Compact involutive division based on the Janet tree

Vladimir P. Gerdt 1, Yury A. Blinkov²

¹Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Russia

The work was supported by the Russian Science Foundation (grant no. 20-11-20257)

²Mechanics and Mathematics Department, Saratov State University, Saratov, Russia Department of Applied Probability and Informatics, Peoples' Friendship University of Russia, Moscow, Russia

PCA 2021, St.Petersburg, April 20, 2021

Contents

- Introduction
- Involutive Monomial Division and Involutive Bases
- Computational Efficiency of Monomial Completion
- Pairwise Construction of Involutive Divisions
- 6 Refinement of Pairwise Involutive Divisions
- 6 Computer Experiments
- Conclusions

Theory of involutive divisions

Riquier (1910), Janet (1920), Thomas (1937): Involutivity of PDEs.

Zharkov, Blinkov (1993): Pommaret Bases.

Gerdt, Blinkov (1995-1998): Involutive Division ⇒ Involutive Bases.

Apel (1998): Admissible Partial Division ⇒ Involutive Bases.

Gerdt (2001): Pair property of involutive division.

Gerdt, Blinkov, Yanovich (2001): Janet Trees for constructing Janet bases.

Chen, Gao (2002): Involutive Characteristic Sets for PDEs.

Hemmecke (2003): Sliced Involutive Division.

Evans (2004): Noncommutative Involutive Bases.

Semenov, Zyuzikov (2003-2008): Involutive Division via Monomial Ordering.

Gerdt, Blinkov (2005): Janet-like Division.

Chistov, Grigoriev (2007): Complexity of Janet Bases for D-modules.

Seiler (2009): Involutive Bases for Algebras of Solvable Type.

Gerdt (2008-2012); Bächler, Gerdt, Lange-Hegermann, Robertz (2012):

based on Janet division Thomas Decomposition of Nonlinear PDEs.

Gerdt, Blinkov (2011): Involutive Division generated by antigraded ordering.

Hashemi, Parnian (2018): D-Noether division.

Research problem: efficient construction of most compact involutive bases.

Implementation

Schwarz (1984): Riquier-Janet theory in Reduce.

Schwarz (1992): Linear differential Janet bases (DJB) in Reduce.

Zharkov, Blinkov (1993); G., Blinkov (1995): Pol. Pommaret bases (PPB) in Reduce.

Kredel (1996): PPB in MAS.

Nischke (1996): Polynomial JB (PJB) and PPB in C++ (PoSSoLib).

Berth (1999): Polynomial and differential involutive bases in Mathematica.

Cid (2000)-Robertz (2002-2011): PJB, DJB and difference JB in Maple.

Blinkov (2000-2007): PJB in Reduce, C++, Glnv.

Yanovich (2001-2004): PJB in C, Singular.

Hausdorf, Seiler (2000-2002): DJB and DPB in MuPAD.

Chen, Gao (2002): Involutive extended characteristic sets in Maple.

Hemmecke (2002): Sliced division algorithm in Aldor.

Evans (2005): Noncommutative Involutive Bases in C.

Zhang, Li (2005): Janet bases for linear differential ideals in Maple.

Zinin (2007) - Blinkov (2011): Boolean Janet and Pommaret bases in C++, Reduce, Macaulay.

Langer-Hegermann (2010): Janet Bases for nonlinear and algebraically simple differential systems in Maple.

Albert (2012-2015): PPB and PJB in CoCoA.

Involutive Monomial Division

An involutive division \mathcal{L} is defined on $\mathcal{M}:=\{\ x_1^{i_1}\cdots x_n^{i_n}\ |\ i_j\in\mathbb{N}_{\geq 0}\ \}$ if for any finite $U\subset\mathcal{M}$ and $\forall u\in U$ defined a submonoid $\mathcal{L}(u,U)$ of \mathcal{M} s.t.

