

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

JUNE 2016

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 21 pages./ Hierdie memorandum bestaan uit 21 bladsye.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt to answer a question and did not redo it, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n poging om 'n vraag te beantwoord, doodgetrek en nie oorgedoen het nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing. Staak nasien by die tweede berekeningsfout.
- Om antwoorde/waardes om 'n probleem op te los, te veronderstel, word NIE toegelaat NIE.

8	8	10	12	16	19	20	21	24	25	26
---	---	----	----	----	----	----	----	----	----	----

1.1	189		√189
	$Mean/Gemiddelde = \frac{189}{11}$	Answer only: Full marks	
	= 17,18	Slegs antwoord: Volpunte	✓ answer
	·		(2)
1.2	Min = 8, max = 26		✓ min, max
	Median/Mediaan = 19		✓ median
	$Q_1 = 10, Q_3 = 24$		$\checkmark Q_1 \& Q_3$
	∴ (8; 10; 19; 24; 26)		(2)
1.3			(3)
1.5			
	•	├	✓ box/boks/mond
			✓ whiskers/snor
	6 10	14 18 22 26	
			(2)
1.4	The data is skewed to the left/ <i>Die</i>	data is skeef na links.	✓ answer
	OR/OF	_	(1)
	Negatively skewed/Negatief skeef	r	✓ answer
1.5	SD/S4 = 6.46		(1)
1.5	SD/SA = 6,46		√√ answer
			(2)
1.6	17,18 + 6,46 = 23,64		✓ interval
	∴ 3 destinations/bestemmings		✓ answer
			(2)
			[12]

Temperature at midday (in °C) Middaguur- temperatuur (in °C)	18	21	19	26	32	35	36	40	38	30	25
Number of bottles of water (500 ml) Getal bottels water (500 ml)	12	15	13	31	46	51	57	70	63	53	23

2.1	(30;53)	✓answer	
			(1)
2.2	a = -38,51	✓ value <i>a</i>	
	b = 2,68	✓ value <i>b</i>	
	$\therefore \hat{y} = 2,68x - 38,51$	✓ equation	
			(3)
2.3	$\therefore \hat{y} \approx 36,53 \text{ bottles}$	✓✓ answer	
			(2)
	OR/OF		
	$\hat{y} \approx 2,68(28) - 38,51$	✓ substitution	
	$\approx 36,53$ bottles	✓ answer	
			(2)
2.4	Strong/Sterk	✓ strong/ <i>sterk</i>	
	The majority of the points lie close to the regression line./ <i>Die meerderheid</i>	✓ reason/rede	
	punte lê naby die regressielyn.		(2)
	OR/OF		
	Strong/Sterk	✓ strong/sterk	
	r = 0.98	✓ reason/rede	(2)
2.5			(2)
2.5	Temperature cannot rise beyond a certain point as this would be life	✓ reason/rede	(1)
	threatening OR there is only so much water one can consume before it		(1)
	becomes a risk to your health (hyponatremia)./Temperatuur kan nie hoër		
	as 'n sekere punt styg nie, anders raak dit lewensgevaarlik. OF 'n persoon		
	kan net 'n sekere hoeveelheid water inneem, anders raak dit 'n		101
	gesondheidsrisiko		[9]

3.1	$m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{0 - 6}{-2 + 8}$ $= \frac{-6}{-1} = -1$	✓ substitution ✓ –1
	- 6	(2)
3.2	$m_{\rm BC} = -1$ [BC AD]	✓ gradient
	y = -x + c	
	10 = -8 + c	substitute m and $(8; 10)$
	c = 18	
	y = -x + 18	✓ equation (3)
	OD/OF	
	OR/OF	
	$m_{\rm BC} = -1$ [BC AD]	✓ gradient
	$y - y_1 = m(x - x_1)$	
	y - 10 = -(x - 8)	\checkmark substitute m and
	y = -x + 18	(8; 10)
	<i>y</i>	✓ equation
		(3)

