$$\Xi$$
(1820) 3/2 $^-$

$$I(J^P) = \frac{1}{2}(\frac{3}{2})$$
 Status: ***

The clearest evidence is an 8-standard-deviation peak in ΛK^- seen by GAY 76C. TEODORO 78 favors J=3/2, but cannot make a parity discrimination. BIAGI 87C is consistent with J=3/2 and favors negative parity for this J value.

≡(1820) MASS

We only average the measurements that appear to us to be most significant and best determined.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$1823 \pm 5 \text{C}$	UR ESTIMAT	E				
1823.4± 1.4 C	UR AVERAGE					
$1819.4 \pm \ 3.1 \pm$	2.0 280	¹ BIAGI	87	SPEC	0	$\Xi^- Be \to (\Lambda K^-) X$
1826 \pm 3 \pm	1 54	BIAGI	87C	SPEC	0	Ξ^- Be $ ightarrow$ $(\Lambda \overline{K}^0)$ X
1822 ± 6		JENKINS	83	MPS	_	$K^- p \rightarrow K^+ (MM)$
1830 ± 6	300	BIAGI	81	SPEC	_	SPS hyperon beam
1823 ± 2	130	GAY	76 C	HBC	_	$K^- p$ 4.2 GeV/ c
• • • We do n	ot use the follo	wing data for ave	rages,	fits, lim	its, et	C. ● ● ●
$1817 \ \pm \ 3$		ADAMOVICH	99 B	WA89		Σ^- nucleus, 345 GeV
1797 ± 19	74	BRIEFEL	77	HBC	0	$K^- p \ 2.87 \ \text{GeV}/c$
1829 ± 9	68	BRIEFEL	77	HBC	-0	$\Xi(1530)\pi$
1860 ± 14	39	BRIEFEL	77	HBC	_	$\Sigma^{-}\overline{K}^{0}$
1870 ± 9	44	BRIEFEL	77	HBC	0	$\Lambda \overline{K}^0$
1813 ± 4	57	BRIEFEL	77	HBC	_	ΛK^-
1807 ± 27		DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
1762 ± 8	28	² BADIER	72	HBC	-0	$\Xi\pi$, $\Xi\pi\pi$, YK
1838 ± 5	38	² BADIER	72	HBC	-0	$\Xi \pi$, $\Xi \pi \pi$, YK
1830 ± 10	25	³ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ <i>c</i>
1826 ± 12		⁴ CRENNELL	70 B	DBC	-0	3.6, 3 <u>.9</u> GeV/ <i>c</i>
1830 ± 10	40	ALITTI	69	HBC	_	$\Lambda, \Sigma \overline{K}$
$1814 \ \pm \ 4$	30	BADIER	65	HBC	0	$\Lambda \overline{K}^0$
1817 ± 7	29	SMITH	65 C	HBC	-0	л К 0, лк-
1770		HALSTEINSLI	D63	FBC	-0	K^- freon 3.5 GeV/ c

Ξ(1820) WIDTH

VALUE (MeV)	EVIS	DOCUMENT IL)	TECN	CHG	COMMENT
24 $^{+15}_{-10}$ OUR E	STIMATE	<u> </u>				
24 \pm 6 OUR A	WERAGE	Error includes	scale fac	ctor of 1	5. Se	e the ideogram below.
$24.6\pm~5.3$	280	$^{ m 1}$ BIAGI		SPEC		$\Xi^- Be \to (\Lambda K^-) X$
$12\pm14\pm1.7$	54	BIAGI	8 7 C	SPEC	0	$\Xi^- \mathrm{Be} \to (\Lambda \overline{K}^0) \mathrm{X}$
72 ± 20	300	BIAGI	81	SPEC	_	SPS hyperon beam
21 ± 7	130	GAY	76 C	HBC	_	K^-p 4.2 GeV/ c

