Intravenous oxytocin dosing regimens for Check for updates postpartum hemorrhage prevention following cesarean delivery: a systematic review and meta-analysis

Laura C. Phung, MD; Elise K. Farrington, MD; Mairead Connolly, MD, MPH; Alyce N. Wilson, MD, MPH; Brendan Carvalho, MBBCh, FRCA; Caroline S. E. Homer, PhD; Joshua P. Vogel, PhD

OBJECTIVE: To compare the available evidence on intravenous oxytocin dosing regimens for the prevention of postpartum hemorrhage following cesarean delivery.

DATA SOURCES: We searched Ovid MEDLINE, Embase, Global Index Medicus, Cumulative Index of Nursing and Allied Health Literature, Cochrane Controlled Register of Trials, ClinicalTrials.gov, and the International Clinical Trials Registry Platform for eligible studies published until February 2020.

STUDY ELIGIBILITY CRITERIA: We included any randomized or nonrandomized study published in peer-reviewed journals that compared at least 2 different dosing regimens of intravenous oxytocin for postpartum hemorrhage prevention in women undergoing cesarean delivery.

METHODS: Two authors independently assessed the eligibility of studies, extracted the data, and assessed the risk of bias. The primary outcome was incidence of postpartum hemorrhage >1000 mL. Other review outcomes included use of additional uterotonics, blood loss, and adverse maternal events. Data were analyzed according to the type of intravenous administration (bolus only, infusion only, or bolus plus infusion) and total oxytocin dose. A meta-analysis was performed on randomized trials and the results were reported as risk ratios or mean differences with 95% confidence intervals. The Grading of Recommendations, Assessment, Development, and Evaluations scale was used to rate the certainty of evidence. Findings from dose-finding trials and nonrandomized studies were reported narratively.

RESULTS: A total of 35 studies (7333 women) met our inclusion criteria and included 30 randomized trials and 5 nonrandomized studies. There were limited data available from the trials for most outcomes, and the results were not conclusive. Compared with bolus plus infusion regimens, bolus only regimens probably result in slightly higher mean blood loss (mean difference, 52 mL; 95% confidence interval, 0.4—104 mL; moderate certainty). Among the bolus plus infusion regimens, initial bolus doses <5 IU may reduce nausea (risk ratio, 0.26; 95% confidence interval, 0.11—0.63; low certainty) when compared with doses of 5—9 IU. Total oxytocin doses of 5—9 IU vs total doses of 10—19 IU may increase the use of additional uterotonics (risk ratio, 13.00; 95% confidence interval, 1.75—96.37; low certainty). Effects on other outcomes were generally inconclusive.

CONCLUSION: There are limited data available for comparisons of IV oxytocin regimens for postpartum hemorrhage prevention following cesarean delivery. Bolus plus infusion regimens may lead to minor reductions in mean blood loss and initial bolus doses of <5 IU may minimize nausea. Bolus only regimens of 10 IU vs bolus only regimens of 5 IU may decrease the need for additional uterotonics, however, further comparative trials are required to understand the effects on other key outcomes, particularly hypotension.

Key words: abdominal delivery, birth, blood loss, dosing, drug administration, pregnancy, uterine atony, uterotonics

Introduction

Postpartum hemorrhage (PPH) is one of the leading causes of maternal mortality,

accounting for nearly 20% of the 295,000 maternal deaths that occur worldwide.² The most common cause of PPH is uterine atony,³ hence increasing the use of uteronics for all women during delivery has been a key component of

From the Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia (Drs Phung, Farrington, Connolly, Wilson, Homer, and Vogel); Faculty of Medicine, Dentistry and Health Sciences, Melbourne Medical School, The University of Melbourne, Melbourne, Australia (Drs Phung, Farrington, and Connolly); School of Population and Global Health, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Australia (Drs Wilson and Vogel); and Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA (Dr

Received Jan. 23, 2021; revised April 14, 2021; accepted April 30, 2021.

The authors report no conflict of interest.

This study received no financial support.

Corresponding author: Laura C. Phung, MD. lauracphung@gmail.com

0002-9378/\$36.00 • © 2021 Elsevier Inc. All rights reserved. • https://doi.org/10.1016/j.ajog.2021.04.258

AJOG at a Glance

Why was this study conducted?

The World Health Organization guidelines state that there is insufficient evidence to recommend a specific oxytocin dosing regimen to prevent women from experiencing postpartum hemorrhage following a cesarean delivery. This systematic review was conducted to identify and compare intravenous oxytocin dosing regimens administered during cesarean deliveries and to determine whether any regimens are superior.

Key findings

We found limited and generally low-quality data for most outcomes and further research is required. Bolus plus infusion regimens, with an initial bolus dose of <5 international units (IU), may have minor benefits. Bolus only regimens of 10 IU vs 5 IU may decrease the use of additional uterotonics, although the effects on adverse events (particularly hypotension) is unknown.

What does this add to what is known?

This study compared data on all oxytocin regimens administered during cesarean delivery for postpartum hemorrhage prevention. It provides valuable information for clinical guidelines and future research.

global efforts to reduce PPH-associated morbidity and mortality.4

In 2018, the World Health Organization (WHO) recommended that 10 international units (IU) of oxytocin should be administered to all women during delivery, irrespective of the mode of delivery (vaginal or cesarean delivery [CD]).⁴ This recommendation was informed by a Cochrane network metaanalysis of uterotonic agents for PPH prevention by Gallos et al.⁵ Based on further evidence from observational studies suggesting dose-dependent adverse effects,4 the WHO recommendations specified that when used for PPH prevention during CD, 10 IU oxytocin should be administered as a divided dose using a smaller initial intravenous (IV) bolus followed by infusion.⁴ However, the WHO Guideline Development Group acknowledged that there was insufficient evidence from randomized controlled trials and specified that identifying an optimal IV oxygocin regimen for PPH prophylaxis during CD was a high research priority.4

Previous reports have synthesized evidence on oxytocin dosing regimens for PPH prevention during CD, however, none of these were systematic reviews or were published nearly a decade ago. 6-8 An up-to-date review and comparison

of studies are important to help guide clinical practice and address the priority identified by the WHO Guideline Development Group. The aim of this systematic review was, therefore, to identify and compare IV oxytocin dosing regimens during CD and determine whether any regimens are superior.

Methods

We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance⁹ (Appendix A). We followed a prespecified protocol registered with the International Prospective Register of Systematic Reviews (CRD42020175544),¹⁰ and outlined any deviations in Appendix B. Ethics approval was not required because this was a systematic review of publicly available data.

Eligibility criteria

Randomized controlled trials (RCTs) and nonrandomized studies of interventions (NRSIs) published in peer-reviewed journals were eligible for inclusion without date restrictions. Conference abstracts were not included. We included studies written in English and those written in other languages if we were able to obtain adequate translations.

Eligible studies were those that included women who gave birth at any gestational age to a live or stillborn baby via CD and included both planned and intrapartum CDs. Women were eligible if they received IV oxytocin for PPH prevention either at or around the third stage of labor, recognizing that administration of oxytocin during the third stage may not be possible or practical during a CD, particularly during an emergency CD.

Studies comparing at least 2 different IV dosing regimens of oxytocin during CD were eligible. Trials with coadministered interventions were eligible, provided that the use of cointerventions was identical in all trial arms.

Outcomes of interest

We prespecified 25 outcomes based on those used in the WHO recommendations on uterotonics for PPH prevention,4 the PPH core outcome set,11 and the 2019 Cochrane network metaanalysis on uterotonics for PPH prevention.⁵ The primary review outcome was incidence of PPH ≥1000 mL, with secondary outcomes including PPH ≥500 mL, maternal death, severe maternal morbidity (intensive care unit [ICU] admissions), severe maternal morbidity (shock), use of additional uterotonics, satisfactory uterine tone, use of surgical or invasive nonsurgical interventions, blood transfusion, mean volumes of blood loss, change in hemoglobin measurements before vs after birth, any adverse maternal events (including nausea, vomiting, headache, hypotension, chest pain, myocardial ischemia, cardiac arrythmia, dyspnea, bradycardia, tachycardia, or water intoxication), breastfeeding at hospital discharge, maternal sense of well-being, and maternal satisfaction.

Information sources, search strategy, and study selection

A search strategy was developed in consultation with an information specialist (Supplemental Table 1). Between February 14, 2020, and February 19, 2020, we searched the following 7 electronic databases: Ovid MEDLINE, Embase, Global Index Medicus. Cumulative Index of Nursing and Allied Health Literature, Cochrane Central of Controlled Register Trials, ClinicalTrials.gov, and WHO International Clinical Trials Registry Platform. Recovered citations were de-duplicated using Endnote (Clarivate Analytics, Philadelphia, PA)¹² and imported into Covidence, (Covidence, Melbourne, Australia)¹³ for screening. Each unique citation was reviewed and independently assessed by 2 review authors (L.C.P., E.K.F., and M.C.) for inclusion, initially based on titles and abstracts and then on the full-text articles of potentially eligible citations. Disagreements were resolved through discussion or consultation with another reviewer (J.P.V.). We also screened the reference lists of all included studies, in addition to the reference list of the Gallos et al⁵ network meta-analysis for additional eligible studies.

Data extraction and assessment of risk of bias

For each study, 2 reviewers (L.C.P., E.K.F., M.C.) double-extracted data using a predesigned and pretested electronic spreadsheet (Google Sheets). Data about the study design, year of publication, period of recruitment, number of participants, maternal age, gestational age, primary and secondary review outcomes, and potential effect modifiers (type of CD, previous oxytocin administration during childbirth, and previous risk for PPH) were extracted. Disagreements between the reviewers at the title and abstract, and full-text stages were 4% and 9%, respectively, and were resolved through discussion or consultation with another reviewer (J.P.V.). We attempted to contact the study authors for all studies for which further information was required.

Each included study was assessed for risk of bias by at least 2 review authors (L.C.P., E.K.F., M.C.). RCTs were assessed using the Cochrane Risk Of Bias 2.0 (ROB 2.0, Cochrane, London, United Kingdom) tool, 14 and NRSIs were assessed using the Risk Of Bias In Nonrandomized Studies of Interventions (ROBINS-I, Cochrane) tool.¹⁵ We made an explicit judgment about the overall

risk of bias for each included study. In addition, we assessed the risk of bias of blood loss measurements using a similar approach to Gallos et al⁵ (Supplemental Table 2). Extracted data about the review outcomes from RCTs were entered into the Review Manager 5 software (Cochrane)¹⁶ for the meta-analysis. Data from NRSIs were reported narratively.

Data synthesis

We identified the following 3 types of studies: comparative RCTs with ≥ 2 arms, dose-finding RCTs, and NRSIs.

Comparative randomized controlled trials. For comparative RCTs, we first assessed trial populations and methods used between trials to judge whether they were sufficiently similar to warrant a meta-analysis. A random-effects model was used to assess all outcomes with >1trial. Results from dichotomous data were presented as a summary risk ratio (RR) with 95% confidence intervals (CI) and as mean differences (MDs) for continuous data. For all meta-analyses we used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach¹⁷ to rate the certainty of evidence as very low, low, moderate, or high using GRADEpro software (Evidence Prime, Inc, Ontario, Canada). 18 We planned to assess publication bias using funnel plots if there were 10 or more studies included in the metaanalysis, however, this was not done because of the limited number of studies.

We conducted separate meta-analyses for (1) type of IV administration (bolus only, infusion only, or bolus plus infusion) and (2) total oxytocin dose administered. We calculated the total oxytocin dose for each trial arm by adding all preplanned doses of oxytocin described in the study methods, including any doses used in a bolus, short infusion, and maintenance infusion (studies were not included for analysis of total oxytocin dose if there was insufficient information to determine the total dose). Considering the available evidence (and to standardize the analyses), trial arms were grouped into 5 total oxytocin dose categories (<5 IU, 5-9 IU, 10-19 IU, 20-49 IU, and

≥50 IU) for comparison in pairwise analyses. In addition, among trials using bolus plus infusion regimens, we identified trials that studied the effects of using different initial bolus doses by varying the initial bolus dose while keeping the infusion component identical between trial arms. Hence, we also analyzed (3) the effects of different initial bolus doses among trials using bolus plus infusion regimens. To accomplish this, we grouped the initial bolus doses as <5 IU, 5 IU, or 10 IU for comparison in pairwise analyses.

In line with the 2019 international consensus statement recommendation of a 2- to 4-hour maintenance infusion, 8 we performed a subgroup analysis on studies that used a maintenance infusion between 2 and 4 hours only. Owing to limited available data, we were only able to perform this for the analysis of initial bolus doses in a bolus plus infusion regimen.

We planned to conduct subgroup analyses by type of CD (planned vs intrapartum), previous oxytocin administration, and previous risk of PPH, however, these were not possible because of limited available data. We performed sensitivity analyses for risk of bias (only including studies with an overall low risk of bias) and method of blood loss estimation (only including studies that used calculated or volumetric assessment of blood loss). When making statements on the effects of an intervention, we adopted standardized language derived from Santesso et al.19

Dose-finding trials and nonrandomized studies.

The dose-finding RCTs used a 1-arm upand-down sequential allocation method in which the oxytocin dose for the next participant was adjusted according to the response of the preceding participant.²⁰ For example, if the first participant had a satisfactory response, the next participant was allocated either an equal or lower dose using a biased-coin technique. Dose-finding trials did not make explicit, pairwise comparisons between dosing regimens, hence findings from these trials were reported narratively. Eligible NRSIs were also reported narratively.

Results

Study selection and characteristics

The results of the search are summarized in the PRISMA flow diagram (Figure 1). We identified 9631 records of which 6626 records were excluded at the title and abstract screening stage and 195 at the full-text review stage. The most common reasons for exclusion were duplicate study (n=72) and wrong article type (n=37). No further articles were identified through screening of the reference lists. In total, 35 studies of 7333 women were included. We found 30 RCTs of which 26 were comparative RCTs and 4 were dose-finding RCTs. We found 5 NRSIs of which 4 were comparative and 1 was a dose-finding study. A summary of the study characteristics and an overview of study comparisons are provided in Tables 1 to 4 and Supplemental Table 3. Among the 26 comparative RCTs included, 9 were at an overall high risk for bias and 15 were at low risk for bias (Supplemental Figures 1 and 2); the 4 dose-finding RCTs were assessed to be at an overall high risk for bias. Of the 5 NRSIs, 2 were assessed to be at an overall critical risk of bias and the remaining 3 as at moderate risk (Supplemental Figures 3 and 4).

