Dual exposure method and device manufacturing method using the same

Patent Number:

□ EP0915384, A3

Publication date:

1999-05-12

Inventor(s):

SUGITA MITSURO (JP); SUZUKI AKIYOSHI (JP)

Applicant(s):

CANON KK (JP)

Requested Patent:

Application Number: EP19980309014 19981104

Priority Number(s): JP19970304232 19971106

IPC Classification:

G03F7/20

EC Classification:

G03F7/20T14, G03F7/20T18, G03F7/20T20

Equivalents:

JP3101594B2, TW414940

Cited Documents:

US5415835; WO9626468

Abstract

An exposure method for dual or multiple exposure, wherein a first exposure process is performed by use of interference fringe produced by interference of two light beams, and a second exposure process is performed by use of a light pattern different from the interference fringe, and wherein, in at least one of the first and second exposure processes, a multiplex

exposure amount distribution is provided.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-143085

(43)公開日 平成11年(1999)5月28日

(51) Int.Cl. ⁶	識別記号	F I
G03F 7/2	5 2 1	G 0 3 F 7/20 5 2 1
H01L 21/0	27	H01L 21/30 502A
		5 1 5 B
		5 1 5 G
		5 2 8
		審査請求 未請求 請求項の数7 OL (全 13
(21)出願番号	特願平9-304232	(71)出顧人 000001007
		キヤノン株式会社
(22) 出顧日	平成9年(1997)11月6日	東京都大田区下丸子3丁目30番2号
		(72)発明者 杉田 充朗
		東京都大田区下丸子3丁目30番2号キー
		ン株式会社内
		(72)発明者 鈴木 章義
		東京都大田区下丸子3丁目30番2号キャ
		ン株式会社内
		(74)代理人 弁理士 丸島 後後一

(54) 【発明の名称】 露光方法及び露光装置

(57)【要約】

【課題】 2光束干渉露光と通常露光の2つの露光法を 用いて従来よりも複雑な形状のパターンをウエハに形成 すること。

【解決手段】 感光基板に対して2光東干渉露光を行ない、前記感光基板に対して通常の露光を行なう時に、通常露光において前記感光基板に多値的な露光量分布を与える。ここで「多値的」とは、感光基板に与える露光量が2値(露光量ゼロの場合も含めて2種類)ではなく、与える露光量が3値以上(露光量ゼロの場合も含めて3種類以上)で、「通常の露光」とは2光東干渉露光より解像度が低いが2光東干渉露光とは異なる様々なパターンで露光が行なえる露光である。

【特許請求の範囲】

【請求項1】 被露光基板に対して2光束干渉露光と通 常の露光を行なう時に、前記二つの露光の少なくとも一 方の露光において前記基板に多値的な露光量分布を与え ることを特徴とする露光方法。

【請求項2】 被露光基板に対して2光束干涉露光と通 常の露光を行なう時に、前記二つの露光の少なくとも一 方の露光において前記基板に多値的な露光量分布を与え ることを特徴とする露光装置。

【請求項3】 前記2光束干渉露光と前記通常の露光の 夫々は一回又は複数回の露光段階より成ることを特徴と する請求項1の露光方法又は請求項2の露光装置。

【請求項4】 マスクのパターンをウエハに投影する投 影光学系と、部分的コヒーレント照明とコヒーレント照 明の双方の照明が可能なマスク照明光学系とを有し、部 分的コヒーレント照明によって通常の露光を行ない、コ ヒーレント照明によって2光東干渉露光を行なうことを 特徴とする露光装置。

【請求項5】2光東干渉露光装置と、通常の露光装置 と、両装置で共用される被露光基板を保持する移動ステ ージとを有することを特徴とする露光装置。

【請求項6】 前記2光束干渉露光と通常露光の夫々の 露光波長が250nm以下であることを特徴とする請求項1 の露光方法又は請求項2、3、4、5のいずれかの露光 装置。

【請求項7】 請求項1の露光方法、請求項2乃至請求 項5の露光装置、請求項6の露光方法又は露光装置のい ずれかを用いてデバイスを製造することを特徴とするデ バイス製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、露光方法及び露光 装置に関し、特に微細な回路パターンを感光基板上に露 光する露光方法および露光装置に関し、本発明の露光方 法及び露光装置は、例えばIC,LSI等の半導体チッ プ、液晶パネル等の表示素子、磁気ヘッド等の検出素 子、CCD等の撮像素子といった各種デバイスの製造に 用いられる。

[0002]

【従来の技術】従来より、IC、LSI、液晶パネル等のデ バイスをフォトリソグラフィー技術を用いて製造する時 には、フォトマスク又はレチクル等(以下、「マスク」 と記す。)の回路パターンを投影光学系によってフォト レジスト等が塗布されたシリコンウエハ又はガラスプレ -ト等(以下、「ウエハ」と記す。)の感光基板上に投 影し、そこに転写する(露光する)投影露光方法及び投 影露光装置が使用されている。

【0003】上記デバイスの高集積化に対応して、ウエ ハに転写するパターンの微細化即ち高解像度化とウエハ における1チップの大面積化とが要求されており、従っ

てウエハに対する微細加工技術の中心を成す上記投影露 光方法及び投影露光装置においても、現在、0.5μm以 下の寸法(線幅)の像を広範囲に形成するべく、解像度 と露光面積の向上が計られている。