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

23	± 13		ADAMOVICH	99 B	WA89		Σ^- nucleus, 345 GeV
99	± 57	74	BRIEFEL	77	HBC	0	$K^- p \ 2.87 \ \text{GeV}/c$
52	± 34	68	BRIEFEL	77	HBC	-0	$\Xi(1530)\pi$
72	± 17	39	BRIEFEL	77	HBC	_	$\Sigma^{-}\overline{K}^{0}$
44	± 11	44	BRIEFEL	77	HBC	0	$\Lambda \overline{K}^0$
26	± 11	57	BRIEFEL	77	HBC	_	ΛK^-
85	± 58		DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
51	± 13		² BADIER	72	HBC	-0	Lower mass
58	± 13		² BADIER	72	HBC	-0	Higher mass
103	$^{+38}_{-24}$		³ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ <i>c</i>
48	$^{+36}_{-19}$		⁴ CRENNELL	70 B	DBC	-0	3.6, 3.9 GeV/ <i>c</i>
55	$^{+40}_{-20}$		ALITTI	69	НВС	_	Λ , $\Sigma \overline{K}$
12	\pm 4		BADIER	65	HBC	0	$\Lambda \overline{K}^0$
30	\pm 7		SMITH	65 B	HBC	-0	$\Lambda \overline{K}$
<80			HALSTEINSLII	D63	FBC	-0	K^- freon 3.5 GeV/ c

≡(1820) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	Λ K	large
Γ_2	$\Sigma \overline{K}$	small
Γ_3	$\equiv \pi$	small
Γ_4	$\Xi(1530)\pi$	small
Γ ₅	$\Xi \pi \pi (\text{not } \Xi(1530) \pi)$	

≡(1820) BRANCHING RATIOS

The dominant modes seem to be $\Lambda \overline{K}$ and (perhaps) $\Xi(1530)\pi$, but the branching fractions are very poorly determined.

$\Gamma(\Lambda \overline{K})/\Gamma_{\text{total}}$							Γ_1/Γ
VALUE		DOCUMENT ID		TECN	CHG	COMMENT	
0.25 ± 0.05 OUR AVERA	NGE						
0.24 ± 0.05		ANISOVICH	12A	DPWA		Multichanne	el
0.30 ± 0.15		ALITTI	69	HBC	_	$K^- p 3.9-5$	GeV/c
$\Gamma(\Xi\pi)/\Gamma_{total}$							Γ_3/Γ
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
0.10 ± 0.10		ALITTI	69	HBC	_	$K^- p 3.9-5$	${\sf GeV}/c$
$\Gamma(\Xi\pi)/\Gamma(\Lambda\overline{K})$							Γ_3/Γ_1
VALUE	CL%	DOCUMENT II)	TECN	CHO	G COMMENT	
<0.36	95	GAY	76	c HBC	_	$K^{-}p$ 4.2	GeV/c
0.20 ± 0.20		BADIER	65	HBC	0	$K^- p 3 G$	GeV/c
$\Gamma(\Xi\pi)/\Gamma(\Xi(1530)\pi$	·)						Γ_3/Γ_4
$\Gamma(\Xi\pi)/\Gamma(\Xi(1530)\pi)$ VALUE	·)	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	<u>COMMENT</u>	Γ ₃ /Γ ₄
, ,, , ,	·)	DOCUMENT ID APSELL	70	<u>TECN</u> HBC	<u>СНБ</u> О	<u>COMMENT</u> K ⁻ p 2.87	
VALUE	·)		70				
1.5 ^{+0.6} 1.5 ^{-0.4}	·) 			НВС	0		GeV/c
$ \frac{VALUE}{1.5^{+0.6}_{-0.4}} $ $ \Gamma(\Sigma\overline{K})/\Gamma_{\text{total}} $	·) 	APSELL		НВС	0 <u>СНG</u>	K ⁻ p 2.87	GeV/ <i>c</i> Γ ₂ /Γ
$VALUE$ 1.5 $^{+0.6}_{-0.4}$ $\Gamma(\Sigma\overline{K})/\Gamma_{\text{total}}$ $VALUE$		APSELL DOCUMENT ID ALITTI	69	HBC TECN HBC	0 <u>CHG</u> –	K-p 2.87 (COMMENT K-p 3.9-5	GeV/ <i>c</i> Γ ₂ /Γ
$ \frac{VALUE}{1.5^{+0.6}_{-0.4}} $ $ \frac{\Gamma(\Sigma\overline{K})}{\Gamma_{\text{total}}} $ $ \frac{VALUE}{0.30\pm0.15} $		APSELL DOCUMENT ID ALITTI	69	HBC TECN HBC	0 <u>CHG</u> –	K-p 2.87 (COMMENT K-p 3.9-5	$\frac{\text{GeV}/c}{\text{F}_2/\Gamma}$
VALUE 1.5 $^{+0.6}_{-0.4}$ $\Gamma(\Sigma\overline{K})/\Gamma_{\text{total}}$ VALUE 0.30 \pm 0.15 • • • We do not use the <0.02 $\Gamma(\Sigma\overline{K})/\Gamma(\Lambda\overline{K})$		APSELL DOCUMENT ID ALITTI data for average TRIPP	69 ges, fit	HBC TECN HBC ts, limits RVUE	0 <u>CHG</u> – , etc.	$K^- p 2.87$ COMMENT $K^- p 3.9-5$ Use SMITH	GeV/c Γ_2/Γ GeV/c $65C$ Γ_2/Γ_1
VALUE 1.5 $^{+0.6}_{-0.4}$ $\Gamma(\Sigma\overline{K})/\Gamma_{\text{total}}$ VALUE 0.30 \pm 0.15 • • • We do not use the <0.02		APSELL DOCUMENT ID ALITTI data for average	69 ges, fir 67	HBC TECN HBC ts, limits	0 <u>CHG</u> , etc.	$K^- p 2.87$ $\frac{COMMENT}{K^- p 3.9-5}$ • • •	GeV/c Γ_2/Γ GeV/c $65C$ Γ_2/Γ_1

