Model Theory

C. C. Chang & H. Jerome Keisler

September 24, 2020

Contents

1	Models Constructed From Constants		2
	1.1	Completeness and Compactness	2
	1.2	Refinements of the method. Omitting types and interpola-	
		tion theorems	7

1 Models Constructed From Constants

1.1 Completeness and Compactness

Definition 1.1. Let T be a set of sentences of \mathcal{L} and let C be a set of constant symbols of \mathcal{L} . We say that C is a **set of witnesses** for T iff for every formula φ of \mathcal{L} with at most one free variable, say \mathcal{L} , there is a constant $c \in C$ s.t.

$$T \vdash (\exists x) \varphi \rightarrow \varphi(c)$$

We say that T has witnesses in \mathcal{L} iff T has some set C of witness in \mathcal{L}

Lemma 1.2. Let T be a consistent set of sentences of \mathcal{L} . Let C be a set of new constant symbols of power $|C| = \|\mathcal{L}\|$, and let $\overline{\mathcal{L}} = \mathcal{L} \cup C$ be the simple extension of \mathcal{L} formed by adding C. Then T can be extended to a consistent set of sentences \overline{T} in $\overline{\mathcal{L}}$ which has C as a set of witnesses in $\overline{\mathcal{L}}$

Proof. Let $\alpha = \|\mathcal{L}\|$. For each $\beta < \alpha$, let c_{β} be a constant symbol which does not occur in \mathcal{L} and s.t. $\beta \neq c_{\gamma}$ if $\beta < \gamma < \alpha$. Let $C = \{c_{\beta} : \beta < \alpha\}$, $\overline{\mathcal{L}} = \mathcal{L} \cup C$. Clearly $\|\overline{\mathcal{L}}\| = \alpha$, so we may arrange all formulas of $\overline{\mathcal{L}}$ with at most one free variable in a sequence $\varphi_{\xi}, \xi < \alpha$. We now define an increasing sequence of sets of sentences of $\overline{\mathcal{L}}$:

$$T = T_0 \subset T_1 \subset \cdots \subset T_{\varepsilon} \subset \ldots, \quad \xi < \alpha$$

and a sequence $d_{\xi}, \xi < \alpha$ of constants from C s.t.

- 1. each T_{ξ} is consistent in $\overline{\mathcal{L}}$
- 2. if $\xi = \mathring{\xi} + 1$, then $T_{\xi} = T_{\zeta} \cup \{(\exists x_{\zeta})\varphi_{\zeta} \to \varphi_{\zeta}(d_{\zeta})\}; \xi_{\zeta}$ is the free variable in φ_{ζ} if it has one, otherwise $x_{\xi} = v_{0}$

3.if ξ is a limit ordinal different from 0, then $T_{\xi} = \bigcup_{\zeta < \xi} T_{\zeta}$

Let d_{ζ} be the first element of C which has not yet occurred in T_{ζ} . We show that

$$T_{\zeta+1} = T_{\zeta} \cup \{ (\exists x_{\zeta}) \varphi_{\zeta} \to \varphi_{\zeta}(d_{\zeta}) \}$$

is consistent. If this were not the case, then

$$T_\zeta \vdash \neg((\exists x_\zeta)\varphi_\zeta \to \varphi_\zeta(d_\zeta))$$

By propositional logic

$$T_{\zeta} \vdash (\exists x_{\zeta}) \varphi_{\zeta} \land \neg \varphi_{\zeta}(d_{\zeta})$$

As d_{ζ} does not occur in T_{ζ} , we have by predicate logic

$$\begin{split} T_\zeta \vdash (\forall x_\zeta)((\exists x_\zeta)\varphi_\zeta \land \neg\varphi_\zeta(x_\zeta)) \\ T_\zeta \vdash (\exists x_\zeta)\varphi_\zeta \land \neg(\exists x_\zeta)\varphi_\zeta \end{split}$$

which contradicts the consistency of T_{ζ} . If ξ is a nonzero limit ordinal, and each member of the increasing chain $T_{\zeta}, \zeta < \xi$ is consistent, then T_{ξ} is consistent.

Now let $\overline{T}=\bigcup_{\xi<\alpha}T_{\xi}$. Suppose φ is a formula of $\overline{\mathcal{L}}$ with at most the variable x free. Then we may assume that $\varphi=\varphi_x i$ and $x=x_{\xi}$ for some $\xi<\alpha$. Whence the sentence

$$(\exists x_{\xi})\varphi_x i \to \varphi_{\xi}(d_{\xi})$$

belongs to $T_{\xi+1}$ and so to \overline{T}

Lemma 1.3. Let T be a consistent set of sentences and C be a set of witnesses for T in \mathcal{L} . Then T has a model \mathfrak{A} s.t. every element of \mathfrak{A} is an interpretation of a constant $c \in C$

Proof. If a set of sentences T has a set C of witnesses in \mathcal{L} , then C is also a set of witnesses for every extension of T. Second, if an extension of T has a model \mathfrak{A} , then fA is also a model of T. So we may assume that T is maximal consistent in \mathcal{L}

