

ORIENT

Photo coupler

Product Data Sheet

Part Number: _	OR-M302X(L)/M305X(L)/M307X(L)
Customer: _	
_	
Date:	

SHENZHEN ORIENT COMPONENTS CO., LTD

Block A 3rd Floor No.4 Building, Tian'an Cyber Park, Huangge Rd, Long Gang Dist, Shenzhen, GD

TEL: 0755-29681816 FAX: 0755-29681200 www.orient-opto.com

1. Features

- (1) High isolation voltage between input and output (Viso:3750 V rms)
- (2) 4pin non zero-cross optoisolators triac driver output
- (3) High repetitive peak off-state voltage VDRM: M302X: Min. 400V, M305X: Min. 600V, M307X: Min. 800V
- (4) High critical rate of rise of off-state voltage dv/dt : M302X: Typ. $100V / \mu s$, M305X/M307X:MIN . $1000V / \mu s$
- (5) Tape and reel packaging.
- (6) Operating temperature -40 °Cto +110 °C
- (7) Safety approval

UL approved(No.E323844)

VDE approved(No.40029733)

CQC approved (No.CQC19001231256)

- (8) In compliance with RoHS, REACH standards
- (9) MSL Class I

The OR-M302X(L)/M305X(L)/M307X(L) consists of a non zero crossing photo triac, optically coupled to a gallium arsenide infrared emitting diode. They are housed in the SOP-4 package and guarantees insulation thickness. Therefore, they meets the reinforced insulation class requirements of international safety standards.

3. Application Range

- AC Motor Drives
- •AC Motor Starters

Static power switch

- Lighting Controls
- •Solenoid/Valve Controls
- •Solid State Relays

•Temperature Controls

4. Functional Diagram

- 1.Anode
- 2.Cathode
- 3.Main terminal
- 4. Main terminal

5. Absolute Maximum Ratings (Ta=25°C)

	Parameter		Symbol	Rated Value	Unit
	Forward Current		I_{F}	50	mA
T.,4	Junction Te	emperature	TJ	125	°C
Input	Reverse	Voltage	V _R	6	V
	Power Di	ssipation	P	100	mW
		OR-M302X	V DRM	400	
	Off-State Output Terminal Voltage	OR-M305X		600	V
		OR-M307X		800	
Output	On state RMS current		I _{T(RMS)}	100	mA(RMS)
		Peak Repetitive Surge Current (PW=1ms, 120 pps)		1	A
	Junction Te	Junction Temperature		125	°C
	Collector Power Dissipation		P _C	300	mW
,	Total Power Dissipation		P _{tot}	330	mW
*1 Insulation Voltage		V _{iso}	3750	Vrms	
Working Temperature		Topr	-40 ~ + 110		
Deposit Temperature			$T_{\rm stg}$	-55 ~ + 125	°C
*2 Soldering Temperature		T_{sol}	260		

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2&3 are shorted together, and pins 4, 6 are shorted together.

^{* 2} For 10 seconds

6. Electrical Optical Characteristics at Ta=25°C

Parameter		Symbol	Min	Typ.*	Max	Unit	Condition	
T	Forward Voltage		V_{F}		1.2	1.6	V	I _F =10mA
Input	Reverse Curr	ent	I_R			5	μΑ	V _R =6V
	*1.Peak Blocking Current, Either Direction		I_{DRM}		10	100	nA	$V_{DRM} =$ Rated V_{DRM}
Output	Peak On-State Voltage, Either Direction		V_{TM}			2.5	V	ITM=100mA Peak
	*2.Critical rate of Rise of	OR-M302X	1/14		100			Vin=240Vrms
	Off-State Voltage	OR-M305X OR-M307X	dv/dt	1000			V/µs	
	OR-M3020 OR-M3050 OR-M3070				30			
	OR-M3021 OR-M3051 OR-M3071				15			
	*3.Led Trigger Current,Current Required to Latch Output, Either	OR-M3022 OR-M3052 OR-M3072	$ m I_{FT}$			10		Main Terminal Voltage = 3V
Transfer Characteri stics	OR-M3023 OR-M3053 OR-M3073				5	mA		
	OR-M3024 OR-M3054 OR-M3074				3			
	Holding Current, Either Direction		$ m I_H$	0.5	1.0	5.0	mA	
	Turn-On Time		Ton			100	μs	$V_D=6V$ $R_L=100\Omega$ $I_F=20mA$

^{*1.}Test voltage must be applied within dv/dt rating.

