

ENGINEERING MATHEMATICS III (AAS0301A) UNIT-IV

SESSION: 2022-23

BRANCH: CSE/CS/IT

SEM: III

Assignment Given Date: 12/11/22
Assignment Submission Date: 28/11/22
Weightage in University Exam: - 30
Faculty Name: Mr. Raman Chauhan
Faculty Mail Id: ramanchauhan.m@niet.co.in

Note: Write solution of each question in clear handwriting.

Q.N.	Question Statement	Pts	СО	BLOOM'S KNOWLEDGE LEVEL
1	Using Bisection Method- find a positive root of equation $xe^x = cosx$ correct to 4 decimal places.	6	4	K ₃ , K ₅
2	Using Regula Falsi Method- find a positive root of equation $x^4 - x - 10 = 0$ correct to 3 decimal places.	6	4	K ₃ , K ₅
3	Using Newton Raphson Method-find a positive root of equation $x \log_{10} x = 4.77$ correct to 3 decimal places.	6	4	K ₃ , K ₅
4	Determine the missing values in given table- $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	4	K ₅
5	Find the number of students from the following data who secured marks not more than 45 Marks 30-40 40-50 50-60 60-70 70-80 No. of 35 48 70 40 22 Students	10	4	K ₅
6	Obtain Lagrange's interpolation polynomial for the following data- $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	4	K ₃ , K ₅

7	Using Newton Divided Difference	10	4	K ₅	
	polynomial and hence compute $f($				
	x -3 -1 0 3	5			
	f(x) -30 -22 -12 330	3458			
8	Solve the following system of equal $x + y + z = 1$, $3x + y - 3z = 5$,	10	4	K ₃ , K ₅	
9	Solve the following system of equ	10	4	K ₃ , K ₅	
	7x + 52y + 13z = 104,83x + 1				
	3x + 8y + 29z = 71				
10	Evaluate $\int_0^1 \frac{dx}{1+x}$ by dividing the interval of integration into 8 equal				K ₅
	parts. Hence find $log_e 2$ approxim				
11	Given the IVP $\frac{dy}{dx} = \frac{2xy}{x^2 - y^2}$, $y(1) = 3$. find the numerical solution				K_3, K_5
	at $x = 1.2$ with step size $h = 0.1$ l				
	Kutta method.				
12	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using			4	K ₃ , K ₅
	(i) Simpson's $\frac{1}{3}$ rule taking				
	(ii) Simpson's $\frac{3}{8}$ rule taking				

Solution:

- 1. 0.5177
- 2. 1.855
- 3. 6.083
- 4. 33.933, 46.733
- 5. 51
- 6. $x^3 9x^2 + 17x + 6$, 14.625
- 7. $5x^4 + 9x^3 27x^2 21x 12$, -46
- 8. x = 6, y = -7, z = 2
- 9. x = 1.057, y = 1.367, z = 1.961
- 10. 0.6931
- 11. 2.8233
- 12. 0.78539,0.78539