Fundamentos de Arquitetura de Computadores - Turma B

Trabalho 2

Algoritmo para multiplicação de inteiros

21 de outubro de 2019

Efetuar a multiplicação de dois números inteiros não é uma tarefa trivial que pode ser efetuada diretamente no hardware. Para fazê-la, é necessário dispor de um algoritmo que use de dispositivos físicos, de forma sistemática, para chegar a um resultado.

A ideia geral de um algoritmo de multiplicação parte da mesma lógica que usamos no papel. Observe a Figura 1.

Fonte: [1, Figura 9.7].

Figura 1: Exemplo de multiplicação de dois inteiros.

Chamemos o multiplicando de M e o multiplicador de Q. Consideremos que Q seja tal que $Q = q_{n-1}q_{n-2}\dots q_2q_1q_0$. O que fazemos no papel é percorrer cada dígito q_i do multiplicador, começando do dígito menos significativo q_0 até o mais significativo q_{n-1} , e calculamos o produto parcial $M \times q_i$. Ao final, todos os produtos parciais, cada um deslocado i dígitos à direita, são somados, o que nos dá o produto final.

Sabemos que deslocar um binário i vezes à direita equivale a multiplicá-lo por 2^i (assim como deslocar um decimal i vezes à direita equivale a multiplicá-lo por 10^i). Ou seja, o que fazemos no papel, ilustrado na Figura 1, equivale ao que está ilustrado na Figura 2.

Fonte: [1, Figura 9.10].

Figura 2: Exemplo de multiplicação de dois inteiros. Note que podemos colocar zeros à direita em cada produto parcial, já que estamos deslocando-os à esquerda.

Logo,

$$M \times Q = M \times (q_0 \times 2^0 + q_1 \times 2^1 + \dots + q_{n-2} 2^{n-2} + q_{n-1} \times 2^{n-1}).$$

O problema é que esse esquema de multiplicação não é compatível com a representação de números negativos em complemento a dois. O que se faz muitas vezes é aplicar o **Algoritmo de Booth**. Esse algoritmo funciona tanto para números negativos quanto positivos, e ainda é mais econômico, em geral, que o primeiro.

Para entender o funcionamento do algoritmo de Booth, consideremos primeiro o caso em que o multiplicador seja positivo. Consideremos, por exemplo, o número $00011110_{\rm bin}$, composto por um bloco de 1s cercado de 0s. Temos que

$$M \times (00011110) = M \times (2^4 + 2^3 + 2^2 + 2^1)$$

= $M \times (16 + 8 + 4 + 2)$
= $M \times 30$.

Como vale que

$$2^{n} + 2^{n-1} + \ldots + 2^{n-k} = 2^{n+1} - 2^{n-k}$$
(1)

para n > 0 e $1 \le k \le n$ (confira você mesmo!), então

$$M \times (00011110) = M \times (2^5 - 2^1)$$

= $M \times (32 - 2)$
= $M \times 30$.

Por isso, o produto pode ser calculado por sucessivas adições e subtrações do multiplicando sempre que houver uma mudança de 0 para 1 (neste caso, subtração) ou de 1 para 0 (neste caso, adição).

Já para o caso negativo, consideremos X um número negativo representado na notação de complemento a dois:

Representação de
$$X = 1x_{n-2}x_{n-3} \dots x_1x_0$$
.

O valor de X é

$$X = -2^{n-1} + (x_{n-2} \times 2^{n-2}) + (x_{n-3} \times 2^{n-3}) + \dots + (x_1 \times 2^1) + (x_0 \times 2^0).$$

O bit mais significativo de X é 1, já que X é negativo. Vamos supor que o primeiro 0 menos significativo esteja na posição k. Deste modo,

Representação de
$$X = 111 \dots 10x_{k-1}x_{k-2} \dots x_1x_0$$
.

