Vision Transformer-Based Classification of Authentic vs. Al-Generated Human Faces

This repository contains the code and resources for a project focused on detecting Al-generated human faces using a fine-tuned Vision Transformer (ViT). The project aims to combat the proliferation of deepfakes and misinformation by providing a robust classification model

Brief Summary

The project utilizes a ViT-Base/16 model, trained on a large dataset of 200,001 real and AI-generated human faces sourced from Kaggle. The model achieves a high accuracy of 93% on an unseen test set, demonstrating its effectiveness in distinguishing synthetic content from authentic imagery.

Data Source

The dataset used for this project is the "200k Real vs AI Visuals" dataset, which can be found on Kaggle.

• Dataset URL: https://www.kaggle.com/datasets/muhammadbilal6305/200k-real-vs-ai-visuals-by-mbilal

Repository Contents

- README.md: This file, providing an overview of the project.
- requirements.txt: Lists the Python libraries required to run the code.
- classification_model.py: The main Python script containing the code for the model, training, and evaluation.
- LICENSE: The license file for the project.
- index.html: A standalone web application to demonstrate the final product.

Requirements

To run this project, you will need to install the necessary Python libraries. It is highly recommended to use a virtual environment.

pip install -r requirements.txt

How to Run

- 1. **Download the Dataset:** Download the dataset from the Kaggle URL provided above and place the real vs ai visuals folder in your project directory.
- 2. Run the Script: Execute the main Python script.

python classification model.py

Final Output

The final output of the model is a binary classification label (Real or Fake) for an input image. The project report details the model's performance on the test set.

Accuracy: 93%AUC: 0.99F1-Score: 0.93

Final Product

A simple web application is included to demonstrate the model's capabilities in a user-friendly interface. You can run this file directly in a web browser.

License

This project is licensed under the MIT License. See the LICENSE file for details.