Análisis de Datos Ómicos - PEC 1

Beatriz Jiménez Guijarro

3 de noviembre, 2024

Contents

1.	Abstract	1	
2.	Objetivos del estudio	2	
3.	Materiales y Métodos 3.1. Origen y selección de los datos	2)
4.	Resultados 4.1. Estructura de los datos	7 7	
5 .	Discusión, limitaciones y conclusiones del estudio	15	,
Aı	péndice 1: Repositorio GitHub	16	,
Aı	péndice 2: código R	16	,
Re	eferencias	16	

1. Abstract

Este estudio analiza datos de expresión metabolómica en muestras intestinales pre y post trasplante, con el objetivo de identificar patrones de variabilidad entre las muestras. A partir de datos de expresión metabolómica provenientes de un repositorio público, se han aplicado herramientas bioinformáticas en R para estructurar y analizar los datos. La integración de los datos en un objeto SummarizedExperiment ha permitido una manipulación estructurada y el análisis exploratorio de la expresión de los metabolitos.

Los resultados del análisis multivariante, incluyendo análisis de componentes principales (PCA) y agrupación jerárquica, sugieren que existen diferencias sutiles entre las muestras, aunque no se observa una clara separación biológica entre los grupos pre y post trasplante en la mayoría de los componentes principales (PC), lo cual indica que los perfiles metabólicos entre ambos grupos son relativamente similares. Sin embargo, la agrupación jerárquica sugiere que algunos metabolitos pueden contribuir de forma específica a la diferenciación entre grupos. Las implicaciones de estos hallazgos en la identificación de posibles biomarcadores se exploran en el estudio.

2. Objetivos del estudio

El objetivo principal de este estudio es investigar los cambios en el perfil metabolómico intestinal en individuos sometidos a un trasplante intestinal, comparando muestras pre y post trasplante. Se busca identificar patrones de expresión y variabilidad entre los metabolitos que puedan proporcionar información sobre los cambios metabólicos asociados al trasplante, y así mejorar la comprensión de las diferencias metabólicas y su relación con la adaptación del injerto.

Además, se pretende evaluar la utilidad de herramientas bioinformáticas para el análisis metabolómico en este contexto, especialmente mediante el uso de análisis exploratorio de datos y técnicas multivariantes como el análisis de componentes principales (PCA) y la agrupación jerárquica.

3. Materiales y Métodos

En este apartado se describe el conjunto de datos utilizado para el análisis, las herramientas bioinformáticas empleadas y el procedimiento general seguido para procesar y analizar los datos de expresión metabolómica asociados a los intestinos humanos. Este análisis tiene como objetivo identificar patrones de agrupamiento y variabilidad que puedan aportar información sobre las diferencias metabólicas entre muestras de individuos antes y después de un trasplante intestinal.

3.1. Origen y selección de los datos

El conjunto de datos utilizado en este estudio se obtuvo del repositorio público https://github.com/nutri metabolomics/metaboData/, que proporciona acceso a diversos conjuntos de datos de metabolómica. En particular, el dataset utilizado está relacionado con los intestinos humanos (https://github.com/nutrimeta bolomics/metaboData/tree/main/Datasets/2023-UGrX-4MetaboAnalystTutorial), más concretamente con individuos que se han sometido a un trasplante intestinal, y de los que se han recogido muestras intestinales, antes y después del trasplante, para tomar medidas de expresión de diferentes metabolitos asociados.

Cargaremos el dataset con los datos de metabolitos, sus metadatos y la información general del dataset desde archivos de texto.

El dataset contiene valores de expresión de diferentes metabolitos en muestras intestinales de individuos antes y después de un trasplante intestinal. Cada fila representa un metabolito, mientras que las columnas corresponden a muestras individuales. También se incluye una fila que describe el grupo de cada muestra (antes, *Before*, o después, *After*, del trasplante) y las muestras están etiquetadas inicialmente con las letras A y B, según al grupo al que pertenezcan. Los datos de las muestras están almacenados en formato .csv (archivo "ST000002_AN000002_clean.csv")

La información general del dataset la obtenemos de un documento markdown (archivo "ST000002_AN000002_dataset_info.m y nos proporciona una breve documentación explicando el origen de los datos, su organización, la autoría, etc.

Por último, los metadatos de los metabolitos analizados la obtenemos de otro documento de texto (archivo "ST000002_AN000002_metadata.txt") donde cada fila representa un metabolito diferente y las columnas son diferentes carácterísticas propias de estos metabolitos.

3.2. Herramientas y paquetes utilizados

El análisis se ha llevado a cabo utilizando el lenguaje de programación R, y se ha apoyado en herramientas de Bioconductor para facilitar el procesamiento y análisis de los datos ómicos. A continuación se enumeran los paquetes específicos empleados:

• SummarizedExperiment: Este paquete permite estructurar los datos y metadatos en un contenedor unificado, optimizado para análisis ómicos. Facilita el manejo de los datos de expresión y permite conservar las relaciones entre las variables y muestras.

- hist, plot, density, boxplot: Estas funciones de R se emplean para generar gráficos descriptivos de los datos, como histogramas, gráficos de densidad y diagramas de cajas (boxplots). Estos gráficos permiten observar la distribución de los datos y detectar patrones o valores atípicos en las muestras de forma visual.
- **prcom**: Esta función de R se utiliza para realizar el análisis de componentes principales (PCA), una técnica de reducción de dimensionalidad que facilita la identificación de patrones y agrupaciones entre las muestras al transformar las variables originales en nuevas componentes principales.
- pairs: Esta función de R se emplea para visualizar las relaciones entre las primeras componentes principales generadas por el PCA, permitiendo explorar posibles agrupaciones o correlaciones entre las muestras a través de gráficos de pares de componentes.
- hclust y dist: Estas funciones de R se utilizan para el análisis de agrupación jerárquica (clustering).
 dist calcula la matriz de distancias entre muestras, y hclust construye el dendrograma, mostrando relaciones de similitud y posibles agrupaciones entre las muestras basadas en las medidas de expresión de metabolitos.

3.3. Procedimiento general de análisis

El análisis general se desarrollará en varias etapas. Una vez cargados los datos y los metadatos del dataset relacionado con el intestino humano pre/post trasplante, se deben organizar en un objeto SummarizedExperiment, una estructura específica de Bioconductor y una extensión de ExpressionSet, que permite almacenar de manera conjunta las mediciones ómicas y sus metadatos. Esto facilitará el acceso y la manipulación de los datos durante el análisis.

Posteriormente, se realizará un análisis exploratorio inicial utilizando estadísticas univariantes para examinar la variabilidad y distribución de los datos.

A continuación, se aplicará un análisis de componentes principales (PCA) para reducir la dimensionalidad y facilitar la identificación de patrones y posibles agrupaciones entre las muestras.

Finalmente, se empleará una agrupación jerárquica para confirmar y visualizar cualquier posible agrupación natural en los datos, ofreciendo una perspectiva adicional sobre la relación entre las muestras en función de su perfil metabolómico.

4. Resultados

En esta sección vamos a presentar los resultados obtenidos del análisis exploratorio del dataset de metabolómica seleccionado (muestras intestinales pre/post transplante), enfocado en la identificación de patrones y características clave de los datos de expresión de metabolitos. Estudiaremos, en primer lugar, la estructura de los datos del dataset y, a continuación, realizaremos el análisis exploratorio de los datos, mediante el cuál, a través de una serie de técnicas estadísticas y visualizaciones, se busca una comprensión general de la variabilidad, distribución y relaciones entre las muestras y los metabolitos en el dataset.

4.1. Estructura de los datos

En primer lugar, se ha creado un objeto SummarizedExperiment, que facilita la integración de los datos de expresión y los metadatos. Este objeto es un contenedor de tipo matriz donde las filas representan características de interés (por ejemplo, genes, transcripciones, exones, etc.) y las columnas representan muestras. También contiene la matriz de expresión de los datos, los metadatos de las filas y las columnas, y la información general del estudio.

