A Book of Abstract Algebra (2nd Edition)

	Chapter 27, Problem 8ED	Bookmark	Show all steps: ON
	Pro	blem	
	Let <i>F</i> be any field. Prove part:		
	If $p(x)$ is irreducible and has degree 2, prove that	at $F[x]/\square p(x)\square$ con	ntains <i>both</i> roots of $p(x)$.
	Step-by-s	tep solution	
	Step 1	I of 3 🔨	
	Suppose that F is any arbitrary field. Let $p(x)$ is		nomial of degree 2.
	Objective is to prove that $\frac{F[x]}{\langle p(x)\rangle}$ contains both	the roots of $p(x)$.	
	Consider the following result:		
	Let F is any arbitrary field. If $p(x) \in F[x]$ is an ithen	rreducible polynomial	and c is some root of $p(x)$,
	$\frac{F[x]}{\langle p(x)\rangle} \cong F(c).$		
	Comment		
Step 2 of 3 ^			
Suppose that α is the root of $p(x)$ in some extension field of F . Then by the above result: $\frac{F[x]}{\langle p(x)\rangle} \cong F(\alpha).$			
	Let $p(x) = ax^2 + bx + c$ (quadratic polynomial) the sum of roots will be:	whose one root is $ lpha $ a	and other root is $oldsymbol{eta}$. Then
	$\alpha + \beta = -\frac{b}{a}.$		
	And $\beta = -\frac{b}{a} - \alpha$. Since $p(x) \in F[x]$ and $F(\alpha)$ $F(\alpha)$ must contain β (field property).) ⇒ F contains a root	α of $p(x)$. Therefore,
	Comment		
	Step 3	3 of 3 🐣	
	Hence, $F[x]/\langle p(x)\rangle$ contains both the roots of	p(x)	
	Comment		