Linear Programing

MultiCriteria Problems
Applied to recommendation systems

Constantino Martins and Goreti Marreiros

- AHP can be used to determine the relative importance of each criterion, allowing the recommendation system to adjust its recommendations based on these weights
- Users make informed decisions when choosing between different recommendation options
- AHP can be incorporated into recommendation systems to personalize recommendations based on individual user preferences
- Users can be asked to assess the importance of different criteria, and the recommendation system can then generate recommendations that best meet those preferences
- Considering multiple criteria and their weights, AHP can help improve the accuracy of recommendations

- Multi-criteria decision making
- Top of the hierarchy: the objective
- Second level: how the three criteria contribute to the objective
- Third level: how each of the three alternatives contributes to each of the criteria

- AHP (Analytical Hyerarquical Processing)
 - Proposed by Thomas Saaty, University of Pittsburgh, in the 70s
 - belongs to the family of normative methods
 - decompose the decision problem into a hierarchy of subproblems
 - elicitation of pairwise comparison judgments

Multi-criteria decision making

- AHP (Analytical Hierarquical Processing)
 - Problem structuring and definition of the hierarchy
 - Elicitation of pairwise comparisons
 - normalizing the resulting matrix
 - Derivation of priority vectors
 - averaging the values in each row to get the corresponding rating
 - Check consistency
 - Calculate overall scores

Multi-criteria decision making

• AHP – Saaty Scale

Intensity of importance	Description
9	Extreme importance
7	Very strong or demonstrated importance
5	Strong importance
3	Moderate importance
1	Equal importance
2,4,6,8	Intermediate values

 A company wants to choose a location for a new delegation, and have 3 potential itens: Porto, Lisboa, Bragança. There are several criteria that influence the choice: market, income level, transportation network, infrastruture

• Pairwise comparison for Alternatives regarding criteria market

Landlan	Market				
Location –	Porto	Bragança	Lisboa		
Porto	1	3	2		
Bragança	1/3	1	1/5		
Lisboa	1/2	5	1		

The diagonal elements of the matrix are always 1. We only need to fill up the upper triangular matrix. How to fill up the upper triangular matrix is using the following rules:

- If the judgment value is on the left side of 1, we put the actual Judgment value.
- If the judgment value is on the right side of 1, we put the reciprocal Value

The lower triangular matrix: $a_{ij}=1/a_{ji}$

Intensity of importance	Description
9	Extreme importance
7	Very strong or demonstrated importance
5	Strong importance
3	Moderate importance
1	Equal importance
2,4,6,8	Intermediate values

Porto. Lisboa 9876543<mark>2</mark>123456789 Bragança. 1/5 Lisboa 98765432123456789

• Pairwise comparison for Alternatives regarding criteria Income

Laation	Income				
Location –	Porto	Bragança	Lisboa		
Porto	1	6	1/3		
Bragança	1/6	1	1/9		
Lisboa	3	9	1		

• Pairwise comparison for Alternatives regarding criteria Infrastructure

Location	Infrastructure				
Location -	Porto	Bragança	Lisboa		
Porto	1	1/3	1		
Bragança	3	1	7		
Lisboa	1	1/7	1		

• Pairwise comparison for Alternatives regarding criteria **Transportation**

Location	Iransportation				
Location –	Porto	Bragança	Lisboa		
Porto	1	1/3	1/2		
Bragança	3	1	4		
Lisboa	2	1/4	1		

• Pairwise comparison for criteria

•	Market	Income	Infrastructure	Transportation
Market	1	1/5	3	4
Income	5	1	9	7
Infrastructure	1/3	1/9	1	2
Trasnportation	1/4	1/7	1/2	1

- Normalize preference Matrix:
 - Reduce all the values to the same unit
 - Each value of the matrix is divided by the total of its specific column

Location -	Market				
Location	Porto	Bragança	Lisboa		
Porto	1	3	2		
Bragança	1/3	1	1/5		
Lisboa	1/2	5	1		
sum	11/6	9	16/5		

