Sample solution to HW 4

- (1) (i) From the initial state q_0 , whatever it reads, the TM enters $q_{\rm acc}$.
 - (ii) From the initial state q_0 , whatever it reads, the TM enters q_{rej} .
 - (iii) It works as a DFA that accepts L_3 . It always moves right, remembers in its state whether it reads 0 or 1. Say, we have two states p_0 and p_1 , for remembering that it reads 0 and 1, respectively, in the previous cell. When it reads the blank symbol, from state p_0 it enters q_{acc} , and from state p_1 it enters q_{rej} .

More precisely, we have the following transitions in our Turing machine:

```
\begin{array}{cccc} (q_0,0) & \rightarrow & (p_0,0,\mathtt{Right}) \\ (q_0,1) & \rightarrow & (p_1,1,\mathtt{Right}) \\ (p_0,0) & \rightarrow & (p_0,0,\mathtt{Right}) \\ (p_0,1) & \rightarrow & (p_1,1,\mathtt{Right}) \\ (p_1,0) & \rightarrow & (p_0,0,\mathtt{Right}) \\ (p_1,1) & \rightarrow & (p_1,1,\mathtt{Right}) \\ (p_0,\sqcup) & \rightarrow & (q_{\mathrm{rej}},0,\mathtt{Right}) \\ (p_0,\sqcup) & \rightarrow & (q_{\mathrm{acc}},0,\mathtt{Right}) \\ (p_1,\sqcup) & \rightarrow & (q_{\mathrm{rej}},1,\mathtt{Right}) \end{array}
```

Here we assume that $\epsilon \notin L_3$.

(iv) In general, description of pseudocode like the following is acceptable. Let N be the input number. On every pair (i,j), where $i,j \in \{2,\ldots,N-1\}$, check whether $i \times j = N$. If there is such a pair (i,j), output False. Otherwise, output True.

A more detailed explanation is as follows. The TM has five tapes.

- Tape 1 contains the input word w representing number N.
- In tape 2, it generates the number i.
 At the beginning the TM writes down 0^{|w|} on tape 2. To generate i + 1 from i, the head goes to the rightmost cell of the tape. If the rightmost cell is 0, change it to 1. Otherwise, change the content of every cell from 1 to 0 until it sees the first 0 from the right direction. Change that 0 to 1.
- In tape 3, it generates the number j. It can be done in the same way as generating number i.
- Each time a new pair (i, j) is generated, it computes the number $i \times j$ on tapes 4, 5 and 6

It works as follows. Let $\lfloor i \rfloor$ and $\lfloor j \rfloor$ denote the binary representation of i and j, respectively. Say, the binary representation $\lfloor j \rfloor$ is $b_n \cdots b_0$. On tape 3, the TM has a "marker" that moves from b_n to b_0 . When the marker is on b_k , if $b_k = 0$, it moves to b_{k-1} . If $b_k = 1$, it does the following.

- The TM "copies" |i| into tape 5.
- After it finishes copying, the head on tape 5 in on the right cell of $\lfloor i \rfloor$, and it stays there.
- On the other hand, the heads on tape 3 returns to the "marker," i.e., on position b_i . From there, the heads on tape 3 and tape 5 moves simultaneously to the right until tape 3 gets to the end of $\lfloor j \rfloor$. On each move, the head on tape 5 writes 0.

- After this, the content in tape 5 should be the binary representation of the $i \cdot 2^k$. TM performs addition between tape 4 and tape 5, and stores the result on tape 6.
- It then copies the result of the addition to tape 4. Intuitively, after this step, the content of tape 4 should be the binary representation of $i \cdot b_n \cdot 2^n + \cdots + i \cdot b_k \cdot 2^k$.
- The head on tape 3 moves the marker to the right by one step, i.e., moves it to b_{k-1} .

This "multiplication" process stops when the marker moves to the right of b_0 .

- (2) Both languages $\{0^n \mid n \ge 0\}$ and $\{1^n \mid n \ge 0\}$ are decidable. Now, either there is a parallel universe or there is not. In both cases L is a decidable language. So, L is decidable.
- (3) In the original definition, an NTM \mathcal{M} accepts an input word w, if there is an accepting run of \mathcal{M} on w, and it rejects w, if all its runs are rejecting. With such definition, every NTM is equivalent to some DTM. More precisely, for every NTM \mathcal{M} , we can construct a DTM \mathcal{M}' that on input w, \mathcal{M}' generates all possible runs of \mathcal{M} on w. \mathcal{M} can then accept w if it finds an accepting run of \mathcal{M}' on w. Thus, \mathcal{M}' accepts w if and only if \mathcal{M} accepts w.

