

Flexible Body Examples on File Exchange

- Lumped parameter beam
 - Chain of mass-spring-dampers

- Finite element import beam
 - Superimpose bending onto rigid body motion

fileexchange/47051-flexible-body...

Flexible Bodies in Simscape Multibody Approaches

- Lumped parameter approach
 - Chain of rigid body-spring-dampers
 - No finite element software required
 - Only for simple geometries
 - Stiffness value calculation
- FEA Approach
 - Export mass and stiffness matrices from FE software
 - Superimpose deflection onto rigid body motion
 - Valid for small deflections

Lumped Parameter Approach Generalized Flexible Element

 Joint primitives reflect flexible degrees of freedom

Bend: 1 rotational

Bend+twist: 2 rotational

Bend+stretch: 1 rotational +

1 prismatic

 Use MATLAB to automate construction of flexible body

```
for i = 2:1:numelem
   add_block('FlexBeam
   add_line(thisblock,
   add_line(thisblock,
```


Flex_Body

Basic Approach

 Flexible-body deflection behavior modeled in Simulink is superimposed on the rigid-body motion modeled in Simscape Multibody

Flexible Body Modeling Workflow

- Create FE model in FEA software
- 2. Define part interface
- Extract reduced order model
- 4. Import data into Simscape Multibody
- 5. Connect joints, forces, etc.
- 6. Simulate

