MA3209 Metric and Topological Spaces AY24/25 Semester 1

by Isaac Lai

Definitions

- Topology: collection $\mathcal T$ of subsets of X such that
- $1.\emptyset, X \in \mathcal{T}$
- 2. (Closure under arbitrary union) $\{U_{\alpha}\}_{{\alpha}\in I}\in \mathcal{T} \implies \bigcup_{{\alpha}\in I} U_{\alpha}\in \mathcal{T}$
- 3. (Closure under finite intersection) $\{U_1, \ldots, U_n\} \in \mathcal{T} \implies \bigcap_{i=1}^n U_i \in \mathcal{T}$

 (X,\mathcal{T}) is a topological space, and $U\subset X$ is open if $U\in\mathcal{T}$

- **Basis**: collection \mathcal{B} of X's subsets such that
- 1. \mathcal{B} covers X
- 2. $\forall x \in X$ and $B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \cap B_2$, $\exists B \in \mathcal{B}$ such that $x \in B \subset B_1 \cap B_2$

The topology generated by \mathcal{B} is

 $\mathcal{T} = \{U \subset X : \forall x \in U, \exists B \in \mathcal{B} \text{ such that } x \in B \subset U\}$

- \mathcal{T} is **coarser** than \mathcal{T}' if $\mathcal{T}' \subset \mathcal{T}$ (reverse is **finer**)
- Subbasis \mathcal{S} : collection of subsets of X whose union equals X. The **topology generated by** \mathcal{S} is a collection \mathcal{T} of all unions of finite intersection of sets in \mathcal{S}
- A **norm** on a \mathbb{K} -vector space V is a function $\|\cdot\|:V\to\mathbb{R}$ that satisfies
- 1. (Nonnegativity) $||x|| > 0 \ \forall x \in V$
- 2. (Positive definiteness) $||x|| = 0 \iff x = 0$
- 3. (Absolute homogeneity) $\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{K}$ and $\forall x \in V$
- 4. (Triangle inequality) $||x + y|| \le ||x|| + ||y||$
- Let A, B be nonempty subsets of a metric space (X, d).
- **Distance**: $d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}$
- Diameter of $A\subset X$ is $\operatorname{diam}(A)=\sup\{d(x,y):x,y\in A\}.\ A\subset X$ is bounded if $\operatorname{diam}(A)<+\infty$
- The topology on X induced by a metric d is the topology generated by \mathcal{B}_d .
- A topology T on X is metrizable if there is a metric on X that induces T
- Let (Y, \mathcal{T}_Y) be a topological space and $X \subset Y$. Then $\mathcal{T}_X = \{U \cap X : U \in \mathcal{T}_Y\}$ is the **subspace topology** on X.

- Given a subset A of a metric space (X, d), the restriction of d to A is the metric
 d_A(x, y) = d(x, y) ∀x, y ∈ A. The topology induced by this metric is the subspace topology.
- $A \subset X$ is closed if $X \setminus A \in \mathcal{T}$
- Let (X, \mathcal{T}) be a topological space and $A \subset X$.
- 1. **Interior** of A: $\mathring{A} = \bigcup_{U \in \mathcal{T}, U \subset A} U$.
- 2. Closure of A: $\overline{A} = \bigcap_{X \setminus G \in \mathcal{T}, G \supset A} G$.
- 3. **Boundary** of $A: \partial A = \overline{A} \mathring{A}$.
- Let X be a topological space and A ⊂ X. A point x ∈ X is a limit point of A if every open U ⊂ X containing x intersects A \ {x}.
- A sequence $\{x_i\}_{i=1}^{\infty}$ in a topological space X converges to $x \in X$ (i.e. $x_i \to x$) if for any neighbourhood $U \ni x$, $\exists N > 0$ such that $x_k \in U$ for all k > N
- Let X and Y be topological spaces. f: X → Y is
 continuous if for any open U ⊂ Y, f⁻¹(U) ⊂ X is
 open.
- Let (X,d_X) and (Y,d_Y) be two metric spaces. A map $f:X\to Y$ is **uniformly continuous** on X if for any $\epsilon>0$, there exists $\delta>0$ such that if $x,y\in X$ satisfy $d_X(x,y)<\delta$, then $d_Y(f(x),f(y))<\epsilon$.
- Let f_i: X → Y be a sequence of maps from a set X to a metric space (Y, d):
- $\{f_i\}_{i=1}^{\infty}$ converges pointwise to $f: X \to Y$ if $f_i(x) \to f(x)$ for any $x \in X$.
- $\{f_i\}_{i=1}^{\infty}$ converges uniformly to $f: X \to Y$ if for any $\epsilon > 0$, there exists N > 0 such that for all i > N and any $x \in X$, $d(f_i(x), f(x)) < \epsilon$.
- For all $\alpha \in \Lambda$, the map $\pi_{X_{\alpha}}: \prod_{\alpha \in \Lambda} X_{\alpha} \to X_{\alpha}$ defined by $(x_{\alpha})_{\alpha \in \Lambda} \mapsto x_{\alpha}$ is the **projection** to the α -th factor.
- If (X_α, T_α)_{α∈Λ} are topological spaces, the **product topology** on ∏_{α∈Λ} X_α is the topology generated by the subbasis S = {π⁻¹_X(U_α) : α ∈ Λ, U_α ∈ T_α}.
- If $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \Lambda}$ are topological spaces, the **box topology** on $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \Lambda}$ is the topology generated by the basis $\mathcal{B} = \{\prod_{\alpha \in \Lambda} U_{\alpha} : U_{\alpha} \subset X_{\alpha} \text{ is open}\}.$
- The product and box topologies are the same for finite product but different for infinite product.
- If $(X_1, d_{X_1}), \dots, (X_n, d_{X_n})$ are metric spaces, there are two common metrics on $X_1 \times \dots \times X_n$:

$$d_1((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sum_{i=1}^n d_{X_i}(x_i, y_i)$$
$$d_{\infty}((x_1, \dots, x_n), (y_1, \dots, y_n)) = \max_{i=1,\dots,n} (d_{X_i}(x_i, y_i))$$

- Let *X* and *Y* be topological spaces.
- A surjective map $p:X\to Y$ is a **quotient map** if $V\subset Y$ is open $\iff p^{-1}(V)\subset X$ is open.
- A continuous map $f:X\to Y$ is **open (closed)** if f(U) is open (closed) for any open (closed) $U\subset X$.

