FINAL DELIVERABLES

PROJECT REPORT

Date	19 November 2022
Team ID	PNT2022TMID32413
Project Name	IoT Based Smart Crop Protection System for Agriculture.

Team Leader

Hariprasath V V(810019106029)

Team Members

Boomika S (810019106019)

Anuja R(810019106008)

Eniyavan P(810019106023)

Bachelor of Engineering In Electronics and Communication Engineering

University college of engineering BIT campus Tiruchirappalli-620 024

Project Report Index

1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

2. LITERATURE SURVEY

- 1. Existing problem
- 2. References
- 3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 1. Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 1. Functional requirement
- 2. Non-Functional requirements

5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- 3. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1. Feature 1
- 2. Feature 2
- 3. Database Schema (if Applicable)
- 8. TESTING
- 9. ADVANTAGES & DISADVANTAGES
- 10. CONCLUSION
- 11. FUTURE SCOPE
- 12. APPENDIX
 - 1. Source Code
 - 2. GitHub Link

IOT BASED SMART CROP PROTECTION SYSTEM FOR AGRICULTURE

I. Introduction:

1. Project Objectives:

- The device will detect the animals and birds using the Clarifai service.
- If any animal or bird is detected the image will be captured and stored in the IBM Cloud object storage.
- It also generates an alarm and avoid animals from destroying the crop.
- The image URL will be stored in the IBM Cloudant DB service.
- The device will also monitor the soil moisture levels, temperature, and humidity values and send them to the IBM IoT Platform.
- The image will be retrieved from Object storage and displayed in the web application.
- A web application is developed to visualize the soil moisture, temperature, and humidity values.
- Users can also control the motors through web applications.

2. Purpose:

An intelligent crop protection system helps the farmers in protecting the crop from the animals and birds which destroy the crop. This system also helps farmers to monitor the soil moisture levels in the field and also the temperature and humidity values near the field. The motors and sprinklers in the field can be controlled using the mobile application.

II. Literature Survey:

1. Existing problem:

Crops in the farms are many times devastated by the wild as well as domestic animals and low productivity of crops is one of the reasons for this. It is not possible to stay 24 hours in the farm to guard the crops.

2. References:

 Title: IOT IN AGRICULTURE CROP PROTECTION AND POWER GENERATION (2020)

Author: Anjana M, Charan Kumar A, Monisha R, Sahana R H

 Title: IOT BASED CROP PROTECTION SYSTEM AGAINST AND WILD ANIMAL ATTACKS (2020)

Author: Navaneetha P, RamiyaDevi R, Vennila S, Manikandan P, Dr. Saravanan S

Title: SMART CROP PROTECTION SYSTEM (2021)
 Author: Krunal Mahajan, Riya Parate, Ekta Zade, Shubham Khante, Shishir
 Bagal

3. Problem statement:

because

The Farmers who needs to water their plants on time and to prevent their plants from animals (User characteristics) (User need)

the plants became dry when watering is improper and animals and birds often affects the field.

(Insight)

III. IDEATION & PROPOSED SOLUTION

1. Empathy Map:

2. Ideation & Brainstorming:

3. Proposed Solution:

SI	Parameter	Description
No 1.	Problem Statement	The farmer who needs to water their plants on time and to prevent their plants from animal
		then proper watering for field
2.	Solution description	The device will detect the animals and birds.it generate an alarm and avoid animals from destroying the crop
3.	Novelty	The unique of project is to monitor the soil moisture levels, temperature, humidity.
4.	Customer Satisfaction	They can easily protect the field and yielding more profits.
5.	Business Model	Farmers and cooperatives(minimize costs). Farming as a service(Faas) Commerce and government Pay per use. Performing based model. Additional sharing model
6.	Scalability of the Solution	In a field of IOT we proposed to deal with brilliant sensors and electrical equipments to achieve "SMART CROP PROTECTION SYSTEM"