Ou seja,

$$X = -2^{n-1} + 2^{n-2} + \ldots + 2^{k+1} + (x_{k-1} \times 2^{k-1}) + \ldots + (x_0 \times 2^0).$$

Usando novamente a relação (1), temos que

$$2^{n-2} + \ldots + 2^{k+1} = 2^{n-1} - 2^{k+1}$$

isto é

$$X = -2^{n-1} + 2^{n-2} + \ldots + 2^{k+1} + (x_{k-1} \times 2^{k-1}) + \ldots + (x_0 \times 2^0) = -2^{k+1} + (x_{k-1} \times 2^{k-1}) + \ldots + (x_0 \times 2^0).$$

Logo,

$$X = -2^{k+1} + (x_{k-1} \times 2^{k-1}) + \ldots + (x_0 \times 2^0).$$

Isso indica que, à medida que o algoritmo de Booth passe o zero mais significativo e encontra o próximo 1, ocorre uma transição de 0 para 1 e há uma subtração (-2^{k-1}) .

O algoritmo de Booth necessita de

- um registrador de 32 bits para armazenar o Multiplicador,
- um registrador de 64 bits para armazenar o Produto e
- um bit extra na posição menos significativa do produto para armazenar o último bit descartado.

O algoritmo de Booth é descrito a seguir.

Algoritmo 1: Algoritmo de Booth

Dados: O multiplicando e o multiplicador, números inteiros (negativos em complemento a dois).

Passo 1. Copie o Multiplicador para a porção de 32 bits menos significativa e zere a porção de 32 bits mais significativa do registrador Produto.

Passo 2. Se Produto[0..-1] = 01 (Produto[0..-1] = 10), some (subtraia) o multiplicando à porção de 32 bits mais significativa do registrador Produto e armazene o resultado na porção de 32 bits mais significativa do registrador Produto.

Passo 3. Faça o deslocamento aritmético do registrador Produto 1 bit à direita.

Passo 4. Se não for a 32ª repetição, volte ao Passo 2.

Exemplos

1. Queremos multiplicar $7_{\rm dec} \times 3_{\rm dec} = 0111_{\rm bin} \times 0011_{\rm bin}$.

Valores Iniciais $0000\ 00$ 2. Produto[01] = $10 \Rightarrow \text{Produto}[74]$ -= Multiplicando $1001\ 00$ 3. Deslocamento aritmético à direita do Produto $1100\ 10$ 2. Produto[01] = $11 \Rightarrow \text{nada a fazer}$ $1100\ 10$ 3. Deslocamento aritmético à direita do Produto $1110\ 01$ 3. Deslocamento aritmético à direita do Produto $0101\ 01$ 3. Deslocamento aritmético à direita do Produto $0010\ 10$	ıto	It.
1 3. Deslocamento aritmético à direita do Produto 1100 10 2. Produto $[01] = 11 \Rightarrow \text{nada a fazer}$ 1100 10 3. Deslocamento aritmético à direita do Produto 1110 01 2. Produto $[01] = 01 \Rightarrow \text{Produto}[74] += \text{Multiplicando}$ 0101 01	11 0	0
3. Deslocamento aritmético à direita do Produto 2. Produto $[01] = 11 \Rightarrow \text{nada a fazer}$ 1100 10 2. Deslocamento aritmético à direita do Produto 1110 01 2. Produto $[01] = 01 \Rightarrow \text{Produto}[74] += \text{Multiplicando}$ 1100 10	11 0	1
2 3. Deslocamento aritmético à direita do Produto 1110 01 2. Produto $[01] = 01 \Rightarrow Produto[74] += Multiplicando 0101 01$	01 1	
3. Deslocamento aritmético à direita do Produto 1110 01 2. Produto $[01] = 01 \Rightarrow \text{Produto}[74] += \text{Multiplicando} 0101 01$	01 1	2
3	00 1	
3 Deslocamento aritmática à direita de Produte 0010 10	00 1	3
5. Desiocamento artimetico a difeita do Flodito 0010 10	10 0	
2. $Produto[01] = 00 \Rightarrow nada a fazer$ 0010 10	10 0	4
4 3. Deslocamento aritmético à direita do Produto 0001 01	01 0	

Tudo certo, $00010101_{\text{bin}} = 21_{\text{dec}}$.

