

Per **SOLUZIONE TAMPONE** si intende una soluzione acquosa in grado di mantenere pressoché **inalterato il proprio pH**, in seguito all'aggiunta di moderate quantità di acidi o basi forti, o rispetto alla diluizione della soluzione stessa.

Una soluzione tampone è una soluzione costituita da quantità simili di:

- un ACIDO DEBOLE e della sua BASE CONIUGATA
- di una BASE DEBOLE e del suo ACIDO CONIUGATO

Esempi:

CH₃COOH acido debole CH₃COO⁻ base coniugata NH_3 base debole NH_4^+ acido coniugato

In un campione di H₂O pura, avremo:

$$2 \text{ H}_2\text{O} \leftrightarrows \text{H}_3\text{O}^+ + \text{OH}^-$$

$$[H_3O^+] = [OH^-] = 10^{-7} \text{ pH} = -\log 10^{-7} = 7$$
 pH neutro!

Aggiungendo un acido forte HA fino ad avere [HA] = 0.01 Mavremo:

$$HA + H_2O \rightarrow H_3O^+ + A^-$$

$$[H_3O^+] = [HA] = 10^{-2} \text{ pH} = -\log 10^{-2} = 2$$
 pH molto acido!

Quindi aggiungendo piccole quantità di un acido forte di varia il pH di 5 unità! Se volessimo mantenere il pH stabile a un certo valore?

Occorre preparare una soluzione tampone!

Prendiamo come esempio la coppia CH₃COOH /CH₃COO⁻ 0,1M

Dovremo avere in soluzione acido acetico (CH3COOH 0,1M) e un suo sale, ad esempio acetato sodico (CH3COONa 0,1M). Si avranno i seguenti fenomeni:

- 1) $CH_3COOH + H_2O \leftrightarrows H_3O^+ + CH_3COO^-$
- 2) $CH_3COONa + H_2O \rightarrow CH_3COO^- + Na^+$

Quindi, in presenza del sale, la concentrazione di CH3COO sarà molto più alta di quanto lo sarebbe se in soluzione avessimo solo l'acido acetico, che essendo un acido debole ionizza in piccola %.

$$CH_3COO_{tot} = CH_3COO_1 + CH_3COO_2$$

Se a questa soluzione si aggiunge una certa quantità di acido forte (ad esempio: acido cloridrico, HCl) si aumenta $[H_3O^+]$:

- l'acido forte reagisce con gli ioni acetato CH₃COO⁻;
- l'acido forte scompare dalla soluzione (lo ione acetato reagisce con gli ioni H₃O⁺), lasciando quasi inalterato il pH:

 $CH_3COO^- + HC1 \implies CH_3COOH + C1^- H^+$ sottratto dalla soluzione!

Analogamente, se alla soluzione si aggiunge una certa quantità di base forte (ad esempio NaOH), si aumenta la [OH-]:

- la base forte (il gruppo ossidrile OH-) reagisce con l'acido acetico;
- la base forte scompare dalla soluzione, lasciando inalterato il pH

CH₃COOH + NaOH ≒ CH₃COO⁻ + H₂O + Na⁺ OH sottratto dalla soluzione!

Come calcolare il pH quando si ha una soluzione tampone?

Ci si riferisce all'equilibrio di ionizzazione dell'acido acetico. Siano:

- Cs la concentrazione del sale;
- Ca la concentrazione iniziale dell'acido acetico;
- • $[H_3O^+]$ la concentrazione degli ioni $[H^+]$, che è uguale alla concentrazione degli ioni acetato [CH3COO-] provenienti dalla dissociazione dell'acido acetico puro;

Considerando anche la presenza del sale, all'equilibrio si hanno:

$$[CH_3COO^-]_{totali} = C_s + [H^+] \approx C_s \quad con \quad C_s >> [H^+]$$
 $CH_3COOH = C_a - [H^+] \approx C_a \quad con \quad C_a >> [H^+]$

Sapendo che la costante di dissociazione dell'acido acetico è:

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$

Nota: se
$$Ca = Cs$$

 $Ka = [H^+]$
 $pH = -log 10 Ka = pKa$

si ha:
$$K_a = \frac{C_s [H^+]}{C_a}$$

da cui: $[H^+] = \frac{K_a C_a}{C_s}$
e pH = - $\log_{10} [H^+]$

Lo stesso ragionamento vale per il calcolo del pH di una soluzione tampone, costituita da una base debole (ad es.: ammoniaca, NH₃) in presenza del suo acido coniugato (sale).

