

=> file reg

=> s WRWWWW/sqsp
L1 497 WRWWWW/SQSP

=> s l1 and 4<=sql<=15
1678496 4<=SQL<=15
L2 24 L1 AND 4<=SQL<=15

=> s WRWWWW/sqsp and 4<=sql<=15
24 WRWWWW/SQSP
1678496 4<=SQL<=15
L3 24 WRWWWW/SQSP AND 4<=SQL<=15

=> file hcaplus

=> s l1 and pd<20040204
19 L1
24813213 PD<20040204
(PD<20040204)
L4 6 L1 AND PD<20040204

=> dup rem 14
PROCESSING COMPLETED FOR L4
L5 3 DUP REM L4 (3 DUPLICATES REMOVED)

=> d 15 1-3 bib ab

L5 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2009 ACS on STN
AN 2004:502191 HCAPLUS <>LOGINID::20090202>>
DN 141:122298
TI Identification of Peptides That Antagonize Formyl Peptide Receptor-Like
1-Mediated Signaling
AU Bae, Yoe-Sik; Lee, Ha Young; Jo, Eun Jin; Kim, Jung Im; Kang, Hyun-Kyu;
Ye, Richard D.; Kwak, Jong-Young; Ryu, Sung Ho
CS Medical Research Center for Cancer Molecular Therapy and Department of
Biochemistry, College of Medicine, Dong-A University, Pusan, 602-714, S.
Korea
SO Journal of Immunology (***2004***), 173(1), 607-614
CODEN: JOIMA3; ISSN: 0022-1767
PB American Association of Immunologists
DT Journal
LA English
AB Formyl peptide receptor-like 1 (FPRL1) is an important classical
chemoattractant receptor that is expressed in phagocytic cells in the
peripheral blood and brain. Recently, various novel agonists have been
identified from several origins, such as host-derived mols. Activation of
FPRL1 is closely related to inflammatory responses in the host defense
mechanism and neurodegenerative disorders. Here, the authors identified
several novel peptides by screening hexapeptide libraries that inhibit the
binding of one of FPRL1 agonists [Trp-Lys-Tyr-Met-Val-D-Met-CONH2
(WKYMVm)] to its specific receptor, FPRL1, in RBL-2H3 cells. Among the
novel peptides, Trp-Arg-Trp-Trp-Trp-CONH2 [WRWWWW (WRW4)] showed the
most potent activity in terms of inhibiting WKYMVm binding to FPRL1. The
authors also found that WRW4 inhibited the activation of FPRL1 by WKYMVm,
resulting in the complete inhibition of the intracellular calcium
increase, extracellular signal-regulated kinase activation, and
chemotactic migration of cells toward WKYMVm. For the receptor
specificity of WRW4 to the FPR family, the authors obsd. that WRW4
specifically inhibit the increase in intracellular calcium by the FPRL1
agonists MMK-1, amyloid .beta.42 (A.beta.42) peptide, and F peptide, but
not by the FPR agonist, fMLF. To investigate the effect of WRW4 on
endogenous FPRL1 ligand-induced cellular responses, the authors examd. its
effect on A.beta.42 peptide in human neutrophils. A.beta.42
peptide-induced superoxide generation and chemotactic migration of
neutrophils were inhibited by WRW4, which also completely inhibited the
internalization of A.beta.42 peptide in human macrophages. WRW4 is the
first specific FPRL1 antagonist and is expected to be useful in the study
of FPRL1 signaling and in the development of drugs against FPRL1-related
diseases.
RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2009 ACS on STN DUPLICATE 1
AN 2000:754713 HCAPLUS <>LOGINID::20090202>>
DN 133:330539

TI Sequence-determined DNA fragments and corresponding encoded polypeptides
 from corn and Arabidopsis

IN Alexandrov, Nickolai; Brover, Vyacheslav; Chen, Xianfeng; Subramanian,
 Gopalakrishnan; Trouhan, Maxim E.; Zheng, Liansheng; Dumas, J.

