DD2448 Foundations of Cryptography Lecture 7

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

March 31, 2020

Information Theory

Information Theory

- Information theory is a mathematical theory of communication.
- Typical questions studied are how to compress, transmit, and store information.
- ► Information theory is also useful to argue about some cryptographic schemes and protocols.

Classical Information Theory

- ▶ Memoryless Source Over Finite Alphabet. A source produces symbols from an alphabet $\Sigma = \{a_1, \ldots, a_n\}$. Each generated symbol is independently distributed.
- ▶ Binary Channel. A binary channel can (only) send bits.
- ► Coder/Decoder. Our goal is to come up with a scheme to:
 - 1. convert a symbol a from the alphabet Σ into a sequence (b_1, \ldots, b_l) of bits,
 - 2. send the bits over the channel, and
 - 3. decode the sequence into a again at the receiving end.

Classical Information Theory

Alice Bob

Optimization Goal

We want to minimize the **expected** number of bits/symbol we send over the binary channel, i.e., if X is a random variable over Σ and I(x) is the length of the codeword of x then we wish to minimize

$$\mathrm{E}\left[I(X)\right] = \sum_{x \in \Sigma} \mathsf{P}_X\left(x\right) I(x) \ .$$

ightharpoonup X takes values in $\Sigma = \{a, b, c, d\}$ with uniform distribution. How would you encode this?

ightharpoonup X takes values in $\Sigma = \{a, b, c, d\}$ with uniform distribution. How would you encode this?

It seems we need $I(x) = \log |\Sigma|$. This gives the Hartley measure.

- ightharpoonup X takes values in $\Sigma = \{a, b, c, d\}$ with uniform distribution. How would you encode this?
- ► X takes values in $\Sigma = \{a, b, c\}$, with $P_X(a) = \frac{1}{2}$, $P_X(b) = \frac{1}{4}$, and $P_X(c) = \frac{1}{4}$. How would you encode this?

It seems we need $I(x) = \log |\Sigma|$. This gives the Hartley measure. **hmmm...**

- ► X takes values in $\Sigma = \{a, b, c, d\}$ with uniform distribution. How would you encode this?
- ► X takes values in $\Sigma = \{a, b, c\}$, with $P_X(a) = \frac{1}{2}$, $P_X(b) = \frac{1}{4}$, and $P_X(c) = \frac{1}{4}$. How would you encode this?

It seems we need $I(x) = \log \frac{1}{P_X(x)}$ bits to encode x.

Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in \mathcal{X} . Then the **entropy** of X is

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x) .$$

Examples and intuition are nice, but what we need is a theorem that states that this is **exactly** the right expected length of an optimal code.

Jensen's Inequality

Definition. A function $f: \mathcal{X} \to (a, b)$ is **concave** if

$$\lambda \cdot f(x) + (1 - \lambda)f(y) \le f(\lambda \cdot x + (1 - \lambda)y)$$
,

for every $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Jensen's Inequality

Definition. A function $f: \mathcal{X} \to (a, b)$ is **concave** if

$$\lambda \cdot f(x) + (1 - \lambda)f(y) \le f(\lambda \cdot x + (1 - \lambda)y)$$
,

for every $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Theorem. Suppose f is continuous and strictly concave on (a, b), and X is a discrete random variable. Then

$$\mathrm{E}\left[f(X)\right] \leq f(\mathrm{E}\left[X\right])$$
,

with equality iff X is constant.

Jensen's Inequality

Definition. A function $f: \mathcal{X} \to (a, b)$ is **concave** if

$$\lambda \cdot f(x) + (1 - \lambda)f(y) \le f(\lambda \cdot x + (1 - \lambda)y)$$
,

for every $x, y \in (a, b)$ and $0 \le \lambda \le 1$.

Theorem. Suppose f is continuous and strictly concave on (a, b), and X is a discrete random variable. Then

$$\mathrm{E}\left[f(X)\right] \leq f(\mathrm{E}\left[X\right])$$
,

with equality iff X is constant.

Proof idea. Consider two points + induction over number of points.

