1 Local Cohomology

Definition 1.1. A local group or local system of groups \mathcal{L} is a locally-constant sheaf of abelian groups. We write $\mathfrak{Loc}(X)$ for the category of local systems on X.

Theorem 1.2. Let X be a locally-path-connected (AND) topological space. Then there is a equivalence of categories between the category of local groups on X and the category of actions of the fundamental groupoid $\Pi(X)$ on abelian groups.

Proof. There is a functor $\mathfrak{Loc}(X) \to \mathbf{AbGrp}^{\Pi(X)}$ sending a local system to its monodromy action. For any path $\gamma: I \to X$ and a point $\gamma(t)$ there is a open connected neighborhood $\gamma(t) \in U_t$ small enough such that $\mathcal{L}|_{Ut} \cong \underline{G}|_{U_t}$ for some abelian group G. Then $\gamma^{-1}(U_t)$ cover I which is compact so we may choose finitely many U_i which cover the path and we may assume that $U_i \cap U_{i+1} \neq \emptyset$. Then since both are connected and \mathcal{L} is constant on each we get isomorphisms,

where W is a connected component of $U_i \cap U_{i+1}$. Thus $\mathcal{L}(U_i) \xrightarrow{\sim} \mathcal{L}(U_{i+1})$. Inductivly, this gives $\mathcal{L}(U_0) \xrightarrow{\sim} \mathcal{L}(U_n)$ which, since it is well-defined after shrinking the neighborhoods admits restricting to stalks, gives the monodromy map $[\gamma]: \mathcal{L}_{\gamma(0)} \to \mathcal{L}_{\gamma(1)}$. Clearly this construction respects composition. Furthermore, we can do the exact same construction for maps $I^2 \to X$ showing that the identifications everywhere commute under homotopy. Explicitly, let $h: I^2 \to X$ be a path homotopy between $\gamma_1: I \to X$ and $\gamma_2: I \to X$ then for each t let $h(t, -): I \to X$ be the path homotoping the point $\gamma_1(t)$ to $\gamma_2(t)$. Then $[h(t_2, -)] \circ [\gamma_1(t_1 \mapsto t_2)] = [\gamma_2(t_1 \mapsto t_2)] \circ [h(t_1, -)]$ as maps $\mathcal{L}_{\gamma_1(t_1)} \to \mathcal{L}_{\gamma_2(t_2)}$. Since at the endpoints h(0, -) = h(1, -) is the constant path then we see that $[\gamma_1] = [\gamma_2]$. Therefore, monodromy defined a functor $M_{\mathcal{L}}: \Pi(X) \to \mathbf{AbGrp}$.

Now I claim this association $\mathcal{L} \mapsto M_{\mathcal{L}}$ is functorial. Given a morphism $\eta : \mathcal{L} \to \mathcal{L}'$ of local groups we get get maps $\eta_x : \mathcal{L}_x \to \mathcal{L}'_x$ which commute with restriction and thus with the monodromy construction i.e. a natural transformation between functors $M_{\mathcal{L}}$ and $M_{\mathcal{L}'}$.

Now we need to show that $\mathcal{L} \mapsto M_{\mathcal{L}}$ is fully faithful.

Finally,
$$M: \mathfrak{Loc}(X) \to \mathbf{AbGrp}^{\Pi(X)}$$
 is essentially surjective. (PROVE THIS)

Remark. When X is connected, then groupoid $\Pi(X)$ -representations are simply group representations of $\pi_1(X, x_0)$.

Definition 1.3. Let X be a locally-path-connected. For each n > 1 (for n = 1 the representation is simply the inner automorphism representation of a groupoid) there is a groupoid representation $\pi_n(X): \Pi(X) \to \mathbf{AbGrp}$ which generalizes the action at each point $\pi_1(X, x_0) \odot \pi_n(X, x_0)$. By the above theorem, this corresponds to a local group $\pi_n(X)$.

2 Maps of a Proper Curve are Finite

Theorem 2.1. Let C be a proper curve over k and X is separated of finite type over k. Then any nonconstant map $f: C \to X$ over k is finite.

Proof. Since $C \to \operatorname{Spec}(k)$ is proper and $X \to \operatorname{Spec}(k)$ is separated then by Tag 01W6 the map $f: C \to X$ is proper. The fibres of closed points $x \in X$ are proper closed subschemes $C_x \hookrightarrow C$ (since if $C_x = C$ then $f: C \to X$ would be the constant map at $x \in X$) and thus finite since proper closed subsets of a curve are finite. Now I claim that if the fibres $f^{-1}(x)$ are finite at closed points $x \in X$ then all fibres are finite. Assuming this, $f: C \to X$ is proper with finite fibres and thus is finite by Tag 02OG.

To show the claim consider,

$$E = \{x \in X \mid \dim C_x = 0\}$$

Since C is Noetherian, $\dim C_x = 0$ iff C_x is finite (suffices to check for affine schemes since quasicomact and dimension zero Noetherian rings are exactly Artinian rings which have finite spectrum). Then E is locally constructible by Tag 05F9 and contains all the closed points of X. Since X is finite type over k then X is Jacobinson which implies that E is dense in every closed set. Then for any point $\xi \in X$ then $Z = \overline{\{\xi\}}$ is closed and irreducible with generic point ξ and thus $E \cap Z$ is dense in Z. Then by Tag 005K we have $\xi \in E$ so E = X proving that all fibres are finite.

Remark. The only facts about C that I used were that $C \to \operatorname{Spec}(k)$ is proper and that C is irreducible of dimension one. The second two properties are needed for the following to hold.

Lemma 2.2. If X is an irreducible Noetherian scheme of dimension one then every nontrivial closed subset of X is finite.

Proof. Since X is quasi-compact it suffices to show this property for affine schemes $X = \operatorname{Spec}(A)$ with $\dim A = 1$ and prime nilradical. Any nontrivial closed subset is of the form V(I) for some proper radical ideal $I \subset X$ with $I \supseteq \operatorname{nilrad}(A)$. Then $\operatorname{ht}(I) = 1$ since any prime above I must properly contain $\operatorname{nilrad}(A)$ and thus have height at least one but $\dim A = 1$. Then,

$$\operatorname{ht}(I) + \dim A/I < \dim A$$

so dim A/I = 0. Since A is Noetherian so is A/I but dim A/I = 0 and thus A/I is Artianian. Therefore Spec (A/I) is finite proving the proposition.

Remark. Since $C \to \operatorname{Spec}(k)$ is proper it is finite type over k and thus C is Noetherian.

3 Action on Fibres of Fibration

Theorem 3.1. Let $F \hookrightarrow E \xrightarrow{\sim} B$ be a fibration. Then there is a groupoid action $\Pi(B)$ on the space of fibres and in particular $\pi_1(B, x_0) \to \operatorname{Aut}(F)$.

Proof. Consider a path $\gamma: I \to B$ from x_1 to x_2 and then the diagram,

By homotopy lifting we get a map $\tilde{\gamma}: F_{x_1} \times I \to E$ lifting $\gamma: F_{x_1} \times I \to B$. Then $p \circ \tilde{\gamma} = \gamma$ so $\tilde{\gamma}(-,1) \subset F_{x_2}$ since $p \circ \tilde{\gamma}(-,1) = \gamma(1) = x_2$. Therefore we get a map $[\gamma]: F_{x_1} \to F_{x_2}$ via $[\gamma](x) = \tilde{\gamma}(x,1)$.

I claim that two lifts of homotopic paths are homotopic. Given two paths $\gamma_1, \gamma_2 : I \to B$ and a path homotopy $h: I^2 \to B$ and two lifts $\tilde{\gamma}_1, \tilde{\gamma}_2 : F_{x_1} \times I \to E$ we want a map $F_{x_1} \times I^2 \to E$ above $h: \times I^2 \to B$. This map is defined on $F_{x_1} \times (I \times \{0,1\} \cup \{0\} \times I)$ via $\tilde{\gamma}_1$ on $F_{x_1} \times I \times \{0\}$ and $\tilde{\gamma}_2$ on $F_{x_1} \times I \times \{0\}$ any by inclusion of the fibre F_{x_1} on $F_{x_1} \times \{0\} \times I$ (constant on I) since $h_{\{0\} \times I}$ is constant since it is a path homotopy. Then by homotopy lifting, we get $\tilde{h}: F_{x_1} \times I \times I \to E$ such that $p \circ \tilde{h} = h$ and thus $\tilde{h}(-, 1, -): F_{x_1} \times I \to F_{x_2}$ gives a homotopy from $[\gamma_1]: F_{x_1} \to F_{x_2}$ to $[\gamma_2]: F_{x_1} \to F_{x_2}$.

Therefore, we have a representation of $\Pi(B)$ on hTop sending $x \mapsto F_x$ and $\gamma \mapsto [\gamma]$.

4 Serre - Vanishing

Remark. First we prove the result for the case \mathbb{P}_R^n .

Theorem 4.1. Let $\mathbb{P}^n = \mathbb{P}^n_R$. For any coherent $\mathcal{O}_{\mathbb{P}^n}$ -module \mathscr{F} there is some r > 0 such that,

$$H^i(\mathbb{P}^n_R, \mathscr{F} \otimes_{\mathcal{O}_{\mathbb{P}^n}} \mathcal{O}_{\mathbb{P}^n}(s)) = 0$$

for all i > 0 and $s \ge r$.

Proof. Since this holds for i > n we may apply reverse induction on i. Assume the theorem holds for i + 1 and let \mathscr{F} be some coherent sheaf. Since $\mathcal{O}_{\mathbb{P}^n}(1)$ is ample, for some $\ell > 0$ the sheaf $\mathscr{F} \otimes_{\mathcal{O}_{\mathbb{P}^n}} \mathcal{O}_{\mathbb{P}^n}(\ell)$ is generated by global sections,

$$igoplus_{j=1}^N \mathcal{O}_{\mathbb{P}^n} woheadrightarrow \mathscr{F} \otimes_{\mathcal{O}_{\mathbb{P}^n}} \mathcal{O}_{\mathbb{P}^n}(\ell)$$

and thus tensoring by $\mathcal{O}_{\mathbb{P}^n}(-\ell)$ we get a surjection,

$$\bigoplus_{j=1}^N \mathcal{O}_{\mathbb{P}^n}(-\ell) \twoheadrightarrow \mathscr{F}$$

which we may extend to an exact sequence,

$$0 \longrightarrow \mathscr{G} \longrightarrow \bigoplus_{j=1}^{N} \mathcal{O}_{\mathbb{P}^n}(-\ell) \longrightarrow \mathscr{F} \longrightarrow 0$$

Since $\mathcal{O}_{\mathbb{P}^n}(d)$ is locally free it is flat (exactness can be checked on stalks) so we get a short exact sequence,

$$0 \longrightarrow \mathscr{G}(d) \longrightarrow \bigoplus_{j=1}^{N} \mathcal{O}_{\mathbb{P}^{n}}(d-\ell) \longrightarrow \mathscr{F}(d) \longrightarrow 0$$

Applying the LES of homology we get,

$$\bigoplus_{j=1}^N H^i(\mathbb{P}^n_R, \mathcal{O}_{\mathbb{P}^n}(d-\ell)) \longrightarrow H^i(\mathbb{P}^n_R, \mathscr{F}(d)) \longrightarrow H^{i+1}(\mathbb{P}^n_R, \mathscr{G}(d))$$

By the induction hypothesis, for all sufficently large $d \geq r_{\mathscr{G}}$ the cohomology $H^{i+1}(\mathbb{P}_{R}^{n}, \mathscr{G}(d)) = 0$ vanishes and furthermore by explicit calcuation, $H^{i}(\mathbb{P}_{R}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d-\ell)) = 0$ for i > 0 and $d \geq \ell$ so take $r_{\mathscr{F}} = \max\{\ell, r_{\mathscr{G}}\}$ and then for $d \geq r_{\mathscr{F}}$ we find,

$$H^i(\mathbb{P}^n_R, \mathscr{F} \otimes_{\mathcal{O}_{\mathbb{P}^n}} \mathcal{O}_{\mathbb{P}^n}(d)) = 0$$

proving the result by induction.

Theorem 4.2. Let R be a noetherian ring and $X \to \operatorname{Spec}(R)$ proper. Furthermore, let \mathcal{L} be an ample line bundle on X. Then for any coherent \mathcal{O}_X -module \mathscr{F} there is some r > 0 such that,

$$H^i(X, \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes s}) = 0$$

for all i > 0 and s > r.

Proof. Since $X \to \operatorname{Spec}(R)$ is finite type and X has an ample line bundle \mathcal{L} then X must be quasiprojective over R for some immersion $\iota: X \to \mathbb{P}^N_R$ where $\mathcal{L}^{\otimes d} = \iota^* \mathcal{O}_{\mathbb{P}^N}(1)$. Since $X \to \operatorname{Spec}(R)$ is proper and $\mathbb{P}^N_R \to \operatorname{Spec}(R)$ is separated then $\iota: X \to \mathbb{P}^N_R$ is automatically proper hence a closed immersion so X is projective.