If a surjective continuous map is open or closed it is a quotient map. Composition of quotient maps is also a quotient map.

- Let $f: X \to Y$ be a surjective continuous map and $A \subset X$. Then A is a **saturated set** wrt f if $A = f^{-1}(S)$ for some $S \subset Y$. Equivalently $A = f^{-1}(f(A))$.
- Let X be a topological space and let X* be the cells
 of a partition of X. Let p: X → X* be the surjective
 map that sends each point in X to the subset that
 contains it. X* equipped with the quotient topology
 induced by p is a quotient space of X.
- A topological space X is T_1 if for any distinct $x,y\in X$, there exists an open set $U\subset X$ such that $x\in U$ but $y\notin U$.
- X is T₂ or Hausdorff if for any distinct x, y ∈ X, there exist open neighbourhoods U, V of x, y respectively such that they are disjoint.
- Let X be a topological space. ∀x ∈ X, a countable basis of X at x is a countable collection B of open sets in X that contain x such that every open set in X that contains x also contains some B ∈ B.
- X is **first countable** if there is a countable basis of X at x for every $x \in X$.
- X is **compact** if every open cover ($\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ s.t. their union is X) of X admits a finite subcover.
- $Y \subset X$ is a compact subspace \iff every collection $\mathcal U$ of open sets in Y such that $Y \subset \bigcup_{U \in \mathcal U} U$ admits a finite sub-collection $\mathcal U' \subset \mathcal U$ such that $Y \subset \bigcup_{U \in \mathcal U'} U$.
- A collection G of subsets of X has the finite intersection property if every finite sub-collection {G₁,...,G_n} ⊂ G satisfies ⋂ⁿ_{i=1} G_i ≠ ∅.
- A point x in a topological space is **isolated** if $\{x\}$ is open in X.
- A topological space *X* is **limit point compact** if every infinite subset of *X* has a limit point in *X*. Converse: No limit points ⇒ *X* finite
- Let X be a topological space. X is sequentially compact if every sequence in X has a convergent subsequence.
- Let X be a metric space, and let U be an open cover of X. A number δ > 0 is a Lebesgue number for U if for all subsets S ⊂ X such that diam(S) < δ, there exists U ∈ U such that S ⊂ U.

- A metric space X is totally bounded if for all ε > 0, there exists a finite cover of X by balls of radius ε.
- A sequence of points $(x_i)_{i=1}^{\infty}$ in a metric space is a **Cauchy sequence** if $\forall \epsilon > 0$, $\exists N > 0$ such that $d(x_n, x_m) < \epsilon, \forall m, n > N$.
- A metric space is complete if every Cauchy sequence converges
- A topological space is locally compact at x ∈ X if ∃
 compact C ⊂ X and open U ⊂ X s.t. x ∈ C U ⊂ C.
 If X locally compact at all x ∈ X then it is locally
 compact
- $f: X \to Y$ is a **homeomorphism** if f is a bijective continuous map with continuous inverse f^{-1}
- If Y is compact Hausdorff and ∃ map h: X → Y s.t.

 h(X) = Y and h is a homeomorphism onto its image, then Y is a compactification of X. If Y \ h_Y(X) is a point, then Y is a one-point compactification of X
- Let (Y, d) be a metric space and ρ the metric on Y given by

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

The $\mbox{\it uniform metric}$ on $Y^{\Lambda} = \prod_{\alpha \in \Lambda} Y$ is the metric given by

$$\bar{\rho}(x,y) = \sup \{ \rho(\pi_{\alpha}(x), \pi_{\alpha}(y)) : \alpha \in \Lambda \}.$$

The uniform topology on Y^{Λ} is the topology generated by the uniform metric. It is finer than the product topology and coarser than the box topology; these three are all different if Λ is infinite

- Let X be a topological space and (Y,d) a metric space. $\mathcal{C}(X,Y)=\{f\in Y^X:f\text{ is continuous}\},$ $\mathcal{B}(X,Y)=\{f\in Y^X:f(X)\subset Y\text{ has bounded diameter}\}$
- Let (X,d_X) and (Y,d_Y) be two metric spaces. We say $f:(X,d_X) \to (Y,d_Y)$ is an isometric embedding if for all $a,b \in X$, $d_X(a,b) = d_Y(f(a),f(b))$. We say f is an isometry if it is a surjective isometric embedding.
- If (X, d_X) is a metric space, then a metric completion
 of X is a complete metric space (Y, d_Y) and an
 isometric embedding φ : X → Y such that
 φ(X) = Y.
- A separation of a topological space X is a pair U, V of disjoint, nonempty open subsets whose union is X. X is connected if there does not exist a separation of X
- Given x, y ∈ X, a path from x to y is a continuous map f: [a, b] → X s.t. f(a) = x and f(b) = y. X is path connected if ∀x, y ∈ X, there is a path from x to y
- Let X be a topological space. ∀x, y ∈ X, define x ~ y if ∃ connected subset C ⊂ X s.t. x, y ∈ C. The equivalence classes of ~ are the connected components of X

