Amplificador operacional

28. Considerar o circuito representado. Determinar o valor de V_2 e comparar com o valor que teria se não existisse o seguidor de tensão.

- 29. Muitos transdutores, tais como os termístores e extensómetros, são do tipo resistivo. O circuito da figura pode ser usado para "ler" variações de resistência deste tipo de sensores.
- a) Qual o valor de Ii.
- b) Se a resistência do transdutor for de $1k\Omega$ qual a tensão na saída (Vo).

- 30. Obter circuitos com amplificadores operacionais para realizar as seguintes operações, utilizando, tanto quanto possível resistências de $R=10 \ k\Omega$.
- (a) $v_0 = v_1 + v_2 + v_3$ (usar um amplificador)
- (b) $v_0 = v_1 + 2v_2 v_3 2v_4$ (usar dois amplificadores)
- (c) $v_0 = -v_1 \int v_i dt$ (usar um amplificador).
- 31. Usando Ampop's, projecte um circuito capaz de detectar os máximos e mínimos de um sinal eléctrico sinusoidal.

32. Determinar a função de transferência dos circuitos representados na figura e representar os diagramas de Bode da amplitude e da fase.

- 33. Considerar um amplificador com ganho diferencial 40 dB e relação de rejeição de modo-comum de 60 dB. Calcular a tensão de saída se as tensões de entrada forem v^+ =5.1 V e v^- =5.0 V.
- 34. Considerar um amplificador operacional cujo ganho em malha aberta tem um pólo dominante, sendo o ganho em baixa frequência Ao= 80 dB e o produto banda-ganho 10 MHz.

Obter a função de transferência e representar o diagrama de Bode da amplitude de:

- (a) amplificador operacional sem realimentação
- (b) montagem não-inversora de ganho +5
- (c) montagem inversora de ganho -4.

Soluções

- 28. Com seguidor v_2 =4 V. Sem seguidor v_2 =3 V.
- 29. a) 0.1 mA b) 0.1 V
- 32. a) $H(s) = -10/(1+s/\omega_1)$ $\omega_1 = (R_2C)^{-1} = 2\pi \cdot 10^3 \text{ rad s}^{-1}$.
 - b) $H(s)= (s/\omega_2)/(1+s/\omega_2)$ $\omega_2=(R_1C)^{-1}= 2\pi \cdot 10^4 \text{ rad s}^{-1}$.
- 33. v₀=10.5 V.
- 34. $H(s)=A_0/(1+s/\omega_p)$ a) $A_0=10^4$; $\omega_p=1$ kHz b) $A_0=5$; $\omega_p=2$ MHz c) $A_0=-4$; $\omega_p=2$ MHz.