1. Semetre 1	2
1.1. Tensão de cisalhamento – Lei de Newton da Viscosidade	2
1.2. 2 ^a Lei de Newton do Movimento	
1.3. Mecânica dos Modelos Contínuos	
1.3.1. Termos Integrais	
1.3.2. Termos Diferenciais	
1.4. Viscosidade absoluta ou dinâmica	2
1.5. Tensão no meio fluido contínuo	3
1.6. Erro	3
1.7. Massa específica	3
1.8. Peso Específico	3
1.9. Viscosidade Cinemática	3
1.10. Pressão	3

1. Semetre 1

1.1. Tensão de cisalhamento - Lei de Newton da Viscosidade

$$au = rac{F_t}{A}$$
 au : Tensão de cisalhamento
 F_t : Força Tangencial

$$A = \text{Á}rea$$

- Meio Sólido
 - $\circ v = 0$
 - \circ $F_r = Força Reativa$
 - o $F_t = Força Constante (cte)$
- Meio Fluido
 - \circ v = cte

1.2. 2ª Lei de Newton do Movimento

$$\begin{array}{l} \sum F_{externa} = massa \cdot acelera \\ \sum = F_{externa} = 0 \\ F_t - F_{atv} = 0 \end{array}$$

$$\Sigma = F_{externa} = 0$$

$$a_t - r_{atv} = 0$$

$$a = 0$$

$$v = cte$$

1.3. Mecânica dos Modelos Contínuos

1.3.1. Termos Integrais

$$\int \frac{m}{\forall}$$

1.3.2. Termos Diferenciais

$$\int \frac{\delta m}{\delta t}$$

1.4. Viscosidade absoluta ou dinâmica

$$\tau = \mu \frac{dv}{dy}$$

τ: Tensão de cisalhamento

μ: É a propriedade de cada fluido (dado em exercício)

 $\frac{dv}{dy}$: Gradiente da valocidade

1.5. Tensão no meio fluido contínuo

$$\begin{split} &\textit{Tens\~ao normal:}\ \sigma_n = \frac{lim}{\delta A_n \to 0} \cdot \frac{\delta F_n}{\delta A_n} = \frac{\sigma F_n}{\sigma A_n} \\ &\textit{Tens\~ao Tangencial:}\ \tau_n = \frac{lim}{\delta A_n \to 0} \cdot \frac{\delta F_t}{\delta A_n} = \frac{\delta F_t}{\delta A_n} \end{split}$$

1.6. Erro

$$\varepsilon = \frac{\mu_{Linear} - \mu_{Real}}{\mu_{Real}} \cdot 100\%$$

1.7. Massa específica

$$\rho = \frac{m}{v}$$

$$\rho : \frac{g}{m^3}$$

$$m: massa$$

$$v: volume$$

1.8. Peso Específico

$$\gamma = \frac{G}{v}$$

$$G = Peso$$

$$v = volume$$

1.9. Viscosidade Cinemática

$$v = \frac{\mu}{\rho}$$

 $\mu = propriedade do fluido$
 $\rho = massa específica$

1.10. Pressão

$$p = \frac{F_n}{A}$$

$$p = Pressão$$

$$F_n = Força$$

$$A = Área$$