Rinaldi Hendrawan

A11.2019.12190

Pengujian Kualitas Air

Business Understanding

Problems

Air minum merupakan komponen yang penting bagi kesehatan manusia karena dengan terjaganya kualitas air dapat meningkatkan perlindungan kesehatan. Kualitas air merupakan masalah kesehatan yang cukup seruis di tingkat nasional dan pembangunan di tingkat nasional. Oleh karena itu kami ingin menemukan pola / ciri bahwa air tersebut layak dikonsumsi atau tidak

Data Understanding

Untuk dapat menyelesaikan permasalahan tersebut data berikut

Nilai pH

Merupakan paremater penting dalam menentukan keseimbangan asam / basa dalam air, untuk standar air minum / konsumsi. WHO mempunyai batas maksimum nilai pH dikisaran 6.5 hingga 8.5, tapi untuk standard WHO merekomendasikan di nilai 6.5 hingga 6.8.

Hardness

Merupakan sifat kimia air yang mengandung mineral tertentu yang umumnya terdiri dari kalsium (Ca) dan magnesium (Mg). Kesadahan air berhubungan erat dengan nilai pH dimana air yang memiliki tingkat kesadahan yang tinggi cenderung mempubyai sifat basa, karena kalsium (Ca) dan magnesium (Mg) mempunyai sifat basa.

Solids (Total dissolved solids - TDS)

Air mempuyai kemampuan untuk melarutkan senyawa organik dan non – organik. Zat atau partikel padat terlarut yang ditemukan dalam air dapat berupa natrium (garam), kalsium, magnesium, kalium, karbonat, nitrat, bikarbonat, klorida dan sulfat. Untuk nilai standard dari TDS bahwa air tersebut mengandung mineral / layak dikonsumsi dikisaran standard 500 mg/l dan batas maksimum yaitu 1000 mg/l

Chloramines

Merupakan zat disinfektan yang digunakan membunuh kuman atau bakteri yang terkandug di dalam air. Kadar klorin hingga 4 miligram per liter (mg/L atau 4 bagian per juta (ppm)) dianggap aman dalam air minum.

Sulfate

Sulfat (Sulfate) merupakan zat umum yang biasanya di temukan di air mineral, batu dan tanah. Konsentrasi sulfat dalam air laut adalah sekitar 2.700 miligram per liter (mg/L). Ini berkisar antara 3 sampai 30 mg/L di sebagian besar persediaan air tawar, meskipun konsentrasi yang jauh lebih tinggi (1000 mg/L) ditemukan di beberapa lokasi geografis.

Conductivity

Jumlah padatan yang terlarut dalam air menentukan konduktivitas listrik. Konduktivitas listrik (EC) sebenarnya mengukur proses ionik suatu larutan yang memungkinkannya mentransmisikan arus. Menurut standar WHO, nilai EC tidak boleh melebihi 400 μ S/cm

Organic_carbon

Total Organic Carbon (TOC) merupakan jumlah carbon yang terdapat dalam senyawa organic dan sering digunakan sebagai indicator kualitas air. Menurut US EPA < 2 mg/L sebagai TOC dalam air olahan/minum, dan < 4 mg/Lit pada air sumber yang digunakan untuk pengolahan

Trihalomethanes

THM (Trihalomethanes) adalah bahan kimia yang dapat ditemukan dalam air yang diolah dengan klorin. Penggunaan klorin sangat dibutuhkan untuk mengendalikan mikroorganisme, seperti bakteri dan virus yang dapat menjadi sumber penyakit. Kadar THM hingga 80 ppm dianggap aman dalam air minum.

Turbidity

Kekeruhan (Turbidity) diartikan sebagai ukuran relatif kejernihan air, kekeruhan dalam air minum adalah untuk menghilangkan patogen penyebab penyakit yang ditularkan melalui air. Nilai rata-rata kekeruhan yang diperoleh untuk Kampus Wondo Genet (0,98 NTU) lebih rendah dari nilai rekomendasi WHO sebesar 5,00 NTU.

Potability

Menunjukkan jika air aman untuk konsumsi manusia di mana 1 berarti. Dapat Diminum dan 0 berarti Tidak dapat diminum.

