German wings challenge

Kai Chen

Resume

- Oct 2018 present, Data Science Manager, Unitymedia, Germany
- May 2017 Oct 2018, Senior Data Scientist, AGT International, Germany
- Sep 2012 Jun 2017, PhD in CS, University of Fribourg, Switzerland
- Jun 2015 Sep 2015, Visiting PhD, Chinese Academy of Sciences, China
- Sep 2009 Sep 2012, Master in CS, University of Fribourg, Switzerland
- Oct 2005 Feb 2008, Bachelor in CS, University of Applied Science,
 Switzerland

Github: <u>github.com/ck-unifr</u>

Google scholar: kai chen unifr

Linkedin: <u>linkedin.com/in/kai-chen-29503288/</u>

Use Cases

- Case 1: Sentiment Analysis
 - Predict a review is positive or negative

- Case 2: Topic Modeling
 - Find topics in the reviews

Methodology

- Data Loading
 - Load data from a txt file and save the data into a pandas dataframe
- EDA (Exploratory Data Analysis)
 - Plot distribution of variables
 - Show relationship between the variables
 - Text analysis: Plot word frequencies, Topic modelling with LDA

Feature Engineering

- TFIDF (term frequency-inverse document frequency)
 - Count Features
- Dimensionality reduction using truncated SVD
- Word Embedding: GloVe

Evaluation Metrics

- Cross-Entropy Loss
- Precision and Recall
- ROC (Receiver Operating Characteristics)

Modelling

- Logistic regression, Gradient boost machine, Deep Learning
- Error Analysis

Notebook

Word Embedding

The slides are taken from, Sequence Models, Deep Learning Specialization, Coursera by Andrew Ng.

Word representation

```
V = [a, aaron, ..., zulu, \langle UNK \rangle]
```

1-hot representation

Man Woman King Queen Apple Orange (5391) (9853) (4914) (7157) (456) (6257)

N = 10,000

I want a glass of prange ______.

I want a glass of apple______.

Andrew Ng

Visualizing word embeddings

Featurized representation: word embedding

In practice, use specialized function to look up an embedding.

Andrew Ng

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	$\left(-1\right)$	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
	25391 2 man	2 woman		eman - em	eman ≈ [0]	
Mon -> Woman as King ->! Queen & [-2]						
Ç	2 may - Quamar	& Cking -	23 tames		V Lo.	1

Analogies using word vectors man king woman cat fish queen Theor 3000->20 Momon apple three four grape orange• t-SAE $e_{man} - e_{woman} \approx e_{king} - e_{?}$ Man 300 D Sim Qw Find word wi arg max

Andrew Ng

30 - 75%

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

Model

Work Experience

Work at Unitymedia

- Recommendation System
- Churn Prevention
- ETL in Hadoop

Work at AGT International

- Punch Recognition with Deep Learning
- A/B Testing for Punch Recognition Evaluation
- Anomaly Detection

PhD thesis: Historical Document Layout Analysis with Machine Learning

- Goal
 - Developing a general page segmentation method with minimal prior knowledge.
- Basic Idea
 - Page Segmentation —— Pixel Labeling

Camera-based image retrieval (master project)

Text line detection in historical document

Cell image segmentation

Other Projects

- Structured Data
 - Booking prediction
 - Revenue per click prediction
 - Consumer shopping prediction
 - Car price prediction
- Computer Vision (CV)
 - Product category classification
- Natural Language Processing (NLP)
 - Toxic Comment Classification (Kaggle challenge, top 16%)
- CV + NLP
 - Product description generation

Why I want to join zeroG?