Package 'CommT'

June 16, 2015

Title Comparative phylogeographic analysis using the community tree framework

Version 0.1	
Date 2015-06-16	
Author Michael Gruenstaeudl, PhD	
Maintainer Michael Gruenstaeudl <mi.gruen< th=""><th>staeudl@gmail.com></th></mi.gruen<>	staeudl@gmail.com>
Depends R (>= 3.0.0)	
Imports ape (>= 3.1-4), ggplot2 (>= 1.0.0), gr	idExtra, phangorn, reshape
tributions using different tree distance me	nce between constrained and unconstrained gene tree dis etrics. Constraints are enforced prior to the analyion of a tree under the community tree model.
License GPL (>= 2)	
OS_type unix	
R topics documented:	
CommT.anova	
CommT-package Comparative pi	hylogeographic analysis using the community tree

Type Package

CommT Provides functions to measure the difference between constrained and unconstrained gene tree distributions using different tree distance metrics. Constraints are enforced prior to the analysis with this package through the estimation of a tree under the community tree model.

2 CommT.anova

Author(s)

Michael Gruenstaeudl

Maintainer: Michael Gruenstaeudl <mi.gruenstaeudl@gmail.com>

References

Gruenstaeudl, M., Reid, N.M., Wheeler, G.R. and Carstens, B.C., 2015. Posterior Predictive Checks of Coalescent Models: P2C2M, an R package. Molecular Ecology Resources, in press.

Examples

```
# Load libraries
# require(ape)

# Load input data
    data(post_gt_distrs_BEAST)
    data(post_gt_distrs_starBEAST)

# Calculate KF distances
    in_data = CommT.kfdist(post_gt_distrs_BEAST, post_gt_distrs_starBEAST)

# Generate ANOVA legend
    legend_text = CommT.anova(in_data)

# Generate coordinates for plot
    legend_pos = CommT.legendpos(in_data)

# Visualize KF distances
    my_plot = CommT.viz(in_data, "my_project", alpha=0.05, legend_text, legend_pos)

# Display plot
    my_plot
```

CommT.anova

Conduct ANOVA analysis on tree distance matrix

Description

Function to conduct an ANOVA analysis on the matrix of tree distances generated via function CommT.kfdist().

Usage

```
CommT.anova(in_df)
```

Arguments

in_df

a dataframe storing the tree distances inferred via function CommT.kfdist(). This dataframe constitutes a stacked list of distances grouped by genetic locus and is the default output of function CommT.kfdist()

CommT.kfdist 3

Author(s)

Michael Gruenstaeudl

Maintainer: Michael Gruenstaeudl <mi.gruenstaeudl@gmail.com>

Examples

```
# Load libraries
# require(ape)

# Load input data
    data(post_gt_distrs_BEAST)
    data(post_gt_distrs_starBEAST)

# Calculate KF distances
    in_data = CommT.kfdist(post_gt_distrs_BEAST, post_gt_distrs_starBEAST)

# Generate ANOVA legend
    legend_text = CommT.anova(in_data)
```

CommT.kfdist

Calculate the tree distance metric

Description

Function to calculate a selected tree distance metric between posterior gene tree distributions.

Usage

Arguments

```
post_gt_distrs_BEAST
```

a multiPhylo object representing the posterior gene tree distribution estimated in the **absence** of a multispecies coalescent model. This object is split into individual lists of trees, whereby each list represents a posterior gene tree distribution inferred under a specific genetic locus. Each list should be named by the respective locus.

post_gt_distrs_starBEAST

a multiPhylo object representing the posterior gene tree distribution estimated in the **presence** of a multispecies coalescent model. This object is split into individual lists of trees, whereby each list represents a posterior gene tree distribution inferred under a specific genetic locus. Each list should be named by the respective locus.

outlier_num

an integer specifying the number of the genetic locus to be used as positive control in the ANOVA calculations employing mixed effects models. The default is 1.

treedist_select

an integer specifying the type of tree distance metric. The selection hereby follows the output order employed in function treedist of the R package phangorn. The default is 2, which represents the Kuhner-Felsenstein distance.

