Interpreting Tree Ensembles with *inTrees*

Houtao Deng

Kaggle President @JeremyPHoward: Recently, most winners used either Ensembles of decision trees (random forests) or Deep Learning #kdd2013

I'll introduce the *inTrees* framework and demo the R package for extracting interpretable information from tree ensembles.

(focus on functions/usability instead of algorithms *)

2

Supervised learning

Build a model to predict the outcome given a set of predictors.

example: predict if a customer will purchase a product given predictors:

X1: income(K/year); X2: 1: California resident

0: non-California resident

Logistic regression model

prediction based on the value of a linear combination of the predictors

e.g., a customer is predicted to purchase if

> 100 K/year <= 100 K/year no purchase no purchase

Tree ensembles are considered the most accurate learners

Accuracy is not the only goal in practice

Tree ensembles are

- difficult to understand and communicate
- difficult to debug, i.e., find "modeling bugs"
 - an example of modeling bugs: In customers' profile one includes the predictor "whether a customer has made the payment" to predict "whether a customer purchases a product" (the model has no value)
- difficult to deploy
 - particularly when you train a model with one programming language but apply the model with another

Tree ensembles are popular in data competitions where data are often well-prepared and the predictive accuracy is the only goal.

Thus the *inTrees* framework!

- Extract interpretable information from a tree ensemble, particularly,
 - Extract rules
 - Measure rules
 - Prune rules
 - Select rules
 - Summarize rules
 - Discover frequent variable interactions
- Applicable to many tree ensembles such as as random forests, regularized random forests and boosted trees

The team-optimization problem

- 10 players are chosen from 20 to play a game. The team would win only if
 - either player 1 or player 2 is in the team and
 - Player 1 and player 2 do not play together
- X1, ..., X20, respectively, represent player 1, ..., player 20.
- "Xi = Y" means player i plays, "Xi = N" means player i does not play

Traditional models couldn't capture the true patterns

Logistic regression model glmnet R package

Single decision tree rpart R package

```
21 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -0.16553963
                                               n= 100
X1
X2
            0.06863864
                                               node), split, n, loss, yval, (yprob)
ХЗ
             0.32582543
X4
             0.22011867
                                                     * denotes terminal node
X5
              0.48373506
Х6
                                                1) root 100 44 win (0.4400000 0.5600000)
X7
                                                  2) X12=Y 50 24 lose (0.5200000 0.4800000)
X8
                                                    4) X19=Y 24 9 lose (0.6250000 0.3750000)
X9
            -0.18818627
                                                      8) X11=Y 12 2 lose (0.8333333 0.1666667) *
X10
                                                      9) X11=N 12 5 win (0.4166667 0.5833333) *
X11
            -0.08020167
                                                    5) X19=N 26 11 win (0.4230769 0.5769231)
X12
            -0.34149303
                                                     10) X5=N 14 6 lose (0.5714286 0.4285714) *
X13
                                                     11) X5=Y 12 3 win (0.2500000 0.7500000) *
              0.42807918
X14
                                                  3) X12=N 50 18 win (0.3600000 0.6400000)
X15
                                                    6) X5=N 22 11 lose (0.5000000 0.5000000)
X16
                                                    12) X19=Y 10 3 lose (0.7000000 0.3000000) *
X17
                                                     13) X19=N 12 4 win (0.3333333 0.6666667) *
X18
             0.22368637
X19
            -0.35657330
                                                    7) X5=Y 28 7 win (0.2500000 0.7500000) *
X20
```

Use regularized random forests

Tree format:

- RRF with 100 trees has 100 such matrices
- Each tree is built based on partial data and partial features, and thus could make un-reliable decisions, or include "noise" variables

Existing ways for interpreting tree ensembles I

Importance score RRF.importance

Partial dependence plot RRF.partialPlot

Both methods provide insights to individual variables, but can not tell how multiple variables interact.

Existing ways for interpreting tree ensembles II

Form a linear combination of the rules (rule ensemble a.k.a. RuleFit*).

Imp.	Coeff.	sup.	Rule
100	0.57	0.49	$0.25 \le x_6 < 0.75$
99	0.79	0.15	$x_1 \ge 0.35 \& x_2 \ge 0.45 \& x_3 \ge 0.45$
83	-0.81		linear: x_7
63	0.61		linear: x_8
61	0.34	0.51	$0.35 \le x_6 < 0.85$
58	-0.38	0.25	$x_4 < 0.35 \& x_5 \ge 0.45$

inTrees provides a more general framework for rule analysis for a broad set of tree ensembles

^{*} my colleague Giovanni Seni has developed Rego, an open-source command-line batch interface for RuleFit

inTrees: extract conditions

1923 (1835 distinct) conditions are extracted from RRF (100 trees).

