

**3.3V CMOS 18-BIT BUFFER/
DRIVER WITH 3-STATE
OUTPUTS AND BUS-HOLD**

IDT74ALVCH16825

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical $t_{SR(o)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- $V_{CC} = 3.3V \pm 0.3V$, Normal Range
- $V_{CC} = 2.7V$ to $3.6V$, Extended Range
- $V_{CC} = 2.5V \pm 0.2V$
- CMOS power levels (0.4 μ W typ. static)
- Rail-to-Rail output swing for increased noise margin
- Available in SSOP, TSSOP, and TVSOP packages

DRIVE FEATURES:

- High Output Drivers: $\pm 24mA$
- Suitable for heavy loads

APPLICATIONS:

- 3.3V high speed systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

This 18-bit buffer/driver is built using advanced dual metal CMOS technology. The ALVCH16825 improves the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as two 9-bit buffers or one 18-bit buffer, and provides true data.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{OE1}$ or $\overline{OE2}$) input is high, all nine affected outputs are in the high-impedance state.

The ALVCH16825 has been designed with a $\pm 24mA$ output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The ALVCH16825 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

APRIL 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP
TOP VIEWABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TSTG	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current	-50 to +50	mA
I _{IK}	Continuous Clamp Current, V _i < 0 or V _i > V _{cc}	±50	mA
I _{OK}	Continuous Clamp Current, V _o < 0	-50	mA
I _{CC}	Continuous Current through each V _{cc} or GND	±100	mA
I _{SS}			

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{cc} terminals.
3. All terminals except V_{cc}.

CAPACITANCE (T_A = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	5	7	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	7	9	pF
C _{OUT}	I/O Port Capacitance	V _{IN} = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
\overline{xOE}_x	Output Enable Inputs (Active LOW)
xAx	Data Inputs ⁽¹⁾
xYx	3-State Outputs

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH 9-BIT SECTION)⁽¹⁾

Inputs			Output
\overline{xOE}_1	\overline{xOE}_2	xAx	xYx
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

NOTE:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V _{IH}	Input HIGH Voltage Level	V _{CC} = 2.3V to 2.7V		1.7	—	—	V
		V _{CC} = 2.7V to 3.6V		2	—	—	
V _{IL}	Input LOW Voltage Level	V _{CC} = 2.3V to 2.7V		—	—	0.7	V
		V _{CC} = 2.7V to 3.6V		—	—	0.8	
I _{IH}	Input HIGH Current	V _{CC} = 3.6V	V _I = V _{CC}	—	—	± 5	μA
I _{IL}	Input LOW Current	V _{CC} = 3.6V	V _I = GND	—	—	± 5	μA
I _{OZH}	High Impedance Output Current (3-State Output pins)	V _{CC} = 3.6V	V _O = V _{CC}	—	—	± 10	μA
			V _O = GND	—	—	± 10	
V _{IK}	Clamp Diode Voltage	V _{CC} = 2.3V, I _{IN} = -18mA		—	-0.7	-1.2	V
V _H	Input Hysteresis	V _{CC} = 3.3V		—	100	—	mV
I _{CCL} I _{CCH} I _{CZZ}	Quiescent Power Supply Current	V _{CC} = 3.6V V _{IN} = GND or V _{CC}		—	0.1	40	μA
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at V _{CC} - 0.6V, other inputs at V _{CC} or GND		—	—	750	μA

NOTE:

1. Typical values are at V_{CC} = 3.3V, $+25^\circ\text{C}$ ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I _{BHH}	Bus-Hold Input Sustain Current	V _{CC} = 3V	V _I = 2V	-75	—	—	μA
			V _I = 0.8V	75	—	—	
I _{BHH}	Bus-Hold Input Sustain Current	V _{CC} = 2.3V	V _I = 1.7V	-45	—	—	μA
			V _I = 0.7V	45	—	—	
I _{BHOO}	Bus-Hold Input Overdrive Current	V _{CC} = 3.6V	V _I = 0 to 3.6V	—	—	± 500	μA

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at V_{CC} = 3.3V, $+25^\circ\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	VCC = 2.3V to 3.6V	I _{OH} = - 0.1mA	VCC - 0.2	—	V
		VCC = 2.3V	I _{OH} = - 6mA	2	—	
		VCC = 2.3V	I _{OH} = - 12mA	1.7	—	
		VCC = 2.7V		2.2	—	
		VCC = 3V		2.4	—	
		VCC = 3V	I _{OH} = - 24mA	2	—	
VOL	Output LOW Voltage	VCC = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		VCC = 2.3V	I _{OL} = 6mA	—	0.4	
			I _{OL} = 12mA	—	0.7	
		VCC = 2.7V	I _{OL} = 12mA	—	0.4	
		VCC = 3V	I _{OL} = 24mA	—	0.55	

NOTE:

1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{CC} range. TA = - 40°C to + 85°C.

OPERATING CHARACTERISTICS, TA = 25°C

Symbol	Parameter	Test Conditions	VCC = 2.5V ± 0.2V	VCC = 3.3V ± 0.3V	Unit
			Typical	Typical	
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	16	18	pF
	Power Dissipation Capacitance Outputs disabled		4	6	

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	VCC = 2.5V ± 0.2V		VCC = 2.7V		VCC = 3.3V ± 0.3V		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay xAx to xYx	1	4.1	—	3.9	1	3.4	ns
t _{PHL}	xAx to xYx	—	—	—	—	—	—	—
t _{PZH}	Output Enable Time xOEx to xYx	1	6	—	5.7	1	4.7	ns
t _{PZL}	xOEx to xYx	—	—	—	—	—	—	—
t _{PHZ}	Output Disable Time xOEx to xYx	1.2	5.6	—	4.9	1.3	4.5	ns
t _{PZL}	xOEx to xYx	—	—	—	—	—	—	—
t _{SK(O)}	Output Skew ⁽²⁾	—	—	—	—	—	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = - 40°C to + 85°C.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 1.0\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_r \leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 1.0\text{MHz}$; $t_f \leq 2\text{ns}$; $t_r \leq 2\text{ns}$.

SWITCH POSITION

Test	Switch
Open Drain	
Disable Low	V_{LOAD}
Enable Low	
Disable High	GND
Enable High	
All Other Tests	Open

Output Skew - $t_{SK}(x)$

NOTES:

1. For $t_{SK}(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $t_{SK}(b)$ OUTPUT1 and OUTPUT2 are in the same bank.

Propagation Delay

Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

IDT	XX	ALVC	X	XXX	XXX	XX
Temp. Range	Bus-Hold			Family	Device Type	Package
						PV
						PA
						PF
					825	18-Bit Buffer/Driver with 3-State Outputs
					16	Double-Density, $\pm 24\text{mA}$
					H	Bus-Hold
					74	-40°C to $+85^\circ\text{C}$

CORPORATE HEADQUARTERS
 2975 Stender Way
 Santa Clara, CA 95054

for SALES:
 800-345-7015 or 408-727-6116
 fax: 408-492-8674
www.idt.com

for Tech Support:
logichelp@idt.com
 (408) 654-6459