I numeri finiti e il calcolo numerico

Calcolo Numerico a.a. 2022-23

Elena Loli Piccolomini

19 settembre 2022

Outline

Accuratezza di un risultato numerico

Errori nel calcolo numerico

Rappresentazione dei numeri

Conversione della rappresentazione di un numero reale

I numeri finiti

Aritmetica floating point

Bibliografia

- ► Gladwell, Nagy, Ferguson, Introduction to scientific computing using Matlab cap. 2
- ▶ M. Heat, Scientific Computing: an introductiry survey, cap.1

Errori nel calcolo numerico

Nella risoluzione di un problema numerico al calcolatore si possono avere diversi tipi di errore:

- Errore di misura, dovuto alle imperfezioni dello strumento di misura dei dati del problema.
- Errore di troncamento, quando un procedimento infinito viene realizzato come procedimento finito. (esempio: calcolo del valore di una funzione tramite sviluppo in serie).
- Errore algoritmico, dovuto al propagarsi degli errori di arrotondamento sulle singole operazioni in un procedimento complesso.
- **Errore inerente**, dovuto al fatto che i dati di un problema non sempre appartengono all'insieme \mathbb{F} dei numeri rappresentabili e quindi vengono approssimati.

Accuratezza di un risultato numerico

Misura dell'accuratezza:

- errore assoluto $E_a = |$ ris. approssimato ris. esatto |
- errore relativo $E_r = \frac{\text{errore assoluto}}{|\text{risultato esatto}|}$ (ris. esatto $\neq 0$)
- errore percentuale $E_p = (E_r \times 100)\%$

Accuratezza di un risultato numerico (cont.)

Sono molto importanti nella decisione se accettare o meno la soluzione di un problema numerico.

Fuori dal contesto, il valore dell'errore assoluto ha poco significato.

Rappresentazione dei numeri in memoria

- ▶ I numeri in memoria vengono rappresentati in forma binaria, cioè nella base 2.
- L'unità minima del linguaggio digitale è il BIT (Binary Digit, cifra binaria): spento (0), acceso (1)
- ► Le cifre utilizzabili nella rappresentazione di un numero in base 2 sono: 0,1.
- ▶ Un numero reale viene convertito in base 2.

Rappresentazione in base β

Fissato un numero β intero maggiore di 1, rappresentiamo nella base β un numero reale qualunque α .

rappresentazione di tipo misto

$$\alpha = \pm (\alpha_0 \alpha_1 \alpha_2 \dots \alpha_p \cdot \alpha_{p+1} \alpha_{p+1} \dots)_{\beta} = \sum_{k=0}^{p} \alpha_k \beta^{p-k} + \sum_{k=1}^{\infty} \alpha_{k+p} \beta^{-k}$$
(1)

rappresentazione normalizzata

$$\alpha = \pm (.\alpha_1 \alpha_2 \ldots) \beta^p$$

Altre basi

▶ Base 8, cifre 0, 1, 2, 3, 4, 5, 6, 7

$$(0.36207)_8 = 3\times 8^{-1} + 6\times 8^{-2} + \ldots = (0.47286\ldots)_{10}$$

▶ Base 2, cifre 0, 1, o sui calcolatori "off" e "on" ("bit" = binary digit)

$$(0.111)_2 = 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} = (0.875)_{10}$$

La conversione di un numero in base β alla forma decimale può essere ottenuta direttamente dall'espressione (1) operando in aritmetica decimale. La procedura è illustrata dal seguente esempio

$$(257)_8 = 2 \cdot 8^2 + 5 \cdot 8 + 7 = 175_{10}$$

lacktriangle Consideriamo pertanto il passaggio dalla rappresentazione decimale alla rappresentazione in una generica base eta

I numeri naturali (cont.)

Conversione del numero naturale da base 10 a base 2 (sistema binario con il metodo delle divisioni successive per la conversione)

I numeri naturali (cont.)

- Si ottengono le cifre di rappresentazione di α in base β dalla meno significativa alla più significativa.
- Pertanto, scrivendo i resti delle divisioni nell'ordine inverso a quello in cui sono stati ottenuti si ottiene la rappresentazione in forma sintetica di α in base β .

