# Technical Report: A Systematic Mapping Study of Machine Learning for Software Traceability

# 1. Extracted Data

## 1.1 Extracted Data for RQ1

| Index       | Title                                                                                                             | Author                                                                    | Subject    | Year | Venue                                                                               | Publication type |
|-------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|------|-------------------------------------------------------------------------------------|------------------|
| S1<br>[19]  | An extended knowledge representation learning approach for context-based traceability link recovery               | Guoshuai Zhao<br>Tong Li<br>Zhen Yang                                     | Researcher | 2020 | International Conference on Software Engineering and Knowledge Engineering (SEKE)   | Conference       |
| S2<br>[18]  | An Improved Approach to Traceability Recovery Based on Word Embeddings                                            | Teng Zhao<br>Qinghua Cao<br>Qing Sun                                      | Student    | 2017 | Asia-Pacific Software Engineering Conference (APSEC)                                | Conference       |
| \$3<br>[42] | An information theoretic approach for extracting and tracing non-functional requirements                          | Anas Mahmoud                                                              | Researcher | 2015 | International Requirements Engineering Conference (RE Conference)                   | Conference       |
| S4<br>[48]  | Application of reinforcement learning to requirements engineering requirements tracing                            | Hakim Sultanov<br>Jane Huffman Hayes                                      | Researcher | 2013 | International Requirements Engineering Conference (RE Conference)                   | Conference       |
| S5<br>[30]  | ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised Techniques | Emma Effa Bella<br>Stephen Creff<br>Marie-Pierre Gervais<br>Reda Bendraou | Student    | 2019 | The Enterprise Computing Conference (EDOC)                                          | Conference       |
| S6<br>[44]  | Traceability recovery between bug reports and test cases-a Mozilla Firefox case study                             | Guilherme Gadelha<br>Franklin Ramalho<br>Tiago Massoni                    | Researcher | 2021 | Automated Software<br>Engineering (ASE)                                             | Journal          |
| \$7<br>[45] | Automatic traceability link recovery via active learning                                                          | Tianbao Du<br>Guohua Shen<br>Zhiqiu Huang<br>Yaoshen Yu<br>Dexiang Wu     | Student    | 2020 | Frontiers of Information Technology & Electronic Engineering (FRONT INFORM TECH EL) | Journal          |
| S8<br>[3]   | Automatic Traceability Maintenance via Machine<br>Learning Classification                                         | Chris Mills<br>Javier Escobar-Avila<br>Sonia Haiduc                       | Researcher | 2018 | International Conference on Software Maintenance and Evolution (ICSME)              | Conference       |
| S9<br>[20]  | Automating traceability link recovery through classification                                                      | Chris Mills                                                               | Researcher | 2017 | European Software<br>Engineering                                                    | Conference       |

|              |                                                                                                                                                                      |                                                                                                                    |              |      | Conference (ESEC)                                                              |            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|------|--------------------------------------------------------------------------------|------------|
| \$10<br>[46] | Clustering for Traceability Managing in System Specifications                                                                                                        | Manel Mezghani<br>Juyeon Kang<br>Eun-Bee Kang<br>Florence Sedes                                                    | Researcher   | 2019 | International Requirements Engineering Conference (RE Conference)              | Conference |
| S11<br>[2]   | Combining Machine Learning and Logical Reasoning to Improve Requirements Traceability Recovery                                                                       | Tong Li<br>Shiheng Wang<br>David Lillis<br>Zhen Yang                                                               | Researcher   | 2020 | Applied Sciences<br>(APPS)                                                     | Journal    |
| S12<br>[43]  | Detecting, classifying, and tracing non-functional software requirements                                                                                             | Anas Mahmoud<br>Grant Williams                                                                                     | Researcher   | 2016 | Requirements<br>Engineering (RE)                                               | Journal    |
| S13<br>[31]  | Enhancing Automated Requirements Traceability by Resolving Polysemy                                                                                                  | Wentao Wang<br>Nan Niu<br>Hui Liu<br>Zhendong Niu                                                                  | Researcher   | 2018 | International Requirements Engineering Conference (RE Conference)              | Conference |
| S14<br>[22]  | A Machine Learning Approach for Determining the Validity of Traceability Links                                                                                       | Chris Mills<br>Sonia Haiduc                                                                                        | Researcher   | 2017 | International Conference on Software Engineering (ICSE)                        | Conference |
| S15<br>[32]  | Enhancing Unsupervised Requirements  Traceability with Sequential Semantics                                                                                          | Lei Chen<br>Dandan Wang<br>Junjie Wang<br>Qing Wang                                                                | Researcher   | 2019 | Asia-Pacific Software Engineering Conference (APSEC)                           | Conference |
| S16<br>[27]  | Estimating the number of remaining links in traceability recovery                                                                                                    | Davide Falessi<br>Massimiliano Di Penta<br>Gerardo Canfora<br>Giovanni Cantone                                     | Researcher   | 2017 | Empirical Software<br>Engineering (ESE)                                        | Journal    |
| S17<br>[35]  | Evaluation of Textual Similarity Techniques in<br>Code Level Traceability                                                                                            | Viktor Csuvik<br>Andras Kicsi<br>Laszlo Vidacs                                                                     | Student      | 2019 | International Conference on Computational Science and Its Applications (ICCSA) | Conference |
| S18<br>[47]  | Improving the effectiveness of traceability link recovery using hierarchical bayesian networks                                                                       | Kevin Moran David N. Palacio Carlos Bernal-Cardenas Daniel McCrystal Denys Poshyvanyk Chris Shenefiel Jeff Johnson | Practitioner | 2020 | International Conference on Software Engineering (ICSE)                        | Conference |
| S19<br>[41]  | Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case | Ana C. Marcen<br>Raul Lapena<br>Oscar Pastor<br>Carlos Cetina                                                      | Researcher   | 2020 | Journal of Systems<br>and Software (JSS)                                       | Journal    |
| S20<br>[33]  | Information retrieval versus deep learning approaches for generating traceability links in bilingual projects                                                        | Jinfeng Lin<br>Yalin Liu<br>Jane Cleland-Huang                                                                     | Researcher   | 2022 | Empirical Software<br>Engineering (ESE)                                        | Journal    |

| \$21<br>[23] | Issue Link Label Recovery and Prediction for<br>Open Source Software                                 | Alexander Nicholson<br>Jin L.C. Guo                                                                     | Student      | 2021 | International Requirements Engineering Conference (RE Conference)                  | Conference<br>Workshop |
|--------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|------|------------------------------------------------------------------------------------|------------------------|
| S22<br>[36]  | Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches     | Andras Kicsi<br>Viktor Csuvik<br>Laszlo Vidacs                                                          | Researcher   | 2021 | IEEE Access (IEEE<br>ACCESS)                                                       | Journal                |
| \$23<br>[24] | Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes | Davide Falessi<br>Justin Roll<br>Jin L.C. Guo<br>Jane Cleland-Huang                                     | Researcher   | 2020 | IEEE Transactions on Software Engineering (IEEE T SOFTWARE ENG)                    | Journal                |
| S24<br>[25]  | On the effect of incompleteness to check requirement-to-method traces                                | Mouna Hammoudi<br>Christoph Mayr-Dorn<br>Atif Mashkoor<br>Alexander Egyed                               | Researcher   | 2021 | ACM Symposium On Applied Computing (SAC)                                           | Conference             |
| \$25<br>[37] | DeepLink_A Code Knowledge Graph Based Deep<br>Learning Approach for Issue-Commit Link<br>Recovery    | Rui Xie<br>Long Chen<br>Wei Ye<br>Zhiyu Li<br>Tianxiang Hu<br>Dongdong Du<br>Shikun Zhang               | Researcher   | 2019 | International Conference on Software Analysis, Evolution and Reengineering (SANER) | Conference             |
| \$26<br>[21] | Tracing with Less Data: Active Learning for<br>Classification-Based Traceability Link Recovery       | Chris Mills Javier Escobar-Avila Aditya Bhattacharya Grigoriy Kondyukov Shayok Chakraborty Sonia Haiduc | Researcher   | 2019 | International Conference on Software Maintenance and Evolution (ICSME)             | Conference             |
| \$27<br>[4]  | Semantically Enhanced Software Traceability Using Deep Learning Techniques                           | Jin L.C. Guo<br>Jinghui Cheng<br>Jane Cleland-Huang                                                     | Student      | 2017 | International Conference on Software Engineering (ICSE)                            | Conference             |
| S28<br>[28]  | Semi-Automated Feature Traceability with Embedded Annotations                                        | Hadil Abukwaik<br>Andreas Burger<br>Berima Kweku Andam<br>Thorsten Berger                               | Researcher   | 2018 | International Conference on Software Maintenance and Evolution (ICSME)             | Conference             |
| S29<br>[38]  | Source Code Level Word Embeddings in Aiding<br>Semantic Test-to-Code Traceability                    | Viktor Csuvik<br>Andras Kicsi<br>Laszlo Vidacs                                                          | Student      | 2019 | ICSE Workshop on<br>Software and<br>Systems Traceability<br>(SST)                  | Conference<br>Workshop |
| \$30<br>[29] | Tackling the term-mismatch problem in automated trace retrieval                                      | Jin L.C. Guo<br>Marek Gibiec<br>Jane Cleland-Huang                                                      | Student      | 2017 | Empirical Software<br>Engineering (ESE)                                            | Journal                |
| \$31<br>[40] | TCTracer: Establishing test-to-code traceability links using dynamic and static techniques           | Robert White  Jens Krinke                                                                               | Practitioner | 2022 | Empirical Software<br>Engineering (ESE)                                            | Journal                |
| S32          | Toward accurate link between code and software                                                       | Yingkui Cao                                                                                             | Researcher   | 2018 | Science China                                                                      | Journal                |

