

Resource Allocation for Latency sensitive Wireless Systems

Apostolos Avranas

Ph.D. Thesis Defense

Outline

Introduction

Part One

- Retransmission under strict Latency & Reliability constraints?
- Energy Latency tradeoff characterization.
- How to optimally tune resources (power,blocklength,...)?
- The effect of CSI

Part Two

- How to allocate bandwidth in multi class user traffic?
- Deep Reinforcement Learning
- Full and Statistical CSI

Conclusions

Enhanced Mobile Broadband Gigabytes in a second 3D Video, UHD Screens Work and Play in the Cloud **Smart Home Building Augmented Reality Industry Automation** Voice Mission critical application **Self Driving Car Smart City** Ultra-reliable and low latency Massive machine type communications communications

Our focus

Use case	Latency	Reliability	Data size
	(ms)	(PEP)	(bytes)
Industrial	0.25 - 10	$10^{-6} - 10^{-9}$	10 - 300
automation			
Smart grids	5 - 50	10^{-6}	80 - 1000
Intelligent	5 - 100	$10^{-3} - 10^{-5}$	500 – 1k
transport			
systems			
Telemedicine	1-10 (haptics)	10^{-5}	200 – 4k
	20 - 100 (video,		
	audio)		

URLLC: 1 ms , 10^{-5} , 32 bytes

Part One

System Model

URLLC is tough!

- Diversity: Frequency, Space, Time
- What about retransmissions?

- Point to Point
- B Information Bits

System Model

In case of NACK it will be transmitted:

System Model

Assumption: $n \to \infty$

- AWGN: $z \sim \mathcal{CN}(0,1)$
- Received power:

$$P = \frac{EnergyPacket}{n}$$
, $n = \#symbols$

• Data Rate:

$$y = x + z \qquad \frac{B}{n} = \log_2(1+P)$$

S

Shannon (1916-2001)

Finite Blocklength $(n < \infty)$

$$\frac{B}{n} \approx \log_2(1+P) - \frac{Q^{-1}(\varepsilon)}{\sqrt{n}} \sqrt{1 - \frac{1}{(1+P)^2}} \log_2 e + \cdots$$

$$\text{dispersion } V$$

$$\Rightarrow \varepsilon \approx Q \left(\frac{n \ln(1+P) - B \ln 2}{\sqrt{n \frac{P(P+2)}{(P+1)^2}}} \right)$$

^{*} Y. Polyanskiy, H.V. Poor, S. Verdú, "Channel coding rate in the finite blocklength regime", IEEE Trans. on Inf. Theory, vol. 56, no. 5, Apr. 2010

^{*} M. Hayashi, "Information spectrum approach to second-order coding rate in channel coding", IEEE Trans. on Inf. Theory, vol. 55, no. 11, Nov. 2009

Sharpening System Model

One-shot or HARQ-IR?

Minimization $\mathbb{E}[\mathrm{Energy}]$

$$\min_{n_1,P_1,n_2,P_2} n_1 P_1 + n_2 P_2 \varepsilon_1 \quad (\mathbb{E}[\text{ Energy}])$$
 s.t.
$$n_1 + n_2 \leqq N - D \quad \text{(Latency)}$$

$$\varepsilon_2 \leqq 1 - T_{\text{rel}} \quad \text{(Reliability)}$$

Even though Non-Convex:

→ 2-D grid search

Initial Results

- \triangleright D = 0:
 - Up to 25% Energy Economy
 - Benefits due to "early termination"
- > D > 0:
 - Same logic but diminishing benefits.
 - If increased much, one-shot better since powers are increasing exponentially to meet URLLC constraints.

General Case (M > 2)

- ☐ Best *M*? Best Configuration?
- Convexity

"Simple" case feedback delay D = 0

"Simple" case feedback delay D=0

$$\min_{M,n_1,\cdots,n_M,P_1,\cdots,P_M} \sum_{m=1}^M n_m P_m \varepsilon_{m-1}$$
s.t.
$$\sum_{m=1}^M n_m = N$$

$$\varepsilon_M = Q \left(\sum_{i=1}^m n_i \ln(1+P_i) - B \ln 2 \right)$$

$$\sqrt{\sum_{i=1}^m n_i \frac{P_i(P_i+2)}{(P_i+1)^2}} \right) = 1 - T_{\text{rel}}$$

