Definition. Suppose that V is a vector space and that $\alpha = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$ is a basis of V. We define a function

$$Coord_{\alpha} \colon V \to \mathbb{R}^n$$

as follows. Given $\vec{v} \in V$, let $c_1, c_2, \dots, c_n \in \mathbb{R}$ be the unique values such that $\vec{v} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n$, and define

$$Coord_{\alpha}(\vec{v}) = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

We call this vector the *coordinates of* \vec{v} relative to α . We also use the notation $[\vec{v}]_{\alpha}$ for $Coord_{\alpha}(\vec{v})$.

Definition. Let $T: V \to W$ be a linear transformation, let $\alpha = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$ be a basis for V, and let $\beta = (\vec{w}_1, \vec{w}_2, \dots, \vec{w}_m)$ be a basis for W. We then define the matrix of T relative to α and β to be the $m \times n$ matrix where the i^{th} column is $[T(\vec{u}_i)]_{\beta}$. We denote this matrix by $[T]_{\alpha}^{\beta}$.

Exercise 1. Suppose $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation with the following properties:

$$T\left(\begin{pmatrix}1\\0\\0\\0\end{pmatrix}\right) = \begin{pmatrix}2\\1\\1\end{pmatrix}; \qquad T\left(\begin{pmatrix}0\\1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}1\\2\\0\end{pmatrix}; \qquad T\left(\begin{pmatrix}0\\0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}4\\5\\1\end{pmatrix}; \qquad T\left(\begin{pmatrix}0\\0\\0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\7\\-1\end{pmatrix}.$$

Consider the bases for \mathbb{R}^4 and \mathbb{R}^3 given by:

$$\alpha = \left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1\\0\\0 \end{pmatrix} \right)$$

$$\beta = \left(\begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\2 \end{pmatrix} \right)$$

- (a) Compute $[T]^{\beta}_{\alpha}$.
- (b) Find the solution set for the equation $T(\vec{v}) = \vec{0}$.
- (c) If \vec{e}_1, \vec{e}_2 , and \vec{e}_3 are the standard basis vectors in \mathbb{R}^3 then find solutions sets for the following equations:
 - (i) $T(\vec{x}) = \vec{e}_1$
 - (ii) $T(\vec{y}) = \vec{e}_2$
 - (iii) $T(\vec{z}) = \vec{e}_3$

Exercise 2. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation with the following properties:

$$T\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}2\\1\\0\end{pmatrix}; \qquad T\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\2\\0\end{pmatrix}; \qquad T\left(\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = \begin{pmatrix}4\\5\\1\end{pmatrix}.$$

- (a) Find the solution set for the equation $T(\vec{v}) = \vec{0}$.
- (b) If \vec{e}_1, \vec{e}_2 , and \vec{e}_3 are the standard basis vectors in \mathbb{R}^3 then find solutions sets for the following equations:
 - (i) $T(\vec{x}) = \vec{e}_1$
 - (ii) $T(\vec{y}) = \vec{e}_2$
 - (iii) $T(\vec{z}) = \vec{e}_3$
- (c) Is T injective?
- (d) Is T surjective?
- (e) Find a vector $\vec{v} \in \mathbb{R}^3$, and $\lambda \in \mathbb{R}$ such that $T(\vec{v}) = \lambda \vec{v}$.

Exercise 3. How do your observations in the preceding exercises compare with our observations for linear transformations in \mathbb{R}^2 ? (There is a lot to say here, and this is a strong candidate for a short answer question on the final exam.)