Relatório do Laboratório 4 - Projeto de Controlador para Multicóptero

Eric Guerra Ribeiro

8 de junho de 2022

1 Planta e Controladores Multicóptero

O estudo em questão se trata da análise de controladores de um multicóptero. A dinâmica linearizada deste dispositivo é dada em três graus de liberdade independentes. As Figuras 1, 2, 3 mostram o diagrama de blocos dessa dinâmica linearizada para a arfagem, movimento vertical e horizontal.

Figura 1: Diagrama de blocos da arfagem do multicóptero com controlador P + V.

Figura 2: Diagrama de blocos do movimento vertical do multicóptero com controlador PID.

Figura 3: Diagrama de blocos do movimento horizontal do multicóptero com controlador PID.

O multicóptero simulado tem como parâmetros $m=0.5~kg,~J=0.04~kgm^2$ e l=0.2~m. Além disso, adota-se $g=9.81~m/s^2.$

2 Projeto do Controlador de Arfagem

Para o projeto do controle da arfagem do multicóptero, foi utilizado um controlador P + V, conforme o diagrama da Fig.1.

Podemos encontrar a função de transferência $G_{f\theta}(s) = \frac{\Theta(s)}{\Theta_r(s)}$ a partir do diagrama da Fig.1, como em Eq.1.

$$\Theta(s) = ((\Theta_r(s) - \Theta(s)) K_{p\theta} - s\Theta(s)) \frac{K_{v\theta}}{Js} \frac{1}{s}$$

$$\frac{\Theta(s)}{\Theta_r(s)} = \left(\left(1 - \frac{\Theta(s)}{\Theta_r(s)}\right) K_{p\theta} - s \frac{\Theta(s)}{\Theta_r(s)}\right) \frac{K_{v\theta}}{Js^2}$$

$$G_{f\theta}(s) = (K_{p\theta} - (K_{p\theta} + s)G_{f\theta}(s)) \frac{K_{v\theta}}{Js^2}$$

$$\therefore G_{f\theta}(s) = \frac{\frac{K_{p\theta}K_{v\theta}}{J}}{s^2 + \frac{K_{v\theta}}{J}s + \frac{K_{p\theta}K_{v\theta}}{Js}}$$
(1)

Pela Eq.1, percebemos que a malha é um sistema de segunda ordem padrão. Disso, temos $K_{p\theta}$ e $K_{v\theta}$ em função de ξ e ω_n por Eq.2, 3.

$$K_{p\theta} = \frac{\omega_n}{2\xi} \tag{2}$$

$$K_{v\theta} = 2J\xi\omega_n \tag{3}$$

Tendo como requisitos $t_r|_{0\%}^{100\%}=0.1$ s e $M_p=0.05$, por Eq.4 e Eq.5, pode-se determinar ξ e ω_n . Com isso, se encontrou $K_{p\theta}=23.35$ e $K_{v\theta}=1.78$ (SI).

$$\xi = \frac{1}{\sqrt{\left(\frac{\pi}{\ln M_p}\right)^2 + 1}}\tag{4}$$

$$\omega_n = \frac{\pi - \arccos\xi}{t_r|_{0\%}^{100\%} \sqrt{1 - \xi^2}} \tag{5}$$

A Figura 4 mostra o gráfico da simulação do sistema de controle de arfagem projetado. Perceba que os requisitos foram atendidos $(t_r|_{0\%}^{100\%}=0.1~s~e~M_p=0.05)$, tanto o tempo de subida, quanto o overshoot.

3 Projeto do Controlador Vertical

No projeto do controlador vertical, se usou o PID da Eq.6 na malha da Fig.2.

$$C_z(s) = \frac{K_{dz}s^2 + K_{pz}s + K_{iz}}{s}$$
 (6)

Com isso, podemos calcular $G_{fz}(s) = \frac{Z(s)}{Z_r(s)}$, como em Eq.7.

$$Z(s) = (Z_r(s)F_z(s) - Z(s)) C_z(s) \frac{1}{ms^2}$$

$$\frac{Z(s)}{Z_r(s)} = \left(F_z(s) - \frac{Z(s)}{Z_r(s)}\right) \frac{K_{dz}s^2 + K_{pz}s + K_{iz}}{ms^3}$$

$$\therefore G_{fz}(s) = \frac{\frac{K_{dz}}{m}s^2 + \frac{K_{pz}}{m}s + \frac{K_{iz}}{m}}{s^3 + \frac{K_{dz}}{m}s^2 + \frac{K_{pz}}{m}s + \frac{K_{iz}}{m}} \cdot F_z(s)$$
(7)

Figura 4: Resposta da malha de controle da arfagem para um degrau unitário.

