

What Matters for 3D Scene Flow Network

Guangming Wang¹, Yunzhe Hu¹, Zhe Liu¹, Yiyang Zhou², Masayoshi Tomizuka², Wei Zhan², and Hesheng Wang¹

¹Shanghai Jiao Tong University

²University of California, Berkeley

Task

To predict 3D scene flow (point-wise displacement vectors) from two consecutive frames of point clouds.

Preliminary

- Su et al. [1] proposed Pyramid, Warping, and Cost volume (PWC) structure in the optical flow network to refine the optical flow through a coarse-to-fine approach. Wu et al. [2] introduced the PWC structure to 3D scene flow estimation.
- ➤ Wang et al. [3] developed the attentive cost volume between two frames of point clouds to estimate 3D scene flow.

Motivation

- ➤ Previous flow-embedding based methods tend to miss correct yet distant matching point due to limited search range of KNN.
- The estimated correspondence may not conform to the bidirectional consistency.
- The performance gain of designed components and techniques from recent related works are unclear for a PWC-based scene flow network.

Contribution

- A novel all-to-all flow embedding module with backward reliability validation is proposed for reliable correlation between point clouds. The all-to-all mechanism is adopted to capture reliable match candidates from the distance, and backward information is integrated in the inference process to validate the matching consistency.
- ➤ Different designs and techniques of 3D scene flow network are widely compared and analyzed. Point Similarity Calculation, Designs of Scene Flow Predictor, Input Elements of Scene Flow Predictor, and Flow Refinement Level Design are individually discussed and evaluated to showcase what matters in 3D scene flow network.
- Experiments demonstrate that our model achieves state-of-the-art performance, reducing EPE3D metric by at least 38.2% on FlyingThings3D dataset and 24.7% on KITTI Scene Flow dataset.

3DFlow-Net

> 3D Scene Flow Network

➤ All-to-all flow embedding with backward validation

> Flow refinement module

Results

> Results on datasets without occlusion

Evaluation Dataset	Method	Training Data	Input	Sup.	EPE3D	Acc3D Strict	Acc3D Relax	Outliers3D	EPE2D	Acc2I
	FlowNet3 [10]	Quarter	RGB stereo	Full	0.4570	0.4179	0.6168	0.6050	5.1348	0.812
	ICP [1]	No	Points	Full	0.4062	0.1614	0.3038	0.8796	23.2280	0.291
	FlowNet3D [19]	Quarter	Points	Full	0.1136	0.4125	0.7706	0.6016	5.9740	0.569
	SPLATFlowNet [31]	Quarter	Points	Full	0.1205	0.4197	0.7180	0.6187	6.9759	0.551
	HPLFlowNet [4]	Quarter	Points	Full	0.0804	0.6144	0.8555	0.4287	4.6723	0.676
FlyingThings 3D dataset [23]	HPLFlowNet [4]	Complete	Points	Full	0.0696		_		_	_
	PointPWC-Net [50]	Complete	Points	Full	0.0588	0.7379	0.9276	0.3424	3.2390	0.799
	HALFlow [44]	Quarter	Points	Full	0.0511	0.7808	0.9437	0.3093	2.8739	0.805
	HALFlow [44]	Complete	Points	Full	0.0492	0.7850	0.9468	0.3083	2.7555	0.81
	FLOT [28]	Complete	Points	Full	0.0520	0.7320	0.9270	0.3570	_	_
	HCRF-Flow [17]	Quarter	Points	Full	0.0488	0.8337	0.9507	0.2614	2.5652	0.870
	PV-RAFT [49]	Complete	Points	Full	0.0461	0.8169	0.9574	0.2924	_	_
	FlowStep3D [16]	Complete	Points	Full	0.0455	0.8162	0.9614	0.2165	_	_
	Ours	Quarter	Points	Full	0.0317	0.9109	0.9757	0.1673	1.7436	0.910
	Ours	Complete	Points	Full	0.0281	0.9290	0.9817	0.1458	1.5229	0.927
	FlowNet3 [10]	Quarter	RGB stereo	Full	0.9111	0.2039	0.3587	0.7463	5.1023	0.780
	ICP [1]	No	Points	Full	0.5181	0.0669	0.1667	0.8712	27.6752	0.105
	FlowNet3D [19]	Quarter	Points	Full	0.1767	0.3738	0.6677	0.5271	7.2141	0.509
	SPLATFlowNet [31]	Quarter	Points	Full	0.1988	0.2174	0.5391	0.6575	8.2306	0.418
	HPLFlowNet [4]	Quarter	Points	Full	0.1169	0.4783	0.7776	0.4103	4.8055	0.593
VITTI	HPLFlowNet [4]	Complete	Points	Full	0.1113	_	_	_	_	
KITTI	PointPWC-Net [50]	Complete	Points	Full	0.0694	0.7281	0.8884	0.2648	3.0062	0.767
dataset [25]	HALFlow [44]	Quarter	Points	Full	0.0692	0.7532	0.8943	0.2529	2.8660	0.781
	HALFlow [44]	Complete	Points	Full	0.0622	0.7649	0.9026	0.2492	2.5140	0.812
	FLOT [28]	Complete	Points	Full	0.0560	0.7550	0.9080	0.2420	_	_
	HCRF-Flow [17]	Quarter	Points	Full	0.0531	0.8631	0.9444	0.1797	2.0700	0.865
	PV-RAFT [49]	Complete	Points	Full	0.0560	0.8226	0.9372	0.2163		
	FlowStep3D [16]	Complete	Points	Full	0.0546	0.8051	0.9254	0.1492	_	
	Ours	Quarter	Points	Full	0.0332	0.8931	0.9528	0.1690	1.2186	0.937
	Ours	Complete	Points	Full	0.0309	0.9047	0.9580	0.1612	1.1285	0.945

