Assignment Date	29 September 2022
Student Name	S.NIVETHA
Student Roll Number	E1194026
Maximum Marks	2 Marks

Data Visualization and Pre-processing

Perform Below Tasks to complete the assignment:-

Tasks:-

- 1. Download the dataset: Dataset
- 2. Load the dataset.
- 3. Perform Below Visualizations.
 - Univariate Analysis
 - Bi Variate Analysis
 - Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Handle the Missing values.
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent & independent variables
- 9. Scale the independent variables
- 10. Split the data into training and testing

SOLUTIONS:

1.Download the dataset: Dataset data set is churn_modeling.csv 2)Load the dataset.

In []:	impor	import pandas as pd														
In []:		<pre>dataset = pd.read_csv("Churn_Modelling.csv") dataset.head()</pre>														
Out[]:	Row	Number	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0	

3)Perform Below Visualizations. ● Univariate Analysis ● Bi - Variate Analysis ● Multi - Variate Analysis

```
In []: #univariate
    sns.displot(dataset['CreditScore'])
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef88c81820>


```
In [ ]:
sns.displot(dataset['NumOfProducts'])
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef8c2300d0>


```
In [ ]: #bi variate
    sns.relplot(x="CreditScore",y='Age',data=dataset)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef8c2aa2e0>

In []:
sns.relplot(x="CreditScore",y='Age',hue="IsActiveMember",data=dataset)

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef868a98e0>


```
In [ ]:
    sns.catplot(x="Gender",y='Age',data=dataset)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef8c34f4f0>

4)Perform descriptive statistics on the dataset.

import pandas as pd
import numpy as np
ds = pd.read_csv("Churn_Modelling.csv")
ds.head(2)

|ut[]: RowNumber Customerid Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

						9										
()	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1	
		2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0	

In []: ds.isnull().mean() RowNumber 0.0 Out[]: CustomerId 0.0 Surname 0.0 CreditScore 0.0 0.0 Geography Gender 0.0 Age 0.0 Tenure 0.0 Balance 0.0 NumOfProducts 0.0 HasCrCard 0.0 IsActiveMember 0.0 EstimatedSalary 0.0 Exited 0.0 dtype: float64

1:		RowNum	ber Cu	stomerld	CreditScore	Age	Те	nure	Ba	alance	NumOfProducts	HasCrCard	IsActiveMember	Esti	matedSalary	Exited
	count	10000.00	0000 1.00	0000e+04	10000.000000	10000.000000	10000.00	0000	10000.0	00000	10000.000000	10000.00000	10000.000000	-	0000.00000	10000.00000
	mean	5000.50	0000 1.56	9094e+07	650.528800	38.921800	5.01	2800	76485.8	89288	1.530200	0.70550	0.515100	10	00090.239881	0.20370
	std	2886.89	568 7.19	3619e+04	96.653299	10.487806	2.89	2174	62397.4	05202	0.581654	0.45584	0.499797		7510.492818	0.40276
	min	1.00	0000 1.55	6570e+07	350.000000	18.000000	0.00	0000	0.0	00000	1.000000	0.00000	0.000000		11.580000	0.00000
	25%	2500.75	000 1.56	2853e+07	584.000000	32.000000	3.00	0000	0.0	00000	1.000000	0.00000	0.000000		51002.110000	0.00000
	50%	5000.50	0000 1.56	9074e+07	652.000000	37.000000	5.00	0000	97198.5	40000	1.000000	1.00000	1.000000	10	00193.915000	0.00000
	75%	7500.25	000 1.57	5323e+07	718.000000	44.000000	7.00	0000	127644.2	40000	2.000000	1.00000	1.000000	14	49388.247500	0.00000
	max	10000.00	1.58	1569e+07	850.000000	92.000000	10.00	0000	250898.0	90000	4.000000	1.00000	1.000000	19	99992.480000	1.00000
5)Handl	e the Mi	ssing valu	ies.												
]:	datase	t.head()													
]:						re Geography			Tenure	Bala			Card IsActiveMen			
0		1		02 Hargra				42	2		0.00	1	1	1	101348.	
1		2	156473		Hill 60		Female	41	1	83807		1	0	1	112542.	
2		3	156193	04 0	nio 50		Female	42	8	159660	0.80	3	1	0	113931.	
3		4	157013	54 B	oni 69	9 France	Female	39	1	(0.00	2	0	0	93826.	63 0
n []	: da	taset.is	null().	sum()												
ut[]	Cus Sur Cre Geo Gen Age Ten Bal Num Has IsA Est	ure ance OfProduc CrCard ctiveMem imatedSa	ts ber lary	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
			_		ng or null valu tion usedfil		et will ha	ve an	y missing	g values	s,we can handle	it in followin	g ways 1) lot of r	nissir	ng valuesr	emove 2) le
	6)Find	d the outl	iers and I	eplace the	outliers											
[]:	data	set.ske	ı()													
	ic_or	ly=None aset.ske	') is dep ew()										e columns in Da pefore calling t			ns (with
t[]:	Custo Credi Age Tenur Balar	omerId tScore	0 -0 1 0 -0	001149 071607 011320 010991 141109												

```
In [ ]: sns.boxplot(dataset["Age"])
       C:\ProgramData\Anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(
<AxesSubplot:xlabel='Age'>
                30 40 50 60 70
Age
 In [ ]:
                      q1= dataset["Age"].describe()["25%"]
                      q3= dataset["Age"].describe()["75%"]
 In [ ]:
                      q1
                     32.0
 Out[]:
 In [ ]:
                      q3
                    44.0
 Out[]:
 In [ ]:
                      iqr=q3-q1
                      iqr
                    12.0
 Out[]:
```

```
In [ ]:
              l_b=q1-(1.5*iqr)
                u_b=q3+(1.5*iqr)
 In [ ]:
               1 b
              14.0
 Out[]:
 In [ ]:
              l_b=q1-(1.5*iqr)
                u_b=q3+(1.5*iqr)
 In [ ]:
              1 b
              14.0
 Out[]:
In [ ]: l_b=q1-(1.5*iqr) u_b=q3+(1.5*iqr)
In [ ]: 1_b
Out[]: 14.0
In [ ]: u_b
Out[ ]: 62.0
In [ ]: dataset[dataset["Age"]<1_b]</pre>
Out[ ]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
In [ ]: dataset[dataset["Age"]>u_b].head()
Out[ ]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
            59 15623944 Tien 511 Spain Female 66 4 0.00 1 1 0
      85 86 15805254 Ndukaku 652 Spain Female 75 10 0.00
      158 159 15589975 Maclean 646 France Female 73 6 97259.25 1 0 1 104719.66 0
```

65, 73, 65, 72, 67, 67, 79, 80, 68, 75, 66, 66, 70, 63, 72, 64, 64, 70, 67, 82, 63, 69, 65, 69, 64, 65,

```
In [ ]:
          dataset.dtypes
         RowNumber
                               int64
Out[]:
         CustomerId
                               int64
         Surname
                              object
         CreditScore
                               int64
         Geography
                              object
         Gender
                              object
                               int64
         Age
         Tenure
                               int64
         Balance
                             float64
         NumOfProducts
                               int64
         HasCrCard
                               int64
         IsActiveMember
                               int64
         EstimatedSalary
                             float64
         Exited
                                int64
         dtype: object
 In [ ]:
         outlier_list=list(dataset[dataset["Age"]>u_b]["Age"])
         outlier_list
        [66,
 Out[]:
         75,
         65,
```