3.3	$m_{\text{BD}} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{10 - 0}{8 + 2} = 1$ $m_{\text{BD}} \times m_{\text{AD}} = 1 \times -1 = -1$ $\therefore \text{DB} \perp \text{AD}$	✓ substitution ✓ answer ✓ $m_{BD} \times m_{AD} = -1$ (3)
3.4	OR $AD^{2} = 72 or AD = \sqrt{72} or 6\sqrt{2}$ $AB^{2} = 272 or AB = \sqrt{272} or 4\sqrt{17}$ $BD^{2} = 200 or BD = \sqrt{200} or 10\sqrt{2}$ $\therefore AB^{2} = AD^{2} + BD^{2}$ $\therefore A\hat{D}B = 90^{\circ} \qquad \text{[converse Pyth th/omgekeerde Pyth st]}$ $tan B\hat{D}M = m_{BD} = 1$ $\therefore B\hat{D}M = 45^{\circ}$ OR	✓ calculating all 3 sides ✓ $AB^{2} = AD^{2} + BD^{2}$ (3) ✓ tan $\hat{BDM} = m_{BD}$ ✓ answer (2)
	$\sin B\hat{D}M = \frac{BM}{BD} = \frac{10}{10\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\therefore B\hat{D}M = 45^{\circ}$	$\checkmark \sin \hat{BDM} = \frac{1}{\sqrt{2}}$ $\checkmark \text{ answer}$ (2)
3.5	$T(x;y) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ $= \left(\frac{-2 + 8}{2}; \frac{0 + 10}{2}\right)$ $= (3; 5)$ T symmetrical about BM/T is simmetries om BM $\therefore \text{ distance of T to BM} = 5 \text{ units} = \text{distance from BM to C}$ $\therefore C(13; 5)$ OR/OF	✓T(3;5) ✓ value of $x✓$ value of y

	SCE/SSE – Memorandum	
	$m_{DF} = \frac{3\frac{1}{3} - 0}{8 - (-2)} = \frac{1}{3}$ Equation of DF: $y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{3}(x + 2)$ $y = \frac{1}{3}x + \frac{2}{3}$ Equation of BC: $y = -x + 18$ $\frac{1}{3}x + \frac{2}{3} = -x + 18$	✓eq of DF
2.6	$4x = 52$ $x = 13$ $\therefore y = -13 + 18 = 5$ $\therefore C(13; 5)$ $xrea/ann ARDE = area/ann ARDM = area/ann ADEM$	✓ value of x ✓ value of y (3)
3.6	area/opp $\triangle BDF = area/opp \triangle BDM - area/opp \triangle DFM$ $= \frac{1}{2} (10)(10) - \frac{1}{2} (10) \left(\frac{10}{3}\right)$ $= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,3 \text{ square units/} vk \text{ eenh}$ $\mathbf{OR/OF}$ $area/opp \triangle BDF = \frac{1}{2} .BF.DM$ $= \frac{1}{2} \left(\frac{20}{3}\right) (10)$	✓ formula/method ✓ 10 (DM) ✓ 10 (BM) ✓ $\frac{10}{3}$ or $3\frac{1}{3}(\bot h)$ ✓ answer (5) ✓ formula/method ✓ BF ✓ ✓ DM
	$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,3 \text{ square units/} vk \text{ eenh}$ \mathbf{OR}/\mathbf{OF}	✓ answer (5)

$$tan F \hat{D}M = m_{DC} = \frac{5-0}{13+2} = \frac{1}{3} \qquad or \quad tan F \hat{D}M = \frac{FM}{DM} = \frac{10}{3} = \frac{1}{3}$$

$$F \hat{D}M = 18.43^{\circ}$$

$$\therefore B \hat{F}D = 108.43^{\circ} \qquad [ext \angle \Delta]$$

$$BF = \frac{20}{3} \text{ or } 6\frac{2}{3}$$

$$DF^{2} = (10)^{2} + \left(3\frac{1}{3}\right)^{2} \qquad [Pyth \ ADFM]$$

$$DF = 10.54 \text{ or } \frac{\sqrt{1000}}{3} \text{ or } \frac{10\sqrt{10}}{3} \text{ o$$

