0.1 Lecture 1

0.1.1 Goals of Course

- The goal of this course is to explore and generalize many of concepts that we learned in our calculus classes.
- Examples of such concepts are
 - Limits
 - Continuity
 - Sequence convergence
 - Differentiability
 - Integration

and their results will all be rigorously proven and generalized.

0.1.2 The Structure of the Real Numbers

The set \mathbb{R} is NOT just a boring collection of elements. \mathbb{R} is a set equipped with four defining properties.

- \mathbb{R} is a field.
- \mathbb{R} is an **ordered field**.
- \mathbb{R} is a unique ordered field that **least upper bound property**.
- \bullet \mathbb{R} contains a metric which is a notion that describes length and distance.
- \mathbb{R} is a normed space and a metric space (these two are not equivalent).

0.1.3 The First Defining Property

The set of real numbers is a field.

Definition (Fields). A field is a set F with two operations called addition and multiplication, which satisfy the following field axioms, respectively:

- (A1) For all $x, y \in F$, we have $x + y \in F$.
- (A2) For all $x, y \in F$, we have x + y = y + x.
- (A3) For all $x, y, z \in F$, we have (x + y) + z = x + (y + z).
- (A4) There exists an element $0 \in F$ such that for any $x \in F$, x + 0 = x.
- (A5) If $x \in F$, then there exists an element $-x \in F$ such that x + (-x) = 0.
- (M1) For all $x, y \in F$, we have $xy \in F$.
- (M2) For all $x, y \in F$, we have xy = yx.
- (M3) For all $x, y, z \in F$, we have (xy)z = x(yz).
- (M4) For all $x \in F$, there exists an element $1 \neq 0$ such that $x \cdot 1 = x$.
- (M5) If $x \in F$ and $x \neq 0$, then there exists an element $\frac{1}{x} \in F$ such that $x \cdot \frac{1}{x} = 1$.
- (D1) If $x, y, z \in F$, then x(y + z) = xy + xz.

0.1.4 The Second Defining Property

Definition (Ordered Fields). An **ordered field** is a field F equipped with a relation, <, with the following properties

(i) If $x \in F$ and $y \in F$, then one and only one of the statements is true:

$$x < y$$
, $x = y$, $y < x$.

- (ii) (Transitive Property) If $x, y, z \in F$ and x < y and y < z, then x < z.
- (iii) If $x, y, z \in F$ and y < z, then x + y < x + z.
- (iv) If $x, y \in F$, and x > 0 and y > 0, then xy > 0.

Remark. We say that x is positive if x > 0, and negative if x < 0. Furthermore, $x \le y$ is equivalent to x = y or x < y.

The first two defining properties alone of \mathbb{R} do not uniquely specify it. For example, \mathbb{Q} is another field that satisfies the first two properties of \mathbb{R} .

Definition (Upper Bounds). Suppose F is an ordered field, and $A \subseteq F$. If there exists $\beta \in F$ such that for all $x \in A$, $x \leq \beta$ for all $x \in A$. We call β an **upper bound of** A.

Remark. We call the collection of upper bounds of A by UP(A). If $UP(A) \neq \emptyset$, then we say that A is bounded above.

Similarly, we define the lower bounds of a set.

Definition (Lower Bounds). Suppose F is an ordered field, and $A \subseteq F$. If there exists $\alpha \in A$ such that for all $x \in A$, $x \ge \alpha$, then α is called the **lower bound of** A.

Remark. Similarly, we denote the set of lower bounds of A by LO(A). We say that A is bounded below if LO(A) $\neq \emptyset$.

Example 0.1.1. Suppose we have A = [0, 1). We have

$$UP(A) = [1, \infty)$$

$$LO(A) = (-\infty, 0].$$

0.2 Lecture 2

0.2.1 Review of Least Upper Bound Property

Definition (Supremum). Suppose F is an ordered field, and $A \subseteq F$. Suppose there exists $\beta \in F$ such that

- (i) $\beta \in \mathrm{UP}(A)$
- (ii) If $\gamma \in F$ and $\gamma < \beta$, then $\gamma \notin \mathrm{UP}(A)$.

We call β the **least upper bound** of A or the **supremum** of A. We denote the supremum of A as $\beta = \sup A$.

Remark. When we say THE supremum, we are implicitly stating that the supremum of A is unique.

Definition (Infimum). Suppose F is an ordered field, and $A \subseteq F$. Suppose there exists $\alpha \in F$ such that

- (i) $\alpha \in LO(A)$
- (ii) If $\gamma \in F$ and $\gamma > \alpha$, then $\gamma \notin LO(A)$.

We call α the **greatest upper bound** of A or the **infimum** of A, and write $\alpha = \inf A$.

Definition (Least Upper Bound Property). An ordered field F is said to have the **least-upper-bound property** if the following is true:

Every nonempty set A in F that is bounded above has a least upper bound in F.

That is, if $A \neq \emptyset$ and $UP(A) \neq \emptyset$, then $\sup(A)$ exists.

Theorem. There is exactly one ordered field that has the least-upper-bound bound property. The set \mathbb{R} is the unique ordered field that contains \mathbb{Q} as a subfield.

