

Università degli Studi di Milano - Bicocca Dipartimento di Informatica, Sistemistica e Comunicazione Corso di Laurea Magistrale in Informatica

Metodi del Calcolo Scientifico - Progetto 1

Autori:

Gianmaria Balducci 807141 Alessandro Guidi 808865 Leonardo De Lisi

Obiettvo

Confrontare l'implementazione in ambienti di programmazione open source del **metodo di Choleski** per la risoluzione sistemi lineari per matrici sparse, simmetriche e definite positive, con l'implementazione di MATLAB.

Quantità confrontate

Il confronto tra gli ambienti viene effettuato osservando tre quantità dato un sistema lineare Ax=b:

- il tempo necessario per calcolare la soluzione x;
- l'errore relativo tra la soluzione calcolata x e la soluzione esatta xe, definito da:

$$errorerelativo = \frac{\|x - xe\|_2}{\|xe\|_2}; \tag{1}$$

 la memoria necessaria per risolvere il sistema, ovvero grosso modo l'aumento della dimensione del programma in memoria da subito dopo aver letto la matrice a dopo aver risolto il sistema.

Matrici analizzate

Name	Size	%Nonzeri	Cond
ex15	6867	0.0021	1.4326e+13
cfd1	70656	3.6568e-04	1.3351e+06
shallow_water1	81920	4.8828e-05	3.628
cfd2	123,440	2.0249e-04	2.3474e+06
parabolic_fem.	525825	1.3290e-05	2.1108e+05
apache2	715176	9.4195e-06	/
G3_circuit	1585478	3.0476e-06	/
StocF-1465	1465137	9.8e-06	/
Flan 1565	1564794	4.66e-05	/

Le matrici StocF-1465 e Flan-1565 non sono state valutate in quanto le capacità computazionali della macchina su cui vengono testate non è sufficiente.

Caratteristiche macchina testata

Lenovo Ideapad S540

• CPU: AMD® Ryzen 5 3500u 2.1GHz x 4

• RAM: 12 GB

• Memoria: SSD 512GB

• Dual boot: Windows 10 (312GB), Ubuntu

20.04 (200GB)

MATLAB

MATLAB è un ambiente per il calcolo numerico e l'analisi statistica creato dalla MathWorks e funziona su diversi sistemi operativi, tra cui Windows, Mac OS, GNU/Linux e Unix.

Libreria utilizzata: mldivide \

Consente di risolvere sistemi lineari del tipo Ax=b utilizzando il risolutore appropriato in base alle caratteristiche della matrice.

Inoltre Matlab consente di salvare le matrici con l'attributo **sparse** consentendo di salvare in memoria tramite triple (i,j valore-ij) solo i valori non-zero della matrice ottenendo un vantaggio in memoria e quindi in termini di velocità.

Utilizzo di mldivide

```
matFolder = 'path';
file = fullfile (matFolder , '*.mat');
matrix = dir(file):
for k = 1:length(matrix)
    load(matrix(k).name): %carico la matrice
    A = Problem.A; %assegno la matrice
    n = length(A): %numero righe della matrice A
    xe = ones(n,1); %vettori di 1 di lunghezza n
    b=A*xe:
    tic: %inizio calcolo tempo
    x = A \ b: %risolutore
    Time(k) = toc; %fine calcolo tempo;
    Error(k) = norm((x-xe)/norm(xe)); %calcolo errore relativo
end
```

MATLAB Errore Tempo e Memoria

Per entrambi i sistemi operativi il **Tempo** viene misurato dalle funzioni *tic* e *toc*.

L'Errore relativo viene misurato con la formula di riferimento(1).

Mentre la memoria viene misurata per Linux con il comando **top**, per Windows tramite il task manager.

