

SmartMedia[™] Electrical Specifications Web-Online Version 1.00

Issued: May 19, 1999

SSFDC Forum Technical Committee

These specifications are intended only for review of application, technical and development. These data are updated without advance notice and sent to only Forum members.

Non-members are required to join SSFDC Forum and purchase the latest versions of specifications for the purpose of product development and design.

SSFDC Forum shall not be responsible for any probrem that may arise from the application of these data.

The SSFDC Forum holds the copyright to this material. This material may not be copied in whole or in part without permission. Furthermore, this material may not be disclosed to any third party without the consent of the SSFDC Forum.

These specifications are not intended to permit the use of intellectual property rights such as industrial property rights and copyrights, owned by corporations or individuals. The SSFDC Forum shall not be liable for any dispute that may arise from the application of these specifications.

The SSFDC Forum shall not be responsible for any product-related problems, including those related to memory reliability that may arise from the application of these specifications.

ZSmartMedía[™] is a trademark of Toshiba Corporation.

Revision History

Version			Date
1.00	Web-Online Version	Formal release	May, 1999

Contents

0. Intro	ductionduction	1
1. Appli	cable Models	1
2. Inter	face Specifications	2
	a Assignments	
	planation of Signals	
•	ite Protect	
	ady/-Busy	
	ating Environment	
3.1. Ab	solute Maximum Rating	5
	pacitance	
	erating Voltage	
_	out Levels	
_	Electrical Characteristics	
4. Device	e Internal Configuration	7
4.1. Fla	ish Memory	7
	ASK ROM	
5. Addr	ess Settings	9
< Flash	Memory >	10
< MASI	X ROM >	10
6. Opera	ating Modes	11
6.1. Op	erating Logic Table	11
6.2. Op	erating Command Table	11
6.3. Op	erating Mode in the Read State.	12
6.4. Sta	itus Output Table	12
7. Timir	ng Specifications	13
7.1. Cv	cle Time	13
·	Characteristics	
	ogram/Erase/Read/Reset	
7.4. Tir	ning Diagram	15
8. Device	ee Operation and Precautions	21
8.1. Ch	anging the timing when Data Read is executed	21
8.2. Sec	quential Read	21
8.3. Pre	ecautions when Programming Pages	22
	ecautions for writing in the redundant section only	
	setting after power-on	
8.6. Co	mmands	22

0. Introduction

This document defines the electrical characteristics of the SmartMedia[™] (SSFDC or Solid State Floppy Disk Card) which is standardized by the SSFDC Forum.

1. Applicable Models

There are many kinds of SmartMedia^M, each with a different memory type (Flash Memory, MASK ROM), capacity, operating voltage (5 V, 3.3 V), etc. These specifications apply to the following SmartMedia^M.

Table 1-1 Device Code

36.11	Flash N	Memory	MASK ROM
Model	3.3 V Model	5 V Model	(3.3 V Model only)
1 MBytes	6Eh, E8h, ECh	6Eh	_
2 MBytes	EAh	64h	5Dh
4 MBytes	E3h, E5h	6Bh, E5h	D5h
8 MBytes	E6h	_	D6h

Table 1-2 Package

2. Interface Specifications

2.1. **Pin Assignments**

Table 2-1 Pin Names

No.	Pin Name	I/O	Pin Function	Note
1	GND		Ground	
2	CLE	I	Command Latch Enable	
3	ALE	I	Address Latch Enable	
4	-WE	I	Write Enable	
5	-WP	I	Write Protect (Note 1)	Flash Memory only
6	D0	I/O	Data 0	
7	D1	I/O	Data 1	
8	D2	I/O	Data 2	
9	D3	I/O	Data 3	
10	GND		Ground	
11	-CD	О	Card Detect	
12	VCC		Vcc	
13	D4	I/O	Data 4	
14	D5	I/O	Data 5	
15	D6	I/O	Data 6	
16	D7	I/O	Data 7	
17	LVD	О	Low Voltage Detect Ground (Note 2)	
18	GND	I	Ground (Note 2)	
19	R/-B	O (OD)	Ready/Busy (Note 3)	
20	-RE	I	Read Enable	
21	-CE	I	Card Enable	
22	VCC		Vcc	

