# Structure of and Inquiries about Healthy Connectivity Matrix Data

Nooreen S Dabbish and Kaijun Wang

Feb 1, 2016

#### Outline Data Structure

Introduction to connectivity matrix data

UMCD: USC Multimodal Connectivity Database

Our particular dataset

#### Summary Plots and Numbers:

Overview

Correlation Plots

qgraph, spring layout

Degree Distribution

#### Literature Research

Raw datapreparation and processing

Classification:

Classification2

#### Possible Topics

#### Methods

Graph Kernel

Two-sample Test



#### Basics

How it is organized. What types; what measurements are selected?

# Connectivity Matrices

- symmetric/undirected n x n matrix
- n x 3 list of Montreal Neurological Institute (MNI) coodinate spaces for each node
- n x 1 lists of node names and abbreviations
- [data types] fMRI, Diffusion Tensor Images (DTI),
   Diffusion Spectrum Images (DSI), structural MRI, EEG,
   MEG

http://umcd.humancommectomeproject.org

# Description in (Brown 2016)

- central repository for connectivity matrices
- click-of-the-mouse analyses
- ▶ (as of 1/17/16) 2254 brain networks (CMs), 21 studies
- all ages fetus to 89 yo.
- healthy, ADHD, autism, OCD, APOE-4 carrier status (risk for AD)

# Bejing Zang

The dataset to be used: R-fMRI BOLD data from 148 subjects (74 female and 74 male; matched by age (21 years old) recruited as part of larger studies conducted in Beijing China. See the MATERIALS AND METHODOLOGY, Resting State Data of http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271304/pdf/TONIJ-6-1.pdf

#### Overview

number of samples/variables/..histogram plot of some measurement to give a "feel" for the data. List of interesting modeling questions and why they are scientifically interesting?

#### Before Thresholding

#### After thresholding (with 0.5)



### Before Thresholding

#### After Thresholding



#### **Degree Distribution of Nodes**



#### Histogram of degree for Corr> .5



#### Literatures: On fMRI Data

- ► Network Centrality in the Human Functional Connectome Xi-Nian Zuo, et al. (2011)
- ► Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space Xi-Nian Zuo, et al. (2013)
- ► Fully exploratory network independent component analysis of the 1000 functional connectomes database Klaudius Kalcher, et al.(2013)

#### Literatures: Classification Problems

 Combining Graph and Machine Learning Methods to Analyze Differences in Functional Connectivity Across Sex (2012) Casanova R., et al.

Response: Gender
Random forest and Lasso

➤ The Kernel Two-Sample Test for Brain Networks, Emanuele Olivetti et al. (2015) Response: Gender

Classification based method vs Kernel Two-sample

#### Literatures: Classification Problems

▶ Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data Damien A. Fair, et al. (2013)

Response: ADHD

The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism Di Martino, et al.(2014) Response: Autism Spectrum Disorders Intrinsic Functional Connectivity Analyses between Autism and Control Group

# Possible Topics

- ► Classification according to the connectivity matrices, given exogenous data.
- ▶ Signal Path Clustering, normal pattern in brain activities
- ► Evaluate different classification methods on this data (e.g. random forest and lasso in [Cassanova 2012])

# Graph Kernel

Graph pairs  $G_i, G_j o$  Kernel  $k_{ij} = \kappa(G_i, G_j) o$  Classifier

#### **KTST**

Functional connectomes, 148 graphs, 74 from group A and 74 from group B

Kernel matrix: 148-by-148, of pairwise kernels

| graphs           | $A_1$       | $A_2$              |   | $A_m$ | $B_1$              | $B_2$       |       | $B_n$ |
|------------------|-------------|--------------------|---|-------|--------------------|-------------|-------|-------|
| $\overline{A_1}$ | $k_{A1,A1}$ | k <sub>A1,A2</sub> |   |       | k <sub>A1,B1</sub> | • • •       |       |       |
| $A_2$            | $k_{A2,A1}$ |                    |   |       |                    |             |       |       |
| :                | :           |                    | ٠ |       |                    |             |       |       |
| $A_m$            | $k_{Am,A1}$ |                    |   |       |                    |             |       |       |
| $B_1$            | $k_{B1,A1}$ |                    |   |       | $k_{B1,B1}$        | $k_{B1,B2}$ | • • • |       |
| $B_2$            |             | ٠                  |   |       | $k_{B2,B1}$        |             |       |       |
| ÷                | :           |                    |   |       | ÷                  |             | ٠     |       |
| $B_n$            | $k_{Bn,A1}$ |                    |   |       |                    |             |       |       |

#### **KTST**

maximum mean discrepancy (MMD):

$$MMD^{2} = E[k(x_{A}, x'_{A})] + E[k(x_{B}, x'_{B})] - 2E[k(x_{A}, x'_{B})]$$

$$\widehat{MMD}^{2} = \frac{1}{m(m-1)} \sum_{i \neq j} k(x_{i}^{A}, x_{j}^{A}) + \frac{1}{n(n-1)} \sum_{i \neq j} k(x_{i}^{B}, x_{j}^{B}) - 2\frac{1}{nm}$$

Test hypothesis:  $H_0$ : MMD = 0

#### KTST

- MMD changes with different matrix permutations
- ▶ in practice we calculate different MMDs according to various permutations, to see its distribution
- ► Total calculation complexity:  $M \cdot N^2$ , where, M is the number of permutations, and N is the number of graphs.

# Factor Analysis

- ▶ input factor number k, covariance matrix A
- find k factors  $F_1, \dots F_k$  according to A
- find projection from factors to the original variables in A

$$X_1 = \lambda_{11}F_1 + \lambda_{12}F_2 + \dots + \lambda_{1k}F_k$$

$$\dots$$

$$X_1 = \lambda_{n1}F_1 + \lambda_{n2}F_2 + \dots + \lambda_{nk}F_k$$

# Factor Analysis

- ▶ The coefficients  $\lambda_{ij}$  are called loadings, group  $X_i$ s according to their highest loading into k groups
- permute the original matrix

#### Example:

if we have two groups with  $\{X_1, X_2, X_4\}$ ,  $\{X_3, X_5\}$  the original matrix will exchange the third and fourth row and column.