Kraft's Inequality

Theorem. There exists a prefix-free code E with codeword lengths I_x , for $x \in \Sigma$ if and only if

$$\sum_{x \in \Sigma} 2^{-l_x} \le 1 \ .$$

Proof Sketch. \Rightarrow Given a prefix-free code, we consider the corresponding binary tree with codewords at the leaves. We may "fold" it by replacing two sibling leaves $\mathsf{E}(x)$ and $\mathsf{E}(y)$ by (xy) with length I_x-1 . Repeat.

 \Leftarrow Given lengths $I_{x_1} \leq I_{x_2} \leq \ldots \leq I_{x_n}$ we start with the complete binary tree of depth I_{x_n} and prune it.

Binary Source Coding Theorem (1/2)

Theorem. Let E be an optimal code and let I(x) be the length of the codeword of x. Then

$$H(X) \le \mathrm{E}\left[I(X)\right] < H(X) + 1 .$$

Binary Source Coding Theorem (1/2)

Theorem. Let E be an optimal code and let I(x) be the length of the codeword of x. Then

$$H(X) \leq \operatorname{E}[I(X)] < H(X) + 1$$
.

Proof of Upper Bound.

Define $I_x = [-\log P_X(x)]$. Then we have

$$\sum_{x \in \Sigma} 2^{-l_x} \le \sum_{x \in \Sigma} 2^{\log P_X(x)} = \sum_{x \in \Sigma} P_X(x) = 1$$

Kraft's inequality implies that there is a code with codeword lengths I_x . Then note that

$$\sum_{x \in \Sigma} P_X(x) \left[-\log P_X(x) \right] < H(X) + 1.$$

Binary Source Coding Theorem (2/2)

Proof of Lower Bound.

$$E[I(X)] = \sum_{x} P_{X}(x) I_{x}$$

$$= -\sum_{x} P_{X}(x) \log 2^{-I_{x}}$$

$$\geq -\sum_{x} P_{X}(x) \log P_{X}(x)$$

$$= H(X)$$

Huffman's Code (1/2)

```
Input: \{(a_1, p_1), \dots, (a_n, p_n)\}.

Output: 0/1-labeled rooted tree.

\text{HUFFMAN}(\{(a_1, p_1), \dots, (a_n, p_n)\})

(1) S \leftarrow \{(a_1, p_1, a_1), \dots, (a_n, p_n, a_n)\}

(2) while |S| \geq 2

(3) Find (b_i, p_i, t_i), (b_j, p_j, t_j) \in S with minimal p_i and p_j.

(4) S \leftarrow S \setminus \{(b_i, p_i, t_i), (b_j, p_j, t_j)\}

(5) S \leftarrow S \cup \{(b_i | b_j, p_i + p_j, \text{NODE}(t_i, t_j))\}

(6) return S
```

Huffman's Code (2/2)

Theorem. Huffman's code is optimal.

Proof idea.

There exists an optimal code where the two least likely symbols are neighbors.

Entropy

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in \mathcal{X} . Then the **entropy** of X is

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$
.

Conditional Entropy

Definition. Let (X, Y) be a random variable taking values in $\mathcal{X} \times \mathcal{Y}$. We define **conditional entropy**

$$H(X|y) = -\sum_{x} \mathsf{P}_{X|Y} (x|y) \log \mathsf{P}_{X|Y} (x|y) \quad \text{and} \quad H(X|Y) = \sum_{y} \mathsf{P}_{Y} (y) H(X|y)$$

Note that H(X|y) is simply the ordinary entropy function of a random variable with probability function $P_{X|Y}$ ($\cdot |y$).

Properties of Entropy

Let X be a random variable taking values in \mathcal{X} .

Upper Bound. $H(X) = \mathbb{E}\left[-\log P_X(X)\right] \leq \log |\mathcal{X}|$.

Chain Rule and Conditioning.

$$H(X, Y) = -\sum_{x,y} P_{X,Y}(x, y) \log P_{X,Y}(x, y)$$

$$= -\sum_{x,y} P_{X,Y}(x, y) \left(\log P_{Y}(y) + \log P_{X|Y}(x|y) \right)$$

$$= -\sum_{y} P_{Y}(y) \log P_{Y}(y) - \sum_{x,y} P_{X,Y}(x, y) \log P_{X|Y}(x|y)$$

$$= H(Y) + H(X|Y) \le H(Y) + H(X)$$