Simulating Collisional Dark Matter

Javier Alejandro Acevedo Barroso

ja.acevedo12@uniandes.edu.co

Collisional and Collisionless Dark Matter

Other efforts on simulating Collisional DM

The Boltzmann Equation

$$\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \cdot \vec{\nabla}_{\vec{r}} f + F \cdot \vec{\nabla}_{\vec{p}} = C[f]$$

$$\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \cdot \vec{\nabla}_{\vec{r}} f + F \cdot \vec{\nabla}_{\vec{p}} = 0$$

Solving Boltzmann Equation

Lattice-Bolztmann and Automatas

Overview of the Algorithm

Some Equations

$$\rho(x, v, t) = \sum_{V_{min}}^{V_{max}} f(x, v, t) \Delta v \qquad \nabla^2 \Phi(x) = 4\pi G \rho(x)$$

$$a(x) = -\frac{\mathrm{d}\Phi(x)}{\mathrm{d}x}$$

$$v_{n+1} = v_n + \lfloor a_n \, \delta t \rceil \qquad \qquad x_{n+1} = x_n + \lfloor v_n \, \delta t \rceil$$

Initial Conditions

Density and Potential

Streaming Step

Collisionless examples

Collisional Term: the BGK Approximation

$$C[f] = -\frac{1}{\tau}(f - f_{eq})$$

$$f(x + v\delta t, v, t + \delta t) - f(x, v, t) =$$

$$-\frac{\delta t}{\tau}[f(x, v, t) - f_{eq}(x, v, t)]$$

Equilibrium Distribution

$$\rho(x,t) = \int mf(x,v,t)dv$$

$$\rho(x,t)u(x,t) = \int mvf(x,v,t)dv$$

$$\rho(x,t)e(x,t) = \frac{1}{2}\int m(v-u)^2 f(x,v,t)dv$$

$$f_{eq}(x,v,t) = \frac{\rho(x,t)}{m\sqrt{2\pi e(x,t)}} \exp\left[-\frac{(v-u)^2}{2e(x,t)}\right]$$

Overview of the Algorithm

Collisional Examples

Different Taus

Jeans instability

$$f(x,v,0) = \frac{\bar{\rho}}{\sqrt{2\pi\sigma^2}} \exp(-\frac{v^2}{2\sigma^2})(1 + A\cos(kx))$$

Results on phase-space

Results on Density

Results on potential and acceleration

Gaussian distribution

Results on phase-space

Results on Density

Results on potential and acceleration

2D and 3D implementation