목 차

문법 및 함수 정리	2
plt.subplots	
subplots 원형 그래프	
데이터 열의 합으로 정렬	
String feature 를 수치화 시키기	3
Label Encoding vs One Hot Encoding	3
상관관계 분석	5

문법 및 함수 정리

plt.subplots

```
f, ax = plt.subplots(1, 2, figsize=(20, 8))
```

- -> 1 x 2 개의 그래프를 만들어냄.
- -> 각각의 크기는 20x8
- -> 총 2개의 그래프는 ax[index]로 접근 가능.

subplots 원형 그래프

```
df_train['Survived'].value_counts().plot.pie(explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shadow=True)
```

- -> 표의 'Survived' 의 갯수를 원형그래프로 표현
- -> explode는 각 지표 값에 대해 원점을 기준으로 거리를 나타냄.
- -> explode의 원소들은 표현하려는 value 종류의 갯수와 같아야함.

데이터 열의 합으로 정렬

```
pd.crosstab(df_train['Initial'], df_train['Sex'])
```

-> 위의 결과는 정렬되지 않은 데이터지만 female + male을 기준으로 정렬하고 싶음.

```
pd.crosstab(df_train['Initial'], df_train['Sex']).sum(axis=1)
.sort_values(ascending=False)
```

-> 위의 명령어처럼 열을 기준으로 더한 뒤(sum(axis=1)) 내림차순으로 정렬하면 된다.

Sex	female	male
Initial		
Capt	0	1
Col	0	2
Countess	1	0
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
Mile	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6

Sir 0 1

Initial	
Mr	517
Miss	182
Mrs	125
Master	40
Dr	7
Rev	6
Col	2
Mlle	2
Major	2
Countess	1
Don	1
Sir	1
Jonkheer	1
Lady	1
Mme	1
Ms	1
Capt	1
dtype: int64	

String feature 를 수치화 시키기.

```
df_train['Initial'] = df_train['Initial'].map({'Master': 0, 'Miss': 1, 'Mr': 2, 'Mrs': 3, 'Other': 4})
```

-> pandas의 map을 이용해서 직접 바꿔주는 방법.

```
import numpy as np
from sklearn.preprocessing import LabelEncoder
X_train = np.array(['PC', 'MOBILE', 'PC' ])
X_test = np.array(['PC', 'TABLET', 'MOBILE']) # X_test 에만 TABLET 데이터가 있음
# 라벨 인코더 생성
encoder = LabelEncoder()

# X_train 데이터를 이용 피팅하고 라벨숫자로 변환한다
encoder.fit(X_train)
X_train_encoded = encoder.transform(X_train)

# X_test 데이터에만 존재하는 새로 출현한 데이터를 신규 클래스로 추가한다 (중요!!!)
for label in np.unique(X_test):
    if label not in encoder.classes_: # unseen label 데이터인 경우()
        encoder.classes_ = np.append(encoder.classes_, label) # 미처리 시 ValueError 발생
X_test_encoded = encoder.transform(X_test)
```

-> LabelEncoder를 이용해서 바꿔주는 방법.

Label Encoding vs One Hot Encoding

숫자 이외의 Label 값을 가질 경우 사용 특정 Label 값에 따라 숫자로 변환	Loss 를 계산하기 쉽게 만들어주기 위해 벡터의 한개의 요소만 1 로 설정, 나머지는 0 으로 설정한다.
EX) KR, US, UK, CN 의 값을 가지는 feature	EX) KR, US, UK, CN 의 값을 가지는 feature
KR -> 0	KR -> (1, 0, 0, 0)
US -> 1	US -> (0, 1, 0, 0)
UK -> 2	UK -> (0, 0, 1, 0)
CN -> 3	CN -> (0, 0, 0, 1)

상관관계 분석

data.corr()

-> 데이터 간의 상관관계를 알 수 있다.

- -> 상관관계에서 주의할 점
 - 1) 연속형(숫자로 표현 가능한) 데이터에 대해서만 상관관계 분석이 가능한점
- 2) -1 부터 1 까지의 값으로 표현됨
- 3) 인과관계를 뜻하진 않음.