【0004】従来の投影露光装置の摸式図を図19に示 す。図19中、191は遠紫外線露光用光源であるエキシ マーレーザ、192は照明光学系、193は照明光、194はマ スク、195はマスク1944から出て光学系196に入射する 物体側露光光、196は縮小投影光学系、197は光学系196 から出て基板198に入射する像側露光光、198は感光基板 であるウエハ、199は感光基板を保持する基板ステージ を、示す。

【0005】エキシマレーザ191から出射したレーザ光 は、引き回し光学系によって照明光学系192に導光さ れ、投影光学系192により所定の光強度分布、配光分 布、開き角(開口数NA)等を持つ照明光193となるよ うに調整され、マスク194を照明する。マスク194にはウ エハ198上に形成する微細パターンを投影光学系192の投 影倍率の逆数倍(例えば2倍や4倍や5倍)した寸法のパ ターンがクロム等によって石英基板上に形成されてお り、照明光193はマスク194の微細パターンによって透過 回折され、物体側露光光195となる。投影光学系196は、 物体側露光光195を、マスク194の微細パターンを上記投 影倍率で且つ充分小さな収差でウエハ198上に結像する 像側露光光197に変換する。像側露光光197は図19の下部 の拡大図に示されるように、所定の開口数NA ($=\sin heta$)でウエハ198上に収束し、ウエハ198上に微細パターン の像を結ぶ。基板ステージ199は、ウエハ198の互いに異 なる複数の領域 (ショット領域:1個又は複数のチップ となる領域) に順次微細パターンを形成する場合に、投 影光学系の像平面に沿ってステップ移動することにより ウエハ198の投影光学系196に対する位置を変える。 【0006】しかしながら、現在主流の上記のエキシマ レーザを光源とする投影露光装置は、0.15μm以下のパ

ターンを形成することが困難である。 【0007】投影光学系196は、露光(に用いる)波長

に起因する光学的な解像度と焦点深度との間のトレード オフによる解像度の限界がある。投影露光装置による解 像パターンの解像度Rと焦点深度DOFは、次の(1)式 と(2)式の如きレーリーの式によって表される。

[0008]

..... (1) $R = k_1 (\lambda / NA)$ $DOF = k_2 (\lambda / NA^2)$ (2) ここで、Aは露光波長、NAは投影光学系196の明るさを

表す像側の開口数、 k_1 、 k_2 はウエハ198の現像プロセ ス特性等によって決まる定数であり、通常0.5~0.7程度 の値である。この(1)式と(2)式から、解像度Rを小さい 値とする高解像度化には開口数NAを大きくする「高NA 化」があるが、実際の露光では投影光学系196の焦点深 度DOFをある程度以上の値にする必要があるため、高NA

化をある程度以上進めることは不可能となることと、高 解像度化には結局露光波長入を小さくする「短波長化」 が必要となることとが分かる。

【0009】ところが短波長化を進めていくと重大な問題が発生する。この問題とは投影光学系196のレンズの硝材がなくなってしまうことである。殆どの硝材の透過率は遠紫外線領域では0に近く、特別な製造方法を用いて露光装置用(露光波長約248nm)に製造された硝材として溶融石英が現存するが、この溶融石英の透過率も波長193nm以下の露光波長に対しては急激に低下するし、0.15μm以下の微細パターンに対応する露光波長150nm以下の領域では実用的な硝材の開発は非常に困難である。また遠紫外線領域で使用される硝材は、透過率以外にも、耐久性、屈折率均一性、光学的歪み、加工性等の複数条件を満たす必要があり、この事から、実用的な硝材の存在が危ぶまれている。

【0010】このように従来の投影露光方法及び投影露光装置では、ウエハ198に0.15μm以下のパターンを形成する為には150m程度以下まで露光波長の短波長化が必要であるのに対し、この波長領域では実用的な硝材が存在しないので、ウエハ198に0.15μm以下のパターンを形成することができなかった。

【0011】米国特許第5415835号公報は2光東干渉露光によって微細パターンを形成する技術を開示しおり、2 光東干渉露光によれば、ウエハに0.15μm以下のパターンを形成することができる。

【0012】2光東干渉露光の原理を図15を用いて説明する。2光東干渉露光は、レーザ151からの可干渉性を有し且つ平行光線東であるレーザ光をハーフミラー152によって2光東に分割し、2光東を夫々平面ミラー153によって反射することにより2個のレーザ光(可干渉性平行光線束)を0より大きく90度未満のある角度を成して交差させることにより交差部分に干渉縞を形成し、この干渉縞(の光強度分布)によってウエハ154を露光して感光させることで干渉縞の光強度分布に応じた微細な周期パターンをウエハに形成するものである。

【0013】2光束がウエハ面の立てた垂線に対して互いに逆方向に同じ角度だけ傾いた状態でウエハ面で交差する場合、この2光束干渉露光における解像度Rは次の(3)式で表される。

[0014]

 $R = \lambda / (4\sin\theta)$

 $=\lambda/4NA$

=0. 25 (λ/NA) (3)

