Phenomenology of Heavy QCD Axion arXiv:1607.01936 in prepar

arXiv:1607.01936, in preparation

Hajime Fukuda (Kavli IPMU) with T.T. Yanagida, M. Ibe, M. Nojiri and O.Jinnouchi January 11, 2017

Outline

- 1. Heavy axion Why and How?
- Comprehensive Phenomenology of Visible Heavy Axion Models
- 3. Future search prospects

Strong CP Problem

QCD should break CP symmetry

$$\theta = \theta_{YM} + \arg \det(Y_u Y_d)$$

- The PQ mechanism can set $\theta = 0$.
 - The original model has been excluded.

What is the Alternative?

- Roughly, two choices:
 - Larger f_a / Heavier m_a

Axion Mass

From QCD,

$$m_a^2 \simeq \frac{m_q \Lambda^3}{f_a^2}$$

Invisible Axion

- Large f_a is straightforward
 - Just adding a new scalar and a scalar/Fermion
- f_a has to be greater than 10^{9-10} GeV

How to Make an Axion Heavier?

• Another gauge theory with the same θ is needed

Rubakov 1997; Berezhiani, Gianfagna and Giannotti 2000 Hook 2014, HF, Harigaya, Ibe and Yanagida 2015, Albaid, Dine and Draper 2015 (Kobakhidze 2016), (Gherghetta, Nagata and Shifman 2016)

What is the gauge theory?

- Only known way is using a copy of SM
 - We assume \mathbb{Z}_2 parity
 - θ s hardly run so \mathbb{Z}_2 may be spontaneously broken

m_a **VS** f_a

 \uparrow Large f_a KSVZ/DFSZ type axion like models: always alive but not easy to see Large m_a Weinberg-Wilczek like models: already excluded

Setup

- SM and the copy is necessary
- How do we introduce PQ sym.?
 - Weinberg-Wilczek type
 - KSVZ type
- We mainly consider KSVZ-like model
 - $\mathcal{L} \sim \phi \bar{\psi} \psi + \phi \bar{\psi}' \psi', -Q(\phi) = 1 = Q(\psi) = Q(\psi')$

What we want to do

• We may freely choose v', Λ' and f_a with

$$m_a^2 \simeq \frac{m_q' \Lambda'^3}{f_a^2}$$

- Which region is still alive? Is it still visible?
- We require DM is included

HF, Ibe and Yanagida, in preparation

Axion mass

Constraints on m_a

- When the axion is in the thermal bath, both sectors are in chemical equilibrium
- However, the entropy in the copied sector must small enough
 - The decoupling must occur before QCD PT
- Including the Boltzmann effect, $m_a \gtrsim O(1)$ GeV
 - · All the other constraints are weaker

Safe region

Constraints on f_a

- For KSVZ type, the lower bound comes from the LHC
 - The vector like quark search $\rightarrow f_a \gtrsim 1 \text{ TeV}$
- If f_a becomes large, m_a is now too small
- For $f_a \gtrsim 10^{10}$ GeV, a decouples before QCD PT

Constraints on v' and Λ'

- We have to consider thermal relics
- What will remain? \iff What symmetries remain in addition to γ' ?

$$Q', L' \to 2 \text{ of } (e', v', \pi^{\pm '})$$

 $B' \to (p', n')$

Conditions on ν'

- Lightest particle : $\leq O(10)$ eV
- 3 possible choises
 - Giving up seesaw and
 - ν' DM
 - Unstable v'
 - Ones of ν are massless
 - Natural if the number of N is 2

Case 1: ν' DM

Just like ordinary WIMP,

$$\frac{\Omega_{v'}}{\Omega_{\rm DM}} \sim \frac{1\,{\rm pb}}{\langle \sigma v \rangle} \quad \therefore \, m_v' \sim 8\,{\rm GeV} \left(\frac{v'}{v}\right)^2 > m_e'$$

- $\pi^{\pm'}$ must decay, so $m_{\nu'} < m_\pi' \propto \sqrt{\nu' \Lambda'}$
 - $v' \sim v$, $\Lambda' \sim 10^3 \Lambda$: m_a is too light $\rightarrow EXCLUDED$
- Another choise
 - New interactions like B' L' only in copied sector
 - Little constaints and less interesting

Case 1: How excluded?

Case 2: One massless v'

- e' or $\pi^{\pm \prime}$ is stable
 - $m_e' > m_\pi'$: $v'/v \sim 10^4 \frac{\Lambda'}{\Lambda} \gtrsim 10^6$; too much u', d' relics
- e' and (p' or n') are stable
 - Which one is DM?

Baryon mass: which is lighter?

- $m_B \sim c_1 \sum m_q + c_2 \Lambda + c_3 q \alpha \Lambda$
 - c_i are all positive and $c_1 \sim 1$
- p'
- QED contribution
- n'
- Heavier constituent quarks

Baryon mass ratio

Is charged DM possible?

- Helo ellipticity constraint
 - ullet $m_{
 m DM} \gtrsim 1 {
 m TeV}$ for $lpha^{-1} \sim 100$ Agrawal et al., 1610.04611
- Large Sommerfeld enhancement for late time annihilation
 - If DM + DM → SM is open, CMB might be disturbed

DM Candidates

- e'
- WIMP mass ~ 50 GeV, inconsistent
- $p'(\Lambda^{++\prime}(u'u'u'))$
 - Ellipticity is not a problem
 - p' may annihilate into a and $a \rightarrow jj$
 - light q' region is excluded
- n'
- No problem

Case 2: Available region

Case 3: Unstable ν'

- $\pi^{\pm \prime}$, e' and (p' or n') are stable
- Baryons
 - For light q', $\Omega_{\pi^{\pm'}} > \Omega_{B'}$ since $\pi^{\pm'}$ annihilates by QED'
- π[±]′
 - light q' region is excluded
- Λ⁺⁺′ may be the DM

Case 3: Available region

Short summary

- Allowed possibilities are
 - n' DM + one massless v'
 - Λ⁺⁺′ DM (?)
- NOTE: If we consider exotic cosmology like low reheating temperature, constraints becomes weaker
 - However, the model is not closed and there are still some problems like BAU

Detection methods

- Collider experiments
 - Vector like quark detection
 - Axion / Dilaton detection
- Astrophysical experiments
 - For charged DM
 - Ellipticity
 - Cosmic ray
 - Decay of Baryon' relics
- Neutrino

Axion / Dilaton detection

• For large enough \sqrt{s} ,

$$\sigma(pp \to a, s) \sim \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{1}{f_a^2} \sim 10 \, \text{fb} \left(\frac{1 \, \text{TeV}}{f_a}\right)^2$$

• $s \rightarrow jj\gamma\gamma$ might be hopeful?

Difference b/w γ s and γ -jets

• Some γs are "converted"

How to Distinguish the Jet

- We simulate trackers in CMS.
 - Conversion, bremsstrahlung, ...
- p_T^{track} has greater discrimination power!

Decay of Baryon' relics

- Naturally, p'/n' is unstable like SM p
- $\Gamma \propto m^5$, Short lifetime!
- Extragalactic gamma ray background tells

$$\tau(N' \to l' + a) \gtrsim 10^{28} \,\mathrm{s} \times \left(\frac{\Omega_{N'}}{\Omega_{DM}}\right)$$

• If $\Omega_{N'} = \Omega_{DM}$, $\Lambda_{\slashed{B}} \sim M_{\ensuremath{\mathsf{Pl}}}$

Summary

- We have investigated all the low-energy region for heavy axions
- Depending the scenario, some region is still alive