## Practica 4. Control Fuzzy.

El presente fichero es para indicar los pasos a seguir para realizar la práctica.

## Control PD Fuzzy.

Para realizar la el control fuzzy borroso se deben seguir los siguientes pasos:

1. Crear el fichero pd\_fuzzy.fis para el cual en la línea de comandos de MATLAB se debe escribir el comando fuzzy el cual mostrará la siguiente ventana:



En esta ventana podremos crear las entradas necesarias para construir nuestro fichero . fis.

2. Para el caso del control PD vamos a necesitar 2 entradas por tanto agregaremos una haciendo clic en Edit -> Add variable -> Input. Deberiamos tener ahora algo de la siguiente forma:



3. Ahora procedemos a hacer doble clic en uno de los recuadros amarillos para realizar modificaciones sobre las variables de los inputs. Esta accion abrirá una ventana como esta:



- 4. En la ventana abierta en el paso anterior vamos a eliminar una de las variables, a ponerlas como trapmf y a proceder a dejarlas de la siguiente forma:
  - o Inputs:



## o Output:



5. Una vez configurado esto, cerramos la ventana y hacemos clic en Edit -> Rules para generar las reglas del controlador fuzzy.



- 6. Cerramos la ventana anterior luego de definir las reglas y procedemos a exportar las reglas a un fichero fis haciendo clic en File -> Export -> To File....
- 7. Creamos el siguiente modelo en simulink:



8. Dentro del Fuzzy Logic Controller en el input de FIS name: debemos colocar el nombre de nuestro fichero • fis recien generado.

## Control PID Fuzzy.

Para realizar este controlador realizamos lo mismo que en el anterior pero en el editor del controplador fuzzy creamos una tercera variable para la acción integral, tal y como se muestra a continuación:



Las reglas a colocar en el controlador pueden ser:

| Error | Integral del Error | Derivada del Error | Control |
|-------|--------------------|--------------------|---------|
| N     | N                  | N                  | N       |
| N     | Ν                  | Р                  | N       |
| N     | Р                  | N                  | N       |
| N     | Р                  | Р                  | Z       |
| Р     | N                  | N                  | Z       |
| Р     | Р                  | N                  | Р       |
| Р     | N                  | Р                  | Р       |
| Р     | Р                  | Р                  | Р       |

Y el modelo a generar con simulink es el siguiente:

