### **Deriving Rules From Data**

Deriving Rules from Data
Machine Learning Algorithms

**Neural Nets** 

Khasha Dehnad

#### **Neural Networks**

#### Simulating the Brain to Solve Problems Artificial Neural Networks (ANN)

#### **Overview**

- Computer emulation of biological neural systems for building models:
  - initially theorized in 1943 by McColloch and Pitts of University of Chicago,
  - simulates the brain's cognitive learning process,
  - "learns" patterns directly from the data,
  - searches for complex relationships,
  - automatically builds models,
  - predicts compares adjusts,
  - corrects the model's mistakes over and over again,
  - input: Data,
  - output: Prediction
  - tool: the Model "learned" from the Data.

### Neural Networks Biological Principles Underlying the Neural Network Technology

The idea of neurons as the structural constituent of the brain was first introduced by Ramon y Cajal (French) 1911

#### Human Brain:

- a network of individual but interconnected nerve cells called *neurons* (10^11 *neurons*)
- neurons are connected to each other via huge number of so-called synapses (10^15 synapses or connections),
- a given neuron is connected to 10 thousand other neurons by these synapses,
- neurons can receive information from the outside world at various points in the network,
- these pieces of information are called *stimuli*,
- a neuron transfers information on to other neurons by firing chemicals called neurotransmitters,
- these transfers occur over synapses like bursts of electricity,
- the more important a particular stimulus is, the stronger the burst will be at the synapses,
- the information received by a nerve cell at one of the synapses either excite or inhibit the cell,
- if the receiving cell is excited, it will pass the information to other neurons,
- if the receiving cell is inhibited, it will damp the impact of the information,
- each nerve cell processes the raw input but passes it on only if it is important,
- the information travels through the network by generating new internal signals,
- the stimuli are processed by brain and nervous system and ultimately a response is produced.

### Neural Networks Artificial Neural Networks

- -a system of neurodes (nodes) and weighted connections (synapses) inside the memory of a computer,
- -nodes are data storage locations (like variables in a program, cells in a spreadsheet),
- nodes are arranged in *layers* with weighted connections running between layers,
- -balls represent nodes and lines represent connection weights,
- input layer nodes receive the data,
- output layer nodes relay the response of the neural network out of the net,



#### **Neural Networks ANN (Continued)**

- -hidden layer nodes (hidden from the outside world) conduct the internal processing,
- data are fed into the net through the input nodes,
- data are processed internally by hidden nodes, based on the inter-node connection weights,
- result are passed on to the outside world by output nodes,
- "learning" takes place through adjusting connection weights,
- a "learned" neural network has adjusted its weights properly

ANN operates in the same way as the biological model on which it is based.

### Neural Networks Application of a Learned Neural Network

#### Integration Function:

- each neuron receives a set of raw data (input),
- the neuron multiplies each input by the connecting weight leading into it,
- connection weight determines the importance of a given input in contribution to the output of the neuron,
- more important inputs will have bigger weights and less important ones will have smaller weights,
- the *integration function* of the neurode calculates a weighted sum of all inputs.



#### Transfer Function:

- the weighted sum is converted into an output value using a mathematical function called *transfer function*,
- transfer function normalizes the output into the range of [0,1],
- it serves as a kind of "dimmer" switch for turning the neuron "on" and "off",
- the transfer function's value will be *high* (excited) when the sum of the inputs is large & positive; and *low* (inhibited) when the sum is large negative,
- the transfer function determines the degree at which a given sum will cause a neurode to fire.

$$f(\text{net} - \mathbf{z}) = 1/(1 + e^{-x})$$





$$\begin{split} W_{ij}New &= W_{ij}Current + \Delta w_{ij} \\ \Delta W_{ij} &= \eta \delta_{j} X_{ij} \\ \delta_{j} &= \\ output_{j} (1 - output_{j}) (actual_{j} - output_{j}) \\ output_{j} (1 - output_{j}) \sum_{j} W_{jk} \delta_{j} \end{split}$$



**A Simple Neural Network** 

See the Excel file

|    | X            | Υ           |
|----|--------------|-------------|
| 1  | 64.577965694 | 8.036041668 |
| 2  | 81.738664140 | 9.040943764 |
| 3  | 12.522565899 | 3.538723767 |
| 4  | 29.109585518 | 5.395329973 |
| 5  | 16.068743286 | 4.008583701 |
| 6  | 9.047381557  | 3.007886560 |
| 7  | 55.963591277 | 7.480881718 |
| 8  | 91.689337464 | 9.575454948 |
| 9  | 46.862516948 | 6.845620275 |
| 10 | 46.512397029 | 6.819999782 |
| 11 | 20.373451896 | 4.513696035 |
| 12 | 70.124539430 | 8.374039612 |
| 13 | 36.501144245 | 6.041617684 |
| 14 | 44.268320873 | 6.653444286 |
| 15 | 24.348102487 | 4.934379646 |
| 16 | 98.336538277 | 9.916478119 |
| 17 | 6.548202015  | 2.558945489 |
| 18 | 84.601293202 | 9.197896129 |
| 19 | 25.546731777 | 5.054377487 |
| 20 | 23.428429803 | 4.840292326 |



net.sqrt <- neuralnet(Output~Input,trainingdata, hidden=10, threshold=0.01)