Being a closed immersion $\iota: X \to \mathbb{P}_R^N$ is affine so we may compute (the Leray spectral sequence degenerates),

$$H^{i}(X,\mathscr{G}) = H^{i}(\mathbb{P}_{R}^{N}, \iota_{*}\mathscr{G})$$

for any quasi-coherent sheaf on X. Therefore, considering the coherent sheaf $\mathscr{G} = \mathscr{F} \otimes_{\otimes \mathcal{O}_X} \mathcal{L}^{\otimes s}$ it suffices to compute,

$$H^i(\mathbb{P}^N_R, \iota_*(\mathscr{F} \otimes_{\mathcal{O}_Y} \mathcal{L}^{\otimes s}))$$

We will apply the projection formula noting that writing s = nd + r gives,

$$\mathcal{L}^{\otimes s} = (\mathcal{L}^{\otimes d})^{\otimes n} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes r} = (\iota^* \mathcal{O}_{\mathbb{P}^N}(1))^{\otimes n} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes r} = \iota^* \mathcal{O}_{\mathbb{P}^n}(n) \otimes_{\mathcal{O}_X} \mathcal{L}^r$$

Therefore, let $\mathcal{E} = \mathcal{O}_{\mathbb{P}^n}(n)$ in the projection formula to find that,

$$\iota_*(\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^s) = \iota_*(\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^r \otimes_{\mathcal{O}_X} \iota^* \mathcal{O}_{\mathbb{P}^N}(n)) = \iota_*(\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^r) \otimes_{\mathcal{O}_{\mathbb{P}^n}} \mathcal{O}_{\mathbb{P}^N}(n)$$

Since $\iota_*(\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^r)$ is coherent the previous proposition allows us to choose n large enough (taking the maximum of the n large enough to kill the cohomology of each of $r = 0, 1, \ldots, d-1$) so that,

$$H^{i}(\mathbb{P}_{R}^{N}, \iota_{*}(\mathscr{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{r}) \otimes_{\mathcal{O}_{\mathbb{P}^{n}}} \mathcal{O}_{\mathbb{P}^{N}}(n)) = 0$$

for any $r = 0, 1, \dots, d-1$ and $n \gg 0$. Therefore, for all sufficiently large s we have,

$$H^{i}(X, \mathscr{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes s}) = H^{i}(\mathbb{P}^{N}_{R}, \iota^{*}(\mathscr{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes s})) = H^{i}(\mathbb{P}^{N}_{R}, \iota_{*}(\mathscr{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{r}) \otimes_{\mathcal{O}_{\mathbb{P}^{n}}} \mathcal{O}_{\mathbb{P}^{N}}(n)) = 0$$

Theorem 4.3 (projection formula). Let $f: X \to Y$ be a morphism of ringed spaces \mathscr{F} a \mathcal{O}_X -module and \mathcal{E} a finite locally free \mathcal{O}_Y -module. Then,

$$R^q f_*(\mathscr{F} \otimes_{\mathcal{O}_X} f^* \mathcal{E}) = R^q f_* \mathscr{F} \otimes_{\mathcal{O}_Y} \mathcal{E}$$

Theorem 4.4. Let X be projective, then the functors $\operatorname{Ext}^i_{\mathcal{O}_X}(-,\mathscr{G}): \mathfrak{Coh}(\mathcal{O}_X) \to \operatorname{\mathbf{Mod}}_{\Gamma(X,\mathcal{O}_X)}$ for a fixed quasi-coherent \mathcal{O}_X -module \mathscr{G} are universal contravariant δ -functors.

Proof. It suffices to show that $\operatorname{Ext}^i(-,\mathcal{G})$ are coeffaceable for all i>0. Since X is projective there is an ample line bundle \mathcal{L} on X and for the coherent \mathcal{O}_X -module \mathcal{G} there is some r>0 such that,

$$H^i(X, \mathscr{G} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes s}) = 0$$

for any $s \geq r$ and i > 0. Then since \mathcal{L} is ample, for any coherent \mathcal{O}_X -module \mathscr{F} for some n_0 such that for $n \geq n_0$ the coherent sheaf $\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$ is generated by global sections. Choosing $n \geq \max\{n_0, r\}$ we get a surjection,

$$\bigoplus_{j=1}^N \mathcal{O}_X \twoheadrightarrow \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$$

However, since \mathcal{L} is a line bundle we may tensor by $\mathcal{L}^{\otimes -n} = (\mathcal{L}^{\otimes n})^{\vee}$ to get a surjection,

$$\mathscr{H} = \bigoplus_{i=1}^N \mathcal{L}^{\otimes -n} woheadrightarrow \mathscr{F}$$

Furthermore, since \mathcal{L} is locally free of rank one,

$$\operatorname{Ext}_{\mathcal{O}_X}^i\left(\mathscr{H},\mathscr{G}\right) = \bigoplus_{i=1}^N \operatorname{Ext}_{\mathcal{O}_X}^i\left((\mathcal{L}^{\otimes n})^\vee,\mathscr{G}\right) = \bigoplus_{i=1}^N \operatorname{Ext}_{\mathcal{O}_X}^i\left(\mathcal{O}_X,\mathcal{L}^{\otimes n}\otimes_{\mathcal{O}_X}\mathscr{G}\right) = \bigoplus_{i=1}^N H^i(X,\mathscr{G}\otimes_{\mathcal{O}_X}\mathcal{L}^{\otimes n}) = 0$$

for i > 0 by Serre vanishing showing that $\operatorname{Ext}^i_{\mathcal{O}_X}(-, \mathcal{G})$ is coeffaceable for all i > 0.

5 Computing Ext and Tor in the Second Argument

5.1 Ext

Definition 5.1. Let \mathcal{C} be an abelian category (possibly enriched over another category \mathcal{D}). Then if \mathcal{C} has enough injectives, $\operatorname{Ext}^i_{\mathcal{C}}(A, -) : \mathcal{C} \to \mathcal{D}$ are the right-derived functors of $\operatorname{Hom}_{\mathcal{C}}(A, -) : \mathcal{C} \to \mathcal{D}$.

Lemma 5.2. $\operatorname{Ext}_{\mathcal{C}}^{i}(-,M):\mathcal{C}\to\mathcal{D}$ is a contravariant functor.

Proof. Given an injective resolution $M \to \mathscr{I}^{\bullet}$ and a map $A \to B$ we get a morphism of complexes $\operatorname{Hom}_{\mathcal{C}}(B, \mathscr{I}^{\bullet}) \to \operatorname{Hom}_{\mathcal{C}}(A, \mathscr{I}^{\bullet})$ and thus a morphims of cohomology,

$$\operatorname{Ext}_{\mathcal{C}}^{i}\left(B,M\right) \to \operatorname{Ext}_{\mathcal{C}}^{i}\left(A,M\right)$$

which clearly respects composition.

Lemma 5.3. If P is projective then $\operatorname{Ext}_{\mathcal{C}}^{i}(P, -) = 0$ for i > 0.

Proof. This follow immediatly from the defining property that $\operatorname{Hom}_{\mathcal{C}}(P,-)$ is exact.

Proposition 5.4. Given a short exact sequence,

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

in \mathcal{C} and some $M \in \mathcal{C}$ then there is a long exact sequence,

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{C}}(C, M) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(B, M) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A, M) \longrightarrow$$

$$\to \operatorname{Ext}^{1}_{\mathcal{C}}(C, M) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{C}}(B, M) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{C}}(A, M) \longrightarrow$$

$$\to \operatorname{Ext}^{2}_{\mathcal{C}}(C, M) \longrightarrow \operatorname{Ext}^{2}_{\mathcal{C}}(B, M) \longrightarrow \operatorname{Ext}^{2}_{\mathcal{C}}(A, M) \longrightarrow \cdots$$

Proof. Take an injective resolution $M \to \mathscr{I}^{\bullet}$. Then since each \mathscr{I}^n is injective the functor $\operatorname{Hom}_{\mathcal{C}}(-,\mathscr{I}^n)$ is exact so we get an exact sequence of complexes,

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{C}}(C, \mathscr{I}^{\bullet}) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(B, \mathscr{I}^{\bullet}) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A, \mathscr{I}^{\bullet}) \longrightarrow 0$$

Taking the cohomology sequence of this short exact sequence of complexes gives the desired long exact sequence. \Box

Lemma 5.5. If $P_{\bullet} \to A$ is a projective resolution then $\operatorname{Ext}_{\mathcal{C}}^{i}(A, -) = H^{i}(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, -)).$

Proof. We may use the acyclicity lemma which may be proven by the above exact sequence for $\operatorname{Hom}_{\mathcal{C}}(-,M)$ noting that $\operatorname{Ext}^{i}_{\mathcal{C}}(P_{n},M)=0$. However, a more elegant argument goes as follows. Since P_{\bullet} is a complex of projectives the functor $\operatorname{Hom}_{\mathcal{C}}(P_{n},-)$ is exact so for any exact sequence,

$$0 \longrightarrow M \longrightarrow N \longrightarrow K \longrightarrow 0$$

we get an exact sequence of complexes,

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, M) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, N) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, K) \longrightarrow 0$$

which gives a long exact sequence in the cohomology functors $H^i(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, -))$ which shows that $H^i(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, -))$ form a δ -functor. Furthermore, since \mathcal{C} has enough injectives, for any $M \in \mathcal{C}$ we can embed $M \hookrightarrow I$ into an injective I and $H^i(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, I)) = 0$ since $\operatorname{Hom}_{\mathcal{C}}(-, I)$ is exact. Therefore, $H^i(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet}, -))$ is an effaceable δ -functor and thus universal by Grothendieck. Furthermore, since $\operatorname{Hom}_{\mathcal{C}}(-, M)$ is left-exact,

$$H^{0}(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet},-)) = \ker \left(\operatorname{Hom}_{\mathcal{C}}\left(P^{0},-\right) \to \operatorname{Hom}_{\mathcal{C}}\left(P^{1},-\right)\right) = \operatorname{Hom}_{\mathcal{C}}\left(\operatorname{coker}\left(P^{1} \to P^{0}\right),-\right)$$
$$= \operatorname{Hom}_{\mathcal{C}}\left(A,-\right)$$

However, $\operatorname{Ext}_{\mathcal{C}}^{i}(A, -)$ are the derived functors of $\operatorname{Hom}_{\mathcal{C}}(A, -)$ so they too form a universal δ -functor over $\operatorname{Hom}_{\mathcal{C}}(A, -)$. Thus, since universal δ -functors with naturally isomorphic first terms are unique,

$$\operatorname{Ext}_{\mathcal{C}}^{i}(A,-) = H^{i}(\operatorname{Hom}_{\mathcal{C}}(P_{\bullet},-))$$

Remark. The above formalism applies exactly to any bifunctor $F: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{D}$ such that for any $A \in \mathcal{C}$ there are enough F(A, -)-acyclics I for which F(-, I) is exact and replacing 'injective' with this class of acyclics and 'projective' by any class of onjects P such that F(P, -) is exact. Furthermore we assume \mathcal{C} is abelian with enough injectives, \mathcal{D} is additive, and $F: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{D}$ is additive.

For example, in the category of \mathcal{O}_X -modules on a scheme, the bifunctor,

$$\mathcal{H}om_{\mathcal{O}_X}(-,-): \mathcal{M}od(\mathcal{O}_X)^{\mathrm{op}} \times \mathcal{M}od(\mathcal{O}_X) \to \mathcal{M}od(\mathcal{O}_X)$$

satisfies the following properties. First, for injective sheaves \mathscr{I} we have $\mathscr{H}om_{\mathcal{O}_X}(-,\mathscr{I})$ is exact (and there are enough injectives which are obviously acyclic for $\mathscr{H}om_{\mathcal{O}_X}(\mathscr{F},-)$. Second, if \mathscr{E} is a locally-free sheaf then,

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, -) = \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} (-)$$

and \mathcal{E}^{\vee} is locally free and thus flat so $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{E},-)$ is exact. Therefore, we see that $\mathscr{E}\!xt_{\mathcal{O}_X}^i(-,\mathcal{G})$ is a contravariant δ -functor, vanishing on locally free sheaves, which may be computed via cohomology of locally-free complexes. Furthermore, whenever $\mathscr{Mod}(\mathcal{O}_X)$ has enough locally frees (for example whenever X has an ample line bundle) then $\mathscr{E}\!xt_{\mathcal{O}_X}^i(-,\mathcal{G})$ forms a universal contravariant δ -functor.

5.2 Tor

Definition 5.6. When \mathcal{C} has a right-exact comonoid structure $-\otimes_{\mathcal{C}}$ – and \mathcal{C} has enough projectives then define $\operatorname{Tor}_{i}^{\mathcal{C}}(A,-):\mathcal{C}\to\mathcal{C}$ as the left-derived functors of $A\otimes_{\mathcal{C}}-:\mathcal{C}\to\mathcal{C}$.

Remark. Here it will be necessary to assume that \mathcal{C} has enough flat objects $(-\otimes_{\mathcal{C}} F$ is exact) which happens say when projectives are flat.

Lemma 5.7. $\operatorname{Tor}_{i}^{\mathcal{C}}(-, M)$ is a covariant functor.