- Let X be a topological space. ∀x, y ∈ X, define x ^p/_∼ y if ∃ a path in X from x to y. ^p/_∼ are called path components
- X is locally (path) connected at x if ∀ open U ⊂ X containing x, ∃ (path) connected open set V ⊂ X s.t. x ∈ V ⊂ U. X is locally (path) connected if it is locally (path connected) at every x ∈ X
- A topological space X is second countable if it has a countable basis, i.e. there exists some countable collection U of open sets in X s.t. every open subset of X can be written as a union of elements in U.
 Second countable ⇒ first countable
- X is a Lindelof space if every open cover has a countable subcover
- A T₁ topological space X is regular or T₃ if ∀x ∈ X and every closed B ⊂ X s.t. x ∉ B, ∃ disjoint open sets U, V ⊂ X s.t. x ∈ U and B ⊂ V.
- A T₁ topological space X is normal or T₄ if ∀ closed and disjoint A, B ⊂ X ∃ disjoint open sets U, V ⊂ X s.t. A ⊂ U and B ⊂ V
- Let $A, B \subset X$. A and B are separated by a continuous function if \exists continuous $f: X \to [0, 1]$ s.t. f(A) = 0 and f(B) = 1.
- X is completely regular if it is T₁ and ∀x ∈ X and closed A ⊂ X s.t. x ∉ A, {x} and A are separated by a continuous function
- X is completely normal if it is T₁ and ∀A, B ⊂ X closed disjoint, A and B are separated by a continuous function
- Let X,Y be two topological spaces and $f:X\to Y$ be an injective continuous map. f is a topological embedding if f is a homeomorphism between X and f(X)
- Let X be a topological space and (Y,d) a metric space. Given $f \in Y^X$, compact $C \subset X$, and $\epsilon > 0$, $B(C,f,\epsilon) = \{g \in Y^X : \sup_{x \in C} d(f(x),g(x)) < \epsilon\}$ is the topology of compact convergence.
- Let X, Y be topological spaces. ∀ compact C ⊂ X and open U ⊂ Y,
 S(C, U) = {g ∈ C(X, Y) : g(C) ⊂ U} forms a basis of the compact-open topology.
- A topological space X is compactly generated if it satisfies either
- $A \subset X$ open $\iff A \cap C$ open in C for every compact $C \subset X$
- $B \subset X$ closed $\iff B \cap C$ closed in C for every compact $C \subset X$
- Let (Y, d) be a metric space and Y ⊂ C(X, Y). If x₀ ∈ X, then Y is equicontinuous at x₀ if ∀ε > 0, ∃ open U ⊂ X containing x₀ s.t. ∀x ∈ U, ∀f ∈ Y, d(f(x), f(x₀)) < ε. Y is equicontinuous if it is equicontinuous at every x₀ ∈ X

Results

- Let B, B' be bases of topologies T, T' respectively on X. TFAE:
- $1.\,\mathcal{T}'$ is finer than \mathcal{T}
- $2. \forall B \in \mathcal{B}, \forall x \in B, \exists B' \in \mathcal{B}' \text{ such that } x \in B' \subset B$
- $A \subset X$ open $\iff \forall a \in A \exists$ open $U_a \subset A$ such that $a \in U_a$ (all $a \in A$ are interior points)
- $A \subset X$ is closed \iff to \forall open U containing $a \in A, U \cap A \neq \emptyset$ (all limit points are contained within A)
- $\mathring{A} \subset A \subset \overline{A}$, $\mathring{A} = A \iff A$ is open, $\overline{A} = A \iff A$ is closed.
- Let X be a topological space, $A \subset X$.
- 1. $x \in \overline{A} \iff \forall$ open U containing $x, U \cap A \neq \emptyset$. 2. If A' is the set of limit points of A, then $\overline{A} = A \cup A'$.
- f is continuous $\iff \forall A \subset X, f(\overline{A}) \subset \overline{f(A)} \iff$ For any closed set $B \subset Y, f^{-1}(B) \subset X$ is closed \iff For any $x \in X$ and any open set $V \subset Y$ containing f(x), there exists open $U \subset X$ containing x such that $f(U) \subset V$
- (Pasting Lemma) Let $X = A \cup B$ where $A, B \subset X$ are both closed (or both open). Let $f: A \to Y$ and $g: B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cap B$, then $h: X \to Y$ defined by

$$h(x) = \begin{cases} f(x), & \text{if } x \in A \\ g(x), & \text{if } x \in B \end{cases}$$

is continuous.

- Let (X,d_X) and (Y,d_Y) be metric spaces. $f:X\to Y$ is uniformly continuous iff for any two sequences $\{x_i\}_{i=1}^\infty$ and $\{y_i\}_{i=1}^\infty$ in X such that $d_X(x_i,y_i)\to 0$, $d_Y(f(x_i),f(y_i))\to 0$.
- Let $\{X_{\alpha}\}_{\alpha\in\Lambda}$ be topological spaces. For any $\alpha\in\Lambda$, let $\pi_{X_{\alpha}}:\prod_{\alpha\in\Lambda}X_{\alpha}\to X_{\alpha}$ be the projection to the α -th factor:
- 1. The product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$ is the coarsest topology such that $\pi_{X_{\alpha}}$ is continuous for any $\alpha \in \Lambda$.
- 2. Let Y be a topological space, and for any $\alpha \in \Lambda$, let $f_{\alpha}: Y \to X_{\alpha}$. The map $f = \prod_{\alpha \in \Lambda} f_{\alpha}: Y \to \prod_{\alpha \in \Lambda} X_{\alpha}$ defined by $y \mapsto (f_{\alpha}(y))_{\alpha \in \Lambda}$ is continuous iff f_{α} is continuous for every $\alpha \in \Lambda$.
- Let X be a topological space and $f,g:X\to\mathbb{R}$ be continuous $\Longrightarrow f+g,f-g$, and $f\cdot g$ are continuous. Also, if $0\notin g(X)$, then $\frac{f}{g}$ is continuous.

- Let (X,d) be a metric space. Then $\rho: X \times X \to \mathbb{R}$ given by $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is a metric and its diameter is less than 1. Furthermore ρ and d induce the same topology on X.
- Let $(X_i,d_{X_i})_{i=1}^\infty$ be metric spaces for all i and let $ho_{X_i}=rac{d_{X_i}(x,y)}{1+d_{X_i}(x,y)}$ for all $x,y\in X_i$. Then $d:\prod_{i=1}^\infty X_i imes \prod_{i=1}^\infty X_i imes \mathbb{R}$ given by

