Shouren Wang

929-302-1790 | sw
5004@nyu.edu | $\underline{\text{LinkedIn}}$ | Personal Page

EDUCATION

Case Western Reserve University

Ph.D. in Computer Science

Cleveland, OH

Aug. 2024 - Present

New York University

Brooklyn, NY

M.S. in Computer Engineering

Sep. 2021 – May. 2023

Hunan University Changsha, China

Undergraduate in Software Engineering Sep. 2015 – June 2017

Undergraduate and B.E. in Digital Media Technology Sep. 2017 – June 2019

SELECTED WORK EXPERIENCE

Research Intern Aug. 2023 – July 2024

NYU Game Innovation Lab
• Explored the research and methods for creative AI for video games.

• Worked on Fancy Play Agent project. Developed a game-play agent for Street Fighter II based on PPO.

M.S. Lab Member Sep. 2022 – May. 2023

NYU Can Lab

New York, NY

• Completed master project on "Simulation for Sensorimotor Control".

• Explored methods for Sensorimotor Control and Reinforcement Learing.

Research and Development Engineer

May 2019 – Sep 2020

AsiaInfo Technology

Nanjing, China

Brooklyn, NY

• Served as a member of QA group for project CTDI (EDR).

• Tested and enhanced the performance of CTDI probe and server, contributed to project efficiency and success.

Selected Projects

Longctx Benchmark V2 for LLM | Python, PyTorch

Sep. 2024 – Present

 Developing a more advanced benchmark of Long Context capable approaches based on Longctx Benchmark V1 for Large Language Models

Fancy Play Agent | Python, OpenAI Gym, Stable-Baselines3, PyTorch

Sep. 2023 – Present

- Developed a PPO Deep Reinforcement Learning model as the game-play agent for Street Fighter II
- Extended the implementation of PPO model in Stable-Baselines3 to support Auxiliary Objectives. Extended the base classes in Stable-Baselines3 to support Multi-modal inputs.
- Working on designing Curriculum Learning and User Studies for developing a fancy focused game play agent

Simulation for Sensorimotor Control | Python, Scipy, NumPy

Sep. 2022 – May 2023

- Purposed an model to explain the Central Nervous System's (CNS's) mechanism for arm movement in force field.
- Proposed the State-augmentation mechanism to explain CNS's capability in reducing the effect caused by time delay. Proposed the mechanism based on Value-Iteration based Adaptive Dynamic Programming to explain CNS's capability to solve unknown system dynamics by adapting to the environment.

Majorization Method for Sparse Logistic Regression | MATLAB

Feb. 2023 – May 2023

• Applied Majorization method to calculate the quadratic upper bound for log-likelihood objective function with L1 norm. Applied GD, SGD and Newton methods to optimize the upper bound and compared their performance.

PUBLICATIONS

Deep Learning Approach of Suit Classification Recognition, Text. Res. J2019, 4158-164

TECHNICAL SKILLS

Languages: Python, Java, MATLAB, C++

Libraries: PyTorch, Stable-Baselines3, OpenAI Gym, scikit-learn, pandas, NumPy, SciPy

Developer Tools: Git, Slurm, VS Code, Jupyter Notebook