For two constants $c, d \in C$, define

$$c \sim d$$
 iff $c \equiv d \in T$

Because T is maximal consistent, we see that \sim is an equivalence relation on C. For each $c \in C$, let

$$\tilde{c} = \{d \in C : d \sim c\}$$

be the equivalence class of c. We propose to construct a model $\mathfrak A$ whose set of elements A is the set of all these equivalence classes $\tilde c$, for $c \in C$; so we define

- 1. $A = \{\tilde{c} : c \in C\}$
- 2. For each n-placed relation symbol P in \mathcal{L} , we define an n-placed relation R' on the set C by: for all $c_1,\ldots,c_n\in C$

$$R'(c_1,\dots,c_n) \text{ iff } P(c_1,\dots,c_n) \in T$$

By our axioms of identity, we have

1 MODELS CONSTRUCTED FROM CONSTANTS

$$\vdash P(c_1, \dots, c_n) \land c_1 \equiv d_1 \land \dots \land c_n \equiv d_n \rightarrow P(d_1, \dots, d_n)$$

So \sim is what is called a **congruence relation**. $R(\tilde{c}_1,\dots,\tilde{c}_n)$ iff $P(c_1,\dots,c_n)\in T$

3. Now consider a constant symbol d of \mathcal{L} . From predicate logic, we have

$$\vdash (\exists v_0)(d \equiv v_0)$$

So $(\exists v_0)(d\equiv v_0)\in T$, and because T has witnesses, there is a constant $c\in C$ s.t.

$$(d \equiv c) \in T$$

the constant \boldsymbol{c} may not be unique, but its equivalence class is unique because

$$\vdash (d \equiv c \land d \equiv c' \to c \equiv c')$$

4. Let F be any m-placed function symbol of \mathcal{L} , and let $c_1,\dots,c_m\in C.$ We have

$$(\exists v_0)(F(c_1,\ldots,c_m)\equiv v_0)\in T$$

hence there is a constant $c \in C$ s.t.

$$(F(c_1,\dots,c_m)\equiv c)\in T$$

We use our axioms of identity to obtain

$$\vdash (F(c_1 \dots c_m) \equiv c \land c_1 \equiv d_1 \land \dots \land c_m \equiv d_m \land c \equiv d) \rightarrow F(d_1 \dots d_m) \equiv d$$

Hence we define

$$G(\tilde{c}_1 \dots \tilde{c}_m) \text{ iff } (F(c_1 \dots c_m) \equiv c) \in T$$

By induction

$$\mathfrak{A}\models t\equiv c\quad \text{ iff }\quad (t\equiv c)\in T$$

Since C is a set of witness for T, we have: for any terms t_1, t_2 of $\mathcal L$ with no free variables

$$\mathfrak{A} \models t_1 \equiv t_2 \quad \text{iff} \quad (t_1 \equiv t_2) \in T$$

for any atomic formula $P(t_1 \dots t_n)$ of \mathcal{L} containing no free variables

$$\mathfrak{A} \models P(t_1 \dots t_n)$$
 iff $P(t_1 \dots t_n) \in T$

Hence for any sentence φ of \mathcal{L}

$$\mathfrak{A} \models \varphi \quad \text{iff} \quad \varphi \in T$$

Suppose $\varphi = (\exists x)\psi$. If $fA \models \varphi$, then for some $\tilde{c} \in A, \mathfrak{A} \models \psi[\tilde{c}]$. This means that $\mathfrak{A} \models \psi(c)$. So $\psi(c) \in T$ and because

$$\vdash \psi(c) \to (\exists x)\psi$$

we have $\varphi \in T$. On the other hand, if $\varphi \in T$, then because T has witnesses, there exists a constant $c \in C$ s.t. $\psi(c) \in T$, so $\mathfrak{A} \models \psi(c)$. This gives $\mathfrak{A} \models \psi[\widetilde{c}]$ and $\mathfrak{A} \models \varphi$

Lemma 1.4. Let C be a set of constant symbols of \mathcal{L} , and let T be a set of sentences of \mathcal{L} . If T has a model \mathfrak{A} s.t. every element of \mathfrak{A} is an interpretation of some constant $c \in C$, then T can be extended to a consistent \overline{T} in \mathcal{L} for which C is a set of witnesses

Proof. Let \overline{T} be the sentences of \mathcal{L} true in \mathfrak{A}

Theorem 1.5 (Extended Completeness Theorem). Let Σ be a set of sentences of \mathcal{L} . Then Σ is consistent iff Σ has a model

Proof. Assume Σ is consistent. By Lemma 1.2 we consider extensions $\overline{\Sigma}$ of Σ and $\overline{\mathcal{L}}$ of \mathcal{L} , so that $\overline{\Sigma}$ has witnesses in $\overline{\mathcal{L}}$. By Lemma 1.3 let $\mathfrak A$ be the model of $\overline{\Sigma}$. Let $\mathfrak B$ be the model for $\mathcal L$ which is the reduct of $\mathfrak A$ to $\mathcal L$.

