

PART - 2

Graph Neural Networks

GNN

@avkashchauhan

Tutorial Agenda

PART 1

- Fundamentals of Graph
- Mathematics of Graph
- Introduction to NetworkX Python Package
- Graph Programming with NetworkX
- Introduction to GNN
- Relationship between GNN and CNN
- Introduction to PyG (pytorch geometric)
- **Graph Visualization Tools**
 - Gephi
 - yEd
- Various Graph Data Manipulation

PART 2

- Graph representations
 - Adjacency Matrix
 - Feature Matrix
 - Incidence Matrix
 - Degree Matrix
 - Laplacian Matrix
 - Bag of Nodes
- Node Embedding and Node Embedding Space
- Applying Convolution to Graph similar to Image
- Message Passing
- Understanding Graph Datasets available in
- Node Classification using MLP & GNN NetworkX and tSNE visualization of Graphs
- **GNN** Explainer

Recap

- Graph -
 - Data Type
 - Structured Data Types
 - Components
 - Nodes or Vertices
 - Edges
 - Definition:
 - $G = \{V, E\}$
 - Types:
 - Directed (i.e. Twitter) and Indirected (i.e. Facebook Friend Connection)
 - Labels
 - Both nodes and edges can have text and numeric labels,
 - Edges can have multiple keys and labels
 - Weight
 - If nodes have weight then the graph is Weighted graph
- Node Features are the property of the node
 - Node City, Label: San Francisco, Features: population, male/female population, area, schools, bridges etc
 - **Node** Person, **Label**: Avkash, **Features**: Age, sex, income, marital status, spouse info etc
 - Note: Do not mix the **node features** with **node** or **edge** label

Graph Neural Networks: Part 2

- Graph representations
 - Adjacency Matrix
 - Feature Matrix
 - Incidence Matrix
 - Degree Matrix
 - Laplacian Matrix
 - Bag of Nodes
- Node Embedding and Node Embedding Space
- Applying Convolution to Graph similar to Image
- Message Passing
- Understanding Graph Datasets available in PyG
- Node Classification using MLP & GNN
- NetworkX and tSNE visualization of Graphs
- GNN Explainer

Graph Representation

Adjacency Matrix (A)

Square Matrix (A = NxN)

Incidence (Relation Matrix) Matrix (I)

Nodes n with edges m will have (I = nxm)

Degree Matrix (D)

- Diagonal Matrix (D)

Laplacian Matrix:

- L = D - A

Bag of Nodes

- Aggregate node level features using some mathematical approach i.e. taking the mean of the node degrees or histogram of the edge connections

Adjacency Matrix

- Adjacency matrix a 2D square matrix
- Each node in the graph has an entry in both dimensions.
- Unweighted graph as T/F or 1/0 values (Binary Value Adjacency Matrix)
- Weighted graph as weights, no weights means -1 (Weighted Adjacency Matrix)

Representation:

-
$$A = N \times N$$

Adjacency Matrix - Weighted & Undirected

	Α	В	С	D	E	F
А	-1	12	10	-1	-1	-1
В	-1	-1	-1	8	-1	-1
С	-1	-1	-1	-1	15	1
D	-1	-1	-1	-1	-1	7
E	-1	-1	-1	-1	-1	12
F	-1	-1	-1	-1	-1	-1

Adjacency Matrix - Weighted & Directed

	Α	В	С	D	Е	F
Α	-1	12	10	-1	-1	-1
В	34	-1	-1	8	-1	-1
С	-1	-1	-1	-1	15	1
D	-1	-1	-1	-1	-1	7
E	23	-1	-1	-1	-1	12
F	-1	-1	-1	-1	-1	-1

