Věta 8.6 Jsou-li L i \overline{L} rekurzívně vyčíslitelné, pak jsou oba rekurzívní.

Důkaz.

Mějme M, L(M)=L, a $\overline{M}, L(\overline{M})=\overline{L}$. Úplný TS přijímající L sestrojíme takto:

- Použijeme dvě pásky. Na jedné budeme simulovat M, na druhé \overline{M} . Simulace se bude provádět proloženě krok po kroku: krok M, krok \overline{M} , krok M, ...
- Přijmeme, právě když by přijal M, zamítneme abnormálním zastavením, právě když by přijal \overline{M} . Jedna z těchto situací určitě nastane v konečném počtu kroků.

Existence úplného TS pro \overline{L} plyne z uzavřenosti rekurzívních jazyků vůči komplementu.

- \clubsuit Důsledkem výše uvedených vět je mj. to, že pro L a \overline{L} musí vždy nastat jedna z následujících situací:
 - L i \overline{L} jsou rekurzívní,
 - ullet L ani \overline{L} nejsou rekurzívně vyčíslitelné,
 - jeden z těchto jazyků je rekurzívně vyčíslitelný, ale ne rekurzívní, druhý není rekurzívně vyčíslitelný.