Tools for Stat Theory HW4

1 Lemma 8.1.1 Prove Column rank part.

We can use apply transpose to the row rank proof to achieve the same results. If A has full column rank, then it has rank(A) = n.

Theorem 4.4.1 "The row rank of any matrix A equals the column rank of A" and rank(A') = rank(A) as stated in the textbook.

Therefore, rank(A') = rank(A) = n = row rank of A'. If rank(A') = n, Theorem 7.2.2 ("If the coefficient matrix A of a linear system AX = B (in X) has full row rank, then AX = B is consistent.") shows that matrix R must exist where $A'R = I_n$ (we set $B = I_n$ and X = R). In other words, A' must have a right inverse. If there is matrix R such that $A'R = I_n$ then $rank(A') \ge rank(A'R) = rank(I_n) = n$ implying (Lemma 4.4.3: For any $m \times n$ matrix A, $rank(A) \le m$ and $rank(A) \le n$.) that rank(A') = n. If $A'R = I_n$ then $(A'R)' = I'_n$ and $R'(A')' = I_n$ and hence $R'A = I_n$. We have shown that given full column rank, we must have a left inverse matrix L = R'.

2 Corollary 8.1.2 Prove.

Corollary 8.1.2: A matrix A has both a right inverse and a left inverse if and only if A is a (square) nonsingular matrix. According to Lemma 8.1.1, A has right inverse if and only if there is full row rank (rank(A)= m) and A has left inverse if and only if there is full column rank (rank(A)=n). Thus, if A is to have both a right and left inverse, it needs to have full column and full row rank. In other words, it needs to have rank(A) = m = n. To have m = n, A must be a square matrix. To have full row rank and full column rank at the same time, A must be nonsingular (nonsingular means a full rank square matrix).

if and only if, you only proved one way

-0.5

3 Let A represent an $m \times n$ matrix, C an $n \times q$ matrix, and B a $q \times p$ matrix. Show that if rank(AC)=rank(C), then R(ACB) = R(CB) and rank(ACB) = rank(CB).

Lemma 4.2.2. For any $m \times n$ matrix A and $m \times p$ matrix B, $C(B) \subset C(A)$ if and only if there exists an $n \times p$ matrix F such that B = AF. Similarly, for any $m \times n$ matrix A and $q \times n$ matrix C, $R(C) \subset R(A)$ if and only if there exists a $q \times m$ matrix L such that C = LA.

Corollary 4.2.3. For any $m \times n$ matrix A and $n \times p$ matrix F, $C(AF) \subset C(A)$. Similarly, for any $m \times n$ matrix A and $q \times m$ matrix $C(AF) \subset C(A)$.

Corollary 4.4.5. For any $m \times n$ matrix A and $n \times p$ matrix F, rank(AF) \leq rank(AF) and rank(AF) \leq rank(AF).

Corollary 4.4.7. Let A represent an $m \times n$ matrix and F an $n \times p$ matrix. If rank(AF) = rank(AF), then C(AF) = C(A). Similarly, if rank(AF) = rank(AF), then AF0 = AF1.

Corollary 7.4.4: For any $m \times n$ matrix A and $n \times s$ matrix T, rank(T'A'A) = rank(T'A'A) and rank(A'AT) = rank(AT).

means C=LAC for some L, so $R(CB)=R(LACB) \subseteq R(ACB)$

By Corollary 4.4.7, R(AC) = R(C) because rank(AC) = rank(C). Since R(AC) = R(C) so $R(AC) \subseteq R(C)$ and $R(C) \subseteq R(AC)$. According to Corollary 4.2.3 $R(ACB) \subseteq R(CB)$. According to Lemma 4.2.2, if $R(ACB) \subseteq R(CB)$ then there must be a matrix L such that ACB = LCB. Since rank(AC) = rank(C), and rank(ACB) = rank(LCB), L must equal I and ACB.

According to Lemma 4.2.2, if $R(AC) \subseteq R(C)$ then there must exist a matrix L such that AC = LC and if $R(C) \subseteq R(AC)$ then there must exist a matrix L such that C = LAC.

