

PVsyst - Simulation report

Grid-Connected System

Project: Home grid tied(Netherlands)

Variant: New simulation variant
Building system
System power: 4680 Wp
Boshuijzen - Netherlands

Variant: New simulation variant

PVsyst V7.2.8

VC0, Simulation date: 25/05/22 14:36 with v7.2.8

Project summary

51.54 °N

5.99 °E

Project settings

User's needs

Unlimited load (grid)

Albedo

0.20

Geographical Site Situation

Boshuijzen Latitude

Longitude Altitude

Altitude 36 m Time zone UTC+1

Meteo data

Netherlands

Boshuijzen

Meteonorm 8.0 (2006-2015), Sat=100% - Synthetic

System summary

Grid-Connected System Building system

PV Field Orientation Near Shadings

Fixed plane Linear shadings

Tilt/Azimuth 45 / 0 $^{\circ}$

System information

PV Array Inverters

 Nb. of modules
 18 units
 Nb. of units
 1 Unit

 Pnom total
 4680 Wp
 Pnom total
 4600 W

 Pnom ratio
 1.017

Results summary

Produced Energy 4872 kWh/year Specific production 1041 kWh/kWp/year Perf. Ratio PR 86.79 %

Table of contents

Variant: New simulation variant

PVsyst V7.2.8

VC0, Simulation date: 25/05/22 14:36 with v7.2.8

General parameters

Building system Grid-Connected System

PV Field Orientation

Orientation Sheds configuration Models used

Fixed plane

45 / 0° Tilt/Azimuth

Transposition

Diffuse Perez, Meteonorm Circumsolar separate

Perez

Horizon **Near Shadings** User's needs

Free Horizon Linear shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Trina Solar Manufacturer Huawei Technologies Model TSM-260PEG5 Model SUN2000L-4.6KTL

(Original PVsyst database) (Original PVsyst database)

260 Wp Unit Nom. Power Unit Nom. Power 4 60 kWac Number of PV modules 18 units Number of inverters 2 * MPPT 50% 1 unit Nominal (STC) 4680 Wp Total power 4.6 kWac Modules 2 Strings x 9 In series Operating voltage 90-500 V

At operating cond. (50°C) Max. power (=>40°C) 5.00 kWac

Pmpp 4198 Wp Pnom ratio (DC:AC) 1.02

244 V U mpp 17 A I mpp

Total PV power

Total inverter power Nominal (STC) 5 kWp Total power

4.6 kWac Total 18 modules Nb. of inverters 1 Unit Module area 29 6 m² Pnom ratio 1.02

Cell area 26.3 m²

Array losses

Thermal Loss factor DC wiring losses **Module Quality Loss**

Module temperature according to irradiance Global array res. $238~\text{m}\Omega$ Loss Fraction -0.5 %

20.0 W/m²K Loss Fraction 1.5 % at STC Uc (const) Uv (wind) 0.0 W/m2K/m/s

Module mismatch losses **Strings Mismatch loss** IAM loss factor

2.0 % at MPP Loss Fraction 0.1 % Loss Fraction ASHRAE Param: IAM = 1 - bo(1/cosi -1)

> bo Param. 0.05

Variant: New simulation variant

PVsyst V7.2.8 VC0, Simulation date: 25/05/22 14:36 with v7.2.8

Variant: New simulation variant

PVsyst V7.2.8

VC0, Simulation date: 25/05/22 14:36 with v7.2.8

Main results

System Production

Produced Energy

4872 kWh/year

Specific production Performance Ratio PR 1041 kWh/kWp/year

86.79 %

Normalized productions (per installed kWp)

Effective energy at the output of the array

Jul

Balances and main results

Jan

Mar

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	22.3	15.27	3.29	42.2	41.3	189.7	182.2	0.923
February	36.8	22.42	3.54	59.5	58.2	264.8	255.9	0.919
March	75.7	42.30	6.30	100.3	97.9	432.9	419.9	0.895
April	119.4	64.90	10.08	135.1	131.5	570.7	554.5	0.877
May	148.3	84.95	14.13	144.6	140.2	599.6	581.5	0.859
June	158.7	77.99	16.94	146.5	141.7	595.8	577.7	0.843
July	152.4	82.16	19.14	144.8	140.4	586.5	568.3	0.839
August	129.9	73.75	18.29	138.2	134.2	563.1	546.2	0.845
September	91.4	45.58	14.79	117.4	114.6	485.2	470.6	0.857
October	55.0	30.09	11.17	87.1	85.3	371.6	359.6	0.882
November	25.9	16.55	6.84	47.7	46.8	208.9	200.9	0.900
December	16.3	10.35	3.91	36.2	35.5	161.7	154.8	0.913
Year	1032.2	566.30	10.74	1199.5	1167.6	5030.6	4872.2	0.868

Legends

GlobHor Global horizontal irradiation EArray

DiffHor Horizontal diffuse irradiation E Grid

DiffHor Horizontal diffuse irradiation E_Grid Energy injected into grid T_Amb Ambient Temperature PR Performance Ratio

GlobInc Global incident in coll. plane
GlobEff Effective Global, corr. for IAM and shadings

Variant: New simulation variant

PVsyst V7.2.8

VC0, Simulation date: 25/05/22 14:36 with v7.2.8

Variant: New simulation variant

PVsyst V7.2.8 VC0, Simulation date: 25/05/22 14:36 with v7.2.8

Variant: New simulation variant

PVsyst V7.2.8

VC0, Simulation date: 25/05/22 14:36 with v7.2.8

P50 - P90 evaluation

Meteo data Simulation and parameters uncertainties Source Meteonorm 8.0 (2006-2015), Sat=100% PV module modelling/parameters 1.0 % Inverter efficiency uncertainty 0.5 % Kind Not defined Year-to-year variability(Variance) 0.5 % Soiling and mismatch uncertainties 1.0 % **Specified Deviation** Degradation uncertainty 1.0 % Global variability (meteo + system) Annual production probability Variability (Quadratic sum) 1.9 % Variability 91 kWh P50 4872 kWh P90 4755 kWh P95 4722 kWh **Probability distribution** 0.50 0.45 P50 = 4872 kWh 0.40 Grid simul = 4872 kWh 0.35 0.30 Probability 0.25 0.20 P90 = 4755 kWh 0.15 P95 = 4722 kWh 0.10 0.05 0.00 4700 4800 4900 5000 5100 5200 4600 E_Grid system production kWh