Rayon de convergence

Exercice 1 ★★

Soient $\sum_{n\in\mathbb{N}}a_nz^n$ et $\sum_{n\in\mathbb{N}}b_nz^n$ des séries entières de rayon de convergence respectifs R_a et

 R_b . On note R le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} (a_n + b_n) z^n$. On suppose de plus que $a_n b_n = 0$ pour tout $n \in \mathbb{N}$. Montrer que $R = \min(R_a, R_b)$.

Exercice 2 ★★★

Règle de Cauchy

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \ell \in \mathbb{R}_+ \cup \{+\infty\}$. Déterminer le rayon de convergence de la série $\sum_{n \in \mathbb{N}} a_n z^n$.

Exercice 3 ***

Soit $(a_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, on pose $b_n = \frac{a_n}{\sum_{k=0}^n a_k}$. Comparer les rayons des séries entières $\sum_{n \in \mathbb{N}} a_n z^n$ et $\sum_{n \in \mathbb{N}} b_n z^n$.

Exercice 4 **

Mines-Ponts MP 2016

Soit q > 0, on pose $a_n = q^{\sqrt{n}}$ si n est un carré d'entier et $a_n = 0$ sinon. Déterminer le rayon de convergence de la série entière $\sum_{n \in \mathbb{N}} a_n x^n$.

Exercice 5 ★

Règle de d'Alembert

Déterminer le rayon de convergence des séries entières suivantes.

$$1. \sum \frac{(-1)^n z^n}{\sqrt{n}}$$

3.
$$\sum {2n \choose n} z^n$$

$$2. \sum 2^n \ln(n) z^n$$

$$4. \sum (n+2^n i)z^n$$

Exercice 6 ★★

Déterminer le rayon de convergence des séries entières suivantes.

- 1. $\sum \cos(n)z^n$
- $2. \sum \frac{\sin n}{n} z^n$
- 3. $\sum \tan\left(\frac{n\pi}{7}\right)z^n$
- **4.** $\sum_{n \in \mathbb{N}^*} d_n z^n$ où d_n est le nombre de diviseurs positifs de n
- 5. $\sum a_n z^n$ où a_n est la $n^{\text{ème}}$ décimale de π

Exercice 7 ★★

Séries lacunaires

Déterminer le rayon de convergence des séries entières suivantes.

1.
$$\sum z^{n^2}$$

2.
$$\sum 2^n z^{2^n}$$

3.
$$\sum \frac{n^n}{n!} z^{3n}$$

Calcul de sommes de séries entières

Exercice 8 ★

Prouver la convergence et calculer la somme de la série suivante $\sum_{n\geq 0} (n+1)3^{-n}$.

Exercice 9 ★★★

ENS (non PSI) PC 2019

On pose E l'ensemble des suites à valeurs réelles de limite nulle et

$$f_a(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Montrer que:

$$\forall a \in E, \exists \varphi(a) \in E, \forall x \in]0, 1[, f_{\varphi(a)}(x) = \frac{1}{x} \int_0^x \frac{f_a(t)}{1-t} dt$$

Exercice 10 ★★

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{4}} \tan^n t \, dt$.

- 1. Déterminer la limite de la suite (a_n) .
- **2.** Quel est le sens de variation de (a_n) ?
- 3. Déterminer une relation simple entre a_n et a_{n+2} . En déduire un équivalent de (a_n) .
- **4.** On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$. Déterminer le rayon de convergence R de cette série entière.
- 5. Déterminer f(x) pour $x \in]-R, R[$.

Exercice 11 ★★

Déterminer le rayon de convergence et la somme de $f(x) = \sum_{n=0}^{+\infty} \cos\left(n\frac{\pi}{2}\right) x^n$.

Exercice 12 ★★ CCP MP 2018

- 1. Montrer que arctan est développable en série entière sur]-1,1[.
- **2.** On considère la série entière $\sum_{k \in \mathbb{N}^*} \frac{(-1)^{k+1}}{(2k+1)(2k-1)} x^{2k+1}$. Donner son rayon de convergence R. On note f(x) la somme.
- **3.** Donner une expression simple de f' et de f.
- **4.** Que peut-on dire de la convergence sur [-R, R]?
- 5. Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 1}.$

Exercice 13 ***

Mines-Ponts MP 2018

On note $a_n = \int_0^1 \frac{\mathrm{d}t}{(2+t^2)^{n+1}}$ pour $n \in \mathbb{N}$.

- 1. Donner le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} a_n x^n$.
- 2. Calculer la somme de cette série entière sur son domaine de convergence.