Quindi si ha:
$$[OH^-] = \frac{K_b C_b}{C_s}$$

da cui: pH = 14 - pOH.

Nota:
$$se Cb = Cs$$

 $Kb = [OH^{-}]$
 $pOH = -log 10 Kb = pKb$
 $pH = 14 - pOH$

$$pH = pK_a - log [acido]/[sale]$$

$$pH = pK_a - log [acido]/[sale]$$

 $pOH = pK_b - log [base]/[sale]$

TABELLA 17.1 Alcuni sistemi tampone comunemente usati in laboratorio

Acido debole	Base coniugata	K _a dell'acido (pK _a)	Intervallo di pH utile
Acido ftalico, C ₆ H ₄ (CO ₂ H) ₂	Ione idrogeno ftalato, C ₆ H ₄ (CO ₂ H)(CO ₂) ⁻	1.3×10^{-3} (2.89)	1.9-3.9
Acido acetico, CH ₃ CO ₂ H	Ione acetato, CH ₃ CO ₂ ⁻	1.8×10^{-5} (4.74)	3.7-5.7
Ione diidrogeno fosfato, H ₂ PO ₄ ⁻	Ione idrogeno fosfato, HPO ₄ ²⁻	6.2×10^{-8} (7.21)	6.2-8.2
Ione idrogeno fosfato, HPO ₄ ²⁻	Ione fosfato, PO ₄ ³⁻	3.6×10^{-13} (12.44)	11.4–13.4

J. C. Kotz, P. M. Treichel, J. R. Townsend e D. A. Treichel Chimica, VII ed.

✓ Potere Tamponante

Il potere tamponante (o capacità tamponante) è una misura della capacità di opporsi a una variazione di pH da parte di una soluzione tampone, all'aggiunta di una certa quantità di acido forte o base forte.

Esso dipende dalla **concentrazione del tampone** e dalla sua **costante di equilibrio**.

Affinché un tampone sia efficace deve avere una concentrazione almeno un ordine di grandezza superiore alla concentrazione dell'acido o della base forti che deve tamponare.

♦ Equilibri di Solubilità

Processi di equilibrio che si realizzano in soluzione (per lo più acquosa) quando il soluto è un solido.

Ci occuperemo in particolare degli equilibri di dissoluzione e di precipitazione di un sale.

Un problema fondamentale è come ottenere un prodotto in forma pura: per isolarlo occorre separarlo dagli altri prodotti che si sono formati nel processo di sintesi.

♦ Soluzione Satura

...una soluzione che esiste in equilibrio con il soluto (che sta solidificando), presente come corpo di fondo.

...un equilibrio dinamico: molecole di soluto presente come corpo di fondo si sciolgono, e molecole di soluto presente in soluzione precipitano.

$$I_2(s) \Longrightarrow I_2(l, CCl_4)$$

Il solvente attacca la superficie del solido scalzandone le molecole: molecole del solvente solvatano molecole del soluto.

$$I_2 \cdots I_2 \longrightarrow I_2 \cdots CCl_4$$

12

♦ Soluzione Satura

loduro di piombo(II) ($K_{ps} = 9.8 \times 10^{-9}$) è un solido giallo intenso.

Lo ioduro di piombo è presente come solido giallo.

Il solido si trova in equilibrio con la frazione di ioduro di piombo in soluzione!

Equilibrio dinamico!

J. C. Kotz, P. M. Treichel, J. R. Townsend e D. A. Treichel Chimica, VII ed.

♦ Soluzioni Ideali

condizioni per una soluzione ideale

Le molecole del soluto non devono interagire fra loro.

Condizioni di alta concentrazione fanno deviare la soluzione dal comportamento ideale.

L'aggiunta di un solvente a una soluzione satura fa diminuire la concentrazione delle sostanze disciolte. Il sistema tende allora a reagire per neutralizzare la modificazione: altro solido passa in soluzione.

♦ Solubilità

Per solubilità si intende la massima quantità in grammi o moli di una certa sostanza disciolta in un certo solvente in condizioni di equilibrio ad una certa temperatura.