4 CommT.legendpos

Author(s)

Michael Gruenstaeudl

Maintainer: Michael Gruenstaeudl <mi.gruenstaeudl@gmail.com>

References

Kuhner, M.K. and Felsenstein. J., 1994. Simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution 11: 459-468.

Examples

```
# Load libraries
# require(ape)

# Load input data
    data(post_gt_distrs_BEAST)
    data(post_gt_distrs_starBEAST)

# Calculate KF distances
    in_data = CommT.kfdist(post_gt_distrs_BEAST, post_gt_distrs_starBEAST)
```

 ${\tt CommT.legendpos}$

Infer coordinates for plot legend

Description

Function to infer the optimal position of the ANOVA legend given the calculated tree distance distributions.

Usage

```
CommT.legendpos(in_data)
```

Arguments

in_data

a dataframe storing the tree distances inferred via function CommT.kfdist(). This dataframe constitutes a stacked list of distances grouped by genetic locus and is the default output of function CommT.kfdist()

Author(s)

Michael Gruenstaeudl

Maintainer: Michael Gruenstaeudl <mi.gruenstaeudl@gmail.com>

CommT.viz 5

Examples

```
# Load libraries
# require(ape)

# Load input data
    data(post_gt_distrs_BEAST)
    data(post_gt_distrs_starBEAST)

# Calculate KF distances
    in_data = CommT.kfdist(post_gt_distrs_BEAST, post_gt_distrs_starBEAST)

# Generate ANOVA legend
    legend_text = CommT.anova(in_data)

# Generate coordinates for plot
    legend_pos = CommT.legendpos(in_data)
```

CommT.viz

Visualize tree distances and ANOVA results

Description

Function to generate a visualization of both the tree distances and ANOVA results.

Usage

```
CommT.viz(in_df, title_str="a_project_name_here", alpha=0.05, legend_text, legend_pos)
```

Arguments

in_df	a dataframe storing the tree distances inferred via function CommT.kfdist(). This dataframe constitutes a stacked list of distances grouped by genetic locus and is the default output of function CommT.kfdist()
title_str	a string specifying a title for the resulting plot. The default is a $project_name_here$.
alpha	a float specifying the alpha-level employed in the ANOVA. The default is 0.05 .
legend_text	a list specifying the ANOVA results to plotted. It constitutes the default output of function CommT.anova()
legend_pos	a list specifying the plot position. It constitutes the default output of function CommT.legendpos()

Author(s)

Michael Gruenstaeudl

Maintainer: Michael Gruenstaeudl <mi.gruenstaeudl@gmail.com>

Examples

```
# Load libraries
# require(ape)

# Load input data
    data(post_gt_distrs_BEAST)
    data(post_gt_distrs_starBEAST)

# Calculate KF distances
    in_data = CommT.kfdist(post_gt_distrs_BEAST, post_gt_distrs_starBEAST)

# Generate ANOVA legend
    legend_text = CommT.anova(in_data)

# Generate coordinates for plot
    legend_pos = CommT.legendpos(in_data)

# Visualize KF distances
    my_plot = CommT.viz(in_data, "my_project", alpha=0.05, legend_text, legend_pos)
```

Description

Posterior gene tree distribution inferred via BEAST

Value

A multiPhylo object; more specifically, a named list of phylo objects

```
post\_gt\_distrs\_starBEAST Data\ set\ post\_gt\_distrs\_starBEAST
```

Description

Posterior gene tree distribution inferred via starBEAST

Value

A multiPhylo object; more specifically, a named list of phylo objects

Index

```
CommT (CommT-package), 1
CommT-package, 1
CommT.anova, 2
CommT.kfdist, 3
CommT.legendpos, 4
CommT.viz, 5

post_gt_distrs_BEAST, 6
post_gt_distrs_starBEAST, 6
```