Comparative randomized controlled trials

We identified 26 comparative RCTs (64 trial arms) that included 5271 women. Of these, 19 RCTs were 2-arm trials, and 7 RCTs were multi-arm trials (ranging from 3-6 arms). Sample sizes ranged from 28-2069 women, and 23 trials included women undergoing planned CD only. The types of IV administrations used were bolus only (14 arms), infusion only (23 arms), and bolus plus infusion (27 arms). There were 26 different total doses of oxytocin used ranging from 1 IU-260 IU. The most common total doses were 5 IU (11 arms) and 10 IU (8 arms). We could not calculate the total dose for 3 of the studies. 25,27,35 Among those trial arms that used an infusion component, the total infusion duration ranged from 5 minutes to 24 hours, and the rate of oxytocin administration varied from 0.7 IU per hour to 120 IU per hour. Among the 5 trials that compared

PRISMA flow diagram.

PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

different initial bolus doses within a bolus plus infusion regimen, the initial bolus doses ranged from 0.5-10 IU.

Dose-finding trials and nonrandomized studies

We identified 4 dose-finding RCTs (180 women). The sample sizes ranged from 30-70 women. Two trials included women undergoing planned CD only and 1 trial included women undergoing intrapartum CD only. All studies used either an initial bolus or infusion followed by a maintenance infusion. We found 5 NRSIs that included 1840 women with sample sizes ranging from 41-1122 women. Of these, 4 were comparative studies (3 2-arm studies, 1 3-arm study) and 1 was a dose-finding study. The most common type of IV administration was bolus only (4 arms). Doses ranged from 3-80 IU with the most common dose being 5 IU (2 arms).

Outcomes

The most commonly reported outcomes were the use of additional uterotonics (28 studies) and mean blood loss (20 studies). No data were available for 7 outcomes (maternal deaths, ICU admissions, shock, water intoxication, breastfeeding after discharge, maternal sense of well-being, and maternal sense of satisfaction (Supplemental Table 4).

TABLE 1

,	2	٥	٠
	C	5	
(ľ	2	
	ċ	5	
	Ē	ż	
(K	2	

		uuou (studies								
First author, year	Study design	n	Country	CD type	Oxytocin dosing	regimens					
Comparative r	andomized o	ontrolle	d trials		Arm 1	Arm 2	Arm 3	Arm 4	Arm 5	Arm 6	All arms
Bhattacharya et al, ²¹ 2013	2-arm RCT	80	India	Planned	Bolus 3 IU	Infusion 3 IU	_	_	_	_	Infusion (0.16 IU/ min) after study period
Butwick et al, ²² 2010	5-arm RCT	75	United States	Planned	No bolus	Bolus 0.5 IU	Bolus 1 IU	Bolus 3 IU	Bolus 5 IU	_	Infusion of 10 IU over 2 h once adequate UT plus infusion (0.16 IU/ min) after study period
Cecilia et al, ²³ 2018	2-arm RCT	271	India	Both	Infusion 2.5 IU/h over 2–4 h	Infusion 10 IU/h over 8—12 h	_	_	_	_	_
Derbel et al, ²⁴ 2016	2-arm RCT	87	Tunisia	Planned	Bolus 10 IU	Bolus 5 IU	_	_	_	_	Infusion of 25 IU over 3 h
Duffield et al, ²⁵ 2017	2-arm RCT	51	United States	Planned	Infusion of 10 IU until discharge	Infusion of 60 IU until discharge	_	_	_	_	Bolus 1 IU
Ghulmiyyah et al, ²⁶ 2017	3-arm RCT	189	Lebanon	Planned	20 IU over 30 min	30 IU over 30 min	40 IU over 30 min	_	_	_	Infusion of 30 IU then 20 IU then 10 IU for 24 h total
Golparvar et al, ²⁷ 2014	2-arm RCT	84	Iran	Planned	Infusion 15 IU/h	Infusion 30 IU/h	_	_	_	<u> </u>	_
Güngördük et al, ²⁸ 2010	2-arm RCT	720	Turkey	Planned	Placebo infusion	Infusion of 30 IU over 4 h	_	_	_	<u> </u>	Bolus 5 IU
Jonsson et al, ²⁹ 2010	2-arm RCT	103	Sweden	Planned	Bolus 5 IU	Bolus 10 IU	_	_	_	_	_
Kajendran et al, ³⁰ 2017	2-arm RCT	92	Sri Lanka	Planned	Infusion of 20 IU over 4 h	Placebo infusion	_	_	_	_	Bolus 5 IU
Kikutani et al, ³¹ 2003	2-arm RCT	90	Japan	Planned	Bolus 10 IU over 30 s	Infusion 10 IU over 5 min	_	_	_	_	_
Kim et al, ³² 2011	3-arm RCT	60	Korea	Planned	Infusion of 20 IU over 40 min	Bolus 2 IU plus infusion of 10 IU over 40 min	Bolus 5 IU plus infusion of 10 IU over 40 min	_	_	_	_

First author, year	Study design	n	Country	CD type	Oxytocin dosing r	egimens					
Comparative r	andomized o	ontrolle	d trials		Arm 1	Arm 2	Arm 3	Arm 4	Arm 5	Arm 6	All arms
King et al, ³³ 2010	2-arm RCT	143	Canada	Both	Bolus 5 IU	Placebo bolus	_	_	_	_	Infusion of 40 IU over 30 min then infusion of 20 IU over 4 h
Kiran et al, ³⁴ 2013	3-arm RCT	90	India	Planned	Bolus 0.5 IU	Bolus 1 IU	Bolus 2 IU	_	_	_	Infusion 20 IU over 2 h
Kovacheva et al, ³⁵ 2015	2-arm RCT	60	United States	Planned	Bolus 3 IU every 3 min until adequate UT or maximum 3 boluses	Infusion of 30 IU until adequate UT	_	_	_	_	Infusion of 30 IU over 6 h
Munn et al, ³⁶ 2001	2-arm RCT	321	United States	Intra	Infusion of 10 IU over 30 min	Infusion of 80 IU over 30 min	_	_	_	_	Infusion of 20 IU over 8 h
Murphy et al, ³⁷ 2009	2-arm RCT	115	Scotland	Planned	Placebo infusion	Infusion of 30 IU over 4 h	_	_	_	_	Bolus 5 IU
Palacio et al, ³⁸ 2011	2-arm RCT	104	Spain	Planned	Bolus 1 IU plus infusion of 2.5 IU/ h for 24 h	Infusion of 20 IU at 700 mIU/min plus 10 IU/h for 24 h	_	_	_	_	_
Pinder et al, ³⁹ 2002	2-arm RCT	34	United Kingdom	Planned	Bolus 5 IU	Bolus 10 IU	_	_	_	_	_
Qian et al, ⁴⁰ 2019	6-arm RCT	145	China	Planned	No infusion	Infusion of 1 IU/h for 1 h	Infusion of 2 IU/h for 1 h	Infusion of 3 IU/h for 1 h	Infusion of 5 IU/h for 1 h	Infusion of 8 IU/h for 1 h	Bolus 1 IU
Sarna et al, ⁴¹ 1997	4-arm RCT	40	United States	Planned	Infusion of 5 IU at 1 IU/min	Infusion of 10 IU at 1 IU/min	Infusion of 15 IU at 1 IU/min	Infusion of 20 IU at 1 IU/min	_	_	_
Sartain et al, ⁴² 2008	2-arm RCT	80	Australia	Planned	Bolus 2 IU	Bolus 5 IU	_	_	_	_	Infusion of 40 IU over 4 h
Sheehan et al, ⁴³ 2011	2-arm RCT	2069	Ireland	Planned	Placebo infusion	Infusion of 40 IU over 4 h	_	_	_	_	Bolus 5 IU
Taj and Ommid, ⁴⁴ 2014	2-arm RCT	50	India	Planned	Bolus 10 IU over 15 s	Infusion of 10 IU over 5 min	_	_	_	_	_

TABLE 1
Characteris
First author,
1 2/00"

First author, year	Study design	n	Country	CD type	Oxytocin dosing regimens						
Comparative r	andomized o	controlled	trials		Arm 1	Arm 2	Arm 3	Arm 4	Arm 5	Arm 6	All arms
Tariq and Syed, ⁴⁵ 2018	2-arm RCT	90	Pakistan	Planned	Bolus 5 IU over 10 s	Infusion of 5 IU over 5 min	_	_	_	_	_
Thomas et al, ⁴⁶ 2007	2-arm RCT		United Kingdom	Planned	Bolus 5 IU over 1 s	Infusion of 5 IU over 5 min	_	_	_	_	_
Dose-finding i	andomized t	trials				Initial dose				Maintenance i	nfusion to all patient
Balki et al, ⁴⁷ 20	006	1-arm DF RCT	30	Canada	Intra	Starting bolus Subsequently u of preceding p	ıp or down b	y 0.5 IU (based on re	sponse	Infusion of 40	mIU/min for up to 8 h
Carvalho et al, ⁴	2004	1-arm DF RCT	40	USA	Planned	Starting bolus Subsequently u of preceding p	ıp or down b	y 0.5 IU (based on re	sponse	Infusion of 40	mIU/min until discharg
George et al, ⁴⁹	2010	1-arm DF RCT	40	Canada	Planned	Starting infusion Subsequently to response of pro-	ıp or down l	by 0.1 IU for 1 h (bas	sed on	Infusion of 30	U until discharge
_avoie et al, ⁵⁰	2015	2-arm DF RCT	70	_	Arm 1: intra; arm 2: planned	- · · · · · · · · · · · · · · · · · · ·	p or down b	n until end of CD by 3 IU/h (based on re	sponse	Infusion of 3.6	IU/h until discharge
Nonrandomize	ed studies of	intervent	ions			Arm 1		Arm 2	Arm 3		All arms
Ahmadi et al, ⁵¹	2018	2-arm NF	RSI 150	Iran	_	Infusion of 80 I	U I	nfusion of 30 IU	_		_
Holleboom et a	I, ⁵² 2013	3-arm NF	RSI 1122	Netherlands	s Planned	Bolus 5 IU	E	Bolus 10 IU	Bolus 5 infusion 2 h	IU plus of 10 IU over	_
Pursche et al, ⁵³	3 2012	2-arm NF	RSI 454	Germany	Both	Bolus 3 IU plus infusion at 100		nfusion with at least 120 mL/h	<u>—</u>		_
Terblanche et a	al, ⁵⁴ 2017	2-arm NF	RSI 73	Australia	Planned	Bolus 3 IU	E	3olus 5 IU	_		_
Beiranvand et a	al, ⁵⁵ 2019	2-arm DF NRSI	41	Iran	Arm 1: intra; arm 2: planned	Bolus 1 IU bolu I 0.5 IU every mi adequate UT		_	_		Infusion 30 mU/min

Type of IV administration	Bolus only	Infusion	Bolus plus infusion
Bolus only	No studies	5 RCTs (338 women, all 2-arm trials) ^{21,31,44} —46	5 RCTs (3141 women) • Four 2-arm trials ^{28,30,37,43} • One 6-arm trial ^{a,40} 1 NRSI (1122 women, 2-arm study) ^{b,53}
Infusion	_	No studies	5 RCTs (442 women) • Three 2-arm trials ^{32,35,38} • One 3-arm trial ^{6,32} • One 4-arm trial ^{d,22} 1 NRSI (454 women, 2-arm study) ⁵³
Bolus plus infusion	_		No studies

Dose-finding studies (4 RCTs, 1 NRSI) are not included in this table.

IV, intravenous; NRSI, nonradomized studies of intervention; RCT, randomized controlled trial.

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

Dose	<5 IU	5—9 IU	10—19 IU	20-49 IU	≥50 IU
<5 IU	No studies	1 RCT (145 women) • 1 IU vs 2 IU vs 3 IU vs 4 IU vs 6 IU vs 9 IU ⁴⁰ 1 NRSI (73 women) • 3 IU vs 5 IU ⁵⁴	No studies	No studies	No studies
5—9 IU	_	No studies	3 RCTs (177 women) • 5 IU vs 10 IU ^{29,39} • 5 IU vs 10 IU vs 15 IU ⁴¹ 3 NRSI (1122 women) • 5 IU vs 10 IU vs 15 IU ⁵²	4 RCTs (2996 women) • 5 IU vs 35 IU ^{28,37} • 5 IU vs 45 IU ⁴³ • 5 IU vs 25 IU ³⁰	No studies
10—19 IU	_	_	No studies	2 RCTs (331 women) • 10 IU vs 30 IU ²³ • 12 IU vs 15 IU vs 20 IU ³²	No studies
20—49 IU	_	_	_	3 RCTs (257 women) ^a • 42 IU vs 45 IU ⁴² • 30 IU vs 35 IU ²⁴ • 20.5 IU vs 21 vs 22 IU ³⁴	1 RCT (321 women) • 30 IU vs 100 IU ³⁶ 1 NRSI (150 women) • 30 IU vs 80 IU ⁵¹
≥50 IU	_	_	_	_	3 RCTs (436 women) ^a • 80 IU vs 90 IU vs 100 IU ²⁶ • 60 IU vs 65 IU ³³ • 61 IU vs 260 IU ³⁸

Four dose-finding studies (4 RCTs, 1 NRSI) and 3 RCTs were not included because the total oxytocin dose could not be calculated.

^a Six-arm study comparing bolus only with bolus plus infusion (B+I) vs B+I vs B+I vs B+I vs B+I, ^b Three-arm study comparing bolus only with bolus and B+I, ^c Three-arm study comparing infusion with B+I and B+I, ^d 4-arm study comparing infusion with B+I and B+I.

IU, international unit; NRSI, nonrandomized studies of intervention; RCT, randomized controlled trial.

^a Studies compared outcomes within the same total oxytocin dose category and were not analyzed.

