Estructuras Algebraicas para la Computación

Mariam Cobalea

Universidad de Málaga Dpto, de Matemática Aplicada

Tema 2: Retículos y Álgebras de Boole

- Retículos ordenados y retículos algebraicos.
- Tipos de retículos y propiedades.
 - Distributivos
 - Acotados
 - Complementados
- Álgebras de Boole. Expresiones y funciones booleanas.

Álgebras de Boole

Definición

Sea A un conjunto no vacío que contiene dos elementos especiales $0_A, 1_A, 0_A \neq 1_A$. En A se consideran dos operaciones binarias $+ y \cdot$ y una operación unaria -. Se dice que $(A, +, \cdot, -, 0_A, 1_A)$ es un **álgebra de Boole** si para todo $a, b, c \in A$ se verifican:

lentidad:
$$a+0_{\mathcal{A}}=a$$
 $a\cdot 1_{\mathcal{A}}=a$

Conmutativa:
$$a+b = b+a$$
 $a \cdot b = b \cdot a$

Identidad :
$$a + 0_A$$
= a $a \cdot 1_A$ = a Conmutativa : $a + b$ = $b + a$ $a \cdot b$ = $b \cdot a$ Distributiva : $a + (b \cdot c)$ = $(a + b) \cdot (a + c)$ $a \cdot (b + c)$ = $a \cdot b + a \cdot c$

Complemento:
$$a + \overline{a} = 1_A$$
 $a \cdot \overline{a} = 0_A$

Álgebras de Boole

Ejemplos Son álgebras de Boole:

- $(\mathbb{B}, +, \cdot, -, 0, 1)$
- $(D_{30}, mcm, mcd, -, 1, 30)$
- $(\mathcal{P}(\{a,b,c\}),\cup,\cap,-,\varnothing,\{a,b,c\})$

Álgebras de Boole

Propiedades

Teorema

Sea $(A, +, \cdot, -, 0_A, 1_A)$ un álgebra de Boole. Para todo $a, b, c \in A$ se verifican las siguientes propiedades:

Idempotencia :

$$a+a = a$$
 $a \cdot a = a$

$$a \cdot a = a$$

Dominancia:
$$a + 1_A = 1_A$$
 $a \cdot 0_A = 0_A$

$$a \cdot 0_{\mathcal{A}} = 0_{\mathcal{A}}$$

Absorción :

$$a+(a\cdot b) = a$$

$$a+(a\cdot b) = a$$
 $a\cdot (a+b) = a$

Asociativa :

$$a+(b+c) = (a+b)+c$$
 $a\cdot (b\cdot c) = (a\cdot b)\cdot c$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

DeMorgan :

$$(\overline{a+b}) = \overline{a} \cdot \overline{b}$$

$$(\overline{a+b}) = \overline{a} \cdot \overline{b} = \overline{a} + \overline{b}$$

Involución

$$\bar{\bar{a}} = a$$

Estructuras Algebraicas para la Computación

Álgebras de Boole

Propiedades

Teorema

Sea $(A, +, \cdot, -, 0_A, 1_A)$ un álgebra de Boole. La relación \leq definida

$$a \prec b \iff a + b = b$$

es un orden parcial.

Ejercicio Demuestra que para todo $a \in A$, se verifica $0_A \prec a \prec 1_A$.

Definición

Un átomo en un álgebra de Boole es un elemento $a \in A$ tal que para todo $b \in A$, si $b \prec a$, entonces b = 0 ó bien b = a.

Ejemplo En el álgebra de Boole $(\mathcal{P}(\{a,b,c\}),\cup,\cap,-,\varnothing,\{a,b,c\})$ los átomos son $\{a\}$, $\{b\}$, $\{c\}$.

En el álgebra de Boole $(D_{30}, mcm, mcd, -, 1, 30)$ los átomos son 2, 3 y 5.

Álgebras de Boole

Propiedades

Ejercicio Sea $(A, +, \cdot, -, 0_A, 1_A)$ un álgebra de Boole. Demuestra:

• Si a es un átomo, entonces para todo $b \in A$, se verifica

$$a \cdot b = 0$$
 ó bien $a \cdot b = a$

• Si a_1 y a_2 son átomos, entonces $a_1 \cdot a_2 = 0$.

Definición

Un superátomo en un álgebra de Boole es un elemento $a \in A$ tal que para todo $b \in A$, si $a \prec b$, entonces b = 1 ó bien b = a.

