Exercices Corrigés Sous-espaces vectoriels

Exercice 1 – On considére le sous-espace vectoriel F_1 de \mathbb{R}^4 formé des solutions du système suivant :

$$(*) \begin{cases} x_1 + 2x_2 + x_3 + x_4 = 0 & (E_1) \\ x_2 - x_3 + 2x_4 = 0 & (E_2) \end{cases}.$$

et le sous-espace vectoriel F_2 de \mathbb{R}^4 formé des solutions du système suivant :

$$(**) \begin{cases} x_1 + 2x_2 + x_3 + x_4 &= 0 & (E'_1) \\ x_4 &= 0 & (E'_2) \end{cases}.$$

Préciser F_1 , F_2 et $F_1 \cap F_2$ et une base de ces trois sous-espaces vectoriels de \mathbf{R}^4 .

Exercice 2 – Soit E un **R**-espace vectoriel de dimension 3 et $\mathcal{B} = \{e_1, e_2, e_3\}$ une base de E. Notons : $u_1 = e_1 - 2e_2 + e_3$, $u_2 = 2e_1 - e_2 - e_3$, $u_3 = e_1 + e_2 - 2e_3$ et considérons $H = Vect(u_1, u_2, u_3)$.

- 1) Donner à l'aide d'un algorithme du cours une base de H. Quel est le rang de la famille (u_1, u_2, u_3) ?
- 2) Donner à l'aide d'un algorithme du cours des équations de H relativement à la base \mathcal{B} .
- 3) Déterminer l'ensemble des réels a, b, c tels que :

$$au_1 + bu_2 + cu_3 = 0$$

Exercice 3 – 1) On considére le sous-espace vectoriel F de ${\bf R}^4$ formé des solutions du système suivant :

$$(*) \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 - x_3 + 2x_4 = 0 \end{cases}.$$

Donner une base de F. Quelle est sa dimension?

- 2) Soit $u_1 = (1, 1, 1, 1), u_2 = (2, -1, 2, -1), u_3 = (4, 1, 4, 1)$ trois vecteurs de \mathbf{R}^4 . Soit $G = \text{Vect}(u_1, u_2, u_3)$. Donner une base de G constituée de vecteurs de \mathbf{R}^4 échelonnées relativement à la base canonique de \mathbf{R}^4 .
- 3) Donner un système d'équations de G relativement à la base canonique de \mathbb{R}^4 .

Exercice 4 – Soir E un K-espace vectoriel de dimension 4 et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ une base de E.

Soit $u_1 = e_1 + e_2 - e_3 + e_4$ et $u_2 = e_1 + 2e_2 + e_3 + e_4$. On note $F = \text{Vect}(u_1, u_2)$.

- 1) Montrer que la famille (u_1, u_2) est libre. Pourquoi (u_1, u_2) est alors une base de F.
- 2) Donner un système d'équations de F relativement à la base $\mathcal B$ de E.

On note $G = \text{Vect}(e_1, e_2)$.

- 3) Préciser une base de G. Montrer que $F \cap G = \{0\}$.
- 4) Montrer que $F \cap G = \{0\}$. En déduire $E = F \oplus G$.

Exercice 5 – Soir E un K-espace vectoriel de dimension 4 et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ une base de E.

Soit $u_1 = e_1 + e_2 - e_3 + e_4$ $u_2 = e_1 + 2e_2 + e_3 + e_4$, $u_3 = e_1 - e_2 + e_3 - e_4$ et $u_4 = 2e_1 + 3e_2 + 2e_4$. On note $F = \text{Vect}(u_1, u_2, u_3, u_4)$.

- 1) Donner une base de F échelonnée par rapport à la base \mathcal{B} . Quel est le rang de la famille (u_1, u_2, u_3, u_4) ?
- 2) Donner un système d'équations de F relativement à la base \mathcal{B} de E. Quelle est la dimension de F?

On note $G = Vect(e_1 + e_2 + e_3 + e_4)$.

- 3) Préciser une base de G. Montrer que $F \cap G = \{0\}$.
- 4) En déduire $E = F \oplus G$.
- 5) Préciser la décomposition du vecteur de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} comme somme d'un vecteur de F et d'un vecteur de G.

Exercice 6 – Soit E un K-espace vectoriel de dimension 4 et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ une base de E.

Soit $u_1 = e_1 - 2e_2 + e_3$ $u_2 = 2e_1 - 3e_2 + e_4$ et $u_3 = 3e_1 - 5e_2 + e_3 + e_4$. On note $F = \text{Vect}(u_1, u_2, u_3)$.

- 1) Donner une base de F échelonnée par rapport à la base \mathcal{B} .
- 2) Donner un système d'équations de F relativement à la base \mathcal{B} de E. Dimension de F? On note $G = \text{Vect}(e_1, e_1 + e_2 + e_3 + e_4)$.
- 3) Préciser une base de G. Montrer que $F \cap G = \{0\}$.
- 4) En déduire que F et G sont des sous-espaces vectoriels supplémentaires.
- 5) Préciser la décomposition du vecteur de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} comme somme d'un vecteur de F et d'un vecteur de G.

Exercice 7 – Soit E un K-espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Soit $u_1 = e_1 + e_2 + e_3$ et $u_2 = e_1 + 2e_2 + e_3$. On note $F = \text{Vect}(u_1, u_2)$.

- 1) Donner une base de F échelonnée relativement à la base \mathcal{B} . En déduire la dimension du sous-espace vectoriel F.
- 2) Donner un système d'équations de F.

On note $D = Vect(e_1)$.

- 3) Montrer que $D \cap F = \{0\}$.
- 4) En déduire $E = D \oplus F$.

Exercice 8 – Soit H le sous-espace vectoriel de \mathbb{R}^4 d'équation :

$$H : \begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ x_1 - x_2 + x_3 - x_4 &= 0 \end{cases}.$$

Posons u = (1, 1, 1, 1) et v = (1, 0, 0, 0). Notons L = Vect(u, v).

- 1) Déterminer le sous-espace vectoriel $H \cap L$. Puis préciser une base de H. 2) Montrer que H et L sont deux sous-espaces supplémentaires de \mathbf{R}^4 .
- 3) Soit a, b, c, d quatre réels, préciser la décomposition du vecteur (a, b, c, d) de \mathbf{R}^4 , comme somme d'un vecteur de H et d'un vecteur de L.

Exercice 9 – Soit $u_1 = (1, 1, -1, -1), u_2 = (1, 2, 1, -3), u_3 = (-2, 1, -2, 1)$ trois vecteurs de \mathbf{R}^4 . Soit $H = \text{Vect}(u_1, u_2, u_3)$.

- 1) Donner une base de H constituée de vecteurs de \mathbb{R}^4 échelonnées relativement à la base canonique de \mathbb{R}^4 .
- 2) Donner un système d'équations de H relativement à la base canonique de \mathbb{R}^4 .
- 3) Soit $u_4 = (1, 1, 1, 1)$ et $F = \text{Vect}(u_4)$. Montrer que $F \cap H = \{0\}$. En déduire que H et F sont des sous-espaces supplémentaires de \mathbb{R}^4 .
- 4) Soit $u = (x_1, x_2, x_3, x_4) \in \mathbf{R}^4$. Déterminer $v \in F$ et $w \in H$ tels que u = v + w. Préciser v et w.

Exercice 10 – Soit P le sous-espace vectoriel de \mathbb{R}^4 défini par le système d'équations linéaires :

$$\begin{cases} x+y+z+t = 0\\ y+2z+t = 0 \end{cases}$$

- 1) Sans calcul, justifier que P est de dimension 2. Puis déterminer une base (u_1, u_2) de P. Soit $v_1 = (1, 1, 1, 1)$ et $v_2 = (1, 0, 1, 0)$. On note $V = \text{vect}(v_1, v_2)$.
- 2) Montrer que (v_1, v_2) est une base de V.
- 3) Montrer que $P + V = \text{vect}(u_1, u_2, v_1, v_2)$. En déduire une base de P + V échelonnée par rapport à la base canonique de \mathbb{R}^4 .
- 4) En déduire que P et V ne sont pas supplémentaires. Donner une base de $P \cap V$. Soit $v_3 = (1, 1, 0, 0)$. On note $W = \text{vect}(v_1, v_3)$.
- 5) On admettra que P et W sont supplémentaires. Expliciter la projection sur W parallélement à P.

