

- Forma canónica
- Puertas lógicas
- Mapa de Karnaugh

- George Boole fue un lógico y matemático británico.
- Escribió los libros:
 - "The Mathematical Analysis of Logic" (1847)
 - "An Investigation of the Laws of Thought" (1854).
- Desarrolló la lógica Simbólica mediante la cual las proposiciones pueden ser representadas mediante símbolos y la teoría que permite trabajar con estos símbolos,
 - Entradas: variables o proposiciones
 - Salidas: respuestas
- Dicha lógica cuenta con operaciones lógicas que siguen el comportamiento de reglas algebraicas y pueden ser tratadas mediante herramientas matemáticas.

- Las proposiciones lógicas (frases o predicados de la lógica clásica) son aquellas que únicamente pueden tomar valores Verdadero/Falso, o preguntas cuyas únicas respuestas posibles sean Sí/No.
- Conjunto de reglas de la Lógica Simbólica se le denomina Álgebra Booleana.
- Todas las variables y constantes del Álgebra Booleana, admiten sólo uno de dos valores en sus entradas y salidas: Sí/No, 0/1 o Verdadero/Falso.
- Estos valores bivalentes y opuestos pueden ser representados por números binarios de un dígito denominado bit (Álgebra del Sistema Binario).

- Todas las operaciones pueden representarse mediante elementos físicos:
 - Mecánicos
 - Eléctricos
 - Neumáticos o electrónicos que admiten entradas binarias o lógicas y que devuelven una respuesta (salida)
 también binaria o lógica
- Sus estados pueden ser:
 - Abierto/Cerrado, en el caso de interruptores
 - Encendida/Apagada si se refiere a una bombilla
 - Cargado/Descargado, si se tratase de un condensador
 - Nivel Lógico 0/Nivel lógico 1, para producir una salida lógica de un circuito semiconductor
 - Entre OTRAS

EXPRESIONES BOOLEANAS

Están compuestas de letras mayúsculas (A, B, C, D, ...) y cada una de ellas representa la señal de un sensor.

El valor de las señales o de la función solo puede ser 0 o 1, falso o verdadero.

Además de letras, pueden existir los valores 0 o 1.

Las letras de expresiones booleanas pueden estar conectadas por medio de los operadores lógicos: Λ (y), V (o) y \neg (negación). El operador "y" es una multiplicación lógica, el "o" es una suma lógica y la negación es el complemento.

Ejemplo:
$$F(A, B, C) = A'B + ABC + C(B' + A)$$

FORMAS CANÓNICAS

- Se conoce como término canónico de una función lógica a todo producto o suma en la cual aparecen todas las variables en su forma directa o inversa.
- Existen 2 formas canónicas:
 - Minitérminos
 - Maxitérminos
- La forma canónica también se conoce como fusión equivalente, ya que es una forma alternativa o equivalente de representar los diferentes resultados de la tabla de verdad.

FORMAS CANÓNICAS - MAXITÉRMINOS

Es una expresión lógica de "n" variables que consiste únicamente en la disyuncion lógica (OR) y el operador complemento o negación (NOT).

FORMAS CANÓNICAS - MAXITÉRMINOS

Para escribir la forma canónica de una función lógica, se realiza el siguiente procedimiento:

- 1. Escribir el maxitérmino de cada uno de los "0" en la tabla de verdad.
 - 1. Se considera que un 1 en la tabla de verdad, corresponde a un valor negado (a' = 1, siendo "a" la variable original).
 - 2. Se considera que un 0 en la tabla de verdad, corresponde a un valor no negado (a = 0, siendo "a" la variable original).
- 2. Realizar el producto de todas las sumas (maxitérminos) halladas.

