

Early Warning for Collections tool

Executive presentation

Funding Credit team

Analysts:

Kevin M. Figueroa

September 19th, 2022

About me

- BA in Economics and finance
- MA in Economics and data science
- 5 years in economic and financial consulting
- Fintech consultant: Risk Analysis
- Today's role: Stride Credit Risk Analyst

Navigating repository

Fintechs' challenge in the growing student loan market

- Fintech → Competition : Reduce the cost of credit and increase financial inclusion
- Market size: 44 million borrowers who collectively owed USD 1.5 trillion in student loan debt
- Average student in the Class of 2016: \$37,000
- Student loan challenge!
 - Longer terms than BL
 - Drastical conditions change for a graduate, unlike mortgages
 - No collateral
 - 1-4 yrs to first payment

Purpose

- Leverage all data available
- Database found but documentation is missing
- Our goal: obtain as much insight as possible that could be useful to improve Stride's operations
- Specific objectives:
 - Perform a deep exploratory data analysis process to understand as much of the data as possible.
 - Clean the data.
 - Produce a model that can help identify loans at risk of default.
 - Predict defaults in current portfolio loans.
 - Propose a business strategy that can take advantage of the predictive power of the model.

Exploratory data analysis s results

- Description of the data
- Score mistery
- Number of dependants issue
- Age issue
- Scales to standarize and Weak correlations

		Table 1. Summary of variables training set									
	count	mean	std	min	25%	50%	75%	max	Missing vals	Variable type	
number_dependants	16671.0	0.49	0.72	-1.00	0.00	0.00	1.00	6.00	False	int64	
credit_utilization	16671.0	0.05	0.05	0.00	0.01	0.03	0.07	0.54	False	float64	
${\sf debt_to_income_ratio}$	16671.0	0.33	0.12	0.03	0.25	0.33	0.41	0.80	False	float64	
monthly_income	16671.0	2289.90	319.47	2000.00	2100.00	2200.00	2400.00	5000.00	False	int64	
number_open_credit_lines	16671.0	5.00	2.25	0.00	3.00	5.00	6.00	15.00	False	int64	
number_open_loans	16671.0	2.03	1.43	0.00	1.00	2.00	3.00	9.00	False	int64	
number_90_days_past_due	16671.0	0.10	0.32	0.00	0.00	0.00	0.00	3.00	False	int64	
number_charged_off	16671.0	0.10	0.32	0.00	0.00	0.00	0.00	3.00	False	int64	
score1	16671.0	669.90	98.01	500.00	585.00	669.00	756.00	839.00	False	int64	
score2	16671.0	669.49	98.61	500.00	583.00	670.00	754.00	839.00	False	int64	
target	16671.0	0.10	0.30	0.00	0.00	0.00	0.00	1.00	False	int64	
age	16671.0	58.44	20.58	23.00	41.00	58.00	76.00	193.00	False	int32	
total_debt	16671.0	765.01	291.69	62.30	556.40	734.38	941.70	2663.30	False	float64	
number_accounts	16671.0	7.03	2.66	0.00	5.00	7.00	9.00	19.00	False	int64	
avg_loan	16671.0	131.26	97.10	0.00	74.74	107.93	157.12	1895.99	False	float64	
90_days_pct	16671.0	0.02	0.07	0.00	0.00	0.00	0.00	2.00	False	float64	
charged_off_pct	16671.0	0.02	0.06	0.00	0.00	0.00	0.00	2.00	False	float64	
avg_score	16671.0	669.70	69.95	502.00	619.00	670.00	720.00	839.00	False	float64	
score_change	16671.0	-0.40	138.15	-337.00	-99.00	0.00	97.00	338.00	False	int64	

Exploratory data analysis s results

- Description of the data
- Unbalanced Terget distribution
- Features Distributions
- No clear segmentation → Weak correlations

Evaluating if both samples were drawn from the same population

- Kolmogorov-Smirnov tests for 2 samples
 - H0: Both samples share the same distribution
 - Reject if p-val >= 0.05
- Testing and objective data come from the same population
- All variables for both sets were drawn from the same distribution

 Same populations

What can be done with this dataset? Early Warnings for Collections (EWC) tool

- Timing mistery: only 25% of ages below 41 years
- Not useful data the evaluate loan applications
- Useful to track loans and predict if an already existing loan is likely to default any time soon

Additional variables to consider

- Number of loans with stride (internal data)
- Loan terms (internal data
- Initial date (internal data)
- •Information about the program to attend (require acceptance letter during the application.
- •GPA (require transcripts of previous academic levels and follow-up after graduation
- Gym membership (ask during application)
- Loan percentage repaid (internal data):

