

MAPA INTERATIVO "ESTOU AQUI, COMO CHEGAR" COM AUXILIO DE REALIDADE AUMENTADA

ESTAGIO SUPERVISIONADO I 1º. RELATORIO DE ACOMPANHAMENTO

DESCRIÇÃO DAS PRINCIPAIS FUNCIONALIDADES

Ficha de Apresentação

INFORMAÇOES - UESPI						
DISCENTE	ORIENTADOR UESPI					
Antonio José de Oliveira Alves	Prof.º Maria José da Costa Machado					
Daniel Medeiros						
Ricardo Franco Andrade						
INFORMAÇOES – ENTIDADE DE REALIZAÇÃO DO ESTAGIO						
NOME ENTIDADE	ORIENTADOR NA ENTIDADE/CARGO					
Coordenação do Curso de Bacharelado em	Prof. Marcos Vinícius Carvalho					
Ciências da Computação						

1. OBJETIVO

O Sistema de localização espacial "Estou aqui, como chegar" para a Universidade Estadual do Piauí – UESPI, Campus Torquato Neto, Teresina-PI, será implementado utilizando Realidade Aumentada (Augmented Reality - AR) e contará com um aplicativo para a plataforma Android®, sistema gerente para dispositivos de arquitetura móveis, tem como finalidade facilitar e orientar de forma intuitiva pessoas a se localizar geograficamente e espacialmente em ambientes de grande extensão e difícil posicionamento.

2. JUSTIFICATIVA

A necessidade do sistema se deve a dificuldade de memorizar rotas expostas por mapas de localização "Estou aqui" **Fig.: 2.1**, pois o mesmo apresenta um ambiente 2D pouco intuitivo e de fraca assimilação de posicionamento e deslocamento, tendo em vista que quanto maior o espaço a ser descrito no mapa, mais complexo é o seu compreendimento.

Fig. 2.1 – Exemplo de um mapa estou aqui.

3. FUNCIONALIDADES PREVISTAS

3.1 O visitante posicionar-se-á à frente do mapa físico "Estou aqui".

O mapa físico como ele já existe será ainda necessário "observando que apenas os visitantes munidos de um aparelho com o sistema gerente Android® usufruirão dessa funcionalidade", será o mesmo, só que contará com mais alguns artifícios gráficos, como mostrado na figura 3.1.

Fig. 3.1.1 – Exemplo de um mapa estou aqui com sinalização para o aplicativo interativo.

3.2 Controles de interação com o visitante será feito em três níveis.

Primeiro o visitante usará o leitor de códigos QR do seu dispositivo móvel "Decodificadores de Código QR posem ser gratuitamente adquiridos no Android Market" para acessar a Web Server que disponibilizará a aplicação interativa do mapa em questão.

Fig. 3.2.1 – Passo a passo como manipular um marcador QR.

Em seguida o visitante poderá navegar no mapa interativo com um ambiente virtual em terceira dimensão, o que proporcionará maior assimilação localizacional.

Por último haverá a possibilidade de fazer uma busca onde serão listados todos os pontos chaves do mapa, e será possível ver um boneco percorrendo o mapa até o destino desejado.

4. TECNOLOGIA A SER UTILIZADA

Além dos pedestais físicos já existentes e devidamente sinalizados, como mostrado na figura 3.1, usaremos:

Gerador de Código QR que servirá para acessar a Web Server e então baixar o aplicativo.

Fig. 4.1 – Exemplo de um marcador QR.

Construção e configuração de um servidor web em PHP, que armazenará os aplicativos .APK, nativos da plataforma Android®.

Geradores de marcadores de Realidade Aumentada, servirão para controle de atividade e renderização do aplicativo.

Fig. 4.1 – Exemplo de um marcador de Realidade Aumentada.

Desenvolvimento da aplicação utilizando JAVA, mas especialmente a biblioteca de auxílio jARToolkit voltada ao desenvolvimento de aplicações para RA em Java "Aplicações para a plataforma Android® construídas em JAVA" com técnicas avançadas de Física e Matemática para interação espacial pessoa-realidade-aumentada.

Modelagem do ambiente físico para o virtual em 3D.

5. CRONOGRAMA PREVISTO

	Tempo	Maio	Junho	Julho
Tarefas				
Modelagem do Ar	nbiente			
Gerar marcador Q	R			
Gerar marcadores	RA			
Implementar Nave cenário.	gação no			
Implementar a lista sinalização de pon mapa.		ı		_
Implementar bone melhor trajetória a				

Integração de módulos produzidos.				1		
Implementação e configuração do Web Server.		_				