CPSC 354 - REPORT

The first week of class:

In week 1 we leaned about Lean as a programming language, and it's correlation to discrete math. We also learnt about other proof assistants. We then shifted our focus to the nng practice questions as you can see below.

LEVEL 5 EXPLANATION:

Discrete math's lemmas tell us that anything added to 0 will give the result of that number itself. So; A+0=A. Using this we can bring the left hand side down to a+b+c.

From here we can use the property of reflexivity to show that both sides are equal, hence solving the puzzle.

NNG Solutions

Leve	el 5 / 8 : Adding zero	Level 6 / 8 : Precision rewriting
Active Goal		Objects:
Objects:		abc: N
abc: N		Goal:
Goal:		a + (b + 0) + (c + 0) = a + b + c
a + (b + 0) + (c + 0) = a + b + c		
		rw [add_zero c]
rw [add_zero]		
		Active Goal
Active Goal		Objects:
Objects:		a b c : №
abc:N		Goal:
Goal:		a + (b + 0) + c = a + b + c
a + b + (c + 0) = a + b + c		
		rw [add_zero b]
rw [add_zero]		
		Active Goal
Active Goal		Objects:
Objects:		a b c : №
a b c : №		Goal:
Goal:		a+b+c=a+b+c
a+b+c=a+b+c		
		rfl
rfl		
		level completed!
level completed! 🎉		

Level 8 / 8: 2+2=4 Level 7 / 8 : add_succ 2+2=4. **Theorem** $\operatorname{succ_eq_add_one}$: For all natural numbers a, we have $\operatorname{succ}(a) = a + 1$. **Active Goal Active Goal** Goal: Objects: 2 + 2 = 4n:N Goal: rw[four_eq_succ_three] succ n = n + 1Active Goal rw [one_eq_succ_zero] Goal: 2 + 2 = succ 3**Active Goal** Objects: rw[three_eq_succ_two] n:N Goal: **Active Goal** succ n = n + succ 0Goal: $2 + 2 = \operatorname{succ} (\operatorname{succ} 2)$ rw [add_succ] rw[two_eq_succ_one] Active Goal Objects: Active Goal $\mathbf{n}:\mathbb{N}$ Goal: Goal: succ 1 + succ 1 = succ (succ (succ 1))succ n = succ (n + 0)rw[one_eq_succ_zero] rw [add_zero] Level 8 / 8: 2+2=4 Level 8 / 8: 2+2=4 Active Goal **Active Goal** Goal: Goal: succ (succ 0) + succ (succ 0) = succ (succ (succ (succ 0)))succ (succ 0) + succ (succ 0) = succ (succ (succ (succ 0)))

rw[succ_eq_add_one]

Active Goal

Goal:

succ 0 + 1 + (succ 0 + 1) = succ (succ (succ 0 + 1))

rw[one_eq_succ_zero]

Active Goal

Goal:

succ 0 + succ 0 + (succ 0 + succ 0) = succ (succ (succ 0 + succ 0))

rw[add succ]

Active Goal

Goal:

succ (succ 0 + 0) + succ (succ 0 + 0) = succ (succ (succ (succ 0 + 0)))

rw[add_zero]

rw[add_succ]

Active Goal

Goal:

succ (succ (succ 0) + succ 0) = succ (succ (succ (succ 0)))

rw[add_succ]

Active Goal

Goal:

 $succ \left(succ \left(succ$

rw[add_zero]

Active Goal

Goal:

 $succ \ (succ \ (succ$

rfl

level completed! 🎉