SCILAB: Библиотеки

Глава 4. Дифференциальные уравнения

Содержание главы:

- Краткий русско-английский словарь употребляемых терминов дифференциального исчисления
- С помощью каких команд можно решить дифференциальное уравнение?
- Солвер ode для решения обыкновенного дифференциального уравнения
- Как установить режим вычислений с помощью для солвера дифференциальных уравнений ode?
- Как решить уравнение Риккати (Riccati)?

Приближенное определение производных функций должно всегда проводиться с особой осторожностью, так как известно, что дифференцирование, в противоположность интегрированию, сопровождается "разбалтыванием". Это означает, что у производной ухудшается свойство гладкости.

Краткий русско-английский словарь употребляемых терминов дифференциального исчисления

Обыкновенные дифференциальные уравнения (ОДУ)

Правая часть дифференциального уравнения

Уравнение дифференциальное жесткое

Жесткая задача

Дифференциальное алгебраическое уравнение

Ordinary Differential Equation (ODE)

Right Hand Side (RHS)

stiff differential equation

stiff problem

Differential Algebraic System Solver =

dassl

С помощью каких команд можно решить дифференциальное уравнение?

Способ 1.

С помощью команды **ode**, которая является солвером для решения обыкновенного дифференциального уравнения.

Способ 2.

С помощью команды **odedc**, которая вычисляет решение смешанной дискретнонепрерывной системы. Смотри подробно **help odedc**.

Способ 3.

Команда **dassl**, которая дает решение неявно выраженного дифференциального уравнения: g(t,y,ydot)=0 y(t0)=y0 и ydot(t0)=ydot0

Смотри подробно help dassl. Детальный пример дан в файле

SCIDIR/tests/dassldasrt.tst

Способ 4.

С помощью команды **impl**, которая дает решение неявно выраженного линейного дифференциального уравнения

A(t,y) dy/dt=g(t,y), y(t0)=y0

Смотри подробно **help impl**. Смотри также пример в файле

SCIDIR/routines/default/Ex-impl.f .

Солвер ode для решения обыкновенного дифференциального уравнения

Солвер служит для решения обыкновенного дифференциального уравнения (ОДУ) dy/dt=f(t,y), y(t0)=y0

Синтаксис

y=ode(y0,t0,t,f) [y,w,iw]=ode([type],y0,t0,t [,

[y,w,iw]=ode([type],y0,t0,t [,rtol [,atol]],f [,jac] [,w,iw])
[y,rd,w,iw]=ode("root",y0,t0,t [,rtol [,atol]],f [,jac],ng,g [,w,iw])
y=ode("discrete",y0,k0,kvect,f)

Параметры

у0: действительное число или матрица (условия инициализации)

t0 : действительный скаляр (время инициализации)

t : действительный вектор. Задает интервал времени для которого вычисляется решение уравнения.

f: внешний параметр (функция или строка или список).

type: строковая переменная принимающая одну из следующих значений:

"adams" "stiff" "rk" "rkf" "fix" "discrete" "roots"

rtol, atol: действительные константы и действительные константы того же размера, что и y.

јас: внешний параметр (функция или строка или список).

w, iw: действительные вектора.

ng: целое число.

g : внешний параметр (функция или строка или список).

k0: целое число (начальное время).

kvect: целочисленный вектор.

Команды **ode** является стандартной функцией для решения явной "ODE" системы определенной следующим образом:

dy/dt = f(t,y), y(t0) = y0.

Имеется интерфейс для разнообразных солверов, в частности для **ODEPACK**. (ODEPACK=Differential Eguations PACKage. Это пакет для решения алгебраических дифференциальных уравнений.)

Способ решения проблемы и метод зависят от значения первого опционного аргумента, который может принимать значения из следующего списка:

: по умолчанию будет вызываться солвер пакета ОDEPACK. Автоматически пакетом

производится выбор между методом прогноза и коррекции (nonstiff predictor-corrector) для нежестких задач и методом BDF (Backward Differentiation Formula) Адамса-Мултона для жестких задач. Изначально используется метод для нежесткой задачи и динамический контроль результатов для того, чтобы решить, какой из методов следует использовать.