| [34] | documentation                                      | Yanzhen Zou        |            |      | Information Sciences  |            |
|------|----------------------------------------------------|--------------------|------------|------|-----------------------|------------|
|      |                                                    | Yuxiang Luo        |            |      | (SCIS)                |            |
|      |                                                    | Bing Xie           |            |      |                       |            |
|      |                                                    | Junfeng Zhao       |            |      |                       |            |
|      |                                                    |                    |            |      | ICSE Workshop on      |            |
| S33  | Towards feature-aware retrieval of refinement      | Patrick Rempel     |            |      | Traceability in       | Conference |
| [49] | traces                                             | Patrick Mader      | Student    | 2013 | Emerging Forms of     | Workshop   |
| [43] | traces                                             | Tobias Kuschke     |            |      | Software              | Workshop   |
|      |                                                    |                    |            |      | Engineering (TEFSE)   |            |
|      |                                                    | Jinfeng Lin        |            |      | International         |            |
| S34  | Traceability Transformed_Generating more           | Yalin Liu          |            |      | Conference on         |            |
| [6]  | Accurate Links with Pre-Trained BERT Models        | Qingkai Zeng       | Researcher | 2021 | Software              | Conference |
|      |                                                    | Meng Jiang         |            |      | Engineering (ICSE)    |            |
|      |                                                    | Jane Cleland-Huang |            |      |                       |            |
|      |                                                    |                    |            |      | International         |            |
| S35  | Towards the automatic classification of            |                    |            |      | Conference on         |            |
| [17] | traceability links                                 | Chris Mills        | Researcher | 2017 | Automated Software    | Conference |
|      | ,                                                  |                    |            |      | Engineering (ASE      |            |
|      |                                                    |                    |            |      | Conference)           |            |
|      |                                                    |                    |            |      | International Journal |            |
| S36  | Tracing Requirements as a Problem of Machine       | Zeheng Li          | Student    | 2018 | of Software           | Journal    |
| [39] | Learning                                           | LiGuo Huang        |            |      | Engineering &         |            |
|      |                                                    |                    |            |      | Applications (IJSEA)  |            |
|      |                                                    | Michael Rath       |            |      | International         |            |
| S37  | Traceability in the wild: automatically augmenting | Jacob Rendall      |            | 0040 | Conference on         | Conference |
| [26] | incomplete trace links                             | Jin L.C. Guo       | Researcher | 2018 | Software              |            |
|      |                                                    | Jane Cleland-Huang |            |      | Engineering (ICSE)    |            |
|      |                                                    | Patrick Mader      |            |      |                       |            |

# 1.2 Extracted Data for RQ1

| Index | Title                                                                                                             | ML Models                                       | Stage                                        |
|-------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| \$1   | An extended knowledge representation<br>learning approach for context-based<br>traceability link recovery         | Decision Tree (DT)  GBDT  Naive Bayes (NB)  SVM | link generation stage                        |
| S2    | An Improved Approach to Traceability Recovery Based on Word Embeddings                                            | Word2vec<br>Ranking SVM                         | preprocessing stage<br>link generation stage |
| \$3   | An information theoretic approach for extracting and tracing non-functional requirements                          | Hierarchical Agglomerative Clustering (HAC)     | preprocessing stage                          |
| \$4   | Application of reinforcement learning to requirements engineering requirements tracing                            | Reinforcement Learning                          | link generation stage                        |
| S5    | ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised Techniques | Word2vec<br>GloVe<br>Label spreading            | preprocessing stage<br>link generation stage |
| \$6   | Traceability recovery between bug reports and test cases-a Mozilla Firefox case study                             | GloVe                                           | preprocessing stage                          |

| \$7  | Automatic traceability link recovery via active learning                                                                                                             | Active Learning                                                                                | link generation stage                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|
| S8   | Automatic Traceability Maintenance via  Machine Learning Classification                                                                                              | K nearest neighbors (KNN)  Naive Bayes (NB)  Logistic Regression (LR)  SVM  Random Forest (RF) | link generation stage                        |
| S9   | Automating traceability link recovery through classification                                                                                                         | Decision Tree (DT)  Random Forest (RF)  K nearest neighbors (KNN)  Naive Bayes (NB)            | link generation stage                        |
| S10  | Clustering for Traceability Managing in  System Specifications                                                                                                       | K-means                                                                                        | link generation stage                        |
| S11  | Combining Machine Learning and Logical<br>Reasoning to Improve Requirements<br>Traceability Recovery                                                                 | Doc2vec  Decision Tree (DT)  K nearest neighbors (KNN)  Random Forest (RF)  GBDT               | preprocessing stage<br>link generation stage |
| \$12 | Detecting, classifying, and tracing non-<br>functional software requirements                                                                                         | Hierarchical Agglomerative Clustering (HAC) K-medoids                                          | preprocessing stage                          |
| S13  | Enhancing Automated Requirements Traceability by Resolving Polysemy                                                                                                  | MLP<br>Word2vec                                                                                | preprocessing stage                          |
| \$14 | A Machine Learning Approach for  Determining the Validity of Traceability Links                                                                                      | Random Forest (RF)                                                                             | link generation stage                        |
| \$15 | Enhancing Unsupervised Requirements  Traceability with Sequential Semantics                                                                                          | Word2vec Doc2vec                                                                               | preprocessing stage                          |
| \$16 | Estimating the number of remaining links in traceability recovery                                                                                                    | Decision Tree (DT)  Bagging  K nearest neighbors (KNN)  Logit Boost  Naive Bayes (NB)          | link generation stage                        |
| \$17 | Evaluation of Textual Similarity Techniques in Code Level Traceability                                                                                               | Doc2vec                                                                                        | preprocessing stage                          |
| \$18 | Improving the effectiveness of traceability link recovery using hierarchical bayesian networks                                                                       | Hierarchical Bayesian Network (HBN)                                                            | link generation stage                        |
| S19  | Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case | MLP<br>RNN<br>RankBoost                                                                        | link generation stage                        |
| S20  | Information retrieval versus deep learning approaches for generating traceability links in bilingual projects                                                        | Word2vec<br>FastText<br>BERT                                                                   | preprocessing stage                          |
| S21  | Issue Link Label Recovery and Prediction for Open Source Software                                                                                                    | FastText Logistic Regression (LR) Random Forest (RF)                                           | preprocessing stage                          |

|              |                                                                                                                                                                                 | Neural Network (NN)                                                                         |                                                                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| \$22         | Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches                                                                                | Doc2vec                                                                                     | preprocessing stage                                             |
| S23          | Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes                                                                            | Decision Tree (DT)  Random Forest (RF)  Logistic Regression (LR)  Naive Bayes (NB)  Bagging | link generation stage                                           |
| S24          | On the effect of incompleteness to check requirement-to-method traces                                                                                                           | Decision Tree (DT)  Random Forest (RF)  Naive Bayes (NB)  K nearest neighbors (KNN)         | link generation stage                                           |
| \$25<br>\$26 | DeepLink_A Code Knowledge Graph Based Deep Learning Approach for Issue-Commit Link Recovery  Tracing with Less Data: Active Learning for Classification-Based Traceability Link | Word2vec GRU RNN MLP SVM  Active Learning Random Forest (RF)                                | preprocessing stage link generation stage link generation stage |
| \$27         | Recovery  Semantically Enhanced Software Traceability Using Deep Learning Techniques                                                                                            | Word2vec RNN LSTM Bi-LSTM                                                                   | preprocessing stage                                             |
|              | Somy Doop Loaning rooming                                                                                                                                                       | GRU<br>Bi-GRU                                                                               |                                                                 |
| S28          | Semi-Automated Feature Traceability with  Embedded Annotations                                                                                                                  | SVM K nearest neighbors (KNN) Decision Tree (DT)                                            | link generation stage                                           |
| S29          | Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability                                                                                                  | Doc2vec                                                                                     | preprocessing stage                                             |
| S30          | Tackling the term-mismatch problem in automated trace retrieval                                                                                                                 | Decision Tree (DT)<br>Naive Bayes (NB)                                                      | link generation stage                                           |
| \$31         | TCTracer: Establishing test-to-code traceability links using dynamic and static techniques                                                                                      | MLP                                                                                         | link generation stage                                           |
| \$32         | Toward accurate link between code and software documentation                                                                                                                    | Word2vec<br>GBDT                                                                            | preprocessing stage link generation stage                       |
| \$33         | Towards feature-aware retrieval of refinement traces                                                                                                                            | Spectral Clustering                                                                         | link refinement stage                                           |
| S34          | Traceability Transformed_Generating more  Accurate Links with Pre-Trained BERT  Models                                                                                          | BERT<br>LSTM<br>Bi-GRU                                                                      | link generation stage                                           |
| S35          | Towards the automatic classification of traceability links                                                                                                                      | Decision Tree (DT) Random Forest (RF) K nearest neighbors (KNN) Naive Bayes (NB)            | link generation stage                                           |

| 526 | Tracing Requirements as a Problem of                                      | SVM                    | link generation stage |
|-----|---------------------------------------------------------------------------|------------------------|-----------------------|
| S36 | Machine Learning                                                          | Single link clustering | preprocessing stage   |
|     | Transchility in the wild, outcomptically                                  | Naive Bayes (NB)       |                       |
| S37 | Traceability in the wild: automatically augmenting incomplete trace links | Decision Tree (DT)     | link generation stage |
|     |                                                                           | Random Forest (RF)     |                       |

