"Energieholzschätzer"

Modell zur Berechnung von Energieholzmengen

Teil A: Grundlagen

Renato Lemm Fritz Frutig Oliver Thees (Leitung)

FE Waldressourcen und Waldmanagement Gruppe "Forstliche Produktionssysteme" Eidg. Forschungsanstalt WSL 27.06.2018

Das Modell "Energieholzschätzer" ist Teil der Sammlung von Produktivitätsmodellen der Holzernte, welche von der Eidg. Forschungsanstalt WSL entwickelt wurden und unter dem Namen "HeProMo" auf dem Internet zur Verfügung gestellt werden (http://www.waldwissen.net). Mit dem Modell kann die in einem Holzschlag zu erwartende Energieholzmenge geschätzt werden. Diese Energieholzmenge hängt ab vom Schaftholzvolumen, vom mittleren BHD, vom Zopfdurchmesser ab welchem Energieholz ausgehalten wird, von den Ernteverlusten und von den Anteilen Rundholz, Astderbholz und Reisig, welche als Energieholz genutzt werden (wie z.B. Rotholz).

Der Teil A des Dokumentes beschreibt das Modell. Der Teil B "Analyse der Datensätze und Diskussion der Modellierung" fehlt, da keine Datensätze ausgewertet wurden.

Bearbeiter	Datum	Kommentar
R. Lemm	30.06.2016	
R.Lemm	20.04.2018	Neue Version ohne Biomasseschätzer
F. Frutig/R.Lemm	27.06.2018	Schlussredaktion

Inhaltsübersicht

1	Begi	'iffe	3
2	Date	engrundlagen	3
3		ussgrössen und Ergebnisse	
	3.1	Einflussgrössen	
	3.2	Ergebnisse	
4	Bere	echnungen	4
	4.1	Berechnung des Energieholzvolumens (Energieholzanfall)	4
	4.2	Berechnung des Volumens an Schaftholz	5
	4.3	Berechnung des Anteils Energieholz am Schaftholz bei unterschiedlichen	
		Zopf- und Brusthöhendurchmessern	7
	4.4	Berechnung des Volumens von Astderbholz beim Laubholz	
	4.5	Berechnung des Volumens an Reisig beim Nadelholz	
	4.6	Ernteverluste	
5	Lite	raturverzeichnis	13
6	Beu	rteilung der Qualität des Modells "Energieholzschätzer"	15
7	Anh	angFehler! Textmarke nicht de	finiert.

1 Begriffe

Schaftholz

Oberirdisches Holz des Stammes vom Stammanlauf bis zum Baumwipfel inkl. Stock und Rinde, jedoch ohne Astholz.

Rundholz

Nach den «Schweizerischen Holzhandels-Gebräuchen» sortierbares Holz ohne Rinde der Klassen 1 bis 6.

Derbholz

Oberirdische Baumteile (Holzmasse von Schaft und Ästen in Rinde), deren Durchmesser über der Rinde mindestens 7 cm beträgt.

Astderbholz

Holzmasse von Ästen in Rinde mit einem Durchmesser von mindestens 7 cm.

Reisig

Ast-und Schaftholz mit einem Durchmesser von weniger als 7 cm.

Energierundholz

Energierundholz besteht aus grob entastetem Schaftholz. Ebenso werden rotfaule Schaftabschnitte oder solche schlechterer Qualität dem Energierundholz zugeteilt.

2 Datengrundlagen

Die verschiedenen Grundlagen zur Berechnung sind

- für das Schaftholzvolumen: Tarif LFI (Brassel, P., Lischke, H. (eds): 2001, S. 166 ff)
- für den Anteil an Energieholz am Schaft (ohne Stock): Sortimentssimulator "SorSim" (Holm et al 2012)
- für Astderbholz und Reisig: Methodenhandbuch des LFI (Brassel und Lischke 2001, S. 173).