Corollary 1.6 (Downward Löwenheim–Skolem Theorem). *Every consistent theory T in* \mathcal{L} *has a model of power at most* $\|\mathcal{L}\|$

Proof. Choose \mathfrak{A} so that every element is a constant.

$$|B| = |A| \le \|\overline{\mathcal{L}}\| = \|\mathcal{L}\|$$

Theorem 1.7 (Gödel's Completeness Theorem). *A sentence of* \mathcal{L} *is a theorem of* \mathcal{L} *iff it is valid*

Proof. If a sentence σ is not a theorem of \mathcal{L} , then $\{\neg \sigma\}$ is consistent in \mathcal{L} . By Theorem 1.5, $\{\neg \sigma\}$ will have a model where σ cannot hold. Hence σ is not valid

Theorem 1.8 (Compactness Theorem). A set of sentences Σ has a model iff every finite subset of Σ has a model

Proof. If every finite subset of Σ has a model, then every finite subset of Σ is consistent. So Σ is consistent and has a model by Theorem 1.5

Corollary 1.9. *If a theory T has arbitrarily large finite models, then it has an infinite model*

Proof. Consider the expansion $\mathcal{L}' = \mathcal{L} \cup \{c_n : n \in \omega\}$ where c_n is a list of distinct constant symbols not in \mathcal{L} . Consider the set Σ of \mathcal{L}' defined by

$$\Sigma = T \cup \{ \neg (c_n \equiv c_m) : n < m < \omega \}$$

Any finite subset Σ' of Σ will involve at most the constants c_0,\ldots,c_m for some m. Let $\mathfrak A$ be a model of T with at least m+1 elements, and let a_0,\ldots,a_m be a list of m+1 distinct elements of $\mathfrak A$. The model $(\mathfrak A,a_0,\ldots,a_m)$ for the finite expansion $\mathcal L''=\mathcal L\cup\{c_0,\ldots,c_m\}$ of $\mathcal L$ is a model of (Σ') . So by Theorem 1.8 Σ has a model.

Corollary 1.10 (Upward Löwenheim–Skolem-Tarski Theorem). *If* T *has infinite models, then it has infinite models of any given power* $\alpha \ge \|\mathcal{L}\|$

Method of diagrams. Let $\mathfrak A$ be a model of $\mathcal L$. We expand the language $\mathcal L$ to a new language

$$\mathcal{L}_A = \mathcal{L} \cup \{c_a : a \in A\}$$

by If $a \neq b$ and c_a, c_b are different symbols, we may then expand ${\mathfrak A}$ to the model

$$\mathfrak{A}_A = (\mathfrak{A}, a)_{a \in A}$$

The **diagram of** \mathfrak{A} , denote by $\Delta_{\mathfrak{A}}$, is the set of all atomic sentences and negations of atomic sentences of \mathcal{L}_A which hold in the model \mathfrak{A}_A

If X is a subset of A, then we let $\mathcal{L}_X = \mathcal{L} \cup \{c_a : a \in X\}$ and $\mathfrak{A}_X = (\mathfrak{A},a)_{a\in X}$. If f is a mapping from X into the set of elements B of a model \mathfrak{B} for \mathcal{L} , then $(\mathfrak{B},fa)_{a\in X}$ is the expansion of \mathfrak{B} to a model for \mathcal{L}_X

Proposition 1.11. *Let* \mathfrak{A} , \mathfrak{B} *be models for* \mathcal{L} *and let* $f: A \to B$. *Then the following are equivalent:*

- 1. f is an isomorphic embedding of $\mathfrak A$ into $\mathfrak B$
- 2. There is an extension $\mathfrak{C} \supset \mathfrak{A}$ and an isomorphism $g : \mathfrak{C} \cong \mathfrak{B}$ s.t. $g \supset f$
- 3. $(\mathfrak{B}, fa)_{a \in A}$ is a model of the diagram of \mathfrak{A}

Proof. $1 \rightarrow 2$. Extend the set A to a set C and extend the function f to a one-to-one function g from C onto B. Then define the relations

$$\mathfrak{C} \models R[c_1 \dots c_n] \quad \text{ iff } \quad \mathfrak{B} \models R[gc_1 \dots gc_n]$$

 $1 \leftrightarrow 2$. For each formula $\varphi(x_1 \dots x_n)$ and all $a_1, \dots, a_n \in A$

$$\mathfrak{A}\models\varphi[a_1\dots a_n]\quad\text{ iff }\quad\mathfrak{A}_A\models\varphi(a_1\dots a_n)$$

and

$$\mathfrak{B} \models \varphi[fa_1 \dots fa_n] \quad \text{ iff } \quad (\mathfrak{B}, fa)_{a \in A} \models \varphi(a_1 \dots a_n)$$

Corollary 1.12. Suppose that \mathcal{L} has no function or constant symbols. Let T be a theory in \mathcal{L} and \mathfrak{A} be a model for \mathcal{L} . Then \mathfrak{A} is isomorphically embedded in some model of T iff every finite submodel of \mathfrak{A} is isomorphically embedded in some model of T

Proof. Suppose every finite submodel of $\mathfrak A$ is isomorphically embedded in some model of T. We show that the set $\Sigma = T \cup \triangle_{\mathfrak A}$ is consistent. Every finite subset Σ' of Σ contains at most a finite number of the new constants, say c_{a_1}, \ldots, c_{a_m} . Because the language $\mathcal L$ has no function or constant symbols, the finite set $A' = \{a_1, \ldots, a_m\}$ generates a finite submodel $\mathfrak A'$ of $\mathfrak A$. Let $\mathfrak B'$ be a model of T where $\mathfrak A'$ is isomorphically embedded. Since $\Sigma' \subset \Sigma$, by Proposition 1.11 $\mathfrak B'$ can be extended to a model of Σ' , and hence Σ' has a model. By campactness, Σ has a model $\mathfrak B$. By Proposition 1.11 the reduct of $\mathfrak B$ to $\mathcal L$ gives a mode lof T

