Math 15910: Problem Set 2

Underland, Jake

2021-08-09

Contents

Exercise 1	1
Problem 1.4.5	1
Exercise 2	2
Prove Theorem 1.4.7	2
exercise 3	2
Problem 1.4.9	2
Exercise 4	3
Problem 1.4.10	3
Exercise 5	3
Exercise 6	4
Problem 1.7.9	4
Exercise 7	4
Problem 1.7.15	4
Exercise 8	6
Problem 1.7.22	6

Exercise 1

Problem 1.4.5

Prove that $A \times \emptyset = \emptyset \times A = \emptyset$

Let A and B be sets. Suppose $B = \emptyset$. Then, by definition, there does not exist any $b \in B$. Since the Cartesian product of A and B, $A \times B$ is defined as the set of the ordered pairs (a,b) such that $a \in A$ and $b \in B$, if there does not exist any $b \in B$, then there cannot exist any ordered pair (a,b). Therefore, there exists no $(a,b) \in A \times B$, implying that $A \times B = A \times \emptyset = \emptyset$. Similarly, $B \times A$ is defined as the set of the ordered pairs (b,a) such that $b \in B$ and $a \in A$. If there does not exist any $b \in B$, then there cannot exist any ordered pair (b,a), hence $B \times A$ would be empty. Thus, $B \times A = \emptyset \times A = \emptyset$.

Exercise 2

Prove Theorem 1.4.7

If A has m elements and B has n elements, then $A \times B$ has mn elements

Let m be fixed, and let A be a set with m elements. B is a set with n elements. $m, n \in \mathbb{N}$.

If n=1, there is one element $b \in B$. Then, $A \times B$ would be the set of all ordered pairs (a_i,b) for $1 \le i \le m$ and $a \in A, b \in B$.

$$\underbrace{(a_1,b),(a_2,b),\ldots,(a_m,b)}_{m \text{ pairs}}$$

The total number of ordered pairs would be m, and since n = 1, the statement " $A \times B$ has mn elements" holds true.

Suppose the statement is true for n=k. Now assume n=k+1. Then, the elements in $A\times B$ would be the combination of pairs created by (a_i,b_j) where $1\leq i\leq m$ and $1\leq j\leq k$, which is equivalent to $A\times B$ when n=k, plus the combination of pairs created by (a_i,b_{k+1}) where $1\leq i\leq m$. From our supposition, the number of pairs created by (a_i,b_j) is mk. Furthermore, the number of pairs created by (a_{k+1},b_j) is mk, as can be seen below:

$$\underbrace{(a_1,b_{k+1}),(a_2,b_{k+1}),\ldots,(a_m,b_{k+1})}_{m \text{ pairs}}$$

Thus, the total number of elements in $A \times B$ for n = k + 1 would be

$$mk + m = m(k+1)$$

It follows that when we suppose the statement to be true for n = k, it holds true for n = k + 1. Therefore, we have shown by induction that If A has m elements and B has n elements, then $A \times B$ has mn elements.

Exercise 3

Problem 1.4.9

 $Prove \ that \ if \ A_1 \ has \ k_1 \ elements, \ A_2 \ has \ k_2 \ elements, \ \dots, \ A_n \ has \ k_n \ elements, \ show \ that \ |A_1 \times A_2 \times \dots \times A_n| = |A_1||A_2| \dots |A_n| = k_1 k_2 \dots k_n.$

When n = 2, we have already proven in the previous exercise that $|(A_1 \times A_2)| = |A_1||A_2| = k_1k_2$. Thus, the above statement holds.

Now suppose that the statement holds for n = j. When n = j + 1,

$$\begin{split} A_1 \times A_2 \times \cdots \times A_j \times A_{j+1} \\ = (A_1 \times A_2 \times \cdots \times A_j) \times A_{j+1} \end{split}$$

Here, we substitute $B = A_1 \times A_2 \times \cdots \times A_j$ and treat B as a single set. From our supposition, $|B| = |A_1 \times A_2 \times \cdots \times A_j| = |A_1||A_2||\dots|A_j| = k_1k_2\dots k_j$. Then,

$$\begin{aligned} |A_1 \times A_2 \times \cdots \times A_j \times A_{j+1}| \\ &= |B \times A_{j+1}| \end{aligned}$$

From the previous exercise,

$$|B \times A_{j+1}|$$
$$= |B||A_{j+1}|$$

$$= k_1 k_2 \dots k_j k_{j+1}$$

Thus, the statement holds.

Therefore, we have proven by induction that if A_1 has k_1 elements, A_2 has k_2 elements, ..., A_n has k_n elements, then $|A_1 \times A_2 \times \cdots \times A_n| = |A_1||A_2| \dots |A_n| = k_1 k_2 \dots k_n$.