Ejemplo En el álgebra de Boole $(\mathcal{P}(\{a,b,c\}),\cup,\cap,-,\varnothing,\{a,b,c\})$ los superátomos son $\{a,b\}$, $\{a,c\}$, $\{b,c\}$.

En el álgebra de Boole $(D_{30}, mcm, mcd, -1, 30)$ los superátomos son 6, 10 y 15.

Estructuras Algebraicas para la Computación

Álgebras de Boole

Teorema

Todo retículo de Boole es un álgebra de Boole y recíprocamente.

Las álgebras de Boole cumplen todas las propiedades establecidas para los retículos distributivos y complementados.

Ejercicio En un álgebra de Boole $\mathcal A$ se define la operación \oplus (xor) de la siguiente manera: $a \oplus b = a\overline{b} + \overline{a}b$.

- Determina $a \oplus a$, $a \oplus 0$, $a \oplus 1$ $\forall a \oplus \overline{a}$.
- Demuestra o refuta cada una de las siguientes afirmaciones

i)
$$a \oplus b = 0 \Rightarrow a = b$$

$$ii) a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

$$iii) a \oplus b = \overline{a} \oplus \overline{b}$$

$$iv) a \oplus bc = (a \oplus b)(a \oplus c)$$

$$(a) a(b \oplus c) = ab \oplus ac$$

 $(a) a \oplus b = a \oplus c \Rightarrow b = c$

$$vi) \ \overline{a \oplus b} = \overline{a} \oplus b = a \oplus \overline{b}$$

Álgebra de Boole producto

Teorema

Si A_1 y A_2 son dos álgebras de Boole, entonces $A_1 \times A_2$ también es un álgebra de Boole.

Demostración: Ejercicio

El teorema anterior se puede generalizar:

Teorema

Si A_1, A_2, \dots, A_n son álgebras de Boole, entonces $A_1 \times \dots \times A_n$ es un álgebra de Boole.

Álgebra de Boole producto

Ejemplo Sea $(\mathbb{B}, +, \cdot, -, 0, 1)$ el álgebra de Boole trivial.

Por el teorema anterior,

$$\mathbb{B}^{n} = \{(b_{1}, b_{2}, \dots b_{n}) | b_{j} \in \mathbb{B} \text{ para } j : 1, 2, \dots, n\}$$

es también un álgebra de Boole.

✓ Dados $a = (a_1, a_2, \dots a_n) \in \mathbb{B}^n$ y $b = (b_1, b_2, \dots b_n) \in \mathbb{B}^n$, las operaciones + y · están definidas

$$a+b=(a_1,a_2,...,a_n)+(b_1,b_2,...b_n)=(a_1+b_1,a_2+b_2,...a_n+b_n)$$

$$a \cdot b = (a_1, a_2, \dots a_n) \cdot (b_1, b_2, \dots b_n) = (a_1 \cdot b_1, a_2 \cdot b_2, \dots a_n \cdot b_n)$$

- ✓ El complemento de cada elemento es $\overline{a} = (\overline{a_1}, \overline{a_2}, \dots, \overline{a_n})$.
- ✓ Además.

$$0_{\mathbb{B}^n}=(0,0,\dots 0)\quad y\quad 1_{\mathbb{B}^n}=(1,1,\dots,1)$$

✓ Los átomos son: (1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1)

Isomorfismos de Álgebras de Boole

Definición

Sean $(A, \oplus, \otimes, \ominus, 0_A, 1_A)$ y $(B, \boxplus, \boxtimes, \ominus, 0_B, 1_B)$ álgebras de Boole. Un isomorfismo de álgebras de Boole es una función $\phi \colon \mathcal{A} \to \mathcal{B}$ que es biyectiva y para todo $a,b \in A$ verifica:

$$\phi(\mathbf{a} \otimes \mathbf{b}) = \phi(\mathbf{a}) \boxtimes \phi(\mathbf{b})$$

Isomorfismos de Álgebras de Boole

Ejemplo La función $\phi: \mathcal{D}_{30} \to \mathcal{D}_{1001}$ definida

$$\phi(1) = 1$$
 $\phi(2) = 7$ $\phi(3) = 11$ $\phi(5) = 13$ $\phi(6) = 77$ $\phi(10) = 91$ $\phi(15) = 143$ $\phi(30) = 1001$

es un isomorfismo de álgebras de Boole.