Correction de l'exercice 1

Le sous-espace vectoriel F_1 est par définition constitué des solutions du système d'équations linéaires homogènes :

$$(*) \begin{cases} x_1 + 2x_2 + x_3 + x_4 = 0 & (E_1) \\ x_2 - x_3 + 2x_4 = 0 & (E_2) \end{cases}.$$

Ce système est triangulé. Les variables libres en sont x_3 et x_4 . Résolvons le en suivant notre algorithme. On obtient :

$$x_2 = x_3 - 2x_4$$
.

Puis:

$$x_1 = -2x_2 - x_3 - x_4 = -2(x_3 - 2x_4) - x_3 - x_4 = -3x_3 + 3x_4$$
.

Il vient:

$$F_1 = \{(-3x_3 + 3x_4, x_3 - 2x_4, x_3, x_4) \text{ tels que } x_3, x_4 \in \mathbf{R})\}$$
.

Soit:

$$F_1 = \{x_3(-3, 1, 1, 0) + x_4(3, -2, 0, 1) \text{ tels que } x_3, x_4 \in \mathbf{R}\}$$

Ainsi, la famille de deux vecteurs (-3, 1, 1, 0), (3, -2, 0, 1) est une famille génératrice de F_1 . Elle est libre, en renversant les calculs :

$$x_3(-3,1,1,0) + x_4(3,-2,0,1) = (-3x_3 + 3x_4, x_3 - 2x_4, x_3, x_4) = 0$$

implique clairement $x_3 = x_4 = 0$. C'est une base de F_1 .

Le sous-espace vectoriel F_2 est par définition constitué des solutions du système d'équations linéaires homogènes :

 $(*) \begin{cases} x_1 + 2x_2 + x_3 + x_4 &= 0 & (E'_1) \\ x_4 &= 0 & (E'_2) \end{cases}.$

Ce système est triangulé. Les variables libres en sont x_2 et x_3 . Résolvons le en suivant notre algorithme. On obtient :

$$x_4 = 0$$
 .

Puis:

$$x_1 = -2x_2 - x_3$$
 .

Il vient:

$$F_2 = \{(-2x_2 - x_3, x_2, x_3, 0) \text{ tels que } x_2, x_3 \in \mathbf{R}\}$$
.

Soit:

$$F_2 = \{x_2(-2, 1, 0, 0) + x_3(-1, 0, 1, 0) \text{ tels que } x_2, x_3 \in \mathbf{R}\}$$

Ainsi, la famille de deux vecteurs (-2, 1, 0, 0), (-1, 0, 1, 0) est une famille génératrice de F_2 . Elle est libre (même argument que précedemment). C'est une base de F_2 .

L'ensemble $F_1 \cap F_2$ est un sous-espace vectoriel de \mathbb{R}^4 comme intersection de deux tels sous-espaces vectoriels. Il est constitué des solutions du système d'équations linéaires homogènes :

$$\begin{pmatrix}
x_1 + 2x_2 + x_3 + x_4 &= 0 & (E_1) \\
x_2 - x_3 + 2x_4 &= 0 & (E_2) \\
x_1 + 2x_2 + x_3 + x_4 &= 0 & (E'_1) \\
x_4 &= 0 & (E'_2)
\end{pmatrix}$$

Soit:

$$(*) \begin{cases} x_1 + 2x_2 + x_3 + x_4 &= 0 & (E_1) \\ x_2 - x_3 + 2x_4 &= 0 & (E_2) \\ x_4 &= 0 & (E'_2) \end{cases}$$

Ce système est triangulé. Il possède uen seule variable libre : x_3 . Résolvons le en suivant notre algorithme. On obtient :

$$x_4 = 0$$
.

Puis:

$$x_2 = x_3$$
 .

Puis:

$$x_1 = -2x_2 - x_3 - x_4 = -3x_3$$
.

Il vient:

$$F_1 \cap F_2 = \{(-3x_3, x_3, x_3, 0) \text{ tels que } x_3 \in \mathbf{R}\}$$

Soit:

$$F_1 \cap F_2 = \{x_3(-3, 1, 1, 0) \text{ tels que } x_3 \in \mathbf{R}\}$$
.

Ainsi, la famille d'un vecteur (-3, 1, 1, 0) est une famille génératrice de $F_1 \cap F_2$. Elle est libre, car est ce vecteur est non nul. C'est une base de $F_1 \cap F_2$.

Correction de l'exercice 2

1) L'algorithme du cours fournit à l'aide de la matrice $M_{\mathcal{B}}(u_1, u_2, u_3)$ (dont la j-ième colonne est formée des coordonnées de u_j dans la base \mathcal{B}) une base échelonnée de H relativement à cette base.

$$M_{\mathcal{B}}(u_1, u_2, u_3) = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
.

Etape 1 : Posons $u'_1 = u_1, u'_2 = u_2 - 2u_1$ et $u'_3 = u_3 - u_1$:

$$M_{\mathcal{B}}(u_1', u_2', u_3') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 3 \\ 1 & -3 & -3 \end{pmatrix}$$
.

On a $H = Vect(u'_1, u'_2, u'_3)$.

Etape 2 : Posons $u_1'' = u_1'$, $u_2'' = u_2'$ et $u_3'' = u_3' - u_2'$:

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ 1 & -3 & 0 \end{pmatrix}$$
.

On a $H = \operatorname{Vect}(u_1'', u_2'', u_3'') = \operatorname{Vect}(u_1'', u_2'')$, car $u_3'' = 0$.

La famille $u_1'' = e_1 - 2e_2 + e_3$, $u_2'' = 3e_2 - 3e_3$ est libre (car échelonnée par rapport à la la base \mathcal{B}) et engendre H. C'est donc une base de H échelonnée par rapport à la base \mathcal{B} .Le rang de la famille (u_1, u_2, u_3) est par définition la dimension de H. La famille (u_1, u_2, u_3) est donc de rang 2.

2) Un deuxième algorithme du cours donne un système d'équations de H relativement à la base \mathcal{B} de E en partant de $u_1'' = e_1 - 2e_2 + e_3$, $u_2'' = 3e_2 - 3e_3$ base de H échelonnée par rapport à la base \mathcal{B} . Soit u un vecteur de E de coordonnées (x_1, x_2, x_3) dans la base \mathcal{B} .

$$M_{\mathcal{B}}(u_1'', u_2'', u) = \begin{pmatrix} 1 & 0 & x_1 \\ -2 & 3 & x_2 \\ 1 & -3 & x_3 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u' = u - x_1 u_1'') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & x_2 + 2x_1 \\ 1 & -3 & x_3 - x_1 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u'' = u' - (1/3)(x_2 + 2x_1)u_2'') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ 1 & -3 & (x_3 - x_1) + (x_2 + 2x_1) \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u'') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ 1 & -3 & x_1 + x_2 + x_3 \end{pmatrix} .$$

On a $u \in H$ si et seulement si $u'' \in H$. Le vecteur u'' a sa première coordonnée et sa deuxième cordonnée nulle. Les vecteurs de la famille echelonnée (u''_1, u''_2) sont respectivement d'ordre 1 et 2. Il en résulte, que le vecteur u de coordonnées (x_1, x_2, x_3) dans la base \mathcal{B} appartient à H si et seulement si

$$x_1 + x_2 + x_3 = 0$$

Cette équation est donc un système d'équations de H relativement à la base \mathcal{B} de E.

3) Les coordonnées de $au_1 + bu_2 + cu_3$ dans la base \mathcal{B} sont :

$$a\begin{pmatrix} 1\\-2\\1\end{pmatrix} + b\begin{pmatrix} 2\\-1\\-1\end{pmatrix} + c\begin{pmatrix} 1\\1\\-2\end{pmatrix} = \begin{pmatrix} a+2b+c\\-2a-b+c\\a-b-2c\end{pmatrix}$$

Un vecteur est nul si et seulement si ses coordonnées dans une base sont nulles. Ainsi, nous avons à déterminer l'ensemble Σ des triplets de réels (a,b,c) solutions du système homogène d'équations linéaires :

$$\left\{
 \begin{array}{rcl}
 a + 2b + c & = & 0 & (E_1) \\
 -2a - b + c & = & 0 & (E_2) \\
 a - b - 2c & = & 0 & (E_3)
 \end{array}
 \right.$$

Ce système a même solution que le système :

$$\begin{pmatrix}
a + 2b + c &= 0 & (E_1) \\
3b + 3c &= 0 & (E'_2 = E_2 + 2E_1) \\
-3b - 3c &= 0 & (E'_3 = E_3 - E_1)
\end{pmatrix}.$$

Ce système a même solution que le système :

$$\begin{pmatrix}
a + 2b + c &= 0 & (E_1) \\
3b + 3c &= 0 & (E'_2) \\
0 &= 0 & (E'_3 - E'_2)
\end{pmatrix} .$$

Ce système a même solution que le système :

$$(*) \begin{cases} a+2b+c = 0 & (E_1) \\ 3b+3c = 0 & (E'_2) \end{cases}.$$

qui est un système triangulé de variables libres c. On obtient :

$$b = -c$$
 .