$$d(x,y) = \sup\{\frac{1}{i}\rho_{X_i}(x_i,y_i) : i \in \mathbb{Z}\}\$$

induces the product topology on $\prod_{i=1}^{\infty} X_i$

- If f is a quotient map and $A \subset X$ is saturated and open (closed), then $f|_A:A \to f(A)$ is also a quotient map.
- X is T₁ ⇐⇒ ∀x ∈ X, {x} is closed. Hence finite sets in metric spaces are closed.
- Let X be a topological space, and A ⊂ X. If there exists a sequence (x_i)_{i=1}[∞] ⊂ A such that x_i → x as i → ∞, then x ∈ A. The converse is true if X is first countable.
- Let $f: X \to Y$. If f is continuous, then for any sequence $(x_i)_{i=1}^{\infty} \subset X$ such that $x_i \to x$ as $n \to \infty$, we have $f(x_i) \to f(x)$ as $i \to \infty$. The converse holds if X is first countable.
- Every closed subspace of a compact space is compact.
- (Tube Lemma) Let X be a topological space and Y be a compact topological space. If N ⊂ X × Y is an open set that contains {(x₀, y) : y ∈ Y}, then N contains W × Y for some W ⊂ X that contains x₀.
- If X and Y are compact topological spaces, then $X \times Y$ is compact.
- X compact $\iff X$ has the following property: Let $\mathcal G$ be a collection of closed sets in X. If $\mathcal G$ has the finite intersection property, then $\bigcap_{G\in\mathcal G} G\neq\emptyset$. Idea: consider $\mathcal U=\{X\setminus G: G\in\mathcal G\}$, use FIP, note $X\setminus (\bigcap_{G\in\mathcal G})=\emptyset$
- If X is compact and {G_i}[∞]_{i=1} is a nested (i.e. G_{i+1} ⊂ G_i for all i ∈ Z⁺) sequence of closed subsets in X, then ⋂[∞]_{i=1} G_i ≠ ∅.
- Let X be a non-empty, compact, Hausdorff space. If X has no isolated points, then X is uncountable.
- ullet Compact \Longrightarrow limit point compact
- If *X* is (any type of) compact metric space, then every open cover of *X* has a Lebesgue number.
- (Any type of) compactness and metrizable \Longrightarrow totally bounded. Idea: contradiction, construct sequence $x_n \in X \setminus (\bigcup_{i=1}^{n-1} B_{\epsilon_0}(x_i))$ which has no convergent subsequence

- If X is metrizable, compact \iff limit point compact \iff sequentially compact.
- Let $f:(X,d_X) \to (Y,d_Y)$ be continuous. If X is compact, then f is uniformly continuous.
- Totally bounded ⇒ finite diameter
- X locally compact and Hausdorff iff \exists compact Hausdorff space Y and map $h_Y: X \to Y$ s.t. (1) h_Y is a homeomorphism onto its range and (2) $Y \setminus h_Y(X)$ is a single point. Furthermore, if (Y, h_Y) and $(Y', h_{Y'})$ are two such spaces and maps, \exists homeomorphism $f: Y \to Y'$ s.t. $f|_{h_Y(X)} = h_{Y'} \circ h_Y^{-1}|_{h_Y(X)} : h_Y(X) \to h_{Y'}(X)$
- X is Hausdorff, non-compact, locally compact ⇒ it admits a unique one-point compactification
- Let X be a Hausdorff topological space. Then X is locally compact is equivalent to for any x ∈ X, for any open U ⊂ X such that x ∈ U, there exists open V ⊂ X such that x ∈ V, V̄ ⊂ U and V̄ is compact.
- Let X be a locally compact space. A ⊂ X is closed or X is Hausdorff and A is open ⇒ A locally compact
- (Y,d) complete $\Longrightarrow (Y^{\Lambda}, \overline{\rho})$ complete
- $\mathcal{C}(X,Y), \mathcal{B}(X,Y) \subset Y^X$ are closed in the uniform topology. In particular, (Y,d) complete \Longrightarrow $(\mathcal{C}(X,Y),\overline{\rho})$ and $(\mathcal{B}(X,Y),\overline{\rho})$ complete
- Let (X,d) be a metric space. Then there is an isometric embedding ϕ of X into a complete metric space Y such that $\phi(X) \subset Y$ is dense. Furthermore, if $(Y',d_{Y'})$ is a complete metric space and $\phi':X\to Y'$ is an isometric embedding such that $\phi'(X)=Y'$, then there exists an isometry $f:Y\to Y'$ such that

$$f|_{\phi(X)} = \phi' \circ \phi^{-1} : \phi(X) \to \phi'(X).$$

- X is connected \iff the only sets in X that are open and closed are \emptyset and X
- $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is a collection of connected subsets of X s.t. $\bigcap_{\alpha \in \Lambda} A_{\alpha} \neq \emptyset \implies \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset X$ is connected
- $A \subset X$ connected and $A \subset B \subset \overline{A} \implies B$ connected
- $f: X \to Y$ continuous and $A \subset X$ connected \Longrightarrow $f(A) \subset Y$ connected
- X, Y connected $\implies X \times Y$ connected
- Every connected component of X is connected
- X is locally (path) connected ⇔ ∀ open U ⊂ X, each (path) connected component of U is open in X
- If X is locally path connected, then connected components and path components are the same

- Suppose X is second countable. Then (1) X is Lindelof and (2) there exists a countable subset $A\subset X$ that is dense, i.e. $\overline{A}=X$. The converse of both of them are true if X is metrizable
- X is regular $\iff \forall x \in X, \forall U \subset X$ containing x, \exists open $V \subset X$ containing x s.t. $\overline{V} \subset U$
- · Every metrizable space is normal
- X is a regular topological space with a countable basis ⇒ X is normal
- (Urysohn's metrization theorem) X is regular with countable basis $\implies X$ is metrizable
- (Urysohn's lemma) X is normal $\implies X$ is completely normal
- (Tychonoff's theorem) The product of compact spaces is compact, i.e. if $\{X_{\alpha}\}_{\alpha\in\Lambda}$ is a family of compact spaces, then $X=\prod_{\alpha\in\Lambda}X_{\alpha}$ is compact wrt product topology
- (Arzela-Ascoli theorem) Let X be a topological space and (Y,d) a metric space. Equip $\mathcal{C}(X,Y)$ with the compact open topology and let $\mathcal{Y} \subset \mathcal{C}(X,Y)$.
- 1. If \mathcal{Y} is equicontinuous under d and $\mathcal{Y}_a = \{f(a) : f \in \mathcal{Y}\}$ has compact closure for each $a \in X$, then $\overline{\mathcal{Y}} \subset \mathcal{C}(X,Y)$ is compact
- 2. Converse holds if X is locally compact and Hausdorff

Examples

- $\mathcal{T} = {\emptyset, X}$ is the **trivial topology**
- T = {subsets of X} is the discrete topology.
 Non-compact, has Lebesgue number (midterm question)
- $\mathcal{T} = \{X U : U \subset X \text{ is finite}\} \cup \{\emptyset\}$ is the **cofinite** topology
- $X=\{a,b,c\}$, possible topologies include $\{\{a\},\{a,b\},\emptyset,X\}$, $\{\{b,c\},\emptyset,X\}$ (and more)
- $X = \mathbb{R}, \mathcal{T} = \{(-\alpha, \alpha) : \alpha \in \mathbb{R}^+\} \cup \{\emptyset, \mathbb{R}\}$
- (HW) Collection of unions of arithmetic sequences
- (HW) Co-countable topology: U is open if $U=\emptyset$ or $X\setminus U$ is countable. It is not comparable with the standard topology, but finer than the co-finite topology
- The discrete metric is

$$d(x,y) = \begin{cases} 1, & \text{if } x \neq y \\ 0, & \text{if } x = y \end{cases}$$

(HW) Let X the space of all closed subsets of Rⁿ.
Let B_ε(A) = ⋃_{a∈A} B_ε(a) be an ε-neighbourhood of A. Then the Hausdorff metric d_H(A, B) = inf {ε > 0 : A ⊂ B_ε(B) and B ⊂ B_ε(A)} is a metric on X.
This is not a metric on the space of all subsets of Rⁿ, e.g. A = [0, 1]ⁿ, B = (0, 1)ⁿ

- The l_p -norm is $V = \mathbb{K}^n, p \ge 1, ||x||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}, x \in \mathbb{K}^n$.
- The l_{∞} -norm is $V=\mathbb{K}^n, \|x\|_{\infty}=\max\{|x_1|,\ldots,|x_n|\}, x\in\mathbb{K}^n$
- $[a,b]\subset \mathbb{R}$ is closed wrt standard topology on \mathbb{R}
- Let $X=[0,1]\cup(2,3)\subset\mathbb{R}.$ [0,1] is both open and closed in X wrt subspace topology on X
- $\{0\} \cup (1,2) \subset \mathbb{R}$ has [1,2] as its set of limit points wrt standard topology on \mathbb{R}
- 0 is not a limit point of A, e.g. (-1/2, 1/2) open but doesn't intersect $A \setminus \{0\}$
- $-x \in \mathbb{R} \setminus (\{0\} \cup [1,2])$ is not a limit pt of A
- Every $x \in [1, 2]$ is a limit pt of A
- x being a lim pt of $\{x_i\} \not \Rightarrow x_i \to x$. E.g. $\{(-1)^n + \frac{1}{n}\}$ doesn't converge but has lim pts $\{-1,1\}$
- $x_i \to x \not\Rightarrow x$ is a lim pt of $\{x_i\}$. E.g. (1, 1, ...) converges to 1 but $\{1\}$ has no lim pt
- Given a topology \mathcal{T}_Y on Y and a map $f: X \to Y$, the **pull back** topology on X is $\mathcal{T}_X = \{f^{-1}(U): U \in \mathcal{T}_Y\}$. This is the coarsest topology on X such that f is continuous.
- If (X,d) is a metric space with $A\subset X$ nonempty, then $f:X\to\mathbb{R}$ defined by $x\mapsto d(x,A)$ is uniformly continuous. Idea: $d(x,A)\leq d(x,y)+d(y,A)$, let $\epsilon=\delta$
- (Midterm) Let $\mathbb{R}^{\mathbb{N}}$ be equipped with the box topology, and consider $f: \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ as $x \mapsto (x, x, \ldots)$. All component functions are the identity and hence continuous, but f is not continuous. Idea: Let $U = \prod_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n})$. If f continuous, there should exist $\epsilon > 0$ s.t. $(-\epsilon, \epsilon) \subset f^{-1}(U)$, but $\frac{\epsilon}{2} > \frac{1}{n}$
- Let $p:[0,1]\cup[2,3]\to[0,2]$ be a map defined by

$$x \mapsto \begin{cases} x & \text{if } x \in [0, 1], \\ x - 1 & \text{if } x \in [2, 3]. \end{cases}$$

p is closed but not open. By the pasting lemma, we know that p is continuous. Let $A\subset [0,1]\cup [2,3]$ be closed, then

$$A_1 = A \cap [0,1] \subset [0,1], \quad A_2 = A \cap [2,3] \subset [2,3]$$

are closed sets. This together with the definition of p, [0,1] and [1,2] are closed in [0,2] shows that $p(A_1)$ and $p(A_2)$ are closed subsets of [0,2] with respect to its topology. As a result we show that p(A) is closed and thus p is a closed map. But p is not open. Let B=(0,1), then B is open wrt. the subspace topology in $[0,1]\cup[2,3]$. However $p((0,1))=(0,1)\subset[0,2]$ is not open.

- (Midterm) $p:(0,1)\cup(2,3)\to(0,2)$ is open but not closed by a similar argument
- Let $X = \mathbb{R}^2 \setminus \{(x,y) : 0 \le x < 1, 0 < y < 1\}$ and $f: X \to \mathbb{R}$ be defined as f(x,y) = x. Then f is surjective, continuous, not open, not closed, but a quotient map.
- If X is a topological space, A ⊂ X and p : X → A is surjective, then ∃! topology on A (called the quotient topology) such that p is a quotient map where T = {U ⊂ A : p⁻¹(U) ⊂ X is open}
- Let $p:\mathbb{R} \to \{a,b,c\}$ be a map defined as

$$x \mapsto \begin{cases} a, & \text{if } x > 0, \\ b, & \text{if } x = 0, \\ c, & \text{if } x < 0. \end{cases}$$

Then the quotient topology on $\{a, b, c\}$ is

$$\mathcal{T} = \{ \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \emptyset \}.$$

