10

15

20

25

What is claimed is:

1. A compound of formula I

(or a pharmaceutically acceptable salt thereof) wherein:

 A^3 , A^4 , A^5 and A^6 , together with the two carbons to which they are attached, complete a substituted benzene in which A^3 is CR^3 , A^4 is CR^4 , A^5 is CR^5 , and A^6 is CR^6 ; wherein

 \mathbb{R}^3 is hydrogen, methyl, methoxy, fluoro, chloro or carboxy:

one of R^4 and R^5 is hydrogen, (1-4C)alkyl, halo, trifluoromethyl, trifluoromethoxy, R^{f_0} -, R^{f_0} 2CCH₂0-, $HO(CH_2)_aO$ - (in which a is 2, 3 or 4), R^{f_0} 2C-, R^{f_0} 2CCH₂-, R^{g_0} NH-, R^{h_0} 5O₂-, hydroxymethyl, formyl, cyano, acetyl, 1-hydroxyethyl, 1-(hydroxyimino)ethyl, 1-(methoxyimino)ethyl, methylthio or R^{f_0} 2C(CH₂)₂-;

the other of R⁴ and R⁵ is hydrogen; and R⁶ is hydrogen, methyl, fluoro, chloro or methoxy; in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is hydrogen or R^hSO₂-; and R^h is (1-4C)alkyl or dimethylamino;

or each of R³, R⁴ and R⁶ is hydrogen; and R⁵ is vinyl, 2-cyanovinyl, 2-({(1-2C)alkoxy}carbonyl)vinyl or R^a in which R^a is phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy) or heteroaryl (which heteroaryl is a 5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is

30 heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon

and may bear one or more methyl substituents on carbon or nitrogen);

 L^1 is -CO-NH- such that $-L^1-Q^1$ is -CO-NH- Q^1 ;

Q¹ is 2-pyridinyl (which bears a methyl, methoxy,
5 methylthio, fluoro or chloro substituent at the 5-position),
3-pyridinyl (which bears a methyl, fluoro or chloro
substituent at the 6-position), 2-pyrimidinyl (which may
bear a methyl, fluoro or chloro substituent at the
5-position) or 3-pyridazinyl (which may bear a methyl,
10 fluoro or chloro substituent at the 6-position);

 $\begin{array}{c} R^2 \text{ is } -L^2-Q^2 \text{ in which } -L^2- \text{ is } -NH-CO-, -NH-CO-X-, \\ -NH-CO-O-X-, -NH-CO-NH-X-, -NH-CH_2-, -NH-C (CH_3)H-, \\ -N(CH_3)-CH_2- \text{ or } -O-CH_2-; \text{ and } Q^2 \text{ is } Q^{2A}, \ Q^{2B}, \ Q^{2C}, \ Q^{2D}, \ Q^{2E} \\ \text{or } Q^{2E} \text{ wherein } X \text{ is a single bond or methylene and the} \\ \text{values of } L^2 \text{ and } Q^2 \text{ are together selected from } -NH-CO-X-Q^{2A}, \\ -NH-CO-O-X-Q^{2A}, -NH-CO-NH-X-Q^{2A}, -NH-CH_2-Q^{2A}, \\ -NH-C (CH_3)H-Q^{2A}, -N (CH_3)-CH_2-Q^{2A}, -O-CH_2-Q^{2A}, -NH-CO-X-Q^{2B}, \\ -NH-CO-Q^{2C}, -NH-CO-Q^{2D}, -NH-CO-Q^{2E} \text{ and } -NH-CO-Q^{2F} \text{ in which:} \\ Q^{2A} \text{ (showing the } L^2 \text{ to which it is attached) is} \\ \end{array}$

20

15

in which

each of m and n independently is 0 or 1, or m is 2 and 25 n is 1, and

 R^{2A} is hydrogen, t-butyl, methylsulfonyl, -CHRYR², -CHRWR^X, or 4-pyridinyl (which is unsubstituted or bears a substituent RV at the 2- or 3-position) wherein

 R^{V} is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; 30 cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

