РЕШЕНИЕ 9 класс

1. В звёздной системе Абб есть три населённых планеты, — Антаррес, Уррас и О в порядке удаления от звезды, — вращающиеся вокруг неё по круговым орбитам в одной плоскости и в одном направлении (см. рисунок). Период обращения вокруг звезды тем больше, чем планета от нее дальше. Время в системе Абб измеряют в хронах.

На О празднуют время прохождения Антарреса в точности между их планетой и звездой Абб ровно раз в 4 хрона, а время прохождения Урраса между О и Абб — раз в 6 хронов. Насколько часто Антаррес оказывается в точности между Уррасом и звездой Абб?

Решение.

При переходе в систему отсчёта, вращающуюся вокруг звезды вместе с некоторой планетой, частоты (обратные периоды) вычитаются. Так, если ω_A , ω_U и ω_O это частоты обращения каждой из планет, то в системе отсчёта, вращающейся вокруг звезды вместе с O частоты равны

$$\omega_{OA} = \omega_A - \omega_O$$
$$\omega_{OU} = \omega_U - \omega_O$$

Знаки выбраны так, чтобы частоты были положительны – все планеты вращаются в одном направлениии известно, что

$$\omega_A > \omega_U > \omega_O$$

Вычитая одно уравнение из другого, получим относительную частоту обращения Урраса и Антарреса:

$$\frac{1}{T_{AU}} = \omega_{AU} = \omega_A - \omega_U = \omega_{OA} - \omega_{OU} = \frac{1}{T_{OA}} - \frac{1}{T_{OU}}.$$

В числах это даст период равный $(1/4-1/6)^{-1}=12$ хронам.

3. По дороге к новому дому Ун провела множество экспериментов в невесомости и выяснила, что если крутить на ниточке длины г красивую детальку из папиного ящика массы m со скоростью v, сила натяжения ниточки будет равна $F_c = m {\rm v}^2 / r$. Ам, с другой стороны, вычитал в учебнике старшего брата про Закон Всемирного Тяготения*, и про то, что планета массы m, находящаяся от Абб на расстоянии R, притягивается к ней с силой $F_g = GmM / R^2$, где M это масса звезды Абб, а G некоторая универсальная постоянная. Если поверить учебнику и словам родителей о том, что обе планеты движутся по окружностям, а длительность года на Уррасе в b раз больше чем год Антарреса, то во сколько раз Уррас дальше от Абб?

Решение.

Экстраполируя результаты экспериментов Ун на планеты звёздной системы, получим, что для того, чтобы планета двигалась по окружности, на нее должна действовать сила притяжения к звезде, равная

$$\frac{mv^2}{R} = \frac{GmM}{R^2} .$$

Тогда $v^2 = GM/R$ и период равен (это соотношение есть частный случай III закона Кеплера)

$$T = \frac{2\pi R}{\mathrm{v}} \square R^{3/2} .$$

Соответственно, если период обращения Урраса вокруг Абб (т.е. год) в b раз больше чем год Антарреса, то он находится в $b^{2/3}$ раз дальше от звезды.

2. Семья Ах переезжает с Антарреса на Уррас, прихватив с собой среди прочего антикварные маятниковые часы прадеда Охх. По прибытию на место юные Ун и Ам обнаружили, что при падении яблока с одной и той же яблони на Уррасе его скорость на заданной высоте в 1.2 раза меньше, чем на Антарресе. Вопрос: что нужно сделать с часами дедушки, чтобы они продолжали отсчитывать правильное время на новой планете? Скорость яблока измерялась с помощью электронных часов.

Решение.

Из закона сохранения энергии скорость яблока на высоте h при падении с высоты H равна

$$v = \sqrt{2g(H - h)} .$$

Это означает, что на Уррасе ускорение свободного падения в $1.2^2 = 1.44\,$ раз больше, чем на Антарресе. С другой стороны, та же самая формула применима для маятника, который мы для простоты будем считать математическим, хотя это не важно. В случае математического маятника длины I

$$(H-h)=l(1-\cos\alpha),$$

хотя важно здесь то, что (H-h) есть некоторая фиксированная функция угла, не зависящая от планеты. Таким образом, при колебаниях маятника с фиксированным максимальным углом отклонения, а значит H, в каждой точке траектории

$$v \Box \sqrt{g}$$
,

и следовательно период $T \,\square\, 1/\sqrt{g}\,$. С другой стороны, известно, что $T \,\square\, \sqrt{l}\,$. Объединяя, получим

$$T \square \sqrt{l/g}$$
.

Чтобы период остался тем же, нужно длину подвеса l уменьшить во столько же раз, во сколько раз уменьшилось g: нужно укоротить подвес в 1.44 раза.

Если знать формулу для периода математического маятника, то ответ получается сразу. С другой стороны, приведенный вывод годен и для физического маятника, с той лишь поправкой, что l нужно считать приведенной длиной.

4. В посёлке Этла на Уррасе много домов расположены вдоль одной длинной улицы, и они подключены к местной электростанции так, как показано на рисунке. Напряжение, которое выдаёт электростанция, постоянно и равно[#] 500 В, а сопротивление подводящих проводов на каждом сегменте равно R₁=2.5 Ом. Сколько домов смогут похвастаться кипятком, если все жители одновременно включат одинаковые чайники с сопротивлением 100 Ом, и известно, что мощность теплоотдачи чайника в окружающую среду при температуре кипения того что они кипятят равна 700 Вт?

Считаем сопротивление бесконечной цепочки, полагая, что без одного звена её сопротивление не меняется:

$$R = 2R_1 + \frac{R_2 R}{R_2 + R},$$

Тогда для R имеем квадратное уравнение

$$R^2 - 2R_1R - 2R_1R_2 = 0,$$

решение которого (выбран положительный корень)

$$R = R_1 \left(1 + \sqrt{1 + 2\frac{R_2}{R_1}} \right).$$

Для дальнейшего удобно обозначить корень из дискриминанта новой буквой

$$k^2 = 1 + 2\frac{R_2}{R_1}.$$

Тогда $R = R_1(1+k)$, а падение напряжение на первом из чайников равно

$$U_1 = U_0 \frac{R - 2R_1}{R} = U_0 \frac{k - 1}{k + 1}.$$

В точности то же отношение будет между напряжениями на первом и втором чайнике, втором и третьем, и так далее. Отношение выделяемых мощностей тогда равно

$$\frac{P_{n+1}}{P_n} = \left(\frac{k-1}{k+1}\right)^2$$

Мощность на первом чайнике при этом равна

$$P_1 = \frac{U_1^2}{R_2} = \frac{U_0^2}{R_2} \left(\frac{k-1}{k+1}\right)^2.$$

В числах: k=9 , $R=10R_1=25$ Ом, $P_{\it full}=U_0^2$ / $R=10\,kW$,

$$\frac{k-1}{k+1} = \frac{4}{5}$$
; $\frac{U_0^2}{R_2} = 2500 \, W$; $P_1 = 1600 \, W$, $P_2 = 1024 \, W$, $P_3 \approx 820 \, W > P_{cr}$, $P_4 \approx 655 \, W < P_{cr}$

Ответ: 3 чайника закипят, четвёртый уже нет.

5. В процессе раскопок на чердаке у двоюродной бабушки Ун обнаружила множество интересных предметов, в том числе дырявый цилиндр с поршнем площади сечения S=100 см² и набор одинаковых пружин жёсткости k=280 H/м. Из них совместными усилиями была сооружена конструкция, показанная на рисунке, которая используется для следующих действий.

Вначале поршень удерживается пружинами в равновесии. В некоторый момент в цилиндр сверху начинают наливать с постоянной скоростью 80 мл/с жидкость плотности 6300 кг/м 3 . Через какое время жидкость начнёт выливаться из цилиндра через дырку, которая находится на высоте H=40 см от первоначального положения поршня, если использовано N=4 пружины и $g=16 \text{ m/c}^2$? Какое минимальное количество пружин нужно использовать, чтобы жидкость выливалась через дырку?

Решение.

Если Р это скорость, с которой наливается жидкость (объем в единицу времени), то уровень жидкости, считаемый от поршня, равен

$$h_0 = \frac{Pt}{S}$$

С другой стороны, удлиннение пружин получаем из закона Гука

$$Nkx = \rho Sh_0 g$$

Разница – это уровень воды над начальным положением поршня, которое в искомый момент времени должен совпадать с H:

$$H = h_0 - x = h_0 \left(1 - \frac{\rho gS}{Nk} \right) = \frac{Pt}{S} \left(1 - \frac{\rho gS}{Nk} \right),$$

откуда получаем ответ

$$t = \frac{H_0 S / \rho}{1 - \frac{\rho g S}{N k}}.$$

Числитель это время наполнения цилиндра с абсолютно жесткими пружинами ($k=\infty$); в числах для N=4

$$\frac{H_0S}{P} = 50 s$$
, $\frac{\rho gS}{Nk} = \frac{9}{10}$, $t = 500s = 8m \ 20s$.

Чтобы жидкость вообще выливалась, нужно чтобы знаменатель был положителен, то есть

$$\frac{\rho gS}{Nk} < 1 \iff N > \frac{\rho gS}{k} = 4 \cdot \frac{9}{10} = 3.6$$

Таким образом, использованное число пружин, четыре, как раз и является минимальным.