Solubili: Solubilità > 10 g/L

Parzialmente solubili: 1 g/L> Solubilità <10 g/L

Insolubili: Solubilità < 1 g/L

anione	solubile	parzialmente solubile	insolubile
NO3 (nitrati) CH3COO (acetato) F (fluoruri)	tutti la maggior parte gruppo I, AgF	- SrF ₂ , BaF ₂ , PbF ₂	Be(CH ₃ COO) ₂ MgF ₂ ,CaF ₂
Cl (cloruri) Br (bromuri)	la maggior parte la maggior parte	PbCl ₂ PbBr ₂ , HgBr ₂	AgCl, Hg ₂ Cl ₂ AgBr, Hg ₂ Br ₂
I (ioduri) SO ₄ - (solfati) S ²⁻ (solfuri)	la maggior parte la maggior parte gruppi I e II, (NH ₄) ₂ S	CaSO ₄ , Ag ₂ SO ₄ , Hg ₂ SO ₄	Agl, Hg ₂ l ₂ , Pbl ₂ , Hgl ₂ SrSO ₄ , BaSO ₄ , PbSO ₄ la maggior parte
CO3- (carbonati)	gruppo I, (NH ₄) ₂ CO ₃ gruppo I, (NH ₄) ₃ PO ₄		la maggior parte la maggior parte
OH (idrossidi)	gruppo I, Ba(OH)	Sr(OH)2,Ca(OH)2	la maggior parte

Equilibri di Solubilità

Per soluzione satura si intende una soluzione in presenza del soluto indissolto. Consideriamo, per esempio, una soluzione acquosa satura di BaSO₄, cioè una soluzione di BaSO₄ in presenza di BaSO₄ solido.

Poiché il solido è un composto ionico, esso è un elettrolita forte, cioè genera ioni $Ba^{2+}(aq)$ e $SO_4^{2-}(aq)$ quando si scioglie in acqua. Tra il solido indissolto e i suoi ioni in soluzione si instaura immediatamente il seguente equilibrio:

$$BaSO_4 \leftrightarrows Ba^{2+} + SO_4^{2-}$$

Poiché questa reazione di equilibrio descrive un solido che si scioglie, la sua costante di equilibrio mostra quanto il solido sia solubile in acqua ed è chiamata costante del prodotto di solubilità (o semplicemente prodotto di solubilità). La si denota con Kps, dove ps sta per prodotto di solubilità:

$$K_{ps} = [Ba^{2+}][SO_4^{2-}] / [BaSO_4]$$

Equilibri di Solubilità

Il prodotto di solubilità è uguale al prodotto delle concentrazioni degli ioni coinvolti nell'equilibrio, ciascuna elevata ad un esponente pari proprio coefficiente stechiometrico nell'equazione di equilibrio.

Il valore di Kps per BaSO₄ è 1,1 * 10⁻¹⁰, un numero molto piccolo che sta a significare che solo una piccola quantità di solido si scioglierà in acqua.

È importante non confondere la solubilità con la costante del prodotto di solubilità!

La solubilità di una sostanza è la quantità che si scioglie per dare una soluzione satura. La solubilità è spesso espressa in grammi di soluto per litro di soluzione (g/L). La solubilità molare è il numero di moli di soluto che si scioglie per dare un litro di soluzione satura (mol/L). La costante del prodotto di solubilità (Kps) è la costante d'equilibrio adimensionale l'equilibrio tra un solido ionico e la sua soluzione satura. Perciò la grandezza di Kps è una misura di quanto un solido si scioglie per dare una soluzione satura.

✓ Fattori che influenzano la Solubilità

- Temperatura
- *pH*
- Ione a comune

La solubilità di una sostanza dipende non solo dalla temperatura, ma anche dalla presenza di altri soluti. La presenza di un acido, per esempio, varierà il pH della soluzione e esercitare una grande influenza sulla solubilità di una sostanza.

Quando l'anione che partecipa ad un equilibrio di solubilità è la base coniugata di un acido debole, essa può essere protonata dagli ioni H⁺ presenti in un ambiente acido e di conseguenza la solubilità del sale poco solubile sarà influenzata dal pH. Consideriamo ad esempio l'equilibrio di solubilità del CaF₂:

$$CaF_2(s) < -> Ca^{2+}(aq) + 2F^{-}(aq)$$

Lo ione fluoruro, F-, è la base coniugata dell'acido fluoridrico che è un acido debole e reagisce quindi con gli ioni idrogeno per ridare l'acido coniugato:

$$F^{-}(aq) + H^{+}(aq) < -> HF(aq)$$

Tale reazione è molto spostata verso destra poiché la sua costante è molto grande: $K=1/Ka = 1/(6.8 \times 10^{-4}) = 1.4 \times 10^{3}$

Lo ione fluoruro è quindi sottratto all'equilibrio di solubilità e, per il principio di Le Chatelier, tale equilibrio è spostato verso destra cioè verso la dissoluzione di altro CaF₂.

