

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2020

Unidad 10: Nociones de diferenciabilidad en varias variables

En esta unidad extenderemos la noción de diferenciabilidad a funciones de varias variables, la cual es más compleja. Empezaremos por ver funciones que dependen sólo de una variable, y donde la diferenciabilidad se extiende por definición de una manera natural a lo conocido en los reales.

1. Curvas diferenciables

Definición 111: Una *curva* en \mathbb{R}^n es una función $\alpha: I \to \mathbb{R}^n$, donde I es un intervalo abierto en \mathbb{R} . Decimos que la curva es continua si α es una aplicación continua.

Y decimos que α es derivable en el punto $t_0 \in I$ si existe el límite

$$\alpha'(t_0) = \lim_{h \to 0} \frac{\alpha(t_0 + h) - \alpha(t_0)}{h},$$

llamado la derivada de α .

Observemos que $\alpha(t)$ es un elemento de \mathbb{R}^n para cada t, y por lo tanto tiene coordenadas

$$\alpha(t) = (\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t)).$$

La derivada $\alpha'(t_0)$ existe si y sólo si existen las derivadas $\alpha'_i(t_0)$ esto es,

$$\alpha'_{i}(t_{0}) = \lim_{h \to 0} \frac{\alpha_{i}(t_{0} + h) - \alpha_{i}(t_{0})}{h}, \quad i = 1, \dots, n$$

donde $\alpha_i = p_i \circ \alpha: I \to \mathbb{R}$ es una función de variable real y a valores reales, y su derivada se obtiene como ya conocemos. Esto resulta de un enunciado similar al del Teorema 107 pero para límites:

Lema: Sea $D \subseteq \mathbb{R}^m$ y sea $f: D \to \mathbb{R}^n$ una función con coordenadas $f_1, f_2, \dots, f_n: D \to \mathbb{R}$. Supongamos que a es un punto de acumulación de D. Entonces

$$\lim_{x\to a} f(x) = b = (b_1,b_2,\dots,b_n) \quad \text{ si y solamente si } \quad \lim_{x\to a} f_i(x) = b_i, \forall i=1,2,\dots,n.$$

Demostraci'on. Si $\lim_{x\to a} f(x) = b$, entonces para cada $i=1,2,\ldots,n$ se tiene $\lim_{x\to a} f_i(x) = b_i$ pues $|f_i(x)-b_i| \leq \|f(x)-b\|$ y esta observación permite completar la prueba con ε y δ .

Recíprocamente, si $\lim_{x\to a} f_i(x) = b_i$ para cada $i=1,2,\ldots,n$, entonces $\lim_{x\to a} f(x) = b$ pues $|f(x)-b| \le \sum_{i=1}^n |f_i(x)-b_i|$, lo cual permite elegir convenientemente δ dado un ε cualquiera.

Al aplicar este resultado al cociente incremental obtenemos lo que deseamos.

Cuando la curva $\alpha:I\to\mathbb{R}^n$ es derivable en cada punto de I, decimos directamente que α es una curva derivable en I. En tal caso $t\to\alpha'(t)$ define una aplicación $\alpha':I\to\mathbb{R}^n$. Si α' es continua decimos que la curva es de clase C^1 . Más generalmente para una curva $\alpha:I\to\mathbb{R}^n$ decimos que es de clase C^k si es derivable y α' es de clase C^{k-1} . Y para ser α de clase C^k es necesario y suficiente que cada coordenada α_i sea de clase C^k .

Para $\alpha: I \to \mathbb{R}^n$ derivable y tal que $\alpha'(t_0) \neq 0$, tenemos definida la *recta tangente a la curva en* $\alpha(t_0)$: que es el conjunto

$$r(s) = \alpha(t_0) + s\alpha'(t_0), \quad s \in \mathbb{R}.$$

Como podemos ver esa recta pasa por $\alpha(t_0)$ y tiene dirección el vector $\alpha'(t_0)$. El vector $\alpha'(t_0)$ se denomina vector tangente a α en t_0 .

Ejemplo 112: Dados $a \neq b$ en \mathbb{R}^n , sea $\alpha : \mathbb{R} \to \mathbb{R}^n$ el segmento de recta que pasa por a y b: f(t) = (1-t)a + tb. Claramente para todo $t \in \mathbb{R}$, la curva f resulta derivable y f'(t) = b - a.

Ejercicio: Compute la recta tangente a f en t = 0 y compare con f.

De la misma manera que existe para funciones a valores reales, podemos definir las derivadas a derecha o izquierda: si t_0 no es el extremo derecho del intervalo I entonces la derivada a derecha de una curva $\alpha:I\to\mathbb{R}^n$ en el punto t_0 está dada por

$$\alpha'_{+}(t_0) = \lim_{h \to 0^{+}} \frac{\alpha(t_0 + h) - \alpha(t_0)}{h},$$

y de modo análogo, tenemos la derivada a izquierda $\alpha'_{-}(t_0)$ siempre que en este caso t_0 no sea el extremo izquierdo del intervalo.

