Green Destination Travels Employee Attrition Analytics

✓ Importing Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classi

from sklearn.ensemble import RandomForestClassifier
```

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

✓ Reading the dataset

data=pd.read_csv("/content/drive/MyDrive/Colab Notebooks/greendestination.csv")
data.head()

→		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education
	0	41	Yes	Travel_Rarely	1102	Sales	1	2
	1	49	No	Travel_Frequently	279	Research & Development	8	1
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2
	3	33	No	Travel_Frequently	1392	Research & Development	3	4
	4	27	No	Travel_Rarely	591	Research & Development	2	1
	5 rc	ws × :	35 columns					

data.columns

data.shape

→ (1470, 35)

```
for col in data.columns:
    if data[col].dtypes=='0':
        print(f'{col} : {data[col].unique()}')
    else:
        print(f'{col} : {data[col].min()} - {data[col].max()}')
→ Age : 18 - 60
     Attrition : ['Yes' 'No']
     BusinessTravel : ['Travel_Rarely' 'Travel_Frequently' 'Non-Travel']
     DailyRate : 102 - 1499
     Department : ['Sales' 'Research & Development' 'Human Resources']
     DistanceFromHome : 1 - 29
     Education : 1 - 5
     EducationField: ['Life Sciences' 'Other' 'Medical' 'Marketing' 'Technical Degree'
      'Human Resources']
     EmployeeCount : 1 - 1
     EmployeeNumber: 1 - 2068
     EnvironmentSatisfaction : 1 - 4
     Gender : ['Female' 'Male']
     HourlyRate : 30 - 100
     JobInvolvement : 1 - 4
     JobLevel : 1 - 5
     JobRole : ['Sales Executive' 'Research Scientist' 'Laboratory Technician'
      'Manufacturing Director' 'Healthcare Representative' 'Manager'
      'Sales Representative' 'Research Director' 'Human Resources']
     JobSatisfaction : 1 - 4
    MaritalStatus : ['Single' 'Married' 'Divorced']
    MonthlyIncome: 1009 - 19999
    MonthlyRate : 2094 - 26999
     NumCompaniesWorked: 0 - 9
    Over18 : ['Y']
     OverTime : ['Yes' 'No']
     PercentSalaryHike : 11 - 25
     PerformanceRating: 3 - 4
     RelationshipSatisfaction : 1 - 4
     StandardHours: 80 - 80
     StockOptionLevel: 0 - 3
    TotalWorkingYears: 0 - 40
     TrainingTimesLastYear : 0 - 6
    WorkLifeBalance : 1 - 4
    YearsAtCompany: 0 - 40
    YearsInCurrentRole : 0 - 18
    YearsSinceLastPromotion : 0 - 15
    YearsWithCurrManager: 0 - 17
data.drop(['Over18', 'EmployeeCount'], axis=1, inplace=True)
data.info()
<<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1470 entries, 0 to 1469
     Data columns (total 33 columns):
          Column
                                    Non-Null Count Dtype
```

0	Age	1470	non-null	int64
1	Attrition	1470	non-null	object
2	BusinessTravel	1470	non-null	object
3	DailyRate	1470	non-null	int64
4	Department	1470	non-null	object
5	DistanceFromHome	1470	non-null	int64
6	Education	1470	non-null	int64
7	EducationField	1470	non-null	object
8	EmployeeNumber	1470	non-null	int64
9	EnvironmentSatisfaction	1470	non-null	int64
10	Gender	1470	non-null	object
11	HourlyRate	1470	non-null	int64
12	JobInvolvement	1470	non-null	int64
13	JobLevel	1470	non-null	int64
14	JobRole	1470	non-null	object
15	JobSatisfaction	1470	non-null	int64
16	MaritalStatus	1470	non-null	object
17	MonthlyIncome	1470	non-null	int64
18	MonthlyRate	1470	non-null	int64
19	NumCompaniesWorked	1470	non-null	int64
20	OverTime	1470	non-null	object
21	PercentSalaryHike	1470	non-null	int64
22	PerformanceRating	1470	non-null	int64
23	RelationshipSatisfaction	1470	non-null	int64
24	StandardHours	1470	non-null	int64
25	StockOptionLevel	1470	non-null	int64
26	TotalWorkingYears	1470	non-null	int64
27	TrainingTimesLastYear	1470	non-null	int64
28	WorkLifeBalance	1470	non-null	int64
29	YearsAtCompany	1470	non-null	int64
30	YearsInCurrentRole	1470	non-null	int64
31	YearsSinceLastPromotion	1470	non-null	int64
32	YearsWithCurrManager	1470	non-null	int64

dtypes: int64(25), object(8)
memory usage: 379.1+ KB

data.isnull().sum()


```
MonthlyIncome
     MonthlyRate
                                 0
     NumCompaniesWorked
                                 0
     OverTime
                                 0
     PercentSalaryHike
                                 0
     PerformanceRating
     RelationshipSatisfaction
     StandardHours
                                 0
     StockOptionLevel
                                 0
     TotalWorkingYears
                                 0
     TrainingTimesLastYear
                                 0
     WorkLifeBalance
     YearsAtCompany
     YearsInCurrentRole
                                 0
     YearsSinceLastPromotion
     YearsWithCurrManager
     dtype: int64
data.duplicated().sum()
categorical columns = data.select dtypes(include=['object']).columns
numerical_columns = data.select_dtypes(exclude=['object']).columns
ax=sns.countplot(x=data['Attrition'])
for i in ax.containers:
    ax.bar label(i)
plt.title('Count of each Attrition')
plt.show()
categorical_columns = categorical_columns[1:]
num rows = len(categorical columns)
fig, ax = plt.subplots(nrows=num_rows, ncols=1, figsize=(8, 4 * num_rows))
fig.tight layout(pad=3.0)
for i, column name in enumerate(categorical columns):
    sns.countplot(x=column name, hue='Attrition', data=data, ax=ax[i])
    ax[i].set title(f'Attrition by {column name}')
    ax[i].set_xlabel('')
    ax[i].set_ylabel('Count')
plt.show()
```

```
# Assuming 'data' is your DataFrame
# Convert categorical variables to numerical using one-hot encoding
data_encoded = pd.get_dummies(data.drop('StandardHours', axis=1))

# Compute correlation matrix
correlation_matrix = data_encoded.corr()

# Plot heatmap
plt.figure(figsize=(15, 12))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
```



```
sns.histplot(data['Age'], bins=20, kde=True)
plt.title('Distribution of Age')
plt.show()
```


Age

sns.boxplot(y='Attrition', x='MonthlyIncome', data=data)
plt.title('Monthly Income by Attrition')
plt.show()

 $\overline{\mathbf{T}}$

sns.barplot(y='JobRole', x='JobSatisfaction', hue='Attrition',data=data)

<Axes: xlabel='JobSatisfaction', ylabel='JobRole'>

sns.pairplot(data=data[['TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'Year', 'Year', 'WorkLifeBalance', 'Year', 'WorkLifeBalance', 'Year', 'Year

 $\overline{2}$

<seaborn.axisgrid.PairGrid at 0x7cef83939840>

→ Data Preprocessing

```
for col in data.columns:
    if data[col].dtypes=='0':
        print(f'{col} : {data[col].unique()}')
→ Attrition : ['Yes' 'No']
     BusinessTravel : ['Travel_Rarely' 'Travel_Frequently' 'Non-Travel']
     Department : ['Sales' 'Research & Development' 'Human Resources']
     EducationField : ['Life Sciences' 'Other' 'Medical' 'Marketing' 'Technical Degree'
      'Human Resources']
     Gender : ['Female' 'Male']
     JobRole : ['Sales Executive' 'Research Scientist' 'Laboratory Technician'
      'Manufacturing Director' 'Healthcare Representative' 'Manager'
      'Sales Representative' 'Research Director' 'Human Resources']
    MaritalStatus : ['Single' 'Married' 'Divorced']
data.Attrition=[1 if val=='Yes' else 0 for val in data.Attrition]
data.Gender=[1 if val=='Male' else 0 for val in data.Gender]
data.OverTime=[1 if val=='Yes' else 0 for val in data.OverTime]
```

```
BusinessTravel_dummies=pd.get_dummies(data.BusinessTravel)

Department_dummies=pd.get_dummies(data.Department)

EducationField_dummies=pd.get_dummies(data.EducationField)

JobRole_dummies=pd.get_dummies(data.JobRole)

