Analysis of some data from microstructure database

Andy Pickering

May 26, 2017

Contents

1	Overview	2
2	Data	2
3	Code	2
4	Results	2

1 Overview

Analysis of some global microstructure data, to compare the results to my EQ14 analysis. Specifically I am looking at γ and the ratio of ϵ_{χ}/ϵ , where ϵ_{χ} is computed as

$$\epsilon_{\chi} = \frac{N^2 \chi}{2\gamma < T_z^2} \tag{1}$$

2 Data

Data are from the microstructure data base at https://microstructure.ucsd.edu/. I am using matlab files made from the raw database files by Amy Waterhouse (shared w/me via Google drive).

IWISE 11 vmp data were shared with me by Lou St. Laurent.

EQ14 data are from Jim Moum and company.

3 Code

Code and results (including figures and these notes) are available in a github repository: https://github.com/OceanMixingGroup/Analysis/tree/master/Andy_Pickering/micro_database

- Plot_micro_data_AP.m
- Plot_hist_chieps_chi_all.m
- Plot_epschi_eps_2Dhist_all.m
- Plot_chi_eps_norm_all.m

4 Results

Figure 1: Histograms of (log10) the ratio ϵ_χ/ϵ .

Figure 2: Histograms of (log10) the ratio ϵ_χ/ϵ .

Figure 3: Histograms of (log10) the ratio ϵ_χ/ϵ .

Figure 4: χ vs ϵ , normalized such that the slope is proportional to γ .

Figure 5: χ vs ϵ , normalized such that the slope is proportional to γ .

Figure 6: χ vs ϵ , normalized such that the slope is proportional to γ .

Figure 7: 2D histograms of ϵ_{χ} vs ϵ .

Figure 8: 2D histograms of ϵ_{χ} vs ϵ .

Figure 9: 2D histograms of ϵ_{χ} vs $\epsilon.$