SSJ User's Guide

Package probdistmulti

Multivariate Probability Distributions

Version: June 18, 2014

This package provides tools to compute densities, mass functions, distribution functions for various continuous and discrete multivariate probability distributions.

June 18, 2014 CONTENTS 1

Contents

Overview	2
General Classes	3
DiscreteDistributionIntMulti	3
ContinuousDistributionMulti	4
ContinuousDistribution2Dim	5
Discrete Distributions over Integers	6
MultinomialDist	6
NegativeMultinomialDist	8
2-Dimensional Continuous Distributions	10
BiNormalDist	10
BiNormalGenzDist	13
BiNormalDonnellyDist	14
BiStudentDist	16
Continuous Distributions	18
MultiNormalDist	18
DirichletDist	20
Overview of package probdistmulti norta	21

June 18, 2014 CONTENTS 2

Overview

This package contains Java classes providing methods to compute mass, density, distribution and complementary distribution functions for some multi-dimensional discrete and continuous probability distributions. It does not generate random numbers for multivariate distributions; for that, see the package randvarmulti.

Distributions

We recall that the distribution function of a continuous random vector $X = \{x_1, x_2, \dots, x_d\}$ with density $f(x_1, x_2, \dots, x_d)$ over the d-dimensional space R^d is

$$F(x_1, x_2, \dots, x_d) = P[X_1 \le x_1, X_2 \le x_2, \dots, X_d \le x_d]$$
(1)

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_d} f(s_1, s_2, \dots, s_d) \, ds_1 ds_2 \dots ds_d \tag{2}$$

while that of a discrete random vector X with mass function $\{p_1, p_2, \dots, p_d\}$ over a fixed set of real numbers is

$$F(x_1, x_2, \dots, x_d) = P[X_1 \le x_1, X_2 \le x_2, \dots, X_d \le x_d]$$
(3)

$$= \sum_{i_1 \le x_1} \sum_{i_2 \le x_2} \cdots \sum_{i_d \le x_d} p(x_1, x_2, \dots, x_d), \tag{4}$$

where $p(x_1, x_2, ..., x_d) = P[X_1 = x_1, X_2 = x_2, ..., X_d = x_d]$. For a discrete distribution over the set of integers, one has

$$F(x_1, x_2, \dots, x_d) = P[X_1 \le x_1, X_2 \le x_2, \dots, X_d \le x_d]$$
 (5)

$$= \sum_{s_1 = -\infty}^{x_1} \sum_{s_2 = -\infty}^{x_2} \cdots \sum_{s_d = -\infty}^{x_d} p(s_1, s_2, \dots, s_d), \tag{6}$$

where $p(s_1, s_2, \dots, s_d) = P[X_1 = s_1, X_2 = s_2, \dots, X_d = s_d].$

We define \bar{F} , the complementary distribution function of X, as

$$\bar{F}(x_1, x_2, \dots, x_d) = P[X_1 \ge x_1, X_2 \ge x_2, \dots, X_d \ge x_d]. \tag{7}$$

June 18, 2014

Discrete Distribution Int Multi

Classes implementing multi-dimensional discrete distributions over the integers should inherit from this class. It specifies the signature of methods for computing the mass function (or probability) $p(x_1, x_2, ..., x_d) = P[X_1 = x_1, X_2 = x_2, ..., X_d = x_d]$ and the cumulative probabilities for a random vector X with a discrete distribution over the integers.

package umontreal.iro.lecuyer.probdistmulti;

public abstract class DiscreteDistributionIntMulti

public abstract double prob (int[] x);

Returns the probability mass function $p(x_1, x_2, ..., x_d)$, which should be a real number in [0, 1].

public double cdf (int x[])

Computes the cumulative probability function F of the distribution evaluated at \mathbf{x} , assuming the lowest values start at 0, i.e. computes

$$F(x_1, x_2, \dots, x_d) = \sum_{s_1=0}^{x_1} \sum_{s_2=0}^{x_2} \dots \sum_{s_d=0}^{x_d} p(s_1, s_2, \dots, s_d).$$

Uses the naive implementation, is very inefficient and may underflows.

public int getDimension()

Returns the dimension d of the distribution.

public abstract double[] getMean();

Returns the mean vector of the distribution, defined as $\mu_i = E[X_i]$.

public abstract double[][] getCovariance();

Returns the variance-covariance matrix of the distribution, defined as $\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)].$

public abstract double[][] getCorrelation();

Returns the correlation matrix of the distribution, defined as $\rho_{ij} = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$.

ContinuousDistributionMulti

Classes implementing continuous multi-dimensional distributions should inherit from this class. Such distributions are characterized by a *density* function $f(x_1, x_2, ..., x_d)$; thus the signature of a density method is supplied here. All array indices start at 0.

```
package umontreal.iro.lecuyer.probdistmulti; public abstract class ContinuousDistributionMulti  \begin{aligned} &\text{public abstract class ContinuousDistributionMulti} \\ &\text{public abstract double density (double[] x);} \\ &\text{Returns } f(x_1, x_2, \ldots, x_d), \text{ the probability density of } X \text{ evaluated at the point } x, \text{ where } x = \{x_1, x_2, \ldots, x_d\}. \text{ The convention is that } x[i-1] = x_i. \end{aligned}   \begin{aligned} &\text{public int getDimension()} \\ &\text{Returns the dimension } d \text{ of the distribution.} \end{aligned}   \begin{aligned} &\text{public abstract double[] getMean();} \\ &\text{Returns the mean vector of the distribution, defined as } \mu_i = E[X_i]. \end{aligned}   \begin{aligned} &\text{public abstract double[][] getCovariance();} \\ &\text{Returns the variance-covariance matrix of the distribution, defined as } \\ &\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]. \end{aligned}   \end{aligned}   \begin{aligned} &\text{public abstract double[][] getCorrelation();} \\ &\text{Returns the correlation matrix of the distribution, defined as } \\ &\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}. \end{aligned}
```

Continuous Distribution 2 Dim

Classes implementing 2-dimensional continuous distributions should inherit from this class. Such distributions are characterized by a *density* function f(x,y); thus the signature of a density method is supplied here. This class also provides a default implementation of $\overline{F}(x,y)$, the upper CDF. The inverse function $F^{-1}(u)$ represents a curve y=h(x) of constant u and it is not implemented.

package umontreal.iro.lecuyer.probdistmulti;

public int decPrec = 15;

Defines the target number of decimals of accuracy when approximating a distribution function, but there is no guarantee that this target is always attained.

public abstract double density (double x, double y);

Returns f(x, y), the density of (X, Y) evaluated at (x, y).

public double density (double[] x)

Simply calls density (x[0], x[1]).

public abstract double cdf (double x, double y);

Computes the distribution function F(x,y):

$$F(x,y) = P[X \le x, Y \le y] = \int_{-\infty}^{x} ds \int_{-\infty}^{y} dt \, f(s,t). \tag{8}$$

public double barF (double x, double y)

Computes the upper cumulative distribution function $\overline{F}(x,y)$:

$$\overline{F}(x,y) = P[X \ge x, Y \ge y] = \int_x^\infty ds \int_y^\infty dt \, f(s,t). \tag{9}$$

public double cdf (double a1, double a2, double b1, double b2)

Computes the cumulative probability in the square region

$$P[a_1 \le X \le b_1, \ a_2 \le Y \le b_2] = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} dy \, f(x, y). \tag{10}$$

MultinomialDist

Implements the abstract class DiscreteDistributionIntMulti for the multinomial distribution with parameters n and (p_1, \ldots, p_d) . The probability mass function is [5]

$$P[X = (x_1, \dots, x_d)] = n! \prod_{i=1}^d \frac{p_i^{x_i}}{x_i!},$$
(11)

where $\sum_{i=1}^{d} x_i = n$ and $\sum_{i=1}^{d} p_i = 1$.

package umontreal.iro.lecuyer.probdistmulti;

public class MultinomialDist extends DiscreteDistributionIntMulti

Constructors

public MultinomialDist (int n, double p[])

Creates a MultinomialDist object with parameters n and (p_1, \ldots, p_d) such that $\sum_{i=1}^d p_i = 1$. We have $p_i = p[i-1]$.

Methods

public static double prob (int n, double p[], int x[])

Computes the probability mass function (11) of the multinomial distribution with parameters n and (p_1, \ldots, p_d) evaluated at x.

public static double cdf (int n, double p[], int x[])

Computes the function F of the multinomial distribution with parameters n and (p_1, \ldots, p_d) evaluated at x.

public static double[] getMean (int n, double[] p)

Computes the mean $E[X_i] = np_i$ of the multinomial distribution with parameters n and (p_1, \ldots, p_d) .

public static double[][] getCovariance (int n, double[] p)

Computes the covariance matrix of the multinomial distribution with parameters n and (p_1, \ldots, p_d) .

public static double[][] getCorrelation (int n, double[] p)

Computes the correlation matrix of the multinomial distribution with parameters n and (p_1, \ldots, p_d) .

June 18, 2014 MultinomialDist 7

public static double[] getMLE (int x[][], int m, int d, int n)

Estimates and returns the parameters $[\hat{p}_i, \dots, \hat{p}_d]$ of the multinomial distribution using the maximum likelihood method. It uses the m observations of d components in table x[i][j], $i = 0, 1, \dots, m-1$ and $j = 0, 1, \dots, d-1$.

public int getN()

Returns the parameter n of this object.

public double[] getP()

Returns the parameters (p_1, \ldots, p_d) of this object.

public void setParams (int n, double p[])

Sets the parameters n and (p_1, \ldots, p_d) of this object.

NegativeMultinomialDist

Implements the class DiscreteDistributionIntMulti for the negative multinomial distribution with parameters n > 0 and (p_1, \ldots, p_d) such that all $0 < p_i < 1$ and $\sum_{i=1}^d p_i < 1$. The probability mass function is [5]

$$P[X = (x_1, \dots, x_d)] = \frac{\Gamma\left(n + \sum_{i=1}^d x_i\right) p_0^n}{\Gamma(n)} \prod_{i=1}^d \frac{p_i^{x_i}}{x_i!}$$
(12)

where $p_0 = 1 - \sum_{i=1}^{d} p_i$.

package umontreal.iro.lecuyer.probdistmulti;

public class NegativeMultinomialDist extends DiscreteDistributionIntMulti

Constructors

public NegativeMultinomialDist (double n, double p[])

Creates a NegativeMultinomialDist object with parameters n and (p_1, \ldots, p_d) such that $\sum_{i=1}^d p_i < 1$, as described above. We have $p_i = p[i-1]$.

Methods

public static double prob (double n, double p[], int x[])

Computes the probability mass function (12) of the negative multinomial distribution with parameters n and (p_1, \ldots, p_d) , evaluated at \mathbf{x} .

public static double cdf (double n, double p[], int x[])

Computes the cumulative probability function F of the negative multinomial distribution with parameters n and (p_1, \ldots, p_k) , evaluated at \mathbf{x} .

public static double[] getMean (double n, double p[])

Computes the mean $E[X] = np_i/p_0$ of the negative multinomial distribution with parameters n and (p_1, \ldots, p_d) .

public static double[][] getCovariance (double n, double p[])

Computes the covariance matrix of the negative multinomial distribution with parameters n and (p_1, \ldots, p_d) .

public static double[][] getCorrelation (double n, double[] p)

Computes the correlation matrix of the negative multinomial distribution with parameters n and (p_1, \ldots, p_d) .

public static double[] getMLE (int x[][], int m, int d)

Estimates and returns the parameters $[\hat{n}, \hat{p}_1, \dots, \hat{p}_d]$ of the negative multinomial distribution using the maximum likelihood method. It uses the m observations of d components in table $x[i][j], i = 0, 1, \dots, m-1$ and $j = 0, 1, \dots, d-1$.

public static double getMLEninv (int x[][], int m, int d)

Estimates and returns the parameter $\nu=1/\hat{n}$ of the negative multinomial distribution using the maximum likelihood method. It uses the m observations of d components in table $\mathbf{x}[i][j], i=0,1,\ldots,m-1$ and $j=0,1,\ldots,d-1$.

public double getGamma()

Returns the parameter n of this object.

public double[] getP()

Returns the parameters (p_1, \ldots, p_d) of this object.

public void setParams (double n, double p[])

Sets the parameters n and (p_1, \ldots, p_d) of this object.