For example:

condition			
X[,1] %in% c('N')	& X[,2] %in% c('N') & X[,19] %i	n% c('N')
X[,1] %in% c('Y')	& X[,2] %in% c('N') & X[,19] %i	n% c('N')

These conditions are R-executable

inTrees: assign outcomes

condition	
X[,1] %in% c('N') & X[,2] %in% c	c('N') & X[,19] %in% c('N')
X[,1] % in% c('Y') & X[,2] % in% c	c('N') & X[,19] %in% c('N')

condition	pred
X[,1] %in% c('N') & X[,2] %in% c('N') & X[,19] %in% c('N')	lose
X[,1] %in% c('Y') & X[,2] %in% c('N') & X[,19] %in% c('N')	win

inTrees: measure rules

- Length: # variable-value pairs in a rule condition
- Frequency: proportion of instances that satisfy a rule condition
- Error: the error rate of a rule

condition	pred
X[,1] %in% c('N') & X[,2] %in% c('N') & X[,19] %in% c('N')	lose
X[,1] %in% c('Y') & X[,2] %in% c('N') & X[,19] %in% c('N')	$\overline{\mathbf{win}}$

len	freq	err	condition	pred
3	0.07	0	X[,1] %in% c('N') & X[,2] %in% c('N') & X[,19] %in% c('N')	lose
3	0.16	0	X[,1] % in% c('Y') & X[,2] % in% c('N') & X[,19] % in% c('N')	win

inTrees: prune each rule

len	freq	err	condition	pred
3	0.07	0	X[,1] % in% c('N') & X[,2] % in% c('N') & X[,19] % in% c('N')	lose
_3	0.16	0	X[,1] %in% c('Y') & X[,2] %in% c('N') & X[,19] %in% c('N')	win

irrelevant variables

Г	len	freq	err	condition	pred
ı	2	0.22	0	X[,1] %in% c('N') & X[,2] %in% c('N')	lose
L	2	0.24	0	X[,1] %in% c('Y') & X[,2] %in% c('N')	win

inTrees: select a compact rule set

len	freq	err	condition	pred
$\overline{2}$	0.22	0	X[,1] %in% c('N') & X[,2] %in% c('N')	lose
2	0.24	0	X[,1] %in% c('Y') & X[,2] %in% c('N')	win

••• 1000+ rules

len	freq	err	condition	pred	impRRF
$\overline{2}$	0.22	0	X[,1] %in% c('N') & X[,2] %in% c('N')	lose	1
2	0.22	0	X[,1] %in% c('Y') & X[,2] %in% c('Y')	lose	0.97
2	0.24	0	X[,1] %in% c('Y') & X[,2] %in% c('N')	$\overline{\text{win}}$	0.60
2	0.32	0	X[,1] %in% c('N') & X[,2] %in% c('Y')	win	0.42

inTrees: summarize rules (simplified tree ensemble learner)

len	freq	err	condition	pred
$\overline{2}$	0.22	0	X[,1] %in% c('N') & X[,2] %in% c('N')	lose
2	0.24	0	X[,1] %in% c('Y') & X[,2] %in% c('N')	win

•• 1000+ rules

len	freq	err	condition	pred
$\overline{2}$	0.32	0	X[,1] %in% c('N') & X[,2] %in% c('Y')	win
2	0.24	0	X[,1] %in% c('Y') & X[,2] %in% c('N')	win
1	0.44	0	X[,1] = = X[,1]	lose

More readable format

len	freq	err	condition	pred
2	0.32	0	X1 %in% c('N') & X2 %in% c('Y')	win
2	0.24	0	X1 %in% c('Y') & X2 %in% c('N')	win
1	0.44	0	Else	lose

inTrees: discover frequent variable interactions

- support: proportion of tree ensemble rules containing the condition
- confidence: proportion of rules containing the condition and the rule outcome

Top variable interactions (large support) with length >= 2

len	sup	conf	condition	pred
$\overline{2}$	0.046	1	X[,1] %in% c('N') & X[,2] %in% c('N')	lose
2	0.044	1	X[,1] %in% c('Y') & X[,2] %in% c('N')	win
2	0.041	1	X[,1] %in% c('N') & X[,2] %in% c('Y')	win
2	0.039	1	X[,1] %in% c('Y') & X[,2] %in% c('Y')	lose
2	0.034	0.699	X[,12] %in% c('N') & X[,5] %in% c('Y')	win
2	0.032	0.667	X[,12] %in% c('Y') & X[,19] %in% c('Y')	lose
2	0.029	0.696	X[,11] %in% c('Y') & X[,19] %in% c('Y')	lose
2	0.028	0.635	X[,11] %in% c('Y') & X[,12] %in% c('Y')	lose
2	0.026	0.595	X[,12] %in% c('N') & X[,5] %in% c('N')	lose
2	0.025	0.615	X[,19] %in% c('Y') & X[,9] %in% c('Y')	lose

Real-life example: Iris data

simplified tree ensemble learner (STEL)

len	freq	err	condition	pred
1	0.37	0	petal.width<=0.7	setosa.
3	0.31	0	petal.len $>$ 2.6 & petal.len $<$ =4.85 & petal.width $<$ =1.6	versicolor.
2	0.25	0	petal.len>4.85 & petal.width>1.7	virginica.
3	0.03	0	sepal.width \leq =3.1 & petal.len \leq =4.85 & petal.width $>$ 1.6	virginica.
3	0.02	0	sepal.width> $2.25 \& petal.width>0.8 \& petal.width<=1.75$	versicolor.
1	0.01	0	petal.len > 4.85	virginica.
1	0.01	0	Else	versicolor.

