PROPIEDADES DE LA MEDIDA EXTERIOR (I)

JUAN FERRERA

Lo primero que vamos a ver es que la medida exterior es invariante por traslaciones. Recordad que si A es un conjunto y a un punto, el conjunto a + A (traladado de A según el vector a) es

$$\{a + x : x \in A\}$$

Proposición:

Sean $a \in \mathbf{R}^n$ y $A \subset \mathbf{R}^n$. Entonces

$$\mu^*(A) = \mu^*(a+A)$$

Demostración: Basta observar que si Q es un rectángulo, entonces a+Q también es un rectángulo, y además v(Q)=v(a+Q).

Una vez observado esto, la demostración es inmediata, porque a cada recubrimiento $\{Q_k\}$ de A le corresponde el recubrimiento $\{a+Q_k\}$ de a+A, y para ambos recubrimientos el valor suma de los volúmenes de los rectángulos es el mismo. Como también a cada recubrimiento $\{R_k\}$ de a+A le corresponde el recubrimiento $\{-a+R_k\}$ de A, tenemos que los dos ínfimos son iguales. \clubsuit

La siguiente propiedad de la medida exterior también era de esperar. (Si un conjunto está contenido en otro, entonces su medida exterior es menor o igual)

Proposición

Si $A \subset B$ entonces $\mu^*(A) \leq \mu^*(B)$.

Demostración: Basta observar que todo recubrimiento de B también lo es de A, y por tanto al calcular $\mu^*(A)$ tomamos el ínfimo en un conjunto de valores "más grande", luego el ínfimo que corresponde a A es menor o igual que el ínfimo que corresponde a B. \clubsuit

Obsérvese que A puede estar estrictamente contenido en B y sin embargo tener la misma medida exterior. Por ejemplo Si $A = \{a\}$ y $B = \{a, b\}, A \subset B$ y $\mu^*(A) = \mu^*(B) = 0$.

También es fácil ver la siguiente propiedad.

Date: January 19, 2022 (937).

Proposición:

$$\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B)$$

Demostración: Sea $\varepsilon > 0$. Tomamos sendos recubrimientos $\{Q_k\}$ y $\{R_k\}$ de A y B respectivamente, tal que

$$\sum_{k=1}^{\infty} v(Q_k) < \mu^*(A) + \varepsilon/2 \qquad \sum_{k=1}^{\infty} v(R_k) < \mu^*(B) + \varepsilon/2$$

(esto lo podemos hacer por la definición de ínfimo). Como obviamente $\{Q_k\} \cup \{R_k\}$ es un recubrimiento numerable por rectángulos de $A \cup B$, tenemos que

$$\mu^*(A \cup B) \le \sum_{k=1}^{\infty} v(Q_k) + \sum_{k=1}^{\infty} v(R_k) < \mu^*(A) + \mu^*(B) + \varepsilon$$

Haciendo tender ε a 0 se obtiene el resultado. \clubsuit

Una pregunta natural es cuánto vale la medida exterior de un rectángulo. Como es de esperar:

Proposición:

Si Q es un rectángulo, entonces

$$\mu^*(Q) = v(Q).$$

Demostración: Para probar que $\mu^*(Q) \leq v(Q)$, tomamos $\varepsilon > 0$, entonces consideramos un recubrimiento de Q, $\{Q_k\}$, de la siguiente forma: $Q_1 = Q$, y para $k \geq 2$, Q_k será un rectángulo arbitrario de volumen menor que $\varepsilon/2^k$. Obviamente $\{Q_k\}$ es un recubrimiento de Q y

$$\sum_{k=1}^{\infty} v(Q_k) = v(Q) + \sum_{k=2}^{\infty} v(Q_k) < v(Q) + \sum_{k=2}^{\infty} \varepsilon/2^k < v(Q) + \varepsilon$$

Tomando ínfimos obtenemos que

$$\mu^*(Q) \le v(Q) + \varepsilon$$

como ε es arbitrario, haciéndolo tender a 0 obtenemos que

$$\mu^*(Q) \le v(Q).$$

Ahora vamos a probar que $v(Q) \leq \mu^*(Q)$. Primero observamos que la adherencia de Q, \overline{Q} , es Q unión las caras de Q, las denotamos como $C_1, \ldots C_m$ (no nos importa cuantas sean). Entonces, usando los resultados anteriores tenemos que

$$\mu^*(Q) \le \mu^*(\overline{Q}) \le \mu^*(Q) + \mu^*(C_1) + \dots + \mu^*(C_m) = \mu^*(Q)$$

ya que es inmediato ver que las caras de un cubo tienen medida cero. Es decir deducimos $\mu^*(Q) = \mu^*(\overline{Q})$, como también $v(Q) = v(\overline{Q})$, podemos

suponer que Q es cerrado. Ahora vamos a probar que para cualquier recubrimiento de Q por rectángulos **abiertos** $\{Q_k\}$ se tiene que

$$v(Q) \le \sum_{k=1}^{\infty} v(Q_k) \quad (*)$$

De esta forma, tomando ínfimos, tendremos que $v(Q) \leq \mu^*(Q)$.

Vamos a probar (*). Como Q es cerrado (y acotado) es compacto, por tanto una cantidad finita de rectángulos del recubrimiento $\{Q_k\}$, es decir

$$Q \subset Q_{i_1} \cup \cdots \cup Q_{i_j}$$

Luego

$$v(Q) \le v(Q_{i_1}) + \dots + v(Q_{i_j}) \le \sum_{k=1}^{\infty} v(Q_k)$$

(La segunda desigualdad es trivial, y para ver la primera, un simple dibujo nos convence de ello). \clubsuit