I numeri naturali (cont.)

► Rappresentazione delle cifre 0 e 1 in una o più parole di memoria.

1	0 0	0	1	0
---	-----	---	---	---

▶ Con N bit sono rappresentabili i numeri naturali da 0 a 2^{N-1} .

Numeri interi

Supponiamo: base b=10, spazio di memoria riservato di lunghezza

Questo è il modo più semplice per rappresentare e distinguere numeri positivi e negativi: al numero binario vero e proprio viene anteposto un bit che, per convenzione, assume il valore 0 se il numero è positivo ed assume il valore 1 se il numero è negativo.

Numeri interi negativi

- Conversione del valore assoluto del numero intero da base 10 a base 2.
- ► Rappresentazione in modulo e segno: il primo bit è utilizzato per il segno, gli altri per il modulo del numero. Con N bit sono rappresentabili i numeri interi in [-(2^{N-1} - 1), 2^{N-1} - 1)].
- ► Il numero 0 non ha rappresentazione unica: 00000000 e 10000000 significano infatti +0 e -0

Numeri reali <1

1.0

Si utilizza il metodo delle moltiplicazioni successive

```
base 2 0.1 \times 2 = 0.2 p. intera 0 0.2 \times 2 = 0.4 p. intera 0 0.4 \times 2 = 0.8 p. intera 0 0.8 \times 2 = 1.6 p. intera 1 0.6 \times 2 = 1.2 p. intera 1 0.2 \times 2 = 0.4 p. intera 0
```

procedurents infinito

$$(0.1)_{10} = (0.000\overline{1100})_2$$

- Ci si arresta o perchè la parte frazionaria diventa nulla o perchè si è raggiunto un numero di cifre sufficienti.
- \blacktriangleright non è detto che se un numero ha rappresentazione finita in base 10 altrettanto accade in base β

Numeri reali

Esempio: $\alpha = -25.357$

- Si converte la parte intera $25 = (11001)_2$
- ▶ Si converte la parte frazionaria $.357 = (.011)_2$
- $\alpha == (-11001.011)_2$

I numeri reali

$$34.27 = 0.3427.40^{2}$$

= 0.03427.40³

Rappresentazione scientifica normalizzata di un numero reale: ogni numero reale $x \in \mathbb{R}$ può essere rappresentato come

$$x = \pm (0.d_1 d_2 d_3 ...) \beta^p = \pm \sum_{i=1}^{\infty} (d_i \beta^{-i}) \beta^p$$
 (2)

dove

- p è un numero intero
- ightharpoonup le cifre d_i verificano le condizioni:

i)
$$0 \le d_i \le \beta - 1$$

ii) $d_1 \neq 0$ e le d_i non sono tutte uguali a $\beta - 1$ a partire da un indice in poi.

11-3.14 15 ---

=0.31415 -. 10

I numeri reali (cont.)

- ▶ La rappresentazione di x nella forma $\pm (0.d_1d_2d_3...)\beta^p$ è chiamata rappresentazione normalizzata
- ► Il numero $m = 0.d_1d_2d_3...$ viene detto comunemente la mantissa di x
- $\triangleright \beta^p$ la parte esponente
- ightharpoonup Il numero p è detto anche caratteristica (o esponente) di x
- \triangleright β è detto base
- ightharpoonup Le d_i sono dette cifre della rappresentazione

Sistema floating point

- A causa della sua capacità finita, un calcolatore non è in grado di rappresentare tutto l'insieme dei numeri reali. Si pone pertanto il problema di definire, per ogni x rappresentato nella forma 2, una sua rappresentazione approssimata nel calcolatore.
- Si tratta di un fatto tecnico, ma con importanti implicazioni nel calcolo numerico.
- Un metodo divenuto ormai usuale per il calcolo scientifico e noto come sistema floating-point o virgola mobile.
- Esso permette la rappresentazione di un ampio intervallo della retta reale con una distribuzione uniforme degli errori relativi. L'ampiezza effettiva dell'intervallo dipende dal particolare calcolatore su cui la procedura è implementata.

$$\mathbb{F}(\beta, t, L, U) = \left\{0\right\} \cup \left\{x \in \mathbb{R} = \operatorname{sign}(x)\beta^{p} \sum_{i=1}^{t} d_{i}\beta^{-i}\right\}$$

ove t,β sono interi positivi con $\beta \geq 2$. Si ha inoltre

$$0 \le d_i \le \beta - 1, \quad i = 1, 2, \dots$$

$$d_1 \ne 0, \quad L \le p \le U$$

Usualmente U è positivo e L negativo.