Experiments on 20 publicly available data sets show that: simplified tree ensemble learner (STEL) outperforms decision tree rpart

	T .			CERT	1.00 (04)
	numInst	numFea	rpart	STEL	difference(%)
anneal	898	38	0.098	0.070 •	28.7%
austra	690	14	0.145	0.157 \circ	8.0%
auto	205	25	0.376	$0.262 \bullet$	30.2%
breast	699	10	0.058	0.048 •	17.4%
crx	690	15	0.148	$0.159 \circ$	7.2%
german	1000	20	0.274	$0.286 \circ$	4.3%
glass	214	9	0.342	0.310 •	9.2%
heart	270	13	0.219	0.224	2.1%
hepati	155	19	0.209	0.211	0.6%
horse	368	22	0.164	0.197 \circ	16.6%
iris	150	4	0.064	$0.047 \bullet$	26.6%
labor	57	16	0.223	0.148 •	33.7%
led7	3200	7	0.318	$0.269 \bullet$	15.3%
lymph	148	18	0.268	0.209 •	21.9%
pima	768	8	0.260	$0.272 \circ$	4.4%
tic-tac	958	9	0.094	$0.002 \bullet$	97.9%
vehicle	846	18	0.325	$0.285 \bullet$	12.2%
waveform	5000	21	0.262	0.198 •	24.2%
wine	178	13	0.122	0.086 •	29.8%
ZOO	101	16	0.211	0.061 •	71.3%

- STEL outperforms rpart in 13 data sets and loses in only 5 (with statistically significant differences)
- When STEL wins, the improvements are greater (most data sets have more than 10% of improvements)

Results with statistically significant differences are marked with circles (rpart wins) or filled circles (STEL wins).

Most accurate rule for each data set with minimum freq of 0.1

	len	freq	err	condition	pred	
anneal	5	0.342	0	X4<=1.5 & X5<=82.5 & X7 %in% c('S')	3	
				& X8<=2.5 & X33<=0.7995		
austra	5	0.181	0	X5<=7.5 & X7<=3.375 & X8<=0.5	0	
				& X13<=415.5 & X14<=251		
auto	5	0.195	0	X1>71.5 & X2 %in% c('bmw', 'honda', 'isuzu',	0	
				'jaguar', 'mazda', 'nissan', 'peugot', 'subaru', 'toyota')		
				& X5 %in% c('four') & X10<=187.25 & X21>69.5		
breast	3	0.591	0	X3<=3.5 & X7<=2.5 & X9<=3.5	benign	
crx	4	0.188	0	X3>1.5625 & X6 %in% c('aa','c','d','ff','i','j',	no	
				'k','m','r') & X9 %in% c('f') & X15<=492		
german	5	0.132	0.015	X1 %in% c('no-account') & X5<=4103.5	good	
				& X10 %in% c(' guarantor',' none')		
				& X13>33.5 & X14 %in% c(' none')		
glass	5	0.136	0	X1<=1.517325 & X3>2.7 & X4>1.42	bwnfp	
				& X7>7.82 & X9<=0.16		
heart	4	0.2	0	X1<=55.5 & X4>119 & X10<=1.7 & X13<=4.5	1	
hepati	6	0.542	0	X1<=61.5 & X11>1.5 & X13>1.5	2	
				& X14<=3.7 & X15<=218.5 & X18>40.5		
horse	5	0.188	0	X3<=38.45 & X3>37.25 & X4<=126	1	
				& X10>2.5 & X12>2.5		
iris	1	0.333	0	X3<=2.55	setosa	
labor	4	0.614	0	X2>2.75 & X7 %in% c('empl_contr','ret_allw')	good	
				& X8>5 & X13 %in% c('yes')		
led7	3	0.103	0.211	X1<=0.5 & X2<=0.5 & X6>0.5	1	
lymph	4	0.284	0	X2>1.5 & X13>2.5 & X13<=3.5 & X18<=2.5	2	
pima	3	0.124	0	X2<=106.5 & X6<=29.95 & X8<=28.5	0	
tic-tac	3	0.225	0	X1 %in% c('b','x') & X5 %in% c('b','x')	positive	
				& X9 %in% c('b','x')		
vehicle	5	0.102	0	X3>71.5 & X6>8.5 & X7>142.5	4	
				& X12<=376.5 & X14>63.5		
waveform	5	0.102	0.059	X6<=1.655 & X9<=2.99	2	
				& X11>3.415 & X12>2.49 & X14>2.075		
wine	3	0.337	0	X1<=12.78 & X2<=4.575 & X10<=4.84		
wille	J	0.001	0	111 (12110 @ 112 (11010 @ 1110 (1101	2	

To Latex users: this table was produced by "print(xtable(*learner*), include.rownames=FALSE)"

Demo*: using inTrees for 3 tree ensembles

- Random forest ("randomForest" R package)
- Regularized random forest ("RRF" R package)
- Boosted trees ("gbm" R package)

²²