## 1.3 Extracted Data for RQ2

| Index       | Source Artifact (number)                                                                                        | Target Artifact (number)                                               | Datasets (true link number)                             | Evidence Level                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|
| S1          | Use Case                                                                                                        | Code                                                                   | eTour                                                   | Level 1: Evaluation conducted in                                                          |
| [19]        | Ose Case                                                                                                        | Code                                                                   | erour                                                   | academic context (0.6)                                                                    |
| S2<br>[18]  | High-level requirement Use case Use case Use case                                                               | Low-level requirement  Code  Interaction Diagrams  Test Case           | CM-1-NASA  GANNT  eTOUR  iTrust                         | Level 1: Evaluation conducted in academic context (0.6)                                   |
| S3<br>[42]  | Requirement                                                                                                     | Code                                                                   | EasyClinic SmartTrip * SafeDrink * BlueWallet *         | Level 2: Evaluation conducted in industry context (1.0)                                   |
| S4          | Requirement                                                                                                     | Use case                                                               | Pine                                                    | Level 1: Evaluation conducted in                                                          |
| [48]        | Requirement                                                                                                     | Design                                                                 | CM-1-SUB                                                | academic context (0.6)                                                                    |
| S5<br>[30]  | High-level requirements                                                                                         | Design                                                                 | ARC-IT                                                  | Level 2: Evaluation conducted in industry context (1.0)                                   |
| S6<br>[44]  | Bug Report                                                                                                      | Test Case                                                              | Mozilla Firefox                                         | Level 1: Evaluation conducted in academic context (0.6)                                   |
| S7<br>[45]  | High-level requirement Use Case Test Case Test Case Interaction Diagram                                         | Low-level requirement Code Use Case Code Test Case                     | eAnci<br>SMOS<br>MODIS<br>EasyClinic<br>eTour           | Level 1: Evaluation conducted in academic context (0.6)                                   |
| \$8<br>[3]  | High-level requirement Use Case Test Case Test Case Interaction Diagram Interaction Diagram Interaction Diagram | Low-level requirement Code Use Case Code Test Case Code Use Case       | eAnci<br>SMOS<br>MODIS<br>EasyClinic<br>eTour<br>iTrust | Level 1: Evaluation conducted in academic context (0.6)                                   |
| \$9<br>[20] | High-level requirement Use Case Test Case Test Case Interaction Diagram Interaction Diagram Interaction Diagra  | Low-level requirement  Code  Use Case  Code  Test Case  Code  Use Case | eAnci SMOS EasyClinic eTour iTrust CM-1 Dataset1 *      | Level 1: Evaluation conducted in academic context (0.6)  Level 1: Evaluation conducted in |
| [46]        | Requirement                                                                                                     | Requirement                                                            | Dataset2 *                                              | academic context (0.6)                                                                    |
| S11<br>[2]  | Use Case                                                                                                        | Code                                                                   | eTour<br>SMOS                                           | Level 1: Evaluation conducted in academic context (0.6)                                   |

|      |                     |                     | Albergate    |                                    |
|------|---------------------|---------------------|--------------|------------------------------------|
|      |                     |                     | eAnci        |                                    |
|      |                     |                     |              |                                    |
| S12  | Demoisser           | C                   | SmartTrip *  | Level 2: Evaluation conducted in   |
| [43] | Requirement         | Code                | SafeDrink *  | industry context (1.0)             |
|      |                     |                     | BlueWallet * |                                    |
|      |                     |                     | AIRFLOW      |                                    |
|      |                     |                     | ANY23        |                                    |
|      |                     |                     | DASHBUILDER  |                                    |
| S13  | Requirement         | Requirement         | DROOLS       | Level 1: Evaluation conducted in   |
| [31] | Requirement         | Design              | IMMUTANT     | academic context (0.6)             |
|      |                     |                     | JBTM         |                                    |
|      |                     |                     | MODIS        |                                    |
|      |                     |                     | CM-1         |                                    |
| S14  |                     |                     | eAnci        | Laval 1. Evaluation and dust alice |
|      | Use Case            | Code                | eTour        | Level 1: Evaluation conducted in   |
| [22] |                     |                     | SMOS         | academic context (0.6)             |
|      |                     |                     | GANNT        |                                    |
|      | Requirement         | Requirement         | CM-1-NASA    |                                    |
| S15  | Use Case            | Code                | eTour        | Level 1: Evaluation conducted in   |
| [32] | Use Case            | Test Case           | iTrust       | academic context (0.6)             |
|      | Use Case            | Interaction Diagram | EasyClinic   |                                    |
|      | Requirement         | Requirement         |              |                                    |
|      | Use Case            | Code                |              |                                    |
|      | Use Case            | Use Case            |              |                                    |
|      | Use Case            | Test Case           |              |                                    |
|      | Use Case            | Interaction Diagram |              |                                    |
|      | Test Case           | Test Case           | Selex SI     |                                    |
| S16  |                     |                     |              | Level 2: Evaluation conducted in   |
| [27] | Test Case           | Code                | eTour        | industry context (1.0)             |
|      | Interaction Diagram | Interaction Diagram | EasyClinic   |                                    |
|      | Interaction Diagram | Code                |              |                                    |
|      | Interaction Diagram | Test Case           |              |                                    |
|      | Interaction Diagram | Use Case            |              |                                    |
|      | Code                | Code                |              |                                    |
|      | Code                | Test Case           |              |                                    |
|      |                     |                     | Commons Lang |                                    |
| S17  | Test Case           | Code                | Commons Math | Level 1: Evaluation conducted in   |
| [35] | 1001 0000           | Code                | JfreeChart   | academic context (0.6)             |
|      |                     |                     | MONDRIAN     |                                    |
|      |                     |                     | Albergate    |                                    |
|      | De minares d        | Code                | EBT          |                                    |
| S18  | Requirement         |                     | LibEST       | Level 2: Evaluation conducted in   |
| [47] | Requirement         | Test Case           | eTour        | industry context (1.0)             |
|      | Use Case            | Code                | SMOS         |                                    |
|      |                     |                     | iTrust       |                                    |
| S19  |                     |                     |              | Level 2: Evaluation conducted in   |
| [41] | Requirement         | Model               | CAF          | industry context (1.0)             |
| F 3  |                     |                     | Arthas       | 1 222 / 22374 (2.0)                |
| S20  | Commit              | Issue               | bk-cmdb      | Level 1: Evaluation conducted in   |
| [33] | Commit              | Issue               | Canal        | academic context (0.6)             |
|      |                     |                     | Canai        |                                    |

| г т  |                        | T                     | <del></del>  |                                  |
|------|------------------------|-----------------------|--------------|----------------------------------|
|      |                        |                       | Druid        |                                  |
|      |                        |                       | Emmagee      |                                  |
|      |                        |                       | Nacos        |                                  |
|      |                        |                       | NCNN         |                                  |
|      |                        |                       | Pegasus      |                                  |
|      |                        |                       | QMUI Android |                                  |
|      |                        |                       | QMUI IOS     |                                  |
|      |                        |                       | Rax          |                                  |
|      |                        |                       | San          |                                  |
|      |                        |                       | Weui         |                                  |
|      |                        |                       | xLua         |                                  |
|      |                        |                       | Konlpy       |                                  |
|      |                        |                       | Cica         |                                  |
|      |                        |                       | Aws-berline  |                                  |
|      |                        |                       |              |                                  |
| S21  |                        |                       | AMBARI       | Level 1: Evaluation conducted in |
| [23] | Issue                  | Issue                 | FLEX         | academic context (0.6)           |
|      |                        |                       | HIVE         |                                  |
|      |                        |                       | ArgoUML      |                                  |
|      |                        |                       | Commons Lang |                                  |
|      |                        |                       | Commons Math |                                  |
| S22  | Test Case              | Code                  | Gson         | Level 1: Evaluation conducted in |
| [36] | rest case              | Couc                  | JfreeChart   | academic context (0.6)           |
|      |                        |                       | Joda-Time    |                                  |
|      |                        |                       | MONDRIAN     |                                  |
|      |                        |                       | PMD          |                                  |
|      |                        |                       | Accumulo     |                                  |
| S23  |                        |                       | Ignite       | Level 1: Evaluation conducted in |
| [24] | Requirement            | Code                  | Isis         | academic context (0.6)           |
|      |                        |                       | Tika         |                                  |
|      |                        |                       | Chess        |                                  |
| S24  |                        |                       | Gantt        | Level 2: Evaluation conducted in |
| [25] | Requirement            | Code                  | iTrust       | industry context (1.0)           |
| [=0] |                        |                       | JHotDraw     | maddif context (210)             |
|      |                        |                       | ZOOKEEPER    |                                  |
|      |                        |                       | MAHOUT       |                                  |
| S25  |                        |                       | CHUKWA       | Level 2: Evaluation conducted in |
| [37] | commit                 | issue                 | AVRO         |                                  |
| [3/] |                        |                       |              | academic context (0.6)           |
|      |                        |                       | LANG         |                                  |
|      |                        |                       | TEZ          |                                  |
|      | High-level requirement | Low-level requirement | eAnci        |                                  |
|      | Use Case               | Code                  | SMOS         |                                  |
| S26  | Test Case              | Use Case              | MODIS        | Level 1: Evaluation conducted in |
| [21] | Test Case              | Code                  | EasyClinic   | academic context (0.6)           |
|      | Interaction Diagram    | Test Case             | eTour        |                                  |
|      | Interaction Diagram    | Code                  | iTrust       |                                  |
|      | Interaction Diagram    | Use Case              |              |                                  |
| S27  | Requirement            | Design                | PTC          | Level 2: Evaluation conducted in |
| [4]  | requirement            | Design                | FIC          | industry contact (1.0)           |
|      | <u> </u>               |                       |              | industry context (1.0)           |

