Lecture 15

Motivating example: air pollution data

- Data on Chicago air quality and death between 1987 and 2000
- Variables include:
 - deaths
 - ozone concentration
 - sulphur dioxide concentration
 - temperature

Motivating example: air pollution data

Deaths_i ~ Poisson(λ_i)

$$\log(\lambda_i) = \beta_0 + \beta_1 Ozone_i$$

Quantile residual plot

GOF test

```
1 m1$deviance
[1] 9551.836
1 m1$df.residual
[1] 5112
1 pchisq(m1$deviance, m1$df.residual, lower.tail=F)
[1] 6.362106e-273
```

Overdisperion

Overdispersion occurs when the response variable Y_i has greater variability than the model accounts for

Recap: sandwich estimator for GLMs

Assumptions about both mean and variance

Quasi-Poisson models

Example: Chicago air quality

Poisson model:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 4.743277988 0.0013382057 3544.50583 0.000000e+00 o3median -0.002301345 0.0001285909 -17.89664 1.252641e-71
```

Quasi-Poisson model:

Class activity

https://sta712-

f23.github.io/class_activities/ca_lecture_15.html