CSIT110 Fundamental Programming with Python

String Format

Goh X. Y.

In this lecture

Multi-line code statement

Escape sequence

String format

Numerical operations

Multi-line code statement

To end a statement in Python, you simply press Enter. Therefore, this code will generate a syntax error:

```
subject_code = "CSCI111"
subject_mark = 80
subject_grade = "D"
result = "Subject result: " the end of the statement
+ subject_code
+ " mark " + str(subject_mark)
+ " grade " + subject_grade
print(result)
```

Multi-line code statement

Use the backslash \ to indicate that a statement is continued on the next line.

```
subject_code = "CSCI111"
subject_mark = 80
subject_grade = "D"

result = "Subject result: " \
    + subject_code \
    + " mark " + str(subject_mark) \
    + " grade " + subject_grade

print(result)
```

we can break a long line of code into multi-line

Multi-line code statement

Line continuation is automatic when the split comes while a statement is inside parenthesis (, brackets [or braces { Therefore, this code is fine:

```
subject_code = "CSCI111"
subject_mark = 80
subject_grade = "D"
print(
    "Subject result: "
    + subject_code
    + " mark " + str(subject_mark)
    + " grade " + subject_grade
)
```

Sometimes, we should break a long line of code into multiline to make it clearer

```
print("Welcome to Unimovies!")
print("Thursday July 30 at 7.15pm: Inside Out")
```

Program output:

```
Welcome to Unimovies!
Thursday July 30 at 7.15pm: Inside Out
```

```
print("Welcome to Unimovies!")
print("Thursday July 30 at 7.15pm: Inside Out")
```

How do we write program for this output:

```
Welcome to Unimovies!
Thursday July 30 at 7.15pm: "Inside Out"
```

How about this program?

We want to write a program for this output:

```
Welcome to Unimovies!
Thursday July 30 at 7.15pm: "Inside Out"
```

The correct program

Program output:

```
Welcome to Unimovies!
Thursday July 30 at 7.15pm: "Inside Out"
```

Escape Sequence	Meaning
\\	Backslash (\)
\'	Single quote (')
\"	Double quote (")
\n	New line
\t	Tab

```
print("Your details:\n")
print("\tName: \"John Smith\"")
print("\tSN: \"2012345\"")
print("\nEnrolment record:\n")
print("\tMATH101")
print("\tCSCI201")
```

Program output:

```
Your details:

Name: "John Smith"
SN: "2012345"

Enrolment record:

MATH101
CSCI201
```

```
print("Escape sequence:")
print("\\n : Insert a newline.")
print("\\t : Insert a tab.")
print("\\\" : Insert a double quote character.")
print("\\\' : Insert a single quote character.")
print("\\\\ : Insert a backslash character.")
```

What is the output of this program? Try it yourself!

String format

```
Formatting using '...'.format() { } - denotes where the variables will be
```

Formatting numbers in string

{ : −8} – sets minimum length of variable to 8 character

{:2.4%} – displays a float to 4 decimal places

```
2843493 are for the notion 69.92%
```

String format

```
fname = "John"
lname = "Smith"
age = 20
gpa_score = 3.2
print("Hi {0} {1}!".format(fname, lname))
print("{1} {2} is {0} years old".format(age, fname, lname))
print("His GPA score is {0:.2f}".format(gpa_score))
```

```
print("Hi {0} {1}!".format(fname, lname))

print("{1} {2} is {0} years old".format(age, fname, lname))

print("His GPA score is {0:.2f}".format(gpa_score))

CSIT110 - Fundamental Programming with Python
```

String format with alignment

711211 motala.

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print() print("123456789012345678901234567890123456789012345678901234567890123456789012345
```

Program output

Element	Symbol	Atomic number	
Lithium	Li	3	Atomic weight 6.94
Sodium	Na	11	22.99
Potassium	K	19	39.098
Rubidium	Rb	37	85.468
Caesium	Cs	55	132.905
Francium	Fr	87	223

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print()
print("1234567890123456789012345678901234567890123456789012345")
```

left alignment, using 15 spaces

```
Alkali metals:
Element
             Symbol
                      Atomic number Atomic weight
Lithium
             T.i
                                                         6.94
                                                        22.99
Sodium
                                 11
             Na
Potassium
                                 19
                                                       39.098
              Rh
                                 37
Rubidium
                                                      85.468
Caesium
             Cs
                                 55
                                                      132.905
                                 87
                                                          223
Francium
             FΥ
1234567890123456789012345678901234567890123456789012345
```

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print()
print("1234567890123436789012345678901234567890123456789012345")
```

left alignment, using 10 spaces

Element	Symbol	Atomic number	Atomic weight
Lithium	Li	3	6.94
Sodium	Na	11	22.99
Potassium	K	19	39.098
Rubidium	Rb	37	85.468
Caesium	Cs	55	132.905
Francium	Fr	87	223

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print()
print("1234567890123456789012345678901234567890123456789012345678901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123450789012345078901234507890123
```

centre alignment, using 25 spaces

Element	Symbol	Atomic number	Atomic weight
Lithium	Li	3	6.94
Sodium	Na	11	22.99
Potassium	K	19	39.098
Rubidium	Rb	37	85.468
Caesium	Cs	55	132.905
Francium	Fr	87	223

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15}".format("Francium", "Fr", 87, 223))
print()
print("12345678901234567890123456789012345678901234567890123456789012345")
```

right alignment, using 15 spaces

Alkali metals:

<	left
>	right
^	centre

Element	Symbol	Atomic number	Atomic weight
Lithium	Li	3	6.94
Sodium	Na	11	22.99
Potassium	K	19	39.098
Rubidium	Rb	37	85.468
Caesium	Cs	55	132.905
Francium	Fr	87	223

12345678901234567890123456789012345678901234567890123456789012345

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15.3f}".format("Francium", "Fr", 87, 223))
print()
print("12345678901234567890123456789012345678901234567890123456789012345")
```

we would like to display the Atomic Weight as having exactly 3 digits after the decimal places

Element	Symbol	Atomic number	Atomic weight
Lithium	Li	3	6.940
Sodium	Na	11	22.990
Potassium	K	19	39.098
Rubidium	Rb	37	85.468
Caesium	Cs	55	132.905
Francium	Fr	87	223.000

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Francium", "Fr", 87, 223))
print("{0:<15}{1:<10}{2:^25}{3:>15.4f}".format("Francium", "Fr", 87, 223))
print()
```

Element	Symbol	Atomic number	Atomic weight
Lithium	Li	3	6.9400
Sodium	Na	11	22.9900
Potassium	K	19	39.0980
Rubidium	Rb	37	85.4680
Caesium	Cs	55	132.9050
Francium	Fr	87	223.0000

```
print("Alkali metals:")
print()
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Element", "Symbol", "Atomic number", "Atomic weight"))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Lithium", "Li", 3, 6.94))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Sodium", "Na", 11, 22.990))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Potassium", "K", 19, 39.098))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Rubidium", "Rb", 37, 85.468))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Caesium", "Cs", 55, 132.905))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Francium", "Fr", 87, 223))
print("{0:<15}{1:<10}{2:^25}{3:>15.0f}".format("Francium", "Fr", 87, 223))
print("[1234567890123456789012345678901234567890123456789012345")
```

Element	Symbol	Atomic number	Atomic weight
Lithium	Li	3	7
Sodium	Na	11	23
Potassium	K	19	39
Rubidium	Rb	37	85
Caesium	Cs	55	133
Francium	Fr	87	223

String format with alignment

```
print("{0} x {1} = {2}".format(1, 5, 1*5))
print("{0} x {1} = {2}".format(2, 5, 2*5))
print("{0} x {1} = {2}".format(3, 5, 3*5))
print("{0} x {1} = {2}".format(4, 5, 4*5))
print("{0} x {1} = {2}".format(5, 5, 5*5))
print("{0} x {1} = {2}".format(6, 5, 6*5))
print("{0} x {1} = {2}".format(7, 5, 7*5))
print("{0} x {1} = {2}".format(8, 5, 8*5))
print("{0} x {1} = {2}".format(9, 5, 9*5))
print("{0} x {1} = {2}".format(10, 5, 10*5))
```