4. Problem Solution fit:

1. CUSTOMER SEGMENT(S) Farmers and cultivators		6. CUSTOMER LIMITATIONS EC. BUDGET, DEVICES High cost, more power and sometimes harmful to humans	CL	5. AVAILABLE SOLUTIONS PROS & CON Electric fences and scarecrows were the methods already used by faarmers for protection	ne
2. PROBLEMS / PAINS + ITS FREQUENCY The existing electric fences method for crop protection is not considered as the best solution	Animals attack fields before harvest	9. PROBLEM ROOT / CAUSE The animals in search of food, enter the field and damage all the crops before harvesting. It affects the yield terribly.	RC	7. BEHAVIOR * ITS INTENSITY Directly related: Farmers made electric fences and scarecrow to fear the animals. Indirectly related: Involved human labours.	Whenever the anima attack the field, related behavior happens
3. TRIGGERS TO ACT Seeing other farmers installing S protection system. Reading about the system in adv 4. EMOTIONS BEFORE / AFTER Farmers get frustrated when their crop destroyed / Being boosted and happy solution has installed.	ertisements EM	10. YOUR SOLUTION The device will detect the animals and birds. It generates an alarm and avoid animals from destroying the crop. The device will also monitor the soil moisture levels, temperature, humidity values and also control the motors.	SL	8. CHANNELS of BEHAVIOR ONLINE Extract channels from behavior block OFFLINE Extract channels from behavior block the setup available offline for custome development use.	

IV. REQUIREMENT ANALYSIS:

1. Functional requirement:

FR No.	Functional requirement (Epic)	Description
FR-1	User registration	Download the app Registration through Gmail Create an account Follow the instructions
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Interface Clarifai service	Interface Clarifai service and so if animals enter the field it gives alarm.
FR-4	Interface sensors	Interface sensors like temperature and humidity sensor to measure the values and to irrigate the field
FR-5	Accessing datasets	Datasets are retrieved from Cloudant DB
FR-6	Mobile application	Motos and sprinklers in the field can be controlled by mobile application.

2.Non –functional requirements

NFR No	Non Functional Requirement	description
NFR-1	Usability	The smart protection system defines that this project helps farmers to protect the farm
NFR-2	Security	We have designed this project to secure the crops from animals.
NFR-3	Reliability	This project will help farmers in protecting their fields and save them from significant financial losses. This will also help them in achieving better crop yields thus leading to their economic well being.
NFR-4	Performance	IOT devices and sensors are used to indicate the farmer by a message when animals try to enter into the field and also we use an SD card module that helps to store a specified sound to scare the animals
NFR-5	Availability	By developing and deploying resilient hardware and software we can protect the crops from wild animals
NFR-6	Scalability	Since this system uses computer vision techniques integrated with IBM cloudant services helps efficiently to retrieve images in large scale thus improving scalability

V. PROJECT DESIGN:

1. Data Flow Diagrams:

2. Solution Architecture:

3.Technology Architecture:

4.Components & technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with	HTML, CSS, JavaScript /
		application e.g., Mobile	Angular JS / Node Red.
		Application	
2.	Application Logic-1	Logic for a process in the	Java / Python
		application	
3.	Application Logic-2	Logic for a process in the	IBM Watson STT service
		application	
4.	Application Logic-3	Logic for a process in the	IBM Watson Assistant
		application	
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM DB2.
7.	File Storage	File storage requirements	IBM Block Storage or
			Other Storage Service or
			Local Filesystem
8.	External API-1	Purpose of External API used in	IBM Weather API, etc.
		the application	
9.	IoT Model	Purpose of IoT Model is for	IBM IoT Platform
		integrating the sensors with a	
		user interface.	
10	Infrastructure (Server	Application Deployment on	Local, Cloud Foundry,
	/ Cloud)	Local System / Cloud	Kubernetes, etc.
		Local Server Configuration:	
		Cloud Server Configuration :	

3. User Stories:

User Type	Functional requirement (Epic)	ement Story User Story/Task		Acceptance criteria	Priority	Releas e
		USN-1	User can enter into the web application	I can access my account /dashboard	High	Sprint 1
	Registration	USN-2	User can register their credentials like email id and password	I can receive confirmation email & click confirm	High	Sprint 1
Mobile users	Login	USN-3	User can log into the application by entering email & password	I can login to my account	High	Sprint 1
	Dashboard	USN-4	User can view the temperature	I can view the data given by the device	High	Sprint 2
		USN-5	User can view the level of sensor monitoring value	I can view the data given by the device	High	Sprint 2
Web users	Usage	USN-1	User can view the web page and get the information	I can view the data given by the device	High	Sprint 3
		USN-1	User act according to the alert given by the device	I can get the data work according to it.	High	Sprint 3
Customer	Working	USN-2	User turns ON the water motors/Buzzer/Soun d Alarm when occur the disturbance on field.	I can get the data work according to it.		Sprint 4

