PÁTÉ CVIČENÍ

1. Načrtněte následující lineární kombinace vektorů

$$\overline{u} = [2, 3], \overline{v} = [3, -2], \overline{w} = [-1, 1]$$

a) $2\overline{u} - \overline{v}$, b) $\overline{u} + 2\overline{w}$, c) $\overline{u} + \overline{v} + \overline{w}$

Výsledky: a) [1, 8]; b) [0, 5]; c) [4, 2].

2. Vyjádřete vektor $\overline{u} = [1, 4]$ jako lineární kombinaci vektorů

$$\overline{v} = [1, 1], \overline{w} = [-1, 2]:$$

a) odhadněte graficky, b) výpočtem (1,4) = x(1,1) + y(-1,2)

Výsledky: b) $\overline{u} = 2\overline{v} + \overline{w}$.

3. Pokud to jde, vyjádřete vektory $\overline{u} = [5, 10, 2], \overline{v} = [1, 1, -3]$ jako lineární kombinace vektorů [2, 5, 6], [1, 2, 1].

Výsledky: $\overline{v}=3[1,2,1]-[2,5,6];\overline{u}$ není lin. kombinací.

4. Určete $b\in\mathbb{R}$ tak, aby vektor [3,10,b]byl lineární kombinací vektorů [1,3,6],[1,-4,1].

Výsledky: $b = \frac{131}{7}$.

5. Určete $b \in \mathbb{R}$ tak, aby vektor [3,10,b] nebyl lineární kombinací vektorů [2,3,6],[1,-4,2].

Výsledky: $b \neq 10$.

- 6. Zjistěte, jestli vektory
 - (a) [2,1,3], [4,4,2], [3,2,1], pokud je D nula, tak jsou závislé
 - (b) [2, 0, 2], [4, 4, 2], [2, 2, 0],
 - (c) [2, 2, 1], [4, 4, 2], [1, 2, 2],
 - (d) [1,-1,1,-1],[1,1,1,0],[3,1,3,-1]

jsou lineárně závislé.

Výsledky: a) nezávislé, b) nezávislé, c) závislé, d) závislé.

7. Rozhodněte o lineární závislosti či nezávislosti vektorů [1, b, 2], [b, 1, 2], [2, 1, b] v závislosti na parametru $b \in \mathbb{R}$.

Dále zjistěte, pro které hodnoty $b \in \mathbb{R}$ má soustava rovnic právě jedno; nekonečně mnoho; žádné řešení.

$$x + by + 2z = 0$$

$$bx + y + 2z = 0$$

2x + y + bz = 0

normáln zase determinant, ale jsou tam neznámé

Výsledky: Vektory jsou závislé pro $b \in \{1, 2, -3\}$, soustava má pro tyto b nekonečně mnoho řešení, pro $b \in \mathbb{R} \setminus \{1, 2, -3\}$ jsou vektory nezávislé, soustava má právě jedno řešení, žádné řešení soustava nemá pro žádné b.

- 8. Určete dimenzi prostoru, který je generován zadanými vektory, a popište, jak prostor vypadá geometricky
 - (a) $V = \langle [-5, -2, 1], [1, 2, 1], [4, 4, 1] \rangle$,
 - (b) $V = \langle [3, 2, 0], [1, 2, 1], [4, 4, 1] \rangle$,

poet nenulových ádk ve shod tvaru

- (c) $V = \langle [2, 5, 3], [4, 4, 2], [3, 2, 5] \rangle$,
- (d) $V = \langle [2, 2, 1], [4, 4, 2], [-2, -2, -1] \rangle$.

Výsledky: a) $\dim V=2$, b) $\dim V=2$, c) $\dim V=3$, d) $\dim V=1$.

- 9. Doplňte zadanou množinu vektorů na bázi prostoru $V_3(\mathbb{R})$.
 - (a) $\{[1,2,3],[4,4,1],[3,1,2]\},$
 - (b) $\{[-5, -2, 1], [1, 2, 1], [4, 4, 1]\},$
 - (c) $\{[3,2,0],[1,2,1],[4,4,1]\}.$

Výsledky: a) vektory již tvoří bázi, b) $\{[-5, -2, 1], [1, 2, 1], [0, 0, 1]\}$, c) $\{[3, 2, 0], [1, 2, 1], [0, 0, 1]\}$.

10. Dané jsou vektory [1, b, 1], [4, 4, 1], [1, 1, b]. Určete $b \in \mathbb{R}$ tak, aby prostor jimi generovaný měl dimenzi a) 3, b) 2.

Výsledky: a) $b \in \mathbb{R} \setminus \left\{ \frac{1}{4}, 1 \right\}$, b) $b \in \left\{ \frac{1}{4}, 1 \right\}$.

- 11. Pracujeme v prostoru $V_3(\mathbb{R})$ vektory jsou uspořádáné trojice reálných čísel a skaláry jsou reálná čísla. Zjistěte, jestli $M_1(\mathbb{R}), M_2(\mathbb{R})$ a $M_3(\mathbb{R})$ jsou podprostory $V_3(\mathbb{R})$, jestliže
 - (a) $M_1 = \{ [a, b, c] \in \mathbb{R}^3; a = 2b \}$
 - (b) $M_2 = \{[a, b, c] \in \mathbb{R}^3; a = b + c\}$
 - (c) $M_3 = \{[a, b, c] \in \mathbb{R}^3; b = a + 1\}$

Výsledky: a) M_1 je podprostor $V_3(\mathbb{R})$, b) M_2 je podprostor $V_3(\mathbb{R})$, c) M_3 není podprostor $V_3(\mathbb{R})$.

12. Jsou dány podprostory $V_3(\mathbb{R})$

$$L_1 = \langle [1, 0, -1] \rangle, \quad L_2 = \langle [1, 2, 3] \rangle, \quad L_3 = \langle [1, 0, -1], [1, 2, 3] \rangle$$

Uveď te několik příkladů vektorů, které leží v L_3 , ale přitom neleží ani v L_1 ani v L_2 .

Výsledky: např. [2, 2, 2], [5, 6, 7].

13. Jsou dány podprostory $V_3(\mathbb{R})$

$$L_1 = \langle [1, 0, -1], [1, 2, 3] \rangle, \quad L_2 = \langle [0, 1, 2], [2, 1, 0] \rangle.$$

Rozhodněte, které tvrzení je pravdivé:

a)
$$L_1 = L_2$$
, b) $L_1 \subseteq L_2$, c) $L_2 \subseteq L_1$, d) $L_1 \cap L_2 = \{[0,0,0]\}$,

e)
$$L_1 + L_2 = V_3(\mathbb{R})$$

Výsledky: a) pravda, b) pravda, c) pravda, d) nepravda, e) nepravda.

14. * (pokud si to * zaslouží ?) Jsou dány podprostory $V_3(\mathbb{R})$

$$L_1 = \langle [1, 0, -1], [1, 2, 3] \rangle, \quad L_2 = \langle [1, 0, 1], [2, -1, 0] \rangle.$$

Najděte bázi prostoru $L_1 \cap L_2$.