(19)日本国特許庁 (J'P)

(12) 特 許 公 報 (B2)

(11)特許番号 特許第3519037号

(P3519037)

(45)発行日 平成16年4月12日(2004.4.12)

(24)登録日 平成16年2月6日(2004.2.6)

(51) Int.Cl.7		識別記号	FΙ		
F16H	3/66		F16H	3/66	В
	3/62			3/62	A
					Z
	57/08			57/08	

請求項の数11(全 9 頁)

(21)出願番号	特顧2000-66306(P2000-66306)	(73)特許権者	598051819 ダイムラークライスラー・アクチェンゲ
(22)出顧日	平成12年3月10日(2000.3.10)		ゼルシャフト ドイツ連邦共和国 70567 シュトット
(65)公開番号	特開2000-266138(P2000-266138A)		ガルト, エップルシュトラッセ 225
(43)公開日	平成12年9月26日(2000.9.26)	(72)発明者	クラウス リードル ドイツ連邦共和国 72074 テュービン
審査請求日 (31)優先権主張番号	平成12年3月10日(2000.3.10) 19910299.6		ゲン エリー ホイス クナップ スト
(32)優先日	平成11年3月10日(1999,3,10)		ラッセ 8
(33)優先権主張国	ドイツ (DE)	(74)代理人	100094525
			弁理士 土井 健二 (外1名)
		審査官	中屋 裕一郎
		(56)参考文献	特開 平7-4478 (JP, A)
			特開 平10-281240 (JP, A)
			特開 平8-261299 (JP, A)
			最終頁に続く

(54) 【発明の名称】 遊星歯車式変速装置

1

(57)【特許請求の範囲】

【請求項1】入力軸と、出力軸と、前記入力軸からの運 動を前記出力軸に様々な速度伝達比で伝達するように、 前記入力軸と前記出力軸との間に配設されている第1、 第2および第3の遊星歯車伝達構造体とを備える遊星歯 車式変速装置であって、

前記第1遊星歯車伝達構造体が、第1遊星歯車キャリヤ と、前記第1遊星歯車キャリヤ上に回転自在に支持され ている第1遊星歯車と、前記第1遊星歯車を取り囲んで 前記第1遊星歯車と噛合し、かつ前記入力軸と共に回転 10 第2制動構造体と接続されている第2太陽歯車とを含 するように前記入力軸に接続されている第1リングギヤ と、前記第1遊星歯車が配列されている中心に配設され て前記第1遊星歯車と噛合している第1太陽歯車であっ て、前記第1太陽歯車を回転抑制する非係合可能な第1制 動構造体に接続されると共に前記第1遊星歯車キャリヤ

とのブロック接続部を設ける非係合可能な第1クラッチ とも接続されている第1太陽歯車とを含み、

前記第2遊星歯車伝達構造体が、その上に第2遊星歯車 を回転自在に支持すると共に前記出力軸に固着されてい る第2遊星歯車キャリヤと、前記第2遊星歯車の周りに 伸びかつ前記第2遊星歯車と噛合し、非係合可能な第2 クラッチを介して前記入力軸に接続されている第2リン グギヤと、前記第2遊星歯車が配列されている中に前記 第2遊星歯車と噛合して配設されており、非係合可能な

前記第3遊星歯車伝達構造体が、前記第2リングギヤに 前記第2リングギヤと共に回転するように固着されると 共に、前記出力軸の回転方向を逆転するために係合可能 となるように構成されている第3制動構造体にも固着さ

れている第3遊星歯車キャリヤと、前記第3遊星歯車キ ャリヤ上に回転自在に支持されている第3遊星歯車と、 前記第3遊星歯車の周りに伸び、かつ前記第3遊星歯車 と 噛合し、 さらに前記第1 遊星歯車キャリヤとの駆動連 結部を有する第3リングギヤと、前記第3遊星歯車の中 に前記第3遊星歯車と噛合して配設され、前記第2太陽 歯車への駆動連結部を有する第3太陽歯車とを含み、 前記第3リングギヤと前記第1遊星歯車キャリヤとの間 の前記駆動連結部が、前記第3リングギヤと前記第1遊 星歯車キャリヤとの間の接続を断つ切断クラッチを含 4.

前記第1クラッチが一方の側で前記第1太陽歯車と接続 され、他方の側で前記第3リングギヤと接続されてお り、

第6前進速を設けるように、どちらも第1太陽歯車と接 続されている前記第1制動構造体および前記第1クラッ チと前記第2クラッチが係合する一方で、前記第2制動 構造体と前記第3制動構造体、更に前記切断クラッチが 非係合されることを特徴とする遊星歯車式変速装置。

【請求項2】請求項1において、

速度伝達比が1以外である中間前進速度範囲の第3速 で、前記第2リングギヤに接続されている前記第2クラ ッチと、前記第2太陽歯車に接続されている前記第2制 動構造体とが係合されている一方、前記切断クラッチと 前記第1制動構造体および前記第3制動構造体は非係合 されていることを特徴とする遊星歯車式変速装置。