BiNormalDist

Extends the class ContinuousDistribution2Dim for the bivariate normal distribution [6, page 84]. It has means $E[X] = \mu_1$, $E[Y] = \mu_2$, and variances $var[X] = \sigma_1^2$, $var[Y] = \sigma_2^2$ such that $\sigma_1 > 0$ and $\sigma_2 > 0$. The correlation between X and Y is ρ . Its density function is

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-T}$$
 (13)

$$T = \frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x-\mu_1}{\sigma_1} \right) \left(\frac{y-\mu_2}{\sigma_2} \right) + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]$$

and the corresponding distribution function is (the cdf method)

$$\Phi(\mu_1, \sigma_1, x, \mu_2, \sigma_2, y, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \int_{-\infty}^x dx \int_{-\infty}^y dy \, e^{-T}.$$
 (14)

We also define the upper distribution function (the barF method) as

$$\overline{\Phi}(\mu_1, \sigma_1, x, \mu_2, \sigma_2, y, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \int_x^\infty dx \int_y^\infty dy \, e^{-T}.$$
 (15)

When $\mu_1 = \mu_2 = 0$ and $\sigma_1 = \sigma_2 = 1$, we have the *standard binormal* distribution, with corresponding distribution function

$$\Phi(x, y, \rho) = \frac{1}{2\pi\sqrt{1 - \rho^2}} \int_{-\infty}^{x} dx \int_{-\infty}^{y} dy \, e^{-S}$$

$$S = \frac{x^2 - 2\rho xy + y^2}{2(1 - \rho^2)}.$$
(16)

package umontreal.iro.lecuyer.probdistmulti;

public class BiNormalDist extends ContinuousDistribution2Dim

Constructors

public BiNormalDist (double rho)

Constructs a BiNormalDist object with default parameters $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$ and correlation $\rho =$ rho.

Constructs a BiNormalDist object with parameters $\mu_1 = \text{mu1}$, $\mu_2 = \text{mu2}$, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$ and $\rho = \text{rho}$.

June 18, 2014 BiNormalDist 11

Methods

```
public static double density (double x, double y, double rho)
Computes the standard binormal density function (13) with \mu_1 = \mu_2 = 0 and \sigma_1 = \sigma_2 = 1.
```

Computes the binormal density function (13) with parameters $\mu_1 = \text{mu1}$, $\mu_2 = \text{mu2}$, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$ and $\rho = \text{rho}$.

```
public static double cdf (double x, double y, double rho)
```

Computes the standard binormal distribution (16) using the fast Drezner-Wesolowsky method described in [3]. The absolute error is expected to be smaller than $2 \cdot 10^{-7}$.

Computes the *binormal* distribution function (14) with parameters $\mu_1 = \text{mu1}$, $\mu_2 = \text{mu2}$, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$ and $\rho = \text{rho}$. Uses the fast Drezner-Wesolowsky method described in [3]. The absolute error is expected to be smaller than $2 \cdot 10^{-7}$.

```
public static double barF (double x, double y, double rho)
```

Computes the standard upper binormal distribution with $\mu_1 = \mu_2 = 0$ and $\sigma_1 = \sigma_2 = 1$. Uses the fast Drezner-Wesolowsky method described in [3]. The absolute error is expected to be smaller than $2 \cdot 10^{-7}$.

Computes the upper binormal distribution function (15) with parameters $\mu_1 = \text{mu1}$, $\mu_2 = \text{mu2}$, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$ and $\rho = \text{rho}$. Uses the fast Drezner-Wesolowsky method described in [3]. The absolute error is expected to be smaller than $2 \cdot 10^{-7}$.

Return the mean vector $E[X] = (\mu_1, \mu_2)$ of the binormal distribution.

Return the covariance matrix of the binormal distribution.

Return the correlation matrix of the binormal distribution.

```
public double getMu1()
```

Returns the parameter μ_1 .

June 18, 2014 BiNormalDist 12

```
public double getMu2()
Returns the parameter \mu_2.

public double getSigma1()
Returns the parameter \sigma_1.

public double getSigma2()
Returns the parameter \sigma_2.

protected void setParams (double mu1, double sigma1, double mu2, double sigma2, double rho)
Sets the parameters \mu_1 = \text{mu1}, \mu_2 = \text{mu2}, \sigma_1 = \text{sigma1}, \sigma_2 = \text{sigma2} and \rho = \text{rho} of this object.
```

BiNormalGenzDist

Extends the class BiNormalDist for the *bivariate normal* distribution [6, page 84] using Genz's algorithm as described in [4].

```
package umontreal.iro.lecuyer.probdistmulti;
public class BiNormalGenzDist extends BiNormalDist
```

Constructors

```
public BiNormalGenzDist (double rho)
```

Constructs a BiNormalGenzDist object with default parameters $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$ and correlation $\rho =$ rho.

Constructs a BiNormalGenzDist object with parameters $\mu_1 = \text{mu1}$, $\mu_2 = \text{mu2}$, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$ and $\rho = \text{rho}$.

Methods

```
public static double cdf (double x, double y, double rho)
```

Computes the standard binormal distribution (16) with the method described in [4]. The code for the cdf was translated directly from the Matlab code written by Alan Genz and available from his web page at http://www.math.wsu.edu/faculty/genz/homepage (the code is copyrighted by Alan Genz and is included in this package with the kind permission of the author). The absolute error is expected to be smaller than $0.5 \cdot 10^{-15}$.

BiNormalDonnellyDist

Extends the class BiNormalDist for the *bivariate normal* distribution [6, page 84] using a translation of Donnelly's FORTRAN code in [2].

```
package umontreal.iro.lecuyer.probdistmulti; public class BiNormalDonnellyDist extends BiNormalDist  
Constructors  
public BiNormalDonnellyDist (double rho, int ndig)  
Constructor with default parameters \mu_1 = \mu_2 = 0, \sigma_1 = \sigma_2 = 1, correlation \rho = \text{rho}, and d = \text{ndig digits of accuracy} (the absolute error is smaller than 10^{-d}). Restriction: d \leq 15.  
public BiNormalDonnellyDist (double rho)  
Same as BiNormalDonnellyDist (rho, 15).  
public BiNormalDonnellyDist (double mu1, double sigma1, double mu2, double sigma2, double rho, int ndig)  
Constructor with parameters \mu_1 = \text{mu1}, \mu_2 = \text{mu2}, \sigma_1 = \text{sigma1}, \sigma_2 = \text{sigma2}, \rho = \text{rho}, and d = \text{ndig digits of accuracy}. Restriction: d \leq 15.  
public BiNormalDonnellyDist (double mu1, double sigma1, double mu2, double sigma2, double rho)  
Same as BiNormalDonnellyDist (mu1, sigma1, mu2, sigma2, rho, 15).
```

Methods

The following methods use the parameter ndig for the number of digits of absolute accuracy. If the same methods are called without the ndig parameter, a default value of ndig = 15 will be used.

```
public static double cdf (double x, double y, double rho, int ndig)
```

Computes the standard binormal distribution (16) with the method described in [2], where ndig is the number of decimal digits of accuracy provided (ndig \leq 15). The code was translated from the Fortran program written by T. G. Donnelly and copyrighted by the ACM (see http://www.acm.org/pubs/copyright_policy/#Notice). The absolute error is expected to be smaller than 10^{-d} , where d = ndig.

