EC 3303: Econometrics I

Fixed Effects

Kelvin Seah

AY 2022/2023, Semester 2

Outline

- 1. Fixed Effects
- 2. Differencing

Limitations of Regression

- Multiple regression is a powerful tool to estimate causal effects if we can observe *all* the variables which are correlated with both the regressor of interest X_i & the dependent variable Y_i .
 - Including these variables as controls will guarantee that the estimator of the effect of interest is unbiased.
 - But in practice, data may not be available on these variables.

Fixed Effects Regression

- If the *unobserved variables*:
 - vary from entity to entity but are constant over time
 - can use regression with *fixed effects* to obtain an unbiased estimator of the causal effect of interest.
- Fixed effects regression requires panel data.
 - Data on multiple entities in which each entity is observed at two or more time periods.
 - Balanced panel: has no missing observations. Values of variables are all observed for each entity and each time period.
 - Unbalanced panel: some observations are missing. There is missing data for at least one time period for at least one entity.

Does being taught by a native teacher affect student achievement?

- In the U.S., students taught by native teachers typically score higher on achievement tests.
- Is this because of the nativity of the teacher, or because students taught by native teachers & students taught by immigrant teachers are dissimilar?

• Assuming that teacher nativity is as good as randomly assigned, conditional on student gender, race, family income, parental background, home language, family size, teacher education & experience, & student motivation

• & that the causal effect of teacher nativity is additive & constant (= ρ for each student i), then:

A regression of testscore on teacher nativity with these variables as controls will give an *unbiased* estimator of the causal effect of teacher nativity

$$Y_i = \alpha + \rho Native_i + X'_i \beta + u_i \quad (1)$$

where

 Y_i : testscore of student i

 $Native_i$: dummy for teacher nativity (=1 if teacher of student i is native, =0 otherwise)

 X_i : vector of control variables: student gender, race, family income, parental background, home language, family size, & teacher education & experience

 u_i : other factors influencing student i's testscore

- In practice, researchers cannot observe student motivation.
 - So cannot include "student motivation" as a control variable.
- Running equation (1) without "motivation" as a control variable will lead to OVB in the OLS estimator of ρ .
- The model actually estimated is $Y_i = \alpha + \rho Native_i + X'_i \beta + [\delta Motiv_i + error_i]$
 - since motivation levels of students taught by native teachers may differ from those taught by non-native teachers $corr(Motiv, Native) \neq 0$
 - and since motivation level is a determinant of testscore Y_i , so

Conditional mean independence is violated.

However if,

1. motivation remains *constant over time* for a given student &

2. panel data is available, then

we can control for motivation even though we cannot measure it.

$$Y_{it} = \alpha + \rho Native_{it} + X'_{it}\beta + \delta Z_i + u_{it} \quad (2)$$

where *i* indexes student i = 1, ..., n; while *t* indexes time-period t = 1, ..., T.

- Let Z_i be a variable which determines the testscore of student i, but that does not change over time (e.g. motivation level)
 - Z_i only varies across students i, but does not vary over time so it will not produce any change in Y between the time periods considered.

- Since we cannot observe Z_i , we control for its effect by *eliminating* it from the model:
- Suppose we observe students for T = 2 time periods (say 2010 & 2015), then

$$Y_{i,2015} = \alpha + \rho Native_{i,2015} + X'_{i,2015} \beta + \delta Z_i + u_{i,2015}$$
 (3)

$$Y_{i,2010} = \alpha + \rho Native_{i,2010} + X'_{i,2010} \beta + \delta Z_i + u_{i,2010}$$
 (4)

$$(3) - (4)$$
:

$$Y_{i,2015} - Y_{i,2010} = \rho \left[Native_{i,2015} - Native_{i,2010} \right] + \left[X'_{i,2015} - X'_{i,2010} \right] \beta + u_{i,2015} - u_{i,2010}$$
 (5)

• Removing Z_i this way is called "differencing".

