Обласш вежби: Linux руковаоци

КОРИШЋЕЊЕ ИЗ ЈЕЗГРА

Предуслови:

• RPi2 повезан на аутомобилску шасију

$\mathbf{y}_{\mathbf{Bo}\mathbf{Z}}$

У овој вежби изучаваћемо како се пише сам Linux руковаоц. Управљаћемо аутомобилском шасијом која се састоји од BLDC (енгл. Brushless Direct Current) погонског мотора и већ познатог серво мотора за скретање. BLDC мотор има 3 сигнала:

- PWM са инвертованим фактором испуне и фреквенцијом 5kHz, где је 0% највећа брзина, док је 100% најмања.
- DIR правац окретања мотор, где је логичка 1 напред.
- PG пулс са енкодера мотора, са 9 пулсева по једном окретају мотора.

Фактор испуне за управљачки серво треба да се креће у интервалу [55‰, 95‰] за скретање у интервалу скроз улево – скроз удесно.

У овој вежби је дата апликација као и ROS окружење за управљање из корисничког простора. У оквиру ROS окружења преко управљача (енгл. joypad) могуће је контролисати шасију у једном од 2 режима:

- ручно (енгл. manual) где се брзина кретања и управљање правца контролише управљачем,
- процедура (енгл. routine) где се реализује кретање аутомобила према задатој процедури (тј. путањи).

<u>Задатак</u>

Слично као и у претходном задатку, у пројекту су присутна 2 директорија: SW и ROS. У SW имамо руковаоц SW/Driver/motor_ctrl, али 2 тестне апликације SW/Test/test_app/test_servos.c и SW/Test/test_app/test_bldc.c. Са првом тестном апликацијом се као и до сада управља серво мотором док се другом апликацијом упљавља BLDC мотором. За примере команди ове две апликације погледати у SW/Test/test_app/flow.sh. У датотеци SW/Driver/motor_ctrl/main.c се налази код за датотеку руковаоца, док су друге датотеке у оквиру истог директорија везане за функционалности према периферијама. motor_ctrl_init() и motor_ctrl_exit() служе за

иницијализацију руковаоца, где се пријављује руковаоц са својим функцијама. Следеће су функције руковаоца (уређај је кориснику представљен као датотека):

- motor_ctrl_open() отварање уређаја
- motor_ctrl_release() затварање уређаја
- motor_ctrl_write() писање у уређај
- motor_ctrl_read() читање из уређаја
- motor_ctrl_ioctl() подешавање/надзор уређаја, ван читања и писања

Од тих функција motor_ctrl_open() и motor_ctrl_release() се не користе у овом руковаоцу.

Даље следи упутство како да се дође до решења овог задатка.

Потребно је реализовати методе датотеке руковаоца motor_ctrl_write(), motor_ctrl_read() и motor_ctrl_ioctl(), као и motor_ctrl_exit(). Детаљи око параметара ових функција се могу наћи у ФТН уџбенику 1008 као и на интернету. Нама су код функција писања и читања од значају *buf* и *len* параметри који представљају показивач на бафер података и дужину бафера, док је повратна вредност ових фунцкија број копираних бајта (октета) података или негативан код грешке. Код функција читања и писања потребно је користити copy from user() и copy to user() за копирање података из и у кориснички простор. На интернету се може пронаћи мноштво додатних примера коришћења ових функција. Од помоћи како се подаци преносе кроз датотеку руковаоца могу бити SW/Test/test_app/test_bldc.c ради разумевања управљања **BLDC** погонског мотора И ROS/arm_and_chassis_ws/src/wc_main/src/simple_ackermann_steering_controller.cpp ради разумевања управљања и погонског и управљачког мотора.

У оквиру ових функција потребно је позивати функције периферија. Неке од тих функција са својим објашњењем су:

- hw_pwm__set_moduo(ch, moduo) мења се модуо PWM бројача тј. мења се фреквенција. При иницијализацији се ова функција позива ради постављања PWM фреквенције на 50Hz, а накнадно се може променити фреквенција.
- bldc__set_dir(ch, dir) поставља правац окретања BLDC мотор (DIR сигнал): CW (Clock Wise, у смеру казаљке на сату) или CCW (Counter Clock Wise, супротно од казаљке на сату). Правац се поставља на основу duty параметра, који је означена вредност, па у случају да је позитиван правац треба бити CW, а CCW ако је негативан.
- hw_pwm_set_threshold(ch, threshold) поставља се фактор испуне PWM бројача на основу подешене апсолутне вредности duty параметра.

Све функције имају параметар *ch* који одређује канал на одређеној периферији. У овој вежби 0. канал је резервисан за погонски BLDC мотор, док је 1. канал за управљачки серво мотор. Као и у претходној вежби, испратити *TODO* ознаке и реализовати потребан код за функционисање руковаоца.

За детаље око покретања ROS окружења погледати команде у ROS/arm_and_chassis_ws/flow.sh под секцијом Run chassis.

Ножице повезати према Табели 1. Слика 1 приказује просторни положај ножица.

GND	PG	DIR	PWM (S0)	S1
	GPIO16	GPIO17	GPIO18	GPIO19
PIN6	PIN36	PIN11	PIN12	PIN35

Табела 1 Повезивање ножица за роботску руку

Слика 1 Майа ножица за RPi2

Додатни Задатак

Направити закључавање датотеке руковаоца, тако да на пример, тестна апликација не може да приступ датотеци ако се већ користи из ROS окружења. Реализовати ову функционалност у оквиру методе за отварање датотеке.

Направити ограничење стопе промене (енгл. ROC - Rate Of Change) на погонски и управљачки мотор, тј. ограничење убрзања погона (погонски BLDC мотор) као и ограничење брзине заокретања предњих точкова (управљачки серво мотор) у оквиру датотеке ROS/arm_and_chassis_ws/src/wc_main/src/simple_ackermann_steering_controller.cpp. У оквиру датотеке ROS/arm_and_chassis_ws/src/wc_teleop/src/manual_teleop.py поставити та ограничења (поља steering_angle_velocity и acceleration у АскеrmannDriveStamped структури) и контролисати их преко LT, LD, RT и RD дугмића.