Normalize the columns so that the sum of all column values becomes 1

- 1. Sum each column of the matrix
- 2. Then divide each element of the matrix with the sum of its column, we have normalized relative weight

Location		Market				
	Location -	Porto	Bragança	Lisboa		
	Porto	6/11	1/3	5/8		
	Bragança	2/11	1/9	1/16		
	Lisboa	3/11	5/9	5/16		

- Preference Vector
 - Identify the order of importance of element on the hierarchy
 - Calculate the average of the values of each line of the normalized preference matrix

We can obtain the overall or final priorities by calculating the arithmetic mean of each row

The sum must be 1

Location -	Market				
LOCATION	Porto	Bragança	Lisboa		
Porto	6/11	1/3	5/8		
Bragança	2/11	1/9	1/16		
Lisboa	3/11	5/9	5/16		

Avorago		Location -			
Average	Lisboa	Bragança	Porto	Location —	
0,50126	0,625	0,33333	0,54545	Porto	
0,11848	0,0625	0,11111	0,18182	Bragança	
0,38026	0,3125	0,55556	0,27273	Lisboa	
1	CLIPS				

- Preference Vector for alternative (criteria Income)
 - identify the order of importance of element pf the hierarchy
 - calculate the average of the values of each line of the normalized preference matrix

Location	Income									
Location -	Porto	Bragança	Lisboa							
Porto	1	1 6	1/3	Income		Location —			Location Income	Avorago
Bragança	1/		1/9		Porto	Bragança	Lisboa	Average		
Lisboa		3 9		Porto	0,24	0,375	0,23076923	0,28192308		
		3	1	Bragança	0,04	0,0625	0,07692308	0,05980769		
				Lisboa	0,72	0,5625	0,69230769	0,65826923		

- Preference Vector for alternative (criteria infrastructure)
 - identify the order of importance of element pf the hierarchy
 - calculate the average of the values of each line of the normalized preference matrix

infrastı	Location	ure							
o Bra	Location —	;a	Lisboa						
1	Porto	1/3	1	Location -		infrastructure	2	Average	
1	Bragança	1/3	_	LOCATION	Porto	rto Bragança Lisbo		Avelage	
3	Lisboa	1	/	Porto	0,2	0,22580645	0,11111111	0,17897252	
1	LISDOa	1/7	1	Bragança	,	0,67741935	,	0,68506571	
				Lisboa	0,2	0,09677419	0,11111111	0,13596177	

• Preference Vector for alternative (criteria transportation)

transportation

- identify the order of importance of element pf the hierarchy
- calculate the average of the values of each line of the normalized preference matrix

						ortation	tiai	Location	
					Lisboa	agança	Porto	Location –	
Average		ransportation	tı	Location	1/2	1/2	1	Porto	
Average	Lisboa	Bragança	Porto	Location	1/2	1/3	1	Bragança	
0,15603402	0.09090909	0,21052632	0.16666667	Porto	4	1	3	Lisboa	
0,61961722	•	0,63157895	0,5	Bragança	1	1/4	2	LISDOd	
0,22434875	0,18181818	0,15789474	0,33333333	Lisboa					

• Preference Vector for criteria

_	Market	Income	Infrastructure	Transportatio	n	
Market	1	1/5	3	4		
Income	5	1	9	7		
Infrastructure	1/3	1/9	1	2		
Trasnportation	1/4	1/7	1/2	1		
	-	Market	Income	Infrastructure	Transportation	Average
	Market	0,15189873	0,13755459	0,22222222	0,28571429	0,19934746
	Income	0,75949367	0,68777293	0,66666667	0,5	0,65348332
In	nfrastructure	0,05063291	0,07641921	0,074074074	0,14285714	0,08599584
Tra	asnportation	0,03797468	0,09825328	0,037037037	0,07142857	0,06117339

