Linear, Generalized Linear, and Mixed-Effects Models in R

John Fox

McMaster University

ICPSR 2018

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

/ 19

Linear and Generalized Linear Models in R

Topics

To be covered as time permits:

- Part 1
 - Multiple linear regression
 - Factors and dummy regression models
 - Overview of the lm() function
 - The structure of generalized linear models (GLMs) in R; the glm() function
 - GLMs for binary/binomial data and count data
 - Mixed-effects models for hierarchical and longitudinal data
- Part 2
 - Visualizing statistical models
 - Tests and confidence intervals for coefficients
 - Diagnostics for linear and generalized linear models

Linear Models in R

Arguments of the 1m function

- lm(formula, data, subset, weights, na.action, method =
 "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL, offset, ...)
- formula

Expression	Interpretation	Example
A + B	include both A and B	income + education
A - B	exclude B from A	a*b*d - a:b:d
A:B	all interactions of A and B	type:education
A*B	A + B + A:B	type*education
B %in% A	B nested within A	education %in% type
A/B	A + B %in% A	type/education
A^k	effects crossed to order k	$(a + b + d)^2$

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

◆ロ > ◆昼 > ◆ き > ・ き り へ ○

3 / 19

Linear Models in R

Arguments of the lm() function

- data: A data frame containing the data for the model.
- subset:
 - a logical vector: subset = sex == "F"
 - a numeric vector of observation indices: subset = 1:100
 - a negative numeric vector with observations to be omitted: subset = -c(6, 16)
- weights: for weighted-least-squares regression
- na.action: name of a function to handle missing data; default given by the na.action option, initially "na.omit"
- method, model, x, y, qr, singular.ok: technical arguments
- contrasts: specify list of contrasts for factors; e.g., contrasts=list(partner.status=contr.sum, fcategory=contr.poly))
- offset: term added to the right-hand-side of the model with a fixed coefficient of 1.

Review of the Structure of GLMs

- A generalized linear model consists of three components:
- ◆ A random component, specifying the conditional distribution of the response variable, y_i, given the predictors. Traditionally, the random component is an exponential family the normal (Gaussian), binomial, Poisson, gamma, or inverse-Gaussian.
- 2 A linear function of the regressors, called the *linear predictor*,

$$\eta_i = \alpha + \beta_1 x_{i1} + \dots + \beta_k x_{ik}$$

on which the expected value μ_i of y_i depends.

3 A link function $g(\mu_i) = \eta_i$, which transforms the expectation of the response to the linear predictor. The inverse of the link function is called the mean function: $g^{-1}(\eta_i) = \mu_i$.

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

5 / 19

Generalized Linear Models in R

Review of the Structure of GLMs

• In the following table, the logit, probit and complementary log-log links are for binomial or binary data:

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$
identity	μ_i	η_i
log	$\log_e \mu_i$	e^{η_i}
inverse	$\log_e \mu_i$ μ_i^{-1}	η_i^{-1}
inverse-square	μ_i^{-2}	$\eta_i^{-1/2}$
square-root	$\sqrt{\mu_i}$	η_j^2
logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\dfrac{1}{1+e^{-\eta_i}}$
probit	$\Phi(\mu_i)$	$\Phi^{-1}(\eta_i)$
complementary log-log	$\log_e[-\log_e(1-\mu_i)]$	$1 - \exp[-\exp(\eta_i)]$

Implementation of GLMs in R

- Generalized linear models are fit with the glm() function. Most of the arguments of glm() are similar to those of lm():
 - The response variable and regressors are given in a model formula.
 - data, subset, and na.action arguments determine the data on which the model is fit.
 - The additional family argument is used to specify a *family-generator* function, which may take other arguments, such as a link function.

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

7 / 19

Generalized Linear Models in R

Implementation of GLMs in R

• The following table gives family generators and default links:

Family	Default Link	Range of yi	$V(y_i \eta_i)$
gaussian	identity	$(-\infty, +\infty)$	φ
binomial	logit	$\frac{0,1,,n_i}{n_i}$	$\mu_i(1-\mu_i)$
poisson	log	0, 1, 2,	μ_i
Gamma	inverse	(0, ∞)	$\phi \mu_i^2$
inverse.gaussian	1/mu^2	(0, ∞)	$\phi\mu_i^3$

ullet For distributions in the exponential families, the variance is a function of the mean and a dispersion parameter ϕ (fixed to 1 for the binomial and Poisson distributions).

