Supporting Information 1:Paraments

The simulation of interface characteristics and charge transfer dynamics for layered electrodes using cascade capacitance in supercapacitors by COMSOL software

Yixin Luo, Dongsheng Chen*, Chen Zhang, Jinkun Yang, Tian Gao*, Xiaojing Luo*

College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, P. R. China

* Corresponding author

E-mail: cds78@shiep.edu.cn

Contents

1.Parameters of activated carbon as negative electrode	S2
2.Parameters of KOH solution as electrolyte	S2
3.Parameters of graphene oxide as positive electrode	S2
4.Parameters of ZnMn ₂ O ₄ as positive electrode	S3
5.Parameters of cyclic voltammetry test	S3
6.Electrolyte parameters preset by COMSOL software	S4
7.Electrode parameters preset by COMSOL software	S4
8.Second current distribution parameters preset by COMSOL software	S5

1.Parameters of activated carbon as negative electrode

Property	Variable	Value	Unit	Property group
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij = 0	32.4[S/m]	S/m	Basic
Electrolyte conductivity	sigmal_iso ; sigmalii = sigmal_iso, sigmalij = 0	80[S/m]	S/m	Electrolyte conductivity
Diffusion coefficient	D_iso ; Dii = D_iso, Dij = 0	3.9e-14[m^2/s]	m²/s	Basic
Density	rho	2260[kg/m^3]	kg/m³	Basic
Equilibrium potential	Eeq	Eeq_int1(soc)	V	Equilibrium potential
Temperature derivative of equilibrium potential	dEeqdT	0[V/K]	V/K	Equilibrium potential
Reference concentration	cEeqref	def.csmax	mol/m³	Equilibrium potential
Maximum electrode state of charge	socmax	elpot.Eeq_inv(E_min)	1	Operational electrode state of charge
Minimum electrode state of charge	socmin	elpot.Eeq_inv(E_max)	1	Operational electrode state of charge
Maximum operational potential	E_max	4.2[V]	V	Operational electrode state of charge
Minimum operational potential	E_min	0[V]	V	Operational electrode state of charge
Equilibrium concentration	csEq	def.csmax*elpot.Eeq_inv(V)	mol/m³	Equilibrium concentration

2.Parameters of KOH solution as electrolyte

Property	Variable	Value	Unit	Property group
Electrolyte conductivity	sigmal_iso ; sigmalii = sigmal_iso, sigmalij = 0	(A*M+B*M^2+C*M*T_K+D*M/T_K+E*M^3+F*M^2*T_K^2)*1[S/cm]	S/m	Electrolyte conductivity
Diffusion coefficient	D_iso ; Dii = D_iso, Dij = 0	3.75e-9[m^2/s]	m²/s	Basic
Density	rho	(A_rho(T_degC)*M_reg^2+B_rho(T_degC)*M_reg+C_rho(T_degC))*1[kg/m^3]	kg/m³	Basic
Transport number	transpNum	0.22	1	Species properties
Activity dependence	fcl	2	1	Species properties

3. Parameters of graphene oxide as positive electrode

Property	Variable	Value	Unit	Property group
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij = 0	1000[S/m]	S/m	Basic
Electrolyte conductivity	sigmal_iso ; sigmalii = sigmal_iso, sigmalij = 0	100[S/m]	S/m	Electrolyte conductivity
Young's modulus	E	E_int(c/csmax)	Pa	Basic
Poisson's ratio	nu	nu_int(c/csmax)	1	Basic
Diffusion coefficient	D_iso ; Dii = D_iso, Dij = 0	1.4523e-13*exp(68025.7/8.314*(1/(T_ref/1[K])-1/(T2/1[K])))[m^2/s]	m²/s	Basic
Thermal conductivity	k_iso ; kii = k_iso, kij = 0	1[W/(m*K)]	W/(m·K)	Basic
Heat capacity at constant pressure	Ср	750[J/(kg*K)]	J/(kg·K)	Basic
Density	rho	2300[kg/m^3]	kg/m³	Basic
Equilibrium potential	Eeq	Eeq_int1(soc)+dEeqdT_int1(soc)*(T-298[K])	V	Equilibrium potential
Temperature derivative of equilibrium potential	dEeqdT	dEeqdT_int1(soc)	V/K	Equilibrium potential
Reference concentration	cEeqref	def.csmax	mol/m³	Equilibrium potential
Maximum electrode state of charge	socmax	elpot.Eeq_inv(E_min)	1	Operational electrode state of charge
Minimum electrode state of charge	socmin	elpot.Eeq_inv(E_max)	1	Operational electrode state of charge
Maximum operational potential	E_max	4.2[V]	V	Operational electrode state of charge
Minimum operational potential	E_min	0[V]	V	Operational electrode state of charge
Volumetric strain	dvol	dVOLdSOL(c/def.csmax)	1	Intercalation strain
Equilibrium concentration	csEq	def.csmax*elpot.Eeq_inv(V)	mol/m³	Equilibrium concentration

