Python 기초 Chap3: 숫자와 친해지기

Table of contents

3.1 Python에서 다양한 수학 함수 사용하기	1
3.1.1 수학 함수 요약 표	1
3.1.1.a 예제: 수학 함수 사용하기	1
3.1.2 좀 더 복잡한 계산 예제 연습하기	3
3.1.2.a 예제 1: 정규분포 확률밀도함수(PDF) 계산	3
3.1.2.b 예제 2: 변수 x,y,z 를 포함한 복잡한 수식 계산	4
3.1.2.c 예제 3: 삼각함수와 지수를 결합한 수식 계산	4

3.1 Python에서 다양한 수학 함수 사용하기

이 섹션에서는 파이썬의 math 모듈을 사용하여 다양한 수학적 계산을 수행하는 방법을 살펴봅니다. math 모듈은 기본적인 삼각 함수부터 지수, 로그, 제곱근 등의 계산을 위한 다양한함수를 제공합니다.

3.1.1 수학 함수 요약 표

함수	설명
math.sqrt(x)	x의 제곱근을 반환합니다.
math.exp(x)	(e^x) 값을 계산합니다.
<pre>math.log(x, [base])</pre>	x의 로그 값을 반환합니다. 기본적으로 자연 로그를 계산합니다.
math.factorial(x)	x의 팩토리얼을 반환합니다.
math.sin(x)	x의 사인 값을 반환합니다.
math.cos(x)	x의 코사인 값을 반환합니다.
math.tan(x)	x의 탄젠트 값을 반환합니다.
math.radians(x)	도(degree) 단위의 x를 라디안으로 변환합니다.
math.degrees(x)	라디안 단위의 x를 도로 변환합니다.

3.1.1.a 예제: 수학 함수 사용하기

각 수학 함수에 대한 예제를 통해 파이썬에서 이러한 계산을 어떻게 수행하는지 알아보겠습니다. 파이썬에서 수학 함수를 사용하기 위해서는 다음과 같은 math 모듈을 사용해야 합니다.

```
import math
```

3.1.1.a.a 제곱근 계산 예제

```
# 제곱근 계산
sqrt_val = math.sqrt(16)
print("16의 제곱근은:", sqrt_val)
```

```
16의 제곱근은: 4.0
```

3.1.1.a.b 지수 계산 예제

```
# 지수 계산
exp_val = math.exp(5)
print("e^5의 값은:", exp_val)
```

```
e^5의 값은: 148.4131591025766
```

3.1.1.a.c 로그 계산 예제

```
# 로그 계산
log_val = math.log(10, 10)
print("10의 밑 10 로그 값은:", log_val)
```

```
10의 밑 10 로그 값은: 1.0
```

3.1.1.a.d 팩토리얼 계산 예제

```
# 팩토리얼 계산
fact_val = math.factorial(5)
print("5의 팩토리얼은:", fact_val)
```

```
5의 팩토리얼은: 120
```

3.1.1.a.e 삼각 함수 계산 예제

```
# 사인 함수 계산

sin_val = math.sin(math.radians(90)) # 90도를 라디안으로 변환

print("90도의 사인 함수 값은:", sin_val)

# 코사인 함수 계산
```

```
cos_val = math.cos(math.radians(180))
print("180도의 코사인 함수 값은:", cos_val)

# 탄젠트 함수 계산
tan_val = math.tan(math.radians(45))
print("45도의 탄젠트 함수 값은:", tan_val)
```

```
90도의 사인 함수 값은: 1.0
180도의 코사인 함수 값은: -1.0
45도의 탄젠트 함수 값은: 0.9999999999999
```

3.1.2 좀 더 복잡한 계산 예제 연습하기

이번 섹션에서는 파이썬의 math 모듈을 활용하여 실제로 복잡한 수학 계산을 수행하는 방법을 살펴보겠습니다.

3.1.2.a 예제 1: 정규분포 확률밀도함수(PDF) 계산

정규분포 확률밀도함수는 다음의 수식으로 주어집니다:

$$f(x\mid \mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

이때, μ 는 평균, σ 는 표준편차입니다.

3.1.2.a.a 예제: $\mu = 0$, $\sigma = 1$ 에서 x = 1의 확률밀도함수 값 계산

```
import math

def normal_pdf(x, mu, sigma):
    sqrt_two_pi = math.sqrt(2 * math.pi)
    factor = 1 / (sigma * sqrt_two_pi)
    return factor * math.exp(-0.5 * ((x - mu) / sigma) ** 2)

# 파라미터
mu = 0
sigma = 1
x = 1

# 확률밀도함수 값 계산
pdf_value = normal_pdf(x, mu, sigma)
print("정규분포 확률밀도함수 값은:", pdf_value)
```

정규분포 확률밀도함수 값은: 0.24197072451914337

3.1.2.b 예제 **2:** 변수 x, y, z를 포함한 복잡한 수식 계산 주어진 수식:

$$f(x, y, z) = (x^2 + \sqrt{y} + \sin(z)) \cdot e^x$$

3.1.2.b.a 예제: $x = 2, y = 9, z = \pi/2$ 에서의 수식 값 계산

```
x = 2
y = 9
z = math.pi / 2
result = (x ** 2 + math.sqrt(y) + math.sin(z)) * math.exp(x)
print("계산된 수식 값은:", result)
```

계산된 수식 값은: 59.1124487914452

3.1.2.c 예제 **3:** 삼각함수와 지수를 결합한 수식 계산 주어진 수식:

$$g(x) = \cos(x) + \sin(x) \cdot e^x$$

3.1.2.c.a 예제: $x = \pi$ 에서의 수식 값 계산

```
x = math.pig_value = math.cos(x) + math.sin(x) * math.exp(x)print("삼각함수와 지수를 결합한 수식 값은:", g_value)
```

삼각함수와 지수를 결합한 수식 값은: -0.99999999999971