Sistemas Operacionais I

Introdução

Prof. Leandro Marzulo

Um Sistema de Computação Moderno

Visão geral de um SO

3

Ou ainda...

Sistema bancário	Reservas aéreas	Navegador Web	Programas de aplicação
Compiladores	Editores	Interpretador de comando	Programas de sistema
Sistema operacional			Sistema
Linguagem de máquina			↑
Microarquitetura			Hardware
Dispositivos físicos			

O que é um SO?

- Um programa que age como intermediário entre o usuário e o hardware
- Objetivos de um SO:
 - Executar programas de usuário e tornar mais simples a solução de problemas
 - Tornar mais conveniente o uso do computador
 - Usar o HW de maneira eficiente

Um outro ponto de vista...

- Um conjunto de programas, rotinas e sistemas que, em conjunto com o hardware, oferecem:
 - API (Application Programming Interface) para chamadas ao sistema
 - Interrupções
 - Comandos (interpretador de comandos)
 - Interface gráfica
- Controle e gerência de recursos de HW
 - CPU
 - Memória
 - Dispositivos em geral

Gerenciamento de memória

Define uma Máquina Estendida ou Virtual

- Sem SO: Acesso direto ao HW → maior complexidade na programação → mais detalhes para se preocupar
 - Acesso a registradores de configuração
 - Detalhes de Funcionamento dos dispositivos
- Com SO: Uso da Interface oferecida → acesso mais simples aos recursos → menor conhecimento sobre os detalhes
 - ABSTRAÇÃO!

Gerencia de Recursos

- Multiplexação por tempo: cada programa usa o recurso por um dado intervalo de tempo
 - CPU

Gerência de Recursos

- Multiplexação por espaço: cada programa usa uma parte do recurso
 - Memória

Modos de Operação

• Modo núcleo (kernel) ou supervisor

Modos de Operação

• Modo Usuário:

12

Inicialização - BOOT

Modos de Operação

- Modo Kernel
 - Acesso total ao sistema
 - SO executa neste modo
- Modo Usuário
 - Programas de aplicação executam neste modo
 - Programas de sistema que não precisam de acesso privilegiado também
 - Acesso limitado ao HW Proteção

• Primeira geração (1945 — 1955): Válvulas e painéis de conectores.

- Primeira geração (1945 1955): Válvulas e painéis de conectores.
 - Usuário requisitava o uso exclusivo do computador.
 - Usuário responsável por todo o gerenciamento.
 - Não existiam linguagens de programação.
 - Programação direta do HW através de painéis de conectores.
 - Não existiam Sos.

- Segunda geração (1955 1965): Transistores e Sistemas em Lote.
 - Usuários submetem programas e esperam respostas
 - Operadores responsáveis pelo gerenciamento.
 - Desperdício com tempo de gerenciamento.
 - Solução: desenvolvimento dos sistemas em lote.

Os programas são organizados em lotes.

Os programas de um lote são executados sequencialmente.

Os resultados são impressos após o processamento do lote.

- Terceira geração (1965-1980): circuitos integrados e multiprogramação.
 - Conceito de multiprogramação
 - Vários programas residentes na memória
 - Cada programa usa a CPU em um intervalo de tempo.

A CPU não fica ociosa em operações de E/S.

Agora, depois de o programa A ser suspenso, outros programas executarão na CPU (B e C).

Sistema operacional

Compreendendo as vantagens da multiprogramação - exercício

- 3 Programas: A, B e C
- A executa por 3 u.t. (unidades de tempo), faz E/S por 2 u.t. e volta a executar por 2 u.t.
- B executa por 1 u.t., faz E/S por 1 u.t. e volta a executar por 2 u.t.
- C executa por 1 u.t., faz E/S por 1 u.t. e volta a executar por 5 u.t.
- Como ficam os cenários em sistemas com e sem multiprogramação, desconsiderando os tempos de execução do SO?

- Terceira geração (1965-1980): circuitos integrados e multiprogramação.
 - Surgimento dos sistemas de compartilhamento de tempo:
 - Usuários se conectam ao sistema por terminais.
 - O tempo de processamento é dividido entre os usuários.
 - O usuário tem a ilusão de ter acesso exclusivo à máquina.

- Terceira geração (1965-1980): circuitos integrados e multiprogramação.
 - A importância do Sistema MULTICS:
 - Suporte a um grande número de usuários
 - Motivou o uso de computadores compartilhados em rede
 - Desenvolvimento do sistema UNIX:
 - Baseado em MULTICS.
 - Pode ser usado em máquinas mais baratas.
 - Motivou o desenvolvimento de vários sistemas similares, como o BSD, o FreeBSD, o Linux, Minix e até mesmo o Mac OS.

Classificação dos SOs

- Quanto ao número de usuários que usa o sistema:
 - Monousuário: somente 1 usuário pode usar o sistema MS-DOS, Windows 3.11 e Windows 9X (embora permita várias contas de usuário, somente 1 acessa o sistema por vez).
 - Multiusuário: múltiplos usuários usam o sistema simultâneamente Linux, Minix e sistemas de tempo compartilhado.
- Quanto ao número de programas no sistema
 - Monoprogramado: somente 1 programa residente em memória, excluindo o SO MS-DOS
 - Multiprogramado: vários programas residentes na memória Linux, Windows, Minix