

# Workpackage 5: High Performance Mathematical Computing



Second OpenDreamKit Project review

Luxembourg, October 30, 2018



## Mathematical computing

Computing with a large variety of objects

 $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$ 

17541718814389012164632

### Mathematical computing

Computing with a large variety of objects

- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- Polynomials over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,

17541718814389012164632

$$\frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2$$

## Mathematical computing

### Computing with a large variety of objects

- $\triangleright \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- Polynomials over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,
- ▶ Matrices over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,

# 17541718814389012164632

$$\begin{array}{c} \frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2\\ \left[ \begin{array}{cc} 27 & 3 & -1\\ 9 & 0 & 2 \end{array} \right] \end{array}$$

## Mathematical computing

Computing with a large variety of objects

- $\triangleright \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- ightharpoonup Polynomials over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,
- lacksquare Matrices over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,
- $\blacktriangleright$  Matrices of polynomials over  $\mathbb{Z},\mathbb{Q},\mathbb{Z}/p\mathbb{Z},\mathbb{F}_q,$

17541718814389012164632

$$\left[\frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2\right]$$

$$\begin{bmatrix} 3x^2 + 3 & 2x^2 + 3 \\ 4x^2 + 1 & x^2 + 4x + 4 \end{bmatrix}$$



### Mathematical computing

#### Computing with a large variety of objects

- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q,$
- Polynomials over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,
- lacksquare Matrices over  $\mathbb{Z},\mathbb{Q},\mathbb{Z}/p\mathbb{Z},\mathbb{F}_q$ ,
- lacksquare Matrices of polynomials over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$ ,

17541718814389012164632

$$\frac{2}{5}x^3 + x^2 - \frac{1}{19}x + 2$$

 $\left[\begin{array}{ccc} 27 & 3 & -1 \\ 9 & 0 & 2 \end{array}\right]$ 

 $\begin{bmatrix} 3x^2 + 3 & 2x^2 + 3 \\ 4x^2 + 1 & x^2 + 4x + 4 \end{bmatrix}$ 

$$\frac{3q^2-q^5}{q^5+2q^4+3q^3+3q^2+2q+1} \oplus \bigoplus_{\substack{a \\ \\ d}} + \frac{2q}{q^4+q^3+2q^2+q+1} \oplus \bigoplus_{\substack{a \\ \\ a \\ \\ a}} \oplus \bigoplus_{\substack{a \\ \\ a \\ \\ a$$

Tree algebra



Need for High performance: applications where size matters:

Experimental maths: testing conjectures

larger instances give higher confidence



**Need for High performance:** applications where size matters:

Experimental maths: testing conjectures

larger instances give higher confidence

Algebraic cryptanalysis: security = computational difficulty

key size determined by the largest solvable problem

#### Example

Breaking RSA by integer factorization: n = pq. Last record:

- $\triangleright$  n of 768 bits
- linear algebra in dimension 192796550 over  $\mathbb{F}_2$  (105Gb)
- About 2000 CPU years



Need for High performance: applications where size matters:

Experimental maths: testing conjectures

larger instances give higher confidence

Algebraic cryptanalysis: security = computational difficulty

key size determined by the largest solvable problem

#### Example

Breaking RSA by integer factorization: n = pq. Last record:

- ▶ *n* of 768 bits
- ▶ linear algebra in dimension 192796550 over  $\mathbb{F}_2$  (105Gb)
- ► About 2000 CPU years

#### 3D data analysis, shape recognition:

- via persistent homology
- ightharpoonup large sparse matrices over  $\mathbb{F}_2$ ,  $\mathbb{Z}$



# Goal: delivering high performance to maths users





# Goal: delivering high performance to maths users

## Harnessing modern hardware → parallelisation

- in-core parallelism (SIMD vectorisation)
- multi-core parallelism
- distributed computing: clusters, cloud



Architectures:

SIMD

Multicore server

**HPC** cluster

Cloud

# Goal: delivering high performance to maths users

#### Languages

- Computational Maths software uses high level languages (e.g. Python)
- ▶ High performance delivered by languages close to the metal (C, assembly)

