

ZHMAYEVA, Z. M., KARULIN, V. E., PCHELKIMA, A. A.

"On related epizootics of various infections in nature." p. 104

Desystoye soveshchanive po parazitologicheskim problemam i priodnoochagovym boleznyam. 22-29 Oktyabrya 1959 g. (Tenth Conference on Parasitological Problems and Diseases with Natural Foci 22-29 October 1959), Moscow-Leningrad, 1959, Academy of Medical Sciences USSR and Academy of Sciences USSR, No. 1 25h pp.

Inst. of Epidemiology and Microbiology, AMS USSR Moscow

KARULIN, B. E., PCHELICINA, A. A. ZHMAYEVA, Z. M.,

"The results of the study of natural Q-fever foci in some areas of the Soviet Union, and the methods of classifying them by type." p. 134

Desyatoye Soveshchaniye po parazitologicheskim problemen i prirodnoochagovym boleznyam. 22-29 Oktyabrya 1959 g. (Tenth Conference on Parasitological Problems and Diseases with Natural Foci 22-29 October 1959), Moscow-Leningrad, 1959, Academy of Medical Sciences USSR and Academy of Sciences USSR, No. 1 254pp.

ASE: 07/19/2001

CIA-RDP86-00513R007064830005 s/056/63/044/001/056/097064830005 "Packing" of the excitation levels of light nucled near the thresholds Berov, V. I., Zhmaylo, B. A. Zhurnal eksperimentalinoy i teoretioheskoy fiziki, v. 44, TEXT: The concentration of excitation levels near the threshold energies are the threshold energies are the threshold was proved.

TEXT: The concentration of excitation levels near the threshold according are the types 1, is studied according are the types 349, 1959), is studied according are the types 349, 1959) Known experimental tion for two-particle decay of the types 30, 1, 1962).

The concentration of excitation levels near threshold and level position for two-particle decay of the types 30, 1, 1962).

The concentration of excitation levels near the threshold and level position for two-particle decay of the types 30, 1, 1962).

The concentration of excitation levels near the threshold according are the types 30, 1, 1962).

The concentration of excitation levels near the threshold according are the types 349, 1959) Known experimental tion for two-particle decay of the types 30, 1, 1962).

The concentration of excitation levels near the types 349, 1959 Known experimental tion for two-particle decay of the types 30, 1, 1962).

The concentration of excitation levels near the types are the types 349, 1959 Known experimental tion for two-particle decay of the types 30, 1, 1962).

The concentration of excitation levels near the types are the types 349, 1959 Known experimental tion for the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental tion for two-particle decay of the types 349, 1959 Known experimental ti AUTHORS: TITLE! method by Inglis (Nucl. Phys. 30, 1, 1962). Known experimental data for threshold and level position between threshold and level position used to analyze the correlation between threshold and level position. used to analyze the correlation between threshold and level position for that, in nuclei from He5 to C and observed particle emission thresholds above the levels near neutron and observed the excitation levels concentrate near the the case of neutron emission, the excitation levels of neutron emission, PERIODICAL levels near neutron and charged-particle emission thresholds shows the thresholds near neutron emission, the excitation levels concentrate near the threshold, near the case of neutron emission, charged-particle emission, near the threshold, and in the case of excitation of excitation levels nucleon groupings threshold, and it is concentration of excitation of different nucleon distance from it. distance from it. The concentration of excitation levels near the thresh olds in light nuclei confirms the existence of different nuclei confirms the exis

24,6500

s/056/62/043/002/019/053 B104/3108

AUTHOR:

Zhmaylo, V. A.

TITLE:

Use of an optical potential for estimating the neutron

absorption cross section of an excited nucleus

PERIODICAL:

Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 43,

no. 2(8), 1962, 473-475

TEXT: The parameters of the optical potential are estimated on the assumption that the neutron absorption cross section of an excited nucleus changes when the nucleon absorption coefficient of the nuclear matter increases or when the radial nucleon density distribution changes. The parameters obtained are used to calculate the change in the neutron absorption cross section of a nucleus during its excitation. It is shown that for a nuclear excitation energy Ee of ~20 Mev and for an incident neutron energy ε_n of $\sim 1-2$ MeV, $A\sim 100$, the neutron absorption cross section $\sigma_{c}(\varepsilon_{n}, E_{e})$ is one and a half to two times as large as $\sigma_c(\varepsilon_n, \varepsilon_e = 0)$. The imaginary part of the optical potential is found to

Use of an optical potential ...

S/056/62/043/002/019/055
B104/B108

change on excitation of the nucleus. This is due to the change in change on energy distribution when the Fermi gas is "heated". The nucleon energy distribution cross section on the excitation dependence of the neutron absorption cross section on the excitation of the neutron evaporation spectrum only by energy shifts the maximum of the neutron evaporation spectrum only be a few per cent to lower energies. The excited nucleus is assumed to be in equilibrium.

SUBMITTED: January 15, 1962

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064830009-9"

Card 2/2

"Compaction" of the excitation level threshold. Zhur. eksp. i teor. fiz	(MIRA 16:5)	
(Quantum statistics)	(Muclei, Atomic)	
시 기를 통합하는 것이다. 그런 사용을 통합하는 것이다. 		
강 보고 있는 사람들이 되는 것이 되었다. 그렇게 되었다. 그 같은 것이 되었다. 그는 것이 많은 것이 되었다. 그런 사람들은 사람들이 되었다. 그런 것이 되었다.		
가는 함께 발표하다는 것들이 있는 것을 통해 되었다. 그 것 같다. 그 일반 기술을 가지 않는 것 같은 것을 기술을 받는다. 그 것 같다.		
	민준이 얼마를 가는 지원에 하루다르는	
(B.) 전통에 가게 되고 있는 바로 바로 바로 함께 되는 것으로 다 된 이 그리고 함께 그렇게 되는 사람들이 다른 것이다.		
	[발생][[[[[[[] [[] [[] [[] [[] [[] [[] [[] [
음료님을 되고 하지만 그렇게 보고 하고 있다.		
	어느 이 모르지 않는데, 말로 살 안성	

