TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN $\mathbf{D}\mathbf{\hat{E}}$ 1

KHOA HỆ THỐNG THÔNG TIN

ĐỀ THI CUỚI KỲ HỌC KỲ II – NĂM HỌC 2022-2023 MÔN KHAI THÁC DỮ LIÊU

Thời gian làm bài: 90 phút

Câu 1 (2.0 điểm) Sinh viên chọn MỘT trong các câu sau:

- 1. Trình bày tóm tắt kiến trúc cơ bản của mạng neural nhân tạo. Nêu các ưu điểm và nhược điểm của mạng neural nhân tạo.
- 2. So sánh các điểm khác nhau giữa bài toán phân lớp và gom cụm. Cho ví dụ minh họa.
- 3. Lấy một ứng dụng khai thác dữ liệu trong lĩnh vực y tế hoặc quản lý nhân sự. Dựa vào ví dụ vừa chọn, hãy nêu đặc trưng của tập dữ liệu, và đề xuất thuật toán khai thác dữ liệu nên áp dụng.

Câu 2 (6.0 điểm) Cho CSDL về *Thông tin khởi hành các chuyến bay nội địa* của các hãng hàng không hoạt động tại Việt Nam xuất phát từ thành phố Hồ Chí Minh, chi tiết trong bảng sau.

	Hãng hàng không (HHK)	<mark>Điểm</mark> <mark>đến (DD)</mark>	Tháng bay (TB)	Giờ khởi hành (GKH)	Kết quả (KQ)
1	Vietjet	Đà Lạt	6.2023	17:25	Trễ giờ
2	Vietnam	Phú Quốc	5.2023	5:40	Đúng giờ
3	Vietjet	<mark>Hà Nội</mark>	5.2023	9:30	Trễ giờ
4	Pacific	Đà Nẵng	4.2023	10:10	Đúng giờ
5	Vietnam	Đà Lạt	6.2023	17:25	Đúng giờ
6	Vietjet	Phú Quốc	6.2023	9:30	Trễ giờ

7	Vietnam	<mark>Hà Nội</mark>	5.2023	10:10	Trễ giờ
8	Vietjet	Đà Nẵng	4.2023	9:30	Trễ giờ
9	Bamboo	Đà Lạt	6.2023	5:40	Đúng giờ
10	Pacific	Đà Nẵng	5.2023	17:25	Đúng giờ

Luu ý:

- Thuộc tính Kết quả (KQ) là thuộc tính quyết định.
- Sinh viên có thể dùng từ viết tắt của thuộc tính trong khi làm bài.
- Làm tròn các số thập phân đến 04 chữ số thập phân.
- 1. Áp dụng thuật toán Apriori, tìm tập phổ biến thỏa ngưỡng minsup=25%. Chọn 1 tập phổ biến tối đại, liệt kê các luật kết hợp thỏa minconf=70%. (1.75đ)

21522425 - Lê Thị Lan Nhi

Cou 2	04		
1. minsup = 2590 =	25		
Cy itemset of	ip	L'a item Niction	Sup.
Cy itemet of Vietnets	3	ChetNam (bol La:	t 3
(Bambo)	3	Dai Non	2913
	2	£6.8023	12 4
	2	217.25 29.30	3
	3	1129	013
	4	{ b lung	giól5
\$6.9023} \$5.20.23} \$4.20.23}	,		
[17:95]	3		
F 9.301	3		
(fine gro)	5.00		
(17:95) (5:40) (5:40) (10:40) (10:40) (10:40) (10:40) (10:40) (10:40) (10:40)	oth	L ₂ site	m sup
Cz tem Svietjet, bail Svietjet, bail Vetjet, 620	231 9	[Net it	et, [1ego] 4
Cliptaet 5 80	234 1	→ Poi Lau	, 6. 2023) 3
Eviction 9:30	3		tre gios 3
Chietjet 5 20 Shietjet 9:30 Shietjet 123 Shietjet 123 Shietjet 123	1990} d		

