2. Subgroups and quotient groups

Subgroups and Quotient Groups

Basic Definitions

Generating sets

Definition: Suppose G is a group and A is a subset of G (not necessarily a subgroup, just a bunch of elements). The subgroup $\langle A \rangle$ of G generated by A is

$$\langle A \rangle = \bigcap H$$

where the intersection is over all subgroups H of G that contain the set A.

Some special types of subgroups

Suppose G is a group and H is a subgroup of G.

- 1. The **centralizer** $C_G(H)$ of H is the set of elements $g \in G$ such that gh = hg for all $h \in H$.
- 2. The **normalizer** $N_G(H)$ of H is the set of elements $g \in G$ such that $gHg^{-1} = H$. In other words, $ghg^{-1} \in H$ for all $h \in H$.
- 3. H is a normal subgroup if $N_G(H) = G$.
- 4. The **center** Z(G) of G is the theoof elements z of G such that zg = gz for all $g \in G$.
- 5. If $f: G \to H$ is a homomorphism, the **kernel** of f is the set of $g \in G$ such that f(g) = e.

Notice that: 1. $C_G(H) \subset N_G(H)$ 2. The center Z(G) is a normal subgroup of G. 3. $H \subset N_G(H)$ and H is a normal subgroup of $N_G(H)$. 4. The kernel of any homomorphism is a normal subgroup. (In fact, the converse is true as well, as we will see later).

Subgroups from group actions

Suppose that X is a set and G acts on X. Remember that one way to think of this is that we have a homomorphism from G to S(X). Another way is that we have a map $G \times X \to X$ satisfying ex = x and g(h(x)) = (gh)(x) for all $x \in X$ and all $g, h \in G$. Such an action yields subgroups of G as follows:

- 1. The *kernel* of the action is the set of $g \in G$ such that gx = x for all $x \in X$. In other words, the kernel of the action is the kernel of the homomorphism from G to S(X) corresponding to the action. The kernel of the action is therefore a normal subgroup of G.
- 2. If $x \in X$, the set of elements $g \in G$ such that gx = x is a subgroup of G called the *stabilizer* of x.

Normalizers and centralizers via group actions

One way to think of the normalizer of H in G as being the largest subgroup of G in which H is normal. Alternatively one can think of them in terms of group actions.

Let $\mathcal{P}(G)$ be the power set of G – that is, the set of subsets of G. If $S \subset \mathcal{P}(G)$ is a subset, define

$$g(S) = \{gsg^{-1} : s \in S\}.$$

This defines an action of G on $\mathcal{P}(S)$. In general the operation $h \mapsto ghg^{-1}$ is called conjugation of h by g.

If we choose S = H, then by definition $N_G(H)$ is exactly the *stabilizer* of H for this action.

If we restrict the action of $N_G(H)$ to the set H, then $C_G(H)$ is exactly the subset of $N_G(H)$ that fixes H pointwise. In other words, $C_G(H)$ is the kernel of the conjugation action of $N_G(H)$ on H.

Cosets

Definition: Let H be a subgroup of a group G. A set $gH = gh : h \in H$ is called a *left coset* of H. The corresponding set Hg is called a right coset.

Basics

- 1. qH = H if and only if $q \in H$.
- 2. Any two left (right) cosets are in bijection with each other, so if H is finite all cosets of H have the same number of elements as H.
- 3. Two left (right) cosets are either equal or disjoint.
- 4. There is a bijection between the set of left cosets and the set of right cosets of H in G given by $f(gH) = Hg^{-1}$.
- 5. Together, the left (right) cosets of G form a partition of G into disjoint sets.
- 6. The *index* of H in G, written [G:H], is the number of left (right) cosets, if that number is finite; otherwise we say H has infinite index in G.
- 7. H is normal if and only if gH = Hg for every $g \in G$.

One way to obtain the key properties of cosets is to observe that the relation $x \sim y$ defined by x = yh for some $h \in H$ – or, expressed another way, that $x \in yH$ – is an equivalence relation.

Theorem: (Lagrange) If G is finite and H is a subgroup of G then $\mid H \mid [G:H] = \mid G \mid$.

Corollary: In a finite group, the order of an element divdes the order of the group.

Quotient Group

If H is a normal subgroup, then the set of left (right) cosets of G form a group called the quotient group G/H. The group law is (aH)(bH) = (ab)H.

The key ingredient of this definition is that the product is well defined. In other words, if aH = a'H and bH = b'H then (ab)H = (a'b')H. Since H is normal, xH = Hx for any $x \in G$. We have a = a'h and b = b'k for elements h, k in H. Then a'hb'k = a'b'h'k since Hb = bH by normality of H. This shows that a'b'H = abH.

Universal property

Let $\pi_H: G \to G/H$ be the "canonical map" that sends $g \mapsto gH$. - The kernel of this map is H. - Let K be any group and let $f: G \to K$ be a homomorphism such that H is contained in the kernel of f. Then there is a unique homomorphism $\overline{f}: G/H \to K$ such that $f = \overline{f}\pi_G$.

The map \overline{f} is defined by $\overline{f}(aH) = f(a)$. This is well defined since f(h) = e for all $h \in H$.

Corollary: A subgroup H is normal if and only if it is the kernel of a homomorphism.

In fact if H is normal then H is the kernel of the homomorphism π_G .