The Exponential Mechanism for Medians

May 18, 2020

1 The Exponential Mechanism

Sometimes, the global sensitivity of a function is too great, so the Laplace mechanism will not produce meaningful results. The median is one such function. In many cases, the *Exponential mechanism* is an alternate approach that gives reasonable utility. Introduced in 2007 by McSherry and Talwar, the exponential mechanism posits that for a given database, users prefer some outputs over others. That those preferences may be encapsulated with a utility score, where a high utility score indicates a higher preference for that output. The exponential mechanism releases outputs with probability proportional (in the exponent) to the utility score and the sensitivity of the utility function.

Definition 1. Let \mathcal{X} be a space of databases and let [m,M] be an arbitrary range. Let $u: \mathcal{X} \times [m,M] \to \mathbb{R}$ be a utility function, which maps pairs of databases and outputs to a utility score. Let Δu be the sensitivity of u with respect to the database argument. The exponential mechanism outputs $r \in [m,M]$ with probability proportional to $\exp\left(\frac{\varepsilon u(x,r)}{2\Delta u}\right)$ $[MT07,DR^+14].^2$

Theorem 1. The exponential mechanism preserves $(\varepsilon, 0)$ -differential privacy [MT07, DR⁺14].

Note that the exponential mechanism may not be tractable in many cases, as it assumes the existence of a utility function, and even if one exists it may not be tractable to compute it efficiently.

¹This is not the *only* advantage of the exponential mechanism. It is a way to compute differentially private queries on non-numeric data, unlike the Laplace mechanism it does not assume that the probability of outputting a response ought to be symmetric about the true response, etc.

²The original definition is from [MT07], but here we state the version rewritten in [DR⁺14] as it is slightly

³As written in [MT07], the mechanism actually preserves $(2\varepsilon\Delta u, 0)$ -differential privacy; the main difference in the [DR⁺14] version is that it has the extra factor of $2\Delta u$ to avoid these extra terms.

2 AN EXPONENTIAL MECHANISM FOR A QUANTILE

2.1 Defining a sensible utility function

Note that a user will prefer an output that is closer to the true quantile over one that is further away. Let x be an (ordered) data set, let r be a possible output, and let N be the size of the data set. Let #(Z > r) refer to the number of points in x above r. Then, the following is a reasonable utility function for a release r for the α -quantile of x.

$$u(x,r) = \max(\alpha, (1-\alpha))N - |(1-\alpha)\#(Z < r) - \alpha\#(Z > r)|. \tag{2.1}$$

2.2 Sensitivity of the utility function

2.2.1 Neighboring Definition: Change One

Lemma 1. The above utility function u has $\ell-1$ sensitivity bounded above by 1 in the change one model.

Proof. Let $c_1 = \#(Z < r)$ and $c_2 = \#(Z > r)$. In the worst case, c_1 increases by 1 and c_2 decreases by 1. Then,

$$\Delta u = |(1 - \alpha)(c_1 + 1) - \alpha(c_2 - 1)| - |(1 - \alpha)c_1 - \alpha c_2|$$

$$\leq |(1 - \alpha)(c_1 + 1) - \alpha(c_2 - 1) - (1 - \alpha)c_1 + \alpha c_2|$$

$$\leq |c_1 + 1 - \alpha c_1 - \alpha - \alpha c_2 + \alpha - c_1 + \alpha c_1 + \alpha c_2|$$

$$= 1$$

2.2.2 Neighboring Definition: Add/Drop One

Lemma 2. The above utility function u has $\ell-1$ sensitivity bounded above by $\max(1-\alpha,\alpha)$ in the add/drop one model.

Proof. Let $c_1 = \#(Z < r)$ and $c_2 = \#(Z > r)$. Consider what happens if one point is added. There are two cases that would impact the utility function:

- 1. c_1 increases by one and nothing happens to c_2 .
- 2. c_2 increases by one and nothing happens to c_1 .

Say the first case occurs. Then,

$$\delta u = |(1 - \alpha)(c_1 + 1) - \alpha(c_2)| - |(1 - \alpha)c_1 - \alpha c_2|$$

$$\leq |(1 - \alpha)(c_1 + 1) - \alpha(c_2) - (1 - \alpha)c_1 + \alpha c_2|$$

$$= 1 - \alpha$$

In the second case,

$$\delta u = |(1 - \alpha)(c_1) - \alpha(c_2 + 1)| - |(1 - \alpha)c_1 - \alpha c_2|$$

$$\leq |c_1 - \alpha c_1 - \alpha c_2 - \alpha - c_1 + \alpha c_1 + \alpha c_2|$$

$$= \alpha$$

Subtracting a point leads to the same results.

REFERENCES

- [DFM⁺20] Wenxin Du, Canyon Foot, Monica Moniot, Andrew Bray, and Adam Groce. Differentially private confidence intervals. arXiv preprint arXiv:2001.02285, 2020.
- [DR⁺14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.
- [MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 94–103. IEEE, 2007.
- [Smi11] Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In *Proceedings of the forty-third annual ACM symposium on Theory of computing*, pages 813–822, 2011.