Exercice 14 ★

Petites Mines PC 2017

Déterminer le rayon de convergence et la somme de la série entière $\sum_{n \in \mathbb{N}} \frac{n^2 + 4n - 1}{n + 2} x^n$.

Exercice 15 ★★

- 1. Déterminer le rayon de convergence R de la série entière $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{2n+1}$.
- **2.** Déterminer f(x) pour $x \in]-R, R[$.

Exercice 16

CCINP MP 2022

Déterminer le rayon de convergence et la somme des séries entières suivantes.

- 1. $\sum_{n\geq 1} nx^n;$
- 2. $\sum_{n>1} 2nx^{2n}$;
- 3. $\sum_{n\geq 1} 2n^{(-1)^n} x^{2n}$.

Etude au bord du disque de convergence

Exercice 17 ★★ CCP MP

On note f(x) la somme de la série entière $\sum_{n\in\mathbb{N}^*}\sin\left(\frac{1}{\sqrt{n}}\right)x^n$.

- 1. Déterminer le rayon de convergence R de cette série entière.
- **2.** Y a-t-il convergence en R et -R?
- 3. Déterminer $\lim_{x\to 1^-} f(x)$.
- **4.** Montrer que $\lim_{x \to 1^{-}} (1 x) f(x) = 0$.

Exercice 18 **

CCP MP 2018

Soit $\beta \in \mathbb{R}$. Pour $n \in \mathbb{N}^*$, on pose $r_n = \sum_{k=1}^n \frac{1}{k^{\beta}}$ et $b_n = \frac{1}{r_n}$.

- 1. Déterminer le rayon de convergence R de la série entière $\sum b_n x^n$.
- **2.** Étudier la convergence de la série pour x = R et x = -R.

Exercice 19 ★★★

Soit (a_n) une suite de premier terme $a_0 > 0$ et telle que $a_{n+1} = \ln(1 + a_n)$ pour tout $n \in \mathbb{N}$.

- 1. Déterminer le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} a_n z^n$.
- 2. Étudier la convergence au bord de l'intervalle de convergence.

Exercice 20 ★★★

CCINP (ou CCP) MP 2021

1. Déterminer le rayon de convergence de $\sum_{n\geq 1} (-1)^n \ln(n) x^n$.

On note
$$S(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(n) x^n$$
.

2. Montrer que

$$\forall x \in]-1,1[, S(x) = \frac{1}{1+x} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1}$$

3. En déduire que

$$\lim_{x \to 1} S(x) = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

4. Déterminer $\lim_{x\to 1} S(x)$.

Exercice 21 ★★

CCP MP

Soit (a_n) la suite définie par $a_0 \in \mathbb{R}_+^*$ et $a_{n+1} = \ln(1 + a_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Déterminer la limite de (a_n) .
- 2. Déterminer le rayon de convergence de la série entière $\sum a_n z^n$.
- 3. Déterminer le domaine de définition de $x \in \mathbb{R} \mapsto \sum_{n=0}^{+\infty} a_n x^n$.

On pourra déterminer la limite de $\frac{1}{a_{n+1}} - \frac{1}{a_n}$.

Exercice 22 ★★

Démontrer que $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$

Exercice 23 ★★

Soient $\sum a_n$ et $\sum b_n$ deux séries convergentes. On suppose que leur produit de Cauchy $\sum_{n\in\mathbb{N}} c_n \text{ converge.}$

Montrer que
$$\left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} c_n$$
.

Montrer que $\left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} c_n$. **Remarque.** On ne suppose pas que $\sum_{n\in\mathbb{N}} a_n$ et $\sum_{n\in\mathbb{N}} b_n$ convergent absolument.

Exercice 24 ★★★★

On considère un réel $\theta \in]0, 2\pi[$.

- **1.** On pose $g: r \mapsto \sum_{n=1}^{+\infty} \frac{r^n e^{in\theta}}{n}$. Justifier que g est définie sur]-1,1[.
- **2.** Justifier que g et dérivable sur]-1,1[. Calculer g'(r).
- 3. En déduire g(r) pour $r \in]-1,1[$.
- **4.** Justifier que $\sum \frac{e^{in\theta}}{n}$ converge.
- 5. En déduire que

$$\sum_{n=1}^{+\infty} \frac{e^{in\theta}}{n} = -\ln\left(2\sin\frac{\theta}{2}\right) + i\frac{\pi - \theta}{2}$$

Exercice 25 ***

Justifier la convergence et déterminer la somme de la série $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{3n+1}$.

Exercice 26 ★

Justifier la convergence et déterminer la somme de la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$.

Equations différentielles

Exercice 27 ★★

Soit $f: x \in \mathbb{R} \mapsto \operatorname{sh}(\arcsin x)$.

