Métricas da paisagem

Sumário

1	Pac	kages	1			
2	2 Data					
	2.1	Plot	3			
3	Are	within buffer				
	3.1	Ponto único, raio único	4			
	3.2	Ponto único, distâncias variados	5			
4 calculate proportion						
	4.1	Make a graph	6			
	4.2	Make a better graph	7			
	4.3	Compare linear and non linear	9			

1 Packages

library(tidyverse)
library(sf)
library(terra)
library(tmap)
library(landscapemetrics)
library(gridExtra)
library(kableExtra)

2 Data

load raster

River lines

Load

```
# pontos cada 5 km
rsm_31976 <- sf::st_read(meuSIG, layer = "midpoints") %>%
    st_transform(31976)
# linha central de rios
rsl_31976 <- sf::st_read(meuSIG, layer = "centerline") %>%
    st_transform(31976)
```

2.1 Plot

Depois de executar ("run") o código acima, você deverá ver a figura a seguir.

Figura 2.1: Cobertura da terra ao redor do Rio Araguari em 2020. Mostrando os pontos de amostragem (pontos amarelas) cada 5 quilômetros ao longo do rio.

3 Area within buffer

3.1 Ponto único, raio único

Para amostrar métricas de paisagem dentro de um certo buffer em torno de pontos de amostra, existe a função sample_lsm().

Depois que executar ("run"), podemos olhar os dados com o codigo a seguir.

```
minha_amostra_1000
```

Os dados deve ter os valores:

layer	level	class	id	metric	value	plot_id	percentage_inside
1	class	0	NA	ca	234.20734	1	99.9608
1	class	1	NA	ca	79.61799	1	99.9608

3.2 Ponto único, distâncias variados

Class area for all exten...

```
# raio 250 metros
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 250, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 250) -> minha_amostra_250
# raio 500 metros
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 500, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 500) -> minha_amostra_500
# raio 1 km (1000 metros)
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 1000, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 1000) -> minha_amostra_1000
# raio 2 km
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 2000, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 2000) -> minha amostra 2000
# raio 4 km
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 4000, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 4000) -> minha_amostra_4000
# raio 8 km
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 8000, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 8000) -> minha_amostra_8000
# raio 16 km
sample_lsm(floresta_2020, y = rsm_31976[1, ],
           size = 16000, shape = "circle",
           metric = "ca") %>%
 mutate(raio = 16000) -> minha_amostra_16000
```

join

4 calculate proportion

4.1 Make a graph

```
amostras_metricas_resumo %>%
  ggplot(aes(x=2*raio, y=porcentagem_floresta)) +
  geom_point() +
  labs(x = "extensão (metros)", y = "porcentagem de floresta")
```


4.2 Make a better graph

```
amostras_metricas_resumo %>%
   ggplot(aes(x=(2*raio)/1000, y=porcentagem_floresta)) +
   geom_point() +
   stat_smooth(method = "lm", se = FALSE, color = "green") +
   labs(x = "extensão (quilômetros)", y = "porcentagem de floresta")
#> `geom_smooth()` using formula 'y ~ x'
```


4.3 Compare linear and non linear

include figure

more text

see what happens