【請求項3】請求項1において、

前記第2太陽歯車と前記第3太陽歯車が相互に固着され ていることを特徴とする遊星歯車式変速装置。

【請求項4】請求項1において、更に、

一方向クラッチが、前記第1遊星歯車キャリヤと該変速 装置の静止部分との間に配設され、

前記入力軸から伝達されるトルクと反対のトルクが前記 第1 遊星歯車キャリヤに対して有効である時に前記一方 向クラッチが係合するように構成されていることを特徴 とする遊星歯車式変速装置。

【請求項5】請求項2において、

前記切断クラッチが非係合される中間前進速で、前記第 1クラッチが係合されていることを特徴とする遊星歯車 式変速装置。

【請求項6】入力軸と、出力軸と、前記入力軸からの運 動を前記出力軸に様々な速度伝達比で伝達するように、 前記入力軸と前記出力軸との間に配設されている第1、 第2および第3の遊星歯車伝達構造体とを備える遊星歯 車式変速装置であって、

前記第1遊星歯車伝達構造体が、第1遊星歯車キャリヤ と、前記第1遊星歯車キャリヤ上に回転自在に支持され ている第1遊星歯車と、前記第1遊星歯車を取り囲んで 前記第1遊星歯車と噛合し、かつ前記入力軸と共に回転 するように前記入力軸に接続されている第1リングギヤ 50 【請求項10】請求項6において、更に、

と、前記第1遊星歯車が配列されている中心に配設され て前記第1遊星歯車と噛合している第1太陽歯車であっ て、前記第1太陽歯車を回転抑制する非係合可能な第1制 動構造体に接続されると共に前記第1遊星歯車キャリヤ とのブロック接続部を設ける非係合可能な第1クラッチ とも接続されている第1太陽歯車とを含み、

前記第2遊星歯車伝達構造体が、その上に第2遊星歯車 を回転自在に支持すると共に前記出力軸に固着されてい る第2遊星歯車キャリヤと、前記第2遊星歯車の周りに 10 伸びかつ前記第2遊星歯車と噛合し、非係合可能な第2 クラッチを介して前記入力軸に接続されている第2リン グギヤと、前記第2遊星歯車が配列されている中に前記 第2遊星歯車と噛合して配設されており、非係合可能な 第2制動構造体と接続されている第2太陽歯車とを含

前記第3遊星歯車伝達構造体が、前記第2リングギヤに 前記第2リングギヤと共に回転するように固着されると 共に、前記出力軸の回転方向を逆転するために係合可能 となるように構成されている第3制動構造体にも固着さ 20 れている第3遊星歯車キャリヤと、前記第3遊星歯車キ ャリヤ上に回転自在に支持されている第3遊星歯車と、 前記第3遊星歯車の周りに伸び、かつ前記第3遊星歯車 と噛合し、さらに前記第1遊星歯車キャリヤとの駆動連 結部を有する第3リングギヤと、前記第3遊星歯車の中 に前記第3遊星歯車と噛合して配設され、前記第2太陽 歯車への駆動連結部を有する第3太陽歯車とを含み、 前記第1遊星歯車の周りに前記第1遊星歯車と噛合して 配設され、前記第1遊星歯車キャリヤに回転自在に支持 されている補助遊星歯車と、前記補助遊星歯車の周りに 30 伸びかつ前記補助遊星歯車と噛合する補助リングギヤ と、前記補助リングギヤに接続されて前記補助リングギ ヤを選択的に拘束する第4制動構造体が設けられ、 速度伝達比が1以外の場合、前記入力軸と前記第2リン グギヤとを相互接続する前記第2クラッチのほかに、制 動構造体としては前記第4制動構造体のみが係合される ことにより第7前進速を設けることを特徴とする遊星歯

【請求項7】請求項6において、

重式変速装置。

速度伝達比が1以外である低速前進速度範囲の第1速 で、制動構造体としては前記第4制動構造体と前記第2 40 制動構造体のみが係合することを特徴とする遊星歯車式 変速装置。

【請求項8】請求項6において、

後進運転<u>における後進第3速</u>の場合、<u>制動構造体として</u> は前記第4制動構造体と前記第3制動構造体のみが係合 することを特徴とする遊星歯車式変速装置。

【請求項9】請求項6において、

前記第2太陽歯車と第3太陽歯車が相互に固着されてい ることを特徴とする遊星歯車式変速装置。

解決する。

5

一方向クラッチが、前記第1遊星歯車キャリヤと該変速装置の静止部分との間に配設され、

前記入力軸から伝達されるトルクと反対のトルクが前記 第1遊星歯車キャリヤに対して有効である時に前記一方 向クラッチが係合するように構成されていることを特徴 とする遊星歯車式変速装置。