On obtient alors:

$$a = -2b - c = c \quad .$$

Il en résulte :

$$\Sigma = \{(c, -c, c) \text{ tels que } c \in \mathbf{R}\} .$$

$$\Sigma = \{c(1, -1, 1) \text{ tels que } c \in \mathbf{R}\} .$$

Pour vérifier ce calcul, on peut constater que $u_1 - u_2 + u_3 = 0$.

Correction de l'exercice 3

1) L'ordre des variables x_1, x_2, x_3, x_4 est l'ordre naturel. Les trois équations de (E) sont d'ordre 1. Le système est donc ordonné. Démarrons l'algorithme de triangulation.

Étape 1 : Utilisons (E_1) pour faire monter l'ordre des équations suivantes. Le système suivant à mêmes solutions que (E) :

$$(E') \quad \begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ x_2 - 2x_3 + x_4 &= 0 \end{cases} \quad (E_1)$$

Les équations E_1, E'_2 , sont respectivement d'ordre 1, 2. Ce sytème est ordonné. Ce système est triangulé. Le première algorithme est terminé.

Résoudre (E) revient donc à résoudre le système triangulé (E'). La variable de tête de (E_1) est x_1 , la variable de tête de (E'_2) est x_2 , Les variables libres de (E') sont donc x_3, x_4 . Résolvons ce système triangulé en suivant la méthode du cours. La dernière équation donne :

$$x_2 = 2x_3 - x_4$$
 .

Remplaçons cette valeur de x_2 dans l'équation précédente, on obtient :

$$x_1 + 2x_3 - x_4 + x_3 + x_4 = 0$$
.

Nous obtenons:

$$x_1 = -3x_3$$

Nous avons ainsi exprimé x_1 et x_2 à l'aide des variables libres. Ainsi, l'ensemble F des solutions de (E) est :

$$F = \{ (-3x_3, 2x_3 - x_4, x_3, x_4) \text{ tels que } x_3, x_4 \in \mathbf{R} \}$$

Soit: $F = \{x_3(-3, 2, 1, 0) + x_4(0, -1, 0, 1) \text{ tels que } x_3, x_4 \in \mathbb{R}\}$.

La famille (-3, 2, 1, 0), (0, -1, 0, 1) est donc une famille génératrice de F. Elle est libre car si

$$x_3(-3,2,1,0) + x_4(0,-1,0,1) = 0$$
,

on obtient:

$$(-3x_3, 2x_3 - x_4, x_3, x_4) = (0, 0, 0, 0)$$

et $x_3 = x_4 = 0$. Ainsi, ((-3, 2, 1, 0), (0, -1, 0, 1)) est une base de F.

2) Notons $E = \mathbf{R}^4$ et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbf{R}^4 :

$$e_1 = (1, 0, 0, 0), e_2 = (0, 1, 0, 0), e_3 = (0, 0, 1, 0), e_3 = (0, 0, 0, 1)$$
.

On a : $v(u_1) = v(u_2) = v(u_3) = 1$.

$$M_{\mathcal{B}}(u_1, u_2, u_3) = \begin{pmatrix} 1 & 2 & 4 \\ 1 & -1 & 1 \\ 0 & 2 & 4 \\ 1 & -1 & 1 \end{pmatrix}$$
 , $G = \text{Vect}(u_1, u_2, u_3)$.

Étape 2 : On utilise u_1 pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u'_1, u'_2, u'_3) = \begin{pmatrix} u'_1 = u_1 & u'_2 = u_2 - 2u_1 & u'_3 = u_3 - 4u_1 \\ 1 & 0 & 0 \\ 1 & -3 & -3 \\ 1 & 0 & 0 \\ 1 & -3 & -3 \end{pmatrix} , \quad G = \text{Vect}(u'_1, u'_2, u'_3) .$$

On a $v(u_1') < v(u_2') = v(u_3') = 2$.

Étape 3 : On utilise u_2' pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'') = \begin{pmatrix} u_1'' = u_1' & u_2'' = u_2' & u_3'' = u_3' - u_2' \\ 1 & 0 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 0 \\ 1 & -3 & 0 \end{pmatrix} , \quad G = \text{Vect}(u_1'', u_2'') .$$

On a $v(u_1'') < v(u_2'')$ L'algorithme est terminé et la famille $(u_1'' = (1, 1, 1, 1), u_2'' = (0, -3, 0, -3))$ est donc une base de G échelonnée relativement à la base canonique de \mathbb{R}^4 .

3) La famille (u_1'', u_2'') est échelonnée par rapport à la base canonique de \mathbf{R}^4 . Soit u de coordonnées (x_1, x_2, x_3, x_4) dans la base canonique \mathbf{R}^4 .

$$M_{\mathcal{B}}(u_1'', u_2'', u) = \begin{pmatrix} u_1'' & u_2'' & u \\ 1 & 0 & x_1 \\ 1 & -3 & x_2 \\ 1 & 0 & x_3 \\ 1 & -3 & x_4 \end{pmatrix} .$$

Étape 1 :

$$M_{\mathcal{B}}(u_1'', u_2'', u - x_1 u_1'') = \begin{pmatrix} u_1'' & u_2'' & u^{(1)} = u - x_1 u_1'' \\ 1 & 0 & 0 \\ 1 & -3 & x_2 - x_1 \\ 1 & 0 & x_3 - x_1 \\ 1 & -3 & x_4 - x_1 \end{pmatrix} , \quad u^{(1)} = u - x_1 u_1'' .$$

On a $u \in F$ équivaut à $u^{(1)} \in F$.

Étape 2 :

$$M_{\mathcal{B}}(u_1'', u_2'', u^{(2)} = u^{(1)} + (1/3)(x_2 - x_1)u_2'' = \begin{pmatrix} u_1'' & u_2'' & u^{(2)} = u^{(1)} + (1/3)(x_2 - x_1)u_2'' \\ 1 & 0 & 0 \\ 1 & -3 & 0 \\ 1 & 0 & x_3 - x_1 \\ 1 & -3 & x_4 - x_2 \end{pmatrix}$$

et $u \in F$ équivaut à $u^{(2)} = (0, 0, x_3 - x_1, x_4 - x_2) \in F$.

L'algorithme est terminé. Les deux premières coordonnées de $u^{(2)}$ sont nulles et u_1'', u_2'' sont d'ordre 1 et 2 relativement à \mathcal{B} Le vecteur u de coordonnées (x_1, x_2, x_3, x_4) dans la base canonique \mathbf{R}^4 est dans F si et seulement si $u^{(2)} = 0$. Donc, si et seulement si :

$$x_3 - x_1 = x_4 - x_2 = 0 \quad .$$

Le système :

$$\begin{cases} -x_1 + x_3 = 0 \\ -x_2 + x_4 = 0 \end{cases}.$$

est un système d'équations de G relativement à la base canonique de \mathbb{R}^4 .

Correction de l'exercice 4

1) Soient a, b réels tels que $au_1 + be_2 = 0$. On obtient :

$$a(e_1 + e_2 - e_3 + e_4) + b(e_1 + 2e_2 + e_3 + e_4) = 0$$
.

Soit:

$$(a+b)e_1 + (a+2b)e_2 + (-a+b)e_3 + (a+b) = 0$$

Comme (e_1, e_2, e_3, e_4) une base de E, c'est une famille libre. On obtient alors :

$$(a+b) = (a+2b) = (-a+b) = (a+b) = 0$$
.

On en déduit a = b = 0. La famille (u_1, u_2) est donc libre. Par définition de F, tout vecteur de F est combinaison linéaire des vecteurs u_1 et u_2 . Ainsi, (u_1, u_2) est une famille génératrice de F. Or, c'est une famille libre. C'est donc, (u_1, u_2) est une base de F.

2) Considérons la matrice dont les colonnes sont les coordonnées des vecteurs u_1 et u_2 dans la \mathcal{B} :

$$M_{\mathcal{B}}(u_1, u_2) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} .$$

Utilisons la première colonne de cette matrice pour faire monter l'ordre de la deuxième :

$$M_{\mathcal{B}}(u_1, u_2 - u_1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \\ 1 & 0 \end{pmatrix}$$
.

