Contents

- Running Biomechanics Data Set (RBDS) analysis.
- Select the directory where the processed files are located
- Determine what metadata file type to be imported as a table
- Doing summary statistics using all data
- Anthropometric information minimum and maximum
- Plotting the distribution of demographics
- Traning habits information
- Level of muscle strength
- Level of flexibility
- Distribution of strength and flexibility levels
- Frequency of levels of performance
- Frequency of training volume
- Frequency of foot strike type across running speeds
- 2.5 m/s
- 3.5 m/s
- 4.5 m/s
- Doing summary statistics organized by group
- Comparing demographics between runners participating (Yes) or not (No) in running groups
- Comparing running habits between runners participating (Yes) or not (No) in running groups
- Importing processed data files
- Ground reaction forces (GRF) impulse calculation based on the area under the curves
- Joint work calculation based on the area under the joint power curves
- Example of batching processing the data. This can be used to open the processed files and generate plots of angles, moments, powers and GRFs.
- Other parameters
- Load and visualize the markers' position during standing calibration trial
- 3D plot of static markers
- 3D marker trajectories and GRF during treadmill running at 3.5 m/s

Running Biomechanics Data Set (RBDS) analysis.

Reginaldo K Fukuchi, Mar 2017, reginaldo.fukuchi@ufabc.edu.br

```
% This supplemental material presents a script that exemplifies an
% exploration of the data set contained in the metadata file. In addition, the basic data analysis
% steps taken to calculate the discrete variables and generate the time series curves
% (e.g. angles, torques, powers and GRFs) presented in the manuscript are offered in this script.

% The data set is available at Figshare (DDI: <a href="https://doi.org/10.6084/m9.figshare.4543435.v3">https://doi.org/10.6084/m9.figshare.4543435.v3</a>)
% Fukuchi RK, Fukuchi CA and Duarte M (2017). A public data set of running biomechanics
% and the effects of running speed on lower extremity kinematics and kinetics. PeerJ Preprints.

% In addition, it demonstrates plots of angles, moments, powers and ground
% reaction force curves displayed in the manuscript.

% Some of the steps have been reduced to minimize clutter, but the user
% should be able to adapt this code to any given file structure.
% clc, clear all, close all
```

Select the directory where the processed files are located

```
fileDir = uigetdir;
```

Determine what metadata file type to be imported as a table

Doing summary statistics using all data

Anthropometric information minimum and maximum

```
anthroStats = grpstats(newT,[],{'min','max','mean'},'DataVars',{'Age','Mass','Height'})
```

	GroupCount	min_Age	max_Age	mean_Age	min_Mass	max_Mass	mean_Mass	min_Height	max_Height	mean_Height
A11	28	22	51	34.75	56.85	82.15	69.638	162.7	187.2	175.96

Plotting the distribution of demographics

```
figure
[S,AX,BigAx,H,HAx] = plotmatrix([newT.Age,newT.Mass,newT.Height]);

title(BigAx,'Distribution of Anthropometrics')

% Axes lables
AX(1,1).YLabel.String = 'Age';
AX(2,1).YLabel.String = 'Mass';
AX(3,1).YLabel.String = 'Height';

AX(3,1).XLabel.String = 'Age';
AX(3,2).XLabel.String = 'Mass';
AX(3,3).XLabel.String = 'Height';
```


Traning habits information

runHabitsStats = grpstats(newT,[],{'mean','std'},'DataVars',{'Experience','SessionsPerWk','Pace'})

runHabitsStats =

	GroupCount	mean_Experience	std_Experience	mean_SessionsPerWk	std_SessionsPerWk	mean_Pace	std_Pace
All	28	101.5	84.258	3.7143	0.7127	4.0639	0.3771

Level of muscle strength

strengthStats = grpstats(newT,[],{'min','max'},'DataVars',{'RHIPABD','RHIPEXT','RHIPER','RHIPIR'})

strengthStats =

	GroupCount	min_RHIPABD	max_RHIPABD	min_RHIPEXT	max_RHIPEXT	min_RHIPER	max_RHIPER	min_RHIPIR	max_RHIPIR
All	28	16.8	45.767	14.333	33.95	7.7333	13.933	7.725	19.9

Level of flexibility

```
flexibStats = grpstats(newT,[],{'mean','std'},'DataVars',{'RThomas','ROber'})
```

