Cargamos las paquterías que vamos a utilizar:

#esta sólo se usa si no se ha instalado para leer archivos excel

```
In [56]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from statsmodels.formula.api import ols
In [3]: #!pip install openpyxl
```

Se carga el documento, el equipo decidió usar el archivo "10_percent_Florida", de la opción de precios de propiedades residenciales de la carpeta Zillow

```
In [7]: datos = pd.read_excel('Datos/10_percent_Florida.xlsx')
    datos.head(10)
```

Out[7]:		listingDataSource	zpid	city	state	homeStatus	$is Listing {\bf Claimed By Current Signed In User}$	isCurrentSignedInA
	0	Phoenix	42977593	tamarac	FL	for_sale	False	
	1	Phoenix	43151113	fort_lauderdale	FL	for_sale	False	
	2	Phoenix	155833951	miami_beach	FL	for_sale	False	
	3	Phoenix	44301933	miami	FL	for_sale	False	
	4	Phoenix	103464576	west_palm_beach	FL	for_sale	False	
	5	Phoenix	42907000	pompano_beach	FL	for_sale	False	
	6	Phoenix	46765794	delray_beach	FL	for_sale	False	
	7	Phoenix	43881508	miami_beach	FL	for_sale	False	
	8	Phoenix	337200955	miami	FL	for_sale	False	
	9	Phoenix	71734790	fort_lauderdale	FL	for_sale	False	

>

10 rows × 805 columns

Limpieza de datos

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2806 entries, 0 to 2805 Columns: 805 entries, listingDataSource to BUYINFEEFound In Columns dtypes: bool(109), float64(311), int64(13), object(372) memory usage: 15.2+ MB bedrooms bathrooms price yearBuilt \ zpid count 2.806000e+03 2714.000000 2720.000000 2.806000e+03 2725.00000 2.197555e+08 3.079587 2.799816 1.726639e+06 1985.11156 mean 5.058730e+08 1.484508 1.541059 4.355494e+06 22.50474 std 4.282073e+07 0.000000 0.000000 0.000000e+00 1889.00000 min 25% 4.386455e+07 2.000000 2.000000 3.850000e+05 1970.00000 50% 4.663425e+07 3.000000 2.000000 6.500000e+05 1984.00000 75% 7.173174e+07 4.000000 3.000000 1.270000e+06 2003.00000 2.141801e+09 30.000000 18.000000 8.890000e+07 2027.00000 max propertyUpdatePageLink moveHomeMapLocationLink \ count 2806.000000 0.0 0.0 33261.277263 NaN mean NaN 183.598621 NaN NaN std min 33001.000000 NaN NaN 25% 33129.000000 NaN NaN 50% 33301.000000 NaN NaN 75% 33426.000000 NaN NaN 34145.000000 NaN max NaN propertyEventLogLink editPropertyHistorylink ... \ count 0.0 0.0 ... NaN NaN ... mean NaN NaN ... std min NaN NaN ... 25% NaN NaN ... 50% NaN NaN ... 75% NaN NaN ... NaN ... max NaN price_to_rent_ratio_InfoTOD \ count 1754.000000 183.923629 mean 205.839690 std

9.090909

123.378471

155.755187

min

25%

50%

```
75%
                        187.612141
max
                       5190.700855
       contactFormRenderData.data.region_phone_number \
count
                                                   0.0
mean
                                                   NaN
std
                                                   NaN
                                                   NaN
min
25%
                                                   NaN
50%
                                                   NaN
75%
                                                   NaN
max
                                                   NaN
       contactFormRenderData.data.subtitle adTargets \
count
                                        0.0
                                                   0.0
                                        NaN
                                                   NaN
mean
std
                                        NaN
                                                   NaN
min
                                        NaN
                                                   NaN
25%
                                        NaN
                                                   NaN
50%
                                        NaN
                                                   NaN
75%
                                        NaN
                                                   NaN
max
                                        NaN
                                                   NaN
       contactFormRenderData.data.footers
                                               ADULTCOM
                                                           ANNUALDUES \
count
                                       0.0
                                            2806.000000
                                                         2806.000000
                                       NaN
                                               0.008197
                                                             0.000713
mean
std
                                       NaN
                                               0.090180
                                                             0.026693
min
                                       NaN
                                               0.000000
                                                             0.000000
                                               0.000000
                                                             0.000000
25%
                                       NaN
50%
                                       NaN
                                               0.000000
                                                             0.000000
                                               0.000000
75%
                                       NaN
                                                             0.000000
max
                                       NaN
                                               1.000000
                                                             1.000000
                      BUYINFEE BUYINFEEFound_In_Columns
       WAITINGPERIOD
count
         2806.000000
                        2806.0
                                                      0.0
                                                      NaN
            0.002851
                           0.0
mean
            0.053328
std
                           0.0
                                                      NaN
            0.000000
min
                           0.0
                                                      NaN
25%
            0.000000
                           0.0
                                                      NaN
50%
            0.000000
                           0.0
                                                      NaN
            0.000000
75%
                           0.0
                                                      NaN
max
            1.000000
                           0.0
                                                      NaN
```

```
[8 rows x 324 columns]
```

