3. National Income

Based on Mankiw, Chapters 3 & 4: National Income: How It Is Earned & National Income: How It Is Spent

Attila Gyetvai | University of Florida, Department of Economics

Outline of model

A closed economy, market-clearing model

- Aggregate supply
 - factor markets (supply, demand, price)
 - determination of output/income
- Aggregate demand
 - determinants of C, I, and G
- Equilibrium
 - goods market
 - loanable funds market

Aggregate supply

Factors of production

K = capital:
 tools, machines, and structures used in production

L = labor:the physical and mental efforts of workers

The production function: Y = F(K, L)

- Shows how much output (Y) the economy can produce from K units of capital and L units of labor
- Reflects the economy's level of technology
- Reflects how the existing technology transforms capital and labor into output
- Technological improvements result in more output from the same quantity of inputs
- Exhibits constant returns to scale

Returns to scale: A review

Initially $Y_1 = F(K_1, L_1)$

Scale all inputs by the same factor **z**:

$$K_2 = zK_1$$
 and $L_2 = zL_1$

(for example: if z = 1.2, then all inputs are increased by 20%)

What happens to output, $Y_2 = F(K_2, L_2)$?

- If constant returns to scale, Y₂ = zY₁
- If increasing returns to scale, Y₂ > zY₁
- If decreasing returns to scale, Y₂ < zY₁

Returns to scale: Example 1

$$F(K,L) = \sqrt{KL}$$

$$F(zK,zL) = \sqrt{(zK)(zL)}$$

$$= \sqrt{z^2KL}$$

$$= \sqrt{z^2}\sqrt{KL}$$

$$= z\sqrt{KL}$$

$$= zF(K,L)$$

constant returns to scale for any **z** > 0

Returns to scale: Example 2

$$F(K,L) = K^{2} + L^{2}$$

$$F(zK,zL) = (zK)^{2} + (zL)^{2}$$

$$= z^{2} (K^{2} + L^{2})$$

$$= z^{2}F(K,L)$$

increasing returns to scale for any **z** > 1

Returns to scale

Determine whether each of these production functions has constant, decreasing, or increasing returns to scale:

(a)
$$F(K,L) = \frac{K^2}{L}$$

(b)
$$F(K,L) = K + L$$

Answers, part (a)

$$F(K,L) = \frac{K^{2}}{L}$$

$$F(zK,zL) = \frac{(zK)^{2}}{zL} = \frac{z^{2}K^{2}}{zL} = z\frac{K^{2}}{L}$$

$$= zF(K,L)$$

constant returns to scale for any **z** > 0

Answers, part (b)

$$F(K,L) = K + L$$

$$F(ZK,ZL) = ZK + ZL$$

$$= Z(K + L)$$

$$= ZF(K + L)$$

constant returns to scale for any **z** > 0

Assumptions

- 1. Technology is fixed.
- 2. The economy's supplies of capital and labor are fixed at:

$$K = \overline{K}$$
 and $L = \overline{L}$.

Determining GDP

Output is determined by the fixed factor supplies and the fixed state of technology:

$$\overline{Y} = F(\overline{K}, \overline{L})$$

The distribution of national income

determined by **factor prices**, the prices per unit firms pay for the factors of production

- wage = price of L
- rental rate = price of K

Notation

How factor prices are determined

- Quick pause: supply/demand of factors vs. final goods!
- Factor prices are determined by supply and demand in factor markets.
- Recall that the supply of each factor is fixed.
- What about demand?

Demand for labor

- Assume that markets are competitive: Each firm takes W,
 R, and P as given.
- Basic idea: A firm hires each unit of labor if the cost does not exceed the benefit.
 - cost = real wage
 - benefit = marginal product of labor

Marginal product of labor (MPL)

Definition:

The extra output the firm can produce using an additional unit of labor (holding other inputs fixed):

$$MPL = F(K, L + 1) - F(K, L)$$

NOW YOU TRY Compute and graph *MPL*

- a. Determine *MPL* at each value of *L*.
- b. Graph the production function.
- c. Graph the *MPL* curve with *MPL* on the vertical axis and *L* on the horizontal axis.