1.2 Refinements of the method. Omitting types and interpolation theorems

$$\mathfrak{A} \models \Sigma[a_1 \dots a_n]$$

for every $\sigma \in \Sigma, a_1, \dots, a_n$ satisfies σ in \mathfrak{A} ; in this case we say that a_1, \dots, a_n satisfies, or realizes Σ in \mathfrak{A} .

 $\mathfrak A$ realizes Σ iff some n-tuple of elements of A satisfies Σ in $\mathfrak A$. $\mathfrak A$ omits Σ iff $\mathfrak A$ does not realize Σ . Σ is satisfiable in $\mathfrak A$ iff $\mathfrak A$ realizes Σ . Σ is consistent iff its satisfiable

By a **type** $\Gamma(x_1 \dots x_n)$ in the variables x_1, \dots, x_n we mean a maximal consistent set of formulas of $\mathcal L$ in these variables. Given any model $\mathfrak A$ and n-tuple $a_1, \dots, a_n \in A$, the set $\Gamma(x_1 \dots x_n)$ of all formulas $\gamma(x_1 \dots x_n)$ satisfied by a_1, \dots, a_n is a type and is the unique type realized by a_1, \dots, a_n . It is called the **type of** a_1, \dots, a_n in $\mathfrak A$

Proposition 1.13. Let T be a theory and let $\Sigma = \Sigma(x_1 \dots x_n)$. The following are equivalent

- 1. T has a model which realizes Σ
- 2. Every finite subset of Σ is realized in some model of T
- 3. $T \cup \{(\exists x_1 \dots x_n)(\sigma_1 \wedge \dots \wedge \sigma_m) : m < \omega, \sigma_1, \dots, \sigma_m \in \Sigma\}$ is consistent

Let $\Sigma = \Sigma(x_1 \dots x_n)$ be a set of formulas of \mathcal{L} . A theory T in \mathcal{L} is said to **locally realize** Σ iff there is a formula $\varphi(x_1 \dots x_n)$ in \mathcal{L} s.t.

- 1. φ is consistent with T
- 2. For all $\sigma \in \Sigma$, $T \models \varphi \rightarrow \sigma$

That is, every *n*-tuple in a model of *T* which satisfies φ realizes Σ

T locally omits Σ iff T does not locally realize Σ . Thus T locally omits Σ iff for every formula $\varphi(x_1\dots x_n)$ which is consistent with T, there exists $\sigma\in\Sigma$ s.t. $\varphi\wedge\neg\sigma$ is consistent with T

Proposition 1.14. *Let* T *be a complete theory in* \mathcal{L} , and let $\Sigma = \Sigma(x_1 \dots x_n)$ *be a set of formulas of* \mathcal{L} . If T *has a model which omits* Σ , then T locally omits Σ

Proof. If T locally realizes Σ , then every model of T realizes Σ

Theorem 1.15 (Omitting Types Theorem). Let T be a consistent theory in a countable language \mathcal{L} , and let $\Sigma(x_1 \dots x_n)$ be a set of formulas. If T locally omits Σ , then T has a countable model which omits Σ

Proof. Suppose T locally omits $\Sigma(x)$. Let $C=\{c_0,c_1,...\}$ be a countable set of new constant symbols not already in $\mathcal L$ and let $\mathcal L'=\mathcal L\cup C$. Then $\mathcal L'$ is countable. Arrange all the sentences of $\mathcal L'$ in a list $\varphi_0,\varphi_1,...$ We shall construct an increasing sequence of consistent theories

$$T=T_0\subset T_0\subset \cdots \subset T_m\subset \ldots$$

s.t.

- 1. Each T_m is a consistent theory of \mathcal{L}' which is a finite extension of T
- 2. Either $\varphi_m \in T_{m+1}$ or $(\neg \varphi_m) \in T_{m+1}$
- 3. If $\varphi_m=(\exists x)\psi(x)$ and $\varphi_m\in T_{m+1}$, then $\psi(c_p)\in T_{m+1}$ where c_p is the first constant not occuring in T_m or φ_m
- 4. There is a formula $\sigma(x) \in \Sigma(x)$ s.t. $(\neg \sigma(c_m)) \in T_{m+1}$

Assuming we already have the theory T_m , we construct T_{m+1} as follows: Let $T_m = T \cup \{\theta_1, \dots, \theta_r\}, r > 0$ and let $\theta = \theta_1 \wedge \dots \wedge \theta_r$. Let c_0, \dots, c_n contain all the constants from C occuring in θ . For the formula $\theta(x_m)$ of $\mathcal L$ by replacing each constant c_i by x_i (renaming bound variables if necessary) and prefixing by $\exists x_i, i \not\equiv m$. Then $\theta(x_m)$ is consistent with T. Therefore for some $\sigma(x) \in \Sigma(x)$, $\theta(x_m) \wedge \neg \sigma(x_m)$ is consistent with T. Put the sentence $\neg \sigma(c_m)$ into T_{m+1} . This makes (4) hold

