

Exploratory Data Analysis I

EDA Defined

- Tenderly Read Chapter 5
- Know the Process

Respect the Process

Data

- Example: Wages
 - "Ecdat" R Package
 - Sample from 1987
 - 3,294 Workers
 - 48% Female
 - Variables
 - Experience (Yrs.)
 - Sex (M or F)
 - School (Yrs.)
 - Wage (Hourly in \$)

Data

experience <int></int>	sex <fctr></fctr>	school <int></int>	wage «dbl»
18	male	3	5.5168263
15	male	4	3.5649777
18	male	4	9.0991811
10	female	5	0.6031654
11	male	5	3.8026428
14	male	5	7.5004465
16	male	5	4.3036667
14	male	5	4.8862931
15	female	6	4.3036667
9	female	6	2.2116065

Verbeek, Marno (2004) A Guide to Modern Econometrics, John Wiley and Sons.

- Think Creatively
- Quantity and Quality
- General:
 - What type of variation occurs within my variables?
 - What type of covariation occurs between my variables?

Variation

- Variable = Quantity, Quality, or Property You Can Measure
- Reason: Values Tend to "Vary"
- Example: Random
 - Categorical:
 - Eye Color
 - Occupation
 - Numerical:
 - Salary
 - Hair Count

Initial Questions

- Example: Random
 - Which Eye Color Occurs Most Often?
 - Are Salaries Skewed?
 - Where is the Middle 50% of the Sample in Regards to Hair Count?
- Example: Wages
 - What did the Workforce Look Like in Terms of Sex?
 - How Spread Out Were Wages in 1987?

Variation Visualized

Example: Wages

Categorical: Sex

sex <fctr></fctr>	n <int></int>
female	1569
male	1725

Variation Visualized

Example: Wages

Numerical: Hourly Wage

n	avg	sd	median	iqr
<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
3294	5.757585	3.269186	5.205781	3.682936

Unusual Values

- Outliers = Observations Outside the Pattern of the Data
- Due to Error Remove
- Don't Drop or Change Without Justification
- Sensitivity Analysis
- Handling:
 - Drop Entire Row
 - Replace Instance with NA
- Problems:
 - Book: Visualization
 - Other: Inference

Unusual Values

- Example: Wages
 - Few People Above 30 \$/Hr
 - Drop Entire Row

```
```{r}

Wage2=Wage %>%

filter(between(wage,0,30))
```

Observations: 3294 3291

Replace Instance with NA

```
\```{r}
Wage3=Wage %>%
mutate(wage=ifelse(wage>30,NA,wage))
```

Observations: 3294 3294



- Covariation
  - Goal: Explain Variation
  - Describes the Behavior Between Variables
  - We Often Attempt to Explain Variation Within by Looking at Covariation Between
  - Identify the Signal despite the Noise



#### More Questions

- Example: Random
  - Are there Occupations with an Unusual Distribution of Eye Color?
  - Does Occupation Affect Salary?
  - What is the Relationship Between Salary and Hair Count?
- Example: Wages















```
ggplot(data = mpg) +
 geom_boxplot(
 mapping = aes(
 x = reorder(class, hwy, FUN = median),
 y = hwy
)
)
}
```













```
diamonds %>%
 count(color, cut) %>%
 ggplot(mapping = aes(x = color, y = cut)) +
 geom_tile(mapping = aes(fill = n))
```





```
``{r}
sum.diamond1=diamonds %>%
 group_by(color,cut) %>%
 summarize(n=n()) %>%
 mutate(prop=n/sum(n))
head(sum.diamond1,2)
 color
 cut
 prop
<dbl>
 <ord>
 <int>
 <ord>
 0.02405904
 Fair
 163
 0.09771218
 Good
 662
```

```
> sum(sum.diamond1$n)
[1] 53940
> (sum.diamond1$n/sum(sum.diamond1$n))[1:2]
[1] 0.003021876 0.012272896
> sum(sum.diamond1$prop)
[1] 7
```



```
``{r}
sum.diamond2=diamonds %>%
 group_by(color,cut) %>%
 summarize(n=n()) %>%
 ungroup() %>%
 mutate(prop=n/sum(n))
head(sum.diamond2,2)
 color
 cut
 <ord>
 <ord>
 <int>
 Fair
 163
 0.003021876
 Good
 662
 0.012272896
```

```
> sum(sum.diamond2$n)
[1] 53940
> (sum.diamond2$n/sum(sum.diamond2$n))[1:2]
[1] 0.003021876 0.012272896
> sum(sum.diamond2$prop)
[1] 1
```



```
```{r}
diamonds %>%
  group_by(color,cut) %>%
  summarize(n=n()) %>%
  ungroup() %>%
  mutate(prop=n/sum(n)) %>%
ggplot(mapping = aes(x = color, y = cut)) +
geom_tile(mapping = aes(fill = prop))
       Ideal -
                                           prop
    Premium -
                                               0.075
 당 Very Good -
                                               0.050
                                               0.025
      Good -
       Fair-
                        color
```



```
ggplot(data = diamonds) +
    geom_point(
      mapping = aes(x = carat, y = price),
      alpha = 1 / 100
  15000 -
8 10000 -
   5000 -
                                    carat
```



```
```{r}
library(hexbin)
ggplot(data = diamonds) +
geom_hex|(mapping = aes(x = carat, y = price))
 15000 -
 count
 5000
 10000 -
 4000
 3000
 2000
 5000 -
 1000
 carat
```









Closing



# Disperse and Make Reasonable Decisions