Unsupervised Learning

Predictor variables

Response variables

Variables

DATA: X

Using "properties" of X

MODEL: β_{0} , β_{1} , β_{2} , ..., β_{n}

Let's start with a dataset

What should these properties be?

- Well defined
 - No ambiguity
- Computable
 - Always has an answer

Data Centric and multidimensional

Variables:	var ₁	var ₂	var ₃	•••	var _{n-1}	var _n
Samples:						
sample ₁						
sample ₂						
sample ₃						
sample _{m-1}						
sample _m						

Almost always very multidimensional

- Peptides in CE-MS
- Genotypes after sequencing
- Species in a given area
- Transcripts in a tissue
 - Transcripts in a cell

Techniques in unsupervised learning

Hodgepodge of nonsense!!!!

Principal Component Analysis

Multidimensional Scaling
Principal coordinate analysis
Metric
Non metric
Generalized multidimensional scaling

Neighbour Embedding TSNE UMAP Nearest Neighbours

K nn Fixed-radius nn Approximate nn

Cluster Analysis
Connectivity based CA
Centroid based
Grid based

Neural Network Autoencoders

Classic Variational Denoissing

Mixture Models
Gaussian
Categorical
Multivariate

What we will do today

One technique - PCA

- Cover it broadly, without brushing off the important details.
- Set the groundwork for other techniques.
- Not learn hot to "compute" a PCA, but understand its principles.

Data X

	x ₁	X ₂
sample ₁		
sample ₂		
sample ₃		
sample _{m-1}		
sample _m		

We have some data $X \in \mathbb{R}^2$

$$S^2 = rac{\sum (x_i - ar{x})^2}{n-1}$$
 var(x1) and var(x2)

Total variance in the sample:

var(x1) + var(x2)

Correlated variables

f(X₁, X₂) must be a linear function

Addition Multiplication

$$X_1$$
 X_2
 $f(X_1 X_2)$

$$var(f(X_1, X_2)) > var(x1) or var(x2)$$

We have missing information

We need a new "independent component"

We need a new "independent component"

 $var(f_1(X_{1,}X_2)) + var(f_2(X_{1,}X_2)) == var(x1) + var(x2)$

$$var(f_1(X_{1,}X_2)) + var(f_2(X_{1,}X_2)) == var(x1) + var(x2)$$

Two dimensions are cool, but we have bigger problems that that.

Let's define the "constraints"

Constrains

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

but our estimate \hat{y}_i is simply a linear function of x_i :

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Constrains

Maximum variance

Linear independence

How to compute?

Nothing in linear algebra makes sense except in the light of eigen-analysis.

Matrices as linear transformation

The covariance matrix

	var ₁	var ₂	var ₃	 var _{n-1}	var _n
var ₁	S ² (var ₁)				
var ₂	COV(var ₁ , var ₂)	S ² (var ₂)			
var ₃	COV(var _{1,} var ₃)		S ² (var ₃)		
var _{n-}	COV(var ₁ , var _{n-1})			S ² (var _{n-1})	
var _n	COV(var _{1,} var _n)				S ² (var _n)