n-Butyl p-azoxycinnamate	111	214	(40)
C ₂₇ H ₂₇ NO ₂	C ₆ H ₄ C ₆ H ₄ CH:NC ₆ H ₄ CH:- CHCOOC ₆ H ₁₁	act-Amyl p-(p-phenylbenzalamino)- cinnamate	115, 153*	180	(43)
C27H27NO2	C ₆ H ₄ C ₄ H ₄ CH:NC ₄ H ₄ CH:- CHCOOC ₄ H ₁₁	iso-Amyl p-(p-phenylbenzalamino)- cinnamate	164, 188*	197	(43)
C27H27NO2	C ₆ H ₄ C ₆ H ₄ CH:NC ₆ H ₄ CH:- CCH ₅ COC ₄ H ₅	n-Butyl p-(p-phenylbenzalamino)-α- methylcinnamate	99, 137*	149	(20, 43, 46)
C27H27NO2	C ₄ H ₄ C ₅ O ₄ CH:NC ₅ H ₄ CH:-	n-Propyl p -(p -phenylbenzalamino)-			
	CC ₂ H ₄ COOC ₂ H ₇	a-ethylcinnamate	119	135	(20, 21, 43)
C28H18O4	C ₆ H ₆ COOC ₅ H ₄ C:CC ₆ H ₄ OCOC ₆ H ₅	Di-p-oxytolanedibenzoate	214	254	(41)
C26H20N2O4	C ₆ H ₆ COOC ₆ H ₆ CH:NN:CHC ₆ H ₄ - OCOC ₆ H ₆	Di-p-benzoxybenzalazine	227	290	(16, 40)

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C28H20O4	C6H6COOC6H4CH:CHC6H4OCOC6H	Di-p-hydroxystilbene dibenzoate	224	285 d.	(41)
C28H24N2	$(C_6H_4N:CHC_6H_4CH_2)_2$	Di-(p-tolual)-benzidene	231	>300	(6, 24)
C24H24N2O2	(C ₆ H ₄ N:CHC ₆ H ₄ OCH ₂) ₂	Dianisalbenzidene	258		(46)
C28H28N2O4	C ₆ H ₆ COOC ₆ H ₄ N:NC ₆ H ₄ CH:CCH ₅ -	act-A m y l p-benzoylazophenol-a-			
	COOC,H11	methylcinnamate	88	120	(20)
C28H24N2O5	C ₆ H ₁₁ OCOCH:CHC ₆ H ₄ NONC ₆ H ₄ -	iso-Amyl p-azoxycinnamate	144	186	(40)
	CH:CHCOOC,H11				
C28H24N2O5	C ₄ H ₄ OCOCCH ₂ :CHC ₅ H ₄ NONC ₅ H ₄ -	iso-Butyl p-azoxy-α-methylcin-		i	
	CH:CCH ₂ COOC ₄ H ₉	namate	86, 110*	125.5	(20)
C28H24N2O4	C ₄ H ₉ OCOCCH ₂ :CHC ₅ H ₄ NONC ₆ H ₄ -	n-Butyl p-azoxy-α-methylcinnamate.	60	100	(20)
	CH:CCH ₂ COOC ₄ H ₃				
C20H22N2O2	C ₆ H ₆ COCH:CHC ₆ H ₄ NONC ₆ H ₄ CH:-	p-Azoxybenzalacetophenone	213		(47)
	CHCOC ₆ H ₅				
$C_{20}H_{28}N_2O_2$	(C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₅) ₂	Di-(p-ethoxybenzal)-benzidine	248	>300	(13)
C20H28N2O2	(C ₆ H ₄ N:CHC ₆ H ₂ CH ₂ OCH ₂) ₂	Di-(p-m e t h o x y-o-methylbenzal)-			` ′
		benzidine	171	>300	(13)
C20H28N2O4	C ₆ H ₄ (CH:NC ₆ H ₄ CH:CHCOOC ₂ H ₅) ₂	Ethyl p-phthalal-di-(p-aminocin-		* * * * * * * * * * * * * * * * * * *	` `
	namate)		174, 270*	310	(17)
C20H40O2	C ₂ H ₄ COOC ₂₇ H ₄₄		97 ± 2	112 ± 2	(6, 10, 18,
				~	30)
C20H50O2	C ₂ H ₄ OCOOC ₂₇ H ₄₄	Cholesterol ethyl carbonate	83	103.5	(8)
C21H52O2	C ₂ H ₇ COOC ₂ 7H ₄₄	Cholesterol n-butyrate	96.4	107.3	(18)
C31H42O4	C ₂ H ₇ OCOOC ₂₇ H ₄₅	Cholesterol n-propyl carbonate	99	101	(8)
C32H24N2	C ₆ H ₄ (N:CHC ₆ H ₄ C ₆ H ₅) ₂	Di-(p-p h e n y l b e n z a l)-p-phenyl-	00	101	(-)
		enediamine	284	>300	(2)
C22H24N2O4	C.H.CH:CHCOOC.H.CH:NN:CH-	Di-(p-cinnamylhydroxy)-benzalazine	206	245	(16)
0,,,,,,,,,,,	C.H.OCOCH:CHC.H.	Di-(p-cimiain) injuroxy)-benzanazine	200	210	()
C22H24O10	CH,COOC,H,COOC,H,COOC,H,-	Ethyl p-hydroxybenzoate p-[p-(p-			Ì
C\$211340 I0	COOC,H,COOC,H,	acetoxybenzoxy)benzoxy]benzoate	187 d.	d.	(45)
C32H26O	C.H.C.H.CH:C.H.O:CHC.H.C.H.	Di-(p-phenylbenzal)-cyclohexanone	236.5	237.5	
C ₈₂ H ₂₂ N ₂ O ₂	C ₂ H ₄ OCH ₂ C ₆ H ₂ CH:NC ₆ H ₄ C ₆ H ₄ N:C-	Di(-p-ethoxy-o-m e t h y l b e n z a l)-	200.0	201.0	(2)
082118211203	HC ₄ H ₄ CH ₂ OC ₂ H ₄	benzidine	167	>300	(13)
C22H44O2	C ₄ H ₂ COOC ₂₇ H ₄₆	Cholesterol valerate	91.8	99.2	(18)
C22H44O2	C ₄ H ₃ OCOOC ₂ 7H ₄₅	Cholesterol n-butyl carbonate	78	99.2	, ,
C22H24O4	C.H.COOC.H.CH.C.H.O:CHC.H.O-		10	90	(8)
011112401	COC.H.	tanone	234	236	(44)
C22H24O2	C ₅ H ₁₁ COOC ₂₇ H ₄₅	Cholesterol capronate	91.2	100	
C24H26N2O7	C.H.COCH2OCOCH:CHC,HANON-	Phenacyl p-azoxycinnamate	231	238	(18)
034113611207	C ₆ H ₄ CH:CHCOOCH ₂ COC ₆ H ₄	I nenacyi p-azoxycimiamate	201	230	(40)
Cs4H44N2Os	C ₆ H ₄ CH:CHCOOCH ₂ COC ₆ H ₆ C ₆ H ₁₇ OCOCH:CHC ₆ H ₆ NONC ₆ H ₄ -	. 0-4-1	0.4	175	(40)
CS4H46H SOF		n-Octyl p-azoxycinnamate	94	175	(40)
0.11.0	CH:CHCOOC ₆ H ₁₇	(C) 1-411	140 . 1	1505	(3.0 00 00
C36H50O2	C ₆ H ₅ COOC ₂₇ H ₄₆	Cholesterol benzoate	146 ± 1	178.5 ± 0.3	
O II NO	OH (OH-MOH OH-OHOOOO H)				35, 42, 45)
C26H40N2O4	C ₆ H ₄ (CH:NC ₆ H ₄ CH:CHCOOC ₅ H ₁₁) ₂	act-Amyl p-phthalal-di-(p-aminocin-	100 1054	000	/ · · · ·
0 II N 0	G II OGOGGII GWG II NONG II	namate)	133, 195*	268	(17)
CasHaoN2Os	C ₆ H ₁₇ OCOCCH ₆ :CHC ₆ H ₄ NONC ₆ H ₄ -	n -Octyl p -azoxy- α -methylcinnamate.	41, 62*	85	(20)
	CH:CCH ₂ COOC ₂ H ₁₇				
C27H44O2	C ₉ H ₁₉ COOC ₂₇ H ₄₆	Cholesterol caprinate	82.2	90.6	(18)
C25H44N2O4	C ₆ H ₄ (CH:NC ₆ H ₄ CH:CCH ₆ COO-	act-Amyl p-phthalal-di-(p-amino-a-			
~	C ₆ H ₁₁) ₂	methylcinnamate)	144, 211*	248	(17)
C40H28N6O6	(C ₆ H ₄ NHCOC ₆ H ₄ N:CHC ₆ H ₄ NO ₂) ₂	Di-(m-nitrobenzal-p-aminobenzoyl)-			
		benzidine	>370	d.	(⁴⁵)
C40H24N4	C.H.CH:NC.H.CH.NHC.H.C.H.N-	Di-p-(benzalaminobenzyl)-benzidine.	217	246 d.	(46)
	HCH2C6H4N:CHC6H6				
C42H28N4O2	(C ₆ H ₄ NHCH ₂ C ₄ H ₄ N:CHC ₆ H ₄ OCH ₂) ₂		202 d.	d.	(45)
C50H73N2O5	C16H22OCOCH:CHC6H4NONC6H4-	n-Cetyl p-azoxycinnamate	105	141	(40)
	CH:CHCOOC ₁₆ H ₂₂				
C42H42N2O4	C16H22OCOCCH2:CHC6H4NONC6H4-	n -Cetyl p -azoxy- α -methylcinnamate.	77	84	(20)
	CH:CCH ₂ COOC ₁₆ H ₂₂				
C55H50O3	C27H45OCOOC27H45	Cholesterol carbonate	177	235	(8)
C14H12ClHgNO	CH4OC6H4CH:NC6H4HgCl	p-Anisalaminophenylmercury chlor-			

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C ₁₆ H ₁₂ ClHgN	C.H.CH:CHCH:NC.H.HgCl	p-Cinnamalaminophenylmercury chlo-			
_		ride	255	265	(46)
C16H16HgNO3	CH ₂ OC ₄ H ₄ CH:NC ₄ H ₄ HgOCOCH ₂	p-Anisalaminophenylmercury acetate	177	180	(46)
C26H16HgN4O4	O2NC4H4CH:NC4H4HgC4H4N:CHC4-	Mercury di-(p-nitrobenzalamino-			
	H ₄ NO ₂	phenyl)	236	241	(46)
C26H20HgN2	C.H.CH:NC.H.HgC.H.N:CHC.H.	Mercury di-(benzalaminophenyl)	180	184	(46)
C28H24HgN2	Hg(C ₆ H ₄ N:CHC ₅ H ₄ CH ₂) ₂	Mercury di-(p-tolualaminophenyl)	217	229	(46)
C28H24HgN2O2	Hg(C ₆ H ₄ N:CHC ₆ H ₄ OCH ₂) ₂	Mercury di-(anisalaminophenyl)	209	285	(46)
C ₅₀ H ₂₄ HgN ₂	Hg(C ₆ H ₄ N:CHCH:CHC ₆ H ₆) ₂	Mercury di-(cinnamalaminophenyl).	208	269	(46)
C20H28HgN2O2	Hg(C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₆) ₂	Mercury di-(p-ethoxybenzalamino-			
		phenyl)	204	272	(46)

LITERATURE

(For a key to the periodicals see end of volume)

- Auwers, 7, 22: 39; 00.
 Bertleff, Diss., Halle, 08.
 Bogojawlensky and Winogradow, 7, 60: 433; 07.
 Bogojawlensky and Winogradow, 7, 64: 229; 08.
 Bose and Conrat, 63, 9: 169; 08.
 Bredig and v. Schukowsky, 25, 27: 3419; 04.
 Bühner, Diss., Marburg, 06.
 Däumer, Diss., Halle, 12.
 Dickenschied, Diss., Halle, 08.
- Däumer, Diss., Halle, 12. (*) Dickenschied, Diss., Halle, 08. (1°) Dorn, 63, 11: 777; 10. (11) Eichwald, Diss., Marburg, 05. (12) Fröhlich, Diss., Halle, 10. (13) Gatterman, 13, 387: 313; 07. (14) Gatterman and Ritschke, 25, 23: 1738; 90. (16) Hansen, Diss. Halle, 07. (10) Hulme, Diss., Halle, 07. (17) Huth, Diss., Halle, 10. (18) Jaeger, 64P, 9: 78; 06. 70, 28: 334; 06. (10) Jaeger, 83, 101: 1; 17.
- (20) Kasten, Diss., Halle, 09.
 (21) E. Lehmann, Diss., Halle, 10.
 (22) Lehmann, 7, 4: 462; 89.
 (23) Lehmann, 8, 40: 401; 90.
 (24) Lehmann, 8, 29: 22; 06.
 (26) Meye, Diss., Halle, 08, (27) Meyer and Dahlem, 13, 326: 331; 03.
 (28) Müller, 26, 54: 1481; 21.
 (29) Münch, Diss., Marburg, 03.
- (30) Prins, 7, 67: 689; 09.
 (31) Reichardt, Diss., Halle, 09.
 (32) Rising, 25, 27: 43; 04.
 (33) v. Romburgh, 64V, 9: 9; 01.
 (34) Rotarski, 25, 41: 1994; 08.
 (36) Schenk, 7, 25: 337; 98.
 (36) Schenk, 7, 26: 280; 99.
 (37) Schroeter, 25, 41: 5; 08.
 (38) Stumpf, 63, 11: 780; 10.
 (39) Sultze, Dies., Halle, 08.
- (40) Vorländer, 25, 39: 803; 06. (41) Vorländer, 25, 40: 4527; 07. (42) Vorländer, 196, 12: 321; 07. (43) Vorländer, 25, 41: 2033; 08. (44) Vorländer, 25, 64: 2261; 21. (45) Vorländer, 7, 105: 211; 23. (44) D. Vorländer, Chem. Kristallog. der Flüssigkeiten, 1924. (47) Wilke, Diss., Halle, 09.

CRYSTALLOGRAPHY OF COMPOUNDS OF CARBON

GEORGE L. KEENAN AND RAYMOND M. HANN

Standard arrangement. For abbreviations, see p. 100. Literature, p. 338

33-TABLE

	Name	System	Class	Sign	2V 1	2E	Orientation	Lit
16 See C-Table								
18 SiCs4Hs4N4	Silico tetraphenylamide	M.	Bi.	_	17° 40′		Ax. pl. b (010); $X \wedge e = 27\frac{1}{2}$ °	(G)
					1		in obtuse ∠β	
8iC28H28	Tetra-p-tolylsilicane	M.	Bi.	-		83° 30′	Ax. pl. \(\pm\) b(010)	(G)
SnC14HmN2Cl6	p-Toluidine tin chloride	M.	Bi.	+	77°		Ax. pl. \(\pm\)b(010); \(\mathbb{Z}\)\(\hathbb{\c} = 19^\circ\)	(G)
							in obtuse ∠β	
23 PbC ₂ H ₂ O ₄	Lead formate	R.	Bi.	_	70° 34′		Ax. pl. b(010); X c	(G)
PbC ₄ H ₄ O ₄ .3H ₂ O	Lead acetate	M.	Bi.	+	83° 55′		Ax. pl. b(010); $Z \wedge c = 55^{\circ} 18'$	(G)
							in obtuse ∠β	
PbC18H26O10S2.6H2O	Lead sulfocamphylate	R.	Bi.	_	,	78° 17′	Ax. pl. b(010); X [c	(G)
27 TIC:HO4	Thallium acid oxalate	M.	Bi.	+	i l	74° 5′	Ax. pl. ⊥b(010)	(G)
					1	(red)		
TIC:HO:HO:	Thallium acid oxalate	M.	Bi.	+	}	106° 5′	Ax. pl. b(010); ZAc = 79° 36'	(G)
						(red)	(red) in obtuse ∠8	
Tl ₂ C ₄ H ₄ O ₆	Thallium mesotartrate	Tri.	Bi.	+	73° 54′			(G)
Tl2C4H4O4.3H2O	Thallium tartrate	R. (?)	Bi.	_		69°	Ax. pl. b(010); X [o	(G)
TIC.H2O7N.	Thallium picrate	M.	Bi.		l		Ax. pl. b(010)	(G)
Tl ₂ C ₄ H ₄ O ₆	Thallium dl-tartrate	M.	Bi.	+	88° 22′		Ax. pl. b(010); ZAc = 84° 44'	(G)
					1		in obtuse ∠β	
Tl ₂ C ₄ H ₄ O ₆	Thallium tartrate	Trig.	Un.	+				(G)
TIC4H4O78b.H3O	Thallium antimonyl tartrate	R.	Bi.	-		20°-25°		(G)
28 ZnC4H4O43H4O	Zinc acetate	M.	Bi.	+	84° 30′		Ax. pl. b(010); $\mathbb{Z} \wedge e = 54.75^{\circ}$	(G)
							in scute Δβ	
ZnC ₄ H ₁₄ O ₄	Zinc butyrate	M.	Bi.	+		Large		(37)
ZnC20H2001	Zinc methylethylvalerate	?	Bi.					(37)
ZnC ₄ H ₂ O ₄ Br.8H ₂ O	Zinc bromomesaconate	M.	Bi.	-	71° 21′	118° 15′	Ax. pl. \perp b(010); $X \wedge c = 14^{\circ}$	(G)
					1		in obtuse Δβ	
ZnC10H6O6S2.6H2O	Zinc naphthalene-1, 5-disulfonate	M.	Bi.		58° 16′		Ax. pl. \parallel (010); $\pi_{\alpha} \wedge c = 74^{\circ}$	(41)
ZnC20H22N2I4	Phenyldimethylethylammonium sine	M.	Bi.	+	86° 52′		Ax. pl. \perp b(010); $\mathbb{Z}_{\wedge}e = 43^{\circ}$	(G)
	iodide.				1		in acute ∠β	
ZnC+H22ON2Cl4.3H2O	Triacetonediamine hydrochloride sinc	M.	Bi.	+	36° 14′	58° 20′	Ax. pl. \perp b(001); $\mathbb{Z} \wedge c = 49^{\circ}$	(G)
	chloride				1		in obtuse ∠β	l
80 HgC:H:NI:	1, 1-Dimethylammonium mercuric iodide	M.	Bi.	_	Large			(16)
HgC ₂ H ₂ NI ₂	1, 1-Trimethylammonium mercuric iodide		Bi.	-	Large		<u> </u>	(16)
HgC ₄ H ₁₂ NI ₃	1, 1-Diethylammonium mercuric chloride	R.	Bi.	+	Very large			(16)
CuCsHrO44HrO	Cupric formate	M.	Bi.	-	34° 54′	55° 6′	Ax. pl. b(010); $X \wedge c = 23^{\circ} 35'$	(G)
							in obtuse ∠β	
CuC10HeOeS2.6H2O	Copper naphthalene-1, 5-disulfonate	M.	Bi.	1			Ax. pl. \parallel (010); $\eta_{\alpha} \wedge c = 75^{\circ}$	(14)
Ag Al As Au B Ba Be B 22 55 13 33 54 79 75 16	i Br C Ca Cb Cd Ce Cl Co Cr C 5 5 16 77 51 29 59 4 44 46 8	Cu 5 81		Bu F Fe 64 3 43	Ga G	d Ge Gl H	Hf Hg Ho I In Ir K L 73 30 68 6 26 26 26 83 5	8 81 7

Formula		System			2V	2E	Orientation	1
AgC ₄ H ₄ O ₄ N ₄	Ethylene dicyanide silver nitrate	R.	Bi.	-	42° 36.5′		Ax. pl. c(001); X b	9
AgC4H4O12N4	Ethylene dicyanide silver nitrate	R.	Bi.	-	42° 41′		Ax. pl. c(001); X a	9
AuC14H148Cl	Gold dibensylsulfine chloride (meta-	Tet.	Un.					(
AuCaH12NCl4	stable form) Piperidine chloroaurate	R.	Bi.	+		70° 40′	Ax. pl. b(010); Z e	۱,
AuCaH12O2NCla.H2O	&Aminovaleric acid chloroaurate	M.	Bi.	_		70°	Ax. pl. $\pm b(010)$; $\times Ac = 91.5^{\circ}$	1
	V-Ammovaterio acid cinoroadiave	141.	<i>D</i> 1.	_		(apprx.)	in obtuse ∠β	١ ١
AuC.H16NCl4	3, 4, 5, 6-Tetramethyl-1, 2-dihydro-	M.	Bi.	+		91°	Ax. pl. 1b(010)	١.
	pyridine hydrochloride chloroaurate			, ,		(apprx.)		
KalrCrO4Cl4.HrO	Iridium tetrachloro tripotamium oxalate	R.	Bi.	-		94° 40′	Ax. pl. (010); Bxa \(\pm(001)\)	(
PtC2H12N2Cle	Methylammonium chloroplatinate	C.						(
PtC10H12N2Clo	Pyridine chloroplatinate	Tri.	Bi.	-		59° 54′	Ax. pl. nearly Lo-axis	
PtC10H21O2N2Cl6	Choline chloroplatinate	M.	Bi.	+		25° 52′	Ax. pl. $\pm b(010)$; $Z \wedge c = 75^{\circ} 12'$	
D. G. H. N. G.	*** ** * * * * * * * * * * * * * * * *		٦.				in acute $\angle \beta$	l
PtC12H16N2Cl6 PtC12H22N8Cl6	a-Picoline chloroplatinate	М.	Bi.	-		93° 13.5′	Ax. pl. b(010)	
FUIRING	chloroplatinate	M.	Bi.				Az. pl. b(010); Z nearly Lc(001)	
PtC12H24O4N2Cl4.2H2O	Pipecolinic acid chloroplatinate	M.	Bi.	_		66° 56′	Ax. pl. b (010)	
PtC12H2sO4N2Cl6	a-Homobetaine chloroplatinate	М.	Bi.	+	88° 12′	55 55	Ax. pl. b(010); ZAc = 99° in	
				'	00	İ	obtuse ∠B	
PtC11H20N2Cle	Ethyl pyridine chloride chloroplatinate	R.	Bi.	-		44°	Ax. pl. a(100); X c	
PtC14HasNaCle	Dipropyl carbinol amine chloroplatinate	M.	Bi.	_		72° 40′	Az. pl. ⊥b(010); X nearly ⊥c	
			1			į	(001)	ı
PtC16H32O2N2Cl6	Tropanine chloroplatinate	М.	Bi.		52° 12′		Ax. pl. 16(010)	
PtC18H22N2Cl6	Tropidine chloromethylate chloroplati-	R.	Bi.	+		70°	Az. pl. b(010); Z[e	
DAC 17 NT. CI	nate	_				818 644	A (001): 771-	١
PtC14H46N2Cle	Ethyldipropyl ammonium chloroplati- nate	R.	Bi.			61° 26′	Ax. pl. c(001); Z a	ı
PtCmHmNsCla	Anhydrolupinin chloroplatinate (stable	М.	Bi.			38°	Ax. pl. \(\pm\)b(010)	l
- CHILDRICH	mod.)		J 21.		0_0	(apprx.)	AL. pl. 15(010)	
PtC11H26N1Cls	Diethyl-p-toluidine chloroplatinate	R.	Bi.	+	63° 0′	(4)	Ax. pl. a(100); Z[b	1
RuNaH100cCla	Ruthenium ammonium chloral hydrate.	М.	Bi.	i '	56° 20′		p.: u(100), _ 10	
MnC12H4O14N4.5H2O	Manganese picrate	R.	Bi.	l – I		15° 80′	Az. pl. b(010); X [c	١
FeC12H4O14N4.5H2O	Ferrous picrate	R.	Bi.	-		24° 48′	Az. pl. a(100); X to	1
FeC14H21O4	Ferriacetylacetone	R.	Bi.	-		50°	Az. pl. a(100); Xic	l
			l	1		(apprx.)		l
FeC20H14O4S2.6H2O	Ferrous naphthalene-β-sulfonate		Bi.	+				l
CoC ₄ H ₆ O ₄ .4H ₂ O	Cobalt acetate	M.	Bi.	-	30° 43′	48° 12′	Ax. pl. b(010); $X \wedge c = 53.5^{\circ}$	١
		_		1.			in scute 🚜	ı
CoCaH2aNaIa.H2O	d-Luteo triethylenediamine cobalt iodide		Bi.	+		Small	Ax. pl. (001); Bxa = b-axis	L
CoCaHaaNala.HaO	dl-Luteo triethylenediamine cobalt iodide		Bi.		010.404	Small	Ax. pl.(010); Bxa = e-axis	
CoC10H0O0S2.6H2O NiC10H0O0S2.6H2O	Cobalt naphthalene-1, 5-disulfonate	М. М.	Bi. Bi.	!	61° 40′ 59° 56′		Ax. pl. $\ (010); \eta_{\alpha} \wedge c = 72^{\circ} 0.5'$	
NIC16116O6N UC6H16O6N	Nickel naphthalene-1, 5-disulfonate	M. Tet.	Un.	l	90. 90.		Ax. pl. $\ (010); \eta_{\alpha} \wedge c = 74^{\circ}$	ı
UCdCeH1rO10.6HrO	Ammonium uranyl acetate Cadmium uranylacetate	R.	Bi.	_		57° 54'	Ax. pl. a(100)	ı
	Cadmidin dianyiaoccate	π.	D1.	_	l	(red)	Ax. pl. a(100)	ı
UMnCaH12Om.6H2O	Manganese uranyl scetate	R.	Bi.	l _	ì	31°	Ax. pl. a(100)	l
(UOs) CoC19H18O19.7H2O	Cobalt diuranyl acetate	R.	Bi.	l –		103° 30′	Ax. pl. o(001)	
AlsC18O18.18H2O	Mellite	Tet.	Un.	l		1	, o(000,	
YtC12H200486.18H2O	Yttrium ethyl sulfate	H.	Un.	l		l		l
YC1eH12O1eN2S2.7H2O	Yttrium m-nitrobensenesulfonate	M.	Bi.	+		1	Ax. pl. b(010); $Z_{\land}c = 85^{\circ}$ in	ı
				l			obtuse ∠β	l
LaC12H20024St.18H2O	Lanthanum ethyl sulfate		Un.		l	l		l
CeC12H202484.18H2O	Cerium ethyl sulfate		Un.	1			1	١
PrC11H2014St.18H1O	Praseodymium ethyl sulfate	Н.	Un.	ļ				ı
NdC13H2001484.18H2O	Neodymium ethyl sulfate	Н.	Un.	l	l		1	l
SaC12H20024St.18H2O	Samarium ethyl sulfate	Н.	Un.	l		1	1	
EuC13H36O3686.18H3O	Europium ethyl sulfate	H.	Un.	1		1	1	1
3dC12H20O24Se.18H2O DyC12H2eO24Se.18H2O	Gadolinium ethyl sulfate	H.	Un.	I			1	l
DyC12H2024S4.18H2O ErC12H2024S4.18H2O	Dysprosium ethyl sulfate Erbium ethyl sulfate	H. H.	Un. Un.	l			Ī	ı
FmC12HapO24St.18H2O	Thulium ethyl sulfate	н.	Un.	ļ		l		ı
YbC12H202484.18H2O	Neoytterbium ethyl sulfate	H.	Un.	l		1		l
BeC4H4O2N2	Ammonium beryllium oxalate	М. М.	Bi.	1		27° 47′	Ax. pl. $b(010)$; $Z_{Ac} = 87.5^{\circ}$	ı
				1	l		in obtuse $\angle B$	l
BerC4H10OsS2.4H2O	Diethyl beryllium sulfate (basic)	Tet.	Un.	l				l
MgC4H4O4.4H4O	Magnesium acetate	M.	Bi.	l –	56° 34′	89° 54'	Ax. pl. b(010); $X \wedge c = 48.25^{\circ}$	l
			"	l			in soute ∠β	ı
MgC ₄ H ₄ O _{4-2.5} H ₄ O	Magnesium dilactate	M.	Bi.	+		79°	Ax. pl. b(010)	ı
				1		(apprx.)		
MgC ₄ H ₄ O ₄ .6H ₂ O	Magnesium dl-tartrate	M.	Bi.	-		102°	$Bxa \land c = 30^{\circ} \text{ in acute } \angle \beta$	
MgC10HeOe81.6HrO	Magnesium naphthalene-1, 5-disulfonate		Bi.		52° 20′		Ax. pl. $ (010); \eta_{\alpha} \wedge c = 73^{\circ} 0.5'$	
CaC ₂ O ₄ .H ₂ O	Calcium oxalate	М.	Bi.	+	89°		Ax. pl. b(010); $Z_{\land 0} = 64.25^{\circ}$	1
O-O TI O	la	_		l .			in acute ∠β	
CaC ₂ H ₂ O ₄	Calcium formate	R.	Bi.	+	26° 47′	41° 2′	Az. pl. b(010); Z[a	1
CaC.H.O.2H.O(1)	Calcium malonate	7	Bi.	+	909 044	moderate	V V . "	
CaC4H2O4.2H2O	Calcium fumarate	R.	Bi.	-	22° 24′	37°	X = a, $Y = b$, $Z = c$	
CaC4HrO4.HrO	Calcium maleate	R.	Bi.	l	77° 36′	(apprx.) 164°	X = c, $Y = a$, $Z = b$	
CECTUTOURING	Catuldin materie	n.	D1.		(calc.)	(calc.)	A - c, 1 - a, 2 - b	

Digitized by Google

Formula	Name	System		Sign	2V	2E	Orientation	1 (
CaC4H4O2.3H2O	Calcium malate	R.	Bi.	+			Ax. pl. b(010); Z a	
CaC4H4O4.3H2O	Calcium succinate	?	Bi.			Very large		(
CaC4H4O4.3H2O	Calcium mesotartrate	M.	Bi.	–(?)		Very large	Ax. pl. b(010)	(0
CaCaH10O4	Calcium crotonate	(?)	Bi.	- 1				1 (
CaC. H10O10.6H2O	Calcium acid malate	Ř.	Bi.	+		109° 6′	Ax. pl. a(100); Z[c	
CaC4H10U10.0H2U	Calcium acid maiate	R.	D1.			(red)	Ax. pi. a(100), 246	1
Ca ₂ C ₁₂ H ₆ O ₁₂	Calcium aconitate	?	Bi.			100°	•	1
0.0 7.0 47.0	0.11	?	Bi.			(apprx.)		١,
Ca ₂ C ₁₂ H ₁₀ O ₁₄ .4H ₂ O CaC ₄ H ₄ O ₁₆ N ₂ .(?)H ₂ O	Calcium citrate	r M.	Bi.		32° 26′		Ax. pl. \(\psi b(010)\); Z nearly \(\pm a\)	1 '
							(100)	1
Ca ₂ PbC ₁₅ H ₂₀ O ₁₂ CaPbC ₆₂ H ₁₀₆ O ₂₆ .12H ₂ O	Dicalcium lead propionate Tetracalcium butyrate pentalead propi-	Tet. C.	Un.	+				1
CaroC63n106U36.12n3U	onate	C.						1
CaCuCsH12Os.6H2O	Calcium cupric acetate	Tet.	Un.					١
SrC ₂ H ₂ O ₄	Strontium formate	R.	Bi.	+	74° 14′	143° 36′	Ax. pl. a(100); Z b	1
SrC2H2O4.2H2O	Strontium formate	R.	Bi.		66° 59.33′	114° 8′	Ax. pl. b(010); X c	1
SrC2H4O4S2.H2O	Strontium disulfonate	M.	Bi.			Large	Ax. pl. \(\perp(010)\)	П
8rC ₄ H ₁₀ O ₄ S ₂ .2H ₂ O	Strontium ethyl sulfate	M.	Bi.		75° 4′	Large	Ax. pl. $\pm b(010)$; $Z \wedge e = 70^{\circ}$ in	. 1
5FC4H16O453.2H3O	Strondum etnyi sunate	IVI.	Di.		10 1		acute $\angle B$	1
SrCaH4O10N2.(?)H2O	Strontium nitrotetronate	M.	Bi.		30° 23′	1	Ax. pl. b(010); X \(\pm\a\)a(100)	١
SrC ₄ H ₄ O ₁₄ Sb ₂	Strontium antimonyl tartrate	H.	Un.					١
Sr2CuC4H4O4 8H2O	Cupric strontium formate	Tri.	Bi.		72° 4′	1		1.
					12-4	l		1
SrCa ₂ C ₁₃ H ₂₀ O ₁₂	Dicalcium strontium propionate	Tet.	Un.	+	1	l .		1
BaC1H1O4	Barium formate	R.	Bi.	+	77° 54.33′	l	Ax. pl. b(010); Z a	1
BaC4H4O6.5H2O	Barium dl-tartrate	M.	Bi.	+	93° 1′	l	Ax. pl. \(\pm\)b(010)	1
BaC4H4O4.H2O	Barium acetate	Tri.	Bi.	Ι .		l		1
					010 004	l	41 -(100) - 2-11	1
BaC4H10O4.H2O	Barium propionate	R.	Bi.	-	81° 36′		Ax. pl. a(100); X b	
BaC12H22O14.(?)H2O	Barium d-galactonate	M.	Bi.			77° 37′	Ax. pl. ⊥b(001); Z∦b	1
BaC16H11O6.4H2O	Barium methyluvinate	R.	Bi.		88° 12′	I	Ax. pl. a(100); Z b	
BaCeHeOeS2.2H2O	Barium m-benzenedisulfonate	R.	Bi.	l	62° 19′	I	Ax. pl. a(100); Z c	ı
			-"	1	(red)	l		1
BaCaHaO7S2.4H2O	Barium phenol-2, 4-disulfonate	М.	Bi.	_	61° 58′	I	Ax. pl. $\ a(100); X \wedge c = 5^{\circ} 20'$	1
Discount Of State of	Partum phonors, 1-ununonate	444.		-	V. 56		in acute $\angle \beta$	
BaC ₂ H ₂ N ₈ .3.5H ₂ O	Barium tetrazole	R.	Bi.			40° (apprx.)	Ax. pl. a(100); Z]c	
BaCeHrOeNrS.3.5HrO	Barium dinitrophenol sulfonate	M.	Bi.	-		72° 13′	Ax. pl. b(010); $X \wedge c = 77^{\circ}$ in	
BaC ₄ H ₁ O ₄ N ₂ ,2H ₂ O	Barium methyloxaminate	М.	Bi.	+		40°	acute $\angle \beta$ Ax. pl. b(010); $\mathbb{Z} \wedge c = 8^{\circ}$ in	
				'	l	(apprx.)	obtuse ∠β	1
BaC10H10O4N4.1.5H2O	Barium methylpyrasole carbonate	Tri.	Bi.		56° 42′		Ax. pl. \(\perp b(010)(apprx.)	1
BaC12H24O1P2.2H2O	Barium diacetonephoephinate	R.	Bi.	+		122° 44'	Ax. pl. b(010); Z c	1
BaC24H20O4N2S2	Barium p-amidobensophenone-p-sulfo-	M.	"	١ .			Ax. pl. (010)	
BaCdC ₄ H ₄ O ₄ ,2H ₂ O	nate Barium cadmium formate	M.	Bi.		67° 36′	117°	Ax. pl. ⊥b(010); Z∧c = 46°	
	Darium caumum formate	IVI.		+	07-80	'''	Ax. pl. $\pm 0(010)$; $\pm A c = 46^{\circ}$ 23' in acute $\angle \beta$	
Ba ₂ CuC ₆ H ₆ O ₁₂	Barium copper formate	R.	Bi.	+	l	79°	Ax. pl. b(010)	1
BaCa2C18H20O12	Dicalcium barium propionate	C.	1	1	I			1
LiC ₄ H ₄ O ₅ .5H ₂ O	Monolithium malate	M.	Bi.	l _	ı	100°	Ax. pl. b(010)	1
				-	000	1 400		1
IdaC10H0O6S2.2H2O	Lithium naphthalene-1, 5-disulfonate.	M.	Bi.		23°		Az. pl. 1(010)	1
LiC ₄ H ₄ O ₄ N.H ₂ O	Ammonium lithium tartrate	R.	Bı.	+	87° 6′	1		1
LiC ₄ H ₄ O ₄ N.H ₂ O	Lithium ammonium dl-tartrate	M.	Bi.	+	81° 42′		Ax. pl. b(010); $Z \wedge c = 76.5^{\circ}$ in	1
LiTIC4H4O4.H2O	Lithium thallium tartrate	· R.	Bi.	+		24° 40′	obtuse $\angle \beta$ Ax. pl. c(001)(red); $\mathbb{Z}\parallel b$	1
		11.		"	}	(red)	pr(/(/) 2110	ļ
LiaCr2C12O24.18(?) H2O	Lithium chromic oxalate	R.	Bi.	_	į.	95° 26′	Ax. pl. b(010); X e	1
LiUO2C4H4O4.5H2O	Lithium uranyl acetate	M.	Bi.	_	l	65° 14′	Ax. pl. b(010); $X \wedge c = 12^{\circ}$ in	.1
M C OTOMANON. JAMES OF THE STATE OF THE STAT	utanyi acctate	.VI.	J	ı [–]	1	""	obtuse $\angle \beta$	1
LisAl2C12O21.12H2O	Lithium aluminium oxalate	Tri.	Bi.	l _		100° 30′	Ax. plb(010)	
.16A12C12U24.12H2U NBC1H1O2.3H1O	Sodium acetate	M.	Bi.	_	62° 50′	100-30	Ax. pl. $\pm b(010)$ Ax. pl. $\pm b(010)$; $X \wedge c = 44^{\circ}$.
Olympic Colors	Commission and the contract of	141.	""	-	02.00		in acute $\angle \beta$	
NaC ₂ H ₂ O ₄ .Ĥ ₂ O	Sodium acid malonate	R.	Bi.	. –	39° 20′	55° 21′	Az. pl. a(100); X c	1
NaC4H4O4.H1O	Sodium dl-tartrate	R.	Bi.	+	51° 31′	83° 34′	Ax. pl. a(100); Z[c	1
			1		(red)	(red)		
NaC4H7O4	Sodium discetate	C.		1			1	1
NaC ₆ H ₆ O ₄	Sodium citraconate	M.	Bi.	-	53° 25′		Ax. pl. b(010)	
N-0 H 0	0.40	-	ъ.	l	(red)	200	A = 1 = (001)	
NaCsH4O4	Sodium acid phthalate	R.	Bi.			30° (apprx.)	Ax. pl. c(001)	
NaC18H19O4.3.5H2O	Sodium santonate	R.	Bi.	_	1	51° 46′	Ax. pl. a(100); X[b	
NaC14H21O4.3H3O	Sodium hydrosantonate	R.	Bi.	-		37° 24'	Ax. pl. a(100); Z e	
	South ny woodstoneto	16.		"		(red)	pr. a(100/, a/lo	
NaC4H4O4S.2H2O	Sodium p-phenolsulfonate	М.	Bi.	+	69° 58′	125° 47′	Ax. pl. b(010); ZAc = 9° in	1
NaC7H4O4S.2H4O	Sodium m-sulfobenzoate	Tri.	Bi.	_		86° 7′	obtuse $\angle \beta$ X \perp b(010)	١.
NaC ₂ H ₂ O ₂ S	Sodium p-xylenesulfonate	R.	Bi.	_	l	27° 46′	Ax. pl. c(001); X b	
		M.	Bi.	l -	l	_		P
Na ₂ C ₂ H ₄ O ₆ S ₂ .2H ₂ O	Sodium ethane disulfonate			1	040.0	Large	Ax. pl. (010)	1
Na ₂ C ₁₀ H ₆ O ₆ S ₂ .2H ₂ O	Sodium naphthalene-1, 5-disulfonate	М.	Bi.	-	24° 0.5′		Ax. pl. 1(010)	
Na ₂ CH ₂ O ₄ N ₄	Sodium diisonitramidomethane	М.	Bi.	-	89° 20′	l	Ax. pl. b(010); $X \land c = 43.66^{\circ}$	1
14801130414							in acute 48	

Digitized by Google

Formula	Name Name	System	:	Sign	2V	2E	Orientation	+
aC4H5O4N.H2O	Sodium aspartate	M.	Bi.			31° 30′	Ax. pl. b(010); $Z \wedge c = 51^{\circ}$ in	
			l _			ł	acute $\angle \beta$	1
aC ₄ H ₄ O ₄ N.H ₂ O	Sodium ammonium dl-tartrate	M.	Bi.	-	44° 20′		Ax. pl. ⊥b(010)	Г
BC4H3O4N.4H2O	Sodium ammonium tartrate	R.	Bi.	-	59° 52′	96° 30′	Ax. pl. a(100); X c	П
BT1C4H4O6.4H2O	Sodium thallium tartrate	R.	Bi.	-		75° 49′-	Ax. pl. a(100); X c	1
			l	1		76° 47′		1
			Į			(red)		ı
aC ₄ H ₄ O ₄ N	Sodium acid glutamate	M.	Bi.	l	63° 3.5′		Az. pl. \perp b(010); $Z \perp_{\gamma}(10\overline{2})$	ı
aC4H4O2NS.2H2O	Sodium sulfanilate	R.	Bi.	+	65° 24′	115° 24′	Ax. pl. b(010); Z c	ı
aC10H4O4NS.4H2O	Sodium naphthalenesulfonate (stable)	M.	Bi.	+	69° 10′		Ax. pl. $b(010)$; $Z \wedge c = 3^{\circ} 35'$	1
			ł			İ	in acute ∠β	ı
aTl ₂ C ₂ H ₃ O ₁₂	Sodium trithallium tartrate	R.	Bi.	+		75° 40′	Ax. pl. c(001); Z b	ı
aCuC14H27Om.9H2O	Sodium cupric triuranyl acetate	M.	Bi.	+		90° 50′	Az. pl. \(\pm\)b(010)	ı
84Fe2C12O24.10H2O	Sodium ferric oxalate	M.	Bi.		30° 0′	46° 53′	Ax. pl. $b(010)$; $X \wedge c = 12^{\circ}$ in	ı
							obtuse \(\mathcal{B} \)	l
8aCr2C12H12O24N2.7H2O	Sodium ammonium chromic oxalate	M.	Bi.			98° 20′	Ax. pl. 1(010)	ı
aUC.H.O.	Sodium uranyl acetate	C.		İ				١
aUaMnC18H27O24.9H2O	Sodium manganese triuranyl acetate	M.	Bi.	l _		105° 30′	Ax. pl. $\pm b(010)$; $X \wedge c = 70.5^{\circ}$	ı
							in obtuse $\angle B$	I
BaAlsCaH12O12Na.7H2O	Sodium ammonium aluminium oxalate	M.	Bi.	_		134°	Ax. pl. $\pm b(010)$; $X \wedge c = 76^{\circ}$	1
							in obtuse $\angle \beta$	١
82Al2C12H12O21N2.7H2O	Sodium ammonium aluminium oxalate	M.	Bi.			1		ı
84Al2C12O2.10H2O	Sodium aluminium oxalate	M.	Bi.	_		83° 30′	Ax. pl. b(010); $X \wedge c = 7.5^{\circ}$ in	ı
		***	~"			33 00	obtuse $\angle \beta$	I
B94Al22C22H200O99N42	Ammonium sodium aluminium oxalate.	Tri.	Bi.	_		138°	Ax. pl. \perp (001); Bx _a \perp (001)	1
aLiC ₄ H ₄ O ₄ ,2H ₂ O	Sodium lithium dl-tartrate	M.	Bi.		68° 57′	***	Ax. pl. $b(010)$; $bx_a b b(011)$ Ax. pl. $b(010)$; $bx_a b b(011)$	1
BIA C4114C4.2117C	DOMINI HUMAN OF BILLIAGE	.71.	^{D1.}	-				1
.C.O. N.O	Betassium avalete		Bi.		(red)	1500	in obtuse $\angle \beta$	-
2C2O4.H2O	Potassium oxalate	М.	D1.	-	82°	156°	Ax. pl. b(010); $X \wedge c = 40^{\circ} 45'$	1
C HO	Betassium asid amalata	М.	ъ,		400		in obtuse $\angle \beta$	
C ₁ HO ₄	Potassium acid oxalate		Bi.	-	40°	64'	Ax. pl. \(\(\psi\)(010); \(\pi\)\(\psi\)(100)	1
C ₂ HO ₄ .H ₂ O	Potassium acid oxalate	R.	Bi.	-		75° 40′	Ax. pl. c(001); X b	1
C ₄ H ₄ O ₄	Potassium acid succinate	М.	Bi.			113°	Ax. pl. \(\pm\)b(010)	1
C ₄ H ₄ O ₄ .2H ₂ O	Potassium acid succinate	R.	Bi.				Ax. pl. c(001); Z a	1
C ₄ H ₄ O ₄	Potassium acid tartrate	R.	Bi.	-		161° 40′	Ax. pl. c(001); X b	1
C:H11O:	Potassium acid disuccinate	М.	Bi.	-		122° 50′	Ax. pl. $\perp b(010)$; $X \wedge c = 44^{\circ}$	1
							in obtuse ∠β	1
2C4H4O4.3H2O	Potassium tartrate	M.	Bi.	-	62°	102° 16′	Ax. plb(010)	1
						(red)		1
2C4H4O4.2H2O	Potassium dl-tartrate	M.	Bi.	- 1		130° 2′		1
			1			(red)		ı
4C4H2O12.2H2O	Potassium tetraoxalate	R.	Bi.	-			Bxa ⊥(001)	١
C12O12.9H2O	Potassium mellitate	R.	Bi.	_		73° 30′	Ax. pl. b(010); X e	١
CH ₁ O ₄ S	Potassium formaldehyde sulfite	M.	Bi.	+		98° 18′	Ax. pl. b(010)	۱
C.H.O.S	Potassium phenolsulfonate	R.	Bi.	+	69° 4′		Az. pl. c(001); Z b	١
					(apprx.)	1		ı
C.H.O.S.2H.O	Potassium phenolsulfonate	R.	Bi.	+			Ax. pl. a(100); Z c	1
C ₄ H ₄ O ₄ S	Potassium phenylsulfate	R.	Bi.	+		87° 58′	Az. pl. b(010); Z c	1
C7H7O3S.H3O	Potassium p-toluenesulfonate	R.	Bi.	-	67° 4′		Ax. pl. a(100); X b	١
Crittoss.ir	Potassium methanedisulfonate	М.	Bi.		72°		Ax. pl. $\pm b(010)$; $Z \wedge c = 41^{\circ}$	
	Townsight movimentalismouth	***	".				in obtuse $\angle \beta$	١
rC4H4O4S2.H2O	Potassium m-benzenedisulfonate	M.	Bi.			96°		1
TOTAL CONTRACTOR	rotassium m-Denzeneusulionate	IVI.	^{D1.}				Ax. pl. ⊥b(010)	I
CHOS. FO	Detection when eldinolfer et.	n	ъ.		65° 35′	(apprx.)	A1 b/010\ XII	I
1C1H1O1S1.H1O	Potassium phenoldisulfonate	R.	Bi.	-	0.0		Ax. pl. b(010); X a	1
C ₄ H ₄ O ₃ SCl	Potassium p-chlorobensenesulfonate	М.	Bi.	1	81° 25′		Z∥b	1
		_	_		(red)			١
2C10H6O6S2.2H2O	Potassium napthalene-1, 5-disulfonate	M.	Bi.		38° 50′		Ax. pl. \perp (010); $\eta_{\alpha} \wedge c = 78^{\circ}$	1
C ₂ H ₄ O ₂ N	Potassium phthalaminate	R.	Bi.	-		21° 2′	Ax. pl. b(010); X a	1
C7H2O6N2	Potassium 3, 5-dinitrobensoate	M.	Bi.	-		55° 25′	Ax. pl. b(010); $X \wedge c = 65^{c}$ in	1
							acute ∠β	1
C ₄ H ₂ O ₇ N ₂	Potassium picrate	R.	Bi.	-	33° 34′	67° 39′	Ax. pl. a(100); X c	1
C ₄ H ₂ N ₄ O ₄	Potassium acid uroxanate		Bi.	1 1				١
C ₄ H ₄ O ₇ Sb.H ₂ O	Potassium antimonyl tartrate	R.	Bi.	_	42° 34′	72° 50′	Ax. pl. c(001); X b	١
aIrCaOaCla.HaO	Potassium iridium chloroxalate	М.	Bi.	+	76° 23′		Ax. pl. b(010); $Z \wedge c = 13^{\circ} 53'$	1
				'			in obtuse $\angle \beta$	1
PtCrOsNs.HrO	Potassium platino nitrito oxalate	M.	Bi.	l i	89° 40′		Ax. pl. \(\pm\)b(010)	1
FerC11Om.6H1O	Potassium ferric oxalate	M.	Bi.	_	80° 4′		Ax. pl. $b(010)$; $X \wedge c = 1.25^{\circ}$	1
	- Company Total Communication	4-4.			(red)		in obtuse $\angle \beta$	ı
NiC4O484	Potassium nickel dithioxalate	M.	Bi.		(164)		000aa0 2 p	١
CaCaHaO178b2N.H2O	Calcium antimonyl tartrate potassium	R.	Bi.			64° 1′	Ax. pl. a(100); Z b	ı
OHO INTO HOUSE IN THE CHARLOS	nitrate	14.	ы.			O-1 1	722. pr. a(100); # 0	۱
LiC2H4O4S2.H2O		M.	Bi.			82°	Av al (010), B- 1 (001)	ı
ионио р.пр о	Lithium potassium ethanedisulfonate	IVI.	D1.			62"	Ax. pl. (010); $Bx_B \perp (001) =$	
TIC.W.O. W.O.	Tishium notoesium tentesi	ъ	D:		720 504		41° in obtuse $\angle \beta$	۱
LiC ₁ H ₄ O ₄ .H ₂ O	Lithium potassium tartrate	R.	Bi.	-	73° 58′		Ax. pl. b(010); X a	l
NaC ₁ H ₁ O ₄ .4H ₂ O	Sodium potassium tartrate	R.	Bi.	+	69° 40′	117° 2′	Ax. pl. b(010); Z a	١
NaCaHaOasbN.HaO	Potassium antimonyl tartrate sodium	R.	Bi.	-		90° 45′	Ax. pl. c(001); X a	١
N O D O CINCO	nitrate	-	.			000 0=1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	١
NaC16H16O29SbN.2H2O	Potassium antimonyl tartrate sodium	R.	Bi.	-		88° 37′	Ax. pl. b(010); X c	
N-1-0 0 01 0T 0	nitrate		n.	.		000 0	A = =1 = (100) 7/11	
NaIrC2O4Cl2.2H2O	Potassium sodium iridium chloronitrito oxalate	R.	Bi.	+		63° 24′	Ax. pl. a(100); Z b	1

Digitized by Google

Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit
84 Rb ₂ C ₄ H ₄ O ₄ .2H ₂ O	Rubidium dl-tartrate	М.	Bi.	_	56° 6′		Ax. pl. b(010); $X \land e = 82^{\circ} 18'$ in acute $\angle \beta$	(G)
Rb2C4H4O4.H2O	Rubidium mesotartrate	Tri.	Bi.	_	75° 18′	İ	Ax. pl. 19° with c-axis	(G)
Rb4Al2C12O24.6H2O	Rubidium aluminium oxalate	M.	Bi.	_	80° 22′	ì	Ax. pl. (010)	(G)
RbLiC ₄ H ₄ O ₆ .H ₂ O	Lithium rubidium tartrate	R.	Bi.	-	57° 10′ (red)		Ax. pl. c(001); X a	(G)
Rb:Na:Cr:C1:O4.7H:O	Sodium rubidium chromic oxalate	M.	Bi.	_	•	56°	Ax. pl. b(010); X \(\pm \)e(001)	(G)
Rb14Na10AlaC48O98.23H2O	Sodium rubidium aluminium oxalate	M.	Bi.	_		24° 30′	Ax. pl. b(010); X \(\pm(001)\)	(G)

C-TABLE

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit
21	CHI.	Iodoform	H.	Un.	i – i				(G
55	CH ₄ ON ₂	Urea	Tet.	Un.					(G
58	CH ₄ N ₂ S	Thiourea	R.	Bi.	-		69° 54′- 70° 59′	Ax. pl. a(001); X b	(G
64.1	CH ₄ O ₄ A ₈	Methyl arsenate	M.	Bi.	-	14° 24′	10 05	Ax. pl. 1b(010); X A c =	(G
70	CH ₄ O ₄ N ₂	Urea nitrate	М.	Bi.	_		23° 10′	53° 20' in acute ∠β Ax. pl. b(010); X ⊥c(001)	 (G
70							23- 10		
	CH ₁₀ O ₀ N ₂ S	Ammonium methanedisulfonate	М.	Bi.	-	79° 34′		Ax. pl. \perp b(010); $X \wedge c = 39^{\circ}$ in obtuse $\angle \beta$	(G
84.1	C ₂ Cl ₄ Br ₂	1, 2-Dibromo-1, 1, 2, 2-tetrachloroethane	R.	Bi.	-		87° 45'	Ax. pl. a(100); X e	(G
87	C ₂ Br ₆	Hexabromoethane	R.	Bi.	-		79° 30′	Ax. pl. a(100); X e	(G
92	C2Cl4	Hexachloroethane	R.	Bi.	-		66° 28′	Ax. pl. a(100)	(G
	C2O2N2I2	Diiodofuroxane	R.	Bi.		63° 38′		Ax. pl. c(001); Z a	(G
147	C2H2O4	Oxalic acid	R.	Bi.	+			Ax. pl. c(001); Z b	(G
	C2H2O4.2H2O	Oxalic acid	М.	Bi.	-	68°		Ax. pl. \(\pm\)b(010); X \(\pm\)b	(G
161	C ₁ H ₁ O ₂ Cl ₂	Chloral hydrate	M.	Bi.	_	20° 48′	35°	Ax. pl. $b(010)$; $X \wedge c =$	(G
					i		(apprx.)	58° 45' in obtuse ∠β	
238	C ₂ H ₄ ON	Acetamide (Unst. mod.)	?	Bi.			120° (apprx.)		(37
238	C ₂ H ₄ ON	Acetamide (St. mod.)	Trig.	Un.	_		(appra.)		(G
248	C ₂ H ₄ O ₄ N.H ₂ O	Ammonium hydrogen oxalate	R.	Bi.	_		22° 32′	Ax. pl. a(100); Xfc	(G
240	C ₂ H ₄ O ₂ NCl	Glycocoll hydrochloride	R.	Bi.	_		63° 50′	Ax. pl. a(100); X b	(G
202		1	R.	Bi.		61° 44′	110° 8′		(G
303	C ₂ O ₄ H ₄ N ₂ .H ₂ O	Ammonium oxalate		Bi.	_		110, 9,	Ax. pl. a(100); X c	
306	C ₂ H ₁₀ N ₂ Cl ₂	Ethylenediamine hydrochloride	М.	Bi.	_	81° 4′		Ax. pl. b(010); $X \wedge c = 6^{\circ}$	(G)
								in acute Δβ	١
308.1	C ₂ N ₂ Cl ₂	Cyanuric trichloride	М.	Bi.		1	28°	Ax. pl. \(\perp b(010)\)	(G
313.1	C ₂ H ₂ ON ₂ Br ₂	Dibromocyanacetamide	М.	Bi.	+		29° 52′	Ax. pl. \(\pm\)b(010); \(\mathbb{Z}\)\(\mathbb{c} =	(G)
								34° in obtuse ∠β	
	C ₁ H ₂ N ₂ Cl	4-Chloropyrazole	R.	Bi.	+	Ì	100° (apprx.)	Ax. pl. a(100)	(G)
	C ₃ H ₄ O ₂ Br ₂ .H ₂ O	Dibromopyroracemic acid	M.	Bi.	+		34° 9′	Ax. pl. 1b(010)	(G)
	C ₂ H ₄ ON ₂ S	Pseudothiohydantoin	R.	Bi.	<u>-</u>		81° 30′	Ax. pl. a(100); X[b	(G)
	C ₁ H ₄ O ₁ N ₂ S	Pyrazol-4-sulfonic acid	Tet.	Un.			01 00	112. pl. a(100), 12 0	a-i
436	C ₂ H ₄ O ₂ N ₂	Malonamide (metast, mod.)	Tet.	Un.	_	j			(G)
444	C2H4O2N4	Ammonium fulminurate	M.	Bi.					(G)
332		β-Alanine	R.	Bi.	_		70°	Ax. pl. c(001); X b	(G)
	C ₂ H ₇ O ₂ N	p-Alamine	R.	Di.	-		(apprx.)	Ax. pi. c(001); A 0	(6)
	CaH10NBr	Trimethyl ammonium bromide	M.	Bi.	+		50°	Ax. pl. (010)	(G)
	a			٦.			(apprx.)		۱
	C ₂ H ₁₀ NI	Trimethyl ammonium iodide	М.	Bi.	+		53°	Ax. pl. (010)	(G)
							(apprx.)		١
53 5	C ₂ H ₁₂ O ₂ N ₆	Guanidine carbonate	Tet.	Un.	1 . :				(G)
	C ₄ H ₂ O ₂ NBr ₂	Dibromosuccinimide	М.	Bi.	+		20° 50′	Ax. pl. b(010); $Z_{\land} c = 8^{\circ}$	(G)
				L 2.				in obtuse ∠β	
679.1	C4H3O4N.2H2O	Nitrotetronic acid	М.	Bi.				Ax. pl. b(010)	(G)
	C ₄ H ₄ O ₂ Br ₂	trans-α-β-Dibromocrotonic acid	M.	Bi.	1	1	56° 1′	Ax. pl. \(\perp b(010)\)	(G)
	C ₄ H ₄ O ₂ N ₂	Mesotartaric acid nitrile	М.	Bi.	+		50°		(G)
					ł		(apprx.)		
	C ₄ H ₆ O ₂ Cl	a-Chlorocrotonic acid	М.	Bi.	+		68° 17′	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c = 35^{\circ}$ in obtuse $\angle \beta$	(G)
592	C ₄ H ₄ O ₂ N(St. mod.)	Succinimide	R.	Bi.		i i	99°	Az. pl. (010); Bxa \(\pm(010)\)	(28)
602	C ₄ H ₄ Br ₄	Butadiene tetrabromide	R.	Bi.	+		57°	Ax. pl. a(100); Z o	ြဲရှ
002	Cintan	Dutamene tetrabromide	It.	ы.	Ι Τ		(apprx.)	AL. pl. a(100), 240	(6)
	C TI C NO	A	-	ъ.	١.			41 -(001)	(6)
	C ₄ H ₄ O ₂ NCl ₃	Ammonium trichloroisobutyrate	R.	Bi.	+	53°	96° 92°	Ax. pl. c(001)	(G) (G)
	C ₄ H ₄ O ₃ N ₂ 8	3-Methylpyrasole-4-sulfonic acid	M.	Bi.	1	33	92"	Ax. pl. \(\pm\b(010)\); \(\mathbb{Z}\) b	
610	C ₄ H ₄ O ₃ N ₄	Allantoin	H.	Un.	1				(21)
	C ₄ H ₄ O ₄ Se	Selenodiglycolic acid	М.	Bi.	l	78° 30′		Ax. pl. b(010); $Z \wedge c = 41^{\circ}$ in obtuse $\angle \beta$	(G)
640	C ₄ H ₆ O ₆ .H ₂ O	dl-Tartaric acid	Tri.	Bi.	l	67° 10′		Ax. pl. p(110)	(G)
U1 U			M.	Bi.	1	81° 44′		Ax. pl. \(\psi \)(010)	(G)
	C ₄ H ₇ O ₄ N	dl-Aspartic acid			I	O1 34	25°		(G)
ao a -	C ₄ H ₇ O ₄ N	Acetamide oxalate	R.	Bı.	-		25	Ax. pl. a(100); X c	
697.1		Dichlorobutylene glycol	Trig.	Un.			1000 :::	4 -1 -(001) 75 51	(G)
	C ₄ H ₈ O ₇ NSb.H ₂ O	Ammonium antimonyl tartrate	R.	Bi.	-		130° 46′	Ax. pl. c(001); X b	(G)
	COST ON STATE OF	Asparagine	R.	Bi.	1 +	1. 86° 40'		Ax. pl. b(010); Zie	(G)
708	C ₁ H ₂ O ₂ N ₂ .H ₂ O	Asparagine				d. 87° 16′		p.: -(-10/, 10/0	•

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
709	C ₄ H ₄ O ₄ N ₂	Tartramide	R.	Bi.	-		43°	Ax. pl. b(010); X a	(G)
	~ ~ ~ ~ ~			.			(apprx.)		رم.
	C ₁ H ₂ O ₄ N	Ethylamine dioxalate	М.	Bi.	-	.==	89° 20′	Ax. pl. b(010)	(G)
776	C _i H ₀ O _i N	Ammonium hydrogen malate	R.	Bi.	-	47° 34′	75° 24′	Ax. pl. b(010); X e	(G)
778	C ₄ H ₂ O ₆ N	Ammonium hydrogen tartrate	R.	Bi.	-	79° 54′	1	Ax. pl. c(001); X b	(G)
786	C ₄ H ₉ N ₂ O ₂	Guanidine lactate	R.	Bi.	+	79° 12′		Ax. pl. a(100); Z b	(G)
788	C4H10N4S2	Ethylenediamine thiocyanate	М.	Bi.	-	. 51°	89° 20′	Ax. pl. b(010); X A c =	(G)
808	C4H10O4	i-Erythrite	Tet.	Un.			1	64° 30' in obtuse ∠β	(G)
	C ₄ H ₁₂ NI	Diethyl ammonium iodide	R.	Bi.	+		52° 15′	Ax. pl. (001); Z a	(G)
	a == 0 ×		_	.		.=0.04	(apprx.)		
	C4H12O4N2	Ammonium malate	R.	Bi.		47° 34′ (red)			(L-B
835	C ₄ H ₁₂ O ₄ N ₂	Ammonium tartrate	М.	Bi.	-	39° 36′	64° 46′	Ax. pl. b(010); X Λ c = 18° 41' in obtuse ∠β	(G)
835.1	C ₄ H ₁₂ O ₄ N ₂	Ammonium racemate	М.	Bi.	+	60° 54′		Ax. pl. b(010)	(G)
	C _s H _s O _s Cl	Chlorocitraconic acid	R.	Bi.	+	46° 24′	75° 5′	Ax. pl. b(010); Z c	(G)
	C.H.O.N.H.O	Pyrazole dicarboxylic acid	М.	Bi.		(blue) 77°	(blue)	Ax. plb(010); Z apprx.	(G)
		,		n.				⊥s(403)	
868 877	C ₄ H ₄ O ₄ C ₄ H ₄ O ₂ N	Aconic acid	R. M.	Bi. Bi.	+	62° 7′		Ax. pl. a(100); X b Ax. pl. b(010); Z \(c = \)	(G) (G)
	C ₆ H ₆ O ₄ N ₈	Urimidosuccinic acid	R.	Bi.	+	78° 14′		23° 45' in obtuse ∠β Ax. pl. a(100); Z‡c	(G)
900	C ₆ H ₆ O ₄	Itaconic acid	R.	Bi.	+	70 14	97° 40′	Ax. pl. b(010); Z a	(G)
	C ₆ H ₇ O ₆ Br	Citrabromopyrotartaric acid	M.	Bi.]	76°	(red)	Ax. pl. ⊥b(010); Z∧c =	(G)
								62° in acute ∠β	٠,,
0.7.1	C ₄ H ₇ O ₄ N ₂	Urimidosuccinic acid amide	M. R.	Bi. Bi.	+	79° 35′	120° 10′	Ax. pl. b(010)	(G)
947.1 957	C ₆ H ₆ O ₆ C ₆ H ₆ O ₆ .H ₂ O	Methyltetronic acid lactone Methyl hydrogen d-tartrate	R.	Bi.	+	60°	120-10	Ax. pl. a(100); Z c	(G)
						(apprx.)			
	C ₆ H ₉ O ₂ B ₇	Bromohydrotiglic acid	М. М.	Bi. Bi.	١.		150° 92° 33′	A = =1 +1 \(\alpha\) = = = = 1 \(\alpha\)	(G) (G)
	C ₆ H ₉ O ₂ N	Hydroxypiperidone	M.	Б1.	+		82 00	Ax. pl. \(\pm\)b(010); Z nearly \(\pm\)a(100)	(6)
	C ₆ H ₂ O ₂ N	α-Acetylaminopropionic acid	R.	Bi.	-	36° 9′	1	Az. pl. a(100); X c	(G)
977	C ₄ H ₉ O ₄ N	d(l)-Glutaminic acid	R.	Bi.	-	40° 27′	66° 35′	Ax. pl. b(010); X a	(G)
988.1	C ₆ H ₁₀ O ₄ NCl	d(l)-Glutamic acid hydrochloride	R.	Bi.	+	70° 44′		Ax. pl. a(100); Z b	(G)
994.1	C _b H ₁₀ O ₂ N ₂	Dimethylmalonamide	R.	Bi.	+		58° 27′	Ax. pl. b(001); Z c	(G)
996	C ₆ H ₁₀ O ₆ N ₂	Amylene nitrosate	M.	Bi.	+	62° 65′	103° 53′	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c = 7^{\circ}$ in obtuse $\angle \beta$	(G)
1035	CsH10Os	d-Lyxose	М.	Bi.	_			Ax. pl. b(010)	(G)
1070.2		Methyltetronamide	Not det.	Bi.	+		Large		(14)
	C ₄ H ₁₂ NBr	Piperidine hydrobromide	R.	Bi.	1	1	35°	Ax. pl. b(010); Z[a	(G)
					ŀ	1	(apprx.)		\ ·-'
1075	C ₄ H ₁₂ NCl	Piperidine hydrochloride	R.	Bi.	_		52° 56′	Ax. pl. c(001); X a	(G)
1093	C6H12O4	Pentaerythritol	Ditet.	Un.				2	(G)
-000	C.H12NBr2	Trimethyl-bromoethylammonium bro-	M.	Bi.	+.		40° 2′	Ax. pl. ⊥(010); Z∧c =	(G)
		mide.				İ		39° 30' in acute ∠β_	l
	C ₆ O ₄ N ₂ Br ₄	1, 2, 3, 5-Tetrabromodinitrobensene	M.	Bi.	-	1	45° 54'	Ax. pl. b(010); $X \perp r(\overline{201})$	(G)
	C ₆ OCl ₈	β-Octochlorocyclohexenone	R. M.	Bi. Bi.	+	37° 38′	65° 59′	Ax. pl. b(010); $Z \parallel a$ Ax. pl. b(010); $X \wedge c =$	(G) (G)
	GOOM	7-Octochlorocyclonexenone	WI.	DI.	-	37 36	03.98	about 93° in obtuse /\beta	(6)
1120	C ₄ HCl ₄ O	Pentachlorophenol (\$\beta\$-mod.)	M.	Bi.	+		65° 23.5′	Ax. pl. \perp b(010); $Z \wedge c = 3^{\circ}$ in acute $\angle \beta$	(G)
	C ₄ H ₂ O ₄ N ₂ Br ₂	1, 3-Dinitro-4, 6-dibromobensene (St.	R.	Bi.	+		56° 52′	Ax. pl. a(100); Z c	(G)
	C ₄ H ₂ O ₄ N ₂ Br ₂	mod.) 1, 3-D in it ro-4, 6-dibromobensene	R.	Bi.	_		73° 5′	Ax.pl. \(\pm\)b(010); X \(\pm\)a(100)	(G)
	a waxa	(metast. mod.)	_			077	000.004	4 1 (100) 3/1	(0)
	C ₄ H ₂ O ₄ N ₂ Br ₂	1, 2-Dinitro-4, 5-dibromobensene	R.	Bi.	-	2H =	88° 22′	Ax. pl. a(100); X c	(G)
	C ₄ H ₂ O ₂ NBr ₂	2, 4, 6-Tribromonitrobensene	M.	Bi.	_		90° 13′	Az. pl	(G)
1142	C ₄ H ₂ O ₄ N ₂ I ₂	1, 3-Dinitro-2, 4-diiodo-benzene	R.	Bi.	+	63° 26′		Ax. pl. a(100); Z c	(G)
1149	C ₆ H ₂ O ₄ N ₂ Br	3-Bromo-1, 2-dinitrobensene	R.	Bi.	+	51° 30′ (red)		Ax. pl. b(010); Z c	(G)
1155	C ₄ H ₂ O ₂ NBr ₂	3, 5-Dibromonitrobensene	М.	Bi.	_	"/	72° 19′	XΛc = 29° in obtuse ∠β	(G)
1155.1	C ₄ H ₂ O ₂ NBr ₂	Nitrodibromophenol	M.	Bi.	l	I	70°-73°	Az. pl. 1b(010)	(G)
1163	C ₄ H ₂ O ₄ N ₂ Cl	4-Chloro-1, 2-dinitrobensene	M.		-·	I	45° 31′	Ax. pl. \(\pm\)b(010)	(G)
1165	C ₄ H ₄ O ₄ N ₄ Cl	a-4-Chloro-1, 3-dinitrobenzene (St. mod.)	R.	Bi.			102° 46′	Ax. pl. b(010); Z c	(G)
	C ₄ H ₄ O ₄ N ₅ Cl	α-4-Chloro-1, 3-dinitrobensene (metast.	R.	Bi.	+		(red) 94° 15′	Ax. pl. a(100); Z b	(G)
1165	1	mod.) 4, 6-Dichloro-2-nitrophenol	M.	Bi.	_		62° 29′		(G)
	C.H.O.NCI.		i	Bi.	-	1	55° 30′		(G)
	C ₂ H ₂ O ₂ NCl ₂		Tr⊷i	. 471.	1	l		Ī	(37)
1174.1	C ₆ H ₂ O ₂ NI ₂	2, 6-Diiodo-4-nitrophenol	Tri.	n:	l –	l .			
1174.1			M. or	Bi.	-		120° (at		(*',
1174.1 1200	C ₆ H ₂ O ₂ NI ₂ C ₆ H ₆ O ₂ N ₆	2, 6-Diiodo-4-nitrophenol	M. or Tri.				least)	A= m1 a/100). Wil-	
1174.1 1200	C ₆ H ₂ O ₂ NI ₂ C ₆ H ₆ O ₂ N ₆ C ₆ H ₄ O ₂ NCl	2, 6-Diiodo-4-nitrophenol Tetranitroaniline	M. or Tri. R.	Bi.	_		least) 91° 23'	Ax. pl. a(100); X a	(G)
	C ₆ H ₂ O ₂ NI ₂ C ₆ H ₆ O ₂ N ₆	2, 6-Diiodo-4-nitrophenol	M. or Tri.				least) 91° 23′ 65°	Ax. pl. b(010); X \ c =	(G) (G)
1174.1 1200	C ₆ H ₂ O ₂ NI ₂ C ₆ H ₆ O ₂ N ₆ C ₆ H ₄ O ₂ NCl	2, 6-Diiodo-4-nitrophenol Tetranitroaniline	M. or Tri. R.	Bi.	_		least) 91° 23'		(G)

