Mad Bot Schematics Tree

Power		Motor Drive	,	мси
	7			
		File: drive.kicad_sch		Etta analisation transfer
File: power.kicad_sch		rite: drive.kicad_scri		File: controller.kicad_sch
Sensors				

File: sensors.kicad_sch

+BATT could be coming from battery or USB 5V

Power

USB-C Connector

https://electronics.stackexchange.com/questions/644680/is-this-usb-circuit-with-esd-done-correctly

Buck-Boost 3.3V Regulator

Referenced: https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf Page 19

To ensure stability and excellent transient response, it is recommended to use a minimum of $10\mu F/XTR/1206$ capacitors at the output. For surface mount applications,
Taiyo Yuden or TDK ceramic capacitors, X7R series Multilayer Ceramic Capacitor is recommended. At least a $10\mu F$ input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the IC is recommended.

Motor drivers

Encoder connections + Motor power VCC \uparrow GND M1_OUT1 M1_OUT2 J2 EncoderConn ENC1_A ENC1_B PWR_FLAG GND VCC Ŷ GND M2_0UT1 M2_0UT2 J1 EncoderConn ENC2_A ENC2_B GND VCC \uparrow GND M3_0UT2 J3 EncoderConn ENC3_A ENC3_B GND

Square-marked shape on encoder as the 1st pin.
Encoder is facing pins-down.
Connector on the encoder is through-holes on a 2mm pitch.

MI_SENSE

MI_SENSE2

MI_SENSE3

O TP3
MI_SENSE3

on using UARTO as a normal peripheral it can be reconfigured to act as other peripherals https://www.esp32.com/viewtopic.php?t=38137

Camera

I2C Addresses: 0x60 for writing and 0x61 for reading.