Implementation of GLMs in R

• The following table shows the links available for each family in R, with the default links as ■:

	link			
family	identity	inverse	sqrt	1/mu^2
gaussian				
binomial				
poisson				
Gamma				
inverse.gaussian				
quasi				
quasibinomial				
quasipoisson				

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

/ 19

Generalized Linear Models in R

Implementation of GLMs in R

	link			
family	log	logit	probit	cloglog
gaussian				
binomial				
poisson				
Gamma				
inverse.gaussian				
quasi				
quasibinomial				
quasipoisson				

• The quasi, quasibinomial, and quasipoisson family generators do not correspond to exponential families.

GLMs for Binary/Binomial and Count Data

- The response for a binomial GLM may be specified in several forms:
 - For binary data, the response may be
 - a variable or an R expression that evaluates to 0's ('failure') and 1's ('success').
 - a logical variable or expression (with TRUE representing success, and FALSE failure).
 - a factor (in which case the first category is taken to represent failure and the others success).
 - For binomial data, the response may be
 - a two-column matrix, with the first column giving the count of successes and the second the count of failures for each binomial observation.
 - a vector giving the *proportion* of successes, while the binomial denominators (total counts or numbers of trials) are given by the weights argument to glm.

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

<□▶ <□▶ < □▶ < □▶ < □▶ = □

11 / 19

Generalized Linear Models in R

GLMs for Binary/Binomial and Count Data

- Poisson generalized linear models are commonly used when the response variable is a count (Poisson regression) and for modeling associations in contingency tables (loglinear models).
- The two applications are formally equivalent. Poisson GLMs are fit in R using the poisson family generator with glm().
- Overdispersed binomial and Poisson models may be fit via the quasibinomial and quasipoisson families.
- The glm.nb() function in the **MASS** package fits negative-binomial GLMs to count data.

The Linear Mixed-Effects Model

• The Laird-Ware form of the linear mixed model:

$$y_{ij} = \beta_1 + \beta_2 x_{2ij} + \dots + \beta_p x_{pij} + b_{1i} z_{1ij} + \dots + b_{qi} z_{qij} + \varepsilon_{ij}$$
 $b_{ki} \sim N(0, \psi_k^2), \operatorname{Cov}(b_{ki}, b_{k'i}) = \psi_{kk'}$
 $b_{ki}, b_{k'i'}$ are independent for $i \neq i'$
 $\varepsilon_{ij} \sim N(0, \sigma^2 \lambda_{ijj}), \operatorname{Cov}(\varepsilon_{ij}, \varepsilon_{ij'}) = \sigma^2 \lambda_{ijj'}$
 $\varepsilon_{ij}, \varepsilon_{i'j'}$ are independent for $i \neq i'$

(In the control of the control of

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

13 / 19

The Linear Mixed-Effects Model

- where:
 - y_{ij} is the value of the response variable for the jth of n_i observations in the ith of M groups or clusters.
 - $\beta_1, \beta_2, \dots, \beta_p$ are the fixed-effect coefficients, which are identical for all groups.
 - x_{2ij}, \ldots, x_{pij} are the fixed-effect regressors for observation j in group i; there is also implicitly a constant regressor, $x_{1ij} = 1$.
 - b_{1i}, \ldots, b_{qi} are the random-effect coefficients for group i, assumed to be multivariately normally distributed, independent of the random effects of other groups. The random effects, therefore, vary by group.
 - The b_{ik} are thought of as random variables, not as parameters, and are similar in this respect to the errors ε_{ii} .
 - z_{1ij}, \ldots, z_{qij} are the random-effect regressors.
 - The z's are almost always a subset of the x's (and may include all of the x's).
 - When there is a random intercept term, $z_{1ij} = 1$.

