exercício 2.6
$$\varphi = (\neg p_2 \rightarrow \bot) \land p_1$$
.

a)
$$\varphi[p_0 \wedge p_3/p_2] = (7(p_0 \wedge p_3) \rightarrow \bot) \wedge p_1$$

exemple: $N ext{ tal que}$ $N(pi) = 0, \text{ para todo } i \in IN_0.$ $N(\phi) = 0 \quad e \quad N\left(\left[\frac{p_0}{N} \frac{p_3}{p_2}\right]\right) = 0$

exemple: \sqrt{tal} que $N(pi) = \begin{cases} 0 & \text{pr} i = 2 \\ 1 & \text{pr} i \in IN_0 \setminus \{2\} \end{cases}$ $(obs: \sqrt{p_2}) \neq \sqrt{(p_0 \wedge p_3)}$

exercício 2.8

φ ~~» encontrar ψ tol que φ⇔Ψ
e os conétivos de ψ estos
em {7,ν}

a) $\varphi = (p_0 \wedge p_2) \rightarrow p_3$ $\varphi \Rightarrow 7(p_0 \wedge p_2) \vee p_3$ $\Rightarrow (7p_0 \vee 7p_2) \vee p_3$ $\forall \in \mathcal{F}_{\{1,\nu\}}$

b) $\varphi = p_1 \vee (p_2 \rightarrow 1)$ $\varphi \Rightarrow p_1 \vee (7p_2 \vee 1)$ $\langle = \rangle p_1 \vee 7p_2$ $\varphi \in \mathcal{F}_{\{7,\nu\}}^{(P)}$

c) $\varphi = 7 p_{4} \Leftrightarrow \hat{p}_{2}$

(⇒ (¬p4 → p2) ∧ (p2 → ¬p4) ⇒ ¬ (¬(1β4 → p2) ∨ ¬ (p2 → ¬β4)) ⇒ ¬ (¬ (p4 ∨ p2) ∨ ¬ (¬p2 ∨¬P4)) = Ψ

5 → 4 €> 75 VY

5↔4 ⇔ ⇔(5→4)√(4→5)

4 -> T (=> 1 A

7 (pxy) <=>

<>> 79V74

7 (qvy) <=> <=> 7 4 7 7 4

exercício 2.9

$$f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}_{\{7,V\}}^{CP}$$
 $\gamma \longmapsto f(\varphi) \text{ to } \text{ qu} \quad f(\varphi) \Leftrightarrow \varphi$
(or conclives de $f(\varphi) \text{ estis em}\{V, r\}$)

a)
$$f(L) = 7(p_0 V 7 p_0)$$

(a)
$$f(p) = P$$
, (p) $f(p) = 7 f(p)$, $\forall q \in f(p)$

d)
$$f(\varphi v \psi) = f(\varphi) v f(\psi)$$
, $\forall \varphi, \psi \in F^{\alpha}$

$$f)$$
 $f(\phi \rightarrow \psi) = \neg f(\phi) \vee f(\psi), \forall \phi, \psi \in F^{(P)}$

exercício 2.10

· {7, v, n} e um conjunto de conetivos completo?

Vivos em 2.9 que {7,v} é um conjunto de conétivos completo. Logo, {7,v, 1}, que conteín {7,v} também é um conjunto de conétivos completo.

(Bro todo φε FCP, existe ψε FCP tol que ψ⇔ ψ e os conetivos de ψ estró em {7, v}

Broto q & Fig. existe y & FIP to gue q > y

2 os conetivos de y estas em {7, V, M})

OBS: $\{\rightarrow, 7\}$, $\{\rightarrow, 1\}$, $\{\wedge, 7\}$ e $\{\vee, 7\}$ são conjuntos completos de conetivos.

{ν, Λ} ε um conjunto de conetivos completo?

φ = 71 é uma tautológia Supomhamos que existe y tal que y

Suponhamos que existe ψ tol que ψ ⇔ φ e os conétivos de ψ estró un {V, Λ}.

Podemos afirmar que $\psi \in \mathcal{F}_{\{v_i, h\}}$ (conjunts definide em 2.7).

Como $\varphi \Leftarrow > \psi$, ψ e una tautologia, o que contradiz a alímea c) do exercício 2.7.

Portants, mos existe y como acima, donde {v, n} mos e um conjunto completo de conetivos.