THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

AD

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 HIG

UNCLASSIFIED

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION

FINAL

REPORT

Ву

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION

Columbus 10, Ohio

To:

OFFICE OF NAVAL RESEARCH

Contract No. Nonr-495(04) NR 055 298

On:

STERIC FACTORS IN ORGANIC CHEMISTRY

For the period:

January 1, 1953 - July 31, 1954

Submitted by:

Shalom Sarel and Melvin S. Newman

Department of Chemistry

Date:

August 5, 1954

STERIC FACTORS IN ORGANIC CHEMISTRY

The object of this research program was to learn more about steric factors in the hydrolysis of esters of acetic acid. By comparing the rates of hydrolysis of a variety of primary alkyl acetates with that of ethyl acetate the steric effect of variations in the alkyl moiety can be evaluated if one assumes that substitutions on the β-carbon of the alkyl group have a negligible polar effect. In a similar way the steric effects in secondary alkyl acetates may be evaluated by comparing the rates of hydrolysis of secondary alkyl acetates with that of isopropyl acetate.

In this final report the synthesis of the alkyl acetates is described and the physical properties etc., of all compounds used in this research are tabulated.

The discussion of the significance of this work as well as the synthetic work involved is to be presented in two or three papers which are now being written for submission to the Journal of the American Chemical Society. Reprints of these papers will be mailed for distribution.

EXPERIMENTAL

Acetates of primary, secondary, and tertiary alcohols were prepared in good purity, and the rate of alkaline hydrolysis in 70% aqueous dioxane, or in water, at 20° and 30°C. was measured. For the preparation of the primary and secondary alcohols and their acetates, the general methods used can be depicted as follows:

RCOOH or RCOOR'
$$\xrightarrow{\text{LiAlH}_{1}}$$
 RCH2OH $\xrightarrow{\text{acetylation}}$ RCH2OCCCH3

RCHC-OCCCH3

RCHOHR' $\xrightarrow{\text{acetylation}}$ RCH-OCCCH3

A. SYNTHESIS OF ACIDS

Six different methods were used for the preparation of the carboxylic acids or their esters. These methods are outlined below:

(1) Carboxylation of the Grignard Reagent:

(2) Alkylation of Malonic or Cyanoacetic Esters:

$$CH_{2} \xrightarrow[Na:OBt]{COOR} 1. R'-X R' COOR 3. Hydrolysis R' Decarboxyl-ation} CHCOOR R'' CHCOOR R''$$

(3) 1.4-Addition of Grignard Reagent to Ethyl Alkylidene Malonete:

(4) Alkylation of Nitriles (Ziegler Method):

CH₃CN or
$$C_2H_5CH_2CN \xrightarrow{\text{excess } C_2H_5Br} C_2H_5 \xrightarrow{C_2H_5} C_2H_5 \xrightarrow{C_2H_5} C_2H_5$$

1. Hydrolysis, 75% H₂SO₄
 $C_2H_5 \xrightarrow{C_2H_5} C_2H_5$

$$c_2^{H_5} - c_2^{H_5}$$

(5) Hypochlorite Oxidation of Methyl Ketones:

(6) Alkaline Rearrangement of α-Haloketones (Faworski Reaction):

In method (6) the α -bromoketones were prepared either (a) by direct bromination of the corresponding ketones or (b) through replacement of hydroxyl group in an acyloin by bromine. The ketones themselves were prepared either by oxidation of an appropriate alcohol or through treatment of a cadmium dialkyl with the appropriate acyl halide.

B. FORMATION OF ALCOHOLS

Lithium Aluminum hydride was used as a reducing reagent for converting carboxylic acids and esters into the corresponding primary alcohols, and ketones to corresponding secondary alcohols.

