

INTELIGENCIA ARTIFICIAL (1INF24)

Unidad 2: Fundamentos de *Machine Learning* y redes neuronales artificiales

Tema 5: Introducción a las Redes Neuronales Artificiales

Dr. Edwin Villanueva Talavera

Contenido

- La neurona biológica
- La neurona artificial
- Redes Multilayer Perceptron (MLP)
- Entrenamiento de MLP
- Aplicación en MLP en clasificación de imagenes

Neurona artificial

 Perceptron: McCullouch y Pitts (1943) propusieron un modelo computacional inspirado en las redes neuronales biológicas.

Unidad Perceptron

Puede separar clases linealmente separables

No es capaz de separar clases linealmente **No** separables

Funciones de activación populares

Función RELU

Función signo

Función sigmoidea

Función tangente hiperbólica

Función gausiana

Cada neurona: $w_{j0}^{(l)}$ Capa de Capa de entrada Capas Salida intermedias (ocultas)

XOR con MLPs:

XOR		
x_1	x_2	y
1	1	0
0	1	1
1	0	1
0	0	0

2 Capas

Entrenamiento

El proceso de entrenamiento de MLP se realiza mediante el algoritmo BackPropagation, también conocido como regla delta generalizada.

o El proceso se lleva a cabo mediante sucesivas aplicaciones de dos fases muy específicas.

I. Fase Forward

Destinado a ajustar la matriz de pesos sinápticos hacia la capa neural de salida.

II. Fase Backrward

Destinado a ajustar las matrices de pesos asociados a las capas intermedias.

Algoritmo de entrenamiento BackPropagation

I. Fase Forward

II. Fase Backrward

Entrenamiento backpropagation: caso de un solo parámetro

1. Iniciar con valores aleatorios el vector de θ^T

2. En cada iteración actualiza los valores de θ usando la siguiente ecuación:

Tasa de aprendizaje: define la cantidad de iteraciones requerida para que el algoritmo encuentre el mínimo de la función. La tasa siempre es un valor menor a 1.

Entrenamiento backpropagation: caso de dos parámetros

1. Iniciar con valores aleatorios el vector de $\theta^T = [\theta_0, \theta_1]^T$

2. En cada iteración actualiza los valores de θ^T usando la siguiente ecuación:

Notación de variables y parámetros

Cada neurona tiene la siguiente configuración

Peso de conexión de la neurona *i* de capa L-1 hacia neurona *j* de capa L $\mathbf{I}_{j}^{(L)}$: entrada ponderada de neurona j en capa L

$$I_j^{(1)} = \sum_{i=1}^n W_{ji}^{(1)}.x_i^{(1)}$$

$$I_j^{(2)} = \sum_{i=1}^n W_{ji}^{(2)}.Y_j^{(2)}$$

$$I_j^{(3)} = \sum_{i=1}^n W_{ji}^{(3)}.Y_j^{(3)}$$

 $\mathbf{Y}_{i}^{(L)}$: salida de neurona j de capa L

$$Y_j^{(1)} = g(I_j^{(1)})$$

$$Y_i^{(2)} = g(I_i^{(2)})$$

$$Y_i^{(3)} = g(I_i^{(3)})$$

g(.): Función de activación

Ejemplo:

Matrices de pesos:

$$W_{ji}^{(1)} = \begin{bmatrix} 0.2 & 0.4 & 0.5 \\ 0.3 & 0.6 & 0.7 \\ 0.4 & 0.8 & 0.3 \end{bmatrix}$$

$$W_{ji}^{(2)} = \begin{bmatrix} -0.7 & 0.6 & 0.2 & 0.7 \\ 0.3 & 0.7 & 0.2 & 0.8 \end{bmatrix}$$

$$W_{ii}^{(3)} = [0.1 \quad 0.8 \quad 0.5]$$

$I^{(L)} \rightarrow \underline{\text{entradas ponderadas}}$

$$I_j^{(L)} = \sum_{i=1}^{N} W_{ji}^{(L)}. x_i$$

$$Y^{(L)} \rightarrow \underline{\text{salidas de cada capa}}$$

$$Y_i^{(L)} = g(I_i^{(L)})$$

g(): tangente hiperbólica

Cálculo de $I_i^{(L)}$ para $x_1 = 0.3$ y $x_2 = 0.7$

$$I_{j}^{(1)} = \begin{bmatrix} w_{1,0}^{(1)} \cdot x_{0} + w_{1,1}^{(1)} \cdot x_{1} + w_{1,2}^{(1)} \cdot x_{2} \\ w_{2,0}^{(1)} \cdot x_{0} + w_{2,1}^{(1)} \cdot x_{1} + w_{2,2}^{(1)} \cdot x_{2} \\ w_{3,0}^{(1)} \cdot x_{0} + w_{3,1}^{(1)} \cdot x_{1} + w_{3,2}^{(1)} \cdot x_{2} \end{bmatrix} = \begin{bmatrix} 0,2 \cdot (-1) + 0,4 \cdot 0,3 + 0,5 \cdot 0,7 \\ 0,3 \cdot (-1) + 0,6 \cdot 0,3 + 0,7 \cdot 0,7 \\ 0,4 \cdot (-1) + 0,8 \cdot 0,3 + 0,3 \cdot 0,7 \end{bmatrix} = \begin{bmatrix} 0,27 \\ 0,37 \\ 0,05 \end{bmatrix}$$

