NOTE:

EPITA

Mathématiques

Partiel (S1)

Janvier 2020

Nom:		
Prénom :		
Classe:		

Mathématiques

 $Partiel-janvier\ 2020$

Exercice 1 (2 points)

-		
2. (u_n) est monotone.		
(a_n) est monotone.		
ercice 2 (3 points)		
(u_n) une suite réelle telle que : (u_{2n}) con la l'aide d'une suite extraite bien che	converge vers un réel l et (u_{3n}) converge vers un réel l' . oisie, montrer que $l = l'$.	
2. Peut-on conclure sur la convergence	de (u_n) ? (Justifier votre réponse.)	

Exercice 3 (2 points)

On	considère	une suite	$(u_n)_{n\in\mathbb{N}}$	qui	vérifie la	relation	de	récurrence	$u_{n+1} =$	$= 10u_n + 27.$
----	-----------	-----------	--------------------------	-----	------------	----------	----	------------	-------------	-----------------

1. Pour quelles valeurs de u_0 une telle suite est-elle constante?

2. On note ℓ la valeur trouvée à la question précédente. Montrer que la suite $(v_n) = (u_n - \ell)$ est géométrique et préciser sa raison.

4

3. On prend $u_0 = 1$. Exprimer u_n en fonction de n.

Exercice 4 (2 points)

Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies pour tout $n\in\mathbb{N}^*$ par $u_n=\sum_{k=0}^n\frac{1}{k!}$ et $v_n=\frac{1}{n!}+\sum_{k=0}^n\frac{1}{k!}$

Montrer que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

Exercice 5 (4,5 points)

Soit (u_n) la suite réelle définie par récurrence par : $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ où $f(x) = \frac{x^2 + 8}{6}$.

1. Trouver les valeurs de u_0 pour les quelles la suite est constante.

3. On suppose que $u_0 \in I_2$. Déterminer le sens de variation de la suite (u_n) . En déduire qu'elle est convergente puis déterminer sa limite.

. En utilisant l'algorithme d'Euclide	, déterminer une solution	particulière de l'équation	329x - 217y = 21.

2. En utilisant obligatoirement le théorème de Gauss, déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ tels que 329x-217y=21.

Olivier Rodot

Exercice 7 (2 points)

Décompose						
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		
Sans utilise	r l'algorithme	d'Euclide, en dé	éduire leur pgc	d.		

Exercice 8 (1,5 points)

Déterminer le reste de la division euclidienne de 751^{157} par 11.