L	Y	MPL
0	0	n.a.
1	10	
2	19	
3	27	
4	34	
5	40	
6	45	
7	49	
8	52	
9	54	
10	55	

Compute and graph MPL, Answers

MPL and the production function

Labor, *L*

Diminishing marginal returns

- As one input is increased (holding other inputs constant), its marginal product falls.
- Intuition:
 If L increases while holding K fixed, machines per worker fall, worker productivity falls.

Identifying diminishing returns

Which of these production functions have diminishing marginal returns to labor?

(a)
$$F(K,L) = 2K + 15L$$

(b)
$$F(K,L) = \sqrt{KL}$$

(c)
$$F(K,L) = 2\sqrt{K} + 15\sqrt{L}$$

Identifying diminishing returns, answers

Which of these production functions have diminishing marginal returns to labor?

(a)
$$F(K,L) = 2K + 15L$$

No, $MPL = 15$ for all L

(b)
$$F(K,L) = \sqrt{KL}$$

Yes, MPL falls as L rises

(c)
$$F(K,L) = 2\sqrt{K} + 15\sqrt{L}$$

Yes, MPL falls as L rises

NOW YOU TRY MPL and labor demand

Suppose W/P = 6.

- If *L* = 3, should the firm hire more or less labor? Why?
- If L = 7, should the firm hire more or less labor? Why?

L	Y	MPL
0	0	n.a.
1	10	10
2	19	9
3	27	8
4	34	7
5	40	6
6	45	5
7	49	4
8	52	3
9	54	2
10	55	1

MPL and labor demand, answers

Suppose W/P = 6.

- If L = 3, should the firm hire more or less labor? Why?
 - Answer: More because the benefit of the fourth worker (MPL = 7) exceeds its cost (WIP = 6)
- If L = 7, should the firm hire more or less labor? Why?

Answer: Less because the seventh worker adds *MPL* = 4 units of output but costs the firm *WIP* = 6.

L	Y	MPL
0	0	n.a.
1	10	10
2	19	9
3	27	8
4	34	7
5	40	6
6	45	5
7	49	4
8	52	3
9	54	2
10	55	1

MPL and the demand for labor

The equilibrium real wage

The real wage adjusts to equate labor demand with supply.

Determining the rental rate

- We have just seen that MPL = W/P.
- The same logic shows that MPK = R/P:

Diminishing returns to capital:

MPK falls as **K** rises.

The *MPK* curve is the firm's demand curve for renting capital.

Firms maximize profits by choosing K such that MPK = R/P.

The equilibrium real rental rate

The neoclassical theory of distribution

- States that each factor input is paid its marginal product
- A good starting point for thinking about income distribution
- Examples where this does not hold?

How income is distributed to *L* and *K*

Total labor income =
$$\frac{W}{P}\overline{L} = MPL \times \overline{L}$$

Total capital income = $\frac{R}{P}\overline{K} = MPK \times \overline{K}$

If the production function has constant returns to scale, then

$$\overline{Y} = MPL \times \overline{L} + MPK \times \overline{K}$$

national income

labor income

capital income

The ratio of labor income to total income in the United States, 1960–2019

The Cobb-Douglas production function (1 of 2)

The Cobb

Douglas production function has constant factor shares:

 α = capital's share of total income: capital income = $MPK \times K = \alpha Y$ labor income = $MPL \times L = (1 - \alpha)Y$

The Cobb–Douglas production function is:

$$\mathbf{Y} = \mathbf{A}\mathbf{K}^{\alpha}\mathbf{L}^{1-\alpha},$$

where **A** represents the level of technology.