C. FORMATION OF ACETATES

The new alcohols were smoothly and conveniently converted into their respective acetates by treatment with: (1) acetyl chloride or acetic anhydride and pyridine; or (2) isopropenyl acetate and acid; or (3) acetyl chloride and magnesium metal in dry ether as follows:

$$\begin{array}{c} c_2H_5 \\ c_2H_5 - c - cH + 2cH_3cocl + Mg \longrightarrow c_2H_5 - cococH_3 + Mgcl_2 + H_2 \\ c_2H_5 \end{array} \qquad \qquad \begin{array}{c} c_2H_5 \\ c_2H_5 \end{array}$$

D. RATES OF ALKALINE HYDROLYSIS

The rates of hydrolysis of the acetates with 0.01 N sodium hydroxide, using water or 70% aqueous dioxane as solvents, was followed titrimetically at 20°C. and 30°C.

E. INFRARED SPECTRA

Spectra of all acids, ketones, alcohols and acetates were recorded between 5000 and 625 cm⁻¹ with a Baird Infrared Recording Spectrophotometer Model B. All liquids were measured in a sandwich-type sodium chloride cell.

TABLE I. ACETATES OF ALCOHOLS OF FORMULA R"-C-CH2OCOCH3

					Carboxylic acid	ਰ ਹ	Alcohol	Acety	Acetylation of
No.	Alcohol	'n,	R	Rite	Method Y1	Yield	iormation,	Yield	a Method
					Of 1	in	d A	ü e	of forms+1on
i	2-Methyl-1-butanol	CH ₃	C2H5	H]		:	11	(1)
તં	2,3-Dimethyl-1-butanol	сяз	CH3	Ħ	A-2 6	8	8	88	(2)
ů.	2,3,3-Trimethyl-1-butanol	CH ₃	$(cf_3)_3$ c	Ħ	A-6 4	Ş	88	&	(1)
. .	2-Ethyl-1-butanol	$c_2^{H_5}$	$c_2^{\rm H_5}$	ш	:	;	;	20	(1)
κ.	3-Methyl-2-ethyl-1-butanol	$c_2^{B_5}$	дэ ² (сн ³)	Ħ	A-2 7	78	83	8	(1)
٠ 5	3,3-Dimethyl-2-ethyl-1-butanol	$c_2 H_5$	$(c_{\rm H_3})_3^{\rm C}$	ш	:		%	24	(1)
7.	2-Ethyl-1-bexanol	C2B5	n-ChH9	щ	: 0	! 5	+	93	(1)
8	. 2-Isopropyl-3-methyl-1-butanol	(св ₃) ₂ св	(сн ³) ⁵ сн	Ħ	1	83	18	72	(1)
6	3,3-Dimethyl-1-butanol	(сн3)3ссн2	ш	щ	A-3		83	81	(5)
10.	Cyclopropanenthanol	g;		щ	A-5	95	02	8	(1)
11.	Cyclobutenerthanol	CH2 CH2 CH2 CH2 -		田	• •	1	80	87	(1)
12.	Cyclopentanemethanol	CH2—CH		Ħ	A-6 6	65	80	8	(1)
13.	(yclobexanemethanol	(CH ₂)5	2)5	Þ	:	į.	1	77	(1)
14.	Neopentyl alcohol	CH ₃	CH ₃	сн3	:	!	ઇ	80	(1)

TABLE I. (Continued)

O

					Carboxylic acid	acid	Alcohol	Acety	Acetylation of
					or ester	ır	ਖ	a.	cohols
No.	Alcohol	æ,	R	RII	Method	Yield	yield	Yield Method	Method
					of	tn		ä	of
					preparation	₽€	B	æ	formation
15.	15. 2,2-Dimethyl-1-butanol	$c_2^{\rm H}$ 5	CB ₃	CH ₃	A-1	017	96	8	(1)
16.	16. 2-Methyl-2-ethyl-1-butanol	$c_{2}^{H_{5}}$	$c_2 B_5$	CH ₃	A-6	92	83	75	(1)
17.	17. 2,2-Diethyl-1-butsnol	C2H5	C ₂ H ₅	$c_{2}^{\mathrm{H}_{5}}$	A-4	9	65	92	(1)