Cargamos primero el paquete necesario y después, convertimos los datos de estudio en una matriz numérica y creamos un data.frame para los metadatos de las muestras. Con esta información, creamos un objeto SummarizedExperiment que contiene los datos de los metabolitos, los metadatos de las muestras y los

metabolitos, y la información del experimento en general, facilitando su análisis y manipulación en un solo objeto estructurado. Veamos el resultado del objeto SummarizedExperiment creado:

```
## class: SummarizedExperiment
## dim: 142 12
## metadata(1): dataset_info
## assays(1): counts
## rownames(142): 1-monoolein 1-monostearin ... xanthine xylose
## rowData names(8): moverz_quant ri ... other_id other_id_type
## colnames(12): A_684508 A_684512 ... B_684499 B_684503
## colData names(1): Groups
```

Podemos ver un resumen de las dimensiones, filas, columnas y metadatos del objeto SummarizedExperiment creado. Este objeto contiene datos de 142 metabolitos en 12 muestras, junto con metadatos específicos sobre cada metabolito y muestra.

Comprobemos los datos de la clase.

```
## [1] "SummarizedExperiment"
## attr(,"package")
## [1] "SummarizedExperiment"
```

Veamos las dimensiones del objeto, es decir, el número de filas (metabolitos) y columnas (muestras) en el conjunto de datos.

[1] 142 12

Examinemos la matriz que contiene los valores de los metabolitos para cada muestra. Dado que la cantidad de datos es muy elevada, vamos a mostrar sólo una cabecera (head).

##		A_684508	A_684512	A_684516	A_684520	A_684524	A_684528
##	1-monoolein	6047	2902	1452	3428	2985	16334
##	1-monostearin	9771	6521	1302	2781	5789	4338
##	2-hydroxybutanoic acid	13238	29774	4134	4419	13334	2115
##	2-hydroxyglutaric acid	7160	11501	3202	17238	20376	1109
##	2-ketoisocaproic acid	812	2011	738	2550	871	628
##	2-monopalmitin	1511	622	883	796	623	5716
##		B_684483	B_684487	B_684491	B_684495	B_684499	B_684503
##	1-monoolein	244142	6968	1928	19228	3029	23277
##	1-monostearin	16848	10206	9398	1013	4190	11114
##	2-hydroxybutanoic acid	11587	65635	32433	1823	4429	30427
	J J		00000				
##	2-hydroxyglutaric acid	8276	12402	20964	25913	2709	70972
	J J	8276 2096				2709 1055	70972 1005

Vamos a comprobar ahora los metadatos de los metabolitos (filas) del dataset. Se mostrará la información sobre cada metabolito, como sus nombres, categorías y demás características propias.

##	DataFrame with 142 rows a	and 8 column	ns			
##	mc	verz_quant	ri	ri_type	${\tt pubchem_id}$	inchi_key
##		<integer></integer>	<pre><integer></integer></pre>	<character></character>	<integer></integer>	<logical></logical>
##	1-monoolein	129	952993	Fiehn	5283468	NA
##	1-monostearin	399	959625	Fiehn	107036	NA
##	2-hydroxybutanoic acid	131	258175	Fiehn	11266	NA
##	2-hydroxyglutaric acid	129	506359	Fiehn	43	NA
##	2-ketoisocaproic acid	200	310629	Fiehn	70	NA
##						
##	uric acid	441	731185	Fiehn	1175	NA
##	uridine	258	856953	Fiehn	6029	NA

##	valine	144	1 313224	Fiehn	6287	NA
##	xanthine	353	702391	Fiehn	1188	NA
##	xylose	103	3 542808	Fiehn	135191	NA
##		kegg_id	other_id	other_id_type		
##		<character></character>	<integer></integer>	<character></character>		
##	1-monoolein		213963	BinBase		
##	1-monostearin	D01947	202835	BinBase		
##	2-hydroxybutanoic acid	C05984	199800	BinBase		
##	2-hydroxyglutaric acid	C02630	214409	BinBase		
##	2-ketoisocaproic acid	C00233	213388	BinBase		
##						
##	uric acid	C00366	221495	BinBase		
##	uridine	C00299	213127	BinBase		
##	valine	C00183	199605	BinBase		
##	xanthine	C00385	203224	BinBase		
##	xylose	C00181	200500	BinBase		