3 Einflussgrössen und Ergebnisse

3.1 Einflussgrössen

- Zopfduchmesser, mittlerer Brusthöhendurchmesser des ausscheidenden Bestandes (BHD_mit),
 Baumart und Ernteverlust beim Derbholz definieren die Aufteilung in Energieholz 1 und Rundholz
- Anteil des Rundholzes, der wegen schlechter Qualität oder wegen guter Energieholzpreise als Energieholz 2 genutzt wird
- Der Anteil des Astderbholzes, der als Energieholz genutzt wird, bestimmt das Energieholz 3
- Der Anteil des Reisigs, der als Energieholz genutzt wird, bestimmt das Energieholz 4

3.2 Ergebnisse

Die Gesamtmenge an Energieholz setzt sich aus dem Mengen der Kategorien Energieholz 1, 2, 3,4 zusammen:

- Volumen an Energieholz aus dem Schaftholz (Energieholz 1)
- Volumen an Energieholz aus dem Rundholz (Energieholz 2)
- Volumen an Astderbholz, das als Energieholz genutzt wird (Energieholz 3)
- Volumen an Reisig, das als Energieholz genutzt wird (Energieholz 4).

Abbildung 1: Einflussgrössen (kursiv) auf den Energieholzanfall in einem Holzschlag.

4 Berechnungen

4.1 Berechnung des Energieholzvolumens (Energieholzanfall)

```
Die Berechnung des Schaftholzvolumens kann mit dem Modell "Berechnung Schaftholzvolumen eines
Baumes" erfolgen oder vorgegeben werden.
Für einen Nadelholz-Schlag gilt:
Energieholz 1_N = AnteilEnergieholz\_vomSchaft_N \times (VSH_N - VStock) \times (1 - EVDH_N)
Energieholz 2_N = (1 - AnteilEnergieholz\_vomSchaft_N) \times AE_N \times (VSH_N - VStock) \times (1 - EVDH_N)
Energieholz 3_N = AAD_N \times VADH_N \times (1 - EVDH_N)
Energieholz 4_N = AR_N \times VR_N \times (1 - EVNDH_N)
Energieholz 1_N + Energieholz 2_N + Energieholz 3_N + Energieholz 4_N
                                                                                                        (Formel 1)
Für einen Laubholz-Schlag gilt:
Energieholz \ 1_L = AnteilEnergieholz\_vomSchaft_L \times (VSH_L - VStock) \times (1 - EVDH_L)
\textit{Energieholz} \ 2_{\textit{L}} = (1 - \textit{AnteilEnergieholz\_vomSchaft}_{\textit{L}}) \times \textit{AE}_{\textit{L}} \times (\textit{VSH}_{\textit{L}} - \textit{VStock}) \times (1 - \textit{EVDH}_{\textit{L}})
Energieholz 3_L = AAD_L \times VADH_L \times (1 - EVDH_L)
Energieholz 4_L = AR_L \times VR_L \times (1 - EVNDH_L)
Energieholz L_L = Energieholz 1_L + Energieholz 2_L + Energieholz 3_L + Energieholz 4_L
L :
            Laubholz
            Nadelholz
N :
```

AnteilEnergieholz_vomSchaft : vgl. Tabelle 5

VSH: Volumen Schaftholz o. R. VADH: Volumen Ast — Derbholz i. R.

VR: Volumen Reisig i.R.

VStock: Volumen Stock i.R. (Stockhöhe 30 cm, ca. 3% vom Schaftholz: SORSIM (Holm et al. 2012))

EVDH: Ernteverlust beim Derbholz, s. Tab. 8: EVNDH: Ernteverlust beim NichtDerbholz, s. Tab. 8:

AE: Anteil Rundholz ohne Stock, der wegen schlechter Qualität als Energieholz

verwendet wird

AAD: Anteil Astderbholz, der als Energieholz verwendet wird. AR: Anteil Reisig, der als Energieholz verwendet wird

Unbekannte Grössen sind:

• Schaftholzvolumen

- AnteilEnergieholz_vom Schaft: Anteil an Energieholz am Schaft ohne Stock
- AE: Anteil Rundholz ohne Stock, der wegen schlechter Qualität als Energieholz genutzt wird
- AAD: Anteil Astderbholz, der als Energieholz genutzt wird (Annahme Laubholz 100%, Nadelholz 0%)
- AR: Anteil an Reisig, der als Energieholz genutzt wird (Annahme Laubholz 0%, Nadelholz 100%).