Proof. Given a map $A \to B$ and a projective resolution $P_{\bullet} \to M$ we get a morphism of complexes, $A \otimes_{\mathcal{C}} P_{\bullet} \to B \otimes_{\mathcal{C}} P_{\bullet}$ and thus a morphism of homology,

$$\operatorname{Tor}_{i}^{\mathcal{C}}(A, M) \to \operatorname{Tor}_{i}^{\mathcal{C}}(B, M)$$

Definition 5.8. We say an object $P \in \mathcal{C}$ is flat if $P \otimes_{\mathcal{C}}$ – is an exact functor.

Lemma 5.9. The following are equivalent,

- (a). P is flat
- (b). $\operatorname{Tor}_{i}^{\mathcal{C}}(P, -) = 0$ for all i > 0
- (c). $\operatorname{Tor}_{1}^{\mathcal{C}}(P, -) = 0.$

Proof. Clearly $(a) \implies (b) \implies (c)$. Now, if $\operatorname{Tor}_1^{\mathcal{C}}(P,-) = 0$ then for any exact sequence,

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

we get an exact sequence,

$$\operatorname{Tor}_{1}^{\mathcal{C}}(P,C) \longrightarrow P \otimes_{\mathcal{C}} A \longrightarrow P \otimes_{\mathcal{C}} B \longrightarrow C \otimes_{\mathcal{C}} P \longrightarrow 0$$

so if $\operatorname{Tor}_{1}^{\mathcal{C}}(P,-)=0$ then $P\otimes_{\mathcal{C}}-$ is exact i.e. P is flat.

Proposition 5.10. Given a short exact sequence,

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

in \mathcal{C} and some $M \in \mathcal{C}$ then there is a long exact sequence,

$$\cdots \longrightarrow \operatorname{Tor}_{2}^{\mathcal{C}}(A, M) \longrightarrow \operatorname{Tor}_{2}^{\mathcal{C}}(B, M) \longrightarrow \operatorname{Tor}_{2}^{\mathcal{C}}(C, M) \longrightarrow$$

$$\rightarrow \operatorname{Tor}_{1}^{\mathcal{C}}(A, M) \longrightarrow \operatorname{Tor}_{1}^{\mathcal{C}}(B, M) \longrightarrow \operatorname{Tor}_{1}^{\mathcal{C}}(C, M) \longrightarrow$$

$$A \otimes_{\mathcal{C}} M \longrightarrow B \otimes_{\mathcal{C}} M \longrightarrow C \otimes_{\mathcal{C}} M \longrightarrow 0$$

Proof. Take a flat resolution $F_{\bullet} \to M$. Then since each F^n is flat the functor $F^n \otimes_{\mathcal{C}} -$ is exact so we get an exact sequence of complexes,

$$0 \longrightarrow A \otimes_{\mathcal{C}} F_{\bullet} \longrightarrow B \otimes_{\mathcal{C}} F_{\bullet} \longrightarrow C \otimes_{\mathcal{C}} F_{\bullet} \longrightarrow 0$$

Taking the homology sequence of this short exact sequence of complexes gives the desired long exact sequence since by the acylicity lemma we may commute $\operatorname{Tor}_{i}^{\mathcal{C}}(A, M)$ via a flat resolution of M. \square

Lemma 5.11. If
$$F_{\bullet} \to A$$
 is a free resolution then $\operatorname{Tor}_{i}^{\mathcal{C}}(A, -) = H_{i}(F_{\bullet} \otimes_{\mathcal{C}} -)$.

Proof. We may use the acyclicity lemma which may be proven by the above exact sequence for $\operatorname{Tor}_i^{\mathcal{C}}(-,M)$ showing that $\operatorname{Tor}_i^{\mathcal{C}}(-,M)$ forms a δ -functor and noting that $\operatorname{Tor}_i^{\mathcal{C}}(F_n,M)=0$. However, a more elegant argument goes as follows. Since F_{\bullet} is a complex of frees the functor $F_n\otimes -$ is exact so for any exact sequence,

$$0 \longrightarrow M \longrightarrow N \longrightarrow K \longrightarrow 0$$

we get an exact sequence of complexes,

$$0 \longrightarrow F_{\bullet} \otimes M \longrightarrow F_{\bullet} \otimes N \longrightarrow F_{\bullet} \otimes K \longrightarrow 0$$

which gives a long exact sequence in the homology functors $H_i(F_{\bullet} \otimes -)$ which shows that $H_i(F_{\bullet} \otimes -)$ form a (homological) δ -functor. Furthermore, since \mathcal{C} has enough frees, for any $M \in \mathcal{C}$ we have a surjection $F \to M$ for some free F and $H_i(F_{\bullet} \otimes_{\mathcal{C}} F) = 0$ since $-\otimes \mathscr{F}$ is exact (both rows and columns stay exact, it is the exactness of the columns here ensured by freeness of F which is needed for the vanishing). Therefore, $H_i(F_{\bullet} \otimes -)$ is a coeffaceable δ -functor and thus universal by Grothendieck. Furthermore, since $-\otimes_{\mathcal{C}} M$ is right-exact,

$$H_0(F_{\bullet} \otimes_{\mathcal{C}} -) = \operatorname{coker}([F_1 \otimes_{\mathcal{C}} -] \to [F_0 \otimes_{\mathcal{C}} -]) = \operatorname{coker}(F_1 \to F_0) \otimes_{\mathcal{C}} (-) = A \otimes_{\mathcal{C}} (-)$$

However, $\operatorname{Tor}_i^{\mathcal{C}}(A, -)$ are the derived functors of $A \otimes_{\mathcal{C}} -$ so they too form a universal δ -functor over $A \otimes_{\mathcal{C}} -$. Thus, since universal δ -functors with naturally isomorphic first terms are unique,

$$\operatorname{Tor}_{i}^{\mathcal{C}}(A,-) = H_{i}(F_{\bullet} \otimes_{\mathcal{C}} -)$$

Proposition 5.12. Tor is symmetric: there is a natural isomorphism $\operatorname{Tor}_{i}^{\mathcal{C}}(A,B) = \operatorname{Tor}_{i}^{\mathcal{C}}(B,A)$.

Proof. Choose a flat resolution $F_{\bullet} \to A$. By the above lemma $\operatorname{Tor}_{i}^{\mathcal{C}}(A, B) = H_{i}(F_{\bullet} \otimes_{\mathcal{C}} B)$. However, by the symmetry of $-\otimes_{\mathcal{C}}$ – we have, $H_{i}(F_{\bullet} \otimes_{\mathcal{C}} B) = H_{i}(B \otimes_{\mathcal{C}} F_{\bullet})$. Furthermore, because $\operatorname{Tor}_{i}^{\mathcal{C}}(B, -)$ is the left-derived functor of $B \otimes_{\mathcal{C}}$ – we may compute it via acyclics (since it is a δ -functor) so $\operatorname{Tor}_{i}^{\mathcal{C}}(B, A) = H_{i}(B \otimes_{\mathcal{C}} F_{\bullet})$ and thus,

$$\operatorname{Tor}_{i}^{\mathcal{C}}(A,B) = H_{i}(F_{\bullet} \otimes_{\mathcal{C}} B) = H_{i}(B \otimes_{\mathcal{C}} F_{\bullet}) = \operatorname{Tor}_{i}^{\mathcal{C}}(B,A)$$

Remark. These arguments apply to the satellites of any symmetric bifunctor $F: \mathcal{C} \times \mathcal{C} \to \mathcal{D}$ between abelian categories such that \mathcal{C} has enough objects A for which F(A, -) is exact, in particular, if F(P, -) is exact for projectives (as is the tensor product).

Remark. Symmetry follows directly from the following spectral sequence argument. Let $F_{\bullet}^A \to A$ and $F_{\bullet}^B \to B$ be free resolutions. Then consider the double complex $C_{p,q} = F_p^A \otimes_{\mathcal{C}} F_q^B$. There are two spectral sequences which compute the homology of the total complex $\mathrm{Tot}(C_{\bullet,\bullet})$. These two spectral sequences agree on their zeroth page, ${}^AE_{p,q}^0 = {}^BE_{p,q}^0 = F_p^A \otimes_{\mathcal{C}} F_q^B$. Now, the first pages are,

$${}^AE^1_{p,q} = H_p(C_{\bullet,q}) = H_p(F^A_{\bullet} \otimes_{\mathcal{C}} F^B_q) = A \otimes_{\mathcal{C}} F^B_p \quad \text{in p degree zero}$$

$${}^BE^1_{p,q} = H_q(C_{p,\bullet}) = H_q(F^A_p \otimes_{\mathcal{C}} F^B_{\bullet}) = F^A_p \otimes_{\mathcal{C}} B \quad \text{in q degree zero}$$

where we have used the fact that $-\otimes_{\mathcal{C}} F_q^B$ and $F_p^A\otimes_{\mathcal{C}}$ – are exact (since the resolutions are free) and thus commute with taking homology. Then the second pages are,

$${}^AE^2_{p,q} = H_q({}^AE^1_{p,\bullet}) = H_q(A \otimes_{\mathcal{C}} F^B_{\bullet}) = L^q(A \otimes_{\mathcal{C}} -)(B) \quad \text{in p degree zero}$$

$${}^BE^2_{p,q} = H_p({}^BE^1_{\bullet,q}) = H_p(F^A_p \otimes_{\mathcal{C}} B) = L^p(-\otimes_{\mathcal{C}} B)(A) \quad \text{in q degree zero}$$

Since the second pages are supported in a single row or collumn both spectral sequences are converged. Therefore, we find,

$$H_n(\operatorname{Tot}(C_{\bullet,\bullet})) = {}^A E_{0,n}^2 = {}^B E_{n,0}^2 = L^n(A \otimes_{\mathcal{C}} -)(B) = L^n(- \otimes_{\mathcal{C}} B)(A)$$

Therefore, for a bifunctor we may derive in either component to get the same satellite functors. Furthermore, when $-\otimes_{\mathcal{C}}$ is symmetric then,

$$L^{n}(A \otimes_{\mathcal{C}} -)(B) = L^{n}(- \otimes_{\mathcal{C}} A)(B) = L^{n}(B \otimes_{\mathcal{C}} -)(A)$$

$$L^{n}(- \otimes_{\mathcal{C}} B)(A) = L^{n}(B \otimes_{\mathcal{C}} -)(A) = L^{n}(- \otimes_{\mathcal{C}} A)(B)$$

so the derived functors are symmetric.

5.3 Acyclicity

Lemma 5.13. Let F be a δ -functor. Suppose there is an exact sequence,

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow \cdots \longrightarrow I^n \longrightarrow K \longrightarrow 0$$

where I^i are F-acyclic. Then for i > 0,

$$F^{n+1+i}(A) = F^i(A)$$

and
$$F^{n+1}(A) = \ker (F^0(I^n) \to F^0(K)).$$

Proof. We prove this by induction on n. For n=0, we are given a short exact sequence,

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow K \longrightarrow 0$$

Taking the long exact sequence,

$$0 \longrightarrow F^0(A) \longrightarrow F^0(I^0) \longrightarrow F^0(K) \longrightarrow F^1(A) \longrightarrow F^1(I^0)$$

and

$$F^{i}(I^{0}) \longrightarrow F^{i}(K) \longrightarrow F^{i+1}(A) \longrightarrow F^{i+1}(I^{0})$$

However, I^0 is F-acyclic so $F^i(I^0) = 0$ for i > 0 and thus $F^{i+1}(A) = F^i(K)$ for i > 0. Furthermore, for the second sequence $F^1(A) = \ker (F^0(I^0) \to F^0(K))$.

Now we assume the result holds for n-1. We split the exact sequence into,

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow \cdots \longrightarrow I^n \longrightarrow \tilde{K} \longrightarrow 0$$

and

$$0 \longrightarrow \tilde{K} \longrightarrow I^n \longrightarrow K \longrightarrow 0$$

Applying the induction hypothesis we see that, $F^{n+i}(A) = F^i(\tilde{K})$ for i > 0. In particular, we will use, $F^{n+1}(A) = F^1(\tilde{K})$. Now, by the LES of the second exact sequence we find,

$$0 \longrightarrow F^0(\tilde{K}) \longrightarrow F^0(I^n) \longrightarrow F^0(K) \longrightarrow F^1(\tilde{K}) \longrightarrow F^1(I^n)$$

and

$$F^{i}(I^{n}) \longrightarrow F^{i}(K) \longrightarrow F^{i+1}(\tilde{K}) \longrightarrow F^{i+1}(I^{n})$$

However, I^n is F-acyclic so for i > 0 we get,

$$F^{i}(K) = F^{i+1}(\tilde{K})$$
 and $F^{1}(\tilde{K}) = \operatorname{coker}(F^{0}(I^{n}) \to F^{0}(K))$

Therefore, we have $F^{n+i+1}(A) = F^{i+1}(\tilde{K}) = F^i(K)$ for i > 0. Furthermore,

$$F^{n+1}(A) = F^1(\tilde{K}) = \text{coker}(F^0(I^n) \to F^0(K))$$

proving the lemma.