【請求項11】請求項9において、

前記第2クラッチが非係合される中間前進速で、第1クラッチが係合されていることを特徴とする遊星歯車式変速装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、3つの遊星歯車伝達構造体のうち少なくとも1つを介して出力軸に駆動連結可能な入力軸を備える遊星歯車式変速装置に関する。 【0002】

【従来の技術】例えばDE42 38 8<u>5</u>6 C2に 記載されているような公知の遊星歯車式変速装置におい ては、直接伝動の第4速範囲を含む5つの前進速度範囲 を、6つの摩擦係合要素(3つのブレーキと3つのクラ ッチ)を用いて獲得している。

[0003]

【発明が解決しようとする課題】本発明の目的は、上側の直接伝動速度範囲(直接ギヤ)を含む少なくとも6つの前進速度範囲を有する遊星歯車式変速装置を、従来のこの種の遊星歯車式変速装置の構造を最小限に改変することのみにより提供することにある。

[0004]

【課題を解決するための手段】3つの遊星歯車伝達構造体のうち少なくとも1つを介して出力軸に駆動連結可能 30な入力軸を備える遊星歯車式変速装置において、直接ギヤを含む5つの前進ギヤは、3つの摩擦クラッチと3つの摩擦ブレーキ構造体を用いて獲得される。

【0005】このような装置において、上記の目的を達成するために、本発明の一つの側面は、3つの遊星歯車伝達構造体の中の2つの間にある駆動連結部の1つに非係合可能な切断クラッチを設けることによって、第6前進速を獲得する。

【0006】上記の目的を達成するために、本発明の別の側面は、第4制動構造体にロックされるように接続されている補助リングギヤと噛合される補助遊星歯車を設けることにより、第6前進速を獲得する。この構成によると、第7前進速と第2後進速も獲得することができる。

【0007】本発明の一つの実施形態による構成においては、入力伝達構造体の連結接続部を分割し、他の2つの伝達構造体(出力伝達構造体と後進伝達構造体)を共通連結駆動装置として使用して、少なくとも1つの追加前進ギヤを形成することによって、上記の課題を解決する。

【0008】別の実施形態では、入力伝達構造体として、補助遊星歯車と噛合し、別個のブレーキに連結して、少なくとももう1つの前進速度範囲の形成に貢献する外側追加リングギヤを有する、いわゆるラビノー(Ra vigneaux)変速装置を使用することにより、上記課題を

【0009】前記一つの実施形態の遊星歯車式変速装置によると、中間前進速度範囲が提供されるが、この構成において、直接伝動ギヤ以外の中間ギヤにおいては、出10 力伝達構造体の外側リングギヤに接続されているクラッチおよび出力伝達構造体の太陽歯車に接続されているブレーキは係合される一方で、分離(切断)クラッチと後進速ブレーキは非係合することができる。

【0010】前記別の実施形態では、入力伝達構造体の 補助リングギヤと連結されているブレーキと、出力伝達 構造体の太陽歯車と連結されているブレーキとを排他的 に係合することによって、3つの伝達構造体の個々の速 度伝達比を多重連結した速度伝達比が提供され、それに よって第1(低)速度範囲を提供することにより、さら に下側の前進速度範囲、すなわち第7前進ギヤを有する 変速装置が形成される。

【0011】上記いずれの実施形態の遊星歯車式変速装置でも、2つの後進速度範囲を、出力伝達構造体と後進伝達構造体とをその両方の後進速度範囲において共通連結変速装置として動作させることにより獲得することができる。一方の後進速度範囲においては、後進ブレーキを係合し、1より大きい部分速度伝達比で入力伝達構造体の太陽歯車をロックする。他方の後進速度範囲においては、太陽歯車と連結されているクラッチの係合により入力伝達構造体の速度伝達比を1にする。

【0012】本発明による遊星歯車式変速装置の前記別の実施形態においては、さらに第3後進速が提供されるが、この第3後進速においては、後進ブレーキが係合されている時に、出力伝達構造体と後進伝達構造体とが共通連結伝達構造体として動作し、ブレーキにより固定されている補助リングギヤが入力伝達構造体の反動部材として使用される。

【0013】本発明の係る形式の遊星歯車式変速装置に おいては、出力伝達構造体と後進伝達構造体とのそれぞ れの太陽歯車間の駆動連結は、これらの伝達構造体に連 結されている摩擦クラッチを係合することによって達成 される。

【0014】いずれの実施形態の遊星歯車式変速装置においても、出力伝達構造体と後進伝達構造体の太陽歯車間の駆動連結を恒久的なものとして、クラッチおよびその制御装置を無くすようにしても良い。

【0015】本発明の遊星歯車式変速装置においては、 一方向クラッチを設けることにより、2つの最低速度範囲(第1,2速)にヒルホールディング機能が含まれて 50 いる。ヒルホールディング機能は第3速で有効にしても 7

良い。

[0016]