- 1. Déterminer une équation différentielle linéaire d'ordre 2 vérifiée par f.
- 2. En déduire que f est développable en série entière en 0 et déterminer ce développement en série entière.

Exercice 28 ★★

Soit
$$f: x \in]-1,1[\mapsto \frac{\arcsin x}{\sqrt{1-x^2}}$$
.

- 1. Justifier que f est développable en série entière.
- **2.** Montrer que f vérifie une équation différentielle d'ordre un.
- 3. En déduire le développement en série entière.
- **4.** En déduire que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{1}{2k+1} {2k \choose k} {2n-2k \choose n-k} = \frac{2^{n}(n!)^{2}}{(2n+1)!}$$

Exercice 29 ★★★

On considère la série entière $\sum_{n\in\mathbb{N}}\frac{x^n}{\binom{2n}{n}}$ dont on note S(x) la somme.

- 1. Déterminer le rayon de convergence de cette série entière.
- **2.** Montrer que S est solution sur son intervalle de convergence de l'équation différentielle

(
$$\mathcal{E}$$
): $x(x-4)y' + (x+2)y = 2$

- 3. Résoudre l'équation homogène (\mathcal{E}_H) associée à (\mathcal{E}) sur]0,4[.
- **4.** Vérifier que $x \mapsto 2 \arctan\left(\sqrt{\frac{4-x}{x}}\right) 2\sqrt{\frac{4-x}{x}}$ est une primitive de $x \mapsto \frac{\sqrt{4-x}}{x\sqrt{x}}$ sur]0, 4[.
- 5. En déduire S(x) pour $x \in]0, 4[$.
- **6.** Calculer $\sigma = \sum_{n=0}^{+\infty} \frac{1}{\binom{2n}{n}}$.

Exercice 30 ★★

On considère la suite (a_n) définie par $a_0 = a_1 = 1$ et

$$\forall n \in \mathbb{N}, \ a_{n+2} = a_{n+1} + \frac{a_n}{n+2}$$

- 1. Montrer que la suite (a_n) est croissante et diverge vers $+\infty$.
- 2. Déterminer le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} a_n x^n$.
- 3. Déterminer la somme S(x) de la série entière $\sum_{n\in\mathbb{N}}a_nx^n$ à l'aide d'une équation différentielle.
- **4.** En déduire que $a_n \sim n_{n \to +\infty} \frac{n}{e}$.

Produit de Cauchy

Exercice 31 ★★

Centrale PC

On pose $H_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$. Déterminer le rayon de convergence et la somme de la série entière $\sum_{n \in \mathbb{N}^*}^n H_n x^n$.

Exercice 32 ★★★

On considère la suite (u_n) définie par $u_0 = 1$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sum_{k=0}^{n} u_k u_{n-k}$$

On note R le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} u_n x^n$.

1. On suppose que $R = \frac{1}{4}$. Montrer que

$$\forall x \in]-R, R[\setminus \{0\}, S(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

- **2.** En déduire u_n pour $n \in \mathbb{N}$.
- 3. Justifier qu'on a bien $R = \frac{1}{4}$.

E3A PC 2020

Exercice 33 ★★★

Nombre d'involutions

On rappelle qu'une involution d'un ensemble E est une application $f: E \to E$ telle que $f \circ f = \mathrm{Id}_E$. On note I_n le nombre d'involutions de $[\![1,n]\!]$. On convient que $I_0 = 1$.

1. Montrer que pour tout entier $n \ge 2$,

$$I_n = I_{n-1} + (n-1)I_{n-2}$$

- 2. Montrer que le rayon de convergence de la série entière $\sum \frac{I_n}{n!} x^n$ est supérieur ou égal à 1. On note S(x) sa somme.
- **3.** Montrer que

$$\forall x \in]-1,1[, S'(x) = (1+x)S(x)$$

4. En déduire une expression de S(x) puis de I_n .

Exercice 34

On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} \frac{a_k}{n-k+2}$$

- **1.** En utilisant un raisonnement par récurrence, démontrer que : $\forall n \in \mathbb{N}, 0 < a_n \leq 1$.
- 2. On considère la série entière $\sum_{n\geq 0} a_n x^n$. Justifier que son rayon de convergence est supérieur ou égal à 1.