- Partition $X=\mathbb{R}=\mathbb{R}^-\cup\{0\}\cup\mathbb{R}^+.$ Then the quotient space $X^*=\{\mathbb{R}^-,\{0\},\mathbb{R}^+\}.$
- Let $X=\{(x,y): x^2+y^2\leq 1\}$ and decompose it as the union of $\bigcup_{(x,y):x^2+y^2<1}\{(x,y)\}$ and $\{(x,y): x^2+y^2=1\}$. Then X^* is $\{\{(x,y)\}: x^2+y^2<1\}\cup \{\{(x,y): x^2+y^2=1\}\}$.
- Let $X=\mathbb{R}$ and p defined as that p sends x to x+n for some $n\in\mathbb{Z}$ such that $x+n\in[0,1)$. It is clear that such n is unique for a fixed $x\in\mathbb{R}$. In this setting, $X^*=[0,1)$. We may also identify X^* as S^1 (unit circle) or \mathbb{R}/\mathbb{Z} .
- Any Hausdorff space is T_1
- · Any metric space is Hausdorff
- If |X| > 2, then the trivial topology is not T_1
- The discrete topology is Hausdorff
- The cofinite topology is T₁. The cofinite topology is Hausdorff iff X is finite. Idea: for T₂, break into finite/infinite cases, for infinite case let U, V be X minus finite number of elements, these cannot be disjoint
- If X is infinite, then the cofinite topology on X is not metrizable
- Metric spaces are first countable: $\forall x \in X$, $\{B_{1/i}(x): i \in \mathbb{Z}^+\}$ is a countable basis of X at x
- The cofinite topology on an uncountable set X, e.g. $\mathbb R$ is not first countable. Idea: suppose countable basis exists, $B_i = X \setminus F_i$ for some finite $F_i \subset X$, consider $y \in X \setminus (\{x\} \cup \bigcup_{i=1}^{\infty} F_i)$, show that B_i not subset of U
- $X = \{\frac{1}{n} : n \in \mathbb{Z}^+\} \subset \mathbb{R}$ is not compact since $\{\{\frac{1}{n}\} : n \in \mathbb{Z}^+\} \subset \mathbb{R}$ is an open cover of X wrt subspace topology but does not have finite subcover.

- $X = \{\frac{1}{n} : n \in \mathbb{Z}^+\} \cup \{0\} \subset \mathbb{R}$ is compact. Let \mathcal{U} be any open cover, then $\exists \mathcal{U} \in \mathcal{U}$ that contains 0 and $\exists N > 0$ such that $\frac{1}{n} \in \mathcal{U}$ for $n \geq N$. For each n < N, let $U_n \in \mathcal{U}$ such that $\frac{1}{n} \in U_n$. All together we obtain a finite subcover of \mathcal{U} as: $\{U_1, \dots, U_{N-1}, U\} \subset \mathcal{U}$
- Any metric space X of infinite diameter is not compact. Let x ∈ X. Then {B_n(x) : n ∈ Z⁺} is an open cover of X which does not have a finite subcover.'
- $S=\{(x,y)\in\mathbb{R}^2:|x|\leq\frac{1}{y^2+1}\}\subset\mathbb{R}^2$ contains $\{0\}\times\mathbb{R}$ but not a tube
- Any unbounded metric space is not limit point compact. Idea: Pick $x_1 \in X$ and $x_i \in B_i(x_1) \setminus B_{i-1}(x_1)$, $\{x_1, x_2, \dots\}$ has no limit points
- Let Y (where $|Y| \ge 2$) be equipped with the trivial topology and \mathbb{Z}^+ be equipped with discrete topology. Let $X = \mathbb{Z}^+ \times Y$, then the product topology on X is $\{A \times Y : A \subset \mathbb{Z}^+\}$. Every non-empty subset of $\mathbb{Z}^+ \times Y$ has a limit point, so X is limit point compact. However, $\{\{a\} \times Y : a \in A\}$ is a cover of X with no finite subcover, so X is not compact
- \mathbb{R}^n with ℓ_p metric has infinite diamter, so it is not totally bounded
- \mathbb{R}^n with respect to l_p metric for $p \in [1, \infty]$ is complete.
- If $(x_i)_{i=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}^n , then $\exists M>0$ such that $x_i\in B_M'(0)=\{x\in\mathbb{R}^n:d(x,0)\leq M\}$ for every i. Since $B_M'(0)$ is compact and thus sequentially compact, $(x_i)_{i=1}^{\infty}$ has a convergent subsequence, so $(x_i)_{i=1}^{\infty}$ converges.
- Equipped with the standard metric on ℝ restricted to ℚ, ℚ is not complete. Since ℚ ⊂ ℝ is dense, there are sequences in ℚ that converge in ℝ to an irrational number. Such sequences are Cauchy but do not have a convergent subsequence in ℚ.
- Let d be the standard metric on \mathbb{R} , ρ the metric on \mathbb{R} given by

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)},$$

D the metric on $\prod_{\mathbb{Z}} \mathbb{R} = \mathbb{R}^{\omega}$ given by

$$D(x,y) = \sup \left\{ \frac{\rho(\pi_k(x), \pi_k(y))}{k} : k \in \mathbb{Z}^+ \right\},\,$$

where $\pi_k:\mathbb{R}^\omega\to\mathbb{R}$ is the projection to the k-th factor.

- (HW) (\mathbb{R}^w, D) is complete
- \mathbb{R}^n is locally compact. Let $U = B_{\epsilon}(x)$ and $C = \overline{U}$
- $\mathbb{Q} \subset \mathbb{R}$ is not locally compact
- \mathbb{R}^w with product topology is not locally compact