Ejercicio: Pruebe que cuando t_0 es un punto interior del intervalo I, entonces la curva $\alpha: I \to \mathbb{R}^n$ es derivable en I si y solamente si existen las derivadas a derecha y a izquierda de α en t_0 , y son iguales.

Ejemplo 113: Sea $f: \mathbb{R} \to \mathbb{R}^2$ dada por f(t) = (t, |t|). Entonces para t > 0 se tiene f(t) = (t, t) y para t < 0 tendremos f(t) = (t, -t). Luego para todo $t \neq 0$ existe la derivada f'(t) que resulta

$$f'(t) = (1,1)$$
 para $t > 0$ y $f'(t) = (1,-1)$ para $t < 0$.

En t=0 existen las derivadas laterales $f'_{+}(0)=(1,1)$ y $f'_{-}(0)=(1,-1)$, que son diferentes y por lo tanto f no es derivable en t=0.

Por otro lado $g(t)=(t|t|,t^2)$ tiene la misma imagen que f pero es derivable en todos los puntos. La prueba queda como ejercicio.

Ejemplo 114: Circunferencia y hélice. Sea $f: \mathbb{R} \to \mathbb{R}^2$ dada por

$$f(t) = (\cos(t), \sin(t))$$

y sea $g:\mathbb{R} o \mathbb{R}^3$ dada por

$$g(t) = (\cos(t), \sin(t), t).$$

La imagen de f es una circunferencia de radio 1 centrada en el origen, denotada S^1 , y la imagen de g es una hélice (ver la figura a la izquierda), cuya proyección sobre el plano z=0 es S^1 . Como ambas funciones f y g son de clase C^k para todo $k\in\mathbb{N}$, se dice que f y g son de clase C^∞ . Ejercicio: Calcule las funciones derivadas f'(t) y g'(t).

Sean $\alpha, \beta: I \to \mathbb{R}^n$ curvas y $c: I \to \mathbb{R}$ una función real. Si α y β son derivables en el punto $t_0 \in I$ entonces también son derivables en t_0 las curvas $\alpha + \beta$, $c\alpha$, y también $< \alpha, \beta >$, y $|\alpha| = \sqrt{<\alpha, \alpha>}$, donde en este último caso debe valer $\alpha(t_0) \neq 0$.

Se cumplen además las siguientes propiedades:

1.
$$(\alpha + \beta)'(t_0) = \alpha'(t_0) + \beta'(t_0)$$
,

2.
$$(c\alpha)'(t_0) = c'(t_0)\alpha(t_0) + c(t_0)\alpha'(t_0)$$
,

3.
$$<\alpha,\beta>'(t_0)=<\alpha'(t_0),\beta(t_0)>+<\alpha(t_0),\beta'(t_0)>,$$

4.
$$|\alpha|'(t_0) = \frac{\langle \alpha(t_0), \alpha'(t_0) \rangle}{|\alpha(t_0)|}$$
.

Ejercicio: Pruebe estas propiedades, las cuales salen usando las expresiones en coordenadas de α y β .

Observación. En el ejemplo 114, se verifica que $f'(t) = (-\sin(t), \cos(t))$, vector que para cada t es perpendicular a f(t). Más generalmente se puede probar que si $f: I \to \mathbb{R}^n$ es una curva tal que |f| es constante, entonces f'(t) es perpendicular a f(t) para cada t.

En efecto, si |f| = r es constante, (geométricamente esto significa que f(t) está en la esfera de radio r para cada t), se tiene $\langle f(t), f(t) \rangle = r^2$ de donde al derivar respecto de t se obtiene $\langle f(t), f'(t) \rangle = 0$ (por las propiedades de arriba). Y esto prueba lo aseverado arriba.

Ejercicio Si $f: I \to \mathbb{R}^n$ es derivable y f'(t) = 0 (el vector 0) entonces f es constante.

Teorema 115: Regla de la cadena. Supongamos que $\varphi: I \to J$ es derivable en el punto $a \in I$ y $\alpha: J \to \mathbb{R}^n$ es una curva derivable en $b = \varphi(a)$. Entonces la curva $\alpha \circ \varphi: I \to \mathbb{R}^n$ es derivable en a y $(\alpha \circ \varphi)'(a) = \varphi'(a)\alpha'(b)$. Demostración: Ejercicio. (Aplicamos la regla de la cadena a las funciones coordenadas $\alpha_i \circ \varphi: I \to \mathbb{R}$). \square

De un modo general la regla de la cadena dice que la curva $\alpha \circ \varphi$ cuya imagen está contenida en la imagen de α tiene vector velocidad un múltiplo del vector velocidad de α en $\varphi(t)$.

