1 Organizační úvod

Budeme se zabývat hlavně hardwarem + Operační systémy v letním semestru tím zbytkem. Volně navazuje i architektura počítačů v LS 2. ročníku. Chce se po nás umět souvislosti a termíny (občas budou české, ale vždy i s anglickou variantou). Budeme si lhát sofistikovaně.

2 Harvardská architektura

Podle univerzity

- procesor (CPU) základní výpočetní jednotka
- kódová paměť (code memory) paměť
- propojení CPU přes něj čte data z paměti (měnit program (tedy to, co je v této paměti) neumí)
- datová paměť (data memory) proměnné, lze do ni zapisovat (W) i z ní číst (R)
- input / output (I/O, tzv. periferie) komunikace s okolím

Anglický (chudý) matematik Charles Babbage navrhl Analytical engine (1837, pohonem byl parní stroj, měl počítat daně), který měl tuto architekturu.

Ada Lovelace jeho manželka napsala manuál k Analytical engine (jako matematik to moc nepopsal). Zároveň vymyslela, že kromě čísel by šlo předávat i zakódovaná písmena, noty, atd.

3 Reprezentace (celých) čísel

3.1 přenos

- Můžeme reprezentovat analogově 1 jedním voltem, 2 dvěma, 10^6 milionů.
- Můžeme použít i jinak naškálovanou hodnotu, 1 tisícinou voltu, 2 dvěma tisícinami 10⁶ 1000 voltů. Vodiče ale nejsou ideální vodiče, mění odpor / proud podle délky, tepla a elektromagnetického pole v okolí.
- Můžeme používat digitální (číslicový) přenos, třeba (někdy je to opačně): napětí nad nějakou hodnotou jako 1 a napětí pod tu hodnotou jako 0 (většinou je ta mez širší jen bod). Jedna taková hodnota je 1 bit (b). Přenášíme tzv. sériovým přenosem, každý bit chvíli (diagram zobrazující tenhle přenos je tzv. timing diagram).

 1 a 0 jde i jinak, přes dva vodiče, podle směru jejich rozdílu (kladný vs. záporný rozdíl), což má navíc výhodu, že jsou šumem ovlivněny téměř stejně. Tzv. diferenciální přenos (např. USB).

Pozor

Napětí je relativní! (Musíme, krom diferenciálního přenosu, měřit oproti nějaké "nule", tzv. zemi (ground).)

Pozor

Zdroj pracuje jen v uzavřeném obvodu!

Poznámka (Mocniny 2)

Hodí se naučit se mocniny 2: $2^4 = 64; 2^8 = 256; 2^{10} = 1024; 2^{12} = 4096; 2^{16} = 65536; 2^{20} \approx 10^6; 2^{30} \approx 4, 2 \cdot 10^9$

Definice 3.1 (Most significant bit (MSb))

Bit s nejvyšší hodnotou (nejvyšší mocninou 2).

Definice 3.2 (Least significant bit (LSb))

Bit s nejnižší hodnotou (nejnižší mocninou 2, typicky 2⁰).

Definice 3.3 (Bitorder)

Pořadí, v jakém se bity posílají (MSb-first / LSb-first)

Definice 3.4 (Přenosová rychlost (transfer rate))

Rychlost, udává se v b / s nebo bauds (=symbols) / s.