

高性能超声波测距模块 US-B16 系列 使用手册

请前往邦为科技官方淘宝查看最新版本使用手册。

本模块为通用型超声波测模块,<u>成都邦为电子科技有限公司</u>(以下简称邦为科技)拥有完全知识产权,仿冒必究。

<u>邦为科技</u>保留对以下所有产品在可靠性,功能和设计方面的改进作进一步说明的权利。邦为科技不承担由本手册所涉及的产品 或电路的运用和使用所引起的任何责任,邦为科技的产品不是专门设计来应用于外科植入、生命维持和任何邦为科技产品的故 障会对个体造成伤害甚至死亡的领域。如果将邦为科技的产品应用于上述领域,即使这些是由邦为科技在产品设计和制造上的 疏忽引起的,用户应赔偿所有费用、损失、合理的人身伤害或死亡所直接或间接产生的律师费用,并且用户保证邦为科技及其 雇员、子公司、分支机构和销售商与上述事宜无关。

● 特性:

- 兼容 HC-SR04 控制方式及物理尺寸
- 兼容 MaxBotix.Inc 的 MB12xx 系列通讯协议
- 大带宽、高增益、低失调轨到轨运放
- 高速 LDO
- 低 ESR 钽电容
- 数字滤波技术
- 内置温度传感器
- STC (时间灵敏度) 控制
- 高 SNR、高灵敏度传感器
- 1mm 测距精度
- 可选 UART、HC-SR04 共三种控制方式
- 3.3V/5V 电平选择
- 声波波束软件微调
- 3.3V~8V 的工作范围

修正记录:

版本	日期	内容	备注
Rev:1.0	2016年5月28日	初版	
Rev:1.1	2016年6月8日	取消 I2C 通讯功能。	

Rev:1.1 第 1 页 共 7 页

一、物理尺寸

■ 单位: mm

Rev:1.1 第 2 页 共 7 页

二、引脚定义

1. 引脚编号:

正对模块背部,此时 2.54*4 排针在底边。

从左至右依次为: GND RX TX VCC

2. 引脚说明:

引脚印字	HC-SR04	UART	I2C	备注
VCC		电源正极		
EC/TX	回响信号	TX	己限消	
TG/RX	触发信息	RX	己限消	
GND		电源负	1极	

表 1

三、电气参数

		电源			
编号	名称	条件	标准值	最大容限范围	单位
P1	工作电压	纹波小于 0.1V	5V	3.3-8	V
P2	工作电流	5V 供电	< 0.02	< 0.04	A

表 2

		传感器			
编号	名称	条件	标准值	最大容限范围	单位
U1	声波角度	-3dB	30	20-40	度
U2	声压	10V 正弦驱动, 30 厘米	>115	>100	dB
U3	超声波频率	25℃/5V	40	±0.5%	KHz
U3					

表 3

		UART			
编号	名称	条件	标准值	最大容限范围	单位
S1	串口速率	115200	115200	±0.5%	bps
S2	TX/RX 高电平	3.3V 模式下	3.3	>2.0&<3.4	V
S3	TX/RX 低电平	[3.3 V (矢八)*	0	< 0.8	V
S4	TX/RX 高电平	5V 模式下	5	>2.0&<5.1	V
S5	TX/RX 低电平	3	0	< 0.8	V

表 4

四、UART 协议

1. 请注意 TX、RX 交叉及通讯电平

2. 帧结构

方向	帧头	数据(1byte)					
TX	'T'	模块地址					
方向	帧头	数据(6byte)					
RX	'R'	D0	D1	D2	D3	٠,	'\r'

表 6

3. 发送与接收时序

使用正确的波特率发送'T'+模块地址(16 进制)后,约 60ms 模块返回'R'+4 字节 ASCII 码和 1 个空格 1 个回车。

- 4. 距离换算:
- ◆ 障碍物距离=D0*1000+D1*100+D2*10+D3,单位 mm

5. 温度读取

方向	帧头	数据(1byte)
TX	'P'	模块地址(默认 0x3A)

方向	帧头	数据(4byte)			
RX	'P'	D0	D1	٠,	'\r'

表 7

- ◆ 温度=((D0<<8)|D1-500)*0.1f。精度 0.1 度,单位: 摄氏度
- ◆ 温度传感器的最大更新率为 10Hz,请确保读温度的间隔时间大于 0.1S

6. 多模块连接

◆ 因本模块支持地址分配,所以在使用多个模块时,只需一个 UART 即可。连接方式为:将所有要使用的模块 RX 相连、TX 相连,连接后的的模块 TX 连接主控设备的 RX,模块的 RX 连接主控设备的 TX。

Rev:1.1 第 4 页 共 7 页

7. 通讯电平设置

- ◆ 模块的 RX 原生支持 3.3V-5V 的宽电压输入
- ◆ 模块的 TX 电平修改方法为:
 - 3.3V 时,在 R7 位号上加焊 10K 0603 封装的电阻
 - 5V 时, 去掉 R7 电阻(出厂默认)

8. 通讯速率设置

帧头	数据(2byte)		
'B'	D0	D1	

表 8

数据与波特率换算: (D0<<8)|D1=模块输入与输出波特率

出厂默认: 115200

注意:波特率的修改后会保存于模块的 FLASH 中,请做好标记。

9. 模块地址设置

帧头	数据(2byte)		
'A'	D0	D1	

表 9

地址内容: D0 必须为 16 进制固定值 0xA5, D1 为将要设置的地址内容注意: 波特率的修改后会保存于模块的 FLASH 中,请做好标记。

10. 波束角设置

帧头	数据(2byte)		
'G'	D0	D1 $(0x00 \le D1 \le 0x14)$	

表 10

地址内容: D0 必须为 16 进制固定值 0xA5,D1 为将要设置的波束角(默认 0x14) 波束角=30*D1*0.5。

注意: 此处为-3dB 角度。关于超声波角度请自行搜索相关文献

五、I2C协议

因 I2C 是采用边沿采样的方式,这种方式在有干扰的环境下极易造成误码,另外 I2C 亦

Rev:1.1 第 5 页 共 7 页

不适合板外通讯。故此版本取消 I2C 通讯功能

六、HC-SR04 方式

a) 请查找相关 HC-SR04 文献。

七、测试方法及条件

- 1. 模块安装高于水平地面 40cm 以上
- 2. 直径 20mm 圆管作标准障碍物,建议使用 PVC 材质
- 3. 5V 供电
- 4. UART 连接模块至 PC
- 5. 使用串口助手类软件发送以上指令,即可看到返回的相关数据。

八、注意事项

- 1. 当遇到以下情况时,超声波的探测能力会下降(包括但不限于):
- 1) 超声波的反射遵循光线反射原理, 当障碍物的表面与声波传播方向非空间 垂直角度时;
- 2) 超声波的反射强度与障碍的材质有关, 当遇到不规则、质地较软 (如棉衣)的障碍物时;
- 3) 超声波的飞行速度约为 340m/S, 而本模块的探测周期为 60ms, 所以当障碍物快速移动或快速变换姿态时;
 - 4) 其它情况
 - 2. 当遇到以下情况时,超声波的探测精度会降低(包括但不限于):
 - 1) 动态障碍物;
 - 2) 有明显凹凸面的障碍物;
 - 3) 模块振动;
 - 4) 其它情况

Rev:1.1 第 6 页 共 7 页