2. Funciones reales de n variables

En esta sección vamos a aplicar las ideas de la derivada de curvas para calcular otras derivadas y veremos algunos usos de estas nociones.

2.1. Derivadas parciales

En lo que sigue vamos a introducir las derivadas parciales. Para ello, empecemos considerando un abierto $U\subseteq\mathbb{R}^n$. Observemos que como U es abierto, dado un $a\in U$, existe una bola abierta centrada en a y completamente contenida en U. Luego existe un $\delta>0$ tal que $a+te_i\in U$ para $t\in (-\delta,\delta)$ y donde e_i denota el vector i-ésimo de la base canónica, es decir, e_i es el vector donde todas las componentes son 0, salvo la i-ésima que es 1 (observemos que en el caso de \mathbb{R}^3 , muchas veces suele usarse la notación $e_1=\mathbf{i},\ e_2=\mathbf{j},\ e_3=\mathbf{k}$). Por lo tanto el segmento de curva $\lambda_i(t)=a+te_i$ está bien definido para $t\in (-\delta,\delta)$.

Si ahora $f:U\subset\mathbb{R}^n\to\mathbb{R}$ es una función cualquiera, están bien definidas la funciones $f\circ\lambda_i:\mathbb{R}\to\mathbb{R}$ en un entorno de 0, para $i=1,\ldots,n$, y por lo tanto tiene sentido analizar su derivabilidad en el sentido usual:

Definición 116: La *i*-ésima derivada parcial de $f:U\to\mathbb{R}$ en el punto $a\in U$ es la derivada en t=0 de $f\circ\lambda_i$ y se denota por $\frac{\partial f}{\partial x_i}(a)$:

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a+te_i) - f(a)}{t} = \lim_{t \to 0} \frac{f(a_1, a_2, \dots, a_i + te_i, \dots, a_n) - f(a)}{t},$$

si esta derivada existe.

Ejemplo 117: Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = xy/(x^2+y^2)$, si $(x,y) \neq (0,0)$, y f(0,0) = 0. Como f(0,y) = 0 para todo y y f(x,0) = 0 para todo x resulta que las derivadas parciales existen en (0,0) y valent $\frac{\partial f}{\partial x}(0,0) = 0 = \frac{\partial f}{\partial y}(0,0)$

 $PERO\ f$ No es CONTINUA en (0,0). En efecto, fijemos un ángulo θ cualquiera y tomemos $x=t\cos(\theta)$, $y=t\sin(\theta)$. Si calculamos f(x,y) a lo largo de la curva $(t\cos(\theta),t\sin(\theta))$, obtenemos $f(x,y)=\cos(\theta)\sin(\theta)$. Por lo tanto si nos acercamos a (0,0) por estas diferentes curvas, haciendo tender t a 0, vemos que el límite depende del valor que hayamos fijado para θ . Es decir, que por distintas direcciones nos acercamos a límites diferentes.

El ejemplo arriba muestra que la existencias de las n derivadas parciales en un punto, no asegura la continuidad de la función en ese punto. Claramente la derivada parcial $\frac{\partial f}{\partial x_i}(a)=(f\circ\lambda_i)(0)$ da información sobre la f a lo largo del segmento que une $a-\delta e_i$ con $a+\delta e_i$.

Claramente la noción de derivada parcial tiene sentido para funciones $f:U\to\mathbb{R}^n$ donde $U\subseteq\mathbb{R}^m$ es un abierto. Si $a\in U$, entonces para cada $i=1,\ldots,m$ tenemos la i-ésima derivada parcial:

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t}.$$

Evidentemente $\frac{\partial f}{\partial x_i}(a)$ es un vector en \mathbb{R}^n . Si $f=(f_1,f_2,\ldots,f_n)$ entonces

$$\frac{\partial f}{\partial x_i}(a) = (\frac{\partial f_1}{\partial x_i}(a), \dots, \frac{\partial f_n}{\partial x_i}(a)).$$

Sea $f:U\to\mathbb{R}$ una función que posee las n derivadas parciales en todos los puntos del abierto $U\subseteq\mathbb{R}^n$. Quedan definidas entonces las funciones

$$\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} : U \to \mathbb{R}, \qquad \text{donde } \frac{\partial f}{\partial x_i} : x \to \frac{\partial f}{\partial x_i}(x).$$

Si estas funciones fueran continuas en U, diremos que f es una función de clase C^1 y escribiremos $f \in C^1$.

