EECS 553 Homework 1 Solution (W24)

1. Honor Code (3 pts each)

Grading Rubric:

3 points each if correct, and 0 point if incorrect

- (a) True
- (b) True
- (c) False

2. PD/PSD matrices

(a) (3 points)

Grading Rubrics

- (1) 3 points if fully correct
- (2) 2 points for invoking correct definition of covariance/PSD matrix, but incorrect final result
- (3) 1 point for incorrect usage of eigenvalue decomposition or wrong definition of eigenvalue/vector
- (4) 0 if no effort

Let C be the covariance matrix of a random vector X. Then $C = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$. For any vector v, $v^T C v = \mathbb{E}[v^T (X - \mathbb{E}[X])(X - \mathbb{E}[X])^T v] = \mathbb{E}[(v^T (X - \mathbb{E}[X]))^2] \ge 0$.

(b) (6 points)

Grading Rubrics

- (1) 2 points for identifying $\det(\mathbf{A}) = \prod \lambda_i$
- (2) 1 point for showing invertibility is equivalent to that all eigenvalues are nonzero.
- (3) 1 point for identifying eigenvalues of A^{-1} .
- (4) 1 point for showing $A^{-1} = U^T \Lambda^{-1} U$
- (5) 1 point for showing A^{-1} is also PD.

By spectral theorem, $\mathbf{A} = \mathbf{U}^T \mathbf{\Lambda} \mathbf{U}$ where $\mathbf{\Lambda}$ is a real diagonal matrix and \mathbf{U} is orthonormal. As $\det(\mathbf{U}) = \det(\mathbf{U}^T) = \pm 1$ and $\det(\mathbf{A}) = \det(\mathbf{U}^T) \det(\mathbf{\Lambda}) \det(\mathbf{U}) = \det(\mathbf{U})^2 \det(\mathbf{\Lambda}) = \det(\mathbf{\Lambda}) = \prod \lambda_i$ where $\{\lambda_i\}$ are eigenvalues of $\mathbf{\Lambda}$. \mathbf{A} is invertible if and only if $\det(\mathbf{A}) \neq 0$, which is equivalent to all of its eigenvalues are nonzero. $\mathbf{A}^{-1} = \mathbf{U}^T \mathbf{\Lambda}^{-1} \mathbf{U}$. So the eigenvalues of \mathbf{A}^{-1} are $\{\frac{1}{\lambda_i}\}$. If \mathbf{A} is PD, then $\forall i, \lambda_i > 0$ and $\frac{1}{\lambda_i} > 0$. So \mathbf{A}^{-1} is also PD, given that all of its eigenvalues are positive.

3. Probability (3 points each)

(a) (3 points)

Grading Rubrics

- (1) 3 points for a correct proof.
- (2) 2 points for applying the axiom of probability but the proof is not correct.

Let Ω be the sample space. $\Pr(X=x)=\Pr(\{\omega\in\Omega:X(w)=x\})$. $\Pr(\{\omega\in\Omega:X(w)=x\})=\bigcup_y\{\omega\in\Omega:X(w)=x,Y(w)=y\}$. Note $\{\omega\in\Omega:X(w)=x,Y(w)=y\}$ and $\{\omega\in\Omega:X(w)=x,Y(w)=y'\}$ are disjoint when $y\neq y'$. Hence, $\Pr(X=x)=\Pr(\{\omega\in\Omega:X(w)=x\})=\sum_y\Pr(\{\omega\in\Omega:X(w)=x,Y(w)=y\})=\sum_y\Pr(X=x,Y=y)=\sum_yp(x,y)$.