The Cobb-Douglas production function (2 of 2)

Each factor's marginal product is proportional to its average product:

$$MPK = \alpha AK^{\alpha-1}L^{1-\alpha} = \frac{\alpha Y}{K}$$

$$MPL = (1-\alpha)AK^{\alpha}L^{-\alpha} = \frac{(1-\alpha)Y}{L}$$

Therefore:

$$ar{Y} = MPL imes ar{L} + MPK imes ar{K} = rac{lpha ar{Y}}{ar{K}} ar{K} + rac{(1-lpha)ar{Y}}{ar{L}} ar{L} = lpha ar{Y} + (1-lpha)ar{Y}$$

Constant labor share (= share of income accruing to labor)

Declining labor share

Source: Aum and Shin (2020), https://www.stlouisfed.org/publications/review/2020/10/22/why-is-the-labor-share-declining

Declining labor share and income inequality

- Lower labor share and higher capital share over time has exacerbated income disparity.
- Why?
 - Technological advances have reduced the role of labor and increase the role of capital (higher α in the production function).
 - Market power of firms has increased while worker power has decreased.

Skill-biased technological change and inequality

- Technological progress increased the demand for skilled relative to unskilled workers (skill-biased technological change)
- Skills-biased technological change increased skilled workers' wages compared to unskilled ones
- Since the 1970s, technological progress continued, but educational advancements slowed
- Slower growth of skilled workers led to larger disparities in wages between skilled and unskilled workers, increasing inequality

Globalization and inequality

- Trade dynamics and growth in international trade in the United States have increased the demand for skilled relative to unskilled labor.
- These changes have increased the skilled workers' wages compared to unskilled workers, exacerbating income inequality.
- International trade can exacerbate inequality, but most economists believe it benefits economies.

Additional sources of income inequality

- Educational slowdown
- Falling marriage rates among higher-educated workers (assortative matching)

Aggregate demand

Demand for goods and services (1 of 2)

- Demand side
 - Recall the determinants of the four components of GDP:
 - C—consumption
 - I—investment
 - G—government expenditures
 - NX—net exports

Demand for goods and services (2 of 2)

Components of aggregate demand:

- **C** = consumer demand for goods and services
- *I* = demand for investment goods
- G = government demand for goods and services(closed economy: no NX)

Consumption, C (1 of 2)

- Households receive income from their labor and from owing capital.
- They pay taxes to the government.
- They decide how much of their after-tax income to consume and save.
- How much to consume and save (and how much to work) are the typical decisions households make in many economic models.

Consumption, C (2 of 2)

- Disposable income is total income minus total taxes: Y

 T.
- Consumption function: C = C(Y T)
- Definition: marginal propensity to consume (MPC) is the change in C when disposable income increases by one dollar.

The consumption function

Investment, I

- The investment function is *I* = *I* (*r*), where *r* denotes the real interest rate, the nominal interest rate corrected for inflation.
- The real interest rate is:
 - the cost of borrowing
 - the opportunity cost of using one's own funds to finance investment spending
- So, *I* depends negatively on *r*:
 - Here, r is the real interest rate, not the rental rate of capital (R).

The investment function

Quantity of investment, I

Government spending, G

- **G** = government spending on goods and services
- **G** excludes transfer payments (for example, Social Security benefits, unemployment insurance benefits)
- Assume that government spending and total taxes are exogenous:

$$G = \overline{G}$$
 and $T = \overline{T}$

Equilibrium

The market for goods and services

Aggregate demand:
$$C(\overline{Y} - \overline{T}) + I(r) + \overline{G}$$

Aggregate supply:
$$\overline{Y} = F(\overline{K}, \overline{L})$$

Equilibrium:
$$\overline{Y} = C(\overline{Y} - \overline{T}) + I(r) + \overline{G}$$

The real interest rate adjusts to equate demand with supply.

The loanable funds market

- A simple supply—demand model of the financial system.
- One asset: "loanable funds"
 - demand for funds: investment
 - supply of funds: saving
 - "price" of funds: real interest rate

Demand for funds: Investment

The demand for loanable funds:

- comes from investment:
 Firms borrow to finance spending on plants and equipment, new office buildings, etc. Consumers borrow to buy new houses.
- depends negatively on *r*:
 r is the "price" of loanable funds (cost of borrowing).

Supply of funds: Saving

- The supply of loanable funds comes from saving:
 - Households use their savings to make bank deposits and purchase bonds and other assets. These funds become available to firms to borrow and finance investment spending.
 - The government may also contribute to saving if it does not spend all the tax revenue it receives.