1274 1277 1278	C ₆ H ₄ O ₄ N ₂ C ₆ H ₄ O ₄ N ₂	2, 3-Dinitrophenol	M.	Bi.		1	16°	Ax. pl. 1 (010)	
1278									(29)
		2, 6-Dinitrophenol	R.	Bi.	+		95° 40′	Ax. pl. b(010); Z a	(G)
	C ₄ H ₄ O ₄ N ₂	3, 4-Dinitrophenol	Tri.	Bi.			65°		(29)
1377	C ₆ H ₆ NBr	p-Bromoaniline	R.	Bi.	+		26° 57.5′	Ax. pl. c(001); Z a	(G)
	C ₄ H ₄ O ₂ NCl	Nicotinic acid hydrochloride	R.	Bi.	-		96° 22′	Ax. pl. a(100); X c	(G)
	C ₆ H ₆ O ₂ NCl	Picolinic acid hydrochloride	R.	Bi.	-	41° 16′	73° 52′	Ax. pl. b(010); X e	(G)
1384	CeHeCle	α-trans-Bensenehexachloride	M.	Bi.	+		62° 2′	Ax. pl. $b(010)$; $Z \wedge c =$	(G)
	C ₆ H ₆ ON ₂	Picolinamide	М.	Bi.	+		73° 20′	42° 25' in obtuse ∠β Ax. pl. b(010)	(G)
	C ₆ H ₆ O ₂ N ₂	2-Methylpyrazine-5-carboxylic acid	R.	Bi.			(red) 35°	Ax. pl. a(100); Z‡c	(G)
	C ₆ H ₆ O ₆ N ₂ S	p-Nitrobenzenesulfamide	M.	Bi.		59°	(apprx.)	Ax. pl. b(010); Z \(\hat{e} = 70^\circ\)	(G)
1412	CeHeO7N4	Ammonium picrate	R.	Bi.	_		56°	in scute ∠β	(37)
1414	C ₆ H ₆ O ₂	o-Dihydroxybensene	M.	Bi.	+		58° (apprx.)	Ax. pl. ⊥b(010); Z∧c = 6°-7°	(G)
1415	C ₄ H ₀ O ₂	Resorcinol	R.	Bi.	_ '	46° 14′	76° 6′	Ax. pl. c(001); X a	(G)
1416	C ₄ H ₆ O ₂	Hydroquinonol	Trig.	Un.	_	10 11		A2. pl. c(001), A a	(G)
1410	C ₄ H ₄ O ₂ .2H ₂ O		R.	Bi.	l		63° 49′	A (001). Y'll-	(G)
	CaHaOa.2HaO	Phloroglucinol	R.	Bi.	-	1	Small	Ax. pl. c(001); X a	(30)
1448	C ₄ H ₇ ON			Bi.	_	ŀ	47° 37′	Ax. pl. (001); $Bx_0 = b$ -axis	
1440	1	p-Aminophenol	R.			l		Ax. pl. c(001); X a	(G)
	C ₄ H ₇ O ₄ NS	Phenylsulfohydroxamic acid	R.	Bi.	+		43° 29′	Ax. pl. c(001); Z a	(G)
	C ₄ H ₄ NBr	Aniline hydrobromide	R.	Bi.	l -	ļ	35°	Ax. pl. a(100)	(G)
	C ₆ H ₂ O ₂ Br ₄	Tetrabromocaproic acid	М.	Bi.	+		21° 52′	Ax. pl. ⊥b(010); Z∧ e = 100° in obtuse ∠β	(G)
	C ₆ H ₆ O ₂ N ₂ Cl ₂	1, 4-Dichloro-1, 4-dinitrosocyclohexane.	М.	Bi.	+	61° 58′ (blue)	100° 15′ (white)	Ax. pl. b(010); $Z \wedge c = 40^{\circ} 30^{\circ}$ in scute $\angle \beta$	(G)
	C ₆ H ₆ O ₆ NCl ₂ .2H ₂ O	Ammonium trichlorodihydroxycyclopen- tane carboxylate	R.	Bi.			81° (apprx.)	Ax. pl. (100)	(4)
	C ₆ H ₆ N ₂	2, 6-Dimethylpyrasine	M.	Bi.			86° (apprx.)	Ax. pl. b(010); $Z \wedge e = 20^{\circ}$ in obtuse $\angle B$	(G)
1507	C ₆ H ₈ O ₇ .H ₂ O	Citric acid	R.	Bi.	+	65° 42′	108° 40'	Ax. pl. a(100); Z a	(G)
1523	C.H.O.NS	Ammonium bensenesulfonate		Bi.	+		33° 36′	Ax. pl. a(100); Z c	(G)
	C.H.O.N	Trimorpholine	M.	Bi.	+	80°	1 55 55	Ax. pl. b(010)	(G)
	C.H.O.N	Acetamide dioxalate	Tri.	Bi.	! <u>-</u>	00	69° 20′	/12. p.: 5(616)	(G)
	C ₆ H ₁₀ O ₆ Br ₂	Inosite dibromhydrin		Bi.	+	67° 30′	00 =0	Ax. pl. b(010); Z a	(G)
	C ₄ H ₁₀ ClNO ₂	Trimorpholine hydrochloride	M.	Bi.	1	0. 00	50° 60′	Ax. pl. \(\pm\)(010) (red)	(G)
1562	C ₄ H ₁₉ O ₄	Adipic acid	М.	Bi.	_		47° 30′	Ax. pl. 10(010) (red)	(G)
1563	C ₆ H ₁₀ O ₄	1, 1-Dimethylsuccinic acid	M.	Bi.	-	16° 12′	41° 28′	Bxg nearly \(\pm(001)\); Ax. pl. (010)	(28)
	CaH10Oa	1-Glycosan (1-Glucose anhydride)	R.	Bi.	l _	!	71° 45′	Ax. pl. a(100); X c	(G)
	CeH10Os	dl-Dilactylic acid		Bi.	_		65°	Ax. pl. $\ (010)$; Bx _a $\perp (001)$	(17)
	C ₆ H ₁₀ O ₆	Dilactylie acid	R.	Bi.	_		65°	Ax. pl. b(010); X e	(G)
	C ₆ H ₁₀ O ₆	Isosaccharine	М.	Bi.	+		(apprx.) 25° 19'	Az. pl. \(\perp\) b(010); \(\mathbb{Z}\) \(\circ\) =	(G)
	C ₆ H ₁₁ O ₇ N	Acetamide ditartrate	М.	Bi.	-		70° 30′	63° 15' in obtuse ∠ β Ax. pl. b(010); X ∧ c =	(G)
	C ₆ H ₁₁ O ₂ N ₂	Pyrrolidine-a, a-dicarboxylic acid dia-	R.	Bi.	+		63° 30′	36° in acute ∠β Ax. pl. b(010); Z∦c	(G)
	C ₆ H ₁₂ O ₆ N ₂ S ₂ .H ₂ O	mide Ammonium phenol-2, 4(?)-disulfonate	М.	Bi.	+		(apprx.) 113° 45'	Ax. pl. b(010); Z \(c = \)	(G)
	C ₆ H ₁₂ O ₂	cis-o-Dihydroxyhexshydrobenzene	R.	Bi.	+		53° 10′	25° 21' in obtuse ∠β Ax. pl. b(010); Z∥c	(G)
	C ₆ H ₁₉ O ₆	α-Methylxyloside	M.	Bi.	-	35° 14′	54° 55′	Ax. pl. b(010); $X \wedge c = 30^{\circ}$ in scute $\angle \beta$	
1670	C ₆ H ₁₂ O ₆	d-Quercitol	М.	Bi.	+		58° 1′	Ax. pl. b(010); $Z \wedge c = 11^{\circ}$ 46' in acute $\angle B$	(G)
1672	C4H12O4.H2O	β-Rhamnose	M.	Bi.	_	58° 5′		Ax. pl. b(010)	(G)
	CeH12Oe.2H2O	d(l)-Inosite	R.	Bi.	+	00 0	42° 30′	Ax. pl. a(100); Z c	(G)
	C ₄ H ₁₂ O ₄ .2H ₂ O	Dambose ("meso"-inosite)	M.	Bi.	+		47° 20′	Ax. pl. $\pm b(010)$; $\mathbb{Z} \wedge c = 17^{\circ}$ in obtuse $\angle \beta$	(G)
	C ₆ H ₁₂ O ₆ N.H ₂ O	Ammonium hydrogen ethoxysuccinate	R.	Bi.			20°	Ax. pl. c(001); Z b	(G)
	C ₆ H ₁₈ ON ₂	2-Propylantipyrine	М.	Bi.]	52° 50′	(apprx.)	1	(L-B)
	C ₄ H ₁₄ O ₄ S ₂ N ₂ Cl ₂	Cystine hydrochloride	M.	Bi.	+	02 00	3° 16′	Ax. pl. \(\pm\)b(010); \(Z\pm\)s(101)	
1750	C ₆ H ₁₆ O ₆	Dulcitol	M.	Bi.	-		151° 10′	Ax. pl. 15(010); X b	(G)
1751	C ₆ H ₁₆ O ₆	d-Mannitol (a-mod.)	R.	Bi.	-		(red) 100°	Ax. pl. c(001); X 16	(G)
1751	C ₆ H ₁₆ O ₆	d-Mannitol (β-mod.)	R.	Bi.	_		(apprx.) 71° 30'	Ax. pl. a(100); X b	(G)
1752.1		Sorbitol	М.	Bi.	-		100° (apprx.)	Ax. pl. b(010); Z nearly 	(G)
1769.1	C ₆ H ₁₅ PS C ₆ H ₁₆ N ₂ Br ₂ .H ₂ O	Triethylphosphine sulfide	H. R.	Un. Bi.	++	•	72°	Ax. pl. a(100); Z c	(G) (G)
	1		-•:	J	1 '		(apprx.)	pi. a(100), a(10	. •,
		1						1	
	C ₆ H ₁₆ NI	Dimethyl diethyl ammonium iodide	R.	Bi.			82°	Z \\\c	(G)
	C ₆ H ₁₆ NI C ₇ H ₂ O ₃ Cl ₅	Dimethyl diethyl ammonium iodide 1-Methyl-1, 3, 3, 5, 5-pentachlorocyclo-	R. R.	Bi. Bi.	+			Z c Ax. pl. a(100); Z c	(G) (G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
1789	C ₁ H ₂ O ₄ N ₃	2, 4, 6-Trinitrobenzoic acid	R.	Bi.	+		84° 36′	Az. pl. c(001); Z b	(G)
	C7H4O2Cl2	3, 5-Dichlorosalicylic acid	R.	Bi.	+		29° 15′	Ax. pl. b(010); Z c	(G)
1835	C7H4O6N2	2, 4-Dinitrobenzoic acid	М.	Bi.	-	,	18°	Ax. pl. (010); Bxa nearly 	(11)
1837	C7H4O4N2	2, 6-Dinitrobensoic acid	R.	Bi.	+		103°	Ax. pl. (100); Bxa \(\pm(010)\)	(11)
1839	C7H4O6N2	3, 5-Dinitrobenzoic acid	M.	Bi.	_		80° 16′	Ax. pl. b(010); $X \wedge c =$ 48° in acute $\angle \beta$	(G)
	C7H4O6	Chelidonic acid	M.	Bi.	-		40°	Ax. pl. \(\pm\)b(010); X nearly	(G)
	0 77 0 077 0		_	D.			(apprx.)	r(101)	(G)
1843	C ₇ H ₄ O ₇ .3H ₂ O	Meconic acido-Iodobensoic acid	R.	Bi.	_		48° 55′ 70°	Ax. pl. b(010); X c	(G)
1881	C ₇ H ₄ O ₄ I		M.	Bi.			(apprx.)	Ax. plb(010); Bxa_ c- axis	
1903	C7H4O4N.2H4O	Dipicolinic acid	R.	Bi.	-		99°	Ax. pl. (001); Bx 1 (010)	(33)
1909	C7H4O4N	5-Nitro-2-hydroxybensoic acid	M.	Bi.	+		105° 38′		(G)
1977	C7HeN2	Bensimidasol	R.	Bi.	+	86° 45′	1	Ax. pl. c(001); Z b	(G)
19 79	C7HeN2	Indazole	M.	Bi.		50° (apprx.)		Ax. pl. b(010); $\mathbb{Z} \wedge \mathfrak{o} = 18^{\circ}$ in obtuse $\angle \beta$	(G)
1985	C7H4O4N2	2, 4-Dinitrotoluene	M.	Bi.	-			Ax. pl. \perp b(010); $X \wedge c =$ 32° in acute $\angle \beta$	(G)
1987	C7H6O4N2	2, 6-Dinitrotoluene	R.	Bi.	-			Ax. pl. a(100); X∥c	(G)
1989	C7H6O4N2	3, 5-Dinitrotoluene	M.	Bi.	-		98° 4′	Ax. pl. \(\pm\)b(010)	(G)
	C7H4ON4.H2O	c-Phenylhydroxytetrasole	R.	Bi.		60°-70°		Ax. pl. a(100); Z c	(G)
2074	C7H7O2N	Anthranilic acid	R.	Bi.			78° 30' (Hg, yellow)	Ax. pl. c(001); Z a; Bx _a 	(G)
	C7H7O2N	Benzohydroxamic acid	R.	Bi.	+		50° 2′	Ax. pl. a(100); Z b	(G)
	C7H7O2N.H2O	Pyridinebetaine	M.	Bi.	-	25° 16′		Ax. pl. b(010); $X \wedge c = 12^{\circ} 45'$ in obtuse $\angle \beta$	(G)
	C7H7O4Na	3, 5-Dinitro-p-toluidine	R.	Bi.					(3)
	C ₇ H ₈ ONCl	Isobensaldoxime hydrochloride	R.	Bi.			100° (apprx.)	Ax. pl. a(100); Z b	(G)
i	C ₇ H ₄ O ₂ NCl	Pyridinebetaine hydrochloride	М.	Bi.	+	52° 3′	88° 8′	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c = 9^c$ 27' in acute $\angle \beta$	(G)
	C7H4O2N4.H2O	Bensenylamidine nitrite	M. (?)	Bi.	_		78° 55′	Ax. pl. d(010)	(G)
174	C ₇ H ₄ O ₂	Guaiacol	Trig.	Un.				July Bur Warden	(G)
185	C7H4O4	Hydrochelidonic anhydride	R.	Bi.	-		120° (apprx.)	Ax. pl. c(001); X a	(G)
	C7H9OsBr	Bromo-shikimilactone	н.	Un.	Ì		\		(G)
	C7H.N2Cl.2H2O	Benzenylamidine hydrochloride	R.	Bi.			35°	Ax. pl. a(100); Z c	(G)
				D:			(apprx.) 90°		(G)
	C ₁ H ₂ O ₂ Cl.2H ₂ O	α, α-Dimethyl-γ-pyrone hydrochloride	R.	Bi.	-		(apprx.)	Ax. pl. a(100); X b	
	C ₇ H ₀ ON	3-Amino-p-cresol	R.	Bi.	+	l	44° 46′	Ax. pl. a(100); Z c	(G)
	C7H1ON.3H1O	2, 6-Dimethyl-4-hydroxypyridine	M.	Bi.			110° 41′	Ax. pl. b(010)	(G)
225	C ₇ H ₉ O ₂ N	Ammonium benzoate	R.	Bi.	+		670	Ax. pl. a(100); Z c	(G)
233	C7H ₉ O ₂ NS	p-Toluidine-2-sulfonic acid	М.	Bi.	+		87° 54′	Ax. pl. b(010); $Z \wedge c = 8^{\circ}$ in obtuse $\angle \beta$	(G)
2234.1	C7HO6NS	Ammonium o-sulfobenzoate	R.	Bi.	-	53° 29′	84° 39′	Ax. pl. b(010); X a	(G)
	C7H10NBr C7H10O6Br2	Toluidine hydrobromide Dibromotrihydroxy tetrahydrobensoic	R. R.	Bi. Bi.	+	82° 37′ 76° 32′		Ax. pl. c(001); X b Ax. pl. c(001)	(G) (G)
260.1	C7H10O7N2	acid Mono-uriendihydroxy dimethyl succi-	R.	Bi.		72° 15.5′		Ax. pl. b(010); Z[]c	(G)
2260.2	C7H10O4N4	nate Isohydroxydimethylurea	М.	Bi.	+	40° 9.5′	62° 84.25′	Ax. pl. 1b(010); ZAc =	(G)
	C7H12O4N2S.2H2O	2, 4-Toluylendiamine sulfate	м.	Bi.	·		100°	2° 15' in acute ∠β	(G)
	C7H12O4	Trimethyl succinic acid		Bi.		84° 11′	(apprx.)	Ax. pl. (100); Bxa 1 (001)	(28)
	C7H19O4	l-Methylrhamnoside	R. R.	Bi.		36° 11′	57° 8′	Az. pl. b(010); X c	(G)
	C7H14O4	α-Methyl mannoside	R.	Bi.	+	46° 58′	75°	Ax. pl. b(010); Z a	(G)
2372	C7H14O4	α-Methyl glucoside	R.	Bi,	+	85° 18′		Ax. pl. b(010); Z c	(G)
2373	C7H14O6	β-Methyl glucoside	Tet.	Un.	'				(G)
	C7H11O6.H2O	dl-a-Methyl galactoside	R.	Bi.	+	53° 5′	85° 45′	Ax. pl. a(100); Z c	(G)
	C ₆ H ₄ O ₆ N ₂ Cl ₂	2, 4, 6-Trichloro-3-nitrobenzoic acid	M.	Bi.	-		42°	Ax. pl. \(\psi \b(010)\); \(\pi \wedge c = \)	(G)
	CaHaOaN	methyl nitramide Isatoic acid anhydride	M.	Bi.			(apprx.) 90°	69° in acute ∠β Ax. pl. ⊥b(010)	(G)
	C ₂ H ₄ O ₂ N	Phthaloxime	M.	Bi.			(apprx.)		(26)
2452	C ₈ H ₆ NBr	Bromobensyl cyanide	Trig.	Un.			1	l	(L-B
HUE	C.H.O.N.Br	1-Nitro-3-bromo-4-acetanilide (St. mod.)		Bi.	_		124° 10′	Ax. pl. \(\pm\)b(010)	(G)
	C ₈ H ₆ O ₈ Cl ₄	Tetrachlorophloroglucinol dimethyl ether		Bi.	+		90°	Ax. pl. a(100)	(G)
	C ₀ H ₇ O ₂ N ₂ Br	Nitrobromoacetanilide (α-mod.)	M.	Bi.	-	•	(apprx.) 124° 10'	Ax. pl. \(\pm(010)\); Bxa nearly	(2)
	C ₁ H ₇ ONCl ₂	Dichloroacetanilide	M.	Bi.	+	83° 35′		⊥(001) Ax. pl. ⊥b(010); Z∧c =	(G)
2536	CaH7OaNa	2, 3, 6-Trinitro-p-xylene	М.	Bi.	_	64° 32′		61° in obtuse $\angle \beta$ Ax. pl. b(010); $X \wedge c = 28^\circ$	(G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lil
	C _e H _e ONCl	Methylphenylures chloride	R.	Bi.			27° 41′	Ax. pl. c(001); Z b	(G)
	CaHaONa	Methoxyphenyltetrasole	Tri.	Bi.	-	74° 48′		Az. plb-axis	(G)
2556	C ₁ H ₁ O ₁ N ₁	m-Nitroacetanilide	M.	Bi.			80°	Az. pl. ⊥b(010)	(G)
2564	CaHaOaNa	2, 3-Dinitro-p-xylene	M.	Bi.	+		(apprx.) 105° 8'	Ax. pl. 1b(010)	(G)
2004	CaHaOaNa	9-Allyluric acid		Un.			100 0	AL pl. 15(010)	(21)
	CaHaOa	Hematinic acid anhydride	R.	Bi.	+		53°	Ax. pl. b(010); Z a	(G)
							(apprx.)		
	CaHaO7	Acetylcitric anhydride	R.	Bi.	-	71° 2′	120° 10′	Az. pl. a(100); X c	(G)
	C ₈ H ₉ N ₄ Cl.H ₂ O	Phenyliminotriasoline hydrochloride	М.	Bi.	+			Ax. pl. \perp b(010); $\mathbb{Z} \wedge c = 44^{\circ}$ in acute $\angle \beta$	(G)
	CaHaOaSCl	Chloromethyl-p-tolyl sulfone	R.	Bi.	+		110°	Ax. pl. b(010); Z c	(G)
	CHIORCI	Chioromethyr-p-toryr sunoacc			l '		(apprx.)	p.: 5(010),	(-)
2649	C ₆ H ₉ ON	Acetanilide	R.	Bi.	+	88° 36′		Ax. pl. b(010); Z[c	(G)
2657	C ₁ H ₂ O ₂ N	p-Acetaminophenol	M.	Bi.	-		90°	Ax. pl. \(\pm\b(010)\); X\(\psi\b)	(G)
2681	C ₁ H ₁ O ₁ N	Biliverdic acid	M.	Bi.	-		31°	Ax. pl. ⊥b(010); X∧ c =	(G)
	CHON	0. 4 Divises diseashed a cities	R.	Bi.			(apprx.) 23° 30'	55° in obtuse ∠β Ax. pl. c(001); X a	(G)
	C ₈ H ₉ O ₄ N ₃ C ₈ H ₁₀ O ₂ NCl	2, 4-Dinitrodimethylaniline Phenylglycocoll hydrochloride	R.	Bi.	_	18° 9′	20 00	Ax. pl. b(010); X a	(G)
	CaHaon Ca	p-Hydroxyphenylethyl alcohol (Tyrosol)	R.	Bi.	'	10 0	84° 30′	122 p. 5(616), 11 "5	(*)
	C ₄ H ₁₀ O ₄	Dimethylpyrogallol	M.	Bi.	+		53° 47′	Ax. pl. \(\pm\)b(010)	(G)
	C ₄ H ₁₂ NBr	Xylidine hydrobromide	R.	Bi.	-		55° 19′	Ax. pl. b(010); X a	(G)
	C ₈ H ₁₂ O ₂ NBr	Tetramethylauccinic bromoimide	R.	Bi.	-		62° 15′	Ax. pl. (100); Bxa ± (001	(28)
				1			(Hg, yellow)		1
	CaH12O2NCl	Tetramethylauccinic chloroimide	R.	Bi.	_		47° 29'	Ax. pl. (010); Bxa \(\pm(001)\)	(28)
	Ciniforner	1 etrametnyiauccime emoroimiue	N.	D 1.	_		(Hg.	Az. pi. (010), Dzg ±(001)	(,
			1	ļ			yellow)		j
	C ₄ H ₁₂ O ₂ NCl	Vanillylamine hydrochloride	M.	Bi.	_		70°		(23)
	C ₈ H ₁₂ NI	Ethylaniline hydroiodide	R.	Bi.			65°	Ax. pl. a(100); X c	(G)
			_	l			(apprx.)		رم.
2808.1	C ₆ H ₁₂ O ₆ N ₂	Tetraacetylhydrasine	R. M.	Bi. Bi.	+	47° 5′	79° 33′ 65°	Ax. pl. c(001); Z b Ax. pl. \(\perp b(010))	(G) (G)
	C ₆ H ₁₂ O ₆	trans-Hexahydroterephthalic acid	M.	ы.			(apprx.)	AL pl. 15(010)	(6)
	C ₁ H ₁₂ O ₄	Norpinie acid	М.	Bi.	+		70	Ax. pl. \(\pm\)b(010)	(G)
	0121101						(apprx.)		` `
	C ₆ H ₁₇ O ₄	Isopropylisoparaconic acid	M.	Bi.	+		51° 12′	Ax. pl. ⊥b(010); Z∧ c =	(G)
			١	۱ ـ.		000 44		83° in obtuse ∠β	(0)
	C ₆ H ₁₆ O ₆ N ₂	Lysidine d-ditartrate	М.	Bi.	-	80° 1′		Ax. pl. b(010); $X \wedge c = 30^{\circ}$ in obtuse $\angle \beta$	(G)
	CaH16O14N2Sb2.H2O	Ammonium antimonyl tartrate	R.	Bi.		68° 8′		in obtuse 2p	(L-B)
2915	C ₄ H ₁₀ O ₄	Metaldehyde	Tet.	Un.		00 0	Ì		(G)
2916.1	C ₆ H ₁₆ O ₄	bis-Methoxyacetol	M.	Bi.				Ax. pl. \(\pm\)b(010)	(G)
2920	C ₈ H ₁₆ O ₆	d, a-Ethyl glucoside	R.	Bi.	-	51° 14'		Ax. pl. b(010); X [a	(G)
	C ₈ H ₁₇ N ₂ Cl	4, 4-Dimethyl-5-isopropylpyrazoline hy-	M.	Bi.	-	56°	94° 40′	Ax. pl. b(010); $X \wedge c = 21^{\circ}$	(G)
	0 77 17 01	drochloride	м.	Bi.		56°	94° 41′	in obtuse $\angle \beta$ Ax. pl. b(010); $X \wedge c =$	(G)
	C ₈ H ₁₇ N ₂ Cl	Isobutyraldazine hydrochloride	M.	B1.	-	30-	94.41	21° in obtuse $\angle \beta$	(6)
2945	C ₈ H ₁₈ NBr	d-Coniine hydrobromide	R.	Bi.	+		45° 50′	Zic	(G)
2946	C ₁ H ₁ NCl	d-Coniine hydrochloride	R.	Bi.	+		20° 0′	Ax. pl. c(001); Z[b	(G)
2948	C ₈ H ₁₈ NI	d-Coniine hydroiodide	M.	Bi.	_		107° 30′	Ax. pl. b(010)	(G)
				l			(apprx.)		
	C ₄ H ₂₀ PI	Tetraethyl phosphonium iodide	Trig.	Un.			36° 29′	41 b(010), X''-	(G)
	C.H.OBr	Dibromohydrindone	R. R.	Bi. Bi.	-		30° 29°	Ax. pl. b(010); X a Ax. pl. b(010); Z e	(G) (G)
	C ₂ H ₇ OBr C ₂ H ₇ OCl	Phenyl-a-chloroacrolein	R.	Bi.	+		220	Ax. pl. a(100); Z c	(G)
	C ₂ H ₃ O ₂ Br ₂	Phenyldibromopropionic acid	M.	Bi.	+		5 7°	Ax. pl. 1b(010)	(G)
							(apprx.)		
	C ₂ H ₄ O ₂ Cl ₂	Ethyl dichlorosalicylate	R.	Bi.	-			Ax. pl. b(010); X c	(G)
3060	C ₀ H ₀ N ₂	3-Aminoquinoline	R.	Bi.	-	G 11	45°	Ax. pl. c(001); X b	(G)
	C ₉ H ₈ O ₄	Acetylsalicylic acid	Tri.	Bi.	-	Small	ŀ	Sections \(\perp \)Bxa; elongation = Z	(42)
	CaHaO12N4	Pentaerythritol nitrate	Tet.	Un.		2_0		- 2	(19)
	C ₂ H ₂ O ₄ N ₂ Br	Bromodinitromesitylene	M.	Bi.	_	42° 19′	88° 13′	Az. plb(010); X b	(G)
	C ₁ H ₂ Br ₂	Tribromomesitylene	Tri.	Bi.	l		24° 3′		(G)
	C ₁ H ₁ O ₂ Cl ₂	1, 3, 5-Trimethyl-1, 3, 5-trichlorocyclo-	M.	Bi.	-		60°	Ax. pl. b(010)	(G)
		hexan-2, 4, 6-trione		_			(apprx.)		
3103	C ₂ H ₂ ON	Hydrocarbostyril	R.	Bi.	-	60°		Ax. pl. a(100); X[c	(G)
	C.R.O.N	Banacula act chudacua mia acid	М.	Bi.	_	(apprx.) 47° 10'		Ax. pl. \(\psi \b(010)\); \(\pi \sigma \c = \)	(G)
	C ₂ H ₄ O ₂ N	Benzoylacetohydroxamic acid	MI.	D1.	-	4, 10		66° in acute ∠β	(0)
3111	C ₂ H ₂ O ₂ N	Hippuric acid	R.	Bi.	+	65° 49′		Ax. pl. c(001)	(G)
	C.H.ON.	1-Phenyl-3-methylpyrrodiazoline	R.	Bi.	-		64°	Ax. pl. b(010); X[c	(G)
				1			(red)		
	C ₂ H ₁₀ ON ₂	Isonitrosoanilacetone	R.	Bi.	-		41° 40′	Ax. pl. a(100); X [c	(G)
		1 751 1. 1. 1	R.	Bi.	I -		50°	Ax. pl. a(100); X [c]	(G)
	C ₉ H ₁₆ O ₄ N ₂	Dinitromesitylene	n.	J 24.			(0		
	C ₂ H ₁₆ O ₄ N ₂ C ₂ H ₁₆ O ₄	Dinitromesitylene	M.	Bi.	+	74° 45′	(apprx.)	Ax. pl. b(010); Z \(c = 5^\circ\)	(G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
3177	C ₀ H ₁₀ O ₄	d(l)-Phenylglyoeric acid	M.	Bi.	+		19°	Ax. pl. b(010); $Z \wedge c = 47^{\circ}$ in acute $\angle \beta$	(G)
3178	C ₉ H ₁₀ O ₄	dl-Phenylglyceric acid	М.	Bi.			19°	Az. pl. (010)	(10)
3179	C ₀ H ₁₀ O ₄	d(l)-p-Methoxymandelic acid	M.	Bi.			76° 30′	Ax. pl. b(010)	(G)
							(apprx.)		
	C ₂ H ₁₁ O ₂ Br ₂	Tribromocincolic anhydride	R.	Bi.	+		75°	Ax. pl. a(100); Z c	(G)
							(apprx.)		
	C ₀ H ₁₁ O ₄ Cl	β-Anhydrocamphoronyl chloride	R.	Bi.	+		75°	Ax. pl. c(001); Z o	(G)
3194	C.H.ION	o-Acetotoluide	R.	Bi.		58° 28′	(apprx.)	Ax. pl. b(010); Z a	(G)
3196	C ₀ H ₁₁ ON	p-Acetotoluide	M.	Bi.	+	88° 30′		Ax. pl. b(010), 2 a Ax. pl. b(010)	(G)
3199	C ₉ H ₁₁ ON	N-Methylacetanilide		Bi.	<u> </u>	51° 41′	87° 8′	Ax. pl. b(010); Z c	(G)
	C.H.11O2N	Methyl p-toluohydroxamic acid	M.	Bi.	<u> </u>			Ax. pl. \(\pm\b(010)\); X\(\psi\b)	(G)
	C ₂ H ₁₁ O ₂ N	Phenyl-\$-aminopropionic acid	M.	Bi.	+		77° 37′	Ax. pl. \(\pm\b(010)\); \(Z \wedge c = \)	(G)
	~ ~ ~							54° in obtuse ∠β	
3220	C.H.102N	Nitromesitylene	R.	Bi.	_		65° 32′	Ax. pl. a(100); X c	(G)
	C ₂ H ₁₁ O ₂ N ₂	ω'-Methyl-ω-phenyl biuret	H.	Un.			110° 39′	A1 b(010), 711-	(8.5)
	C ₂ H ₁₁ O ₂ NS.H ₂ O	Tetrahydroquinoline-5-(ana)-s ulfonic acid (St. mod.)	R.	Bi.			(apprx.)	Ax. pl. b(010); Z a	(G)
	C ₂ H ₁₂ ON ₂	Bensenylaminooxime ethyl ether	R.	Bi.		83° 21′	(appra.)	Ax. pl. c(001); Z a	(G)
	C ₂ H ₁₂ O ₂ N ₂ .H ₂ O	Bensenylamidine acetate	M.	Bi.	_	00 21	53° 59′	Ax. pl. b(010); X \(c = \)	(G)
		202202,12222222					55	15° in obtuse ∠β	``
3232	C ₂ H ₁₂ O ₂ N ₄	1, 3, 7, 9-Tetramethyluric acid	M.	Bi.	+	75° 19′		Ax. pl. \(\pm\)b(010); \(\mathbb{Z}\)\(\mathbb{c} =	(G)
								9° 30′ in acute ∠β	
	C ₂ H ₁₂ O ₂ S	Ethyl-p-tolyl sulfone	R.	Bi.		84°		Z ∥c	(G)
	C ₂ H ₁₂ O ₂ S	n-Propylphenyl sulfone	M.	Bi.	+		30° 10′	Ax. pl. b(010); $\mathbb{Z} \wedge \circ = 9^{\circ}$	(G)
								in obtuse ∠β	
	C ₂ H ₁₂ O ₂ .3H ₂ O	Trimethylphloroglucinol	М.	Bi.	-		80°	Ax. pl. b(010); X \(\pm\)e(001)	(G)
2051	077.0	Down well-1 Astro-Aktol Aktor	l 5	ъ.			(apprx.)	A1 1/010). 675-	(0)
3251	C ₉ H ₁₂ O ₉	Pyrogallol trimethyl ether	R.	Bi.			80° (apprx.)	Ax. pl. b(010); Z c	(G)
	C ₀ H ₁₂ O ₄	Anhydrocamphoronic acid	R.	Bi.	+		76°	Ax. pl. b(010); Z o	(G)
	Cimio	And a complete me acid			' '		(apprx.)	112. pr. 5(010), 280	(()
	C ₀ H ₁₂ O ₀	Methanetetraacetic acid	Tet.	Un.			((19)
	C.H.NBrCl	m-Chlorophenyltrimethyl ammonium	R.	Bi.	_		3° 35′	Ax. pl. a(100); X [c	(G)
		bromide		1		İ			
	C ₉ H ₁₂ NCl ₂	m-Chlorophenyltrimethyl ammonium	R.	Bi.	-		24° 59′	Ax. pl. b(010); X [c	(G)
		chloride			1				
	C ₀ H ₁₃ O ₄ NS	Tetrahydroquinoline sulfate	M.	Bi.			71° 2′		(G)
	C ₀ H ₁₂ O ₂ N ₃	Nitrodiaminomesitylene	M.	Bi.	+		40°	Ax. pl. b(010)	(G)
	C ₂ H ₁₂ O ₅ N ₂	m-Nitrophenyltrimethyl ammonium	R.	Bi.			(apprx.) 43° 7'	Az. pl. c(100); Z[]e	(G)
	Cinioni	nitrate	n.	Бі.			40.1	Ax. pi. e(100); 2 6	(6)
	C ₀ H ₁₂ O ₇ NS	Tyrosine sulfate	M.	Bi.			86°	Ax. pl. b(010)	(G)
	CoH14O2NCI	Veratryl amine hydrochloride	M.	Bi.	_		About 60°		(23)
	C ₉ H ₁₄ O ₇ N ₂	Mono-uriendihydroxy diethyl succinate.	R.	Bi.		84° 1.5′		Ax. pl. b(010); Z c	(G)
	C ₉ H ₁₄ O ₇	β-Oxycamphoronic acid (?)	M.	Bi.	+	80° 17′		Ax. pl. b(010); Z \(c = \)	(G)
								41° 45' in obtuse ∠β	
	C ₀ H ₁₀ ON	N-Methylgranatonine		Bi.	+	[78° 49′	Ax. pl. b(010); Z c	(G)
3293 .1	C ₂ H ₁₈ O ₂ N.H ₂ O	l-Ecgonine	M.	Bi.	1	1	70°	Ax. pl. 1b(010).	(G)
	G T O N	A made and bright down all to be bright and an artificial and		- D.			(apprx.)	A 1 5 (010) - 611-	
	C ₉ H ₁₈ O ₄ N C ₉ H ₁₆ O ₂ N ₃ SCl.2H ₂ O	α-Aminoethylidene diethyl succinate	R.	Bi.			83° 53′ 79°	Ax. pl. b(010); Z a	(G)
	C ₂ H ₁₆ O ₂ N ₂ SI.2H ₂ O	Ergothionine hydrochloride Ergothionine hydroiodide	R. R.	Bi. Bi.	_	1	79°	Ax. pl. c(001); X b Ax. pl. b(010); Z a	(G) (G)
	Cinion St. 2110	Ergotinonine nyuroiouide	I.	D 1.	+		(apprx.)	Az. pi. b(010), 2 k	(6)
	C ₉ H ₁₆ O ₃	3, 3, 5-Trimethylhexan-ol-olid	R.	Bi.	_	57° 16′	93° 14′	Ax. pl. c(001); X a	(G)
	C ₀ H ₁₇ O ₂ N ₃	N-Methylpyrrolidine-a, a-dicarboxy		Bi.	-	1	110°	Ax. pl. b(010)	(G)
		methylamide		ł	1		(apprx.)		
3344	CeH1sO7	Galactite	R.	Bi.	-	69° 46′		Ax. pl. b(010); X a	(G)
	C14H4OCl4	Hexachloro-α-ketohydronaphthalene	M.	Bi.	-	74° 44′		Ax. pl. ⊥b(010); X∧c =	(G)
				1			1	108° (?) in obtuse ∠β	
	C10H4OCl6	Hexachloro-β-ketohydronaphthalene	R.	Bi.	+	91° 6′	İ	Ax. pl. a(100); Z b	(G)
	0.17.00	The later of the l		.		(at axis c)		4 1 11 (010) 37 4	رم.
	C10H4OCl2	Trichloro-α-ketonaphthalene	M.	Bi.	-	1	113° 20′	Ax. pl. \(\pm\)b(010); X\\\ c =	(G)
	C10H3OCl2	α-Trichloro-β-ketonaphthalene	R.	Bi.		57° 6′	93° 34′	66° in acute ∠β Ax. pl. a(100); Z∥c	(6)
	C10H4OCl4	α-Pentachloro-β-ketohydronaphthalene.	M.	Bi.	_	3, 0	83 34	Ax. pl. \perp b(010); $X \wedge c =$	(G) (G)
	010211002	a realisate p actory aronaphonaiche.		2	ł		l	17° 57′ (?) in acute ∠β	(0,
3404	C10H1OeN2	1, 3, 5-Trinitronaphthalene	R.	Bi.	l –		94° 14′	Ax. pl c(001); X a	(G)
3495	C10H1Cl4	Naphthalene tetrachloride	M.	Bi.		i	84°	Ax. pl. 1b(010)	(G)
			ł	1	1	l	(apprx.)		
	C10H0O2N2	Diisonitrosoisosafrol anhydride		Bi.	-		62° 14′	Ax. pl. c(001); X b	(G)
	C ₁₀ H ₃ O ₂	Pinastrinic acid		Bi.	+			Az. pl. a(100); Z c	(G)
0000			M.	Bi.	_	55° 34′	l	Ax. pl. \perp (010); $n_{\alpha} \wedge c =$	(41)
3539	C10H4O682.4H2O	Naphthalene-1, 5-disulfonic acid	1		l	/			
	C10H6O6S2.4H2O			1		(calc.)		84° 0.5′ in acute ∠β	
3539 3540		Naphthalene-1, 5-disulfonic acid Naphthalene-1, 6-disulfonic acid		Bi.		(calc.) 79° 0.5′		84° 0.5' in acute ∠β Ax. pl. ⊥(010); nβ∧ c =	(41)
	C10H6O6S2.4H2O		M.	1			57° 12′	84° 0.5′ in acute ∠β	

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
	C10H0O2N C10H0O2N	Phthalylethylhydroxylamine Phthaloxime ethyl ether	R. R.	Bi. Bi.	-		91° 17′ 70°	Ax. pl. a(100); X∦c Bxa⊥(001)	(G) (26)
				1	1		(apprx.)		
	C10H0O6N	Dimethylnitroterephthalate	Tri.	Bi.	-		95° 30′	X 1b(010)	(G)
	C10H2O1N2	Nitrodiisonitrosoanethol peroxide	M.	Bi.		73° 48′		Ax. pl. b(010); $\mathbb{Z} \wedge c = 38^{\circ}$ in acute $\angle \beta$	(G)
3585	C10H10ON2	N-Phenyl-3-methylpyrasolone	M.	Bi.			72° 56′	Ax. pl. ⊥b(010); Z∥b	(G)
	C10H10O2N2	Diisonitrosoanethol anhydride	М.	Bi.				Ax. pl. \perp b(010); $Z \wedge c = 40^{\circ}$ in acute $\angle \beta$	(G)
	C10H10O2	Phenylisooxybutyrolactone	M.	Bi.				Ax. pl. b(010); $\mathbb{Z} \wedge c = 96^{\circ}$ in obtuse $\angle \beta$	(G)
	C10H10O4	2, 4-Dihydroxycinnamic acid	М.	Bi.	-		106° 20′ (red)	Ax. pl. ⊥b(010)	(G)
	C10H11O4N2Cl	Dinitrochlorocymene	7	Bi.	+		120°		(37
	C10H11O4N2Cl	2-Chloro-5, 6-dinitrocymene	M.?	Bi.	-		70°		(37)
	C10H11ON	β-β-Dimethyl-α-indolinone	R.	Bi.	-	46° 39′	81° 48′	Ax. pl. c(001); X a	(G)
	C10H11ON	β-Ethyl-α-indolinone	М.	Bi.	-		38° (apprx.)	Az. plb(010)	(G)
	C16H11O4N	Nitrocumic scid	М.	Bi.	-	36° 58′	64° 25′	Ax. pl. b(010); $X \wedge c = 14^{\circ} 11'$ in scute $\angle \beta$	(G)
	C19H19O2N2	p-Aminophenaceturic acid	М.	Bi.	-		102° 30′	Az. pl. \(\pm\)b(010); X nearly	(G)
	C10H12O2N2	a-Diisonitrosoanethol	M.	Bi.	+		30° 45′	Az. pl	(G)
	C10H12O2N2	Ethyl No-phenyl allophonate		Bi.	Ι΄.			. =	(8,5)
	C10H12O2	p-Methoxyhydroatropic acid	M.	Bi.	+	77° 58′		Ax. pl. b(010); Z \(c = 57^\circ\)	(G)
	0 77 0	Contraction	R.	Bi.	1	89° 7′		in acute ∠β Ax. pl. c(001); Z∥b	(G)
	C10H12O4 C10H12O4S	Cantharidin	R.	Bi.	_	46° 45′		Ax. pl. b(010); X a	(G)
	C10H19Os	Methyl 4-hydroxy-3, 5-dimethoxyben-	M.	Bi.	-	10 10	63°	Ax. pl. b(010); $X \perp r(101)$	(G)
	Cidano	soate					(apprx.)		,,,
	C16H12Br2	Tribromocamphene	R.	Bi.	-	80°		Ax. pl. c(001); X b	(G)
			_	٠	١.,	(apprx.)	1000 001	4 11/040) 57"	۱.,
3709	C ₁₀ H ₁₈ ON	N-Ethylacetanilide	R.	Bi. Bi.	+	62° 14′	103° 27′	Ax. pl. b(010); Z c	(G) (G)
3716	C10H12O2N C10H12O2N	Phenacetin	М, М.	Bi.	_	02-14	59° 46′	Ax. pl. b(010) Ax. pl. b(010); $X \wedge c = 27^{\circ}$	
	Cierrio	p-roly arothano			ł			in acute $\angle \beta$	(,
	C10H12O2N	Vanillyl acetamide	M.	Bi.	+		110° (115° calc.)		(24)
8732	C10H14	1, 2, 4, 5-Tetramethylbensene	М.	Bi.	-	87° 22′		Ax. pl. b(010); $X \wedge c = 0^{\circ}$ 54' in obtuse $\angle \beta$	(G)
	C10H14O2Br	d-Bromopseudonitrocamphor	R.	Bi.	+	79°	<u> </u>	Ax. pl. c(001); Z a	(G)
8742	C10H14OBr2	d-α, α'-Dibromocamphor	R.	Bi.	_	(apprx.) 56° 5′	90° 38′	Ax. pl. a(100); X b	(G)
0.42	C10H14OBr2	d-α, β-Dibromocamphor	R.	Bi.	_	77° 51′	** **	Ax. pl. b(010); X c	(G)
	C10H14OCl2	d-α, π-Dichlorocamphor	R.	Bi.	+		62° 18′	Zle	(G)
	C10H14O2SCl2	d-α-Chloro-π-camphosulfonic chloride	R.	Bi.]	59°		Ax. pl. a(100); Z]b	(G)
	a was	A		D:	1	(apprx.)		41 (010)	(41)
3756	C10H14O6N2S2 C10H14O	Ammonium naphthalene-1, 5-disulfonate	M. Trig.	Bi. Un.	+	49° 40′		Ax. pl. 1(010)	(G)
8/90	C10H14O2	d(l)-Camphoric anhydride		Bi.	_		31° 20′	Ax. pl. a(100); X[c	(G)
					1		(red)		
	C10H14O4	Tetramethylapionol	R.	Bi.	+	49° 13′	80° 1′	Ax. pl. a(100); Z¶c	(G)
	C10H14O5	Methyl a-anhydrocamphoronate	R.	Bi.	-		120° (apprx.)	Ax. pl. a(100); X b	(G)
	C10H14O8	Methyl β-anhydrocamphoronate	R.	Bi.	_		33°	Az. pl. a(100); X b	(G)
					l .		(apprx.)		
9770	C10H14Os	Dimethyl discetylracemate	R.	Bi.	+	62° 36′ 76°	103° 29′	Az. pl. c(001); Z b	(G)
3779	C ₁₀ H ₁₀ OBr	d-β-Bromocamphor	R.	Bi.	+	(apprx.)		Ax. pl. a(100); Z c	(G)
	C10H10O2N2Br	a-Bromopernitrosocamphor	R.	Bi.	+	(apprint)	99° 28′	Ax. pl. b(010); Z@c	(G)
	C10H13O2N2Br	β-Isobromopernitrosocamphor	R.	Bi.	+	ļ	69° 20′	Ax. pl. a(100); Z e	(G)
	C10H15OBra	d(l)-Dihydrocarvone tribromide	R.	Bi.	+		59° 45′	Ax. pl. (100); Z c	(G)
	C10H15O3SBr	d-x-Camphoricsulfonyl bromide	R.	Bı.	+		35°		(G)
	C10H18O8Cl	d-w-Camphoricsulfonyl chloride	R.	Bi.	+		45*		(G)
	C10H10O7N	l-Ratanhin sulfate	R.	Bi.			(apprx.) 75°	Az. pl. c(001)	(G)
	C10H16NBr	Diethylaniline hydrobromide	М.	Bi.	-	77° 33′	(apprx.)	Ax. pl. ⊥b(010); X∧c =	(G)
	C. H. OBs	Pinal dibramide	R.	p:			131° 21′	70° in obtuse ∠β Ax. pl. a(100); X∦c	(G)
	C10H16OBr2 C10H16NI	Pinol dibromidep-Tolyltrimethylammonium iodide	R.	Bi. Bi.	-		20° 36′	Ax. pl. s(100); A c Ax. pl. b(010); Z c	(G)
3867.1	C10H10O2	dl-Pinonic acid	M.	Bi.	"	88° 32′		Ax. pl. b(010); $Z \wedge c = 57^{\circ}$	(G)
				1			44 6	in acute ∠β	
	C10H10O2	d-a-Thugene ketonic acid	R.	Bi.	+		74° 14′	Ax. pl. a(100); Z c	(G)
	C10H16O5	Isoketocamphoric acid	М.	Bi.	+		80° (apprx.)	Ax. pl. b(010); Z nearly 	(G)
3873	C10H10Os.H2O	l-Cineolic acid	R.	Bi.	_	25° 30′	(appla.)	Ax. pl. b(010); X [c	(G)
3886.1	CieHirOaN	dl-a-Pinoneoxime	M.	Bi.	+		60°-70°	Ax. pl. b(010); $Z \wedge c = 10^{\circ}$	(G)
		1	l	1	l			in acute ∠β	i

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
	C10H10O2	2-Hydroxy-Δ', 3-p-menthenone	M.	Bi.	-			$X \wedge c = 63^{\circ} 6' \text{ in obtuse}$	(G)
	C10H10O0	α, α'-Methylisopropyl-α, α'-dihydroxy-							
		adipic acid	7	Bi.			75°		(37)
	C10H11ON	Δ ⁶ , 8-Methylnonenyl amide	ł	Bi.	+		60°		(23)
3964	C10H20ONCl	Lupinine hydrochloride	R.	Bi.	+	59° 18′	102° 10′	Ax. pl. c(001); Z[a	(G)
	C10H20OeN2.3H2O	a-2, 5-Dimethylpiperasine tartrate	M.	Bi.			80°	Ax. pl. \(\pm\)b(010)	(G)
					ļ		(apprx.)		
	C ₁₀ H ₂₀ NPS	Triethylallylphosphothiourea	М.	Bi.	-	72° 30′.		Ax. pl. b(010); $X \wedge c = 24^{\circ}$ in acute $\angle \beta$	(G)
	C10H20O2	cis-Terpine hydrate	R.	Bi.	+	77° 27′		Az. pl. b(010); Z a	(G)
39 80	C10H20O2	trans-Terpine	М.	Bi.	+		74° 15′	Ax. pl. \perp b(001); $\mathbb{Z} \wedge c = 5^{\circ}-6^{\circ}$ in soute $\angle \beta$	(G)
	C11H6O19.5H2O	Bensenepentacarboxylic acid	R.	Bi.	-		57° 30′	Ax. pl. b(010); X [c	(G)
	C11HaN4Oa	9-Phenyluric acid	ŀ	Un.				i	(8.5
	C11H9O4Br	Phenylbromoparaconic acid	R.	Bi.		56° 50′		Ax. pl. b(010); Z a	(G)
	C11H2O2N	Citraconanil	M.	Bi.	+		14° 56′	Ax. pl. b(010)	(G)
	C11H11O2Cl2	Trichloromethyl-o-methox y p h e n y l -	M.	Bi.	l –		75° 11′	Ax. pl. ⊥b(010)	(G)
		carbinol acetic ether							
	C11H11O2N	Glutaric aniline	M.	Bi.	l		90°	Az. pl. (010)	(28)
4043.1	C11H11ON2Br	4-Bromoantipyrine	Ditrig.	Un.	İ				(G)
	C11H11O1N	β-Benzyl malimide	R.	Bi.	-	62°-66°		Ax. pl. b(010); X c	(G)
4053	Ci1H11OiN	Ethyl o-nitrocinnamate	R.	Bi.	-		57° 40′	Ax. pl. c(001); X a	(G)
	C11H11ON2	4-Iodoantipyrine	Trig.	Un.				A = =1 b (010) - 35 + 78	(G)
	C11H12O2Br2	Ethyldibromocinnamate	M.	Bi.	-	86°		Ax. pl. b(010); $X \wedge c = 7^{\circ}$ in acute $\angle \beta$	(G)
4058	C11H12ON2	Antipyrine	,	Bi.		(apprx.) 54° 20'	103° 21′	in acute Zp	(L-B
1000	C11H12O2N2	4-Hydroxyantipyrine	м.	Bi.		04 20	116° 23′	Ax. pl. b(010); Z \(\pm \)e(001)	(G)
	C11H12O2N	Methyl phenaceturate	R.	Bi.			1.0 20	Ax. pl. b(010)	(G)
4086	C11H14ON:	Cytisine	R.	Bi.	+	61° 36.5'	l	Ax. pl. a(100); Z c	(G)
	C11H14O2N2	Ethyl a-phenylhydrasine pyroracemate.	М.	Bi.	<u> </u>			Ax. pl. \perp b(010); $X \wedge c = 47^{\circ} 4'$ in acute $\angle \beta$	(G)
	C11H14O4	Methyl 3, 4, 5-methoxybenzoate	M.	Bi.			113° 13' (white)	Ax. pl. \(\pm\)b(010)	(G)
	C11H15ON2Br.H2O	Cytisine hydrobromide	М.	Bi.	-	87° (apprx.)		Ax. pl. b(010)	(G)
	C11H16O5NCl	Methyl 3, 4, 5-trimethoxy-2-aminoben-	R.	Bi.	-	(,	70° (apprx.)	Ax. pl. c(001); X a	(G)
	C11H10N2Cl.H2O	Cytisine hydrochloride	М.	Bi.		72° (apprx.)		Ax. pl. b(010); $Z \wedge c = 55^{\circ}$ in obtuse $\angle \beta$	(G)
	C11H15O2N	Vanillyl propionamide	R.	Bi.	-	(,	100° (98° calc.)		(24)
	C11H18O2N	Pyrocatechol carboxyl diethylamide	M.	Bi.	+		7° 56′	Ax. pl. b(010); $Z \wedge c = 55^{\circ}$ in obtuse $\angle B$	(G)
	C11H16O7N	-Bensylhydroxylamine ditartrate	R.	Bi.			90° (apprx.)	Ax. pl. a(100); Z b	(G)
	C11H1sO2N2	Nitrosoamylene nitroaniline	R.	Bi.	+	82* 51'	(Ax. pl. b(010); Z[e	(G)
	C11H18O4N2.H2O	Cytisine nitrate	M.	Bi.	 	38° 49′	ł	Ax. pl. b(010)	(G)
	C11H16ON2	Amylene nitraniline	R.	Bi.	+	88° 21′	İ	Ax. pl. a(100); Z[c	(G)
	C11H10O6	Dimethyl camphoronate	R.	Bi.	-		50°	Ax. pl. b(010); X a	(G)
	C II ON CI	American standard by American Standard		.	١.	750 417	(apprx.)	41 15(010)	(G)
	C11H17ON2Cl C11H18NBr	Amylene nitraniline hydrochloride Diethyl-p-toluidine hydrobromide	M. M.	Bi. Bi.	 +	75° 41′ 69° 41.5′	ł	Ax. pl. \(\pm\)b(010) Ax. pl. \(\pm\)b(010)	(G) (G)
	C11H18Os	Ethyl camphoronate	M.	Bi.	"	05 41.5	56°	Ax. pl. 1b(010)	(G)
	Chillion	Budy vamphoromato	***			1	(apprx.)	112. pi. 25(010)	\ '
	C11H12O2 C11H20ON2	Triethyl desoxalate Terpinene nitrolmethylamine	М. М.	Bi. Bi.	-	55° 20′	61° 59′ 93° 56′	Ax. pl. $\pm b(010)$ Ax. pl. $\pm b(010)$; $\mathbb{Z} \wedge c =$	(G) (G)
	C11H21O4N	N-Methyl-2, 2, 6, 6-tetramethyl-4-hy-	R.	Bi.	_	82° 31′		31° in obtuse ∠β Ax. pl. a(100); X∥b	(G)
		droxypiperidine carboxylic acid	1	1					٠
4184 4185.1	C12H4 C12H4Br2	Acenaphthylenep, p'-Dibromodiphenyl	R. M.	Bi. Bi.	+	70° 16′ 50°-60°	114° 46′	Ax. pl. a(100); Z b Ax. pl. \(\perp b(010)\)	(G) (G)
		and the second second				(apprx.)			۰.,
4218	C12H10	Acenaphthene	Ř.	Bi.	+	70° 26′	115° 40′	Ax. pl. a(100); Z b	(G)
4221.1 4225	C12H10ICl	Diphenyliodonium chloride	M.	Bi.	١	Į.	Large 59° 5′	Ax. pl. $b(010)$ Ax. pl. $\perp b(010)$; $Z \wedge c =$	(G) (G)
4220	C12H10N2	Azobenzene	М.	Bi.	+	ł	39.5	62° in scute $\angle \beta$	(6)
	C12H10ON2 C12H10ON2	α-Benzoylpyridine oxime	R. M.	Bi. Bi.		66° 28°		Ax. pl. b(010); Z a Ax. pl. b(010); Z \(\Lambda\) c = 62°	(G) (G)
							Ī	in obtuse ∠β	' '
	C12H10O4S4	Bensenesulfone trisulfide	Tet.	Un.	}	!			(G)
4261	C12H10S2	Diphenyl disulfide	R.	Bi.	-		85°	Az. pl. b(010); X c	(G)
	0 77 0 07	70.1.4.7	_		i	İ	(apprx.)	A = 1 = (100) 7811	۱
	C12H11O2SBr C12H11O2SCl	Ethyl 1, 5-bromonaphthalene sulfonate. Ethyl 1, 5-chloronaphthalene sulfonate	R. M.	Bi. Bi.		42°	29° 52′	Ax. pl. a(100); Z b Ax. pl. b(010)	(G) (G)
	0 77 037	70	l _	 	1	(apprx.)		1 1 (001) 7"	رم.
	C ₁₂ H ₁₁ ON	α-Phenylpyridyl carbinol	R.	l Bi.	I	65°	1	Ax. pl. c(001); Z a	(G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
4272	C12H11O2N8 C19H19O2N	Benzenesulfanilide	Tet. Tri.	Un. Bi.	+		Very large		(G) (24)
	C12H12O2N	Vanillyl isobutyramide	R.	Bi.	-		18° (17° 48′		(24)
	C12H12O2 C12H12O2	Ethyl β-methylcoumarilate	R. R.	Bi. Bi.			calc.) 72° 34′ 124° 4′ (Hg,	Az. pl. b(010); Z∦c Az. pl. (010); Bz ₀ ⊥(001)	(G) (28)
	C12H12O2 C12H14NI	Acetotetrahydrocinchoninic acid Tetrapropyl ammonium iodide	R. R.	Bi. Bi.	-		yellow) 12° 24' 30° 1'	X b Ax. pl. (100); X b	(G) (G)
	C12H14NI	1, 3, 3-Trimethyl-2-methylene indoline hydriodide	R. M.	Bi. Bi.	-	23° 48′ (red) 74° 2′	57° 16′ (red)	Ax. pl. c(110); X b	(G) (G)
	C12H14ON2 C12H14ON2	1-P h e n y l-3-methyl-4-dimethylpyra- solone 4-Methylantipyrine	M.	Bi.		86°	•	Ax. pl. ⊥b(010) Ax. pl. b(010); Z∧ c = 47°	(G)
4318.1	C12H14O2 C12H14O4	Ethyl p-methoxycinnamate Dimethyl phenylsuccinate	M. M.	Bi. Bi.	+	(apprx.)	10°	in acute ∠β Ax. pl. b(010) Ax. pl. ⊥b(010)	(G) (G)
	C12H16ON2I	1-Phenyl-3-methyl-5-methoxypyrasole		Bi.	-	72°	(apprx.)	Az. pl. b(010); XAc=	(G)
	C12H18ON2I C12H18ON2I	2-methiodide Antipyrine pseudomethiodide Antipyrine pseudoethiodide	M.	Bi.	+	75° 44′ 74° 45′		73° in obtuse ∠β Ax. pl. b(010); Z∧ c =	(L-B)
4330.1	C12H15ON C12H16O2N	7-IsopropylhydrocarbostyrilEthyl phenaceturate	R. R.	Bi. Bi.		64° 51′		84° 30' in obtuse ∠β Ax. pl. b(010); Z a Ax. pl. b(010)	(G) (G)
4000.1	C12H16O2N C12H16O2N C12H16O2	Vanillyl crotonylamide	R. R. Tri.	Bi. Bi. Bi.	+		Large 85°	Ax. pl. \(\pm \colon \c	(24) (G)
	C12H17O2N2 C12H13ON2Cl	Nitrosoamylenenitrol-p-toluidine Amylenenitrol-p-toluidine hydrochloride	R. M.	Bi. Bi.	++	77° 50′ 59° 26′	(apprx.) 167° 37' 97° 30'	Ax. pl. ⊥b(010); Z c Ax. pl. ⊥b(010); Z∧ c =	(G) (G)
	C12H12ON2	Amylenenitrol-p-toluidine	М.	Bi.	-		72° 40′	12° in obtuse $\angle \beta$ Ax. pl. b(010); $X \wedge c = 35^{\circ}$ in acute $\angle \beta$	(G)
4368.3	C12H12O4 C12H12O6	Dimethylcantharidin	R. M.	Bi. Bi.	+ +	64°	116°	Ax. pl. b(010) Ax. pl. b(010)	(G) (G)
	C12H20O C12H20OS2	Matico camphor		Un. Bi.	_	(apprx.) 33° 24'		Ax. pl. b(010); X[a	(G) (G)
4394	C12H22ON2 C12H22O11.H2O	Terpinene nitrolethylamine		Bi. Bi.	_	70° 53′	128° 32′ 33° 35′	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c =$ 26° in obtuse $\angle \beta$ Ax. pl. \perp b(010); $\mathbb{X} \wedge c =$	(G) (G)
4396	C12H22O11	Saccharose		Bi.	_	48° 0′	79° 7′	$10^{\circ}-11^{\circ}$ in obtuse $\angle \beta$ Ax. pl. b(010); $\mathbb{X} \wedge c =$	(G)
4397	C12H22O11.2H2O C12H22O4N.2H2O	Trehalosed-Conjine ditartrate	R. R.	Bi. Bi.	+ +	50° 16′	78° 56′ 43° 33′	67° 45' in obtuse ∠β Ax. pl. b(010); Z c Ax. pl. a(100); Z c	(G) (G)
	C12H24O12N4.9H2O	Ammonium mellitate	R.	Bi.	-		17° (apprx.)	Ax. pl. b(010) (red); X#c	(G)
4434	C18H8O3Cl9 C18H9N	Phenyl 3, 5-dichlorosalicylate	R. R.	Bi.	-		70° 35′ 117° (apprx.)	Ax. pl. a(100); X c Ax. pl. c(001); Z a	(G) (G)
4454	C12H16N2 C12H19O2	Bensenyl-o-phenylenediamine	ĺ	Bi. Bi.	+		63° 96° 20′	Ax. pl. b(010); Z nearly Lc(001) Ax. pl. b(010); X a	(G) (G)
	C12H2O2Br	Phenyl m-bromobensoate		Bi.	+		41° 4′	Ax. pl. b(010); Z c	(G)
	C12H11O4NS C12H12O4Br2	p-Aminobenzophenone-p'-sulfonic acid. Ethyl dibromohydroxydimethylisocou- marilate	M. M.	Bi. Bi.			80° (apprx.)	Ax. pl. $\ (010); Z = c$ Ax. pl. $b(010); Z \wedge c = 30^{\circ}$ in obtuse $\angle \beta$	(G)
	C12H12O4Cl2	Ethyl dichlorohydroxydimethylcouma- rilate	M.	Bi,			75° (appra.)	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c = 30^{\circ}-35^{\circ}$ in obtuse $\angle \beta$	(G)
4500	C12H12ON2	p-Hydroxy-p'-methylasobensene		Bi.	-		52° 30′ (apprx.)	Ax. pl. b(010); $X \wedge c = 57^{\circ}$ in obtuse $\angle \beta$	(G)
	C14H12O2N4 C12H12O4N4	1, 3-Dimethyl-9-phenyluric acid 1. 3-Dimethyl-9-phenylpseudouric acid.	1	Bi. Bi.			Large Large		(21)
4509	C11H11O1S	Phenyl p-toluene sulfonate		Bi.	-		84° 19′	Ax. pl. a(100); X b	(G)
	C12H12O4N C12H14O4	Acetanilinopyrotartaric anhydride Ethyl hydroxydimethylisocoumarilate	M. R.	Bi. Bi.	+		86° 2′ 65°	Ax. pl. \(\pm\)b(010); \(\begin{align*} \begin{align*} \Lambda \to (001) \\ \begin{align*} \Lambda \to (001) \\ \ext{Z} \\ \ext{la} \end{align*}	(G) (G)
4530.1	C14H12ON2	4-Ethylantipyrine	м.	Bi.			(apprx.) 30° (apprx.)	Ax. pl. b(010); $Z \wedge c = 40^{\circ}$ in obtuse $\angle \beta$	(G)
4530.2	C12H16ON2 C12H16O16	1-Phenyl-2-propyl-3-methylpyrasolone. Glycogallin	M. M.	Bi. Bi.	-	52° 50′	79° 59′ 55° (apprx.)	Ax. pl. \perp b(010); $\mathbb{Z}\parallel$ b Ax. pl. b(010); $\mathbb{X} \wedge e = 16^{\circ}$ in obtuse $\angle \beta$	(G) (G)
	C18H17ON9I	1-Phenyl-3-methyl-5-ethoxypyrazole-2- methiodide	M.	Bi.	-		88° (apprx.)	Ax. pl. \(\pm\)b(010); X\(\pm\)b	(G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
	C ₁₈ H ₂₀ NCl	2-Methyl-3, 3-diethyl-2, 3-dihydroindol	M.	Bi.	-	81° 51′	1		(G)
	C12H20NI	hydrochloride Methylethylallyl-p-tolylammonium iodide	R.	Bi.			89° (apprx.)	Ax. pl. c(001); Z c	(G)
	C12H20O4	Pentaerythritol tetraacetate	Tet.	Un.			(-)		(19)
	C12H22OS2	Ethyl dl-bornylxanthate	R.	Bi.	_		51° 16′	Ax. pl. b(010)	(G)
	C14H7O4N2Cla	Dinitrodichlorodiphenyltrichloroethane.	М.	Bi.	_		58°	Ax. pl. b(010); X A c =	(G)
							(apprx.)	28° 30' in obtuse ∠β	\ ` `
	C14H4Cl4Br2	1, 1-Di(bromophenyl)-2-dichtoroethylene	R.	Bi.	+		34° 22′	Ax. pl. c(001); Z a	(G)
	C14HsCl4	1, 1-Di(chlorophenyl)-2-dichloroethylene	R.	Bi.	+		34° 26′	Ax. pl. b(010); Z a	(G)
	C14H9ClaBr2	1, 1-Di(bromophenyl)-2-trichloroethane.	R.	Bi.	+	l	62° 12′	Az. pl. c(001); Z b	(G)
4650	C14H10	Diphenylacetylene	М.	Bi.			420	Ax. pl. \(\pm\)b(010)	(G)
	C14H10Cl2	1, 1-Diphenyl-2-dichloroethylene	М.	Bi.	_		(red) 30° 50′	Ax. plb(010)	(G)
4656.1	C14H10O2N2	Phthalylphenylhydrazine (orange yellow)	M.	Bi.			85°	Az. plb(010)	(G)
			_	1	Ī	ł	(apprx.)		
4672	C14H10O2	Bensil	Trig.	Un.	İ	l			(G)
4681 4688	C14H10O2 C14H10O4	Disalicylaldehyde	M. R.	Bi. Bi.		1	1	A (100) - (71)	(G)
1000	C14H16U4	Benzoyl peroxide	M.	Bi. Bi.	1 .		110°	Ax. pl. a(100); Z b Ax. pl. b(010)	(G) (G)
4705	C14H11O1N	Dibenzohydroxamic acid	R.	Bi.	+ +	1	54° 35′	Ax. pl. a(100); Z b	(G)
		Dibensony at Oznamie sera	1		'	1	(red)	Az. pi. a(100), 2 5	(0)
4708	C14H12	Stilbene	М.	Bi.	+		91° 33′	Az. plb(010); Z ^ c =	(G)
			١		1	1	1	60° in acute ∠β	
	C14H12N4	1, 5-Diphenyl-3-iminotriasoline	М.	Bi.				Ax. pl. b(010)	(G)
	C14H12O	Phenyl p-tolyl ketone	M.	Bi.	-	Van. J	35° 15′	Ax. pl. \(\pm\beta(010); \(X \wedge c = \)	(G)
	C14H11N	o-Iminodibensyl	М.	Bi.			69° 58.5′	36° 57' in acute ∠β Ax. pl. ⊥b(010)	(G)
4748	C ₁₄ H ₁₅ ON	N-Benzoyl-o-toluidine	R.	Bi.	+ 1	87° 33′	00 00.0	Ax. pl. a(100)	(G)
4749	C ₁₄ H ₁₈ ON	N-Bensoyl-m-toluidine	М.	Bi.		0. 00	38° 10′	Az. plb(010)	(G)
4750	C14H16ON	N-Bensoyl-p-toluidine	R.	Bi.	l	73° 43′		Ax. pl. c(001); Z b	(G)
4752	C14H12ON	N-Diphenylacetamide	R.	Bi.	+	5 2° 2′		Ax. pl. c(001); Z a	(G)
	C14H13O2N2	o-Nitrobensyl-o-toluidine	R.	Bi.			49°	Az. pl. a(100); Z b	(G)
	C14H15O2N3	ω, ω'-Diphenylbiuret		Bi.	l .		(red)		(8.5)
	C ₁₄ H ₁₄ ON ₂	Phenyl-o-phenetol	М.	Bi.	_	68°	154°	Az. plb(010); X ^ c =	(G)
	on miles	I nenyi-v-phenevoi	***	D i.		~	(apprx.)	39° in acute ∠β	``'
4783	C14H14O2	Isohydrobensoin	M.	Bi.	_	84° 59′		Ax. plb(010)	(G)
	C14H14O2	1, 2-Dihydroxyphenylethane	R.	Bi.	+		122° 14′	Ax. pl. (100)	(9)
	C14H14O2	o, o'-Dimethoxydiphenyl	R.	Bi.]	5°	Ax. pl. (010); Bxa \(\pmc\)c(001)	(20)
	C14H14O2S2	Tolyl p-toluol thiosulfonate	М.	Bi.	l	1	19° 29′	Az. plb(010); Z b	(G)
4787	C14H14O4S6 C14H14S	p-Toluenesulfone trisulfide	Tet. R.	Un. Bi.	_	67° 38′		41 1 (010). Will-	(G)
4101	C14H148 C14H14NO4Br.H2O	Dipyridinebetaine hydrobromide	R.	Bi.	-	87° 30′	1	Az. pl. b(010); X c Az. pl. c(001); Z b	(G) (G)
	C14H14O4NCl.H2O	Dipyridinebetaine hydrochloride	R.	Bi.	+	83° 52′	1	Ax. pl. c(001); Z b	(G)
	C14H16ONCI	Diphenylhydroxyethylamine h y d r o -	H.	Un.	<u>-</u>	00 02		A2. pl. 0(001), 2 0	(G)
		chloride				İ			
	C14H18O4	β-Methyltetramethoxycinnamic acid	М.	Bi.	+		102° 4′	Ax. pl. \(\pm\)(010); \(\mathbb{Z} \pm\)(001)	
	C14H19O7N C14H29O2NI	Thallin tartrate	R.	Bi.	+	78° 14′		Ax. pl. a(100)	(G)
	CHRISONI	Ethyl tetrahydroquinoline-N-acetate methiodide	M.	Bi.			65° 70′	Ax. pl. \(\pm\)b(010)	(G)
	C16H16O2	Phenylcoumarin	M.	Bi.				Ax. pl. b(010); Z \(c = \)	(G)
	CuH12N2	3, 5-Diphenylpyrazole	М.	Bi.			43° 30′	30° 15' in acute $\angle \beta$ Ax. pl. \perp b(010); $\mathbb{Z} \wedge c =$	(G)
		o, o-Diphenyipyrasole	171.	Б.			43 30	44° in scute 48	(0)
	C14H12O2N	syn-Bensoylbensohydroxamic methyl	R.	Bi.	-	70° 10′		Ax. pl. a(100); X c	(G)
		ether				ł			
4919	CuH13O3	o-Hydroxydibensoylmethane	М.	Bi.	+	l	75°	Ax. pl. (010); Bxa c-axis	(22)
4919	CuH14O2 CuH14O2N	Methyl bensilate	M. R.	Bi. Bi.	_		74° 52′ 85°	Ax. pl. \(\perp\)b(010)	(G) (24)
		vamnyi bensoyi amide	10.	<i>D</i>			(89° calc.)		(,
	C14H14O4NS.H2O	p-Dimethylaminobenzophenone sulfonic	Tri.	Bi.			79°	Ax. pl. [m(110)	(G)
	C12H16O5	acid. 2, 6, 2', 5'-Tetrahydroxydiphenylmethyl	R.	Bi.		79° 11′	(apprx.)	A1 -(100)+ 711b	(G)
	Chilleon	ethyl ether	R.	Di.		19 11		Ax. pl. a(100); Z[b	(6)
4936.1	C18H16O8.H2O(?)	Picrotoxinin	R.	Bi.				Az, pl. c(001)	(G)
	C16H16O2	Hyposantonin	R.	Bi.			46°	Ax. pl. b(010); Z b(?)	(G)
4042	0 11 0	la	_	- n.			(apprx.)		
4943	C1sH1sO3	Santonin	R.	Bi.	+		41° 17′- 43° 33′	Ax. pl. a(100); Z b	(37)
	C18H16O2	Santonide	R.	Bi.	+	67° 1′		Ax. pl. a(100); Z[c	(G)
			_			(red)			
	C1sH1zOz	Parasantonide	R.	Bi.	-		59° 25′	Ax. pl. a(100); X c	(G)
	CuH1eOs	Triethyl trimesate	Ħ.	Un.	_ h		(red)		(G)
	C16H19O2N2Cl2	Butyl chloral antipyrine	Tri.	Bi.	_		110°		(G)
	C18H20O2	Hydrosantonide	R.	Bi.	+	55° 10′	93° 43′	Ax. pl. a(100); Z c	(G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
	C16H20O4 C16H20O4	Santonic acid	R. R.	Bi. Bi.	+	87° 40′	68° 25′	Ax. pl. a(100) Ax. pl. a(100); Z c	(G) (G)
	C16H20O4	Parasantoic acid	R.	Bi.	-	88° 13′	(red)	Ax. pl. a(100); X c	(G)
4960	C15H21O2N C15H21O2N2	æ-Isopropylglutaranilic acid	R. R.	Bi. Bi.	+	(red) 77° 42′	117° 15′	Ax. pl. b(010); Z e Ax. pl. b(010); X e	(G)
1000	C14H11O1A	Hydrosantoic acid	R.	Bi.	+	11 42	100° (red)	Ax. pl. a(100); Z c	Ğ
	C15H22O6	Photosantonic acid	R.	Bi.	-		107° 25′ (red)	Ax. pl. a(100); X c	(G
	C18H22O2N	Vanillyl n-heptoylamide	М.	Bi.	-		110° (107° calc.)		(24
	C16H24O(?)	Juniperol	Tri. (?)	Bi.	-	34° 46′		Ax. pl. nearly $\ b(010)$; $X \wedge c = 72^{\circ}$ in acute $\angle \beta$	(G
	C15H25O2N C15H25Cl2	Sesquiterpene nitrate	R. R.	Bi. Bi.	+		18° 32′ 50°	Ax. pl. a(100) (red) Ax. pl. b(010); Z c	(G (37
	C14H20	Cypress camphor	R.	Bi.	+		(apprx.) 61° 30′	Ax. pl. b(010); Z a	(G
4997	C16H26O C16H26O6	Cedrol Triacetone mannite	R. M.	Bi. Bi.	++	77° 4′	64° 45′ 138° 13′	Ax. pl. b(010); Z a Ax. pl. ±b(010); Z Λ c = 26° 54' in obtuse ∠β	(G (G
5028.1	C ₁₀ H ₁₀ O ₈ C ₁₀ H ₁₁ O ₂ Br	Diphenylmaleic anhydride	R. M.	Bi. Bi.	+		Small 55°	Ax. pl. a(100); Z[c Ax. plb(010)	(G (G
	C10H19O2	tone. Diphenylauccinic anhydride	R.	Bi.			(apprx.) 166° (Li)	Az. pl. b(010); Z a	(G
	C16H12N2	Di-p-dicyanobenzylamine	Tri.	Bi.		69° 39′	(apprz.)	Az. pl. c(001)	(G
E044 1	C ₁₆ H ₁₂ O ₄ N	a-B e n s o y l-β-acetylbensoylhydroxy- lamine	М. М.	Bi.	+	75° 20′ 68° 22′		Ax. pl. \(\perp \beta(010)\) Ax. pl. b(010); \(\mathbf{Z} \widtherp \beta = 7^\circ\)	(G (G
5066.1 5067.1	C10H14N2	1, 5-Diphenyl-3-methyl pyrasole Bensylidene-p-tolyl ketone	R.	Bi.	+	36° 4′	61° 7′	in obtuse $\angle \beta$ Ax. pl. c(001); $\mathbb{Z} \parallel \mathbb{b}$	(G
5001.1	CieHisCla	Di-p-tolyltrichloroethane	M.	Bi.	+		85° 5′	Ax. pl. b(010); $Z \wedge c = 4^{\circ}$ in acute $\angle \beta$	Ğ
	C19H16O2N C16H16O2N	Ethyl bensohydroxamic bensoate anti-Bensoyl bensohydroxamic ethyl ether	R. Tri.	Bi. Bi.	+		94° 55′ 18° 30′ (apprx.)	Ax. pl. a(100); Z e	(G)
	C16H18O4N C16H18O4N	Anisoyl p-toluohydroxamic acidp-Toluyl anisohydroxamic acid	M. M.	Bi. Bi.	+ +	63° 49′ 50° 10′	113° 6′ 82° 52′	Ax. pl. b(010); $Z \perp c(001)$ Ax. pl. b(010); $Z \wedge c = 49^{\circ}$ in acute $\angle \beta$	(G (G
	C16H16ON8 C16H18N2	Phenyl styryl ketone	R. (?) M.	Bi. Bi.			Large	Ax. pl. b(010); Z \(\pma\)a(100)	(13 (G
5082.4	C16H10O2N2 C16H16O4N2	Diacetylhydrasobensene2-Phenyl-1-allybensimidasolium sulfate.	R. M.	Bi. Bi.	- +	88° 45′	56° 48′	Ax. pl. b(010); X a Ax. pl. \(\pm\beta\beta(010); \) Z \(\rangle\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot	(G
	C16H16O6N4	2, 3-Dinitro-p-xylene + 2, 6-dinitro-p-xylene	R.	Bi.	-		38° 36.5′	33° 51' in obtuse ∠β Ax. pl. a(100); X c	(G
	C12H12O4N.4H2O	l-Bensoylecgonine tetrahydrate	R.	Bi.			45° (apprz.)	Ax. pl. a(100); Z b	(G
5131	C16H22O2NBr C16H22O2N2	Homatropine hydrobromide	R. M.	Bi. Bi.	-	68°	69°-70°	Ax. pl. c(001); X b Ax. pl. c(001); Z c = 17°	(G (G
5135.1	C16H22O4	Methyl santoate	R.	Bi.	-	(apprx.) 74° 24' (red)	134° 12′ (red)	in obtuse ∠β Az. pl. a(100); X∥c	(G
	C16H22O4 C16H22O4	Methyl metasantoate	M. R.	Bi. Bi.	_	90°	58° 25'	Ax. pl. \(\perp b(010)\) Ax. pl. a(100); X e	(G)
	C16H22O4Br	β-Bromoacetyltetraethylphloroglucinol	м.	Bi.	+		(red) 50°	Ax. pl	(G
	C16H22O6N.H2O	l -Phenyl- α' -methylpiperidine d -tartrate.	R.	Bi.	_		(apprx.) 55° 42'	Ax. pl. b(010); X [c	(G
5142.1	C14H26O C17H17O4N	Guaiol (Champacol) Ethyl anisohydroxamic benzoate	Trig. M.	Un. Bi.	+	71° 55′		Az. plb(010); Z b	(G
	C17H17O4N	syn-Anisoylbensohydroxamic ethyl ether	М.	Bi.	-		66° 13′	Ax. pl. \perp b(010); $X \wedge c = 55^{\circ}$ 30' in acute $\angle \beta$	(G)
5202	C17H17O4N C17H18O8N.H2O	anti-Bensoylanishydroxamic ethyl ether Morphine	M. R.	Bi. Bi.	-		63° 7′ 125° (apprx.)	Ax. pl. \(\perp \) to elongation	(G)
	C17H20NBr	a-Bensylphenylallylmethylammonium bromide	R.	Bi.		30°-40° (apprx.)	(wpp.x.)	Ax. pl. c(001); Z b	(G
	C ₁₇ H ₂₀ NCl	a-Bensylphenylallylmethylammonium chloride	R.	Bi.			100° (apprx.)	Ax. pl. c(001); Z[b	(G
	C ₁₇ H ₂₀ ON ₂ C ₁₇ H ₂₀ ON ₂	Oxymethylenecamphor phenylpyrasole. Pseudoephedrine phenylthiourea	M. R.	Bi. Bi.	++		26° 40′ 76° 15′	Ax. pl. \(\perp b(010)\) Ax. pl. c(001); Z b	(G (G
	C17H20N2S	Ephedrine phenylthioures	R.	Bi.	+	66° 25′	89° 43′	Ax. pl. c(001); Z a	(G
5213.1 5226	C17H20O2 C17H22O4NBr.3H2O	(p-Dianisyl)dimethylmethane	R. R.	Bi. Bi.	_	89° 54.5′	101° 12′	Ax. pl. b(010); X [c	(G)
5228	C17H21O4NCI	Cocaine hydrochloride	16.	Bi.	-		Large (> 120°)	Ax. pl. (010)	(37

ndex No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	1
	C17H22O2Br	Ethyl d(l)-bromosantonigate	R.	Bi.	+		123° 26′	Ax. pl. a(100); Z c	1
	C17H28O4N	Menthyl-o-nitrobensoate	R.	Bi.	-	30° 32′	47° 24′	Ax. pl. b(010); X e	١,
	C17H22O2N2	2-Keto-6-methyl 4-(p-isopropyl phenyl)-	M.	Bi.	+	44°		Ax. pl. b(010)	١.
		1, 2, 3, 4-tetrahydropyrimidine-5-ethyl			i .	(apprz.)			
	C H ON	carboxylate.		.	l . '				l
	C ₁₇ H ₂₄ ON ₂	a-Dipentene nitrolbenzylamine	M.	Bi.	+	i	108° 14′	Ax. pl. b(010); Z \(c = 18^\circ\)	
	C ₁₇ H ₂₄ ON ₂	d(l)-Pinene nitrolbensylamine	R.	Bi.			89° 9′	in scute ∠β	١
	C17H24O2	1, 1, 2-Trimethyl-2-phenylcyclopentane-	M.	Bi.	+	65° 20′	89- A	Ax. pl. c(001); Z a Ax. pl. b(010); X \(\Lambda\) c = 50°	
	Cirrio:	3-ethyl carboxylate.	141.	<i>D</i> 1.	-	00 20	0.00	in scute $\angle \beta$	1
244	C17H24O2	Menthyl bensoate	R.	Bi.	l	ł	70°	Az. pl. c(001); Z b	l
							(apprx.)	112. pt. c(001), 2 0	1
244.1	C17H24O4	Ethyl santoate	R.	Bi.	l +	64° 6′	(Ax. pl. a(100); Z c	ı
				Ì		(red)			ı
	C17H24O4	Ethyl parasantoate	R.	Bi.	-	ł	35° 35′	Ax. pl. a(100); X [e	1
	C T O	Tabel Administration	_	٦.	İ		(red)		ı
	C17H24O10 C18H12O14N2S2Bi.7H2O	Ethyl tetrascetylquinate	R. M.	Bi. Bi.	-	79° 58′	1	Ax. pl. a(100); X [c	ı
	CHIHOMASIBI.THO	District m-nitrobenzene suitonate	M.	Di.	+		l	Ax. pl. b(010); ZAc =	ı
	C12H12O2N4	γ-Benzoylpyridine picrate	м.	Bi.		620	1	about 93° in obtuse ∠β	
		7-Deniographicale pictate	. W1.	Б1.		02	ļ	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c = 65^{\circ}$ in obtuse $\angle \beta$	ı
	C1aH1aO7Na	a-Benzylpyridine picrate	M.	Bi.	l	190		Ax. pl. b(010)	
	C10H14O7N4	γ-Benzylpyridine picrate	Tri.	Bi.		28°		112. pi. 5(010)	
	C18H16O4	Diacetyl dihydroxy stilbene	M.	Bi.	_	81° 39′	l	Az. plb(010); X ^ c =	l
					1		1	13° in acute ∠β	1
04	C16H16O7	d(l)-Usnic acid	R.	Bi.	+	1		Ax. pl. a(100); Z o	
	C18H18O	Diethylanthrone	R.	Bi.		l	60°	Ax. pl. c(001); Z a	ı
					1	1	(apprz.)		ļ
	C10H12O4	Hydrobensoin diacetate	M.	Bi,	i	85°	1	Az. pl. b(010); Z \(c = 12^\circ\)	1
	0 77 0		_		l	(apprx.)	I	in obtuse ∠β	1
	C10H10O4	Isohydrobenzoin diacetate	R.	Bi.	-	80° 54′		Ax. pl. b(010); X e	1
	C10H20 C16H20	sym-Tetramethylanthracene hydride	R.	Bi.	l .		79°-83°	Az. pl. b(010) (blue); X c	l
	CIETS	Tetramethyl-p-stilbene	M.	Bi.	+	ł	24°	Az. pl. b(010); $Z \land 0 = 90^{\circ}$	ı
	C12H20O2	Bensoyl-p-tertamyl phenol	R.	Bi.	_	İ	(apprx.) 58° 47'	in obtuse ∠β	l
17	C12H21O2N	Codeine	R.	Bi.] -		125°	Ax. pl. b(010); X a	١
••		Couding	16.	D1.	1 —	1	(apprx.)		ı
17	C18H21O2N.H2O	Codeine		Bi.	l _		130°	i	l
						!	(apprx.)		l
19	C10H10O2N	Isocodeine	R.	Bi.	-	1		Ax. pl. b(010); X e	l
20	O18H21O2N	Pseudocodeine	M.	Bi.	+	}		Ax. plb(010); Z _ c =	l
	/							22° in acute ∠β	ı
	C14H24O4N2	Tetraethyl-p-diaminopyromellitate	M.	Bi.		85°-90°		Ax. pl. b(010)	ı
36	C18H2O2N	Capeaicin		Bi.	l				1
	C ₁₄ H ₂₉ O ₄ N	Hydrocapsaicin	_	Bi.	١.			1	l
	C18H26O2N	Vanillyl n-decoylamide	R.	Bi.	+		23°		l
43.1	CuHn	Fichtelite (Retene perhydride)	М.	Bi.		l	(calc.)	Ax. pl. b(010); X a-axis	
	C18H27O16.2H2O	Melegitose	R.	Bi.	_	l	850	X = a, Y = b, Z = c	l
	C ₁₀ H ₁₄ O ₀	Methyl pulvinate	М.	Bi.	_	l	83	Ax. pl. b(010); X c	ı
	C12H14O4N8	ms-Phenylacridonium hydrosulfate	Tri.	Bi.		42°		AL. pl. 5(010), A c	ı
		(green mod.)					l		l
	C10H16O4N8	me-Phenylacridonium hydrosulfate	M.	Bi.	+			Ax. pl. b(010); Z \(c = \)	1
		(red mod.).			1	i		78° 30' in obtuse ∠β	ı
14	C10H17N2	a-Triphenylguanidine	R.	Bi.	+		38° 3′	Ax. pl. c(001); Z a	۱
	C10H10N2I	Phenyldiallylbensimidasolium iodide	M.	Bi.	+	85° 40.5′		Ax. pl. \(_b(010); \(Z \wedge c = \)	1
				1	l	1		38° 52′ in obtuse ∠β	
24	C10H10O4N	Bulbocapnine	R.	Bi.	-]	1	Ax. pl. a(100); X b	١
	C ₁₀ H ₂₀ N ₂	Cinchene	R.	Bi.	1	1	100° 56′	Az. pl. c(001); Z b	۱
	C ₁₀ H ₂₀ ON ₂	Phenyldiallylbensimidasolium hydroxide		Bi.	+		60° 21′	Ax. pl. b(010); Z \(\preceq \)(001)	١
28.1	C ₁₉ H ₂₀ ON ₂ C ₁₉ H ₂₁ N ₂ Cl.2H ₂ O	Cinchoninone	R.	Bi.	Ι.	65° 20′		Ax. pl. c(001); Z b	١
	CHENIATOLIAND	Cinchonine chloride	R.	Bi.	+	[13°	Ax. pl. a(100); Z o	ı
41	C19H22ON2	Cinchonidine	R.	Bi.	+	1	(apprx.)	Z = b	l
	C10H22ON2.C0H4	Cinchonidine	R.	Bi.	+	1	100° ± 10° Large		١
42	C19H11ON2	a-Cinchonine	M.	Bi.			38° ± 2°		
12	C19H22ON2	a-Cinchonine	M.	Bi.	_		35° 52′	Az. pl. 1b(010); XAc =	ı
						1		57° in obtuse ∠β	l
	C19H92O	d-Cinnamalidene camphor	R.	Bi.	+	I	28°	Ax. pl. b(010); Z a	ı
						1	(apprx.)		l
	C19H25ON2Br.H2O	Cinchonine hydrobromide	R.	Bi.	i		150°		ı
	IC TOND-INTO	Cinchonine hydrobromide	R.	Bi.		J	155°		ı
	C10H20N2Br. C2H6O	Cinchonidine hydrobromide	R.	Bi.	+	1	140°	Ax. pl. a(100); Z c	ı
	C19H22ON2Br. 1(?)H2O		М.	Bi.	-	1	102°	Ax. pl. \perp b(010); $X \wedge c =$	
		Cinchonine hydrochloride				I	1	35° in obtuse ∠β	ı
	C19H21ON2Br. § (?)H2O C19H21ON2Cl.2H2O	Cinchonine hydrochloride		.					
	C19H22ON2Br. § (?)H2O C19H22ON2Cl.2H2O C19H22ON2Cl.2C2H2O	Cinchonine hydrochloride	R.	Bi.	+		1470	Ax. pl. b(110); Z c	l
	C19H29ON2Br. § (?)H2O C19H29ON2Cl.2H2O C19H29ON2Cl. ÈC2H2O C19H29ON2Cl. ÈC2H2O C19H29ON2L. 1.5CH4O	Cinchonine hydrochloride Cinchonine hydrochloride Cinchonine hydroiodide	R. R.	Bi.	+		147° 40′	Ax. pl. b(110); Z c Ax. pl. c(001); Z b	
	C19H22ON2Br. § (?)H2O C19H22ON2Cl.2H2O C19H22ON2Cl.2C2H2O	Cinchonine hydrochloride	R.					Ax. pl. b(110); Z c Ax. pl. c(001); Z b	

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
	C19H14O5N2Se.5H2O	Cinchonidine selenate	M.	Bi.	+		156° 40′	Ax. pl. \(\pm\begin{array}{c} \text{Lb(010)}; \(\mathbf{Z} \warphi \cdot \end{array} = \(\begin{array}{c} \text{Colored} \\ \text{Colored}	(G)
5477	C19H29O2	Abietic acid	М.	Bi.	-		65°	59° in obtuse $\angle \beta$ Ax. pl. b(010); X \wedge c = 13° in acute $\angle \beta$	(G)
	C19H29O2N C19H21O2N	Vanillyl undecenoylamide	R. Tri.	Bi. Bi.	- +		Very large 110° (106°		(24) (24)
	C ₁₀ H ₁₄ C ₂₀ H ₁₆ O ₄	Benzal fluorene	R. M.	Bi. Bi.	+	77° 18′	calc.) 13°	Ax. pl. a(100); Z¶c Ax. pl. ⊥b(010); X∧c =	(G) (G)
	C20H17O2NS	α-Naphylamine naphthalene-α-sulfonate		Bi.		** 10		7° in obtuse ∠β	(1)
	C20H17O2NS	β-Napthylamine naphthalene-β-sulfonate		Bi.					(1)
	CacH17OaNS	α-Napthylamine naphthalene-β-sulfonate		Bi.					(1)
	C20H17O2NS	β-Napthylamine naphthalene-α-sulfonate		Bi.	+		85° 5′		(1)
	C20H18O6	Pulvinic acid ethyl alcoholate	R.	Bi.	·	114°	61° 6′	Ax. pl. a(100); Z b	(G)
	C20H18O9	Atranoric acid	R.	Bi.	+			Ax. pl. c(001); Z a	(G)
	C20H21ON	Benzoyl-β, β-diethylmethylindolenine	М.	Bi.	-		41° 25′	Ax. pl. b(010); $X \land c = 30^{\circ}$ in acute $\angle \beta$	(G)
	C20H21O4N	d(l)-Bulbocapnine methyl ether	Tet. Tet.	Un. Un.					(G) (G)
561	C20H22O4N C20H24O2N2	Quinidine	R.	Bi.	_		100° ± 10°		(40)
<i>5</i> 01	C20H22O4N4	Diethyl dihydroxysuccinate γ-osazone.	R.	Bi.	_		143° 28′	Ax. pl. a(100); Z b	(G)
	CaoHaoOaNa.CaHaO	Quinidine	R.	Bi.	+		80° ± 5°	112. pl. u(100/, 2 2	(40)
	C20H24O2N2. 1 C6H6	Quinidine	R.	Bi.	+		85° ± 2°		(40)
567	C20H24O2N2	Quinine	R. (?)	Bi.					(40)
	C20H24O2N2.C6H6	Quinine	R.	Bi.	+		Large		(40)
	C20H24O2N2.C6H6	Quinine (Unst. mod.)	R.	Bi.	- 1		110° ± 10°		(40)
	C20H24ON2Br.H2O	Bromomethylcinchonine	М.	Bi.			80° (apprx.)	Ax. pl. \(\perp \)b(010)	(G)
	C20H20O4N2S.7H2O	Quinine sulfate	R.	Bi.	_		19° 15′	Ax. pl. a(100); Xie	(G)
	CaoHasOeNaSe.7HaO	Quinine selenate	R.	Bi.	_		77° 15′	Ax. pl. a(100); X c	(G)
	C20H27O2N2Br	Cinchonidine hydrobromide methyl alco-	R.	Bi.			142°		(G)
	C10H27O1N2Br	holate Cinchonine hydrobromide methyl alco-	R.	Bi.	+		40° 40′	Ax. pl. b(010); Z[c	(G)
	C20H27O2N2Cl	holate Cinchonidine hydrochloride methyl alco-	R.	Bi.	+		140°	Ax. pl. a(100); Z∦c	(G)
	C20H27O2N2Cl	holate Cinchonine hydrochloride methyl alco-	R.	Bi.	+		157°	Ax. pl. b(010); Z c	(G)
	C20H21O2N2I	holate Cinchonine hydroiodide methyl alcohol-	R.	Bi.	+		126° 50′	Ax. pl. b(010); Z c	(G)
	C20H22N4	Diethylaniline azyline	M.	Bi.	1				(G)
588	C20H20O2	d-Pimaric acid	R.	Bi.	+		76° 36′	Ax. pl. a(100); Z c	(G)
	C20H20O2	l-Pimarie acid	R.	Bi.	+ (?)	61° 45′	110° 22′	Ax. pl. a(100); Z[b	(G)
	C20H20O4	Camphorpinacone	R.	Bi.			126° 50′	Ax. pl. a(100)	(G)
	C ₂₀ H ₂₂ O ₂ N ₂ Cl ₂	$d(l)$ - α -Limonene nitrosochloride	M.	Bi.	+		99° 34′- 100° 15′	Ax. pl. b(010); $Z \wedge c = 4^{\circ}$ 50' in acute $\angle \beta$	(G)
	C20H22O2N	Vanillyl n-dodecoylamide	М.	Bi.	+		100° (calc.)		(24)
	C20H24O4N	Methylcapeaicin	М.	Bi.	_	74° 10′	1400 404	A1 1(010). Y	(24)
	C ₂₁ H ₁₀ O ₂	Benzil benzilate	M.	Bi.	-	74 10	149° 46′	Ax. pl. b(010); $X \wedge c = 104^{\circ}$ in obtuse $\angle \beta$	(G)
	C21H12N2Br	Amarine hydrobromide	Trig.	Un.					(G)
	C ₃₁ H ₁₉ N ₂ Cl	Amarine hydrochloride	Trig. M.	Un. Bi.	ایا	57° 43′	1	1	(G) (G)
	C ₂₁ H ₂₀ C ₂₁ H ₂₁ O ₂ N ₂ Br	α-Bromostrychnine	R.	Bi.	+	J1 10	58°	Ax. pl. a(100); X c	(G)
342	C ₁₁ H ₁₁ O ₁ N ₁	Strychnine	M. (?)	Bi.			~	12. pl. a(100), 11 go	(37)
	C21H22O2N2	Tribenzylamine nitrate	R.	Bi.	-		45° 20′	Ax. pl. c(001); X a	(G)
		, , , , , , , , , , , , , , , , , , ,		n.			(red)	•	(39)
348	C11H11O1N	Diacetylmorphine	R.	Bi	-		110° (apprx.)		•
	C21H24O7N4	β, β-Triethyl-α-methyleneindoline pic- rate	М.	Bi.	-		16° 7′		(G)
	C21H27ON2Br.H2O	Cinchonine ethobromide	R.	Bi.	1 . 1	87° 50′		Ax. pl. b(010); Z c	(G)
	Ca1Ha7ONaCla	Dichloromaleic-p-tolyl-dipiperidide	М.	Bi.	+		44° 40′ 90°	Ax. pl. b(010)	(G)
	C21H28ON2I2.H2O C21H28O2N2	Cinchonidine hydroiodide ethiodide Quinidine methyl alcoholate	M. R.	Bi. Bi.	+		78°	Ax. pl. \(\pm\)b(010) Ax. pl. a(100); Z\(\pm\)o	(G) (G)
	C11H101N1 C11H102N1	Cinchonine hydroiodide ethyl alcoholate	R.	Bi.	-		19°	Ax. pl. b(101); X e	(G)
	C ₂₁ H ₂₆ O ₂	d-Bornyl methylene ether	R.	Bi.	+	75° 44′		Ax. pl. b(010); Z[c	(G)
	C11H16O1	p-Cresolphthalein	R.	Bi.	+	39°		Ax. pl. c(001); Z a	(G)
	C22H17ON	α, β-Dibensoylcinnamenimide	R.	Bi.		82° 40′	1	Ax. pl. b(010); Z a	(G)
	C22H17O4N	Benzoyl benzohydrozamic anisate (α- mod.)	М.	Bi.	-		86° 30′		(G)
	C22H12O4N	Anisoyl bensohydroxamic p-toluate (β-mod.)	M.	Bi.	+	56° 24′	100° 44′	Ax. pl. b(010)	(G)
	C22H20N2	1, 3, 4-Triphenyltetrahydropyrasine	R.	Bi.	+	66° 4′		Ax. pl. a(100); Z c	(G)
	C12H11O1N4	Bisantipyrine	М.	Bi.		60° 52′	98° 4′	Ax. pl. b(010); $Z \wedge c = 37^{\circ}$ in obtuse $\angle \beta$	(G)
							1	שביי סטייטטי בא	
5704	C22H22O7N	Narcotine	R.	Bi.			50°	Ax. pl. a(100); X[c	(G)

Index No.	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit.
	СиНжО	Benzyl santoate	R.	Bi.	+	85° 57′	<u> </u>	Ax. pl. a(100); Z c	(G)
	C22H20ON2I2.2H2O	Cinchonidine ethiodide methiodide	R.	Bi.		(red) 73° 36′		Ax. pl. b(010); Z a	(G)
	C22H20O4N2	Quinidine ethyl alcoholate	R.	Bi.			78° 30′		(G)
	C22H28O2S2	Menthyl thioxanthic anhydride	R.	Bi.	_	85° 6′		Ax. pl. b(010); X a	(G)
	C22H14ONBr	Bromomethyltriphenyl pyrrolone	M.	Bi.	+	70° 15′	122° 55′	Ax. pl. \(\perp \begin{aligned} \(\perp \begin{aligned} \perp \begin \begin{aligned} \perp \begin{aligned} \perp \begin{aligned} \pe	(G)
	C22H12O4N	p-Toluyl anisohydroxamic benzoate (a-	M.	Bi.	+	64° 32.5′	120° 38′	Ax. pl. \perp b(010); $\mathbb{Z} \wedge c =$	(G)
	C22H19O2N	mod.) Anisoyl benzohydroxamic p-toluate (a-	M.	Bi.	+	78° 59′		about 60° in obtuse ∠β Ax. pl. c(001); Z a	(G)
	C24H19O4N	mod) Anisoyl p-toluhydroxamic bensoate	M.	Bi.	_	84° 55′		Х∥Ь	(G)
	C22H19O4N	Bensoyl p-toluohydroxamic anisate	M.	Bi.	-	68° 32′	145°	Ax. pl. b(010); $X \wedge c = 33^{\circ}$ in obtuse $\angle \beta$	(G)
	C22H19O4N C24H19O4N	Benzoyl anisohydroxamic p-toluate Benzoyl anisohydroxamic anisate	M. M.	Bi. Bi.	+	71° 12′	16° 42′	Ax. pl. b(010) Ax. pl. ⊥b(010); ZΛc = 53° 50′ in obtuse ∠β	(G) (G)
	C28H24O2N2.H2O	Methylene bisantipyrine	М.	Bi.		76° 30′		Ax. pl. b(010); $Z \wedge c = 56^{\circ}$ in obtuse $\angle \beta$	(G)
	C22H29O5NI.H2O	Methyl trimethylcolchidimethinate	R.	Bi.		72°		Ax. pl. a(100); Z b	(G)
5818	C F	methiodide	R.	Bi.	_	(apprx.) 9° 50'	18° 25′	A h(010), **"-	///
919	C ₂₄ H ₁₆ C ₂₄ H ₂₁ ON	1, 3, 5-Triphenylbenzene Ethyltriphenylpyrrolone (β-mod.)	М.	Bi.	-	9.30	18° 23° 17° 20′	Ax. pl. b(010); X c Ax. pl. ⊥b(010); X ∧ c = 63° in obtuse ∠β	(G) (G)
	CnH21ON	Propyltriphenylpyrrolone (a-mod.)	R.	Bi.	+	65° 50′	135° 30′	Ax. pl. a(100); Z c	(G)
	C25H40O10	Lepranthine	M.	Bi.				Ax. pl. b(010)	(G)
	C ₂₆ H ₁₆ O	Tetraphenylenepinacoline	М.	Bi.	-	80°		Ax. pl. b(010); $X \wedge c = 50^{\circ}$	(G)
	CmH2rOsN	d-Bensoylbulbocapnine	R.	Bi.	_	(apprx.) 78° 34'	108° 58′	(apprx.) in obtuse $\angle \beta$ Ax. pl. c(001); X b	(G)
	CasHarOsNa	Strychnine ethyl carbonate	7	Bi.	+	18 04	30°	AL. pl. c(001), A 0	(37)
			_	l			(apprx.)		
	C27H20O4N2	Cinchonine phenylglycolate	R. R.	Bi. Bi.	+		45°	Ax. pl. b(010); Z c	(G)
	C17H4Br2 C11H204	Cholestene dibromide (St. mod.) Stilbeneglycol dibenzoate	M.	Bi.	+ +	85° 58′	40	Ax. pl. a(100); Z c Ax. pl. \(\pm\beta(010)); Z b	(G) (G)
	C25H26O4N2.3H2O	Brucine valerianate	M.	Bi.	'	00 00	86°	Ax. pl. \(\pm\beta(010)\)	(G)
							(apprx.)		,
	C28H46O2	Gurjum resin	Tri.	Bi.	-	86° 6′			(G)
961	C28H46O2	Cholesteryl formate	М.	Bi.	+			Ax. pl. b(010); $\mathbb{Z} \wedge c =$	(G)
	CaoHasO4NaSa	α-Napthylamine naphthalene-1, 5-disul-		Bi.				21° 30′	(1)
	C30H26OcN2S2	fonate α-Napthylamine naphthalene-1, 6-disul-	М.	Bi.	-		Large		(1)
	C36H26O6N2S2	fonate α-Napthylamide naphthalene-2, 6-disul-		Bi.	_		Large		(1)
	C ₂₀ H ₂₀ O ₆ N ₂ S ₂	fonate α-Napthylamine naphthalene-2, 7-disul-		Bi.	+				(1)
	C20H20O4N2S2	fonate β -Napthylamine naphthalene-1, 5-disul-		Bi.	+	:	75° 5′		(1)
		fonate (normal salt).					(obs.) 77° 6′		
	0 7 0 7 0			.			(calc.)		.,,
	CaoHasOcNaSa	8-Napthylamine naphthalene-1, 5-disul- fonate (acid salt)	•	Bi.			Large		(1)
	CaoHasOcNaSa	β-Napthylamine naphthalene-1, 6-disulfonate		Bi.	-		Large		(1)
	CaeHasOeNaSa	β-Napthylamine naphthalene-2, 6-disul- fonate		Bi.	+		70° 5′		(1)
	CaeHasOeNaSa	β-Napthylamine naphthalene-2, 7-disulfonate		Bi.	-		Large	Bx ₀ ⊥plates	(1)
	C20H4s	d-a-Amyrilene	R.	Bi.	+	72° 12′		Ax. pl. c(001); Z a	(G)
	C20H48	d-β-Amyrilene	R.	Bi.	+	22° 21.5′	35° 26.5′	Ax. pl. c(001); Z b	(G)
	CasHasO	a-Isodypnopinacoline	R.	Bi.	+		200	Ax. pl. a(100); Z c	(G)
	СиНи	Tetraphenylethanebenzene	М.	Bi.			60° (apprx.)	Ax. pl. \(\pm\)b(010)	(G)
	C11H11O1	Dypnopinacone	M.	Bi.			26° (apprx.)	4 . 1 (100)	(G)
	C22H22O12	letrarin	Tri.	Bi.	-		33° (apprx.)	Ax. pl. \(\pm\)a(100)	(G)
3062.1	C24H40O10N2S.7H2O	Morphine sulfate	R.	Bi.	-		69° 37′ (red)	Ax. pl. b(010); X a	(G)
5067	C _M H ₆₇ O ₁₁ N	Aconitine	R.	Bi.	+		56° 10′	Ax. pl. b(010); Z a	(G)
3075	C _M H _M O ₂	Cholesterol benzoate	Tet.	Un.			77° 40′		(G)
	C48H42O7N4Se C42H28O4N4S.3.5H2O	Cinchonine selenate ethyl alcoholate Amarine sulfate	М. М.	Bi. Bi.	+		77° 40′ 60° 57′	Ax. pl. \(\pm b(010)\); \(Z \wedge c = \)	(G) (G)
	C ₁₂ H ₄₆ O ₁ N ₆ Se.5H ₂ O	Strychnine selenate	м.	Bi.	+		14°	80° in obtuse $\angle \beta$ Ax. pl. \pm b(010); $\mathbb{Z} \wedge c =$	(G)
	C42H44O4N4S.5H2O	Strychnine sulfate	M.	Bi.	+		16° 30′	34° in acute $\angle \beta$ Ax. pl. \perp b(010); $\mathbb{Z} \wedge c =$	(G)
							_	32° 43′ in obtuse ∠β	(G)
	Ce2HasO4	Zeorine	Ħ.	Un.	1			1	(

LITERATURE

(For a key to the periodicals see end of volume)

(G) Groth, Chemische Krystallographie, 5 vols. 1906-1919. (L-B) Landolt-Börnstein-Roth-Scheel, Physikalisch-Chemische Tabellen, 5th Ed., 1923.