Distribution of strength and flexibility levels

```
figure
[S,AX,BigAx,H,HAx] = plotmatrix([newT.RHIPABD,newT.RHIPEXT,newT.RHIPER,...
    newT.RHIPIR,newT.RThomas,newT.ROber]);
title('Muscle strength and flexibility')
% Axes lables
AX(1,1).YLabel.String = 'RHIPABD';
AX(2,1).YLabel.String = 'RHIPEXT';
AX(3,1).YLabel.String = 'RHIPER';
AX(4,1).YLabel.String = 'RHIPIR';
AX(5,1).YLabel.String = 'RThomas';
AX(6,1).YLabel.String = 'ROber';
AX(6,1).XLabel.String = 'RHIPABD';
AX(6,2).XLabel.String = 'RHIPEXT';
AX(6,3).XLabel.String = 'RHIPER';
AX(6,4).XLabel.String = 'RHIPIR';
AX(6,5).XLabel.String = 'RThomas';
AX(6,6).XLabel.String = 'ROber';
```


Frequency of levels of performance

tabulate(newT.Level)

Value Count Percent
Competitive 25 89.29%
Elite 3 10.71%

Frequency of training volume

tabulate(newT.Volume)

Value Count Percent
26-35 km 9 32.14%
36-45 km 7 25.00%
> 45 km 2 7.14%
> 45 km 9 32.14%
16-25 km 1 3.57%

Frequency of foot strike type across running speeds

2.5 m/s

tabulate (newT.RFSI25)

Forefoot 5 17.86% Midfoot 4 14.29% Rearfoot 19 67.86%

3.5 m/s

tabulate(newT.RFSI35)

 Value
 Count
 Percent

 Forefoot
 4
 14.29%

 Rearfoot
 19
 67.86%

 Midfoot
 5
 17.86%

4.5 m/s

tabulate(newT.RFSI45)

 Value
 Count
 Percent

 Forefoot
 5
 17.86%

 Rearfoot
 17
 60.71%

 Midfoot
 6
 21.43%

Doing summary statistics organized by group

Comparing demographics between runners participating (Yes) or not (No) in running groups

anthroStats = grpstats(newT,'RunGrp',{'mean','std'},'DataVars',{'Age','Mass','Height'})

anthroStats =

RunGrp GroupCount mean_Age std_Age mean_Mass std_Mass mean_Height std_Height Yes 'Yes' 5.3619 7.5682 174.15 6.7859 'No' 6.4807 73.055 7.0011 178.76 6.0853 No

Comparing running habits between runners participating (Yes) or not (No) in running groups

runHabitsStats = grpstats(newT, 'RunGrp', {'mean', 'std'}, 'DataVars', {'Experience', 'SessionsPerWk', 'Pace'})

runHabitsStats =

RunGrp GroupCount mean_Experience std Experience mean SessionsPerWk std SessionsPerWk mean Pace std Pace 'Yes' 77.529 4.0975 0.39723 63.904 3.8824 0.69663 Yes 0.35583 No 'No' 138.55 100.74 3.4545 0.68755 4.0121

Importing processed data files

```
% Subject 1
xP = importdata([fileDir filesep 'RBDS001processed.txt']);
time = xP.data(:,1); % time normalized vector

varName = 'RhipAng225'; % Hip Sagittal Angle at 2.5 m/s
% Find the column corresponding to the variable based on the file header
iVar = strcmp(varName,xP.colheaders(1,:));

xX = xP.data(:,iVar);
% Calculating global maximum and minimum values using max and min functions
[maxVal,imaxVal] = max(xX);
[minVal,iminVal] = min(xX);
```

Ground reaction forces (GRF) impulse calculation based on the area under the curves

```
grfName = 'RgrfX25'; % GRF in the A-P direction
% Find the column corresponding to the variable based on the file header
iGRF = strcmp(grfName,xP.colheaders);
xGRF = xP.data(:,iGRF);
```

```
% Finding values greater and lower than zero
iGRFgt0 = find(xGRF > 0);
iGRFlt0 = find(xGRF < 0);

% Calculating GRF Impulse from GRF curves using trapz function
impGRFpos = trapz(time(iGRFgt0)/length(time),xGRF(iGRFgt0));
impGRFneg = trapz(time(iGRFlt0)/length(time),xGRF(iGRFlt0));</pre>
```

Joint work calculation based on the area under the joint power curves

```
powName = 'RhipPow25'; % Hip joint power

% Find the column corresponding to the variable based on the file header
iPow = strcmp(powName,xP.colheaders);

xPow = xP.data(:,iPow);

% Finding values greater and lower than zero
iPowgt0 = find(xPow > 0);
iPowlt0 = find(xPow < 0);

% Calculating GRF Impulse from GRF curves using trapz function
posPower = trapz(time(iPowgt0)/length(time),xPow(iPowgt0));
negPower = trapz(time(iPowlt0)/length(time),xPow(iPowlt0));</pre>
```

Example of batching processing the data. This can be used to open the processed files and generate plots of angles, moments, powers and GRFs.

```
nsubjs = 1; % Change this parameter according to the number of subjects to be processed.
```

Other parameters

```
= [2.5,3.5,4.5]; % running speeds in m/s
          = {'hip','knee','ankle'}; % lower extremity joints
axesXYZ = {'X','Y','Z'}; % Reference system
          = {'R','L'}; % Limb side
varType = {'Ang','Mom','Pow','grf'}; % Biomechanical variable types
% Parameters for plotting data
show = 1; % control for displaying graphs
      = {'b','r'}; symbol = {'-','-.',':'};
ngs = length(speed); % number of different gait speeds
for is = 1:length(side)
   hcurve = [];
    for ivar = 1:length(varType)
       for ij = 1:length(joints)
           for igs = 1:length(speed)
                for xyz = 1:length(axesXYZ)
                    nrows = 3; ncols = 3;
                    step = xyz; stride = ij;
                    if ivar == 3 % Joint power header names
                        % scalar joint power only joints, no xyz
                        xyz = 1; axesXYZ = { '' };
                        % Subplot parameters
                        step = ij; stride = 1; nrows = 1; ncols = 3;
                    elseif ivar == 4 % GRF header names
                        % GRF only xyz, no joints
                        ij = 1; joints = {''};
                        % Subplot parameters
                        nrows = 1; ncols = 3; step = xyz; stride = 1;
                    varName = strcat(side{is},joints{ij},varType{ivar},...
                        axesXYZ{xyz},num2str(speed(igs)*10));
                    xXx = []; %create empty variable
                    for isubj = 1:nsubjs
                        % Import files
                        subLabel = ['RBDS0' num2str(isubj,'%02i')]; % Subject label
                        xP = importdata([fileDir filesep subLabel 'processed.txt']);
                        \ensuremath{\mathtt{\$}} Find the column corresponding to the variable based on the header
                        iVar = find(strcmp(varName,xP.colheaders));
                        xX = xP.data(:,iVar);
                        xXx = [xXx xX]; % Concatenate data of different subjects
                    % Generate the average curves across subjects
```

```
time = xP.data(:,1); % time normalized vector
                         nvars = length(varType); % Number of variable types
                         figure((nvars*is-nvars)+ivar)
                         subplot(nrows,ncols,(3*stride=3)+step)
                         % Ploting average curve across subjects
                         hcurve = plot(time, mean(xXx,2),...
                              strcat(cor{is},symbol(igs)));
                         set(hcurve,'Linewidth',2)
                         hold on, xlim([0 100])
                         xlabel('Gait cycle [%]'), ylabel(varName)
                         hleg(igs) = hcurve;
                     % Update cell arrays
                             = {'hip','knee','ankle'}; % lower extremity joints
= {'X','Y','Z'}; % Reference system
                     joints
                     axesXYZ
                 % Creating legend for the curves
                 legText\{igs\} = strcat(num2str(speed(igs)), 'm/s');
            end
        end
        % Legend of the graphs
        legend(hleg,legText)
end
```


Load and visualize the markers' position during standing calibration trial

```
% Import static trial data
xS = importdata([fileDir filesep 'RBDS001static.txt']);
timeS = xS.data(:,1);
markerLabelS = xS.colheaders(2:end);
```

```
markerLabelS2 = markerLabelS(1:3:end-2);
dataS = xS.data(:,2:end);
```

