

EE2211 Introduction to Machine Learning

T14 & T22, Chua Dingjuan <u>elechuad@nus.edu.sg</u>
Materials @ tiny.cc/ee2211tut

Recall... Polynomial Regression

1 ... d

У

	ave. hrs of sleep / night	final mark in module		
X ₁	5	23		
\mathbf{x}_2	4	45		
x ₃ x ₄ x ₅	3	89		
X_4	8	46		
X ₅	9	90		
	8.5	80		
X _m	13	30		

In polynomial regression, the system becomes "underdetermined" easily.

Potential for over/under fitting!

$$y = Pw$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} c \\ b \\ a \end{bmatrix} \longrightarrow \begin{bmatrix} 23 \\ 45 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 25 \\ 1 & 4 & 16 \\ 1 & \dots & \dots \end{bmatrix} \begin{bmatrix} c \\ b \\ a \end{bmatrix}$$

Ridge Regression / Regularization

Primal Over 125	Dual Form
$\widehat{w} = \left(X^T X + \lambda I\right)^{-1} X^T y$	$\widehat{w} = X^T \big(X X^T + \lambda I \big)^{-1} y$

In ridge regression, an additional term is added during minimization: $\sum_{i=1}^{m} c_i c_i = \sum_{i=1}^{m} c_i c_i$

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 + \lambda \mathbf{w}^T \mathbf{w}$$

- In applications where number of samples m, much smaller than d (polynomial regression is one example), ridge regression can be useful
- Effect of λ reduces w → same Δx → smaller Δy
 → predictions are less sensitive to training data → training error ↑

testing ever J

 Overfitting occurs when model predicts the training data well, but predicts new data (e.g., from test set) poorly -- > (Feature Selection)

Bias-Variance Decomposition Theorem

Test error = Bias Squared + Variance + Irreducible Noise

• Variance:

Variability of prediction models across different training sets / trained models

How well an average prediction model will perform

Discussion of Solutions Q1,2

This question explores the use of Pearson's correlation as a feature selection metric. What are the top two features we should select if we use Pearson's correlation as a feature selection metric?

	Datapoint 1	Datapoint 2	Datapoint 3	Datapoint 4	Datapoint 5
Feature 1	0.3510	2.1812	0.2415	-0.1096	0.1544
Feature 2	1.1796	2.1068	1.7753	1.2747	2.0851
Feature 3	-0.9852	1.3766	-1.3244	-0.6316	-0.8320
Target y	0.2758	1.4392	-0.4611	0.6154	1.0006

$$r = \frac{\frac{1}{N} \sum_{n=1}^{N} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\frac{1}{N} \sum_{n=1}^{N} (a_i - \bar{a})^2} \sqrt{\frac{1}{N} \sum_{n=1}^{N} (b_i - \bar{b})^2}},$$

Mean of Feature
$$1 = \mu_1 = \frac{0.3510 + 2.1812 + 0.2415 - 0.1096 + 0.1544}{5} = 0.5637$$

Mean of Feature $2 = \mu_2 = \frac{1.1796 + 2.1068 + 1.7753 + 1.2747 + 2.0851}{5} = 1.6843$
Mean of Feature $3 = \mu_3 = \frac{-0.9852 + 1.3766 - 1.3244 - 0.6316 - 0.8320}{5} = -0.4793$
Mean of Target $y = \mu_y = \frac{0.2758 + 1.4392 - 0.4611 + 0.6154 + 1.0006}{5} = 0.5740$

Feature 1 std =
$$\sigma_1 = \sqrt{\frac{(0.3510 - \mu_1)^2 + (2.1812 - \mu_1)^2 + (0.2415 - \mu_1)^2 + (0.1096 - \mu_1)^2 + (0.1544 - \mu_1)^2}{5}} = 0.8229$$

Feature 2 std = $\sigma_2 = \sqrt{\frac{(1.1796 - \mu_2)^2 + (2.1068 - \mu_2)^2 + (1.7753 - \mu_2)^2 + (1.2747 - \mu_2)^2 + (2.0851 - \mu_2)^2}{5}} = 0.3924$
Feature 3 std = $\sigma_3 = \sqrt{\frac{(-0.9852 - \mu_3)^2 + (1.3766 - \mu_3)^2 + (-1.3244 - \mu_3)^2 + (-0.6316 - \mu_3)^2 + (-0.8320 - \mu_3)^2}{5}} = 0.9552$
Target y std = $\sigma_y = \sqrt{\frac{(0.2758 - \mu_y)^2 + (1.4392 - \mu_y)^2 + (-0.4611 - \mu_y)^2 + (0.6154 - \mu_y)^2 + (1.0006 - \mu_y)^2}{5}} = 0.6469$

This question explores the use of Pearson's correlation as a feature selection metric. What are the top two features we should select if we use Pearson's correlation as a feature selection metric?