- (Note 1) Pin 5 is valid only with Flash Memories. In the case of MASK ROMs, this pin is NC (no connect).
- (Note 2) For Pin 18, the ground level should be input.
- (Note 3)
- Pin 19, O (OD) is an open drain output. $^{\text{\tiny TM}}$ 'I' is the input signal to the SmartMedia $^{\text{\tiny TM}}$. 'O' is the output signal from the SmartMedia $^{\text{\tiny TM}}$. 'I/O' (Note 4) indicates a bi-directional signal.
- The symbol '-' appearing before a signal name designates that signal as active low. (Note 5)
- (Note 6) The same pin layout is used for all package types.

Figure 2-1 Pin Assignment

2.2. Explanation of Signals

DO-7 DATA INPUT OUTPUT TERMINAL

This port is for the input and output of addresses, commands, and data.

CLE COMMAND LATCH ENABLE

This signal enables commands to be sent to the internal command register of the device. By setting the level to 'H' when the -WE signal falls and rises, the data on the I/O terminals will be written into the command register.

ALE ADDRESS LATCH ENABLE

This signal controls whether data is sent to the internal address register or the internal data register in the device. By setting the level to 'H' when the -WE signal falls and rises, the data present at the I/O terminals is written into the address register as address data. By setting the level to 'L' when the -WE signal falls and rises, the data present at the I/O terminals is written into the data register as input data.

-WE WRITE ENABLE

This signal is used to write data present at the I/O terminals into the device.

-RE READ ENABLE

This signal enables the output of data serially from the I/O terminals. From the time -RE falls, valid output data will be present at the I/O terminals after tREA, and the internal column address counter advances (+1).

-CE CARD ENABLE

This is the device selection signal. If it is set to 'H' in the read state, the standby mode is assumed. Furthermore, in the Busy state during the execution of program and erase operations (R/-B = L), both 'H' and 'L' are accepted. (Standby will not be assumed when 'H'.)

-WP WRITE PROTECT

This signal forcibly prohibits writing and erasing. At L', the operation of the internal high voltage generating circuit is reset. Normally, the system is operated with this signal H', but if the power supply signals are irregular (ON/OFF, etc.), this signal should be 'L' in order to protect stored data from unexpected operations. In the event that the VCC voltage is outside the range in which correct operation is assured, it is recommended that the level be set to L'.

R/-B READY / -BUSY

This output signal is an open drain output that indicates the internal operating conditions of the device. During program, erase, and read operations, Busy (R/-B = L) is output. Then, Ready is automatically output when the operation is finished.

-CD CARD DETECT

This is the SmartMediaTM detection signal which outputs the ground level.

LVD LOW VOLTAGE DETECT

This signal is for the detection of the SmartMedia[™] operating voltage. It is connected as described below.

Flash N	MASK ROM		
3.3 V Model	3.3 V Model 5 V Model		
VCC	NC	VCC	

VCC CARD POWER

Power Supply Voltage.

GND GROUND

Ground.

2.3. Write Protect

When a write-protect seal (conductive seal) is attached in the write-protect seal position (see Fig. 2-1), the system detects the presence of the write-protect seal and prevents any data from being written to the SmartMedia^{M}. In this way, the data cannot be altered accidently (by write and erase errors, etc.).

The write-protect seal only works on Flash Memories. In the case of MASK ROMs, data cannot be written, with or without a write-protect seal.

2.4. Ready/-Busy

The Ready/-Busy signal requires a pull-up resistor for this open-drain output. For the resistance, Rp, refer to the following equation.

$$Rp = \frac{Vcc(Max.) - Vol(Max.)}{Iol + \sum I_{L}}$$

 ΣI_L is the sum of the input current of all devices connected to the Ready/-Busy pin.