Adjacency Matrix - Un-Weighted & Directed

	Α	В	С	D	Е	F
Α	F	Т	Т	F	F	F
В	Т	F	F	Т	F	F
С	F	F	F	F	Т	Т
D	F	F	F	F	F	Т
E	Т	F	F	F	F	Т
F	F	F	F	F	F	F

Adjacency Matrix - Unweighted & Undirected

	Α	В	С	D	E	F
Α	F	Т	Т	F	F	F
В	F	F	F	Т	F	F
С	F	F	F	F	Т	Т
D	F	F	F	F	F	Т
E	F	F	F	F	F	Т
F	F	F	F	F	F	F

Adjacency Matrix - Weighted & Directed

	А	В	С	D	Е	F
Α	-1	12	10	-1	-1	-1
В	34	-1	-1	8	-1	-1
С	-1	-1	-1	-1	15	1
D	-1	-1	-1	-1	-1	7
Е	23	-1	-1	-1	-1	12
F	-1	-1	-1	-1	-1	-1

$$egin{array}{ccccc} A_{AB} & {
m A-B} \\ A_{AC} & {
m A-C} \\ A_{AF} & {
m A-C-E-F} \\ A_{CD} & {
m C-E-A-B-D} \\ A_{BC} & {
m X} \\ \end{array}$$

Incidence Matrix - Nodes N/Edge M - Undirected Graph

	e1	e2	e3	e4	e5	e6	e7
Α	1	1	0	0	0	0	0
В	1	0	0	0	0	1	0
С	0	1	1	0	1	0	0
D	0	0	0	0	0	1	1
Е	0	0	1	1	0	0	0
F	0	0	0	1	1	0	1

If Node and Edge are connected then value is 1 otherwise the value is 0. Nodes are represented as **ROWS** and edges are as **COLUMNS**

Incidence Matrix - Nodes N/Edge M - Directed Graph

I	=	6	χ	7

	e1	e2	e3	e4	e5	e6	e7
Α	-1	-1	0	0	0	0	0
В	1	0	0	0	0	-1	0
С	0	1	-1	0	-1	0	0
D	0	0	0	0	0	1	-1
Е	0	0	1	-1	0	0	0
F	0	0	0	1	1	0	1

If Node and Edge are connected then value -1/1, otherwise the value is 0.

- If Node to **outward** direction connection then the value is -1
- If node has **inwards** direction connection then the value is 1

Nodes are represented as ROWS and edges are as COLUMNS

Degree Matrix - Directed/Undirected Graph (Same)

Diagonal Matrix

Degree = Number of edges connected to each node

	Α	В	С	D	E	F
Α (2	2	0	0	0	0
В	0	4	0	0	0	0
С	0	0	3	0	0	0
D	0	0	0	2	0	0
Е	0	0	0	0	2	0
F	0	0	0	0	0	5

Diagonal

If Node has connection from edge then value is 1 otherwise the value is 0. Nodes are represented as **ROWS** and **COLUMNS**

Laplacian Matrix - Graph Laplacian Matrix

- Measure of the smoothness of the matrix
- How quickly it changes between the Adjacent Vertices
- L = Diagonal Matrix Adjacency Matrix
- L = Number of Edges connected to Node Adjacency Matrix
- $\bullet \quad L = \{D A\}$

