DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

Matemática II-Engenharias Química e de Materiais

Tabelas de Primitivas

PRIMITIVAS IMEDIATAS

Na lista de primitivas que se segue considera-se uma função $f:I\longrightarrow \mathbb{R}$ diferenciável em I, onde I é um intervalo de \mathbb{R} . Além disso, denotamos por C a constante de primitivação (arbitrária) e por a uma constante.

Função	Primitiva
a	ax + C
$f^m \cdot f'$	$\frac{f^{m+1}}{m+1} + C \ (m \in \mathbb{R} \setminus \{-1\})$
$\frac{f'}{f}$	$\ln f + C$
$a^f \cdot f'$	$\frac{a^f}{\ln a} + C \ (a \in \mathbb{R}^+ \setminus \{1\})$

Função	Primitiva
$f' \cdot \operatorname{sen} f$	$-\cos f + C$
$f' \cdot \cos f$	$\operatorname{sen} f + C$
$f' \cdot \operatorname{tg} f$	$-\ln \cos f + C$
$f' \cdot \cot g f$	$\ln \operatorname{sen} f + C$
$f' \cdot \sec f$	$\ln \sec f + \operatorname{tg} f + C$
$f' \cdot \operatorname{cosec} f$	$\ln \csc f - \cot g f + C$
$f' \cdot \sec^2 f$	$\operatorname{tg} f + C$
$f' \cdot \operatorname{cosec}^2 f$	$-\cot g f + C$
$f' \cdot \sec f \cdot \operatorname{tg} f$	$\sec f + C$
$f' \cdot \operatorname{cosec} f \cdot \operatorname{cotg} f$	$-\csc f + C$
$\frac{f'}{\sqrt{1-f^2}}$	$\arcsin f + C$ ou $- \arccos f + C$
$\frac{f'}{1+f^2}$	$\operatorname{arc} \operatorname{tg} f + C$ ou $\operatorname{-arc} \operatorname{cotg} f + C$
$\frac{f'}{ f \cdot \sqrt{f^2 - 1}}$	$\operatorname{arc} \sec f + C$ ou $-\operatorname{arc} \operatorname{cosec} f + C$

[D : 111
Função	Primitiva
$f' \cdot \operatorname{senh} f$	$\cosh f + C$
$f' \cdot \cosh f$	$\operatorname{senh} f + C$
$f' \cdot \operatorname{tgh} f$	$\ln \cosh f + C$
$f' \cdot \operatorname{cotgh} f$	$\ln \operatorname{senh} f + C$
$f' \cdot \operatorname{sech}^2 f$	$\operatorname{tgh} f + C$
$f' \cdot \operatorname{cosech}^2 f$	$-\coth f + C$
$f' \cdot \operatorname{sech} f \cdot \operatorname{tgh} f$	$-\operatorname{sech} f + C$
$f' \cdot \operatorname{cosech} f \cdot \operatorname{cotgh} f$	$-\operatorname{cosech} f + C$
$\frac{f'}{\sqrt{1+f^2}}$	$\operatorname{arg\ senh} f + C$
$\frac{f'}{\sqrt{f^2 - 1}}$	$\operatorname{arg\ } \cosh f + C$
$\frac{f'}{1-f^2}$	$\arg \operatorname{tgh} f + C$, se $ f(x) < 1$ ou $\operatorname{arg} \operatorname{cotgh} f + C$, se $ f(x) > 1$
$\frac{f'}{ f \cdot \sqrt{1 - f^2}}$	$-\operatorname{arg\ sech} f + C$
$\frac{f'}{ f \cdot \sqrt{1 + f^2}}$	${\rm arg}\;{\rm cosech} f + C$

PRIMITIVAÇÃO POR PARTES

$$\int f(x) \cdot g(x) \, dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) \, dx,$$

sendo F uma primitiva de f.

REGRAS DE PRIMITIVAÇÃO

Potências de funções trigonométricas e hiperbólicas

1. Potências ímpares de sen x, $\cos x$, senh x e $\cosh x$.

Destaca-se uma unidade à potência ímpar e o factor resultante passa-se para a co-função através das fórmulas fundamentais:

$$\cos^2 x + \sin^2 x = 1$$
, $\cosh^2 x - \sinh^2 x = 1$.

2. Potências pares de sen x, cos x, senh x e cosh x.

Passam-se para o arco duplo através das fórmulas:

$$sen^{2}x = \frac{1}{2}(1 - \cos 2x), \qquad \cos^{2}x = \frac{1}{2}(1 + \cos 2x)$$

$$senh^{2}x = \frac{1}{2}(\cosh 2x - 1) \qquad \cosh^{2}x = \frac{1}{2}(\cosh 2x + 1).$$

3. Potências pares e ímpares de $\operatorname{tg} x$, $\operatorname{cotg} x$, $\operatorname{tgh} x$ e $\operatorname{cotgh} x$.