Con estos visuales podemos ver los datos a analizar

Ahora haremos un histograma, sólo contemplaremos los datos que nos parezcan relevantes de la tabla

```
In [17]: datos[['bedrooms', 'bathrooms', 'price', 'latitude', 'longitude']].hist(bins = 50, figsize = (20, 15))
plt.show()
```


Las variables que no se vieron representadas en los gráficos fueron: 'city', 'state', 'homeStatus', esto es debido a que son textos para ello debemos trasformarlas con ayuda de las dummies con ayuda del comando pd.get_dummies.

Filtro

Hacemos un filtro de los datos basándonos en el histograma anterior, en este vamos a contemplar los inmuebles que esten arriba de 1000 dólares, pero por debajo de 20000000 de dólares, no contemplaremos datos más grandes a estos puesto que son pocos y causan ruido inecesario en el modelo

```
In [20]: datos_1 = datos[(datos['price'] > 1000) & (datos['price'] < 20000000)]
    datos_1[['bedrooms','bathrooms', 'price', 'latitude', 'longitude']].hist(bins = 50, figsize = (20, 15))
    plt.show()</pre>
```


En este histograma haremos un filtro de las recamaras escogeremos que sea mayor a 0 y menor a 10, no contemplaremos datos más grandes a estos puesto que son pocos y causan ruido inecesario en el modelo

```
In [23]: datos_1 = datos_1[(datos_1['bedrooms'] > 0) & (datos_1['bedrooms'] < 10)]
    datos_1[['bedrooms','bathrooms', 'price', 'latitude', 'longitude']].hist(bins = 50, figsize = (20, 15))
    plt.show()</pre>
```


En este histograma haremos un filtro de las recamaras escogeremos que sea mayor a 0 y menor a 10, no contemplaremos datos más grandes a estos puesto que son pocos y causan ruido inecesario en el modelo

```
In [27]: datos_1 = datos_1[(datos_1['bathrooms'] > 0) & (datos_1['bathrooms'] < 8)]
    datos_1[['bedrooms','bathrooms', 'price', 'latitude', 'longitude']].hist(bins = 50, figsize = (20, 15))
    plt.show()</pre>
```


27.0

Meteremos un filtro para latitud y longitud tomando en cuenta la concentración de los datos

En suma


```
In [40]: attributes = ['bedrooms', 'bathrooms', 'price', 'latitude', 'longitude']
    scatter_matrix(datos_1[attributes], figsize=(15, 10), alpha=0.5, diagonal='hist')
    plt.show()
```


Regresión Líneal Multiple

El modelo es una regresión lineal múltiple porque tiene diferentes variables independientes.

Usamos "C()" para crear la regresión lineal múltiple de manera manual, porque estamos usando variablescategoricas y numéricas. Las variables numéricas del modelo son:

- price
- bedrooms
- badrooms
- latitude
- longitude

Las variables de texto son:

- city
- state
- homeStatus

Como no son iguales nuestras variables porque son de texto y númericas, la función C() crea la codificación automáticamente de las variables de texto. Además statsmodels usa la librería Patsy para convertir variables categóricas en variables automáticamente.

Explicación de la composición del modelo

Se va a predicir el precio de una propiedad en función de sus:

- Características físicas (número de recámaras y baños)
- Ubicación geográfica (latitud y longitud)
- Ubicación administrativa (ciudad y estado)
- El estatus de publicación (vendida, en venta, pendiente, etc.).

El C(...) le dice al modelo que esas variables son categóricas (texto), y que debe convertirlas automáticamente en variables dummy. Así, por ejemplo, puedes saber si estar en "Miami" o tener status "Sold" tiene un impacto positivo o negativo en el precio.