Figura 17.16 L'effetto dell'anione sulla solubilità del sale in ambiente acido. (A sinistra) Un precipitato di AgCl (bianco) e Ag₃PO₄ (giallo). (A destra) Aggiungendo un acido forte (HNO₃) Ag₃PO₄ si discioglie (e lascia AgCl insolubile). L'anione basico PO₄³- reagisce con l'acido per dare H₃PO₄, mentre Cl⁻ è una base troppo debole per formare HCl.

Aggiunta di

acido forte.

Precipitato di AgCl e Ag₃PO₄

Precipitato di AgCl

J. C. Kotz, P. M. Treichel, J. R. Townsend e D. A. Treichel Chimica, VII ed.

✓ Ione a Comune

La presenza di $Ca^{2+}(aq)$ o di $F^{-}(aq)$ in soluzione riduce la solubilità di CaF_2 , spostando a sinistra l'equilibrio di solubilità di CaF_2

In generale, la solubilità di un sale poco solubile decresce in presenza di un secondo soluto che fornisce uno ione comune. La solubilità di CaF₂ decresce per aggiunta di NaF alla soluzione.

✓ Ione a Comune

Figura 17.14 L'effetto dello ione comune. La provetta a sinistra contiene una soluzione satura di acetato d'argento, AgCH₃CO₂. Quando si aggiunge AgNO₃ 1.0 M alla provetta (destra), si osserva un'ulteriore precipitazione di acetato d'argento solido.

J. C. Kotz, P. M. Treichel, J. R. Townsend e D. A. Treichel Chimica, VII ed.

✓ Solubilità e saggi chimici

PbCl₂ bianco viene trasformato in PbCrO₄ giallo per aggiunta di K₂CrO₄.

J. C. Kotz, P. M. Treichel, J. R. Townsend e D. A. Treichel Chimica, VII ed.

✓ Solubilità e saggi chimici

Figura 14.2 Esempi di formazione di sali poco solubili mediante il mescolamento di due soluzioni contenenti sali solubili: (a) PbCrO₄ da Pb(NO₃)₂ e K₂CrO₄; (b) PbS da Pb(NO₃)₂ e (NH_a)₂S; (c) Ag₂CrO₄ da AgNO₃ e K₂CrO₄.

A. Credi, A. Del Zotto, A. Gasparotto, F. Marchetti, D. Zuccaccia Viaggio nella chimica, I Ed. EdiSES Edizioni

TABELLA 17.2 Alcuni composti poco solubili e valore dei loro K_{ps}^*			
Formula	Nome	K _{ps} (25 °C)	Nome comune/Usi
CaCO ₃	Carbonato di calcio	3.4×10^{-9}	Calcite, spato d'Islanda
MnCO ₃	Carbonato di manganese(II)	2.3×10^{-11}	Rodocrosite (forma cristalli di colore rosa)
FeCO ₃	Carbonato di ferro(II)	3.1×10^{-11}	Siderite
CaF ₂	Fluoruro di calcio	5.3×10^{-11}	Fluorite (da cui si prepara HF e altri fluoruri inorganici)
AgCI	Cloruro di argento	1.8×10^{-10}	Clorargirite
AgBr	Bromuro di argento	5.4×10^{-13}	Usato in pellicole fotografiche
CaSO ₄	Solfato di calcio	4.9×10^{-5}	La forma idrata è comunemente chiamata gesso
BaSO ₄	Solfato di bario	1.1×10^{-10}	Barite (usata nei "fanghi di perforazione" delle trivellazioni e come componente di pitture)
SrSO ₄	Solfato di stronzio	3.4×10^{-7}	Celestite
Ca(OH) ₂	Idrossido di calcio	5.5×10^{-5}	Calce spenta

^{*}I valori di questa tabella sono derivati da Lange's Hebook of Chemistry, 15th edition, McGraw-Hill Publishers, New York, NY (1999). Ulteriori valori di K_{ps} sono riportati nell'Appendice J.

√ Q e Solubilità

La Kps ci da informazioni quantitative sulla composizione dell'equilibrio di solubilità di un certo composto. Trattandosi appunto di un equilibrio, posso usare il quoziente di reazione Q relativo ad una certa composizione x per predirre se il composto si solubilizzerà, precipiterà o se solido e forma in soluzione saranno in perfetto equilibrio.

