TABLE I: Comparison of different quantization methods. $\hat{w} \approx \hat{w}_q$

Method	w	\hat{w}	\hat{w}_q	Parameter of quantizer	layer-wise
DoReFa	$w \in \mathbb{R}$	$\hat{w} = \frac{\tanh(w)}{\max(\tanh(w))} \in [-1, 1]$	$\hat{w}_q = \lfloor \frac{(\hat{w} + \beta)}{\alpha} \rceil \alpha - \beta$	$\alpha = \frac{2}{2^k - 1}; \beta = 1$	
			$q_{\hat{w}} \in [0,\cdots,2^k-1]$		
WRPN	$w\in\mathbb{R}$	$\hat{w} = w$	$\hat{w}_q = \lfloor \operatorname{clip}(\frac{\hat{w}}{\alpha}, -2^{k-1} - 1, 2^{k-1} - 1) \rceil \alpha$	$\alpha = \frac{1}{2^{k-1}-1}$	
		$\hat{w} \in \mathbb{R}$	$q_{\hat{w}} \in [-(2^{k-1}-1), \dots, 0, \dots, 2^{k-1}-1]$		
		$\int 0, \qquad \text{if } w < c - d$			
QIL	$w \in \mathbb{R}$	$\hat{w} = \begin{cases} 0, & \text{if } w < c - a \\ \text{sign}(w), & \text{if } w > c + d \\ (\frac{d}{2} w + \frac{d - c}{2d})^{\gamma} \cdot \text{sign}(w), & \text{otherwise} \\ \hat{w} \in [-1, 1] \end{cases}$	$\hat{w}_q = \lfloor \frac{\hat{w}}{\alpha} \rceil \alpha$	$\alpha = \frac{1}{2^{k-1}-1}; \ \gamma; c; d;$	
		$\left(\frac{d}{2} w + \frac{d-c}{2d}\right)^{\gamma} \cdot \text{sign}(w)$, otherwise		2 1	
		$\hat{w} \in [-1, 1]$	1 1 2 2 1		
LSQ	$w \in \mathbb{R}$	$\hat{w} = w$	$\hat{w}_q = \lfloor \text{clip}(\frac{\hat{w}}{\alpha}, -2^{k-1}, 2^{k-1} - 1) \rceil \alpha q_{\hat{w}} \in [-2^{k-1}, \dots, 0, \dots, 2^{k-1} - 1]$	α	
		$\hat{w} \in \mathbb{R}$	$q_{\hat{w}} \in [-2^{k-1}, \dots, 0, \dots, 2^{k-1} - 1]$		