Teorema de representación

Lema

Sea $(A,+,\cdot,-,0_A,1_A)$ un álgebra de Boole finita. Si b es cualquier elemento distinto de cero en A, y $a_1,a_2,...,a_k$ son todos los átomos de A tales que $a_i \leq b$, entonces $b=a_1+a_2+...+a_k$ de forma única.

Ejemplo

$$1001 = 91 \sqcup 143 = (7 \sqcup 13) \sqcup (13 \sqcup 11) = 7 \sqcup 13 \sqcup 11$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computació

13 / 4

Teorema de representación

Ejemplo

$$30 = 6 \sqcup 10 = (2 \sqcup 3) \sqcup (2 \sqcup 5) = 2 \sqcup 3 \sqcup 5;$$

$$70 = 14 \sqcup 35 = (2 \sqcup 7) \sqcup (5 \sqcup 7) = 2 \sqcup 5 \sqcup 7;$$

$$105 = 15 \sqcup 35 = (3 \sqcup 5) \sqcup (5 \sqcup 7) = 3 \sqcup 5 \sqcup 7$$

Teorema de representación

- De este lema se deduce que hay una biyección entre los elementos de un álgebra de Boole y los subconjuntos de sus átomos.
- De hecho, esta biyección es un isomorfismo de (A, \preceq) en $(\mathcal{P}(S), \subseteq)$, donde S es el conjunto de átomos.

Teorema

Sea $(A,+,\cdot,-,0_A,1_A)$ un álgebra de Boole finita y sea S su conjunto de átomos. Entonces $(A,+,\cdot,-,0_A,1_A)$ es isomorfa al álgebra de Boole $(\mathcal{P}(S),\cup,\cap,-,\varnothing,S)$.

Corolario

Si $(A, +, \cdot, -, 0_A, 1_A)$ es un álgebra de Boole finita con n átomos, entonces A tiene 2^n elementos.

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

15 / 47

Teorema de representación

Ejemplo

 $(D_{30}, mcm, mcd, -, 1, 30)$ es isomorfo a $(\mathcal{P}(\{2, 3, 5\}), \cup, \cap, -, \varnothing, \{2, 3, 5\})$

$$\phi \colon \mathcal{D}_{30} \longrightarrow \mathcal{P}(\{2,3,5\})$$

$$\phi(1) = \varnothing \qquad \qquad \phi(2) = \{2\}$$

$$\phi(3) = \{3\}$$
 $\phi(5) = \{5\}$

$$\phi(6) = \{2,3\} \qquad \phi(10) = \{2,5\}$$

$$\phi(15) = \{3,5\}$$
 $\phi(30) = \{2,3,5\}$

Isomorfismos de Álgebras de Boole

Teorema

Sea $(\mathcal{A},\oplus,\otimes,\ominus,0_{\mathcal{A}},1_{\mathcal{A}})$ un álgebra de Boole finita con conjunto de átomos $\{a_1,\ldots,a_n\}$. Si $(\mathcal{B},\boxplus,\boxtimes,\boxminus,0_{\mathcal{B}},1_{\mathcal{B}})$ es un álgebra de Boole finita con conjunto de átomos $\{b_1,\ldots,b_n\}$, entonces existe una función $\phi\colon\mathcal{A}\to\mathcal{B}$ tal que $\phi(a_j)=b_j,\ 1\leq j\leq n$ que es un isomorfismo de álgebras de Boole.

Ejemplo
$$\phi \colon \mathcal{D}_{30} \to \mathbb{B}^3$$

$$\phi(1) = 000, \quad \phi(2) = 100, \quad \phi(3) = 010, \quad \phi(5) = 001,$$

 $\phi(6) = 110, \quad \phi(10) = 101, \quad \phi(15) = 011, \quad \phi(30) = 111$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computació

17 / 4

Isomorfismos de Álgebras de Boole

Ejercicio Sean las álgebras de Boole $A_1 = D_{2310}$ y $A_2 = \mathcal{P}(\{a, b, c, d, e\})$. Se define la función $f: A_1 \to A_2$ del siguiente modo:

$$f(2) = \{a\}$$
 $f(3) = \{b\}$ $f(5) = \{c\}$ $f(7) = \{d\}$ $f(11) = \{e\}$

- Expresa, si es posible, los elementos 110,210 y 330 en función de átomos y superátomos.
- Determina cuáles deben ser las imágenes de f(35), f(110), f(210) y f(330) para que f sea isomorfismo de álgebras de Boole.
- **3** Estudia si se puede definir otra función $g: A_1 \to A_2$ que también sea isomorfismo de álgebras de Boole.
- En caso afirmativo, determina g(110), g(210) y g(330).
- **o** ¿Cuántos isomorfismos diferentes se pueden definir entre A_1 y A_2 ?

