Suites Réelles Généralités

MPSI 2

Droite numrique acheve $\overline{\mathbb{R}}$ 1

Définition 1.0.1

On note $\overline{\mathbb{R}}$ la runion de \mathbb{R} et de deux lments distincts: $-\infty$ et $+\infty$ $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

- On peut prolonger partiellement les lois internes + et \times à $\overline{\mathbb{R}}$, mais il existe des opration indfinies.
- On peut prolonger la relation d'ordre naturelle de $\mathbb R$ à $\overline{\mathbb R}$: $\overline{\mathbb R}$ est ordonn.

Utilisation: une suite tend vers un lment de $\overline{\mathbb{R}}$

Dfinitions 2

Définition 2.0.2

On appelle suite relle toute application $\phi \colon \mathbb{N} \longrightarrow \mathbb{R}$

$$n \longmapsto \phi(n)$$

Une suite relle est une famille d'Iments indexe par $\mathbb N$

Notations: $u_n = \phi(n)$ $u = (u_n)_{n \in \mathbb{N}} = \phi$

Définition 2.0.3

On appelle ensemble des valeurs de $(u_n)_{n\in\mathbb{N}}$ le sous ensemble de \mathbb{R} :

$$A = \{ x \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ x = u_n \}$$

Définition 2.0.4

On dit que u est une suite monotone si ϕ est monotone.

De même avec croissante et dcroissante.

Définition 2.0.5

On dit que u est majore si A est major dans \mathbb{R} De même avec minore et borne.

3 Notations et limites

3.1 Limites relles

Définition 3.1.1

Soit $u = (u_n)_{n \in \mathbb{R}}$ une suite relle, et l un rel.

On dit que <u>u</u> converge vers <u>l</u> si pour tout intervalle <u>I</u> centr en <u>l</u>, il existe un rang n_0 à partir duque <u>l</u> tous les u_n sont dans <u>I</u>:

$$\forall \epsilon \in \mathbb{R}^{+*}, \ \exists n_0 \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n - l| < \epsilon$$

Propriété 3.1.1

Si u converge vers un l rel, alors l est unique.

Utiliser les d
finitions, raisonner par l'absurde avec $\epsilon = \frac{l_2 - l_1}{2}$