【発明の実施の形態】次に、添付図面に基づいて、本発 明のいろいろな実施形態について説明する。

【0017】まず、本発明の遊星歯車式変速装置の全て (図1、図3、図5、図7に示す4つ)の実施形態は、 下記の特徴を有する。

【0018】入力遊星歯車伝達構造体TEは遊星歯車キ ャリヤPTEを含む。外側リングギヤHEは遊星歯車P Eと噛合し、入力軸Eと駆動連結されている。内側太陽 10 歯車SEも遊星歯車PEと噛合し、係合/非係合可能な 摩擦ブレーキB1および非係合可能なクラッチK1に連 結されている。遊星歯車キャリヤPTEと固定ハウジン グ部GTとの間に、一方向クラッチ (a free-wheeling clutch) F1が設けられ、遊星歯車キャリヤPTEが入 力軸Eと反対方向に回転する時は係合するが、同方向の 回転は許可するように構成されている。

【0019】出力遊星歯車伝達構造体TAは、遊星歯車 キャリヤPTAを備えており、遊星歯車キャリヤPTA はその上に遊星歯車PAを回転自在に支持し、出力軸A 20 への駆動連結部を備えている。遊星歯車PAの周りに、 遊星歯車PAと噛合してリングギヤHAが配設されてお り、係合/非係合可能な摩擦クラッチK2を介して入力 軸Eに連結されている。遊星歯車PAはさらに太陽歯車 SAとも噛合しており、太陽歯車SAは係合/非係合可 能なブレーキB2に連結されている。

【0020】遊星歯車後進構造体TUは、遊星歯車キャ リヤPTUを備える。遊星歯車キャリヤPTUは、その 上に遊星歯車PUを回転自在に支持し、係合/非係合可 能なブレーキBRに連結され、さらに出力遊星歯車構造 30 体TAのリングギヤHAと駆動連結されている。 リング ギヤHUは遊星歯車PUと噛合し、入力歯車伝達構造体 TEの遊星歯車キャリヤPTEへの駆動連結部VEを備 えている。遊星歯車PUは太陽歯車SUと噛合してい る。

【〇〇21】図1と図5に示される2つの実施形態は、 駆動連結部VUKが2つの太陽歯車SAとSUとの間に 設けられており、これらの太陽歯車が係合/非係合可能 なクラッチK3を介して係合できるという点で共通して いる。

【0022】図3と図7に示される2つの実施形態は、 駆動連結部VUFが太陽歯車SAとSUとの間に設けら れており、これら2つの太陽歯車SAとSUは恒久的に 駆動連結されているという点で共通している。

【0023】図1と図3の2つの実施形態は、遊星歯車 キャリヤPTEとリングギヤHUとの間に設けられる駆 動連結部VEが、係合/非係合可能な摩擦クラッチKT RとクラッチK1を介して設けられており、クラッチK 1は一方で太陽歯車SEに、他方で摩擦クラッチKTR Uに連結されているという点で共通している。

【0024】図5と図7の2つの実施形態は、遊星歯車 キャリヤPTE上に、補助遊星歯車NPEが、遊星歯車 PEと噛合しかつ補助リングギヤNHEとも噛合するよ うに回転自在に支持されており、補助リングギヤNHE は係合/非係合可能な摩擦ブレーキBNに連結されてい るという点で共通している。

【0025】変速装置の状態:第1速(第1速度範囲) 図1: 図2の表に示されるように、ブレーキB1とB 2およびクラッチK3とKTRが係合されている。この 状態において、3つの伝達構造体TE、TA、TUは、 標準速度伝達比に設定されており、反動部材、すなわち それぞれ太陽歯車SEまたはSAまたはSUは定位置に ロックされ、変速装置を通る動力の流れに関して直列に 配設されるため、速度伝達比は個々の速度伝達比の乗算 によって与えられる。

【0026】図3: 変速装置の状態は、図4の表に示 されるように、クラッチKTRおよびブレーキB1, B 2が係合されてており、かつ太陽歯車SUもブレーキB 2との連結部VUFを介してロックされているため、図 1の状態に相当する。

【0027】図5: ここでも、変速装置の状態は、図 6の表によると、ブレーキB2とクラッチK3が係合さ れており、それによって2つの伝達構造体TAとTUが 標準設定、すなわちロックされた太陽歯車SA、SUが 反動部材として作用する設定となっており、変速装置を 通る動力の流れに関して直列に配列されている。このこ とは入力伝達構造体TEについても言えるが、この場 合、標準速度伝達比は、ロックされた補助リングギヤN HEを介して提供され、太陽歯車SEをロックする場合 に比べて速度伝達比が大きくなる。従って、第1速度範 囲においては、図1と図3の実施形態に比べて高い速度 伝達比が得られる。

【0028】図7: 図8の表によると、変速装置の状 態は、この場合も補助リングギヤNHEがブレーキBN によりロックされ、太陽歯車SA、SUがブレーキB2 によってロックされているため、図5の状態に相当す る。3つの伝達構造体TE、TA、TUは動力の流れに おいて直列に配置されている。従って、この場合も、第 1速度範囲(第1速)においては、図1と図3の構成に 比較して高い速度伝達比が得られる。

【0029】変速装置の状態: 第2速

図1: 図2の表に示されるように、この状態では、伝 達構造体TAとTUに関しては、太陽歯車SA、SUが 反動部材を形成するようにロックされたままになってい るが、入力伝達構造体TEが速度伝達比1:1になって いるという点のみが、第1速の場合と異なっている。そ の結果、伝達構造体TEの速度伝達比が1:1であるた め、全体的な速度伝達比は低くなる。すなわち第2速に からリングギヤHUへと続く駆動連結部VEの一部VE 50 ついては、3つの伝達構造体の直列配置の結果、出力速

40

9

度が高くなる。

【0030】図3: 図4の表によると、この変速装置 の状態は、速度伝達比が1:1である入力伝達構造体T Eが、太陽歯車SA、SUがロックされて標準配置にな っている他の2つの伝達構造体TA、TUと直列に配置 されている点で、図1の状態に相当するものである。

【0031】図5: 図6の表によると、この変速装置 の状態は、3つの伝達構造体TE、TA、TUの全部 が、太陽歯車SE、SA、SUが全てロックされて反動 歯車として作用する標準配置になっている点で、第1速 10 に関する図1の状態に相当する。また、伝達構造体は動 力の流れにおいて直列の設定に配置されており、この場 合も3つの伝達構造体の速度伝達比の乗算で速度伝達比 が求められる。

【0032】図7: 図8の表によると、この変速装置 の状態も、3つの伝達構造体TE、TA、TUの全部 が、太陽歯車SE、SA、SUがロックされる標準配置 となっており、また直列に配置されることにより、これ ら3つの伝達構造体TA、TE、TUの速度伝達比の乗 算によって第2速の速度伝達比が求められるという点 で、第1速に関する図1の状態に相当するものである。 【0033】変速装置の状態: 第3速

図1: 図2の表によると、変速装置の状態は、クラッ チK3が非係合されて伝達構造体TUの太陽歯車SUが 反動部材として作用せず、伝達構造体TEがクラッチK 1とKTRにより速度伝達比1:1に設定されている状 態となっているため、伝達構造体TEとTUは速度伝達 比の設定に影響を与えていない状態となっている。その 結果、第3速の速度伝達比は、太陽歯車SAがロックさ

【0034】図3: 図4の表によると、第3速の変速 装置の状態は、やはり太陽歯車SAがロックされて反動 部材として作用する出力伝達構造体TAの速度伝達比の みから速度伝達比が与えられるという点で図1の状態に 相当している。クラッチK2とブレーキB2のみが係合 され、クラッチKTRは非係合されている。この第3速 においては、クラッチK1をさらに係合することによ り、入力伝達構造体TEの伝達部材PEとSEの速度挙 動を制御できるようにしても良い。ただし、クラッチK 40 速で駆動される。 1が速度伝達比に影響を与えることはない。

【0035】図5: この実施形態では、入力伝達構造 体TEが、クラッチK1により速度伝達比1:1で、伝 達構造体TUおよびTAと、動力の流れに関して直列に 配置されている。伝達構造体TAとTUは、ロックされ た太陽歯車SA、SUが反動部材として作用して、それ ぞれの標準速度伝達比になっている。従って、この場合 の速度伝達比は、2つの伝達構造体TAとTUの標準速 度伝達比の積となる。

【0036】図7: 図8の表に示されるように、クラ 50 つの伝達構造体TE、TA、TUが相互連結されて一体

ッチK1とブレーキB2とが係合されているため、入力 伝達構造体TEは、図5の実施形態と同様に、伝達構造 体TUおよびTAと動力の流れに関して直列に配置され ている。伝達構造体TU、TAは、太陽歯車SUとSA の間の連結構造体VUFをロックすることにより、結果 的に太陽歯車SUとSAが反動部材として作用し、それ ぞれの標準速度伝達比になっており、直流に配列されて いる。この場合も、速度伝達比は伝達構造体TAとTU の標準速度伝達比の積となる。

10

【0037】変速装置の状態: 第4速

図1: 全てのクラッチ (K1、K2、K3、KTR) が係合されているため、全ての伝達構造体TE、TA、 TUが共にロックされて、速度伝達比は1:1となって いる。

【0038】図3: 全てのクラッチK1、K2、KT Rが係合されており、全ての伝達構造体TE、TA、T Uが相互連結されて、速度伝達比は1:1となってい

【0039】図5: 図6の表によると、クラッチK1 20 とK2とブレーキB2が係合されているため、伝達構造 体TEとTUの速度伝達比は1:1であり、出力伝達構 造体TAは、太陽歯車SAがロックされて反動部材とし て作用する標準速度伝達比の設定となっている。従っ て、速度伝達比は出力伝達構造体TAの速度伝達比のみ によって決まる。