3. Operating Environment

3.1. Absolute Maximum Rating

Table 3-1 Absolute Maximum Rating

Crumbal	Doromatan	Flash N	1 emory	MASK ROM	Unit	
Symbol	Parameter	3.3 V Model	5 V Model	WASK KOW	Oilit	
V _{CC}	Supply Voltage	-0.6 to 4.6	-0.6 to 7.0	-0.5 to 4.6	V	
V_{AD}	Input/Output Voltage	-0.3 to Vcc+0.3	-0.3 to Vcc+0.5	-0.3 to Vcc+0.3	V	
V AD	input/Output voltage	(≤4.6)	(≤7.0)	(≤4.6)	V	

3.2. Capacitance

Table 3-2 Capacitance

Parameter			Тур.	Max.	Unit
Flash Memory	1Chip SmartMedia [™]	-	-	10	pF
MASK ROM	2Chip SmartMedia [™]	-	-	70	pF

3.3. Operating Voltage

SmartMedia $^{\text{\tiny{TM}}}$ (s) are available in two power-supply voltages: 3.3 V (low voltage), and 5 V (normal).

Table 3-3 Operating Voltage

Parameter		Symbol	Min.	Тур.	Max.	Unit
Flash	Supply Low Voltage (3.3 V)	Vcc	3.0	3.3	3.6	V
Memory	Supply Voltage (5 V)	Vcc	4.5	5.0	5.5	V
MASK ROM	Supply Low Voltage (3.3 V)	Vcc	3.0	3.3	3.6	V

3.4. Input Levels

The input levels for SmartMedia $^{\text{\tiny{TM}}}(s)$ with operating voltages of 3.3 V and 5 V are as follows:

Table 3-4 Input Levels

Parameter	Symbol	Condition	Min.	Max.	Unit
Input High Voltage Level	V_{IH}	$Vcc = 3.3 V \pm 0.3 V$	2.2	Vcc +0.3	V
Input Low Voltage Level	$V_{\rm IL}$	$VCC = 3.3 V \pm 0.3 V$	-0.3	0.6	V
Input High Voltage Level	V_{IH}	$Vec = 5.0 V \pm 0.5 V$	2.4	Vcc +0.3	V
Input Low Voltage Level	$V_{\rm IL}$	$VCC = 3.0 V \pm 0.3 V$	-0.3	0.6	V

3.5. DC Electrical Characteristics

Table 3-5 DC Electrical Characteristics (Ta = 0 to 55°C, Vcc=3.3V±0.3V / Vcc=5.0V±0.5V)

Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
I_{IL}	Input Leakage	Current	$V_{IN} = 0 \text{ V-Vcc}$			±10	μΑ
I_{LO}	Output Leakas	ge Current	$V_{OUT} = 0.4 \text{ V-Vcc}$			±10	μΑ
I_{CCO1}		Serial Read	-CE = V_{IL} , $I_{OUT} = 0$ mA, $T_{cycle} = 80$ ns			30	mA
I _{CCO3}	0	Command Input	$T_{\text{cycle}} = 80 \text{ ns}$			30	mA
I_{CCO4}	Operating Current	Data Input (Note)	$T_{\text{cycle}} = 80 \text{ ns}$			70	mA
I_{CCO5}	Current	Address Input	$T_{\text{cycle}} = 80 \text{ ns}$			30	mA
I_{CCO6}		Program (Note)				60	mA
I_{CCO7}		Erase (Note)				40	mA
I_{CCS1}	Stand-by Curr	ent (TTL)	$-CE = V_{IH}$			1	mA
I_{CCS2}	Stand-by Current (CMOS)		-CE = Vcc-0.2 V			100	μΑ
V _{OH}	Output High Voltage Level		$I_{OH} = -400 \mu A$	2.4			V
V _{OL}	Output Low Voltage Level		$I_{OL} = 2.0 \text{ mA}$			0.4	V
I _{OL} (R/-B)	Output Low C	Current (R/-B)	$V_{OL} = 0.4 \text{ V}$		8		mA

(Note) Operating current (data input, program, erase) applies to Flash Memories only.

4. Device Internal Configuration

4.1. Flash Memory

Program and read operations for Flash Memories are done page by page, and can be erased block by block. The internal configuration of the device is as described below.

Figure 4-1 Internal Configuration (Flash Memory)

Table 4-1 Memory Configuration (Flash Memory)

Model	Page Size $(a + b = c)$	Block Size (d)	Number of Blocks (e)	Number of Pages (f)
1 MByte	256 + 8 = 264 Bytes		256 Blocks	4,096 pages
2 MBytes	230 + 8 - 204 Bytes	16 2000	512 Blocks	8,192 pages
4 MBytes	512 + 16 = 520 Dydog	16 pages	312 DIOCKS	8,192 pages
8 MBytes	512 + 16 = 528 Bytes		1,024 Blocks	16,384 pages

Flash Memories may contain some blocks that are unusable (failure blocks). The minimum number of usable blocks for each memory capacity is as shown below.

Table 4-2 Number of Usable Blocks

Model	Number of Zones	Number of Usable Blocks (Min.)
1 MByte		252 Blocks
2 MBytes		502 Blocks
4 MBytes		SUZ BIOCKS
8 MBytes		1,002 Blocks

The 32 MBytes to 128 MBytes models are controlled in 16 MByte zones. For details, see the "SmartMedia™ Physical Format Specification".

4.2. MASK ROM

MASK ROMs can only be read one page at a time. The internal configuration of the device is as described below.

Figure 4-2 Internal Configuration (MASK ROM)

Table 4-3 Memory Configuration (MASK ROM)

Model	Page Size $(a + b = c)$	Block Size (d)	Number of Blocks (e)	Number of Pages (f)
2 MBytes	512 ± (16)		256 Blocks	4,096 pages
4 MBytes	512 + (16) = 528 Bytes	16 pages	512 Blocks	8,192 pages
8 MBytes			1,024 Blocks	16,384 pages

(Note) For MASK ROMs, redundant section data (b) are all "FFh".

5. Address Settings

As $SmartMedia^{TM}(s)$ do not have address terminals, addresses are incorporated during three or four clock cycles from the I/O terminals.

Table 5-1 Address Configuration

	D7	D6	D5	D4	D3	D2	D1	D0
1 st cycle	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
2 nd cycle	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
3 rd cycle	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8

CA0 to CA7: column address PA0 to PA15: page address

The valid page addresses for each memory capacity are as shown below.

Table 5-2 Valid Page Addresses (Flash Memory)

Model	Valid Page Address	'L' Level ^(Note 1)	'L' Level ^(Note 2)
1 MBytes	PA0-PA11	PA12-PA15	
2 MBytes	PA0-PA12	PA13-PA15	
4 MBytes	PA0-PA12	PA13-PA15	_
8 MBytes	PA0-PA13	PA14, PA15	

Table 5-3 Valid Page Addresses (MASK ROM)

Model	Valid Page Address	'L' Level ^(Note 1)	'L' Level ^(Note 2)
2 MBytes	PA0-PA11	PA12-PA15	
4 MBytes	PA0-PA12	PA13-PA15	_
8 MBytes	PA0-PA13	PA14, PA15	

(Note 1) In the 3rd cycle, the relevant I/O terminals for the page addresses mentioned above should be set to 'L'.

< Flash Memory >

• 256 + 8 Byte/page (1 – 2 MBytes)

3 rd Address Cycle	2 nd Addre	ess Cycle	1 st Address Cycle
A23 — A16	A15 — A12	A11 — A8	A7 ——— A0
PA15 — PA8	PA7 — PA4	PA3 — PA0	CA7 — CA0
BA11 —	BA0		

• 512 + 16 Byte/page (4 – 8 MBytes)

3 rd Address Cycle	2 nd Addr	ess Cycle		1 st Address Cycle
A24 — A17	A16 — A13	A12 — A9	A8	A7 — A0
PA15 — PA8	PA7 — PA4	PA3 — PA0	CA8	CA7 ———— CA0
BA11 —	BA0		↑ Note 1	

Fig. 5-1 Address settings

- (Note 1) The input level for CA8 is automatically set within the circuitry by the commands '00' or '01'.
- (Note 2) BA0 to BA11 show the block addresses.

< MASK ROM >

• 512 + 16 Byte/page (2 – 8 MBytes)

3 rd Address Cycle	2 nd Address Cycle			1 st A	ddress Cycle
A24 — A17	A16 — A13	A12 — A9	A8	A7	A0
PA15 — PA8	PA7 — PA4	PA3 — PA0	CA8	CA7	CA0
BA11	—— BA0		↑ Note 1		

Fig. 5-2 Address settings

- (Note 1) The input level for CA8 is automatically set within the circuitry by the commands '00' or '01'.
- (Note 2) BA0 to BA11 show the block addresses.

6. Operating Modes

6.1. Operating Logic Table

Program, erase, read, and other operating modes are controlled by the following commands. Address input, command input, data I/O, etc., are controlled by the CLE, ALE, -CE, -WE, -RE, and -WP signals.

Table 6-1 Operating Logic Table

Mode		CLE	ALE	-CE	-WE	-RE	-WP
Command Input		Н	L	L	工	Н	*
Address Input		L	Н	L	<u>_</u>	Н	*
Data Input	(Note)	L	L	L	7	Н	*
Data Output		L	L	L	Н	4	*
During Program/Erase (During Busy State)	(Note)	*	*	*	*	*	Н
Write Protect	(Note)	*	*	*	*	*	L

H: V_{IH} L: V_{IL} *: V_{IH} or V_{IL}

6.2. Operating Command Table

Fig. 6-2 Operating Command Table

Function	1 st cycle	2 nd cycle	Acceptable Command during Busy State
Serial Data Input (Note 1)	80h		
Read (1)	00h		
Read (2) (Note 2)	01h		
Read (3) (Note 3)	50h		
Reset	FFh		0
Page Program (Note 1)	10h		
Block Erase (Note 1)	60h	D0h	
Status Read	70h		0
ID Read	90h		

- (Note 1) Applies to Flash Memories only.
- (Note 2) 512 + 16 Byte/page mode only is supported.
- (Note 3) In the case of MASK ROMs, fixed data 'FFh' is output.
- (Note 4) Once the read mode is set by using commands 00H, 01H, or 50H, there is no need for a read command to access subsequent pages.
- (Note 5) Commands are expressed in hexadecimal code, and D0 to D7 are as described below.

Fig. 6-1 Correspondence between Commands and I/O Terminals.

⁽Note) Flash Memories only.

Operating Mode in the Read State. 6.3.

Table 6-3 Operating Mode in the Read State

Mode	CLE	ALE	-CE	-WE	-RE	D0-D7	Power
Read Mode	L	L	L	Н	L	Dout	Active
Output Deselect	L	L	L	Н	Н	High-Z	Active
Standby	L	L	Н	Н	*	High-Z	Standby

 $H: V_{IH}$

L: V_{IL} *: V_{IH} or V_{IL}

6.4. Status Output Table

When the status read command is being executed, the status can be read. Status outputs are allocated to D0 to D7 as shown below.

Table 6-4 Status Output Table

	Status	Flash Memory	MASK ROM
D0	Pass/Fail	"0": Pass, "1": Fail	"0": Pass (Ready), "1": Fail (Busy)
D1		"0"	"0"
D2	Reserved for	"0"	"0"
D3	Future Use	"0"	"0"
D4		"0"	"0"
D5		"0"	"0"
D6	Ready/Busy	"0": Busy, "1": Ready	"0": Busy, "1": Ready
D7	Write Protect	"0": Protected, "1": Not Protected	"0": Protected (Fixed)

Pass/Fail status at D0 is valid when the device is in the Ready state. Before Pass or Fail is determined, the (Note) Ready state must be confirmed.