[Viet Nam, Da Lat] 1
(Nuer Nam Dai Noring) a
{ vietvam, 6, 2023} 1
(Viet Nam, 5 2023) 2
{viot Nam 17: 25}
{ Vi et Norm 9:30} { Vi et Norm, The gro} { Vi et Norm, the gro} }
(tá lat 6.2023) 3 ha lat 5.2023) 0 (ta lat 17.25)
fra lat, 3 30/ soa lat tre gio? (ha lat sun grio) Poi Nang, 6 2023)
[10 Nang 5 202 By 1
(that Naing, 9:30) 1
Bà Nang, Tre giới 1
tha Narry, Jung gu
{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
[6.2023, 9:30]
(62023, Tre gra) 2
(6. 2023 Aung gro) 2

2. Cho B={Điểm đến, Tháng bay}, X={1, 3, 6, 7, 8} (tập các mẫu có giá trị Kết quả = "Trễ giờ"). Sử dụng tập thô tính: xấp xỉ trên, xấp xỉ dưới và hệ số xấp xỉ. (1.0đ)

21520339 - Nguyễn Lê Ngọc Mai

Phân lớp theo B = {Điểm đến, Tháng bay}

$$U/B = \{\{1, 5, 9\}, \{2\}, \{3, 7\}, \{4, 8\}, \{6\}, \{10\}\}\}$$

Xấp xi dưới

$$BX = \{x \mid [x]_B \subseteq X\} = \{3, 7, 6\}$$

Xấp xi trên

$$\overline{B}X = \{x \mid [x]_B \cap X \neq \emptyset\} = \{1, 5, 9, 3, 7, 4, 8, 6\}$$

Biên:

$$B_Bi\hat{e}n = \overline{B}X - \underline{B}X = \{1, 5, 9, 4, 8\}$$

B Ngoài =
$$U - \overline{B}X = \{2, 10\}$$

Hệ số xấp xi

$$\alpha_B(X) = \frac{\left|\underline{B}X\right|}{\left|\overline{B}X\right|} = \frac{\left|\{3,7,6\}\right|}{\left|\{1,5,9,3,7,4,8,6\}\right|} = \frac{3}{8} = 0.375$$

 $\alpha_B(X) < 1 =$ Lớp quyết định KQ là thô

3. Xác định nút gốc của cây quyết định, sử dụng Chỉ số Gini. (1.75đ)

21520404 - Đặng Ánh Phước

0	3) D = 10; F) = I	11=5 (P: Đứng giờ; N: Trế giờ)
D	HHK	Pj	nj Gini (pj, nj)
9	- Vietjet - Vietnam	0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	- Pacific	2	0 0
	- Bambon	100	$ O_{i} $ $ O_{$
	gini HHK (D)	= == 1	101 garrey _ 0) 500
		= 4	$gini(0;A) + \frac{3}{10}gini(2;1) + \frac{2}{10}gini(2;0) + \frac{1}{10}gini(2;0)$

A DD 1	ρ;	n;	Gini (p _i , n _i)
Dà Lạt	2	1	$(2\pi)^{2} + (\frac{1}{3})^{2} = 0,4444$
Phú Quốc	1	1	$1 - \left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right] = 0,5$
Hā Nội	0	2	+ \(\frac{1}{2}\) = \(\frac{1}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}
Đà Nắng	2 -	3 4	$1 - \left[\left(\frac{1}{3} \right)^2 + \left(\frac{2}{3} \right)^2 \right] = 0,4444$
ginî _{DD} (D) - 3	0,444	$44 + \frac{2}{10} \cdot 0.5 + 0 + \frac{3}{10} \cdot 0.4444$
, , , , , , , , , , , , , , , , , , ,	= (0,3667	Note Risking
TB	Pj	nj	Gini (pj, nj)
6.2023		2	$1-\left[\left(\frac{2}{4}\right)^2+\left(\frac{2}{4}\right)^2\right]=0,5$
5.2023	2.	2	1,10,5,131,18,8,11,8,11,8,11
4. 2023	1	1	0,5
			$\frac{15.2}{10} + \frac{2}{10} \cdot 0.5$
	C	95	4
GKH	Pi	n;	Gini (p _{i,} n _j)
17:25	2	11:1:	0,4444
10:10	4	14:00	0,5
5:40	2	10	100 O
9:30	0	3	0. 10. 10.
giniak	H (D)	$=\frac{3}{10}$.	0,4444 + 2 .0,5
		= ,0,23	333

