Análisis y diseño de software

Tema 1: Algoritmos /complejidad /java

José A. Mañas

http://jungla.dit.upm.es/~pepe/doc/adsw/index.html

21.2.2018

referencias

 http://www.dit.upm.es/~pepe/doc/adsw/ tema1/Complejidad.pdf

motivación

- no todos los algoritmos son iguales
- unos requieren más recursos que otros
 - más tiempo
 - más memoria
 - >un mal algoritmo no tiene remedio
- no todos los programas son iguales
 - hay mejores programadores
 - hay mejores compiladores
 - >un mal programa se puede arreglar

problemas y algoritmos

- No se conocen algoritmos para todos los problemas
- No todos los algoritmos son viables

T(n)

- se mide cómo crece el tiempo t de ejecución en función del tamaño n del problema
- se analiza la función

$$t = T(n)$$

• obviando los casos pequeños y estudiando la tendencia T(n)

- Una relación de orden total entre funciones de consumo de recursos
- Calculamos

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = K$$

- K = ∞ , decimos que f(n) > g(n) mayor complejidad
- K = 0, decimos que f(n) < g(n) menor complejidad
- K ≠ 0 y K ≠ ∞ , decimos que f(n) = g(n), misma complejidad

funciones de referencia

función	nombre
f(n) = 1	constante
$f(n) = \log(n)$	logaritmo
f(n) = n	lineal
$f(n) = n \times \log(n)$	
$f(n) = n^2$	cuadrática
$f(n) = n^a$	polinomio (de grado a > 2)
$f(n) = a^n$	exponencial (a > 1)
f(n) = n!	factorial

orden de complejidad

se definen conjunto de funciones de complejidad igual o menor

$$O(f(n)) = \{ g(n), \lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) < \infty \}$$

- el conjunto incluye las funciones g(n)
 que son igual de complejas que la de referencia, f(n)
 y las que son menos complejas que f(n)
- este truco nos permite no tener que calcular g(n) exactamente, bastando una cota superior
- nunca será más complejo que una f(n) dada

órdenes habituales

órdenes habituales

orden	nombre	comentario
O(1)	constante	ideal
O(log(n))	logarítmico	una maravilla
O(n)	lineal	lo normal
O(n log(n))		está bien
O(n ²)		tratable
O(n ^a)	polinomial (a > 2)	"tratable"
O(a ⁿ)	exponencial (a > 1)	no es práctico
O(n!)	factorial	inviable

impacto comparado

impacto comparado

n 0(1) 0(log n) C	(n) O(n log n) (O(n^2)	O(n^5)	O(5^n)	O(n!)
10	1	2	10	23	100	1e+05	1e+07	4e+06
20	1	3	20	60	400	3e+06	1e+14	2e+18
30	1	3	30	102	900	2e+07	9e+20	3e+32
40	1	4	40	148	1,600	1e+08	9e+27	8e+47
50	1	4	50	196	2,500	3e+08	9e+34	3e+64
60	1	4	60	246	3,600	8e+08	9e+41	8e+81
70	1	4	70	297	4,900	2e+09	8e+48	1e+100
80	1	4	80	351	6,400	3e+09	8e+55	7e+118
90	1	4	90	405	8,100	6e+09	8e+62	1e+138
100	1	5	100	461	10,000	1e+10	8e+69	9e+157

impacto comparado

n	0(1)	0(<u>lg</u> n)	0(n)	0(n lg n)	O(n ²)	O(n ⁵)	O(5 ⁿ)	<u>Q(n!)</u>
10	1μs	2μs	10µs	23μs	100µs	100ms	10s	4s
20	1μs	3μs	20µs	60µs	400μs	3s	3a	63 mil años
30	1μs	3µs	30μs	102μs	900μs	20s	28 millones de años	
40	1μs	4µs	40μs	148μs	1,6ms	100s		
50	1μs	4μs	50µs	196µs	2,5ms	300s		
60	1μs	4µs	60µs	246µs	3,6ms	800s		
70	1μs	4μs	70µs	297μs	4,9ms	33m		
80	1μs	4µs	80µs	351µs	6,4ms	50m		
90	1μs	4μs	90µs	405µs	8,1ms	1h40m		
100	1μs	5μs	100µs	461µs	10ms	2h46m		

impacto práctico

- Si 100 datos se procesan en 1 hora
 - ¿Cuántos datos se procesan en 2 horas?
 - ¿Cuántas horas lleva procesar 200 datos?

