Some details on the Delta mehod to obtain standard errors and covariances of item parameters

David Magis

April 7th, 2013

This note provides a complementary information to the help files of the functions itemPar2PL(), itemPar3PL() and itemPar3PLconst() from the R package difR.

1 IRT models

The basic IRT model under consideration is the three-parameter logistic (3PL) model:

$$Pr(X_i = 1|\theta) = c_i + \frac{1 - c_i}{1 + \exp\{-[a_i(\theta - b_i)]\}},$$
(1)

where X_i is the binary response to item i (coded as zero for an incorrect response and one as a correct response), θ is the ability level, and a_i , b_i and c_i are respectively the discrimination, difficulty and pseudo-guessing parameters of the item i.

The function itemPar3PL() aims at calibrating the 3PL model (1) and providing estimates of the item parameters, related standard errors, and covariances between item parameters. The function tpm() of the R package ltm is used.

The function itemPar3PLconst() fits the 3PL model (1) but by constraining the pseudo-guessing parameters c_i to pre-specified values. In other words, in the constrained 3PL model only the a_i and b_i parameters are estimated.

Finally, the itemPar2PL() function fits the two-parameter logistic model, derived from (1) by fixing all c_i parameters to zero:

$$Pr(X_i = 1|\theta) = \frac{1}{1 + \exp\{-[a_i(\theta - b_i)]\}} = \frac{\exp\{a_i(\theta - b_i)\}}{1 + \exp\{a_i(\theta - b_i)\}}.$$
 (2)

The calibration is performed through the ltm() function of the eponym package.

2 Linear parametrization

Although models (1) and (2) are written in their IRT form, the R package 1tm fits actually the linear parametrized versions of those models, that is:

$$Pr(X_i = 1|\theta) = \gamma_i + \frac{1 - \gamma_i}{1 + \exp\left\{-\left[\beta_i + \alpha_i \theta\right]\right\}}$$
(3)

and

$$Pr(X_i = 1|\theta) = \frac{\exp\{\beta_i + \alpha_i \theta\}}{1 + \exp\{\beta_i + \alpha_i \theta\}}.$$
 (4)

Consequently, 1tm returns estimate of model parameters α_i , β_i and γ_i , as well as related covariance matrix from which the standard errors can be extracted.

Of interest is to obtain similar values for the IRT parameters a_i , b_i and c_i . It is straightforward to notice the relationships between the model parameters in (3) and (4) and their IRT counterparts in (1) and (2):

$$\begin{cases}
 a_i = \alpha_i \\
 b_i = -\beta_i/\alpha_i \\
 c_i = \gamma_i.
\end{cases}$$
(5)

3 Delta method

The derivation of standard errors and covariances between item parameters a_i , b_i and c_i is performed through the Delta method. The general principle is described hereafter. Specific formulas for the present framework are derived in the next section.

Set p as the number of parameters per item and let $(B_{i1}, ..., B_{ip})$ be these parameters for item i. For ease of notation, the subscript i will be removed from this section. From the estimation routine, both item parameter estimates and the related covariance matrix can be computed. For any set of parameters B_j and B_k (j, k = 1, ..., p), set $\Sigma_j = Var(B_j)$ and $\Sigma_{jk} = Cov(B_j, B_k)$.

Now, assume that the item parameters $(B_1, ..., B_p)$ are transformed onto a new set of parameters $(C_1, ..., C_p)$ by means of some well-defined functions h_j :

$$C_j = h_j(B_1, ..., B_p), j = 1, ..., p.$$
 (6)