> Results on datasets with occlusion

Evaluation Dataset	Method	Input	Sup.	EPE3D	Acc3D Strict	Acc3D Relax	Outliers
	FlowNet3D [19]	Points	Full	0.169	0.254	0.579	0.789
FlyingThings 3D	FLOT [28]	Points	Full	0.156	0.343	0.643	0.700
dataset [23]	FESTA [47]	Points	Full	0.111	0.431	0.744	_
	Ours	Points	Full	0.063	0.791	0.909	0.279
	Self-Point-Flow [18]	Points	Self	0.105	0.417	0.725	0.501
LITTI	FlowNet3D [19]	Points	Full	0.173	0.276	0.609	0.649
KITTI	FLOT [28]	Points	Full	0.110	0.419	0.721	0.486
dataset [25]	FESTA [47]	Points	Full	0.097	0.449	0.833	_
	Ours	Points	Full	0.073	0.819	0.890	0.261

➤ Ablation study on FT3D dataset

	Method	EPE3D	Acc3D Strict	Acc3D Relax	Outliers	EPE2D	Acc2D
(a)	Ours w/o backward validation	0.0332	0.9044	0.9743	0.1766	1.8221	0.9065
	Ours w/o backward validation and all-to-all mechanism	0.0349	0.9001	0.9725	0.1798	1.9819	0.9032
	Ours (full, with backward validation and all-to-all mechanism)	0.0317	0.9109	0.9757	0.1673	1.7436	0.9108
(b)	Ours (with product similarity)	0.0356	0.8872	0.9692	0.1953	1.9872	0.8870
	Ours (with cosine product similarity)	0.0370	0.8755	0.9670	0.2142	2.0637	0.8746
	Ours (with normalized product similarity)	0.0339	0.8971	0.9724	0.1845	1.8790	0.8965
	Ours (full, with concatenated similarity)	0.0317	0.9109	0.9757	0.1673	1.7436	0.9108
(c)	Ours (replace Scene Flow Predictor with GRU)	0.0350	0.8892	0.9668	0.1827	1.9274	0.8896
	Ours (full, with Scene Flow Predictor)	0.0317	0.9109	0.9757	0.1673	1.7436	0.9108
(d)	Ours w/o features of PC_1 in Scene Flow Predictor	0.0333	0.9047	0.9743	0.1740	1.8428	0.9073
	Ours w/o up-sampled flow embedding in Scene Flow Predictor	0.0380	0.8732	0.9642	0.2099	2.0953	0.8785
	Ours w/o coarse flow in Scene Flow Predictor	0.0323	0.9076	0.9750	0.1717	1.7760	0.9083
	Ours w/o flow feature in Scene Flow Predictor	0.0327	0.9061	0.9748	0.1740	1.8063	0.9074
	Ours (full, with complete five inputs in Scene Flow Predictor)	0.0317	0.9109	0.9757	0.1673	1.7436	0.9108
(e)	Ours (with interpolation estimating 2048 points' flow)	0.0359	0.8844	0.9691	0.2004	1.9511	0.8911
	Ours (with interpolation estimating 8192 points' flow)	0.0332	0.9043	0.9739	0.1740	1.8039	0.9076
	Ours (full, with flow refinement estimating 2048 points' flow)	0.0317	0.9109	0.9757	0.1673	1.7436	0.9108

Visualization

[1] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 8934–8943, 2018.

[2] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin. In European conference on computer vision (ECCV), pages 88-107, 2020.

[3] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang. Hierarchical attention learning of scene flow in 3d point clouds. In IEEE Transactions on Image Processing, 2021, doi: 10.1109/TIP.2021.3079796.