CS 186 Discussion #3

Joins

Logistics

- HW2 coming soon, due 9/28
 - Query Planning and Joins
 - Partners Optional
 - Sharing one Github repo

Revisiting SQL...

```
[C]
SELECT sname
FROM
  (SELECT sid
   FROM Reserves
   EXCEPT
      (SELECT sid
       FROM
           (SELECT Reserves.sid, PinkBoats.bid
           FROM Reserves,
               (SELECT bid
               FROM Boats
               WHERE color='pink') PinkBoats
               EXCEPT SELECT sid, bid
               FROM Reserves)))
R, Sailors S
WHERE R.sid = S.sid;
```

Joins

Left Outer Join

TABLE Students

SID	Name	
23357852	Bob the Builder	
24821529	Anonymous	
27983421	Nicholas	
27994495	Oskicat	

TABLE Enrollment

CCN	SID	
25227	23357852	
26586	23357852	
21545	21592421	
23495	23374219	
26586	27994495	

SID	Name	CCN	SID
23357852	Bob the Builder	25227	23357852
23357852	Bob the Builder	26586	23357852
24821529	Anonymous		
27983421	Nicholas		
27994495	Oskicat	26586	27994495

Cost Notation

- [R] = number of pages in Table R
- p_R = number of records per page of R
- R = number of records in R» (cardinality)
- Note: $|R| = p_R^*[R]$

Simple Nested Loop Join

First iteration of outer loop...

Simple Nested Loop Join

Second iteration of outer loop...

Simple Nested Loop Join

Page-Oriented Nested Loop Join

First iteration of outer loop...

Page-Oriented Nested Loop Join

Second iteration of outer loop...

Page-Oriented Nested Loop Join

Chunk Nested Loop Join

First iteration of outer loop...

B pages in memory! Use B – 2 for R

Cost of CNLJ?

[R] + (# chunks in R) * [S]
=[R] + (
$$[R]$$
 /_{chunksize}) * [S]

$$=[R] + [R][S]/(B-2)$$

Sort-Merge Join

1. Sort R and S using external sorting:

$$4[R] + 4[S]$$
 (2 passes)

2. Scan sorted R and sorted S "in tandem" and output matches:

$$[R] + [S]$$

Does this include final write costs?

Optimized Sort-Merge Join

1. Sort R and S using external sorting, but stop before the final pass:

$$2[R] + 2[S]$$

2. Join on the final merge pass!

$$[R] + [S] + [output]$$

Is [R] + [S] an upper bound on join cost?

Hash Join

- Partition both tables! => 2[R] + 2[S]
- Build a hash table for R
- Then match ("probe") => [R] + [S]:

Even better with hybrid hashing!

Join Costs Overview

Chunk Nested Loop Join

$$[R] + [R][S]/_{(B-2)}$$

Sort-Merge Join / Hash Join

$$3[R] + 3[S]$$

Sort-Merge vs. Hash Join

Chunk Nested Loop Join

- Works for cross (Cartesian) products
- Works for non-equality predicates
- Scales nicely with buffer size!

Sort-Merge Join

- Good with sorted input/ output
- Handles data skew + bad hashing (large partitions)
- Good with limited memory

Hash Join

- Good with hashed input/ output
- # passes bounded by smaller relation! Why?
- Hybrid hashing