Лабораторная работа №2

Ссылки, таблицы и формулы в несколько строк

13 марта 2022 г.

1 Первое задание

1. Разложения. Сталкиваясь с разного родя задачами, мы нуждаемся в определенном типе индуктивных рассуждений. В различны областях математики встречаются некоторые задачи, требующие индуктивных рассуждений типичного характера. Настоящая глава несколькими примерами иллюстрирует этот тезис. Мы начинаем с относительно простого примера.

Разложить по степеням x функцию $1/(1-x+x^2)$.

Эта задача может быть решена многими способами. Нижеследующее решение несколько громоздко но оно основано на правильном принципе и может естественно прийти в голову умному начинающему, который знает немного, но все же по крайней мере знает сумму геометрической прогрессии:

$$1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$$

В нашей задаче есть возможность воспользоваться этой формулой:

ИЛИ
 Истина

$$\pm$$
 Ложь

 Истина
 \pm Истина

 Ложь
 \pm Ложь

 $1+x$
 $-x^3-x^4$
 x^6+x^7
 ...

2 Второе задание. Малые таблицы. 1

Число	Число частей при делении			
делящихся	пространства	плоскости	прямой	
элементов	плоскостями	прямыми	точками	
0	1	1	1	
1	2	2	2	
2	4	4	3	
3	8	7	4	
4	15		5	
$\mid n \mid$			n+1	

3 Третье задание

Таблица VI

Общее число совпадений, наблюдаемых и теоретических (Гипотеза II)

	Совпадения		Отклонения	
	Наблюдаемые	Ожидаемые	Фактические	Стандартные
10 языков	171	42,66	128,34	7,60
9 языков с венг	8	8,53	-0,53	2,78

4 Четвертое задание. Нумерация и системы 1

5. Семи неравенствам

$$2x_{1} + 3x_{2} \leq 6,$$

$$x_{1} + x_{2} \leq 2,$$

$$-x_{1} - 3x_{2} \leq 3,$$

$$2x_{1} \leq 3,$$

$$-x_{1} \leq 3,$$

$$-3x_{1} + 7x_{2} \leq 21,$$

$$x_{1} - 3x_{2} \leq 3$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$\begin{cases} 2x_1 + 3x_2 & \leq 6, \\ x_1 + x_2 & \leq 2, \\ -x_1 - 3x_2 & \leq 3, \\ 2x_1 & \leq 3, \\ -x_1 & \leq 3, \\ -3x_1 + 7x_2 & \leq 21, \\ x_1 - 3x_2 & \leq 3 \end{cases}$$
 (S)

5 Пятое задание. Нумерация и системы 2

75. 1) Пусть f — непрерывная на X функция, $a,b \in R, a < b$. Доказать, что функция

$$f(a;b;x) = \begin{cases} f\left(x\right), & \text{если } a \leqslant f\left(x\right) \leqslant b, \\ a, & \text{если } f\left(x\right) < a, \\ b, & \text{если } f\left(x\right) > b, \end{cases}$$

также непрерывна на X.

6 Шестое задание. Стандартные длинные формулы

С другой стороны известно, что монотонно возрастающая ограниченная последовательность чисел имеет конечный предел. Следовательно, если мы докажем, что последовательность чисел x_n ограничена, то будет доказана и содимость ряда (26). Положим

$$y_{2n} = 1 - \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} - \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} - \frac{1}{6^{\alpha}} + \dots$$

$$\dots \frac{1}{(2n-1)^{\alpha}} - \frac{1}{(2n)^{\alpha}}.$$

Так как

$$y_{2n} = 1 - \left(\frac{1}{2^{\alpha}} - \frac{1}{3^{\alpha}}\right) - \left(\frac{1}{4^{\alpha}} - \frac{1}{5^{\alpha}}\right) - \dots - \left(\frac{1}{(2n-2)^{\alpha}} - \frac{1}{(2n-1)^{\alpha}}\right) - \frac{1}{(2n)^{\alpha}}.$$

то (числа в каждой скобке положительны)

$$y_{2n} < 1$$
.

С другой стороны,

$$y_{2n} = 1 - \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} - \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} - \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n-1)^{\alpha}} - \frac{1}{(2n)^{\alpha}} = \left(1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n-1)^{\alpha}} + \frac{1}{(2n)^{\alpha}}\right) - \frac{2}{2^{\alpha}} \left(\frac{1}{2^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n)^{\alpha}}\right) = \left(1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \dots + \frac{1}{(2n-1)^{\alpha}} + \frac{1}{(2n)^{\alpha}}\right) - \frac{2}{2^{\alpha}} \left(1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}}\right).$$

Так как $x_n = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}}$, то
$$y_{2n} = x_{2n} - \frac{2}{2^{\alpha}} x_n.$$