R package LakeEnsemblR: Basic Use and Sample Applications

johannes.feldbauer@tu-dresden.de tadhg moore jorrit mesman robert ladwig 2020-04-12

Contents

1	Setting up LakeEnsemblR 1						
	1.1	Introduction	1				
	1.2	DateTime formatting	1				
	1.3	Time Zones	1				
	1.4	Hypsograph data	1				
	1.5	Temperature Profile data	2				
		Meteorological data					
	1.7	LakeEnsemblR YAML configuration file	3				
2	Running LakeEnsemblR						
		Example model run					
	2.2	Post-processing	4				
3	Ref	erences	5				

1 Setting up LakeEnsemblR

1.1 Introduction

A key part of developing LakeEnsemblR was to develop a standardised format for model input data. This involved standard variable naming which includes units.

1.2 DateTime formatting

This package uses international standard format for date and time (ISO 8601), which is YYYY-mm-dd HH:MM:SS. For example: 2020-04-03 09:00:00.

1.3 Time Zones

Currently this is not accounted for so the timezone used in input is the timezone of output data. It is on the list of things to do.

1.4 Hypsograph data

The data needs to be a comma separated values (.csv) file where 0m is the surface and all depths are reported as positive. Area needs to be in meters squared. The column names *must* be Depth_meter and

Area_meterSquared

Example of data:

```
Depth_meter,Area_meterSquared 0,3931000 1,3688025 2,3445050 3,3336093.492 4,3225992.455 5,3133491.11 6,3029720 ...
```

1.5 Temperature Profile data

The data needs to be a comma separated values (.csv) file where the datetime column is in the format YYYY-mm-dd HH:MM:SS. Depths are positive and relative to the water surface. Water temperature is in degrees Celsius. The column names *must* be datetime, Depth_meter and Water_Temperature_celsius

Example of data:

```
datetime, Depth_meter, Water_Temperature_celsius 2004-01-05 00:00:00,0.9,6.97 2004-01-05 00:00:00,2.5,6.71 2004-01-05 00:00:00,5,6.73 2004-01-05 00:00:00,8,6.76
```

1.6 Meteorological data

The data needs to be a comma separated values (.csv) file where the datetime column is in the format YYYY-mm-dd HH:MM:SS. See table 1 for the list of variables, units and column names.

Table 1. Description of meteorological variables used within LakeEnsemblR with units and required column names.

Description	Units Column Name		Status		
Downwelling	W/m	n2Longwave_Radiation			
longwave			temperature, cloud cover and relative humidity/dewpoint		
radaiation			temperature		
Downwelling	W/m2Shortwave_Radiation_ Reqwired lling_wattPerMeterSquared				
shortwave					
radaiation					
Cloud cover	-	Cloud_Cover_decim	allfraotion ovided, it is calculated internally from air		
			temperature, short-wave radiation, latitude, longitude,		
			elevation and relative humidity/dewpoint temperature		
Air	$^{\circ}\mathrm{C}$	Air_Temperature_ce	els Re quired		
temperature					
Relative	%	Relative_Humidity_	percent provided, it is calculated internally from air		
humidity			temperature and dewpoint temperature		
Dewpoint	$^{\circ}\mathrm{C}$	Dewpoint_Temperat	undenced spinsovided, it is calculated internally from air		
temperature			temperature and relative humidity		
Wind speed	$\mathrm{m/s}$	Ten_Meter_Elevatio	n <u>E</u> MMiend <u>w</u> SpelespeendeterRenSelconnelctors is required		
at $10m$					

Description	Units Column Name Status
Wind	°C Ten_Meter_Elevation_N\\vec{N}\vec{vectors} inch_u\vec{D}\vec{vectors} ifdpgovoided u and v vectors are calculated
direction at	internally
$10 \mathrm{m}$	
Wind	m/s Ten_Meter_Uwind_vecitater_noted Representation and v vectors is required
u-vector at	
$10 \mathrm{m}$	
Wind	m/s Ten_Meter_Vwind_v dettdr ernweitedtBepreSentendu and v vectors is required
v-vector at	
$10 \mathrm{m}$	
Precipitation	m/s Precipitation_meterPerecentractly required but is important for mass budgets in some models
Rainfall	m/s Rainfall_meterPerSecdaequired
Snowfall	m/daySnowfall_meterPerDayIf not provided, it is calculated internally from rain when air
	temperature < 0 degC
Sea level	Pa Sea_Level_Barometrid <u>Not</u> Presquire_dpascal
pressure	
Surface level	Pa Surface_Level_BaromRecipuinPeressure_pascal
pressure	
Vapour	mbar Vapor_Pressure_milli B anot provided, it is calculated internally from air
pressure	temperature and relative humidity/dewpoint temperature

1.7 LakeEnsemblR YAML configuration file

There is an example yaml configuration provided in the example dataset in the package or you can download a copy from GitHub here.

You will need to update each of the required variables in the location block to reflect your own site.

location:

```
name: Feeagh  # station name used in output [default=GOTM site]
latitude: 53.9  # latitude [degrees North; min=-90.0; max=90.0; default
longitude: -9.5  # longitude [degrees East; min=-360.0; max=360.0; defau
elevation: 15  # elevation of lake surface above sea level [m]
depth: 46.8  # maximum water depth [m; min=0.0; default=100.0]
hypsograph: LakeEnsemblR_bathymetry_standard.csv  # hypsograph [default=]
init_depth: 46.8  # initial height of lake surface relative to the bottom
```

Then input the filepaths to the bathymetry, meteorlogical and water temperature profile observations file. For first time users we would recommend to set up a folder with just these three files plus the LakeEnsemblR yaml configuration file.

Now you should be ready to run LakeEnsemblR on your site.

2 Running LakeEnsemblR

Once you have your hypsograph, water temperature observations and meteorological files prepared tunning LakeEnsemblR is relatively straightforward.

2.1 Example model run

```
# Install packages - Ensure all packages are up to date - parallel development ongoing
#install.packages('devtools')
devtools::install_github('GLEON/GLM3r')
devtools::install_github('USGS-R/glmtools', ref = 'ggplot_overhaul')
devtools::install_github('aemon-j/FLakeR')
devtools::install_github('aemon-j/GOTMr')
devtools::install_github('aemon-j/gotmtools')
devtools::install_github('aemon-j/SimstratR')
devtools::install_github('aemon-j/LakeEnsemblR')
devtools::install_github('aemon-j/MyLakeR')
# Load libraries
library(gotmtools)
library(LakeEnsemblR)
# Set working directory
setwd('example') # Change working directory to example folder
# Set models & config file
model <- c('GLM', 'FLake', 'GOTM', 'Simstrat', 'MyLake')</pre>
config_file <- 'Feeagh_master_config.yaml'</pre>
# 1. Example - creates directories with all model setup
export_config(config_file = config_file, model = model, folder = '.')
# 2. Create meteo driver files
export_meteo(config_file = config_file, model = model)
# 3. Create initial conditions
start_date <- get_yaml_value(file = config_file, label = "time", key = "start")</pre>
export_init_cond(config_file = config_file,
                 model = model,
                 date = start_date,
                 print = TRUE)
# 4. Run ensemble lake models
wtemp_list <- run_ensemble(config_file = config_file,</pre>
                           model = c('FLake', 'GLM', 'GOTM', 'Simstrat', 'MyLake'),
                           return_list = TRUE)
```

2.2 Post-processing

```
# Load libraries for post-processing
library(ggpubr)
library(ggplot2)

## Plot model output using gotmtools/ggplot2

# Extract names of all the variables in netCDF
```

```
ens_out <- 'output/ensemble_output.nc'</pre>
vars <- gotmtools::list_vars(ens_out)</pre>
vars # Print variables
plist <- list() # Initialize empty list for storing plots of each variable</pre>
for(i in 1:5){
 p1 <- gotmtools::plot_vari(ncdf = ens_out,
                              var = vars[i],
                              incl_time = FALSE,
                              limits = c(0,25),
                              zlab = 'degC')
  p1 <- p1 + scale_y_reverse() + #Reverse y-axis</pre>
    coord cartesian(ylim = c(45,0))+ # qqplot2 v3.3 is sensitive to order of ylim
    ggtitle(vars[i]) + # Add title using variable name
    xlab('')+ # Remove x-label
    theme_bw(base_size = 18) # Increase font size of plots
  plist[[i]] <- p1
# Plot all model simulations
# install.packages('ggpubr')
g1 <- ggpubr::ggarrange(plotlist = plist, ncol = 1, common.legend = TRUE, legend = 'right')
g1
ggsave('output/model_ensemble_watertemp.png', g1, dpi = 300, width = 384, height = 300, units = 'mm')
```

3 References