数 学 (3年)

注 意

- 1「開始」の合図があるまでは、開いてはいけません。
- 2 問題は6ページまであります。
- 3「開始」の合図があったら、まず、問題用紙・解答用紙に、組・番号と名前などを書きなさい。
- 4 答えは、すべて解答用紙に書きなさい。また、所定の欄に濃くはっきりと書きなさい。
- 5「終了」の合図で、すぐ鉛筆をおき、解答用紙を裏返しにしなさい。

組 番 名前

1 次の各問に答えなさい。

<知·技 4×7 点、(6)·(8)4 \times 2 点、(9)2 \times 3 点>

(1) y は x の 2 乗に比例し、x=3 のとき y=18 である。y を x の式で表しなさい。また、x=4 のときの y の値を求めなさい。

(2) 次の ⑦ から の関数について、グラフが上に開くものをすべて選びなさい。

$$\begin{tabular}{ll} \begin{tabular}{ll} \begin$$

(3) 関数 $y=ax^2$ のグラフが、点 (3,36) を通っている。a の値を求めなさい。

(4) 関数 $y=rac{1}{4}x^2$ で、x の変域が $-4 \leq x \leq 2$ のときの y の変域を求めなさい。

(5) 関数 $y = ax^2$ のグラフが点 (2, -6) を通っている。次の A \sim D のうち、この関数のグラフ上にある点を選び、記号で答えなさい。

$$A(-3, -9)$$
 $B(-6, 54)$ $C(-3, 9)$ $D(-6, -54)$

(6) 関数 $y=3x^2$ で、x の値が 2 から 4 まで増加するときの変化の割合を求めなさい。また、x の値が -4 から -1 まで増加するときの変化の割合を求めなさい。

(7) 関数 $y = x^2$ で x の値が 1 から 3 まで増加 するときの変化の割合は 4 である。右の図の 直線 AB の式を求めなさい。

(8) 物を落とすとき、落ちはじめてから x 秒間に落ちる距離を ym とすると、およそ $y=5x^2$ の 関係がある。ものが落ち始めてから 2 秒間ではおよそ、何 m 落ちますか。また、物が落ち始めてから 1 秒後から 2 秒後までの間の平均の速さを求めなさい。

(9) 右の図の ① \sim ③ は、下の ⑦ \sim ⑤ の関数 のグラフを表したものである。それぞれどの 関数のグラフか、記号で答えなさい。

$$extstyle y = x^2$$
 $extstyle y = -rac{1}{4}x^2$ $extstyle y = 2x^2$

- (10)底面が 1 辺 xcm の正方形で、高さが 4cm の正四角中の体積を ycm 3 とするとき、y を x の式で表しなさい。
- $oxed{2}$ 大小 2 つの整数があります。その差は 3 で、積は 28 です。次の問に答えなさい。

<知・技 (1)2 点、(2)4 点>

- (1) 小さい方の数を x とするとき、大きい方の数を x を使って表しなさい。
- (2)2つの数を求めなさい。
- 3 右の図のように、関数 $y = -x^2$ のグラフ上に、x 座標がそれぞれ -3, 1 となる点A, B をとるとき、次の問に答えなさい。

<知・技 5×2 点>

(1) 2 点 A, B を通る直線の式を求めなさい。

(2) $\triangle OAB$ の面積を求めなさい。

4 1 辺の長さが 8cm の正方形 ABCD がある。点 P は A を出発し、毎秒 1cm の速さで辺 AB 上を B まで動き、B に着いたら、同じ速さで、辺 BA 上を通って A までもどる。また、点 Q は点 P と同時に B を出発し、点 P と同じ速さで辺 BC, CD 上を D まで動く。

<知・技 4×2 点>

(1) 点 P が A を出発してから x 秒後の \triangle APQ の面積を ycm² とする。x の変域が $0 \le x \le 8$ のとき、y を x の式で表しなさい。

(2) \triangle APQ の面積が 18cm² になるのは、点 P が A を出発してから何秒後ですか。すべて求めなさい。

5 自動車の停止距離について、ブレーキを踏むまでに進む距離を空走距離、ブレーキを踏んでから自動車が停止するまでの距離を制動距離という。一般に、空走距離は速度に比例し、制動距離は速度の 2 乗に比例することが知られている。ある条件では、自動車が時速 30km で走ると、空走距離は 8m、制動距離は 6m となる。このとき、次の間に答えなさい。

<思・判・表 (1)5 点、(2)4×3 点>

(1) 時速 xkm の速さで走るときの制動距離を ym として、y を x の式で表しなさい。

(2) 同じ条件で、時速 90km で走るときの空走距離、制動距離、停止距離を求めなさい。ただし、 (停止距離) = (空走距離) + (制動距離) とする。 $\mid 6 \mid$ 宅配業者 A,B では、荷物の重さによって、それぞれ次のような料金の設定になっています。

<知・技 (1)4 点、思・判・表 (2)7 点>

A 社

重さ10kg 以内20kg 以内料金1000 円2000 円

Β社

重さ	7kg 以内	12kg 以内	20kg 以内
料金	800 円	1300 円	1800 円

荷物の重さを xkg、そのときの料金を y 円とするとき、A 社の料金をグラフにすると、下のようになります。次の間に答えなさい。

- (1) B 社のグラフを解答用紙に書きなさい。
- (2) かずしさんは 9kg の重さの荷物を送ろうとしています。 A 社と B 社、どちらの会社を利用すれば安くなるでしょうか。説明しなさい。