# Deep Generative Models

Lecture 3

Roman Isachenko



2024, Spring

#### Jacobian matrix

Let  $f: \mathbb{R}^m \to \mathbb{R}^m$  be a differentiable function.

$$\mathbf{z} = f(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

## Change of variable theorem (CoV)

Let  $\mathbf{x}$  be a random variable with density function  $p(\mathbf{x})$  and  $f: \mathbb{R}^m \to \mathbb{R}^m$  is a differentiable, invertible function. If  $\mathbf{z} = f(\mathbf{x})$ ,  $\mathbf{x} = f^{-1}(\mathbf{z}) = g(\mathbf{z})$ , then

$$\begin{aligned} & p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J}_f)| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = p(f(\mathbf{x})) \left| \det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right) \right| \\ & p(\mathbf{z}) = p(\mathbf{x}) |\det(\mathbf{J}_g)| = p(\mathbf{x}) \left| \det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right) \right| = p(g(\mathbf{z})) \left| \det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right) \right|. \end{aligned}$$

#### Definition

Normalizing flow is a *differentiable, invertible* mapping from data **x** to the noise **z**.



## Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f_K \circ \cdots \circ f_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{f_k})|$$

#### Forward KL for flow model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_f)|$$

#### Reverse KL for flow model

$$\mathit{KL}(p||\pi) = \mathbb{E}_{p(\mathbf{z})} \left[ \log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)| - \log \pi(g_{\boldsymbol{\theta}}(\mathbf{z})) \right]$$

## Flow KL duality

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z}))$$

- $ightharpoonup p(\mathbf{z})$  is a base distribution;  $\pi(\mathbf{x})$  is a data distribution;
- ightharpoonup  $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} = g_{\boldsymbol{\theta}}(\mathbf{z}), \ \mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta});$
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = f_{\theta}(\mathbf{x}), \ \mathbf{z} \sim p(\mathbf{z}|\theta).$

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

## Flow log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_f)|$$

The main challenge is a determinant of the Jacobian.

#### Linear flows

$$z = f_{\theta}(x) = Wx$$
,  $W \in \mathbb{R}^{m \times m}$ ,  $\theta = W$ ,  $J_f = W^T$ 

► LU-decomposition

$$W = PLU$$
.

QR-decomposition

$$W = QR$$
.

Decomposition should be done only once in the beggining. Next, we fit decomposed matrices (P/L/U or Q/R).

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible  $1\times 1$  Convolutions, 2018

Hoogeboom E., et al. Emerging convolutions for generative normalizing flows, 2019

Consider an autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:i-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:i-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_j(\mathbf{x}_{1:i-1}), \sigma_j^2(\mathbf{x}_{1:i-1})\right).$$

Gaussian autoregressive NF

$$\mathbf{x} = g_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f_{\theta}(\mathbf{x}) \quad \Rightarrow \quad \mathbf{z}_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- We have an **invertible** and **differentiable** transformation from  $p(\mathbf{z})$  to  $p(\mathbf{x}|\theta)$ .
- ▶ Jacobian of such transformation is triangular!

Generation function  $g_{\theta}(\mathbf{z})$  is **sequential**. Inference function  $f_{\theta}(\mathbf{x})$  is **not sequential**.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

## Outline

1. RealNVP: coupling layer

2. Continuous-in-time Normalizing Flows

3. Adjoint method

## Outline

1. RealNVP: coupling layer

2. Continuous-in-time Normalizing Flows

3. Adjoint method

#### RealNVP

Let split x and z in two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}].$$

## Coupling layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; & \qquad \qquad \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \sigma_{\theta}(\mathbf{z}_1) + \mu_{\theta}(\mathbf{z}_1). & \qquad \mathbf{z}_2 = (\mathbf{x}_2 - \mu_{\theta}(\mathbf{x}_1)) \odot \frac{1}{\sigma_{\theta}(\mathbf{x}_1)}. \end{cases}$$

$$egin{cases} \mathbf{z}_1 = \mathbf{x}_1; \ \mathbf{z}_2 = (\mathbf{x}_2 - oldsymbol{\mu}_{oldsymbol{ heta}}(\mathbf{x}_1)) \odot rac{1}{\sigma_{oldsymbol{ heta}}(\mathbf{x}_1)} \end{cases}$$

## Image partitioning





- Checkerboard ordering uses masking.
- Channelwise ordering uses splitting.

