

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)	
> 2104	460	
1416	232	m=47
> 1534	315	
852	178	
		J
C	~	

Notation:

- → **m** = Number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable

$$\chi^{(1)} = 2104$$

 $\chi^{(2)} = 1416$
 $\chi^{(1)} = 460$

How do we represent h?

$$h_{\mathbf{g}}(x) = \underbrace{0_0 + 0_1 \times}_{\text{Shorthand}} \cdot h(x)$$

$$y \xrightarrow{\times}_{\text{A}} h(x) = 0.$$

$$+0_1 \times$$

Linear regression with one variable. (*) Univariate linear regression.

one variable

Cost function

Training Set

Size in feet² (x) Price (\$) in 1000's (y)

2104 460
1416 232
1534 315
852 178

0.0

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$ θ_{i} 's: Parameters

How to choose θ_i 's ?

Andrew

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\begin{bmatrix} h_{(x)} = 1.5 + 0 \times \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} h_{(x)} = 0.5 \times \\ 2 \end{bmatrix}$$

Idea: Choose $\underline{\theta_0}, \underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples $\underline{(x,y)}$

Minimize J (00,01)

Oo,01

Cost function

quired error faction

Andrew Na

Machine Learning

Linear regression with one variable

Cost function intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}x}_{\theta_{1}}$$

$$\theta_{1}$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\text{minimize } J(\theta_{1})$$

Cost function intuition II

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x) 500 400 Price (\$) 300 in 1000's 200 6.:50 100 O1 = 0.06 1000 2000 3000 Size in feet2 (x) $h_{\theta}(x) = 50 + 0.06x$

 $J(\theta_0, \theta_1)$

$$h_{ heta}(x)$$
 (for fixed $heta_0, heta_1$, this is a function of x)

Machine Learning

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ Want $\min_{\theta_0,\theta_1}J(\theta_0,\theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$

Outline:

- Start with some θ_0, θ_1 (say $\theta_0 = 0, \theta_1 = 0$
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Machine Learning

Gradient descent intuition

Gradient descent algorithm

$$\theta_1 := \theta_1 - Q \frac{\partial}{\partial \theta_1} J(\theta_1)$$
 If α is too small, gradient descent can be slow.
$$\theta_1$$
 If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.
$$\theta_1$$

Gradient descent can converge to a local

Andrew Ng

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Andrew

$$\frac{\partial}{\partial \theta_{j}} \underline{J(\theta_{0}, \theta_{1})} = \frac{2}{20} \underbrace{\frac{1}{2m}}_{i = 1} \underbrace{\frac{\sum_{i=1}^{m} \left(\sum_{i=1}^{m} \left(\sum_{i=1}^{m}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{m}}{\rightleftharpoons} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{m}}{\rightleftharpoons} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

$$\begin{array}{ll} \textbf{Gradient descent algorithm} & \underbrace{\frac{2}{2 \cdot \theta_0}} \, \Im(\theta_0, \theta_1) \\ \text{repeat until convergence } \{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \\ \} \\ \underbrace{\frac{2}{2 \cdot \theta_0}} \, \Im(\theta_0, \theta_1) \end{array}$$

drew Ng Andrew N

Andrew Ng Andrew I

Andrew Ng Andrew N

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.