El álgebra de Boole \mathcal{F}_n

Definición

Se llama función booleana de n variables a una función

$$f\colon \mathbb{B}^n \to \mathbb{B}$$

El conjunto de todas las funciones booleanas de n variables se denota \mathcal{F}_n .

Ejemplo La función $f: \mathbb{B}^3 \to \mathbb{B}$ definida

х	у	z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Mariam Cobalea (UMA)

19 /

El álgebra de Boole \mathcal{F}_n

- ✓ Una función booleana de 3 variables es una función f tal que f(x,y,z) es 0 ó 1 para cada una de las 2^3 elecciones de x,y,z.
- ✓ Podemos pensar en poner 3 interruptores en una de las dos posiciones.
- ✓ Entonces f se comporta como una caja negra que produce una salida 0 ó 1 dependiendo de cómo estén puestos los interruptores y de la estructura interna de la caja.
- ✓ Como hay 8 formas de poner los interruptores y cada posición lleva a alguna de las dos salidas, dependiendo de la función, hay $2^{2^3} = 256$ funciones booleanas de 3 variables.
- ✓ Esto es, $|\mathcal{F}_3| = 2^{2^3} = 256$.
- \checkmark En general, $|\mathcal{F}_n|=2^{2^n}$.

El álgebra de Boole \mathcal{F}_n

Definición

Sean f y g dos funciones booleanas de n variables, f, $g \in \mathcal{F}_n$ La suma booleana f+g y el producto booleano $f \cdot g$ se definen

$$(f+g)(x_1,x_2,\ldots,x_n)=f(x_1,x_2,\ldots,x_n)+g(x_1,x_2,\ldots,x_n)$$

$$(f \cdot g)(x_1, x_2, \ldots, x_n) = f(x_1, x_2, \ldots, x_n) \cdot g(x_1, x_2, \ldots, x_n)$$

para cualesquiera $(x_1, x_2, \dots, x_n) \in \mathbb{B}^n$.

El **complemento** de la función booleana f es la función booleana \overline{f} definida $\overline{f}(x_1, \dots, x_n) = \overline{f(x_1, \dots, x_n)}$

Teorema

 \mathcal{F}_n es un álgebra de Boole con las operaciones booleanas definidas.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

21 / 4

El álgebra de Boole \mathcal{F}_n

Ejemplo Las operaciones booleanas de \mathcal{F}_2 se ilustran en la siguiente tabla

X	У	f	g	f+g	$f \cdot g$	\overline{f}
0	0	1	0	1	0	0
0	1	0	1	1	0	1
1	0	1	1	1	1	0
1	1	0	0	0	0	1

El álgebra de Boole \mathcal{F}_n

$$\mathcal{F}_2 = \{f_j \colon \mathbb{B}^2 \to \mathbb{B}, \ j : 0, ..., 15\}$$

x	у	f_0	<i>f</i> ₁	<i>f</i> ₂	f_3	<i>f</i> ₄	f_5	f ₆	<i>f</i> ₇	<i>f</i> ₈	f ₉	f ₁₀	f ₁₁	<i>f</i> ₁₂	<i>f</i> ₁₃	f ₁₄	f ₁₅
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1 0 1 1	1	1

Los átomos del álgebra de Boole \mathcal{F}_2 son: f_1 , f_2 , f_4 y f_8 .

Cada elemento de \mathcal{F}_2 se puede expresar como suma de átomos, por ejemplo $f_7 = f_1 + f_2 + f_4, \quad f_{10} = f_2 + f_8, \quad f_{14} = f_2 + f_4 + f_8$

Nos interesa escribir cada elemento del álgebra de Boole \mathcal{F}_n , en este caso \mathcal{F}_2 , como suma de átomos.

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

22 / 47

El álgebra de Boole \mathcal{F}_2

$$\mathcal{F}_2 = \{f_j \colon \mathbb{B}^2 \to \mathbb{B}, \ j : 0, ..., 15\}$$

x	у	f_0	f_1	<i>f</i> ₂	f_3	<i>f</i> ₄	f_5	f_6	f ₇	<i>f</i> ₈	f ₉	f ₁₀	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1 1 1

Expresiones booleanas

Definición

Una **expresión booleana** sobre el álgebra de Boole $(A, \oplus, \otimes, \ominus, 0_A, 1_A)$ se define recursivamente de la siguiente manera:

- [B] Cualquier elemento de \mathcal{A} y cualquier símbolo de variable x_1, x_2, \dots, x_n son expresiones booleanas.
- [R] Si E_1 y E_2 son expresiones booleanas, entonces $E_1 \oplus E_2$, $(E_1 \otimes E_2)$ y $\overline{E_1}$ son también expresiones booleanas.

