

Aufgaben zu Riemannsche Flächen - WS 2025/26

8. Blatt

Aufgabe 23: Sei X eine Riemannsche Fläche und $z:U\to U'$ eine Karte um p. Zeige, dass für das maximale Ideal $m_p \triangleleft \mathcal{E}_p$ der bei $p\in X$ verschwindenden C^{∞} -Funktionen gilt:

$$m_p^2 = \left\{ \varphi \in m_p \ \middle| \quad \frac{\partial}{\partial x} \middle|_p \varphi = 0 = \frac{\partial}{\partial y} \middle|_p \varphi \right\}.$$

Beweise dazu vorher das folgende Lemma.

Lemma. Ist $V \subset \mathbb{C}$ offen und sternförmig um 0, sowie $f: V \to \mathbb{C}$ eine C^{∞} -Funktion mit f(0) = 0, dann existieren C^{∞} -Funktionen $f_j: V \to \mathbb{C}$ für j = 1, 2, so dass

$$f(x+iy) = x \cdot f_1(x+iy) + y \cdot f_2(x+iy).$$

Hinweis: $f(x+iy) = \int_0^1 \frac{d}{dt} f(tx+ity) dt = \dots$

Aufgabe 24: Sei X eine Riemannsche Fläche. Dann ist induziert die komplexe Struktur von X auch eine differenzierbare Struktur auf X und macht diese zu einer 2-dimensionalen reellen Mannigfaltigkeit (daher auch der Name Fläche). Es bezeichne $T_p^{\mathbb{R}}X$ den reell 2-dimensionalen Tangentialraum von X bei p. Wieso definiert die komplexe Struktur in kanonischer Weise die Struktur eines 1-dimensionalen \mathbb{C} -Vektorraums auf $T_p^{\mathbb{R}}X$?

Hinweis: Dazu muss man sich an Analysis III bzw. an die Kenntnis über Mannigfaltigkeiten erinnern, z. B. dass eine differenzierbare Abbildung $h:U\to\mathbb{R}^2=\mathbb{C}$ eine \mathbb{R} -lineare Abbildung $d_ph:T_p^\mathbb{R}X\to\mathbb{R}^2=\mathbb{C}$ liefert.

Aufgabe 25: Betrachte die holomorphe 1-Form $\frac{dz}{1+z^2}$ auf $\mathbb{C}\setminus\{\pm i\}$. Zeige, dass diese eine holomorphe Fortsetzung auf $\mathbb{CP}^1\setminus\{\pm i\}$ hat. Wie schreibt man diese in der üblichen Karte für \mathbb{CP}^1 bei ∞ ?

Aufgabe 26: Ist $f: X \to Y$ holomorph, dann hat man für offenes $V \subset Y$ den pull-back:

$$f^*: \mathcal{E}(V) \longrightarrow \mathcal{E}(f^{-1}(V)), \qquad \varphi \mapsto f^*\varphi := \varphi \circ f.$$

Zeige, dass man in folgender Weise ein f^* für holomorphe 1-Formen hat: Ist $\omega \in \Omega^1(V)$ und $z:W \to W'$ eine Karte für Y mit $W \subset V$, so schreibe $\omega|_W = \varphi(z)\,dz$ und setze

$$f^*(\omega|_W) := f^*(\varphi(z)) d(f^*z).$$

Wie ist das zu lesen und warum ist das unabhängig von der Wahl der Karte? Hat man letzteres gesehen, folgt, dass man damit $f^*\omega \in \Omega^1(f^{-1}(V))$ wohldefiniert erhalten hat.