OtherReaction (0.085	0.186	0.394	0.388	0.364	0.418
N-alkylation of secondary amines with alkyl halides Carboxylic acid with primary amine to amide			0.000 0.200	0.800 0.400	0.800 1.000	1.000 0.800	0.800 1.000	1.000 1.000
Williamson Ether Synthesis Acylation of Nitrogen Nucleophiles by Carboxylic Acids			0.000 0.200	0.800 0.400	0.600 1.000	0.600 0.800	0.800 1.000	0.800
Ester saponification (methyl deprotection)	(n=5)	0.800	1.000	1.000	1.000	1.000	1.000	1.000
Reduction of nitro groups to amines Suzuki coupling with boronic acids		0.400	0.600	0.600 0.600	1.000 0.400	0.800 0.400	1.000 1.000	1.000 0.800
Ester saponification (alkyl deprotection)	(n=5)	0.800	0.600	1.000	1.000	1.000	1.000	1.000
Acylation of Nitrogen Nucleophiles by Acyl/Thioacyl/Carbamoyl Halides and Analogs_OS Boc amine deprotection	. ,		0.400 0.800	1.000 0.800	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000
Suzuki coupling with boronic esters	(n=5)	0.000	0.000	0.000	0.000	0.200	0.600	0.800
Ullmann-Goldberg Substitution amine Hydrogenolysis of amides/imides/carbamates			0.000 0.750	0.600 0.800	0.800 1.000	0.800 1.000	1.000 0.600	1.000 1.000
Aminolysis of esters	(n=5)	0.000	0.000	0.600	0.400	0.600	0.600	0.600
N-arylation (Buchwald-Hartwig/Ullmann-Goldberg) Goldberg coupling aryl amine-aryl chloride			0.000 0.400	1.000 0.800	1.000 0.600	1.000 1.000	0.750 0.750	1.000 1.000
Sulfonamide synthesis (Schotten-Baumann) primary amine			0.000	0.800	0.800	1.000	1.000	1.000
Reductive amination with aldehyde reductive amination			0.200 0.000	0.600 0.800	0.800 0.600	0.600 0.400	0.800	0.600 0.600
Hydrogenation (double to single) Oxidation or Dehydrogenation of Alcohols to Aldehydes and Ketones		0.400 0.200	0.200 0.600	0.800 0.800	0.750 1.000	0.800 0.400	1.000 1.000	1.000 1.000
Reduction of ester to primary alcohol		0.600	0.800	1.000	1.000	1.000	1.000	1.000
Hydrogenolysis of tertiary amines Boc amine protection with Boc anhydride			0.000 0.200	0.600 0.800	0.750 0.600	0.600 0.800	0.000	1.000 0.800
Mitsunobu aryl ether	(n=4)	0.000	0.000	0.600	1.000	1.000	1.000	0.800
Reduction of ketone to secondary alcohol Sonogashira alkyne_aryl halide	. ,		1.000 0.200	0.800 0.200	0.800 0.800	0.600 0.333	1.000 1.000	1.000 1.000
Schotten-Baumann to ester	(n=5)	0.000	0.400	0.600	1.000	0.800	1.000	0.800
Cleavage of methoxy ethers to alcohols Formation of Sulfonic Esters			0.800 0.400	1.000 0.800	1.000 1.000	1.000 0.800	1.000 1.000	1.000 1.000
Hydrolysis or Hydrogenolysis of Carboxylic Esters or Thioesters	(n=5)	0.600	0.400	0.800	0.600	0.800	0.800	0.800
Reduction of carboxylic acid to primary alcohol Buchwald-Hartwig/Ullmann-Goldberg/N-arylation secondary amine	,		0.600 0.200	1.000 0.800	1.000 0.600	1.000 0.000	0.600 0.600	0.800 1.000
Aldol condensation N-alkylation of primary amines with alkyl halides	(n=5)	0.000	0.000 0.200	0.800 0.800	0.600 1.000	0.400 1.000	0.800 0.750	0.800 0.750
