1

IN-2023

EE23BTECH11210-Dhyana Teja Machineni*

QUESTION:44

A continuous real-valued signal x(t) has finite positive energy and x(t) = 0, $\forall t < 0$. From the list given below, select ALL the signals whose continuous-time Fourier transform is purely imaginary.

1)
$$x(t) + x(-t)$$

2)
$$x(t) - x(-t)$$

3)
$$j(x(t) + x(-t))$$

4)
$$j(x(t) - x(-t))$$

(GATE IN 2023)

Solution: $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$

Parameter	Description
x(t)	Continuous real valued signal
t	time
ω	angular velocity of the signal
Χ(ω)	Fourier Transfom of x(t)
$X(-\omega)$	Fourier Transform of x(-t)

TABLE I

VARIABLES AND THEIR DESCRIPTIONS

Fourier transform of a continuous signal

$$\mathcal{F}\{x(t)\} = X(\omega) \tag{1}$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
 (2)

$$\mathcal{F}\{x(-t)\} = X(-\omega) \tag{3}$$

$$X(-\omega) = \int_{-\infty}^{\infty} x(-t) e^{j\omega t} dt$$

$$1)x(t) + x(-t)$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
 (6)

$$X(\omega) = \int_0^\infty x(t) e^{-j\omega t} dt$$
 (7)

$$X(-\omega) = \int_{-\infty}^{0} x(-t) e^{j\omega t} dt$$
 (8)

$$= \int_0^\infty x(t) e^{j\omega t} dt$$
 (9)

$$X(\omega) + X(-\omega) = \int_0^\infty x(t) e^{-j\omega t} dt + \int_0^\infty x(t) e^{j\omega t} dt$$
(10)

$$=2\int_0^\infty x(t)\cos(\omega t) dt$$
 (11)

: Integral of a real number is real, Continuous time Fourier transform of (x(t) + x(-t)) is not Purely imaginary.

2)
$$x(t) - x(-t)$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
 (12)

$$X(\omega) = \int_0^\infty x(t) e^{-j\omega t} dt$$
 (13)

$$X(-\omega) = \int_{-\infty}^{0} x(-t) e^{j2\pi ft} dt$$
 (14)

$$= \int_0^\infty x(t) e^{j\omega t} dt$$
 (15)

$$X(\omega) - X(-\omega) = \int_0^\infty x(t) e^{-j\omega t} dt - \int_0^\infty x(t) e^{j\omega t} dt$$
(16)

$$= -2 \int_0^\infty jx(t) \sin(\omega t) dt \qquad (17)$$

- (4) : Integral of a purely imaginary number is imaginary, Continuous time Fourier transform of
- (5) (x(t) x(-t)) is Purely imaginary.

$$3)j(x(t) + x(-t))$$

$$X(\omega) = \int_{-\infty}^{\infty} jx(t) e^{-j\omega t} dt$$
 (18)

$$X(\omega) = \int_0^\infty jx(t) e^{-j\omega t} dt$$
 (19)

$$X(-\omega) = \int_{-\infty}^{0} jx(-t) e^{j\omega t} dt$$
 (20)

$$= \int_0^\infty jx(t) e^{j\omega t} dt$$
 (21)

$$X(\omega) + X(-\omega) = \int_0^\infty jx(t) e^{-j\omega t} dt + \int_0^\infty jx(t) e^{j\omega t} dt$$
(22)

$$=2\int_0^\infty jx(t)\cos(\omega t) dt \qquad (23)$$

: Integral of a purely imaginary number is imaginary, Continuous time Fourier transform of j(x(t) + x(-t)) is Purely imaginary. 4) j(x(t) - x(-t))

$$X(\omega) = \int_{-\infty}^{\infty} jx(t) e^{-j\omega t} dt$$
 (24)

$$X(\omega) = \int_0^\infty jx(t) e^{-j\omega t} dt$$
 (25)

$$X(-\omega) = \int_{-\infty}^{0} jx(-t) e^{j\omega t} dt$$
 (26)

$$= \int_0^\infty jx(t) e^{j\omega t} dt$$
 (27)

$$X(\omega) - X(-\omega) = \int_0^\infty jx(t) e^{-j\omega t} dt - \int_0^\infty jx(t) e^{j\omega t} dt$$
(28)

$$=2\int_0^\infty x(t)\sin(2\pi ft)\ dt \qquad (29)$$

: Integral of a real number is real, Continuous time Fourier transform of j(x(t) + x(-t)) is not Purely imaginary.