By Corollary 4.4.5, $rank(ACB) \le rank(B)$, $rank(ACB) \le rank(ACB)$, $rank(ACB) \le rank(CB)$, and $rank(ACB) \le rank(CB)$, $rank(ACB) \le rank(CB)$, rank

According to Corollary 7.4.4, $\operatorname{rank}(ACBB') = \operatorname{rank}(ACB)$ and $\operatorname{rank}(A'ACB) = \operatorname{rank}(ACB)$. ACBB' results in a $m \times q$ matrix. $\operatorname{rank}(ACBB') \le m$ and $\operatorname{rank}(ACBB') \le q$ by Lemma 4.4.3. Hence $\operatorname{rank}(ACBB') = \operatorname{rank}(ACB) \le q$ and $\operatorname{rank}(ACBB') = \operatorname{rank}(ACB) \le m$

By Corollary 4.4.7, if rank(AC)=rank(C), then R(AC)=R(C).

If rank(AC) = rank(C), then $\text{rank}(AC) = \text{rank}(C) \le n$ and $\text{rank}(AC) = \text{rank}(C) \le q$ because of Lemma 4.4.3 as aforementioned. Since AC is an mxq matrix, then $\text{rank}(AC) \le m$ as well. Rank (CB) <= Rank (C) Rank (CB) <= n, Rank (CB) <= p, Rank (CB) <= q, Rank (CB) <= m rank (ACB) <= rank(CB) <=

4 Let A and B represent m×n matrices. Show that if C is an $r \times q$ matrix and D a $q \times m$ matrix such that rank(CD) = rank(D), then CDA = CDB implies DA = DB, thereby extending the result of Part (1) of Corollary 5.3.3. {Hint. To show that DA = DB, it suffices to show that rank[D(A - B)] = 0.}

Since $\operatorname{rank}(\operatorname{CD}) = \operatorname{rank}(D)$, by Corollary 4.4.7, we know that $R(\operatorname{CD}) = R(D)$. Like #3, we know that $R(\operatorname{CDE}) = R(\operatorname{DE})$ where E is a m x n matrix. We can set E = A - B so that $R(\operatorname{CD}(A - B)) = R(\operatorname{D}(A - B))$ => $R(\operatorname{CDA} - \operatorname{CDB}) = R(\operatorname{DA} - \operatorname{DB})$. If $\operatorname{CDA} = \operatorname{CDB}$ then $\operatorname{CDA} - \operatorname{CDB} = 0$ which means that rank($\operatorname{CDA} - \operatorname{CDB}) = \operatorname{rank}(0) = 0$. By Corollary 4.4.7, we know that if $\operatorname{rank}(\operatorname{CDA} - \operatorname{CDB}) = 0$ then $R(\operatorname{CDA} - \operatorname{CDB}) = 0$ and that $0 = R(\operatorname{CDA} - \operatorname{CDB}) = R(\operatorname{DA} - \operatorname{DB}) = 0$, thereby implying that $\operatorname{DA} - \operatorname{DB} = 0$.

5 Let V be the vector space spanned by the vectors $u_1=(1,2,3)'$ and $u_2=(1,1,-1)'$. Compute the projection of v=(1,1,1)' on

u_1 and u_2 , respectively. Then compute the projection of v onto V.

$$\begin{split} &\text{proj}_L(v) = \frac{v \cdot y}{y \cdot y}y \\ &||u_1|| = \sqrt{1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3} = \sqrt{1 + 4 + 9} = \sqrt{13} \ 14 \\ &||u_2|| = \sqrt{1 \cdot 1 + 1 \cdot 1 + (-1) \cdot (-1)} = \sqrt{1 + 1 + 1} = \sqrt{3} \\ &v \cdot u_1 = 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 = 1 + 2 + 3 = 6 \\ &v \cdot u_2 = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot -1 = 1 + 1 + -1 = 1 \\ &\text{Projection of } v \text{ on } u_1 = \frac{6}{13}(1, 2, 3)' = (\frac{6}{13}, \frac{12}{13}, \frac{18}{13})' \\ &\text{Projection of } v \text{ on } v = \frac{1}{3}(1, 1, -1)' = (\frac{1}{3}, \frac{1}{3}, \frac{-1}{3})' \\ &\text{Projection of } v \text{ on } V = (\frac{6}{13} + \frac{1}{3}, \frac{12}{13} + \frac{1}{3}, \frac{18}{13} + \frac{-1}{3})' = (0.7948718, 1.25641, 1.051282)' \end{split}$$