Analysis II-Revelations

Sommersemester 2018

INHALTSVERZEICHNIS

	Metrische Räume 1.1 Vollständigkeit	1 1
	Differenzierbarkeit 2.1 Differenzierbarkeit allgemein	3
3	Mannigfaltigkeiten 3.1 Manngifaltigkeiten allgemein	5
	Übungsaufgaben A.1 some useful stuff from one of the exercise sheets	7 7

1. METRISCHE RÄUME

1.1 Vollständigkeit

Proposition 1.1.1. Sei (X, d) ein kompakter metrischer Raum. Dann ist (X, d) vollständig.

2.1 Differenzierbarkeit allgemein

Beispiel 2.1.1. Die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \ x \mapsto \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = 0 \end{cases}$$

ist in \mathbb{R}^2 total differenzierbar.

Beweis. Es gilt bspw.

$$\frac{\partial f}{\partial x} = \begin{cases} \frac{xy^4}{(x^2 + y^2)^2} & (x, y) \neq 0 \\ 0 & (x, y) = 0 \end{cases}.$$

Es reicht jetzt,

$$\lim_{(x,y)\to 0} \frac{\partial f}{\partial x} = 0$$

für die Fallunterscheidungen $x \geq y$ und x < y zu zeigen, weil damit bereits alle möglichen Teilfolgen betrachtet wurden.

3. MANNIGFALTIGKEITEN

3.1 Manngifaltigkeiten allgemein

Proposition 3.1.1. Es gibt keinen Homöomorphismus $\mathbb{R}^m \to \mathbb{R}^n$, falls $m \neq n$.

Korollar 3.1.2. Die Dimension einer zusammenhängenden Untermannigfaltigkeit des \mathbb{R}^d ist eindeutig.