

Álgebra Booleana

	Sumário da Aula	_				_	_	
	- · · · · · · · · · · · · · · · · · · ·							
4.1	Proposições associadas a uma sentença condicional	 	•	•	•	•	•	41
4.2	Forma Normal	 						43
4.3	Exemplos complementares	 						45
4.4	Exercícios	 						47

4.1 Proposições associadas a uma sentença condicional

As proposições seguintes são chamadas de **proposições associadas a proposição condicional** $(P \to Q)$:

- 1. Proposição Contrapositiva: $\neg Q \rightarrow \neg P$
- 2. Proposição Recíproca: $Q \rightarrow P$
- 3. Proposição Inversa: $\neg P \rightarrow \neg Q$

Considere o Teorema 1: "Se um quadrilátero tem um par de lados paralelos, então ele tem um par de ângulos suplementares", cujas proposições simples são:

P: O quadrilátero tem um par de lados paralelos.

Q: O quadrilátero tem um par de ângulos suplementares.

O Teorema 1 é escrito na forma simbólica pela condicional $P \to Q$. Considere agora uma segunda versão deste teorema, representada simbolicamente por $\neg Q \to \neg P$, Teorema 2: "Se um quadrilátero não tem um par de ângulos suplementares, então ele não tem um par de lados paralelos."

Veja na tabela verdade seguinte que o **Teorema 2** é logicamente equivalente ao **Teorema 1**.

		Teorema 1			Teorema 2
P	Q	$P \to Q$	$\neg Q$	$\neg P$	$\neg Q \to \neg P$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Logo, $P \to Q \equiv \neg Q \to \neg P$. Os teoremas serem equivalentes siginifica que **se o Teorema 1 é** verdadeiro, então o Teorema 2 também é.

Considere agora uma terceira versão do teorema representada simbolicamente por $Q \to P$, Teorema 3: "Se um quadrilátero tem um par de ângulos suplementares, então ele tem um par de lados paralelos." Veja na tabela verdade seguinte que o Teorema 3 não é logicamente equivalente ao Teorema 1.

		Teorema 1	Teorema 3
P	Q	P o Q	$Q \rightarrow P$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

Definição 4.1. Define-se então as seguintes propriedades em relação as proposições condicionais associadas:

- A condicional $P \to Q$ é equivalente a contrapositiva $\neg Q \to \neg P$.
- A recíproca $Q \to P$ é equivalente a inversa $\neg P \to \neg Q$.

Exemplo 27. Seja a sentença S: Se está chovendo, então o chão está molhado. Apresente:

- a) A recíproca de S: Se o chão está molhado, então está chovendo.
- b) A contrapositiva de S: Se o chão não está molhado, então não está chovendo.
- c) A inversa de S: Se não está chovendo, então o chão não está molhado.

¹Estudaremos esta regra com mais detalhes em aulas futuras. A contrapositiva (ou contraposição) é uma técnica importantíssima na Matemática usada na demontração de Teoremas.

4.2 Forma Normal

Uma proposição está na **forma normal** se é **formada apenas pelos conectivos** ¬, ∧ **e** ∨. Existem duas formas normais que são amplamente utilizadas na ciência da computação: **a forma normal conjuntiva** e a **forma normal disjuntiva**.

Forma Normal Conjutiva:

A **formal normal conjuntiva** (FNC) é utilizada como entrada para algoritmos para teste de satisfazibilidade.

Definição 4.2. Dizemos que uma fórmula bem formada da lógica proposicional está na forma normal conjuntiva se, e somente se, são verificadas as seguintes condições:

- 1. As constantes lógicas ($T ext{ e } F$) são fórmulas na forma normal conjuntiva.
- 2. Contém apenas os conectivos \neg , \land e \lor .
- 3. A \neg não aparece repetida (como $\neg\neg$) e só incide sobre letras proposicionais (isto é, não é usado sobre fórmulas com os conectivos \land e \lor).
- 4. A \vee incide apenas sobre as variáveis ou negação das variáveis, ou seja, **não ocorre em nível** mais externo da fórmula, como está apresentado aqui: $P \vee (Q \wedge R)$.
- 5. A ∧ incide sobre fórmulas que consistem de disjunção de variáveis ou negação de variáveis.

Sejam P,Q e R variáveis da lógica proposicional. São **exemplos de fórmulas na forma normal conjuntiva**:

- T, F, P, $\neg P$.
- $P \lor Q$, $\neg Q \lor R$, $P \lor Q \lor R$ e $\neg P \lor \neg Q \lor \neg R$.
- $(P \lor Q) \land (\neg Q \lor R) \land (P \lor Q \lor R)$.