Exercise 4

Problem 1.4.10

i. If A and B are finite sets and $A \cap B = \emptyset$, show that $|A \cup B| = |A| + |B|$

Suppose that |A|=m, |B|=n and $A\cap B=\emptyset$. Then, the elements of A can be written as a_1,a_2,\ldots,a_m and the elements of B can be written as b_1,b_2,\ldots,b_n . If $A\cap B=\emptyset$, then by definition, $a_i\neq b_j$ for all $1\leq i\leq m,$ $1\leq j\leq n$. It follows that the union of the two sets would contain the elements

$$\underbrace{a_1, a_2, \dots, a_m}_{m}, \underbrace{b_1, b_2, \dots, b_n}_{n}$$

without overlap. The number of elements in the union would be sum of the number of elements in A which is |A| = m and the number of elements in B which is |B| = n.

Therefore, if A and B are finite sets and $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.

ii. If A and B are finite sets, show that $|A \cup B| = |A| + |B| - |A \cap B|$

Suppose that |A|=m, |B|=n, and $|A\cap B|=x$. Then, the elements of A can be written as $\{a_1,a_2,\ldots,a_{m-x},c_1,c_2,\ldots,c_x\}$ and the elements of B can be written as $\{b_1,b_2,\ldots,b_{n-x},c_1,c_2,\ldots,c_x\}$ where $a\in A\setminus B,\ b\in B\setminus A,\ c\in A\cap B$. Then,

$$\begin{split} A \cup B &= \{\underbrace{a_1, a_2, \dots, a_{m-x}}_{m-x}, \underbrace{b_1, b_2, \dots, b_{n-x}}_{n-x}, \underbrace{c_1, c_2, \dots, c_x}_{x}\} \\ \Rightarrow |A \cup B| &= (m-x) + (n-x) + x \\ &= m+n-x \\ &= |A| + |B| - |A \cap B| \end{split}$$

Thus, we have shown that if A and B are finite sets, $|A \cup B| = |A| + |B| - |A \cap B|$.

Exercise 5

Prove that, for all $n \in \mathbb{N}$,

$$1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$$

Start with n=1. Then,

$$1^{2} = 1, \frac{1(1+1)(2*1+1)}{6} = \frac{6}{6} = 1$$
$$\Rightarrow 1^{2} = \frac{1(1+1)(2*1+1)}{6}$$

Thus, the statement holds.

Next, suppose the statement is true for n = k. Now, let's consider n = k + 1. We begin with the left hand side of the equation.

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2}$$
$$= (1^{2} + 2^{2} + \dots + k^{2}) + (k+1)^{2}$$

From our assumption,

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

$$= \frac{2k^3 + 3k^2 + k}{6} + \frac{6k^2 + 12k + 6}{6}$$

$$= \frac{2k^3 + 9k^2 + 13k + 6}{6}$$

$$= \frac{(k+1)(2k^2 + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)\{(k+1) + 1\}\{2(k+1) + 1\}}{6}$$

Above, we have derived the right hand side from the left hand side of the equation. Hence, the statement is true for n = k + 1 given that the statement is true for n = k.

Therefore, we have proven by induction that

$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Exercise 6

Problem 1.7.9

Suppose that A is a set with n elements, B is a set with m elements, and n > m. If $f: A \to B$ is a function, there are at least two distinct elements of A that correspond to the same element of B.

We take |A| = n, |B| = m and n > m as given. If $f: A \to B$ is a function, suppose that there is at most one element of A that corresponds to one element of B. Since a function that maps from A to B is defined as a subset of $A \times B$ such that each element of A occurs exactly once as the first coordinate, if there is at most one element of A that corresponds to one element of B, the subset can be written as (a_i, b_i) for $1 \le i \le m$. It is clear that the number of elements in this subset is m. By definition of a function, each element of A occurs exactly once as the first coordinate, so the number of elements in A is equal to the number of elements in the subset, and n = m. This contradicts n > m. Thus, if n > m and if $f: A \to B$ is a function, there are at least two distinct elements of A that correspond to the same element of B.

Exercise 7

Problem 1.7.15

i. $f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$.

The above function is injective

Proof: Take $x_1, x_2 \in \mathbb{N}$. Suppose that $f(x_1) = f(x_2)$. Then,

$$2x_1 = 2x_2$$

$$\implies x_1 = x_2$$

Since $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$, f is injective.

Next, take $y \in \mathbb{N}$. We want to show that y = f(x) for some $x \in \mathbb{N}$.

$$y = f(x)$$

$$\implies y = 2x$$

$$\implies x = \frac{y}{2}$$

However, if y is an odd number, there is no $x \in \mathbb{N}$ that satisfies the above. Therefore, f is not surjective. Hence, f is injective.

ii. $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n + 6.$

The above function is bijective.

Proof: Take $x_1, x_2 \in \mathbb{Z}$. Suppose that $f(x_1) = f(x_2)$. Then,

$$x_1 + 6 = x_2 + 6$$

$$\Longrightarrow x_1 = x_2$$

Since $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$, f is injective.