A continuación, también comprobaremos los metadatos pero esta vez de las muestras (columnas) del dataset. Se mostrarán los nombres y la información sobre los grupos o categorías de cada muestra.

```
## DataFrame with 12 rows and 1 column
##
                  Groups
##
            <character>
## A_684508
                   After
## A 684512
                   After
## A 684516
                   After
## A_684520
                   After
## A_684524
                   After
## ...
                     . . .
## B_684487
                  Before
## B_684491
                  Before
## B_684495
                  Before
## B_684499
                  Before
## B_684503
                  Before
```

En este caso, podemos ver que las muestras se dividen en dos grupos, $After\ y\ Before$, que indican si las muestras se obtivieron antes (Before) o después (After) de un transplante intestinal. También podemos ver como los nombres de las muestras también contienen esta información, pues aquellas que pertenecen al grupo After comienzan con la letra A y aquellas que pertenecen al grupo Before comienzan con la letra B.

Con la función metadata() podemos ver los metadatos generales del dataset, es decir, la información general del conjunto de datos, que se cargó previamente, sin embargo, como comprobamos a continuación, al provenir esta información de un documento de texto (.md, en este caso) su lectura es complicada.

\$dataset_info

[1] "#METABOLOMICS WORKBENCH ofiehn_20130123_9589761_mwtab.txt DATATRACK_ID:34 STUDY_ID:ST000002 ANA

Por ello, vamos a generar los metadatos del dataset en formato tabla para poder leer más adecuadamente la información.

Clave	Valor
#METABOLOMICS WORKBENCH	
ofiehn $_20130123_9589761_mwtab.txt$	
DATATRACK_ID:34 STUDY_ID:ST000002	
ANALYSIS_ID:AN000002 PROJECT_ID:PR000002	
PR:PROJECT_TITLE	Intestinal Samples II pre/post transplantation

Clave	Valor
PR:PROJECT_TYPE	Human intestinal samples
PR:PROJECT_SUMMARY	Intestinal Samples II pre/post transplantation
PR:INSTITUTE	University of California, Davis
PR:DEPARTMENT	Davis Genome Center
PR:LABORATORY	Fiehn
PR:LAST_NAME	Fiehn
PR:FIRST_NAME	Oliver
PR:ADDRESS	451 E. Health Sci. Drive, Davis, California 95616, USA
PR:EMAIL	ofiehn@ucdavis.edu
PR:PHONE	onomi succavis.cau
ST:STUDY TITLE	Intestinal Samples II pre/post transplantation
ST:STUDY TYPE	MS analysis
ST:STUDY_SUMMARY	Intestinal Samples II pre/post transplantation
ST:INSTITUTE	University of California, Davis
ST:DEPARTMENT	Davis Genome Center
ST:LABORATORY	Fiehn
	r ienn Hartman
ST:LAST_NAME	
ST:FIRST_NAME	Amber
ST:ADDRESS	451 E. Health Sci. Drive, Davis, California 95616, USA
ST:EMAIL	-
ST:PHONE	-
ST:NUM_GROUPS	2
ST:TOTAL_SUBJECTS	12
SU:SUBJECT_TYPE	Human
SU:SUBJECT_SPECIES	Homo sapiens
SU:TAXONOMY_ID	9606
SU:SPECIES_GROUP	Human
#SUBJECT_SAMPLE_FACTORS	SUBJECT (optional)[tab] SAMPLE [tab] FACTORS (NAME: VAICE AND
" —	pairs separated by)[tab]Additional sample
	data
SUBJECT SAMPLE FACTORS	- LabF_684508 Transplantation: After
	transplantation
SUBJECT SAMPLE FACTORS	- LabF_684512 Transplantation: After
	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684516 Transplantation: After
	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684520 Transplantation: After
SODJEOT_SMIII EE_THOTOTOS	transplantation transplantation.
SUBJECT_SAMPLE_FACTORS	- LabF 684524 Transplantation: After
SODJEO I _SAWII EL_FITO I OTGO	transplantation transplantation.
SUBJECT_SAMPLE_FACTORS	- LabF 684528 Transplantation:After
SUBJECT_SAMPLE_FACTORS	
CUDIDATE CAMPLE EACTORS	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684483 Transplantation:Before
CTT TOOM CLASSIFE DAGGOOD	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684487 Transplantation:Before
	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684491 Transplantation:Before
	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684495 Transplantation:Before
	transplantation

