

National Chiao Tung University Institute of Electronic Engineering

CAD HW4 Modeling Mixed-Signal System and Simulating with AMS

Teaching Assistant: Hsin Tzu, Chao

Date: 12/11, 2023

Lab: ED-413

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

What is AMS Designer

- Top-down system-on-chip simulation for complex mixed-signal designs
- A single executable simulator incorporating the fastest in digital and most flexible analog simulation capability
 - Digital: NC-Sim
 - Analog: Spectre
- Simulation of complex designs incorporating any and all of the following:
 - Verilog, VHDL
 - Verilog-A, Verilog-AMS, VHDL-AMS
 - Spectre
 - SPICE
 - Composer schematics

What is AMS Designer(cont.)

Mixed-Signal Simulation with Model

- The mixed-signal behavioral model simulation can verify:
 - System behavior is correct or not?
 - System requirement is met or not?
 - System performance is satisfied or not?
- Weaknesses:
 - Only time domain information can be obtained directly
 - All behavioral model should be converted into time domain
 - Other characteristics might be calculated from time domain data

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

Environment Setting

- NC-Verilog / Verilog-XL
 - e.g > source /usr/cad/cadence/CIC/incisiv.cshrc
- Spectre
 - e.g > source /usr/cad/cadence/CIC/mmsim.cshrc
- Composer / Virtuoso
 - e.g > source /usr/cad/cadence/CIC/ic_06.17.709.cshrc

Simulation Flow

Step 1. > virtuoso &

Step 2. Open library manager

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Open library manager

Mixed-Signal Electronic Design Automation Lab.

Simulation Flow

Create Verilog-A Cells

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Create a new cell view

- 1. Choose your library
- 2. Input the name on the Cell Name column
- 3. Choose the **VerilogA** type for Analog model
- 4. OK

Designing with Verilog-A

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Mixed-Signal Electron ic Design

Create Top Cell - Schematic

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Input the name on the Cell Name column and choose the Schematic

Create Top Cell - Schematic

imouse L: schSingleSelectPt()

14(16) Check and Save

Simulation Environment

 Open Analog Design Environment (ADE) in schematic editing window

Mixed-Signal Electronic Design

Through Setup -> Simulator/Directory/Host

Mixed-Signal Electronic Design
Automation Lab.

Give input information (1/2)

Give input information (2/2)

Choose Analysis Type

Save Output Nodes

Submit the Simulation

- Execute the simulation job with Run
- Tools \rightarrow Results Brower

MS Automation Lab.

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

Create Verilog Cells

Design Hierarchy – AMS

• Before creating the top schematic cell (add instance and connection), creating a config view for AMS simulation

Create Config View for Simulation

- The mixed-signal simulation hierarchy is controlled by **Hierarchy-Editor**
 - It must have to be defined in the **config** cell view.

Mixed-Signal Electronic Design

Automation Lab.

Set New Configuration

Mixed-Signal Electronic Design

Automation Lab.

Configuration Setting

Open Simulation Tool

- Finish create config
 - Click config at library manager to open simulation tool
 - The simulation steps are the same as analog
 - Except give input information

Confirm the title has "config"

ign Environment L Editing: PLL PLL_MIXED schematic

sate Check Options Window Hierarchy-Editor AMS Help

Cadence

ADEL

Sim Time

Mixed-Signal Electronic Design
Automation Lab.

Digital Stimulus

- Create a behavioral or functional view for the stimulus block
 - The stimulus (Verilog) could be created to symbol view as the same procedure with digital cell

```
//Verilog HDL for "PLL", "stimulus_D" "functional"

timescale 1ns/10ps
module stimulus_D (rst);
output rst;
reg rst;
initial begin
    rst=1'b0;
    #1 rst=1'b1;
end
endmodule
```

Analog Stimulus

• The analog stimulus can be added as circuit instance

Add Instance

Choose analogLib & vpulse cell

Set

DC voltage voltage & AC magnitude frequency AC phase XF magnitude PAC magnitude

Mixed-Signal Electronic Design

1. Setup

- ✓ Simulator choose AMS
- 2. Analysis
 - ✓ Tran analysis
 - ✓ Set simulation time and enable
- 3. Outputs
 - ✓ Save all or select on design
- 4. Run
- 5. Waveform viewer

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

PLL Analog Model

- All Verilog-A models are given
 - PFD, CP, LF, VCO, sin2plus, divider
- Import the Verilog-A models and setup ADE

Additional Description

- Connection
 - Connect <u>up</u> (<u>sigout_A</u>) signal of <u>PFD</u> to <u>siginc</u> signal of <u>CP</u>
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: spectre
- Input
 - Fin=50M Hz : Set the ADE Stimuli
- Simulation time $\geq 6\mu s$
 - Related to the lock time of PLL

Results

Show the waveform of vctrl signal and schematic view

Top schematic cell

Observe the waveform of Vctrl

Open Results Brower

Mixed-Signal Electronic Design

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

PLL Mixed-Signal Model

- All models are given
 - Analog model (Verilog-A): PFD, CP, LF, VCO, sin2plus
 - Digital model (Verilog): divider
- Import all models and create a testbench
 - Testbench: generate rst signal for divider

Mixed-Signal Electronic Design

Additional Description

- Connection
 - Connect <u>up</u> (<u>sigout_A</u>) signal of <u>PFD</u> to <u>siginc</u> signal of <u>CP</u>
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: AMS
- Input
 - Fin=50M Hz, Adding voltage source instance
- Simulation time $\geq 6\mu s$
 - Related to the lock time of PLL

Results

 Show the waveform of vctrl, output of the divider and schematic view

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 4-bit ADC with Verilog-AMS

Description

Type: AMS


```
connectmodule a2d(i,o);
  parameter vdd = 1.0;
  ddiscrete o;
  input i;
  output o;
  reg o;
  electrical i;
  always begin @(cross(V(i) - vdd/2,+1))o = 1; end
  always begin @(cross(V(i) - vdd/2,-1))o = 0; end
endmodule
```

Parameters of ADC Model

- Input: sin wave
- Amplitude: 16V, Frequency: 20M
- Output: 4 bit output
- R=0.5k, Vref=16V
- Analysis Type: tran, 125n
- Simulator: AMS

B3,B2,B1,B0 (bit)	Input (V)
0000	0
0001	1V
0010	2V
0011	3V
0100	4V
0101	5V
0110	6V
0111	7V
1000	8V
1001	9V
1010	10V
1011	11V
1100	12V
1101	13V
1110	14V
1111	15V

Mixed-Signal Electronic Design

Results

- Hand in:
 - The waveform of outputs of comparators, encoder and input
 - Schematic cellview

Hand in

- Please upload a compressed file includes:
 - Programming files (Verilog and Verilog-A files)
 - Lab2: Stimuli (testbench.v)
 - Lab3: Encoder file(.vams or .v), comparator file(.vams or .va)
 - Mini report
 - Three simulation waveforms
 - Lab1: Analog simulation (Vctrl)
 - Lab2: Mixed-signal simulation (Vctrl & output of the divider)
 - Lab3: ADC (outputs of comparators, encoder and input)
 - Three schematic cellviews
 - What you have learned from this homework
 - Questions and solutions
- Deadline: 23:55, December 31, 2023

