1. kontrolna zadaća iz Arhitekture i organizacije računala, problemski dio. 11.12.2002.

Grupa A.

Napomene: Obvezatno upisati ime i prezime na papir sa zadacima i na papir s odgovorima. Vrijeme za rješavanje problemskog dijela ispita je 85 min. Uz svaki zadatak označen je pripadni broj bodova. Za prolaznu ocjenu potrebno je prikupiti najmanje 50% mogućih bodova ovog dijela ispita. (Ispitne zadatke sastavio je prof. dr. sc. S. Ribarić).

Ime i prezime: , matični broj:

- 1. Napišite program za Turingov stroj koji proizvoljan broj zapisan u brojevnom sustavu po bazi 8 uvećava za 2. Početni položaj glave za čitanje i pisanje je na *najznačajnijoj* znamenci. (5 bodova)
- 2. Za pojednostavljeni model procesora nacrtati stanje na sabirnici za prva dva prolaza kroz petlju, za sljedeći programski odsječak:

Pretpostavite da je početni sadržaj akumulatora $A = 0F_{(16)}$. Odredite sadržaje registara modela (PC, A, DC, IR) nakon drugog prolaska kroz petlju.

Modificirajte programski odsječak tako da procesor ne ostaje vječno u petlji, već iz nje izlazi kada sadržaj akumulatora poprimi vrijednost 0. (5 bodova)

- 3. Za sljedeći scenarij (za MC 68000) prikažite grafički slijed događaja i odredite sadržaje stogova i vrijednosti kazala stogova (uz to označite i načine rada u kojima se nalazi procesor) (8 bodova):
 - a) Procesor je u korisničkom načinu rada.
 - b) Poziva se rekurzivni potprogram REKUR (povratna adresa je 120034₍₁₆₎).
 - c) U potprogramu se potprogram treba još dvaput rekurzivno pozvati (povratna adresa je 12301E₍₁₆₎).
 - d) Nakon prvog rekurzivnog poziva, tijekom izvođenja potprograma, dogodio se prekid (povratna adresa je 123004₍₁₆₎).
 - e) Obrađuje se prekid.
 - f) Nakon obrade prekida, instrukcijom RTE nastavlja se izvođenje prekinutog rekurzivnog potprograma.
 - g) Upravljanje se nakon izvođenja potprograma prenosi na glavni program.

Pretpostavite da je početni sadržaj kazala stogova: USP=320000₍₁₆₎, SSP=2600EE₍₁₆₎, te da je početni sadržaj status-registra SR=0207₍₁₆₎ i ne mijenja se tijekom izvođenja potprograma. Prikažite:

- 1) sadržaj stogova i kazala stogova neposredno nakon grananja u potprogram;
- 2) sadržaj stogova i kazala stogova neposredno nakon prvog rekurzivnog poziva;
- 3) sadržaj stogova i kazala stogova neposredno nakon odlaska u obradu prekida;
- 4) sadržaj stogova i kazala stogova neposredno nakon povratka iz obrade prekida;
- 5) sadržaj stogova i kazala stogova neposredno nakon drugog rekurzivnog poziva;
- 6) sadržaj stogova i kazala stogova neposredno nakon svakog povratka iz rekurzivnog potprograma.
- 4. Instrukcija procesora SRISC **la** (load address) koja računa adresu operanda, ali umjesto dohvata operanda pohranjuje izračunatu vrijednost u R [ra] ima za naš slučaj ovakav format:

3127	26 22	21 17	16 0	
0 0 1 0 1	0 0 0 1 1	0 0 0 0 0	100000000000000001	
<op></op>	<ra></ra>	<r<sub>b></r<sub>	<c2></c2>	

Odredite sadržaje registara na koje ova instrukcija utječe. (4 boda)

5. Slika prikazuje Ganttov dijagram za protočni model procesora koji ima 5 protočnih segmenata:

Protočni segmenti								
WB					1	2	3	
ME				1	2	3	4	
EX			1	2	3	4	5	
ID		1	2	3	4	5	6	
IF	1	2	3	4	5	6	7	
	ΔT	vrijeme						

Nacrtajte jednostavan model protočnosti, izračunajte vrijeme obrade i odnos između vremena potrebnog za efektivno izvođenje jedne instrukcije u neprotočnoj strukturi i u protočnoj strukturi. Neka je t_1 = t_2 = t_3 = t_4 = t_5 = t_5 = 10 ns za protočnu organizaciju, a vrijeme potrebno za izvođenje instrukcije u neprotočnoj izvedbi neka je t_1 = t_1 + t_2 + t_3 + t_4 + t_5 = 5 t_8 . Pretpostavite da je broj instrukcija koje se izvode N=10 7 . (3 boda)