Una aplicación $f:U\to\mathbb{R}^n$ definida en el abierto $U\subseteq\mathbb{R}^m$ se dice de clase C^1 cuando cada una de las funciones coordenadas $f_1,\ldots,f_n:U\to\mathbb{R}$ es de clase C^1 .

Muchas propiedades importantes de las funciones de clase \mathbb{C}^1 resultan de ser diferenciables en el siguiente sentido.

Una función $f:U\to\mathbb{R}$ definida en el abierto $U\subseteq\mathbb{R}^n$ se dice diferenciable en el punto $a\in U$ cuando cumple las siguientes condiciones

- 1. Existen las derivadas parciales $\frac{\partial f}{\partial x_1}(a), \ldots, \frac{\partial f}{\partial x_n}(a)$.
- 2. Para todo $v=(v_1,\ldots,v_n)$ tal que $a+v\in U$, se tiene

$$f(a+v)-f(a)=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a).v_i+r(v), \qquad \text{donde} \quad \lim_{|v|\to 0}\frac{r(v)}{|v|}=0.$$

Observación.

- (I) Arriba, siempre que fijemos consideraciones en torno al punto a, por simplicidad escribiremos $\frac{\partial f}{\partial x_i}$ en vez de $\frac{\partial f}{\partial x_i}(a)$.
- (II) La esencia de la definición de diferenciabilidad está en la condición $\lim_{|v|\to 0} \frac{r(v)}{|v|} = 0$, pues la igualdad que define el "resto" r(v) puede ser escrita para cualquier función que posea n derivadas parciales.

De $\lim_{|v|\to 0} \frac{r(v)}{|v|} = 0$ resulta que

$$\lim_{|v| \to 0} r(v) = 0$$

pues $r(v) = \frac{r(v)}{|v|} |v|$. Se sigue entonces que

$$\lim_{v \to 0} f(a+v) = f(a)$$

y por lo tanto toda función diferenciable en el punto a es continua en ese punto.

Diremos que $f:U\to\mathbb{R}$ es diferenciable cuando f es diferenciable en todos los puntos de U.

Cuando n=1, la función $f:U\to\mathbb{R}$ es diferenciable en el punto a si y solamente si posee derivada en este punto. Y se tiene

$$f(a+v) - f(a) = f'(a)v + r(v)$$

y por lo tanto

$$\lim_{v\to 0}\frac{r(v)}{|v|}=0$$
 si y solamente si $\lim_{v\to 0}\frac{f(a+v)-f(a)}{v}=f'(a).$

De forma análoga puede verse que $f:I\to\mathbb{R}^n$ es derivable en t_0 si y sólo si es diferenciable en t_0 según la definición anterior.

Teorema 118. Toda función $f:U\to\mathbb{R}$ de clase C^1 es diferenciable.

<u>Demostración:</u> Por simplicidad vamos a suponer $U \subseteq \mathbb{R}^2$. El caso general se trata análogamente, apenas una notación más elaborada.

Fijemos $c=(a,b)\in U$ y tomemos v=(h,k) tal que $c+v\in B\subseteq U$, donde B es una bola de centro c. Sea

$$r(v) = r(h,k) = f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x} \cdot h - \frac{\partial f}{\partial y} \cdot k,$$

donde las derivadas son calculadas en el punto c = (a, b). Podemos escribir

$$r(v) = r(h,k) = f(a+h,b+k) - f(a,b) + f(a,b+k) - f(a,b+k) - \frac{\partial f}{\partial x} \cdot h - \frac{\partial f}{\partial y} \cdot k.$$

Por el teorema del Valor Medio para funciones de una variable real, existen $\theta_1, \theta_2 \in (0,1)$ tales que

$$r(v) = \frac{\partial f}{\partial x}(a + \theta_1 h, b + k).h + \frac{\partial f}{\partial y}(a, b + \theta_2 k).k - \frac{\partial f}{\partial x}.h - \frac{\partial f}{\partial y}.k,$$

y luego

$$\frac{r(v)}{|v|} = \left[\frac{\partial f}{\partial x}(a + \theta_1 h, b + k) - \frac{\partial f}{\partial x}(a, b)\right] \frac{h}{\sqrt{h^2 + k^2}} + \left[\frac{\partial f}{\partial y}(a, b + \theta_2 k).k - \frac{\partial f}{\partial y}(a, b)\right] \frac{k}{\sqrt{h^2 + k^2}}.$$

Cuando hacemos $v \to 0$, los términos dentro de los corchetes tienden a 0, por la continuidad de las derivadas $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$. Además de eso, los términos fuera de los corchetes tienen valor absoluto menor o igual que 1 y por lo tanto $\lim_{v \to 0} \frac{r(v)}{|v|} = 0$ y entonces f es diferenciable. \square

Corolario 119. Toda función $f:U\to\mathbb{R}$ de clase C^1 es continua.

