

NumProg WS 20/21: Tutorübung 01

Willkommen zu NumProg! ©

Ganz kurze Erklärungen bevor wir anfangen können:

- besondere Situation dieses Semester
- Organisatorisches
- zusätzliche Lernhilfen
- Mein Tutoriums-Still

NumProg WS 20/21: Tutorübung 01

Willkommen zu NumProg! ©

Ganz kurze Erklärungen bevor wir anfangen können:

- besondere Situation dieses Semester
- Organisatorisches
- zusätzliche Lernhilfen
- Mein Tutoriums-Still

Besondere Situation

- Wegen Corona alle Übungen dieses WS auch online
- Klausur vermutlich auch online (open book)
- 2. Semester über BBB
 - → wir haben noch keine perfekten Lösungen für alles gefunden
 - → gerne Verbesserungsvorschläge ©
- Generell: Alle Infos unter moodle.tum.de

Organisatorisches

- Tutorstunde jede Woche 2 Stunden lang! (13:00 15:00)
- Klausurdatum tbd (ich gebe euch bei neuen Infos Bescheid)
 Wichtig: Es gibt nur eine Klausur pro Semester!
- Es gibt über das Semester 4 Programmieraufgaben
 - → 70% der Punkte für 0.3 Bonus (280 von 400 Punkten)
 - → für Aufgaben ist Gruppenanmeldung in Moodle nötig
 - → erste Abgabe ist am 30.November, 03:00 nachts

Organisatorisches

- Tutorstunde jede Woche 2 Stunden lang! (13:00 15:00)
- Klausurdatum tbd (ich gebe euch bei neuen Infos Bescheid)
 Wichtig: Es gibt nur eine Klausur pro Semester!
- Es gibt über das Semester 4 Programmieraufgaben
 - → 70% der Punkte für 0.3 Bonus (280 von 400 Punkten)
 - → für Aufgaben ist Gruppenanmeldung in Moodle nötig
 - → erste Abgabe ist am 30.November, 03:00 nachts
- Wir Tutoren haben nichts mit den Programmieraufgaben zu tun ;)

zusätzliche Lernhilfen

- NumProg Legende Hendrik
 - → https://hendrik.fam-moe.de/de/tutorien/
 - → Hendrik ist 7-maliger Tutor und hat über 4 Jahre sein Skript erstellt
 - → neben Skript auch Probeklausuren, Lerntrainer, Hausaufgaben, etc.
- meine Folien (mehr dazu gleich)
 - → werden auch jeden Dienstag um 15:30 hochgeladen (Link in Notizen)
- per Mail bei Fragen: cora.moser@tum.de
- moodle Forum

Mein Tutoriums-Stil

- Jede Woche tutoriumsbegleitende Folien
 - → Kurze Erklärungen zu jeder (Teil-)Aufgabe
 - → Graphische Ergänzungen
 - → Zusammengefasste Lösungen zum Weiterrechnen

Mein Tutoriums-Stil

- Jede Woche tutoriumsbegleitende Folien
 - → Kurze Erklärungen zu jeder (Teil-)Aufgabe
 - → Graphische Ergänzungen
 - → Zusammengefasste Lösungen zum Weiterrechnen
- Wir gehen jede Aufgabe in kleinen Schritten durch
 - → Schema: Erklärung, Stillarbeit Aufgabenblatt, Lösung besprechen

Mein Tutoriums-Stil

- Jede Woche tutoriumsbegleitende Folien
 - → Kurze Erklärungen zu jeder (Teil-)Aufgabe
 - → Graphische Ergänzungen
 - → Zusammengefasste Lösungen zum Weiterrechnen
- Wir gehen jede Aufgabe in kleinen Schritten durch
 - → Schema: Erklärung, Stillarbeit Aufgabenblatt, Lösung besprechen
- Manche Leute sind schneller als andere, ich richte mich hauptsächlich nach den langsameren!