| [28] |                     |                        |                       | academic context (0.6)           |
|------|---------------------|------------------------|-----------------------|----------------------------------|
|      |                     |                        | Commons Lang          |                                  |
| S29  | T O                 |                        | Commons Math          | Level 1: Evaluation conducted in |
| [38] | Test Case           | Code                   | JfreeChart            | academic context (0.6)           |
|      |                     |                        | MONDRIAN              |                                  |
|      |                     |                        | Care2x                |                                  |
|      |                     |                        | CCHIT                 |                                  |
|      |                     |                        | ClearHealth           |                                  |
|      |                     |                        | Physician             |                                  |
| S30  | D                   |                        | iTrust                | Level 1: Evaluation conducted in |
| [29] | Regulatory code     | Requirement            | Trial Implementations | academic context (0.6)           |
|      |                     |                        | PatientOS             |                                  |
|      |                     |                        | PracticeOne           |                                  |
|      |                     |                        | Lauesen               |                                  |
|      |                     |                        | WorldVistA            |                                  |
|      |                     |                        | Apache Ant            |                                  |
| 004  |                     |                        | Commons IO            |                                  |
| S31  | Test Case           | Code                   | Commons Lang          | Level 1: Evaluation conducted in |
| [40] |                     |                        | JfreeChart            | academic context (0.6)           |
|      |                     |                        | Gson                  |                                  |
| S32  | 0.1                 | 0.6                    |                       | Level 1: Evaluation conducted in |
| [34] | Code                | Software documentation | Lucene                | academic context (0.6)           |
| S33  | Requirement         | Use Case               | CM-1                  | Level 2: Evaluation conducted in |
| [49] | Use Case            | Test Case              | EasyClinic            | industry context (1.0)           |
| [40] | Feature             | Use Case               | Waterloo              | maddiy context (1.0)             |
|      |                     |                        | CodeSearchNet         |                                  |
| S34  | Commit              | Issue                  | Pgcli                 | Level 1: Evaluation conducted in |
| [6]  | Commit              | 10000                  | Flask                 | academic context (0.6)           |
|      |                     |                        | Keras                 |                                  |
|      | Requirement         | Requiremen             | CM-1                  |                                  |
|      | Use Case            | Code                   | eAnci                 |                                  |
| S35  | Test Case           | Code                   | eTour                 | Level 1: Evaluation conducted in |
| [17] | Interaction Diagram | Test Case              | SMOS                  | academic context (0.6)           |
|      | Interaction Diagram | Use Case               | iTrust                | , ,                              |
|      | Test Case           | Use Case               | EasyClinic            |                                  |
|      | Interaction Diagram | Code                   | ,                     |                                  |
| S36  | Requirement         | Use case               | Pine                  | Level 1: Evaluation conducted in |
| [39] | ·<br>               |                        |                       | academic context (0.6)           |
|      |                     |                        | Maven                 |                                  |
|      |                     |                        | Derby                 |                                  |
| S37  | Commit              | Issue                  | Infinispan            | Level 1: Evaluation conducted in |
| [26] |                     |                        | Groovy                | academic context (0.6)           |
|      |                     |                        | Pig                   |                                  |
|      |                     |                        | Drools                |                                  |

 $<sup>\</sup>star$  present that author uses a pseudonym of the name of dataset for confidentiality agreements

## 1.4 Extracted Data for RQ3

| Index       | Title                                                                                               | Measures            | Evidence Level                                            |
|-------------|-----------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------|
| S1          | An extended knowledge representation learning                                                       | Precision           |                                                           |
| [9]         | An extended knowledge representation learning approach for context-based traceability link recovery | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
| [9]         | approach for context-based traceability link recovery                                               | F-Measure           |                                                           |
|             |                                                                                                     | Precision           |                                                           |
|             |                                                                                                     | Recall              |                                                           |
| S2          | An Improved Approach to Traceability Recovery                                                       | F-Measure           | Level 3: Evidence obtained from academic studies (0.6).   |
| [8]         | Based on Word Embeddings                                                                            | MAP                 | ,                                                         |
|             |                                                                                                     | MRR                 |                                                           |
|             |                                                                                                     | Running Time        |                                                           |
| S3          | An information theoretic approach for extracting and                                                | Precision           | Level 3: Evidence obtained from academic studies (0.6).   |
| [42]        | tracing non-functional requirements                                                                 | Recall              |                                                           |
| S4          | Application of reinforcement learning to                                                            | Precision<br>Recall | Level 3: Evidence obtained from academic studies (0.6).   |
| [48]        | requirements engineering requirements tracing                                                       | F-Measure           | Level 3. Evidence obtained from academic studies (0.0).   |
|             | ATLaS: A Framework for Traceability Links Recovery                                                  | Precision           |                                                           |
| S5          | Combining Information Retrieval and Semi-                                                           | Recall              | Level 4: Evidence obtained from industrial studies (0.6). |
| [30]        | Supervised Techniques                                                                               | F-Measure           | (,                                                        |
|             | ·                                                                                                   | Recall              |                                                           |
| S6          | Traceability recovery between bug reports and test                                                  | Precision           |                                                           |
| [44]        | cases-a Mozilla Firefox case study                                                                  | F-Measure           | Level 4: Evidence obtained from industrial studies (0.6). |
|             |                                                                                                     | REI                 |                                                           |
| S7          |                                                                                                     | Precision           |                                                           |
| [45]        | Automatic traceability link recovery via active learning                                            | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
| [40]        |                                                                                                     | F-Measure           |                                                           |
| S8          | Automatic Traceability Maintenance via Machine                                                      | Precision           |                                                           |
| [3]         | Learning Classification                                                                             | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
|             |                                                                                                     | F-Measure           |                                                           |
| S9          | Automating traceability link recovery through                                                       | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
| [10]        | classification                                                                                      | FPR                 |                                                           |
| S10<br>[46] | Clustering for Traceability Managing in System  Specifications                                      | Precision           | Level 3: Evidence obtained from academic studies (0.6).   |
| [40]        | Specifications                                                                                      | Precision           |                                                           |
| S11         | Combining Machine Learning and Logical Reasoning                                                    | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
| [2]         | to Improve Requirements Traceability Recovery                                                       | F-Measure           |                                                           |
| S12         | Detecting, classifying, and tracing non-functional                                                  | Precision           |                                                           |
| [43]        | software requirements                                                                               | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
| 010         | Faharaina Automat I D. C. T. C.                                 | Precision           |                                                           |
| S13         | Enhancing Automated Requirements Traceability by                                                    | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
| [31]        | Resolving Polysemy                                                                                  | F-Measure           |                                                           |
| S14         | A Machine Learning Approach for Determining the                                                     | TP                  | Level 3: Evidence obtained from academic studies (0.6).   |
| [22]        | Validity of Traceability Links                                                                      | FP                  | Level 6. Evidence obtained from academic studies (0.0).   |
| S15         | Enhancing Unsupervised Requirements Traceability                                                    | Precision           |                                                           |
| [32]        | with Sequential Semantics                                                                           | Recall              | Level 3: Evidence obtained from academic studies (0.6).   |
|             | ·                                                                                                   | F-Measure           |                                                           |
| S16         | Estimating the number of remaining links in                                                         | MRE                 | Level 3: Evidence obtained from academic studies (0.6).   |
| [27]        | traceability recovery                                                                               | MAE                 | (**)                                                      |

