

Visual Recognition and Deep Learning

Nilanjan Ray

Associate Professor

Computing Science

University of Alberta

Outline

- What is visual recognition (aka computer vision)?
- What is deep learning?
- Success stories of deep learning
- Limitations of deep learning
- What lies ahead

What is visual recognition?

Visual recognition...

... is teaching computers to see

Humans see...

Computers see...

```
001010101010001001001010101
1101001101101010010001110100
11010100010101010111010110100010010
11100010101001001101011010101010111010010
1000010101011110101101010110001010101011101
0100010101000111010110100010010111101
               1010110101010111010010000
```

Teaching computers to "see" like humans

"see" not just RGB data

- IR (infrared) etc
- ToF camera (Time of Flight)
 - 'range' camera gives depth
- Medical
 - ultrasonography
 - MRI
- & more

Example: Automated animal recognition

Research with ACAMP (https://www.acamp.ca/)

Example: Vehicle detection and visual

tracking

Research with ISL Engineering (http://islengineering.com/)

Example: Background modeling and moving object detection

https://arxiv.org/abs/1808.01066

Example: Deformable image registration

https://openreview.net/forum?id=HkmkmW2jM

Example: Video segmentation

https://ieeexplore.ieee.org/abstract/document/8296851/

Example: Cell detection from microscopy image

https://arxiv.org/abs/1708.03307

The holy grail of computer vision/visual recognition

The grand goal of computer vision is human-like, automated scene understanding.

This is where the state of the art (deep learning algorithm) today:

"construction worker in orange safety vest is working on road."

"a young boy is holding a baseball bat."

"a horse is standing in the middle of a road."

road." Picture source: http://cs.stanford.edu/people/karpathy/deepimagesent/

What is deep learning?

How does computer vision work?

Let's consider object recognition tasks.

- How do we describe a cat or a dog or a ...?
- It is impossible to write "explicit rules" to recognize visual objects/scenes.
- Much easier to learn from examples!

Machine learning is indispensable for computer vision!

Computer vision with deep learning

Deep learning

=

Convolutional neural network with many layers

Convolution revolution!

Source: http://cs231n.github.io/convolutional-networks/

Hierarchical representation by deep learning

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Hubel & Weisel, '62

How do you teach a deep learner?

Step 1: Create training image set (example set):

Repeat steps 2, 3 and 4

- Step 2: Show these examples to the deep learner
- Step 3: Measure mistakes made by the deep learner
- Step 4: Tune (millions of) parameters of the deep learner to minimize its mistakes

Traditional vs. deep learning...

Success stories of deep learning

classification error

Image

Image classification results

ImageNet- Large scale visual recognition challenge: 1000 categories, 1,000,000 images

Computer vision has surpassed human level performance on this benchmark!

Picture courtesy: http://cs231n.stanford.edu/index.html

Large scale video classification

Figure 4: Predictions on Sports-1M test data. Blue (first row) indicates ground truth label and the bars below show model predictions sorted in decreasing confidence. Green and red distinguish correct and incorrect predictions, respectively.

http://cs.stanford.edu/people/karpathy/deepvideo/

Style Transfer

Figure 1. Example of using the Neural Style Transfer algorithm of Gatys *et al.* to transfer the style of Chinese painting (b) onto The Great Wall photograph (a). The painting that served as style is named "Dwelling in the Fuchun Mountains" by Gongwang Huang.

Photorealistic image generation

From NVIDIA research: https://arxiv.org/pdf/1710.10196v1.pdf

Deep reinforcement learning

Picture source: https://deepmind.com/blog/deep-reinforcement-learning/

Impressive robotics with deep learning

https://www.youtube.com/watch?v=B7ZT5oSnRys

Diabetic retinopathy using deep learning

https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html

Deep learning and natural language processing

- Impressive developments are happening in the NLP space
- Word embedding
- Language translation
- Language modeling
- **...**

http://ruder.io/nlp-imagenet/

What created this revolution?

- Lots and lots of labeled data (such as ImageNet)
- Compute power (parallel processing with GPUs)
- Good old back-prop algorithm + only a few new tweaks! And
- Open source software platforms: TensorFlow, PyTorch,...

Limitations of deep learning

Challenge 1: Labeling of training data

Manual labeling of lots of images and videos

IM GENET

22K categories and 14M images

- Animals
 - Bird
 - Fish
 - Mammal
 - Invertebrate
 Materials

- Plants
 - Tree
 - Flower
- Food

- Structures
- Artifact
 - Tools
 - Appliances
 - Structures

- Person
- Scenes
 - Indoor
 - Geological **Formations**

www.image-net.org

Sport Activities

Challenge 2: Task specific / narrow scope

Challenge 3: Can be easily fooled!

Google AI was fooled to believe rifles are helicopters

https://www.wired.com/story/researcher-fooled-a-google-ai-into-thinking-a-rifle-was-a-helicopter/

Challenge 4: Lack of interpretability

- Interpretability = explaining decision making to humans
- Deep learning systems have poor interpretability
- European Union drafted the General Data Protection Regulation, which will require some interpretability of Al algorithms (https://www.eugdpr.org/, https://arxiv.org/abs/1606.08813)

Challenge 5: training set bias

- Leading commercial gender recognition software (Google, Microsoft, etc.)
 from face images are biased
- More accurately detect white male faces, than other races, females!

http://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212

Challenge 6: theoretical understanding is work in progress

- Why deep neural networks are able to optimize learning cost functions with stochastic gradient descent?
- How does depth help?
- Why deep neural networks do not overfit (generalize)?

Deep learning is far from human level intelligence!

- Not even close to a two year human being a toddler can learn basic laws of physics on his/her own!
- Cannot do "common sense" decision making
- Does not understand causality
- Cannot perform counterfactual inferences well
- Cannot answer open-ended inference problems
- How to go beyond data?

These are open questions in AI research

What to expect with deep learning

Predicting future of technology is foolish!

- Task specific applications of deep learning
- Some scientific discoveries will be assisted by deep learning, but human intervention would be required
- Whenever we can collect data (labeled data), deep learning will automate the area sooner or later
- Extrapolation, open-ended inference, and creative areas will be continued to be dominated by humans for a long time
- We are nowhere near singularity!