

1.

$$\varphi(14553) = \varphi(3 \cdot 3 \cdot 3 \cdot 7 \cdot 7 \cdot 11) = 14553 \times \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{7}\right) \times \left(1 - \frac{1}{11}\right) = 7560$$

2.

$$5^82 \mod 24$$

Перевіримо чи є 5 та 24 взаємнопростими (знайдемо $\gcd(5,24)$): $24=5\cdot 4+4,\quad 5=4\cdot 1,\quad 4=1\cdot 4+0,\quad \gcd(5,24)=1$

q_i		4	1	
u_i	0	1	-4	5
v_i	1	0	1	-1

Тепер порахуємо: $\varphi(24) = \varphi(2 \cdot 2 \cdot 2 \cdot 3) = 24 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) = 8.$ Отже $5^{82} = 5^{80} \cdot 25 \mod 24 = 1 \mod 4$

3.

$$\begin{cases} x = 2 \mod 5 \\ x = 8 \mod 13 \\ x = 2 \mod 9 \\ x = 5 \mod 7 \end{cases}$$

Перевіримо чи усі n_i попарно взаємнопрості:

 $\gcd(5,13)=1,\gcd(5,9)=1,\gcd(5,7)=1,\gcd(13,9)=1,\gcd(13,7)=1,\gcd(9,7)=1$ Знайдемо $M\colon M=5\cdot 13\cdot 9\cdot 7=4095.$ Отже $M_1=819,M_2=315,M_3=455,M_4=585$

	$ \begin{array}{c c c} \gcd(5,819) = 1 \\ \hline q_i & 163 & 1 \\ \hline u_i & 0 & 1 & -163 & 164 \end{array} $							
q_i		163	1					
u_i	0	1	-163	164				
v_i	1	0	1	-1				

$\gcd(13,315) = 1$								
q_i		24	4					
u_i	0	1	-24	97				
v_i	1	0	1	-4				

$\gcd(9,455) = 1$									
q_i		50	1	1					
u_i	0	1	-50	51	-101				
v_i	1	0	1	-1	2				

Порахуємо N_i : $N_1=819^{-1}\mod 5=-1, N_2=315^{-1}\mod 13=-4,$ $N_3=455^{-1}\mod 9=2, N_4=585^{-1}\mod 7=2.$ Знайдемо x за формулою $x=a_1N_1m_1+\cdots+a_nN_nM_n: x=-4048\mod 4095=47$

4.

$$a = x^2 \mod 13$$

 $\frac{p-1}{2} = \frac{13-1}{2} = 6$. Тобто 13 має 6 квадратичних лишків.

x	1	2	3	4	5	6	7	8	9	10	11	12
$x^2 \mod 13$	1	4	9	3	12	10	10	12	3	9	4	1

З таблиці легко бачити, що 1,3,4,9,10,12 є квадратичними лишками 13.

5.

$$\left(\frac{18}{53}\right) = ?$$

$$\left(\frac{18}{53}\right) = \left(\frac{2}{53}\right) \times \left(\frac{3}{53}\right) \times \left(\frac{3}{53}\right) = -\left(\frac{9}{53}\right) = -1$$

Отже 18 не є квадратичним лишком 53.

6.

$$\left(\frac{2}{8k+5}\right) = -1$$

$$\left(\frac{2}{8k+5}\right)=(-1)^{\left(\frac{(8k+5)^2-1}{8}\right)}=(-1)^{8k^2+10x+3}$$
. Розглянемо $8k^2+10x+3$: $8k^2$ та

10k завжди будуть парними, адже добуток парного числа з будь-яким іншим числом є парне число. Тобто $(8k^2+10x+3) \mod 2 = 8k^2 \mod 2 + 10k \mod 2 + 3 \mod 2 = 1$. Отже $(-1)^{8k^2+10x+3} = -1$. Іншими словами 2 є квадратичним нелишком за модулем p, де p=8k+5.