Overal score

_	Market	Income	Infrastructure	Transportation
Porto	0,50126263	0,28192308	0,178972521	0,15603402
Bragança	0,11847643	0,05980769	0,685065711	0,61961722
Lisboa	0,38026094	0,65826923	0,135961768	0,22434875
	,	•	•	ŕ

	Criteria weigth
Market	0,19934746
Income	0,65348332
Infrastructure	0,08599584
Transportation	0,06117339

_	Market	Income	Infrastructure	Transportation	Rank
Porto	0,50126263	0,28192308	0,178972521	0,15603402	0,30909348
Bragança	0,11847643	0,05980769	0,685065711	0,61961722	0,15951819
Lisboa	0,38026094	0,65826923	0,135961768	0,22434875	0,53138833

AHP — Consistency analysis

- Measure the consistency of the judgments
 - Calculate the consistency measure
 - Calculate the consistency index (CI)
 - (λmax-n)/(n-1)
 - Calculate the consistency ratio
 - CR=CI/RI where RI is a random index
 - If CR is greater than 0.1 the set of judgments may be too inconsistent to be reliable
 - Derived from Saaty's book, Random Index Values for n Items Being Compared

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.48	1.56	1.57	1.59

Calculate the consistency measure \(\lambda \) max

Example

$$\begin{bmatrix} 1 & 5 & 4 \\ 0.2 & 1 & \frac{1}{3.0} \\ 0.25 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.674 \\ 0.101 \\ 0.226 \end{bmatrix} = \begin{bmatrix} 2.083000000000000 \\ 0.311133333325800 \\ 0.6975000000000000 \end{bmatrix}$$

- Perform a Matrix multiplication, the Pairwise comparison matrix X priority vector
- 2. Divide a cell value of the matrix multiplication result vector by the corresponding priority vector cell
- 3. Then, λ max is obtained by the average of this resulting vector, which is (3.090504451 + 3.080528052 + 3.086283186)/3 = 3.085771896.

AHP — Consistency analysis

- Measure the consistency of the judgments
 - Calculate the consistency measure
 - λmax

•	Market	Income	Infrastructure	Transportati	Criteria	
				on	weigth	
Market	1	1/5	3	4	0,19934746	4,17725517
Income	5	1	9	7	0,65348332	4,36491153
Infrastructure	1/3	1/9	1	2	0,08599584	4,03974246
Trasnportation	1/4	1/7	1/2	1	0,06117339	4,04363606
					λmax	<mark>4,15638631</mark>

AHP — Consistency analysis

- Calculate the consistency index (CI)
 - $(\lambda max-n)/(n-1) = (4,15638631-4)/3 = 0.0521$
- Calculate the consistency ratio
 - CR=CI/RI where RI is a random index

In our case, n = 4, and the λ max is 4,15638631. So, we get the consistency index as 0.0521

- CR=0.0521/0.9=0,057920855 <0.1
 - Degree of consistency is satisfactory

			$\overline{}$											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.48	1.56	1.57	1.59

Conlusions

- Calculating Relative Priorities:
- Based on the comparisons made by users, the relative priorities of each criterion and sub-criterion are calculated using the normalization method and weighted averages calculation of AHP.
- Personalized Recommendations:
- The recommendation system utilizes the calculated priorities to generate personalized recommendations for each user. For example, if a user assigns greater importance to the "Market" criterion, the system may prioritize cities' with higher ratings in this aspect

Bibliography

- Saaty, T.L. (1980). The analytic hierarchy process. McGraw-Hill, New York
- Introduction to Management Science. Pearson, 2013
- Russel and Norvig, Artificial Intelligence: A Modern Approach
- Efraim Turban, Ramesh Sharda; Dursun Delen (2010). Decision Support and Business Intelligence Systems (9th Edition) Prentice-Hall, 9th edition
- Sharda, Delen & Turban (2015) Business Intelligence and Analytics: Systems for Decision Support, 10th Edition, Pearson, 2015
- V.L. Sauter (2011). Decision Support Systems For Business Intelligence, 2nd Edition, New York: John Wiley & Sons