Einzelprüfung "Theoretische Informatik / Algorithmen (vertieft)"

Einzelprüfungsnummer 66115 / 2017 / Frühjahr

Thema 2 / Aufgabe 2

(Nonterminale: STU, Terminale: abcde)

Stichwörter: Kontextfreie Sprache, Chomsky-Normalform, Pumping-Lemma (Kontextfreie Sprache)

(a) Gegeben sei die kontextfreie Grammatik $G = (V, \Sigma, P, S)$ mit Sprache L(G), wobei V = S, T, U und $\Sigma = \{a, b, c, d, e\}$. P bestehe aus den folgenden Produktionen:

$$P \! = \Big\{$$

$$S \rightarrow U \mid SbU$$

$$T \rightarrow dSe \mid a$$

$$U \rightarrow T \mid UcT$$

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Gib25c5oc

(i) Zeigen Sie $acdae \in L(G)$.

Lösungsvorschlag

$$S \vdash U \vdash UcT \vdash TcT \vdash acT \vdash acdSe \vdash acdUe \vdash acdae$$

(ii) Bringen Sie *G* in Chomsky-Normalform.

Lösungsvorschlag

- i. Elimination der ε -Regeln
 - Alle Regeln der Form $A \to \varepsilon$ werden eliminiert. Die Ersetzung von A wird durch ε in allen anderen Regeln vorweggenommen.
 - Ø Nichts zu tun
- ii. Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren. —

$$P = \left\{ \right.$$

$$S \rightarrow dSe \mid a \mid UcT \mid SbU$$

 $T \rightarrow dSe \mid a$
 $U \rightarrow dSe \mid a \mid UcT$

iii. Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_{σ} ersetzt und die Menge der Produktionen durch die Regel $S_{\sigma} \to \sigma$ ergänzt.

$$P = \left\{ \begin{array}{c} S \rightarrow DSE \mid a \mid UCT \mid SBU \\ T \rightarrow DSE \mid a \\ U \rightarrow DSE \mid a \mid UCT \\ B \rightarrow b \\ C \rightarrow c \\ D \rightarrow d \\ E \rightarrow e \end{array} \right.$$

iv. Elimination von mehrelementigen Nonterminalketten

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n$, $A_{n-1} \to A_{n-2}B_{n-1}, \dots, A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P = \begin{cases} S \rightarrow DS_E \mid a \mid UC_T \mid SB_U \\ T \rightarrow DS_E \mid a \end{cases} \\ U \rightarrow DS_E \mid a \mid UC_T \\ B \rightarrow b \\ C \rightarrow c \\ D \rightarrow d \\ E \rightarrow e \\ S_E \rightarrow SE \\ C_T \rightarrow CT \\ B_U \rightarrow BU \end{cases}$$

(b) Geben Sie eine kontextfreie Grammatik für $L=\{a^ib^kc^i|i,k\in\mathbb{N}\mid a\}$ n.

Lösungsvorschlag

Wir interpretieren \mathbb{N} als \mathbb{N}_0 .

$$P = \left\{ S \rightarrow aSc \mid aBc \mid B \mid \varepsilon B \right. \\ \left. \rightarrow b \mid Bb \right.$$

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Ghp3bfdtg

(c) Zeigen Sie, dass $L=\{a^ib^kc^i|i,k\in\mathbb{N}\land i< k\,|\,n\,\}$ icht kontextfrei ist, indem Sie das Pumping-Lemma für kontextfreie Sprachen anwenden.

Exkurs: Pumping-Lemma für Reguläre Sprachen

Es sei L eine kontextfreie Sprache. Dann gibt es eine Zahl j, sodass sich alle Wörter $\omega \in L$ mit $|\omega| \ge j$ zerlegen lassen in $\omega = uvwxy$, sodass die folgenden Eigenschaften erfüllt sind:

- (i) $|vx| \ge 1$ (Die Wörter v und x sind nicht leer.)
- (ii) $|vwx| \le j$ (Die Wörter v, w und x haben zusammen höchstens die Länge j.)
- (iii) Für alle $i\in\mathbb{N}_0$ gilt $uv^iwx^iy\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iwx^iy in der Sprache L)

Lösungsvorschlag

Die Bschlangaul-Sammlung Horming Bschlangauland Frier

Hermine Bschlangauland Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Staatsexamen/66115/2017/03/Thema-2/Aufgabe-2.tex