חלק א - שאלה 1 (25 נקודות)

טענה א: הטענה לא נכונה

נבנה את ריבוע הקסם על פי הנתונים:

	לא עבר	עבר פסיכומטרי	
0.5	0.1	0.4	עבר גרפולוגי
0.5	0.3	0.2	לא עבר
	0.4	0.6	

הטענה מתייחסת להסתברות מותנית. הסיכוי שנכשל רק בפסיכומטרי (מסומן בריבוע הקסם באדום) כאשר ידוע כי לא התקבל (מסומן בצהוב בריבוע הקסם).

$$\frac{0.1}{0.1 + 0.3 + 0.2} = \frac{1}{6}$$

יטענה ב: הטענה לא נכונה :שונות הניבויים

$$S_{\tilde{y}}^2 = S_y^2 \cdot r^2 = 0.64$$

טענה ג: הטענה לא נכונה :השונות המצורפת תלויה לא רק בשונות הציונים בכל כיתה, אלא גם בהבדלים בין הממוצעים. אם הממוצע בשתי הכיתות זהה - שונות הציונים של 70 התלמידים תהיה שווה לממוצע השונויות של כל כיתה בנפרד. אם יש הבדל בין ממוצעי הכיתות, השונות המצורפת תהיה גבוהה יותר.

 Ω טענה ד: הטענה לא נכונה A:A: מאורעות במרחב מדגם

$$P(A) = 0.85 \rightarrow P(A^c) = 0.15;$$
 $P(B) = 0.45 \rightarrow P(B^c) = 0.55$
 $P(A^c \mid B^c) = 0.2 \rightarrow \frac{P(A^c \cap B^c)}{P(B^c)} \rightarrow P(A^c \cap B^c) = 0.2 \cdot P(B^c) = 0.2 \cdot 0.55 = 0.11$

: נבנה את ריבוע הקסם

	A^c	A	
0.45	0.04	0.41	В
0.55	0.11	0.44	B^c
	0.15	0.85	

טענה ה: הטענה נכונה

שונות	ממוצע	n	
1500	210	n	מפעל 1
0	150	2n	מפעל 2
1300	170		

$$\bar{X} = \frac{\frac{210 \cdot n + 150 \cdot 2n}{n + 2n}}{\frac{1}{n + 2n}} = \frac{\frac{510n}{3n}}{3n} = 170$$

$$S_c^2 = \frac{n \cdot 1500 + 2n \cdot 0 + n \cdot (210 - 170)^2 + 2n \cdot (150 - 170)^2}{3n} = \frac{n[1500 + 2 \cdot 0 + (210 - 170)^2 + 2 \cdot (150 - 170)^2]}{3n} = \frac{3900}{3} = 1300$$

חלק ב

שאלה 2 (25 נקודות)

N.

משפחות	חדרים
6	1
11	2
13	3
20	4
22	5
23	6
5	7

ב. החישובים בטבלה:

x*x*f(x)	x*f(x)	שכיחות מצטברת %	F(x)	משפחות	חדרים
6	6	6	6	6	1
44	22	17	17	11	2
117	39	30	30	13	3
320	80	50	50	20	4
550	110	72	72	22	5
828	138	95	95	23	6
245	35	100	100	5	7

21.1 4.3

 $S_x = \sqrt{2.61} = 1.616$

4.3 ממוצע

שביח 6

חציון

החציון נמצא במיקום 50.5 = 2/ 101 – לכן הוא שווה לממוצע בין הערך במיקום 50 (4) לערך במיקום 51 (5).

4.5 לערך במיקום 51 (5). 2.61 סטיית תקן

שונות 2.61

ס"ת 1.62

ډ.

$$3.3 = \frac{4.3 * 100 + 1.3 * n}{100 + n} \rightarrow 3.3(100 + n) = 430 + 1.3n \rightarrow$$

$$330 + 3.3n = 430 + 1.3n \rightarrow n = 50$$

$$S_c^2 = \frac{100 \cdot 2.61 + 50 * 4 + 100(4.3 - 3.3)^2 + 50(1.3 - 3.3)^2}{150} = \frac{261 + 200 + 100 + 200}{150}$$
$$= \frac{761}{150} = 5.07$$

$$S_c = \sqrt{5.07} = 2.25$$

יקטן – כי נוספו ערכים הקטנים מהממוצע יקטן – לי ממוצע יקטן

שביח לא ישתנה. 23>20.