Um diese Grössen zu bestimmen geht man wie folgt vor:

- Berechnung des Schaftholzvolumens oder direktes Erfassen des Schaftholzvolumen als Eingangsgrösse
- Die Berechnung des Volumenanteils Energieholz am Schaftholz ist abhängig vomZopfdurchmesser, bis zu welchem man Rundholz aushalten will oder kann. Die Ergebnisse der Berechnungen sind in Tabelle 5 zusammengestellt und in Abbildung 3 visualisiert.
 - Der Anteil Rundholz ohne Stock AE, der z.B. wegen schlechter Qualität als Energieholz genutzt wird, ist eine Eingangsgrösse.
- Astderbholz, d.h. Holz das dicker als 7 cm i.R. ist, findet man mengenmässig fast nur beim Laubholz (Abb. 3 und 4). Es wird angenommen, dass 100% davon energetisch oder stofflich genutzt werden. Der Anteil, der energetisch oder stofflich genutzt wird, ist eine Eingangsgrösse.
- Reisig (Holz dünner als 7 cm i.R.) findet man mengenmässig bedeutend nur beim Nadelholz (Abb. 7).
 Der Anteil des Reisigs, das energetisch oder stofflich genutzt wird, liegt zwischen 0 und 100%. Beim Wert 0% bleibt alles Reisig im Bestand, z.B. aus Gründen des Nährstoffentzuges. Beim Wert 100% wird alles Reisig als Energieholz genutzt (keine Ernteverluste).
 - Der Anteil, der energetisch oder stofflich genutzt wird, ist eine Eingangsgrösse.
- Die Abzüge durch Ernteverluste sind zu berücksichtigen. Defaultwerte sind in Tabelle 8 zu finden.

4.2 Berechnung des Volumens an Schaftholz

Die Berechnung der Schaftholztarife **von Einzelbäumen** erfolgt nach Formel 1 (Brassel, P., Lischke, H. (eds): 2001, S. 166 ff)

$$V_K = e^{(b_{0k} + b_{1k} \times \ln(Bhd) + b_{2k} \times \ln^4(Bhd) + b_{3k} \times GWL + b_{4k} \times d_{dom} + b_{6k} \times H\ddot{u}M}$$
 Formel 1

Mit:

 V_K : Schaftholzvolumen in m^3 in Rinde

k: Tarifnummer 201 – 205 für Nadelholz; 216 – 220 für Laubholz (Tab. 1)

 $b_{0k} - b_{6k}$: Modellkoef fizienten (Tab. 4) Bhd: Brusthöhendurchmesser in cm

GWL: Gesamtwuchsleistung in kg Trockensubstanz pro Hektar und Jahr (Tab. 2)

 d_{dom} : mittlerer Bhd der hundert stärksten Bäume pro Hektar (Tab. 3 Ersatz durch Entwicklungsstufe)

HüM: Höhe über Meer in m

 b_{7k} : Angabe, ob der Baum zur Ober – oder Unterschicht gehört. Wird hier weggelassen.