 $\leadsto$  compilation, automated optimisation



#### Goal:

- Improve/Develop parallelization of software components
- Expose them through the software stack
- Offer High Performance Computing to VRE's users

## Milestone M8: Seamless use of parallel computing architecture in the VRE (proof of concept)

Astrid wants to run compute intensive routines involving both dense linear algebra and combinatorics. She has access through a JupyterHub-based VRE to a high end multi-core machine which includes a vanilla SAGE installation. She automatically benefits from the HPC features of the underlying specialized libraries (LinBox, ...). This is a proof of concept of the overall framework to integrate the HPC advances of specialized libraries into a general purpose VRE. It will prepare the final integration of a broader set of such parallel features for the end of the project



# Addressing recommendations of review 1

Recommendation 10: Regarding WP5, make contacts with HPC community in order to ascertain current state-of-the-art. The work in this WP needs to be nearer the leading edge.



# Addressing recommendations of review 1

Recommendation 10: Regarding WP5, make contacts with HPC community in order to ascertain current state-of-the-art. The work in this WP needs to be nearer the leading edge.

#### Leading edge achievements in linear algebra

- symmetric factorization outperforms LAPACK implementation
- ▶ new non-hierarchical generator for quasiseparable matrices
- large scale parallelization of rational linear solver







# Addressing recommendations of review 1

Recommendation 10: Regarding WP5, make contacts with HPC community in order to ascertain current state-of-the-art. The work in this WP needs to be nearer the leading edge.

#### Leading edge achievements in linear algebra

- symmetric factorization outperforms LAPACK implementation
- new non-hierarchical generator for quasiseparable matrices
- large scale parallelization of rational linear solver







#### Interactions and contacts made:

- interaction with the BLIS group (vectorization and implementation of Strassen's algorithm)
- on-going collaboration with T. Mary (Mumps) and S. Chandrasekaran (UCSB) on quasiseparable matrix algorithmic

#### Outline

#### Deliverables under review for the period

D5.12: Exact linear algebra algorithms and implementations.

D5.11: Refactor and optimize Sage's Combinatorics

#### Progress report on other deliverables

T5.1: Pari

T5.2: GAP

T5.3: LinBox

T5.4: Singular

#### Workpackage management

Milestone M8

Strenghtening interactions with numerical HPC



#### Outline

#### Deliverables under review for the period

D5.12: Exact linear algebra algorithms and implementations.

D5.11: Refactor and optimize Sage's Combinatorics



T5.1: Pari

T5.2: GAP

T5.3: LinBox

T5.4: Singular

#### Workpackage management

Milestone M8

Strenghtening interactions with numerical HPC



# Task 5.3: LinBox, High performance exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

- W. Stein

## Linear algebra: a HPC building block

Similarly as in numercial HPC:

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

### **Specificities**

- lacktriangle Multiprecision arithemtic  $\Rightarrow$  lifting from finite precision  $(\mathbb{F}_p)$
- ► Rank deficiency ⇒ unbalanced dynamic blocking
- ► Early adopter of subcubic matrix arithemtic ⇒ recursion



D5.12: Exact linear algebra algorithms and implementations. Library maintenance and close integration in mathematical software for LinBox library

- 1. Algorithmic innovations:
  - 1.1 Rank deficient dense Gaussian elimination
  - 1.2 Quasiseparable matrices
  - 1.3 Outsourced computing security
- 2. Software releases and integration:
  - 2.1 LinBox ecosystem: LinBox, fflas-ffpack, givaro
  - 2.2 SageMath integration



## Rank deficient dense Gaussian elimination

[JSC'17] Fast computation of the rank profile matrix and the generalized Bruhat decomposition.