Clave	Valor
SUBJECT_SAMPLE_FACTORS	- LabF_684499 Transplantation:Before
	transplantation
SUBJECT_SAMPLE_FACTORS	- LabF_684503 Transplantation:Before
	transplantation
CO:COLLECTION_SUMMARY	-
CO:SAMPLE_TYPE	Tissue
TR:TREATMENT_SUMMARY	-
TR:TREATMENT_PROTOCOL_COMMENTS	Before transplantation After transplanation
SP:SAMPLEPREP_SUMMARY	-
SP:EXTRACTION_METHOD	Extraction Proteomics 2004, 4, 78-83;
	Splitratio splitless 25 purge
CH:CHROMATOGRAPHY_TYPE	GC
CH:INSTRUMENT_NAME	Agilent 6890N
CH:COLUMN_NAME	-
AN:ANALYSIS_TYPE	MS
MS:MS_COMMENTS	-
MS:INSTRUMENT_NAME	Leco Pegasus III GC TOF
MS:INSTRUMENT_TYPE	GC- TOF
MS:MS_TYPE	EI
MS:ION_MODE	POSITIVE
MS_METABOLITE_DATA:UNITS	Peak height

4.1. Análisis exploratorio de los datos

Una vez integrados los datos en un objeto Summarized Experiment y analizado la estructura y obtenida la información de los mismos, vamos a proceder a realizar una exploración general que nos proporcione más información sobre el estado de las muestras. Calcularemos los estadísticos descriptivos habituales, empezando por medidas univariantes y progresando a estadísticos multivariantes.

4.1.1. Análisis exploratorio univariante

Comenzaremos con un **análisis estadístico básico** que incluye medidas como la media, el mínimo, el máximo y la desviación estándar de la expresión de cada muestra, para caracterizar la variabilidad de los datos.

##		A_684508	A_684512	A_684516	A_684520	A_684524	A_684528	B_684483	B_684487
##	Min.	95	336	98	186	114	48	309	192
##	1st Qu.	1261	2815	911	2214	1527	592	2449	2051
##	Median	4728	10370	4877	5989	7428	3164	10900	12006
##	Mean	140978	141017	141063	140922	140911	140966	141038	141185
##	3rd Qu.	52750	60511	36756	33838	67985	17146	41716	63356
##	Max.	1665633	2165933	7204190	4694846	2498885	12543992	3937010	5370106
##		B_684491	B_684495	B_684499	B_684503				
##	Min.	464	88	164	67				
##	1st Qu.	3004	2449	1592	3474				
##	Median	9611	10563	5836	11010				
##	Mean	141187	140878	140910	141294				
##	3rd Qu.	81266	59358	67631	69077				
##	Max.	2458026	1515847	3434602	2754573				

A continuación, vamos a obtener un **histograma** de expresión por cada muestra, que permite observar la frecuencia de niveles de expresión de los metabolitos dentro de cada muestra y detectar tendencias o anomalías específicas.

Con estos histogramas podemos hacernos una idea inicial de que todas las muestras tienen valores metabolíticos muy similares, sin mostrar grandes diferencias. Vamos a realizar más gráficos para poder obtener más información al respecto.

Mostramos ahora un **gráfico de densidad** de todas las muestras. Mediante gráfico se observa una visualización de la distribución general de la expresión de los metabolitos en todas las muestras, permitiendo observar cómo se distribuyen los niveles de expresión y detectar posibles diferencias entre muestras. Cada muestra tiene un color diferente, y una leyenda ayuda a identificar cada línea.

