Python e Dados: Como Transformar Informação em Poder

Prof. Me. Nisston Moraes Tavares de Melo

Roteiro

- Introdução ao poder dos dados
- Por que Python para dados?
- Manipulação de dados com Python
- Visualização de dados
- Análise de dados
- Automatização e pipelines de dados
- Desafios e ética no uso de dados

Introdução ao poder dos dados

Flexibilidade em Diferentes Áreas

- Pesquisa: Usado por cientistas e pesquisadores para análise e modelagem.
- Negócios: Aplicado em relatórios de desempenho e previsões de mercado.
- Tecnologia: Base para sistemas de recomendação, algoritmos de busca e otimização.
- Ciências: Ideal para análise de dados em biologia, física, economia, entre outros.

Introdução ao poder dos dados

- O Que São Dados e Por Que São Importantes?
 - Definição: Unidades de informação bruta que, quando processadas, se transformam em insights úteis.
 - Contextualização histórica: como a evolução tecnológica tornou a coleta e análise de dados mais acessíveis.
 - O papel dos dados no mundo atual: de pequenas empresas a grandes corporações, todos dependem de dados para tomar decisões.

Tipos de Dados

Características

- Representados por textos ou rótulos.
- Não permitem cálculos matemáticos, mas podem ser analisados com frequência ou proporção.
- São ideais para gráficos de barras e gráficos de pizza.

Características

- · Representados numericamente.
- Permitem cálculo de média, mediana, desvio padrão, etc.
- São ideais para gráficos como histogramas, gráficos de dispersão e boxplots.

Cores (vermelho, azul, verde), gêneros (feminino, masculino, outro)

Comparação Entre Dados Quantitativos e Qualitativos:

Característica	Quantitativos	Qualitativos
Formato	Números	Textos ou categorias
Subtipo	Discretos, Contínuos	Nominais, Ordinais
Análise	Média, desvio padrão	Frequência, proporção
Gráfico	Histogramas, dispersão	Barras, pizza

Por que Python para dados?

Comunidade Ativa e Suporte

- Recursos online: Fóruns como Stack Overflow e comunidades como Kaggle são ricas em conhecimento.
- Bibliotecas de código aberto: Constantemente atualizadas com novos recursos.
- Colaboração: Uso difundido em notebooks Jupyter, que permitem colaboração em tempo real e documentação integrada.

Integração com Outras Tecnologias

- Bancos de dados: Conexão com MySQL, PostgreSQL, MongoDB e outras tecnologias de armazenamento.
- APIs e Web: Integração com APIs REST e desenvolvimento de sistemas analíticos em frameworks como Django e Flask.
- Ambientes de Big Data: Compatível com Hadoop, Spark e AWS.

Manipulação de dados com Python

Fluxo de trabalho

- Carregar os dados: Importar de fontes como CSV, Excel, bancos de dados, APIs ou arquivos JSON.
- Explorar os dados: Visualizar a estrutura, tipos de dados e valores nulos.
- Limpar os dados:
 - Remover duplicatas.
 - Preencher ou excluir valores ausentes.
 - Corrigir erros de formatação.
- Transformar os dados:
 - Criar novas colunas ou atributos derivados.
 - Alterar o formato dos dados (ex.: pivot ou melt).
- Analisar os dados: Agrupar, filtrar e resumir para insights.
- Salvar ou exportar: Exportar os dados tratados para arquivos ou bases.

Fluxo de manipulação dos dados

Visualização dos Dados

Visualização dos Dados

 Durante a manipulação, é útil gerar visualizações rápidas:

Gráfico de Radar das Questões do Grupo Experimenta

Análise dos dados

Estatística dos dados

- A estatística é fundamental para transformar dados brutos em informações úteis, auxiliando na tomada de decisões embasadas em evidências. Seus tipos abrangem diferentes propósitos:
 - Descritiva
 - Exploratória
 - Inferencial
 - Preditiva
 - Explicativa
 - Prescritiva

Explorar os dados para identificar padrões, relações e outliers. Geralmente utiliza visualizações gráficas (scatterplots, heatmaps) e técnicas para descobrir insights. Prever valores futuros ou tendências. Baseia-se em modelos estatísticos ou machine learning. Envolve técnicas como regressão linear, árvores de decisão, séries temporais. Sugerir ações ou decisões com base em dados. Utiliza modelos preditivos aliados a otimização para propor estratégias.