The Linear Mixed-Effects Model

- and:
 - ψ_k^2 are the variances and $\psi_{kk'}$ the covariances among the random effects, assumed to be constant across groups.
 - In some applications, the ψ 's are parametrized in terms of a smaller number of fundamental parameters.
 - ε_{ij} is the error for observation j in group i.
 - The errors for group *i* are assumed to be multivariately normally distributed, and independent of errors in other groups.
 - $\sigma^2 \lambda_{ijj'}$ are the covariances between errors in group *i*.
 - Generally, the $\lambda_{ijj'}$ are parametrized in terms of a few basic parameters, and their specific form depends upon context.
 - When observations are sampled independently within groups and are assumed to have constant error variance (as is typical in hierarchical models), $\lambda_{ijj}=1$, $\lambda_{ijj'}=0$ (for $j\neq j'$), and thus the only free parameter to estimate is the common error variance, σ^2 .
 - If the observations in a "group" represent longitudinal data on a single individual, then the structure of the λ 's may be specified to capture serial (i.e., over-time) dependencies among the errors.

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

15 / 19

Fitting Mixed Models in R

with the nlme and lme4 packages

- In the **nlme** package (Pinheiro, Bates, DebRoy, and Sarkar):
 - lme(): linear mixed-effects models with nested random effects; can model serially correlated errors.
 - nlme(): nonlinear mixed-effects models.
- In the Ime4 package (Bates, Maechler, Bolker, and Walker):
 - lmer(): linear mixed-effects models with nested or crossed random effects; no facility (yet) for serially correlated errors.
 - glmer(): generalized-linear mixed-effects models.
- There are also Bayesian approaches to modeling hierarchical and longitudinal data that offer certain advantages; see in particular the **rstan** package that links R to the state-of-the-art STAN software for Bayesian modeling.

A Mixed Model for the Exercise Data

Longitudinal Model

• A level-1 model specifying a linear "growth curve" for log exercise for each subject:

$$log-exercise_{ij} = \alpha_{0i} + \alpha_{1i}(age_{ij} - 8) + \varepsilon_{ij}$$

 Our interest in detecting differences in exercise histories between subjects and controls suggests the level-2 model

$$\alpha_{0i} = \gamma_{00} + \gamma_{01} \text{group}_i + \omega_{0i}$$

 $\alpha_{1i} = \gamma_{10} + \gamma_{11} \text{group}_i + \omega_{1i}$

where group is a dummy variable coded 1 for subjects and 0 for controls.

John Fox (McMaster University)

Statistical Models in R

ICPSR 2018

17 / 19

A Mixed Model for the Exercise Data

Laird-Ware form of the Model

Substituting the level-2 model into the level-1 model produces

$$\begin{aligned} \log\text{-exercise}_{ij} &= (\gamma_{00} + \gamma_{01} \text{group}_i + \omega_{0i}) \\ &\quad + (\gamma_{10} + \gamma_{11} \text{group}_i + \omega_{1i}) (\text{age}_{ij} - 8) + \varepsilon_{ij} \\ &= \gamma_{00} + \gamma_{01} \text{group}_i + \gamma_{10} (\text{age}_{ij} - 8) \\ &\quad + \gamma_{11} \text{group}_i \times (\text{age}_{ij} - 8) \\ &\quad + \omega_{0i} + \omega_{1i} (\text{age}_{ii} - 8) + \varepsilon_{ii} \end{aligned}$$

• in Laird-Ware form,

$$Y_{ij} = \beta_1 + \beta_2 x_{2ij} + \beta_3 x_{3ij} + \beta_4 x_{4ij} + \delta_{1i} + \delta_{2i} z_{2ij} + \varepsilon_{ij}$$

• Continuous first-order autoregressive process for the errors:

$$\mathsf{Cor}(\varepsilon_{it}, \varepsilon_{i,t+s}) = \rho(s) = \phi^{|s|}$$

where the time-interval between observations, s, need not be an integer.

A Mixed Model for the Exercise Data

Specifying the Model in 1me

• Using lme() in the **nlme** package:

