

6

Jun 21, 2022

Direct nuclear tagmentation and RNAsequencing (DNTR-seq) V.3

Vasilios Zachariadis¹, Huaitao Cheng¹, Nathanael Andrews¹, Martin Enge¹ ¹Karolinska Institutet

1	80
protocol.	

Enge lab

Vasilios Zachariadis

Understanding how genetic variation alters gene expression - how genotype affects phenotype is a central challenge in biology. To address this question in complex cell mixtures, we developed Direct Nuclear Tagmentation and RNA-sequencing (DNTR-seq), which enables whole genome and mRNA sequencing jointly in single cells.

https://www.biorxiv.org/content/10.1101/2020.03.04.976530v1.full

Vasilios Zachariadis, Huaitao Cheng, Nathanael Andrews, Martin Enge 2022. Direct nuclear tagmentation and RNA-sequencing (DNTR-seq). protocols.io

https://protocols.io/view/direct-nuclear-tagmentation-and-rna-sequencing-dnt-b65yrg7w Vasilios Zachariadis

protocol

A highly scalable method for joint whole genome sequencing and gene expression profiling of single cells bioRxiv 2020.03.04.976530; doi: https://doi.org/10.1101/2020.03.04.976530

single-cell, scRNA-seq, scWGS $_{\scriptscriptstyle
m oldsymbol{ iny}}$ protocol , Apr 05, 2022

60312

Jun 21, 2022

Oligonucleotides (all ordered from IDT using Standard desalting, except barcodes ordered in solution/plates)

Oligo-dT:

IS_PCR: 5'-AAGCAGTGGTATCAACGCAGAGT-3'

TSO: 5'-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3'
ME-A: 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3'
ME-B: 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3'

ME-Rev: 5'-/5Phos/CTGTCTCTTATACACATCT-3'

Illumina-compatible barcodes used (Sxxx/Nxxx series, n=784) are available as a supplementary table in the manuscript.

MATERIALS

★ HotStart ReadyMix (KAPA HiFi PCR kit) Kapa

★ Language Page 1

★ Language Page 2

★ Language 2

★ Language Page 2

★ Language Page 2

★ Language Page 2

★ Language Page 2

★ La

Biosystems Catalog #KK2601

Scientific Catalog #E00491

⊠Tween-20 **Sigma-**

aldrich Catalog #P-7949

⊠psfTn5 **addgene Catalog #79107**

X 10% SDS

solution Teknova Catalog #S0287

SMARTScribe Reverse

Transcriptase Takarabio Catalog #634888

Aldrich Catalog #M1028

⊠ Ice Contributed by users

X Triton X-100

Sigma Catalog #93426

Microseal® 'F' Foil BioRad

Sciences Catalog #MSF-1001

🔯 dNTP Mix (dATP, dCTP, dGTP, and dTTP, each at 10mM) Thermo Fisher

Scientific Catalog #R0192

X KAPA HiFi PCR kit with dNTPs Fisher

Scientific Catalog #NC0142652

Betaine 5M Sigma

Aldrich Catalog #B0300

⊠ Dry ice **Contributed by users**

⊠ UltraPure[™] DNase/RNase-Free Distilled Water **Thermo**

Fisher Catalog #10977035

⊠ ERCC RNA Spike-In Mix **Thermo**

Fisher Catalog #4456740

℧USB Dithiothreitol (DTT), 0.1M Solution **Thermo**

Fisher Catalog #707265ML

Sera-Mag Speed Beads Ge

Healthcare Catalog #65152105050250

Inhibitor Takara Catalog #2313A

Sciences Catalog #HSP3801

Bleach clean environment - to avoid DNA contamination. And RNase away or similar to avoid degraded RNAs. Prepare solutions in a strictly pre-PCR environment. Keep plates and reagents on ice unless otherwise noted.

Prepare lysis buffer plates for cell sorting

1 Prepare lysis buffer mix

NOTE: Reagents are prepared on ice, working quickly. ERCC is stored in single-use aliquots at §-80 °C , thawed on ice and added last.

Α	В	С	D
Reagent	Reaction	μL per	384w plate (400x)
	conc.	reaction	
Nuclease free H2O	-	1.965	786
RNase Inhibitor (40u/µL)	1 unit/μL	0.075	30
ERCC (1:1 200 000)	-	0.075	30
Triton-X100 (10% solution)	0.2%	0.06	24
dNTP (10mM each)	2.5mM/each	0.75	300
Oligo-dT (100µM)	2.5µM	0.075	30
To dispense		3	1200

Add **3 µL lysis buffer mix** to each well. Cover with appropriate lids. Spin down.

