Chapter 1

Analysis

1.1 Introduction

1.1.1 Client Identification

My client is Josh Campbell, he is 24 years old. He uses computers regularly for deisgn work, so has experience of computer systems. He uses his computer to design flyers, handouts, banners and visual graphics for projection, as well as surfing the web, email and various social media networks. He rarely uses hard copies other than to preview hes work before sending it off to print. Josh uses a 2012 Mac Pro with the latest version of Apple's operating system, OS X (10.9).

Josh is the head of the media department for Cambridge Community Church. This involves being responsible for the large amount of Audio and Visual equipment used on the churches Sunday services. This currently invloves spreadsheet with limited info on each item.

Josh would like to have a database management system to be able to hold information about each item and their various attributes. He would like this database to be lovated on the churches central server so that it can be accessed by all staff if it it deemed necessary. He would use this database to store location, value and insurance details incase of damage or theft.he would like all of the information kept as a virtual copy as well as a hard copy to kept as a visual backup in case of harddrive failure or corruption. He would also like to keep the location of each item as up to date as possible and if the location changes, he would like to be notified by email when it is entered/updated in the system.

1.1.2 Define the current system

The current system consists of multiple excel spreed sheets. There is one spread sheet for each of three locations; main office, main church building, and storage. Each spreedsheet consists of items located there as well as information on the value of each item, the quantity and the total value for the items with multiple entries. Each spreedsheet is divided up into equipment type (i.e Cableing, lighting, audio, visual/camera's)

1.1.3 Describe the problems

There are a number of problems with the current system. One of the problems is that there is no notification system to tell you when information is getting outdated or something is changed. For example, if an item is bought or sold, the total costings for that item will be updated and no-one will be notified. Another problem is that the current system doesn't show the PAT testings for all the items, these tests go out of date every 6 months and there is no way of being notified when a new PAT test is needed on an item.

1.1.4 Section appendix

Figure 1.1: Interview Questions (pg 1)

Interview Questions

- 1. What does the current system do?
 - o Multiple excel spreadsheets that list all the AV equipment
- 2. What are the problems or drawbacks of the current system?
 - o There is no notification system
 - o Data is easily out of date.
- 3. How much data is currently recorded?
 - o Current data stored is the item name, its location, the quantity and it's value.
- 4. What extra data will need to be included?
 - o PAT testing's
 - o Current location
 - $\circ~$ The item's usable state (working, in need of repair, being repaired etc)
- 5. How frequently will the data need to be updated?
 - The data will need to be updated a few times a month or so
 - Whenever the location changes
- 6. Will new records need to be added or deleted? If so, how often?
 - New records will need to be entered, or some deleted every couple of months.
 - Whenever new equipment is bought or if an item is sold
- 7. How important is the data or information that is to be recorded?
 - Data is of high importance as it will be kept as a record for insurance in case of theft or damage
- 8. Are there any algorithms that are going to need to be implemented?
 - The number of a single item there is at a particular location
 - o The total number of that item altogether
 - The sum of the values those individual items (value per unit * quantity)
- 9. When are the algorithms going to be run?
 - These will need to be run when there are new items added/removed to a group

Figure 1.2: Interview Questions (pg 2)

- of the same item
- o If the value of an item changes
- 10. What inputs are required for the proposed system?
 - o Inputs are likely to be text, numbers and currency
- 11. What outputs are required for the proposed system?
 - o Outputs are likely to be the same as the inputs
 - o Notifications of when PAT tests are in need or reissue
 - o Notifications when an items location or quantity is changed
 - o A print function would be necessary
- 12. Are hard copies required?
 - o Yes, hard copies would be required a visual backup.
- 13. Are back dated records required?
 - Yes, for insurance purposes
- 14. How long are these records going to be kept?
 - We will keep back dated records for a year
- 15. How are these records going to be stored?
 - We will store them electronically on the file server
- 16. How often will outputs be required?
 - Outputs will be required whenever possible
- 17. What computing resources do you currently possess to aid the new system's operation?
 - We currently have a Mac Pro that we use as a file server. This is where the database system will be placed.
- 18. Is security an issue?
 - No, security is not an issue, although the data would need to be backed up.
- 19. Should there be restricted access to certain areas?
 - No, restricted access is not needed.

Figure 1.3: Interview Questions (pg 3)

- 20. What errors and exceptions will need to be reported in the new system?
 - $\circ~$ I'm not 100% until we start testing the system.
- 21. How should these errors and exceptions be reported?
 - Errors should be reported to you either via email or another notification method.
- 22. Are there any constraints on hardware, software, data, cost or time?
 - No budget, time deadline is flexible and we'll adapt to whatever software/hardware resource available.

1.2 Investigation

1.2.1 The current system

Data sources and destinations

In the current system, there are multiple data sources. The client and his colleagues as well as members of the AV crew for the church can enter data into the spreadsheet by using a computer in the office and accessing the on the server.

Algorithms

In the current system, there are only a few algorithms in place.

Algorithm 1, When new item is bought:

```
IF Item = NewItem DO

Enter Item into Spreadsheet

ELIF Item = ItemMatch Do

Update Item Quantity
```

Algorithm 2, When an item is sold or replaced:

```
IF Item = Sold OR Item = Damaged or Item = Stolen DO
    Update Quantity
    IF Item = Stolen OR Item = Damaged DO
        Claim Insurance
```

Data flow diagram (part 1)

Figure 1.4: Flow Diagram Key.

Figure 1.5: Entering a new item.

Data flow diagram (part 2)

Figure 1.6: Flow Diagram Key.

Input	Forms,	Output	Forms.	Report	Formats

1.2.2 The proposed system

Data sources and destinations

Data flow diagram

Data dictionary

Volumetrics

1.3 Objectives

- 1.3.1 General Objectives
- 1.3.2 Specific Objectives
- 1.3.3 Core Objectives
- 1.3.4 Other Objectives

1.4 ER Diagrams and Descriptions

- 1.4.1 ER Diagram
- 1.4.2 Entity Descriptions
- 1.5 Object Analysis
- 1.5.1 Object Listing
- 1.5.2 Relationship diagrams
- 1.5.3 Class definitions

1.6 Other Abstractions and Graphs

1.7 Constraints

- 1.7.1 Hardware
- **1.7.2** Software 9
- 1.7.3 Time
- 1.7.4 User Knowledge
- 1.7.5 Access restrictions