O(f(n))	N = 100	t = 2h	N = 200
log n	1	100.000	1,15
n	1	200	2,00
n log n	1	199	2,30
n ²	1	141	4,00
n³	1	126	8,00
2 ⁿ	1	101	10 ³⁰

representación gráfica

- con un cambio de variable podemos transformar cualquier orden en una recta
- ojo: los datos medidos no son exactos
- ej: O(n²)

reglas de cálculo

C.
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \implies f \in O(g)$$

 $\Rightarrow g \notin O(f)$
 $\Rightarrow O(f) \subset O(g)$

D.
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = K \Rightarrow f \in O(g)$$

 $\Rightarrow g \in O(f)$
 $\Rightarrow O(f) = O(g)$

E.
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty \Rightarrow f \notin O(g)$$

 $\Rightarrow g \in O(f)$
 $\Rightarrow O(f) \supset O(g)$

F. Si
$$f, g \in O(h) \Rightarrow f + g \in O(h)$$

G. Sea k una constante, $f(n) \in O(g) \Rightarrow k * f(n) \in O(g)$

H. Si $f \in O(h1)$ y $g \in O(h2) \Rightarrow f + g \in O(h1+h2)$

I. Si $f \in O(h1)$ y $g \in O(h2) \Rightarrow f * g \in O(h1*h2)$

J. Sean los reales $0 < a < b \Rightarrow O(n^a) \subset O(n^b)$

K. Sea P (n) un polinomio de grado $k \Rightarrow P(n) \in O(n^k)$

L. Sean los reales a, $b > 1 \implies 0$ (log_a) = 0 (log_b)

reglas de cálculo

```
    sentencias;
        → O(1)
    s; s; ...
        → Σ O(s)
    if (x) s1; else S2;
        → O(x) + max(O(s1), O(s2))
```

reglas de cálculo: bucles

```
for (int i= 0; i < K; i++)
  algo_de_0(1);

⇒ K*0(1) = 0(1)</pre>
```

```
for (int i= 0; i < N; i++)
  for (int j= 0; j < N; j++)
    algo_de_0(1);

⇒ N*N*O(1) = O(n²)</pre>
```

```
for (int i= 0; i < N; i++)
for (int j= 0; j < i; j++)
algo_de_0(1);

1+2+3+...+N=N*(1+N)/2 > 0(n2)
```

reglas de cálculo: bucles

```
int c = 1;
while (c < N) {
    algo_de_O(1);
    c*= 2;
}</pre>
```

- El valor inicial de c es 1, siendo 2^k al cabo de k iteraciones
- El número de iteraciones es tal que

```
-2^k \ge N \implies k = \lceil \log_2(N) \rceil
```

- x es el entero inmediato superior a x
- → O(log n)

reglas de cálculo: bucles

```
for (int i = 0; i < N; i++) {
    c = i;
    while (c > 0) {
        algo_de_O(1);
        c/= 2;
    }
}
```

