```
Lecture |\partial|

Recall |\partial|^2 = \{f \in L^1: f^2 \in d^1\} inner pole" (f,g) = [fg] "norm" ||f||_{L^2} = ([ff]^2)^{\frac{1}{2}}

Thm: |\partial|^2 = \{f \in L^1: f^2 \in d^1\} inner pole" (f,g) = [fg] "norm" ||f||_{L^2} = ([ff]^2)^{\frac{1}{2}}

HW4: #4

\{f_k\} \subset L^1, f_k \to 0 in |\partial|^2 = \{f_k\} \cap \{f
```

First, observe the following: suppose f is the limit: $|f_{k}-f||_{L^{2}}^{2} \leq \left(||f_{k}^{+}-f^{+}||_{L^{2}}^{2} + ||f_{k}^{-}-f^{-}||_{L^{2}}^{2}\right) = 2\left(||f_{k}^{+}-f^{+}||_{L^{2}}^{2} + ||f_{k}^{-}-f^{-}||_{L^{2}}^{2}\right) = 2\left(||f_{k}^{+}-f^{-}||_{L^{2}}^{2}\right) = 2\left(||f_{k}^$

(a-b) >0

a2-365+1220

a2+62 > 2 do

(a+1) = a+62

then a

we just need to start $\int_{-f_{int}}^{\pm 2} f^{\pm 2}$ that $\int_{-k}^{\pm 2}$ converges to in k^{1} .

First, show $\{f_k^2\}$ is cauchy in L' hence $f_k^2 \rightarrow g$ in L'. $\|f_k^2 - f_k\|_{L^1} = \|(f_k - f_k)(f_k)\|_{L^1} = \|f_k - f_k\|_{L^2} \|f_k + f_k\|_{L^2}$ $\leq \|f_k - f_k\|_{L^2} \left(\lambda \sup_{k \in \mathbb{N}} \|f_k\|_{L^2}\right) \qquad \text{inample in } L^2 \qquad \text{in } L' \text{ space now}$

is $\{f_k^2\}$ cauchy in L'. $\exists g \in L'$ s.t. $f_k^2 \rightarrow g$ in L'. By a fection lemma. \exists subseq (f_k^2) s.t. $f_{k_j^2} \rightarrow g$ a.e. g is our candidate, $\frac{1}{2}$ and $\frac{1}{2}$.

Show g as = f^{*} a.e. Showing consider $\|f_{ki} - f_{kj}\|_{L^{1}} = \int |f_{ki} - f_{kj}| \cdot 1 \le \|f_{ki} - f_{kj}\|_{L^{2}} \int_{b-a}^{b-a} f_{ki} \cdot 1 \le \|f_{ki} - f_{ki}\|_{L^{2}} \int_{b-a}^{b-a} f_{ki} \cdot 1 \le \|f_{ki} - f_{ki}\|_{L^{2}} \int_{b-a}^{b-a}$

 $(f_{k_{i}})_{i}$ is a subseq. of $(f_{k_{i}})_{i}$ so $(f_{k_{i}})_{i} \rightarrow g$ a.e. so $g = f^{2}$ a.e.

Apply thin to ft and fk.

0

Def L2 [a,b] = L2/n, frg means f=g o.c. Then [2(a,b]) Hilbert space.
There is separable (ch 5 fourth Sasis).

Moving to Ch. 6: Dual Spacer

I) Linear functionals.

-Def let X be vector space. A linear functional on X : Γ a mapping $\frac{f_{max}}{f_{max}}$ f: X o IR (or C). Which sutisfies $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$. $\forall \lambda, \mu \in IR (or C)$, $x, y \in X$.

Ext On $X = \mathbb{C}^n$. All linear functionals are $f(z_1, ... z_n) = \alpha_1 z_1 + ... \alpha_n z_n$, $\alpha_i \in \mathbb{C}$.

Finite-dim.

 \mathcal{E}_{XX} on $X = \mathcal{L}^2(\mathbb{C})$. We define $d \in \mathcal{L}^2(\mathbb{C})$, $F(z) = \sum_{i=1}^{\infty} d_i z_i < \infty$

- let X be a normal vector space. Consider continuous functionals f: X → IR (or a) continuous.

Thm: let f linear functional on morned vector space X. The following are equivalent:

til Fir continuour on X

(ii) Fir (introduct at DEX

ciùi) Fir bounded meaning 3M20 r.E. |F(x)| = M ||x|| for any X E X.

(bounded linear functional = continuous linear func.).

et: (i) \rightarrow (ii) trians.

Ciù \rightarrow (iii) un continuity of Fat 0. Vero 3 fro n.t. $|F(x) - F(\cdot)| < \epsilon$ if $||x - o|| < \epsilon$.

since F(x) Inco, F(0)=0. for E=1, we have

| F(x) | < 1 if | 1 x 1 | < 8.

For any $y \in X$, consider $\frac{\delta y}{2\|y\|}$, $y \neq 0$. Let $\tilde{y} = \frac{\delta y}{a\|y\|} < \delta$. Then $|F(\tilde{y})| < 1$ $\Rightarrow |F(\frac{\delta y}{2\|y\|})| < 1 \Rightarrow |F(y)| < \frac{2\|y\|}{s} = M\|y\| + M = \frac{2}{s}. \quad \forall y$

(iii) → (i) for any x,y ∈ X, [F(x) - F(y)] = [F(x-y)] = MAX-yV. Use def of entimety.

Note linearity is my important.

I) Dual space let X be normed rector space. Let X^* be set of all the confinedust linear functionals on X.

- Lemma X^* vector space. (existing).

- define a norm on X^* .

If $|| = \sup_{x \in X} \{|f(x)|| : x \in X \setminus \{0\}\}$ = sur $\{|f(x)|| : x \in X \setminus \{0\}\}$ we can always rescale at this of a linear space.

Next to check it is a norm. (≤ 1)

Note we have $F(x) \in \|F\| \cdot \|x\|^2$ so $\|F\|$ in the smallest M in the bound of F.

- Lemma This is a norm on X^* . (exercise).

Chock 3 axioms.

Thm: X^* is a handch space. Note X does not need to banach (complete). For now, assum X^* is not empty (this is for later, power by Hahn-Banach).

Proof: we only need to check the completeness. Let $\{F_n\}$ cauchy seq. in X^* .

so $\|F_n - F_m\| \to 0$ as $n,m \to \infty$ For a fixed of $x \in X$, we have $|F_n(x) - F_m(x)| = |(F_n - F_m)(x)| \le \|F_n - F_m\| \|x\|$.

Instant.

Thus in a function on X, let F be the conductate.

The single function of X and X and X.