HaptG:

Design of a Wearable Haptic Device For Intuitive Navigation

Tanish Swarnapuri,¹ Wesley Maa,² Ayden Bitanga³ Leigh High School,¹ Palo Alto High School,² Lick-Wilmerding High School³

SRA Track # 5 (Morphological Computation)
SRA Capstone Seminar
July 23, 2021

Table of Contents

- 1. Introduction
- 2. Problem
- 3. Designs
- 4. Methodology
- 5. Future Work

Introduction

Haptic Feedback Devices

- Kinaesthetic and tactile feedback
- Intuitive translation of sensory input to command visualization (Machemehl et al., 2020)
- Non-visual and non-auditory interface w/ digital devices

Problem

- Large uptick in bike use
 - 49 million bikers in US as of 2019
- Prevalent smartphone use among bikers
 - 13.5% Visual and17.7% Auditory

BicycleLawyer, 20/12/2018

Our Approach

- How effective is haptic feedback as an augmentation for smart device based navigation?
- Solution:
 - Design a device to reduce distractions
 - Address the underutilized sense of touch

General Design

- Biking gloves that provide tactile sensation to indicate direction
- Features
 - Breathable, Waterproof, Haptic Feedback
- Inspiration
 - Bike wheels/treads
- Material
 - Polyester, Fleece, Polypropylene, PVC

Dakine Cross-X Gloves

Block Diagram

Design #1 - Cable-Driven

Figure 1. Sketch of cable design

Figure 2. Drawing of Cable design

Design Cont'd

Pros:

- Effective at notifying biker
- Easy integration
- Integrates aesthetics

Cons:

- No hand protection
- Potentially distracting
- Limited room for added functionality
- Potentially lower user appeal

Figure 4. Rhino 3D rendering of cable design

Design #2 - Vibrotactile

Figure 5. Sketch of vibrotactile design

Figure 6. Drawing of Vibration Design

Design Cont'd

Pros:

- Easy to integrate
- Allows for more fashionable glove design
- Ability to add more functions to glove

Cons:

- Concerns with notifying biker (especially or bumpy roads)
- Potentially difficult to increase information density

Figure 7. Sketch of vibration design

Figure 8. Rhino 3D rendering of vibration design

Design #3 - Pneumatic

Figure 9. Sketch of pneumatically actuated design

Figure 10. Sketch of pneumatically actuated design

Design Cont'd

Pros:

- Effective at navigation
- Potential to integrate as a hand airbag
- Low complexity

Cons:

- Difficult to make fully portable
- Potentially large volume

Figure 12. Rhino 3D rendering of pneumatic design

User Study #1 - Cable Driven

Servo Motor Degrees

	5°	10°	15°	20 °
Participant 1	1	2	3	5
Participant 2	1	1	3	5
Participant 3	1	2	4	4
Participant 4	1	2	3	5
Participant 5	1	1	3	4
Participant 6	1	2	4	4

TABLE 1. Participants' rating on a scale of 1-5 regarding the power of the servo motors at 5 degree intervals.

User Study #2 - VibroTactile

Vibration Frequency

	50 hz	100 hz	150 hz	200 hz
Participant 1	1	1	3	5
Participant 2	1	2	4	5
Participant 3	1	1	3	4
Participant 4	1	2	3	4
Participant 5	1	2	4	5
Participant 6	1	1	3	5

TABLE 2. Participants' rating on a scale of 1-5 regarding the power of vibration motors operating at different frequencies.

Physical Prototype - Cable-Driven

Figure 14.B

Figure 14. Cable design prototype

Figure 14.A

Physical Prototype - VibroTactile

Figure 13.A

UC SANTA BARBARA
Summer Research Academies

Figure 13. Vibration design prototype

Figure 13.C

Figure 13.B 17

Physical Prototypes - Videos

UC **SANTA BARBARA**Summer Research Academies

Conclusion

- Helps mitigate visual and auditory distractions
- Reduce accidents
- Can also be used by first responders working in elevated mental effort condition

Future Work

- Immediate goals:
 - Test new plastics for a combination of pliability and structural support
 - Develop a tethered inflation-based prototype
 - Integrate photogrammetry in design flow
- Future goals:
 - Convert HaptG into an adaptable skeleton
 - Develop skin-conforming actuators

References

- Stamer, M., Michaels, J., & Tümler, J. (2020). Investigating the Benefits of Haptic Feedback During In-Car Interactions in Virtual Reality. *Lecture Notes in Computer Science*, 404–416. https://doi.org/10.1007/978-3-030-50523-3_29
- Statista. (2021, February 22). *Participants in bicycling in the U.S. from 2006 to 2019*. https://www.statista.com/statistics/191204/participants-in-bicycling-in-the-us-since-2006/
- Tsukada, K., & Yasumura, M. (2004). ActiveBelt: Belt-Type Wearable Tactile Display for Directional Navigation. *UbiComp* 2004: *Ubiquitous Computing Lecture Notes in Computer Science*, 384-399. doi:10.1007/978-3-540-30119-6_23
- Tzemanaki, A., Al, G. A., Melhuish, C., & Dogramadzi, S. (2018). Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment. *Frontiers in Robotics and AI*, 5. https://doi.org/10.3389/frobt.2018.00062
- Wolfe, E. S., Arabian, S. S., Breeze, J. L., & Salzler, M. J. (2016). Distracted Biking. *Journal of Trauma Nursing*, 23(2), 65–70. https://doi.org/10.1097/jtn.000000000000188

References

- SWOV Institute for Road Safety Research. (2017, June 28). Cyclists How dangerous is smartphone use while cycling? https://www.swov.nl/en/facts-figures/fact/cyclists-how-dangerous-smartphone-use-while-cycling.
- Elitac Wearables. (2021, July 19). *Haptic feedback wearables*. Elitac Wearables. https://elitacwearables.com/haptic-feedback-wearables.
- Blenkinsopp, R. (n.d.). *What is Haptic Feedback?* Ultraleap. https://www.ultraleap.com/company/news/blog/what-is-haptic-feedback
- Coin Vibration Motors. Precision Microdrives. (n.d.). https://www.precisionmicrodrives.com/vibration-motors/coin-vibration-motors/.
- Federal Aviation Administration. (2020, July 22). Satellite Navigation GPS How It Works. https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps/howit works

Acknowledgments

Yin Yu

Diarmid Flatley

Alanna Bartolini

Dr. Lina Kim

UCSB SRA

Thank You

Tanish Swarnapuri,¹ Wesley Maa,² Ayden Bitanga³

Leigh High School, Palo Alto High School, Lick-Wilmerding High School Professional Emails: tanish@ucsb.edu wesleymaa@ucsb.edu,abitanga@ucsb.edu

Personal Emails: tanishr2005@gmail.com_weslev.maa@gmail.com_abitangapro@gmail.com