- bucle interno: O(log n) que se ejecuta N veces,
- orden del conjunto: O(n log n)

ejercicio

```
int power1(int a, int n) {
   int r = 1;
   for (int i = 0; i < n; i++)
      r *= a;
   return r;
}</pre>
```

```
int power2(int a, int n) {
    if (n == 0)
       return 1;
    if (n % 2 == 0)
       return power2(a * a, n / 2);
    else
       return a * power2(a * a, (n - 1) / 2);
}
```

reglas de recurrencia

- T(n) = c + T(n/2)
- T(1) = c

- T(n) = c + T(n/2) = c + c + T(n/4) = ...= $kc + T(n/2^k)$
- T(n) = kc, cuando n/2^k = 1
 k = log(n)
- \rightarrow T(n) \in O(log n)

relaciones de recurrencia

relación	complejidad	ejemplos	
T(n) = T(n/2) + O(1)	O(log n)	búsqueda binaria	
T(n) = T(n-1) + O(1)	O(n)	búsqueda lineal	
		factorial	
		bucles for, while	
T(n) = 2 T(n/2) + O(1)	O(n)	recorrido de árboles binarios:	
		preorden, en orden, postorden	
T(n) = 2 T(n/2) + O(n)	O(n log n)	ordenación rápida (quick sort)	
T(n) = T(n-1) + O(n)	O(n²)	ordenación por selección	
		ordenación por burbuja	
T(n) = 2 T(n-1) + O(1)	O(2 ⁿ)	torres de hanoi	

ejemplo: números de fibonacci

- F(n) = F(n-1) + F(n-2)
- solución 1: recursiva
- solución 2: iterativa
- solución 3: fórmula

recursiva	iterativa	fórmula
O(1,6 ⁿ)	O(n)	O(1)

Fibonacci 1 - recursiva

```
int fibo(int n) {
    if (n < 2)
        return 1;
    return fibo(n - 1) + fibo(n - 2);
}</pre>
```

Fibonacci 2 – iterativa

```
int fibo(int n) {
    int n0 = 1;
    int n1 = 1;
    for (int i = 2; i <= n; i++) {
        int ni = n0 + n1;
        n0 = n1;
        n1 = ni;
    }
    return n1;
}</pre>
```

Fibonacci 5 – fórmula

$$fib(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

```
static int fibo(int n) {
     ops++;
     if (n < 2)
        return 1;
     n += 1;
     double t1 = Math.pow((1 + SQRT_5) / 2, n);
     double t2 = Math.pow((1 - SQRT_5) / 2, n);
     return (int) Math.round((t1 - t2) / SQRT_5);
}</pre>
```

fibonacci - tiempos

N	recursiva	iterativa	fórmula
10	812.001	6.569	158.460
20	3.397.022	6.979	154.766
30	392.534.843	6.979	153.945
40		7.800	153.944
50		8.621	153.945

 $O(1,6^{n})$ O(n) O(1)

iterativa

```
public static void main(String[] args) {
    for (int n = 10; n < 105; n+= 10) {
        long t0 = System.nanoTime();
        for (int i = 0; i < 1000; i++)
            fibo1(n);
        long t2 = System.nanoTime();
        System.out.printf("%d: %d%n", n, t2 - t0);
    }
}</pre>
```

10 0.10469364955925486 20 0.1723654967412887 30 0.23442707079160435 40 0.31007614844406894 50 0.3912395735055524 60 0.46632809755211757 70 0.5485557849526885 80 0.632572506819411 90 0.721964227205798 100 0.8047836539410471

recursiva

```
1 0.0003454115529308664
2 0.0009024123542856691
3 0.0014586236435194873
4 0.0014298064511035409
5 0.0024222231871814806
6 0.004271655330588462
7 0.006676904007168772
8 0.01159635403302529
9 0.017645595904011116
10 0.02863560462812005
11 0.04751560273329096
12 0.07462705421184979
13 0.14815155474674427
14 0.19916785422448202
15 0.3473805961606026
16 0.5550637333659665
17 0.8289885165462005
18 1.351826338913868
19 2.167616581333565
20 3.577065067641451
21 5.695772162592126
22 9.180202588810246
23 14.898625064641308
```

```
public static void main(String[] args) {
    for (int n = 1; n < 25; n++) {
        long t0 = System.nanoTime();
        for (int i = 0; i < 1000; i++)
            fibo1(n);
        long t2 = System.nanoTime();
        System.out.printf("%d: %d%n", n, t2 - t0);
    }
}</pre>
```


