COM1009 Introduction to Algorithms and Data Structures

Topic 09: Quicksort and randomized algorithms

Essential Reading: Chapter 7

► Aims of this lecture

- To introduce the **QuickSort** algorithm: a popular algorithm which is **fast** in **practice**, despite a $\Theta(n^2)$ worst case time.
- To show an average-case analysis, revealing why QuickSort is fast in practice.
- To see another example of divide-and-conquer.
- To show how randomness can be used in the design of efficient algorithms.
- Glimpse into the analysis of randomised algorithms.

► Idea behind QuickSort

Divide:

- Pick some element (called the pivot)
- Move it to its final location in the sorted sequence such that all smaller elements are to its left, larger ones are to its right.

Conquer:

Recursively sort the subarrays of smaller and larger elements

Combine:

No work needed here – after the recursion the array is sorted.

QuickSort: The Algorithm

```
QUICKSORT(A, p, r)

1: if p < r then

2: q = \text{PARTITION}(A, p, r)

3: QUICKSORT(A, p, q - 1)

4: QUICKSORT(A, q + 1, r)
```

Initial call: QUICKSORT(A, 1, A.length)

Differences to MergeSort:

- Split the array at q, the position of the pivot in sorted array
 - We don't know q in advance, it is revealed by Partition
- No combine step at the end
- Partition plays a similar role to Merge

▶ Partition in Pseudocode

PARTITION(A, p, r)

1:
$$x = A[r]$$

2:
$$i = p - 1$$

3: **for**
$$j = p$$
 to $r - 1$ **do**

4: if
$$A[j] \leq x$$
 then

5:
$$i = i + 1$$

6: exchange
$$A[i]$$
 with $A[j]$

7: exchange
$$A[i+1]$$
 with $A[r]$

8: return
$$i+1$$

Loop invariant:

See picture above -

$$A[p]..A[i] \le x$$
 and
$$A[i+1]..A[j-1] > x.$$

Trivially true at initialisation.

► Partition: Maintaining the loop invariant

Partition(A, p, r)

- 1: x = A[r]
- 2: i = p 1
- 3: **for** j = p to r 1 **do**
- 4: if $A[j] \leq x$ then
- 5: i = i + 1
- 6: exchange A[i] with A[j]
- 7: exchange A[i+1] with A[r]
- 8: return i+1

Termination:

After the last swap in line 7,

$$A[p]..A[i] \le x < A[i+2]..A[r]$$

and Partition returns the position of x.

Exercise: Analyse the Runtime of Partition

Q: What is the runtime of Partition on a subarray of size n? Why?

Partition(A, p, r)

- 1: x = A[r]
- 2: i = p 1
- 3: **for** j = p to r 1 **do**
- 4: if $A[j] \leq x$ then
- 5: i = i + 1
- 6: exchange A[i] with A[j]
- 7: exchange A[i+1] with A[r]
- 8: return i+1

> *x*

 $\leq x$

▶ Partition: Example

Figure 7.1 in the book

PARTITION(A, p, r)

- 1: x = A[r]
- 2: i = p 1
- 3: **for** j = p to r 1 **do**
- 4: if $A[j] \leq x$ then
- 5: i = i + 1
- 6: exchange A[i] with A[j]
- 7: exchange A[i+1] with A[r]
- 8: return i+1

(step (i) swaps pivot into place, line 7)

▶ Worst-case and Best-case Partitionings

- The overall runtime depends on how the array is partitioned as that determines the sizes q-1 and r-q of the subarray to be sorted recursively.
 - Recall that we don't know in advance where the pivot will end up.

Questions:

- What might be a worst-case partitioning for the runtime?
- What might be a best-case partitioning for the runtime?

► Worst-case Partitioning

- The worst case is attained when Partition always produces one subproblem with n-1 and one with 0 elements.
- This is the case, for example, when the array is already sorted.
- This leads to the following recurrence:

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n).$$

• Solving this gives $T(n) = \Theta(n^2)$.

Best-case Partitioning

- Best case: split into two subproblems of sizes $\left\lfloor \frac{n}{2} \right\rfloor$ and $\left\lceil \frac{n}{2} \right\rceil 1$.
- Ignoring floors, ceilings, and -1 we get the recurrence:

$$T(n) = 2T(n/2) + \Theta(n)$$

- Deja vu?
- This is $\Theta(n \log n)$ from the analysis of MergeSort.
- True to the spirit of divide-and-conquer.

► Towards an average case

- What if the split was always $\frac{9}{10} \cdot n$ and $\frac{1}{10} \cdot n$?
- Getting the recurrence T(n) = T(9n/10) + T(n/10) + cn

- Average case (only sketched as Problem 7-3 in the book)
- Assume each split q = 1, 2, ..., n was equally likely.
- This situation occurs when the input is chosen **uniformly at** random amongst all $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$ possible orderings.