TABLE II. ACETATES OF SECONDARY AND TERTIAR! ALCOHOLS

R ¹ -C-0-C0CH ₃	m m

					Alcohol formation,	Acety.	Acetylation of alcohols
No.	Compound	ra L	# #	R 11	yield in	Yield in	Method
18.	18. Pinacolyl acetate	CB ₃	(cH ₃) ₃ c	н	87	93	(1)
19.	Diisopropylcarbinyl acetate	(св3)2сн	(сп ₃) ₂ сн	Ħ	93	18 B	359
20.	Discobutylcarbinyl acetate (CH3)2CHCH2	(сн ₃) ₂ свсн ₂	¹² сн ₃ сн—сн ₂	Ħ	ŀ	8	(1)
21.	Tertiary-butyl acetate	CB3	CH ₃	CH ₃	ŀ	52	(1)
25.	Triethylcarbinyl acwarte	$c_2^{\rm H_5}$	$c_2^{\rm H_5}$	$c_2^{\rm H_5}$:	20	(3)

TABLE III. PHYSICAL PROPERTIES OF CARBOXYLIC ACIDS OR THEIR ESTERS

1
2091H80
^გ ი91 ₈ ე
⁶ 9 ⁸ 18 ⁰ 2
c ₀ z1 ₁ 92
ი _ს შგ ი გ

TABLE III. (Continued)

Ccmpound				ВЪ		Index	
	Structure	Formula M.P.	f.P.	Тетр., °С.	Pressure,	of refraction	Density
Methyl cyclopentanecarboxylate	Conch ₃	C7E1202 -		154	047	вр 1.4353	
2,2-Dimethylbu¢yric acid C ₂	$c_{2}^{\text{CH}_{3}}$ $c_{2}^{\text{H}_{5}} - c_{-}^{\text{Chor}}$ $c_{1}^{\text{H}_{3}}$	- ² 0 ²¹ 492	-	186	745		
Hethyl 2,2-Diethylpropionate C2	$c_2^{2}^{2}^{2} + c_2^{2}$ $c_2^{2}^{2} + c_2^{2}$ c_3^{2}	- ² 9۳ ₁ و		62-63	25	որ 1.4085 գր 0.8824	å 25 0.8824
Triethylacetic acid $\mathcal{O}_{\mathcal{D}}$	С2 ^E 5 С—спсн С2 ^E 5	$c_0 e^{\mathbf{I}} e^{c_2}$	35	131-132	ଷ		
2-Ethyl isovaleric acid CH	13—сн—сн—соон сн3 с ₂ н ₅	C ₇ H ₁ H ₀ 2		196-200	047	որ 1.4148	

TABLE IV. PHYSICAL PROPERTIES OF BRANCHED PRIMARY AND SECONDARY ALCOHOLS

			8	В.Р.	10		ĮŖ.	
No.	Compound	Formula	Temp.,	Pressure,	ý _e	^d 25	Calcd. F	Found
નં	с ₂ н5—сн—сн ₂ он сн ₃	C5H12O	128	07/	1.4104			
å	CH ₃ CH - CH - CH ₂ OH 2. 3	$c^{\eta T_{\underline{u}} 9_{\mathcal{O}}}$	145-146	741	1.4173			
÷	CH3 CH3 1	$c_{7}^{\rm g}$ 160	158-159	740	1.4230	0.8238	36.05	35.86
4	С ₂ н ₅ —сисн ₂ он с ₂ н ₅	с ⁴¹ н9	146-147	147	1.4205			
5.	сн ₃ — сн— сн— сн ₂ он 	c ₇ H ₁₆ 0	99-48	38	1.4234	0.8327	0.8327 36.05	35.61
•	$c_{\rm H_3}$ 6. $c_{\rm H_3}$ $c_{\rm -cH}$ $c_{\rm H_2}$ $c_{\rm H_3}$ $c_{\rm H_3}$	c _{8H} 180	88-89	38	1.4348	0.8425	0.8425 40.66	40.32
7.	n-с _ц п ₉ — сн— сн ₂ он (г ₂ п ₅	°81,8°	184	741	1.4280			