Automatização e pipelines de dados

Etapas de um pipeline de dados

- Coleta de Dados:
 - Conexão com APIs, bancos de dados, arquivos CSV/Excel, etc.
 - Automação de scraping de dados.
- Transformação e Limpeza:
 - Padronização e limpeza de dados (tratamento de valores nulos, duplicados).
 - Enriquecimento de dados com informações externas.
 - Aplicação de transformações customizadas (normalização, agregação, etc.).
- Carregamento de Dados:
 - Persistência em bancos de dados ou data warehouses.
 - Geração de arquivos (CSV, JSON, etc.).
 - Integração com ferramentas de visualização (ex.: Power BI, Tableau).

Ferramentas e tecnologias

- Ferramentas para ETL (Extract, Transform, Load):
 - Apache Airflow.
 - o Talend.
 - Apache NiFi.
 - o Prefect.
- Soluções em nuvem:
 - AWS Glue.
 - Google Cloud Dataflow.
 - Azure Data Factory.
- Bibliotecas Python:
 - Pandas para manipulação de dados.
 - Luigi para criação de pipelines.
 - PySpark para processamento de grandes volumes.
 - Dask para computação paralela.

Exemplo Prático

- Web Scraping com Python
 - o https://github.com/nisston/coletadadoswebscraping

Desafios e ética no uso de dados

Introdução aos Desafios e à Ética no Uso de Dados

- O que s\u00e3o dados e por que eles s\u00e3o t\u00e3o valiosos na era digital?
- A relação entre tecnologia, dados e sociedade.
- Por que a ética no uso de dados é importante?
- Exemplos históricos de mau uso de dados e suas consequências.

Privacidade e Proteção de Dados

- O que é privacidade de dados e por que ela está em risco?
- Leis e regulamentações sobre proteção de dados:
 - o GDPR (Europa).
 - o LGPD (Brasil).
 - o CCPA (Califórnia).
- Desafios no cumprimento de normas de privacidade:
 - Coleta de consentimento.
 - Retenção e exclusão de dados.
 - o Transferência internacional de dados.
- Exemplos práticos de violação de privacidade (ex.: vazamentos de dados).

Segurança de Dados

- Principais ameaças à segurança dos dados:
 - Ataques cibernéticos (phishing, ransomware, etc.).
 - Vazamentos de dados em grandes corporações.
- Técnicas para proteger dados:
 - Criptografia.
 - Controle de acesso.
 - Testes regulares de segurança.
- Riscos associados ao uso de dispositivos IoT e dados em nuvem

Exemplos Práticos do Uso de Dados

Negócios: Otimização de Vendas e Marketing

- Cenário: Uma loja online utiliza dados de navegação e compras para personalizar recomendações.
- Exemplo real: A Amazon, que recomenda produtos com base no histórico de compras e preferências dos usuários.
- Impacto: Aumento das vendas por meio de estratégias de upselling e cross-selling.

- Cenário: Um hospital coleta dados de pacientes para prever surtos de doenças ou monitorar condições críticas.
- Exemplo real: Durante a pandemia de COVID-19, modelos preditivos baseados em dados ajudaram a prever a disseminação do vírus.
- Impacto: Melhora na alocação de recursos e no planejamento de respostas de emergência.

Transportes: Redução de Custos e Aumento

da Eficiência

 Cenário: Empresas de logística usam dados para otimizar rotas.

- Exemplo real: A UPS utiliza algoritmos para determinar as melhores rotas, economizando milhões de dólares em combustível.
- Impacto: Redução de custos operacionais e menor impacto ambiental.

Entretenimento: Personalização de Conteúdo

Cenário: Plataformas de streaming recomendam filmes e séries com base no comportamento do usuário.