If φ_m is consistent with $T_m \cup \{\neg \sigma(c_m)\}$, put φ_m into T_{m+1} . Otherwise put $(\neg \varphi_m)$ into T_{m+1} . This take care of (2). If $\varphi_m = (\exists x) \psi(x)$ is consistent with $T_m \cup \{\neg(\sigma(c_m))\}$, put $\psi(c_p)$ into T_{m+1} . This take care of (3). The theory T_{m+1} is a consistent finite extension of T_m . Thus (1) - (4) hold for T_{m+1}

Let $T_{\omega} = \bigcup_{n < \omega} T_n$. From (1) and (2) we see that T_{ω} is a maximal consistent theory in \mathcal{L}' . Let $\mathfrak{B}' = (\mathfrak{B}, b_0, b_1, \dots)$ be a countable model of T_{ω} , and

let $\mathfrak{A}'=(\mathfrak{A},b_0,b_1,\dots)$ be the submodel of \mathfrak{B}' generated by the constants b_0,b_1,\dots We then see from (3) that

$$A = \{b_0, b_1, \dots\}$$

Moreover, using (3) and the completeness of T_{ω} , we can show by induction on the complexity of a sentence φ in \mathcal{L}' that

$$\mathfrak{A}' \models \varphi, \quad \mathfrak{B}' \models \varphi, \quad T_{\omega} \models \varphi$$

are all equivalent. Thus \mathfrak{A}' is a model of T_{ω} and hence \mathfrak{A} is a model of T. Finally condition (4) ensures that \mathfrak{A} omits Σ

Corollary 1.16. Let \mathcal{L} be countable. A theory T has a (countable) model omitting $\Sigma(x_1 \dots x_n)$ iff some complete extension of T locally omits $\Sigma(x_1 \dots x_n)$

Example 1.1. Consider the language $\mathcal{L} = \{+,\cdot,S,0\}$. We abbreviate $1 = S0, 2 = SS0, 3 = SSS0, \dots$ By an ω -model we mean a model $\mathfrak A$ in which

$$A = \{0, 1, 2, 3, \dots\}$$

that is, $\mathfrak A$ omits the set $\{x \not\equiv 0, x \not\equiv 1, \dots\}$. A theory T in $\mathcal L$ is said to be ω -consistent iff there is no formula $\varphi(x)$ of $\mathcal L$ s.t.

$$T \models \varphi(0), \quad T \models \varphi(1), \quad T \models \varphi(2), \dots$$

and

$$T \models (\exists x) \neg \varphi(x)$$

T is said to be ω -complete iff for every formula $\varphi(x)$ of \mathcal{L} we have

$$T \models \varphi(0), T \models \varphi(1), T \models \varphi(2), \dots$$
 implies $T \models (\forall x)\varphi(x)$

If follows from the omitting types theorem that

Proposition 1.17. *Let* T *be a consistent theory in* \mathcal{L}

- 1. If T is ω -complete, then T has an ω -model
- 2. If T has an ω -model, then T is ω -consistent

Proof. 1. We show that T locally omits the set $\Sigma(x) = \{x \not\equiv 0, x \not\equiv 1, \dots\}$. Suppose $\theta(x)$ is consistent with T. Then $T \models (\forall x) \neg \theta(x)$ fails. By ω -completeness, there is a n s.t. not $T \models \neg \theta(n)$. Hence $\theta(n)$ is consistent with T, so $\theta(x) \land \neg x \not\equiv n$ is consistent with T. Thus T locally omits $\Sigma(x)$

The ω -rule is the following infinite rule of proof: From $\varphi(0), \varphi(1), ...$ infer $(\forall x)\varphi(x)$, where $\varphi(x)$ is any formula of \mathcal{L} . ω -logic is formed by adding the ω -rule to the axioms and rules of inference of the first-order logic \mathcal{L} and allowing infinitely long proofs. We have the following completeness theorem for ω -logic

Proposition 1.18 (ω -Completeness Theorem). *A theory T in* \mathcal{L} *is consistent in* ω -logic iff T has an ω -model

Proof. Let T' be the set of all sentences of $\mathcal L$ provable from T in ω -logic. Then T is consistent in ω -logic iff T' is consistent in $\mathcal L$. Moreover, T' is ω -complete. Therefore T' has an ω -model iff T' is consistent

Example 1.2 (Continue). Let \mathcal{L}' be a countable language which has among its symbols a special unary relation symbol N and special constant symbols 0,1,2,... By an ω -model for \mathcal{L}' we mean a model \mathfrak{A} for \mathcal{L}' in which N is interpreted by the set ω of natural numbers, and 0,1,2,... are interpreted by themselves. In an ω -model, ω is a subset of the universe A, but we allow A to contain elements outside of ω or even to be uncountable

Let T_N be the special set of sentences

$$T_N = \{N(m): m < \omega\} \cup \{\neg m \equiv n: m < n < \omega\}$$

which state that the natural numbers are distinct and belong to N. T_N holds in every ω -model for \mathcal{L}' . A theory T in \mathcal{L}' is said to be ω -consistent iff there is no formula $\varphi(x)$ of \mathcal{L}' s.t.