Snap freeze on dry ice. Store until use at 8-80 °C

Sort single-cells

2 Sort single cells into **3 μL lysis buffer mix**

Immediately seal with appropriate seals (approved for -80C > 100C) and centrifuge at

@2000 x g, 4°C, 00:05:00

Snap freeze on dry ice. Store until use at & -80 °C

Separation of nuclear and cytosolic fractions

- Thaw plate on ice.
 Centrifuge at \$\circ{1}{3}500 \text{ x g, 4°C, 00:05:00}\$.
 Keep on ice.
- 4 Transfer **2** μL from each well of the sorted plate into an empty 384-well plate. Use a low flow rate (2mm/s) and an aspiration height of **0.9mm** above the bottom.

NOTE: We use the Eppendorf EpMotion 5073m benchtop liquid handler. We have succesfully used other solutions, including the Hamilton STARlet, a semi-manual Gilson Platemaster 96-well pipette, and even manual 8-channel pipettes.

5 Spin down and freeze nuclear fraction at § -20 °C to aid complete lysis.

If proceeding with **cDNA protocol** --> step 12.

If proceeding with **DNA protocol** (step 6): spin down and snap freeze cytosolic fraction on **dry ice** and store at & -80 °C

NOTE: We will typically proceed with cDNA synthesis, unless experimental design dictates otherwise, to avoid an additional freeze-thaw cycle for mRNAs in the cytosolic fraction.

Single-cell genomic libraries

6 Using plate with nuclear fraction, with remaining volume 1µl/well.

Proteinase K treatment

- 1. Dilute Proteinase K (stock 20mg/ml) to 0.2mg/ml by 30mM Tris-HCl pH8.0
- 2. Add 2 µL diluted Proteinase K (0.2mg/ml) to each well. Makes 0.13mg/ml reaction concentration.
- 3. Incubate in thermocycler at:
- § 50 °C © 01:00:00
- 880 °C © 00:30:00
- § 4 °C hold

7 Tn5 digestion

Tn5 is produced from psfTn5 (Addgene #79107), purified to ~3mg/ml and assembled with Illumina Tn5 adapters (see **oligos**) as in *Picelli et al, 2014.*

Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R (2014). Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.. Genome research.

https://doi.org/10.1101/gr.177881.114

7.1 Prepare 2X Tn5 Buffer. Keep assembled Tn5 enzyme (Picelli *et al,* 2014) on ice block and add last.

Α	В	С	D
Reagent	Reaction conc	μL per	384w plate (420x)
		reaction	
5X TAPS-PEG	10mM TAPS	1.6	672
(50mM TAPS,	5mM MgCl2		
25mM MgCl2,	8% PEG-8000		
40% PEG-8000)			
psfTn5, loaded with 50µM MEDS-		0.1	42
A/B			
Nuclease free H2O		3.3	1386
To dispense		5	2100

Add **5 µL** per well. Vortex and spin down plate.

NOTE: Buffer contains PEG, which is viscous. 5X TAPS-PEG buffer should be allowed to assume room temperature before dispensing to allow proper mixing.

7.2 Incubate in thermocycler: § 55 °C © 00:10:00

Remove immediately and stop reaction by adding $\blacksquare 2 \mu L$ per well of 0.2% SDS.

Vortex, spin down and incubate @00:10:00 at &55 °C

- 8 PCR amplification and barcoding
 - 1. Prepare PCR master-mix

A	В	С	D
Reagent	Reaction conc.	µl per reaction	384w plate
Nuclease free H2O	-	2.9	1218
KAPA HiFi Buffer (5X)	1X	3.9	1638
dNTP (10mM/each)	0.3mM/each	0.6	252
KAPA enzyme (1u/μl)	0.02u/µl	0.4	168
Tween-20 (10%)	0.1%	0.2	84
To dispense		8	3360

- 2. Dispense **3 μL per well**
- 3. Add primers/barcodes \blacksquare 1.5 μ L per well (from 384-well index plates, with 3.75 μ M/each forward/reverse primers; see oligos). Total reaction volume is now 19.5 μ l (10 μ l sample + 9.5 μ l PCR mix and primers).
- 4. Vortex plate, spin down and incubate in thermocycler with the following program:

Step	Temperature	Time	Cycles
Gap fill	72°C	3 min	1x
First denature	95°C	30 sec	1x
Denature	95°C	15 sec	18x
Anneal	67°C	30 sec	
Extend	72°C	45 sec	
Final extension	72°C	4 min	1x
	4-10°C	hold	

