Haitham Abdel Razaq Moh'd Almatani 407920 Themistoklis Dimaridis 355835 Kirill Beskorovainyi 451420

Aufgabe 1:

a) i)

$$z^3 = -8i$$

Wir bringen erstmal die Zahl-8i=0+-8i in Eulerdarstellung, der Form

•
$$r = \sqrt{x^2 + y^2} = \sqrt{0^2 + (-8)^2} = \sqrt{8^2} = 8$$

•
$$\phi = arg(z) = arctan\left(\frac{Im(z)}{Re(z)}\right)$$

• $\phi = arg(z) = arctan\left(\frac{Im(z)}{Re(z)}\right)$ In unserem Fall der Winkel $\phi = -\frac{\pi}{2}$, da x = 0 und y < 0.

Also gilt:

$$-8i = re^{i\phi}$$
$$-8i = 8e^{-\frac{\pi}{2}i}$$

Das heißt also:

$$z^{3} = -8i$$

$$<=> z^{3} = 8e^{-\frac{\pi}{2}i}$$

$$=> r^{3} = 8$$

$$3\phi = -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$

$$r = \sqrt[3]{8} = 2$$

$$\phi = -\frac{\pi}{6} + \frac{2k\pi}{3}, \ k \in \mathbb{Z}$$

Für k = 0, 1, 2 bekommen wir unsere 3 verschiedenen Lösungen wie folgendes:

 $\begin{array}{lll} k=0 & : & y_0=-\frac{\pi}{6} \text{ und somit } z_0=2e^{-\frac{\pi}{6}i} \\ k=1 & : & y_1=-\frac{\pi}{6}+\frac{2\pi}{3}=\frac{3\pi}{6}=\frac{\pi}{2} \text{ und somit } z_1=2e^{\frac{\pi}{2}i} \\ k=2 & : & y_2=-\frac{\pi}{6}+\frac{2\times 2\pi}{3}=-\frac{\pi}{6}+\frac{4\pi}{3}=\frac{7\pi}{6} \text{ und somit } z_2=2e^{\frac{7\pi}{6}i} \end{array}$

Allgemeine Polardarstellung:

$$z = r(\cos(\phi) + i\sin(\phi))$$

Somit sehen unsere Lösungen wie folgt aus:

$$z_0 = 2(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right))$$

$$z_1 = 2(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right))$$

$$z_2 = 2(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right))$$
a) ii)

$$z^{4} + 2(\sqrt{12} - 2i)z^{2} + 8 - 4\sqrt{12}i = 0$$
$$z^{4} + 2 \times z^{2}(\sqrt{12} - 2i) + (\sqrt{12} - 2i)^{2} = 0$$

Laut der binomischen Formel: $(a+b)^2 = a^2 + 2ab + b^2$ können wir die Gleichung umformen:

$$(z^{2} + \sqrt{12} - 2i)^{2} = 0$$

$$<=> z^{2} + \sqrt{12} - 2i = 0$$

$$<=> z^{2} = -\sqrt{12} + 2i$$

$$\begin{split} &-\sqrt{12}+2i \text{ bringen wir zunächst in Eulerdarstellung.} \\ &r=\sqrt{x^2+y^2}=\sqrt{(-12)^2+2^2}=\sqrt{12+4}=\sqrt{16}=4 \\ &\phi=arg(z)=arctan\left(\frac{Im(z)}{Re(z)}\right)+\pi, \text{ da } x<0. \\ &\text{Also } arctan\left(\frac{2}{-\sqrt{12}}\right)+\pi=arctan\left(\frac{2}{-2\sqrt{3}}\right)+\pi=arctan\left(-\frac{\sqrt{3}}{3}\right)+\pi=-\frac{\pi}{6}+\pi=\frac{5\pi}{6} \\ &\text{Also gilt:} \end{split}$$

$$-\sqrt{12} + 2i = 4e^{i\frac{5\pi}{6}}$$

 z^2 in Euler darstellung: $z^2=(re^{i\phi})^2=r^2e^{i2\phi}$ Also gilt:

$$z^{2} = -\sqrt{12} + 2i$$

$$<=> r^{2}e^{i2\phi} = 4e^{i\frac{5\pi}{6}}$$

$$=> r^{2} = 4 \quad \text{und} \quad 2\phi = \frac{5\pi}{6} + 2k\pi, \ k \in \mathbb{Z}$$

$$r = 2 \qquad \phi = \frac{5\pi}{12} + k\pi, \ k \in \mathbb{Z}$$

Also für k=0,1 bekommen wir unsere 2 verschiedene Lösungen wie folgendes:

$$k = 0$$
: $\phi_0 = \frac{5\pi}{12}$ und somit $z_0 = 2e^{\frac{5\pi}{12}i}$
 $k = 1$: $\phi_1 = \frac{5\pi}{12} + \pi = \frac{17\pi}{12}$ und somit $z_1 = 2e^{\frac{17\pi}{12}i}$