Tabelle 1:Definition der Tarif Nummern (für die Auswahl der Koeffizienten in Tabelle 4)

Region	LBH Nr (Buche)	NDH Nr (Fichte)
Jura	216	201
Mittelland	217	202
Voralpen	218	203
Alpen	219	204
Alpen Südseite	220	205

Tabelle 2: Definition der Wuchsleistungen

GWL [kg/ha und J]	Wert im Modell
gering (<1500)	1500
mässig (1500-3000)	2300
gut (3000-4500)	3700
sehr gut (> 4500)	5000

Tabelle 3: Definition der Entwicklungsstufen

Entwicklungs-Stufe	Wert im Modell d _{dom} [cm]
Stangenholz 12 - 30cm	21
Baumholz I 31 - 40cm	35
Baumholz II 41 - 50cm	45
Baumholz III >50cm	55

Tabelle 4: Parameter zu den Tarifnummern 201-205 und 216-220

Tarif-Nummern	b0	b1	b2	b3	b4	b5	b6	b7
201	-9.6939329	2.8757162	-0.00360841	2.38E-05	0.006454553	-0.35423996	-0.00019064	-0.29332692
202	-10.190717	3.01181565	-0.00436003	5.66E-05	0.005186263	0	-5.09E-05	-0.12489026
203	-10.40762	3.14895427	-0.00476514	3.67E-05	0.005617423	-0.29285027	-0.00020783	-0.34535746
204	-11.225599	3.43239299	-0.0058899	3.39E-05	0.005502126	-0.28350633	-0.00022606	-0.37261846
205	-11.024619	3.20871603	-0.0050543	1.15564E-04	0.003814261	-0.25367643	-4.37E-05	-0.36882915
200	11.111255	3 30010050	0.00510151	0	n nnesennna	V V623VCV1	0.00015744	N 2054220
216	-9.7605762	2.83855622	-0.00324786	4.15E-05	0.006981857	-0.19001432	-0.00015251	-0.39760821
217	-10.869359	3.20963764	-0.00324780	5.83E-05	0.00326154	-0.08886847	0.00013231	-0.4372086
							0.00015084	
218	-10.596355	3.11284073	-0.00462775	4.70E-05	0.008531597	-0.28987184	-0.00015084	-0.27801706
219	-11.036856	3.27767482	-0.00587506	3.35E-05	0.014177976	-0.12590653	-0.00039528	-0.51779497
220	-8.1151843	2.17166411	-0.00086928	0	0.007345411	-0.22094684	0	-0.17981836

Abbildung 2: Beispiele von LFI Schaftholz-Tarifen für Laubholz (Buche) und Nadelholz (Fichte) für vier Produktionsregionen:

NDH = Fichte, LBH = Buche; GWL=4500; Höhe ü. Meer=1500.

Um das Volumen des ausscheidenden Bestandes zu erhalten, wird das Volumen des durchschnittlichen Einzelbaumes (berechnet aus BHD_mit) mit der Anzahl Bäume multipliziert.

4.3 Berechnung des Anteils Energieholz am Schaftholz bei unterschiedlichen Zopf- und Brusthöhendurchmessern

Die Berechnung des Anteils Energieholz am Schaft bei unterschiedlichem Zopf und BHD wurde mit dem Sortimentssimulator "Sorsim" (Holm et al 2012) durchgeführt. Dabei wurden jeweils ein theoretischer Holzschlag Fichte und ein theoretischer Holzschlag Buche sortimentiert.

Als Modellbestände wurden Bestände mit einem mittleren BHD von 15 cm, 25 cm, 35 cm, 45 cm und 55 cm gewählt. Für jeden dieser Bestände wurde für die Durchmesserverteilung der Bäume eine Weibullfunktion (Formel 4) erzeugt. Der Lageparameter a wurde auf 0 gesetzt, der Massstabparameter b auf den mittleren Brushöhendurchmesser und der Formparameter c auf den Wert 5. Die Scheitelhöhe wurde pro Baum so gewählt, dass der Schlankheitsgrad 80 betrug. Aus den Simulationen mit dem Sortimentssimulator SorSim (Holm et al 2012) konnte pro Bestand das Verhältnis von Energieholz in Rinde zu Schaftholz ohne Rinde für unterschiedliche Zopfdurchmesser berechnet werden. Die Berechnungen wurden für das Schaftholz ohne oberirdischen Stock (30 cm) durchgeführt. Die Ergebnisse sind in Tabelle 5 für Fichte als Nadelholzvertreter und für Buche als Laubholzvertreter zusammengestellt.

$$P(x) = 1 - e^{-\left(\frac{x-a}{b}\right)^{c}}$$
 Formel 4

Tabelle 5: Ergebnisse der Sortimentseinteilung mit "SorSim" für unterschiedliche Zopfdurchmesser (Zopf) und mittlere Brusthöhendurchmesser (BHD_mit) eines Holzschlages.