TABLE IV. (Continued)

(F.)	Celc	0.8425 40.66 40.26	0.8097 31.43 31.35	98 20.47			
	d 25	0.842	0.80	0.9098			
25	, ^L	3,43,42	1.4115	1,4297	1.4430	1.4550	1.4634
В.Р.	Pressure,	141	० म्	047	400	740	147
	Temp.,	с _в а ₁₈ 0 171-172	с _б а ₁₄ 0 144-145	123	140	160	180
	Formula	c ₈ H ₁₈ o	c ^{و ۱} ۲۴۰	0	CSH100	cen130	CTITO
	Compound	CH ₃ CH-CH-CH CH CH ₃ CH ₂ CH ₃	。 第一 第一 第一 第一	CH ₂ OH	CH20H	CB 203	CH2 ^{OH}
	No.	φ.	Ġ	10.	ä	5.5	13.

TABLE IV. (Continued)

[R.]	Found					31.50	35.71
, E	Calca.					0.8122 31.43	36.05
	d 25					0.8122	0.8245 36.05
L	D _D	m.p. 51-51.6°	1.4192	1.4288	1.4411	1.4153	1.4210
P.	Presnure,	047	740	047	25	741	740
B.P.	Temp.,	112-114	134	152	95	120-120.5	139-139.5
	Formula	C5 ^H 12 ⁰ 122-114	o [†] L ₉ 2	$^{\mathrm{c}}_{f^{\mathrm{H}}}$ 60	c_8 H $_8$ O	$c^{\eta I_{\eta}}$	°7 ^H 16 ⁰
	Compound	$\frac{\text{ch}_{3}}{\frac{1}{2}}$ 14. $\frac{\text{ch}_{3}-\text{c}-\text{ch}_{2}}{\frac{1}{2}}$ $\frac{\text{ch}_{3}}{\text{ch}_{3}}$	$ \begin{array}{ccc} c R_3 \\ & & \\ & & \\ & & \\ & c R_3 \end{array} $	$c_{2}^{H_{3}}$ 16. $c_{2}^{H_{5}-c}-c_{12}^{-c_{12}}$ $c_{2}^{H_{5}}$	17. (с ₂ н ₅₎₃ с-сн ₂ он сн ₃	18. сн ₃ — с—своисн ₃ сн ₃	CH ₃ CH - CHOHCH CH ₃ CH ₃
	No.	, ⁴ 4.	15.	16.	17.	18.	19.

TABLE IV. (Continued)

			B.	Р.	L		[R]
No.	Compound	Formula	Temp., °C.	Formula Temp., Pressure, °C. mm	o O	d 25	Calcd. Found
50.	CH3 CHCH2CHOHCH2CH C9 H200	°9 ^H 20°	,				
21.	21. (с ₂ н _{5) 3} сон	C7H160	C7H160 140-141	Ot ₁ .	1.4256		