Destaca-se tg 2x (tgh 2x) ou cotg 2x (cotgh 2x) e aplica-se uma das fórmulas:

$$tg^{2}x = \sec^{2}x - 1 \qquad (tgh^{2}x = 1 - \operatorname{sech}^{2}x)$$
$$\cot^{2}x = \operatorname{cosec}^{2}x - 1 \qquad (\operatorname{cotgh}^{2}x = 1 + \operatorname{cosech}^{2}x).$$

4. Potências pares de $\sec x$, $\csc x$, $\operatorname{sech} x$ e $\operatorname{cosech} x$.

Destaca-se $\sec^2 x$ ($\operatorname{sech}^2 x$) ou $\operatorname{cosec}^2 x$ ($\operatorname{cosech}^2 x$) e ao factor resultante aplica-se uma das fórmulas:

$$\sec^2 x = 1 + \operatorname{tg}^2 x \qquad (\operatorname{sech}^2 x = 1 - \operatorname{tgh}^2 x)$$
$$\operatorname{cosec}^2 x = 1 + \operatorname{cotg}^2 x \qquad (\operatorname{cosech}^2 x = \operatorname{cotgh}^2 x - 1).$$

5. Potências ímpares de $\sec x$, $\csc x$, $\operatorname{sech} x$ e $\operatorname{cosech} x$.

Destaca-se $\sec^2 x$ (sech 2x) ou $\csc^2 x$ (cosech 2x) e primitiva-se por partes começando por esse factor.

Produtos de potências das funções sen x e cos x (senh x e cosh x)

1. Potência impar de sen x (senh x) por qualquer potência de cos x (cosh x).

Destaca-se sen x (senh x) e passa-se o factor resultante para a co-função, através da fórmula fundamental:

$$\sin^2 x = 1 - \cos^2 x$$
 ($\sinh^2 x = \cosh^2 x - 1$).

2. Potência ímpar de $\cos x$ ($\cosh x$) por qualquer potência de $\sin x$ ($\sinh x$).

Destaca-se $\cos x$ ($\cosh x$) e passa-se o factor resultante para a co-função, através da fórmula fundamental:

$$\cos^2 x = 1 - \sin^2 x$$
 $(\cosh^2 x = 1 + \sinh^2 x).$

3. Potência par de $\operatorname{sen} x$ ($\operatorname{senh} x$) por potência par de $\operatorname{cos} x$ ($\operatorname{cosh} x$).

Aplicam-se as fórmulas:

$$sen 2x = 2 sen x cos x$$
 (senh $2x = 2 senh x cosh x$)

$$\operatorname{sen}^{2} x = \frac{1 - \cos 2x}{2} \qquad \left(\operatorname{senh}^{2} x = \frac{\cosh 2x - 1}{2}\right)$$

$$\cos^2 x = \frac{1 + \cos 2x}{2} \qquad \left(\cosh^2 x = \frac{\cosh 2x + 1}{2}\right).$$

Produtos em que aparecem factores do tipo $\sin mx$ ou $\cos nx$, ou produtos em que aparecem factores do tipo $\sinh mx$ ou $\cosh nx$

Aplicam-se as fórmulas:

$$\operatorname{sen} x \operatorname{sen} y = \frac{1}{2}(\cos(x-y) - \cos(x+y)) \qquad \operatorname{senh} x \operatorname{senh} y = \frac{1}{2}(\cosh(x+y) - \cosh(x-y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y)) \qquad \qquad \cosh x \cosh y = \frac{1}{2}(\cosh(x+y) + \cosh(x-y))$$

$$\operatorname{sen} x \cos y = \frac{1}{2} (\operatorname{sen} (x+y) + \operatorname{sen} (x-y))$$

$$\operatorname{senh} x \cosh y = \frac{1}{2} (\operatorname{senh} (x+y) + \operatorname{senh} (x-y))$$

FRACÇÕES RACIONAIS

Consideremos a fracção $\frac{f(x)}{g(x)}$, em que f(x) e g(x) são polinómios.

1. Se o grau do numerador for maior ou igual ao grau do denominador, efectua--se a divisão de f(x) por g(x); obtém-se então

$$\frac{f(x)}{g(x)} = Q(x) + \frac{R(x)}{g(x)},$$

sendo agora $\frac{R(x)}{g(x)}$ uma fracção própria.