חציון יקטן. כעת 4 – לא בין 4 ל 5

שאלה 3 (25 נקודות)

×

3.00	2	4	3	5	1	4	3	1	5	2	מספר ילדים (X)
32.10	26	39	28	18	45	34	23	41	37	30	עות עבודה (Y)
91.8	52	156	84	90	45	136	69	41	185	60	X*Y
11.00	4	16	9	25	1	16	9	1	25	4	X*X
1096.5	676	1521	784	324	2025	1156	529	1681	1369	900	γ*γ
										-4.5	COV(X,Y)
								2	שונות	1.4142	SX
								66.09	שונות	8.1296	SY
										-0.391	r

ב.מדד קרמר

		OBSERVED					
Ī		גבוהה	בינונית	נמוכה	נכונות לעזרה		
					מקום מגורים		
	180	60	60	60	עיר		
	120	15	25	80	כפר		
Ī	300	75	85	140			

	EXPECTED						
	גבוהה	בינונית	נמוכה	נכונות לעזרה			
				מקום מגורים			
180	45	51	84	עיר			
120	30	34	56	כפר			
300	75	85	140				

5 1.58824 6.8571 7.5 2.38235 10.286

> n 33.613 0.3347

$$L_y = 160, L_{y/x} = 160,$$

$$L_x = 120, L_{x/y} = 100$$

$$\lambda_{y/x} = \frac{160 - 160}{160} = \frac{0}{160} = 0$$
$$\lambda_{x/y} = \frac{120 - 100}{120} = \frac{20}{120} = 1/6$$

שאלה 4 (25 נקודות)

(8 נקי) א. ההסתברות שמכונית שנבחרה באופן מקרי תעבור בהצלחה בדיקה אחת שווה לסכום של שתי ההסתברויות המסומנות בצהוב:

$$0.171 + 0.018 = 0.189$$

- אך לא תקינה הראשונה בהצלחה אך את הבדיקה הראשונה בהצלחה אך א (8 נקי) ב. מה ההסתברות שמכונית לא 0.4*0.9=0.36*0.4*
 - (9 נקי) ג. מה ההסתברות שמכונית שעברה את שתי הבדיקות בהצלחה תקינה:

$$\frac{0.684}{0.684 + 0.002} = 0.997$$

שאלה 5 (25 נקודות)

 $x \sim N(73,8^2)$, בהתפלגות נורמלית הממוצע והשכיח לכן, כבהתפלגות בכל המוצע והשכל המוצע וב

7 נקי) א. בוחרים באקראי נבחן. מה הסיכוי שהציון שלו נמוך מ-65! הסבירו את תשובתכם.

$$p(x < 65) = \emptyset\left(\frac{65 - 73}{8}\right) = \emptyset(-1) = 1 - \emptyset(1) = 1 - 0.8413 = 0.1587$$

(6) נקי) ב. כדי להתקבל לאוניברסיטה נדרש ציון הגבוה מהממוצע. אולם, אלו שהציון שלהם נמוך מ-85 נדרשים לעבור סדנת הכנה. איזה אחוז מהסטודנטים המתקבלים לאוניברסיטה מתבקשים לעבור סדנת הכנה.

$$\frac{p(73 \le x < 85)}{p(73 \le x)} = \frac{\emptyset\left(\frac{85 - 73}{8}\right) - 0.5}{0.5} = \frac{\emptyset(1.5) - 0.5}{0.5} = \frac{0.9332 - 0.5}{0.5} = 0.8664$$

- ע. הסטודנטים שקיבלו את הציונים הגבוהים ביותר במבחן זכאים למלגה. המלגה ניתנת ל- $\emptyset(Z_x)=0.95$ במהסטודנטים. מהו הציון הנמוך ביותר המזכה במלגה?= $Z_x=0.95$ (3.645; X=73+8*1.645=86.16
- (12) ד. 5 חברים נרשמו יחד למבחן הכניסה. מה הסיכוי שכל החמישה יתקבלו לאוניברסיטה? כדי להתקבל נדרש ציון גבוה מהממוצע. בהתפלגות נורמלית, הסיכוי לציון גבוה מהממוצע 0.5. $X{\sim}B(5,0.5)$ הסיכוי שכולם יתקבלו 0.5^5