Dose	<5 IU	5 IU	10 IU
<5 IU	1 RCT (90 women) • 0.5 IU vs 1 IU vs 2 IU ³⁴	3 RCTs (180 women) • 0.5 IU vs 1 IU vs 3 IU vs 5 IU ²² • 2 IU vs 5 IU ³² • 2 IU vs 5 IU ⁴²	No studies
5 IU	-	No studies	1 RCT (87 women) • 5 IU vs 10 IU ²⁴
10 IU	_	_	No studies

Synthesis of results

Meta-analysis.

Type of intravenous administration. A total of 15 RCTs (3921 women) compared different types of IV adminregimens istration (Table Supplemental Table 5). The incidence of PPH ≥1000 mL was only reported for 1 comparison (bolus only vs bolus plus infusion).

Bolus only vs infusion only. In 5 RCTs (338 women), bolus only regimens were compared with infusion only regimens. No study reported on the outcome of incidence of PPH > 1000 mL. The effects of either dosing regimen on the use of additional uterotonics, mean blood loss, or maternal adverse effects (nausea, vomiting, chest pain, and myocardial ischemia) are inconclusive because the certainty of evidence was very low. No other outcomes were reported.

Bolus only vs bolus plus infusion. In 5 RCTs (4580 women), bolus only regimens were compared with bolus plus infusion regimens. The effect of either dosing regimen on the outcome of incidence of PPH >1000 mL was inconclusive because the certainty of evidence was very low (4 trials of 2976 women; RR, 1.44; 95% CI, 0.75-2.76; very low certainty), although bolus only regimens slightly increased the mean blood loss (5 trials of 3068 women; MD, 52 mL; 95% CI, 0.4-104 mL; moderate certainty) (Figure 2) and decreased the incidence of satisfactory uterine tone (1 trial of 145 women; RR, 0.63; 95% CI, 0.41-0.95; low certainty) (Figure 3). There were no clear differences in the

mean change in hemoglobin (3 trials of 2260 women; MD, -0.05 g/dL; 95% CI, -0.27 to 0.17 g/dL; high certainty) or incidence of blood transfusion (3 trials of 2870 women; RR, 1.55; 95% CI, 0.47-5.13; low certainty). The effects of either dosing regimen on the outcomes of incidence of PPH ≥500 mL, use of additional uterotonics, and maternal adverse effects (hypotension, nausea, and chest pain) were inconclusive because the certainty of evidence was very low. There were zero events reported for surgical or nonsurgical interventions, vomiting, bradycardia, tachycardia, and dyspnea. A sensitivity analysis on risk of bias (including only studies at an overall low risk of bias) suggested no clear difference in mean blood loss.

Infusion only vs bolus plus infusion. In 5 RCTs (442 women), infusion only regimens were compared with bolus plus infusion regimens. No study reported on the outcome of incidence of PPH >1000 mL. There were no clear differences in the incidence of satisfactory uterine tone (2 trials of 164 women; RR, 0.98; 95% CI, 0.90-1.06; low certainty), blood transfusion (1 trial of 145 women; RR, 0.35; 95% CI, 0.04-3.26; low certainty), or maternal adverse events (vomiting [1 trial of 60 women; RR, 0.50; 95% CI, 0.06-4.18; low certainty], headache [1 trial of 152 women; RR, 0.36; 95% CI, 0.01-8.71; low certainty], hypotension [2 trials of 263 women; RR, 0.60; 95% CI, 0.34–1.05; moderate certainty], cardiac arrythmia [1 trial of 60 women; RR,

1.50; 95% CI, 0.27-8.34; low certainty], and tachycardia [1 trial of 143 women; RR, 0.96; 95% CI, 0.06-15.04; low certainty]). The effects on use of additional uterotonics, mean blood loss, and nausea were inconclusive because the certainty of evidence was very low. There were zero events reported for surgical interventions, chest pain, and dyspnea.

Total oxytocin dose. A total of 17 RCTs (4663 women) compared different total oxytocin doses (Table 3, Supplemental Table 6). The outcome of the incidence of PPH >1000 mL was reported for 2 comparisons (<5 IU vs 5-9 IU and 5-9 IU vs 20-49 IU).

Total oxytocin dose of <5 IU vs 5-9 IU. One RCT⁴⁰ (145 women) compared a total oxytocin dose of <5 IU with 5-9 IU. It reported zero incidences of PPH ≥1000 mL with either dosing regimen. The effects on the use of additional uterotonics, satisfactory uterine tone, mean blood loss, or maternal adverse events (nausea, hypotension, chest pain) were inconclusive because the certainty of evidence was very low. There were zero events reported for blood transfusions, vomiting, bradycardia, tachycardia, and dyspnea.

Total oxytocin dose of 5-9 IU vs 10-19 IU. Three RCTs (177 women) compared a total oxytocin dose of 5-9 IU with 10-19 IU. No study reported on the incidence of PPH \geq 1000 mL. The use of a total dose of 5-9 IU vs 10-19 IU may result in a large increase in the use of additional uterotonics (2 trials of 137 women; RR, 13.00; 95% CI, 1.75–96.37;

FIGURE 2 Bolus only vs bolus plus infusion: mean blood loss

		Bolus		Bolus	plus infusio	n		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	I IV, Random, 95% CI
Qian 2019	693	426	25	646.3917	367.0037	120	7.0%	46.61 [-132.83, 226.04]] ——
Murphy 2009	624	413	54	567	328	56	10.4%	57.00 [-82.69, 196.69]] •
Kajendran, 2017	569	282.8632	46	455	249.189	46	14.7%	114.00 [5.06, 222.94]]
Sheehan 2011	583	489	994	587	505	1007	32.2%	-4.00 [-47.55, 39.55]	†
Güngördük 2010	686.89	232.28	360	609.63	208.52	360	35.8%	77.26 [45.02, 109.50]] -
Total (95% CI)			1479				100.0%	52.28 [0.42, 104.14]	1 ◆
Heterogeneity: Tau ² = Test for overall effect			,	= 4 (P = 0.0	$(4); I^2 = 60\%$				-1000 -500 0 500 1000 Favours bolus Favours bolus+infusion

Cl. confidence interval: IV. intravenous: SD. standard deviation

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

low certainty) (Figure 4). There was no clear difference in myocardial ischemia (1 trial of 103 women; RR, 0.98; 95% CI, 0.14-6.70; low certainty). The effect on mean blood loss was inconclusive because the certainty of evidence was very low. There were zero events reported for hypotension.

Total oxytocin dose of 5-9 IU vs 20-49 *IU*. Four **RCTs** (2996 women), compared a total oxytocin dose of 5-9 IU with 20-49 IU. The effects of either dosing regimen on the outcomes of incidence of PPH >1000 mL, PPH ≥500 mL, use of additional uterotonics or blood transfusion, or mean blood loss were inconclusive because the certainty of evidence was very low. There was no clear difference in the change in hemoglobin (3 trials of 2260 women; MD, -0.05g/dL; 95% CI, -0.27 to 0.17 g/dL; low certainty).

Total oxytocin dose of 10-19 IU vs 20-49 IU. Two RCTs (331 women) compared a total oxytocin dose of 10-19 20 - 49IU. Neither study reported on the incidence of PPH ≥1000 mL. The use of a total dose of 10-19 IU compared with of 20-49 IU

probably reduces chest pain (1 trial of 271 women; RR, 0.05; 95% CI, 0.00 - 0.81;moderate certainty) (Supplemental Figure 5). There were no clear differences in the incidence of blood transfusion (1 trial of 271 women; RR, 0.86; 95% CI, 0.28-2.62; low certainty), satisfactory uterine tone (1 trial of 271 women; RR, 1.05; 95% CI, 1.00-1.09; moderate certainty), or tachycardia (1 trial of 271 women; RR, 0.84; 95% CI, 0.26-2.69). The effects on the use of additional uterotonics, mean blood loss, nausea, or vomiting were inconclusive because the certainty of evidence was very low.

Total oxytocin dose of 20–49 IU vs \geq 50 IU. One RCT³⁶ (321 women) compared a total oxytocin dose of 20-49 IU with ≥50 IU. It did not report on the incidence of PPH ≥1000 mL. The use of doses of 20–49 IU compared with \geq 50 IU may increase the use of additional 2.07; 95% CI, uterotonics (RR, 1.42–3.01; low certainty) (Supplemental Figure 6). There were no clear differences in mean blood loss (MD, 20 mL; 95% CI, -14 to 54 mL; low certainty) or hypotension (RR, 1.05; 95% CI, 0.71-1.53; low certainty).

Different bolus doses in bolus plus infusion regimens. A total of 5 RCTs using oxytocin regimens of bolus plus infusion (357 women) compared different initial bolus doses while keeping the infusion component identical for both trial arms (Table 4, Supplemental Table 7).

Initial bolus dose of <5 IU vs 5 IU in a bolus plus infusion regimen. In 3 RCTs (180 women) in which a bolus plus infusion regimen was used, an initial bolus dose of <5 IU was compared with that of 5 IU. No study reported on the incidence of PPH >1000 mL. Data from all 3 trials showed that initial bolus doses of <5 IU may reduce nausea (RR, 0.29; 95% CI, 0.10-0.81; low certainty) (Supplemental Figure 7), but there were no clear differences in the use of additional uterotonics (RR, 1.08; 95% CI, 0.51-2.31; low certainty) or vomiting (RR, 0.23; 95% CI, 0.05-1.04; low certainty). The effect on mean blood loss was very uncertain owing to very low certainty about the evidence. There were zero events reported for surgical or nonsurgical interventions, blood transfusions, and maternal adverse events (chest pain, cardiac arrythmia, dyspnea, hypotension).

FIGURE 3 Bolus only vs bolus plus infusion: satisfactory uterine tone

	Bolu	ıs	Bolus plus	infusion	Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI		M-H, Fix	ed, 95% CI	
Qian 2019	12	25	92	120	0.63 [0.41, 0.95]	i	. +	-	
						0.001	0.1	1 10	1000
						Favou	rs bolus+infusioı	า Favours b	olus

CI, confidence interval

FIGURE 4 Total oxytocin dose of 5-9 IU vs 10-19 IU: use of additional uterotonics

	5-9	IU	10-19) IU		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Pinder 2002	4	17	0	17	49.8%	9.00 [0.52, 155.24]	
Jonsson 2010	9	52	0	51	50.2%	18.64 [1.11, 312.11]	
Total (95% CI)		69		68	100.0%	13.84 [1.87, 102.40]	
Total events	13		0				
Heterogeneity: Chi ² = Test for overall effect				$I^2 = 0\%$	Ó		0.001 0.1 1 10 1000 Favours 5-9 IU Favours 10-19 IU

CI, confidence interval.

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

Initial bolus dose of 5 IU vs 10 IU in a bolus plus infusion regimen. One RCT²⁴ (87 women) that employed a bolus plus infusion regimen compared an initial bolus dose of 5 IU with 10 IU. It did not report on the incidence of PPH >1000 mL and there were no clear differences in mean blood loss (MD, 2 mL; 95% CI, -135 to 138 mL; low certainty), cardiac arrythmia (RR, 0.34; 95% CI, 0.01-8.14; low certainty), or chest pain (RR, 0.41; 95% CI, 0.08-2.00; low certainty). There were zero events reported for surgical or nonsurgical interventions and dyspnea.

We were largely unable to perform sensitivity and subgroup analyses owing to limited available data. However, where data permitted these analyses, no significant effects were found except where otherwise described.

Narrative synthesis.

We reviewed dose-finding RCTs and NRSIs separately. Findings from these studies are inconclusive, however, we report the main findings below. The results were not reported as statistically significant unless otherwise noted.

Dose-finding studies. A total of 4 dosefinding RCTs (180 women) studied the different initial doses required to initiate uterine contraction when followed by a maintenance infusion. No study reported on the incidence of PPH ≥1000 mL. The studies found that small doses (0.3 IU as a bolus or 0.27-0.29 IU/min as a short infusion) may be adequate to prevent uterine atony during planned

CD⁴⁸⁻⁵⁰ and that higher doses of oxytocin may be required during intrapartum CD regardless of the type of administration. 47,50 One dose-finding NRSI⁵⁵ (83 women) reported that small doses (1 IU as a bolus) may be adequate to prevent uterine atony, with higher doses needed during intrapartum CD. Hypotension, secondary to oxytocin administration, was noted in all studies, however, was not explored in relation to specific doses or types of IV administration regimens.

Nonrandomized studies.

Type of intravenous administration. One study⁵² (1122 women, critical risk of bias) compared bolus only with bolus plus infusion regimens. It suggested that more women who received bolus only regimens experienced PPH ≥1000 mL than women who received bolus plus infusion regimens, greater use of additional uterotonics, and increased incidence in blood transfusions. There were no significant differences reported for any other outcomes.⁵² Another study⁵³ women, moderate risk of bias) compared infusion only with bolus plus infusion regimens. It did not report on the incidence of PPH ≥1000 mL but suggested that women who received infusion only regimens experienced a greater overall decrease in hemoglobin levels.

Total oxytocin dose. One study⁵⁴ (73 women, moderate risk of bias) compared a total oxytocin dose of 3 IU with that of 5 IU. It did not report on the incidence of PPH ≥1000 mL but suggested more women who received 5 experienced vomiting compared with women who received 3 IU. One study⁵² (1122 women, critical risk of bias) compared a total oxytocin dose of 5 IU with that of 10 IU and 15 IU. It suggested that increased doses of oxytocin may result in less PPH >1000 mL, the use of additional uterotonics and blood transfusions, and may lead to more satisfactory uterine tone.⁵² One study⁵¹ (150 women, critical risk of bias) compared a total oxytocin dose of 30 IU with that of 80 IU. It did not report on the incidence of PPH ≥1000 mL but suggested that 30 IU may lead to a statistically significant increase in the use of additional uterotonics and a decrease in satisfactory uterine tone. No significant differences were reported for any other outcomes including hypotension.