BHD_mit	Zopf	_	nteil AE vom ftholz
[cm]	[cm]	Fichte	Buche
15	0	0.000	0.000
15	7	0.056	0.056
15	10	0.235	0.247
15	15	0.611	0.572
15	20	1.000	1.000
25	0	0.000	0.000

25	7	0.019	0.011
25	10	0.038	0.045
25	15	0.148	0.127
25	20	0.383	0.399
25	25	0.720	0.694
25	30	0.967	0.913
25	35	1.000	1.000
35	0	0.000	0.000
35	7	0.009	0.006
35	10	0.015	0.014
35	15	0.061	0.053
35	20	0.137	0.162
35	25	0.314	0.284
35	30	0.613	0.519
35	35	0.854	0.780
35	40	0.979	0.928
35	45	1.000	0.987
35	50	1.000	1.000
45	0	0.000	0.000
45	7	0.004	0.005
45	10	0.007	0.007
45	15	0.032	0.027
45	20	0.072	0.075
45	25	0.161	0.143
45	30	0.332	0.270
45	35	0.564	0.447
45	40	0.803	0.645
45	45	0.935	0.821
45	50	0.985	0.945
45	55	1.000	0.982
45	60	1.000	1.000
55	0	0.000	0.000
55	7	0.002	0.003
55	10	0.004	0.004
55	15	0.019	0.015
55	20	0.041	0.038
55	25	0.086	0.077
55	30	0.173	0.140
55	35	0.299	0.229
55	40	0.502	0.363
55	45	0.742	0.505
55	50	0.894	0.673
55	55	0.932	0.806
55	60	0.989	0.915
55	65	1.000	0.983
55	70	1.000	1.000

Für das Modell werden die Zopfwerte 7, 10, 15, 20, ... ,65, 70 cm verwendet. Für Bestände mit einem mittleren Brusthöhendurchmesser (BHD_mit), der von den tabellierten Werten abweicht, können die Energieholzanteile interpoliert werden.

Abbildung 3: Anteil Energieholzvolumen eines Schaftes bei unterschiedlichem Brusthöhendurchmesser (BHD_mit) und verschiedenen Zopfdurchmessern, ab welchen Energieholz ausgehalten wird.

4.4 Berechnung des Volumens von Astderbholz beim Laubholz

Das Energieholz aus Astderbholz berechnet sich folgendermassen:

$$AAD \times VADH \times (1 - EVDH)$$

$$p_i = \frac{VADH_L}{VSH_L} = \frac{Exp(logit(p_i))}{1 + Exp(logit(p_i))}$$
 (Brassel und Lischke 2001, S. 173)

$$logit(p_i) = b_0 + b_1 \times Bhd + b_2 \times h_2 + b_3 \times h_3$$

 $VADH_L$: Volumen Astderbholz beim Laubholz VSH_L : Volumen Schaftholz i. R. Laubholz $EVDH_L$: Ernteverlust Derbholz z. B. Tabelle 8

AAD: Anteil des Astderbholzes, der als Energieholz verwendet wird.

Die Koeffizienten sind in Tabelle 6 zusammengestellt.

Für Fichte gilt: $p_i = 0$ d.h. Astderbholz beim Nadelholz ist ungefähr = 0.

