

Slowing the Spread of Anti- Flu Shot Sentiment on Twitter

Marcus DeMaster, Shih Yu Chang, Allan Lo

James Chase @jason_prosser · Jan 18

More out of curiosity, I hear people say that the flu shot makes them sick. My son & I both get the shot. We've been lucky, no flu yet.

Marni Hughes @marnihughesQ13

Health department isn't telling us yet @jason_prosser But my son and I are recovering from the flu this week and we both got the shot.

17

Yuliii @yuli_barriosx3 · Jan 18

43

f#minor @wesleywyndam · Jan 13

I hate that getting a flu shot makes you sick

Experiment Question:

Does the CDC's flu shot page slow the spread of misconceptions on Twitter?

Designing the Administrator

- Friendly Avatar
- Healthy Living Enthusiast
- Non-bot Appearance
 - Unrelated tweets
 - Purchased followers

Issues with Initial Experiment Design

- Required Automation
 - NLP Classifier
 - Auto-replies
- Challenges
 - NLP package accuracy
 - Twitter spam blocker
 - US Flu season ending

Final Experiment Design: ROXO

Collected Data

											_							,	_
User_ID	User_Scre(Use	er_StatuU	lser_Follo	Jser_Frier	User_Liste	User_Timezone	Tweet_ID	Tweet_Te	Tweet_Retweet_Count	Tweet_Favorite_Count	Tweet_0	Cre Assign_Ind	As	sign_Da	r Reply	Retweet_Outcome	Favorite_Outcon	Sex	Tweets_
7.39E+17	OuttaTime	108	3621	3705	34		8.49E+17	Yeah, so, i	n (1 ######	#	1 4	/3/201					0.3776
2.59E+09	miggiato	7982	1715	637	19		8.49E+17	'After bein	{		3 ######	#	0 4	/3/201	Here is some us	(1 0.1338
7.66E+17	CaptainNe	23700	1575	1502	17	Midway Island	8.49E+17	"Safe			0 ######	#	1 4	/3/201			0 (1 0.0754
7.61E+08	Brian Halte	2337	838	1677	11	Pacific Time (US & Canada)	8.49E+17	You Don't			0 ######	#	0 4	/3/201	Here is some us		0 (0.1516
4.22E+08	carykayler	34285	779	323	3	Central Time (US & Canada)	8.49E+17	Some are	1		0 ######	#	0 4	/3/201	Here is some us	ĺ	0 (0.0327

EDA (I)

EDA (II)

- Collected variables with numerical values have two characteristics:
 - right-skewed
 - outliers are far away from majority of data.
- Among variables User-Statuses-Count, User-Followers-Count, User-Friends-
- Count, User-Listed-Count, User-Followers-Count has most significant linear relationship with respect to Favorite-Outcome variable.
- By comparing data before and after experiments, Favorite-Outcome variable has much better trend with Tweet-Favorite-Count variable compared to Retweet-outcome and Tweet-Retweet-Count variable.

General ATE

Histogram of Flu_Data\$TE_Favorite

- The individual treatment effect for each subject by favorite number
- For population treated with links
 - ATE = 0.53 (Retweet)
 - ATE = 0.29 (Favorite)
- Random assignment ATE for CDC treated links
 - ATE = 0 (Retweet)
 - ATE = 0.47 (Favorite)
- If we apply t-test, such difference is not statistically significant at the 0.05 level for Retweet measure, same for Favorite measure.

Location Effect: U.S. v.s. Non-U.S.

- For CDC treatment:
 - ATE = 2.30 at U.S.
 - ATE = 0.85 at Non-U.S.
- We have to note that ATE value calculated from pool 0.6716826 different from ATE value obtained from combined one 0.6576287.
- This is a biased estimate because the probability of being assigned to the treatment group varies by block (area): in US this probability is 17 / 45 = 37 . 8%, while in Non-US the probability of being assigned to the treatment group is 26 / 49 = 53 . 1%.
- Besides, the number of Favorites is lower on average in Non-US, so the overall treatment effect calculated this way is larger than it actually is.
- Therefore, if outcomes were higher in the treatment group, it might reflect differences between US and Non-US rather than a treatment effect.

CACE Effect

Treat. Ass.	Treated	No.#	Response
Baseline	NO	20	35%
Treatment	Yes	33	52%
Treatment	NO	10	34%
Placebo	Yes	40	33%
Placebo	No	11	36%

- Assume 80% of targets really get treated.
- For treatment and placebo groups, their compliance rate are not statistically different each other with p-value = 0.85 with t-test.
- The difference in the Never-Takers response rate between the treatment and placebo groups is not statistically significant since p = 0.77.
- CACE
 - 0.15 for receiving weblinks.
 - 0.19 among compilers.

Retweet v.s. Favorite

- Retweet_Outcome ~ Assign_Ind + Tweet_Retweet_Count +
 Tweet_favorite_Count (CDC = -1.0, p-value =0.4, negative effect with
 weaker statistical significance)
- Favorite_Outcome ~ Assign_Ind + Tweet_Retweet_Count +
 Tweet_favorite_Count (CDC = 0.3, p-value = 0.1, positive effect with
 stronger statistical significance)
- Favorite_Outcome ~ Assign_Ind*Sex + Tweet_Retweet_Count + Tweet_Favorite_Count
 - the estimated effect of CDC is 0.4027 with p-value 0.1.
 - CDC has stronger causal effect for MALE.

Gibbs Sampling for Missing New Tweets (I)

- During our experimental procedure, however, it is not easy to collect such data due to time constraints or other natural restrictions.
- The basic idea is that we first collect other available variable, the tweets positive rate (ALL) generated by a subject from his/her ALL previous Tweets averaged by days.
- The positive rate of new Tweets with flu shot topic is determined by linear model and tweets positive rate (ALL).

Gibbs Sampling for Missing New Tweets (II)

• We assume we have paired data. We wish to find the posterior distributions of the coefficients \beta 0 (the intercept), \beta 1 (the gradient) and of the precision \tau, which is the reciprocal of the variance.

$$y_i \sim \mathcal{N}(eta_0 + eta_1 x_i, 1/ au)$$

- The massive advantage of Gibbs sampling over other MCMC methods is that no tuning parameters are required!
 - 1. Pick some initial $\theta_2^{(i)}$.
 - 2. Sample $heta_1^{(i+1)}\sim p(heta_1| heta_2^{(i)},x)$ 3. Sample $heta_2^{(i+1)}\sim p(heta_2| heta_1^{(i+1)},x)$

The estimated effect of CDC is -1.0 with p-value 0.38.

Future Improvements

- Reply-bot circumventing Twitter spam rules
- Test different value engagement strategies
 - Authority
 - Objectivity
 - **□** Empathy
- Other public health outreach topics?
 - ☐ Childhood Immunizations
 - Antibiotics Use
 - Epidemics (Zika, Ebola, HIV, Malaria)

User	Tweets with Flu Shot	Control/Treatme nt	Read CDC/ No Read CDC	Increased Retweets number (outcome)	New tweets about flu shot after treatment (outcome)
api.search screen_name, user.name	api.search, tweets can do sentimental analysis	Group assignment for collected users.	Compliance or Non Compliance indicator	api.get_status	api.user_timeline