5.7. Контур с током в магнитном поле

Пусть контур с током помещен в магнитное поле, причем он может вращаться вокруг вертикальной оси OO' (рис. 5.30-1). Силы Ампера, действующие на стороны контура длиной I, перпендикулярны к ним и к магнитному полю и поэтому направлены вертикально: они лишь деформируют контур, стремясь растянуть его. Стороны, имеющие длину a, перпендикулярны B, так что на каждую из них действует сила F = BIa. Эти силы стремятся повернуть контур таким образом, чтобы его плоскость стала ортогональной B.

Рис. 5.30. Силы, действующие на контур с током в магнитном поле: 1— вид сбоку; 2— вид сверху (масштаб увеличен)

Видео 5.7. Контур с током в однородном магнитном поле.

Видео 5.8. Контур с током в неоднородном магнитном поле.

Момент пары сил (рис. 5.30-2) равен

$$M = Fh = Fl\cos\varphi = IBal\cos\varphi, \tag{5.34}$$

где $h=l\cos \varphi$ — плечо пары сил, а φ — угол между вектором ${\it B}$ и стороной ${\it I}$.

Величина, численно равная произведению силы тока I_r протекающего в контуре, на площадь контура S=al называется **магнитным моментон** P_n плоского контура стоком $\vec{P}_a = I \vec{S} = \vec{n} I S. \tag{5.35}$

Таким образом, мы можем записать момент пары сил в виде

$$M = BP_m \cos \varphi$$
. (5.3)

Магнитный момент контура с током — векторная величина. Направление P_m совпадает с положительным направлением нормали к плосмости контура, которое определяется правилом винта: если рукоятка вращается по направлению тока в контуре, то поступательное движение винта показывает направление вектора P_m . Введем в формулу (15.36) угол а между векторами P_m и B. Справедливо соотношение

$$\cos \varphi = \sin \left(\frac{\pi}{2} - \varphi \right) = \sin \alpha.$$

Следовательно,

$$M = BP_n \cos \varphi;$$

 $\vec{M} = \left[\vec{P}_n \times \vec{B}\right],$ (5.37)

то есть момент сил \vec{M} , действующий на виток с током в однородном магнитном поле, равен векторному произведению магнитного момента \vec{P}_n витка на вектор индукции магнитного поля \vec{B} (рис. 5.31). При $\alpha=\pi/2$ величина момента сил максимальна

Рис. 5.31. Силы, действующие на прямоугольный контур с током в магнитном поле. Магнитное поле вертикально, а магнитный момент перпендикулярен плоскости контура

Видео 5.9. Контур с током в магнитном поле: модель электродвигателя.

Опять-таки прозрачна аналогия с электростатикой: говоря об электрическом диполе, мы получили выражение для момента сил, действующих на него со стороны электрического поля в виде

$$\vec{M} = \vec{P} \times \vec{E}$$
,

где \vec{p} — электрический дипольный момент.

Если контур с током находится в неоднородном магнитном поле, то на него, помимо вращающего момента \vec{M} , действует также сила \hat{f} , обусловленная наличием градиента магнитного поля. Проекция этой силы на направление касательной к силовой лини поля в данной точке определяется по формуле:

$$f_z = -\frac{\partial W}{\partial z} = p_m \frac{\partial B}{\partial z} \cos \alpha$$

Ī,

Рисунок 4.10. Контур с током в неоднородном магнитном поле

Согласно написанной формуле, сила, действующая на контур в неоднородном магнитном поле, зависит от взаимной ориентации векторов \bar{P}_{s_1} и \bar{B} . Если эти векторы параллельны, то сила положительна и контур будет втягиваться в область более сильного поля; если векторы \bar{P}_{s_1} и \bar{B} антипараллельны, то сила отрицательна и контур будет выталкиваться из поля.

Работа, совершаемая при перемещении контура с током в магнитном поле.

Рассмотрим отрезок проводника с током, способный свободно перемещаться по двум направляющим во внешнем магнитном поле. Магнитное поле будем считать однородным и направленным под углом α по отношению к нормали к плоскости перемещения проводника.

 F_z

Рисунок 4.11. Отрезок проводника с током в однородном магнитном поле.

Как видно из рисунка, вектор \hat{B} имеет две составляющие \hat{B}_{\perp} и \hat{b}_{\perp} , из которых только составляющая \hat{E}_{\perp} создает силу, действующую в плоскости перемещения проводника. По абсолютной величине эта сила равна: $F_{\tau} = IIB_{\perp} = IIB$ соз α ,

где I — сила тока в проводнике; l — длина проводника; B — <u>индукция магнитного поля</u>.

Работа этой силы на элементарном пути перемещения ds есть:

 $dA = F_1 ds = IIB \cos \alpha \cdot ds$

Произведение lds равно площади dS, заметанной проводником при движении, а величина $BdScos\alpha$ равна потоку магнитной индукции $d\Phi$ через эту площадь. Следовательно, можем написать: $dA=Id\Phi$.

Рассматривая отрезок проводника с током как часть замкнутого контура и интегрируя это соотношение, найдем работу при перемещении контура с током в магнитном поле: $A=I(\Phi_2\cdot\Phi_J)$, где Φ_I и Φ_2 обозначают поток индукции магнитного поля через площадь контура соответственно в начальном и конечном положениях.