L 01074-67 EWT(1)/EWT(m)/EWP(c)/T IJP(c) ACC NR: AP6028205 SOURCE CODE: UR/0367/66/003/006/1022/1031	
AUTHOR: Zhmaylo, V. A.	
ORG: none	
TITLE: The Coulomb photodisintegration of the deuteron as a specific case of the three-body problem	
SOURCE: Yadernaya fizika, v. 3, no. 6, 1966, 1022-1031	
TOPIC TAGS: coulomb field, three body problem, approximation method, deuteron disintegration, coulomb disintegration, wave equation	
ABSTRACT: An integral equation, suggested by Baz [Nucl. Phys., 51, 145, 1964] for solving (in a specific case) the three-body problem in quantum mechanics, is being studied in application to the problem of a deuteron disintegration in the Coulomb field of a heavy nucleus. This equation is modified for the purpose of obtaining an equation more suitable for successive approximations, after which the appropriate solution is found. The amplitude for the Coulomb disintegration of the appropriate solution is found. The amplitude for the Coulomb disintegration of the deuteron is expressed in terms of this solution and compared with the corresponding amplitude, found by Landau and Lifshitz [L. D. Landau, Ye. M. Lifshitz. ZLETF,	
	ariemania area
的 电子电影电影 电影电影 多 医原生 一般心 出现的一种 电电影 经,我是是否的证据的证据,我们就是这些人们的一个一个一个一个一个一个一个一个一个一个一个一个	EERIS RIEERI

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064830009-9

ZHMEYDO, A. T.

USSR/ Medicine - Cold, Mrfects of Medicine - Pross

Feb 1948

"Restoration of Vital Functions in Vertebrate Animals Exposed to Freezing, Depending on Degree of Freezing and Rate of Warming" S. N. Matsko, A. T. Zhmeydo, V. M. Selivanova, Inst Experimental Physiol and Thereapy, Ministry Public Health USSR, 4 pp

"Dok Akad Nauk SSSR, Nova Ser" Vol LIX, He 4

Gives details of series of experiments on fregs: subjected to various changes in temperature. Describes processes of ice formation in central parts of the body. Submitted by Academician I. I. Shmal'gauzen, 4 Dec 1947

PA 43/43165

USSR/Medicine - Frogs Temperature, Body

"Ice Formation and Features of the Body Temperature Curve of Vertebrates in the Process of Freezing," N. Matsko, A. T. Zhmeydo, Inst of Experimental Physiol and Therapy, Min of Fub Health RSFSR, 8 pp

"Zool Zhur" No 3

Conducts dissections after freezing of fall-winter and summer frogs at verious times after forming of ice in the bodies to establish time required for formation of ice in verious organs and changes of body temperature during freezing. Sets up a system of five stages of freezing dependent on organs of the body in which ice is formed Data arranged in four tables.

PA 151T47

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064830009-9"

MATSKO, S.N., and A.T. ZHMEIDO.

Vliianie, okazyvaemoe nekotorymi veshchestvami na protsess zamerzaniia i na vosstanovlenie zhiznannykh funktsii u podvergnutykh zamorashivaniiu pozvonochnykh zhivotnykh. (Akademiia nauk SSSR. Doklady, novaia seriia, 1949. t. 69, no. 5, p. 703-706, zhivotnykh.) Title tr.: The influence exerted by certain substances upon the process of freezing and upon the restitution of vital functions in vertebrate animals subjected to freezing.

Contains a study on male frogs injected with 40 percent alcohol, exposed to air temperature of -4° to -6°C. and rewarmed in water of 20°C. In the experimental animals, the amount of water frozen in the body at a temperature of -1.5°C. was 21/2 - 8 times the amount of water frozen in the body at a temperature of of the alcoholsmaller than in controls. The lag in ice formation was made pronounced in the alcoholstreated animals than in partly desiccated ones used for comparison. Bibliography (7 interest).

Copy seen: DLC.

ZHTEN'KO, L. F.

Zhmen'ko, L. F.

"The development of pig embryos and metabolism in pregnant sows with various types of feed." Min Higher Education Ukrainian SSR. Khar'kov Zootechnical Inst. Khar'kov, 1956. (Dissertation for the Degree of Candidate in Agricultural Sciences).

Knizhnaya letopis! No. 21, 1956. Moscow.

BEREZOVSKAYA, N.N.; BESSONOV, S.M.; GALKINA, A.F.; GORBUNOVA, V.I.; GRAFSKAYA, Z.S.; ZHMEYDO, A.T.; LAGUN, G.G.; KALININA, H.H.; KOCHETKOVA, Z.V.; MATSKO, S.N.; ORLOVA, L.V.; TUPIKOVA, A.A. Results the of vitaminization of food in public eating establishments. Vop.pit. 15 no.5:37-42 S-0 156. 1. Iz laboratorii (zav. - A.Kh.Petrachev) sanitarno-epidemiologicheskoy stantsii Frunzenskogo rayona, iz otdela tekhnologii (zav. - kamidat tekhnicheskikh nauk S.M. Bessonov) Instituta pitaniya AMN SSSSR i is A.D.Ye - vitaminnogo otdela (zav. - prof. S.N.Matsko) Gosudarstvennogo nauchno-issledovatel skogo instituta vitaminologii Ministerstva zdravookhraneniya SSSR, Moskva. (FOOD, vitamin supplement, results (Rus)) (VITAMINS. supplement in food (Rus))

CIA-RDP86-00513R002064830009-9" **APPROVED FOR RELEASE: 07/19/2001**


```
ANISOVA, A.A., ZHMETDO, A.T., GORBUNOVA, V.I. SPIRINA, V.P.

Vitamin C indexes in preschool children. Pediatriia 36 no.6:56-59

Je '58

1. Iz otdela fiziologii Instituta pediatrii Ministerstva zdravo-
okhraneniya BSFSR (zav. - doktor med.nauk H.Ye. Ozeretskovkaya)
i A.D.B. vitaminnogo otdela (zav. - prof. S.H. Matsko) Instituta
vitaminologii Ministerstva zdravookhraneniya SSSR.

(VITAMIS C, metab.

utilization, eff. of decreased allottment in pre-
school child. (Rus))

(GHILD

eff. of decreased vitamin C allottment on pre-
school age child. (Rus))
```

HED TO DESCRIPT

ABEZGAUZ, N.N.; ANISOVA, A.A.; GORBUNOVA, V.I.; ZHMEYDO, A.T.; IEONTOVICH, V.A.

