# Pseudomonas syringae Type-III Secreted Effectors Elicit Unique Transcriptional Responses in Arabidopsis thaliana

# Nicholas Garcia, Pauline Wang<sup>1,2</sup>, Calvin Mok<sup>1,2</sup>, Darrell Desveaux<sup>2</sup>, David Guttman<sup>1,2</sup>

- <sup>1</sup> Centre for the Analysis of Genome Evolution and Function, University of Toronto
- <sup>2</sup> Department of Cell & Systems Biology, University of Toronto

### Introduction

The bacterium *Pseudomonas syringae* destroys millions of dollars of crops as a hemibiotrophic phytopathogen.

P. syringae enters the stomata and injects its type-III secreted effector proteins<sup>[1]</sup> into the symplast to disable host immunity. The plant responds with a transcriptional counter-attack (PAMP-triggered immunity, or *PTI*).

But does each effector induce a *unique* transcriptional response in the plant?

We've adapted a system developed by Wei et. al<sup>[2]</sup> and Laflamme et. al<sup>[3]</sup> to answer that question:



Figure 1: The model system we used to study individual effectors

### Methods

### Infection:

- Pressure infiltrate the following well-characterised P. syringae effectors, suspended in 10 mM MgSO4 at OD<sub>600</sub> = 0.0002, in into *A. Thaliana* in biological triplicate:
  - D36E::**HopN1**a
    - Cleaves PsbQ in chloroplast's photosystem II to suppress SA signalling
  - D36E::**HopB1**a
    - Cleaves BAK1 at the membrane to suppresses
  - D36E::**HopAB1**j
    - Ligates ubiquitin to FLS2 at membrane to suppress PTI
- With D36E::EV and 10 mM MgSO4 as controls, leaves were frozen 1h and 8h post-infiltration.

#### RNA Extraction & Sequencing:

- Frozen leaves were ground in LN2 via mortar & pestle, then suspended in TRIzol.
- Centrifuged then supernatant was mixed with chloroform
- Centrifuged again and span down through RNEasy spin column kit
- Samples were stored at -80°C
- Samples were sequenced on an Illumina NextSeq 2000

## Computational Pipeline



Figure 2: DEG patterns by treatment 8 hours post-infection



Table 1: Genes with significantly-altered expression

|                  | <b>3</b>                 | ,     | 1       |           |
|------------------|--------------------------|-------|---------|-----------|
| Data comparison* | Timepoint post-infection | Total | Induced | Repressed |
| HopN1a           | 1 hour                   | 2     | 1       | 1         |
| HopN1a           | 8 hours                  | 14    | 4       | 10        |
| HopB1a           | 1 hour                   | 1     | 1       | 0         |
| HopB1a           | 8 hours                  | 960   | 659     | 301       |
| HopAB1j          | 1 hour                   | 5     | 4       | 1         |
| HopABj           | 8 hours                  | 543   | 474     | 69        |

\* All effectors were administered by D36E on a plasmid vector

lopN

lopB1

### Results cont.

Table 2: DEGs at 1 hour post-infection by effector treatment. Red rows are up-regulated and green genes are down-regulated.

| Effector*                                                     | Locus     | Locale            | Regu-<br>lation | Product                                         |  |  |
|---------------------------------------------------------------|-----------|-------------------|-----------------|-------------------------------------------------|--|--|
| HopN1a                                                        | AT1G53035 | Chloroplast       | Up              | Transmembrane protein                           |  |  |
| HopN1a                                                        | AT5G51720 | Chloroplast       | Down            | NEET,<br>involved in ROS<br>homeostasis         |  |  |
| HopB1a                                                        | AT2G45080 | Cytoplasm         | Up              | Cyclin P3,<br>enables protein<br>kinase binding |  |  |
| HopAB1j                                                       | AT1G08630 | Cytosol           | Up              | THA1, degrades<br>Thr → Gly                     |  |  |
| HopAB1j                                                       | AT1G68050 | Cytosol & nucleus | Up              | Part of SCF<br>uqituitin ligase<br>complex      |  |  |
| HopAB1j                                                       | AT1G06160 | Nucleus           | Up              | ORA59,<br>master regulator of<br>JA pathway     |  |  |
| HopAB1j                                                       | AT4G33980 | Nucleus           | Up              | COR28                                           |  |  |
| HopAB1j                                                       | AT3G48360 | Nucleus           | Down            | BT2, part of TAC1- mediated telomerase pathway  |  |  |
| * All effectors were administered by D36E on a plasmid vector |           |                   |                 |                                                 |  |  |

### Discussion

- 1 hour post-infection
- HopN1 demonstrates locale specificity, HopAB1 & HopB1 less so
- HopN1 NEET and HopAB1j ORA59, SCF demonstrate functional specificity, HopB1 less so
- 8 hour post-infection
- Unique expression patterns visible across all treatments
- Stress response activation and auxin

### Conclusion

D36E::HopAB1j, D36E::HopB1a, and D36E::HopN1a induce unique transcriptional responses in A. Thaliana.

Their "transcriptional fingerprints" are partially capable of characterising localisation and/or functional outcomes.





#### References

1.Xin X, Kvitko B, He SY. "Pseudomonas syringae: what it takes to be a pathogen". Nat Rev Microbiol, 16, 5, 2018, pp. 316-318. 10.1038/nrmicro.2018.17

2. Wei H, Chakravarthy S, Mathieu J, Swingle B, Martin G, Collmer A. "Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB". Cell Host & Microbe, 17, 2015, pp. 752-762. 10.1016/ j.chom.2015.05.007

3. Laflamme B. Dillon M. Martel A. Almeida R. Desveaux D. Guttman D. "The pan-genome effector-triggered immunity landscape of a host-pathogen interaction". Science, 367(6479), 2020, pp. 763-768. 6/science.aax4079