Tabelle 6: Astderbholz-Koeffizienten

Baumart/Region	Höhe ü.M. min.	Höhe ü.M. max.	b0	b1	b2	b3	h2	h3
LBH Jura	600	1250	-4.8322966	0.05631471	0	0	1	0
LBH Jura	>1250	3000	-4.8322966	0.05631471	0		0	1
LBH Jura	0	600	-4.8322966	0.05631471	0	0	0	0
LBH Mittelland	>600	1250	-5.9903924	0.10188909	0	0	1	0
LBH Mittelland	>1250	3000	-5.9903924	0.10188909	0	0	0	1
LBH Mittelland	0	600	-5.9903924	0.10188909	0	0	0	0
LBH Voralpen AlpenS	>600	1250	-4.9853383	0.07394173	-0.7056977	0	0	1
LBH Voralpen AlpenS	>1250	3000	-4.9853383	0.07394173	-0.7056977	0	1	0
LBH Voralpen	0	600	-4.9853383	0.07394173	-0.7056977	0	0	0

AlpenS								
NDH Alpen	1000	1500	-8.733078	0.05920815	0	0	1	0
NDH Alpen	>1500	3000	-8.733078	0.05920815	0	0	0	1
NDH andere	600	1250	-8.733078	0.05920815	0	0	1	0
NDH andere	>1250	3000	-8.733078	0.05920815	0	0	0	1
NDH andere	0	600	-8.733078	0.05920815	0	0	0	0

Die Abbildungen 4 und 5 zeigen den Zusammenhang zwischen Schaftholz i.R. ohne Stock und Astderbholz inkl. Reisig i.R. ohne Ernteverluste für Buche in den Voralpen bzw. im Mittelland.

Abbildung 4: Zusammenhang zwischen Schaftholz i.R. ohne Stock und Astderbholz inkl. Reisig i.R. ohne Ernteverluste einer Buche in den **Voralpen**. Die Angaben beziehen sich auf einen einzelnen Baum.

Abbildung 5: Zusammenhang zwischen Schaftholz i.R. ohne Stock, Astderbholz inkl. Reisig i.R. ohne Ernteverluste einer Buche im **Mittelland**. Die Angaben beziehen sich auf einen einzelnen Baum.

4.5 Berechnung des Volumens an Reisig beim Nadelholz

Aus dem Schaftholzvolumen kann das Reisigvolumen VR berechnet werden (Quelle: Programmiercode des LFI).

Der Beitrag des Reisigs zum Energieholz beträgt:

$$AR \times VR_N \times (1 - EVNDH)$$

$$p_i = \frac{VR_N}{VSH_N} = \frac{Exp(logit(p_i))}{1 + Exp(logit(p_i))}$$

$$logit(p_i) = b_0 + b_1 \times Bhd + b_2 \times h_2 + b_3 \times h_3$$

 VR_N : Volumen an Reisig beim Nadelholz VSH_N : Volumen Schaftholz i. R. Nadelholz

 $EVNDH_N$: Ernteverlust beim NichtDerbholz Tabelle 8

AR : Anteil des Reisigs, der als Energieholz verwendet wird .

die Koeffizienten sind in Tabelle 7 zusammengestellt

Tabelle 7: Koeffizienten für Reisig

Baumart/Region	Höhe	Höhe	b0	b1	b2	b3	h2	h3
	ü:M.min	ü:M.max						
LBH Jura	601	1250	-0.84755833	-0.03342084			1	0
LBH Jura	>1250	3000	-0.84755833	-0.03342084			0	1
LBHMittelland	601	1250	-0.75961939	-0.03355523			1	0
LBH Voralpen	601	1250	-2.2772572	-0.03117276	1.21051434		1	0
Alpen								
LBH Voralpen	>1250	3000	-2.2772572	-0.03117276	1.21051434		0	1
Alpen								
LBH Voralpen	0	600	-2.2772572	-0.03117276	1.21051434		0	0
Alpen								
NDH Alpen	1000	1500	-1.20641326	-0.01918645	0	0.44296676	1	0
NDH Alpen	>1500	3000	-1.20641326	-0.01918645	0	0.44296676	0	1
NDH andere	601	1250	-1.20641326	-0.01918645	0	0.44296676	1	0
Regionen								
NDH andere	>1250	3000	-1.20641326	-0.01918645	0	0.44296676	0	1
Regionen								
NDH Andere	0	600	-1.20641326	-0.01918645	0	0.44296676	0	0

