Résumé de cours : Semaine 30, du 23 mai au 25.

1 Matrices équivalentes et matrices semblables (suite)

1.1 Propriétés du rang d'une matrice (suite)

Propriété. Soit $A \in \mathcal{M}_{\mathbb{K}}(n,p)$ une matrice non nulle. $\operatorname{rg}(A)$ est égal à la taille maximale des matrices inversibles extraites de A. Il faut savoir le démontrer.

1.2 Matrices semblables

Définition. Deux matrices carrées M et M' dans $\mathcal{M}_n(\mathbb{K})$ sont **semblables** si et seulement s'il existe $P \in GL_n(\mathbb{K})$ tel que $M' = PMP^{-1}$. On définit ainsi une seconde relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$, appelée relation de similitude.

Propriété. Deux matrices sont semblables si et seulement si elles représentent un même endomorphisme dans des bases différentes, en imposant de prendre une même base au départ et à l'arrivée.

Propriété. Soient $(M, M') \in \mathcal{M}_n(\mathbb{K})^2$ et $P \in GL_n(\mathbb{K})$ tels que $M' = PMP^{-1}$. Alors, pour tout $n \in \mathbb{N}$, $M'^n = PM^nP^{-1}$ et pour tout $Q \in \mathbb{K}[X]$, $Q(M') = PQ(M)P^{-1}$. Si M' et M sont inversibles, pour tout $n \in \mathbb{Z}$, $M'^n = PM^nP^{-1}$.

2 Les hyperplans

Dans tout ce chapitre, on fixe un \mathbb{K} -espace vectoriel E, où \mathbb{K} est un corps.

2.1 En dimension quelconque

Définition. Soit H un sous-espace vectoriel de E. On dit que H est un hyperplan si et seulement si il existe une droite vectorielle D telle que $H \oplus D = E$.

Propriété. Soit H un hyperplan et D une droite non incluse dans H. Alors $H \oplus D = E$.

Propriété. Soit H une partie de E. H est un hyperplan de E si et seulement si il est le noyau d'une forme linéaire non nulle. De plus, si $H = \mathrm{Ker}(\varphi) = \mathrm{Ker}(\psi)$, alors φ et ψ sont colinéaires. Il faut savoir le démontrer.

Définition. Soient H un hyperplan de E et $\varphi \in L(E, \mathbb{K}) \setminus \{0\}$ tel que $H = \text{Ker}(\varphi)$. Alors $x \in H \iff [(E) : \varphi(x) = 0]$. On dit que (E) est équation de H.

2.2 En dimension finie

Notation. On suppose que E est un espace de dimension finie notée n, avec n > 0. Si $e = (e_1, \ldots, e_n)$ est une base de E, pour tout $i \in \{1, \ldots, n\}$, on note e_i^* l'application qui associe à tout vecteur x de E sa $i^{\text{ème}}$ coordonnée dans la base e.

Propriété. Avec les notations précédentes, la famille $e^* = (e_i^*)_{1 \le i \le n}$ est une base de $L(E, \mathbb{K}) = E^*$, que l'on appelle la base duale de e.

Il faut savoir le démontrer.

Remarque. Les hyperplans de E sont les sous-espaces vectoriels de E de dimension n-1.

Définition. Soit $e = (e_1, \dots, e_n)$ une base de E et H un hyperplan de E.

Si
$$H = \text{Ker}(\psi)$$
, où $\psi \in E^*$, en notant $\psi = \sum_{i=1}^n \alpha_i e_i^*$, l'équation de l'hyperplan H devient

$$x = \sum_{i=1}^{n} x_i e_i \in H \iff \sum_{i=1}^{n} \alpha_i x_i = 0 :$$
 c'est une équation cartésienne de H .

Exemple. Dans un plan vectoriel rapporté à une base (\vec{i}, \vec{j}) , une droite vectorielle D a une équation cartésienne de la forme : $\vec{v} = x\vec{i} + y\vec{j} \in D \iff ax + by = 0$, où $(a, b) \in \mathbb{R}^2 \setminus \{0\}$.

Exemple. Dans un espace vectoriel de dimension 3 rapporté à une base $(\vec{i}, \vec{j}, \vec{k})$, un plan vectoriel P a une équation cartésienne de la forme : $\overrightarrow{v} = x\vec{i} + y\vec{j} + z\vec{k} \in P \iff ax + by + cz = 0$, où $(a, b, c) \in \mathbb{R}^3 \setminus \{0\}$.

2.3 Les hyperplans affines

Notation. Soit \mathcal{E} un espace affine de direction E. On fixe un point $O \in \mathcal{E}$.

Définition. Un hyperplan affine est un sous-espace affine dirigé par un hyperplan de E.

Propriété. Soit \mathcal{H} une partie de \mathcal{E} . \mathcal{H} est un hyperplan affine de \mathcal{E} si et seulement si il existe $\varphi \in L(E, \mathbb{K}) \setminus \{0\}$ et $a \in \mathbb{K}$ tel que, pour tout $M \in \mathcal{E}$, $[M \in \mathcal{H} \iff \varphi(\overrightarrow{OM}) = a]$.

Dans ce cas, la condition $\varphi(\overline{OM}) = a$ est appelée une équation de \mathcal{H} .

De plus, la direction de \mathcal{H} est l'hyperplan $\operatorname{Ker}(\varphi)$, d'équation $\varphi(x) = 0$ en l'inconnue $x \in E$. Il faut savoir le démontrer.

Remarque. Dans le cas particulier où $\mathcal{E} = E$ et où $O = \overrightarrow{0}$, l'équation devient $\varphi(M) = a$, donc les hyperplans affines de E sont exactement les $\varphi^{-1}(\{a\})$, avec $\varphi \in L(E, \mathbb{K}) \setminus \{0\}$ et $a \in \mathbb{K}$.

Propriété. Supposons que E est de dimension finie égale à $n \in \mathbb{N}^*$ et que E est muni d'une base $e = (e_1, \ldots, e_n)$, dont la base duale est notée $e^* = (e_1^*, \ldots, e_n^*)$. Soit \mathcal{H} un hyperplan affine de \mathcal{E} , dont une équation est $\Psi(\overrightarrow{OM}) = a$. Notons $(\alpha_1, \ldots, \alpha_n)$ les coordonnées de Ψ dans e^* . Si M a pour

coordonnées
$$(x_1, \ldots, x_n)$$
 dans le **repère affine** (O, e) , alors $M \in \mathcal{H} \iff \sum_{i=1}^n \alpha_i x_i = a$.

C'est la forme générale d'une équation cartésienne d'hyperplan affine en dimension n.

2.4 Application aux systèmes linéaires

Notation. On fixe $(n,p) \in \mathbb{N}^{*2}$ et on considère un système linéaire de n équations à p inconnues de la forme : $\forall i \in \mathbb{N}_n$, $\sum_{j=1}^p \alpha_{i,j} x_j = b_i$, où, pour tout $i,j,\,\alpha_{i,j} \in \mathbb{K}$, pour tout $i,\,b_i \in \mathbb{K}$, les p inconnues étant x_1,\ldots,x_p , éléments de \mathbb{K} .

Propriété. Notons M la matrice de (S). Ainsi $(S) \iff MX = B$, où $B = (b_i) \in \mathbb{K}^n$.

Si (S) est compatible, l'ensemble des solutions de (S) est un sous-espace affine de \mathbb{K}^p dimension p-r, où r désigne le rang de M et dont la direction est Ker(M).

Propriété. Soient E et F des \mathbb{K} -espaces vectoriels de dimensions p et n munis de bases $e=(e_1,\ldots,e_p)$ et $f=(f_1,\ldots,f_n)$. On note u l'unique application linéaire de L(E,F) telle que mat(u, e, f) = M, x le vecteur de E dont les coordonnées dans e sont X et b le vecteur de F dont les coordonnées dans f sont B. Alors $(S) \iff u(x) = b$. Avec ces notations, l'ensemble des solutions de (S) est soit vide, soit un sous-espace affine de E de direction Ker(u).

Quatrième interprétation d'un système linéaire: A l'aide de formes linéaires.

Notons
$$e^* = (e_1^*, \dots, e_p^*)$$
 la base duale de e . Pour tout $i \in \{1, \dots, n\}$, posons $l_i = \sum_{j=1}^{P} \alpha_{i,j} e_j^*$.

Les l_i sont des formes linéaires telles que $(S) \iff [\forall i \in \{1, \dots, n\} \ l_i(x) = b_i]$. L'ensemble des solutions de (S) est $\bigcap_{i=1}^n l_i^{-1}(\{b_i\})$. C'est une intersection d'hyperplans affines.

Propriété. Si E est un \mathbb{K} -espace vectoriel de dimension p, l'intersection de r hyperplans vectoriels de E est un sous-espace vectoriel de dimension supérieure à p-r.

Réciproquement tout sous-espace vectoriel de E de dimension p-r où r>1 est une intersection de r hyperplans de E, donc est caractérisé par un système de r équations linéaires. Il faut savoir le démontrer.

Propriété. Tout sous-espace affine de \mathcal{E} peut être caractérisé par un système d'équations linéaires. Tout sous-espace affine différent de \mathcal{E} est une intersection d'un nombre fini d'hyperplans affines.

3 Déterminants

Notation. K désigne un corps quelconque.

3.1 Applications multilinéaires

Définition. Soient $p \in \mathbb{N}^*$ et (E_1, \dots, E_p) une famille de p \mathbb{K} -espaces vectoriels. Soient F un \mathbb{K} -espace vectoriel et f une application de $E_1 \times \cdots \times E_p$ dans F. f est une application p-linéaire si et seulement si, pour tout $j \in \mathbb{N}_p$ et pour tout $(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_p) \in E_1 \times \cdots \times E_{j-1} \times E_{j+1} \times \cdots \times E_p$, l'application $E_j \longrightarrow F$ $f(a_1, \ldots, a_{j-1}, x_j, a_{j+1}, \ldots, a_p)$ est linéaire.

Définition. Une application bilinéaire est une application 2-linéaire.

Notation.

- $L_p(E_1,\ldots,E_p;F)$ désigne l'ensemble des applications p-linéaires de $E_1\times\cdots\times E_p$ dans F.
- C'est un sous-espace vectoriel de $\mathcal{F}(E_1 \times \cdots \times E_p, F)$.

 On note $L_p(E, F) = L_p(\underbrace{E, \dots, E}_p; F)$ et $L_p(E) = L_p(E, \mathbb{K})$.

Les éléments de $L_p(E)$ sont appelés des **formes** p-linéaires sur E.

Notation. On fixe $p \in \mathbb{N}^*$ et deux K-espaces vectoriels E et F.

Définition. Soient $\sigma \in \mathcal{S}_p$ et $f \in L_p(E, F)$. On note $\sigma(f) : E^p \longrightarrow F$ $(x_1, \dots, x_p) \longmapsto f(x_{\sigma(1)}, \dots, x_{\sigma(p)})$.

Définition. Soit $f \in L_p(E, F)$. f est une application p-linéaire symétrique (resp : antisymétrique) si et seulement si pour tout $\sigma \in \mathcal{S}_p$, $\sigma(f) = f$ (resp : $\sigma(f) = \varepsilon(\sigma)f$, où $\varepsilon(\sigma)$ désigne la signature de la permutation σ).

Propriété. Soit $f \in L_p(E, F)$.

f est symétrique si et seulement si pour toute transposition τ de S_p , $\tau(f) = f$.

f est antisymétrique si et seulement si pour toute transposition τ de \mathcal{S}_p , $\tau(f) = -f$.

Il faut savoir le démontrer.

Définition. Soit $f \in L_p(E, F)$. f est une application p-linéaire alternée si et seulement si elle annule tout p-uplet de vecteurs de E contenant au moins deux vecteurs égaux.

Propriété. Soit $f \in L_p(E, F)$.

Si f est alternée, alors elle est antisymétrique.

Lorsque $car(\mathbb{K}) \neq 2$, alternée \iff antisymétrique.

Il faut savoir le démontrer.

Propriété. $f \in L_p(E, F)$ est alternée si et seulement si pour tout $(x_1, \ldots, x_p) \in E^p$, $f(x_1, \ldots, x_p)$ ne varie pas lorsque l'on ajoute à l'un des x_i une combinaison linéaire des autres x_j , ou encore si et seulement si l'image par f de toute famille liée de vecteurs est nulle.

Corollaire. Si E est de dimension $n \in \mathbb{N}^*$ et si p > n, toute forme p-linéaire alternée sur E est nulle.

3.2 Déterminant d'un système de n vecteurs

Au sein de ce paragraphe, E désignera un \mathbb{K} -espace vectoriel de dimension finie égale à n, avec n > 0.

Définition. Soit $e = (e_1, \ldots, e_n)$ une base de E et $x = (x_1, \ldots, x_n) \in E^n$.

Le **déterminant de** x dans la base e est le scalaire $\det_e(x_1,\ldots,x_n) \stackrel{\Delta}{=} \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(j)}^*(e_j)$.

Théorème. Soit e une base de E. Si f est une forme n-linéaire alternée sur E, alors $f = f(e) \det_e$. Il faut savoir le démontrer.

Propriété.
$$\det_e(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(j)}^*(e_j) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{j=1}^n e_j^*(x_{\sigma(j)}).$$

Il faut savoir le démontrer.

Propriété. det_e est une forme n-linéaire alternée telle que $\det_e(e) = 1$.

Il faut savoir le démontrer.

Propriété. $A_n(E)$ est une droite vectorielle dirigée par \det_e .

3.2.1 Volume

Supposons temporairement que $\mathbb{K}=\mathbb{R}$. Pour tout $x=(x_1,\ldots,x_n)\in E^n$, on note H_x l'hyperparallélépipède $H_x=\{\sum_{i=1}^n t_ix_i \ / \ t_1,\ldots,t_n\in [0,1]\}.$

Si vol est une application de E^n dans \mathbb{R} telle que, pour tout $x \in E^n$, |vol(x)| représente le volume de H_x et le signe de vol(x) représente l'orientation du n-uplet x, alors en imposant des contraintes raisonnables aux notions de volume et d'orientation, l'application vol est nécessairement une forme n-linéaire alternée.

Propriété. $\det_e(x)$ est donc la seule définition raisonnable du volume algébrique de H_x , si l'on choisit l'unité de volume de sorte que le volume de H_e soit égal à 1.

3.2.2 Déterminant d'une matrice

Définition. Le déterminant de $M \in \mathcal{M}_n(\mathbb{K})$ est le déterminant des vecteurs colonnes de M dans la base canonique de \mathbb{K}^n .

Représentation tabulaire. Si
$$M = (\alpha_{i,j}) \in \mathcal{M}_n(\mathbb{K})$$
. On note $\det(M) = \begin{vmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & & \vdots \\ \alpha_{n,1} & \cdots & \alpha_{n,n} \end{vmatrix}$.

Propriété.
$$\det(M) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{j=1}^n M_{j,\sigma(j)} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{j=1}^n M_{\sigma(j),j} = \det({}^tM).$$

Ainsi det(M) est aussi le déterminant des vecteurs lignes de M dans la base canonique de \mathbb{K}^n .

Formule de Sarrus:

$$\begin{vmatrix} p_{1,1} & p_{1,2} & p_{1,3} \\ p_{2,1} & p_{2,2} & p_{2,3} \\ p_{3,1} & p_{3,2} & p_{3,3} \end{vmatrix} = \begin{vmatrix} p_{1,1}p_{2,2}p_{3,3} + p_{2,1}p_{3,2}p_{1,3} + p_{3,1}p_{1,2}p_{2,3} \\ -p_{1,3}p_{2,2}p_{3,1} - p_{2,3}p_{3,2}p_{1,1} - p_{3,3}p_{1,2}p_{2,1}. \end{vmatrix}$$

3.2.3 Déterminant d'un endomorphisme

Définition. Soit $u \in L(E)$. Le **déterminant de l'endomorphisme** u est l'unique scalaire, noté $\det(u)$, vérifiant $\forall f \in A_n(E) \quad \forall x \in E^n \quad f(u(x)) = (\det(u))f(x)$. Il faut savoir le démontrer.

Propriété. Soient e une base de E et $u \in L(E)$.

Pour tout
$$(x_1, \ldots, x_n) \in E^n$$
, $\det_e(u(x_1), \ldots, u(x_n)) = \det(u)\det_e(x_1, \ldots, x_n)$.
En particulier, $\det(u) = \det_e(u(e_1), \ldots, u(e_n))$.

Propriété. Pour toute base e de E et pour tout $u \in L(E)$, det(u) = det(Mat(u, e)).

3.3 Propriétés du déterminant

Notation. On fixe $n \in \mathbb{N}^*$, E un K-espace vectoriel de dimension n et e une base de E.

Propriété. det_e est n-linéaire alternée, donc antisymétrique. $det_e(e) = 1$. $det_e(x_1, \ldots, x_n)$ n'est pas modifié si l'on ajoute à l'un des x_i une combinaison linéaire des autres x_i .