Effect of C-vitaminization of donors on the preservation of the phagocytic reaction and the vitamin C level in leucocytes stored

建筑相关发展和国际主席的支持,11月1日,11月1日,11月1日,11月1日,11月1日,11月1日 11月1日,11日日,11日日日 11月1日 11日日 11月1日 11月日 11月1日 11月日 11月1日 11月日 11月日 11日日 11月日 11月日 11月日 11日日 11月日 11月日 11月日 11月日 11月日 11月日 11日日 11月日 11月日 11日日 11日

under refrigeration. Probl. gemat. i perel. krovi 10 no.1:45-47
Ja '65. (MIRA 19:1)

1. Laboratoriya konservirovaniya krovi (zav. - prof. F.R. Vinograd-Finkel') TSentral'nogo instituta gematologii i perelivaniya krovi Ministerstva zdravookhraneniya SSSR i vitaminnaya laboratoriya (zav. - prof. S.N. Matsko) Instituta vitaminologii, Moskva.

MATSKO, S.N.; GORBUNOVA, V.I.; ANISOVA, A.A.; ZHMEYDO, A.T.

Criteria for vitamin C requirements; observations on children.
Vop. pit. 21 no.6:52-56 N-D '62. (MIRA 17:5)

1. Iz Nauchno-issledovatel'skogo instituta vitaminologii Ministerstva zdravookhraneniya SSSR, Moskva.

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064830009-9

ZHMIB GRODZKIY

POLAND/ Microbiology. General Microbiology

F-1

Abs Jour: Ref Zhur - Biol., No 6, 1958, 24061

Author : Khodkovskiy, Parnas, Zhmigrodzkiy

Inst : Not given

: Further Study of Atypical Forms of Brucella Isolated in Poland. Title

Orig Pub: Med. doswiad. i mikrobiol., 1957, 9, No 3, 275-279

Abstract: No abstract.

Card 1/1

EMT(m)/EMP(w)/EMA(d)/T/EWP(t)/EMP(z)/EMP(b) JD ACCESSION NR: AP5022581 UR/0129/65/000/009/0042/QQ46 669.14.018.25 AUTHOR: Zhmikhorskiy, R. (Zmihorski, E.) (Warsaw) CONTRACTOR HAT TITLE: Modified high-speed steels, with a high carbon content SOURCE: Metallovedeniye i termicheskaya obrabotka metallov, no. 9, 1965, 42-46 TOPIC TAGS: carbon steel, high speed steel, hardness, electromagnetic property, metal heat treatment, toughness ABSTRACT: High-carbon high-speed steels are more wear-resistant as well as more economical with respect to the content of alloy elements. In this connection, the author investigated the effect of different types of heat treatment on the structure, hardness, wear resistance, toughness, and electromagnetic properties of experimental melts of Polish high-speed steels SWC (1.19% C, 0.3-0.6% Mm, 0.47% 81, 3.54% Cr, 8.4% W, 2.1% V, 0.28% Ti, 0.28-0.6% Al, 0.28% Ni, 0.10% Cu), SWC12 (1.13% C, 0.77% Mm, 0.28% Si, 4.2% Cr, 11.9% W, 2.47% V, 0.29% Ti), and SWC18 (1.24% C, 0.3% Mn, 0.19% Si, 4.17% Cr, 17.1% W, 1.4% V, 0.19% Hi, C.14% Cu). Specimens of these steels were quenched from 900-1240°C (and in isolated instances, 1/2 Card

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064830009-9

L 1054-66

ACCESSION HR: AP5022581

是到完整是近日在帝外部已变到在智能以外的政策的主义的主义的主义的主义的主义的主义的主义的主义的主义的主义和自己的对象。

from 1280°C) and subsequently tempered at 175, 550, 570, 600, and 650°C for 1 hr. Then their machanical properties were examined with the aid of different testing machines and their electromagnetic properties, with the aid of a Cornelius electronic device for nondestructive testing. Findings: the required hardening temperature for the steels SMC, SMC12, and SMC18 decreases with increasing hardening time and vice versa, and optimally it is 1050-1200°C. The hardness of high-speed time and vice versa, and optimally it is 1050-1200°C. The hardness of high-speed steels may remain the same following different regimes of heat treatment. Consteels may remain the classical high-speed steels 18-4-1 and with the German high-parisons with the classical high-speed steels 18-4-1 and vith the German high-grade high-speed steel E18Co5 show the Polish SMC steel is not inferior in strength and toughness to these standard high-speed steels. Orig. art. has: 5 figures.

ASSOCIATION: none

SUBMITTED: 00

RECL: 00

SUB CODE: 144

KO REF SOV: CO1

OTHER: 008

Card 2/2 Af

ZHATKHOVSKA, VIKTORIYA

Zhmikhovska, Viktoriya "A comparative evaluation of methods of treating acute odontogenic inflammatory processes of the maxillary-facial region." Min Health RSFSR. Moscow Medical Stomatological Inst. Moscow, 1956. (Dissertation for the Degree of Candidate in Medical Science)

So: Kmizhnaya letopis!, No. 27, 1956. Moscow. Pages 94-109; 111.

LUKACHER, G.Ya., kand.med.nauk; FAL CHUK, A.Ya.; ZHMOTOVA, Ye.A.