PA Ceres Inc., USA
 SO Eur. Pat. Appl., 339 pp.
 CODEN: EPXXDW

DT Patent
 LA English
 FAN.CNT 43

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1033405	A2	20000906	EP 2000-301439	20000225 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	CA 2300692	A1	20000825	CA 2000-2300692	20000225 <--
	CA 2302828	A1	20001006	CA 2000-2302828	20000406 <--
	EP 1055728	A2	20001129	EP 2000-303770	20000504 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	EP 1054060	A2	20001122	EP 2000-304161	20000517 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
PRAI	US 1999-121825P	P	19990225		
	US 1999-145918P	P	19990727		
	US 1999-145951P	P	19990728		
	US 1999-146386P	P	19990802		
	US 1999-146388P	P	19990802		
	US 1999-146389P	P	19990802		
	US 1999-147038P	P	19990803		
	US 1999-147204P	P	19990804		
	US 1999-147302P	P	19990804		
	US 1999-147192P	P	19990805		
	US 1999-147260P	P	19990805		
	US 1999-147303P	P	19990806		
	US 1999-147416P	P	19990806		
	US 1999-147493P	P	19990809		
	US 1999-147935P	P	19990809		
	US 1999-148171P	P	19990810		
	US 1999-148319P	P	19990811		
	US 1999-148341P	P	19990812		
	US 1999-148565P	P	19990813		
	US 1999-148684P	P	19990813		
	US 1999-123180P	P	19990305		
	US 1999-123548P	P	19990309		
	US 1999-125788P	P	19990323		
	US 1999-126264P	P	19990325		
	US 1999-126785P	P	19990329		
	US 1999-127462P	P	19990401		
	US 1999-128234P	P	19990406		
	US 1999-128714P	P	19990408		
	US 1999-129845P	P	19990416		
	US 1999-130077P	P	19990419		
	US 1999-130449P	P	19990421		
	US 1999-130510P	P	19990423		
	US 1999-130891P	P	19990423		
	US 1999-131449P	P	19990428		
	US 1999-132048P	P	19990430		
	US 1999-132407P	P	19990430		
	US 1999-132484P	P	19990504		
	US 1999-132485P	P	19990505		
	US 1999-132486P	P	19990506		
	US 1999-132487P	P	19990506		
	US 1999-132863P	P	19990507		
	US 1999-134256P	P	19990511		
	US 1999-134218P	P	19990514		
	US 1999-134219P	P	19990514		
	US 1999-134221P	P	19990514		
	US 1999-134370P	P	19990514		
	US 1999-134768P	P	19990518		
	US 1999-134941P	P	19990519		
	US 1999-135124P	P	19990520		
	US 1999-135353P	P	19990521		
	US 1999-135629P	P	19990524		
	US 1999-136021P	P	19990525		
	US 1999-136392P	P	19990527		
	US 1999-136782P	P	19990528		
	US 1999-137222P	P	19990601		
	US 1999-137528P	P	19990603		

US 1999-137502P P 19990604
US 1999-137724P P 19990607
US 1999-138094P P 19990608

AB The present invention provides DNA mols. that constitute fragments of the genome and cDNAs from Zea mays mays (HYBRID SEED #35A19) and Arabidopsis thaliana (ecotype Wassilewski), and polypeptides encoded thereby. The DNA mols. are useful for specifying a gene product in cells, either as a promoter or as a protein coding sequence or as an UTR or as a 3' termination sequence, and are also useful in controlling the behavior of a gene in the chromosome, in controlling the expression of a gene or as tools for genetic mapping, recognizing or isolating identical or related DNA fragments, or identification of a particular individual organism, or for clustering of a group of organisms with a common trait. Arabidopsis DNA is used in the present expt., but the procedure is a general one. Protocols are provided for Southern hybridizations and transformation of carrot cells. [This abstr. record is one of 15 records supplemental to CA13316218528Q necessitated by the large no. of index entries required to fully index the document and publication system constraints.].

L5 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2009 ACS on STN
AN 2000:9190 HCAPLUS <>LOGINID::20090202>>
DN 132:103595

