Matrix Algebra

Definition:

A matrix is a set of numbers arranged in rows and columns to form a rectangular array

Matrices provide a convenient notation for displaying and manipulating data in tabular form.

The basis for spreadsheets

Arrays are extensive in programming

Example 1 Co-ordinates of vertices: A(1,1), B(5,1), C(5,3) D(3,5), E(1,3)

Points Matrix:

10 rows and 3 columns

Example 2

Special Matrices

When the rows and columns of a matrix <u>A</u> are interchanged the resulting matrix is called the *transpose*

The transpose of A is denoted by A' or A^{T} or A^{t}

Example 3

$$\underline{A} = \begin{bmatrix} 1 & 6 & 3 \\ -1 & 2 & 4 \end{bmatrix} \qquad \text{then} \qquad \underline{A}^{T} = \begin{bmatrix} 1 & -1 \\ 6 & 2 \\ 3 & 4 \end{bmatrix} \\
(2 \times 3) \qquad (3 \times 2)$$

The transpose of a symmetric matrix is the same matrix

Matrix Operations

Scalar Multiplication:

If \underline{A} is a matrix and k is a scalar, then the matrix $k\underline{A}$ is obtained by multiplying each element of \underline{A} by k

Example
$$\underline{A} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & -5 \\ 0 & 4 & 6 \end{bmatrix}$$

$$3\underline{A} = \begin{bmatrix}
3 \times 1 & 3 \times 0 & 3 \times (-2) \\
3 \times 2 & 3 \times 3 & 3(-5) \\
3 \times 0 & 3 \times 4 & 3 \times 6
\end{bmatrix} = \begin{bmatrix}
3 & 0 & -6 \\
6 & 9 & -15 \\
0 & 12 & 18
\end{bmatrix}$$

Addition and Subtraction:

To add or subtract two matrices - must have the same order

$$\underline{A} = \begin{bmatrix} 2 & 5 & -1 & 4 \\ 1 & -3 & 3 & 2 \end{bmatrix}, \ \underline{B} = \begin{bmatrix} 3 & -2 & 7 & 0 \\ 0 & 6 & 1 & 0 \end{bmatrix}$$

<u>A</u> and <u>B</u> are of the same order, i.e. (2×4)

 $\underline{A} + \underline{B}$, add corresponding elements of \underline{A} and \underline{B}

$$\underline{A} + \underline{B} = \begin{bmatrix} 2+3 & 5+(-2) & -1+7 & 4+0 \\ 1+0 & -3+6 & 3+1 & 2+0 \end{bmatrix} = \begin{bmatrix} 5 & 3 & 6 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

A - B, subtract corresponding elements of B from A

$$\underline{A} - \underline{B} = \begin{bmatrix} 2 - 3 & 5 - (-2) & -1 - 7 & 4 - 0 \\ 1 - 0 & -3 - 6 & 3 - 1 & 2 - 0 \end{bmatrix} = \begin{bmatrix} -1 & 7 & -8 & 4 \\ 1 & -9 & 2 & 2 \end{bmatrix}$$

Not all combinations of matrices can be multiplied Check the dimensions before attempting multiplication

Number of columns of \underline{A} must equal number of rows of \underline{B} (otherwise $\underline{A} \times \underline{B}$ is not defined)

Write down dimensions, inner numbers must match

$$\underline{A} \qquad \underline{B} \qquad \underline{A} \times \underline{B} \\
(m \times n) \quad (n \times p) \quad (m \times p)$$

The element in *row i* and *column j* of <u>AB</u> is obtained by forming the product of *row i* of <u>A</u> and *column j* of <u>B</u>

Note: $\underline{AB} = \underline{BA}$ is **not** usually true

Don't usually include multiplication symbol

$$\begin{bmatrix} 1 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \times (-2) + (-2) \times 1 + 4 \times 3 \end{bmatrix} = \begin{bmatrix} 8 \end{bmatrix}$$

$$(1 \times 3) \quad (3 \times 1) \quad (1 \times 1)$$

Rows in first matrix multiply columns in second

$$\begin{bmatrix} 1 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} . & . \end{bmatrix}$$
$$(1 \times 3) \quad (3 \times 2) \quad (1 \times 2)$$

Inner numbers same

$$\begin{bmatrix}
1 & -2 & 4 \\
1 & 0 \\
3 & 2
\end{bmatrix}$$

$$= \begin{bmatrix}
1 \times (-2) + (-2) \times 1 + 4 \times 3 & 1 \times 1 + (-2) \times 0 + 4 \times 2 \\
= \begin{bmatrix}
8 & 9
\end{bmatrix}$$

RC

$$\begin{bmatrix} 1 & -2 & 4 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

$$(2 \times 3) \quad (3 \times 2) \quad (2 \times 2)$$

$$= \begin{bmatrix} 1 \times (-2) + (-2) \times 1 + 4 \times 3 & 1 \times 1 + (-2) \times 0 + 4 \times 2 \\ 0 \times (-2) + 3 \times 1 + 1 \times 3 & 0 \times 1 + 3 \times 0 + 1 \times 2 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 9 \\ 6 & 2 \end{bmatrix}$$
 To support earlier statement that
$$\underline{A \times B} = \underline{B \times A} \text{ is not usually true......}$$