FORMAS CANÓNICAS – EJEMPLO MAXITÉRMINOS

X	Υ	F(X,Y)	Maxitérmino
0	0	1	-
0	1	0	X+Y'
1	0	0	X'+Y
1	1	1	-

Forma canonica: F(X,Y) = (X + Y')(X' + Y)

FORMAS CANÓNICAS - MINITÉRMINOS

Es una expresión lógica de "n" variables consistentes únicamente en el operador conjunción lógica (AND) y el operador complemento o negación (NOT).

FORMAS CANÓNICAS - MINITÉRMINOS

Para escribir la forma canónica de una función lógica, se realiza el siguiente procedimiento:

- 1. Escribir el minitérmino de cada uno de los "1" en la tabla de verdad.
 - 1. Se considera que un 0 en la tabla de verdad, corresponde a un valor negado (a' = 0, siendo "a" la variable original).
 - 2. Se considera que un 1 en la tabla de verdad, corresponde a un valor no negado (a = 1, siendo "a" la variable original).
- 2. Realizar la suma de todos los productos (minitérminos) hallados.

FORMAS CANÓNICAS – EJEMPLO MINITÉRMINOS

X	Υ	F(X,Y)	Minitérmino
0	0	1	X'Y'
0	1	0	-
1	0	0	-
1	1	1	XY

Forma canonica: F(X,Y) = X'Y' + XY

EXPRESIONES CANONICAS - EJEMPLO MINITÉRMINO

EXPRESIONES CANONICAS - EJEMPLO MAXITÉRMINO

Α	В	С	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	F = (A + B + C)(A' + B + C)(A' + B + C')(A' + B' + C')
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	

EXPRESIONES CANONICAS – EJERCICIO

А	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

OPERACIONES LOGICAS

- Las puertas lógicas son el bloque fundamental de construcción de todos los circuitos lógicos digitales, de forma que las funciones lógicas se implementan interconectando compuertas.
- Para representar las puertas lógicas se utilizan
 - Símbolos distintivos: corresponden a los utilizados comúnmente por la industria digital.
 - Símbolos rectangulares: IEEE/ANSI 91-1984

PUERTAS LOGICAS

NOT

Х	F
0	1
1	0

$$F = X'$$

Produce un nivel logico de salida opuesto al suministrado como entrada.

AND

X	Y	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F = XY$$

Produce un nivel alto a la salida soló cuando todas sus entradas están en un nivel alto.

PUERTAS LOGICAS

XOR

X	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F = X'Y + XY'$$

Produce una salida verdadera solo cuando sus entradas son diferentes.

X	Y	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F = X + Y$$

Produce una salida verdadera cuando cualquira de sus entradas está en un nivel alto.

PUERTAS LOGICAS

NAND

Х	Y	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F = (XY)'$$

Produce una salida falsa solamente si todas sus entradas son verdaderas.

NOR

X	Y	F
0	0	1
0	1	0
1	0	0
1	1	0

$$F = (X + Y)'$$

Produce una salida verdadera solamente si todas sus entradas son falsas.

TEOREMAS

	Teorema		Dual
1	0A = 0	Nulo	1 + A = 1
2	1A = A	Neutro	0 + A = A
3	AA = A	Idempotencia	A + A = A
4	AA' = 0	Complemento	A + A' = 1
5	AB = BA	Conmutativa	A + B = B + A
6	ABC = A(BC)	Asociativa	A + B + C = A + (B + C)
7	(ABZ)' = A' + B' + + B'	Z´ Ley de De Mor	gan (A + B + + Z)' = A'B'Z'
8	AB + AC = A (B + C)	Distributiva	(A + B)(A + C) = A + BC
9	AB + AB' = A	Combinación	(A + B)(A + B') = A
10	A + AB = A	Cobertura/Absor	ción $A(A + B) = A$
11	A + A'B = A + B		A(A' + B) = AB
12	CA + CA'B = CA + CB	(C + A)(C + A' + B) = (C + A)(C + B)
13	AB + A'C + BC = AB + A'	C Consenso (A	+ B)(A' + C)(B + C) = (A + B)(A' + C)