4.Parameters of ZnMn₂O₄ as positive electrode

**	Property	Variable	Value	Unit	Property group
\subseteq	Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij = 0	1000[S/m]	S/m	Basic
\subseteq	Electrolyte conductivity	sigmal_iso ; sigmalii = sigmal_iso, sigmalij = 0	100[S/m]	S/m	Electrolyte conductivity
	Young's modulus	E	E_int(c/csmax)	Pa	Basic
	Poisson's ratio	nu	nu_int(c/csmax)	1	Basic
	Diffusion coefficient	D_iso ; Dii = D_iso, Dij = 0	1.4523e-13*exp(68025.7/8.314*(1/(T_ref/1[K])-1/(T2/1[K])))[m^2/s]	m²/s	Basic
	Thermal conductivity	k_iso ; kii = k_iso, kij = 0	1[W/(m*K)]	W/(m-K)	Basic
	Heat capacity at constant pressure	Ср	750[J/(kg*K)]	J/(kg·K)	Basic
	Density	rho	2300[kg/m^3]	kg/m³	Basic
	Equilibrium potential	Eeq	Eeq_int1(soc)+dEeqdT_int1(soc)*(T-298[K])	V	Equilibrium potential
	Temperature derivative of equilibrium potential	dEeqdT	dEeqdT_int1(soc)	V/K	Equilibrium potential
	Reference concentration	cEeqref	def.csmax	mol/m ³	Equilibrium potential
	Maximum electrode state of charge	socmax	elpot.Eeq_inv(E_min)	1	Operational electrode state of charge
	Minimum electrode state of charge	socmin	elpot.Eeq_inv(E_max)	1	Operational electrode state of charge
	Maximum operational potential	E_max	4.2[V]	V	Operational electrode state of charge
	Minimum operational potential	E_min	0[V]	V	Operational electrode state of charge
	Volumetric strain	dvol	dVOLdSOL(c/def.csmax)	1	Intercalation strain
	Equilibrium concentration	csEq	def.csmax*elpot.Eeq_inv(V)	mol/m³	Equilibrium concentration

5.Parameters of cyclic voltammetry test

≪ Name	Expression	Value	Description
V_min	0[V]	0 V	
V_max	1.6[V]	1.6 V	
V	0.05[V/s]	0.05 V/s	Scanning rate
tH	(V_max-V_min)/v	32 s	half-period

6.Electrolyte parameters preset by COMSOL software

Name	Expression	Unit	Description	Selection	Details
cd.sigmalrr	ionc.sigmal11	S/m	Electrolyte conductivity, rr-component	Domain 2	Meta
cd.sigmalphir	ionc.sigmal21	S/m	Electrolyte conductivity, phir-component	Domain 2	Meta
cd.sigmalzr	ionc.sigmal31	S/m	Electrolyte conductivity, zr-component	Domain 2	Meta
cd.sigmalrphi	ionc.sigmal12	S/m	Electrolyte conductivity, rphi-component	Domain 2	Meta
cd.sigmalphiphi	ionc.sigmal22	S/m	Electrolyte conductivity, phiphi-compon	Domain 2	Meta
cd.sigmalzphi	ionc.sigmal32	S/m	Electrolyte conductivity, zphi-component	Domain 2	Meta
cd.sigmalrz	ionc.sigmal13	S/m	Electrolyte conductivity, rz-component	Domain 2	Meta
cd.sigmalphiz	ionc.sigmal23	S/m	Electrolyte conductivity, phiz-component	Domain 2	Meta
cd.sigmalzz	ionc.sigmal33	S/m	Electrolyte conductivity, zz-component	Domain 2	Meta
cd.Qh	-cd.llr*philr-cd.llz*philz	W/m³	Total power dissipation density	Domain 2	+ operation
cd.llMag	sqrt(realdot(cd.llr,cd.llr)+realdot(cd.llphi,cd.llphi)+realdot(cd.llz,cd.llz))	A/m ²	Electrolyte current density magnitude	Domain 2	
cd.Qli	0	A/m³	Current source	Domain 2	+ operation
cd.tEr	-philTr	V/m	Tangential electric field, r-component	Boundaries 4–7	
cd.tEphi	0	V/m	Tangential electric field, phi-component	Boundaries 4–7	
cd.tEz	-philTz	V/m	Tangential electric field, z-component	Boundaries 4–7	
cd.Er	-philr	V/m	Electric field, r-component	Domain 2	
cd.Ephi	0	V/m	Electric field, phi-component	Domain 2	
cd.Ez	-philz	V/m	Electric field, z-component	Domain 2	
cd.ilr	-cd.sigmalrr*philr-cd.sigmalrz*philz	A/m ²	Electrolyte current density, r-component	Domain 2	+ operation
cd.ilphi	-cd.sigmalphir*philr-cd.sigmalphiz*philz	A/m ²	Electrolyte current density, phi-compone	Domain 2	+ operation
cd.ilz	-cd.sigmalzr*philr-cd.sigmalzz*philz	A/m ²	Electrolyte current density, z-component	Domain 2	+ operation
cd.llr	cd.ilr	A/m²	Electrolyte current density vector, r-com	Domain 2	
cd.llphi	cd.ilphi	A/m²	Electrolyte current density vector, phi-co	Domain 2	
cd.llz	cd.ilz	A/m²	Electrolyte current density vector, z-com	Domain 2	
cd.phil	phil	V	Electrolyte potential	Domain 2	
cd.sigmaleffrr	cd.sigmalrr	S/m	Electrolyte conductivity, rr-component	Domain 2	
cd.sigmaleffphir	cd.sigmalphir	S/m	Electrolyte conductivity, phir-component	Domain 2	
cd.sigmaleffzr	cd.sigmalzr	S/m	Electrolyte conductivity, zr-component	Domain 2	