Tentang data ini

Atribut:

1. ph: nilai pH (0 to 14)

2. Hardness: Kapasitas air untuk mengendapkan sabun satuan mg/L.

3. Solids: Total padatan terlarut satuan ppm.

4. Chloramines: Jumlah Kloramin satuan ppm.

5. Sulfate: Jumlah Sulfat terlarut satuan mg/L.

6. Conductivity: Konduktivitas listrik air satuan μS/cm.

7. Organic_carbon: Jumlah karbon organik satuan ppm.

8. Trihalomethanes: Jumlah Trihalomethanes satuan μg/L.

9. Turbidity: ukuran akibat hamburan cahaya oleh partikel yang menyebar di dalam air satuan NTU.

Target:

10. Potability: Menunjukkan jika air aman untuk konsumsi manusia di mana 1 berarti Dapat Diminum dan 0 berarti Tidak dapat diminum.

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735	54.917862	2.559708	0
6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695	84.603556	2.672989	0
7	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817	62.798309	4.401425	0
8	NaN	118.988579	14285.583854	7.804174	268.646941	389.375566	12.706049	53.928846	3.595017	0
9	11.180284	227.231469	25484.508491	9.077200	404.041635	563.885481	17.927806	71.976601	4.370562	0
10	7.360640	165.520797	32452.614409	7.550701	326.624353	425.383419	15.586810	78.740016	3.662292	0
11	7.974522	218.693300	18767.656682	8.110385	NaN	364.098230	14.525746	76.485911	4.011718	0
12	7.119824	156.704993	18730.813653	3.606036	282.344050	347.715027	15.929536	79.500778	3.445756	0
13	NaN	150.174923	27331.361962	6.838223	299.415781	379.761835	19.370807	76.509996	4.413974	0
14	7.496232	205.344982	28388.004887	5.072558	NaN	444.645352	13.228311	70.300213	4.777382	0
15	6.347272	186.732881	41065.234765	9.629596	364.487687	516.743282	11.539781	75.071617	4.376348	0
16	7.051786	211.049406	30980.600787	10.094796	NaN	315.141267	20.397022	56.651604	4.268429	0
17	9.181560	273.813807	24041.326280	6.904990	398.350517	477.974642	13.387341	71.457362	4.503661	0
18	8.975464	279.357167	19460.398131	6.204321	NaN	431.443990	12.888759	63.821237	2.436086	0
19	7.371050	214.496610	25630.320037	4.432669	335.754439	469.914551	12.509164	62.797277	2.560299	0

275	5.324942	280.089655	35344.658047	13.043806	180.206746	392.421496	10.504820	55.084668	4.427138	1
276	7.082301	169.468927	29846.719057	5.443387	350.401849	353.030380	18.959534	30.389096	3.485577	1
277	5.334184	224.787936	28897.491527	6.048525	NaN	360.179177	12.247344	67.154751	5.091357	1
278	10.761898	81.710895	25999.953669	8.477394	318.427241	392.704082	12.716350	52.246972	4.661799	1
279	6.286807	258.300052	13777.376191	7.483258	328.680650	563.434775	16.460837	73.516654	4.104863	1
280	9.794559	129.870958	20682.731742	9.390843	291.980083	427.123948	11.853228	78.711469	2.945419	1
281	8.210444	167.102192	13933.085360	10.422842	243.485942	391.068874	13.747058	61.058210	4.976055	1
282	6.941719	173.334389	20111.821256	6.697194	NaN	374.485332	19.937486	NaN	4.563183	1
283	10.356119	136.323752	48621.563952	9.158704	327.922751	365.720292	17.975564	77.359854	4.201849	1
284	7.958984	171.483625	23625.813886	9.537735	259.979966	327.623881	16.117110	107.754043	4.698008	1
285	3.882631	243.807950	7751.809491	0.530351	NaN	341.291116	12.990592	60.109968	3.734001	1
286	5.671774	216.042811	15949.153179	7.500573	NaN	372.535243	17.895724	77.457885	3.833160	1
287	10.003301	143.094285	46113.957485	12.912187	NaN	574.555041	16.963310	36.767671	4.746382	1
288	6.552847	198.806940	34006.420733	8.691206	274.904351	477.163907	14.369630	78.173063	4.687986	1
289	7.628553	156.793694	26244.036908	8.337610	255.043194	495.966986	13.633974	65.604841	4.182057	1
290	4.790841	268.720881	17862.369003	4.554574	377.241161	608.846856	10.806313	83.702236	3.258859	1
291	7.710960	181.938126	6552.626314	5.389249	390.596392	516.284083	17.010785	58.241734	4.288947	1

Sumber

https://www.kaggle.com/adityakadiwal/water-potability