TABLE V. PHYSICAL PROPERTIES OF ACETATES OF HIGHLY-BRANCHED ALCOHOLS

			11. P.			ı	۳	
No.	Acetate of:	Formula	၁့	Pressure,	п О	d 25	Calcd. Fo	Found
۲	2-Methyl-1-butanol	C7H1402	138-139	741	1.3996	0.8719	36.17	36.17
ά	2,3-Dimethyl-1-butanol	$^{\mathrm{CgH_{16}}_{\mathrm{O}_{2}}}$	741	047	1.4068	0.8790	40.79	40.50
3.	2,3,3-Trimethyl-l-butanol	$c_9^{\rm H}_18^{\rm O}_2$	170-171	741	1.4125	0.8687	45.41	45.30
4	2-Ethyl-1-butanol	$^{C8^{\mathrm{H}}I\mathfrak{E}_0S}$	160	07/2	1.4090	0.8764	62.04	10.68
<u>ې</u>	3-Methyl-2-ethyl-1-butanol	$^{\mathrm{c}}_{9^{\mathrm{H}}_{1}8^{\mathrm{o}}_{2}}$	88-89	30	1.4156	0.877₺	14.54	45.23
•	3,3-Dimethyl-2-ethyl-1-butanol	C10H20C2	100	04	1.4220	0.8770	50.0	06.64
	2-Ethyl-1-bexanol	$^{\text{C}}_{\text{10}}{}^{\text{H}}_{\text{20}}{}^{0}_{\text{2}}$	104	O†	1.4182	0.8688	50.0	16°64
8	3,3-Dimethyl-1-butanol	$c_8^{\rm H_16^0_2}$	156-157	741	1.4038	c.8 68 3	40.79	10.60
o,	2-Isopropyl-3-methyl-1-butanol	clo ^B 20 ² 2	130	011	1.4200	0.8603	50.0	49.5
10.	Cyclopropanemethanol	$c_0 c_H 9_0$	133.5	741	1.4156	0.9603		
11.	Cyclobutanemethanol	c_7 μ_1 c_0	150	741	1.4245	0.9508		
12.	Cyclopentamenthanol	c_{0}	172.5	741	1.4340	0.9577		
13.	Cyclohexanemethanol	$c_0 H_1 e^0$	108	04	1.4422	0.9541		
14.	Neopentyl alcohol	C7F1402	127	07/2	1.3927	0.8539	36.17	36.36
15.	2,2-Dimethyl-l-butanol	c_{8H} 1 ϵ_{0} 5	152-153	740	1.4050	0.870th	62.04	40.60
16.	2-Methyl-2-ethyl-1-butanol	c_{9} $^{\rm H}$ $^{\rm 18}$ $^{\rm 22}$	100	8	1.4150	1.4150 0.8815	14.54	44.95

TABLE V. (Continued)

			B.P.		30		E.	
No.	Acetate of:	Formula	ວຸ	Pressure,	ઈર્વ	đ	רי	ر ا ا
				THE	מ	(2)	Calcd.	Found
17.	17. 2,2-Diethyl-1-butanol	C10H2012	103-104	04	1,4269	4269 0.8900 50.00	50.00	89.6 1
18.	18. Pinacolyc alcohol	$c_8 ^{H_1 e^{\Omega_2}}$	138-138.5	738	1.4002			
19.	Diisopropylcarbinol	c_9 F18 0 2	161	745	1.4110*			
20.	Diisobutylcarbinol	$c_{11}^{L_{22}}$ 2	125-126	9	1.4117			
21.	21. Trimethylcarbinol	$c_0 r_1 r_0 r_5$	0.76-5-96	247	1.3840			
22•	22. Triethylcarbinol	C9H1802	163	740	1.4270			

TABLE VI. RATE OF SAPONIFICATION OF ACETATES OF PRIMARY ALCOHOLS

No.	Compound	Solvent	Normality of Nache	Molarity of	Rate constant, k2, g. mol. 1./min-I	nt, k2, /min-I	kethyl acetate kalkvl acetate
'	1	Water	0.012	0.0099	1.420		
i	Z-Methyl-1-buryl acetate	70% Dioxane	0.015 0.0119	0.008	74.0	0.78	3.0
ં	2,3-Dimethyl-1-butyl acetate	70% Dioxane	0.0133 0.0119	0.009	0.35	0.72	3-3
ŵ,	2,3,3-Trimethyl-l-butyl acetate	70% Dioxane	0.0123	0.007	0.324		3.7
	2-Ethyl-1-butyl acetate	70% Dioxane	0.0133	0.0109 0.0090 0.0053 0.0100	0.24	6 ₄ .0	8.4
	3-Methyl-2-ethyl-1-butyl acetate	70% Dioxane	0.015	0.010 0.008 0.009	0.23	0.41	5.8
•9	3,3-Dimethyl-2-ethyl-l-butyl acetate	70% Dioxane	0.015	0.0093 0.0093 0.0095 0.0100	190.0	0.11	21.0
	2-Ethyl-1-hexyl acetate	70% Dioxane	0.0125 0.0119	0.0098 0.0102 0.0085	0.156	0.36	6.5
œ •	3,3-Dimethyl-1-butyl acetate	70% Dioxane	0.0123	0.0105 0.0087	0.627	-	1.9