 $x = \text{Sign}(x) \beta^{p} \sum_{i=1}^{p} d_{i} \beta^{-i}$

t 0. de ole .. de . BP

taifre manhissa

F(B,t, L,u) PE(L,u)

- In rappresentazione posizionale un numero macchina $x \neq 0$ viene denotato con $x = \pm .d_1 d_2 \dots d_t \beta^p$
- ▶ La maggior parte dei calcolatori ha la possibilità di operare con lunghezze diverse di t, a cui corrispondono, ad esempio, la semplice e la doppia precisione.
- ightharpoonup E' importante osservare che l'insieme $\mathbb F$ non è un insieme continuo e neppure infinito.

I numeri dell'insieme $\mathbb F$ sono ugualmente spaziati tra le successive potenze di β , ma non su tutto l'intervallo.

Esempio
$$\beta = 2$$
, $t = 3$, $L = -1$, $U = 2$.

$$\mathbb{F} = \{0\} \cup \{0.100 \times 2^p, 0.101 \times 2^p, 0.110 \times 2^p, 0.111 \times 2^p, \ p = -1, 0, 1, 2\}$$

dove 0.100, 0.101, 0.110, 0.111 sono tutte le possibili mantisse e p il valore dell'esponente.

Sono 33 numeri compreso lo zero

```
.100(-1)
       .101(-1) .110(-1)
                      .111(-1)
1/4 5/16 6/16 7/16
.100(0)
       .101(0) .110(0)
                       .111(0)
1/2
     5/8 6/8
                      7/8
.100(1)
       .101(1) .110(1)
                      .111(1)
       5/4
           6/4 7/4
.100(2)
       .101(2) .110(2)
                      .111(2)
       5/2
               6/2
                       7/2
```


Risulta evidente l'aumento dell'ampiezza degli intervalli definiti dal valore p, in ognuno dei quali vengono localizzati i 4 valori della mantissa; ne risulta di conseguenza una diradazione delle suddivisioni verso gli estremi sinistro e destro della retta reale.

Le grandezze fondamentali che defiscono l'insieme dei numeri finiti, oltre alla base di rappresentazione β , sono:

- ▶ L e U che definiscono l'ordine di grandezza dei numeri rappresentabili e in genere $L \sim U$;
- In numero t di cifre della mantissa che fissa la precisione di rappresentazione di ogni numero; infatti la retta reale viene suddivisa in intervalli $[\beta^p;\beta^{p+1}]$ di ampiezza crescente esponenzialmente con il valore p, ed in ognuno di questi intervalli vengono rappresentati lo stesso numero $(\beta-1)\beta^{t-1}$ di valori. Si ha quindi una suddivisione molto densa per valori vicini allo 0 e più rada per valori grandi in valore assoluto.

Tutti i numeri reali all'interno di un sotto-intervallo tra due valori rappresentabili vengono approssimati da uno dei due estremi, quindi maggiore è il numero t di cifre della mantissa, minore sarà l'ampiezza dei sotto-intervalli e quindi migliore l'approssimazione introdotta. La normalizzazione di numeri floating point causa un "salto" intorno allo 0 nell'intervallo dei reali.