$$T_N \cup T \models \varphi(0), T_N \cup T \models \varphi(1), T_N \cup T \models \varphi(2), \dots$$

and

$$T_N \cup T \models (\exists x)(N(x) \land \neg \varphi(x))$$

T is said to be ω -complete iff for every formula $\varphi(x)$ of \mathcal{L}' we have

$$T_N \cup T \models \varphi(0), T_N \cup T \models \varphi(1), T_N \cup T \models \varphi(2), \dots$$

implies

$$T_N \cup T \models (\forall x)(N(x) \to \varphi(x))$$

The ω -rule for \mathcal{L}' is the infinite rule: From $\varphi(0), \varphi(1), \varphi(2), ...$ infer $(\forall x)(N(x) \to \varphi(x))$. By **generalized** ω -logic we mean first order logic for the language \mathcal{L}' with T_N added as an additional set of logical axioms and the ω -rule added as an additional rule of proof

Proposition 1.19. Let T be a theory in \mathcal{L}' s.t. $T_N \cup T$ is consistent

- 1. If T is ω -complete, then T has an ω -model
- 2. If T has an ω -model, then T is ω -consistent

Proposition 1.20. A theory T in \mathcal{L}' is consistent in generalized ω -logic iff T has an ω -model

Theorem 1.21 (Extended Omitting Types Theorem). Let T be a consistent theory in a countable language \mathcal{L} , and for each $r < \omega$ let $\Sigma_r(x_1, \ldots, x_{n_r})$ be a set of formulas in n_r variables. If T locally omits each Σ_r , then T has a countable model which omits each Σ_r

Let's consider the theory ZF, Zermelo-Fraenkel set theory. A model $\mathfrak{B}=\langle B,F\rangle$ of ZF is said to be an **end extension** of a model $\mathfrak{A}=\langle A,E\rangle$ of ZF iff \mathfrak{B} is a proper extension of \mathfrak{A} and no member of A gets a new element, that is

if
$$a \in A$$
 and $b \in B$, then bFa implies $b \in A$

Theorem 1.22. Every countable model $\mathfrak{A} = \langle A, E \rangle$ of ZF has an end elementary extension

Proof. Let \mathcal{L} be the language with the symbol \in , a constant symbol \bar{a} for each $a \in A$, and a new constant symbol c. Let T be the theory with the axioms

$$\begin{aligned} & \operatorname{Th}((\mathfrak{A},a)_{a\in A}) \\ & c\notin \bar{a}, \quad \text{where } a\in A \end{aligned}$$

T is consistent because every finite subset of T has a model of the form $(\mathfrak{A},a,c)_{a\in A}$. For each $a\in A$, let $\Sigma_a(x)$ be the set of formulas

$$\Sigma_a(x) = \{x \in \bar{a}\} \cup \{x \not\equiv \bar{b} : bEa\}$$

It suffices to show that T locally omits each set $\Sigma_a(x)$. For then T has a model $(\mathfrak{B},a,c)_{a\in A}$ which omits each $\Sigma_a(x)$. We may also assume that $A\subset B$. \mathfrak{B} is an elementary extension of \mathfrak{A} because $\mathrm{Th}((\mathfrak{A},a)_{a\in A})\subset T$, whence $(\mathfrak{A},a)_{a\in A}\equiv (\mathfrak{B},a)_{a\in A}$. \mathfrak{B} is a proper extension because $c\in B\setminus A$. Finally \mathfrak{B} is an end extension because it omits each $\Sigma_a(x)$

A formula $\varphi(x,c)$ of \mathcal{L} is consistent with T iff

$$(\mathfrak{A}, a)_{a \in A} \models (\forall y)(\exists z)(\exists x)[z \notin y \land \varphi(x, z)]$$

Suppose $\varphi(x,c)$ is consistent with T, but $\varphi(x,c) \land \neg x \in \bar{a}$ is not. Then $\varphi(x,c) \land x \in \bar{a}$ is consistent with T. Using the axiom of replacement in ZF, we see in turn that the following sentences hold in $(\mathfrak{A},a)_{a\in A}$

$$(\forall y)(\exists z)(\exists x)[z \notin y \land \varphi(x,z) \land x \in \overline{a}]$$
$$(\exists x)(\forall y)(\exists z)[z \notin y \land \varphi(x,z) \land x \in \overline{a}]$$

Then for some $b\in A, \varphi(\bar{b},c)\wedge \bar{b}\in \bar{a}$ is consistent with T, whence $\varphi(x,c)\wedge x\equiv \bar{b}$ is consistent with T. Thus T locally omits $\Sigma_a(x)$

The omitting types theorem is false for uncountable languages. For example, let T be the theory with the axioms

$$c_{\alpha} \neq c_{\beta}, \alpha < \beta < \omega_1$$

in the language \mathcal{L} with constants

$$\{c_{\alpha}: \alpha < \omega_1\} \cup \{d_n: n < \omega\}$$

Let $\Gamma(x)$ be the set of formulas

$$\Gamma(x) = \{ x \not\equiv d_n : n < \omega \}$$

Then T locally omits $\Gamma(x)$. However no model of T omits $\Gamma(x)$ because every model of T is uncountable but each model which omits $\Gamma(x)$ is countable

Let T be a theory and $\Sigma(x_1 \dots x_n)$ a set of formulas in a language $\mathcal L$ of power α . We say that T α -realizes Σ iff there is a set $\Phi(x_1 \dots x_n)$ of fewer than α formulas of $\mathcal L$ s.t.

