Lezione 4 Algebra I

Federico De Sisti2025-03-10

0.1 Nuova lezione

Esercizio (scheda 12)

Calcolare $u_i \, \forall i \geq 0 \text{ nel caso } R = \mathbb{Z}/(4)$

Osservazione:

 $\mathbb{Z}/(4)$ non è un dominio d'integrità $\Rightarrow \mathbb{Z}/(4) \text{ non è dominio Euclideo}$

Però avremo
$$\mathbb{Z}/(4) = \bigcup_{i=0}^{+\infty} u_i$$

Soluzione

$$u_0 = \{0\}$$

$$u_1 \setminus u_0 = \{ \text{ invertibili in } \mathbb{Z}/(4) \} = \{ [1], [3] \}$$

L'unica domanda è $[2] \in u_2$, se non ci dovesse essere, allora rimarremmo in u_1 , e si stabilizzerebbe.

Devo studiare la suriettività della funzione

$$\{[0],[1],[3]\} \to \frac{\mathbb{Z}/(4)}{([2])} \cong \mathbb{Z}/(2).$$

siccome $[1] \to [1]$ allora $u_2 = \mathbb{Z}/(4)$

Esercizio

Determinare gli u_i per $R = \mathbb{Z}[x]$

- $u_0 = \{0\}$
- $u_1 = \{0, 1, -1\}$
- $u_2 = ?$

Se $p \in u_2$ allora:

$$\{0,1,-1\} \to \mathbb{Z}[x]/(p)$$
 è suriettiva.

Se deg(p) allora $\mathbb{Z}[x]/(p)$ ha infiniti elementi distinti $\Rightarrow p \notin u_2$ Quindi possiamo assumere p costante

- · Se |p| > 3 abbiamo almeno p costanti diverse in $\mathbb{Z}[x]/(p)p \notin u_2$
- \cdot $o = \pm 1, \pm 2, \pm 3$ sono gli unici casi rimanenti

Ora $\pm 1 \in U_2$ poiché $\pm 1 \in u_1$

Se $p = \pm 2, \pm 3$

abbiamo $[x] \in \mathbb{Z}/(p)$ che è distinta dalla classe ci ciascuna costante Quindi:

$$0 \rightarrow [0]$$

$$1 \rightarrow [1]$$

$$-1 \rightarrow [1]$$