- Connecting Rank Profile Matrix and row and column echelon forms
- $ightharpoonup O(r^{\omega}+mn)$  probabilistic time
- generalization over arbitrary rings



## Rank deficient dense Gaussian elimination

# [JSC'17] Fast computation of the rank profile matrix and the generalized Bruhat decomposition.

- ► Connecting Rank Profile Matrix and row and column echelon forms
- $ightharpoonup O(r^{\omega}+mn)$  probabilistic time
- generalization over arbitrary rings

# [ISSAC'18] Symmetric triangular factorization

- First unconditional recursive algorithm
- ▶ Pivoting revealing the Rank Profile Matrix
- $O(n^2r^{\omega-2})$  (=  $1/3n^3$  with  $\omega = 3, r = n$ )



#### LAPACK vs FFPACK modulo 8 388 593

|       | LAPACK      |               | FFPACK      |               |
|-------|-------------|---------------|-------------|---------------|
| n     | dgetrf (LU) | dsytrf (LDLT) | fgetrf (LU) | fsytrf (LDLT) |
| 5000  | 2.01s       | 1.60s         | 3.90s       | 1.59s         |
| 10000 | 14.95s      | 11.98s        | 24.12s      | 10.90s        |





12

## Quasiseparable matrices

### Matrices with low off-diagonal rank NGULAR &

# [ISSAC'16, JSC'18] New compact representation and algorithms

- Connection with rank profile matrix
- ▶ Matches the best space complexities: O(ns)
- Reduction to matrix multiplication:  $O(ns^{\omega-1})$  for products
- Flat representation (non hierarchical)



# Quasiseparable matrices

## Matrices with low off-diagonal rank NGULAR &

# [ISSAC'16, JSC'18] New compact representation and algorithms

- Connection with rank profile matrix
- lacktriangle Matches the best space complexities: O(ns)
- Reduction to matrix multiplication:  $O(ns^{\omega-1})$  for products
- Flat representation (non hierarchical)

Follow-up: on-going collaboration with numerical HPC experts:

- S. Chandrasekaran (UCSB)
- T. Mary (U. Manchester, Mumps)



# Outsourced computing security

## Exploratory aspect: Computation over the Cloud

#### Outsourcing computation on the cloud:

- trusted lightweight client computer
- untrusted powerful cloud server
- $\Rightarrow$  need for certification protocols

#### Multiparty computation:

- each player contribute with a share of the input
- shares must remain private



# Outsourced computing security



#### Outsourcing computation on the cloud:

- trusted lightweight client computer
- untrusted powerful cloud server
- $\Rightarrow$  need for certification protocols

#### Multiparty computation:

- each player contribute with a share of the input
- shares must remain private

#### Contribution

ISSAC'17: Linear time certificates for LU, Det., Rank Profile matrix, etc In submission: Secure multiparty Strassen's algorithm



# Software releases and integration

#### LinBox ecosystem

givaro: field/ring arithmetic

fflas-ffpack: dense linear algebra over finite field

LinBox: exact linear algebra

Tightly integrated in SageMath



# Software releases and integration

| LinBox ecosystem                                     |  |            |
|------------------------------------------------------|--|------------|
| givaro: field/ring arithmetic                        |  | 4 releases |
| givaro. Held/filig antililletic                      |  | 4 releases |
| fflas-ffpack: dense linear algebra over finite field |  | 6 releases |
| LinBox: exact linear algebra                         |  | 6 releases |
|                                                      |  |            |



13 tickets

Tightly integrated in SageMath

# Software releases and integration

## LinBox ecosystem

givaro: field/ring arithmetic

fflas-ffpack: dense linear algebra over finite field

LinBox: exact linear algebra

Tightly integrated in SageMath

4 releases

6 releases

6 releases

13 tickets

3 tickets

## Featuring

- ▶ Full functional implementations of new algorithmic contributions
  - Improved vectorization and parallel routines
- Drastic improvement of reliability (continuous integration, test-suite coverage, randomized certificates, etc)



### Task 5.6: HPC infrastructure for Combinatorics

#### General situation

Given a set S of combinatorial objects we want to

- ightharpoonup test conjectures: e.g. find an element of S satisfying a certain property
- ightharpoonup count or list the elements of S having this property

#### Specificities of combinatorics

#### **Typically**

- huge: S does not fit in memory
- embarassingly parallel:  $S = S_1 \cup \ldots \cup S_k$
- **unbalanced**:  $S_i$  sizes are highly unbalanced



D5.11: Refactor and optimise the existing combinatorics Sage code using the new developed Pythran and Cython features.



2. Software releases and integration:



# Concrete mathematical problem 1: polytopes

#### Example

Some combinatorial objects can be encoded as integer vectors in polytopes.



