Perception auditive

Daniel Pressnitzer

Laboratoire des Systèmes Perceptifs, CNRS & Département d'études cognitives, Ecole normale supérieure 29 rue d'Ulm, 75230 Paris cedex 05

daniel.pressnitzer@ens.fr

Introduction

Perception auditive

- Construire des traitements utiles du monde acoustique
- Exploiter les informations qu'il contient

Une activité naturelle pour le cerveau humain, et pourtant mal comprise et encore impossible à reproduire artificiellement

Introduction

Pourquoi?

- Curiosité
- Applications pratiques (codage audio, parole...)
- Aspects cliniques (pathologies, prothèses...)
- Neurosciences de la musique

Introduction

Comment?

- Combinaison de plusieurs disciplines
 - acoustique
 - psychophysique
 - physiologie
 - imagerie cérébrale
 - modélisation

Contenu de l'UE

Psychoacoustique	D. Pressnitzer DR CNRS, LPP/DEC, Paris	12h
Déficits auditifs	C. Lorenzi Pr Paris 5, LPP/DEC, Paris	9h
Traitements sous-corticaux, modèles	A. de Cheveigné DR CNRS, LPP/DEC, Paris	3h
Système auditif cortical	S. Shamma/Y. Boubenec Pr ENS & U. Maryland	6h
Imagerie cérébrale fonctionnelle	M. Chait University College London, UK	3h
Cognition musicale	B. Poulin-Charonnat, DR CNRS, Dijon	6h

Psychoacoustique

Daniel Pressnitzer

- Bases et méthodes: acoustique, psychophysique, physiologie
- Caractéristiques élémentaires: masquage, non-linéarités, applications
- Attributs perceptifs: hauteur, timbre
- Organisation des scènes auditives, mémoire

Déficits auditifs

Christian Lorenzi

- Conséquences perceptives de lésions cochléaires
- Conséquences perceptives de lésions centrales
- Troubles de la perception de la parole
- Stratégies de réhabilitation par prothèses et implants

Traitements sous-corticaux, modèles

Alain de Cheveigné

- Architecture du système auditif sous-cortical
- Techniques de modélisation
- Modèles et applications

Système auditif cortical

Yves Boubenec

- Anatomie
- Propriétés fonctionnelles des neurones corticaux
- Plasticité rapide
- Modèles computationels

Neurosciences de la musique

Bénédicte Poulin-Charronnat

- Pourquoi étudier la musique en (neuro)sciences cognitives?
- Acculturation tonale et apprentissage implicite
- Corrélats neurophysiologiques de la perception musicale
- Liens musique/language

Imagerie cérébrale : attention, parole

Maria Chait

- Outils et techniques adaptés à l'audition
- Détection de changements
- Traitement des signaux de parole

Evaluation

- Oral et écrit (50/50)
- Sur un thème de synthèse choisi par l'étudiant, parmi une liste de thèmes proposés
- Bonus présence (2 pts)

P2web

• Diverses infos dont supports de cours:

http://audition.ens.fr/P2web/

Bibliographie partielle

Schnupp, Nelken & King (2010) *Auditory Neuroscience: Making sense of sound.* Cambridge: MIT Press. http://auditoryneuroscience.com/

Moore, BCJ (2013) *An Introduction To The Psychology of Hearing (6th edition).* London: Academic Press.

Pickles, JO (2008) *An Introduction To The Physiology of Hearing (3rd edition).* Bingley: Emerald.

Warren, RM (2008) *Auditory Perception (3rd edition), A New Analysis And Synthesis.* Cambridge, UK: Cambridge University Press.

Hartmann, WM (1997) Signals, Sound, and Sensation. New York: AIP Press.

Deutch, D. (2012) *The psychology of music (3nd edition)*. Academic Press.

Peretz, I. and Zatorre, R. (2003) *The cognitive neuroscience of music.* Oxford University Press.