Hardware Architecture for Deep Learning - CS6490. Spring 2023-24. Dept. of CSE, IIT Hyderabad

DCPt.	Quiz-2	
Total marks: 10		Time: 10 minutes
Name: Rahul Vigneswayan Ko Roll number: CS2 3MTECH0200	22	
Systolic arrays can be implemented on (a. CPU with Vector instructions b. GPU c. ASIC d. FPGA	choose correct ones): [1]	

- Which dataflow is depicted by the given code snippet for a 1-D convolution: [1] for (i=0; i<K; i++)
 for (p=0; p<N; p++)
 out[p] += in[i+p] * wt[i]
 out, in, wt represent the output, input, and weight matrices, respectively.
 - a. Input stationary
 b. Output stationary
 c. Weight stationary
- Given the systolic design as shown, mark the values to be fed to horizontal and vertical inputs. Any cycle gap can be shown with value 0. [3]

Falue Ggrusumana &

4. Consider an application whose 20% time is spent executing sequential portion of the code while 80% time is spent executing parallelizable code on a 1-core CPU. Calculate the maximum possible speedup when executing this application on a 16-core system. [2]

$$\frac{1}{1-0.8 + \frac{0.8}{16}} = \frac{1}{20} = \frac{4}{100}$$

		4	10 20%. 20
1-0.8+0.8	10 20		80%
			1-0.8+

5. Perform 3-D convolution of the given 3x3x2 input and 2x2x2 kernel. Assume stride=1. [3]

Input channel-0		Input channel-1			
2	3	4	1	3	5
1	2	3	2	4	6
2	1	5	0	1	2

Kernel channel-0		Kernel	Kernel channel-1		
0	1	-1	0		
1	-1	0	1		

$$3 - 2 + 1$$
 2
 $3 + 2 - 3$
 $2 + 2 - 1$
 $3 + 1 - 5$

$$\begin{array}{r}
 -1+4 \\
 -3+6 \\
 -2+1 \\
 -4+2
 \end{array}$$