Geometria Riemanniana

Índice

	Aula 1 1.1 Lembrando	1
2	Exercícios de do Carmo 2.1 Capítulo 0	5
_	Aula 2 3.0.1 Tensores	

1 Aula 1

1.1 Lembrando

Definição Variedade diferenciável

- 1. M espaço topológico Hausdorff (T²), base enumerável. Essas duas condições são equivalentes à existência de partições da unidade.
- 2. M localmente euclídeo, i.e. $\mathcal{A} = \{(\chi_{\lambda}, U_{\lambda})\}, \chi_{\lambda} : U_{\lambda} \subset M \to \chi_{\lambda}(U_{\lambda}) \subset \mathbb{R}^{n}$, com $M = \bigcup_{\lambda} U_{\lambda}$. Dizemos que n é a *dimensão* de M.
- 3. Restringindo dois abertos U_{λ} , U_{μ} com $U_{\lambda} \cap U_{\mu} \neq \varnothing$, a *mudança de coordenadas* $\chi_{\mu} \circ \chi_{\lambda}^{-1} : \chi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \chi_{\mu}(U_{\lambda} \cap U_{\mu})$ deve ser diferenciável. (Nesse curso diferenciável é C^{∞} a menos que especifiquemos).
- 4. Maximalidade, i.e. \mathcal{A} é maximal.

Definição (Mapa diferenciável) $f: M^n \to N^m$ se para todo ponto com cartas (x, U) de M e (y, V) de N o mapa $y \circ f \circ x^{-1}$ é diferenciável. Denotaremos o conjunto de funções diferenciaveis por $\mathcal{F}(M, N)$. Em particular $\mathcal{F}(M) := \mathcal{F}(M, \mathbb{R})$.

Definição (Espaço tangente) $\mathcal{G}_p(M)$ é o espaço de funções definidas num aberto de p identificando duas delas se coincidem em qualquer aberto contendo p.

$$\mathsf{T}_{\mathfrak{p}} \mathsf{M} := \{ \mathsf{v} \in \mathscr{T}_{\mathfrak{p}}(\mathsf{M})^* : \mathsf{v}(\mathsf{f} \mathsf{g}) = \mathsf{f}(\mathsf{p}) \mathsf{v}(\mathsf{g}) + \mathsf{g}(\mathsf{p}) \mathsf{v}(\mathsf{f}) \}$$

Pergunta $\mathcal{F}_p(M)$ es el stalk de la gavilla de funciones suaves? Qué pasa si definimos algo como las derivaciones en $\mathcal{F}(U)$.

A la hora de definir base de T_pM con los operadores ∂_i necesitamos fijar una carta, así que en realidad no hay una base canónica de T_pM .

Definição (Diferencial de uma função)

$$df_p: T_pM \to T_{f(p)}N$$

definida para $g \in T_{f(p)}N$ como

$$df_{p}(v)(q) = v(q \circ f)$$

Observação A regra da cadeia é uma tautologia dessa definição!

Definição (Base canônica do espaço tangente) Definimos

$$\partial_{i}|_{\mathfrak{p}} = \frac{\partial}{\partial x_{i}}|_{\mathfrak{p}} \in \mathsf{T}_{\mathfrak{p}}\mathsf{M}$$

como, para $g \in T_p M$,

$$\frac{\partial}{\partial x_i}\Big|_p(g) = \frac{\partial (g\circ x^{-1})}{\partial u_i}$$

Exercício Mostre que $\{\partial_1|_p, \dots, \partial_n|_p\}$ é uma base de T_pM .

Solution. Primeiro note que $\{\partial_i|_p\}$ é linearmente independente. Suponha que

$$\sum a_{i} \partial_{i} |_{p} = 0$$

Then for every function this gives zero, so in particular for coordinate functions $x_i:U\to\mathbb{R}$, so

$$0 = \Big(\sum \alpha_i \partial_i\Big) x_j = \sum \alpha_i \delta_{ij} = \alpha_j \qquad \text{for all } j.$$

Now let's check span $\partial_i|_p=T_pM.$ Choose a vector $\nu\in T_pM$ and let

$$w := v - \sum_{i} v(x_i) \partial_i|_p.$$

We wish to show that w = 0.

Then there's the following trick: a function $g:\mathbb{R}\to\mathbb{R}$ with g(0)=0 can be written g(t)=th(t) for some continuous function h (subexercise: construct h, it's an integral). So if we define $\tilde{g}(t)=g(t)-g(0)$ we can write for any $g:\mathbb{R}\to\mathbb{R}$ (without asking that g(0)=0) just g(t)=g(0)+th(t)

Subexercise Mostre que para toda $g:\mathbb{R}\to\mathbb{R}$ existe $h:\mathbb{R}\to\mathbb{R}$ contínua tal que g(t)=g(0)-th(t). **Solution.** Let $\mathfrak{m}_x:\mathbb{R}\to\mathbb{R}$ be the function that multiplies t times a fixed number x. Notice that, for a fixed x, by fundamental theorem of Calculus

$$\int_0^1 \frac{d}{dt} (g \circ m_x)(t) dt = g(x) - g(0)$$

and also

$$\int_0^1 \frac{d}{dt} (g \circ m_x)(t) dt = \int_0^1 g'(xt) \cdot x = x \int_0^1 g'(xt) dt$$

Then we define

$$h(x) := \int_0^1 g'(xt) dt$$

and immediately we get g(x) = g(0) - xh(x).

Subsubexercise Now do that for $g: \mathbb{R}^n \to \mathbb{R}$. I think the correct claim is that there exists $h: \mathbb{R}^n \to \mathbb{R}^n$ such that for every $\vec{x} \in \mathbb{R}^n$ we have $g(\vec{x}) = g(\vec{0}) + \vec{x} \cdot h(\vec{x})$. **Solution.** Now m_x multiplies the vector x times the real number t, it is a function $m_x: \mathbb{R} \to \mathbb{R}^n$. We get

$$\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (g \circ \mathfrak{m}_{\chi})(t) \mathrm{d}t = g(\vec{x}) - g(\vec{0}).$$

And also

$$\int_0^1 \frac{d}{dt} (g \circ m_{\kappa})(t) dt = \int_0^1 \nabla_{t\vec{\kappa}} g \cdot \vec{\kappa} dt = \int_0^1 \sum_{} \frac{\partial}{\partial x_i} g \Big|_{t\vec{\kappa}} x_i dt = \sum_{} x_i \cdot \int_0^1 \frac{\partial g}{\partial x_i} \Big|_{t\vec{\kappa}}.$$

Definimos

$$h(\vec{x}) := \left(\int_0^1 \frac{\partial g}{\partial x_1} \bigg|_{t\vec{x}} dt, \dots, \int_0^1 \frac{\partial g}{\partial x_n} \bigg|_{t\vec{x}} dt \right)$$

Back to the original exercise... Let's try to use this trick to conclude that w(g) = 0 for all $g \in \mathcal{F}_p$. Since it's a local statement I just suppose that g is a function $g : \mathbb{R}^n \to \mathbb{R}$. Then there is a function $h : \mathbb{R}^n \to \mathbb{R}^n$ such that for every $x \in \mathbb{R}^n$, $g(x) = g(0) + x \cdot h(x)$.

Right so remember that I chose an arbitrary vector $v \in T_pM$ and defined $w = v - \sum v(x_i)\partial_i|_p$. I can see that $w(x_i) = 0$ for all coordinate functions x_i . But also for g as above I get

$$w(g) = w(g(0) + x \cdot h(x)) = w(x \cdot h(x)) = w\left(\sum x_i h_i(x)\right) = \sum w(x_i h_i(x))$$
$$= \sum w(x_i) h_i(x) + x_i h_i(x)$$

and the second term also vanishes if we suppose that the coordinates of our point, x_i , are all zero. Which makes me think: I think that's the point of the trick, that it somehow manages to put the coordinates of the point inside the whole thing, and then we can suppose the coordinates are 0 and simplify everything.

Definição (Fibrado tangente) Como os $\mathcal{F}_p(M)$ são disjuntos, porque M é Hausdorff, os espaços tangentes são disjuntos para pontos distintos.

$$TM := \bigsqcup_{p \in M} T_p M$$

com a estrutura diferenciável que você já conhece.

A projeção natural $\pi: TM \to M$ é uma sumersão no sentido da seguinte definição. (Exercício?)

Definição (Imersão e sumersão)

- 1. Imersão se para todo $p \in M$, df_p é injetiva (e isso implica que $n \leq m$).
- 2. *Sumersão* de df_p é sobrejetiva para todo p, implicaq ue $n \ge m$.
- 3. *Difeomorfismo local* se para todo ponto df_p é um isomorfismo. Isso é equivalente a que para todo ponto existe um aberto tal que $f|_U:U\to V$ é um difemorfismo (teo. função inversa). (Checar.)

Note que $f:M\to N$ contínua é como dizer que a topologia induzida por $f,\tau_f\subset\tau_M$. Mas a igualdade nem sempre tem (e.g. figura 8). f é um *mergulho* se $\tau_f=\tau_M$. Isso é equivalente a que $f(M)\subset N$ seja uma subvariedade e $f:M\overset{\text{difeo}}{\simeq} f(M)\subset N$.

Definição (Campo coordenado) Numa vizinhança U de p,

$$\begin{split} \partial: U &\longrightarrow TU \subset TM \\ p &\longmapsto \frac{\partial}{\partial x_i} \Big|_p \in T_pM \end{split}$$

Observação Podemos quase extender esse campo. Num aberto $V \subset U$ cujo fecho $\bar{V} \subset U$. Pega a coberta $\{M \setminus \bar{V}, U\}$. Então existe part. unidade (ξ, ϕ) . Por definição, $\phi|_V = 1$. Defina $x = \phi \partial_i$.

Definição (Fibrado vetorial) Um *fibrado vetorial* E^k sobre M^n de posto $k \in \mathbb{N} \cup \{0\}$ é

- 1. $\pi: E \to M^n$ submersão sobrejetiva.
- 2. $\forall p \in M$, $E_p = \pi^{-1}(p)$ é um \mathbb{R} -e.v. de dimensão k.
- 3. $\forall p \in M$, existe $p \in U \subset M$ y ϕ_U tal que
 - (a) $\varphi_{11}: \pi^{-1}(U) \stackrel{\text{dif}}{\simeq} U \times \mathbb{R}^k$.
 - (b) ϕ_U conmuta con la proyección, i.e.

(c) $\forall q \in U, \phi|_{E_q} : E_q \to \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$ é um isomorfismo linear.

Isso é equivalente a pedir que exista um *atlas trivializante* de E. É $\{(\phi,\underbrace{\pi(U)}_{\subseteq E}:$

 $U\in\Lambda\subset\tau_M\}$ es decir una familia de abiertos en E indexada por una familia de

abiertos de M. Considere dos de estos abiertos con $W := U \cap V \neq \emptyset$.

onde estamos parametrizando numa variedade! Ou seja, implícitamente estamos pegando cartas nela, mas podemos deixá-lo assim.

Temos as funções de transição

$$\phi_{VU} = \phi_{V} \circ \phi_{U}^{-1}|_{W \times \mathbb{R}^{k}} : W \times \mathbb{R}^{k} \to W \times \mathbb{R}^{k}$$

que realmente estão determinadas por a parte linear:

$$\varphi_{VU}(Q, \nu) = (Q, \xi_{VU}(Q)(\nu)$$

onde

$$\xi_{VU}: W \to GL(k, \mathbb{R})$$

e são chamadas de *funções de transição* de E. Elas satisfacem

$$\xi_{VU} \circ \xi_{SV} = \xi_{SU}$$
 cocycle condition

no seria...
$$\xi_{VU} \circ \xi_{US} = \xi_{VS}$$

Então podemos formar um fibrado vetorial a partir das funções de transição só.

2 Exercícios de do Carmo

2.1 Capítulo 0

Exercise 2 Prove que o fibrado tangente de uma variedade diferenciável M é orientável (mesmo que M não seja).

Solution. Es porque la diferencial de los cambios de coordenadas está dada por la identidad y una matriz lineal. Sí, porque por definición las trivializaciones locales de TM preservan la primera coordenada y son isomorfismos lineales en la parte del espacio vectorial. Entonces queda que

$$d(\phi_U \circ \phi_V^{-1}) = \left(\frac{Id \mid 0}{0 \mid \xi \in \mathsf{GL}(\mathfrak{n})} \right)$$

pero no estoy seguro de por qué ξ preservaría orientación, i.e. que tenga determinante positivo... a menos de que...

2.2 Capítulo 1

Exercise 1 Prove que a aplicação antípoda $A: S^n \to S^n$ dada por A(p) = -p é uma isometria de S^n . Use este fato para introduzir uma métrica Riemanniana no espaço projetivo real $\mathbb{R}P^n$ tal que a projeção natural $\pi: S^n \to \mathbb{R}P^n$ seja uma isometria local.

Solution. Lembre que a métrica de S^n é a induzida pela métrica euclidiana, onde pensamos que $T_pS^n \hookrightarrow T_p\mathbb{R}^{n+1}$. É claro que A é uma isometría de \mathbb{R}^n , pois ela é a sua derivada (pois ela é linear), de forma que $\langle \nu, w \rangle_p = \langle -\nu, -w \rangle_{A(p)} = \langle \nu, w \rangle_{-p}$.

É um fato geral que se as transformações de coberta preservam a métrica, obtemos uma métrica no quociente de maneira natural, i.e. para dois vetores $v, w \in T_p \mathbb{R}P^n$ definimos $\langle v, w \rangle_{\mathbb{R}^p}^{\mathbb{R}^p} := \langle \tilde{v}, \tilde{w} \rangle_{\tilde{p} \in \pi^{-1}(p)}^{\mathbb{R}^p}$.

Para ver que a projeção natural é uma isometria local basta ver que a diferencial de A é um isomorfismo em cada ponto. Mas como ela é -A, isso é claro.

3 Aula 2

Definição Um fibrado vetorial é uma submersão sobrejetora

$$\pi: E \to M$$

onde π é a *projeção*, E o *espaço total* e M a *base*. Satisfazendo

1. E possui um *atlas trivializante*, i.e. para todo $p \in M$ existe $U \ni p$ aberto e carta

$$\phi:\pi^{-1}(U)\overset{difeo}{\to} U\times \mathbb{R}^k$$

tal que

- $\pi \circ \varphi_{U} = \pi|_{\pi^{-1}(U)}$
- Se $W = U \cap V \neq \emptyset$,

$$\varphi_{V} \circ \varphi_{U}^{-1}|_{W \times \mathbb{R}^{k}} : W \times \mathbb{R}^{k} \longrightarrow W \times \mathbb{R}^{k}$$
$$(p, v) \longmapsto (p, \xi_{W}(p)(v))$$

onde pedimos que $\xi_{VU}:W\to GL(k,\mathbb{R})$, e chamamos esas funções de *funções de transição* de E.

Note que as fibras são espaços vetoriais: para $Q \in U$, $E_Q \stackrel{\text{def}}{=} \pi^{-1}(Q) \subset E$. Pegue dois elementos $x,y \in E_Q$. Definimos a soma deles a traves de

$$\phi(x+y)=(Q,\bar{\phi}(x)+\bar{\phi}(y))=(Q,\bar{\phi}(x+y))$$

onde $\bar{\phi}$ é a parte "linear". Note que isso faz automaticamente que as trivializações sejam lineares nas fibras, i.e. $E_p \to \{p\} \times \mathbb{R}^k$ linear.

Definição As seções de E são

$$\Gamma(\mathsf{E}) = \left\{ \begin{array}{c} \lambda : \mathsf{M} \longrightarrow \mathsf{E} \\ & \downarrow \mathsf{id} \\ & \mathsf{M} \end{array} \right\}$$

Pergunta Existe uma coleção de k seções que são uma base de T_pM em cada ponto? Não.

Observação Existe uma base de seções iff $E \cong M \times \mathbb{R}^k$. Mas isso ainda nem tem sentido...

Definição Um mapa de fibrados é

$$F: E \longrightarrow E$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi'}$$

$$M \stackrel{f}{\longrightarrow} M'$$

que é linear nas fibras, i.e.

$$F|_{E_Q}: E_Q \to E'_{f(Q)}.$$

F é um *isomorfismo* de fibrados vetoriais iff F é um difeomorfismo e um mapa de fibrados. (Obviamente isso implica que a inversa é um mapa de fibrados.)

Observação Todo fibrado vetorial possui uma base *local* de seções. Porque pego uma base em $U \times \mathbb{R}^k$ numa trivialização local e pusho ela pra $\pi^{-1}(U)$.

Exemplo (Fibrado dual) A observação anterior nos da um jeito super simples de construir o fibrado dual: para cada trivialização local, e para cada ponto definimos a base dual do espaço vetorial original no ponto, e é isso, tudo segue.

Outros exemplos podem ser construidos do mesmo jeito: End(E), $\Lambda^r(\mathbb{V})$. A ideia e que "a álgebra linear pode ser fibralizada por causa de que temos bases locais".

Exemplo

Outro exemplo, embora não é um fibrado vetorial, é o conjunto de orientações de \mathbb{V} , $\mathbb{O}(\mathbb{V}) := \{\text{bases de } \mathbb{V}\} / \sim$. Definimos um *fibrado orientável* se $\mathbb{O}(E)$ tem uma seção global. Isso se traduz a que em cada ponto exista uma carta tal que a orientação.. seja compatível?

Também podemos definir M *orientável* se TM orientavel *como fibrado*. TM sempre é orientavel *como variedade* porque TTM é orientável *como fibrado*.

Exemplo (Tensores=aplicações multilineares) Pega \mathbb{V} esp. vect e considere os tensores $\{T: \mathbb{V} \times \ldots \times \mathbb{V} \to \mathbb{R}\} := \text{Multi}(E)$. As seções disso são $\mathfrak{X}^r(E)$. No caso do fibrado tangente se denotam $T \in \mathfrak{X}^r(M) \stackrel{\text{def}}{=} \Gamma T M$, e se chamam *campos tensoriais*.

3.0.1 Tensores

A ver la notación es que $T \in \mathfrak{X}^r$

Upshot (del ejercicio) Que es lo mismo pensar en un operador que come campos vectoriales y da funciones, o un campo, una cosa que en cada punto me da un operador que come vectores.

Siguiente cosa (A dupla personalidade dos campos vetoriais) Que podemos pensar que los campos vectoriales son derivaciones. $\hat{X}:\mathcal{F}(M)\to\mathcal{F}(M)$. Sí porque un campo de vectores en un punto puede ser evaluado en una función y da un número, y bueno satisface Leibniz.

Va otra construcción:

E, pega $\Lambda^r(E)$, os mapas r-alternantes de E, que é um fibrado vetorial. As seções dele, $\Gamma(\Lambda^r E)$. No caso do fibrado tangente, $\Omega^r(M) := \Lambda^r(TM)$. Entonces a ver de nuevo: pega $\omega \in \Lambda^r TM$. En cada punto me da una aplicación e-multiniear alternante, pero también lo puedo ver como un mapa $\omega : \mathfrak{X}M \times ... \times \mathfrak{X}M \to \mathcal{F}M$.

Exercício M^n é orientável $\iff \Lambda^n M$ possui seção nunca nula.

Lembre que $\Omega_c^n(M)$ é o espaço de formas cujo suporte tem fecho compacto.

Observação M orientada \Longrightarrow integral está bem definida. Sim, porque o teorema de mudança de variáveis diz que para $\varphi:U\to V,$ $\omega\in\Omega^n(V),$ $\int_U \varphi^*\omega=$ *sinal!* $\int_V \omega$. Então para que não se faça uma bagunça precisamos que os determinantes das mudanças de coordenadas coincidam.

Definição (Fibrado pullback)

$$f^*(E) \xrightarrow{\pi_2} E$$

$$\pi_1 \downarrow \qquad \qquad \downarrow \pi$$

$$M \xrightarrow{f} N$$

onde

$$f^*(E) = \{(p, \nu) \in M \times E : \pi(\nu) = f(p)\}$$

(Note que botamos o p em (p, v) para obter que o espaço total de $f^*(E)$ seja uma coleção *disjunta* de fibras.)