Cette matrice est echelonnée. Donc, $(u_1, u_2 - u_1)$ est une base de F echelonnée par rapport la base \mathcal{B} . En fait, cela remontre aussi que (u_1, u_2) est une famille libre (voir le cours). Soit u un vecteur de E de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} .

$$M_{\mathcal{B}}(u_1, u_2 - u_1, u) = \begin{pmatrix} 1 & 0 & x_1 \\ 1 & 1 & x_2 \\ -1 & 2 & x_3 \\ 1 & 0 & x_4 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1, u_2 - u_1, u - x_1 u_1) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & x_2 - x_1 \\ -1 & 2 & x_3 + x_1 \\ 1 & 0 & x_4 - x_1 \end{pmatrix} .$$

Nous avons : $u \in F$ si et seulement si $u - x_1u_1 \in F$.

$$M_{\mathcal{B}}(u_1, u_2 - u_1, u - x_1 u_1 - (x_2 - x_1)(u_2 - u_1)) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & x_3 + x_1 - 2(x_2 - x_1) \\ 1 & 0 & x_4 - x_1 \end{pmatrix} .$$

Nous avons $u \in F$ si et seulement si $u - x_1u_1 - (x_2 - x_1)(u_2 - u_1) \in F$. Le vecteur $u - x_1u_1 - (x_2 - x_1)(u_2 - u_1)$ a sa première coordonnée et sa deuxième cordonnée nulle. Les vecteurs de la famille echelonnée $(u_1, u_2 - u_1)$ sont respectivement d'ordre 1 et 2. Il en résulte, $u \in F$ si et seulement si : $x_3 + x_1 - 2(x_2 - x_1) = x_4 - x_1 = 0$. Ainsi,

$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0 \\ x_4 - x_1 = 0 \end{cases}.$$

est un système d'équations de F relativement à la base \mathcal{B} de E.

3) La famille (e_1, e_2) est libre, car c'est une sous-famille de la famille libre (e_1, e_2, e_3, e_4) . Comme (e_1, e_2) engendre G, c'est une base de G. Si $u \in F \cap G$, u est un vecteur de G. Ainsi, il existe deux réels a et b tels que $u = ae_1 + be_2$. Les coordonnées de u dans la base \mathcal{B} sont donc (a, b, 0, 0). Ces coordonnées vérifient dons le système d'équations de F dans la base \mathcal{B} . Ainsi, nous obtenons :

$$3a - 2b = -a = 0$$

On en déduit a = b = 0 et u = 0. Il en résulte $F \cap G = \{0\}$.

4) En utilisant la formule de dimension :

$$\dim(F + G) = \dim F + \dim G - \dim(F \cap G) = \dim F + \dim G = 2 + 2 = 4$$

Le sous-espace vectoriel F+G est donc un sous-espace vectoriel de E de même dimension que E. Il est donc égal à E. On a donc $F \cap G = \{0\}$ et E = F + G. Ainsi, $E = F \oplus G$.

Correction de l'exercice 5

1) L'algorithme du cours fournit à l'aide de la matrice $M_{\mathcal{B}}(u_1, u_2, \dots, u_p)$ (dont la j-ième colonne

est formée des coordonnées de u_j dans la base \mathcal{B}) une base échelonnée de F relativement à cette base.

$$M_{\mathcal{B}}(u_1, u_2, u_3, u_4) = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & 3 \\ -1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix} .$$

Etape 1 : Posons $u'_1 = u_1, u'_2 = u_2 - u_1, u'_3 = u_3 - u_1$, et $u'_4 = u_4 - 2u_1$:

$$M_{\mathcal{B}}(u_1', u_2', u_3', u_4') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & -2 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 0 & -2 & 0 \end{pmatrix} .$$

On a $F = Vect(u'_1, u'_2, u'_3, u'_4)$.

Etape 2: Posons $u_1'' = u_1'$, $u_2'' = u_2'$, $u_3'' = u_3' + 2u_1'$, et $u_4'' = u_4' - u_2'$:

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u_4'') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & 6 & 0 \\ 1 & 0 & -2 & 0 \end{pmatrix} .$$

On a $F = \text{Vect}(u_1'', u_2'', u_3'', u_4'') = \text{Vect}(u_1'', u_2'', u_3'')$, car $u_4'' = 0$.

La famille $u_1'' = e_1 + e_2 - e_3 + e_4$, $u_2'' = e_2 + 2e_3$, $u_3'' = 6e_3 - 2e_4$ est libre (car échelonnée par rapport à la base \mathcal{B}) et engendre F. C'est donc une base de F échelonnée par rapport à la base \mathcal{B} . Le rang de la famille (u_1, u_2, u_3, u_4) est par définition la dimension de F. La famille (u_1, u_2, u_3, u_4) est donc de rang 3.

2) Un deuxième algorithme du cours donne un système d'équations de F relativement à la base \mathcal{B} de E. Il part de la base (u''_1, u''_2, u''_3) de F échelonnée par rapport à la base \mathcal{B} . Soit u un vecteur de E de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} .

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u) = \begin{pmatrix} 1 & 0 & 0 & x_1 \\ 1 & 1 & 0 & x_2 \\ -1 & 2 & 6 & x_3 \\ 1 & 0 & -2 & x_4 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u' = u - x_1 u_1'') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & x_2 - x_1 \\ -1 & 2 & 6 & x_3 + x_1 \\ 1 & 0 & -2 & x_4 - x_1 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u'' = u' - (x_2 - x_1)u_2'') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & 6 & x_3 + x_1 - 2(x_2 - x_1) \\ 1 & 0 & -2 & x_4 - x_1 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u'') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & 6 & x_3 + 3x_1 - 2x_2 \\ 1 & 0 & -2 & x_4 - x_1 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u''') = u'' - \frac{1}{6}(x_3 + 3x_1 - 2x_2)u_3'') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & 6 & 0 \\ 1 & 0 & -2 & x_4 - x_1 - 2(-(1/6)(x_3 + 3x_1 - 2x_2)) \end{pmatrix}$$

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u - x_1 u_1'' - (x_2 - x_1) u_2'' - (-\frac{1}{6}(x_3 + 3x_1 - 2x_2) u_3'') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & 6 & 0 \\ 1 & 0 & -2 & x_4 + \frac{1}{3}x_3 - \frac{2}{3}x_2 \end{pmatrix}$$

On a $u \in F$ si et seulement si $u''' \in F$. Le vecteur u''' a ses trois premières coordonnées nulles et les vecteurs u''_1, u''_2, u''_3 sont respectivement d'ordre 1, 2 et 3 par rapport à la base \mathcal{B} . Ainsi, le vecteur u de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} appartient à F si et seulement si

$$x_4 + \frac{1}{3}x_3 - \frac{2}{3}x_2 = 0 \quad .$$

Cette équation est donc un système d'équations de F relativement à la base \mathcal{B} de E.

3) La famille réduite à l'élément $v = e_1 + e_2 + e_3 + e_4$ est libre, car le vecteur $e_1 + e_2 + e_3 + e_4$ est non nul (Pour tout $\lambda \in K$ et $v \in E$, $\lambda v = 0$ et $\lambda \neq 0$, implique v = 0. Donc $v \neq 0$ et $\lambda v = 0$ implique $\lambda = 0$). Ce vecteur engendre G par définition. La famille $\{e_1 + e_2 + e_3 + e_4\}$ est donc une base de G.

Si $u \in G$, il existe $a \in \mathbf{R}$ tel que $u = a(e_1 + e_2 + e_3 + e_4)$. Les coordonnées de u dans la base \mathcal{B} sont alors (a, a, a, a). Si de plus, $u \in F$, les coordonnées de u dans la base \mathcal{B} vérifient l'équation :

$$a + (1/3)a - (2/3)a = 0$$

Il en résulte a=0, puis u=0. Donc, $F\cap G=\{0\}$.

4) D'après la formule de dimension :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G) = 3+1-0=4$$
.

Ainsi, F + G est un sous-espace vectoriel de dimension 4 de E qui est un espace vectoriel de dimension 4. Donc, F + G = E. Commme $F \cap G = \{0\}$, on a bien $E = F \oplus G$.

5) Soit u un vecteur de E de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} . Il s'écrit d'après la question précédente de façon unique :

$$u = u' + u''$$
 avec $u' \in F$ et $u'' \in G$.

