Grundzüge der Theoretischen Informatik 21. Oktober 2021

Markus Bläser Universität des Saarlandes

Kapitel 1: Endliche Automaten

Produktautomat

Lemma (1.7)

Seien $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, Q_{\mathrm{acc},1})$ und

 $M_2=(Q_2,\Sigma,\delta_2,q_{0,2},Q_{\rm acc,2})$ zwei endliche Automaten, so dass δ_1 und δ_2 total sind. Die Funktion Δ definiert durch

$$\begin{array}{cccc} \Delta: & (Q_1 \times Q_2) \times \Sigma & \to & Q_1 \times Q_2 \\ & & ((q_1,q_2),\sigma) & \mapsto & (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma)) \end{array}$$

erfüllt

$$\Delta^*((q_1, q_2), w) = (\delta_1^*(q_1, w), \delta_2^*(q_2, w))$$

für alle $q_1 \in Q_1$, $q_2 \in Q_2$ und $w \in \Sigma^*$.

$$M_{\Lambda}$$
 alo. $V \in S \setminus S_{\Lambda}^{*}(q_{0_{M}}, V) \in \mathbb{Q}$ acc_M

$$A_{\Lambda}S : Q_{acc} = Q_{acc_{\Lambda}} \times Q_{acc_{\Lambda}} \times Q_{acc_{\Lambda}}$$

Abschlusseigenschaften

Theorem (1.8)

REG ist abgeschlossen unter Schnitt, Vereinigung und Mengendifferenz, d.h. sind $A, B \subseteq \Sigma^*$ regulär, so auch $A \cap B$, $A \cup B$ und $A \setminus B$.

Kapitel 2: Nichtdeterministische endliche Automaten

Konkatenation und Kleenesche Hülle

$$A = \{a, ab\}$$
 $B = \{bb, ba, \epsilon\}$
 $AB = \{abb, aba, a, abbb, abba, ab\}$

Definition (2.1)

Seien $A, B \subseteq \Sigma^*$

1. Die Konkatenation von A und B ist

$$AB = \{wx \mid w \in A, x \in B\}.$$

2. Die Kleenesche Hülle von A ist

$$A^*=\{x_1x_2\dots x_m\mid m\geq 0 \text{ und } x_\mu\in A,\ 1\leq \mu\leq m\}.$$

$$A^{i} := A \cdot A^{i-1}$$

$$A^{i} := A$$

$$A^{i} := A$$

$$A^{i} = A^{i} \cup A^{i} \cup A^{i}$$

$$A^{0} := \{\epsilon\}$$

$$A^{0} := \{\epsilon\}$$

Nichtdeterminismus

 $A = \{x \in \{0, 1\}^* \mid \text{die Anzahl der 0en in } x \text{ ist gerade}\},$ $B = \{y \in \{0, 1\}^* \mid \text{die Anzahl der 1en in } y \text{ ist ungerade}\}.$

ε -Transitionen

ε -Transitionen

Nichtdeterministische endliche Automaten

Definition (2.3)

Ein nichtdeterministischer endlicher Automat ist ein 5-Tupel $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$:

- 1. Q ist eine endliche Menge, die Zustandsmenge.
- 2. Σ ist eine endliche Menge, das Eingabealphabet.
- 3. $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ ist die Übergangsfunktion.
- 4. $q_0 \in Q$ ist der *Startzustand*.
- 5. $Q_{acc} \subseteq Q$ ist die Menge der akzeptierenden Zustände.

Falls δ eine Funktion $Q \times \Sigma \to \mathcal{P}(Q)$ ist, dann heißt M nichtdeterministischer endlicher Automat *ohne* ϵ -Transitionen.

Definition (2.4)

Sei $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ ein nichtdeterministischer endlicher Automat. Sei $w\in \Sigma^*,\ w=w_1\dots w_n$.

- 1. $s_0, s_1, \ldots, s_m \in Q$ heißt Berechnung von M auf w, falls $w = u_1 u_2 \ldots u_m$ geschrieben werden kann mit $u_\mu \in \Sigma_\epsilon$, so dass
 - 1.1 $s_0 = q_0$,
 - 1.2 für alle $0 \le \mu < m$ ist $s_{\mu+1} \in \delta(s_{\mu}, u_{\mu+1})$.
- 2. Die Berechnunge heißt akzeptierend, falls $s_m \in Q_{\rm acc}$. Sonst heißt sie verwerfend.

Beispiel

[0101]1

Berechnungen (2)

Definition

- 1. Ein nichtdeterministischer endlicher Automat M akzeptiert ein Wort w, falls es eine akzeptierende Berechnung von M auf w gibt. Sonst verwirft M w.
- 2. $L(M) = \{w \in \Sigma^* \mid M \text{ akzeptiert } w\}$ ist die von M erkannte Sprache.

Entfernen von ε -Transitionen

- - $\delta(\ _{q_1\sigma})=\ \text{alle}\ \ \text{ Zustaide},\ \text{ die ich not}\ \ q\ \text{ errei der kerr}$ $\ \text{ durch beliebez}\ \ \text{viele}\ \ \text{E-Trans.}\ \ \text{ und}$ $\ \text{erre}\ \ \text{Transition}\ \ \text{nit}\ \ \text{o-ar}\ \ \text{ Erde.}$ $R^{(\epsilon)}=\{r\in Q\mid \text{ es gibt }k\geq 0 \text{ und }s_0=r,s_1,\dots s_k,\text{ so dass}$
 - $$\begin{split} R^{(\epsilon)} = \{ r \in Q \mid & \text{es gibt } k \geq 0 \text{ und } s_0 = r, s_1, \dots s_k, \text{ so dass} \\ s_{\kappa+1} \in \delta(s_\kappa, \epsilon), \ 0 \leq \kappa < k \text{ und } s_k \in R. \}. \end{split}$$
 - R(c) alle Eustarde, von deren aus sich enen Eustand is R emeriden karrs wit beliebtig vielen E-Trans.

Enfernen von ε -Transitionen (2)

Lemma (2.6)

If $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ is a nondeterministic finite automaton, then $M'=(Q,\Sigma,\delta^{(\epsilon)},q_0,Q_{\rm acc}^{(\epsilon)})$ is a nondeterministic finite automaton without ϵ -transitions such that L(M)=L(M').