7.Electrode parameters preset by COMSOL software

Name	Expression	Unit	Description
cd.ivtot	cd.ivdl	A/m³	Electrode reaction source
cd.av_dl_pce1_pdl1	1000000[1/m]	1/m	Double-layer area
cd.idl	0	A/m ²	Double-layer current density
cd.ivdl	cd.idl*cd.av_dl_pce1_pdl1	A/m³	Double-layer current source
cd.itot	cd.idl	A/m²	Total interface current density

8.Second current distribution parameters preset by COMSOL

software

Name	Expression	Unit	Description
domflux.philr	2*cd.llr*pi*r*cd.d	A/m	Domain flux, r-component
domflux.philz	2*cd.llz*pi*r*cd.d	A/m	Domain flux, z-component
domflux.phisr	2*cd.lsr*pi*r*cd.d	A/m	Domain flux, r-component
domflux.phisz	2*cd.lsz*pi*r*cd.d	A/m	Domain flux, z-component
cd.d	1	1	Out-of-plane geometry extension
cd.bndflux_phil	if(r>0.001/sqrt(sqrt(mean(emetric2))),-0.5*dflux_spatial(phil)/(pi*r),NaN)	A/m ²	Boundary flux
cd.bndflux_phil	if(r>0.001/sqrt(sqrt(mean(emetric2))),0.25*(uflux_spatial(phil)-dflux_spatial(phil))/(pi*r),NaN)	A/m²	Boundary flux
cd.nll	cd.bndflux_phil/cd.d	A/m²	Normal electrolyte current density
cd.nR	nR	1	Normal vector, R-component
cd.nPHI	0	1	Normal vector, PHI-component
cd.nZ	nZ	1	Normal vector, Z-component
cd.nR	dnR	1	Normal vector, R-component
cd.nPHI	0	1	Normal vector, PHI-component
cd.nZ	dnZ	1	Normal vector, Z-component
cd.bndflux_phis	if(r>0.001/sqrt(sqrt(mean(emetric2))),-0.5*dflux_spatial(phis)/(pi*r),NaN)	A/m ²	Boundary flux
cd.bndflux_phis	if(r>0.001/sqrt(sqrt(mean(emetric2))),-0.5*uflux_spatial(phis)/(pi*r),NaN)	A/m²	Boundary flux
cd.bndflux_phis	if(r>0.001/sqrt(sqrt(mean(emetric2))),0.25*(uflux_spatial(phis)-dflux_spatial(phis))/(pi*r),NaN)	A/m²	Boundary flux
cd.nls	cd.bndflux_phis/cd.d	A/m²	Normal electrode current density
cd.nil	0	A/m²	Inward electrolyte current density
cd.nis	0	A/m ²	Inward electrode current density
cd.Qsi	0	A/m³	Current source
cd.mulstopcond	1	1	Multiplicative stop condition
cd.stopcond	cd.mulstopcond	1	Solver stop condition
cd.Ect	NaN	V	Electrode potential
cd.nr	dnr		Normal vector, r-component
cd.nphi	0		Normal vector, phi-component
d.nz	dnz		Normal vector, z-component
cd.nr	dnr		Normal vector, r-component
d.nphi	0		Normal vector, phi-component
cd.nz	dnz		Normal vector, z-component
cd.nr	dnr		Normal vector, r-component