Teorema 120. Sean $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$ abiertos y sea $f: U \to V$ una aplicación cuyas funciones coordenadas f_1, \ldots, f_n poseen derivadas parciales en el punto $a \in U$ y sea $g: V \to \mathbb{R}$ una función diferenciable en el punto b = f(a). Entonces $g \circ f: U \to \mathbb{R}$ posee derivadas parciales en el punto a y vale

$$\frac{\partial(g \circ f)}{\partial x_i} = \sum_{k=1}^n \frac{\partial g}{\partial y_k} \frac{\partial f_k}{\partial x_i}, \qquad i = 1, \dots, m,$$

donde las derivadas parciales relativas a los $x_i's$ son calculadas en el punto a y las relativas a $y_k's$ son calculadas en el punto b = f(a).

Además de eso, si f y g son de clase C^1 entonces $g\circ f\in C^1$

Demostración: Podemos escribir

$$g(f(a+te_i)) - g(f(a)) = \sum_{k=1}^{n} \frac{\partial g}{\partial y_k} [f_k(a+te_i - f_k(a)) + \rho(t)|f(a+te_i) - f(a)|$$

donde escribimos $\rho(t) = r(v)/|v|$ con $v = f(a+te_i) - f(a)$. La diferenciabilidad de g nos da $\lim_{t\to 0} \rho(t) = 0$. Entonces

$$\frac{g(f(a+te_i)) - g(f(a))}{t} = \sum_{k=1}^{n} \frac{\partial g}{\partial y_k} \frac{f_k(a+te_i) - f_k(a)}{t} \pm \rho(t) \left| \frac{f(a+te_i) - f(a)}{t} \right|.$$

Luego

$$\frac{\partial)g \circ f}{\partial x_i} = \lim_{t \to 0} \frac{g(f(a + te_i)) - g(f(a))}{t} = \sum_{k=1}^n \frac{\partial g}{\partial y_k} \frac{\partial f_k}{\partial x_i}$$

pues

$$\lim_{t \to 0} \rho(t) \quad \text{ y } \quad \lim_{t \to 0} \left| \frac{f(a + te_i) - f(a)}{t} \right| = \left| \frac{\partial f}{\partial x_i}(a) \right|.$$

Definición 121. El gradiente de una función diferenciable $f:U\to\mathbb{R}$ en el punto a y donde $U\subseteq\mathbb{R}_n$ es un abierto, es el vector

$$\operatorname{grad} f(a) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

Si v es cualquier vector en \mathbb{R}^n , la derivada direccional de f en el punto a en la dirección de v es por definición

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}.$$
 (1)

Estas definiciones permiten enunciar los siguientes corolarios de la regla de la cadena. Si f es diferenciable en el punto a, la derivada direccional $\frac{\partial f}{\partial v}(a)$ existe para cualquier dirección v. Más aún $\frac{\partial f}{\partial v}(a)$ da una expresión en términos de las derivadas parciales de f y las coordenadas del vector v.

Corolario 122. Sea $f:U\to\mathbb{R}$ diferenciable en el abierto $U\subseteq\mathbb{R}^n$ con $a\in U$. Dado el vector $v=(v_1,\ldots,v_n)$, si $\lambda:(-\delta,\delta)\to U$ es cualquier curva diferenciable tal que $\lambda(0)=a$ y $\lambda'(0)=v$, se tiene

$$(f \circ \lambda)'(0) = \langle \operatorname{grad} f(a), v \rangle = \frac{\partial f}{\partial v}(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) v_i.$$
 (2)

Demostración: Basta aplicar directamente la fórmula

$$(f \circ \lambda)' = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{d\lambda_i}{dt},$$

observando que $\lambda(t)=(\lambda_1(t),\ldots,\lambda_n(t))$ y se tiene $v_i=\frac{d\lambda_i}{dt}(0)$.

Observación: Notemos que $\frac{\partial f}{\partial v}(a)=(f\circ\lambda)'(0)$ con $\lambda(t)=a+tv$, pues $\lambda'(0)=v$.

Corolario 123. Teorema del Valor Medio. Dada $f:U\to\mathbb{R}$ diferenciable en el abierto $U\subseteq\mathbb{R}^n$, si el segmento de recta que une a y a+v está contenido en U, entonces existe $\theta\in(0,1)$ tal que

$$f(a+v) - f(a) = \frac{\partial f}{\partial v}(a+\theta v) = \langle \operatorname{grad} f(a+\theta v), v \rangle = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a+\theta v)v_i,$$

donde $v = (v_1, \ldots, v_n)$.