Data cleaning

- Filling missing values (-1)
- Fixing ages
- Standarization

		Table 3: Summary after corrections								
	count	mean	std	min	25%	50%	75%	max	Missing vals	Variable type
number_dependants	16671.0	0.50	0.71	0.00	0.00	0.00	1.00	6.00	False	int64
$credit_utilization$	16671.0	0.05	0.05	0.00	0.01	0.03	0.07	0.54	False	float64
debt_to_income_ratio	16671.0	0.33	0.12	0.03	0.25	0.33	0.41	0.80	False	float64
monthly_income	16671.0	2289.90	319.47	2000.00	2100.00	2200.00	2400.00	5000.00	False	int64
number_open_credit_lines	16671.0	5.00	2.25	0.00	3.00	5.00	6.00	15.00	False	int64
number_open_loans	16671.0	2.03	1.43	0.00	1.00	2.00	3.00	9.00	False	int64
target	16671.0	0.10	0.30	0.00	0.00	0.00	0.00	1.00	False	int64
age	16671.0	58.40	20.47	23.00	41.00	58.00	76.00	94.00	False	int64
avg_loan	16671.0	131.26	97.10	0.00	74.74	107.93	157.12	1895.99	False	float64
90_days_pct	16671.0	0.02	0.07	0.00	0.00	0.00	0.00	2.00	False	float64
charged_off_pct	16671.0	0.02	0.06	0.00	0.00	0.00	0.00	2.00	False	float64
avg_score	16671.0	669.70	69.95	502.00	619.00	670.00	720.00	839.00	False	float64

Model creation : contextualizing concepts

- Positives observation: Defaulted loans (Contain the target we want to predict)
- Negatives observations: Non-defaulted loans (Doesn't contain the target we want to predict)

Evaluation metrics

- Accuracy: How is the model predicting both defaulters and non-defaulters?
- Precision: What percentage of the default cases predicted were actual defaulters?
- Recall: What percentage of the actual defaulters was the model able to predict?
- Best evaluation metric → Recall

	Table 4. Possible outcomes						
	Predicted Non-default	Predicted Default					
Non-default	True negative	False positive					
Default	False negative	True positive					

Model creation: Splitting data and null model

- 80% of the observations (13,336) will be used for training purposes.
- 20% (3,335) of the observations for testing purposes.
- •Stratifying: keeping default proportions
- Null model no defaulters

Model creation: PyCaret

PICARET

- PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.
- Best model → Decision Tree

•

Table 6. Summary of models

5		Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
	dt	Decision Tree Classifier	0.8134	0.5228	0.1579	0.1373	0.1464	0.0425	0.0428	0.0210
	nb	Naive Bayes	0.8860	0.7197	0.0358	0.2121	0.0605	0.0289	0.0446	0.0070
	knn	K Neighbors Classifier	0.8885	0.5852	0.0316	0.1945	0.0540	0.0270	0.0399	0.0730
	qda	Quadratic Discriminant Analysis	0.8881	0.7190	0.0253	0.1935	0.0440	0.0181	0.0315	0.0080
	xgboost	Extreme Gradient Boosting	0.8884	0.7054	0.0253	0.1750	0.0439	0.0184	0.0289	0.2990
	lightgbm	Light Gradient Boosting Machine	0.8959	0.7181	0.0168	0.3655	0.0318	0.0212	0.0553	0.1280
	catboost	CatBoost Classifier	0.8969	0.7248	0.0095	0.3683	0.0183	0.0122	0.0415	1.6990
	rf	Random Forest Classifier	0.8975	0.6958	0.0063	0.4200	0.0124	0.0084	0.0381	0.2710
	gbc	Gradient Boosting Classifier	0.8975	0.7365	0.0042	0.2000	0.0082	0.0051	0.0163	0.3570
	et	Extra Trees Classifier	0.8964	0.6888	0.0042	0.2083	0.0082	0.0030	0.0131	0.1980
	lr	Logistic Regression	0.8982	0.7418	0.0000	0.0000	0.0000	0.0000	0.0000	0.6440
	svm	SVM - Linear Kernel	0.8982	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0080
	ridge	Ridge Classifier	0.8982	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0050
	ada	Ada Boost Classifier	0.8977	0.7286	0.0000	0.0000	0.0000	-0.0011	-0.0049	0.1150
	lda	Linear Discriminant Analysis	0.8981	0.7380	0.0000	0.0000	0.0000	-0.0002	-0.0011	0.0080
	dummy	Dummy Classifier	0.8982	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0040

