Домашно по Ламбда смятане и теория на доказателствата

Светослав Илиев 2-ри курс специалност КН

1 Задачи

Задача 1.1 (1т.) Да се дефинира формално с индукция операция "преименуване на свързана променлива", която по даден терм $M \in \Lambda$, променлива $x \in V$ и промелива $y \in FV(M) \cup BV(M)$, дефинира нов терм M_y^x , който представлява резултата от заменянето на всички свързани срещания на x в M с y

Решение:

Дефинираме функцията bvrename индуктивно с индукция по терма M bvrename(M, x, y)

- 1) $M \equiv z \in V : bvrename(z, x, y) = z$
- 2) $M = M_1M_2$: $bvrename(M, x, y) = bvrename(M_1, x, y)(bvrename(M_2, x, y))$
- 3) $M = \lambda_z M'$:
 - 3.1) $z \equiv x : bvrename(\lambda_x M', x, y) = \lambda_y(bvrename'(M', x, y))$
 - 3.2) $z \not\equiv x : bvrename(\lambda_z M', x, y) = \lambda_z(bvrename(M', x, y))$

Дефинираме bvrename'(M, x, y):

- 1) $x \equiv z \in V$
 - 1.1) $z \equiv x : bvrename'(x, x, y) = y$
 - 1.2) $z \not\equiv x : bvrename'(z, x, y) = z$
- 2) $M = M_1 M_2$

 $bvrename'(M.x.y) = bvrename'(M_1, x, y)(bvrename'(M_2, x, y))$

- $3)M = \lambda_z M'$
 - 3.1) $z \equiv x : bvrename'(\lambda_x M', x, y) = \lambda_y(bvrename'(M', x, y))$
 - 3.2) $z \not\equiv x : bvrename'(\lambda_z M', x, y) = \lambda_z(bvrename'(M', x, y))$

Задача 1.18 Да се дефинират следните комбинатори и с помощта на индукция да се докаче формално тяхната коректност:

- (1 т.) c_s , такъв че $c_s c_n \stackrel{\beta}{=} c_{n+1}$ за $n \in \mathbb{N}$
- (2 т.) c_+ , такъв че $c_+c_mc_n\stackrel{\beta}{=}c_{m+n}m, n\in\mathbb{N}$
- (2 т.) c_* , такъв че $c_*c_mc_n\stackrel{\beta}{=}c_{mn}$ за $m,n\in\mathbb{N}$
- (2 т.) c_{exp} , такъв че $c_{exp}c_mc_n\stackrel{\beta}{=}c_{m^n}$ за $m,n\in\mathbb{N}$

Решение:

1) $c_s = \lambda_{n,f,x} f(nfx)$

Ще докажем коректността на c_s с индукция по n :

1)
$$n = 0$$
: $c_s c_0 \stackrel{\beta}{=} (\lambda_{n,f,x} f(nfx))(\lambda_{f,x} x) \stackrel{\beta}{=} \lambda_{f,x} f(\lambda_{f,x} x)(fx) \stackrel{\beta}{=}$

$$\stackrel{\beta}{=} \lambda_{f,x}(fx) \equiv c_1$$

2) Нека е изпълнено, че $c_s c_{n-1} = c_n$

3)
$$\lambda_{n,f,x}f(nfx)(c_n) \stackrel{\beta}{=} \lambda_{f,x}f(c_nfx) \stackrel{\beta}{=} \lambda_{f,x}f(f^nx) \stackrel{\beta}{=} \lambda_{f,x}f^{n+1}x \equiv c_{n+1}$$

$$2) \quad c_{+} = \lambda_{m,n,f,x} m f(nfx)$$

Ще докажем коректността на c_{+} :

1)
$$m = 0; n = 0$$
:

$$c_{+}c_{0}c_{0} \stackrel{\beta}{=} (\lambda_{m,n,f,x}nf(mfx))(\lambda_{f,x}x)(\lambda_{f,x}x) \stackrel{\beta}{=} \lambda_{f,x}(\lambda_{f,x}x)f(\lambda_{f,x}x)(fx) \stackrel{\beta}{=} \frac{\lambda_{f,x}(\lambda_{f,x}x)f(x)}{\beta} \stackrel{\beta}{=} \lambda_{f,x}(\lambda_{f,x}x)f(x) \stackrel{\beta}{=} \lambda_{f$$

2) $c_{+}c_{m}c_{n}$:

$$c_{+}c_{n}c_{m} \stackrel{\beta}{=} (\lambda_{m,n,f,x}nf(mfx))(\lambda_{f,x}(f^{n}x)(\lambda_{f,x}f^{m}x) \stackrel{\beta}{=} \lambda_{f,x}(\lambda_{f,x}f^{n}x)f(f^{m}x) \stackrel{\beta}{=}$$

$$\stackrel{\beta}{=} \lambda_{f,x}(\lambda_{f,x}f^n(f^mx)) \stackrel{\beta}{=} \lambda_{f,x}f^{m+n} \equiv c_{m+n}$$