Comment

Main findings

We identified 35 studies of 7333 women comparing different IV oxytocin regimens for PPH prevention following CD. The evidence in general was limited and data were lacking for most of the review outcomes, with the data from 11 studies at high or critical risk of bias. We did not find any clear differences in the incidence of PPH ≥1000 mL, although data were sparse for this outcome. Bolus plus infusion regimens are possibly superior to bolus only regimens in terms of a small reduction in mean blood loss (around 52 mL) and increased uterine tone, although these findings were based on a few trials. In general, we found no clear indication of a superior total oxytocin dose (largely because of insufficient evidence). Although we found doses of 10-19 IU is possibly better than doses of 5-9 IU in terms of decreasing the use of additional uterotonics, there were limited data on adverse maternal events (particularly hypotension). Of interest, both studies used in the metaanalysis of this outcome exclusively compared 5 IU with 10 IU in a bolus only regimen.

Oxytocin regimens were described using varying time intervals, which complicated meaningful comparison. However, available evidence suggests that when administering oxytocin in a bolus plus infusion regimen, initial bolus doses of <5 IU may lead to less nausea, but the effects of lower vs higher initial bolus doses on blood loss are not known. The infusion component of bolus plus infusion regimens most commonly continued for 2-4 hours.

Findings from nonrandomized studies, although not conclusive owing to a greater susceptibility to bias, were broadly consistent with the findings of meta-analyses on RCTs. These generally indicated that bolus plus infusion regimens may be superior to bolus only regimens and that higher oxytocin doses may be more effective but can increase adverse maternal events. Among the bolus plus infusion regimens, 4 dosefinding RCTs reported that small initial doses (0.3 IU as a bolus or 0.27-0.29 IU/ min as a short infusion) may be adequate to prevent uterine atony during planned CD,48-50 with higher doses required at intrapartum CD, 47,50 but the evidence was not conclusive and should be interpreted with caution.

Comparison with existing literature

Our findings are broadly consistent with previous work on IV oxytocin dosing regimens for PPH prevention following at CD, including a 2012 systematic review⁷ of 7 RCTs (626 women) and a 2011 literature review. Both reviews recommended the use of a small initial bolus dose (ranging between 0.3 and 3 IU)^{6,7} with 1 review further recommending a

bolus plus infusion regimen.⁷ Both reviews further reported more adverse hemodynamic events with higher doses of oxytocin, which is consistent with our findings. Our findings are compatible with a 2019 international consensus statement, which recommends using a 1 IU bolus followed by a 2.5-7.5 IU/h infusion over 2-4 hours and the WHO recommendation of 10 IU oxytocin administered IV or intramuscular during all births with doses divided into a small initial IV bolus with subsequent infusion during CD.⁴ However, it is evident that good-quality trials comparing different oxytocin dosing regimens are needed to guide practice. It is noteworthy to mention that national guidelines vary (Supplemental Table 8), probably reflecting the lack of clear evidence to guide practice. The 2017 American College of Obstetricians and Gynecologists guidelines recommend using a dilute IV infusion (bolus dose of 10 IU) for PPH prevention without specification for mode of delivery.⁵⁷ Australian guidelines only recommend prophylactic oxytocin for all births without specifying a dosing regimen.⁶¹ Carbetocin is recommended in Canada during planned CD,60 and a bolus only oxytocin regimen is recommended in the United Kingdom.⁵⁸ French guidelines recommend a oxytocin bolus plus infusion regimen during CD, however, suggest an initial bolus dose of 5–10 IU.⁵⁹

Strengths and limitations

We used a systematic and methodologically robust approach to searching and analyzing literature without date or language restrictions. We included both randomized and nonrandomized studies, which allowed for a more thorough and nuanced investigation of oxytocin dosing regimens. We also prespecified outcomes that aligned with WHO priority outcomes⁴ and the PPH core outcome set¹¹ and used the latest and more sophisticated iterations of the Cochrane risk of bias tools (ROB 2.0 and ROBINS-I). 14,15

Despite this, evidence was generally limited for most outcomes. In a network meta-analysis by Gallos et al⁵ in which different uterotonic options

the authors similarly compared, described inadequate reporting of adverse events in trials of uterotonics for PPH prevention.⁵ The international consensus statement by Heesen et al8 also called for further large studies on this topic.8 Any such trials should be sufficiently powered for important health-related outcomes and should clearly specify the dosing regimen. Specifically, trials comparing different oxytocin doses of bolus plus infusion regimens should be conducted. We consider it particularly important that future trials should report on the outcome of PPH >1000 mL, an important outcome for clinical guideline decision making.

We also found hypotension to be a poorly studied outcome, despite dosedependent hypotension being well described. 21,29,42,46,62 Among RCTs, the effects of different dosing regimens on hypotension were generally either inconclusive or equivocal. No NRSI reported significant differences in the incidence of hypotension. However, it would not seem unreasonable to expect an increased incidence of hypotension with higher doses (particularly with bolus regimens), and it is likely that the combination of a bolus plus infusion regimen allows doses to exceed 5 IU while avoiding significant hemodynamic instability. Indeed, we consider it particularly important to prioritize research in this area.

We also did not find any clear evidence of diminishing returns from increasing doses and/or longer time periods of infusion despite it also being well described.^{22,26} Again, this was largely because of lack of good-quality data and is an area for which further research is required.

We identified a wide range of dosing regimens that added to the complexity of this analysis and likely contributed to high heterogeneity. Although we aimed to standardize comparisons by using total oxytocin dose, we were not able to account for other factors such as rate of oxytocin administration or total infusion time. We acknowledge that our dose categories are somewhat arbitrary, although necessary to standardize and interpret comparisons. We also tried to minimize the effect of subjective judgments on blood loss by including this in our risk of bias assessment and performing sensitivity analyses.

Finally, the majority of studies included only women undergoing planned CD with low risk of PPH. Hence, these findings may not be generalizable to other, higher-risk groups of women who may require a different oxytocin regimen.

Conclusions and implications

Based on current evidence, the most appropriate oxytocin regimen may be bolus plus infusion and an initial bolus of <5 IU, although further trials are needed to confirm these conclusions. Bolus only regimens of 10 IU vs 5 IU may decrease the use of additional uterotonics, however, further research is required to understand the implications on adverse events, particularly hypotension. In the absence of more robust evidence, many current guidelines on PPH prevention following CD may warrant reconsideration. Further research is required, particularly in women at high risk for PPH, for other important outcomes such as adverse maternal events, breastfeeding, and maternal well-being and satisfaction.

Final conclusion

This systematic review and metaanalysis of IV oxytocin dosing regimens for PPH prevention during CDs identified a lack of data for several important outcomes. Future well-designed studies are required to identify an optimal oxytocin dosing regimen for women undergoing CD. Nevertheless, available data suggest that an IV bolus plus infusion regimen, with an initial bolus dose of <5 IU, may be preferable. However, the degree of certainty for the evidence was generally low, and further research is required to identify the optimal oxytocin regimen for PPH prevention during CDs.

ACKNOWLEDGMENTS

We would like to acknowledge Patrick Condron (The University of Melbourne, Melbourne, Australia) for his assistance with the search strategy; Dr Rangi de Silva, MBBS (Mercy Hospital for Women, Heidelberg, Australia) for her insights on this topic; Dr Matthew Page, PhD (Monash University, Clayton, Australia) and Dr Tari Turner, PhD (Monash University) for their insights on data analysis; and Liz Comrie-Thomson (Burnet Institute, Melbourne. Australia) for her insights on the entire research process. No acknowledged individual has any disclosure pertaining to this review.

REFERENCES

- 1. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2014;2:e323-33.
- 2. World Health Organization. Trends maternal mortality: 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. Geneva: World Health Organization; 2019.
- 3. Unterscheider J, Breathnach F, Geary M. Standard medical therapy for postpartum hemorrhage. In: Arulkumaran SS, Karoshi M, Keith LG, Lalonde AB, B-Lynch C, eds. A comprehensive textbook of postpartum hemorrhage. London, United Kingdom: Sapiens Publishing; 2012. p. 355-60.
- 4. World Health Organization. WHO recommendations: uterotonics for the prevention of postpartum haemorrhage. 2018. Available at: https://apps.who.int/iris/bitstream/handle/ 10665/277276/9789241550420-eng.pdf?ua=1 2018. Accessed Jan. 22, 2020.
- **5.** Gallos ID, Papadopoulou A, Man R, et al. Uterotonic agents for preventing postpartum haemorrhage: a network meta-analysis. Cochrane Database Syst Rev 2018;12:
- 6. Dyer RA, Butwick AJ, Carvalho B. Oxytocin for labour and caesarean delivery: implications for the anaesthesiologist. Curr Opin Anaesthesiol 2011;24:255-61.
- 7. Stephens LC, Bruessel T. Systematic review of oxytocin dosing at caesarean section. Anaesth Intensive Care 2012;40:247-52.
- 8. Heesen M, Carvalho B, Carvalho JCA, et al. International consensus statement on the use of uterotonic agents during caesarean section. Anaesthesia 2019;74:1305-19.
- 9. MIMS Australia. Oxytocin Apotex. 2018. Available at: https://www-mimsonline-com-au. eu. Accessed April 4, 2020.
- 10. University of York Centre for Reviews and Dissemination. Prospero: international prospective register of systematic reviews. Available at: https://www.crd.york.ac.uk/prospero/. Accessed Feb. 12, 2020.
- 11. Meher S, Cuthbert A, Kirkham JJ, et al. Core outcome sets for prevention and treatment of postpartum haemorrhage: an international Delphi consensus study. BJOG 2019;126:83-93.
- 12. EndNote. [computer program]. Philadelphia, PA: Clarivate Analytics; 2013.

- 13. Covidence systematic review software. Veritas Health Innovation. Available at: www. covidence.org. Accessed Feb. 17, 2020.
- 14. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898.
- 15. Sterne JA. Hernán MA. Reeves BC. et al. Robins-I: a tool for assessing risk of bias in nonrandomised studies of interventions. BMJ 2016;355:i4919.
- 16. Review manager (RevMan) [computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.
- 17. Schünemann H, Brożek J, Guyatt G, Oxman A. GRADE handbook for grading quality of evidence and strength of recommendations. 2013. Available at: guidelinedevelopment.org/ handbook 2013. Accessed Sep. 23, 2020.
- 18. Evidence Prime, Inc. GRADEpro GDT: GRADEpro guideline development tool. 2020. Available at: gradepro.org 2020. Accessed Sep.
- 19. Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 2020;119: 126-35.
- 20. Görges M, Zhou G, Brant R, Ansermino JM. Sequential allocation trial design in anesthesia: an introduction to methods, modeling, and clinical applications. Paediatr Anaesth 2017;27:240-7.
- 21. Bhattacharya S, Ghosh S, Ray D, Mallik S, Laha A. Oxytocin administration during cesarean delivery: randomized controlled trial to compare intravenous bolus with intravenous infusion regimen. J Anaesthesiol Clin Pharmacol 2013:29:32-5.
- 22. Butwick AJ, Coleman L, Cohen SE, Riley ET, Carvalho B. Minimum effective bolus dose of oxytocin during elective caesarean delivery. Br J Anaesth 2010;104:338-43.
- 23. Cecilia M. Viiavaselvi R. Bansal R. Lakshmi L. Jose R. Ten units intravenous oxytocin over 2-4 h is as effective as 30 units over 8-12 h in preventing postpartum hemorrhage after cesarean section: a randomized controlled trial. Indian J Pharmacol 2018;50:279-83.
- 24. Derbel M, Mekki D, Riahi A, Dimassi K. Mebazaa MS, Gara MF. Comparison of two oxytocin administration protocols in elective cesarean section: 5 iu versus 10 iu. Tunis Med 2016;94:253-8.
- 25. Duffield A, McKenzie C, Carvalho B, et al. Effect of a high-rate versus a low-rate oxytocin infusion for maintaining uterine contractility during elective cesarean delivery: a prospective randomized clinical trial. Anesth Analg 2017;124:857-62.
- 26. Ghulmiyyah LM, Usta IM, Ghazeeri G, et al. Intravenous oxytocin use to decrease blood loss during scheduled Cesarean delivery: a randomized double-blinded controlled trial (OXYTRIAL). Am J Perinatol 2017;34:379-87.
- 27. Golparvar M, Esterabi M, Talakoub R, Saryazdi HH. Evaluation of in vivo effects of oxytocin on coagulation of parturient during

- cesarean delivery by thromboelastography. J Res Pharm Pract 2014;3:28-33.
- 28. Güngördük K, Asicioglu O, Celikkol O, Olgac Y, Ark C. Use of additional oxytocin to reduce blood loss at elective caesarean section: a randomised control trial. Aust N Z J Obstet Gynaecol 2010:50:36-9.
- 29. Jonsson M, Hanson U, Lidell C, Nordén-Lindeberg S. ST depression at caesarean section and the relation to oxytocin dose. A randomised controlled trial. BJOG 2010;117:76-83.
- 30. Kajendran J, Silva GRC, Ranaraja SK. Effects of 5 iu oxytocin bolus and 20 iu oxytocin infusion compared to 5 iu oxytocin bolus and normal saline infusion in the control of blood loss during and after antepartum lower segment caesarean section: a randomized controlled trial. Ceylon Med J 2017:62:121-7.
- 31. Kikutani T, Oshima M, Sugimoto K, Shimada Y. Effects of intravenous infusion rate of oxytocin on thoracic epidural pressure in parturients undregoing elective cesarean section. J Nippon Med Sch 2003;70:475-9.
- 32. Kim TS, Bae JS, Park JM, Kang SK. Hemodynamic effects of continuous intravenous injection and bolus plus continuous intravenous injection of oxytocin in cesarean section. Korean J Anesthesiol 2011;61:482-7.
- 33. King KJ, Douglas MJ, Unger W, Wong A, King RA. Five unit bolus oxytocin at cesarean delivery in women at risk of atony: a randomized, double-blind, controlled trial. Anesth Analg 2010;111:1460-6.
- 34. Kiran S, Anand A, Singh T, Gupta N. To estimate the minimum effective dose of oxytocin required to produce adequate uterine tone in women undergoing elective caesarean delivery. Egypt J Anaesth 2013;29:161-5.
- 35. Kovacheva VP, Soens MA, Tsen LC. A randomized, Double-blinded Trial of a "Rule of Threes" algorithm versus continuous infusion of oxytocin during elective cesarean delivery. Anesthesiology 2015;123:92-100.
- 36. Munn MB, Owen J, Vincent R, Wakefield M, Chestnut DH, Hauth JC. Comparison of two oxytocin regimens to prevent uterine atony at cesarean delivery: a randomized controlled trial. Obstet Gynecol 2001;98:386-90.
- 37. Murphy DJ, MacGregor H, Munishankar B, McLeod G. A randomised controlled trial of oxytocin 5IU and placebo infusion versus oxytocin 5IU and 30IU infusion for the control of blood loss at elective caesarean section-pilot study. ISRCTN 40302163. Eur J Obstet Gynecol Reprod Biol 2009;142:30-3.
- 38. Palacio FJ, Morillas F, Ortiz-Gómez JR, Fornet I, Bermejo L, Cantalejo F. [Efficacy of lowdose oxytocin during elective cesarean section]. Rev Esp Anestesiol Reanim 2011;58:6-10.

