

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 6

Twierdzenie o parametryzacji

s-m-n twierdzenie

Dla dowolnych $m,n\in N$ $(m,n\geq 1)$ istnieje totalna i obliczalna funkcja $\mathbf{s}_{\mathbf{n}}^{\mathbf{m}}: N^{n+1}\to N$ taka, że dla dowolnych $\mathbf{e}\in N$, $\overline{\mathbf{x}}\in N^n$ oraz $\overline{y}\in N^m$ zachodzi:

$$\phi_{\mathbf{e}}^{(m+n)}(\overline{\mathbf{x}},\overline{y}) = \phi_{\mathbf{s}_{\mathbf{n}}^{m}(\mathbf{e},\overline{\mathbf{x}})}^{(m)}(\overline{y})$$

Twierdzenie o parametryzacji

s-m-n twierdzenie

Dla dowolnych $m,n\in N$ $(m,n\geq 1)$ istnieje totalna i obliczalna funkcja $\mathbf{s}_{\mathbf{n}}^{\mathbf{m}}: N^{n+1}\to N$ taka, że dla dowolnych $\mathbf{e}\in N$, $\overline{\mathbf{x}}\in N^n$ oraz $\overline{y}\in N^m$ zachodzi:

$$\phi_{\mathbf{e}}^{(m+n)}(\overline{\mathbf{x}},\overline{y}) \ = \ \phi_{\mathbf{s}_{\mathbf{n}}^{\mathbf{m}}(\mathbf{e},\overline{\mathbf{x}})}^{(m)}(\overline{y})$$

Twierdzenie o parametryzacji


```
T(m,n+m)
\vdots
T(1,n+1)
Z(1)
\vdots
Z(n)
S(1)
X_{1}
X_{2}
X_{n}
Y_{n}
Y
```


Marcin Piątkowski

Implementacja stosu

$$\frac{\tau(a_0, a_1, \dots, a_n) + 1}{2^{x+1} \cdot \left(2^{a_0} + 2^{a_0 + a_1 + 1} + \dots + 2^{a_0 + a_1 + \dots + a_n + n}\right) + 2^x}$$

$$\frac{2^x + 2^{x+a_0+1} + 2^{x+a_0+a_1+2} + \dots + 2^{x+a_0+a_1+\dots + a_n + n+1}}{\tau(x, a_0, a_1, \dots, a_n) + 1}$$

Funkcja uniwersalna

Funkcją uniwersalną dla n-argumentowych funkcji obliczalnych nazywamy funkcję $\Psi_U^{(n)}: N^{n+1} \longrightarrow N$ taką, że:

$$\forall_{\mathbf{e} \in \mathbf{N}} \ \forall_{\overline{\mathbf{x}} \in \mathbf{N}^n} \ \Psi_U^{(n)}(\mathbf{e}, \overline{\mathbf{x}}) \ \simeq \ \phi_{\mathbf{e}}^{(n)}(\overline{\mathbf{x}})$$

Funkcja uniwersalna

Funkcją uniwersalną dla n-argumentowych funkcji obliczalnych nazywamy funkcję $\Psi_U^{(n)}: N^{n+1} \longrightarrow N$ taką, że:

$$\forall_{\mathbf{e} \in \mathbf{N}} \ \forall_{\overline{\mathbf{x}} \in \mathbf{N}^n} \ \Psi_U^{(n)}(\mathbf{e}, \overline{\mathbf{x}}) \ \simeq \ \phi_{\mathbf{e}}^{(n)}(\overline{\mathbf{x}})$$

Twierdzenie

Każda funkcja uniwersalna $\Psi_{IJ}^{(n)}$ jest częściowo rekurencyjna

Funkcja uniwersalna

Funkcją uniwersalną dla n-argumentowych funkcji obliczalnych nazywamy funkcję $\Psi_U^{(n)}: N^{n+1} \longrightarrow N$ taką, że:

$$\forall_{\mathbf{e} \in \mathbf{N}} \ \forall_{\overline{\mathbf{x}} \in \mathbf{N}^n} \ \Psi_U^{(n)}(\mathbf{e}, \overline{\mathbf{x}}) \ \simeq \ \phi_{\mathbf{e}}^{(n)}(\overline{\mathbf{x}})$$

Twierdzenie

Obliczalna

Każda funkcja uniwersalna $\Psi_{ij}^{(n)}$ jest częściowo rekurencyjna

Program uniwersalny – dowolny program P_U obliczający funkcję uniwersalną Ψ_U

Program uniwersalny

- U uniwersalna maszyna Turinga
- $|\mathbf{M}| \sim |\mathbf{M}|$ reprezentacja maszyny \mathbf{M}
- $\mathbb{U}ig(\langle \mathbf{M}
 angle, xig)$ symulacja działania maszyny \mathbf{M} na danych x

Szczegóły reprezentacji (M)

- Reprezentacja zbioru stanów maszyny M
- Reprezentacja alfabetu taśmy maszyny M
- Kodowanie funkcji przejścia maszyny M

Problem

Weryfikacja poprawności działania programu

$$\mathcal{P}_{ACC} = \{(M, x) : \text{Maszyna Turinga } M \text{ akceptuje dane wejciowe } x\}$$

$$\mathcal{P}_{ACC} = \{(M, x) : \text{Maszyna Turinga } M \text{ akceptuje dane wejciowe } x\}$$

$$(M_1, abaab)$$

 $(M_1, babba)$

$$\mathcal{P}_{ACC} \ = \ \Big\{ \big(M, x \big) : \text{ Maszyna Turinga } M \text{ akceptuje dane wejciowe } x \Big\}$$

$$(M_1, abaab)$$
 $(M_1, babba)$

$$\mathcal{P}_{ACC} = \left\{ \left(M, x \right) : \text{ Maszyna Turinga } M \text{ akceptuje dane wejciowe } x \right\}$$

Maszyna rozpoznająca \mathcal{P}_{ACC}

 \square Uruchom maszynę M na x

Jeśli M zatrzyma się w stanie akceptującym \Rightarrow akceptuj

Jeśli M zatrzyma się w stanie odrzucającym \Rightarrow odrzuć

Założenie
$$\mathbb{M}_{R}\Big(\langle M\rangle, x\Big) \ = \ \left\{ \begin{array}{l} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{array} \right.$$

Założenie

 $\mathbb{M}_{R}(\langle M \rangle, x) = \begin{cases} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{cases}$

 $2 \quad \mathbb{M}_A\Big(\langle M\rangle\Big) = \mathbb{M}_R\Big(\langle M\rangle, \langle M\rangle\Big)$

Założenie

$$\mathbb{M}_{R}(\langle M \rangle, x) = \begin{cases} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{cases}$$

Założenie

$$\mathbb{M}_{R}\Big(\langle M\rangle, x\Big) \ = \ \left\{ \begin{array}{l} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{array} \right.$$

Założenie

$$\mathbb{M}_{R}\Big(\langle M\rangle, x\Big) \ = \ \left\{ \begin{array}{l} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{array} \right.$$

Założenie

$$\mathbb{M}_{R}\Big(\langle M\rangle, x\Big) \ = \ \left\{ \begin{array}{l} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{array} \right.$$

Marcin Piątkowski

Założenie

$$\mathbb{M}_{R}\Big(\langle M\rangle, x\Big) \ = \ \left\{ \begin{array}{l} \text{akceptuj jeśli } M \text{ akceptuje } x \\ \text{odrzucaj jeśli } M \text{ nie akceptuje } x \end{array} \right.$$

Założenie

1
$$\mathbb{M}_R(\langle M \rangle, x) = \begin{cases} \text{akceptuj jeśli } M \text{ obceptuje } x \\ \text{odrzucaj jeśli } m \text{ nie obceptuje } x \end{cases}$$

2
$$\mathbb{M}_A(\langle M \rangle) = \begin{cases} \text{akceptuj jeśli } M \text{ akceptuje } (M \circ M) \\ \text{odrzucaj jeśli nie akceptuje } (M \circ M) \end{cases}$$

- 2 $M_A(\langle M \rangle) = \begin{cases} akceptuj & jeśli M akceptuje & Molonie akceptuje$
 - $\begin{array}{ll}
 \mathbf{4} & \mathbb{M}_O \Big(\langle \mathbb{M}_O \rangle \Big) &= \begin{cases}
 \mathbf{akceptuj} & \text{jeśli } \mathbb{M}_O \text{ nie akceptuje } \langle \mathbb{M}_O \rangle \\
 \mathbf{odrzucaj} & \text{jeśli } \mathbb{M}_O \text{ akceptuje } \langle \mathbb{M}_O \rangle
 \end{array}$

Twierdzenie

Problem akceptowania danych wejściowych przez maszynę Turinga jest nierozstrzygalny

