INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL – TP1

Fábio Oliveira – 2022145902 Rafael Filipe Rodrigues Pereira – 2022150534

Licenciatura em Engenharia Informática

Departamento de Engenharia Informática e Sistemas
Instituto Superior de Engenharia de Coimbra

21 de Outubro de 2024

INTRODUÇÃO

- **Objetivo:** Simular a limpeza de um ambiente, com obstáculos, por agentes aspiradores.
- Tecnologia: Desenvolvido em NetLogo.
- Propósito: Limpeza completa no menor tempo e com maior eficiência possível.
- Estratégia: Implementação de um modelo base e melhorias subsequentes.

AMBIENTE

- Configuração:
 - Grelha bidimensional com patches de várias cores:
 - Preto: Áreas limpas
 - Vermelho: Lixo
 - Azul: Carregadores
 - Branco: Obstáculos
 - Verde: Zona de despejo

AMBIENTE

- Parâmetros Configuráveis:
 - Aspiradores;
 - Capacidade de transporte;
 - Energia inicial;
 - Lixo;
 - Carregadores;
 - Obstáculos;
 - Energia mínima para recarga;
 - Tempo de despejo;
 - Tempo para recarga.

PERCEÇÃO

Agentes percebem patches adjacentes em neighbors4:

Movimentação

Recolha de lixo

Despejo de lixo

Recarregamento de energia

ESTADOS DE ENERGIA

A cor dos agentes varia conforme o nível de energia:

INTERFACE

Contém switches para ativar e desativar as funções do modelo melhorado.

Movimentação aleatória, salvo conhecimento prévio de carregadores.

MODELO BASE

O agente memoriza as localizações dos carregadores

Interação entre agentes próximos para troca de informações.

MODELO MELHORADO

- mostrar_energia: visualizar a energia dos agentes;
- mostrar_lixo: visualizar quantidade atual de lixo dos agentes;
- kamikaze: Agentes correm para o lixo, ignorando energia.
- **limpeza-em-area**: Os aspiradores limpas todas as patches ao seu redor(8 patches).

MODELO MELHORADO

- usar-carregador-mais-proximo: agentes sabem sempre qual a estação de carregamento mais próxima;
- usar-zona-despejo: Implementação igual à anterior mas referindo-se à zona de despejo;
- campo-potencial: Movimento guiado por gradientes de potencial.

- Modelo Base:
 - Hipótese 1: O aumento do número de agentes aumenta a superfície limpa.

$N^{\underline{o}}$ de agentes	Lixo apanhado (%)
5	22.07%
10	38.40%
15	66.25%

- Modelo Base:
 - Hipótese 2: O aumento de obstáculos no ambiente reduz a superfície limpa.

Nº de obstáculos	Lixo apanhado (%)
25	45.25%
50	42.56%
100	32.87%

Modelo Base:

• Hipótese 3: O aumento do número de carregadores aumenta a taxa de sobrevivência dos agentes.

$N^{\underline{o}}$ de carregadores	Taxa de sobrevivência (%)
1	9%
3	13%
5	17%

Modelo Melhorado:

 Hipótese 4: Saber as localizações dos carregadores e do depósito aumenta o lixo apanhado.

Opções	Taxa de agentes vivos (%)	Lixo apanhado (%)
Desligadas	25%	50.74%
Ligadas	94%	90%

Modelo Melhorado:

• Hipótese 5: O uso de campo potencial otimiza o movimento dos agentes, reduzindo o tempo total de limpeza e aumentando a superfície limpa.

Campo Potencial?	Média de ticks final	Lixo apanhado (%)
Não	10000	83.24%
Sim	591.6	100%

Modelo Melhorado:

- Hipótese 6: Número reduzido de agentes mais potentes tem desempenho semelhante a um número maior de agentes menos potentes.
- Funções usadas nesta experiencia:
 - usar-carregador-mais-próximo;
 - limpeza-em-área;
 - usar-zona-despejo;
 - campo-potencial.

$N^{\underline{o}}$ de agentes	Capacidade	Média ticks final	Média de lixo apanhado
10	15 (comum)	378.9	100%
5	30 (poderoso)	368.9	99.94%
20	15 (comum)	186.1	100%
10	30 (poderoso)	198.2	100%

CONCLUSÃO

A implementação dos modelos base e melhorado mostrou diferenças claras no desempenho dos agentes:

- No **modelo base**, a movimentação aleatória e a memória limitada resultaram em maior tempo de limpeza e menor eficiência na gestão de energia.
- No **modelo melhorado**, o uso do campo potencial e o conhecimento das localizações dos carregadores e da zona de despejo reduziram o tempo de limpeza e a taxa de falha dos agentes de forma significativa.