Essa é uma definição ótima. Note que π_2 é um mapa de fibrados que aparece de graça. (Não é um isomorfismo.)

Observação O pullback é mágico porque ele leva todas as propriedades de E como curvatura, conexão, etc.

Observação Se f é constante obtemos o fibrado trivial.

Observação Pega $\xi\Gamma(f^*E)$. Então temos para $\mathfrak{p}\in M$ um elemento $\xi(\mathfrak{p})=(\mathfrak{p},\bar{\xi}(\mathfrak{p}))$. Então olha

$$\bar{\xi}: M \longrightarrow R$$

$$\downarrow^f \qquad \downarrow^\pi$$

$$N$$

então essas seçnes se chaman de $\mathfrak{X}_f \cong \Gamma(f^*(E))$ seções ao longo de f.

Entonces el punto es que, por construcción cada sección del pullback me da un elemento en el otro vb y de ahi quiero que la proyección me devuelva f.

Definição Dos campos $X \in \mathfrak{X}(M)$ e $Y \in \mathfrak{X}(N)$ están f-*relacionados* $X \stackrel{\sim}{\sim} Y$ se $Y \circ f = f_*X$ donde $f: M \to N$. Pero pérame porque a mí me habían dicho que no siempre f_*X está bien definido. Ah, porque aquí f_*X es un campo *ao longo de* f_* así *siempre* está bien definido. Entonces tiene sentido la definición $Y \in \mathcal{X}(M)$ el ejercicio:

Exercício $X_1 \stackrel{f}{\sim} X_2 \Longrightarrow [X_1, X_2] \stackrel{f}{\sim} [Y_1, Y_2]$ **Hint.** Pensa que um campo é uma coisa que pega uma função e me da uma função.

3.1 Grupos de Lie

Definição Um grupo de Lie é um grupo G que é uma variedade diferenciável tal que

$$\cdot: G \times G \to G \qquad \qquad^{-1}: G \to G$$

são diferenciaveis.

Os grupos de Lie tem um monte de difeomorfismos dados pela multiplicação a esquerda: $h \in G \leadsto L_h : G \to G$, $L_h(g) = h \cdot g$. Como $L_{h^{-1}} \circ L_h = Id$, $L_h \in Dif G$.

Exercício $v \in T_eG$, $X_v(g) = d(L_g)_e(v) \in T_gG$, $\Longrightarrow X_v \in \mathfrak{X}(G)$. **Note** que vai precisar usar que o produto do grupo é diferenciável.

E aí fica que uma base $\{v_i\} \subset T_eG$ nos da uma base global de seções. Em outras palavras, o fibrado tangente de um grupo de Lie é trivial. Isso é rarísimo, uma variedade com fibrado tangente trivial, se chama variedade paralelizável.

Observação $\forall g \in G, X_{\nu} \overset{L_g}{\sim} X_{\nu}$ para todo $\nu \in T_eG$. Conta:

Mas ainda, se ele está L_g relacionado com ele mesmo para todo $g \in G$ (isso se chama ser *invariante a esqueda*), então ele é um X_v para algum v. Conta:

Então ai fica essa equivalência, e ademais, se pegamos $v, w \in T_e G$ podemos pensar em X_v, X_w , e *definimos* $X_{[v,w]} := [X_v, X_w]$. E ai obtemos a *álgebra de Lie* de G, que é $(T_e G, [,]) := \mathfrak{g}$.

Mais um $Pegue\ X\in \mathfrak{g}\ e\ \gamma$ curva integral de X pasando por e, diagmos $\gamma(0)=e.$ Prove que

- 1. Se ϕ_t é o fluxo de $X \implies L_g \circ \phi_t = \phi_t \circ L_g$, $\phi_t = R_{\gamma(t)}$.
- 2. γ é homomorfismo de grupos $\mathbb{R} \to G$. Isso permete definir $\exp^G: \mathfrak{g} \to G$ dada por $\exp^G(X) = \gamma(1)$. Prove que $\exp^G(tX) = \gamma(t)$.

Hint. O último implica os outros.