Theorem 5.14 (acyclicity). If F is a δ -functor and $A \to I^{\bullet}$ a resolution of F-acyclic objects,

$$F^n(A) = H^n(F^0(I^{\bullet}))$$

Proof. We may truncate the resolution by adding a cokernel K to give an exact sequence,

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow \cdots \longrightarrow I^n \longrightarrow K \longrightarrow 0$$

By the previous lemma, we can compute.

$$F^{n+1}(A) = \operatorname{coker}(F^0(I^n) \to F^0(K))$$

However, by exactness, $K = \operatorname{coker}(I^{n-1} \to I^n) = \ker(I^{n+1} \to I^{n+2})$. Furthermore, F^0 is left-exact so $F^0(K) = \ker(F(I^{n+1}) \to F(I^{n+2}))$. Therefore, for $n \ge 0$ we find,

$$F^{n+1}(A) = \operatorname{coker} (F^0(I^n) \to F^0(K)) = \operatorname{coker} (F^0(I^n) \to \ker (F(I^{n+1}) \to F(I^{n+2}))) = H^{n+1}(F^0(I^{\bullet}))$$

Furthermore, F^0 is left-exact so,

$$F^0(A) = F^0(\ker{(I^0 \to I^1)}) = \ker{(F^0(I^0) \to F^0(I^1))} = H^0(F^0(I^{\bullet}))$$

10

5.4 Tor for Sheaves

Remark. Often the categories $Mod(\mathcal{O}_X)$, $\mathfrak{QCoh}(\mathcal{O}_X)$, and $\mathfrak{Coh}(\mathcal{O}_X)$ do not have enough projectives. Therefore, we cannot define Tor for sheaves as a left-derived functor we need an alternative definition.

Definition 5.15. Let X be a scheme such that $\mathfrak{Coh}(\mathcal{O}_X)$ has enough locally-frees (e.g. X has an ample line bundle). Given a coherent sheaf \mathscr{F} and a resolution $\mathcal{E}_{\bullet} \to \mathscr{F}$ by locally free coherent sheaves, we define,

$$\mathscr{T}or_i^{\mathcal{O}_X}(\mathscr{F},-) = H_i(\mathcal{E}_{\bullet} \otimes_{\mathcal{O}_X} -)$$

Proposition 5.16. $\mathscr{T}_{\mathcal{O}_{i}}^{\mathcal{O}_{X}}(\mathscr{F}, -)$ is a universal homological δ -functor.

Proof. First, given an exact sequence of coherent sheaves,

$$0 \longrightarrow \mathscr{G}_1 \longrightarrow \mathscr{G}_2 \longrightarrow \mathscr{G}_3 \longrightarrow 0$$

we get an exact sequence of complexes,

$$0 \longrightarrow \mathcal{E}_{\bullet} \otimes_{\mathcal{O}_X} \mathscr{G}_1 \longrightarrow \mathcal{E}_{\bullet} \otimes_{\mathcal{O}_X} \mathscr{G}_2 \longrightarrow \mathcal{E}_{\bullet} \otimes_{\mathcal{O}_X} \mathscr{G}_3 \longrightarrow 0$$

since \mathcal{E}^n is locally-free and thus flat. Taking homology gives a long exact sequence of $\operatorname{Tor}_i^{\mathcal{O}_X}(\mathscr{F},-)$ sheaves making it a homological δ -functor. It suffices to show that $\operatorname{Tor}_i^{\mathcal{O}_X}(\mathscr{F},-)$ is coeffaceable. Since there are enough locally-free sheaves for any coherent \mathscr{G} we can find a locally-free and a surjection $\mathcal{E}' \to \mathscr{G}$. Then, since $-\otimes_{\mathcal{O}_X} \mathcal{E}'$ is exact then,

$$\mathscr{T}_{or_{i}}^{\mathcal{O}_{X}}(\mathscr{F},\mathcal{E}) = H_{i}(\mathcal{E}_{\bullet} \otimes_{\mathcal{O}_{X}} \mathcal{E}) = 0$$

where $\mathcal{E}_{\bullet} \to \mathscr{F}$ is a locally-free resolution. Therefore, $\mathscr{T}_{ei}^{\mathcal{O}_X}(\mathscr{F}, -)$ is coeffaceable.

Remark. Since $\mathscr{T}_{er_i}^{\mathcal{O}_X}(\mathscr{F},-)$ is universal it will agree with any other reasonable definition (any definition which is a universal δ -functor) because there is a unique universal δ -functor over,

$$\mathscr{T}_{or_0^{\mathcal{O}_X}}(\mathscr{F}, -) = H_0(\mathcal{E}_{\bullet} \otimes_{\mathcal{O}_X} -) = \operatorname{coker}(\mathcal{E}^1 \to \mathcal{E}^0) \otimes_{\mathcal{O}_X} - = \mathscr{F} \otimes_{\mathcal{O}_X} -$$

where the second equality follows from right-exactness of $-\otimes_{\mathcal{O}_X} \mathscr{G}$.

Remark. Since $-\otimes_{\mathcal{O}_X} - : \mathcal{Mod}(\mathcal{O}_X) \times \mathcal{Mod}(\mathcal{O}_X) \to \mathcal{Mod}(\mathcal{O}_X)$ is a symmetric bifunctor with enough locally-frees which are flat. Then since $\mathscr{Tor}_i^{\mathcal{O}_X}(\mathscr{F},-)$ are the left-satellite functors of $\mathscr{F} \otimes_{\mathcal{O}_X} -$ we can apply the acyclicity lemma to show that we map compute sheaf Tor from a locally free resolution $\mathcal{E}_{\bullet} \twoheadrightarrow \mathscr{G}$,

$$\mathscr{T}_{or_i}^{\mathcal{O}_X}(\mathscr{F},\mathscr{G}) = H_i(\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{E}_{\bullet})$$

which shows the symmetry of $\mathscr{T}_{\mathscr{O}_{i}}^{\mathcal{O}_{X}}(-,-)$.

6 Depth of Field

First we calculate the size of the circle of confusion. Let the lense have aperature D and focal length f. The image distance is given by,

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

then,

$$i = \frac{fo}{o - f}$$

Therefore, we can compute the change in image distance as o changes,

$$\frac{\mathrm{d}i}{\mathrm{d}o} = \frac{f}{o-f} - \frac{fo}{(o-f)^2} = -\frac{f^2}{(o-f)^2}$$

For a depth of Δo we have a spread of image depths,

$$\Delta i \approx \frac{f^2 \Delta o}{(o-f)^2}$$

Then the width of the circle of confusion is given by,

$$\frac{C}{D} = \frac{\Delta i}{f + \Delta i} \approx \frac{\Delta i}{f}$$

Therefore,

$$C = \frac{fD}{(o-f)^2} \Delta o$$

For a fixed allowable circle of confusion C_{max} for the desired resolution, we find the depth of field,

DOF =
$$2\frac{C}{D} \cdot \frac{(o-f)^2}{f} = \frac{2(o-f)^2 NC}{f^2}$$

where N = f/D is the focal ratio.

6.1 Hyperfocal Distance

At some focal distance H, all objects beyond H are in focus. This occurs when,

$$\frac{i-f}{f} = \frac{C}{D}$$

and

$$i = \frac{fH}{H - f}$$

Then,

$$\frac{H}{H-f}-1=\frac{f}{H-f}=\frac{C}{D}$$

Therefore,

$$H = \frac{f(D+C)}{C} = \frac{f^2}{CN} + f$$

Alternativly, if we focus at infinity and ask beyond which everything is in focus then,

$$\frac{i-f}{i} = \frac{C}{D}$$

and

Then,

Therefore,

$$i = \frac{fH}{H - f}$$

$$1 - \frac{H - f}{H} = \frac{f}{H} = \frac{C}{D}$$

$$H = \frac{fD}{C} = \frac{f^2}{NC}$$

Morphisms from Proper to Affine Schemes 7

Let $X \to \operatorname{Spec}(R)$ be proper and $\operatorname{Spec}(A) \to \operatorname{Spec}(R)$ be affine. Now,

$$\operatorname{Hom}_{R}(X, \operatorname{Spec}(A)) = \operatorname{Hom}_{R}(A, \Gamma(X, \mathcal{O}_{X}))$$

The map $X \to \operatorname{Spec}(A)$ is given as follows, consider $\varphi_x : A \to \Gamma(X, \mathcal{O}_X) \to \mathcal{O}_{X,x}$ then $x \mapsto \varphi_x^{-1}(\mathfrak{m}_x)$. Therefore, all maps $X \to \operatorname{Spec}(A)$ are constant if $x \mapsto \operatorname{res}_x^{-1}(\mathfrak{m}_x)$ is a fixed ideal independent of x.

Irreducible Polynomials over \mathbb{Z} 8

Consider the map $\operatorname{Spec}(\mathbb{Z}[X]) \to \operatorname{Spec}(\mathbb{Z})$. The fibres are, over the generic point (0), we have $\operatorname{Spec}(\mathbb{Q}[X]) \to \operatorname{Spec}(\mathbb{Q})$ which corresponds to ideals of the form (f(X)) for f an irreducible polynomial $f \in \mathbb{Q}[X]$. The fibres over (p) are $\operatorname{Spec}(\mathbb{F}_p[X]) \to \operatorname{Spec}(\mathbb{F}_p)$ whose primes are of the form (f(X)) for f an irreducible polynomial $f \in \mathbb{F}_p[X]$. Therefore we get an explicit description of Spec $(\mathbb{F}[X])$, we have the primes, (f(X)) for irreducible $f \in \mathbb{Q}[X]$ (for which we may clear denominators to get $f \in \mathbb{Z}[X]$) and (p, f(X)) for irreducible $f \in \mathbb{F}_p[X]$ (choosing some representative in $\mathbb{Z}[X]$) and finally of course (0) and (p) are prime (corresponding to the generic points of the fibres).

Suppose $f \in \mathbb{Z}[X]$ were irreducible then any prime (strictly) above (f) must be of the form (p, f(X))otherwise f would be a nontrivial product. Then we have dim $\mathbb{Z}[X]/(f) = 1$ furthermore, (COM-PLETE THIS ARGUMENT ...)

Normalization 9

Example 9.1. Consider $X = \operatorname{Spec}(A)$ with $A = k[x, y]/(y^2 - x^2(x+1))$. Then consider,

$$A \to k[t]$$
 $x \mapsto t^2 - 1$ $y \mapsto t(t^2 - 1)$

Then $y^2 = t^2(t^2 - 1)$ and $x^2(x - 1) = t^2(t^2 - 1)^2$ so this map is well-defined. This gives a dominant

$$\mathbb{A}^1_k \to \operatorname{Spec}(A)$$

Furthermore, I claim that,

$$\operatorname{Frac}(A) \hookrightarrow k(t)$$

is an isomorphism, clearly Frac $(A) \to k(t)$ is injective. The inverse map is $t \mapsto y/x$ then $y/x \mapsto t \mapsto y/x$ and $t \mapsto y/x \mapsto t$. Furthermore, $x \mapsto (t^2 - 1) \mapsto (y^2/x^2 - 1) = x$ and $y \mapsto t(t^2 - 1) \mapsto y/x(y^2/x^2 - 1) = y$. Thus the map $\mathbb{A}^1 \to \operatorname{Spec}(A)$ is a dominant birational morphism. Furthermore,

$$\overline{A} = k[y/x] = k[t] \subset \operatorname{Frac}(A)$$

because t = y/x satisfies the monic $t^2 - x - 1$ so $\mathbb{A}^1 \to \operatorname{Spec}(A)$ is the normalization.

Example 9.2. Consider the cusp $X = \operatorname{Spec}(A)$ with $A = k[x, y] = (y^2 - x^3)$. Then consider,

$$A \to k[t]$$
 $x \mapsto t^2$ $y \mapsto t^3$

Then $y^2 \mapsto t^6$ and $x^2 \mapsto t^6$ so this is well-defined. This gives a dominant map,

$$\mathbb{A}^1_k \to \operatorname{Spec}(A)$$

Furthermore, I claim that,

$$\operatorname{Frac}(A) \hookrightarrow k(t)$$

is an isomorphism. Send $t\mapsto y/x$ then $t\mapsto y/x\mapsto t$ and $y/x\mapsto t\mapsto y/x$. Then $y\mapsto t^3\mapsto y^3/x^3=y$ and $x\mapsto t^2\mapsto y^2/x^2=x$. Therefore, $\mathbb{A}^1_k\to \operatorname{Spec}(A)$ is a dominant birational morphism. Furthermore,

$$\overline{A} = k[y/x] = k[t] \subset k(t) = \operatorname{Frac}(A)$$

because t = y/x satisfies the monic $t^2 - x$.