3D plot of static markers

```
figure('units','normalized','outerposition',[0 0 1 1])
 subplot(1,2,1)
 for i = 1:size(dataS,2)/3
                % Showing standing calibration markers
               \texttt{hl}(\texttt{i}) = \texttt{plot3}(\texttt{mean}(\texttt{dataS}(\texttt{:,3*i})), \texttt{mean}(\texttt{dataS}(\texttt{:,3*i-2})), \texttt{mean}(\texttt{dataS}(\texttt{:,3*i-1})), \texttt{'bo'}); \texttt{ hold on } \texttt{hl}(\texttt{i}) = \texttt{plot3}(\texttt{mean}(\texttt{dataS}(\texttt{:,3*i-1})), \texttt{hold on } \texttt{hl}(\texttt{i}) = \texttt{plot3}(\texttt{in}) = \texttt{plot3}(
                % Assigning label to markers
                text(mean(dataS(:,3*i)),mean(dataS(:,3*i-1)),mean(dataS(:,3*i-1)),[' ' num2str(i)])
                leg{i} = [num2str(i) '-' markerLabelS2{i}];
end
  \ensuremath{\mathtt{\%}} Plotting Lab coordinate system
h2 = plot3([500 500+250],[500 500],[0 0],'b-');
 h3 = plot3([500 500],[500 500+250],[0 0],'r-');
 h4 = plot3([500 500], [500 500], [0 250], 'g-');
 set([h2 h3 h4],'Linewidth',2)
 xlabel('Z-axis'), ylabel('X-axis'), zlabel('Y-axis')
  % view([180 0]) % force figure to be displayed in this view.
 axis([450 1600 400 1250 0 1500])
  % Showing legend of markers
 lg = legend(h1,leg);
 set(lg,'Position',[0.6629 0.0906 0.1010 0.8261])
 set(gca, 'CameraPosition', [320.9143 9.7713e+03 5.9311e+03])
% Import markers during running at 3.5 m/s
xD = importdata([fileDir filesep 'RBDS001runT35markers.txt']);
 timeD = xD.data(:,1); % time vector
 markerLabelD = xD.colheaders(2:end);
 markerLabelD2 = markerLabelD(1:3:end-2);
 dataD = xD.data(:,2:end);
  \ \mbox{\forces} Import forces during running at 3.5 m/s
 xF = importdata([fileDir filesep 'RBDS001runT35forces.txt']);
  dataF = xF.data(:,2:end);
```


3D marker trajectories and GRF during treadmill running at 3.5 m/s

```
markers = dataD;
CoPz = dataF(1:2:end,6);
CoPx = dataF(1:2:end,4);
Fz = dataF(1:2:end,3);
    = dataF(1:2:end,2);
    = dataF(1:2:end,1);
% Treadmill dimensions
widthT = 486;
lengthT = 1800;
% Position of the geometric center of the treadmill in the lab centerTposition = [2149 0 976.7];
corner1 = [centerTposition(1)-lengthT/2 0 centerTposition(3)-widthT/2];
corner2 = [corner1(1) corner1(2) corner1(3)+widthT];
corner3 = [corner1(1)+lengthT corner1(2) corner2(3)];
corner4 = [corner3(1) corner3(2) corner1(3)];
n2cm = .75; % Newtons to cm
figure('units','normalized','outerposition',[0 0 1 1])
for i = 1:10:size(markers,1)/2
    % Plotting markers
    \label{eq:hmarkers} \verb| hmarkers| = \verb| plot3| (markers(i,3:3:end), markers(i,1:3:end-2), \ldots
       markers(i,2:3:end-1),'bo'); hold on
```

```
set(hmarkers,'Linewidth',2)
\ensuremath{\$} Plotting force platform borders
plot3([corner1(3) corner2(3) corner3(3) corner4(3) corner1(3)],...
    [corner1(1) corner2(1) corner3(1) corner4(1) corner1(1)],...
    [corner1(2) corner2(2) corner3(2) corner4(2) corner1(2)],...
% Force plate area
hFP = fill3([corner1(3) corner2(3) corner3(3) corner4(3)],...
    [corner1(1) corner2(1) corner3(1) corner4(1)],...
    [corner1(2) corner2(2) corner3(2) corner4(2)],...
    [0 0 0]);
hFP.FaceAlpha = 0.5; % Setting transparent filling
% Plotting GRF vector
hArrow = plot3([CoPz(i) CoPz(i)+Fz(i)/n2cm],[CoPx(i) CoPx(i)+Fx(i)/n2cm],[0 Fy(i)/n2cm], 'k-');
hArrow.LineWidth = 2;
xlabel('Z-axis'), ylabel('X-axis'), zlabel('Y-axis')
grid on
axis equal, axis([750 1300 1500 3200 0 1500])
hold off
pause(0.1)
```