So what if **Dynamic Programming** since: $\sum_{i=1}^{m} x_i = x_m + \sum_{i=1}^{m} x_i$

$$\sum_{i=1}^{m} x_i = x_m + \sum_{i=1}^{m-1} x_i$$

Goal: Construct state such that:

$$\operatorname{Energy}^{\star}(S_{m+1}) = \min_{\forall \text{ possible } S_m} \{ \operatorname{Energy}^{\star}(S_m) + \Delta \operatorname{Energy}(S_{m+1}, S_m) \}$$

State at m^{th} round

"Simple" case feedback delay D=0

"Simple" case feedback delay D=0

feedback delay D = 0, rounds $m \le M$

feedback delay D>0

feedback delay D>0

feedback delay D>0

Throughput Maximization

$$\max_{M,B,n_1,\cdots,n_M,P_1,\cdots,P_M}$$

Throughput

s.t.

Reliability

Latency

Maximum Power

Revisit System Model

☐ Received power:

$$P = |h|^2 \frac{EnergyPacket}{n}$$

- $\Box |h| \sim Rice(K,1)$
 - $K = \frac{\text{Power direct path}}{\text{Power scattered path}}$
 - $K = \infty$, AWGN
 - K = 0 , Rayleigh Fading
- ☐ Channel State Information:
 - Full CSI (h known)
 - Statistical CSI (distribution of h known)

Throughput-Energy Trade-off

$$\begin{array}{ccc} \max & \mathbb{E}_h[(1-\alpha)Throughput - \alpha Energy] \\ & \text{s.t.} & \mathbb{E}_h[\text{Reliability}] \\ & & \text{Latency} \\ & & \text{Maximum Energy/Power} \end{array}$$

Throughput-Energy Trade-off

Throughput-Energy Trade-off

Part Two

$PHY \longrightarrow MAC$

Similarities:

- Strict Latency Constraint L
- ■*B* information bits
- Retransmissions

Differences:

- Back to Shannon
- h_t depends on h_{t-1}

Type I HARQ

IR-HARQ

Icons from: https://depositphotos.com/

Size Of Glass_u =
$$f(B_u, h_{u,t})$$

Size Of Glass_u =
$$f(B_u, h_{u,t})$$

Size Of Glass_u =
$$f(B_u, h_{u,t})$$

Size Of Glass_u =
$$f(B_u, h_{u,t})$$

Full CSI (Benchmarks)

Greedy - Knapsack

Oracle - Integer Linear Programming(ILP)

Reinforcement Learning (full CSI)

• Markov Decision Process (MDP):

state:
$$s_t = \{ \forall u \in \mathrm{Users}_t \colon B_{u,t} , \, \mathrm{latency}_{u,t} , \, h_{u,t} \}$$
 action: $a_t = \{ \forall u \in \mathrm{Users}_t \colon \mathrm{serve}_u \}$

• Q-learning (lookup table):

Let K users, C number of classes, L_{\max} the maximum latency.

Size of Table =
$$K \cdot C \cdot L_{\text{max}} \cdot \infty \cdot 2^K$$

• Deep Deterministic Policy Gradient:

Goal of Actor

Return:
$$Z^{\pi_{\theta}}(s_t, a_t) = R(s_t, a_t) + \sum_{i=1}^{\infty} \gamma^i R(S_{t+i}, \pi_{\theta}(S_{t+i}))$$

Value function: $Q^{\pi_{\theta}}(s_t, a_t) = \mathbb{E}[Z^{\pi_{\theta}}(s_t, a_t)]$

Goal:
$$J(\theta) = \mathbb{E}_{s_t}[Q^{\pi_{\theta}}(s_t, a_t)|a_t = \pi_{\theta}(s_t)]$$

How to optimize θ so as to maximize the value?

Goal of Critic

Goal:
$$Q_{\psi}^{\pi_{\theta}}(s_t, a_t) \approx Q^{\pi_{\theta}}(s_t, a_t)$$

How to optimize ψ so as to improve estimation?