Deprotection of carboxylic acid	(n=3)	0.667	1.000	1.000	1.000	1.000	1.000	1.000
Sulfonamide synthesis (Schotten-Baumann) secondary amine Esterification of Carboxylic Acids			1.000 0.000	0.800 0.400	1.000 0.600	0.800 0.800	1.000 0.800	1.000 0.400
Hydroxyl benzyl deprotection	(n=5)	0.000	0.800	0.600	0.750	0.600	1.000	1.000
Urea synthesis via isocyanate and primary amine Reduction of nitrile to amine			0.000 0.400	0.600 1.000	0.800 1.000	1.000 1.000	1.000 1.000	0.500 1.000
Reductive amination with ketone	(n=5)	0.000	0.600	0.800	1.000	0.800	1.000	1.000
Wittig with Phosphonium Alcohol deprotection from silyl ethers	` '		0.000 0.600	0.200 0.400	0.000 0.800	0.200 0.800	0.250 0.800	0.600 0.400
thioether_nucl_sub	(n=5)	0.000	0.000	1.000	1.000	1.000	1.000	1.000
Buchwald-Hartwig/Ullmann-Goldberg/N-arylation primary amine Phthalimide deprotection	,		0.200 0.200	0.600 0.800	0.800 0.600	0.600 0.800	1.000 0.400	1.000 1.000
Stille reaction_aryl Wohl-Ziegler bromination benzyl primary			0.000 0.000	0.250 0.000	0.750 0.000	0.800 0.750	0.800 0.250	0.600 0.250
Alkylation of amines	(n=5)	0.000	0.000	0.600	0.800	1.000	0.800	1.000
thiourea Reduction of secondary amides to amines			0.400 0.600	0.250 1.000	0.600 1.000	0.200 1.000	1.000 1.000	1.000 1.000
Aromatic dehalogenation	(n=5)	0.600	0.400	0.800	0.800	1.000	1.000	1.000
Bouveault aldehyde synthesis Reduction of aldehydes and ketones to alcohols			0.600 0.600	0.400 1.000	0.600 1.000	0.200 1.000	1.000 1.000	1.000 1.000
Azide to amine reduction (Staudinger)	(n=5)	0.600	0.600	1.000	1.000	1.000	1.000	0.800
Negishi Reductive amination with alcohol	. ,		0.200 0.000	0.200 0.800	0.500 0.600	0.800 0.800	0.000 1.000	0.400 1.000
Sulfanyl to sulfinyl_peroxide	(n=4)	0.000	0.200	0.600	0.800	1.000	0.200	1.000
Urea synthesis via isocyanate and secondary amine Ullmann-Goldberg Substitution thiol			0.000 0.400	0.600 0.200	0.800 0.600	0.750 0.600	1.000 1.000	1.000 1.000
Carboxylic acid to amide conversion Goldberg coupling	. ,		0.800 0.000	0.600 0.600	1.000 0.800	1.000 1.000	1.000 0.333	1.000 1.000
Heck terminal vinyl	(n=5)	0.000	0.200	0.600	1.000	1.000	1.000	0.800
Protection of carboxylic acid Friedel-Crafts acylation			0.800	0.800 1.000	0.800 0.800	1.000 0.750	1.000 1.000	0.800 1.000
Pyrazole formation	(n=5)	0.000	0.000	0.667	0.000	0.800	0.600	0.800
Reduction of tertiary amides to amines Appel reaction			1.000 0.000	0.800 0.000	1.000 0.800	0.800 0.600	1.000 0.000	1.000 0.400
Ketal hydrolysis to ketone	,		0.800	0.500	1.000	1.000	0.800	1.000
Reduction of primary amides to amines TMS deprotection from alkyne			0.000 0.400	0.800 1.000	0.400 1.000	0.333 1.000	0.333 1.000	1.000 1.000
Mitsunobu esterification Suzuki coupling with boronic acids OTf			0.000 0.200	0.600 0.400	0.600 0.400	0.800 0.600	0.800 0.600	0.800 0.800
Mitsunobu_imide	(n=5)	0.000	0.200	0.200	1.000	0.800	1.000	1.000