TABLE VI. (Continued)

No.	Compound	Solvent	Normality of NaOH	Molarity of ester	Rate constant, g. mol. l./mir 20°C. 30	stact, k2, 1./min-1	kethyl acetate Kallyl acetate
6	2. Isopropyl-3-methyl-1-butyl acetate	70% Dioxane	0.0122	0.0087 0.0078	0.092		i
10.	10. Cyclopropanemethyl acetate	70% Dioxane	0.0133	0.0084 0.0100 0.0086 0.0084	1.08	2.28	1.004
तं	Cyclobutanemethyl acetate	70% Dioxane	0.0133	0.0084 0.0096 0.0090 0.0080	47.0	1.47	1.6
12.	Cyclopentanemethyl scetate	70% Dioxane	0.0133	0.0093 0.0087 0.0080 0.0096	0.54 	1.08	8.5
33.	Cyclobexanemethyl acetate	70% Dioxane	0.0135	0.0092 0.0100 0.0101 0.0098	0.33	02.70	₹°€
٠ .	Neopentyl acetate	Water 70% Dioxane	0.0122 0.015 0.0119	0.0074 0.0069 0.0078 0.0083	0.28	0.50	8.4

TABLE VI. (Continued)

			Normality	Molarity	Rate const	ant, ko,	Kathar
No.	Compound	Solvent	of	of	g. mol. 1	./min-1	of g. mol. 1./min.1 Funt accurate
			NaOH	ester	20°C.	30°C.	alkyl acetate
		Water	0.012	200.0	0.70	****	
15.	15. 2,2-Dimetbyl-1-butyl acetate	70% Dioxane	0.015	0.0101 0.0088	0.21	!	7.0
			0.0119	0.0090	!	0.34	
16.	16. 2-Methyl-2-ethyl-1-butyl acetate	70% Dioxane	0.0123	0.0087	421.0		12.0
17.	2,2-Diethyl-1-butyl acetate	70% Dioxane	0.0133	0.0092	0.050	t 9 t	
			0,0119	0.0093		0.108	8.5

TABLE VII. RATE OF SAPONIFICATION OF ACETATES OF SECONDARY ALCOHOLS

			Normality	Molarity	Rate constant, k2	Normality Molarity Rate constant, k2, k1anmonny aceta:
No.	Compound	Solvent	of	of	$a_{\rm c}$ mol. 1. $l_{\rm min}^{-1}$	To the state of th
			NaOH	ester	20°C. 30°C.	alkyl acetate
-] Dinscolv aretate	70% Dioxane	0.0245	ļ	0.035	11.3
i			0.012	0.0108	0.054	
તં	Diisobutylcarbinyl acetate	70% Dioxane	0.025	0.0079	0.0236	5 25.0
ന്	Tert. butyl scetate	70% Dioxane	0.025	0.0075	0.0381	1
	Diisopropylcarbinyl acetete(*)	70% Dioxane	0.025	0.0079	0.0109	0.95 6

(*) Rate constant calculated graphically by extrapolating the line obtained from 30% to 80% hydrolysis.

Signature Page

to

FINAL Report RF Project 497

on

Contract No. Nonr-495(04) NR 055 298

Investigator	5. Sarel	2N	Date 5-10-54
Supervisor_	Melvin S. M	luman	Date 8-19-54
Executive D	For The Chio State University C. W.	ersity Research Found	Date 8/10/54

Distribution List for Final Report Contract No. Nonr-495(04) NR 055 298 STERIC FACTORS IN ORGANIC CHEMISTRY

