

Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro

AP1 – Fundamentos de Programação – 1/2023

Código da disciplina EAD 05029

Matrícula:	
Polo:	
At	tenção!
	ntes de começar a resolver as questões, preencha conforme parte superior da folha) o número do CPF ou o número da degrito) e o número da folha.
PADRÃO DE PREENCHIMENTO NA FOLHA DE F	RESPOSTAS
HUM HOOIS HTRÊS HQUATRO HCI	NCO SEIS SETE SOITO SINOVE SIZERO

• Preencha o número total de folhas somente quando for entregar a prova!

Nome:

- Identifique a Prova e as Folhas de respostas, colocando Nome, Matrícula e Polo.
- É expressamente proibido o uso de qualquer instrumento que sirva para cálculo como também qualquer material que sirva de consulta.
- Devolver esta prova e as Folhas de Respostas ao aplicador.
- Somente utilize caneta esferográfica com tinta azul ou preta para registro das resoluções nas Folhas de Respostas.
- As Folhas de Respostas serão o único material considerado para correção. Quaisquer anotações feitas fora deste espaço, mesmo que em folha de rascunho, serão ignoradas.
- Não amasse, dobre ou rasure as Folhas de Respostas, pois isto pode inviabilizar a digitalização e a correção.

Curso de Tecnologia em Sistemas de Computação Disciplina Fundamentos de Programação - EAD 05029

Professores: Dante Corbucci Filho – IC/UFF e Luís Felipe Ignácio Cunha – IC/UFF

AP1 – Fundamentos de Programação – 1/2023

IMPORTANTE

- Serão aceitos apenas soluções escritas na linguagem Python 3.
- Prova sem consulta e sem uso de qualquer aparato eletrônico.
- Ao final da prova, devolva as folhas de questões e as de respostas.
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Boa Avaliação!

1a Questão (2,0 pontos)

Faça um programa contendo subprogramas que atendam à seguinte especificação. Inicialmente leia da entrada padrão uma lista de números, onde cada linha contém um número inteiro. A última linha lida deve conter uma string vazia.

Seu programa deve listar:

Os números pares contidos na lista;

Em seguida, os números ímpares contidos na lista;

Em seguida, os números primos contidos na lista.

Observe rigorosamente as escritas mostradas nos testes.

Ao final, seu programa deve escrever na saída padrão a mensagem de agradecimento: "Obrigado por utilizar nosso sistema!!!".

Definição: um número inteiro é primo se e somente se for maior que um e apenas divisível por um e por ele mesmo.

Teste:

Entradas:	Saídas Correspondentes:
1	Listagem de Pares:
0	0
997	2
2	4
<u> </u>	Fim da Listagem de Pares
4	Listagem de Ímpares:
	1

	997
	Fim da Listagem de Ímpares
	Listagem de Primos:
	997
	2
	Fim da Listagem de Primos
	Obrigado por utilizar nosso sistema!!!
3	Listagem de Pares:
	Fim da Listagem de Pares
	Listagem de Ímpares:
	3
	Fim da Listagem de Ímpares
	Listagem de Primos:
	3
	Fim da Listagem de Primos
	Obrigado por utilizar nosso sistema!!!

2a Questão (2,0 pontos)

Faça um programa que contenha subprogramas. Este programa deve ler da entrada padrão a quantidade de pontos do espaço bidimensional. Em seguida, a cada linha da entrada padrão, deve ser lido um ponto, representado pelas coordenadas xPonto (tipo float) e yPonto (tipo float). Mantenha estes pontos em uma lista. Em seguida, seu programa deve entrar num ciclo repetitivo onde as coordenadas do centro de uma circunferência, isto é: xCircunferencia, yCircunferencia e seu respectivo raio, rCircunferencia sejam lidos, até que a circunferência de centro zero e zero, e raio zero seja lida. Para cada circunferência não nula (0,0,0) escreva todos os pontos da lista contida nela.

Ao final, seu programa deve escrever na saída padrão a mensagem "Obrigado por utilizar nosso sistema!!!".

Definição: a distância entre dois pontos (xA, yA) e (xB, yB) é dada pela raiz quadrada da soma dos quadrados das diferenças (xB-xA) e (yB-yA).

Teste:

Entradas:	Saídas Correspondentes:
5	Contidos na circunferência com centro (10.0,
10 10	10.0) e raio 20.0:
20 20	(10.0, 10.0)
30 30	(20.0, 20.0)
15 25	(15.0, 25.0)
25 5	(25.0, 5.0)
10 10 20	Contidos na circunferência com centro (10.0,
10 20 10	20.0) e raio 10.0:
5 5 10	(10.0, 10.0)
0 0 0	(20.0, 20.0)
	(15.0, 25.0)
	Contidos na circunferência com centro (5.0,
	5.0) e raio 10.0:
	(10.0, 10.0)
	Obrigado por utilizar nosso sistema!!!
1	Contidos na circunferência com centro (100.0,
77.4 88.5	100.0) e raio 20.0:
100 100 20	
100 90 30.5	Contidos na circunferência com centro (100.0,
0 0 0	90.0) e raio 30.5:
	(77.4, 88.5)
	Obrigado por utilizar nosso sistema!!!

3a Questão (6,0 pontos)

A função de Collatz é uma famosa função matemática que faz a seguinte operação com os elementos pertencentes aos números naturais: Se o elemento **n** for um número par, então como resultado teremos **n/2**; Se o elemento **n** for um número ímpar, então como resultado teremos **3n+1**. Faça o que se pede:

- (a) (2.0 pontos) Implemente a função de Collatz. Para isso, faça também um programa que caso o elemento XYZ posto na entrada seja um número inteiro então retorne o resultado da função de Collatz. Caso o elemento não seja inteiro então retorne a seguinte frase: "Valor XYZ não é inteiro".
- (b) (2.0 pontos) Uma interessante observação conhecida na comunidade matemática é que ao ter como entrada qualquer valor pertencente aos números naturais e aplicando a função de Collatz sucessivamente, a sequência associada aos resultados das aplicações da função sempre vai para os elementos 4, 2, 1, e depois fica nesse ciclo, essa é a **Sequência de Collatz**. Por exemplo, caso a entrada seja o número 7, ao aplicarmos a função de Collatz teremos o 22, aplicando agora ao 22, teremos o 11, depois o 34, e assim sucessivamente. Dessa forma, a sequência de Collatz é 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, Note que ao chegar ao 4, 2, 1, nunca obteremos outros números a não ser um desses três. A observação é que isso vale para qualquer número natural considerado inicialmente. Implemente a sequência de Collatz do valor posto no item (a).
- (c) (2.0 pontos) Implemente a sequência de Collatz em relação a todos os naturais de 3 até o valor posto no item (a).

Atenção: Sua saída deve ser no formato tal como nos testes do exemplo abaixo.

Teste:

Entrada:	Saídas Correspondentes:
Entre com o elemento para aplicar a função de Collatz	
a	
	Valor a não é inteiro
Entre com o elemento para aplicar a função de Collatz	
9	
	Aplicando a função de Collatz ao 9, temos: 28 Além disso, a sequência de Collatz de 9 é: 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 A Conjectura de Collatz de 3 até 9 é verdadeira, pois: 3 10 5 16 8 4 2 1 4 2 1 5 16 8 4 2 1 6 3 10 5 16 8 4 2 1 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 8 4 2 1 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Boa Avaliação!