(1) Ambler, 45, 12: 1081; 20. (2) Artini, 72, 46: 475; 13. (3) Artini, 22, 26 I: 392; 17. (4) Beckenkamp, 94, 40: 597; 05. (5) Beger, 94, 57: 303; 22. (6) Bleicher, 94, 51: 504; 13. (7) Drugman, 94, 50: 579; 12. (7-5) Duffour, 6, 30: 169; 13. (8) Ehrlich and Pistschimuka, 25, 45: 2436; 12. (8.5) Gatewood, 1, 47: 411; 25. (9) Gilta, 27, 31: 250; 22.

(10) Goldschmidt, 94, 55: 123; 15. (11) Gossner, 94, 53: 488; 14. (12) Hartley, Drugman et al, 4, 103: 751; 13. (13) Heilbron and Wilson, 4, 101: 1489; 12. (14) Hudson and Chernoff, 1, 40: 1007; 18. (15) Jaeger, 64P, 18: 49; 15. (16) Jamieson and Wherry, 1, 42: 136; 20. (17) Jungfleisch, 34, 155: 801; 12. (18) Keenan, O. (19) Kraggs, 1, 123: 77; 23.

 (20) Mieleitner, 94, 55: 51; 19. (21) Moore and Gatewood, 1, 45: 144; 23.
 (22) Müller, 4, 107: 874; 15. (22) Nelson, 1, 41: 1115; 19. (24) Nelson. 1, 41: 2122; 19. (25) Nelson and Dawson, 1, 45: 2180; 23. (26) Orndoff and Pratt, 11, 47: 95; 12. (27) Robinson and Jones, 4, 101: 64; 12. (28) Steff, 94, 54: 343; 14. (29) Steinmets, 94, 54: 467; 15.

 (20) Steinmetz, 94, 55: 375; 16.
 (31) Stortenbeker, 70, 32: 226; 13.
 (33) Thoma, 57, 33: 403; 12.
 (34) Wahl, 5, 87A: 371; 13.
 (35) Wherry, 128. 8: 321; 18. (36) Wherry, 1, 42: 126; 20. (37) Wherry, O. (38) Wherry and Hann, 128, 12: 291; 22. (39) Wherry and Yanovsky, 128, 9: 507; 19. (40) Wherry and Yanovsky, 1, 40: 1065; 18. (41) Widmer, 94, 60: 184; 24.

(42) Hayman, Wagner and Holden, 284, 14: 388; 25.

Extensive data are given in Fedorow, "Das Krystallreich. Tabellen zur krystallochemischen Analyse," 1920; this is vol. 36 of Mémoires de l'Académie des Sciences de Russie (VIII series).

X-RAY DIFFRACTION DATA FROM CRYSTALS AND LIQUIDS

R. W. G. WYCKOFF

3Di

Introduction.—To find a given substance, consult Table A for all elementary substances, 33 for all chemical compounds, 30 for all alloys which are not definite chemical compounds, E for all liquids, and F for solid solutions of salts.

Except for the spacing observations given in Tables C' and T, there are recorded below only such observations as can be made to yield dimensions for at least a possible unit cell. The structure types of some of the simpler unit cells are shown in Figs. 1-11. The mode of designating these structures and other coordinate groups giving atomic positions is that described in Wyckoff, "The Structure of Crystals," Chemical Catalog Co., New York, 1924.

ABBREVIATIONS

2a, 4b, 8f, (4b, 4c), (4b, 4d), (32b, 48c), etc. refer to the correspondingly numbered coordinate groups in Wyckoff, l.c. and Analytical Expression of the Results of the Theory of Space Groups (Washington, 1922).

a₀, b₀, c₀ Edge length of unit cell along the a-, b-, and c-crystallographic axes, respectively.

The angle between the three equivalent axes of a α rhombohedral unit; in a triclinic crystal, the angle between the b- and c-axes.

Body-centered type of structure. The cubic B.-c. B.-c. 'arrangement (2a) is shown in Fig. 1.

Angle between the a- and c-axes.

С.-р. The hexagonal close-packed type of atomic arrangement (d) (see Fig. 3).

Angle between the a- and b-axes in a triclinic crystal.

Holohedral symmetry class, monoclinic system. 2Ci-m 2Ci

 (C_{2h}^m) as under T.

Second sort hexagonal tetartohedral symmetry class, 3Ci rhombohedral division, hexagonal system. 3Ci-m (C_{3i}^m) and $3C_{1-m}(n)$ as under T.

Tetartohedral symmetry class, tetragonal system. 4C 4C-m (C_4^m) as under T.

6Ci Paramorphic hemihedral symmetry class, hexagonal division, hexagonal system. $6\text{Ci-}m \ (\text{C}_{6h}^m)$ as under T.

Diamond type (8f.) of atomic arrangement (see Fig. 4). Dia. Enantiomorphic hemihedral symmetry class, ortho-2D

rhombic (rhombic) system. $2D-m (V^m)$, as under T. 2Di Holohedral symmetry class, orthorhombic system. 2Di-m (V_h^m) and 2Di-m (n) as under T.

Enantiomorphic hemihedral symmetry class, rhombo-3D hedral division, hexagonal system. $3D-m (D_3^m)$ and 3D-m (n) as under T.

Holohedral symmetry class, rhombohedral division, hexagonal system. 3Di-m (D_{3d}^{m}) and 3Di-m (n)as under T.

4d Second sort hemihedral symmetry class, tetragonal

system. 4d-m (V_d^m) and 4d-m (n) as under T. Enantiomorphic hemihedral symmetry class, tetrag-4D onal system. $4D-m (D_4^m)$ as under T.

4Di Holohedral symmetry class, tetragonal system. 4Di-m

 (D_{4h}^m) and 4Di-m (n) as under T. Holohedral symmetry class, hexagonal division, hexagonal system. 6Di-m(D_{6h}^m) and 6Di-m(n) as under 6Di

2e Hemimorphic hemihedral symmetry class, ortho-

rhombic system. 2e-m (C_{2v}^m) as under T. Hemimorphic hemihedral symmetry class, rhombo-3e hedral division, hexagonal system. 3e-m (C₃, and 3e-m (n) as under T.

Hemimorphic hemihedral symmetry class, hexagonal division, hexagonal system. 6e-m (C_{6v}^{m}) and 6e-m(n) as under T.

Face-centered type of structure. Cubic F.-c. arrangement (4b) shown in Fig. 2.

Oi Holohedral symmetry class, cubic system. Oi-m

 (O_h^m) and Oi-m (n) as under T. Possible structure. Used to designate those atomic P.S. arrangements which may be correct but for which additional results are needed or desirable.

P. U. C. Possible unit cell. Used to designate those crystals for which the selected unit cells may be correct but which require additional experimental or theoretical treatment.

S. P. Sample compressed.

Tetartohedral symmetry class, cubic system. T $m = m^{th}$ space group having this symmetry $(= T^m)$. T-m $(n) = n^{th}$ atomic arrangement under T-m. For instance T-3(c) is seen by reference to Wyckoff (Analytical expression, p. 122), to be arrangement 8a. Similarly 4Di-7 (c) is the coordinate pair 01/2u; 1/20ū (ibid., p. 93).

Te Hemimorphic hemihedral (tetrahedral) symmetry class, cubic system. Te-m (T_d^m) and Te-m (n) as under T.

Paramorphic hemihedral (pyritohedral) symmetry class, cubic system. Ti-m (T_h^m) and Ti-m (n) have meanings analogous to those of similar symbols under

u, or v Variable x, y or z parameter.

Fig. 1.—The unit cube of the body-centered cubic arrangement (2a). The coordinates of the atomic positions associated with this cell are 000; $\frac{1}{2}\frac{1}{2}\frac{1}{2}$.

Fig. 2.—The unit cube of the face-centered cubic arrangement (4b). The coordinates of the atomic positions associated with this cell are 000; $\frac{1}{2}\frac{1}{2}0$; $\frac{1}{2}0\frac{1}{2}$; $0\frac{1}{2}\frac{1}{2}$.

Fig. 3.—The unit cell of the hexagonal close-packed arrangement (d). The coordinates of the atomic positions associated with this cell are 000; $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{2}$.

Fig. 4.—The unit cube of the diamond cubic arrangement (8f). The coordinates of the atomic positions associated with this cell are 000; $\frac{1}{2}\frac{1}{2}0$; $\frac{1}{2}0\frac{1}{2}$; $\frac{1}{2}\frac{1}{2}\frac{1}{2}$; $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$; $\frac{1}{2}$

Fig. 5.—The unit cube of the NaCl-arrangement (4b, 4c). The atoms in positions 4b are shown as annuli; those in 4c as black circles. The coordinates of 4c are $0\frac{1}{2}0$; $\frac{1}{2}00$; $00\frac{1}{2}$; $\frac{1}{2}\frac{1}{2}\frac{1}{2}$.

Fig. 6.—The unit cube of the CsCl-arrangement (1a, 1b). Atoms of one sort, in 1a, are shown as annuli; the other kind of atom, in 1b, appears as a black circle.

Fig. 7.—The unit cube of the ZnS-arrangement (4b,4d). The atoms in position 4d appear as black circles; their coordinates are $\frac{1}{4}\frac{1}{4}\frac{1}{4}$; $\frac{1}{4}\frac{3}{4}\frac{3}{4}$; $\frac{3}{4}\frac{1}{4}\frac{3}{4}\frac{3}{4}\frac{1}{4}$.

Fig. 8.—The unit cell of the ZnO-arrangement (e'). The coordinates of equivalent atomic positions are 000; $\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{2}$ and 00v; $\frac{2}{3}$, $\frac{1}{3}$, v + $\frac{1}{2}$.

Fig. 9.—The unit cell of the CaF-arrangement (4b, 8e). The atoms in positions 8e, shown as black circles, have the coordinates $\frac{1}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}$; $\frac{3}{4}\frac{1}{4}\frac{3}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}\frac{1}{4}$; $\frac{3}{4}\frac{3}{4}\frac{1}{4}\frac$

Fig. 10.—The unit cube of the Cu_1O -arrangement (2a, 4d). The atoms in positions 4d are shown as annuli, those in 2a appear as black circles.

Fig. 11.—The unit cell of the hexagonal $Mn(OH)_2$ arrangement (h). The coordinates of the equivalent atomic positions in the unit are 000 and $\frac{1}{3}$ $\frac{2}{3}u$; $\frac{2}{3}$ $\frac{1}{3}u$.

A-Table.—Elements

				λ -Ταθ	LE.—ELE	MENTS		
~		a		Unit	cell		0.1	
Chemical	Crystal	Structure	Space	Size,	Å	Mole-	Calculated	Lit. and remarks
symbol	system	type	group	a ₀	Co	cules	density	
A	C.	Fc.(4b)	<u>'</u>	5.43		4	1.645	(227) (temp. ca. -253°)
Ag	C.	Fc.(4b)]	4.079		4	10.49	(82, 142, 165, 218, 235, 240, 241, 265
6	Ŭ.	2.0.(20)		1.000		_		329, 371)
Al	C.	Fc.(4b)		4.048		4	2.692	(84, 127, 128, 141, 197, 206, 216, 241 329, 366, 361)
As	н.	3Di-5(c)	3Di-5	4.142; 54° 7′		2	5.75	(43, 366) u. = 0.226, probably correct
Au	C.	Fc.(4b)		4.064		4	19.4	(82, 84, 142, 165, 218, 241, 329, 371)
Be	H.	Cp.(d)	6Di-4?	2.283	3.607	2	1.828	(163)
Bi*	H.	3Di-5(c)	3Di-5	4.726; 57° 16′		2	9.86	(82, 118, 139, 140, 142, 166, 193)
C-dia.	C.	Dia. (8f)	Oi-7	3.56		8	3.51	(52, 59, 60, 128)
Graph.†	H.	6e-4(a, b)	6e-4?	2.46	6.79	4	2.22	(14, 88, 89, 105, 119, 128, 262, 310)
Ca	C.	Fc.(4b)		5.56		4	1.538	(134, 135)
\mathbf{Cd}	H.	Cp.(d)	6Di-4?	2.98	5.63	2	8.56	(134, 136, 229)
Ce	C.	Fc.(4b)		5.12		4	6.90	(137)
	H.	Cp.(d)	6Di-4?	3.65	5.96	2	6.78	(137). Existence (?) (224)
Co	C.	Fc.(4b)		3.554		4	8.67	(131, 136), cf. (224)
	H.	Cp.(d)	6Di-4?	2.514	4.105	2	8.66	(131, 136), cf. (224)
Cr	C.	Bc.(2a)		2.875		2	7.22	(131, 136, 201, 206)
Cu	C.	$\mathbf{Fc.}(4b)$	j	3.603		4	8.95	(46, 82, 84, 141, 145, 196, 197, 198,
								199, 200, 329, 374, 371)
Fe-α	C.	Bc.(2a)		2.855		2	7.92	(82, 84, 122, 128, 131, 168, 196, 250, 253, 254, 255, 256, 362)
Fe-β	C.	Bc.(2a)		2.90 at 800°		2	7.55	No -4
Fe-γ	C.	\mathbf{F} c. $(4b)$	1 1	3.63 at 1100° 3.68 at 1425°			7.70 at 1100° 7.40 at 1425°	No structural inversion, α to β (250. 253, 254, 255, 256, 257)
Fe-8	C.	Bc.(2a)	١ '	2.93 at 1425°		′ 2`	7.38	′
Ga	"	_, _,	Sym	metry said to				(285)
Ge	C.	Dia. (8f)	Oi-7	5.62	1	8	5.38	(14, 138)
Hf	H.	Cp.(d)	6Di-4?	3.32	5.46	2	11.8	(324, 379)
Hg				ctures have bee		d		(2, 170)
In	Tet.?	?	1	4.58	4.86	4	7.48	(134, 136) P. U. C.
Ir	C.	Fc.(4b)	1	3.823		4	22.8	(134, 136, 284)
K	C.	Bc. (2a)		5.20 at		2	0.917 at -150°	(162). Approximate only
		, ,		-150°		1		
Li	C.	Bc.(2a)		3.50		2	0.534	(32, 33, 128)
Mg	H.	Cp.(d)	6Di-4?	3.22	5.23	2	1.709	(36, 128, 129, 196)
$Mn(\alpha)$	C.?			8.89		56?	7.21	(350) P. U. C.
$\mathbf{M}\mathbf{n}$ $(\boldsymbol{\beta})$	C.?			6.289		20?	7.29	(350) P. U. C.
$Mn(\gamma)$	Tet.?	i		3.774	3.533	4	7.21	(350, 368) P. U. C.
Mo	C.	Bc.(2a)		3.143		2	10.20	(82, 136, 236, 329)
Na	C.	Bc.(2a)		4.30		2	0.954	(128)
Nb	C.?			4.19		4		(366) P. U. C. Impure
Ni	C.	Fc.(4b)		3.499		4	9.04	(36, 82, 84, 128, 131, 136, 168, 206, 260, 299, 329, 360, 361)
Os	Н.	Cp.(d)		2.714	4.32	2	22.8	(137)
P (black)	H.	• , ,	1	5.96; 60° 16′		8		(392) P. S. like As
Pb	C.	Fc.(4b)		4.920		4	11.48	(82, 84, 156, 196, 206, 241, 329, 340)
Pd	C.	$\mathbf{Fc.}(4b)$		3.859		4	12.25	(134, 136, 164, 167, 329, 393)
Pt	C.	$\mathbf{Fc.}(4b)$]	3.913		4	21.5	(82, 134, 136, 142, 329, 393)
Rh	C.	$\mathbf{Fc.}(4b)$	1	3.820		4	12.2	(136, 393)
Ru	H.	Cp.(d)	6Di-4?	2.686	4.272	2	12.6	(134, 136)
S	R.		2Di-24	10.61	24.56	128	2.02	$(61, 314) b_0 = 12.87$
\mathbf{Sb}	Н.	3Di-5(c)	3Di-5	4.500; 56° 37'		2	6.78	(140, 193) u. = 0.231
Se	н.	3D-4(a)	3D-4 or	4.34	4.95	3	4.86	(42, 232, 308, 366) u. = 0.216.
٠.	_	(or 3D-6(a))	3D-6					P. S.
Si	C.	Dia. (8f)	Oi-7	5.42		8	2.32	(88, 107, 108, 127, 128, 153, 154)
Sn (gray)	C.	Dia. (8f)	Oi-7	6.46	0.40	8	5.81	(29, 30, 31), cf. (206)
(white)	Tet.	4Di-19(a)	4Di-19?	5.824	3.165	4	7.30	(29, 30, 31, 172, 173, 174, 206, 238)
Ta	C.	Bc.(2a)	l.	3.272		2	17.1	(25, 134, 136)

<u> </u>	0	G44		Uı	nit cell		01.14.1	
Chemical symbol	Crystal system	Structure type	Space group	Size 2	X .	Mole-	Calculated density	Lit. and remarks
8 y 111001	System	ty pe	group	a_0	Co.	cules	density	
Te	H.	3D-4(a) or 3D-6(a)	3D-4 or 3D-6	4.44	5.90	3	6.26	(42, 232, 308, 366) u = 0.269. P. S.
\mathbf{Th}	C.	Fc.(4b)		5.04		4	12 .0	(36, 137)
Ti	H.	Cp.(d)	6Di-4?	2.92	4.67	2	4.58	(36, 137, 201)
Tl	H.? Tet.(?)	Cp.(d)?	6Di-4(?)	3.47 4.75	5.52 5.40	2	11.7	(25, 156). Correct unit uncertain
U	` '		1	Said to be n	ot cubic	i i	,	(25)
v	C.	Bc.(2a)	1	3.04	1	2	5.98	(138)
W	C.	Bc. (2a)		3.155		2	19.8	(67, 82, 84, 87, 136, 374)
Zn	H.	Cp.(d)	6Di-4?	2.657	4.948	2	7.04	(134, 136, 206, 229, 346)
Zr	H.	Cp.(d)	6Di-4?	3.23	5.14	2	6.47	(137, 379)

^{*} u = 0.237. (142, 61 early editions) give incorrect structures. † u for 6e-4 (a) = 0. u for 6e-4 (b) = $\frac{1}{14}$.

Chemical symbol	Crystal	Structure	9	Unit cell, size	s, Å	м	Calculated	7:4	4 4 74 1 4-4 3
	system	type	Space group	G.	Co	М	density	Lit.	Additional data and remarks
H ₂ O	H.	1		4.52	7.32	4	0.918	(54,90, 114, 210, 213)	P. U. C. Atomic arrangeme
	İ		}						not yet known with certainty.
HCl	C.	Fc.?	1	5.5e; -168°C	1	4	1.45	(228)	
1 N ₂ O	C.	(4))	T-4	5.77		4	1.51	(233, 358)	ue = 0.22s, distance O-N
					1				1.06Å. P. S.
NH.	C.	[4f, T-4(b)]	T-4	5.19(ca80°)	1	4	0.81	(338)	u = 0.22
NH _c Cl (high)	C.	NaCl-like		6.53(250°)	1	4	1.27	(20)	
NH ₄ Cl (low)	C.	CeCl-like		3.866		1	1.528	(20, 120, 244, 280)	
N ₂ H ₄ Cl ₂	C.	FeSz-like (8A, 8A)	Ti-6	7.89		4	1.41	(281)	$u_{\rm N} = \infty$. 0.04, $u_{\rm Cl} = 0.27$
NH4Br (high)	C.	NaCl-like		6.90(250°)	1	4	1.97	(20)	
NH ₄ Br (low)	C.	CeCl-like		4.047		1	2.438	(20, 120, 244)	
NHJ	C.	NaCl-like		7.244	1	4	2.517	(20, 120, 243)	
(NH ₄) ₂ 80 ₄	R.		2Di-16	5.95	7.73	4	1.80	(155)	be = 10.56
2 PH4	Tet.	4Di-7(a, c)	4Di-7	6.34	4.62	2	2.88	(94)	u ₁ = 0.40 ± 0.01
(NH ₄)H ₂ PO ₄	Tet.		4d-12	7.48	7.55	4	1.80	(342)	N atoms at 4d12(a); P at 4d-1
AngO ₃	c.	(32b, 48c)	Oi-7	11.06		16	3.86	(41)	u _{AB} = 0.895, s ₀ = 0.21
	c.								AB = 0.000, 16 = 0.21
Sb ₂ O ₂		(32b, 48c)	Oi-7	11.14		16	5.57	(41)	$u_{ab} = 0.886, v_0 = 0.23$
6 CO ₂	C.	(4b, 8h)	Ti-6	5.62		4	1.64	(317, 318, 358, 382)	uo uncertain. Liquid air-te
For other carbon 8:0: (\$\textit{\beta}\quarts)	H.	$\begin{pmatrix} 6D-4 \\ 6D-5 \end{pmatrix} (c, j)$	6D-4 & 6D-5	5.01	5.47	3	2.50	(231, 332, 359)	u = 0.197
SiO ₂ (low quarts)	H.		3D-3 & 3D-5 or	4.903	5.39s	3	2.648	(21, 48, 169, 227, 331)	P. U. C. a ₀ -spacing for qua very accurately determined.
			3D-4 & 3D-6						
SiO ₂ (\$-cristobalite)	C.	(8/, 166)	Oi-7 ?	7.12(290°)	1 1	8	2.20	(288, 377, 280)	
(NH ₄) ₂ SiF ₈	C.	(4b, 8s, 24a)							
,		(30, 04, 242)	Oi-5	8.38		4	2.00	(38)	u _p = 0.205
SiC, I	H.	(30, 64, 242)		3.095	37.9	15	3.15	(383)	Complex structure assigned
•		(30, 60, 242)	6C-6 ?		37.9 15.17	- 1		1 ' '	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{2}$ and $\frac{1}{2}$. Si at 6(a) if $u' = \frac{1}{2}$ and 6C-6(b) if
SiC, I SiC, II	H. H.	(10, 00, 210)		3.09s 3.09s	15.17	15 6	3.15 3.15	(383) (347, 245)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{2}$ and $\frac{1}{2}$. Si at 6 6(a) if $u' = \frac{1}{2}$ and 6C-6(b) i = 0.29 and 0.95 P. S.
SiC, I	H.	(30, 50, 200)		3.095		15	3.15	(383)	Complex structure assigned C at 6C-6(a) if u = 0 and 6C (b), if u = \frac{1}{2} and \frac{2}{3}. Si at 6 (a) if u' = \frac{1}{2} and 6C-6(b) ii = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \frac{3}; \frac{3}{2}; \frac{3}{2}; \frac{3}{2
SiC, I SiC, II	H. H.	(30, 50, 200)		3.09s 3.09s	15.17	15 6	3.15 3.15	(383) (347, 245)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C-(b), if $u = \frac{1}{2}$ and $\frac{1}{2}$. Si at 66(a) if $u' = \frac{1}{2}$ and 6C-6(b) if
SiC, I SiC, II	H. H.	4Di-14(a, f)		3.09s 3.09s	15.17	15 6	3.15 3.15	(383) (347, 245)	Complex structure assigned C at 6C-6(a) if u = 0 and 6C (b), if u = \frac{1}{2} and \frac{2}{5}. Si at 6 6(a) if u' = \frac{1}{2} and 6C-6(b) ii = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \frac{3}; \frac{3}{2}; \frac{3}{2}; \frac{3}{2}
SiC, II SiC, III	H. H.		6C-6 ?	3.09s 3.09s 3.09s	15.17	15 6	3.15 3.15 3.16	(383) (847, 348) (390)	Complex structure assigned C at 6C-6(a) if u = 0 and 6C (b), if u = \frac{1}{2} and \frac{2}{5}. Si at 6 6(a) if u' = \frac{1}{2} and 6C-6(b) ii = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \frac{3}; \frac{3}{2}; \frac{3}{2}; \frac{3}{2}
SiC, II SiC, III SiC, III TiO ₂ (rutile)	H. H. H.		6C-6 ?	3.09s 3.09s 3.09s 4.58 5.27	15.17	15 6 4	3.15 3.15 3.16	(383) (347, 348) (390) (83, 113, 241, 263)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{2}$ and $\frac{1}{2}$. Si at 6 6(a) if $u' = \frac{1}{2}$ and 6C-6(b) if $u' = \frac{1}{2}$ and 6C-6(b) if $u' = \frac{1}{2}$ and 6C-6(b) if $u' = \frac{1}{2}$ and 6C-6(b) if $u' = \frac{1}{2}$ at 000; 00\frac{1}{2}; $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ at 00w; 0, 0, $u + \frac{1}{2}$; $\frac{1}{2}$, $\frac{1}{2}$, $u = \frac{1}{2}$, $u = \frac{1}{2}$, $u = \frac{1}{2}$, $u = \frac{1}{2}$. P
SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₂ (anatase)	H. H. Tet. Tet.	4Di-14(a, f)	6C-6 ? 4Di-14	3.09s 3.09s 3.09s 4.58	15.17	15 6	3.15 3.15 3.16 4.21 4.05	(383) (347, 348) (390) (83, 113, 241, 263) (342)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{1}{6}$. Si at 6 (c) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 0.95 P. S. C at 000; 009; $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$; $\frac{3}{2}$ $\frac{1}{2}$, at 00u; 0, 0, $u + \frac{1}{2}$; $\frac{1}{2}$,
SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatase) Ti ₁ O ₈	H. H. Tet. Tet. H.	4Di-14(a, f) 3Di-6(c, e)	6C-6 ? 4Di-14	3.09s 3.09s 3.09s 4.58 5.27 5.37; 56° 48'	15.17	15 6 4 2 8 2	3.15 3.15 3.16 4.21 4.05 4.67	(383) (347, 348) (390) (83, 113, 241, 263) (342) (351)	Complex structure assigned C at 8C-8(a) if $u = 0$ and 8C (b), if $u = \frac{1}{2}$ and $\frac{1}{2}$ Si at 6(a) if $u' = \frac{1}{2}$ and 8C-8(b) i = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \f
SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatane) Ti ₂ O ₃ TiN	H. H. Tet. Tet. H. C.	4Di-14(a, f) 3Di-6(c, e) NaCl(4b, 4c)	6C-6 ? 4Di-14	3.09s 3.09s 3.09s 4.58 5.27 5.37; 56° 48′ 4.231	15.17	15 6 4 2 8 2 4	3.15 3.15 3.16 4.21 4.05 4.67 5.40?	(383) (347, 348) (390) (83, 113, 241, 243) (242) (351) (13, 306)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{1}{8}$. Si at 6 (a) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ at 00u; 0, 0, $u + \frac{1}{4}$; $\frac{1}{4}$;
SiC, I SiC, II SiC, III SiC, III TiO: (rutile) TiO: (anatase) TiO: TiN TiC	H. H. Tet. Tet. C. C.	4Di-14(a, f) 3Di-8(c, e) NaCl(4b, 4c) NaCl(4b, 4c) CaFs(4b, 8e)	6C-6 ? 4Di-14 3Di-6	3.09s 3.09s 3.09s 4.58 5.27 5.37; 56° 48′ 4.237 4.297 5.08	15.17 10.10 2.98 9.37	15 6 4 2 8 2 4 4 4	3.15 3.15 3.16 4.21 4.05 4.67 5.4e7 5.017	(383) (347, 348) (390) (83, 113, 241, 263) (342) (351) (13, 306) (13, 306)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{1}{6}$ Si at 6 (c) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 6C-6(b) if $u' = \frac{1}{4}$ and 0.95 P. S. C at 000; 00; $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ at 00u; 0, 0, $u + \frac{1}{2}$; $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ at 00u; 0, 0, $u + \frac{1}{2}$; $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ at 00u; 0, 0, $u + \frac{1}{2}$; $\frac{1}{2}$ $\frac{1}$
SiC, I SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatase) Ti ₂ O ₄ TiN TiC 1 2rO ₄ 2rO ₅	H. H. Tet. Tet. H. C. C.	4Di-14(a, f) 3Di-6(c, e) NaCl(4b, 4c) NaCl(4b, 4c) CaFs(4b, 8e) Mn(OH)s(h)	6C-6 ? 4Di-14 3Di-6 0i-5 3Di-3	3.09s 3.09s 3.09s 4.58 5.27 5.37; 56° 48′ 4.231 4.291 5.08 3.68	15.17 10.10 2.98 9.37	15 6 4 2 8 2 4 4 4	3.15 3.15 3.16 4.21 4.05 4.67 5.407 5.1017 6.19	(383) (347, 348) (390) (83, 113, 241, 263) (242) (351) (13, 306) (13, 306) (13)	Complex structure assigned C at 8C-8(a) if $u = 0$ and 8C (b), if $u = \frac{1}{2}$ and $\frac{1}{2}$. Si at 6(a) if $u' = \frac{1}{2}$ and 8C-8(b) i = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \
SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatase) TinO Tin TiC 2rO ₃ ZrG ₂ ZrG ₂	H. H. Tet. Tet. H. C. C.	4Di-14(a, f) 3Di-6(c, e) NaCl(4b, 4c) NaCl(4b, 4c) CaF ₇ (4b, 8e) Mn(OH) ₇ (A) Mn(OH) ₇ (A)	6C-6 ? 4Di-14 3Di-6	3.09 s 3.09 s 4.58 5.27 5.37; 56° 48′ 4.237 4.297 5.08 3.68 3.79	15.17 10.10 2.98 9.37	15 6 4 4 2 8 2 4 4 4 4 1 1 1	3.15 3.15 3.16 4.21 4.05 4.67 5.407 5.017 6.19	(383) (347, 348) (390) (83, 112, 241, 263) (242) (351) (12, 306) (13, 306) (13) (13)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{1}{8}$. Si at (c) if $u' = \frac{1}{4}$ and 6C-6(b) i = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \f
SiC, I SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatane) TinO ₅ TiN TiC 1 ZrO ₅ ZrS ₆ ZrS ₆ ZrS ₆	H. H. Tet. Tet. H. C. C. H. H. C.	4Di-14(a, f) 3Di-6(c, e) NaCl(4b, 4c) NaCl(4b, 4c) CaFs(4b, 8e) Mn(OH)s(h) Mn(OH)s(h) NaCl(4b, 4c)	6C-6 ? 4Di-14 3Di-6 Oi-5 3Di-3 3Di-3	3.09s 3.09s 3.09s 4.58 5.27 5.37; 56° 48' 4.237 4.297 5.08 3.68 3.79 4.61	15.17 10.10 2.98 9.37	15 6 4 4 2 8 2 4 4 4 4 1 1 1 4	3.15 3.15 3.16 4.21 4.05 4.67 5.467 5.017 6.19 3.73 5.35 7.1	(383) (347, 348) (390) (83, 113, 241, 263) (242) (351) (13, 306) (13, 306) (13) (13) (13) (13) (13)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{1}{8}$. Si at (6(a) if $u' = \frac{1}{4}$ and 6C-6(b) i = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \frac{1}{2};
SiC, I SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatane) TinO TiN TiC 1 ZrO ₃ ZrG ₂ ZrG ₂	H. H. Tet. Tet. H. C. C.	4Di-14(a, f) 3Di-6(c, e) NaCl(4b, 4c) NaCl(4b, 4c) CaF ₇ (4b, 8e) Mn(OH) ₇ (A) Mn(OH) ₇ (A)	6C-6 ? 4Di-14 3Di-6 0i-5 3Di-3	3.09 s 3.09 s 4.58 5.27 5.37; 56° 48′ 4.237 4.297 5.08 3.68 3.79	15.17 10.10 2.98 9.37	15 6 4 4 2 8 2 4 4 4 4 1 1 1	3.15 3.15 3.16 4.21 4.05 4.67 5.407 5.017 6.19	(383) (347, 348) (390) (83, 112, 241, 263) (242) (351) (12, 306) (13, 306) (13) (13)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{1}{8}$. Si at (6(a) if $u' = \frac{1}{4}$ and 6C-6(b) i = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \frac{3}{2};
SiC, I SiC, II SiC, III SiC, III TiO ₂ (rutile) TiO ₃ (anatane) TinO ₅ TiN TiC 1 ZrO ₅ ZrS ₆ ZrS ₆ ZrS ₆	H. H. Tet. Tet. H. C. C. H. H. C.	4Di-14(a, f) 3Di-6(c, e) NaCl(4b, 4c) NaCl(4b, 4c) CaFs(4b, 8e) Mn(OH)s(h) Mn(OH)s(h) NaCl(4b, 4c)	6C-6 ? 4Di-14 3Di-6 Oi-5 3Di-3 3Di-3	3.09s 3.09s 3.09s 4.58 5.27 5.37; 56° 48' 4.237 4.297 5.08 3.68 3.79 4.61	15.17 10.10 2.98 9.37	15 6 4 4 2 8 2 4 4 4 4 1 1 1 4	3.15 3.15 3.16 4.21 4.05 4.67 5.467 5.017 6.19 3.73 5.35 7.1	(383) (347, 348) (390) (83, 113, 241, 263) (242) (351) (13, 306) (13, 306) (13) (13) (13) (13) (13)	Complex structure assigned C at 6C-6(a) if $u = 0$ and 6C (b), if $u = \frac{1}{4}$ and $\frac{2}{8}$. Si at (6(a) if $u' = \frac{1}{4}$ and 6C-6(b) i = 0.29 and 0.95 P. S. C at 000; 00\frac{1}{2}; \frac{3}{2};

Chemical symbol	Crystal	Structure type	Space group	Unit cell, size		M	Calculated density	Lit.	Additional data and remarks
	system	1		a ₀	C ₀	_		1,200	
SnO	Tet.	4Di 7(a, c)?		3.77	4.77	2	6.56	(300)	P II C
SnO ₂	Tet.			4.72	3.16	2	7.07	(83, 241, 263)	P. U. C.
SnI ₄	C.	Ti-6(c, d)	Ti-6	12.28		8	4.52	(96, 175)	$u_{\rm sn} = 0.129$, $u_{\rm I} = 0.258$, z
									0.009, y = 0.001, z = 0.25
(NH ₄) ₂ SnCl ₆	C.	(4b, 8e, 24a)	Oi-5	10.05		4	2.39	(92)	$u_{c1} = 0.245$ and < 0.25
3 PbO	Tet.	4Di-7(a, c)		3.99	5.01	2	9.28	(97, 300)	$u_{\rm ph}[4{\rm Di}\text{-}7(c)] = 0.24$
			1701.44					` '	Potrasitoria
PbO ₂	Tet.	4Di-14(a, f)	4Di-14	4.97	3.40	2	9.40	(345, 386)	
$\mathrm{PbF}_{2}(\boldsymbol{\beta})$	C.	CaF ₂ (4b, 8e)	Oi-5	5.93		4	7.76	(340)	
PbS	C.	NaCl(4b, 4c)		5.97		4	7.42	(61, 76, 154, 340, 357)	
PbSe	C.	NaCl(4b, 4c)		6.14		4	8.17	(357, 366)	
PbTe	C.	NaCl(4b, 4c)		6.34		4	8.67	(357)	
$Pb(NO_3)_2$	C.	(4b, 8h, Ti-6(24))	Ti-6	7.84		4	4.54	(191, 245)	
ThO ₂	C.	CaF2(4b, 8e)	Oi-5	5.59		4	9.98	(13, 83, 111)	Another determination of
									(289) varies widely from this
Ga ₂ O ₃	H.	3Di-6(c, e)	3Di-6	5 281; 55° 35'		2	6.62	(351)	
In ₂ O ₃	C.		Oi-10	10.12		16	7.07	(351)	
(Ga, In) ₂ O ₃	C.		Oi-10	9.76		16		(351)	39 mol. % IngOs
Tl ₂ O ₃	C.		Oi-10	10.57		16	10.2	(351)	
TICI	C.	CsCl(1a, 1b)	Oi-1	3.84		1	6.98	(85, 239, 369)	
TlBr	C.	CsCl(1a, 1b)	Oi-1	3.97		1	7.44	(239, 369)	
ZnO	H.	ZnO(e')	6e-4	3.25	5.23	2	5.61	(4, 7, 51, 61, 121, 249)	
Zn(BrO ₃) ₂ .6H ₂ O	C.	(4b, 8h, Ti-6(24))	Ti-6	10.31	0.20	4	2.59	(278)	
					6.28			(9, 51, 381)	
α-ZnS (wurtzite)	H.	ZnO(e')	6e-4	3,84	0.23	2	4.01	,	$u_g = ca.\frac{a}{b}$
β -ZnS (blende)	C.	ZnS(4b, 4d)	Te-2	5.43		4	4.02	(47, 103, 108, 154)	
ZnSe	C.	ZnS(4b, 4d)	Te-2	5.65		4	5.29	(80)	
ZnCO ₃	H.	3Di-6(a, b, e)	3 Di-6	5.62; 48° 23'		2	4.54	(160)	
9 CdO	C.	NaCl(4b, 4c)		4.72		4	8.06	(86, 217)	
CdF ₂	C.	CaF2(4b, 8e)	Oi-5	5.40		4	6.30	(340)	
CdI ₂	H.	$Mn(OH)_2(h)$	3Di-3	4.24	6.84	1	5.67	(39)	$0.23 < u_{\rm r} < 0.253$
						-			
α-CdS	H.	ZnO(e')	6e-4	4.14	6.72		4.78	(51, 381)	$u_S = ca.$
β-CdS	C.	ZnS(4b, 4d)	Te-2	5.82		4	4.84	(381)	
Hg ₂ Cl ₂	Tet.	4Di-17(e)		4.47	10.89	2	7.16	(344)	$u_{\rm Hg} = \frac{1}{4}, u_{\rm Cl} = \frac{1}{4}.$ P. S.
Hg ₂ Br ₂	Tet.	4Di-17(e)		4.65	11.10	2	7.71	(344)	$u_{\text{Hg}} = \frac{1}{4}, u_{\text{BF}} = \frac{1}{4}. \text{ P. S.}$
		121 11(0)						(397)	Hg s. Br
HgI ₂	Tet.			4.356	12.34	2	6.40	' '	
Hg_2I_2	Tet.	4Di-17(e)		4.92	11.61	2	7.68	(344)	$u_{\rm Hg} = \frac{1}{4}, u_{\rm I} = \frac{1}{4}.$ P. S.
HgS (metacinnabarite)	C.	ZnS(4b, 4d)	Te-2	5.84		4	7.71	(150, 151, 154, 336,	
								337, 365, 366)	
HgS (cinnabar)	H.		3D-4 & 3D-6	4.16	9.54	3	8.12	(180, 357, 365, 366)	P. S. suggested
CuO	Tri.			3.74	4.67	4	6.48	(188)	P. S. This suggested structures resembles NaCl. $b_0 = c_0$. α :
									$85^{\circ} 21'; \beta = 86^{\circ} 25'; \gamma = 93^{\circ} 33'$
Cu ₂ O	C.	Cu ₂ O(2a, 4d)	Oi-4	4.00		2	0.0-	(61, 113, 188)	ου 21; β = ου 20; γ = 93 ο
	C.			4.28			6.02	(76, 293)	
CuCl		ZnS(4b, 4d)	Te-2	5.40	1	4	4.15	1	
CuBr	C.	ZnS(4b, 4d)	Te-2	5.75		4	4.98	(76, 293)	
CuI	C.	ZnS(4b, 4d)	Te-2	6.07		4	5.62	(8, 76, 293)	
Cu ₂ Se	C.	CaF ₂ (4b, 8e)	Oi-5	5.75		4	7.16	(80)	
Cu ₂ Zn ₈	C.			4.01				(24) cf. (197)	Correctness in doubt
2 Ag ₂ O	C.	Cu ₂ O(2a, 4d)	Oi-4	4.72		2	7.27	(76, 88, 161, 277)	
AgCl	C.	NaCl(4b, 4c)		5.54		4	5.56	(76, 264, 265)	
AgBr	C.	NaCl(4b, 4c)		5.77		4	6.45	(76, 264, 265)	
AgI	H.	ZnO(e')	6e-4	4.59	7.50	2	5.66	(6, 8, 265)	
AgI	C.	ZnS (4b, 4d)	Te-2	6.49		4	5.67	(76, 264, 265)	
Ag ₃ PO ₄	C.	(2a, 6f, 8a)	Te-4	6.00		2	6.37	(287)	
Ag2A8O4	C.	(2a, 6f, 8a)	Te-4	6.12		2	6.66	(287)	
(4AgI:CuI) miersite	C.	ZnS(4b, 4d)	Te-2			4	0.00	. ,	A solid solution of AgI and Cu
(TARLOUL) IMEISITE	0.	23110(TO, TO)	10-2	6.35		3		(8)	
(ATTI) D.CII		(41 0- 04)	0: *	0.0		,	0.00	(202)	Exact composition unknown
(NH ₄) ₂ PtCl ₆	C.	(4b, 8e, 24a)	Oi-5	9.84		4	3.08	(292)	$0.22 < u_{\rm cl} < 0.24$
PtAs ₂ (sperrylite)	C.	FeS2(4b, 8h)	Ti-6	5.94		4		(357)	Composition unknown
(NH ₄) ₂ PdCl ₄	Tet.	4 Di-1 (a, e, j)	4Di-1	7.21	4.26	1	2.12	(95)	$u_{C1} = 0.23$
MnO	C.	NaCl(4b, 4c)		4.40		4	5.50	(157)	C1
MnO ₂	Tet.	.1001(30, 30)			2.89	2		(214)	Pyrolusite gives the same patter
MINO2	iet.			4.44	2.89	2	5.04	()	
M=(OH)	7.7	Ma(OII) /I)	0 D; 0	0.0	10			(3)	as polianite
Mn(OH) ₂	H.	$Mn(OH)_2(h)$	3 Di-3	3.34	4.68	1		(3)	Dimensions of this unit calculate
									from the density $\rho = 3.20$
									$u_0 = ca.0.22$
MnS	C.	NaCl(4b, 4c)		5.21		4	4.06	(272)	
MnS_2	C.	FeS ₂ (4b, 8h)	Ti-6	6.15		4		(104, 106)	$u_{\bullet} = 0.40_{\circ}$. Size of unit ce
									calculated from the best avail
									able density, $[p = 3.38(162)]$
MnCO ₃	H.	3Di-6/c 1 4	2174 8	5 84. 470 481		2	9 70	(47, 270)	
		3Di-6(a, b, e)	3 Di-6	5.84; 47° 45′			3.79	,	C atoms at (a); $u_0 = 0.27$
FeO	C.	NaCl(4b, 4c)	ap: a	4.294		4	5.99	(322)	0.40%
Fe ₂ O ₃	H.	3Di-6(c, e)	3Di-6	5.42; 55° 17′		2	5.25	(61, 81, 181, 205, 351)	$u_{\rm Fe} = 0.105 \pm 0.001; u_0 = 0.293$
									± 0.007
	C.	(8f, 16c, 32b)	Oi-7	8.37		8	5.21	(50, 121, 189, 394)	$u_0 = ca.0.37$
Fe ₂ O ₄			1		F 770		4.90	(356, 391)	Ye 0 1 12
	H.	6e-4(a, b)		3.43	5.79	7.		(000) 001)	II u = 0, u = 00 + 11 = =
Fe ₃ O ₄ FeS (troilite)	H.	6e-4(a, b)		3.43	5.79	2	4.90	(330, 331)	If $u_{re} = 0$, $u_s = ca.$ If $u = \frac{1}{2}$ exactly, the space group is

Chamical aug Lal	Crystal	Stantatura to-	Snee	Unit cell, size	a, Å	М	Calculated	Lát.	Additional data and remarks
Chemical symbol	system	Structure type	Space group	a ₀	c ₀	M	density	1At.	Auditedia Cara and remark
FeS ₂ (pyrite)	C.	FeS2(4b, 8h)	Ti-6	5.38		4	5.08	(47, 104, 106, 357)	u _s = 0.38s
$FeS + S_s$	Н.	60-4(a, b)		3.43	5.68	2		(356, 391)	Artificial and natural pyrrhot containing excess sulfur
FeSe	H.	6e-4(a, b)		3.61	5.87	2		(356)	39.4% Fe (weight)
FeSe + Se.	H.	6e-4(a, b)		3.51	5.55	2		(356)	35.0% Fe (weight)
Fe(S, Se)	H.	6e-4(a, b)		3.54	5.91	2		(356)	49.8% (weight) Fe, 12.0%
(NH ₄) ₂ FeF ₄	C.	(4b, 4c, 8e, 24a)	Oi-5	9.10		4	1.96	(203)	38.2% Se N atoms at (4c) and (8c). 0
(NIM)FEF 6	J C.	(30, 30, 88, 288)	01-0	3 .10		7	1.50	(555)	$< u_p < 0.217$, best around
NH4Fe(8O4)2.12H2O	C.	(4b, 4c, 8h, 8h, Ti6) (24))	Ti-6	12.14		4	1.81	(248)	
Fe ₂ C	R.			4.52	6.74	4	7.67	(5, 6, 7, 254, 261)	Cementite and cohenite are i tical in structure. Atomic
FeCO _e	H.	3Di-6(a, b, e)	3Di-6	5.82; 47° 45′		2	3.86	(47, 270)	rangement unknown. $b_0 = C$ atoms at (a); $u_0 = 0.27$ p
FeSi	c.			4.48		4	6.16	(207)	ably Probably tetartohedral; at arrangement unknown
FeSia	Tet			2.69	5.08	1	5.02	(207)	P. U. C., structure unknown
FeCuS ₂	Tet.	4d-5(c, a, g)?	4d-5 ?	5.23	5.15	2	0.02	(65, 115)	Fe atoms at (c). $u_0 = ca$.
C ₀ O	C.	NaCl(4b, 4c)		4.24		4	6.49	(351)	Probably correct structure.
CoS	H.	6e-4(a, b)		3.37	5.14	2	5.94	(356)	
CoAs8	C.	FeSt-like(4f)	T-4	5.65	0.11	4	6.07	(153, 357)	Reflection microscopic res
	"		• •			_			(161) suggest that this struc
(Fe, Co)S (synthetic)	H.	6 0-4 (a, b)		3.36	5.29	2		(356)	may not be correct Composition = ca. 50 atomic FeS
NiO	C.	NaCl(4b, 4c)		4.172		4	6.75	(74, 54, 299, 351, 352,	res
NiS (synthetic)	H.	6e-4(a, b)		3.42	5.30	2	5.58	360) (356)	u _B = co.½ taking u _{Ni} = 0
NiS (millerite)	H.	3e-5(b, b)	3e-5	5.64; 116° 36′		3		(356)	Possible atomic positions suggested
Ni ₂ S ₂	C.?			4.08		1		(356)	P. U. C.
NiSe	H.	60-4(a, b)		3.66	5.33	2	1	(358)	
Ni(NO ₃) ₂ .6NH ₃	C.	(4b, 8h, Ti-6(24))	Ti-6	10.96		4	1.43	(275)	u_N in $(8\lambda) = \infty.1$, y_N and s
NiCh-6NHa		(41.0.04-)	0: *	10.0-				(274)	$ca. 0, x_0 \text{ and } y_0 = ca. \frac{1}{2}.$
	C.	(4b, 8e, 24a)	Oi-5	10.09		4	1.49	1 ' '	u _N = 0.24
NiBra.6NHa NiIa.6NHa	C.	(4b, 8e, 24a)	Oi-5 Oi-5	10.48		4	1.84 2.05	(274) (274)	0.24
	C.	(4b, 8e, 24a)	01-0	11.01			2.03	(9, 356, 391)	u _N = 0.24 Niccolite from Eisleben.
NiAs NiAsS (gersdorffite)	H. C.	6e-4(a, b) FeSs-like(4f)	T-4	3.61 5.68	5.03	2 4		(357, 366)	Niccourte from Easteden.
NiSb	H.	60-4(a, b)		3.92	5.11	2	8.78	(356, 391)	For the mineral breithau from Andreasberg $a_0 = 3.9$ = 5.09
NiSbS (ullmanite)	c.	FeSz-like(4/)	T-4	5.91		4		(257)	Composition unknown
(Ni, Fe)S (synthetic)	н.	6e-4(a, b)	4-4	3.40s	5.540	2		(256)	S = 37.8%, Fe = 33.9%,
(Ni, Fe)S (synthetic)	H.	6 0-1 (a, b)		3.40s	5.434	2		(356)	28.3% (weight) S = 38.4%, Fe = 28.7%, I 32.8% (weight)
(Ni, Fe)S (pentlandite)	C.		Oi-5 1	10.00		32		(356)	(81, 24a, 32a) with wre (24
		1 13			1				ca. ½ and u _g = ca. ½ gives agreement. Various co
	İ								sitions various co
CryO ₃	H.	3Di-6(c, e)	3Di-6	5.3s; 54° 58′		2	5.28	(351)	
MoS ₂	H	6Di-4(c, f)	6Di-4	3.15	12.30	2	5.00	(99, 311)	u ₈ = 0.62 ₁
(NH4)2MoO2F4	C.	(4b, 4c, 8s, 24a)	Oi-5 ?	9.10		4	2.23	(203)	N atoms at (4c) and (8e). O at (24a). 0.194 < up
PbMoO4	Tet.			3.85	6.02	1		(91)	0.220 P. U. C.
AgaMoO ₄	C.	(8f, 16c, 32b)	Oi-7	9.26	1	8	6.2s	(276)	0.34 < m ₀ < 0.40
UO ₂	C.	CaF ₂ (4b, 8c)	Oi-5	5.47		4	10.89	(12, 111)	
UO ₂ (NO ₂) ₂ .6H ₂ O	R.		2Di-17	13.15	11.42	4	2.75	(68, 204)	U atoms probably at 2Di-1 with $u = 0.13$. $b_0 = 8.02$
V ₂ O ₂	H.	3Di-6(c, e)	3Di-6	5.43; 53° 53′		2	5.09	(351)	
VN VC	C. C.	NaCl(4b, 4c)		4.28 4.30		4	5.47 5.2a	(306)	
ChN	C.	NaCl(4b, 4c) NaCl(4b, 4c)		4.30 4.41		4	5.23 8.25	(306)	
CbC	c.	NaCl(4b, 4c)		4.40		4	8.14	(306)	
TaN	H.	ZaO(e)	60-4	3.05	4.94	2	16.2	(13)	P. S. Cf. (307) which gives
TaC	C.	NaCl(4b, 4c)		4.5		4	13.7	(13, 306)	flicting results
B ₂ H ₆	H.			4.54	8.69	2	0.589	(349)	B atoms probably at 6Di- with u = ca. 0.10. Ter
	1		ll a As						ature not stated
AlsOs	H.	3Di-6(c, e)	3Di-6	5.12; 55° 17') 1	2	3.96	(61, 81, 181, 205, 351)	The α -form. $u_{Al} = 0.1$

AIN (NH4):AIF :		system			l Ge	Co		density	ł	Additional data and remarks
		H.	ZnO(e')	60-4	3.11	4.98	2	3.24	(195)	u = 0.38 ± 0.01
		C.	(4b, 4c, 8e, 24a)	0i-5	8.40	1.50	4	2.17	(203)	N atoms at (4c) and (8e). 0.19 $< u_{\pi} < 0.200$
NH4Al(804)2.	.12H ₂ O	C.	(4b, 4c, 8h, 8h, Ti6 (24))	Ti-6	12.00		4	1.76	(248, 282)	
AlSb		C.	ZnS(4b, 4d)	Te-2	6.13		4	4.26	(298)	
AlaFs(SiO4) to	opas	R.		2Di-16	4.64	8.37	4		(158,	Topas from San Luis Potos Mexico; $b_0 = 8.78$
CuAl		H.	Fc.?		3.89; 94° 36'		4		(141, 197, 258)	This structure may be incorrect
CusAl		C.	Fc.		3.47	1	4		(24) cf. (141)	Probably incorrect
CuAl ₂		Tet.	Bc.		6.05	4.88	4	4.35	(141, 197, 258)	Atomic arrangement unknown
(Fe", Mn"); (garnet)	Ala(SiO4)3	C.		Oi-10	11.40		8		(190)	67 atomic % of ferrous iron
NiAl		C.	CsCl(1a, 1b)?		2.82		1	6.25	(24)	More work needed
66 SegOs		C.		Oi-10	9.79		16	3.89	(381)	
ScN		C.	NaCl(4b, 4c)		4.44		4	4.46	(306)	
(Sc, In)sOs	1	C.	1	Oi-10	9.90		16		(351)	66.8 mol. % SerOs
(Al, Sc)2O2 YtaO2		C. C.		Oi-10 Oi-10	9.22 10.56	1	16 16	5.07	(351) (351)	Composition unknown
YtPO4	1	Tet.		01-10	9.60	5.94	8	4.44	(242)	P. U. C.
(Yt, Tl)rOs	1	C.	1	Oi-10	10.53	0.51	16	1.77	(351)	50 weight % YteOs
(Yt. Bi) ₂ O ₂		c.		Oi-10	10.72		16	l	(351)	37.4 mol % BisOs
LagO ₂		H.			3.94s	6.151	1	6.48	(351)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CeO ₂		C.	CaFs(4b, 8e)	Oi-5	5.41		4	7.18	(83, 111)	1
CesOs		H.			3.880	6.057	1	6.86	(351)	
0 Pr ₂ O ₃		H.			3.851	5.99€	1	7.07	(351)	
Pr Ou		C.			10.98	1	1	ļ	(382)	P. U. C.
Nd ₂ O ₃		H.	i i		3.841	6.00	1	7.28	(351)	
Sa ₂ O ₂	1	C.	1	Oi 10	10.85		16	7.21	(351)	
Eu ₂ O ₂		C. C.		Oi-10	10.84	i	16	7.29	(351) (351)]
GdsOs 8 TbsOs		C.	1	Oi-10 Oi-10	10.79 10.70	1	16 16	7.6s 7.9o	(351)	
Tb ₆ O ₇ ?		C.		01-10	10.55	l	1 7	7.90	(352)	P.U.C. "Brown terbinm oxide"
Dy ₂ O ₃		C.		Oi-10	10.63		16	8.20	(351)	Distribution
HorOs		Ċ.	1	Oi-10	10.58		16	8.35	(351)	
Er ₂ O ₃	- 1	C.		Oi-10	10.54	l	16	8.64	(351)	•
Tu ₂ O ₂	1	C.		Oi-10	10.52		16	8.77	(351)	i
Yb ₂ O ₂	1	C.		Oi-10	10.39	l	16	9.30	(351)	
Lu ₂ O ₃		C.		Oi-10	10.37	l	16	9.42	(251)	
(NH ₄) ₂ HfF ₇	1	C.	(4d, 4e, 12a, 24u)	Oi-4	9.40		4		(117)	Contains 15% (NH4) 2ZrF1
75 BeO BesO(CzHsOz)	.	H. C.	ZaO(e')	60-4	2.70 15.72	4.39	2 8	2.98 1.38	(109, 163, 333, 364) (58, 62)	No ca. §. A possible atomic arrangemen
					10.0			1.00	(62)	suggested
BesO(CaHaOa)•	М. С.	N-CV41 40		16.0e 4.20s	9.15	2	1.26	(86, 107, 109,110,121,	P. U. C. $b_0 = 9.76$, $\beta = 116^{\circ}$ 7
MgO		C.	NaCl(4b, 4c)		4.208		•	3.59	182, 222, 271, 287)	1
Mg(OH) ₂	í	H.	Mn(OH)a(Å)	3Di-3	8.11	4.73	1	2.43	(2, 5, 159)	2 9 N
MgF ₂		Tet.	4Di-14(a, f)	4Di-14	4.66	3.08	2	8.11	(328, 345, 367)	u _p = 0.30
MgS		C.	NaCl(46, 4c)		5.08		4	2.84	(128)	1
MgCO ₀		H.	3Di-6(a, b, e)	3Di-6	5.61; 48° 12'		2	8.10	(160)	
MgaSi	i	C.	CaFe(46, 8e)	Oi-5	6.39		4	1.94	(296)	İ
Mg:Sn		c.	CaF ₂ (4b, 8c)	Oi-5	6.78	ł	4	3.54	(202, 270)	
MgsPb	0 -111	C.		or: r	6.75		4	5.47	(270) (28, 212)	Structure probably CaFs(4b, 8e)
(Mg, Fe'');Si(Of OffAthe	R.	1	2Di-5	4.77	6.00	4		(,)	14 atomic % of ferrous iron bo = 10.28
AlaMg4		C.			4.80	1		2.62	(24)	More work peeded
MgAl ₂ O ₄	1	C.	(8/, 16c, 32b)	Oi-7	8.07		8	2.00	(50, 189)	$u_0 = 0.37$. Value of a_0 calcu
g.m.o-e		•	(4,14,44)	•••			ľ			lated from the best available
77 CaO		C.	NaCl(4b, 4c)	`	4.79		4	3.37	(79, 86, 107, 109)	density (> = 3.57)
Ca(OH)s		H.	Mn(OH)s(Å)	3Di-3	3.52	4.93	1	2.31	(158)	l .
CaFs	1	C.	CaF2(4b, 8e)	Oi-5	5.46		4	3.17	(47, 76, 107, 108)	l
CaS		C.	NaCl(46, 4c)		5.68	1	4	2.60	(79, 125)	
Ca8O4		R.		2Di-17	6.21	6.96	4		(326)	Anhydrite, not analyzed. 50 = 6.95
CaS ₂ O ₂ .6H ₂ O		Tri.							(18)	Some unreduced measurements have been recorded for this sale
CaSe	l	C.	NaCl(4b, 4c)		5.91		4	3.81	(79)	TRAC DOOR LCOOLOGG FOL COM SEL
Ca(NO ₂) ₂		c.	(46, 8å, Ti-6(24))	Ti-6	7.60		4	2.47	(245)	
Ca(F, Cl)Ca	(PO ₄) ₈	Н.		6Ci-2	9.41	6.88	2		(123)	Composition unknown
apatite		н.	3Di.6 (c. 3. s)	3Di-6			_	1	, ,	-
CaCO ₂ (calcit			3Di-6 (a, b, e)		6.36; 46° 6′		2			C atoms at (a). we = 0.25. A wave length standard
CaCO ₂ (arago	onite)	R.	2Di-16(c, c, c, d)?	2Di-16	4.94	5.72	4	2.94	(58, 280)	A possible atomic arrangement has been suggested. be = 7.94
Ca(HCOO)2		R.		2Di-5 ?	10.16	6.20	8	2.03	(323)	P. U. C.
CaTiO ₈	ļ	C.†			7.68		8		(343)	P. U. C. (?) More work neces-
CaWO ₄	-	Tet.	1		3.64	5.64	1		(91)	P. U. C.

CAMPA CONTROL (1999) 1	Chamical aumbal	Crystal	Stauratura	Spane	Unit cell, siz	e, Å	M	Calculated	T:4	Additional data and annual
CAMERSON, cloppedide M. C. 20-04 9.71 5.34 4 3.28 (21) 3.28 3.28 3.29 3.28	Chemical symbol	system	Structure	Space group	a _o	C _o	M	density	Lit.	Additional data and remarks
CAME Prior COMP. CAME Prior C	CaMg(CO ₃) ₂ (dolomite)	H.	3Ci-2(a, b, c, f)	3Ci-2	6.02: 47° 7'	1	1	2.84	(61, 289, 313)	
Cample processing					9.71	5.24	4		(291)	$b_0 = 8.89; \beta = 74^{\circ} 10'$
S SO C. SACI(64, 40)		H.	3Ci-2(a, b, c, f)	3Ci-2	6.02: 47° 7'		1		(289)	30 atomic % of ferrous iron
SeTi. C. C. Aprick, 80							4	5.15	(107, 109)	
SCI_ C. Called, set C. Science C. Sci				Oi-5					, ,	
Second Color Second Se									1 '	
See C				0.0					, ,	
S(NOs)									1 '	
Bab				m: a					,	
Ba5°, C.				11-0			_		1 '	
BaS				0: #			_		,	
BaSS C				O1-5					1 ' '	
Bis C			NaCl(4b, 4c)							
BaSe C.	BaSO ₄	R.		2Di-16	8.898	7.170	4	4.432		$b_0 = 5.448$
BalchOrds C (b, 8A Ti-8(24)) Ti-6 S.11									,	
18 Liso C. NaCl(46, 4c) 0.5 4.61 4 2.01 (25) Lis C. NaCl(46, 4c) 4.01 4 2.06 (25) Lis C. NaCl(46, 4c) 5.14 4 2.06 (24) Lis C. NaCl(46, 4c) 6.00 4 4 4.06 (24) Lis C. NaCl(46, 4c) 6.00 4 4 4.06 (24) Lis C. NaCl(46, 4c) 6.00 4 4 4.06 (24) Lis C. NaCl(46, 4c) 6.00 4 4 4.06 (24) Lis C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.04 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.00 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.00 (23) Lis C. C. NaCl(46, 4c) 6.00 5 5.70 4 1.00 (23) Lis C. C. NaCl(46, 4c) 6.00 5 6.80 6.01 4 2.15 (20) Lis C. C. NaCl(46, 4c) 6.00 5 6.00 5 6.00 6.00 6.00 6.00 6.00									,	
St. List	Ba(NO ₃) ₂	C,	(4b, 8h, Ti-6(24))	Ti-6	8.11		4	3.23	(191, 245)	Approx. atomic positions are sa to be u_N , x_0 and $y_0 = ca$. $x_0 = ca$. 0
Liff C. NaCl(6, 4c)	81 Li ₂ O	C.	CaFe(4b, 8e)	Oi-5	4.61		4	2.01	(35)	
Light C. NaCl(d, 4c) S. H. H				0.0						
Light C. NaCl(4, 4c) 5.14 4 2.06 (7*, 1**, 1**)										
Libror C. NACl(44, 4c) S. 40 4 3.46 (7+,17+,219)									,	
Lis C. Cay(4, 6, c) O.5										
Liss C. CaFi(4b, 8c) Oi-5 5.70										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				01.					,	
LiCiHo			CaF ₂ (4b, 8e)	O1-5					, ,	
LiCiHob R.7										
LiChHo Contonate H.7 LiChHo L										
LiChHo, personate H.										
LiC.H.ft.Op butlyrate LiC.H.ft.Op butlyrate LiC.H.ft.Op butlyrate LiC.H.ft.Op valen									1 ' '	
$ \begin{aligned} & \text{LiCH-Ho}/\text{o} isobutyvate \\ & \text{LiCH-Ho}/\text{o} isovalenste \\ & \text{LiCH-Ho}/\text{o} isovale$									1 1	
LiChHo) valente Tet.	LiC ₄ H ₇ O ₂ butyrate				27.7			1 07	(25)	P. U. C., S. P.
LiChHob, isovalerate R.7 LiChHob, isovalerate R.7 LiChHob, heptylate LiChHob, heptylate LiChHob, heptylate LiChHob, heptylate LiChHob, heptylate LiChHob, heptylate LiChHiro; nonylate LiChHiro; no	LiC ₄ H ₇ O ₂ isobutyrate	Tet.?			19.75	9.25	24	1.01	(25)	P. U. C., S. P.
LiChHuOh teptylate C.7 LiChHuOh teptylate L	LiC ₈ H ₉ O ₂ valerate	Tet.?			24.5	9.4	32	1.01	(25)	P. U. C., S. P.
15.6Hg/0b trimethylacetate C.7 16.7Hg/0b trimethylacetate C.7 16.7Hg/0b trimethylacetate C.7 16.7Hg/0b trimethylacetate H.7 16.7Hg/0b trim	LiC ₅ H ₉ O ₂ isovalerate	R.?			11.70	6.93	4	1.00	(25)	$b_0 = 8.70$. P. U. C., S. P.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LiCaH O2 trimethylacetate	C.?			18.56		36	1.00	(25)	
LiColli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli, Op computer Licolli,	LiC7H13O2 heptylate	Tet.?	1		27.4	9.3	32	1.02	(25)	
LiCidity-Op nonylate CiCoHapOy underlyeate Tet. LiCoH							72		(25)	
LiCuHaOn undecylants H.7 LiCuHaOn undecylants LiCuHaOn undecylants Tel.7 LiCuHaOn undecylate Tel.7 LiCuHaOn undecylants Tel.7 LiCuHaOn undecylants Tel.7 LiCuHaOn u										
LiCoHaO nandecylate									, ,	
LiC_HHoO laurate Tet. LiC_HHoO close H.? LiC_HHoO close LiC_HHoO clo										
LiC ₁ -HapO ₂ cleate H.?									, ,	
LiC_HH_0O_stearate C. NaCl(4b, 4c) So NaCl(4b, 4c) So NaFe So									· ·	
NaFr NaHF2 H. 3Di-3(a, b, c)? 3Di-5 5.17; 39° 44′ 1 2.01 (211) One of the fundament length standards $u_{Na} = ca$. 0.06; $u_{C} = -a$ (44, 45, 47) One of the fundament length standards $u_{Na} = ca$. 0.06; $u_{C} = -a$ (25, 27, 273) (28, 143, 144, 147, 148) Different positions has suggested for the O aton NaBrOs C. NaCl(4b, 4c) T-4 (6.71 4 3.67 (75, 78, 273)) Different positions has suggested for the O aton NaBrOs C. NaCl(4b, 4c) T-4 (6.71 4 3.67 (75, 78, 273)) Different positions has suggested for the O aton NaBrOs C. NaCl(4b, 4c) T-4 (6.71 4 3.67 (75, 78, 273)) Different positions has suggested for the O aton NaBrOs C. NaCl(4b, 4c) T-4 (6.71 4 3.67 (75, 78, 273)) Different positions has suggested for the O aton NaBrOs C. NaCl(4b, 4c) T-5 (3.58)									, ,	
NaHF2						9.8				P. U. C.
NaClO ₂ NaClO ₃ C. (4f, 4f, T-4(12)) NaBr NaBr NaBr C. (3f, 4f, T-4(12)) NaI NaBr NaBr NaBr C. (3f, 4f, T-4(12)) NaI NaI C. (3f, 4f, T-4(12)) NaI C. (3f, 4f, T-4(12)) T-4 6.56 A 2.49 (8s, 143, 144, 147, 14s, 14s, 16s, 16s, 16s) 14s 3.30 (7s, 7s, 273) 24s, 247) 25s 24s 25s 25s 25s 24s 25s 25s 25										
NaClO ₂ C. (4f, 4f, T-4(12)) T-4 6.56 4 2.49 (8s, 143, 144, 147, 148, 149, 148) Ineq. ata, 247, 248) NaBr NaBr C. NaCl(4b, 4c) C. (4f, 4f, T-4(12)) T-4 6.71 A 3.24 (7s, 7s, 273) (8s, 143, 144, 147, 148, 149, 163) 244, 247) 244, 247) Different positions have suggested for the O aton suggested for the	NaHF2	H.	3Di-5(a, b, c)?	3Di-5	5.17; 39° 44′		1	2.01	(211)	Na at (a); $u_p = 0.42$. P. S.
NaBr C. NaCl(4b, 4c) T-4	NaCl	C.	NaCl(4b, 4c)		5.628		4			
NaBr C. NaCl(4b, 4c) T-4 (12) T-4 (6.71 4 3.24 (75, 78, 273) Different positions has suggested for the O aton NaBrOs C. (4f, 4f, T-4(12)) T-4 (6.71 4 3.30 (9s, 14s, 14s, 14s, 14s, 16s), 16s, 16s, 16s, 16s, 16s, 16s, 16s, 16s	NaClO ₃	C.	(4f, 4f, T-4(12))	T-4	6.56		4	2.49	(98, 143, 144, 147, 148,	$u_{Na} = ca. 0.06$, $u_{Cl} = ca. 0.4$
NaI C. NaCl(4b, 4c) Bi-18(a, h) ADi-18(a, h) ADi-18 Bi-18(a, h) ADi-18									149, 246, 247, 266)	Different positions have bee suggested for the O atoms
NaI C. NaCl(4b, 4c)	NaBr	C.	NaCl(4b, 4c)		5.94		4	3.24	(75, 78, 273)	
NaI C. NaCl(4b, 4c)				T-4			4		,	and the same of
NaI NaS C. NaCl(4b, 4c) Oi-5 0.53 4 1.85 (339)									,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NaI	C	NaCl(45 4c)		8 46		4	3 67	(75, 78, 273)	Degrated to the O brome
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Oi-5						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	V = 0.43e
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3D1-0(a, 0, e)							N atoms at (a). $u_0 = 0.25$
NaCd2		C.		13-77	15.98		24	-1.38	(219)	
NaSb(AlO ₂) ₂ H. 6Di-4(a or b, d, f, etc.) 6Di-4 5.40 8.81 2 (10) $u_{A} <0.10$; O positions no 33 KF C. NaCl(4b, 4c) 4Di-18(a, h) 4Di-18 5.67 6.81 4 2.53 (75, 78, 132, 273) $u_{F}=0.14\pm0.01$. The may have arrangement (d) $u_{F}=0.14\pm0.01$. The may have arrangement (
S3 KF C. NaCl(4b, 4c) 4Di-18 5.33 6.81 4 2.53 (75, 78, 132, 273) u _p = 0.14 ± 0.01. The may have arrangement (d) u _p = 0.14 ± 0.01. Th			P						' '	
KGI C. NaCl(4b, 4c) 6.280 4 1.987 (44, 75, 78, 120) (42, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120, 273) (69, 70, 71, 75, 78, 120, 132, 273, 283, 366) (89, 70, 71, 75, 78, 120, 132, 273, 283, 366) (89, 70, 71) P.U.C. b ₀ and c ₀ approximately approximat	NaSb(AlO ₃) ₂	H.	6Di-4(a or b, d, f, etc.)	6Di-4	5.40	8.81	2		(10)	$u_{Al} < 0.10$; O positions not know
KGI C. NaCl(4b, 4c) 6.280 4 1.987 (44, 75, 78, 120) (42, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120) (44, 75, 78, 120, 273) (69, 70, 71, 75, 78, 120, 132, 273, 283, 366) (89, 70, 71, 75, 78, 120, 132, 273, 283, 366) (89, 70, 71) P.U.C. b ₀ and c ₀ approximately approximat	33 KF	C.	NaCl(4b, 4c)		5.33		4	2.53	(75, 78, 132, 273)	
KCl C. NaCl(4b, 4c) 6.280 4 1.987 (44, 75, 76, 120) (44, 75, 120, 273) (44, 75, 120, 273) (69, 70, 71, 75, 78, 120, 132, 273, 283, 366) (69, 70, 71) P.U.C. b ₀ and c ₀ approand β approx. = 90°. KsSO ₄ R. KN ₃ Tet. KH ₂ PO ₄ Tet. 4Di-18(a, d, h) 4Di-18 6.094 7.056 4 2.04s (396) u = 0135 K about 12(a); 4d-12(a)				4Di-18		6.81			,	$u_p = 0.14 \pm 0.01$. The H atom
KCl C. NaCl(4b, 4c)			,							may have arrangement 4Di-
KBr C. NaCl(4b, 4c) 6.578 4 2.70 $(44, 75, 120, 273)$ $(69, 70, 71, 75, 78, 120, 132, 273, 283, 366)$ KIs M. 9.36 4 $(69, 70, 71)$ P.U.C. b_0 and c_0 approximately a_0	KCI	C	NaCl(4b, 4c)		6 280		4	1 987	(44, 75, 78, 120)	\-/
KI C. NaCl(4b, 4c) 7.05z 4 3.124 (69, 70, 71, 75, 78, 120, 132, 273, 283, 366) KIs M. 9.36 4 (69, 70, 71) P.U.C. b_0 and c_0 approximate a_0 and b_0 approximate a										
KI ₃ M. 9.36 4 (69, 70, 71) P. U. C. b ₀ and c ₀ approximate $β$ and $β$ approximate $β$ approximate $β$ and $β$ approximate $β$ approximate $β$ approximate $β$ and $β$ and $β$ and $β$ approximate $β$ and $β$ and $β$ approximate $β$ and $β$,	
KI ₃ M. K ₃ SO ₄ R. K _N SO ₄ Tet. K ₁ PO ₄ Tet. K ₁ PO ₄ Tet. K ₁ SO ₄ R. 2Di-16 5.73 7.42 4 2.70 (192, 276) b ₀ = 10.01 $u = 0.01$ $u = 0.$	Al	C.	NBCI(40, 40)		7.032		4	3.124	1	
K ₂ SO ₄ R. 2Di-16 5.73 7.42 4 2.70 (192, 276) $h_0 = 10.01$ KN ₃ Tet. 4Di-18(a, d, h) 4Di-18 6.094 7.056 4 2.045 (396) $h_0 = 10.01$ h_0			1							
K_{a} SO ₄ R. 2Di-16 5.73 7.42 4 2.70 (192, 276) $b_{0} = 10.01$ 8 And β approx. = 90°. $b_{0} = 10.01$ 8 KN ₃ Tet. 4Di-18(a, d, h) 4Di-18 6.094 7.056 4 2.045 (396) $u = 013s$ KH ₂ PO ₄ Tet. 4Di-18(a, d, h) 4Di-18 6.96 4 2.36 (342) K atoms at 4d-12(a); $4d$ -12(b)	***				0.00				,	200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KIa	M.			9.36		4		(69, 70, 71)	P. U. C. b_0 and c_0 approx. = a
KN ₃ Tet. 4 Di-18(a, d, h) 4 Di-18 6.094 7.056 4 2.045 (396) $u = 0135$ KH ₂ PO ₄ Tet. 4 dd-12 7.40 6.96 4 2.36 (342) K atoms at 4d-12(a); 4 d-12(b)										
KH ₂ PO ₄ Tet. 4d-12 7.40 6.96 4 2.36 (342) K atoms at 4d-12(a); 4d-12(b)					5.73		4	2.70	, ,	$b_0 = 10.01$
KH ₂ PO ₄ Tet. 4d-12 7.40 6.96 4 2.36 (342) K atoms at 4d-12(a); 4d-12(b)	KN ₃	Tet.	4Di-18(a, d, h)	4Di-18	6.094	7.056	4	2.045	(396)	u = 0135
4d-12(b)		Tet.		4d-12	7.40	6.96	4	2.36	(342)	K atoms at 4d-12(a); P
	KCN	C.	NaCl-like		6.55		4	1.53	(37, 72, 73)	

on 1.1.1.1	Crystal			Unit cell, size	s, Å	м	Calculated	Lit	4.500
Chemical symbol	system	Structure type	Space group	60	Co	M	density	LAE.	Additional data and remarks
KCNO	Tet.			6.070	7.030	4	2.06s	(398)	Structure similar to KN:
KH2C4O4Cl	R.		2D-16(?)	7.62	10.95	8		(398)	be = 15.74
(H chloromaleste)					1 1			i	
KC ₂ H _y O ₂ a. Table €'.					1 1	_			
K ₂ SnCl ₂	C.	(45, 8e, 24a)	Oi-5	9.96		4	2.74	(92)	$u_{\rm cl} = 0.245$ and < 0.25
K ₂ Zn(CN) ₄	C.	(8f, 16c, 32b)	Oi-7	12.54	1 1	8	1.66	(93)	$u_C = ca. 0.34, u_N = ca. 0.4$
									$\frac{1}{2}(u_C + u_N) = 0.37$
K ₂ Cd(CN) ₄	C.	(8f, 16c, 32b)	Oi-7	12.84		8	1.84	(92)	$\frac{1}{2}(u_{c} + u_{R}) = 0.37$
KaHg(CN)4	C.	(8/, 16c, 32b)	Oi-7	12.78		8	2.43	(93)	$\frac{1}{2}(u_C + u_N) = 0.37$
K ₂ PtCl ₄	Tet.	4Di-1(a, e, j)	4Di-1	6.99	4.13	1	3.40	(95)	0.233 < u _{cl} < 0.238
K ₂ PtCl ₄	C.	(4b, 8e, 24a)	Oi-5	9.7		4	3.5	(219, 220)	Assigned value, $u_{cl} = 0.16$, pro
Mil Will	٠.	(30, 00, 230)	0.0	•	1	-	0.0	(,	ably incorrect
K ₂ PdCl ₄	TeL	4Di-1(a, e, j)	4Di-1	7.04	4.10	1	2.65	(95)	u _{cl} = 0.23
-	C.	(4b, 4c, 8à, 8à, Tì-6	Ti-6	11.98	4.10	4	1.97	(248)	C1 - 0.23
KCr(8O ₄) ₂ ,12H ₂ O	·.	(24))	11-0	11.98	1 1	•	1.97	(30)	
KAl(804)2.12H2O	c.	(46, 4c, 8h, 8h, Ti-6	Ti-6	12.08		4	1.81	(154, 237, 248, 283)	
1211(504/2111110	"	(24))			1 1	_		, , , , ,	
KAlSisOs (adularia)	M.	' ''	2Ci-3	8.57	7.23	4		(314)	$b_0 = 13.01, \ \beta = 116^{\circ} \ 7' \ \text{Com}$
		1							position unknown
KLi8O4	H.		6C-6?	5.13	8.60	2	2.39	(336)	P. U. C. An atomic arrangemen
									is suggested
RbF	C.t	CaCl(1a, 1b)?		3.661		1?	0.01-	(78, 200, 294) (78, 102, 273, 368)	Structure probably incorrect
RbCl RbBr	C. C.	NaCl(4b, 4c) NaCl(4b, 4c)		6.571 6.86s	1	4	2.81s 3.36s	(74, 75, 128)	
RbI	c. c.	NaCl(45, 4c)		7.825		4	3.56s	(77, 78, 120, 273)	1
Rba8O4	R.	Macrical, 42)	2Di-16	5.95	7.78	4	3.66	(192)	bo = 10.39
CaF	c.	NaCl(4b, 4c)	22.10	6.01	•	4	4.62	(78, 209)	00 - 1000
CaCl	c.	CeCl(1a, 1b)	Oi-1	4.110		ī	3.999	(78, 85, 190)	ļ
CaBr	C.	CaCl(1a, 1b)	Oi-1	4.29		1	4.45	(77, 78, 273)	l
CeI	C.	CeCl(1a, 1b)	Oi-1	4.562		1	4.514	(89, 70, 71,78,78,273)	
Calla	R.		WW.	6.82	11.01	4	4.51	(177, 178, 179, 225)	bo - 9.95
CaClaI	H.	3Di-5(a, b, c)	8Di-5	5.46; 70° 42′		1	3.88	(256)	I probably at (b); $u_{cl} = 0.31$
CaBr ₂ I	R.	1	2Di-16	6.57	10.66	4	4.29	(177, 178, 179, 325)	$b_0 = 9.18$
Ca ₂ 8O ₄	R.		2Di-16	6.22	8.20	4	4.30	(192)	be = 10.8s
Tourmaline	H.	l i	3e-1	16.2a	7.28			(152)	P. U. C. Composition unknow
DUIM 0 1 DW1 2 7 0	m	l i	3e-2					210	
R'AlSisOs and R"AlsSisOs	ITI. and M.	1	•			l		(116)	Unreduced powder- and Lau
		1			1	l	l	1	photographs have been prepare from various feldspars

C-Table.—The C-Arrangement. See also Table C' infra

Chemical	Name	Crystal	Unit	cell, sise	<u>, Å</u>	M	Calculated	Lit.	Remarks
formula	148116	system	a _e	b _e	c ₀	141	density	ш.	
CH4N ₂ O	Urea		5.63		4.70	2	1.33	(25, 175)	Space group 4d-3
C ₂ H ₂ O ₄	Oxalic acid	R.	6.46	7.79	6.02	4	1.96	(315)	Space group 2Di-15
СаНе	Ethane	Н.	4.46		8.19	2	0.70s	(349)	C atoms probably at 6Di-4(f) with $u = ca. 0.10$. Temperature not stated
C2H4N2O	N-Methylurea	R.	5.63	5.64	4.70	4?	l	(171)	Space group 2D-4?
C ₂ H ₇ NO	Acetaldehyde ammonia	Н.	8.18; a = 84° 50′			6		(171, 318)	Space group 8Di-5?
C ₂ H ₆ O ₆	Oxalic acid dihydrate	M.	6.05	8.57	11.9	2	1.68	(315)	Space group 2Ci-5. β = 106° 12'
CaHaNaO	1, 2-Dimethylurea	R.	4.53	10.9	5.14	2		(171)	Space group 2e-7?
C ₄ H ₂ O ₃	Maleic anhydride	R.	6.58	11.48	5.90	4	1.44	(25)	P. U. C., S. P.
C ₄ H ₂ O ₄	Acetylenedicarboxylic acid	M?	7.88	9.04	6.62	4	1.70	(25)	β = 111° 6′. P. U. C., 8. P.
C ₄ H ₄ NIO ₂	Iodosuocinimide	Tet.	6.29		15.58	4	2.41	(385)	P. U. C. Space group 4C-2 and 4C-4?
C ₄ H ₄ O ₃	Succinic anhydride	R.	6.95	11.64	5.41	4	1.51	(298)	P. U. C., cf. (28)
C ₄ H ₄ O ₄	Maleic acid	M.	7.49	10.14	7.12	4	1.46	(25, 399)	$\beta = 117^{\circ}$ 7'. Space proup 2Ci-5(?)
C ₄ H ₄ NO ₂	Succinimide	R.	7.50	9.60	12.75	8	1.42	(298)	P. U. C. Space group 2Di-1?
C4H4O4	Fumaric acid	T.	7.56	15.00	6.20	6	ľ	(399)	$\alpha = 90^{\circ} 40', \beta = 88^{\circ} 30', \gamma = 89^{\circ} 48$
C4H4O4	Succinic acid	M.	5.07	8.92	5.53	2		(298)	$\beta = 91^{\circ} 20'$. P. U. C., cf. (25)
C ₆ H ₆ O ₆	dl-Tartaric acid	Tri.	14.82	9.74	4.99	4		(17)	$\alpha = 82^{\circ} 20'; \beta = 122^{\circ} 56'; \gamma = 111'$ 52'. P. U. C.
C ₄ H ₆ O ₆	d-Tartaric acid	M.	7.70	6.04	6.20	2	1.76	(18)	$\beta = 100^{\circ} 17', cf. (25)$
CaHaNaO12	Pentaerythritol tetranitrate	Tet.	13.2		6.66	4	1.80	(383)	Space group 4Di-7
C4H12O4	Pentaerythritol	Tet.	6.16		8.76	2		(25, 178, 395)	Space group 4e-9
CeH4N2O4	o-Dinitrobensene	M.	7.95	13.0	7.45	4		(55)	β = 112° 7'. P. U. C.
C ₄ H ₄ O ₂	Quinone	M.	11.40	6.43	6.85	4	1.40	(25)	$\beta = 93^{\circ} 20'$. P. U. C., S. P.
C ₄ H ₄	Bensene	R.	9.76	7.39	6.85	4	1.04	(84, 101, 378)	P. U. C., measurements at -20°C
C ₆ H ₆ O ₂	Resorcinol	R.	9.56	10.25	5.64	4		(53, 55)	P. U. C., cf. (25)
C ₆ H ₆ O ₂	Hydroquinol	M.	13.5s	5.22	8.18	4		(53)	β = 107°. P. U. C.
		H.	10.92		7.55	6	1.39	(25)	P. U. C., Latter S. P.
$(C_6H_{10}O_6)x$	Cellulose and starch	Powder	photographi	have b	een obtaine	d and	possible	(124, 234)	
		units h	ave been sug	gested.					

