$\underline{\underline{\mathbf{Def.}}}$ La disugualianza di Cauchy-Schwartz dice che il valore assoluto del prodotto scalare di due elementi è minore o uguale al prodotto delle loro norme: $|\langle \mathbf{x},\mathbf{y} \rangle| \leq$

<u>Def.</u> Una successione x_n in uno spazio metrico (X, d) prende il nome di **successione di Cauchy** se esiste un N

 $d(x_m, x_n) < \epsilon \quad \forall m, n \ge N, \forall \epsilon > 0$ In sostanza significa che al tendere all'infinito, lo spazio tra due elementi della successione tende ad annullarsi.

 $\underline{\underline{\mathbf{Def.}}}\ \ \text{Uno spazio metrico completo}\ \grave{\mathbf{e}}\ \ \text{uno spazio in cui}$ tutte le successioni di Cauchy sono convergenti ad un elemento dello spazio. Viene anche chiamato spazio di Ba-

Osservazione Lo spazio metrico Q dei razionali con la metrica standard non è completo. Infatti, se prendo la succes

sione i troncamenti di $\sqrt{2}$ definita come $x_n = \frac{\lfloor 10^n \sqrt{2} \rfloor}{10^n}$, è una successione di Cauchy (1, 1.4, 1.41, . . .) che converge $\sqrt{2}$, un numero non razionale

Invece, un qualsiasi sottoinsieme chiuso di \mathbb{R}^n è completo. Osservazione \mathbb{R}^n é completo con la norma euclidea. Sic-Usservazione \mathbb{R}^n e compieto con la norma euclidea. Siccome poi in \mathbb{R}^n tutte le norme sono equivalenti, qualunque spazio normato in \mathbb{R}^n é completo. Segue anche che tutti gli spazi metrici in \mathbb{R}^n in cui la discorre de la completo con la completo con contra completo. tanza proviene da una norma sono completi

 $\underline{\mathbf{Def.}}$ Si definisce $\mathbf{contrazione}$ una funzione $f:X\to X$ tale che esiste L che soddisfa

$$d(f(x), f(y)) \le Ld(x, y), \quad L < 1$$

In altre parole, f è una contrazione se contrae la distanza tra due elementi x e y.

Osservazione Ogni contrazione è lipschitziana, e quindi an

Th. Il teorema di Banach-Cacciopolli dice che dato

write a
$$f(x_0)$$
, clock
$$|f_n(x_0) - f(x_0)| < \epsilon \quad \forall \epsilon > 0, \forall x_0 \in E, \ \forall n > n_{\epsilon}$$
oppure $\lim_{n \to \infty} f_n(x) = f(x) \quad \forall x \in E$

<u>Def.</u> La successione $f_n(x)$ converge uniformemente alla funzione f(x) se $\forall \epsilon > 0$ esiste un'unica soglia n_{ϵ} valida per tutti i punti x_0 , cioè:

$$\begin{array}{l} \forall n > n_{\epsilon}, \ |f_n(x_0) - f(x_0)| < \epsilon \ \forall \epsilon > 0, \forall x_0 \in E, \\ \text{oppure: } \lim_{n \to \infty} \sup_{x \in E} |f_n(x) - f(x)| < \epsilon \end{array}$$

Osservazione La convergenza uniforme implica quella pun tuale, ma non vale il viceversa.

Th. Il teorema di Bolzano-Weierstrass afferma che in uno spazio euclideo finito dimensionale \mathbb{R}^n ogni successione reale limitata ammette almeno una sottosuccession

 $\underline{\operatorname{Th.}}$ Il teorema della continuita' per le successioni afferma che il limite f(x) di una successione f(x) di funzioni continue uniformemente convergenti in un intervallo I è una funzione continua in I.

Th. Il Teorema di passaggio al limite sotto il segno di integrale dice che sia f_n una successione di funzioni continue su [a,b] tali che $f_n \rightrightarrows f$ $(f_n$ converge uniformemente a f), allora:

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_{n}(x) dx$$

Th. Il Teorema di passaggio al limite sotto il segno di derivata dice che data $\{f_n(x)\}\in C^1([a,b])$, se esiste $x_0\in [a,b]$ tale che $f_n(x_0)\to l$, e se $f'_n\rightrightarrows g$ in [a,b], allora si ha che la successione $\{f_n\}$ converge uniformemente a f in [a, b], e inoltre:

e inoltre:
$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f'_n(x)$$

<u>Def.</u> La serie di funzioni $\sum_{k=1}^{+\infty} f_k$ non é altro che la successione $\{s_n\}_k$ delle sue somme parziali.

Def. La convergenza puntuale per le serie di funzioni

$$\left|\sum_{k=n+1}^{+\infty} f_k(x)\right| < \epsilon, \quad \forall n > n_{\epsilon}$$

cioé se la successione $\{s_n\}$ delle somme parziali converge.

Def. La convergenza uniforme delle serie di funzioni

$$\sup_{x\in I}\left|\sum_{k=n+1}^{+\infty}f_k(x)\right|<\epsilon$$

Osservazione La convergenza uniforme implica quella pun-

Osservazione Se voglio dimostrare che una serie non con verge, basta che trovo un n per cui il sup non é 0: $\sup_{x \in I} \mid f_{n+1}(x) \mid \to 0$

Osservazione Se ho una serie della forma

Osservazione Se ho una serie della forma
$$\frac{\text{Th.}}{\sup_{k=0}^{\infty} (-1)^k f_k(x)}$$
, con $f_k(x) \geq 0$, $f_{k+1}(x) \geq f_k(x)$, $f_k(x) \rightarrow 0$ $\frac{\text{Th.}}{\sup_{k=0}^{\infty} (-1)^k f_k(x)}$ Se una serie ha raggio di convergenza $\rho > 0$, allora sia

allora converge puntualmente $\forall x$ per Leibnitz. In oltre, se ho che $f_k(x) \rightrightarrows 0$, allora converge anche uniformemente, poiché

$$\left|\sum_{k=n+1} (-1)^k f_k(x)\right| \le \sup |f_{n+1}(x)| \to 0$$
La serie
$$\sum_{k=n+1}^{+\infty} f_k(x) \text{ converge assolutamente in } I$$

se converge (puntualmente) in I la serie $\sum_{k=1}^{+\infty} |f_k(x)|$

 $\sum_{k=1}^{+\infty} M_k < \infty \quad \text{e} \quad | f_k(x) | \le M_k, \quad \forall x \in I$

Osservazione La serie é totalmente convergente se e solo se posso prendere $M_k=\sup_{x\in I}|f_k(x)|$, cosa che é molto utile

 $\begin{array}{ll} \textit{Osservazione} & \text{Si dice "totalmente convergente" perch\'e} \\ \text{scegliendo una successione numerica } M_k \text{ non dipendente} \\ \text{da } x, \text{la serie converge "per tutti gli } x". \end{array}$

rie di funzioni dice che la somma di una serie di funzioni continue (cioè f_k continua $\forall k$) che converge uniformemente è una funzione continua. Questa somma è

<u>Th.</u> Il teorema di integrazione per serie dice che se $\overline{f_k[a,b]} \to \mathbb{R}$ continue, e se $s_n(x) \rightrightarrows s(x)$ in [a,b], allora:

 $\int_a^b s(x)dx = \int_a^b \sum_{i=1}^{+\infty} f_k(x)dx = \sum_{i=1}^{+\infty} \int_a^b f_k(x)dx$

Th. Il teorema di derivazione per serie dice che data

 $f_k: I \to \mathbb{R}$, con $f_k \in C^1(I)$, e dato $S_n(x) = \sum_{k=1}^n f_k(x)$,

se $S'_n = \sum_{k=1}^n f'_k(x)_k$ converge uniformemente, e $\exists x_0 \in I$

 $S_n(x) \rightrightarrows \sum_{k=1}^\infty f_k'(x), \quad \mathrm{e} \quad \left(\sum_{k=1}^\infty f_k(x)\right)' = \sum_{k=1}^\infty f_k'(x)$

 $\underline{\mathbf{Def.}}$ Si dice **serie di potenze** una serie di funzioni di

 $\sum_{k=0}^{\infty} a^k (x - x_0)^k$

Assumiamo $x_0 = 0$, altrimenti basta fissare $y = (x - x_0)$

Osservazione Una serie di potenze converge sempre in

Analogamente, se non converge in $\xi' \in \mathbb{R}$, allora non converge in $|x| > |\xi'|$. L'insieme dei valori dove la serie converge prende il nome

Osservazione L'insieme di convergenza puó essere solo delle

 $\{0\}, \hspace{0.2cm} (-\rho,\rho), \hspace{0.2cm} [-\rho,\rho), \hspace{0.2cm} [-\rho,\rho] \hspace{0.1cm}, \hspace{0.2cm} (-\rho,\rho], \hspace{0.2cm} \mathbb{R}$

Osservazione La definizione formale del raggio di convergenza é questa: $\rho=\sup\{|x|\mid x\in A\},$ dove A é l'insieme

Osservazione Pur conoscendo il raggio di convergenza

non sappiamo come si comporta la serie agli estremi dell'insieme di convergenza. Si devono verificare manual-

Osservazione La serie converge in ogni intervallo chiuso e limitato contenuto nell'insieme di convergenza: [a,b] \subset

<u>Def.</u> Il **criterio della radice** dice che il raggio di conver-

 $l = \limsup_{k \to \infty} \sqrt[k]{|a_k|}$

Osservazione Il limsup é il limite maggiore di tutte le possibili sottosuccessioni. Per il teorema di Bolzano-Weierstrass, esiste sempre almeno una sottosuccessione convergente, e quindi esiste sempre il limsup.

<u>Def.</u> Il **criterio del rapporto** dice che data una serie di

 $l = \lim_{k \to +\infty} \frac{|a_{k+1}|}{|a_k|}$

Th. Il teorema di Abel dice che se una serie numerica

 $\sum_{k=0}^{\infty} a_k \rho^k$ con $\rho > 0$ converge, allora la serie di potenze

Osservazione In altre parole questo teorema afferma che

Osseriazzone in artie parie questo teorema arterna che se una serie converge in $(-\rho, \rho)$, ma converge anche nell'estremo ρ , allora la somma della serie puó essere calcolata anche in quell'estremo con il limite $x \to \rho$.

 $\underline{\mathbf{Def.}}\;$ Data una serie di potenze, si dice serie derivata la

 $\sum_{k a_k x}^{\infty} k a_k x^{k-1}$

la derivata che l'integrale della somma della serie hanno lo

 $\underline{\bf Th.}$ Il teorema di sviluppabilità in serie di Taylor dice che se fé dotata delle derivate di ogni ordine e se $\exists M,\,L>0$ tali che

 $\left|f^{(k)}(x)\right| \le M \cdot L^k, \quad \forall k = 0, 1, 2 \dots, \quad \forall x \in (a, b)$

allora f é sviluppabile in x_0 per ogni $x_0 \in (a,b)$, per

Se invece $\rho < 0$, allora la serie converge uniform $[-\rho, \rho - \delta], \ \forall \delta > 0.$

 $a_k x^k$ converge uniformemente in $[-\rho + \delta, \rho], \forall \delta > 0$.

allora il raggio di convergenza é $\rho = \frac{1}{T}$

stesso raggio di convergenza ρ .

di insieme di convergenza.

dove ρ é il raggio di convergenza

 $(-\rho, \rho)$.

Il teorema della continuita' del limite per le se-

fare quasi sempre.

 $s(x) = \sum_{k=1}^{+\infty} f_k(x)$

Osservazione La convergenza assoluta implica quella pun-**Def.** Una curva é un'applicazione continua $\varphi:I\to$ $\overline{\mathbb{R}^d}$, $d \in \mathbb{N}$. L'immagine della curva, anche detto **sostegno**, é l'insieme dei punti per cui passa la curva, definito come Questo é verificabile poichè per il teorema del confronto di serie, vale che $- |f_k(x)| \le f_k(x) \le |f_k(x)|$

 $\textit{Osservazione}\ \mbox{Se}\ f_k \geq 0,$ allora la convergenza puntuale é uguale a quella assoluta. Osservazione $\,\, \varphi \,$ é continua se $t \, o \, \varphi_{\,i}(t)$ é continua $\forall i \, = \,$

 $\underline{\mathbf{Def.}}$ La serie f_k si dice totalmente convergente in I se esiste una successione di numeri reali non negativi M_k tale che: Osservazione A uno stesso sostegno possono appartenere

> cio é se $\varphi: \mathring{I} \longrightarrow \mathbb{R}^d$ é iniettiva, dove \mathring{I} é I senza estremi, Def. Una curva è derivabile se ogni componente è deriv-

Def. Una curva di dice semplice se non si auto interseca

abile. Il vettore $\varphi'(t)=(\varphi_1'(t),\varphi_2'(t),\ldots,\varphi_d'(t))$ è detto vettore velocitá.

<u>Def.</u> Una curva si dice **regolare** se $\varphi'(t) \neq 0 \quad \forall t \in \mathring{I}$

Def. Il versore
$$T(t) = \frac{\varphi'(t)}{|\varphi'(t)|}$$
 è detto tangente.

<u>Def.</u> La lunghezza di una curva è definita nel seguente

$$L(\varphi) = \sup egin{cases} L(\pi) \mid \pi \text{ è una poligonale inscritta} \\ ext{con punti} \ t_0 < t_1 < \cdots < t_k < \infty \end{cases}$$

Dove la poligonale è una curva fatta di segmenti, e una poligonale inscritta è una poligonale che passa per tutti i punti di una data curva (con segmenti infinitesimali)

$$\underline{\mathbf{Th.}} \ \ \mathrm{Se} \ \varphi \colon [a,b] \longrightarrow \mathbb{R}^d \ \mathrm{\grave{e}} \ \mathrm{una} \ \mathrm{curva} \ \mathrm{regolare, \ allora:}$$

$$L(\varphi) = \int_a^b \mid \varphi'(t) \mid dt < +\infty$$

Osservazione Il teorema vale anche se la curva è regolare solo a tratti. In questo caso dovró spezzare l'integrale nei

 ${\it Osservazione}~$ La lunghezza della curva non è la lunghezza del sostegno. Infatti, una curva potrebbe fare vari giri.

 ${\it Osservazione}$ Tutte le curve cartesiane sono semplici, in quanto essendo f una funzione, non puó avere due risultati diversi sulla stessa x.

Osservazione Se $f \in C^1$, allora \varnothing è regolare: $\varnothing'(t) =$

Osservazione La lunghezza delle curve cartesiane si calcola

$$L(\varnothing) = \int_a^b \sqrt{1 + (f'(t))^2} dt$$

 $\underline{\mathbf{Def.}}$. Le curve **polari** sono quelle curve che si possono esprimere come funzione dell'angolo con l'origine $\rho(\theta)\colon\to(0,+\infty).$ Quindi la curva è definita come: $\mathcal{Q}(\theta)=(\rho(\theta)\cos\theta,\rho(\theta)\sin\theta)$

Osservazione Tutte le curve polari sono regolari, in quanto

Osservazione La lunghezza delle curve polari si calcola come:
$$L(\varnothing) = \int_0^b \sqrt{\rho(\theta)^2 + \rho'(\theta)^2} d\theta$$

<u>Def.</u> Si definiscono le seguenti funzioni iperboliche:

Def. Si definiscono le seguenti funzioni iperboliche
$$\cosh = \frac{e^t + e^{-t}}{2}, \quad \text{pari}, \quad \text{Immagine: } [1, +\infty]$$

 $\sinh = \frac{e^t - e^{-t}}{-}, \quad \text{dispari}, \quad \text{Immagine: } [-\infty, +\infty]$ Si chiamano iperbolici perché se applico la seguente map-

$$\cos^2 \to \cosh^2$$
 $\sin^2 \to -\sinh^2$

Tutte le identitá trigonometriche sono ancora verificate

$$\cosh' = \sinh \quad \sinh' = \cosh$$

$$arccosh(x) = log(x + \sqrt{x^2 - 1})$$

$$arcsinh(x) = log(x + \sqrt{x^2 + 1})$$

 $\begin{array}{ll} \underline{\mathbf{Def.}} & \text{Due curve } \mathscr{D} \colon [a,b] \to \mathbb{R}^d \text{ e } \varphi \colon [c,d] \to \mathbb{R}^d \text{ si di-}\\ \text{cono equivalenti se esiste una funzione } h \colon [c,d] \to [a,b]\\ \text{continua e univoca tale che } \mathscr{D}(h(t)) = \varphi(t), \quad \forall t \in [c,d]. \end{array}$

 $\underline{\mathbf{Th.}}$ Due curve equivalenti hanno la stessa lunghezza.

<u>Def.</u> \underline{P} é punto interno di E se $\exists r > 0$ t.c. $B(\underline{P}, r) \subseteq E$ be punto di E se $P \in \text{interno a } E^c$. E punto di frontiera se $\forall r > 0, B(P)$ contiene sia punti

E che del complementare. é **punto di accumulazione** per E se $\forall r$ > $\underline{P} \in \textbf{punto}$ ul accumulazione si dice punto Ogni punto di E che non é di accumulazione si dice punto

 $\underline{\mathbf{Def.}}$ Un insieme E si dice \mathbf{aperto} se ogni suo punto é Un insieme E si dice **chiuso** se il suo complementare é

aperto. Un insieme E é **limitato** se $\exists r>0$ t.c. $E\subseteq B(\underline{0},r)$. La **chiusura** di un insieme E é il piú piccolo insieme chE' tale che $E\subseteq E'$.

Osservazione L'unione e l'intersezione di due insiemi aperti é un insieme aperto. L'unione e l'intersezione di due insiemi chiusi é un insieme chiuso.

 $\underline{\mathbf{Def.}} \ \ \mathrm{Sia} \ \underline{x_0} \ \in \ A \subseteq \mathbb{R}^n, \ \mathrm{con} \ \underline{x_0} \ \mathrm{punto} \ \mathrm{di} \ \mathrm{accumulazione}$ di A. Sia $\overline{f} \colon \mathbb{R}^n \longrightarrow \mathbb{R}^d$, e sia $\underline{L} = (L_1, \dots, L_d) \in \mathbb{R}^d$

$$\lim_{\underline{x}\to\underline{x_0}} f(\underline{x}) = \underline{L} \quad \text{se}$$

$$\forall \epsilon>0, \exists \delta>0 \text{ tale che se } |\underline{x}-\underline{x_0}| < \delta \text{ allora } |f(\underline{x})-\underline{L}| < \epsilon$$
 Osservazione $f(x)\to L$ se e solo se $f_i(x)\to L_i$, $\forall i=$

Osservazione $f(\underline{x}) \rightarrow \underline{L}$ se e solo se $f_i(x) \rightarrow L_i, \ \forall i = 1, \dots, n$ $1, \ldots, d$ Manca la dimostrazione! Osservazione Per dimostrare che non esiste il limite devo trovare due successioni $\underline{P_n} \to c$ e $\underline{Q_n} \to c$ tali che $f(\underline{P_n}) \to \underline{l}$ e $f(\underline{Q_n}) \to \underline{l'}$. Se $\underline{l} \neq \underline{l'}$, allora il limite non esiste. Osservazione Se bisogna calcolare un limite per $(x,y) \to (x_0,y_0)$ invece che $(x,y) \to (0,0),$ basta che impongo $x - x_0, y' = y - y_0$, e scrivo la funzione f(x, y) =f'(x', y'). Poi calcolo il limite di f' per $(x', y') \rightarrow (0, 0)$. Osservazione Per calcolare il limite di una funzione a più variabili spesso aiuta molto imporre $y=x^{\beta}$, con il giusto

Osservazione Quando si deve calcolare anche il limite in base a un dato valore α , attenzione a non fare maggiorazioni improprie perché si potrebbero perdere alcuni valori di α . Osservazione Alcune maggiorazioni utili:

 $2xy \le x^2 + y^2$ (poiché $(x - y)^2 \ge 0$)

$$\frac{1-\cos x}{x} = \frac{1-\cos x(1+\cos x)}{x(1+\cos x)} = \frac{\sin^2 x}{x(1+\cos x)} = \frac{\sin^2 x}{x(1+\cos x)} = \frac{\sin^2 x}{x(1+\cos x)} = \frac{\sin x}{x(1+\cos x)} = \frac{\sin x}{1+\cos x} =$$

 $\begin{array}{ll} \textit{Osservazione} & \text{Se il limite non si riesce a tirare fuori da una forma indeterminata del tipo } \frac{0}{0} \text{ oppure } \frac{\infty}{\infty} \text{ , allora si pu\'o usare l'Hopital (vale anche in } \mathbb{R}^n \end{array}$

 $\underline{\mathbf{Def.}}$ Un punto (x,y) pu
ó essere espresso anche in base a un altro (x_0,y_0) attraverso le coordinate polari. In questo

$$\begin{split} x &= x_0 + \rho \cos \theta \\ y &= y_0 + \rho \sin \theta \\ \text{Quindi} \left(x, y \right) &\to \left(x_0, y_0 \right) \equiv \left| \left(x - x_0, y - y_0 \right) \right| \to 0 \equiv \rho \to 0 \end{split}$$

Osservazione Attenzione! Non si fissare θ e poi ottenere il limite, poiché il limite deve essere costante per ogni θ ! Se il limite non é costante, é molto probabile che non es-

Osservazione Nelle coordinate polari, ρ é sempre positivo, dato che rappresenta la distanza dall'origine.

 $\begin{array}{ll} \underline{\mathbf{Def.}} & \mathrm{Sia} \ f :\in \mathbb{R}^n \to \mathbb{R}^d \ \mathrm{e} \ \underline{c} \ \mathrm{punto} \ \mathrm{di} \ \mathrm{accumulazione} \ \mathrm{in} \ A \\ & (\mathrm{con} \ \underline{c} \in A. \ \mathrm{Si} \ \mathrm{dice} \ \mathrm{che} \ f \ \underline{e} \ \mathrm{continua} \ \mathrm{in} \ A \ \mathrm{se} \\ & \forall \epsilon > 0, \exists \delta > 0 \ \mathrm{tale} \ \mathrm{che} \ \mathrm{se} \ |\underline{x} - \underline{c}| < \delta \ \mathrm{allora} \ |f(\underline{x}) - f(\underline{c})|_{\mathbb{R}^d} < \end{array}$

 $\begin{array}{l} \textit{Osservazione} \quad \text{Come per i limiti, vale che } f: A \in \mathbb{R}^n \to \mathbb{R}^d \\ \text{\'e continua in } \underline{c} \in A \text{ se e solo se } f_i: \mathbb{R} \to \mathbb{R} \text{\'e continua} \\ \forall i = 1, 2, \ldots d \text{ , cio\'e se sono continue tutte le sue compositions } f_i \in \mathbb{R}^d \\ \text{\'e continua} \end{array}$

Osservazione Data $f: A \in \mathbb{R}^n \to \mathbb{R}^d$, con A aperto /chiuso, si ha che se f é continua, allora anche f^{-1} é aperto / chiuso, rispettivamente.

 $\begin{array}{l} \underline{\mathbf{Def.}} \ \ \mathrm{Data} \ f: A \in \mathbb{R}^n \to \mathbb{R}, \ \mathrm{con} \ \underline{x}_0 \ \mathrm{punto} \ \mathrm{interno,} \ \mathrm{e} \ \mathrm{dato} \\ \underline{v} \in \mathbb{R}^n, \ \mathrm{con} \ |v| = 1, \ \mathrm{allora} \ \mathrm{la} \ \mathrm{derivata} \ \mathrm{direzionale} \ \mathrm{di} \ f \\ \mathrm{in} \ x_0 \ \mathrm{verso} \ \underline{v} \ \mathrm{\acute{e}} \ \mathrm{il} \ \mathrm{seguente} \ \mathrm{limite} \ (\mathrm{se} \ \mathrm{esiste}) \mathrm{:} \end{array}$ $\frac{f(\underline{x}_0 + t\underline{v}) - f(\underline{x}_0)}{t} \equiv D_{\underline{v}} f(x_0) \equiv \frac{df}{dv}(\underline{x}_0) \equiv d\underline{v} f(\underline{x}_0)$

t $d\underline{v}$ $d\underline{v}$ $d\underline{v}$ Potrebbe essere comodo scrivere \underline{v} = $(\cos \theta, \sin \theta)$.

Osservazione Ponendo $\varphi(t) = f(\underline{x}_0 + t\underline{v})$, si ottiene $D_v f(x_0) = \varphi'(0).$

Def. Prende il nome di derivata parziale di f in x₀ rispetto alla variabile x_i la derivata direzionale usai $\underline{v}=(0,0,\ldots,1,\ldots,0,0)$, con l'1 all'i-esima posizione

 $\underline{\mathbf{Def.}}$ Se nel punto x_0 esistono tutte le derivate parziali (quindi fé derivabile lungo tutti gli assi), allora si dice che f é **derivabile** in x_0 . Se risulta derivabile per $\forall x_0 \in A$, allora si dice derivabile in A.

Osservazione Per verificare l'esistenza delle derivate parziali, bisogna usare il limite del rapporto incrementale. <u>Def.</u> Il **gradiente** é il vettore formato dalle derivate

parziali:
$$Df(x_0) = \nabla f(x_0) = (\frac{df}{dx_0}f(x_0), \frac{df}{dx_1}f(x_0), \dots, \frac{df}{dx_n}f(x_0))$$

 $\underline{\mathbf{Def.}}$ Data $f:\mathbb{R}^n\to\mathbb{R}$ si dice $f\in C^1$ in x_0 se é derivabile e $\overline{\forall}f$ é continuo in x_0 .

Osservazione Ricordarsi che il gradiente é continuo se e solo

 $\underline{\mathbf{Def.}}$ Il piano tangente a una superficie si trova con $z = f(x_0, y_0) + \frac{df}{dx}(x_0, y_0)(x - x_0) + \frac{df}{dy}(x_0, y_0)(y - y_0)$

 $\begin{array}{c} dx & ay \\ \textbf{Osservazione} & \text{In sostanza mi fermo al primo passo di approssimazione dello sviluppo di Taylor, dove approssimo una superficie con un piano \\ \end{array}$

 $\begin{array}{ll} \underline{\mathbf{Def.}} \ \ \mathrm{Data} \ f: A \in \mathbb{R}^n \to \mathbb{R}, \ \mathrm{con} \ A \ \mathrm{aperto}, \ \mathrm{con} \ x_0 \in A, \ f \\ \mathrm{si} \ \mathrm{dice} \ \underline{\mathbf{differenziabile}} \ \mathrm{in} \ x_0 \ \mathrm{se} \ \mathrm{esiste} \ \underline{a} \in \mathbb{R}^n \ \ \mathrm{tale} \ \mathrm{che} : \end{array}$ $f(\underline{x}_0 + \underline{h}) - f(\underline{x}_0) = \underline{a} \cdot \underline{h} + o(|\underline{h}|), \text{ dove } \underline{h} \in \mathbb{R}^n \text{ e } \underline{h} \to 0$ $\forall x_0 \in A$.

..........

Osservazione Per verificare la differenziabilità di una funzione in un punto \underline{x}_0 , verificare che il seguente limite valga

$$\lim_{\underline{h}\to 0} \frac{f(\underline{x}_0 + \underline{h}) - f(\underline{x}_0) - \nabla f(\underline{x}_0) \cdot \underline{h}}{|\underline{h}|}$$

<u>Def.</u> Il differenziale di f in x_0 é l'applicazione lineare $\overline{df(\underline{x}_0)}: \mathbb{R}^n \to \mathbb{R} \quad \underline{h} \to \underline{a} \cdot \underline{h}$

 $\underline{\mathbf{Th.}} \ \ \mathsf{Data} \ f: A \in \mathbb{R}^n \to \mathbb{R}, \ \mathsf{con} \ A \ \mathsf{aperto}, \ \mathsf{con} \ \underline{x}_0 \in A, \ \mathsf{se}$ differenziabile in \underline{x}_0 , allora vale che: e dinerenziabile il \underline{x}_0 , alora vale che: f é continua in \underline{x}_0 f é derivabile direzionalmente in \underline{x}_0 , in particolare é erivabile e $\underline{a} = \nabla f(\underline{x}_0)$.

 $-D_{\underline{v}}f(\underline{x}_0) = \nabla f(\underline{x}_0) \cdot \underline{v}$ **<u>Def.</u>** Data $f:A\in\mathbb{R}^n\to\mathbb{R}$, con $\underline{x}_0\in A$, con f differenzi- $D_{\underline{v}}f(\underline{x}_0) = \forall f(\underline{x}_0)) \cdot \underline{v} = |\forall f(\underline{x}_0)| |\underline{v}| \cos \beta = |\forall f(\underline{x}_0)| |\cos \beta$ é massimo quando $\cos \beta = 1$, cioé quando $\beta = 0$, cioé quando $\nabla f(\underline{x}_0)$) é parallelo a \underline{v} (e hanno lo stesso verso).

 $\underline{v} = \frac{\nabla f(\underline{x}_0)}{|\nabla f(\underline{x}_0)||}$

 $\underline{\mathbf{Def.}}$ Se f é differenziabile in \underline{x}_0 , allora l'iperpiano $x_{n+1} = f(\underline{x}_0) + \nabla f(\underline{x}_0)(\underline{x} - x_0)$

 $\begin{array}{l} \underline{\text{Th.}} \quad \text{Il teorema del differenziale totale} \ \text{dice} \ \text{che} \ \text{data} \\ \overline{f}: A \in \mathbb{R}^n \to \mathbb{R}, \ \text{se} \ f \ \text{\'e} \ \text{derivabile} \ \text{e} \ f_{x_1}, f_{x_2}, \dots, f_{x_n} \\ \text{sono continue in} \ \underline{x_0}, \ \text{allora} \ f \ \text{\'e} \ \text{differenziabile} \ \text{in} \ \underline{x_0}. \end{array}$

Corollario: se $f \in C^1(A)$, allora f é differenziabile in A. $\textit{Osservazione}\ \ \text{Non è detto}\ \text{che se}\ f\not\in C^1$ allora non è dif-

Osservazione Il teorema dice che se f é differenziabile in

$$D_{v} f(\underline{x}_{0}) = \nabla f(\underline{x}_{0}) \cdot \underline{v}, \quad \forall \underline{v}$$

<u>Def.</u> Data $f: A \in \mathbb{R}^n \to \mathbb{R}^k$, si dice che f é derivabile/differenziabile $/C^m$ se lo é componente per componente.

Def. Siano le seguenti funzioni:

 $f: A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^k$ con f differenziabile in A $q: B \subset \mathbb{R}^k \to \mathbb{R}^d$ con a differenziabile in B

Se f é derivabile, allora si definisce **iacobiana** la matrice $k \times n$ delle derivate parziali

$$J_f(x_0) = \begin{bmatrix} \frac{\delta f_1}{\delta x_1} & \cdots & \frac{\delta f_1}{\delta x_n} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\delta f_k}{\delta x_1} & \cdots & \frac{\delta f_k}{\delta x_n} \end{bmatrix} = \begin{bmatrix} \nabla f_1(x_0) \\ \vdots \\ \nabla f_k(x_0) \end{bmatrix}$$

Sia $h:A\subseteq\mathbb{R}^n\to\mathbb{R}^d$, definita come $\underline{x}\to g(f(\underline{x}))$. Allora h é differenziabile in A e inoltre:

$$J_{h}(\underline{x}) = J_{g}(f(\underline{x})) \cdot J_{f}(\underline{x}) = \begin{bmatrix} \dots & \dots & \dots \\ \dots & \frac{\delta h_{i}}{\delta x_{j}} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

A questo punto possiamo calcolarci l'elemento generico:

$$\epsilon \frac{dh_i}{dx_j} = \sum_{s=1}^k d_s g_i(f(\underline{x})) \cdot d_j f_s(\underline{x}), \quad \forall i = 1, \dots, d \quad \forall j = 1, \dots, n \text{ Prop. Per n} = 2, A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Def. Data $g: \mathbb{R}^2 \to \mathbb{R}$, con $g \in C^1$, si definisce l'insieme di livello come: $\{(x,y) \in \mathbb{R}^2 \mid g(x,y) = c\} \text{ con } c \in \mathbb{R}$

servazione Per valori di c "buoni", l'insieme di livello é il sostegno di una curva regolare. Prop. Il gradiente di una funzione é ortogonale al suo

 $\underline{\underline{\mathbf{Def.}}}$ Si dice matrice $\underline{\mathbf{Hessiana}}$ la matrice formata da tutte $\underline{\mathbf{le}}$ possibili derivate seconde:

$$H_f(\underline{x}) = \begin{bmatrix} f_{x_i x_j}(\underline{x}) & \dots & f_{x_i x_j}(\underline{x}) \\ f_{x_i x_j}(\underline{x}) & \dots & f_{x_i x_j}(\underline{x}) \\ f_{x_i x_j}(\underline{x}) & \dots & f_{x_i x_j}(\underline{x}) \end{bmatrix}$$

Osservazione In generale, la matrice non é simmetrica

Def. Data $f: A \in \mathbb{R}^n \to \mathbb{R}$, con A aperto, si dice che $f \in C^2$, se é derivabile due volte e le derivate seconde

<u>Th.</u> Il **Teorema di Schwartz** dice che se $f \in C^2$, l'ordine di derivazione non conta e la matrice Hessian é simmetrica In generale $f \in C^k$ le derivate di ordine k non dipendonc

Th. Il teorema di Lagrange dice che: sia $f: A \in \mathbb{R}^n \to$ R, con A aperto, $f \in C^1(A)$, se $\underline{x}_0 \in A$, $\underline{x} \in A$, tale che il segmento é in A, $\exists \sigma$ appartenente al segmento $\underline{x},\underline{x}_0$ tale che:

$$f(\underline{x}) = f(\underline{x}_0) + \nabla f(\sigma)(\underline{x} - \underline{x}_0)$$
 Che non é altro che lo sviluppo di Taylor al primo ordin

Th. Il teorema di Lagrange dice che: sia $f: A \in \mathbb{R}^n \to \mathbb{R}^n$ \mathbb{R} , con A aperto, $f\in C^2(A)$, se $\underline{x}_0\in A$, $\underline{x}\in A$, tale che il segmento \acute{e} in A, $\exists\sigma$ appartenente al segmento $\underline{x},\underline{x}_0$ tale che:

 $f(\underline{x}) = f(\underline{x}_0) + \triangledown f(\sigma)(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(\underline{x}_0 + \varepsilon(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0))(\underline{x} - \underline{x}_0)$

 $\underline{\mathbf{Def.}}$ Un insieme $A\subseteq R^n$ si dice **connesso** se le condizioni $\exists A_1, A_2 \text{ aperti t.c.} \quad A_1 \cup A_2 = A, \quad A_1 \cap A_2 = \emptyset$ implicano che uno dei due insiemi aperti é vuoto.

<u>**Th.**</u> Dato $A \subseteq \mathbb{R}^n$ aperto e connesso, allora $\forall \underline{x}, \underline{y} \in A$ esiste una curva $\varnothing \in C^1$, definita come $\varnothing: [0,1] \to A$ che collega \underline{x} con \underline{y} , cioé $\varnothing(0) = \underline{x}$, $\varnothing(1) = \underline{y}$. A allora é un insieme **connesso ad archi**.

Prop. $f:A\in\mathbb{R}^n\to\mathbb{R}$, con A aperto e connesso, con f differenziabile su A, se $\forall f=0$ in A allora f é costante su

 $f(x) \geq f(x_0) \text{ oppure } f(x) \leq f(x_0), \quad \forall x \in B_{\delta}(x_0) \cap A$ Dove $B_{\delta}(x_0)$ é una palla di raggio δ di centro x_0 .

 $\underline{\mathbf{Prop.}}$ Se x_0 é punto di massimo/minimo, e punto interno di A,e fé derivabile in Aallora $\triangledown f(x_0)=0$ Osservazione Non vale il viceversa! Se il gradiente é nullo potrebbe anche essere che x_0 non é punto di massimo/min-

 $\underline{\bf Def.}~$ Se $\triangledown f(x_0)=0$ ma x_0 non é punto di massimo/minimo, allora si dice che x_0 é **punto di sella**.

Def. Introduciamo la seguente notazione

$$(H\underline{v}) \cdot \underline{v} = (H\underline{v}, \underline{v}) = \sum_{i,j=1}^{n} h_{i,j} v_i v_j$$

 $\frac{\textbf{Prop.}}{\text{zabile}} \text{ Se la matrice } H \text{ \'e simmetrica, allora \'e diagonalizabile} \text{ e ha autovalori } \lambda_1, \lambda_2, \dots, \lambda_n.$

Def. La matrice H si dice: Definita positiva Definita negativa Semidefinita positiva

se $(Hv, v) < 0, \forall v$ ci se $(Hv, v) > 0, \forall v$ ci Semidefinita negativa se $(Hv, v) \leq 0, \forall v$ ci

Indefinita

 $_{Prop.}$ Se H é definita positiva, allora

Se \overline{H} é definita negativa, allora $(\underline{H}\underline{v},\underline{v}) \leq$ $\lambda_{max}|v|^2, \forall v.$

 $\overline{\text{Se }x_0}$ é un minimo locale, allora $H_f(x_0)$ é

Se x_0 é un massimo locale, allora $H_f(x_0)$ é semidefinita negativa. Se $H_f(x_0)$ é definita positiva, allora x_0 é un massimo locale. Se $H_f(x_0)$ é definita negativa, allora x_0 é

Se detA > 0, e tr(A) > 0, A è definita positivamente, e \underline{x}_0

Se detA > 0, e tr(A) < 0, A è definita negativamente, e \underline{x}_0 è punto di massimo.

Osservazione La matrice A è simmetrica poichè per ipotesi

$$A_1 = \begin{bmatrix} a_{11} \end{bmatrix}, \quad A_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad A_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}.$$

Prop. Se A è simmetrica, sappiamo che: \overline{A} è definita positiva $\Leftrightarrow \det A_k > 0$ per $k = 1 \dots n$.

 $\begin{array}{ll} \underline{\mathbf{Def.}} & \mathrm{Data} \ f: A \in \mathbb{R}^n \to \mathbb{R}, \ x_m \in A \ \mathrm{è} \ \mathrm{punto} \ \mathrm{di} \ \mathrm{minimo} \ \mathrm{assoluto} \ \mathrm{per} \ f \ \mathrm{in} \ A \ \mathrm{se} \ f(\underline{x}_m) \le f(\underline{x}), \forall \underline{x} \in A \ \mathrm{e} \\ m = f(\underline{x}_m) \ \mathrm{\grave{e}} \ \mathrm{detto} \ \mathrm{minimo} \ \mathrm{assoluto}. \ \mathrm{Uguale} \ \mathrm{per} \ \mathrm{il} \ \mathrm{massimo}. \end{array}$

 $\overline{f}: A \in \mathbb{R}^n \to \mathbb{R}$ continua, con A connesso, e dati $x \in y \in A$ (supponendo f(x) < f(y)). Allora:

$$\forall c \in [f(x), f(y)], \exists z \in A \text{ t.c. } f(z) = c$$

 $\underline{\mathbf{Def.}}$ Un insieme $A\subseteq\mathbb{R}^n$ é convesso se dati due punti dell'insieme, il segmento che li unisce é tutto compreso nell'insieme. Formalmente:

$$(\lambda x + (1 - \lambda)y) \in A, \quad \forall x, y \in A, \quad \forall \lambda \in [0, 1]$$

 $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \ \forall x,y \in A, \quad \forall \lambda \in [0,1]$ cio
é se tutti i valori della funzione stanno sotto il segmento che colleg
a $x\,\,{\rm e}\,\,y.$

alla funzione sta tutto sotto alla funzione. Formalmene $f(x) \geq f(x_0) + \triangledown f(x_0)(x-x_0), \quad \forall x,x_0 \in A.$ - se f é convessa ed é anche $C^2(A)$, allora $H_f(x)$ é semidefinita positiva.

Osservazione In generale, se $g:\mathbb{R}\to\mathbb{R}$ é convessa e crescente, allora la funzione in \mathbb{R}^n definita come f(x)=g(|x|)

se $(H\underline{v},\underline{v}) > 0, \forall \underline{v}$ ci

se $\exists v, w \text{ t.c. } (Hv, v) >$ cioé se $\exists \lambda_1, \lambda_2$ t.c. λ_1

 $(H\underline{v},\underline{v}) \ge \lambda_{min} |\underline{v}|^2, \forall \underline{v}.$

Prop. Se $f \in C^2$, $x_0 \in A$, x_0 punto interno e $\triangledown f(x_0) = 0$: semidefinita positiva.

un minimo locale. Se $H_f(x_0)$ é indefinita, allora x_0 é un punto di sella.

 $\begin{array}{lll} ac-b^2 = \det \mathbf{A} = \lambda_1 \lambda_2, & a+c = \operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 \\ \mathrm{Se} \ \det \mathbf{A} <, \ \mathbf{A} \ \& \ \mathrm{indefinita}, \ e \ \underline{x_0} \ \mathrm{punto} \ \dim \mathrm{sella}. \\ \mathrm{Se} \ \det \mathbf{A} = 0, \ \mathrm{sappiamo} \ \mathrm{che} \ \mathrm{un} \ \mathrm{autovalore} \ \& \ 0, \ \mathrm{m} \ \mathrm{niente} \\ \mathrm{altro.} \ \ (\mathrm{al} \ \mathrm{massimo} \ \mathrm{sappiamo} \ \mathrm{che} \ \mathbf{A} \ \& \ \mathrm{semidefinita} \ \mathrm{positiva} \end{array}$

 $\begin{array}{ll} \textit{Osservazione} & \text{Se detA} > 0 \implies ac > b^2 \implies a \in c \text{ hanno} \\ \text{lo stesso segno. Quindi, per vedere il segno della traccia,} \\ \text{mi basta osservare semplicemente il segno di } a. \end{array}$

Se \underline{x}_0 è punto di minimo, allora det $A \ge 0$, $tr(A) \ge 0$ Se \underline{x}_0 è punto di massimo allora det $A \le 0$, $tr(A) \le 0$.

Def. I minimi principali nord-ovest di una matrice son e sottomatrici quadrate formate a partire dall'angolo in alto a sinistra:

$$A_1 = \begin{bmatrix} a_{11} \end{bmatrix}, \quad A_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad A_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}. \end{bmatrix}$$

A è definita negativa $\Leftrightarrow \det A_k(-1)^k > 0$ per $k = 1 \dots n$.

 $\underline{\mathbf{Def.}}\;\;\mathrm{Data}\;f:\mathbb{R}^n\;\to\mathbb{R},\;\mathrm{se}\;\lim_{|x|\to\infty}f(x)=+\infty$ allora la

 $\frac{\text{Lop.}}{\text{funzione}} \text{ Un corollario al teorema di Weierstrass: se una funzione} \in \text{coerciva, allora ammette minimo assoluto.} \text{ (Vale anche il viceversa: se una funzione} \in \text{coerciva a} -\infty, \text{ allora ammette massimo assoluto}.$ $f(\underline{x}_0) + \nabla f(\sigma)(\underline{x} - \underline{x}_0) + \frac{1}{2} (H_f(x_0 + \varepsilon(x - x_0))(x - x_0))(x - x_0) + o(|\underline{x} - \underline{x}_0|^2) \text{ Tb} \quad \text{in } \sigma$ $\frac{|\mathbf{x}_0|}{|\mathbf{x}_0|} = \frac{1}{2} \left(\frac{|\mathbf{x}_0|}{|\mathbf{x}_0|} + \frac{1}{2} \left$

A (supponendo
$$f(x) \leq f(y)$$
). Allora:

$$(\lambda_x + (1 - \lambda)u) \in A \quad \forall x \ u \in A \quad \forall \lambda \in [0]$$

<u>Def.</u> Una funzione $f:A\in\mathbb{R}^n\to\mathbb{R}$, con A aperto e connesso, si dice **convessa** se

Osservazione - se f é convessa, allora f é continua - se f é convessa e differenziabile, allora il piano tangente alla funzione sta tutto sotto alla funzione. Formalmente

 ${\it Osservazione}\$ se f é convessa, e ha un minimo, allora quel minimo é assoluto (Per esempio se $f \in C^1$ allora in x_0 punto minimo $\nabla f(x_0) = 0$ e $f(x) \geq f(x_0)$ per osservazione precedente)

Rigurda gli spazi topologici. PRIMA dell'esonero.

Alcuni limiti notevoli utili:

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \frac{1 - \cos x(1 + \cos x)}{x(1 + \cos x)} = \frac{\sin^2 x}{x(1 + \cos x)} = \frac{\sin x}{1 + \cos x} = 0$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \frac{1}{2}$$

Alcune maggiorazioni utili:

$$2xy \le x^2 + y^2 \quad (\operatorname{poich\'e}(x - y)^2 \ge 0)$$

Esempi di funzioni sviluppabili in Taylor:

$$log(1+x) = \sum \frac{(-1)^k x^{k+1}}{k+1}$$

$$\frac{1}{1+x} = \sum x^k, \quad x \in (-1,1)$$

$$\frac{1}{1+x^2} = \sum (-1)^k x^{2k}$$

$$\frac{-1}{(1-x)^{-2}} = \sum kx^{k-1}$$

$$sin(x) = \sum \frac{(-1)^{n+1} x^{2n+1}}{(2n+1)!}$$

$$cos(x) = \sum \frac{(-1)^{n} 2^n}{(2n)!}$$

Notare che l'ultima é stata ottenuta integrando la terza.

In linea di massima, ognuna di queste puó essere derivata/integrata a piacere.