UBA-CBC		Segundo Parcial de Física (03)							2° Cua	trimestre 2023	Tema B1
Apellido:				D.N.I	D.N.I.:				omisiór	1:	Aula:
Nombre:				Sede	Sede:				lorario:		Hoja 1 de:
Reservado para el corrector										Calificación	Corrigió
P1a	P1b	P2a	P2b	P3a	P3b	E4	E5	E6	E7		
Situación Final: Promociona				□R	☐ Rinde Final			upera 1°	P.	Recupera 2° P	☐ Insuficiente

Lea por favor todo antes de comenzar. Resuelva los 3 problemas en otras hojas <u>que debe entregar</u>. Incluya los desarrollos que le permitieron llegar a la solución. Las 4 preguntas tienen SOLO UNA respuesta correcta. Indique la opción elegida con una \mathbf{X} en el casillero correspondiente. Los desarrollos y respuestas deben estar en tinta (no lápiz). Si encuentra algún tipo de ambigüedad en los enunciados, aclare en las hojas cuál fue la interpretación que adoptó. Use, si lo necesita, $|\mathbf{g}| = 10 \text{ m/s}^2$, sen $37^\circ = \cos 53^\circ = 0.6$; cos $37^\circ = \sin 53^\circ = 0.8$. Dispone de 2 horas. Autores: Jorge Nielsen – Cristian Rueda

Problema 1. Un bloque B de 5 kg se encuentra vinculado a un carrito vacío C (cuya masa en esas condiciones es 2 kg) mediante una soga ideal que pasa

por una polea (también ideal). Sólo hay rozamiento entre B y el plano ($\mu_d=0.3$ y $\mu_e=0.6$). El sistema se encuentra trabado de manera tal que inicialmente está en reposo.

- a) Halle la intensidad y el sentido de la fuerza de rozamiento que actúa sobre B un instante inmediatamente posterior al retiro de las trabas, e indique si el sistema puede o no permanecer en reposo. Justifique claramente su respuesta.
- b) Calcule la masa máxima de arena que puede depositarse en el carrito C de modo que el sistema pueda permanecer en reposo.

Problema 2. Una bolita de 3 kg es soltada desde el reposo desde una altura $h_A=2$ m, y recorre la pista de la figura sin nunca despegarse de ella, en la que sólo hay rozamiento en los tramos horizontales BC y EF ($d_{BC}=d_{EF}=2m$), siendo los coeficientes $\mu_e=0.5$ y $\mu_d=0.2$. El rulo circular tiene 50 cm de radio, siendo D el punto más alto en dicho tramo. Sabiendo que luego la bolita comprime al máximo al resorte 15 cm respecto de su longitud natural hasta llegar al punto F:

- a) Halle el valor de la constante elástica del resorte.
- b) Calcule la intensidad de la fuerza que el rulo ejerce sobre la bolita al pasar por D.

Problema 3. Un tubo en forma de U aloja dos líquidos inmiscibles de densidades $\delta_1 = 0.8 \text{ g/cm}^3 \text{ y}$ $\delta_2 = 1.2 \text{ g/cm}^3$. Su sección es uniforme y de valor 90 cm². Se colocan dos émbolos de masa y rozamiento despreciables que ajustan perfectamente a las pare-

des del tubo, y sobre ellos se aplican dos fuerzas F_1 y F_2 perpendiculares de manera que el sistema queda en equilibrio, con los émbolos a la misma altura. Si F_1 = 63 N:

- a) Calcule la presión manométrica en el punto A, ubicado en la interfase entre ambos líquidos.
- b) Halle la intensidad de F₂.

Ejercicio 4. Un resorte ideal de 30 cm de longitud natural y 50 N/m de constante elástica tiene un extremo fijo en un punto O de una mesa horizontal sin rozamiento. En el otro extremo tiene ligado un cuerpo que gira alrededor de O con una rapidez constante e igual a 3 m/s. En estas condiciones, el resorte se estira 15 cm respecto a su longitud natural. Entonces, la masa del cuerpo (en gramos) es:

 \square 125 \square 300 \square 375 \square 500 \square 625 \square 1125

Ejercicio 5. Dos satélites A y B orbitan alrededor de la Tierra, siendo τ_A y τ_B sus períodos de rotación tales que $\tau_A > \tau_B$. Si R es el radio de la órbita de cada satélite respecto del centro de la Tierra, y L es el trabajo de la fuerza gravitatoria sobre cada satélite en una vuelta, entonces:

- $\Box R_A > R_B y L_A > L_B \qquad \Box R_A < R_B y L_A > L_B$

Ejercicio 6. Un cuerpo está sometido a una fuerza resultante que lo hace desplazar en un camino recto. El grafico muestra cómo cambia dicha resultante en la dirección del movimiento. Sabiendo que en x = 0 parte del reposo, entonces:

- ☐ Su energía cinética aumenta en todo el recorrido.
- ☐ Su energía cinética disminuye en todo el recorrido.
- \square De x = 0 hasta $x = x_1$ mantiene constante su energía cinética.
- \square De x = x₁ hasta x=2x₁ disminuye su rapidez.
- \square En $x = 3x_1$ el cuerpo alcanza la misma energía cinética que en $x = x_1$.
- \square La potencia media desarrollada desde x = 0 hasta $x=3x_1$ es 0.

Ejercicio 7. Una palangana contiene un líquido, y en él se coloca un cubo C. Se aplica sobre el cubo una fuerza vertical F de manera que el cubo permanece parcialmente sumergido en equilibrio. Podemos afirmar que:

- □ La densidad del cubo es igual a la densidad del líquido.
 □ La intensidad de F es mayor a la intensidad del empuje
- sobre el cubo.

 Para sumergir completamente al cubo, F debe valer lo mismo que la intensidad del empuje sobre el cuerpo.
- ☐ Si se deja de aplicar la fuerza F, la intensidad del empuje sobre el cuerpo disminuye hasta alcanzar el equilibrio.
- La intensidad del peso del cuerpo es mayor que la intensidad del empuje.
- ☐ La densidad del cubo es mayor que la densidad del líquido.