Introduction to Mobile Robotics

Compact Course on Linear Algebra

Wolfram Burgard, Bastian Steder

Reference Book

Thrun, Burgard, and Fox: "Probabilistic Robotics"

Vectors

- Arrays of numbers
- Vectors represent a point in a n dimensional space

Vectors: Scalar Product

- Scalar-Vector Product ka
- Changes the length of the vector, but not its direction

Vectors: Sum

Sum of vectors (is commutative)

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Can be visualized as "chaining" the vectors.

Vectors: Dot Product

Inner product of vectors (is a scalar)

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_{i} a_{i} b_{i}$$

• If one of the two vectors, e.g.a , has |a| = 1 the inner product $a \cdot b$ returns the length of the projection of b along the direction of a

If a · b = 0, the two vectors are orthogonal

Vectors: Linear (In)Dependence

- A vector \mathbf{b} is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ if $\mathbf{b} = \sum k_i \mathbf{a}_i$
- In other words, if \mathbf{b}^{i} can be obtained by summing up the \mathbf{a}_{i} properly scaled
- If there exist no $\{k_i\}$ such that $\mathbf{b} = \sum_i k_i \mathbf{a}_i$ then \mathbf{b} is independent from $\{\mathbf{a}_i\}$

Vectors: Linear (In)Dependence

- A vector \mathbf{b} is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ if $\mathbf{b} = \sum k_i \mathbf{a}_i$
- In other words, if \mathbf{b}^{i} can be obtained by summing up the \mathbf{a}_{i} properly scaled
- If there exist no $\{k_i\}$ such that $\mathbf{b} = \sum_i k_i \mathbf{a}_i$ then \mathbf{b} is independent from $\{\mathbf{a}_i\}$

Matrices

A matrix is written as a table of values

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & \uparrow \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \qquad A : n \times m$$
rows columns

- 1st index refers to the row
- 2nd index refers to the column
- Note: a d-dimensional vector is equivalent to a dx1 matrix

Matrices as Collections of Vectors

Column vectors

$$\mathbf{A} = \begin{pmatrix} a_{*1} & a_{*2} & \cdots & a_{*m} \\ \uparrow & \uparrow & & \uparrow \\ a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & a_{nm} \end{pmatrix}$$

Matrices as Collections of Vectors

Row vectors

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a}_{1*}^{T} \\ \mathbf{a}_{2*}^{T} \\ \vdots \\ \mathbf{a}_{n*}^{T} \end{pmatrix}$$

Important Matrices Operations

- Multiplication by a scalar
- Sum (commutative, associative)
- Multiplication by a vector
- Product (not commutative)
- Inversion (square, full rank)
- Transposition

Scalar Multiplication & Sum

- In the scalar multiplication, every element of the vector or matrix is multiplied with the scalar
- The sum of two vectors is a vector consisting of the pair-wise sums of the individual entries
- The sum of two matrices is a matrix consisting of the pair-wise sums of the individual entries

Matrix Vector Product

- The i^{th} component of ${\bf Ab}$ is the dot product . ${\bf a}_{i*}^T\cdot {\bf b}$
- The vector $\mathbf{A}\mathbf{b}$ is linearly dependent from the column vectors $\{\mathbf{a}_{*i}\}$ with coefficients $\{b_i\}$

$$\mathbf{A}\mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \\ \mathbf{a}_{2*}^T \\ \vdots \\ \mathbf{a}_{n*}^T \end{pmatrix} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \cdot \mathbf{b} \\ \mathbf{a}_{2*}^T \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_{n*}^T \cdot \mathbf{b} \end{pmatrix} = \sum_k \mathbf{a}_{*k} b_k$$
row vectors
column vectors

Matrix Vector Product

• If the column vectors of ${\bf A}$ represent a reference system, the product ${\bf Ab}$ computes the global transformation of the vector ${\bf b}$ according to $\{{\bf a}_{*i}\}$

Matrix Matrix Product

- Can be defined through
 - the dot product of row and column vectors
 - the linear combination of the columns of A
 scaled by the coefficients of the columns of B

$$C = AB$$

$$= \begin{pmatrix} \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*m} \\ \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*m} \\ \vdots & & & & \\ \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*m} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{A}\mathbf{b}_{*1} & \mathbf{A}\mathbf{b}_{*2} & \cdots & \mathbf{A}\mathbf{b}_{*m} \end{pmatrix}$$

