Subject: Engineering Mathematics Chapter: Integral Calculus

Topic: Integration & Definite Integration and its application

1. If
$$F(a) = \frac{1}{\log a}$$
, $a > 1$ and $F(x) = \int a^x dx + K$ is equal **4.** $\int \frac{2x+3}{\sqrt{x^2+x+1}} dx$ is equal to

to

(a)
$$\frac{1}{\log a} \left(a^x - a^a + 1 \right)$$

(b)
$$\frac{1}{\log a} \left(a^x - a^a \right)$$

(c)
$$\frac{1}{\log a} \left(a^x + a^a + 1 \right)$$

(d)
$$\frac{1}{\log a} \left(a^x + a^a - 1 \right)$$

2.
$$\int \frac{dx}{1+\sin x}$$
 is equal to

(a)
$$-\cot x + \cos ec x + c$$

(b)
$$\cot x + \cos ec x + c$$

(c)
$$\tan x - \sec x + c$$

(d)
$$\tan x + \sec x + c$$

3.
$$\int \frac{(3x+1)}{2x^2-2x+3} dx$$
 equal to

(a)
$$\frac{3}{4}\log(2x^2-2x+3)+\frac{\sqrt{5}}{2}\tan^{-1}\left(\frac{2x-1}{\sqrt{5}}\right)$$

(b)
$$\frac{4}{3}\log(2x^2-2x+3)+\sqrt{5}\tan^{-1}\left(\frac{2x-1}{\sqrt{5}}\right)$$

(c)
$$\frac{4}{3}\log(2x^2-2x+3)+\frac{2}{\sqrt{5}}\tan^{-1}\left(\frac{2x-1}{\sqrt{5}}\right)$$

(d)
$$\frac{3}{4}\log(2x^2-2x+3)+\frac{2}{\sqrt{5}}\tan^{-1}\left(\frac{2x-1}{\sqrt{5}}\right)$$

4.
$$\int \frac{2x+3}{\sqrt{x^2+x+1}} dx$$
 is equal to

(a)
$$2\sqrt{x^2 + x + 1} + 2\sinh^{-1}\frac{2x + 1}{\sqrt{3}}$$

(b)
$$\sqrt{x^2 + x + 1} + 2\sinh^{-1}\frac{2x + 1}{\sqrt{3}}$$

(c)
$$2\sqrt{x^2 + x + 1} + \sinh^{-1} \frac{2x + 1}{\sqrt{3}}$$

(d)
$$2\sqrt{x^2+x+1} - \sinh^{-1}\frac{2x+1}{\sqrt{3}}$$

5. The value of
$$\int e^x \left(\frac{1+\sin x}{1+\cos x} \right) dx$$
 is

(a)
$$e^x \tan \frac{x}{2} + c$$
 (b) $e^x \cot \frac{x}{2} + c$

(b)
$$e^{x} \cot \frac{x}{2} + c$$

(c)
$$e^x \tan x + c$$
 (d) $e^x \cot x + c$

(d)
$$e^x \cot x + c$$

6.
$$\int_0^{\pi/2} \frac{e^x}{2} \left(\sec^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) dx$$
 is equal to

(a)
$$e^{\pi}$$

(b)
$$e^{\pi/2}$$

(d)
$$e^{\pi/4}$$

7.
$$\int_0^1 \int_x^{\sqrt{x}} \left(x^2 + y^2\right) dy dx$$
 is equal to

- (d) None of these

8.
$$\int_{-1}^{1} \frac{|x|}{x} dx$$
 is equal to

- (b) 0
- (c) 1
- (d) 1/2

9.
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz \text{ is equal to}$$

- (c) 0
- (b) -4 (d) None of these

10.
$$\int_0^{\pi} \cos^m x \sin^n x dx$$
 is equal to zero, if

- (a) *m* is even
- (b) n is even
- (d) n is odd

- 11. The area bounded by the curve $r = \theta \cos \theta$ and the lines
 - $\theta = 0$ and $\theta = \frac{\pi}{2}$ is given by
 - (a) $\frac{\pi}{4} \left(\frac{\pi^2}{16} 1 \right)$ (b) $\frac{\pi}{16} \left(\frac{\pi^2}{6} 1 \right)$
 - (c) $\frac{\pi}{16} \left(\frac{\pi^2}{16} 1 \right)$ (d) None of these
- 12. The volume of the cylinder $x^2 + y^2 = a^2$ bounded below by z = 0 and bounded above by z = h is given by
 - (a) rah
- (b) $\pi a^2 h$
- (c) $\frac{1}{3}\pi a^3 h$
- (d) None of these

13. Consider the triangular region P shown in the figure. What is $\iint xydxdy$?

- (a) 1/6
- (c) 7/16
- (d) 1
- **14.** The area enclosed between the curves $y^2 = 4x \text{ and } x^2 = 4y \text{ is}$
 - (a) 16/3
- (b) 8
- (c) 32/3
- (d) 16

Answer Key

1. (a)

2. (c)

3. (a)

4. (a)

5. (a)

6. (b)

7. (b)

8. (b)

9. (c)

10. (c)

11. (c)

12. (b)

13. (a)

14. (a)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4