Customer care Executive	Action	USN- 1	User solve the problem when some faces any usage issues	I can solve the issues when someone fails to understanding the procedure	High	Sprint 4
Administratio n	Administration	USN- 1	User store every information	I can store the gained information	High	Sprint 4

VI. PROJECT PLANNING & SCHEDULING:

1. Sprint Planning & Estimation:

Sprint	Functional	User	User Story / Task	Story	Prior	Team
	Requirement (Epic)	Story Number		Points	ity	Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	BOOMIKA .S
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	ANUJA.R
Sprint-1		USN-3	As a user, I can register for the application through Facebook	2	Low	ENIYAVAN .P
Sprint-1		USN-4	As a user, I can register for the application through Gmail	2	Medi um	HARIPRASATH V.V
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	BOOMIKA.
Sprint-1	Dashboard	USN-6	As a user, I can log into the application by entering email & password and access all the resources and services available	2	High	HARIPRASAT H V.V
Sprint-1	Dashboard	USN-6	As a user, I can log into the application by entering email & password and access all the resources and services available	2	High	HARIPRASAT H V.V

Sprint	Functional	User	User Story / Task	Story	Priori	Team
	Requirement (Epic)	Story Number		Points	ty	Members
Sprint-2	Login	USN-1	As a weather data controller, I log into my profile and start monitoring the weatherupdates	3	High	ENIYAV AN.P
Sprint-2	Dashboard	USN-2	I receive all the information about weather from web from weather API. Whenever there is change in weather, corresponding updates are made on sign boards.	2	Medi um	ANUJA. R
Sprint-3	Login	USN-1	As a image controller, I keep note of all the images received from various areas and detect traffic in that particular area.	3	High	HARIPRASAT H V.V
Sprint-3	Dashboard	USN-2	With the traffic, updates I change the status of sign board as "take diversion".	2	Medi um	BOOMIKA.S
Sprint-4	Login	USN-1	With the traffic, updates I change the status of sign board as "take diversion With the traffic, updates I change the status of sign board as "take diversion	3	High	ENIYAVAN.P
Sprint-4	Login	USN-1	As an administrator, I ensure that all departments work co-ordinated and ensure the accuracy and efficiency.	2	Medi um	HARIPRASAT H V.V

2. Sprint Delivery Schedule:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	20Oct 2022	24 Oct 2022	20	21 Oct 2022
Sprint-2	20	6 Days	25 Oct 2022	29 Oct 2022	20	27 Oct 2022
Sprint-3	20	6 Days	31 Oct 2022	4 Nov 2022	20	2 Nov 2022
Sprint-4	20	6 Days	5 Nov 2022	11 Nov 2022	20	8 Nov 2022

VII. CODING & SOLUTIONING:

1. Feature 1:

IoT based smart crop protection system was implemented using traditional farming concepts and it has a user interfacing system to monitor the temperature humidity and moisture level of the soil. It enables smart farming through that the farmer can access the environmental parameters. The Random module used to generate the values for moisture, temperature and humidity. These values are further sent to the Watson platform.

2. Feature 2:

Further the smart crop protection system was enhanced by creating the user interface. Node red web user interface and MIT app inventor were used to create the user interface. The data from the python script were stored in Watson and the animal detected information were uploaded in the object storage. The opencv2 module is used to capture the animal picture in the field and alter message will be sent to the farmer through the web user interface and mobile application.

3. Database Schema:

➤ IBM Watson IoT platform:

Random temperature, humidity, and moisture values are generated using the python code and the values are sent to the IBM cloud. IBM cloud sends those values to the node red and shown in the node red dashboard

Cloud object storage :

This is the cloud storage area where we can store the images of the detected animal.