Next, take $y \in \mathbb{Z}$. We want to show that y = f(x) for some $x \in \mathbb{N}$.

$$y = f(x)$$

$$\implies y = x + 6$$

$$\implies x = y - 6$$

Since \mathbb{Z} is a ring and $y, 6 \in \mathbb{Z}$, $y - 6 \in \mathbb{Z}$. Thus, we have found that for all $y \in \mathbb{Z}$, y = f(x) for some $x \in \mathbb{Z}$. Hence, f is bijective.

iii. $f: \mathbb{N} \to \mathbb{Q}, f(n) = n$.

The above function is injective.

Proof: Take $x_1, x_2 \in \mathbb{N}$. Suppose that $f(x_1) = f(x_2)$. Then,

$$x_1 = x_2$$

Since $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$, f is injective.

Next, take $y \in \mathbb{Q}$. We want to show that y = f(x) for some $x \in \mathbb{N}$.

$$y = f(x)$$

$$\implies y = x$$

$$\implies x = y$$

However, the above does not hold for any $y \in \mathbb{Q} \setminus \mathbb{N}$. Therefore, f is not surjective. Hence, f is injective.

v. $f: \mathbb{R} \to \mathbb{N}, f(x) =$ the third digit of x after the decimal.

The above function is neither injective nor surjective.

Proof: Take $x_1 = 0.125$ and $x_2 = 5.5555$. Then, $f(x_1) = f(x_2)$. However, $x_1 \neq x_2$. Thus, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$, and f is not injective.

Next, take $y \in \mathbb{N}$. We want to show that y = f(x) for some $x \in \mathbb{N}$.

$$y = f(x)$$

 \implies y = the third digit of x after the decimal.

 $\Rightarrow x = \text{Any real number whose decimal expansion has } y \text{ in the third digit after the decimal}$

However, the above does not hold for any y > 9, as the digit must be a natural number from 1 to 9. Therefore, f is not surjective.

Hence, f is neither injective nor surjetive.

Exercise 8

Problem 1.7.22

Show that $f: \mathbb{N} \to \mathbb{Z}$

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ \frac{1-n}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

is a bijection

Take $x_1, x_2 \in \mathbb{N}$. Suppose that $f(x_1) = f(x_2)$. We consider the following three cases:

1. If both x_1 and x_2 are even. Then, x_1 and x_2 can be expressed as $2m_1, 2m_2$ for some $m_1, m_2 \in \mathbb{N}$. Thus,

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{2m_1}{2} = \frac{2m_2}{2}$$
$$\Rightarrow m_1 = m_2$$
$$\Rightarrow x_1 = x_2$$

2. If both x_1 and x_2 are odd. Then, x_1 and x_2 can be expressed as $2m_1-1, 2m_2-1$ for some $m_1, m_2 \in \mathbb{N}$. Thus,

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{1-(2m_1-1)}{2} = \frac{1-(2m_2-1)}{2}$$

$$\Rightarrow \frac{2-2m_1}{2} = \frac{2-2m_2}{2}$$

$$\Rightarrow 1-m_1 = 1-m_2$$

$$\Rightarrow m_1 = m_2$$

$$\Rightarrow x_1 = x_2$$

3. If x_1 is even and x_2 is odd. Then, x_1 and x_2 can be expressed as $2m_1, 2m_2 - 1$ for some $m_1, m_2 \in \mathbb{N}$. Thus,

$$f(x_1) = f(x_2)$$

$$\Longrightarrow \frac{2m_1}{2} = \frac{1-(2m_2-1)}{2}$$

$$\Longrightarrow m_1 = 1-m_2$$

However, there are no $m_1, m_2 \in \mathbb{N}$ that satisfy the above expression, since $m_1 \ge 1, 1 - m_2 \le 0$. Similarly, if x_1 is odd and x_2 is even, $f(x_1) \ne f(x_2)$.

From 3., we know that if $f(x_1) = f(x_2)$, then either both x_1 and x_2 are odd or both are even. From 1. and 2., we know that if are odd or even, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$. Thus, f is an injection.

Now, take $y \in \mathbb{Z}$. We want to show that y = f(x) for some $x \in \mathbb{N}$. If y > 0:

$$y = f(x)$$

$$\implies y = \frac{x}{2}$$

$$\implies x = 2y$$

Since $y \in \mathbb{Z}, y > 0$, we get that $2y \in \mathbb{N}$ and 2y is even. From here, we obtain that for all y > 0, y = f(x) for some even $x \in \mathbb{N}$.

If $y \leq 0$:

$$y = f(x)$$

$$\Rightarrow y = \frac{1-x}{2}$$

$$\Rightarrow x = 1 - 2y$$

Since $y \in \mathbb{Z}, y \leq 0$, we get that $1 - 2y \in \mathbb{N}$, and 1 - 2y is odd. From here, we obtain that for all $y \leq 0$, y = f(x) for some odd $x \in \mathbb{N}$.

Together, we have shown that for all $y \in \mathbb{Z}$, y = f(x) for some $x \in \mathbb{N}$. Thus, f is surjective.

Since f is both injective and surjective, f is bijective.