

Sistemas Computacionais

Parte 05 – Circuitos lógicos e operações II

Prof. Fancisco Javier Francisco.diaz@p.ucb.br

Circuitos lógicos

Universalidade das Portas NOR e NAND e Teoremas de Morgan

 As expressões booleanas são implementadas com as portas OR, AND e NOT. Que podem ser implementadas apenas por portas NOR...

 As expressões booleanas são implementadas com as portas OR, AND e NOT. • ... e portas NAND.

- Imaginemos uma situação em que o resultado seja ALTO se as entradas A e B ou C e D sejam ALTAS.
- Como eu implementaria essa expressão usando os chips comerciais abaixo?

A expressão booleana será:

$$x = A \cdot B + C \cdot D$$

• Implementando com portas AND e OR a expressão x = A . B + C . D

 E implementando com portas NAND

Circuitos lógicos

Teoremas de De Morgan e suas aplicações

Augustus De Morgan (1806-1871)

- Matemático britânico, nascido na Índia
- Estudos de grego, latim e princípios de hebraico
- Estudou várias áreas do conhecimento, inclusive o direito e a música.
- "Indução matemática" (1838)
- Como Boole, seu contemporâneo, também realizou trabalhos baseados no Silogismo de Aristóteles

Primeiro Teorema – Teoria dos conjuntos

 "A complementar da união entre os conjuntos A e B é igual a interseção das complementares de A e B, para quaisquer que sejam A e B"

Primeiro Teorema – Teoria dos conjuntos

Primeiro Teorema – Álgebra de Boole

 "O complemento de duas ou mais variáveis submetidas a uma operação AND é equivalente a uma operação OR entre os complementos das variáveis individuais."

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Primeiro Teorema – Álgebra de Boole

X	Y	X . Y	$\overline{X \cdot Y}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

X	Y	\overline{X}	\overline{Y}	$\overline{X} + \overline{Y}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Segundo Teorema – Teoria dos conjuntos

 "A complementar da interseção entre os conjuntos A e B é igual a união entre as complementares de A e B, para quaisquer que sejam A e B"

Segundo Teorema – Teoria dos conjuntos

Segundo Teorema – Álgebra de Boole

 "O complemento de uma soma de variáveis é igual ao produto do complemento das variáveis."

$$\overline{X+Y} = \overline{X}.\overline{Y}$$

Segundo Teorema – Álgebra de Boole

X	Y	X + Y	$\overline{X + Y}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

X	Y	\overline{X}	\overline{Y}	\overline{X} . \overline{Y}
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

$$\begin{array}{c} X \\ Y \end{array} \longrightarrow \begin{array}{c} \overline{X + Y} \end{array} \equiv \begin{array}{c} X \\ Y \end{array} \longrightarrow \begin{array}{c} \overline{XY} \end{array}$$

$$\begin{array}{c} \overline{XY} \\ \overline{XY} \end{array}$$

$$\begin{array}{c} \overline{XY} \\ \overline{XY} \end{array}$$

$$\begin{array}{c} \overline{XY} \\ \overline{XY} \end{array}$$

Simbologia alternativa

O objetivo disso é deixar claro as condições das entradas para ativar a saída.

Nível lógico ativo

Universidade Católica de Brasília

 Saída assume o nível BAIXO somente quando todas as entradas forem AITAS

 Saída assume o nível ALTO quando qualquer entrada for BAIXA

 Saída assume o nível ALTO quando qualquer entrada for ALTA

 Saída assume o nível BAIXO somente quando todas as entrada forem BAIXAS

Simbologia alternativa

Universidade Católica de Brasília

Α	В	С	D	Z
0			0	0
0	0	0	1	0
0	0 0 0 1 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
0 0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	1	Z 0 0 0 1 0 0 0 1 1 1 1 1 1 1

Simbologia alternativa

Exemplo: Controlador LCD

Universidade Católica de Brasília

- 1. LCD ligado \rightarrow LCD = 1, somente se X = Y = 0
- Saída X em nível BAIXO, se IN ou OUT forem ALTO
- 3. Saída Y em nível BAIXO, somente se $W = A_o$ = 0
- 4. Saída W em nível BAIXO, somente se A_1 até A_7 forem ALTO

São 10 entradas possíveis, que representam uma tabela-verdade com 1024 linhas

LCD ligado, se $A_1 = A_2 = A_3 = A_4 = A_5 = A_6 = A_7 = 1$ e $A_0 = 0$ e IN ou OUT (ou ambas) forem 1.