Chemical	Name	Crystal	Uni	t cell, sise	, Å	м	Calculated	Lit.	D
formula	Name	system	a.	be	CO	M	density	Lit.	Remarks
C4H12N4	Hexamethylenetetramine	C.	7.02	1		2	1.336	(100, 112)	$u_{\rm N} = ca. \ 0.12; u_{\rm C} = ca. \ 0.23s. \ {\rm Struc-}$
				1	1			•	ture type (8a, 12a); space group Te-4
C ₆ H ₁₄ O ₆	d(l)-Mannitol	R.	10.36	8.1	4.58	2	1.55	(27)	P. U. C.
C7H6O2	Bensoic acid	M.	5.44	5.18	21.6	4		(55)	β = 97° 5'; P. U. C.
C4H1NO4	Ammonium hydrogen fuma-	T.	7.00	7.44	6.56	2		(398)	$\alpha = 107^{\circ} 1', \beta = 117^{\circ} 58', \gamma = 69^{\circ}$
C4H2ClN2O4	Ammonium chlorofumarate	м.	9.80	6.70	6.735	2		(298)	$\beta = 108^{\circ} 25'$, Space group 2C-2(?).
C ₁ H ₀ O ₀	Salicylic acid		11.56	11.22	4.93	4	1.58	(55)	β = 91° 22′. P. U. C
C ₁ H ₁₀ O ₀	a-Methyl glycoside	R.	10.80	14.60	5.61	4	1.46	(25)	P. U. C.
CaH4Oa	o-Phthalic anhydride	R.	7.74	13.66	5.86	4	1.54	(25)	P. U. C., S. P.
CaHeO4	o-Phthalic acid	M.	9.88	7.13	5.10	2	1.60	(25) cf. (61)	β = 94° 86'. P. U. C., S. P.
CaH asOa	Metaldehyde	Tet.	10.86	4.10	0.10	8	2.00	(171, 316)	Space group 4C-5?
C ₂ H ₂ O ₂	trans-Cinnamic acid		11.6s	14.10	4.26	4	1.40	(25)	β = 98° 36′. P. U. C., S. P.
CeH10Oa	Hydrocinnamic acid	М.	12.90	9.20	6.98	4	1.23	(25)	$\beta = 103^{\circ} \ 36'$, P. U. C., S. P.
CieHe	Naphthalene	M.	8.34	5.98	8.68	2	1	(53, 57)	$\beta = 122^{\circ} 44'$. P. U. C., cf. (28)
CieHeO	g-Naphthol	M.	18.1	4.9	13.4	4	1.22	(88)	P. U. C. B = 117° 10'
CaHeO	6-Naphthol	M.	11.70	4.28	17.4	4	1.22	(53)	P. U. C. $\beta = 119^{\circ} 48'$
CiaHia	Acenaphthene	R.	8.32	14.18	7.26	4	1.19	(53)	P. U. C.
C19H10N2	Asobensene	M.	12.50	5.28	8.38	2	1.23	(25)	β = 116°. P. U. C.
C12H12N2	Hydrasobensene	R.	11.10	9.98	9.88	4	1.17	(25)	P. U. C., S. P.
C12H22O11	Saccharose	M.	10.64	8.70	8.00	2	1.57	(27)	$\beta = 105^{\circ} 44'$. P. U. C.
C12H2O2	Lauric acid	Tet.?	28.3		11.4	24	0.86	(25)	P. U. C., S. P. See Table C'.
CuH ₂ O ₂	Anthraquinone	R.	12.05	15.0s	2.69	2	1.40	(25)	P. U. C., S. P.
CuH ₁₀	Anthracene	M.	8.58	6.02	11.18	2	1.25	(83, 87)	$\beta = 125^{\circ}$. P. U. C., cf. (25)
C14H10	Phenanthrene	M.	9.56	6.72	7.55	2	1.18	(25)	$\beta = 92^{\circ}$. P. U. C., S. P.
C14H10O2	Benzil	H.	8.15		13.46	8	1.41	(27)	P. U. C.
C14H12	Stilbene	M.	9.6	8.9	12.6	4	1.25	(27)	β = 118° 40'. P. U. C.
СиНи	Dibensyl	M.	12.7	6.1	7.4	2	1.18	(27)	$\beta = 119^{\circ}$. P. U. C.
CuHmOs	Myristic acid	H?	57.4		11.4	72	0.83	(25)	P. U. C., see Table C'.
CuH1aNaOa	Indigotin	H.	20.2		12.18	12	1.20	(25)	P. U. C., Measurements also on S. P.
C1eHasO2	Palmitic scid	H.?	60.0		11.0	72	0.88	(25)	P. U. C., see Table C'.
C12H24O2	Elaidic acid	Tet.?	26.5		10.8	16	0.98	(28)	P. U. C., S. P., see Table C'.
C1sHasO2	Stearic acid	H.?	62.0		10.7	72	0.94	(25)	P. U. C., S. P., see Table C'.
C10H10	Triphenylmethane	R.	14.52	25.62	7.42	4		(23, 26) cf.	
						_		(177, 178)	
C ₁₀ H ₁₀ O	Triphenylcarbinol	H.	16.5		8.8	6	1.23	(27)	P. U. C.
Carlin Os	a, a'-Distearin	H.?	81.5		10.8	48	0.82	(25)	P. U. C., S. P.

C'-TABLE.—LONG CHAIN COMPOUNDS

Arrangement by Classes
1. Aliphatic Hydrocarbons (320, 401)

Formula	Maximum spacing, Å	a l Spacings of proad lines. A						
	d_1	d ₂	d ₃	d4	d _s	d _s	d ₇	
C17H24	24.3	4.25	3.93		2.54	2.32		
C18H 290	25.9		4.0		!	1		
C18H298	23.9	4.58	3.80	3.66	2.61		2.05	
C19H40	26.9	4.22	3.84		2.52	2.25	Ι.	
C20H420	28.0		3.9		1		•	
C20H42B	26.2	4.63	3.82	3.61	2.59	2.12	2.03	
C21H44	29.45	4.17	3.77	3.01	2.50	2.25		
C28H48	32.2							
C24H 80	33.05	4.18	3.80	3.02	2.50	2.25		
C27H44	37.1	4.17	3.77	3.01	2.51	2.25		
C ₈₁ H ₆₆	43.0	4.14	3.74	2.99	2.49	2.21		
CasH7	47.7							

Formula	Max. spacing	Formula	Max. spacing
C22H46(?)	30.6	C ₈₀ H ₆₂	40.4
C24H 50	32.9	Ca1H44	41.6*
C28H52	34.3		42.9†
C26H 54	35.6	C42H66	42.7
C28H88	37.7	C24H70	45.3
C29H60	39.4		

Specimens for (320) pressed, those for (401) melted on glass plates only.

* Melted. † Pressed.

2. Aromatic Hydrocarbons $C_{24}H_{42}$, Octadecylbenzene, $d_1=49.2~(225)$

3. Aliphatic Acids

a. Monobasic

Formula	Name	Maxi- mum spac-	Bros	Broad line spacing,				
		$egin{array}{c} ext{ing, } ext{Å} \ ext{d_1} \end{array}$	d ₂	d:	d4	d _i		
CH ₂ O ₂	Formic	5.19	Ī				(309)	
C ₂ H ₄ O ₂	Acetic	6.66	1	l	1		(309)	
CaHeO2	Propionic	6.75	4.03			3.43	(309)	
$C_4H_4O_2$	Butyric	9.65	4.09	3.65		3.45	(309)	
C ₈ H ₁₀ O ₂	Valeric	10.1(?)				1 1	(309)	
C ₆ H ₁₂ O ₂	Caproic	14.6	4.14	3.65		3.47	(309)	
C7H14O2	Heptoic	16.4	4.29	3.75	3.97	3.49	(309)	
C ₈ H ₁₆ O ₂	Caprylic	19.0	4.14	3.65		3.48	(309,	
							354)	
C ₂ H ₁₈ O ₂	Nonylic	22.9	4.22	3.71	3.97	3.48	(309)	
C10H20O2	Capric	23.3	4.14	3.73		i i	(354,	
					İ	1 1	309,	
		ŀ				i l	274)	
C11H22O2	Undecylic	25.8			İ		(185)	
C12H24O2	Lauric	27.0	4.11	3.68			(184,	
							354)	
C14H25O2	Myristic	32.2	4.12	3.72	l		(184,	
					l		354)	
C15H20O2	Pentadecylic	36.2	4.00	3.76	l		(185)	
C18H22O2	Palmitic	34.7	4.08	3.65	1		(184,	
							354)	
C17H24O2	Margaric	39.2	4.05	3.77			(185)	
C18H24O2	Oleic	36.2(?)					(185)	
C18H24O2	Isoleic	35.9					(185)	
C18H14O2	Elaidic	48.3	4.03	3.65			(185)	

3. Aliphatic Acids. a. Monobasic.—(Continued)

Formula	Name	Maxi- mum spac-	Bros	Lit.			
		d_1	d ₂	d ₃	d.	d,	
C ₁₆ H ₂₆ O ₂	Stearic	38.7	4.05	3.62			(184, 354)
C22H42O2	Erucic	46.3	4.22	3.72			(185)
C22H42O2	Brassidic	59.9	4.25	3.72			(185)
C22H44O2	Behenic	47.8	4.10	3.66			(184)
		b. Dibasic	;				
C ₄ H ₆ O ₄	Succinic	4.5					(354)
$C_0H_{10}O_4$	Adipic	7.0					(354)
C7H12O4	Pimelic	7.6					(354)
$C_4H_{14}O_4$	Suberic	9.3					(354)
$C_9H_{16}O_4$	Azelaic	9.6	!				(354)
C ₁₀ H ₁₈ O ₄	Sebacic	11.4					(354)

4. Salts

		Maxi-						
Formula	N	mum	Bro	Broad line spacing				
rormua	Name	spacing Å	İ	1			Lit.	
		$\frac{A}{d_1}$	d2	d ₂	d ₄	ds		
PbC ₁₂ H ₂₂ O ₄	Caproate	20.0	1 48			1	(355)	
PbC ₁₆ H ₂₀ O ₄	Caprolate	25.4					(355)	
				l i			` '	
PbC ₂₀ H ₂₀ O ₄	Caprate	30.6	1	!			(355)	
PbC24H44O4	Laurate	35.8	1				(355)	
PbC ₂₈ H ₄₄ O ₄	Myristate	41.2					(355)	
PbC ₂₂ H ₆₂ O ₄	Palmitate	46.3					(355)	
PbC28H66O4	Oleate	37.5;					(355)	
		29.8	1					
PbCs6H66O4	Elaidate	50.0					(355)	
PbCa4H70O4	Stearate	51.3					(355)	
NaC ₁₂ H ₂₂ O ₂	Laurate	33.5	4.22	4.88			(208)	
NaC14H27O2	Myristate	38.5	4.18	4.9			(208)	
NaC16H21O2	Palmitate	43.5	4.15	4.9			(208)	
NaC18H22O2	Oleate	43.5					(63)	

Similar results obtained with K and NH4 cleates.

5. Esters

C ₁₇ H ₂₄ O ₂	Methyl pal- mitate	22.0	4.07 3.72	(225)
C18H18N2O6	Ethyl p-az- oxybenzoate	16.2	$d_1 = 19.9$ in the "smectic" state	(321)
C ₁₈ H ₃₆ O ₂	Ethyl palmi- tate	23.2	4.07 3.67	(225)
C19H25O2	Methyl stear- ate	24.0	4.07 3.74	(225)
C22H40O2	Ethyl stear- ate	25.2	4.14 3.69	(225)
C24H46O2	Octyl palmi- tate	30.4	4.16 3.72	(225)
C22H64O2	Cetyl palmi- tate	40.4	4.05 3.69	(225)
C ₆₄ H ₁₀₄ O ₆	Glycerol mar- garate	48.0		(355)

6. Ketones (319)

Formula	Name	$\begin{array}{c c} \textbf{Maximum} \\ \textbf{spacing } \mathbf{\mathring{A}} \\ d_1 \end{array}$
C ₁₈ H ₂₆ O	Di-n-hexyl	18.7
$C_{16}H_{80}O$	Methyl-n-tridecyl	42.4
C ₁₇ H ₂₄ O	Methyl n-pentadecyl	47.6
$C_{18}H_{36}O$	Methyl n-hexadecyl	50.0
$C_{18}H_{36}O$	Ethyl n-pentadecyl	25.2
$C_{18}H_{36}O$	Hexyl n-undecyl	25.2
$C_{19}H_{36}O$	Methyl n-heptadecyl	52.9
$C_{19}H_{36}O$	Propyl n-pentadecyl	26.3
$C_{20}H_{40}O$	Ethyl n-heptadecyl	27.3
C21H42O	Propyl n-heptadecyl	28.9
C22H44O	Hexyl n-pentadecyl	31.1
$C_{22}H_{46}O$	Di-n-undecyl	31.6
C24H46O*	Hexyl n-heptadecyl	33.6
C27H54O	Di-n-tridecyl	37.0
$C_{21}H_{42}O$	Di-n-pentadecyl	41.1
C25H70O	Di-n-heptadecyl	47.2

*A few orders of 30.8Å also present.

7. Phenols (225)

C22H25O	p-Hexadecyl	46.5
C24H42O	p-Octadecyl	51.3

TABLE D.—ALLOYS

(a) Non-ferrous. Standard Arrangement. All Compositions in Atomic %

Pb-Sn.—0 to 3.6% Sn alloys are F.-c. cubic (like Pb) with a_0 decreasing to 4.931Å, taking a_0 for Pb as 4.942Å. 10% — 95% Sn alloys are mixtures of the Pb-like and Sn structures. 95% — 100% Sn alloys show no measurable distortion in size or shape of the Sn unit cell (206).

Hg-Sn.—The structure varies, as follows, with the atomic % of Hg: 0 to ±2%, Tet.-Sn structure I; 2% I, with traces of "Hexagonal" amalgam, (composition unknown) structure II; 5%, I and II; 6%, trace of I with II; 6 to ±17%, II; ±17 to 33%, II and liquid alloy (229).

Hg-Pb.—A 20% Hg alloy had the F.-c. cubic structure (4b) of Pb, with a unit cell length 1.6% less than that of Pb (229).

Hg-Zn.—Two structures, the hexagonal Zn structure (d), and an "hexagonal" structure belonging to an amalgam of unknown composition. The relative intensities of the patterns of these two phases are as follows (229):

Atomic % Hg	0	10	20	35
Zn structure	strong	medium	weak	abeent
"Amalgam" structure				

Hg-Cd.—An 18% Hg amalgam gave a pattern substantially the same as that of Cd; 37 and 50% Hg amalgams yield a different pattern (229).

Cu-Si.—Though Si has the smaller atomic volume the unit cube of Cu which has dissolved Si is larger than that of pure Cu. No data available (84).

Cu-Sn.—Figure 12a. Black circles: metal melted in air; open circles: metal melted in vacuum (18, 372).

Cu-Zn.—Figure 13. Unless otherwise stated on the figure these data are from (198). Cf. (12, 199, 258, 375, 371) which gives a different structure for γ -brass.

Ag-Sn.—Solution of Sn increases the Ag unit though its atomic volume is less. No data available (84).

Ag-Zn.—The observed phases are the same as those for Cu-Zn alloys (371).

Phase	Composition wt. % Zn	Symmetry	Struc- ture	a _o Å	<i>c</i> ₀ Å	No. atoms in unit cell			
β	38.25	Cubic	(1a, 1b)	3.156		2			
γ	50.3	Cubic		9.327		52.37			
	∫ 60.5	Hexagonal	Mg-like	2.818	4.456	2			
e	₹ 78.1	Hexagonal	Mg-like	2.815	4.382	2			
ŋ	Hexag	Hexagonal close-packed with Zn-like structure							

Ag-Cu.—Broken series of solid solutions. Both components F.-c. cubic (4b) (370).

At. % Cu	0		9.2		96.4	
a ₀	4.06	4.05	4.03	Superimposed	3.61	3.61
				patterns of		
				Ag and Cu	1	

Au-Zn.—These alloys show all the phases of Cu-Zn alloys and two additional (371).

Phase	Composition wt. %	Symmetry	Struc- ture	a ₀ Å	c _o Å	No. atoms in unit cell
β	30.2	Cubic	(1a, 1b)	3.146		2
•	∫ 36.9	Cubic		9.268		52.97
γ	₹41.1	Cubic		9.228		51.96
_	∫ 67.5	Hexagonal	Mg-like	2.809	4.377	2
•	72.3	Hexagonal	Mg-like	2.809	4.369	
η	95.0	Hexagonal	Zn-like	2.674	4.887	2
γ' (AuZn ₃)?	50.2	Cubic	?	7.880		32
γ"		may	be cubic	1	P.	

Au-Cu.-Figure 12 (18, 145, 361).

Au-Ag.—Data conflicting. Probably an unbroken series of solid solutions, though marked variations from this relation have been reported. Figure 16 (18, 165, 239, 372).

Ir-Os.—A single alloy of unknown composition was found to be C.-p. Hex. (11).

Pd-H.—Data conflicting. One result (295, 376) shows that the Pd unit is swelled by an amount proportional to the quantity of occluded H (79). The other study (164) shows a discontinuous absorption of H in the sense that some crystals may be saturated though others in the same material have not begun to absorb gas. The length, a₀, of the edge of the unit cube of the saturated solution was found to vary between 4.000Å and 4.039Å with values usually not less than 4.023Å.

Pd-Cu and Pd-Au.—Figures 20 and 19 (301).

Pd-Ag.—(15) Figure 17 (165).

Mn-Cu.—67% Cu is F.-c. cubic, like Cu, and has $a_0 = 3.615\text{\AA}$, taking a_0 for Cu as 3.60Å (18). 70% Cu is said to give $a_0 = 3.70\text{\AA}$ (200, 384).

Ni-Cu.—Figure 15 (18, 197, 361, 370).

Cr-Ni.—100% to 40% Ni alloys are F.-c. cubic (like Ni) with values of a_0 which change proportionately to the % of Cr added from 3.521Å (for Ni) to 3.576Å (206).

W-Mo.—(67) Said to show an unbroken series of solid solutions. No numerical data available (18). No lines (86) have been found from a 1:1 alloy to indicate the existence of a compound W-Mo (239).

Al-Zn.—0 to 20% Zn alloys are F.-c. cubic (like Al), a changing from 4.04sÅ (for Al) to 4.034Å. 20%—95% Zn alloys show mixtures of cubic Al and hexagonal Zn structures. 95%—100% Zn alloys are C.-p. hexagonal with no measurable distortion from size or shape of the Zn unit cell (206).

Al-Cu.—Figure 14. The data on this figure are from (22, 141, 197, 258)

Al-Ag.—The dissolving of Al in Ag increases the unit cube in the latter, though Al has a smaller atomic volume. No numerical data available (84).

Al-Mn-Cu.—Heussler Alloys. Alloy 15.9% Al, 23.9% Mn, 60.3% Cu is said to be F.-c. cubic with $a_0 = 3.70$ Å. Alloys 14.3% Al, 28.6% Mn, 57.1% Cu is said to be a mixture of the preceding structure with a smaller amount of a B.-c. cubic phase having $a_0 = 2.98$ Å (12, 297).

Mg-Sn.—0 to 67% Mg give the superimposed patterns of Sn and Mg₂Sn; 67-100% Mg yield the superimposed patterns of Mg₂Sn and Mg. No evidence of solid solution (370).

Mg-Pb.—0 to 67% Mg give the superimposed patterns of Pb and PbMg₂; 67-100% Mg yield the superimposed patterns of PbMg₂ and Mg. No evidence of solid solution (370).

Mg-Al.—91.2% Al is F.-c. cubic (4b) with $a_0 = 4.106\text{\AA}$, taking a_0 for Al as 4.05Å. 7.3% Al is C.-p. hexagonal (d) with $a_0 = 3.151\text{\AA}$, $c = 5.23\text{\AA}$, taking a_0 for Mg as 3.17Å and $c_0 = 5.17\text{\AA}$ (197).

(b) Ferrous Alloys

Fe-C Steels.—(1) Austenitic Steels. Structure that of γ -Fe, F.-c. cubic (4b) (250-259).

Composition, wt. %	a₀ in Å	Remarks
(1) 1.25% C, quenched at		
750°C	3.601	Contains also martensite.
(2) 1.98% C, quenched at		
1100°C	3.629	Contains also martensite.
(3)* 1.34% C, 12.1% Mn,	1	
0.52 % Si, 0.1 % P	3.624	
(2) quenched at 750°C	3.606	A mixture of austenite and martensite.
(4) 1.18% C, 24.3% Ni,		
6.05% Mn quenched		
from 1000°C	3.64	
(5) 0.24 % C, 25.2 % Ni,		1
quenched from 1000°C	3.56	

* Density calculations thought to indicate that C is present in interstitial solid solution in steel No. (3).

(2) Martensite Steels. Structure that of α -Fe, B.-c. cubic (2a) (19, 122, 250-258).

(24) (55, 522, 255 255).		
(5) Chilled subsequently in liquid air	2.81	Partly martensite and partly austenite.
(2)	2.90	Martensite lines very dif- fuse.
(1)	2.88	Martensite lines very dif- fuse.
(6) 0.80 % C quenched in oil from 750°C	2.89	Martensite lines very dif- fuse.
(7) 0.80 % C, 0.14 % Cr, 0.35 % Mn, 0.19 % Si	2.851	Broad lines, less intense than from Fe.
(8) 1.31% C, 0.12% Cr, 0.24% Mn, 0.17% Si	2.851	Density calculations from this steel thought to indi- cate that C isomorph- ously replaces Fe unless martensite is annealed when it is a mixture of or Fe with cementite

Fe-Si.-(207, 252, 389).

Weight % Si	0-15	17-30	33	40	50	75-100
Weight % Si Phases	Fe	Fe + FeSi	FeSi	FeSi + FeSi ₂	FeSi ₂	FeSi, +

Fig. 12.—The diffraction data on Cu-Au alloys.

Fig. 12a.—The diffraction data on Cu-Sn alloys.

Fig. 13.—The diffraction data on brasses.

Fig. 14.—The diffraction data on Cu-Al alloys.

Fig. 15.—The diffraction data on Cu-Ni alloys.

Fig. 16.—The diffraction data on Ag-Au alloys.

Fig. 17.—The diffraction data on Ag-Pd alloys.

Fig. 18.—The diffraction data on Fe-Ni alloys.

Fig. 19.—The diffraction data on Au-Pd alloys.

Fig. 21a.—The diffraction data on solid solutions of the alkali halides.

Fe-Mn.—These alloys are said to have the following structures. No numerical data available (18).

Atomic % Mn.		30-60	60-100
Structure	Bc. cubic (2a)	Fc. cubic (4b)	Complex Mn

Fe-Co.—No numerical data available (12).

Weight % Co	0-80	85	90-98	98-100
Structure	Bc. cubic (2a)	Bc. (2a) with Fc. (4b)	(45)	Fc.(4b) with Cp. hex.

Fe-Ni.—The best available data are shown in Fig. 18. The fused alloys were swaged, drawn and rolled into thin tapes. Spacings from photographs of these specimens without further treatment are shown as open circles, results after (1) annealing at 900-950°C followed by slow cooling, black circles; (2) after an additional heating to 600°C followed by rapid cooling in the air, crosses; and (3) after cooling for a time in liquid air following (1), triangles (12, 168).

Fe-Cr.—Interpretation of data uncertain (18).

Fe-W and Fe-Mo.—It is said that Fe dissolves a few atomic percents of each of these metals without apparent alteration in the size of the unit cell. In each case a 1:1 compound is formed. No numerical data available (18).

Fig. 20.—The diffraction data on Cu-Pd alloys.

Fig. 21b.—The diffraction data on solid solutions of the alkali halides.

T-Table.—The Positions of X-ray Diffraction Bands fromLiquids

Angle of Deviation and Wave Length, \(\lambda\), of X-rays Used

Liquid			N ₂	0,	
Angle, deg	13.0; 18.9	27	11.3; 17.0	12.5; 19.5	27
λ, in Å				0.712	
Lit	(304)	(303)	(304)	(303)	(303)

Liquid	H:	O	CS ₂	нсоон	CH ₂ CHO Acetaldehyde
Angle, deg	13.4	29	13.2	24	22.7
	0.712	1.54	0.712	1.54	1.54
	(304)	(303)	(304)	(303)	(373)

Liquid	C ₂ H ₆ OH	C ₄ H ₈ O ₂ Butyric acid	C ₄ H ₈ O ₂ Ethyl acetate	$(C_2H_4)_2O$
Angle, deg λ, in Å Lit	22 1.54	20.7; 36.5 1.54 (373)	20.7 1.54 (373)	19 1.54 (303)

Liquid	C ₆ H ₆		(C ₂ H ₄ O) ₃ Paraldehyde	C ₆ H ₆ CHO Benzaldehyde	
Angle, deg	8.5	18	23.3	19.3; 44.4	
λ. in Ä	0.712	1.54	1.54	1.54	
Lit	(301)	(302, 303)	(373)	(373)	

Liquid	C8H18	C ₉ H ₁₂ Mesitylene	C ₁₄ H ₁₂ O ₂ Benzyl benzoate
Angle, deg	8.1	4.1; 6.2	18.3; 42.7; 65.8
λ, in Å	0.712	0.712	1.54
Lit	(301)	(301)	(373)

J-Table.—Data on Solid Solutions of Salts Alkali Halides.—For data on the solutions NH₄I-NH₄Br, NH₄I-KI, NH₄Br-KBr, RbCl-NH₄Cl, NH₄Cl-KCl, KCl-RbCl, KCl-KBr, CsCl-NH₄Cl, NH₄Br-NH₄Cl, RbCl-NH₄Cl see Fig. 21 (120). For additional data on KBr-KCl see (387, 388).

AgCi-NaCl (387).—Broken series of solid solutions. Quenched preparations: Both patterns present together.

	Composition mol % AgCl	a _o Å
Annealed	100	5.53
	75	5.54
	50	5. 57

AgCl-AgBr (402).—Both structures like NaCl (4b, 4c). Unbroken series of solid solutions.

Composition mol % AgCl	a ₀ Å
0	5.77
20	5.72
40	5.68
50	5 .65
60	5.63
80	5.59
100	5.54

AgBr-AgI (402).—Broken series of solid solutions.

		a_0										
Com- position		nd slowly oled	Fused and	Fused and quenched								
mol % AgI	Structure (4b, 4c)	Structure (4b, 4d)	Structure (4b, 4c)	Structure (4b, 4d)	Structure (4b, 4c)							
0	5.768		5.768		5.768							
10	5.814		5.816		5.806							
20	5.842		5.854	l	5.84							
3 0	5.86		5.876	i	5.878							
40	5.896	(6.47)	5.908		1							
50	5.912	(6.47)	5.932		1							
60	5.918 6.014	6.47	5.96	(6.48)								
70	5.946 5.994	6.48	5.956	6.48								
80	5.916	6.47	(5.892)	(6.48)								
90		6.472	5.898	6.483	1							
95		6.481	ļ	6.487								
100		6.498		6.493								

LITERATURE

(For a key to the periodicals see end of volume)

Allison, 18, 8: 261; 24.
 Alsen and Aminoff, 207, 44: 124; 22.
 Aminoff, 207, 41: 407; 19.
 Aminoff, 94, 56: 495; 21.
 Aminoff, 94, 56: 506; 21.
 Aminoff, 94, 57: 180; 22.
 Aminoff, 207, 44: 444; 22.
 Aminoff, 94, 58: 203; 23.

(1°) Aminoff, 94, 60: 262; 24. (11) Aminoff, 94, 56: 510; 21. (12) Andrews, 8, 18: 245; 21. (13) van Arkel, 208, 4: 286; 24. (14) Asahara, 210, 1: 23; 22. 209, 1: 35; 22. (15) Astbury, 58, 112: 53; 23. (16) Astbury, 5, 102A: 506; 23. (17) Astbury, 5, 104A: 219; 23. (18) Bain, 35, 28: 21, 576; 23. (19) Bain, 80, preprint; Feb., 24.

(20) Bartlett and Langmuir, 1, 43: 84; 21. (21) Beckenkamp, 93, 110: 290; 20.
(22) Becker, 95, 15: 303; 23. (23) Becker, 96, 24: 65; 24. (24) Becker and Ebert, 96, 16: 165; 23. (25) Becker and Jancke, 7, 99: 242; 21. (26) Becker and Rose, 96, 17: 351; 23. (27) Becker and Rose, 96, 14: 369; 23. (28) Berndt, 211, 38: 1;21. (29) Bijl and Kolkmeijer, 176, 18: 1264; 18.

(20) Bijl and Kolmeijer, 64P, 21: 405; 19. (21) Bijl and Kolkmeijer, 64P, 21: 494, 501; 19. (32) Bijvoet, 70, 42: 859; 23. (32) Bijvoet and Karssen, 64P, 28: 1365; 21. (34) Bijvoet and Karssen, 64P, 28: 27; 22. (25) Bijvoet and Karssen, 70, 43: 680; 24. (26) Bohlin, 8, 61: 421; 20. (27) Bosorth, 1, 44: 317; 22. (32) Bosorth, 1, 44: 1066; 22. (32) Bosorth, 1, 44: 2232: 22.

(40) Bosorth, 1, 45: 2128; 23. (41) Bosorth, 1, 45: 1621; 23. (42) Bradley, 5, 43: 477; 24. (43) Bradley, 5, 47: 657; 24. (44) Bragg, 5, 89: 248; 13. (45) Bragg, 5, 89: 246; 13. (46) Bragg, 5, 28: 355; 14. (47) Bragg, 5, 284, 469; 14. (48) Bragg, 5, 284, 575; 14. (49) Bragg, 62, 284; 28.

89A: 468; 14. (48) Bragg, 5, 88A: 575; 14. (49) Bragg, 62, 218: 253; 15. (50) Bragg, 68, 98: 561; 15. 3, 20: 305; 15. (81) Bragg, 5, 39: 647; 20. (82) Bragg, 67, 38: 304; 21. (83) Bragg, 67, 34: 35; 21. (84) Bragg, 67, 34: 98; 22. (85) Bragg, 4, 121: 2766; 22. (86) Bragg, 58, 111: 532; 23. (87) Bragg, 67, 38: 167; 23. (88) Bragg, 67, 36: 16; 24. (89) Bragg and Bragg, 58, 91: 557; 13.

(60) Bragg and Bragg, 5, 88: 277; 13.
(61) Bragg and Bragg, X-rays and Crystal Structure, 4th ed., (London, £4).
(62) Bragg and Morgan, 5, 1644: 437; 23.
(62) de Broglie and Friedel, 54, 176: 738; 23.
(64) Broomé, 65, 24: 124; 23.
(65) Burdick and Ellis, 197, 3: 644; 17.
(1, 39: 2518; 17.
(60) Burdick and Owen, 1, 40: 1749; 18.
(67) Burger, £08, 2: 114; 22.
(68) Clark, 1, 46: 372; 24.
(69) Clark and Duane, 2, 20: 85; 22.

(70) Clark and Duane, 48, 7: 455; 23. (71) Clark and Duane, 197, 8: 126; 23. (72) Cooper, 58, 107: 745; 21. (73) Cooper, 58, 110: 544; 22. (74) Davey, £, 17: 402; 21. (75) Davey, £, 18: 102; 21. (76) Davey, £, 19: 248; 22. (77) Davey, £, 18: 538; 22. (78) Davey, £, 21: 143; 23. (79) Davey, £, 21: 213; 23.

(50) Davey, 2, 21: 380; 23.
(81) Davey, 2, 21: 716; 23.
(82) Davey, 2, 23: 292; 24.
(83) Davey, 2, 25: 763; 24.
(84) Davey, 212, 6: 375; 24.
(85) Davey and Wick, 2, 17: 403; 21.
(86) Davey and Hoffman, 2, 15: 333; 20.
(87) Debye, 65, 18: 483; 17.
(88) Debye and Scherrer, 63, 17: 277; 16.
(89) Debye and Scherrer, 65, 18: 291; 17.

(90) Dennision, 2, 17: 20; 21. 135, 122: 54; 21. (91) Dickinson, 1, 42: 85; 20.
(92) Dickinson, 1, 44: 276; 22. (93) Dickinson, 1, 44: 774; 22. (94) Dickinson, 1, 44: 1489; 22. (95) Dickinson, 1, 44: 2404; 22. (95) Dickinson, 1, 45: 958; 23. (97) Dickinson and Friauf, 1, 46: 2457; 24. (98) Dickinson and Goodhue, 1, 43: 2045; 21. (99) Dickinson and Pauling, 1, 45: 1466-23

(100) Dickinson and Raymond, I, 45: 22; 23. (101) Eastman, I, 46: 917; 24. (102) Espig, 211, 38: 53; 21. (103) Ewald, 8, 44: 257; 14. (104) Ewald, 65, 15: 399; 14. (105) Ewald, 213, 1914: 325. (106) Ewald and Friedrich, 8, 44: 1183; 14. (107) Gerlach, 63, 22: 557; 21. (108) Gerlach, 63, 23:

114: 22. (109) Gerlach, 96, 9: 184; 22.

(110) Gerlach and Pauli, 96, 7: 116; 21. (111) Goldschmidt and Thomassen. \$14, No. 2: 5; 23. (112) Gonell and Mark, 7, 107: 181; 23. (113) Greenwood, 3, 48: 654; 24. (114) Grees, 189, 1919: 201. (115) Grees and Grees, 180, 43: 113; 23. (114) Hadding, 815, 17: No. 6; 20. (117) Hassel and Mark, 96, 27: 89; 24. (118) Hassel and Mark, 96, 25: 317; 24.

(120) Havighurst, Mack and Blake, 1, 46: 2368; 24. (121) Hedvall, 19, 8: No. 11; 22. 95, 120: 327; 22. (122) Heindlhofer, 2, 24: 426; 24. (123) Hentschel, 189, 1923: 609. (124) Herzog, Jancke and Polanyi, 95, 3: 196, 343; 20. (128) Holgersson, 95, 126: 179; 23. (126) Hull, 2, 9: 84; 17. (127) Hull, 2, 9: 564; 17. (128) Hull, 2, 10: 661; 17. (129) Hull, 197, 3: 470; 17.

(130) Hull, \$\mathcal{S}\$, 13: 292; 19. (131) Hull, \$\mathcal{S}\$, 14: 540; 19. (132) Hull, \$119, 38: 1171; 19. (133) Hull, \$\mathcal{S}\$, 15: 545; 20. (134) Hull, \$166, 52: 227; 20. (135) Hull, \$\mathcal{S}\$, 17: 42; 21. (136) Hull, \$\mathcal{S}\$, 17: 571; 21. (137) Hull, \$\mathcal{S}\$, 18: 88; 21.

(128) Hull, 2, 20: 113; 22. (129) James, 5, 42: 193; 21.

(140) James and Tunstall, 5, 40: 233; 20. (141) Jette, Phragmen and Westgren, 47, 31: 193; 24. (142) Kahler, 2, 18: 210; 21. (143) Karssen, 70, 42: 904; 23. (144) Kiby, 96, 17: 213; 23. (145) Kirchner, 8, 69: 59; 22. (146) Kolkmeijer, 64P, 25: 125. 64V, 21: 155; 22. (147) Kolkmeijer, Bijvoet and Karssen, 64P, 23: 644; 21. (148) Kolkmeijer, Bijvoet and Karssen, 96, 14: 291; 23. (149) Kolkmeijer, Bijvoet and Karssen, 96, 14: 291; 23.

- (180) Kolkmeijer, Bijvoet and Karssen, 70, 43: 677; 24. (181) Kolkmeijer, Bijvoet and Karssen, 70, 43: 894; 24. (182) Kulasewski, 211, 38: 81; 21. (183) Kustner and Remy, 63, 34: 25; 23. (184) Lehmann, 94, 60: 379; 24. (188) Leonhardt, 189, 1923: 641. 94, 59: 216; 24. (186) Levi, 59, 1: 137; 24. (187) Levi, 72, 87: 619; 24. (188) Levi, 216, 6: 333; 24. (188) Levi and Ferrari, 22, 38: 397; 21.
- (160) Levi and Ferrari, 22, 33: 516; 24.
 (161) Levi and Quilico, 36, 54: 154; 24.
 (162) McKeehan, 197, 8: 254; 22.
 (163) McKeehan, 197, 8: 254; 22.
 (163) McKeehan, 197, 8: 270; 22.
 (164) McKeehan, 20: 424; 22.
 (168) McKeehan, 145, 196: 50; 23.
 (161) McKeehan, 2, 21: 334; 23.
 (163) McKeehan, 2, 21: 503; 23.
- (170) McKeehan, 2, 19: 444; 22. (171) Mark, 25, 57: 1820; 24. (172) Mark and Polyani, 96, 13: 75; 23. (173) Mark and Polyani, 96, 22: 200; 24. (174) Mark, Polyani and Schmid, 218, 11: 256; 23. (175) Mark and Weissenberg, 96, 16: 1; 23. (178) Mark and weissenberg, 96, 17: 301; 23. (177) Mark and Weissenberg, 96, 17: 347; 23. (178) Mark and Weissenberg, 96, 24: 68; 24. (179) Marylin, 34, 176: 1331; 23.
- (180) Mauguin, 54, 176: 1483; 23. (181) Mauguin, 54, 178: 785; 24. (182) Mauguin, 54, 178: 1913; 24. (183) Mechling, £11, 28: 37; 21. (184) Müller, 4, 128: 2043; 23. (188) Müller and Shearer, 4, 128: 3156; 23. (184) Niggli, £5, 19: 225; 18. (187) Niggli, £4, 56: 213; 22. (188) Niggli, £4, 57: 253; 22. (189) Nishikawa, £19, 8: 199; 15.
- (100) Nishikawa, 219, 9: 194; 17. (101) Nishikawa and Hudinuki, 219, 9: 197; 17. (102) Ogg and Hopwood, 5, 32: 518; 16. (102) Ogg, 5, 42: 163; 21. (102) Ott, 65, 24: 209; 23. (102) Ott, 96, 23: 201; 24. (102) Owen and Preston, 67, 35: 101; 23. (102) Owen and Preston, 67, 36: 14; 23. (102) Owen and Preston, 67, 36: 14; 23. (102) Owen and Preston, 67, 36: 14; 23.
- (200) Patterson, 45, 16: 689; 24. (201) Patterson, 2, 25: 581; 25. (202) Pauling, 1, 45: 2777; 23. (203) Pauling, 1, 46: 2738; 24. (204) Pauling and Dickinson, 1, 45: 1615; 24. (208) Pauling and Hendricks, 1, 47: 781; 25. (206) Phebus and Blake, 2, 25: 107; 25. (207) Phragmen, 220, 1923: 121. (208) Piper and Grindley, 67, 25: 269; 23. 36: 31; 23. (209) Posnjak and Wyckoff, 128, 12: 248; 22.
- (210) Rinne, 221, 69: 57; 17. (211) Rinne, Hentschel and Leonhardt, 94, 58: 629; 23. (212) Rinne, Leonhardt and Hentschel, 94, 59: 548; 24. (213) St. John, 197, 4: 193; 18. (214) St. John, 2, 21: 389; 23. (215) Scaechi, 222, 1: 187; 90. (218) Scaechi, 65, 19: 23; 18. (217) Scherrer, 94, 57: 186; 22. (218) Scherrer, B66: 387. (219) Scherrer and Stoll, 93, 121: 319: 22.
- (220) Scherrer and Stoll, 149, 4: 232; 22. (221) Schiebold, 211, 36: 65; 19. (222) Schiebold, 94, 56: 430; 21. (223) Schneiderhohn, Mikroscopische Bestimmung son Erzen, p. 196 (Berlin, 22). (224) Schumacher and Lucas, 1, 46: 1167; 24. (228) Shearer, 4, 123: 3152; 23. (228) Siegbahn and Dolejsek, 96, 10: 159; 22. (227) Simon and von Simson, 96, 25: 160; 24. (228) Simon and von Simson, 96, 21: 168; 24. (229) von Simson, 7, 109: 183; 24.
- (230) Slattery, 2, 20: 84; 22. (231) Slattery, 2, 21: 213; 23. (232) Slattery,
 2, 21: 378; 23. (233) de Smedt and Keesom, B60: 117; 24. (234) Sponsler,
 255, 5: 757; 23. (235) Steinberg, 2, 21: 22; 23. (236) Stoil, 149, 3: 546;
 21. (237) Terada, £19, 7: 292; 14. (238) van Arkel, 64V, 32: 197; 23.
 34. (237) Terada, £19, 7: 292; 14. (238) van Arkel, 64V, 32: 197; 23.
- 64P, 27: 97; 24. (239) van Arkel, 208, 4: 33: 24. (249) Vegard, 5, 21: 83; 16. (241) Vegard, 5, 22: 65; 16. (242) Vegard, 5, 23: 505; 16. (242) Vegard, 5, 23: 395; 17. (244) Vegard, 96, 5: 17; 21. (246) Vegard, 96, 9: 395; 22. (248) Vegard, 96, 12: 289; 22. (247) Vegard, 96, 18: 379; 23. (248) Vegard, 8, 54: 146; 18. (249) Weber, 94, 57: 398; 22.
- (250) Westgren, 140, 103: 303; 21. (251) Westgren, 220, 105: 401; 21. (252) Westgren, 224, 1923: 223. (253) Westgren and Lindh, 7, 96: 181; 21. (254) Westgren and Phragmen, 140, 105: 241; 22. (253) Westgren and Phragmen, 7, 103: 1; 22. (253) Westgren and Phragmen, 220, 1923: 449. (257) Westgren and Phragmen, 140, 109: 159; 24. (253) Westgren and Phragmen, 68, 113: 122; 24. (253) Wever, 226, 3: 45; 21.
- (260) Wever, 286, 3: 17; 22. (281) Wever, 286, 4: 67; 22. (262) Wever, 226, 4: 81; 22. (263) Williams, 5, 93: 418; 17. (264) Wilsey, 5, 43: 262; 21. (268) Wilsey, 5, 46: 487; 23. (288) Wulff, 94, 57: 190; 22. (267) Wyckoff, O. (268) Wyckoff, I, 43: 1100; 20. (268) Wyckoff, I, 16: 149; 20.
- (270) Wyckoff, 12, 50: 317; 20. (271) Wyckoff, 12, 1: 138; 21. (272) Wyckoff, 12, 2: 239; 21. (273) Wyckoff, 128, 11: 429; 21. (274) Wyckoff, 1, 44: 1239; 22. (275) Wyckoff, 1, 44: 1260; 22. (276) Wyckoff, 1, 44: 1994; 22. (277) Wyckoff, 12, 3: 184; 22. (278) Wyckoff, 12, 4: 188; 22. (278) Wyckoff, 12, 4: 193; 22.
- (280) Wyckoff, 12, 4: 469; 22. (281) Wyckoff, 12, 5: 15; 23. (282) Wyckoff, 12, 5: 209; 23. 94, 87: 595; 23. (283) Wyckoff, 12, 6: 277; 23. (384)

- Wyckoff, 94, 59: 55; 23. (285) Wyckoff, 128, 14: 121; 24. (286) Wyckoff, 12, 9: 145; 25. 94, 61: 425; 25. (287) Wyckoff, 12, 10: 107; 25. (288) Wyckoff, 12, 9: 448; 25. (289) Wyckoff and Merwin, 12, 8: 447; 24.
- (230) Wyckoff and Merwin, 12, 9: 286; 25. 94, 61: 5; 25. (231) Wyckoff and Merwin, 12, 9: 379; 25. (232) Wyckoff and Posnjak, 1, 43: 2292; 21. (233) Wyckoff and Posnjak, 1, 44: 30; 22. (234) Wyckoff and Posnjak, 128, 13: 393; 23. (236) Yardley, 5, 105A: 451; 24. (237) Young, 3, 46: 291; 23. (238) Owen and Preston, 67, 36: 341; 24. (239) Levi and Tacchini, 36, 55: 28; 25.
- (300) Levi, 59, 1: 335; 24. (301) Holgersson and Sedstrom, 8, 75: 143; 24.
 (302) Hewlett, 2, 20: 688; 22. (303) Debye and Scherrer, 188, 16: 16.
 (304) Keesom and DeSmedt, 64P, 25: 118; 22. (308) Keesom and DeSmedt, 64P, 26: 112; 23. (308) Becker and Ebert, 96, 21: 268; 25. (307) Havighurst, Mack and Blake, 1, 47: 29; 25. (308) Slattery, 2, 25: 333; 25. (309) Gibbs, 4, 125: 2622; 24.
- (310) Bernal, 5, 106A: 749; 24. (311) Hassel, 94, 61: 92; 25. (312) Wasastjerna, 138, 2, No. 14: 2; 25. (313) Schiebold, 94, 67: 579; 25. (314) Mark and Wigner, 7, 111: 398; 24. (315) Hoffman and Mark, 7, 111: 321; 24. (318) Hassel and Mark, 7, 111: 357; 24. (317) Keesom and DeSmedt, 64V, 33: 571; 24. (315) Mark and Pohland, 94, 61: 293; 25. (319) Saville and Shearer, 4, 137: 591; 25.
- (320) Müller and Saville, 4, 127: 599; 25. (321) Friedel, 34, 180: 269; 25. (322) Wyckoff and Crittenden, 1, 47:2876; 25. (323) Yardley, 269, 20: 296; 25. (324) Hevesy, 286, 2: 1; 25. (325) Bosorth and Pauling, 1, 47: 1561; 25. (328) Rinne, Hentschel and Schiebold, 94, 61: 164; 25. (327) Pauling and Emmett, 1, 47: 1026; 25. (328) Buckley and Vernon, 3, 49: 945; 25. (328) Davey 2, 25: 753: 25.
- (330) Bradley, 3, 49: 1225; 25. (331) Wyckoff, 166, 63: 496; 25. (332) Gibbs, 5, 107A: 561; 25. (333) Zachariasen, Norsk geologisk tidaskrift, 8: 189: 25. (334) James and Wood, 515, 69: 24-25. (335) Wyckoff and Merwin, 94, 61: 452; 25. (336) Kolkmeijer, Bijvoet and Karssen, 64P, 27: 847; 24. (337) Kolkmeijer, Bijvoet, and Karssen, 64V, 33: 327; 24. (335) Mark and Pohland, 94, 61: 532; 25. (333) Claassen, 70, 44: 790; 25.
- (240) Kolderup, Bergens Museums Aarbok, 1924-25. (241) Mark and Tolksdorf, 96, 33: 681; 25. (242) Hassel, 136, 49: 465; 25. (243) Levi and Natta, 22, 23: 39; 25. (244) Havighurst, 12, 10: 15; 25. (245) van Arkel, 208, 5: 162; 25. (246) Peiroe, Anderson, and Van Dyck, 143, 200: 363; 25. (347) Ott, 218, 13: 76; 25. (348) Ott, 94, 61: 515; 25. (349) Mark and Pohland, 94, 63: 103: 25.
- (380) Westgren and Phragmēn, 96, 33: 77; 25. (381) Goldschmidt, Barth and Lunde, Skrifter Norske Videnskaps Akademi, No. 7; 25. (382) Goldschmidt, Ulrich and Barth, Skrifter Norske Videnskaps Akademi, No. 5; 25. (383) Brentano, 67, 37: 52; 25. (384) Trillat, 34, 180: 1329; 25. (385) Trillat 34, 180: 1838; 25. (388) Alsen, 207, 47: 19; 25. (387) Ramsdell, 328, 10: 281; 25. (388) de Smedt and Keesom, 64V, 23: 888; 24. (389) Bragg, 105, 9: 272; 25.
- (3*6) Clark, Asbury and Wick, 1, 47: 2661; 25. (3*1) Lange, 8, 76: 476; 25. (3*2) Blake, 2, 36: 60; 25. (3*3) Knaggs, 269, 30: 340; 25. (3*4) Aminoff, 94, 63: 113; 25. (3*8) Buckley and Vernon, 269, 20: 382; 25. (3*8) Olshausen, 94, 61: 463; 25. (3*7) Ferrari, 28, 1: 664; 25. (3*8) Bradley, 5, 50: 1018; 25. (3*8) Lunde, 7, 117: 51; 25.
- (370) Sacklowski, 8, 77: 241; 25. (371) Westgren and Phragmön, 5, 50: 311;
 25. (372) Weiss, δ, 108A: 643; 25. (373) de Smedt, 188, 10: 366; 24.
 (274) Davey and Wilson, Proc. Am. Phys. Soc., Nov. 27, 1925. (375)
 Nakamura, 210, 2: 287; 25. (278) Ösawa, 159, 14: 43; 25. (377) Wyckoff, 94, 63: 189; 25. (378) Broomé, 94, 63: 325; 25. (379) Noethling and Tolksdorf, 94, 63: 255; 25.
- (386) Selyakov, Strutinskii and Krasnikov, 96, 33: 53; 25. (381) Ulrich and Zachariasen, 94, 63: 260; 25. (382) de Smedt and Keesom, 94, 63: 312; 25. (383) Ott, 94, 63: 201; 25. (384) Patterson, 2, 23: 552; 24. (388) Yardley, 5, 108A: 542; 25. (386) Ferrari, 22, 24II: 186; 25. (387) Broomé, 93, 143: 60; 25. (388) Sasahara, 329, 3: 277; 25. (389) Phragmen, 77, 45: 299; 25.
- (390) Ott, \$18, 13: 644; 25. (391) Jong, \$08, 5: 194; 25. (392) Linck and Jong, \$93, 147: 288; 25. (393) Goldschmidt, Barth and Lunde, Skrifter Norske Videnskaps. Akad. Oslo 1, Mat. Nat. Kl.: No. 7; 25. (394) Wyckoff and Crittenden, 1, 47: 2866; 25. (398) Huggins and Hendricks, 1, 43: 164; 26. (398) Hendricks and Pauling, 1, 47: 2904; 25. (397) Havighurst, 12, 10: 556; 25. (398) Yardley, 5, 50: 864; 25. (399) Yardley, 4, 127: 2207; 25.
- (400) Wyckoff, 12, 11: 101; 26. (401) Piper, Brown and Dyment, 4, 127: 2194; 20. (402) Wilsey, 145, 200: 739; 25.

SOME NUMERICAL DATA PERTAINING TO DISPERSOIDOLOGY

P. P. VON WEIMARN

From the large and heterogeneous mass of numerical data recorded in the literature of "Colloids," it seems desirable to present here only some selected illustrative examples of results of physical measurements which meet the following requirements: (1) The composition of the system is definite, reproducible, and exactly known; (2) all of the essential variables which affect the system are understood and are accurately controlled or measured; (3) the system, its behavior, and the resulting quantitative data are reproducible in the hands of any investigator working under these same controllable conditions; and (4) the examples selected shall be illustrative of some general law describing the behavior of dispersed systems.

As meeting the above conditions, the following examples have been selected and are presented in graphical form. Concise explanations are given in connection with the graphs. For a detailed description, explanation, discussion, and bibliography, the reader is referred to von Weimarn, Chem. Rev. 2: 217; 25.

THE PRECIPITATION LAWS

Figures 1-9 illustrate the following precipitation laws: With increasing concentration of the reacting solutions, the average size of the precipitated crystalline individuals (not their aggregates) (1) passes through a maximum during, and (2) decreases continually after the completion of, the process of direct crystallization; (3) for the same absolute concentration of the reacting solutions (other conditions being equal), with decreasing solubility of a substance (Fig. 4; cf. Fig. 13), the average size of the precipitated crystals also decreases.

Figures 10-13 show that, if the aggregation of the individual ultramicrocrystals has not proceeded too far, the second law of precipitation remains valid; and besides they illustrate the law:

(4) With increasing viscosity of the dispersion medium, the average size of the particles decreases (Fig. 12) (3, 4); cf. (1).

The following general remarks apply to the figures: (1) The dispersion medium is indicated thus (60 vol. % C_2H_5OH); (2) mixing was brought about in all cases by pouring and shaking. The direction of pouring is indicated by the arrow. (3) In Figs. 1-9, the volumes mixed in each experiment satisfied the relation, concentration \times volume = a constant (approx.), for a given dispersion medium; (4) the time, t_0 , represents the period (ca. 10-15 min) required for the operations of sampling and photomicrographing; (5) all data shown are the averages of at least two independent experiments.

1. Precipitation of Ag_2SO_4 —Reaction.— $2AgNO_3 + MnSO_4 = Ag_2SO_4 + Mn(NO_3)_2$ (Figs. 1-7). In Figs. 4-5, per liter of final

solution, $C = Ag_2SO_4$ produced by the reaction and S = its solubility, both in g-equivalents (8).

- 2. Precipitation of AgC₂H₃O₂.—Reaction.—AgNO₂ + KC₂H₃O₂ = AgC₂H₃O₂ + KNO₃ (Figs. 8-9) (6). These curves show the effect of time; the periods of time for the four curves are the same in both figures.
- 3. Precipitation of Se.—Reaction.—(a) 5 cc of aniline (an.) containing m mg of Se are poured into 100 cc of 93.5 wt. % C_2H_1OH (alc.) or (Fig. 13) mixtures thereof with an. or (Fig. 12) glycerol (gl.). $t = 20^{\circ}$ (Figs. 10-13 a curves) (7). (b) As in (a) but with quinoline (q.) instead of aniline and using 90 wt. % C_2H_1OH (Figs. 10-13 b curves) (7).
- 4. Effects of Salts Dissolved in the Dispersion Medium on the Duration of Life of Dispersoidal Solutions.—(a) $BaSO_4$ Reaction.—50 cc (2a + 2x equiv.) $BaR_2 + 50$ cc (2a equiv.) $MnSO_4 = 1$ equiv. $BaSO_4 + 1$ equiv. $MnR_2 + x$ equiv. BaR_2 . Dispersion medium, 63 wt. % C_2H_4OH (Figs. 14-17) (5).
- (b) S.—Dispersoidal solution of sulfur prepared by the method of grinding with grape-sugar. Ca. 25 mg S per liter of H_1O ; particles ca. 85 $\mu\mu$ (Figs. 18–23). C = millimols salt per liter. The dotted horizontal is for C=0. To the right of the dotted vertical (Fig. 23) the disperse phase begins to dissolve by chemical action (10); cf. (2).
- (c) $Al(OH)_1$.—Prepared as in (b) supra. Ca. 55 mg $Al_2O_33H_2O_5$ per liter of H_2O_5 particles ca. $90\mu\mu$ (Fig. 24). The dotted horizontal is for C=0. Dissolving begins at points marked with crosses (11); cf. (2).
- 5. Adsorption and Solubility of Salts.—Adsorbent used—BaSO₄ extra pure; 20 g used per 100 cc of the salt solution. After shaking the solution with the adsorbent for 10 min, 24 hr. were allowed for the precipitate to settle. Fifty cc of the upper clear layer were used for analysis. Because partial dispergation occurred in the case of BaCl₂ in dilute C₂H₄OH solutions, these were centrifuged before analysis (Fig. 25) (9).

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Odén, 55, 26: 120; 20. (2) Ostwald, 55, 26: 28, 69; 20. (3) von Weimarn, 53, 38: 267, 624; 06. (4) von Weimarn, 53, 38: 933, 1400; 06. 55, 2: 76; 07. 287, 13: 44; 23. (5) von Weimarn, Aoki and Kataoka, O. In part in von Weimarn, 288, 2: 199; 24. (6) von Weimarn and Hori, O. (7) von Weimarn and Morishima, O. In part in von Weimarn 55, 36: 10; 25. (8) von Weimarn and Otsuka, O. In part in von Weimarn, 55, 33: 234; 23. (8) von Weimarn, Schochara and Takashige, O. In part in von Weimarn, 56, 38: 242; 23.
- (10) von Weimarn and Utsino, δδ, 36: 265; 25. (11) von Weimarn and Utsino. O.

SWEETENING AGENTS. RELATIVE SWEETENING POWER

C. F. WALTON, JR.

The relative sweetness of various substances is usually cited in comparison with sucrose as unity. Since the concentration of the standard sucrose solution employed by different investigators has varied from 1 to 10%, and since the degree of sweetness does not decrease proportionately with dilution, the values reported in the literature vary accordingly, and are difficult to arrange accurately in numerical order. The following table, therefore, indicates only the approximate degree of sweetness, as reported by different investigators employing a variable procedure.

Relative Degree of Sweetness (Sucrose = 1.0)

Name	Formula	Degree of sweet- ness	Lit.
Lactose	C12H22O11	0.27-0.28	(26)
Dulcitol	C ₆ H ₁₄ O ₆	0.41	(26)
Mannitol	C ₆ H ₁₆ O ₆	0.45	(26)
Sorbitol	C ₆ H ₁₆ O ₆	0.48	(26)
Glycerol	C ₂ H ₂ O ₃	0.48	(26)
Glycol	C ₂ H ₆ O ₂	0.49	(26)
Dextrose (d-glucose)	C ₆ H ₁₂ O ₆	0.50-0.60	(10,
, ,			26,
			29)
Maltose	C12H22O11	0.60	(26,
			29)

RELATIVE DEGREE OF SWEETNESS .— (Continued)

Name	Formula	Degree of sweet- ness	Lit.	
Invert sugar (dex- trose + levulose)	$C_6H_{12}O_6 + C_6H_{12}O_6$	0.78-0.95	(10, 26, 29)	
Sucrose	C ₁₂ H ₂₂ O ₁₁	1.00	(10, 26, 29)	
Levulose (d-fructose)	C ₆ H ₁₂ O ₆	1.03-1.50	(10, 26, 29)	
p-Anisylurea	CH ₂ OC ₆ H ₄ NHCONH ₂	18	(5)	
Chloroform		40	(31)	
Glucin	Mixture	100	(11)	
	CH ₂ C ₄ H ₂ COSO ₂ NH	200	(19)	
Dulcin (p-phenetylurea)		70–350	(11, 26)	
6-Chlorosaccharin	ClC ₄ H ₄ COSO ₄ NH	100-350	(19)	
n-Hexylchloromalon- amid	n-C ₆ H ₁₈ CCl(CONH ₂) ₂	300	(11)	
Saccharin (o-benzo- sulfonimid)	C₀H₄COSO₂NH	200-700	(11, 26)	
Perillaldehyde α- anti-aldoxime (peryllartine)	C ₆ H ₅ C(CH ₅)CH ₂ CHNOH	2000	(16)	

LITERATURE

(For a key to the periodicals see end of volume)

The following list contains certain general references on methods of testing relative sweetening power, etc.

- (1) Auerbach, £18, 10: 710; 22. (2) Barral and Ranc, £71, 56: 712; 18. (3) Barral and Ranc, £83, 17: 16; 20. (4) Becker and Hersog, £05, £2: 496; 07. (5) Boedecker and Rosenbuch, £73, 30: 251; 20. (5) Braun and Rawicz, £5, 49: 799; 16. (7) Cohn, Die Organischen Geschmackstoffe (Siemanroth, Berlin, 1914). (8) Cohn, 196, £2: 1; 16. (9) Cohn, £74, 58: 735, 763; 14.
- Deerr, 275, 24: 481; 22. (11) Dox and Houston, 1, 45: 1278; 24. (12)
 Dyson, 276, 11: 572; 24. (12) Foerster, 282, 23: 400; 11. (14) Frankel,
 Arsneimittelsynthese (Springer, Berlin, 1921): 134-53. (18) Furukawa,
 Japanese Patent 35332; 19. (16) Furukawa, 41, 41: 706, 979; 20. (17)
 Hermann, 13, 429: 163; 22. (18) Holleman, 70, 40: 446; 21. (19) Holleman, 70, 42: 839: 23.
- (20) Holleman and Choufoer, 64V, 33: 307; 24.
 (21) Kionka and Strätz, 277, 95: 241; 22.
 (22) Kodama, 41, 41: 495; 20.
 (23) Lazarev, 278, 194: 293; 22.
 (24) Oertley and Myers, 1, 41: 855; 19.
 (28) Ogilvie, 276, 24: 288; 22.
 (24) Paul, 279, 43: 137; 22.
 (27) Paul, 280, 26: 610; 22.
 (28) Pauli, 205, 135: 97; 21.
 (29) Bale and Skinner, 46, 14: 522; 22.
- (30) Speckam, 273, 32: 83; 22. (31) Sternberg, 281, 38: 272; 05. (22) Zunts, 92, 33: 385; 10.

ODORIFEROUS MATERIALS

H. ZWAARDEMAKER

The unit used for expressing odor is the olfacty, the normal stimulus threshold for a given odor.

The characteristic grouping giving rise to odor is termed odoriphore (8), also called aromatophore (Klimout, 1897) and osmophore (Rupe, 1900). The principal odoriphores are: \leftarrow C(:O)O-Alkyl, esters; \leftarrow C(:O)H, aldehydes; \leftarrow CO, ketones; Alkyl-O-Alkyl, ethers; \leftarrow C=OH, alcohols; \leftarrow C(:O)OH, acids; \leftarrow NO₂, nitrites; \leftarrow CN, nitriles; \rightarrow , terpenes; \rightarrow \rightarrow , pinenes; \leftarrow S-S-, sulfides; \leftarrow As-As- \rightarrow , arsenides; \leftarrow As-O-As- \rightarrow , cacodyls; \leftarrow Hal., halogens; \rightarrow N, pyridine; \rightarrow NH, pyrrole.

CLASSIFICATION

LINNÉ, MODIFIED BY ZWAARDEMAKER

Type Odores aetherei Lorry (Ethereal)					
1. Almond	В				
2. Camphoric	C				
3. Citric	D				
Odores fragantes Linné (Balsam):					
1. Floral	\mathbf{E}				
2. Lilylike	F				
3. Vanillin	G				
Odores ambrosiae Linné (Musk)	н				
Allyl	I				
Cacodylic	J				
Odores empyreumatic Haller (Empyreumatic)	K				
Odores hircini Linné (Caprylic)	L				
Odores tetri Linné (Narcotic)	M				
Odores nauseois Linné (Nauseous)	N				

Intensity.—The intensity of the odor of an odorivector (5) depends on (1) its volatility from dilute solution, (2) its rate of diffusion, (3) its absorption by a humid surface and (4) its solubility in liquids. (All odorous substances are soluble in oil (2).) The significance of an odor as a reflex stimulus depends on physiological, its pleasing or repulsive value on psychological conditions.

VOLATILITY OF ODOR FROM PARAFFINIC SOLUTIONS (4)

Substance	Concn. per- cent	Volatility 10 ⁻⁴ g per min
Ethyl sulfide (I)	1	0.14
Scatole (N)	1	0.18
Valeric acid (L)	0.1	0.28
Guaiacol (K)	1	0.5
Pyridine (M)	10	0.98
Isoamyl acetate (A)	5	3.6
Terpineol (C)		7.5
Nitrobenzene (B)		9.2

DIFFUSION IN FREE AIR IN NEIGHBORHOOD OF SOURCE (10)

	cc per		ec per
Eugenol (C)	1.3	Ethyl ether (A)	4.4
		Ethylacetone (A)	

Extremes—ethyl acetate (A) and naphthalene (K). The anemodispersibility of odors depends on the size of the cloud and the velocity of the wind.

Spray Electricity.—All odorous substances lower the surface tension of water and therefore produce static electricity by spraying an aqueous solution of the odorivector against a disc well insulated with amber and paraffin. The value is expressed as 10^{-10} coulomb per cc of a saturated solution.

Substance	10 ⁻¹⁰ coulombs	Lit.
Cumidine (K)	0.2	(12)
Aniline (K)	0.4	(6)
Toluidine (K)	0.4	(6)
Xylidine (K)	0.9	(6)
Scatole (N)	1.0	(12)
Trinitroisobutyltoluene (H)	1	(12)
Pseudocumene (K)	3.4	(2)
Ethyl acetate (A)	3.5	(2)
Xylene (K)	3.8	(6)
Aniline (K)	4.8	(2)
Toluene (K)	5.1	(2)
Thymol (C)	6.5	(2)
Benzene (K)	7.5	(2)
Toluidine (K)	7.9	(2)
Xylidine (K)	9.3	(2)
Nitrobenzene (B)	9.6	(2)
Vanillin (G)	10	(2)
Dimethylaniline (K)	11.6	(6)
Benzaldehyde (B)	12.4	(2)
Anisaldehyde (G)	14.8	(2)
Phenol (K)	15.2	(2)

Substance	10 ⁻¹⁰ coulombs	Lit.	
Xylenol (K)	17	(2)	
Ethyl alcohol (A)	17.2	(2)	
Cresol (K)	19.1	(12)	
Camphor (C)	20.3	(12)	
Heliotropin (F)	44	(2)	
Vanillin (G)	47	(12)	
Heliotropin (F)	52	(12)	
Acetone (A)	60	(12)	
Guaiacol (K)	81.1	(2)	
Carvacrol (C)	82.3	(2)	
Terpineol (E)	89.1	(2)	
Amyl acetate (A)	96.4	(2)	
Ethyl acetate (A)	122	(12)	
Guaiacol (K)	289	(12)	
Terpineol (E)	296	(12)	
Citral (D)	360	(12)	
Methyl anthranilate (E)	602	(12)	

RELATION BETWEEN SPRAY ELECTRICITY AND CONCENTRATION OF AQUEOUS SOLUTIONS (12)

	CHARGE IN 10 ⁻¹⁰ COULOMBS PER CO								
Degree of saturation	1	1	1	1	116	12	8 1 2		
Coumarin	6.5	2	0.5	0					
Heliotropin	52	22	10	2	1.4 0.5	1.4	0		
Vanillin	72	32	6	2	0.5	0			

Adsorption of Odors by Surfaces Expressed as the Duration of the After Effect Following an Exposure to a Continuous Stream of Odoriferous Air for 5 Minutes (11). The Term sec Denotes a Few Seconds, m = Minute, d = Day, h = Hour, min = Some Minutes

	Alumin- ium	Copper	Glass	Gold	Iron	Lead	Nickel	Porce- lain	Silver	Steel	Tin	Zinc
Ethyl disulfide	1 m	sec	sec	sec	sec	1 m	sec	2 m	sec	sec	sec	sec
Guaiacol	15 m	3 m	1 m	12 m	8 m	sec	5 m	5 m	0	7 m	8 m	25 m
Ionone	2.5 d	2 d	sec		4 d	1 d	2 d	sec	sec	4 d	min	
Isoamyl acetate	0	0	0	0	sec	0	sec	15 m	0	2 m	0	sec
Muscon	1 d	4 d	1 d	2 d	min	12 d	4-9 d	sec	2 d	sec	4 d	3 d
Nitrobenzene	sec	sec	sec	sec	sec	sec	sec	8 m	sec	sec	sec	sec
Pyridine	0	2 m	0	0	45 m	sec	sec	5 m	0	30 m	0.5 m	2.5 m
Scatole	9 d	3 d	1.5 h	1.5 d	10 d	10 d	3.5 d	0	1 d	20 d	7 d	14 d
Terpineol	0	sec	0	0	sec	0	0	5 m	sec	4 m	0	0
Valeric acid	3 m	0	30 m	sec	0	0	sec	0	5 m	0	2 m	0

Destruction of Odors by Ultraviolet Light.—The values are expressed as number of minutes required to reduce the odor in air from 2 to 1 olfacty by the radiation from a quartz mercury lamp (7).

Substance	Time	Substance	Time
Apiol (C)	0.10	Methyl salicylate (C)	0.30
Valeric acid (L)	0.10	Trimethylamine (J)	0.30
Menthol (C)	0.15	Methyl nonyl ketone (C)	0.35
Ethyl sulfide (I)	0.25	Thymol (C)	0.40
Carvacrol (C)	0.25	Borneol (C)	0.45
Bornyl acetate (C)	0.30	Isoamyl acetate (A)	0.45
Bornyl acetate (C) Caproic acid (L)	0.30	Pyridine (M)	0.45

Substance	Time	Substance	Time
Safrol (C)	0.50	Methylheptenone (A)	2.30
Salicylaldehyde (C)	0.50	Eugenol (C)	3
Scatole (N)	0.50	Styrone (F)	3
Citral (D)	0.55	Coumarin (G)	3.30
Indole (N)	1.0	Ethyl isovalerate (A)	
Aniline (K)		Cresol (K)	5
Methyl anthranilate (E)	1.45	Ethyl butyrate (A)	5
Methyl butyrate (A)	2.0	Terpineol (E)	5
Vanillin (G)	2.0	Chloroform (A)	
Citronellol (E)	2.30	Ethyl succinate	
Eucalyptol (C)	2.30	Anethol (C)	6.30
Isobutyl alcohol (K)	2.30	Linalyl acetate (D)	

ODORIMETRY

The olfacty of an odor is the threshold or minimum perceptible concentration expressed in gms per cc which multiplied by $6.06\times10^{21}/\mathrm{M}$, where M is the molecular weight, gives molecules per cc.

The authorities quoted are: Backman (1); Berthelot (2); Fischer and Peuzoldt (3); Henning (4); Hermanides (5); Huyer (6); Ohma (7); Passy (8); Tempelaar (9); van Wartenberg (10); Zwaardemaker (11).

Compound	Mole per ·	Author		
Name	Formula	A	x	<u> </u>
Ionone (F)	C13H20O	16	5	4
Ethyl bisulfide (I)		\ 32 15	5 6	9
•		16	6	5
Scatole (N)	C,H,N	18	6	9
Vanillin (G)	C ₈ H ₈ O ₃	20	6	8
Trinitroisobutyltoluene (H)	C11H12N2O6	21	6	9
Coumarin (G)	C ₂ H ₆ O ₂	33	6	9
Citral (D)	$\mathbf{C}_{10}\mathbf{H}_{16}\mathbf{O}$	40	6	8
Valeric acid (L)	C ₆ H ₁₀ O ₂	47	6	4
Butyric acid (L)	C ₄ H ₈ O ₂	69	6	8
Isoamyl alcohol (K)	C,H,2O	69	6	8
Vanillin (G)	C ₈ H ₈ O ₃	72	6	9
Valeric acid (D)	C ₆ H ₁₀ O ₂	12	7	9
Heptylic acid (C)	C7H14O2	16	7	8
Guaiacol (K)	C7H8O2	∫ 18	7	5
Cit1 (D)	0 11 0	₹ 20	7	9
Citral (D)	C ₁₀ H ₁₆ O	20 24	7	9
Methyl anthranilate (E) Nitrobenzene (B)	C ₈ H ₉ NO ₂ C ₆ H ₆ NO ₂	32	7	4
Heliotropine (F)	C ₈ H ₆ O ₃	40	7	4
Coumarin (G)	C ₂ H ₆ O ₂	41	7	8
Iodoform	CHI:	42	7	2
Bromoform	CHBr.	48	7	8
Osmium tetroxide	OsO ₄	48	7	10
Oenanthyl alcohol (C)	C ₇ H ₁₆ O	52	7	8
Valeric acid (D)	C.H10O2	59	7	8
Cinnamaldehyde (C)	C,H,O	64	7	9
Nonylic acid (E)	C,H,,O,	77	7	8
Isobutyl alcohol	C4H10O	82	7	8
Thymol (C)	C ₁₀ H ₁₄ O	15	8	9
Capric acid (L)	C10H20O2	18	8	8
Heliotropine (F)	C ₈ H ₆ O ₃	20	8	8
	C ₆ H ₄ NO ₂	{ 20 20	8	5
Nitrobenzene (B)	Cananos	Ն 20	8	9
Borneol (C)	$C_{10}H_{18}O$	20	8	9
Coumarin (G)	C ₉ H ₆ O ₂	21	8	8
Eucalyptol (C)	$C_{10}H_{18}O$	22	8	9
Citral (D)	C10H16O	25	8	9
Linalyl acetate (D)	C12H20O2	29	8	9
Lauric acid (C)	C ₁₂ H ₂₄ O ₃	30	8	8
Pyridine (M)	C ₅ H ₅ N	31	8	9
Pulegon (M)	C10H16O	33	8	9
Eucalyptol (C)	C ₁₀ H ₁₈ O	39	8	7
Heliotropine (F)	C ₃ H ₆ O ₃	40	8	8
Carvacrol (C)		40	8	9
Propionic acid	C ₂ H ₄ O ₂	41	8	8

	Mole			
Compound			cc = 10 ²	Author- ity
Name	Formula	A	x	
Durol (K)	C ₁₀ H ₁₄	41	8	.1
Isoamyl acetate (A)	C7H14O2	$\left\{egin{array}{c} 42 \\ 42 \end{array} ight.$	8	5 9
Safrol (C)	C10H10O2	48	8	7
Citral (D)	C10H16O	52	8	7
Anethol (C)		57	8	9
Methyl butyrate (A)		58	8	9
Terpineol (E)		79	8	9
Eugenol (C)		85	8	7
Pseudocumene (K) Bornyl acetate (C)		10 14	9	1 9
Methylheptenone (A)		15	9	9
Ethyl butyrate (A)		15	9	9
Methyl acetate (A)		16	9	11
Carvone (C)		22	9	9
Caproic acid (L)		27	9	8
Ethyl succinate (A)		28	9	9
Methyl salicylate (C)	C ₂ H ₂ O ₂	39	9	9
Xylene (K)		46	9	1
Cresol (K)	C7H4O	50	9	9
Methylnonyl ketone (C)		61	9	9
Ethyl ether (A)		61	9	4
Aniline (K)		63	9	9
Camphor (C)		64	9	8
Amyl alcohol (K)		69	9	8
Safrol (C)		75	9	9
Phenol (K)	_	77	9	4
Butyl alcohol (K)		82	9	8
Ethyl ether (A)		82 92	9	9
Acetaldehyde (A)		96	9	9
Citronellol (E)		11	10	9
Valeric acid (L)		12	10	5
Toluene (K)		13	10	1
Ethyl isovalerate (A)		21	10	9
Trimethylamine (J)		22	10	9
Phenol (K)		26	10	9
Benzene (K)		41	10	1
Acetone (A)		42	10	11
Acetic acid (L)		50	10	8
Propyl alcohol (K)		51	10	8
Acetic acid (L)		71	10	9
Toluidine (K)		79	10	6
Xylidine (K)	C ₉ H ₁₁ N	10	11	6
Toluidine (K)	C7H,N	{ 15 16	11 11	6 6
Menthol (C)		26	11	9
Aniline (K)	C ₆ H ₇ N	30	11	6
Formic acid		33	11	8
Terpineol (E)		73	11	5
Pyridine (M)	C ₅ H ₅ N	12	12	5
Ethyl alcohol (A)	C ₂ H ₆ O	{ 24 33	12 12	4
Formic acid		84	12	9
Methyl alcohol		11	13	9
Methyl alcohol		19	13	8
Apiol (C)		17	15	9
	.,,1-1			

VALUE OF AN OLFACTY EXPRESSED AS DEGREE OF SATURATION OF AIR WITH THE ODORIVECTOR

Substance	% Satu- ration	Substance	% Satu- ration
Eucalyptol	0.058	Methyl alcohol	1.388
Eugenol	0.144	Methyl alcohol Toluidine	1.515
Toluene	0.158	Ethyl alcohol	2.5
Benzene	0.169		

VALUE OF AN OLFACTY IN CM OF THE ZWAARDEMAKER OLFACTOMETER

The constants of Zwaardemaker olfactometer are: width of cylinder, 0.8 cm; length, 10 cm; contents, 50 cc; air contact per cc of cylinder, 2.5 cm²; velocity of air in the air tube, 100 cc per sec (exposure, 0.33 sec).

MINIMUM PERCEPTIBLE IN CM OF OLFACTOMETER SCALE Saturated solutions (9)

Substance	cm	Substance	cm
Terpineol—H ₂ O	0.01	Caproic acid—H ₂ O Trinitroisobutyltoluene—	0.10
Ethyl propionate—H ₂ O.	0.02	Trinitroisobutyltoluene	
Ionone—H ₂ O	0.02	H ₂ O	0.10
Camphor—H ₂ O	0.07	Guaiacol—H ₂ O	0.20
		H ₂ O	0.20

Aqueous solutions (10)

Substance	Concentra- tion Wt. %	cm
Pyridine	0.05	0.1 0.5 0.2
Ethyl disulfide	0.02	0.5
Citral	0.01	0.2

Aqueous solutions (10).—(Continued)

	Concentra- tion Wt. %	
Scatole	0.01	0.4
Valeric acid	0.01	0.5
Isoamyl acetate	0.01	0.7
Scatole	0.0007	1.0

Paraffin solutions (11)

Substance	Concentra- tion Wt. %	cm	Substance	Concentra- tion Wt. %	ш
Borneol	1.0	0.001	Citral	1.0	0.09
Cadaverine	0.1	0.001	Isoamyl acetate.	0.5	0.29
Scatole	0.1	0.002	Guaiacol	0.1	0.62
Ethyl sulfide	0.01	0.01	Ionone	0.0004	0.62
Pyridine	1.0	0.03	Safrol	3.0	1.12
Valeric acid	0.01	0.04	Terpineol	2.5	1.60
Nitrobenzene	5.0	0.06			

LITERATURE

(For a key to the periodicals see end of volume)

- Allison and Katz, 45, 11: 336; 19.
 Backman, 278, 168: 351; 17.
 Henning, Der Geruch, 1924.
 Hermanides, Thesis, Utrecht, 1907.
 Heyninx, Thesis, Brussels, 1919.
 Huyer, Thesis, Utrecht, 1917.
 Tempelaar, Thesis, Utrecht, 1913.
 Zwaardemaker, Physiol. des Geruchs, 1995: 247.
 Zwaardemaker, Arch. Anat. Physiol., Physiol. Abt., 1903: 48.
- (10) Zwaardemaker, In Abderhalden, Handb. biol. Arbeitsm. 5, pt. 7; 455; 23.
 (11) Zwaardemaker, In Tigerstedt, Handb. Physiol. 2, pt. 1; 49; 14. (12)
 Zwaardemaker, Arch. Neerl. Physiol., 1; 347; 17.

RADIOACTIVITY

S. C. LIND, SPECIAL EDITOR

Page
International Table of the Radioactive Elements and their
Constants 362
Physical Properties of Radioactive Elements. Georg Hevesy 364
Artificial Disintegration of the Elements. G. RUDORF 365
Electron Emission Produced by Radiations from Radioactive
Substances. Pierre Auger
Energy of Radioactive Processes. STEFAN MEYER 366
Chemical Effects of α -Particles. S. C. Lind and D. C.
BARDWELL
Saturation Current. Absorption in Liquids and Solids.
Stefan Meyer
Radioactive Radiation in Gases. R. D. KLEEMAN 369
Beta Rays: Absorption and Diffusion in Liquids and Solids.
PIERRE AUGER
Wave Lengths of Gamma Rays. E. von Schweidler 371
Ionizing Radiations from Ordinary Substances. R. B.
MOORE 372
Distribution of Radioactive Materials in the Atmosphere,
the Hydrosphere and the Lithosphere. HERMAN SCHLUNDT 373
Ages of Minerals and Rocks Based on Radioactive Changes.
ROGER C. WELLS

1923 INTERNATIONAL TABLE

RADIOACTIVE ELEMENTS AND THEIR CONSTANTS

 λ (sec)⁻¹ is the radioactive constant of transformation.

$$dQ = -\lambda Q dt, \qquad Q = Q_0 e^{-\lambda t}, \qquad \log_{10} \frac{Q_0}{Q} = 0.4343 \lambda t,$$
 in which Q_0 is the initial quantity and Q the quantity remaining

after a time t (seconds).