Dummies

```
In [46]: # 5. Agrupar categorías poco frecuentes (city, state)
frecuentes_ciudades = datos_1['city'].value_counts().nlargest(20).index
```

```
datos 1.loc[:, 'city'] = datos 1['city'].where(datos 1['city'].isin(frecuentes ciudades), other='Otros')
         frecuentes_estados = datos_1['state'].value_counts().nlargest(10).index
         datos_1.loc[:, 'state'] = datos_1['state'].where(datos_1['state'].isin(frecuentes_estados), other='Otros')
In [48]: # 6. Crear variables dummy para city, state y homeStatus
         datos encoded = pd.get dummies(datos_1, columns=['city', 'state', 'homeStatus'], drop_first=True)
In [50]: # 7. Separar variables predictoras y objetivo
         X = datos encoded.drop(columns=['price'])
         y = datos encoded['price']
In [58]: # 8. Imputar valores faltantes en variables numéricas
         X numeric = X.select dtypes(include=[np.number])
         X_numeric = X_numeric.dropna(axis=1, how='all') # eliminar columnas con solo NaNs
         imputer = SimpleImputer(strategy='mean')
         X_numeric_imputed = imputer.fit_transform(X_numeric)
In [60]: # 9. Escalar variables numéricas
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X numeric imputed)
In [62]: # 10. Dividir en conjuntos de entrenamiento y prueba
         X train, X test, y train, y test = train test split(X scaled, y, test size=0.2, random state=42)
In [64]: # 11. Entrenamiento de modelos
         lr = LinearRegression().fit(X_train, y_train)
         ridge = Ridge(alpha=1.0).fit(X_train, y_train)
         lasso = Lasso(alpha=0.1, max_iter=10000).fit(X_train, y_train)
In [66]: # 12. Evaluación de modelos
         def evaluar modelo(nombre, modelo):
             y pred = modelo.predict(X test)
             print(f'\n--- {nombre} ---')
             print(f'MAE: {mean absolute error(y test, y pred):,.2f}')
             print(f'MSE: {mean squared error(y test, y pred):,.2f}')
             print(f'RMSE: {np.sqrt(mean squared error(y test, y pred)):,.2f}')
             print(f'R2: {r2 score(y test, y pred):.4f}')
```

```
evaluar_modelo('Regresión Lineal', lr)
         evaluar_modelo('Ridge', ridge)
         evaluar_modelo('Lasso', lasso)
        --- Regresión Lineal ---
        MAE: 0.00
        MSE: 0.00
        RMSE: 0.00
        R<sup>2</sup>: 1.0000
        --- Ridge ---
        MAE: 6,682.00
        MSE: 394,945,519.39
        RMSE: 19,873.24
        R<sup>2</sup>: 0.9995
        --- Lasso ---
        MAE: 4,913.59
        MSE: 1,257,538,304.26
        RMSE: 35,461.79
        R^2: 0.9986
In [70]: # 13. Modelo con statsmodels (opcional)
         # Puedes usar solo algunas variables si deseas claridad
         formula = 'price ~ bedrooms + bathrooms + latitude + longitude + yearBuilt + price_to_rent_ratio_InfoTOD + pageViewCo
         modelo = ols(formula, data=datos_1).fit()
         modelo_stats = ols(formula, data=datos_1).fit()
         print(modelo_stats.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:									
Model:	OLS	Adj. R-squared:		0.528							
	Least Squares			182.0							
Date: F	ri, 18 Jul 2025	Prob (F-sta	ntistic):	3.02							
Time:	23:55:49	Log-Likelih	nood:	-1							
No. Observations:	1294	AIC:		3.96							
Df Residuals:	1285	BIC:		3.965e+04							
Df Model:	8										
Covariance Type:	nonrobust										
	coef			P> t	_	0.975]					
Intercept	2.155e+08		6.266			2.83e+08					
bedrooms	-2.944e+05	4.07e+04	-7.235	0.000	-3.74e+05	-2.15e+05					
bathrooms	3.331e+05	5.01e+04	6.655	0.000	2.35e+05	4.31e+05					
latitude	-7.783e+05	1.02e+05	-7.610	0.000	-9.79e+05	-5.78e+05					
longitude	2.412e+06	4.2e+05	5.738	0.000	1.59e+06	3.24e+06					
yearBuilt	-1366.2966	1758.327	-0.777	0.437	-4815.803	2083.210					
price_to_rent_ratio_In	foTOD 3269.7612	339.528	9.630	0.000	2603.671	3935.852					
pageViewCount	49.3853	50.999	0.968	0.333	-50.665	149.435					
livingArea		57.390	14.269	0.000	706.330	931.505					
Omnibus:	======================================			2.013							
Prob(Omnibus):	0.000	Jarque-Bera (JB):		270636.762							
Skew:	6.336	Prob(JB):		0.00							
Kurtosis:	72.706	Cond. No.		3.38e+06							
=======================================					=====						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.38e+06. This might indicate that there are strong multicollinearity or other numerical problems.