RC

Change order of previous multiplication:

$$\begin{bmatrix} -2 & 1 \\ 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 4 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$
$$(3 \times 2) \quad (2 \times 3) \quad (3 \times 3)$$

$$= \begin{bmatrix} (-2) \times 1 + 1 \times 0 & (-2) \times (-2) + 1 \times 3 & (-2) \times 4 + 1 \times 1 \\ 1 \times 1 + 0 \times 0 & 1 \times (-2) + 0 \times 3 & 1 \times 4 + 0 \times 1 \\ 3 \times 1 + 2 \times 0 & 3 \times (-2) + 2 \times 3 & 3 \times 4 + 2 \times 1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 7 & -7 \\ 1 & -2 & 4 \\ 3 & 0 & 14 \end{bmatrix}$$

Usually $\underline{AB} \neq \underline{BA}$ often different dimensions

Linear Equations & Matrices

$$\begin{cases} x + 2y = 3 \\ -2x + 4y = 1 \end{cases}$$

Pair of *linear*, *simultaneous* equations in *two* unknowns

Can be expressed as a single matrix equation

$$\underline{A}\underline{x} = \underline{b}$$

$$\underline{A} = \begin{bmatrix} 1 & 2 \\ -2 & 4 \end{bmatrix}, \ \underline{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \ \underline{b} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Check:

$$\begin{bmatrix} 1 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \times x + 2 \times y \\ -2 \times x + 4 \times y \end{bmatrix} = \begin{bmatrix} x + 2y \\ -2x + 4y \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Linear Equations & Matrices

$$\begin{cases} 2x+3y+z=4\\ x+2y+z=6\\ 3x-5y+2z=-1 \end{cases}$$

$$\underline{A}\underline{x} = \underline{b}$$

$$\underline{A} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \\ 3 & -5 & 2 \end{bmatrix}, \ \underline{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \ \underline{b} = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix}$$

Elimination Methods

$$\begin{cases} x + 2y = 3 & \cdots (E1) \\ -2x + 4y = 1 & \cdots (E2) \end{cases}$$

As title suggests – we eliminate one of the unknowns

Straightforward method to program

Easily extendable to large systems of equations

Needs careful labelling when more than 2 equations

Objective: Convert the system of equations to upper-triangular form and then use back-substitution

Back substitution process

These equations are already in upper triangular form:

$$\begin{cases} x + 2y = 3 & \dots(E1) \\ 8y = 4 & \dots(E2) \end{cases}$$

Easy to solve *E2* for *y*

$$8y = 4$$
 ...(E2)
so $y = \frac{4}{8} = \frac{1}{2}$

Now substitute y value back into *E1* and solve for x

$$x + 2y = 3$$
 ...(E1)
 $x + 1 = 3$
i.e. $x = 2$

So the solution is x = 2, $y = \frac{1}{2}$

Back substitution process

$$\begin{cases} x+2y+4z=11 & \cdots (E1) \\ 8y+3z=10 & \cdots (E2) \\ 2z=4 & \cdots (E3) \end{cases}$$
 Solve E3 for z
$$2z=4 & \cdots (E3)$$
 so $z=2$

Substitute z value back into E2 and solve for y 8y + 3z = 10 ...(E2)

$$8y + 6 = 10$$
 so $y = \frac{1}{2}$

Substitute y, z values back into E1 and solve for x

$$x+2y+4z=11$$
(E1)
 $x+1+8=11$
i.e. $x=2$

So the solution is x = 2, $y = \frac{1}{2}$, z = 2

Gaussian Elimination

$$\begin{cases} x + 2y = 3 & \cdots (E1) \\ -2x + 4y = 1 & \cdots (E2) \end{cases}$$

Objective: Convert the system of equations to

upper-triangular form and then use

back-substitution

Needs careful labelling when more than 2 equations

Rules for Gaussian Elimination:

Permissible operations are:

- Change the order in which the equations are written
- Multiply any equation by non-zero number
- Replace any equation by the sum/difference of a multiple of itself and a multiple of any other equation

Algorithm:

Equation (*E*1) used to eliminate first unknown from other equations New second equation used to eliminate second unknown from the remaining equations.

Repeat until last equation involves only the last unknown

Elimination Methods

$$\begin{cases} x + 2y = 3 & \cdots (E1) \\ -2x + 4y = -2 & \cdots (E2) \end{cases}$$

Use *E1* to eliminate x from *E2*: $E2 + 2 \times E1$:

$$(-2x+4y)+2\times(x+2y)=-2+2\times 3$$

i.e. $8y=4$

Equivalent pair of equations is:

$$\begin{cases} x + 2y = 3 & \cdots(E1) \\ 8y = 4 & \cdots(E2a) \end{cases}$$

The equations are now in *upper-triangular form* and may be solved by *back-substitution*.

$$\begin{cases} x + 2y = 3 & \cdots (E1) \\ 8y = 4 & \cdots (E2a) \end{cases}$$

(E2a):
$$8y = 4$$
, $\therefore y = \frac{1}{2}$

Substitute for *y* in *E*1:

$$x + 2y = 3$$

$$\therefore x + 2 \times \frac{1}{2} = 3$$

and
$$x = 3 - 1 = 2$$

Solution:
$$x = 2$$
, $y = \frac{1}{2}$

In matrix form we reduced the equations from

$$\begin{bmatrix} 1 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \quad \text{to} \quad \begin{bmatrix} 1 & 2 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$