

Grado en Ingeniería Informática

Curso 2020/2021

Redes de Neuronas Artificiales

Problema de Clasificación: Parte II

Clasificación de imágenes con Redes Convolucionales

Autores:

Índice

1.	Introducción	3
2.	Diseño, entrenamiento y evaluación del PM	3
3.	Diseño, entrenamiento y evaluación de la CNN	4
4.	Comparación PM y CNN	5
5.	Conclusión	5

1. Introducción

El problema consiste en clasificar imágenes donde las entradas de la red son directamente los píxeles de cada imagen. Se utiliza el conjunto de datos *CIFAR10*, compuesto por **60000** imágenes en color (3 canales, *RGB*) de **32x32** píxeles. El conjunto de datos se divide en 50000 imágenes para entrenamiento y 10000 para test.

Hay un total de **10 clases** con 6000 imágenes por clase, por lo que en este caso las clases sí están balanceadas, las diferentes clases son:

■ 0 → airplane	■ 1 → automobile	■ 2 → bird	■ 3 → cat	■ 4 → deer
■ 5 → <i>dog</i>	■ 6 → <i>frog</i>	lacksquare 7 $ o$ horse	■ 8 → <i>ship</i>	lacksquare 9 $ ightarrow$ truck

El objetivo de la práctica es entrenar diferentes arquitecturas de **Perceptrón Multicapa** y **Redes de Neuronas Convolucionales** para analizar cómo influyen sus hiperparámetros en la resolución del problema de clasificación. Además de comparar sus resultados para comprobar cuál de las dos arquitecturas es más efectiva.

2. Diseño, entrenamiento y evaluación del PM

Inicialmente se intenta resolver este problema con el método de 'fuerza bruta'. Es decir, se aplana la información de los píxeles de las imágenes de entrada en un único vector y se entrena un **Perceptrón Multicapa** con estas entradas.

Para estudiar la eficacia de este acercamiento se realiza una pequeña experimentación probando distintas arquitecturas de red:

Arquitectura	epochs	Accuracy entrenamiento	Accuracy test	Loss entrenamiento	Loss test
(50)	(50) 25 0.5552			1.2606	1.5040
(25)	21	0.5039	0.4493	1.4128	1.5678
(100)	16	0.5543	0.4922	1.9684	1.4483
(100,100)	30	0.6442	0.5045	0.9995	1.4618
(100, 100, 100)	23	0.5900	0.5081	1.1478	1.4276

Tabla Experimentos PM

En cada uno de los experimentos se ajusta manualmente el número de *epochs* óptimos para encontrar los mejores resultados posibles.

Se parte de la arquitectura dada en el tutorial y se prueba a modificar sus hiperparámetros a partir de ella. Primero se prueba a disminuir el número de neuronas, lo que no genera mejores resultados. Por tanto se prueba a aumentarlas y el *accuracy* mejora, entonces se decide añadir una capa oculta más y también genera mejores resultados.

Como último experimento se configura una red con 3 capas ocultas de 100 neuronas cada una, este obtiene los mejores resultados. Sin embargo, el *accuracy* en test que alcanza se queda estancado entorno a 0,5.

Tras esta experimentación se puede concluir que aumentar la complejidad de la arquitectura de la red, tanto en capas ocultas como en neuronas, hace que genere mejores resultados. Aunque no consigue superar un umbral, por lo que la utilización del *PM* para resolver este problema no es del todo eficaz.

En las gráficas siguientes se puede ver la evolución de los valores de *accuracy* y *loss* de entrenamiento y test durante el aprendizaje de la red para el mejor experimento, que es el último de los realizados.

UC3M 3 de 6

Accuracy en entrenamiento y test del PM

Loss en entrenamiento y test del PM

A continuación se muestra la **matriz de confusión** resultante de este experimento. Además se añade el *recall* para comprobar la precisión sobre cada una de las clases.

Real \Predicho	Airplane	Auto	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Recall
Airplane	569	22	58	21	35	9	44	31	129	82	0.57
Auto	41	516	15	25	14	7	45	21	84	232	0.52
Bird	86	10	334	83	142	55	177	64	29	20	0.33
Cat	26	12	66	322	65	141	216	51	37	64	0.32
Deer	58	5	102	62	457	30	177	64	31	14	0.46
Dog	21	11	80	211	60	321	145	85	34	32	0.32
Frog	10	4	32	53	86	27	733	18	13	24	0.73
Horse	43	11	44	69	99	70	52	530	17	65	0.53
Ship	91	44	8	16	20	10	28	18	675	90	0.68
Truck	41	121	7	34	15	19	34	48	57	624	0.62

Matriz de confusión mejor experimeto PM

En esta matriz se puede apreciar que algunas clases como *Frog* o *Sheep* le resultan más fácil de clasificar al modelo. Mientras que otras clases como *Bird*, *Cat* o *Dog* le resultan mucho más complicadas de diferenciar.