- Let $\mathbb{D}=\{(x,y): x^2+y^2<1\}$. Then $\overline{\mathbb{D}}$ and \mathbb{S}^2 are compactifications of \mathbb{D} , and \mathbb{S}^2 is a one-point compactification
- $U_1 = \prod_{n \in \mathbb{N}} \{x = (x_n)_{n \in \mathbb{N}} : |x_n| < 2^{-n} \forall n \in \mathbb{N} \}$ is open in the box topology but not the uniform topology on $\mathbb{R}^{\mathbb{N}}$ (does not contain uniform ball)
- $U_2 = \{x \in \mathbb{R}^{\mathbb{N}} : \rho(x,0) < 0.01\}$ is open in the uniform topology but not in the product topology (does not contain any set of the form $\{x = (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : x_{n_1} = \cdots = x_{n_k} = 0\}$
- The supremum metric d_{\sup} on $\mathcal{B}(X,Y)$ is $d_{\sup}(f,g) = \sup\{d(f(x),g(x)): x \in X\}$. This is well defined since $\operatorname{diam}(f(X) \cup g(X))$ is bounded
- The trivial topology is connected.
- $[-1,0) \cup (0,1] \subset X$ is not connected wrt standard topology
- $\mathbb{Q} \subset \mathbb{R}$ is not connected wrt standard topology $(a,b) \subset \mathbb{R}$ is connected, as are (a,b], [a,b), [a,b]
- (Topologist's sine curve) Let S be defined as $S=\{(x,y)\in\mathbb{R}^2:y=\sin(\frac{2\pi}{x}),0< x\leq 1\}$. Let $f:(0,1]\to S$ be defined as $t\mapsto (t,\sin\frac{2\pi}{t})$. This gives that S=f((0,1]) is path connected and thus connected. In particular, $\bar{S}=S\cup(\{0\}\times[-1,1])$ is connected. Idea: if a separation exists, then A contains all $(t,\sin 2\pi/t)$ so B contains only (0,0). But any open set around (0,0) intersects A. However, TSC is not path connected (it can never leave the y-axis)
- $(0,1) \subset \mathbb{R}$ is connected and locally connected
- $(0,1) \cup (1,2)$ is not connected but locally connected
- · TSC is connected but not locally connected
- $\mathbb{Q} \subset \mathbb{R}$ is neither connected nor locally connected
- \mathbb{R}^n is second countable since $\{B_r(x): r\in \mathbb{Q}, x\in \mathbb{Q}^n\}$ is a countable basis
- \mathbb{R}^w with product topology is second countable since $\{\prod_{n\in\Lambda}(a_n,b_n) \times \prod_{n\in\mathbb{Z}\setminus\Lambda}\mathbb{R}: \Lambda \text{ is finite, } a_n < b_n,a_n,b_n\in\mathbb{Q}\ \forall n\in\Lambda\}$

Exercises

- $\mathcal T$ is equal to the collection of all unions of elements in $\mathcal B$
- Open balls of radius r are a basis on Rⁿ, this is the standard topology. Proof idea: use definition of basis, covering is obvious, for intersection use two balls and triangle inequality
- Discrete metric generates the discrete topology. Proof idea: If r < 1, $B_r(x) = \{x\}$, unions of the singletons produce all subsets of X.
- Every ℓ_p metric on \mathbb{R}^n generates the standard topology. Forward: consider $d_p(x,y) < r$, square both sides, open brackets using inequality. Reverse: Let $\epsilon > 0$, $\delta = \frac{\epsilon}{n^{1/p}}$, bound by $n \cdot \max\{|x_i y_i|^2\}^{p/2}$, play games

- $\mathcal B$ is a basis for $\mathcal T_Y \implies \{B\cap X: B\in \mathcal B\}$ is a basis for $\mathcal T_X$
- If $X\subset Y$ is open and $U\subset X$ is open, then $U\subset Y$ is open.
- (HW) Topology induced by subspace metric is the subspace topology
- (HW) $\triangle = \{(x, x) : x \in \mathbb{R}\} \subset \mathbb{R}^2$ is closed wrt standard topology on \mathbb{R}^2 . Idea: let r_p be the distance from $p \in \mathbb{R}^2 \setminus \triangle$ to \triangle . Show that $\mathbb{R}^2 \setminus = \bigcup_{p \in \mathbb{R}^2 \setminus \triangle} B_{r_p}(p)$
- ullet (HW) Let X be a topological space
- If $\{G_{\alpha}\}_{\alpha\in I}$ is an arbitrary collection of closed sets in X, then $\bigcap_{\alpha\in I}G_{\alpha}\subset X$ is closed.
- If G_1, \ldots, G_n are closed sets in X, then $\bigcup_{i=1}^n G_i \subset X$ is closed.
- If $Y\subset X$, then $A\subset Y$ is closed is equivalent to $A=G\cap Y$ for some closed $G\subset X$. Idea: consider subspace topology, then use $A=Y\setminus (Y\setminus A)=Y\setminus (H\cap Y)=Y\setminus H=(X\setminus H)\cap Y$
- If $Y \subset X$ is closed and $A \subset Y$ and $A \subset Y$ is closed, then $A \subset X$ is closed.
- (HW) Find interior/closure/boundary of $\{(x,y)\in\mathbb{R}^2:0< x\leq 1,0< y\leq 1\}$. Idea: Let $\epsilon=\min\{x,y,1-x,1-y\}$ for interior (and similar for closure). Play games
- If X equipped with discrete topology, all subsets of X have no limit pts. Idea: singletons {x} are open but do not intersect any A \ {x}
- If (X,d) is a metric space, $\{x_i\}$ converging to $x \iff \forall \epsilon > 0, \exists N > 0$ s.t. $d(x_i,x) < \epsilon \forall i > N$. Idea: apply definition of convergence, note that balls form a basis
- Let X, Y, Z be topological spaces. Constant map, composition, inclusion map, restriction map are all continuous.
- Let (X,d_X) and (Y,d_Y) be two metric spaces, then $f:X\to Y$ is continuous wrt the topologies induced by these metrics $\iff \forall x\in X, \forall \epsilon>0, \exists \delta>0$ s.t. if $y\in X$ satisfies $d_X(x,y)<\delta$, then $d_Y(f(x),f(y))<\epsilon$. Idea: observe that any open set is just a union of open balls, consider δ ball around $x\in X$ and $x\in f^{-1}(V)$ and ϵ ball around f(x)
- (Midterm) Let $f_i: X \to Y$ be a sequence of continuous functions from topological space X to metric space (Y, d). $\{f_i\}$ converges uniformly to $f: X \to Y \implies f$ is continuous. Idea: $f^{-1}(U) = \bigcup_{i>N} f_i^{-1}(B_{\epsilon/2}(f(x)))$