Medical expertise of the capacity for work and rehabilitation of persons following surgery for hermia of an intervertebral disk and hypertrophy of the ligamentum flavum of the lumbar region. Sov. med. 28 no.3:104-108 Mr *65. (MIRA 18:10)

1. Nevrologicheskoye otdeleniye (zav. - kand.med.nauk G.Ya. Lukacher) 41-y gorodskoy bol'nitsy ekspertizy vremennoy netrudosposobnosti (glavnyy vrach N.A.Magnitskaya) i Neyrokhirurgicheskoye otdeleniye (nauchnyy rukovoditel' - prof. I.M.Irger) klinicheskoy bol'nitsy imeni S.P.Botkina (glavnyy vrach - dotsent Yu.G.Antonov), Moskva.

DECEASED	
c. 1961	
4.073 - 77.0	
SEE ITC	
	t e de la companya
	e de la companya de La companya de la co
	SEE TLC

AUTHOR: Zhmud', E.M. (Khar'kov) 39-44-3-3/3 TITLE: On Homomorphy Kernels of Linear Representations of Finite Groups (O yadrakh gomomorfizmov lineynykh predstavleniy konechnykh grupp) PERIODICAL: Matematicheskiy Sbornik, 1958, Vol 44, Nr 3, pp 353-408 (USSR) ABSTRACT: The present paper is a development of the author's publication [Ref 8] of two years ago concerning isomorphic linear representations of finite groups. Let of be a finite group and P a field, the characteristic of which does not divide the order of the group. The normal subgroup of of is called k-kernel, if & is the homomorphy kernel of a linear representation of Of which is decomposed into k irreducible components In \S 1 besides of the kernels the author considers a certain orthogonal system $s_i(k)(X)$ ($i=1,2,\ldots,m_k$) which depends on the characters of the groups and which is defined on the set $\mathcal{E}_{k}(\mathcal{G})$ of the systems $X = \{G_1, \dots, G_k\}$ of k elements of \mathcal{G} . Card 1/4

On Homomorphy Kernels of Linear Representations of Finite 39-44-3-3/3

The determination of explicit expressions for these functions leads to necessary and sufficient conditions for a normal subgroup of of to be a k-kernel. The elements of $\mathcal{E}_k(\mathcal{F})$ are divided into classes: Let $X \in \mathcal{E}_k(\mathcal{F})$ and \mathcal{W}_X be the minimum normal subgroup of \mathcal{F} containing the system X. Then let be $X_1 = X_2$, if $X_1 = X_2$. It is shown that: 1. The number of the functions $\mathbf{s}^k(X)$ is equal to the number of the classes of the systems of \mathbf{k} elements of $\mathcal{F}_k(X_1) = \mathbf{s}_k(X_2)$, 3. the orthogonal system $\left\{\mathbf{s}_k(X_1) = \mathbf{s}_k(X_2), 3\right\}$ is complete in the class of the functions which are invariant on the classes of \mathbf{k} -systems. From the first property it follows: The number of the \mathbf{k} -kernels of $\mathcal{F}_k(X_1) = \mathbf{k}$ is equal to the number of the subgroups which are generated of \mathbf{k} classes of conjugate elements of $\mathcal{F}_k(X_1) = \mathbf{k}$. In \mathbf{k} 2 it is proved that the classes of the set \mathbf{k} (\mathbf{k}) generate a certain noncommutative semisimple algebra $\mathcal{E}_k(\mathcal{F})$ generate a certain noncommutative semisimple algebra $\mathcal{E}_k(\mathcal{F})$. The pro-

Card 2/4

On Homomorphy Kernels of Linear Representations of Finite Groups

39-44-3-3/3

perties of \mathcal{L}_k are used in order to extend the results of § 1 to a ground field of arbitrary characteristic. In § 3 the special case k=1 is considered in detail. Let J_i (i=1,...,m) be the homomorphy kernels of the irreducible representations of § . As the adjoint representation Π_i of § the author denotes the greatest component (with respect to the number of the irreducible parts) of a regular representation of § , all the irreducible parts of which possess the homomorphy kernel J_i . The functions $s_i^{(k)}(X)$ are transformed for k=1 into the traces $s_i(G)$ (i=1,...,m) of the adjoint representations, The classes of $\mathcal{E}_k(\mathcal{P})$ are transformed into sets of elements of § - "expanded classes". Properties of the traces and of the "expanded classes" are considered, furthermore the algebra \mathcal{L} which is generated by the expanded classes of § .

Card 3/4

On Homomorphy Kernels of Linear Representations of 39-44-3-3/3

 \S 4 is devoted to a detailed study of the functions $s_i^{(k)}(X)$ for which a product representation is obtained. There are 10 references, 1 of which is Soviet, 1 English, 1 American, 4 German, and 3 Japanese.

SUBMITTED:

April 24, 1956

AVAILABLE:

Library of Congress

1. Finite groups - Mathematical analysis 2. Algebra - Theory

Card 4/4

USCOMM-DC-54,998

ZHMUD	', E.M.								
	Representat Uch.zap.KHG	ions of finit 1 115:131-134	te Abelian	groups	by sul	ostitut (MIRA	ions. 17:5)		

ZHMUD', L	.B. (Rostov-1						
	A case of for 79-80 Ja-F		in the ap	pendix. Yes	t. rent. 1 (MIRA 12	rad. 34 no	.l:
	l. Iz Gordsi Schastnyy). (API	coy bol'nit PENDIX, for needle (H	• body	ostova-na-D	omu (glavn	yy vrach A.	G.

ZHMUD', L.B. Case of congenital anomaly of the urinary tract, Vestn. rent. i rad. 38 no.3:80 My-Ke '63. (MIRA 17:7) 1. Iz 2-y gorodskoy imeni Lenina bol'nitsy (glavnyy vrach A.G. Schastnyy) Rostova-na-Donu.