- \bullet $w \in \mathcal{L}(u, U), v | w \Longrightarrow v \in \mathcal{L}(u, U)$ (partition of variables)
- ② $u, v \in U, \ u\mathcal{L}(u, U) \cap v\mathcal{L}(v, U) \neq \emptyset \Longrightarrow u \in v\mathcal{L}(v, U) \lor v \in u\mathcal{L}(u, U)$ ("unicity" of \mathcal{L} -divisor)
- $v \in U, v \in u\mathcal{L}(u, U) \Longrightarrow \mathcal{L}(v, U) \subseteq \mathcal{L}(u, U)$ (transitivity)

Elements of $\mathcal{L}(u, U)$ are $(\mathcal{L}-)$ multiplicative for u.

$$u \in U \quad \Rightarrow \quad \{x_1, \ldots, x_n\} = M_{\mathcal{L}}(u, U) \biguplus NM_{\mathcal{L}}(u, U)$$

multiplicative nonmultiplicative

$$w \in u\mathcal{L}(u, U) \iff u \mid_{\mathcal{L}} w$$
 u is involutive divisor (\mathcal{L} -divisor) of w

 $C_{\mathcal{L}}(u, U) := u\mathcal{L}(u, U)$ is involutive cone (\mathcal{L} -cone) generated by $u \in U$.

Involutive bases

Given an ideal $\mathcal{I} \subset \mathcal{K}[x_1, \dots, x_n]$, involutive division \mathcal{L} and monomial order \succ , a finite subset $G \subset \mathcal{I}$ is called (\mathcal{L}) -involutive basis of \mathcal{I} if

$$\underbrace{\operatorname{Im}(g)\mid_{\mathcal{L}}\operatorname{Im}(f)\Longrightarrow\operatorname{Im}(g)\mid\operatorname{Im}(f)}_{\text{"}}$$

An involutive basis is a Gröbner basis (GB), generally, redundant. Similarly to a reduced GB a monic minimal involutive basis is unique.

Monomial completion algorithm

Input: U, a finite set or list of monomials in \mathcal{M} ; \mathcal{L} , an involutive division **Output:** \bar{U} , a minimal \mathcal{L} -basis of $\langle U \rangle$ 1: **choose** $u \in U$ without proper divisors in $U \setminus \{u\}$ 2: $W := \{u\}; \ V := U \setminus \{u\} \cup \{u \cdot x \mid x \in NM_{\mathcal{L}}(u, W)\}$ 3: while $V \neq \emptyset$ do 4: **choose** $v \in V$ without proper divisors in $V \setminus \{v\}$ 5: $V := V \setminus \{v\}$ 6: if $v \notin C_{\mathcal{C}}(W)$ then $W := W \cup \{v\}; \ V := V \cup \{u \cdot x \mid u \in W, x \in NM_{\mathcal{L}}(u, W)\}$ 7; fi 8: 9: **od** 10: return $\bar{U} := W$

Computational efficiency of monomial completion

 $\mathcal{L}\text{-size}$ of U is the total number of $\mathcal{L}\text{-nonmultiplicative}$ variables for the elements in U

$$\mathcal{L}(U) := \sum_{u \in U} |NM_{\mathcal{L}}(u, U)|$$

Proposition (Gerdt, Blinkov'11)

Let \mathcal{L} be noetherian and constructive, and let the algorithm completes U to \bar{U} . Then \bar{U} is produced from U by running the while-loop exactly $\mathcal{L}(\bar{U}) + |U \setminus \bar{U}| - 1$ times provided repeated nonmultiplicative prolongations are avoided.

Thus, $\mathcal{L}(\bar{U})$ measures computational efficiency of \mathcal{L} .

Remark

 $\mathcal{L}_1(\bar{U}_1) < \mathcal{L}_2(\bar{U}_2)$ strongly correlates with $|\bar{U}_1| < |\bar{U}_2|$.