\rightarrow Chọn thuộc tính Hãng hàng không

4. Sử dụng công thức *Naïve Bayes* có làm tron *Laplace* để phân lớp mẫu sau: (1.5đ)

X={Hãng hàng không="Vietjet", Điểm đến="Phú Quốc", Tháng bay= "6.2023", Thời gian khởi hành = "9:30"} 21520129 - Bùi Thị Như Ý

• Ước lượng $P(C_i)$ với C_1 = "Đúng giờ", C_2 = "Trễ giờ"

$$P(KQ = \text{``Trễ giờ''}) = 6/12$$

• Với thuộc tính HHK

$$P(HHK = "Vietjet" | KQ = "Dúng giờ") = 1/9$$

$$P(HHK = "Vietjet" | KQ = "Trê giờ") = 5/9$$

• Với thuộc tính DD

$$P(DD = \text{``Ph\'u Qu\'oc''} \mid KQ = \text{``Tr\~e gi\'o''}) = 2/9$$

• Với thuộc tính TB

$$P(TB = "6.2023" | KQ = "Dúng giờ") = 3/8$$

$$P(TB = \text{``}6.2023\text{''} \mid KQ = \text{``}Tr\tilde{e} \text{ giò''}) = 3/8$$

Với thuộc tính GTH

Xác định lớp cho X

Có:

Câu 3 (2.0đ) Cho 7 điểm trong không gian 2 chiều như sau: $x1 = \{3, 8\}, x2 = \{2, 7.5\}, x3 = \{3, 7\}, x4 = \{4, 7\}, x5 = \{8, 3\}, x6 = \{7, 2.5\}, x7 = \{8, 2\}.$

Với ma trận U0 được khởi tạo như sau:

U0	x1	x2	x3	x4	x5	x6	x7
C1	1	0	0	0	0	0	0
C2	0	1	0	0	0	0	0
C3	0	0	1	1	1	1	1

Áp dụng thuật toán K-means và sử dụng độ đo Euclide để gom 7 điểm trên vào $\bf 3$ $\bf cụm.j$

Yêu cầu: Chỉ thực hiện các bước sau:

- Bước 1: Tính trọng tâm cho các cụm
- Bước 2: So sánh khoảng cách điểm với trọng tâm từng cụm
- Bước 3: Xác định ma trận U1

21521197 Hoàng Ngô Thảo Nguyên

L ₁	3 8			
K,	2 7,5			
×,				
X4	4 7			
)L6	8 3			
×6	7 2,5			
12 7	8 2			
 	uôc C1			
	rec Cr			
<u> </u>	DC CR			
_	ing, ng, ma th	سخد حع		
Tián vo	ecto troing tâm			
C1 co'+n	rong tâm c1(3	3;8)		
C. ~/.		・		
C2 66 1	rọng tảm cz (d	-, 1,5		
Cs o' t	rọng tâm ci (6	: 43)		
	iona mu ci (o) ', - /		
(*) Tiáh Kho	oáng coách			
	d(x,c1)	d(x,cz)	d(Lzci)	
ry		1,1180	4,7634	
Le_	-1,1180	0	5',1225	
v_	1	1,1180	4,0361	
24	1,4142	2,0616	3,3601	
X.c	7,0710	7,5	2,3854	
K6	6,8007	7,0711	2,0591 3,0479	
R ₇	7,0102	8,139 4	3,0415	
Cirw	C1= { 12, a	_{ه ,} يم		
Criw (Ce = { 12}			
Cim (

Mat	rận U1						
U1	X.	U2	W.3	X4	xs	W6	X7
C_1	1	0	1	1	0	0	
C ₂	0	1	0	0	0	\bigcirc	0
C ₃	0	0	0	0	1	1	1

Khoa/ Bộ môn duyệt đề đề

TM. Giảng viên ra

Bảng ma trận đáp ứng chuẩn đầu ra.

