Invertibilité locale.

Teorema Sia $f: \Omega \subseteq C \to C$ olomorfa in Ω , e via $\sharp^{\circ} \in \Omega$ tale the $\sharp^{\prime}(\sharp^{\circ}) \not= 0$.

Mora f é "locolmente murklike in x" (3 U(xº) tale che b/U(2º) invertilite)

e la feniou inversa
$$\int_{-1}^{-1} dx dx dx dx dx dx$$
 in $f(x) = \int_{1/(x^0)}^{-1} (f(x)) = \frac{1}{f'(x^0)}$

1)
$$f(z) = e^{z}$$
, $z \in \mathbb{C}$ \Rightarrow $f'(z) = e^{z} \neq 0$

$$(\log x) \left(\frac{z}{e^{z}} \right) = \underline{z} \left(\frac{z}{e^{z}} \right)$$

(f(zo)= x+cB)

 $\left(\int_{0}^{1}(z^{0})=u_{x}-iu_{y}=v_{y}+iv_{x}\right)$

 $(\beta^{-1})(\beta(z^{\circ})) = \frac{\alpha}{\alpha^2 + \beta^2} = \frac{\beta}{\alpha^2 + \beta^2} = \frac{\beta}{\alpha^$

det $\int \Phi(x^0, y^0) \neq 0 \Rightarrow \Phi$ localmente invertible in (x^0, y^0) e

 $t^{\circ}=x^{\circ}+iy^{\circ}$, $t_{0}=x+iv$ my (x°,y°) , $t_{0}=(u,v)$.

 $\int \Phi^{-1} \left(\bar{\Phi}(x^o, y^o) \right) = \left(\int \bar{\Phi}(x^o, y^o) \right)^{-1}$

 $\int \Phi(x^0, y^0) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \Rightarrow \det \int \Phi(x, y^0) = \alpha + \beta^2$

 $\int \int (\beta(a^{2}, y^{0})) = \frac{1}{a^{2} + \beta^{2}} (\alpha \beta) = (\frac{a^{2} + \beta^{2}}{a^{2} + \beta^{2}}) = (\frac{a^{2} + \beta^{2}}{a^{2} + \beta^{2}})$ $\int \int (\beta(a^{2}, y^{0})) = \frac{1}{a^{2} + \beta^{2}} (\alpha \beta) = (\frac{a^{2} + \beta^{2}}{a^{2} + \beta^{2}}) = (\frac{a^{2} + \beta^{2}}{a^{2} + \beta^{2}})$ $\int \int (\beta(a^{2}, y^{0})) = \frac{1}{a^{2} + \beta^{2}} (\alpha \beta) = (\frac{a^{2} + \beta^{2}}{a^{2} + \beta^{2}})$ $\int \int (\beta(a^{2}, y^{0})) = \frac{1}{a^{2} + \beta^{2}} (\alpha \beta) = (\frac{a^{2} + \beta^{2}}{a^{2} + \beta^{2}})$

 $=\frac{f'(z^n)}{|f'(z^n)|^2}=\frac{1}{f'(z^n)}$

Riquardo Univeita: una primitiva, se esiste, é univocamente determinate a meno d'estante additiva 1) F primitive dif, LEC = F+2 primitive dif $(\mp + \lambda)' = \mp' + \lambda' = \pm$ 2) Fa, F2 primitive dif => 3 \ct: F1-F2=\lambda. G:= F1-F2 Tesi: Gè costante $G' = (F_1 - F_2)' = F_1' - F_2' = f - f = 0.$ G=utiv G= ux-iny= vy+ivx $G'=O \Rightarrow \nabla u(x^0, y^0) = \nabla v(x^0, y^0) = Q$ 1 u costante, recorrante. 2) vole « Di CONNESSO.