This is equivalent to saying that:

- \mathbb{R} is dedekind complete
- \bullet $\mathbb R$ satisfies the Axiom of Completeness.

Remark. Note that \mathbb{Q} being an ordered field does not immediately imply that \mathbb{Q} has the LUBP.

Definition (Maximums and Infimums). Let $A \subseteq \mathbb{R}$.

- If $\sup A \in A$, then we call, $\sup A$, the **maximum of** A and we denote this by $\max A$.
- If $\inf A \in A$, we call, $\inf A$, the **minimum of** A and we denote this by $\min A$.

Lemma (Useful Fact for Supremum). Let $A \subseteq \mathbb{R}$. Then $\beta = \sup A$ if and only if

- (i) $\beta \in \mathrm{UP}(A)$ and
- (ii) For all $\varepsilon > 0$, there exists $a \in A$ such that $a > \beta \varepsilon$.

Remark. We can restate property (ii) above as "for all $\varepsilon > 0$, $\beta - \varepsilon \notin \mathrm{UP}(A)$ ".

Lemma (Useful Fact for Infimums). Let $A \subseteq \mathbb{R}$. Then $\alpha = \inf A$ if and only if

- (i) $\alpha \in LO(A)$ and
- (ii) For all $\varepsilon > 0$, there exists $a \in A$ such that $a < \alpha + \varepsilon$.

Remark. Similarly, we can restate property (ii) as "for all $\varepsilon > 0$, $\alpha + \varepsilon \notin LO(A)$ ".

Theorem (Greatest Lower Bound Property of \mathbb{R}). Every nonempty subset A of \mathbb{R} that is bounded below has a **greatest upper bound in** \mathbb{R} .

Another way to say this is the following:

If $A \neq \emptyset$ and LO(A) $\neq \emptyset$, then inf A exists in \mathbb{R} .

0.2.2 Consequences of Least Upper Bound Property

Theorem (Archimedean Property). If $x \in \mathbb{R}$, $y \in \mathbb{R}$ and x > 0, then there exists $n \in \mathbb{Z}^+$ such that nx > y.

Proof. Let $A = \{nx : n \in \mathbb{N}\}$. Note that $A \neq \emptyset$ since $1 \cdot x \in A$. Suppose for sake of contradiction that for all $n \in \mathbb{Z}^+$, $nx \leq y$. This means that y is an upper bound of A. Let $\beta = \sup A$. By the first useful fact, we have that for all $\varepsilon > 0$, there exists an $n \in \mathbb{N}$ such that $\beta - \varepsilon < nx$. Let $\varepsilon = x$. Then we find that

$$\beta < nx + \varepsilon = nx + x = x(n+1) \Rightarrow \beta < x(n+1).$$

But this tells us that $x(n+1) \in A$ ($x \in A$ and $n+1 \in \mathbb{N}$) and that β is NOT an upper bound which is a contradiction. Thus, it must be the case that nx > y for some $n \in \mathbb{Z}^+$.

Remark. The well ordering property of \mathbb{N} can be proven as a consequence of nonempty sets of natural numbers containing a minimum.

Corollary. Let A be a nonempty subset of \mathbb{R} that consists of only integers.

- (i) If A is bounded above, then $\sup(A) \in A$.
- (ii) If A is bounded below, then $\inf(A) \in A$.

Theorem (Density of \mathbb{Q} in \mathbb{R}). Let $x, y \in \mathbb{R}$ with x < y, there exists a $p \in \mathbb{Q}$ such that x .

Proof. Our goal is to find a $p \in \mathbb{Q}$ such that

$$x$$

with $p=\frac{m}{n}$ for $m\in\mathbb{Z}$ and $n\in\mathbb{N}$; that is, find $m\in\mathbb{Z}$ and $n\in\mathbb{N}$ such that

$$nx < m < ny$$
.

First, notice that x < y. This implies that y - x > 0. By the Archimedean Property, there exists $n \in \mathbb{N}$ such that

$$\frac{1}{n} < y - x \Longleftrightarrow x < y - \frac{1}{n}.\tag{1}$$

Choose $m \in \mathbb{Z}$ such that m to be the minimum element greater than nx; that is, choose $m \in \mathbb{Z}$ such that

$$m - 1 \le nx < m. \tag{2}$$

Let $A = \{k \in \mathbb{Z} : k > nx\}$ which is nonempty by the Archimedean Property. Furthermore, nx is a lower bound for A. By the Well-ordering property, A contains a minimum. Thus, $m = \min A$. Hence,we have

$$nx < m \Rightarrow x < \frac{m}{n}. (3)$$

Using the left-hand side of (2) and the inequality found in (1), we can write

$$m-1 \le nx \Longrightarrow m \le nx+1 < n\left(y-\frac{1}{n}\right)+1$$
$$= ny-1+1$$
$$= ny.$$

Thus, we see that

$$m < ny$$
. (4)

With (3) and (4), we can conclude that

$$x < \frac{m}{n} < y \Longleftrightarrow x < p < y.$$