Mein Tutoriums-Stil und BBB

- Umfragen sind toll!
 - → Zwischenfrage bei Erklärungen, ob alles soweit klar ist
 - → Abfrage, wer schon mit einer Aufgabe fertig ist
 - → yay, random Trollantworten
- Auf BBB schreiben ist gewöhnungsbedürftig
- Ihr könnt gerne mit mir reden ☺

Tutorübung 01 – heutige Themen

- 1. Wiederholung Zahlenbasen + binäre Brüche
- 2. Zweierkomplement
- 3. Assoziativgesetz bei Binärzahlen + Rundungsfehler
- 4. Gleitkommazahlen + 32-bit IEEE Standard

Zahlenbasen

Allgemeine Formel: $a_n \cdot b^n + \cdots + a_1 \cdot b^1 + a_0 \cdot b^0$

	dezimal	binär	hexadezimal		
Formel	$a_n \cdot 10^n + \dots + a_1 \cdot 10 + a_0$	$a_n \cdot 2^n + \dots + a_1 \cdot 2 + a_0$	$a_n \cdot 16^n + \dots + a_1 \cdot 16 + a_0$		
Faktoren	0,1,2,3,4,5,6,7,8,9	0,1	$0, \dots, 9, A, B, C, D, E, F$		
Kennz.	N ₁₀	N_2	N_{16} oder $0xN$		
Bsp.	$19_{10} = 1 \cdot 10^1 + 9 \cdot 10^0$	$19_{10} = 10011_{2}$ $= 1 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$	$19_{10} = 13_{16}$ $= 1 \cdot 16^{1} + 3 \cdot 16^{0}$		

Legende:

 $a \coloneqq \mathsf{Faktor}$

 $b \coloneqq \mathsf{Basis}$

N := natürliche Zahl

Zahlenbasen

Tipp:

Umrechnung $Bin\ddot{a}r \Leftrightarrow Hexadezimal$

1011 0110 D 6

 $13_{10} 6_{10}$ $13_{10} 6_{10}$

Lernen aller Zweierpotenzen bis 2^{12}

2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
4096	2048	1024	512	256	128	64	32	16	8	4	2	1

Allgemeine Formel:
$$a_n \cdot b^n + \cdots + a_1 \cdot b^1 + a_0 \cdot b^0$$

Allgemeine Formel:
$$a_n \cdot b^n + \dots + a_1 \cdot b^1 + a_0 \cdot b^0 + a_{-1} \cdot b^{-1} + \dots + a_{-m} \cdot b^{-m}$$

Allgemeine Formel: $a_n \cdot b^n + \cdots + a_1 \cdot b^1 + a_0 \cdot b^0 + a_{-1} \cdot b^{-1} + \cdots + a_{-m} \cdot b^{-m}$

Beispiel an Binärzahl: $6.25_{10} = 110.01_2 =$

$$1 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 0.5 = 0.25$$

$$\left(\frac{1}{5}\right)_{10}$$

$$\left(\frac{1}{5}\right)_{10} \equiv (1_{10} \div 5_{10})$$

$$\left(\frac{1}{5}\right)_{10} \equiv (1_{10} \div 5_{10}) \rightarrow \left(\frac{1}{101}\right)_{2} \equiv (1_{2} \div 101_{2})$$

$$\left(\frac{1}{5}\right)_{10} \equiv (1_{10} \div 5_{10}) \rightarrow \left(\frac{1}{101}\right)_{2} \equiv (1_{2} \div 101_{2})$$
 $1 \div 101 =$

$$\left(\frac{1}{5}\right)_{10} \equiv (1_{10} \div 5_{10}) \rightarrow \left(\frac{1}{101}\right)_{2} \equiv (1_{2} \div 101_{2})$$

$$1 \div 101 = 0.\overline{0011}$$

Binärzahlen negativ darstellen

Überlegung: vorderstes Bit = Vorzeichenbit

Beispiel: -19 **1 10011**

VZ eigentliche Zahl

Problem?

Binärzahlen negativ darstellen

Überlegung: vorderstes Bit = Vorzeichenbit

Beispiel: -19 **1 10011**

VZ eigentliche Zahl

Problem: keine eindeutige Darstellung für 0,

jeweils 1 Bit im Speicher für ±0

Lösung: Zweierkomplementdarstellung

Stelle	1	2	3	 n-1	n
Wert	-2^{n-1}	2^{n-2}	2^{n-3}	 2^1	2 ⁰

Zweierkomplementdarstellung

$$-19_{10} = 1 \cdot (-2^5) + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$
$$= 101101_2$$

bei einer Kodierung von 6 Bit (Bereich -32 bis +31)

Umrechnen von normaler zu Zweierkomplementdarstellung:

$$19_{10} = 010011_2$$

$$\downarrow$$
 Bits invertieren
$$101100_2$$

$$\downarrow$$
 1 addieren
$$-19_{10} = 101101_2$$

binäre Zahlen runden

Für eine binäre Zahl der Form

$$x, y \mid z$$

wobei wir bis | runden möchten, gelten folgende Rundungsregeln:

↓	$y \mid 0 \ z'$	abrunden, z' beliebig
1	$y \mid 1 z'$	aufrunden, falls $z' \neq 0$
↓	y' 0 1 z'	abrunden, falls $z'=0$
1	y' 1 1 z'	aufrunden, falls $z' = 0$

verschiedene Rundungsregeln

5 bekannteste Rundungsregel-Definitionen:

Beispielzahlen	+3.5	-3.5	+4.5	-4.5
Runden zur nächsten geraden Zahl	+4	-4	+4	-4
Von 0 weg runden	+4	-4	+5	- 5
Zu 0 hin runden	+3	-3	+4	-4
Zu +∞ runden	+4	-3	+5	-4
Zu -∞ runden	+3	-4	+4	- 5

← default

nicht klausurrelevant

verschiedene Rundungsregeln

Warum ist "Runden zur nächsten geraden Zahl" default?

Gegenbeispiel: gewohntes Runden (von 0 weg) während Rechnen mit 2 Zahlen

```
x = 1.00

y = 0.555

\Rightarrow z = x + y = 1.56 aufrunden

x' = z - y = 1.01 aufrunden

z' = x' + y = 1.57 aufrunden
```

→ tritt nicht auf, wenn immer auf nächste gerade Zahl gerundet wird

nicht klausurrelevant

Rundungsfehler

Absorption:

Kleine Zahl wird zu wesentlich größerer Zahl addiert/ von ihr subtrahiert

→ kleinere Zahl wird von größerer beim Runden "absorbiert"

Beispiel:
$$19_{10} + 0.25_{10} = 1011_2 + 0.01_2 = 1011.01_2$$
 runden auf 4 sig Stellen $1011_2 = 19_{10}$ $\rightarrow 0.25_{10}$ wurde von der 19_{10} absorbiert

Auslöschung:

Zwei ähnlich große Zahlen werden voneinander subtrahiert

→ Zahlen auf gleichen Wert gerundet → Ergebnis 0 (schlecht zum Weiterrechnen)

Beispiel:
$$0.625_{10} - 0.5625_{10} = 0.1010_2 - 0.1001_2$$
 runden auf 2 sig Stellen $0.10_2 - 0.10_2 = 0$

→ beide Zahlen haben sich gegenseitig "ausgelöscht", weiterrechnen schwer

Gleitkommazahlen

standardisierte Gestalt: $\pm 1, \dots \cdot 2^n$

VZ normierte Zahl Exponent

Beispiel: $-19,25_{10}$ in standardisierte Form bringen

Vorzeichen: –

Zahl: 10011,01₂

normierte Zahl: 1,001101₂

Exponent dazu: 2⁴ (Bitshift Komma um 4 Stellen)

 $\rightarrow -19,25_{10} = -1,001101 \cdot 2^4$

32-bit IEEE Standard

Vorzeichen	1 Bit	0 ≔ positiv, 1 ≔ negativ
Exponent	8 Bit	gespeicherte 8 bit Binärzahl ≔ Exponent + 127
Mantisse	23 Bit	normierte Zahl, 1 vor Komma nicht mitgespeichert

- reichen die 23 (24) Bit nicht für die Mantisse wird gerundet
- Zahlen 00000000 und 11111111 für Exponent sind reserviert

Rundungsfehler

absoluter Rundungsfehler:

$$f_{\text{abs}} = |x - \text{rd}(x)|$$

relativer Rundungsfehler:

$$f_{\rm rel} = \left| \frac{f_{\rm abs}}{x} \right|$$

Maschinengenauigkeit

Maschinengenauigkeit ≔

größte positive Zahl ε , so dass $1 \oplus \varepsilon = 1$

oder

größte positive Zahl ε , so dass $rd(1 + \varepsilon) = 1$

Berechnung:

$$\varepsilon = \frac{1}{2} \cdot \beta^{1-t}$$

 $\beta \coloneqq \text{Zahlenbasis}$

t := Mantissenlänge