

EE 604 Digital Image Processing

Lecture outline

- Lossless compression
- Image quality measurement

Lossless compression

- Lossless —> full recovery of data after de-compression
- Important for:
 - medical data (due to the requirement of accuracy of diagnosis)
 - satellite images (already expensive acquisition)
- Already discussed on lossless scheme: Huffman coding

LZW Coding

- Introduced by Lempel, Ziv, Welch in 1984
- Lossless data compression scheme
- Forms the basis of GIF, TIFF, PNG, ZIP, PDF
- Relies on creating data-based dictionary, which is created at both encoder and decoder
- Uses fixed length coding
- Widely used to compress text also

LZW Encoding

- Initialize: **P** = [], **D** = initial_dictionary
- Loop until (end_of_data)
 - S = nextsymbol(data_string)
 - Is [P S] in D?
 - Yes: P = [PS]
 - No
 - Transmit codeword for the symbol in P
 - Add [PS] in D
 - P <— S

LZW Decoding

- Initialize: **P** = [], **D** = initial_dictionary
- Loop
 - **C** = received_codeword
 - Output symbol S for C
 - Add [P first_part(S)] in D (if not already there)
 - P <— C

LZW example

	39	39	126	126
т —	39	39	126	126
1	39	39	126	126
	39	39	126	126

LZW example

Carrently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictionary Entry
	39		No. 1077 P	31.4 t 30.87 3 t 1 m
39	39	39	256	39-39
39	126	39	257	39-126
126	126	126	258	126-126
126	39	126	259	126-39
39	39			
39-39	126	256	260	39-39-126
126	126			
126-126	39	258	261	126-126-39
39	39			
39-39	126			
39-39-126	126	260	262	39-39-126-126
126	39			
126-39	39	259	263	126-39-39
39	126			
39-126	126	257	264	39-126-126
126		126		

Remarks

- A large number of image compression algorithms exist, not all of them are adopted as standards.
- Standards are widely available for natural images, not for medical images.
- JPEG2000 is another important lossy compression, uses Wavelet transform for transform mapping.
- Video compression will require image compression (spatial coding) and temporal coding. MPEG uses JPEG-like compression per frame.
- Autoencoder-based image compression algorithms are also being explored

Lecture outline

- Lossless compression
- Image fidelity measurement
 - [Wang and Bovik 2009], [Wang et al. 2004]

Image quality

- **Image fidelity:** measure of (dis)similarity between two images or amount of error/distortion
- Image quality: measure of preference of one image over another
- If one of the images is a clean original, and the other is distorted,
 then fidelity = quality
- Most popular image fidelity (quality) measure: Mean Squared Error (MSE)

MSE

$$\mathbf{x} = \{x_i | i = 1, 2, ...N\}$$
 $\mathbf{y} = \{y_i | i = 1, 2, ...N\}$

$$MSE(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2$$

A more generic form of MSE

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^N |e_i|^p\right)^{1/p} \text{ where } e_i = x_i - y_i$$

PSNR

$$PSNR = 10 \log_{10} \frac{L^2}{MSE}$$
 where L is the dynamic range

Why is MSE popular?

- Simple, parameter-free, non-expensive, memoryless
- Norm-based distance metric
 - nonnegativity: $d_p(\mathbf{x}, \mathbf{y}) \geq 0$
 - identity: $d_p(x, y) = 0$ if and only if x = y
 - symmetry: $d_p(\mathbf{x}, \mathbf{y}) = d_p(\mathbf{y}, \mathbf{x})$
 - triangular inequality: $d_p(\mathbf{x}, \mathbf{z}) \leq d_p(\mathbf{x}, \mathbf{y}) + d_p(\mathbf{y}, \mathbf{z})$
- Natural relation to energy
- Excellent for optimization: convex, symmetric, differentiable

What's wrong with MSE?

- Several strong assumptions
 - Fidelity measure is spatially independent
 - All points are equally important for fidelity
 - Sign of change does not matter
 - The error and original image has no relationship.

[Wang and Bovik 2009]

[Wang and Bovik 2009]

Perceptual Image quality

- Image processing systems need to measure how good the output image is.
- Images are often viewed by humans. It's important that they look good to human eyes.
- MSE does not correlate well with visual perception of quality.
- Solution?
 - Try to model HVS!
 - Develop metrics based on HVS properties to measure image quality that correlate better with human perception. These metrics are often called perceptual image quality metrics.