Case of benign hemangicendothelicma of the panc i rad. 39 no.5:63 S-0 '64. 1. Gorodskaya bol'nitsa No.2 imeni Lenina, Rost	reas. Vest. rent. (MIRA 18:3)
1. Gorodskaya bol'nitsa No.2 imeni Lenina, Rost	
	ov-na-Donu.
2일 그는 사람이 하고 말하는 말하는 것을 하고 있었다. 생물이 들어 있는 그 사람이 되어 나이지 않는데 생물을 들었다. 그 사람이 되는 것이 되었다.	
있다. 마스테스 마르크 열리가 되고 있다면 하게 바라 경우되었다. 그 것은 아니라 그리다 이 그들은 모 하실 하는 것이 살아보니 하다 된 이 사용을 하게 되었다. 그 것이 나를 하고 말하는 것이다.	
성명 전문 보고 있는데 이 문화 시간 사람이 있는 것들이 되었다. 그는 사람이 되는 것이 되는데 그는 것이다. 생물을 하는데 있는 것이 있었다. 그는 사람이 있는 것이 없는데 살았다. 그는 것이 되는데 그는데 그 것이 되었다.	
숙용학교생물로 가장 공통 하는 고등을 하여 하면 중요한 때 하는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	
경기를 통해 보면 하는 것들이 있는 것을 하는 것을 하는 것이 없는 것이 되었다. 그는 것이 없는 것이 없다. 기계를 하는 것이 없는 것이 없는 것이 되었다면 하는 것이 없는 것이 없다. 것이 없는 것이 없는 것	
경영화 보고 있는 것이 되었다. 그는 사람들은 사람들은 경영화 등을 받았다. 그는	

ZHMUD', Ye.S.; BORONIN, V.S.; POLTORAK, O.M. Dispersity of platinum on silica gel from X-ray study and hydrogen chemisorption data. Zhur. fiz. khim. 39 no.3:809-811 Mr '65. (MIRA 18:7) 1. Moskovskiy gosudarstvennyy universitet imeni Lomonosova.

5/078/62/007/011/002/005 B101/B186 Zhmud', Ye. S., Ivanova, A. B., Kotlyar, A. A., Ostapchenko, Ye. P. X-ray examination of melts in the BaO - GeO2 system AUTHORS: Zhurnal neorganicheskoy khimii, v..7, no. 11, 1962, 2581-2590 TITLE: TEXT: Mixtures of BaCO3 with GeO2 in which both components varied between 0-100 mole% were sintered at 920-1250°C in air or at 920°C in a hydrogen atmosphere. X-ray spectra were recorded under CuKa radiation using the aragonite type of BaCO3 and rhombohedral GeO2. The lattice constants of these compounds agreed with published data (A. I. Kitaygorodskiy, Rentgenostrukturnyy analiz melkokristallicheskikh i amorfnykh tel (X-ray Analysis of Fine-crystalline and Amorphous Substances), Gostekhizdat, 1950)). Results. (1) Specimens sintered at 1050°C in air with a BaCO3:GeO2 ratio = 1:1 formed a single phase. On the basis of data obtained by H. Koelmans, C.M.C. Verhagen (J. Electrochem. Soc., 106, 677 (1959)), the single phase was identified as BaGeO3; it was present in a ratio of up to 1:3. Using BaCO3:GeO2 = 1:2, BaGe2O5 was formed, and using ratios of 2:8 and 1:3, the specimen contained unchanged GeO2 as well as BaGe2O5. Using

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064830009-9"

X-ray examination of melts in the ...

Ü

S/078/62/007/011/002/005 B101/B186

the ratios 6:4, 2:1, 7:3, 3:1., 4:1, and 5:1, Ba2GeO4 was formed which, at 2:1, is present as a single phase; this was identified from the similarity of its structure to that of Ba2SiO4 (A. Austin, J. Amer. Ceram. Soc., 30, 218 (1947)). Using even higher proportions of BaCO, gave rise to lines which were attributed to various barium hydroxides. (2) At 1250°C in air it was found that specimens containing 0-30% GeO, and 100-70% BaO produced BaO + Ba2GeO4; those with a content of 30-50% GeO2 produced BaGeO3 + Ba2GeO4; those with 50-100% GeO2 gave rise to BaGeO3 + GeO2; but BaGe2O5 is not formed, for at this temperature it readily decomposes into BaGeO3 + GeO2. (3) At 920°C in a hydrogen atmosphere, using a BaO:GeO2 ratio of 9:1, the phase composition was BaCO3 + X + traces of BaGeO4, where X denotes an unidentified phase probably consisting of various barium hydroxides. ratios from 5:1 to 7:3 the composition is PagGeO4 + X; at 2:1 the BagGeO4 occurs as a single phase; using 6:4 to 1:3 there are traces of Ge along Card 2/3

X-ray examination of melts in the...

S/078/62/007/011/002/005
B101/B186

with the Ba₂GeO₄; using 2:8 there is Ba₂GeO₄ + Ge, and for 1:9 there is Ge + Ba₂GeO₄. This paper was presented at the VII Nauchno-tekhnicheskoye soveshchaniye po primeneniyu rentgenovskikh luchey k issledovaniyu materialov (7th Scientific and Technical Conference on the Application of X-rays to Examination of Materials). Leningrad, 1961. There are 5 figures

SUBMITTED: February 23, 1962

Card 3/3

89999

5.2200 1043 1273 1136

B/192/61/002/001/002/006 B107/B218

AUTHORS:

Zhmud', Ye. S. and Ostapchenko, Ye. P.

TITLE:

Radiographic study of the systems $BaO - WO_3$, $BaO - MoO_3$, and

Ba0 - Ta205

PERIODICAL:

Zhurnal strukturnoy khimii, v. 2, no. 1, 1961, 33-45

TEXT: The authors radiographically investigated the different phases of the systems BaO - WO₃, BaO - MoO₃, and BaO - Ta₂O₅. The compounds of these systems are of interest for developing thermionic emitters. The samples were prepared by annealing mixtures of BaCO₃ and Me oxide (Me = W, Mo, Ta) in the air, or in hydrogen. The samples were heated at 100°C/hr, and after two hr cooled in the furnace. For this investigation, PKA (RKD) cameras (diameter 57.3 mm) were attached to the apparatus YPC-55 (URS-55) and YPC-70 (URS-70) (copper *mission). Besides, a device of the type YPC-50M (URS-50I) for recording the ionization of the scattered emission (scanning rate 2°/min) was used. The study of the system BaO - WO₃ at 1,200°C led to

Card 1/10

89999 8/192/61/002/001/002/006 B107/B218

Radiographic study ...

