Started on Tuesday, 18 March 2025, 11:25 AM

State Finished

Completed on Tuesday, 18 March 2025, 11:33 AM

Time taken 8 mins 10 secs

Marks 4.00/10.00

Grade 40.00 out of 100.00

Question 1

Complete

Mark 0.00 out of 1.00

What is the maximum number of nodes in a binary tree of height 'h' (where height is counted as the number of edges from root to the deepest node)?

- \bigcirc a. $(2^{h+1} 1)$
- b. (2^h 1)
- c. (h log h)
- d. (h^2)

h=1 to n

Question 2

Complete

Mark 1.00 out of 1.00

Consider the following pseudo-code for a function 'func(Node root)' applied to a binary tree. What does it compute? Function func(Node root): if root is NULL: return 0 return 1 + func(root.left) + func(root.right)

- a. Number of nodes in the tree
- O b. Maximum depth of the tree
- oc. Height of the tree
- d. Sum of all node values

Question 3

Complete

Mark 0.00 out of 1.00

Which of the following is always true for a full binary tree with `n` nodes?

- a. Every level is completely filled
- b. Every node has either 0 or 2 children
- oc. The height of the tree is always 'log n'
- Od. The tree is always balanced

Complete	
Mark 1.00 o	ut of 1.00
Given a	BST, which of the following elements will always be found in the left subtree of a node with value `x`?
О а.	Elements equal to `x`
O b.	All elements in the tree
○ c.	Elements greater than `x`
d.	Elements less than `x`
Question 5	
Complete	
Mark 1.00 o	ut of 1.00
О а.	The height of the BST The maximum value in the BST
© c.	The minimum value in the BST
○ d.	The sum of all nodes
Question 6	
Complete	
Mark 0.00 o	ut of 1.00
	the worst-case time complexity of deleting a node in an unbalanced BST with `n` nodes?
	O(n) O(log n)
	O(n log n)
O d.	
o u.	
Question 7	
Complete	
Mark 0.00 o	at of 1.00
Which c	f the following statements is true for Dijkstra's Algorithm?
	It works only for graphs with non-negative weights
	It guarantees the shortest path in all cases
О с.	It works correctly with negative-weight cycles

Question 8		
Complete		
Mark 0.00 out of 1.00		
What is the time complexity of Depth-First Search (DFS) on a graph with `V` vertices and `E` edges using an adjacency matrix?		
a. O(V + E)		
○ b. O(E log V)		
○ c. O(V)		
\bigcirc d. \bigcirc (V ²)		
Question 9		
Complete		
Mark 0.00 out of 1.00		
Which traversal method should be used to determine if a directed graph contains a cycle?		
a. Dijkstra's Algorithm		
○ b. Breadth-First Search (BFS)		
c. Depth-First Search (DFS) with recursion stack		
od. Kruskal's Algorithm		
Question 10		
Complete		
Mark 1.00 out of 1.00		
What is the output of the following function when applied to an undirected graph represented as an adjacency list? Function fun(Node start): Queue Q Add start to Q While Q is not empty: Node u = Q.dequeue() print u For each neighbor v of u: If v is not visited: Mark v as visited Add		
v to Q		
 a. Finding the minimum spanning tree 		
b. Depth-First Traversal		
c. Detection of cycles		
d. Breadth-First Traversal		