FIG. 1 (PRIOR ART)

FIG. 2
(1st EMBODIMENT)

2 of 17

F I G. 3

F I G. 4

FIG. 5

WIDE BAND CDMA

FIG. 6

The training to the training of the training trai

F I G. 7

RECEIVING MODE

F I G. 8

CONSTRUCTION OF TRANSMITTING FILTER

	IDT(S0)	IDT(S1)	IDT(S2)	(DT(P0)	IDT(S0) IDT(S1) IDT(S2) IDT(P0) IDT(P1)	POLARIZED L
f00(MHz)	2216	2216	2216	2124	2124	0.65(nH)
LPR	0.55	0.55	0.55	0.55	0.55	
CROSS LENGTH ω (um)	40	20	40	42	42	
LOGARITHM	06	90	90	66	66	
REFRECTOR						
f00(MHz)	2216	2216	2216	2124	2124	
LPR	0.55	0.55	0.55	0.55	0.55	
QUANTITY	8	88	80	80	80	

6 of 17

FIG. 9

CONSTRUCTION OF RECEIVING FILTER

	IDT(S0)	IDT(S2)	IDT(S3)	IDT(P0)	IDT(P1)	IDT(P2)	IDT(P3)	IDT(S2) IDT(S3) IDT(P0) IDT(P1) IDT(P2) IDT(P3) POLARIZED
f00(MHz)	2436	2436	2436	2340	2340	2340	2340	0.025(nH)
LPR	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
(mn) m	30	30	30	33	47	47	33	
LOGARITHM	80	80	80	70	66	66	70	
REFRECTOR								
f00(MHz)	2436	2436	2436	2340	2340	2340	2340	
LPR	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
QUANTITY	80	80	80	80	80	80	80	

FIG. 10

The Table of the Table of the Arrange of the Table of the

ATTENUATION CHARACTERISTIC OF THE DUPLEXER

				_	RAN	SMIT	TRANSMITTING FILTER	FILTE	H			Œ	ECEI	VING	RECEIVING FILTER	ER	
	Tx- BRANCHING	Rx- BRANCHING	1880 1910 1920 1940 1980 2075 2110 2170 1880 1940 1980 2025 2050 2110 2170 (MHz)	1910	1920	1940	1980	2075	2110	2170	1880	1940	1980	2025	2050	2110	2170
PRIOR ART 0		5.65(mm) 12.8 12 15 1.63 1.4 60 51 61.5 43.8 46.1 55.2 36 33.3 3.10 2.80	12.8	12	15	1.63	4.	09	51	61.5	43.8	46.1	55.2	36	33.3	3.10	2.80
1st EMBODIMENT	8.75(mm)	1st 8.75(mm) 5.65(mm) 12.8 12 15 1.63 1.4 60 51 61.5 38.8 46 54.4 34.8 32.8 2.33 2.45 ODIMENT	12.8	12	15	1.63	4.1	09	51	61.5	38.8	46	54.4	34.8	32.8	2.33	2.45
	STANDERD		30 12 7 2 2 40 45 45 50 50 50 41 26 3 3	12	7	2	2	8	45	45	20	20	20	14	26	က	က

8 of 17

FIG. 11

9 of 17

FIG. 12

The train that the then the sense of the train that and the train the train that the

10 of 17

F I G. 14 (2nd EMBODIMENT)