10

15

20

each of RW and RX independently is hydrogen or (1-3C)normal alkyl; or -CHRWRX is 2-indanyl or (showing the nitrogen to which it is attached) is

in which T is a single bond or methylene and U is methylene, ethylene, oxy, $-S(0)_{\mathbf{q}}$ — (wherein q is 0, 1 or 2) or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

R² is isopropyl, t-butyl, (3-6C)cycloalkyl, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a 5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

or R^{2A} is -L^b-CH₂-R^b in which -L^b- is a direct bond,
-CH₂-, -C(CH₃)H- or -CH₂-CH₂-; and R^b is carboxy,
((1-2C)alkoxy)carbonyl, cyano, carbamoyl or trifluoromethyl;
or R^{2A} is -CO-R^C in which R^C is hydrogen, (1-3C)alkyl,
((1-2C)alkoxy)carbonyl-(CH₂)_C- (in which c is 1 or 2),
phenyl (which is unsubstituted or bears one or more
substituents independently selected from halo, methyl,
methoxy and hydroxy), heteroaryl (which heteroaryl is a

5-membered aromatic ring which includes one to four
heteroatoms selected from sulfur, oxygen and nitrogen or is

15

a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen) or -NR^dR^e in which each of R^d and R^e is independently hydrogen, methyl or ethyl, or -NR^dR^e is pyrrolidino, piperidino, morpholino or thiomorpholino;

 Q^{2B} is 1-piperazinyl which bears at the 4-position the group R^{2A} (defined as above);

 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

 Q^{2D} is cyclohexyl which bears at the 4-position the group -NRSR^t in which each of RS and R^t independently is hydrogen or methyl or RS and R^t together are trimethylene or tetramethylene;

 Q^{2E} is 1-piperidinyl which bears at the 4-position the group $-NR^{SR}^{t}$ (defined as above); and

 Q^{2F} (showing the L^2 to which it is attached) is

$$-(L^2)$$
- R^p

in which R^O is hydrogen, halo, (1-6C)alkyl, hydroxy, (1-4C)alkoxy, benzyloxy or (1-4C)alkylthio; and R^D is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl, dimethylaminosulfonyl or -J-R^Q in which J is a single bond, methylene, carbonyl, oxy, -S(O)_Q- (wherein Q is 0, 1 or 2), or -NR^T- (wherein R^T is hydrogen or methyl); and R^Q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl; or -NR^QR^T is pyrrolidino.

15

30

2. The compound of formula I as claimed in Claim 1

$$A_1^5 A_2^6 L^1 - Q^1$$

$$A_1^4 A_3^3 R^2$$

5 (or a pharmaceutically acceptable salt thereof) wherein: A^3 , A^4 , A^5 and A^6 , together with the two carbons to

which they are attached, complete a substituted benzene in which A^3 is CR^3 , A^4 is CR^4 , A^5 is CR^5 , and A^6 is CR^6 ; wherein

 ${
m R}^3$ is hydrogen, methyl, fluoro, chloro or carboxy; one of ${
m R}^4$ and ${
m R}^5$ is hydrogen, (1-4C)alkyl, halo, trifluoromethyl, trifluoromethoxy, ${
m R}^{\rm f}{
m O}$ -, ${
m R}^{\rm f}{
m O}_2{
m CCH}_2{
m O}$ -, HO(CH₂)aO- (in which a is 2, 3 or 4), ${
m R}^{\rm f}{
m O}_2{
m C}$ -, ${
m R}^{\rm f}{
m O}_2{
m C}$ -, ${
m R}^{\rm f}{
m O}_2{
m C}$ -, ${
m R}^{\rm f}{
m O}_2{
m C}$ -, ${
m R}^{\rm f}{
m O}_2{
m C}$ -, ${
m R}^{\rm f}{
m O}_2{
m C}$ -,

the other of R⁴ and R⁵ is hydrogen; and
R⁶ is hydrogen, methyl, fluoro, chloro or methoxy;
in which R^f is hydrogen, (1-4C)alkyl or benzyl; R⁹ is
hydrogen or R^hSO₂-; and R^h is (1-4C)alkyl or dimethylamino;

 L^1 is -CO-NH- such that $-L^1-Q^1$ is -CO-NH- Q^1 ;

Q¹ is 2-pyridinyl (which bears a methyl, methoxy, methylthio, fluoro or chloro substituent at the 5-position), 3-pyridinyl (which bears a methyl, fluoro or chloro substituent at the 6-position), 2-pyrimidinyl (which may bear a methyl, fluoro or chloro substituent at the 5-position) or 3-pyridazinyl (which may bear a methyl, fluoro or chloro substituent at the 6-position);

 ${\sf R}^2$ is ${\sf -L}^2{\sf -Q}^2$ in which ${\sf -L}^2{\sf -}$ is ${\sf -NH-CO-}$, ${\sf -NH-CO-X-}$, ${\sf -NH-CO-O-X-}$, ${\sf -NH-CO-NH-X-}$, ${\sf -NH-CH}_2{\sf -}$ or ${\sf -O-CH}_2{\sf -}$; and ${\sf Q}^2$ is ${\sf Q}^{2A}$, ${\sf Q}^{2B}$, ${\sf Q}^{2C}$, ${\sf Q}^{2D}$, ${\sf Q}^{2E}$ or ${\sf Q}^{2F}$ wherein X is a single bond or methylene and the values of ${\sf L}^2$ and ${\sf Q}^2$ are together selected from ${\sf -NH-CO-X-Q}^{2A}$, ${\sf -NH-CO-NH-X-Q}^{2A}$, ${\sf -NH-CO-NH-X-Q}^{2A}$,

- 387 -

-NH-CH₂-Q^{2A}, -O-CH₂-Q^{2A}, -NH-CO-X-Q^{2B}, -NH-CO-Q^{2C}, -NH-CO-Q^{2D}, -NH-CO-Q^{2E} and -NH-CO-Q^{2F} in which: $Q^{2A} \text{ (showing the L}^2 \text{ to which it is attached) is}$

in which

each of m and n independently is 0 or 1, and $R^{2A} \text{ is hydrogen, t-butyl, methylsulfonyl, -CHR}^y R^z, \\ \text{-CHR}^w R^x, \text{ or 4-pyridinyl (which is unsubstituted or bears a substituent } R^v \text{ at the 2- or 3-position) wherein }$

 ${\sf R}^{\sf V}$ is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

each of RW and RX independently is hydrogen or

15 (1-3C)normal alkyl; or -CHRWRX is 2-indanyl or (showing the nitrogen to which it is attached) is

in which T is a single bond or methylene and U is methylene, ethylene, oxy, -S(O)_q- (wherein q is 0, 1 or 2) or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

25 R^Z is isopropyl, t-butyl, (3-6C)cycloalkyl, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a

5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

 Q^{2B} is 1-piperazinyl which bears at the 4-position the group R^{2A} (defined as above);

 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

 Q^{2D} is cyclohexyl which bears at the 4-position the group $-NR^{\mathrm{S}R^{\mathrm{t}}}$ in which each of R^{S} and R^{t} independently is hydrogen or methyl or R^{S} and R^{t} together are trimethylene or tetramethylene;

15 Q^{2E} is 1-piperidinyl which bears at the 4-position the group -NR^SR^t (defined as above); and

 Q^{2F} (showing the L^2 to which it is attached) is

in which R^O is hydrogen, halo, (1-6C)alkyl, hydroxy, (1-4C)alkoxy, benzyloxy or (1-4C)alkylthio; and R^D is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl, dimethylaminosulfonyl or -J-R^Q in which J is a single bond, methylene, carbonyl, oxy, -S(O)_Q- (wherein q is 0, 1 or 2), or -NR^r- (wherein R^r is hydrogen or methyl); and R^Q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl.

3. A compound of formula I (or a pharmaceutically acceptable salt thereof) as claimed in Claim 2 wherein:

 ${\rm A}^3$, ${\rm A}^4$, ${\rm A}^5$ and ${\rm A}^6$, together with the two carbons to which they are attached, complete a substituted benzene in which ${\rm A}^3$ is ${\rm CR}^3$, ${\rm A}^4$ is ${\rm CR}^4$, ${\rm A}^5$ is ${\rm CR}^5$, and ${\rm A}^6$ is ${\rm CR}^6$; wherein

R³ is hydrogen;

one of R^4 and R^5 is hydrogen, methyl, fluoro, chloro, trifluoromethyl, trifluoromethoxy, $R^{f}O_2C$ - or $R^{g}NH$ -;

the other of R^4 and R^5 is hydrogen; and R^6 is hydrogen;

in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is hydrogen or R^hSO_2- ; and R^h is (1-4C)alkyl or dimethylamino;

 L^1 is -CO-NH- such that $-L^1-Q^1$ is -CO-NH- Q^1 ;

Q¹ is 2-pyridinyl (which bears a methyl, fluoro or chloro substituent at the 5-position), 3-pyridinyl (which bears a methyl, fluoro or chloro substituent at the 6-position), 2-pyrimidinyl (which may bear a methyl, fluoro or chloro substituent at the 5-position) or 3-pyridazinyl (which may bear a methyl, fluoro or chloro substituent at the 6-position);

 $\rm R^2$ is $\rm -L^2-Q^2$ in which $\rm -L^2-$ is -NH-CO-, -NH-CO-X-, -NH-CO-O-X-, -NH-CO-NH-X-, -NH-CH2- or -O-CH2-; and $\rm Q^2$ is $\rm Q^{2A}, \, \rm Q^{2B}, \, \rm Q^{2C}, \, \rm Q^{2D}, \, \rm Q^{2E}$ or $\rm Q^{2F}$ wherein X is a single bond or methylene and the values of $\rm L^2$ and $\rm Q^2$ are together selected from -NH-CO-X-Q^2A, -NH-CO-O-X-Q^2A, -NH-CO-NH-X-Q^2A, -NH-CH2-Q^2A, -O-CH2-Q^2A, -NH-CO-X-Q^2B, -NH-CO-Q^2C, -NH-CO-Q^2D, -NH-CO-Q^2E and -NH-CO-Q^2F in which:

 Q^{2A} (showing the L^2 to which it is attached) is

30

25

10

15

20

in which

10

each of m and n independently is 0 or 1, and R^{2A} is hydrogen, -CHR^YR^Z, -CHR^WR^X, or 4-pyridinyl (which is unsubstituted or bears a substituent R^V at the 2-or 3-position) wherein

RV is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino; each of RW and RX independently is hydrogen or (1-3C)normal alkyl; or -CHRWRX is 2-indanyl or (showing the nitrogen to which it is attached) is

in which T is a single bond or methylene and U is methylene, oxy, thioxy or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

R^Z is isopropyl, t-butyl, (3-6C)cyclopropyl, phenyl
(which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a 5-membered aromatic ring which includes one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which includes one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

 Q^{2B} is 1-piperazinyl which bears at the 4-position the 30 group R^{2A} (defined as above);

 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

 Q^{2D} is cyclohexyl which bears at the 4-position the group $-NR^{S}R^{t}$ in which each of R^{S} and R^{t} independently is hydrogen or methyl or R^{S} and R^{t} together are trimethylene or tetramethylene;

 Q^{2E} is 1-piperidinyl which bears at the 4-position the group -NR^SR^t (defined as above); and

 O^{2F} (showing the L^2 to which it is attached) is

10

30

in which R^O is hydrogen and R^P is acetylamino,
1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy1-methylethyl, 4-piperidinyl, 4-pyridinyl,
15 dimethylaminosulfonyl or -J-R^Q in which J is a single bond,
methylene, carbonyl, oxy, -S(O)_Q- (wherein q is 0, 1 or 2),
or -NR^r- (wherein R^r is hydrogen or methyl); and R^Q is
(1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl.

- 4. The compound of Claim 1, 2 or 3 wherein halo is fluoro, chloro, bromo or iodo; (1-2C)alkyl is methyl or ethyl; (1-3C)normal alkyl is methyl, ethyl or propyl; (1-4C)alkyl is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, or t-butyl; (1-6C)alkyl is methyl, ethyl, propyl, butyl, pentyl or hexyl; (3-6C)cycloalkyl is cyclopropyl, cyclobutyl, cyclopenytyl or cyclohexyl.
 - 5. The compound of any of Claims 1-4 wherein Q¹ is 5-chloropyridin-2-yl, 5-fluoropyridin-2-yl, or 6-chloropyridazin-3-yl.

PCT/US99/29946

6. The compound of any of Claims 1-5 wherein R² is (1-isopropylpiperidin-4-ylcarbonyl)amino, (1-cyclohexylpiperidin-4-ylcarbonyl)amino, (4-isopropylpiperazin-1-ylcarbonyl)amino, [1-(tetrahydro-pyran-4-yl)piperidin-4-ylcarbonyl]amino, [4-(1-pyrroli-dinyl)piperidin-1-ylcarbonyl]amino, [1-(4-pyridinyl)piperidin-4-ylmethyl]amino, [1-(2-carboxypyridin-4-yl)piperidin-4-ylmethyl]amino, or [1-(2-methoxycarbonylpyridin-4-yl)-piperidin-4-ylmethyl]amino.

10

- 7. The compound as claimed in any of Claims 1-6 wherein each of \mathbb{R}^3 - \mathbb{R}^6 is hydrogen.
- 8. The compound as claimed in any of Claims 1-6 wherein each of \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^6 is hydrogen and \mathbb{R}^5 is chloro or fluoro.
- 9. The compound as claimed in any of Claims 1, 4, 5 and 6 wherein each of R³, R⁴ and R⁶ is hydrogen and R⁵ is R^a
 20 wherein R^a is phenyl, furanyl, thienyl, 2-isothiazolyl or pyridyl.
 - 10. The pharmaceutically acceptable salt of a compound of formula I as claimed in any of Claims 1-9 which is an acid-addition salt made from a basic compound of formula I and an acid which provides a pharmaceutically acceptable anion or a salt which is made from an acidic compound of formula I and a base which provides a pharmaceutically acceptable cation.

30

25

11. A pharmaceutical formulation comprising in association with a pharmaceutically acceptable carrier, diluent or excipient, a novel compound of formula I (or a

PCT/US99/29946

pharmaceutically acceptable salt thereof) as provided in any of Claims 1-10.

- 12. A process for preparing a compound of formula I5 (or a pharmaceutically acceptable salt thereof) as provided in Claim 1 or 2 which is selected from
 - (A) for a compound of formula I in which $-L^2-Q^2$, is $-NH-CO-Q^2$, $-NH-CO-X-Q^2$, $-NH-CO-X-Q^2$ or $-NH-CO-NH-X-Q^2$, acylating an amine of formula II,

10

using a corresponding acid of formula $HO-CO-Q^2$, $HO-CO-X-Q^2$, $HO-CO-O-X-Q^2$, or $HO-CO-NH-X-Q^2$, or an activated derivative thereof;

(B) for a compound of formula I in which $-L^2-Q^2$ is $-O-CH_2-Q^{2A}$, akylating a phenol of formula III

20

25

using a reagent of formula $Y-CH_2-Q^{2A}$ in which Y is a conventional leaving group;

(C) acylating an amine of formula H_2N-Q^1 , or a deprotonated derivative thereof, using an acid of formula IV, or an activated derivative thereof;

- (D) for a compound of formula I in which R^2 is -NH-CH₂-Q^{2A}, alkylating an amine of formula II directly, using a compound of formula Y-CH₂-Q^{2A}, or indirectly by reductive alkylation using an aldehyde of formula Q^{2A}-CHO;
- (E) for a compound of formula I in which R^2 is -NH-CO-O-X-Q^{2A}, or -NH-CO-NH-X-Q^{2A}, acylating an alcohol of formula HO-X-Q^{2A} or an amine of formula NH₂-X-Q^{2A}, using an activated derivative of an acid of formula VI;

- (F) for a compound of formula I in which R² is

 -NH-CO-X-Q^{2B} in which X is a single bond, acylating at the
 1-position a piperazine of formula H-Q^{2B}, using an activated derivative of an acid of formula VI;
- (G) for a compound of formula I in which R^2 is -NH-CO-X- Q^{2B} in which X is methylene, alkylating at the 1-position a piperazine of formula H- Q^{2B} , using an alkylating agent of formula VII

in which Y is a leaving group;

25 (H) for a compound of formula I in which R^{2A} is methylsulfonyl, substituting the amino nitrogen of a

20

25

corresponding compound of formula I in which R^{2A} is hydrogen using an activated derivative of methanesulfonic acid;

- (I) for a compound of formula I in which R^{2A} is

 -CHRYR^Z or -CHRWR^X, alkylating the amino nitrogen of a

 5 corresponding compound of formula I in which R^{2A} is hydrogen
 using an alkylating agent of formula Y-CHRYR^Z or Y-CHRWR^X or
 reductively alkylating the amine using a compound of formula
 RY-CO-R^Z or RW-CO-R^X;
- (J) for a compound of formula I in which R^{2A} is

 4-pyridinyl (which is unsubstituted or bears a substituent
 RV at the 2- or 3-position), substituting the amino nitrogen
 of a corresponding compound of formula I in which R^{2A} is
 hydrogen using a corresponding pyridine reagent bearing a
 leaving group Y at the 4-position;
 - (K) for a compound of formula I in which R^{2A} is
 4-pyridinyl in which R^V is alkoxycarbonyl, esterifying a corresponding compound of formula I in which R^V is carboxy;
 - (L) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is hydroxymethyl, reducing the ester of a corresponding compound of formula I in which R^{V} is alkoxycarbonyl;
 - (M) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^V is carbamoyl, amidating the ester of a corresponding compound of formula I in which R^V is alkoxycarbonyl;
 - (N) for a compound of formula I in which \mathbb{R}^{2A} is 4-pyridinyl in which \mathbb{R}^V is thiocarbamoyl, adding H_2S to the nitrile of a corresponding compound of formula I in which \mathbb{R}^V is cyano;
- 30 (0) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is N-hydroxyamidino, adding H₂NOH to the nitrile of a corresponding compound of formula I in which R^{V} is cyano;

15

20

- (P) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is carboxy, decomposing the ester of a corresponding compound of formula I in which R^{V} is alkoxycarbonyl;
- (Q) for a compound of formula I in which -NR^SR^t is other than amino, alkylating a corresponding compound of formula I in which -NR^SR^t is amino using a conventional method;
- (R) for a compound of formula I which bears -NRSRt,

 10 reductively alkylating H-NRSRt using a corresponding compound but in which the carbon to bear the -NRSRt group bears an oxo group;
 - (S) for a compound of formula I in which RP is 1-hydroxy-1-methylethyl, adding a methyl group to the carbonyl group of a corresponding compound of formula I in which RP is acetyl using an organometallic reagent;
 - (T) for a compound of formula I in which RP is 1-methoxy-1-methylethyl, treating a corresponding compound of formula I in which RP is 1-hydroxy-1-methylethyl with methanol and an acid catalyst;
 - (U) for a compound of formula I in which R^4 or R^5 is amino, reducing the nitro group of a compound corresponding to a compound of formula I but in which R^4 or R^5 is nitro;
- (V) for a compound of formula I in which R⁴ or R⁵ is R⁹NH- and R⁹ is R^hSO₂-, substituting the amino group of a corresponding compound of formula I in which R⁴ or R⁵ is amino using an activated derivative of the sulfonic acid R^hSO₂-OH;

whereafter, for any of the above procedures, when a functional group is protected using a protecting group, removing the protecting group;

whereafter, for any of the above procedures, when a pharmaceutically acceptable salt of a compound of formula I is required, it is obtained by reacting the basic form of a

basic compound of formula I with an acid affording a physiologically acceptable counterion or the acidic form of an acidic compound of formula I with a base affording a physiologically acceptable counterion or by any other conventional procedure;

and wherein, unless otherwise specified, A^3-A^6 , L^1 , Q^1 and R^2 have any of the values defined in Claim 1 or 2.

- 13. A method of inhibiting factor Xa comprising
 10 administering to a mammal in need of treatment, a compound of formula I as provided in any of Claims 1-10.
- 14. The use of a factor Xa inhibiting compound of formula I substantially as hereinbefore described with 15 reference to any of the examples.
 - 15. A novel compound of formula I substantially as hereinbefore described with reference to any of the examples.

20

16. A process for preparing a novel compound of formula I substantially as hereinbefore described with reference to any of the examples.