

BRIEFINGS

New Class of DNS Vulnerabilities Affecting Many DNSaaS Platforms

Shir Tamari & Ami Luttwak Wiz.io

Background:

The Wiz Research Team

- Experienced security researchers
- Microsoft Cloud Security Group veterans
- Groundbreaking cloud research

The Beginning:

Why DNS-as-a-Service?

- DNS is the lifeblood of the internet
- Potentially huge impact
- Impacts cloud & on-prem assets
- DNS is incredibly complex

Target:

Route53

- DNS-as-a-Service from AWS
- Highly popular

Route53:

Domain Hijacking

- ~2000 Shared DNS servers
- Each domain has 4 Name Servers
- Target: wiz.io

Route53:

Domain Hijacking

ns-1334.awsdns-38.org

ns-883.awsdns-46.net

ns-457.awsdns-57.com

ns-1611.awsdns-09.co.uk

Route53:

Domain Hijacking

Official AWS DNS Server	Customer's DNS Zones		
ns-1334.awsdns-38.org	wiz.io company.com		
	company2.com		
	company3.com		
	wiz.io		

Record name	▽ Type ▽	Value/Route traffic to
wiz.io	NS	ns-736.awsdns-28.net. ns-249.awsdns-31.com. ns-1805.awsdns-33.co.uk. ns-1373.awsdns-43.org.
wiz.io	SOA	ns-736.awsdns-28.net. awsdns-hostmaster.amazon.com. 1 7200 900 1209600 86400

Wiz.io

ns-1334.awsdns-38.org

ns-883.awsdns-46.net

ns-457.awsdns-57.com

ns-1611.awsdns-09.co.uk

Domain Hijacking: Different angle

- What domain can We possibly register?
- Should not exist on the nameservers
- DNS clients must query for it

Domain Hijacking: Different angle

- Register an AWS official nameserver: What would happen?
- ns-852.awsdns-42.net?

