Robin Champenois
Vincent Vidal

Planification du mouvement en robotique

18 février 2014



#### Introduction

### Garer un robot avec remorque

- Approche locale
- Approche globale



Paramétrisation  $(P_2(x,y), \theta_2, \theta_1)$ 

 $\Rightarrow$  Point de vue de la remorque.



Paramétrisation  $\mathbf{q} = (P_2(x, y), \tau, \kappa)$ 

$$tan(\theta_1 - \theta_2) = \kappa L_2$$

4 / 10

$$\tan \tau = \frac{\dot{y}}{\dot{x}}$$

$$\kappa = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$$

On peut agir instantanément sur  $\kappa$ 

#### Courbe canonique

# Garer un robot avec remorque



$$\Gamma(\mathbf{q},s) = \begin{cases} x + \frac{1}{\kappa} (\sin(\tau + \kappa s) - \sin \tau) \\ y + \frac{1}{\kappa} (\cos \tau - \cos(\tau + \kappa s)) \\ \tau + \kappa s \\ \kappa \end{cases}$$

Déplacement sur un cercle.

Passage d'une courbe canonique  $\gamma_1$  à une autre  $\gamma_2$  :

$$\gamma(u) = \alpha\left(\frac{u}{v}\right)\gamma_2(u) + \left(1 - \alpha\left(\frac{u}{v}\right)\right)\gamma_1(u)$$

(formule vraie pour x et y, pas pour tau et kappa)



Si  $\alpha(0)=0, \alpha(1)=1, \alpha'(0,1)=\alpha''(0,1)=0$ , le chemin est faisable par le robot.

En pratique : tous les chemins ne sont pas faisables (obstacles).

- $\Rightarrow$  Approche globale :
  - Trouver un chemin dans le graphe des configurations
  - Approcher ce chemin par un chemin réalisable

- Tirage aléatoire de points de passage (x, y). Graphe de visibilité pour la ligne droite;
- Création de courbes pour ces points;
  - Détection des collisions le long de ces courbes;
     Si collision :
    - Tirage aléatoire dans le graphe des configurations;
    - Approche par dichotomie du chemin trouvé.