

- 1 Mb/s link, each user sends at 100 Kb/s when "active"
- model this as each user active 10% of the time (at random time)
 - \circ or, at any time, probability of a user being active is p = 0.1
 - further, assume i.i.d. (i.e., users are independent and identically distributed)
 - recall that $P(X \land Y) = P(X) \cdot P(Y)$ if X and Y are independent
- no queueing if ≤ 10 simultaneous users present

- Want to show (i.e., prove) that with 35 users, the probability of > 10 simultaneous active users is < 0.0004
- i.e., probability of queueing is < 0.0004</p>

- Use a smaller example to understand the solution
- if there are 3 possible users (let's call them user A, B, and C), what can you expect at any random time?

A	В	С	Event Probability
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

A	В	C	Event Probability
0	0	0	(0.9) ³
0	0	1	$(0.9)^2 \times (0.1)^1$
0	1	0	$(0.9)^2 \times (0.1)^1$
0	1	1	$(0.9)^{1} \times (0.1)^{2}$
1	0	0	$(0.9)^2 \times (0.1)^1$
1	0	1	$(0.9)^{1} \times (0.1)^{2}$
1	1	0	$(0.9)^{1} \times (0.1)^{2}$
1	1	1	(0.1) ³

 A	В	С	Event Probability
0	0	0	(0.9) ³
0	0	1	$(0.9)^2 \times (0.1)^1$
0	1	0	$(0.9)^2 \times (0.1)^1$
0	1	1	$(0.9)^{1} \times (0.1)^{2}$
1	0	0	$(0.9)^2 \times (0.1)^1$
1	0	1	$(0.9)^{1} \times (0.1)^{2}$
1	1	0	$(0.9)^{1} \times (0.1)^{2}$
1	1	1	(0.1) ³

Let's use 1 to represent that a particular user is *present* and 0 to represent that a particular user is *not present*

lity
Prok
is pr

Probability that exactly 1 user is present is: $3 \times (0.9)^2 \times (0.1)^1$

A	В	С	Event Probability
0	0	0	(0.9) ³
0	0	1	$(0.9)^2 \times (0.1)^1$
0	1	0	$(0.9)^2 \times (0.1)^1$
0	1	1	$(0.9)^{1} \times (0.1)^{2}$
1	0	0	$(0.9)^2 \times (0.1)^1$ Probability that exactly 2 users
1	0	1	$(0.9)^{1} \times (0.1)^{2}$ are present is: $3 \times (0.9)^{1} \times (0.1)^{2}$
1	1	0	$(0.9)^{1} \times (0.1)^{2}$
1	1	1	$(0.1)^3$

Probability that exactly 0 users

are present is: $1 \times (0.9)^3$

Probability Of Queueing Example

Α	В	C	Event	Probability
---	---	---	--------------	--------------------

0 0 1
$$(0.9)^2 \times (0.1)^1$$

0 1 0
$$(0.9)^2 \times (0.1)^1$$

0 1 1
$$(0.9)^{1} \times (0.1)^{2}$$

1 0 0
$$(0.9)^2 \times (0.1)^1$$

1 0 1
$$(0.9)^{1} \times (0.1)^{2}$$

1 1 0
$$(0.9)^{1} \times (0.1)^{2}$$

Let's use 1 to represent that a particular user is *present* and 0 to represent that a particular user is *not present*

A	В	С	Event Probability
0	0	0	(0.9) ³
0	0	1	$(0.9)^2 \times (0.1)^1$
0	1	0	$(0.9)^2 \times (0.1)^1$
0	1	1	$(0.9)^{1} \times (0.1)^{2}$
1	0	0	$(0.9)^2 \times (0.1)^1$
1	0	1	$(0.9)^{1} \times (0.1)^{2}$
1	1	0	$(0.9)^{1} \times (0.1)^{2}$
1	1	1	Probability that

Probability that exactly 3 users are present is: $1 \times (0.1)^3$

A	В	C	Event Probability
0	0	0	(0.9) ³ Probability that exactly 0 users
0	0	1	$(0.9)^2 \times (0.1)^1$ are present is: $1 \times (0.9)^3$
0	1	0	
0	1	1	$(0.9)^{1} \times (0.1)^{2}$ is present is: $3 \times (0.9)^{2} \times (0.1)^{1}$
1	0	0	
1	0	1	$(0.9)^{1} \times (0.1)^{2}$ are present is: $3 \times (0.9)^{1} \times (0.1)^{2}$
1	1	0	$(0.9)^{1} \times (0.1)^{2}$
1	1	1	(0.1) ³ Probability that exactly 3 users are present is: $1 \times (0.1)^3$

A	В	С	Event Probability
0	0	0	(0.9) ³ Probability that exactly 0 users
0	0	1	$(0.9)^2 \times (0.1)^1$ are present is: $\binom{3}{0} \times (0.9)^3$
0	1	0	$(0.9)^2 \times (0.1)^1$ Probability that exactly 1 user
0	1	1	$(0.9)^{1} \times (0.1)^{2}$ is present is: $\binom{3}{1} \times (0.9)^{2} \times (0.1)^{1}$
1	0	0	$(0.9)^2 \times (0.1)^{1/2}$ Probability that exactly 2 users
1	0	1	$(0.9)^{1} \times (0.1)^{2}$ are present is: $\binom{3}{2} \times (0.9)^{1} \times (0.1)^{2}$
1	1	0	$(0.9)^{1} \times (0.1)^{2}$
1	1	1	(0.1) ³ Probability that exactly 3 users are present is: $\binom{3}{3} \times (0.1)^3$

Pascal triangle

For a population of n independent users, each with probability p of being present, the probability that exactly k users are present is:

$$\binom{n}{k} \times (1-p)^{n-k} \times (p)^k$$

For a population of 35 independent users, each with probability 0.1 of being present, the probability that > 10 users are present is:

$$\sum_{k>10}^{n=35} {n \choose k} \times (1-p)^{n-k} \times (p)^{k}$$

Binomial expansion:

$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} \times (x)^{n-k} \times (y)^k$$

Binomial expansion:

$$(x + y)^{n} = \sum_{k=0}^{n} {n \choose k} \times (x)^{n-k} \times (y)^{k}$$

$$(p + (1-p))^{n} = \sum_{k=0}^{n} {n \choose k} \times (x)^{n-k} \times (y)^{k}$$

$$1 = \sum_{k=0}^{n} {n \choose k} \times (x)^{n-k} \times (y)^{k}$$

$$1 = \sum_{k=0}^{10} {35 \choose k} \times (1-p)^{35-k} \times (p)^{k} + \sum_{k>10}^{n=35} {n \choose k} \times (1-p)^{n-k} \times (p)^{k}$$

$$1 - \sum_{k=0}^{10} {35 \choose k} \times (1-p)^{35-k} \times (p)^{k} = \sum_{k=10}^{n=35} {n \choose k} \times (1-p)^{n-k} \times (p)^{k}$$