Diskrētās struktūras datorzinātnēs

Lekcija. Attieksmes

Bināras attieksmes

Pierakstu veidi:

$$egin{aligned} & \cdot \langle x,y
angle \in R \ & \cdot xRy \end{aligned} \ R = \{ \langle a,2
angle, \langle a,4
angle \langle c,3
angle, \langle c,2
angle \}, \ A = \{ a,b,c,d \}, \ B = \{ 1,2,3,4 \}, \ D_R = \{ x \mid \langle x,y
angle \in R, ext{noteiktiem } y \} = \{ a,c \} \end{aligned} \ V_R = \{ y \mid \langle x,y
angle \in R, ext{noteiktiem } x \} = \{ 2,4,3 \} \ R' = \{ \langle a,2
angle, \langle c,3
angle \} \end{aligned}$$

Bināru attieksmju uzdošnas veidi

· Uzdodot visu kortežu kopu | $R = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle \}$

 $\Rightarrow D_{R'} \subseteq D_R, \ V_{R'} \subseteq V_R$

 \cdot Matrica

	1	2	3
\overline{a}	0	1	0
\overline{b}	1	1	0

· Orientēts grafs

Bināru attieksmju īpašības

 $A \times A$

- 1. R sauc par refleksīvu, ja ir spēkā $\forall a, \langle a, a \rangle \in A$
- 2. R sauc par antirefleksīvu, ja ir spēkā $\forall a, \langle a, a \rangle \notin A$
- 3. Ja $\forall~xRy o yRx$, jeb $\forall x,y,~~\langle x,y \rangle \in R \land \langle y,x \rangle \in R$, tad tā ir simetriska: $R=R^{-1}$
- 4. R ir antisimetriska, ja $\exists a \langle a,b \rangle \in R \land \langle b,a \rangle \notin R$
- 5. R ir asimetriska, ja $\forall \langle a,b \rangle \in R \not\exists \langle b,a \rangle \in R$
- 6. R ir transitīvs, ja $\forall a, b, c \in R, aRb \land bRc \Rightarrow aRc$. Vislabāk tas ir redzams grafos, jo tad katram elementam ir taisns ceļš līdz tiem elementiem, ar kuriem viņš ir netieši saistīts.