Soit (x'_1, x'_2, x'_3, x'_4) les coordonnées de u' dans le base \mathcal{B} et $(x''_1, x''_2, x''_3, x''_4)$ les coordonnées de u'' dans le base \mathcal{B} . Comme $u'' \in G$, il existe $a \in \mathbf{R}$ tel que $u = a(e_1 + e_2 + e_3 + e_4)$. Nous avons donc : $x''_1 = x''_2 = x''_3 = x''_4 = a$. Comme u = u' + u'' : $x_i = x'_i + x''_i = x'_i + a$. On en déduit $x'_i = x_i - a$. Comme $u' \in F$, les corrdonnées de u' dans la base \mathcal{B} vérifient l'équation déterminée à la question 2. Ainsi :

$$(x_4 - a) + \frac{1}{3}(x_3 - a) - \frac{2}{3}(x_2 - a) = 0$$

Il en résulte :

$$\frac{2}{3}a = x_4 + \frac{1}{3}x_3 - \frac{2}{3}x_2$$
 et $a = \frac{3}{2}x_4 + \frac{1}{2}x_3 - x_2$

Ainsi:

$$u'' = \left(\frac{3}{2}x_4 + \frac{1}{2}x_3 - x_2\right)(e_1 + e_2 + e_3 + e_4) .$$

$$u' = u - u'' = x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 - \left(\frac{3}{2}x_4 + \frac{1}{2}x_3 - x_2\right)(e_1 + e_2 + e_3 + e_4) .$$

Soit:

$$u' = (x_1 + x_2 - \frac{1}{2}x_3 - \frac{3}{2}x_4)e_1 + (2x_2 - \frac{1}{2}x_3 - \frac{3}{2}x_4)e_2 + (x_2 + \frac{1}{2}x_3 - \frac{3}{2}x_4)e_3 + (x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4)e_4$$

Correction de l'exercice 6

1) Un algorithme du cours fournit à l'aide de la matrice $M_{\mathcal{B}}(u_1, u_2, u_3)$ (dont la j-ième colonne est formée des coordonnées de u_j dans la base \mathcal{B}) une base échelonnée de F relativement à cette base.

$$M_{\mathcal{B}}(u_1, u_2, u_3) = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -3 & -5 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} .$$

Etape 1 : Posons $u'_1 = u_1, u'_2 = u_2 - 2u_1$ et $u'_3 = u_3 - 3u_1$:

$$M_{\mathcal{B}}(u_1', u_2', u_3') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 1 \\ 1 & -2 & -2 \\ 0 & 1 & 1 \end{pmatrix} .$$

On a $F = \text{Vect}(u'_1, u'_2, u'_3)$.

Etape 2 : Posons $u_1'' = u_1'$, $u_2'' = u_2'$ et $u_3'' = u_3' - u_2'$:

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix} .$$

On a $F = \text{Vect}(u_1'', u_2'', u_3'') = \text{Vect}(u_1'', u_2'')$, car $u_3'' = 0$.

La famille $u_1'' = e_1 - 2e_2 + e_3$, $u_2'' = e_2 - 2e_3 + e_4$ est libre (car échelonnée par rapport à la la

base \mathcal{B}) et engendre F. C'est donc une base de F échelonnée par rapport à la base \mathcal{B} .

2) Soit u un vecteur de E de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} .

$$M_{\mathcal{B}}(u_1'', u_2'', u) = \begin{pmatrix} 1 & 0 & x_1 \\ -2 & 1 & x_2 \\ 1 & -2 & x_3 \\ 0 & 1 & x_4 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1'', u_2'', u - x_1 u_1'') = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & x_2 + 2x_1 \\ 1 & -2 & x_3 - x_1 \\ 0 & 1 & x_4 \end{pmatrix} .$$

Nous avons : $u \in F$ si et seulement si $u - x_1 u_1'' \in F$.

$$M_{\mathcal{B}}(u_1'', u_2'', u - x_1 u_1'' - (x_2 + 2x_1) u_2'')) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 1 & -2 & (x_3 - x_1) + 2(x_2 + 2x_1) \\ 0 & 1 & x_4 - x_2 - 2x_1 \end{pmatrix}$$

Nous avons $u \in F$ si et seulement si $u'' = u - x_1 u_1'' - (x_2 + 2x_1) u_2'' \in F$. Les deux premières coordonnées de u'' sont nulles et les vecteurs u_1'', u_2'' d'ordres respectivement 1 et 2 dans la base \mathcal{B} . On obtient alors, $u \in F$ si et seulement si : $(x_3 - x_1) + 2(x_2 + 2x_1) = x_4 - x_2 - 2x_1 = 0$. Ainsi,

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ -2x_1 - x_2 + x_4 = 0 \end{cases}.$$

Ce système est donc un système d'équations de F relativement à la base \mathcal{B} de E.

3) Montrons que la famille $\{e_1, e_1 + e_2 + e_3 + e_4\}$ est libre. Soit a, b deux réels tels que :

$$ae_1 + b(e_1 + e_2 + e_3 + e_4) = 0$$
.

On obtient:

$$(a+b)e_1 + be_2 + be_3 + be_4 = 0$$
.

Il en résulte :

$$a+b=b=0 \quad .$$

Soit a = b = 0. Ainsi la famille $\{e_1, e_1 + e_2 + e_3 + e_4\}$ est libre. Comme cette famille engendre G, la famille $\{e_1, e_1 + e_2 + e_3 + e_4\}$ est une base de G.

On notera que la famille $\{e_1, e_2 + e_3 + e_4\}$ est une base de G echelonnée par rapport à la base \mathcal{B} . Par la suite, on utilisera cette base de G pour simplifier les calculs.

Si $u \in G$, il existe a, b deux réels tels que $u = ae_1 + b(e_2 + e_3 + e_4)$. Les coordonnées de u dans la base \mathcal{B} sont donc (a, b, b, b). Si l'on suppose alors que u appartient aussi à F, les coordonnées de u vérifient le système d'équation de F. On obtient ainsi :

$$\begin{cases} 3a + 2b + b = 0 \\ -2a - b + b = 0 \end{cases}.$$

D'où, a = b = 0 et u = 0. Ainsi, $F \cap G = \{0\}$.

4) On vient de montrer que $F \cap G = \{0\}$. Comme :

$$\dim(E) = 4 = 2 + 2 = \dim F + \dim G$$

il en résulte que $E = F \oplus G$.

5) Soit $u \in E$, u s'écrit de façon unique u = u' + u'' avec $u' \in F$ et $u'' \in G$. Soit (x_1, x_2, x_3, x_4) les coordonnées de u dans la base \mathcal{B} , (x'_1, x'_2, x'_3, x'_4) les coordonnées de u' dans la base \mathcal{B} . Il existe λ et μ deux réels tel que

$$u'' = \lambda e_1 + \mu(e_2 + e_3 + e_4)$$
.

Déterminons (x_1', x_2', x_3', x_4') et (λ, μ) à l'aide de (x_1, x_2, x_3, x_4) . En passant en coordonnées dans la base \mathcal{B} , l'équation u = u' + u'' se traduit par :

$$(x_1, x_2, x_3, x_4) = (x'_1, x'_2, x'_3, x'_4) + (\lambda, \mu, \mu, \mu)$$
.

Il en résulte :

$$(x'_1, x'_2, x'_3, x'_4) = (x_1 - \lambda, x_2 - \mu, x_3 - \mu, x_4 - \mu)$$
.

Ainsi, $(x_1 - \lambda, x_2 - \mu, x_3 - \mu, x_4 - \mu)$ est solution du système d'équations de F dans la base \mathcal{B} . On obtient :

$$\begin{cases} 3x_1 + 2x_2 + x_3 &= 3\lambda + 3\mu \\ -2x_1 - x_2 + x_4 &= -2\lambda \end{cases}.$$

On obtient:

$$\begin{cases} \lambda = x_1 + \frac{x_2}{2} - \frac{x_4}{2} \\ \mu = \frac{1}{6}x_2 + \frac{1}{3}x_3 + \frac{1}{2}x_4 \end{cases}.$$

Donc:

$$\begin{cases} u'' &= \lambda e_1 + \mu(e_2 + e_3 + e_4) \\ &= (x_1 + \frac{x_2}{2} - \frac{x_4}{2})e_1 + (\frac{1}{6}x_2 + \frac{1}{3}x_3 + \frac{1}{2}x_4)(e_2 + e_3 + e_4) \\ u' &= u - u'' \\ &= (-\frac{x_2}{2} + \frac{x_4}{2})e_1 + (\frac{5}{6}x_2 - \frac{1}{3}x_3 - \frac{1}{4}x_4)e_2 + (-\frac{1}{6}x_2 + \frac{2}{3}x_3 - \frac{1}{2}x_4)e_3 + (-\frac{1}{6}x_2 - \frac{1}{3}x_3 + \frac{1}{2}x_4)e_4 \end{cases}$$

Correction de l'exercice 7

1) Considérons la matrice dont les colonnes sont les coordonnées des vecteurs u_1 et u_2 dans la $\mathcal B$:

$$M_{\mathcal{B}}(u_1, u_2) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix} .$$

Utilisons la première colonne de cette matrice pour faire monter l'ordre de la deuxième :

$$M_{\mathcal{B}}(u_1, u_2 - u_1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Cette matrice est echelonnée. Donc, $(u_1, u_2 - u_1)$ est une base de $F = \text{Vect}(u_1, u_2)$. On a $u_2 - u_1 = e_2$, ainsi (u_1, e_2) est une base de F. La dimension de F est donc égal à 2. Le rang de la famille (u_1, u_2) est donc aussi égal à 2.