Bellman Equation

Bellman Equation: $Q^{\pi_{\theta}}(s_t, a_t) = R(s_t, a_t) + \gamma \mathbb{E}[Q^{\pi_{\theta}}(s_{t+1}, \pi_{\theta}(s_{t+1}))]$

Loss Function:
$$\mathcal{L}_2(\psi) = \mathbb{E}[(Q_{\psi}^{\pi_{\theta}}(s_t, a_t) - (R(s_t, a_t) + \gamma Q_{\psi-}^{\pi_{\theta}}(s_{t+1}, \pi_{\theta}(s_{t+1})))]$$
prediction

target

Distributional Perspective

Distributional Perspective

Distributional Bellman Equation:

$$Z^{\pi_{\theta}}(s_t, a_t) \stackrel{D}{=} R(s_t, a_t) + \gamma Z^{\pi_{\theta}}(S_{t+1}, \pi_{\theta}(S_{t+1}))$$

Representation of Distribution?

Distributional Perspective

Distributional Bellman Equation:

$$Z^{\pi_{\theta}}(s_t, a_t) \stackrel{D}{=} R(s_t, a_t) + \gamma Z^{\pi_{\theta}}(S_{t+1}, \pi_{\theta}(S_{t+1}))$$

Representation of Distribution?

Percentiles

Loss Function using Quantile Regression

Performance

Classes Description

	B	$\mid L \mid$
class 1	256 Bytes	2
class 2	2048 Bytes	10

Why distributional?

Conclusions

Part One

- Studied energy/throughput latency tradeoffs in URLLC
- Both AWGN and Fading channels
- IR-HARQ gains if properly tuned
- Up to 25% energy saving with reasonable delays.

Part Two

- Multi user, multi class traffic scheduling
- Combined L2 and quantile regression loss through a "dueling" architecture.
- Reinforcement Learning outperforms SoTA techniques (combinatorial, integer programming and Frank-Wolfe).

Peer-reviewed Journal

[J1] A. Avranas, M. Kountouris, and P. Ciblat, "Energy-latency tradeoff in ultra-reliable low-latency communication with retransmissions," *IEEE Journal on Selected Areas in Communications*, vol. 36, no. 11, pp. 2475–2485, Nov. 2018.

International Conference

- [C1] M. Kountouris, N. Pappas, and A. Avranas, "QoS provisioning in large wireless networks," in 2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), May 2018.
- [C2] M. Kountouris and A. Avranas, "Delay Performance of Multi-Antenna Multicasting in Wireless Networks," in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018.
- [C3] A. Avranas, M. Kountouris, and P. Ciblat, "Energy-Latency Tradeoff in Ultra-Reliable Low-Latency Communication with Short Packets," in 2018 IEEE Global Communications Conference (Globecom), Dec. 2018.
- [C4] —, "Throughput Maximization and IR-HARQ Optimization for URLLC Traffic in 5G Systems," in 2019 IEEE International Conference on Communications (ICC), May 2019.
- [C5] —, "The Influence of CSI in Ultra-Reliable Low-Latency Communications with IR-HARQ," in 2019 IEEE Global Communications Conference (Globecom), Dec. 2019.

$$\min_{n_1(g), n_2(g), P_1(g), P_2(g)} \quad \mathbb{E}_g \left[-\frac{\mathcal{T}_h(a)}{\mathcal{T}_{h,max}} + \frac{\mathcal{E}(a)}{\mathcal{E}_{min}} \right] \tag{1}$$

s.t.
$$n_1(g) + n_2(g) \le N_\ell, \quad \forall g$$
 (2)

$$\mathbb{E}_g[\varepsilon_2(n_1(g), n_2(g), P_1(g), P_2(g), g)] \le \varepsilon_{\text{rel}}$$
(3)

$$n_1(g)P_1(g) + n_2(g)P_2(g) \le \mathcal{E}_b, \quad \forall g \tag{4}$$

$$P_i(g) \le P_{\text{max}}, \quad i \in \{1, 2\} \quad \forall g$$
 (5)

$$n_i = \begin{cases} 0 & g < g_{th} \\ n_i(g) & g \ge g_{th} \end{cases}, P_i = \begin{cases} 0 & g < g_{th} \\ P_i(g) & g \ge g_{th} \end{cases}$$

$$\varepsilon_2 = \mathbb{P}(g < g_{th}) + \mathbb{P}(g \ge g_{th})\varepsilon_{on} \le \varepsilon_{rel}.$$