| S17<br>[35]  | Evaluation of Textual Similarity Techniques in Code  Level Traceability                                                                                                       | Precision                                                         | Level 3: Evidence obtained from academic studies (0.6).   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| S18<br>[47]  | Improving the effectiveness of traceability link recovery using hierarchical bayesian networks                                                                                | Precision<br>Recall<br>Average Precision (AP)                     | Level 4: Evidence obtained from industrial studies (0.6). |
| S19<br>[41]  | Traceability Link Recovery between Requirements and<br>Models using an Evolutionary Algorithm Guided by a<br>Learning to Rank Algorithm: Train control and<br>management case | Recall Precision F-Measure Matthews Correlation Coefficient (MCC) | Level 4: Evidence obtained from industrial studies (0.6). |
| S20<br>[33]  | Information retrieval versus deep learning approaches for generating traceability links in bilingual projects                                                                 | Average Precision (AP)<br>F-Measure                               | Level 3: Evidence obtained from academic studies (0.6).   |
| S21<br>[23]  | Issue Link Label Recovery and Prediction for Open<br>Source Software                                                                                                          | F-Measure                                                         | Level 4: Evidence obtained from industrial studies (0.6). |
| S22<br>[36]  | Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches                                                                              | Precision                                                         | Level 3: Evidence obtained from academic studies (0.6).   |
| S23<br>[24]  | Leveraging Historical Associations between  Requirements and Source Code to Identify Impacted  Classes                                                                        | Precision<br>Recall<br>F-Measure                                  | Level 3: Evidence obtained from academic studies (0.6).   |
| S24<br>[25]  | On the effect of incompleteness to check requirement-to-method traces                                                                                                         | Precision<br>Recall<br>F-Measure                                  | Level 4: Evidence obtained from industrial studies (0.6). |
| S25<br>[37]  | DeepLink_A Code Knowledge Graph Based Deep<br>Learning Approach for Issue-Commit Link Recovery                                                                                | Precision<br>Recall<br>F-Measure                                  | Level 3: Evidence obtained from academic studies (0.6).   |
| S26<br>[21]  | Tracing with Less Data: Active Learning for<br>Classification-Based Traceability Link Recovery                                                                                | F-Measure                                                         | Level 3: Evidence obtained from academic studies (0.6).   |
| S27<br>[4]   | Semantically Enhanced Software Traceability Using  Deep Learning Techniques                                                                                                   | Precision<br>Recall<br>MAP                                        | Level 3: Evidence obtained from academic studies (0.6).   |
| S28<br>[28]  | Semi-Automated Feature Traceability with Embedded Annotations                                                                                                                 | Precision<br>Recall<br>F-Measure                                  | Level 4: Evidence obtained from industrial studies (0.6). |
| S29<br>[38]  | Source Code Level Word Embeddings in Aiding<br>Semantic Test-to-Code Traceability                                                                                             | Precision                                                         | Level 3: Evidence obtained from academic studies (0.6).   |
| \$30<br>[29] | Tackling the term-mismatch problem in automated trace retrieval                                                                                                               | Precision<br>Recall<br>F-Measure<br>MAP                           | Level 3: Evidence obtained from academic studies (0.6).   |
| \$31<br>[40] | TCTracer: Establishing test-to-code traceability links using dynamic and static techniques                                                                                    | Precision<br>Recall<br>F-Measure<br>MAP<br>AUC                    | Level 3: Evidence obtained from academic studies (0.6).   |
| S32<br>[34]  | Toward accurate link between code and software documentation                                                                                                                  | Precision<br>Recall                                               | Level 3: Evidence obtained from academic studies (0.6).   |

|      |                                                                                       | F-Measure              |                                                           |
|------|---------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------|
|      |                                                                                       | TNR                    |                                                           |
| S33  |                                                                                       | Precision              |                                                           |
|      | Towards feature-aware retrieval of refinement traces                                  | Recall                 | Level 4: Evidence obtained from industrial studies (0.6). |
| [49] |                                                                                       | Average Precision (AP) |                                                           |
|      |                                                                                       | F-Measure              |                                                           |
| S34  | Transphility Transformed Congrating more Assurate                                     | MAP                    |                                                           |
|      | Traceability Transformed_Generating more Accurate  Links with Pre-Trained BERT Models | MRR                    | Level 3: Evidence obtained from academic studies (0.6).   |
| [7]  | LITIKS WITH Pre-Trained BERT Models                                                   | Precision              |                                                           |
|      |                                                                                       | Running Time           |                                                           |
| S35  | Towards the automatic classification of traceability                                  | Recall                 | Level 3: Evidence obtained from academic studies (0.6).   |
| [5]  | links                                                                                 | FPR                    | Level 3. Evidence obtained from academic studies (0.0).   |
| S36  | Tracing Dequirements as a Problem of Machine                                          | Recall                 |                                                           |
|      | Tracing Requirements as a Problem of Machine                                          | Precision              | Level 3: Evidence obtained from academic studies (0.6).   |
| [39] | Learning                                                                              | F-Measure              |                                                           |
| S37  | Traceability in the wild: automatically augmenting                                    | Precision              |                                                           |
|      | , , ,                                                                                 | Recall                 | Level 3: Evidence obtained from academic studies (0.6).   |
| [26] | incomplete trace links                                                                | F-Measure              |                                                           |

# 1.5 Extracted Data for RQ4

| la da A           |         | Me | thod                  |                | ı                       | Data              |         |                                  | Ex             | kperimen                       | t |   |      | Score |     |
|-------------------|---------|----|-----------------------|----------------|-------------------------|-------------------|---------|----------------------------------|----------------|--------------------------------|---|---|------|-------|-----|
| Index\<br>Factors | Problem |    | Research<br>questions | Pseudo<br>code | Dataset<br>partitioning | Dataset<br>source | Results | Hypothesi<br>s and<br>Prediction | Source<br>code | Hardware<br>specificati<br>ons |   |   | D1   | D2    | D3  |
| S1                | 0       | 1  | 1                     | 0              | 1                       | 1                 | 1       | 0                                | 1              | 0                              | 1 | 1 | 0.5  | 1     | 0.6 |
| S2                | 1       | 1  | 0                     | 0              | 1                       | 1                 | 0       | 1                                | 0              | 1                              | 0 | 1 | 0.5  | 0.66  | 0.6 |
| S3                | 1       | 1  | 1                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 0 | 0 | 0.75 | 0     | 0   |
| S4                | 0       | 1  | 0                     | 1              | 1                       | 0                 | 0       | 1                                | 0              | 0                              | 0 | 1 | 0.5  | 0.33  | 0.4 |
| S5                | 1       | 1  | 1                     | 0              | 1                       | 1                 | 0       | 0                                | 0              | 1                              | 1 | 0 | 0.75 | 0.66  | 0.4 |
| S6                | 1       | 1  | 1                     | 0              | 0                       | 1                 | 1       | 0                                | 1              | 1                              | 1 | 1 | 0.75 | 1     | 0.8 |
| S7                | 0       | 0  | 1                     | 1              | 1                       | 0                 | 0       | 1                                | 0              | 0                              | 0 | 1 | 0.5  | 0.33  | 0.4 |
| S8                | 1       | 1  | 1                     | 0              | 1                       | 1                 | 1       | 0                                | 0              | 0                              | 0 | 1 | 0.75 | 1     | 0.2 |
| S9                | 0       | 0  | 0                     | 0              | 1                       | 0                 | 0       | 0                                | 0              | 0                              | 1 | 1 | 0    | 0.33  | 0.4 |
| S10               | 1       | 0  | 0                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 0 | 1 | 0.25 | 0     | 0.2 |
| S11               | 1       | 1  | 1                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 0 | 1 | 0.75 | 0     | 0.2 |
| S12               | 0       | 1  | 1                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 1 | 1 | 0.5  | 0     | 0.4 |
| S13               | 1       | 1  | 0                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 1 | 1 | 0.5  | 0     | 0.4 |
| S14               | 0       | 0  | 0                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 1 | 0 | 0    | 0     | 0.2 |
| S15               | 1       | 1  | 1                     | 0              | 0                       | 1                 | 0       | 0                                | 0              | 0                              | 1 | 1 | 0.75 | 0.5   | 0.4 |
| S16               | 1       | 0  | 1                     | 1              | 1                       | 1                 | 0       | 1                                | 1              | 0                              | 1 | 1 | 0.75 | 0.66  | 0.8 |
| S17               | 0       | 1  | 1                     | 0              | 0                       | 1                 | 0       | 0                                | 0              | 0                              | 1 | 0 | 0.5  | 0.5   | 0.2 |
| S18               | 1       | 1  | 1                     | 0              | 0                       | 1                 | 0       | 0                                | 1              | 0                              | 1 | 1 | 0.75 | 0.33  | 0.6 |
| S19               | 1       | 1  | 0                     | 0              | 1                       | 1                 | 0       | 1                                | 1              | 0                              | 1 | 0 | 0.5  | 0.66  | 0.6 |
| S20               | 1       | 1  | 1                     | 0              | 1                       | 1                 | 0       | 0                                | 1              | 0                              | 1 | 1 | 0.75 | 0.66  | 0.6 |
| S21               | 1       | 1  | 1                     | 0              | 1                       | 1                 | 0       | 0                                | 0              | 0                              | 1 | 1 | 0.75 | 0.66  | 0.4 |
| S22               | 1       | 1  | 1                     | 0              | 0                       | 0                 | 0       | 0                                | 0              | 0                              | 1 | 1 | 0.75 | 0     | 0.4 |
| S23               | 0       | 1  | 1                     | 0              | 1                       | 0                 | 0       | 0                                | 0              | 0                              | 0 | 1 | 0.5  | 0.33  | 0.2 |