FIG. 15

FIG. 16

ATTENUATION CHARACTERISTIC OF THE SAW DUPLEXER OF WIDE BAND CDMA

TRANSMITTING FILTER	TRAN	TRAN	TRAN	RAN		SMIT	TING	FILTE	2			e	RECEIVING FILTER	VING	FILT	E	
Tx- Rx- R80 1910 1920 1940 1980 2075 2110 2170 1880 1940 1980 2025 2050 2110 2170 BRANCHING BRANCHING	Rx- 1880 1910 19 BRANCHING	1880 1910 19	1910 19	6	20	1940	1980	2075	2110	2170	1880	1940	1980	2025	2050	2110	2170
0 5.65(mm) 12.8 12 15 1.63 1.4 60 51 61.5 43.8 46.1 55.2 36 33.3 3.68 3.29	5.65(mm) 12.8 12 1	12.8 12 1	12	_	2	1.63	4.	09	51	61.5	43.8	46.1	55.2	36	33.3	3.68	3.29
8.75(mm) 5.65(mm) 12.8 12 15 1.63 1.4 60 51 61.5 38.8 46 54.4 34.8 32.8 2.33 2.45	5.65(mm) 12.8 12 1	12.8 12 1	12 1	_	2	1.63	1.4	09	51	61.5	38.8	46	54.4	34.8	32.8	2.33	2.45
3.2(nH) 1.8(nH) 12.9 12 14.8 1.62 1.94 73.8 55.6 58.5 42.4 41.6 49.7 31 31.2 3.05 2.92 SERIAL PARALLEL	1.8(nH) 12.9 12 14 PARALLEL	12.9 12 14	12 17	-	8.1	1.62	1.94	73.8	55.6	58.5	42.4	41.6	49.7	31	31.2	3.05	2.92
STANDARD 30 12	DARD 30 12 7 2 2 40 45 45 50 50 50 41 26 3 3	30 12	12		7	2	2	40	45	45	50	20	20	4	26	က	က

14 of 17

FIG. 17

ATTENUATION CHARACTERISTIC OF THE SAW DUPLEXER

				_	RAN	TRANSMITTING FILTER	TING	FILTI	H			Œ	ECEI	VING	RECEIVING FILTER	ER	
BE	Tx- RANCHING	Tx- Rx- BRANCHING	1880	1910	1920	1940	1980	2075	2110	2170	1880	1940	1980	2025	2050	1880 1910 1920 1940 1980 2075 2110 2170 1880 1940 1980 2025 2050 2110 2170	0,11
	0	5.65(mm) 12.8 12 15 1.63 1.4 60 51 61.5 43.8 46.1 55.2 36 33.3 3.10 2.80	12.8	12	5	1.63	4.	09	2	61.5	43.8	46.1	55.2	36	33.3	3.10	2.80
2st EMBODIMENT	3.2(nH) SERIAL	1.8(nH) 12.9 12 14.8 1.62 1.94 73.8 55.6 58.5 42.4 41.6 49.7 31 31.2 3.05 2.78 PARALLEL	12.9	12	14.8	1.62	1.94	73.8	55.6	58.5	42.4	41.6	49.7	31	31.2	3.05	2.78
	STANDARD	DARD	30	12	7	2	2	40	45	45	20	20	20	41	26	30 12 7 2 2 40 45 45 50 50 50 41 26 3 3	6

The first street of the first street of the street of the

15 of 17

F I G. 18

SPECIFIC RESISTANCE

MATERIAL	SPECIFIC RESISTANCE	MATERIAL	SPECIFIC RESISTANCE
1(Au)	1.416	5(PLATINUM)	6.16
2(AI)	1.64	6(TUNGSTEN)	3.25
3(Cn)	-	7(TITANIUN)	47.8

FIG. 19

			(C)	SHAPE OF INDUCTOR(Unit:cm)) INDO	STOR(U	Init:cm)				
ON	NO MATERIAL H W LENGTH	H	*	LENGTH				INDUCT(nH)	INDUCT(nH) SPECIFIC RESISTANCE		Q RESISTANCE
-	Αu	0.03	0.03	0.1	1.667	0.511	1.838	Au 0.03 0.03 0.1 1.667 0.511 1.838 0.93369	1.416 48.66 0.117	48.66	0.117
2	Au	0.03	0.03	0.158	2.6333	0.9684	2.2462	0.03 0.03 0.158 2.6333 0.9684 2.2462 1.80291	1.416	59.47	59.47 0.095722
3	Au	0.03	0.03	0.2395	3.9917	1.3844	2.6333	0.03 0.03 0.2395 3.9917 1.3844 2.6333 3.20388	1.416	69.719	1.416 69.719 0.08165

16 of 17

17 of 17

FIG. 21

(3rd EMBODIMENT)

