- Dados los números binarios A =00001100 y B =10111100, responder a las siguientes cuestiones:
 - Considerando que ambos números están codificados en signomagnitud, hallar A+B y A-B. (0,5 puntos)

$$A = 12; B = -60$$

$$A+B = -48 = 100110000$$

$$A-B = 72 = 011000000$$

• Independientemente de su codificación, hallar el Ca2 (complemento a 2) de ambos números. (0,5 puntos)

$$Ca2(A) = 11110100$$

$$Ca2(B) = 01000100$$

 Considerando que ambos números están codificados en Ca2 (complemento a 2), hallar A+B y A-B. Indicar si hay desbordamiento. (0,5 puntos)

$$A=12$$
; $Ca2(B) = 01000100 -> B= -68$

$$A + B = 00001100$$

10111100

No hay desbordamiento

=====

2) (1.5 puntos) Dados los números decimales 364 y 112:

 (0,5 puntos) Convertir ambos números a binario, expresándolos con 10 bits.

• (0,5 puntos) Expresar el número (-112) en complemento a 2.

$$Ca2(112) = 11\ 1001\ 0000$$

• (0,5 puntos) Realizar la operación (364 – 112) en complemento a 2.

0101101100

1110010000

40 011111100 No hay overflow. El acarreo se ignora en Ca2

Ca2 Casos posibles. Ejemplos

1º caso: resultado positivo correcto.

2º caso: resultado negativo correcto.

3º caso: resultado positivo con desbordamiento (OVERFLOW).

4º Caso: resultado negativo con desbordamiento (OVERFLOW).

$$-7-5 = -7+(-5)$$
 1001
 -7
 $1011 + -5$
 -1000
FALSO, bit de signo +

Si usamos 1 bit más no se produce desbordamiento

¿Cómo saber si se ha producido desbordamiento en una operación en complemento a 2?

Viendo si los dos últimos acarreos son iguales. Si son iguales, no se ha producido desbordamiento. Si son distintos, sí se ha producido desbordamiento.

Ejemplo 1:

Operación +	Nº Dec 47 32 79	Num C2 bin 00101111 00100000 01001111	Acarreo pero no overflow
Operación +	№ Dec 105 43 148	Num C2 bin 01101001 00101011 10010100 carry1-1-11	Overflow cambió el signo con 8 bits represento de -128 a 127
Operación +	№ Dec -54 20 -34	Num C2 bin 11001010 00010100 11011110	11001010 (es 54 complementado) no hay ni acarreos ni overflow
Operación +	№ Dec -98 50 -48	Num C2 bin 10011110 00110010 11010000	Hay acarreo
Operación +	Nº Dec 100 -27 73	Num C2 bin 01100100 11100101 1 01001001	hay acarreo y no overflow el uno de acarreo se quita
Operación +	№ Dec -45 -5 -50	Num C2 bin 11010011 11111011 1 01001110	hay acarreo y overflow cambia de signo 11001110 =-50 en compemento a 2
		01001110	es 78 en decimal que es congruente con -50 en módulo 2 128 -50 = 78

Complemento a 1.

La operación en complemento a 1 es igual que en complemento a 2 con la única diferencia de que además de sumar los dos operandos, se suma el acarreo que resulte de la operación como si fuera el LSB de un tercer operando.

```
Ejemplo 1:
```

Ejemplo 2:

Punto flotante

Convertir el número C19E0000 en formato IEEE754 en su equivalente decinmal:

```
Convertimos a binario
  signo (1)
exponente (10000011)
mantisa (001 1110 0000 0000 0000 0000)
la formula es
   (-1) s * 1, mantisa * 2^(e-127)
s (1) significa, por tanto, signo negativo
exponente 10000011 es 131, como se representa en exceso a 2^{(n-1)-1}
hay que restar 127 para volver a tener el exponente real, es por tanto
mantisa (hacia la derecha se van multiplicando los bits por 2^-1, 2^-
2, 2^-3,2^-4, ...)
  0*0,5
  0*0,25
  1*0,125
  1*0,0625
  1*0,03125
  1*0,015625
  0,234375 en decimal
como está normalizada (se supone un 1 a la izquierda de la coma) es en
realidad 1,234375. Todo junto:
   (-1)^{1*} 1,234375 * 2^4 = -1,234375*16 = -19,75
```

Calcular el valor de 1100011011010000000000000000, sabiendo que sigue la representación IEEE 754

El signo es negativo porque el bit de mayor peso es 1

El valor nominal del exponente 10001101 teniendo en cuenta la posición de cada dígito es141

Tenems en cuenta que para m=8, sesgo=2^{m-1}-1=127

El valor del exponente es 141–127=14141–127=14.

Número

Por lo tanto, si escribimos el número este es $-1,01101 \times 2^{14} \longrightarrow -(1+2^{-2}+2^{-3}+2^{-5}) \times 2^{14} = \boxed{-23040}$

Representar el número -24,50 utilizando el estándar de coma flotante de simple precisión IEEE 754. Expresar dicha representación en binario y en hexadecimal

 $24,5 = 11000.1 = 1,10001 \times 2^4$

Signo = 1, número negative Exponente = 4 + 127 = 131 = 10000011 Mantisa = 1000100000 .. 00000

En binario es: 1100000011100010000000000

En Hexadecimal es: C1C40000

A 0000	Q 0011	Q_1 0	M 0111	Initial values
1001 1100	0011 1001	0	0111 0111	$A \leftarrow A - M$ First Shift $Shift$
1110	0100	1	0111	Shift Second cycle
0101 0010	0100 1010	1	0111 0111	$A \leftarrow A + M$ Third Shift $Shift$ cycle
0001	0101	0	0111	Shift } Fourth cycle

Figure 9.13 Example of Booth's Algorithm (7×3)

Booth's Algorithm Work out Example (-12 x -11 =132)

Comments	sc	Multiplicand	Proc	Q _e	
		M	A	Q	•
Initial (-12 x -11)	0	10100	00000	1010 <mark>1</mark>	0
$Q_0Q_e = 10$; $P \leftarrow P - M$	0	10100	01100	10101	0
Ar.sh.r . PQ Q _e	0	10100	00110	01010	1
SC ← SC+1	1	10100	00110	01010	1
$Q_0Q_e = 01; P \leftarrow P + M$	1	10100	11010	01010	1
Ar.sh.r . PQ Q _e	1	10100	11101	00101	0
SC ← SC+1	2	10100	11101	0010 <mark>1</mark>	0
$Q_0Q_e = 10$; $P \leftarrow P-M$	2	10100	01001	00101	0
Ar.sh.r . PQ Q _e	2	10100	00100	10010	1
SC ← SC+1	3	10100	00100	1001 <mark>0</mark>	1
$Q_0Q_e = 01;$	3	10100	11000	10010	1
Ar.sh.r . PQ Q _e	3	10100	11100	01001	0
SC ← SC+1	4	10100	11100	0100 <mark>1</mark>	0
$Q_0Q_e = 10$; $P \leftarrow P - M$	4	10100	01000	01001	0
Ar.sh.r . PQ Q _e	4	10100	00100	00100	1
SC ← SC+1	5	10100	00100	00100	1