Copies

- Director, ONR Branch Office 150 Causeway Street Boston, Mass.
- 2 Director, ONR Branch Office The John Crerar Library Bldg. 10th Floor, 86 E. Randolph St. Chicago 1, Illinois
- Director, ONR Branch Office 1000 Geary Street San Francisco 9, Calif.
- 1 Director, ONR Branch Office 1030 M. Green Street Pasadena 1, Calif.
- 2 Officer in Charge ONR, Navy No. 100 Fleet Post Office New York, New York
- 6 Director, Naval Research Lab. Washington 25, D. C.
 Attn: Technical Information Officer
- 2 Chief of Naval Research Washington 25, D. C. Attn: Chemistry Branch
- 1 Dr. Ralph G. H. Sie, Research Director General Laboratories, QM Depot 2500 S. 20th Street Philadelphia 45, Pennsylvania
- l Dr. Warren Stubblebine Research Director Chemical and Plastics Section RDB-MFD Quartermaster General's Office Washington 25, D. C.

Copies

- l Dr. A. Stuart Hunter,
 Technical Director
 Research and Development
 Branch MPD
 Quartermaster General's
 Office
 Washington 25, D. C.
- Dr. A. Weissler
 Department of The Army
 Office of the Chief of
 Ordnance
 Washington 25, D. C.
 Attn: ORDTB-PS
- Research and Development
 Group
 Logistics Division, General
 Staff
 Department of The Army
 Washington 25, D. C.
 Attn: Dr. W. T. Read
 Scientific Adviser
- Director, Naval Research Lab. Washington 25, D. C. Attn: Chemictry Division
- 2 Chief of the Bureau of Ships Maxy Department Washington 25, D. C. Attn: Code 340
- 2 Chief of Bureau of Aeronautics Navy Department Washington 25, D. C. Attn: Code TD-4
- Chief of the Bureau of Ordnance Navy Department Washington 25, D. C. Attn: Code Rexd

Distribution List (Continued)

Copies

- Dr. H. A. Zahl, Tech. Director Signal Corps Engineering Lals. Fort Monmouth, New Jersey
- 1 U. S. Naval Radiological Defense Lab. San Francisco 24, Calif. Attn: Technical Library
- 1 Naval Ordnance Test Station Inyokern CHINA IAKE, California Attn: Head, Chemistry Div.
- 1 Office of Ordnance Research 2127 Myrtle Drive Durham, North Carolina
- 1 Technical Command Chemical Corps Chemical Center, Maryland
- 1 U. S. Atomic Energy Commission Research Division Washington 25, D. C.
- 1 U. S. Atomic Energy Commission Chemistry Division Brockhaven National Laboratory Upton, New York
- 1 U. S. Atomic Energy Commission Library Branch, Tech. Info., ORE P. O. Box E Oak Ridge, Tennessee
- University of California Department of Chemistry Los Angeles 24, California Attn: Dr. S. Winstein
- 1 Columbia University
 Department of Chemistry
 New York 27, New York
 Attn: Dr. L. P. Hammett
- 1 University of Colorado
 Department of Chemistry
 Boulder, Colorado
 Attn: Dr. S. J. Cristol

Copies

- l Harvard University
 Department of Chemistry
 Cambridge 38, Massachusetts
 Attn: Dr. P. D. Bartlett
- Purdue University
 Department of Chemistry
 Lafayette, Indiana
 Attn: Dr. Herbert C. Brown
- 1 Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts Attn: Dr. C. G. Swain
- Pennsylvania State College
 Department of Chemistry
 State College, Pennsylvania
 Attn: Dr. R. W. Taft, Jr.
- University of Southern Calif. Department of Chemistry Los Angeles 7, California Attn: Dr. R. F. Brown
- 5 ASTIA Document Service Center Knott Building Dayton 2, Ohio
- 1 Office of Technical Services Department of Commerce Washington 25, D. C.
- 1 Dr. A. G. Horney Office Scientific Research R and D Command, USAF Box 1395 Baltimore, Maryland
- 1 Director, ONR Branch Office 346 Broadway New York 13, New York

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE CTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0HIO

UNCLASSIFIED