Pour
$$x \in]-1,1[$$
, on pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

- 3. a. Déterminer le rayon de convergence de la série entière $\sum_{n>0} \frac{x^n}{n+2}$.
 - **b.** Déterminer l'ensemble réel de définition de la fonction $x \mapsto \sum_{n=0}^{+\infty} \frac{x^n}{n+2}$.
 - **c.** On pose, lorsque cela est possible, $\left(\sum_{n=0}^{+\infty}a_nx^n\right)\left(\sum_{n=0}^{+\infty}\frac{x^n}{n+2}\right)=\sum_{n=0}^{+\infty}w_nx^n$, produit de Cauchy réel des deux séries $\sum_{n\geq 0}a_nx^n$ et $\sum_{n\geq 0}\frac{x^n}{n+2}$. Justifier que le rayon de convergence de la série entière $\sum_{n\geq 0}w_nx^n$ est supérieur ou égal à 1 et donner pour tout entier naturel n, une expression de w_n à l'aide de la suite (a_n) .
 - **d.** En déduire que l'on a pour tout $x \in]-1,1[,f'(x)=f(x)\sum_{n=0}^{+\infty}\frac{x^n}{n+2}.$
- **4.** Démontrer alors que pour tout $x \in [0, 1[, \ln(f(x))] = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)(n+2)}$.
- 5. En déduire, pour tout $x \in [0,1[$, une expression de f(x) à l'aide de fonctions usuelles.

 On utilisate cana la radémentant que l'an a $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$

On utilisera sans le redémontrer que l'on a : $\frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}.$

6. Justifier que la série $\sum_{n\geq 0} \frac{a_n}{2^n}$ converge et calculer sa somme.

Développements en série entière

Exercice 35 ***

ENS MP 2011

Soit $\mathbb K$ un corps fini et $\mathcal P$ l'ensemble des polynômes irréductibles unitaires de $\mathbb K[\mathbf X].$ On pose

$$\zeta(t) = \prod_{P \in \mathcal{P}} \frac{1}{1 - t^{\deg P}}$$

- **1.** Montrer que ζ est défini sur un intervalle du type $[0, t_0[$.
- **2.** Montrer que ζ est développable en série entière au voisinage à droite de 0 et déterminer son développement.

Exercice 36 ***

Nombres de Bell

On pose $f(x) = e^{e^x}$ pour $x \in \mathbb{R}$. Montrer que f est développable en série entière en 0 et donner les coefficients A_n de ce développement comme sommes de séries.

Exercice 37 ★★

Déterminer le développement en série entière en 0 de $f: x \mapsto \int_0^{+\infty} e^{-t^2} \sin(tx) dt$.

Exercice 38 ★★

Déterminer le développement en série entière en 0 de $f: x \mapsto \frac{1}{\sqrt{1-x}}$.

Exercice 39 ★★

Soit $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$. Développer en série entière $f(x) = \frac{\sin(\theta)}{x^2 - 2x\cos(\theta) + 1}$

Exercice 40 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Développer en série entière $f: x \mapsto \ln(1 - \sqrt{2}x + x^2)$.

Exercice 41 ★★★

Mines-Télécom (hors Mines-Ponts) MP 2021

On pose pour $x \in \mathbb{R}$, lorsque c'est possible : $g(x) = \sum_{n=0}^{+\infty} e^{-n+n^2ix}$.

- **1.** Montrer que g est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. Montrer que g n'est pas développable en série entière.

Exercice 42 ★★

CCINP (ou CCP) MP 2021

Développer en séries entières les fonctions suivantes au voisinage de 0 et préciser le rayon de convergence :

1.
$$f(z) = \frac{1}{6z^2 - 5z + 1}, z \in \mathbb{C}$$

$$2. \ g(x) = \ln\left(\frac{2+x}{1-x}\right), \ x \in \mathbb{R}$$

3.
$$h(x) = \int_0^x \sin(t^2) dt, \ x \in \mathbb{R}$$

Divers

Exercice 43 ***

X MP 2010

Caractériser les suites $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telles que $\sum_{n \in \mathbb{N}} a_n x^n$ soit le développement en série entière en 0 d'une fraction rationnelle.

Exercice 44 ★★★

Mines-Ponts MP 2017

1. Soit $P \in \mathbb{C}[X]$. Montrer qu'il existe un unique polynôme Q tel que

$$\forall z \in \mathbb{C}, \ Q(z) = e^{-z} \sum_{n=0}^{+\infty} \frac{P(n)z^n}{n!}$$

On notera ce polynôme u(P).

- **2.** Montrer que u est un automorphisme de $\mathbb{C}[X]$.
- **3.** Déterminer les éléments propres de u.

Exercice 45 ★★★

Centrale MP 2018

Soit $(a_n)_{n\geq 2}$ une suite de réels. On pose $D=\{z\in\mathbb{C},\ |z|<1\}$ et on suppose que

$$f: z \mapsto z + \sum_{n=2}^{+\infty} a_n z^n$$

est définie et injective sur D.

