Cosine Similarity

How to define a good similarity measure?

Euclidean distance

$$-dist(q,d) = \sqrt{\sum_{t \in V} [tf(t,q)idf(t) - tf(t,d)idf(t)]^2}$$

- Longer documents will be penalized by the extra words
- We care more about how these two vectors are overlapped

Why distance is a bad idea

• The Euclidean distance between \overrightarrow{q} and $\overrightarrow{d_2}$ is large even though the distribution of terms in the query \overrightarrow{q} and the distribution of terms in the document $\overrightarrow{d_2}$ are very similar.

Use angle instead of distance

- Thought experiment: take a document *d* and append it to itself. Call this document *d'*.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From distance to angle

- Angle: how vectors are overlapped
 - Cosine similarity projection of one vector onto another

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

But how – and why – should we be computing cosines?

From angles to cosines

- Cosine of 0 degrees = 1
- Cosine of 90 degree = 0
- Cosine of 180 degree = -1

Cosine of angles varies between -1 to 1.

Question

Is it a problem for tf-idf that the cosine of the angle between vectors is negative between 90° and 180°?

- A. Yes, because we don't know that to do with negative scores.
- B. No, because a vector d_1 pointing in the opposite direction of a vector d_2 would just have the same content.
- C. No, because we can always normalize by $(1+\cos(d_1,d_2))/2$ which is always between 0 and 1.
- D. No, because the cosine of the angles between tf-idf vectors will always be non-negative.

Answer

- Correct Option is D
- Explanation
 - The cosine of the angles between tf-idf vectors will always be nonnegative (i.e. are never more than 90° apart). This is because all the elements of any tf-idf vector are non-negative (i.e. they are in \mathbf{R}^{n}_{+} , where n is the number of unique terms), and no two vectors in the nonnegative orthant are more than 90° apart.

Cosine similarity

Angle between two vectors

TF-IDF vector

$$-cosine(V_{q}, V_{d}) = \frac{V_{q} \times V_{d}}{|V_{q}|_{2} \times |V_{d}|_{2}} = \frac{|V_{q}|_{2}}{|V_{q}|_{2}} \times \frac{|V_{d}|_{2}}{|V_{d}|_{2}}$$

- Document length normalized

Unit vector

cosine(query,document)

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

cos(q, d) is the cosine similarity of q and d ... or, equivalently, the cosine of the angle between q and d.

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

Cosine similarity amongst 3 documents

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

How similar are the novels

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights?

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	PaP	WH	
affection	3.06	2.76	2.30	
jealous	2.00	1.85	2.04	
gossip	1.30	0	1.78	
wuthering	0	0	2.58	

term	SaS	PaP	WH	
affection	0.789	0.832	0.524	
jealous	0.515	0.555	0.465	
gossip	0.335	0	0.405	
wuthering	0	0	0.588	

```
cos(SaS,PaP) \approx
0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0
\approx 0.94
cos(SaS,WH) \approx 0.79
cos(PaP,WH) \approx 0.69
```

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

tf-idf example

Document: car insurance auto insurance

Query: best car insurance

Term	C	Document	
	tf-raw	df	tf-raw
Auto	0	5000	1
best	1	50000	0
car	1	10000	1
insurance	1	1000	2

Total documents = 1 million

tf-idf example

Document: car insurance auto insurance

Query: best car insurance

Term	Query			Document		Product		
	tf-raw	tf-wt	df	idf	tf*idf	tf-raw	tf-wt	
auto	0	0	5000	2.3	0	1	1	0
best	1	1	50000	1.3	1.3	0	0	0
car	1	1	10000	2.0	2.0	1	1	2
insurance	1	1	1000	3.0	3.0	2	1.3	3.9

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$
 Note: We have not used query length here so the similarity score is not between 0 and 1

Score =
$$(0+0+2+3.9) / (1.92) = 5.9/1.92 = 3.07$$

IDF can be multiplied to only one vector

•
$$(Tf_{best, q}*IDF_{best})*Tf_{best, d} + (Tf_{car, q}*IDF_{car})*Tf_{car, d}$$

•
$$Tf_{best, q} * IDF_{best} * Tf_{best, d} * IDF_{best} + Tf_{car, q} * IDF_{car} * Tf_{car, d} * IDF_{car}$$

=
$$Tf_{best, q} * Tf_{best, d} * (IDF_{best})^2 + Tf_{car, q} * Tf_{car, d} * (IDF_{car})^2$$

IDF of a word is same in query and document so multiplying it with any one of the vectors is enough

Question

What is N, the number of documents, for this example?

(Hint: Note that the document frequency for "car" is 10,000 and its inverse document frequency is 2.0.)

- A. 1 million
- B. 10,000
- C. 500,000
- D. No idea...

Answer

- Option A is correct
- Explanation:
 - -N=1 million because we see that, from the formula for idf, $\log_{10}N/10,000=2.0$ so we have $N=10,000\times10^2=10,000\times100=10^6$, which is 1 million.

Fast computation of cosine in retrieval

•
$$cosine(V_q, V_d) = V_q \times \frac{V_d}{|V_d|_2}$$

- $-\left|V_q\right|_2$ would be the same for all candidate docs
- Normalization of V_d can be done in index time
- − Only count $t \in q \cap d$
- Score accumulator for each query term when intersecting postings from inverted index

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
 2 float Length[N]
 3 for each query term t
 4 do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] += w_{t,d} \times w_{t,a}
    Read the array Length
    for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

Fast computation of cosine in retrieval

 Maintain a score accumulator for each doc when scanning the postings

```
Query = "info security"
   S(d,q)=g(t_1)+...+g(t_n) [sum of TF of matched terms]
    Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)

Can be easily applied to
    Security: (d2, 3), (d4, 1), (d5, 3)
                                                                                                        TF-IDF weighting!
                   Accumulators: d1
                                                                                            d5
info \begin{cases} (d1,3) => 3 & 0 & 0 & 0 & 0 \\ (d2,4) => 3 & 4 & 0 & 0 & 0 \\ (d3,1) => 3 & 4 & 1 & 0 & 0 \\ (d4,5) => 3 & 4 & 1 & 5 & 0 \\ (d4,5) => 3 & 7 & 1 & 5 & 0 \\ (d4,1) => 3 & 7 & 1 & 6 & 0 \\ (d5,3) => 3 & 7 & 1 & 6 & 3 \end{cases}
security \begin{cases} (d3,1) => 3 & 7 & 1 & 6 & 0 \\ (d4,1) => 3 & 7 & 1 & 6 & 3 \\ (d5,3) => 3 & 7 & 1 & 6 & 3 \end{cases}
```

Advantages of VS Model

- Empirically effective! (Top TREC performance)
- Intuitive
- Easy to implement
- Well-studied/Mostly evaluated
- The Smart system
 - Developed at Cornell: 1960-1999
 - Still widely used
- Warning: Many variants of TF-IDF!

Disadvantages of VS Model

- Assume term independence
- Assume query and document to be the same
- Lack of "predictive adequacy"
 - Arbitrary term weighting
 - Arbitrary similarity measure

What you should know

- Document ranking v.s. selection
- Basic idea of vector space model
- Two important heuristics in VS model
 - TF
 - IDF
- Similarity measure for VS model