9 Pool **3 μL from each well** into a 1.5mL Eppendorf tube.

10 Library cleanup

We prepare SPRI-beads in 20% PEG-8000 solution as in: https://openwetware.org/wiki/SPRI_bead_mix#Ingredients_for_50_ml_2

(optional) Take an aliquot of your pool (300µl)

- 1. Add 0.9X SPRI-beads in 20% PEG solution. Incubate for © 00:05:00 & Room temperature
- 2. Place on magnetic rack © 00:03:00
- 3. Remove supernatant
- 4. Add 1 volume 80% EtOH (fresh). Incubate for © 00:00:30
- 5. Remove supernatant
- 6. Repeat EtOH wash

- 7. Air dry for **© 00:10:00 © 00:15:00**
- 8. Re-suspend beads thoroughly in **100 μL EB or TE buffer**
- 9. Repeat cleanup (from step 1-7) and elute in **30 μL EB or TE buffer**

11 (optional) Quality control of DNA libraries

Using Agilent HS 5000 DNA chips (or equivalent)

Pooled (and dliuted) DNA-library from 384-well plate.

This library was sequenced on a NextSeq 550 loading 2.5pM based on a peak of 334bp. Sequencing was paired-end 37bp, 8bp dual index.

Reverse transcription and cDNA amplification

12 Following step 4, cytosolic/RNA fraction plate contains 2µl solution per well.

Primer annealing

Thaw plate. Spin down. Incubate in thermocycler at $\$ 72 °C for \bigcirc 00:03:00 . Remove to ice immediately.

13 Prepare RT master-mix

Α	В	С	D
Reagent	Reaction conc.	μl per reaction	384w plate (420x)
Maxima H Minus RT (200/µl)	2u/µl	0.05	21
RNase Inhibitor (40u/µl)	1.66u/µl	0.125	52.5
5X First Strand buffer	1X	1	420
DTT (100mM)	8.33mM	0.25	105
Betaine (5M)	1.66M	1	420
MgCl2 (1M)	10mM	0.03	12.6
TSO (100uM)	1.66µM	0.05	21
Nuclease free H2O	-	0.495	207.9
Total		3	1260

Dispense $\blacksquare 3 \mu L$ per well. Total reaction volume will be $5\mu l$.

Cover plate with new film and spin down.

14 Incubate in thermocycler

8 42 °C © 01:30:00

8 70 °C © 00:05:00

8 4 °C hold

15 cDNA preamplification

Α	В	С	D
	Reaction conc.	μl per reaction	384w plate (420x)
Nuclease free H2O	-	0.82	345
Kapa HiFi HotStart ReadyMix (2X)	1X	6	2520
IS_PCR primer (10μM)	0.1µM	0.12	50.4
Lambda Exonuclease (10u/µl)	0.05 units	0.06	25.2
Total		7	2940

Dispense $\blacksquare 7 \mu L$ per well . Total reaction volume will be 12 μ l.

16 Vortex, spin down. Cover with new lid. Incubate in thermocycler with the following program:

Α	В	С	D
Step	Temperature	Time	Cycles
Lambda exonuclease	37°C	30 min	1x
Initial denaturation	95°C	3 min	1x
Denaturation	98°C	20 sec	18-24x
Annealing	67°C	15 sec	
Elongation	72°C	4 min	
Final elongation	72°C	5 min	
	4C	Hold	

NOTE: The number of cycles of pre-amplification will be different for different cell types. We suggest running a pilot (ideally qPCR-monitored to determine inflection point, for example by using 1X dsGreen to the reaction above)

17 cDNA cleanup

31m 30s

Using 20% SPRI-bead solution (as in step10 for DNA library cleanup).

- 1. Add 0.7X volume of SPRI beads per well. Mix well by pipetting
- 2. Incubate © 00:05:00 & Room temperature
- 3. Place on magnetic stand for © 00:03:00
- 4. Carefully remove supernatant
- 5. Add **40 μL** 80% EtOH and incubate **00:00:30**
- 6. Remove EtOH (without disturbing the beads)
- 7. Wash again with EtOH. Make sure to remove well.
- 8. Allow beads to air-dry for © 00:05:00 © 00:10:00 . Take care not to over-dry the beads.
- 9. Remove plate from magnetic stand
- 10. Elute beads in **□12 μL EB or TE buffer** Mix well by pipetting
- 11. Incubate © 00:05:00 & Room temperature
- 12. Place on magnetic plate for **© 00:03:00**
- 13. Optional: Carefully remove supernatant to the elution plate. cDNA plates can also be stored at -20C with beads.

18 cDNA quantification

Option 1: Measure concentration of random wells using Qubit HS dsDNA, adapted to a 96-well plate reader.