OR/OF

SCE/SSE – Memorandum	
$\tan F\hat{D}M = m_{DC} = \frac{5-0}{13+2} = \frac{1}{3}$ or $\tan F\hat{D}M = \frac{FM}{DM} = \frac{\frac{10}{3}}{10} = \frac{1}{3}$	✓ gradient/ratio
$\hat{FDM} = 18,43^{\circ}$ $\hat{BDF} = 26,56^{\circ}$ $area/opp \Delta BDF$	✓ BÔF
$= \frac{1}{2}.BD.DF.\sin B\hat{D}F$	✓ DF OR / OF BD ✓ correct
$= \frac{1}{2} \cdot (10\sqrt{2}) \left(\frac{10\sqrt{10}}{3}\right) \cdot \sin 26,56^{\circ}$ $= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,33 \text{ square units/} vk \text{ eenh}$	substitution into area rule answer
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(5) [18]

4.1	radius \perp tangent /raaklyn	✓ R
4.2		(1)
4.2	$CR^2 = TR^2 + CT^2 $ (Pyth)	✓ substitution
	$CR^2 = 20^2 + 10^2 = 500$	Substitution
	$CR = \sqrt{500} \text{ or } 10\sqrt{5}$	✓ answer
		(2)
4.3	$CR^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$	
	$500 = (k-3)^2 + (21+1)^2$	✓ substitution
	$k^2 - 6k + 9 + 484 = 500$	
	$k^2 - 6k - 7 = 0$	✓ standard form
	(k-7)(k+1) = 0	(factors
	$k = 7$ or $k \neq -1$	\checkmark factors $\checkmark k = 7$
		(4)
	OR/OF	
	$CR^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$	
	$500 = (k-3)^2 + (21+1)^2$	✓ substitution
	$(k-3)^2 = 16$	✓ square form
	k-3=4 or $k-3=-4$	✓ square root
	$k = 7$ or $k \neq -1$	$\checkmark k = 7$
		(4)

4.4	$(x-3)^2 + (y+1)^2 = 100$	√√ answer
		(2)
4.5	$CS = 10$ and $CS \perp PS$	(0(2 11)
	$\therefore S(3;-11)$	\checkmark S(3;-11) \checkmark answer
	$\therefore y = -11$	(2)
4.6.1	S(3;-11)	
	$\therefore 3(-11) - 4x = 35$	✓ substituting
	x = -17	
	$\therefore P(-17;-11)$	✓ answer
		(2)
	OR/OF	
	$\frac{4}{3}x + \frac{35}{3} = -11$	✓ equating
	$\frac{4}{3}x = \frac{-68}{3}$	
	$\begin{vmatrix} 3 & 3 \\ x = -17 \end{vmatrix}$	
	P(-17;-11)	✓ answer
4.6.2	PT = PS [tangents from common point/rklyne vanaf dies pt]	$\checkmark S \checkmark R$ (2)
	= 17 + 3 = 20 units	✓ answer
	OR	(3)
	UK	
	$PC = \sqrt{(-17-3)^2 + (-11+1)^2}$	
	$PC = \sqrt{(-17 - 3)^2 + (-11 + 1)^2}$ $= \sqrt{500} \text{ or } 10\sqrt{5}$	✓ value of PC
	$=\sqrt{500} \ or \ 10\sqrt{5}$	
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} $ [Pyth th] $= 500 - 100$	✓ value of PC ✓ using Pyth
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} $ [Pyth th] $= 500 - 100$ $= 400$	✓ using Pyth ✓ answer
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} $ [Pyth th] $= 500 - 100$	✓ using Pyth
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2}$ $= 500 - 100$ $= 400$ ∴ PT = 20	✓ using Pyth ✓ answer
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} $ [Pyth th] $= 500 - 100$ $= 400$	✓ using Pyth ✓ answer
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} \qquad [Pyth th]$ $= 500 - 100$ $= 400$ $\therefore PT = 20$ OR	✓ using Pyth ✓ answer
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} [Pyth th]$ $= 500 - 100$ $= 400$ $\therefore PT = 20$ OR $PC = \sqrt{(-17 - 3)^{2} + (-11 + 1)^{2}}$	✓ using Pyth ✓ answer (3)
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} [Pyth th]$ $= 500 - 100$ $= 400$ $\therefore PT = 20$ OR $PC = \sqrt{(-17 - 3)^{2} + (-11 + 1)^{2}}$ $= \sqrt{500} \text{ or } 10\sqrt{5}$	✓ using Pyth ✓ answer (3) ✓ value of PC ✓ S/R or
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ $PT^{2} = PC^{2} - TC^{2} [Pyth th]$ $= 500 - 100$ $= 400$ $\therefore PT = 20$ OR $PC = \sqrt{(-17 - 3)^{2} + (-11 + 1)^{2}}$	✓ using Pyth ✓ answer (3)
	$= \sqrt{500} \text{ or } 10\sqrt{5}$ PT ² = PC ² - TC ² [Pyth th] = 500 - 100 = 400 ∴ PT = 20 OR PC = $\sqrt{(-17-3)^2 + (-11+1)^2}$ = $\sqrt{500}$ or $10\sqrt{5}$ Δ PTC ≡ ΔRTC [90°HS]	✓ using Pyth ✓ answer (3) ✓ value of PC ✓ S/R or proved ✓ answer
471	= $\sqrt{500}$ or $10\sqrt{5}$ PT ² = PC ² - TC ² [Pyth th] = $500 - 100$ = 400 ∴ PT = 20 OR PC = $\sqrt{(-17 - 3)^2 + (-11 + 1)^2}$ = $\sqrt{500}$ or $10\sqrt{5}$ Δ PTC = Δ RTC [90°HS] ∴ PT = TR ∴ PT = 20	✓ using Pyth ✓ answer (3) ✓ value of PC ✓ S/R or proved ✓ answer (3)
4.7.1	$ = \sqrt{500} or 10\sqrt{5} $ $PT^{2} = PC^{2} - TC^{2} $	✓ using Pyth ✓ answer (3) ✓ value of PC ✓ S/R or proved ✓ answer

4.7.2	Radius = 4	✓ answer
		(1)
4.7.3	$r_1 + r_2 = 10 + 4 = 14$	$\checkmark r_1 + r_2$
	distance CM = $\sqrt{(3-3)^2 + (-1+16)^2}$	
	$=\sqrt{225}$	
	=15	✓ 15
	$CM > r_1 + r_2$	✓explanation
	Therefore the two circles do not intersect or touch./Daarom sny of raak die twee sirkels nie.	(3)
	Town we the survey inc.	[21]

5.1.1(a)	$\sin T = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} = 0.45$	✓value (1)
5.1.1(b)	$\cos S = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10} = 0.95$	✓value (1)
5.1.2	$\cos(T+S) = \cos T \cos S - \sin T \sin S$	√expansion
		$\checkmark \frac{2}{\sqrt{5}} \checkmark \frac{1}{\sqrt{10}}$
	$= \frac{6}{\sqrt{50}} - \frac{1}{\sqrt{50}}$	✓ simplification
	$=\frac{5}{\sqrt{50}} \text{ or } \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$	✓ answer (5)
5.2	$\frac{1}{\cos(360^\circ - \theta)\sin(90^\circ - \theta)} - \tan^2(180^\circ + \theta)$	
	$= \frac{1}{(\cos\theta)(\cos\theta)} - \tan^2\theta$	$ \begin{array}{l} \checkmark \cos \theta \\ \checkmark \cos \theta \\ \checkmark \tan^2 \theta \end{array} $
	$= \frac{1}{\cos^2 \theta} - \left(\frac{\sin^2 \theta}{\cos^2 \theta}\right)$	$\sqrt{\frac{\sin^2\theta}{\cos^2\theta}}$
	$=\frac{1-\sin^2\theta}{\cos^2\theta}$	
	$= \frac{\cos^2 \theta}{\cos^2 \theta} OR \frac{1 - \sin^2 \theta}{1 - \sin^2 \theta}$	√identity
	$\cos^2\theta$ $1-\sin^2\theta$	✓ answer
	=1	(6)

5.3	$(\sin x - \cos x)^2 = \left(\frac{3}{4}\right)^2$	✓ squaring both sides
	$\sin^2 x - 2\sin x \cos x + \cos^2 x = \frac{9}{16}$	✓expanding LHS
	$1 - 2\sin x \cos x = \frac{9}{16}$	✓ using identity
	$2\sin x \cos x = \frac{7}{16}$	✓ simplifying
	$\therefore \sin 2x = \frac{7}{16}$	✓answer (5)
		[18]

(1		
6.1	$4\sin x + 2\cos 2x = 2$	
	$2\sin x + \cos 2x - 1 = 0$	
	$2\sin x + (1 - 2\sin^2 x) - 1 = 0$	✓ using identity
	$2\sin^2 x - 2\sin x = 0$	✓ standard form
	$2\sin x(\sin x - 1) = 0$	✓ factors
	$2\sin x = 0 \qquad \text{or} \sin x - 1 = 0$	140.015
	$\sin x = 0 \qquad \qquad \sin x = 1$	$\sqrt{\sin x} = 0$ or
		$\sin x = 1$
	$x = k.180^{\circ}$ or $x = 90^{\circ} + k.360, k \in \mathbb{Z}$	✓ k.180°
		\checkmark
		$90^{\circ} + k.360, k \in Z$
6.2.1		(6) ✓ turning point
0.2.1		$(-90^{\circ}; -3)$
		✓ turning point
	g	(90°; 1) ✓ (-180°; -1) &
_	180° -90° O 90° 180°	(0°;-1)
_	180	
	-3	
		(3)
6.2.2	(-90°;0°)	✓ ✓ answer
		(2)
	OR/OF	✓ ✓ answer
	$-90^{\circ} < x < 0^{\circ}$	(2)
6.2.3	f(x) = g(x)	
	∴ −180°; 0°; 90°; 180°	
	$f(x+30^{\circ}) = g(x+30^{\circ})$	✓ any ONE correct
	$\therefore x = -30^{\circ}; 60^{\circ}; 150^{\circ}$	✓ other 2 correct
		(2)
		[13]

7.1	$\hat{ABD} = \theta$ [alternate $\angle s$; lines]	
	$\cos \theta = \frac{BD}{AB} = \frac{64}{81}$	✓ correct trig ratio ✓ substitution into correct ratio
	$\theta = 38^{\circ}$ OR/ \mathbf{OF}	✓ answer (to the nearest degree)
	$\sin B\hat{A}D = \frac{64}{81}$ $B\hat{A}D = 52,18^{\circ}$ $\theta = 38^{\circ}$	 ✓ correct trig ratio ✓ substitution into correct ratio ✓ answer (to the nearest degree)
7.2	$BC^{2} = AB^{2} + AC^{2} - 2(AB)(AC)\cos B\hat{A}C$ $= 81^{2} + 87^{2} - 2(81)(87)\cos 82,6^{\circ}$ $= 12314,754$ $BC = 110,97 \text{ m}$	✓ use cosine rule ✓ correct substitution into cosine rule ✓ answer (3)

7.3	$\frac{\sin D\hat{C}B}{BD} = \frac{\sin B\hat{D}C}{BC}$	✓ use sine rule
	$\sin D\hat{C}B = \frac{BD.\sin B\hat{D}C}{BC}$	
	$\sin D\hat{C}B = \frac{64.\sin 110^{\circ}}{110,97}$	✓ substitution
	$\therefore D\hat{C}B = 32,82^{\circ}$	✓ answer (3)
		[9]

8.1.1	$\hat{P} = 32^{\circ}$ [opp \angle s of cyclic quad/teenoorst \angle e v koordevh]	✓ S	
		✓ R	(2)
			(2)
8.1.2	$\hat{O}_1 = 2(32^\circ) = 64^\circ \ [\angle \text{centre} = 2 \angle \text{at circum/midpts} \angle = 2 \ omtreks \angle]$	✓ S ✓ R	
			(2)
	OR/OF		
	reflex $\hat{O} = 296^{\circ}$ [\angle centre = 2 \angle at circum/midpts \angle = 2 omtreks \angle]	✓ S and R ✓ S	
	$\hat{O}_1 = 64^{\circ}$ [\(\section \text{a round a point} / \(\section \text{ om 'n punt} \)]	V 5	(2)
8.1.3	$OMS = 180^{\circ} - (32^{\circ} + 18^{\circ} + 43^{\circ}) \qquad [sum \angle s \Delta / som \angle e \Delta]$	✓ S	
	, , , , , , , , , , , , , , , , , , , ,	✓ S	
	= 87°		(2)
0.1.4	^ ^	(P	(2)
8.1.4	$\hat{R}_3 = TMP$ [ext \angle cyclic quad/buite \angle koordevh]	✓ R	
	$=87^{\circ}+18^{\circ}-6^{\circ}$		
	= 99°	✓ S	
			(2)

8.2.1	corres ∠s/ooreenk ∠e; AB DC	
		(1)
8.2.2	$\hat{E}_2 = x$ [tan - chord theorem/raakl - koordst]	✓S ✓R
	$\hat{B}_2 = x$ [$\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye$] Any 3 $\angle s$ correct	✓ S ✓ R
	$\hat{E}_3 = x$ [alt $\angle s/verwiss \angle e$; AB DC]	$\checkmark S \checkmark R$
	$\hat{DAB} = x \text{ [opp } \angle s \parallel^m / teenoor \angle e \parallel^m \mathbf{OR}/\mathbf{OF} \text{ alternate}/verwiss } \angle s/e; BC \parallel AD]$	(6)
8.2.3	$\hat{D} = 180^{\circ} - x$ [co-int \angle s suppl/ $ko - binne \angle e$ suppl; AD BC]	✓S ✓ R
	$\therefore \hat{B}_2 + \hat{D} = 180^{\circ}$	
	∴ ABED a cyc quad/kdvh [converse opp ∠s of cyclic quad/	
	omgek teenoorst∠e koordevh]	✓ R
		(3)
	OR/OF	
	$DAB = x$ [opp $\angle s/teenoor \angle e \mid \mid^m$] OR/OF [alt $\angle s/verwiss \angle e; BC \mid AD$]	✓S ✓ R
	$\hat{\mathbf{E}}_3 = \mathbf{D}\hat{\mathbf{A}}\mathbf{B} = x$	
	\therefore ABED a cyc quad/kdvh [converse ext \angle of cyc quad/omgek buite \angle v koordevh]	✓ R
		(3)
		[18]

9.1	in the alternate segment/in die(teen)oorstaande segment	√ answer	
		(1)	

9.2.1	$\hat{\mathbf{A}}_1 = \hat{\mathbf{D}}_1$	[tan chord theorem/ $raakl - koordst$]	✓S ✓ R	
	$\hat{\mathbf{B}}_4 = \hat{\mathbf{A}}_1 + \hat{\mathbf{D}}_2$	$[\operatorname{ext} \angle \Delta/\operatorname{buite} \angle \Delta]$	✓ S ✓ R	
	$=\hat{\mathbf{D}}_1 + \hat{\mathbf{D}}_2$			(4)
9.2.2	$\hat{\mathbf{B}}_4 = \hat{\mathbf{B}}_2$	[vert opp \angle s/regoorst \angle e]	✓ S	
	$\hat{\mathbf{D}}_1 + \hat{\mathbf{D}}_2 = \hat{\mathbf{B}}_2$	[proven/bewys]		
	$=\hat{G}_2$	[∠s in same segment/∠e in dies segment]	✓ S ✓ R ✓ R	
	∴ AGCD is cyc	quad/ kvh [converse ext \angle cyc quad/ $omgek$ buite $\angle kvh$]	V K	(4)
9.2.3	$\hat{\mathbf{D}}_1 = \hat{\mathbf{A}}_2$	[\(\angle\)s in same segment/\(\angle\)e in dies segment]	✓ S ✓ R	
	$\hat{A}_2 = \hat{F}$	[\(\angle\)s in same segment/\(\angle\)e in dies segment]	✓ S	
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{F}}$			
	\therefore DC = CF	[sides opp = \angle s/sye teenoor = \angle e]	✓ R	
				(4) [13]
				[13]

10.1	Constr/Konstr:			
	Draw line BC such that MB = AK and M	C = AF	✓ constr/konstr	
	Trek lyn BC sodat MB = AK en MC = A	F		
	Proof/Bewys:			
	In Δ BMC and/ en Δ KAF			
	MB = AK	[constr/konstr]		
	$\hat{M} = \hat{A}$	[given/gegee]		
	MC = AF	[constr/konstr]		
	$\Delta BMC \equiv \Delta KAF$	$[s \angle s]$	✓ S / R	
	$\therefore M\hat{B}C = A\hat{K}F \text{ or } M\hat{C}B = A\hat{F}K$	$[\equiv \Delta]$	✓ S	
	but $/maar \hat{V} = \hat{K}$ or $\hat{T} = \hat{F}$	[given/gegee]		
	$\therefore M\hat{B}C = \hat{V} \text{ or } M\hat{C}B = \hat{T}$		✓ S	
	But these are corresponding ∠s/maar hu	lleis ooreenk Ze		
	$\therefore BC VT \qquad [corr \angle s = /ooreen$	ık∠e=]	✓ S / R	
	$\therefore \frac{MV}{MB} = \frac{MT}{MC}$ [prop theorem/ew]	eredighst; BC VT]	✓S ✓R	
	but $/maar$ MB = AK and MC = AF [[constr/konstr]		
	$\therefore \frac{MV}{AK} = \frac{MT}{AF}$		(7)	1

10.2.1(a)	In ΔKGH and ΔKEF	
	\hat{K} is common/gemeen	✓ S
	$\hat{H}_2 = \hat{F}$ [ext \angle cyclic quad/buite \angle koordevh]	√S √R
	$\hat{G}_3 = \hat{E}$ [sum\(\angle s \Delta \) OR ext\(\angle \text{cyclic quad/}som\(\angle e \Delta \) OR buite\(\angle koordevh\)] $\therefore \Delta KGH \parallel \Delta KEF \qquad [\angle \angle \angle]$	✓ naming third angle OR ∠∠∠ (4)
10.2.1(b)	$\frac{EF}{GH} = \frac{KE}{KG} \qquad [\Delta s]$	✓ S
	$\therefore \frac{EF}{GH} = \frac{KE}{EF}$ [KG = EF]	✓ S
	$\therefore EF^2 = KE.GH$	(2)
10.2.1(c)	$\frac{KG}{KF} = \frac{EM}{EF}$ [prop theorem/eweredighst; MG EK]	✓ S ✓ R
	but $EF = KG$ [given/gegee]	
	$\frac{KG}{KF} = \frac{EM}{KG}$	✓ S
	$KG^2 = EM.KF$	(3)
10.2.2	KE.GH = EM.KF	✓
	$EM = \frac{20 \times 4}{16}$	KE.GH = EM.KF
	16	✓ substitution
	= 5 units	
		✓ answer (3)
		[19]