Daniel Ferreira Machado - 46288 - MIEI Mark: 0.9/5 (total score: 0.9/5)

+47/1/28+

	Departamento de Matemát Criptografia	tica 8/7/20	Faculdade de Ciências e Tecnologia — UNL D18 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1 1		mero de aluno preenchendo completamente os qua- grelha ao lado () e escreva o nome completo, o so.
	2 2 2 2 2 3 3 3 3 3 3	Nome: Dance	l Forressa clladolo
	5 5 5 5 5 6 6 6 7 7 7 7 7 7	Curso: MIEI	Número de aluno: 46238
	888	marque a resposta cer tivo () com caneta a cada resposta errada d questão. Se a soma das	por 10 questões de escolha múltipla. Nas questões ta preenchendo completamente o quadrado respecazul ou preta, cada resposta certa vale 0,5 valores, esconta 0,2 valores e marcações múltiplas anulam a s classificações das questões de escolha múltipla der
	Questão 1 Considere o gr sc, e só sc:		lefinir uma multiplicação tal que \mathbb{F}_n é um corpo
0/0.5	igwedge n é uma potência de un $igwedge n$ é um número primo í		n é um número primo. n é um número par.
			ípios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
0.5/0.5	do segredo da chave e d só da chave, mas não de só do segredo do algorid só da complexidade da	o segredo do algoritm	o.
	Questão 3 Qual destes p	rotocolos criptográfico	os é assimétrico?
0.5/0.5	☐ AES ■ ElGamal		☐ Vigenère ☐ DES
	Questão 4 O Discrete Logarithm Pro	oblem (DLP) para a c	ongruência $g^x \equiv h \; (\operatorname{mod} p) \; ext{\'e}$:
-0.2/0.5			Determine g , dados h , $p \in x$. Determine h , dados g , $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0/0.5	
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> Para recuperar a mensagem m , Alice calcula:
0/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de <i>ElGamal</i> que usa este número para a escolha de \mathbb{F}_p^* :
0.2/0.5	A encriptação torna-se lenta. A quebra do protocolo é fácil. Dois ciphertexts podem encriptar a mesma mensagem.
	Duas mensagens podem ser codificadas pelo mesmo ciphertext.
	Questão 8 Um protocolo criptográfico tem a propriedade de <i>total secrecy</i> , se, e só se:
	O protocolo pode ser quebrado em tempo exponencial. A probabilidade de um plaintext é independente do ciphertext.
0.5/0.5	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	O protocolo pode ser quebrado em tempo polinomial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
	Mulitplicação é fácil e divisão é difícil.
0/0.5	Mulitplicação é fácil e factorização é difícil.
	Exponenciação em F [*] _p é fácil e factorização é difícil.
	 ☐ Exponenciação em F_p* é fácil e o Discrete Logarithm Problem é difícil. Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0.2/0.5	—
	\boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* . \blacksquare A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
	A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

Daniel Filipe Rosa Lúcio - 45000 - MIEI Mark: 1.7/5 (total score: 1.7/5)