- La più piccola variazione della mantissa è $u = \beta^{-t}$ (ULP=unit of last position).
- ▶ La distanza δx fra due numeri di \mathbb{F} in ogni intervallo $[\beta^p, \beta^{p+1}]$ è costante $\Delta x = u\beta^p$.
- ▶ Il passaggio da un esponente p ad un esponente p+1 aumenta la quantità Δx di un fattore β .
- La precisione del numero floating point dipende dalla lunghezza della mantissa

- ▶ Gli n bit (o posizioni) disponibili per la memorizzazione di un numero finito vengono suddivisi tra le t cifre della mantissa e l'esponente p che può assumere U-L+1 configurazioni diverse, più un bit per il segno del numero.
- Nel caso della rappresentazione binaria, sarà sempre $d_1 = 1$, per cui può essere sottointeso senza mai essere fisicamente rappresentato.

Sistema floating point (cont.) Standard IEEE

Alcune tipiche rappresentazioni sono:

- $\mathbb{F}_{(2,24,-128,127)}$ precisione singola: 32 bit. Vengono destinati 24 bit alla mantissa (in realtà solo 23) e 8 all'esponente ($2^8 = 256 = U-L+1$; con L=-128 e U=127)
- $\mathbb{F}_{(2,53,-1024,1023)}$ precisione doppia: 64 bit. Le cifre della mantissa sono 53 (rappresentati 52 bit) e dell'esponente 11 ($2^{11} = 2048 = U-L+1$; con L=-1024 e U=1023)

segno

Rappresentazione binaria dei numeri finiti

- Per la caratteristica si utilizza, in generale, la rappresentazione in traslazione, in modo che la configurazione nulla corrisponda all'esponente L.
- Si noti che la normalizzazione della mantissa permette di sfruttare al meglio le cifre disponibili, evitando di rappresentare esplicitamente gli 0 non significativi. Ad esempio 0.000124 viene rappresentato come 0.124×10^{-3} .
- La virgola quindi non ha una posizione fissa tra la parte intera e quella non, ma varia; per questo motivo tale rappresentazione è detta floating-point o a virgola mobile.

Come rappresentare un numero reale positivo x in un sistema di numeri macchina $\mathbb{F}(\beta, t, L, U)$?

- ▶ Il numero x è tale che $L \le p \le U$ e $d_i = 0$ per i > t; allora x è un numero macchina ed è rappresentato esattamente.
- ▶ $p \notin [L, U]$; il numero non può essere rappresentato esattamente. Se p < L, si dice che si verifica un underflow; solitamente si assume come valore approssimato del numero x il numero zero. Se p > U si verifica un overflow e solitamente non si effettua nessuna approssimazione, ma il sistema di calcolo dà un avvertimento più drastico, come ad esempio, l'arresto del calcolo.

La caratteristica $p \in [L, U]$, ma le cifre d_i , per i > t, non sono tutte nulle. In questo caso si pone il problema di scegliere un suo rappresentante in \mathbb{F} . Tale operazione viene indicata comunemente come operazione di arrotondamento (rounding), anche se in realtà possono essere utilizzate tecniche di tipo diverso.

Se il numero è infinito, al numero viene associato il suo float ottenuto troncando (o approssimando) la mantissa e viene rappresentato in memoria il float ottenuto:

$$x = 1.333333... = 0.133333... \cdot 10^1 = f(x) = 0.133333 \cdot 10^1$$

Errori di rappresentazione

Errore assoluto di arrotondamento

$$|fl(x)-x|<\beta^{p-t}$$

Errore relativo di arrotondamento (representatione) $\frac{|fl(x)-x|}{|x|}<\frac{1}{2}\beta^{1-t}$ SP: $\xi=\frac{1}{2}$ 3

$$\frac{|fl(x)-x|}{|x|}<\frac{1}{2}\beta^{1-}$$

La quantità $eps = \frac{1}{2}\beta^{1-t}$ è detta precisione macchina nel fissato sistema floating point. La sua importanza numerica è data dalla seguente caratterizzazione: eps è il più piccolo numero macchina

positivo tale che

$$f(1+eps)>1$$

=) 2+y=1

Standard IEEE

- Importanza di definire uno standard della rappresentazione.
- ► IEEE computer society (Institute of Electrical and Electronic Engeneers) crea "IEEE standard for binary floating Arithmetic" (spesso riferito come IEEE 754) nel 1985.
- ▶ Rappresentazione dei formati IEEE standard in memoria

Single Precision Format: format width N=32 bits

1	8 bits	23 bits	
8	e	m	

Double Precision Format: format width N = 64 bits

1	11 bits	52 bits
8	e	m

Standard IEEE (cont.)