#### **Neural Networks**

- Steps: 0: decide on NN architecture: input nodes, hidden layers/nodes, output nodes
  - step 1: start with a set of "training data" where both the inputs and the output(s) are known, "correct" output, the experience to be used to train the net,
  - step 2: set all the initial connection weights to arbitrary small random numbers, sum about
     0, output about 0.5, initial neutral position,
  - step 3: present the net with one case of input data, let the net predict the output (Yk), compare the predicted output with the "correct" output (Dk),
  - step 4: prediction matches the correct output: Yk -Dk=0, do nothing,
  - step 5: prediction deviates from the correct output: calculate the error, adjust weights to reduce the error,: predict - compare - adjust,
  - $-\,step$  6: repeat the predict compare adjust process for each of the cases (often many) of the
    - "training data" until the network has been "trained", that is, the prediction error has been "minimized".
  - Step 7: test the trained net with a set of "testing data" that it had never seen before. If the performance is satisfactory, then we have a "learned" net model.

### Neural Networks A Case Study: Real State Appraisal

- Business Need: An accurate appraisal of the market value of a real state property is crucial for a large mortgage company that needs to assess the risk of an individual loan.
- Goal: A model to appraise market value of a home based on characteristics of the property.
- Input (Independent) Variables: Common variables (features) describing a house

| Feature             | Description                            | Values          |
|---------------------|----------------------------------------|-----------------|
| Num_Apartments      | Number of dwelling units               | 1-3             |
| Year_Built          | Year Built                             | 1850-1986       |
| Plumbing_Fixtures   | Number of plumbing fixtures            | 5-17            |
| <b>Heating_Type</b> | Heating system type                    | Coded as A or B |
| Basement_Garage     | Basement garage (Number of cars)       | 0-2             |
| Attached_Garage     | Attached frame Garage Area (Square fee | t) 0-228        |
| Living_Area         | Total living area (Square Feet)        | 714-4185        |
| Deck_Area           | Deck/open porch area(Square feet)      | 0-738           |
| Porch_area          | Enclosed porch area(Square feet)       | 0-452           |
| Recroom_area        | Recreation room area(Square feet)      | 0-672           |
| Basement_area       | Finished basement area(Square feet)    | 0-810           |

## Neural Networks A Case Study: Real State Appraisal (contd.)

- Output (Dependent) Variable (s):
  - sales price (correct output for training, market value appraisal for prediction),
- Data Source: Federal Home Loan Mortgage Corporation
- Neural Net Topology (Architecture):
  - input layer consisting of 11 nodes (one node for each input variable),
  - one hidden layer consisting of two nodes fully-connected to all input nodes,
  - output layer consisting of one node (one output is required: market value of home) fullyconnected to all hidden nodes.

# Neural Networks A Case Study: Real State Appraisal Real Estate Appraisal Neural Net





A Simple Neural Network

### Neural Networks Artificial Neural Networks

$$\begin{split} W_{ij}New &= W_{ij}Current + \Delta w_{ij} \\ \Delta W_{ij} &= \eta \mathcal{S}_{j} X_{ij} \\ \mathcal{S}_{j} &= \\ output_{j}(1-output_{j})(actual_{j}-output_{j}) \\ output_{j}(1-output_{j}) \sum W_{jk} \mathcal{S}_{j} \end{split}$$

Output layer
Hidden layer



**A Simple Neural Network** 

### Neural Networks Artificial Neural Networks

- -a system of neurodes (nodes) and weighted connections (synapses) inside the memory of a computer,
- -nodes are data storage locations (like variables in a program, cells in a spreadsheet),
- nodes are arranged in *layers* with weighted connections running between layers,
- balls represent nodes and lines represent connection weights,
- *input* layer nodes receive the data,
- output layer nodes relay the response of the neural network out of the net,



A Simple Neural Network



Figure 9.5 Large  $\eta$  may cause algorithm to overshoot global minimum.



Figure 9.6 Small momentum  $\alpha$  may cause algorithm to undershoot global minimum.