TI Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana
AU Mayer, K.; Schuller, C.; Wambutt, R.; Murphy, G.; Volckaert, G.; Pohl, T.;
Dusterhoff, A.; Stiekema, W.; Entlan, K.-D.; Terryn, N.; Harris, B.;
Ansorge, W.; Brandt, P.; Grivell, L.; Rieger, M.; Weichselgartner, M.; De
Simone, V.; Obermaier, B.; Mache, R.; Muller, M.; Kreis, M.; Delseny, M.;
Pulgdomenech, P.; Watson, M.; Schmidtheini, T.; Reichert, B.; Portatelle,
D.; Perez-Alonso, M.; Boutry, M.; Bancroft, I.; Vos, P.; Hoheisel, J.;
Zimmermann, W.; Wedler, H.; Ridley, P.; Langham, S.-A.; McCullagh, B.;
Bilham, L.; Robben, J.; Van Der Schueren, J.; Grymonprez, B.; Chuang,
Y.-J.; Vandenbussche, F.; Braeken, M.; Weltjens, I.; Voet, M.; Bastiaens,
I.; Aert, R.; Defoor, E.; Weitznegger, T.; Bothe, G.; Ramsperger, U.;
Hilbert, H.; Braun, M.; Holzer, E.; Brandt, A.; Peters, S.; Van Staveren,
M.; Dirkse, W.; Mooijman, P.; Klein Lankhorst, R.; Rose, M.; Haut, J.;
Kotter, P.; Berneiser, S.; Hempel, S.; Feldpausch, M.; Lamberth, S.; Van
Den Daele, H.; De Keyser, A.; Buysschaert, C.; Gielen, J.; Villarroel, R.;
De Clercq, R.; Van Montagu, M.; Rogers, J.; Cronin, A.; Quail, M.;
Bray-Allen, S.; Clark, L.; Doggett, J.; Hall, S.; Kay, M.; Lennard, N.;
McLay, K.; Mayes, R.; Pettett, A.; Rajandream, M.-A.; Lyne, M.; Benes, V.;
Rechmann, S.; Borkova, D.; Blocker, H.; Scharfe, M.; Grimm, M.; Lohnert,
T.-H.; Dose, S.; De Haan, M.; Maarse, A.; Schafer, M.; Muller-Auer, S.;
Gabel, C.; Fuchs, M.; Fartmann, B.; Granderath, K.; Dauner, D.; Herzl, A.;
Neumann, S.; Argiriou, A.; Vitale, D.; Liguori, R.; Piravandi, E.;
Massenet, O.; Quigley, F.; Clabauld, G.; Mundlein, A.; Felber, R.;
Schnabl, S.; Hiller, R.; Schmidt, W.; Lecharny, A.; Aubourg, S.; Chefdor,
F.; Cooke, R.; Berger, C.; Montfort, M.; Casacuberta, E.; Gibbons, T.;
Weber, N.; Vandenbol, M.; Bargues, M.; Terol, J.; Torres, A.; Perez-Perez,
A.; Purnelle, B.; Bent, E.; Johnson, S.; Tacon, D.; Jesse, T.; Heijnen,
L.; Schwarz, S.; Scholler, P.; Heber, S.; Francs, P.; Bielke, C.;
Frishman, D.; Haase, D.; Lemcke, K.; Mewes, H. W.; Stocker, S.; Zaccaria,
P.; Bevan, M.; Wilson, R. K.; De La Bastide, M.; Habermann, K.; Parnell,
L.; Dedhia, N.; Gnoj, L.; Schutz, K.; Huang, E.; Spiegel, L.; Sehkon, M.;
Murray, J.; Sheet, P.; Cordes, M.; Abu-Threideh, J.; Stoneking, T.;
Kalicki, J.; Graves, T.; Harmon, G.; Edwards, J.; Latrelle, P.; Courtney,
L.; Cloud, J.; Abbott, A.; Scott, K.; Johnson, D.; Minx, P.; Bentley, D.;
Fulton, B.; Miller, N.; Greco, T.; Kemp, K.; Kramer, J.; Fulton, L.;
Mardis, E.; Dante, M.; Pepin, K.; Hillier, L.; Nelson, J.; Spieth, J.;
Ryan, E.; Andrews, S.; Geisel, C.; Layman, D.; Du, H.; Ali, J.; Berghoff,
A.; Jones, K.; Drone, K.; Cotton, N.; Joshu, C.; Antoniou, B.; Zidanic,
M.; Strong, C.; Sun, H.; Lamar, B.; Yordan, C.; Ma, P.; Zhong, J.;
Preston, R.; Vil, D.; Shekher, M.; Matero, A.; Shah, R.; Swaby, I'K.;
O'Shaughnessy, A.; Rodriguez, M.; Hoffman, J.; Till, S.; Granat, S.;
Shohdy, N.; Hasegawa, A.; Hameed, A.; Lodhi, M.; Johnson, A.; Chen, E.;
Marra, M.; Martienssen, R.; McCombie, W. R.
CS GSF-Forschungszentrum f. Umwelt u. Gesundheit, Munich Information Center
for Protein Sequences am Max-Planck-Institut f. Biochemie, D-82152,
Germany