【0040】図7: 図8の表によると、クラッチK2 とブレーキB2が係合されている。太陽歯車SAとSU が連結されているため、伝達構造体TEとTUは動力伝 達路に含まれていない。出力伝達構造体TAは、相互連 れた出力伝達構造体TAの速度伝達比のみから与えられ 30 結されている太陽歯車SAとSUがロックされるため標 | 準変速設定となっている。従って、速度伝達比は出力伝 達構造体TAの速度伝達比のみによって決まる。

【0041】変速装置の状態: 第5速

図1: 図2の表に示されるように、クラッチK2、K 3、KTRおよびブレーキB1が係合されているため、 3つの伝達構造体TE、TA、TUの全部が相互連結さ れて連結駆動装置を形成している。ロックされた太陽歯 車SEが反動部材を形成するため、相互連結されている 太陽歯車SAとSUは入力軸Eによって出力軸Aより高

【0042】図3: この場合、クラッチK3の係合の 代わりに、太陽歯車SAとSUとの間に連結部VUFが 設けられている。この点を除いては、図4の表に示す通 りブレーキB1のほかにクラッチK2とKTRも係合さ れ、図1の実施形態と同様のオーバードライブ変速ギヤ が獲得されるため、3つの伝達構造体TE、TA、TU に関しては図1と同一の連結構成となっている。

【0043】図5: 図6の表に示されるように、3つ のクラッチK1、K2, K3が係合されているため、3 として回転することにより、直接駆動装置が獲得され る。

【0044】図7: 図8の表に示されるように、2つ のクラッチK1とK2が係合されている。図5の係合さ れたクラッチK3の機能は、連結部VUFによって行わ れるため、この場合も3つの伝達構造体TE、TA、T U全部が一体として回転して直接変速装置を形成してい

【0045】変速装置の状態: 第6速

ラッチK1、K2、K3が係合されていることにより、 2つの伝達構造体TAとTUが連結されている。リング ギヤHUがロックされて反動部材として作用する。太陽 歯車SAとSUは、出力軸Aより入力軸Eに関して高速 で駆動される。

【0046】図3: 図4の表に示されるように、ブレ ーキB1とクラッチK1、K2が係合されている。その 結果、太陽歯車SAとSUが相互連結されているため、 2つの伝達構造体TAとTUがやはり結合されて、ロッ クされたリングギヤHUが反動部材として作用する連結 20 駆動装置を形成している。その結果、太陽歯車SAとS Uは入力軸Eに関して高度に加速され、出力軸Aの速度 は入力軸Eに関してそれより少ない程度にアップされ 3.

【0047】図5: 図6の表に示されるように、ブレ

ーキB1とクラッチK2, K3が係合されていることに より、3つの伝達構造体全部が相互連結されて連結駆動 装置を形成している。太陽歯車SEがロックされること により、入力軸Eに関し相互連結された太陽歯車SAお よびSUには比較的高い加速が与えられ、出力軸Aの速 30 れ、出力伝達構造体TAにおいてそれら太陽歯車SA、 度についてはそれより低い程度の加速が与えられる。 【0048】図7: 図8の表に示されるように、ブレ ーキB1とクラッチK2が係合されている。連結部VU Fが太陽歯車SAとSUを相互連結していることによ り、3つの伝達構造体TE、TA、TUの全部が相互連 結されて連結駆動装置を形成している。太陽歯車SEは ロックされて反動部材を形成している。この設定におい て、入力軸Eに関し太陽歯車SA、SUの速度は比較的 大きく加速され、出力軸Aの速度はそれより低い程度に

【0049】変速装置の状態: 第7速

加速される。

図5: 図6の表に示されるように、ブレーキBNとク ラッチK2,K3が係合されているため、3つの伝達構 造体全部が連結されて1つの連結駆動装置を形成してい る。この構成において、ロックされた補助リングギヤN HEが駆動装置の速度、すなわち太陽歯車SAとSUの 速度を入力軸Eの速度に関し比較的高い率で加速し、ま た出力軸Aの速度をそれより低い程度に加速する。

【0050】図7: 図8の表に示されるように、ブレ

太陽歯車SAとSUの連結部VUFが図5のクラッチK 3の係合機能を行うため、ここでも3つの伝達構造体T E, TA, TUの全部が相互連結されて、共通の連結駆 動装置を形成しており、ロックされた補助リングギヤN HEが反動部材を形成して、入力軸Eに関し太陽歯車S A、SUの速度を比較的高い率で加速すると共に、出力 軸Aの速度についてはそれより低い率で加速している。

12

【0051】変速装置の状態: 後進第1速(R1) 図1: 図2の表に示されるように、ブレーキB1とB 図1: 図2の表に示されるように、ブレーキB1とク 10 RおよびクラッチK3とKTRが係合されている。その 結果、2つの伝達構造体TAとTUが相互連結されて、 ロックされた遊星歯車キャリヤPTUと共に連結駆動装 置を形成している。この連結駆動装置より先の動力路に は、伝達構造体TEが、太陽歯車SEをロックされた標 準変速配置で配設されている。この標準変速配置による と、この速度範囲において比較的高い変速が得られ、後 進ブレーキBRが係合されているために相互連結されて いる太陽歯車SAとSUに逆方向の回転が与えられる。 そして、太陽歯車SA、SUの速度が出力軸Aに関し、 さらに又いくらか減速される。