74,

67,

66,

67,

63,

70,

71,

72, 67,

74,

76,

66,

63,

66,

68,

67, 63,

71,

66, 69,

73,

65,

66,

64,

69,

64,

77,

74, 65,

70,

67,

69,

67,

74,

69,

74,

74,

64,

63,

63, 70,

74,

65,

72,

77,

66,

65,

74,

88, 63,

71,

63,

64,

67,

70,

68,

71,

66,

75,

67,

73,

69,

76,

63, 85,

67,

74,

76,

66,

69,

66,

72,

63,

71,

63, 74,

67,

72,

72,

66,

84,

71,

66,

63, 74,

69,

84,

67,

64,

68,

66,

77,

70,

67,

79, 67,

76,

73,

66,

67,

64, 73,

76,

72,

64,

71,

63,

70,

65,

66,

65,

80, 66,

63,

63,

63,

63,

66,

74,

69,

63, 64,

76,

75,

68,

69,

77,

64,

66,

74,

71,

67,

68,

64,

68,

70,

64,

75,

66,

64,

78, 65,

74,

64,

64,

71,

77,

79,

70,

81,

64, 68,

68,

63,

79,

66, 64,

70, 69,

71,

72,

66,

68,

63,

71, 72,

72,

64, 78,

65,

65,

67,

63,

68,

71,

73, 64,

66,

71,

69,

71,

66,

76,

69, 73,

64,

64,

75,

73, 71,

72,

63,

67,

68,

73,

67,

64, 63,

92,

65,

75,

67,

71,

64,

66,

64,

66,

67,

77,

92,

67,

63,

66,

66, 68,

65,

72,

71,

76,

63,

67, 67,

66,

67,

63,

70,

72,

77,

74,

72,

73,

77, 67,

71,

64,

72,

81,

76,

69,

68,

74,

64,

64,

71,

68,

63,

67,

63,

64,

76,

63, 63,

68,

67,

72,

70,

81,

67,

73,

66,

68,

71,

66,

63,

75,

69,

64, 69,

70,

71,

71,

66,

70,

63,

64, 65,

63,

67,

71,

67,

65,

63,

73,

66,

64,

72,

71,

69,

67, 64,

81,

73,

63,

67,

74,

83,

69,

71,

78,

63,

70,

69,

72,

70, 63,

74,

80,

69,

72,

67,

76, 71,

67,

71,

78,

63,

63,

68,

64,

70,

78,

69,

68, 64,

64,

77,

77]

```
After removing outliers
In [ ]: dataset["Age"]=dataset["Age"].replace(outlier_dict)
sns.boxplot(dataset["Age"])
C:\ProgramOata\Anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Cout[]: 

AxesSubplot:xlabel='Age'>
In [ ]:
                   outlier_dict={}.fromkeys(outlier_list,u_b)
                   outlier_dict
Out[ ]: {66: 62.0,
                   75: 62.0,
                   65: 62.0,
                   73: 62.0,
                   72: 62.0,
                   67: 62.0,
                   79: 62.0,
                   80: 62.0,
                   68: 62.0,
                   70: 62.0,
                   63: 62.0,
                   64: 62.0,
                   82: 62.0,
                   69: 62.0,
                   74: 62.0,
                   71: 62.0,
                   76: 62.0,
                   77: 62.0,
                   88: 62.0,
                   85: 62.0,
                   84: 62.0,
                   78: 62.0,
                   81: 62.0,
                   92: 62.0,
                   83: 62.0}
```

7)Check for Categorical columns and perform encoding.

```
In [ ]:
                 dataset.dtypes
                RowNumber
                                              int64
    Out[ ]:
                CustomerId
                                            int64
                Surname
                                          object
                CreditScore
                                             int64
                Geography
                                          object
                Gender
                                          object
                Age
                                            int64
                Tenure
                                             int64
                              float64
                Balance
                NumOfProducts
                                          int64
                HasCrCard
                                              int64
                IsActiveMember
                                            int64
                EstimatedSalary
                                           float64
                Exited
                                              int64
                dtype: object
In [ ]: from sklearn.preprocessing import LabelEncoder
In [ ]: le=LabelEncoder()
     letLabelEncoder()
dataset['Geography']=le.fit_transform(dataset['Geography'])
dataset['Gender']=le.fit_transform(dataset['Gender'])
In [ ]: dataset.head()
Out[ ]: RowNumber Customerid Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
                                         0 42
            1 15634602 Hargrave
                                                      0.00
                                                                                       101348.88
     1 2 15647311 Hill 608 2 0 41 1 83807.86
                                                                                       112542.58
           3 15619304 Onio
                              502
                                      0 0 42
                                                 8 159660.80
                                                                                       113931.57
     2
     3 4 15701354 Boni 699
                                    0 0 39 1 0.00
                                                                       0 0 93826.63
           5 15737888 Mitchell 850
                                     2 0 43 2 125510.82
                                                                                       79084.10
         8)Split the data into dependent and independent variables.
          y=dataset['Exited']
          x=dataset.drop(columns=['Exited','CustomerId','RowNumber','Surname'],axis=1)
 In [ ]:
 Out[ ]:
                 0
         2
                 1
         4
                 0
         9995
         9996
                0
         9997
                 1
         9998
                1
         9999
         Name: Exited, Length: 10000, dtype: int64
```

n []: x	(
ıt[]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
	0	619	0	0	42	2	0.00	1	1	1	101348.88
	1	608	2	0	41	1	83807.86	1	0	1	112542.58
	2	502	0	0	42	8	159660.80	3	1	0	113931.57
	3	699	0	0	39	1	0.00	2	0	0	93826.63
	4	850	2	0	43	2	125510.82	1	1	1	79084.10
99	995	771	0	1	39	5	0.00	2	1	0	96270.64
99	996	516	0	1	35	10	57369.61	1	1	1	101699.77
99	997	709	0	0	36	7	0.00	1	0	1	42085.58
99	998	772	1	1	42	3	75075.31	2	1	0	92888.52
99	999	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows × 10 columns

9)Scale the independent variables

```
In [ ]:
         col_names=x.columns
         from sklearn.preprocessing import scale
In [ ]:
         x=scale(x)
        array([[-0.32622142, -0.90188624, -1.09598752, ..., 0.64609167,
                 0.97024255, 0.02188649],
               [-0.44003595, 1.51506738, -1.09598752, ..., -1.54776799,
                 0.97024255, 0.21653375],
               [-1.53679418, -0.90188624, -1.09598752, ..., 0.64609167,
                -1.03067011, 0.2406869],
               ...,
               [ 0.60498839, -0.90188624, -1.09598752, ..., -1.54776799,
                 0.97024255, -1.00864308],
               [ 1.25683526, 0.30659057, 0.91241915, ..., 0.64609167,
                -1.03067011, -0.12523071],
               [ 1.46377078, -0.90188624, -1.09598752, ..., 0.64609167,
                -1.03067011, -1.07636976]])
```

0 1 2	-0.326221			Age	Tenure		NumOfProducts	riuser curu		
2		-0.901886	-1.095988	0.342615	-1.041760	-1.225848	-0.911583	0.646092	0.970243	0.0218
	-0.440036	1.515067	-1.095988	0.240011	-1.387538	0.117350	-0.911583	-1.547768	0.970243	0.2165
3	-1.536794	-0.901886	-1.095988	0.342615	1.032908	1.333053	2.527057	0.646092	-1.030670	0.2406
_	0.501521	-0.901886	-1.095988	0.034803	-1.387538	-1.225848	0.807737	-1.547768	-1.030670	-0.1089
4	2.063884	1.515067	-1.095988	0.445219	-1.041760	0.785728	-0.911583	0.646092	0.970243	-0.3652
9995	1.246488	-0.901886	0.912419	0.034803	-0.004426	-1.225848	0.807737	0.646092	-1.030670	-0.0664
9996	-1.391939	-0.901886	0.912419	-0.375612	1.724464	-0.306379	-0.911583	0.646092	0.970243	0.0279
9997	0.604988	-0.901886		-0.273008		-1.225848	-0.911583	-1.547768	0.970243	-1.0086
9998	1.256835	0.306591	0.912419	0.342615	-0.695982	-0.022608	0.807737	0.646092	-1.030670	-0.1252
]:		earn.mod	del_sel	ection	import		test_split plit(x,y,te	st size	=0.2,random	state=0)
	x_train. 8000, 10									
]:	x_test.s	hape								
]: (2000, 10))								
n []: у_	_train	.shap	e						
ıt[]: (80	000,)								
n []: y_	_test.	shape	•						