Die Abbildung 6 zeigt den Zusammenhang zwischen Schaftholz, Astderbholz und Reisig bei Fichten unterschiedlichen Brusthöhendurchmessers (Bhd) in den Alpen, ohne Berücksichtigung von Ernteverlusten.

Abbildung 6: Schaftholz, Astderbholz und Reisig bei Fichten unterschiedlichen Brusthöhendurchmessers (Bhd) in den Alpen, jeweils ohne Ernteverlust.

4.6 Ernteverluste

In Tabelle 8 werden durchschnittliche Werte für die Ernteverluste beim Derbholz (EVDH) und beim NichtDerbholz (EVNDH) ausgewiesen. Diese Werte wurden aus einer Vielzahl von Studien (siehe Tabelle 9) gemittelt und können als Defaultwerte verwendet werden.

Tabelle 8: Ernteverluste in % nach verschiedenen Quellen

Baumart	Derbholz EVDH	NichtDerbholz EVNDH
Nadelholz	8%	58%
Laubholz	13%	50%

Tabelle 9: Ernteverluste bei Aushaltung von Energieholz.

Baumartengruppe	Derbholz	Nicht- Derbholz	Quelle, zitiert bei Hepperle (2010)	Qualifizierung nach Hepperle (2010)
Nadelholz	-	70%	Sigmund und Frommherz 1999/ 2000	Erfahrungswerte, keine konkreten Untersuchungen
	10%	50%	Hepperle et al. 2007	dito
	10%	50%	Ilzhöfer 2008	dito
	10%	50%	Kaiser 2007 dito	
	10%	50%	Wöhl 2007 dito	
	10%	50%	Kreutzer 1979	Annahme für Vollbaumnutzung
	6%	60%	Wittkopf 2005	Messung, 1 Fichtenbestand,
				100-jährig
	-	69%	Lick 1989	Messung, 1 Fichtenbestand,
				Erstdurchforstung, Vollbaumnutzung mit Seilkran
	6%	72%	Hepperle 2010	Messung, 1 Fichtenbestand, 122 Fichten, Aushaltung Schaft- und Energieholz; Annahme für Aushaltung von Schaft-, Industrie- und Energieholz
Standardabweichung	4.3%	9.9%		
Mittelwert	8%	58%		
Laubholz	-	60%	Sigmund und Frommherz 1999/ 2000	Erfahrungswerte, keine konkreten Untersuchungen
	10%	40%	Hepperle 2007	dito
	10%	40%	Ilzhöfer 2008	dito
	10%	40%	Kaiser 2007	dito
	10%	40%	Wöhl 2007	dito
	-	50%	Kreutzer 1979	Annahme für Vollbaumnutzung
	25%	77%	Hepperle 2010	Messung, 1 Buchenbestand, 40 Bäume, Aushaltung Schaft- und Energieholz Annahme für Aushaltung von Schaft-, Industrie- und Energieholz (konventionell)
Standardabweichung	8.4%	14.3%		
Mittelwert	13%	50%		

5 Literaturverzeichnis

Brassel, P., Lischke, H. (eds) 2001: Swiss National Forest Inventory: Methods and Models of the Second Assessment. Swiss Federal Research Institute WSL Birmensdorf. 336 S.

Hepperle, F. 2010: Prognosemodell zur Abschätzung des regionalen Waldenergieholzpotenzials auf der Grundlage forstlicher Inventur- und Planungsdaten unter Berücksichtigung ökologischer, technischer und wirtschaftlicher Nutzungseinschränkungen. Fakultät für Forst- und Umweltwissenschaften der Albert-Ludwigs-Universität Freiburg i. Br., 165 S.

