A.2 Évaluation nº 10 Dérivation (4) de produit et quotient, variations

Il sera tenu compte dans la notation de la propreté ainsi que de la justification apportée à chacune des réponses.

Le barème est donné à titre indicatif. Il pourra être modifié ultérieurement.

L'usage de la calculatrice est autorisé.

Durée: 40 minutes; Coeff: 1

Exercice 1

Une étude de fonction

... / 10 points

Soit f la fonction définie pour tout réel $x \in [-6; 7]$ par $f(x) = \frac{-3x^2 + 8x}{x^2 - x + 1}$. On note f' la dérivée de la fonction f.

On donne ci-dessous la courbe C_f représentative de la fonction f.

- 1. Montrer que pour tout réel $x \in [-6; 7]$, $f'(x) = \frac{-5x^2 6x + 8}{(x^2 x + 1)^2}$.
- 2. Résoudre sur l'intervalle [-6; 7] l'inéquation $-5x^2 6x + 8 \ge 0$.
- 3. Étudier le signe de f'(x) sur l'intervalle [-6; 7] puis dresser le tableau des variations de f ur [-6; 7].
- 4. Calculer les valeurs exactes de f'(2) et de f(2).
- 5. En déduire une équation de la tangente T à la courbe C_f au point A d'abscisse 2. Tracer sur le graphique ci-dessus la tangente T à la courbe C_f au point A.

On considère les fonctions suivantes. Dans chacun des cas, calculer leurs dérivées. On ne se souciera pas du domaine de définition et de dérivabilité de ces fonctions.

1.
$$f(x) = (4x+3)^3$$

2.
$$f(x) = \sqrt{x-3}(x^3+1)$$

3.
$$f(x) = \frac{5x-1}{x+3}$$

3.
$$f(x) = \frac{5x - 1}{x + 3}$$

4. $f(x) = \frac{2x^2 + 4}{x^2 + 3}$