اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۲۴ آبان ۱۳۹۹ جلسه شانزدهم

Oversegmentation & Superpixels

Oversegmentation

- Group together similar-looking pixels for efficiency of further processing
 - Bottom-up" process
 - Unsupervised

"superpixels"

Xiaofeng Ren and Jitendra Malik

Learning a classification model for segmentation,
International Conference on Computer Vision (ICCV), 2003.

Graph-Based Oversegmentation

Pedro F. Felzenszwalb and Daniel P. Huttenlocher *Efficient Graph-Based Image Segmentation*International Journal of Computer Vision (IJCV), 2004.

Challenging Example

Consider undirected graph G = (V, E) with characteristics below:

- Vertices $v_i \in V$ are descriptors of pixels p_i
- Edges $(v_i, v_j) \in E$ pair neighboring vertices
- Weights $w\left(\left(v_i,v_j\right)\right)$ are non-negative measures of dissimilarity between neighboring elements v_i and v_j .

Segmentation $S = \{C_1, C_2, ..., C_n\}$ is a partition of V so that:

- Each C_i is a connected component in graph $G_i = (V, E_i)$
- $E_i \subseteq E$

Objective:

Finding a segmentation so that: elements in a component to be similar, and elements in different components to be dissimilar.

In other words:

Low weights of edges in a component, and High weights of edges between two different components.

Internal difference of a component $C \subseteq V$:

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$

The largest weight in the minimum spanning tree of C, MST(C,E).

Difference between two components C_1 , $C_2 \subseteq V$:

$$Dif(C_1, C_2) = \min_{\substack{v_i \in C_1, \ v_j \in C_2 \\ (v_i, v_i) \in E}} w\left(\left(v_i, v_j\right)\right)$$

The minimum weight edge connecting two components.

Minimum internal difference of two components \mathcal{C}_1 and \mathcal{C}_2 :

$$MInt(C_1, C_2) = \min(Int(C_1) + \tau(C_1), Int(C_2) + \tau(C_2))$$

Pairwise comparison predicate:

$$D(C_1, C_2) = \begin{cases} true & Dif(C_1, C_2) < MInt(C_1, C_2) \\ false & otherwise \end{cases}$$

True = Merging two components

False = Not merging two components

<u>Algorithm</u>

nlog(n) where n is the number of pixels

Objective:

Finding segmentation $S = (C_1, C_2, ..., C_r)$

- 1. Sort E into $(o_1, o_2, ..., o_m)$ by non-decreasing edge weights.
- 2. Start with S^0 , where each vertex v_i is a component.
- 3. Repeat steps below for q = 1, ..., m to construct S^q given S^{q-1} :
 - 1. Let v_i in C_i^{q-1} and v_j in C_j^{q-1} denote the vertices connected by the q-th edge in the ordering, i.e., $o_q = (v_i, v_j)$.
 - 2. If $C_i^{q-1} \neq C_j^{q-1}$ and $w(o_q) \leq MInt(C_i^{q-1}, C_j^{q-1})$ then merge two components.
- 4. Return $S = S^m$.

$$Int(A) = \max_{e \in MST(A,E)} w(e) \qquad Int(B) = \max_{e \in MST(A,E)} w(B)$$

$$MInt(A, B) = min(Int(A) + \tau(A), Int(B) + \tau(B))$$

$$Dif(A,B) = \min_{\substack{v_i \in A, \ v_j \in B \\ (v_i,v_j) \in E}} w((v_i,v_j))$$

$$\begin{cases} if \ Dif(A,B) < MInt(A,B) & Merge \\ if \ Dif(A,B) \ge MInt(A,B) & Don't \ merge \end{cases}$$

Refinement: Segmentation *T* is a refinement of segmentation *S* when each component of *T* is contained in *S*.

Too Fine: A segmentation is *too fine* if there is some pair of regions for which there is no evidence for a boundary between them.

Too Coarse: A segmentation is *too coarse* when there exists a proper refinement that is not too fine.

For any graph, there exists a segmentation that is neither too fine nor too coarse.

Lemma: In the algorithm, if two distinct components are considered and not merged, then one of these components will be in the final segmentation.

Theorem: The segmentation produced by the algorithm is neither too coarse nor too fine.

Theorem: The segmentation produced by the algorithm does not depend on which non-decreasing weight order of the edge is used.

http://www.cs.brown.edu/~pff/segment/

- + Fast
- + Easy to control coarseness of segmentations
- + Can include both large and small regions
- Often creates regions with strange shapes
- Sometimes makes very large errors