Card 2/10

the following results: BaO.WO3, tetragonal, a being 5.56, and c being 12.76 A; 3BaO.WO, pseudocubic, face-centered, a being 8.61; 2BaO.WO, structure unknown. The d values for these compounds are given in Table 3. When storing in the open air at room temperature, tungstates remain unchanged for several months. An electron-microscope study with the microscope 3M-3 (EM-3) showed that, contrary to the other tungstates, 3BaO-WO, is needle-shaped. Mixtures with a molar ratio BaCO3: WO3 < 2:3 melted on heating. After careful studies, the authors came to the conclusion that a compound BaO.2WO, forms, which melts at 940-950°C. BaO.WO, was found to form already after 2-hr heating at 850°C. Table 4 gives data on the phases of the system BaO - MoO3. The X-ray pictures are very similar to those of tungstates of analog composition. The authors also synthesized 2BaO·MoO3 which is, however, unstable and decomposes within a few days. In the system BaO - Ta2O5, the authors synthesized five barium tantalates, by working with hydrogen atmosphere, and at different temperatures:

5/192/61/002/001/002/006 Radiographic study ... B107/B218 4 BaO·Ta2O5, 7BaO·3Ta2O5, BaO·Ta2O5, and 3BaO·Ta2O5. It is possible that the compounds 7Ba0.Ta205 and 3Ba0.Ta205 are actually 2.5Ba0.Ta205 and Ba0.2.5Ta205 respectively. The experimental results are given in Table 5. Table 6 shows the d values for the following compounds: 7Ba0.3Ta205, 4Ba0.Ta205, and 5BaO.Ta205. Practically, the same results were obtained when heating the system BaO - Ta2O5 in air to 1,100, 1,200, and 1,300°C. Nevertheless, the authors state that the results concerning the above system are not yet and need a further proof. There are 7 figures, 6 tables, and 7 references: 4 Soviet-bloc and 3 non-Soviet-bloc. The three references to English language publications read as follows: E. G. Steward, H. P. Rooksby. Nature, 157, 548 (1946); R. C. Hughes, P. P. Coppola, T. H. Evans. J. Appl. Physics, 23, no. 6, 635 (1952); E. G. Steward, H. P. Rooksby. Acta crystallogr., 4, 503 (1951). SUBMITTED: February 28, 1959 Card 3/10

20

25

CE

									999					
Radiograph	ic study	• • •						8/1 B10	92/6 7/B2	1/002 18	/001	/002/0	006	
Table 3: tungstates Legend: 1	• = 1				spa	cing	s of			100				
		BaO.W	Ο,			2BaC	·WO,				BAO·W	0,		
	O _K C Belieu		d (Å)	M	1	d (A)	NO MINIMA	. I , ,	d (A)	MARRE O	1	4 (4)	.	
	1 2 3 4 5 6 7 8 9 10 111 112 113 114 115 116	100 33 44 68 18 35 47 37 16 13 27 14 8	3,34 3,17 2,78 2,09 1,97 1,85 1,69 1,57 1,37 1,35 1,25 1,25 1,23 1,20 1,10	12 34 56 7 8 9 10 11 12 13 14 15 16	44 17 100 87 62 46 44 31 22 17 25 22 49 10	3,50 3,32 3,16 3,07 2,97 2,84 2,26 2,21 2,21 2,10 2,07 1,95	17 18 19 20 21 22 23 24 25 26 27 28 29 30	9 26 35 14 33 22 24 21 15 11 4 15 32 8 14	1.89 1.84 1.76 1.74 1.76 1.66 1.63 1.55 1.49 1.45 1.43 1.33 1.33	1 2 3 4 5 8 7 8 9 10 11 12 13	100 5 29 38 7 13 7 12 2 3 4 3 7 3	3,05 2,58 2,15 1,65 1,65 1,52 1,46 1,36, 1,27, 1,23, 1,20, 1,15, 1,15,		
Card 4/10														

	85999
Radiographic study	S/192/61/002/001/002/006 B107/B218
Table 4: Experimental results of Legend: 1) BaCO3: MOO3 in mole%;	the system BaO - MoO3, annealing in air. 2) phase composition of the samples after
2-hr heating in air to °C; ter in the furnace; **temperature rise	mperature rise within about 4 hr, cooling e within about 5 hr, cooling in the furnece;
ture rise at 100°C/hr, cooling in caes - traces.	6 hr, cooling in the furnace; "the tempera- the furnace; 3) the sample volatized;
Table 5: Experimental results of	the system BaO - Ta2O5, annealing in
hydrogen.	the samples after 2-hr heating in hydrogen
Card 5/10	생명한 경험 경험 전 시간 경험 등 등 기업 경험 기업
The Effect William Confidence of the Confidence	

"APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064830009-9

											S/ 1	999 92	/61	/00	2/001/00 octas oбpass	2/006
Radiogra	phic stu	ıdy	• • •								B1()7/:	B21	8		
	© Ossonat o	BaCOz+BaO·MoOz+cnegu MoOz	· · · · · · · · · · · · · · · · · · ·		BaCO ₂ +BaO·MoO ₂ +MoO ₃	· · · · · · · · · · · · · · · · · · ·	を できる	BaO-MoOs + MoOs + Bacos	BaO·MoOs+MoOs+BaCOs+ +(?) cregu BaO·2MoOs	B&O·MoO. + MoO. + Baco. +	+ (?) BaO.2MoO,	MoOs+BaO.MoOs+(?)BaO.ZNoOs+	The state of the s	+ (?) BaO.2MoO.	BaCOs-I	-BaO·MoO,
	្នំន	9:1	5:1	4:1	3:1	2:3	7:2	3:2	=======================================	2:3	1:2			-	naO.Mo	Os+BaCsO
	BaCO,: Moo. (mountpiese %)	90:10	33,34: 16,66	80:20	75: 25	70:30	86,67:33,33	07:09	SS: SS	40:60	66,67	2 8	3	8	BaO	2MoOs
Card .6/1	10	8	83,34	8	K	8	68,67	8	ä	9	33,33:66,67	8 8	33	ë	BaO-MoOs-	-BaO-2McOs
Jaiu O/1			• • • •									,			образец 3	летучился (3)

