Using Inhibitors to Achieve Universality of Sequential P Systems

Michal Kováč

FMFI UK, Slovakia

24.6.2014

- Overview of P systems
 - P systems
 - Variants

- Sequential P systems with inhibitors
 - Accepting case
 - Generating case

Membrane structure

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

- Sequential: in each step apply 1 rule
- Maximal parallel: in each step apply a maximal multiset of rules

P systems

Language of a P system

- The result of the computation is a multiset of objects, which is present in a specific membrane at a halting configuration
- The language generated by a P system is a set of results of all possible conputations.

• cooperative $(a \mid b \mid b \rightarrow b)$ (universal [?])

- cooperative $(a \mid b \mid b \rightarrow b)$ (universal [?])
- non-cooperative (b o c) (PsCF $\cite{[r]}$)

- cooperative $(a \mid b \mid b \rightarrow b)$ (universal [?])
- non-cooperative $(b \rightarrow c)$ (PsCF [?])
- non-cooperative with inhibitors $(a o b \mid_{\neg c,d})$ (PsET0L [?])

- cooperative $(a \mid b \mid b \rightarrow b)$ (universal [?])
- non-cooperative $(b \rightarrow c)$ (PsCF [?])
- non-cooperative with inhibitors $(a \rightarrow b \mid_{\neg c,d})$ (PsET0L [?])
- catalytic $(a \mid b \rightarrow a \mid c \mid d)$

- cooperative $(a \mid b \mid b \rightarrow b)$ (universal [?])
- non-cooperative $(b \rightarrow c)$ (PsCF [?])
- non-cooperative with inhibitors $(a \rightarrow b \mid_{\neg c,d})$ (PsET0L [?])
- catalytic $(a \mid b \rightarrow a \mid c \mid d)$
 - catalytic with 2 catalysts (universal [?])
 - with 1 catalyst (open problem)
 - with 1 catalyst and inhibitors (universal [?])

Sequential P systems

Sequential P systems with cooperative rules

Sequential P systems

Sequential P systems with cooperative rules

- are equal to VASS ⇒ not universal [?]
- with priorities are universal [?]
- with unbounded membrane creation are universal [?]

Sequential P systems

Sequential P systems with cooperative rules

- are equal to VASS ⇒ not universal [?]
- with priorities are universal [?]
- with unbounded membrane creation are universal [?]
- with inhibitors [?]

- Simulation of a register machine
- Contents of register j is represented by the multiplicity of the object a_i
- SUB instruction is simulated by inhibitors

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

$$\begin{bmatrix} a \mid a \rightarrow a \mid b & (r_1) \\ a \mid b \mid b \rightarrow b & (r_2) \\ b \rightarrow c & (r_3) \\ \hline a \mid a \mid b \\ \hline \hline r_1, r_3 \not \\ \hline \hline a \mid b \mid c \\ \hline \end{bmatrix}$$

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

- Simulation of a maximal parallel P system
- Start with the same rules

Two phases

• Prevent the rule application on already rewritten objects

Two phases

- Prevent the rule application on already rewritten objects
 - replace objects on the right side a with a'
 - add *RESTORE* phase

Two phases

- Prevent the rule application on already rewritten objects
 - replace objects on the right side a with a'
 - add RESTORE phase
- $RUN \mid a \mid a \rightarrow RUN \mid a' \mid b'$
- $RUN \mid a \mid b \mid b \rightarrow RUN \mid b'$
- $RUN \mid b \rightarrow RUN \mid c'$

Two phases

- Prevent the rule application on already rewritten objects
 - replace objects on the right side a with a'
 - add RESTORE phase
- $RUN \mid a \mid a \rightarrow RUN \mid a' \mid b'$
- $RUN \mid a \mid b \mid b \rightarrow RUN \mid b'$
- $RUN \mid b \rightarrow RUN \mid c'$
- RESTORE $\mid a' \rightarrow RESTORE \mid a$
- RESTORE | $b' \rightarrow RESTORE \mid b$
- RESTORE $\mid c' \rightarrow RESTORE \mid c$

ullet RUN | UNUSABLE $_1$ | UNUSABLE $_2$ | UNUSABLE $_3$ ightarrow RESTORE

- ullet RUN | UNUSABLE $_1$ | UNUSABLE $_2$ | UNUSABLE $_3$ ightarrow RESTORE
- RESTORE \rightarrow RUN $|_{\neg a'b'c'}$

Creating UNUSABLE objects (simple case)

- (3) : $b \to c$
- $RUN \rightarrow RUN \mid UNUSABLE_3 \mid_{\neg b, UNUSABLE_3}$

Creating UNUSABLE objects (complicated case)

- (1): $a \mid a \rightarrow a \mid b$
- $RUN \rightarrow RUN \mid UNUSABLE_1 \mid_{\neg a, UNUSABLE_1}$
- Wrong for exactly 1 occurrence of a

Promoting objects

- $RUN \mid a \rightarrow RUN \mid \dot{a} \mid_{\neg \dot{a}}$
- RUN | $b \rightarrow RUN \mid \dot{b} \mid_{\neg \dot{b}}$
- $RUN \mid c \rightarrow RUN \mid \dot{c} \mid_{\neg \dot{c}}$
- At most 1 object can be promoted.

Using promoted objects

- $RUN \mid a \mid \dot{a} \rightarrow a' \mid b'$
- $RUN \mid \dot{a} \mid b \mid b \rightarrow b'$
- RUN | \dot{a} | \dot{b} | $b \rightarrow b'$
- RUN | $a \mid \dot{b} \mid b \rightarrow b'$
- $RUN \mid \dot{b} \rightarrow c'$

Using promoted objects

- $RUN \mid a \mid \dot{a} \rightarrow a' \mid b'$
- RUN | \dot{a} | b | $b \rightarrow b'$
- $RUN \mid \dot{a} \mid \dot{b} \mid b \rightarrow b'$
- RUN | $a \mid b \mid b \rightarrow b'$
- RUN | $\dot{b} \rightarrow c'$
- $RUN o RUN \mid UNUSABLE_3 \mid_{\neg b, \dot{b}, UNUSABLE_3}$
- $RUN o RUN \mid UNUSABLE_1 \mid_{\neg a, UNUSABLE_1}$

Multiple different objects on the left side

- (2) : $a \mid b \mid b \to b$
- $RUN o RUN \mid UNUSABLE_2 \mid_{\neg a, \dot{a}, UNUSABLE_2}$
- $RUN o RUN \mid UNUSABLE_2 \mid_{\neg b, UNUSABLE_2}$

Thanks for your attention!

Parent and child membrane phases

Obr. : Possible pairs of states of parent and child membrane

Snapshot of all membrane states