^{*2.} This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor(s) only.

^{*3.} All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore,recommended operating I_F lies between max I_{FT} , 30 mA for OR-M3020 and OR-M3050,15 mA for OR-M3021 and OR-M3051,10 mA for OR-M3022 and OR-M3052,5 mA for OR-M3023 and OR-M3053,3 mA for OR-M3024 and OR-M3054, and absolute max I_F (50mA).

7. Order Information

Part Number

Note

M302X(L)/M305X(L)/M307X(L) = Part Number(X = 0,1,2,3 or 4)

W = Tape and reel option (TP or TP1).

Y = 'V' code for VDE safety (This options is not necessary).

Z = 'G' code for Halogen free.

Option	Description	Packing quantity
TP	Surface mount lead form (low profile) + TP tape & reel option	3000 units per reel
TP1	Surface mount lead form (low profile) + TP1 tape & reel option	3000 units per reel

^{*} VDE Code can be selected.

8. Naming Rule

1. Manufacturer: ORIENT.

Part Number: M30

: '21' means '2021' and so on. 3.

: 01 means the first week, 02 means the second week and so on. 4. Week Code

5.

HF Code 'G': Halogen Free. 6.

7. Anode.

Identification.

* VDE Code can be selected.

9. Package Dimension

OR-M30XX

10. Recommended Foot Print Patterns (Mount Pad)

7

11. Taping Dimensions

(1)TP Type

(2)TP1 Type

Description	Symbol	Dimension in mm (inch)
Tape wide	W	12±0.3 (0.472)
Pitch of sprocket holes	Р0	4±0.1 (0.157)
Distance of compartment	F	5.5±0.1 (0.217)
	P2	2±0.1 (0.079)
Distance of compartment to compartment	P1	8±0.1 (0.315)

Package Type	TP/TP1
Quantities(pcs)	3000

12. Package Dimension

(1) package dimension

Packing Information			
Packing type	Reel type		
Tape Width	12mm		
Qty per Reel	3,000pcs		
Small box (inner) Dimension	345*345*45mm		
Large box (Outer) Dimension	480x360x360mm		
Max qty per small box	6,000pcs		
Max qty per large box	60,000pcs		

(2)Packing Label Sample

Note:

- 1. Material Code :Product ID.
- 2. P/N :Contents with "Order Information" in the specification.
- 3. Lot No.: Product data.
- 4. D/C :Product weeks.
- 5. Quantity: Packaging quantity.

13. Temperature Profile Of Soldering

(1) IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T Smin)	150°C
- Temperature Max (T Smax)	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (TL)	217°C
- Time (t L)	60 sec
Peak Temperature	260°C
Peak Temperature time	20 sec
Ramp-up rate	3°C / sec max.
Ramp-down rate from peak temperature	3∼6°C / sec
Reflow times	≤3

(2) Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature	260+0/-5°C		
Time	10 sec		
Preheat temperature	5 to 140°C		
Preheat time	30 to 80 sec		

(3) Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature	380+0/-5°C
Time	3 sec max

14. CHARACTERISTICS CURVES (TYPICAL PERFORMANCE)

Fig.3 Minimun Trigger Current vs.
Ambient temperature

Fig.5 On-state voltage vs. Ambientn temperature

Fig.2 On-state current vs. Ambient temperature On-state current ITM (A) 0.12 0.1 0.08 0.06 0.04 0.02 0 80 100 -40 -20 40 60 120 Ambient temperature Ta (°C)

Fig.4 Forward current vs. Forward voltage

Fig.6 Holding current vs. Ambient

Fig9. Basic Operation Circuit Medium/High Power Triac Drive Circuit

Fig10.Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_T is monitored using a x100 scope probe. By varying R_{TEST} , the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, TRC is recorded and the dv/dt calculated.

$$\frac{dv/dt}{dt} = \frac{0.632 \text{ x V}_{PEAK}}{\tau_{RC}}$$

$$\frac{dv/dt}{dt} = \frac{0.632 \text{ x V}_{PEAK}}{\tau_{RC}}$$

For example, V_{PEAK} = 600V for EL306X series. The dv/dt value is calculated as follows:

$$\frac{dv/dt}{t} = \frac{0.63 \times 600}{\tau_{RC}} = \frac{378}{\tau_{RC}}$$