Creating and understanding the model

Tabla	7	Cumman	of models
Table	7.	Summar	y or models

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.8298	0.5552	0.2105	0.1923	0.2010	0.1060	0.1061
1	0.8148	0.5049	0.1158	0.1100	0.1128	0.0095	0.0095
2	0.8030	0.5263	0.1789	0.1382	0.1560	0.0465	0.0470
3	0.8126	0.5130	0.1368	0.1226	0.1294	0.0247	0.0248
4	0.8041	0.5362	0.2000	0.1508	0.1719	0.0633	0.0641
5	0.8199	0.5124	0.1263	0.1237	0.1250	0.0247	0.0247
6	0.7899	0.5144	0.1684	0.1203	0.1404	0.0245	0.0249
7	0.8178	0.5299	0.1684	0.1495	0.1584	0.0567	0.0568
8	0.8264	0.5160	0.1263	0.1319	0.1290	0.0327	0.0327
9	0.8156	0.5194	0.1474	0.1333	0.1400	0.0370	0.0371
Mean	0.8134	0.5228	0.1579	0.1373	0.1464	0.0425	0.0428
Std	0.0112	0.0140	0.0309	0.0220	0.0247	0.0262	0.0263

Dashboard

Testing the model

EWC to alert current portfolio defaults : See report

10. EWC to alert current portfolio defaults

Based on our overall analysis we can expect a similar outcome when evaluating the target data provided of the current portfolio. The predictions can be found in the README file of the main repository, or clicking here

Projecting current portfolio

The current portfolio is composed of 4,168 open loans. The model is alerting about 489 potential defaults (11.73% of the total portfolio). However, these alerts have a 20% precision, meaning that around 391 are false alerts and 98 are real defaults. Additionally, since the model is able to correctly predict 20% of the real potential defaulters, we could approximate the total number of defaulters that the current portfolio has, which is around 489 (98/0.2), around 11% of the total portfolio. Coincidently, because the precision and recall values are very close, the model will be able to predict correctly the number of potential defaulters.

On the other hand, the model will not send alerts for 3,679 loans (88.27% of the total portfolio), out of which 391 (489 - 98) are potential defaulters (11% of the non-alerts).

Case scenario

The proposal is simple, with the results described in the last section, the collections team can better allocate their resources in the following way.

The model will divide the total portfolio in 2 groups:

- Low maintenance portfolio (3,679 loans): These loans have a probability of default of 11% and can be treated with standard prevention.
- High maintenance portfolio (489 loans); These loans have a probability of default of 20%, which is almost twice that of the low maintenance group. This loans require intensive follow-up and attention.

Assumptions:

- Assume a scenario in which a collections firm provider offers intensive follow-ups, and Stride has budget to get up to 500 of this specialized follow-ups.
- Traditional standard prevention has a recovery rate of 20%, while intensive follow-up has a recovery rate of 50%.
- The cost of a standard prevention is USD 100 per loan, and intensive follow-up costs USD300.
- Using the data presented at the begining about the loan market in the U.S. we can estimate that a portfolio with 4,168 student loans to be around USD92.5 million (4,168 37,000 0.6) (total loans avg student loan outstanding proportion)

Projections (See Case scenario of collections dashboard)

Using all information available we get:

- Total portfolio: 4,168
- Model will produce 489 alerts
- Out of the 489 alerts, 98 will be true
- The portfolio contains 489 real defaulters, hence it also contains 3,679 good loans
- The probability that a randomly picked loan in the non-alert group is a default is 11%
- The probability that a randomly picked loan in the non-alert group is a good loan is 89%
- The probability that a randomly picked loan in the alert group is a default is 20%
- The probability that a randomly picked loan in the alert group is a good loan is 80%

Case summary figure shows the percentage of charged off % that the portfolio would have depending on what % of the 500 intense follow ups are allocated to the alert group.

EWC to alert current portfolio defaults : See report

Case Summary

Scenario		Random			Even				Optimal
Default resou	0%	10%	20%	40%	50%	60%	80%	90%	100%
Charged-off 9	8.99%	8.96%	8.93%	8.86%	8.83%	8.80%	8.73%	8.70%	8.67%

Outcome	Reduction poin	Imrpovement		
8.673%	-0.284	-3.175%		
Avg loan	\$37,000			
Outstanding	60%			
Portfolio level	\$92,529,600			
Portfolio saved	\$2,937,601			

Optimization intense follow-ups 9.05% 9.00%