Câu hỏi	CÐRMH
1	G1
2	G2
3	G2

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

ĐỀ THI CUỐI KỲ HỌC KỲ II – NĂM HỌC 2022-2023 MÔN KHAI THÁC DỮ LIỆU

ĐÈ 2

KHOA HỆ THỐNG THÔNG TIN

Thời gian làm bài: 90 phút

(Sinh viên được sử dụng 01 tờ A4 tài liệu, đề thi gồm 02 trang)

HQ VÀ TÊN SV:	<u>CÁN BỘ COI THI</u>
MSSV:STT:	
PHÒNG	
THI:	

Câu 1 (2.0 điểm) Sinh viên chọn MỘT trong các câu sau:

- 1. Trình bày tóm tắt kiến trúc cơ bản của mạng neural nhân tạo. Nêu các ưu điểm và nhược điểm của mạng neural nhân tạo.
- 2. So sánh các điểm khác nhau giữa bài toán phân lớp và gom cụm. Cho ví dụ minh hoa.
- 3. Lấy một ứng dụng khai thác dữ liệu trong lĩnh vực y tế hoặc quản lý nhân sự. Dựa vào ví dụ vừa chọn, hãy nêu đặc trưng của tập dữ liệu, và đề xuất thuật toán khai thác dữ liệu nên áp dụng.

Câu 2 (6.0 điểm) Cho CSDL về *Thông tin khởi hành các chuyến bay nội địa* của các hãng hàng không hoạt động tại Việt Nam xuất phát từ thành phố Hồ Chí Minh, chi tiết trong bảng sau.

	Hãng hàng không (HHK)	Điểm đến (DD)	Tháng bay (TB)	Giờ khởi hành (GKH)	Kết quả (KQ)
1	Vietnam	Phú Quốc	5.2023	5:40	Đúng giờ
2	Vietjet	Hà Nội	5.2023	9:30	Trễ giờ
3	Vietnam	Đà Lạt	6.2023	17:25	Đúng giờ

4	Vietnam	Hà Nội	5.2023	10:10	Trễ giờ	
5	Pacific	Đà Nẵng	5.2023	17:25	Đúng giờ	
6	Vietjet	Đà Lạt	6.2023	17:25	Trễ giờ	
7	Pacific	Đà Nẵng	4.2023	10:10	Đúng giờ	
8	Vietjet	Đà Nẵng	4.2023	9:30	Trễ giờ	
9	Vietjet	Phú Quốc	6.2023	9:30	Trễ giờ	
10	Bamboo	Đà Lạt	6.2023	5:40	Đúng giờ	

Luu ý:

- Thuộc tính Kết quả (KQ) là thuộc tính quyết định.
- Sinh viên có thể dùng từ viết tắt của thuộc tính trong khi làm bài.
- Làm tròn các số thập phân đến 04 chữ số thập phân.
- Áp dụng thuật toán Apriori, tìm tập phổ biến thỏa ngưỡng minsup = 25%. Chọn
 1 tập phổ biến tối đại, liệt kê các luật kết hợp thỏa minconf = 75%. (1.75đ)
- 2. Cho B={Điểm đến, Tháng bay}, X={1, 3, 5, 7, 10} (tập các mẫu có giá trị Kết quả = "Đúng giờ"). Sử dụng tập thô tính: xấp xỉ trên, xấp xỉ dưới và hệ số xấp xỉ. (1.0đ)

21520324_Lê Trần Thùy Linh - Chưa sửa

B={Điểm đến, Tháng bay}

X={1, 3, 5, 7, 10}

U/B = {{1}, {2, 4}, {3, 6, 10}, {5}, {7, 8}, {9}}}

BX = {1, 5}

$$\bar{B}X = {1, 3, 6, 10, 5, 7, 8}$$

Hệ số xấp xỉ: $\alpha_B(x) = \frac{2}{7} = 0.2857$

3. Xác định nút gốc của cây quyết định, sử dụng Chỉ số Gini. (1.75đ)

4. Sử dụng công thức *Naïve Bayes* có làm tron *Laplace* để phân lớp mẫu sau: (1.5đ)

X={Hãng hàng không="Vietnam", Điểm đến="Đà Lạt", Tháng bay= "6.2023", Thời gian khởi hành = "17:25"}