With Bob's definition, the above construction of \mathcal{M}' does not achieve the goal that \mathcal{M}' accepts w if and only if \mathcal{M} accepts w, since we still have to check that all runs are *not* rejecting.

Note: Explanation such as above is acceptable. In fact, you can go a bit further. You can also show that the following language is undecidable:

 $\{|\mathcal{M}| \$w \mid \text{all runs of } \mathcal{M} \text{ on } w \text{ are not rejecting}\}$

Thus, Bob's definition does not imply simulation of NTM by DTM.

(4) The reduction is from CFL-Universality.

On input CFG \mathcal{G} :

- Construct a DFA \mathcal{A} that accepts Σ^* .
- Output True, if $L(\mathcal{G}) = L(\mathcal{A})$. Otherwise, output False.

Question (5) is a bit more challenging. Its solution requires a few steps.

Step 1:

The following function is computable.

Function-All-or-Nothing

Input: A TM description $\lfloor \mathcal{M} \rfloor$ and a word w.

Task: Output another TM description \mathcal{M}' such that:

• If \mathcal{M} accepts w, \mathcal{M}' accepts every word.

• If \mathcal{M} does not accept w, \mathcal{M}' rejects every word.

Note the TM \mathcal{M}' depends on \mathcal{M} and w, so we will denote it by \mathcal{M}_w . It works as follows. On input v, \mathcal{M}_w "deletes" v from its tape, writes w on its tape, and runs \mathcal{M} on w. It goes to accepting state, if \mathcal{M} goes to accepting state. That is, whatever the input v is, \mathcal{M}_w accepts v if and only if \mathcal{M} accepts w. An interesting question is: What is the language accepted by \mathcal{M}_w ? The answer depends on whether \mathcal{M} accepts w.

- If \mathcal{M} accepts w, then \mathcal{M}_w accepts every word.
- If \mathcal{M} does not accept w, then \mathcal{M}_w does not accept any word.

In particular, \mathcal{M} accepts w if and only if the language accepted by \mathcal{M}_w is infinite.

Now, the TM that computes Function-All-or-Nothing works by adding some appropriate transitions to \mathcal{M} . More precisely, on input $|\mathcal{M}|$ \$w, it does the following:

- At the beginning let \mathcal{M}_w contains exactly the same transitions as in \mathcal{M} . Let q_0 be the initial state of \mathcal{M} .
- Add a new tape symbol # and new transitions to \mathcal{M}_w that upon reading the symbol #, it does the same thing as when reading the blank symbol \sqcup .

That is, for every transition $(p, \sqcup) \to (q, \alpha, \beta)$ of \mathcal{M} , add a new transition $(p, \#) \to (q, \alpha, \beta)$ to \mathcal{M}_w . Intuitively, \mathcal{M}_w treats the symbol # as if it is the blank symbol \sqcup .

- Add two new states s_0, s' (to \mathcal{M}_w) and s_0 is the initial state of \mathcal{M}_w .
- Add new transitions (to \mathcal{M}_w) such that from state s_0 , \mathcal{M}_w will move right "deleting" every input symbol by writing a symbol # on top of it until it reaches a blank symbol, upon which it enters state s'.

More precisely, add the following transitions:

$$(s_0, a) \rightarrow (s_0, \#, \mathtt{Right})$$

 $(s_0, \sqcup) \rightarrow (s', \#, \mathtt{Stay})$

- Add new transitions that from state s', \mathcal{M}_w will go back to the leftmost cell of the tape and enter state p_0 .
- Let $w = a_1 \dots a_n$.
- Add new states p_1, \ldots, p_{n+1} (to \mathcal{M}_w).
- Add the transitions (to \mathcal{M}_w) that from state p_i , \mathcal{M}_w will write a_i into the tape, move right and enter state p_{i+1} .
- Add new transitions (to \mathcal{M}_w) that from state p_{n+1} , \mathcal{M}_w will move right to the leftmost cell of the tape and enter state q_0 .
- Finally, output $[\mathcal{M}_w]$.

Note that every transition of \mathcal{M} is also a transition of \mathcal{M}_w . So, when \mathcal{M}_w reaches the state q_0 , it will use the transitions of \mathcal{M} and the tape contains the word w.

Step 2:

Consider the following language:

Finite-TM := {
$$|\mathcal{M}|$$
 | the language accepted by \mathcal{M} is finite}.

We will prove that Finite-TM is undecidable by showing HALT \leq_T Finite-TM. The reduction works as follows. On input $|\mathcal{M}|$ \$w:

- Compute $|\mathcal{M}_w|$ as explained in Step 1.
- Check whether $|\mathcal{M}| \in \mathsf{Finite}\text{-}\mathsf{TM}$. If it is, output False. Otherwise, output True.