São exemplos de fórmulas que não estão na forma normal conjuntiva:

- $A \rightarrow (B \lor C)$, por possuir o conectivo de implicação.
- $\neg (A \land B)$, pois a negação incide sobre fórmula e não letras proposicionais.
- $A \vee (B \wedge C)$, pois o conectivo \vee deve ocorrer apenas em variáveis ou negação de variáveis.

Exemplo 28. Determine a forma normal conjuntiva da proposição composta

$$\neg[((A \lor B) \land \neg B) \lor (B \land C)]$$

Solução: Aplicando as regras de equivalência sobre a fórmula composta:

$$\neg [((A \lor B) \land \neg B) \lor (B \land C)] \quad \equiv \quad \neg [(A \lor B) \land (\neg B)] \land \neg (B \land C) \qquad \{ \lor - \mathsf{DeMorgan} \} \\ \quad \equiv \quad [\neg (A \lor B) \lor \neg (\neg B)] \land (\neg B \lor \neg C) \qquad \{ \land - \mathsf{DeMorgan} \} \\ \quad \equiv \quad [\neg (A \lor B) \lor B] \land (\neg B \lor \neg C) \qquad \{ \mathsf{Dupla Negação} \} \\ \quad \equiv \quad [(\neg A \land \neg B) \lor B] \land (\neg B \lor \neg C) \qquad \{ \lor - \mathsf{DeMorgan} \} \\ \quad \equiv \quad [(\neg A \lor B) \land (\neg B \lor B)] \land (\neg B \lor \neg C) \qquad \{ \lor - \mathsf{Distributividade} \} \\ \quad \equiv \quad [(\neg A \lor B) \land T] \land (\neg B \lor \neg C) \qquad \{ \mathsf{Terceiro Excluído} \} \\ \quad \equiv \quad (\neg A \lor B) \land (\neg B \lor \neg C) \qquad \{ \land - \mathsf{Identidade} \}$$

Tem-se que a fórmula equivalente $(\neg A \lor B) \land (\neg B \lor \neg C)$ está na forma normal conjuntiva.

Forma Normal Disjuntiva:

A formal normal disjuntiva (FND) é aplicada em minimização de fórmulas lógicas.

Definição 4.3. Dizemos que uma fórmula bem formada da lógica proposicional está na forma normal disjuntiva se, e somente se, são verificadas as seguintes condições:

- 1. As constantes lógicas (*T* e *F*) são fórmulas na forma normal disjuntiva.
- 2. Contém apenas os conectivos \neg , \land e \lor .
- 3. A \neg não aparece repetida (como $\neg\neg$) e só incide sobre letras proposicionais (isto é, não tem alcance sobre fórmulas com os conectivos \land e \lor).
- 4. A \wedge incide apenas sobre as variáveis ou negação das variáveis, isto é, **não ocorre em nível** mais externo das fórmulas, como apresentado em $P \wedge (Q \vee R)$).
- 5. V incide sobre fórmulas que consistem de conjunções de variáveis ou negação de variáveis.

Sejam P,Q e R variáveis da lógica proposicional. São **exemplos de fórmulas na forma normal disjuntiva**:

- T, F, P, $\neg P$.
- $P \wedge Q$, $Q \wedge \neg R$, $\neg P \wedge Q \wedge R$ e $\neg P \wedge \neg Q \wedge \neg R$.
- $(P \land Q) \lor (Q \land \neg R) \lor (\neg P \land Q \land R)$.

São exemplos de fórmulas que não estão na forma normal disjuntiva:

- $(A \land B) \leftrightarrow C$, por possuir o conectivo da bi-implicação.
- $\neg (A \lor B)$, pois a negação incide sobre fórmula e não apenas letras proposicionais.
- $A \wedge (B \vee C)$, pois o conectivo \wedge deve ocorrer apenas em variáveis ou negação de variáveis.