lo.	Time	Source	Destination	Protoco	Length Info
449	3 28.968953	192.168.1.1	192.168.1.4	DNS	158 Standard query response 0x922c No such name SOA CABe8SkvDYjJXSIRSKRQk.com SOA a.gtld-server
449	4 28.974562	192.168.1.4	192.168.1.1	DNS	71 Standard query 0xc17a SOA CV5eY1n.com
449	5 28.990418	192.168.1.4	192.168.1.1	DNS	69 Standard query 0x3da2 SOA FaE01.com
449	6 28.997007	192.168.1.1	192.168.1.4	DNS	143 Standard query response 0xd06a No such name SOA U7Ncif.com SOA a.gtld-servers.net
449	7 29.012801	192.168.1.1	192.168.1.4	DNS	154 Standard query response 0xad4a No such name SOA vON80G1U2qkXeHppp.com SOA a.gtld-servers.ne
449	9 29.022270	192.168.1.4	192.168.1.1	DNS	68 Standard query 0x3022 SOA Bj6B.com
450	0 29.036688	192.168.1.4	192.168.1.1	DNS	82 Standard query 0x5dcb SOA dEVFXsR4WTXbJXVDrk.com
450	1 29.060790	192.168.1.1	192.168.1.4	DNS	144 Standard query response θxc17a No such name SOA CV5eY1n.com SOA a.gtld-servers.net
450	2 29.060790	192.168.1.1	192.168.1.4	DNS	142 Standard query response θx3da2 No such name SOA FaEθ1.com SOA a.gtld-servers.net
450	3 29.060886	192.168.1.4	192.168.1.1	DNS	65 Standard query 0x3f0e SOA c.com
450	4 29.076690	192.168.1.4	192.168.1.1	DNS	74 Standard query 0xf6bd SOA Mi5cLf1lFs.com
450	5 29.091660	192.168.1.4	192.168.1.1	DNS	76 Standard query 0x4f50 SOA seoME1C2E9I7.com
450	6 29.094018	192.168.1.1	192.168.1.4	DNS	141 Standard query response 0x3022 No such name SOA Bj6B.com SOA a.gtld-servers.net
450	7 29.104629	192.168.1.4	192.168.1.1	DNS	92 Standard query 0x8bf9 SOA r4LCBFUZUIpP6RAj8Rd4HjSD0UAb.com
450	8 29.107152	192.168.1.1	192.168.1.4	DNS	155 Standard query response θx5dcb No such name SOA dEVFXsR4WTXbJXVDrk.com SOA a.gtld-servers.n
450	9 29.124285	192.168.1.4	192.168.1.1	DNS	72 Standard query 0x1f2a SOA EtVEMmBj.com
451	1 29.133000	192.168.1.1	192.168.1.4	DNS	138 Standard query response 0x3f0e No such name SOA c.com SOA a.gtld-servers.net
451	7 29.145311	192.168.1.1	192.168.1.4	DNS	147 Standard query response 0xf6bd No such name SOA Mi5cLf1lFs.com SOA a.gtld-servers.net
451	8 29.151421	192.168.1.4	192.168.1.1	DNS	91 Standard query 0x3371 SOA JjS8xZxqOcP0iyTOuXyZmsZt47s.com
451	9 29.151749	192.168.1.4	192.168.1.1	DNS	88 Standard query 0xc71c SOA G3FnU879bSN309fPmfUV57ws.com
452	0 29.160175	192.168.1.4	192,168.1.1	DNS	89 Standard query 0x124e SOA KHSc82IrpYYvmA9FljhFljtiy.com
452	1 29.163878	192.168.1.1	192.168.1.4	DNS	149 Standard query response 0x4f50 No such name SOA seoME1C2E9I7.com SOA a.gtld-servers.net
452	4 29.173077	192.168.1.1	192.168.1.4	DNS	162 Standard query response θx124e No such name SOA KHSc82IrpYYvmA9FljhFljtiy.com SOA a.gtld-se
452	7 29.175459	192.168.1.4	192.168.1.1	DNS	93 Standard query 0x5a78 SOA EElSmQkeL9quROinX1vrfPCzVvvNV.com
452	8 29.176434	192.168.1.1	192.168.1.4	DNS	165 Standard query response 0x8bf9 No such name SOA r4LCBFUZUIpP6RAj8Rd4HjSD0UAb.com SOA a.gtld
452	9 29.191143	192.168.1.1	192.168.1.4	DNS	166 Standard query response 0x5a78 No such name SOA EElSmQkeL9quROinX1vrfPCzVvvNV.com SOA a.gtl
453	0 29.191328	192.168.1.4	192.168.1.1	DNS	88 Standard query 0x5c9c SOA Fa7zeSeWyeKBFs10Zet4QaPP.com
453	1 29.193624	192.168.1.1	192.168.1.4	DNS	145 Standard query response θx1f2a No such name SOA EtVEMmBj.com SOA a.gtld-servers.net
453	2 29.203001	192.168.1.1	192.168.1.4	DNS	161 Standard query response θx5c9c No such name SOA Fa7zeSeWyeKBFs1θZet4QaPP.com SOA a.gtld-ser
453	4 29.208813	192.168.1.4	192.168.1.1	DNS	71 Standard query 0x57df SOA Bbpvlwn.com
453	5 29.220730	192.168.1.1	192.168.1.4	DNS	144 Standard query response 0x57df No such name SOA Bbpvlwn.com SOA a.gtld-servers.net
453	6 29.222248	192.168.1.1	192.168.1.4	DNS	161 Standard query response θxc71c No such name SOA G3FnU879bSN3O9fPmfUV57ws.com SOA a.gtld-ser
453	7 29.222534	192.168.1.1	192.168.1.4	DNS	164 Standard query response 0x3371 No such name SOA JjS8xZxqOcP0iyTOuXyZmsZt47s.com SOA a.gtld-
455	7 29.325680	192.168.1.4	192.168.1.1	DNS	81 Standard query 0xd958 SOA hsZbbkfGoguTAKE2y.com
455	8 29.325934	192.168.1.4	192.168.1.1	DNS	88 Standard query 0x3a7c SOA KBIxGnN0ThFqxqEyVWxo3j19.com
455	9 29.341778	192.168.1.4	192.168.1.1	DNS	93 Standard query 0x7dea SOA 5cEzA2NpK87Fg3svKd3uY98snu67y.com
456	2 29.400938	192.168.1.1	192.168.1.4	DNS	161 Standard query response θx3a7c No such name SOA KBIxGnNθThFqxqEyVWxo3jl9.com SOA a.gtld-ser
456	3 29.402760	192.168.1.4	192.168.1.1	DNS	87 Standard query 0x3bd5 SOA LoYaC2iL4Er4MPOIivaeGjH.com
456	4 29.409330	192.168.1.1	192.168.1.4	DNS	154 Standard query response 0xd958 No such name SOA hsZbbkfGoguTAKE2y.com SOA a.gtld-servers.ne
456	5 29.417562	192.168.1.1	192.168.1.4	DNS	166 Standard query response 0x7dea No such name SOA 5cEzA2NpK87Fg3svKd3uY98snu67y.com SOA a.gtl
456	9 29.475282	192.168.1.1	192.168.1.4	DNS	160 Standard query response 0x3bd5 No such name SOA LoYaC2iL4Er4MPOIivaeGjH.com SOA a.gtld-serv
457	4 29.508816	192.168.1.4	192.168.1.1	DNS	86 Standard query 0x471c SOA hmllPewnXuxnCzMdWczvYh.com
457	5 29.523604	192.168.1.4	192.168.1.1	DNS	65 Standard query 0xd26b SOA A.com
458	1 29.579948	192.168.1.1	192.168.1.4	DNS	159 Standard query response θx471c No such name SOA hmllPewnXuxnCzMdWczvYh.com SOA a.gtld-serve
458	6 29.607871	192.168.1.1	192.168.1.4	DNS	138 Standard query response 0xd26b No such name SOA A.com SOA a.gtld-servers.net