2) Soit u un vecteur de E de coordonnées (x_1, x_2, x_3) dans la base \mathcal{B} .

$$M_{\mathcal{B}}(u_1, e_2, x) = \begin{pmatrix} 1 & 0 & x_1 \\ 1 & 1 & x_2 \\ 1 & 0 & x_3 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1, e_2, x - x_1 u_1) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & x_2 - x_1 \\ 1 & 0 & x_3 - x_1 \end{pmatrix} .$$

$$M_{\mathcal{B}}(u_1, e_2, x - x_1 u_1 - (x_2 - x_1)e_2) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & x_3 - x_1 \end{pmatrix} .$$

Nous avons $u \in F$ si et seulement $u'' = x - x_1u_1 - (x_2 - x_1)e_2 \in F$. Les deux premières coordonnées de u'' sont nulles et les vecteurs (u_1, e_2) de la base échelonnée de F dans la base \mathcal{B} sont d'ordres respectivement 1 et 2 dans la base \mathcal{B} . On obtient alors, $u \in F$ si et seulement si : $x_3 - x_1 = 0$. Ainsi,

$$x_3 - x_1 = 0$$

est un système d'équation de F dans la base \mathcal{B} .

- 3) Soit $u \in D \cap F = \{0\}$. Comme u appartient à D, il existe $\lambda \in K$ tel que $u = \lambda e_1$. Les coordonnées de u dans la base \mathcal{B} sont donc : $(\lambda, 0, 0)$. Traduisons en utilisant le système d'équations de F dans la base \mathcal{B} donné dans la question précédente que $u \in F$. On obtient $\lambda 0 = 0$. Soit $\lambda = 0$, soit u = 0. On a ainsi montré que $D \cap F = \{0\}$.
- 4) D'aprés un résultat du cours, D et F sont supplémentaire si :

$$\dim_K D + \dim_K F = \dim_K E$$
 et $D \cap F = \{0\}$

Le vecteur e_1 est non nul. C'est donc une base de $D = \text{Vect}(e_1)$. Ainsi, D est de dimension 1. Nous avons vu que F est de dimension 2. Ainsi, $1 + 2 = 3 = \dim_K E$. Comme, d'après la question précédente $D \cap F = \{0\}$, nous avons bien :

$$E = D \oplus F$$

Correction de l'exercice 8

1) Soit $w \in H \cap L$. Traduisons que $w \in L$: il existe a et b réels tels que :

$$w = au + bv = a(1, 1, 1, 1) + b(1, 0, 0, 0) = (a + b, a, a, a)$$

Comme $w \in H$, ses ocordonnées vérifient les équations de H. On obtient :

$$\begin{cases} (a+b) + a + a + a = 0 \\ (a+b) - a + a - a = 0. \end{cases}$$

Soit 4a+b=0 et b=0. Ainsi, a=b=0 et w=0. Nous avons ainsi montré que $H\cap L=\{0\}$. 2) Le vecteur $(x_1,x_2,x_3,x_4)\in H$ si et seulement si :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ x_1 - x_2 + x_3 - x_4 &= 0 . \end{cases}$$

ou encore si et seulement si :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_2 + 2x_4 = 0 \end{cases}$$

Ce système est triangulé de variable libre x_4 et x_3 , on obtient : $x_2 = -x_4$ et $x_1 = -x_3$. Ainsi, $H = \{x_3(-1,0,1,0) + x_4(0,-1,0,1) \text{ tels que } x_3 , x_4 \in \mathbf{R} \}$. La famille (-1,0,1,0), (0,-1,0,1) est donc une famille générarice de H. Elle est libre, car si

$$x_3(-1,0,1,0) + x_4(0,-1,0,1) = 0$$

on obtient:

$$(-x_3n - x_4, x_3, x_4) = (0, 0, 0, 0)$$

et $x_3 = x_4 = 0$. Ainsi, (-1, 0, 1, 0), (0, -1, 0, 1) est une base de H. En particulier, $\dim_{\mathbf{R}}(H) = 2$.

On montre facilement que la famille (u, v) est libre. Elle engendre L par définition. C'est donc une base de L et $\dim_{\mathbf{R}}(L) = 2$.

Ainsi, nous avons:

$$H \cap L = \{0\}$$
 , $\dim_{\mathbf{R}} \mathbf{R}^4 = 2 + 2 = \dim_{\mathbf{R}}(H) + \dim_{\mathbf{R}}(L)$.

Cela assure que H et L sont deux sous-espaces supplémentaires de \mathbb{R}^4 .

2) Comme H et L sont deux sous-espaces supplémentaires de \mathbf{R}^4 , le vecteur (a, b, c, d) de \mathbf{R}^4 s'écrit de façon unique :

$$(a, b, c, d) = l + h$$
 avec $l \in L$ et $h \in H$.

Traduisons que $l \in L$: il existe a et b réels tels que :

$$l = \alpha u + \beta v = \alpha(1, 1, 1, 1) + \beta(1, 0, 0, 0) = (\alpha + \beta, \alpha, \alpha, \alpha)$$
.

On obtient:

$$h = (a, b, c, d) - (\alpha + \beta, \alpha, \alpha, \alpha) = (a - \alpha - \beta, b - \alpha, c - \alpha, d - \alpha)$$

Exprimons que $h \in H$, on obtient :

$$\begin{cases} a+b+c+d = 4\alpha + \beta \\ a-b+c-d = \beta . \end{cases}$$

Il vient:

$$\begin{cases} \beta &= a-b+c-d \\ \alpha &= \frac{1}{2}(b+d) \ . \end{cases}$$

Nous en déduisons :

$$l = (a - \frac{b}{2} + c - \frac{d}{2}, \frac{b}{2} + \frac{d}{2}, \frac{b}{2} + \frac{d}{2}, \frac{b}{2} + \frac{d}{2}) \quad , \quad h = (\frac{b}{2} - c + \frac{d}{2}, \frac{b}{2} - \frac{d}{2}, -\frac{b}{2} + c\frac{d}{2}, -\frac{b}{2} + \frac{d}{2}) \quad .$$

Correction de l'exercice 9

1) Notons $E = \mathbf{R}^4$ et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbf{R}^4 :

$$e_1 = (1, 0, 0, 0), e_2 = (0, 1, 0, 0), e_3 = (0, 0, 1, 0), e_3 = (0, 0, 0, 1)$$
.

On a: $v(u_1) = v(u_2) = v(u_3) = 1$.

$$M_{\mathcal{B}}(u_1, u_2, u_3) = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 2 & 1 \\ -1 & 1 & -2 \\ -1 & -3 & 1 \end{pmatrix}$$
 , $H = \text{Vect}(u_1, u_2, u_3)$.

Étape 2 : On utilise u_1 pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u'_1, u'_2, u'_3) = \begin{pmatrix} u'_1 = u_1 & u'_2 = u_2 - u_1 & u'_3 = u_3 + 2u_1 \\ 1 & 0 & 0 \\ 1 & 1 & 3 \\ -1 & 2 & -4 \\ -1 & -2 & -1 \end{pmatrix} , \quad H = \text{Vect}(u'_1, u'_2, u'_3) .$$

On a $v(u_1') < v(u_2') = v(u_3') = 2$.