Exemplo 29. Determine a forma normal disjuntiva da proposição composta

$$(A \to B) \land (B \to A)$$

Solução: Aplicando as regras de equivalência sobre a fórmula composta:

$$\begin{array}{lll} (A \to B) \wedge (B \to A) & \equiv & (\neg A \vee B) \wedge (\neg B \vee A) & \{ \text{Implicação} \} \\ & \equiv & [\neg A \wedge (\neg B \vee A)] \vee [B \wedge (\neg B \vee A)] & \{ \wedge - \text{Distrib.} \} \\ & \equiv & [(\neg A \wedge \neg B) \vee (\neg A \wedge A)] \vee [(B \wedge \neg B) \vee (B \wedge A)] & \{ \wedge - \text{Distrib.} \} \\ & \equiv & [(\neg A \wedge \neg B) \vee F] \vee [F \vee (B \wedge A)] & \{ \text{Contradição.} \} \\ & \equiv & (\neg A \wedge \neg B) \vee (B \wedge A) & \{ \vee - \text{Identidade.} \} \end{array}$$

Tem-se que a fórmula equivalente $(\neg A \land \neg B) \lor (B \land A)$ está na forma normal disjuntiva.

4.3 Exemplos complementares

Exemplo 30. Considere a seguinte proposição:

Se Alcides está atrasado, então Belmiro está atrasado e, se Alcides e Belmiro estão ambos atrasados, então a aula de BCC101 é chata. Suponha que a aula de BCC101 não seja chata. O que você pode concluir a respeito de Alcides?

A tradução da frase "Se Alcides está atrasado, então Belmiro está atrasado, e, se Alcides e Belmiro estão ambos atrasados, então a aula de BCC101 é chata" para a linguagem simbólica é dada considerando as seguintes proposições simples:

- *P*: Alcides está atrasado.
- *Q*: Belmiro está atrasado.
- R: A aula de BCC101 é chata.

Simbolicamente é escrita pela fórmula $(P \to Q) \land [(P \land Q) \to R]$ e a tabela verdade dada por:

P	Q	R	$P \rightarrow Q$	$P \wedge Q$	$(P \wedge Q) \to R$	$(P \to Q) \land [(P \land Q) \to R]$
T	T	T	Т	Т	T	T
T	Т	F	T	T	F	F
T	F	Т	F	F	Т	F
T	F	F	F	F	Т	F
F	Т	Т	V	F	Т	T
F	Т	F	V	F	Т	T
F	F	Т	V	F	T	T
F	F	F	V	F	Т	T

Como a pergunta em questão é "O que você pode concluir a respeito de Alcides?", estamos interessados no valor lógico da proposição *P*. Temos que:

- É necessário analisar as sentenças válidas. Então vamos, excluir as linhas 2, 3 e 4 que possuem valores lógicos F.
- Assumindo que a aula não é chata (R = F), é possível eliminar todas as linhas em que R é verdadeiro, ou seja, as linhas 1, 3, 5 e 7.

P	Q	R	$P \rightarrow Q$	$P \wedge Q$	$(P \wedge Q) \to R$	$(P \to Q) \land [(P \land Q) \to R]$
T	T	T	T	T	Т	Т
T	T	F	T	Т	F	F
T	F	Т	F	F	Т	F
T	F	F	F	F	Т	F
F	T	T	V	F	T	T
F	T	F	V	F	Т	T
F	F	T	V	F	Т	T
F	F	F	V	F	Т	Т

As linhas restantes são 6 e 8. Como o interesse é no valor lógico de P e em ambas as linhas restantes esse valor é falso, pode-se concluir que **Alcides não está atrasado.**

O próximo exemplo fica para o leitor.

Exemplo 31. Considere as sentenças simples:

- P: Amauri está com fome.
- Q: A geladeira está vazia.
- R: Amauri está zangado.
- a) Escreva na forma simbólica a sentença "Se Amauri está com fome e a geladeira está vazia, então Amauri esta zangado'.

Forma simbólica:

b) Construa a tabela verdade para a sentença anterior.

P	Q	R	
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

c) Suponha que a sentença dada em (a) seja verdadeira. Suponha também que Amauri não esteja zangado e a geladeira esteja vazia. Diante destas suposições, é possível dizer que Amauri está com fome?

