ML Based Shear Modulus Prediction

Introduction

1) Artificial Neural Networks (ANN)

CODE

```
Live Editor - C:\Users\Dell\Downloads\ShearModulus.mlx *
   ShearModulus.mlx * X
  1
            data=readmatrix('C:/Users/Dell/Downloads/Shear_Modulus.csv');
  2
            x=data(:,1:6);
  3
            y=data(:,7);
  4
            m=length(y);
          Visualization of the data
  5
            histogram(y,10);
          Normalize the features
  6
             y2=log(1+y);
  7
             for i=1:6
                 x2(:,i)=(x(:,i)-min(x(:,i)))/max(x(:,i))-min(x(:,i));
  8
  9
 10
             histogram(y2,10);
 11
             plot(x2,y2,'o')
          Training an ANN model
 12
            xt=x2';
            yt=y2';
 13
 14
            hiddenLayerSize=6;
            net=fitnet(hiddenLayerSize);
 15
 16
            net.divideParam.trainRatio=70/100;
            net.divideParam.valRatio=30/100;
 17
 18
            net.divideParam.testRatio=0/100;
            [net,tr]=train(net,xt,yt);
 19
          Performance of the ANN network
 20
            yTrain=exp(net(xt(:,tr.trainInd)))-1;
            yTrainTrue=exp(yt(tr.trainInd))-1;
 21
 22
            sqrt(mean((yTrain-yTrainTrue).^2))
 23
            plot(yTrainTrue,yTrain,'x')
```

Hidden Layer: tansig

```
Command Window
  >> net.layers{1}
  ans =
      Neural Network Layer
               name: 'Hidden'
         dimensions: 6
        distanceFcn: (none)
       distanceParam: (none)
         distances: []
            initFcn: 'initnw'
        netInputFcn: netsum
       netInputParam: (none)
         positions: []
             range: [6x2 double]
               size: 6
        topologyFcn: (none)
        transferFcn: 'tansiq'
       transferParam: (none)
           userdata: (your custom info)
```

```
>> net.layers{2}
   ans =
       Neural Network Layer
                name: 'Output'
          dimensions: 1
          distanceFcn: (none)
        distanceParam: (none)
            distances: []
             initFcn: 'initnw'
         netInputFcn: 'netsum'
        netInputParam: (none)
            positions: []
               range: [1x2 double]
                <u>size</u>: 1
          topologyFcn: (none)
          transferFcn: 'purelin'
        transferParam: (none)
            userdata: (your custom info)
f_{x} >>
```

Network Diagram						
Training Results						
Training finished: M	et validation crite	rion 🕗				
Training Progress Unit	Initial Value	Stopped Value	Target Value			
Epoch	0	46	1000			
Elapsed Time	-	00:00:08	-			
Performance	3.59	0.00315	0			
Gradient	7.68	0.000713	1e-07			
Mu	0.001	1e-05	1e+10			
Validation Checks	0	6	6			
Training Algorithm						
Data Division: Ran						
_	enberg-Marquard					
Performance: Mean Squared Error mse Calculations: MEX						
Calculations. IVILA						
Training Diata						
iraining Piots	Performance Training State					
	ance					
Performa Error Histo		Regre	ssion			

Architecture

Predicted Output Vs Actual Output

Hidden Layer: Logsig

Hidden Layer: radbas

Hidden Layer: satlin

Hidden Layer: poslin

2) Multivariate Adaptive Regression Splines (MARS)

CODE

3) Multi-Gene Genetic Programming (MGGP)

CODE

COMPARISON OF THE ABOVE THREE PREDICTIVE MODELS

Predictive Models	R^2
ANN	0.9970
MARS	0.9560
MGGP	0.9412

MODEL VALIDITY

MAD =
$$1/n(\sum_{i=1}^{n} (Pi-Median(P)))$$

where P stands for the predicted values while n shows the length of the predicted data.

Then, the model's uncertainty can be obtained using the calculated MAD as follows

Uncertainty = (MAD/Median(P))*100

COMPARISON

Predictive Models	Uncertainty %
ANN	18.5
MARS	26.8
MGGP	31.2

PARAMETRIC STUDY & SENSITIVITY ANALYSIS

A parametric study is an investigation of the effects of each input variables on the output. In this study the influence of changes in different parameters (i.e., ShS, Age, POP, UW, CP, and F) on the shear modulus was investigated using the ANN's network prediction function "predict = net(input)".

Input	MAPE	MAPE (10% reduction in Input)
Shs	6%	120%
Age	6%	74%
POP	6%	46%
СР	6%	9%
UW	6%	8%
F	6%	7%

Effect of each input parameter on the output -

Input	-10%	-8%	-5%	-3%	0%	+3%	+5%	+8%	+10%
Shs	150%	140%	120%	60%	6%	45%	65%	80%	100%
Age	60%	58%	40%	20%	6%	18%	20%	22%	25%
POP	20%	19%	18%	16%	6%	15%	15%	30%	40%
СР	8%	7.8%	8%	5.7%	6%	9%	9%	12%	15%
UW	9%	8.5%	8%	5.6%	6%	8%	8%	10%	8%
F	7%	8.6%	8%	5.6%	6%	7%	7%	8%	9%

Results on a new dataset with the following inputs as parameters -

- 1)ShS
- 2)CP
- 3)F
- 4)DD

<u>1)ANN</u>

2)MARS

<u>Parametric Study and Sensitivity Analysis</u> (ANN model)

Input	МАРЕ	MAPE (10% reduction in Input)
Shs	12%	86%
СР	12%	32%
DD	12%	28%
F	12%	22%

Effect of each input parameter on the output