 $\lambda = -\frac{dQ}{Q} \frac{1}{dt}$ represents the fraction of the element transformed, reduced to the unit of time.

In the case of a double transformation, the values between brackets [] refer to the constants corresponding with the separate branches; the constant for both branches not being put between

The sign (?) indicates that the value has been indirectly deduced from the range of the α -rays expelled.

 $\theta = \frac{1}{5}$ is the average life of the radioactive atoms.

T is the half period, i.e., the time in which the quantity of radioelement is diminished to one half:

$$\lambda T = -\log_e 0.5 = 0.69315 \text{ and } \theta = 1.443T$$

Radiation.—The brackets () indicate that the radiation is relatively feeble.

REMARKS CONCERNING THE NOMENCLATURE

It is desirable that the nomenclature adopted by the international commission should be accepted universally but that now put forward for the present year is provisional, to serve as a basis of discussion with the view to the adoption ultimately of a standard nomenclature.

The most important points are:

1. The three radioactive emanations have been given the names radon, actinon, and thoron, with the symbols Rn, An, Tn, to suggest both their origin and their chemical character as members of the family of the rare gases of which the valency is zero;

2. In the branches which occur at the C members the sign (') has been used to indicate the products resulting from the emission of β -rays (isotopes of polonium) and the sign (") to indicate the products resulting from the emission of α -rays (isotopes of thallium);

3. The ultimate products have been indicated by the letter Ω .

EXPLANATION OF THE NOTES

Note 1.—Uranium I.—The value given for θ is that obtained from the equation:

$$\theta = \frac{1}{\lambda} = 2440 \times 0.97 \times 3 \times 10^6 \times \frac{226}{238} = 6.75 \times 10^9$$
in which the number 2440 represents the average life of radium in

years, the number 0.97 the branching coefficient and 3 imes 10 6 imes $\frac{226}{238}$ is the ratio between the numbers of atoms of uranium and radium in equilibrium in minerals.

If the actinium series is independent from that of uranium I, λ cannot be calculated by this method.

The value of λ obtained by the direct counting of the α -particles from a compound of uranium is 4.57×10^{-18} from which $\theta =$ 7×10^9 years and $T = 4.8 \times 10^9$ years.

Note 2.—Uranium X_2 is also called brevium.

Note 3.—Radon replaces the names radium emanation and niton (the latter of which was proposed by Sir William Ramsay).

Note 4.—Radium C undergoes a double disintegration: 99.97% of the atoms emit β-rays and produce the substance Ra-C' which gives α -rays, and 0.03% of the atoms emit α -rays and produce the substance Ra-C" which gives β-rays.

 a_0 is the range in cm of the α -rays in air at 0°C and a pressure of 760 mm of mercury.

The range at τ° C. and under p mm of mercury is

$$a = \frac{a_0(273 + \tau)760}{273p}$$

V is the velocity of α or β -rays relatively to that of light.

To convert to cm per sec multiply by 3×10^{10} .

For the α -rays:

$$V = 0.0342 a^{\frac{1}{2}}$$

 $\mu_{\beta Al}$ is the absorption coefficient of the β -rays in aluminium, the thickness being measured in cm.

 $\mu_{\gamma Al}$ and $\mu_{\gamma Pb}$ are the absorption coefficients of the γ -rays in aluminium and lead respectively, the thickness being measured in cm; the latter is only given for the most penetrating type of γ -rays.

If Io is the initial intensity and I the intensity after the rays have traversed x cm of the absorbent:

$$I = I_0 e^{-\mu x}$$
 $\log_{10} \frac{I_0}{I} = 0.4343 \mu x$

If D is the thickness corresponding with the absorption of onehalf of the rays:

$$\mu D = 0.693$$

Note 5.— $Radium\ D$ is also called radiolead.

Note 6.—Radium C" is also called radium C2.

NOTE 7.—Uranium Y is the first known member of the actinium series. It may be derived from Uranium I or Uranium II. In this case, 3% of the atoms of Uranium produce the actinium family, and 97% the radium family.

The hypothesis has also been put forward that the actinium series may be produced independently from a third (hypothetical) isotope of Uranium for which the name actinouranium has been proposed.

Note 8.—Protoactinium is also called eka-tantalum.

NOTE 9.—A new radioactive substance named uranium Z. and isotopic with protoactinium, accompanies uranium in minute quantity. (25, 54B: 1131; 21). Its period is from 6 to 7 hours. It emits a β -radiation for which Dai varies from: 0.0014 to 0.012. Its parent is an isotope of thorium, but it cannot yet be placed in the series.

Note 10.—Actinon is also called actinium emanation.

Note 11.—Actinium C. 0.2% of the α-rays emitted by this substance have a range $a_0 = 6.10$, instead of 5.12. From this it has been concluded that 0.2% of the atoms undergo a transformation by the emission of β -rays as is the case in the radium C and thorium C branches (3, 27: 690; 14. 28: 818; 14). Confirmatory evidence appears to be desirable.

Note 12.—Actinium C" is also called actinium D.

Note 13.—Thorium. The value given for λ is that obtained from the direct counting of the a-particles emitted by a compound of thorium. All the other values are less; the smallest being 0.55 of that given in the table and giving $\theta = 3.45 \times 10^{10}$ years and $T = 2.37 \times 10^{10}$ years (63, 19: 259; 18).

Note 14.—Thoron is also called thorium emanation.

Note 15.—Thorium C undergoes a double disintegration: 65% of the atoms emit β -rays and produce the substance Th-C' which gives α -rays, and 35% emit α -rays and produce the substance Th-C" which gives β -rays.

Note 16.—Thorium C. The value $a_0 = 4.69$ is that corresponding with V = 0.0572 which has been directly measured.

Note 17.—Thorium C" is also called thorium D.

Note 18.—Potassium and rubidium emit β-rays but show no other evidence of radioactivity.

24.6 days 1.15 min 2 × 10° yrs 6.9 × 10° yrs 1690 yrs 3.85 days 3.0 min 26.8 min 19.5 min 10-6 sec 16.5 yrs 5.0 days	6.75 × 10° yrs 35.5 days 1.65 min 3 × 10° yrs 10° yrs 2440 yrs 5.55 days 4.32 min 38.7 min	4.7 × 10 ⁻¹⁴ 3.26 × 10 ⁻⁷ 0.010 10 ⁻¹⁴ (?) 3.2 × 10 ⁻¹¹ 2.085 × 10 ⁻⁸ 3.85 × 10 ⁻⁸ 4.30 × 10 ⁻⁴	Vranium I Uranium X ₁ Uranium X ₂ Uranium II Ionium Radium Radon	Ur U-X1 U-X2 Urr Io	238 234 234		URANI	Radiation	a,	٧	ββ Al	<i>μ</i> γ λ1	⊬γPb	No
24 .6 days 1.15 min 2 × 10° yrs 6.9 × 10° yrs 10° 0 yrs 3.85 days 3.0 min 26.8 min 19.5 min 10-5 sec 16.5 yrs 5.0 days	35.5 days 1.65 min 3 × 10 ⁶ yrs 10 ⁶ yrs 2440 yrs 5.55 days 4.32 min 38.7 min	3.26 × 10 ⁻⁷ 0.010 10 ⁻¹⁴ (?) 3.2 × 10 ⁻¹⁹ 1.30 × 10 ⁻¹¹ 2.085 × 10 ⁻⁴ 3.85 × 10 ⁻³	Uranium X ₁ Uranium X ₂ Uranium II Ionium Radium Radon	Ur U-X1 U-X2 Un	238 234 234	92	υ		oium					<u> </u>
24.6 days 1.15 min 2 × 10° yrs 1.9 × 104 yrs 1690 yrs 3.85 days 3.0 min 25.8 min 19.5 min 10-5 sec 16.5 yrs 5.0 days	35.5 days 1.65 min 3 × 10 ⁶ yrs 10 ⁶ yrs 2440 yrs 5.55 days 4.32 min 38.7 min	3.26 × 10 ⁻⁷ 0.010 10 ⁻¹⁴ (?) 3.2 × 10 ⁻¹⁹ 1.30 × 10 ⁻¹¹ 2.085 × 10 ⁻⁴ 3.85 × 10 ⁻³	Uranium X ₁ Uranium X ₂ Uranium II Ionium Radium Radon	Ur U-X1 U-X2 Un	238 234 234	92	υ		IUM					
24.6 days 1.15 min 2 × 10° yrs 9 × 104 yrs 1690 yrs 3.85 days 3.0 min 26.8 min 19.5 min 10-6 sec 16.5 yrs 5.0 days	35.5 days 1.65 min 3 × 10 ⁶ yrs 10 ⁶ yrs 2440 yrs 5.55 days 4.32 min 38.7 min	3.26 × 10 ⁻⁷ 0.010 10 ⁻¹⁴ (?) 3.2 × 10 ⁻¹⁹ 1.30 × 10 ⁻¹¹ 2.085 × 10 ⁻⁴ 3.85 × 10 ⁻³	Uranium X ₁ Uranium X ₂ Uranium II Ionium Radium Radon	U-X1 U-X2 Um	234 234							1	l	ī
1.15 min 2 × 10° yrs 1.9 × 10⁴ yrs 1.90 yrs 3.85 days 3.0 min 26.8 min 19.5 min 10-6 sec 16.5 yrs 5.0 days	1.65 min 3 × 10° yrs 10° yrs 2440 yrs 5.55 days 4.32 min 38.7 min	$\begin{array}{c} 0.010 \\ 10^{-14} \ (?) \\ 3.2 \times 10^{-19} \\ 1.30 \times 10^{-11} \\ 2.085 \times 10^{-4} \\ 3.85 \times 10^{-2} \end{array}$	Uranium X2 Uranium II Ionium Radium Radon	U-X2 Un	234	80	Th	β	2.37	0.0456	463			l
2 × 10° yrs .9 × 104 yrs 1690 yrs 3.85 days 3.0 min 26.8 min 19.5 min 10-6 sec 16.5 yrs 5.0 days	3 × 10° yrs 10° yrs 2440 yrs 5.55 days 4.32 min 38.7 min	10^{-14} (?) 3.2×10^{-19} 1.30×10^{-11} 2.085×10^{-4} 3.85×10^{-2}	Uranium II Ionium Radium Radon	Un		91	Pa	β _(γ)	[14.4	24; 0.7; 0.14	0.72	1
1690 yrs 3.85 days 3.0 min 26.8 min 19.5 min 10-6 sec 16.5 yrs 5.0 days	2440 yrs 5.55 days 4.32 min 38.7 min	1.30×10^{-11} 2.085×10^{-6} 3.85×10^{-6}	Radium Radon	Io	234	92	ซ	a	2.75	0.0479		,,	J2	1
3.85 days 3.0 min 26.8 min 19.5 min 10-6 sec 16.5 yrs 5.0 days	5.55 days 4.32 min 38.7 min	2.085 × 10 ⁻⁶ 3.85 × 10 ⁻⁸	Radon		230	90	Th	α	2.85	0.0485				
3.0 min 26.8 min 19.5 min 10 ⁻⁶ sec 16.5 yrs 5.0 days	4.32 min 38.7 min	3.85 × 10→		Ra Ro	226 222	88 86	Ra Rn	$\alpha(\beta+\gamma)$	3.13 3.94	α 0.0500; β 0.52; 0.65 0.0540	312	354; 16; 0.27		
26.8 min 19.5 min 10 ⁻⁶ sec 16.5 yrs 5.0 days	38.7 min		Radium A	Ra-A	218	84	Po	α	4.50	0.0565		,		
10 ⁻⁴ sec 16.5 yrs 5.0 days	28.1 min		Radium B	Ra-B	214	82	Pb	β (γ)		0.36; 0.41; 0.63; 0.70;	13.1; 80	230; 40; 0.51		
10 ⁻⁴ sec 16.5 yrs 5.0 days		5.92 × 10 ⁻⁴	Radium C	Ra-C	214	83	Bi	99.97% B		0.74 0.786; 0.862; 0.949;	13.2; 53	0.115	0.50	
16.5 yrs 5.0 days								and y		0.957	,			
5.0 days	10 ⁻⁶ sec	104 (?)	Radium C'	Ra-C'	214	84	Po	α.	6.57	0.0641				1
	23.8 yrs 7.2 days	1.33 × 10 ⁻⁴ 1.61 × 10 ⁻⁴	Radium D Radium E	Ra-D Ra-E	210 210	82 83	Pb Bi	$(\beta \text{ and } \gamma)$		0.33; 0.39	5500 43.3	45; 0.99		
136 days	196 days	5.90 × 10 ⁻⁴	Radium F	Ra-F	210	84	Po	α(γ)	3.58	0.0523	16. G	585		1
		0,000 % 20	(Polonium)	(Po)				- (//	""	5.15225				l
ì			Radium Ω	Ra Ω'	206	82	Pb					1		
-		[1.8 × 10 ⁻⁷]	(Lead)	Phase Ra-C	214	83	Bi	0.03% α	,			ŀ		
1.4 min	2.0 min	8.3 × 10 ⁻¹	Radium C"	Ra-C"	210	81	Ti	β	'					
	_,,	,	Radium Ω"	Ra Ω"	210	82	Pb		1					1
			(hypothetical)		ļ						1			
				•		SER	LIES OI	ACTINIUM						
			Uranium ?		,	92	ט	α						Ī
1.04 days	1.5 days	7.8 × 10 ⁻⁶	Uranium Y	U-Y	;	90	Тъ	β		.00	About 300			
1.2 × 104 yrs	1.7 × 104 yrs	1.9 × 10-19	Protoactinium	Pa.	1	91	Pa.	α	3.314	0.0510				1
20 yrs	28.8 утв	1.1 × 10⁻⁴	Actinium	Ac	!	89	Ac			0.0570.00.00.0.40	41 . 4 470			
19.5 days	28.1 days	4.11 × 10 ⁻⁷	Radioactinium	Rd-Ac	1	90	Th	α (β)	4.36	a 0.0559; \$ 0.38; 0.43; 0.49; 0.53; 0.60; 0.67;	About 170	25; 0.19		ı
400										0.73				
11.4 days	16.4 days	7.06×10^{-7}	Actinium X	Ao-X	7	88	Ra	α	4.17	0.0550				
8.9 sec	5.6 sec	0.178	Actinon	An	!	86	Ro	α	5.40	0.0600				
36.1 min	2.9 × 10 ⁻³ sec 52.1 min	345 3.2 × 10⁻⁴	Actinium A Actinium B	Ac-A Ac-B	?	84 82	Po Pb	$(\beta \text{ and } \gamma)$	6.16	0.0627	Very large	120; 31; 0.45		
2.15 min	3.10 min	5.37 × 10 ⁻³	Actinium C	Ac-C	;	83	Bi	(β επα γ)	5.12	0.0589	very large	120, 31, 0.43		
4.71 min	6.83 min	2.44 × 10 ⁻³	Actinium C"	Ao-C"	,	81	Ti	β and γ		5.000	28.5	0.198	1.2 to 1.8	
			Actinium Ω" (hypothetical)	Ac Ω"	1	82	Рь							
					<u> </u>	2		THORIUM						
			1	<u> </u>	1			HORIUM	Ī					<u> </u>
.31 × 10 ¹⁰ yrs 6.7 yrs	1.89 × 10 ¹⁰ yrs 9.67 yrs	1.68 × 10 ⁻¹⁸ 3.28 × 10 ⁻⁹	Thorium Mesothorium 1	Th Ma-Th1	232	90 88	Th Ra	α	2.58	0.0469				
6.2 hrs	8.9 hrs	3.12×10^{-4}	Mesothorium 2	Ma-Th2	228	89	Ac	β and γ		0.37; 0.39; 0.43; 0.50;	20.2 to 38.5	26; 0.116	0.62	
							1			0.57; 0.60; 0.66 and >0.70]		
2.02 yrs	2.91 yrs	1.09 × 10 ⁻⁶	Radiothorium	Rd-Th	228	90	Th	α (β)	3.67	α 0.0527; β 0.47; 0.51				
3.64 days	5.25 days	2.20×10^{-4}	Thorium X	Th-X	224	88	Ra	α	4.08	0.0546		1		
54 aec	78 sec	0.0128	Thoron	Tn	220	86	Rn	α	4.74	0.574				1
0.14 sec 10.6 hrs	0.20 sec 15.3 hrs	5.0 1.82 × 10 ⁻⁶	Thorium A Thorium B	Th-A Th-B	216 212	84 82	Po Pb	β and γ	5.40	0.0600 0.63; 0.72	110	160; 32; 0.36		
60 min	15.3 nm 87 min	1.82 × 10 ⁻⁴	Thorium C	Th-C	212	83	Bi	65% β	ļ	(C + C") 0.29; 0.36;	14.4	100, 92, 0.30		
			1							0.93 to 0.95				
10 ⁻¹¹ sec	10 ⁻¹¹ sec	1.25 × 10 ⁻⁴	Thorium C'	Th-C'	212	84	Po	α	8.16	0.0688				1
		1011 (?)	Thorium Ω' (Lead)	ThΩ' Pb===	208	82	Pb		1			,		1
		[6.7 × 10 ⁻⁴]	Thorium C	Th-C	212	83	Bi	35%α ∫	4.55	0.0572				
								1	74.69	}				
3 1 min	4.5 min	3.70 × 10→	Thorium C" Thorium Ω"	Th-C" Th Ω"	208 208	81 82	T1 Pb	β and γ		(See Th-C)	21.6	0.096	0.46	
			(Lead)	Pbass										
			Potassium	K	39.1	19	K	8			22 to 38			1
			Rubidium	Rb	85.5		Rb	β			308 to 347			}

PHYSICAL PROPERTIES OF THE RADIOELEMENTS AND THEIR COMPOUNDS (Except Ra, Th, U and Rn)

GEORG HEVESY

- **1.** Atomic Weights.—Io (mixture of Io + Th), 231.51 (2). Ra Ω (= U-Pb), 206.04 (2). Th Ω (= Th-Pb), 207.97.
- 2. Molecular Weights.—An (=Ac-Em), 220-232 (4). Tn (=Th-Em), 201-210 (4). Rate of effusion method.
 - 3. Density (5).—RaΩ, 11.273 g cm⁻³ at 19.94°C.
 - 4. Melting Point (26).—RaΩ', differs from Pb < 0.05°.
 - 5. Boiling Point (32).—Ra-FH₂, 37°C.
 - 6. Solubility.—S = solubility mol l⁻¹. $\alpha' = \frac{C_{Air}}{C_{H_1O}}$. An (14),

 $\alpha' = 2$ at 18°. Tn (15), $\alpha' = 1$ at 18°. Rn (16). S = 1.7989 (15b) in H₂O at 25°. $S [Ra\Omega'(NO_2)_2] - S[Pb(NO_2)_2] < 10^{-4}$.

RELAT	IVE SOL	BILITY	OF A	An in	Diffe	RENT	Solve	NTS A	т 18°
H ₂ O	Sat. KCl soln.	Conc. H,SO.	С,Н,ОН	СьНиОН	С,Н,СНО	C,H,	C,H,CH,	Kerosene	cs,
1	0.9	0.95	1.11	1.6	1.7	1.7	1.8	1.9	2.1

7. Rate of Solution.

PERCENT DISSOLVED FROM SURFACE AT 18°

)			
10-3	10-2	10-1	T 1	
80	80	97	88	3
28	60	88	99	}
) sec (18)			_
-6 10-4	10-3	10-2	10-1	1
60	80	81	83	84
35	61	72	77	87
	80 28 0 sec (18 -5 10 ⁻⁴	80 80 28 60 0 sec (18) -6 10-4 10-3 1 60 80	80 80 97 28 60 88 0 sec (18) -5 10 ⁻⁴ 10 ⁻² 10 ⁻² 60 80 81	80 80 97 88 28 60 88 99 0 sec (18) -5 10 ⁻² 10 ⁻¹

Percent Ra-B and Ra-C Dissolved from Glass Surface (17)

By H ₂ O in 5 min												
Ra-B	Ra-C	t	Ra-B	Ra-C								
0.29	0.19	42°	0.78	0.67								
0.47	0.35	70°	0.97	0.91								
By H ₂ SO ₄ in 15 sec												
Ra-B	Ra-C	t	Ra-B	Ra-C								
0.74	0.52	42°	0.895	0.71								
0.80	0.60	70°	0.96	0.81								
	0.29 0.47 Ra-B 0.74	Ra-B Ra-C	Ra-B Ra-C t	Ra-B Ra-C t Ra-B								

- 8. Adsorption.—Ratio of molal conc. in gas at equilibrium to moles adsorbed per liter of charcoal at 18°, An (1°) 0.05, Tn (2°) 0.02. Percent of initial amount present (per 50 cc of solution) adsorbed by 1 g of adsorbent (2¹). (a) By BaSO4, from 0.1 N HCl, Th-B 81, Th-C 32; from 0.1 N KOH, Th-B 20, Th-C 64; from 0.1 N NH₂, Th-B 100, Th-C 86. (b) By Cr₂O₂, from 0.1 N HCl, Th-B 2.5, Th-C 69. (c) By AgBr, from 0.1 N HBr, Th-B 81, Th-C 34. (d) By BaSO₄, from 1 N HCl, Ra 80. (e) By Cr₂O₃, from 1 N HCl, Ra 0.
- 9. Vapor Pressure.— $p_{700^{\circ}}$ for Ra Ω' is 2% greater than for Pb (22).
- 10. Temperature of Volatilization.—Depends on nature of surface and chemical state of the radioactive element. $v.~(2^{3}, 2^{4}, 2^{5})$.

11. Coefficient of Diffusion.

(a) In Gases at 76 cm and 15°

An, in Air	H ₂	CO2	80,	A
Δ , cm ² sec ⁻¹	.23 0 . 330 0 . 412 9) (7) (8)	0.075 (7,8)	0.062 (7)	0.10 ⁷
Tn, in	. Air		A	
Δ , cm ² sec ⁻¹	0.085-0.10 (6, 7, 9)	3	0.084	

(b) THE CATIONS IN WATER (10) AT 18°

Ion	UX,	Io	##	Ra-D ⁺	Ra-E	++	Ra-F	**	Ac***
Δ , cm ⁻² day ⁻¹									
Ion	A	cX ⁺⁺	Rd-	Th	ThX **	T	h-B**	T	h-C***
Δ , cm ⁻² day ⁻¹	O	. 69	0	. 33	0.66		0.67		0.5

Th-CCl₂ in $\frac{1}{2}$ N NH₃, $\Delta = 0.37$. Ra-FCl₂ in $\frac{1}{2}$ N NH₄, $\Delta = 0.19$.

(c) In Metals. Δ in cm ⁻² Day ⁻¹									
	t	Δ							
Th-B in Pb	343°	2.2 (11)							
Ra-D in Pb	280°	<10-4 (12)							
Ra-F in Pb	280°	< 10-4 (12)							
Ra-F in Au	470°	ca. 10^{-9} (13)							
Ra-B + Ra-C in Ag	470°	3.8×10^{-7} (13)							
Ra-B in Au	470°	8.2×10^{-7}							
Ra-B in Pt	470°	3.4×10^{-7}							

In re diffusion of Th-B in single crystals, in lead foils and in thallium foils v. (35).

- 12. Refractive Index $(^{27})$.— n_D^{10} for cryst. Ra $\Omega'(NO_3)_2 = 1.7814$.
- 13. X-ray Spectra.—All lines of the L series and the M α and M $_{\beta}$ lines of Ra Ω' differ by less than 5×10^{-12} cm from the same lines for Pb (28).
- 14. Relative Ionic Mobilities (10).—In capillary tubes by comparison against Ra ($\Lambda = 57.3$ mhos).

Cation	Ra	Ra-C	Ra-D	Ra-E	Ra-F	AcX ThX	Th-B Th-C
Λ	57.3	54.5	61.9	61.9	68. 8	56.1 58.0	55.4 54.0

- 15. Emf.—Ra Ω' / N Ra Ω' (NO₂)₂ // N Pb(NO₂)₂ / Pb. <0.1 millivolt (31).
- 16. Deposition Voltage.—From $mathcal{H}_0$ N HNO₃ containing 10^{-1} mole Ra-F, cathodic deposition occurs on Au electrodes at $E_{Hg} = 0.35$ volt, anodic at $E_{Hg} = 1.05$ volt (30).

LITERATURE AND REMARKS

(For the key to periodicals see end of volume)

(1) Höngschmid, 9, 22: 21; 16. This mixture contained about 30 % Io and 70 % Th and was probably contaminated with some Th not present in the pure pitchblende (cf. Soddy and Hitchins, 5, 47: 1148; 24. Meyer and Ulrich, 75, 122: 279; 23). (2) Lowest value found. Higher values probably due to presence of lead. Richards and Lembert, 1, 26: 1329; 14. 93, 58: 429; 14. Hönigschmid and Horowitz, 75, 123: 2407; 14. 9, 26: 319; 14. Curic, 54, 143: 1676; 14. 198, 34: 586; 23. Richards, Ass. Rep. Smithsonian Inst. 1918: 205. Richards and Putzeys, 1, 45: 2954; 23. (3) Highest value found. Lower values probably due to presence of lead and Rau. Hönigschmid, 9, 25: 91; 19. Soddy, 4, 105: 1402; 14. 58, 94: 615; 15. 98: 469; 17. 99: 244; 17. (4) Leslie, 4, 24: 637; 12. 34,

188: 328; 11. Marsden and Wood, 4, 26: 948; 13. (*) Richards and Wadsworth, 1, 38: 221, 1658; 16. Cf. Soddy, 58, 107: 41; 21. Egerton and Lee, 5, 103: 487; 23. (*) Rutherford, "Radioactivity," Cambridge, 1913, p. 387. (*) Russ, 4, 17: 540; 09. (*) B. Bruhat, 199, 6: 67; 09. Cf. Debierne, 199, 4: 213; 07. McLennan, 2, 30: 660; 10. Eckmann, 200, 9: 177; 12. Thomsen, 201, 18: 377; 09. Hevesy, 200, 10: 198; 13. (*) Leslie, 54, 183: 328; 11. Rutherford, l.c.

- (10) Hevesy, 65, 14: 49, 1202; 13. 4, 26: 586; 14. Paneth, 75, 122: 1636; 13. The radioelements probably present in colloidal state. (11) Groh and Hevesy, 8, 63: 85; 20. Diffusion rate of a mixture of Th-B and Pb in lead. Th-B used as indicator. (12) Groh and Hevesy, 8, 65: 216; 21. Diffusion rate of a mixture of Ra-D and Pb in lead. (13) Wertenstein and Dobrowolska, 51, 4: 324; 23. Diffusion rate of active deposit (probably of oxides). (14) Hevesy, 65, 12: 1214; 11. 50, 16: 429; 12. (15) Klaus, 63, 6: 820; 05. Boyle, Macdonuld Phys. Build. Bull., No. 1: 52; 10. α of short-lived An and Tn determined by making assumptions only partly justified. a of An and Tn probably practically identical with that of Rn. (16) Richards and Schumb, 1, 40: 1403; 18. The RaΩ' used contained some common lead, its atomic weight being 206.34. The solubility of common lead (at. wt. 207.19) was found by the same authors to be 1.7993. Cf. Fajans and Lembert, 93, 95: 297; 16. (17) Ramstedt, 147, II: No. 31; 13. Cf. Arrhenius, 199, 7: 228; 10. Godlewski, 199, 10: 250; 13. Schräder, 4, 24: 131; 12. Hevesy, 9, 19: 291; 13. (18) Hevesy and Rona, 7, 89: 294; 15. In re Ra-F, cf. Paneth and Hevesy, 75, 123:
- 1050; 13. (19) Hevesy, 63, 12: 9; 12. 60, 18: 429; 12. (20) Boyle, 4, 17: 389; 09. Ra-B and Th-B between Pb amalgam and Hg(NO₂)₂; cf. Z. Klemensievicz, 34, 153: 1889; 14. (21) Paneth, 63, 15: 924;

14. Horowits and Paneth, 76, 129: 1819; 14. In readsorption UX cf. Ebler and Rhyn, 25: 54: 2896; 21. A. C. Brown, 4, 121: 1738; 22. Freundlich and Wreschner, 7, 106: 366; 23. Adsorption of Ra-B, Ra-C, Th-B and Th-C. Hevesy, 75, 127: 1787; 18. Cranston and Burnett, 4, 119: 2036; 21. 121: 2890; 22. Paneth and Vorwerk, 7, 101: 445; 22. Fajans and Frankenberg, 7, 105: 255; 23. Absorption of Ra-F, Paneth, 55, 13: 1, 288; 13. Lachs and Werthenstein, 63, 23: 318; 22. Escher, 34, 177: 3, 172; 23. (22) Egerton, 5, 103: 469; 23. (23) Russell, 4, 24: 134; 12. cf. Schräder, 4, 24: 125; 12. (24) St. Loria, 63, 17: 6; 16. (25) Wood, 5, 91: 543; 15. Cf. Barrat and Wood, 67, 26: 248; 14. Wood, 4, 26: 808; 14. In re volatilisation of Tn cf. Fleck, 4, 29: 337; 15 and St. Loria, 75, 129: 829; 15. Volatilization of RaFH2 and of the hydrides of Ra-B, Th-B and Th-C, Paneth, 25, 51: 1704; 18. 53: 1693; 20. 9, 26: 452; 20. (26) Richards and Hall, 1, 42: 1550; 20. cf. Lembert, 9, 26: 59: 20. (27) Richards and Schumb, 1, 40: 1403; 18. For Pb(NO₃)₂, $n_D^{20} = 1.7815$. (28) Siegbahn and Stenström, 63, 18: 547; 17. Cf. Duane and Shimisu, 197, 5: 198; 19. Cooksey and Cooksey, 2, 16: 327; 20. In re slight difference in the wave length of optical spectrum of ordinary Pb and mixtures of RaΩ and ordinary Pb, cf. Aronberg, 197, 3: 710; 17. 21, 47: 96; 18. Harkins and Aronberg, 1, 42: 1328; 20. Merton, 5, 99: 87; 21. 100:

84; 21. (29) Hevesy, 4, 25: 410; 13. 65, 14: 49; 13. (30) Hevesy and Paneth, 76, 123: 161; 14. Meitner, 65, 12: 1094; 11. Hevesy, 4, 23: 628; 12. Wertensteinowa, 256, 10: No. 6, 771; 17. On the deposition of Th-B and Ra-E, Paneth and Hevesy, 75, 122: 1037; 13. (21) Hevesy and Paneth, 75, 124: 381; 15. (32) Paneth, O. (33) Fajans and Lembert, 95, 95: 297; 16. (34) Richards and Schumb, l.c. (35) Hevesy and Obrutaheva, 58, 115: 674: 25.

ARTIFICIAL DISINTEGRATION OF THE ELEMENTS

G. RUDORF

Disintegration by the splitting off of positively charged hydrogen nuclei by the action of rapidly moving α -particles.

- (a) Disintegration obtained with B, N, F, Ne, Na, Mg, Al, Si, P, S, Cl, A, K (1.2.3.5).
- (b) No disintegration obtained with H, He, Li, C, O, Ni, Cu, Zn, Sc, Kr, Mo, Pd, Ag, Sn, X, Au, U (2.3.5).

(c) Doubtful, Be (4. 5).

Gas

LITERATURE

(For a key to the periodicals see end of volume)

Rutherford, 3, 37: 581; 19. 5, 97: 374; 20. (2) Rutherford and Chadwick, 3, 43: 809; 21. (3) Rutherford and Chadwick, 3, 44: 417; 22; also Rutherford, 4, 131: 400; 22. (4) Kirsch and Petterson, 75, 133: 299; 24. 5, 47: 500; 24. (5) Rutherford and Chadwick, 67, 36: 417; 24.

RANGE OF EMITTED HYDROGEN NUCLEI (2, 3, 5)

Element	Forward range in	Backward range in
	cms	cms
В	58	38
N	40	18
${f F}$	65	48
Na	58	36
Al	90	67
P	65	49
Mg, Si, S, Cl, A, K	18-30	
Ne	16	

The values for B, F, Na, P are possibly somewhat in error (3) but are certainly greater than 40 (3).

ELECTRON EMISSION PRODUCED BY RADIATION FROM RADIOACTIVE SUBSTANCES PIERRE AUGER

Relative Ionization of Gases by Po α -Rays Having a 3.8 cm Range(1)

Gas	Air	O ₂	N ₂	CO ₂	Illuminating gas
\overline{I}	1	1.12	0.97	1.23	0.38

Relative Molecular Ionization of Gases by β and γ Rays (2)

| Air | H₂ | O₂ | NH₂ | N₂O | CO₂ | C₂N₂ | SO₂ | CS₂ | C₅H₁₂

	Ιβ	1 0	. 16	1.170	. 89 1	. 55	1.60	1.86	2.25	3.62	4.55 4.53
	$I\gamma$	1	. 16	1.16	. 90 1	. 55	1.58	1.71	2.27	3.66	4.53
_											
	Gas	C ₆ I	I. (CH ₂ OI	H CF	I.Br	CHC	71. CH	$I_{*}I \mid 0$	CCI.	C ₂ H ₄ O
	18	3 0	5	1 60	13	73	4 0/	1 5	11 6	3 28	2 12

Gas	C ₂ H ₆ Cl	C ₂ H ₅ Br	C ₂ H ₅ I	$(C_2H_6)_2O$	Ni(CO)4
Ιβ	3.24	4.41	4.39	5.90	
Iγ	3.19	4.63	4.29	6.47	5.98

RESIDUAL IONIZATION AS DEPENDENT ON THE PRESSURE

Ionization from the walls (a secondary radiation) in air confined for 10 days. N_I = number of ions per cm² per sec (3).

P. atm.	0	10	20	27	40	46	50	60
N_I	0	17	30	38	46	50	50	50

Number of Electrons (δ-rays) Liberated by α-rays

l = thickness of metal traversed. $N_E =$ electrons emitted per incident particle (4).

105 l (g cm ⁻²)	In Al	In Ag	In Au	
10° t (g cm -)	81 162 243 324 410 492 570	28.5 591	12.3 1223	
NE	11.9 14.2 15.0 17.2 17.8 18.9 19.4	8.12 13.76	9.82 18.16	

PAIRS OF IONS PRODUCED BY Q-RAYS

If R_0 cms is the range of the α -particle in air, it will produce n pairs of ions. $n = n_0 R_0^{3/5}$, where $n_0 = 6.233 \times 10^4$. Direct measurement for Ra-C' gives $n = 2.20 \times 10^5$ (5).

ENERGY

Energy of electrons (Sec. β -rays) emitted by metals subjected to the action of γ -rays from Ra(C + E). Three groups of rays (6).

Metal	Pb	Pt	W	U	Ba
Atomic number		-			56
Energy of the secondary rays. Volts × 10 ⁻⁶ .	1.49 2.03 2.60	1.58 2.12 2.69	1.66 2.20 2.76	1.22 1.74 2.31	2.53

SECONDARY B-RAY VELOCITIES

Pb subjected to the action of γ -rays from Ra-B has been found to emit the following secondary β -rays:

 $RH = \frac{mu^2}{e(1-\beta^2)} = 3610, 3250, 2990, 2735, 2225, 2130, 2000, 1935, 1825, 1750, 1620, 1560, 1400, 1240, 1150, 1010, 950, 820, 800 (8).$

ABSORPTION

Absorption of the secondary β -rays emitted by metals when subjected to the radiation from Ra(B + C). μ_h for the hard rays, μ_e for the soft rays. Absorbing screen, Al (7).

Metal	Ag	Al	Au	Cu	Fe	Ni	Pb
μ _k , cm ⁻¹ μ _e , cm ⁻¹	69	14	118	35	41	52	118
μ _e , cm ⁻¹	207	52 .5	345	105	165	165	345

LITERATURE

(For a key to the periodicals see end of volume)

F. Hess and M. Horngate, 76, 129: 7; 20.
 Klemann, 5, 79: 220; 07.
 K. Melvina Downey, 2, 20: 136; 22.
 H. Becker, 3, 75: 3, 217; 24.
 H. Fonovits-Smereker, 75, 131: 355; 22.
 Ellis, 5, 99: 261; 21.
 A. Enderle, 75, 131: 9; 22.
 Rutherford, Robinson and Rowlinson, 3, 28: 281: 16.

ENERGY OF RADIOACTIVE PROCESSES

STEFAN MEYER

HEAT PRODUCTION OF RADIOACTIVE SUBSTANCES

Joules per hour per gram of the radioactive element and the decay products in equilibrium therewith. (1 Joule = 0.2390 g-cal.)

Substance	Rays	Meyer & Hess(4)	Hess(2)	Ruther- ford & Robinson (7)
Ra	α and recoil α and recoil α and recoil α and recoil and β , γ	573	105.5	105.0 119.7 127.6 211.3
Total		573	573	565

Substance	Heat	Lit
Th	10.0 × 10 ⁻⁵	(\$)
U	4.2×10^{-4}	(6)
Pitchblende (ca. 64% U)	27.2×10^{-6}	(6)

Ellis and Wooster (1) have determined the γ -heat effect of Ra-B to be 3.6; Ra-C, 32.2; total, 36 joules/h. Calculations of the heat effect of β - α and γ -rays have been made by Meitner (3) and Thibaud (8).

LITERATURE

(For a key to the periodicals see end of volume)

(1) Ellis and Wooster, 201, Feb. 2, 1925. (2) Hess, 76, 121: 1419; 12. (3) Meitner, 218, 12: 1146; 24. (4) Meyer and Hess, 75, 121: 603; 12. (5) Pegram and Webb, 2, 27: 18; 08. 199, 5: 271; 08. (6) Poole, 5, 19: 314; 10. 21: 58; 11. 23: 183; 12. (7) Rutherford and Robinson, 75, 121: 1491; 12. 5, 25: 312; 13. (8) Thibaud, 54, 180: 1166; 25.

CHEMICAL EFFECTS OF a-PARTICLES

S. C. LIND AND D. C. BARDWELL

M is the total number of molecules reacting (on the left hand of the equation, first column); N is the total number of ion pairs produced in the reactants by α -particles.

$$\frac{M}{N} = \frac{\left(\frac{k_{\mu}}{\lambda}\right)' \cdot V}{D \cdot F \cdot G \cdot H} \times 1.66 \times 10^{8}$$

 $V = \text{volume in cm}^3$ of, and D = diameter in cm of, the reaction sphere.

F = average intensity of ionization (1). G = specific molecular ionization (air = 1).

 $H = (\alpha + R)/\alpha$ where α and R are α -ray and recoil atom effects resp. (2).

$$\left(\frac{k\mu}{\lambda}\right)' = \left(\ln\frac{P_1}{P_2}\right) + \left[E_0(e^{-\lambda}t_1 - e^{-\lambda}t_2)\right] (3)$$

where E_o = initial radon (in curies), P = pressure (mm Hg), λ = decay constant of radon (in reciprocal days) and t = time (in days).

Where the quantity of gas in the reaction vessel at atmospheric pressure exceeds the air equivalent of a bulb 2.5 cm in diameter, the ionization is calculated by equations developed by W. Mund (17), slightly modified:

¹ The modified equation is derived by correcting the integration of Mund's function $\varphi(r) = \int_0^{2R} (r-x)^{\frac{3}{2}} x^2 dx$ (equation 5, p. 340). In the large bulbe used by Mund no error was introduced by employing his equation since 2R > r.

$$\begin{split} I &= N_0 \left(1 - \mathrm{e}^{-\lambda t} \right) k \left[r^{\frac{2}{5}} + \frac{1}{2} r'^{\frac{2}{5}} + \frac{1}{2} r''^{\frac{2}{5}} - \frac{3}{20R} \left\{ 3 r^{\frac{2}{5}} + r'^{\frac{2}{5}} + r''^{\frac{2}{5}} \right. \\ &- 3 \left(r - 2R \right)^{\frac{2}{5}} - \left(r' - 2R \right)^{\frac{2}{5}} - \left(r'' - 2R \right)^{\frac{2}{5}} \right\} + \frac{81 r^{\frac{1}{5}}}{3520R^3} - \\ &\left. \frac{27}{160} \left(r - 2R \right)^{\frac{2}{5}} \left\{ \left(\frac{r - 2R}{R} \right)^{\frac{2}{5}} + \frac{3}{22} \left(\frac{r - 2R}{R} \right)^{\frac{2}{5}} \right\} \right] \end{split}$$

I = Number of ions produced by the three sets of α-particles in the time t.

 N_2 = Number of atoms of radon present initially (t = 0) (1 curie = 1.772 × 10¹⁶ atoms Rn)

R =Radius of reaction bulb in cms.

 λ = Decay constant of radon (as above)

 $k=6.67\times 10^4 \frac{\rm ions}{\rm cm^{34}}=$ ionization constant per α -particle as a function of the range (5); $i=kr^{34}$ or kr'^{34} or kr'^{34} for Rn, Ra-A, and Ra-C, resp. (air at 760 mm and 0°C)

r, r', r'' = ranges of α -particles from Rn, Ra-A, and Ra-C, resp. Wourtzel's (13) M/N values are recalculated by the Mund equation

The values adopted for the number of α -particles per sec per g of radium, and the total ions from one α -particle of Ra-C in its completed path in air are respectively, for column (a) 3.72×10^{10} (4) and 2.37×10^{5} (5), and for (b) 3.40×10^{10} (6.7) and 2.20×10^{5} (8). Other combinations of these numbers give intermediate values of M/N.

	17		
Reaction	M N	T :4	
l = liquid, g = gas, s = solid	(a)	(b)	Lit.
2H ₂ g + O ₂ g→2H ₂ Ol	.13	6.05	(9, 10)
2H ₂ O/2H ₂ A + O ₂ A	.86	1.01	(11)
10.	.05	1.24	(11)
	0.01	< 0.01	$\binom{11}{11}$
$2H_2O_8 \rightarrow 2H_2g + O_2g$	0.05	0.06	(11)
	< 10-3	6 × 10-1	(18)
	.85	2.18	(18)
2CO _g + O _g → 2CO _g at room temper-			` '
ature 5	.7	6.7	(18)
$2CO_g + O_{2g} \rightarrow 2CO_{2g}$ at liquid air temp. >3	3.1	>3.7	(18)
	1.13	3.7	(18)
	.44	1.70	(18)
	.76	0.90	(10)
	0.5	2.4	(10)
	.7	2.0	(10)
	.5	1.8	(10)
	.4	1.6	(10)
	.4	5.2	(10)
$CH_{4g} + 2O_{2g} + [1 \text{ mol } \% (C_{2}H_{5})_{2}Se] \rightarrow$			(1.0)
	.7	6.7	(10)
LEGIAL No and Co	8.8	8.0	(10)
$ (CN)_{2g} \rightarrow \begin{cases} 5\% \text{ to } N_{2g} \text{ and } Cs \\ 95\% \text{ to paracyanogen } s \end{cases} $	'. 8	9.2	(12)
	.01	1.19	(13)
1	.01	1.18	(10)
	2.0	2.35	(13)
	.92	3.44	(13)
i i	1.15	3.80	(13)
)	3.40	4.00	(13)
	.80	3.30	(13)
	2.38	2.80	(13)
(. ?	4.?	(13)
t	.74	3.23	(13)
$\mathbf{N_2Og} \rightarrow \left\{ \begin{array}{l} \mathbf{N_2g} + \mathbf{O_2g} & \dots & -78^{\circ} \\ \mathbf{N_2g} + \mathbf{NOg} & \dots & -8^{\circ} \end{array} \right. $.21	2.61	(13)
$\lfloor N_{2}g + NOg \dots \rfloor 220^{\circ} \rfloor 2$. 95	3.48	(13)
	1000	4700	(14)
110	. 76	0.90	(15)
$2HClg \rightarrow H_{*g} + Cl_{2g} \dots $.24	1.46	(10)
,	.54	0.64	(16)
	2.6	3.1	(16)
KI in acid soln.→free I).76	0.90	(16)

Reaction	1	Lit.	
l = liquid, g = gas, s = solid	(a)	(b)	1
xHCN→(HCN) _x 8 + 5% N _x g	10.5	12.4	(12)
$C_2N_{2g} + O_{2g} \rightarrow \begin{cases} 63\% \rightarrow (CNO)_{g8} \\ 37\% \rightarrow CO_{2g} + N_{2g} \end{cases}$	7.2	8.5	(10)
$ \begin{array}{c} C_2N_2g + \begin{cases} 67 \% C_2N_2 \rightarrow (HCN)_28 \\ H_2g \rightarrow \end{cases} \begin{cases} 33 \% C_2N_2 \rightarrow (C_2N_2)_28 \end{cases} $	6.8	8.0	(10)
$C_2H_4g \rightarrow H_2g + \text{hydrocarbons } g, l, \text{ and } s$	5.0	5.9	(10)
$C_2H_2g \rightarrow (C_2H_2)_z s + 2\% H_2g \dots$	19.5	23 .0	(10)
$C_2H_2g \rightarrow (C_2H_2)_z s + 1 + \% H_2g \dots$	20.5	24.2	(19)
$C_2H_2g + H_2g \rightarrow (C_2H_2)_z s$ (11% H_2 reacted)	19.6	23.1	(10)

Catalytic Effect of Inert Gases (10, 20, 21)

The -M/N values in the table below give the total number of molecules of reactants disappearing for each ion pair of both catalyst and reactants. Example: $\frac{M_{C_2H_3}}{N(c_3H_3+N_2)} = 18.7, \text{ means}$ that 18.7 molecules of C_2H_2 polymerize to $(C_2H_2)_{ab}$ for each ion pair whether formed in the reactant or in the catalyst. With the increasing ratio of catalyst to reactant, a decrease in the -M/N is indicated—probably attributable to exhaustion effects. Values by the (a) method only are given.

	Catalysts										
Reactants	Pure gas	N ₂	н	Ne	A	Xe	CO ₂	H ₂			
C ₂ H ₂	19.5	18.7	20.1	19.6	18.2	18.5	17.4	19.6			
		to	to	to	to			l			
		17.8	17.0	16.3	15 0		ł	ĺ			
C_2N_2	7.2	7.2				7.2		reacts			
HCN	10.8	10.0				10.0					
$2H_2 + O_2$	5.13	5.0					reacts	ŀ			
2CO + O ₂	5.7			1 1	3.9		none				

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Lind and Bardwell, 1, 45: 2685; 23. (2) Lind and Bardwell, 1, 46: 2003; 24. (3) Lind, 50, 16: 592; 12. (4) Hess and Lawson, 75, 127: 405; 18. (5) Geiger, 5, 83A: 486; 09. (8) Rutherford and Geiger, 5, 81A: 141; 08. (7) Geiger and Werner, 96, 21: 187; 24. (8) Fonovite-Smereker, 75, 131: 355: 23. (9) Lind, 1, 41: 581: 19
- 355; 23. (*) Lind, 1, 41: 531; 19.

 (10) Lind and Bardwell, O. (11) Duane and Scheuer, 199, 10: 33; 13. (12)
 Lind, Bardwell and Perry, O. (13) Wourtsel, 199, 289: 332; 19. (14)
 Bodenstein and Taylor, 1, 37: 24; 15. (18) Cameron and Ramsey, 4, 93:
 965; 08. (16) Lind, 199, 8: 289; 11. (17) Mund, 327, 44: 336, 25. (18)
 Lind and Bardwell, 1, 47: 2675; 25. (18) Mund and Koch, 28, 24: 241; 25.

 (20) Lind and Bardwell, 166, 83: 442; 25. (21) Ibid., 168, 83: 593; 25.

SATURATION CURRENT. ABSORPTION IN LIQUIDS AND SOLIDS

STEFAN MEYER

SATURATION CURRENT AND NUMBER OF IONS FOR α -RADIATORS

The saturation current is $I_{\bullet} = Zke$ where Z = number of α -particles per sec per unit mass, k = number of ion-pairs per α -particle and $e = 4.774 \times 10^{-10}$ es.

Number of Ions, k

Based on the values of Ra-C' and the following alternative Z values for 1 g of Ra: (a) $Z_{\rm Ra} = 3.72 \times 10^{10} \ (^{19}, ^{25});$ (b) $Z_{\rm Ra} = 3.45 \times 10^{10} \ (^{12}).$

$$k = A \times 10^{5}$$
 (9, 11, 13, 18, 45, 47)

Element		4	Tilom on A	A		
Frement	(a)	(b)	Element	(a)	(b)	
$\mathbf{U_{I}}$	1.16	1.25	An	1.95	2.10	
U11	1.27	1.37	Ac-A	2.12	2.28	
Io	1.31	1.41	Ac-C	1.88	2.03	
Ra	1.36	1.47	Ac-C'	(2.09?)	(2.25?)	
Rn	1.55	1.67	Th	1.23	1.32	
Ra-A	1.77	1.83	Rd-Th	1.53	1.64	
Ra-C	(1.47?)	(1.58?)	Th-X	1.61	1.73	
Ra-C'	2.20*	2.37*	Tn	1.78	1.92	
Po	1.50	1.62	Th-A	1.92	2.07	
Pa	1.44	1.55	Th-C	1.71	1.85	
Rd-Ac	1.69	1.82	Th-C'	2.54	2.73	
AcX	1.61	1.74	· 1			

^{*} Basic values.

The value of $Z_{\rm U} = Z_{\rm UI} + {\rm U}_{\rm II}$ may be obtained from $Z_{\rm Ra}$ and the basic equilibrium ratio $Z_{\rm Ra}/Z_{\rm U} = 3.4 \times 10^{-7}$.

The value of $Z_{\rm Th}$ may be calculated from the decay constant of Th. For the following assumed values of the half-life, T_{15} , of Th we find for $Z_{\rm Th}$: 1.25×10^{10} yrs, $4.5 \times 10^3 \, \alpha \, {\rm sec}^{-1}$; 1.65×10^{10} , $3.4 \, \alpha \, {\rm sec}^{-1}$; and 2.2×10^{10} , $2.6 \, \alpha \, {\rm sec}^{-1}$.

Saturation Current

1. (In Electrostatic Units) (2,3, 4, 5, 6, 7, 8, 20, 26, 31, 32, 34, 43)

	Element	$v_I v_{II}$	Io	Ra	Rn	Ra-A	99.96 % Ra-C'	Po
equi- m with		1.47	0.79	0.82	0.94	1.08	1.38	0.91
In eq librium	전 전 I _e × 10 ⁻⁶ =	4.32	2.38	2.42	2.75	3.02	3.91	2.66

2. On the basis of a branching ratio of 3% for the Ac family in equilibrium with 1 g Ra (1.2.10, 15, 16, 17, 23, 30, 33, 38, 41).

Element =	Pa	Rd-Ac	Ac-X	An	Ac-A	99.7% Ac-C
$I_* \times 10^{-4} =$	7.98	9.00	8.86	10.7	11.7	10.4

- 3. 1 g U in ores [i.e. U + 97% (Io \rightarrow Ra-G) + 3% (Pa \rightarrow Ac-D)] is equivalent to $I_* = 7.30$; 1 g (U₂O₅ \rightarrow Ra-G) to $I_* = 6.2$; and 1 g average ore with 50% U₂O₅ to $I_* = 3.1$.
- 4. 1 curie Rn is equivalent to $I_* = 2.75 \times 10^6$ and 1 curie Rn + $\frac{1}{2}$ (Ra-A + Ra-C') to $I_* = 6.22 \times 10^6$.
- 5. In equilibrium with 1 g Th and based on the following alternative Z values for 1 g Th: (a), $Z_{\text{Th}} = 4.5 \times 10^{2} \, \alpha \, \text{sec}^{-1}$ and (b), $Z_{\text{Th}} = 3.4 \times 10^{2} \, \alpha \, \text{sec}^{-1}$.

Eler	nent	Th	Rd-Th	Th-X	Tn	Th-A	35 % Th-C	65 % Th-C'
, _	(a)	0.264	0.329	0.346	0.382	0.413	0.129	0.355
I, =	(b)	0.200	0.248	0.261	0.289	0.312	0.097	0.268

RANGE OF α-PARTICLES IN LIQUIDS AND SOLIDS

All values in microns, $\mu = 10^{-4}$ cm A. In Liquids

From Po (35)							Fre	m R	a-C' ((37, 48)		
Liquid	C,H,OC,H,	C3H4OH	CS.	C ₆ H ₆	СНСЪ	C.H.NH.	Н,О	C, H, (OH),	Сянюн	C ₆ H ₆	C, H, N	- н,о
R150	43.0	37.1	36.7	36.3	34.3	33.0	32.0	27.9	7.05	70	63.9	60.0 59.

B. IN SOLIDS From Ra-C' (49, 50, 51)

Solid								
R150	129.1	57.8	40.6	78.8	18.7	18.4	18.3	22.8
Solid		Ag	Cd	8n	Pt	Au	Ti	Pb
R150	• • • • • •	19.2	24.2	29.4	12.8	14.0	23.3	24.1

C. In Photographic Plates

Source	Ra-A	Ra-C'		Th-C	F	o	
Type of plate	Ilford	Sigurd (Jahr)	Ilford			Sigurd	
R ₁₅ ° Lit	34.8 (21)	50.0	50.7 (21)	54 (21)	48.2	27.7 (36)	23 (35)

D. PLEOCHROITIC HALOES v. (53)

STOPPING POWER EQUIVALENTS OF AIR AND METALS AT DIFFERENT PARTS OF THE PATH OF AN α -RAY

Milligrams per cm² of foil equivalent to 1 cm air lying between the distances given, measured from end of range. 15°C and 1 atm. (29).

Distances cms	0-1	1-2	2-3	3-4	4-5	5–6	6-7
Al	1.90	1.71	1.65	1.64	1.63	1.62	1.62
Ag	3.805	3.28	3.10	3.01	2.93	2.86	2.81
Au	6.10	4.84	4.44	4.25	4.06	3.96	3.91

INITIAL VELOCITIES OF RECOIL ATOMS

 $u = A \times 10^7 \,\mathrm{cm} \,\mathrm{sec}^{-1}$

From	То	A =	From	To	A =
Uı	UXI	2.39	An	Ac-A	3.36
\mathbf{U}_{11}	Io	2.54	Ac-A	Ac-B	3.58
Io	Ra	2.62	Ac-C	Ac-C"	3.44
Ra	Rn	2.72	Ac-C'	Ac-D	3.61
$\mathbf{R}\mathbf{n}$	Ra-A	2.96	Th	Ms-Th ₁	2.40
Ra-A	Ra-B	3.16	Rd-Th	Th-X	2.86
Ra-C	Ra-C"	2.99	Th-X	Tn	2.99
Ra-C'	Ra-D	3.66	Tn	Th-A	3.20
Po	Ra-G	3.08	Th-A	Th-B	3.39
Pa	Ac	2.74	Th-C	Th-C"	3.26
Rd-Ac	Ac-X	3.02	Th-C'	Th-D	3.97
Ac-X	An	3.01		į	

RANGES (PENETRATION) OF RECOIL ATOMS

Ra-A to Ra-B, 0.14 mm in air; 0.83 mm in H_2 ; $ca. 20\mu\mu$ in Ag (52).

Rn to Ra-A—Ra-C, ca. $10\mu\mu$ in Cu and Ni (14, 40).

Th-C to Th-C", at 15° and 1 atm., 0.553 mm in H_2 ; 0.129 mm in air (24).

Th-C to Th-D, 15° 1 atm., 0.963 mm in H_3 ; 0.224 mm in air (24).

THE McCOY NUMBER

The McCoy number is the ratio of the total α radiation to the uni-directional radiation per cm² from a $U_{z}O_{z}$ surface of α -saturated thickness. McCoy (27, 28) found 793 with $I_{z}=1.74\times10^{-3}$ es per cm² $U_{z}O_{z}$ and St. Meyer and Paneth (34) found 790 with $I_{z}=1.73\times10^{-3}$. These numbers are smaller than the theoretical.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Antonoff, 5, 26: 1058; 13. 199, 10: 406; 13. (2) Boltwood, 12, 25: 269; 08. (2) Boltwood and Johnstone, 5, 40: 50; 20. (4) Brössler, 76, 129: 47; 20. (5) I. Curie, 54, 176: 1462; 23. (6) Flamm and Mache, 75, 121: 227; 12. (7) Flamm and Mache, 75, 122: 535, 1539; 13. (8) Fonovita, 75, 128: 761; 19. (9) Fonovita-Smereker, 75, 121: 355; 22.
- (10) Fussler, 2, 9: 142; 17. (11) Geiger, 5, 83: 486; 09. 85: 505; 10. (12) Geiger and Werner, 96, 21: 187; 24. 88, 5: 12; 24. (13) Girard, 199, 10: 195; 13. (14) Godlewski, 75, 125: 137; 16. (15) Guy and Russell, 4, 125: 2618; 23. (16) Hahn and Meitner, 65, 20: 529; 19. 218, 7: 611. 25, 83: 1812; 19. (17) Hahn and Meitner, 25, 84: 69; 21. 96, 8: 202; 22. (18) Henderson, 5, 42: 538; 21. (18) Hess and Lawson, 75, 127: 405, 461, 535, 599; 18. 96, 24: 402; 24. 5, 48: 200; 24.
- (20) Hornyak, 75, 130: 135; 21.
 (21) Ikeuti, 5, 23: 129; 16.
 (22) Kinoshita and Ikeuti, 5, 29: 420; 15.
 (23) Kirsch, 75, 129: 309; 20.
 (24) Kolhörster, 96, 2: 257; 20.
 (25) Kovarik, 2, 23: 559; 24.
 (26) Maracineanu, 34, 177: 682; 23.
 (27) McCoy, 2, 20: 381; 05.
 24: 124; 07.
 5, 11: 177; 06.
 (28) McCoy and Ashman, 12, 26: 521; 08.
 199, 5: 362; 08.
 (29) Maraden and Richardson, 5, 25: 184; 13.
- (30) Meyer, 75, 129: 483; 20.
 (31) Meyer and Hess, 75, 121: 603; 12.
 (32) Meyer and Hess, 75, 121: 603; 12.
 (34) Meyer and Hess, 75, 128: 909; 19.
 (34) Meyer and Paneth, 75, 121: 1403; 12.
 (35) Michl, 75, 123: 1953, 1965; 14.
 (36) Muhlestein, 149, 4: 38; 22.
 (37) Philipp, 96, 17: 23; 23.
 (38) Piccard and Kessler, 149, 5: 491; 23.
 (39) Richter, 75, 123: 539; 19.
- (40) Rie, 75, 130: 283; 21. (41) Rons, 25, 35: 294; 22. (42) Russell and Widdowson, 3, 46: 915; 23. (43) Rutherford, "Radioactive Substances."

p. 523; 13. (44) Rutherford, "Radioactivity," p. 156; 04. (45) Rutherford, 3, 10: 193; 05. (46) Sahni, 5, 29: 836; 15. (47) Taylor, 5, 23: 670; 12. (48) Traubenberg and Philipp, 96, 5: 404; 21. (49) Traubenberg, 96, 5: 396; 21.

(50) Traubenberg, 63, 21: 588; 20.
(81) Traubenberg, 96, 2: 268; 20.
(82) Wertenstein, Thesis Paris, 13.
(83) Duane, 241, 61: 286; 22. Gudden, 218, 12: 940; 24.
Diss. Göttingen, 19. 94, 56: 422; 21. 96, 26: 110; 24. Hirschi, 94, 12: 939; 24. 242, 64: 65; 19. 65: 209; 20. Hovermann, Diss. Göttingen, 12. 190, Beil., 34: 321; 12. Joly, Congr. intern. Rad.

Bruxelles (1910) 1: 370; 11. "Halley Lecture," Oxford, Clarendon Press; 24. 58, 99: 456, 476, 17. 109: 517, 578, 711; 22. 114: 160; 24. 94, 12: 693; 24. 5, 18: 381; 07. 19: 327; 10. 5, 102: 682; 23. Joly and Fletcher, 5, 19: 630; 10. Joly and Poole, 58, 104: 92; 19. Joly and Rutherford, 5, 28: 644; 13. Mennell, 58, 82: 68; 09. Mügge, 188, 11: 1; 23. 10: 78; 19. 11: 110; 22. 189, 71; 65, 113, 142; 09. 69: 397; 07. Rudge, 58, 88: 167; 11. Rutherford, 5, 19: 192; 10. Rayleigh, 58, 108: 279; 21. Schmidhuber, Mitt. Oberrhein. geol. Ver. N.F., 5: 35; 15. Weber, 189, 75: 388; 23.

RADIOACTIVE RADIATIONS IN GASES

R. D. KLEEMAN

I. RANGE AND VELOCITY OF α-RAYS IN GASES AT 1 ATMOSPHERE

At t° and 1 atm., $R_t = R_0 \frac{T}{273.1}$ RANGE IN AIR AT 0° AND 1 ATM. (13)

From			ı Uıı	Io	Ra	Rn	Ra-A
R ₀ , cms	31 2 . 910	3.028	3.212	3.90	7 4 . 476		
From	Ra-C'	Ra-C'1*	Ra-C'	* Ra	F,	Pa	Rd-Ac
$\overline{\mathbf{R_0, cms}}$	6.608	8.8	10.6	3.7	721 3	. 482	4.432

* Two new α-rays from Ra-C' by the scintillation method (24).

From Ac-	-X An	Ac-A	Ac-C	Th	Rd-Th
R ₀ , cms	41 5.48	37 6.241	5.224	2.749	3.810
From	Th-X	Tn	Th-A	Th-C	Th-C'
Ro, cms	4.127	4.799	5.387	4.538	8.168

MEASURED RANGES IN OTHER GASES

		From R	a-C'	From Po			
Gas	Air	02	H ₂	He	Air	O ₃	H ₃
R150	6.93 to 6.97	6.26	30.93	32.54	3.76 to 3.95	3.43	16.8
I.it	(12, 15, 17, 27)	(27)	(27)	(27)	(9, 12, 14, 16, 18, 19, 20, 21, 22, 23, 27)	(21, 27)	(21, 27)

	li	From Po								
Gas	He	N ₂	CH ₄	CO	CO ₂	NO	802	CH ₂ Br		
R15°	17.62	3.82	4.18	3.70	2.49	3.41	2.08	1.86		
Lit	(27)	(21)	(21)	(21)	(21)	(21)	(21)	(21)		

For range of recoil atoms, see p. 368.

Distribution of Ranges.—This follows a probability law. Thus the most probable range for a Ra-F (=Po) α -ray is 3.85 cm at 15° and 1 atm.; 90% lie between 3.75 and 3.95, and 60% between 3.8 and 3.9 (*). For long range particles from Th-C, Ac-C, and Ra-F, v. (2). I. Curie (8.5) found for a very narrow beam for Po, the range R_{16}^{76} = 3.87 cm, as against the much greater value of H. Geiger, R_{15}^{76} = 3.925 cm.

Velocity of α -particles.—The velocity, u, of any α -ray may be computed from the relation $u^3 = aR$ where a is a constant and R the length of the remaining path (11). Taking $u = 1.922 \times 10^9$ cm sec⁻¹ (25) as the *initial* velocity of the α -particles from Ra-C', at 0° and 1 atmosphere in air, this becomes $u = 1.0246 \times 10^9 R^{1/2}$ where R is the range.

Example: R_0 for Th-C' in air is 8.168 cm (Table 1, supra). Hence $u = 1.0246 \times 10^9 \times \sqrt[3]{8.168} = 2.064$ cm sec⁻¹, the initial velocity.

The following values of $u \times 10^{-9}$ at 0° and 1 atm. have been directly measured: Ra-A, 1.690 (28); Ra-C', 1.922 (25); Po, 1.593 (7); Th-C, 1.714 (30); Th-C', 2.060 (30). S. Rosenblum (22.5) determined directly the ratio of the initial velocities of the α -particles from Th-C—Th-C' = 1.209.

For velocity of recoil atoms see p. 368.

II. NATURE OF PATH

The path of an α -particle may undergo sudden bends (4.26,29). The table gives the number of bends (whose angles lie between the limits $\theta_1 - \theta_2$) for path-lengths (between bends) within the limits $l_1 - l_2$, for 281 Ra-F α -rays in air containing 75% A. The unit of l is $\frac{1}{126}$ cm. 0° and 1 atm. (3).

	$\theta_1 - \theta_2 =$	20°-30°	30°-40°	40°-50°	50°-60°	60°-70°	70°-80°	80°-90°	90°-180°
_	3-7	11	20	22	8	13	7	6	8
~	7-15	21	17	16	5		7		5
ĩ	15-30	12	8	7	2			5	
₽.	$\theta_1 - \theta_2 =$	10°-20°	20°-30°	30°-180°	1				
	30-100	20	3	3	l				

The ionization along the path of a β particle varies inversely as the square of the velocity of the particle (28.5). The table gives the number, N_1 , of ions produced by a ray per first cm of path (13.5). $\epsilon = 4.774 \times 10^{-10}$ es.

Source	Ac-C"	Th-C"	Ra-B	Ra-C	Ra-E	U
$\overline{N_1}$	132	132	130	105	67	76

Coefficients of absorption, λ , of β rays in air and CO₂ at 1 atm. and 22° (18.5).

			Th-C"	
Air, λ in cm ⁻¹	0.0152	0.0091	0.0068	0.0065
Air, λ in $(g/cm^2)^{-1}$	12.70	7.60	5.68	5.43
CO_2 , λ in cm^{-1}	0.0297	0.0175	0.0129	0.0114
Air, λ in cm ⁻¹	16.31	9.62	7.08	6.26

Substance	U-X1	Ra-D	Ra-D very soft	Th-B	Ac-B
Air, λ in cm ⁻¹	0.12	0.097	0.64	0.090	0.31
Air, λ in $(g/cm^2)^{-1}$		81	535		260
CO_2 , λ in cm ⁻¹		0.183	1.69	0.142	
CO ₂ , λ in $(g/cm^2)^{-1}$	126	101	930	78	

Coefficient of absorption λ in cm $^{-1}$ of γ rays from Ra-C' in air at 1 atm. and 22° is 0.447 \times 10⁻⁴ ($^{17.5}$).

IV. STOPPING POWER OF GASES

 $S = \frac{R_{Gas}}{R_{Als}}$ for the same temperature and pressure (6).

1. Ionization method (5). 2. Track-condensation method using Ra-F (21). 3. Scintillation method. α -rays of R_{15} ° 6.15 cm (1).

Gas	S	Method	Gas	S	Method
A	0.951 Ra-C'	1 1	CO	.985 Ra-C'	1
	.934 Ra-A	1 1	P 10	.976 Ra-A	1
A	.930	3	CO	1.02 Ra-F	2
H,	.24	1	CO ₂	1.505 Ra-C'	1
H ₂	.22 Ra-F	2		1.488 Ra-A	l
He	.201	1	CO ₂	1.52 Ra-F	2
He	. 1757	3	CH ₄	0.860 Ra-C'	1
Kr	1.330	3		.880 Ra-A	l
N ₂	.989 Ra-C'	1	CH ₄	.91 Ra-F	2
	.982 Ra-A		CC14	4.00	1
N_2	.99 Ra-F	2	CS ₂	2.18	1
Ne	. 586	3	CHCl.	3.16	1
O ₂	1.064 Ra-C'	1	CH ₂ Br	2.03	1
	1.057 Ra-A		CH ₂ Br	2.04 Ra-F	2
O ₂	1.08 Ra-F	2	CH ₂ I	2.58	1
\mathbf{Xe}	1.804	3	C ₂ H ₂	1.118 Ra-C'	1
Air	1.00	1		1.121 Ra-A	
H ₂ O	.77 Ra-F	2		1.122 Rn + Ra	
802	1.82 Ra-F	2	C ₂ H ₄	1.349 Ra-C'	1
N_2O	1.46	1		1.369 Ra-A	
N_2O	1.11 Ra-F	2		1.379 Rn	

	Gas	S	Method	Gas	S	Method
ľ		1.405 Ra		C ₂ H ₄ O	2.00	1
	C ₂ H ₅ Cl	2.371 Ra-C'	1	C ₄ H ₁₀ O	3.437 Ra-C'	1
		2.385 Ra-A			3.471 Ra-A	-
	C ₂ H ₄ I	3.12	1	C.H.2	3.544 Ra-C'	1
	C _z H ₄	1.514 Ra-C'	1		3.595 Ra-A	
		1.526 Ra-A		C ₆ H ₆	3.33	1

LITERATURE

(For a key to the periodicals see end of volume)

Bates, δ, 106: 622; 24.
 Bates and Rogers, δ, 105: 97; 24.
 Blackett, δ, 103: 62; 23.
 Bragg, 5, 10: 617; 06.
 S, 13: 333; 07. Studies in Radioactivity, p. 65, (Macmillan, London).
 Bragg and Kleeman, 5, 10: 318; 05.
 Curie, 54, 176: 434; 23.
 4: 170; 23.
 Curie, \$60, No. 212: 25.
 Dawson, 76, 124: 509; 15.

(10) Geiger, 5, 83: 486; 00. (11) Geiger, 5, 83: 505; 10. (12) Geiger, 96, 8: 45; 21. (13) Geiger, 96, 8: 45; 21. (13.6) Geiger and Kovarik, 5, 23: 604; 11. (14) Geiger and Nuttall, 5, 23: 613; 11. (15) Geiger and Nuttall, 5, 24: 647; 12. (16) Hahn, 63, 7: 412, 456, 557; 06. 5, 11. 793; 12: 82, 244; 06. (17) Henderson, 5, 42: 538; 21. (17.8) Hess, 63, 12: 1000; 11. (18) Kovarik, 199, 11. 69; 14. 2, 3: 148; 14. (18.5) Kovarik, 2, 6: 419; 15. (19) Kucera and Masek, 63, 7: 337, 630, 650; 06.

(20) Levin, 63, 7: 519; 06.
(21) Van der Merwe, 3, 45: 379; 23.
(22) Meyer, Hess and Paneth, 75, 123: 1459; 14.
(22.8) Rosenblum, 34, 180: 1332; 25.
(23) Rothesteiner, 75, 123: 1257; 16.
(24) Rutherford and Chadwick, 3, 48: 509; 24.
(25) Rutherford and Robinson, 3, 28: 552; 14.
(26) Shimisu, 5, 99: 425, 432; 21.
(27) Taylor, 3, 26: 402; 14.
(28) Tunstall and Mackower, 3, 29: 259; 15.
(28.8) Wilson, 5, 88: 240; 11.
(29) Wilson, 5, 87: 277: 12.

(30) Wood, 3, 30: 702; 15.

ABSORPTION AND DIFFUSION OF β -RAYS IN LIQUIDS AND SOLIDS

PIERRE AUGER

Absorption Coefficients.—If I_0 be the initial intensity, and I_x the intensity after screen thickness x is traversed, $I_x = I_0 e^{-x\mu}$ where μ , the absorption coefficient, varies slightly with the thickness traversed. d = density.

ABSORPTION BY AL

Source	Ra-D	Th-A	Ra-E	Ac-C	Th-D	Ra-C
μ, cm ⁻¹	130	111.0	43.3	28.5	16.3	13.5
Lit			(12)		

Source	Ra-D very	Ra-B		Rb	Ra	U-X1	U-X,
	very soft	Soft	Hard				
μ , cm ⁻¹	5500	91	13	347	312	500	15
Lit	(13)	((6)	(10)	(9)	(5)	(5)

Absorption of β -rays from U-X (11)

Screen material	. Ag	Al	C	Ca	Cd	Fe	Ir	Mg	Ni	Pb
μ/d , cm ² g ⁻¹	. 7.31	4.1	3.75	6.3	7.4	6.61	9.5	4.0	6.35	9.75
Screen material	Rh	S	Sb	Sn	Ta	Zn	NH ₄ C	l Ca	SO ₂ S	SrSO
μ/d , cm ² g ⁻¹										
Screen materia	Ba	Cla	BaSO	4 N	aCl	K	F K	Cl	KBr	KI
μ/d , cm ² g ⁻¹										

ABSORPTION OF β-RAYS OF RA-E (7)

Screen	C	Al	Cu	Mo	Ag	Sn
μ/d	15.8	16.9	19.2	21.0	21.7	22.1

If N is the atomic number of the screening element, $\mu/d = 15 + 0.142 N$.

Range in Aluminum of β -rays of Various Velocities (Linear Extrapolation) (15)

RH	1380	1930	2535	3170	3790	44	Ю0
Range in cm	. 0.018	0.064	0.124	0.189	0.279	0.	360
RH	50	26 (8230 I	7490	8590	111	370
2011	1.00	, ,	1	1 200	0000	1	•••

Velocity Decrease.—R= Radius of curvature of the β -ray in a magnetic field of N units and field force H gauss. $\triangle RH$ is the change in RH due to a screen of 0.01 g cm⁻² and is proportional to the velocity. According to Bohr, $\frac{\triangle RH}{c^3}u^2=a$ constant, K. u= the velocity of the particle, and c that of light (14).

DECREASE OF VELOCITY FOR β-RAYS FROM RA-B AND RA-C

RH	ΔRH	K	ΔRH	K	ΔRH	K
No screen	Mica s	creen	Sn sc	reen	Au se	reen
1392	138.1	34.8	89.2	22.8		T
1660	101.4	34.7	67.4	23.4		
1925	78	33.1	56.8	24.1		1
2235	72.6	36.2		1 1		1
2960	66.7	43.5	K I III			1
3260	59.2	41				
4840	47.3	39.9	37.6	31.7	32.2	27.3
5255	49.3	42.2	37.8	32.5		1
5880	43.1	38	32.2	28.6	32.6	29
6160	41	36.7				
7060	38.4	35.4	30.2	27.8		1

Dispersion of β -rays (2, 3, 8).

LITERATURE

(For a key to the periodicals see end of volume)

von Boeyer, 63, 23: 485; 12.
 Bothe, 96, 6: 368; 23.
 Crowther and Schonland, 5, 100: 526; 22.
 Danyss, 51, 3: 949; 13.
 Fajans and Göhring, 63, 14: 877; 13.
 Fajans and Makower, 3, 23: 292; 12.

(7) Fournier, 54, 180: 284; 25. (8) Geiger and Bothe, 96, 6: 205; 21. (8) Hahn and Meitner, 63, 10: 741; 09.

(16) Hahn and Rothenback, 65, 20: 197; 19. (11) Jungenfeld, 63, 14: 507; 13. (12) Kovarik, 5, 20: 849; 10. (13) Meitner, 63, 16: 272; 15. (14) Rawlinson, 5, 30: 627; 15. (18) Varder, 5, 29: 725; 15. (16) Wilson, 5, 34: 141; 10.

WAVE LENGTHS OF 7-RAYS

E. VON SCHWEIDLER

GENERAL RELATIONS

A wave length of λ milli-Ångstroms (10⁻³ Å = 10⁻¹¹ cm = 1 X-unit), corresponds to:

A Frequency (*) = $2.9986 \times 10^{21}/\lambda \text{ sec}^{-1}$ An Energy ($E = h\nu$) = $1.9653 \quad 10^{-4}/\lambda \text{ ergs}$ A Potential $\left(P = \frac{h\nu}{e}\right) = 1.2344 \quad 10^{7}/\lambda \text{ volts}$

The equivalent electron velocity as a fraction of the velocity of light,

 $(\beta) = \sqrt{1 - \frac{1}{\left(1 + \frac{24.288}{\lambda}\right)^2}}$ $h_{\nu} = \frac{hc}{\lambda} = E = Pe = c^2 m_0 \left[\frac{1}{\sqrt{1 - \beta^2}} \div 1 \right].$

See p. 17 for values of basic constants.

WAVE LENGTHS DETERMINED WITH CRYSTAL GRATINGS

 φ = angle of reflexion, d = grating space = 2.814 Å for rock salt = 3.028 Å for calcite. λ = 2d sin φ . Intensity indicated thus, s = small, m = moderate, g = great, vg = very great.

(a) Soft Radiations from Ra-B. Using rock salt (2, 3). Corresponding to L-series of elements of atomic Nos. 82 and 83, according to Swinne (5) and Wagner (6).

λ, in 10 ⁻³ Å	1365 m	1349 m	1315 в	1286 в	1266 в	1219 s	1196 m
φ , deg. min	14° 00′	13° 52′	13° 31′	13° 14′	13° 00′	12° 31′	12° 16′
λ, in 10 ⁻³ Å	1175 g	1141 m	1100 s	10 74 s	1055 s	1029 m	1006 m
φ, deg. min	12° 03′	11° 42′	11° 17′	11° 00′	10° 48′	10° 32′	10° 18′
λ, in 10 ⁻³ Å	982 g	953 m	917 s	853 m	838 m	809 m	793 m
φ, deg. min	10° 03′	9° 45′	9° 23′	8° 43′	8° 34′	8° 16′	8° 06′

(b) Hard Radiations from Ra-B + Ra-C, Sec. 1. Radiations from Ms-Th and its products. Sec. 2.

				,					
λ, in 10 ⁻³ Å	l	428	(393)	(324)	296	262	242	229	196
φ, deg. min	rock	4° 22′	4° 00′	3° 18′	3° 00′	2° 40'	2° 28′	2° 20′	2° 00′
Remarks	1. Using r	Probably 2nd order spec- trum to 196 and 159				K-serie			
λ, in 10 ⁻⁸ Å		169 g	159 g	137	116	99 g	71	72	66
φ, in deg. min.		1° 43′	1° 37′	1° 24'	1° 11′	1° 06′	43'	41'	37.5
Remarks			line Ra-B?						g cal- (18)
λ, in 10 ⁻² Å	58		'		1 _	188 @	145 g	62 s	52 m
e, deg. min	33	_	_	_		100 8	1108	1 02 8	1 02 111
Remarks		Using	calcite	(18)	Me-Th		to Rd- Th		to Th
					(vi				

WAVE LENGTHS CALCULATED FROM THE ENERGY OF β -RAYS

Primary γ -rays of energy E_{γ} produce in the disintegrating atom itself, or in other atoms, secondary β -rays of energy $E_{\beta} = E_{\gamma}-A$, where A is the work of removal and depends upon the level from

which the β -rays originate. Sometimes it is assumed that the β -rays are primary and produce secondary γ -rays of energy $E_{\gamma} = E_{\beta}$. The energy of the β -rays is obtained from their magnetic deflections.

λ, in 10 ⁻² Å Lit	Ra	66 (14, 28	Ra-B	230 (28)	174	155 (26)	51.9	51.3 m
λ, in 10 ⁻² Å Lit	48.0 (29)					5.2 g	20/2	_
λ, in 10 ⁻³ Å Lit	49.8		_					
	24.9 (16)	24.3	21.2	20.6	20.4	20.3	16.27	10.93 g
λ, in 10 ⁻⁸ Å Lit	11	0.0 s	9.93 g (29)	7.00 (29)	6.9	_=	56? g	269 (13)
λ, in 10 ⁻⁸ Å Lit	Me-Th	171 (22)	59.7	53.0	37.			
λ, in 10 ⁻⁸ Å	(1	1P-B	52.9				.3 s	45.2 8
λ. in 10 ⁻⁸ Å Lit	24.5 (16)	21.3	13.6	<u> </u>		.8 m	O 4.1	

EFFECTIVE WAVE LENGTHS CALCULATED FROM ABSORPTION AND SCATTERING

The ordinary or "apparent" absorption coefficient, $\mu' = \mu + \sigma$, where μ is the "true" or "fluorescent" absorption coefficient, and σ the coefficient of scattering. For dependence on wave length v. Glocker (8); Compton (12); Wingardh (23); Warburton and Richtmyer (24); Jauncy (28); and Allen (30).

γ-RAYS FROM RA-C

λ _{eff.} , in 10 ⁻³ Å	<	63	<60	1	20-60	80–30
Calc. from	A	bs.	Abs.	T	Scat.	Abs.
Lit		(7)	(%)	Ī	(128)	(10b)
λ _{eff.} , in 10 ⁻² Å	30-25	21	24	8	19	19.5
Calc. from	Scat.	Abs.	Abs	3.	Scat.	Scat.
Lit	(12b)	(31)	(33)	(324	, 32b)

LITERATURE

(For a key to the periodicals see end of volume)

Shaw, S, 26: 190; 13.
 Rutherford and Andrade, 58, 92: 267; 13.
 Rutherford and Andrade, 5, 27: 854; 14.
 Rutherford and Andrade,

5, 23: 263; 14. (5) Swinne, 65, 17: 481; 16. (6) Wagner, 65, 18: 405, 432, 461, 468; 17. (7) Rutherford, 5, 24: 153; 17. (8) Glocker, 65, 19: 66; 18. 249, 28: 421: 19. (9) Kohlrausch, 65, 19: 345: 18.

401, 405; 11. (*) Kutheriota, 5, 22. 105, 11. (*) Grocker, 55, 22. 45, 28. 421; 19. (*) Kohlrausch, 65, 19: 345; 18. (102) Treitel, Diss. Heidelberg; 20. (105) Prelinger, 76, 130: 279; 21. (11) Ellis, 6, 99: 261; 21. (12) Compton, 2, 13: 296; 19. 5, 41: 749; 770, 21. (12) Meitner, 96, 9: 131, 145; 22. (14) Meitner, 218, 10: 381; 22. (15) Smekal, 96, 10: 275; 22. (16) Ellis, 5, 101: 1; 22. 201, 21: 121; 22. 96, 10: 303; 22. (17) Meitner, 96, 11: 35; 22. (18) Kovarik, 2, 19: 433; 22. (19) Madgwick, 248, 6: 136; 21. (20) Meitner, 96, 17: 54; 23. (21) Hahn and Meitner, 96, 17: 157; 23. (22)

de Broglie and Cabrera, 54, 174: 939; 22. 54, 176: 295; 23. (23) Wingardh, 96, 20: 315; 23. (24) Warburton and Richtmyer, 2, 23: 539; 23. 2, 23: 291; 24. (25) Jauncy, 2, 22: 233; 23. (26) Ellis and Skinner, 6, 108: 60, 165, 185; 24. (27) Smekal, 96, 26: 265; 24. (282) Hahn and Meitner, 96, 26: 161; 24. (283) Meitner, 96, 26: 169; 24. (29) Thibaud, 54, 176: 1706; 24. 54, 179: 165, 815, 1052, 1322; 24. 54, 180: 138; 25. 250, 209: 8; 24.

(30) Allen, 2, 23: 291; 24. (31) Owen, Fleming and Fage, 67, 36: 355; 24. (328) Ahmad, δ, 105: 507; 24. (32b) Ahmad and Stoner, δ, 106: 8; 24. (32) Gray, δ8, 115: 13, 86; 25. (34) Black, δ8, 115: 226; 25.

RADIOACTIVE RADIATIONS FROM ORDINARY METALS

R. B. Moore

1. POTASSIUM AND RUBIDIUM

β-rays only are emitted spontaneously, the emission being an atomic property independent of the temperature.

ACTIVITY OF K IN ARBITRARY UNITS (4)

Salt	K ₂ SO ₄	KI	KBr	KCl	KF	KClO.	KNO.
%K	44.91	23.58	32.87	52.48	67.32	28.91	28.69
Activity							30.6
K/Act	118	112	118	124	123	110	126

Absorption of the β-radiation (6)

 λ = absorption coefficient cm⁻¹, d = density of absorbent

λ/d for β-rays from K		λ/d for β -rays from Rb				
By K ₂ SO ₄	11.32	By Rb ₂ SO ₄ By paper (90% of the	96.7			
By Sn (10% of the rays)	90	rays)	162			
		By paper (10% of the rays)	950			

Absorption of β -rays from Rb by Paper (5)

 $W = wt. paper/cm^2$. I_0 , intensity of the initial radiation; Ip, that of the emergent radiation.

$\overline{\mathbf{w}}$	00.00153	0.00305	0.00458	0.00764	0.0107	0.0153 0.0198
Ip/I_0	1 0.725	0.545	0.422	0.260	0.159	0.087 0.034

2. CAESIUM, SODIUM, LEAD, IRON AND ZINC

Cs and Na are not radioactive (8, 9, 10). Ordinary Pb shows a slight, very old Pb only a trace of activity. On account of their exceptionally small activity Fe and Zn are recommended for

construction of sensitive instruments for radioactive measurements. Ca, Ba, Sr, C, Cl, Br, Cu, Fe, Pb, Mg, Mn, Ni, Ag, Zn. W, Ta, La, Se, As, Sn, Au, Sb, Al and Hg are inactive (10).

3. NOTES

O. Hahn and M. Rothenbach (3) compared Rb salts of various ages but no difference in activity was detected. The Rb rays were found to be more penetrating than the β -rays of UX₁, but not so penetrating as those of Ra. The ratio of the intensity of the Rb rays to those of UX₁ is 1:15. The half-life of rubidium is calculated to be 10^{11} years and that of potassium 3 to 7 times greater. The absorption coefficient in Al of K is from 39.6 to 55.4 as foil thickness increases from 0.0135 to 0.0405 cm. Rb decreases from 593 to 522 as foil increases from 0.0017 to 0.0051 cm.