> 【0052】図3: この場合も連結軸VUFが図1の クラッチK 3が係合されている状態の機能を行うが、図 4の表の通り、ここではクラッチKTRと後進ブレーキ BRも係合されている。その結果、伝達構造体TAとT Uが相互連結されて駆動装置を形成し、標準配置の入力 伝達構造体TEがその駆動装置より先の動力路に配設さ れている。こうして、標準変速配置により高い速度伝達 比が提供されると共に、後進ブレーキBRが係合されて いることにより太陽歯車SA、SUに逆回転が与えら SUの速度がさらに減速されるため、出力軸Aの後進速 度が減速される。

【0053】図5: 図6の表に示されるように、ブレ ーキB1とBRおよびクラッチK3が係合されているた め、2つの伝達構造体TAとTUが相互連結されて、ロ ックされた遊星歯車キャリヤPTUと共に駆動装置を形 成している。標準配置の入力伝達構造体TEがその駆動 装置より先の動力路に配設されている。伝達構造体TE が標準配置になっていることで高い速度伝達比が得られ 40 るのに対し、駆動装置の有効な反動部材PTUにより連 結された太陽歯車SA、SUに逆回転が与えられ、出力 伝達構造体TAにおいて、それら太陽歯車SA、SUの 速度はさらに出力軸Aに対してやや減速される。

【0054】図7: 図8の表に示されるように、ブレ ーキB1とBRのみが係合されている。図5のクラッチ 3が係合されている状態の機能をやはり連結軸VUFで 行うことにより、2つの伝達構造体TAとTUが相互連 結されて、ロックされた遊星歯車キャリヤPTUが反動 部材として作用する駆動装置を形成している。太陽歯車 ーキBNとクラッチK2が係合されている。この場合、50 SEがロックされて標準配置になっている入力伝達構造 体TEが、駆動装置の先の動力路に配設されており、こ の標準配置によって高い速度伝達比が与えられる。係合 された後進ブレーキBRによって、相互連結された太陽 歯車SAとSUに逆回転が与えられ、出力伝達構造体T Aにおいて、出力軸Aに対しそれら太陽歯車SA、SU の速度がさらに減速される。

【0055】<u>変速装置の状態: 後進第2速(R2)</u> 図1: 図2の表に示されるように、クラッチK1, K 3、KTRおよび後進ブレーキBRが係合されている。 つのユニットとして動作し、他の2つの伝達構造体TA とTUによって形成される連結駆動装置と入力構造体T Eとが直列に配列されている。遊星歯車キャリヤPTU がロックされて、動力路に直列に配設された反動部材を 形成する。1:1の速度伝達比によって低い変速が与え られ、係合されたブレーキBRにより相互連結された太 陽歯車SAとSUに逆回転が与えられ、出力伝達構造体 TAにおいて、出力軸Aに対し太陽歯車SA、SUの速 度がやや減速される。

ッチK1とKTRおよびブレーキBRが係合される一 方、連結軸VUFが図1の係合されたクラッチK3の機 能を果たしている。その結果、入力伝達構造体TEは速 度伝達比1:1で1つのユニットとして回転する。他の 2つの伝達構造体TAとTUによって形成される、ロッ クされた遊星歯車キャリヤPTUが反動部材を形成して いる連結駆動装置が、伝達構造体TEと直列に動力路に 配設されている。この1:1の部分的な速度伝達比が全 体として低い速度伝達比を与える。係合されている後進 ブレーキBRが相互連結されている太陽歯車SAとSU 30 の回転方向を変え、出力伝達構造体TAにおいて、出力 軸Aに対し太陽歯車SA、SUの速度が減速される。

【0057】図5: 図6の表に示されるように、クラ ッチK1とK3および後進ブレーキBRが係合されてい る。入力伝達構造体TEが速度伝達比1:1で1つのユ ニットとして回転する。ロックされた遊星歯車キャリヤ PTUが反動部材の働きをする連結駆動装置が、他の2 つの伝達構造体TAとTUによって形成され、動力路に 直列に配設されている。これにより、1:1の部分的な 速度伝達比が小さな速度変化を与える。係合されたブレ 40 ーキBRにより、太陽歯車SAとSUに逆回転が与えら れ、その速度が出力伝達構造体TAにおいて出力軸Aに 対し減速される。

【0058】図7: 図8の表に示されるように、クラ ッチK1と後進ブレーキBRが係合されている。図5の 係合されたクラッチK3の機能は、ここでも太陽歯車S AとSUの連結部VUFによって代行される。入力伝達 構造体TEが部分的な速度伝達比1:1をもって1つの ユニットとして動作する。ロックされた遊星歯車キャリ ヤPTUが反動部材を形成する連結駆動装置が、他の2 50 手段が作動されるかを示す表である。