Matrix Matrix Product

- If we consider the second interpretation, we see that the columns of *C* are the "transformations" of the columns of *B* through *A*
- All the interpretations made for the matrix vector product hold

$$\mathbf{C} = \mathbf{A}\mathbf{B}$$
 $= (\mathbf{A}\mathbf{b}_{*1} \ \mathbf{A}\mathbf{b}_{*2} \ \dots \mathbf{A}\mathbf{b}_{*m})$
 $\mathbf{c}_{*i} = \mathbf{A}\mathbf{b}_{*i}$

Rank

- Maximum number of linearly independent rows (columns)
- Dimension of the **image** of the transformation $f(\mathbf{x}) = A\mathbf{x}$
- When A is $m \times n$ we have
 - $rank(A) \ge 0$ and the equality holds iff A is the null matrix
 - $\operatorname{rank}(A) \leq \min(m, n)$
- Computation of the rank is done by
 - Gaussian elimination on the matrix
 - Counting the number of non-zero rows

Inverse

AB = I

- If A is a square matrix of full rank, then there is a unique matrix B=A⁻¹ such that AB=I holds
- The ith row of A is and the jth column of A⁻¹ are:
 - orthogonal (if $i \neq j$)
 - or their dot product is 1 (if i = j)

Matrix Inversion

$$AB = I$$

• The ith column of A⁻¹ can be found by solving the following linear system:

$$\mathbf{A}\mathbf{a}^{-1}{}_{*i}=\mathbf{i}_{*i}$$
 — This is the i^{th} column of the identity matrix

Determinant (det)

- Only defined for square matrices
- The inverse of \mathbf{A} exists if and only if $det(\mathbf{A}) \neq 0$
- For 2×2 matrices:

Let
$$\mathbf{A} = [a_{ij}]$$
 and $|\mathbf{A}| = det(\mathbf{A})$, then

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

• For 3×3 matrices the Sarrus rule holds:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$

Determinant

For general n x n matrices?

Let A_{ij} be the submatrix obtained from A by deleting the i-th row and the j-th column

Rewrite determinant for 3×3 matrices:

$$det(\mathbf{A}^{3\times3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$
$$= a_{11} \cdot det(\mathbf{A}_{11}) - a_{12} \cdot det(\mathbf{A}_{12}) + a_{13} \cdot det(\mathbf{A}_{13})$$

Determinant

• For **general** $n \times n$ matrices?

$$det(\mathbf{A}) = a_{11}det(\mathbf{A}_{11}) - a_{12}det(\mathbf{A}_{12}) + \dots + (-1)^{1+n}a_{1n}det(\mathbf{A}_{1n})$$
$$= \sum_{j=1}^{n} (-1)^{1+j}a_{1j}det(\mathbf{A}_{1j})$$

Let $C_{ij} = (-1)^{i+j} det(A_{ij})$ be the (i,j)-cofactor, then

$$det(\mathbf{A}) = a_{11}\mathbf{C}_{11} + a_{12}\mathbf{C}_{12} + \dots + a_{1n}\mathbf{C}_{1n}$$
$$= \sum_{j=1}^{n} a_{1j}\mathbf{C}_{1j}$$

This is called the **cofactor expansion** across the first row

Determinant

- Problem: Take a 25 x 25 matrix (which is considered small). The cofactor expansion method requires n! multiplications. For n = 25, this is 1.5 x 10^25 multiplications for which a today supercomputer would take 500,000 years.
- There are much faster methods, namely using Gauss elimination to bring the matrix into triangular form.

$$\mathbf{A} = \begin{bmatrix} d_1 & * & * & * \\ 0 & d_2 & * & * \\ 0 & 0 & d_3 & * \\ 0 & 0 & 0 & d_4 \end{bmatrix} \qquad det(\mathbf{A}) = \prod_{i=1}^n d_i$$

Because for **triangular matrices** the determinant is the product of diagonal elements

Determinant: Properties

- Row operations (A is still a $n \times n$ square matrix)
 - If ${\bf B}$ results from ${\bf A}$ by interchanging two rows, then $det({\bf B})=-det({\bf A})$
 - If ${\bf B}$ results from ${\bf A}$ by multiplying one row with a number c, then $det({\bf B})=c\cdot det({\bf A})$
 - If ${\bf B}$ results from ${\bf A}$ by adding a multiple of one row to another row, then $det({\bf B})=det({\bf A})$
- Transpose: $det(\mathbf{A}^T) = det(\mathbf{A})$
- Multiplication: $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) \cdot det(\mathbf{B})$
- Does **not** apply to addition! $det(\mathbf{A} + \mathbf{B}) \neq det(\mathbf{A}) + det(\mathbf{B})$