Computes the binormal distribution function (14) with parameters $\mu_1 = \text{mu1}$, $\mu_2 = \text{mu2}$, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$, correlation $\rho = \text{rho}$ and ndig decimal digits of accuracy.

```
public static double barF (double mu1, double sigma1, double x, double mu2, double sigma2, double y,
                                       double rho, int ndig)
```

Computes the upper binormal distribution function (15) with parameters $\mu_1 = \text{mu1}, \mu_2 =$ mu2, $\sigma_1 = \text{sigma1}$, $\sigma_2 = \text{sigma2}$, $\rho = \text{rho}$ and ndig decimal digits of accuracy.

public static double barF (double x, double y, double rho, int ndig)

Computes the upper standard binormal distribution function (15) with parameters $\rho = \text{rho}$ and ndig decimal digits of accuracy.

BiStudentDist

Extends the class ContinuousDistribution2Dim for the standard bivariate Student's t distribution [6, page 132]. The correlation between X and Y is ρ and the number of degrees of freedom is ν . Its probability density is

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \left[1 + \frac{x^2 - 2\rho xy + y^2}{\nu(1-\rho^2)} \right]^{-(\nu+2)/2},\tag{17}$$

and the corresponding distribution function (the cdf) is

$$T_{\nu}(x,y,\rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{x} dx \int_{-\infty}^{y} dy \, f(x,y). \tag{18}$$

We also define the upper distribution function called barF as

$$\overline{T}_{\nu}(x,y,\rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_x^{\infty} dx \int_y^{\infty} dy \, f(x,y). \tag{19}$$

package umontreal.iro.lecuyer.probdistmulti;

public class BiStudentDist extends ContinuousDistribution2Dim

Constructor

public BiStudentDist (int nu, double rho)

Constructs a BiStudentDist object with correlation $\rho = \text{rho}$ and $\nu = \text{nu}$ degrees of freedom.

Methods

public static double density (int nu, double x, double y, double rho)

Computes the standard bivariate Student's t density function (17) with correlation $\rho = \text{rho}$ and $\nu = \text{nu}$ degrees of freedom.

public static double cdf (int nu, double x, double y, double rho)

Computes the standard bivariate Student's t distribution (18) using the method described in [4]. The code for the cdf was translated directly from the Matlab code written by Alan Genz and available from his web page at http://www.math.wsu.edu/faculty/genz/homepage (the code is copyrighted by Alan Genz and is included in this package with the kind permission of the author). The correlation is $\rho = \text{rho}$ and the number of degrees of freedom is $\nu = \text{nu}$.

public static double barF (int nu, double x, double y, double rho) Computes the standard upper bivariate Student's t distribution (19). June 18, 2014 BiStudentDist 17

```
public static double[] getMean (int nu, double rho)
  Returns the mean vector E[X]=(0,0) of the bivariate Student's t distribution.

public static double[][] getCovariance (int nu, double rho)
  Returns the covariance matrix of the bivariate Student's t distribution.

public static double[][] getCorrelation (int nu, double rho)
  Returns the correlation matrix of the bivariate Student's t distribution.

protected void setParams (int nu, double rho)
  Sets the parameters \nu = nu and \rho = rho of this object.
```

MultiNormalDist

Implements the abstract class ContinuousDistributionMulti for the multinormal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. The probability density is

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det \Sigma}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$
(20)

where $\mathbf{x} = (x_1, \dots, x_d)$.

package umontreal.iro.lecuyer.probdistmulti;

public class MultiNormalDist extends ContinuousDistributionMulti

Constructors

public MultiNormalDist (double[] mu, double[][] sigma)

Methods

public static double density (double[] mu, double[][] sigma, double[] x) Computes the density (20) of the multinormal distribution with parameters μ = mu and Σ = sigma, evaluated at x.

public int getDimension()

Returns the dimension d of the distribution.

public static double[] getMean (double[] mu, double[][] sigma) Returns the mean $E[\mathbf{X}] = \mu$ of the multinormal distribution with parameters μ and Σ .

public static double[][] getCovariance (double[] mu, double[][] sigma) Computes the covariance matrix of the multinormal distribution with parameters μ and Σ .

public static double[][] getCorrelation (double[] mu, double[][] sigma) Computes the correlation matrix of the multinormal distribution with parameters μ and Σ).

public static double[] getMLEMu (double[][] x, int n, int d)

Estimates the parameters μ of the multinormal distribution using the maximum likelihood method. It uses the n observations of d components in table $x[i][j], i = 0, 1, \ldots, n-1$ and $j = 0, 1, \ldots, d-1$.

public static double[][] getMLESigma (double[][] x, int n, int d)

Estimates the parameters Σ of the multinormal distribution using the maximum likelihood method. It uses the n observations of d components in table $x[i][j], i = 0, 1, \ldots, n-1$ and $j = 0, 1, \ldots, d-1$.