3. Diseño, entrenamiento y evaluación de la CNN

Una vez se ha experimentado con el *PM* se intenta resolver este problema con una **Red Convolucional**. En este caso se aplican capas de convolución antes de aplanar la información.

Para estudiar la eficacia de esta aproximación se realiza la siguiente experimentación probando distintas arquitecturas. En cada uno de los experimentos, al igual que en el caso anterior, se ajusta manualmente el número de *epochs* óptimos para encontrar los mejores resultados posibles.

Nota: la definición de la arquitectura sigue la siguiente terminología: $(n_1(k_1, Dd_1), n_2(k_2, Dd_2), ...)$ donde n_i indica el número de filtros, k_i el tamaño del kernel y d_i el dropout

UC3M 4 de 6

Arquitectura	epochs	Accuracy entrenamiento	Accuracy test	Loss entrenamiento	Loss test
(16(3))	20	0.6960	0.6106	0.8588	1.1403
(16(3, D0.3))	47	0.7127	0.6479	0.8101	1.0243
(32(3))	28	0.7447	0.6121	0.7041	1.2311
(16(2))	14	0.7007	0.6269	0.8590	1.1205
(16(2, D0.3))	7	0.6558	0.6308	0.9927	1.0706
(16(3, D0.3), 16(3, D0.3))	20	0.7259	0.7006	0.7813	0.9050
(16(3, D0.3), 16(3, D0.3), 16(3, D0.3))	44	0.7261	0.6311	0.7775	1.0658
(16(3, D0.5), 16(3, D0.5))	43	0.7110	0.6401	0.8234	1.0642
(16(3, D0.2), 16(3, D0.2))	50	0.7640	0.7149	0.6670	0.8450
(16(3, D0.1), 16(3, D0.1))	13	0.7311	0.6952	0.7690	0.8952
(16(4, D0.2), 16(4, D0.2))	29	0.7716	0.7116	0.6413	0.8298
(16(5, D0.2), 16(5, D0.2))	65	0.8179	0.7226	0.5039	0.8294
(16(6, D0.2), 16(6, D0.2))	31	0.7860	0.7107	0.6018	0.8393

Tabla Experimentos CNN

Se parte de la arquitectura dada en el tutorial y se prueba a modificar sus hiperparámetros a partir de ella. Tras probar esta configuración inicial se decide probar a añadir una capa de *Dropout* de 0.3 para comprobar si mejoran los resultados, se puede ver que mejoran bastante.

Después se prueba a duplicar el número de filtros, pero esto no influye demasiado así que se puede decir que esto no es demasiado decisivo a la hora de mejorar los resultados. Por lo que se vuelven a establecer 16 filtros pero se prueba a disminuir el tamaño del kernel a 2. Esto tampoco parece influir en los resultados y por ello se prueba a añadir una capa de *Dropout*, lo que produce una ligera mejora. Dado que cambiar los hiperparámetros de una única capa convolucional no hace que aumente el *accuracy* en test, se decide añadir una segunda capa convolucional. Ambas con 16 filtros, tamaño de kernel 3 y *Dropout* de 0.3, con esta arquitectura se consigue una mejora considerable.

Como aumentar el número de capas convolucionales ha dado buenos resultados, se prueba a añadir una tercera capa. Pero como esto hace que empeoren los resultados se decide seguir con la experimentación usando sólo dos capas convolucionales. Se puede concluir que aumentar demasiado la complejidad de la red hace que los resultados dejen de ser buenos.

A continuación se prueba a modificar el *Dropout*, primero a aumentarlo. Como se ve que no mejora, se prueba a diminuirlo, obteniendo un mejor resultado con un *Dropout* de 0.2. Tras esto se prueba a aumentar el tamaño del kernel 61

4. Comparación PM y CNN

5. Conclusión

UC3M 5 de 6

Real \Predicho	Airplane	Auto	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Recall
Airplane	735	12	50	19	17	10	12	11	83	51	0.73
Auto	14	813	4	9	5	2	9	4	27	113	0.81
Bird	67	6	524	78	125	76	67	27	13	17	0.52
Cat	26	8	50	556	81	151	62	22	26	18	0.56
Deer	24	2	44	40	764	25	35	41	18	7	0.76
Dog	16	7	35	193	55	603	22	51	8	10	0.60
Frog	8	4	23	69	68	28	784	2	11	3	0.78
Horse	20	5	29	36	73	57	4	755	5	16	0.76
Ship	44	22	13	13	6	3	6	4	849	40	0.85
Truck	33	57	5	8	10	8	2	9	25	843	0.84

Matriz de confusión mejor experimeto CNN

UC3M 6 de 6