ECCETIONI
NON 0,0.2, =

- Formato doppia precisione $\mathbb{F}_{(2,53,\frac{1024,1023}{1024,1023})}$, 64 bit.
- Nella codifica IEEE standard esistono anche sequenze di bit per rappresentare i valori +0, -0, $+\infty$, $-\infty$, e quantità simboliche chiamate NaN (Not a Number). Queste quantità sono utilizzate per gestire "speciali" operazioni, tipo la radice quadrata di un numero negativo, altrimenti non rappresentabili

riemariquate aude le eccesoni

Aritmetica floating point

- ► Le operazioni eseguite sul calcolatore (calcolo numerico) possono essere eseguite solo con numeri rappresentabili sul calcolatore stesso.
- Poichè \mathbb{F} è un sottoinsieme di \mathbb{R} , le usuali operazioni aritmetiche sono definite anche per operandi in \mathbb{F} , ma il loro risultato, in generale, non sta in \mathbb{F} .
- ightharpoonup Il risultato esatto è arrotondato ad un numero che stia in \mathbb{F} .

- lackbox Operazione aritmetica reale lackbox : $\mathbb{R} imes \mathbb{R} o \mathbb{R}$
- lacktriangle operazione floating-point (o di macchina): $\odot: \mathbb{F} imes \mathbb{F} o \mathbb{F}$

$$x \odot y = f(x \circ y)$$

· ! +,*, -,/

 Ogni operazione provoca in generale un errore, detto errore di arrotondamento, molto piccolo

$$\left| \frac{(x \odot y) - (x \cdot y)}{x \cdot y} \right| < eps = 1$$

$$F(50,3,)$$

$$R(3) = 0.123 \quad 10^{-1} \in H$$

$$R(y) = 0.456 \quad 10^{4} \in H$$

$$2 = 2 + 4 = 0.123 \quad 10^{-1} + 0.456 \quad 10^{4} = 0$$

$$0.456 \quad 00 \quad 10^{4}$$

$$0.456 \quad 00 \quad 10^{4}$$

$$10 \quad 45723 \quad 10^{4} = 2$$

$$10 \quad 45723 \quad 10^{4} = 2$$

$$10 \quad 45723 \quad 10^{4} = 2$$

```
>> u=29/13

u =

2.230769230769231e+000

>> v=29-13*u

v =

0

>> u=29/1300

u =

2.230769230769231e-002

>> v=29-1300*u

v =

3.552713678800501e-015
```

Nel primo caso gli errori di arrotondamento si sono compensati nel secondo no

Realizzazione hardware di un'operazione floating point (con registro con precisione estesa) $x \oplus y$

- Eseguo l'operazione esatta z = x + y
- ▶ Effettuo il troncamento del risultato $x \oplus y = fl(z)$

Non valgono le proprietà commutativa e associativa nell'aritmetica floating point.

- Sulla maggior parte dei computer le operazioni aritmetiche (passo 1) sono fatte utilizzando più bit di quelli utilizzati per memorizzare il risultato.
- ▶ Il formato intermedio esteso non è accessibile all'utente, ma viene memorizzato in un registro interno alla CPU.
- Una volta che il calcolo è stato fatto in precisione estesa, il risultato viene arrotondato alla precisione del risultato (passo

2)

Aritmetica floating point

Il risultato di unóperazione in aritmetica floating point puo' essere differente rispetto al risultato della stessa operazion e in aritmetica esatta.