$\Gamma(\Xi(1530)\pi)/\Gamma_{\text{total}}$						Γ_4/Γ
VALUE	DOCUMENT	ID	TECN	CHG	<u>COMMENT</u>	
0.30 ± 0.15	ALITTI	69	HBC	_	$K^- p 3.9-5$	GeV/c
ullet $ullet$ We do not use the following	owing data for av	erages, fi	ts, limits	s, etc.	• • •	
seen	ASTON	85 B	LASS		K [−] p 11 Ge	eV/c
not seen	⁵ HASSALL	81	HBC		$K^{-}p$ 6.5 G	ieV/ <i>c</i>
< 0.25	⁶ DAUBER	69	HBC		$K^{-}p$ 2.7 G	,
$\Gamma(\Xi(1530)\pi)/\Gamma(\Lambda\overline{K})$						Γ_4/Γ_1
VALUE	DOCUMENT ID	TE	CN CF	<u>IG</u> CC	<i>MMENT</i>	
0.38±0.27 OUR AVERAGE	Error includes so	ale facto	r of 2.3.			
1.0 ± 0.3	GAY	76C HE	3C –	K	[−] p 4.2 GeV/	['] c
0.26 ± 0.13	SMITH	65C HE	3C –	0 K	p 2.45–2.7	GeV/c
$\Gamma(\Xi\pi\pi(\cot\Xi(1530)\pi))$	$/\Gamma(\Lambda \overline{K})$					Γ_5/Γ_1
VALUE	DOCUMENT ID	<u>TE</u>	CN CF	IG CC	MMENT	
0.30 ± 0.20	BIAGI	87 SP	EC –	Ξ	[–] Be 116 Ge\	V
ullet $ullet$ We do not use the following	owing data for av	erages, fi	ts, limits	s, etc.	• • •	
< 0.14	⁷ BADIER	65 HE	3C 0	1 :	st. dev. limit	
>0.1	SMITH	65C HE	3C –	0 K	_ р 2.45–2.7	${\sf GeV}/{\it c}$
$\Gamma(\Xi\pi\pi(\cot\Xi(1530)\pi))$	/Γ(Ξ(1530) <i>π</i>))				Γ_5/Γ_4
VALUE	DOCUMENT	ID	TECN	CHG	COMMENT	
consistent with zero	GAY	76 C	HBC	_	$K^{-}p$ 4.2 G	ieV/ <i>c</i>
• • • We do not use the following	owing data for av	erages, fi	ts, limits	s, etc.	• • •	
0.3 ± 0.5	⁸ APSELL	70	HBC	0	K [−] p 2.87	GeV/ <i>c</i>

Ξ (1820) FOOTNOTES

 $^{^1}$ BIAGI 87 also sees weak signals in the in the $\Xi^-\pi^+\pi^-$ channel at 1782.6 \pm 1.4 MeV ($\Gamma=6.0\pm1.5$ MeV) and 1831.9 \pm 2.8 MeV ($\Gamma=9.6\pm9.9$ MeV).

