

Avance Calibración de Cámara

ESTUDIANTE DE MAESTRÍA ALEJANDRA CRISTINA CALLO AGUILAR

¿Cuál es el objetivo?

- Encontrar un patrón de detección de círculos
- Aplicar las técnicas necesarias para el procesamiento de escenas

Detección de Círculos

• Pre procesamiento de la escena

Primero se cambia la escena a una escala de grises

Segundo se aplica un umbral en los frames para ir eliminando objetos, se puede usar la función: *cv2.threshold*

Si aún la imagen pierde algunos pixeles se aplica incremento de contraste que eliminara el ruido

threshold(img, img, 50, 255, THRESH_TRUNC); //
umbralizacion

Detección de Bordes y Círculos

- Canny y findContours.
- Se obtiene un vector contiene la posición y el posible diámetro del círculo encontrado.
- Con este vector y el posible radio ya tenemos el centro de cada círculo dentro de la escena.

/// Buscar los contornos de la imagen, se almacenan en contours
findContours(canny_output, v_contornos, hierarchy, CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

•CV_RETR_CCOMP recupera todos los contornos y las organiza en una jerarquía de dos niveles. En el nivel superior, hay límites externos de los componentes. En el segundo nivel, hay límites de los agujeros.

•CV_CHAIN_APPROX_SIMPLE comprime segmentos horizontales, verticales y diagonales y deja sólo sus puntos finales. Por ejemplo, un contorno rectangular arriba-derecha se codifica con 4 puntos.

Segmentación

Para la segmentación se accede al vector que nos devolvió la función anterior y encuentro la mínima área (cv: minAreaRect) que forman estos centros, luego delimito la escena a la parte donde se encuentran los círculos para encontrar el patrón.

Encontrar Patrón Vectores Ordena ALEJANDRA CRISTINA CALLO AGUILAR

Salida

