Filip Biedrzycki, grupa 5, nr indeksu 137248

Metody Numeryczne – Projekt 4 Układy równań liniowych – miejsca zerowe funkcji

Problem:

Implementacja metody bisekcji i metody stycznych oraz porównanie obu algorytmów dla wybranych funkcji. Precyzję wyniku ustawiłem na poziomie 0.001 .

Metoda bisekcji:

Opiera się ona na twierdzeniu Bolzano-Cauchy'ego:

Jeżeli funkcja ciągła f(x) ma na końcach przedziału domkniętego wartości różnych znaków, to wewnątrz tego przedziału istnieje co najmniej jeden pierwiastek równania f(x)=0.

Algorytm rekurencyjnie dzieli zadany przedział na coraz mniejsze fragmenty, aż do momentu, gdy długość przedziału jest mniejsza niż zadana z góry dokładność.

Założenia, które muszą być spełnione, aby można było zastosować tą metodę:

- 1. Funkcja f(x) jest ciągła w przedziale domkniętym [a;b] .
- 2. Funkcja przyjmuje różne znaki na końcach przedziału: f(a)f(b) < 0.

Metoda stycznych:

Opiera się ona na obliczaniu kolejnych stycznych do funkcji w zadanym przedziale.

Algorytm wybiera punkt startowy x_1 , z którego jest wyprowadzana styczna w $f\left(x_1\right)$. Odcięta punktu przecięcia stycznej z osią OX jest pierwszym przybliżeniem rozwiązania, oznaczonym jako x_2 . Jeśli wynik nie jest dostatecznie precyzyjny, za punkt startowy przyjmujemy x_2 i wykonujemy algorytm od poczatku.

Założenia, które muszą być spełnione, aby można było zastosować tą metodę:

- 1. W przedziale [a;b] znajduje się dokładnie jeden pierwiastek.
- 2. Funkcja ma różne znaki na krańcach przedziału, tzn. f(a)*f(b)<0.
- 3. Pierwsza i druga pochodna funkcji mają stały znak w tym przedziale.

Test 1:

Funkcja: $x^2 + \sin(x) - 1$

Wyniki:

Nr miejsca zerowego	Wzorcowy wynik	Wynik bisekcji	Wynik stycznych	
1	-1,409624004	-1,409765625	-1,4096337517	
2	0,6367326508	0,637109375	0,6367331944	

Test 2:

Wykres:

Computed by Wolfram | Alpha

Wyniki:

Nr miejsca zerowego	Wzorcowy wynik	Wynik bisekcji	Wynik stycznych	
1	1	1,000390625	<u>0,9997840639</u>	
2	2	1,999609375	2,000000175	
3	3	2,999609375	<u>3</u>	

Iteracje:

		Iteracje bisekcji		Iteracje stycznych	
Dokładność		0,001	0,00000001	0,001	0,00000001
Test 1	1 miejsce zerowe	23	43	2	3
	2 miejsce zerowe	28	48	2	3
Test 2	1 miejsce zerowe	18	38	2	4
	2 miejsce zerowe	16	36	2	4
	3 miejsce zerowe	17	37	2	4

Wnioski:

W każdym teście wynik obliczony przez metodę stycznych był bardziej precyzyjny, pomimo odgórnego limitu precyzji. Oznacza to, że bisekcja jest zdecydowanie mniej precyzyjną metodą obliczania miejsc zerowych funkcji. Dla większej wymaganej dokładności obie metody potrzebują więcej iteracji, ale ilość iteracji potrzebnych do obliczenia prawidłowego wyniku jest nawet dziesięciokrotnie mniejsza na korzyść metody stycznych. Metoda stycznych jest trudniejsza w implementacji niż metoda bisekcji, ale szybkością działania i precyzją wyniku bezdyskusyjnie pokonuje metodę bisekcji.