Practical ML

Antonio Pitasi Samuele Sabella

2019 - Polo Fibonacci

Before we get started, we need some theory

Machine learning

- Practice: We define machine learning as a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty
 - Machine Learning: A Probabilistic Perspective, Kevin P. Murphy
- **Theory:** How does learning performance vary with the number of training examples presented? Which learning algorithms are most appropriate for various types of learning tasks?
 - Machine Learning, Tom Mitchell

ML is not only artificial neural networks

- Lots of mathematical models
 - Hidden Markov models
 - Support Vector Machines
 - Decision trees
 - Boltzmann machines, Deep belief network, Deep Boltzmann
- Neural network models are many...
 - Shallow network, Deep neural network
 - CNN (Yolo, AlexNet, GoogLeNet)
 - Echo state network, Deep echo state network
 - o Rnn, LSTM, GRU

Machine learning categories

• **Supervised:** the goal is to learn a mapping from input to output given a dataset of labeled pairs $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$ called training set (e.g. Iris Data Set [2])

sepal length	sepal width	petal length	petal width	species
4.6	3.4	1.4	0.3	Iris-setosa
6.2	3.4	5.4	2.3	Iris-virginica

• **Unsupervised**: we have only a set of data points $\mathcal{D} = \{x_i\}_{i=1}^N$ and the goal is to find interesting patterns in the data Example: young American males who buy diapers also have a predisposition to buy beer (original story [3])

How does it work?

- Dataset of examples to learn from
- A model to learn from that data (e.g. neural net)
 - With some parameters to tune
 - With some hyperparameter to choose (neurons, layers, ...)
- Target function (loss) to minimize

What is usually done

- Validation phase: compare different models and configurations
 - Which model to choose

- Model hyper-parameters
- Test phase: loss, accuracy, recall, precision...
- We skip all this for seek of simplicity

Note: train/validation/test on different data

Models: feed-forward neural networks

Stack neurons in layers

Models: feed-forward neural networks

Stack neurons in layers

virginica if argmax(net(input))==0 else setosa

A lot more stuff to know but for us...

UNDERSTANDING MACHINE LEARNING

import keras

Practical ML

- Interactive
- Collaborative
- Python, R, Julia, Scala, ...

coldb

Keras

Features:

Easy to build a neural network

Easy to build a neural network wrong

Keras

Keep an eye for:

Accuracy

Fitting

Performance

Problem 1 **Points classification**

Generating the dataset


```
def make_inner(mu, sigma, num=1000):
    x = np.random.normal(mu, sigma, num)
    y = np.random.normal(mu, sigma, num)
    return x, y
```

Generating the dataset


```
def make_circle(mu, sigma, num=1000):
    r = np.random.normal(mu, sigma, num)
    phi = np.linspace(0,2.*np.pi, len(r))
    x = r * np.sin(phi)
    y = r * np.cos(phi)
    return x,y
```

Plotting


```
x_inner, y_inner = make_inner(0, 0.2, n_points)
x_circle, y_circle = make_circle(0.8, 0.05, n_points)
```

```
plt.figure(figsize=(12,8))
plt.plot(x_inner, y_inner, 'o', markersize=4, c="C1")
plt.plot(x_circle, y_circle, 'o', markersize=4, c="C0")
```

Our model

For non-linearity: rectifier linear unit

$$relu(x) = max(0, x)$$

 We use a softmax function in the output layer to represent a probability distribution

$$softmax(x)_i = \frac{exp(x_i)}{\sum_j exp(x_j)}$$

Let's code!

https://colab.research.google.com https://ml.anto.pt Me after training a neural network

Back to theory - Convolving Lenna

• Given a function f, a convolution g with a kernel w is given by a very complex formula with a very simple meaning: "adding each element of the image to its local neighbors, weighted by the kernel" (wikipedia)

$$w * f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

Convolution arithmetic

- Zero-padding: deal with borders pixels by adding zeros (preserves the size)
- Pooling: helps the network to become transformation invariant (translations, rotations...)

No padding, no strides

padding=same && no strides

1	2	3	6		
1	2	3	3	2	6
4	5	4	1	5	4
5	0	2	3		

max pooling && 2x2 strides

Dealing with multiple input channels

GoogLeNet on ImageNet - Feature visualization

Stack multiple filters and learn kernels dynamically (hierarchy of features)

feature visualization of the 1s conv. layer

layer 4d

References

- [1] Pattern Recognition in a Bucket
- https://link.springer.com/chapter/10.1007/978-3-540-39432-7 63
- [2] Iris dataset: https://archive.ics.uci.edu/ml/datasets/iris
- [3] Beer and diapers: http://www.dssresources.com/newsletters/66.php
- [4] Multilayer feedforward networks are universal approximators:
- http://cognitivemedium.com/magic_paper/assets/Hornik.pdf
- [5] Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980
- [6] MNIST dataset: http://yann.lecun.com/exdb/mnist/

References

[7] Bengio, Yoshua, Ian Goodfellow, and Aaron Courville. *Deep learning*. Vol. 1.

MIT press, 2017: http://www.deeplearningbook.org/

[8] Feature-visualization: https://distill.pub/2017/feature-visualization/

[9] Going deeper with convolutions: https://arxiv.org/pdf/1409.4842.pdf

[10] Imagenet: A large-scale hierarchical image database:

http://www.image-net.org/papers/imagenet_cvpr09.pdf

[11] Culture, Communication, and an Information Age Madonna:

http://www.lenna.org/pcs_mirror/may_june01.pdf

References

[12] Intuitively Understanding Convolutions for Deep Learning:

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Books

Difficulty

Antonio Pitasi Software Engineer, Nextworks https://anto.pt

Leave your feedback

Samuele Sabella https://github.com/samuelesabella

Antonio Pitasi

Software Engineer, Nextworks https://anto.pt

Samuele Sabella

https://github.com/samuelesabella