- **39.** Pinder AJ, Dresner M, Calow C, Shorten GD, O'Riordan J, Johnson R. Haemodynamic changes caused by oxytocin during caesarean section under spinal anaesthesia. Int J Obstet Anesth 2002;11:156-9.
- 40. Qian XW, Drzymalski DM, Lv CC, Guo FH, Wang LY. Chen XZ. The ED50 and ED95 of oxytocin infusion rate for maintaining uterine tone during elective caesarean delivery: a dose-finding study. BMC Pregnancy Childbirth 2019;20:6.
- 41. Sarna MC, Soni AK, Gomez M, Oriol NE. Intravenous oxytocin in patients undergoing elective cesarean section. Anesth Analg 1997:84:753-6.
- 42. Sartain JB, Barry JJ, Howat PW, McCormack DI, Bryant M. Intravenous oxytocin bolus of 2 units is superior to 5 units during elective caesarean section. Br J Anaesth 2008;101:
- 43. Sheehan SR, Montgomery AA, Carey M, et al. Oxytocin bolus versus oxytocin bolus and infusion for control of blood loss at elective caesarean section: double blind, placebo controlled, randomised trial, BMJ 2011:343:
- 44. Taj A, Ommid M. Haemodynamic effects of oxytocin as intravenous bolus or infusion on women undergoing caesarean section. JK Sci 2014;16:52-6.
- 45. Tarig M, Syed W. Comparison of haemodynamic effect of equivalent dose of oxytocin given as Bolus and in Fusion. Pak Armed Forces Med J 2018;68:1517-21.
- 46. Thomas JS, Koh SH, Cooper GM. Haemodynamic effects of oxytocin given as i.v. bolus or infusion on women undergoing caesarean section. Br J Anaesth 2007;98:116-9.
- 47. Balki M, Ronayne M, Davies S, et al. Minimum oxytocin dose requirement after cesarean delivery for labor arrest. Obstet Gynecol 2006;107:45-50.
- 48. Carvalho JC, Balki M, Kingdom J, Windrim R. Oxytocin requirements at elective cesarean delivery: a dose-finding study. Obstet Gynecol 2004;104:1005-10.
- 49. George RB, McKeen D, Chaplin AC, McLeod L. Up-down determination of the ED(90) of oxytocin infusions for the prevention of postpartum uterine atony in parturients undergoing Cesarean delivery. Can J Anaesth 2010;57:578-82.
- 50. Lavoie A, McCarthy RJ, Wong CA. The ED90 of prophylactic oxytocin infusion after delivery of the placenta during cesarean delivery in laboring compared with nonlaboring women: an up-down sequential allocation dose-response study. Anesth Analg 2015;121:159-64.
- **51.** Ahmadi F. A comparative study on infusion of usual dose of oxytocin and 80 units dose of oxytocin in the prevention of postpartum

- hemorrhage in cesarean section. J Adv Pharm Technol Res 2018;9:102-6.
- 52. Holleboom CAG, van Eyck J, Koenen SV, et al. Carbetocin in comparison with oxytocin in several dosing regimens for the prevention of uterine atony after elective caesarean section in the Netherlands. Arch Gynecol Obstet 2013;287:1111-7.
- 53. Pursche T, Diedrich K, Banz-Jansen C. Blood loss after caesarean section: depending on the management of oxytocin application? Arch Gynecol Obstet 2012;286:633-6.
- 54. Terblanche N, Otahal P, Messmer A, et al. An observational cohort study of 3 units versus 5 units slow intravenous bolus oxytocin in women undergoing elective caesarean delivery. J Physiol Pharmacol 2017;68:547-53.
- 55. Beiranvand S, Karimi A, Vahabi S, Amin-Bidokhti A. Comparison of the mean minimum dose of bolus oxytocin for proper uterine contraction during cesarean section. Curr Clin Pharmacol 2019;14:208-13.
- 56. McGuinness LA, Higgins JPT. Risk-ofbias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 2021;12:
- **57.** Committee on Practice Bulletins-Obstetrics. Practice Bulletin No. 183: postpartum hemorrhage. Obstet Gynecol 2017;130:e168-86.
- **58.** Prevention and management of postpartum haemorrhage: Green-top Guideline No. 52. BJOG 2017;124:e106-49.
- 59. Sentilhes L, Vayssière C, Deneux-Tharaux C, et al. Postpartum hemorrhage: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF): in collaboration with the French Society of Anesthesiology and Intensive Care (SFAR). Eur J Obstet Gynecol Reprod Biol 2016;198:12-21.
- 60. Leduc D, Senikas V, Lalonde AB. No. 235active management of the third stage of labour: prevention and treatment of postpartum hemorrhage. J Obstet Gynaecol Can 2018;40: e841-55.
- 61. Leung Y, Sgroi J, Vaughan J, et al. Management of postpartum haemorrhage (PPH). Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG). 2017. Available at: https://ranzcog.edu.au/ RANZCOG_SITE/media/RANZCOG-MEDIA/ Women%27s%20Health/Statement%20and% 20quidelines/Clinical-Obstetrics/Management-of-Postpartum-Haemorrhage-(C-Obs-43)-Review-July-2017.pdf?ext=.pdf 2017. Accessed Oct. 29, 2020.
- 62. Langesceter E, Rosseland LA. Maternal hemodynamics during cesarean delivery. Acta Obstet Gynecol Scand 2006;85:126.

Section/topic	R	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	2
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	2–3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Supplemental Table 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	2–3
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	3
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	3
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	3
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	3

Section/topic	R	Checklist item	Reported on page #
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	3
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	3
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	3
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	3-4 & Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	4, Supplemental Figures 1—4
Results of individual studies 20		For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Supplemental Tables 5—7
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	4, 9–11, Supplemental Tables 5–7
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Supplemental Figures 1—4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	4, 9—11
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	11–13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	12—13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	1

For more information, visit: www.prisma-statement.org.

Supplemental Reference

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. $Phung. \ Oxytocin \ dosing \ regimens \ for \ postpartum \ hemorrhage \ prevention \ following \ cesarean \ delivery. \ Am \ J \ Obstet \ Gynecol \ 2021.$

Protocol	Deviation	Justification
Primary outcomes: PPH ≥500 mL and PPH ≥1000 mL	PPH \geq 500 mL downgraded from primary outcome to secondary outcome	We opted to downgrade PPH \geq 500 mL from a primary to a secondary outcome, considering that the definition of PPH after CD is PPH \geq 1000 mL (as distinct from PPH after vaginal birth).
	Included dyspnea and chest pain as additional secondary outcomes	Additional adverse events reported in some trials.
Include only third stage administration of oxytocin	Included administration of oxytocin at or around third stage	Practicality considerations means oxytocin not always able to be delivered at third stage during CD.
Random-effects model if $I^2 > 30\%$	Random-effects model for all analyses with >1 trial	Given large heterogeneity of trials and as per Cochrane handbook, random-effects model provided a more conservative estimate.
Specific comparisons made between high dose vs low dose bolus, and high dose vs low dose infusion	We further divided the comparison of studies into (1) type of IV administration and (2) total oxytocin dose using the categories of <5 IU, $5-9$ IU, $10-19$ IU, $20-49$ IU, ≥ 50 IU. Among studies comparing a bolus plus infusion regimen, we further compared various initial bolus doses when followed by an infusion.	The wide range of oxytocin regimens identified meant that our original approach of high and low dose was not practical nor informative.
	GRADE approach used to rate certainty of evidence.	More accurately report study findings and draw conclusions from the data.
	Subgroup analysis for studies with maintenance infusions lasting 2—4 h included	Explore hypothesis proposed by Heesen et al ⁸ that maintenance infusion should be run for 2–4 h.

SUPPLEMENTAL FIGURE 1

Randomized trials: risk of bias assessment by study

					Risk o	of bias			
		D1	D2	D3	D4	D5	D6	D7	Overall
	Balki 2006	X	X	X	+	?	?	+	X
	Bhattacharya 2013	<u>+</u>	<u>+</u>	X	+	?	<u>+</u>		X
	Butwick 2010	+	+	+	+	?	+		+
	Carvalho 2004	X	X	+	+	?	?	+	X
	Cecilia 2018	+	+	+	+	?	+	X	+
	Derbel 2016	+	+	+	+	?	?		+
	Duffield 2017	+	+	+	+	?	+	<u> </u>	+
	George 2010	X	X	+	+	?	+		X
	Ghulmiyyah 2017		+	+	+	?	+	+	
	Golparvar 2014	+	X		+	?	+		X
	Güngördük 2010	+	+	+	+	?	?	+	+
	Jonsson 2010	+	+	+	+	?	+	X	+
	Kajendran 2017	+	+	+	+	?	+	+	+
	Kikutani 2003		+	+		?	?		
dy	Kim 2011				+	?	?	+	X
Study	King 2010	+	+	+	+	?	+	X	+
	Kiran 2013	+	+	+	+	?	?	$\overline{\bigcirc}$	+
	Kovacheva 2015	+	+	+	+	?	+		+
	Lavoie 2015	X	X	+	+	?	+	?	X
	Munn 2001	+	+	<u> </u>	+	?	+	?	<u> </u>
	Murphy 2009	+	+	+	+	?	+	+	+
	Palacios 2011	+	+	+	+	?	+	X	+
	Pinder 2002		+	<u> </u>	+	?	?		<u> </u>
	Qian 2019	+	+		+	?	+	+	
	Sarna 1997	+	+	X	+	?	?	<u> </u>	X
	Sartain 2008	+	+	+	+	?	?	X	+
	Sheehan 2011	+	+	+	+	+	+	+	+
	Taj 2014			+	+	?	?	X	X
	Tariq 2018	+	+	+	+	?	+		+
	Thomas 2007	<u> </u>	+	+	<u> </u>	?	?	X	<u> </u>
•			IN 1: Randoi IN 2: Deviati		intended in	terventions		Judgen	nent
		D3: DOMA	IN 3: Missino IN 4: Measu	g outcome da	ata	•			gh
		D5: DOMA	IN 5: Selection	on of the rep	orted result		OUTCE		ome concerns
		D6: DOMAIN 6 (OTHER): Conflicts of interest and funding source D7: DOMAIN 7 (OTHER): Blood loss measurement ? No information							

Generated using robvis.⁵⁶

 $Phung.\ Oxytocin\ dosing\ regimens\ for\ postpartum\ hemorrhage\ prevention\ following\ cesarean\ delivery.\ Am\ J\ Obstet\ Gynecol\ 2021.$

Not applicable

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

SUPPLEMENTAL FIGURE 3

Nonrandomised studies of interventions: risk of bias by study

		Risk of bias									
		D1	D2	D3	D4	D5	D6	D7	D8	D9	Overall
	Ahmadi 2018	X		+	?	+		+	+	+	
	Beiranvand 2016	+	+	+	+			+	+	?	
Study	Holleboom 2013				?	+	X	+		X	
	Pursche 2012	+	+	+		+	+	+	+		
	Terblanche 2017	+	+		+	+	+	+	+	+	<u> </u>

D1: Bias due to confounding

D2: Bias in selection of participants into the study

D3: Bias in classification of interventions

D4: Bias due to deviations from intended interventions

D5: Bias due to missing data

D6: Bias in measurement of outcomes D7: Bias in selection of the reported result

D8: Bias due to conflicts of interest and funding source

D9: Bias in the measurement of blood loss

Judgement

Critical

High

Some concerns

+ Low

? No information

Not applicable

Generated using robvis.56

OVERALL

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

Number of studies

SUPPLEMENTAL FIGURE 5

Total oxytocin dose of 10-19 IU vs 20-49 IU: chest pain

CI, confidence interval; IU, international unit.

SUPPLEMENTAL FIGURE 6

Total oxytocin dose of 20-49 IU vs ≥50 IU: use of additional uterotonics

CI, confidence interval; IU, international unit.

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

SUPPLEMENTAL FIGURE 7

Initial bolus dose of <5 IU vs 5-9 IU: nausea

	< 5	ΙU	5-9	IU		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Butwick 2010	0	44	1	15	10.9%	0.12 [0.01, 2.76]	•
Kim 2011	3	20	5	20	24.7%	0.60 [0.17, 2.18]	
Sartain 2008	2	40	13	40	64.3%	0.15 [0.04, 0.64]	-
Total (95% CI)		104		75	100.0%	0.26 [0.11, 0.63]	•
Total events	5		19				
Heterogeneity: Chi ² =				$I^2 = 16$	5%		0.001 0.1 1 10 1000
Test for overall effect	z = 2.9	8 (P = 0)).003)				Favours < 5 IU Favours 5-9 IU

CI, confidence interval; IU, international unit.

