MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

30 de agosto de 2023

- 1 Revisão sobre o princípio da indução matemática
- 2 Mais generalizações do PIM
- 3 Erros comuns em provas por indução
- 4 Princípio da Indução Completa
- 5 Perguntas, observações, comentários?

Revisão sobre o princípio da indução matemática

Indução com caso base arbitrário

- 1. Caso base: provamos $P(n_0)$ para algum $n_0 \in \mathbb{N}$
- 2. Hipótese indutiva: assumimos P(k) para $k \ge n_0$
- 3. Passo indutivo: provamos P(k+1) (usando P(k))

Concluímos:

$$\forall n \geq n_0, P(n)$$

Indução com caso base arbitrário

- 1. Caso base: provamos $P(n_0)$ para algum $n_0 \in \mathbb{N}$
- 2. Hipótese indutiva: assumimos P(k) para $k \ge n_0$
- 3. Passo indutivo: provamos P(k+1) (usando P(k))

Concluímos:

$$\forall n \geq n_0, P(n)$$

Em particular, se $n_0 = 0$, concluímos $\forall n \in \mathbb{N}, P(n)$.

Último exemplo visto na última aula

Teorema

Seja
$$D = \mathbb{N} \setminus \{0, 1, 2, 3, 4\} = \{5, 6, 7, ...\}$$
. Então

$$\forall n \in D, 2^n \geq n^2 + 1$$

•

Mais generalizações do PIM

Outra generalização: k-1 como hipótese indutiva

É possível supor que P(k-1) vale e então provar P(k).

Com uma simples troca de variáveis, $\ell := k-1$, vemos que isso é equivalente a $P(\ell) \Rightarrow P(\ell+1)$.

Outra generalização: k-1 como hipótese indutiva

É possível supor que P(k-1) vale e então provar P(k).

Com uma simples troca de variáveis, $\ell := k-1$, vemos que isso é equivalente a $P(\ell) \Rightarrow P(\ell+1)$.

Mas é preciso prestar atenção ao caso base!

Se $P(n_0)$ é o caso base, então a hipótese indutiva é P(k-1) para algum $k-1 \geq n_0$, e não $k \geq n_0$.

Outra generalização: Passo indutivo com incremento maior que 1

Em vez de provar $P(k) \Rightarrow P(k+1)$ no passo indutivo, é possível provar $P(k) \Rightarrow P(k+m)$ para m > 1.

Outra generalização: Passo indutivo com incremento maior que 1

Em vez de provar $P(k) \Rightarrow P(k+1)$ no passo indutivo, é possível provar $P(k) \Rightarrow P(k+m)$ para m > 1.

Mas se o caso base for $P(n_0)$, concluímos

$$P(n_0) \wedge P(n_0 + m) \wedge P(n_0 + 2m) \wedge P(n_0 + 3m) \wedge ...$$

Ou seja,

P(n) é verdade para todo natural n da forma $n_0 + km$.

Note que isso é diferente da conclusão usual: $\forall n \geq n_0 \ P(n)$

Outra generalização: Passo indutivo com incremento maior que 1

Em vez de provar $P(k) \Rightarrow P(k+1)$ no passo indutivo, é possível provar $P(k) \Rightarrow P(k+m)$ para m > 1.

Mas se o caso base for $P(n_0)$, concluímos

$$P(n_0) \wedge P(n_0 + m) \wedge P(n_0 + 2m) \wedge P(n_0 + 3m) \wedge \dots$$

Ou seja,

P(n) é verdade para todo natural n da forma $n_0 + km$.

Note que isso é diferente da conclusão usual: $\forall n \geq n_0 P(n)$

Note que isso é diferente da conclusão usual: $\forall n \geq n_0 \ P(n)$ Para obter essa conclusão novamente, precisamos provar o seguinte caso base:

$$P(n_0) \wedge P(n_0 + 1) \wedge P(n_0 + 2) \wedge ... \wedge P(n_0 + m - 1)$$

Exemplo de passo indutivo com incremento maior que 1

Num país fictício, durante um governo desastroso, a inflação fez com que os preços aumentassem tanto que o produto mais barato no país passou a custar 9 bonaros e o incremento mínimo passou a ser 1 bonaro (isto é, não existia mais centavos, como 9 bonaros e meio).

Então, para reduzir os custos da produção de dinheiro, o governo resolveu produzir apenas notas de 3 e de 5.

Como podemos provar que ainda é possível pagar por qualquer produto?

