La zia Bice, ricamatrice, coordina la preparazione dei bavaglini da vendere al prossimo mercatino. I
bavaglini sono di tre tipi: maschile, femminile e unisex. Ogni bavaglino richiede dei filati nelle quantità,
in cm, indicate nella seguente tabella, che riporta anche il tempo in minuti richiesto e il ricavo di vendita.

Bavaglino	Azzurro	Rosa	Giallo	Verde
Maschile	100	10	30	20
Femminile	10	100	40	20
Unisex	30	10	50	70

I fornitori di filati mettono a disposizione delle confezioni con le seguenti caratteristiche (metri di filati dei vari colori e prezzo in euro):

Confezione	Azzurro	Rosa	Giallo	Verde	Prezzo
1	40	30	50	20	20
2	20	50	40	50	25
3	30	40	40	10	15

Ciascun bavaglino richiede manodopera per 15 minuti e viene venduto a 5 euro. La zia Bice e le sue numerose amiche potranno dedicare ai bavaglini 200 ore del loro tempo e devolveranno il ricavato delle vendite, al netto dei costi per i soli filati, in beneficienza. Tenendo conto che tutti i bavaglini ricamati saranno sicuramente venduti, scrivere il modello di programmazione lineare che determini quanti bavaglini ricamare al fine di massimizzare le somme devolute in beneficienza, considerando anche che:

- sono richiesti almeno 10 bavaglini per tipo;
- si vogliono acquistare al massimo due tipi di confezione;
- ciascun fornitore pratica uno sconto del 5% sul prezzo unitario di vendita se si acquistano almeno 10 delle loro confezioni (suggerimento: modellare la decisione sul numero di confezioni da acquistare a prezzo scontato).

ANALISI DEL PROBLEMA

Si tratta di un problema di ottimizzazione della produzione di bavaglini con l'obiettivo di massimizzare il profitto da devolvere in beneficenza, considerando vincoli di risorse (tempo, materiali) e requisiti specifici.

PARAMETRI DEL PROBLEMA

Definiamo prima i parametri noti:

- Tre tipi di bavaglini: Maschile (M), Femminile (F), Unisex (U)

- Quattro colori di filati: Azzurro (A), Rosa (R), Giallo (G), Verde (V)

- Tre tipi di confezioni disponibili (1, 2, 3)

- Tempo disponibile: 200 ore = 12.000 minuti

- Tempo di manodopera per bavaglino: 15 minuti

- Prezzo di vendita: 5 euro per bavaglino

- Sconto del 5% se si acquistano almeno 10 confezioni dello stesso tipo

VARIABILI DECISIONALI

Introduciamo le seguenti variabili:

- x_M: numero di bavaglini maschili da produrre
- x_F: numero di bavaglini femminili da produrre
- x_U: numero di bavaglini unisex da produrre
- y_i: numero di confezioni di tipo i da acquistare (i = 1,2,3)
- z_i: variabile binaria che vale 1 se si acquistano almeno 10 confezioni di tipo i (i = 1,2,3)

FUNZIONE OBIETTIVO

Massimizzare: $5(x_M + x_F + x_U) - \Sigma(y_i * prezzo_i * (1 - 0.05*z_i))$

dove il primo termine rappresenta i ricavi dalle vendite e il secondo i costi dei materiali con l'eventuale sconto.

VINCOLI

1. Vincoli di tempo:

$$15(x_M + x_F + x_U) \le 12000$$

2. Vincoli di materiale per ogni colore:

$$100x_M + 10x_F + 30x_U \le 40y_1 + 20y_2 + 30y_3$$
 (Azzurro)

$$10x_M + 100x_F + 10x_U \le 30y_1 + 50y_2 + 40y_3$$
 (Rosa)

$$30x_M + 40x_F + 50x_U \le 50y_1 + 40y_2 + 40y_3$$
 (Giallo)

$$20x_M + 20x_F + 70x_U \le 20y_1 + 50y_2 + 10y_3$$
 (Verde)

3. Vincolo sulla produzione minima:

4. Vincolo sul numero massimo di tipi di confezione:

$$z 1 + z 2 + z 3 \le 2$$

5. Vincoli per attivare lo sconto:

y_i ≥ 10z_i per ogni i

y_i ≤ Mz_i per ogni i

dove M è un numero sufficientemente grande

6. Vincoli di non negatività:

$$x_M, x_F, x_U, y_1, y_2, y_3 \ge 0$$

$$z 1, z 2, z 3 \in \{0,1\}$$

Questo modello permetterà di determinare il numero ottimale di bavaglini da produrre per ogni tipo e le confezioni da acquistare, massimizzando il profitto da devolvere in beneficenza.

1. Un'azienda metallurgica produce acciaio in due tipi (standard e speciale) utilizzando tre linee diverse. Ogni linea può produrre, in momenti diversi, sia acciaio speciale sia acciaio standard, con diverse produttività. La linea A ha una produzione oraria di 8 tonnellate di acciaio standard oppure 3 di speciale, la linea B ha una produzione oraria di 6 tonnellate standard oppure 5 di speciale, la linea C produce 7 tonnellate standard oppure 9 speciale all'ora. Il mercato richiede almeno 1200 tonnellate di acciaio standard e 840 tonnellate di acciaio speciale. Sapendo che costi di produzione orari per le tre linee sono 90 euro per la linea A, 80 per la linea B e 100 per la linea C, si scriva il modello di programmazione lineare che determini la produzione costo minimo, tenendo conto che:

Ogni linea deve essere attiva per almeno 16 ore, considerata sia la produzione di acciaio sia speciale sia standard:

ossono lavorare al massimo due linee (fatto salvo il punto seguente);

e lavorano tutte e tre le linee si ha un costo aggiuntivo di 1500 euro;

per facilitare la composizione dei turni degli operai, le ore lavorate da ogni linea devono essere multipli di 8.

Funzione Obiettivo (Minimizzare):

$$90(xAs + xAp) + 80(xBs + xBp) + 100(xCs + xCp) + 1500y$$

Dove y è una variabile binaria che indica se tutte e tre le linee sono utilizzate (y = 1) o no (y = 0)

Soggetto a:

1. Requisiti di Produzione:

$$8xAs + 6xBs + 7xCs \ge 1200$$
 (acciaio standard)

$$3xAp + 5xBp + 9xCp \ge 840$$
 (acciaio speciale)

2. Ore Minime di Operatività:

$$xAs + xAp \ge 16$$

3. Massimo Due Linee Operative:

Siano zA, zB, zC variabili binarie che indicano se una linea è utilizzata

$$zA + zB + zC \le 2 + y$$

$$xAs + xAp \le M \cdot zA$$

$$xBs + xBp \le M \cdot zB$$

$$xCs + xCp \le M \cdot zC$$

Dove M è un numero grande (es. 24)

4. Ore in Multipli di 8:

xAs, xAp, xBs, xBp, xCs, xCp devono essere multipli di 8

5. Non Negatività:

Tutte le variabili $x \ge 0$

y, zA, zB, zC sono variabili binarie (0 o 1)