	Datapoint 1	Datapoint 2	Datapoint 3	Datapoint 4	Datapoint 5
Feature 1	0.3510	2.1812	0.2415	-0.1096	0.1544
Feature 2	1.1796	2.1068	1.7753	1.2747	2.0851
Feature 3	-0.9852	1.3766	-1.3244	-0.6316	-0.8320
Target y	0.2758	1.4392	-0.4611	0.6154	1.0006

$$r = \frac{\frac{1}{N} \sum_{n=1}^{N} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\frac{1}{N} \sum_{n=1}^{N} (a_i - \bar{a})^2} \sqrt{\frac{1}{N} \sum_{n=1}^{N} (b_i - \bar{b})^2}}$$

Therefore, the top 2 features are Feature 1 and Feature 3.

$$\begin{aligned} &\operatorname{Cov}(\operatorname{Feature}\ 1,y) = \frac{1}{5} \big[(0.3510 - \mu_1) \big(0.2758 - \mu_y \big) + (2.1812 - \mu_1) \big(1.4392 - \mu_y \big) + (0.2415 - \mu_1) \big(-0.4611 - \mu_y \big) + (-0.1096 - \mu_1) \big(0.6154 - \mu_y \big) + (0.1544 - \mu_1) \big(1.0006 - \mu_y \big) \big] = 0.3188 \\ &\operatorname{Cov}(\operatorname{Feature}\ 2,y) = \frac{1}{5} \big[(1.1796 - \mu_2) \big(0.2758 - \mu_y \big) + (2.1068 - \mu_2) \big(1.4392 - \mu_y \big) + (1.7753 - \mu_2) \big(-0.4611 - \mu_y \big) + (1.2747 - \mu_2) \big(0.6154 - \mu_y \big) + (2.0851 - \mu_2) \big(1.0006 - \mu_y \big) \big] = 0.1152 \\ &\operatorname{Cov}(\operatorname{Feature}\ 3,y) = \frac{1}{5} \big[(-0.9852 - \mu_3) \big(0.2758 - \mu_y \big) + (1.3766 - \mu_3) \big(1.4392 - \mu_y \big) + (-1.3244 - \mu_3) \big(-0.4611 - \mu_y \big) + (-0.6316 - \mu_3) \big(0.6154 - \mu_y \big) + (-0.8320 - \mu_3) \big(1.0006 - \mu_y \big) \big] = 0.4949 \end{aligned}$$

Correlation of Feature 1 &
$$y = \frac{Cov(Feature \ 1,y)}{\sigma_1\sigma_y} = \frac{0.3188}{0.8229 \times 0.6469} = 0.5988$$

Correlation of Feature 2 & $y = \frac{Cov(Feature \ 2,y)}{\sigma_2\sigma_y} = \frac{0.1152}{0.3924 \times 0.6469} = 0.4537$

Correlation of Feature 3 & $y = \frac{Cov(Feature \ 3,y)}{\sigma_3\sigma_y} = \frac{0.4949}{0.9552 \times 0.6469} = 0.8009$

SOLUTIONS - Possible Python Solutions as suggested by students!

print('Pearson correlation values are : ', r1[0][1], r2[0][1], r3[0][1])

This question further explores linear regression and ridge regression.

(a) Use the polynomial model from orders 1 to 6 to train and test the data without regularization.

Plot the Mean Squared Errors (MSE) over orders from 1 to 6 for both the training and the test sets.

Which model order provides the best MSE in the training and test sets? Why? (b) Use Regularization $\lambda=1$

SOLUTIONS - Check your answers.

NO REGULARIZATION

Order	1	2	3	4	5	6
Training MSE	2.3071	8.4408e-03	8.3026e-03	1.7348e-03	3.8606e-25	2.3656e-17
Test MSE	3.0006	0.0296	0.0301	0.0854	1.0548	10.7674

REGULARIZATION

Order	1	2	3	4	5	6
Training MSE	2.3586	8.4565e-03	8.3560e-03	1.8080e-03	7.2650e-04	1.9348e-04
Test MSE	3.2756	0.0302	0.0314	0.0939	0.4369	6.0202

Training Data

Testing Data

$$\{x = -10\} \rightarrow \{y = 4.18\} \quad \{x = -9\} \rightarrow \{y = 3\}$$

$$\{x = -8\} \rightarrow \{y = 2.42\} \quad \{x = -7\} \rightarrow \{y = 1.81\}$$

$${x = -3} \rightarrow {y = 0.22} \quad {x = -5} \rightarrow {y = 0.80}$$

$${x = -1} \to {y = 0.12} \quad {x = -4} \to {y = 0.25}$$

$$\{x = 2\} \rightarrow \{y = 0.25\} \{x = -2\} \rightarrow \{y = -0.19\}$$

$$\{x = 7\} \rightarrow \{y = 3.09\} \quad \{x = 1\} \rightarrow \{y = 0.4\}$$

$$\{x = 4\} \rightarrow \{y = 1.24\}$$

$$\{x = 5\} \rightarrow \{y = 1.68\}$$

$$\{x = 6\} \rightarrow \{y = 2.32\}$$

$$\{x = 9\} \rightarrow \{y = 5.05\}$$

This question further explores linear regression and ridge regression.

