Introduction to the Theory of Computation: Hints

Lwins_Lights

Contents

1	Chapter 1: Regular Languages	2
2	Chapter 2: Context-Free Languages	9

1 Chapter 1: Regular Languages

- *1.45 Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = A. Consider $\{q \in Q \mid \exists x \in B, \ \delta(q, x) \in F\}$.
- *1.56 Let $A = \{2^n \mid n \in \mathbb{N}\}$. You may need to do a bit of algebra or number theory.
- *1.57 Let M be a DFA such that L(M)=A. Utilizing M, design an NFA which accepts $A_{\frac{1}{2}-}$ by guessing something.
- *1.58 Let $A = a^* \# b^*$.
- *1.59 Let Q' stands for some subset of Q. Try to design a method that finds a relatively short string w such that $|\delta(Q', w)| < |Q'|$, where $\delta(Q', w) = \{\delta(q, w) \mid q \in Q'\}$.
- *1.63 For part a, use the pumping lemma.
- *1.65 Consider $B_{n+2} = \Sigma^* 10^n$.
- *1.67 For part b, let M be a DFA such that L(M) = A. Utilizing M, design an NFA which accepts RC(A) by guessing something.
- $^{\star}1.68$ Solve problem 1.67 first.

2 Chapter 2: Context-Free Languages

- *2.19 $Y \to (\mathtt{a} \cup \mathtt{b})^*$ and $S \to \mathtt{a}^n(\mathtt{b}Y \cup Y\mathtt{a})\mathtt{b}^n$ where $n \in \mathbb{N}$.
- *2.21 Define $\chi: \Sigma^* \to \mathbb{Z}$ by $\chi(x) = n_{\mathsf{a}}(x) 2n_{\mathsf{b}}(x)$, where $n_{\mathsf{a}}(x)$ counts the number of as in x. Suppose $x = x_1 x_2 \dots x_m$ with $x_i \in \Sigma$. What will happen to $x_l x_{l+1} \cdots x_r$ if $\chi(x_1 x_2 \cdots x_r) = \chi(x_1 x_2 \cdots x_{l-1})$?
- *2.22 $C = \{x \# y \mid |x| \neq |y|\} \cup \bigcup_{i \in \mathbb{Z}^+} \{x \# y \mid |x| = |y| \text{ and } x_i \neq y_i\}$, where x_i is denoted as the *i*-th character of x.
- $^{\star}2.23$ Solve problem 2.22 first.
- *2.24 $E = \{ \mathbf{a}^i \mathbf{b}^j \mid j < i \} \cup \{ \mathbf{a}^i \mathbf{b}^j \mid i < j < 2i \} \cup \{ \mathbf{a}^i \mathbf{b}^j \mid j > 2i \}.$
- *2.27 For part b, try to let every else correspond to the nearest if, like what C/C++ grammar specifies.
- *2.28 Solve problem 2.21 first.
- *2.29 Use the pumping lemma.
- *2.33 Use the pumping lemma on $a^{(p+1)^2}b^{p+1}$.
- *2.37 R's appearing twice gives us the pumping lemma for CFL. What if it appears thrice?
- $^{\star}2.40$ Use the pumping lemma.