- Addizione o sottrazione: lo spostamento della mantissa puo causare perdita di cifre o di accuratezza.
- ▶ Moltiplicazione: Il prodotto di due numeri con *t*-cifre di mantissa ha al piu' 2*t* cifre, quindi il risultato puo'non essere rappresentabile.
- ▶ Division :Il quoziente di due numeri con tcifre di mantissa puo'contenere piu'di t cifre come per esempio la rappresentazione binaria di 1/10

Example: $\beta = 10$, t = 6 x = 192.403, y = 0.635782, $fl(x) = 0.192403 \cdot 10^3$, $fl(y) = 0.635782 \cdot 10^0$

$$z = fl(x) + fl(y) = (0.192403 + 0.000635782) \cdot 10^3 = 0.193038782 \cdot 10^3$$
 $fl(z) = 0.193039 \cdot 10^3$ The last two digits of y do not affect the result, and with even smaller exponent, y could have had no effect on the result.

 $w = f(x) * f(y) = (0.635782 \cdot 0.192403) \cdot 10^3 =$

Operanioui "criticle"

per la propaganione dell'errore (1) Somme son due nueri cen esponente molto différente 2 différence fra due nuveri quen ugueli _s couvellorioue di cife siqueli cabbe

$$F \Rightarrow x = 0.123456 . 10^{\circ} : 0.110^{\circ}$$

$$F \Rightarrow y = 0.789012 . 10^{\circ}$$

$$2 = x + y = 0.00000023456 . 10^{\circ} + 0.789012 . 10^{\circ}$$

$$E = 0.789012 . 10^{\circ}$$

$$E = 0.789013 . 10^{\circ}$$

F(30,6)...)

Aritmetica floating point

Il risultato in aritmetica reale puo'non essere rappfresentabile an chiperche'l'esponente p e' esterno al suo range di rappfresentazione:

- ightharpoonup p > U Overflow
- ightharpoonup p < L Underflow

Esempio:
$$x = 2.15 \times 10^{12}, y = 1.25 \times 10^{-5}$$

 $z = x - y$

Viene calcolata come:

Esempio di errore catastrofico

```
function epprox
% valuta: e = exp(1) = \lim_{n\to infinity} (1 + 1/n)^n
e = exp(1);
f = (1+1/n)^n;
  fprintf('%9.1e %14.10f %14.10f\n',n,f,abs(f-e));
end
```

Calcolo del numero:

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = 2.31.$$

$$0.1.40^4 + ...40^6$$

```
epprox
                f(n)
     n
                                    error
 1.0e+000
              2.00000000000
                               0.7182818285
 1.0e+002
              2.7048138294 •
                               0.0134679990
. 1.0e+004
              2.7181459268
                               0.0001359016 *
. 1.0e+006
              2.7182804691
                               0.0000013594 *
              2.7182817983
                               0.0000000301.
 1.0e+008
 1.0e+010
              2.7182820532
                               0.0000002248
 1.0e+012
              2.7185234960
                               0.0002416676
 1.0e+014
              2.7161100341
                               0.0021717944
. 1.0e+016
              1.00000000000
                               1.7182818285
```

Errori di arrotondamento:

- 1. Calcolo di 1/n: errore di arrotondamento. Non provoca un errore grande rispetto al valore di 1/n.
- 2. Calcolo di 1+1/n: provoca errore di arrotondamento grande quando n è grande. L'errore assoluto è piccolo rispetto a 1, ma grande rispetto a 1/n. Per n>1016, 1+1/n=1 in aritmetica doppia precisione.
- 3. $(1+1/n)^n$: amplifica l'errore commesso al punto 2 II problema in questo caso è quello di sommare due numeri di grandezza molto diversa.

Esempio: $c = a + b, a = x.xxxx.... \times 10^{0}, b = y.yyy.... \times 10^{-8}$

La somma nell'aritmetica <u>floating point</u> viene fatta Utilizzando una precisione estesa per la mantissa e riportando i due numeri allo stesso esponente (<u>il maggiore</u>):

Le cifre più significative di a si mantengono, quelle di b no.

Conclusioni

- ► Tutta l'informazione viene codificata in binario, cioè con una sequenza finita di 0 e 1.
- ▶ I dati numerici non sempre sono esattamente rappresentabili in una simile codifica e questo provoca delle approssimazioni e degli errori di cui si deve tenere conto nel calcolo numerico. Tali errori di solito non sono esattamente quantificabili.