Feature Engineering(특성공학)

특정 애플리케이션에서 가장 적합한 데이터 표현을 찾는 것을 특성 공학(Feature Engineering)이라 한다.

학습 목표

가. get_dummies에 대해 실습을 통해 One-Hot-Encoding을 확인해 본다.

학습 내용

가. panadas에서의 One-Hot-Encoding 해보기

1-1. pandas를 이용한 One-Hot-Encoding

```
import pandas as pd
train = pd.read_csv("D:/dataset/data_titanic/train.csv", index_col=["PassengerId"])
print(train.shape)
train.head()
(891, 11)
```

Out[104]:

:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	Passengerld											
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [105]: test = pd.read_csv("D:/dataset/data_titanic/test.csv", index_col=["PassengerId"])
    print(test.shape)
    test.head()
```

(418, 10)

Out[105]:

	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld										
892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

가. Preprocessing

```
In [106]: train.loc[train["Sex"] == "male", "Sex"] = 0
    train.loc[train["Sex"] == "female", "Sex"] = 1

print(train.shape)
    train.head()
```

(891, 11)

Out[106]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	Passengerld											
	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN	S
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	C85	С
	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	C123	S
	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	NaN	S

```
In [107]: test.loc[test["Sex"] == "male", "Sex"] = 0
    test.loc[test["Sex"] == "female", "Sex"] = 1

print(test.shape)
  test.head()
(418, 10)
```

Out[107]:

	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld										
892	3	Kelly, Mr. James	0	34.5	0	0	330911	7.8292	NaN	Q
893	3	Wilkes, Mrs. James (Ellen Needs)	1	47.0	1	0	363272	7.0000	NaN	S
894	2	Myles, Mr. Thomas Francis	0	62.0	0	0	240276	9.6875	NaN	Q
895	3	Wirz, Mr. Albert	0	27.0	0	0	315154	8.6625	NaN	S
896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.0	1	1	3101298	12.2875	NaN	S

```
In [108]: print(train.info())
          print(test.info())
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 891 entries, 1 to 891
          Data columns (total 11 columns):
          Survived
                      891 non-null int64
          Pclass
                      891 non-null int64
                      891 non-null object
          Name
          Sex
                      891 non-null int64
          Age
                      714 non-null float64
                      891 non-null int64
          SibSp
          Parch
                      891 non-null int64
          Ticket
                      891 non-null object
          Fare
                      891 non-null float64
                      204 non-null object
          Cabin
                      889 non-null object
          Embarked
          dtypes: float64(2), int64(5), object(4)
          memory usage: 83.5+ KB
          None
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 418 entries, 892 to 1309
          Data columns (total 10 columns):
          Pclass
                      418 non-null int64
          Name
                      418 non-null object
          Sex
                      418 non-null int64
          Age
                      332 non-null float64
          SibSp
                      418 non-null int64
          Parch
                      418 non-null int64
          Ticket
                      418 non-null object
          Fare
                      417 non-null float64
          Cabin
                      91 non-null object
          Embarked
                      418 non-null object
          dtypes: float64(2), int64(4), object(4)
          memory usage: 35.9+ KB
          None
```

Fill in missing age

Out[110]:

Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

Passengerld

```
In [111]: print(train.info())
          print(test.info())
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 891 entries, 1 to 891
          Data columns (total 11 columns):
          Survived
                      891 non-null int64
          Pclass
                      891 non-null int64
                      891 non-null object
          Name
          Sex
                      891 non-null int64
          Age
                      891 non-null float64
                      891 non-null int64
          SibSp
          Parch
                      891 non-null int64
          Ticket
                      891 non-null object
          Fare
                      891 non-null float64
                      204 non-null object
          Cabin
                      889 non-null object
          Embarked
          dtypes: float64(2), int64(5), object(4)
          memory usage: 83.5+ KB
          None
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 418 entries, 892 to 1309
          Data columns (total 10 columns):
          Pclass
                      418 non-null int64
          Name
                      418 non-null object
          Sex
                      418 non-null int64
                      418 non-null float64
          Age
          SibSp
                      418 non-null int64
          Parch
                      418 non-null int64
          Ticket
                      418 non-null object
          Fare
                      418 non-null float64
          Cabin
                      91 non-null object
          Embarked
                      418 non-null object
          dtypes: float64(2), int64(4), object(4)
          memory usage: 35.9+ KB
          None
```

나. One-Hot-Encoding

Out[113]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
Passengerld							
1	3	0	22.0	1	0	7.2500	S
2	1	1	38.0	1	0	71.2833	С
3	3	1	26.0	0	0	7.9250	S
4	1	1	35.0	1	0	53.1000	S
5	3	0	35.0	0	0	8.0500	s

Fare Embarked

Out[114]:

			_	-			
Passengerld							
892	3	0	34.5	0	0	7.8292	Q
893	3	1	47.0	1	0	7.0000	S
894	2	0	62.0	0	0	9.6875	Q
895	3	0	27.0	0	0	8.6625	S
896	3	1	22.0	1	1	12.2875	S

Pclass Sex Age SibSp Parch

get_dummies()

dtype='object')

- 가. pandas에서는 get_dummies 함수를 사용해서 데이터 인코딩이 가능하다.
- 나. 희소행렬(sparse의 기본은 False)
- 다. get_dummies함수는 숫자 자료형은 연속형이라고 판단하여 가변수를 만들지 않음.
 - -> 이 경우 Scikit-learn의 OneHotEncoder를 사용할 수 있다.