2. Decompõe-se o denominador da fracção própria em factores; os factores obtidos são da forma $(x-a)^m$,

correspondendo a raízes reais a de multiplicidade m, ou da forma

$$[(x-p)^2+q^2]^n$$

correspondendo estes às raízes complexas $p \pm qi$ de multiplicidade n.

- 3. Decompõe-se então a fracção própria numa soma de elementos simples, de acordo com os factores obtidos:
 - (a) cada factor do tipo $(x-a)^m$ dá origem a

$$\frac{A_1}{(x-a)^m} + \frac{A_2}{(x-a)^{m-1}} + \ldots + \frac{A_m}{x-a},$$

com A_1, A_2, \ldots, A_m constantes a determinar;

(b) cada factor do tipo $[(x-p)^2+q^2]^n$ dá origem a

$$\frac{P_1 x + Q_1}{[(x-p)^2 + q^2]^n} + \frac{P_2 x + Q_2}{[(x-p)^2 + q^2]^{n-1}} + \ldots + \frac{P_n x + Q_n}{(x-p)^2 + q^2},$$

com $P_1, Q_1, P_2, Q_2, \dots, P_n, Q_n$ constantes a determinar.

4. Cálculo das constantes

As constantes A_i , P_i e Q_i podem ser determinadas conjuntammete pelo método dos coeficientes indeterminados. Há no entanto uma forma alternativa de calcular essas constantes, que descrevemos em seguida.

- (a) Cálculo dos coeficientes relativos a factores do tipo $(x-a)^m$ (seja $\psi(x)$ tal que $g(x)=\psi(x)(x-a)^m$):
 - i. se m=1, apenas temos de determinar uma constante A_1 , que é dada por:

$$A_1 = \left[\frac{R(x)}{\psi(x)}\right]_{x=a}.$$

ii. se m > 1, efectua-se a divisão

$$\left[\frac{R(x)}{\psi(x)}\right]_{x=a+h}$$

dispondo os polinómios por ordem crescente dos seus monómios, até chegar ao grau m-1:

$$\left[\frac{R(x)}{\psi(x)}\right]_{x=a+b} = A_1 + a_2 h + A_3 h^2 + \ldots + A_m h^{m-1} + \ldots$$

onde A_1, A_2, \ldots, A_m são as constantes que pretendemos determinar.

- (b) Cálculo dos coeficientes relativos a factores do tipo $[(x-p)^2+q^2]^n$ (seja $\psi(x)$ tal que $g(x)=\psi(x)[(x-p)^2+q^2]^n$):
 - i. se n=1, obtemos as constantes P_1 e Q_1 fazendo

$$\left[P_1 x + Q_1 = \frac{R(x)}{\psi(x)}\right]_{x=p+qi}.$$

ii. se n > 1, as constantes calculam-se pelo método dos coeficientes indeterminados (as constantes P_1 e Q_1 ainda podem ser obtidas como em i.).

Nota: Caso apareçam elementos simples da forma

$$\frac{1}{[(x-p)^2+c]^n},$$

com n > 1, estes podem ser primitivados usando a seguinte fórmula de recorrência:

$$P\left(\frac{1}{\lceil (x-p)^2+c \rceil^n}\right) = \frac{1}{c} \left[\frac{1}{2n-2} \times \frac{x-p}{\lceil (x-p)^2+c \rceil^{n-1}} + \frac{2n-3}{2n-2} \times P\left(\frac{1}{\lceil (x-p)^2+c \rceil^{n-1}}\right) \right]$$

PRIMITIVAÇÃO POR SUBSTITUIÇÃO

Sejam a, b, c e d constantes reais. A notação R(...) indica que se trata de uma função racional (envolvendo apenas somas, diferenças, produtos e quocientes) do que se encontra entre parêntesis.