Podemos assumir polos dominantes, ao forçar os polos dados por Eq.8, tendo como requisitos $t_r|_{0\%}^{100\%}=1.0~s$ e $M_p=0.1$. Assim, temos a partir de Eq.9 os ganhos do controlador $K_{pz},~K_{iz},~K_{dz}$ por Eq.10, 11, 12, em função de ξ e ω_n , os quais são determinados por 4 e 5.

$$\begin{cases}
p_1 = -\xi \omega_n + j\omega_n \sqrt{1 - \xi^2} \\
p_2 = -\xi \omega_n - j\omega_n \sqrt{1 - \xi^2} \\
p_3 = a = -5\xi \omega_n
\end{cases}$$
(8)

$$s^{3} + \frac{K_{dz}}{m}s^{2} + \frac{K_{pz}}{m}s + \frac{K_{iz}}{m} \equiv (s - p_{1})(s - p_{2})(s - p_{3})$$

$$\tag{9}$$

$$K_{pz} = m\omega_n^2 (10\xi^2 + 1) \tag{10}$$

$$K_{iz} = 5m\xi\omega_n^3 \tag{11}$$

$$K_{dz} = 7m\xi\omega_n \tag{12}$$

Assim, o pré-filtro pode ser escolhido como dado por Eq.13. O pré-filtro é muito importante para o sistema se comportar perto do desejado, como mostra a Fig.5a. Sem pré-filtro, $t_r|_{0\%}^{100\%}=0.165~s$ e $M_p=0.20$, ou seja, os requisitos não foram bem atendidos, com erros de 83.5% e 100% para o tempo de subida e overshoot. Já com o pré-filtro, $t_r|_{0\%}^{100\%}=1.15~s$ e $M_p=0.0929$, reduzindo os erros para 15% e 7.1% para o tempo de subida e overshoot.

$$F_z(s) = \frac{\omega_n^2 \cdot 5\xi \omega_n}{\frac{K_{dz}}{m} s^2 + \frac{K_{pz}}{m} s + \frac{K_{iz}}{m}} = \frac{K_{iz}}{K_{dz} s^2 + K_{pz} s + K_{iz}}$$
(13)

Mesmo assim, os erros ainda foram consideráveis, por causa do polo p_3 . Uma forma de reduzi-los é fazer uma busca numérica a fim de diminuir a soma dos erros relativos do tempo de subida com o overshoot. A Figura 5b compara a solução puramente analítica com a numérica (iterativa). Pode-se ver que elas são relativamente parecidas, mas a numérica atende bem melhor os requisitos. Nesse caso, $t_r|_{0\%}^{100\%} = 0.997$ s e $M_p = 0.0996$, resultando em erros de 0.3% e 0.4% para o tempo de subida e overshoot.

(a) Gráfico da simulação da malha vertical para entrada degrau unitário com e sem o pré-filtro.

(b) Gráfico da simulação da malha vertical para entrada degrau unitário com ganhos encontrados analiticamente e numericamente.

Figura 5: Gráficos das simulações da malha vertical para entrada degrau unitário com diferentes controladores. Primeiro, analisando a influência do pré-filtro. Depois, a diferença entre a solução analítica e a numérica.

4 Projeto do Controlador Horizontal

No projeto do controlador vertical, se usou o PID da Eq.14 na malha da Fig.3. No geral, o projeto foi bem parecido com o de 3.

$$C_x(s) = \frac{K_{dx}s^2 + K_{px}s + K_{ix}}{s}$$
 (14)

Com isso, podemos calcular $G_{fx}(s) = \frac{X(s)}{X_r(s)}$, como em Eq.15.

$$X(s) = (F_x(s)X_r(s) - X(s)) C_x(s)G_{f\theta}(s) \frac{g}{s^2}$$

$$\frac{X(s)}{X_r(s)} = \left(F_x(s) - \frac{X(s)}{X_r(s)}\right) C_x(s)G_{f\theta}(s) \frac{g}{s^2}$$

$$\therefore G_{fx}(s) = \frac{g(K_{dx}s^2 + K_{px}s + K_{ix})}{s^3 + gG_{f\theta}(s)(K_{dx}s^2 + K_{px}s + K_{ix})} \cdot F_x(s)$$
(15)

