УДК 214.16

Задача извлечения именованных сущностей в русскоязычном тексте

М. Д. Аверина

Ярославский государственный университет им. П. Г. Демидова E-mail: maverina518@gmail.com

Аннотация

В статье рассматривается задача извлечения именованных сущностей из текста (NER). Для решения данной задачи часто используется метод CRF (conditional random fields) — условные случайные поля. В статье исследуется вопрос решения задачи NER для текста на русском языке на основе метода CRF. При этом были использованы различные подходы к признаковому описанию текста, был проведен сравнительный анализ моделей при использовании различных признаков и методов оптимизации. Лучшая модель показала качество F1 равное 75%-99% в зависимости от сущности.

Kлючевые слова: распознавание именованных сущностей, NER, условные случайные поля, CRF, токенизация, нормализация слов, $word2vec,\ fastText,\ F1.$

Введение

Одна из важнейших задач — сбор и анализ статистических данных нормативных документов является достаточно трудоемкой для специалистов. На данный момент, в условиях повсеместного внедрения электронного документооборота, данная задача особенно актуальна. Автоматизация процесса анализа текстов — задача распознавания именованных сущностей (named entity recognition, NER) [base] позволит оптимизировать работу многих специалистов как по временным, так и по качественным показателям.

Задача извлечения сущностей

Задача NER (named entity recognition) заключается в выделении определенных непрерывных фрагментов текста (именованных сущностей). Например, имеется новостной текст, в котором необходимо выделить некоторый заранее зафиксированный набор сущностей:

© Аверина М.Д., 2020

персоны, локации, организации, даты и т.д. Соответственно алгоритм должен определить, что участок текста «1 января 1997 года» является датой, «Кофи Аннан» — персоной, а «ООН» — организацией (рис. 1).

Рис. 1: Пример работы NER.

Данная статья посвящена задаче выделения именованных сущностей для рускоязычных текстов. В качестве тестовых данных была использована открытая база судебной статистики [CourtsData]. Такой выбор был сделан в силу большого количества доступных документов, а также соответствующего задаче характера текстов (наличие множества различных имён, дат, наименований, сумм и т.д.)

На основе данной базы была сформирована и размеччена выборка из 500 файлов, которая была размечена на инструменте BRAT. BRAT (brat rapid annotation tool) — онлайн-инструмент для разметки письменных текстов. Были выделены следующие сущности: номер документа (doc num), cyd(court), cydsg(judge), дата cydg(date court), истец(plaintiff), ответчик или представитель (defendant), решение $cydg(court \ decision)$, статья или тип штрафа (payment fine), cymma выплаты (payment amount), cydg(court), cydg(court) (pok обжалования (appeal time).

Предварительная обработка данных

Первым этапом решения задачи является предобработка данных, которая включает в себя разбиение текста на слова, удаление ненужных символов, и извлечение признаков слов. Токенизация — это процесс разбиения текстового документа на отдельные слова, которые называются токенами. Для начала весь текст был разбит на токены [Ner], при этом удалены символы, не несущие смысловой нагрузки, и слова приведены к нижнему регистру.

Одим из наиболее очевидных признаков для решения задачи классификации именованных сущностей является вычленение информации при помощи регулярных выражений. Например, информация о наличие заглавной буквы или знаков припинания после слова заносится в «словарь символов». «Словарь символов» - структура данных, которая хранит в себе информацию о находящихся рядом знаках препинания и о регистре букв слова. Например почта "v1@mail.com," будет разбита на "v1@" и "mail.com,", где @ идентифицируется как слово-спецсимвол, а запятая заносится в «словарь символов». Символ "@", позволяет классифицировать строку как почтовый адрес. Используемые нами спецсимволы: (0, #, N), (0, #), (0,

Приведем список признаков в «словаре символов»:

- первая буква большая, остальные маленькие,
- все буквы маленькие,
- все буквы большие,
- первая буква маленькая,
- наличие запятой или точки в конце или начале слова и т.д.

Так же в качестве признака можено использовать "само слово". Стоит отметить, что данный признак не является релевантным, если в обучающей выборке часто упоминается одна и та же фамилия или одно и тоже название организации, поскольку алгоритм «зацепляется» за конкретное слово. Например для тестов судов, фамилия судьи встречается в тексте несколько раз.

Большинство слов в тексте имеет падеж или склонение, что в свою очередь усложняет работу алгоритма. Одим из способов решения данной проблемы является нормализация слов - приведение их к стандартному виду (например, лосями \rightarrow лось, мыла \rightarrow мыть, зеленого \rightarrow зеленый). При этом число и род можно использовать как признаки. Также часть речи (существительное, предлог и т.д.), является неплохим признаком при распознавании сущностей. Отметим, что в случае слов-спецсимволов, можно каждому символу

задать уникальные значения частей речи. Например, для символа % морфологией будет PERCENT.

Другим распространенным подходом к вычислению признаков явяется векторизация слов - представление слова в виде вектора $[\mathbf{w2v}]$. После предобработки текста слова можно закодировать векторами чисел, которые в дальнейшем удобно использоваться при обучении. $Word2\,Vec$ работает с большими текстовыми данными и по определенным правилам присваивает каждому слову уникальный набор чисел — семантический вектор. В последнее время все более популярным становится подход к векторизации текста, при котором $Word2\,Vec$ дополняется различными улучшениями. Два наиболее часто используемых улучшения — $fast\,Text$ исправляет недостаток $Word2\,Vec$: если обучение модели начинается с прямого кодирования одного D-мерного вектора, то игнорируется внутренняя структура слов. Вместо прямого кодирования слов, $fast\,Text$ предлагает изучать N-граммы символов и представлять слова как сумму векторов N-граммы

Для улучшения качетсва обучения, можно учитывать не только признаки текущего токена, но и соседних токенов, тем самым учитывая контекст. В дальнейшем для используемых признаков будем использовать обозначения: "список символов r, "само слово v, часть речи - m, нормализация - n, $Word2\,Vec$ - w, $Fast\,Text$ - f. А цифра после буквы будет обозначать количество рассматриваемых соседей влево и вправо. Например, f3 означает, что использовалось 7 признаков $Fast\,Text$ - для текущего слова и для 3-х соседей с каждой стороны.

Предсказание тегов при помощи CRF

Наиболее популярный инструмент для решения задачи NER является метод CRF (conditional random fields). Алгоритм CRF [HabrCRF] оптимизирует всю цепочку меток целиком, а не каждый элемент по отдельности. Линейный CRF хорошо подходит для решения задач сегментации и разметки последовательности, например: автоматическое выделение ключевых слов из текстов, выделение именованных сущностей (классификация сущностей), анализ тональности, автоматическое распознавание речи. Метод CRF может учитывать любые особенности и взаимозависимости в исходных данных. Так же он хорошо работает в связке с рекуррентными нейросетями, мо-

делирует совместное распределение на всей последовательности выходов сети одновременно.

Процесс обучения CRF имеет большую вычислительную сложность, а именно O(mNTQ2nS) где:

- т количество тренировочных итераций,
- N количество обучающих последовательностей,
- Т средняя длина обучающей последовательности,
- Q количество выходных классов,
- n количество признаков в обучающей матрице,
- \bullet S время работы алгоритма оптимизации на каждом шаге.

На практике время обучения CRF даже выше за счет всевозможных дополнительных операций таких, как сглаживание, преобразование данных из одного формата в другой. Отметим, что при увеличении количества признаков, например, за счет соседних слов, время обучения значительно увеличивается.

Метрика F1

После того как CRF обучен необходимо оценить качество его работы. Метрики Precision(P) и Recall(R) дают исчерпывающую оценку качества, но, как правило, приходится балансировать между двумя этими метриками. Если повысить Recall, делая решение более «оптимистичным», это приводит к падению Precision из-за увеличения числа ложно-положительных ответов. Если же наоборот, то при росте Precision происходит одновременное падение Recall из-за отбраковки какого-то числа правильных ответов. Поэтому удобно использовать одну величину, так называемую метрику F1 - среднегармоническое между Recall и Precision [F1]:

$$F1 = 2\frac{PR}{P+R} \tag{1}$$

Для оценки качества полученных результатов было решено использовать F1, но precision и recall вычислять, путем объединения соседних слов с одним тегом в одну сущность. Поскольку одна сущность может состоять из нескольких токенов, то стоит при оценке качества учитывать ее целиком.

Результаты

Рассмотрим результаты обучения (400 файлов) и тестирования (100 файлов) на данных судебных протоколов: наилучшего качества клас-

сификации можно добиться за счет подбора параметров классификатора. Необходимо выбрать наиболее эффективный и быстрый оптимизатор для CRF. В таблице 1 приведен анализ оптимизаторов, при одном фиксированном наборе признаков. Ниже приведены алгоритмы оптимизации CRF.

- lbfgs градиентный спуск с использованием метода L-BFGS,
- l2sgd стохастический градиентный спуск с регуляризации L2,
- ра усредненный персептрон,
- ap passive aggressive,
- arow адаптивная регуляризация.

Алгоритм	Долгое	F1 на	<i>F1</i> на	Примечания
-	1 ' '			приме капил
оптимиза-	время	лучшей	худшей	
ции	работы	сущно-	сущно-	
		ctn(best)	сти $(worst)$	
lbfgs	+	1	0.7	Время обуче-
				ния более 5
				часов.
l2sgd	+	1	0	Классифицирует
				все, как самый.
				объемный
				класс
pa	-	1	0.45	Время обуче-
				ния не более 30
				минут.
ap	-	0.83	0.24	-
arow	-	0.79	0.31	-

Таблица 1: Сравнительный анализ алгоритмов оптимизации.

Как видно из таблицы 1 лучший результат показали алгоритмы оптимизации pa и lbfgs. Стоит отметить, что lbfgs более трудоемкий по сравнению с pa. В дальнейших тестах для выбора оптимальных признаков будут использоваться данные два оптимизатора.

Заметим, что наименьший разброс F1 принимает при признаках (r3, v3) с оптимизатором lbfgs, при этом демонстрируя достаточно высокий средний результат (таблица 2). Однако, время обучения такой модели более пяти часов. При необходимости уменьшить вре-

Алгоритм Признаки	pa	l2sgd	lbfgs
(r3, v3)	_	_	best:
(. 5, 55)			doc num 0.993
			worst:
			defendant 0.751
			time fit:
			5.55.36
(r3, v1)	best:	best:	best:
(, 3, 51)	judge 0.906	judge 0.867	doc num 0.973
	worst:	worst:	worst:
	defendant 0.455	defendant 0.116	defendant 0.685
	time fit:	time fit:	time fit:
	0.07.58	0.4.11	3.32.49
(w1, v1, m1)	best:	best:	best:
	court 0.827	judge 0.751	judge 0.971
	worst:	worst:	worst:
	defendant 0.331	court 0.013	defendant 0.541
	time fit:	time fit:	time fit:
	0.05.20	0.3.14	3.03.01
(r3, m3)	best:	best:	best:
	judge 0.692	date court 0.746	judge 0.818
	worst:	worst:	worst:
	payment 0.412	court 0.126	defendant 0.285
	time fit:	time fit:	time fit:
	0.33.58	0.12.11	3.58.24

Таблица 2: Сравнительный анализ *F1*.

мя обучения наиболее оптимальным решением будет обучение модели на признаках (r3, v1) с оптимизатором pa.

Заключение

Подведем итоги, в статье приведет подход решения задачи NER, в котором был приведен набор различных наборов признаков для текста, а также проведен сравнительный анализ алгоритмов оптимизации и признаков, который показал, что алгоритм pa с призна-

ками (r3,v1) показал наилучший результат по времени и F1 в совокупности. Алгоритм lbfgs с признаками (r3,v3) продемонстрировал лучший результат по F1, но оказался трудоемким и долгообучаемым. Стоит отметить, что лучший результат показал алгоритм pa по времени. Но для более точного предсказания будет необходимо использовать lbfgs.

Для дальнейшего улучшения результатов планируется выделять еще новые признаки, а также можно попробовать использовать другие методы классификации и усовершенствование архитектуры классификатора на основе biLSTM и BERT.