

FIG. 1

REPLACEMENT SHEET

Appn No.: 10/070,006

Page 2 of 6

Applicant(s): Gilbert Wolrich et al.

DOUBLE SHIFT INSTRUCTION FOR MICRO ENGINE USED IN
MULTITHREADED PARALLEL PROCESSOR ARCHITECTURE

FIG. 2-1

FIG. 2-2

FIG. 2

FIG. 2-1

FIG. 2-2

REPLACEMENT SHEET

Appln No.: 10/070,006

Page 4 of 6

Applicant(s): Gilbert Wolrich et al.
DOUBLE SHIFT INSTRUCTION FOR MICRO ENGINE USED IN
MULTITHREADED PARALLEL PROCESSOR ARCHITECTURE

FIG. 3

REPLACEMENT SHEET

Appn No.: 10/070,006

Page 5 of 6

Applicant(s): Gilbert Wolrich et al.
DOUBLE SHIFT INSTRUCTION FOR MICRO ENGINE USED IN
MULTITHREADED PARALLEL PROCESSOR ARCHITECTURE

FIG. 4

REPLACEMENT SHEET

Appn No.: 10/070,006

Page 6 of 6

Applicant(s): Gilbert Wolrich et al.

DOUBLE SHIFT INSTRUCTION FOR MICRO ENGINE USED IN
MULTITHREADED PARALLEL PROCESSOR ARCHITECTURE

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ALU/SHIFT (set cc)	0	0	sw	shift	rel	dest	reg	amount	rs	A	rel	source	B	rel	source	ro	im	Bi	ALUop													
ALU/SHIFT (set cc)	0	0	sw	shift	rel	dest	reg	amount		A	rel	source	B	rel	source	1	0	ALUop														
ALU/SHIFT (set cc)	0	0	sw	shift	rel	dest	reg	amount		A	rel	source	immediate			1	1	ALUop														
ALU/SHIFT (set cc)	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	0	dest	reg			sw	A	absolute	source		loB	Abs	Sec	Up	B	Src	ALUop													

Shift Decode:

(rs,r0) decode {{31:0} shifts into [63:32] and take [63:32]):

00 = left rotate

01 = right shift (32-ShfAmt = Right Shift Amt)

10 = left shift

11 = double shift (upper A-op shifts into lower B-op)

==> "left rotate" of zero gives zero shift (otherwise zero amount signifies indirect shift)

ALU-OP decode:

0000 = B	0100 = ~A&B (~and)	1000 = A·B
0001 = ~B	0101 = XOR	1001 = B·A
0010 = A&B (and)	0110 = OR	1010 =
0011 = A&~B (and~)	0111 = mult-stuff	1011 =

1100 = A+B(8)
1101 = A+B(16)
1110 = A+B
0011 = A+B+Cin

FIG. 5