Getting parameter estimates for $(C_1, ..., C_p)$ are directly obtained by applying the corresponding transformations $(h_1, ..., h_p)$ to the "original" parameters $(B_1, ..., B_p)$, while the elements of the covariance matrix can be obtained by the Delta method. The full calculations are not reported here, but below are the operating functions to obtain the

variances of the parameters C_j and the covariances between C_j and C_k :

$$Var(C_j) = \sum_{t=1}^{p} \left(\frac{\partial h_j}{\partial B_t}\right)^2 \Sigma_t + \sum_{t=1}^{p} \sum_{s \neq t} \left(\frac{\partial h_j}{\partial B_t}\right) \left(\frac{\partial h_j}{\partial B_s}\right) \Sigma_{ts}$$
 (7)

and

$$Cov(C_j, C_k) = \sum_{t=1}^{p} \left(\frac{\partial h_j}{\partial B_t}\right) \left(\frac{\partial h_k}{\partial B_t}\right) \Sigma_t + \sum_{t=1}^{p} \sum_{s \neq t} \left(\frac{\partial h_j}{\partial B_t}\right) \left(\frac{\partial h_k}{\partial B_s}\right) \Sigma_{ts}, \quad (8)$$

where $h_j = h_j(B_1, ..., B_p)$

4 Application to IRT models

As explained earlier, the item parameters α_i , β_i and γ_i of the linear parametrization, and the related covariance matrix are obtained by the estimation routines of the ltm package. The IRT parameters a_i , b_i and c_i are defined as follows:

$$\begin{cases}
b_i = h_1(\beta_i, \alpha_i, \gamma_i) = -\beta_i/\alpha_i \\
a_i = h_2(\beta_i, \alpha_i, \gamma_i) = \alpha_i \\
c_i = h_3(\beta_i, \alpha_i, \gamma_i) = \gamma_i.
\end{cases}$$
(9)

It comes then

$$\frac{\partial h_1}{\partial \alpha_i} = \frac{\beta_i}{\alpha_i^2}, \quad \frac{\partial h_2}{\partial \alpha_i} = 1, \quad \frac{\partial h_3}{\partial \alpha_i} = 0,
\frac{\partial h_1}{\partial \beta_i} = \frac{-1}{\alpha_i}, \quad \frac{\partial h_2}{\partial \beta_i} = 0, \quad \frac{\partial h_3}{\partial \beta_i} = 0,
\frac{\partial h_1}{\partial \gamma_i} = 0, \quad \frac{\partial h_2}{\partial \gamma_i} = 0, \quad \frac{\partial h_3}{\partial \gamma_i} = 1.$$
(10)

Defining eventually

$$\Sigma_{i,1} = Var(\beta_i), \quad \Sigma_{i,2} = Var(\alpha_i), \quad \Sigma_{i,3} = Var(\gamma_i),$$
 (11)

and

$$\Sigma_{i,12} = Cov(\alpha_i, \beta_i), \quad \Sigma_{i,13} = Cov(\alpha_i, \gamma_i), \quad \Sigma_{i,23} = Cov(\beta_i, \gamma_i),$$
 (12)

it comes that the formulas (7) and (8) can be written in this context as follows:

$$\begin{cases} Var(a_{i}) = Var[h_{2}(\beta_{i}, \alpha_{i}, \gamma_{i})] = \Sigma_{i,2} \\ Var(b_{i}) = Var[h_{1}(\beta_{i}, \alpha_{i}, \gamma_{i})] = \frac{\Sigma_{i,1}}{\alpha_{i}^{2}} + \frac{\beta_{i}^{2} \Sigma_{i,2}}{\alpha_{i}^{4}} - \frac{2\beta_{i} \Sigma_{i,12}}{\alpha_{i}^{3}} \\ Var(c_{i}) = Var[h_{3}(\beta_{i}, \alpha_{i}, \gamma_{i})] = \Sigma_{i,3} \end{cases}$$
(13)

and

$$\begin{cases}
Cov(a_i, b_i) = \frac{\beta_i \Sigma_{i,2}}{\alpha_i^2} - \frac{\Sigma_{i,12}}{\alpha_i} \\
Cov(a_i, c_i) = \Sigma_{i,23} \\
Cov(b_i, c_i) = \frac{\beta_i \Sigma_{i,13}}{\alpha_i^2} - \frac{\Sigma_{i,13}}{\alpha_i}.
\end{cases}$$
(14)

Consequently, the standard errors of the item parameters a_i , b_i and c_i are computed as the square roots of the formulas (13), and the covariances are computed directly from (14). Incase of the constrained 3PL model or the 2PL model, all output information regarding the c_i parameters are discarded but the formulas for parameters a_i and b_i are left unchanged.