| S24            | 1  | 1  | 1  | 0 | 1  | 1  | 0 | 0 | 1  | 0 | 1  | 0  | 0.75 | 0.66 | 0.4 |
|----------------|----|----|----|---|----|----|---|---|----|---|----|----|------|------|-----|
| S25            | 1  | 1  | 1  | 0 | 0  | 1  | 0 | 0 | 1  | 0 | 1  | 1  | 0.75 | 0.5  | 0.6 |
| S26            | 1  | 0  | 1  | 0 | 1  | 1  | 1 | 0 | 1  | 0 | 1  | 1  | 0.5  | 1    | 0.6 |
| S27            | 1  | 1  | 1  | 0 | 1  | 0  | 0 | 0 | 1  | 0 | 1  | 1  | 0.75 | 0.33 | 0.6 |
| S28            | 1  | 1  | 1  | 0 | 1  | 0  | 0 | 0 | 0  | 0 | 0  | 0  | 0.75 | 0.33 | 0   |
| S29            | 1  | 1  | 1  | 0 | 0  | 1  | 0 | 0 | 0  | 0 | 1  | 1  | 0.75 | 0.5  | 0.4 |
| S30            | 1  | 1  | 0  | 0 | 1  | 1  | 0 | 1 | 0  | 0 | 0  | 1  | 0.5  | 0.66 | 0.4 |
| S31            | 1  | 1  | 1  | 0 | 1  | 1  | 0 | 0 | 1  | 0 | 1  | 1  | 0.75 | 0.66 | 0.6 |
| S32            | 1  | 1  | 1  | 0 | 1  | 0  | 0 | 0 | 0  | 0 | 0  | 1  | 0.75 | 0.33 | 0.2 |
| S33            | 1  | 1  | 0  | 0 | 0  | 1  | 0 | 1 | 0  | 0 | 0  | 1  | 0.5  | 0.5  | 0.4 |
| S34            | 1  | 1  | 1  | 0 | 1  | 1  | 0 | 0 | 1  | 1 | 1  | 1  | 0.75 | 0.66 | 8.0 |
| S35            | 1  | 0  | 0  | 0 | 0  | 0  | 0 | 0 | 0  | 0 | 1  | 0  | 0.25 | 0    | 0.2 |
| S36            | 1  | 1  | 0  | 0 | 1  | 0  | 0 | 0 | 0  | 0 | 0  | 1  | 0.5  | 0.33 | 0.2 |
| S37            | 1  | 1  | 1  | 0 | 1  | 0  | 0 | 0 | 0  | 0 | 0  | 1  | 0.75 | 0.33 | 0.2 |
| Num of<br>True | 30 | 31 | 26 | 3 | 23 | 21 | 4 | 8 | 13 | 4 | 24 | 29 |      |      |     |

# 1.6 The information of Datasets and the studied papers which used the datasets

| Dataset    | Source Artifacts            | Target Artifacts         | True link  | Scale   | Source Link           | Freq | Primary researches                                      |  |
|------------|-----------------------------|--------------------------|------------|---------|-----------------------|------|---------------------------------------------------------|--|
| Name       | (Number)                    | (Number)                 | True iiiik | (Total) | oddide Emik           | 1109 | Trimary researches                                      |  |
|            | Use Case (58)               | Code (116)               | 336        | (174)   |                       |      | [04] [09] [07] [00] [00]                                |  |
|            | Use Case (58)               | Code (116)               | 308        | (174)   |                       |      | [S1] [S2] [S7] [S8] [S9]                                |  |
| eTour      | Use Case (58)               | Code (116)               | 385        | (174)   | http://www.coest.org/ | 12   | [S11] [S14] [S15]<br>[S16] [S18] [S26]                  |  |
|            | Use Case (58)               | Code (116)               | 366        | (174)   |                       |      | [\$35]                                                  |  |
|            | Use Case (Unclear)          | Code (Unclear)           | 365        | Unclear |                       |      | [333]                                                   |  |
|            | Use Case (30)               | Code (47)                | 93         | (77)    |                       |      |                                                         |  |
|            | Use Case (30)               | Test Case (63)           | 63         | (93)    |                       |      |                                                         |  |
|            | Use Case (30)               | Test Case (47)           | 63         | (77)    |                       |      |                                                         |  |
|            | Use Case (30)               | Interaction Diagram (20) | 26         | (50)    |                       |      | [S2] [S7] [S8] [S9]<br>[S15] [S16] [S26]<br>[S33] [S35] |  |
|            | Use Case (30)               | Use Case (30)            | 53         | (60)    |                       |      |                                                         |  |
|            | Test Case (63)              | Test Case (63)           | 578        | (126)   |                       |      |                                                         |  |
|            | Test Case (63)              | Code (47)                | 204        | (110)   |                       |      |                                                         |  |
|            | Test Case (Unclear)         | Use Case (Unclear)       | 63         | Unclear |                       |      |                                                         |  |
| EasyClinic | Interaction Diagram<br>(20) | Use Case (30)            | 26         | (50)    | http://www.coest.org/ | 9    |                                                         |  |
|            | Interaction Diagram (20)    | Test Case (63)           | 83         | (83)    |                       |      |                                                         |  |
|            | Interaction Diagram<br>(20) | Code (47)                | 69         | (67)    |                       |      |                                                         |  |
|            | Interaction Diagram<br>(20) | Interaction Diagram (20) | 59         | (40)    |                       |      |                                                         |  |
|            | Code (47)                   | Code (47)                | 69         | (94)    |                       |      |                                                         |  |
|            | Code (47)                   | Test Case (63)           | 202        | (110)   |                       |      |                                                         |  |
|            | Use Case (131)              | Code (367)               | 534        | (498)   |                       |      | [S2] [S8] [S9] [S15]                                    |  |
| iTrust     | Requirement (131)           | Code (367)               | 399        | (498)   | http://www.coest.org/ | 9    | [S18] [S24] [S26]                                       |  |
|            | Requirement (131)           | Code (332)               | 535        | (463)   |                       |      | [\$35] [\$30]                                           |  |

|                 | Requirement (34)             | Code (4913)                        | 307     | (4947)  |                                                   |   |                            |
|-----------------|------------------------------|------------------------------------|---------|---------|---------------------------------------------------|---|----------------------------|
|                 | Use Case (Unclear)           | Code (Unclear)                     | 58      | Unclear |                                                   |   |                            |
|                 | Use Case (67)                | Code (100)                         | 1045    | (167)   |                                                   |   | [S7] [S8] [S9] [S11]       |
| SMOS            | Use Case (67)                | Code (100)                         | 1044    | (167)   | http://www.coest.org/                             | 8 | [S14] [S18] [S35]<br>[S26] |
|                 | High-level requirement (235) | Low-level design<br>document (220) | Unclear | (455)   |                                                   |   |                            |
| CM-1            | High-level requirement (22)  | Low-level requirement (53)         | 45      | (75)    | http://www.coest.org/                             | 7 | [\$2] [\$4] [\$9] [\$13]   |
|                 | Requirement (22)             | Design (46)                        | 46      | (68)    |                                                   |   | [S15] [S33] [S35]          |
|                 | Requirement (22)             | Design (53)                        | 45      | (75)    |                                                   |   |                            |
|                 | Requirement (Unclear)        | Use Case (Unclear)                 | Unclear | Unclear |                                                   |   |                            |
| eAnci           | Use Case (140)               | Code (55)                          | 567     | (195)   | http://www.coost.org/                             | 7 | [\$7] [\$8] [\$9] [\$11]   |
| EARCI           | Use Case (Unclear)           | Code (Unclear)                     | 554     | Unclear | http://www.coest.org/                             | 1 | [S14] [S35] [S26]          |
| Commons         | Test Case (2473)             | Code (596)                         | Unclear | (3069)  | https://github.com/apache                         | 4 | [S17] [S22] [S29]          |
| Lang            | Test Case (3061)             | Code (3111)                        | 163     | (6172)  | /commons-lang                                     | 4 | [S31]                      |
| JfreeChart      | Test Case (2239)             | Code (953)                         | Unclear | (3192)  | https://github.com/jfree/jfr                      | 4 | [S17] [S22] [S29]          |
| JireeCriait     | Test Case (2244)             | Code (9053)                        | 432     | (11297) | eechart                                           | 4 | [S31]                      |
| MODIS           | High-level requirement (19)  | Low-level requirement (49)         | 41      | (68)    | http://promise.site.uottawa.                      | 4 | [S7] [S8] [S13] [S26]      |
| MONDRIAN        | Test Case (1546)             | Code (1626)                        | Unclear | (3172)  | https://github.com/pentah<br>o/mondrian           | 3 | [S17] [S22] [S29]          |
| Commons<br>Math | Test Case (3493)             | Code (2033)                        | Unclear | (5526)  | https://github.com/apache<br>/commons-math        | 3 | [S17] [S22] [S29]          |
| Albergate       | Use Case (17)                | Code (55)                          | 54      | (72)    | http://www.coest.org/                             | 2 | [S11] [S18]                |
| Albergate       | Requirement (55)             | Code (17)                          | 53      | (72)    | Tittp://www.coest.org/                            | 2 | [311] [310]                |
| Gson            | Test Case (924)              | Code (757)                         | Unclear | (1681)  | https://github.com/google                         | 2 | [S22] [S31]                |
| 03011           | Test Case (1006)             | Code (635)                         | 55      | (1641)  | /gson                                             |   | [022] [001]                |
| GANNT           | High-level requirement (17)  | Low-level requirement<br>(69)      | 68      | (86)    | http://www.coest.org/                             | 2 | [\$15] [\$2]               |
| CCHIT           | Requirement (Unclear)        | Requirement (Unclear)              | 1046    | Unclear | http://www.coest.org/                             | 1 | [\$30]                     |
| EBT             | Requirement (40)             | Test Case (25)                     | 51      | (65)    | http://www.coest.org/                             | 1 | [S18]                      |
|                 | Requirement (40)             | Code (50)                          | 98      | (90)    |                                                   |   | [010]                      |
| LibEST          | Requirement (59)             | Code (11)                          | 204     | (70)    | http://sarec.nd.edu/coest/d                       | 1 | [S18]                      |
| LIDEOT          | Requirement (59)             | Test Case (18)                     | 352     | (77)    | atasets.html                                      | _ | [010]                      |
| Selex SI        | Requirement (Unclear)        | Requirement (Unclear)              | 138     | (2500)  | http://www.finmeccanica.c<br>om/en/home           | 1 | [\$16]                     |
| AMBARI          | Issue (Unclear)              | Issue (Unclear)                    | 942     | (1512)  | http://ambari.apache.org                          | 1 | [S21]                      |
| FLEX            | Issue (Unclear)              | Issue (Unclear)                    | 247     | (362)   | http://flex.apache.org                            | 1 | [S21]                      |
| HIVE            | Issue (Unclear)              | Issue (Unclear)                    | 5811    | (6730)  | http://hive.apache.org                            | 1 | [S21]                      |
| Chess           | Requirement (8)              | Code (752)                         | 563     | (760)   | https://github.com/warpwe<br>/java-chess          | 1 | [S24]                      |
| Gantt           | Requirement (18)             | Code (5013)                        | 343     | (5031)  | https://sourceforge.net/pro<br>jects/ganttproject | 1 | [S24]                      |
| JHotDraw        | Requirement (21)             | Code (6520)                        | 439     | (6541)  | https://sourceforge.net/pro<br>jects/jhotdraw     | 1 | [S24]                      |
| CodeSearch      | Commit (Unclear)             | Issue (Unclear)                    | Unclear | Unclear | https://github.com/github/                        | 1 | [S34]                      |

