Devoir surveillé n° 9 Version 1

Durée: 3 heures, calculatrices et documents interdits

I. Étude d'une suite de tirages.

Une urne contient une boule blanche et une boule noire, les boules étant indiscernables au toucher. On y prélève une boule, chaque boule ayant la même probabilité d'être tirée, on note sa couleur, et on la remet dans l'urne avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages $(n \ge 2)$.

Étude du cas c=0.

On effectue donc ici n tirages avec remise de la boule dans l'urne.

On note X la variable aléatoire réelle égale au nombre de boules blanches obtenues au cours des n tirages et Y la variable aléatoire réelle définie par :

 $\begin{cases} Y=k & \text{si l'on obtient une boule blanche pour la première fois au } k^{i\grave{e}me} \text{ tirage.} \\ Y=0 & \text{si les } n \text{ boules tir\acute{e}es sont noires.} \end{cases}$

- 1) Déterminer la loi de X. Donner la valeur de E(X) et de V(X).
- 2) Pour $k \in \{1, ..., n\}$, déterminer la probabilité P(Y = k) de l'événement (Y = k), puis déterminer P(Y = 0).
- 3) Vérifier que :

$$\sum_{k=0}^{n} P(Y = k) = 1.$$

4) Pour $x \neq 1$ et n entier naturel non nul, montrer que :

$$\sum_{k=1}^{n} kx^{k} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

5) En déduire E(Y).

Étude du cas $c \neq 0$.

On considère les variables aléatoires $(X_i)_{1 \le i \le n}$ définies par :

$$\begin{cases} X_i = 1 & \text{si on obtient une boule blanche au } i^{\text{ème}} \text{ tirage.} \\ X_i = 0 & \text{sinon.} \end{cases}$$

On définit alors, pour $2 \leq p \leq n$, la variable aléatoire Z_p , par :

$$Z_p = \sum_{i=1}^p X_i.$$

- 6) Que représente la variable Z_p ?
- 7) Donner la loi de X_1 et l'espérance $E(X_1)$ de X_1 .
- 8) Déterminer la loi du couple (X_1, X_2) . En déduire la loi de X_2 puis l'espérance $E(X_2)$.
- 9) Déterminer la loi de probabilité de Z_2 .
- **10)** Déterminer l'univers image $Z_p(\Omega)$ de Z_p .
- **11)** Soit $p \le n 1$.
 - a) Déterminer $P_{(Z_p=k)}(X_{p+1}=1)$ pour $k \in Z_p(\Omega)$.
 - b) En utilisant la formule des probabilités totales, montrer que :

$$P(X_{p+1} = 1) = \frac{1 + cE(Z_p)}{2 + pc}.$$

c) En déduire que X_p est une variable aléatoire de Bernoulli de paramètre $\frac{1}{2}$. (On raisonnera par récurrence sur p: les variables $X_1, X_2,, X_p$ étant supposées suivre une loi de de Bernoulli de paramètre $\frac{1}{2}$, et on calculera $E(Z_p)$).

II. Calcul des puissances d'une matrice.

Dans tout le problème on se place dans l'espace vectoriel \mathbb{R}^3 .

On désigne par \mathcal{E} la base (e_1, e_2, e_3) telle que $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ et $e_3 = (0, 0, 1)$.

On note $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 à coefficients réels.

On considère les matrices

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ et } O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On convient que si M est une matrice de $\mathcal{M}_3(\mathbb{R})$ alors $M^0 = I$.

Si P désigne le polynôme à coefficients réels $P = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + ... + a_n X^n$ et si M désigne une matrice de $\mathcal{M}_3(\mathbb{R})$, on note P(M) la matrice

$$P(M) = \sum_{i=0}^{n} a_i M^i = a_0 I + a_1 M + \dots + a_n M^n$$

On peut aisément démontrer que pour tous polynômes P et Q à coefficients réels, pour toute matrice M de $\mathcal{M}_3(\mathbb{R})$, (P+Q)(M)=P(M)+Q(M) et (PQ)(M)=P(M)Q(M)

L'objectif de ce problème est de calculer de plusieurs manières A^n pour n entier naturel non nul.

Partie A

- 1) En utilisant la méthode du pivot de Gauss, montrer que A est inversible et calculer A^{-1} . On fera apparaître sur la copie les calculs intermédiaires.
- 2) Calculer A^2 et A^3 , et montrer que A, A^2 , et A^3 se mettent sous la forme :

$$A = \lambda_1 A + \mu_1 I$$
, $A^2 = \lambda_2 A + \mu_2 I$, $A^3 = \lambda_3 A + \mu_3 I$

où $\lambda_1, \mu_1, \lambda_2, \mu_2, \lambda_3, \mu_3$ sont des réels que l'on précisera.

3) On donne la suite $(\alpha_n)_{n\geqslant 1}$ définie par

$$\alpha_1 = \alpha_2 = 1$$
 et $\forall n \geqslant 1, \alpha_{n+2} = \alpha_{n+1} + 2\alpha_n$.

Montrer par récurrence sur n que $\forall n \geq 2, A^n = \alpha_n A + 2\alpha_{n-1} I$.

4) En déduire l'expression de A^n pour tout n entier naturel non nul.

Partie B

On note I l'endomorphisme identité de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base \mathcal{E} est A.

5) a) Soit $\lambda \in \mathbb{R}$. A l'aide d'un calcul de rang, montrer que $f - \lambda I$ n'est pas injective si et seulement si $\lambda \in \{-1, 2\}$.

Par la suite, on notera $\lambda_1 = -1$ et $\lambda_2 = 2$.

b) On pose $E_1 = \text{Ker}(f - \lambda_1 I)$ et $E_2 = \text{Ker}(f - \lambda_2 I)$; on rappelle qu'il s'agit de sous-espaces vectoriels de \mathbb{R}^3 .

Déterminer une base \mathcal{B}_1 de E_1 et une base \mathcal{B}_2 de E_2 .

On choisira des vecteurs dont la première coordonnée est 1 et dont une coordonnée est nulle, lorsque cela est possible.

- c) On note \mathcal{B} la famille obtenue en complétant \mathcal{B}_1 par l'élément de \mathcal{B}_2 . Montrer que \mathcal{B} est une base de \mathbb{R}^3 .
- **d)** Montrer que $\mathbb{R}^3 = E_1 \oplus E_2$.
- 6) a) Déterminer la matrice D de f dans la base \mathcal{B} .
 - b) Déterminer la matrice P de passage de la base \mathcal{E} à la base \mathcal{B} .
 - c) Rappeler pourquoi P est inversible, puis calculer son inverse P^{-1} .
 - d) Montrer que pour tout $n \in \mathbb{N}^*$, $A^n = PD^nP^{-1}$.
 - e) En déduire la valeur de A^n en fonction de n pour tout $n \in \mathbb{N}^*$. Comparer avec le résultat obtenu dans la partie A.

Partie C

Soit n un entier naturel non nul et soit R_n le reste de la division euclidienne du polynôme X^n par le polynôme (X+1)(X-2)

- 7) a) Que peut-on dire du degré de R_n ?
 - b) Déterminer le polynôme R_n .
 - c) Montrer que les coefficients du polynôme R_n sont des entiers.
- 8) Retrouver à nouveau l'expression de A^n .

— FIN —