MATH2301 Assignment 1

(1)

Let $S=\mathbb{R}-0$

Define $R\subset S imes S$ as (x,y)|xy=3 and R is the I/O relation of f .

Find f(1) and f(2). Justify your answers. \setminus

R is the I/O relation of $f(x)=rac{3}{x}$, this is true because

$$orall x \in S, \exists y \in S | y = rac{3}{x}$$

$$f(1) = 3, f(3) = 1$$

(2)

Let R and T be relations on S. Decide if the following are true or false. Justify your answers.

(a) If R and T are symmetric then $R \cup T$ is symmetric

since R is symmetric, $orall a,b\in S, (a,b)\in R\implies (b,a)\in R$.

This by extension means $(a,b) \in R \implies (b,a) \in R \cup T$.

following simlarly for $T,(a,b)\in T \implies (b,a)\in R\cup T$.

adding these together then $\forall a,b \in S, (a,b) \in R \cup T \implies (b,a) \in T \cup R$.

 $\therefore R \cup T$ is symmetric so the statement is true.

(b) If R and T are transitive then $R \cup T$ is transitive

since R is transitive, $\forall a,b,c \in S, (a,b) \in R, (b,c) \in R \implies (a,c) \in R$.

This by extension means $(a,b) \in R, (b,c) \in R \implies (a,c) \in R \cup T$.

following similarly for $T,(a,b)\in T,(b,c)\in T\implies (a,c)\in R\cup T$.

adding these together then $\forall a,b,c \in S, (a,b) \in R \cup T, (b,c) \in R \cup T \implies (a,c) \in R \cup T \implies (a,c) \in R \cup T$ is transitive so the statement is true.

(3)

Consider the following graphs, for each one write down which of the following properties are satisfied by the graph: reflexivity, symmetry, transivity, being the I/O of a function.

(a)

This graph is reflexive.

(b)

This

graph is symmetric and transitive.

(c)

This graph is the I/O of a function.

(4)

Let $S=\mathbb{R} imes\mathbb{R}$. Define a relation R on S as follows:

$$R = (a,b), (c,d)|a+b = c+d$$
.

(a) prove R is an equivalence relation

 $\forall (a,b) \in S, a+b=a+b \ \ {\sf so} \ R$ is reflexive.

 $\forall (a,b) \in S, a+b=c+d \implies c+d=a+b$ so R is symmetric.

$$\forall ((a,b),(c,d),(e,f)) \in S, a+b=c+d, c+d=e+f \implies a+b=e+f \quad \text{ so } R \text{ is transitive}.$$

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

(b) Describe the equivalence classes in words and draw sketches in \mathbb{R}^2 of the equivalence class of (1,2) and of (0,0).

$$[x]_R=(a,b)\in \mathbb{R}^2|a+b=x$$
 for $(1,2)$

for (0,0)