Exemplo de passo indutivo com incremento maior que 1

Num país fictício, durante um governo desastroso, a inflação fez com que os preços aumentassem tanto que o produto mais barato no país passou a custar 9 bonaros e o incremento mínimo passou a ser 1 bonaro (isto é, não existia mais centavos, como 9 bonaros e meio).

Então, para reduzir os custos da produção de dinheiro, o governo resolveu produzir apenas notas de 3 e de 5.

Como podemos provar que ainda é possível pagar por qualquer produto?

Vamos provar por indução usando passo indutivo com incremento unitário e com incremento de 3.

Erros comuns em provas por indução

Um exemplo de uso indevido de indução

Teorema

Todas as pessoas nesta sala falam alemão.

Um exemplo de uso indevido de indução

Teorema

Todas as pessoas nesta sala falam alemão.

Qual o erro nessa demonstração?

7 | 1

Um exemplo de uso indevido de indução

Teorema

Todas as pessoas nesta sala falam alemão.

Qual o erro nessa demonstração?

Passo indutivo não respeita os limites do caso base. Neste exemplo:

- \blacksquare caso base: n=1
- \blacksquare passo indutivo: $n \ge 3$

Caso base falso ou não provado

Se esquecer de provar o caso base ou cometer algum erro na sua demonstração, provando assim um caso base falso, pode levar a conclusões absurdas.

Exemplo:

Para todo inteiro $n \ge 1$, temos que $n^2 + n$ é ímpar.

Princípio da Indução Completa

Princípio da Indução Completa

Por enquanto, provamos um caso base $P(n_0)$ e assumimos que existe $k \ge n_0$ tal que P(k), para então provar P(k+1).

No entanto, às vezes, uma propriedade P(n) depende não só de P(n-1), mas de casos com valores ainda menores.

Princípio da Indução Completa

Por enquanto, provamos um caso base $P(n_0)$ e assumimos que existe $k \ge n_0$ tal que P(k), para então provar P(k+1).

No entanto, às vezes, uma propriedade P(n) depende não só de P(n-1), mas de casos com valores ainda menores.

Por exemplo,

- Um algoritmo de ordenação pode dividir um vetor em dois subvetores, então uma prova de corretude envolveria algo como $P(n/2) \Rightarrow P(n)$
- Algumas fórmulas envolvem mais de um termo anterior (como a de Fibonacci), então prová-las pode envolver afirmações como $P(n-a) \land P(n-b) \Rightarrow P(n)$

Princípio da Indução Completa (PIC)

Hipótese de indução:

- \blacksquare em vez de P(k) para algum $k \ge n_0$
- \blacksquare usamos $P(n_0) \wedge P(n_0 + 1) \wedge ... \wedge P(k)$

Princípio da Indução Completa (PIC)

Hipótese de indução:

- \blacksquare em vez de P(k) para algum $k \ge n_0$
- \blacksquare usamos $P(n_0) \wedge P(n_0 + 1) \wedge ... \wedge P(k)$

Ou seja,

$$\exists k \in \mathbb{N}, (k \geq n_0 \land (\forall i \in \mathbb{N}, n_0 \leq i \leq k \Rightarrow P(i)))$$

Princípio da Indução Completa (PIC)

Hipótese de indução:

- \blacksquare em vez de P(k) para algum $k \ge n_0$
- \blacksquare usamos $P(n_0) \wedge P(n_0 + 1) \wedge ... \wedge P(k)$

Ou seja,

$$\exists k \in \mathbb{N}, (k \geq n_0 \land (\forall i \in \mathbb{N}, n_0 \leq i \leq k \Rightarrow P(i)))$$

Como no PIM, usamos a hipótese de indução para provar P(k+1)

Exemplo de prova por PIC

Definimos a sequência de Fibonacci da seguinte forma:

$$F_0 = 0 \land F_1 = 1 \land F_n = F_{n-1} + F_{n-2}$$
 para $n \ge 2$

Teorema

Defina $\phi=(1+\sqrt{5})/2$ e $\psi=(1-\sqrt{5})/2$. Então, para todo $n\in\mathbb{N}$,

$$F_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Como podemos provar esse teorema?

Exemplo de prova por PIC

Definimos a sequência de Fibonacci da seguinte forma:

$$F_0 = 0 \land F_1 = 1 \land F_n = F_{n-1} + F_{n-2}$$
 para $n \ge 2$

Teorema

Defina $\phi=(1+\sqrt{5})/2$ e $\psi=(1-\sqrt{5})/2$. Então, para todo $n\in\mathbb{N}$,

$$F_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Como podemos provar esse teorema?

Dica: verifique que $\phi^2 = 1 + \phi...$

Perguntas, observações, comentários?