 $^{^2}$ BADIER 72 adds all channels and divides the peak into lower and higher mass regions. The data can also be fitted with a single Breit-Wigner of mass 1800 MeV and width 150 MeV.

From a fit to inclusive $\Xi\pi$, $\Xi\pi\pi$, and ΛK^- spectra.

⁴ From a fit to inclusive $\Xi \pi$ and $\Xi \pi \pi$ spectra only.

⁵ Including $\Xi \pi \pi$.

⁶ DAUBER 69 uses in part the same data as SMITH 65C.

⁷ For the decay mode $\Xi^-\pi^+\pi^0$ only. This limit includes $\Xi(1530)\pi$.

⁸ Or less. Upper limit for the 3-body decay.

≡(1820) REFERENCES

ANISOVICH ADAMOVICH BIAGI BIAGI	12A 99B 87 87C	EPJ A48 15 EPJ C11 271 ZPHY C34 15 ZPHY C34 175	A.V. Anisovich <i>et al.</i> M.I. Adamovich <i>et al.</i> S.F. Biagi <i>et al.</i>	(BONN, PNPI) (CERN WA89 Collab.) (BRIS, CERN, GEVA+) (BRIS, CERN, GEVA+) JP
ASTON	85B	PR D32 2270	S.F. Biagi <i>et al.</i> D. Aston <i>et al.</i>	(SLAC, CARL, CNRC, CINC)
JENKINS	83	PRL 51 951	C.M. Jenkins et al.	` (FSU, BRAN, LBL+)
BIAGI	81	ZPHY C9 305	S.F. Biagi et al.	(BRIS, CAVE, GEVA+)
HASSALL	81	NP B189 397	J.K. Hassall <i>et al.</i>	` (CAVE, MSÚ)
TEODORO	78	PL 77B 451	D. Teodoro et al.	(AMST, CÈRN, NIJM+) JP
BRIEFEL	77	PR D16 2706	E. Briefel et al.	(BRAN, UMD, SYRA+)
Also		PRL 23 884	S.P. Apsell <i>et al.</i>	(BRAN, UMD, SYRA+)
GAY	76C	PL 62B 477	J.B. Gay et al.	`(AMST, CERN, NIJM) IJ
DIBIANCA	75	NP B98 137	F.A. Dibianca, R.J. Endorf	(CMU)
BADIER	72	NP B37 429	J. Badier <i>et al.</i>	(ÈPOL)
APSELL	70	PRL 24 777	S.P. Apsell <i>et al.</i>	(BRAN, UMD, SYRA+) I
CRENNELL	70B	PR D1 847	D.J. Crennell et al.	(BNL)
ALITTI	69	PRL 22 79	J. Alitti <i>et al.</i>	(BNL, SYRA) I
DAUBER	69	PR 179 1262	P.M. Dauber et al.	(LRL)
TRIPP	67	NP B3 10	R.D. Tripp et al.	(LRL, SLAC, CERN+)
BADIER	65	PL 16 171	J. Badier <i>et al.</i>	(EPOL, SACL, AMST) I
SMITH	65B	Athens Conf. 251	G.A. Smith, J.S. Lindsey	(LRL)
SMITH	65C	PRL 14 25	G.A. Smith et al.	(LRL) IJP
HALSTEINSLIE	63	Siena Conf. 1 73	A. Halsteinslid et al.	(BERG, CERN, EPÒL $+$ $$) I

- OTHER RELATED PAPERS -

TEODORO	78	PL 77B 451	D. Teodoro et al.	(AMST, CERN, NIJM+) JP
BRIEFEL	75	PR D12 1859	E. Briefel et al.	(BRAN, UMD, SYRA+)
SCHMIDT	73	Purdue Conf. 363	P.E. Schmidt	(BRAN)
MERRILL	68	PR 167 1202	D.W. Merrill, J. Button-Shafer	(LRL)
SMITH	64	PRL 13 61	G.A. Smith et al.	(LRL) IJP