1. Add \blacksquare 98.5 μ L of 1X Qubit HS dsDNA solution (or mix dye and buffer separately) to a flat-bottom, black plate

- 2. Add **1.5 μL** of cDNA sample
- 3. Add Standards (NOTE: We make a 8-step ladder from $0 \text{ng/} \mu \text{l} \rightarrow 10 \text{ng/} \mu \text{l}$ Qubit Standard DNA in TE buffer)
- 4. Read in plate reader using 485nM excitation/528nm emission
- 5. Calculate cDNA concentration from linear model of Standards ladder

Option 2: Measure full plate using Qubit HS dsDNA in black, flat-bottom 384-well plate

- 1. Add **20 µL 1X Qubit HS dsDNA solution**
- 2. Add 11 µL cDNA sample

3-5 as above

19 (optional) cDNA quality control

Using Agilent HS 5000 DNA chips (or equivalent)

Example of a single immune (=small) cell cDNA profile (cytosolic fraction from DNTR protocol)

20 Make cDNA dilution plate

Dilute cDNA based on average concentration from Qubit measurements.

Target concentration $\square 150 \text{ pg per } \mu \text{I}$ in $\square 15 \mu \text{L}$ (optionally in same plate)

Optional: if using a 384w-plate reader, one can normalize each well to 150pg/µl with variable water addition.

cDNA tagmentation

21 Prepare Tn5 master mix

Let TAPS-PEG equilibrate at 37°C and mix well before use.

Α	В	С	D
Reagent	Reaction conc.	µl per reaction	384w plate (420x)
Nuclease free H2O	-	0.750	315
TAPS-PEG	10mM TAPS	0.500	210
(50mM TAPS,	5mM MgCl2		
25mM MgCl2,	8% PEG-8000		
40% PEG-8000)			
psfTn5, loaded with		0.250	105
50μM MEDS-A/B			
Total		1.5	630

Dispense 1.5 µL per well in a new plate (tagmentation plate)

22 Add $\blacksquare 1 \mu L$ cDNA (normalized to 150pg/ μI)

Mix well by vortexing plate. Cover with new lid and spin down.

23 Incubate in thermocycler at § 55 °C © 00:10:00

Remove immediately and stop reaction by adding $\blacksquare 1 \mu L$ per well of 0.1% SDS.

20m

Vortex, spin down and incubate © 00:10:00 at § 55 °C

cDNA library PCR and barcoding

24 Make PCR master-mix

Α	В	С	D
Reagent	Reaction conc.	μl per reaction	384w plate (420x)
H20	-	4.85	2037
KAPA HiFi Buffer	1X	2.5	1050
(5X)			
dNTP	0.3mM/each	0.3	126
(10mM/each)			
KAPA enzyme	0.02u/µl	0.2	84
(1u/µl)			
Tween-20 (10%)	0.12%	0.15	63
Total		8	

25 Add primers/barcodes **1 μL per well** (from 384-well index plates, with 3.75μM/each forward/reverse primers; see **oligos**; final primer concentration 0.3μM per primer and reaction).

Total reaction volume is 12.5µl (3.5µl sample + 9µl PCR mix and primers).

26 Vortex. Spin down and cover. Incubate in thermocycler as below:

Step	Temperature	Time	Cycles
Gap fill	72°C	3 min	1x
First denature	95°C	30 sec	1x
Denature	95°C	15 sec	12x
Anneal	67°C	30 sec	
Extend	72°C	45 sec	
Final extension	72°C	4 min	1x
	4-10°C	hold	

cDNA library pooling and clean-up

Pool **■2.5** µL from each well to an 1.5ml Eppendorf tube

28 Library cleanup (as for DNA libraries)

We prepare SPRI-beads in 20% PEG-8000 solution as in: https://openwetware.org/wiki/SPRI_bead_mix#Ingredients_for_50_mL_2

- 1. Add 0.9X SPRI-beads in 20% PEG solution. Incubate for © 00:05:00 & Room temperature
- 2. Place on magnetic rack © 00:03:00
- 3. Remove supernatant
- 4. Add 1 volume 80% EtOH (fresh). Incubate for © 00:00:30
- 5. Remove supernatant
- 6. Repeat EtOH wash
- 7. Air dry for **© 00:10:00 © 00:15:00**
- 8. Re-suspend beads thoroughly in $\Box 100 \mu L$ EB or TE buffer
- 9. Repeat cleanup (from step 1-7) and elute in 30 μL EB or TE buffer
- 29 Pooled library QC

Pooled cDNA library of 784 cells on HS D5000 Agilent tapestation