Differencing

- We can create a differenced variable like $(Y_{i,2015} Y_{i,2010})$ in Stata by generating a new variable equal to the difference in the testscore variables for the years 2015 & 2010.
- Intercept is usually included

$$Y_{i,2015} - Y_{i,2010} = \widehat{\alpha}_1 + \widehat{\rho} [Native_{i,2015} - Native_{i,2010}] + [X'_{i,2015} - X'_{i,2010}] \widehat{\beta}$$
 (6)

• to allow for the possibility that the mean change in testscore (over the two years for the entities) is non-zero, even if there is no change in any of the included regressors (over the two years for the entities).

Running Differenced Regressions

- National Longitudinal Survey of Youth.
 - Subset of 581 teenagers
 - Interviewed in 1990, 1992, 1994
 - Numbers at the end of variable names reflect time period in which the variable was measured
 - Variables without numbers at the end do not vary over time.
 - Consider variables:
 - id: subject id, same for each teenager across every wave
 - anti: measure for antisocial behavior (0-6)
 - pov: 1 if family in poverty; 0 if not
 - self: self esteem (6-24)
 - and later, gender: 1 if female, 0 if male

- set more off
- use http://www3.nd.edu/~rwilliam/statafiles/nlsy.dta,
 clear
- des anti* self* pov* gender

. des anti* self* pov* gender

variable name	storage type	display format	value label	variable label
anti90 anti92 anti94 self90 self92 self94 pov90 pov92 pov94 gender	byte byte byte float byte byte byte byte byte byte byte	%8.0g %8.0g %8.0g %8.0g %9.0g %8.0g %8.0g %8.0g %8.0g %8.0g		child antisocial behavior in 1990 child antisocial behavior in 1992 child antisocial behavior in 1994 child self-esteem in 1990 child self-esteem in 1992 child self-esteem in 1994 family poverty status in 1990 family poverty status in 1992 child's gender

keep anti* self* pov* gender

- Ignore observations from 1994 so we can use differencing
- Create unique ID for each entity (girl)
 - gen id= n
- Generate differenced variables
 - gen d anti= anti92 anti90
 - gen d pov = pov92 pov90
 - gen d self = self92 self90

. list in 1/5

	anti90	anti92	anti94	gender	self90	self92	self94	pov90	pov92	pov94	d_anti	d_pov	d_self	id
1. 2. 3.	1 0 5	1 0 5	1 0 5	1 1 0	21 20 21	24 24 24	23 24 24	1 0 0	1 0 0	1 0 0	0 0 0	0 0 0	3 4 3	1 2 3
4. 5.	2	3	1	0 1	23 22	21 23	21 24	0	0	0	1 -1	0	-2 1	4 5

- Examine how antisocial behavior is associated with poverty and selfesteem.
 - reg d_anti d_pov d_self, cluster(id)
 - . reg d_anti d_pov d_self, cluster(id)

Linear regression

Number of obs = 581F(2, 580) = 3.94Prob > F = 0.0200R-squared = 0.0169Root MSE = 1.2829

(Std. Err. adjusted for 581 clusters in id)

d_anti	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
d_pov	.1969039	.145378	1.35	0.176	0886277	.4824355
d_self	0391292	.014996	-2.61	0.009	0685823	0096762
_cons	.0403031	.0539599	0.75	0.455	0656775	.1462837

• data is in "wide" format here

	anti90	anti92	anti94	gender	self90	self92	self94	pov90	pov92	pov94	d_anti	d_pov	d_self	id
1.	1	1	1	1	21	24	23	1	1	1	0	0	3	1
2.	0	0	0	1	20	24	24	0	0	0	0	0	4	2
3.	5	5	5	0	21	24	24	0	0	0	0	0	3	3
4.	2	3	1	0	23	21	21	0	0	0	1	0	-2	4
5.	1	0	0	1	22	23	24	0	0	0	-1	0	1	5