Étape 3 : On utilise u_2' pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'') = \begin{pmatrix} u_1'' = u_1' & u_2'' = u_2' & u_3'' = u_3' - 3u_2' \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & -10 \\ -1 & -2 & 5 \end{pmatrix} , \quad H = \text{Vect}(u_1'', u_2'', u_3'') .$$

On a $v(u_1'') < v(u_2'') < v(u_3'')$ L'algorithme est terminé et la famille :

$$(u_1'' = (1, 1, -1, -1), u_2'' = (0, 1, 2, 2), u_3'' = (0, 0, -10, 5))$$

est donc une base de H échelonnée relativement à la base canonique de \mathbb{R}^4 .

2) La famille (u_1'', u_2'', u_3'') est échelonnée par rapport à la base canonique de \mathbb{R}^4 . Soit u de coordonnées (x_1, x_2, x_3, x_4) dans la base canonique \mathbb{R}^4 .

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u) = \begin{pmatrix} u_1'' & u_2'' & u_3'' & u \\ 1 & 0 & 0 & x_1 \\ 1 & 1 & 0 & x_2 \\ -1 & 2 & -10 & x_3 \\ -1 & -2 & 5 & x_4 \end{pmatrix} .$$

Étape 1 : $u^{(1)} = u - x_1 u_1''$:

$$M_{\mathcal{B}}(, u_2'', u_3'', u^{(1)}) = \begin{pmatrix} u_1'' & u_2'' & u_3'' & u^{(1)} \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & x_2 - x_1 \\ -1 & 2 & -10 & x_3 + x_1 \\ -1 & -2 & 5 & x_4 + x_1 \end{pmatrix} .$$

On a $u \in F$ équivaut à $u^{(1)} \in F$.

Étape 2: $u^{(2)} = u^{(1)} - (x_2 - x_1)u_2''$:

$$M_{\mathcal{B}}(u_1'', u_2'', u_3'', u^{(2)}) = \begin{pmatrix} u_1'' & u_2'' & u_3'' & u^{(2)} \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & -10 & x_3 + 3x_1 - 2x_2 \\ -1 & -2 & 5 & x_4 - x_1 + 2x_2 \end{pmatrix} .$$

et $u \in F$ équivaut à $u^{(2)} = (0, 0, x_3 + 3x_1 - 2x_2, x_4 - x_1 + 2x_2) \in F$.

Étape 3: $u^{(3)} = u^{(2)} + (1/10)(x_3 + 3x_1 - 2x_2)u_3'''$:

$$M_{\mathcal{B}}(u_1''', u_2''', u_3''', u^{(3)}) = \begin{pmatrix} u_1'' & u_2'' & u_3'' & u^{(3)} \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 2 & -10 & 0 \\ -1 & -2 & 5 & x_4 + (1/2)x_1 + x_2 + (1/2)x_3 \end{pmatrix}$$

et $u \in F$ équivaut à $u^{(3)} = (0, 0, 0, x_4 + \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3) \in F$.

L'algorithme est terminé. Le vecteur $u^{(3)}$ a ses trois premières coordonnées nulles et u_1''' , u_2''' , u_3''' sont respectivement d'ordre 1, 2 et 3 relativement à la base \mathcal{B} . Le vecteur u de coordonnées (x_1, x_2, x_3, x_4) dans la base canonique \mathbf{R}^4 est dans H si et seulement si $u^{(3)} = 0$. Donc, si et seulement si :

$$x_4 + \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 = 0 \quad .$$

Cette équation est est un système d'équations de F relativement à la base canonique de \mathbb{R}^4 .

3) Soit $u \in F \cap H$. Donc, $u \in F$. Par définition de F, il existe $a \in \mathbf{R}$ tel que

$$u = au_4 = a(1, 1, 1, 1) = (a, a, a, a)$$

Comme $u \in H$, les coordonnés de u dans la base canonique de \mathbf{R}^4 vérifient l'équation de H. On doit alors avoir :

$$a + \frac{1}{2}a + a + \frac{1}{2}a = 0$$

Soit 3a = 0, soit a = 0 et u = 0. Ainsi, $F \cap H = \{0\}$.

Dans la question 2, nous avons vu que H est un sous-espace vectoriel de \mathbf{R}^4 de dimension 3. Comme F est engendré par un vecteur non nul, F est un sous-espace vectoriel de \mathbf{R}^4 de dimension 1. Ainsi :

$$\dim_{\mathbf{R}} \mathbf{R}^4 = 4 = 1 + 3 = \dim_{\mathbf{R}} F + \dim_{\mathbf{R}} H$$

Comme nous venons de montrer que $F \cap H = \{0\}$, F et H sont donc supplémentaires :

$$\mathbf{R}^4 = F \oplus H$$
 ;

4) Puisque F et H sont supplémentaires, il existe $v \in F$ et $w \in H$ uniques tels que u = v + w. Comme $v \in F$, il existe $a \in \mathbf{R}$ tel que

$$v = au_4 = a(1, 1, 1, 1) = (a, a, a, a)$$
.

Il en résulte :

$$w = u - v = (x_1, x_2, x_3, x_4) - (a, a, a, a) = (x_1 - a, x_2 - a, x_3 - a, x_4 - a) \in H .$$

Écrivons que les coordonnées de w dans la base canonique de ${\bf R}^4$ vérifient l'équation de H:

$$(x_4 - a) + \frac{1}{2}(x_1 - a) + (x_2 - a) + \frac{1}{2}(x_3 - a) = 0$$
.

On en déduit :

$$a = \frac{x_4 + \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3}{3} = \frac{2x_4 + x_1 + 2x_2 + x_3}{6}$$

Ainsi:

$$v = \frac{2x_4 + x_1 + 2x_2 + x_3}{6}(1, 1, 1, 1)$$

$$w = \left(\frac{-2x_4 + 5x_1 - 2x_2 - x_3}{6}, \frac{-2x_4 - x_1 + 4x_2 - x_3}{6}, \frac{-2x_4 - x_1 - 2x_2 + 5x_3}{6}, \frac{4x_4 - x_1 - 2x_2 - x_3}{6}\right)$$

Correction de l'exercice 10

1) Un vecteur $(x, y, z, t) \in P$ si et seulement si (x, y, z, t) une solution du systéme d'équations linéaires homogènes :

$$\begin{cases} x+y+z+t = 0 \\ y+2z+t = 0 \end{cases}.$$

Les variables x, y, z, t étant ordonnés naturellement, ce système est triangulé et admet deux variables libres z et t. Ainsi, l'espace vectoriel de ses solutions est un \mathbf{R} -espace vectoriel de dimension 2. Résolvons ce système. On obtient :

$$y = -2z - t$$
 , puis $x = -y - z - t = 2z + t - z - t = z$.

Ainsi,

$$P = \{(z, -2z - t, z, t) \text{ tels que } z, t \in \mathbf{R}\}$$

= \{z(1, -2, 1, 0) + t(0, -1, 0, 1) \text{ tels que } z, t \in \mathbf{R}\}

La famille $(u_1 = (1, -2, 1, 0), u_2 = (0, -1, 0, 1))$ est génératrice de P. Elle est libre. Si z(1, -2, 1, 0) + t(0, -1, 0, 1) = 0, (z, -2z - t, z, t) est nul et z = t = 0. La famille $(u_1 = (1, -2, 1, 0), u_2 = (0, -1, 0, 1))$ est donc une base de P.

- 2) Par définition, V est l'ensemble des combinaisons linéaires des vecteurs v_1 et v_2 . Donc, la famille (v_1, v_2) est une famille génératrice de V. Pour montrer que c'est une base, il suffit donc de montrer qu'il s'agit d'une famille libre. Soit $a, b \in \mathbf{R}$, tels que $av_1 + bv_2 = 0$. Il vient : (a + b, a, a + b, a) = 0. D'où a = 0, puis b = 0.
- 3) Soit $w \in P + V$. Par définition de P + V, il existe $w_1 \in P$ et $w_2 \in V$ tels que $w = w_1 + w_2$. Comme $w_1 \in P$, w_1 s'écrit comme combinaison linéaire des vecteurs de sa base (u_1, u_2) : il existe, $a, b \in \mathbf{R}$ tels que $w_1 = au_1 + bu_2$. De même, $w_2 \in V$ et w_2 s'écrit comme combinaison linéaire des vecteurs de sa base (v_1, v_2) : il existe, $c, d \in \mathbf{R}$ tels que $w_2 = cv_1 + dv_2$. Il en résulte $w = au_1 + bu_2 + cv_1 + dv_2$. Donc, $w \in \text{vect}(u_1, u_2, v_1, v_2)$. On a donc montré $P + V \subset \text{vect}(u_1, u_2, v_1, v_2)$. Inversement, si $w \in \text{vect}(u_1, u_2, v_1, v_2)$, il existe $a, b, c, d \in \mathbf{R}$ tels que $w = au_1 + bu_2 + cv_1 + dv_2$. Ainsi, $w = (au_1 + bu_2) + (cv_1 + dv_2)$. Comme $au_1 + bu_2 \in P$ et $cv_1 + dv_2 \in V$, on obtient $w \in P + V$ et $\text{vect}(u_1, u_2, v_1, v_2) \subset P + V$. Finalement, $P + V = \text{vect}(u_1, u_2, v_1, v_2)$.

