\vdash 1

Basic Terminology

Alphabet

$$A = \{a, b, c\}$$

Letters

$$a \in A$$

$$b \in A$$

$$c \in A$$

Words

$$u = ababb$$

$$v=acbacb$$

Empty Word

$$\lambda$$
 or ϵ

Set of All Words

$$A^* = \{a, aa, ..., abbb\}$$

Length

$$|u|=5$$
 or $l(u)=5$

Language

A language is a subset of A^{\ast}

$$L_1 = \{a, aa, a^3, a^4, ...\}$$

$$L_2 = \{b, bb, b^3, b^4, ...\}$$

where

$$L_1 \subset A^*$$
$$L_2 \subset A^*$$

Regular Expression

$$() * \vee \lambda$$

and

$$A_1 = \{a, p, l, e\}$$

Examples

$$r=a^*$$
 includes λ

$$r = aa^*$$

$$r=a\vee b^*=\{a,ab,abb,abbb,...\}$$

$$r=a^*ee b^*=b^*ee a^*=\{ab,ba,aab,aba,bba\}$$

RegEx in Programming

Math	Programming	
*	{0,}	
aa^*	aa{0,}	
a ee b	a b	
$a(pee l)p^*(lee e)(eee l)$	a(p l)p{0,}(l e){0,}(e l){0,}	

Finite State Machine (or Automaton)

$$M=(A,S,Y,s_0,F)$$

where

 $A = \{a, b\}$ is the set of input symbols

 $S = \{s_0, s_1, s_2\}$ is the set of internal states

 $Y=\{s_0,s_1\}$ is the set of yes states

 s_0 is the initial state

F: S imes A o S is the next state function

F	а	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

ababba
$$P_1=s_0\stackrel{a}{
ightarrow} s_0\stackrel{b}{
ightarrow} s_1\stackrel{a}{
ightarrow} s_0\stackrel{b}{
ightarrow} s_1\stackrel{b}{
ightarrow} s_2\stackrel{a}{
ightarrow} s_2$$

Since $s_2 \notin Y$, the word ababba will not matched by the automaton, M.