SIMPLIFICACIÓN ALGEBRAICA DE 3 VARIABLES

$$F = AB\overline{C} + A\overline{B}C + A\overline{B}C + A\overline{C} + C$$

$$F = AB\overline{C} + AB\overline{C} + ABC + AC + C \longrightarrow \text{Aplic prop. distributiva}$$

$$F = A\overline{C}(B + B) + ABC + AC + C \longrightarrow \text{Aplic complemento } (B + B) = 1$$

$$F = AC + ABC + AC + C \longrightarrow \text{Aplic idempotencia } (AC + AC) = AC$$

$$F = A\overline{C} + ABC + C \longrightarrow \text{Aplic prop. distributiva}$$

$$F = A\overline{C} + C(1 + AB) \longrightarrow \text{Aplic dominacion } (1 + AB) = 1$$

$$F = A\overline{C} + C \longrightarrow \text{Aplic prop. distributiva}$$

$$F = (A + C)C + C \longrightarrow \text{Aplic prop. distributiva}$$

$$F = (A + C)C + C \longrightarrow \text{Aplic complemento } (C + C) = 1$$

$$F = A + C$$

Ejemplo: Representar en compuerta lógicas la siguiente expresión:

$$F = AB' + A'C' + B$$

Supóngase que, partiendo del *enunciado* verbal de un determinado problema, se tiene la siguiente *expresión* booleana:

$$F(A, B, C) = A' B' + A B + A B' C$$

Deseamos obtener el diagrama del circuito lógico que realice esta función.

- Las variables A, B y C serán las entradas del circuito y F será la salida.
- De la expresión observamos que se tienen tres términos, cada uno de los cuales requiere de una compuerta Y:
 - las dos primeras de dos entradas
 - una tercera de tres entradas.
- La salida de cada una de estas compuertas es la entrada de una compuerta **O**. A la salida de esta compuerta se tendrá la *función* de salida.
- Pero antes, por cada variable negada, se requiere que ésta pase por un *inversor*.

$$F(A,B,C) = A'B' + AB + AB'C$$

El circuito anterior puede reducirse utilizando los postulados y teoremas. Realizamos lo que se denomina SIMPLIFICACIÓN DE FUNCIONES BOOLEANAS

- **F = A'B' + AB + AB'C** = A'B'+AB(C+C')+AB'C = A'B'+**ABC**+ABC+ABC'+AB'C
- F = A'B'+(ABC+ABC')+ (ABC +AB'C) = A'B'+AB(C+C')+ AC(B+B)
- F = A' B' + A B + A C

Ahora la expresión queda con tres compuertas Y de dos entradas cada una, pero observamos que los dos primeros términos forman la O EXCLUSIVA NEGADA, por lo tanto, la función queda: $\mathbf{F} = (\mathbf{A} \oplus \mathbf{B})' + \mathbf{A} \mathbf{C}$

$$F = (A \oplus B)' + AC$$

MAPA DE KARNAUGH

- Método para minimizar expresiones booleanas.
- Consiste en la representación bidimensional de la tabla de verdad de la función a simplificar.
- Tabla con 2ⁿ casillas, con n = n^o de variables.
- El mapa puede realizarse por minitérminos o maxitérminos.
 - Minitérminos: Se agrupan los "1" en el mapa.
 - Maxitérminos: Se agrupan los "0" en el mapa.

MAPA DE KARNAUGH – REGLA SIMPLIFICACIÓN

- Se deben agrupar los "1" o "0" adyacentes con grupo rectangulares.
- Los grupos deben contener únicamente 2ⁿ elementos (1, 2, 4, 8, 16, ...).
- Cada grupo genera un término en la expresión simplificada.
- En el término de cada grupo aparecen las variables comunes a todos los "1" o "0" del grupo.
- Los grupos se construyen desde los grupos de mayor número de elementos a los grupos más pequeños.
- Cada valor lógico puede pertenecer a múltiples grupos.
- Cada grupo debe tener al menos un único elemento.

