Problem ST-7 (5 parts)

Reverse Engineering

Consider the following MIPS code.

label	instruction			ion	comment
	addi	\$1,	\$O,	16	# x
	addi	\$2,	\$O,	3	# У
	addi	\$3,	\$0,	4	# z
	addi	\$4,	\$0,	0	# sum
Loop:	addi	\$1,	\$1,	-1	# x
A:	sll	\$5 ,	\$3,	7	# z*128 = z*8*16
B:	sll	\$6,	\$2,	4	# y*16
C:	add	\$7,	\$5,	\$6	# \$7: z*128 + y*16
	add	\$8,	\$7 ,	\$1	# \$8: z*128 + y*16 + x
	sll	\$8,	\$8,	2	# scale by 4
	lw	\$7,	Arra	ay(\$8)	# use as offset into Array
	add	\$4,	\$4,	\$7	# \$4: running sum
	bne	\$1,	\$0,	Loop	<pre># continue loop if x > 0</pre>
	jr	\$31			# return to caller

Part A (4 points) What type of loop is this (e.g., for, while, do while)?

do while

Part B (4 points) How many iterations does the loop perform?

16

Part C (9 points) The loop is accessing a multi-dimensional array. How many columns (Lx) and rows (Ly) does it have? At has at least how many planes (Lz)?

 $Lx = 16 Ly = 8 Lz \ge 5$

Part D (4 points) In terms of the multi-dimensional array, what is being summed up and placed in register \$4 by the program?

running sum of all elements of row 3 (4th row), on plane 4 (5th plane).

Part E (4 points) How can this program be optimized to reduce the total number of instructions executed by 45 instructions (from 149 to 104 instructions)?

Move the three instructions labeled A, B, and C above the loop, since the expression they compute does not change on each loop iteration.