+66/1/50+

	Departamento de Matemá Criptografia	tica 8/7/20	Faculdade de Ciências e Tecnologia — UNL 18 Exame Final
	Número de aluno 0 0		nero de aluno preenchendo completamente os quagrelha ao lado () e escreva o nome completo, o co.
	2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6		Número de aluno: 45000
	7 7 7 7 7 8 8 8 8 8 9 9 9 9 9	marque a resposta certivo () com caneta a cada resposta errada d questão. Se a soma das	or 10 questões de escolha múltipla. Nas questões la preenchendo completamente o quadrado respectivul ou preta, cada resposta certa vale 0,5 valores, esconta 0,2 valores e marcações múltiplas anulam a s classificações das questões de escolha múltipla der erá atribuído 0 valores como resultado final.
	Questão 1 Considere o g se, e só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se d	lefinir uma multiplicação tal que \mathbb{F}_n é um corpo
0.5/0.5	n é um número par. n é uma potência de un	m número primo.	\square n é um número primo. \square n é um número primo ímpar.
			ípios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
-0.2/0.5	só do segredo do algori só da complexidade da do segredo da chave e o só da chave, mas não d	encriptação. lo segredo do algoritm	10.
	Questão 3 Qual destes p	rotocolos criptográfico	os é assimétrico?
0.5/0.5	☐ Vigenère ☐ DES		ElGamal
	Questão 4 O Discrete Logarithm Pro	oblem (DLP) para a c	ongruência $g^x \equiv h \pmod p$ é:
-0.2/0.5	Determine g , dados h , g Determine h , dados g , g		Determine p , dados g , $h \in x$. Determine x , dados g , $h \in p$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $A \cdot B$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^{\bullet} :
0.5/0.5	 Dois ciphertexts podem encriptar a mesma mensagem. A encriptação torna-se lenta. Duas mensagens podem ser codificadas pelo mesmo ciphertext. A quebra do protocolo é fácil.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
-0.2/0.5	O protocolo pode ser quebrado em tempo exponencial.
	 □ O protocolo pode ser quebrado em tempo polinomial. ☑ A probabilidade de um plaintext é independente do ciphertext.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
0.5/0.5	 Exponenciação em F_p* é fácil e factorização é difícil. Mulitplicação é fácil e divisão é difícil. Mulitplicação é fácil e factorização é difícil. Exponenciação em F_p* é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
-0.2/0.5	\triangle A solução do <i>DLP</i> é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	☐ A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* . ☐ A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	(M) A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .

Daniel Jancsó Canongia Lopes - 45410 - MIEI Mark: 0/5 (total score: -0.4/5)

+14/1/34+

	Departamento de Matemá Criptografia	tica 8/7/2	Faculdade de Ciências e Tecnologia — UNL 2018 Exame Final
	Número de aluno 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		úmero de aluno preenchendo completamente os qua- a grelha ao lado () e escreva o nome completo, o ixo.
	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Curso: MIII	Número de aluno: Número de aluno: por 10 questões de escolha múltipla. Nas questões rta preenchendo completamente o quadrado respecazul ou preta, cada resposta certa vale 0,5 valores, lesconta 0,2 valores e marcações múltiplas anulam a
	Questão 1 Considere o gr sc, c só se:	questão. Se a soma da um número negativo,	es classificações das questões de escolha múltipla der será atribuído 0 valores como resultado final. definir uma multiplicação tal que \mathbb{F}_n é um corpo
0/0.5	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	7.	n é um número primo. n é um número par.
			cípios que todos os sistemas criptográficos devein diz que a segurança de um sistema criptográfico
0.5/0.5	só da chave, mas não do só do segredo do algorit só da complexidade da c do segredo da chave e d	hmo, mas não do seg encriptação.	redo da chave.
	Questão 3 Qual destes pr	rotocolos criptográfico	os é assimétrico?
-0.2/0.5	AES ElGamal		☐ Vigenère ☐ DES
	Questão 4 O Discrete Logarithm Pro	blem (DLP) para a c	ongruência $g^x \equiv h \pmod p$ é:
-0.2/0.5	Determine h , dados g , p Determine g , dados h , p		Determine p , dados g , $h \in x$. Determine x , dados g , $h \in p$.

 \boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

 \square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

Daniel Ricardo Berjano Valente Taborda - 45373 - MIEI Mark: 1/5 (total score: 1/5)

•			+83/1/16+
	Departamento de Matemá Criptografia	ática 8/7/2	Faculdade de Ciências e Tecnologia — UN 2018 Exame Fina
	Número de aluno 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9	Nome: Dan	Dimero de aluno: 45.3.7.3 Número de aluno: 45.3.7.3 o por 10 questões de escolha múltipla. Nas questõe erta preenchendo completamente o quadrado respecta azul ou preta, cada resposta certa vale 0,5 valores desconta 0,2 valores e marcações múltiplas anulam a las classificações das questões de escolha múltipla de
-0.2/0.5	Questão 1 Considere o g se, c só se: n é um número primo n é um número par.	grupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se	e definir uma multiplicação tal que \mathbb{F}_n é um corpo \mathbb{N} n é uma potência de um número primo.
ento - -0.2/0.5		Serckhoff fundamenta encriptação. do segredo do algorita lo segredo do algorita	mo.
0.5/0.5	☐ DES ☐ AES Questão 4	erotocolos criptográfic	ElGamal Vigenère
0.5/0.5	Discrete Logarithm Pro Determine p, dados g, h Determine g, dados h, p	hex.	congruência $g^x \equiv h \pmod{p}$ é: Determine h , dados g , $p \in x$. Determine x , dados g , $h \in p$.