21521495 - Nguyễn Kim Anh Thư - Chưa sửa

Gọi C1, C2 lần lượt là các lớp có KQ là "Đúng giờ" và "Trễ giờ". Ước lượng
 P(Ci) với i = {1, 2}

$$P(KQ = "Dúng giờ") = 6/12$$

$$P(KQ = \text{``Trễ giờ''}) = 6/12$$

Với thuộc tính HHK

$$P(HHK = "Vietnam" | KQ = "Đúng giờ") = 3/9$$

$$P(HHK = "Vietnam" | KQ = "Tree gio") = 2/9$$

Với thuộc tính DD

Với thuộc tính TB

$$P(TB = \text{``}6.2023\text{''} | KQ = \text{``}Tr\tilde{e} \text{ giò''}) = 3/8$$

Với thuộc tính GTH

$$P(GTH = "17:25" | KQ = "Tree gio") = 2/9$$

Xét

$$\begin{split} &P(KQ = \text{``Dúng giờ''}) * P(X \mid KQ = \text{``Dúng giờ''}) \\ &= P(KQ = \text{``Dúng giờ''}) * P(HHK = \text{``Vietnam''} \mid KQ = \text{``Dúng giờ''}) * P(DD = \text{``Dà} \\ & \text{Lạt''} \mid KQ = \text{``Dúng giờ''}) * P(TB = \text{``6.2023''} \mid KQ = \text{``Dúng giờ''}) * P(GTH = \text{``17:25''} \mid KQ = \text{``Dúng giờ''}) \\ &= 6/12 * 3/9 * 3/9 * 3/8 * 3/9 = 1/144 \approx 0.0069 \\ &P(KQ = \text{``Trễ giờ''}) * P(X \mid KQ = \text{``Trễ giờ''}) \\ &= P(KQ = \text{``Trễ giờ''}) * P(HHK = \text{``Vietnam''} \mid KQ = \text{``Trễ giờ''}) * P(DD = \text{``Dà Lạt''} \\ &| KQ = \text{``Trễ giờ''}) * P(TB = \text{``6.2023''} \mid KQ = \text{``Trễ giờ''}) * P(GTH = \text{``17:25''} \mid KQ \\ &= \text{``Trễ giờ''}) \\ &= 6/12 * 2/9 * 2/9 * 3/8 * 2/9 = 1/488 \approx 0.0021 \end{split}$$

Ta thấy 0.0069 > 0.0021 => X thuộc lớp C1(KQ = "Đúng giờ")

Câu 3 (2.0đ) Cho 7 điểm trong không gian 2 chiều như sau: $x1 = \{3, 8\}$, $x2 = \{3, 7.5\}$, $x3 = \{3, 7\}$, $x4 = \{4, 7\}$, $x5 = \{8, 3\}$, $x6 = \{9, 2.5\}$, $x7 = \{8, 2\}$.

Với ma trận U0 được khởi tạo như sau:

U0	x1	x2	x3	x4	x5	x6	x7
C1	1	0	0	0	0	0	0
C2	0	1	0	0	0	0	0
C3	0	0	1	1	1	1	1

Áp dụng thuật toán K-means và sử dụng độ đo Euclide để gom 7 điểm trên vào **3 cụm**.

21520417 - Huỳnh Ngọc Quí - Chưa sửa

Tính trọng tâm các cụm C1, C2, C3: c1(c11, c12), c2(c21, c22), c3(c31, c33)

$$c11 = \frac{3}{1} = 3$$

$$c12 = \frac{8}{1} = 8$$

=> C1 có trọng tâm là: c1(3, 8)

$$c21 = \frac{3}{1} = 3$$

$$c22 = \frac{7.5}{1} = 7.5$$

=> C2 có trọng tâm là: c2(3, 7.5)

$$c31 = \frac{3+4+8+9+8}{5} = 6.4$$

$$c32 = \frac{7 + 7 + 3 + 2.5 + 2}{5} = 4.3$$

=> C3 có trọng tâm là: c3(6.4, 4.3)