Ejemplo

 $E(x) = (\overline{5 \lor x}) \lor \overline{6}$ es una expresión booleana en $(D_{30}, \lor, \land, -, 1, 30)$.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

25 / 4

Expresiones booleanas

Ejemplos

- $E(x) = \overline{(x \land 3)} \land (77 \lor 3)$ es una expresión booleana en $(D_{2\cdot 3\cdot 7\cdot 11}, \lor, \land, -, 1, 462)$.
- $E(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z}$ es una expresión booleana en \mathbb{B} .
- ✓ Las expresiones booleanas representan cálculos con elementos no específicos de un cierto álgebra de Boole A.
- ✓ Se pueden manipular usando las propiedades de las operaciones \oplus, \otimes, \ominus definidas en el álgebra de Boole correspondiente.

Expresiones booleanas

✓ Para una asignación de valores a las variables, podemos evaluar la expresión $E(x_1, x_2, ..., x_n)$ mediante la sustitución de las variables en la expresión por sus valores y obtendremos como resultado un elemento de A.

Ejemplos

• Reemplazando x por 2 en la expresión booleana $E(x) = (\overline{5 \lor x}) \lor \overline{6}$ definida en $(D_{30}, \lor, \land, -, 1, 30)$, obtenemos

$$E(2) = (\overline{5 \vee 2}) \vee \overline{6} = (\overline{10}) \vee 5 = 3 \vee 5 = 15$$

• Reemplazando x por 0, y por 1 y z por 1 en la expresión booleana $E(x,y,z)=\overline{x}\cdot z+\overline{x}\cdot y+\overline{z}$ definida en \mathbb{B} , obtenemos

$$E(0,1,1) = \overline{0} \cdot 1 + \overline{0} \cdot 1 + \overline{1} = 1 \cdot 1 + 1 \cdot 1 + 0 = 1 + 1 + 0 = 1$$

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

27 / /

Expresiones booleanas

Definición

Se dice que dos expresiones booleanas son **equivalentes** si toman los mismos valores para las mismas asignaciones a las variables.

Ejemplo

Las expresiones booleanas $E_1(x) = \overline{x} \lor 5$ y $E_2(x) = (\overline{5 \lor x}) \lor \overline{6}$ definidas en $(D_{30}, \lor, \land, -, 1, 30)$ son equivalentes, ya que

$$E_1(x)$$
 30
 15
 10
 30
 5
 6
 10
 15
 30

 $E_2(x)$
 30
 15
 10
 30
 5
 15
 10
 5

Expresiones booleanas

- ✓ Dos expresiones booleanas $E_1(x_1, x_2, ..., x_n)$ y $E_2(x_1, x_2, ..., x_n)$ serán *equivalentes* si es posible transformar una en la otra con manipulaciones booleanas.
- ✓ En este caso, escribimos

$$E_1(x_1, x_2, ..., x_n) = E_2(x_1, x_2, ..., x_n)$$

Ejercicios Demuestra que:

• En el álgebra de Boole $(D_{30}, \vee, \wedge, -, 1, 30)$

$$\overline{x} \lor 5 = (\overline{5 \lor x}) \lor \overline{6}$$

② En el álgebra de Boole $(D_{2\cdot 3\cdot 7\cdot 11}, \vee, \wedge)$

$$\overline{(x \wedge 3)} \wedge (77 \vee 3) = (231 \wedge \overline{x}) \vee 77$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

29 / 47

Expresiones booleanas/Funciones booleanas

¿Cómo debemos especificar una función de \mathcal{A}^n en \mathcal{A} a partir de una expresión booleana $E(x_1, x_2, ..., x_n)$ sobre $(\mathcal{A}, \oplus, \otimes, -, 0_{\mathcal{A}}, 1_{\mathcal{A}})$?

- ✓ Cada asignación de valores a las variables $x_1, x_2, ..., x_n$ será una n -tupla ordenada en el dominio \mathcal{A}^n y
- ✓ el correspondiente valor de $E(x_1, x_2, ..., x_n)$ será la imagen en el codominio A.