- We can also difference variables when we structure the dataset from "wide" to long".
 - In "long" format, each row contains variables for an entity measured at a single time period.
 - Typical "panel form".
- Convert the dataset from "wide" to "long" using "reshape" command.
 - reshape long anti pov self, i(id) j(year)
 - The variable list following the reshape command is the list of variables that varies across time. Since these variables are measured over 3 years (1990, 1992, 1994), STATA creates 3 records (rows) for each entity.
 - The option j (year) creates a year variable. option i (id) tells STATA what the entity is.

reshaped data:

. list in 1/21

	id	year	anti	gender	self	pov
1. 2. 3. 4. 5.	1 1 1 2 2	90 92 94 90 92	1 1 1 0 0	1 1 1 1 1	21 24 23 20 24	1 1 1 0 0
6. 7. 8. 9.	2 3 3 4	94 90 92 94 90	0 5 5 5 2	1 0 0 0 0	24 21 24 24 23	0 0 0 0
11. 12. 13. 14. 15.	4 4 5 5 5	92 94 90 92 94	3 1 1 0 0	0 0 1 1 1	21 21 22 23 24	0 0 0 0
16. 17. 18. 19. 20.	6 6 7 7	90 92 94 90 92	1 1 1 3 3	0 0 0 1 1	19 21 24 24 16	0 0 0 0
21.	7	94	4	1	13	0

- Generate differenced variables
 - drop if year >=94 *do this so that we only have 2 years of data
 - gen d_anti= anti anti[_n-1] if year==92
 - gen d pov = pov pov[n-1] if year==92
 - gen d self = self self[n-1] if year==92
- Run the differenced regression
 - reg d anti d pov d self, cluster(id)
 - . reg d_anti d_pov d_self, cluster(id)

Linear regression

Number of obs = 581 F(2, 580) = 3.94 Prob > F = 0.0200 R-squared = 0.0169 Root MSE = 1.2829

(Std. Err. adjusted for 581 clusters in id)

d_anti	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
d_pov	.1969039	.145378	1.35	0.176	0886277	.4824355
d_self	0391292	.014996	-2.61	0.009	0685823	0096762
_cons	.0403031	.0539599	0.75	0.455	0656775	.1462837

Fixed Effects Regression

- Differencing works when entities are observed for only 2 different time periods.
- If T > 2, we use the more general *fixed effects regression*.
- Consider again:

$$Y_{it} = \alpha + \rho Native_{it} + X'_{it}\beta + \delta Z_i + u_{it}$$
 (7)

• Can get rid of Z_i by entity-demeaning.

Step 1: average each variable over all t for each i

$$\overline{Y}_i = \alpha + \rho \overline{Native}_i + \overline{X'}_i \beta + \delta Z_i + \overline{u}_i$$
 (8)

Where $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$, other variables defined similarly

Step 2: (7)-(8)

$$(Y_{it} - \overline{Y}_i) = \rho(Native_{it} - \overline{Native}_i) + (X'_{it} - \overline{X}'_i)\beta + (u_{it} - \overline{u}_i)$$
(9)

This transformation yields "entity-demeaned" variables

•
$$(Y_{it} - \overline{Y}_i) = \rho(Native_{it} - \overline{Native}_i) + (X'_{it} - \overline{X}'_i)\beta + (u_{it} - \overline{u}_i)$$
 (9)

Can rewrite

$$\widetilde{Y}_{it} = (Y_{it} - \overline{Y}_i); \widetilde{Native}_{it} = (Native_{it} - \overline{Native}_i); \widetilde{X}'_{it} = (X'_{it} - \overline{X}'_i)$$

$$\widetilde{u}_{it} = (u_{it} - \overline{u}_i)$$

• Can then run a regression of \tilde{Y}_{it} on Native and \tilde{X}' to get an unbiased estimator of ρ .