3)
$$c_* = \lambda_{m,n,f} m(nf)$$

Ще докажем коректността на c_* :

1)
$$m = 0; n = 0$$
:

$$c_*c_0c_0 \stackrel{\beta}{=} \lambda_{m,n,f}m(nf)(\lambda_{f,x}x)(\lambda_{f,x}x) \stackrel{\beta}{=} \lambda_f(\lambda_{f,x}x)((\lambda_{f,x}x)f) \stackrel{\beta}{=} \lambda_f(\lambda_{f,x}x)(\lambda_xx) \stackrel{\beta}{=} \lambda_f(\lambda_f(\lambda_f(x)x)(\lambda_f(x)x) \stackrel{\beta}{=} \lambda_f(\lambda_f(x)x)(\lambda_xx) \stackrel{\beta}{=} \lambda_$$

$$\stackrel{\beta}{=} \lambda_f(\lambda_x x) \stackrel{\beta}{=} \lambda_{f,x} x \equiv c_0$$

2) $c_*c_mc_n$:

$$(\lambda_{m,n,f}m(nf))(c_m)(c_n) \stackrel{\beta}{=} \lambda_{m,n,f}(\lambda_{f,x}f^mx)((\lambda_{f,x}f^nx)f) \stackrel{\beta}{=} \lambda_f(\lambda f, xf^mx)((\lambda_{f,x}f^nx)f) \stackrel{\beta}{=} \lambda_f(\lambda_f(\lambda_{f,x}f^mx)f) \stackrel{\beta}{=} \lambda_f(\lambda_f(\lambda_f(xf^mx)f)((\lambda_f(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f) \stackrel{\beta}{=} \lambda_f(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f) \stackrel{\beta}{=} \lambda_f(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f) \stackrel{\beta}{=} \lambda_f(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f)(\lambda_f(xf^mx)f$$

$$\stackrel{\beta}{=} \lambda_f(\lambda_{f,x} f^m x)(\lambda_x f^n x) \stackrel{\beta}{=} \lambda_f(\lambda_x (\lambda_x f^n x)^m x) \stackrel{\beta}{=} \frac{\lambda_f(\lambda_x f^n x)}{=} \lambda_{f,x} f^{nm} x \equiv c_{nm}$$

3)
$$c_{exp} = \lambda_{m,n,f} nmf$$

Ще докажем коректността на c_{exp} :

$$\lambda_{m,n,f} n m f(c_m)(c_n) \stackrel{\beta}{=} \lambda_{m,n,f} n m f(\lambda_{f,x} f^m x) (\lambda_{f,x} f^n x) \stackrel{\beta}{=} \lambda_f ((\lambda_{f,x} f^n x) (\lambda_{f,x} f^m x) f) \stackrel{\eta}{=} \frac{\eta}{\pi} (\lambda_{f,x} f^n x) (\lambda_{f,x} f^m x) \stackrel{\beta}{=} \lambda_x (\lambda_{f,x} f^m x)^n x \stackrel{\eta}{=} (\lambda_{f,x} f^m x)^n \equiv f^{m^n}$$

Задача 2.1(3 т.) Да се докаже, че типовите променливи lpha не са обитаеми

Решение: Нека допуснем, че $\alpha \in TV$ е обитаем тип \implies съществуа $M:\alpha$, където $M\in\Lambda^*$, $FV(M)=\emptyset$, $\alpha \in TV$

$$FV(M)=\emptyset \implies M\equiv \lambda_x N, \quad N\in \Lambda$$
 $\lambda_x N:\alpha$ От допускането получаваме $\vdash \lambda_x N:\alpha$ От Лемата за обръщането плучаваме, че: $\vdash \lambda_x N:\alpha \implies \exists \rho,\sigma:\rho\Rightarrow\sigma\equiv\alpha$ но $\alpha\in TV$

Задача 2.9(2 т.) Да се докаже, че ⊇ е частична наредба, т.е. е рефлексивна и транзитивна релация.

Решение:

1)Рефлексивна: $\alpha \supseteq \alpha$ Дефинираме субституция ξ : $\alpha \xi = \alpha$ 2)Транзитивна: $\alpha \supseteq \beta$, $\beta \supseteq \gamma \implies \alpha \supseteq \gamma$ $\alpha \supseteq \beta \implies \exists \xi_1 : \alpha \xi_1 = \beta$ $\beta \supseteq \gamma \implies \exists \xi_2 : \beta \xi_1 = \gamma$ Дефинираме $\xi : \xi = \xi_1 \circ \xi_2$ $\alpha \xi = (\alpha \xi_1) \xi_2 = \beta \xi_2 = \alpha \implies \alpha \supseteq \gamma$

Задача 3.1 Да се реализира програма, която позволява дефиниране на доказателства в някоя от следните системи:

•(8 т.) Хилбертова система H[mic]

Решение:

Във файла HilbertSystem.py