c .		entre de la companya de la companya La companya de la companya del la companya de	89999
		на воздухе в течение 2 часов при теми	ieparypax; S/192/61/002/001/002/006
	Radiographic study	1000 °C***	B107/B218 1200 °C****
0			ВаСО ₃ +3ВаО·МоО ₃ + + (?) следы ВаО·МоО ₃ + (?)
		BaCOs + 2BaO·MoOs + + cnegus 3BaO·MoOs	3BaO-MoO ₂ +(?) BaO-MoO ₂ + +(?)следы2BaO-MoO ₂ +BaCO ₂ +(?)
			3BaO·MoO _s + (?) BaO·MoO _s + +BaCO _s +(?)следы 2BaO·MoO _s +(?)
5 7	Table 5	ВаСО _в + 2ВаО·МоО _в + + следы 3ВаО·МоО _в + ВаО·МоО _в	2BaO·MoO ₃ +(?) BaCO ₃ + -+(?) BaO·MoO ₂
	CONT.	ВаО. MoO ₃ + 2BaO· MoO ₃ + + (?) следи ВаСО ₃	BaO·MoO ₃ +2BaO·MoO ₃ +(?)BaCO ₃
)		2BaO·MoO ₃ +BaO·MoO ₃ +(?)BaCO ₃	ВаО·МоО ₃ +2ВаО·МоО ₃ + + (?) споды ВаСО ₃
		BaO·MoOs+2BaO·MoOs	BaO·MoO _s + 2BaO·MoO _s
		BaO·MoO _s	ВаО•МоО₃
5		ВаО МоОв-ј-следы ВаО 2МоОв	ВаО·МоО₃+ (?) следы ВаО·2МоО₃
		BaO·MoO ₈ + BaO·2MoO ₈ + (?)	
	Card 7/10	О образец улетучился	 Образец улетучился
IO Âctivit			

		e same de la des			List in				8999 9 92/6		2/00	1/00	2/006	5		ca suit
	Radiographic study	Oznomili cocras cópasnos, mpc.	5BaO.Ta,0,+(?)	EBaO-Ta,O,	- SBaO-TeaOs + cnegus 4BaO-TeaOs	5BaO.TaaO.+4BaO.TaaOs	4BaO.Ta ₂ O ₆ +7BaO.3Ta ₃ O ₆ + + cnexts 5BaO.Ta ₃ O ₆	oğ					B-Ta ₂ O ₂ +3BaO-7Ta ₂ O ₃ + +BaO-Ta ₂ O ₃	B-Ta ₂ O ₂ +3BaO-7Ta ₃ O ₃	B-Ta ₂ O ₂	
70 10			5BaO.Ta,6,+(?)	5BaO.TaaO.		5BaO.Ta;Os + + cnexus 7BaO.3Ta;Os		3BaO.Ta ₁ O ₂ +7BaO.3Ta ₁ O ₃ + + can BaO.Ta ₂ O ₄ + 7BaO.3Ta ₂ O ₄ +5BaO.Ta ₁ O ₃ + + can BaO.Ta ₁ O ₄ + + can BaO.Ta ₁ O ₄ +	7BaO.3Ta,Os+cnemu BaO. -TasOs+cnemu B.TasOs	7BaO-3TerOs+BaO-TerOs+ +P-TerOs	7BaO-3Ta-0,+8-Ta-0,+ +BaO-Ta-0,		+7BaO.3Ta.0	B-Ta2Os+BaO-Ta2Os	втьо.	
	Card, 8/10	84	9:1	-		Ţ		r . d.	3:2		, z	3:7		0.		

28aO·Ta ₂ O ₂ +(1) 28aO·Ta ₂ O ₃	Ta ₂ O ₄
7BaO·3Ta ₂ O ₄ +4BaO· 7BaO·3Ta ₂ O ₄ +3BaO 7BaO·3Ta ₂ O ₄ +3BaO	
7BaO·3Ta ₂ O ₄ +4BaO· 7BaO·3Ta ₂ O ₄ +3BaO 7BaO·3Ta ₂ O ₄ +3BaO	
7BaO·3Ta ₂ O ₄ +4BaO· 7BaO·3Ta ₂ O ₄ +3BaO 7BaO·3Ta ₂ O ₄ +3BaO	3Ta ₂ O ₅
	·Ta ₂ O ₄
98e0.77e0. 47)-7Ta ₃ O
286 С 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ta ₂ O ₆ -
	Ta ₂ O ₃ -
1	,Λ), [a,O,+
Card 9/10 a.TagOs+3BsO-7	
Total Control of the	Ta ₂ O ₆

		مة وسينغياس. ما				e je je serena Literatur	د دورد		999 12/61,	/002	/001/	002	/ 006	- : Nume
Radiographic st	idy . , ,							B107	B21	3				
Table 6: Relat	Lve inte	ensit	ies	(v18)	al e	stim	ati	on)	and	spac	ings	of 1	the	
roentgenograms Legend: 1) num														
o very.	7BaO.	Ta,O,	4BaO-	Ta ₁ O ₄	5BaO	Ts,O.	MARKET	7BaO	STa ₂ O ₄	4Ba0	•T2,0,	5Bar	O.Ta,O.	>-
	7	d (A)	I	d (A)	1	d (A)	2	1	d (A)	1	d (A)	7	d (A)	
	1 0. c.	3,07	c.	3.18	0. 0.	3.01	9	C.	1,35,	c.	1,52	cp.	1,34	
	2 c. 3 c.	2,89	c. c.	3,03	с. 0. сл.	3,01 2,12 2,01 1,92	9 10 11	c. c.	1,35, 1,30, 1,19,	c.	1,52 1,36, {1,32,1 1,30,	cn.	1,22,	
	4 c. 5 c.	1,82	0. c.	1,78	C. O. C.	1,92 1,74 1,57	12 13	cp.	1,132	cp.	1,27,			
	8 cp.	1,67	ср. о. сл. сл.	3,18 3,03 2,20 1,78 1,75 1,68 1,62 1,59	о. сл. ср.	1,51	14	c. c.	1,10,	, ,	1,20		1	
	. 01 6.	1 1,948	1 . min .	1.100	· · · · ·	1 .,004						ر از در از	i	
				till till. Mysteri										
			iller (d. 1862) Signatur	بحسيمة وتروان		ووندها والمحار	و بهیرد	w44 1644 PV	ut - ut ii - u					
		jih vier Module	1. S.	:	• 4 4 4 5						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ائدو (دور دا ا		<i>5</i>
tage of the second seco				1			1.			7 7750	14.5	10.11	it toget	wit i k