"adams": Используется для нежесткой задачи. Вызывается lsode солвер пакета ODEPACK и используется метод Адамса.

"stiff": Используется для жесткой задачи (stiff problems). Вызывается Isode solver пакета ODEPACK и используется метод BDF (Backward Differentiation Formula). Этот метод схож с методом Адамса-Мултона (Adams-Moulton).

"rk": Используется адаптивный метод Рунге-Кутта (Runge-Kutta) 4-го порядка (RK4).

"rkf": Используется программа Shampine и Watts, основанная на методе Рунге-Кутта-Фельберга (Fehlberg's Runge-Kutta) 4-5-го порядка точности (RKF45) с автоматической оценкой ошибки. Этот опцион для нежестких (non-stiff) и умеренно-жестких (mildly stiff) задач, если оценка производной не важна. Этот метод не следует применять, если пользователю требуется высокая точность.

"fix": Используется тот же солвер, что и с значением параметра "rkf", но с очень простым интерфейсом для пользователя, т.е. необходимо задавать солверу только значение параметров. Это самый простой метод для начала.

"root": Используется ODE солвер со способностью нахождения корней. Используется **lsodar** солвер пакета ODEPACK. Это вариант **lsoda** солвера, в котором он находит корни заданного вектора функции. Подробно смотри **help ode root**.

"discrete": Моделирование дискретного времени (Discrete time simulation). Подробно смотри help de discrete.

Здесь мы описываем только использование команды **ode** для стандартных явных ODE систем. Простейщий вариант: y=ode(y0,t0,t,f), где y0 является вектором начальных условий; t0 - начальное время; t -вектор времени, за которое вычисляется решение y и y-вектор решений y=[y(t(1)),y(t(2)),...]. Функция f для команды **ode** определяется как внешняя, т.е. определена как scilab-функция или является именем Fortran или C функции, вызываемая соответствующим образом или задана списком (**list**). Если f является функцией, то синтаксис должен быть следующий: ydot = f(t,y)

где **t** действительный скаляр (время) и **y** -действительный вектор (положение). Эта функция является правой частью (RHS=right hand side) дифференциального уравнения **dy/dt=f(t,y)**. Если **f** задано символьной переменной, она отсылает к имени Fortran процедуры или С функции. Например, для команды ode (y0,t0,t,"fex"), fex будет именем вызываемой подпрограммы. Эту подпрограмму следует вызвать с помощью конструкции **f(n,t,y,ydot)**. Внешняя подпрограмма может быть динамически линкована в Scilab. (Смотри главу 6: Интерфейс между программами, написанными на языках С и Fortran и пакетом Scilab).

 Π римеры таких программ находятся в файлах SCIDIR/routines/default/README и SCIDIR/routines/default/Ex-ode.f.

Аргумент f может быть также задан списком. Для конструкции ode (y0, t0, t, lst)

параметр 1st должен быть списком со следующей структурой:

```
lst=list(f,u1,u2,...un)
ydot = f(t,y,u1,u2,...,un)
```

Это позволяет использовать параметры в качестве аргументов функции \mathbf{f} . Функция \mathbf{f} может возвращать вместо вектора матрицу размера \mathbf{p} на \mathbf{q} . Подробно смотрите **help ode**.

Замечание: Используя переменную %ODEOPTIONS, можно задать еще больше опционов для ODEPACK солверов. Подробно смотрите help odeoptions.

Пример 1.

Получим численное решение дифференциального уравнения dy/dt= f(t,y), где $f=t*y^{(1/3)}$ с начальные условия t0=1 и y0=1. Мы хотим получить численное решение этого уравнения в интервале значений t от tmin=1 до t=0.01.