## **RealNVP**

## Coupling layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1). \end{cases} \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)}. \end{cases}$$

Estimating the density takes 1 pass, sampling takes 1 pass!

#### Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{\mathbf{0}_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{j=1}^{m-d} \frac{1}{\sigma_j(\mathbf{x}_1)}.$$

#### Gaussian AR NF

$$\mathbf{z} = g_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

How to get RealNVP coupling layer from gaussian AR NF?

## Glow samples

Glow model: coupling layer + linear flows (1x1 convs)



Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

# Venn diagram for Normalizing flows



- $\triangleright$   $\mathcal{I}$  invertible functions.
- ► F continuously differentiable functions whose Jacobian is lower triangular.
- $\triangleright \mathcal{M}$  invertible functions from  $\mathcal{F}$ .

Song Y., Meng C., Ermon S. Mintnet: Building invertible neural networks with masked convolutions, 2019

## Outline

1. RealNVP: coupling layer

2. Continuous-in-time Normalizing Flows

3. Adjoint method

#### Discrete-in-time NF

Previously we assume that the time axis is discrete:

$$\mathbf{z}_{t+1} = f_{\theta}(\mathbf{z}_t); \quad \log p(\mathbf{z}_{t+1}) = \log p(\mathbf{z}_t) - \log \left| \det \frac{\partial f_{\theta}(\mathbf{z}_t)}{\partial \mathbf{z}_t} \right|.$$

Let assume the more general case of continuous time. It means that we will have the dynamic function  $\mathbf{z}(t)$ .

## Continuous-in-time dynamics

Consider Ordinary Differential Equation (ODE)

$$egin{aligned} rac{d\mathbf{z}(t)}{dt} &= f_{m{ heta}}(\mathbf{z}(t),t); \quad ext{with initial condition } \mathbf{z}(t_0) = \mathbf{z}_0. \ \mathbf{z}(t_1) &= \int_{t_0}^{t_1} f_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{z}_0 = ext{ODESolve}(\mathbf{z}(t_0),f_{m{ heta}},t_0,t_1). \end{aligned}$$

Here we need to define the ODESolve( $\mathbf{z}(t_0), f_{\theta}, t_0, t_1$ ) procedure.

## Euler update step

$$\frac{\mathsf{z}(t+\Delta t)-\mathsf{z}(t)}{\Delta t}=f_{\boldsymbol{\theta}}(\mathsf{z}(t),t) \ \Rightarrow \ \mathsf{z}(t+\Delta t)=\mathsf{z}(t)+\Delta t \cdot f_{\boldsymbol{\theta}}(\mathsf{z}(t),t)$$

**Note:** Euler method is the simplest version of ODESolve that is unstable in practice. It is possible to use more sophisticated methods (e.x. Runge-Kutta methods).







#### Neural ODE

$$\frac{d\mathbf{z}(t)}{dt} = f_{\theta}(\mathbf{z}(t), t);$$
 with initial condition  $\mathbf{z}(t_0) = \mathbf{z}_0$ 

- Let  $\mathbf{z}(t_0)$  will be a random variable with some density function  $p(\mathbf{z}(t_0))$ .
- ► Then  $\mathbf{z}(t_1)$  will be also a random variable with some other density function  $p(\mathbf{z}(t_1))$ .
- We could say that we have the joint density function p(z(t), t).
- What is the difference between p(z(t), t) and p(z, t)?



Let say that  $p(\mathbf{z}, t_0)$  is the base distribution (e.x. standard Normal) and  $p(\mathbf{z}, t_1)$  is the desired model distribution  $p(\mathbf{x}|\theta)$ .

## Theorem (Picard)

If f is uniformly Lipschitz continuous in  $\mathbf{z}$  and continuous in t, then the ODE has a **unique** solution.

It means that we are able uniquely revert our ODE.

#### Forward and inverse transforms

$$\mathbf{z} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$$
 $\mathbf{z} = \mathbf{z}(t_0) = \mathbf{z}(t_1) + \int_{t_0}^{t_0} f_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$ 

**Note:** Unlike discrete-in-time NF, f does not need to be bijective (uniqueness guarantees bijectivity).

#### What do we need?

- ▶ We need the way to compute  $p(\mathbf{z}, t)$  at any moment t.
- We need the way to find the optimal parameters  $\theta$  of the dynamic  $f_{\theta}$ .

## Theorem (Kolmogorov-Fokker-Planck: special case)

If f is uniformly Lipschitz continuous in  $\mathbf{z}$  and continuous in t, then

$$\frac{d\log p(\mathbf{z}(t),t)}{dt} = -\mathrm{tr}\left(\frac{\partial f_{\boldsymbol{\theta}}(\mathbf{z}(t),t)}{\partial \mathbf{z}(t)}\right).$$

$$\log p(\mathbf{z}(t_1),t_1) = \log p(\mathbf{z}(t_0),t_0) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f_{\boldsymbol{\theta}}(\mathbf{z}(t),t)}{\partial \mathbf{z}(t)}\right) dt.$$

It means that if we have the value  $\mathbf{z}_0 = \mathbf{z}(t_0)$  then the solution of the ODE will give us the density at the moment  $t_1$ .

Forward transform + log-density

$$\mathbf{x} = \mathbf{z} + \int_{t_0}^{t_1} f_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{z}) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt$$

Here  $p(\mathbf{x}|\theta) = p(\mathbf{z}(t_1), t_1), \ p(\mathbf{z}) = p(\mathbf{z}(t_0), t_0).$ 

- ▶ **Discrete-in-time NF**: evaluation of determinant of the Jacobian costs  $O(m^3)$  (we need invertible f).
- **Continuous-in-time NF**: getting the trace of the Jacobian costs  $O(m^2)$  (we need smooth f).

# Why $O(m^2)$ ?

 $\operatorname{tr}\left(\frac{\partial f_{\theta}(\mathbf{z}(t))}{\partial \mathbf{z}(t)}\right)$  costs  $O(m^2)$  (m evaluations of f), since we have to compute a derivative for each diagonal element. It is possible to reduce cost from  $O(m^2)$  to O(m)!

#### Hutchinson's trace estimator

If  $\epsilon \in \mathbb{R}^m$  is a random variable with  $\mathbb{E}[\epsilon] = 0$  and  $\mathsf{cov}(\epsilon) = \mathbf{I}$ , then

$$\begin{aligned} \operatorname{tr}(\mathbf{A}) &= \operatorname{tr}\left(\mathbf{A} \cdot \mathbf{I}\right) = \operatorname{tr}\left(\mathbf{A} \cdot \mathbb{E}_{\rho(\epsilon)}\left[\epsilon \epsilon^{T}\right]\right) = \\ &= \mathbb{E}_{\rho(\epsilon)}\left[\operatorname{tr}\left(\mathbf{A}\epsilon \epsilon^{T}\right)\right] = \mathbb{E}_{\rho(\epsilon)}\left[\epsilon^{T}\mathbf{A}\epsilon\right] \end{aligned}$$

Jacobian vector products  $\mathbf{v}^T \frac{\partial f}{\partial \mathbf{z}}$  can be computed for approximately the same cost as evaluating f (torch.autograd.functional.jvp).

## FFJORD density estimation

$$\log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt =$$

$$= \log p(\mathbf{z}(t_0)) - \mathbb{E}_{p(\epsilon)} \int_{t_0}^{t_1} \left[\epsilon^T \frac{\partial f}{\partial \mathbf{z}} \epsilon\right] dt.$$

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

## Outline

1. RealNVP: coupling layer

2. Continuous-in-time Normalizing Flows

3. Adjoint method

## Neural ODE

#### Continuous-in-time NF

$$\frac{d\mathbf{z}(t)}{dt} = f_{\theta}(\mathbf{z}(t), t) \qquad \frac{d \log p(\mathbf{z}(t), t)}{dt} = -\operatorname{tr}\left(\frac{\partial f_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right)$$

$$\mathbf{x} = \mathbf{z} + \int_{t_0}^{t_1} f_{\theta}(\mathbf{z}(t), t) dt \quad \log p(\mathbf{x}|\theta) = \log p(\mathbf{z}) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt$$

How to get optimal parameters of  $\theta$ ?

For fitting parameters we need gradients. We need the analogue of the backpropagation.

## Forward pass (Loss function)

$$\mathbf{z} = \mathbf{x} + \int_{t_1}^{t_0} f_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt, \quad L(\mathbf{z}) = \log p(\mathbf{z})$$

$$L(\mathbf{z}) = L\left(\mathbf{x} + \int_{t_1}^{t_0} f_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt\right) = L(\mathsf{ODESolve}(\mathbf{x}, f_{\boldsymbol{\theta}}, t_1, t_0))$$

#### Neural ODE

#### Adjoint functions

$$\mathbf{a_z}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}; \quad \mathbf{a_{\theta}}(t) = \frac{\partial L}{\partial \boldsymbol{\theta}(t)}.$$

These functions show how the gradient of the loss depends on the hidden state  $\mathbf{z}(t)$  and parameters  $\boldsymbol{\theta}$ .

Theorem (Pontryagin)

$$\frac{d\mathbf{a}_{\mathbf{z}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{\mathsf{T}} \cdot \frac{\partial f_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}}; \quad \frac{d\mathbf{a}_{\theta}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{\mathsf{T}} \cdot \frac{\partial f_{\theta}(\mathbf{z}(t), t)}{\partial \theta}.$$

Solution for adjoint function

$$\begin{split} \frac{\partial L}{\partial \boldsymbol{\theta}(t_1)} &= \mathbf{a}_{\boldsymbol{\theta}}(t_1) = -\int_{t_0}^{t_1} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ \frac{\partial L}{\partial \mathbf{z}(t_1)} &= \mathbf{a}_{\mathbf{z}}(t_1) = -\int_{t_0}^{t_1} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)} dt + \frac{\partial L}{\partial \mathbf{z}(t_0)} \end{split}$$

**Note:** These equations are solved in reverse time direction.

# Adjoint method

## Forward pass

$$\mathbf{z} = \mathbf{z}(t_0) = \int_{t_0}^{t_1} f_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{x} \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

## Backward pass

$$\begin{split} &\frac{\partial L}{\partial \boldsymbol{\theta}(t_1)} = \boldsymbol{a}_{\boldsymbol{\theta}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ &\frac{\partial L}{\partial \boldsymbol{z}(t_1)} = \boldsymbol{a}_{\boldsymbol{z}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{z}(t)} dt + \frac{\partial L}{\partial \boldsymbol{z}(t_0)} \\ &\boldsymbol{z}(t_1) = -\int_{t_1}^{t_0} f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t) dt + \boldsymbol{z}_0. \end{split} \right\} \Rightarrow \text{ODE Solver}$$

**Note:** These scary formulas are the standard backprop in the discrete case.

# Summary

- The RealNVP coupling layer is an effective type of flow (special case of AR flows) that has fast inference and generation modes.
- Kolmogorov-Fokker-Planck theorem allows to construct continuous-in-time normalizing flow with less functional restrictions.
- FFJORD model makes such kind of NF scalable.
- Adjoint method generalizes backpropagation procedure and allows to train Neural ODE solving ODE for adjoint function back in time.