Nameserver Hijacking:

Analyzing the Traffic

- Why are we getting any traffic?
- Most of it is Dynamic DNS
- IP addresses
- Computer Names
- Domain names


```
> Frame 475734: 150 bytes on wire (1200 bits), 150 bytes captured (1200 bits)
> Ethernet II, Src: 06:c6:1f:f4:92<u>:d7 (06:c6:1f:f</u>4:92:d7), Dst: 06:48:3a:73:e2:e3 (06:48:3a:73:e2:e3)
Internet Protocol Version 4, Src 212.113 Dst: 172.31.0.136
User Datagram Protocol, Src Port: 57293, Dst Port: 53
Domain Name System (query)
  Transaction ID: 0xd711
 → Flags: 0x2800 Dynamic update
  Zones: 1
  Prerequisites: 1
  Updates: 3
  Additional RRs: 0
 → Zone
 Prerequisites
                        com: type CNAME, class NONE
   Evelyn-PC
 Updates
  → Evelyn-PC
                         com: type AAAA, class ANY
  → Evelyn-PC
                         com: type A, class ANY
                         com: type A, class IN, addr 192.168.1.3
  → Evelyn-PC
```


Nameserver Hijacking:

Analyzing the Traffic

- More than one million unique endpoints
- More than 15,000 organizations (Unique FQDN)
- All are AWS Customers

Nameserver Hijacking: High value targets

- Big companies (Fortune 500)
- 130 government agencies

Nameserver Hijacking:

What do we know so far?

- We registered a nameserver domain
- Millions of endpoints started sending dynamic DNS queries to us.
- But .. Why?
- Our next step was to dive into the world of Dynamic DNS

Nameserver Hijacking: Dynamic DNS

- RFC 2136
- Dynamically updating DNS records
- Common use: Simple way to find IPs in a managed network

Nameserver Hijacking:

Dynamic DNS

Finding the Master

- Microsoft has its own algorithm
- It does not work exactly as the RFC defines

Finding the Master (Private network)

Finding the Master (External Network)

So what did we learn so far?