つの伝達構造体TAとTUによって提供され、動力路に 入力伝達構造体TEと直列に配設されている。この時、 部分的な速度伝達比1:1は速度の変化を与えない。係 合されたブレーキBRが相互連結されている太陽歯車S AとSUの回転方向を逆にし、その速度が出力伝達構造 体TAにおいて出力軸Aに対し減速される。

14

【0059】変速装置の状態:後進第3速(R3)

図5: 図6の表に示されるように、ブレーキBNとB RおよびクラッチK3が係合されている。その結果、2 その結果、入力伝達構造体TEは速度伝達比1:1で1 10 つの伝達構造体TAとTUが結合されて、ロックされた 遊星歯車キャリヤPTUとリングギヤとで反動部材を形 成する駆動装置が形成されている。入力伝達構造体TE は、ロックされたリングギヤNHEが反動部材を形成す る標準配置になっている。この構成により、3つの後進 段R1~R3の中で最大の変速を与え、係合されたブレ ーキBRは相互連結された太陽歯車SAとSUを逆回転 させる。その速度は出力伝達構造体TAにおいて出力軸 Aに対しさらに減速される。

【0060】図7: 図8の表に示されるように、ブレ 【0056】図3: 図4の表に示されるように、クラ 20 ーキBNとBRのみが係合されている。図5の係合され たクラッチK3の機能は、太陽歯車SAとSUとを相互 連結する連結軸VUFによって代行される。従って、2 つの伝達構造体TAとTUは、遊星歯車キャリヤPTU がロックされた駆動装置を形成する。ロックされた補助 リングギヤNHEが反動部材を形成している標準配置の 入力伝達構造体TEが、その駆動装置より先の動力路に 配設されている。ロックされた補助リングギヤNHEに よって非常に高い変速、3つの後進速の中で最も高い変 速が行われる一方、ロックされた遊星歯車キャリヤPT Uが相互連結されている太陽歯車SAとSUに逆回転を 与える。その速度は、出力伝達構造体TAにおいて出力 軸Aに対しさらに減速される。

> 【0061】以上の説明においては、様々な伝達構造体 の回転運動伝達部材を歯車として説明を行って来たが、 歯車の代わりに例えば摩擦ローラや牽引ローラを用いて も良い。

【図面の簡単な説明】

【図1】遊星歯車式変速装置の第1の実施形態を模式的 に示す断面図である。

【図2】図1に示す変速装置の各変速範囲についてどの シフト手段(クラッチ/ブレーキ)を有効にするかを示 す表である。

【図3】遊星歯車式変速装置の第2の実施形態を模式的 に示す縦断面図である。

【図4】図3に示す変速装置の各ギヤに関してどのシフ ト手段が作動されるかを示す表である。

【図5】遊星歯車式変速装置の第3の実施形態を模式的 に示す縦断面図である。

【図6】図5の設定により、各ギヤに関してどのシフト

15

【図7】遊星歯車式変速装置のさらに別の実施形態を模式的に示す縦断面図である。

【図8】図7の設定においてどのシフト手段が作動されるかを示す表である。

【符号の説明】

A 出力軸

E 入力軸

F1 一方向クラッチ (a free-wheeling clutch)

TA, TE, TU 伝達構造体

 B1, B2, BN, BR ブレーキ PA, PE, PU 遊星歯車

SA, SE, SU 太陽歯車

PTA, PTE, PTU 遊星歯車キャリヤ

16

NPE 補助遊星歯車

NHE 補助リングギヤ

HA, HE, HU リングギヤ

GT 固定ハウジング部

VE, VEU, VUK, VUF 駆動連結部

10

【図1】

GT PTE SE TA TU

ギヤ	K1	K2	КЗ	KTR	B 1	B2	8R
1			•	•	•	•	
2	•		•	•		•	
3	•	•		•		•	
4	•	•	•	•			
5		•	•	•	•		
6	•	•	•		•		
R1			•	•	•		•
R2	•		•	•			•

【図2】

【図4】

X1	K2	KTR	B1	B2	BR
		•	•	•	
•		•		•	
•	•			•	
•	•	•			
	• ;	•	•		
•	•		•		
		•	•		•
•		•			•

【図6】

ギヤ	K 1	K2	К3	B1	B2	BN	BR
1			•		•	•	
2			•	•	•		
3	•		•		•		
4	•	•			•		
5	•	•	•				
6.		•	•	•			
7		•	•			•	
R1			•	•			•
R2	•		•				•
R3			•			•	•

【図8】

	_				
K1	K2	81	B2	BN	BR
			•	•	
		•	•		
•			•		
	•		•		
•	•				
	•	•			
	•			•	
		•			•
•					•
				•	•
	•	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		

【図3】

4/12/06, EAST Version: 2.0.3.0

フロントページの続き

(58)調査した分野(Int.Cl.⁷, DB名) F16H 3/00 - 3/78 F16H 57/08