According to Bergwitz (1) the velocity of the Rb rays is 1.85 \times 10⁻¹⁰ cm^{-sec⁻¹}

Ringer (7) states that pure K and Rb give off homogeneous β -rays, the K rays having 10 times the penetrating power of the Rb rays. Harkins and Guy (10) give this figure as from 10 to 15 and state that the radiation from Rb is slightly heterogeneous.

Geiger (2) found that the saturation current from RbCl is the same at room temperature and at liquid-air temperatures.

LITERATURE

(For a key to the periodicals see end of volume)

Bergwitz, 63, 14: 655; 13.
 Geiger, 75, 132: 69; 23.
 Hahn and Rothenbach, 63, 20: 194; 19.
 Henriot, 34, 151: 1751; 10.
 Henriot, 54, 152: 1384; 11.
 Henriot, Thesis, Paris, 1912.
 Ringer, Onders Physiol. Scheikunde 1: 24; 21.
 Ringer, Arch. Neerland. physiol. 7: 431; 22.
 Zwaardemaker, 64P, 26: 575; 23.
 Harkins and Guy, 197, 10: 11; 25.

DISTRIBUTION OF RADIOACTIVE MATERIALS IN THE ATMOSPHERE, THE HYDRO-SPHERE AND THE LITHOSPHERE

HERMAN SCHLUNDT

TABLE OF CONTENTS

The Atmosphere The Hydrosphere	372
Springs and well waters and gases	373
Minerals	377
Igneous Rocks	377
Metamorphic Rocks	379
Sedimentary Rocks, Earthy Materials, Coals, Salt	379
Oceanic Oozes, etc	379
Rocks from Tunnels	379
Spring Deposits	380
Meteorites	380
Natural Gases	380

RADON IN THE ATMOSPHERE

Method A: Rn absorbed in charcoal.

Method B: Rn condensed with liquid air.

Method C: Rn directly determined in large ionization chamber. Method D: Rn computed from active deposit on negatively

charged wire.

Place	Micro-micro Curies (10 ⁻¹² Curies) Rn per cubic meter	Meth- od	Number of determina- tions	Lit.
Montreal, Can	24-127, Mean, 80	A		(21)
Montreal, Can	Mean, 60	A	50 during 1907-8	(22)
Cambridge, Eng	35–350, Mean, 105	A	60 during 6 mos	(93)

Place	Micro-micro Curies (10-12 Curies) Rn per cubic meter	Meth- od	Number of determina- tions	Lit.
Chicago, U. S. A	,	В	6	(1)
Manila, P. I	Mean, 100 71	A	30 during 1 year	(136)
Freiburg, Switzerland	54–305, Mean, 131	A or B		(78)
Innsbrück, Austria	,	C	49	(137)
Seeham, Austria	,	C		(116)
Tokyo, Japan	5	D		(49)
Pacific Ocean		D	Mean of 169, 1915–21	(66)
Atlantic Ocean	1.7		Mean of 79	(66)
Indian Ocean Southern Ocean S. of	1.3	•••	Mean of 37	(66)
lat. 50°	0.3	•••	Mean of 48	(66)
areas			Mean of 333	(66)
High seas	2.6	•••	Mean of ca. 400*	(66)

^{*} Includes some made relatively near large bodies of land.

RADIOACTIVITY OF SPRING AND WELL WATERS AND SPRING GASES

m $\mu C l^{-1}$ = Millimicrocuries (10⁻⁹ Curies) per liter Ra, $\mu \mu g l^{-1}$ = Dissolved radium, micro-micro-grams (10⁻¹² g) per liter

NORTH AMERICA

Source	t°C	m _µ (7]-1	Ra,	T
	1.0	Water	Gas	μμgl ⁻¹	Lit.
CANADA	Ī				
Quebec					
Maskinonge	8	0.079	0.250	0.5	(99)
Radnor Forges	10	0.345		0.3	(99)
St. Benoit	11	0.028		0.0	(99)
St. Leon (Lupien)	8	0.148	0.46	0.8	(99)
St. Hyacinthe (Philudor)	8	0.106		46	(99)
St. Severe	8	0.087	1	2.8	(99)
Varennes	9	0.224	0.81	9.2	(99)
Ontario				"	` ,
Borthwick, near Ottawa	11	0.140		8.4	(99)
Sulfur Spring, Caledonia Spr.	8	0.073		5.6	(99)
g,		*****	1 1	15.0	(23)
Duncan Spring, Caledonia				20.0	()
Spr	9	0.053	0.204	5.6	(99)
Duncan Spring, Caledonia		0.000	0.201	0.0	()
Spr	9		0.42	18.0	(23)
Gas Spring, Caledonia Spr.	8	0.090	0.306	8.4	(99)
Gas Spring, Caledonia Spr.	8	0.000	0.62	15	(23)
White Sulfur Spring, Cars-			0.02		()
bad	9	0.09		0.8	(99)
Magic Spring	9	0.087		25	(99)
Soda Spring	9	0.081	0.23	1.1	(99)
Russell Lithia, Bourget	10	0.056	0.20	5.9	(99)
Alberta (Banff)		0.000	1 1	0.5	(55)
Upper Hot Spring	46	0.221		8.6	(99)
Kidney Spring	39	0.392		8.5	(99)
Cave Spring	30		3.34	8.5	(99)
Basin Spring	35		2.37		(99)
Auto Road Spring	19	0.232	2.31	8.5	(99)

	ī	m _µ (71-1	1 5	_
Source	<i>t</i> °C	Water		Ra, μμgl ⁻¹	Lit.
British Columbia		1 Water	Gas	ι μμ βι ,	1
Fairmont Springs		3.5		100	(11)
Sinclair		4.0	1	tr.	(11)
UNITED STATES		1 4.0		".	(**)
Arlington, R. I.	١.		l .	ĺ	1
Graphite Mine Spr		8.78	l		(79)
Williamstown, Mass.		5.10	1		(3)
Wampanoag	22	0.22	7.3		(118)
Sherman Spring		0.04			(118)
Saratoga Spr., N. Y.]` ′
Emperor	10	0.07	0.221	68	(71)
Hathorn No. 1	10	0.142	0.213	42	(71)
Geyser	10	0.039	0.034	1	(71)
Pump Well No. 4	12	0.231	0.678		(71)
Crystal Rock	10	0.88	0.847	9	(71)
Indiana	١	1			
Mean of 27 sprs	cold	0.75			(89)
French Lick		۱			/
Pluto Spring		0.54			(5)
Bowles Spring Illinois	10	1.78			(5)
Dixon Spr. No. 2		2 02			/11R\
Creal Spr. No. 3		2.93 0.84			(115)
Well, Joliet		0.39	1		(115)
Mt. Vernon Spring		0.18			(115)
Yellowstone Nat. Pk.		0.10			(33)
Mammoth Hot Spr.,		ł	1		Ì
Hot River	51	1.44	1	2.5*	(104)
Main Spring	71	none	none	3.8*	(104)
Apollinaris Spr	9	1.08			(104)
Nymph Spring, Tower Falls.		0.23	6.5		(104)
Upper Geyser Basin, Bench					` ′
Spring	86	0.22	124		(104)
Fish Cone, West Thumb			41.8		(104)
Lower Geyser Basin, Firehole					
Lake	85	0.28	294		(104)
Missouri					
Sweet Springs		0.81	l		(103)
Rollins Spring, Columbia		0.15			(103)
Hot Springs, Ark.	01	0.00			(0)
Imperial Spring Palace Spring	61	9.03	l		(9)
	61	0.12			(9)
Avenue Spring Twin Spring	62 62	0.89 2.22			(9) (9)
Arsenic Spring	54	0.49			(9) (9)
Horseshoe Spring	60	0.49		ļ	(9)
Liver Spring	8	0.18			(9)
Kidney Spring	13	3.63		1	(9)
Madison, Wisconsin		00		I	(.)
Merrill Springs		0.49		ļ	(101)
Manitou, Colo.				l	` '
Shoshone Spring	15	3.38	12.7	ı	(102)
Manitou Soda	15	1.25		i	(102)
Manitou Soda	15	0.268	1.62		(54)
Shoshone		1.66	15.52		(54)
Iron Soda Spring	15	0.24	1.15	- 1	(54)
Iron Soda Spring	15	1.53	1.07	ŀ	(102)
Navajo Spring		1.37	3.4		(102)
Navajo Spring	22	1.21	3.3	- 1	(54)
Steamboat Springs, Colo.				1	
Soda	15	0.18	1.42	1	(102)
Soda	15	1.36	6.03		(54)
* Ra in 10 ⁻¹³ g per g of residue.				_	

Ra in 10⁻¹³ g per g of residue.

Source	t°C	$m\mu Cl^{-1}$		Ra,	Lit.
Source	,,	Water	Gas	$\mu\mu\mathbf{g}l^{-1}$	IAU.
UNITED STATES.—(Cont'd)					
Steamboat Springs, Colo.—			i '		
(Cont'd)					
Bath House	40	0.08	0.54	}	(102)
Bath House	40		0.79		(54)
Iron	24	0.99	3.71		(102)
Iron	24	0.91	3.50	ł	(54)
Craddock, Glenwood					
Springs, Colo		2.21	1	İ	(54)
Virginia			1	1	
Mean of 11 springs		0.21	l		(120)
Ohio			1		
Mean of 9 springs	cold	0.34	ŀ		(89)
Bloomington, Ind.					
Hottle Spring*		0.806			(90)

^{*} Mean of 37 tests during 9 months.

EUROPE

Source	t°C	mμ	$m\mu Cl^{-1}$	
Source	ı	Gas	Water	Lit.
AUSTRIA				
Tauern Tunnel		3.81*		(62)
Böckstein Valley		3.20†		(62)
Near Vienna				
Johannesbad	30	1.86	6.8	(63)
Haupt Quelle, Vöslau	23	0.29	1.07	(63)
Tyrol				
Magenquelle, Froy	6	17.6		(2)
Eisenquelle, Froy	8	4.5		(2)
Badequelle, Steinhof	9	0.8		(2)
Herrenbadquelle, Fischau	19	0.23	0.80	(63)
Gastein				
Grabenbäckerquelle	36	55.5		(60, 61)
Elizabethstollen, Hauptquelle	47	53.3		(61)
Nordquelle	44	9.0		(61)
Rudolfsstollen	47	21.3		(61)
Franz Josephstollen	41	34.6		(60, 61)
Reissacherstollen	36	84		(61)
Teichquelle, Tanbach		21.3		(61)
Melaniequelle, Radegund		5.3		(132)
Annenquelle, Mariatrost		0.36		(132)
Johannesbrunnen, Semmering	5	1.27		(3)

<sup>Mean of 101 springs; highest 23.7.
† Mean of 3 springs.</sup>

S	mμ	T :4	
Source	Gas	Water	Lit.
Belgium			
Delcor Spa	1.45	1	(34)
Marie-Henriette Spa	1.45	i l	(34)
Prince de Conde I. Spa	1.44	1.74	(34)
Tounelet, Spa	1.67	2.58	(34)
La Fraineuse Spa	2.43	1	(34)
Claire-Fagne Spa	2,1	l i	(34)
Salmon E. superieure Spa	3.31		(34)

Source	t°C	$m\mu Cl^{-1}$		
Source	, 0	Water	Gas	
Czecho-Slovakia (20, 51, 63, 139)				
Loimannsquelle, Franzenbad	11	0.39	0.27	
Salzquelle, Franzenbad	11	0.05		
Mine water, St. Joachimsthal 60 m				
depth	6	13.5		
375 m depth	14	75.9		
500 m depth		163.8	448.0	

Source	t°C	$m\mu Cl^{-1}$		
Source	rc	Water	Gas	
Bernhardsbrunnen, Karlsbad	61	0.65	1.14	
Mühlbrunnen, Karlsbad	39	12.9	38.6	
Schlossbrunnen, Karlsbad	30	7.1	20.6	
		3.61		
Hospitalquelle, Karlsbad	12	0.96		
Sprudel, * Karlsbad	71	0.16	0.36	
Eisenquelle, Karlsbad	8	15.7		
- '		19.5	ļ	
Ferdinandsbrunnen, Marienbad	10	0.27		
Kreuzbrunnen, Marienbad	. 8	1.75	3.56	
Marienquelle, Marienbad		0.71		
Waldquelle, Marienbad	7	1.87	4.47	
Augenquelle, Teplitz Schönau	22	1.28		
Riesenquelle, Dux		3.58		
Urquelle, Dux	46	2.03	9.0	

* 55 \times 10⁻¹² Ra per liter.

g	mμ	Lit.	
Source	Water	Gas	LAIL.
England			
Nine Wells, Cambridge	0.130		(94)
Well, Dale's Brewery, Cambridge	0.196		(94)
King's Well, Bath	1.73	33.65	(88)
Cross Spring, Bath	1.19		(88)
Hetling Spring, Bath	1.70		(88)
Hospital Natural Baths, Buxton	0.83	7.70	(64)
Gentlemen's Natural Baths, Buxton.	1.10		(64)

Source	t°C	mμ	C1-1	Lit.
Bource	• •	Gas	Water	140.
FRANCE	1			
Choussy, La Bourboule	l	22.9	141.5	(52)
Choussy, La Bourboule		20.5	161.4	(53)
de la Grange, Beaucens	}	3.03	10.36	(52)
Chaude, Audinac		0.14	0.59	(52)
Rivière, Chaudeau		6.51	39.5	(12)
Dames, Plombières	l	10.76	1	(12)
Lambinet, Plombières		15.96	1	(12)
Savonneuse, No. 2, Plombières		7.47	35.1	(12)
Vauquelin, Plombières	Ì	4.83	86.4	(12)
Chaudes-Fontaines, Reherry	l	4.1	19.8	(12)
Celestins, Vichy	44	0.653	4.1	(52)
Chomel, Vichy	44	0.653	4.1	(52)
Boussange, Vichy	42	0.103	0.60	(52)
Hôpital, Vichy	34	0.022	0.14	(52)
Condanny, Usson		0.563	34.5	(65)
Plaies, Usson		0.663	1.9	(65)
d'Alun, Aix-les-Bains		4.1	25.8	(16)
Le Lymbe, Bourbon-Lancy	ŀ	1.5	14.6	(16)
Pavillon, Coutreville		0.51		(16)
Bordeu (Grande Source), Luchon	43	16.1	134.8	(73)
Main Spring (Saline and H.S), Uri-				
age-les-Bains		0.113	1	(8)
Gasseng, Columbières-sur Orb	l		6.69	(18)
Cabanel, Columbières-sur Orb	ļ		2.22	(18)
Crémieu, Columbières-sur Orb	į	1	1.49	(12)
Viguerie, Ax		1	16.8	(72)
Savonneuse, Bains-les-Bains			25.6	(72)
Vielle, Eaux-Bonnes			3.7	(72)
La Chaldette	i		93.7	(72)
Romaine, Maizières]		10.8	(72)
Souveraine, Vals-les-Bains		1.047	5.08	(6)
Dominique, Vals-les-Bains		8.80		(6)
	•	•		

Source	t°C	mμ	$m\mu Cl^{-1}$		
Source	10	Gas	Water	Lit.	
Caroline, Mont-Doré		0.34	2.49	(57)	
Lepape, Bagnères-de-Luchon		41.5		(53)	
Providence, Vernet-les-Bains	38	15.7	115.9	(53)	
Santé, Vernet-les-Bains	37	2.7	1	(53)	
Pastural, Les Escalades	27	3.5		(53)	
Bassin Carré, Thuès-les-Bains	74	1.04	17.7	(53)	
Saint-Victor, Royat	21	15.35	35.2	(53)	
Hamel, Sail-les-Bains	34	11.5	50.2	(53)	
Rouge, Saint-Nectair	21	0.54	2.2	(53)	
Grande Source, Bagnoles-de-l'Orne.		0.74		(56)	
Chaude fontaine, Antoigny		3.86		(56)	
Saint-Ursin, Lignières	i	1.57		(56)	
Fontaine Minerale, St. Michel		0.44		(56)	

Q	ℓ°C	$m\mu C l^{-1}$	T :4
Source	100	Water	Lit.
GERMANY			
Schwarzwald Region			
Antoniusquelle, Antogast	cold	6.6	(20)
Büttquelle, Baden-Baden	24	51.3	(20)
Murquelle, Baden-Baden	59	9.8	(20)
Kirchenquelle, Baden-Baden	56	1.35	(20)
Hauptquelle, Badweiler	28	3.1	(20)
Gemeindequelle, Badweiler	23	4.2	(20)
Badquelle, Griesbach	cold	10.6	(20)
Sofienquelle, Petersthal	cold	1.76	(33)
Wenzelquelle, Rippoldsau	cold	0.86	(33)
Warme Quelle, Wildbad	36	1.35	(20)
Kalte Quelle, Wildbad	cold	0.08	(20)
Well, Heidelberg	27	2.15*	(7)
Wurttemberg			
Göppinger, Sauerbrunnen		1.27	(50)
Göppinger, Staufenbrunnen		0.57	(50)
Kursaal, Kanstatt		0.22	(50)
Karlsquelle, Mergentheim		0.98	(50)
Hirchquelle, Feinach		0.42	(50)
Wildbad		0.76	(50)
Hessen and Adjoining Regions			
Sprudel XII, Bad Nauheim	33	5.8t	(105)
Karlsbrunnen, Bad Nauheim	15	9.6†	(105)
Bad Homburg, Elizabethbrunnen.	11	1.46†	(105)
Luisenbrunnen	11	0.84†	(105)
Wilhelmsbrunnen, Bad Soden	14	6.62†	(105)
Solbrunnen, Bad Soden	16	1.56†	(105)
Inselquelle, Kreuznach	13	7.42	(105)
Theodorshalle, Kreuznach	7	3.06t	(105)
Hauptbrunnen, Münster am Stein.	31	8.5t	(105)
Kochbrunnen, Wiesbaden	68	0.431	(39)
Adlerquelle, Wiesbaden	64	2.231	(39)
Schützenhofquelle, Wiesbaden	50	0.291	(39)
Racoczy, Kissingen		1.04†	in fine
Maxquelle, Kissingen		1.58†	44)42
Maxquelle, Dürkheim a.d. Haardt	20	0.69	(7)

- * 1620×10^{-12} g Ra per liter of water. † Values obtained by multiplying Mache units by 3.64×10^{-16} . ‡ Values obtained by multiplying Mache units by 4.1×10^{-16} .

Source .	$m\mu Cl^{-1}$ Water	No. of samples	Lit.
Bavaria Alexanderbad Ebermanstadt and env	7.73	2 spr., 6 wells,	(38)
Ebermanstadt and env	0.43	18 spr., 2 w.	(38)

Source	m _µ Cl ⁻¹ water	No. of samples	Lit.
Epprechstein and env	1.17	2 spr., 7 w., 2 reservoirs	(38)
Fichtelgebirge, Neubau	1.55	5 spr., 8 w.	(38)
Leinleiterthal	0.36	21 spr., 5 w.	(38)
Leupoldsdorf and env	25.0	6 spr., 2 w., 5 reservoirs	(38)
Schwarzenfeld and env	0.64	3 spr., 6 w.	(38)
Weisenthau	1.32	15 spr., 6 w.	(38)
Wolsenberg and env	4.87	17 springs	(38)
Wundsiedel and env	7.7	13 spr., 6 w.,	(38)
		1 reservoir	
Saxony			
Wettingquelle, Brambach	826.2		(31)
	650 to 754		(59)
Trinkquelle, Oberschlema	688 to 920	·	(59)
Marx Semler Stollen, Ober-	288 to 330		(97)
schlema.	at 10°C		
Himmelfahrtstollen, Georgen-			
thal	24.1		(97)
Olga Brunnen, Schneeberg	13.1		(97)
Rockelmann Quelle, Schwar-			
zenberg	12.3		(97)

G	49.0	mμC	T :4	
Source	t°C	Water	Gas	Lit.
Hungary		i i		
Budapest		1		
Rakocsy, St. Lucasbad	42	7.40		(134)
Composite, 17 spr. Lucasbad		3.35	9.08	(128)
Trinkquelle, Kaiserbad	60	0.31		(134)
Grosse Quelle, Ritzenbad	43	3.16		(134)
Kerekmalom Quelle	20	0.11		(32)
Arpadquelle	23	0.046	0.624	(32)

Source	t°C	m _μ Cl ⁻¹ Water	Lit.
ITALY			
Sorgente Montirone, Abano near Padua	87	2.05*	(20)
Upper Sulfur Therm, Aqui Piemont	72	0.28*	(20)
Fiuggi, Anticoli		8.02*	(20)
Surgonne Grotta, Battaglia near Padua	74	3.34*	(20)
Acidola, Castellamare	13	9.27*	(20)
Domenico Tricarico, Bagnoli near Naples.	52	0.79*	(20)
Purgativo, Agnano near Naples	90	0.79*	(20)
Stabilimento, Porto d'Ischia	65	1.93*	(20)
Manzi I, Cassamicciola, Ischia	85	0.57	(20)
Old Roman Spring, Lacco Ameno, Ischia	57	152.5*	(20)
Fonte di Castello, Santa fiora	12	3.01	(77)
Fonte della Casella, Casteldelpiano	12	1.85	(77)
Acqua dei Bagnoli, Acidoso	14	3.29	(77)
Polla di Sotto, Bagnore	20	1.52	(77)
Sambuco, Montagna	8	2.08	(77)
Baleno Carcaiole, Uliveto		1.09	(75)
,		Gas = 8.6	
Pozzo delle Saline, Salsomaggiore		4.41	(76)
Bagni di Casciana		0.0	(77)
-		Gas = 1.8	
Parlanti, Monsummano	31	0.064	(92)

^{*} Values obtained by multiplying Mache units by 4.1×10^{-10} .

Source	t°C	mμCl ^{−1} Water
Norway (86)		
Nasodden		17.9
Sandsvar		12.9
Jellum, near Modum	l	31.2
Tandberg estate, Simoa Valley		67.4
Portugal (81)		
Sabroso, Sabroso (Vidago)		3.29
Fonte Romana, Fonte Romana		2.05
Da Bica, Ferez		8.20
Das Lamas, Cucos		10.4
RUMANIA (58)		
Orsova		
Hercules, Baile Herculane	46	0.19*
Regina Maria, Baile Herculane	60	0.22
Russia (68)		
Essentuky No. 6, Caucasus		3.5
Batalinsky, Caucasus		0.6
SPAIN (15)		
Rivas, Gerona		0.33
Buitre, Seirra de Fuensante, Murcia		0.05
Garganton y Pianolon, Sierra de Guadarrama.		12.5
La Raja, Mazarron, Murcia		0.46
El Tubo, Mazarron, Murcia		0.48
Posa de Levante, Mazarron, Murcia		0.36
Medica Catalan, Mazarron, Murcia		0.68
Sweden (91, 119)		
Slottskallan, Upsala	7	1.8
Bourbrum, Upsala	6	1.55
Birjerjarlsg No. 120, Stockholm	6	14.6
Gamla (spring), Porla	7	1.77
Sofia (spring), Helsingborg	10	3.00
Villastaden (drilled well), Lidingon	8	17.06
Norrb, L. (well), Bodens fastning	5	70.6
Stockh l. (well), Vinterviken	10	67.2
Hermelinsgruf (well), Malmberget	3	2.75
Kalmar, I. (spring), Sodra Vi	6	14.1
Sanatorie parken (spring), Mosseberg	7	0.90

* Emanation	content	changes	with	season	and	even	on	same	day.
-------------	---------	---------	------	--------	-----	------	----	------	------

Deals formation of source	No.	mµCl-1
Rock formation of source	samples	Water
Sweden.—(Continued)		
Boulders, morainal deposits	110	2.40
Diabase	10	0.70
Granite (Archean)	53	13.24
Granite (gneissic)	20	5.66
Granulite	14	10.2
Gray gneiss with granite intrusives	6	6.11
Gneiss (granitic)	20	2.99
Iron-bearing gneiss	12	9.31
Limestone	42	0.78
Peat	16	1.18
Quartz porphyry	5	2.09
Sandstone	37	2.91
Slate	42	1.11
Syenite and granulitic syenite	15	15.46

Source	t°C	mμCl ⁻¹ Water	Lit.
SWITZERLAND			
St. Placidus Spring, Disentis		4.66	(127)
Val Lunpegnia, Disentis		3.75	(117)

Source	ℓ°C	mµCl−¹ Water	Lit.
Leuk	51	0.12	(127)
Waadt, Lavey		4.51	(117)
Paracelsusquelle, Engadine, St. Moritz.	5	0.57	(117)
Stollenquelle, Pfafers-Ragaz	36	0.29	(117)
Sotsassquelle, Schuls		0.42	(117)
Carolaquelle, Tarast	7	0.46	(117)
Kurhaus, Acquarossa	25	1.24	(117)
Thomas, Val Sinestra	8	0.26	(117)
Les Trois Pigeons, Valangin		0.24	(80)
Come Girard, Locle		0.26	(80)
Vioulou, Paturage, Locle		0.37	(80)
Eplatures		0.15	(80)

ASIA				
Source	ℓ° C	mµCl-1, Water		
India (122)				
Kaira District, Bombay				
Hot Spring	67	33.0 to 62.1		
Cold Spring	28	33.9		

Course		mμ	Cl-1
Source	t° C	Water	Gas
JAPAN (**) 4/			
Kami-no-yu, Tamatsukuri	64	1.08	10.18
Kami-no-yu, Misasa	71	51.69	`
Kabu-yu, Misasa	45	3.72	22.82
Kaminoyu, Dogo	47	1.45	8.5
Tama-no-i, Dogo	cold	0.39	
Hirano, Tansan-sen	26	0.07	0.21
Gosho-no-yu, Kinosaki	60	3.06	
Ko-no-yu, Kinosaki	57	0.94	
Furosen, Beppu	58	0.07	
Kamigawara No. 1, Masutomi	22	301.2	
Kuridaira No. 1, Masutomi	16	214.7	550.6
Yunosawa-Onsen, Innai-Yunosawa	41	0.43	
Takinoyu, Noboribetsu	72	0.074	
Yojo-Kwan-no-yu No. 1, Togo	50	1.12	
Jizo-no-yu, Kusatsu	57	0.057	0.065
Akakura-Onsen, Akakura	62	0.43	
Ji-no-yu, Isobe	9	1.55	0.74
Arima-Onsen, Arima	52	0.92	
Maruyama-Kosen, Arima	19	3.01	
Zui-hoji-Onsen, Arima	31	13.8	
Arifuku-Onsen, Arifuku	43	0.80	
Kizu-no-yu, Asama	44	0.51	
O-yu, O-yu	57	1.13	trace
Kami-no-yu, Oyu	58	0.4	
Shimo-jyaya-no-yu, Sekigane	44	10.95	
Soto-no-yu, Katsura	29	0.31	
Yuatsumi-no-yu, Atsumi		0.40	
Awazu-Onsen, Awazu	54	0.35	
Kami-no-moto-yu, Bobata	14	4.35	
Goshiki-Onsen No. 2, Goshiki	39	0.80	
Tsubataya-uchi-yu, Shibu	48	0.11	
Hie-no-yu, Kaminoyana	62	0.86	5.5
Shiotsu-no-Tsubo, Katayamazu	79	0.47	8.79
Gosho-no-yu A, Kinosaki	63	2.67	
Koyabara-Onsen, Koyabara	38	1.37	2.95
Murasugi-Kosen No. 1	26	18.04	
Osakaya-no-yu, Musashi	45	1.17	11.8
Shirataki-no-yu, Nakabusa	60	0.59	
Tsuru-no-yu, Mikko-Yumoto	62	0.85	
Shin-yu, Unzen	38	0.85	

Sauras	t°C	$m\mu Cl^{-1}$		
Source	ıc	Water	Gas	
Ogawa-Onsen No. 2	49	1.01		
Omaki-Onsen, Omaka	49	0.48		
Taki-no-yu, Onogawa	70	2.37		
Umeka-no-yu, Owani	62	4.21		
Shigaku-Onsen, Shigaku	47	0.43	0.64	
Ena-Kosen, Takayama	10	102.2		
Takarazuka-Tansan-sui, Takarazuka	19	1.20	0.72	
Tochiomata-no-yu, Tochiomata	39	9.40		
Wakazaki-no-yu No. 1, Wakura	93	2.52	33 .9	
Yamanaka-Onsen, Yamanaka	45	0.62		
Yamashiro-Onsen	69	0.25		
Tottori-Onsen, Yoshikata	48	1.19		
Kasuga-Onsen, Teramadu	29	0.22	0.88	
Kabu-yu, Yudani	32	1.54	8.65	
Sento, Yukiku	67	0.23	3.34	
Kabu-yu, Yummra	91	0.31		
Sagi-no-yu, Yunogo	38	0.31	1.95	
Taki-no-yu, Yunokawa	50	0.74	8.23	
Shinyu, Yunotsu	4	1.8	0.49	

Source	t°C	mμCl ⁻¹ Water	Lit.
PHILIPPINE ISLANDS			
Sibul Springs, Bulacan		1.28	(135)
Pansol Springs, Laguna		none	(135)
Bambangan Spr., Laguna		0.15	(135)
Adukpung Spr., Kiangan		1.33	(37)
Artesian Well, Batangas		2.11	(135)
Sinaba Spring, Laguna		1.3	(37)
Mairut Salt Spr., Bontoc	100	none	(37)
Salinas Salt Spring, Nueva Vizcaya	31	0.095	(37)

Africa

Source	t°C	$m_{\mu}Cl^{-1}$ Water
ALGERIA (85)		
Bains de la Reine, near Oran	50	13.1
Bains de la Reine, near Oran	44	22.4
Hotel de Vichy, A Bou Hanifia	55	1.3
d'Alma T'zoumoulal		5.3

THE LITHOSPHERE

Uranium and Thorium Radioactive Minerals

The numbers following the name of the mineral represent weight percent of U, resp. Th. The qualitative chemical composition is indicated in parentheses (), the locality in brackets [], R = "rare earths;" aq. = "hydrous."

- A. Aeschynite: U 0.3, Th 0-20 (RNbTiO_x). Auerlite: Th 61 (ThSiPO_x). Autunite: U 50 (UCaPO_xaq.).
- B. Becquerelite: U 70 (UO₂aq.) [Belg. Congo] (111). Blom-strandite: U 22 (TaNbUO₂).
- C. Calciothorite: Th 53 (RCaSiO_xaq.). Carnotite: U 53 (KUVO_xaq.). Chalcolite: (See Torbernite). Cleveite: U 60; Th 4 (UTh YO_x). Curite: U 73 (UPbO_xaq.) [Belg. Congo] (106).
- D. Dewindtite: U 50 (PbUPO_xaq.) [Belg. Congo](108). Dumontite: U 56 (PbUPO_xaq.) [Belg. Congo] (114).
- B. Ebigite: Flutherite (See Uranothallite). Eliasite: also Pittinite (See Gummite). Erdmanite: Th 9 (FeCaThBSiO_x). Euxenite: (Polycrase) U 5-15 (RNbTaO_xaq.).
- F. Fergusonite: (Bragite, Tyrite, Yttrotantalite) U 1-7, Th 2-5 (RNbTaO_x). Freyalite: Th 24 (RThSiO_xaq.). Fritzscheite: (UMnVO_xaq.).
- G. Gadolinite: Th < 1 (RO_x.SiO_y). Gummite: (Eliastite, Pittinite) U 60 (UPbCaSiO_xaq.).

- H. Hatchettolite: U 13 (UCaNbTaO_x). Hokwolite: (PbBaSO₄) [Japan] (**). 4
 - J. Johannite: U 56 (CuUSO 4.aq.).
- K. Kasolite: U 40 (PbUSiO_xaq.) [Belg. Congo] (107). Kochelite: (See Fergusonite).
 - L. Liebigite: U 31 (UCaCOaq.).
- M. Mackintoshite: U 20; Th 42 (RUThSiO_xaq.). Medjidite: (A variety of Uranopilite). Mendeleeffite: U 20 (UNbTiO_x) [Transbaikalia] (129). Microlite: U 1.6 (CaTaO_x). Monazite: Th 7-20 (RPO_x).
- N. Nasgite: U 2.5; Th 45 (ZrRSiO_z) [Japan] (42) Nivenue: (See Uraninite). Nohlue: (See Samarskite).
- O. Orangite: U 1-10; Th 65 (A variety of Thorite).
- P. Parsonite: U 32 (PbUPO_x) [Belg. Congo] (112). Phosphuranylile: U 60 (UO₂PO₄aq.). Pilbarite: (PbUThSiO_xaq.). Plumboniobate: U 12 (PbUYNbO_x). Pilchblende: (See Uraninite). Polycrase: (See Euxenite). Priorite: (See Blomstrandite). Pyrochlore: Th 0-6 (RCaNbO_x).
- R. Randite: (See Voglite). Rowlandite: U 0.4 (YSiO_x). Ruther-fordine: U 65 (UO₂CO₂). Ruther-fordite: (A variety of Fergusonite).
- S. Samarskite: U 1-3 (RUNbTaO_x). Schoepite: (UO₂CO₃) [Belg. Congo]. Schrockingerite: (A variety of Voglite). Sipylite: U 3 (ErNbO_x), Soddite: U 71 (USiO_xaq.) [Belg. Congo] (110). Stasite: U 50 (PbOPO_xaq.) [Belg. Congo] (109). Skaldowskite: U 55 (MgUSiO_xaq.) [Belg. Congo] (113).
- T. Thorogummite: U 18; Th 36 (UThPbSiO_x). Thorianite: U 12; Th 65 (RThUO_x). Tritomite: Th 5-8 (Th, Ce, Ca, Ta, B, F, SiO_x). Torbernite: U 50 (UCaPO_xaq.). Trögerite: U 53 (UAsO_xaq.). Tscheffkinite: Th 1-17 (RFeSiTiO_x). Thysonite: U 65 (U(OH)_xSO₄).
- U. Uraninite: (Pitchblende) U 65-80; Th 1-8 (UO₂RUPbO_x). Uranochalcite: (A variety of Uranopolite). Uraconite: (A variety of Uranopolite). Uranochalcite: U 47 (BaUPO_xaq.). Uranophane: U 55 (UCaSiO_xaq.). Uranopolite: U 64 (UO₂CaSO₄aq.). Uranosphaerite: U 42 (UO₂BiOUO_xaq.). Uranospite: U 49 (UCa-AsO_xaq.). Uranothallite: U 32 (CaUCO₃aq.). Uranothorite: U 8; Th 52 (ThSiO_x).
- V. Voglianite: (A variety of Uranopolite). Voglite: U 34 (CaCuUCO₂aq.).
 - W. Walpurgite: U 16 (BiUAsOxaq.).
 - X. Xenotime: U 3; Th 0-2 (YPO₄).
- Y. Yttrocrasite: U 2; Th 0-8 (YTiO_x). Yitrotantalite: U 0.5-2 (YNbTaO_x).
 - Z. Zuenerite: U 50 (CuUAsOxaq.).

RADIOACTIVITY OF ROCKS

Ra unit = 10⁻¹² g Ra (element) per g. Th unit = 10⁻⁶ g Th (element) per g

IGNEOUS ROCKS	_		
Name and locality	No. speci- mens	Ra mean	Lit.
Acidic Intrusives			
Charnockite			1
Mysore State, India	3	0.09	(121)
Granite			
Mysore State, India	11	1.03	(121)
Dutch East Indies	5	4.9	(13)
Eisenach, Germany	1	3.5	(67)
Germany	7	9.8	(13)
France(1) Holland(2)	3	8.8	(13)
St. Francois Co., Mo., U. S. A	1	1.5	(100)
Ireland	10	2.0	(46)
Leinster, Ireland	28	1.7	(28)
Th mean =	28	7.0	

	l N-			i 	Ma		F
Name and locality	No. speci-	Ra	Lit.	Name and locality	No. speci-	Ra	Lit.
Name and locality	mens	mean	Int.	Traine and locality	mens	mean	1110.
Antartic region	2	0.4	(29)	Acid Extrusives			<u> </u>
Th mean =	2	2.6	` ′	Ash	1	1	ļ
South Sea Islands	2	1.76	(26)	Krakatoa near Sumatra Th mean =	1	9.0	(82)
Sumatra(1) Bohemia(1)	2	26.1	(35)	Kenyte			
Loetschberg Tunnel, Switz	7	2.3	(83)	Antartic region	4	2.29	(29)
Various localities	63	2.7	(48)	Th mean =	4	12.0	
	1	1.63	(62)	Lavas			
	11	2.56	(123)	Various localities	18	3.4	(43)
Th mean $=$	86	20.5	(82)	Th mean =	15	24.0	
Monzonite			0.0	Liparite	2	4.7	(13)
Bella Monte, Tyrol, Austria	1	3.5	(13)	Phonolite			
Pegmatite				Kirchberg, Germany	1	0.9	(13)
Mysore State, India	2	4.17	(121)	Pitchstone			
Porphyry				Auckland Island, New Zealand		1.9	(26)
Campbell Is., New Zealand	1	2.8	(26)	Dutch East Indies	_	0.6	(13)
Various localities	10	2.8	(13)	Isle of Eigg, Scotland	1	1.53	(123)
Quartz				Meissen, Germany	1	3.0	(13)
Germany	3	16.0	(13)	Rhyolite			
Sumatra	1	1.3	(13)	Yellowstone Park, U. S. A	6	2.21	(104)
Syenite	40		/19\	Trachite			(00)
Borneo and Molucca Island	13	1.58	(13)	Mt. Erebus, Antartic region	3	2.16	(29)
Mount Royal, Canada	1	1.1	(25)	Th mean =	3	13.0	
Vosges, France		13.2	(36)	Continental Europe		3.4	(13)
Norway	3	2.46	(123)	New Zealand	3	2.11	(26)
Various localities	8	8.3	(13)	Transandine Tunnel	1	0.58	(27)
(D):	23	3.9	(48)	Th mean =	7	4.4	(40)
Tinguaite	2	3.65	(25)	Various localities	18	3.0	(48)
Mount Royal, Canada	2	3.03	(20)	Transandine Tunnel	1	2.9	(46)
Tinguaite porphyry Germany	2	8.2	(13)	Th mean =	12	0.92 5.87	(27)
Germany	1 2	0.2	()		' 10	0.87	•
Basic Intrusives				Basic Extrusives Anamesite	ı	ı	ı
Diabase	1	1	1	Germany	2	1.8	(13)
Borneo	2	0.85	(13)	Andesite	_		` ′
Diabases and dolerites		1.0	(48)	Borneo and Molucca Is	13	1.58	(13)
New Zealand	1	0.43	(26)	Basalt			` ′
Diabase and gabbro	1 1	0.40	(-1)	Deccans and Antartic	14	2.0	(48)
Germany	5	2.8	(13)	Mt. Erebus, Antartic region		2.13	(29)
Diorite	"	2.0	(,	. Th mean =	1	14.5	` ´
Borneo and Sumatra	4	0.78	(13)	Hebrides (mainly)	11	0.5	(48)
Various localities	8	1.6	(48)	New Zealand	2	1.21	(26)
Dolerite	ľ		` ′	Various localities	1	0.47	(123,
Isle of Canna, Scotland	1	0.57	(123)		i		125)
New Zealand	2	0.66	(26)	1	6	2.2	(46)
Dunite	_		` ′		4	0.35	(126)
Loch Scavaig, Scotland	1	0.31	(123)	Lava			}
Essexite			` ′	Antartic region	7	0.58	(29)
Mount Royal, Canada	1	0.26	(25)	Th mean =	7	4.7	
Gabbro			` ′	Vesuvius (1631–1906)	7	12.6	(43,
New Zealand	2	0.34	(26)		1		46)
Gabbro and Norite	5	1.3	(48)	Th mean =	6	53.4	(82)
Greenstone				Limburgite			_
Garrick Du, St. Ives, Eng	1	0.52	(123)	Germany	1	2.9	(67)
Hypersthenite		0.06	(121)	Melaphyre			
Peridotite	l			Oberstein, Germany	1	1.9	(13)
Isle of Rum, Scotland	1	0.63	(123)	Tepharite	3	8.7	(67)
Porphyry				Trap		110	
New Zealand	1	0.99	(26)	Mysore State, India	43	0.21	(121)

Мет	AMORPHIC	Rocks
TAT E.I.	AMURPHI	LUCKE

	F	la	Т		
Name and locality	No. speci- mens	Mean	No. speci- mens	Mean	Lit.
Amphibolite India			1		
Mysore State	1	0.82		· .	(121)
Gneiss			l	l .	
Freiburg, Ger	1	2.9			(67)
Various localities	14	2.1	14	8.7	(48,
					82)
Gneiss (granitic)					
Tauern Tunnel	11	3.41	7	17.7	(62)
Gneiss (porphyritic)					
Tauern Tunnel	9	4.34	9	41.0	(62)
Quartzite			l		
Various localities	ļ		6	3.4	(45)
Villnos Gulch, Austria	1	54.7	1	5.79	(133)
Schist					
Lustre, Simplon Tunnel			1	10.4	(45)
St. Gothard Tunnel	33	3.4	33	11.6	(47)
Schist (chlorite)					
Mysore St., India	1	0.27	1		(121)
Schist (hornblende)					
Mysore St., India	11	0.19			(131)
From mines, Mysore St.,					
India	17	0.25		1	(121)
Slate	1		İ	'	
England		1.17			(124)
European		-	10	13.5	(45)
Germany		1.3			(13)
Tauern Tunnel	3	2.53	3	24.3	(62)
Slate (mica)					
From well boring, Beach-					
ville, Can	1	1.6			(25)

SEDIMENTARY ROCKS

Name and locality	No. speci- mens	Ra mean	Th mean	Lit.
Clay				
Montreal, Canada	2	1.17		(24)
England	3	0.79		(124)
England(1), Germany(1)	2		10.2	(45)
Coal				` ′
Alabama, U. S. A	11	0.166		(55)
Lens, France	1	0.97	3.3	(74)
Frankenholz	1	0.04	0.3	(74)
Coal ash				` ´
Alabama coals	11	2.15		(55)
Lens, France	1	8.8	30.	(74)
Frankenholz	1	2.0	15.	(74)
Flint				` ′
Terling, Essex, Eng	1	0.49		(124)
Grauwacke	_			` ′
Wipperfurth, Germany	1		24.	(45)
Limestone				` ′
Beachville, Ont., Can	6	1.02		(25)
Montreal, Canada		0.91		(25)
Deccan, India	i	0.25		(124)
England		1.13		(124)
Germany(2), Ireland(1)	1	1.10	2.3	(44)
New Zealand	2	0.37		(26)
Various localities	_	3.01	0.4	(44)

Name and locality	No. speci- mens	Ra mean	Th mean	Lit.
Limestone (oölithic)				
Yellowstone Park, U. S. A	2	2.9		(104)
Marble and limestone			İ	
Various localities	8	1.3		(13)
Sand (Saxicava)			· .	
Montreal, Canada	1	0.16		(24)
Sandstone	2	1.04		(124)
From 850 ft. borehole, Baarlo,				
Limburg, Holland	8	1.66		(13)
Beachville, Canada	1	0.50		(25)
Various localities	8		6.3	(45)

OCEANIC DEPOSITS

Name and locality	No. speci- mens	Ra mean	Lit.
Blue mud			
1240 fa. E. coast N. Amer	1	3.1	(138)
Calcareous mud			
2225 fa. E. of Society Islands	1	22.2	(138)
Globergina ooze			
1990 fa. Middle S. Atlantic	2	6.5	(138)
1825 fa. Pacific W. of South America	1	7.4	(138)
570 fa. W. coast Ireland	2	6.3	(138)
2042 fa. Central Pacific	2	7.6	(138)
Radiolarian ooze			
Central Pacific	4	43.9	(138)
Red clay			
2740 fa. N. Atlantic, coast of Africa	4	17.6	(138)
2350 fa. Central Pacific	3	47.4	(138)
"Salt Lime" (gypsum from evap. sea water)	1	0.016	(130)
Sea Salt	1	0.07	(124)
From evap. water of high seas	15	none	(40)

Soils

Gravel—fine siftings			
Terling, Essex, Eng	2	0.65	(124)
Surface loams			
7 localities in E. and S. parts of U. S	7	1.97 4.5	(69)
Th mean =	5	4.5	(69)
Subsoils of above	7	1.52	(69)

Highest value for surface soils, 2.88; Lowest, 0.93 (69) Highest value for subsoil, 3.8; Lowest 0.93 (69) Loess, Heidelberg, 10.4×10^{-6} g Th per g (45) Mark, Ireland, 1.4×10^{-6} g Th per g (45)

ROCKS FROM TUNNELS

		Ur	nits
Rock and section of tunnel	No. of speci-	10-12	10-4
Twee and section of tunner	mens	g Ra	g Th
		per g	per g
The St. Gothard (47)			
Granites and gneiss		İ	
Finsteraarhorn Massif	20	6.7	21.5
Altered sediments		ł	
Unsernmulde	18	3.8	13.4
Tessinmulde	18	2.7	4.8
Schists, etc.			
St. Gothard Massif	33	3.4	11.6
The Tauern, Austria (62)			
Granitic gneiss	Ra 10, Th 7	3.41	17.7
Porphyritic granitic gneiss	Ra 13, Th 9	4.34	41.0

Rocks from Tunnels.—(Continued)				
		Un	its	
Rock and section of tunnel	No. of speci-	10-12	10-6	
Rock and section of tunnel	mens	g Ra	g Th	
		per g	per g	
Slate	Ra 3, Th 3	2.53	24.3	
The Loetschberg, Bernese Oberland, Switzerland(83)				
Anhydrite	2	3.4		
Aplete	2	2.5		
Granite	7	2.3		
Limestone	16	1.5		
Quartz porphyry	1	2.5		
Quartz sandstone	1	4.3		
Schists				
Feldspathic	3	2.7		
Hornblende	2	3.1		
Lustre	2	3.4		
Mica	2	2.1		
Quartz	12	2.4		
Talc	16	1.5		
(Unclassified)	16	2.5		
The Transandine, Argentine-Chile (27)				
Andesites	Ra 2, Th 1	0.71	4.1	
	100 2, 111 1	0.79	5.6	
Mean Ratio, Th-Ra = 7×10^6				
Feldspathic Tuff	2	1.24	3.0	
Trachytes	7	0.58	4.4	
<u>Tuff</u>	Ra 8, Th 7	0.90	6.94	

SPRING DEPOSITS						
Country, name of spring, location	No. of	specimens	Ra con- tent*	Th con- tent†	Remarks	Lit.
Austria .						
Elizabethstollen, Gastein.		1			Reissacherite	(62)
Rudolphstollen, Gastein		1	447, 300	4988		(62)
Vilnos Gulch		4	75	37.7	A sinter	(133)
England						
Hot Springs, Bath		1	381			(124)
France						
Chomel, Vichy	1	1	250		Ferruginous	(52)
Hôpital, Vichy		1	700		Black	(52)
Carnot, Santenay		1	1500			(52)
Neris	l	1			Black	(52)
Luxeuil		1	660	1100	Manganous	(52)
Germany			ļ			
Badochquelle	1	1	4		Surface scum	(67)
Ems, Hessen-Nassau	1	4	0.63			(133)
Johanngeorgenstadt, Sax-		3	681	89	Mainly hy-	(4)
ony.					dromor-	
	1				phite;	
					Range of Ra	
					content, 10- 1300	
Italy]		
Fiuggi		1	5		Tufa	(84)
Russia		2	13.9			(14)
Borzhom Spring United States		2	13.9	147		(14)
Hatborn No. 1, Saratoga						
Springs, N. Y		1	769			(71)

Country, name of spring, location	No. of specimens	Ra con- tent*	Th con- tent†	Remarks	Lit.
Geyser, Saratoga Springs,	1	17			(71)
N. Y		17			(**)
Springs, N. Y	1	63			(71)
Palace Spring, Hot Springs,	_				` ´
Arkansas	1	1724			(99)
Avenue Spring, Hot					
Springs, Arkansas	1	140			(99)
Horseshoe Spring, Hot					(99)
Springs, Arkansas Various springs, Hot	1	2.3			(22)
Springs, Arkansas	11	175			(99)
Main Springs, Mammoth	**	***			()
Hot Springs, Yellow-					
stone	1	8.8		Travertine	(104)
Hot River, Mammoth Hot					
Springs, Yellowstone	1	8.1	ŀ		(104)
Bench Springs, Upper]
Geyser Basin, Yellow-stone	1	0.95	ŀ		(104)
Fish Cone, West Thumb,	1	0.80			(33.)
Yellowstone	1	0.19		1	(104)
Fire Hole Lake, Lower					'
Geyser Basin, Yellow-					
stone	1	6.7			(104)
Doughty Springs, Delta	2	1654			(199)
Co., Colorado	1 2	1004		i	(100)

^{*} Unit, 10⁻¹³g Ra per g. † U nit, 10⁻⁶g Th per g.

METEORITES

Class and locality	Ra in 10 ⁻¹² g per	Remarks	Lit.
Stony	1		
Dhurmsala, India	0.53		(123)
Coahuila, Coahuila, Mex	7.69	Normal hexahy- drite	(87)
Toluca, Xiquepelco, Mex	0.21	Medium octahe- drite	(87)
Iron			
Augusta Co., Va., U. S. A	0.0022		(125)
, ,	none	2 specimens	(123)
Stone		_	
Various localities	0.75	Mean of 16	(87)
	1	Range 2.17-0.073	
Iron			
Various localities	0.69	Mean of 2	(87)
	none	Mean of 3	(87)

NATURAL GASES

Source and Locality	No. sam- ples	Milli- micro- Curies (10 ⁻⁹ Curies) Ra per liter	Lit.
Canada			
Medicine Hat, Alberta	3	0.064	(97)
Suffield-Brooks Calgary	6	0.064	(97)

RADIOACTIVITY 381

Source and Locality	No. sam- ples	Milli- micro- Curies (10-• Curies) Ra per liter	Lit.
3 British Columbia wells		0.47	(97)
Brant, Anondoga, Ontario	4	0.42	(97)
Tilbury, Ontario		0.016	(97)
England			
Marsh gas, environs of Cambridge	10	0.3	(95)
France			
Alsace		7.1	(17)
Germany			
Nuengamme, Hamburg		0.24	(17)
Hungary			
Well No. 14, Bazna		0.043	(17)
Japan			
Well No. 22, Takiya		0.035	(40) 4
Rumania			•
Well No. 103, Campina			(17)

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Ashman, 12, 26: 119; 08.
 (2) Bamberger, 75, 116: 1473; 07.
 (3) Bamberger, 75, 117: 1055; 08.
 (4) Bamberger and Weissenberger, 75, 122: 2065; 14.
 (5) Barnard (Schlundt), 266, 16: 228; 13.
 (5) de Beaujeu, 34, 183: 944; 11.
 (7) Becker, 95, 131: 209; 23.
 (8) Besson, 54, 147: 848; 08.
 (9) Boltwood, 12, 20: 128; 05.
- Borne, 200, 2: 77, 142; 05.
 Boyle and McIntosh, 69, 7: 163; 13.
 Brochet, 54, 150: 145, 291; 10.
 Büchner, 200, 10: 516; 23.
 Burkser, 55, 47: 21; 14.
 Castillo and de Rada, 152, 11: 236; 12.
 Curie and Laborde, 54, 142: 1462; 06.
 Casko, 95, 32: 249; 13.
 Danne and Crémieu, 54, 153: 870; 11.
 Dole, U. S. Geol. Survey, Mineral Resources, 2: 393: 13.
- (2*) Engler and Sieveking, 93, 53: 1; 07.
 (21) Eve, 5, 14: 724; 07.
 (22) Eve, 5, 16: 622; 08.
 (23) Eve, 69, 4: 55; 10.
 (24) Eve and McIntosh, 3, 14: 231; 07.
 (2*) Eve and McIntosh, 69, 4: 69; 10.
 (2*) Farr and Florance, 5, 18: 812; 09.
 (2*) Fletcher, 5, 20: 36; 10.
 (2*) Fletcher, 5, 21: 102; 11.
- (30) Fletcher, S, 23: 279; 12. (31) Fresnius and Csapski, 136, 35: 722; 11. (32) Frohner, 144, 30: 387; 12. (33) Frommel, 93, 83: 1; 07. (34) Gerard and Chauvin, 54, 187: 302; 13. (33) Gockel, "Die Radioaktivität von Boden und Quellen" (1914). (35) Gockel, 200, 7: 487; 10. (37) Heise, 267, 12: 293; 17. (35) Henrich, 65, 5: 112; 07. (39) Henrich, 92, 33: 5, 13, 20; 20.
- (40) Hewlett, 268, 22: 173; 17. (41) Ishisu, "The Mineral Springs of Japan" (1915). 269, 16: 362; 13. (42) Jentzsch, 65, 8: 887; 07. (43) Joly, 5,

18: 577; 09. (44) Joly, 5, 20: 125; 10. (48) Joly, 5, 20: 353; 10. (46) Joly, 5, 22: 134; 11. (47) Joly, 5, 22: 201; 12. (48) Joly, 5, 24: 694; 12. (49) Kinoshita, Nishikawa and Ono, 5, 22: 821; 11.

- (40) Koch, 63, 7: 806; 06.
 (81) Kolhörster, 26, 14: 356; 12.
 (82) Laborde and Lepape, 34, 185: 1202; 12.
 (83) Lepape, 34, 176: 1702; 23.
 (84) Lester, 12, 46: 621; 18.
 (85) Lloyd and Cunningham, 11, 30: 47; 13.
 (46) Loisel, 34, 173: 921; 21.
 175: 890; 22.
 (87) Loisel and Castelnau, 34, 173: 1390; 21.
 (85) Loisel and Michailesco, 34, 175: 1054; 22.
 (89) Ludwig, 63, 38: 180; 24.
- (80) Mache, 76, 113: 1329; 04. (81) Mache, 76, 133: 207; 24. (62) Mache and Bamberger, 76, 133: 325; 14. (83) Mache and St. Meyer, 76, 114: 355; 05. (84) Makower, 136, 106: 135; 12. (68) Masol, 34, 155: 373; 12. (68) Mauchly, 268, 23: 187; 24. (67) Meyer, 190, 1: 184; 16. 270, 20: 1; 14. (68) Mezernitskii, 63, 45: 244; 11. (69) Moore, 46, 6: 370; 14.
- (76) Moore and Kithil, 29, No. 70: 13. (71) Moore and Whittemore, 46, 6: 552; 14. (72) Moureu, 271, 16: 65; 11. (73) Moureu and Lepape, 34, 148: 834; 09. (74) Moureu and Lepape, 54, 158: 598; 14. (75) Nasini, Marino, Ageno and Porlessa, 36, 48: 321; 13. (75) Nasini and Porlessa, 24, 76: 725; 17. (77) Nasini, Porlessa and Sborgi, 24, 78: 1572; 14. (76) Olujic, 200, 15: 158; 18. (75) Perkins, 166, 42: 806; 15.
- (80) Perret and Jacquerod, 149, 45: 277, 336, 418; 18. (81) Pinto, C. R. Cong. Int. Radiol. and Elect., 1: 79; 11. (82) Poole, 3, 29: 483; 15. (83) Poole, 5, 40: 466; 20. (84) Porlessa and Norsi, 28, 20: 935; 11. (85) Pouget and Chouchak, 34, 177: 1112, 1319; 23. (86) Poulsson, 157, No. 8; 14. (87) Quirke and Finkelstein, 12, 44: 237; 17. (88) Ramsay, 136, 105: 134; 12. (89) Ramsay, 12, 40: 309; 15.
- (**) Ramsay, 5, 30: 815; 25. (**) Sahlbom, 19, 6: 1; 16. (**2) Salvadori, 216, 13: 151; 23. (**) Satterly, 5, 20: 1; 10. (**4) Satterly, 201, 15: 540; 10. (**) Satterly, 201, 16: 356; 11. (**) Satterly and Elworthy, Dept. of Mines, Canada, Bull. 16 (1917). (**) Satterly and McLennan, 69, 12: 153; 18. (**s) Schiffner, Weidig and Friedrich, "Radioactisen Wässer in Sachsen" (1912). (**s) Schlundt, 78, 12: 247; 07. 155, 38: 199: 07.
- (100) Schlundt, 78, 26: 163; 14. (101) Schlundt, 278, 16: 1245; 09. (102) Schlundt, 50, 18: 662; 14. (102) Schlundt and Moore, 50, 9: 320; 05. (104) Schlundt and Moore, 156, No. 395; 09. (105) Schmidt and Kurs, 63, 7: 209; 06. (105) Schoep, 54, 173: 1186; 21. (107) Schoep, 54, 173: 1146; 21. (107) Schoep, 54, 174: 623; 22. (100) Schoep, 54, 174: 875; 22.
- (110) Schoep, 54, 174: 1066; 22. (111) Schoep, 54, 174: 1240; 22. (112) Schoep, 54, 176: 171; 23. (112) Schoep, 54, 179: 413; 24. (114) Schoep, 54, 179: 603; 24. (118) Schoell, U. of Ill. Bul., Water Survey Series, 14: 114; 17. (118) Schweidler, 75, 129: 919; 20. (117) Schwietser, 149, 27: 256; 09. 30: 46; 10. (118) Shrader, £, 3: 339; 14. (119) Sjögren and Sahlbom, 19, 3: 1; 08.
- (120) Skinner and Sale, 45, 14: 949; 22. (121) Smeeth and Watson, 5, 85: 206; 18. (122) Steichen, 5, 21: 401; 16. (123) Strutt, 5, 77A: 472; 06. (124) Strutt, 5, 78A: 150; 06. (128) Strutt, 5, 80A: 572; 08. (128) Strutt, 5, 84A: 377; 10. (127) de Sury, 149, 24: 101; 07. (128) Ssilard, 54, 184: 982; 12. (128) Versadsky, 34, 176: 993; 23.
- (130) Wade, 1, 29: 941; 07. (131) Watson and Pal, 5, 23: 44; 14. (132) Wellik, 75, 117: 1191; 08. (133) Weissenberger, 189, 1914: 481. (134) Wesselssky, 144, 50: 345; 12. (133) Wright and Heise, 267, 12: 145; 17. (136) Wright and Smith, 2, 5: 459; 15. (137) Zlatarovic, 75, 129: 59; 20. (136) Joly, 3, 16: 190; 18. (139) Behounek, 51, 6: 48; 25.

AGES OF MINERALS AND ROCKS BASED ON RADIOACTIVE CHANGES

ROGER C. WELLS

There are a number of ways of estimating the ages of minerals by combining chemical and radioactive data, all based on the assumption that the law of each radioactive change is expressed by its constant, λ , over the periods and for the quantities of each element involved. The two principal methods employ the ratios of helium to uranium and thorium and of lead to uranium and thorium. The helium ratio is admitted to give minimum values on account of the loss of helium with lapse of time; and the lead ratio involves the assumption, or actual proof by means of an atomic weight determination, that the lead is wholly of radioactive origin. Associated rocks are generally assumed to be as old or older than the minerals found in them. Attempts have also been made to calculate the ages of rocks from determinations on bulk samples (Russell).

For the two methods mentioned the fundamental changes and data are:

 $U(238.17) \rightarrow Pb_U(206.06) + 8He(4.00)$ $Th(232.15) \rightarrow Pb_{Th}(208.00) + 6He(4.00)$

One gram of uranium in equilibrium with its products gives 9.4×10^4 alpha particles per sec (15) or 1.96×10^{-11} gram He and 1.26×10^{-10} gram Pby per year.

One gram of thorium in equilibrium with its products gives 2.7×10^4 alpha particles per sec, or 5.5×10^{-13} gram He and 4.8×10^{-11} gram Pb_{Th} per year.

The ages of minerals may be calculated from the analytical data and the preceding information by simple proportion in the case of helium (equation 1) and also in the case of lead with sufficient accuracy for most purposes (equation 2), but if the percentage of lead is relatively large the theoretical relation is given by equation 3, where U, Th, Pb = percentage U, Th, Pb in the mineral.

(1) Age = $\frac{\text{cm}^3 \text{ He/g}}{\text{U} + 0.28 \text{Th}} \times 910 \text{ million years}$

(2) Age =
$$\frac{\text{Pb}}{\text{U} + 0.38\text{Th}} \times 7900 \text{ million years}$$

Mineral

Cuprouranite, Cornwall.....

Orangite, Brevig, Norway.....

Zircon, Ural Mts.....

Thorianite, Ceylon.....

Zircon, Kimberly.....

Phosphatic nodules, Loch Broom.....

Gadolinite, Ytterby.....

Aeschynite, Ural Mts

Cyrtolite, Llano Co., Texas.....

Uraninite, S. Dak.....

Zircon, Ceylon.....

Zircon (?), Renfrew Co., Ontario.....

Aeschynite, Hitteroe, Norway.....

(3) Age =
$$\frac{\log (U + 0.38Th + 1.156Pb) - \log (U + 0.38Th)}{6.5 \times 10^{-6}}$$

million years

Thorium minerals with Th/U greater than 3 are secondary

and younger than uranium minerals from the same geologic horizon(19). Low lead ratios have little significance on account of the ease with which certain minerals abstract lead from circulating natural waters. The atomic weight of the lead should be determined whenever possible in order to make certain that the lead is of radioactive origin. In general, only primary minerals are suitable for age determinations.

Age

Lit.

(23)

(23)

(23)

(23)

(23)(23)

(23)

(23)

(23)

(4)

(23)(23)

(23)

1.8

7.9(22)

270(500)

9.0

59(540)

160

310

480

210

240

290

660

1200

Ages of Minerals from Helium Ratios by Equation (1)
(The values in parenthesis are calculated from the lead ratios for comparison)

Geologic horizon

He

cm³/g Percent Percent | million years 1.7×10^{-6} (23) Phosphatic shark's teeth, Florida..... Pliocene 0.021 0 0.07 (23)Phosphatic shark's teeth, Felixtowe, Eng..... 1.6×10^{-6} Pliocene 0.013n 0.11 Phosphatic nodules, Felixtowe, Eng..... 1.0×10^{-6} 0.0041 0 0.22 (23) Pliocene Carnotite, Montrose Co., Colo..... (23)Post Tertiary 0.01 2.53 0 3.6 Tertiary Zircon, Campbell I., New Zealand..... 8.1×10^{-6} 0.0290.07 1.5 (23)(23) Pitchblende, Joachimsthal..... 0.107 62.4 1.6 (23) Oligocene Sphaerosiderite, Germany..... 1.65×10^{-6} 0.000150.00017 7.6 Zircon, Mayen, Eifel..... Tertiary 1.14×10^{-4} 0.0108 0.00073 (23)9.4 Hematite, Co. Antrim, Ireland Eocene 1.21×10^{-6} 0.00022 0.00073 26 (23) 2.12×10^{-4} (23)Zircon, Auvergne..... Tertiary 0.031 0 6.2Phosphatic nodules, Cambridge, Eng..... Upper Cretaceous 3.0×10^{-8} 0.0091 0 (23)3.0 Phosphatic nodules, Bedfordshire..... Lower Cretaceous 2.1×10^{-6} 0.00490 3.9 (23)(23) Zircon, Cheyenne Canon, Colo..... Paleozoic 0.01930.10 0.109128 1.6×10^{-4} (23)Hematite, Cumberland, Eng..... Above Carboniferous 130 0.0011 n Limonite, Forest of Dean..... Carboniferous 1.5×10^{-4} 0.00087 0.00043 140 (23)Sipilite, Little Frier Mt., Va..... (23)Carboniferous (?) 0.59 2.42 4.33 147 (23)Euxenite, Arendal, Norway..... Pre-Cambrian 0.73 2.41 2.39 210(1240) (23) Samarskite, Mitchell Co., N. C..... Carboniferous (?) 1.5 8.73 1.28 160 Silurian (23)Phosphatic nodules, Bala, England..... 1.5×10^{-4} 0.00280 49 Phosphatic limestone, Chirbury, Shropshire, (23)Eng..... Silurian 5.6×10^{-6} 0.0067 0 76 . 8.88 Uraninite, Katanga..... Pre-Silurian 77.76 104(665) Zircon, Brevig, Norway..... Post-Devonian 0.00990.113 0.28846 (23) 9.8×10^{-8} (23)Hematite, Caen..... Devonian 0.00037 0.0013 120 (23)0.02550.264126 Zircon, Green River, N. C..... Paleozoic 0.11 Zircon, Ural Mts..... 0.030 0.0538 160 (23)Paleozoic 0.408Uraninite, Colo..... 72.62 18(58) (11)Tertiary 0.15(11)Uraninite, N. C..... Post-Cambrian 2.96 77.0 2.44 34(380) Thorianite, Sab. Province, Ceylon..... Pegmatite in Charnokite 63.54 50(460) (5) 1.5 9.87 Series (23)Thorianite, Galle Province, Ceylon..... Pegmatite in Pre-Cam-20.6 57.55 230(400) 9.3brian Pre-Cambrian (?) 66.2 5.27 120(890) (11)Uraninite, Annerod..... 9.4 (11)Uraninite, Portland, Conn..... Devonian (?) 19.2 72.0 8.79 230(290) Uraninite, Branchville, Conn..... Silurian (?) 21.0 74.3 5.72 250(400) (11)(23)Microlite, Amelia Court House, Va..... Carboniferous (?) 0.05 1.60 280

Devonian

Paleozoic

Paleozoic

Ancient

Archaean

Middle Devonian

Balangoda series

Pre-Cambrian (?)

Pre-Cambrian (?)

Pre-Cambrian (?)

Pre-Cambrian

0

42.6

67.7

0.409

0.012

7.56

7.19

4.44

1.89

0.010

0.0008

1.11

50.9

11.0

0.85

0.053

0.091

0.084

2.50

2.12

3.11

66.90

0.086

7.98

0.0155

0.10

0.11

8.9

0.030

0.032

2.43

0.98

1.15

4.35

1.09

0.0283

0.0114

 8.3×10^{-6}

AGES OF MINERALS FROM LEAD RATIOS BY EQUATION (3)

AGES OF MINERALS FROM LEAD RATIOS BY EQUATION (5)							
		Pb	U	Th		Age	
Mineral	Geologic horizon	Percent	Percent	Percent	Th/U	million	Lit.
		1 Crecino	1 Croche	1 Crocino		years	
Carnotite, Montrose Co., Colo	Tertiary	0.17	45.6			29	(12)
Johannite, Colo	Tertiary	0.76	47.2	1		123	(18)
Brannerite, Idaho	Tertiary	0.18	46.97	4.1	0.11	29	(9)
Uraninite, Gilpin Co., Colo	Tertiary	0.65	72.60			69	(11)
Thorite, Ceylon	Young mineral in pegma-	2.86	72.00	8.79	0.12	280	(11)
,,,,,,,,,,	tite in Pre-Cambrian						` ′
Hatchettolite, Hybla, Ont	Pre-Cambrian (?)	0.50	13.72	0.46	0.03	270	(24)
Polycrase, Brazil	Pre-Devonian	0.59	5.49	4.59	0.84	600	(8)
Allanite, Blueberry Mtn., Mass	Young mineral in pegma-	0.036	0.11	2.01	18.3	310	(17)
Table 100 Date 100 Da	tite	0.000			1 -0.0	""	` ′
Freyalite, Brevig, Norway	Post-Devonian (Lawson)	0.0028	0.0526	6.330	120.3	8.8	(19)
Tritomite, Brevig, Norway	Post-Devonian (Lawson)	0.0026	0.0631	5.150	81.6	9.9	(19)
Thorite, Brevig, Norway	Post-Devonian (Lawson)	0.0196	0.4072	29.20	71.7	13.3	(19)
Thorite, Brevig, Norway	Post-Devonian (Lawson)	0.0810	0.7200	49.43	68.6	32.0	(19)
Thorite, Brevig, Norway	Post-Devonian (Lawson)	0.0760	0.7000	47.25	67.5	31.4	(19)
Orangite, Brevig, Norway	Post-Devonian (Lawson)	0.0570	1.2437	49.44	39.7	22.1	(19)
Orangite, Brevig, Norway	Post-Devonian (Lawson)	0.0542	1.1825	45.03	38.1	22.8	(19)
Homolite, Brevig, Norway	Post-Devonian (Lawson)	0.0121	0.2442	2.900	11.9	69.1	(19)
Mosandrite, Brevig, Norway	Post-Devonian (Lawson)	0.0024	0.0432	0.287	6.64	112	(19)
Eudidymite, Brevig, Norway	Middle Devonian	0.0007	0.0090	0.036	7.00	230	(19)
Eucolite, Brevig, Norway	Middle Devonian	0.0012	0.0170	0.040	2.35	280	(19)
Thorite, Brevig, Norway	Middle Devonian	0.4279	10.1040	14.20	1.41	210	(19)
Zircon, Brevig, Norway	Middle Devonian	0.0055	0.1460	0.114	0.78	220	(19)
Zircon, Brevig, Norway	Middle Devonian	0.0085	0.1941	0.082	0.42	280	(19)
Pyrochlore, Brevig, Norway	Middle Devonian	0.0093	0.1855	0.075	0.40	330	(19)
Aegerine, Brevig, Norway	Middle Devonian	0.0015	0.0253	0.007	0.28	400	(19)
Zircon, Brevig, Norway	Middle Devonian	0.0370	0.9310	0.141	0.15	280	(19)
Biotite, Brevig, Norway	Middle Devonian	0.0069	0.1602	0.017	0.11	310	(19)
Uraninite, Spruce Pine, N. C	Post-Cambrian (?)	3.90	77.01	2.44	0.03	380	(11)
Thorianite, Galle Province, Ceylon	Pegmatite in Pre-Cambrian	2.41	24.13	55.95	2.32	400	(19)
Betafite, Madagascar	Pegmatite, uncertain	0.35	22.58	0.98	0.04	120	(16)
Thorianite, Sa. Province, Ceylon	Pegmatite in Pre-Cambrian	2.09	9.87	63.54	6.45	460	(5, 19)
Uraninite, Branchville, Conn	Silurian (?)	4.03	73.00	6.09	0.81	400	(11)
Uraninite, Katanga	Pre-Silurian	6.51	77.76	0		620	(4)
Polycrase, Slättåkra, Sweden		0.85	8.45	3.08	0.36	650	(2)
Uraninite, Ånneröd, Norway	Pre-Cambrian (Moss dis- trict)	8.39	66.21	5.28	0.08	890	(11)
Uraninite, Elvestad	Pre-Cambrian (Moss dis- trict)	9.35	65.82	7.46	0.11	970	(11)
Ånnerödite	Pre-Cambrian (Moss district)	2.22	15.25	2.08	0.14	990	(2)
Mackintoshite, Llano Co., Tex	Pre-Cambrian (?)	3.47	19.75	39.83	2.02	730	(1)
Yttrocrasite, Llano Co., Tex	Pre-Cambrian (?)	0.45	2.28	7.69	3.38	640	(1)
Uraninite, Llano Co., Tex	Pre-Cambrian	9.43	56.45	6.65	1.18	1130	(1)
Uraninite, Llano Co., Tex	Pre-Cambrian	9.35	55.18	5.88	1.07	1150	(1)
Yttrialite, Llano Co., Tex	Pre-Cambrian	0.74	1.45	9.53	6.5	1040	(1)
Yttrialite, Llano Co., Tex	Pre-Cambrian	0.79	0.69	10.55	15.3	1190	(1)
Fergusonite, Ytterby, Sweden	Middle Pre-Cambrian	0.18	1.06			1200	(1)
Gadolinite, Ytterby, Sweden	Middle Pre-Cambrian	0.36	2.41			1100	(1)
Zircon, Ceylon	Pre-Cambrian	0.092	0.56	0.01	. 0.02	1150	(14)
Uraninite, Villeneuve, Quebec	Middle Pre-Cambrian	10.46	64.74	6.41	1.00	1110	(11)
Uraninite, Parry Sound, Ontario	Middle Pre-Cambrian	10.83	69.19	2.83	0.04	1090	(6)
Uraninite, Arendal, Norway	Pre-Cambrian (Arendal	10.16	61.27	3.65	0.06	1150	(ìí)
Uraninite, Black Hills, S. Dak	district) Pre-Cambrian	15.24	66.90	1.89	0.03	1540	(4)

LITERATURE

(For a key to the periodicals see end of volume)

- Barrell, 336, 28: 745; 17.
 Blomstrand, in Dana's Mineralogy, p. 741.
 Boltwood, 12, 28: 77; 07.
 C. W. Davis, U. S. Bureau of Mines, 0.
 Dunstan and Blake, δ, 76A: 253; 05.
 Ellsworth, 12, 9: 127; 25.
 Geiger and Rutherford, 3, 20: 691; 10.
 Hess and Henderson, 143, 200: 235; 25.
 Hess and Wells, 143, 189: 225; 20.
 Hidden and Mackintosh, 12, 38: 481; 89.
- (11) Hillebrand, 12, 43: 390; 91. 156, No. 78; 91. (12) Hillebrand and Ransome, 12, 10: 120; 00. (12) Holmes, 5, 85A: 248; 11. (14) Holmes
- and Lawson, 3, 28: 823; 14. (18) Kovarik and McKeehan, 337, No. 81; 25. (18) Lacroix, Mineralogie, V: 93. (17) Lane, Trans. Lake Superior Mining Inst., Aug., 1925. (18) Larsen and Brown, 328, 2: 75; 17. (19) Lawson, 75, 128: 721; 17. (20) Russell, Introduction to the Chemistry of Radioactive Substances, Murray, London, 1922.
- (21) Rutherford, Radioactive Substances and Their Radiations, Putnam's Sons, New York, 1913.
 (22) Soddy and Hyman, 4, 105: 1402; 14.
 (23) Strutt, 5A, 76: 88: 05.
 80: 572; 08.
 81: 272; 08.
 82; 166: 09.
 83: 96, 298; 09.
 84: 377; 10.
 (24) Walker, Univ. Toronto Studies, No. 16; 23.
 (28) Wells, Bibliography on the relation of radioactivity to geological problems.
 National Research Council, 1924.

SELECTED PHYSICAL PROPERTIES OF STARS AND NEBULAE

ALFRED H. JOY

CONTENTS.—(A) Classification of stellar and nebular spectra; (B) Stellar temperatures, masses, and densities; (C) Stellar diameters. (Data pertaining to the solar spectra will be found with other spectroscopic data; consult index.)

A. CLASSIFICATION OF STELLAR AND NEBULAR SPECTRA

The system¹ is that developed at Harvard College Observatory, as used by Miss Cannon in the Henry Draper Catalogue. Except where the exact nature of the spectral changes is not fully understood, decimal sub-classes, representing progressive steps toward the succeeding class, are used. In denoting objects by their catalogue numbers, the following abbreviations are used: B. D. = Bonn Durchmusterung; C. D. M. = Cordoba Durchmusterung; I. C. = Dreyer's Index Catalogue of nebulae and clusters; N. G. C. = New General Catalogue by Dreyer. The number, or numbers, following the abbreviation is the catalogue designation of the object.

Class P includes practically all the gaseous nebulae. Its unique characteristic is the appearance of lines from an unknown origin (nebulium). In addition there are many lines of H, He, C, He+, C+, and N+. All lines are bright and usually sharp. (The order of the Harvard (2) subdivisions should probably be reversed to indicate decreasing intensity of radiation.)

Class	Typical object	Spectral criteria
Pa	I. C. 418	λ5007 and λ4959 faint, λ3869 not seen
Pb	Orion nebula	λ5007 and λ4959 stronger
\mathbf{Pc}	I. C. 4997	λ4363 conspicuous
Pd	N. G. C. 6826	$\lambda 5007$ and $\lambda 4959$ strong
Pe	N. G. C. 7662	λ4686 present
Pf	N. G. C. 40	λ4686 strong

Wright (11) has divided these spectra into three classes: Class I, having $\lambda 4686$ present, Class II, with $\lambda 4686$ absent but $\lambda 3869$ present, and Class III with both $\lambda 4686$ and $\lambda 3869$ absent.

Class O is distinguished by the presence of the Pickering series of ionized helium, upon a strong continuous spectrum with maximum intensity far in the violet. The elements present are H, He, He+, C+, N+, Mg+, O+, CIII, NIII, SiIII, OIII, SiIV. Broad emission bands occur in the earlier subdivisions. Few absorption lines are found in sub-classes Oa, Ob, Oc, which make up the group known as Wolf-Rayet stars. (The Harvard subclasses Od, Oe, and Oe5 which have absorption lines and in some cases narrow emission lines as well, are included in the subclasses O5 to O9 as suggested by H. H. Plaskett (7), the basis of classification being the absorption lines.)

¹ Adopted by International Astronomical Union. It defines a temperature scale which is linear within the present errors of measurement.

Class	Typical object	Spectral criteria
Oa	B. D. +35° 4013	Band $\lambda 4648$ stronger than $\lambda 4686$
Ob	B. D. +35° 4001	λ4686 stronger than λ4648
Ос	C. D. M41° 10972	Bands narrower. λ4686 twice λ4638
O5	B. D. +4° 1302	Pickering series very strong. H lines weak, λ4634 and λ4640 (NIII) present
O6	B. D. +44° 3639	Neutral helium appears
07	9 Sagittae	λ4471 (He), 1.4 × λ4541. λ4089 (SiIV), 0.8 × λ4097 (NIII)
08	λOrionis	λ4481 (Mg+) appears
O9	10 Lacertae	H stronger, He weak. λ4471,
	·	2.7 × λ4541. λ4089, 1.4 × λ4097

Class B is characterized by the presence of helium, which has its maximum intensity in B2. The principal elements are those of class O, with the addition, in the later sub-classes, of lines of the ionized atom of several of the metals, such as Sr. Ba, and Fe. The H and K lines of calcium are found in increasing strength in this class. The hydrogen lines increase through the sub-classes, reaching a strong maximum at Ao of the following class.

Class	Typical object	Spectral criteria
В0	ζ Orionis	Pickering series weak, λ4649 (OII), λ4116 (SiIV), and λ4089 (SiIV) maximum intensity
B1	β Canis Majoris	He more prominent than O and Si.
B2	γ Orionis	λ4116 not seen. λ4089 and λ4649 faint
B3	η Aurigae	Strongest lines are helium
B5	q Tauri	$\lambda4128$ and $\lambda4131$ (SiII) stronger than $\lambda4121$ (He). $\lambda4481$, $0.7 \times \lambda4471$
B8	β Orionis	λ4481 equal to λ4471
В9	λ Aquilae	H strong. He weak. Several prominent enhanced metallic lines

Classes A, F, G, K and M, which contain the largest numbers of the stars, show a gradual increase in the number and intensity of the lines of neutral metallic elements of the lower atomic weights, and a decrease in the intensity of lines due to ionized elements. Compounds produce bands in the later classes. The sun's spectrum is Go, and is intermediate between that of the white and the red stars.

Class	Typical object						
Ao	α Lyrae	H maximum strength. Very few other lines except λ4481 (Mg+) K (Ca+) stronger than Hδ. λ4290 well marked. λ4481 weaker K 3.0 × Hδ and equal to H + Hε					
		lines except λ4481 (Mg+)					
A5	ρ Sagittarii	K (Ca+) stronger than H _{δ} . λ 4290					
		well marked. λ4481 weaker					
Fo	σ Bootis	K 3.0 \times H δ and equal to H + H ϵ					

Class	Typical object	Spectral criteria
F5	α Canis Minoris	Fraunhofer band G first seen. Numerous solar lines
Go	α Aurigae	Solar type. H not conspicuous. G band well defined, $H\delta = \lambda 4226$.
G5	η Piscium	H_{γ} fainter than $\lambda 4325$
Ko	α Bootis	G band conspicuous, λ4226 strong. Hydrogen weaker
K5	α Tauri	λ4226 very wide. λ4254 and λ4274 (Cr) strong. Titanium bands very faint
Mo	β Andromedae	Titanium bands well marked
M5	α Herculis	Titanium bands very stong. Metallic lines fewer

Class R and N stars show the carbon bands in increasing strength. The more advanced stars of class N have very little light in the violet or blue portions of the spectrum. They are the reddest stars known. Typical stars: Class R, B. D. -10° 5057; Class N, 19 Piscium.

Class S spectra resemble those of class K5 except for the presence of bands of zirconium, and other peculiarities in the region near $\lambda 4650$. The line $\lambda 4554$ of Ba + is conspicuous.

Class Q stars are the novae. Near maximum of outburst their spectra are characterized by numerous wide emission bands of hydrogen and helium, and by absorption lines of ionized elements, especially titanium and iron. As the star decreases in light, both absorption and emission lines of N and O become more prominent. In the later stages, bright nebular bands appear; these are ultimately superseded by the bright bands of the Wolf-Rayet spectrum.

B. STELLAR TEMPERATURES, MASSES, AND DENSITIES

Giant stars are characterized by large mass, low density, and great total luminosity. Dwarf stars have smaller mass, higher density, and less total luminosity. Both are found in all classes, but the greatest contrasts between the two are found in the cooler stars of classes K and M. The continuous spectrum of dwarfs has its maximum shifted towards the violet, as compared with that of giants of the same spectral class, indicating that their absolute temperature is about 15% higher than that of the giants. Even with small dispersion, pronounced differences between giants and dwarfs may be noticed in the distribution of intensity in their line spectra. These differences probably arise from differences in the density gradients; they show a correlation with the absolute magnitude and mass of the stars. The low densities of giants favor the enhancement of those lines (absorption) which are produced under conditions of high excitation, such as the spark lines of the metals; the high density of dwarfs favor those produced by low excitation, such as the resonance lines of neutral atoms. The lines $\lambda4077$, $\lambda4215$ (ionized Sr) are much strengthened in giants, and weakened in dwarfs; the reverse is true of $\lambda 4226$ (Ca), $\lambda 4454$ (Ca), $\lambda 4607$ (Sr).

STELLAR TEMPERATURES, MASSES AND DENSITIES

Units: Temperature, 1000°C abs.; Mass, Mass of Sun; Density, g/cm².

٥/ ١										
		Eff	ective (g	tem ants	•	ure	Me mass		Mean den	sity
	Class			-20			Giants	Dwarfs	Giants	Dwarfs
		¥	P	<u>ي</u>	<u></u>	Į.	5	Á	5	A
	Oa		23		23					
	O5					30	50	(6)		1
	Bo		20	13	18	19	10			
	B3					16	.9		0.	22
	B8	16					7	.3	0.	24
	Ao	14	11	8	12	10	7.0	6.0	0.16	0.36
	A5		9				5.6	4.0	0.071	0.40
	Fo		7.5		9	7.5	4.3	2.5	0.025	0.40
	F 5	6	7.2	6			3.2	1.5	0.0078	0.39
	Go	5.8	6.5	6	7	6	2.6	1.0	0.0025	0.68
	G5		4.5				2.8	0.76	0.00087	1.2
	Ko		3.7	4		4.5	3.0	0.68	0.00018	1.3
	K5	3	3.5	3.5		3.9	2.6	0.62	0.000 026	1.4
	Mo		3	3	5	3	2.0	0.59	0.000 0096	5.4
	M5	2.5	2.95		4					
	N		2.3							

^{*} Temperatures of dwarfs are 10 % to 20 % higher than giants of same class (indirect methods).

¶ Fowler and Milne (4). Calculated from maximum intensity of certain spectral lines under pressure of 1.31 × 10⁻⁴ atmospheres, assuming 10 000° corresponds to maximum of Balmer lines of H. These temperatures, and those of Saha, are for the reversing layer; true effective temperature is somewhat higher.

STELLAR DIAMETERS

Unit: Linear Diameter, 106 km.

Q4	Class	Parallax	Diameter			
Star	Class Faranax		Angular*	Linear		
α Tauri	K5	0.055"	0.022"	60		
α Orionis	M2	0.019	0.044	347		
α Bootis	Ko	0.088	0.022	37		
α Scorpii	M1	0.017	0.040	353		

Measured by means of interferometer (5).

LITERATURE

(For a key to the periodicals see end of volume)

Abbot, 21, 60: 105; 24.
 Cannon, Harrard College Obs. Annals, 76: 19; 16.
 Coblents, 31A, 17: 725; 22.
 Fowler and Milne, Monthly Notices, R. A. S., 83: 403; 23.
 Michelson and Pease, 21, 83: 249; 21. Pease, Publ. Ast. Soc. Pacific, 33: 171, 204; 21.
 Plaskett, Publ. Domin. Astrop. Obs., 2: 298; 24.
 H. H. Plaskett, Ibid., 1: 366; 22.
 Saha, 6, 99: 151; 21.
 Seares, 21, 85: 202; 22.

(10) Wilsing, Scheiner and Münch, Publ. Astrop. Obs. Potedam, 24: 21; 19. (11) Wright, Publ. Lick Obs., 13: 262; 18.

DISTRIBUTION OF STARS

FREDERICK H. SEARES

Restriction.—No account is here taken of globular starclusters nor of stars included in spiral nebulae, many of which contain objects whose essentially stellar character can no longer be doubted.

Apparent Distribution and Number.—Statistically considered, the stars are distributed over the face of the sky with a high degree of regularity, their numbers gradually increasing as the Milky Way is approached from either side. The Milky Way defines what is very nearly a plane of symmetry, and for a first approximation, systematic difference between the two hemispheres, progressive changes in galactic longitude, and all local irregularities can be ignored. The resulting mean distribution, as found by Seares and van Rhijn, is shown in Table 1.

