Labs

Optimization for Machine Learning
Spring 2024

Saarland University

CISPA Helmholtz Center for Information Security **Sebastian Stich**

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 2 — Solutions (Gradient Descent)

Convexity, Smoothness and Gradient descent

Exercise (μ -strong convexity).

Solution:

• We first show that $f(\mathbf{x})$ is strictly convex. From the definition of μ -strong convexity, we have:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2 > f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{x} \neq \mathbf{y} \in \mathbb{R}^d \ .$$

Therefore $f(\mathbf{x})$ admits at most one global minimum. It suffices to show that $f(\mathbf{x})$ admits at least one global minimum. For any $\mathbf{x} \in \mathbb{R}^d$, we define the ball: $B = \{\mathbf{y} \in \mathbb{R}^d : ||\mathbf{y} - \mathbf{x}|| \le r\}$ where $r = \frac{4||\nabla f(\mathbf{x})||}{\mu}$, it holds $\forall y \in \mathbb{R}^d, y \notin B$:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2$$

$$\ge f(\mathbf{x}) - ||\nabla f(\mathbf{x})|| ||\mathbf{y} - \mathbf{x}|| + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2$$

$$= f(\mathbf{x}) + \frac{\mu}{2} (||\mathbf{y} - \mathbf{x}||^2 - \frac{1}{2} r ||\mathbf{y} - \mathbf{x}||)$$

$$\ge f(\mathbf{x}) + \frac{\mu}{4} r^2.$$

The above inequality shows that for $\forall y \in \mathbb{R}^d, y \notin B, \ f(y) \geq f(\mathbf{x})$. On the other hand, since B is closed and bounded, and $f(\mathbf{x})$ is continuous, from Weierstrass theorem, f attains its minimum in B, that is $\forall \mathbf{z} \in B$, there exists \mathbf{x}^* such that $f(\mathbf{z}) \geq f(\mathbf{x}^*)$. Since $\mathbf{x} \in B$, we conclude that \mathbf{x}^* is a minimizer of f in \mathbb{R}^d . Since $f(\mathbf{x})$ is strictly convex, \mathbf{x}^* is the unique minimizer of f in \mathbb{R}^d .

To prove the inequality, $\forall \mathbf{x} \in \mathbb{R}^d$, we let $g(\mathbf{y}) := f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2$. Since $g(\mathbf{y})$ is strongly convex, we can explicitly compute its minimum by finding its first-order critical point:

$$\nabla g(\mathbf{y}^{\star}) = \nabla f(\mathbf{x}) + \mu(\mathbf{y}^{*} - \mathbf{x}) = 0 \Rightarrow \mathbf{y}^{\star} = \mathbf{x} - \mu^{-1} \nabla f(\mathbf{x}) .$$

Plugging \mathbf{y}^* into $g(\mathbf{y})$, we obtain that: $\min g(\mathbf{y}) = f(\mathbf{x}) - \frac{1}{2\mu} ||\nabla f(\mathbf{x})||^2$. By the definition of μ -strong convexity, we have $\forall \mathbf{y}, \mathbf{x} \in \mathbb{R}^d$:

$$f(\mathbf{y}) \ge g(\mathbf{y}) \ge \min g(\mathbf{y}) = f(\mathbf{x}) - \frac{1}{2\mu} ||\nabla f(\mathbf{x})||^2$$
.

Setting y to be x^* and rearranging give the result.

• According to the hint, we need to lower bound $||\nabla f(\mathbf{x}_t)||^2$. Using the definition of L-smoothness, we get:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x}_{t+1} - \mathbf{x}_t||^2$$
.

Plugging the update rule of GD into this inequality, we obtain:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - (\gamma - \frac{L\gamma^2}{2})||\nabla f(\mathbf{x}_t)||^2$$
.

Let $\beta := \gamma - \frac{L\gamma^2}{2}$. Combining this inequality with the one provided in the first question, we get:

$$2\mu \big(f(\mathbf{x}_t) - f(\mathbf{x}^*) \big) \le ||\nabla f(\mathbf{x}_t)||^2 \le \frac{1}{\beta} \big(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) \big) = \frac{1}{\beta} \big(f(\mathbf{x}_t) - f(\mathbf{x}^*) \big) - \frac{1}{\beta} \big(f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \big).$$

Rearranging, we get, for any $t \ge 0$:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le (1 - 2\mu\beta) (f(\mathbf{x}_t) - f(\mathbf{x}^*))$$
.

We thus have

$$\alpha = 2\mu\beta = 2\mu(\gamma - \frac{L\gamma^2}{2}) .$$

Maximizing α w.r.t γ , we obtain the best choice for γ , which is:

$$\gamma = rac{1}{L}$$
 and $lpha = rac{\mu}{L}$.

• From question 2, we have for any t > 0:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le (1 - \frac{\mu}{L}) (f(\mathbf{x}_t) - f(\mathbf{x}^*))$$
.

Recursively applying this inequality, for any $T \ge 0$, we have:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le (1 - \frac{\mu}{L})^T \left(f(\mathbf{x}_0) - f(\mathbf{x}^*) \right) = (1 - \frac{\mu}{L})^T F_0.$$

To reach ϵ -accuracy, i.e. $f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \epsilon$, we can let:

$$(1 - \frac{\mu}{L})^T F_0 \le \epsilon \ .$$

This implies: $T \geq \frac{\ln(\frac{F_0}{\epsilon})}{\ln(\frac{1}{1-\frac{H}{\epsilon}})}$. Note that $\frac{1}{\ln(\frac{1}{1-\frac{H}{\epsilon}})} = \frac{1}{-\ln(1-\frac{H}{L})} \leq \frac{1}{\frac{H}{L}} = \frac{L}{\mu}$. Therefore, it suffices to have:

$$T \ge \frac{L}{\mu} \ln(\frac{F_0}{\epsilon}) \ .$$

Since we work on the upper bound for $f(\mathbf{x}_T) - f(\mathbf{x}^\star)$, the iteration complexity is thus $\mathcal{O}\left(\frac{L}{\mu}\ln(\frac{F_0}{\epsilon})\right)$.

Exercise (ℓ_2 -regularized least square).

Solution:

- $f(\mathbf{x})$ can also be expressed as: $f(\mathbf{x}) = \frac{1}{2n} ||\mathbf{A}\mathbf{x} \mathbf{b}||_2^2 + \frac{\lambda}{2} ||\mathbf{x}||_2^2$ for a $n \times d$ data matrix A (with rows $\mathbf{a}_i^T \in \mathbb{R}^{1 \times d}$, $i = 1, \dots, n$) and $n \times 1$ vector \mathbf{b} (with rows b_i , $i = 1, \dots, n$)
- The Hessian of f can computed as: $\nabla f^2(\mathbf{x}) = \frac{1}{n}\mathbf{A}^T\mathbf{A} + \lambda\mathbf{I}$. Therefore the smoothness parameter $L \geq \frac{1}{n}\lambda_{\max} + \lambda$ where λ_{\max} is the largest eigenvalue of the matrix $\mathbf{A}^T\mathbf{A}$.
- $f(\mathbf{x})$ is strongly convex since $\frac{1}{n}\mathbf{A}^T\mathbf{A} + \lambda\mathbf{I} \succ 0$ and hence $\nabla f^2(x) \succ 0$. The parameter μ is then $\frac{1}{n}\lambda_{\min}(\mathbf{A}^T\mathbf{A}) + \lambda$.
- Since $f(\mathbf{x})$ is strongly convex, there exists a unique global minimizer \mathbf{x}^* which satisfies: $\nabla f(\mathbf{x}^*) = 0$. After computation, we can explicitly derive $x^* = (\frac{1}{n}\mathbf{A}^T\mathbf{A} + \lambda \mathbf{I})^{-1}(\frac{1}{n}\mathbf{A}^T\mathbf{A}b)$.