```
In [118]: X_train = pd.get_dummies(X_train)
           print(list(X_train.columns))
           X train.head()
           ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked C', 'Embarked Q', 'Embarked S']
Out[118]:
                                                         Fare Embarked_C Embarked_Q Embarked_S
                        Pclass Sex Age SibSp Parch
           PassengerId
                     1
                                                       7.2500
                                                                        0
                                                                                     0
                            3
                                 0 22.0
                                             1
                                                   0
                                                                                                 1
                                 1 38.0
                                                    0 71.2833
                     2
                                             1
                                                                                                 0
                     3
                                 1 26.0
                                             0
                                                       7.9250
                                                                        0
                            3
                                 1 35.0
                                             1
                                                    0 53.1000
                                                                        0
                     5
                            3
                                 0 35.0
                                             0
                                                       8.0500
                                                                        0
                                                                                     0
                                                                                                 1
In [119]:
           ## test EllOIE
           X_test = pd.get_dummies(X_test)
           print(list(X_test.columns))
           X_test.head()
           ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked_C', 'Embarked_Q', 'Embarked_S']
Out[119]:
                        Pclass Sex Age SibSp Parch
                                                         Fare Embarked_C Embarked_Q Embarked_S
            PassengerId
                   892
                            3
                                 0 34.5
                                             0
                                                   0
                                                       7.8292
                                                                        0
                                                                                     1
                                                                                                 0
                   893
                                 1 47.0
                                             1
                                                       7.0000
                                                                        0
                            3
                   894
                            2
                                 0 62.0
                                             0
                                                       9.6875
                                                                                                 0
                                 0 27.0
                                                       8.6625
                                                                        0
                   895
                            3
                                             0
                                                                                                 1
                   896
                                 1 22.0
                                             1
                                                    1 12.2875
                                                                        0
                                                                                     0
                                                                                                 1
                            3
```

다. 모델 적용

```
In [117]: from sklearn.linear_model import LogisticRegression
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import accuracy_score
          # feature 선택
          # X_train, X_test 위에서 선택됨.
          label_name = "Survived"
          v_train = train[label_name]
          print(X_train.shape, y_train.shape)
          #== 데이터 셋 나누기
          X_tr, X_te, y_tr, y_te = train_test_split(X_train, y_train, random_state=0)
          print(X_tr.shape, y_tr.shape)
          model = LogisticRegression()
          model.fit(X_tr, y_tr)
          prediction = model.predict(X_te)
          prediction[1:5]
          accuracy_score(y_te, prediction)
          (891, 9) (891,)
```

(668, 9) (668,)

Out[117]: 0.7982062780269058

라. Test 데이터 셋으로 예측 후, 제출해보기

```
In [102]: prediction = model.predict(X_test)
prediction[1:5]

submission = pd.read_csv("D:/dataset/data_titanic/gender_submission.csv", index_col="PassengerId")

submission["Survived"] = prediction

print(submission.shape)
submission.head()
submission.to_csv("D:/dataset/data_titanic/result_script.csv")

(418, 1)
```

실습1

OneHotEncoding 의 내용을 나의 현재 프로젝트 데이터 셋에 적용시켜보자.

적용시킨 내용을 간단하게 ppt로 정리해보자.

```
In [ ]:
```