VIII. TESTING

Python code testing:

```
sprinkler-1 is ON
Published Alert1 :
                       Temperature (41.42) is high, sprinkerlers are turned ON to IBM Watson
Published Alert2 :
                       Fertilizer PH level(7.063) is not safe, use other fertilizer to IBM Watson
Published Alert3 :
                       Animal attack on crops detected to IBM Watson to IBM Watson
                       Flame is detected crops are in danger, sprinklers turned ON to IBM Watson
Published Alert5 :
                       Moisture level (97.48) is low, Irrigation started to IBM Watson
Published Alert6: water level(14.02) is high, so motor is ON to take water out to IBM Watson
Published Temp = 37.64 C to IBM Watson
Published PH value = 7.008 to IBM Watson
Published Animal attack Not Detected to IBM Watson
Published Flame Not Detected to IBM Watson
Published Moisture level = 59.12 to IBM Watson
Published Water level = 22.61 cm to IBM Watson
sprinkler-1 is ON
Published Alert1 :
                       Temperature (37.64) is high, sprinkerlers are turned ON to IBM Watson
Published Alert2 : Fertilizer PH level(7.008) is not safe, use other fertilizer to IBM Watson
Published Alert3: Animal attack on crops detected to IBM Watson to IBM Watson
Published Alert4 : Flame is detected crops are in danger, sprinklers turned ON to IBM Watson
Published Alert5 : Moisture level(59.12) is low, Irrigation started to IBM Watson
Motor-2 is turning ON
Published Alert6 : w
                       water level(22.61) is high, so motor is ON to take water out to IBM Watson
....publish ok... ... ...
Published Temp = 19.07 C to IBM Watson
```

Node-red

Connection and output:

Web application testing:

Mobile Application tesing

Mobile application creation:

IX. ADVANTAGES & DISADVANTAGES:

1. ADVANTAGES:

- Farmers can monitor the health of farm animals closely, even if they are physically distant.
- •Smart farming systems reduce waste, improve productivity and enable management of a greater number of resources through remote sensing.
- High reliance.
- Enhanced Security.

2. DISADVANTAGES:

- Farms are located in remote areas and are far from access to the internet.
- •A farmer needs to have access to crop data reliably at any time from any location, so connection issues would cause an advanced monitoring system to be useless.
- High Cost
- Equipment needed to implement IoT in agriculture is expensive.

X. CONCLUSION

As a result of this system, we can detect the changes in the field easily and intimate the farmers about it and also, we can take precautions and do remedies accordingly. Here we use very low power consuming highly efficient components that give us accurate results and also, they perform at low data rate conditions without any lag and help in finding the remedies. This crop protection system helps in detection of all kinds of external dangers and it saves time and money to the farmers before any loss that may occur. With the help of this system the farmers can be in a peaceful environment at ease without any pressure.

XI. FUTURE SCOPE:

Study and analysis of the developed Crop protection systems for its cost effectiveness with the development of Arduino based variable frequency Ultrasonic bird deterrent circuit. outline of the crop damage caused by a particular Wild animal if the behavioural features of the with the reduced cost in the smart phones.

XII. APPENDIX:

1. Source code:

import cv2

import numpy as np

import wiotp.sdk.device

import playsound

import random

import time

import datetime

import ibm_boto3

from ibm_botocore.client import Config, ClientError

#CloudantDB

from cloudant.client import Cloudant

from cloudant.error import CloudantException

from cloudant.result import Result, ResultByKey

 $from\ clarifai_grpc.channel.clarifai_channel\ import\ ClarifaiChannel$

from clarifai_grpc.grpc.api import service_pb2_grpc

stub = service_pb2_grpc.V2Stub(ClarifaiChannel.get_grpc_channel())

from clarifai_grpc.grpc.api import service_pb2, resources_pb2

from clarifai_grpc.grpc.api.status import status_code_pb2

#This is how you authenticate

metadata = (('authorization', 'key 83ddcfb774c54cfd81d7a67ba69a0678'),)

```
COS ENDPOINT = "https://s3.jp-tok.cloud-object-storage.appdomain.cloud"
COS API KEY ID = "kn05el2QeCyawCFMRytUXLFirKVxw8v5HAIRvDKsIHmu"
COS_AUTH_ENDPOINT = "https://iam.cloud.ibm.com/identity/token"
COS RESOURCE CRN="crn:v1:bluemix:public:cloudantnosqldb:eu-
gb:a/98d92dfd0ccf4f32a116d3d0fe24e15c:02d1fcad-1310-4403-93a6-
a0eabc4c768b::"
Clientdb=Cloudant("apikey-v2-
d8mn8ful7bxv3pw2cq0o1p1d8z3icznh8qu8y2xsv5",
"400eef0a90d31fd7fa41c9dd0a2baa4b", url="https://cbf0b64e-c2d3-4404-be21-
36565dc150b9-bluemix.cloudantnosgldb.appdomain.cloud")
clientdb.connect()
#Create resource
cos = ibm boto3.resource("s3",
  ibm_api_key_id=COS API KEY ID,
  ibm service instance id=COS RESOURCE CRN,
  ibm auth endpoint=COS AUTH ENDPOINT,
  config=Config(signature version="oauth"),
  endpoint url=COS ENDPOINT
def multi part upload(bucket name, item name, file path):
  try:
 print("Starting file transfer for {0} to bucket: {1}\n".format(item name,
bucket name))
    #set 5 MB chunks
    part size = 1024 * 1024 * 5
    #set threadhold to 15 MB
```

```
file threshold = 1024 * 1024 * 15
  #set the transfer threshold and chunk size
  transfer config = ibm boto3.s3.transfer.TransferConfig(
      multipart threshold=file threshold,
      multipart chunksize=part size
  )
  #the upload fileobj method will automatically execute a multi-part upload
  #in 5 MB chunks size
  with open(file path, "rb") as file data:
    cos.Object(bucket_name, item_name).upload_fileobj(
     Fileobj=file_data,
     Config=transfer config
     )
  print("Transfer for {0} Complete!\n".format(item_name))
except ClientError as be:
  print("CLIENT ERROR: {0}\n".format(be))
except Exception as e:
  print("Unable to complete multi-part upload: {0}".format(e))
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data)
  command=cmd.data['command']
  #print(command)
```

```
if(command=="lighton"):
       print('lighton')
    elif(command=="lightoff"):
       print('lightoff')
    elif(command=="motoron"):
       print('motoron')
    elif(command=="motoroff"):
       print('motoroff')
myConfig = {
  "identity": {
    "orgId": "tw9ckq",
    "typeId": "node",
    "deviceId": "6020"
  },
  "auth": {
    "token": "27102001"
  }
}
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
database_name = "sample1"
my_database = clientdb.create_database(database_name)
if my database.exists():
```

```
print(f"'{database name}' successfully created.")
cap=cv2.VideoCapture("garden.mp4")
if(cap.isOpened()==True):
  print('File opened')
else:
  print('File not found')
while(cap.isOpened()):
  ret, frame = cap.read()
  gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY)
  imS= cv2.resize(frame, (960,540))
  cv2.imwrite('ex.jpg',imS)
  with open("ex.jpg", "rb") as f:
  file_bytes = f.read()
  detect=False
  t=random.randint(-1,1)
  if(t==0):
      detect=True
      print("Alert! Alert! animal detected")
     #playsound.playsound('alert.mp3')
     picname=datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
      cv2.imwrite(picname+'.jpg',frame)
    multi part upload('jadestorage', picname+'.jpg',
                                                                picname+'.jpg')
json document=
{"link":COS ENDPOINT+'/'+'jadestorage'+'/'+picname+'.jpg'}
```

```
new_document = my_database.create_document(json_document)
if new document.exists():
      print(f"Document successfully created.")
      time.sleep(5)
  moist=random.randint(0,100)
  humidity=random.randint(0,200)
  temperature=random.randint(0,100)
  myData={'Animal':detect,'moisture':moist,'hum':humidity,'temp':temperature}
  print(myData)
  if(humidity!=None):
    client.publishEvent(eventId="status",msgFormat="json",
                                                                 data=myData,
qos=0, onPublish=None)
    print("Publish Ok..")
  client.commandCallback = myCommandCallback
  cv2.imshow('frame',imS)
  if cv2.waitKey(1) \& 0xFF == ord('q'):
    break
client.disconnect()
cap.release()
cv2.destroyAllWindows()
```

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-10308-1659163331