SO Nature (London) (***1999***), 402(6763), 769-777
CODEN: NATUAS; ISSN: 0028-0836

PB Macmillan Magazines

DT Journal

LA English

AB The higher plant Arabidopsis thaliana is an important model for identifying plant genes and detg. their function. To assist biol. investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. This report describes one of the first milestones of this project, the sequence of chromosome 4. Anal. of 17.38 megabases of unique sequence, representing

about 17% of the genome, reveals 3744 protein coding genes, 81 tRNAs, and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene d., and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homol. to known genes. Many genes encode predicted proteins that are homologous to human and *Caenorhabditis elegans* proteins.

RE.CNT 50 THERE ARE 50 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s 13 and pd<20040204
10 L3
24813213 PD<20040204
(PD<20040204)
L6 1 L3 AND PD<20040204

=> d 16 bib ab

L6 ANSWER 1 OF 1 HCPLUS COPYRIGHT 2009 ACS on STN
AN 2004:502191 HCPLUS <<LOGINID::20090202>>
DN 141:122298
TI Identification of Peptides That Antagonize Formyl Peptide Receptor-Like 1-Mediated Signaling
AU Bae, Yoe-Sik; Lee, Ha Young; Jo, Eun Jin; Kim, Jung Im; Kang, Hyun-Kyu; Ye, Richard D.; Kwak, Jong-Young; Ryu, Sung Ho
CS Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Pusan, 602-714, S. Korea
SO Journal of Immunology (***2004***), 173(1), 607-614
CODEN: JOIMA3; ISSN: 0022-1767
PB American Association of Immunologists
DT Journal
LA English
AB Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived mols. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. Here, the authors identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1 agonists [Trp-Lys-Tyr-Met-Val-D-Met-CONH2 (WKYMVm)] to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-CONH2 [WRWWWW (WRW4)] showed the most potent activity in terms of inhibiting WKYMVm binding to FPRL1. The authors also found that WRW4 inhibited the activation of FPRL1 by WKYMVm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYMVm. For the receptor specificity of WRW4 to the FPR family, the authors obsd. that WRW4 specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid .beta.42 (A.beta.42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW4 on endogenous FPRL1 ligand-induced cellular responses, the authors examd. its effect on A.beta.42 peptide in human neutrophils. A.beta.42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW4, which also completely inhibited the internalization of A.beta.42 peptide in human macrophages. WRW4 is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.

RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> file .biotech
FILE 'MEDLINE' ENTERED AT 13:30:07 ON 02 FEB 2009

FILE 'CAPLUS' ENTERED AT 13:30:07 ON 02 FEB 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 13:30:07 ON 02 FEB 2009
Copyright (c) 2009 The Thomson Corporation

FILE 'BIOTECHDS' ENTERED AT 13:30:07 ON 02 FEB 2009

COPYRIGHT (C) 2009 THOMSON REUTERS

FILE 'EMBASE' ENTERED AT 13:30:07 ON 02 FEB 2009
Copyright (c) 2009 Elsevier B.V. All rights reserved.

FILE 'USPATFULL' ENTERED AT 13:30:07 ON 02 FEB 2009
CA INDEXING COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'WPIDS' ENTERED AT 13:30:07 ON 02 FEB 2009
COPYRIGHT (C) 2009 THOMSON REUTERS

=> s 13 and pd<20040204
1 FILES SEARCHED...
'SQL' NOT A VALID FIELD CODE
'SQSP' IS NOT A VALID FIELD CODE
4 FILES SEARCHED...
'SQL' NOT A VALID FIELD CODE
'SQSP' IS NOT A VALID FIELD CODE
L7 1 L3 AND PD<20040204