Exemplo real: A Netflix usa análises de dados para criar e sugerir conteúdo popular, como a série Stranger Things.

Impacto: Maior retenção de clientes e fidelidade à marca.

Esportes: Desempenho e Estratégia

Cenário: Times esportivos utilizam dados para planejar jogos e treinar jogadores.

Exemplo real: O filme Moneyball (baseado em uma história real) demonstra como estatísticas ajudaram um time de beisebol com orçamento limitado a alcançar o sucesso.

Impacto: Decisões mais estratégicas baseadas em desempenho, em vez de intuição.

Dados no Cotidiano

Trânsito: Aplicativos como Waze e Google Maps utilizam dados de tráfego em tempo real para sugerir rotas mais rápidas.

Financeiro: Instituições bancárias usam dados para avaliar crédito e prevenir fraudes.

Educação: Plataformas de ensino online ajustam o conteúdo com base no progresso e nas necessidades dos alunos.

Como Python Está Inserido Nesse Cenário?

Python facilita a análise e manipulação de grandes volumes de dados.

A combinação de simplicidade e poder das bibliotecas de Python o torna a escolha ideal para iniciantes e profissionais avançados.

Exemplo prático: Análise de tendências em dados de vendas de uma padaria ou visualização de crescimento de clientes ao longo do tempo.

História e Criação

- Criador: Guido van Rossum.
- Ano de Criação: 1991.
- Motivação: Desenvolver uma linguagem fácil de aprender, com sintaxe clara e foco em produtividade e legibilidade.
- Origem do Nome: Inspirado no grupo de comédia britânico Monty Python's Flying Circus.

Características principais

- Sintaxe Simples e Intuitiva: Ideal para iniciantes e projetos complexos.
- Linguagem Multiparadigma: Suporta programação procedural, orientada a objetos e funcional.
- Ampla Biblioteca Padrão: Fornece ferramentas prontas para manipulação de dados, redes, processamento de texto, entre outros.
- Portabilidade: Funciona em múltiplas plataformas (Windows, macOS, Linux).
- Comunidade Ativa: Milhões de desenvolvedores no mundo todo.

Ecossistema e aplicações

- Principais Usos:
 - Análise de Dados e Ciência de Dados (pandas, NumPy, Matplotlib).
 - Desenvolvimento Web (Django, Flask).
 - Inteligência Artificial e Machine Learning (TensorFlow, PyTorch, scikit-learn).
 - Automação e Scripting.
 - Desenvolvimento de Jogos (Pygame).
 - o Computação Científica.
- Empresas que Usam Python:
 - Google, Facebook, Netflix, Instagram, Spotify, NASA, entre outras.

Recursos e Comunidades

- Grupos de Discussão e Fóruns:
 - Python.org (site oficial).
 - Stack Overflow (milhares de perguntas e respostas).
 - Reddit: Subreddits como r/Python.
- Conferências Globais:
 - PyCon (eventos anuais em várias regiões).
 - DjangoCon (focada em Django).
- Cursos e Tutoriais:
 - Plataformas como Codecademy, Coursera, edX e YouTube oferecem conteúdos para todos os níveis.

Curiosidades

- Primeira Versão: Python 0.9.0 (incluía suporte a classes e funções).
- Mascote: Embora não seja oficial, a comunidade associa Python a uma cobra píton.
- Open Source: Python é de código aberto, mantido pela Python Software Foundation (PSF).
- Número de Desenvolvedores: Estimado em mais de 10 milhões de programadores.
- Linguagem Popular: Consistentemente classificada como uma das linguagens mais populares em rankings como TIOBE e Stack Overflow.
- Frameworks e Bibliotecas: Mais de 300 mil pacotes disponíveis no PyPI (Python Package Index).

Site oficial: https://www.python.org/

Indicação de Filmes

Indicação de Filmes

Indicações de livros

Exemplo Prático

Dados de acidentes de trânsito em BR

- <u>Link</u> para o GitHub
- <u>Link para o Google Colab</u>

Obrigado!