SUPPLEMENTAL TABLE 1

Search strategy

Database(s): Ovid MEDLINE(R) and Epub ahead of print, in-process, and other nonindexed citations and daily 1946 to February 14, 2020

Number	Searches	Results
1	exp Oxytocin/ or (oxytocin or ocytocin or syntocinon or pitocin or oxytocic).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]	28,066
2	exp Cesarean Section/ or (c?esarean or csection* or c section* or abdominal delivery or elective delivery or CS).mp.	129,383
3	exp Postpartum Hemorrhage/	6910
4	(h?em?or?hag* or pph or (blood adj2 loss) or bleed* or uterine atony or atonic uterus).mp.	538,153
5	3 or 4	538,153
6	exp drug administration routes/	603,411
7	((oxytocin or oxytocic or syntocinon or pitocin or drug or drugs) adj5 (administ* or delivery or route or routes or dose or doses or dosing or dosage or dosages or intravenous or bolus or infusion or iv)).mp.	876,861
8	6 or 7	1,338,847
9	1 and 2 and (5 or 8)	1565
Database(s): Embase Clas	sic+Embase 1947 to February 14, 2020	
1	exp Oxytocin/ or (oxytocin or ocytocin or syntocinon or pitocin or oxytocic).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]	44,929
2	exp Cesarean Section/ or (c?esarean or csection* or c section* or abdominal delivery or elective delivery or CS).mp.	204,077
3	exp Postpartum Hemorrhage/	14,406
4	(h?em?or?hag* or pph or (blood adj2 loss) or bleed* or uterine atony or atonic uterus).mp.	968,513
	3 or 4	968,513
5		
	exp drug administration routes/	1,222,962
5 6 7	exp drug administration routes/ ((oxytocin or oxytocic or syntocinon or pitocin or drug or drugs) adj5 (administ* or delivery or route or routes or dose or doses or dosing or dosage or dosages or intravenous or bolus or infusion or iv)).mp.	
6 7	((oxytocin or oxytocic or syntocinon or pitocin or drug or drugs) adj5 (administ* or delivery or route or routes or dose or doses or dosing or dosage or dosages or	3,561,354
	((oxytocin or oxytocic or syntocinon or pitocin or drug or drugs) adj5 (administ* or delivery or route or routes or dose or doses or dosing or dosage or dosages or intravenous or bolus or infusion or iv)).mp.	1,222,962 3,561,354 3,569,315 4631

SUPPLEMENTAL TABLE 1

Search strategy (continued)

Database(s): Ovid MEDLINE(R) and Epub ahead of print, in-process, and other nonindexed citations and daily 1946 to February 14, 2020

Number	Searches	Results
1	exp Oxytocin/ or (oxytocin or ocytocin or syntocinon or pitocin or oxytocic).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]	44,929
2	exp Cesarean Section/ or (c?esarean or csection* or c section* or abdominal delivery or elective delivery or CS).mp.	204,077
3	exp Postpartum Hemorrhage/	14,406
Database: CINAHL Comple	te	
Interface: EBSCOhost Rese	earch Databases	

interface. Eboconost necesiron batabas

Search Screen: Advanced Search

Date: February 14, 2020

(MM "Oxytocin") or (oxytocin or ocytocin or syntocinon or pitocin or oxytocic) AND

(MH "Cesarean Section+") or (c#esarean or csection* or c section* or abdominal delivery or elective delivery or CS) AND

((MH "Postpartum Hemorrhage") or (h#em#or#hag* or pph or (blood N2 loss) or bleed* or uterine atony or atonic uterus)) or ((MH "Drug Administration+") or (oxytocin or oxytocic or syntocinon or pitocin or drug or drugs) N5 (administ* or delivery or route or routes or dose or doses or dosing or dosage or dosages or intravenous or bolus or infusion or iv))

(797 results)

Global Index Medicus, February 14, 2020

tw:((tw:(oxytocin OR ocytocin OR syntocinon OR pitocin OR oxytocic)) AND (tw:(c?esarean OR csection* OR c section* OR abdominal delivery OR elective delivery OR cs)) AND (tw:(h?em?or?hag* OR pph OR blood loss OR loss of blood OR bleed* OR uterine atony OR atonic uterus OR administ* OR delivery OR route OR routes OR dose OR doses OR dosing OR dosage OR dosages OR intravenous OR bolus OR infusion OR iv)))

(686 results)

CENTRAL

Search Name: MDRP (19 Feb)

Date Run: February 19, 2020, 02:16:59 PM

ID	Search	Hits
#1	MeSH descriptor: [Oxytocin] explode all trees	1802
#2	((oxytocin or ocytocin or syntocinon or pitocin or oxytocic)):ti,ab,kw	4706
#3	MeSH descriptor: [Cesarean Section] explode all trees	2989
#4	((c?esarean or csection* or "c section*" or "abdominal delivery" or "elective delivery" or CS)):ti,ab,kw	18,468
#5	MeSH descriptor: [Postpartum Hemorrhage] explode all trees	621
#6	((h*em*or*hag* or pph or "blood NEAR/2 loss" or bleed* or "uterine atony" or "atonic uterus")):ti,ab,kw	63,385
#7	MeSH descriptor: [Administration, Intravenous] explode all trees	18,229
#8	(((oxytocin or oxytocic or syntocinon or pitocin or drug or drugs) NEXT/5 (administ* or delivery or route or routes or dose or doses or dosing or dosage or dosages or intravenous or bolus or infusion or iv))):ti,ab,kw	149,407
Phung. Oxytocin dosing reg	imens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.	(continued)

D	Search	Hits
1 9	#1 or #2	4706
‡ 10	#3 or #4	18,468
‡ 11	#5 or #6	63,385
‡ 12	#7 or #8	162,486
‡ 13	#9 and #10 and (#11 or #12)	1048
CTRP, February 19, 2020		
Oxytocin AND hemorrhage (2	07)	
Oxytocin AND dose (163)		
Oxytocin AND bleed (191)		
ClinicalTrials.gov, February 1	9, 2020	
oxytocin (other terms) Post	Partum Hemorrhage (condition) (151)	
oxytocin (other terms) Bleed	d (condition) (178)	
oxvtocin (other terms) Caes	arean (condition) Dose (intervention) (41)	

ROB assessment (RCTs)	ROB assessment (NRSIs)	Description
Low	Low	Objective measurements such as calculated blood loss, weighing sponges or volumetric assessment
High	Critical	Subjective measurement such as clinical or visual estimates
Medium	Moderate	Mixture of objective and subjective measurements
Unclear	Unclear	Unspecified methods of measurement

Systematic Reviews

OLIDA	IEMENTA	TAD	
CILDE		IIAKI	- 4

SUPPLEMENTAL TABLE 3 Dosing regimens of all included studies

Author, year	n	Oxytocin dos	9 109			1 0		A 4		A F		• • • •		
Comparative RCTs		Arm 1 Study dose	30 min ^a	Arm 2 Study dose	20 min ^a	Arm 3 Study dose	20 min ^a	Arm 4 Study dose	20 min ^a	Arm 5 Study dose	20 min ^a	Arm 6	20 min ^a	All arms
Bhattacharya et al, ²¹ 2013	80	Bolus 3 IU	30 111111	Infusion of 3	_	—	30 IIIII	—	30 111111	—	30 111111	—	30 11111	Infusion (0.16 IU/min) after study period
Butwick et al, ²² 2010	75	Bolus 0 IU		Bolus 0.5 IU		Bolus 1 IU		Bolus 3 IU		Bolus 5 IU		_		Infusion 10 IL over 2 h once adequate UT plus infusion (0.16 IU/min) after study period
Cecilia et al, ²³ 2018	271	2.5 IU/h over 2–4 h	1.25 IU	10 IU/h over 8—12 h	5 IU	_		_		_		_		_
Derbel et al, ²⁴ 2016	87	10 IU	14 IU	5 IU	9 IU	_		_		_		_		Infusion of 25 IU over 3 h
Duffield et al, ²⁵ 2017	51	Infusion 10 IU until d/c	NE ^b	Infusion of 60 IU until d/c	NE ^b	_		_		_		_		Bolus 1 IU
Ghulmiyyah et al, ²⁶ 2017	189	20 IU over 30	min	30 IU over 30	min	40 IU over 30	min	_		_		_		Infusion of 30 IU then 20 IU then 10 IU for 24 h total
Golparvar et al, ²⁷ 2014	84	15 IU/h	7.5 IU	30 IU/h	15 IU	_		_		_		_		_
Güngördük et al, ²⁸ 2010	720	Placebo infusion	5 IU	30 IU over 4 h	12.5 IU	_		_		_		_		Bolus 5 IU
Jonsson et al, ²⁹ 2010	103	5 IU		10 IU		_		_		_		_		_
Kajendran et al, ³⁰ 2017	92	20 IU over 4 h	10 IU	Placebo infusion	5 IU	_		_		_		_		Bolus 5 IU
Kikutani et al, ³¹ 2003	90	Bolus 10 IU		Infusion 10 IU		_		_		_		_		_
Kim et al, ³² 2011	60	20 IU over 40 min	15 IU	Bolus 2 IU plus infusion of 10 IU over 40 min	9.5 IU	Bolus 5 IU plus infusion of 10 IU over 40 min	12.5 IU	_		_		_		_

Author, year	n	Oxytocin dos	ing regim	ens										
		Arm 1		Arm 2		Arm 3		Arm 4		Arm 5		Arm 6		
Comparative RCTs	3	Study dose	30 min ^a	Study dose	30 min ^a	Study dose	30 min ^a	Study dose 30 r	min ^a	Study dose	30 min ^a	Study dose	30 min ^a	All arms
King et al, ³³ 2010	143	Bolus 5 IU	45 IU	Placebo bolus	40 IU			_	_	_		_		Infusion of 40 IU over 30 mir then infusion of 20 IU over 4 h
Kiran et al, ³⁴ 2013	90	Bolus 0.5	5.5 IU	Bolus 1 IU	6 IU	Bolus 2 IU	7 IU	_		_		_		Infusion of 20 IU over 2 h
Kovacheva et al, ³⁵ 2015	60	Bolus 3 IU every 3 min until adequate UT or max of 3 boluses	NE ^b	Infusion of 30 IU until adequate UT	NE ^b	_		_		_		_		Infusion of 30 IU over 6 h
Munn et al, ³⁶ 2001	321	Infusion of 10 over 30 min	IU	Infusion of 80 over 30 min	IU	_		_		_		_		Infusion of 20 IU over 8 h
Murphy et al, ³⁷ 2009	115	Placebo infusion	5 IU	Infusion of 30 IU over 4 h	8.75 IU	_		_		_		_		Bolus 5 IU
Palacio et al, ³⁸ 2011	104	Bolus 1 IU plus infusion at 2.5 IU/h for 24 h	2.125 IU	Infusion of 20 IU at 700 mIU/min plus 10 IU/h for 24 h	21 IU	-		_		_		_		_
Pinder et al, ³⁹ 2002	34	Bolus 5 IU		Bolus 10 IU		_		_		_		_		_
Qian et al, ⁴⁰ 2019	145	No infusion	1 IU	Infusion of 1 IU/h for 1 h	1.5 IU	Infusion of 2 2 IU/h for 1 h	2 IU	Infusion of 3 2.5 IU/h for 1 h		Infusion of 5 IU/h for 1 h	3.5 IU	Infusion of 8 IU/h for 1 h	5 IU	Bolus 1 IU
Sarna et al, ⁴¹ 1997	40	Infusion of 5 I at 1 IU/min	U	Infusion of 10 at 1 IU/min	IU	Infusion of 15 IU	U at 1 IU/	Infusion of 20 IU at min	t 1 IU/	_		_		_
Sartain et al, ⁴² 2008	80	Bolus 2 IU	7 IU	Bolus 5 IU	10 IU	_		_		_		_		Infusion of 40 IU over 4 h
Sheehan et al, ⁴³ 2011	2069	Placebo infusion	5 IU	Infusion of 40 IU over 4 h	10 IU	_		_		_		_		Bolus 5 IU

Author, year

et al,⁵⁵ 2019

,	2	٥	
		>	
(ů	2	
	Z	2	
(ľ	å	

SUF	PLEME	ntal ta	BLE :	3					
_	_	_	_		_	_	_	_	

Dosing regimens of all included studies (continued)

Oxytocin dosing regimens

Autiloi, year		Oxylociii uo	Silly regilli	EIIS										
		Arm 1		Arm 2		Arm 3		Arm 4		Arm 5		Arm 6		
Comparative RCTs		Study dose	30 min ^a	Study dose	30 min ^a	Study dose	30 min ^a	Study dose	30 min ^a	Study dose	30 min ^a	Study dose	30 min ^a	All arms
Taj and Ommid, ⁴⁴ 2014	50	Bolus 10 IU over 15 s		Infusion of 10 over 5 min) IU	_		_	_	_		_		_
Tariq and Syed, ⁴⁵ 2018	90	Bolus 5 IU over 10 s		Infusion of 5 over 5 min	IU	_		_		_		_		_
Thomas et al, ⁴⁶ 2007	28	Bolus 5 IU over 1 s		Infusion of 5 over 5 min	IU	_		_		_		_		_
Dose-finding rand	omize	d trials		Initial dos (Dose in 3		t estimable fo	r all studio	es in this cate	egory)			Maintenand	e infusion	to all patien
Balki et al, ⁴⁷ 2006	30				olus 0.5 IU ntly up or o		J (based on	response of p	receding p	atient)		Infusion 40	mU/min for	up to 8 h
Carvalho et al, ⁴⁸ 2004	40				olus 0.5 IU ntly up or o		J (based on	response of p	receding p	atient)		Infusion 40	mU/min un	til discharge
George et al, ⁴⁹ 2010	40				Starting infusion at 0.4 IU/min Subsequently up or down by 0.1 IU for 1 h (based on response of preceding patient)						Infusion 30 I	U until disc	charge	
Lavoie et al, ⁵⁰ 2015	70					IU/h until end down by 3 IU/h		response of p	receding p	atient)		Infusion 3.6	IU/h until c	lischarge
Nonrandomized st	udies	of Arm	1			A	rm 2			Arm 3				
interventions	uuioo		y dose		30	O min ^a	tudy dose		30 min ^a	Study dos	e :	30 min ^a	All arn	ns
Ahmadi et al, ⁵¹ 2018		150 Infus	ion 80 IU		N	E _p Iu	nfusion 30	U	NE ^b	_			_	
Holleboom et al, ⁵² 2013	1	122 Bolus	s 5 IU			В	olus 10 IU			Bolus 5 IU infusion of over 2 h		7.5 IU	_	
Pursche et al, ⁵³ 2012	4		s 3 IU plus i mL at 100 i	infusion of 3 IU mL/h	in 3.		nfusion with 20 mL/h	ı at least	NE ^b	_			_	
Terblanche et al, ⁵⁴ 2017		73 Bolus	s 3 IU			В	olus 5 IU			_			_	
Beiranvand		41 Bolus	s 1 IU bolus	s, plus 0.5 IU	N	E ^b –	_			_			Infusio	n at 30 mU/mi

CD, cesarean delivery; d/c, discharge; IU, international unit; NE, not estimable; UT, uterine tone.

