Bernoulli Distributions

© Exercise for Bernoulli Distributions

eg; flip a win once

0.5 H (win) > success 0.5 T (lose) > failure

to as success and failure, is called a Bernoulli tria

DRY > general discrete prob [P(X=N)]

Cumulative pab distribution [P(X=N)]

White im pab distribution [P(X=N)]

White im pab distribution [P(X=N)]=1

When / voriance / SD > general & unitum

Success (X=1)

I change in scale territy

A trial which can be considered to have just two mutually exclusive and exhaustive outcomes, referred * Ber noulli 2 trial exclusive outcomes Sucress (x=1) failure (x=0) failure (x=0) probability > P(X=1)=P

SUCCESS

13 p(x=0)=1-P failure

ated random variable, with its two possible values, 0 and 1, is called a Bernoulli random

The Bernoulli random variable has parameter p, the probability of obtaining a 1. If the probability of success is p, then the probability of failure will be (1-p).

		Success	} discrete	prob	distribution	Table	for	Bern oulli
P(X = x)	1-р	р]					

But if the concern is only on "getting a six", it is success and "not getting a six" is failure, then it is Bernoulli random variable with probability distribution:

Success

X-getting a six me _ | I four rack)

ernouni	Failure	Success		
х	(°)	G_{λ}		
P(X = x)	5	16		
	6	6		

$$X$$
-getting a six
 $P(getting) = 1/6$ (success)
 $P(not getting) = 5/6$ (failure

Example 3

Example 4

Guessing the answer to a multiple choice in which there are four answers to choose from, only one of

$$E(X) = 2 \text{ Ni p i} \qquad \text{SD}(X) = |C| = |\sqrt{v_{OY}(X)}|$$

$$\text{Vor}(X) = 2 (\sqrt{v_i} - N)^2 \cdot p \text{ Mean and variance for Bernoulli distribution with parameter p}$$

	Failure	Success	
х	0	(1)	
P(X=x)	1-p	P	

Example 1

Flipping a coin with obtaining a head being considered a success

x 0 1
P(X=x) 0.5 0.5

Find the mean and standard deviation for the event above.

Answers: 0.5, 0.5
$$E(x) = p = 0.5$$

 $SD(x) = |\sqrt{p(1-p)}| = |\sqrt{0.25}| = 0.5$
Example 2

Example 2

Guessing the answer to a multiple choice in which there are four answers to choose from, only one of which is con

rrect.		550 0- 0-
	Failure Success	$E(X) = P - \frac{4}{4}$
P(X=x)	0 (1-P) 1 3/4 P	$SD(X) = \left \sqrt{\frac{1}{1}} \times \frac{3}{4} \right = \frac{\sqrt{3}}{4} = 0.4330$
. (// //	14 14	4 4 4

C Bernoulli dist

- a) 1 trial
- b) a outcomes (mutually exclusive)
- c) Success $(x=1) \rightarrow P(x=1) = P$ d) failure $(x=0) \rightarrow P(x=0) = (1-p)/q$
- OE(X)=P
- f) vor (x) = p(1-p)
- 9) SD(x) = | TVOT(x) | = TP(1-P)

	Failure	Success
x	0 (1-) 1
P(X = x)	3/4	1/4

 $Sp(X) = \left| \int_{\frac{1}{4}}^{\frac{1}{4}} x^{\frac{3}{4}} \right| = \frac{\sqrt{3}}{4} = \frac{0.4330}{4}$

Find the $\underline{\text{mean}}$ and standard deviation for the event above.

Answers: 1/4, 0.4330