ここで、RはL&;S(ライン・アンド・スペース)の夫々の幅即ち干渉縞の明部と暗部の夫々の幅を、 θ は2光束の夫々の像面に対する入射角度(絶対値)を表し、NA= $\sin\theta$ である。

【0015】通常の投影露光における解像度の式である (1)式と2光束干渉露光における解像度の式である(3) 式とを比較すると、2光束干渉露光の解像度Rは(1)式において k_1 = 0.25とした場合に相当するから、2光束干渉露光では k_1 = 0.5~0.7である通常の投影露光の解像度より2倍以上の解像度を得ることが可能である。上記米国特許には開示されていないが、例えば λ = 0.248nm (KrFエキシマ) でNA = 0.6の時は、R = 0.10 μ mが得られる。

[0016]

【発明が解決しようとしている課題】しかしながら2光 東干渉露光は、基本的に干渉縞の光強度分布(露光量分 布)に相当する単純な縞パターンしか得られないので、 所望の形状の回路パターンをウエハに形成することがで きない。

【0017】そこで上記米国特許第5415835号公報は、2 光東干渉露光によって単純な稿パターン即ち2値的な露 光量分布をウエハ(のレジスト)に与えた後、ある開口 が形成されたマスクを用いて通常リソグラフィー(露 光)を行なって更に別の2値的な露光量分布をウエハに 与えることにより、孤立の線(パターン)を得ることを 提案している。

【0018】しかしながら上記米国特許第5415835号公報の露光方法は、2光東干渉露光と通常露光の2つの露光法の夫々において通常の2値的な露光量分布しか形成していないので、より複雑な形状の回路パターンを得ることができなかった。

【0019】また、上記米国特許第5415835号公報は2光 東干渉露光と通常露光の2つの露光法を組み合わせることは開示しているが、このような組み合せを達成する露 光装置を具体的に示してはいない。

【0020】本発明の目的は、2光束干渉露光と通常露光の2つの露光法を用いてより複雑な形状のパターンをウエハに形成することが可能な露光方法及び露光装置を提供することにある。

【0021】また本発明の他の目的は線幅0.15μm以下の部分を備える回路パターンを得ることが可能な露光方法及び露光装置を提供することにある。

【0022】また本発明の他の目的は2光束干渉露光と 通常露光の2つの露光法が実施できる露光装置を提供す ることにある。

[0023]

【課題を解決するための手段】本発明の露光方法及び露光装置は、被露光基板(感光基板)に対して2光東干渉露光と通常の露光を行なう時に、前記二つの露光の少なくとも一方の露光において前記感光基板に多値的な露光量分布を与えることを特徴とする。「多値的」とは、感光基板に与える露光量が2値(露光量ゼロの場合も含めて2種類)ではなく、与える露光量が3値以上(露光量ゼロの場合も含めて3種類以上)であること意味する。また、「通常の露光」とは2光東干渉露光より解像度が低いが2光東干渉露光とは異なるパターンで露光が行なえ

る露光であり、代表的なものとして図19に示した投影光 学系によってマスクのパターンを投影する投影露光が挙 げられる。

【0024】本発明の露光方法及び露光装置の前記2光 東干渉露光と前記通常露光の夫々は一回又は複数回の露 光段階より成り、複数回の露光段階を採る場合は、各露 光段階毎に異なる露光量分布を感光基板に与える。

【0025】また本発明の露光方法及び露光装置の前記 2光東干渉露光と前記通常露光はどちらを先に行なって も良い。

【0026】また本発明の露光方法及び露光装置の前記第1露光と前記第2露光の露光波長は、第2露光が投影露光の場合、双方とも400nm以下であり、好ましくは250nm以下である。250nm以下の露光波長の光を得るにはKrFエキシマレーザ(約248nm)やArFエキシマレーザ(約193nm)を用いる。

【0027】尚、本願で「投影露光」というのは、マスクに形成された任意のパターンからの3個以上の平行光線束が互いに異なる様々な角度で像面に入射して露光が行なわれるものである。

【0028】本発明の露光装置はマスクのパターンをウエハに投影する投影光学系と、部分的コヒーレント照明とコヒーレント照明の双方の照明が可能なマスク照明光学系とを有し、部分的コヒーレント照明によって2光束干渉露光を行ない、コヒーレント照明によって2光束干渉露光を行なうことを特徴とする。「部分的コヒーレント照明」とは σ (=照明光学系の開口数/投影光学系の開口数)の値がゼロより大きく1より小さい照明であり、

「コヒーレント照明」とは、 σ の値がゼロまたはそれに近い値であり、部分的コヒーレント照明の σ に比べて相当小さい値である。

【0029】この露光装置の露光波長は、400nm以下であり、好ましくは250nm以下である。250nm以下の露光波長の光を得るにはKrFエキシマレーザ(約248nm)やArFエキシマレーザ(約193nm)を用いる。

【0030】後述する発明の実施の形態においては、マスク照明光学系として部分的コヒーレント照明とコヒーレント照明とが切換え可能な光学系を開示している。

【0031】本発明の他の露光装置は2光束干渉露光装置と通常(投影)露光装置と両装置で共用される被露光基板(感光基板)を保持する移動ステージとを有することを特徴とする。この露光装置の露光波長も、400m以下であり、好ましくは250m以下である。250m以下の露光波長の光を得るにはKrFエキシマレーザ(約248nm)やArFエキシマレーザ(約193nm)を用いる。【0032】

【発明の実施の形態】最初に図1乃至図9を用いて本発明 の露光方法の一実施形態を説明する。

【0033】図1は本発明の露光方法を示すフローチャートである。図1には本発明の露光方法を構成する2光

東干渉露光ステップ、投影露光ステップ(通常露光ステップ)、現像ステップの各ブロックとその流れが示してあるが、2光東干渉露光ステップと投影露光ステップの順序は、図1の逆でもいいし、どちらか一方のステップが複数回の露光段階を含む場合は各ステップを交互に行うことも可能である。また、各露光ステップ間には精密な位置合わせを行なうステップ等があるが、ここでは図示を略した。

【0034】図1のフローに従って露光を行なう場合、まず2光東干渉露光によりウエハ(感光基板)を図2に示すような周期的パターン(干渉稿)で露光する。図2中の数字は露光量を表しており、図2(A)の斜線部は露光量1(実際は任意)で白色部は露光量0である。

【0035】このような周期パターンのみを露光後現像する場合、通常、感光基板のレジストの露光しきい値Ethは図2(B)の下部のグラフに示す通り露光量0と1の間に設定する。尚、図2(B)の上部は最終的に得られるリソグラフィーパターン(凹凸パターン)を示している。

【0036】図3に、この場合の感光基板のレジストに関して、現像後の膜厚の露光量依存性と露光しきい値とをボジ型レジスト(以下、「ボジ型」と記す。)とネガ型レジスト(以下、「ネガ型」記す。)の各々について示してあり、ボジト型の場合は露光しきい値以上の場合に、ネガ型の場合は露光しきい値以下の場合に、現像後の膜厚が0となる。

【0037】図4はこのような露光を行った場合の現像とエッチングプロセスを経てリソグラフィーパターンが形成される様子を、ネガ型とボジ型の場合に関して示した摸式図である。

【0038】本実施形態においては、この通常の露光感 度設定とは異なり、図5(図2(A)と同じ図面)及び 図6に示す通り、2光束干渉露光での最大露光量を1とし た時、感光基板のレジストの露光しきい値Ethを1よ りも大きく設定する。この感光基板は図2に示す2光東干 渉露光のみ行った露光パターン (露光量分布)を現像し た場合は露光量が不足するので、多少の膜厚変動はある ものの現像によって膜厚が0となる部分は生じず、エッ チングによってリソグラフィーパターンは形成されな い。これは即ち2光束干渉露光パターンの消失と見做す ことができる(尚、ここではネガ型を用いた場合の例を 用いて本発明の説明を行うが、本発明はポジ型の場合で も実施できる。)。尚、図6において、上部はリソグラ フィーパターンを示し(何もできない)、下部のグラフ は露光量分布と露光しきい値の関係を示す。尚、下部に 記載のE1は2光束干渉露光における露光量を、E2は通 常の投影露光における露光量を表わしている。

【0039】本実施形態の特徴は、2光束干渉露光のみでは一見消失する高解像度の露光パターンを通常の投影露光による露光パターンと融合して所望の領域のみ選択

的にレジストの露光しきい値以上露光し、最終的に所望のリソグラフィーパターンを形成できるところにある。【0040】図7(A)は通常の投影露光による露光パターンであり、本実施形態では、通常の投影露光の解像度は2光束干渉露光の約半分としている為、ここでは投影露光による露光パターンの線幅が2光束干渉露光のによる露光パターンの線幅の約2倍として図示示してある。

【0041】図7(A)の露光パターンを作る投影露光を、図5の2光束干渉露光の後に、現像工程なしで、同一レジストの同一領域に重ねて行ったとすると、このレジストの合計の露光量分布は図7(B)の下部のグラフのようになる。尚、ここでは2光束干渉露光の露光量 E_1 と投影露光の露光量 E_2 の比が1:1、レジストの露光しきい値 E_{th} が露光量 E_1 (=1)と露光量 E_1 と投影露光の露光量 E_2 の和(=2)の間に設定されている為、図7

(B)の上部に示したリソグラフィーパターンが形成される。図7(B)の上部に示す孤立線パターンは、解像度が2光束干渉露光のものであり且つ単純な周期的パターンもない。従って通常の投影露光で実現できる解像度以上の高解像度のパターンが得られたことになる。

【0042】ここで仮に、図8の露光パターンを作る投影露光(図5の露光パターンの2倍の線幅で露光しきい値以上(ここではしきい値の2倍の露光量)の投影露光)を、図5の2光束干渉露光の後に、現像工程なしで、同一レジストの同一領域に重ねて行ったとすると、このレジストの合計の露光量分布は図8(B)のようになり、2光束干渉露光の露光パターンは消失して最終的に投影露光によるリソグラフィーバターンのみが形成される。

【0043】また、図9に示すように図5の露光パターンの3倍の線幅で行う場合も理屈は同様であり、4倍以上の線幅の露光パターンでは、基本的に2倍の線幅の露光パターンと3倍の線幅の露光パターンの組み合わせから、最終的に得られるリソグラフィーパターンの線幅は自明であり、投影露光で実現できるリソグラフィーパターンは全て、本実施形態でも、形成可能である。

【0044】以上簡潔に説明した2光東干渉露光と投影露光の夫々による露光量分布(絶対値及び分布)と感光基板のレジストのしきい値の調整を行うことにより、図6、図7(B)、図8(B)、及び図9(B)で示したような多種のパターンの組み合せより成り且つ最小線幅が2光東干渉露光の解像度(図7(B)のパターン)となる回路パターンを形成することができる。

【0045】以上の露光方法の原理をまとめると、1. 投影露光をしないパターン領域即ちレジストの露光し きい値以下の2光東干渉露光パターンは現像により消失 する。2. レジストの露光しきい値以下の露光量で行った投影露光のパターン領域に関しては投影露光と2光 東干渉露光のパターンの組み合わせにより決まる2光東 干渉露光の解像度を持つ露光パターンが形成される。 3. 露光しきい値以上の露光量で行った投影露光のパターン領域は投影露光のみの場合と同様に(マスクに対応する)任意のパターンを形成する。ということになる。更に露光方法の利点として、最も解像力の高い2光束干渉露光の部分では、通常の露光に比してはるかに大きい焦点深度が得られることが挙げられる。

【0046】以上の説明では2光束干渉露光と投影露光の順番は2光束干渉露光を先としたが、この順番に限定されない。

【0047】次に他の実施形態を説明する。

【0048】本実施形態は露光により得られる回路パターン(リソグラフィーパターン)として、図10に示す所謂ゲート型のパターンを対象としている。

【0049】図10のゲートパターンは横方向の即ち図中A-A'方向の最小線幅が0.1μmであるのに対して、縦方向では0.2μm以上である。本発明によれば、このような1次元方向のみ高解像度を求められる2次元パターンに対しては2光束干渉露光をかかる高解像度の必要な1次元方向のみで行うばいい。

【0050】本実施形態では、図11を用いて1次元方向のみの2光東干渉露光と通常の投影露光の組み合わせの一例を示す。

【0051】図11において、図11(A))は1次元方向の みの2光束干渉露光による周期的な露光パターンを示 す。この露光パターンの周期は0.2μmであり、この露 光パターンは線幅0.1μmL&; Sパターンに相当する。図 11の下部における数値は露光量を表すものである。

【0052】このような2光東干渉露光を実現する露光 装置としては、図15で示すような、レーザ151、ハーフ ミラー152、平面ミラー1534による干渉計型の分波合波 光学系を備えるものや、図16で示すような、投影露光装 置においてマスクと照明方法を図17又は図18のように構 成した装置がある。

【0053】図15の露光装置について説明を行なう。

【0054】図15の露光装置では前述した通り合波する 2光束の夫々が角度 θ でウエハ154に斜入射し、ウエハ154に形成できる干渉縞パターン(露光パターンの)線幅は前記(3)式で表される。角度 θ と分波合波光学系の像面側のNAとの関係はNA= $\sin\theta$ である。角度 θ は一対の平面ミラー153の夫々の角度を変えることにより任意に調整、設定可能で、一対の平面ミラー角度 θ の値を大きく設定すれば干渉縞パターンの夫々の縞の線幅は小さくなる。例えば2光束の波長が248nm (KrFエキシマ)の場合、 θ =38度でも各縞の線幅は約0.1 μ mの干渉縞パターンが形成できる。尚、この時のNA= $\sin\theta$ =0.62である。角度 θ を38度よりも大きく設定すれば、より高い解像度が得られることは言うまでもない。

【0055】次に図16乃至図18の露光装置に関して説明する。

【0056】図16の露光装置は例えば通常の縮小投影光

学系(多数枚のレンズより成る)を用いた投影露光装置であり、現状で露光波長248nmに対してNAO.6以上のものが存在する。

【0057】図16中、161はマスク、162はマスク161から出て光学系163に入射する物体側露光光、163は投影光学系、164は開口絞り、165は投影光学系163から出てウエハ166に入射する像側露光光、166は感光基板であるウエハを示し、167は絞り164の円形開口に相当する瞳面での光束の位置を一対の黒点で示した説明図である。図16は2光束干渉露光を行っている状態の摸式図であり、物体側露光光162と像側露光光165は双方とも、図19の通常の投影露光とは異なり、2つの平行光線束だけから成っている。

【0058】図16に示すような通常の投影露光装置において2光東干渉露光を行うためには、マスクとその照明方法を図17又は図18のように設定すればよい以下これら3種の例について説明する。

【0059】図17はレベンソン型の位相シフトマスクを示しており、クロムより成る遮光部171のピッチPOが(4)式で0、位相シフタ172のピッチPOSが(5)式で表わされるマスクである。

[0060]

 P₀ = MP = 2MR = M \(\lambda \) (2NA)
(4)

 P_{0s} = 2P₀ = M \(\lambda \) (NA)
(5)

 ここで、Mは投影光学系163の投影倍率、 \(\lambda \) は露光波長、NAは投影光学系163の像側の開口数を示す。

【0061】一方、図17(B)が示すマスクは、クロムより成る遮光部のないシフタエッジ型の位相シフトマスクであり、レベンソン型と同様に位相シフタ181のピッチPOSを上記(5)式を満たすように構成したものである。

【0062】図17(A)、(B)の夫々の位相シフトマスクを用いて2光束干渉露光を行なうには、これらのマスクを σ =0(又は0に近い値)所謂コヒーレント照明を行なう。具体的には、マスク面に対して垂直な方向(光軸に平行な方向)から平行光線束をマスクに照射する。

【0063】このような照明を行なうと、マスクから上記垂直な方向に出る0次透過回折光に関しては、位相シフタにより隣り合う透過光の位相差がπとなって打ち消し合い存在しなくなり、±1次の透過回折光の2平行光線束はマスクから投影光学系163の光軸に対して対称に発生し、図16の2個の物体側露光光ぶった井川 z する。また2次以上の高次の回折光は投影光学系163の開口絞り164の開口に入射しないので結像には寄与しない。

【0064】図18に示したマスクは、クロムより成る遮光部の遮光部のピッチPOが、(4)式と同様の(6)式で表わされるマスクである。

[0065]

 $P_0 = MP = 2MR = M\lambda / (2NA) \qquad \cdots \qquad (6)$

ここで、Mは投影光学系163の投影倍率、入は露光波長、NAは投影光学系163の像側の開口数を示す。

【0066】図18の位相シフタを有していないマスクには、1個又は2個の平行光線束による斜入射照明とする。 この場合の平行光線束のマスクへの入射角 θ_0 は、

(7)式を満たすように設定される。2個の平行光線束を用いる場合が、光軸を基準にして互いに逆方向に 60 傾いた平行光線束によりマスクを照明する。

【0067】 $\sin\theta_0 = M/NA$ ……(7) ここでも、Mは投影光学系163の投影倍率、NAは投影光学 系163の像側の開口数を示す。

【0068】図18が示す位相シフタを有していないマスクを上記(7)式を満たす平行光線束により斜入射照明を行なうと、マスクからは、光軸に対して角度 θ_0 で直進する0次透過回折光とこの0次透過回折光の光路と投影光学系の光軸に関して対称な光路に沿って進む(光軸に対して角度 $-\theta_0$ で進む)-1次透過回折光の2光束が図16の2個の物体側露光光162として生じ、この2光束が投影光学系163の開口絞り164の開口部に入射し、結像が行なわれる。

【0069】尚、本発明においてはこのような1個又は2個の平行光線束による斜入射照明も「コヒーレント照明」として取り扱う。

【0070】以上が通常の投影露光装置を用いて2光束干渉露光を行う技術であり、図19に示したような通常の投影露光装置の照明光学系は部分的コヒーレント照明を行なうように構成してあるので、図19の照明光学系の0< σ <<1に対応する不図示の開口絞りを σ >0に対応する特殊開口絞りに交換可能にする等して、投影露光装置において実質的にコヒーレント照明を行なうよう構成することができる。

【0071】図10及び図11が示す実施形態の説明に 戻る。

【0072】本実施形態では前述した2光束干渉露光の 次に行なう通常の投影露光 (例えば図19の装置でマス クに対して部分的コヒーレント照明を行なうもの)によ って図11(B)が示す「工」の字型のパターンの露光を 行う。図11(B)の上部には2光東干渉露光による露光 パターンとの相対的位置関係と通常の投影露光の露光パ ターンの5領域での露光量を示し、同図の下部は、通常 の投影露光によるウエハのレジストに対する露光量を縦 横0.1μmピッチの分解能でマップ化したものである。 【0073】この投影露光による露光パターンの線幅は 2光束干渉露光の場合の2倍の0.2μmである。このよう な領域毎に露光量が異なる、多値の露光量分布を生じさ せる (露光量が0と1と2の3値あるから多値)投影露 光を行う方法としては、図中1で示した領域に対応する マスクの開口部の透過率をT%、図中2で示した領域に対 応するマスクの開口部に透過率を2T%とした複数段の透

過率を持つ特殊マスクを用いる方法があり、この方法で

は投影露光を一回の露光で完了することができ、この特殊マスクを用いる場合の各露光での露光量比はウエハ(感光基板)上で、2光束干渉露光:透過率Tの開口部での投影露光:透過率2Tでの投影露光=1:1:2である。

【0074】領域毎に露光量が異なる投影露光を行うための別の方法としては、図11(D)の上部と下部とに示す露光パターンが生じる2種類のマスクを用いて順次露光する方法である、この場合には各マスクによる露光量は一段で良いため、マスクの開口部の透過率も1段で済む。この場合の露光量比はウエハ(感光基板)上で、2光束干渉露光:第1回投影露光:第2回投影露光=1:1:1である。

【0075】以上説明した2光束干渉露光と通常の投影露光の組み合わせによって図10の微細回路パターンが形成される様子について述べる。本実施形態においては2光束干渉露光と通常の投影露光の間には現像過程はない。従って各露光の露光パターンが重なる領域での露光量は加算され、加算後の露光量(分布)により新たな露光パターンが生じることとなる。

【0076】図11(C)の上部は本実施形態の図11(A)の露光パターンと図11(B)の露光パターンの露光量の加算した結果生じる露光量分布(露光パターン)を示しており、図11(C)の下部はこの露光パターンに対して現像を行った結果のパターンを灰色で示したものであり、本実施形態ではウエハのレジストは露光しきい値が1より大きく2未満であるものを用いており、そのため現像によって露光量が1より大きい部分のみがパターンとして現れている。図11(C)の下部に灰色で示したパターンの形状と寸法は図10に示したゲートパターンの形状と寸法と一致しており、本発明の露光方法によって、 0.1μ mといった微細な線幅を有する回路パターンが、例えば部分的コヒーレント照明とコヒーレント照明が切換え可能な照明光学系を有する投影露光装置を用いて、形成可能となった。

【0077】本発明の更に別の実施形態について図12 乃至図14を用いて説明する。この別の実施形態は、2 度の2光束干渉露光によって縦縞の干渉縞パターンと横 縞の干渉縞パターンを重ねた多値(露光量が0と1と2 と3の4値あるから多値)の露光量分布の露光パターン を形成する点が特徴である。

【0078】図12は2度の2光東干渉露光によって縦縞の干渉縞パターンと横縞の干渉縞パターンを重ねた時の露光パターンを露光量分布をマップ化したものである。ここでは、2光東干渉露光と通常露光の重ね合わせによって最終的に得られる露光パターン(リソグラフィーパターン)のバリエーションを増やすために、縦縞の干渉縞パターンの明部の露光量(2)を横縞の干渉縞パターンの明部の露光量(1)の2倍としているが。この2種類の明部の露光量の本実施形態のものに限定されない。【0079】図12が露光パターンでは2度の2光束干渉

露光の結果、露光量は0から3までの4段階となっている。このような2光束干渉露光に対して充分に効果のある投影露光の露光量段数は5段以上である。この場合ウエハ(感光基板)のレジストの露光しきい値は、2光束干渉露光の露光量の最大値である3より大きく且つ投影露光の露光量(0と1と2と3と4)の最大値4未満に設定する。

【0080】このような5段階(0,1,2,3,4)の露光量での 投影露光を行った結果得られる露光パターンの各露光量 を図13に示した。また図13のハッチング部は露光しき い値以上の場所を表し、これが最終的な露光パターンと なる。なお、図13は投影露光の解像度を2光束干渉露光 の半分として図12の2倍の長さの辺を持つブロック単 位で表わしたものである。

【0081】このようなブロック単位で投影露光の露光量を変化させてより広い面積に露光パターン(リソグラフィーパターン)を形成した例が図14に示されており、図14から、本実施形態によれば、2光束干渉露光の解像度を持ち、周期パターン以外のバリエーション豊かなパターンを含む回路パターンが形成できることが、分かる。

【0082】本実施形態では通常露光は2光東干渉露光の線幅の2倍のブロックを単位として行ったが、これに限定されることなく投影露光の解像度内の任意の露光パターンの投影露光を行うことができる。

【0083】また本実施例では2光束干渉露光による露光パターンの線幅は縦縞と横縞とで同一として説明したが、夫々の線幅は互いに異なっていてもいい。又、2種類の縞の角度も任意に選ぶことができる。

【0084】図20は2光束干渉露光用の露光装置の一例を示す概略図であり、図20において、201は2光束干渉露光光学系で、基本構成は図15の光学系と同じである。202は、KrF又はArFエキシマレーザー、203はハーフミラー、204は平面ミラー、205は光学系201との位置関係が固定又は適宜ベースライン(量)として検出できるオフアクシス型の位置合わせ光学系で、ウエハ206上の2光束干渉用位置合わせマークを観察し、その位置を検出する。206は感光基板であるウエハ、207は光学系201の光軸に直交する平面及びこの光軸方向に移動可能なXYZステージで、レーザー干渉計等を用いてその位置が正確に制御される。装置205と207の構成や機能は周知なので具体的な説明は略す。

【0085】図21は2光東干渉用露光装置と通常の投 影露光装置より成る高解像度露光装置を示す概略図である。

【0086】図21において、212は図20の光学系201、205を備える2光束干渉露光装置であり、213は、不図示の照明光学系とレチクル位置合わせ光学系214、ウエハ位置合わせ光学系(オフアクシス位置

合わせ光学系)217とマスク215の回路パターンを ウエハ218上に縮小投影する投影光学系216とを備 える通常の投影露光装置である。

【0087】レチクル位置合わせ光学系214はマスク215上の位置合わせマークを観察し、その位置を検出する。ウエハ位置合わせ光学系217はウエハ206上の投影露光用又は2光束干渉と兼用の位置合わせマークを観察し、その位置を検出する。光学系214、216、217の構成や機能は周知なので、具体的な説明は略す。

【0088】図21の219は2光束干渉用露光装置212と投影露光装置213で共用される一つのXYZステージであり、このステージ219は、装置212、213の各光軸に直交する平面及びこの光軸方向に移動可能で、レーザー干渉計等を用いてそのXY方向の位置が正確に制御される。

【0089】ウエハ218を保持したステージ219は、図21の位置(1)に送り込まれてその位置が正確に測定され、測定結果に基いて位置(2)で示す装置212の露光位置に送り込まれてウエハ218へ2光東干渉露光が行なわれ、その後、位置(3)に送り込まれてその位置が正確に測定され位置(4)で示す装置213の露光位置に送り込まれてウエハ218へ投影露光が行なわれる。

