Semaine du 10/03 - Colle MP2I v.hanecart@orange.fr

Questions de cours

- 1 Énoncer et démontrer l'existence et unicité d'un polynôme d'interpolation.
- 2 Quels sont les polynômes irréductibles de $\mathbb{R}[X]$? Démontrer ce résultat.
- 3 Énoncer et démontrer les caractérisations de l'ordre de multiplicité d'une racine.

Exercices axés sur le calcul

Exercice 1:

Pour $n \in \mathbb{N}^*$, on note P_n le polynôme $(1+X)(1+X^2)\dots(1+X^{2^n})$.

- 1 Montrer que pour tout $n \in \mathbb{N}^*$, $P_n = \sum_{k=0}^{\infty} X^k$.
- 2 Préciser les racines de P_n .

Exercice 2:

Soient $n \in \mathbb{N}^*$ et $P = (X+1)^n - (X-1)^n$.

- 1 Déterminer le coefficient dominant et le degré de P.
- 2 Montrer que les racines complexes de P sont des racines simples.
- 3 Préciser le produit et la somme des racines de P.
- 4 Déterminer explicitement les racines de P.

Exercices axés sur le raisonnement

Exercice 3:

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes définie par $P_0=2, P_1=X$ et pour tout $n\in\mathbb{N}$, $P_{n+2} = XP_{n+1} - P_n$.

- 1 Déterminer le degré et le coefficient dominant de P_n .
- 2 Montrer que pour tout $z \in \mathbb{C}^*$, on a :

$$\forall n \in \mathbb{N}, \ P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$$

- 3 Soit $\theta \in \mathbb{R}$. Calculer $P_n(2\cos(\theta))$ en fonction de n et θ .
- 4 Pour $n \in \mathbb{N}^*$, déterminer les racines de P_n .

Exercice 4:

Soient $k \in \mathbb{R}$ et $P = X^3 - X^2 + k$.

- 1 Déterminer une condition nécessaire et suffisante sur k pour que P ait une racine multiple.
- 2 Donner le tableau de variations de la fonction polynôme $x \longmapsto P(x)$ sur \mathbb{R} .

- 3 Déterminer une condition nécessaire et suffisante sur k pour que P ait trois racines
- 4 Déterminer une condition nécessaire et suffisante sur k pour que P soit scindé sur $\mathbb{R}[X]$.

Exercice 5:

On appelle polynômes de Legendre les polynômes $P_n(X) = ((X^2 - 1)^n)^{(n)}$.

- 1 Calculer le degré de P_n et son coefficient dominant.
- 2 Pour $p \in [0; n]$, on pose $Q_p(X) = ((X^2 1)^n)^{(p)}$.

Quel est le degré de Q_p ? Démontrer que Q_p admet deux racines d'ordre n-p et pracines d'ordre 1.

3 - En déduire que P_n s'annule exactement en n points deux à deux distincts de]-1;1[.

- 1 Exprimer les relations entre les coefficients a, b, c et d et les racines λ_1, λ_2 et λ_3 de ce polynôme.
- 2 Pour tout $(x, y, z) \in \mathbb{C}^3$, vérifier l'identité suivante :

$$x^{2} + y^{2} + z^{2} = (x + y + z)^{2} - 2(xy + xz + yz)$$

- 3 Déterminer la valeur de la somme des carrés des racines de $P = X^3 + 2X^2 + 3X + 4$.
- 4 Résoudre le système suivant :

$$\begin{cases} x + y + z &= 6 \\ x^2 + y^2 + z^2 &= 30 \\ xyz &= -10 \end{cases}$$

Exercices avec questions ouvertes

Que dire d'un polynôme P tel que l'image par P de tout rationnel soit un rationnel?

Existe-il un polynôme P tel que $P(x) = e^x$ pour une infinité de valeurs du réel x?