In [76]: # import Libaries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [503]: x=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions - 19_nuclear_exp

Out[503]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Lo
0	USA	Alamogordo	DOE	32.54	
1	USA	Hiroshima	DOE	34.23	
2	USA	Nagasaki	DOE	32.45	
3	USA	Bikini	DOE	11.35	
4	USA	Bikini	DOE	11.35	
2041	CHINA	Lop Nor	HFS	41.69	
2042	INDIA	Pokhran	HFS	27.07	
2043	INDIA	Pokhran	NRD	27.07	
2044	PAKIST	Chagai	HFS	28.90	
2045	PAKIST	Kharan	HFS	28.49	

2046 rows × 16 columns

In [504]: x=x.head(10)

Out[504]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Long
0	USA	Alamogordo	DOE	32.54	-1(
1	USA	Hiroshima	DOE	34.23	1;
2	USA	Nagasaki	DOE	32.45	1:
3	USA	Bikini	DOE	11.35	16
4	USA	Bikini	DOE	11.35	16
5	USA	Enewetak	DOE	11.30	16
6	USA	Enewetak	DOE	11.30	16
7	USA	Enewetak	DOE	11.30	16
8	USSR	Semi Kazakh	DOE	48.00	;
9	USA	Nts	DOE	37.00	-1 [·]

```
In [505]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 10 entries, 0 to 9
          Data columns (total 16 columns):
           #
               Column
                                               Non-Null Count Dtype
                -----
                                                -----
           0
               WEAPON SOURCE COUNTRY
                                               10 non-null
                                                                object
           1
                                                                object
               WEAPON DEPLOYMENT LOCATION
                                               10 non-null
           2
                                                                object
               Data.Source
                                               10 non-null
           3
               Location.Cordinates.Latitude
                                               10 non-null
                                                                float64
           4
               Location.Cordinates.Longitude
                                               10 non-null
                                                                float64
           5
               Data.Magnitude.Body
                                               10 non-null
                                                                float64
           6
               Data.Magnitude.Surface
                                               10 non-null
                                                                float64
           7
               Location.Cordinates.Depth
                                               10 non-null
                                                                float64
           8
               Data.Yeild.Lower
                                               10 non-null
                                                                float64
           9
               Data.Yeild.Upper
                                               10 non-null
                                                                float64
           10
               Data.Purpose
                                               10 non-null
                                                                object
           11
               Data.Name
                                               10 non-null
                                                                object
           12
               Data.Type
                                               10 non-null
                                                                object
           13
               Date.Day
                                               10 non-null
                                                                int64
           14
               Date.Month
                                               10 non-null
                                                                int64
           15
               Date.Year
                                               10 non-null
                                                                int64
          dtypes: float64(7), int64(3), object(6)
          memory usage: 1.4+ KB
In [506]:
Out[506]: Index(['WEAPON SOURCE COUNTRY', 'WEAPON DEPLOYMENT LOCATION', 'Data.Source',
                  'Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
                  'Data.Magnitude.Body', 'Data.Magnitude.Surface',
                  'Location.Cordinates.Depth', 'Data.Yeild.Lower', 'Data.Yeild.Upper',
                  'Data.Purpose', 'Data.Name', 'Data.Type', 'Date.Day', 'Date.Month',
                  'Date.Year'],
                 dtype='object')
```

In [510]: d=x[['Location.Cordinates.Latitude','Location.Cordinates.Longitude']]

Out[510]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude
0	32.54	-105.57
1	34.23	132.27
2	32.45	129.52
3	11.35	165.20
4	11.35	165.20
5	11.30	162.15
6	11.30	162.15
7	11.30	162.15
8	48.00	76.00
9	37.00	-116.00

In [511]:

Out[511]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Ma
count	10.000000	10.000000	10.0	_
mean	24.082000	93.307000	0.0	
std	14.133627	111.078447	0.0	
min	11.300000	-116.000000	0.0	
25%	11.312500	89.380000	0.0	
50%	21.900000	147.210000	0.0	
75%	33.807500	162.150000	0.0	
max	48.000000	165.200000	0.0	

In [512]:

Out[512]: <seaborn.axisgrid.PairGrid at 0x190d418a580>

In [513]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[513]: <AxesSubplot:xlabel='Location.Cordinates.Latitude', ylabel='Density'>

In [515]: x1=x[['Location.Cordinates.Latitude']]

```
In [516]:
Out[516]: <AxesSubplot:>
                                                            -1.100
                                                            - 1.075
                                                           - 1.050
                                                            - 1.025
                                                           - 1.000
            Location.Cordinates.Latitude
                                                            - 0.975
                                                            -0.950
                                                            0.925
                                                            0.900
                        Location.Cordinates.Latitude
In [517]: x=x1[['Location.Cordinates.Latitude']]
In [518]: # to split my dataset into traning and test date
           from sklearn.model_selection import train_test_split
In [519]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
Out[519]: LinearRegression()
In [520]:
            3.552713678800501e-15
In [521]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[521]:
                                       Co-efficient
            Location.Cordinates.Latitude
```

```
In [522]: prediction=lr.predict(x_test)
Out[522]: <matplotlib.collections.PathCollection at 0x190d4463d60>
           45
           40
           35
           30
           25
           20
           15
                         20
                              25
                   15
                                                     45
In [523]: __
Out[523]: 1.0
In [524]: ___
Out[524]: 1.0
In [525]: -
In [526]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[526]: 0.9998230464013059
In [527]: la=Lasso(alpha=10)
Out[527]: Lasso(alpha=10)
In [528]: -
Out[528]: 0.9911343634383061
In [529]: from sklearn.linear_model import ElasticNet
          en=ElasticNet()
Out[529]: ElasticNet()
In [530]:
Out[530]: array([0.99220652])
```

```
In [531]:
Out[531]: array([47.78989901, 11.3759196 , 34.12721518])
In [532]:
Out[532]: 0.16398588038355655
In [533]:
Out[533]: 0.9999120332294817
In [534]:
Mean Absolute Error 2.960594732333751e-15
In [536]:
     Mean Squared Error 1.7880847185009602e-29
In [537]:
     Root Mean Squared Error 4.2285750773764915e-15
In [538]:
In [539]: filename="prediction"
In [540]: import pandas as pd
In [541]: filename="prediction"
In [542]: real=[[10],[11]]
In [543]:
Out[543]: array([10., 11.])
 In [ ]:
```

7 of 7