Databases and Info Systems

Introduction to Databases

Dr. Seán Russell sean.russell@ucd.ie,

School of Computer Science, University College Dublin

February 19, 2020

Table of Contents

- What is a Database?
- DBMS
- Storing Data
- 4 Database Terminology

Why Study Databases?

- Databases are an essential component of life in modern society: most people do several activities every day that involve some interaction with a database
- E.g. Searching for or buying something on Taobao or buying items in a supermarket
- As software engineers, we will have to at times work on systems that interact with or mange these data storage systems
- We must have an understanding of how they work and how we can interact with them to find/update the information we need

Managing the Data

- The systems discussed in the example all represent huge amounts of information
- we learned in OOP to create programs that could store all of the information in files
- But managing the information would be a very difficult task
- Because of these difficulties, we usually use a
 DataBase Management System (DBMS) when we need to store large amounts of information

What is a Database?

- The most basic definition is: "A database is a collection of related data"
- For example, consider the names and phone numbers of the people you know
 - You may this data recorded in the contacts in your phone
 - This is a collection of related data with an implicit meaning and hence is a database

Properties of a Database

- There are some more specific properties that we can use to better define what a database is
 - A database represents some aspect of the world
 - A database is a logically connected collection of data with some meaning
 - A database is designed, built and populated with data for a specific purpose

Database Size

A database can be of any size and complexity

Small databases like our phone contacts are databases

 Large databases like the tax records of everyone in China are databases

Table of Contents

- What is a Database?
- DBMSHistory of DBMS
- Storing Data
- Database Terminology

Database Management Systems

 A DataBase Management System (DBMS) is a collection of programs that enables users to create and maintain a database

 The DBMS is a general-purpose software system that allows the processes of defining, constructing, manipulating, and sharing databases among various users and applications

DBMS Models

- Most databases used in the world are based on the relational model
- Other models were tried first
 - Hierarchical model
 - Network model
- Newer models are popular in some uses
 - NOSQL (Not Only SQL)

Keeping Records

- Governments and businesses have always kept records of **important** information
- For centuries this was on paper
- To find a piece of information, large files or books would have to be searched
- This would take longer the more information that was recorded

Flectronic Documents

- When computers became more widely used, this made it practical to store information in electronic storage
- Early attempts to achieve this usually tried to create electronic version of the documents being stored
- The major use that was tried first was storing financial information

- Accountants have been using spreadsheets for centuries to record financial information
- In the 1960s, electronic versions of these spreadsheets were developed for use on mainframe computers
- However, modern computerised spreadsheets began with the development of VisiCalc in 1978
- VisiCalc became the basis for all electronic spreadsheets since (like Excel)

TOTAL NO 124<u>8</u> 678901234567890 SUBTOTAL 9.75% TAX TOTAL 14438.16

Table of Contents

- What is a Database?
- 2 DBMS
- Storing Data
 - Files
 - Hierarchical
 - Network
 - Relational
 - NOSQL
- Database Terminology

Electronic Documents

- Storing the same data as an electronic copy of an existing document is not good enough
- How do we process or search for information in these files?
- For example, we often want to know the answers to complex questions like:
 - How many Stage 2 BSc students do we have?
 - Is Sean Russell in the list?
 - What modules is he registered for?

File Based Databases

Advantages

- More lightweight than a DBMS
- Good enough for small data

Disadvantages

- No query language
- No scalability
- Hard to update schema or modify data
- Recovery Issues

Hierarchical Database Model

Advantages

- It was based on a tree structure consisting of nodes, branches and roots
- It allowed for 1 to many relationships between different types of data

Disadvantages

- There was no standard of the hierarchical model so implementations were different in how they worked and stored data
- Relationships can only be between parent and child

Hierarchical Database Model

Network Database Model

Advantages

- It was based on a graph structure consisting of nodes, and edges
- The Database Task Group (DBTG) of CODASYL (COnference on DAta SYstems Languages) developed the model so that it could be standardised
- It allowed for many to many relationships between different types of data

Network Database Model

Relational Database Model

- Formulated by Edgar Codd of IBM in 1970
- Commercial RDBMS in 80s
- Codd's 12 Rules (actually 13) that all RDBMSs should follow
- Most widely used model at present
 - Access, Oracle, MySQL, MariaDB, MS SQL Server, DB2, Sybase ASE, PostgresSQL etc.

Relational Database Concepts

- Data is represented as collections of relations
- Each relation is table of values
- Each table consists of rows and columns
- Each row represents an entity or record
- Rows are unordered

Relational Database Concepts

- No duplicate rows are allowed
- Each relation has a primary key, the value of which uniquely identifies the record/entity
- Each column represents an attribute
- Table name and column names are used to help interpret the values

Advantages of Relational Approach

- Data can be shared
- Redundancy can be reduced
- Integrity can be maintained
- Security can be enforced
- Conflicting requirements can be balanced
- Standards can be enforced

NoSQL

- NoSQL databases were invented in the 2000s to deal with some new challenges that traditional relational databases struggled with
- Especially useful for large, unstructured data, and data that does not need to be updated instantly
- There are different types of NoSQL database

NoSQL Types

Document databases - pair each key with a complex data structure known as a document.

Documents can contain many different key-value pairs, or key-array pairs, or even nested documents. Typical example:

MongoDB

Graph stores - used to store information about networks of data, such as social connections. Graph stores include *Neo4J* and *Giraph*.

NoSQL Types

Key-value stores - the simplest NoSQL databases. Every single item in the database is stored as an attribute name (or 'key'), together with its value. Examples of key-value stores are Riak and Berkeley DB. Some key-value stores, such as *Redis*, allow each value to have a type, such as 'integer', which adds functionality.

Wide-column stores - such as Cassandra and HBase are optimized for queries over large datasets, and store columns of data together, instead of rows.

Table of Contents

- What is a Database?
- DBMS
- Storing Data
- Database Terminology

Database Terminology

- Relation is a mathematical term for a table
- Row is called a Tuple
- Column is called an Attribute
- **Domain** is used to describe the types of values that can appear in a column
- **Degree** is the number of attributes
- Cardinality the number of tuples/rows in a relation
- Atomic Value precisely one value at each row intersection
- Null Value Missing, not known or irrelevant data (not the same as zero or blank)

Relational Example (students relation)

student_num	name	major	year_of_entry
17206777	Sean Russell	SE	2017
18205333	David Lillis	IOT	2016
16205777	Brett Becker	EIE	2016

Relational Example

- The degree of students is 4 (there are 4 columns/attributes)
- The attributes of students are named student_num, name, major and year_of_entry
- The cardinality of students is 3 (there are three rows/tuples)
- The domain of the attribute major is one of the values in SE, IOT, EIE, and FIN and cannot be any other values.
- The primary key is the attribute student_num as this uniquely identifies each row in students