Podemos assumir polos dominantes, ao forçar os polos dados por Eq.16, tendo como requisitos $t_r|_{0\%}^{100\%}=1.0~s$ e $M_p=0.1$. Além disso, para o projeto, consideramos que a malha de arfagem é muito mais rápida, então $G_{f\theta}(s)\approx 1$. Assim, temos a partir de Eq.17 os ganhos do controlador K_{px} , K_{ix} , K_{dx} por Eq.18, 19, 20, em função de ξ e ω_n , os quais são determinados por 4 e 5. Nesse caso, o pré-filtro é dado por Eq.21.

$$\begin{cases}
p_1 = -\xi \omega_n + j\omega_n \sqrt{1 - \xi^2} \\
p_2 = -\xi \omega_n - j\omega_n \sqrt{1 - \xi^2} \\
p_3 = a = -5\xi \omega_n
\end{cases}$$
(16)

$$s^{3} + gG_{f\theta}(s)(K_{dx}s^{2} + K_{px}s + K_{ix}) \approx s^{3} + gK_{dz}s^{2} + gK_{pz}s + gK_{iz} \equiv (s - p_{1})(s - p_{2})(s - p_{3}) \quad (17)$$

$$K_{px} = \frac{\omega_n^2 (10\xi^2 + 1)}{g} \tag{18}$$

$$K_{ix} = \frac{5\xi\omega_n^3}{g} \tag{19}$$

$$K_{dx} = \frac{7\xi\omega_n}{q} \tag{20}$$

$$F_x(s) = \frac{\omega_n^2 \cdot 5\xi \omega_n}{g(K_{dx}s^2 + K_{px}s + K_{ix})} = \frac{K_{ix}}{K_{dx}s^2 + K_{px}s + K_{ix}}$$
(21)

Figura 6: Gráfico da simulação da malha horizontal para entrada degrau unitário com ganhos encontrados analiticamente e numericamente.

Novamente, a solução analítica não é perfeita, por causa do polo p_3 e do acoplamento malha de arfagem. Então, novamente foi feita a mesma busca para diminuir ao máximo a soma dos erros relativos do tempo de subida e do *overshoot*. A Figura 6 compara a solução puramente analítica com a numérica (iterativa). Pode-se ver que elas são relativamente parecidas, mas a numérica atende melhor os requisitos. Naquele caso, $t_r|_{0\%}^{100\%}=1.15~s$ e $M_p=0.0866$, sendo os erros para 15% e 13.4% para o tempo de subida e *overshoot*. Neste caso, $t_r|_{0\%}^{100\%}=1.002~s$ e $M_p=0.0996$, sendo os erros para 0.2% e 0.04% para o tempo de subida e *overshoot*.

5 Avaliação do Sistema de Controle do Multicóptero

Aqui, se analisou todas as malhas de controle atuando simultaneamente para controlar um drone multicóptero para várias entradas e perturbações.

5.1 Experimento (a)

Voo de 10 s com $x_r = 0$ m e $z_r = 1$ m.

Analisando o gráfico da Fig.7c, temos o comportamento da malha vertical sem influência das demais. Então, ele se comporta de forma equivalente ao esperado durante o projeto. Em outras palavras, o gráfico é muito parecido com a solução numérica mostrada em Fig.5b, com $t_r|_{0\%}^{100\%}=1.0~s$ e $M_p=0.1$.

5.2 Experimento (b)

Inicialmente, preparação de 1 s com $x_r=0$ m e $z_r=1$ m. Então, comandado para $x_r=1$ m e $z_r=1$ m. Duração total é 10 s.

Na fase de preparação, é igual ao caso de 5.1, mas não chega a se estabilizar ficar na posição final, pois é pouco tempo. Analisando o gráfico de Fig.8b, vemos que inicialmente, a malha horizontal não faz nada. Porém, a partir que a referência passa a diferir da posição do multicóptero, a situação na horizontal fica igual à Fig.5b no caso analítico, com novamente $t_r|_{0\%}^{100\%}=1.0~s$ e $M_p=0.1$.

A Figura 8a mostra a trajetória do multicóptero que se aproxima da referência, porém o multicóptero não consegue acompanhar perfeitamente já que tem inércia e limitação de potência, além do sistema de controle ser projetado com *overshoot*. Porém, até o término da simulação, o multicóptero chega na posição de referência (erro em regime nulo).

5.3 Experimento (c)

Inicialmente, preparação de 1 s com $x_r = 0$ m e $z_r = 1$ m. Então, comandado com velocidade horizontal constante $\dot{x}_r = 1$ m/s.

Novamente, a preparação é igual à 5.1. Analisando a Fig.9b, vemos que o multicóptero tenta seguir a referência, porém sempre está atrasado. Isso se reflete também na trajetória da Fig.9a, em que há erro em regime. Isso não ocorria quando a velocidade da referência era constante. Então, o sistema apresenta erro em regime nulo para entradas degraus, mas para entrada rampa há erro em regime.

5.4 Experimento (d)

Comando igual ao experimento de 5.1, mas uma carga de 0.2 kg é colocada em cima do drone em t=3~s.

Antes da carga, o sistema tem o mesmo comportamento de 5.1. Porém, a carga introduz uma perturbação vertical. Na animação, é perceptível o momento que isso ocorre, porque o multicóptero desce um pouco momentaneamente, mas depois se recupera. Isso também pode ser visto pela Fig.10c, em que há um *undershoot* quando a carga é adicionada, mas depois o sistema se estabiliza sem erro em regime. Isso mostra que a malha de controle vertical é robusta contra perturbação.

5.5 Experimento (e)

Comando igual ao experimento de 5.3, mas um vento começa a empurrar o drone com -2 N em x a partir de t = 3 s.

Vendo a animação, percebemos que inicialmente, é igual à 5.3, com o multicóptero pegando velocidade horizontal se inclinando e depois voltando. Porém, com o início do vento, o multicóptero precisa ficar inclinado para gerar força horizontal, cancelando o vento. Isso pode ser visto pela Fig.11d, com o θ nulo no começo, um pulso para pegar velocidade e depois retorna para zero, até chegar o vento. Durante o vento, há um pulso para retomar a velocidade e depois se mantém uma inclinação para anular o vento.

Pela Figura 11b, percebemos que novamente quando há velocidade de referência, há erro em regime. Então o drone fica sempre atrasado. Isso também é visto na Fig.11a em que a trajetória é bem parecida com a de referência, mas não chega ao final por causa do atraso.

5.6 Experimento (f)

Preparação inicial de 1 s com $x_r = 0$ m e $z_r = 2$ m. Então, o multicóptero é comandado a seguir uma curva de Lissajous com expressão Eq22 por 8 s. Finalmente, comanda-se $x_r = 0$ m e $z_r = 2$ m por 1 s.

Primeiramente, esse experimento demonstra sem sombra de dúvidas que os controladores projetados funcionam muito bem. É visto pela animação que o multicóptero segue a referência muito bem e bem rápido, mas com um atraso. Comparando de maneira precisa a trajetória de referência e a tomada

pela Fig.12a vemos que não há um seguimento exato da trajetória, as curvas de modo geral são feitas na parte mais interna por exemplo. Novamente, como a referência tem velocidade, há erro em regime.

$$\begin{cases} x_r(t) = \cos\left(\frac{3}{8}(t-1) + \frac{\pi}{2}\right) m \\ z_r(t) = \left[\sin\left(\frac{2}{8}(t-1)\right) + 2\right] m \end{cases}$$
 (22)

5.7 Experimento (g)

Semelhante ao experimento de 5.6, mas o período da curva de Lissajous é de 18 s.

É muito semelhante à 5.6, mas como a velocidade é menor, o atraso do drone é menor. Ele consegue acompanhar melhor a referência.

Figura 7: Gráficos da simulação do controle do multicóptero no experimento (a).

Figura 8: Gráficos da simulação do controle do multicóptero no experimento (b).

Figura 9: Gráficos da simulação do controle do multicóptero no experimento (c).

Figura 10: Gráficos da simulação do controle do multicóptero no experimento (d).

Figura 11: Gráficos da simulação do controle do multicóptero no experimento (e).

Figura 12: Gráficos da simulação do controle do multicóptero no experimento (f).

Figura 13: Gráficos da simulação do controle do multicóptero no experimento (g).