IWLS Programming Contest 2020: Team 3's Report

Authors: <u>Po-Chun Chien</u>[†], Yu-Shan Huang[†], Hao-Ren Wang[†], Jie-Hong Roland Jiang^{†‡}

<u>ALCom Lab</u>

†Graduate Institute of Electronics Engineering ‡Department of Electrical Engineering National Taiwan University

Outline

- Problem Description
- Our approach
 - DT-based model
 - NN-based model
 - bagging ensemble
- Experimental results
- Conclusions

PROBLEM DESCRIPTION

Problem Description

- □ Learn an unknown Boolean function f: $\{0,1\}^n \rightarrow \{0,1\}$ from a training dataset consisting of input-output pairs.
- The learned function should be in the form of And-Inverter Graph (AIG) with strict hardware cost (≤ 5000 gates), and will be evaluated by its prediction accuracy in hidden testing dataset.

Benchmarks

□ Each benchmark is provided in PLA format and contains 6400 minterms in training, validation and testing set respectively.

The 100 Functions in our Benchmark Set: Arithmetic, Random Logic, ML

00-09	2 MSBs of <i>k</i> -bit adders for <i>k</i> in {16, 32, 64, 128, 256}
10-19	MSB of k-bit dividers and remainder circuits for k in {16, 32, 64, 128, 256}
20-29	MSB and middle bit of k -bit multipliers for k in $\{8, 16, 32, 64, 128\}$
30-39	k-bit comparators with k in {8, 16,, 4096}
40-49	LSB and middle bit of k-bit square-rooters with k in {16, 32, 64, 128, 256}
50-59	10 outputs of PicoJ ava design with 16-200 inputs and roughly balanced on- & offset
60-69	10 outputs of MCNC i10 design with 16-200 inputs and roughly balanced on- & offset
70-79	5 other outputs from MCNC benchmarks +5 symmetric functions of 16 inputs
80-89	10 binary classification problems from MNIST group comparisons
90-99	10 binary classification problems from CIFAR-10 group comparisons

OUR APPROACH

■ Binary decision tree

x_1	x_2	x_3	y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Entropy

□ $entropy = -p \log_2 p - (1-p) \log_2 (1-p)$, where p is the probability of true label (y = 1).

When p = 0 or 1, we have the lowest $entropy = 0 \rightarrow$ no uncertainty.

When p = 0.5, we have the maximum $entropy = 1 \rightarrow \text{highest uncertainty.}$

Information Gain

- The branching variable is selected based on maximum information gain.
- \square Information gain of node n of variable x:

$$E_n - p_0 E_0 - p_1 E_1$$

where E_n is the entropy of n, E_0 is the entropy of the 0-child of n, E_1 is the entropy of the 1-child of n, p_0 and p_1 are the ratio of the data with x = 0 and x = 1, respectively.

Growing DT

Choosing the 1st branching variable

example:

initial entropy: $-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$

Growing DT

Choosing the 1st branching variable

 $\boldsymbol{x_1}$

T:1

0.81

initial entropy: $-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$

F:1 F:3

 $1 - \frac{4}{8} \cdot 0.81 + \frac{4}{8} \cdot$ info. Gain 0.81 = 0.19

entropy

0.81

T:3

 x_2 T:2 T:2 F:2

0.92 0.97

$$1 - \frac{4}{8} \cdot 1 - \frac{4}{8} \cdot 1 = 0$$

$$1 - \frac{3}{8} \cdot 0.92 - \frac{5}{8} \cdot 0.97$$

$$= 0.049$$

max. gain

□ Fringe-feature extraction [1, 2]

$$(\neg x_1 \land x_2) \lor (x_1 \land \neg x_2) = x_1 \oplus x_2$$

Extract $x_{new} = x_1 \oplus x_2$ as the new composite feature of 2 variables, and add it to the list of decision variables.

[1] Pagallo et al., 1990. [2] Oliveira et al., 1993.

15

3 layer network, each layer is fullyconnected and uses sigmoid as the activation function

Connection pruning [3]

[3] Han et al., 2015.

Convert neurons to LUTs

x_1	x_2	x_3	y	$\widehat{m{y}}$
0	0	0	0.48	0
0	0	1	0.52	1
0	1	0	0.38	0
0	1	1	0.43	0
1	0	0	0.55	1
1	0	1	0.60	1
1	1	0	0.45	0
1	1	1	0.50	1

Bagging Ensemble

Re-partitioning the dataset

Under each configuration, train multiple models with different methods and hyper-parameters.

Bagging Ensemble

Model selection heuristic

model: val. acc. #gate

EXPERIMENTAL RESULTS

Experimental Setup

- Our methods were implemented with ML packages scikit-learn [4] and Pytorch [5].
- □ The synthesized circuits were optimized by ABC [6].

Experimental Results

method	avg. train acc.	avg. valid acc.	avg. test acc.	avg. size (#gate)
DT	90.41%	80.33%	80.15%	303.90
Fr-DT	92.47%	85.37%	85.23%	241.47
NN	82.64%	80.91%	80.90%	10981.38
LUT-Net*[7]	98.37%	72.78%	72.68%	64004.39
ensemble	-	_	87.25%	1550.33

^{*} LUT-Net is trained with the same avg. #connection as NN

Accuracy Comparison

Circuit Size Comparison

Contest Results

team	test_acc	n_and	n_level	n_level × n_and	gap_valid_test
1	88.69	2517.66	39.96	100605.69	1.86
7	87.50	1167.5	32.02	37383.35	0.05
8	87.32	1293.92	21.49	27806.34	0.14
3	87.25	1550.33	21.08	32680.96	5.76
2	85.95	731.92	80.63	59014.71	8.70
9	84.65	991.89	103.42	102581.26	1.75
4	84.64	1795.31	21.00	37701.51	0.48
5	84.08	1142.83	145.87	166704.61	4.17
10	80.25	140.25	10.90	1528.73	3.86
6	62.40	356.26	8.73	3110.15	0.88

test acc. and circuit size summary of each team

Contest Results

30

Contest Results

#level vs. test acc.

CONCLUSIONS

Conclusions

- Boolean functions can be learned by DT-based and NN-based methods.
- In our experiments, applying decision tree with fringe feature extraction could generally result in better model in terms of both accuracy and circuit size.
- NN models, though exceeded circuit size limit in many cases, they performed better in some other cases than DT models.
- □ After ensemble, we could achieve 87.25% accuracy on hidden test set.

THE END