Circuitos lógicos

Exercite seus conhecimentos!!!

Com base em 1º Teorema de Morgan:

 O complemento de um produto de variáveis é igual à soma do complemento de variáveis.

$$\overline{XY} = \overline{X} + \overline{Y}$$

Entradas		Saída	
X	Y	XY	$\overline{X} + \overline{Y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

E em 2º Teorema de Morgan:

 O complemento da soma de variáveis é igual ao produto do complemento das variáveis.

Entradas		Saíd	a
X	Y	X +Y	XY
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

E na álgebra de Boole resolva os exercícios a seguir

Simplifique
$$z = (\overline{A} + B)(A + B)$$
.

Exercício:

Simplifique
$$z = (\overline{A} + B)(A + B)$$
.

Solução

A expressão pode ser expandida multiplicando-se os termos [teorema (13)]:

$$z = \overline{A} \cdot A + \overline{A} \cdot B + B \cdot A + B \cdot B$$

Pelo teorema (4), $\overline{A} \cdot A = 0$. Além disso, $B \cdot B = B$ [teorema (3)]:

$$z = 0 + \overline{A} \cdot B + B \cdot A + B = \overline{A}B + AB + B$$

Fatorando a variável B [teorema (13)], temos

$$z = B(\overline{A} + A + 1)$$

Finalmente, utilizando os teoremas (2) e (6),

$$z = B$$

Exercício 2

Simplifique a expressão
$$x = (\overline{A} + B)(A + B + D)\overline{D}$$
.

Solução

A expressão pode ser colocada sob a forma de somade-produtos multiplicando-se todos os termos. O resultado é

$$x = \overline{A}A\overline{D} + \overline{A}B\overline{D} + \overline{A}D\overline{D} + BA\overline{D} + BB\overline{D} + BD\overline{D}$$

O primeiro termo pode ser eliminado, já que $\overline{A}A = 0$. Do mesmo modo, o terceiro e o sexto termo podem ser eliminados, visto que $D\overline{D} = 0$. O quinto termo pode ser simplificado para $B\overline{D}$, já que BB = B. Isto resulta em

$$x = \overline{A}B\overline{D} + AB\overline{D} + B\overline{D}$$

Podemos fatorar $B\overline{D}$ de cada termo para obter

$$x = B\overline{D}(\overline{A} + A + 1)$$

É claro que o termo entre parênteses é sempre 1, portanto, inalmente temos

$$x = B\overline{D}$$

Exercícios:

Simplifique cada uma das expressões seguintes utilizando os teoremas de DeMorgan.

(a)
$$\overline{ABC}$$

(d)
$$\overline{A(B+\overline{C})D}$$

(b)
$$\overline{A} + \overline{B}C$$

(e)
$$\overline{(M+\overline{N})(\overline{M}+N)}$$

(c)
$$\overline{ABCD}$$

(f)
$$\overline{ABCD}$$

Simplifique as expressões a seguir usando a álgebra booleana.

(a)
$$x = ABC + \overline{A}C$$

(b)
$$y = (Q + R)(\overline{Q} + \overline{R})$$

(c)
$$w = ABC + A\overline{B}C + \overline{A}$$

(d)
$$q = \overline{RST}(\overline{R+S+T})$$

(e)
$$x = \overline{A}\overline{B}\overline{C} + \overline{A}BC + ABC + A\overline{B}\overline{C} + A\overline{B}C$$

(f)
$$z = (B + \overline{C})(\overline{B} + C) + \overline{\overline{A} + B + \overline{C}}$$

(g)
$$y = \overline{(C+D)} + \overline{A}C\overline{D} + A\overline{B}C + \overline{A}BCD + AC\overline{D}$$

Próxima aula

• Circuitos lógicos combinacionais

Dúvidas?

