伴随矩阵

定义 4.2 (伴随矩阵)
$$A_{i,j}^* = A_{j,i}$$
 矩阵 $A = (a_{i,j})_{n,n}$ 的 伴随矩阵 定义为 $a_{i,j}$ 新衣教系表式 $A_{i,j} = (-1)^{i+j}$ $M_{i,j}$ $A_{i,j}^* = (-1)^{i+j}$ $A_{i,j}^* = (-1)^{i+j$

其中 A_{i,j} 为 a_{i,j} 的代数余子式.

逆矩阵的伴随矩阵表示

逆矩阵的伴随矩阵表示

$$A^{-1} = \frac{A^*}{|A|}.$$

$$(A \cdot A^*)_{i,j} = \sum_{k=1}^{n} a_{ik} \cdot A_{k,j}^* = \sum_{k=1}^{n} a_{ik} \cdot A_{j,k} = \begin{cases} |A| & i=j \\ o & i\neq j \end{cases}$$

$$= \begin{pmatrix} |A| & A_{j,k}^* - A_{j,$$

逆矩阵的伴随矩阵表示

设 d := |A|. 由行列式按一行展开和定理 5.2 得

$$a_{i,1}A_{j,1}+\cdots+a_{i,n}A_{j,n}=$$

$$\begin{cases} d, & i=j\\ 0, & i\neq j \end{cases}$$

我们有

$$A \cdot A^* = (a_{i,j})(A_{j,k})$$

$$= (\sum_j a_{i,j}A_{j,k})$$

$$= \begin{pmatrix} d & & \\ & \ddots & \\ & & d \end{pmatrix} = dE$$

定理 4.1

可逆的等价条件

矩阵 A 可逆, 当且仅当行列式 $|A| \neq 0$.

$$\leftarrow$$
 $A^{-1} = \frac{A^*}{1A!}$

从
$$A^{-1} = \frac{1}{|A|} A^*$$
 来理解.

e.g.

▶ 对角矩阵

$$A = \begin{pmatrix} a_{11} & & \\ & a_{12} & \\ & & a_{22} \end{pmatrix}$$

ADE O AT TO

$$A^{-1} = \begin{pmatrix} A_{i1}^{-1} & & \\ & A_{il}^{-1} & & \\ & & A_{il}^{-1} & \\ & & & A_{in}^{-1} \end{pmatrix}$$

定理 4.1 证明

必要性: 有 $\triangle A^{-1} = E$ 可得

 $|A| A^{-1} = |AA^{-1}| = |E| = 1.$

充分性: 如果 $|A| \neq 0$, 那么 $\frac{1}{|A|}A^*$ 为 A 的逆, i.e.

$$\frac{1}{|A|}A^* \cdot A = A \cdot \frac{1}{|A|}A^* = E.$$

例题 4.3

例题 4.3 求以下矩阵的行列式

$$\begin{pmatrix} 2 & 1 & -1 \\ 1 & 4 & 2 \\ 5 & -3 & 1 \end{pmatrix}$$

解

利用 $A^{-1} = \frac{1}{|A|}A^*$, 通过计算 A 的行列式和所有 2 阶代数余子式可得.

例题 4.4

例题 4.4

如果 A 可逆, 那么方程组 Ax = b 存在唯一解.

解

存在性: $X = A^{-1}b$ 为方程组的解

唯一性: 假设有另一个解 X', i.e. AX' = b. 两边左

乘 A^{-1} 得, $A^{-1}(AX')A^{-1}b$, i.e. $X' = A^{-1}b$.

例起 4.5 设可逆的
$$A$$
 和 C , 求 $D = \begin{pmatrix} A \\ B \end{pmatrix}$ 的逆. $A \in F^{**}$ 和述 $A \cap A^{*}$ 能义 $A \cap A^{*}$ $A \cap A^{*}$

先证 A 的可逆性: 由 A, C 不可

例题 4.5 续

解 (续)

再求
$$A^{-1}$$
: 设 $A^{-1} = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix}$. 由 $AA^{-1} = E$ 可得:
$$\begin{pmatrix} A & C \\ B & C \end{pmatrix} \begin{pmatrix} X & Y \\ Z & T \end{pmatrix} = \begin{pmatrix} E & O \\ O & E \end{pmatrix}$$

$$\begin{pmatrix} AX \neq E \\ AY \neq 0 \\ BX + CZ \neq 0 \\ BY + CT \neq E \end{pmatrix}$$

由 A 可逆得 $X = A^{-1}$ 和 Y = 0. 代入得 $Z = -C^{-1}BA^{-1}$ 和 $T = C^{-1}$.

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

1st 初等矩阵 1

1st 初等矩阵 2

▶ P(i, j)A: 通过交换 A 的第 i 行和第 j 行得到.

$$ightharpoonup \overrightarrow{AP(i,j)}$$
: $\overline{\mathcal{F}}$

A:
$$P(i,j) = \left(\underbrace{P(i,j)}_{N_i,j}^T A^T\right)^T$$