CS & IT

ENGINERING

THEORY OF COMPUTATION

Regular Expressions

Lecture No.-08

Recap of Previous Lecture

Topic

Regular Expression

Topic

Construction of Regular Expression

Topic

DFA States

Topics to be Covered

Topic: Theory of Computation

State elimination method

(1)

(2)

(3)

Home work

[MCQ]

#Q. Which one of the following regular expressions is equivalent to the language accepted by the DFA given below?

[GATE-CS-shift-II-24: 1M]

D 0*1(010*1) *0*

[MCQ]

- #Q. Let M be the 5-state NFA with ∈ transitions shown in the diagram below. Which one of the following regular expressions represents the language accepted by M?

 [GATE-CS-shift-II-24: 2M]
- A $0^* + (1 + 0 (00)^*) (11)^*$
- B $(00)^* + 1(11)^*$
- $(00)^* + (1 + (00)^*) (11)^*$
- D $0^+ + 1(11)^* + 0(11)^*$

Consider the languages $L_1 = \phi$ and $L_2 = \{a\}$. Which one of the following represents $L_1L_2^* \cup L_1^*$? [2013: 1 Mark]

- **Α** {ε}
- Вф
- C a*
- D (ε, a)

This method in not suitable for E-NFA

In order to find out a regular expression of a Finite Automaton we use Arden's Theorem.

Statement-

Let P and Q be two regular expressions.

If P does not contain null string R = Q + RP has a unique solution that is R = Q + RPQP*

Topic: Regular Expression to Finite Automata Construction

Algorithm

∈-NFA
→(I) € →(E)
→(□) a →(□)

Topic: Regular Expression to Finite Automata Construction

 γ_1, γ_2 ()

10 am

(a+6)*

- (Clark

$$\frac{a^*b^*}{a^*b^*c^*} \xrightarrow{3} \frac{100}{a^*b^*c^*}$$

$$\frac{a^*b^*c^*}{a^*b^*c^*} \xrightarrow{5} \frac{100}{a^*b^*}$$

a* 6* c*

#Q. Construct Finite Automata for the given regular expression

#Q. Construct Finite Automata for the given regular expression

THANK - YOU