Example 9.3. Consider the tachnode $X = \operatorname{Spec}(A)$ with $A = k[x, y]/(x^2 - y^4)$. Then consider,

$$A \to k[t,s]/(s^2-1)$$
 $x \mapsto t \quad y \mapsto t^2s$

Then $x^4 \mapsto t^4$ and $y^2 \mapsto t^4$ so this is well-defined. this gives a dominant map,

$$\operatorname{Spec}\left(k[t,s]/(s^2-1)\right) = \mathbb{A}^1_k \prod \mathbb{A}^1_k \to \operatorname{Spec}\left(A\right)$$

On the irreducible components $\mathfrak{p}_+ = (y - x^2)$ and $\mathfrak{p}_- = (y + x^2)$ of Spec (A) we have,

$$\mathcal{O}_{X,\mathfrak{p}_{+}} = \operatorname{Frac}\left(k[x,y]/(y-x^{2})\right) \qquad \mathcal{O}_{X,\mathfrak{p}_{-}} = \operatorname{Frac}\left(k[x,y]/(y+x^{2})\right)$$

and thus the map Spec $(k[t,s]/(s^2-1)) \to \operatorname{Spec}(A)$ gives an isomorphism on each component and Spec $(k[t,x]/(s^2-1))$ is normal.

10 A Very Werid Scheme

For finite products we have,

$$\operatorname{Spec}(A \times B) = \operatorname{Spec}(A) \prod \operatorname{Spec}(B)$$

where we take the coproduct in the category of schemes. In particular, the primes of $A \times B$ are simply $\mathfrak{p}_1 \times B$ or $A \times \mathfrak{p}_2$ for primes $\mathfrak{p}_1 \subset A$ and $\mathfrak{p}_2 \subset B$. However, for infinite product this fails. Consider,

$$X = \operatorname{Spec}\left(\prod_{i=0}^{\infty} k\right) \qquad R = \prod_{i=0}^{\infty} k$$

where k field. The prime ideals of this ring are not just the kernels of the projections $R \to k$ which are maximal ideals. To see this, consider the ideal I of functions $\mathbb{N} \to k$ which have finite support. Clearly $I \to R \to k$ is surjective for each projection so I is not contained in any of the described primes. It turns out that prime ideals of R correspond to ultrafilters \mathscr{F} of \mathbb{N} where $\mathfrak{p}(\mathscr{F})$ for some ultrafilter is the following,

$$\mathfrak{p}(\mathscr{F}) = \{(a_i) \mid \{i \mid a_i = 0\} \in \mathscr{F}\}\$$

Therefore, the principal ultrafilter \mathscr{F}_i above $\{i\}$ gives exactly $\mathfrak{p}(\mathscr{F}_i) = \ker \pi_i$ but there are many more nonprincipal ultrafilters.

11 Coproducts in the Category of Schemes

Proposition 11.1. The forgetful functor $F : \mathbf{Sch} \to \mathbf{Top}$ preserves colimits.

Remark. Let $\operatorname{Hom}_{\mathbf{Top}}(F(X), S) = \operatorname{Hom}_{\mathbf{Sch}}(X, T(S))$

12 NOTE LOOK UP THE PROOF FOR PROJ -¿ LO-CALLY FREE

13 Ravi Excersies

Remark. Maps $\operatorname{Spec}(k) \to \mathbb{P}_k^n$ are equivalent to giving a line bundle \mathcal{L} on $\operatorname{Spec}(k)$ i.e. a one-dimensional k-vectorspace $V \cong k$ and n+1 sections $s_i \in V$ not all zero. We call this point $[s_0, \ldots, s_n] \in \mathbb{P}_k^n$ up to isomorphism $\varphi : V \cong V'$ and $\varphi(s_i) = s_i'$ This is simply global scalling by k^{\times} . Furthermore, for any extension K/k we can describe $\mathbb{P}_k^n(K)$ similarly but with $s_i \in K$.

Definition 13.1. Projection from a rational point $\mathbb{P}^n_k \longrightarrow \mathbb{P}^{n-1}_k$ given a projection point $p \in \mathbb{P}^n_k$. We define this as follows: by an automorphism of \mathbb{P}^n_k let $p = [1:0:\cdots:0]$. Take the dense open $U = D(X_0) \setminus \{0\} = \operatorname{Spec}(x_1,\ldots,x_n) \setminus \{(0)\}$. Then consider the map $U \to \mathbb{P}^{n-1}_k$ via $\mathcal{L} = \mathcal{O}_U$ and $s_i = x_i$. These global sections generate because we have removed the point at which they all vanish. This rational map $\mathbb{P}^n_k \longrightarrow \mathbb{P}^{n-1}_k$ has domain $\operatorname{Dom}(f) = \mathbb{P}^n_k \setminus \{p\}$.

13.1 6.5 F

Consider the conic $C=V(X^2+Y^2=Z^2)\subset \mathbb{P}^2_k$. Consider the map $\mathbb{P}^1_k\to \mathbb{P}^2_k$ defined by the line bundle $\mathcal{L}=\mathcal{O}_{\mathbb{P}^1}(2)$ and the sections $X_0^2-X_1^2,2X_0X_1,X_0^2+X_1^2$. The image is exactly $C=V(X^2+Y^2=Z^2)$ and thus $C\cong \mathbb{P}^1_k$. However, if characteristic of k=2 then these sections are $X_0^2+X_1^2,0,X_0^2+X_1^2$ which does not define a map since these may all vanish simultaneously. In fact, $V(X^2+Y^2=Z^2)$ is not smooth in characteristic two since $X^2+Y^2=(X+Y)^2$ so we get $X+Y=\pm Z$ the union of two lines in \mathbb{P}^2_k .

We can also describe an isomorphism as follows. First, lets do a change of coordinates $X \mapsto \frac{1}{2}(X+Z)$ and $Z \mapsto \frac{1}{2}(X-Z)$ then $C = V(XZ+Y^2)$. Take the point p = [1:0:0] use the projection $\mathbb{P}^2_k \longrightarrow \mathbb{P}^1_k$ away from p. On the affine D(X) this is the map $U = \operatorname{Spec}(k[y,z]/(z+y^2)) \setminus \{0\} \to \mathbb{P}^1_k$ via $(y,z) \mapsto [y:z]$. Now $U = \operatorname{Spec}(k[y,y^{-1}]) = \mathbb{G}^k_m$ and the map is $\mathbb{G}^k_m \to \mathbb{P}^1_k$ via $t \mapsto [t,t^2]$. This is a rational map $C \longrightarrow \mathbb{P}^1_k$ of smooth projective curves so it extends to $C \to \mathbb{P}^1_k$ which is inverse to the previous map.

13.2 6.5 G

Consider $C = \operatorname{Spec}(k[x,y]/(y^2-x^3-x^2))$. Then we construct a rational map $C \to \mathbb{A}^1_k$ via projecting from p = (0,0). Explicitly, consider U = D(x) and consider, $f: U \to \mathbb{A}^1_k$ via $t \mapsto y/x$. Inversely we define $g: \mathbb{A}^1_k \to C$ generated by the ring map $x \mapsto t^2 - 1$ and $y \mapsto t(t^2 - 1)$. Note that we have seen this is the normalization $\mathbb{A}^1_k \to C$ of C. Then $g \circ f: U \to C$ is $x \mapsto y^2/x^2 - 1 = x$ and $y \mapsto y/x(y^2/x^2 - 1) = y$. Furthermore, $f \circ g: \mathbb{G}^k_m \to \mathbb{A}^1_k$ is $t \mapsto y/x \mapsto t$. Therefore, these are inverse rational maps showing that $C \xrightarrow{\sim} \mathbb{A}^1_k$ is birational. However we cannot extend this rational map to p since $\mathcal{O}_{C,p} = \operatorname{Spec}\left((k[x,y]/(y^2-x^2))_{(x,y)}\right)$ is not a domain and thus not regular.

This gives a formula for the rational points of C by $\mathbb{A}^1_L \longrightarrow C_L$. Via $t \mapsto (t^2 - 1, t(t^2 - 1))$ which hit every L-rational point on C. Thus,

$$C(L) = \{(t^2 - 1, t(t^2 - 1)) \mid t \in L\}$$

We see that C is a rational curve i.e. $C \stackrel{\sim}{\longrightarrow} \mathbb{P}^1_k$.

13.3 6.5 H

Consider the quadric surface,

$$Q = V(X^2 + Y^2 - Z^2 - W^2) \subset \mathbb{P}^3_k$$

First, we do a change of variables,

$$X \mapsto \frac{1}{2}(X+Z) \quad Z \mapsto \frac{1}{2}(X-Z) \quad Y \mapsto \frac{1}{2}(Y+W) \quad W \mapsto \frac{1}{2}(Y-W)$$

which gives,

$$Q = V(XZ + YW) \subset \mathbb{P}^3_k$$

Now we project from the point p = [1:0:0:0] on $U = D(X) \setminus \{p\}$ this gives the map,

$$f: \operatorname{Spec}\left(k[y,z,w]/(z+yw)\right) \setminus \{0\} \to \mathbb{P}^2_k$$

via sections y, z, w. We describe an inverse $\mathbb{P}^2_k \dashrightarrow Q$ as follows, consider $\mathbb{P}^2_k = \operatorname{Proj}(k[T_0, T_1, T_2])$ then on $D(T_0T_2)$ take $\operatorname{Spec}(k[t_0, t_1]) \to \operatorname{Spec}(k[y, z, w]/(z + yw))$ via $y \mapsto -t_1$ and $z \mapsto -t_1^2/t_0$ and $w \mapsto -t_1/t_0$ which is the map $(t_0, t_1) \mapsto (-t_1, -t_1^2/t_0, -t_1/t_0)$. This gives,

$$g:D(T_0T_2)\to D(XW)$$

and thus $\mathbb{P}^2_k \longrightarrow Q$. Furthermore, $g \circ f : D(XW) \to U$ is,

$$(y, z, w) \mapsto [y : z : w] = [y/w : z/w : 1] \mapsto (-z/w, -z^2/wy, -w/y) = (y, z, w)$$

restriction of the identity since z + wy = 0. Furthermore, $f \circ g : D(T_0T_1T_2) \to D(T_0T_1T_2)$ is,

$$(t_0,t_1) \mapsto (-t_1,t_1^2/t_0,-t_1/t_0) \mapsto [-t_1:-t_1^2/t_0:-t_1/t_0] = [-t_0t_1:-t_1^2:-t_1] = [t_0:t_1:1] = (t_0,t_1)$$

Thus we have $\mathbb{P}^2_k \xrightarrow{\sim} Q$ via $(t_0, t_1) \mapsto (-t_1, -t_1^2/t_0, -t_1/t_0)$ on $D(T_0T_1T_2) \cong D(XZW)$ and thus, clearing denominators and sending $t_1 \mapsto -t_1$, we get,

$$Q(L) = \{[t_0:t_1t_0:-t_1^2:t_1] \mid t_0,t_1 \in L^\times\} \cup \{[0:t_0:t_1:0] \mid t_1,t_2 \in L^\times\} \cup \{[0:t_0:0:t_1] \mid t_1,t_2 \in L^\times\}$$

13.4 6.5 I

Consider the rational map $c: \mathbb{P}^2_k \dashrightarrow \mathbb{P}^2_k$ given by $[x:y:z] \mapsto [1/x:1/y:1/z]$ on D(xyz). Since \mathbb{P}^2_k is smooth, we can extend over smooth codimension one irreducibles i.e. V(x) and V(y) and V(z) such that c is defined on a dense open of each. In particular, on D(yz) we have $[x:y:z] \mapsto [1:x/y:x/z]$ is equivalent to c restricted to D(xyz) and likewise on D(xy) and D(xz). Thus,

$$Dom(f) \supset D(xy) \cup D(yz) \cup D(zx) = \mathbb{P}_k^2 \setminus \{[1:0:0], [0:1:0], [0:0:1]\}$$

The remaining closed set is codimension two so we generically will not be able to extend over it. Indeed, if we try $[x:y:z] \mapsto [y:x:xy/z]$ on D(z) then at [0:0:1] this is not defined so it does not work.

$13.5 \quad 6.5 \text{ J}$

Show that there are no dominant rational maps $\mathbb{P}^1_k \to F^n_k$ where $F^n_k = \operatorname{Proj}\left(k[X,Y,Z]/(X^n+Y^n-Z^n)\right)$ is the Fermat curve for n>2.

14 Which Hypersurfaces are Isomorphic to Projective Space?

First, what is a hypersurface.

Definition 14.1. A hypersurface $H \subset \mathbb{P}_k^n$ is a codimension one integral closed subscheme i.e. a prime divisor on \mathbb{P}_k^n .

Theorem 14.2. Every hypersurface $H \subset \mathbb{P}^n_k$ is of the form V(F) for some $F \in \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$.

Proof. Since H is a prime divisor and \mathbb{P}^n_k is locally factorial (in particular regular) then H is Cartier so its associated sheaf of ideals $\mathscr{I} \cong \mathcal{O}_{\mathbb{P}^n}(-d)$ is invertible. Then the inclusion map $\mathcal{O}_{\mathbb{P}^n_k}(-d) \hookrightarrow \mathcal{O}_{\mathbb{P}^n_k}$ is given by some regular section $F \in \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$ and thus H = V(F).