Construction of involutive divisions

All known involutive divisions satisfying the above Axioms 1-3 are pairwise (Gerdt'01), i.e. for any finite set $U\subset\mathcal{M}$ with cardinality $|U|\geq 2$ the set of its \mathcal{L} -nonmultiplicative variables is given by

$$(\ \forall u \in U\)\ \ [\ \textit{NM}_{\mathcal{L}}(u,U) = \bigcup_{v \in \textit{U} \setminus \{u\}} \textit{NM}_{\mathcal{L}}(u,\{u,v\})\]$$

The pair property provides a regular procedure for construction of a pairwise involutive division called \neg -division (Gerdt,Blinkov'11) if it is generated by a total monomial order \neg under the fixed permutation σ on the variables

$$NM_{\square}(u, \{u, v\}) := \left\{ egin{array}{ll} ext{if } u \sqsupset v ext{ or } (u \sqsubset v \land v \mid u) ext{ then } \emptyset \\ ext{else } \{x_{\sigma(i)}\}, \ i = \min\{j \mid \deg_{\sigma(j)}(u) < \deg_{\sigma(j)}(v)\} \end{array} \right.$$

Remark

There are n! distinct \square -divisions where n is a number variables.

If □ is admissible or the negation of admissible, then □-division is continuous, constructive and Noetherian (Semenov'06, Semenov,Zyuzikov'07-08, Gerdt,Blinkov'11)

Some particular divisions:

- \succ_{grlex} -division generated by the graded lexicographic order: $u \succ_{\text{grlex}} v \iff \deg(u) > \deg(v) \lor \deg(u) = \deg(v) \land u \succ_{\text{lex}} v$
- \succ_{alex} -division generated by the antigraded lexicographic order: $u \succ_{\text{alex}} v \iff \deg(u) < \deg(v) \lor \deg(u) = \deg(v) \land u \succ_{\text{lex}} v$

Multivariate monomial division: overlapped cones

Disjoint and embedded involutive cones

Refinement of involutive divisions

Definition (refinement)

Let \mathcal{L}_1 and \mathcal{L}_2 be two distinct involutive divisions. We shall say that division \mathcal{L}_2 refines division \mathcal{L}_1 if the following relation holds

$$(\forall U \subset \mathcal{M}) \ (\forall u \in U) \ [NM_{\mathcal{L}_2}(u, U) \subseteq NM_{\mathcal{L}_1}(u, U)] \ .$$

Corrolary

If involutive division \mathcal{L}_2 refines division \mathcal{L}_1 and $U \subset \mathcal{M}$, then the corresponding minimal \mathcal{L}_1 -basis \bar{U}_1 and \mathcal{L}_2 -basis \bar{U}_2 satisfy

$$\bar{\textit{U}}_2 \subseteq \bar{\textit{U}}_1$$
 .

This means that either $\bar{U}_2 = \bar{U}_1$ or \bar{U}_2 is more compact then \bar{U}_1 .

Ancestors

Given a nonempty monomial set $U \subset \mathcal{M}$, we shall denote by GB(U) the minimal basis (i.e., the reduced Gröbner basis) of $\langle U \rangle$.

Definition (ancestor)

Given $U \subset \mathcal{M}$, $u \in U$ and a total monomial ordering \square on \mathcal{M} , the element $v \in \mathrm{GB}(U)$ is said to be an ancestor of $u \in U$ w.r.t. \square (denotation: $v = \mathrm{anc}(u, U)$) if

$$v := \max_{\neg} \{ w \in \mathrm{GB}(U) \mid w \mid u \}$$

Definition

Let \Box be a total monomial ordering compatible with multiplication, U a finite monomial set U and $u, v \in U$. Then we define another monomial ordering denoted by \Box_{GB} and given by

$$u \sqsupset_{\mathsf{GB}} v$$
 if $\operatorname{anc}(u, U) \sqsupset \operatorname{anc}(v, U)$ or $(\operatorname{anc}(u, U) = \operatorname{anc}(v, U))$ and $u \sqsupset v)$.