4.4 Exercícios

- E. 1. Verifique se as sentenças "quem tem dinheiro, não compra fiado" e "quem não tem dinheiro, compra fiado" são equivalentes.
- **E. 2. Considere a seguinte sentença:** $S = (P \land Q) \lor (P \land \neg Q)$.
 - a) Construa a tabela verdade para S.
 - b) Encontre uma expressão simplificada que seja logicamente equivalente a S.
- E. 3. Mostre que a sentença é $[P \land (P \land Q)] \land \neg (P \lor Q)$ é uma contradição.
- E. 4. Prove, usando as equivalências lógicas já estudadas, que $Q \to P \equiv \neg P \to \neg Q$
- E. 5. Considere a sentença S: Se o cachorro é um mamífero, então ele não voa. Escreva:
 - a) a contrapositiva de S:
 - b) a recíproca de S:
 - c) a inversa de S:
- E. 6. Determine uma forma normal conjuntiva equivalente para as proposições.
 - 1. $P \rightarrow Q$
 - 2. $P \rightarrow \neg P$
 - 3. $P \leftrightarrow \neg P$
 - 4. $(P \rightarrow Q) \leftrightarrow (\neg Q \rightarrow \neg P)$
- E. 7. Determine uma forma normal disjuntiva equivalente para as proposições seguintes:
 - 1. $\neg(\neg P \lor \neg Q)$
 - 2. $\neg (P \rightarrow Q)$
 - 3. $(P \rightarrow P) \land \neg P$
 - 4. $\neg (P \lor Q)$
 - 5. $(P \rightarrow Q) \land (Q \rightarrow P)$
 - 6. $\neg (P \rightarrow Q) \land (Q \rightarrow P)$
- E. 8. Se Hugo é culpado, então Maria é inocente. Se Hugo é culpado, Ricardo é inocente. Se Hugo é inocente, então Ricardo é culpado. Se Maria é inocente, então Ricardo é culpado. Se Maria é culpada, então Ricardo é inocente. Logo, Hugo, Maria e Ricardo são, respectivamente:

- a) Culpado, culpado, culpado.
- b) Inocente, culpado, culpado.
- c) Inocente, culpado, inocente.
- d) Inocente, inocente, culpado.
- e) Culpado, culpado, inocente.
- E. 9. Um técnico suspeita que um ou mais dos processadores de um sistema distribuído não está funcionando corretamente. Os processadores A, B e C são capazes de relatar informações sobre o estado (funcionando ou não funcionando) de processadores do sistema. O técnico não tem certeza se um processador de fato não funciona, ou se o problema está nas rotinas de transmissão de estado de um ou mais processadores. Depois de sondar cada processador, o técnico recebeu o seguinte relatório de estados.
 - O processador A relata que o processador B não está funcionando e que o processador C está funcionando.
 - O processador B relata que A está funcionando se e somente se B está funcionando.
 - O processador C relata que pelo menos um dos outros dois processadores não está funcionando.

Ajude o técnico a resolver as seguintes questões:

- a) Sejam a : "A está funcionando", b : "B está funcionando", e c : "C está funcionando". Escreva os três relatórios de estado nos termos a, b e c, usando símbolos da lógica formal.
- b) Complete a tabela verdade:

a	b	c	Rela	atório A	Relatório B	Rel	atório C
			$\neg b$	$\neg b \wedge c$	$a \leftrightarrow b$	$\neg a$	$\neg a \lor \neg b$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
F	T	F					

- c) Assumindo que todos esses relatórios sejam verdadeiros, que(ais) processador(es) não está(estão) funcionando?
- d) Assumindo que todos os processadores estejam funcionando, que relatório(s) de estado é(são) falso(s)?

E. 10. Dizer que "Guilherme não é músico ou Marcelo é professor" é, do ponto de vista lógico, dizer o mesmo que:

- a) Se Marcelo é professor, então Guilherme é músico.
- b) Se Guilherme é músico, então Marcelo é professor.
- c) Se Guilherme não é músico, então Marcelo é professor.
- d) Se Guilherme é músico, então Marcelo não é professor.
- e) Se Guilherme não é músico, então Marcelo não é professor.

Referências Bibliográficas

- 1 HAMMACK, R. H. Book of Proof. 2a. ed. Virginia: Richard Hammack, 2013. v. 1.
- 2 EPP, S. S. *Discrete Mathematics With Applications*. Fourth. Boston USA: Cengage Learning, 2010. ISBN 978-0-495-39132-6.
- 3 HUNTER, D. J. Fundamentos da Matemática Discreta. Rio de Janeiro: LTC, 2011.
- 4 GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: Matemática Discreta e suas Aplicações. 7ª. ed. Rio de Janeiro: LTC, 2017.
- 5 MENEZES, P. B. *Matemática Discreta para a Computação e Informática*. 4ª. ed. Porto Alegre: Bookman, 2013.
- 6 RIBEIRO, R. G. *Notas de Aula de Matemática Discreta*. [S.l.]: Universidade Federal de Ouro Preto, 2016.
- 7 BISPO, C. A. F.; CASTANHEIRA, L. B.; FILHO, O. M. S. *Introdução à Lógica Matemática*. São Paulo: CENGAGE Learning, 2011.