AP2: Deuxième Année Cycle Préparatoire

Analyse 3: Espace Métrique

S3

Série n°1– Espace mètrique –

Exercice 1

Soient les fonctions du plan \mathbb{R}^2 dans \mathbb{R}^+ définies par:

$$N_1(x) = |x_1| + |x_2|$$
 $N_2(x) = \sqrt{x_1^2 + x_2^2}$ $N_{\infty}(x) = \max(|x_1|, |x_2|)$

si x a pour coordonnées $(x_1; x_2)$.

- 1°) Vérifier que $d_i(x,y) = N_i(x-y)$ est une distance de \mathbb{R}^2 pour i=1,2 ou ∞ .
- 2°) Dessiner la boule centrée en l'origine et de rayon 1 pour chacune de ces distances.
- 3°) Montrer que ces distances sont équivalentes (on pourra montrer que.

$$N_{\infty}(x) \le N_1(x) \le 2N_{\infty}(x)$$
, et $N_{\infty}(x) \le N_2(x) \le \sqrt{2}N_{\infty}(x)$

quel que soit $x \in \mathbb{R}^2$)

Exercice 2

Si E est un espace métrique, alors quels que soient x, y et a dans E, Montrer que

$$|d(a,x) - d(a,y)| \le d(x,y)$$

Exercice 3

Soit $d_1, d_2, ..., d_n : E \times E \to [0, \infty[$ des semi-distances sur E.

- 1°) Montrer que $d = \sum_{i=1}^{n} d_i$ et $d' = \max_{1 \le i \le n} d_i$ sont des semi-distances.
- 2°) Soit $d: E \times E \to [0, \infty[$ une semi-distance sur E et $\alpha: E' \to E$ quelconque. Montrer que d' définie par $d'(x', y') = d(\alpha(x'), \alpha(y'))$ est une semi-distance sur E'.

Exercice 4

Soit $X =]0, +\infty[$ pour $x, y \in X$, on note

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$$

- 1°) Montrer que d est une distance sur X.
- 2°) L'espace métrique (X, d) est-il complet?

Exercice 5

Montrer que:

- 1°) On a $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$ et $\overline{A} \subset \overline{B}$
- 2°) $x \in A^{\circ} \Leftrightarrow \exists \varepsilon > 0$ tel que $B(x, \varepsilon) \subset A$
- 3°) $x \in \overline{A}$, $\Leftrightarrow \forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \mathcal{O}$
- 4°) A ouvert $\Leftrightarrow A = A^{\circ}$
- 5°) A fermé $\Leftrightarrow A = \overline{A}$
- 6°) A ouvert \Leftrightarrow A est une union de boules ouvertes.

Exercice supplémentaire

Soient (E;d) un espace métrique, A un sous-ensemble non vide de E et x un élément de E. Montrer que les trois conditions suivantes sont équivalentes :

- a) $x \in \overline{A}$
- b) d(x, A) = 0
- c) il existe une suite $(U_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers x