Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

- 1. Defina aplicación inyectiva, aplicación sobreyectiva, y aplicación biyectiva.
- 2. Sean $f: A \to B$, $g: B \to C$ y $h: C \to D$ tres aplicaciones tales que $g \circ f$ y $h \circ g$ son aplicaciones biyectivas.
 - i) Demuestre que f y g son inyectivas.
 - ii) Demuestre que f es bivectiva.

Solución:

2.i) Para demostrar que f es inyectiva, vemos que para todo $x, x' \in A$ tales que f(x) = f(x'), se cumple que x = x'.

En efecto, si f(x) = f(x'), entonces g(f(x)) = g(f(x')), es decir, $g \circ f(x) = g \circ f(x')$. Si $g \circ f$ es biyectiva, en particular, $g \circ f$ es inyectiva y en consecuencia x = x'. La demostración de que g es inyectiva es idéntica : se usa que $h \circ g$ es inyectiva.

ii) Tenemos que ver que f es sobreyectiva. Sea para todo $y \in B$, $z = g(y) \in C$. Como $g \circ f$ es sobreyectiva, existe $a \in A$ tal que $g \circ f(a) = z$. En consecuencia, g(f(a)) = g(y). Ahora bien hemos visto en i) que g es inyectiva. Luego f(a) = y. En consecuencia, f es sobreyectiva y por i) f es biyectiva.

Nota: Los argumentos que utilizan la igualdad de los cardinales de A y B para demostrar que una aplicación inyectiva es biyectiva, no son válidos en este caso pues desconocemos si los conjuntos son o no son finitos.

Pregunta 2 (2,5 puntos)

- 1. Dados un conjunto parcialmente ordenado (U, \preceq) y un subconjunto D de U, razone si todo elemento maximal de D es un elemento máximo de D e inversamente si un máximo de D es un elemento maximal de D.
- 2. Se considera en \mathbb{R}^2 el orden producto \leq_P dado por:

$$(a,b) \leqslant_P (c,d)$$
 si y sólo si $a \leqslant c$ y $b \leqslant d$

Sea D el conjunto de puntos del triángulo de vértices A(5,0), B(0,1) y C(3,2), incluidos los puntos interiores del triángulo y las aristas. Determine el conjunto de cotas superiores, supremo, máximo y maximales de D.

Solución:

- 1. Recordamos que el máximo de un conjunto D es un elemento M del conjunto D tal que $\forall x \in D$ $x \leq M$, mientras que un elemento maximal m de D satisface que $\nexists x \in D$, $x \neq m$, que cumpla $m \leq x$. Si la relación de orden es parcial y m es elemento maximal de D, m no tiene por qué ser un máximo pues de suponer que no existe ningún elemento x en D, salvo el propio m, tal que $m \leq x$, no se deduce que todos los elementos x de D cumplan que $x \leq m$ pues, al ser el orden parcial, puede haber elementos $x \in D$ que no satisfacen ninguna de las dos desigualdades. En el apartado siguiente se ve un ejemplo de elementos maximales que no son máximos. Veamos que si M es un máximo de D, entonces M es un elemento maximal de D. En efecto si M no fuera elemento maximal de D entonces existe al menos un $x_0 \in D$ tal que $x_0 \neq M$ y $M \leq x_0$. Pero al ser $M = \max(D)$, resulta que $x_0 \leq M$ y como la relación es antisimétrica resulta que $x_0 = M$. (contradicción)
- 2. Nótese que cualquier cota superior (x,y) de D cumple en particular $(5,0) \leqslant_P (x,y)$ y $(3,2) \leqslant_P (x,y)$ y por tanto $x \geqslant 5$ e $y \geqslant 2$ obteniéndose que el conjunto de cotas superiores de D es

$$S = \{(x, y) \in \mathbb{R}^2 \mid x \geqslant 5 \text{ e } y \geqslant 2\}$$

En consecuencia, $\sup(D)=(5,2)$. Como $(5,2)\notin D$, resulta que D no tiene máximo. Los elementos maximales de D son todos los puntos de la arista AC (del segmento que une los puntos A y C). Obsérvese que estos puntos no son máximos de D.

Pregunta 3 (2,5 puntos)

Demuestre por inducción que

$$1(n-1) + 2(n-2) + 3(n-3) + \dots + (n-1)1 = \frac{1}{6}(n-1)n(n+1)$$

para todo $n \ge 1$.

Solución: Veamos por inducción que

$$1(n-1) + 2(n-2) + 3(n-3) + \dots + (n-1)1 = \frac{1}{6}(n-1)n(n+1)$$

para todo $n \ge 2$.

La igualdad es cierta para n=2 pues se obtiene $1.1=\frac{1}{6}(2-1)2(2+1)$.

Supongamos que la igualdad es cierta para n, y veamos que es cierta para n+1, esto es tenemos que comprobar que

$$1(n) + 2(n-1) + 3(n-2) + \dots + (n)1 = \frac{1}{6}(n)(n+1)(n+2)$$

En efecto, descomponiendo cada sumando de la forma (k+1)(n-k) en (n-k)+k(n-k), reagrupando términos y aplicando la hipótesis de inducción, se obtiene:

$$1(n) + 2(n-1) + 3(n-2) + \dots + (n)1 = n + ((n-1) + (n-1)) + ((n-2) + 2(n-2)) + \dots + (1 + (n-1)1)$$

$$= (n + (n-1) + (n-2) + \dots + 1) + (1(n-1) + 2(n-2) + 3(n-3) + \dots + (n-1)1)$$

$$= \frac{n(n+1)}{2} + \frac{1}{6}(n-1)n(n+1) = \frac{n(n+1)}{2}(1 + \frac{n-1}{3})$$

$$= \frac{1}{6}(n)(n+1)(n+2)$$

Pregunta 4 (2,5 puntos)

Sean z_1 y z_1 dos números complejos no nulos tales $|z_1 + z_2| = |z_1| + |z_2|$.

- 1. Demuestre que $z_1\overline{z_2}$ es un número real tal que $z_1\overline{z_2} \geqslant 0$.
- 2. Deduzca que existe $\alpha \in \mathbb{R}$, $\alpha \geq 0$, tal que $z_1 = \alpha z_2$.

Solución: 1. Tenemos que $(|z_1| + |z_2|)^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$ mientras que $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2})$. Por tanto,

$$|z_1 + z_2| = |z_1| + |z_2| \iff |z_1||z_2| = Re(z_1\overline{z_2})$$

Como $|z_1||z_2|=|z_1||\overline{z_2}|=|z_1\overline{z_2}|$, se obtiene que el número complejo $z=z_1\overline{z_2}=a+ib$ cumple que $|z|=\mathrm{Re}(z)$, es decir $\sqrt{a^2+b^2}=a$. En consecuencia b=0 y $z=a\geqslant 0$. Así pues, $z_1\overline{z_2}$ es un número real tal que $z_1\overline{z_2}\geqslant 0$.

2. Como

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{|z_2|^2} \in \mathbb{R}^+$$

resulta que existe $\alpha \in \mathbb{R}$, $\alpha \geqslant 0$, tal que $z_1 = \alpha z_2$. Basta tomar $\alpha = \frac{z_1\overline{z_2}}{|z_2|^2}$.