Claims

[c1]	1. A method comprising the steps of:
	(a) aligning a grid with a first image;
	(b) generating grid alignment data based on the alignment of the grid with
	the first image;
	(c) storing the grid alignment data in memory;
	(d) retrieving the grid alignment data responsive to an indication to analyze a
	second image; and
	(e) analyzing the second image based on the retrieved grid alignment data.
[c2]	2. The method of claim 1, wherein:
	the first image is generated by scanning a first probe array; and
	the second image is generated by scanning the first probe array.
[c3]	3. The method of claim 2, wherein:
	the first image is generated by scanning the first probe array with a first
	excitation beam; and
	the second image is generated by scanning the first probe array with a
	second excitation beam.
[c4]	4. The method of claim 3, wherein:
	the first excitation beam has a first wavelength; and
	the second excitation beam has a second wavelength different from the first
	wavelength.
[c5]	5. The method of claim 2, wherein:
	the first probe array is a spotted array.
[c6]	6. The method of claim 2 , wherein:
	the first probe array is a synthesized array.
[c7]	7. The method of claim $\underline{1}$, further comprising:
	(f) receiving one or more user-selected grid aligning parameters.
[c8]	

8. The method of claim $\overline{2}$, wherein:

the user-selected grid aligning parameters include any one or more of the group consisting of a fixed algorithm shape with easy threshold, a fixed algorithm shape with tight threshold, a variable algorithm shape with easy threshold, a variable algorithm shape with tight threshold, or an estimated feature size.

- [c9] 9. The method of claim 7, wherein:
 the user-selected grid aligning parameters include an estimated feature size
 based on a dimension of a depositing element.
- [c10] 10. The method of claim 1, further comprising the step of:

 (f) scanning a first probe array to generate the first and second images prior to performing step (a).
- [c11] 11. The method of claim 10, wherein: the first and second images are scanned sequentially.
- [c12] 12. The method of claim 10, wherein:
 the first and second images are scanned in parallel using two excitation
 beams.
- [c13] 13. The method of claim 1, further comprising the steps of:

 (f) retrieving the grid alignment data responsive to an indication to analyze one or more images in addition to the first and second images; and

 (g) analyzing each of the one or more additional images based on the retrieved grid alignment data.
- [c14] 14. The method of claim 13, further comprising the steps of:

 (h) receiving a user selection of a number of images to scan; and

 (i) scanning the user-selected number of images.
- [c15] 15. The method of claim 14, further comprising the step of:
 (j) receiving a user selection of one or more parameters for scanning.
- [c16] 16. The method of claim 15, wherein:
 the one or more parameters for scanning include a gain for one or more of

the user-selected number of images.

- [c17] 17. The method of claim 15, wherein:
 the one or more parameters for scanning include an indicator of an
 excitation source for one or more of the user-selected number of images.
- [c18] 18. A computer program product comprising:
 - (a) a grid aligner that aligns a grid with a first image; and
 - (b) an image analysis manager comprising
 - (i) an image analyzer that generates grid alignment data based on the alignment of the grid with the first image,
 - (ii) an image analysis data storer that stores the grid alignment data in memory, and
 - (iii) a multiple scan alignment controller that retrieves the grid alignment data responsive to an indication to analyze a second image; wherein the image analyzer analyzes the second image based on the retrieved grid alignment data.
- [c19] 19. The computer program product of claim 18, wherein: the first image is generated by scanning a first probe array; and the second image is generated by scanning the first probe array.
- [c20] 20. The computer program product of claim 19, wherein: the first image is generated by scanning the first probe array with a first excitation beam; and the second image is generated by scanning the first probe array with a second excitation beam.
- [c21] 21. The computer program product of claim 20, wherein:
 the first excitation beam has a first wavelength; and
 the second excitation beam has a second wavelength different from the first
 wavelength.
- [c22] 22. The computer program product of claim 19, wherein: the first probe array is a spotted array.

- [c23] 23. The computer program product of claim 19, wherein: the first probe array is a synthesized array.
- [c24] 24. The computer program product of claim 18, further comprising:

 (c) a GUI manager that receives one or more user-selected grid aligning parameters.
- [c25] 25. The computer program product of claim 24, wherein: the user-selected grid aligning parameters include any one or more of the group consisting of a fixed algorithm shape with easy threshold, a fixed algorithm shape with tight threshold, a variable algorithm shape with easy threshold, a variable algorithm shape with tight threshold, or an estimated feature size.
- [c26] 26. The computer program product of claim 25, wherein:
 the user-selected grid aligning parameters include an estimated feature size based on a dimension of a depositing element.
- [c27] 27. A scanning system, comprising:

 a scanner that scans a first probe array to generate a first image and a second image; and

 a computer program product, comprising
 - (a) a grid aligner that aligns a grid with the first image; and
 - (b) an image analysis manager including
 - (i) an image analyzer that generates grid alignment data based on the alignment of the grid with the first image,
 - (ii) an image analysis data storer that stores the grid alignment data in memory, and
 - (iii) a multiple scan alignment controller that retrieves the grid alignment data responsive to an indication to analyze the second image;

wherein the image analyzer analyzes the second image based on the retrieved grid alignment data.

- [c28] 28. The system of claim 27, wherein: the first and second images are scanned sequentially.
- [c29] 29. The system of claim <u>27</u>, wherein:
 the first and second images are scanned in parallel using two excitation beams.
- [c30] 30. The system of claim 27, wherein:
 the computer program product further includes a GUI manager that receives
 a user-selected number of images to scan, wherein the number is greater
 than one; and
 the scanner scans the first probe array to generate the user-selected number
 of images, including the first and second images.
- [c31] 31. The system of claim 30, wherein:
 the user-selected number of images to scan is greater than two;
 the multiple scan alignment controller retrieves the grid alignment data
 responsive to an indication to analyze one or more images in addition to the
 first and second images; and
 the image analyzer analyzes at least one of the one or more additional
 images based on the retrieved grid alignment data.
- [c32]

 32. A scanning system, comprising:
 a scanner that scans a first probe array to generate a first image and a second image;
 a computer; and
 a computer program product that, when executed on the computer, performs a method comprising the steps of:
 (a) aligning a grid with the first image;
 (b) generating grid alignment data based on the alignment of the grid with the first image,
 - (c) storing the grid alignment data in memory;
 - (d) retrieving the grid alignment data responsive to an indication to analyze the second image; and

- (e) analyzing the second image based on the retrieved grid alignment data.
- [c33] 33. A method comprising the steps of:
 - (a) aligning a grid with a first image;
 - (b) generating grid alignment data based on the alignment of the grid with the first image;
 - (c) storing the grid alignment data in memory;
 - (d) retrieving the grid alignment data responsive to an indication to analyze a second image; and
 - (e) analyzing the second image based on the retrieved grid alignment data; wherein the first image is generated by scanning a first probe array and the second image is generated by scanning a second probe array different from the first probe array.