Loanable funds demand curve

Types of saving

Private saving =
$$(Y - T) - C$$

Public saving =
$$T - G$$

National saving, S

= private saving + public saving

$$= (Y-T) - C + T - G$$

$$= Y - C - G$$

What is S equal to?

Budget surpluses and deficits

- If T > G, budget surplus = (T G)
 = public saving.
- If T < G, budget deficit = (G T) and public saving is negative.
- If T = G, balanced budget, public saving = 0.
- The U.S. government finances its deficit by issuing Treasury bonds—that is, borrowing.

U.S. federal government surplus/deficit, 1939–2024

fred.stlouisfed.org

Shaded areas indicate U.S. recessions.

U.S. federal government debt, 1939–2023

Loanable funds supply curve

By assumption, national saving does not depend on r, so the supply curve is vertical.

Loanable funds market equilibrium

The special role of *r*

r adjusts to equilibrate the goods market and the loanable funds market simultaneously:

If the loanable funds market is in equilibrium, then

$$Y - C - G = I$$

Add (C + G) to both sides to get

$$Y = C + I + G$$
 (goods market equilibrium)

Thus:

Equilibrium in loanable funds market ⇔ Equilibrium in goods market

Recap: Mastering models

To master a model, be sure to know:

- 1. Which of its variables are endogenous and which are exogenous.
- 2. For each curve in the diagram, know:
 - a. definition
 - b. intuition for slope
 - c. all the things that can shift the curve
- 3. Use the model to analyze the effects of each item in 2c.

Mastering the loanable funds model (1 of 2)

Things that shift the saving curve:

- public saving
 - fiscal policy: changes in G or T
- private saving
 - preferences
 - tax laws that affect saving
 - 401(k)
 - IRA
 - replace income tax with consumption tax

CASE STUDY: The Reagan Deficits (1 of 2)

- Reagan policies during early 1980s:
 - increases in defense spending: $\Delta G > 0$
 - big tax cuts: $\Delta T < 0$
- Both policies reduce national saving:

$$\overline{S} = \overline{Y} - C(\overline{Y} - \overline{T}) - \overline{G}$$

$$\uparrow \overline{G} \Rightarrow \downarrow \overline{S} \qquad \downarrow \overline{T} \Rightarrow \uparrow C \Rightarrow \downarrow \overline{S}$$

CASE STUDY: The Reagan Deficits (2 of 2)

Saving decreases from S_1 to S_2 :

Results in the real interest rate increasing.

Mastering the loanable funds model (2 of 2)

Things that shift the investment curve:

- some technological innovations
 - to take advantage of some innovations, firms must buy new investment goods
- tax laws that affect investment
 - example: investment tax credit

An increase in investment demand

Investment Demand increases from l_1 to l_2 :

Results in an increase in *r*. No change in equilibrium investment.

NOW YOU TRY

- Suppose that new legislation requires employers to match 401(k) contributions.
- What happens to the savings and investment curves?
- What happens to the interest rate and the level of savings/ investment?

Saving and the interest rate

- So far, we assumed that saving does not depend on the interest rate
- Why might saving depend on r?
- How would the results of an increase in investment demand be different?
 - Would r rise as much?
 - Would the equilibrium value of *I* change?

An increase in investment demand when saving depends on *r*

Investment Demand increases

From I_1 to I_2 :

Results in an increase in *r* and an increase in equilibrium investment.

- Total output is determined by:
 - the economy's quantities of capital and labor
 - the level of technology
- Competitive firms hire each factor until its marginal product equals its price.
- If the production function has constant returns to scale, then labor income plus capital income equals total income (output).

- Increasing inequality among workers can be explained by numerous factors.
- Declining labor share, education slowdown among skilled workers, the rise of globalization and various cultural changes.

- A closed economy's output is used for consumption, investment, and government spending.
- The real interest rate adjusts to equate the demand for and supply of:
 - goods and services.
 - loanable funds.

- A decrease in national saving causes the interest rate to rise and investment to fall.
- An increase in investment demand causes the interest rate to rise but does not affect the equilibrium level of investment if the supply of loanable funds is fixed.