· So sánh khoảng cách điểm với trọng tâm từng cụm

d(xi, Ci)	C1	C2	C3	Gần trọng tâm cụm nhất
x1	0	0.5	5.0249	C1
x2	0.5	0	4.669	C2
x3	1	0.5	4.3417	C2
x4	1.4142	1.118	3.6125	C2
x5	7.0711	6.7268	2.0616	C3

x6	8.1394	7.8102	3.1623	C3
x7	7.8102	7.433	2.8018	C3

Xác định ma trận U1

U1	X1	X2	X3	X4	X5	X6	X7
C1	1	0	0	0	0	0	0
C2	0	1	1	1	0	0	0
C3	0	0	0	0	1	1	1

Yêu cầu: Chỉ thực hiện các bước sau:

- Bước 1: Tính trọng tâm cho các cụm
- Bước 2: So sánh khoảng cách điểm với trọng tâm từng cụm
- Bước 3: Xác định ma trận U1

Khoa/ Bộ môn duyệt đề

TM. Giảng viên ra

đề

Bảng ma trận đáp ứng chuẩn đầu ra.

Câu hỏi	CÐRMH
1	G1
2	G2
3	G2

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN Khoa Hệ thống Thông tin

ĐỀ THI CUỐI KỲ HỌC KỲ II, NĂM HỌC 2021-2022

Môn: Khai thác dữ liệu Thời gian: 90 phút

Đề thi gồm 2 trang

(Sinh viên được sử dụng 1 tò A4

tài liệu)

Câu 1 (2.0 điểm) Chọn MỘT trong các câu sau:

- 1. Phân biệt thuộc tính rời rạc và thuộc tính liên tục. Cho ví dụ minh họa.
- 2. Nêu ưu điểm và hạn chế của cây quyết định.
- 3. Lấy một ứng dụng khai thác dữ liệu trong lĩnh vực giáo dục hoặc giao thông công cộng. Dựa vào ví dụ vừa chọn, hãy nêu đặc trưng của tập dữ liệu, và đề xuất thuật toán khai thác dữ liệu nên áp dụng.

Câu 2 (6.0 điểm)

Cho CSDL về *Thông tin giao hàng trễ hạn* của các doanh nghiệp vận chuyển hàng hóa vừa và nhỏ, chi tiết trong bảng sau. Ghi chú:

- Thuộc tính Kết quả giao hàng (KQ) là thuộc tính quyết định.
- Sinh viên có thể dùng từ viết tắt của thuộc tính trong khi làm bài.

	Xếp loại Shipper (XL)	Độ quan trọng món hàng (QT)	Được giảm giá ship (GG)	Kết quả giao hàng (KQ)
1	В	Thấp	Có	Trễ hạn
2	С	Trung bình	Có	Đúng hạn
3	С	Cao	Không	Đúng hạn
4	С	Thấp	Có	Trễ hạn
5	С	Trung bình	Không	Trễ hạn
6	A	Cao	Không	Đúng hạn
7	В	Trung bình	Có	Trễ hạn

8	A	Cao	Có	Đúng hạn	
9	A	Trung bình	Không	Trễ hạn	
10	A	Thấp	Có	Đúng hạn	

- a. Tìm tập phổ biến có ngưỡng *minsup* = 30%. Chọn 1 tập phổ biến tối đại để phát sinh luật, từ đó liệt kế 3 luật kết hợp thỏa *minconf* = 60%. (2.0đ)
- b. Cho B={Độ quan trọng món hàng, Được giảm giá ship}, X={1, 4, 5, 7, 9} (tập các mẫu có giá trị *Kết quả giao hàng* = "*Trễ hạn*"). Sử dụng tập thô tính: xấp xỉ trên, xấp xỉ dưới và hệ số xấp xỉ. (1.0đ)

21522814 - Phan Quốc Vỹ<mark>- Chưa sửa</mark>

b)
$$B = \begin{cases} 1.8 \end{cases}$$
 quan trong mon hang, (1.8) quan gra)

$$X = \begin{cases} 1.3, 5.7, 8 \end{cases}$$

$$X = \begin{cases} 1.93, \{2.3.5\}, \{4.10\}, \{6.18\}, 7\} \end{cases}$$

$$X = \begin{cases} 1.93, \{2.3.5\}, \{4.10\}, \{6.18\}, 7\} \end{cases}$$

$$X = \begin{cases} 1.23 \end{bmatrix} = \begin{cases} 1.3 \end{bmatrix}$$

$$X = \begin{cases} 1.23 \end{bmatrix} = \begin{cases} 1.3 \end{bmatrix}$$

$$X = \begin{cases} 1.3 \end{bmatrix} = \begin{cases} 1.3 \end{bmatrix} = \begin{cases} 1.3 \end{bmatrix}$$

$$X = \begin{cases} 1.3 \end{bmatrix} = \begin{cases} 1.3 \end{cases} = \begin{cases} 1.3 \end{bmatrix} = \begin{cases} 1.3 \end{cases} =$$

c. Xác định nút gốc của cây quyết định, sử dụng Chỉ số Gini (Gini index). (1.5đ)