Remark. In the case n=1 hypersurfaces are exactly points and since $\mathbb{P}_L^0 = \operatorname{Spec}(L)$ then for any finite extension L/k we can easily find $\operatorname{Spec}(L) \to \mathbb{P}_k^1$ so hypersurfaces of \mathbb{P}_k^1 are exactly of the form \mathbb{P}_L^0 . We wonder how this generalizes to n>1. Furthermore, note that we will use the fact that H is effective Cartier and argue, from the exact sequence,

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_{\iota}}(-d) \longrightarrow \mathcal{O}_{\mathbb{P}^n_{\iota}} \longrightarrow \iota_*\mathcal{O}_H \longrightarrow 0$$

and the associated LES.

$$H^{0}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{n}_{k}}) \longrightarrow H^{0}(H, \mathcal{O}_{H}) \longrightarrow H^{1}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{n}_{k}}(-d))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

to argue that for n > 1 we get a surjection $k \to H^0(H, \mathcal{O}_H)$ showing that we cannot have extensions of k. Note that this argument does not hold for n = 1 since $H^1(\mathbb{P}^1_k, \mathcal{O}_{\mathbb{P}^1_k}(-d)) \neq 0$ and we can, in fact, have extensions of the base field.

Theorem 14.3. Let $H \subset \mathbb{P}^n_k$ be a degree d hypersurface i.e. H = V(F) for $F \in \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$ and n > 1. Then $H \cong \mathbb{P}^{n-1}_L$ for some L/k exactly when L = k and either d = 1 or n = 2 and d = 2.

Proof. Suppose that $H \cong \mathbb{P}_L^{n-1}$ and consider the inclusion $\iota : H \hookrightarrow \mathbb{P}_k^n$ and let $X = \mathbb{P}_k^n$. Then for the ample sheaf $\mathcal{L} = \iota^* \mathcal{O}_X(1)$ we have $\mathcal{L} \in \operatorname{Pic}(X) \cong \operatorname{Pic}(\mathbb{P}_L^{n-1})$ so \mathcal{L} correspond to $\mathcal{O}_{\mathbb{P}_k^{n-1}}(k)$ for some $k \in \mathbb{Z}$. Therefore, we must have,

$$H^p(H,\mathcal{L}^{\otimes \ell}) = H^p(\mathbb{P}^{n-1}_k, \mathcal{O}_{\mathbb{P}^{n-1}_k}(k\ell))$$

In particular,

$$\dim_k H^p(H, \mathcal{L}^{\otimes \ell}) = (\dim_k L) \cdot \begin{cases} \binom{k\ell+n-1}{n-1} & p = 0\\ 0 & p \neq 0, n-1\\ \binom{-k\ell-1}{n-1} & p = n-1 \end{cases}$$

Furthermore, since ι is a closed immersion (and thus affine) we have,

$$H^p(H, \mathcal{L}^{\otimes \ell}) = H^p(X, \iota_* \mathcal{L}^{\otimes \ell}) = H^p(X, \iota_* \mathcal{O}_H \otimes_{\mathcal{O}_Y} \mathcal{O}_X(\ell))$$

using the projection formula. Then, there is an exact sequence of sheaves,

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_X \longrightarrow \iota_* \mathscr{O}_H \longrightarrow 0$$

$$\parallel$$

$$\mathscr{O}_X(-d)$$

Twisting by $\mathcal{O}_X(\ell)$ gives,

$$0 \longrightarrow \mathcal{O}_X(\ell - d) \longrightarrow \mathcal{O}_X(\ell) \longrightarrow \iota_* \mathcal{O}_H \otimes_{\mathcal{O}_Y} \mathcal{O}_X(\ell) \longrightarrow 0$$

Now denote $\mathscr{F} = \iota_* \mathcal{O}_H$ and $\mathscr{F}(\ell) = \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(\ell)$ which is the sheaf whose cohomology we wish to compute. Taking the LES of cohomology we get,

$$0 \longrightarrow H^0(X, \mathcal{O}_X(\ell-d)) \longrightarrow H^0(X, \mathcal{O}_X(\ell)) \longrightarrow H^0(H, \mathcal{L}^{\otimes \ell}) \longrightarrow H^1(X, \mathcal{O}_X(\ell-d)) = 0$$

since n > 1. First, for $\ell = 0$ the first sequence gives $H^0(X, \mathcal{O}_X) \twoheadrightarrow H^0(H, \mathcal{O}_H)$ and thus $k \twoheadrightarrow L$ which is a k-morphism so L = k since it is an extension. Furthermore, from the above short exact sequence, we see that,

$$h^0(H, \mathcal{L}^{\otimes \ell}) = h^0(X, \mathcal{O}_X(\ell)) - h^0(X, \mathcal{O}_X(\ell - d)) = \binom{\ell + n}{n} - \binom{\ell - d + n}{n}$$

In particular, for d > 1 and $\ell = 1$ we have,

$$h^{0}(H, \mathcal{L}) = h^{0}(X, \mathcal{O}_{X}(1)) = n + 1$$

This must equal (since L = k),

$$h^{0}(H,\mathcal{L}) = {k+n-1 \choose n-1} = {k+n-1 \choose k} = r(k)$$

which is is zero for k < 0 and monotonically increasing for k > 0. Note that r(0) = 1 and r(1) = n and $r(2) = \frac{1}{2}(n+1)n$. Since r(1) < r(2) < r(3) and r(1) = n then either r(2) = n+1 or $r(k) \neq n+1$ for all k. However, $\frac{1}{2}n(n+1) = n+1$ exactly when n=2 for n>0 forcing the case n=2 when

d > 1. In particular for the case n = 2 and d = 2 we get a plane conic which we know is isomorphic to \mathbb{P}^1_k . Also, we need to consider the case d = 1 in which H is a hyperplane and it is easy to see that $H \cong \mathbb{P}^{n-1}_k$ via the map $\mathbb{P}^{n-1}_k \hookrightarrow \mathbb{P}^n_k$ defined by $\mathcal{O}_{\mathbb{P}^{n-1}_k}(1)$ and the n sections perpendicular to $F \in \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(1))$ which has image H proving the claim.

Note further that we get,

$$H^{n-1}(X, \mathcal{O}_X(\ell)) \longrightarrow H^{n-1}(H, \mathcal{L}^{\otimes \ell}) \longrightarrow H^n(X, \mathcal{O}_X(\ell-d)) \longrightarrow H^n(X, \mathcal{O}_X(\ell)) \longrightarrow H^n(H, \mathcal{O}_H)$$

and otherwise $H^p(X, \mathcal{O}_X(\ell)) = H^{p+1}(X, \mathcal{O}_X(\ell-d))$ so $H^p(H, \mathcal{O}_H) = 0$ for $p \neq 0, n-1$. Since $\dim H = n-1$ we have $H^n(H, \mathcal{O}_H) = 0$ and also $H^{n-1}(X, \mathcal{O}_X(\ell)) = 0$ so we find,

$$0 \longrightarrow H^{n-1}(H, \mathcal{L}^{\otimes \ell}) \longrightarrow H^n(X, \mathcal{O}_X(\ell - d)) \longrightarrow H^n(X, \mathcal{O}_X(\ell)) \longrightarrow 0$$

so we have,

$$h^{n-1}(H, \mathcal{L}^{\otimes \ell}) = h^{n-1}(X, \mathcal{O}_X(\ell - d)) - h^{n-1}(X, \mathcal{O}_X(\ell)) = \binom{d - \ell - 1}{n} - \binom{-\ell - 1}{n}$$

which does have the correct degree in $(-\ell)$ i.e. n-1 to be $h^{n-1}(\mathbb{P}^{n-1}_k, \mathcal{O}_{\mathbb{P}^{n-1}_k}(k\ell))$.

15 Random Comalg Facts

Lemma 15.1. Let (p_1) and (p_2) be incommensurable prime ideals. Then $(p_1) \cap (p_2) = (p_1p_2)$.

Proof. Clearly $(p_1p_2) \subset (p_1) \cap (p_2)$ so it suffices to show that if $a = p_1x = p_2y$ then $a \in (p_1p_2)$. Since $a \in (p_1)$ and $p_2 \notin (p_1)$ we get $y \in (p_1)$ and likewise $x \in (p_2)$ showing that $a \in (p_1p_2)$.

16 Open Questions

- (a). Coproducts in the Category of Schemes vs Affine Schemes why are they different but agree with LRS coproducts in the first case which agree with Top coproducts since the Forget: LRS → Top has a right-adjoint (Raymond chat).
- (b). Which Hypersurfaces are Rational? GOOD QUESTION. I think all quadric hypersurfaces are rational even though only the conic $X^2 + Y^2 Z^2$ is on the nose isomorphic to \mathbb{P}^1_k . Can we prove this? Projection from a point?
- (c). Example of an affine curve which does not embed in \mathbb{A}^2_k
- (d). Does unirational imply finite domination by rational variety in general?

17 To Do on Thesis

- (a). Example of non-arithmetic curve with no Δ_{ν} -regular equation, try the think with weakly Δ -nondegenerate by never Δ -nondegenerate.
- (b). Is the elliptic curve example I gave toric?

- (c). find example which is toric: use the
- (d). Explicit example of curve not on toric surface?
- (e). Explicit example of curve not on a Hirzburch surface?
- (f). Example of curve which is toric but never weakly Δ -nondegenerate?

(g).

18 When is a Sheaf a Pushforward

THE FOLLOWING IS NOT QUITE CORRECT BUT APPROXIMATELY

Lemma 18.1. Let $\iota: f: Z \hookrightarrow X$ be a closed embedding and $U = X \setminus Z$. Then if \mathscr{F} is a sheaf of \mathcal{O}_X -modules then $\mathscr{F} = \iota_* \iota^{-1} \mathscr{F}$ if and only if $\mathscr{F}|_U = 0$. Furthermore, $\mathscr{F} = \iota_* \iota^* \mathscr{F}$ if and only if $\mathscr{I} \cdot \mathscr{F} = 0$ where \mathscr{I} is the ideal sheaf of $Z \hookrightarrow X$. Furthermore, if Z is reduced then these notions agree.

Proof.

Remark. Given simply topological maps, a sheaf \mathscr{F} is a pushforward of some sheaf on a closed subset exactly when it is zero on the complement. However, if we ask for this sheaf to be the pushforward of a sheaf of \mathcal{O}_Z -modules then we need the stronger $\mathscr{I} \cdot \mathscr{F} = 0$.

19 Cayley-Hamilton

Theorem 19.1. Let $A \in M_n(R)$ be a square matrix over a ring R and $p_A(\lambda) = \det(\lambda I - A)$ be its characteristic polynomial. Then $p_A(A) = 0$.

Proof. First, I argue in the case that R = k is a field. Matrices $A \in M_n(k)$ correspond to closed points of $X = \mathbb{A}_k^{n^2} = \operatorname{Spec}(k[a_{ij}])$. Now the fundamental observation is that $p_A(A)$ is a matrix of polynomials in a_{ij} and thus gives a morphism $p: X \to X$ via the ring map $k[a_{ij}] \to k[a_{ij}]$ sending a_{ij} to the i, j entry of the matrix $p_A(A)$ with $A = (a_{ij})$.

Now, if p_A is seperable (i.e. has distinct roots over \bar{k}) then A is diagonalizable over \bar{k} (eigenvectors with distinct eignevalues are independent). Then $A = BDB^{-1}$ with D diagonal (these matrices defined over \bar{k}) and it is clear that $p_A(BDB^{-1}) = Bp_A(D)B^{-1} = 0$ since $p_A(\lambda) = 0$ for each eigenvalue. Furthermore, this case occurs exactly when the discriminant $\Delta(p_A) \neq 0$ which is a polynomial in a_{ij} so $\Delta : X \to \mathbb{A}^1_k$ gives a global function. We have shown that for any closed point $A \in D(\Delta)$, i.e. some matrix over \bar{k} with $\Delta(p_A) = 0$, that $p_A(A) = 0$ so the map $p : X \to X$ vanishes on the closed points of $D(\Delta)$ which is dense since it is open and nontrivial (any diagonal matrix over \bar{k} with nonrepeated entries satisfies this, I guess I used \bar{k} is infinite here) in an irreducible variety X. Thus $p : X \to X$ is the zero map since it vanishes on a dense set (using that X is a variety). In particular p is the zero polynomial in a_{ij} .

Now, for an arbitrary ring R take a matrix $A \in M_n(R)$ then $p(a_{ij}) = p_A(A)$ is an integer coefficient polynomial in a_{ij} (meaning the coefficients are in the image $\mathbb{Z} \to R$). However, for each prime $\mathfrak{p} \in \operatorname{Spec}(R)$, the above argument shows that $\overline{p_A(A)} \in \kappa(\mathfrak{p})$ is zero since it is the characteristic

polynomial applied to the matrix $\overline{A} \in M_n(\kappa(\mathfrak{p}))$ over the field $\kappa(\mathfrak{p})$. Thus $p_A(A) \in \mathfrak{p}$ for each $\mathfrak{p} \in \operatorname{Spec}(R)$ so $p_A(A) \in \operatorname{nilrad}(R)$ for any A thus the coefficients are in $\operatorname{nilrad}(R)$ (we can see this because reducing p in $\kappa(\mathfrak{p})$ gives the zero polynomial). However, the coefficients are in the image of $\mathbb{Z} \to R$ then $\operatorname{nilrad}(R) \cap \operatorname{Im}(\mathbb{Z}) = \operatorname{nilrad}(\mathbb{Z}/(n))$ where $n = \ker(\mathbb{Z} \to R)$ (DAMN DOESNT WORK)

20 Quasi-Compactness and Noetherian Spaces

Definition 20.1. A topological space X is Noetherian if every descending chain of closed sets stabilizes.