Figura 1: top-Ubuntu

Figura 2: task manager-Windows

Risultati Matlab Ubuntu

Name	Size	Error	Time(s)	Memory(MB)
ex15.mat	6867	6.2110e-07	0.019453	4.98
cfd1.mat	70656	1.0652e-13	2.083225	348.775
shallow_water1.mat	81920	2.3772e-16	0.292786	9.965
cfd2.mat	123440	3.4475e-13	4.610126	717.48
parabolic_fem.mat	525825	1.0478e-12	3.43791	478.32
apache2.mat	715176	4.3913e-11	11.854878	1823.595
G3_circuit.mat	1585478	3.5756e-12	17.791252	2162.405

Risultati Matlab Windows

Name	Size	Error	Time (s)	Memory(MB)
ex15.mat	6867	6.2110e-07	0.0246341	0.6
cfd1.mat	70656	1.0652e-13	2.691809	391.1
shallow_water1.mat	81920	2.3772e-16	0.3723136	38.6
cfd2.mat	123440	3.4475e-13	6.6855453	759.1
parabolic_fem.mat	525825	1.0478e-12	4.2168941	476.4
apache2.mat	715176	4.3913e-11	16.7076237	1882.6
G3_circuit.mat	1585478	3.5756e-12	21.9720263	2221.7

Confronto Matlab Ubuntu-Windows

Ambiente open-source: Python3

PYTHON è uno dei maggiori ambienti di programmazione più utilizzato.

E' un linguaggio di alto livello, è orientato agli oggetti ed è considerato un *free software*, in quanto: il download dell'interprete è gratuito, può essere liberamente modificato e così distribuito, secondo le regole di una licenza **open source**.

Per il progetto è stata scelta la versione Python3

Librerie

Le librerie utilizzate, quelle più importanti per la realizzazione del progetto:

- scipy: utilizzata per leggere i file .mat associati alle matrici da analizzare
- numpy: utilizzata per creare la soluzione esatta e per il calcolo dell'errore relativo attraverso il modulo *linalg*
- cvxopt: utilizzata per essere efficiente nelle operazioni di matrici sparse e dense,contente il modulo cholmod per la fattorizzazione di quest'ultime.

Cvxopt

```
#!/usr/bin/env python
import scipy.io
import numpy as np
from cyxopt import cholmod, spmatrix, sparse, matrix as MTR
from numpy import linalg as Ig
for name in names:
    #leggo le matrici
    name matrix = name
    path = "/percorsoudeiufileu.mat/"+ name matrix
    A = scipy.io.loadmat(path)['Problem']['A'][0][0]
    #costruisco un array di risultati esatti
    xe = MTR(np.ones(A.shape[0]))
    #calcolo termine noto ad hoc di A
    b = sparse(MTR(A*xe))#la trasformo in una matrice cvxopt e poi in una matrice sparsa
    #converto la matrice sparsa A in una matrice riconosciuta per cyxopt
    coo = A.tocoo()
    A = spmatrix(coo.data.tolist(), coo.row.tolist(), coo.col.tolist(), size=A.shape)
    #Decomposizione di cholesky
    x = cholmod.splinsolve(A.b)
    #Calcolo errore relativo
    relative error = \lg . norm(xe-x)/\lg . norm(xe)
```

Risultati Python Ubuntu

Name	Size	Error	Time(s)	Memory(MB)
ex15	6867	5.7489e-07	0.0349	6.9758
cfd1	70656	5.9361e-14	2.9558	488.3095
shallow_water1	81920	1.9296e-16	0.3795	9.9655
cfd2	123440	2.5508e-13	7.0446	926.7915
parabolic_fem	525825	6.4827e-13	3.4431	607.8955
apache2	715176	5.0436e-11	17.5157	2003.0655
G3_circuit	1585478	4.8957e-12	22.0126	2431.582

Risultati Python Windows

Name	Size	Error	Time(s)	Memory(MB)
ex15	6867	6.4261e-07	0.0450	11
cfd1	70656	9.9571e-14	3.0583	471
shallow_water1	81920	2.3737e-16	0.4590	20.6
cfd2	123440	2.9932e-13	6.1971	879.3
parabolic_fem	525825	1.0162e-12	3.1174	537.8
apache2	715176	4.3964e-11	13.4610	1999.8
G3_circuit	1585478	3.5921e-12	17.3521	2470.2

Grafico risultati python Ubuntu Windows

Quantità a confronto: Memoria

Memoria(MB) (media)	Python	Matlab
Ubuntu	925.652	792.217
Windows	912.814	824.3

Windows: Python ottiene i migliori risultati su ottiene il miglior Windows, ma matlab è più efficiente

Ubuntu: Matlab invece risultato su Uhuntu ed è la performance migliore.