Al igual que con los gráficos anteriores, con el gráfico de densidad observamos que las curvas de densidad son, también, similares en todas las muestras, con algunos picos diferentes pero, en general, sin mostrar grandes diferencias.

Con los diagramas de cajas (*Boxplot*) quizá podramos observar de manera más clara las posibles diferencias entre las muestras, puesto que estos diagramas proporcionan una comparación gráfica de la distribución de los niveles de expresión de los metabolitos a través de todas las muestras, identificando posibles valores atípicos y diferencias en la variabilidad, y nos pueden proporcionar alguna pista sobre la conveniencia de realizar algún tipo de procesamiento de los datos.

Valores de expresión de metablotios en las muestras (2 grupos)

Podemos comprobar mediantes los diagramas de cajas que los datos presentan asimetría. Vamos a comprobar si esta asimetría podría corregirse escalando los datos mediante **logaritmos**.

Valores de log de expresión de metablotios en las muestras (2 grupc

En vista de los resultados obtenidos con los diagramas de cajas, mediante los datos escalados logarítmicamente, parece más razonable trabajar con estos datos transformados.

4.1.2. Análisis exploratorio multivariante

En esta sección nos vamos a centrar en analizar las componentes principales (PCA) del estudio. Así realizaremos un análisis de reducción de dimensionalidad para identificar patrones y posibles agrupaciones entre las muestras, facilitando su visualización, lo que ayudará a detectar relaciones complejas y correlaciones entre metabolitos.

El análisis de componentes principales (PCA) transforma las variables originales en nuevas componentes. Estas nuevas componentes son independientes entre sí (ortogonales), puesto que cada una explica diferentes aspectos de los datos, y además, explican la variabilidad observada, con capacidad decreciente (la primera componente explica la mayor variabilidad y la última, la menor).

Calculemos, en primer lugar, las componentes principales (PC).

```
## Importance of components:
##
                             PC1
                                    PC2
                                           PC3
                                                   PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
## Standard deviation
                          5.4321 4.6887 4.3912 4.1223 3.8224 3.28776 2.92520
## Proportion of Variance 0.2078 0.1548 0.1358 0.1197 0.1029 0.07612 0.06026
## Cumulative Proportion 0.2078 0.3626 0.4984 0.6181 0.7210 0.79709 0.85735
                              PC8
                                      PC9
                                             PC10
                                                      PC11
## Standard deviation
                          2.58586 2.57008 2.27736 1.33322 1.548e-15
## Proportion of Variance 0.04709 0.04652 0.03652 0.01252 0.000e+00
## Cumulative Proportion 0.90444 0.95096 0.98748 1.00000 1.000e+00
```

Podemos comprobar que no se explica más de un 70% de la variabilidad de los datos hasta la componente 5,

por lo que precisaríamos de las PC desde la 1 a la 5. También vemos que 11 componentes explican el 100% de la variabilidad de los datos, lo que significa que la última componente (PC12) no aporta variabilidad adicional porque tiene una desviación estándar cercana a cero.

Vamos a visualizar, en primer lugar, los resultados de las dos primeras componentes principales (PC1 y PC2) mediante la generación de un gráfico.

Gráfico de las dos primeras componentes principales

A continuación, visualizaremos los resultados de las cinco primeras componentes principales (PC1 a PC5) mediante la generación de un gráfico, puesto que hemos concluido que precisaríamos de las cinco primeras componentes principales para garantizar la identificación de patrones.

Gráfico de pares de las primeras cinco componentes crincipales

En ambos gráficos podemos observar como **no se distingue**, **en general, una agrupación** clara asociada con el grupo (*After* o *Before*), existiendo algunas excepciones, como entre PC1 y PC3, donde se ve una ligera separación entre los grupos. Tampoco se observa una clara separación entre las muestras a partir de los metabolitos ni agrupaciones, lo que nos indica que no hay similitudes en los perfiles de metabolitos y no se detectan grupos biológicos.

