HW2: Moments and Transfer Equation Due: Sept. 10, 9:30 AM on D2L

ASTR 589, Prof. Youdin

1. Hemispherically isotropic radiation Consider an idealized radiation field with

$$I(\mu, \phi) = \begin{cases} I_{+} & \text{if } \mu > 0, \\ I_{-} & \text{if } \mu < 0. \end{cases}$$
 (1)

where I_+, I_- are hemispherically constant for outgoing and incoming radiation respectively. Take \hat{z} aligned with $\theta = 0$, i.e. $\mu = \cos(\theta) = 1$.

Calculate the radiation energy density E, flux \mathbf{F} and pressure $P = P_{zz}$. (The pressure tensor is isotropic with $P_{ij} = P\delta_{ij}$, but you don't need to show this.) Finally, give P/E.

2. Solving I along rays Consider the transfer equation along a ray

$$\frac{dI}{d\tau} = I - S$$

with τ decreasing along the ray, with $S(\tau)$ known, e.g. as $B[T(\tau)]$. We ignore frequency dependence initially, but consider its effects in (d).

(a) Derive the formal solution for the emergent intensity I(0) by integrating from a total optical depth τ_0 , where the background intensity is $I(\tau_0)$. Use the integrating factor trick that

 $\exp(\tau) \frac{d}{d\tau} [I \exp(-\tau)] = \frac{dI}{d\tau} - I$

- (b) Evaluate this integral for constant $S(\tau) = S$. Give the limiting results for $\tau_0 \gg 1$ and $\tau_0 \ll 1$. For $\tau_0 \ll 1$, keep terms linear in τ_0 .
- (c) With the background $I(\tau_0) = 0$ calculate the ratio I(0)/S for $\tau_0 = 0.1, 2/3, 1, 3, 10$.
- (d) How can the above result for $\tau_0 \ll 1$ explain both absorption and emission lines in the frequency dependent I_{ν} ? Assume that both the background, $I_{\nu}(\tau_0) = B_{\nu}(T_b)$ and the source function $S = B_{\nu}(T_s)$ are Planck functions, characterized by T_b and T_s . For a line, κ_{ν} is significantly larger in the vicinity of the line frequency ν_0 .
- 3. **Limb Darkening** Consider a horizontally uniform atmosphere, where $\tau_{\perp} = \int_{z}^{\infty} \rho \kappa dz'$ is the vertical optical depth, from a height z to the top of the atmosphere (taken as ∞). Note that $d\tau_{\perp} = -\rho \kappa dz$.
 - (a) Derive the transfer equation for $dI/d\tau_{\perp}$, valid for all μ , starting from $dI/d\tau = I S$ with $d\tau = -\rho \kappa ds$. Start by relating ds, the path length along a ray in direction $\mu = \cos(\theta)$, to dz the vertical component of that path.
 - (b) Give the solution for the emergent $I(\mu)$, at $\tau_{\perp} = 0$ in terms of an integral over τ_{\perp} . You can translate the above result for τ instead of re-deriving, and should take the total optical depth, $\tau_0 \to \infty$.

(c) For a source function of the form $S=a+b\tau_{\perp}$, what is the emergent $I(\mu)$ (at $\tau_{\perp}=0$)? For the Eddington approximation

$$S(\tau_{\perp}) = B[T(\tau_{\perp})] = \frac{\sigma T^4}{\pi} = \frac{3\sigma}{4\pi} T_{\text{eff}}^4 \left(\tau_{\perp} + \frac{2}{3}\right)$$

what is the limb-to-center contrast, I(0)/I(1)?

(d) Now consider frequency dependent $S_{\nu} = B_{\nu}[T(\tau_{\perp})]$, with $T(\tau_{\perp})$ again from the Eddington approximation. Perform numerical integrations (e.g. with scipy) to solve for $I_{\nu}(\mu)$ for three different frequencies, at $h\nu/(kT_{\rm eff}) = x_w/3, x_W, 3x_W$ for $x_W = 3.921$ the logarithmic peak of the Planck function. Make a plot with $I_{\nu}(\mu)/I_{\nu}(1)$ vs. $\theta = \cos^{-1}(\mu)$ for these three cases, and add the bolometric result for $I(\mu)/I(1)$ from above for comparison.

For numerical integrations you should: (i) Take the upper limit of integrals to be ~ 10 –100. Exponential damping will make negligible contributions beyond this point, and can cause underflow error messages, as you can check. (ii) Avoid dividing by $\mu=0$, instead choosing a small, non-zero values of μ to see the limb behavior.