Lemma 20.2. Subspaces of Noetherian subspaces are Noetherian.

Proof. Let $S \subset X$ with X noetherian. Then the closed sets of S are exactly $S \cap Z$ for $Z \subset X$ closed. Thus descending chains of closed sets in S stabilize.

Definition 20.3. A space is quasi-compact if every open cover has a finite subcover.

Lemma 20.4. Noetherian spaces are quasi-compact.

Proof. Let U_{α} be an open cover of X which is Noetherian. Then consider the poset A under inclusion of finite unions of the U_{α} all of which are open sets of X. Since X is Noetherian any ascending chain of opens must stabilize so any chain in A has a maximum. Then by Zorn's lemma A has a maximal element which must be X since the U_{α} form a cover. Therefore there exists a finite subcover. \square

Corollary 20.5. Every subset of a noetherian topological space is quasi-compact.

Definition 20.6. A continuous map $f: X \to Y$ is quasi-compact if for each quasi-compact open $U \subset Y$ then $f^{-1}(U)$ is quasi-compact open.

20.1 The Case for Schemes

Lemma 20.7. Affine schemes are quasi-compact.

Proof. Let U_i be an open cover of Spec (A_i) . Since D(f) for $f \in A$ forms a basis of the topology on Spec (A_i) we can shrink to the case $U_i = D(f_i)$. Then.

$$X = \bigcup_{i \in I} D(f_i) = \bigcup_{i \in I} D((\{f_i \mid i \in I\}))$$

And thus the ideal $I = (\{f_i \mid i \in I\})$ is not contained in any maximal ideal so I = (1). Therefore, there are f_1, \ldots, f_n such that $a_1 f_1 + \cdots + a_n f_n = 1$ and thus $(f_1, \ldots, f_n) = (1)$ which implies that,

$$X = D((f_1, \dots, f_n)) = \bigcup_{i=1}^{n} D(f_i)$$

so X is quasi-compact.

Definition 20.8. A scheme X is *locally Noetherian* if for every affine open U the ring $\mathcal{O}_X(U)$ is Noetherian. X is *Noetherian* if it is quasi-compact and locally-Noetherian.

Lemma 20.9. If $(f_1, \ldots, f_n) = A$ and A_{f_i} is Noetherian then A is Noetherian.

Proof. For any ideal $I \subset A$ we know $I_{f_i} \subset A_{f_i}$ is finitely generated. Clearing denominators and collecting the finite union of these finite generators gives a map $A^N \to I$ which is surjective when localized $A_{f_i}^N \to I_{f_i}$. Consider the A-module $K = \operatorname{coker}(A^N \to I)$ then for any $x \in K$ we have $f_i^{n_i} \cdot x = 0$ for each i but $f_i^{n_i}$ generate the unit ideal (since $D(f_i^{n_i}) = D(f_i)$ which cover $\operatorname{Spec}(A)$) so x = 0 to $A^N \to I$ so I is finitely generated showing that A is Noetherian.

Lemma 20.10. If X has an open affine cover $U_i = \text{Spec}(A_i)$ with A_i noetherian then X is locally noetherian. Moreover, if the cover can be made finite then X is noetherian.

Proof. Let $V = \operatorname{Spec}(B) \subset X$ be an affine open, Then $V \cap U_i \subset V$ is open so it may be covered by principal opens $D(f_{ij}) \subset V \cap U_i$ for $f_{ij} \in B$. Since V is quasi-compact we may find a finite subcover. We need to show that $B_{f_{ij}}$ is Noetherian then since $D(f_{ij})$ cover V we use the lemma to conclude that B is Noetherian. However, $D(f_{ij}) \subset V \cap U_i$ can be covered by principal opens (of $U_i = \operatorname{Spec}(A_i)$) $W_{ijk} \subset D(f_{ij}) \subset U_i = \operatorname{Spec}(A_i)$ and each $(A_i)_{f_{ijk}}$ is Noetherian since A_i is, so using the same lemma we find that $B_{f_{ij}}$ is Noetherian.

Now suppose the cover is finite and let V_j be any open cover of X. We need to show X is quasicompact so we must show that V_i has a finite subcover. Consider $U_i \cap V_j$ which is open in the affine $U_i = \operatorname{Spec}(A_i)$ so it may be covered by principal opens $D(f_{ijk}) \subset U_i \cap V_j$. Now,

$$U_i = \bigcup_{j,k} D(f_{ijk})$$

but U_i is affine and thus quasi-compact so we may find an finite subcover which only uses finitely many V_i but the cover U_i of X is also finite so only finitely many V_i are needed to cover X.

Corollary 20.11. $X = \operatorname{Spec}(A)$ is Noetherian iff A is a Noetherian ring.

Proof. If X is Noetherian then $\mathcal{O}_X(X) = A$ is a Noetherian ring (X is affine and thus quasi-compact). Conversely Spec (A) is a finite Noetherian affine cover so X is Noetherian.

Remark. It is not the case that for a Noetherian scheme we must have $\mathcal{O}_X(X)$ a noetherian ring even for varieties. See http://sma.epfl.ch/ ojangure/nichtnoethersch.pdf.

Lemma 20.12. If A is Noetherian then $\operatorname{Spec}(A)$ is a Noetherian topological space.

Proof. Every descending chain of subsets is of the form $V(I_1) \supseteq V(I_2) \supseteq V(I_3) \supseteq \cdots$ but the ideals,

$$\sqrt{I_1} \subsetneq \sqrt{I_2} \subsetneq \sqrt{I_3} \subsetneq \cdots$$

satbilize since A is Noetherian and thus so does the chain of closed subsets.

Lemma 20.13. If X is a Noetherian scheme then its underlying topological space is Noetherian.

Proof. Choose a finite covering $U_i = \operatorname{Spec}(A_i)$ by Noetherian rings. Then for any descending chain of closed subsets $Z_1 \supseteq Z_2 \supseteq Z_3 \supseteq \cdots$ we know $Z \cap U_i$ stabilizes at n_i since $\operatorname{Spec}(A_i)$ is a Noetherian space. Thus, Z satibilizes at $\max n_i$ which exists since the cover is finite.

Remark. The converses of the above are false and so is X Noetherian. Let R be a non-Noetherian valuation ring. Then Spec (R) has two points and thus is Noetherian as a topological space but not as a scheme since R is not a Noetherian ring.

Lemma 20.14. If X is locally Noetherian then any immersion $\iota: Z \hookrightarrow X$ is quasi-compact.

Proof. Closed immersions are affine and thus quasi-compact so it suffices okay to show that open immersions are quasi-compact. Let $j:U\to X$ be an open immersion. It suffices to check that $j^{-1}(U_i)$ is quasi-compact on an affine open cover $U_i = \operatorname{Spec}(A_i)$ with A_i Noetherian. But $j:j^{-1}(U_i)\to U_i\cap U$ is a homeomorphism and $\operatorname{Spec}(A_i)$ is a Noetherian topological space so every subset is quasi-compact and, in particular, $U_i\cap U$ is quasi-compact so $j^{-1}(U_i)$ is also.

Remark. When X is Noetherian then it is a Noetherian space so any inclusion map $\iota: Z \hookrightarrow X$ for any subset $Z \subset X$ is quasi-compact since every subset is quasi-compact. In particular, every subset of X is retrocompact.

20.2 Quasi-Compact Morphisms

Lemma 20.15. A morphism $f: X \to Y$ is quasi-compact iff Y has a cover by affine opens V_i such that $f^{-1}(V_i)$ is quasi-compact.

Proof. Clearly if f is quasi-compact then any affine open cover V_i of Y satisfies $f^{-1}(V_i)$ is quasi-compact since V_i is a quasi-compact open by virtue of being affine open.

Now assume that such a cover exists. Let $U \subset Y$ be a quasi-compact open. Then U is covered by finitely may V_1, \ldots, V_n . Then $U \cap V_i$ is open in V_i which is affine so it is covered by standard opens W_{ij} . Since U is quasi-compact then we can choose finitely many W_{ij} . Now $f^{-1}(V_i)$ is quasi-compact by assumption so it has a finite cover by affine opens,

$$f^{-1}(V_i) = \bigcup_{j=1}^N \tilde{V}_{ij}$$

Then $f: \tilde{V}_{ik} \to V_i$ is a morphism of affine schemes so $f^{-1}(W_{ij}) \cap \tilde{V}_{ik}$ is a principal affine. Therefore,

$$f^{-1}(U) = \bigcup_{i=1}^{n} f^{-1}(V_i \cap U) = \bigcup_{i,j} f^{-1}(W_{ij}) = \bigcup_{i,j,k} f^{-1}(W_{ij}) \cap \tilde{V}_{ik}$$

is a finite union of principal affines each of which is quasi-compact so $f^{-1}(U)$ is quasi-compact. \square

Proposition 20.16. X is quasi-compact iff any morphism $X \to T$ for some affine scheme T is quasi-compact.

Proof. If X is quasi-compact then $f: X \to T$ is quasi-compact since T is an affine open cover of itself and $f^{-1}(T)$ is quasi-compact. Conversely, if $f: X \to T$ is quasi-compact with T affine then T is quasi-compact open in T so $X = f^{-1}(T)$ is quasi-compact.

Lemma 20.17. The base change of a quasi-compact morphism is quasi-compact.

$$Proof.$$
 (DO THIS)

21 Affine Morphisms

Definition 21.1. A morphism $f: X \to Y$ is affine if the preimage of every affine open is affine.

Lemma 21.2. Every morphism of affine schemes is affine and thus quasi-compact.

Proof. Let $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$ and $f : X \to Y$ be a morphism of affine schemes given by a ring map $\varphi : B \to A$. Then, any affine open $\operatorname{Spec}(C) = V \subset Y$ can be covered by principal opens $D(f_i)$ for $f_i \in B$. Note that under $\psi : B \to C$ we see that $D(f_i) = D(\psi(f_i))$ since $D(f_i) \subset \operatorname{Spec}(C)$. Since $D(\psi(f_i))$ cover $\operatorname{Spec}(C)$ then $\psi(f_i) \in C$ generate the unit ideal. Then we have $f^{-1}(D(f_i)) = D(\varphi(f_i))$ which is affine and $\varphi(f_i)$ generate the unit ideal of $\Gamma(f^{-1}(V), \mathcal{O}_X)$ so f^{-1} is affine.

Remark. An alternative proof goes as follows. Consider the pullback diagram,

$$\begin{array}{ccc}
f^{-1}(U) & \longrightarrow & U \\
\downarrow & & \downarrow \\
X & \longrightarrow & Y
\end{array}$$

then open immersions are stable under base change so $f^{-1}(U) = U \times_Y X = \operatorname{Spec}(C \otimes_B A)$ if affine. Remark. In fact, by Tag 01S8, a morphism $f: X \to S$ is affine iff X is relatively affine over S meaning $X = \operatorname{Spec}_S(A)$ for some quasi-coherent \mathcal{O}_S -algebra A.

Lemma 21.3. Let $f: X \to Y$ be a morphism and W_i an affine open cover of Y such that $f^{-1}(W_i)$ is affine. Then f is affine.

Proof. Let Spec $(A) = V \subset Y$ be affine open. Then $V_i = V \cap W_i$ is open in the affine open $V = \operatorname{Spec}(A)$ so it can be covered by principal opens $D(f_{ij}) \subset V \cap W_i$ for $f_{ij} \in A$. Since $f: f^{-1}(W_i) \to W_i$ is a morphism of affine schemes, the preimage of the affine open $D(f_{ij}) \subset V \cap W_i$ is affine $f^{-1}(D(f_{ij}))$ (note that $D(f_{ij}) \subset V \cap W_i$ is not necessarily a principal affine open of W_i). But since $D(f_{ij})$ cover $\operatorname{Spec}(A)$ the $f_{ij} \in A$ generate the unit ideal and thus $f^{\#}(f_{ij}) \in \Gamma(f^{-1}(V), \mathcal{O}_X)$ generate the unit ideal and $(f^{-1}(V))_{f_{ij}} = f^{-1}(D(f_{ij}))$ is affine so $f^{-1}(V)$ is affine.

Lemma 21.4. The base change of an affine morphism is affine.

Lemma 21.5. Affine morphisms are quasi-compact.

Proof. If $f: X \to Y$ is affine then any affine open cover V_i of Y gives $f^{-1}(V_i)$ is affine and thus quasi-compact so f is quasi-compact.

22 Separatedness

Definition 22.1. A morphism $f: X \to Y$ with diagonal $\Delta_{X/Y}: X \to X \times_Y X$ is,

- (a). separated if the diagonal $\Delta_{X/Y}$ is a closed immersion
- (b). affine-separated if the diagonal $\Delta_{X/Y}$ is affine
- (c). quasi-separated if the diagonal $\Delta_{X/Y}$ is quasi-compact

Lemma 22.2. Any morphism of affine schemes is separated. Furthermore, affine morphisms are separated.