=> d 17 bib ab

L7 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2004:502191 CAPLUS <<LOGINID::20090202>>
DN 141:122298
TI Identification of Peptides That Antagonize Formyl Peptide Receptor-Like 1-Mediated Signaling
AU Bae, Yoe-Sik; Lee, Ha Young; Jo, Eun Jin; Kim, Jung Im; Kang, Hyun-Kyu; Ye, Richard D.; Kwak, Jong-Young; Ryu, Sung Ho
CS Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Pusan, 602-714, S. Korea
SO Journal of Immunology (***2004***), 173(1), 607-614
CODEN: JOIMAA; ISSN: 0022-1767
PB American Association of Immunologists
DT Journal
LA English
AB Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived mols. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. Here, the authors identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1 agonists [Trp-Lys-Tyr-Met-Val-D-Met-CONH2 (WKYMVm)] to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-CONH2 [WRWWWW (WRW4)] showed the most potent activity in terms of inhibiting WKYMVm binding to FPRL1. The authors also found that WRW4 inhibited the activation of FPRL1 by WKYMVm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYMVm. For the receptor specificity of WRW4 to the FPR family, the authors obsd. that WRW4 specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid .beta.42 (A.beta.42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW4 on endogenous FPRL1 ligand-induced cellular responses, the authors examd. its effect on A.beta.42 peptide in human neutrophils. A.beta.42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW4, which also completely inhibited the internalization of A.beta.42 peptide in human macrophages. WRW4 is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.

RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s 11 and pd<20040204
1 FILES SEARCHED...
'SQSP' IS NOT A VALID FIELD CODE
4 FILES SEARCHED...
'SQSP' IS NOT A VALID FIELD CODE
L8 6 L1 AND PD<20040204

=> dup rem 18
PROCESSING COMPLETED FOR L8
L9 3 DUP REM L8 (3 DUPLICATES REMOVED)

=> d 19 1-3 bib ab

L9 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2004:502191 CAPLUS <<LOGINID::20090202>>
DN 141:122298
TI Identification of Peptides That Antagonize Formyl Peptide Receptor-Like 1-Mediated Signaling
AU Bae, Yoe-Sik; Lee, Ha Young; Jo, Eun Jin; Kim, Jung Im; Kang, Hyun-Kyu; Ye, Richard D.; Kwak, Jong-Young; Ryu, Sung HO
CS Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Pusan, 602-714, S. Korea
SO Journal of Immunology (***2004***), 173(1), 607-614
CODEN: JOIMAA; ISSN: 0022-1767
PB American Association of Immunologists
DT Journal
LA English
AB Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived mols. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. Here, the authors identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1 agonists [Trp-Lys-Tyr-Met-Val-D-Met-CONH2 (WKYVMm)] to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-CONH2 [WRWWWW (WRW4)] showed the most potent activity in terms of inhibiting WKYVMm binding to FPRL1. The authors also found that WRW4 inhibited the activation of FPRL1 by WKYVMm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYVMm. For the receptor specificity of WRW4 to the FPR family, the authors obsd. that WRW4 specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid .beta.42 (A.beta.42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW4 on endogenous FPRL1 ligand-induced cellular responses, the authors examd. its effect on A.beta.42 peptide in human neutrophils. A.beta.42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW4, which also completely inhibited the internalization of A.beta.42 peptide in human macrophages. WRW4 is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.

RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2009 ACS on STN DUPLICATE 1
AN 2000:754713 CAPLUS <<LOGINID::20090202>>
DN 133:330539
TI Sequence-determined DNA fragments and corresponding encoded polypeptides from corn and Arabidopsis
IN Alexandrov, Nickolai; Brover, Vyacheslav; Chen, Xianfeng; Subramanian, Gopalakrishnan; Troukhan, Maxim E.; Zheng, Liansheng; Dumas, J.
PA Ceres Inc., USA
SO Eur. Pat. Appl., 339 pp.
CODEN: EPXXDW
DT Patent
LA English

FAN.CNT 43

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1033405	A2	20000906	EP 2000-301439	20000225 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	CA 2300692	A1	20000825	CA 2000-2300692	20000225 <--
	CA 2302828	A1	20001006	CA 2000-2302828	20000406 <--
	EP 1055728	A2	20001129	EP 2000-303770	20000504 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	EP 1054060	A2	20001122	EP 2000-304161	20000517 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
PRAI	US 1999-121825P	P	19990225		
	US 1999-145918P	P	19990727		
	US 1999-145951P	P	19990728		
	US 1999-146386P	P	19990802		
	US 1999-146388P	P	19990802		
	US 1999-146389P	P	19990802		