- Efficient algorithms available (Double description, Barvinok)
- ▶ High performance libraries implementing them PPL, Normaliz
- Useful for many combinatorial applications



# High performance polytope code



#### **ODK** outcomes

- pplpy library: Python interface to the high performance Parma Polyhedra Library (rational polytopes)
- e-antic library: C/C++ library for computations over embedded number fields. Building block for multithread polytope computations in Normaliz over number fields.
- ► Sage Days 84 workshop



# Concrete mathematical problem 2: semigroups

#### Example

Numerical semigroup are certain subsets of non-negative integers.



- Many mathematical open mathematical questions.
- Highly unbalanced tree.



# Work stealing map-reduce

# Jupyte

## A Python implementation

- Work stealing algorithm (Leiserson-Blumofe)
- Easy to use, easy to call from SageMath with many use cases
- Scale well with the number of CPU cores and reasonably efficient (given that it is Python code).

A typical speedup obtained for binary sequences



# Low-level parallelization for small combinatorial objects

## HPCombi: an experimental C++ library

- innovative SIMD code for combinatorics
- fine grained parallelization using Intel Cilk technology
- already in use for mathematical projects (numerical semigroups)

| Operation                             | Speedup       |
|---------------------------------------|---------------|
| Sum of a vector of bytes              | ×3.81         |
| Sorting a vector of bytes             | $\times 21.3$ |
| Inverting a permutation               | $\times 1.97$ |
| Number of cycles of a permutation     | $\times 41.5$ |
| Number of inversions of a permutation | $\times 9.39$ |
| Cycle type of a permutation           | $\times 8.94$ |



# Exploration: Python, Cython, Pythran and Cilk (D5.8)



- Python (interpreted language) slow.
- ► Cython/Pythran (Python to C compilers) efficient.
- Cilk (SIMD and multithread parallelism) very promising.



# Software releases and integration

## Libraries releases and integration

SageMath: improvement of native code and libraries interfaces

HPCombi: C++ library for small combinatorial objects using SIMD instructions and fine grained parallelization (Cilk)

e-antic: C/C++ library for (arbitrary precision) embedded number field computations

pplpy: Python library interface to PPL library on Polytope



## Software releases and integration

### Libraries releases and integration

SageMath: improvement of native code and libraries interfaces 5 tickets

HPCombi: C++ library for small combinatorial objects using SIMD

instructions and fine grained parallelization (Cilk) experimental

e-antic: C/C++ library for (arbitrary precision) embedded number field

computations planned release

pplpy: Python library interface to PPL library on Polytope 6 releases

# Software releases and integration

## Libraries releases and integration

SageMath: improvement of native code and libraries interfaces 5 tickets

HPCombi: C++ library for small combinatorial objects using SIMD instructions and fine grained parallelization (Cilk) experimental

e-antic: C/C++ library for (arbitrary precision) embedded number field computations planned release

pplpy: Python library interface to PPL library on Polytope 6 releases

#### Featuring

- SIMD instructions for combinatorial enumeration
- Generic map-reduce in SageMath
- ► Faster and more parallel code inside SageMath



#### Outline





D5.12: Exact linear algebra algorithms and implementations

D5.11: Refactor and optimize Sage's Combinatorics



T5.1: Pari

T5.2: GAP

T5.3: LinBox

T5.4: Singular

#### Workpackage management

Milestone M8

Strenghtening interactions with numerical HPC



#### T5.1: Pari



# D5.16: Pari Suite release, fully supporting parallelization

- D5.10 (merged in D5.16):
   Generic parallelization engine is now mature (released since nov.2016).
   Support POSIX-threads and MPI.
- Current work: applying it throughout the library
  - Chinese remaindering
  - Rational linear algebra
  - Discrete logarithm
  - Resultants
  - APRCL primality testing





## D5.15: Final report of GAP development

- ▶ 8 releases were cut integrating contributions of D3.11 and D5.15
- Towards an integration of HPC-GAP: main release GAP-4.9
  - Build system refactoring
  - Ability to compile in HPC-GAP compatibility mode
- Work in progress:
  - ▶ Multithreaded linear algebra: at the level of the Meataxe library
  - Introspection functionalities: on-the-fly optimisation decision



#### T5.3 LinBox

## D5.14: Distributed exact linear system solving

- 2 full time engineers
- Communication and serialization layer done
- Prototype MPI parallelization of Chinese remainder based solver.