Laplacian Matrix - Graph Laplacian Matrix

	А	В	С	D	E	F
Α	2	0	0	0	0	0
В	0	4	0	0	0	0
С	0	0	3	0	0	0
D	0	0	0	2	0	0
E	0	0	0	0	2	0
F	0	0	0	0	0	5

	Α	В	С	D	Е	F
Α	0	1	1	0	0	0
В	1	2	0	1	0	0
С	1	0	0	0	1	1
D	0	1	0	0	0	1
E	0	0	1	0	0	1
F	0	0	1	1	1	2

$$L = \{D - A\}$$

D

Laplacian Matrix - Graph Laplacian Matrix

	Α	В	С	D	Е	F
А	2	0	0	0	0	0
В	0	4	0	0	0	0
С	0	0	3	0	0	0
D	0	0	0	2	0	0
Е	0	0	0	0	2	0
F	0	0	0	0	0	5

		Α	В	С	D	E	F
	Α	0	1	1	0	0	0
	В	1	2	0	1	0	0
	С	1	0	0	0	1	1
	D	0	1	0	0	0	1
	Е	0	0	1	0	0	1
	F	0	0	1	1	1	2

		Α	В	С	D	Е	F
	Α	2	-1	-1	0	0	0
	В	-1	2	0	-1	0	0
=	С	-1	0	3	0	-1	-1
	D	0	-1	0	2	0	-1
	E	0	0	-1	0	2	-1
	F	0	0	-1	-1	-1	3

D

$$\boldsymbol{A}$$

$$L = \{D - A\}$$

Displaying the graph

Jupyter Notebook Exercise with NetworkX in Python

Graph Representation

Incidence (Relation Matrix) Matrix (I)

Nodes n with edges m will have (I = nxm)

Adjacency Matrix (A)

Square Matrix (A = NxN)

Degree Matrix (D)

- Diagonal Matrix (D)

Laplacian Matrix:

- L = D - A

Bag of Nodes

- Aggregate node level features using some mathematical approach i.e. taking the mean of the node degrees or histogram of the edge connections

Bag of nodes using Weisfeiler-Lehman Kernel

- Iteratively aggregate information from the node's neighbourhoods.
- The algorithm:
 - Set an initial label to each node of the graph, for example a node's degree
 - o Iteratively assign a new label to each node using hashed labels from the neighbourhood
 - After K iterations, we now have gathered information from K-hop neighbourhood. We can then
 use any type of Bag of Nodes metrics to summarize these new labels

[Example usage in cheminformatics]

Graph Walking - Random Walk

Traversing the graph through the connected nodes

Random Walk is a technique to extract sequences from a graph from any random node perspective. It is used to train the skip-gram model to learn node embeddings.

Graph -> Graph Neural Networks

Role of Laplacian Matrix

First Order Difference of the image f(x) = f(x+1, y) - f(x,y)

Smoothness of the **image** in the 2D Space

Smoothness of the **node/Vertices** in the Graph

Image Representation as Fixed Size 2D Grid

- An image is defined as a regular Grid
 - Technically speaking 2D Grid
- Each Pixel is Fixed
- All the neighbouring pixel locations are also fixed
- Pixel A has 3 neighbors with fixed location
- Pixel B has 5 neighbors with fixed location
- Pixel C has 8 neighbors with fixed location

Convolution on Images - Convolution Neural Networks

Locality

- Contribution of N neighbors with reference to MxM mask will define the value of "Pixel of Interest".
- Bringing mask to image sets up the **Locality**.

Aggregation

- Multiply the mask coefficients with all the pixels inside the mask and aggregate their sum will return the value of the center pixel
- The aggregates value replaces the value of the central Pixel

Convolution on Every Pixel as Mask moves from start to finish in the whole image

Composition

- Function of the Functions
- As conv happens from input to output into the Hidden layers the features happen to grow from basic to complex with fully recognized attributes
- Composition makes features enhanced from basic to complex

CNN: Composition - Function of the Functions

Graph vs Fixed Grid Structured Data Objects

Image

Text

- Arbitrary Size Grid
- Non-euclidean Space
- Position and Sequence is not fixed, changes every time
- No fixed node order

- Fixed Grid
- 2D Space
- Position & Sequence is fixed
- Pixel order is defined and stays exactly the same

- Fixed Grid
- 1D Space
- Position and sequence is fixed
- Token/Vector orders is defined

Convolution requires grid and sequence to be fixed while processing structured data

Node Order and Adjacency Matrix

	А	В	С	D	Е	F
Α	0	1	1	0	0	0
В	1	2	0	1	0	0
С	1	0	0	0	1	1
D	0	1	0	0	0	1
Е	0	0	1	0	0	1
F	0	0	1	1	1	2

	/2					
	F	В	С	D	E	A
F	2	0	1	1	1	0
В	1	2	0	1	0	1
С	1	0	0	0	1	1
D	1	1	0	0	0	0
E	1	0	1	0	0	0
A	0	1	1	0	0	0

Α

If we change the node order to something different the Adjacency matrix will change, this will change everything dependent on A.