• This is equivalent to:

$$Y_{it} = \alpha + \rho Native_{it} + \mathbf{X'}_{it}\boldsymbol{\beta} + \gamma_2 W 2_i + \gamma_3 W 3_i + \dots + \gamma_n W n_i + u_{it} \quad (10)$$

where

 $W2_i$ is a dummy variable (=1 if i is student 2, = 0 otherwise),

 $W3_i$ is a dummy variable (=1 if i is student 3, = 0 otherwise)....

- So there are *n-1 dummy variables*, each indicating an individual student.
- This is known as regression with student (entity) fixed effects.

How to run FE regressions: xtreg

- To use "xtreg", need to have the dataset in "long" format & declare the data to be a panel.
 - xtset id year
 - The general format is xtset panelvar timevar
 - "xtset" tells STATA to treat id as the entity / panel variable & year as the time variable.

- Run the demeaned regression
 - xtreg anti pov self, fe cluster(id)

* fe tells STATA to run a fixed effects model. cluster (id) tells STATA to cluster standard errors by entity.

```
. xtreg anti pov self, fe cluster(id)
```

```
Fixed-effects (within) regression
                                                Number of obs
                                                                           1743
Group variable: id
                                                 Number of groups
                                                                            581
R-sq: within = 0.0212
                                                 Obs per group: min =
       between = 0.0418
                                                                avg =
                                                                            3.0
       overall = 0.0327
                                                                max =
                                                 F(2.580)
                                                                          11.07
corr(u_i, xb) = 0.0789
                                                 Prob > F
                                                                         0.0000
```

(Std. Err. adjusted for 581 clusters in id)

anti	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
pov self _cons	.1048989 0514953 2.650289	.0992739 .0113174 .2336169	1.06 -4.55 11.34	0.291 0.000 0.000	0900813 0737234 2.19145	.2998791 0292672 3.109127
sigma_u sigma_e rho	1.3228744 1.0023447 .63527864	(fraction	of varia	nce due t	co u_i)	

Standard errors should be clustered

- LSA #2: (X_i, Y_i) , i = 1, ..., n are independently & identically distributed (i.i.d).
- arises if the entity is randomly selected by simple random sampling.
- However, for panel data, observations are not i.i.d.; *Y*, *X*, *u* tend to be correlated over time for a given entity ("autocorrelated").
- To make standard errors valid, we cluster standard errors by entity so as to allow for correlation of regression errors within an entity.

More Practice

- use fatality.dta /* Load data */
- * (1) running first differenced regressions
- Regress fatality rate in 1982 on real beer tax in 1982, using OLS. What is the coefficient on real beer tax?
- regress fatalityrate beertax if year==1982, robust
- * Regress fatality rate in 1988 on real beer tax in 1988, using OLS. What is the coefficient on real beer tax?
- regress fatalityrate beertax if year==1988, robust
- * Here is how you create the first differenced variables using data from 1988 and 1982.

- preserve
- gsort state -year /*Sort dataset by ascending values of state and descending values of year*/
- keep if year==1988 | year==1982 /*keep only data from 1982 and 1988*/
- bysort state: generate d_fatalityrate= fatalityrate[_n] fatalityrate[_n-1] /*create first differenced fatality rate variable*/
- bysort state: generate d_beertax= beertax[_n] beertax[_n-1] /*create first differenced beer tax variable*/
- regress d_fatalityrate d_beertax, cluster(state) /*run first differenced regression. We cluster standard errors by state so as to allow for correlation of regression errors within a state*/
- restore

- * running fixed effects regressions
- preserve
- xtset state year /*declare the dataset to be a panel. xtset tells Stata to treat state as the entity variable & year as the time variable*/
- xtreg fatalityrate beertax, fe cluster(state) /*fe tells STATA to run a fixed effects regression. cluster(state) tells Stata to cluster standard errors by state*/
- restore