SANDESH GHIMIRE

Sg9872@rit.edu ● Www.sandeshgh.com Google Scholar, ResearchGate, LinkedIn

Research Interest

Machine Learning, Deep Learning, Statistical Inference, Generalization in Deep Learning, Medical Imaging, Medical Signal Processing, Inverse Problems, Cardiac Electrophysiological Analysis

Education

PhD in Computing and Information Sciences

Aug 2015 - Aug 2020

Rochester Institute of Technology, NY

GPA: 3.9/4

Advisor: Prof. Linwei Wang, Lab: Computational Biomedicine Lab

B.E. in Electronics and Communication Engineering

Specialization: Image Processing and Pattern Recognition

Oct 2008 - Dec 2012

 $In stitute\ of\ Engineering,\ Tribhuvan\ University,\ Kathmandu,\ Nepal.$

Ranked 1/346 in IOE

Grade: 85.1%

Work Experience

Postdoctoral Research Associate

Sept 2020 - Present

Supervisor: Profs. Octavia Camps, Jennifer Dy, Dana H. Brooks

Department of Electrical and Computer Engineering, Northeastern University

o Working at the intersection of machine learning, computer vision and medical images

Graduate Research Assistant

Aug 2015 - Aug 2020

Supervisor: Prof. Linwei Wang

Computational Biomedicine Lab, RIT

Worked on machine learning and statistical inference with applications to medical images

Graduate Research Intern

Jul 2019 - Sept 2019

Supervisor: Dr. Mehdi Moradi

Medical Sieve Radiology Group, IBM Research, San Jose

o On improving generalization of convolutional neural networks while classifying medical images from new source

Electronics/Electrical Engineer

Mar 2014 - June 2015

Nepal Electricity Authority, Central Office, Kathmandu

Research Themes

Generalization and Learning Theory

Supervised by Prof. Linwei Wang

o Tried to understand and improve different aspects of generalization of deep neural network using learning theories and functional analysis.

Deep Generative Modeling and Inference

Supervised by Prof. Linwei Wang

• Worked on generative modeling of spatio-temporal cardiac signals using variational autoencoder and combined statistical inference with deep representation learning.

Probabilistic Graphical Models and Inference

Supervised by Prof. Linwei Wang

o Integrated multiple sources of knowledge and data using PGM framework and proposed several inference strategies to solve the inverse problem.

Regularization and Semi-supervised Learning

Mentored and collaborated with Prashnna Kumar Gyawali with the supervision of Prof. Wang

Worked on improving semi supervised learning using different smoothness constraints

Data Augmentation and Transfer Learning

Mentored and collaborated with Nilesh Kumar with the supervision of Prof. Wang

• Worked on learning transformation patterns from data and applying them for the purpose of data augmentation and transfer learning

Uncertainty in Deep Learning

Mentored and collaborated with Pradeep Bajracharya with the supervision of Prof. Wang

o Worked on quantifying uncertainty of deep networks, especially in the context of medical image analysis

Geometric Deep Learning

Mentored and collaborated with Xiajun Jiang with the supervision of Prof. Wang

o Incorporated geometric information during inference using graph neural networks to improve generalization while solving inverse problem.

Research Publications

- ICDM 2020 Gyawali, P.K., **Ghimire, S.** and Wang, L., 2020. *Enhancing Mixup-based Semi-Supervised Learning with Explicit Lipschitz Regularization*
- MICCAI 2020 Jiang, X., **Ghimire, S.**, Dhamala, J., Li, Z., Gyawali, P.K. and Wang, L., 2019, October. Learning Geometry-Dependent and Physics-Based Inverse Image Reconstruction.
- MICCAI 2020 Gyawali, P.K., **Ghimire, S.**, Bajracharya, P., and Wang, L., 2019, October. *Semi-supervised Medical Image Classification with Global Latent Mixing*.
- MICCAI **Ghimire, S.**, Kashyap, S., Wu, J. T., Karargyris, A., Moradi, M.,2020. *Learning Invariant Feature Representation to Improve Generalization across Chest X-ray Datasets*MLMI
- TMI 2019 **Ghimire, S.**, Sapp, J.L., Horáček, B.M. and Wang, L., 2019. *Noninvasive Reconstruction of Transmural Transmembrane Potential With Simultaneous Estimation of Prior Model Error*.
- IPMI 2019 **Ghimire, S.**, Gyawali, P.K., Dhamala, J., Sapp, J.L., Horacek, M. and Wang, L., 2019, June. *Improving generalization of deep networks for inverse reconstruction of image sequences.* (Oral-10% acceptance)
- MICCAI 2019 Gyawali, P.K., Li, Z., **Ghimire, S.** and Wang, L., 2019. *Semi-supervised Learning by Disentangling and Self-ensembling over Stochastic Latent Space*.
- MICCAI 2019 Dhamala, J., **Ghimire, S.**, Sapp, J.L., Horáček, B.M. and Wang, L., 2019, October. *Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization*.
- ICDM 2019 Gyawali, P.K., Li, Z., Knight, C., **Ghimire, S.**, Horacek, B.M., Sapp, J. and Wang, L., 2019. *Improving Disentangled Representation Learning with the Beta Bernoulli Process*. (Oral presentation)
- MICCAI 2018 Dhamala, J., **Ghimire, S.**, Sapp, J.L., Horáček, B.M. and Wang, L., 2018, October. High Dimensional Bayesian Optimization of Personalized Cardiac Model Parameters via an Embedded Generative Model. (Oral-4% acceptance)
- MICCAI 2018 **Ghimire, S.**, Dhamala, J., Gyawali, P.K., Sapp, J.L., Horacek, M. and Wang, L., 2018, September. *Generative modeling and inverse imaging of cardiac transmembrane potential.*
- MICCAI 2017 **Ghimire, S.**, Sapp, J.L., Horacek, M. and Wang, L., 2017, September. *A variational approach to sparse model error estimation in cardiac electrophysiological imaging.*
- CinC 2017 **Ghimire, S.** and Wang, L., 2017, September. *L0 norm based sparse regularization for non-invasive infarct detection using ECG signal.* (Oral Presentation)

CinC 2017 **Ghimire, S.**,..., Wang, L., 2017, September. *Overcoming barriers to quantification and comparison of electrocardiographic imaging methods: A community-based approach.* (Oral Presentation)

NeurIPS **Ghimire, S.**, Dhamala, J., Gyawali, P.K., Sapp, J.L., Horacek, M. and Wang, L., 2018, Workshop September. *Generative modeling and inverse imaging of cardiac transmembrane potential.* (Spotlight talk - 6% acceptance)

Under Ghimire, S., Gyawali, P.K. and Wang, L., 2020. Reliable Estimation of Kullback-Leibler Divergence by Controlling Discriminator Complexity in the Reproducing Kernel Hilbert Space.

Presentations

Improving generalization of deep networks for inverse reconstruction of image sequences [**Talk**] The 26^{th} International Conference on Information Processing in Medical Imaging (IPMI). (50^{th} Anniversary) 2019. Hong Kong.

[**Talk**] IBM Research, Almaden, San Jose. 2019. [**Poster**] Al@GCCIS Symposium. 2018. RIT

[Poster] Computing Weekend Research Showcase, 2018, RIT

2018 Generative Modeling and Inverse Imaging of Cardiac Transmembrane Potential [Poster] The 21^{st} International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2018. Granada, Spain.

[Spotlight Talk] NeurIPS Workshop on Machine Learning for Health (ML4H), 2018

Deep Generative Model and Analysis of Cardiac Transmembrane Potentials

[Talk] The 45th Computing in Cardiology Conference. 2018. Maastricht, Netherlands.

2017 A Variational Approach to Sparse Model Error Estimation in Cardiac Electrophysiological Imaging

[Poster] The 20^{th} International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2017. Quebec City, Quebec, Canada.

[Poster] GCCIS Research Showcase 2017. RIT [Poster] Graduate Research Showcase 2017. RIT

Overcoming Barriers to Quantification and Comparison of Electrocardiographic Imaging Methods: A Community-based Approach.

[Talk] The 44^{th} Computing in Cardiology Conference. 2017. Rennes, France.

2017 L0 norm based sparse regularization for non-invasive infarct detection using ECG signal [**Talk**] The 44^{th} Computing in Cardiology Conference. 2017. Rennes, France.

Awards and Achievements

IPMI Scholarship for junior scientists - awarded to 10 authors at IPMI 2019 conference.

GCCIS Travel Grant by Golisano College of Computing and Information Sciences to present research work at MICCAI 2017

RIT PhD Merit Scholarship 2015-2020. Financial Support for PhD study at RIT.

Prof. F.N. Trofimenkoff Academic Achievement Award for graduating at the top of class (1/346) in B.E. Electronics and Communication, Institute of Engineering.

The College Fellowship (2008-2012) by Institute of Engineering, Central Campus, Pulchowk based on academic merit and performance.

Undergraduate Scholarship (2008-2012) by Institute of Engineering to support tuition during the undergraduate studies at Central Campus, Pulchowk. Rank: 10/12000 in the entrance exam.

Golden Jubilee Scholarship Award 2008 by Government of India based on academic excellence

Professional Services

Reviewer

Conference: MICCAI {2020, 2019, 2018, 2017}, MIDL 2020, Women in Machine Learning 2018

Journal: Medical Image Analysis, Medical Physics Journal, MBEC Journal

Workgroup Lead

Lead of the workgroup for CEI Pacing Site Localization Challenge 2017 - 2020. Link

Technical Strengths

Language/Platforms: Python, PyTorch, Tensorflow, MATLAB, C/C++

Libraries/Packages: Scikit-learn, SciPy, Pandas, NumPy, GPyTorch, PyTorch Geometric, Matlab CVX

Tools: LATEX, ParaView, Docker, Git, Conda, Bash, Latex