US	1999-147038P	P	19990803
US	1999-147204P	P	19990804
US	1999-147302P	P	19990804
US	1999-147192P	P	19990805
US	1999-147260P	P	19990805
US	1999-147303P	P	19990806
US	1999-147416P	P	19990806
US	1999-147493P	P	19990809
US	1999-147935P	P	19990809
US	1999-148171P	P	19990810
US	1999-148319P	P	19990811
US	1999-148341P	P	19990812
US	1999-148565P	P	19990813
US	1999-148684P	P	19990813
US	1999-123180P	P	19990305
US	1999-123548P	P	19990309
US	1999-125788P	P	19990323
US	1999-126264P	P	19990325
US	1999-126785P	P	19990329
US	1999-127462P	P	19990401
US	1999-128234P	P	19990406
US	1999-128714P	P	19990408
US	1999-129845P	P	19990416
US	1999-130077P	P	19990419
US	1999-130449P	P	19990421
US	1999-130510P	P	19990423
US	1999-130891P	P	19990423
US	1999-131449P	P	19990428
US	1999-132048P	P	19990430
US	1999-132407P	P	19990430
US	1999-132484P	P	19990504
US	1999-132485P	P	19990505
US	1999-132486P	P	19990506
US	1999-132487P	P	19990506
US	1999-132863P	P	19990507
US	1999-134256P	P	19990511
US	1999-134218P	P	19990514
US	1999-134219P	P	19990514
US	1999-134221P	P	19990514
US	1999-134370P	P	19990514
US	1999-134768P	P	19990518
US	1999-134941P	P	19990519
US	1999-135124P	P	19990520
US	1999-135353P	P	19990521
US	1999-135629P	P	19990524
US	1999-136021P	P	19990525
US	1999-136392P	P	19990527
US	1999-136782P	P	19990528
US	1999-137222P	P	19990601
US	1999-137528P	P	19990603
US	1999-137502P	P	19990604
US	1999-137724P	P	19990607
US	1999-138094P	P	19990608

AB The present invention provides DNA mols. that constitute fragments of the genome and cDNAs from Zea mays mays (HYBRID SEED #35A19) and Arabidopsis thaliana (ecotype Wassilewski), and polypeptides encoded thereby. The DNA mols. are useful for specifying a gene product in cells, either as a promoter or as a protein coding sequence or as an UTR or as a 3' termination sequence, and are also useful in controlling the behavior of a gene in the chromosome, in controlling the expression of a gene or as tools for genetic mapping, recognizing or isolating identical or related DNA fragments, or identification of a particular individual organism, or for clustering of a group of organisms with a common trait. Arabidopsis DNA is used in the present expt., but the procedure is a general one. Protocols are provided for Southern hybridizations and transformation of carrot cells. [This abstr. record is one of 15 records supplemental to CA13316218528Q necessitated by the large no. of index entries required to fully index the document and publication system constraints.].

L9 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2000:9190 CAPLUS <>LOGINID::20090202>>
DN 132:103595
TI Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana
AU Mayer, K.; Schuller, C.; Wambutt, R.; Murphy, G.; Volckaert, G.; Pohl, T.;
Dusterhoff, A.; Stiekema, W.; Entlan, K.-D.; Terryn, N.; Harris, B.;
Ansorge, W.; Brandt, P.; Grivell, L.; Rieger, M.; Weichselgartner, M.; De
Simone, V.; Obermaier, B.; Mache, R.; Muller, M.; Kreis, M.; Delseny, M.;
Pulgdomenech, P.; Watson, M.; Schmidtheini, T.; Reichert, B.; Portatelle,
D.; Perez-Alonso, M.; Boutry, M.; Bancroft, I.; Vos, P.; Hoheisel, J.;