Tipo de Função	Substituição
$\frac{1}{(x^2+a^2)^k}, \ k \in \mathbb{N}, \ k > 1$	$x = a \operatorname{tg} t$
$\frac{P(x)}{(ax^2 + bx + c)^k}, \ k \in \mathbb{N}, \ k > 1, \ b^2 - 4ac < 0,$	
onde $P(x)$ é um polinómio de grau inferior a $2k$	$ax + \frac{b}{2} = t$
$\frac{P(x)}{((x-p)^2+q^2)^k}, \ k \in \mathbb{N}, \ k > 1,$	
onde $P(x)$ é um polinómio de grau inferior a $2k$	x = p + qt
$\frac{x^{k-1}}{x^{2k} \pm a^2}, \ k \in \mathbb{Q}, \ k > 1$	$x^k = at$
$R(a^{rx}, a^{sx}, \dots)$	$a^{mx} = t$ onde $m = m.d.c.(r, s,)$
$R(\log_a x)$	$t = \log_a x$
$R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{p}{q}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{r}{s}}, \ldots\right)$	$\frac{ax+b}{cx+d} = t^m \text{ onde } m = m.m.c.(q, s,)$
$R(x,(ax+b)^{\frac{p}{q}},(ax+b)^{\frac{r}{s}},)$	$ax + b = t^m$ onde $m = m.m.c.(q, s,)$
$R(x, x^{\frac{p}{q}}, x^{\frac{r}{s}}, \dots)$	$x = t^m$ onde $m = m.m.c.(q, s,)$
$R(x, \sqrt{a^2 - b^2 x^2})$	$x = \frac{a}{b} \operatorname{sen} t$ ou $x = \frac{a}{b} \cos t$ ou $x = \frac{a}{b} \operatorname{tgh} t$
$R(x, \sqrt{a^2 + b^2 x^2})$	$x = \frac{a}{b} \operatorname{tg} t$ ou $x = \frac{a}{b} \operatorname{senh} t$
$R(x, \sqrt{b^2 x^2 - a^2})$	$x = \frac{a}{b} \sec t$ ou $x = \frac{a}{b} \cosh t$
$R(x, \sqrt{x}, \sqrt{a-bx})$	$x = \frac{a}{b} \operatorname{sen}^2 t$ ou $x = \frac{a}{b} \cos^2 t$
$R(x, \sqrt{x}, \sqrt{a+bx})$	$x = \frac{a}{b} \operatorname{tg}^2 t$

Tipo de Função	Substituição
$R(x, \sqrt{x}, \sqrt{bx - a})$	$x = \frac{a}{b}\sec^2 t$
$R(x, \sqrt{ax^2 + bx + c})$	se $a > 0$ faz-se $\sqrt{ax^2 + bx + c} = x\sqrt{a} + t$
	se $c > 0$ faz-se $\sqrt{ax^2 + bx + c} = \sqrt{c} + tx$
	se $ax^2 + bx + c = a(x - r_1)(x - r_2),$
	$\sqrt{ax^2 + bx + c} = (x - r_1)t$ ou $\sqrt{ax^2 + bx + c} = (x - r_2)t$
$x^m(a+bx^n)^{\frac{p}{q}}$	se $\frac{m+1}{n} \in \mathbb{Z}$ faz-se $a + bx^n = t^q$
	se $\frac{m+1}{n} + \frac{p}{q} \in \mathbb{Z}$ faz-se $a + bx^n = x^n t^q$
$R(\operatorname{sen} x, \cos x)$:	
(a) se R é impar em sen x , isto é, $R(-\sin x, \cos x) = -R(\sin x, \cos x)$	$\cos x = t$
(b) se R é impar em $\cos x$, isto é, $R(\sin x, -\cos x) = -R(\sin x, \cos x)$	
(c) se R é par em sen x e $\cos x$, isto é, $R(-\sin x, -\cos x) = R(\sin x, \cos x)$	tg $x=t$, sendo então (supondo $x\in(0,\frac{\pi}{2})$) sen $x=\frac{t}{\sqrt{1+t^2}},$ cos $x=\frac{1}{\sqrt{1+t^2}}$
(d) nos restantes casos (e até nos anteriores)	$\operatorname{tg} \frac{x}{2} = t$, sendo então $\operatorname{sen} x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$
$R(\operatorname{sen} mx, \cos mx)$	mx = t
$R(e^x, \operatorname{senh} x, \cosh x)$	$x = \ln t$
$R(\operatorname{senh} x, \operatorname{cosh} x)$:	
(a) R é ímpar em senh x	$\cosh x = t$
(b) R é impar em $\cosh x$	$\operatorname{senh} x = t$
(c) R é par em senh x e $\cosh x$	$\tanh x = t$, sendo então $\sinh x = \frac{t}{\sqrt{1-t^2}}$, $\cosh x = \frac{1}{\sqrt{1-t^2}}$
(d) nos restantes casos (e até nos anteriores)	$\tanh \frac{x}{2} = t$, sendo então senh $t = \frac{2t}{1-t^2}$, $\cosh x = \frac{1+t^2}{1-t^2}$
$R(\operatorname{senh} mx, \cosh mx)$	mx = t

Observação: Quando se efectua uma substituição, aparece frequentemente uma expressão do tipo $\sqrt{f^2(t)}$. No caso geral terá de se escrever

 $\sqrt{f^2(t)} = |f(t)|.$