

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Grado en Ingeniería Informática de Gestión y Sistemas de Información

CONVOCATORIA ORDINARIA

Curso 2018/2019

23 de mayo de 2019

Nombre y apellidos:

Grupo:

EJERCICIO 1

(2.5 puntos)

Sea $(P_3(x), <,>)$ el espacio vectorial euclídeo con producto escalar usual, y sean los siguientes subconjuntos:

$$S = \left\{ p(x) = a x^{3} + b x^{2} + c x + d \in P_{3}(x) / \int_{-3}^{3} p(x) dx = 0 \quad \land \quad \forall a, b, c, d \in \mathbb{R} \right\}$$
$$T = \mathcal{L}\left\{ p_{1}(x) = x^{3} - 3x^{2}, p_{2}(x) = 1 \right\} \subset P_{3}(x)$$

- (1.) Compruebe que *S* es un subespacio vectorial.
- (2.) Determine una base y dimensión del subespacio vectorial S.
- (3.) Obtenga una base y dimensión del subespacio vectorial $S \cap T$.
- (4.) Logre una base y dimensión del subespacio vectorial S + T.
- (5.) ¿Son S y T complementarios? Razone la respuesta.

EJERCICIO 2

(2.5 puntos)

Sea $A \in M_{3\times 3}(\mathbb{R})$ la siguiente matriz:

$$A = \begin{pmatrix} 0 & 0 & 4a \\ 1 & 0 & -6a - 2 \\ 0 & 1 & 2a + 3 \end{pmatrix}$$

- (1.) Obtenga su polinomio característico para $\forall a \in \mathbb{R}$ haciendo uso de adjuntos. Determine sus valores propios.
- (2.) Determine para qué valores de $a \in \mathbb{R}$ es la matriz A diagonalizable.
- (3.) ¿Es posible obtener una base de \mathbb{R}^3 compuesta por vectores propios? ¿Y una compuesta por vectores propios ortonormales? Razone las respuestas. En caso afirmativo, diagonalize la matriz A haciendo uso de esa base.

EJERCICIO 3

(2.5 puntos)

Para el siguiente sistema de ecuaciones lineales:

$$3x - 2y + z = 2$$

$$2x - y + z = 1$$

$$x + y - az = 1$$

$$2x + by + z = 1$$

(1.) Clasifique el sistema de ecuaciones lineales para $\forall a,b \in \mathbb{R}$ y resuelva el sistema cuando sea compatible.

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Grado en Ingeniería Informática de Gestión y Sistemas de Información

EJERCICIO 4

(2.5 puntos)

Responda las siguientes cuestiones razonando las respuestas:

- (1.) Sean el vector \vec{x} del subespacio S y el vector $\vec{x'}$ la mejor aproximación de \vec{x} en el subespacio S^{\perp} . ¿De qué particularidad nos percatamos al obtener $\vec{x'}$?
- (2.) En el procedimiento para calcular S^{\perp} , ¿la base de S debe ser ortogonal?
- (3.) Sea un base $B = \{\overline{u}_1, \overline{u}_2, \overline{u}_3\}$ no ortogonal únicamente debido a que \overline{u}_2 y \overline{u}_3 no son ortogonales, el resto de vectores son ortogonales dos a dos. Determine cómo se implementaría el método de ortogonalización de Gram-Schmidt. ¿Qué particularidad/particularidades se da/dan en las proyecciones?
- (4.) En el proceso de diagonalización de una matriz simétrica $A \in M_{3x3}(\mathbb{R})$, ¿qué se debería hacer para obtener una base ortonormal formada por vectores propios asociados a los valores propios $\lambda_1 = 1$, $\lambda_2 = 2$ y $\lambda_3 = 3$?
- (5.) ¿Pueden ser $\lambda_1 = 2$, $\lambda_2 = 4$ y $\lambda_3 = 6$ los valores propios de una matriz singular $A \in M_{3x3}(\mathbb{R})$?