Ejemplo La expresión booleana $E(x) = (\overline{5 \lor x}) \lor \overline{6}$ sobre el álgebra de Boole $(D_{30}, \lor, \land, -, 1, 30)$ define la función $f: D_{30} \to D_{30}$ dada por

Expresiones booleanas/Funciones booleanas

Ejemplo La expresión booleana

$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (x_1 \cdot \overline{x}_2) + (x_1 \cdot x_3)$$

sobre el álgebra de Boole $(\mathbb{B},+,\cdot,-,0,1)$ define la función $f:\mathbb{B}^3\to\mathbb{B}$ dada por

 $\begin{array}{c|cccc} & f \\ \hline (0,0,0) & 1 \\ (0,0,1) & 0 \\ (0,1,0) & 0 \\ (0,1,1) & 0 \\ (1,0,0) & 1 \\ (1,0,1) & 1 \\ (1,1,0) & 0 \\ (1,1,1) & 1 \\ \end{array}$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

21 / 4

Expresiones booleanas/Funciones booleanas

Función	:=	Expresión	Nombre	Expresión Lógica
$f_0(x,y)$	=	0	Constante 0	Contradicción
$f_1(x,y)$	=	$x \downarrow y$	Operación de Pierce, NOR, ni	$\neg(x \lor y)$
$f_2(x,y)$	=	$\overline{x} \cdot y$	Negación Condicional	$\neg (x \longrightarrow y)$
$f_3(x,y)$	=	\overline{x}	Complemento 1ª componente	¬ x
$f_4(x,y)$	=	$x \cdot \overline{y}$	Inhibidor	$\neg (x \longrightarrow y)$
$f_5(x,y)$	=	\overline{y}	Complemento 2ª componente	¬у
$f_6(x,y)$	=	$x \oplus y$	Diferencia simétrica, XOR	$(x \wedge \neg y) \vee (\neg x \wedge y)$
$f_7(x,y)$	=	$x \uparrow y$	Operación de Sheffer, NAND	$\neg(x \wedge y)$
$f_8(x,y)$	=	$x \cdot y$	Producto, And	<i>x</i> ∧ <i>y</i>
$f_9(x,y)$	=	$\mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$	Equivalencia lógica	$x \longleftrightarrow y$
$f_{10}(x,y)$	=	У	Proyección 2ª componente	
$f_{11}(x,y)$	=	$\overline{x} + y$	Condicional	$x \longrightarrow y$
$f_{12}(x,y)$	=	X	Proyección 1ª componente	
$f_{13}(x,y)$	=	$x + \overline{y}$	Condicional recíproca	$y \longrightarrow x$
$f_{14}(x,y)$	=	x + y	Suma, OR	$x \vee y$
$f_{15}(x,y)$	=	1	Constante 1	Tautología

Expresiones booleanas/Funciones booleanas

Para todo álgebra de Boole $(\mathcal{A},\oplus,\otimes,-,\mathbf{0}_{\mathcal{A}},\mathbf{1}_{\mathcal{A}})$, nos planteamos si es posible que cualquier función de \mathcal{A}^n en \mathcal{A} se pueda especificar mediante una expresión booleana sobre \mathcal{A} .

La respuesta es NO.

Definición

Una función de A^n en A se llama **función booleana** si se puede especificar mediante una expresión booleana $E(x_1, x_2, ..., x_n)$.

 \triangleright Para el caso del álgebra de Boole \mathbb{B} , se demuestra que cualquier función de \mathbb{B}^n en \mathbb{B} se puede especificar mediante una expresión booleana $E(x_1, x_2, ..., x_n)$.

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computació

33 / 4

Expresiones booleanas/Funciones booleanas

Dada una función $f: \mathbb{B}^n \to \mathbb{B}$, se considera $S(f) = \{b \in \mathbb{B}^n | f(b) = 1\}$.

Teorema

Sea f, f_1 y f_2 funciones de \mathbb{B}^n en \mathbb{B} .

- Si $S(f) = S(f_1) \cup S(f_2)$, entonces $f(b) = f_1(b) + f_2(b)$ para todo $b \in \mathbb{B}$.
- Si $S(f) = S(f_1) \cap S(f_2)$, entonces $f(b) = f_1(b) \cdot f_2(b)$ para todo $b \in \mathbb{B}$.

Expresiones booleanas / Funciones booleanas

Definición

Las expresiones booleanas que constan de una única variable o su complemento se llaman **literales**.