Zimmermann, W.; Wedler, H.; Ridley, P.; Langham, S.-A.; McCullagh, B.; Bilham, L.; Robben, J.; Van Der Schueren, J.; Grymonprez, B.; Chuang, Y.-J.; Vandenbussche, F.; Braeken, M.; Weltjens, I.; Voet, M.; Bastiaens, I.; Aert, R.; Defoor, E.; Weitzenerger, T.; Bothe, G.; Ramsperger, U.; Hilbert, H.; Braun, M.; Holzer, E.; Brandt, A.; Peters, S.; Van Staveren, M.; Dirkse, W.; Mooijman, P.; Klein Lankhorst, R.; Rose, M.; Haut, J.; Kotter, P.; Berneiser, S.; Hempel, S.; Feldpausch, M.; Lamberth, S.; Van Den Daele, H.; De Keyser, A.; Buysschaert, C.; Gielen, J.; Villarroel, R.; De Clercq, R.; Van Montagu, M.; Rogers, J.; Cronin, A.; Quail, M.; Bray-Allen, S.; Clark, L.; Doggett, J.; Hall, S.; Kay, M.; Lennard, N.; McLay, K.; Mayes, R.; Pettett, A.; Rajandream, M.-A.; Lyne, M.; Benes, V.; Rechmann, S.; Borkova, D.; Blocker, H.; Scharfe, M.; Grimm, M.; Lohnert, T.-H.; Dose, S.; De Haan, M.; Maarse, A.; Schafer, M.; Muller-Auer, S.; Gabel, C.; Fuchs, M.; Fartmann, B.; Granderath, K.; Dauner, D.; Herzl, A.; Neumann, S.; Argiriou, A.; Vitale, D.; Liguori, R.; Piravandi, E.; Massenet, O.; Quigley, F.; Clabauld, G.; Mundlein, A.; Felber, R.; Schnabl, S.; Hiller, R.; Schmidt, W.; Lecharny, A.; Aubourg, S.; Chefedor, F.; Cooke, R.; Berger, C.; Montfort, M.; Casacuberta, E.; Gibbons, T.; Weber, N.; Vandebol, M.; Bargues, M.; Terol, J.; Torres, A.; Perez-Perez, A.; Purnelle, B.; Bent, E.; Johnson, S.; Tacon, D.; Jesse, T.; Heijnen, L.; Schwarz, S.; Scholler, P.; Heber, S.; Francs, P.; Bielke, C.; Frishman, D.; Haase, D.; Lemcke, K.; Mewes, H. W.; Stocker, S.; Zaccaria, P.; Bevan, M.; Wilson, R. K.; De La Bastide, M.; Habermann, K.; Parnell, L.; Dedhia, N.; Gnoj, L.; Schutz, K.; Huang, E.; Spiegel, L.; Sehkon, M.; Murray, J.; Sheet, P.; Cordes, M.; Abu-Threideh, J.; Stoneking, T.; Kalicki, J.; Graves, T.; Harmon, G.; Edwards, J.; Latrelle, P.; Courtney, L.; Cloud, J.; Abbott, A.; Scott, K.; Johnson, D.; Minx, P.; Bentley, D.; Fulton, B.; Miller, N.; Greco, T.; Kemp, K.; Kramer, J.; Fulton, L.; Mardis, E.; Dante, M.; Pepin, K.; Hillier, L.; Nelson, J.; Spieth, J.; Ryan, E.; Andrews, S.; Geisel, C.; Layman, D.; Du, H.; Ali, J.; Berghoff, A.; Jones, K.; Drone, K.; Cotton, N.; Joshu, C.; Antonoiu, B.; Zidianic, M.; Strong, C.; Sun, H.; Lamar, B.; Yordan, C.; Ma, P.; Zhong, J.; Preston, R.; Vil, D.; Shekher, M.; Matero, A.; Shah, R.; Swaby, I'K.; O'Shaughnessy, A.; Rodriguez, M.; Hoffman, J.; Till, S.; Granat, S.; Shohdy, N.; Hasegawa, A.; Hameed, A.; Lodhi, M.; Johnson, A.; Chen, E.; Marra, M.; Martienssen, R.; McCombie, W. R.

CS GSF-Forschungszentrum f. Umwelt u. Gesundheit, Munich Information Center for Protein Sequences am Max-Planck-Institut f. Biochemie, D-82152, Germany

SO Nature (London) (****1999****), 402(6763), 769-777

CODEN: NATUAS; ISSN: 0028-0836

PB Macmillan Magazines

DT Journal

LA English

AB The higher plant *Arabidopsis thaliana* is an important model for identifying plant genes and detg. their function. To assist biol. investigations and to define chromosome structure, a coordinated effort to sequence the *Arabidopsis* genome was initiated in late 1996. This report describes one of the first milestones of this project, the sequence of chromosome 4. Anal. of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3744 protein coding genes, 81 tRNAs, and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene d., and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homol. to known genes. Many genes encode predicted proteins that are homologous to human and *Caenorhabditis elegans* proteins.

RE.CNT 50 THERE ARE 50 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=>

--Logging off of STN---

=>
Executing the logoff script...

=> LOG Y

STN INTERNATIONAL LOGOFF AT 13:34:24 ON 02 FEB 2009