Allgemeine Polardarstellung:

$$z = r(\cos(\phi) + i\sin(\phi))$$

Somit sehen unsere Lösungen wie folgt aus:

$$z_0 = 2(cos(rac{5\pi}{12} + isin(rac{5\pi}{12})) \ z_1 = 2(cos(rac{17\pi}{12} + isin(rac{17\pi}{12})) \ b)$$

$$z_1 = \sqrt{2}e^{-\frac{\pi}{4}i}$$

 z_1 in allgemeine Polardarstellung:

$$z_1 = re^{i\phi}$$

Also gilt: $re^{i\phi} = \sqrt{2}e^{-\frac{\pi}{4}i}$

$$=>r=\sqrt{2}$$
 $\phi=-\frac{\pi}{4}$

Also ist z_1 in Polardarstellung:

$$z_1 = r(\cos(\phi) + i\sin(\phi))$$

$$z_1 = \sqrt{2}(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right))$$

$$z_1 = \sqrt{2}\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)$$

$$z_1 = 1 - i$$

Also $z_1 = 1 - i$ in kartesische Darstellung.

Sei $z = e^{\frac{5\pi}{12}i}$ in Eulerdarstellung.

Allgemein gilt: $z=re^{i\phi}$ Also ist $re^{i\phi}=e^{\frac{5\pi}{12}i}$

=> r=1 und $\phi=\frac{5\pi}{12}=\frac{\pi}{4}+\frac{\pi}{6}$ Für die Polardarstellung gilt:

$$z = r(\cos(\phi) + i\sin(\phi))$$
$$1 \times (\cos\left(\frac{5\pi}{12}\right) + i\sin\left(\frac{5\pi}{12}\right))$$
$$z = \left(\cos\left(\frac{\pi}{4} + \frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right)\right)$$

Allgemein gilt für die Additionstheoreme:

$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

$$sin(x + y) = sin(x)cos(y) + cos(x)sin(y)$$

Mithilfe also der Additionstheorie haben wir:

$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \sqrt{3}\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} => \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$z = \cos\left(\frac{\pi}{4}\right) \times \cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{4}\right) \times \sin\left(\frac{\pi}{6}\right) + i\left(\sin\left(\frac{\pi}{4}\right) \times \cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right) \times \sin\left(\frac{\pi}{6}\right)\right)$$

$$z = \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2} \times \frac{1}{2}\right) + i\left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2}\right)$$

$$z = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} + i\left(\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}\right)$$

$$z = \frac{\sqrt{6} - \sqrt{2}}{4} + i\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right) \text{ in kartesische Darstellung}$$

Aufgabe 2:

$$p(z) = z^4 + z^3 + 3z^2 + 4z - 4$$

a)

$$p(2i) = (2i)^{4} + (2i)^{3} + 3(2i)^{2} + 4(2i) - 4$$

$$= 2^{4} \cdot i^{4} + 2^{3} \cdot i^{3} + 3 \cdot 4i^{2} + 8i - 4$$

$$= 16(1) + 8(-1) + 12(-1) + 8i - 4$$

$$= 16 - 12 - 4 + 8i - 8i$$

$$= 0$$

b)

$$q(z) = z^2 + 4$$

$$z^{4} + z^{3} + 3z^{2} + 4z - 4 = (z^{2} + 4)(z^{2} + z - 1)$$

$$-z^{4} - 4z^{2}$$

$$z^{3} - z^{2} + 4z$$

$$-z^{3} - 4z$$

$$-z^{2} - 4$$

$$z^{2} + 4$$

$$0$$

c)

Bestimmung der Nullstellen von z^2+z-1 mit Anwendung der p-q Formel:

$$z^{2} + 4 = 0$$

$$z^{2} = -4$$

$$z_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$z = \pm \sqrt{4}$$

$$z = \pm \sqrt{4i^{2}}$$

$$z = \pm 2i$$

$$z^{2} + z - 1 = 0$$

$$z_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} + 1}$$

$$= -\frac{1}{2} \pm \sqrt{\frac{5}{4}}$$

$$-\frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

Also die komplexe Linearfaktorzerlegung von p(z):

$$p(z) = z^4 + z^3 + 3z^2 + 4z - 4 = (z - 2i)(z + 2i)(z - \left(-\frac{1}{2} + \frac{\sqrt{5}}{2}\right))(z - \left(-\frac{1}{2} - \frac{\sqrt{5}}{2}\right))$$

d)

Die reelle Zerlegung von p(z):

$$p(z) = z^4 + z^3 + 3z^2 + 4z - 4 = (z^2 + 4)(z - \left(-\frac{1}{2} + \frac{\sqrt{5}}{2}\right))(z - \left(-\frac{1}{2} - \frac{\sqrt{5}}{2}\right))$$