Phạm Duy Khánh - 21522211 - Chưa sửa

Link: **bt** cuoi ki 2022 - de 1- cau 1 c

- Thuộc tính quyết định : Kết quả giao hàng (KQ)
- Giả sử:
 - + Lớp P: KQ = "Trễ hạn"
 - + Lớp N: KQ = "Đúng hạn"
- Ta có : |D| = 10, |P| = 5, |N| = 5
- -Gini(D) = 1 [(5/10) 2 + (5/10) 2] = 0.5

Thuộc tính Xếp loại Shipper(XL)

Temp(XL)	Pj	Nj	Gini(Pj, Nj)
А	1	3	0.375
В	2	0	0
С	2	2	0.5

Gini(1,3) = 1 - [(1/4) 2 + (3/4) 2] = 0,375

Gini(2,0) = 1 - [(2/2) 2 + (0/2) 2] = 0

Gini(2,2) = 1 - [(2/4) 2 + (2/4) 2] = 0.5

 \Rightarrow Gini(XL) = 4/10*Gini(1,3) + 2/10*Gini(2,0) + 4/10*Gini(2,2) = 0,35

Thuộc tính Độ quan trọng món hàng (QT)

Temp(QT)	Pj	Nj	Gini(Pj, Nj)
Cao	0	3	0
Trung bình	3	1	0.375
Thấp	2	1	0.4

Gini(0,3) = 1 - [(0/3) 2 + (3/3) 2] = 0

Gini(2,0) = 1 - [(3/4) 2 + (1/4) 2] = 0.375

Gini(2,2) = 1 - [(2/3) 2 + (1/3) 2] = 0,4

 \Rightarrow Gini(QT) = 3/10*Gini(2,1) + 3/10*Gini(0,3) + 4/10*Gini(3,1) = 0,27

Thuộc tính Được giảm giá ship (GG)

Temp(GG)	Pj	Nj	Gini(Pj, Nj)
Có	3	3	0.5
Không	2	2	0.5

Gini(3,3) = 1 - [(3/6) 2 + (3/6) 2] = 0,5

Gini(2,2) = 1 - [(2/4) 2 + (2/4) 2] = 0.5

=> Gini(GG) = 6/10*Gini(3,3) + 4/10*Gini(2,2) = 0,5Xây dựng cây quyết định (Sử dụng Gini): chọn gini index nhỏ nhất => Chọn thuộc tính QT làm nút gốc.

d. Sử dụng công thức Naïve Bayes có làm tron Laplace để phân lớp mẫu sau: (1.5đ)

$$X=\{XL="B", QT="Th\acute{a}p", GG="Không"\}$$

21521252 - Nguyễn Trọng Ninh - Chưa sửa

Câu 3 (2.0đ)

Cho 8 điểm như sau: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Với ma trận U0 được khởi tạo như sau:

U0	A1	A2	A3	A4	A5	A6	A7	A8
C1	1	0	0	0	0	0	0	0

C2	0	1	0	0	0	0	0	0
C3	0	0	1	1	1	1	1	1

Áp dụng thuật toán K_means và sử dụng độ đo Euclide để gom 8 điểm trên vào 3 cụm.