Definición

Decimos que una expresión booleana de n variables es un **minitérmino** si es de la forma $y_1 \cdot y_2 \cdot ... \cdot y_n$

donde usamos y_j para denotar x_j o bien \overline{x}_j .

Se dice que una expresión booleana sobre $(\mathbb{B},+,\cdot,-,0,1)$ está en su **forma normal disyuntiva** si es una suma de minitérminos.

Ejemplo $(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) + (x_1 \cdot x_2 \cdot x_3)$ es una expresión booleana en forma normal disyuntiva, con tres minitérminos:

$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3), (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3)$$
 y $(x_1 \cdot x_2 \cdot x_3).$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

25 / /5

Expresiones booleanas/Funciones booleanas

Ejemplos

- La expresión $x \cdot \overline{y} \cdot z$ es un término mínimo en las tres variables x, y, z. La función correspondiente en \mathcal{F}_3 toma el valor 1 solamente en (1,0,1).
- La expresión $x \cdot \overline{z}$ es un término mínimo en dos variables x, z. Pero no es un término mínimo en las tres variables x, y, z. La función correspondiente en \mathcal{F}_3 toma el valor 1 en (1,0,0) y en (1,1,0).
- La expresión $x \cdot \overline{y} \cdot z \cdot \overline{x}$ no es un término mínimo ya que involucra a la variable x en más de un literal.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 34 / 47 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 36 / 4

Expresiones booleanas/Funciones booleanas

Ejemplos

• En la siguiente tabla se da una lista de los 8 elementos de \mathbb{B}^3 y los términos mínimos correspondientes que toman el valor 1 en los elementos indicados.

(a,b,c)	Términos mínimos con valor 1 en (a, b, c)
(0,0,0)	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} \cdot \overline{\mathbf{z}}$
(0, 0, 1)	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} \cdot \mathbf{z}$
(0, 1, 0)	$\overline{x} \cdot y \cdot \overline{z}$
(0, 1, 1)	$\overline{\mathbf{x}} \cdot \mathbf{y} \cdot \mathbf{z}$
(1,0,0)	$\mathbf{x} \cdot \overline{\mathbf{y}} \cdot \overline{\mathbf{z}}$
(1,0,1)	$\mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{z}$
(1, 1, 0)	$x \cdot y \cdot \overline{z}$
(1, 1, 1)	x · y · z

Expresiones booleanas/Funciones booleanas

Dada una función de \mathbb{B}^n en \mathbb{B} , podemos obtener una expresión booleana en forma normal disyuntiva correspondiente a esta función de la siguiente manera:

- **1** Hacemos corresponder un minitérmino a cada elemento de \mathbb{B}^n para los cuales el valor de la función es 1.
- Para cada una de estos elementos obtenemos un minitérmino

$$y_1 \cdot y_2 \cdot ... \cdot y_n$$

en el cual y_i es x_i si la componente j de la n -tupla es 1 y es \bar{x}_i si la componente j de la n -tupla es 0.

Expresiones booleanas/Funciones booleanas

Ejemplo A la función $f: \mathbb{B}^3 \to \mathbb{B}$ dada por la tabla

	f
(0,0,0)	1
(0, 0, 1)	0
(0, 1, 0)	1
(0, 1, 1)	0
(1, 0, 0)	0
(1, 0, 1)	0
(1, 1, 0)	0
(1, 1, 1)	1

le corresponde la expresión booleana

$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) + (x_1 \cdot x_2 \cdot x_3)$$

Expresiones booleanas/Funciones booleanas

Definición

Decimos que una expresión booleana es un n variables es un **maxitérmino** si es de la forma

$$y_1 + y_2 + ... + y_n$$

donde usamos y_i para denotar x_i o bien \overline{x}_i . Se dice que una expresión booleana sobre $(\mathbb{B},+,\cdot,-,0,1)$ está en su **forma** normal conjuntiva si es un producto de maxitérminos.

Eiemplo

$$(x_1 + x_2 + \overline{x}_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + x_2 + x_3) \cdot (\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + x_3)$$

es una expresión en forma normal conjuntiva que consta de cinco maxitérminos.

Expresiones booleanas/Funciones booleanas

Dada una función de \mathbb{B}^n en \mathbb{B} , podemos obtener una expresión booleana en forma normal conjuntiva correspondiente a esta función de la siguiente manera:

- Hacemos corresponder un maxitérmino a cada uno de los elementos de \mathbb{B}^n para los cuales el valor de la función es 0.
- Para cada una de estos elementos obtenemos un maxitérmino

$$y_1 + y_2 + ... + y_n$$

en el cual y_j es x_j si la componente j de la n -tupla es 0 y es \overline{x}_j si la componente j de la n -tupla es 1.

