

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta, Complementos de Matemática I - 2023

Práctica 5 - Ciclos Hamiltonianos

Definición: Un camino hamiltoniano en un grafo G es un camino simple (no cerrado) que pasa por todos los vértices de G, i.e. un camino simple no cerrado de longitud |V(G)|-1.

1. Encuentre un ciclo hamiltoniano, si existe, para cada uno de los grafos siguientes. Si el grafo no tiene un ciclo hamiltoniano, determine si tiene un camino hamiltoniano.

c)

d)

- 2. De un ejemplo de un grafo conexo tal que
 - a) no tenga ciclos eulerianos ni ciclos hamiltonianos;
 - b) tenga un ciclo euleriano pero no tenga ciclos hamiltonianos;
 - c) tenga un ciclo hamiltoniano pero no tenga ciclos eulerianos;
 - d) tenga un ciclo euleriano y un ciclo hamiltoniano que sean distintos;
 - e) tenga un ciclo euleriano y un ciclo hamiltoniano que sean iguales.
- 3. a) Caracterice el tipo de grafo en que un ciclo euleriano es también un ciclo hamiltoniano.
 - b) Caracterice el tipo de grafo en que un camino euleriano es también un camino hamiltoniano.
- 4. Considerar el grafo de Petersen.

- a) Muestre que el grafo de Petersen no tiene ciclos hamiltonianos pero si tiene un camino hamilto-
- b) Muestre que si se elimina cualquier vértice (y las aristas incidentes en él) del grafo de Petersen, entonces el subgrafo resultante tiene un ciclo hamiltoniano.
- 5. a) Sea G=(V,E) un grafo conexo y bipartito, con $V=V_1\cup V_2$, y V_1 y V_2 no vacíos. Demuestre que si $|V_1| \neq |V_2|$, entonces G no tiene un ciclo hamiltoniano.
 - b) Demuestre que si el grafo G del ítem anterior tiene un camino hamiltoniano, entonces se tiene $|V_1| - |V_2| = \pm 1.$
 - c) De un ejemplo de un grafo conexo y bipartito G=(V,E) con $V=V_1\cup V_2$, V_1 y V_2 no vacíos y $|V_1| = |V_2| + 1$, pero tal que G no tenga un camino hamiltoniano.
- 6. Determine para qué valores de $n \in \mathbb{N}$ (o de $n \in \mathbb{N}$ y $m \in \mathbb{N}$ si corresponde) los siguientes grafos admiten un ciclo o un camino hamiltoniano. En los casos en los que el grafo admita dicho ciclo o camino, describa uno.
 - a) El grafo completo K_n .
 - b) El grafo completo bipartito $K_{m,n}$.
 - c) El cubo- $n Q_n$.
 - d) El grafo grilla $G_{m,n}$ cuyo conjunto de vértices está dado por

$$V(G_{m,n}) = \{v_{ij} : 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\}$$

y dos vértices v_{ij} , $v_{k\ell}$ son adyacentes si y solo si se cumple alguna de las siguientes condiciones:

- $k = i \text{ y } \ell = j + 1;$
- k = i + 1 y $\ell = j$;

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta, Complementos de Matemática I - 2023

7. a) Para $n \in \mathbb{N}$ con $n \geqslant 2$, muestre que la cantidad de ciclos hamiltonianos distintos en el grafo bipartito completo $K_{n,n}$ es

$$\frac{1}{2}(n-1)!n!$$

- b) ¿Cuántos caminos hamiltonianos distintos tiene $K_{n,n}$ con $n \ge 1$?
- 8. a) De un ejemplo de un multigrafo conexo y sin lazos G=(V,E) tal que $|V|=n\geqslant 2$ y $\operatorname{gr}(x)+\operatorname{gr}(y)\geqslant n-1$ para todo par $x,y\in V$, pero tal que G no tenga un camino hamiltoniano.
 - b) De un ejemplo de un grafo conexo y sin lazos G=(V,E) tal que $|V|=n\geqslant 2$ que tenga un camino hamiltoniano pero tal que para algún par de vértices $x,y\in V,\ x\neq y$, se tiene $\operatorname{gr}(x)+\operatorname{gr}(y)\leqslant n-2.$
- 9. Probar que un grafo G tiene un camino hamiltoniano ssi el grafo $G \vee K_1$ es hamiltoniano.
- 10. Demostrar que un grafo si G tiene un camino hamiltoniano entonces para todo $S \subset V(G)$ vale que $c(G-S) \leq |S|+1$.
- 11. Sea G=(V,E) un grafo simple con $|V|=n\geqslant 2$. Demuestre que si $\operatorname{gr}(v)\geqslant \frac{n-1}{2}$ para todo $v\in V$, entonces G tiene un camino hamiltoniano.
- 12. a) Modele el siguiente problema utilizado grafos. ¿Pueden arreglarse las permutaciones de los primeros n números naturales en una sucesión de manera que las permutaciones adyacentes

$$p: p_1, \ldots, p_n$$
 y $q: q_1, \ldots, q_n$

satisfagan $p_i \neq q_i$ para todo i = 1, ..., n?

- b) Resuelva el problema del ítem anterior para n = 1, 2, 3, 4.
- 13. Sea G=(V,E) un grafo y S un conjunto independiente en G. Para cada $a\in S$ y cualquier ciclo hamiltoniano C de G, habrá $\operatorname{gr}(a)-2$ aristas en E incidentes en a que no están en C. Por lo tanto, habrá al menos

$$\sum_{a \in S} (\operatorname{gr}(a) - 2) = \sum_{a \in S} \operatorname{gr}(a) - 2|S|$$

aristas en E que no están en C

- a) ¿Por qué son distintas las $\sum_{a \in S} \operatorname{gr}(a) 2|S|$ aristas mencionadas?
- b) Si denotamos por n = |V| y m = |E|, demuestre que si

$$m - \sum_{a \in S} \operatorname{gr}(a) + 2|S| < n$$

entonces G no tiene ningún ciclo hamiltoniano.

c) Demuestre, utilizando el ítem anterior que el siguiente grafo no admite ciclos hamiltonianos.

- 14. Probar que si G y H son hamiltonianos entonces $G \square H$ es hamiltoniano.
- 15. En un tablero de ajedréz, un caballo puede mover de un casillero a otro que difiere en uno en una coordenada y en dos en la otra. Probar que en un tablero de $4 \times n$ no existe un tour hípico: un recorrido del caballo que pase por todos los casilleros exactamente una vez y retorne al casillero inicial.