RSA Encryption Lecture 3 Example

Thai Nguyen CITS3004 Sem2 2020

Given p=5 and q=11 find the public key $\{e,n\}$ and private key $\{d,n\}$.

- 1. $n = p \times q = 55$
 - This is the modulus used in the public and private keys.
- 2. $\varphi(n) = (p-1) \times (q-1) = 40$
 - φ is Euler's Totient Function.
- 3. Choose e=13
 - ullet e can be any integer that is relatively prime to arphi(n) where 1 < e < arphi(n)
 - Any e where $\gcd(40,e)=1$
 - ullet When choosing e it's easiest to start with prime numbers <arphi(n)
 - This way you just need to check factors for $\varphi(n)$ not the prime since it has none other than 1 and itself.
 - For 40, 3 will work but 5 won't for example.
 - If you're able to choose, picking a small number will make things easier in later steps.
- 4. Find d such that $13d \mod 40 = 1$
 - $ed \mod \varphi(n) = 1$
 - ullet Finding d is finding the (modular) multiplicative inverse.
 - In the lecture slides this is shown as $13d \equiv 1 \bmod 40$
 - First we perform GCD until we get a remainder of 1 with this example we get it straight away leaving us with:
 - $40 = 13 \times 3 + 1$
 - Next we use the extended euclidean algorithm
 - We rewrite the above equation in terms of 1, giving:
 - $1 = 40 3 \times 13$
 - We want the equation in terms of 40 and 13 as well, so we substitute to reach this, however with this example no substitution is required.
 - ullet We just need to look at the number that is multiplying $13\,$ which is -3 in this case.
 - ullet (13 imes-3) mod 40=1 which matches up, however for RSA we need it to a positive integer.
 - Knowing that it's $\mod 40$ we can simply do -3+40=37 to get d.
 - ullet You can keep adding 40 to keep getting more d s.
 - 37,77,117, etc all work as private keys but keep it small to compute it more easily.
- 5. Therefore we have all the values for the keys, public key $\{13,55\}$ and private key $\{37,55\}$.