CS 6966: High-Dimensional Data Analysis (Fall 2024): Jeff M. Phillips

L1: Curse of Dimensionality: Basic Geometry

Vectors $x = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$

For $a, b \in \mathbb{R}^d$

- ℓ_2 or Euclidean distance: $\|a-b\|=\|a-b\|_2=\sqrt{\sum j=1^d(a_j-b_j)^2}$ ℓ_∞ or max distance: $\|a-b\|_\infty=\max_{j=1}^d|a_j-b_j|$

1. Volume of cube vs. inscribed sphere with dimension d.

 $[-1,1]^d$ square has volume 2^d for all d $2\times 2\times \ldots \times 2=2^d$

volume of ball inscribed radius = 1

$$\frac{r^d\pi^{d/2}}{\Gamma(d/2+1)}\approx \frac{1\cdot\pi^{d/2}}{(d/2)!}$$

d	ball-vol	box-vol
$\overline{2}$	3.14	4
4	4.93	16
6	5.16	64
8	4.05	256
10	2.55	1024
12	1.33	4096
14	0.60	16384
16	0.24	65536
18	0.08	262144

what happens for 1x1x1 box? Is it inscribed?

2. Approx orthogonality of high-d Gaussians

 $a, b \sim G_d(0, 1)$ a d-dimensional Gaussian

$$E[(a_i-b_i)^2] = E[a_i^2] + E[b_i^2] - 2E[a_ib_i] = Var[a_i] + Var[b_i] - 2E[a_i]E[b_i] = 2$$
 so $\|a-b\|^2 = 2d$

Need also: $E[||a||^2] = d$

Pythagorean if a orthogonal to b (w.r.t 0) then $||a|| = \sqrt{d}$, $||b|| = \sqrt{d}$ and hence $||a - b||^2 = ||a||^2 + ||b||^2 = 2d$

3. Big Annulus

For any object $A \subset \mathbb{R}^d$ let

$$(1-\varepsilon)A = \{(1-\varepsilon)x|x\in A\}$$

(imagine shrinking into origin .. but works more generally)

Thm: $Vol((1-\varepsilon)A = (1-\varepsilon)^d Vol(A)$

proof: decompose A into a set of d-dim cubes C_1,C_2,\dots so $Vol(A)=\sum_{j}Vol(C_j)$

Each C_j has side length l_j , and $Vol(C_j) = l_j^d$ We can replace $(1 - \varepsilon)A$ by same series $(1 - \varepsilon)C_1, (1 - \varepsilon)C_2, ...$

$$Vol((1-\varepsilon)C_i) = ((1-\varepsilon)l_i)^d = (1-\varepsilon)^d Vol(C_i)$$

QED

Now notice that $(1-\varepsilon)^d \leq e^{-\varepsilon d}$ thus for fixed ε , as d grows larger than $1/\varepsilon$ and then $e^{-\varepsilon d}$ exponentially decreases after that.

Consequence:

- For unit ball B subset \mathbb{R}^d : $1 e^{-\varepsilon d}$ fraction of volume in B $(1 \varepsilon)B$.
- For eps = 1/10, and d=100 then $1-e^{-\varepsilon d}=1-e^{-10}=\ 0.99995$ within the last 10% of radius
- For eps = 1/20, and d=100 then $1 e^{-\varepsilon d} = 1 e^{-5} = 0.993$ within the last 5% of radius
- For eps = 1/25, and d=100 then $1-e^{-\varepsilon d}=1-e^{-4}=0.98$ within the last 4% of radius
- For eps = 1/50, and d=100 then $1 e^{-\varepsilon d} = 1 e^{-2} = 0.86$ within the last 2% of radius

4. Volume near Equator

Consider unit ball B subset \mathbb{R}^d Let $\mathbf{v}=(1,0,0,...,0)$ – think of this as pointing "up" or "North"

Consider the "tropical zone" as being near the equator if the first coordinate has magnitude at most c/\sqrt{d} for some $c \ge 1$ (think of c=10) and d=100. We show that

$$Vol_d(B_r) = \frac{r^d \pi^{d/2}}{\Gamma(d/2)} = r^d V_d$$

The "disk" at $1/\sqrt{d}$ above equator is a (d-1)-dimensional Ball with radius $x=\sqrt{1-1/d}$ since $1^2=x^2+1/d$ So $Vol_{d-1}(B_{\sqrt{1-1/d}})=(1-1/d)^{d/2}V_{d-1}$

Also "disk" at $2/\sqrt{d}$ above equator is a (d-1)-dimensional Ball with radius $\sqrt{1-4/d}$ So $Vol_{d-1)}(B_{\sqrt{1-4/d}})=(1-4/d)^{d/2}V_{d-1}$

$$\frac{Vol_{d-1}(B_{\sqrt{1-1/d}})}{Vol_{d-1}(B_{\sqrt{1-4/d}})} = \frac{(1-1/d)^{d/2}V_{d-1}}{(1-4/d)^{d/2}V_{d-1}} \approx \frac{e^{-1/2}}{e^{-2}}$$

Each are "layers of a cake" with same height $1/\sqrt{d}$. Volume decreases, geometrically so layers $j=3...\sqrt{d}<$ layer 2

$$\sum_{i=2}^{\sqrt{d}} Vol_{d-1}(B_{\sqrt{1-j^2/d}}) < 2Vol_{d-1}(B_{\sqrt{1-4/d}})$$

So $e^{-1/2} > 2/e^2$... the lowest layer is larger than all above layers combined (for large d)

If we make the first layer κ/\sqrt{d} for $\kappa > 1$, then the gap is even larger.

5. Spiky Boxes

Now consider a ball B with radius 1 in \mathbb{R}^d .

And a box $C = [-1/2, 1/2]^d$ with volume Vol(C) = 1

Note $(1-1/2)B \subset C$, where (1-1/2)B is ball or radius 1/2.

For d=2, we have $C\subset B$.

For d = 4, still $C \subset B$

but $||0 - (1/2, 1/2, 1/2, 1/2)|| = \sqrt{4(1/2)^2} = 1$

so the corner of C touches now touches boundary of B.

How about d = 5?

Corner of C outside of B.

How about d = 8?

Corner $c \in C$ has distance $\sqrt{8(1/2)^2} = 2$, far outside of B center of face (1/2, 0, ..., 0), well inside of B.

In general, corner a distance $\sqrt{d}/2$ from 0

Most of volume of the C is outside of B, since $Vol(B) \to 0$ as d grows

Question:

How do you sample a random point in B in \mathbb{R}^d for large d?