• Then
$$T(n) = \frac{1}{n} \cdot \sum_{q=1}^{n} \left(T(q-1) + T(n-q) + \Theta(n) \right)$$

$$= \frac{1}{n} \cdot \sum_{q=1}^{n} T(q-1) + \frac{1}{n} \cdot \sum_{q=1}^{n} T(n-q) + \frac{1}{n} \cdot \sum_{q=1}^{n} \Theta(n)$$

$$= \frac{1}{n} \cdot \sum_{k=0}^{n-1} 2T(k) + \Theta(n)$$

- Average over all problem sizes for 2 subproblems $+\Theta(n)$.
- Solving this recurrence gives a bound of $O(n \log n)$.

► Improvements to QuickSort

- QuickSort is fast in practice because of small constants in the asymptotic running time.
- Improvements for handling equal values (exercise)
 - Partition into smaller, equal and larger elements
 - Only need to sort smaller and larger subarrays
- Choose the pivot as median of 3 elements (or 5, 7, 9...)
 - Slightly faster in practice, but still quadratic worst case
- Dual-Pivot QuickSort by Vladimir Yaroslavskiy
 - Use two pivots instead of one and partition array in 3 areas
 - Used in Java 7

► A Randomised Version of QuickSort

- Choosing the right pivot element can be tricky we have no idea α priori which pivot elements are good.
- Solution: leave it to chance!

RANDOMISED-PARTITION(A, p, r)

- 1: i = RANDOM(p, r)
- 2: exchange A[r] with A[i]
- 3: **return** Partition(A, p, r)

"Random" picks pivot uniformly at random among all elements.

RANDOMISED-QUICKSORT(A, p, r)

- 1: if p < r then
- 2: q = RANDOMISED-PARTITION(A, p, r)
- 3: RANDOMISED-QUICKSORT(A, p, q-1)
- 4: RANDOMISED-QUICKSORT(A, q+1, r)

► Performance of Randomised-QuickSort

- Suppose all of the values are distinct.
 - What is a worst-case input for Randomised QuickSort?
 - Answer: there is no worst case for Randomised QuickSort!
- Reason: all inputs lead to the same runtime behaviour.
 - The i-th smallest element is chosen with uniform probability.
 - Every split is equally likely, regardless of the input.
 - The runtime is random, but the random process (probability distribution) is the same for every input.
- Randomness levels the playing field for all inputs.
 - No one can provide a worst-case input for Randomised-QS.

Runtime of Randomised Algorithms

- For randomised algorithms (in contrast to **deterministic** algorithms) we consider the **expected running time** E(T(n)).
- Expectation of a random variable X (see also: com1002)

$$E(X) = \sum_{x} x \cdot Pr(X = x)$$

• **Example**: for X = roll of fair 6-sided die, the expected result is

$$E(X) = \sum_{x} x \cdot Pr(X = x) = \sum_{x=1}^{6} x \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

- Note: The "expected" value need not be a <u>possible</u> value
 - "the average UK household has 2.4 people in it"

Linearity of Expectation

Linearity of expectation:

$$E(X_1 + X_2) = E(X_1) + E(X_2)$$

Expected number of times 100 coin tosses come up heads:

$$E(X_1 + \cdots + X_{100}) = E(X_1) + \cdots + E(X_{100}) = 100 \cdot Pr(heads)$$

- Note: for 0/1-variables the expectation boils down to probabilities.
 - **Example:** Write tails = 0, heads = 1 and take $X \in \{tails, heads\}$: Then the expected number of times a coin toss shows heads is Pr(heads) because

$$E(X) = \sum_{x} x \cdot \Pr(X = x) = 0 \cdot \Pr(\text{tails}) + 1 \cdot \Pr(\text{heads}) = \Pr(\text{heads}).$$

Focus on the *number of comparisons*

For analysing sorting algorithms the number of comparisons is a useful quantity:

- For QuickSort and other algorithms it can be used as a proxy (= substitute) for the overall running time, e.g. when we looked at comparison sorts' worst case performance.
- Analysing the number of comparisons can be easier than analysing the number of elementary operations.
- comparisons can be costly if the keys to be compared are not numbers, but more complex objects (Strings, Arrays, etc.) – so they may be the things that matter most in many situations
- Algorithms making fewer comparisons might be preferable,
 even if the overall runtime is the same.

Number of Comparisons vs. Runtime

- Let X = X(n) be the number of comparisons of elements made by QuickSort.
- Comparisons are elementary operations, hence $X(n) \leq T(n)$.
- For each comparison QuickSort only makes O(1) other operations in the for loop.
- Other operations sum to O(1).
- So $X(n) \leq T(n) = O(X(n))$ and thus $T(n) = \Theta(X(n))$

```
PARTITION(A, p, r)

1: x = A[r]

2: i = p - 1

3: for j = p to r - 1 do

4: if A[j] \le x then

5: i = i + 1

6: exchange A[i] with A[j]

7: exchange A[i + 1] with A[r]

8: return i + 1
```

Conclusion: it's enough to analyse the **number of comparisons** as a substitute for the runtime of QuickSort in the RAM model.

► Expected Time for Randomised-QuickSort

- Theorem: the expected number of comparisons of Randomised-QuickSort is $O(n \log n)$ for every input where all elements are distinct.
- Proof outline:
 - 1. Show that here the expectation boils down to probabilities of comparing elements.
 - 2. Work out the probability of comparing elements.
 - 3. Putting points 1 and 2 together + some maths.
- Follows Section 7.4.2 in the book.

Proof:

- Suppose the elements are $z_1 < z_2 < ... < z_n$ (z_i is the *i*-th smallest element).
 - We've assumed they're all different so we can definitely number them in this way.
 - This is the order they will <u>eventually</u> be in once we've sorted them. We don't know what ordered they're in at the start.
- Observation: each pair of elements is compared at most once, because:
 - elements are only compared against the pivot
 - after Partition ends the pivot is never used again

▶ Proof (1). Reduce problem to probabilities

• Let $X_{i,j}$ be the number of times z_i and z_j are compared:

$$X_{i,j} := \begin{cases} 1 & \text{if } z_i \text{ is compared to } z_j \\ 0 & \text{otherwise} \end{cases}$$

Then the total number of comparisons is

$$X := \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i,j}$$

 Taking expectations on both sides and using linearity of expectations:

$$E(X) = E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i,j}\right) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{i,j}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(z_i \text{ is compared to } z_j)$$

Proof (2). When do we compare z_i , z_j ?

- When is z_i (i-th smallest) compared against z_j (j-th smallest)?
 - If pivot is $x < z_i$ or $z_j < x$ then the decision whether to compare z_i , z_j is **postponed** to a recursive call.
 - If pivot is $x = z_i$ or $x = z_j$ then z_i , z_j are compared.
 - If pivot is $z_i < x < z_j$ then z_i and z_j become separated and are never compared!
- A decision is only made if $z_i \le x \le z_i$.
 - There are j i + 1 values in this range
 - Only 2 of these $(x = z_i \text{ or } z_j)$ lead to z_i, z_j being compared.

Proof (3). When do we compare z_i , z_j ?

- Just seen:
 - A decision is only made if $z_i \le x \le z_j$. There are j-i+1 values in this range, out of which 2 lead to z_i, z_j being compared.
- As the pivot element is chosen uniformly at random,

$$\Pr(z_i \text{ is compared to } z_j) = \frac{2}{j-i+1}$$

- Unexpected consequences?
 - similar numbers are more likely to be compared than dissimilar ones

▶ Proof (4). Putting things together

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(z_i \text{ is compared to } z_j) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

• Substituting k := j - i yields

$$E(X) = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \le 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} \le 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} = 2n \sum_{k=1}^{n} \frac{1}{k}$$

- The sum $\sum_{k=1}^{n} \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is called the **harmonic sum**
- ... which is known to be bounded: $\sum_{k=1}^{n} \frac{1}{k} \le (\ln n) + 1$
- So we get

$$E(X) \le 2n \sum_{k=1}^{n} \frac{1}{k} = O(n \log n)$$

... which confirms that

• When X is the runtime of randomised quicksort:

$$E(X) \le 2n \sum_{k=1}^{n} \frac{1}{k} = O(n \log n)$$

- Compare this with deterministic quicksort:
 - Worst case: $\Theta(n^2)$
 - Best case: $O(n \log n)$

Random Input vs. Randomised Algorithm

- QuickSort is efficient if
 - The input is random or
 - 2. The pivot element is chosen randomly
- We have no control over 1., but we can make 2. happen.
- (Deterministic) QuickSort
 - Pro: the runtime is deterministic for each input
 - Con: may be inefficient on some inputs
- Randomised QuickSort
 - Pro: same behaviour on all inputs
 - **Con**: runtime is random, running it twice gives different times

Other Applications of Randomisation

Random sampling

- Great for big data
- Sample likely reflects properties of the set it is taken from

Symmetry breaking

Vital for many distributed algorithms

Randomised search heuristics

- General-purpose optimisers, great for complex problems
 - Evolutionary Algorithms / Genetic Algorithms
 - Simulated Annealing
 - Swarm Intelligence
 - Artificial Immune Systems

►Summary

- QuickSort has a bad worst-case runtime of $\Theta(n^2)$, but is fast on average.
 - Average-case performance on **random inputs** is $O(n \log n)$.
 - Randomised QuickSort sorts any input in expected time $O(n \log n)$.
 - Constants hidden in the asymptotic terms are small.
- QuickSort is used in modern programming languages
- Randomness can eliminate worst-case scenarios:
 - For randomised QuickSort all inputs are treated the same.
 - The running time is random and can be quantified by considering the **expected running time**: $O(n \log n)$.