MAPA DE KARNAUGH - 1 VARIABLE

MAPA DE KARNAUGH - 2 VARIABLE

MAPA DE KARNAUGH - 3 VARIABLE

MAPA DE KARNAUGH - 4 VARIABLE

A	C	00	01	11	10
	00	f (0,0,0,0)	f (0,0,0,1)	f (0,0,1,1)	f (0,0,1,0)
f(A D C D) =	01	f (0,1,0,0)	f (0,1,0,1)	f (0,1,1,1)	f (0,1,1,0)
f (A,B,C,D) =	11	f (1,1,0,0)	f (1,1,0,1)	f(1,1,1,1)	f (1,1,1,0)
	10	f (1,0,0,0)	f (1,0,0,1)	f (1,0,1,1)	f (1,0,1,0)

1. LAS AGRUPACIONES SON EXCLUSIVAMENTE DE UNOS.

Esto implica que ningún grupo puede contener ningún cero.

2. LAS AGRUPACIONES ÚNICAMENTE PUEDEN HACERSE EN HORIZONTAL Y VERTICAL.

Esto implica que las diagonales están prohibidas.

3. LOS GRUPOS HAN DE CONTENER 2ⁿ ELEMENTOS.

Es decir que cada grupo tendrá 1, 2, 4, 8, ... número de unos.

4. CADA GRUPO HA DE SER TAN GRANDE COMO SEA POSIBLE.

No se ha incumplido ninguna regla pero el resultado no está optimizado

5. TODOS LOS UNOS TIENEN QUE PERTENECER COMO MÍNIMO A UN GRUPO.

Aunque pueden pertenecer a más de uno.

6. PUEDEN EXISTIR SOLAPAMIENTO DE GRUPOS.

7. LA FORMACIÓN DE GRUPOS TAMBIÉN SE PUEDE PRODUCIR CON LAS CELDAS EXTREMAS DE LA TABLA.

8. TIENE QUE RESULTAR EL MENOR NÚMERO DE GRUPOS POSIBLES SIEMPRE Y CUANDO NO CONTRADIGA NINGUNA DE LAS REGLAS ANTERIORES.

MAPA DE KARNAUGH - EJEMPLO

AB	CD			
	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	1	0	1	1
10	1	0	0	0

Minitérminos: F = AB'C'D' + ABC'D' + A'BCD' + A'BCD' + ABCD' + ABCD'

Numero de compuertas usada: 6 + 5 + 5 + 4 + 4 + 3 + 5 = 27

AB	CD			
	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	1	0	1	1
10	1	0	0	0

Maxitérminos: F = (A + C)(C + D')(A + B)(B + C')

Numero de compuertas usada: 1+2+1+2+3=9

AB	CD			
	00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	1	1	0	1
10	1	1	1	1

Maxitérminos: F = AC' + AB' + BCD'

Numero de compuertas usada: 2 + 2 + 3 + 2 = 9

AB	CD			
	00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	1	1	0	1
10	1	1	1	1

Minitérminos: F = (A + B)(A + C)(B' + C' + D')

Numero de compuertas usada: 1+1+5+2=9

MAPA DE KARNAUGH – EJEMPLO COMPARACIÓN CONCLUSIÓN

- En el ejemplo 1 se observa que la simplificación por maxitérminos utiliza más compuertas que la simplificación por minitérminos.
- En el ejemplo 2 es indiferente, ambas usan la misma cantidad de compuertas.
- Conclusión, que tipo de agrupación usar va a depender del problema en cuestión. Siempre hay que recordar que cuantas menos puertas lógicas se utilicen, más simple y económico será el sistema.

Enlace al simulador

• https://circuitverse.org/simulator/embed/ejemplos-06c807a0-da62-4873-8f94-

9c8e278415da?theme=default&display title=false&clock time=tru e&fullscreen=true&zoom in out=true"