Dimensional reduction

SVD

Dimensional Reduction

Vector-space **Documents** representation

We study the complexity of influencing elections through bribery: How computationally complex is it for an external actor to determine whether by a certain amount of bribing voters a specified

candidate can be made the election's winner? We study this problem for election systems as varied

as scoring ...

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

- **Sparse**
- **High dimension**

- U,V
 - Columns are orthogonal and unit vectors
- - Entries (singular values) are positive and sorted in decreasing order of importance

					Origi	nal N	latrix					
	document	error	invalid	message	file	format	unable	to	open	using	path	variable
1	d1	1	1	1	1	1	0	0	0	0	0	0
2	d2	1	0	2	1	0	1	1	1	1	1	0
3	d3	1	0	0	0	1	1	1	0	0	0	1

$\mathbf{A} pprox \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$	$=\sum_{i}\sigma_{i}\mathbf{u}_{i}\circ$	\mathbf{V}_{i}^{T}
--	--	----------------------

3,11

	document	SVD1	SVD2
1	d1	1.63	.49
2	d2	3.14	96
3	d3	1.35	1.64

3,N

When N=2

Sorted S	ingular	Values	
12.29			•
	6.2		4

N,N

We	ights	
	U	2
error	43	.30
invalid	.11	.13
message	.55	37
file	.33	12
format	.21	.55
unable	.31	.18
to	.31	.18
open	.22	25
using	.22	25
path	.22	25
variable	.09	.42

11,N

					Origi	nal N	latrix					
	document	error	invalid	message	file	format	unable	to	open	using	path	variable
1	d1	1	1	1	1	1	0	0	0	0	0	0
2	d2	1	0	2	1	0	1	1	1	1	1	0
3	d3	1	0	0	0	1	1	1	0	0	0	1

 Dimensions reduced from 11 to N=2

New Matrix Dense & low

3,N]

Dimension Reduction

Step1. Apply SVD/PCA

You get SVDs/Concepts.

Sorted Singular Values

1 d1 1.63 .49

2 d2 3.14 -.96

3 d3 1.351.64

Dimensions reduced from 11

to 2

DataPoint1 = [1,1,1,1,1,0,0,0,0,0,0]

DataPoint2 = [1,1,2,1,0,1,1,1,1,1,0]

DataPoint3 = [1,0,0,0,1,1,1,0,0,0,1]

SVD2/Concept2

Datapoint1 = [20.1, 3.0]

Datapoint2 = [38.6, -5.95]

Datapoint3 = [16.6, 10.2]

Cluster2

Concept#

i

Cluster#

/SVD#

Step 2. Apply KM Or other classifiers

SVD - How Many Dimensions?

- Usually no more than 5 to 20 dimensions extract most of the information from the TDM.
- More dimensions (up to a few hundred) can be retained if the processed data is for subsequent predictive modeling or clustering

Figure 11.3 Plot of relative squared singular values by number of latent semantic dimensions From Practical Text Mining and Statistical Analysis for Non-structured Text data