Mariam Cobaloa (IIM

Estructuras Algebraicas para la Computación

41 / 4

Expresiones booleanas/Funciones booleanas

Ejemplo A la función $f: \mathbb{B}^3 \to \mathbb{B}$ dada por la tabla

$$\begin{array}{c|cccc} & f \\ \hline (0,0,0) & 1 \\ (0,0,1) & 0 \\ (0,1,0) & 1 \\ (0,1,1) & 0 \\ (1,0,0) & 0 \\ (1,0,1) & 0 \\ (1,1,0) & 0 \\ (1,1,1) & 1 \\ \end{array}$$

le corresponde la expresión booleana

$$(x_1 + x_2 + \overline{x}_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + x_2 + x_3) \cdot (\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + x_3)$$

Optimización

Sea $\mathcal{F}_n = \mathcal{F}(\mathbb{B}^n, \mathbb{B})$ y sea $f \in \mathcal{F}_n$ una función booleana cualquiera. Una **representación minimal** de f es una expresión booleana E que representa a f y satisface las siguientes condiciones:

- E es suma de productos
- Si F es otra suma de productos que representa a la función f, entonces el número de términos productos de F es mayor o igual que el número de términos productos que hay en E.
- Si F es cualquier otra suma de productos que representa a la función f y si el número de productos de F es igual al número de términos producto de E, entonces el número total de literales que se encuentran en F es mayor o igual que el número total de literales que se encuentran en E.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

43 / 4

Optimización

Definición

Una expresión $E(x_1,...,x_n)$ implica una expresión $F(x_1,...,x_n)$ si para todo $(a_1,...,a_n) \in \mathbb{B}^n$,

$$E(a_1,\ldots,a_n)=1 \implies F(a_1,\ldots,a_n)=1$$

También se dice que $E(x_1,...,x_n)$ es un **implicante** de $F(x_1,...,x_n)$.

Se dice que $E(x_1,...,x_n)$ es un **implicante primo** de $F(x_1,...,x_n)$ si E es una expresión producto que es implicante de F, pero si eliminamos algún elemento del producto, deja de serlo.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 42 / 47 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 44 / 47

Optimización

Ejemplo Sean las expresiones $E = x \cdot y$ y $F = x \cdot y \cdot z + x \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}$

х у	Z	$F = x \cdot y$	E
		- ^ ,	$F = x \cdot y \cdot z + x \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}$
0 0	0	0	1
0 0	1	0	0
0 1	0	0	0
0 1	1	0	0
1 0	0	0	0
1 0	1	0	0
1 1	0	1	1
1 1	1	1	1

- $E = x \cdot y$ implica $F = x \cdot y \cdot \overline{z} + x \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}$, ya que siempre que E toma el valor 1, también lo toma F.
- Pero $E_1 = x$ no implica F, pues hay una asignación de las variables que hace que $E_1 = x$ tome el valor 1 mientras que F toma el valor 0.
- Por la misma razón, $E_2 = y$ no implica a F.
- Por lo tanto, $E = x \cdot y$ es un implicante primo de F.

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

45 / 47

Optimización

Ejercicio Justifica que

- $E = x \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot z$ implica $F = x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot z + \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z$
- $\overline{y} \cdot z$ es un implicante primo de E y de F.
- $\bullet \quad E = x \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot z \quad implica$

$$H = x \cdot y \cdot z + x \cdot \overline{y} \cdot z + \overline{x} \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot \overline{z}$$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

46 / 47

Optimización

Teorema

Toda expresión booleana es equivalente a la suma de todos sus implicantes primos.

Teorema

Si una expresión booleana E está en la forma suma de productos mínimal, entonces cada sumando es un implicante primo de E.

Ejemplo
$$E = x \cdot \overline{y} + x \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{z}$$

= $x \cdot \overline{y} + x \cdot \overline{z} + y \cdot \overline{z}$
= $x \cdot \overline{y} + y \cdot \overline{z}$

Para encontrar expresiones óptimas se usan el método de los **mapas de Karnaugh** y el **procedimiento de Quine-McCluskey**.

Mariam Cobalea (UM

Estructuras Algebraicas para la Computació

47 / 47