【0090】装置213においては、オフアクシスの位置合わせ光学系217の代わりに、投影光学系216を介してウエハ218上の位置合わせマークを観察し、その位置を検出する不図示のTTLの位置合わせ光学系や、投影光学系216とマスク(レチクル)215とを介してウエハ218上の位置合わせマークを観察し、その位置を検出する不図示のTTRの位置合わせ光学系も使用できる。

【0091】図22は2光東干渉用露光と通常の投影露 光の双方が行なえる高解像度露光装置を示す概略図であ る。

【0092】図22において、221はKrF又はArFエキシマレーザ、」222は照明光学系、223はマスク(レチクル)、224はマスクステージ、227はマスク223の回路パターンをウエハ228上に縮小投影する投影光学系、225はマスク(レチクル)チェンジャであり、ステージ224に、通常のレチクルと前述したレベンソン型位相シフトマスク(レチクル)又はエッジシフタ型マスク(レチクル)又は位相シフタを有していない周期パターンマスク(レチクル)の一方を選択的に供給するために設けてある。

【0093】図22の229は2光東干渉露光と投影露光で共用される一つのXYZステージであり、このステージ229は、光学系227の光軸に直交する平面及びこの光軸方向に移動可能で、レーザー干渉計等を用いてそのXY方向の位置が正確に制御される。

【0094】また、図22の装置は、不図示のレチクル 位置合わせ光学系、ウエハ位置合わせ光学系(図21で 説明したオフアクシス位置合わせ光学系とTTL位置合 わせ光学系とTTR位置合わせ光学系)とを備える。

【0095】図22の装置の照明光学系222は部分的コヒーレント照明とコヒーレント照明とを切換え可能に構成してあり、コヒーレント照明の場合には、ブロック230内の図示した前述した(1a)又は(1b)の照明光を、前述したレベンソン型位相シフトレチクル又はエッジシフタ型レチクル又は位相シフタを有していない周期パターンレチクルの一つに供給し、部分的コヒーレント照明の場合にはブロック230内に図示した(2)の照明光を所望のレチクルに供給する。部分的コヒーレント照明からコヒーレント照明とを切換えば、通常光学系222のフライアイレンズの直後に置かれる開口絞りを、この絞りに比して開口径が十分に小さいコヒーレント照明用絞りと交換すればいい。

【0096】以上説明した露光方法及び露光装置を用いてIC, LSI等の半導体チップ、液晶パネル等の表示素子、磁気ヘッド等の検出素子、CCD等の撮像素子といった各種デバイスの製造が可能である。

【0097】本発明は以上説明した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々に変更することが可能である。特に2光束干渉露光および通常露光の各ステップでの露光回数や露光量の段数は適宜選択することが可能であり、更に露光の重ね合わせもずらして行う等適宜調整することが可能である。このような調整を行うことで形成可能な回路パターンにバリエーションが増える。

[0098]

【発明の効果】以上、本発明によれば、2光束干渉露光 と通常の露光を融合して例えば0.15μm以下の微細な線 幅を有する複雑なパターンを得ることが可能となる。

【図面の簡単な説明】

【図1】本発明の露光方法のフローチャートである。

【図2】2光東干渉露光による露光パターンを示す説明 図である。

【図3】レジストの露光感度特性を示す説明図である。

【図4】現像によるパターン形成を示す説明図である。

【図5】通常の2光東干渉露光による露光パターンを示す説明図である。

【図6】本発明における2光束干渉露光による露光パターンを示す説明図である。

【図7】第1の実施形態において形成できる露光パターン(リソグラフィーパターン)の一例を示す説明図である。

【図8】第1の実施形態において形成できる露光パターン(リソグラフィーパターン)の他の一例を示す説明図である。

【図9】第1の実施形態において形成できる露光パター

l

ン (リソグラフィーパターン) の他の一例を示す説明図である。

【図10】ゲートパターンを示す説明図である。

【図11】第2の実施形態を示す説明図である。

【図12】第3の実施形態の2光束干渉露光パターンを示す説明図である。

【図13】第3の実施形態で2次元プロックでの形成パターンを示す説明図である。

【図14】第3の実施形態で形成可能な露光パターンの 1例を示す説明図である。

【図15】2光東干渉用露光装置の一例を示す概略図である。

【図16】2光束干渉露光を行なう投影露光装置の一例を示す概略図である。

【図17】図16の装置に使用するマスクおよび照明方法の1例を示す説明図である。

【図18】図16の装置に使用するマスクおよび照明方法の他の1例を示す説明図である。

【図19】従来の投影露光装置を示す概略図である。

【図20】本発明の2光東干渉露光装置の一例を示す概略図である。

【図21】本発明の高解像度露光装置の一例を示す概略 図である。

【図22】本発明の高解像度露光装置の他の例を示す概略図である。

【符号の説明】

221 エキシマレーザ

222 照明光学系

223 マスク (レチクル)

224 マスク (レチクル) ステージ

225 2光束干渉用マスクと通常投影露光用のマスク

226 マスク (レチクル) チェンジャ

227 投影光学系

228 ウエハ

229 XYZステージ