Cálculo de Y^(L)

$$Y_{j}^{(1)} = \begin{bmatrix} Y_{1}^{(1)} \\ Y_{2}^{(1)} \\ Y_{3}^{(1)} \end{bmatrix} = \begin{bmatrix} g(I_{1}^{(1)}) \\ g(I_{2}^{(1)}) \\ g(I_{3}^{(1)}) \end{bmatrix} = \begin{bmatrix} \tanh(0,27) \\ \tanh(0,37) \\ \tanh(0,05) \end{bmatrix} = \begin{bmatrix} 0,26 \\ 0,35 \\ 0,05 \end{bmatrix} \xrightarrow{Y_{0}^{(1)} = -1} Y_{j}^{(1)} = \begin{bmatrix} Y_{0}^{(1)} \\ Y_{1}^{(1)} \\ Y_{2}^{(1)} \\ Y_{3}^{(1)} \end{bmatrix} = \begin{bmatrix} -1 \\ 0,26 \\ 0,35 \\ 0,05 \end{bmatrix} \longrightarrow I_{j}^{(2)} = \begin{bmatrix} 0,96 \\ 0,59 \\ 0,59 \end{bmatrix}$$

$$Y_{j}^{(2)} = \begin{bmatrix} Y_{1}^{(2)} \\ Y_{2}^{(2)} \end{bmatrix} = \begin{bmatrix} g(I_{1}^{(2)}) \\ g(I_{2}^{(2)}) \end{bmatrix} = \begin{bmatrix} \tanh(0,96) \\ \tanh(0,59) \end{bmatrix} = \begin{bmatrix} 0,74 \\ 0,53 \end{bmatrix} \xrightarrow{Y_{0}^{(2)} = -1} Y_{j}^{(2)} = \begin{bmatrix} Y_{0}^{(2)} \\ Y_{1}^{(2)} \\ Y_{2}^{(2)} \end{bmatrix} = \begin{bmatrix} -1 \\ 0,74 \\ 0,53 \end{bmatrix} \xrightarrow{Y_{j}^{(3)}} = \begin{bmatrix} 0,76 \end{bmatrix}$$

salida de la red

$$Y_j^{(3)} = [Y_1^{(3)}] = [g(I_1^{(3)})] = [\tanh(0.76)] = [0.64]$$

Paso Forward

Inicializar los pesos $W_{ji}^{(l)}$ de la red con valores aleatorios Definir parámetros de aprendizaje (ej. $\eta=0.01$) y taza de error (ej. $\varepsilon=10^{-6}$) Definir función de activación (ej. función logística) Repetir una cantidad de veces (épocas) Para cada par entrada-salida $\{\mathbf{x}^{(k)}, y^{(k)}\}$ Calcular la salida $\hat{y}^{(k)}$ para la entrada $\mathbf{x}^{(k)} \to \mathsf{Paso}$ Forward

Datos de entrada

$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ -1 & -0.6 & 0.1 & 4.0 \\ -1 & -1.4 & 0.8 & 4.4 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & 0.6 & 0.2 & 5.8 \end{bmatrix} \mathbf{x}^{(k)}$$

targets
$$y$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad y^{(k)}$$

$$I^{(1)}=W_{ji}^{(1)}.x^{(k)} \rightarrow$$
 Salida del combinador lineal de capa 1 $Y^{(1)}=g(I^{(1)}) \rightarrow$ Salida de la Capa 1 $Y^{(1)}=[-1,Y^{(1)}] \rightarrow$ concatena -1 (para el bias de la capa 2)

$$I^{(2)} = W_{ji}^{(2)}.Y^{(1)} \rightarrow$$
 Salida del combinador lineal de capa 2

$$\hat{y}^{(k)} = gig(\mathbf{I}^{(2)}ig) o$$
 Salida hacia la Capa 2 con beta=1

x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_8 x_9 x_9

Paso backward

Esto es porque se asume que la función de costo J es el error cuadrático medio MSE = $(y^{(k)} - \hat{y}^{(k)})^2$

En general este termino es $\frac{\partial \mathbf{J}}{\partial \hat{y}^{(k)}}$ evaluado en $\hat{y}^{(k)}$

Inferencia

```
Presentar un vector de datos \mathbf{x} a clasificar Con W_{ji}^{(2)} y W_{ji}^{(1)} ajustadas en la fase de entrenamiento Ejecutar las siguientes instrucciones: Obtener I^1 y Y^1 Obtener I^2 y \hat{y} end
```


Entrenamiento

Diagnóstico del aprendizaje

Curvas de aprendizaje en train y test

Deep Learning

20

Aplicación de MLP en clasificación de imágenes

Caso: identificación de dígitos escritos a mano

Bibliografía

- ❖ J. Watt and R. Borhani and A. Katsaggelos (2020). Machine Learning Refined: Foundations, Algorithms, and Applications. 2nd Edition. Cambridge: Cambridge University Press.
- ❖ C. Bishop (2006). Pattern Recognition and Machine Learning. Springer, New York.
- S. Raschka & V. Mirjalili (2019). *Python Machine Learning*. Third Edition. California: O'Reilly Media.

Sugerencia de links interesantes:

DERIVADAS - Clase Completa: Explicación Desde Cero https://www.youtube.com/watch?v=_6-zwdrqD3U

DERIVADAS: Las Famosas Reglas EXPLICADAS https://www.youtube.com/watch?v=06PeN5SJxzk

iGracias!

