TD de Logique, feuille 4

Les exercices marqués d'une flèche sont à chercher en priorité. Je recommande d'y réfléchir à l'avance. Ceux qu'on aura pu corriger en TD sont à connaître. Les corrections seront concentrées sur ceux-là, mais vous pouvez toujours me demander des précisions concernant les autres exercices. Les questions ou exercices marqués d'une étoile sont plus difficiles.

→ Exercice 1 (Extensions élémentaires) :

Soient $M \subseteq N \subseteq O$. Lesquelles de ces affirmations sont vraies? (pour la négative, on pourra se contenter, pour l'instant, d'arguments vagues)

- 1. Si $M \leq N$ et $N \leq O$, alors $M \leq O$.
- 2. Si $M \leq O$ et $N \leq O$, alors $M \leq N$.
- 3. Si $M \leq O$ et $M \leq N$, alors $N \leq O$.

→ Exercice 2 (Ensembles définissables) :

Soient \mathcal{L} un langage, M une \mathcal{L} -structure, et $C \subseteq M$. Pour $n \geqslant 1$, un sous-ensemble C-définissable de M^n est une partie $X \subseteq M^n$, telle qu'il existe $\varphi(x,y) \in \mathcal{L}$ et $a \in C^y$, avec |x| = n tels que $X = \{v \in M^n \mid M \models \varphi(v,a)\}$. On parle aussi de partie C-définissable de M^n , et on dira que $\varphi(x,a)$ est une définition de X.

- 1. Montrer que, pour tout n, la collection des parties C-définissables de M^n est une sous-algèbre de Boole de l'algèbre des parties $(P(M^n), \wedge, \vee)$. On notera cette algèbre $Def_C(M^n)$.
- 2. Soit $B \subseteq M$ tel que $C \subseteq B$. Pour tout n, vérifier qu'on a une inclusion entre algèbres de Boole $Def_C(M^n) \subseteq Def_B(M^n)$.
- 3. Soit $f: M \to N$ un plongement élémentaire entre \mathcal{L} -structures. Soit $n \ge 1$.
 - a) Soit $X \in Def_C(M^n)$. Soient $\varphi(x, a_1), \psi(x, a_2)$ des définitions de X, où |x| = n. Montrer que $\{v \in N^n \mid N \models \varphi(v, f(a_1))\} = \{v \in N^n \mid N \models \psi(v, f(a_2))\}$. On notera cet ensemble X(N). On notera aussi $X(M) = \{v \in M^n \mid M \models \varphi(v, a_1)\}$.
 - b) Montrer que $f(X(M)) \subseteq X(N)$ pour tout ensemble M-définissable X.
 - c) Définir un isomorphisme d'algèbres de Boole $\overline{f}: Def_C(M^n) \to Def_{f(C)}(N^n)$.
- 4. Soit Aut(M) le groupe des automorphismes de M. Plus généralement, pour tout $C \subseteq M$, soit Aut(M/C) le groupe des automorphismes de M qui fixent tous les éléments de C. Soit $n \ge 1$ et $C \subseteq M$.
 - a) Montrer que le groupe Aut(M) agit sur l'algèbre de Boole $Def_M(M^n)$.
 - b) Soit $X \in Def_C(M^n)$. Déduire d'une question précédente que, pour tout $\sigma \in Aut(M/C)$, pour tout élément/uplet $m \in X(M)$, on a $\sigma(m) \in X(M)$.
- 5. On considère la structure (\mathbb{Q} ,<). Montrer que $\mathbb{Z} \subseteq \mathbb{Q}$ n'est pas une partie \mathbb{Q} -définissable. On pourra chercher à construire des automorphismes de (\mathbb{Q} ,<).
- 6. Soit (V,0,+,-) le groupe $\bigoplus_{i\in\mathbb{Z}}\mathbb{Q}$. Soit W le sous- \mathbb{Q} -espace vectoriel $\bigoplus_{i\in\mathbb{N}}\mathbb{Q}$. Est-il V-définissable?

Exercice 3 (Préservation):

Si M est une \mathcal{L} -structure, on note $\mathcal{L}_M = \mathcal{L} \cup M$, et M_M la \mathcal{L}_M -structure où chaque constante $m \in M$ est interprétée par elle-même. On note également $\Delta(M) = \{\varphi : \mathcal{L}_M$ -énoncé sans quantificateurs $|M_M \models \varphi\}$. Soit T une \mathcal{L} -théorie, on note $T_{\forall} = \{\varphi : \mathcal{L} \text{ énoncé universel } | T \models \varphi \}$.

1. Soient M, N des \mathcal{L} -structures, et N_M un enrichissement de N en une \mathcal{L}_M -structure. Soit $f: M \to N$ la fonction $m \mapsto m^{N_M}$. Montrer que les assertions suivantes sont équivalentes :

- a) La fonction f est un plongement de \mathcal{L}_M -structures.
- b) La fonction f est un plongement de \mathcal{L} -structures.
- c) La structure N_M est un modèle de $\Delta(M)$.
- 2. Montrer qu'une \mathcal{L} -structure M est modèle de T_{\forall} si et seulement s'il existe N modèle de T telle que M se plonge dans N. Autrement dit, les modèles de T_{\forall} sont, à isomorphisme près, les sous-structures des modèles de T.
- 3. En déduire que si T est stable par sous-structure (i.e. si $M \models T$ et N sous-structure de M, alors $N \models T$), alors T est équivalente à T_{\forall} .
- 4. Soit φ un \mathcal{L} -énoncé, montrer que si φ est préservée par sur-structure (i.e. $M \vDash \varphi$ et M sous-structure de N, alors $N \vDash \varphi$) alors φ est équivalente à un énoncé existentiel.

Exercice 4 (Non équivalence élémentaire) :

- 1. (*) Montrer que si $m \neq n$, alors les groupes $(\mathbb{Z}^m, 0, +, -)$ et $(\mathbb{Z}^n, 0, +, -)$ ne sont pas élémentairement équivalents, i.e. $Th(\mathbb{Z}^m, 0, +, -) \neq Th(\mathbb{Z}^n, 0, +, -)$. Indication : on pourra considérer les quotients $\mathbb{Z}^m/2\mathbb{Z}^m$ et $\mathbb{Z}^n/2\mathbb{Z}^n$.
- 2. Si K est un corps, on note $B_n(K) \leq GL_n(K)$ le sous-groupe constitué des matrices triangulaires supérieures inversibles. Montrer que $(B_2(\mathbb{R}), \cdot)$ et $(B_2(\mathbb{C}), \cdot)$ ne sont pas élémentairement équivalents.

Exercice 5 (Classes axiomatisables):

L'objectif de cet exercice est de démontrer qu'une classe de structures est axiomatisable si et seulement si elle est close par équivalence élémentaire et ultraproduits. On fixe un langage \mathcal{L} , et \mathcal{C} une classe de \mathcal{L} -structures.

Lemme Soit T une \mathcal{L} -théorie telle que toute partie finie de T a un modèle dans \mathcal{C} . Alors, T a un modèle qui est un ultraproduit de structures appartenant à \mathcal{C} .

- 1. Démontrer le lemme.
- 2. Soit T_0 la collection des énoncés vérifiés par toutes les structures dans \mathcal{C} . Soit S un modèle de T_0 . Montrer que S est élémentairement équivalente à un ultraproduit de structures de \mathcal{C} .
- 3. Conclure.