CSE 5243 Autumn'22 Assignment #5 – Intr Data Mining

Neng Shi

2022/11/15

1 Problem 1.

First, we compute hash functions for the four different documents and obtain the following table.

	Row	S_1	S_2	S_3	S_4	$(2x+4) \mod 5$	$(3x+1) \mod 5$
	0	1	0	0	1	4	1
_	1	0	0	1	0	1	4
_	2	0	1	0	1	3	2
_	3	1	0	1	1	0	0
_	4	0	0	1	0	2	3

Now, let us simulate the algorithm for computing the signature matrix. Initially, the matrix consists of all ∞ 's:

	S_1	S_2	S_3	S_4
h1	∞	∞	∞	∞
h2	∞	∞	∞	∞

After considering row 0, the updated signature matrix is:

After considering row 1, the updated signature matrix is:

After considering row 2, the updated signature matrix is:

	S_1	S_2	S_3	S_4
h1	4	3	1	3
h2	1	2	4	1

After considering row 3, the updated signature matrix is:

	S_1	S_2	S_3	S_4
h1	0	3	0	0
h2	0	2	0	0

After considering row 4, the final updated signature matrix is:

		S_1	S_2	S_3	S_4
h	1	0	3	0	0
h	2	0	2	0	0

2 Problem 2.

Initial candidates: All four singleton sequences: A, T, C, G.

Cand.	sup
A	4
Т	4
Ŕ	3
G	4

Then we generate length-2 candidate sequences.

Cand.	sup
AA	4
AT	4
AG	4
TA	4
TT	2
TG	4
GA	4
GT	2
ĢĞ	3

Then we generate length-3 candidate sequences.

Cand.	sup
AAA	3
AAT	4
AAG	3
ATA	4
ATG	4
AGA	4
TAA	4
TAT	1
TAG	2
TGA	4
GAA	4
GAT	1
GAG	1

Then we generate length-4 candidate sequences.

Cand.	sup
AATA	3
AATG	3
ATAA	3
ATGA	4
AGAA	3
TAAT	1
TGAA	3
GAAT	1

So, finally, the frequent sequences are A, G, T, AA, AT, AG, TA, TG, GA, AAT, ATA, ATG, AGA, TAA, TGA, GAA, and ATGA.

3 Problem 3.

Initial candidates: All three singleton sequences: A, B, C.

Cand.	sup
A	4
В	4
\overline{C}	4

Then we generate length-2 candidate sequences, scan the database once, count support for each candidate, and find length-2 frequent sequences.

Cand.	\sup
AA	4
AB	4
AC	4
BA	4
BB	4
BC	4
ÇK	2
CB(3
CC	4
(AA)	0
(AB)	3
(AC)	2
(BB)	0
(Be)	1
(ce)	0

Up to this point, we find length-1 frequent sequences: A, B, and C, and length-2 frequent sequences: AA, AB, AC, BA, BB, BC, CC, and (AB). Then we repeat the process, i.e., once we have length-k frequent sequences, we can generate length-(k+1) candidate sequences from length-k frequent using Apriori, scan the database, and find length-(k+1) frequent sequences until no frequent sequence or no candidate can be found.