#### T5.3 LinBox



### D5.14: Distributed exact linear system solving

- 2 full time engineers
- Communication and serialization layer done
- Prototype MPI parallelization of Chinese remainder based solver.





#### T5.3 LinBox



### D5.14: Distributed exact linear system solving

#### Roadmap:

- Major refactorization of LinBox solver code under way
- Parallelization of Dixon-lifting solver
- Hybrid combination of CRT+Dixon.
- Hyrbid OpenMP-MPI implementation





# T5.4 Singular



FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation (and partial evaluation), composition



# T5.4 Singular



FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation (and partial evaluation), composition

## Parallelization of the (sparse) multiplication

| threads | time (ms) | speedup |
|---------|-----------|---------|
| 1       | 148661    | ×1.0    |
| 2       | 76881     | ×1.9    |
| 3       | 54798     | ×2.7    |
| 4       | 42855     | ×3.4    |
| 5       | 37017     | ×4.0    |
| 6       | 30892     | ×4.8    |
| 7       | 28365     | x5.2    |
| 8       | 28048     | ×5.3    |
|         |           |         |



# T5.4 Singular



FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation (and partial evaluation), composition

### Parallelization of the (sparse) multiplication

| threads | time (ms) | speedup |
|---------|-----------|---------|
| 1       | 148661    | ×1.0    |
| 2       | 76881     | ×1.9    |
| 3       | 54798     | ×2.7    |
| 4       | 42855     | ×3.4    |
| 5       | 37017     | ×4.0    |
| 6       | 30892     | x4.8    |
| 7       | 28365     | ×5.2    |
| 8       | 28048     | x5.3    |
|         |           |         |

- ▶ Planned improvements to the memory manager ⇒ closer to linear scaling
- Parallel division and GCD implementations are in progress.
- Integration into Factory/Singular remains to be done



#### Outline



SINGULAR «

D5.12: Exact linear algebra algorithms and implementations

D5.11: Refactor and optimize Sage's Combinatorics



15.1: Pari

T5.2: GAP

T5.3: LinBox

T5.4: Singular

#### Workpackage management

Milestone M8

Strenghtening interactions with numerical HPC



# Addressing recommendations of review 1

Recommendation 10: Regarding WP5, make contacts with HPC community in order to ascertain current state-of-the-art. The work in this WP needs to be nearer the leading edge.



# Addressing recommendations of review 1

Recommendation 10: Regarding WP5, make contacts with HPC community in order to ascertain current state-of-the-art. The work in this WP needs to be nearer the leading edge.

#### Leading edge achievements in linear algebra

- symmetric factorization outperforms LAPACK implementation
- new non-hierarchical generator for quasiseparable matrices
- large scale parallelization of rational linear solver









# Strengthening interactions with numerical HPC community

### **Existing connection**

- Dense linear algebra: numerical BLAS used for exact FFLAS for 17 years
- ▶ Pointwise interactions with J. Dongarra, L. Grigori, J-Y. L'Excellent, etc
- ▶ Publishing in major HPC venues: SIAM-PPSC, EuroPar, PMAA, ParCo
- ▶ Involvement in the French CNRS GDR-Calcul working group (Sci Comp)

# Strengthening interactions with numerical HPC community

## **Existing connection**

- ▶ Dense linear algebra: numerical BLAS used for exact FFLAS for 17 years
- ▶ Pointwise interactions with J. Dongarra, L. Grigori, J-Y. L'Excellent, etc
- ▶ Publishing in major HPC venues: SIAM-PPSC, EuroPar, PMAA, ParCo
- ▶ Involvement in the French CNRS GDR-Calcul working group (Sci Comp)

### Recently established

- With the BLIS group:
  - Report SIMD vectorization bug and share user experience
  - ▶ Implementation of Strassen's algorithm
- On-going collaboration with T. Mary (Mumps) and S. Chandrasekaran (UCSB) on quasiseparable matrix algorithmic