This ordering generates pairwise involutive division, \square_{GB} -division.

Theorem

 $\sqsupset_{\text{GB}}\text{-division}$ is Noetherian, continuous and constructive. It refines $\sqsupset\text{-division}.$

Examples

- $\bullet \succ_{lexGB}$ -division refines Janet division (\succ_{lex} -division)
- \bullet \succ_{alexGB} -division refines \succ_{alex} -division

Completion of $\{x_1^{10}, x_1^7x_2, x_1^4x_2^2, x_1x_2x_3^3, x_2^4\}$

Completion of $\{x_1^2x_2^2x_5, x_2^2x_3x_5, x_2x_4, x_3^2, x_3x_4x_5^2\}$

Cardinality of Involutive Monomial Bases

For every n we generated a random set of 100 monomials in n variables of the minimal degree 2 and the maximal one 3/2n.

Computational Efficiency

division	# on average	CPU time	division	# on average	CPU time
	n = 7			n = 9	
GB	30	0.0000	GB	100	0.0002
alex	54	0.0005	alex	334	0.0098
alexGB	25	0.0001	alexGB	83	0.0003
deglex	149	0.0009	deglex	1029	0.0318
deglexGB	107	0.0005	deglexGB	719	0.0187
janet	81	0.0000	janet	500	0.0085
lexGB	69	0.0001	lexGB	369	0.0044
	n = 8			n = 10	
GB	52	0.0000	GB	208	0.0013
alex	123	0.0010	alex	1093	0.0572
alexGB	46	0.0003	alexGB	179	0.0008
deglex	423	0.0045	deglex	2925	0.3099
deglexGB	309	0.0023	deglexGB	2016	0.1656
janet	213	0.0006	janet	1424	0.0571
lexGB	190	0.0010	lexGB	968	0.0263

			-		
division	# on average	CPU time	division	# on average	CPU time
	n = 11			n = 13	
GB	354	0.0041	GB	1327	0.0968
alex	2302	0.8206	alex	18625	210.3615
alexGB	297	0.0035	alexGB	1103	0.1024
deglex	7289	6.3102	deglex	48969	491.2970
deglexGB	4997	3.3944	deglexGB	32298	270.6196
janet	3407	0.8256	janet	21564	127.9710
lexGB	2367	0.7598	lexGB	14581	79.0166
	n = 12			n = 14	
GB	620	0.0117	GB	2102	0.2033
alex	5962	12.7423	alex	46437	993.7210
alexGB	513	0.0091	alexGB	1899	0.2098
deglex	15337	25.2190	deglex	110923	2162.4816
deglexGB	9877	8.9664	deglexGB	71060	967.3826
janet	7231	3.5894	janet	51913	870.1882
lexGB	5141	1.8921	lexGB	32400	340.9174

Janet tree #8 monoms

Janet forest #11 monoms

Janet forest #8 monoms

Janet tree #61 monoms

Janet forest #9 monoms

Conclusions

- We suggest a method of refinement for involutive divisions which are pairwise generated by total monomial orderings. In particular, the suggested method allows to refine the Janet division.
- \(\sigma_{\text{alex}}\)-division, as a representative of this class, is heuristically better than
 Janet division. The last in its turn is heuristically better then other
 divisions generated by admissible orderings, i.e. \(\sigma_{\text{grlex}}\)-division.
- Computational superiority of
 \(\sigma_{alex}\)-division over Janet division is expressed not only in a smaller number of nonmultplicative prolongations (number of the involutive normal forms evaluated) to be examined but also in a higher stability under permutation of the variables.
- ullet The $\mathcal{L}_{GB}-$ division yields more compact involutive bases than the corresponding pairwise involutive division. Using the Janet forest, it allows you to quickly find the involutive divisor and define nonmulticative variables.
- Among \mathcal{L}_{GB} —divisions the most compact bases generated by the antigraded orderings \square , such as $\succ_{alex_{GB}}$ —partition.