Dane do obliczeń

Tabela 1

nr albumu	С	δ	m1	m2	k1=k2
142877	0,701	0,070	1	5	1,5
133772	0,750	0,075	2	5	2,5
142902	0,703	0,070	3	5	3,5
142908	0,704	0,070	4	5	4,5
138054	0,729	0,073	5	5	5,5
144860	0,696	0,070	6	5	6,5
138070	0,731	0,073	7	5	7,5
140983	0,717	0,072	8	5	8,5
138025	0,734	0,073	9	5	9,5
82234	1,226	0,123	10	5	10,5
142940	0,711	0,071	11	5	11,5
142929	0,712	0,071	12	5	12,5
144876	0,703	0,070	13	5	13,5
137306	0,742	0,074	14	5	14,5
142811	0,715	0,072	15	5	15,5
142774	0,716	0,072	16	5	16,5
107240	0,949	0,095	17	5	17,5
142777	0,718	0,072	18	5	18,5
137961	0,744	0,074	19	5	19,5
144885	0,710	0,071	20	5	20,5

Tabela 2: Indywidualne dane do obliczeń

Obliczenia należy wykonać w dowolnym pakiecie do obliczeń numerycznych. Nie wolno stosować metod bezpośredniego rozwiązywania równań różniczkowych rzędu II (należy je zamienić na układy rzędu I).

Kody wykorzystane do obliczeń należy umieścić w publicznym repozytorium (np github) i w opracowaniu zamieścić odpowiednie linki. Opracowanie należy wykonać w systemie Latex (np overleaf.com). Przypominam o stronie https://webdemo.myscript.com/views/math/index.html, która zmienia wzory pisane ręcznie na składnię Latex'a

0.1 Obwód RC z wymuszeniem sinusoidalnym

Zapisz poprawnie równanie na ładunek w obwodzie. Zaklasyfikuj typ równania.

- Po jakim czasie w obwodzie bez wymuszenia napięcie spadnie do 0.1 napięcia początkowego?
- jakie jest maksymalne napięcie na oporniku i kondensatorze po długim czasie (brak odpowiedzi swobodnej) w przypadku wymuszenia źródłem napięciowym sinusoidalnym o amplitudzie 2V i częstościach odpowiednio 0.1,1,10 Hz
- wykonaj wykres charakterystyki amplitudowo-częstościowej w przedziale częstości (0.1, 10) . Oś częstości przedstaw w skali logarytmicznej o podstawie 10

0.2 Oscylator harmoniczny z tłumieniem bez wymuszenia

Zapisz poprawnie równanie dla masy m1 na sprężynie k1 z tłumieniem δ . Zaklasyfikuj typ równania.

- sprowadź równanie układu do układu równań stopnia pierwszego, zapisz równanie w postaci macierzowej
- wyznacz czestość własna drgań
- narysuj przebieg wychylenia w czasie dla dwóch wybranych warunków początkowych. Skomentuj interpretację tych warunków
- wyznacz tłumienie krytyczne dla tego układu
- narysuj ruch układu w przestrzenie fazowej (x,v)

0.3 Oscylator harmoniczny tłumieniem i wymuszeniem harmonicznym

Zapisz poprawnie równanie dla masy m1 na sprężynie k1 z tłumieniem i wymuszeniem harmonicznym o częstości ω i amplitudzie 0.1m. Zaklasyfikuj typ równania.

- sprowadź równanie układu do układu równań stopnia pierwszego, zapisz równanie w postaci macierzowej
- narysuj przebieg wychylenia w czasie dla zerowych warunków początkowych i wymuszenia z częstością 0.5ω , ω oraz 2ω , (ω -częstość drgań własnych). Skomentuj interpretację tych przebiegów. Na czym polega zjawisko rezonansu ?

0.4 Oscylator harmoniczny podwójny bez tłumienia i bez wymuszenia

Zapisz poprawnie równanie dla masy m1 na sprężynie k1 i połączonej z nią masy m2 na sprężynie m2 (przykład z wykładu) . Zaklasyfikuj typ równania.

- sprowadź równanie układu do układu równań stopnia pierwszego, zapisz równanie w postaci macierzowej.
- wyznacz wartości własne macierzy układu. Jaki jest sens fizyczny tych wielkości ?
- (na 5.0) (na 5.0) Przyjmijmy oznaczenia:

$$n_1 = \frac{k_1 + k_2}{m_1}; n_2 = \frac{k_2}{m_2}$$

Podczas drgania współbieżnego (mod o niskiej częstości) stosunek amplitud wyraża się wzorem:

$$\frac{x_2}{x_1} = \frac{n_2}{n_2 - \omega_1^2}$$

natomiast w w przypadku drgań przeciwbieżnych:

$$\frac{x_2}{x_1} = \frac{n_2}{n_2 - \omega_2^2}$$

(dowód można znaleźć np w [1]).

Na tej podstawie dobierz warunki początkowe które realizują każdy z tych typów drgań.

- (na 5.0) narysuj przebieg wychylenia w czasie powyższych warunków początkowych oraz dla zupełnie przypadkowych (kombinacja liniowa rozwiązań z różnymi częstościami). Skomentuj interpretację tych przebiegów.
- \bullet narysuj przebiegi w przestrzeni fazowej (x,v) nakładając na siebie ruch obu mas. Warunki początkowe jak w poprzednim punkcie (trzy przypadki).

0.5 Wahadło matematyczne

Dane jest wahadło matematyczne o parametrach: Długość wahadła l=C (z tabeli parametrów) kąt początkowego wychylenia $\varphi(0)=\delta$

Rozwiąż numerycznie równanie wahadła. Wykonaj wykres drgań wahadła (1 okres) i porównaj z przypadkiem małych drgań (czyli założenie $\sin(\varphi) = \varphi$) Definiując błąd jako różnicę między rozwiązaniem równania wahadła a równaniem oscylatora , narysuj wykres tego błędu w czasie. Przedyskutuj czy jest sens wprowadzać pojęcie błędu względnego w takim przypadku (np. w odniesieniu do rozwiązania wahadła)?

Przygotuj wykres przedstawiający okres drgań wahadła w funkcji wielkości warunku początkowego.

0.6 modele rozwoju epidemii

Ćwiczenie polega na dobieraniu parametrów modelu do danych doświadczalnych dotyczących COVID-19. Dane można znaleźć m. in tu: https://ourworldindata.org/coronavirus Każda osoba analizuje inny kraj (proszę to uzgodnić w grupie) na ocenę 3 - model Malthusa (pasuje tylko do początku epidemii na ocenę 4 model logistyczny (obejmuje wysycanie ale nie ozdrowienia) na ocenę 5 - porównanie modeli logistycznych Verhulst - Gompertz, lub

Fitowanie krzywej należy wykonać przy pomocy dowolnej biblioteki

0.7 Automaty komórkowe

eksperymentalne dobieranie parametrów do modelu SIR

Zaprojektuj dwuwymiarowy automat komórkowy realizujący dowolny algorytm oparty na regułach sąsiedztwa.

Bibliografia

[1] Nizioł J. $Podstawy\ drgań\ w\ maszynach,$ Skrypt dla wyższych szkół technicznych, Politechnika Krakowska , 1996