Mathe 1 Tutorium Blatt 3

Alex B.

October 2024

Vollständige Induktion

- Bekannte Zahlenräume: Die natürlichen Zahlen N, die ganzen Zahlen Z, die rationalen Zahlen $\mathbb Q$ und die reelen Zahlen $\mathbb R$
- Das Beweisprinzip der vollständigen Induktion basiert auf den Peanoschen Axiomen
- Anleitung für einen Beweis mittels vollständiger Induktion:
 - Induktionsanfang: Zeige, dass die Aussage für den kleinstmöglichen Wert im zugelassenen Wertebereich gilt
 - Induktionsschritt: Angenommen, die Aussage gilt für ein festes $n \in$ Wertebereich (meistens \mathbb{N}), zeige, dass sie auch für n+1 gilt. Auch möglich: Gegeben die Aussage gilt für alle bisherigen $n \in \text{Wertebere}$ ich, zeige, dass sie auch in n + 1 gilt.

Aufgaben $\mathbf{2}$

- 1. Beweise die nachfolgenden Aussagen mithilfe einer vollständigen Induk
 - a) $\sum_{i=1}^{n} i = \frac{n*(n+1)}{2}$ für alle $n \in \mathbb{N}$
 - b) $2^n \ge n+1$ für alle $n \in \mathbb{N}$
 - c) $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ für alle $n \in \mathbb{N}$ d) $\sum_{i=1}^{n} (2i-1) = n^2$ für alle $n \in \mathbb{N}$

 - e) $\sum_{i=2}^{n+1} \frac{2}{(i-1)(i+1)} = \frac{3}{2} \frac{1}{n+2} \frac{1}{n+1}$ für alle $n \in \mathbb{N}$
 - f) $\prod_{i=1}^{n} 4^i = 2^{n(n+1)}$ für alle $n \in \mathbb{N}$