

Fundamentals

Material de clase: http://www.robotica-up.org/DIP2018.zip

Biblio

Gonzalez (Rafael) & Woods (Richard), Digital Image Processing, Prentice Hall

Reasons for using cameras

Sensors:

Active: sonar, radar, laser, infrared (IR), induction sensors

Passive: cameras, acoustic, electronic compass, odometers, gyroscopes

Cameras vs active sensors:

- All active sensors are invasive technology \rightarrow detectable
- Sequential scanning → slow and limited range (laser)
- Sampling speed (cameras are 25 times faster)
- Cost
- 3D vs 2D
- Cameras imply more processing burden

Common Terms in Digital Images

1. Resolution: The image size. Expresses the total number of pixels in an image:

A 2048 x 1536 image has 3,145,728 pixels or 3.1 Megapixels

Note: 1 Megapixel= 1,000,000 pixels. The "1024" bit-byte conversion has nothing to do here.

2. Sharpness: The visual clarity of an image. Well-focused and defined details.

3. DPI (dots per inch): A measure for printing resolutions. It refers to the number of pixels that will be printed in an inch.

Example: A 2048 x 1536 image printed at:

-100 dpi measures: 2048 x 1536 = 20.48 x 15.36 in (52 x 39 cm) 100 100

- 250 dpi : 8.19 x 6.14 in (20.8 x 15.6 cm)

Conclusion: The better the dpi, the better the printing quality but the smaller the printing size.

Pixel Operations

Neighbors of pixel p

4-Neighbors:
$$N_4(p)$$

$$\begin{cases} (x + 1, y) \\ (x - 1, y) \\ (x, y + 1) \\ (x, y - 1) \end{cases}$$

8-Neighbors:
$$N_8(p)$$

$$\begin{cases} N_4(p) \\ (x+1, y+1) \\ (x+1, y-1) \\ (x-1, y+1) \\ (x-1, y-1) \end{cases} N_D(p)$$

Adjacency and connectivity

2 pixels are connected if they are neighbors and satisfy certain criterion V (ex: same value)

Adjacency-4: 2 pixels p and q with values in V have adjacency 4 if : $q \in N_4(p)$

Adjacency-8: 2 pixels p and q with values in V have adjacency 8 if : $q \in N_8(p)$

Adjacency-m: 2 pixels p and q with values in V have adjacency m if: a. q is in N₄(p) or

b. q is in $N_D(p)$ and the set

 $N_4(p) \cap N_4(q)$ is empty

(has no pixels whose values are from V)

Pixel Operations-Adjacency and Connectivity

Adjacency-4			Adjacency-8		Adjacency-m	
0	1	1	0	1 1	0	1 1
0	2	0	0	2: 0	0	20
0	0	1	0	01	0	0 1

Pixel Operations

Paths

The path from pixel \mathbf{p} to pixel \mathbf{q} is a pixel sequence with 4-8-m adjacency

Hands-on!

Warm up!

- 1. Open and visualize an image
- 2. Grayscale image
- 3. Color image
- 4. Color to gray transformation
- 5. 8, 16 Bits images
- 6. Useful commands: impixelinfo, imdistline, size
- 7. Writing images
- 8. Data classes
- 9. Data handling: vectors and matrixes

Data Classes

Data Class	Range	Suitable for images?
uint8	[0 255]	Yes
uint16	[0 65,535]	Yes
uint32	[0 2 ³²⁻¹]	Yes
double	[-10 ³⁰⁸ 10 ³⁰⁸]	Yes, but only in [0 1]

Conversions