Tempo

Tempo(s) (media)	Python	Matlab
Ubuntu	7.62664	5.7270
Windows	6.2414	7.5244

Windows: Python risulta più performante di

performante di Matlab che su Windows ottiene risulati migliori. Ubuntu:

Matlab risulta più veloce di python e ottiene anche qui la performance migliore.

Errore

Errore (media)	Python	Matlab
Ubuntu	8.2136e-08	8.8735e-08
Windows	9.1809e-08	8.8735e-08

Windows: Ubuntu:
In termini di Python risulta più
accuratezza Matlab accurato di Matlab
risulta essere ed ottiene il
migliore di python. risultato migliore.

Entrambi i software su entrambi i sistemi operativi hanno un errore medio sulle matrici analizzate dell'ordine di grandezza di 10^{-8}

Matlab

Memoria

Caso peggiore:

Name	Size	Memory(MB)
G3_circuit	1585478	2221.7

Tempo

Caso peggiore:

Name	Size	Time(s)
G3_circuit	1585478	21.9720

Errore

Caso peggiore:

Name	Cond	Error
ex15	1.4326e+13	6.2110e-07

Caso Migliore:

Name	Size	Memory(MB)
ex15	6867	0.6

Valore Medio: 808.2586

Caso Migliore:

Name	Size	Time(s)
ex15	6867	0.0195

Valore Medio: 6.6257

Caso Migliore:

Name	Cond	Error
shallow_water1	3.628	2.3772e-16

Valore Medio: 8.8736e-08

Python

Memoria

Caso peggiore:

G3_circuit 1585478 2470.2	Name	Size	Memory(MB)
	G3_circuit	1585478	2470.2

Tempo

Caso peggiore:

Name	Size	Time(s)
G3_circuit	1585478	22.0126

Errore

Caso peggiore:

Name	Cond	Error
ex15	1.4326e+13	6.4262e-07

Caso Migliore:

Name	Size	Memory(MB)
ex15	6867	6.9758

Valore Medio: 919.2334

Caso Migliore:

Name	Size	Time(s)
ex15	6867	0.0349

Valore Medio: 6.9340

Caso Migliore:

Name	Cond	Error
shallow_water1	3.628	1.9296e-16

Valore Medio: 8.6973e-08

Conclusioni

• Errore:

Conclusioni

Su Ubuntu 20.04 **Matlab** con **mldivide** \ ottiene la performance migliore in termini di velocità e memoria

Python con **Cvxopt** restituisce soluzioni più accurate. Utilizzando il sistema open-source di Linux la scelta migliore dipende dalle esigenze se si vuole ottenere accuratezza python3 con cvxopt è la scelta migliore oltre al fatto che su Linux installare e configurare l'ambiente python con le librerie desiderate è molto facile. Se invece si cerca la miglior perfromance in termini di velocità e memoria si considera Matlab che necessita però di una licenza a pagamento.

Conclusioni

Su Windows 10 Matlab è la scelta migliore se si vogliono i migliori risultati in termini di memoria e accuratezza Python invece su Windows è la libreria più veloce. In generale Matlab risulta essere più perfromante in termini di memoria e tempo. Se l'esigenza è l'accuratezza python con cvxopt risulta la libreria migliore. Su Windows 10 però il reperimento e l'intallazione di questa libreria non è semplice ed intuitivo come per Linux.

In generale il risultato migliore si ottiene su Ubuntu 20.04 utilizzando **mldivide** \ di Matlab il quale ottiene risultati poco peggiori di Python in termini di tempo ma utilizza meno memoria ed è mediamente più accurato.