k-means

Medel Colorado Yoselin Merari

2022-06-05

K-MEANS

Cargar la matriz de datos.

Se cnsieran las medianas y busca k objetos representativos

```
X<-as.data.frame(state.x77)</pre>
                     #X #---
#1.- Transformación de las variables x1,x3 y x8 con la función de logaritmo.
X[,1] < -\log(X[,1])
colnames(X)[1]<-"Log-Population"</pre>
X[,3] < -\log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"</pre>
X[,8] < -\log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
           # Método k-means #-
#1.- Separación de filas y columnas.
dim(X)
## [1] 50 8
n < -dim(X)[1]
p<-dim(X[2])</pre>
```

2.- Estandarización univariante.

```
X.s<-scale(X)</pre>
```

3.- Algoritmo k-medias (6 grupos)

nstar es cantidad de subconjuntos aleatorios que se escogen para realizar los cálculos de algoritmo.

el 3 es el número de clouster o de agrpupaciones, en este caso se utilizan 3

```
Kmeans.6<-kmeans(X.s, 6, nstart=25)</pre>
```

centroides

```
Kmeans.6$centers
##
    Log-Population
                    Income Log-Illiteracy
                                        Life Exp
                                                   Murder
                                                             HS Grad
       1.05203572 0.2689748
                              0.1658871 -0.1124169 0.4831422 -0.06765652
## 2
                             -1.0527537 1.1656294 -0.9511840 0.92206977
      -0.02012796 0.2632441
      -1.30355300 -0.2681986
                             0.12233125 -1.3014617
                              1.3019262 -1.1773136 1.0919809 -1.41578257
      -0.15758822 0.9109826
                              -0.3490974 -1.2728011 1.0895183 1.58994719
## 6
      -1.65470747 2.1094604
##
        Frost
               Log-Area
## 1 -0.4380016 0.37632593
## 2 0.3010938 0.49075236
## 3 1.1526361 0.03872450
## 4 -0.7206500 0.07602772
## 5 -0.1187800 -1.92526117
## 6 1.2608490 1.51085951
```

cluster de pertenencia

Kmeans.6\$cluster							
##	Alabama	Alaska	Arizona	Arkansas	California		
##	4	6	1	4	1		
##	Colorado	Connecticut	Delaware	Florida	Georgia		
##	2	5	5	1	4		
##	Hawaii	Idaho	Illinois	Indiana	Iowa		
##	5	3	1	1	2		
##	Kansas	Kentucky	Louisiana	Maine	Maryland		
##	2	4	4	3	5		
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri		
##	5	1	2	4	1		
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey		
##	3	2	6	3	5		
##	New Mexico	New York	North Carolina	North Dakota	Ohio		
##	4	1	4	3	1		
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina		
##	1	2	1	5	4		

##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	4	1	2	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	1	2	4	2	3

4.- SCDG

#hasta aquí llego el minimo de sc
dg la idea es llegar a 0

SCDG<-sum(Kmeans.6\$withinss)
SCDG</pre>

[1] 121.0769

5.- Clusters

```
cl.kmeans<-Kmeans.6$cluster
cl.kmeans</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	4	6	1	4	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	5	5	1	4
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	5	3	1	1	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	4	4	3	5
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	5	1	2	4	1
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	2	6	3	5
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	4	1	4	3	1
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	1	2	1	5	4
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	4	1	2	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	1	2	4	2	3

6.- Scatter plot con la division de grupos

obtenidos (se utiliza la matriz de datos centrados)

```
col.cluster<-c("blue", "red", "green", "brown", "darkblue", "cyan")[cl.kmeans]
pairs(X.s, col=col.cluster, main="k-means", pch=19)</pre>
```

k-means

Instalar apaquete

```
install.packages("cluster")
library(cluster)
```

Gráfico

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

Gráfico

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

De aqui se puede tomar la descicio para aumentar el numero de clousters

#———— # Silhouette #—————— # Representacion gráfica de la eficacia de # clasificación de una observación dentro de un # grupo.

1.- Generación de los cálculos

```
dist.Euc<-dist(X.s, method = "euclidean")</pre>
```

El cl.kmeans es dode se se encuentran los closters

```
Sil.kmeans<-silhouette(cl.kmeans, dist.Euc)</pre>
```

#2.- Generación del gráfico

Los ultimos números de la derecha son la probabilidad si es bajo es decir que la clasificacion es baja

Silhouette for k-means

Average silhouette width: 0.27