ESc201: Introduction to Electronics

Digital Circuits

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Design Flow (Recap)

Gate Netlist

 \Rightarrow f = x.z+x.z

This design approach becomes difficult to use

Recap: General Approach

There are certain sub-systems or blocks that are used quite often such as:

- 1. Decoders, Encoders
- 2. Multiplexers
- 3. Adder/Subtractors, Multipliers
- 4. Comparators
- 5. Parity Generators
- 6.

Decoder (recap)

Е	В	Α	Y ₀	Y ₁	Y ₂	Y ₃
0	X	X	0	0 0 1 0 0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$Y_0 = E.\overline{B}.\overline{A}; Y_1 = E.\overline{B}.A; Y_2 = E.B.\overline{A}; Y_3 = E.B.A$$

A n to 2ⁿ decoder is a minterm generator (recap)

X	У	min term
0 0 1 1	0 1 0	x.y m0 x.y m1 x.y m2 x.y m3

It can be used to implement any combinational circuit

Multiplexers

Implementing Boolean expressions using Multiplexers

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$

$$egin{array}{c|cccc} x_1 & x_2 & y & & & & \\ \hline 0 & 0 & 0 & & & \\ 0 & 1 & 1 & & y = x_2 \ \text{when} \ x_1 = 0 \\ \hline 1 & 0 & 1 & & \\ 1 & 1 & 0 & & y = \overline{x_2} \ \text{when} \ x_1 = 1 \\ \hline \end{array}$$

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

A 3 variable function can be implemented with a 4:1 mux with 2 select lines

Mux. expansion

Mux. expansion

DeMultiplexer

S ₁	S ₀	y ₀	y ₁	y ₂	y ₃
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Demultiplexer is very much like a decoder

S ₁	S ₀	y ₀	<i>y</i> ₁	y ₂	<i>y</i> ₃
0	0	D O O	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Ε	В	Α	Y ₀	Y ₁	Y ₂	Y ₃
0	х	Х	0	0 0 1 0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