- Windows endpoints use a custom algorithm to find the master DNS
- The algorithm queries the nameserver for its own address
- The result: Our malicious DNS server receives Dynamic DNS traffic from millions of endpoints

Nation-state intelligence capability

- External IP
- Internal IPs
- Computer names
- From 15,000 organizations

IP based Intelligence

 Map companies' sites across the globe

IP based Intelligence

 Companies in violation of OFAC (Office of Foreign Assets Control) sanctions

IP based Intelligence

A subsidiary of a large credit union with a branch in Iran

Internal IPs

• Indicate network segments

10.10.*.* - Employee's network

10.10.33.* - CI/CD network

10.100.*.* - Operational network

Computer Names

Internal IPv6

- Sometime accessible from the internet!
- 6% expose services such as RDP,
 SMB, HTTP and many more

V Updates

Huge Scope

- Cloud providers
- DNS-as-a-Service providers
- Shared hosting
- Domain registrars
- All could be vulnerable to nameserver hijacking

Nameserver Hijacking: Disclosure

- Amazon AWS Fixed by 16/02/2021
- Two more cloud providers in disclosure process

The Fix:

Amazon

Domain name validation

Error occurred

Domain Name contains invalid characters or is in an invalid format.

(InvalidDomainName 400: ns-27.awsdns-03.com is reserved by AWS!)

Disclosure:

Microsoft

- Not considered a vulnerability
- A known misconfiguration when using external DNS providers

Nameserver Hijacking:

Fix it Yourself (Platform)

- Domain validation
- Ownership verification
- Follow RFC's "reserved names"

Fix it Yourself (Organization)

Modify the default SOA record

Record name	▽ T	Type ▼	Value/Route traffic to	∇
wiz.io	N	NS	ns-1363.awsdns-42.org. ns-1720.awsdns-23.co.uk. ns-779.awsdns-33.net. ns-133.awsdns-16.com.	
wiz.io	S	SOA	invalid.wiz.io. awsdns-hostmaster.amazon.com. 1 7200 900 1209600 86400	

Further Research:

Further research

Many more interesting domains to register

Dynamically update DNS servers in the wild

NTLM authentication

Windows 10 (Build 14393) NTLM Negotiation

```
> Queries
Additional records
 3404-ms-7.534-4b4cd65c.7038fa95-b5f7-11eb-5c91-0050569566ec: type TKEY, class ANY
     Name: 3404-ms-7.534-4b4cd65c.7038fa95-b5f7-11eb-5c91-0050569566ec
     Type: TKEY (Transaction Key) (249)
     Class: ANY (0x00ff)
     Time to live: 0 (0 seconds)
     Data length: 66
     Algorithm name: gss-tsig
     Signature Inception: May 30, 2021 21:30:23.000000000 Jerusalem Daylight Time
     Signature Expiration: May 31, 2021 21:30:23.000000000 Jerusalem Daylight Time
     Mode: GSSAPI (3)
     Error: No error (0)
     Key Size: 40
   NTLM Secure Service Provider
        NTLMSSP identifier: NTLMSSP
        NTLM Message Type: NTLMSSP NEGOTIATE (0x00000001)
       > Negotiate Flags: 0xe2088297, Negotiate 56, Negotiate Key Exchange, Negotiate 128, Negotia
        Calling workstation domain: NULL
        Calling workstation name: NULL
       > Version 10.0 (Build 14393); NTLM Current Revision 15
```


The Research:

Summary & Takeaways

- We got to nation-state intelligence capabilities from a simple domain registration
- New class of DNS vulnerabilities in DNS-as-a-service
- Huge scope

The Research:

Q&A

@AmiLuttwak @ShirTamari

ami@wiz.io

shir@wiz.io