Поскольку известно, что это уравнение имеет точное аналитическое решение $y(t) = ((t^2+2)/3)^{(3/2)}$, мы сможем проверить полученный с помощью пакета Scilab результат.

```
у0=1; t0=1; t=1:0.01:1.5; deff("[ydot]=f(t,y)","ydot=y^(1/3)*t") y=ode(y0,t0,t,f); // y_exact=((t^2+2)/3)^(1.5); // это функция точного решения для сравнения my_er=y-y_exact; plot(t,y-y_exact) // это график ошибки вычисления от аргумента t Pesyльтат:
```


Важное замечание:

Начальные условия должны быть заданы в точке слева от минимальной координаты в интервале для которого мы находим численное решение дифференциального уравнения, то есть t0 <= tmin. В противном случае (например, при начальных условиях t0 = 1 и y0 = 1 хотим найти решение в интервале t=0.8 : 0.1 : 5), вычисления не производится и поступает

сообщение об ошибке, например, такого рода:

```
intdy-- t (=r1) illegal
where r1 is : .100000000000E+00
t n est pas entre tcur - hu (= r1) et tcur (=r2)
where r1 is : .6989745878701E-01 and r2 : -.2841502812730E-01
lsoda-- problems due to intdy. itask=i1,tout=r1
where i1 is : 1
where r1 is : .100000000000E+00
!--error 9999
illegal input
```

Замечание: Команда **ode** может иметь очень много разнообразных параметров. Часто целесообразно устанавливать режим солвера дифференциальных уравнений с помощью команды **odeoptions**.

Как установить режим вычислений с помощью для солвера дифференциальных уравнений ode?

С помощью команды **odeoptions**.

Синтаксис

odeoptions()

Замечание: Команда **odeoptions()** должна быть набрана обязательно строчными буквами, а не заглавными, в то время как название переменной **%ODEOPTIONS** состоит из заглавных букв.

После выполнения команды **odeoptions()** нам будет предложена в диалоговом режиме последовательность форм, заполнив которые, мы сможем ввести параметры вычисления для решения дифференциального уравнения. Содержание формы показывают предварительно установленные параметры.

В результате после заполнения форм мы получим в главном окне Scilab текст эквивалентной команды Scilab, например:

%ODEOPTIONS=[4,4,0,%inf,0,2,500,12,5,0,-1,-1]

Если это Вам кажется более удобным, то можно выполнять эту команду и в виде командной строки.

Замечание:

Глобальная переменная **%ODEOPTIONS** является опциональной (необязательной). Если Scilab обнаружит наличие этой переменной, то будет использовать ее без предупреждения, поэтому для использования значений по умолчанию ее следует уничтожить. Чтобы ее создать - следует выполнить команду **odeoptions**. Переменная **%ODEOPTIONS** является вектором следующего вида:

[itask,tcrit,h0,hmax,hmin,jactyp,mxstep,maxordn,maxords,ixpr,ml,mu] Значение %ODEOPTIONS по умолчанию:

[1,0,0,%inf,0,2,500,12,5,0,-1,-1]

Расшифровку смысла значений элементов вектора **%ODEOPTIONS** можно узнать с помощью команды **help %ODEOPTIONS**.

Как решить уравнение Риккати (Riccati)?

Способ 1.

С помощью команды riccati.

Синтаксис X=riccati(A,B,C,dom,[typ]) [X1,X2]=riccati(A,B,C,dom,[typ])

Параметры

А, В, С: действительные матрицы размером

n на **n**, **B** и **C** симметричны.

dom: 'c' или 'd' для домена времени (непрерывного и дискретного)

typ: string: 'eigen' для блока диагонализации или 'schur' для метода Шура.

X1, X2, X: квадратные действительные матрицы (X2 обратимая), X симметричная

Команда X=riccati(A,B,C,dom,[typ]) является солвером для уравнения Риккати: A'*X+X*A-X*B*X+C=0

в случае для непрерывного времени, или: **A'*X*A**-(**A'*X*B1**/(**B2**+**B1'*X*B1**))*(**B1'*X*A**)+**C**-**X**

где **B=B1/B2*B1'** в случае дискретного времени. Если команды задается с помощью двух выходных аргументов, команда **riccati** возвращает **X1**, **X2**, которые представляют **X=X1/X2**.

Способ 2.

С помощью команды ricc. Подробно смотри help ricc.

Способ 3.

С помощью команды **ric_desc**. Это солвер уравнения Риккати с Гамильтониановой матрицей на входе. Смотри подробно с помощью команды **help ric desc**.