Devoir Terminal MINF0501

9 Décembre 2020 de 14h00 à 15h30

La calculatrice est autorisée, la rédaction entrera dans une part importante de la notation Le barème est donné à titre indicatif, il est susceptible de changer. Ce devoir est volontairement un peu plus long que prévu.

Exercice 1 On note (E) l'équation : 19x - 9y = 3

- 1. Déterminer l'ensemble des solutions entières de (E). On pourra remarquer que (3;6) est une solution particulière de (E) $(Et\ cette\ fois\ cette\ solution\ particulière\ est\ juste)\ [\mathbf{2.5pts}]$
- 2. En déduire la forme des entiers n vérifiant : [1,5pt]

$$\left\{ \begin{array}{l} n\equiv 2\ [19] \\ n\equiv 5\ [9] \end{array} \right.$$

(on pensera à revenir à la définition des congruences et à réutiliser les résultats déjà obtenus)

Exercice 2 On considère l'équation suivante notée (G)

$$3x^2 + 7y^2 = 10^{2n} \text{ où } x, y \in \mathbb{Z}$$

- 1. Montrer que $100 \equiv 2[7]$ En déduire que si x, y sont solutions de (G) alors $3x^2 \equiv 2^n[7]$ [1.5pt]
- 2. Reproduire et compléter le tableau suivant : [1.5pt]

$x \equiv[7]$				
$x^2 \equiv \dots[7]$				
$3x^2 \equiv \dots[7]$				

- 3. Démontrer que 2^n est congru à 1,2 ou 4 modulo 7. [1.5pt]
- 4. Qu'en déduire pour (G)? Expliquez. [1pt]

Exercice 3 Déterminer le reste dans la division de $X^n - 3X^{n-1} + 2$ par $(X - 3)^2$ [3pts]

Exercice 4

- 1. Rappeler une condition suffisante pour qu'un polynôme de degré 3 soit irréductible sur $\mathbb{K}[X]$ où \mathbb{K} désigne un corps. [1pt]
- 2. Montrer que $X^3 + 2X^2 + 2X + 2$ est irréductible dans $\mathbb{F}_3[X]$ [1.5pt]
- 3. Montrer que $X^5 + X^4 + X$ est divisible par $X^3 + 2X^2 + 2X + 2$ dans $\mathbb{F}_3[X]$ [1.5pt]
- 4. En déduire la décomposition en irréductible de $X^5 + X^4 + X$ dans $\mathbb{F}_3[X]$ [2pts]

On rappelle que \mathbb{F}_3 désigne le corps à 3 éléments aussi noté $\mathbb{Z}/3\mathbb{Z}$

Exercice 5

- 1. Soient k,n $\in \mathbb{N}$.Rappeler une condition nécessaire et suffisante pour que k soit inversible modulo n. C'est à dire pour qu'il existe $u \in \mathbb{Z}$ tel que $k \times u \equiv 1[n]$. [1pt]
- 2. Montrer que 17 est inversible modulo 20. Déterminer son inverse (c'est à dire le u définit ci-dessus) [2.5pts]
- 3. A partir des résultats obtenus, déterminer les entiers vérifiant l'équation : $17x + 1 \equiv 4[20]$ [2pts]