In MASK ROM, status at D0 is the inverted data of D6.

7. Timing Specifications

7.1. Cycle Time

Tcycle: MIN. 80 ns

7.2. AC Characteristics

Table 7-1 AC Characteristics (Ta= 0 to 55°C, Vcc=3.3V ±0.3V / Vcc=5.0V ±0.5V)

Symbol	Parameter	Min.	Max.	Unit
t_{CLS}	CLE Set up Time	20	-	ns
t_{CLH}	CLE Hold Time	40	-	ns
t_{CS}	-CE Set up Time	20	-	ns
t_{CH}	-CE Hold Time	40	-	ns
t_{WP}	-WE Pulse Width	40	-	ns
t _{ALS}	ALE Set up Time	20	-	ns
t_{ALH}	ALE Hold Time	40	-	ns
t_{DS}	Data Set up Time	30	-	ns
t_{DH}	Data Hold Time	20	-	ns
t_{WC}	Write Cycle Time	80	-	ns
$t_{ m WH}$	-WE High Hold Time	20	-	ns
t_{WW}	-WP High to -WE Low	100	-	ns
t_{RR}	Ready to -RE Low	20	-	ns
t_{RP}	Read Pulse Width	60	-	ns
t_{RC}	Read Cycle Time	80	-	ns
t_{REA}	-RE Access Time(Serial Data Access)	-	45	ns
t_{CEH}	-CE High Hold Time(at the Last Serial Read)	250	-	ns
t_{REAID}	-RE Access Time(ID Read)	-	90	ns
t_{RHZ}	-RE High to Output Hi-Z	5	30	ns
t _{CHZ}	-CE High to Output Hi-Z	-	30	ns
t_{REH}	-RE High Hold Time	20	-	ns
$t_{\rm IR}$	Output Hi-Z to -RE Low	0	-	ns
t_{RSTO}	-RE Access Time(Status Read)	-	45	ns
t_{CSTO}	-CE Access Time(Status Read)	-	55	ns
$t_{ m RHW}$	-RE High to -WE Low	0	-	ns
$t_{ m WHC}$	-WE High to -CE Low	50	-	ns
$t_{ m WHR}$	-WE High to -RE Low	60	-	ns
	ALE Low to -RE Low	200		
t_{AR1}	(Address Register Read, ID Read)	200	-	ns
t_{CR}	-CE Low to -RE Low	200	_	ns
	(Data Register Read,ID Read)	200	_	110
t_{WB}	-WE High to Busy	-	200	ns
t_{AR2}	ALE Low to -RE Low (Read Cycle)	150	-	ns
t_{RB}	Last -RE High to Busy(at Sequential Read)	-	200	ns
t_{CRY}	-CE High to Ready (Note)	-	1	μs

(Note): The length of the period between –CE High and Ready depends on the pull-up resistance at the Ready/–Busy terminal.

Table 7.2 AC Test Conditions (Ta = 0 to +55°C)

Parameter	3.3 V Model	5 V Model	
Supply Voltage	$3.3 \text{ V} \pm 0.3 \text{ V}$	$5.0 \text{ V} \pm 0.5 \text{ V}$	
Input Pulse Level	0.4 V - 2.4 V	0.6 V - 2.4 V	
Input comparison Level	1.5 V / 1.5 V	1.5 V / 1.5 V	
Output Data comparison Level	1.5 V / 1.5 V	1.5 V / 1.5 V	
Output Load	1 TTL gate, CL = 100 pF		

7.3. Program/Erase/Read/Reset

During program, erase, read, reset operations, it is necessary to monitor the Ready/Busy status. The Busy time during the execution of each operation is shown below.

Table 7.3 1 MByte to 128 MByte SmartMedia[™] Busy Time

Cymbal	Daramatar		1 Mbytes to 8 MBytes		I Init
Symbol Parameter		Typ.	Max.	Unit	
t _{PROG}	Program Time	_	20	ms	
t_{BERASE}	Block Erase Time	_	400	ms	
t_{R}	Data Transfer Time (from Cell to Register)	_	100	μs	
t _{rst}	Device Resetting Time (Program/Erase/Read)	Program	_	80	μs
		Erase	_	6	ms
		Read	_	40	μs

(Note) For details, see each company's technical data.

(Reference Data)

Table 7.4 Toshiba SmartMedia[™] Busy Time

Symbol	Parameter	TC5816ADC (2 MBytes)		TC5832DC/TC58V32DC (4 MBytes)		Unit
		Тур.	Max.	Typ.	Max.	
t_{PROG}	Program Time	300-1000	5000	300	1500	μs
$t_{ m BERASE}$	Block Erase Time	6	100	6	50	ms

Table 7.5 Samsung SmartMedia[™] Busy Time

Symbol Parameter		SMFN002 (2 MBytes)		SMFN004/SMFV004 (4 MBytes)		Unit
		Тур.	Max.	Тур.	Max.	
t_{PROG}	Program Time	250	1500	250	1500	μs
t _{BERASE}	Block Erase Time	5	10	5	10	ms

7.4. Timing Diagram

• Basic Latch Timing for Command, Address and Data

• Command Input Cycle

• Address Input Cycle

• Data Input Cycle

:
$$V_{\text{IH}}$$
 or V_{IL}

• Serial Read Cycle

• Status Read Cycle

• Read Cycle (1)

• Read Cycle (1): when -CE is high during the cycle.

• Read Cycle (2): (512 + 16 Byte/page models only)

• Read Cycle (3)

• Sequential Read Timing

• Auto Page Program Timing: (Flash Memories only)

• Auto Block Erase Timing: (Flash Memories only)

• ID Read Timing

• Reset Timing

8. Device Operation and Precautions

8.1. Changing the timing when Data Read is executed

To release the Busy output after a Page Read is executed, set -CE to high for a certain length of time after accessing the final address of the page.

- 1. When -CE's delay (tRHCH) related to -RE is less than 30 ns, setting -CE to high for a certain time (tCEH) will enable the READY state to be maintained without outputting the Busy state.
- 2. When -CE's delay (tRHCH) related to -RE is 30 ns or longer, keeping -CE high for a certain time (tCEH) will release the Busy output in tCRY after -CE is high.

8.2. Sequential Read

When a Data Read is executed, the initial address is specified at the start of the Data Read. Then, it is only necessary to input the -RE clock (without additional address input) in order to automatically increment the page address and continuously execute Read operation.

On the second page or later, all data in the main and redundant sections are output using Read commands (1) and (2). Only the redundant section is output using Read command (3). The sequential Read Mode can be used only within a single block.

8.3. Precautions when Programming Pages

1) Limit of the Write Operation to the Same Page

The data and redundant areas can only be written simultaneously once. If the system configuration requires it, writing to the redundant area may occur once more.

2) Writing to Pages within a Block

During the program operation, writing should be executed consecutively from a lower address page to an upper address page. Random page programming should be avoided.

8.4. Precautions for writing in the redundant section only

Writing only to the redundant section requires the Reset command to be inputted and the Read command to be used to change data/pointer mode, as indicated in the following sequence. To program the data section after writing into the redundant section, the Reset command or Read commands (1) or (2) must be issued to reset the data pointer mode.

8.5. Resetting after power-on

After power-on, initialize the device using the following sequence.

8.6. Commands

- (1) Command values other than those specified in the specifications cannot be inputted as a command.
- (2) During the Busy state, inputting commands other than the Status Read command (70h) and Reset command (FFh) is not possible.
- (3) After inputting the Serial Input command (80h), do not input command data other than the Program command (10) or Reset (FFh).
- (4) Use the Ready/-Busy signal to determine the Busy state of the SmartMedia[™].

 The Status Read command is only available for abnormality judgement after the Erase command or Write command is issued. Execute the Status Read command after confirming that the state is Ready.