[†] Abbot (1). By radiometer.

¹ Potsdam observations. Wilsing et al. (10).

Coblents (3). By thermocouple.

^{||} Saha (*). Calculated from initial appearance of certain spectral lines under pressure of 0.1 atmosphere. (See note ¶.)
| Towler and Milne (*). Calculated from maximum intensity of certain

To apparent magnitude (see p. 39) m = 13.5 the results depend on data covering a large portion of the sky. From m = 13.5 to 18.5 they are derived from counts of stars on photographs of the 139 Selected Areas of Kapteyn between the North Pole and declination -15° . For still higher values of m, the values of m are extrapolated, but the uncertainty consequent to the extrapolation itself is probably small. Excepting in low galactic latitudes, there is little or no systematic uncertainty arising from the particular choice of fields used for the counts. To m = 16 the magnitude scale is the mean of several closely accordant determinations made at different observatories, and is probably accurate within a few hundredths of a magnitude. Below this limit the scale depends wholly upon observations made at the Mount Wilson Observatory. Although this part of the scale has not been confirmed by independent measures made elsewhere, it

has been established by methods successfully used for the brighter stars.

The indicated total, to the twenty-first photographic magnitude, of all stars in the sky is 890 000 000, and to the twentieth visual magnitude, 1 000 000 000. Barring losses of light by absorption, scattering etc., the increase in $\log N_m$ for a uniform distribution of stars throughout space would be 0.6 per unit of magnitude. The observed increase nowhere attains this value; the stars thin out with increasing distance from the sun, and at great distances they thin out more rapidly than near the sun; these changes are most pronounced in the direction of the poles of the Milky Way. If the law of decreasing space density indicated by the stars accessible to observation holds for those beyond present telescopic reach, the total number of luminous stars in the galactic system must be of the order of 3×10^{10} .

Table 1.—Logarithms of Numbers (N_m) of Stars, of Magnitudes Less than m, per Square Degree in Different Galactic Latitudes (1)

Units: Last column; m = visual magnitude; average $N_m = 1$, if m = 8. Other columns; m = international photographic magnitude (2); $N_m = 1$, if m = 8, Lat. = 0. Galactic pole: R. A. $12^k41^m20^s$, Dec. $+27^\circ 21'$ (1875) (Gould).

	Log ₁₀ N_m at latitude Log ₁₀ (average N_m) between latitude											titudee							
•			 -			Logi	0 27 m 2	to ratio	uuc				-		0°-	20°-	40°-	0°-	0°-
m	0°	5°	10°	15°	20°	25°	30°	35°	40°	50°	60°	70°	80°	90°	20°	40°	90°	90°	90° (v)
4.0	2.19	$\overline{2}.17$	$\bar{2}.12$	2.05	3.99	$\overline{3}.93$	3.87	3.82	3.78	$\overline{3}.74$	$\overline{3}.71$	3.69	3.67	3.66	$\overline{2}.12$	3.88	3.73	3.94	2.11
4.5	2.42				$\overline{2}.22$	$\overline{2}.16$			$\bar{2}.01$					3.88	$\overline{2}.35$	2.11	3.96	$\bar{2}.17$	2.35
5.0	2.65	2.63	$\overline{2}.58$	$\overline{2}.51$	$\overline{2}.45$	$\overline{2}.39$	$\overline{2}.33$	$\bar{2}.28$	$\bar{2}.24$	$\bar{2}.20$	$\bar{2}.17$	$\bar{2}.15$	$\bar{2}.13$	$\bar{2}.12$	$\overline{2}.58$	$\bar{2}.34$	$\overline{2}.19$	2.40	2.60
5.5	2.88	$\bar{2}.86$	$\bar{2}.80$	$\overline{2}.74$	2.68	$\bar{2}.62$	$\overline{2}.56$	$\overline{2}.51$	$\bar{2}.47$	$\bar{2}.43$				$\bar{2}.34$	$\overline{2}.80$	2.57	$\bar{2}.41$	2.63	2.83
6.0	1.11	1.08	1.03	$\bar{2}.97$	$\bar{2}.90$	$\bar{2}.84$	$\overline{2}.79$	$\overline{2}.74$	$\bar{2}.70$	$\bar{2}.65$	$\bar{2}.62$	2.60	$\bar{2}.58$	$\bar{2}.57$	1.03	2.80	$\bar{2}.64$	$\bar{2}.85$	1.07
6.5	1.33	1.31	1.26	1.19	1.13	1.07	1.01	$\overline{2}.97$	$\bar{2}.92$	$\bar{2}.88$	$\overline{2}.85$	$\bar{2}.83$	$\bar{2}.80$	$\bar{2}.79$	1.26	1.03	$\overline{2}.86$	1.08	1.31
7.0	1.56	1.53	1.48	1.42	1.35	1.29	$\bar{1}.24$	1.19	1.15				1.02	1.01	1.48	1.25	1.09	1.30	1.54
7.5	1.78	1.76	1.70	1.64	1.57	1.52	1.46	1.41	1.37	1.32	1.29	1.27	1.24	1.23	1.70	1.47	$\overline{1}.31$	1.52	1.77
8.0	0.00	1.98	1.92	1.86	1.79	1.74	1.68	1.64	1.59	1.54	1.51	ī.48	1.46	1.44	$\bar{1}.92$	1.69	1.53	1.74	0.00
8.5	0.23	0.20	0.14	0.08	0.01	1.95	1.90	1.85	ī.81	1.76	1.73	1.69	1.67	1.65	0.14	1.91	$\overline{1}.74$	1.96	0.23
9.0	0.45	0.42	0.36	0.29	0.22	0.17	0.12	0.07	0.03	1.98	1.94	1.90	1.88	1.86	0.36	0.13	1.96	0.18	0.45
9.5	0.67	0.64	0.57	0.50	0.44	0.38	0.33	0.28	0.24	0.19	0.15	0.11	0.08	0.06	0.58	0.34	0.16	0.39	0.68
10.0	0.89	0.85	0.79	0.72	0.65	0.59	0.54	0.50	0.45	0.40	0.35	0.30	0.28	0.26	0.79	0.55	0.37	0.60	0.90
10.5	1.10	1.07	1.00	0.93	0.86	0.80	0.75	0.70	0.66	0.60	0.55	0.50	0.47	0.45	1.00	0.76	0.57	0.81	1.11
11.0	1.32	1.28	1.21	1.14	1.06	1.01	0.96	0.91	0.86	0.80	0.74	0.69	0.65	0.64	1.22	0.96	0.76	1.02	1.32
11.5	1.53	1.49	1.42	1.34	1.27	1.21	1.16	1.11	1.06	0.99	0.92	0.87	0.84	0.82	1.43	1.17	0.95	1.22	1.53
12.0	1.74	1.70	1.63	1.54	1.47	1.41	1.36	1.30	1.25	1.18	1.11	1.05	1.01	1.00	1.63	1.36	1.14	1.42	1.74
12.5	1.96	1.91	1.83	1.75			1.55	1.49			1.28	1.23	1.18	1.17	1.84	1.56	1.32	1.62	1.94
13.0	2.16	2.12	2.04	1.95	1.87	1.80	1.74	1.68	1.62	1.54	1.46	1.39	1.35	1.33	2.04	1.75	1.50	1.82	2.14
13.5	2.37	2.32							1.80				1.51	1.49	2.24	1.93	1.67	2.01	2.34
14.0	2.57	2.52	2.43	2.34	2.24	2.17	2.10	2.03	1.97	1.88	1.78	1.72	1.67	1.65	2.44	2.11	1.83	2.20	2.52
14.5	2.77	2.72	2.63	2.52	2.43	2.34			2.14	2.04	1.94	1.87	1.82	1.80	2.63	2.29	1.99	2.38	2.71
15.0	2.96	2.91	2.82	2.71	2.60	2.51	2.44			2.19	2.09	2.01		1.94	2.82	2.45	2.14	2.56	2.89
15.5	3.15	1 .	l (1		1									3.01	2.62	2.29	2.73	3.07
16.0	3.33	,		3.07		2.84						1 1			3.19	2.77	2.43	2.90	3.24
16.5	3.51					2.99									3.37	2.92	2.56	3.07	3.40
17.0	3.68		. r	3.41	3.26					2.74					3.54	3.07	2.69	3.23	3.56
17.5	3.85	1 1	3.71		3.41										3.70	3.20	2.81	3.39	3.71
18.0	4.01		3.87		1								2.71		3.86	3.34	2.93	3.54	3.86
18.5	4.16			3.88				3.32	3.23						4.02	3.46	3.04	3.68	4.00
19.0	4.32		4.18		3.84										4.17	3.59	3.14	3.82	4.13
19.5	4.46			4.16						3.29						3.70	3.24	3.96	4.26
20 .0	4.60			4.29						3.38						3.81	3.33	4.09	4.38
20 .5	4.74					4.01						3.25		3.15		3.91	3.42	4.21	
21.0	4.87	4.82	4.72	4.54	4.33	4.11	3.94	3.81	3.70	3.54	3.42	3.33	3.26	3.22	4.71	4.01	3.50	4.33	

Distribution of Intrinsic Brightness.—The range in intrinsic brightness among stars is enormous—at least twenty magnitudes, corresponding to an intensity ratio of 100 000 000 to 1. A knowledge of the frequencies of different luminosities among the stars in a given volume of space is essential (unless questionable assumptions are to be introduced) for the calculation of the space distribution of the stars. It is, however, difficult to obtain, and,

at present, the frequencies are but imperfectly known. By assuming that the mean parallaxes of stars of apparent magnitude m and proper motion μ can be represented by a linear function of m and $\log \mu$ supposed to be valid for all magnitudes and proper motions, Kapteyn and van Rhijn derived for the distribution of the absolute magnitudes a Gaussian error curve whose ordinates are given in the second column of Table 2. Seares (4) has shown

that their adopted mean parallax formula does not represent the distances of the stars of large motion and faint apparent magnitude, all of which are of low luminosity. A revision of the parallax formula, still only provisionally determined, and a recalculation of the luminosity function from about 500 stars of large proper motion leads to the frequencies in the third column of Table 2.

TABLE 2.—APPROXIMATE LUMINOSITY FUNCTION

 $\phi(M)$ = number of stars, absolute magnitude M, per cubic parsec in the neighborhood of the sun. Unit of distance for M is 10 parsecs. 1 parsec = 3.26 light years = 30.8×10^{12} km.

	10 + Log	ζ ₁₀ φ(M)	
M	Kapteyn v. Rhijn (3)	Seares (4)	Diff.
-4.64	2.61		
-3.64	3.42		
-2.64	4.17		
-1.64	4.85		
-0.64	5.46	5.58	0.12
+0.36	6.00	6.16	0.16
1.36	6.47	6.66	0.19
2.36	6.88	7.05	0.17
3.36	7.21	7.34	0.13
4.36	7.47	7.58	0.11
5.36	7.67	7.74	0.07
6.36	7.80	7.84	0.04
7.36	7.85	7.87	0.02
8.36	7.84	7.86	0.02
9.36	7.76	7.88	0.12
10.36	7.61	7.92	0.31
11.36	7.39	8.06	0.67
12.36	7.10	8.11	1.01
13.36	6.75	8.11	1.36
14.36	6.3	8.13	1.8

For the stars of low luminosity, the departure of Seares' curve from the error curve, shown by the differences in the fourth column, is important and must be accepted as real, although quantitatively the results are still very uncertain. The possibility of a maximum within the range of absolute magnitude considered is not excluded, but any such maximum must be well below the Kapteyn-van Rhijn limit, M = 7.7. Since the frequencies of stars of very low luminosity are still unknown, it is impossible at present to express the luminosity function as a true frequency

Space Distribution of Stars.—The space distribution is defined by a density function, preferably in a form expressing the total number of stars per unit volume at different distances from the sun. At present, however, we must be content with so expressing the number of stars which are brighter than some limit of absolute magnitude.

Analytically, the problem is to determine the density function, $\Delta(\rho)$, from the integral equation $\frac{\mathrm{d}N_m}{\mathrm{d}m} = \omega \int_0^\infty \phi(M) \Delta(\rho) \rho^2 \mathrm{d}\rho$

$$\frac{\mathrm{d}N_m}{\mathrm{d}m} = \omega \int_0^\infty \phi(M) \Delta(\rho) \rho^2 \mathrm{d}\rho$$

where the left hand member can be found from the data in Table 1; ω is a constant, ρ = distance from sun. Since $\phi(M)$, for M > 8, is still very uncertain, the general solution cannot be found at present. Values of the density for the neighborhood of the sun (Table 3) can, however, be calculated incidentally in deriving the data in Table 2. Results in the second column of Table 3 (M =7.86) are in good agreement with similar results by Kapteyn and van Rhijn; the other tabular values indicate what is to be expected for lower limiting values of M. The uncertainty of the luminosity function for M > 8 scarcely justifies the effort required to complete the table.

Table 3.—Average Number of Stars, Brighter than Absolute MAGNITUDE M, PER CUBIC PARSEC AT DISTANCE ρ FROM SUN (4)

Unit of ρ is 1 parsec; of distance for M, 10 parsecs. 1 parsec = $3.26 \text{ light years} = 30.8 \times 10^{12} \text{ km}.$

Log _{10P} M	7.86	8.86	9.86	10.86	11.86	12.86	13.86	14.86
0.9	0.028	0.035	0.042	0.050	0.060	0.073	0.087	0.098
1.1	.026	. 033	.040	.048	. 058	.069	.078	
1.3	.024	. 030	. 035	.041		i		
1.5	.023	.028	. 033	1		1		1
1.7	.022			İ		1	ł	1
1.9	.020				ł	1		1
2.1	.017					}		Ì
2.3	.014		1			ĺ	!	
2.5	.011							
2.7	.008							
2.9	.004	0.8				}		

(Values based upon $\phi(M)$ for stars near the sun, and on the assumption that the relative frequencies of M are the same at all distances.)

Average densities for the whole sky give a very imperfect picture of the real distribution in space, as the latter varies greatly with galactic latitude. Broadly speaking, the surfaces of equal space density are concentric, and approximately similar, ellipsoids of revolution, similarly situated, with axes in the ratio of about 5 to 1. See Table 4.

TABLE 4.—RADII OF EQUIDENSITY ELLIPSOIDS(6)

 $\Delta(\rho)$ = number of stars per cubic parsec at distance ρ from sun. (Values require revision for recent star counts (Table 1) and for error in luminosity function (cf. Table 2)).

Unit of radius = 1 parsec. 1 parsec = 3.26 light years = 30.8×10^{12} km. Latitude is galactic.

4()	Latitude					
$\Delta(ho)$	90°	0°				
1.00	0	0				
0.63	118	602				
0.40	198	1010				
0.25	296	1510				
0.16	413	2106				
0.100	553	2820				
0.063	717	3656				
0.040	902	4600				

Size of the Galactic System.—At present we have no certain indication as to the distance of the most remote stars belonging to the galactic system; but if ordinary blue stars of absolute magnitude zero occur among the faintest objects listed in Table 1, the diameter of the system cannot be less than a million light years. Such objects are not to be expected in high galactic latitudes, where the stars of very faint apparent magnitude are almost certainly all dwarfs; but their occurrence in the Milky Way is by no means excluded. We have, indeed, strong, though not conclusive, evidence of the existence in the Milky Way of stars of zero absolute magnitude among those of the sixteenth apparent magnitude. The corresponding diameter of the system is a hundred thousand light years. This value may be accepted with some assurance as a lower limit for the size of the system in the plane of the Milky Way, exclusive of such objects as globular star clusters and spiral nebulae, whose relation to the general stellar system about us is not yet clearly defined.

Position of the Sun.—The symmetrical distribution of stars adopted in Table 1 tacitly assumes the sun to be at the center of the system. This is not actually the case, as is shown by systematic deviations from the adopted mean distribution. Shapley's (5) value for the distance of the sun from the galactic plane is about 60 parsecs, to the north, which is certainly of the right order of magnitude. The sun's distance from the center is much less certain, and different estimates range from a few hundred to many thousand parsecs, according to the underlying assumptions and the method of attack. The question is much complicated by the fact that the sun lies within a local cluster whose members form a considerable fraction of the stars of the brighter apparent

magnitudes, and a final answer must await the detailed discussion of the distribution of faint stars in galactic longitude.

LITERATURE

(For a key to the periodicals see end of volume)

Seares and van Rhijn, 197, 11: 358; 25; a more detailed account appears in £1, 62: 320; 25. (2) Trans. Internat. Astronomical Union, 1: 69; 22. (Standard magnitudes of stars.)
 Kapteyn and van Rhijn, £1, \$2: 23; 20. (4)
 Seares, £1, \$9: 310; 24. (5) Shapley, £1, 49: 333, 19. (6) Kapteyn, £1, 55: 302; 22.

DISTRIBUTION OF NEBULAE

FREDERICK H. SEARES

The term nebula is applied to objects of such diversity of form, size, distance, and physical characteristics that any study of their distribution presupposes a consideration of the question of classification. The following general classification by Hubble provides for two mutually exclusive divisions, characterized by position in the sky as well as by physical peculiarities, and five sub-classes representing physical differences.

A GENERAL CLASSIFICATION OF NEBULAE

- I. Galactic nebulae, characterized by (1) tendency to concentrate about the Milky Way, (2) conspicuous association with individual stars from which they probably derive their luminosity, (3) early-type spectra, either emission or absorption, depending upon the spectral type of the associated stars, and (4) smooth and cloudy or wispy texture. They include
 - (a) Planetaries, distinguished by symmetrical distribution of nebulosity about central stars, sharply defined edges, and emission spectra.
 - (b) Diffuse nebulae, clouds in low galactic latitudes, usually associated with early-type stars. This type ranges from luminous to dark and from semi-transparent to opaque. Subdivided into predominantly luminous, predominantly obscure, and conspicuously mixed.
- II. Non-galactic nebulae, characterized by (1) tendency to avoid the Milky Way, (2) no conspicuous association with stars, (3) late-type absorption spectra, and (4) usually a rotational symmetry about dominating non-stellar nuclei. They include
 - (a) Elliptical nebulae, amorphous objects whose forms can be represented as successive stages of an original globular mass flattening under the influence of increasing rotation.
 - (b) Spirals of two kinds, logarithmic and barred, which, once formed, appear to develop along parallel lines, the arms unwinding and the granulation of the material becoming more and more conspicuous.
 - (c) Irregular nebulae, including a few non-galactic objects having no dominating nuclei and, significantly, showing no rotational symmetry.

Physically, the planetaries and diffuse nebulae, Ia and Ib, are distinct and apparently without genetic relationship, except that the planetaries, which, in some cases at least, seem to be late stages in the development of novae, may represent the catastrophic consequences of the penetration of a star within a nebulous cloud of the diffuse sub-class. The spirals IIb, on the other hand, are apparently an evolutionary development from elliptical nebulae, IIa, although it does not follow that all elliptical nebulae will necessarily become spirals. The few irregular nebulae, IIc, present features that might be expected in the case of spirals in the absence of or through the neutralization of dominating dynamical characteristics.

The distribution of the various classes of nebulae is not in general easily shown in tabular form. The following summary for each of the important sub-classes includes, however, references to diagrams which exhibit the main features of the distribution.

Ia. Planetary Nebulae.—In the whole sky only about 150 of these objects are known, many of which are so small as to be recognizable only from their gaseous emission spectra. The smallest objects are closely associated with the Milky Way, and show a marked concentration in the Aquila-Sagittarius region. With increasing size the mean galactic latitude increases, and the largest known objects, to the extent of a dozen or so, are scattered over the sky with some approach to uniformity (3.6.11). This suggests that the linear distances of planetaries from the galactic plane are relatively small and that their angular diameters are correlated with their distances from the sun. Very small nebulae thus appear in low galactic latitudes because their distances from the sun are many times their distances from the galactic plane.

The actual distances of planetary nebulae are still very uncertain. Van Maanen (15) has measured the parallaxes of about 20 of these objects and finds distances ranging from 50 to a few hundred parsecs; but, as he points out, these values are in conflict with the fact that the radial velocities average about 30 km/sec, while the proper motions are apparently small, of the order of the parallaxes themselves.

Ib. Diffuse Nebulae.—The distant star clouds of the Milky Way define the galactic circle. A secondary galaxy, inclined some 12° to the galactic circle proper, is outlined by the bright helium stars of the much-flattened local cluster immediately surrounding the sun, most of whose members are within 500 parsecs (14). The diffuse nebulae outside the Magellanic Clouds, some hundreds in all,1 are closely associated with the primary and secondary galactic circles (7). Since the mean galactic latitude of those following the primary galaxy is only about 2°, and since the space within the two circles is not well filled, the inference is that these nebulae are directly connected either with the Milky Way star clouds or with the local cluster, and that few are to be found in the intervening regions. We thus have a group of diffuse nebulae whose members are within a few hundred parsecs of the sun; the others, forming a widely scattered group associated with the Milky Way, are at distances probably to be counted in thousands of parsecs (10). Both groups include both luminous and dark nebulae; the luminous members of the two groups present somewhat different physical characteristics, most marked in their spectra, which may be either emission, or predominantly continuous or absorption in type. The continuous and absorption spectra occur mostly among the nearer objects connected with the local cluster. The luminous diffuse nebulae are conspicuously associated with stars of high temperature from which they derive their luminosity, either by excitation or reflection.

II. Non-galactic Nebulae.—The members of this class, consisting chiefly of the related sub-classes, elliptical nebulae (IIa) and spirals (IIb), are far more numerous than the galactic nebulae. On the whole, the elliptical nebulae out number the spirals many times; but if only bright objects are considered, the spirals are the more numerous. The distribution in galactic latitude is shown in

¹ Less than 200 luminous ones known; no complete list published (r. ^{7, 8}). Most complete list of dark nebulae (182 small objects) is given by Barnard (¹).

Table 1, which gives to limiting magnitude 18.6 on the international photographic scale the average number per square degree at various latitudes in each hemisphere. The data are compiled from Fath's list (4), based on Mount Wilson photographs (exposure time 1 hour with 60-inch reflector) of the 139 Selected Areas between the North Pole and declination -15° . That part of the northern galactic hemisphere within which nebulae are frequent is wholly covered. About one-half the southern hemisphere is included, but not the south pole itself. Fath's counts have been corrected for losses caused by poor definition in the corners of the negatives (13).

Table 1.—Non-galactic Nebulae: Number per Square Degree(4)

Average number; international photographic magnitude ≤ 18.6 ; cf. Table 2.

0.1.4:1.44.1.	Hemisphere						
Galactic latitude —	N	S					
5°	0.2	0.0					
15	0.8	0.4					
25	2.5	5.4					
35	13.2	8.2					
45	10.3	5.8					
55	12.2	7.0					
65	22.2	11.9					
74	31						
83	(68)						

Fath's list includes all classes of nebulae, but the galactic nebulae are relatively so infrequent that it is practically one of non-galactic nebulae alone. These objects begin to appear at about 20° latitude and increase rapidly in the interval 20° to 35°. From 40° to 70° the numbers increase slowly. The concentration near the north galactic pole is very pronounced. Below latitude 70° the numbers in the southern hemisphere average about three-fourths those of the northern. The assumption of a similar ratio for the regions 70° to 90° leads to integrated totals of 170 000 and 128 000 for the northern and southern hemispheres, a round total of 300 000 for the whole sky (limiting phot. mag. for stars 18.6).

The summary in Table 2 emphasizes the dependence of the distribution on galactic latitude. The uncertainty in the average number per square degree in the region 70°-90° is considerable, and since the number of nebulae in this region is large (29% or 50 000 in the northern hemisphere), the total given for the whole sky is in doubt by many thousand. Curtis (2) has estimated the total (to an undetermined limiting magnitude) to be over 700 000. The difference in the estimates may arise from a difference in magnitude limits or from the fact that the fields counted by Curtis are not certainly representative of the sky as a whole.

TABLE 2.—DISTRIBUTION OF NON-GALACTIC NEBULAE

Lat. = interval in galactic latitude. Sky = % area of sky. Neb. = % number of nebulae. N = northern, S = southern hemisphere.

T - 4	Q1	Ne	b.
Lat.	Sky	N	8
0°-30°	50	7	15
30 -70	44	64	56
70 -90	6	29	29

The distribution of non-galactic nebulae is not, however, simply one of galactic latitude. Data collected by Hardcastle and Hinks (5) and by Reynolds (12) show marked irregularities in longitude, which seem to depend on the angular diameters of the nebulae. Thus objects with diameters > 10' are almost all in the hemisphere including galactic longitudes 50° to 230°. For diameters 5' to 10' the northern galactic hemisphere shows high frequencies in longitude 110° and 260°-270°, which become even more marked for diameters 2' to 5'. For still smaller nebulae, the distribution is again different. Fath's counts, including mostly very small and faint nebulae, show a band of high frequency crossing the northern galactic hemisphere approximately in longitudes 50° and 220°, with other irregularities suggesting a very complicated distribution.

Nothing is known directly of the distances of elliptical nebulae, but their relationship with the spirals is so intimate that the distances of the two sub-classes must be regarded as of the same order. Van Maanen's measures (16) of internal motion in spirals suggest distances of the order of 3000 to 30 000 light years. The application of Shapley's period-luminosity relation by Hubble (9) to numerous typical Cepheid variables discovered by him in the spirals Messier 31 (the Andromeda nebula) and Messier 33 leads to distances of about a million light years for these two objects. The applicability of the period-luminosity relation is assumed, but several lines of corroborative evidence strongly support the larger value of the distance. It is probable, however, that the zero point of the period-luminosity relation requires revision by an amount which would reduce these distances by about 40%.

LITERATURE

(For a key to the periodicals see end of volume)

- Barnard, 21, 49: 1; 19 (also consult index of other volumes). (2) Curtis, Publ. Lick Obs. 13: 15; 18. (3) Curtis, Ibid., 13: 60; 18. (4) Fath, Astronom. Jour. 38: 75; 14. (5) Hardcastle and Hinks, Monthly Notices, R. A. S. 74: 699; 14. (6) Hinks, Ibid., 71: 694; 11. (7) Hubble, 21, 56: 162; 22. (8) Hubble, 21, 56: 400; 22. (9) Hubble, Pop. Astronomy 33: 252; 25. Observatory 48: 139; 25.
- Lundmark, Publ. Astron. Soc. Pacific, 34: 40; 22. (11) Perrine, 21, 46: 177; 17. (12) Reynolds, Monthly Notices, R. A. S. 81: 129; 20. 83: 147; 23. 84: 76; 23. (13) Seares, 21, 62: 168; 25. (14) Shapley, 21, 49: 311; 19. (15) van Maanen, Mt. Wilson Contribs. Nos. 237 (1922), 270 (1923), 280 (1925). (18) van Maanen, 21, 57: 274; 23.

MOTIONS OF THE STARS AND NEBULAE

Gustaf Strömberg

The proper motion of a star is defined as the angular motion, per year, referred to a certain fundamental system of apparently bright stars distributed uniformly over the sky. The radial motion is determined by the Doppler shift for spectral lines of known wave-length. If the distance to a star is known, the three velocity-components of its space-velocity can be determined. Proper motions and radial velocities are in general referred to the sun as origin, by correction for the periodic changes due to the earth's motion. The proper motions are in general very small; for the majority of the stars they are below 0.1" per year. The largest proper motion is that of Barnard's star R. A. 17h

53.0^m, Dec. + 4° 28′, (1900.0), which moves 10.27″ per year. The radial velocities are mostly below 40 km/sec, the largest being that of the variable star V X Herculis, which approaches the sun with a velocity of 390 km/sec. The spiral nebulae have even higher velocities, the highest being 1800 km/sec, recession, (N. G. C. 584).

SOLAR MOTION

The sun's motion relative to the stars can be determined either from proper motions, from radial velocities, or from space-velocities. The point in the sky towards which the sun is moving is called the sun's apex.

TABLE 1.—Solar APEX AND THE SUN'S VELOCITY (Referred to apparently bright stars. Unit: velocity, km/sec)

R. A.	Dec. 1900		R. A. 1900		900 city Method		No. of stars	Lit.
18 ^h	03 ^m	+34.3°		Proper Motions P. G. C.*	5413	(2)		
18	11	+31.6	1	Proper Motions m < 6.0†	4041	(5)		
17	56	+32.3		Proper Motions P. G. C.	5943	(8)		
17	54	+25.3	19.5	Rad. Vel. Lick Obs.	1193	(3)		
18	2	+28.6	19.8	Rad. Vel. B to M	1596	(6)		
18	4	+29.2	21.5	Rad. Vel. F to M	1405	(9)		
18	11	+36.9	18.8	Space Vel. Giants	800	(10)		
18	43	+29.5	31.7	Space Vel. Dwarfs	415	(10)		
18	40	+32	29	Space Vel. of nearby stars	83	(7)		

^{*} Preliminary General Catalogue by L. Boss, Washington, 1910.

Although the agreement between the different determinations is fairly good, a detailed study shows that the sun's motion can not be regarded as a constant vector. The A stars and giant stars in general give a small velocity for the sun; and dwarf stars, a much higher velocity.

AVERAGE PECULIAR MOTIONS OF THE STARS

After the effect of the sun's motion has been removed, the residual or "peculiar" velocities show certain regularities. The average peculiar velocities are different for stars of different spectral types, and vary also with the intrinsic brightness of the stars.

Table 2.—Average Residual Radial Velocities (θ) of Stars of Different Spectral Classes (Sp) and Absolute Magnitudes (M)

TIN	:+	٠f	Δ	_	1	km	1000	
Un	IL	OI	U	=	1	Km	/sec	

Sp	M*	θ	Lit.	Sp	M *	θ	Lit.
O5 to O9	-3	20.7	(11)	K	+1	18.4	(1)
В	-1	6.5	(3)	K	+6	27.0	(1)
A	+1	11.0	(11)	M	+1	21.6	(1)
\mathbf{F}	+2	15.8	(1)	M	+9	29.6	(11)
\mathbf{G}	+1	18.0	(1)	Me†	0	40.1	(11)
G	+5	26.3	(1)	P‡	_	28.6	(11)

^{*} The apparent magnitude as observed from a distance of 10 parsecs.

PREFERENTIAL MOTION

The peculiar velocities of the stars are not distributed at random. In general the stars show a tendency to move parallel to the galactic plane. To describe the distribution of the peculiar velocities, a distribution-function is adopted, which gives the relative numbers of stars moving in different directions and with different velocities. The simplest distribution-function is the spherical distribution-law,

$$F(xyz) = \frac{N}{(2\pi)^{\frac{3}{2}}\sigma^2} e^{-\frac{z^2+y^2+z^2}{2\sigma^2}}$$

where x, y, and z are the velocity-components referred to the "centroid" of the group. N is the number of stars in the group, and σ is the dispersion or the square-root of the mean of the squares of the velocity-components. The number of stars of velocity-components between $x \pm \frac{1}{2}dx$, $y \pm \frac{1}{2}dy$, $z \pm \frac{1}{2}dz$ is then given by F(xyz) dxdydz. In a spherical distribution, the frequency of a velocity is independent of its direction and only dependent upon its size. Spherical velocity-distributions occur for several classes of stars, but in general the distribution in

velocity-space is either flattened (B stars) or elongated (A, F, and dwarf stars). Two functions have been used to describe the elongated distribution. Kapteyn and Eddington have used a sum of two spherical functions and have regarded the stars as belonging to two intermingled systems, "two stream hypothesis." Schwarzschild has introduced the ellipsoidal distribution defined by the distribution-function

$$F(xyz) = \frac{N}{(2\pi)^{\frac{3}{4}}abc} e^{-\left(\frac{x^2}{2a^2} + \frac{y^2}{2b^2} + \frac{z^2}{2c^2}\right)}$$

with three principal dispersions a, b, and c, which define the three axes of the "velocity-ellipsoid." The velocity-components x, y, and z are here projected on the principal axes of this ellipsoid. The major axis of the velocity-ellipsoid corresponds to the line joining the two centers in the two stream theory. The direction of this fundamental axis, which is common in the two theories, is about R. A. 6^h 6^m , Dec. + 9^o , (true vertex). The dwarf stars give a somewhat higher declination for the true vertex.

In the analysis of proper motions, the two stream theory gives two vertices, which correspond to the directions of motion of the two streams relative to the sun. The coordinates of these vertices are R. A. 6^h 14^m , Dec. -13° (first stream) and R. A. 19^h 16^m , Dec. -60° (second stream).

Analyzing stellar motions on the basis of the two stream theory, we find a number of stars which cannot be regarded as belonging to either of the two streams. The B stars and stars of spectral class M, for instance, have a group-motion intermediate between the two streams. For this reason Halm has introduced a third stream (0 stream). But these streams taken together can be fairly well represented by an ellipsoidal distribution using a smaller number of parameters.

Charlier (4) has introduced a generalization of the ellipsoidal theory which makes it possible to take into account deviations from a strictly ellipsoidal distribution, but it is only when these deviations are small that this generalization is practicable.

MOVING CLUSTERS OR GROUPS

Several stars move nearly parallel to one another, the best known example being 5 of the 7 bright stars in the constellation Ursa Major. Another moving group or cluster is the Hyades in the constellation Taurus (Taurus Group). The proper motions of the stars belonging to such a group converge towards a point in the sky, the "convergent point," whose position in the sky gives the direction of motion of the group relative to the sun. The convergent point for 17 stars belonging to the Ursa Major Group is R. A. $20^h 30^m$, Dec. -40° ; for the Taurus Group (39 stars) R. A. $6^h 7^m$, Dec. $+7^\circ$. A number of other moving groups are known.

THE GENERAL DISTRIBUTION OF COSMIC VELOCITIES

When the sun's motion is referred to different clases of objects it has been found that this motion is not a constant vector but varies greatly, from about 12 km/sec for the A stars and the Cepheids of long period up to 300 km/sec for the fast moving objects, the globular clusters and the spiral nebulae. A general relationship between group-motion and dispersion exists, which, according to Strömberg (11), holds for all classes of objects, but with a small deviation for the B star system. This variation in groupmotion produces an asymmetry in the velocity distribution, in such a way that all fast moving objects move, relative to the sun, towards the same hemisphere. This asymmetry defines an axis along which the group-motion increases with increasing internal velocity-dispersion. The direction of this axis is R. A. 8h 39m, Dec. -57°, and the motion of objects with small velocity-dispersion relative to those of high velocity-dispersion is about 300 km/sec in the opposite direction. The group-motion of objects

[†] Stars brighter than the 6th magnitude (apparent).

[†] Contains M stars with bright hydrogen-lines; all are variable stars of long period.

[‡] Bright-line nebulae.

TIME 391

with high velocity-dispersion is approximately the same as that of the globular clusters and spiral nebulae.

The general distribution of cosmic velocities can be approximately represented by a product of two symmetrical distributions S_1 and S_2 . The first of these is a sum of concentric and co-axial ellipsoidal distributions, the velocity of the sun relative to the center of the distribution S_1 being 14.8 km/sec in the direction R. A. 17^h 43^m, Dec. +22°. The sun's motion relative to the second distribution, S_2 , is 300 km/sec in the direction R. A. 20^h 28^m, Dec. +56°. The first distribution can be regarded as the velocity-distribution in our local system of stars, the second as a

velocity-restriction in a universal world-frame of enormous dimensions. Other interpretations, however, may be possible.

LITERATURE

(For a key to the periodicals see end of volume)

Adams, Strömberg and Joy. 21, 84: 9; 21. (2) Boss, 326, 26: 111; 10.
 Campbell, Lick Obs. Bull. No. 196; 11. (4) Charlier, Lund Observatorium, Meddelanden, II: No. 13; 15. (5) Charlier and Wicksell, Ibid., II: No. 12: 45; 15. (6) Gyllenberg, Ibid., II: No. 13; 15. (7) Luyten, Annals Harvard College Obs. 85: No. 5; 23. (8) Raymond, 326, 30: 191; 17. (8) Strömberg, 21, 47: 7; 18.

(10) Strömberg, 21, 56: 265; 22. (11) Strömberg, 21, 61: 363; 25.

TIME

Chronological Eras Gregorian Calendar

Era	Year	Begins, 1925 A. D.
Byzantine¶. Diocletian¶. Grecian ♣¶. Hegira Japanese. Jewish Julian calendar Julian period Mohammedan Nabonassar¶. Rome¶. Seleucidae¶.	7434 1642 2237 1344‡ 2585† 5686‡ 1925 6638§ 1344‡ 2674 2678∥ 2237	September 14 September 11 September 14 October 14 July 21 January 1 September 18 January 14 July 21 May 12 January 14 (See Grecian)

^{*} In present-day usage of Syrians, begins in September or October depending upon the sect. In ancient usage of Damascus and Arabia Petraea, began with vernal equinox.

TIME

Interval	Days*		
Year:			
Tropical†	365.2422		
Sidereal	365.2564		
Anomalistic	365.2596		
Month:			
Synodical †	29.530 59		
Tropical	27.321 58		
Sidereal	27.321 66		
Day:			
Sidereal	0.997 2696		

^{*} Mean solar days.

† Ordinary.

Equation of Time* $(\Delta = \text{mean } - \text{apparent})$ Unit of Δ is minute. Time is Greenwich mean noon

Date	Δ	Date	Δ	Date	Δ				
I 1	+ 3.4	V 11	-3.8	IX 18	- 5.6				
6	5.8	16	-3.8	23	- 7.3				
11	7.8	21	-3.7	28	- 9.0				
16	9.7	26	-3.3	X 3	-10.7				
21	11.3	31	-2.6	8	-12.2				
26	12.6	VI 5	-1.8	13	-13.5				
31	13.6	10	-1.0	18	-14.6				
II 5	14.1	15	0.0	23	-15.5				
10	14.4	20	+1.1	28	-16.1				
15	14.3	25	2.2	XI 2	-16.3				
20	14.0	30	3.2	7	-16.3				
25	13.3	VII 5	4.2	12	-15.9				
III 2	12.4	10	5.0	17	-15.1				
7	11.4	15	5.6	22	-14.0				
12	10.0	20	6.1	27	-12.5				
17	8.7	25	6.3	XII 2	-10.7				
22	7.2	30	6.3	7	- 8.8				
27	5.7	VIII 4	6.0	12	- 6.5				
IV 1	4.2	9	5.4	17	- 4.1				
6	2.7	14	4.7	22	- 1.6				
11	1.2	19	3.7	27	+ 0.9				
16	+ 0.0	24	2.5	31	+ 2.8				
21	- 1.2	29	+1.1						
26	- 2.2	IX 3	-0.4						
V 1	- 2.9	8	-2.1						
6	- 3.4	13	-3.8						

 $^{*}\Delta$ is the amount by which mean time exceeds apparent time when it is noon at Greenwich; it is the excess of the right ascension of the actual sun over that of the mean sun at that instant. It varies continuously with the time, and does not exactly repeat its values in successive years; those given are average values for Greenwich mean noon of an ordinary year, and will seldom differ from the actual values for that time by as much as $0.2 \, \mathrm{min.}$, except in January and December, when the difference may amount to $0.3 \, \mathrm{min.}$ In leap years, all dates in the table after February must be reduced by one day.

[†] The 14th year of period Taisho.

Begins at sunset.

Julian day number of January 1, 1925 (Gregorian) is 2 424 152.

[|] Since foundation of Rome, according to Varro.

[¶] Based upon Julian calendar.

SOLAR SYSTEM

ORBITAL DATA; SOLAR SYSTEM (1925)

Units: Distance, 106 km; period, tropical year

Dlamat	Distance	E toisites	Inclination†	Mean lo	Sidereal	
Planet	Distance*	Eccentricity	Inclination	Node‡	Perihelion	period
Ŭ Mercury	57.9	0.2056	7° 0′ 12.0″	47° 26′ 32.1″	76° 17′ 18.9′′	0.24085
Q Venus	108.1	0.0068	3 23 38.0	76 0 16.7	130 30 56.8	0.61521
⊕ Earth	149.5	0.01674			101 39 2.3	1.00004
♂ Mars	227.8	0.0933	1 51 0.6	48 58 45.0	334 40 42.2	1.88089
4 Jupiter	778	0.0484	1 18 26.4	99 41 26.3	13 6 51.4	11.862
2 Saturn	1426	0.0558	2 29 28.7	113 0 5.7	91 34 42.0	29.458
ð Uranus	2869	0.0471	0 46 22.1	73 36 57.7	169 26 56.8	84.015
♥ Neptune	4496	0.00855	1 46 36.7	130 57 13.3	43 58 27.9	164.788

^{*} Mean distance.

CHARACTERISTICS OF MEMBERS OF SOLAR SYSTEM

Units: Linear diameter, 1000 km; density, g/cm³; time, mean solar

Name	Dia	meter	Mass† × 106	Domeites	Sidereal	Number	
Name	Linear Angular*		Mass sun	Density	rotation	satellites	
Mercury	4.84	10.90"	0.1670	5.6		1 0	
Venus	12.19	1' 0.80	2.451	5.1		0	
Earth	12.76§		3.036‡	5.52	23 hr 56.07 min	1	
Mars	6.78	17.88	0.3233	3.9	24 37.4	0	
Jupiter	142.78	46.86§	954.8	1.4	9.8 hr	7	
Saturn	120.8§	19.528	2 85.6	0.7	10.2 hr	9	
Uranus	49.7	3.76	43.7	1.3+		4	
Neptune	53.0	2.52	50.8	1.3	100	1	
Sun	1391	31 59.26	1 001 341	1.4	25.3 da	1	
Moon	3.48	31 5.16¶	0.037**	3.3	27.32 da		

^{*} At distance = difference mean distance sun to object and mean distance sun to Earth; nearly at distance of nearest approach to Earth.

SOLAR DATA

Inclination of equator to ecliptic, about	7°
Longitude of ascending node of equator	74.5°
Period of rotation, about	28 da*
Sun spot period, about	11 yr

TERRESTRIAL AND LUNAR DATA†

General precession (retro-

Constant of notation 9.21"
Constant of aberration 20.47" Paris conference values
Solar parallax 8.80"
From parallax measurements 8.806"
From velocity of light 8.781
From mass of Earth 8.762
From motion of Moon 8.773
Equatorial horizontal parallax of Moon* 57' 2.70" (Brown)
Mean distance Earth to Moon 384 403 km
Inclination of Moon's equator to ecliptic 1° 32.1"
Inclination of Moon's orbit to ecliptic, about 5°
Eccentricity of Moon's orbit (average) 0.055
Revolution of Moon's nodes (retrograde) 18.6 yr
* Mean of greatest and least values; actual values very from 53' to 61' eg

* Mean of greatest and least values; actual values vary from 53' to 61' ca.

[†] Angle between plane of orbit and plane of ecliptic.

[‡] Ascending node.

[†] Includes satellite (or planetary) system, if any.

[‡] Mass of Earth alone = 2.999×10^{-6} mass of sun.

[§] Equatorial diameter. Polar diameter: Earth = 12.71; Jupiter = 133.2, 43.74"; Saturn = 108.1, 17.46". Diameter of sphere of volume = Earth, is 12.74.

 $[\]parallel$ At mean distance of Earth, gravitational acceleration due to Sun is $k^2 = 2.9592 \times 10^{-4}$ (mean distance) per day = 0.5926 cm per sec². For solar spectrum etc., see index.

[¶] At mean distance from Earth. Apparent diameter varies, with distance, from 29.5' to 33.5'.

^{**} Moon alone. Mass Moon = 0.01227 mass Earth.

^{*} From observations of sun spote near latitude 45°; spote near equator rotate in about 24 da; those near lat. 80°, in 30 da.

[†] For geodetic and geophysical data, see p. 393.

COMPOSITION OF THE ATMOSPHERE

W. J. Humphreys

Table 1.—Composition of Dry Air at Sea-Level (4.5) v = volume of the gas in volume V of dry air

Gas 104v/V	N ₂	0,	Α	CO ₂	H,*	Ne	He	Kr	Xe
104v/V	7803	2099	94	3	1	0.123	0.04	0.005	0.0006

* Values found by analysis vary; the one here given is that accepted by Hann and the Recueil de Constantes Physiques.

Table 2.—Composition of Atmosphere at Various Levels Computed from data of Table 1 on the assumptions: (1) at surface, H₂O vapor supplies 1.2% of the total number of gas molecules, (2) absolute humidity decreases rapidly to a negligible amount at about 10 km, (3) temperature = 11°C at sea-level, decreases normally (6°C per km) to -55°C at 11 km, remains constant above 11 km, (4) relative proportions of the gases, water vapor excepted, remains constant up to 11 km, (5) above 11 km, distribution is in accordance with their molecular weights (3). The amount of H₂ is in doubt (see note Table 1), especially above 11 km; it may become oxidized to H₂O before reaching the upper atmosphere.

v = volume of the gas contained in volume V of atmosphere. Unit of height = 1 km = 0.621 mi.; of pressure = 1 mm of Hg

Height		Total pres-						
	N ₂	0,	H ₂ O	A	CO ₂	H,	He	sure
140	0.01		Ī		I	99.15	0.84	0.0040
130	0.04		l			99.00	0.96	0.0046
120	0.19					98.74	1.07	0.0052
110	0.67	0.02	0.02		1	98.10	1.19	0.0059
100	2.95	0.11	0.05			95.58	1.31	0.0067
90	9.78	0.49	0.10		1	88.28	1.35	0.0081

Height		100v/V											
	N ₂	0,	H ₂ O	A	CO ₂	H:	He	pres- sure					
80	32.18	1.85	0.17			64.70	1.10	0.0123					
70	61.83	4.72	0.20	0.03		32.61	0.61	0.0274					
60	81.22	7.69	0.15	0.03		10.68	0.23	0.0935					
50	86.78	10.17	0.10	0.12		2.76	0.07	0.403					
40	86.42	12.61	0.06	0.22		0.67	0.02	1.84					
30	84.26	15.18	0.03	0.35	0.01	0.16	0.01	8.63					
20	81.24	18.10	0.02	0.59	0.01	0.04		40.99					
15	79.52	19.66	0.01	0.77	0.02	0.02		89.66					
11	78.02	20.99	0.01	0.94	0.03	0.01		168.00					
5	77.89	20.95	0.18	0.94	0.03	0.01		405.					
0	77.08	20.75	1.20	0.93	0.03	0.01		760.					

TABLE 3.—MASSES OF THE ATMOSPHERE AND ITS CONSTITUENTS

Based upon Table 1, the assumptions of Table 2, and the assumption that the average atmospheric pressure at the surface of the earth = 73.7 cm and at base of stratosphere = 14.5 cm ($^{1} \cdot ^{2}$). Area of earth is taken as 51 \times 10 17 cm 2 .

Total mass $M = m \times 10^n \text{ kg}$; 1000 kg = 1.102 tons (of 2000 lb.)

Gas											
m	511	387	116	624	133	217	129	471	64	63	116
n	16	16	16	14	14	217 13	12	11	11_	11	10

LITERATURE

(For a key to the periodicals see end of volume)

Hann, Lehrbuch der Meteorologie (3rd ed.).
 Humphreys, Monthly Weather Review, 49: 341; 21.
 Humphreys, Physics of the Air, p. 69; 20.
 Ramsay, δ, 80: 599; 08.
 Various authorities.

MISCELLANEOUS GEODETIC DATA

W. D. LAMBERT

With certain exceptions which are especially noted, those of the following data which depend upon the dimensions of the earth have been calculated strictly in accordance with the INTER-NATIONAL ELLIPSOID OF REFERENCE, adopted by the Section of Geodesy of the International Geodetic and Geophysical Union, meeting at Madrid, October 6 and 7, 1924. This ellipsoid is based upon the results obtained by J. F. Hayford (Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy, Washington, 1910), but is not absolutely identical with Hayford's ellipsoid. (For some of the other spheroids that are used for geographical purposes, see Special Publication #100, U. S. Coast and Geodetic Survey. Recent attempts have been made to show that the actual figure of the earth can be represented more closely by an ellipsoid of three unequal axes, than by one of revolution, systematic departures from the latter being of the order of 100 to 200 meters in elevation and depression.)

If the positions of the two ends of a line are determined geodetically for any assumed spheroid of reference, the uncertainty in the length of the line as measured along the earth depends almost entirely upon the errors in the survey; for geodetic surveys of the highest class, the uncertainty is a little less than one in 100 000 and for an ordinary fair survey it is about four times as great. The proportional error in the straight-line distance is greater, mainly because the geoid does not coincide with the ellipsoid; these additional errors are not serious for a short line, but for two points almost diametrically opposite may amount to 100 or 200 meters.

If the end points are determined astronomically, the principal error in the computed length is due to the difference in the deflection of the plumb-line at the two points; unless the measured line is short, the average uncertainty so introduced is of the order of 200 meters, but may be much more, especially in rugged country.

Latitude.—The latitude of a place is defined as the angle which some line of reference makes with the equatorial plane. Four lines of reference, defining four distinct kinds of latitude, are used. Three of these lines pass through the place considered; viz., (1) The plumb-line, defining the astronomical latitude, (2) the normal to the spheroid of reference, defining the geographical latitude, and (3) the line to the center of the earth, defining the geocentric latitude. The fourth line of reference passes through the center of the earth and that point which is upon the circumscribed sphere (radius = equatorial radius of the spheroid) and at the same distance from the axis of rotation as is the point on the spheroid representing the place considered; this defines the parametric, or reduced, latitude.

Gravity. —If the earth's sea-level surface were accurately represented by the International Ellipsoid of Reference, and if no attracting matter projected above this surface, then the variation of gravity at sea-level (γ_o) would be represented by the equations

$$\gamma_0 = \gamma_0 (1 + 0.005 \ 288 \sin^2 \varphi - 0.000 \ 006 \sin^2 2\varphi)$$
$$= \gamma_{44} (1 - 0.002 \ 637 \cos 2\varphi + 0.000 \ 006 \cos^2 2\varphi)$$

¹ The resultant acceleration arising from the gravitational attraction and the rotation of the earth.

where φ is the geographic latitude, and γ_s , γ_{45} are the values of γ_s at the equator and at latitude 45°, respectively. These equations differ slightly from that used in computing the table on p. 396; the latter corresponds to an ellipticity of 1/297.4.

TABLE 1 .- FORM AND SIZE OF THE EARTH

Based upon International Ellipsoid of Reference; accepted constants, from which the others are computed, are a = 6378388meters, ellipticity [=(a-b)/a]=1/297. The indicated uncertainties are estimates, by Lambert, based upon a consideration of systematic errors as well as of internal discordances.

a = semi-major axis = 6 378 388(±60)m
b = semi-minor axis = 6 356 911.946 m
Radius of sphere of same area = 6 371 227.7 m
Radius of sphere of same volume = 6 371 221.3 m
Length of equatorial quadrant = 10 019 148.4 m
Length of meridonal quadrant = 10 002 288.3 m
$f = \text{ellipticity} = \left(\frac{a-b}{a}\right) \dots = 0.003 \ 367 \ 0034$
$\frac{1}{f}$ = reciprocal of ellipticity = 297.0(±0.4)
$e^{2} = (\text{eccentricity})^{2} = f^{2} \left(\frac{2}{f} - 1\right) = \frac{a^{2} - b^{2}}{a^{2}} = 0.006 722 6700$
Area of the ellipsoid = 510 100 934 km ²
Land area = 148 847 000 km ²
Ocean area = 361 254 000 km ²
Volume of the ellipsoid = 1 083 319.78 × 106 km ³
Mass of the ellipsoid* $(d = 5.527 \text{ g/cm}^3, \text{p. } 395) = 5.988 \times 10^{24} \text{ kg}$
Principal moments of inertia $(A = B < C)\dagger$:
$A^{\ddagger} = B^{\ddagger} = 0.332 \ 35 \ Ea^{\ddagger}$
C‡ = 0.333 44 Ea ²
$C - A = 0.001 0921 Ea^2$
$\left(\frac{C-A}{C}\right) - \left(\frac{1}{305.12}\right)^{\frac{1}{2}}$ - 0.003 2774

- * For discussion of variation of density with depth below surface, see Adams and Williamson, Smithsonian Annual Report, 1923, p. 241.
 - $\dagger E = \text{mass of earth.}$
- Computed values vary but little with any admissible assumption regarding the constitution of the interior of the earth. Values are based upon computations of De Sitter (64V, 27: 233; 24); ellipticity taken as 1/296.92.
- § Deduced from precession of equinoxes; involves no hypothesis regarding constitution of interior of earth.

TABLE 2.—DISTANCES UPON SURFACE OF THE INTERNATIONAL ELLIPSOID OF REFERENCE

 $M = \text{length of meridian from equator to geographic latitude } \varphi$; S_m = length of meridian from latitude $(\varphi - \frac{1}{2}\Delta\varphi)$ to $(\varphi + \frac{1}{2}\Delta\varphi)$; S_p = length of arc of parallel for 1° of longitude at latitude φ . These may be computed by means of the equations: $M = a\varphi$ $b \sin 2\varphi + c \sin 4\varphi - d \sin 6\varphi$; $S_m = a\Delta\varphi - b \sin \Delta\varphi \cos 2\varphi + c \sin 2\Delta\varphi \cos 4\varphi - d \sin 3\Delta\varphi \cos 6\varphi$; S_m (for $\Delta\varphi = 1^\circ$) = a $b \cos 2\varphi + c \cos 4\varphi - d \cos 6\varphi$; $S_p = a \cos \varphi - b \cos 3\varphi +$ $c \cos 5\varphi$; where the coefficients and their logarithms have the following values:

Unit of length = 1 meter; of angle = 1°

\neg	Λ	И*	S _m *							
	Value	log ₁₀	Value	log ₁₀						
a	111 136.537	5.045 856 86	111 136.537	5.045 856 86						
b	16 107.035	4.207 015 6	32 214.069	4.508 045 6						
c	16.976	1.229 84	33.952	1.530 87						
d	0.022	2.348	0.045	$\bar{2}.649$						

	S _m * for	$\Delta \varphi = 1^{\circ}$	S,*						
	Value	log10	Value	log10					
a	111 136.537	5.045 856 86	111 417.657	5.046 954 02					
b	562.213	2.749 901	93.904	1.972 686					
c	1.185	0.073 7	0.119	1.074 6					
d	0.002	3.37							

* Owing to uncertainty regarding the actual size of the earth, actual distances upon the earth at sea-level may differ from these computed distances by about 2 in 100 000 near the equator or the poles, by somewhat less in middle latitudes.

TABLE 3.—Excess of Geographic Latitude (φ) over Geo-CENTRIC (φ') AND PARAMETRIC (θ) LATITUDES

$$\varphi - \varphi' = a \sin 2\varphi - b \sin 4\varphi + c \sin 6\varphi$$

$$= a \sin 2\varphi' + b \sin 4\varphi' + c \sin 6\varphi'$$

$$\varphi - \theta = a' \sin 2\varphi - b' \sin 4\varphi + c' \sin 6\varphi$$

$$= a' \sin 2\theta + b' \sin 4\theta + c' \sin 6\theta$$

where the coefficients and their logarithms have the following values:

Unit of	coefficients	= 1	''
---------	--------------	-----	-----------

	Value	log ₁₀		Value	log ₁₀				
a	695.6635	2.842 3992	a'	347.8327	2.541 3704				
ь	1.1731	0.069 34	b'	0.2933	1.467 29				
c	0.0026	3.421	c'	0.0003	4.52				

TABLE 4.—MISCELLANEOUS TERRESTRIAL DATA

Angular velocity of rotation...... 72.921 × 10⁻⁴ radians/sec⁴

Rotational energy...... 2.160×10^{36} ergs Rotational energy lost by tidal fric-

tion...... 1.1 × 10¹⁰ ergs/sec†

Work required to dissipate the

material of the earth to infinity.. 2.46×10^{39} ergs

Mean elevation of land above sea-

level..... 825 m

Mean depth of the oceans...... 3681 m

Mean effective viscosity is not

known, but perhaps between.... 1020 and 1025 poises 1

- * Mean solar second.
- † Jeffreys, 62, 221A: 239; 20; The Earth, Its Origin, History and Physical Constitution, 205-237,; 24. Heiskanen, 175, 18A: 1; 21.
- ‡ Schweydar, Veröffentl. des Preuss. Geodat. Inst., No. 79; 19; Jeffreys, Monthly Notices, Roy. Ast. Soc., 75: 648; 15. 76: 84; 16. 77: 449; 17; also The Earth, its Origin, History, and Physical Constitution, 222; 1924.

Rigidity (μ) . From the yielding of the solid portions (revealed by observations with horizontal pendulums), and on assumption of incompressibility, Schweydar (Zentralbureau Int. Erdmes., Neue Folge No. 38, 1921) deduces $\mu = 30.8 (1 - 0.90r^2/a^2) \times 10^{11}$ dynes/cm², and mean effective rigidity = 17.6×10^{11} dynes/cm² (r = distance from center, a = mean radius). To allow for compressibility, these values must be increased by about 20% (Lambert, preliminary, unpublished computations); even then the value computed for the outer shell of half-radius thickness is much less than that deduced from earthquake data. (See Adams and Williamson, Smithsonian Annual Report, 1923.) The discrepancy may arise from Schweydar's assumption of high rigidity in the central portions, which may possibly behave as a fluid. (See Knott, 68, 39: 157; 19; Sieberg, Geologische, physikalische und angewandte Erdbebenkunde, 364; 23.)

GRAVITY DATA

CLARENCE H. SWICK

This section includes: (A) The value of the gravitation constant; (B) the absolute determination upon which the tabulated values of the acceleration of gravity¹ rest; (C) values of the acceleration of gravity (g) at numerous stations well distributed over the surface of the earth, together with a table giving the values of g at sea-level and at various latitudes; and (D) means for computing the variation in g with the distance of the station above, or below, either the surface of the earth or sea-level. In preparing the data, valuable assistance was received from several colleagues. In particular should be mentioned Mr. W. D. Lambert's assistance with section D, and Miss Sarah Beall's and Mr. H. S. Rappleye's assistance with section C.

A. GRAVITATION CONSTANT

The best determinations of the gravitation constant (G)² are considered to be those by C. V. Boys (7) and by K. Braun (8). Each used an improved form of the Cavendish apparatus; and they obtained almost identical results, the final values of the two determinations being the same to the fourth significant figure. They found

 $G = 6.658 \times 10^{-8} \text{ cm}^{2} q^{-1} \text{ sec}^{-2}$

which requires that the mean density of earth = 5.527 g/cm³.

B. BASIS OF REFERENCE

The observed values of gravity in Tables 1 and 2 are relative determinations in the Potsdam system, that is, they are based on the value of 981.274 cm/sec² for the pendulum room of the Geodetic Institut in Potsdam, Germany. This value for Potsdam is the result of a large number of careful absolute determinations extending over a series of years. The degree of uncertainty in such absolute determinations is well illustrated by the fact that a similar series of absolute determinations at Vienna, Austria, gave a value 0.016 cm/sec² greater than the one above when referred to Potsdam by relative determinations.

All determinations of gravity should be based on the Potsdam system by means of relative determinations with some station already accurately based on that system. A table of 20 base stations on the Potsdam system is given in *Comptes Rendus l'Association Geodesique Internationale* for 1909, III:25. Most of these stations are included in Table 1.

C. ACCELERATION OF GRAVITY AT SELECTED STATIONS

The stations included in Table 1 are grouped (1) in the order America, Europe, Asia, Africa, Australia, and Oceanic; (2) generally, alphabetically according to countries (United States of America, first); (3) in each subdivision, the stations are arranged alphabetically. Numerals in parentheses, following the name of a subdivision or station refer to the bibliography, and indicate the source from which the data were obtained. If the effect of topography and of isostatic compensation has been computed on the uniform basis of compensation extending to a depth of 113.7 km, the amount of this computed effect is given in the column TC. This effect is the amount by which the actual value of the acceleration would exceed that obtained from Table 2, after correction for elevation by means of equation (1), if there were complete isostatic compensation and if the local distribution of matter were not anomalous.

¹ Throughout this section the term acceleration of gravity, or, briefly, gravity, is used, in its commonly accepted sense, to denote the resultant acceleration arising from the gravitational attraction and the rotation of the earth. It is this resultant which is denoted by g.

² The force (f) of gravitational attraction between two masses (m, m_1) separated by the distance r is $f = G \frac{mm_1}{r^2}$.

Table 1.—Acceleration (g) of Gravity, Potsdam System

(The effect of topography and of isostatic compensation = TC)

Units: Elevation (h), meters: g, cm/sec²; TC, cm/sec²

Station	Latitude	Longitude	h	0	TC	Station	Latitude	Longitude	h	0	TC
AMERICA						Madison, Wis. (Uni-	400 4 01	000 0: 0'	050	000 000	
United States (5, 6) Albany, N. Y. (Public			l			versity of Wisconsin). Minnespolis, Minn.	43° 4.6'	89° 24.0′	270	980.365	+0.00
School No. 24)	42° 39.1'	73° 46.1'	61	980.344	-0.006	(University of Min-			}		
Apalachicola, Fla.	12 00.1	10.1	"			nesota)	44 58.7	93 13.9	256	980.597	-0.00
(Weather Bureau)	29 43.5	84 58.8	4	979.322	+0.015	Mount Hamilton,					
Asheville, N. C. (Post-				20.00		Calif. (Lick Observ-					
office)	35 35.9	82 33.3	670	979.603	+0.026	atory) New Orleans, La. (City	37 20.4	121 38.6	1282	979.660	+0.120
Atlanta, Ga. (State Capitol)	33 45.0	84 23.3	324	979.524	+0.014	Hall)	29 57.0	90 4.2	2	979.324	+0.013
Austin, Tex. (Univers-					,	New York, N. Y.			_		
ity)	30 17.2	97 44.2	189	979.283	-0.001	(Columbia Univers-					
Baltimore, Md. (Johns	20 17 0	70 27 2	20	000 007	10.000	ity)	40 48.5	73 57.7	38	980.267	+0.01
Hopkins University) Bismarck, N. Dak.	39 17.8	76 37.3	30	980.097	+0.000	Norris Geyser Basin, Wyo. (Yellowstone		-			
(Will School)	46 48.5	100 47.0	516	980.625	-0.005	Park)	44 44.2	110 42.0	2276	979.950	+0.03
Boise, Idaho (High				1 1	Ì	Pembina, N. Dak.			ŀ		1
School)	43 37.2	116 12.3	821	980.212	-0.042	(Public School)	48 58.1	97 14.9	243	980.917	-0.009
Calais, Me. (High	45 11.2	67 16.9	38	980.631	10.010	Philadelphia, Pa. (University of					:
School)	45 11.2	07 10.9	33	380.031	TU.010	Pennsylvania)	39 57.1	75 11.7	16	980.196	+0.009
(Harvard College					1	Pierre, S. Dak. (High					
Observatory)	42 22.8	71 7.8	14	980.398	+0.010	School)	44 21.9	100 20.8	454	980.427	-0.013
Charleston, W. Va.	20 00 0	01 27 7	104	070 035		Pittsburgh, Pa. (Sec-	40. 97. 4	90 04	025	000 110	
(High School) Charleston, S. C. (S. C.	38 20.9	81 37.7	184	979.936	-0.010	ond Ward School) Point Isabel, Tex	40 27.4 26 4.7	80 0.6 97 12.4	235 8	980.118 979.076	
Military Academy).	32 47.2	79 56.0	6	979.546	+0.016	Portland, Oreg. (Cus-				, 5.5.010	
Charlottesville, V a .						tom House)	45 31.4	122 40.7	8	980.646	-0.016
(University of Vir-						Potsdam, N.Y.					1
ginia)	38 2.0	78 30.3	166	979.938	+0.002	(Clarkson School of	44 40 1	74 50 0	1 120	000 571	0.00
Chicago, Ill. (Univ. of Chicago)	41 47.4	87 36.1	182	980.278	+0.007	Technology) Princeton, N. J.	44 40.1	74 58.8	130	980.571	-0.00
Cincinnati, Ohio (Cin-		0. 00.1	102		, 0.001	(Princeton Univer-		0_0			
cinnati Observ-						sity)	40 21.0	74 39.5	64	980.178	+0.013
atory)	39 8.3	84 25.3	245	980.004	+0.002	Richmond, Va. (Post-					
Cleveland, Ohio (Adel-	41 30.4	01 20 0	210	980.241	0.000	office)	37 32 .2	77 26.1	30	979.960	+0.010
bert College) Colorado Springs,	41 30.4	81 36.6	210	500.211	0.000	St. Louis, Mo. (Wash- ington University)	38 38.0	90 12.2	154	980.001	+0.001
Colo. (Colorado Col-						Salt Lake City, Utah					
lege)	38 50.7	104 49.0	1841	979.490	-0.007	(Temple Block)	40 46.1	111 53.8	1322	979.803	-0.04
Denver, Colo. (Uni-	20 40 0	104 55 0	1000	070 000	0.015	San Francisco, Calif.					
versity of Denver) Dover, Del. (Wilming-	39 40.6	104 56.9	1638	979.609	-0.013	(Davidson Observa- tory)	37 47.5	122 25.7	114	979.965	+0 04
ton Conference			į .			Sandpoint, I daho		122 20.1		10.00	10.01
Academy)	39 9.7	75 32.0	12	980.099	+0.013	(Farmington Cen-					
El Paso, Tex. (High	01 40 0	100 00 0		070 104		tral School)	48 16.4	116 33.3	637	980.680	-0.044
School)	31 46.3	106 29.0	1146	979.124	+0.001	Seattle, Wash. (Wash- ington State Uni-					
High School)	29 18.2	94 47.5	3	979.272	+0.007	versity)	47 39.6	122 18.3	58	980.733	-0.020
Georgetown, Tex.						Springfield, Ill. (Ed-					
(South western						wards Public					
University) Goldfield, Nev. (High	30 38.0	97 40.1	231	979.298	+0.002	School)	39 47.7	89 39.5	183	980.089	+0.00
School)	37 42.2	117 14.5	1716	979.456	+0.027	(Chemistry Physics					i
Hartford, Conn. (Jar-						Building)	40 47.9	77 51.8	358	980.124	+0.010
vis Laboratory of				000		Terre Haute, Ind.					
Trinity College)	41 44.8	72 41.8	37	980.336	+0.008	(Rose Polytechnic	39 28.7	27 22 2	151	980 079	±0 001
Hinsdale, Mont. (Public School)	48 23.8	107 5.3	661	980.739	-0.017	Institute)	UB 28.1	87 23.8	151	980.072	70.001
Hoboken, N. J. (Stev-	15 25.0	1				(U. S. C. and G. S.,					
ens Institute of			1			base station)	38 53.2	77 0.5	14	980.112	+0.004
Technology)	40 44	74 2	11	980.269	+0.008	Washington, D. C.					1
Indianapolis, Ind. (Postoffice)	39 45.9	86 8.8	217	980.090	+0 003	(Bureau of Stand- ards)	38 56.3	77 4.0	103	980.095	+0 012
Ithaca, N. Y. (Cornell	30 10.8	. o. o. o		200.000	, 0.003	Wilmington, N. C.	JU JU. 3	7. 3.0	100	000.000	
University)	42 27.1	76 29.0	247	980.300	+0.005	(Court House)	34 14.2	77 56.6	9	979.663	+0.023
Kansas City, Mo.						Worcester, Mass.					
(Franklin School)	39 5.8	94 35.4	278	979.990	-0.001	(Worcester Poly-	40 10 5	71 40 5	170	000 304	10 010
Key West, Fla. (Post-office)	24 33.6	81 48.4	1	978.970	+0.085	technic Institute) Yavapai, Aris. (Yava-	42 16.5	71 48.5	170	980.324	70.018
Lancaster, N. H. (High	i .	31 40.4	•	3.3.3.0	. 5.000	pai Point)	36 3.9	112 7.1	2179	979.192	+0.034
School)	44 29.5	71 34.3	261	980.486	+0.007	Alaska (4)					
Las Vegas, N. Mex.				.=0		Fort Egbert, Eagle				000	1
(Normal School)	35 35.8	105 12.1	1960	979.204	+0.017	City	64 47.4	141 12.4	269	982.183	-0.042
Little Rock, Ark.		1				Percy Islands, South-		131 35.3			-0.013

Station	La	titude	Long	gitude	h	9	TC	Station	L	atitude	Lor	gitud	e	h	0	TC
Point Young, South-								Karlowitz	49	21.9'	180	18.7	'E.	510	980.890	
east Alaska	58°	11.5	134°	33.4	7	981.757	-0.054	Mount Hora	49	10.3	15	42.4	E.	710	980.845	
Quiet Harbor, South-								Rosenau	48	39.1	20	32	E.	281	980.871	
east Alaska		14.1		39.6	4		-0.034	Denmark (2)								
St. Michael		28.5	162	2.4	1		-0.004	Copenhagen (Stern-		44.0			-			
St. Paul Island	37	7.3	170	16.6	10	981.726	+0.041	warte, base station)		41.2		34.7		14	981.559	
Canada (6, 20, 21, 22) Arctic Red River, N.								Frederikshavn		27.1		32.2		15	981.740	
W. Ter	67	26.6	122	44.2	41	000 424	-0.026	Magleby		47.3		43.0		14	981.502	
Banff, Alta		10.9					-0.026 -0.012	Peders Kirke		1.6		58.8		42	981.533	
Calgary, Alta	51		114	34.5	1376 1044		-0.012 -0.022	Trige		15.2		9.5		91	981.618	
Charlottetown, P. E. I.		13.9	63	7.5	8		+0.013	Vinding	33	40.3	9	34.5	E.	78	981.575	
Chipewyan, Alta		42.7	111	8.8	229		-0.013	Deutschland, see Ger-								
Good Hope, N. W.	00		***	0.0		001.120	0.012	many.								
Ter	66	15.3	128	38.2	59	982.340	-0.029	England, see Great								
Halifax, N. S		40.8		33.8	9		+0.008	Britain.								
Kenora, Ont		46.0		30.0	330		+0.018	Espagna, see Spain.								
Kingston, Ont. (City								Finland (2)								
Hall)	44	14.6	76	28.8	79	980.530	+0.008	Helsingfors (Observa-								
Liard River, B. C	59	58.7	123	47.5	160	981.790	-0.059	tory)	60	9.7	24	57.3	E.	29	981.912	
Moose Jaw, Sask	50	23.4	105	31.8	541	980.943	+0.003	Uleaborg	65	1.2	25	29.1	E.	9	982.262	
Norman, N. W. Ter	64	54.0	125	34.2	87	982.214	-0.036	Viborg (Viipurin)	60	42.9	28	43.7	E.	12	981.928	
Ottawa, Ont. (Domin-								Fiume (2)	45	20.0	14	25.8	E.	10	980.630	
i o n Observatory,								France (2, 3)								
base station)	1	23.6		43.0	83	980.618		Arcachon		39.6		10.4		24	980.586	
Peace River, Alta	56	14.1	117	17.2	324	981.482	-0.038	Aurillac, Lyceum		56.8		26.6		640	980.483	
Port Arthur, Ont.								Bayonne	43	29.7	1	28.0		3	980.475	
(Masonic Building).	48	26.0	89	13.0	189	980.820	-0.014	Bordeaux (Observa-								
Providence, N. W.		01.0		20. 0	1.50	001 000	0.010	toire)		50.1	0	31.4		72	980.572	
Ter		21.2		39.2	156		-0.018	Coutras		2.5	0	7.9	- 1	13	980.591	
Resolution, N. W. Ter.		10.1		40.5	152		-0.009	Jonzac		26.7		26.0	- 1	35	980.647	
Revelstoke, B. C	50	59.8	118	11.8	453	980.903	-0.080	Langon		32.7		15.3	- 4	25	980.561	
St. Jérôme (Chateau	4.5	10 0	74	0.0	107	000 001	10.000	Lihons		50.0			E.	106	981.038	
Larose)	40	46.6	74	0.0	107	980.681	+0.006	Lyon	45	41.0	4	47	E.	286	980.629	
St. John, N. B. (Mete- orological Observa-								Marseille (Observa-	42	17 0		02	12	0.1	000 400	
tory)	4.5	16.0	66	5.0	33	000 662	+0.016	toire)		17.9		23 10.7	E.	61	980.482	
Sault Ste. Marie, Ont.	40	10.0	00	0.0	00	900,003	₹0.010	Meudon (Observa-	40	7.0	0	10.7	E.	175	980.957	
(City Hall)	48	30.4	81	19.2	186	080 680	-0.005	toire)	18	48.3	2	13.9	E	130(?)	980.919	
Simpson, N. W. Ter.		51.6		20.8	132		-0.023	Mont Blanc (Observa-	40	10.0	-	10.0	40.	100(17	500.515	
Sydney, N. S	46	8.4		11.8	12		+0.014	toire)	45	50	6	52	E.	4807	979.401	
Vancouver, B. C		16.8	123	6.8	6		-0.046	Mont-Louis		31.0	2	7	E.	1620	979.996	
Winnipeg, Man		54.4	97	8.0	231	4	+0.002	Nice (Observatoire)	1	42.8		18	E.	367	980.471	
Woodstock, N. B.	-					1		Paris (Observatoire,								
(Armoury)	46	9.0	67	34.5	56	980.699	+0.008	base station)	48	50.2	2	20.3	E.	61	980.943	
Woodstock, O n t .								Port-Vendres		50.9	3		E.	25	980.456	
(Market)	43	8.6	80	47.0	299	980.352	-0.002	Rosendaël-les-Dunk	51	2.9	2	24	E.	20	981.170	
entral and South								Soulac	45	31.0	1	7.4	1	8	980.655	
America (2)								Strasbourg (base sta-								
Bahia Blanca, Argen-								tion)	48	35.0	7	46.1	E.	137	980.904	
tina	38	47.1 S.	62	15.9	2	980.061		Valence	44	56	4	53	E.	125	980.562	
Buenos Aires, Argen-								Germany (2, 6)								
tina		36.5 S.		22.2	2	979.669		Alter Bruch		45.7	1	44.6		917	980.930	+0.0
Bahia, Brazil		58.5 S.		31.0	4	978.331		Bremen	53	5.0		49.2		0	981.341	
Panama, Canal Zone.		54.9		31.9	6	978.243		Brocken		48.0		37	E.	1140	981.015	
Valdivia, Chile	39			28.3	10	979.920		Coburg	50	16.0	10	58	E.	290	981.015	
Valparaiso, Chile	33		71		60	979.609	1	Göttingen (Stern-		20.0	-	pr 200	13	100	1001 18-	
Callao, Peru	12			15.8	1	978.375		warte)		32.0			E.	162	981.176	
		34.7		50.4	12	978.303		Grimmen	1	6.9	13	2.7		11	981.434	
Montevideo, Uruguay.	04	54.5 S.	90	12.9	4	979.772		Hamburg (Seewarte)		32.8		58.3		24	981.375	
EUROPE								Helgoland		10.8		53.1		51	981.410	
llemagne, see Germany.								Immenstaad		40.0		22.1	_	403	980.709	
ngleterre, see Germany.								Jena Karlsruhe		55.6	11			154	981.123 980.967	
Britain.								Kiel (Sternwarte)	49	0.7	10	24.7	E.	114 41	980.967	
ustria (2, 6)								Kirchhain		38.3		33.5		98	981.404	
Brenner	47	0.3	11	30.5 E.	1372	980.353		Kolberg		11.3		35.8		8	981.453	
Dalaas	47		9	59 E.	838	980.454		Königsberg (Stern-	04	11,0	10	00.0	13.	0	301.400	
Grafenstein		37	14	28 E.	417	980.614		warte)	54	42.8	20	29.8	E	22	981.477	
Mixnitz		19.8		22 E.	445	980.657		Leipzig		20.1		23.5		115	981.180	
Ober-Drauburg		45		58 E.	617	980.555		Lüdenhausen	52			0.0		205	981.242	
Stilfserjoch (Stelvio	-0		- ~	A.d.	3.,	30.000	1	Munich	48		11			525	980.733	
Pass)	46	31.8	10	27.4 E.	2760	980.045	0.152	Münster		57.9		37.9		62	981.233	
Vienna (base station)		12.7		21.5 E.	183	980.860		Neumünster		4.4		0		25	981.427	
Waidhofen		57.7		46.7 E.	352	980.750		Potsdam (Geodetic	- X		.0			20		
Wien (base station)		12.7		21.5 E.	183	980.860		Institute, base sta-								
Wolfsthal	48		17	0.5 E.	146	980.904		tion)	52	22.9	13	4.1	E	87	981.274	
elgium (2)						30.001		Scharfenstein	1	50.0		36.0		623	981.130	+0.0
Brussels	50	51.0	4	22 E.	102	981.112		Schneekoppe		44.2		44.6		1605	980.776	
zechoslovakia (2)				4.3.	100	3		Sehlsgrund		52.8		48.0		109	981.278	, 0
Böhmerwald	49	40.1	12	59.3 E.	537	980.921		Stuttgart		46.9		10.5		247	980.901	
	50		13	0.4 E.		980.906		Waldsee				45.3			980.706	

Station	La	titude	Lon	gitude	h	0	TC	Station	Latitu	ıde	Longitude	h	0	TC
Great Britain (2)				l				Norway (2, 6) Bergen (Sternwarte)	60° 23	ο'	5° 18.3′	E. 38	981.922	
Edinburgh, Scotland (Observatory)	550	57.4 [']	30	9.4'	104	981.584		Christiansund		.6	7 44.2		981.922	
Glasgow, Scotland	33	01.4	"	5.4	104	301.004		Dambaas		.6	9 8.3		981.892	1
(University)	55	51.5	4	14.0	61	981.605		Florö	61 35		5 2.4		982.071	1
Greenwich, England				i				Langenaes	69 1	. 2	15 8.7	E. 8	982.640	
(Observatory)	51	28.6	0	0.0	48	981.184		Laredal	61 6	. 3	7 27.9	E. 7	981.942	
Kew, England (Ob-								Mehavn	71 1	. 3	27 47	E. 10	982.688	
servatory)	l	28.1	1	19	5	981.144		Osla (Christiania)						
Plymouth, England		22.2	4	8.4	43	981.148		(Sternwarte, base	50 54	-	10 40 5		001 007	
Holland, see Netherlands Hungary (2)			1					station) Oxō	59 54 58 4		10 43.5 8 3.5		981.927 981.763	
Budapest	47	29.5	19	3.6 E.	108	980.852		Rörvik	64 51		11 14.3		982.313	
Kis-Komárom		32.9		10.7 E.	115	980.745		Sand	59 29		6 15.7		981.853	1
Italy (2, 6)								Sannesjöen	l .		12 38.8		982.351	
Alba	44	42.0	8	2.3 E.	169	980.444		Sörvaagen	67 53	. 6	13 2	E. 19	982.622	+0.0
Arona	1	45.8	8	34.1 E.	210	980.629		Stavanger	58 58		5 44.3		981.845	
Bologna (Universitá).	44	29.8	11	21.3 E.	51	980.450		Triset	59 25	.8	8 10.8	E. 115	981.795	1
Brenner (see Austria)		•••				200 000		Österreich, see Austria.						
Catania, Sicily	37	30.2	15	4.7 E.	43	980.065		Olanda, see Netherlands.						
Castellammare di Stabia	40	41.6	14	28.7 E.	4	980.321		Paési Bássi, see Netherla Pays-Bas, see Netherland						
Domo d'Ossola	46			18.4 E.	276	980.598		Poland (2)	46.					
Florence		46.8		15.2 E.	48	980.510		Bedsin	50 19	.3	1 19 8.7	E. 256	981.058	ı
Genoa (Instituto Idro-			-					Kraków (Sternwarte).	1	.9	19 57.6		981.054	
grafico)	44	25.1	8	55.3 E.	93	980.573		Lwów (Lemberg)	49 50	.2	24 0.0	E. 314	980.911	:
Livorno (Leghorn)	43	32.0	1	18.5 E.	6	980.534	-0.018	Tuchla	48 55	. 2	23 29	E. 540	980.789	
Milan (Osservatorio)	45	28.0	9	11.5 E.	141	980.569		Portugal (18)	ĺ					
Padua (Osservatorio,			١					Camposancos			8 49,0	9	980.383	
base station) Palermo, Sicily	38	24.0 6.9		52.3 E. 22.0 E.	19 20	980.658 980.069	:	Lisbon			9 11.3 8 36.1	75 94	980.088 980.290	
Pola		51.8		50.7 E.	28	980.626	1	Oporto Praia da Rocha		3.2 3.0	8 36.1 8 32.7	17	980.290	
Pracchia				54.3 E.	627	980.378		Rumania (2)	, ,	.0	0 02.7	- "	500.000	1
Romagnano		38.1		23.8 E.	266	980.620		Bocsa	46 56	.9	22 42	E. 379	980.711	
Rome		53 .5	12	29.7 E.	49	980.367	-0.012	Bucharest (Bucuresti).	44 24	.6	26 6.8	E. 83	980.553	
San Remo	43	49.1	7	46.5 E.	23	980.505		Elesd	47 2	. 5		E. 225	980.794	1
Stilfserjoch, see Aus-			1					Maros-Ludas (Ludos).	46 28	1.1	24 6	E. 281	980.715	·
tria			١					Russia and Siberia (2,			1			ļ
Stromboli, Lipari Is	45	48.2 4.1	1	14.1 E. 41.8 E.	48 233	980.212 980.549	1	Alexandranal	40 47	. ^	43 49.7	E 1510	979.785	
Turin	40	4.1	1 '	41.0 E.	200	900.049		Alexandropol Archangel			40 31.0		982.278	
alavia	l							Astrakhan	46 21		48 2.7	1	980.774	
Netherlands (24)	ļ							Byelgorod	50 36		36 35.9		981.038	1
Amsterdam (Univers-						1		Dagarskoje (Lake						ļ
ité)	52	21.9	4	54.7 E.	0	981.288		Baikal), Siberia	55 42			E. 465	981.32	
Bergen op Zoom		~~ =	1 .					Erivan	40 10	.7	44 32.8	E. 990	979.880	1
(Cathédrale)	4	29.7	4	17.3 E.	10	981.212		Gorjātschinskoi, Si-			100 10 0	E 450		
Breda (Académie Mili- taire)	1	35.5	4	46.5 E.	1	981.213		beria	52 59	.4	108 18.0	E. 470	981 . 178	1
De Bilt (Institut	"	00.0	1	10.0 11.		301.210	1	teorological Obser-			ł			ł
Météorologique,						1	ļ	vatory)	52 16	. 5	104 16.5	E. 470	981.096	
base station)	52	6.2	5	10.7 E.	2	981.267		Kasan (Observatory).			49 7.3		981.572	
Delft (Institut Géo-			-				l	Kingisepp	59 22	2.5	28 35.7	E. 16	981.858	
désique)	52			22.1 E.	2	981.264	i .	Leningrad, see St.				1		١
Gronigen (Université).	53	13.2	6	34.0 E.	5	981.348		Petersburg.	l			_		l
Hollander (Sanator- ium Hellendoorn)	E 0	04.0		95 0 TC	.,	001 000		Lenkoran	38 45		48 51.5		980.092	
Leeuwarden (Friesche	32	24.2		25.0 E.	11	981.296		Listvinichnoe, Siberia. Moscow (Observatory)	51 51		104 52.5		981.051	
Levensverzekering).	53	12.3	5	48.3 E.	1	981.348		Novgorod	55 45 58 31		37 34.3 31 17.3		981.562 981.790	
Leiden (Observatoire)	52			29.1 E.	2	981.273		Odessa	46 26		30 46.4		980.769	
Maastricht (Hôtel de								Pulkova (base station)			30 19.7		981.899	•
Ville)	50	51.2	5	41.6 E.	49	981.140		St. Petersburg (Lenin-						
Middelburg (États						1		grad)	59 56	. 5	30 17.7	E. 3	981.929	ł
Prov.)	51	30.0	3	36.8 E.	6	981.215		Schaitanskij	1		59 57.0		981641	İ
Oldenzaal (Eglise Ple-								Simbirsk	54 19		48 24.2		981.469	
chelmi)	52	18.8	6	55.8 E.	47	981.282		Staraya Russa	57 59	.4	31 22	E. 23	981.747	1
Schoorl (École prim-	59	42.1	1	41.6 E.	9	091 212		Tartu (Dorpat, Yur-	FO 00			E 50	001 700	l
aire) Sittard (Ambachts-	"2	7~.1	*	11.0 E.	ð	981.312	1	iev), (Observatory) Tiflis (Physical Ob-	58 22	0	26 43.2	E. 50	981.793	1
school)	50	59.8	, s	51.6 E.	48	981.148		servatory)	41 43	3.1	44 47.8	E. 412	980.176	l
Sleen		39.8 46.5	}	48.1 E.	16	981.318	1	Tver	56 51		35 50.9		981.607	
Terschelling (École	. 02	10.0	1 0	10.1 E.	10	201.318	ĺ	Verevye	58 40		32 42.0		981.794	١
Navale)	59	21.6		12.9 E.	6	091 270	1	Volkhovo		. 2	31 46.2		981.826	
Ubagsberg	1	51.0		57.2 E.	191	981.376 981.108		Vyshniy Volochok	57 35		34 33.1		981.695	l
Utrecht (Observatoire)	1		5		191	981.108		Vologda	59 13	3	39 53.0	E. 118	981.837	1
Weert (Église catho-	32	5.2	"	o E.	J	001.200	1	Schweden, see Sweden	l					
lique)	51	15.3	5	42.5 E.	33	981.161		Schweiz, see Switzerland						
Winschoten				2.4 E.	0	981.346	1	Scotland, see Great Brit-						
	1 20	٠.,		- · T 14.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. 19444				1	1	