ZHMUDENKO, A.S., inzh.; FARAFONOV, I.I., kand.tekhn.nauk; KIYANITSA, G.I., inzh.; FILATOV, L.V., inzh.

Efficient use of bits in the boring of holes with an air drill in granite quarries. Izv.vys.ucheb.zav.; gor.zhur. 7 no.12:38-42 '64. (MIRA 18:2)

1. Kiyevskiy ordena Lenina politekhnicheskiy institut (for Zhmudenko). 2. Gosudarstvennyy nauchno-issledovatel'skiy i proyektnyy institut ugol'noy, rudnoy, neftyanoy i gazovoy promyshlennosti UkrSSR (for Farafonov, Kiyanitsa, Filatov). Rekomendovana kafedroy tekhnologii i mekhanizatsii gornykh rabot Kiyevskogo politekhnicheskogo instituta.

ASTAPENKO, V.G., assistent; ZHMUDIKOV, F.M., klinicheskiy ordinator

Serious candidomycosis sepsis with atypical clinical course. Zdrav.

Belor. 5 no.10:70-71 0 '59.

1. Is fakul'tetskoy khirurgicheskoy kliniki (zaveduyushchiy - prof.
P.N. Maslov) Minskogo meditsinskogo instituta.

(MONILLASIS)

CIA-RDP86-00513R002064830009-9" **APPROVED FOR RELEASE: 07/19/2001**

	ZHMUDIKOV, F.M.						
	Stomach ph	legmon. Zdrav.	Bel. 9 no.1:	84-85 J'6	3. (MIKA 16: 6)	
		(STOMACHD	iseases)				
sa dina. Manazarian							
		의 이 사람들은 1일 시간되 사람들의 사람들의					

AKSENT'YEV, S.B.; YERMULOVICH, Ya.V.; ZHMUDSKAYA, L.F.; REZNICHENKO, L.G. Studying conditioned and unconditioned vascular reflexes as a method for analyzing corticovisceral relations in various diseases. [with summary in English]. Zhur.vys.nerv.deist. 7 no.1:49-57 Ja-2: 57. (MIRA 10:10) 1. Odesskiy meditsinskiy institut im. N.I.Pirogova i Odesskiy nauchno-issledovatel'skiy psikhonevrologicheskiy institut. (BLOOD VESSELS, physiology conditioned & unconditioned vasc. reflexes in analysis of cortico-visceral relations in various dis. (Rus)) (REFLEX, CONDITIONED, wasc. reflexes in analysis of cortico-visceral relationship in various dis. (Rus)) (REFLEX. unconditioned vasc. reflexes in analysis of corticovisceral relationship in various dis. (Rus)) (CEREBRAL CORTEX, physiology. cortico-visceral relationships, determ. i various diseases by conditioned & unconditioned vasc. reflexes (Rus))

USSR / Human and Animal Physiology. Blood Circulation. The Vessels.

Abs Jour: Ref Zhur-Biol., No 22, 1958, 101887.

Author : Aksent'yev, S. B.; Yermulovich, Ya. V.; Zhmudskaya,

L. F.; Reznichenko, L. G.

Inst : Not-given.

Title : On Appearances of Dominant, Parabiosis and Hysteri-

osis in the Vascular Reflectory Activity of Man.

Orig Pub: V sb.: Ucheniye N. Ye. Vvedenskogo v klinich. prak-

tike. Odessa, 1957, 124-129.

Abstract: In patients with various diseases, disturbances in the course of vascular reflexes to cold and hot stimuli were observed which is regarded by the au-

thor as various stages of parabiosis, hysteriosis

and dominant.

Card 1/1

36

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064830009-9"

ZHMJDSKAYA, R.M., kand.med.nauk (Moskva)

In memory of Irèns Joliot-Curie. Fel'd. i akush. 26 no.11:38-41
N'61. (MIRA 15:2)

(JOLIOT_CURIE, INENE, 1897-1956)

ZHEUDSKAYA, L.F., Cend Med Sci — (diss) "Yascular conditions and unconditioned reflexes in patients with rhoumatic heart defects and circulary insufficiency." Vladimir, 1959. 13 pp (Odessa State Med Inst im N.I. Pirogov).

200 copies (KL,40-59, 106)

56

ZHMUDSKAYA, R.M., kand.med.nauk (Moskva)

Tasks of a village midwife in protecting the health of children during the first year of life. Fel'd. i akush. 24 no.12:3-8 D '59.

(MINA 13:2)

(INFANTS--CARE AND HYGIENE) (NURSES AND NURSING)

Role of subpr consciousness Je '60.	ofessional medi of the people. (PUBLIC HEA	Fel'd. i a	l in raisin cush. 25 no	g the health . 7:36-40 (MIRA 13:8)	
				rojina ovoja i Poverse s Primerova ovoja se se	
기 교통 환경 등 시간 시간 시간 시간 시간 1일 기계 등 경기 기가 있다.	는 현기에 발생하게 하면 있다. 2일 이 발생하는 10일 기계를 보고 있다.				
	등 보는 말로 바라 바라이 되는 중요한 보다 하는 말중에 중요				
	현실 등의 이글 중에 있다. 일본 등의 기교 중에 있습니다.				

