Tarea 2

Implementación de un contador aleatorio

Acoidan Martín Conrado Sistemas Electrónicos Digitales 1º Grado Ingeniería Informática 15/04/2024

Índice

1.	Secuencia asignada	2
2.	Tabla de transiciones y excitación	2
3.	Mapas de Karnaugh	(
4.	Circuito del contador implementado	3
5.	Códigos VHDL	4
6	Cronograma de simulación	-

Nota: La plantilla utilizada es una guía para la realización del informe, el estudiante la debe usar un punto de partida. Se valorará todas las explicaciones para el entendimiento del proceso seguido.

Tarea 2

Implementación de un contador aleatorio

1.- Secuencia asignada

El contador aleatorio asignado se muestra en la Tabla 1.

	Secuencia		Fli	ip-	Cíclico	
Alumno		flops				
119 Acoidan Martín	3,5,8,1,7,4,6,9,0,2	Т	D	D	Т	No
Conrado						

Tabla 1. Contador aleatorio asignado

2.- Tabla de transiciones y excitación

La tabla de transiciones del contador aleatorio asignado y su tabla de excitación es:

	E	stado	actu	al	Estado siguiente							
	Q _A	Q_{B}	Q_{C}	Q_{D}	Q_A^+	Q _B ⁺	Q _C ⁺	Q_{D}^{+}	T_A	D_{B}	D_{C}	$T_{\rm D}$
0	0	0	0	0	0	0	1	0	0	0	1	0
1	0	0	0	1	0	1	1	1	0	1	1	0
2	0	0	1	0	0	0	1	0	0	0	1	0
_3	0	0	1	1	0	1	0	1	0	1	0	0
4	0	1	0	0	0	1	1	0	0	1	1	0
5	0	1	0	1	1	0	0	0	1	0	0	1
6	0	1	1	0	1	0	0	1	1	0	0	1
7	0	1	1	1	0	1	0	0	0	1	0	1
8	1	0	0	0	0	0	0	1	1	0	0	1
9	1	0	0	1	0	0	0	0	1	0	0	1
10	1	0	1	0	X	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X	X

3.- Mapas de Karnaugh

Los mapas de Karnaugh de las entradas de los biestables son:

4.- Circuito del contador implementado

A continuación, se muestra el circuito del contador que se ha implementado:

Figura 1. Circuito implementado del contador 119.

5.- Códigos VHDL

En este apartado se muestra el código VHDL del contador implementado:

```
architecture Behavioral of contador119 is
   component ffD_reset
       port (
             clk : in std_logic;
                   : in std logic;
             ce
             reset : in std logic;
             d
                   : in std_logic;
                   : out std_logic
             q
   component ffT_preset
             clk
                    : in std_logic;
                     : in std_logic;
             ce
             preset : in std_logic;
                     : in std_logic;
                     : out std_logic
             q
   component ffT_reset
     port (
           clk : in std logic;
           ce : in std_logic;
           reset : in std logic;
               : in std_logic;
                : out std_logic
           q
   component ffD_preset
           clk
                  : in std logic;
           ce
                 : in std_logic;
           preset : in std_logic;
                 : in std_logic;
                  : out std logic
           q
   signal qa, qb, qc, qd : std_logic;
   signal ta, db, dc, td : std_logic;
```

```
| Degin | Deg
```

Figura 2. Código VHDL del contador 119.

También se muestra el código VHDL del test bench.

```
1 library IEEE;
   use IEEE.STD_LOGIC_1164.ALL;
   entity sistema119_tb is
   -- Port ( );
   end sistema119_tb;
   architecture Behavioral of sistema119 tb is
       component sistema119
            port (clk : in std_logic;
                       : in std_logic;
                  reset : in std_logic;
                  count : out std_logic_vector (3 downto 0);
                  led : out std_logic_vector (6 downto 0));
       signal clk : std_logic := '0';
       signal ce : std_logic := '0';
       signal reset : std_logic := '0';
       signal count : std logic vector (3 downto 0);
       signal led : std_logic_vector (6 downto 0);
24 begin
       dut : sistema119
       port map (clk \Rightarrow clk)
                  ce \Rightarrow ce,
                  reset ⇒ reset,
                 count \Rightarrow count.
                 led \Rightarrow led);
       -- Clock Generation
       clk ≤ not clk after 10 ns;
       stimuli : process
           ce \le '0'; reset \le '1';
           reset < '0'; ce < '1';
           wait for 180 ns;
           reset < '1';
46 end Behavioral;
```

Figura 3. Código VHDL del test bench.

6.- Cronograma de simulación

Instrucciones para realizar la simulación:

- Crea un pulso de reset de Ons a 20ns.
- Activa la señal ce después de 20ns.
- Vuelve a activar el reset a los 180ns. se resetea el sistema para comprobar que volvemos al estado de partida.
- Se debe añadir 2 divisores de señales (Entradas y Salidas)
- Count en amarillo y Led en rojo.
- Marcar en el cronograma las etapas de reset y la etapa inicial de ce. Sugerencias: se puede realizar en el propio cronograma según criterio propio.

A continuación, en la Figura 3, se muestra el cronograma de simulación del sistema implementado con las salidas del contador y del decodificador de 7 segmentos.

Figura 4. Cronograma de simulación del contador 119 con la secuencia completa recorrida.

Los resultados coinciden con la secuencia asignada que aparece en la tabla del apartado 1 (copia la tabla 1 del apartado 1 en esta sección):

	Secuencia	Flip-				Cíclico		
Alumno		flops						
119 Acoidan Martín	3,5,8,1,7,4,6,9,0,2	Т	D	D	Т	No		
Conrado								

Tabla 1. Contador aleatorio asignado

7.- Realización de vídeo

Generar un vídeo con la tarjeta Nexys A7 en el que se aprecie:

- 1. La secuencia entera correcta.
- 2. Los funcionamientos de reset y ce.

Video: https://youtu.be/at4IEZEKSBc