BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: CSE SEMESTER: III SESSION: MO/2017

SUBJECT: CS6101-DESIGN AND ANALYSIS OF COMPUTER ALGORITHM

TIME: 1.5 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 30.
- 2. Candidates may attempt for all 30 marks.
- 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. The missing data, if any, may be assumed suitably.

Q1	Jat	Prove that n!=0(n°) Solve the recurrence T(n)=3T(n/4)+n².								
Q2	(b)	What is randomized algorithm? Classify it. Give an algorithm that determines the number of inversions in any permutation on n elements in $\Theta(\text{nlgn})$ worst case time.								[2]
Q3	Proposed a strategy for pivot selection in quicksort and justify your answer. In an algorithm suppose a line representing k=(i+j)/2 replace with k=j-2. Is the resulting algorithm still correcting? Justify your answer.									[2] [3]
Q4 (a) Is it always a recursive function needed in the design of divide and conquer approach? Justify.										[2]
	401	Derive the worst-case time complexity of quicksort algorithm.								[3]
Q5		Find the optimal binary merge pattern for the ten files whose lengths are [28,32,12,5,84,53,91,35,3 and 11]. Write an algorithm for the above problem and analyze its time complexity.								[2]
06	128	Find the on	timal se	ouence for	the jobs wl	nose data ai	re given as	follows.		[2]
40	9,	Job	1	12	3	4	5	6	7	
		Deadline	4	2	4	3	1	4	6	
					50	40	30	20	10	

*****20-09-17*****E