Phung. Oxytocin dosing regimens for postpartum hemorrhage prevention following cesarean delivery. Am J Obstet Gynecol 2021.

every min until adequate UT

a Total oxytocin dose received by each arm within first 30 minutes; b Not estimable because the study does provide enough information to reasonably estimate total dose received in 30 minutes.

Outcome	RCTs, number of trials (women) ^a	NRSIs, number of trials (women) ^a	Total, number of trials (women) ^a
PPH ≥1000 mL	8 (3324)	1 (1100)	9 (4424)
PPH ≥500 mL	1 (115)	1 (1100)	2 (1215)
Additional uterotonics	25 (5053)	3 (1323)	28 (6376)
Uterine tone	10 (1177)	3 (479)	13 (1656)
Surgical or nonsurgical interventions	5 (385)	1 (1100)	6 (1485)
Blood transfusion	12 (3994)	1 (1100)	13 (5094)
Mean blood loss	18 (4329)	2 (1173)	20 (5502)
Change in hemoglobin	4 (2400)	2 (1096)	6 (3496)
Nausea	9 (727)	3 (162)	12 (889)
Vomiting	10 (778)	2 (156)	12 (934)
Headache	6 (477)	3 (162)	9 (639)
Hypotension	10 (1048)	3 (162)	13 (1210)
Chest pain	7 (687)	3 (1278)	10 (1965)
Myocardial ischemia ^b	2 (173)	0 (0)	2 (173)
Arrythmia ^c	5 (416)	0 (0)	5 (416)
Bradycardia	3 (236)	0 (0)	3 (236)
Tachycardia	7 (794)	0 (0)	7 (794)
Maternal deaths	0 (0)	0 (0)	0 (0)
ICU admissions	0 (0)	0 (0)	0 (0)
Shock	0 (0)	0 (0)	0 (0)
Water intoxication	0 (0)	0 (0)	0 (0)
Breastfeeding after discharge	0 (0)	0 (0)	0 (0)
Maternal sense of well-being	0 (0)	0 (0)	0 (0)
Maternal satisfaction	0 (0)	0 (0)	0 (0)

Studies were not included if there were zero events in both arms or if standard deviations were not provided with mean values.

 $Phung. \ Oxytocin \ dosing \ regimens \ for \ postpartum \ hemorrhage \ prevention \ following \ cesarean \ delivery. \ Am \ J \ Obstet \ Gynecol \ 2021.$

ICU, intensive care unit; NRSI, nonrandomized studies of intervention; PPH, postpartum hemorrhage; RCT, randomized controlled trial.

a Includes extra doses of oxytocin, prostaglandins (carboprost, misoprostol), and ergometrine; b Includes troponin I rise and ST segment changes; c Includes electrocardiogram changes.

Systematic Reviews

SUPPLEMENTAL TABLE 5

Summary of funding from randomized studies: type of IV administration

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute effects	s (95% CI) ^a	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance infusion for 2–4 h)
Type of IV adminis	stration: bolus only vs infusion	only						
	Risk with infusion only	Risk with bolus only						
Use of additional uterotonics	359 per 1000	327 per 1000 (187—578)	RR, 0.91 (0.52-1.61)	78 (2 RCTs)	⊕ ○ ○ ○ Very low ^{b,c}	Effect is inconclusive	ROB: RR, 0.88 (0.44-1.75)	Not estimable ⁱ
Mean blood loss	The mean blood loss was 600 mL in both arms	MD, 0 mL (-309 to 309)	_	28 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,c}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Nausea	80 per 1000	200 per 1000 (42-936)	RR, 2.50 (0.53—11.70)	50 (1 RCT)	$ \bigoplus \bigcirc \bigcirc \bigcirc \bigcirc $ Very low b,c	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Vomiting	40 per 1000	120 per 1000 (13—1000)	RR, 3.00 (0.33–26.92)	50 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,c}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Chest pain	Unable to calculate because infusion arm	there were zero events in	RR, 7.00 (0.37—131.28)	80 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,c}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Myocardial ischemia	Unable to calculate because infusion arm	there were zero events in	RR, 11.00 (0.63-192.56)	80 (1 RCT)	⊕ ○ ○ ○ Very low ^{b—d}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Type of IV adminis	tration: bolus only vs bolus plu	s infusion only						
	Risk with bolus plus infusion	Risk with bolus only						
PPH ≥1000 mL	119 per 1000	172 per 1000 (89—329)	RR, 1.44 (0.75–2.76)	2976 (4 RCTs)	⊕ ○ ○ ○ Very low ^{e,f}	Effect is inconclusive	Not required ^k	Not estimable ⁱ
Use of additional uterotonics	120 per 1000	209 per 1000 (145—304)	RR, 1.75 (1.21-2.54)	3125 (5 RCTs)	⊕ ○ ○ ○ Very low ^{e,f}	Effect is inconclusive	ROB: RR, 1.60 (0.99-2.58)	Not estimablei
PPH ≥500 mL	179 per 1000	259 per 1000 (127—532)	RR, 1.45 (0.71-2.98)	110 (1 RCT)	⊕ ○ ○ ○ Very low ^{c,g}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Blood transfusion	9 per 1000	14 per 1000 (4-46)	RR, 1.55 (0.47-5.13)	2870 (3 RCTs)	⊕⊕⊜⊝ Low ^{f,h}	May make no clear difference	Not required ^k	Not estimable ⁱ
Blood loss	The mean blood loss ranged from 569–693 mL	MD, 52 mL more (0.4 more to 104 more)	_	3068 (5 RCTs)	⊕ ⊕ ⊕ ○ Moderate ⁿ	Bolus only regimens probably slightly	ROB: MD, 53 mL (-4 to 111 mL)	Not estimable ⁱ
						increases blood loss	Blood loss: not required ^j	
Change in hemoglobin	The mean change in hemoglobin ranged 0.88—11.9 g/dL	MD, 0.05 g/dL less (0.27 less to 0.17 more)	_	2260 (3 RCTs)	⊕ ⊕ ⊕ ⊕ High	Makes no clear difference	Not required ^k	Not estimable ⁱ

Systematic Reviews

SUPPLEMENTAL TABLE 5

Summary of funding from randomized studies: type of IV administration (continued)

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute effect:	s (95% CI)ª	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance infusion for 2–4 h)
Nausea	92 per 1000	200 per 1000 (76—525)	RR, 2.18 (0.83-5.73)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{c,g}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Hypotension	142 per 1000	200 per 1000 (81-492)	RR, 1.41 (0.57—3.47)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{c,g}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Chest pain	50 per 1000	137 per 1000 (44-434)	RR, 2.74 (0.87—8.67)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{c,g}	Effect is inconclusive	Not estimable ^j	Not estimable ⁱ
Satisfactory uterine tone	767 per 1000	483 per 1000 (314-728)	RR, 0.63 (0.41-0.95)	145 (1 RCT)	⊕⊕⊜⊝ Low ^{f,g}	Bolus only regimens may decrease incidence	Not estimable ^j	Not estimable ⁱ
Surgical or nonsurgical interventions	Unable to calculate because	zero events occurred in ei	ther arms	92 (1 RCT)	_	_	_	_
Vomiting	Unable to calculate because	zero events occurred in ei	ther arms	145 (1 RCT)	_	_	_	_
Bradycardia	Unable to calculate because	zero events occurred in ei	ther arms	145 (1 RCT)	_	_	_	_
Tachycardia	Unable to calculate because	zero events occurred in ei	ther arms	145 (1 RCT)	_	_	_	_
Dyspnea	Unable to calculate because	zero events occurred in ei	ther arms	145 (1 RCT)	_	_	_	_
Type of IV adminis	stration: infusion only vs bolus	plus infusion						
	Risk with bolus plus infusion	Risk with infusion only						
Use of additional uterotonics	143 per 1000	270 per 1000 (132—551)	RR, 1.88 (0.92—3.84)	441 (5 RCTs)	$ \bigoplus \bigcirc \bigcirc \bigcirc $ Very low $^{f-h}$	Effect is inconclusive	ROB: RR, 1.59 (0.71—3.54)	RR, 1.39 (0.87—2.22)
Mean blood loss	The mean blood loss ranged between 455–693 mL	MD, 20 mL more (13 less to 53 more)	_	283 (3 RCTs)	⊕ ○ ○ ○ Very low ^{b,f}	Effect is inconclusive	ROB: MD, 43 mL (-12 to 97 mL)	MD, 90 mL (-2 to 182 mL)
							Blood loss: MD, 9 mL (2-17 mL)	_
Nausea	53 per 1000	49 per 1000 (17—145)	RR, 1.05 (0.28-3.97)	277 (3 RCTs)	⊕⊖⊖⊖ Very low ^{b,c}	Effect is inconclusive	ROB: RR, 3.45 (0.44-27.20)	RR, 2.88 (0.12—69.49)

ystematic

SUPPLEMENTAL TABLE 5

Summary of funding from randomized studies: type of IV administration (continued)

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute effect	ts (95% CI) ^a	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance infusion for 2–4 h)
Hypotension	186 per 1000	111 per 1000 (63—195)	RR, 0.60 (0.34—1.05)	263 (2 RCTs)	⊕ ⊕ ⊕ ⊜ Moderate	Probably makes no clear difference	Not required ^k	Not estimable ⁱ
Satisfactory uterine tone	927 per 1000	918 per 1000 (834—1000)	RR, 0.98 (0.90—1.06)	164 (2 RCTs)	⊕⊕⊜⊝ Low ^{d,f}	May make no clear difference	Not required ^k	Not estimable ⁱ
Blood transfusion	41 per 1000	14 per 1000 (2—134)	RR, 0.35 (0.04-3.26)	143 (1 RCT)	⊕ ⊕ ⊜ ⊝ Low ^c	May make no clear difference	Not estimable ^j	Not required ¹
Vomiting	100 per 1000	50 per 1000 (6-418)	RR, 0.50 (0.06-4.18)	60 (1 RCT)	⊕ ⊕ ⊜⊝ Low ^c	May make no clear difference	Not estimable ^j	Not estimable ⁱ
Headache	13 per 1000	5 per 1000 (0—110)	RR, 0.36 (0.01-8.71)	152 (1 RCT)	⊕ ⊕ ⊜⊝ Low ^c	May make no clear difference	Not estimable ^j	Not required ¹
Cardiac arrythmia	67 per 1000	100 per 1000 (18—556)	RR, 1.50 (0.27—8.34)	60 (1 RCT)	⊕ ⊕ ⊜⊝ Low ^c	May make no clear difference	Not estimable ^j	Not estimable ⁱ
Tachycardia	14 per 1000	14 per 1000 (1—215)	RR, 0.96 (0.06—15.04)	143 (1 RCT)	⊕ ⊕ ⊜⊝ Low ^c	May make no clear difference	Not estimable ^j	Not required ¹
Surgical interventions	Unable to calculate as zero e	events in both arms		75 (1 RCT)	_	_	_	_
Chest pain	Unable to calculate as zero e	events in both arms		75 (1 RCT)	_	_	_	_
Dyspnea	Unable to calculate as zero of	events in both arms		75 (1 RCT)	_	_	_	_

Sensitivity analysis of risk of bias included studies only at overall low risk of bias.

Sensitivity analysis of method of blood loss measurement included studies only at low risk of bias for that domain.

Subgroup analysis included only studies using a bolus plus infusion regimen, for which the infusion duration ranged between 2 to 4 hours.

GRADE working group grades of evidence were as follows:

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate; the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate; the true effect is likely to be substantially different from the estimate of effect.

CI, confidence interval; IV, intravenous; MD, mean difference; PPH, postpartum hemorrhage; RCT, randomized controlled trial; ROB, risk of bias; RR, risk ratio.

^a The risk in the intervention group (and its 95% CI); ^b Downgraded for very serious risk of bias; ^c Downgraded for very serious imprecision; ^d Downgraded for serious indirectness; ^e Downgraded for very serious inconsistency; ^f Downgraded for serious inconsistency; ^f Downgraded for serious inconsistency; ^f Not estimable because no studies used maintenance infusion for 2 to 4 hours in both arms; ^f Not required as all studies at low risk of bias; ^f Not required because all studies used maintenance infusion for 2 to 4 hours in both arms.