- (Tut) A ⊂ X, B ⊂ Y ⇒ product topology on A × B induced by subspace topologies on A ⊂ X, B ⊂ Y same as subspace topology A × B ⊂ X × Y induced by product topology on X × Y
- Let $n \in \mathbb{Z}^+$ s.t. $n = m_1 + \cdots + m_k$ where all $m_i \in \mathbb{Z}^+$. Then the product topology of standard topologies on $\mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_k} = \mathbb{R}^n$ is the standard topology on \mathbb{R}^n . Idea: forward direction, sum up all ϵ of each B_{m_i} to make a B_{ϵ} in \mathbb{R}^n
- If $\mathcal{B}_1, \ldots, \mathcal{B}_n$ are bases for the topological spaces $(X_1, \mathcal{T}_1), \ldots, (X_n, \mathcal{T}_n)$ respectively, then $\mathcal{B}_1 \times \cdots \times \mathcal{B}_n$ is a basis for $X_1 \times \cdots \times X_n$ that generates the product topology.
- If $(X_1, d_{X_1}), \ldots, (X_n, d_{X_n})$ are metric spaces that induce topologies $\mathcal{T}_1, \ldots, \mathcal{T}_n$ on X_1, \ldots, X_n respectively, then the metrics d_1 and d_∞ on $X_1 \times \cdots \times X_n$ both induce the product topology.
- In the infinite product case, let $(X_i,d_{X_i})_{i=1}^{\infty}$ be metric spaces. Given the metric d_{∞} above, we define $d_{\infty}:\prod_{i=1}^{\infty}X_i\times\prod_{i=1}^{\infty}X_i\to\mathbb{R}$ by $d_{\infty}(x,y)=\sup\{d_{X_i}(x_i,y_i):i\in\mathbb{Z}^+\}$. But this is not well-defined as $d_{X_i}(x_i,y_i)$ might be unbounded as $i\to\infty$.
- (Midterm) Every compact subspace of a Hausdorff space is closed. Idea: show that no limit point can be found in the complement of the subspace
- **(HW)** If *X* is equipped with the cofinite topology, then every subset is compact but only the finite sets are closed. Idea: take one set in the open cover, only finite number of points not covered, so patch with finite number of open sets
- Sequentially compact ⇒ limit point compact. Idea: A ⊂ X, convergent subsequence in A converges to a ∈ X, we have points in any neighbourhood of a, so this must be a limit point. (HW) Converse is not true, e.g. {(a, ∞) : a ∈ R}
- (HW) Open cover of $\mathbb R$ with no Lebesgue number: $(n-\frac{1}{|n|+1},n+\frac{1}{|n|+1})$
- If (X,d) is a metric space and $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$, then (X,ρ) is totally bounded $\leftrightarrow (X,d)$ is totally bounded.
- If (X,d) and (X',d') are bi-Lipschitz (i.e. $\exists A>1$ such that $A^{-1}d(x,y)\leq d'(x,y)\leq Ad(x,y)$ for $\forall x,y\in X$), then (X,d) is totally bounded \iff (X',d') is totally bounded
- Any subset in (\mathbb{R}^n, l_p) is totally bounded \leftrightarrow it is bounded.
- (HW) A Cauchy sequence converges iff it has a convergent subsequence.
- (HW) If d and d' are metrics on X that are bi-Lipschitz, then a sequence is Cauchy in (X, d) if and only if it is Cauchy in (X', d').

- For a metric space, compact \iff complete and totally bounded. Idea: consider $\limsup x \in X$ and Cauchy sequence where $x_i \in B_{\frac{1}{i}}(x)$ Corollary: $G \subset \mathbb{R}^n$ compact $\iff G$ closed and bounded (Heine-Borel Thm)
- (HW) If $U, V \subset X$ is a separation of X and $Y \subset X$ is a connected subspace, then $Y \subset U$ or $Y \subset V$
- (HW) Path connected ⇒ connected. Idea: continuity of path implies [a, b] disconnected
- (HW) All path components are path connected and thus every path component lies in a connected component. Idea: path connected ⇒ connected
- (HW) If X is locally path connected and $\tilde{X} = \{\text{connected components of } X\}$, then the quotient topology on \tilde{X} is discrete. Idea: show U in quotient topology $\iff U$ is a CC of X
- (HW) First and second countability are preserved by taking products and subspaces
- (HW) $T_4 \implies T_3 \implies T_2 \implies T_1$
- (HW) If X is copmact, $T_2 \iff T_3 \iff T_4$
- Let X be a topological space. X is normal ⇔ ∀ closed A ⊂ X, ∀ open U ⊃ A, ∃ open V ⊃ A s.t.
 V ⊂ U. Idea: forward: consider A and X \ U which are closed and disjoint. Reverse: X \ B open and A ⊂ X \ B, same for X \ A
- Completely regular ⇒ regular. Completely normal ⇒ normal

HW

- S ⊂ X is dense in X means that ∀x ∈ X and every neighbourhood U of x, U ∩ S ≠ Ø. This is equivalent to the interior of X \ S being empty and \(\overline{S} = X \)
- The limit points of $\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{Z}^+\} \subset \mathbb{R}$ are $\{0\} \cup \{\frac{1}{k} \mid k \in \mathbb{N}\}$. The limit point of $\{\frac{\sin n}{n} : n \in \mathbb{Z}^+\} \subset \mathbb{R}$ is 0
- Topological space with compact subset but closure of subset is not compact: \(\mathcal{T} \) is standard topology on \(\mathbb{R}, X = \{U \cup \{0} \) | \(U \in \mathcal{T} \) \(\{\theta\}, \{0\} \) is compact but \(\{0\} = \mathbb{R} \) is not
- A sequence {x_n} converges to a point x iff every subsequence has in turn a subsequence converging to x. Idea: forward: if no subsequence exists, then there are an infinite number of elements lying outside a neighbourhood of x.
- Product of two Hausdorff spaces is Hausdorff
- Subspace of Hausdorff space is Hausdorff
- (-√2, √2) ∩ ℚ is a closed and bounded subset of ℚ that is not compact. Idea: to show not compact, consider the cover A_n = (-√2 + ½, √2) ∩ ℚ