Nous connaissons les coordonnées des vecteurs u_1, u_2, v_1, v_2 dans une base (la base canonique de \mathbf{R}^4). Utilisons l'algorithme qui nous donnera une base de vect (u_1, u_2, v_1, v_2) échelonnée par rapport à la base canonique de \mathbf{R}^4 .

$$M_{\mathcal{B}}(u_1, u_2, v_1, v_2) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ -2 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} , \quad P + V = \text{Vect}(u_1, u_2, v_1, v_2) .$$

Étape 2 : On utilise u_1 pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u_1, u_2, v_1', v_2') = \begin{pmatrix} u_1 & u_2 & v_1' = v_1 - u_1 & v_2' = v_2 - u_1 \\ 1 & 0 & 0 & 0 \\ -2 & -1 & 3 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} , \quad P+V = \text{Vect}(u_1, u_2, v_1', v_2') .$$

On a
$$v(u_1) < v(u_2) = v(v_1') = v(v_2') = 2$$
.

Étape 3 : On utilise u_2 pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u_1, u_2, v_1'', v_2'') = \begin{pmatrix} u_1 & u_2 & v_1'' = v_1' + 3u_2 & v_2'' = v_2' + 2u_2 \\ 1 & 0 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 2 \end{pmatrix} , \quad P+V = \text{Vect}(u_1, u_2, v_1'', v_2'') .$$

On a $v(u_1) < v(u_2) < v(v_1'') = v(v_2'') = 4$

Étape 4 : On utilise u_2 pour faire monter l'ordre des vecteurs suivants :

$$M_{\mathcal{B}}(u_1, u_2, v_1'', v_2''') = \begin{pmatrix} u_1 & u_2 & v_1'' & v_2''' = v_2'' - (1/2)v_1'' \\ 1 & 0 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 0 \end{pmatrix} , \quad P + V = \text{Vect}(u_1, u_2, v_1'') .$$

On a $v(u_1) < v(u_2) < v(v_1'')$. L'algorithme est terminé et la famille :

$$(u_1 = (1, -2, 1, 0), u_2 = (0, -1, 0, 1), v_1'' = (0, 0, 0, 4))$$

est donc une base de P + V échelonnée relativement à la base canonique de \mathbf{R}^4 . P + V est donc un sous-espace vectoriel de \mathbf{R}^4 de dimension 3.

4) Dire que P et V sont supplémentaires, c'est dire $P+V=\mathbb{R}^4$ et $P\cap V\{0\}$. Or, $P+V=\mathbb{R}^4$ est impossible puisque \mathbb{R}^4 est de dimension 4 et que nous venons de voir que P+V est de dimension 3. Nous savons que :

$$\dim_{\mathbf{K}} P + \dim_{\mathbf{K}} V = \dim_{\mathbf{K}} (P + V) + \dim_{\mathbf{K}} (P \cap V)$$

Il en résulte $2+2=3+\dim_{\mathbf{K}}(P\cap V)$. Soit $\dim_{\mathbf{K}}(P\cap V)=1$. Une base de $(P\cap V)$ est donc formée par un vecteur non nul de $P\cap V$; or l'algorithme de la question précédente donne :

$$0 = v_2''' = v_2'' - \frac{1}{2}v_1''$$

$$= (v_2' + 2u_2) - \frac{1}{2}(v_1' + 3u_2)$$

$$= (v_2 - u_1 + 2u_2) - \frac{1}{2}(v_1 - u_1 + 3u_2)$$

$$= \frac{1}{2}(2v_2 - 2u_1 + 4u_2 - v_1 + u_1 - 3u_2) = \frac{1}{2}(2v_2 - u_1 + u_2 - v_1) .$$

Il en résulte : $u_1 - u_2 = 2v_2 - v_1$. Le vecteur $u_1 - u_2 = (1, -1, 1, -1)$ est dans P puisque combinaison linéaire de u_1, u_2 . Or, il est égal au vecteur $2v_2 - v_1$ qui est dans V comme combinaison linéaire de v_1, v_2 . Ainsi, $u_1 - u_2 \in P \cap V$. Ce vecteur est non nul. On a donc montré que $(u_1 - u_2 = (1, -1, 1, -1))$ est une base de $P \cap V$.

Une autre façon de déterminer une base de $P \cap V$ est de commencer par déterminer un système d'équations de V. Pour cela, on commence comme usuellement à déterminer une base échelonnée de V relativement à la base canonique de \mathbf{R}^4 : les calculs donnent que $(v_1 == (1,1,1,1), v' = (0,-1,0,1)$ est une base échelonnée de V relativement à la base canonique de \mathbf{R}^4 . L'algorithme du cours nous permet alors de montrer que :

$$\begin{cases} x - z = 0 \\ y - t = 0 \end{cases}.$$

est un système d'équations linéaires de V. Ainsi, $P \cap V$ admet comme système d'équations linéaires

$$\begin{cases} x + y + z + t &= 0 \\ y + 2z + t &= 0 \\ x - z &= 0 \\ y - t &= 0 \end{cases}$$

Pour retrouver $P \cap V$, il reste à résoudre ce système ce qui est laissé au lecteur.

5) On admet donc que $\mathbf{R}^4 = P \oplus W$. Ainsi, tout vecteur u = (x, y, z, t) sécrit de façon unique : u = l + w avec $l \in P$ et $w \in W$. La projection p sur W parallélement à P est l'application :

$$p: \mathbf{R}^4 \to \mathbf{R}^4$$
 , $u \longmapsto p(u) = w$.

Précisons p(u) = w à l'aide de (x, y, z, t). Il existe $a, b \in \mathbf{R}$ tels que $w = av_1 + bv_3$. Il en résulte :

$$l = (x, y, z, t) - a(1, 1, 1, 1) - b(1, 1, 0, 0) = (x - a - b, y - a - b, z - a, t - a) \in P$$
.

Ainsi les coordonnées de l vérifient :

$$\begin{cases} x + y + z + t - 4a - 2b &= 0 \\ y + 2z + t - 4a - b &= 0 \end{cases}$$

ou encore

$$\begin{cases} 4a+2b = x+y+z+t \\ 4a+b = y+2z+t \end{cases}.$$

Résolvons ce système d'équations linéaires en a, b. La première variable étant a, la deuxième b, le système équaivalent suivant est triangulé :

$$\begin{cases} 4a + 2b &= x + y + z + t \\ b &= x - z \end{cases}.$$

Il vient:

$$b = x - z$$
 , $4a = x + y + z + t - 2x + 2z = -x + y + 3z + t$ et $a = \frac{1}{4}(-x + y + 3z + t)$.

On a ainsi:

$$p(u) = w = \frac{1}{4}(-x+y+3z+t)v_1 + (x-z)v_3$$

$$= \frac{1}{4}(-x+y+3z+t)(1,1,1,1) + (x-z)(1,1,0,0)$$

$$= (\frac{1}{4}(3x+y-z+t), \frac{1}{4}(3x+y-z+t), \frac{1}{4}(-x+y+3z+t), \frac{1}{4}(-x+y+3z+t))$$

Remarque : Commme $\dim_{\mathbf{K}} P + \dim_{\mathbf{K}} W = \dim_{\mathbf{K}} \mathbf{R}^4$, le cours nous apprends que pour montrer que P et W sont supplémentaires, il suffit soit de montrer que $P+W=\mathbf{R}^4$, soit de montrer que $P\cap W=\{0\}$. Le plus rapide est alors de montrer que $P+W=\mathbf{R}^4$. Pour ce faire, on remarque (analogue à la question 3) $P+W=\mathrm{vect}(u_1,u_2,v_1,v_3)$. Il reste à montrer que $\mathrm{vect}(u_1,u_2,v_1,v_3)$ est de dimension 4. L'algorithme du cours qui donne une base échelonnée de $\mathrm{vect}(u_1,u_2,v_1,v_3)$ relativement à la base canonique de \mathbf{R}^4 permettra de conclure rapidement.