Theoretisch Examen Kansrekenen en Statistiek

Prof. Dr. S. Van Aert en Prof. Dr. S. Van Dongen Januari 2010

2 BA BIR - Faculteit Wetenschappen - UA

Naam en voornaam:
Rolnummer:
Handtekening student:
Het theoretisch examen telt 4 vragen, eventueel bestaande uit deelvragen.

Beantwoord de vragen in de daarvoor voorziene ruimte. Maak de bundel niet los!

Pas na inleveren van het theoretisch examen krijgt u de vragen van het praktische examen waarvoor u de software R mag gebruiken.

Het theoretisch examen moet ten laatste om 10u00 worden ingeleverd. Het praktisch examen ten laatste om 12u30.

Punten in te vullen door de docent:

Vraag 1	Vraag 2	Vraag 3	Vraag 4	Totaal
/5	/4	/6	/5	/20

Het examen is schriftelijk, zonder mondelinge toelichting. Zorg daarom dat je antwoorden duidelijk geformuleerd zijn.

- werk <u>ordelijk</u>, schrijf leesbaar, en zorg voor een overzichtelijke bladspiegel
- definieer eenduidig de gebruikte symbolen
- gebruik een correcte notatie
- enkel het **formularium** mag als hulpmiddel gebruikt worden tijdens het examen

17	1	1		
v raag	1	(punten)	۱

Leg stap voor stap uit hoe u, vertrekkende van de Bernoulli kansverdeling, de binomiale kansverdeling kunt afleiden. Zorg hierbij dat u elk onderdeel van de binomiale kansverdeling goed uitlegt. Bewijs dat de verwachte waarde van een binomiaal verdeelde kansvariabele gelijk is aan $n\pi$ en dat de variantie gelijk is aan $n\pi(1-\pi)$.				

Vraag 2 (... punten)

Bewijs dat voor twee willekeurige kansvariabelen X en Y en willekeurige constanten a, b en c geldt dat $var(aX + bY + c) = a^2 var(X) + b^2 var(Y) + 2ab cov(X, Y)$				

Vraag 3 (... punten)

- 1. Welke veronderstellingen worden gemaakt bij lineaire regressie?
- 2. Leid schatters voor de helling en de intercept af gebruik makend van de kleinste kwadratenmethode.
- 3. Leg in maximaal 5 zinnen het verschil uit tussen een $(1-\alpha)$ betrouwbaarheidsinterval voor de gemiddelde respons en het predictie-interval voor de respons bij gegeven x_0 . Verduidelijk dit aan de hand van een tekening.
- 4. Leid een uitdrukking af voor een $(1-\alpha)$ predictie-interval voor de respons bij gegeven x_0 .

ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		
ĺ		

Vraag 4 (... punten)

Hieronder vindt u een reeks van 5 meerkeuzevragen. Bij elke vraag zijn er vier antwoordmogelijkheden, waarvan er precies één juist is. Om te antwoorden kleurt u het bolletje naast de antwoordmogelijkheid van uw keuze. **Indien u verkiest niet te antwoorden, dan dient u "geen antwoord" naast de vraag te schrijven.** Een giscorrectie wordt toegepast zodat de verwachte score van iemand die alle vragen lukraak beantwoordt nul is: een juist antwoord levert 1 punt op, terwijl een slecht antwoord een negatieve score van -1/3 oplevert. Niet antwoorden levert u geen punten op, maar u verliest er ook geen. Indien uw totaalscore op deze vraag negatief is, dan verdient u voor deze vraag 0 punten.

	aalscore op deze vraag negatief is, dan verdient u voor deze vraag 0 punten.
a)	De bloedgroep van een proefpersoon moet in een statistische studie beschouwd worden als een
	O nominale variabele O ordinale variabele O intervalgeschaalde variabele O variabele gemeten op een ratio-schaal
b)	Een getal dat ons vertelt hoeveel standaarddeviaties een waarde boven of onder het gemiddelde ligt, noemen we een
	O kwartiel O percentiel O variatiecoëfficiënt O gestandardiseerde kansvariabele
c)	Welke van onderstaande bewering is geldig voor een linksscheve verdeling?
	O mediaan < gemiddelde < modus O gemiddelde < mediaan < modus O modus < mediaan < gemiddelde O modus < gemiddelde < mediaan
d)	Een schatter is efficiënt wanneer:
	 de variantie van de schatter klein is de gemiddelde gekwadrateerde afwijking van de schatter klein is de vertekening klein is de schatter normaal verdeeld is
e)	Hoe groter de p-waarde van een hypothesetoets
	 O hoe groter de kans op een type I fout O hoe waarschijnlijker het is dat de nulhypothese juist is O hoe groter de kans op een type II fout O hoe groter het onderscheidingsvermogen of de power van de test