fibo recursiva

- T(n) = T(n-1) + T(n-2)
- hipótesis: $T(n) = x^n$
- $x^n = x^{n-1} + x^{n-2}$
- $x^2 x 1 = 0$
- $x = \frac{1 \pm \sqrt{1+4}}{2} = \{ 1.618, -0.61 \}$
- $T(n) \in O(1.6^n)$

corroboración experimental

fibo1

N	T(N)	1,618^n	T(N)/1,618^n
10	33.662	123	274
12	72.661	322	226
14	197.868	843	235
16	626.448	2.206	284
18	1.627.697	5.776	282
20	3.227.889	15.121	213
22	8.685.293	39.585	219
24	22.499.166	103.630	217
26	56.970.218	271.295	210
28	151.812.614	710.229	214

conclusiones

- Para problemas de tamaño pequeño
 - hay que optimizar el código
- Para problemas de tamaño grande $(n \rightarrow \infty)$
 - 1. hay que elegir un buen algoritmo
 - 2. hay que optimizar el código
- Algunos algoritmos muy buenos para n grande son muy malos para n pequeño
 - ejemplo: quicksort
 - solución: híbrido (entre quick e inserción)

conclusiones

- Si en un programa combinamos 2 algoritmos, el algoritmo peor impone su ley
 - porque cuando n→∞, el algoritmo de baja
 complejidad tiene una contribución despreciable
 - $-\operatorname{Lim}_{n\to\infty}(ax^2 + bx + c) \approx \operatorname{Lim}_{n\to\infty}(ax^2)$
 - $O(x^2) \cup O(x) \cup O(1) = O(x^2)$
- En consecuencia hay que empezar cambiando el algoritmo peor

Problemas NP

- Aquellos para los que encontrar la solución requiere
 - 1. probar todas las formas posibles
 - en tiempo polinómico sabemos si es la solución buscada

Problema: suma de subconjuntos

- Dado un conjunto de números enteros, ¿existe un subconjunto tal que la suma de sus elementos sea 0?
- Ejemplo

```
{ -2, -3, 15, 14, 7, -10 }
```

– solución: sí existe, pero hay ir probando una a una {-2, -3, 15, -10}

> The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

It is an NP-hard problem in combinatorial optimization, ...

Problema: suma de subconjuntos

```
List<Integer> suma0(List<Integer> set) {
  BigInteger max = BigInteger.ONE.shiftLeft(set.size());
  BigInteger mask = BigInteger.ONE;
  while (mask.compareTo(max) < 0) {
    List<Integer> subset = new ArrayList<>();
    int s = 0;
    for (int i = 0; i < set.size(); i++)
      if (mask.testBit(i)) {
         s += set.get(i);
         subset.add(set.get(i));
    if (s == 0)
      return subset;
    mask = mask.add(BigInteger.ONE);
  return Collections.emptyList();
```

Problema: suma de subconjuntos

ejemplo: proof of work

https://blockchain.info/

Block #509271

Summary	
Number Of Transactions	224
Output Total	1,127.86613546 BTC
Estimated Transaction Volume	67.1644822 BTC

Hashes	
Hash	00000000000000000053dd9d775650e933eeb9d51446efade2cd20a05bcc3e18
Previous Block	0000000000000000003b205d94e92633b68e234d7f13ffcd6444988324a2a0de
Nevt	

http://blockchain.mit.edu/blockchain/

encontrar N tal que h(N, bloque anterior, transacciones) tenga un mínimo número de ceros iniciales

ejercicio – suma 2

- Given a set (unsorted) of n numbers;
- and a number x;
- what is the fastest algorithm to determine if the set contains two numbers whose sum exactly equals x?

```
ej.
set: { -7, 5, 4, 33, 12, -4 }
x: 1
[5, -4 }
```

ejercicio – suma 2 /algo 1

ejercicio – suma 2 /medidas

 $O(n^2)$

O(n log n)

O(n)