→ Notaciones del álgebra lineal

Para las siguientes representaciones asumimos:

$$A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}, \quad S = \{v_1, v_2, v_3\}, \quad ec{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} \in \mathbb{R}^3, \quad ec{y} = egin{bmatrix} y_1 \ y_2 \end{bmatrix} \in \mathbb{R}^2$$

Grafo	Sistema de Ecuaciones	Matriz Extendida	Combinación Lineal de vectores	Matriz por vector	Transformación Matricial
	[Nakos, cap 1]	[Nakos, cap 1]	[Nakos, cap 2]	[Nakos, cap 3]	Nakos, cap 5]
	Planteamiento de problemas. Sustitución hacia atrás	Eliminación de Gauss, Pivotes	La representación gráfica de vectores en \mathbb{R}^2 y $\mathbb{R}^3.$ Operaciones vectoriales.	Operaciones matriciales. Inversa.	Composición de funciones. Isomorfismos
	$3x_1 + 4x_2 + 0x_3 = y_1$ $0x_1 + 2x_2 + 1x_3 = y_2$	$\begin{bmatrix} x_1 & x_2 & x_3 \\ 3 & 4 & 0 & : & y_1 \\ 0 & 2 & 1 & : & y_2 \end{bmatrix}$	$x_1 \begin{pmatrix} 3 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 4 \\ 2 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$	$\begin{bmatrix} 3 & 4 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$	$T_A egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 3x_1 + 4x_2 + 0x_3 \ 0x_1 + 2x_2 + 1x_3 \end{pmatrix} = egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix}$
		$[A:ec{y}]$	$x_0\overrightarrow{v_0} + x_1\overrightarrow{v_1} + x_2\overrightarrow{v_2} = ec{y}$	$Aec{x}=ec{y}$	$T_A(ec{x}) = ec{y}$
n entradas, m salidas	Sistema de m de ecuaciones con n variables	-	Combinación lineal de n vectores de \mathbb{R}^m	$A_{m imes n}$, Matriz A de tamaño $m imes n$	$T_A : \mathbb{R}^n o \mathbb{R}^m$
Conjunto de entradas que generan cero.	Solución del S.H.	-	-	$\mathrm{Nu}(A)$, Espacio nulo de A	$\mathrm{Nu}(T_A)$, Núcleo (o Kernel) de T_A
	Número de variables libres del S.H.	Número de columnas de A sin l-pivotes	-	u(A), nulidad de A	$ u(T_A)$, nulidad de T_A
	¿Tiene el S.H. solución única?	$_{\ell}$ Tiene A un $ mathrid $ pivotes en cada columna?	ξ Es S Linealmente Independiente (L. l.)? ξ No es S Linealmente Dependiente (L. D.)? ξ Ningún vector se puede escribir como combinación lineal de los otros?	$_{\it L} u(A) = 0$? $_{\it L}{ m Nu}(A) = \{ ilde{0} \}$?	¿Es T_A inyectiva?
Conjunto de salidas posibles.	Conjunto de VTC consistentes		$\mathrm{Gen}(S)$, Espacio generado por S	$\mathrm{Col}(A)$, Espacio columna de A. (Se pueden <u>quitar columnas</u> sin l-pivotes)	${ m Im}(T_A)$, Imagen de T_A
	Número de variables delanteras del S.H.	<u>Número de l-pivotes de </u> A	$\operatorname{Dim}(\operatorname{Gen}(S))$	ho(A), rango de A	$ ho(T_A)$, rango de T_A
	¿Es consistente para todo VTC?	${}_{\!$	$_{\mathcal{L}}\mathrm{Dim}(\mathrm{Gen}(S))=m$? $_{\mathcal{L}}\mathrm{Gen}(S)=\mathbb{R}^{m}$?	$\iota ho(A)=m?$ $\iota\operatorname{Col}(A)=\mathbb{R}^m?$	¿Es T_A sobreyectiva?
	¿Tiene el sistema de ecuaciones solución única para todo VTC?	¿Es A cuadrada con n pivotes? ¿Es A equivalente a la identidad?	¿Es S una base de \mathbb{R}^m ?	¿Es A invertible?	¿Es T_A biyectiva?

Abreviaturas:

- I-pivite: lugar del pivote en una matriz escalón equivalente
- L.I.: Linealmente Independientes
- S.H.: Sistema Homogéneo
- + VTC: Vector de Términos Constantes (\vec{b})

MOSTRAR CÓDIGO