SUPPLEMENTAL TABLE 6

Summary of findings from randomized studies: total oxytocin dose

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute e	ffects ^a (95% CI)	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance of infusion for 2–4 h)
Total oxytocin dose: <5 I	- ·	(11111)		(,			, , , , , , , , , , , , , , , , , , ,	,
	Risk with 5-9 IU	Risk with <5 IU						
PPH ≥1000	Unable to calculate beca	ause zero events were record	ed in either arm	145 (1 RCT)	_	_	_	_
Use of additional uterotonics	120 per 1000	379 per 1000 (172—838)	RR, 3.16 (1.43–6.98)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{b—d}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Mean blood loss	The mean blood loss ranged from 642—661 mL	MD, 20 mL more (116 less to 156 more)	_	145 (1 RCT)	⊕⊖⊖ Very low ^{b—d}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Nausea	100 per 1000	116 per 1000 (43—315)	RR, 1.16 (0.43-3.15)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,c,e}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Hypotension	100 per 1000	221 per 1000 (89–551)	RR, 2.21 (0.89-5.51)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,c,e}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Chest pain	60 per 1000	84 per 1000 (23—304)	RR, 1.40 (0.39-5.06)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,c,e}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Satisfactory uterine tone	900 per 1000	621 per 1000 (522—747)	RR, 0.69 (0.58-0.83)	145 (1 RCT)	⊕ ○ ○ ○ Very low ^{b—d}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Blood transfusion	Unable to calculate beca	ause zero events were record	ed in either arm	145 (1 RCT)	_	_	_	_
Vomiting	Unable to calculate beca	ause zero events were record	ed in either arm	145 (1 RCT)	_	_	_	_
Bradycardia	Unable to calculate beca	ause zero events were record	ed in either arm	145 (1 RCT)	_	_	_	_
Tachycardia	Unable to calculate beca	ause zero events were record	ed in either arm	145 (1 RCT)	_	_	_	_
Dyspnea	Unable to calculate beca	ause zero events were record	ed in either arm	145 (1 RCT)	_	_	_	_
Phung. Oxytocin dosing regime	ns for postpartum hemorrhage p	prevention following cesarean deliver	y. Am J Obstet Gynecol	2021.				(continued)

Systematic Reviews

OUD	DI E.	ALC: NO		TADI	-
SUP	PI FI	M - M	ΙΔΙ	IΔKI	ı E h
901		//		IAPI	

Summary of findings from randomized studies: total oxytocin dose (continued)

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute e	ifects ^a (95% CI)	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance of infusion for 2–4 h)
Total oxytocin dose: 5-	-9 IU vs 10—19 IU							
	Risk with 10–19 IU	Risk with 5–9 IU						
Use of additional		use zero events were recorded		137	⊕⊕00	5-9 IU may		
uterotonics	in the 10—19 IU arm		(1.75–96.37)	(2 RCTs)	Low ^{b,d}	increase incidence	ROB: RR, 18.64 (1.11—312.11)	Not estimable ^j
Mean blood loss	The mean blood loss ranged 540–578 mL	MD, 58 mL more (9 mL less to 124 mL more)	_	133 (2 RCTs)	⊕ ○ ○ ○ Very low ^{d,f}	Effect is inconclusive	ROB: MD, 45 mL (-109 to 199 mL)	Not estimable ^j
							Blood loss: not required ^k	Not estimable ^j
Myocardial ischemia	39 per 1000	38 per 1000 (5—263)	RR 0.98 (0.14-6.70)	103 (1 RCT)	⊕⊕⊜⊝ LOW ^e	May make no clear difference.	Not estimable ⁱ	Not estimable ^j
Hypotension	Unable to calculate as z	ero events in both arms		60 (1 RCT)	_	_	_	_
Total oxytocin dose: 5-	-9 IU vs 20—49 IU							
	Risk with 20—49 IU	Risk with 5–9 IU						
PPH ≥1000 mL	129 per 1000	186 per 1000 (97—357)	RR, 1.44 (0.75–2.76)	2831 (4 RCTs)	⊕ ○ ○ ○ Very low ^{c,d,g}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Use of additional uterotonics	110 per 1000	177 per 1000 (109—285)	RR, 1.60 (0.99–2.58)	2980 (4 RCTs)	⊕ ○ ○ ○ Very low ^{c,d,h}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
PPH ≥500 mL	179 per 1000	259 per 1000 (127—532)	RR, 1.45 (0.71–2.98)	110 (1 RCT)	⊕ ○ ○ ○ Very low ^{b,e}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Blood transfusion	9 per 1000	13 per 1000 (4-45)	RR, 1.55 (0.47-5.13)	2980 (4 RCTs)	⊕ ○ ○ ○ Very low ^{c,d,h}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Mean blood loss	The mean blood loss ranged from 455—610 mL	MD, 53 mL more (4 less to 111 more)	_	2923 (4 RCTs)	⊕⊖⊖ Very low ^{c,g}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j

SUPPLEMENTAL TABLE 6

Summary of findings from randomized studies: total oxytocin dose (continued)

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute eff	iects ^a (95% CI)	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance of infusion for 2–4 h)
Change in hemoglobin	The mean change in hemoglobin ranged from 0.88—12.1 g/dL	MD, 0.05 g/dL less (0.27 less to 0.17 more)	_	2260 (3 RCTs)	⊕ ⊕ ⊜ ⊝ Low ^{c,d}	Makes no clear difference	Not estimable ⁱ	Not estimable ^j
Total oxytocin dose: 10—	19 IU vs 20-49 IU							
	Risk with 20–49 IU	Risk with 10–19 IU						
Jse of additional Iterotonics	45 per 1000	15 per 1000 (5—46)	RR, 0.32 (0.10—1.02)	331 (2 RCTs)	$ \bigoplus \bigcirc \bigcirc \bigcirc $ Very low c,d,f	Effect is inconclusive	RR, 1.01 (0.06 -15.94)	Not estimable ^j
Blood transfusion	51 per 1000	44 per 1000 (14—135)	RR, 0.86 (0.28–2.62)	271 (1 RCT)	⊕⊕⊜⊝ Low ^e	May make no clear difference	Not estimable ⁱ	Not estimable ^j
Nausea	100 per 1000	200 per 1000 (47-856)	RR, 2.00 (0.47—8.56)	60 (1 RCT)	⊕⊖⊖⊖ Very low ^{c,e,f}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
V omiting	150 per 1000	50 per 1000 (9–276)	RR, 0.33 (0.06—1.84)	60 (1 RCT)	⊕ ○ ○ ○ Very low ^{c,e,f}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Chest pain	74 per 1000	4 per 1000 (0-60)	RR, 0.05 (0.00—0.81)	271 (1 RCT)	⊕ ⊕ ⊕ ⊜ Moderate ^d	10—19 IU may reduce incidence	Not estimable ⁱ	Not estimable ^j
Tachycardia	44 per 1000	37 per 1000 (11—119)	RR, 0.84 (0.26—2.69)	271 (1 RCT)	⊕⊕⊜⊝ Low ^e	May make no clear difference	Not estimable ⁱ	Not estimable ^j
Mean blood loss	The mean blood ranged from 448–457 mL	MD, 9 mL less (17 less to 0.7 less)	_	60 (1 RCT)	⊕ ○ ○ ○ Very low ^{c,d,f}	Effect is inconclusive	Not estimable ⁱ	Not estimable ^j
Satisfactory uterine tone	949 per 1000	996 per 1000 (949—1000)	RR, 1.05 (1.00—1.09)	271 (1 RCT)	⊕ ⊕ ⊕ ⊜ Moderate ^d	Probably makes no clear difference	Not estimable ⁱ	Not estimable ^j

ystematic

SUPPLEMENTAL TABLE 6

Summary of findings from randomized studies: total oxytocin dose (continued)

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute ef	fects ^a (95% CI)	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance of infusion for 2–4 h)
Total oxytocin dose: 2								_
	Risk with ≥50 IU	Risk with 20—49 IU						
Use of additional uterotonics	190 per 1000	393 per 1000 (270-572)	RR, 2.07 (1.42-3.01)	321 (1 RCT)	⊕⊕⊜⊝ Low ^{b,d}	20—49 IU may increase incidence	Not estimable ⁱ	Not estimable ^j
Mean blood loss	The mean blood ranged from 937–957 mL	MD, 20 mL more (14 less to 54 more)	_	321 (1 RCT)	⊕⊕⊜⊝ Low ^f	May make no clear difference	Not estimable ⁱ	Not estimable ^j
Hypotension	241 per 1000	253 per 1000 (171-368)	RR, 1.05 (0.71—1.53)	321 (1 RCT)	⊕⊕⊜⊝ Low ^{b,d}	May make no clear difference	Not estimable ⁱ	Not estimable ^j

Sensitivity analysis of risk of bias included studies only at overall low risk of bias.

Sensitivity analysis of method of blood loss measurement included studies only at low risk of bias for that domain.

Subgroup analysis included only studies using a bolus plus infusion regimen for which the infusion duration ranged between 2 and 4 hours.

GRADE Working Group grades of evidence:

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate; the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate; the true effect is likely to be substantially different from the estimate of effect.

Cl, confidence interval; MD, mean difference; PPH, postpartum hemorrhage; RCT, randomized controlled trial; ROB, risk of bias; RR, risk ratio.

^a The risk in the intervention group (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI); ^b Downgraded for serious risk of bias; ^c Downgraded for serious imprecision; ^e Downgraded for very serious imprecision; ^f Downgraded for very serious imprecision; ^f Downgraded for very serious inconsistency; ^h Downgraded for serious inconsistency; ^h Downgraded for serious inconsistency; ^h Not estimable because it was a single study; ^j Not estimable because no studies used maintenance infusion for 2 to 4 hours in both arms

SUPPLEMENTAL TABLE 7

Summary of findings from randomized studies: initial bolus dose in a bolus plus infusion regimen

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute effects ^a	(95% CI)	Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	Subgroup analyses (maintenance infusion for 2–4 h)
Initial bolus dose in	a bolus plus infusion regimen: <5	IU vs 5 IU	=		=	-	<u> </u>	
	Risk with <5 IU	Risk with 5 IU						
Use of additional uterotonics	133 per 1000	147 per 1000 (69-311)	RR, 1.08 (0.51-2.31)	179 (3 RCTs)	⊕ ⊕ ⊜ ⊝ Low ^b	May make no clear difference	ROB: RR— 1.01 (0.45-2.24)	RR, 1.01 (0.45-2.24)
Nausea	253 per 1000	66 per 1000 (28—160)	RR, 0.29 (0.10-0.81)	179 (3 RCTs)	⊕ ⊕ ⊜ ⊝ Low ^{c,d}	<5 IU may reduce incidence	ROB: RR, 0.15 (0.04-0.54)	RR, 0.15 (0.04-0.54)
Vomiting	120 per 1000	26 per 1000 (6—119)	RR, 0.23 (0.05-1.04)	179 (3 RCTs)	⊕⊕⊜⊝ Low ^{c,d}	May make no clear difference	ROB: RR, 0.17 (0.02—1.32)	RR, 0.17 (0.02—1.32)
Mean blood loss	The mean blood loss ranged from 446–451 mL	MD, 4 mL more (4 less to 13 more)		40 (1 RCT)	⊕ ○ ○ ○ Very low ^{d,e}	Effect is inconclusive	Not estimable ^f	Not estimable ⁹
Surgical or nonsurgical interventions	Unable to calculate because ze	ro events were recorded	in either arm	59 (1 RCT)	_	_	_	_
Blood transfusion	Unable to calculate because ze	ro events were recorded	in either arm	59 (1 RCT)	_	_	_	_
Chest pain	Unable to calculate because ze	ro events were recorded	in either arm	59 (1 RCT)	_	_	_	_
Cardiac arrythmia	Unable to calculate because ze	ro events were recorded	in either arm	59 (1 RCT)	_	_	_	_
Dyspnea	Unable to calculate because ze	ro events were recorded	in either arm	59 (1 RCT)	_	_	_	_
Hypotension	Unable to calculate because ze	ro events were recorded	in either arm	40 (1 RCT)	_	_	_	_
Initial bolus dose in	a bolus plus infusion regimen: 5 Il	J vs 10 IU						
	Risk with 10 IU	Risk with 5 IU						
Mean blood loss	The mean blood loss ranged from 875–877 mL	MD, 2 mL more (135 less to 138 more)	_	87 (1 RCT)	⊕⊕⊖⊖ Low ^{c,d}	May make no clear difference	Not estimable ^f	Not required ^h
Chest pain	114 per 1000	47 per 1000 (9—227)	RR, 0.41 (0.08-2.00)	87 (1 RCT)	⊕⊕⊖⊝ Low ^b	Effect is inconclusive	Not estimable ^f	Not required ^h
Phung. Oxytocin dosing	regimens for postpartum hemorrhage preve	ention following cesarean delive	ery. Am J Obstet Gy	mecol 2021.				(continue

ystematic

SUPPLEMENTAL TABLE 7

Summary of findings from randomized studies: initial bolus dose in a bolus plus infusion regimen (continued)

Patient or population: women undergoing cesarean delivery

Outcomes	Anticipated absolute effects ^a		Relative effect (95% CI)	Number of women (studies)	Certainty of evidence (GRADE)	Comments	Sensitivity analyses (risk of bias, method of blood loss measurement)	•
Cardiac arrythmia	23 per 1000		RR, 0.34 (0.01-8.14)	87 (1 RCT)	⊕ ⊕ ○ ○ Low ^b	May make no clear difference	Not estimable ^f	Not required ^h
Surgical or nonsurgical interventions	I Unable to calculate because	zero events were recorde	d in either arm	87 (1 RCT)	_	_	_	_
Dyspnea	Unable to calculate because	zero events were recorde	d in either arm	87 (1 RCT)	_	_	_	_

Sensitivity analysis of risk of bias included studies only at an overall low risk of bias.

Sensitivity analysis of method of blood loss measurement included studies only at low risk of bias for that domain.

Subgroup analysis included only studies using a bolus plus infusion regimen, for which the infusion duration ranged between 2-4 hours.

GRADE Working Group grades of evidence.

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate; the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate; the true effect is likely to be substantially different from the estimate of effect.

CI, confidence interval; MD, mean difference; RCT, randomized controlled trial; ROB, risk of bias; RR, risk ratio.

^a The risk in the intervention group (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI); ^b Downgraded for very serious imprecision; ^c Downgraded for serious risk of bias; ^d Not estimable because it was a single study; ^g Not estimable because no studies used maintenance infusion for 2 to 4 hours in both arms; ^h Not required because all studies used maintenance infusion for 2 to 4 hours in both arms.

Country	Governing body	Recommendation		
International	WHO (2018)	10 IU IV or IM during all births, with doses to be divided as a small IV bolus and an infusion at CD. ⁴		
International	International consensus statement (2019)	1 IU bolus followed by 2.5–7.5 IU/h infusion for around 2–4 h during planned CD. $^{\rm 8}$		
United States	ACOG (2017)	Dilute IV infusion (bolus dose of 10 IU). No specification for CD. ⁵⁷		
United Kingdom	RCOG (2016)	Oxytocin 5 IU IV by slow injection during CD. ⁵⁸		
France	CNGOF (2016)	Oxytocin at 5—10 IU IV by slow injection during CD plus maintenance infusion not exceeding 10 IU/h which car be stopped after 2 h based on clinical judgment. ⁵⁹		
Canada	SOCG (2018)	Carbetocin 100 μg as IV bolus over 1 min during elective CD. 60		
Australia and New Zealand	RANZCOG (2017)	Prophylactic oxytocin recommended for all births. No recommendation on dose or dosing regimen provided No specification for CD. ⁶¹		

ACOG, American College of Obstetricians and Gynecologists; CD, cesarean delivery; CNGOF, French National College of Obstetricians and Gynecologists; IV, intravenous; IM, intravenous; IV, intrav