- 1. Φ is consistent with T
- 2. $T \cup \Phi(x_1 \dots x_n) \models \Sigma(x_1 \dots x_n)$

that is, in any model $\mathfrak A$ of T, any n-tuple which realizes Φ realizes Σ . Note that if Σ has power less than α , then T α -realizes Σ trivially.

Theorem 1.23 (α -Omitting Types Theorem). Let T be a consistent theory in a language $\mathcal L$ of power α and let $\Sigma(x_1 \dots x_n)$ be a set of formulas of $\mathcal L$. If T α -omits Σ , then T has a model of power $\leq \alpha$ which omits Σ

Theorem 1.24 (Craig Interpolation Theorem). Let φ , ψ be sentences $s.t. \varphi \models \psi$. Then there exists a sentence θ s.t.

- 1. $\varphi \models \theta$ and $\theta \models \psi$
- 2. Every relation, function or constant symbol (excluding identity) which occurs in θ also occurs in both φ and ψ

The sentence θ will be called a **Craig interpolation** of φ , ψ .

Example 1.3. In each of the following, φ and ψ are sentences s.t. the identity symbol occurs in at most one of them, and $\varphi \models \psi$; however, φ , ψ have no Craig interpolation in which the identity symbol does not occur

- 1. $\varphi = (\exists x)(P(x) \land \neg P(x)), \psi = (\exists x)Q(x)$
- 2. $\varphi = (\exists x)Q(x), \psi = (\exists x)(P(x) \lor \neg P(x))$
- 3. $\varphi = (\forall xy)(x \equiv y), \psi = (\forall xy)(P(x) \leftrightarrow P(y))$

Proof. We assume that there is no Craig interpolant θ of φ and ψ , and prove that it is note the case that $\varphi \models \psi$. To do this we construct a model of $\varphi \land \neg \psi$. We may assume without loss of generality that \mathcal{L} is the language of all symbols which occur in either φ or ψ or both. Let \mathcal{L}_1 be the language of all symbols of φ , \mathcal{L}_2 be the language of all symbols of ψ , and \mathcal{L}_0 the language of all symbols occurring in both φ and ψ . Thus

$$\mathcal{L}_1 \cap \mathcal{L}_2 = \mathcal{L}_0, \quad \mathcal{L}_1 \cup \mathcal{L}_2 = \mathcal{L}$$

Form an expansion \mathcal{L}' of \mathcal{L} by adding a countable set C of new constant symbols and let

$$\mathcal{L}_0' = \mathcal{L}_0 \cup C, \quad \mathcal{L}_1' = \mathcal{L}_1 \cup C, \quad \mathcal{L}_2' = \mathcal{L}_2 \cup C$$

Consider a pair of theories T in \mathcal{L}_1' and U in \mathcal{L}_2' . A sentence θ of \mathcal{L}_0' is said to **separate** T and U iff

$$T \models \theta$$
 and $U \models \neg \theta$

T and U are said to be **inseparable** iff no sentence θ of \mathcal{L}'_0 separates them.

1. $\{\varphi\}$ and $\{\neg\psi\}$ are inseparable

For if $\theta(c_1,\ldots,c_n)$ separates $\{\varphi\}$ and $\{\neg\psi\}$ and u_1,\ldots,u_n are variables not occurring in $\theta(c_1,\ldots,c_n)$, then $(\forall u_1\ldots u_n)\theta(u_1\ldots u_n)$ is a Craig interpolant of φ and ψ , contrary to our assumption

Now let

$$\varphi_0,\varphi_1,\dots,\psi_0,\psi_1,\dots$$

be enumerations of all sentences of \mathcal{L}_1' and of \mathcal{L}_2' respectively. We shall construct two increasing sequences of theories,

$$\{\varphi\} = T_0 \subset T_1 \subset \dots,$$

$$\{\neg \psi\} = U_0 \subset U_1 \subset \dots$$

in \mathcal{L}_1' and \mathcal{L}_2' , respectively, s.t.

- 2. T_m and U_m are inseparable finite sets of sentences
- 3. If $U_m \cup \{\varphi_m\}$ and U_m are inseparable, then $\varphi_m \in T_{m+1}$ If T_{m+1} and $U_m \cup \{\psi_m\}$ are inseparable, then $\psi_m \in U_{m+1}$
- 4. If $\varphi_m=(\exists x)\sigma(x)$ and $\varphi_m\in T_{m+1}$, then $\sigma(c)\in T_{m+1}$ for some $c\in C$ If $\psi(m)=(\exists x)\delta(x)$ and $\psi_m\in U_{m+1}$, then $\delta(d)\in U_{m+1}$ for some $d\in C$