Eviotenza F=U+iV
ineogmita J= u+iv olata $F' = V_x - i V_y = V_y + i V_x$ f = utio Quindi Ve V (affineté F sia primitive dif) devous sodiofaxe. SU potentiale per W1 := u de - v dy We := v da + u dy. Concludians she of ammette primitive + W1, W2 esatte folomorfa. +D W1, W2 chiusa. $\begin{bmatrix} W_1 & \text{chiusa} & \angle = \end{pmatrix} & W_2 & -V_X \\ W_2 & \text{chiusa} & \angle = \end{pmatrix} & V_X = U_X \end{bmatrix}$

\$ 1 = 0 V circuito we esalte \Rightarrow $\phi \omega_{i} = 0$ Vycircuito ≤ 2 H $\Rightarrow (80, 800)$ Examplicemente $\Rightarrow (80, 800)$ f ammette primitive <=> (=) Wi chiuse => 9 Wi mon cambia se sostituiseo y eon of slamurfa sostituiseo jeon un circuito protopo. Prowaraii. · Diffreuse reispetto al corso reale: in campo com passo se fammette primitive, le slamurfe. · Su olomini semplisemente connessi, le due proprietà sono equivalenti. In geneal NO. Eq. $\int_{\mathbb{R}} (2) = \frac{1}{2}$ $\Omega = \frac{1}{2} \cdot \frac$ domarka ma non ammette primitive $(f(2) = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2}, \quad \int u(x,y) = \frac{x}{x^2+y^2}$ $(\nabla(x,y) = \frac{y}{x^2+y^2}$ $u \in V \text{ Soldis fano CR, mo (almono)}$ une tra Wie We mon esotto).

· Come saledo F? (se esiste). F = U+iV, dove SU potentiale per us.

(x,y) V potentiale per us. (x^{o},y^{o}) $\int V \text{ potentiale for } \omega_1 = \int \omega_1 \\ y: (x',y') - w (y,y)$ V potentiale per wz) Y; (x°,y°)~> (x,y) • pof. Data $\text{b}: \Omega \subseteq \text{C} \longrightarrow \text{C}$, dato f comminoin Qfor early gate do $r: [a,b] \rightarrow \Omega$ $r(t) = r_1(t) + i r_2(t)$ $\int_{\mathcal{T}} f(x) dx := \int_{\mathcal{T}} f(r(t)) r'(t) dt$ $= \int_{0}^{\infty} (u + iv)(r_{1} + ir_{2}) dt$ $= \int_{0}^{b} (ur_{1}^{1} - vr_{2}^{1}) dt + i \int_{0}^{b} (vr_{1}^{1} + ur_{2}^{1}) dt$ $= \int_{\gamma} \omega_1 + i \int_{\gamma} \omega_2.$

· Riforemulatione del colodo di T F(2) = { } y:2~~2 . Teorema di Morera: Teorema di Cauchy.

f domate $n \Omega \Rightarrow f$ non eambia se sostituisso un circuito $\gamma \in \Omega$ con uno ad esso smotopo

(In particolare, se γ omotopo Ω 1 punto $\Rightarrow G f = 0$) $\int_{a}^{b} (ur_{1}^{1} - vr_{2}^{1}) dt = \int_{a}^{b} u(r_{1}(t), r_{2}(t)) r_{1}^{1}(t) dt$ $\int_{a}^{b} v(r_{1}(t), r_{2}(t)) r_{2}^{1}(t) dt.$ $\int_{a}^{b} udx - vdy$ $\int_{a}^{b} v(r_{1}(t), r_{2}(t)) r_{2}^{1}(t) dt.$ $\int_{a}^{b} udx - vdy$ $\int_{a}^{b} v(r_{1}(t), r_{2}(t)) r_{2}^{1}(t) dt.$

 $\int_{a}^{b} (v r_{1}^{1} + u r_{2}^{1}) dt$ $\int_{a}^{b} v dx + u dy = \int_{a}^{b} v (r_{1}(t), r_{2}(t)) r_{1}(t) dt$ $+ \int_{a}^{b} u(r_{3}(t), r_{2}(t)) r_{2}^{1}(t) dt$