Stille reaction_other oxa-Michael addition			0.000 0.000	1.000 1.000	0.800 1.000	0.800 1.000	0.750 1.000	0.600 1.000
Sulfanyl to sulfinyl	(n=5)	0.000	0.000	0.600	1.000	1.000	0.000	0.400
thiazole Wittig reaction with triphenylphosphorane	,		0.000 0.000	1.000 1.000	0.200 0.200	0.600 0.500	0.200 1.000	0.800 1.000
Addition of primary amines to aldehydes/thiocarbonyls	(n=5)	0.000	0.400	0.800	1.000	0.667	0.333	1.000 0.750
Chan-Lam etherification Acetal hydrolysis to aldehyde	(n=4)	0.000	0.000 0.750	0.500 0.500	0.250 0.750	0.750 1.000	1.000 1.000	1.000
Amine and thiophosgene to isothiocyanate Addition of primary amines to ketones/thiocarbonyls	(n=4)	0.000	0.750 0.500	0.750 1.000	0.750 0.750	1.000 1.000	0.750 1.000	1.000 1.000
S-alkylation of thiols	(n=4)	0.000	0.000	0.500	1.000	0.500	1.000	1.000
Dehalogenation Grignard_alcohol			0.250 0.000	0.750 1.000	1.000 1.000	0.750 0.333	1.000 1.000	1.000 1.000
Suzuki coupling with boronic esters OTf	(n=2)	0.000	0.000	0.000	0.000	0.667	0.667	0.667
Huisgen alkyne-azide 1,3 dipolar cycloaddition Sonogashira alkyne aryl OTf			0.000 0.000	1.000 0.667	0.333 0.667	0.667 0.667	1.000 1.000	1.000 1.000
Suzuki	(n=2)	0.000	0.000	0.500	0.000	0.000	0.500	0.500
Diels-Alder Wohl-Ziegler bromination carbonyl tertiary			0.000 0.000	0.000 0.000	0.500 0.000	0.500 0.000	0.000	1.000 1.000
Urea synthesis via isocyanate and diazo	(n=2)	0.000	0.500	1.000	1.000	0.500	0.500	1.000
Decarboxylation Stille reaction_allyl	(n=2)	0.000	0.500 0.000	1.000 0.000	1.000 1.000	1.000 1.000	0.500 1.000	1.000 1.000
Hydrogenation (triple to double) Boc amine protection of secondary amine	(n=2)	1.000	1.000 0.000	1.000 0.000	1.000 0.000	1.000 0.000	1.000 0.000	1.000 0.000
Negishi coupling	(n=1)	0.000	0.000	0.000	1.000	1.000	1.000	1.000
Stille reaction_vinyl Schotten-Baumann amide			0.000 0.000	1.000 0.000	0.000 0.000	1.000 0.000	1.000 0.000	0.000 0.000
Stille reaction_vinyl OTf	(n=1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Paal-Knorr pyrrole synthesis Ether cleavage to primary alcohol			0.000 1.000	1.000 0.000	0.000 1.000	1.000 1.000	0.000 1.000	1.000 1.000
Alcohol to ether	(n=1)	0.000	0.000	1.000	1.000	1.000	1.000	0.000
Wohl-Ziegler bromination allyl primary Ester with secondary amine to amide	. ,		0.000 1.000	0.000 1.000	0.000 0.000	0.000 1.000	0.000	0.000 1.000
Boc amine protection (ethyl Boc)	(n=1)	0.000	0.000	1.000	1.000	1.000	1.000	1.000
Henry Reaction Wohl-Ziegler bromination benzyl tertiary	. ,		0.000 0.000	0.000 1.000	0.000 0.000	0.000 1.000	0.000	1.000 1.000
Sonogashira alkyne_alkenyl halide Petasis reaction with amines and boronic acids	(n=1)	0.000	1.000 0.000	1.000 0.000	0.000 1.000	1.000 1.000	0.000 0.000	1.000 1.000
i etasis reaction with annines and poronic acids	(11-1)	0.000	0.000	0.000	1.000		000.00 دک	1.000
		(Y)	~Y)	/Y)	·V2	. 🗸	ال.! د	٠,٠

Owen3-AB

Owen3:30th

One ly Jy

1.000

1.000

Claude Somet A

ertis

Gerhini 2.5 Pro