- **1.** Montrer que $\forall z \in D, z \in \mathbb{R} \iff f(z) \in \mathbb{R}$.
- **2.** Montrer que $\forall z \in D$, $\text{Im}(z) > 0 \iff \text{Im}(f(z)) > 0$.
- **3.** Soient $r \in]0,1[$ et $n \in \mathbb{N}^*$. Calculer en fonction de r et n l'intégrale

$$I_n(r) = \int_0^{\pi} Im(f(re^{i\theta})) \sin(n\theta) d\theta$$

4. En remarquant que $|\sin(n\theta)| \le n\sin(\theta)$ pour $\theta \in [0, \pi]$, montrer que $|a_n| \le n$ pour tout $n \in \mathbb{N}^*$.

Exercice 46 ★★★

Mines-Ponts MP 2017

E est un ensemble à n éléments. On appelle *dérangement* une permutation de E sans point fixe. On note D_n le nombre de dérangements de E. On pose $D_0 = 1$.

1. Montrer l'égalité $n! = \sum_{k=0}^{n} \binom{n}{k} D_k$.

On definit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{D_n}{n!} x^n$.

- **2.** Justifier que f est définie sur]-1,1[.
- 3. Montrer que pour x dans $]-1,1[, f(x)=\frac{e^{-x}}{1-x}.$
- **4.** En déduire l'égalité $D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.
- **5.** Montrer que, lorsque $n \in \mathbb{N}^*$, D_n est la partie entière de $\frac{n!}{e} + \frac{1}{2}$.

Exercice 47

Mines-Télécom (hors Mines-Ponts) PSI 2019

On cherche à résoudre l'équation

(E)
$$\forall x \in \mathbb{R}_+, \ u(x) = 1 + \int_0^x u\left(\frac{t}{2}\right) dt$$

avec $u \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$.

1. Soit la suite (u_n) de fonctions définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$,

$$\forall x \in \mathbb{R}_+, \ u_{n+1}(x) = 1 + \int_0^x u_n\left(\frac{t}{2}\right) dt$$

Montrer par récurrence que,

$$\forall x \in \mathbb{R}_+, \ 0 \le u_{n+1}(x) - u_n(x) \le \frac{x^{n+1}}{(n+1)!}$$

En déduire que la suite (u_n) converge vers une certaine fonction u.

- **2.** Montrer que u est solution de (E).
- **3.** Donner les fonctions développables en série entière dont la restriction à \mathbb{R}_+ est solution de (E).

Exercice 48 ★★

CCINP (ou CCP) MP 2021

Soit $t \in \mathbb{R}$. On pose $\forall n \in \mathbb{N}$, $f_n(t) = \frac{(t^2 - 1)^{n+1}}{n+1}$.

- 1. Donner le domaine de convergence D de $\sum f_n$.
- 2. Calculer $\sum_{n=0}^{+\infty} f_n(t)$.
- **3.** Étudier la convergence normale de $\sum f_n$ sur [0,1].
- **4.** Étudier la convergence uniforme de $\sum f_n$ sur [0,1].
- 5. Quelle est la nature de la série $\sum u_n$, avec $u_n = \int_0^1 \frac{(t^2-1)^{n+1}}{n+1} dt$?
- **6.** Calculer $\sum_{n=0}^{+\infty} u_n$.

Exercice 49 ★★★

Banque Mines-Ponts MP 2018

Soit $(z_p)_{p\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ une suite de complexes non nuls qui converge vers 0.

- **1.** Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ de rayon de convergence R, telle que $\forall p \in \mathbb{N}, \ f(z_p) = 0$. Montrer que $a_n = 0$ pour tout $n \in \mathbb{N}$.
- **2.** Que dire de deux séries entières f et g de même rayon de convergence et telles que $f(z_p) = g(z_p)$ pour tout $p \in \mathbb{N}$?

Exercice 50 ★★

Formule de Cauchy

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. On pose $f(z) = \sum_{n=0}^{+\infty} a_n z^n$. Soit $r \in [0, R[$. Montrer que

$$a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

Exercice 51 ★★★

Banque Mines-Ponts MP 2021

On suppose qu'il existe une partie A de $\mathbb N$ telle que

$$\sum_{n \in A} \frac{x^n}{n!} \underset{x \to +\infty}{\sim} \frac{e^x}{x^2}$$

- **1.** Soit I une partie finie de A. Calculer $\int_0^{+\infty} \sum_{n \in I} \frac{x^n e^{-x}}{n!} dx.$
- 2. Montrer que A est fini.
- **3.** Qu'en conclut-on?