Hepperle, F., Becker, G., Sauter, U. H., Hehn, M. 2007. Weiterentwicklung GIS-kompatibler Prognosemodelle für Waldenergieholz auf der Grundlage forstlicher Inventur- und Planungsdaten. Forstarchiv (78): 82-87.

Holm, S., Lemm, R., Erni, V. 2012: Handbuch Sortimentsimulator "SorSim" Version 2.0. 43 S.

Ilzhöfer, S. 2008: Potenzialanalyse und Abschätzung der Wirtschaftlichkeit der Energieholzbereitstellung in Form von Waldhackschnitzeln am Beispiel des Forstbetriebes der Hofkammer des Hauses Württemberg. Diplomarbeit am Institut für Forstbenutzung und Forstliche Arbeitswissenschaft der Albert-Ludwigs-Universität Freiburg i. Br., 115 S.

Kaiser, B. 2007. Regionalisierung technischer Energieholzpotenziale aus dem Wald über Geographische Informationssysteme am Beispiel des Landkreis Biberach. Diplomarbeit an der Hochschule für Forstwirtschaft Rottenburg. 88 S.

Kreutzer, K. 1979: Ökologische Fragen zur Vollbaumernte. Forstw. Cbl. (98): 298-308.

Lemm R., Frutig F., Pedolin D., Thees O. 2016: HeProMo "Biomasseschätzer" -Modell zur Berechnung der Biomasse von Waldbäumen, Teil A: Grundlagen (Internes Dokument).

Lick, E. 1989: Untersuchung zur Problematik des Biomassen- und Nährelemententzuges bei der Erstdurchforstung eines Zentralalpinen Fichtenbestandes. Dissertation zur Erlangung des Doktorgrades an der Universität für Bodenkultur Wien. 256 S.

Sigmund, V., Frommherz, J. 1999/2000: Herleitung des verfügbaren Waldenergieholzpotenzials in Baden-Württemberg auf der Basis der Forsteinrichtungsplanung, Stuttgart. Forstdirektion Freiburg. In: Wirtschaftsministerium Baden-Württemberg (2002): Holz-Energie-Fibel, 1. Aufl., S. 39-48.

Wittkopf, S. 2005: Bereitstellung von Hackgut zur thermischen Verwertung durch Forstbetriebe in Bayern. Dissertation am Lehrstuhl für Forstliche Arbeitswissenschaften und Angewandte Informatik der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München. 207 S.

Wöhl, A. 2007: Theoretische, technische und wirtschaftliche Energieholzbetrachtung des Stadtwaldes Weil der Stadt als mögliche Grundlage für die Investitionsplanung in ein Biomasseheiz(kraft)werk. Diplomarbeit an der Hochschule für Forstwirtschaft Rottenburg. 111 S.

6 Beurteilung der Qualität des Modells "Energieholzschätzer"

Kriterien		Bewertung		Bemerkungen
Datengrundlage aus den Jahren		2004 bis 2007		
Technische Aktualität (Verfahren)	aktuell	teilw.veraltet	veraltet	
Umfang der Datengrundlage	gross	mittel	klein	Das Energieholzmodell wurde aus LFI-Grundlagen und aus dem Sortimentssimulator SorSim hergeleitet.
Anwendbarkeit auf CH-Verhältnisse	gut	mittel	schlecht	Basiert auf Daten aus der Schweiz
Dokumentation der Anwendung	gut	mittel	gering	Teil A (Teil B existiert nicht, keine Datenauswertungen)
Modell anhand der Grundlagendaten überprüft	ja	nein		
Detaillierungsgrad des Modells	gut	mittel	gering	Anzahl Inputvariablen: 5-10

Gesamturteil:

Beurteilung durch: R. Lemm

Datum: 27. Juni 2018