

Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação Departamento de Sistemas e Energia

EA721A – Princípios de Controle e Servomecanismos

Segundo Período de 2021 – Professor: Paulo Valente

Tarefa 6 – Data-Limite: 08/10/2021

Esta tarefa é **individual**, devendo ser discutida apenas com o professor da disciplina. A resolução deve ser submetida (por *upload*, via *Moodle*) como um **único arquivo** pdf até a data-limite agendada. Recomendamos que a resolução, manuscrita, seja feita em folhas de papel sem pauta, a lápis ou à caneta, mas, se a lapis, com constraste suficiente para permitir fácil leitura. Identifique-se no preâmbulo da resolução, assine-a, e ao fazer a digitalização do documento, certifique-se que as folhas estão legíveis e na ordem de apresentação. Certifique-se que o arquivo pdf foi enviado para avaliação.

Tarefa 6

Exercício 1. Considere C(s) = k > 0, P(s) = (s-1)/(s+4) e F(s) = 1. (Na Lista de Exercícios 2, k > 0 e P(s) = (s+1)/(s-4).) Esboce o Diagrama de Nyquist (curva C_G) do sistema. Por meio do Critério de Nyquist, determine os valores de k para os quais o sistema em malha fechada é estável.

Exercício 2. (Lista de Exercícios 2) Assuma que o ganho de malha $G_0(s)$ de fase mínima de um sistema de controle 1-GDL é tal que que as margens de ganho e de fase do sistema são MG = 20 dB e MF = 90^o , com frequência de cruzamento com 0 db em $\omega_1=0.5$ rad/s. Um atraso de transporte de $\tau>0$ segundos torna o ganho de malha igual a $G(s)=G_0(s)e^{-\tau s}$. Para que valores de τ o sistema em malha fechada permanecerá estável?