(b) (3 points)

Grading Rubrics

- (1) 3 points for a correct proof.
- (2) 1 point for applying the definition of expectation.
- (3) 1 point for applying the definition of conditional probability.
- (4) 1 point for applying the definition of conditional expectation.

$$\mathbb{E}[X] = \sum_x x p(x) = \sum_x x \sum_y p(x,y) = \sum_x x \sum_y p(x|y) p(y) = \sum_y p(y) \sum_x x p(x|y) = \sum_y p(y) \mathbb{E}[X|Y=y] = \mathbb{E}_Y[\mathbb{E}[X|Y]]$$

4. Gaussian level sets (3 pts each)

(a) Grading Rubrics

- (1) Add 1 point to the student's score for each of the following that is satisfied:
 - 1 points for drawing an ellipse with correct center
 - $\bullet\,$ 1 point for correct semi-minor and semi-major length or correct minor and major length
 - 1 point for correct orientation
- (2) 0 if no effort

Observe U is the rotation matrix that rotate vector counterclockwise $\frac{\pi}{6}$ with respect to the positive horizontal axis, with U^T as its inverse (the inverse of an orthogonal matrix is its transpose).

Thus $\Sigma^{-1} = U\Lambda^{-1}U^T$. This is a handy thing to know, and students are encouraged to check it for themselves. A similar formula holds for the pseudoinverse when a square matrix is not full rank, or using the SVD to find the pseudoinverse of a non-square matrix.

Define $x' = U^T(x - \mu)$. Then we can write that a vector $x \in \mathcal{C}$ if x' satisfies

$$2 \ge (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = (\boldsymbol{x}')^T (\boldsymbol{\Lambda})^{-1} \boldsymbol{x}' = \frac{(x_1')^2}{4} + \frac{(x_2')^2}{3},$$

which is an Ellipse. In standard form, this ellipse can be written

$$\frac{(x_1')^2}{8} + \frac{(x_2')^2}{6} = 1$$

with lengths $2\sqrt{2}$ and $\sqrt{6}$ for the minor and major axis, respectively.

Thus \mathcal{C} is simply the Ellipse specified above rotated counter clockwise $\frac{\pi}{6}$ and translated by vector $[-1 \ -1]^T$

Figure 1: P3(a) plot

(b) Grading Rubrics

- (1) Add 1 point to the student's score for each of the following that is satisfied:
 - 1 point for deriving R as sum of square of two independent Gaussian random variables
 - 1 point for identifying the correct chi-squared random variable
 - 1 point for correct answer (full credit if the answer is within ± 0.01)

(2) 0 if no effort

[Method 1] Define $\mathbf{X}' = \mathbf{U}^T(\mathbf{X} - \mu)$, then by property¹ of Gaussian distribution $\mathbf{X}' \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}')$, where $\mathbf{\Sigma}' = \mathbf{U}^T \mathbf{\Sigma} \mathbf{U} = \mathbf{\Lambda}$, as $\mathbf{\Lambda}$ is diagonal X_1' and X_2' are independent Gaussian random variables with the same mean 0 and variance 4 and 3 respectively.

Define $R = (\mathbf{X}')^T \mathbf{\Lambda}^{-1} \mathbf{X}' = \frac{(X_1')^2}{4} + \frac{(X_2')^2}{3}$, notice that R follows a chi-square distribution with 2 degrees of freedom².

Observe $\{ \boldsymbol{x} \in \mathcal{C} \} = \{ (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \leq 2 \}.$

Thus $\Pr(X \in \mathcal{C}) = \Pr(R \leq 2) = F(2) = 0.6321$ where F denotes the cumulative distribution function (cdf) of the chi-square distribution with 2 degrees of freedom.

¹if $X \sim \mathcal{N}(\mu, \Sigma)$, for any matrix $A, Y = A(x - \mathbf{b}) \sim \mathcal{N}(A(\mu - \mathbf{b}), A\Sigma A^T)$

²A random variable Y follows a chi-square distribution if $Y = X_1^2 + X_2^2$ for X_1, X_2 that are independent Gaussian random variables with mean 0 and variance 1

[Method 2] Though the following may look slightly different, it is equivalent to Method 1 just with a different choice of X'.