Q < Kps -> Il composto andrà in soluzione

 $Q = Kps \rightarrow Equilibrio$, Soluzione satura

Q > Kps -> Soluzione sovrasatura -> Precipitazione

<u>Calcolare la solubilità molare del CaF₂ a 25°C in una soluzione (a) 0,010 M in Ca(NO₃)₂</u>

$$CaF_2(s)$$
 \Longrightarrow $Ca^{2+}(aq)$ + $2 F^{-}(aq)$

$$K_{ps} = [Ca^{2+}][F^{-}]^{2} = 3.9 \times 10^{-11}$$

$$CaF_2(s)$$
 \Longrightarrow $Ca^{2+}(aq)$ + $2 F^{-}(aq)$

Inizio	_	0,010 M	0
Variazione	-xM	+x M	+2x M
Equilibrio		(0.010 + x) M	2x M

$$K_{sp} = 3.9 \times 10^{-11} = [Ca^{2+}][F^{-}]^{2} = (0.010 + x)(2x)^{2}$$

Anche in assenza dello ione comune la solubilità di CaF₂ è molto bassa. È quindi lecito assumere che la concentrazione di Ca²⁺ proveniente da Ca(NO₃)₂, cioè 0,010 *M*, sia molto maggiore di quella che risulta dalla solubilità di CaF₂; in altre parole, *x* è piccolo rispetto a 0,010 *M*. Il valore molto piccolo di *x* così ottenuto conferma le assunzione fatte in precedenza. Il nostro calcolo indica che 3.1 * 10⁻⁵ moli di CaF₂ solido si sciolgono in un litro di soluzione 0,010 *M* di Ca(NO₃)₂.

$$3.9 \times 10^{-11} = (0.010)(2x)^2$$

 $x^2 = \frac{3.9 \times 10^{-11}}{4(0.010)} = 9.8 \times 10^{-10}$
 $x = \sqrt{9.8 \times 10^{-10}} = 3.1 \times 10^{-5} M$

La solubilità molare di CaF_2 nell'acqua pura è 2,1 * 10^{-4} M. I nostri calcoli riportati sopra mostrano che la solubilità di CaF_2 è 3,1 * 10^{-5} M in presenza di una concentrazione 0,010 M di ioni Ca^{2+} . Quindi l'aggiunta di ioni Ca^{2+} fa diminuire la solubilità di CaF_2 .

La solubilità di qualunque sostanza il cui anione sia basico sarà influenzata in qualche misura dal pH della soluzione.

$$Mg(OH)_2(s) \implies Mg^{2+}(aq) + 2OH^{-}(aq) \quad K_{sp} = 1.8 \times 10^{-11}$$

Supponiamo ora che $Mg(OH)_2$ solido sia in condizioni di equilibrio in una soluzione tampone a pH 9,0. Il pOH è pari a 5 e, conseguentemente, $[OH^-] = 1,0 * 10^{-5}$

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 1.8 \times 10^{-11}$$

 $[Mg^{2+}](1.0 \times 10^{-5})^{2} = 1.8 \times 10^{-11}$
 $[Mg^{2+}] = \frac{1.8 \times 10^{-11}}{(1.0 \times 10^{-5})^{2}} = 0.18 M$

Pertanto $Mg(OH)_2$ si scioglie finché $[Mg^{2+}] = 0,18 \, M$. Risulta chiaro che $Mg(OH)_2$ è piuttosto solubile in questa soluzione. Se la concentrazione di OH^- venisse ulteriormente abbassata, per esempio acidificando la soluzione, la concentrazione di Mg^{2+} dovrebbe aumentare per mantenere la condizione di equilibrio. Perciò un campione di $Mg(OH)_2$ si scioglierà completamente purché si aggiunga alla soluzione una quantità opportuna di acido

Altri sali che contengono anioni basici, come CO₃²⁻, PO₄³⁻, CN-o S²⁻, si comportano in modo simile. Questi esempi illustrano una regola generale: la solubilità di sali poco solubili che contengono anioni basici aumenta all'aumentare di [H+] (cioè al diminuire del pH). Tanto più basico è l'anione, tanto più sensibile al pH risulta la solubilità. Sali con anioni di basicità trascurabile (anioni di acidi forti) non sono influenzati da variazioni di pH.

♦ Forza degli Acidi

Ac	ido V	alore di pK _a	
CH ₃ CO ₂ H	Acido acetico	4.74	
ClCH ₂ CO ₂ H	Acido cloroacetico	2.85	Forza dell'acido
Cl ₂ CHCO ₂ H	Acido dicloroacetico	1.49	crescente
Cl ₃ CCO ₂ H	Acido tricloroacetico	0.7	,

J. C. Kotz, P. M. Treichel, J. R. Townsend e D. A. Treichel Chimica, VII ed.