June 18, 2014 MultiNormalDist 19

```
public double[] getMu()

Returns the parameter \mu of this object.

public double getMu (int i)

Returns the i-th component of the parameter \mu of this object.

public double[][] getSigma()

Returns the parameter \Sigma of this object.

public void setParams (double[] mu, double[][] sigma)

Sets the parameters \mu and \Sigma of this object.
```

DirichletDist

Implements the abstract class ContinuousDistributionMulti for the *Dirichlet* distribution with parameters $(\alpha_1, \ldots, \alpha_d)$, $\alpha_i > 0$. The probability density is

$$f(x_1, \dots, x_d) = \frac{\Gamma(\alpha_0) \prod_{i=1}^d x_i^{\alpha_i - 1}}{\prod_{i=1}^d \Gamma(\alpha_i)}$$
(21)

where $x_i \geq 0$, $\sum_{i=1}^d x_i = 1$, $\alpha_0 = \sum_{i=1}^d \alpha_i$, and Γ is the Gamma function.

package umontreal.iro.lecuyer.probdistmulti;

public class DirichletDist extends ContinuousDistributionMulti

Constructors

```
public DirichletDist (double[] alpha)
```

Methods

```
public static double density (double[] alpha, double[] x)
```

Computes the density (21) of the Dirichlet distribution with parameters $(\alpha_1, \ldots, \alpha_d)$.

Computes the covariance matrix of the Dirichlet distribution with parameters $(\alpha_1, \ldots, \alpha_d)$.

```
public static double[][] getCorrelation (double[] alpha)
```

Computes the correlation matrix of the Dirichlet distribution with parameters $(\alpha_1, \ldots, \alpha_d)$.

```
public static double[] getMLE (double[][] x, int n, int d)
```

Estimates the parameters $[\hat{\alpha}_1, \dots, \hat{\alpha}_d]$ of the Dirichlet distribution using the maximum likelihood method. It uses the *n* observations of *d* components in table x[i][j], $i = 0, 1, \dots, n-1$ and $j = 0, 1, \dots, d-1$.

```
public static double[] getMean (double[] alpha)
```

Computes the mean $E[X] = \alpha_i/\alpha_0$ of the Dirichlet distribution with parameters $(\alpha_1, \ldots, \alpha_d)$, where $\alpha_0 = \sum_{i=1}^d \alpha_i$.

```
public double[] getAlpha()
```

Returns the parameters $(\alpha_1, \ldots, \alpha_d)$ of this object.

public double getAlpha (int i)

Returns the ith component of the alpha vector.

public void setParams (double[] alpha)

Sets the parameters $(\alpha_1, \ldots, \alpha_d)$ of this object.

June 18, 2014 DirichletDist 21

Overview of package probdistmulti.norta

See the doc guideNortaInitDisc.pdf in subpackage norta.

June 18, 2014 REFERENCES 22

References

[1] A. N. Avramidis, A. Deslauriers, and P. L'Ecuyer. Modeling daily arrivals to a telephone call center. *Management Science*, 50(7):896–908, 2004.

- [2] T. G. Donnelly. Algorithm 462: Bivariate normal distribution. Communications of the ACM, 16(10):638, 1973.
- [3] Z. Drezner and G. O. Wesolowsky. On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation, 35:101–107, 1990.
- [4] A. Genz. Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing, 14:151–160, 2004. See http://www.math.wsu.edu/faculty/genz/homepage.
- [5] N. L. Johnson and S. Kotz. *Distributions in Statistics: Discrete Distributions*. Houghton Mifflin, Boston, 1969.
- [6] N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Multivariate Distributions. John Wiley, New York, NY, 1972.