Demostración:

En efecto considerando el segmento de curva $\lambda:[0,1]\to U$, dado por $\lambda(t)=a+tv$, vemos que $f(a+v)-f(a)=(f\circ\lambda)(1)-(f\circ\lambda)(0)$. Por el Teorema del Valor Medio para funciones de una variable real, existe $\theta\in(0,1)$ tal que $(f\circ\lambda)(1)-(f\circ\lambda)(0)=(f\circ\lambda)'(\theta)$. Por la regla de la cadena

$$(f \circ \lambda)'(\theta) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a + \theta v)v_i = \frac{\partial f}{\partial v}(a + \theta v) = \langle \operatorname{grad} f(a + \theta v), v \rangle. \quad \Box$$

Recordemos que dada $f:U\to\mathbb{R}$, para cada $c\in\mathbb{R}$ el conjunto $f^{-1}(c)=\{x\in U\ f(x)=c\}$ es llamado el conjunto de nivel de c de la función f. Cuando n=2 ese conjunto puede ser llamado línea de nivel y cuando n=3, se denomina superficie de nivel.

Volvamos al gradiente de una función f.

Proposición 124. Sea $f:U\to\mathbb{R}$ una función diferenciable de clase C^1 . Fijemos $a\in U$ y supongamos $\operatorname{grad} f(a)\neq 0$. Entonces

- (I) El gradiente apunta en la dirección en la cual la función es creciente.
- (II) De entre todas las direcciones a lo largo de las cuales f crece, la dirección del gradiente es la de crecimiento más rápido.
- (III) El gradiente de f en el punto a es ortogonal al conjunto de nivel que pasa por a.

Demostración:

(I) Recordemos que la derivada direccional en la dirección de cualquier vector v satisface

$$\frac{\partial f}{\partial v}(a) = \langle \operatorname{grad} f(a), v \rangle, \tag{3}$$

y por lo tanto tomando $v=\mathrm{grad} f(a)$ tendremos $\langle \mathrm{grad} f(a), \mathrm{grad} f(a) \rangle > 0$. Esto quiere decir que la derivada direccional en la dirección de $v=\mathrm{grad} f(a)$ es positiva, y por lo tanto si $\lambda: (-\varepsilon,\varepsilon) \to U$ es una curva C^1 tal que $\lambda(0)=a$ y $\lambda'(0)=\mathrm{grad} f(a)$, entonces la función $t\to f\circ\lambda(t)$ tiene derivada positiva en el punto t=0. Luego $(f\circ\lambda)'$ es continua, y por lo tanto $(f\circ\lambda)'(t)$ será positiva en un entorno de 0. Achicando ε si fuese necesario, vemos que $f\circ\lambda: (-\varepsilon,\varepsilon)\to\mathbb{R}$ será una función creciente.

(II) Volvamos a (3). Observemos que los vectores v para los cuales $\frac{\partial f}{\partial v}(a)>0$ son direcciones a lo largo de las cuales f crece (con el mismo razonamiento que hicimos para el gradiente). Claramente se tiene $\langle \operatorname{grad} f(a), v \rangle > 0$ con lo cual, v forma un ángulo agudo con $\operatorname{grad} f(a)$. Recordemos para esto que el ángulo entre dos vectores no nulos, v y w viene dado por la fórmula

$$\cos(\theta) = \frac{\langle v, w \rangle}{\|v\| \|w\|}.$$

Y además sabemos que la igualdad se da si y sólo si w está en la misma dirección que v, w=cv con $c\in\mathbb{R}$.

Aplicado la desigualdad de Cauchy-Schwartz a (3) al gradiente y a cualquier otra dirección v en la cual f crece, tenemos

$$\frac{\partial f}{\partial v}(a) = \langle \operatorname{grad} f(a), v \rangle \leq \|\operatorname{grad} f(a)\| \|v\| \leq \|\operatorname{grad} f(a)\|^2 = \frac{\partial f}{\partial (\operatorname{grad} f(a))}(a).$$

(III) Supongamos que f(a)=c. La ortogonalidad de $w\in\mathbb{R}^n$ con el conjunto de nivel $f^{-1}(c)$ quiere decir que dada cualquier curva diferenciable $\lambda:(-\varepsilon,\varepsilon)\to f^{-1}(c)$ en t=0 con $\lambda(0)=a$, se tiene $\langle w,\lambda'(0)\rangle=0$.

Ahora si $\lambda(t) \subset f^{-1}(c)$ para todo $t \in (-\varepsilon, \varepsilon)$, entonces $f(\lambda(t)) = c$. Derivando esta expresión en t = 0 obtenemos

$$0 = (f \circ \lambda)'(0) = \langle \operatorname{grad} f(a), \lambda'(0) \rangle.$$

Así el vector $\operatorname{grad} f(a)$ es ortogonal al vector velocidad en el punto $a = \lambda(0)$ de cualquier curva diferenciable λ contenida en el conjunto de nivel $f^{-1}(c)$. \square

Generalizando lo hecho en funciones reales, definimos un punto crítico de $f:U\to\mathbb{R}$ a un $a\in u$ tal que $\operatorname{grad} f(a)=0$. La aplicación de este concepto se verá más adelante.

Una aplicación $f:U\to\mathbb{R}^n$ definida en un abierto $U\subseteq\mathbb{R}^m$ se dice diferenciable en el punto $a\in U$ cuando cada una de sus funciones coordenadas $f_1,\ldots,f_n:U\to\mathbb{R}$ son diferenciables en ese punto a.

Si este es el caso entonces para todo $v=(v_1,v_2,\ldots,v_n)$ tal que $a+v\in U$ y para cada $i=1,\ldots,n$ se tiene

$$f_i(a+v) - f_i(a) = \sum_{j=1}^m \frac{\partial f_i}{\partial x_j}(a)v_j + r_i(v) \quad \text{con } \lim_{v \to 0} \frac{r_i(v)}{||v||} = 0.$$

La matrix $n \times m$ cuya fila i es el vector gradiente de f_i y que se denota $Jf(a) = \left[\frac{\partial f_i}{\partial x_j}(a)\right]$ se denomina matriz jacobiana de f en el punto a.

La transformación lineal $f'(a): \mathbb{R}^m \to \mathbb{R}^n$ cuya matriz en las bases canónicas de \mathbb{R}^m y \mathbb{R}^n es Jf(a), se llama la diferencial de f en el punto a. A veces f'(a) también se escribe df_a

De acuerdo con la definición de matriz de una transformación real, para todo $v=(v_1,\ldots,v_m)\in\mathbb{R}^m$, tenemos

$$f'(a)v = (w_1, \dots, w_n)$$
 donde $w_i = \sum_{j=1}^m \frac{\partial f_i}{\partial x_j}(a)v_j = \frac{\partial f_i}{\partial v}(a).$

Esto significa que el resultado f'(a)v es un vector en \mathbb{R}^m , cuya componente i resulta de hacer el producto interno entre la fila i de la matriz y el vector columna v. Con la otra notación $f'(a)v=df_a(v)$

Como es natural, definimos la derivada direccional de f en el punto a y en la dirección del vector v como

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t},$$

de donde obtenemos inmediatamente que

$$\frac{\partial f_i}{\partial v}(a) = \left(\frac{\partial f_1}{\partial v}(a), \dots, \frac{\partial f_n}{\partial v}(a)\right) = f'(a)v.$$

De la regla de la cadena y de la definición de arriba, surge que

$$\frac{\partial f}{\partial v}(a) = (f \circ \lambda)'(0)$$

donde $\lambda(t)=a+tv$ o donde λ puede ser cualquier curva diferenciable que pasa por a y tiene vector velocidad v en t=0: $\lambda(0)=a, \lambda'(0)=v$.

Puesto que cada función coordenada $f_i:U\to\mathbb{R}$ es diferenciable, cada vez que $a+v\in U$ tendremos

$$f_i(a+v) - f(a) = \langle \operatorname{grad} f_i(a), v \rangle + r_i(v), \quad \text{donde } \lim_{v \to 0} \frac{r_i(v)}{\|v\|} = 0.$$

Si reunimos estas expresiones para $i=1,\ldots,n$, obtenemos en coordenadas la expresión siguiente

$$f(a+v) - f(a) = f'(a)v + r(v),$$
 donde $\lim_{v \to 0} \frac{r(v)}{\|v\|} = 0.$

Claramente $r(v) = (r_1(v), \dots, r_n(v)).$

El siguiente teorema muestra una caracterización equivalente de diferenciabilidad que algunos textos toman como definición. Esta noción aunque más abstracta ahora, sirve para comprender el papel de la diferencial o derivada de f en a.

Teorema 125. Sea $U \subseteq \mathbb{R}^m$ un abierto y sea $f: U \to \mathbb{R}^n$ una función. Son equivalentes:

- (I) f es diferenciable.
- (II) Existe una transformación lineal $T_a:\mathbb{R}^m\to\mathbb{R}^n$ tal que cada vez que $a+v\in U$, el siguiente límite existe y vale

$$\lim_{v \to 0} \frac{||f(a+v) - f(a) - T_a(v)||}{||v||} = 0.$$
(4)

 $\underline{\textbf{Demostración:}} \; (\Rightarrow) \; \text{Tomamos} \; T_a = f'(a) \; \text{y el resultado resulta pues} \; \frac{||f(a+v)-f(a)-T_a(v)||}{||v||} = \frac{||r(v)||}{||v||}.$

Veamos la vuelta. Supongamos que tenemos T_a lineal como en (ii) y sea $r(v) = f(a+v) - f(a) - T_a(v)$.

Reemplacemos v arriba por tv, donde ahora suponemos que ||v|| = 1. Entonces tendremos

$$\frac{f(a+tv)-f(a)}{t} = T_a(v) \pm \frac{r(tv)}{||tv||}.$$

Tomemos límite cuando $t \to 0$ y apliquemos lo que ya sabemos:

$$\lim_{t \to 0} \frac{f(a+tv)-f(a)}{t} = T_a(v)$$
$$= \frac{\partial f}{\partial v}(a) = f'(a)v$$

Observemos que probamos que si se satisface (4) entonces la transformación lineal que da el límite debe satisfacer $T_a = f'(a)$. \square

Definición 126. Una función $f:U\to\mathbb{R}^n$ con $U\subseteq\mathbb{R}^m$ es diferenciable en $a\in U$ si satisface cualquiera de las condiciones equivalentes del Teorema 125.

Diremos que f es diferenciable en U cuando es diferenciable en cualquiera de los puntos de U.

Corolario 127. Toda función $f:U\to\mathbb{R}^n$ con $U\subseteq\mathbb{R}^m$ diferenciable es continua.

En efecto, tomemos $v \in \mathbb{R}^m$ con ||v|| = 1 y escribamos

$$||f(a+tv)-f(a)|| = \frac{||f(a+tv)-f(a)-f'(a)(tv)+f'(a)(tv)|}{||tv||}||tv|| \le \frac{||f(a+tv)-f(a)-f'(a)(tv)||}{||tv||} + ||tf'(a)(v)||$$

de donde tomando límite cuando $t \to 0$ a la derecha, vemos que

$$\lim_{t \to 0} ||f(a + tv) - f(a)|| = 0,$$

para cualquier $v \in \mathbb{R}^m$.

Ejemplos.

1. Sea $f:I\to\mathbb{R}^n$ una curva diferenciable. Entonces f es una aplicación diferenciable. En efecto, su derivada en el punto $a\in I$ es el vector velocidad

$$f'(a) = (\frac{df_1}{dt}(a), \dots, \frac{df_n}{dt}(a)).$$

2. Si $f:U\to\mathbb{R}$ es una función definida en el abierto $U\subseteq\mathbb{R}^m$, diferenciable en el punto $a\in U$, su derivada en a es el vector gradiente en a

$$f'(a) = \operatorname{grad} f(a),$$

de modo que $f'(a)v = < \operatorname{grad} f(a), v >$.

- 3. Sea $f:U\to\mathbb{R}^m$ una función constante, entonces f'(x)=0 para todo $x\in U$. Recíprocamente si f'(x)=0 en una bola $B_r(a)$ entonces f es constante en esa bola.
- 4. Si consideramos una transformación lineal $T: \mathbb{R}^m \to \mathbb{R}^n$, entonces la derivada de T es T'(a) = T, para todo $a \in \mathbb{R}^m$.

La verificación de estas afirmaciones queda como ejercicio.

Sea $f:U\to\mathbb{R}$, con $U\subset\mathbb{R}^3$ una función diferenciable. Supongamos que $S=f^{-1}(c)$ es el conjunto de nivel de $c\in\mathbb{R}$ de modo que para todo $x\in S$ el gradiente $\operatorname{grad} f(x)\neq 0$. Entonces el subespacio de \mathbb{R}^3 que es ortogonal a $\operatorname{grad} f(x)$ se llama el *espacio tangente* a S en x y se denota T_xS :

$$T_x S = \{ u \in \mathbb{R}^3 : \langle u, \text{grad} f(a) \rangle = 0 \},$$

el cual es un subespacio de dimensión dos.

Ejemplo. Tomemos la función $f: \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x, y, z) = x^2 + y^2 + z^2$. Entonces la esfera unitaria en \mathbb{R}^3 es el conjunto de nivel $f^{-1}(1)$;

$$S^2 = \{ x \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1 \}.$$

El gradiente de f en un punto p de coordenadas $p=(x_0,y_0,z_0)$ está dado por el vector

$$\operatorname{grad} f(x_0, y_0, z_0) = (2x_0, 2y_0, 2z_0),$$

el cual es no nulo si $p \neq (0,0,0)$ y esto ocurre siempre en S^2 . Luego el plano tangente a S^2 en p es el conjunto ortogonal a $\operatorname{grad} f(p)$:

$$T_p S^2 = \{(x, y, z) \in \mathbb{R}^3 : xx_0 + yy_0 + zz_0 = 0\},\$$

esto es, el espacio tangente en p consiste de todos los vectores de \mathbb{R}^3 que son ortogonales a p. Esto tiene una interpretación geométrica, que se puede ver con ayuda de un programa para graficar.