Documentation for Two-sample Independent t Test

Minn M. Soe, MD, MPH, MCTM: msoe@sph.emory.edu Kevin M. Sullivan, PhD, MPH, MHA: cdckms@sph.emory.edu

This analysis is conducted to observe whether there is a significant difference in means between two independent samples, given respective standard deviation or standard error. The data input screen is as follows:

Calculate	Two-Sample Independent <i>t</i> Test									
	Confidenc	e Interval (%) {i	two-sided}	95	Enter a value between 0 and usually 95%					
		Sample Size	Mean	Std. Dev.	(or)	Std. E				
	Group 1	7	11.57	8.81						
	Group 2	18	7.44	3.698						

The input values requested are:

- Two-sided confidence intervals (%) that can be chosen are between 0 and 100.
- Enter individual sample means.
- Enter standard deviation (or) standard error of individual sample mean.

The result of the calculation is shown next:

Two-Sample Independent t Test											
Input Data											
al 95%											
Sample size 7 18	Mean 11.57 7.44	Std. Dev. 8.81 3.698	Std. Error								
£ statistics	df	p-value¹	Mean Difference	Lower Limit	Upper I						
1.68286 1.19986	23 7	0.105931 0.269221	4.13 4.13	-0.946799 -4.00922	9.206 12.26						
Test for equality of variance ²		<i>df</i> (numerator,denominator) 6,17		p-value¹ 0.00429641							
	Sample size 7 18 t statistics 1.68286 1.19986	Input	Input Data 95%	Input Data 95%	Input Data 95%						

¹ p-value (two-tailed)

Results from OpenEpi open source calculator--t-testMean

The interpretation of the test is that there is no significant difference between the means of these two groups. It is noteworthy that before interpreting as above, F test for the equality of variances from these two independent, normally distributed samples should be first checked. If the two variances are not significantly different, ie. p-value of test for equality of variance is >0.05, the result of difference in means should be interpreted from t statistics and p-value based on equal variance. In the example above, the two variances are significantly different, ie. p-value of F test is 0.004, and therefore, the p-value of difference in means is 0.2424.

In addition, the confidence interval of difference in means is also displayed.

The formulae for two-sample t test are as follows:

All statistics are derived from formulae of the text 'Fundamentals of Biostatistics' (5th edition) by Bernard Rosner; For two-sample t test with equal variance, statistics were

² Hartley's f test for equality of variance

based on equation 8.11 to 8.13; If assuming unequal variance, statistics were based on equation 8.21 to 8.23.

• Two-sample *t* test with equal variance:

$$t = \frac{[X_1 - X_2]}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where
$$S = \frac{[(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2]}{n_1 + n_2 - 2}$$

$$df = (n_1 - 1) + (n_2 - 1) = n_1 + n_2 - 2$$

$$X_1 - X_2 \pm t_{(n_1 + n_2 - 2, 1 - \alpha/2)} \times S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

S = pooled estimate of the variance.

$$df =$$
degree of freedom

• Two-sample t test with unequal variance: Satterthwaite's method (see also Welch's modified t test)

$$t = \frac{[X_1 - X_2]}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$df = round \qquad \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(S_{1}^{2}/n_{1}\right)^{2}}{n_{1}-1} + \frac{\left(S_{2}^{2}/n_{2}\right)^{2}}{n_{2}-1}}$$

$$X_{1} - X_{2} \pm t_{(df, 1-\alpha/2)} \times \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}$$

df = approximate degree of freedom. Standard error=Standard deviation/ \sqrt{n}

• Hartley's f test for equal variance:

$$f$$
 statistics = S^2_L / S^2_S

 S_L^2 = the larger of two variances; S_S^2 = the smaller of two variances

Note: test for equality of variance is based on equation 8.15-8.16.

Reference:

- Bernard Rosner. Fundamentals of Biostatistics (5th edition).
- Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. *Biometrika* 29, 350-362.
- Statterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. *Biometrics Bulletin* 2, 110-114.

Acknowledgement:

Default values were obtained from example 8.18 (pg. 297-8) described in 'Fundamentals of Biostatistics' (5th edition) by Bernard Rosner.