```
1 x 5 = 5

2 x 5 = 10

3 x 5 = 15

4 x 5 = 20

5 x 5 = 25

6 x 5 = 30

7 x 5 = 35

8 x 5 = 40

9 x 5 = 45

10 x 5 = 50
```

String format with alignment

```
print("{0:>2} x {1:>1} = {2:>2}".format(1, 5, 1*5))
print("{0:>2} x {1:>1} = {2:>2}".format(2, 5, 2*5))
print("{0:>2} x {1:>1} = {2:>2}".format(3, 5, 3*5))
print("{0:>2} x {1:>1} = {2:>2}".format(4, 5, 4*5))
print("{0:>2} x {1:>1} = {2:>2}".format(5, 5, 5*5))
print("{0:>2} x {1:>1} = {2:>2}".format(5, 5, 5*5))
print("{0:>2} x {1:>1} = {2:>2}".format(6, 5, 6*5))
print("{0:>2} x {1:>1} = {2:>2}".format(7, 5, 7*5))
print("{0:>2} x {1:>1} = {2:>2}".format(8, 5, 8*5))
print("{0:>2} x {1:>1} = {2:>2}".format(9, 5, 9*5))
print("{0:>2} x {1:>1} = {2:>2}".format(10, 5, 10*5))
```

we want a better output

```
1 x 5 = 5

2 x 5 = 10

3 x 5 = 15

4 x 5 = 20

5 x 5 = 25

6 x 5 = 30

7 x 5 = 35

8 x 5 = 40

9 x 5 = 45

10 x 5 = 50
```

+	Addition	3 + 5 = 8 3 + 5.0 = 8.0 1.2 + 3.4 = 4.6
_	Subtraction	5 - 2 = 3 $5 - 2.0 = 3.0$ $6.5 - 1.2 = 5.3$
*	Multiplication	5 * 2 = 10 $5 * 2.0 = 10.0$ $6.5 * 1.3 = 8.45$

/	Division	10/2 = 5.0
		10/4 = 2.5 10/2.0 = 5.0
		10.0/1.2 = 8.3333
//	Floor division	10//2 = 5
		10//4 = 2
		10//2.0 = 5.0
		10.0//1.2 = 8.0

What is the difference between Division and Floor division?

/	Division	10/2 = 5.0 $10/4 = 2.5$ $10/2.0 = 5.0$
		10.0/1.2 = 8.3333
//	Floor division	10//2 = 5 $10//4 = 2$ $10//2.0 = 5.0$ $10.0//1.2 = 8.0$

Note that division of two integers give a decimal number 10/2 = 5.0

So if we want integer result, we should use Floor division

**	Exponent	10**2 = 100 10**4 = 10000 1.1**2 = 1.21
		16**0.5 = 4.0 36**0.5 = 6.0

16**0.5 square root of 16

0/0	Modulus	15%2 = 1
		124%10 = 4
		28%2 = 0
		37%5 = 2
		- 15%2 = 1
		10 0 1

```
when x is an odd number: x%2 = 1 when x is an even number: x%2 = 0
```

```
to find the last digit of positive integers: 124\%10 = 4 23\%10 = 3
```

+=	x += 2 is the same as $x = x + 2$
-=	x -= 2 is the same as $x = x - 2$
*=	x *= 2 is the same as $x = x * 2$
/=	$x \neq 2$ is the same as $x = x \neq 2$
//=	x //= 2 is the same as $x = x // 2$
**=	x **= 2 is the same as $x = x ** 2$
%=	x % = 2 is the same as $x = x % 2$

Problem solving example

A shop sells a product item for \$10, but makes a discount that 3 items only cost \$20. Write a program to ask the user to enter the number of items they want to buy. Then the program displays the cost.

How much does it cost for 7 items?

How much does it cost for 12 items?

How much does it cost for 14 items?

Any questions?