The correctness of the reduction follows from the fact that

- if \mathcal{M} accepts w, then \mathcal{M}_w accepts Σ^* which is infinite.
- if \mathcal{M} does not accept w, the \mathcal{M}_w does not accept any word, so the language accepted by \mathcal{M}_w is empty set, which is finite.

So, \mathcal{M} \$ $w \in \mathsf{HALT}$ if and only if $|\mathcal{M}_w| \notin \mathsf{Finite-TM}$.

Step 3:

Let us denote by Complement-is-CFL the language representing the problem in question (5). That is,

Complement-is-CFL :=
$$\{|\mathcal{G}| \mid \Sigma^* - L(\mathcal{G}) \text{ is } CFL\}$$

Here $|\mathcal{G}|$ denotes the CFG \mathcal{G} written as a string.

Now, an accepting run of a TM \mathcal{M} on w can be written as:

$$C_0 \vdash C_1^R \vdash C_2 \vdash C_3^R \vdash C_4 \cdots$$
 (†)

where C_i^R denotes the reversal of the configuration C_i . From what we learn in the class, we can construct a CFG \mathcal{G} that generates every string that is *not* an accepting run of \mathcal{M} of the form (†).

We will show that Finite-TM \leq_m Complement-is-CFL by the following reduction. On input $\lfloor \mathcal{M} \rfloor$:

- Construct a CFG that generates strings that are not accepting runs of \mathcal{M} of the form (†). Let us denote the CFG by $\mathcal{G}_{\mathcal{M}}$.
- Check whether $L(\mathcal{G}) \in \mathsf{Complement}$ -is-CFL. If it is, output True. Otherwise, output False.

The correctness of our reduction follows from the claim:

$$|\mathcal{M}| \in \mathsf{Finite}\text{-}\mathsf{TM}$$
 if and only if $|\mathcal{G}_{\mathcal{M}}| \in \mathsf{Complement}\text{-}\mathsf{is}\text{-}\mathsf{CFL}$.

The "only if" direction is as follows. Let $\mathcal{M} \in \mathsf{Finite}\text{-}\mathsf{TM}$. This means that there are only finitely many words that \mathcal{M} accepts, which then implies that there are only finitely many accepting runs of \mathcal{M} .

Furthermore, since $\mathcal{G}_{\mathcal{M}}$ generates all strings that are *not* accepting runs of \mathcal{M} , this means $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$ consists of all the accepting runs of \mathcal{M} of the form (†), that is, strings of the form:

$$C_0 \vdash C_1^R \vdash C_2 \vdash C_3^R \vdash C_4 \cdots \cdots \vdash C_N,$$

where C_N is an accepting configuration. Since there are only finitely many accepting runs of \mathcal{M} , the language $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$ is finite. Since every finite language is CFL, the language $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$ is CFL.

The "if" direction is as follows. Let $\mathcal{G}_{\mathcal{M}}$ be such that $\lfloor \mathcal{G}_{\mathcal{M}} \rfloor \in \mathsf{Complement}$ -is-CFL. This means that $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$ is CFL. As we note earlier, $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$ denotes the language that consists of all strings of the form:

$$C_0 \vdash C_1^R \vdash C_2 \vdash C_3^R \vdash C_4 \cdots \cdots \vdash C_N,$$

where C_N is an accepting configuration. That is, strings in $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$ represent the accepting runs of \mathcal{M} . Let us denote by \mathcal{G}_0 the CFG that generates $\Sigma^* - L(\mathcal{G}_{\mathcal{M}})$.

We will use pumping lemma to show that $L(\mathcal{G}_0)$ cannot be infinite. If $L(\mathcal{G}_0)$ is infinite, we can take long enough a string u that can be pumped. Suppose u is the following word:

$$u := C_0 \vdash C_1^R \vdash C_2 \vdash C_3^R \vdash C_4 \cdots \cdots \vdash C_N$$

When we apply pumping lemma on u, there are only two parts of u that can be pumped simultaneously, say, for example, on C_i and C_j^R , which will then violate the conditions for the string to be an accepting run. Thus, $L(\mathcal{G}_0)$ must be finite.

Now, since \mathcal{G}_0 generates all the accepting runs of \mathcal{M} , this means that there are only finitely many accepting runs of \mathcal{M} . In turn, this means that there are only finitely many words accepted by \mathcal{M} . Thus, $|\mathcal{M}| \in \mathsf{Finite}\mathsf{-TM}$.