(a) Use the polynomial model from orders 1 to 6 to train and test the data without regularization.

Plot the Mean Squared Errors (MSE) over orders from 1 to 6 for both the training and the test sets.

Which model order provides the best MSE in the training and test sets? Why?

(a) SOLUTION (Similar to Tutorial 6 Q2(a) just with more orders!)

STEPS :: For each order from 1 to 6

- Treate P matrix (polynomial matrix)
- Solve for w (coefficients of regression polynomial, taking note of P's size).

 MSE 1
- For x (Paining) and x (test), find the corresponding yon your regression line.
- © Calculate mean squared errors between that and the y data provided.

Plotting

- Plot training data and testing data as points
- Plot your regression line.

Iraining Data

$${x = -10} \rightarrow {y = 4.18}$$

$$\{x = -8\} \to \{y = 2.42\}$$

$${x = -3} \rightarrow {y = 0.22}$$

$$\{x = -1\} - \{y = 0.12\}$$

$$\{x = 2\} \rightarrow \{y = 0.25\}$$

$$\{x = 7\} \rightarrow \{y = 3.09\}$$

Testing Data

$$\{x = -9\} \rightarrow \{y = 3\}$$

$${x = -7} \rightarrow {y = 1.81}$$

$${x = -5} \rightarrow {y = 0.80}$$

$${x = -4} \rightarrow {y = 0.25}$$

$$\{x = -2\} \rightarrow \{y = -0.19\}$$

$$\{x = 1\} \rightarrow \{y = 0.4\}$$

$$\{x = 4\} \rightarrow \{y = 1.24\}$$

$$\{x = 5\} \rightarrow \{y = 1.68\}$$

$$\{x = 6\} \rightarrow \{y = 2.32\}$$

$$\{x = 9\} \rightarrow \{y = 5.05\}$$

Xtrain (6 data points, 6 rows)

Order	1	2	<u>5</u>	6
P cols	2	3	<mark>6</mark>	7

(a) SOLUTION (part 1 - solving)

6 training data points

w list.append(w)

return w list

- Polynomial orders 1 to 5: Primal solution $\rightarrow \widehat{w} = (P^T P)^{-1} P^T y$
- Order 6: 7 unknowns, under-determined, so we use the Dual solution $\rightarrow \hat{w} = P^T (PP^T)^{-1} y$

```
from sklearn.preprocessing import PolynomialFeatures as skpf
 # Create regressors
                                                                                   for order in range (1,7):
 P train list = CreateRegressors(x, max order)
 print (P train list)
                                                                                       #step 1, create a polynomial function object class with the right degree
 P test list = CreateRegressors(xt, max order)
                                                                                      polyfn = skpf(order)
 P plot list = CreateRegressors(x plot, max order)
                                                                                       #step 2, fit the polyfn to your actual data and test data.
 P = polyfn.fit transform(x)
 # 01 (a)
 *****************
                                                                                      #step 3, solving for coefficients of regression polynomial
                                                                                       if (P.shape[0] >= P.shape[1]) :
 # Estimate coefficients WITHOUT REGULARIZATION
                                                                                           w = np.linalg.inv(P.T @ P) @ P.T @ y
w list = EstimateRegressionCoefficients(P train list, y)
                                                                                      else: #P.shape[0] < P.shape[1], underdetermined systems
def EstimateRegressionCoefficients(P list, y, reg=None):
                                                                                          w = P.T @ np.linalg.inv(P @ P.T) @ y
   # P list is a list
   # P list[i] are regressors for order i+1 and is of size N x (order+1), where
   # N is number of data points
                                                                              def CreateRegressors(x, max order):
   w list = []
   if reg is None:
                                                                                  # x is assumed to be array of length N
                                                                                  # return P = list of regressors based on max order
       for P in P list:
                                                                                  # P[i] are regressors for order i+1 and is of size N x (order+1), where
           if (P.shape[1] > P.shape[0]): #use dual solution
                                                                                  # N is number of data points
              w = P.T @ inv(P @ P.T) @ y
           else: # use primal solution
              w = (inv(P.T @ P) @ P.T) @ y
                                                                                  P = [] #initialize empty list
                                                                                  for order in range (1, max order+1):
           w list.append(w)
   else:
                                                                                      current regressors = np.zeros([len(x), order+1])
                                                                                      current regressors[:,0] = np.ones(len(x))
      for P in P list:
                                                                                      for i in range (1, order+1):
          w = (\overline{inv}(P.T @ P + reg*np.eye(P.shape[1])) @ P.T) @ y
                                                                                          current regressors[:,i] = np.power(x, i)
```

return P

P.append(current regressors)

STEPS :: For each order from 1 to 6

Create P matrix (polynomial matrix)
Solve for w (coefficients of regression

polynomial, taking note of P's size).