2. Queremos multiplicar $7_{\rm dec} \times -3_{\rm dec} = 0111_{\rm bin} \times 1101_{\rm bin}$.

It.	Etapa	Produto
0	Valores Iniciais	0000 1101 0
1	2. $Produto[01] = 10 \Rightarrow Produto[74] -= Multiplicando$	1001 1101 0
	3. Deslocamento aritmético à direita do Produto	1100 1110 1
2	2. $Produto[01] = 01 \Rightarrow Produto[74] += Multiplicando$	0011 1110 1
	3. Deslocamento aritmético à direita do Produto	0001 1111 0
3	2. $Produto[01] = 10 \Rightarrow Produto[74] -= Multiplicando$	1010 1111 0
	3. Deslocamento aritmético à direita do Produto	1101 0111 1
4	2. $Produto[01] = 11 \Rightarrow nada a fazer$	1101 0111 1
	3. Deslocamento aritmético à direita do Produto	1110 1011 1

Tudo certo, $11101011_{\text{bin}} = -21_{\text{dec}}$.

O presente trabalho tem por objetivos

- o exercício de conceitos fundamentais de assembly MIPS e
- o exercício de entendimento e fixação do algoritmo de multiplicação de Booth.

Para tanto, faremos uso do simulador MARS¹.

Este trabalho compõe a média semestral de trabalhos e pode ser feito em dupla!

Sua tarefa neste trabalho é **implementar um programa** em assembly MIPS que leia dois inteiros a e b e devolva a multiplicação de a por b. Lembre que uma multiplicação pode potencialmente ocupar dois registradores e ser representada em 64 bits. Os **requisitos mínimos** que seu programa **deve** cumprir são:

- 1. Você deve implementar o Algoritmo 1.
- 2. Seu programa deve ser implementado em assembly MIPS e funcionar no simulador MARS versão 4.5.
- 3. Seu programa deve
 - (a) Conter um cabeçalho com o nome completo e matrícula dos membros da dupla,
 - (b) Conter uma função multfac que receba como argumentos os dois inteiros e salve o resultado do algoritmo nos registradores Hi e Lo e
 - (c) Conter uma função main que leia os dois inteiros, chame a função multfac e exiba, ao final, o resultado.

Caso algum dos requisitos mínimos não seja cumprido, serão aplicados descontos proporcionais à nota, *independentemente da corretude do código*. Leitura também é parte deste trabalho!

Depois de ter cumprido todos os requisitos, **teste** seu código. Invente casos de teste, isso também é sua tarefa neste trabalho.

Depois de ter cumprido todos os requisitos e testado seu código, você deve submeter apenas seu código fonte, com a extensão asm e nomeado da seguinte forma

 $^{^{1}} Disponível\ em\ http://courses.{\tt missouristate.edu/KenVollmar/mars/.}$

$nome1_matricula1_nome2_matricula2_trab02.asm$

no link Entrega do Trabalho 2 na página da nossa disciplina no Moodle até o dia **04** de novembro de **2019** às **23:55**.

Apenas um membro da dupla deve submeter o trabalho no Moodle.

Será avaliado no seu trabalho

- 1. a corretude do seu código em assembly MIPS, ou seja
 - seu código roda sem erros,
 - não contém uso indevido de funções e estruturas e
 - funciona,
- 2. o capricho no código e na indentação,
- 3. o cumprimento de todos os requisitos mínimos,
- 4. o envio correto na plataforma Aprender e
- 5. a pontualidade na entrega do trabalho.

Farei uma correção manual, então seu código não vai rodar em juiz eletrônico. Se for detectado algum plágio, a nota atribuída será ZERO a **todos** os envolvidos.

Bons estudos!

Prof. John Lenon Gardenghi john.gardenghi@unb.br Sala 22-UED

Referências

[1] STALLINGS, W. Arquitetura e organização de computadores. 8 ed. Prentice Hall. 2010.