Propriété. Le déterminant d'une matrice M de $\mathcal{M}_n(\mathbb{K})$ est modifié en :

- $\det(M)$ pour une opération élémentaire du type $L_i \leftarrow L_i + \lambda L_j$ ou $C_i \leftarrow C_i + \lambda C_j$;
- $\alpha \det(M)$ pour une opération élémentaire du type $L_i \leftarrow \alpha L_i$ ou $C_i \leftarrow \alpha C_i$;
- $--\det M$ pour un échange entre deux lignes ou deux colonnes.

ATTENTION: En général, $det(\alpha M + N) \neq \alpha det(M) + det(N)$.

Méthode: Pour calculer le déterminant d'une matrice, on tente de modifier la matrice par des manipulations élémentaires, afin de se ramener à une matrice dont on connait le rang ou le déterminant.

Propriété. $det(Id_E) = 1$, $det(I_n) = 1$.

Pour tout $\lambda \in \mathbb{K}$ et $u \in L(E)$, $\det(\lambda u) = \lambda^n \det(u)$.

Pour tout $\lambda \in \mathbb{K}$ et $A \in \mathcal{M}_n(\mathbb{K})$, $\det(\lambda A) = \lambda^n \det(A)$.

Théorème. Si $f, g \in L(E)$, alors $\left[\det(fg) = \det(f) \times \det(g) \right]$.

Pour tout $A, B \in \mathcal{M}_n(\mathbb{K})$, $\det(AB) = \det(A)\det(B)$.

Il faut savoir le démontrer.

Formule de changement de base : Soient e et e' deux bases de E, et soit x une famille de n vecteurs de E. Alors, $[\det_{e'}(x) = \det_{e'}(e)\det_{e}(x)]$.

Théorème. x est une base si et seulement si $\det_e(x) \neq 0$. Il faut savoir le démontrer.

Corollaire. Soit $u \in L(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

 $u \in GL(E)$ si et seulement si $\det(u) \neq 0$ et dans ce cas, $\det(u^{-1}) = \frac{1}{\det(u)}$.

 $A \in GL_n(\mathbb{K})$ si et seulement si $\det(A) \neq 0$ et dans ce cas, $\det(A^{-1}) = \frac{1}{\det(A)}$

Remarque. det est donc un morphisme du groupe GL(E) vers (\mathbb{K}^*, \times) .

Son noyau est un sous-groupe (distingué) de GL(E), noté SL(E).

C'est le groupe spécial linéaire de $E: SL(E) = \{u \in L(E) / \det(u) = 1\}.$

En particulier de $SL_n(\mathbb{K}) = \{M \in \mathcal{M}_n(\mathbb{K}) / \det(M) = 1\}$: c'est le groupe spécial linéaire de degré n.

Propriété. Deux matrices carrées semblables ont le même déterminant.

3.4 Calcul des déterminants

Définition. Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Pour tout $(i,j) \in \mathbb{N}_n^2$, notons i,jM la matrice extraite de M en ôtant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne. La quantité $\det(i,jM)$ s'appelle le $(i,j)^{\text{ème}}$ mineur de M La quantité $C_{i,j} = (-1)^{i+j} \det(i,jM)$ s'appelle le $(i,j)^{\text{ème}}$ cofacteur de M.

Théorème. Pour tout $j \in \mathbb{N}_n$,

 $\det(M) = \sum_{i=1}^n m_{i,j} C_{i,j} : \text{c'est le développement de } \det(M) \text{ selon sa } j^{\text{\`e}me} \text{ colonne.}$

Pour tout $i \in \mathbb{N}_n$, $\det(M) = \sum_{j=1}^n m_{i,j} C_{i,j}$: c'est le **développement de \det(M) selon sa** $i^{\text{ème}}$ **ligne.**

Il faut savoir le démontrer.

Définition. On appelle *comatrice* de M la matrice $(C_{i,j})_{\substack{1 \le i \le n \\ 1 \le i \le n}}$ des cofacteurs de M.

On la notera Com(M) ou bien Cof(M).

La transposée de la comatrice s'appelle la matrice complémentaire de M.

Théorème. $\forall M \in \mathcal{M}_n(\mathbb{K})$ $M^tCof(M) = {}^tCof(M)M = \det(M)I_n$.

Il faut savoir le démontrer.

Corollaire. Lorsque M est inversible, $M^{-1} = \frac{1}{\det(M)}{}^t Cof(M)$.