MAT301H5Y

Week 12 Lecture 1 Group action

Tuesday Aug 2nd, 2023 3-5pm instructed by Marcu-Antone Orsoni

Overview

We went over group actions again with some theorems and covered the class equation. Recall that group actions are not included in the final.

Reminders: Group actions

Definition: G acts on a set X if there is a function $G \times X \to X$ such that $(g, x) \to g \cdot x$ where the following hold true:

- 1. $\forall a, b \in G, \ a \cdot (b \cdot x) = (ab) \cdot x$
- 2. $\forall x \in X, e_G \cdot x = x$

Proposition: If G acts on X then there exists a homomorphism $\phi G \to S(X)$ defined by $g \to \sigma_g : x \to g \cdot x$

Converse, if $\phi: G \to S(X)$ is a homomorphism, then the actions defined by $g \cdot x \to \phi(g)(x)$ is an action

We also go over some examples as previous class:

Examples

- 1. G acts on itself by left/right translation: $g \cdot h \to gh$
- 2. G acts on itself by conjugation: $g \cdot h \to ghg^{-1}$
- 3. If $X = \{H \leq G\}$, then G can act by subgroup conjugation: $g \cdot H \to gHg^{-1}$
- 4. S(X) can act on the set X by the natural map $\sigma \cdot x \to \sigma(x)$
- 5. D_n can act on the regular *n*-sided polygon P_n .

We recapped the orbit and stablizer as well

Definition: Orbit and stabilizer

- 1. $\omega(x) = \{g \cdot x : g \in G\} \subset X$
- $2. \ G_x = \{g \in G : g \cdot x = x\} \preceq G$
- 3

Proposition: orbit equivalence relation

The relation on X defined by x $y \iff y \in w(x)$ is an equivalence relation. This means the orbits form a partition on X as below:

$$X = \bigsqcup_{w \text{ is an orbit}} w$$

Stablizer and orbit relation

Given a group action G on X, the following equation holds:

$$w(x) = [G : G_x] = \frac{|G|}{|G_x|}$$

Outline of proof: We try to show that the map $g \cdot x \to gG_x$ is well defined and a bijection

Corollary

$$|X| = \sum w(x) = \sum \frac{G}{G_x}$$