Proof. For a map Spec $(A) \to \operatorname{Spec}(B)$ the diagonal is Spec $(A) \to \operatorname{Spec}(A \otimes_B A)$ given by $A \otimes_B A \to A$ via $a_1 \otimes a_2 \mapsto a_1 a_2$ which is surjective so the diagonal is a closed immersion. The second fact is Tag 01S7.

Lemma 22.3. The composition of (quasi/affine)-separated morphisms are (quasi/affine)-separated.

Proof. (DO THIS)

Lemma 22.4. For any morphism $f: X \to Y$ the diagonal $\Delta_{X/Y}: X \to X \times_Y X$ is an immersion.

Proof. Let V_i be an affine cover of Y then choose an affine open cover U_{ij} of X with $f(U_{ij}) \subset V_i$. Then the diagonal of the affine map $U_{ij} \to V_j$ is $U_{ij} \to U_{ij} \times_{V_i} U_{ij}$ which is a closed immersion since it corresponds to $A_{ij} \otimes_{B_i} A_{ij} \to A_{ij}$ via $a_1 \otimes a_2 \mapsto a_1 a_2$ is surjective. Therefore $f: X \to Y$ is locally on X a closed immersion and thus an immersion.

Remark. Therefore, to show that $f: X \to Y$ is separated, it suffices to show that the diagonal is closed (here equivalently meaning that the map or its image is closed).

Lemma 22.5. If X is Noetherian then every morphism $f: X \to S$ is quasi-compact and quasi-separated.

Proof. Every subset of X is quasi-compact since X is (topologically) Noetherian. Then apply the first part to the diagonal $\Delta_{X/S}: X \to X \times_S X$ which is then quasi-compact and thus $f: X \to S$ is quasi-separated.

Lemma 22.6. Let $f: X \to S$ be affine-separated/quasi-separated with $S = \operatorname{Spec}(A)$ affine. Then for any two affine opens $U, V \subset X$ the intersection $U \cap V$ is affine/quasi-compact.

Proof. Consider the pullback diagram,

$$U \cap V \longrightarrow U \times_S V$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{\Delta_{X/S}} X \times_S X$$

where $U \cap V = \Delta_{X/S}(U \times_S V)$ using the basechange of an open immersion is an open immersion. Then since S is affine, $U \times_S V$ is affine and thus quasi-compact open of $X \times_S X$. Then if f is affine-separated then $\Delta_{X/S}$ is affine so $U \cap V = \Delta_{X/S}(U \times_S V)$ is affine. If f is quasi-separated then $\Delta_{X/S}$ is quasi-compact so $U \cap V = \Delta_{X/S}(U \times_S V)$ is quasi-compact.

Remark. In the separated case, we see that $U \cap V$ is affine and $\mathcal{O}_X(U) \otimes_{\mathcal{O}_S(S)} \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V)$ is surjective.

Remark. Tag 01KO gives a generalization of this lemma. For the separated case see Tag 01KP.

Lemma 22.7. Let $f: X \to Y$ be quasi-compact and quasi-separated and \mathscr{F} be a quasi-coherent \mathcal{O}_X -module then $f_*\mathscr{F}$ is a quasi-coherent \mathcal{O}_Y -module.

Proof. Sinsce this is local on Y we can restrict to the case that Y is affine. Then $X = f^{-1}(Y)$ is quasi-compact (when Y is not affine $f^{-1}(V)$ will be quasi-compact) so take a finite affine open cover U_i and since $f: X \to Y$ is quasi-seperated over an affine then by the above lemma $U_i \cap U_j$ is quasi-compact so it has a finite affine open cover U_{ijk} . Then, by the sheaf property, there is an exact sequence of sheaves on Y

$$0 \longrightarrow f_*\mathscr{F} \longrightarrow \bigoplus_i f_*(\mathscr{F}|_{U_i}) \longrightarrow \bigoplus_{i \neq k} f_*(\mathscr{F}|_{U_{ijk}})$$

which works because these are finite sums. However, $f:U_{ijk}\to Y$ is a morphism of affine schemes and since \mathscr{F} is quasi-coherent we have $\mathscr{F}|_{U_{ijk}}=\widetilde{M}_{ijk}$ so $f_*(\mathscr{F}|_{U_{ijk}})=\widetilde{M}_{ijk}$ as an $\mathcal{O}_Y(Y)$ -module. Thus, $f_*\mathscr{F}$ is a kernel of quasi-coherent \mathcal{O}_Y -modules and thus is quasi-coherent.

Remark. If X is Noetherian then $f: X \to Y$ is automatically quasi-compact and quasi-separated so there is no issue in the above lemma.

23 Sets Cut Out By Some Function

Theorem 23.1. Every closed subset $E \subset \mathbb{R}^n$ is the vanishing of some smooth function.

Proof. Since \mathbb{R}^n is a metric space, it is hereditarily paracompact so the complement $E^C \subset \mathbb{R}^n$ is paracomapet. Since \mathbb{R}^n is separable, E^C is covered by countably many balls $B_{r_i}(a_i)$ for $a_i \in E^C$ since it is open so, by paracompactness, we may shrink the radii such that this cover is locally finite. Choose a smooth bump function,

$$g:[0,\infty)\to[0,\infty)$$

such that g([0,1)) > 0 and $g([1,\infty)) = 0$ e.g

$$g(x) = \begin{cases} \exp\left(-\frac{1}{1-x}\right) & x < 1\\ 0 & x \ge 1 \end{cases}$$

Then consider,

$$f(x) = \sum_{x \in X} g(|x - a_i|/r_i)$$

Since $g(|x - a_i|/r_i) = 0$ for $x \notin B_{r_i}(a_i)$ and the cover is locally finite, this is a finite sum so f is well-defined and smooth. Furthermore,

$$f(x) = 0 \iff x \notin \forall i \in I : x \notin B_{r_i}(a_i) \iff x \notin E^C \iff x \in E$$

Remark. This esaily generalizes to show that any closed subset $Z \subset X$ of a smooth manifold is cut out by closed sets.

Our next question is what does the vanishing of analytic or holomorphic functions look like. We have one result.

Proposition 23.2. A nontrivial vanishing set of analytic functions in \mathbb{R}^n (or holomorphic functions in \mathbb{C}^n) has positive codimension. Explicitly, it does not contain any nonempty open.

Proof. This is clear because analytic and holomorphic functions which vanish on a nonempty open vanish everywhere. \Box

24 Cousins Problems

Here we let X be a complex manifold and \mathcal{O}_X be its sheaf of holomorphic functions and \mathscr{K}_X be its sheaf of meromorphic functions. The Cousins problems are the following questions given a cover U_i and a meromorphic function $f_i \in \Gamma(U_i, \mathscr{K}_X)$ on U_i .

Definition 24.1. The Cousins problems ask the following.

- (a). (First or additive Cousin Problem) if $(f_i f_j)|_{U_i \cap U_j}$ is holomorphic for each pair i, j then does there exist a global meromorphic function $f \in \Gamma(X, \mathscr{K}_X)$ such that $f|_{U_i} f_i$ is holomorphic?
- (b). (Second or multiplicative Cousin Problem) if $(f_i/f_j)|_{U_i\cap U_j}$ is non-vanishing holomoprhic for each pair i, j then does there exist a global meromorphic function $f \in \Gamma(X, \mathscr{K}_X)$ such that $f|_{U_i}/f_i$ is holomorphic and non-vanishing?

Notice that set of pairs $\{(U_i, f_i)\}$ in the first Cousin problem defines a global section of the sheaf $\mathscr{K}_X/\mathcal{O}_X$ exactly because $(f_i - f_j)|_{U_i \cap U_j} \in \mathcal{O}_X(U_i \cap U_j)$ is holomorphic. Likewsie, the set of pairs $\{(U_i, f_i)\}$ in the second Cousin problem defined a global section of the sheaf $\mathscr{K}_X^{\times}/\mathcal{O}_X^{\times}$ exactly because $(f_i/f_j)|_{U_i \cap U_j} \in \mathcal{O}_X^{\times}(U_i \cap U_j)$ is holomorphic and nonvanishing. Therefore, we can restate the Cousins problems as follows.

Definition 24.2. The Cousins problems ask the following.

- (a). (First Cousin Problem) is the map $H^0(X, \mathscr{K}_X) \to H^0(X, \mathscr{K}_X/\mathcal{O}_X)$ surjective?
- (b). (Second Cousin Problem) is the map $H^0(X, \mathscr{K}_X^{\times}) \to H^0(X, \mathscr{K}_X^{\times}/\mathcal{O}_X^{\times})$ surjective?

Now we can solve these problems using the following two exact sequences of sheaves,

$$0 \longrightarrow \mathcal{O}_X \longrightarrow \mathscr{K}_X \longrightarrow \mathscr{K}_X/\mathcal{O}_X \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}_X^{\times} \longrightarrow \mathscr{K}_X^{\times} \longrightarrow \mathscr{K}_X^{\times}/\mathcal{O}_X^{\times} \longrightarrow 0$$

and we can relate the sheaf cohomology needed in the two problems via the exponential exact sequence,

$$0 \longrightarrow \underline{\mathbb{Z}} \xrightarrow{2\pi i} \mathcal{O}_X \xrightarrow{\exp} \mathcal{O}_X^{\times} \longrightarrow 0$$

Theorem 24.3. The first cousin problem is solvable when $H^1(X, \mathcal{O}_X) = 0$.

Proof. The first exact sequence gives a cohomology exact sequence,

$$0 \longrightarrow H^0(X, \mathcal{O}_X) \longrightarrow H^0(X, \mathscr{K}_X) \longrightarrow H^0(X, \mathscr{K}_X/\mathcal{O}_X) \longrightarrow H^1(X, \mathcal{O}_X) \longrightarrow H^1(X, \mathscr{K}_X)$$

Clearly, if
$$H^1(X, \mathcal{O}_X) = 0$$
 then, by exactness, $H^0(X, \mathcal{K}_X) \to H^0(X, \mathcal{K}_X/\mathcal{O}_X)$ is surjective. \square

Remark. By Cartan's theorem B, we know $H^1(X, \mathcal{O}_X) = 0$ for any Stein manifold. So the first Cousin problem is always solvable for Stein manifolds.

Theorem 24.4. The second cousin problem is solvable when $H^1(X, \mathcal{O}_X^{\times}) = 0$ or when $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$ and $H^2(X; \mathbb{Z}) = 0$.

Proof. The second exact sequence gives a cohomology exact sequence,

$$0 \longrightarrow H^0(X, \mathcal{O}_X^\times) \longrightarrow H^0(X, \mathscr{K}_X^\times) \longrightarrow H^0(X, \mathscr{K}_X^\times/\mathcal{O}_X^\times) \longrightarrow H^1(X, \mathcal{O}_X^\times) \longrightarrow H^1(X, \mathscr{K}_X^\times)$$

Clearly, if $H^1(X, \mathcal{O}_X^{\times}) = 0$ then, by exactness, $H^0(X, \mathcal{X}_X) \to H^0(X, \mathcal{X}_X/\mathcal{O}_X)$ is surjective. Now consider the cohomology of the exponential sequence,

$$H^1(X;\mathbb{Z}) \longrightarrow H^1(X,\mathcal{O}_X) \longrightarrow H^1(X,\mathcal{O}_X^{\times}) \longrightarrow H^2(X;\mathbb{Z}) \longrightarrow H^2(X,\mathcal{O}_X)$$

Then if $H^1(X, \mathcal{O}_X) = 0$ and $H^2(X, \mathcal{O}_X) = 0$ we get an isomorphism (the first Chern class) $H^1(X, \mathcal{O}_X^{\times}) = H^2(X; \mathbb{Z})$ so if $H^2(X; \mathbb{Z}) = 0$ then $H^1(X, \mathcal{O}_X^{\times}) = 0$ giving the surjection.

Remark. For Stein manifolds we always have $H^p(X, \mathcal{O}_X) = 0$ for p > 0 by Cartan's theorem B. Therefore, the second cousin problem is solvable for Stein manifolds when $H^2(X; \mathbb{Z}) = 0$.

25 The Topology of Schemes

Here I want to ask what the topology of schemes "looks like" from the perspective of algebraic topology. The importance of the analytification functor $X \mapsto X^{\mathrm{an}}$ is that it alows us to compute the "correct" topological invariants to complex varieties. However, what happens if we try to compute algebraic topology on the Zariski topology?

Lemma 25.1. Suppose X is a topological space with a dense point $\xi \in X$. Then X is contractible.

Proof. Consider the homotopy $h: X \times I \to X$ defined by,

$$h(x,t) = \begin{cases} x & t = 0\\ \eta & t > 0 \end{cases}$$

This is continuous because no nontrivial closed set $Z \subset X$ contains ξ so $h^{-1}(Z) = Z \times \{0\}$ which is closed. Furthermore $h^{-1}(X) = X \times I$ so h is continuous.

Remark. In particular, we see that every irreducible scheme is contractible.

However, there are example of varieties which have nontrivial homotopy type.

Example 25.2. https://math.stackexchange.com/questions/2701914/connected-non-contractible-schemes