NHI - 21521230 - Chưa sửa

Lưu ý: chỉ thực hiện các bước

- Bước 1: tính trọng tâm cho các cụm
- Bước 2: so sánh khoảng cách điểm với trọng tâm từng cụm
- Bước 3: cập nhật ma trận U1

Trọng tâm cụm	X	у							
C1	2								
C2	2	5							
C3	5.17	5.33							
Ma trạn khoảng									
	C1	C2	C3	Cụm					
A1	0	25	31.81	C1					
A2	25	0	10.14	C2					
A3	72	37	9.81	C3					
A4	13	18	7.14	C3					
A5	50	25	3.47	C3					
A6	52	17	2.47	C3					
A7	65	10	28.47	C2					
A8	5	20	14.81	C1					
Cập nhật U1									
U1	A1	A2	A3	A4	A5	A6	A7	A8	
C1	1	0	0	0	0	0	0	1	
C2	0	1	0	0	0	0	1	0	
C3	0	0	1	1	1	1	0	0	

Khoa Hệ thống Thông tin

TM. Giảng viên ra đề

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

Khoa Hệ thống Thông tin

ĐỀ THI CUỐI KỲ HỌC KỲ II, NĂM HỌC 2021-2022

Môn: Khai thác dữ liệu Thời gian: 90 phút

Đề thi gồm 2 trang tài liệu)

(Sinh viên được sử dụng 1 tờ A4

Câu 1 (2.0 điểm) Chọn MỘT trong các câu sau:

- 1. Nêu ưu điểm và hạn chế của Support Vector Machine (Máy vector hỗ trợ).
- 2. Phân biệt thuộc tính rời rạc và thuộc tính liên tục. Cho ví dụ minh họa.
- 3. Lấy một ứng dụng khai thác dữ liệu trong lĩnh vực giáo dục hoặc giao thông công cộng. Dựa vào ví dụ vừa chọn, hãy nêu đặc trưng của tập dữ liệu, và đề xuất thuật toán khai thác dữ liệu nên áp dụng.

Câu 2 (6.0 điểm)

Cho CSDL về *Thông tin giao hàng trễ hạn* của các doanh nghiệp vận chuyển hàng hóa vừa và nhỏ, chi tiết trong bảng sau. Ghi chú:

- Thuộc tính Kết quả giao hàng (KQ) là thuộc tính quyết định.
- Sinh viên có thể dùng từ viết tắt của thuộc tính trong khi làm bài.

	Xếp loại Shipper (XL)	Độ quan trọng món hàng (QT)	Được giảm giá ship (GG)	Kết quả giao hàng (KQ)
1	С	Thấp	Không	Đúng hạn
2	В	Trung bình	Không	Trễ hạn
3	A	Trung bình	Không	Đúng hạn
4	A	Cao	Có	Trễ hạn
5	С	Trung bình	Không	Đúng hạn
6	A	Thấp	Có	Trễ hạn

7	С	Cao	Không	Đúng hạn
8	В	Thấp	Có	Đúng hạn
9	В	Thấp	Không	Trễ hạn
10	В	Cao	Có	Trễ hạn

- a. Tìm tập phổ biến có ngưỡng minsup = 30% và liệt kế 3 luật kết hợp thỏa minconf = 95%. (2.0đ)
- b. Cho B={Độ quan trọng món hàng, Được giảm giá ship}, X={1, 3, 5, 7, 8} (tập các mẫu có giá trị *Kết quả giao hàng* = "Đúng hạn"). Sử dụng tập thô tính: xấp xỉ trên, xấp xỉ dưới và hệ số xấp xỉ. (1.0đ)
- c. Xác định nút gốc của cây quyết định, sử dụng Chỉ số Gini (Gini index). (1.5đ)
- d. Sử dụng công thức *Naïve Bayes* có làm tron *Laplace* để phân lớp mẫu sau: (1.5đ)

$$X=\{XL="C", QT="Trung binh", GG="Co"\}$$

Câu 3 (2.0đ)

Cho 8 điểm như sau: A1=(10,10), A2=(17,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Với ma trận U0 được khởi tạo như sau:

U0	A1	A2	A3	A4	A5	A6	A7	A8
C1	1	0	0	0	0	0	0	0
C2	0	1	0	0	0	0	0	0
C3	0	0	1	1	1	1	1	1

Áp dụng thuật toán K_means và sử dụng độ đo Euclide để gom 8 điểm trên vào 3 cụm.

Lưu ý: chỉ thực hiện các bước

- Bước 1: tính trọng tâm cho các cụm
- Bước 2: so sánh khoảng cách điểm với trọng tâm từng cụm
- Bước 3: cập nhật ma trận U1