1 - a.

1 - b.

country	r_1980_90	r_1990_00
Botswana	0.0784331	0.037379
Israel	0.0173781	0.0242224
Korea,		
Republic		
of	0.0820798	0.0535242
	-	
Kuwait	0.0409919	0.068114
Sierra		
Leone	0.0014743	-0.093413

2-a.

2 – b. =CORREL(B2:B143, C2:C143) -> 0.23701828. They are positively correlated.

3 – a.

Regression Statistics					
Multiple R	0.23701828				
R Square	0.05617767				
Adjusted R					
Square	0.04943608				
Standard Error	0.02004296				
Observations	142				

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	0.00334753	0.00334753	8.33300179	0.00451108
Residual	140	0.05624081	0.00040172		
Total	141	0.05958834			

		Standard					Lov
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.0
Intercept	0.02254735	0.00209591	10.7578072	4.7955E-20	0.01840363	0.02669106	0.0184
X Variable 1	0.20512026	0.07105716	2.88669392	0.00451108	0.06463645	0.34560408	0.0646

3 - b.

Regression Statistics						
Multiple R	0.21372605					
R Square	0.04567882					
Adjusted R						
Square	0.03886224					
Standard Error	0.02328827					
Observations	142					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	0.00363432	0.00363432	6.70113528	0.01065208
Residual	140	0.07592808	0.00054234		
Total	141	0.0795624			

	Standard						Lo
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.
Intercept	0.01401064	0.00239596	5.84760124	3.361E-08	0.00927369	0.01874759	0.009

X Variable 1 **0.16324687** 0.06306242 2.58865511 0.01065208 0.03856907 0.28792467 0.0385

3-c. (optional)

3-d.

- 1. The regression coefficient tells us how ceteris paribus one unit increase in the
- independent variable changes the dependent variable's unit.

 2. The R squared value represents how the variations in independent variables explain the variation in the dependent variable on a scale from 0 to 1.

4-a.

Regression Statistics					
Multiple R	0.38211131				
R Square	0.14600905				
Adjusted R					
Square	0.11437976				
Standard Error	0.00882566				
Observations	29				

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	0.00035957	0.00035957	4.61626019	0.04079766
Residual	27	0.00210309	7.7892E-05		
Total	28	0.00246266			

	Standard						Lo
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.
Intercept	0.00771889	0.00345317	2.23530459	0.03386518	0.00063357	0.0148042	0.000
X Variable 1	0.28196885	0.13123691	2.14854839	0.04079766	0.01269296	0.55124475	0.012

4 - b.

Regression Statistics						
Multiple R	0.2817142					
R Square	0.07936289					
Adjusted R						
Square	0.07106886					
Standard Error	0.02075917					
Observations	113					

ANOVA

					Significance
	$d\!f$	SS	MS	F	F
Regression	1	0.00412356	0.00412356	9.56867875	0.00250416
Residual	111	0.04783468	0.00043094		
Total	112	0.05195823			

	Standard						
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.
Intercept	0.02539353	0.0023105	10.9904786	1.8577E-19	0.02081512	0.02997195	0.020
X Variable 1	0.23619809	0.07635727	3.0933281	0.00250416	0.08489106	0.38750511	0.084

5-a. Please refer to the excel sheet.

6 - a. Please refer to the excel sheet.

7 - b.

8-a.

No. 1950 & 1951 data are missing.

8 - b.

9 - a.

Country	countrycode	r_1950_60	r_1960_70	r_1970_80	r_1980_90	r_1990_00	r_2000_10
Canada	CAN	0.018956	0.034588	0.028135	0.019457	0.020556	0.009165
China	CHN	0.050397	0.020365	0.038701	0.082514	0.090921	0.097351

10 – a. 142 & 852 respectively.

11 - a - I & III.

11 - a - II & III.

11 - b - I & II.

11 - b - III.

11 - b - IV. Both scatter plots have a positive linear trend, but the regression coefficient on the LN values are easier to understand and interpret, as they describe percentage changes.

12 - b.

The paper examines whether the economy in Asia, such as China and India, will have a rapid growth as our census views anticipate. The paper utilizes "estimated annual growth rate of GDP per capita" data from 1950 to 2010, and real GDP at constant 2005 national prices data. The authors suggest that, although a sharp decline in economy does not seem to be inevitable, their statistical analysis suggests that a discontinuous decline in growth is more likely occur than our general expectation suggests in China. As "Table B.2: Growth rate estimates for Canada and China" suggests, the growth rate of a county is not constant overtime. Furthermore, "Figure of Table 1" demonstrates how cross-national growth rates across two continuous decades are positively correlated along with various positive coefficient values, but how those rates two decades apart are negatively correlated which suggest a non-constant growth rate overtime. The authors used natural log to estimate the real GDP per capita, as using natural log allows us to capture the percentage changes in real GDP per capita across years, which are the changes in "rates" that serve as a tool for answering the research question.