Graph Feature Matrix

- Graph G = {V, E}
- Adjacency Matrix A = {N x N}
- Feature Matrix X = {N (nodes) x M (features) }

$$- X = 6 \times 3 = 18$$

	3				
Α	а	b	С		
В	1	2	3		
С	X	у	Z		
D	L	М	N		
Е	3	6	7		
F	s	t	u		

Convolution on Graphs - Graph Neural Networks

Node Embedding is the answer - Its a way to represent the Graph nodes as **vectors**

Node Embeddings

If each node has path over 100s of levels deep, Node embedded can be selected arbitrary upto 2.3.4 levels

Node Embedding - Applying convolution

Locality

Node Embedding based on local neighborhood (Up to Level 2,3,4 of neighbors)

Aggregation:

Aggregate Using Neural Networks (NN) (weights of each Input)

Composition:

Every node has its own computational Graph

Encoders

 Encoder function should be able to perform all 3 (Locality, Aggregation and Composition) functions all together

Node Embeddings

If each node has path over 100s of deep, still use embedded upto 2,3,4 levels or Hops away

Repeat it for every node in the Graph

Composition - Every node has own computational graph

Message Passing in Graph Neural Networks

- Every graph node has hidden states i.e. feature vectors
- For each node, we aggregate a function of hidden states and possibly edges of all neighbouring nodes with the node itself.
- Update the hidden state of the node using the the obtained message and the previous hidden state of the given node.
- Final message is the sum of all messages obtained from the neighbours for the given Node.

Message Passing with Propagation

Repetition are done several times to improve node A details

Advantages of Node Embeddings

- Node Embedding is a way to represent nodes as vectors
- Node embedding shows the network topology of the Graph
- Nodes that are similar in the network will have similar embeddings.
- Node embeddings is used for prediction in graph

_

Graph Neural Network Usage

- Node Similarity
 - Finding similar nodes with similar details
- Link Prediction
 - Recommendation of new potential edges for the given node
- Node classification
 - Classifying node type based on available types in the graph
- Clustering
 - Breaking embedding space grouping nodes with similarities together
 - Grouping based on common objective
- Graph classification
 - Aggregating node features and comparing it with other graph
 - Classifying different graphs with the same design objective
 - o Breaking smaller graph for X from the main graph and matching it with Y from the same graph

Resources

Libraries

- https://networkit.github.io/
- https://github.com/danielegrattarola/spektral https://networkx.org/
- https://pytorch-geometric.readthedocs.io/en/latest/

Resources: Starters:

- https://www.kdnuggets.com/2018/05/wtf-tensor.html

- https://medium.com/tebs-lab/types-of-graphs-7f3891303ea8
 https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/
 https://towardsdatascience.com/an-introduction-to-graph-neural-network-gnn-for-analysing-structured-data-afce79f4cfdc
 https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b
 https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
 https://pub.towardsdatascience.com/understanding-social-networks-409dfc760b.054

- https://towardsdatascience.com/graph-coloring-with-networkx-88c45f09b8f4

Videos

- https://www.youtube.com/watch?v=GXhBEj1ZtE8
- https://www.youtube.com/watch?v=FdZ-EQkcHBo
- https://www.voutube.com/watch?v=3IS7UhNMQ3U&list=PLoROMvodv4rPLKxlpghihPadQv7imNkDn&index=5

Resources

Advance:

- https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8 https://medium.com/analytics-vidhya/getting-the-intuition-of-graph-neural-networks-a30a2c34280d https://medium.com/@BorisAKnyazev/tutorial-on-graph-neural-networks-for-computer-vision-and-beyond-part-1-3d9fada3b80d

Examples

https://graphsandnetworks.com/the-cora-dataset/

Documentations

- https://networkx.org/documentation/networkx-1.10/tutorial/tutorial.html https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html