Given T_m and U_m , the theories T_{m+1} and U_{m+1} are constructed in the obvious way. For (4), use constants c and d which do not occur in $T_m, U_m, \varphi_m, \psi_m$. Then inseparability will be preserved. Let

$$T_{\omega} = \bigcup_{m < \omega} T_m, \quad U_{\omega} = \bigcup_{m < \omega} U_m$$

Then T_{ω} and U_{ω} are inseparable. It follows that T_{ω} and U_{ω} are each consistent. We must show that $T_{\omega} \cup U_{\omega}$ is consistent. We show first that

5. T_{ω} is a maximal consistent theory in \mathcal{L}_1' and U_{ω} is a maximal consistent theory in \mathcal{L}_2' .

Suppose $\varphi_m \notin T_\omega$ and $(\neg \varphi_m) \notin T_\omega$. Since $T_m \cup \{\varphi_m\}$ is separable from U_m , there exists $\theta \in \mathcal{L}_0'$ s.t.

$$T_{\omega} \models \varphi_m \to \theta, \quad U_{\omega} \models \neg \theta$$

Also there exists $\theta' \in \mathcal{L}'_0$ s.t.

$$T_{\omega} \models \neg \varphi_m \to \theta', \quad U_{\omega} \models \neg \theta'$$

But then

$$T_{\alpha} \models \theta \lor \theta', \quad U_{\alpha} \models \neg(\theta \lor \theta')$$

contradicting the inseparability of T_{ω} and U_{ω} .

6. $T_{\omega} \cap U_{\omega}$ is a maximal consistent theory in \mathcal{L}'_0

Let σ be a sentence of \mathcal{L}_0' . By (5), either $\sigma \in T_\omega$ or $(\neg \sigma) \in T_\omega$ and either $\sigma \in U_\omega$ or $(\neg \sigma) \in U_\omega$. Therefore either $T_\omega \cap U_\omega \models \sigma$ or $T_\omega \cap U_\omega \models \neg \sigma$

Let $\mathfrak{B}_1'=(\mathfrak{B}_1,b_0,b_1,\dots)$ be a model of T_ω . Using (4) and (5) we see that the submodel $\mathfrak{A}_1'=(\mathfrak{A}_1,b_0,b_1,\dots)$ with universe $A_1=\{b_0,b_1,\dots\}$ is also a model of T_ω . Similarly U_ω has a model $\mathfrak{A}_2'=(\mathfrak{A}_2,d_0,d_1,\dots)$ with universe $A_2=\{d_0,d_1,\dots\}$. By (6), the \mathcal{L}_0' reducts of \mathfrak{A}_1' and \mathfrak{A}_2' are isomorphic, with b_n corresponding to d_n . We may therefore take $b_n=d_n$ for each n, where $\mathfrak{A}_1,\mathfrak{A}_2$ have the same \mathcal{L}_0 reduct. Let \mathfrak{A} be the model for \mathcal{L} with \mathcal{L}_1 reduct \mathfrak{A}_1 and \mathcal{L}_2 reduct \mathfrak{A}_2 . Since $\varphi\in T_\omega$ and $(\neg\psi)\in U_\omega$, \mathfrak{A} is a model of $\varphi\wedge\neg\psi$

Let P and P' be two new n-placed relation symbols not in the language \mathcal{L} . Let $\Sigma(P)$ be a set of sentences of the language $\mathcal{L} \cup \{P\}$, and let $\Sigma(P')$ be

the corresponding set of sentences $\mathcal{L} \cup \{P'\}$ formed by replacing P everywhere by P'. We say that $\Sigma(P)$ **defines** P **implicitly** iff

$$\Sigma(P) \cup \Sigma(P') \models (\forall x_1 \dots x_n)[P(x_1 \dots x_n) \leftrightarrow P'(x_1 \dots x_n)]$$

Equivalently, if (\mathfrak{A},R) and (\mathfrak{A},R') are models of $\Sigma(P)$, then R=R', $\Sigma(P)$ is said to **define** P **explicitly** iff there exists a formula $\varphi(x_1\dots x_n)$ of \mathcal{L} s.t.

$$\Sigma(P) \models (\forall x_1 \dots x_n) [P(x_1 \dots x_n) \leftrightarrow \varphi(x_1 \dots x_n)]$$

If $\Sigma(P)$ defines P explicitly, then $\Sigma(P)$ defines P implicitly. Thus, to show that $\Sigma(P)$ does not define P explicitly, it suffices to find two model (\mathfrak{A},R) and \mathfrak{A},R' of $\Sigma(P)$, with the same reduct \mathfrak{A} to \mathcal{L} s.t. $R\neq R'$. This is **Padoa's method**

Theorem 1.25 (Beth's Theorem). $\Sigma(P)$ defines P implicitly iff $\Sigma(P)$ defines P explicitly

Proof. Suppose that $\Sigma(P)$ defines P implicitly. Add new constants c_1,\dots,c_n to $\mathcal L.$ Then

$$\Sigma(P) \cup \Sigma(P') \models P(c_1 \dots c_n) \to P'(c_1 \dots c_n)$$

By the compactness theorem, there exists finite subsets $\Delta \subset \Sigma(P), \Delta' \subset \Sigma(P')$ s.t.

$$\Delta \subset \Delta' \models P(c_1 \dots c_n) \to P'(c_1 \dots c_n)$$