Lecture Three Supervised Learning: Classification

Adapted from Chris Ré

Stanford ML

Supervised Learning and Classification

- Linear Regression via a Probabilistic Interpretation
- ► Logistic Regression
- Optimization Method: Newton's Method

We'll learn the maximum likelihood method (a probabilistic interpretation) to generalize from linear regression to more sophisticated models.

- ▶ **Given** a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ in which $x^{(i)} \in \mathbb{R}^{d+1}$ and $y^{(i)} \in \mathbb{R}$.
- ▶ **Do** find $\theta \in \mathbb{R}^{d+1}$ s.t. $\theta = \operatorname{argmin}_{\theta} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) y^{(i)})^2$ in which $h_{\theta}(x) = \theta^T x$.

- ▶ **Given** a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ in which $x^{(i)} \in \mathbb{R}^{d+1}$ and $y^{(i)} \in \mathbb{R}$.
- ▶ **Do** find $\theta \in \mathbb{R}^{d+1}$ s.t. $\theta = \operatorname{argmin}_{\theta} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) y^{(i)})^2$ in which $h_{\theta}(x) = \theta^T x$.

Where did this model come from?

One way to view is via a probabilistic interpretation (helpful throughout the course).

We make an assumption (common in statistics) that the data are *generated* according to some model (that may contain random choices). That is,

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}.$$

Here, $\varepsilon^{(i)}$ is a random variable that captures "noise" that is, unmodeled effects, measurement errors, etc.

We make an assumption (common in statistics) that the data are *generated* according to some model (that may contain random choices). That is,

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}.$$

Here, $\varepsilon^{(i)}$ is a random variable that captures "noise" that is, unmodeled effects, measurement errors, etc.

Please keep in mind: this is just a model! As they say, all models are wrong but some models are *useful*. This model has been *shockingly* useful.

What do we expect of the noise?

What properties should we expect from $\varepsilon^{(i)}$

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}.$$

Again, it's a model and $\varepsilon^{(i)}$ is a random variable:

 $ightharpoonup \mathbb{E}[\varepsilon^{(i)}] = 0$ – the noise is unbiased.

What do we expect of the noise?

What properties should we expect from $\varepsilon^{(i)}$

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}.$$

Again, it's a model and $\varepsilon^{(i)}$ is a random variable:

- $ightharpoonup \mathbb{E}[\varepsilon^{(i)}] = 0$ the noise is unbiased.
- ► The errors for different points are *independent* and *identically* distributed (called, **iid**)

$$\mathbb{E}[\varepsilon^{(i)}\varepsilon^{(j)}] = \mathbb{E}[\varepsilon^{(i)}]\mathbb{E}[\varepsilon^{(j)}] \text{ for } i \neq j.$$

and

$$\mathbb{E}\left[\left(\varepsilon^{(i)}\right)^2\right] = \sigma^2$$

Here σ^2 is some measure of *how noisy* the data are.

What do we expect of the noise?

What properties should we expect from $\varepsilon^{(i)}$

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}.$$

Again, it's a model and $\varepsilon^{(i)}$ is a random variable:

- $ightharpoonup \mathbb{E}[\varepsilon^{(i)}] = 0$ the noise is unbiased.
- ► The errors for different points are *independent* and *identically* distributed (called, **iid**)

$$\mathbb{E}[\varepsilon^{(i)}\varepsilon^{(j)}] = \mathbb{E}[\varepsilon^{(i)}]\mathbb{E}[\varepsilon^{(j)}] \text{ for } i \neq j.$$

and

$$\mathbb{E}\left[\left(\varepsilon^{(i)}\right)^2\right] = \sigma^2$$

Here σ^2 is some measure of *how noisy* the data are. Turns out, this effectively defines the *Gaussian or Normal distribution*.

Notation for the Gaussian

We write $z \sim \mathcal{N}(\mu, \sigma^2)$ and read these symbols as z is distributed as a normal with mean μ and standard deviation σ^2 .

or equivalently

Notation for Guassians in our Problem

Recall in our model,

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}$$
 in which $\varepsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$.

or more compactly notation:

$$y^{(i)} \mid x^{(i)}; \theta \sim \mathcal{N}(\theta^T x, \sigma^2).$$

equivalently,

$$P\left(y^{(i)} \mid x^{(i)}; \theta\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(y^{(i)} - x^T\theta)^2}{2\sigma^2}\right\}$$

- ▶ We **condition** on $x^{(i)}$.
- ▶ In contrast, θ parameterizes or "picks" a distribution.

We use bar (|) versus semicolon (;) notation above.

Intuition: among many distributions, pick the one that agrees with the data the most (is most "likely").

$$L(\theta) = p(y|X;\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)};\theta)$$
 iid assumption

Intuition: among many distributions, pick the one that agrees with the data the most (is most "likely").

$$L(\theta) = p(y|X;\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)};\theta)$$
 iid assumption
$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x^{(i)}\theta - y^{(i)})^2}{2\sigma^2}\right\}$$

Intuition: among many distributions, pick the one that agrees with the data the most (is most "likely").

$$L(\theta) = p(y|X;\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)};\theta)$$
 iid assumption
$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x^{(i)}\theta - y^{(i)})^{2}}{2\sigma^{2}}\right\}$$

For convenience, we use the *Log Likelihood* $\ell(\theta) = \log L(\theta)$.

$$\ell(\theta) = \sum_{i=1}^{n} \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{(x^{(i)}\theta - y^{(i)})^2}{2\sigma^2}$$

Intuition: among many distributions, pick the one that agrees with the data the most (is most "likely").

$$L(\theta) = p(y|X;\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)};\theta)$$
 iid assumption
$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x^{(i)}\theta - y^{(i)})^{2}}{2\sigma^{2}}\right\}$$

For convenience, we use the *Log Likelihood* $\ell(\theta) = \log L(\theta)$.

$$\ell(\theta) = \sum_{i=1}^{n} \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{(x^{(i)}\theta - y^{(i)})^{2}}{2\sigma^{2}}$$

$$= n \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x^{(i)}\theta - y^{(i)})^{2} = C(\sigma, n) - \frac{1}{\sigma^{2}} J(\theta)$$

where $C(\sigma, n) = n \log \frac{1}{\sigma \sqrt{2\pi}}$.

So we've shown that finding a θ to maximize $L(\theta)$ is the same as maximizing

$$\ell(\theta) = C(\sigma, n) - \frac{1}{\sigma^2}J(\theta)$$

Or minimizing, $J(\theta)$ directly (why?)

Takeaway: "Under the hood," solving least squares *is* solving a maximum likelihood problem for a particular probabilistic model.

This view shows a path to generalize to new situations!

Summary of Least Squares

- We introduced the Maximum Likelihood framework—super powerful (next lectures)
- We showed that least squares was actually a version of maximum likelihoods.
- ► We learned some notation that will help us later in the course. . .

Classification

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\} \text{ let } y^{(i)} \in \{0, 1\}.$ Why not use regression, say least squares? A picture ...

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\} \text{ let } y^{(i)} \in \{0, 1\}.$ Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many...

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\} \text{ let } y^{(i)} \in \{0, 1\}.$ Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many... but we'll pick one!

$$g(z)=\frac{1}{1+e^{-z}}.$$

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\} \text{ let } y^{(i)} \in \{0, 1\}.$ Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many... but we'll pick one!

$$g(z)=\frac{1}{1+e^{-z}}.$$

Sigmoid

How do we interpret $h_{\theta}(x)$?

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Then,

$$\begin{split} L(\theta) = & P(y \mid X; \theta) = \prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; \theta) \\ = & \prod_{i=1}^n h_\theta(x^{(i)})^{y^{(i)}} (1 - h_\theta(x^{(i)}))^{1-y^{(i)}} \quad \text{exponents encode "if-then"} \end{split}$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Then,

$$\begin{split} L(\theta) = & P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta) \\ = & \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}} \quad \text{exponents encode "if-then"} \end{split}$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Now to solve it...

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

We maximize for θ but we already saw how to do this! Just compute derivative, run (S)GD and you're done with it!

Takeaway: This is *another* example of the max likelihood method: we setup the likelihood, take logs, and compute derivatives.

Time Permitting: There is magic in the derivative. . .

Even more, the batch update can be written in a *remarkably familiar* form:

$$\theta^{(t+1)} = \theta^{(t)} + \sum_{j \in B} (y^{(j)} - h_{\theta}(x^{(j)}))x^{(j)}.$$

We sketch why (you can check!) We drop superscripts to simplify notation and examine a single data point:

$$y \log h_{\theta}(x) + (1 - y) \log(1 - h_{\theta}(x))$$

$$= -y \log(1 + e^{-\theta^{T}x}) + (1 - y)(-\theta^{T}x) - (1 - y) \log(1 + e^{-\theta^{T}x})$$

$$= -\log(1 + e^{-\theta^{T}x}) - (1 - y)(\theta^{T}x)$$

We used $1 - h_{\theta}(x) = \frac{e^{-\theta^T x}}{1 - e^{-\theta^T x}}$. We now compute the derivative of this expression wrt θ and get:

$$\frac{e^{-\theta^T x}}{1+e^{-\theta^T x}}x-(1-y)x=(y-h_{\theta}(x))x$$

Summary of Introduction to Classification

We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.

Summary of Introduction to Classification

- We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.
- We developed logistic regression from this principle.
 - Logistic regression is widely used today.

Summary of Introduction to Classification

- We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.
- ▶ We developed logistic regression from this principle.
 - Logistic regression is *widely* used today.
- We noticed a familiar pattern: take derivatives of the likelihood, and the derivatives had this (hopefully) intuitive "misprediction form"

Newton's Method

Given $f: \mathbb{R}^d \to \mathbb{R}$ find x s.t. f(x) = 0.

Newton's Method

Given $f: \mathbb{R}^d \to \mathbb{R}$ find x s.t. f(x) = 0.

We apply this with $f(\theta) = \nabla_{\theta} \ell(\theta)$, the likelihood function

Newton's Method (Drawn in Class)

Given $f: \mathbb{R}^d \to \mathbb{R}$ find x s.t. f(x) = 0.

Newton's Method Summary

Given $f: \mathbb{R}^d \to \mathbb{R}$ find x s.t. f(x) = 0.

▶ This is the update rule in 1d

$$x^{(t+1)} = x^{(t)} - \frac{f(x^{(t)})}{f'(x^{(t)})}$$

- It may converge very fast (quadratic local convergence!)
- ► For the likelihood, i.e., $f(\theta) = \nabla_{\theta} \ell(\theta)$ we need to generalize to a vector-valued function which has:

$$\theta^{(t+1)} = \theta^{(t)} - \left(H(\theta^{(t)})\right)^{-1} \nabla_{\theta} \ell(\theta^{(t)}).$$

in which $H_{i,j}(\theta) = \frac{\partial}{\partial \theta_i \partial \theta_j} \ell(\theta)$.

Optimization Method Summary

Method	Compute per Step	Number of Steps
SGD		
Minibatch SGD		
GD		
Newton		

- In classical stats, d is small (< 100), n is often small, and exact parameters matter
- ► In modern ML, *d* is huge (billions, trillions), *n* is huge (trillions), and parameters used *only* for prediction
- ▶ As a result, (minibatch) SGD is the *workhorse* of ML.

Classification Lecture Summary

- ▶ We saw the differences between classification and regression.
- We learned about a principle for probabilistic interpretation for linear regression and classification: Maximum Likelihood.
 - We used this to derive logistic regression.
 - ► The Maximum Likelihood principle will be used again next lecture (and in the future)
- We saw Newton's method, which is classically used models (more statistics than ML-it's not used in most modern ML)