

Perception

What We See vs What We Perceive

MOTIVATION

How many letter B's are on the next slide?

How many letter B's are on the next slide?

Motivation

- How much can we remember?
- How quickly can we process information?
- How effectively can we process information?
- What do we automatically infer?

MEMORY

Memory

Long-Term Memory

- Lasts for years or a life-time
- Quick to retrieve, difficult to store

Short-Term Memory

- Lasts between a few seconds and a minute*
- Limited storage capacity (5 to 7 elements)
- Conscious, focused, attentive processing

^{*} Rehearsed, short-term memory can last for hours.

Memory

Sensory Memory

- Impressions of sensor signals (e.g. vision, hearing, smell, taste, and touch)
- Lasts between 250 and 500 milliseconds

Iconic Memory

- Visual sensory memory
- Pre-attentive processing (e.g. precedes focused attention)

Pre-Attentive Processing

- Independent of conscious control
 - You will notice whether you want to or not
- Information processed without need for focus
 - Viewed from corner of your eye
- Similar to a filter being applied to iconic memory
 - Only draw attention to what is important

PRE-ATTENTIVE ATTRIBUTES

Pre-Attentive Attributes

Color

- Hue, intensity, etc.

Form

- Length, shape, etc.

Position

Location, depth

Movement

- Blink, jitter, etc.

http://www.csc.ncsu.edu/faculty/healey/PP/

Pre-Attentive Attributes

- Carefully map data to pre-attentive attributes
 - Use strongest attribute wisely
- Do not DISTRACT from data
 - Do not abuse these attributes!
- Keep in mind short-term memory
 - Too many mappings will become confusing

Color

- Unique colors should represent unique data
- Similar colors should represent similar data
- Never use more colors than can be stored in shortterm memory (5 to 7)
- Be mindful of color blindness

Color Resources

- "A Field Guide to Digital Color" by Maureen C. Stone, 2003.
- Choosing Colors for Data Visualization <u>http://www.b-eye-network.com/newsletters/ben/2235</u>
- Color Advice for Cartography <u>http://colorbrewer2.org/</u>

 Colorblind Vision Simulator <u>http://www.vischeck.com/</u>

Form

- Orientation
- Length
- Width
- Size
- Shape
- Curvature

Form: Shape and Size

http://makingmaps.net/2007/08/28/perceptual-scaling-of-map-symbols/

Form: Shape and Size

http://makingmaps.net/2007/08/28/perceptual-scaling-of-map-symbols/

Form: Shape and Size

http://en.wikipedia.org/wiki/Ebbinghaus_illusion

Position: 2D Position and Depth

Movement

- Two Attributes
 - Flicker (disappear and reappear)
 - Motion (moving in position)
- One of most effective ways of getting attention
- Most often abused in marketing

Boundaries

http://www.csc.ncsu.edu/faculty/healey/PP/

Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes Position on common scale Spatial region Position on unaligned scale Color hue Length (1D size) Motion Tilt/angle Shape Area (2D size) Depth (3D position) Color luminance Color saturation Curvature

Figure 5.6, Visualization Analysis and Design. Tamara Munzner, with illustrations by Eamonn Maguire. A K Peters Visualization Series, CRC Press, 2014.

Volume (3D size)

GESTALT PRINCIPLES

Gestalt Principles

Proximity

Similarity

Closure

Figure and Ground

SHORT-TERM MEMORY

Short-Term Memory

- Attention/focus transfers information from sensory memory to short-term memory
- Lasts from a few seconds to a minute
- Limited storage capacity
 - Minimum: 5 elements
 - Average: 7 elements
 - Maximum: 9 elements

Practical Indications

- Can reliably use 5 distinct attributes
- Should use no more than 7 to be accessible
 - No more than 7 distinct colors or shapes
- Attributes are cumulative
 - 3 shapes, 4 colors = 7 attributes
- Once lose focus, forget information
 - Distraction is costly

Grouping

- Grouping/chunking can increase capacity
 - 4154224174 versus (415) 422-4174
- Group sizes must be kept small
- Grouping can also improve speed of processing

Find the unique color.

http://steveharoz.com/research/attention/

http://steveharoz.com/research/attention/

http://steveharoz.com/research/attention/

http://steveharoz.com/research/attention/

Grouping

- Improves ability to detect outliers
- Especially important as short-term capacity is strained (approaching 7 colors)
- Works for other pre-attentive attributes (e.g. motion video)
- Does not seem to help with search tasks

http://steveharoz.com/research/attention/

Find all of the red squares.

http://steveharoz.com/research/attention/

http://steveharoz.com/research/attention/

Change Blindness

- To notice change, must pay attention to or focus on area of change
- Can break focus with flicker, making it difficult to detect change
- For visualization, must be careful to direct the eye where it is important

http://www.csc.ncsu.edu/faculty/healey/PP/

Change Blindness

http://www.csc.ncsu.edu/faculty/healey/PP/

http://www.cogsci.uci.edu/~ddhoff/cbvenice.html

Change Blindness

http://www.cogsci.uci.edu/~ddhoff/cbvenice.html

REFERENCES

References

Attention and Visual Memory in Visualization and Computer Graphics

Christopher Healey and James. T. Enns, in *IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG)*, Volume 18, Issue 7, Pages 1170 – 1188, July 2012.

DOI: 10.1109/TVCG.2011.127 URL: http://steveharoz.com/research/attention/

How Capacity Limits of Attention Influence Information Visualization Effectiveness

Steve Haroz and David Whitney, in *IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG)*, Volume 18, Issue 12, Pages 2402 – 2410, December 2012.

DOI: 10.1109/TVCG.2012.233 URL: http://www.csc.ncsu.edu/faculty/healey/PP/

SF UNIVERSITY OF SAN FRANCISCO

CHANGE THE WORLD FROM HERE