MaritalStatus_dummies=pd.get_dummies(data.MaritalStatus)
```

data.drop(['BusinessTravel','Department','EducationField','JobRole','MaritalStatus'],axis=1,
data

$\overline{\Rightarrow}$								
		Age	Attrition	DailyRate	DistanceFromHome	Education	EmployeeNumber	Environmen
	0	41	1	1102	1	2	1	
	1	49	0	279	8	1	2	
	2	37	1	1373	2	2	4	
	3	33	0	1392	3	4	5	
	4	27	0	591	2	1	7	
	1465	36	0	884	23	2	2061	
	1466	39	0	613	6	1	2062	
	1467	27	0	155	4	3	2064	
	1468	49	0	1023	2	3	2065	
	1469	34	0	628	8	3	2068	

1470 rows × 47 columns

Train Test Split

X=data.drop('Attrition',axis=1)
y=data.Attrition

X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=11,train_size=0.80,shuffle=1

X_train.shape , X_test.shape , y_train.shape , y_test.shape

→ ((1176, 46), (294, 46), (1176,), (294,))

X_train.head()

 \rightarrow

š		Age	DailyRate	DistanceFromHome	Education	EmployeeNumber	EnvironmentSatisfactic
	38	36	852	5	4	51	
	907	44	1099	5	3	1267	
	311	45	1249	7	3	425	
	77	45	193	6	4	101	
	287	38	688	23	4	393	
	5 row	s × 46	columns				

y_train[:5]

→ Scaling

```
scaler = StandardScaler()
```

X_train = scaler.fit_transform(X_train)
X test = scaler.transform(X test)

X_train

```
X_test
```

```
array([[-1.30790742, -0.27751808, -0.76325661, ..., -0.2515773, -0.53276899, 1.09271673],
[-0.98018744, 0.87093578, -0.01970578, ..., -0.2515773, -0.53276899, 1.09271673],
[-0.65246745, 0.42621535, -0.76325661, ..., -0.2515773, 1.87698613, -0.91515026],
...,
[ 0.11221251, 1.26922936, -1.01110688, ..., -0.2515773, -0.53276899, 1.09271673],
[ 0.11221251, -1.17184599, -0.26755606, ..., -0.2515773, 1.87698613, -0.91515026],
[ 2.5154924, 1.70417572, 2.33487182, ..., -0.2515773, -0.53276899, 1.09271673]])
```

✓ Model and Feature Importance

```
from sklearn.ensemble import RandomForestClassifier
\max \ accuracy = 0
for x in range(120):
    RF = RandomForestClassifier(random_state=x)
    RF.fit(X_train,y_train)
    y pred = RF.predict(X test)
    current_accuracy = round(accuracy_score(y_pred,y_test)*100,2)
    if(current_accuracy>max_accuracy):
        max_accuracy = current_accuracy
        best x = x
print(max_accuracy)
print(best x)
     86.39
     106
RF=RandomForestClassifier(criterion='entropy', random_state=best_x, n_estimators=19)
RF.fit(X_train,y_train)
\rightarrow
                                   RandomForestClassifier
     RandomForestClassifier(criterion='entropy', n_estimators=19, random_state=106)
```

```
y_pred = RF.predict(X_test)
y_pred
```

print(classification_report(y_test,y_pred))

₹	precision	recall	f1-score	support
0	0.86	0.99	0.92	246
1	0.82	0.19	0.31	48
accuracy			0.86	294
macro avg	0.84	0.59	0.61	294
weighted avg	0.86	0.86	0.82	294

```
train_acc=RF.score(X_train,y_train)
test_acc=accuracy_score(y_test,y_pred)
recal=recall_score(y_test,y_pred)
prec=precision_score(y_test,y_pred)
f1=f1_score(y_test,y_pred)
print("Training Accuracy :", train_acc)
print("Testing Accuracy :", test_acc)
print("F1 Score :", f1)
print("Recall :", recal)
print("Precision :", prec)
```

Training Accuracy : 0.9931972789115646
Testing Accuracy : 0.8605442176870748

F1 Score: 0.30508474576271183

Recall : 0.1875

Precision: 0.81818181818182

importances = RF.feature importances

feature_importance = pd.DataFrame({'Feature': X.columns, 'Importance': importances, 'Percent
feature_importance = feature_importance.sort_values('Importance', ascending=False)
feature_importance.head()

→		Feature	Importance	Percentage
	11	MonthlyIncome	0.079355	7.94
	0	Age	0.064235	6.42
	4	EmployeeNumber	0.056847	5.68
	1	DailyRate	0.054839	5.48
	2	DistanceFromHome	0.054806	5.48

feature_importance.plot(x='Feature', y='Importance', kind='barh', figsize=(15,12))

<Axes: ylabel='Feature'>