Todo esto nos indica que las cargas que cada metabolito tiene asociadas en cada componente principal son bajas y que ningún metabolito contrubuye de manera significativa a cada componente. Esto último lo podemos deducir del bajo porcentaje de varianza que tenía cada componente.

Por último, vamos a utilizar una **agrupación jerárquica** (*cluster*) para visualizar, mediante un dendograma, cualquier posible agrupación de las muestras que no se haya podido detectar con el análisis de componentes principales.

Cluster Dendrogram

dist(t(assays(se)\$counts))
 hclust (*, "complete")

Parece ser que, con la agrupación jerárquica, hemos descubierto dos grupos diferenciados entre las muestras. Esto nos indica que sí debe de haber algún metabolito que contrubuya de manera más significativa a algún componente principal, y que las dos primeras muestras del dendograma se asociarían más a ciertos metabolitos que el resto de las muestras.

5. Discusión, limitaciones y conclusiones del estudio

A través del análisis de componentes principales (PCA) y la agrupación jerárquica, se observó que, aunque las muestras no se agrupan de forma clara en función del estado pre o post trasplante, algunos patrones sugieren que ciertos metabolitos podrían estar asociados a las diferencias metabólicas después del trasplante. La agrupación jerárquica, en particular, indica que puede haber una diferenciación sutil entre las muestras.

Entre las limitaciones del estudio, cabe destacar la limitada cantidad de muestras y la posible necesidad de aplicar técnicas de normalización adicionales para mejorar la calidad de los datos y eliminar un posible efecto batch antes del análisis. Además, los resultados no permiten identificar metabolitos específicos como indicadores claros de los cambios post trasplante, lo cual podría deberse a la variabilidad biológica inherente o a factores de confusión no considerados en este análisis. A pesar de estas limitaciones, los datos utilizados no presentaban problemas, pues no había valores faltantes (NA) y las muestras estaban bien distribuidas.

En conclusión, aunque no se encontraron patrones de agrupación claros, los hallazgos preliminares sugieren que un análisis más detallado, posiblemente con un tamaño de muestra mayor y técnicas de procesamiento de datos adicionales, podría identificar metabolitos clave en la monitorización post trasplante.

Apéndice 1: Repositorio GitHub

El informe final, el documento Rmarkdown original, el objeto contenedor con los datos y los metadatos en formato binario (.Rda), el documento con el código R para la exploración de los datos y los datos y metadatos acerca del dataset se pueden encontrar en el siguiente repositorio de GitHub: https://github.com/BeatrizJimenezGuijarro/Jimenez-Guijarro-Beatriz-PEC1

Apéndice 2: código R

Todo el código R de este informe se puede encontrar tanto en el informe original en formato Rmarkdown ("Jimenez_Guijarro_Beatriz_PEC1.Rmd") como en el documento .R ("Jimenez_Guijarro_Beatriz_PEC1.Rmd") que engloba únicamente las celdas de código utilizado a lo largo del informe y que se ha generado mediante la instrucción knitr::purl("Jimenez_Guijarro_Beatriz_PEC1.Rmd", output = "Jimenez_Guijarro_Beatriz_PEC1.R"). Este documento .R se ha incluido en este apéndice dentro de una última celda de código que no se ejecuta y que no se muestra en el informe final, pero sí en el documento Rmarkdown.

Referencias

Bioconductor. 2024. SummarizedExperiment. https://bioconductor.org/packages/release/bioc/vignettes/S ummarizedExperiment/inst/doc/SummarizedExperiment.html#constructing-a-summarizedexperiment. Sanchez-Pla, Alex. 2024. "Exploración Multivariante de Datos Ómicos: Descriptivo, PCA y Clustering." Informe. Universitat de Barcelona, Departamento de Genética, Microbiología y Estadística. https://aula.uoc.edu/courses/47009/assignments/527835?module item id=1781171.

Teaching, ASP. 2024. "Exploración de Microarrays - Análisis de Datos Ómicos." https://aspteaching.github.io/Analisis_de_datos_omicos-Ejemplo_0-Microarrays/ExploreArrays.html.