Конспект лекции А.М. Райгородского

Применение комбинаторики и теории гиперграфов Спикер: Андрей Михайлович Райгородский Доктор физико-математических наук,

Заведующий лабораторией продвинутой комбинаторики и сетевых приложений, Заведующий кафедрой дискретной математики

Московского физико-технического института (государственного университета)

Постановка задачи

- Цель: Сформировать минимальную команду школьников для математической олимпиады
- Параметры: $\begin{cases} n = 20 & \text{школьников} \\ s = 18 & \text{предметов} \\ k = 5 & \text{лучших по каждому предмету} \end{cases}$
- Требование: Каждый предмет должен быть представлен хотя бы одним экспертом из топ-k
- Ограничение: Минимизировать размер команды из-за бюджетных ограничений

Наивные подходы

Таблица 1: Сравнение подходов

Стратегия	Размер команды	Недостатки
Отправка всех	20	Неэффективно по бюджету
По одному на предмет	18	Игнорирует специализацию
"Идиотская идея"	16	$\frac{5 \times 18}{20} = 4.5 \Rightarrow$ гарантия пересечений

Оптимизация через релаксацию

Идея: Выбирать топ-k вместо одного эксперта

Принцип Дирихле:

Cумма слотов: $18 \times 5 = 90$

Cреднее: $r = \frac{90}{20} = 4.5$ $\Rightarrow \exists \$ школьник $c \ge 5 \$ предметами

Рис. 1: Визуализация объединения по 5 школьников, всего 18 подмножеств

Рис. 2: Пронумеруем школьников по другому и посмотрим максимальное пересечения подмножеств, этот школьник разбирается сразу в 5 предмета

Жадный алгоритм

- 1. Выбрать школьника с макс. покрытием предметов
- 2. Исключить покрытые предметы
- 3. Повторить для оставшихся

Таблица 2: Пошаговое выполнение алгоритма

Шаг	s	n	$\left\lceil \frac{k \cdot s}{n} \right\rceil$	Команда	Остаток	
1	18	20	$\left\lceil \frac{5 \times 18}{20} \right\rceil = 5$	+1	13/19	
2	13	19	$\left \frac{5 \times 13}{19} \right = 4$	+1	9/18	
3	9	18	$\left\lceil \frac{5 \times 9}{18} \right\rceil = 3$	+1	6/17	
4	6	17	$\begin{bmatrix} \frac{1}{18} \\ \frac{5 \times 6}{17} \end{bmatrix} = 3$	+1	4/16	
5	4	16	$\left\lceil \frac{5 \times 4}{16} \right\rceil = 2$	+1	2/15	
6	2	15	$\left\lceil \frac{5 \times 2}{15} \right\rceil = 1$	+2	0	
Итого 7						

Оценка минимального размера команды

Пример 1: Непересекающиеся группы

Комбинаторика: $\{1-5\}$ Геометрия: $\{6-10\}$ Теория чисел: $\{11-15\}$ Алгебра: $\{16-20\}$ $\Rightarrow \tau \geq 4$

Пример 2 (оптимальная конструкция):

- Разделим 18 школьников на 3 группы по 6
- Для группы $\{1-6\}$ создаем 6 пятерок:

$$A_1 = \{1, 2, 3, 4, 5\}, A_2 = \{1, 2, 3, 4, 6\}, \dots, A_6 = \{2, 3, 4, 5, 6\}$$

- Аналогично для $\{7-12\}$ и $\{13-18\}$
- \forall группы требуется ≥ 2 человек
- Итого: $3 \times 2 = 6$ человек

Теоретическое обоснование

Гиперграф T = (V, E):

- ullet $V = \{v_1, \dots, v_{20}\}$ школьники
- $E = \{e_1, \dots, e_{18}\}$ гиперрёбра (топ-5 по предметам)

Оценка покрытия:

$$\tau \leqslant \max\left(\frac{n}{k}, \frac{n}{k} \cdot \ln\left(\frac{s \cdot k}{n}\right)\right) + \frac{n}{k} + 1$$

Для $n=20, \ s=18, \ k=5$:

$$au \leqslant \max(4, \ 4 \cdot \ln(4.5)) + 4 + 1 pprox \max(4, 6.0) + 5 = 11$$
 (грубая оценка)

Уточненная оценка жадным алгоритмом: $\tau \leqslant 7$

Заключение

- **Практический вывод:** Инвестиции в обучение ($\uparrow k$) снижают размер команды
- Математический результат: $6\leqslant \tau\leqslant 7$