Station	Latitude	Longitude	h	0	TC	Station	Latitude	Longitude	h	a	TC
Spain (18)	1					Ungarn, see Hungary.		1		Ī	
Alcásar de San Juan	39° 24.0′	3° 12.0′	648	979.933		Ungheria, see Hungary.					
Andéjar	38 3.0	4 3.0	207	979.943		Yugoslavia (2)					l
Aranda de Duero	41 40.0	3 40.0	801	980.086		Marburg (Maribor)	46° 34′	15° 39′ E.	270	980.708	ĺ
Arbas	43 0.9 38 53.0	5 45.0	1329	980.132		Ragusa (Dubrovnik)	42 38.6	18 6 E.	47	980.394	İ
Badajos		6 58.0 2 7.0 E.	188 407	980.050 980.240		Serajevo	43 48.2	18 19.7 E.	511	980.382	ł
Baza	37 30.0	2 45.0	858	979.669		Giappone, see Japan.	i			l	
Cortegana		6 47.0	765	979.895		China (2)		1		1	Ì
Daroca		1 25.0	770	980.038		Hankow	30 35.5	114 17.5 E.	73(?)	979.369	1
Lérida	41 37.0	0 38.0 E.	165	980.260		Hongkong	22 18.2	114 10.5 E.	33	978.771	l
Llansá		3 9.0 E.	6	980 . 431		Port Arthur	38 47.9	121 22.3 E.	1	980.128	
Málaga		4 25.2	61	979.918		Shasi		112 14.8 E.		979.303	4
Plasencia	40 2.0	6 3.0	369	980.073		Weihaiwei	37 30.0	122 11.0 E.	1	979.993	
Puigcerdá	42 25.0	1 54.7 E.	1190	980.055		Zikawei, Observatory.	31 11.6	121 25.8 E.	4	979.437	
Roncal	42 49.0 40 58.0	0 59.6 5 39.0	675 805	980.228 980.057		India (6, 9)	27 10.3	78 1.1 E.	163	070 050	0.01
Salou		1 9.0 E.	2	980.268		Agra	L	81 55 E.	88	979.058 978.945	
San Fernando		6 12.3	44	979.843		Badnur	1	77 54.2 E.	641	978.609	
Santander	43 29.1	3 49.0	10	980.503		Chatra		88 23.4 E.	20	978.880	
Seville	37 23.0	5 59.0	11	979.965		Colaba	18 53.8	72 48.8 E.	10	978.633	0.000
Tarita	36 0.0	5 37.0	29	979.748		Cuttack	20 29.1	85 52.0 E.	28	978.661	0.000
Toledo		4 1.0	520	980.015		Dehra Dun	1	78 3.2 E.	682	979.065	
Torrejón		0 39.1	2	980.032		Dolhpur		77 54.8 E.	176	979.001	
Valencia		0 23.0	6	980.127		Gesupur		77 42.0 E.	211	979.127	
Valladolid	I .	4 43.0 7 35.0	695 12	980.111 980.553		Jacobabad	28 16.6 26 31.3	68 27.1 E. 88 44.2 E.	56 82	979.188 978.924	
414£10	10 00.0	1 , 90.0	12	1000.000	l	Jalpaiguri Jubbulpore		79 59 E.	62 447	978.924	
Suede, see Sweden.						Kalianpur		77 39.3 E.	537	978.779	
Suisse, see Switzerland.						Madras		80 14.9 E.	6	978.281	
Svézia, see Sweden.						Majhauli		83 58 E.	67	978.930	
Svizzera, see Switzerland	l .					Mian Mir	31 31.6	74 22.5 E.	216	979.385	-0.038
						Moghal Sarai	l .	83 6 E.	78	1	-0.024
Sweden (2)				1		Montgomery	30 39.8	73 6.3 E.	170	979.323	-0.019
Haparanda		24 9.6 E.	4	982.337		Mussoorie (Camel's	20 07 4				
Hernösand Lund (Sternwarte)	62 37.8 55 41.9	17 57.0 E. 13 11.3 E.	25 32	982.082		Back)	30 27.6 26 7.1	78 4.5 E. 85 25 E.	2110 55		+0.032
Stockholm (Stern-	35 41.9	13 11.3 E.	32	981.564		Musaffarpur		85 25 E. 67 0.7 E.	1682	978.853	-0.038
warte, base station).	59 20.6	18 3.5 E.	45	981.843		Raipur	21 13.9	81 41 E.	304	978.614	
Upeala (Sternwarte)	59 51.5	17 37.6 E.	20	981.910		Rajpur		78 5.8 E.	1012	979.004	
Switzerland (6, 23)	1					Sandakphu Peak	1	88 0.2 E.	3586	978.192	
Basel (base station)	47 33.6	7 34.8 E.	277	980.788		Yercaud	11 46.9	78 12.5 E.	1369	977.910	+0.116
Bern (Landestopo-						Japan (2, 6)					
graphie)		7 26.8 E.	522	980.622		Aomori	40 49	140 45 E.	1	980.325	
Bironico	46 7.4	8 55.7 E.	473	980.580		Chofu	34 0	131 0 E.	6	979.691	
Brusio	46 15.3	10 7.7 E.	721	980.429		Fukushima	1	140 27 E. 133 22.5 E.	67 3	980.022 979.711	
kums)	47 3.5	7 37.2 E.	558	980.633		Fukuyama	40 31	141 30 E.	21	980.359	
Chanrion (Klubhütte)	45 56.3	7 22.9 E.	2435	980.107	+0.113	Hamada	34 54	132 6 E.	3	979.768	
Eggishorn (Hotel						Hamamatsu		137 43 E.	31	979.750	
Jungfrau)	46 25.2	8 6.8 E.	2187	980.169	+0.086	Himeji	34 50.1	134 42 E.	16(?)	979.754	1
Frauenfeld (Kantons-				1		Kamakura	35 19.2	139 34 E.	13	979.779	
schule)		8 54.2 E.		980.703		Kofu		138 35 E.	270	979.719	
Fribourg (Universität)		7 9.4 E.		980.584		Kurume		130 31.6 E.	11	979.618	
Gornergrat	45 59.0 45 52.1	7 46.8 E. 7 10.4 E.		979.992 980.072		Kyoto		135 47.1 E. 133 3 E.	55 23	979.727 979.812	•
Grand St. Dernard Geneva (Sternwarte)	46 12.0	6 9.2 E.		980.072		Matsue	33 50	133 3 E. 132 45 E.	23 19	979.812	
Gateig (Hotel		5.2.2.5.		330.002		Misusawa		141 8 E.	61	980.159	
Sanetsch)	46 23.2	7 56.2 E.	1185	980.396	-0.001	Nagasaki		129 52.3 E.	30	979.594	
Landquart (Schul-						Nagoya		136 53 E.	14	979.756	
haus)	46 57.8	9 32.6 E.	520	980.523		Nikko	36 44	139 38 E.	649	979.780	
Lausanne (Ecole de						Okazaki		137 10 E.	25	979.764	
Chimie et de Physi-						Shizuoka	34 58.4	138 23 E.	23	979.753	1
que)	1	6 38.2 E.	531	980.599		Tokyo (base station)		139 46.0 E.	18	979.801]
Les Verrières		6 28.8 E. 8 9.6 E.	928 714	980.573 980.515		Tsukuba	36 13.4 33 13	140 5.8 E. 132 34.5 E.	870 2	979.781 979.597	1
Lungern (Schulmaus) Lungern (Kantons-		S 9.0 E.	. 1.3	900.013		Uwajima	1	132 34.5 E. 135 11.0 E.	3	979.397	
schule)	47 3.0	8 18.2 E.	434	980.626		Yamada		136 42.8 E.	4	979.727	
Neuchatel (Stern-				333.320		Yamagata	38 15	140 16 E.	153	980.027	
warte)	47 0.1	6 57.3 E.	487	980.653	-0.026	Siam (2, 3, 6)					1
Rivera		8 55.7 E.	473	980.580		Bankok	13 43.9	100 29.4 E.	7	978.278	}
St. Maurice (Hotel du						Siberia, (see Russia, p.	1				[
Simplon)		7 0.2 E.		980.512		398).	1			1	1
Simplonhospiz		8 1.9 E.		980.202		Turkestan (2, 6)	l				
Sion (Collège)	46 14.1	7 21.5 E.	514	980.480	-0.082	Derbent, Bokhara	38 12.0	67 3.2 E.	1012	979.672	
Stilfserjoch, see Aus-						Kala Khum, Bokhara.	38 27.3	70 46.5 E.	1345	979.462	
tria. Truns (Schulhaus)	48 44 4	8 59.4 E.	950	080 420		Samarkand	39 39.1	66 58.7 E.	719	979.883	1
Zermatt		8 59.4 E. 7 45.0 E.		980.432 980.250		Sultan-Bend	37 7.5 41 19.5	62 28.0 E. 69 17.7 E.	272 478	979.798 980.086	
Zernez (Schloss)		10 5.8 E.		980.308	0.007	Chardzhui (Interna-	** **."	VO 11.1 E.	410	1000.000	
		8 33.1 E.		980.676		tional Latitude Sta-					1
Zürich											

Station	Latitud	Longitude	h	0	TC	Station	Latitude	Longitude	h h	0	TC
AFRICA	1					Perth	31° 57.1′8.	115° 50.5′E.	58	979.378	,
Egypt and Anglo-Egypt-	i					Sydney	33 51.7 S.	151 12.7 E.	43	979.680	İ
ian Sudan (10)			_			OCEANIC					
Abu Hamed	19° 32.0		1	978.538	1	Atlantic Ocean a n d				l	l
Aswan	24 5.1	32 53.1		978.879		Mediterranean Sea		1			l
Atbara	17 41.9	33 58.9		978.421	;	(2, 3, 6,16)	42 41.2	9 27 E.	20	980.519	
Helwan		31 20.4		979.295		Bastia, Corsica	_	59 36.5	20	980.319	
Khartum		32 32.9 3 32 39.3 3		978.308 978.982		Bridgetown, Barbados.	13 4.3 37 30.2	15 4.7 E.	43	980.065	ŀ
Luxor		30 45.5		978.982		Catania, Sicily Fornells, Balearic Is-	37 30.2	15 4.7 E.	10	980.005	ł
Minia	21 55.8	31 19.9		978.728		lands	40 3.4	4 7.9 E.	7	980.283	
Red Sea (2)	21 00.8	31 19.9	2. 120	810.120		Ibisa, Balearic Islands.	38 54.3	1 26.1 E.	3	980.146	İ
Aden	12 47.3	44 59.3	E. 5	978.327		Jamestown, St. Helena	1	5 43.7	10	978.712	+0 177
Harmil Island, Dah-	12 11.0	12 00.0	J.	10.0.027		Karajak Glacier,	10 00 5.	0 10.1			' ' ' ' ' '
lak Archipelago Eri-		1	1			Greenland	70 26.9	50 19.8	20	982.534	l
trea	16 28.8	40 8.7	E. 4	978.465	1	Kingston, Jamaica	17 57.7	76 47.3	2	978.591	l
St. John Island (Zeb-	10 20.0	10 0	-	10.00		Las Palmas, Canary			_		ł
irget)	23 35.8	36 12.0	E. 6	979.026		Islands	28 7.0	15 26.0	8	979.385	ł
Mersa Dhiba	25 20.2	34 44.3		979.007		Palermo, Sicily	38 6.9	13 22.0 E.	20	980.069	
Sherm Sheikh (Sinai).	27 51.1	34 16.9		979.174		Palma de Mallorca,					1
Sues	29 56.0	32 33.4		979.307		Balearic Islands	39 34.5	2 39.1 E.	23	980.179	l
Sudan, see Egypt.				1		Ponta Delgada, Asores	1	25 40.8	4	980.143	
Miscellaneous (2, 3)			1	1		Reykjavik, Iceland	64 8.5	22 0.3	39	982.273	1
Algiers (Observatory).	36 44.8	3 3	E. 213	979.905		St. George, Bermuda	32 21	64 40	2	979.806	+0.218
Biserta, Tunisia	37 16.4	9 52.5		979.975		Santa Crus de la	i				ĺ
Biskra, Algeria	34 50.9	5 43	E. 137	979.617		Palma, Canary Is-					
Cape Town, U. S. Af.	1		- 1			lands	28 41.0	17 46.0	12	979.459	l
(Observatory)	33 56.1	8. 18 28.7	E. 11	979.657		Stromboli, Lipari Is-					1
Dar-es-Salaam, Tan-						lands	38 48.2	15 14.1 E.	48	980.212	
ganyika Ter	6 49.0	S. 39 18.01	E. 7	978.117		Whales Point, Spits-					İ
Domjo Ndorobbo	3 08.8	8. 35 13.2	E. 1715	977.549		bergen	77 30.4	20 58.8 E.	458(?)	982.899	
Freetown, Sierre Leone	8 29.4	13 14.3	65	978.200		Valetta, Malta	35 53.8	14 31.3 E.	62	979.887	
E. Uasso Nyiro, Kenya	1 53.1	8. 36 8.2	E. 676	977.737		Indian Ocean, see Pacific					ĺ
Johannesburg, U. S.						Ocean.		i			1
Af. (Observatory)	26 10.9	S. 28 4.5	E. 1805	978.553		Mediterranean Sea, see	İ				
Kampo, Cameroons,						Atlantic Ocean.	1				ŀ
Fr. Equat. Af	2 21.2	9 49.6		978.040	1	Pacific and Indian		1			İ
Laghwat, Algeria	33 47.7	2 53		979.356	1	Oceans (2, 3, 6)		1			1
Langenburg, U. S. Af.	9 35.8	8. 34 8.6	E. 477	977.907	i	Auckland, New Zea-					
Libreville, Gabon, Fr.		0.07.0				land	36 50.9 S.	174 46.2 E.	3	979.962	ĺ
Equat. Af	0 22.3	9 27.2	E. 2	977.999	l	Batavia, Java (Ob-		.00 .00 .70	_		[
Loanda, Angola, Por-	0 40 0			070 010		servatory)	6 11.0 S.	106 49.8 E.	7	978.178	
tuguese W. Af	8 48.6	S. 13 14.1 1	E. 4	978.212		Hobart, Tasmania	40 52 4 9	147 22.0 E.	58	080 441	1
Lourenço Marques,	ŀ					(Observatory) Honolulu, Territory of	42 53.68.	147 22.0 E.	36	980.441	l
Mozambique, Por- tuguese E. Af. (Ob-						Hawaii (Observa-	l				
servatory)	26 2.5	8. 32 19.8	E. 55	979.068		tory)	21 18.1	157 51.8	6	978.946	±0 162
Lüderits Bay, South-	20 2.0	5. 32 10.0	3.	1878.000		Kudat, British North	20.1	107 01.0		0.0.510	, 0.100
west Af	26 38.8	8. 15 9.7	E. 2	979.103	Į	Borneo	6 53.0	116 50.7 E.	2	978.149	
Monrovia, Liberia	6 19.0	10 48.8	41	978.165		Makassar, Celebes	5 7.38.	119 24.5 E.	2	978.138	i
Mozambique, Portu-	0 20.0	10 10.0		10.0.200		Manila, Philippines	14 34.7	120 38.6 E.	3	978.360	
guese E. Af	15 2.1	S. 38 25	E. 3	978.451		Marau-Sound, Solo-		1	•		
Ouled Rhamoun, Al-		· • • • • •	-	10.01.01		mon Islands	9 49.18.	160 48.5 E.	3	978.349	ļ
geria	36 10.8	6 41	E. 687	979.709		Mauna Kea, Hawaiian		1			
Pangani, Tanganyika	•• •••	" '		1		Islands	19 49.2	155 28.8	3981	978.069	+0.469
Ter	5 25.8	8. 38 58.8	E. 7	978.039		Numea, New Cale-					
Rio del Rey, Nigeria	4 43.5	8 38.3		978.087		donia	22 16.6 S.	166 27.8 E.	2	978.877	l
Tangier, Morocco	35 46.5	5 48.6	63	979.737		Singapore, Straits			1 -		Ι.
AUSTRALIA (2, 3, 19)		3.5.0				Settlements	1 16.5	103 50.3 E.	21	978.082	Ι ΄
Brisbane (Observa-						Port Vila, Sandwich					l
tory)	27 28.0	8. 153 1.6	E. 40	979.148		Island, New Heb-		[1
Hobart, Tasmania						rides	17 45.0 S.	168 19.0 E.	3	978.637	1
(Observatory)	42 53.6	8. 147 22.0	E. 58	980.441		Winter Quarters,					I
Melbourne (Observa-					116	Kaiser Wilhelm II				1	
tory)	37 49.9	8. 144 58.5	E. 26	979.987		Land	66 2.28.	89 38.1 E.	1	982.388	l

Table 2.—Acceleration of Gravity at Sea-Level (g_0)

 $g_0 = 978.039 \ (1 + 0.005294 \ \sin^2 \varphi - 0.000 \ 007 \ \sin^2 2\varphi)^*$; Bowie (6). $\varphi = \text{latitude}$. Unit of g_0 is cm/sec². Basis: Potsdam system

									<u> </u>				,				
φ	gs cm/sec²	φ	ge cm/sec²	•	ge cm/sec²	•	ge cm/sec²	•	ge cm/sec²	•	ge cm/sec²	•	ge cm/sec²	•	ge cm/sece	•	00 cm/sece
0° 00′ 10 20 30 40 50	978.039 .039 .039 .039 .040	10° 00′ 10 20 30 40 50	978.194 .199 .205 .210 .215 .221	20° 00′ 10 20 30 40 50	978.642 .652 .661 .671 .681 .691	30° 00′ 10 20 30 40 50	979.328 .341 .354 .368 .381 .394	40° 00′ 10 20 30 40 50	980.172 .186 .201 .216 .231	50° 00′ 10 20 30 40 50	981.071 .086 .100 .115 .130	30 40	981.917 .930 .943 .956 .969 .982	70° 00′ 10 20 30 40 50	982.608 .618 .628 .637 .647	80° 00′ 10 20 30 40 50	983.060 .065 .070 .075 .080
1 00 10 20 30 40 50	978.041 .041 .042 .043 .043	11 00 10 20 30 40 50	978.227 .232 .238 .244 .250	21 00 10 20 30 40 50	978.701 .711 .721 .731 .742 .752	31 00 10 20 30 40 50	979.407 .420 .434 .447 .460	41 00 10 20 30 40 50	980.261 .276 .291 .306 .321 .336	51 00 10 20 30 40 50	981.160 .174 .189 .204 .218	10 20 30 40	981.995 982.008 .020 .033 .046	71 00 10 20 30 40 50	982.665 .675 .684 .693 .702	81 00 10 20 30 40 50	983.089 .094 .099 .103 .107 .112
2 00 10 20 30 40 50	978.045 .046 .048 .049 .050	12 00 10 20 30 40 50	978.262 .268 .274 .280 .287 .293	22 00 10 20 30 40 50	978.762 .773 .783 .794 .804	10 20 30 40	979.487 .501 .515 .528 .542 .555	80 40	980.350 .365 .380 .395 .410 .425	52 00 10 20 30 40 50	981.248 .262 .277 .292 .306	10 20	982.071 .083 .096 .108 .121 .133	72 00 10 20 30 40 50	982.720 .729 .738 .746 .755	82 00 10 20 30 40 50	983.116 .120 .124 .128 .132 .136
3 00 10 20 30 40 50	978.053 .055 .056 .058 .060	13 00 10 20 30 40 50	978.300 .306 .313 .320 .327 .334	23 00 10 20 30 40 50	978.826 .837 .848 .859 .870	33 00 10 20 30 40 50	979.569 .583 .597 .611 .624 .638	43 00 10 20 30 40 50	980.440 .455 .471 .486 .501	53 00 10 20 30 40 50	981.335 .350 .364 .379 .393	10 20 30	982.145 .157 .169 .182 .194 .206	73 00 10 20 30 40 50	982.772 .780 .789 .797 .805	83 00 10 20 30 40 50	983.139 .143 .147 .150 .153 .157
4 00 10 20 30 40 50	978.064 .066 .068 .071 .073	14 00 10 20 30 40 50	978.341 .348 .355 .362 .369 .377	24 00 10 20 30 40 50	978.892 .903 .914 .926 .937	34 00 10 20 30 40 50	979.652 .666 .680 .694 .708	10 20 30	980.531 .546 .561 .576 .591 .606	54 00 10 20 30 40 50	981.422 .436 .450 .465 .479	10 20 30 40	982.218 .229 .241 .253 .265 .276	74 00 10 20 30 40 50	982.821 .829 .837 .845 .853	84 00 10 20 30 40 50	983.160 .163 .166 .169 .172
5 00 10 20 30 40 50	978.078 .081 .083 .086 .089	15 00 10 20 30 40 50	978.384 .392 .399 .407 .415 .423	25 00 10 20 30 40 50	978.960 .971 .983 .994 979.006	35 00 10 20 30 40 50	979.736 .751 .765 .779 .793 .807	45 00 10 20 30 40 50	980.621 .636 .651 .666 .681	55 00 10 20 30 40 50	981.507 .521 .536 .550 .564 .578	65 00 10 20 30 40 50	982.288 .300 .311 .322 .334 .345	75 00 10 20 30 40 50	982.868 .876 .883 .891 .898 .905	85 00 10 20 30 40 50	983.177 .180 .182 .185 .187 .189
6 00 10 20 30 40 50	978.095 .098 .102 .105 .108	16 00 10 20 30 40 50	978.430 .438 .446 .455 .463	26 00 10 20 30 40 50	979.030 .042 .054 .065 .077	36 00 10 20 30 40 50	979.822 .836 .850 .865 .879	46 00 10 20 30 40 50	980.711 .726 .741 .757 .772 .787	56 00 10 20 30 40 50	981.592 .606 .620 .634 .648 .661	66 00 10 20 30 40 50	982.356 .368 .379 .390 .401 .412	76 00 10 20 30 40 50	982.912 .919 .926 .933 .940 .947	86 00 10 20 30 40 50	983.191 .193 .195 .197 .199 .201
7 00 10 20 30 40 50	978.115 .119 .123 .127 .131 .135	17 00 10 20 30 40 50	978.479 .488 .496 .505 .514	27 00 10 20 30 40 50	979.102 .114 .126 .138 .151	37 00 10 20 30 40 50	979.908 .922 .937 .951 .966	47 00 10 20 30 40 50	980.802 .817 .832 .847 .862 .877	57 00 10 20 30 40 50	981.675 .689 .703 .716 .730	67 00 10 20 30 40 50	982.423 .434 .444 .455 .466 .476	77 00 10 20 30 40 50	982.953 .960 .967 .973 .979	87 00 10 20 30 40 50	983.202 .204 .205 .207 .208 .209
8 00 10 20 30 40 50	978.139 .143 .147 .152 .156 .160	18 00 10 20 30 40 50	978.531 .540 .549 .558 .567	28 00 10 20 30 40 50	979.175 .188 .200 .213 .226 .238	38 00 10 20 30 40 50	979.995 980.010 .024 .039 .054 .068	48 00 10 20 30 40 50	980.892 .907 .922 .937 .952	58 00 10 20 30 40 50	981.757 .771 .784 .798 .811 .825	68 00 10 20 30 40 50	982.487 .497 .508 .518 .528 .539	78 00 10 20 30 40 50	982.992 .998 983.004 .010 .016	88 00 10 20 30 40 50	983.210 .211 .212 .213 .214 .215
9 00 10 20 30 40 50	978.165 .170 .174 .179 .184 .189	19 00 10 20 30 40 50	978.585 .594 .604 .613 .623	29 00 10 20 30 40 50	979.251 .264 .277 .290 .302 .315	39 00 10 20 30 40 50	980.083 .098 .113 .127 .142 .157	48 00 10 20 30 40 50	980.981 .996 981.011 .026 .041 .056	59 00 10 20 30 40 50	981.838 .851 .865 .878 .891	69 00 10 20 30 40 50	982.549 .559 .569 .579 .589 .598	79 00 10 20 30 40 50	983.027 .033 .038 .044 .049	89 00 10 20 30 40 50	983.215 .216 .216 .216 .217 .217
																90 00	983.217

^{*} This formula differs slightly (not over one in 100 000) from that proposed by Helmert (14) and quite extensively used. A table similar to this, but based on Helmert's formula is given by Albrecht (1).

D. VARIATION OF GRAVITY WITH ELEVATION AND DEPTH

Elevation; Free Air Method.—If there were no matter projecting above the geoid and the geoid were a smooth ellipsoid of revolution, then the value (g_H) of the acceleration of gravity (cm/sec^2) at a height H meters above the surface would be related (15, 16) to that (g_0) at the surface, as indicated by equation (1), in which φ is the latitude.

$$g_H = g_0 - (0.000\ 308\ 55 + 0.000\ 000\ 22\cos 2\varphi)H + 0.000\ 072$$

$$\left(\frac{H}{1000}\right)^2$$
 (1)

This is known as the free air correction. For most purposes it is sufficient to use the approximate formula (2).

$$g_H = g_0 - 0.000 3086 H (2)$$

If g_0 is taken from Table 2, the value of g_H obtained for any station by the use of equation (1) will agree fairly well with the true acceleration, if the surrounding topography is not too rugged. In a fairly flat country, the difference will be considerably less than 0.1 cm/sec², except in very rare cases; and even in a mountainous country, the difference will ordinarily be less than 0.2 cm/sec². For stations below sea-level, but not below the surface of the earth, the same formulae apply; but for such stations, H is negative.

More Exact Methods.—In mountainous country, the computed value will be practically as close to the true value as in flat country if an additional term is added to the right hand side of equation (1), to take account of the elevation of the place above or below the general level of the topography within a radius of, say, approximately 160 km. For every 10 m the place in question is above the general level, this term amounts to 0.001 cm/sec², and for every 10 m below the general level, it amounts to -0.001 cm/sec². In computing the height of a coast station above the general level, the water must be considered replaced by an equal mass of rock, of average surface density, resting on the bottom of the ocean.

If it is desired to obtain a somewhat better value for the computed gravity at a place, the correction term just mentioned must be replaced by a correction for topography and isostatic compensation, computed by the method of John F. Hayford (12).

A somewhat larger error should be expected in the computed values of gravity on oceanic islands than on the continents. The rocks forming these islands are evidently somewhat heavier than normal in many cases, or the ocean is over-compensated, and the observed values of gravity are therefore usually larger than the computed values. In such cases, an error of 0.3 cm/sec², or possibly even 0.4 cm/sec² in computed values may be expected.

Depth.—As the density of the crust is less than two-thirds the mean density of the earth, the acceleration of gravity increases as we advance into the crust. The mean rate of increase is 0.000 0851 cm/sec² per meter of depth. The actual rate at any place depends upon the density of the crustal material in that locality, and is approximately given by the formula (13, 17)

 $g_d = g_0 + (0.000 \ 3086 - 0.000 \ 0837\rho)d$ (3) where g_d = acceleration of gravity (cm/sec²) at the depth of d m, and ρ = density (g/cm²).

LITERATURE

(For a key to the periodicals see end of volume)

- Albrecht, Formeln u. Hilfstafeln f. geog. Ortsbestimmungen, 296; 08.
 Borrass, C. R. 16th Conf. Gen. Assoc. Geodesique Internat. 2: 09.
 Borrass, C. R. 17th Conf. Gen. Assoc. Geodesique Internat. 2: 261; 12.
 Bowie, 217, No. 12: 12.
 Bowie, 217, No. 99: 15.
 Bowie, 217, No. 40: 17.
 Boys, 63, 186: 1; 95.
 Braun, 228, 64: 187; 96.
 Couchman, Survey of India, Prof. Paper, No. 15: 15.
- (1°) Curry, Sursey Dept. of Egypt, Paper No. 18: 13. (11) Gigitaky and Yachontow, Bull. Astronomic Inst., No. 5: 28; 24. (12) Hayford and Bowie, 217, No. 10: 12. (13) Helmert, Höhere Geodasie, 2: 46, 492; 84. (14) Helmert, 76, 336; 01. (15) Helmert, 76, 651; 03. (16) Helmert, Encyklop. math. Wiss, 6 (1B): 97; 10. (17) Ibid., p. 160. (18) Huelin, Tras. d. l'Entens. Pesanteur en Espagne, 24. (19) Love, 251, 35: 90; 22.
- (20) McDiarmid, Publ. Dominion Observatory, 2: 201; 15. (21) Ibid., 3: 357; 18. (22) Miller, Jour. Roy. Astron. Soc. Canada, 17: 10, 197; 23. (22) Niethammer, Astronomischgeodatische Arbeit. in d. Schweis; Schweiserischen geodat. Komm. 12, 13, 15, 16; 1910, 1911, 1916, 1921. (24) Vening Meiness, Obs. Pendule dans Pays-Bas; Publ. Com. Geod. Neerlandaise, 23.

AERODYNAMICS

L. J. BRIGGS AND H. L. DRYDEN

Problems in aerodynamics cannot be idealized with the same readiness as problems in mechanics. The side of a building may not be regarded as a thin, flat plate for the purpose of computing the force of the wind, and data for a cylinder of a particular length cannot be directly applied for computing the wind force on a cylinder of some other length. Nearby objects exert an influence which cannot be neglected.

Results obtained for a particular object can be applied strictly only to geometrically similar (definition 6) objects in similar surroundings. Many of the apparent discrepancies among the results of different experimenters are to be attributed to departures from geometrical similarity of the models, to the effects of the supports or other nearby objects, and to differences in the fine structure (turbulence) of the approximately steady air streams, rather than to errors in measuring the force or wind speed. It is not possible to discuss these matters in detail here, and there is no complete discussion available for reference.

SYMBOLS

A	Some specified area	C_{M}	Moment coefficient (see
A_r	Aspect ratio		paragraph on air foils)
C	A coefficient	C_N	Coefficient of force nor-
$C_{\bullet p}$	Coefficient of center of		mal to the plane of
	pressure		reference
C_d	Coefficient of drag	$C_{I\!\!P}$	Coefficient of power
α.	Coofficient of life		(innut)

$C_{P\bullet}$	Coefficient of power out-put	N. A. C. A.	National Advisory Com- mittee for Aeronaut-
Ca	Coefficient of torque		ics, U. S. A.
Coo	Coefficient of torque load (output)	n	Number of revolutions per second
C _T	Coefficient of force par- allel to the plane	P_{ullet}	Power developed (output)
	of reference	P_i	Power input to propeller
C_{l}	Coefficient of thrust	P. R.	Pitch ratio
C. P.	Center of pressure Length of chord of air-	p	Pressure at a point on a surface
	foil	P.	Static pressure of the air
D	Diameter	Ö	Torque
F	Resultant wind force	Q•	Torque load (output)
F_d	Drag = Component of F parallel to wind	q	Dynamic pressure, as indicated by Pitot
F_f	Frictional force		tube (Fig. 1)
F_l	Lift - Component of F normal to wind and	Q•	$\rho V^2/2$ = q if there is no compression of the air)
	to W	R	Reynold's number
F_N	Component of F normal to the plane of refer- ence	S	That dimension of the plane of reference which is at right angles
F_{T}	Component of F parallel		to the wind - Span
	to the plane of refer-	$m{T}$	Temperature
	ence	Ł	Thickness
F_t	Thrust of propeller	\boldsymbol{v}	Air speed relative to
F_{z}	Any component of F		point considered
L	Some linear dimension	V_i	Indicated air speed
M	Moment of F about forward (leading) edge	W	Width = That dimen- aion of plane of ref-

ence which is normal Viscosity Density of air when unto S; i.e., makes least disturbed by bodies angle with wind Distance in the plane of moving relatively to it. reference, from the Conventionally chosen leading edge, or its standard" value of p projection to C. P. definite but un-Efficiency specified mathematical Angle of attack function

DEFINITIONS

- 1. Angle of Attack (θ_A) is the angle which the direction of the wind makes with the plane of reference; it is positive if the wind strikes what is the under side of this plane when the body is in its usual position.
 - 2. Aspect ratio $(A_r) = S/W$.
- 3. Center of pressure (C. P.) of a body is that point, in the plane of reference, about which the resultant moment of the pressures is zero.
 - 4. Chord (c). See paragraph on airfoils.
 - 5. Coefficient of center of pressure (C_{cp}) .

$$C_{ep} = x_c/W$$
; for airfoil, $C_{ep} = x_c/c$.

Fig. 1.—Standard Pitot-static tubes.

- 6. Geometrically similar systems. If two bodies together with their surroundings, are so related geometrically that one system corresponds exactly with a uniformly magnified image of the other, the two systems are said to be geometrically similar.
- 7. Indicated air speed (V_i) is defined by the relation $q = \rho V^2/2 = \rho_0 V_i^2/2$, where ρ_0 is the "standard" air density.
- 8. Mean temperature (T_m) of atmospheric air column below Z is that temperature for which the pressure at height Z in an isothermal column of air, pressure at bottom = 760 mm of mercury, would be that actually observed in the atmosphere at Z.
- 9. Pitch ratio $(P. R.)_x$ at any point of the blade of a propeller or of a wind-mill distant x from the axis of revolution is $(P. R.)_x = 2\pi x/D$ tan θ_x , where D is the diameter of propeller or mill wheel, θ_x = angle which face of blade makes with plane of revolution. If $(P. R.)_x$ is independent of x, propeller has a constant pitch ratio; if θ_x is independent of x, it has a constant blade angle.
- 10. Reynold's number $(R) = VL\rho/\mu$, where L is some specified linear dimension. The choice of L depends upon the form of the object, and the problem. R is dimensionless.

CONSTANTS ASSUMED

Standard air density is $\rho_0 = 1.2255 \, \text{kg/m}^3 (= 0.002\,377 \, \text{slug/ft.}^3)$, which is essentially that of dry air, with normal CO₂ content, at 15°C and one atmosphere.

$$\mu/\rho = 1.427 \times 10^{-5} \text{ m}^2/\text{sec} \ (= 1.535 \times 10^{-4} \text{ ft.}^2/\text{sec}).$$

For geometrically similar systems $F_x = qL^2\phi(R) = CAq$ (43), where ϕ is independent of the actual size of the system, and q is the value of the dynamic pressure at some specified point. C is a function only of R and of the geometrical form of the system; its value is the same in every self-consistent system of units, and is independent of the actual size of the system. The data in the following tables and graphs apply when all surrounding bodies

are so far removed from the one considered that they produce no effect upon F_x .

Reduction of Observations.—To obtain true air speed from speed recorded by cup anemometer, use Table 1. Aerodynamic data are usually reduced to a standard air density (ρ_0) . For q, this reduction can be effected by replacing the true air speed (V) by the indicated air speed (V_i) (definition 7), and in most cases the same procedure is amply sufficient for C. Example: If V = 100 ft./sec in air at 30° C and 754 mm of mercury, $V/V_i = 1.030$ (Fig. 2); hence $V_i = 97.1$ ft./sec and $q_0 = 11.20$ lb./ft.² (Table 2). Owing to isentropic compression of air at this speed, the actual dynamic pressure (q) is 11.20/0.998 (Table 3) = 11.22 lb./ft.² = 54.78 kg/m².

As a basis for the calibration of altimeters, and for use in the comparison of the performances of aircraft, it is assumed that (1) below a certain altitude (Z_i) , the rate of decrease (a) of the temperature (T) with the altitude is a constant; (2) above Z_i , a=0; (3) at Z=0, pressure $=p_0$, temperature $=T_0$. The temperature at $Z_i=T_i$; the mean temperature below Z is T_m . All temperatures are reckoned from absolute zero. Then, if $Z<Z_i$, $T_m=aZ/\log_*(T_0/T)$; if $Z>Z_i$, $T_m=Z/\left(\frac{1}{a}\log_*\frac{T_0}{T_i}+\frac{Z-Z_i}{T_i}\right)$, and for any value of Z_i , $Z_i=K\frac{T_m}{T_0}\log_{10}\left(\frac{p_0}{p}\right)$.

The values of these constants define what is called the "standard" atmosphere. There is not entire agreement regarding the values which best represent the average atmospheric condition (28). Those adopted by the governmental aeronautic organizations of the U. S. A. and by many of those of Europe are $T_0 = 288^{\circ}\text{C}$, $T_i = 218^{\circ}\text{C}$, $p_0 = 760$ mm of mercury, $a = 6.500 \times 10^{-2}^{\circ}\text{C/m}$ (= $1.9812 \times 10^{-2}^{\circ}\text{C/ft.}$), $Z_i = 10769$ m (= 35332 ft.), K = 19413.3 m (= 63691.8 ft.). These differ slightly from those adopted by the International Commission for Aerial Navigation (see p. 72).

TABLE 1.—ROBINSON CUP ANEMOMETER*

True air speed = V; recorded speed = V_r . If unit is 1 mi./hr, $\log_{10} V = 0.079 + 0.9012 \log_{10} V_r$.

Unit is 1 mi./hr = 1.467 ft./sec = 0.4470 m/sec

			·				
$ V_r $	V	V_r	V	V_r	, V	V_r	V
1	1.20	26	22.6	51	41.5	76	59.4
2	2.24	27	23.4	52	42.2	77	60.1
3	3.23	28	24.2	53	42.9	78	60.8
4	4.18	29	24.9	54	43.7	79	61.5
5	5.12	30	25.7	55	44.4	80	62.2
6	6.03	31	26.5	56	45.1	81	62.9
7	6.93	32	27.3	57	45.9	82	63.6
8	7.81	33	28.0	58	46.6	83	64.3
9	8.69	34	28.8	59	47.3	84	65.0
10	9.55	35	29.5	60	48.0	85	65.7
11	10.4	36	30.3	61	48.7	86	66.4
12	11.3	37	31.1	62	49.5	87	67.1
13	12.1	38	31.8	63	50.2	88	67.8
14	12.9	39	32.6	64	50.9	89	68.5
15	13.8	40	33.3	65	51.6	90	69.2
16	14.6	41	34.1	66	52.3	91	69.9
17	15.4	42	34.8	67	53.0	92	70.6
18	16.2	43	35.6	68	53.8	93	71.3
19	17.0	44	36.3	69	54.5	94	72.0
20	17.8	45	37.1	70	55.2	95	72.7
21	18.6	46	37.8	71	55.9	96	73.4
22	19.4	47	38.5	72	56.6	97	74.0
23	20.2	48	39.3	73	57.3	98	74.7
24	21.0	49	40.0	74	58.0	99	75.4
25	21.8	50	40.7	75	58.7	100	76.1
24	21.0	49	40.0	74	58.0	99	75.4

* U. S. Weather Bureau type; diameter of cups = 4 in.; centers of cups are 6.72 in. from axis; $V_r = 3$ times linear speed of centers of cups (2, 22, 23, 23).

Table 2.—Dynamic Pressure $(q = q_0)$ for Indicated Air Speed V_i

Air compression is negligible, and $q = q_0 = \rho_0 V_i^2/2$ if $V_i < 30$ m/sec (=100 ft./sec); for greater speeds, q exceeds q_0 , see Table 3. Metric units are m, kg, sec. English units are ft., lb., sec. 1 lb./ft.² = 4.882 kg/m²; 1 ft./sec = 0.3048 m/sec.

Metric	v	English	Metric	Vi	English				E	nglish			
q ₀	$ V_i$	<i>q</i> ₀	q_0	, , , , , , , , , , , , , , , , , , ,	q ₀	Vi	q ₀	Vi	Q ₀	V_i	q ₀	Vi	90
0.063	1	0.00119	42.25	26	0.8038	51	3.093	76	6.868	101	12.13	126	18.88
0.250	2	0.00476	45.56	27	0.8668	52	3.215	77	7.050	102	12.37	127	19.18
0.562	3	0.01070	49.00	28	0.9322	53	3.340	78	7.234	103	12.61	128	19.48
1.00	4	0.0190	52.56	29	0.9999	54	3.467	79	7.421	104	12.86	129	19.79
1.56	5	0.0297	56.25	30	1.070	55	3.597	80	7.610	105	13.11	130	20.09
2.25	6	0.0428	60.06	31	1.143	56	3.729	81	7.801	106	13.36	131	20.40
3.06	7	0.0583	64.00	32	1.218	57	3.863	82	7.995	107	13.61	132	20.72
4.00	8	0.0761	68.06	33	1.295	58	4.000	83	8.191	108	13.87	133	21.03
5.06	9	0.0963	72.25	34	1.374	59	4.139	84	8.390	109	14.13	134	21.35
6.25	10	0.1189	76.56	35	1.457	60	4.280	85	8.591	110	14.39	135	21.67
7.56	11	0.1438	81.00	36	1.541	61	4.424	86	8.794	111	14.65	136	21.99
9.00	12	0.1712	85.56	37	1.628	62	4.571	87	9.000	112	14.91	137	22.32
10.56	13	0.2009	90.25	38	1.717	63	4.719	88	9.208	113	15.18	138	22.64
12.25	14	0.2330	95.06	39	1.808	64	4.870	89	9.418	114	15.45	139	22.97
14.06	15	0.2675	100.0	40	1.902	65	5.024	90	9.631	115	15.72	140	23.30
16.00	16	0.3044	105.1	41	1.999	66	5.179	91	9.846	116	16.00	141	23.64
18.06	17	0.3436	110.3	42	2.097	67	5.337	92	10.06	117	16.28	142	23.97
20.25	18	0.3852	115.6	43	2.198	68	5.498	93	10.28	118	16.56	143	24.31
22 . 56	19	0.4292	121.0	44	2.302	69	5.661	94	10.51	119	16.84	144	24.66
25 . 00	20	0.4756	126.6	45	2.408	70	5.826	95	10.73	120	17.12	145	25.00
27.56	21	0.5243	132.2	46	2.516	71	5.994	96	10.96	121	17.41	· 146	25.34
30.25	22	0.5755	138.1	47	2.627	72	6.164	97	11.18	122	17.70	147	25.69
33.06	23	0.6290	144.0	48	2.739	73	6.336	98	11.42	123	17.99	148	26.04
36.00	24	0.6849	150.1	49	2.855	74	6.511	99	11.65	124	18.28	149	26.40
39.06	25	0.7431	156.3	50	2.973	75	6.688	100	11.89	125	18.58	150	26.75

Fig. 3.—Air force: flat plates normal to wind.

Fig. 2.—Ratio of true air speed (V) to indicated air speed (V_i).

Table 3.—Correction for Isentropic Compression (63) Metric (M) unit of V = 1 m/sec; English (E) = 100 ft./sec

1	7	$\rho v^2/2q$		V	$\rho v^2/2q$	
E	M	$= q_0/q$	E	M	$= q_0/q$	
1	30	0.998	6	183	0.931	
2	61	0.992	7	213	0.907	
3	91	0.982	8	244	0.881	
4	122	0.969	9	274	0.852	
5	152	0.951	10	305	0.822	

Table 4.—Wind Pressure on Structures

Reference plane (see below) is normal to wind. $F_N = C_N Aq$; A = area of projection of object upon reference plane Unit of $F_N/A = 1 \text{ lb./ft.}^2 = 4.88 \text{ kg/m}^2$

Object	C_N	F_N/A^*
1. Long flat plate	2	30
2. Square flat plate	1.1	16
3. Rectangular prism (1:1:5) (75)	1.6	24
4. Long cylinder		12
5. Short cylinder	0.7	10

^{*}For $V=76\,\mathrm{mi}$, per hr (=34m/per sec) true speed = 100 mi, per hr recorded by Robinson anemometer.

Fig. 4.—Pressure distribution: oblong, rectangular plate, inclined (12, 13).

Wind Pressure on Structures.—One must consider (1) maximum wind speed to which the structure will be subjected, (2) the value of the coefficient C_N , and (3) the effective exposed area. The first and the third depend upon local conditions; in the third, shielding effects are very important. The value of C_N should be determined from observations upon a model of the actual structure, as experiments upon flat plates are of little value for this purpose. Opinions differ regarding whether, in gusty winds, the maximum value of F_N is determined by the average or by the maximum value of V (20, 52). Approximate values of C_N for certain typical cases are given in Table 4, where reference plane for flat plate is surface of plate; for prism, its largest face; for cylinder, the plane through axis and normal to that which contains axis and direction of wind. Object (1) is comparable to such structures as wireless masts and long narrow bridge girders; (2) to thin square signboards; (3) to tall buildings; (4) to chimneys; (5) to cylindrical water tanks.

Table 5.—Surface Friction (F_f) on Thin Flat Plates (Standard density and viscosity)

 F_f (= $\int f dA$) = 0.0375 $AqR^{-0.16} = F_0AK_wK_v$ (5.61) where A = total area (both sides) exposed to air stream, F_0 is a factor depending upon the density and viscosity of the air and upon the units employed, and K_v and K_v are numerical factors determined, respectively, by the width (W) of the plate in the direction of the stream, and by the speed (V). F_0 is independent of the ratio S/W, provided 0.5 < (S/W) < 2; if S/W = 30, F_0 is 10% less than the value given in the table. For effect of roughness (it is great), and for variation of f from point to point see (22, 24, 32, 53, 54, 55, 62).

Unit	$F_0 = 0.0$	lb.; of	/ft. ² A = 1 ft. ² ;	Unit	Metri $F_0 = 0.03$ of $F_f = 1$ of $V = 0.03$	kg; of	m^2 $A = 1 m^2$;
W	<i>K</i> .	V	Κ,	W	K.	V	K,
1	1.413	10	0.014	1	1.000	10	1.000
2	1.273	20	0.051	2	0.901	20	3.605
3	1.198	30	0.108	3	0.848	30	7.633
4	1.147	40	0.184	4	0.812	40	13.00
5	1.110	50	0.277	5	0.786	50	19.64
6	1.080	60	0.389	6	0.764	60	27.52
7	1.055	70	0.517	7	0.747	70	36.60
8	1.034	80	0.662	8	0.732	80	46.85
9	1.016	90	0.823	9	0.719	90	58.26
10	1.000	100	1.000	10	0.708	100	70.80
11	0.986	110	1.193	11	0.698	110	84.45
12	0.973	120	1.401	12	0.689	120	99.19
13	0.961	130	1.625	13	0.681	130	115.0
14	0.951	140	1.864	14	0.673	140	131.9
15	0.941	150	2.117	15	0.666	150	149.9
20	0.901	160	2.386	20	0.638	160	168.9
30	0.848	170	2.669	30	0.600	.170	188.9
40	0.812	180	2.967	40	0.575	180	210.0
50	0.786	190	3.279	50	0.556	190	232.1
100	.0.708	200	3.605	100	0.501	200	255.2

Fi=CiAq; Fd=CdAq; xc=CcpW A=Area of one surface of plate

Fig. 5.—Pressure distribution: thin circular disc normal to wind. Fig. 7.—Coefficients: inclined, rectangular plates, $A_r = 3$. (See Table 6.)

Fig. 6.—Coefficients: square, inclined plates. (See Table 6; for notation, v. Fig. 7.)

Fig. 8.—Coefficients: inclined rectangular plates, $A_r = 6$. (See Table 6; for notation, v. Fig. 7.)

Table 6.—Experimental Data; Figures 6, 7, 8
Unit of S and W=1 cm; of t=1 mm; of TD=1 m; of $R^{\dagger}=1000$

		Fig.	6			Fig. 7		Fig. 8										
	.	×	+	0	.	×	+		×	+	0							
S	25	30.5	12	12	45	7.6	36	90	30.5	72	30.5							
W	25	30.5	12	12	15	2.5	12	15	5.08	12	5.08							
t	3	3.18	1.7		3	0.25	1.7	3	1.17	1.7	1.29							
TD^*	1.5	80	2.0	1.2	1.5	0.6	2.0	1.5	1.37	2.0	1.37							
\boldsymbol{R}	210	382	55	42	126	10	55	126	64	55	64							

^{*} TD = tunnel diameter.

The flow about a sphere is extremely sensitive to slight changes in the method of support, and to the condition of turbulence of the air stream. Changes in C are associated with changes in the locus of the points at which the smooth flow leaves the surface, forming a highly turbulent region to the rear. The location of this locus is determined solely by the irregularities in the air stream, as there are no sharp edges or other geometrical feature which might serve to fix it.

Airfoils.—Aerodynamical characteristics are specified in the same manner as are those of plates. An airfoil's area and angle of attack are conventionally defined with reference to some specified plane. The area of the airfoil is defined as that of its normal projection upon this plane of reference. The length (c) of

the projection upon this plane of any fore-and-aft section of the airfoil is called the chord of that section; it is the unit in terms of which all dimensions of that section are expressed. The form of the section is specified by the rectangular coordinates of points upon its boundary; the choice of axes is immaterial, although usually one axis is in the plane of reference. The aspect ratio (A_r) of the airfoil is defined as the ratio of length of span (S) to length of the chord. In addition to the coefficients considered for plates, the moment coefficient $C_M = M/(qAc)$, and the lift-drag ratio (F_l/F_d) are also of importance.

Data are usually given for $A_r = 6$. If $A_r > 3$, then for a given C_l , $\theta_A = \theta'_A + C_l/\pi A_r$ radians, and $C_d = C'_d + C_l/\pi A_r$, θ'_A and C'_d are values of θ_A and C_d when $A_r = \infty$; $C_l/\pi A_r$ and $C^2_l/\pi A_r$ are called the induced angle of attack and the induced coefficient of drag, respectively (25, 26, 42, 72).

For airfoils, C_l increases slightly, and C_d decreases very appreciably, as R is increased; C_{cp} remains unchanged. The difference between the values of the coefficients for airfoils of the size used on aircraft and those for models of the size generally employed in laboratory tests, depends upon the form of the airfoil; for a thin, low cambered section (RAF 15), it is small; for a highly cambered section, it is large.

For the effects produced by placing one airfoil near another, as in a biplane combination see (26, 27, 36, 42, 74).

For a complete airplane, the drag introduced by the body, and the moment of tail lift, both vary appreciably with the size of the airplane (6.67, 73).

 $[\]dagger R$ is dimensionless.

Fig. 11.—Air force: non-rotating circular cylinders.

Fig. 13.—Air force: rotating circular cylinders (Magnus effect).

Fig. 14.—Direction of air force: rotating circular cylinders (Magnus effect).

Fig. 16.—Air force on long struts (40, 64, 78, 79).

Fig. 17.—Air force on strut 4Z: inclined (**), see also (4).

TABLE 7.—CHARACTERISTICS OF AIRFOIL SECTIONS

 $A_r = 6$; model 36 in. by 6 in.; V = 40 mi./hr; $R(=\rho V c/\mu) = 181\,000$; tunnel diameter = 7.5 ft. (57). θ_A is measured from reference plane AB (see Figs. 22, 23, 24); x and y are rectangular coordinates of points on surface of airfoil (y_u, y_l) refer to upper and lower surface, respectively); x is measured in plane AB. Unit of x and of y is 1% of chord. For additional data for these and other sections see (12, 13, 14, 34, 37, 68, 69, 70, 73, 80, 81).

		see (12	Aerodynamical characteristics															
	Form																	
<u>x</u>	y _u	l yı	OA	CM														
1			A RAF 15															
0.00		+0.30			To - 00													
1.25		-0.35	l .	1		. 22.												
2.50		-0.70		-0.18			-	-										
5.00		-1.05	-2°	-0.04			-	-										
7.50		-1.15	-1°	+0.03			0.966											
10.00		-1.20		0.14			0.479											
15.00		-0.85	1°	0.24		18.8	0.407											
20.00		-0.55	2°	0.32		20.0	0.367											
30.00		-0.10	4°	0.46			0.321											
40.00		-0.03	6°	0.61			0.302											
50.00		-0.24	8°	0.76	0.047		0.297											
60.00		-0.50	10°	0.89	0.061	14.7	0.288											
70.00		-0.65	12°	1.00		12.1	0.281											
80.00		-0.65	14°	1.02	0.124	8.2	0.298	0.313										
90.00		-0.30		Į.	.			i										
95.00				0	A			i										
100.00	0.65	+0.34	4	(a. a. /)				į										
0.00	0.00	0.00				_												
1.25		00 0.00 02 -1.65 actringen 387																
2.50		-2.45	¥ [≥8.										
5.00		-3.46			Fig.	23.												
7.50		-4.10	-4°	-0.26			- 1	_										
10.00		-4.57	-2°	-0.10	1	-8.8	_	_										
15.00		-5.27	_2 0°	+0.04		+3.1	0.197	0.008										
20.00		-5.27 -5.58	2°	0.18		12.4	0.197											
		-5.69	4°	0.18		17.2	0.224											
30.00			6°	0.50		17.5	0.241											
40.00 50.00		-5.27 -4.52	8°	0.65		16.2	0.241											
	1 1		10°	0.03		14.6	0.242											
60.00 70.00		-3.56 -2.39	10°	0.78		11.6	0.244											
		-2.39 -1.44	14°	0.88		4.3	0.246											
80.00			16°	0.73	0.170	2.9	0.234	0.181										
90.00		-0.74	10	0.70	0.200	2.8	0.302	U. 480										
95.00		-0.43		1	1	l	1											
100.00	0.10	-0.16	- 1	ı	ı	I	į I											
			A (GŐTTII	NGEN 429			 8										
0.00	3.61	3.61	_															
1.25					Fig.	24.												
2.50			-8°	-0.07	0.071	-0.9	- 1	_										
	9.86	1 1	-6°		0.031			0.109										
	11.32		-4°	0.22	0.024	9.4	0.684	0.150										
10.00			-2°	0.37	0.026	14.3	0.507	0.188										
15.00		0.00	o°	0.51	0.031	16.4	0.436	0.222										
20.00		0.07	2°	0.66	0.039	16.9	0.396	0.261										
30.00		0.01	4°	0.81	0.051	15.9	0.369	0.300										
40.00		0.21	6°	0.96	0.067	14.3	0.348	0.336										
50.00		0.54	8°	1.10	0.084	13.0	0.337	0.374										
60.00		0.54	10°	1.23	0.104	11.8	0.323	0.403										
70.00		0.54	12°	1.33	0.104	10.6	0.323	0.403										
80.00		$0.34 \\ 0.49$	14°	1.42	0.123	9.6	0.312	0.410										
			16°															
90.00		0.27		1.43	0.182	7.9	0.315	0.466										
95.00		0.16	18°	1.42	0.213	6.7	0.327	0.486										
100.00	0.36	0.00	20°	1.41			1	<u> </u>										

Table 8.—Form of Struts; U. S. Navy 3, British 4Z (See Fig. 16) (These struts give as small a C_d as any)

Unit = axial length of section

	2	y	1	2	y		2	y
x	U.S.N. 3	4Z	x	U.S.N. 3	4Z	x	U.S.N. 3	4Z .
0	0	0	0.250	0.240		0.700	0.184	0.182
0.025	0.092		0.300	0.247	0.250	0.750	0.164	
0.050	0.132	0.122	0.350	0.250		0.800	0.142	0.142
0.075	0.159		0.400	0.250	0.246	0.850	0.116	
0.100	0.180	0.182	0.450	0.250		0.900	0.085	0.094
0.125	0.197		0.500	0.240	0.234	0.950	0.049	
0.150	0.210		0.550	0.230		1.000	0.000	0.000
0.175	0.220		0.600	0.215	0.212			
0.200	0.229	0.240	0.650	0.201				

Fig. 18.—Durand's $F_2A_1S_1P_1$ propeller family. Pitch ratio constant. (Members differ only in pitch ratio.)

Fig. 19.—Characteristics of Durand propellers at a fixed point (*, 10).

Elongated stream-line solids of revolution have a small resultant drag, which varies greatly with turbulence of air stream, position of neighboring bodies, and slight changes in form. The area entering into the expression F = CAq, is generally taken either as the area of maximum section normal to the length, or as $(\text{volume})^{\frac{3}{4}}$. C varies with the Reynold's number. When $A = (\text{volume})^{\frac{3}{4}}$, the minimum value of C for large values of R, and for bodies which are 4 to 5 diameters long, is of the order of 0.014. When $A = (\text{volume})^{\frac{3}{4}}$, the minimum value of C is of the order 0.03, and is obtained with bodies shorter than 4 diameters. Their equilibrium when parallel to the air stream is unstable; adding fins gives stability and greatly increases their drag $(2^{3}, 3^{5}, 3^{9})$.

Propellers.—Propellers are usually divided into families in which pitch-ratio and diameter are the only variables. Blade thickness and outline are usually determined largely by structural considerations; if the average thickness and width of blade are fixed, other variations have small effect upon attainable efficiency (8, 9, 15, 19, 65, 66, 71, 76, 77).

The characteristics of a propeller working at a fixed point may be expressed by two dimensionless coefficients, C_t and C_P , defined by the equations $F_t = C_t \rho n^2 D^4$ and $P_t = C_P \rho n^2 D^5$. For most propellers, there is, between C_t and C_P , a functional relation which is nearly independent of the design, provided large blade angles are not used (33). In Fig. 19, the curve indicates the most favorable results; marked departures from the curve occur mainly with propellers of high pitch ratio, or of constant blade angle.

Fig. 20.—Characteristics of advancing Durand $F_2A_1S_1P_1$ propeller family (*).

The characteristics of propellers at various forward speeds (V) and speeds of rotation may be expressed by curves showing the relationships between three parameters. In Fig. 20, the parameters used are C_i , C_P , and s or η , defined by the equation $F_i = C_i \rho V^2 D^2$, $P_i = C_P \rho n^2 D^3$, s = V/Dn; $\eta = C_1 s^2/C_P$, and D = diameter of the propeller. Useful range of C_i is 0.05 to 0.25; of C_P is 0.04 to 0.16. Data given are for propellers of two blades; increasing the number of blades, displaces the curves upwards and to the right.

Wind mills.—Quite different principles control the designing of wind mills which derive power from natural winds, and of those (such as the small wind mills used on airplanes for driving fuel pumps, etc.) which derive their power from the motion of a power driven craft. In the former, the controlling factor is the cost per unit of power developed; in the latter, it is the power consumed per unit of power, or torque load, developed.

LITERATURE

(For a key to the periodicals see end of volume)

- Allen, 5, 50: 323, 519; 00.
 Bacon and Reid, 297, No. 185.
 Bradfield, 299, No. 712.
 Cowley, et. al., 500, No. 256.
 Diehl, 298, No. 102.
 Diehl, 297, No. 111.
 Dines, 6, 48: 233; 90.
 Durand and Leeley, 297, No. 30.
 Ibid., No. 141.
- Durand, et. al., 298, No. 4, appx. (11) Dryden, 31, No. 394; 20. (12) Eiffel, Resistance de l'air et l'aviation (Paris, Dunod et Pinat), 2nd ed., p. 42. (13) Ibid., p. 150. (14) Ibid., p. 231. (15) Eiffel, Nouvelle recherches sur la resistance de l'air et l'aviation (Paris, Dunod et Pinat), p. 87. (18) Eiffel, Travaux Laboratorie aerodynamique Eiffel, 1915-18, p. 60. (17) Ibid., p. 85. (18) Fage, 300, No. 106. (19) Fage, Airscrews in Theory and Experiment (London, Constable and Co.), 1920.
- (20) Fleming, Wind Pressure on Structures, 1915. (21) Föppl, 301, 4: 51;10.
 (22) Froude, 135, 1872: 118. 1874: 249. (23) Fuhrmann, 301, 5: 65; 11.
 (24) Gibbons, 297, No. 6, pt. 1. (25) Glauert, 299, No. 723. (26) Ibid., No. 889. (27) Ibid., No. 901. (28) Gregg, 297, No. 147. (29) Hunsaker, 302, 62: 4: 77; 16.
- (30) Jones and Paterson, 300, No. 73.
 (31) Lafay, Rev. mecanique, 30: 417;
 (32) Lanchester, 500, No. 149.
 (33) Margoulis, Les helicopteres.
 (34) Morse, U. S. Air Service, Inf. Circ. No. 478.
 (38) Munk, 297, No. 184.
 (36) Ibid., No. 181.
 (37) Norton and Bacon, 297, No. 182.
 (38) Pannell, 300, No. 190.
 (39) Pannell and Jones, 500, No. 190.

Fig. 21.—Characteristics of two blade windmill (17).

- (40) Powell, 300, No. 416. (41) Ibid., No. 599. (42) Prandtl, 897, No. 116. (43) Rayleigh, 300, No. 39. (44) Reid, 898, No. 209. (45) Relf, 300, No. 102. (46) Relf and Powell, 300, No. 307. (47) Riabouchinski, 303, 4: 43, 56; 12. (48) Ibid., 4: 113; 12. (49) Ibid., 5: 73; 14.
 (50) Riabouchinski, 898, No. 44. (51) Stanton, 153, 156: 78; 03. (52) Ibid.,
- (80) Riabouchinski, 298, No. 44. (81) Stanton, 153, 156: 78; 03. (82) Ibid.,
 216: 24; 22. (83) Stanton, 115, 117: 718; 24. (84) Stanton and Marshall,
 300, No. 631. (85) Taylor, 300, No. 191. (80) Ibid., No. 604. (87)
 Warner, E. P., O. (88) Weiselsberger, Z. Flugtechnik Motorluftschiffahrt,
 5: 140; 14. (89) Ibid., 6: 127; 15.
- (40) Wieselsberger, 63, 23: 219; 22. (61) Wieselsberger, 304, 1: 120; 21.
 (62) Zahm, 5, 8: 58; 04. (63) Zahm and Smith, 297, No. 81. (64) Zahm, et. al., 297, No. 137. (65) Zahm, et. al., 500, Nos. 61, 62, 63, 64, 82, 123, 185, 289, 264, 265, 305, 316, 328, 331, 371, 383, 385, 390, 393, 401, 402, 406, 421, 427, 429, 432, 442, 444, 488, 460, 475, 540, 565, 572, 577, 586, 591, 594, 639. (64) Zahm, et. al., 299, Nos. 699, 765, 329, 330, 369, 370, 371, 381, 382, 384, 385, 387, 392. (67) Ibid., No. 900. (68) Zahm, et. al., 297, No. 93. (69) Ibid., No. 124.
- (70) Zahm, et. al., 297, No. 182. (71) Ibid., Nos. 14, 64, 33, 109, 188, 175, 177, 183, 185, 196, 207. (72) Zahm, 304, 1: 37; 21. (73) Ibid., 1: 71; 21. (74) Ibid., 2: 9, 10, 11; 23. (75) Ibid., 2: 33; 23. (76) Zahm, 505, 2: 3; 09. (77) Ibid., 4: 80; 12. (78) Zahm, Tech. Ber. Flugseugmeisterei, 1, No. 4: 119; 17. (78) Ibid., 2, No. 1: 15; 18.
- (80) Zahm, Tech. Ber. Flugseugmeisterei, 1, No. 5: 148; 17. (81) Ibid., 1, No. 6: 204; 17. (82) Zahm, Anemometry (3rd ed.) U. S. Weather Bureau, Inst. Div., Circ. D. (83) Zahm, 305, 37: 288; 97. (84) U. S. Bureau of Standards, O. (85) The National Physical Laboratory, O.

LITERATURE REFERENCES

LITERATURE REFERENCES

In all literature references cited in International Critical Tables the name of the journal or publication is indicated by means of a Key Number corresponding to the list given below. The numbers which follow this key number in a literature citation are, in the order named: (1) the volume, (2) the page, and (3) the last two figures of the year. Thus, 64V, 31: 253; 22, indicates Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, Vol. 31, page 253, 1922. Series numbers are not given. Key Numbers referring to books and other non-serial publications are preceded by the letter B, and the volume number is given in Roman numerals. Thus, B10, IV: 191; 18 indicates Doelter, Handbuch der Mineralchemie, page 191 of Vol. 4 of the 1918 edition. The Key Number O is used to indicate "private communication from."

RÉFÉRENCES BIBLIOGRAPHIQUES

Le nom du journal ou de la publication de toutes les références bibliographiques citées dans les Tables critiques internationales est indiqué au moyen d'un nombre-clé correspondant à la liste donnée ci-dessous. Les nombres qui suivent ce nombre-clé dans un renvoi bibliographique indiquent dans l'ordre suivant: (1) le volume, (2) la page, et (3) les deux derniers chiffres de l'année. Ainsi 64V, 31: 253; 22, indique Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, vol. 31, page 253, 1922. Les numeros des séries ne sont pas donnés. Les nombres-clés se rapportant à des livres ou à des publications non périodiques sont précédés de la lettre B et le numéro du volume est donné en chiffres romains. Ainsi, B10, IV: 191; 18 indique Doelter, Handbuch der Mineralchemie, page 191 du volume 4 de l'édition de 1918. Le nombre-clé O est employé pour indiquer "communication privée de."

DAS LITERATURVERZEICHNIS

In allen Literaturstellen, die in I. C. T. verzeichnet sind, ist der Name der Zeitschrift oder der Publikation mit Hilfe einer Schlüsselnummer, entsprechend der unten folgenden Liste, angegeben. Die Zahlen, welche diesen Schlüsselnummern bei einem Literaturzitat folgen, bedeuten der Reihe nach: (1) der Band, (2) die Seite und (3), die letzten zwei Zahlen des Jahrganges. So bedeutet z. B. 64V, 31: 253; 22, Verslag Koninklijke Akademie van Wetenschappen te Amsterdam, Band 31, Seite 253, 1922. Serien-Nummern werden nicht angegeben. Der Schlüsselzahl wird ein B vorausgesetzt, wenn sie Bücher, oder eine andre nicht periodische Veröffentlichung bezeichnet. Die Bandnummer wird durch römische Ziffern angegeben. Es bedeutet z. B. also B10, IV: 191; 18, Doelter, Handbuch der Mineralchemie, Seite 191, des 4. Bandes, der Auflage des Jahres 1918. Die Schlüsselzahl Null wird gebraucht, um anzuzeigen, dass es eine 'private Mitteilung' ist.

INDICAZIONI BIBLIOGRAFICHE

In tutte le indicazioni bibliografiche che si incontrano nele "Tabelle Critiche Internazionali" il nome del giornale o della pubblicazione è espresso con un numero chiave riportato nell'elenco dato più oltre. I numeri che, nella citazione, vengono dopo il numero chiave sono disposti con l'ordine seguente: (1) il volume, (2) la pagina, e (3) le ultime due cifre del millesimo. Cosi 64V, 31: 253; 22, indica la Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, Vol. 31, pagina 253, 1922. I numeri di serie non vengono dati. Quando un numero chiave è preceduto dalla lettera B si riferisce a libri o ad altre pubblicazioni non periodiche, e il numero del volume viene allora scritto in cifre romane. Cosi B10, IV: 191; 18 indica Doelter, Handbuch der Mineralchemie, pagine 191 del IV° volume dell'edizione 1918. Il numero chiave O indica "Comunicazione privata da"

KEY TO THE PERIODICALS

Data regarding the libraries which receive many of these periodicals may be found through the following sources:

United States and Canada: "Periodicals Abstracted by Chemical Abstracts, 1926" (Chemical Abstracts, Ohio State Univ., Columbus, Ohio); "Union List of Serials in the Libraries of the United States and Canada, 1925— "(H. W. Wilson & Co., New York City); "A Catalogue of Scientific Periodicals in Canadian Libraries, 1924" (McGill Univ., Montreal, Canada).

Great Britain: "A World List of Scientific Periodicals Published in the Years 1900–1921" (Oxford Univ. Press, London, 1925–).

Holland: "Chemisch Jaarboekje tevens Jaarboekje der Nederlandsche Chemische Vereeniging, vol. 3." (Amsterdam, D. B. Centen, 1920.)

- 1. Journal of the American Chemical Society.
- 2. Physical Review.
- London, Edinburgh and Dublin Philosophical Magazine and Journal of Science.
- 4. Journal of the Chemical Society, London.
- Proceedings of the Royal Society (London). A. Mathematical and Physical Sciences.
- 6. Annales de chimie et de physique. See also Nos. 14 and 16.
- Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschaftslehre.
- Annalen der Physik. [Journal der Physik, 1790-1794. Neues Journal der Physik, 1795-1796. Annalen der Physik, 1799-1819; Annalen der Physik und der physikalische Chemie, 1819-1824 (Gilbert). Annalen der Physik und Chemie, 1824-1899 (Poggendorff, Wiedemann). Annalen der Physik, 1900- (Drude, Wien and Planck).]
- Zeitschrift für Elektrochemie und angewandte physikalische Chemie.
- 11. American Chemical Journal. Combined with No. 1 in 1914.
- 12. American Journal of Science.
- 13. Annalen der Chemie, Justus Liebig's.
- 14. Annales de chimie.
- 16. Annales de physique.
- Archives Néerlandaises des sciences exactes et naturelles. Series III A. Sciences exactes.
- 19. Arkiv för Kemi, Mineralogi och Geologi.
- 21. Astrophysical Journal.
- Atti della reale accademia nazionale dei Lincei. (Rendi conti classe di scienze fisiche, matematiche e naturali.)
- 24. Atti del reale istituto Veneto di scienze, lettere ed arti.
- 25. Berichte der deutschen chemischen Gesellschaft.
- Berichte der deutschen physikalischen Gesellschaft. See also No. 96.
- 27. Bulletin de la société chimique de France.
- 28. Bulletin de la société chimique de Belgique.
- 29. Bureau of Mines, Bulletins.
- 31. Bureau of Standards, Scientific Papers.
- 31A. Bureau of Standards, Bulletin.
- 32. Bureau of Standards, Technologic Papers.
- 33. Chemical and Metallurgical Engineering.
- Comptes rendus hebdomadaires des séances de l'académie des sciences, de l'institut de France.
- 36. Gazetta chimica italiana.
- 38. Journal of the American Ceramic Society.

- 41. Journal of the Chemical Society of Japan (Nippon Kwagaku Kwai Shi).
- 42. Journal de chimie physique.
- 45. Industrial and Engineering Chemistry.
- 47. Journal of the Institute of Metals, London.
- 48. Journal of the Optical Society of America and Review of Scientific Instruments.
- 50. Journal of Physical Chemistry.
- 51. Journal de physique et le radium. See also No. 199.
- 53. Journal of the Russian Physico-Chemical Society.
- 54. Journal of the Society of Chemical Industry.
- Kolloid-Zeitschrift. (Formerly Zeitschrift für Chemie und Industrie der Kolloide.)
- Monatshefte für Chemie und verwandte Teile anderer Wissenschaften.
- 58. Nature, London.
- 59. Nuovo Cimento.
- 62. Philosophical Transactions of the Royal Society of London.
 - 63. Physikalische Zeitschrift.
 - 64P. Proceedings of the Royal Academy of Sciences of Amsterdam.
- 64V. Verslag koninklijke Akademie van Wetenschappen te Amsterdam.
- 65. Proceedings of the American Academy of Arts and Sciences.
- 67. Proceedings of the Physical Society of London.
- 68. Proceedings of the Royal Society of Edinburgh.
- 69. Proceedings and Transactions of the Royal Society of Canada.
- 70. Recueil des travaux chimiques des Pays-Bas.
- 72. Rendiconti reale istituto Lombardo de scienze e lettere.
- Sitzungsberichte Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse.
- Sitzungsberichte der preussischen Akademie der Wissenschaften.
- 77. Stahl und Eisen.
- 78. Transactions of the American Electrochemical Society.
- Transactions of the American Institute of Mining and Metallurgical Engineers.
- 83. Transactions of the Faraday Society.
- 88. Verhandlungen der physikalischen Gesellschaft zu Berlin. See also No. 96.
- Wissenschaftliche Abhandlungen der physikalisch-technischen Reichsanstalt.
- 91. Zeitschrift für analytische Chemie.
- 92. Zeitschrift für angewandte Chemie.
- 93. Zeitschrift für anorganische und allgemeine Chemie.
- 94. Zeitschrift für Krystallographie. (Name changed in 1921 from Zeitschrift für Kristallographie und Mineralogie.)
- 95. Zeitschrift für Metallkunde.
- 96. Zeitschrift für Physik. (Verhandlungen der physikalischen Gesellschaft zu Berlin, 1882–1898; Verhandlungen der deutschen physikalischen Gesellschaft, 1899–1902; Berichte der deutschen physikalischen Gesellschaft, 1903–1919; Zeitschrift für Physik, 1920– .)
- 98. Zeitschrift des Vereines deutscher Ingenieure.
- 101. Elektrotechnische Zeitschrift.
- 105. Journal of the Society of Glass Technology.
- 112. Dinglers polytechnisches Journal.
- 115. Engineering.
- 119. Proceedings of the American Institute of Electrical Engineers.

- 128. Journal of the Washington Academy of Sciences.
- 132. Anales de la sociedad española de física y química.
- 133. British Association for the Advancement of Science, Reports.
- 135. Chemical News and Journal of Industrial Science. (Name changed in 1921 from Chemical News and Journal of Physical Science.)
- 136. Chemiker Zeitung.
- Kongelige Danske Videnskabernes Selskab, Mathematiskfysiske Meddelelser.
- Societas scientiarum fennica. Commentationes physicomathematicae.
- 139. Ferrum.
- 140. Journal of the Iron and Steel Institute, London.
- 141. Journal of Biological Chemistry.
- 143. Journal of the Franklin Institute.
- 144. Mathematikai ès Természettudomanyi Ertesitö, Budapest.
- 147. Meddelanden från K. Vetenskapakademiens Nobelinstitut.
- 149. Archives des sciences physiques et naturelles. (Bibliothèque brittanique, 1796–1815; Bibliothèque universelle des sciences, belles-lettres et arts, 1816–1835; Bibliothèque universelle de Genève, 1836–1845; Supplément à la bibliothèque universelle de Genève. Archives des sciences physiques et naturelles, 1846–1847; Bibliothèque universelle de Genève. Archives des sciences physiques et naturelles, 1848–1857; Bibliothèque universelle, revue suisse et étrangère. Archives des sciences physiques et naturelles, 1858–1861; Bibliothèque universelle et revue suisse. Archives des sciences physiques et naturelles, 1862–1877; Bibliothèque universelle. Archives des sciences physiques et naturelles, 1878– .)
- 152. Carnegie Institution of Washington Publications.
- 153. Minutes of Proceedings of the Institution of Civil Engineers.
- 156. U. S. Geological Survey, Bulletin.
- 159. Science Reports of the Tôhoku Imperial University.
- 166. Science.
- 168. Communications from the Physical Laboratory of the University of Leiden.
- 173. Analyst, London.
- 175. Annales academiae scientiarum fennicae.
- 176. Chemisch Weekblad, Amsterdam.
- 186. Bulletin de la classe des sciences, académie royale de Belgique.
- Metall und Erz, Zeitschrift für Metalhuttenwesen und Erzbergbau, einschl. Aufbereitung.
- 188. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen. Geschaftliche Mitteilungen; mathematisch-physikalische Klasse.
- 189. Centralblatt für Mineralogie, Geologie und Paläontologie.
- 190. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie.
- 196. Sammlung chemischer und chemisch-technischer Vorträge.
- 197. Proceedings of the National Academy of Sciences.
- 198. Revue générale des sciences pures et appliquées.
- 199. Le Radium. (Merged into No. 51 in 1920.)
- 200. Jahrbuch der Radioaktivität und Elektronik.
- 201. Proceedings of the Cambridge Philosophical Society.
- 202. Zeitschrift für physiologische Chemie.
- 205. Biochemische Zeitschrift.
- 207. Geologiska Föreningens i Stockholm Förhandlingar.
- 208. Physica, Nederlandsch Tijdschrift voor Natuurkunde.
- 209. Japanese Journal of Chemistry.
- Scientific Papers, Institute of Physical-Chemical Research, Tokyo.
- Abhandlungen der mathematisch-physischen Klasse der sächsischen Akademie der Wissenschaften zu Leipzig.
- 212. Transactions of the American Society for Steel Treating.
- 213. Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München.

- 214. Kongelige Danske Videnskabernis Selskab, Skrifter naturvidenskabelig og mathematisk Afdeling.
- 215. Lunds Universitets Årsskrift.
- 216. Giornale di chimica industriale ed applicata. (Annali di chimica applicata, 1914; continued as Giornale di chimica applicata; combined with Giornale di chimica industriale, March, 1920, to form Giornale di chimica industriale ed applicata.)
- 217. U. S. Coast and Geodetic Survey, Special Publications.
- 218. Naturwissenschaften.
- 219. Proceedings of the Physico-Mathematical Society of Japan.
- 220. Jern-Kontorets Annaler, Stockholm.
- 221. Berichte über die Verhandlungen der sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-physische Klasse.
- 222. Giornale di mineralogia, cristallografia e petrografia.
- 223. Journal of General Physiology.
- 224. Kosmos, Stockholm.
- Mitteilungen aus dem Kaiser-Wilhelm Institut für Eisenforschung zu Düsseldorf.
- Proceedings of the Society for Experimental Biology and Medicine.
- 228. Denkschriften der kaiserlichen Akademie der Wissenschaften zu Wien, mathematisch-naturwissenschaftliche Klasse.
- 229. Journal of Bacteriology.
- 230. Biochemical Journal.
- 231. U. S. Public Health Service, Public Health Reports.
- 232. Soil Science.
- 233. Pharmaceutisch Weekblad.
- 234. Journal of the South African Chemical Institute. (Name changed in 1922 from Journal of the South African Association of Analytical Chemists.)
- 235. Comptes-rendus des travaux du laboratoire Carlsberg.
- 236. Ergebnisse der Physiologie.
- 237. Fortschritte der Chemie, Physik und physikalischen Chemie.
- Travaux et mémoires du bureau international des poids et mesures.
- 239. Nouveaux mémoires de l'académie royale des sciences, des lettres et des beaux-arts de Belgique, Brussels.
- 240. Bibliothèque universelle des sciences, belles-lettres et arts. (Continued as No. 149.)
- 241. Proceedings of the American Philosophical Society.
- 242. Vierteljahrsschrift der naturforschenden Gesellschaft, Zürich.
 - 243. Zeitschrift für Instrumentenkunde.
- 244. Journal of the Society of Automotive Engineers.
- 245. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen.
- 246. Ice and Refrigeration.
- 247. Chemist-Analyst.
- 248. Proceedings of the University of Durham Philosophical Society.
- 249. Fortschritte auf dem Gebiete der Röntgenstrahlen.
- 250. Bulletin de la société française de physique.
- 251. Proceedings of the Royal Society of Victoria, Melbourne.
- 252. Chemische Umschau auf dem Gebiete der Fette, Oele, Wachse und Harze. (Before 1916 Chemische Revue über die Fett- und Harz Industrie.)
- 253. Lubrication.
- 254. Zeitschrift für Beleuchtungswesen, Heisungs- und Lüftungstechnik.
- 255. Bulletin of the American Institute of Mining and Metallurgical Engineers. (Continued as No. 329.)
- 256. Comptes rendus de la société scientifique, Warsaw.
- 266. Indianapolis Medical Journal.
- 267. Philippine Journal of Science.
- 268. Terrestrial Magnetism.

- 269. Mineralogical Magazine and Journal of the Mineralogical Society.
- Berichte der naturforschenden Gesellschaft zu Freiburg, im Breisgau.
- 271. Revue scientifique.
- 272. Transactions of the Wisconsin Academy of Sciences, Arts and Letters.
- 273. Berichte der deutschen pharmazeutischen Gesellschaft.
- 274. Pharmazeutische Zentralhalle für Deutschland.
- 275. International Sugar Journal.
- 276. Chemical Age, London.
- 277. Archiv für experimentelle Pathologie und Pharmakologie.
- Archiv für die gesamte Physiologie des Menschen und der Tiere. (Pflüger.)
- 279. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel sowie der Gebrauchsgegenstande.
- 280. Umschau.
- 281. Zeitschrift für Psychologie und Physiologie der Sinnesorgane.
- 282. Wochenschrift für Brauerei.
- 283. Journal de psychologie normale et pathologique.
- 284. Journal of the American Pharmaceutical Association.
- 285. Journal of Mathematics and Physics.
- 286. Chemical Reviews, Baltimore.
- 287. Kolloidchemische Beihefte.
- 288. Revue générale des colloides.
- National Advisory Committee on Aeronautics. Technical Reports.
- 298. National Advisory Committee on Aeronautics. Technical
- 299. British Aeronautical Research Committee. Reports and Memoirs.
- 300. British Advisory Committee on Aeronautics. Reports and Memoirs.
- 301. Jahrbuch der Motorluftschiff-Studiengesellschaft.
- Smithsonian Institution Publications. Miscellaneous Collection.
- Bulletin de l'institut aérodynamique de Koutchino, Petrograd.
- 304. Aerodynamische Versuchsanstalt zu Göttingen. Ergebnisse.

- 305. Transactions of the American Society of Civil Engineers.
- 315. Memorial des poudres. (Formerly Memorial des poudres et salpêtres.)
- 326. Astronomical Journal.
- 327. Annales de la société scientifique de Bruxelles.
- 328. American Mineralogist.
- 329. Mining and Metallurgy.
- 330. Psychological Monographs.
- 331. Archives of Psychology.
- 332. Philosophische Studien.
- 333. Psychological Review.
- 334. Journal of Experimental Psychology.
- 335. American Journal of Pscyhology.
- 336. Bulletin of the Geological Society of America.
- 337. Bulletin of the National Research Council.
- B60. Fourth International Congress of Refrigeration Reports.

 Papers presented by the President. Leiden, Ijdo, 1924.
- B61. Ullmann, Enzyklopädie der technischen Chemie. Berlin, Urban, 1914–1923.
- B62. Henning, Die Grundlagen, Methoden und Ergebnisse der Temperaturmessung. Braunschweig, 1915.
- B63. Holborn, Scheel and Henning, Wärmetabellen. Braunschweig, Vieweg und Sohn, 1919.
- B64. Ostwald and Luther, Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen. 3rd ed. Leipzig, Akad. Verslagsges. m. b. H, 1922.
- B65. Stähler, Handbuch der Arbeitsmethoden in der anorganische Chemie. 5 volumes. Berlin and Leipzig, de Gruyter & Co., 1920.
- B66. Zeigmondy, Kolloidchemie; ein Lehrbuch. 4th ed. Leipzig, Spamer, 1922.
- B69. Helmholtz, Physiological Optics, translated from the 3rd German edition by Southall. Optical Society of America, 1924.
- B70. Parson, An Introduction to the Study of Color Vision. Cambridge Univ. Press, 1915.

IMPORTANT NOTICE

ANNUAL TABLES OF CONSTANTS AND NUMERICAL DATA CHEMICAL, PHYSICAL AND TECHNOLOGICAL

Published by an International Committee, under the authority of the International
Research Council and the International Union of
Pure and Applied Chemistry

THE data given in International Critical Tables are based upon determinations published previous to January 1924.

In order to keep always up to date with future progress in physical measurements, the purchaser of International Critical Tables should become a regular subscriber to International Annual Tables, which will bring to his desk each year a volume in which he will find assembled and classified all of the data which has appeared in the world's literature, for the year covered by the volume.

Thus, Annual Tables, Volume VI, will contain all the data published in the literature of 1923-1924; Volume VII will contain the data published in the literature of 1925; Volume VIII, the data to be found in the literature of 1926, etc. . . .

The older volumes of Annual Tables go back to 1910 and contain all of the original determinations published during that period and which served as all or part of the basis of selection of the "best" values recorded in International Critical Tables. These older volumes thus constitute a handy and accessible source of reference to the original determinations.

Through special arrangements made with the International Commission in charge of Annual Tables, all purchasers of International Critical Tables will be given special discounts on all purchases of International Annual Tables, as follows:

- Volumes I, II, III, IV, V (data for 1910–1922), cloth, \$52.50 (regular price, \$71.00).
- 2. 25% discount on Volumes VI to X inclusive, covering the period 1923–1928.
- 3. 25% discount on the index to Volumes I-V, which will be published in 1927.

These discounts apply only on subscriptions addressed to Dr. C. Marie, 9 rue de Bagneux, Paris VI, France.

All subscriptions should be accompanied by draft or money order payable at Paris.

SPECIMEN SECTIONS

Free copies of any of the following specimen sections may be obtained on application to the above address.

Spectroscopy. Electricity, Magnetism, Electrochemistry. Radioactivity. Crystallography, Mineralogy. Biology. Engineering, Metallurgy. Colloids. The following identification form should be filled out and transmitted with the first subscription.

Name	• •	 •	 •	 •	•	•	•	•	 •	 •	 	•								•	•	•	•	•	•	•	•	•	•	
Address		 		 					 	 	 					_		 												

Q 199 .N32 vol. 1 copy 2

National Research Council
(U.S.)

International critical tables of numerical data

NATIONAL ACADEMIES LIBRARY