	Questão 5 No protocolo de troca de chaves de Diffic-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.2/0.5 ento —	A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0.5/0.5	 □ A encriptação torna-se lenta. □ Duas mensagens podem ser codificadas pelo mesmo ciphertext. □ A quebra do protocolo é fácil. □ Dois ciphertexts podem encriptar a mesma mensagem.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
0.2/0.5	O protocolo pode ser quebrado em tempo polinomial.
	O protocolo pode ser quebrado em tempo exponencial.
	A probabilidade de um plaintext é independente do ciphertext.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
	Mulitplicação é fácil e divisão é difícil. Expensaciação em E* é fácil e factorização é difícil.
0.5/0.5	Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil. Exponenciação em \mathbb{F}_p^* é fácil e o Discrete Logarithm Problem é difícil.
	Mulitplicação é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
	\bigcirc A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
0.2/0.5	\boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .

David António Freire Moura - 45235 - MIEI Mark: 1.6/5 (total score: 1.6/5)

•		+56/1/10+
	Departamento de Matemá Criptografia	tica Faculdade de Ciências e Tecnologia — UNI 8/7/2018 Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2	← Marque o seu número de aluno preenchendo completamente os qua drados respectivos da grelha ao lado (■) e escreva o nome completo, o número e o curso abaixo.
	3 3 3 3 3 4 4 4 4 4 5 5 5 5	Nome: David Toufa Curso: T(E) Número de aluno: 45235
	777778888888	O exame é composto por 10 questões de escolha múltipla. Nas questões marque a resposta certa preenchendo completamente o quadrado respectivo () com caneta azul ou preta, cada resposta certa vale 0,5 valores, cada resposta errada desconta 0,2 valores e marcações múltiplas anulam a questão. Se a soma das classificações das questões de escolha múltipla der um número negativo, será atribuído 0 valores como resultado final.
	Questão 1 Considere o gr se, e só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se definir uma multiplicação tal que \mathbb{F}_n é um corpo
0/0.5	igwedge n é uma potência de un $igwedge n$ é um número primo í	
		le Kerckhoff são princípios que todos os sistemas criptográficos devem erckhoff fundamental diz que a segurança de um sistema criptográfico
0.5/0.5	só da complexidade da só do segredo do algorit só da chave, mas não do do segredo da chave e d	hmo, mas não do segredo da chave. o segredo do algoritmo.
	Questão 3 Qual destes pr	rotocolos criptográficos é assimétrico?
0/0.5	ElGamal AES	☐ Vigenère ☐ DES
	Questão 4 O Discrete Logarithm Pro-	$blem\;(DLP)$ para a congruência $g^x\equiv h\;(\mathrm{mod}p)$ é:
-0.2/0.5	\boxtimes Determine x , dados g , h \square Determine p , dados g , h	

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.5/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0.5/0.5	 A quebra do protocolo é fácil. Dois ciphertexts podem encriptar a mesma mensagem. ✓ Duas mensagens podem ser codificadas pelo mesmo ciphertext. A encriptação torna-se lenta.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
	O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
-0.2/0.5	O protocolo pode ser quebrado em tempo exponencial.
	O protocolo pode ser quebrado em tempo polinomial.
	 ✓ A probabilidade de um plaintext é independente do ciphertext. Questão 9 O funcionamento do RSA é baseado no seguinte:
	Mulitplicação é fácil e divisão é difícil.
0/0 5	\square Exponenciação em \mathbb{F}_p^* é fácil e factorização é difícil.
0/0.5	Mulitplicação é fácil e factorização é difícil.
	Exponenciação em \mathbb{F}_p^* é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0/0.5	A operação de "adição" é mais complicada sobre curvas elípticas do que em F _p .
	A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* . A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .