情感分析作业报告

作者

魏家栋, 计72班, 学号2017011445

实现内容

利用神经网络进行情感分析,基于Keras框架,实现了全连接、CNN、RNN等神经网络模型,并对准确率进行测试和比较。

实现思路

实现了全连接网络(MLP)作为baseline,文本分别采用bags-of-words和TF-IDF进行表示,标签分别转化为分类问题(classification,标签最大值作为单标签预测)和回归问题(regression,标签归一化)进行表示。

实现了CNN、Text-CNN、LSTM、RNN模型,文本采用word-embedding进行表示,模型中的词嵌入层 (embedding layer)分别初始化为预训练的词向量且不可训练(static)、初始化为预训练的词向量且可训练 (non-static)、随机初始化且可训练(rand),标签分别转化为分类问题和回归问题进行表示。

工作流程可分为以下步骤:

- 1. 对数据进行预处理,数据包括新浪新闻和预训练的词向量(见https://github.com/Embedding/Chinese-Word-Vectors, 语料库: Sogou News, 表示形式: Word2vec / Skip-Gram with Negative Sampling (SGNS), 特点: Word + Character + Ngram, 感谢张晨同学上传到清华云盘https://cloud.tsinghua.edu.cn/f/7928cb6c3db34c67b1b0/)。对预训练的词向量,首先建立并存储一个单词到编号的字典,然后将编号到词向量以矩阵的形式存储。对新浪新闻,抽取其中的每条新闻的文本和标签信息,分别转化为矩阵。对文本矩阵,分别转化为bags-of-words、TF-IDF、word-embedding的表示形式并存储。对标签矩阵,分别转化为分类问题和回归问题并存储。
- 2. 训练神经网络。按照下面的模型结构建立神经网络,读入供训练的文本数据和标签数据,划分为训练集和验证集,开始训练。
- 3. 预测准确率等指标。读入供测试的文本数据和标签数据,利用模型进行预测,并计算准确率 (accuracy)、F-score、相关系数(Correlation Coefficient)

模型结构

MLP(全连接)模型结构如下:

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 64)	2833728
dropout_1 (Dropout)	(None, 64)	0
dense_2 (Dense)	(None, 64)	4160

Layer (type)	Output Shape	Param #
dropout_2 (Dropout)	(None, 64)	0
dense_3 (Dense)	(None, 8)	520

Total params: 2,838,408

CNN模型结构如下:

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 350, 300)	13282800
conv1d_1 (Conv1D)	(None, 348, 128)	115328
max_pooling1d_1 (MaxPooling1D)	(None, 116, 128)	0
dropout_1 (Dropout)	(None, 116, 128)	0
conv1d_2 (Conv1D)	(None, 114, 64)	24640
max_pooling1d_2 (MaxPooling1D)	(None, 38, 64)	0
dropout_2 (Dropout)	(None, 38, 64)	0
conv1d_3 (Conv1D)	(None, 36, 32)	6176
max_pooling1d_3 (MaxPooling1D)	(None, 12, 32)	0
dropout_3 (Dropout)	(None, 12, 32)	0
flatten (Flatten)	(None, 384)	0
dense_1 (Dense)	(None, 128)	49280
dropout_4 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 8)	1032

Total params: 13,479,256

Text-CNN模型结构如下:

参考论文: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 1746–1751. 模型如图Text-CNN所示,不同的是,这里采用6个 region sizes: 2, 3, 4, 5, 6, 7,并且MaxPooling得到的是一个向量而不是图中的一个值。

Layer (type)	Output Shape	Param #	Connected to
input (InputLayer)	(None, 350)	0	
embedding (Embedding)	(None, 350, 300)	13282800	input[0][0]

Layer (type)	Output Shape	Param #	Connected to
conv1d_1 (Conv1D)	(None, 349, 4)	2404	embedding[0][0]
conv1d_2 (Conv1D)	(None, 349, 4)	2404	embedding[0][0]
conv1d_3 (Conv1D)	(None, 348, 4)	3604	embedding[0][0]
conv1d_4 (Conv1D)	(None, 348, 4)	3604	embedding[0][0]
conv1d_5 (Conv1D)	(None, 347, 4)	4804	embedding[0][0]
conv1d_6 (Conv1D)	(None, 347, 4)	4804	embedding[0][0]
conv1d_7 (Conv1D)	(None, 346, 4)	6004	embedding[0][0]
conv1d_8 (Conv1D)	(None, 346, 4)	6004	embedding[0][0]
conv1d_9 (Conv1D)	(None, 345, 4)	7204	embedding[0][0]
conv1d_10 (Conv1D)	(None, 345, 4)	7204	embedding[0][0]
conv1d_11 (Conv1D)	(None, 344, 4)	8404	embedding[0][0]
conv1d_12 (Conv1D)	(None, 344, 4)	8404	embedding[0][0]
max_pooling1d_1 (MaxPooling1D)	(None, 116, 4)	0	conv1d_1[0][0]
max_pooling1d_2 (MaxPooling1D)	(None, 116, 4)	0	conv1d_2[0][0]
max_pooling1d_3 (MaxPooling1D)	(None, 116, 4)	0	conv1d_3[0][0]
max_pooling1d_4 (MaxPooling1D)	(None, 116, 4)	0	conv1d_4[0][0]
max_pooling1d_5 (MaxPooling1D)	(None, 115, 4)	0	conv1d_5[0][0]

Layer (type)	Output Shape	Param #	Connected to
max_pooling1d_6 (MaxPooling1D)	(None, 115, 4)	0	conv1d_6[0][0]
max_pooling1d_7 (MaxPooling1D)	(None, 115, 4)	0	conv1d_7[0][0]
max_pooling1d_8 (MaxPooling1D)	(None, 115, 4)	0	conv1d_8[0][0]
max_pooling1d_9 (MaxPooling1D)	(None, 115, 4)	0	conv1d_9[0][0]
max_pooling1d_10 (MaxPooling1D)	(None, 115, 4)	0	conv1d_10[0][0]
max_pooling1d_11 (MaxPooling1D)	(None, 114, 4)	0	conv1d_11[0][0]
max_pooling1d_12 (MaxPooling1D)	(None, 114, 4)	0	conv1d_12[0][0]
dropout_1 (Dropout)	(None, 116, 4)	0	max_pooling1d_1[0][0]
dropout_2 (Dropout)	(None, 116, 4)	0	max_pooling1d_2[0][0]
dropout_3 (Dropout)	(None, 116, 4)	0	max_pooling1d_3[0][0]
dropout_4 (Dropout)	(None, 116, 4)	0	max_pooling1d_4[0][0]
dropout_5 (Dropout)	(None, 115, 4)	0	max_pooling1d_5[0][0]
dropout_6 (Dropout)	(None, 115, 4)	0	max_pooling1d_6[0][0]
dropout_7 (Dropout)	(None, 115, 4)	0	max_pooling1d_7[0][0]
dropout_8 (Dropout)	(None, 115, 4)	0	max_pooling1d_8[0][0]
dropout_9 (Dropout)	(None, 115, 4)	0	max_pooling1d_9[0][0]
dropout_10 (Dropout)	(None, 115, 4)	0	max_pooling1d_10[0][0]

Layer (type)	Output Shape	Param #	Connected to
dropout_11 (Dropout)	(None, 114, 4)	0	max_pooling1d_11[0][0]
dropout_12 (Dropout)	(None, 114, 4)	0	max_pooling1d_12[0][0]
flatten_1 (Flatten)	(None, 464)	0	dropout_1[0][0]
flatten_2 (Flatten)	(None, 464)	0	dropout_2[0][0]
flatten_3 (Flatten)	(None, 464)	0	dropout_3[0][0]
flatten_4 (Flatten)	(None, 464)	0	dropout_4[0][0]
flatten_5 (Flatten)	(None, 460)	0	dropout_5[0][0]
flatten_6 (Flatten)	(None, 460)	0	dropout_6[0][0]
flatten_7 (Flatten)	(None, 460)	0	dropout_7[0][0]
flatten_8 (Flatten)	(None, 460)	0	dropout_8[0][0]
flatten_9 (Flatten)	(None, 460)	0	dropout_9[0][0]
flatten_10 (Flatten)	(None, 460)	0	dropout_10[0][0]
flatten_11 (Flatten)	(None, 456)	0	dropout_11[0][0]
flatten_12 (Flatten)	(None, 456)	0	dropout_12[0][0]
concatenate (Concatenate)	(None, 5528)	0	flatten_1[0][0] flatten_2[0][0] flatten_3[0][0] flatten_4[0][0] flatten_5[0][0] flatten_6[0][0] flatten_7[0][0] flatten_8[0][0] flatten_9[0][0] flatten_10[0][0] flatten_11[0][0] flatten_12[0][0]
dense_1 (Dense)	(None, 128)	707712	concatenate[0][0]
dropout_13 (Dropout)	(None, 128)	0	dense_1[0][0]

Layer (type)	Output Shape	Param #	Connected to
dense_2 (Dense)	(None, 8)	1032	dropout_13[0][0]

Total params:

14,056,392

LSTM模型结构如下:

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 350, 300)	13282800
lstm (LSTM)	(None, 128)	219648
dropout (Dropout)	(None, 128)	0
dense (Dense)	(None, 8)	1032

Total params: 13,503,480

RNN模型结构如下:

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 350, 300)	13282800
simple_rnn (SimpleRNN)	(None, 128)	54912
dropout (Dropout)	(None, 128)	0
dense (Dense)	(None, 8)	1032

Total params: 13,338,744

文本表示形式的转化

文本有3种表示形式:bags-of-words、TF-IDF、word-embedding。这里利用keras内置的Tokenizer类,可以方便地将文本转化为这三种形式。Tokenizer类接收一个文本矩阵,能够生成一个词表,并统计各个词在各个文档中出现的次数等信息,从而给出词频矩阵(bags-of-words)、TF-IDF矩阵、词嵌入矩阵。

标签表示形式的转化

标签有2种表示形式:分类问题、回归问题。分类问题只需将标签中的最大值置为1,其余置为0;回归问题只需将每个标签除以标签总数进行归一化。

测试结果

各类神经网络的测试结果(包括准确率accuracy、F-score、相关系数Correlation Coefficient)如下表所示:

			ассигасу	F-score	Correlation Coefficient
	bags-of-words	classification	0.5745	0.2031	0.5819
MLP	Dags-or-words	regression	0.5700	0.1661	0.5604
MLP	TF-IDF	classification	0.5821	0.2207	0.5891
	TF-IDF	regression	0.5467	0.1586	0.5367
	static	classification	0.5821	0.2265	0.6104
	Static	regression	0.5736	0.1705	0.5880
CNN	non-static	classification	0.5606	0.2029	0.5855
CIVIN	HOH-Static	regression	0.5709	0.2004	0.6021
	random	classification	0.5413	0.1577	0.5168
	random	regression	0.5180	0.1948	0.5486
	static	classification	0.5404	0.1995	0.5564
		regression	0.5700	0.1879	0.5782
Text-CNN	non-static	classification	0.5512	0.2150	0.5617
Text-CININ		regression	0.5489	0.1695	0.5621
	random	classification	0.5373	0.1614	0.5325
		regression	0.5561	0.1806	0.5883
	static	classification	0.5494	0.2367	0.5627
		regression	0.5377	0.1588	0.5554
LSTM	non-static	classification	0.4928	0.2413	0.5349
LSTM		regression	0.5382	0.2158	0.5758
	sandom	classification	0.4879	0.1007	0.4791
	random	regression	0.4987	0.1304	0.4936
	static	classification	0.5180	0.1618	0.5001
	Static	regression	0.5058	0.1590	0.4923
RNN	non statis	classification	0.4825	0.1515	0.4732
KININ	non-static ·	regression	0.4538	0.1433	0.4322
	random	classification	0.4681	0.0913	0.4277
	random	regression	0.4776	0.0808	0.4578

从这些测试结果可以看出:

- 全连接网络(MLP)和CNN的效果最好,其次是Text-CNN和LSTM,最后是RNN。全连接网络和CNN的较高准确率大约在56-58%,Text-CNN和LSTM的较高准确率大约在53-55%,而RNN的较高准确率大约在50-51%。这可能是因为LSTM和RNN的模型实现较为简单,影响了准确率,而全连接网络的结构较为简单,参数容易得到充分训练;也可能是因为数据集的规模较小、分布较不均匀,导致模型训练出现偏差。
- 分类问题相较于回归问题,训练得到的模型的准确率一般更高,而相关系数一般更低。这是因为分类问题采用交叉熵作为损失函数,目标是标签最大值尽可能正确,因此由单标签计算得到的准确率更高;回归问题采用均方误差作为损失函数,目标是标签分布尽可能正确,因此相关系数更高。
- 作为词嵌入层,预训练的词向量比随机的词向量(rand)效果更好,而预训练的词向量是否可再训练对结果影响不大,甚至不可再训练(static)的效果更好一些。预训练的词向量比随机的词向量效果更好是符合预期的,因为从随机词向量开始训练,参数数量很大,容易导致词嵌入层权值变化不大或者陷入极小值,效果不好。而同样是预训练的词向量,不可再训练比可再训练(non-static)的效果更好一些,这是不符合预期的,我原以为可再训练能够使得词向量更"适应"该语料库。我认为这可能是由于语料库的规模太小,导致训练和测试不充分。
- 在全连接网络(MLP)中,用bags-of-words或TF-IDF表示文本对效果影响不大。这可能是因为bags-of-words表示中,较为"中性"的词对应的权值接近于0,接近于TF-IDF减少高频停用词的效果,因此二者结果接近。

参数调整

优化器(如Adam、RMSProp)参数均采用默认值,默认值主要是建议值或原论文中的值,效果一般不错。需要调整的参数主要是"早停法"(见问题思考部分)对应的阈值和耐心值。该参数的调整方法为,不使用"早停法",训练模型足够多个epoch,观察验证集上损失函数的变化。一般来说,验证集上损失函数大致呈先下降后上升的趋势,下降过程中一般呈梯度下降,即下降一下后波动一段再下降一下。为了尽可能使训练不在波动段停止,同时加快模型的训练速度,需要将耐心值设为稍大于观察到的连续波动的epoch数,将阈值设为稍小于损失函数下降接近最低点时的下降值。这样就可以通过实践得到适合的"早停法"阈值和耐心值。

问题思考

1. 我采用"早停法"即验证集调整的方式停止实验训练。首先我将提供的训练数据按照4:1的比例划分为 训练集和验证集,在训练集上训练神经网络模型,在验证集上计算损失函数和准确率(但不用于训 练模型)。我设定了一个阈值和一个耐心值,若在耐心值个训练周期内,验证集上损失函数下降不 超过阈值(甚至是上升)时,训练停止。最后我将模型权值恢复为验证集上损失函数最小时的模型 权值(而不是直接采用停止训练时的模型权值)。

设定的阈值和耐心值与采用的神经网络模型和标签的表示方式有关。比如全连接网络,将标签转化为单标签预测(分类问题),阈值为0.001,耐心值为5;将标签归一化(回归问题),阈值为0.0003,耐心值为5。阈值不同是因为分类问题的损失函数为交叉熵,回归问题的损失函数为均方误差,交叉熵的减小相对均方误差更快,因此其阈值较大。耐心值是因为损失函数的下降呈"梯度",即下降一下后波动一段再下降一下,根据实验观察取耐心值为5,能够较好的避免模型训练在损失函数未达到最小值时停止,同时避免训练过度。而lstm神经网络,标签为分类问题,阈值为0.005,耐心值为3,相较于全连接网络而言阈值更大、耐心值更小,这是因为lstm根据实验观察损失函数下降很快,并且在下降至最低点后迅速上升,因此更大的阈值和更小的耐心值能够迅速结束训练。

相较于固定迭代次数,通过验证集调整能够自动判断何时停止,有效减缓了过拟合问题,并减少了

训练时间。而且由于何时停止是自动选择的,减少了调参的压力。但是由于验证集的损失函数有波动,可能存在由于波动导致判停条件提前成立导致"过早停止"的问题。

- 2. 神经网络各层参数的初始化遵循默认值。比如词嵌入层初始化为random-uniform,卷积层和全连接层权值初始化为Glorot-uniform(Xavier-uniform),偏置初始化为全零。我认为随机初始化权值即可,避免模型训练陷入损失函数的极小值。
- 3. 我采用两种防止过拟合,一个是"早停法",一个是Dropout层。"早停法"在验证集的损失函数一段时间内没有提升时停止训练,Dropout层随机舍弃该层的一部分神经元,二者都能有效避免过拟合。
- 4. 根据本次实验结果,全连接神经网络实现简单,训练较快,效果较好;CNN和text-CNN收敛速度较快,但每个epoch的训练时间较长,效果很好;RNN和LSTM收敛速度很快,但本次试验效果较差,理论上RNN非常适合变长序列的分析,可能是因为训练集的规模较小,参数没有充分调整。

心得体会

本次实验中,我通过全连接、CNN、text-CNN、RNN、LSTM等神经网络的实现,对各类神经网络的结构有了更深入的了解,学习了神经网络的调参。神经网络的确有些"黑箱",但是效果也很好,适合应用于实践。

未来拓展

- 实现更复杂的模型,并进行比较。本次实验中全连接网络、RNN、LSTM等神经网络的实现较为简单,可能影响了其准确率,未来希望对更复杂的模型进行实验,进一步提升准确率。
- 对更多参数进行调整。本次实验只调整了早停法的参数(阈值和耐心值),优化器(如Adam、RMSProp)的参数、神经网络的初始化方式等均采用默认值,神经元的个数也没有经过调整和比较,可能影响了结果的准确率。未来希望对这些参数进行调整并实验,进一步提升准确率。
- 更深入地了解神经网络。由于Keras对神经网络的封装较好,很多时候我都只将神经网络作为一个"黑盒"看待,这的确方便了我从整体上思考神经网络结构等问题,但也让我对神经网络的内部实现和各类参数等知识缺乏了解。我希望未来能够更深入地了解神经网络的实现,从而更好地调整参数和对神经网络进行创新。