| Net                |                       |                        |         |         | CodeSearchNet                                             |   |        |
|--------------------|-----------------------|------------------------|---------|---------|-----------------------------------------------------------|---|--------|
| Pgcli              | Commit (531)          | Issue (522)            | 530     | (1053)  |                                                           | 1 | [S34]  |
| Flask              | Commit (752)          | Issue (739)            | 753     | (1491)  | https://zenodo.org/record/                                | 1 | [S34]  |
| Keras              | Commit (551)          | Issue (550)            | 51      | (1101)  | 4511291#.YB3tjyj0mbg                                      | 1 | [S34]  |
| ARC-IT             | Requirement (2395)    | System Functions (802) | 2395    | (3197)  | https://local.iteris.com/arc-<br>it/index.html            | 1 | [\$5]  |
| Commons IO         | Test Case (994)       | Code (1246)            | 97      | (2240)  | https://commons.apache.o<br>rg/proper/commons-io/         | 1 | [S31]  |
| Apache Ant         | Test Case (1830)      | Code (10477)           | 79      | (12307) | https://ant.apache.org/                                   | 1 | [S31]  |
| Mozilla<br>Firefox | Bug Report (34)       | Test Case (113)        | 514     | (147)   | https:// github.com/<br>guilhermemg/trace-<br>links-tc-br | 1 | [S6]   |
| Arthas             | Commit (122)          | Issue (167)            | 167     | (289)   |                                                           | 1 | [S20]  |
| bk-cmdb            | Commit (895)          | Issue (1178)           | 1179    | (2073)  |                                                           | 1 | [S20]  |
| Canal              | Commit (232)          | Issue (273)            | 273     | (505)   |                                                           | 1 | [S20]  |
| Druid              | Commit (1092)         | Issue (1161)           | 1161    | (2253)  |                                                           | 1 | [S20]  |
| Emmagee            | Commit (31)           | Issue (32)             | 32      | (63)    |                                                           | 1 | [S20]  |
| Nacos              | Commit (132)          | Issue (161)            | 161     | (293)   |                                                           | 1 | [S20]  |
| NCNN               | Commit (97)           | Issue (99)             | 99      | (196)   |                                                           | 1 | [S20]  |
| Pegasus            | Commit (160)          | Issue (160)            | 160     | (320)   |                                                           | 1 | [S20]  |
| QMUI<br>Android    | Commit (70)           | Issue (71)             | 71      | (141)   | https://doi.org/10.5281/ze<br>nodo.3713256                | 1 | [S20]  |
| QMUI IOS           | Commit (32)           | Issue (35)             | 35      | (67)    |                                                           | 1 | [S20]  |
| Rax                | Commit (560)          | Issue (571)            | 571     | (1131)  |                                                           | 1 | [S20]  |
| San                | Commit (186)          | Issue (275)            | 275     | (461)   |                                                           | 1 | [S20]  |
| Weui               | Commit (154)          | Issue (159)            | 159     | (313)   |                                                           | 1 | [S20]  |
| xLua               | Commit (52)           | Issue (52)             | 52      | (104)   |                                                           | 1 | [S20]  |
| Konlpy             | Commit (32)           | Issue (33)             | 33      | (65)    |                                                           | 1 | [S20]  |
| Cica               | Commit (25)           | Issue (27)             | 27      | (52)    |                                                           | 1 | [S20]  |
| Aws-berline        | Commit (74)           | Issue (74)             | 74      | (148)   |                                                           | 1 | [S20]  |
| DASHBUILDE<br>R    | Requirement (Unclear) | Requirement (Unclear)  | Unclear | (85)    | https://issues.jboss.org/bro<br>wse/DASHBUILDE            | 1 | [\$13] |
| Maven              | Commit (8205)         | Issue (4728)           | Unclear | (12933) | https://issues.apache.org/ji<br>ra/browse/MNG             | 1 | [\$37] |
| Derby              | Commit (4468)         | Issue (3608)           | Unclear | (8076)  | https://issues.apache.org/ji<br>ra/browse/DERBY           | 1 | [S37]  |
| Groovy             | Commit (1754)         | Issue (2709)           | Unclear | (4463)  | https://issues.apache.org/ji<br>ra/browse/GROOVY          | 1 | [\$37] |
| JBTM               | Requirement (Unclear) | Requirement (Unclear)  | Unclear | (1575)  | https://issues.<br>jboss.org/browse/JBTM                  | 1 | [\$13] |
| Accumulo           | Requirement (145)     | Code (593)             | 3412    | (738)   | http://isis.apache.org                                    | 1 | [S23]  |
| Ignite             | Requirement (41)      | Code (668)             | 15569   | (709)   | https://ignite.apache.org/                                | 1 | [S23]  |
| Isis               | Requirement (252)     | Code (2424)            | 11850   | (2676)  | http://isis.apache.org                                    | 1 | [S23]  |
| Tika               | Requirement (49)      | Code (72)              | 248     | (121)   | http://tika.apache.org                                    | 1 | [S23]  |
| Care2x             | Requirement (Unclear) | Requirement (Unclear)  | 44      | Unclear | http://www.care2x.org                                     | 1 | [S30]  |
| ClearHealth        | Requirement (Unclear) | Requirement (Unclear)  | 44      | Unclear | e http://www.clear-<br>health.com                         | 1 | [\$30] |
| Physician          | Requirement (Unclear) | Requirement (Unclear)  | 147     | Unclear | hmss.org/content/files/CTC                                | 1 | [S30]  |

|              |                              |                                  |         |           | _use_Case.pdf                     |   |              |
|--------------|------------------------------|----------------------------------|---------|-----------|-----------------------------------|---|--------------|
| Trial        |                              |                                  |         |           |                                   |   |              |
| Implementati | Doguiroment (Unglear)        | Doguiroment (Unglear)            | 100     | Unclear   | http://healthit.hhs.gov           | 1 | [002]        |
| ons          | Requirement (Unclear)        | Requirement (Unclear)            | 100     | Officieal | Tittp://fieattific.filis.gov      | 1 | [S30]        |
| PatientOS    | Requirement (Unclear)        | Requirement (Unclear)            | 90      | Unclear   | http://www.patientos.org          | 1 | [S30]        |
|              | ()                           |                                  |         |           | http://www.practiceone.co         | _ | [223]        |
| PracticeOne  | Requirement (Unclear)        | Requirement (Unclear)            | 34      | Unclear   | m                                 | 1 | [S30]        |
| WorldVistA   | Requirement (Unclear)        | Requirement (Unclear)            | 66      | Unclear   | http:/worldvista.org              | 1 | [S30]        |
| ZOOKEEPER    | Commit (1719)                | Issues (1594)                    | Unclear | 1513      | https://zookeeper.apache<br>.org/ | 1 | [\$25]       |
| MAHOUT       | Commit (3925)                | Issues (1386)                    | Unclear | 1921      | http://mahout.apache.or<br>g/     | 1 | [\$25]       |
| CHUKWA       | Commit (847)                 | Issues (819)                     | Unclear | 718       | http://chukwa.apache.org /        | 1 | [S25]        |
| AVRO         | Commit (1607)                | Issues (1511)                    | Unclear | 1398      | http://avro.apache.org/           | 1 | [S25]        |
| LANG         | Commit (5114)                | Issues (1767)                    | Unclear | 1178      | https://commons.apache.           | 1 | [\$25]       |
| TEZ          | Commit (2574)                | Issues (2901)                    | Unclear | 2503      | http://tez.apache.org             | 1 | [S25]        |
| 5.           | Requirement (49)             | Use case (51)                    | 250     | (100)     |                                   |   | FO 47 FOOO?  |
| Pine         | Requirement (49)             | Use case (51)                    | 246     | (100)     |                                   | 2 | [S4] [S36]   |
| SafeDrink *  | Functional requirement       | Code (173)                       | Unclear | (343)     |                                   | 2 | [S3] [S12]   |
|              | (170)                        | , ,                              |         | , ,       |                                   |   | . 3.2 3      |
| SmartTrip *  | Functional requirement (214) | Code (266)                       | Unclear | (480)     |                                   | 2 | [\$3] [\$12] |
| DI MALILA    | Functional                   | CI- (274)                        | Unalasa | /FF0)     |                                   | 2 | [00] [010]   |
| BlueWallet * | requirements (184)           | Code (374)                       | Unclear | (558)     |                                   | 2 | [S3] [S12]   |
| Dragla       | Requirement (Unclear)        | Requirement (Unclear)            | Unclear | (486)     |                                   | 2 | [010] [007]  |
| Drools       | Commit (3735)                | Issue (3992)                     | Unclear | (7727)    |                                   | 2 | [S13] [S37]  |
| Lauesen      | Requirement (Unclear)        | Requirement (Unclear)            | 116     | Unclear   |                                   | 1 | [S30]        |
| Joda-Time    | Test Case (3779)             | Code (522)                       | Unclear | (4301)    |                                   | 1 | [S22]        |
| PTC          | Requirement (1651)           | Design (466)                     | 1387    | (2117)    |                                   | 1 | [S27]        |
| Lucene       | Code (5097)                  | Software<br>documentation (1899) | 2137    | (6996)    |                                   | 1 | [\$32]       |
| ArgoUML      | Test Case (554)              | Code (2404)                      | Unclear | (2958)    |                                   | 1 | [S22]        |
| Waterloo     | Feature (Unclear)            | Use Case (Unclear)               | Unclear | Unclear   |                                   | 1 | [S33]        |
| PMD          | Test Case (825)              | Code (1608)                      | Unclear | (2433)    |                                   | 1 | [S22]        |
| Clafer Tools | Feature annotation (14000)   | Code (Unclear)                   | Unclear | Unclear   |                                   | 1 | [\$28]       |
| AIRFLOW      | Requirement (Unclear)        | Requirement (Unclear)            | Unclear | (629)     |                                   | 1 | [S13]        |
| ANY23        | Requirement (Unclear)        | Requirement (Unclear)            | Unclear | (182)     |                                   | 1 | [S13]        |
| Pig          | Commit (4839)                | Issue (2012)                     | Unclear | (6851)    |                                   | 1 | [S37]        |
| Infinispan   | Commit (4778)                | Issue (2058)                     | Unclear | (6836)    |                                   | 1 | [S37]        |
| IMMUTANT     | Requirement (Unclear)        | Requirement (Unclear)            | Unclear | (404)     |                                   | 1 | [S13]        |
| CAF          | Requirement (Unclear)        | Model (Unclear)                  | Unclear | Unclear   |                                   | 1 | [S19]        |
| D-4          |                              |                                  |         | (4.000)   |                                   | 1 | [010]        |
| Dataset1 *   | Requirement (762)            | Requirement (521)                | 367     | (1283)    |                                   | 1 | [S10]        |

<sup>\*</sup> present that author uses a pseudonym of the name of dataset for confidentiality agreements

# 2. Search process record

| Database       | Number of searches | Number of repetitions in each database | Number of each database<br>(After deleting repetitions) | Number of repetitions in all databases | Total number (After deleting repetitions) |
|----------------|--------------------|----------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------|
| ACM            | 96                 | 1                                      | 69                                                      |                                        | 56                                        |
| Springer       | 210                | 0                                      | 171                                                     |                                        | 132                                       |
| Science Direct | 136                | 20                                     | 113                                                     | 227                                    | 80                                        |
| EI             | 674                | 38                                     | 596                                                     | 221                                    | 457                                       |
| IEEE           | 324                | 67                                     | 243                                                     |                                        | 240                                       |
| Total          | 1440               | 126                                    | 1192                                                    |                                        | 965                                       |

### Excute inclusion/exclusion criteria

| Database | apply criteria<br>(ISC1-ISC3, ESC1-ESC4) | apply criteria(ISC4-ISC5,<br>ESC5-ESC6) in title,<br>abstract, keywords | apply criteria(ISC4-ISC5,<br>ESC5-ESC6) in full article | Snowballing | final |
|----------|------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|-------------|-------|
| ACM      |                                          |                                                                         |                                                         |             |       |
| Springer |                                          |                                                                         |                                                         |             |       |
| Science  |                                          |                                                                         |                                                         |             |       |
| Direct   | 625                                      | 184                                                                     | 34                                                      | 3           | 37    |
| EI       |                                          |                                                                         |                                                         |             |       |
| IEEE     |                                          |                                                                         |                                                         |             |       |
| Total    |                                          |                                                                         |                                                         |             |       |

## 1.7 Search records

## Digital Libraries:

| Database Website        |                                     |  |  |  |
|-------------------------|-------------------------------------|--|--|--|
| ACM https://dl.acm.org/ |                                     |  |  |  |
| Springer                | https://www.springer.com/           |  |  |  |
| Science Direct          | https://www.sciencedirect.com/      |  |  |  |
| El                      | https://www.engineeringvillage.com/ |  |  |  |
| IEEE                    | https://ieeexplore.ieee.org/        |  |  |  |

### Search terms:

| P1 | software traceability      | I1 | machine learning         |  |
|----|----------------------------|----|--------------------------|--|
| P2 | software trace             | 12 | ML                       |  |
| Р3 | software tracing           | 13 | supervised learning      |  |
| P4 | traceability link recovery | 14 | unsupervised learning    |  |
|    |                            | 15 | semi-supervised learning |  |

#### (1) ACM

|                                    | Anywhere |
|------------------------------------|----------|
| (P1 OR P2 OR P3 OR P4)             |          |
| AND                                | 96       |
| (I1 OR I2 OR I3 OR I4 OR I5 OR I6) |          |

#### Advanced search:

("software traceability" OR "software trace" OR "software tracing" OR "traceability link recovery") AND ("machine learning" OR "ML" OR "supervised learning" OR "unsupervised learning" OR "semi-supervised learning" OR "reinforcement learning")

#### Screenshot of search process in ACM:



#### (2) Spinger

|                                    | Keywords+Title+Abstract |
|------------------------------------|-------------------------|
| (P1 OR P2 OR P3 OR P4)             |                         |
| AND                                | 210                     |
| (I1 OR I2 OR I3 OR I4 OR I5 OR I6) |                         |

#### Advanced search:

("software traceability" OR "software trace" OR "software tracing" OR "traceability link recovery") AND ("machine learning" OR "ML" OR "supervised learning" OR "unsupervised learning" OR "semi-supervised learning" OR "reinforcement learning")

#### Screenshot of search process in Springer:



#### (3) Science Direct

|                                 | Title+Abstract+Keywords |
|---------------------------------|-------------------------|
| (P1 OR P2 OR P3 OR P4) AND (I1) | 63                      |
| (P1 OR P2 OR P3 OR P4) AND (I2) | 59                      |
| (P1 OR P2 OR P3 OR P4) AND (I3) | 7                       |
| (P1 OR P2 OR P3 OR P4) AND (I4) | 2                       |
| (P1 OR P2 OR P3 OR P4) AND (I5) | 1                       |
| (P1 OR P2 OR P3 OR P4) AND (I6) | 4                       |
| Total                           | 136                     |

#### ■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I1)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (machine learning)

Screenshot of search process in Scienct Direct:



#### ■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I2)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (ML)

#### Screenshot of search process in Scienct Direct:



### ■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I3)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (supervised learning)

### Screenshot of search process in Scienct Direct:



#### ■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I4)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (unsupervised learning)

#### Screenshot of search process in Scienct Direct:



#### ■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I5)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (semi-supervised learning)

#### Screenshot of search process in Scienct Direct:



#### ■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I6)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (reinforcement learning)

#### Screenshot of search process in Scienct Direct:



#### (4) EI

|                                    | Subject/Title/Abstract |  |
|------------------------------------|------------------------|--|
| (P1 OR P2 OR P3 OR P4)             |                        |  |
| AND                                | 674                    |  |
| (I1 OR I2 OR I3 OR I4 OR I5 OR I6) |                        |  |

#### **Expert search:**

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (machine learning OR ML OR supervised learning OR unsupervised learning OR semi-supervised learning OR reinforcement learning)

#### Screenshot of search process in EI:



#### (5) IEEE

|                                    | Title | Abstract | Index terms |
|------------------------------------|-------|----------|-------------|
| (P1 OR P2 OR P3 OR P4)             |       |          |             |
| AND                                | 2     | 159      | 163         |
| (I1 OR I2 OR I3 OR I4 OR I5 OR I6) |       |          |             |
| Total                              | 324   |          |             |

#### ■ Command Search(Title):

("Document Title":software traceability OR "Document Title":software trace OR "Document Title":software tracing OR "Document Title":traceability link recovery) AND ("Document Title":machine learning OR "Document Title":ML OR "Document Title":supervised learning OR "Document Title":semi-supervised learning OR "Document Title":reinforcement learning)

#### Screenshot of search process in IEEE:



#### Command Search(Abstract):

("Abstract":software traceability OR "Abstract":software trace OR "Abstract":software tracing OR "Abstract":traceability link recovery) AND ("Abstract":machine learning OR "Abstract":ML OR "Abstract":supervised learning OR "Abstract":unsupervised learning OR "Abstract":semi-supervised learning OR "Abstract":reinforcement learning)

#### Screenshot of search process in IEEE:



#### Command Search(Index Terms):

("Index Terms":software traceability OR "Index Terms":software trace OR "Index Terms":software tracing OR "Index Terms":software traceability link recovery) AND ("Index Terms":machine learning OR "Index Terms":ML OR "Index Terms":supervised learning OR "Index Terms":semi-supervised learning OR "Index Terms":reinforcement learning)

#### Screenshot of search process in IEEE:

