Lecture 1

Instructor: Bernardo Galvão-Sousa beni@math.toronto.edu ES4146 Tul4, Th13

Txt: A first course in Chaotic Dynamical Systems. by Robert L. Devaney.

6 assignments. best 5 of 6 => average.

1 Term test. TBA (50 min)

Final (3 h)

Marking Scheme: 25% +25% +50%

No Tut.

CHAPTER 3 ORBITS

§3.1 ITERATION

Def: For a function F(x), we define

· its second iterate Fix= F(F(x))=F.F(x)

·its third iterate F3(x)=F(F(x))=F. oF oF(x)=F(F2(x))

٠. .

The nth iterate $F^{n}(x)=F \circ F \circ \cdots \circ F(x)=F \circ F^{n-1}(x)$ n times

Attention: The 11th iterate F'(x) is not F(x) raise to the 11th power.

Example: $F(x) = \chi^{2}$ $F^{2}(x) = (\chi^{2})^{2} = \chi^{4}$ $F^{3}(x) = (\chi^{4})^{2} = \chi^{8}$... $F^{n}(\chi) = \chi^{2}$

Example: $F(x)=x^2+1$ $F^3(x)=(x^2+1)^2+1=x^4+2x^2+2$ $F^3(x)=(x^4+2x^2+2)^2+1=x^8+4x^6+8x^4+8x^2+5$

§3.2 OBRBITS

· def: Given Xo = R, we define the orbit of Xo under F to be the sequence of points:

 x_0 , $x_1 = F(x_0)$, $x_2 = F(x_0) = F(x_1)$, $x_3 = F(x_0) = F(x_2)$...

And the point to is called the seed of the orbit.

Ex: Let $F(x)=x^2+1$, and $x_0=1$ Then $x_0=1$ $x_1=2$ $x_2=5$ $x_3=26$ $x_4=677$

Ex: Let $F(x) = \cos x$ and $x_0 = 1$

\$3.3 Types of orbits

fixed points (most important type of orbit)

def: a fixed pt x. is a pt which satisfies F(xo) = No

So the orbit of a fixed point to is to, x,=F(xo)=to, x2=F(xo)=x0

Ex: For $F(x)=x^2$ The fixed pt satisfy F(x)=x $x^2=x$

x=0 or x=1 $F(x)=x^2 \text{ has } 2 \text{ fixed pts } 0 \text{ d.} 1.$

Ex: $F(x)=x^2-x-8$ The fixed pts satisfy $x^2-x-8=x$ $x^2-2x-8=0$ x=4 or x=-2

-> we can find the fixed pts of a function FCX) graphically.