You can identify $\Sigma^{-1} = U\Lambda^{-1/2}\Lambda^{-1/2}U^T$, where $\Lambda^{-1/2} = diag(\frac{1}{2}, \frac{1}{\sqrt{3}})$. Then define $X' = A(X - \mu)'$ where $A = \Lambda^{-1/2}U^T$. Invoke the linear transformation property of Gaussian distribution, we can conclude $X' \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, where \mathbf{I} is the identity matrix. Hence, $R = (X')^T X'$ follows a Chi-square distribution with 2 degrees of freedom. Thus $\Pr(X \in \mathcal{C}) = \Pr(R \leq 2) = F(2) = 0.6321$ where F denotes the cumulative distribution function (cdf) of the chi-square distribution with 2 degrees of freedom.

5. Unconstrained Optimization (3 points each)

(a) (3 points)

Grading Rubrics

- (1) Add 1 point to the student's score for each of the following that is satisfied:
 - 1 point for $g(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) = f(\mathbf{A}(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) + \mathbf{b})$, or if proving in reverse order of what is shown below $tg(\mathbf{x}_1) + (1-t)g(\mathbf{x}_2) = tf(\mathbf{A}\mathbf{x}_1 + \mathbf{b}) + (1-t)f(\mathbf{A}\mathbf{x}_2 + \mathbf{b})$
 - 1 point for correctly factoring $f(t(Ax_1 + b) + (1 t)(Ax_2 + b))$
 - 1 point for correctly applying the definition of convexity via $f(t(\mathbf{A}\mathbf{x}_1 + \mathbf{b}) + (1 t)(\mathbf{A}\mathbf{x}_2 + \mathbf{b})) \le tf(\mathbf{A}\mathbf{x}_1 + \mathbf{b}) + (1 t)f(\mathbf{A}\mathbf{x}_2 + \mathbf{b})$
- (2) 0 if no effort

We will prove this directly using the definition of convexity. Starting with the term we wish to upper bound, we have

$$g(tx_1 + (1-t)x_2) = f(A(tx_1 + (1-t)x_2) + b)$$

$$= f(tAx_1 + (1-t)Ax_2 + b)$$

$$= f(t(Ax_1 + b) + (1-t)(Ax_2 + b))$$

$$\leq tf(Ax_1 + b) + (1-t)f(Ax_2 + b)$$

$$= tg(x_1) + (1-t)g(x_2),$$

where the inequality follows from the convexity of f. This verifies the convexity of g.

(b) Grading Rubrics

- (1) Add points to the student's score for each of the following that is satisfied:
 - 2 point for writing the quadratic function in terms of summation
 - 2 point for evaluating the entries of the hessian matrix
 - 1 point for concluding f is convex if A is PSD, and strictly convex if A is PD
- (2) 0 if no effort
- (3) Students receive full credits if they directly apply the rules of vector calculus.

Let $\mathbf{x} = [x_1, \dots, x_d]^T$, A_{ij} denote the (i,j)-th entry of matrix \mathbf{A} , and b_i denote the i-th entry of \mathbf{b} then the quadratic function $f(\mathbf{x})$ can be written explicitly as:

$$f(x) = \frac{1}{2}x^T A x + \mathbf{b}^T x + c = \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d A_{ij} x_i x_j + \sum_{i=1}^d b_i x_i + c$$
.

Applying the definition of the Hessian matrix, the (k,ℓ) -th entry of $\nabla^2 f(x)$ is given by:

$$\begin{split} \left[\nabla^2 f(\boldsymbol{x})\right]_{k,l} &= \frac{\partial^2 f(\boldsymbol{x})}{\partial x_k \partial x_\ell} \\ &= \frac{\partial^2}{\partial x_k \partial x_\ell} \left\{ \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d A_{ij} x_i x_j + \sum_{i=1}^d b_i x_i + c \right\} \\ &= \frac{\partial}{\partial x_k} \left\{ \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d A_{ij} \frac{\partial}{\partial x_\ell} x_i x_j + \sum_{i=1}^d \frac{\partial}{\partial x_\ell} b_i x_i \right\} \\ &= \frac{\partial}{\partial x_k} \left\{ \sum_{i=1}^d A_{i\ell} x_i + b_\ell \right\} \\ &= A_{k\ell} \,, \end{split}$$

thus the Hessian of f is A. The function f is convex when A is positive semi-definite, and strictly convex if A is positive definite.