(a) SOLUTION (part 2 - mse)

MSE

For x (training) and x (test), find the corresponding y on your regression line.

Ptest = polyfn.fit transform(xtest)

#step 4, using regression coefficients to calculate predicted values of y

Calculate mean squared errors between that and the y data provided.

```
# Apply prediction: predictions are N x max_order
y_train_pred = PerformPrediction(P_train_list, w_list)
y_test_pred = PerformPrediction(P_test_list, w_list)
y_plot_pred = PerformPrediction(P plot list, w list)
```

```
def PerformPrediction(P list, w list):
   # P list is list of regressors
   # w list is list of coefficients
   # Output is y predict mat which N x max order, where N is the number of samples
   N = P list[0].shape[0]
                                                            # Compute MSE
   max order = len(P list)
                                                           train error = y train pred - np.matlib.repmat(y, max order, 1).T
   y predict mat = np.zeros([N, max order])
                                                           train MSE = np.power(train error, 2)
   for order in range (len (w list)):
                                                            train MSE
                                                                       = np.mean(train MSE, 0)
       y predict = np.matmul(P list[order], w list[order])
       y predict mat[:,order] = y predict
                                                           test error = y test pred - np.matlib.repmat(yt, max order, 1).T
   return y predict mat
                                                            test MSE
                                                                      = np.power(test error, 2)
                                                                     = np.mean(test MSE, 0)
                                                            test MSE
```

(a) SOLUTION (part 2 - mse)

Official Solutions

Order	1	2	3	4	
Training MSE	2.3071	8.4408e-03	8.3026e-03	1.7348e-03	Γ,
Test MSE	3.0006	0.0296	0.0301	0.0854	[,

IDLE Compiler Produces the following for same code.

Order	1	2	3	4				
Training MSE	2.3071	8.4408e-03	8.3026e-03	1.7348e-03	0 - 2	3	4 5	6
Test MSE	3.0006	0.0296	0.0301	0.0854	1.0548	10.7674		

Training MSE Test MSE

- Very low training MSE for orders 5 & 6 but high test MSE → Overfitting
- High training and test MSE for order 1 → Underfitting
- Orders 2 to 4 produce relatively low MSEs (even though model itself is order 2)

```
(a) SOLUTION (part 3 - plotting)
                #--- Plotting---#
                plt.figure(1)
   Training dataplt.plot(x, y, 'bo')
       Test dataplt.plot (xtest, ytest, 'rx')
Regression Line xline= np.arange(min(np.concatenate((x,xtest))), max(np.concatenate((x,xtest)
                xline reshaped = xline.reshape((len(xline),1))
        P MatrixPline = polyfn.fit transform(xline reshaped)
                yline=Pline @ w
                plt.plot(xline, yline, '--', label=order)
                                  Dotted Line
                plt.legend()
            plt.grid()
                                 Training Errors
             plt.figure(2)
             plt.plot(np.arange(1,7),trainingmse,label="Training MSE")
             plt.plot(np.arange(1,7),testmse,label="Test MSE")
             plt.legend()
             plt.show()
```

Question2 (b)

(b) Use Regularization (ridge regression) $\lambda=1$ for all orders and repeat the same analyses. Compare the plots of (a) and (b). What do you see?

(b) SOLUTION

- With regularization, we can simply use the primal solution even for order 6
- Only one small difference in code:

#step 3, solving for coefficients of regression polynomial
w = np.linalg.inv(P.T @ P + np.identity(len(P.T))) @ P.T @ y

NO REGULARIZATION

Order	1	2	3	4	5	6
Training MSE	2.3071	8.4408e-03	8.3026e-03	1.7348e-03	3.8606e-25	2.3656e-17
Test MSE	3.0006	0.0296	0.0301	0.0854	1.0548	10.7674

REGULARIZATION

Order	1	2	3	4	5	6
Training MSE	2.3586	8.4565e-03	8.3560e-03	1.8080e-03	7.2650e-04	1.9348e-04
Test MSE	3.2756	0.0302	0.0314	0.0939	0.4369	6.0202

- None of the curves pass through training data exactly → training error increased slightly
- Test MSE for orders 5 & 6 reduced → Overfitting reduced.
- But Test MSE for orders 1 to 4 increased!! → Overly strong regularization.
- Regularization did not help in identifying best polynomial order → cross-validation to be learnt in future!