Determinant: Applications

- Compute **Eigenvalues:** Solve the characteristic polynomial $det(\mathbf{A} - \lambda \cdot \mathbf{I}) = 0$
- **Area** and **Volume:** area = |det(A)|

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$(T_i \text{ is } i\text{-th row})$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

(r_i is i-th row)

Orthogonal Matrix

A matrix Q is orthogonal iff its column (row) vectors represent an orthonormal basis

$$q_{*i}^T \cdot q_{*j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \forall i, j$$

- As linear transformation, it is norm preserving
- Some properties:
 - The transpose is the inverse $QQ^T = Q^TQ = I$
 - Determinant has unity norm (±1)

$$1 = det(I) = det(Q^T Q) = det(Q)det(Q^T) = det(Q)^2$$

Rotation Matrix

A Rotation matrix is an orthonormal matrix with det =+1

• 2D Rotations
$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

3D Rotations along the main axes

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

IMPORTANT: Rotations are not commutative

$$R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$

$$R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

Matrices to Represent Affine Transformations

A general and easy way to describe a 3D transformation is via matrices

- Takes naturally into account the noncommutativity of the transformations
- Homogeneous coordinates

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world

Positive Definite Matrix

- The <u>analogous</u> of positive number
- Definition M > 0 iff $z^T M z > 0 \forall z \neq 0$

Example

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$$

Positive Definite Matrix

- Properties
 - Invertible, with positive definite inverse
 - All real eigenvalues > 0
 - **Trace** is > 0
 - Cholesky decomposition $A = LL^T \equiv$

Linear Systems (1)

$$Ax = b$$

Interpretations:

- A set of linear equations
- A way to find the coordinates x in the reference system of A such that b is the result of the transformation of Ax
- Solvable by Gaussian elimination

Gaussian Elimination

A method to solve systems of linear equations.

Example for three variables:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

We want to transform this to

$$\tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 = \tilde{b}_1
\tilde{a}_{22}x_2 + \tilde{a}_{23}x_3 = \tilde{b}_2
\tilde{a}_{33}x_3 = \tilde{b}_3.$$

Gaussian Elimination

Written as an extended coefficient matrix:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{pmatrix} \rightarrow \begin{pmatrix} \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} & \tilde{b}_1 \\ 0 & \tilde{a}_{22} & \tilde{a}_{23} & \tilde{b}_2 \\ 0 & 0 & \tilde{a}_{33} & \tilde{b}_3 \end{pmatrix}$$

To reach this form we only need two elementary row operations:

- Add to one row a scalar multiple of another.
- Swap the positions of two rows.

Another commonly used term for Gaussian Elimination is *row reduction*.

Linear Systems (2)

$$Ax = b$$

Notes:

- Many efficient solvers exist, e.g., conjugate gradients, sparse Cholesky decomposition
- One can obtain a reduced system (A', b') by considering the matrix (A, b) and suppressing all the rows which are linearly dependent
- Let A'x=b' the reduced system with A':n'xm and b':n'x1 and rank A' = min(n',m) rows ↑ columns
- The system might be either over-constrained (n'>m) or under-constrained (n'<m)

Over-Constrained Systems

- "More (ind.) equations than variables"
- An over-constrained system does not admit an exact solution
- However, if rank A' = cols(A) one often computes a minimum norm solution

$$\mathbf{x} = \underset{\mathbf{x}}{\text{argmin}} ||\mathbf{A}'\mathbf{x} - \mathbf{b}'||$$

Note: rank = Maximum number of linearly independent rows/columns

Under-Constrained Systems

- "More variables than (ind.) equations"
- The system is under-constrained if the number of linearly independent rows of A' is smaller than the dimension of b'
- An under-constrained system admits infinite solutions
- The degree of these infinite solutions is cols(A') rows(A')

Jacobian Matrix

- It is a **non-square matrix** n imes m in general
- Given a vector-valued function

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

Then, the Jacobian matrix is defined as

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Jacobian Matrix

 It is the orientation of the tangent plane to the vector-valued function at a given point

Generalizes the gradient of a scalar valued function

Further Reading

- A "quick and dirty" guide to matrices is the Matrix Cookbook.
 Just google for 'matrix cook book' to find
 - the pdf version.