Knowledge Graph Embedding

Invited Lecture (Graph7) at CMU 11441/11741

Zhiqing Sun

Email: zhiqings@cs.cmu.edu

1

Knowledge Graphs

- A set of facts represented as triplets
 - (head entity, relation, tail entity)
- A variety of applications
 - Question answering
 - Search
 - Recommender Systems
 - Natural language understanding

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Knowledge Graphs: Knowledge in graph form

- A set of facts represented as triplets
 - with (h, r, t) for head entity, relation, tail entity
- Nodes are entities
- Nodes are labeled with their types
- Edges between two nodes capture relationships between entities

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

3

3

Example: Bibliographic Networks

- Node types: paper, title, author, conference, year
- Relationships: pubWhere, pubYear, hasTitle, hasAuthor, cite

4

3/21/2024

Example: Biological Knowledge Graphs

- Node types: drug, disease, adverse event, protein, pathways
- Relationships: has_func, causes, assoc, treats, is_a

5

3/21/2024

Knowledge Graph Datasets

- Publicly available KGs:
 - FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.
- Common characteristics:
 - Massive: Millions of nodes and edges
 - Incomplete: Many true edges are missing

- Examples: Freebase
 - 93.8% of persons from Freebase have no place of birth and 78.5% have no nationality!

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

6

Task: Knowledge Graph Completion

- A fundamental task: predicting missing links
- The Key Idea: model and infer the **relation patterns** in knowledge graphs according to observed knowledge facts.
 - The relationship between relations
- Example:

Obama_Barack Wife Michelle_Obama
Michelle Obama Husband Obama_Barack

Parents of Parents are Grandparents

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

7

Knowledge Graph Embedding

• Representing entities as **embeddings**

8

Knowledge Graph Embedding

- Representing entities as vectors
- Representing relations as vectors or matrices
- For each semantically valid triple (h, r, t), our goal is to establish projection $f: (h, r) \to t'$ such that t' is close to the true t (here the boldfaced $h, r, t \in \mathbb{R}^d$ are the embeddings of the head, relation and tail in a triplet, respectively).
- Also, we want to define scoring function $\phi(h, r, t) \in \mathbb{R}$ which takes the embeddings h, r and t as its input, and returns a high score if (h, r, t) is semantically valid, and a low score otherwise.

3/21/2024 @ZhiqingSun, Invited Lecture on RotatE

9

Related Work in Knowledge Graph Embedding

- Representing entities as vectors
- Representing relations as vectors or matrices

Related Work on Knowledge Graph Embedding

- Representing entities as vectors
- Representing relations as vectors or matrices

Model	Score Function				
SE (Bordes et al., 2011)	$-\left\ \boldsymbol{W}_{r,1}\mathbf{h}-\boldsymbol{W}_{r,2}\mathbf{t}\right\ $	$\mathbf{h},\mathbf{t}\in\mathbb{R}^{k},oldsymbol{W}_{r,\cdot}\in\mathbb{R}^{k imes k}$			
TransE (Bordes et al., 2013)	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$			
TransX	$-\ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t})\ $	$\mathbf{h},\mathbf{r},\mathbf{t} \in \mathbb{R}^k$			
DistMult (Yang et al., 2014)	$\langle {f r}, {f h}, {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$			
ComplEx (Trouillon et al. 2016)	$\mathrm{Re}(\langle \mathbf{r}, \mathbf{h}, \overline{\mathbf{t}} angle)$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{C}^k$			
HolE (Nickel et al. 2016)	$\langle {f r}, {f h} \otimes {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$			
ConvE (Dettmers et al. 2017)	$\langle \sigma(\mathrm{vec}(\sigma([\overline{\mathbf{r}},\overline{\mathbf{h}}]*\mathbf{\Omega}))oldsymbol{W}),\mathbf{t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$			
RotatE	$-\left\ \mathbf{h}\circ\mathbf{r}-\mathbf{t}\right\ ^{T}$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{C}^k, r_i =1$			

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

11

11

Relational Patterns

- Symmetric vs. Antisymmetric Relations
 - Symmetric: e.g., Marriage ("A is married B" means that "B is marred A").
 - Antisymmetric: e.g., Filiation ("A is a son of B" means that "B is not a son of A").
- Formally
 - For relation r to be symmetric, we have

$$r(x, y)$$
 is true $\Rightarrow r(y, x)$ is true, $\forall x, y$

• For relation r to be antisymmetric, we have

$$r(x, y)$$
 is true $\Rightarrow \neg r(y, x)$ is true, $\forall x, y$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Relational Patterns

- Inverse Relations
 - E.g., "A is the husband of B" and "B is the wife of A"
- Formally
 - For two relations r_1 and r_2 to be inversely related, we have

$$r_2(x, y)$$
 is true $\Rightarrow r_1(y, x)$ is true, $\forall x, y$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

13

13

Relational Patterns

- Composition Relations
 - My mother's husband is my father (i.e., "A <u>is the husband of</u> B" and "B <u>is the mother of</u> C" implies that "A <u>is the father of</u> C")
- Formally
 - For relation r_3 to be a composition of r_1 and r_2 , we have

$$r_1(x,y) \land r_2(y,z) \Rightarrow r_3(x,z), \forall x,y,z$$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Abilities in Inferring the Relation Patterns

 None of existing methods can model and infer all the four types of relation patterns except RotatE

Model	Score Function	Symmetry	Antisymmetry	Inversion	Composition
SE	$-\left\ \boldsymbol{W}_{r,1}\mathbf{h}-\boldsymbol{W}_{r,2}\mathbf{t}\right\ $	Х	Х	Х	Х
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	Х	✓	✓	✓
TransX	$-\ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t})\ $	✓	✓	Х	Х
DistMult	$\langle \mathbf{h}, \mathbf{r}, \mathbf{t} angle$	✓	Х	Х	Х
ComplEx	$\operatorname{Re}(\langle \mathbf{h}, \mathbf{r}, \overline{\mathbf{t}} \rangle)$	✓	✓	✓	Х
RotatE	$-\ \mathbf{h}\circ\mathbf{r}-\mathbf{t}\ $	✓	√	√	✓

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

15

15

TransE (Bordes et al., NIPS 2013)

- Denote by boldfaced $h, r, t \in \mathbb{R}^d$ as the embeddings of the head (h), relation (r) and tail (t) in triplet (h, r, t), respectively.
- TransE's Objective: Find the embeddings such that $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ if triplet (h, r, t) exists in the KG, and otherwise $\mathbf{h} + \mathbf{r} \neq \mathbf{t}$.
- Scoring Function $\phi(\mathbf{h}, \mathbf{r}, \mathbf{t}) = -\|\mathbf{h} + \mathbf{r} \mathbf{t}\|$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

16

Supervised Learning of Embeddings

- Training set $S = S^+ \cup S^-$
 - $S^+ := \{sampled \ triplets \ (h, r, t) \in KG \}$ as the possible instances
 - $S^- := \{(h', r, t) \cup (h, r, t') \notin KG\}$ as the negative instances
- Scoring function (higher is better) for any triplets

$$\phi(h, r, t) = -\|h + r - t\| = -\delta(t, \hat{t})$$

• Optimize entity/relation embeddings as

$$\max_{(h,r,t)} \sum_{x \in S^+} \sum_{x' \in S^-} [\phi(x) - \phi(x') - \gamma]_+$$

where x and x' are two triplets; γ is a margin hyperparameter; $[.]_+$ is the hinge loss.

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

1-

17

Analysis of TransE (Bordes et al., NIPS 2013)

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \ \forall h,t$$

- **Example:** Hypernym (a word with a broader meaning: dog v.s. poodle)
- TransE can model antisymmetric relations
 - $h+r=t, but t+r\neq h$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Analysis of TransE (Bordes et al., NIPS 2013)

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- **Example**: (Advisor, Advisee)
- TransE can model inverse relations ✓
 - $\mathbf{h} + \mathbf{r}_2 = \mathbf{t}$, we can set $\mathbf{r}_1 = -\mathbf{r}_2$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

19

Analysis of TransE (Bordes et al., NIPS 2013)

Composition (Transitive) Relations:

$$r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$$

- **Example:** My mother's husband is my father.
- TransE can model composition relations

$$\mathbf{r}_3 = \mathbf{r}_1 + \mathbf{r}_2$$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Analysis of TransE (Bordes et al., NIPS 2013)

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \ \forall h,t$$

- Example: Family, Roommate
- TransE cannot model symmetric relations *

only if
$$\mathbf{r} = 0$$
, $\mathbf{h} = \mathbf{t}$

For all h, t that satisfy r(h, t), r(t, h) is also True, which means $\|\mathbf{h} + \mathbf{r} - \mathbf{t}\| = 0$ and $\|\mathbf{t} + \mathbf{r} - \mathbf{h}\| = 0$. Then $\mathbf{r} = 0$ and $\mathbf{h} = \mathbf{t}$, however h and t are two different entities and should be mapped to different locations.

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

2

21

RotatE (Sun et al., ICLR'2019)

- RotatE treats each relation as an operator of elementwise rotation from the source entity vector to the target entity vector in the complex vector space.
- RotatE can model and infer all the four types of relation patterns.
- RotatE offers an efficient and effective negative sampling algorithm for optimization.
- RotatE achieved SOTA results (at the time) on all the evaluation benchmarks for link prediction over knowledge graphs

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. "RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space." ICLR'19.

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Elementwise Rotation in Complex Space

- Representing head and tail entities as $\mathbf{h}, \mathbf{t} \in \mathbb{C}^k$ in a complex vector space.
- Define each relation **r** as an element-wise rotation from the head entity **h** to the tail entity **t**, such that

$$t_i = h_i r_i$$
 where $|r_i| = 1$.

• Each r_i can also be represented as:

$$r_i = e^{i\theta_{r,i}}$$
 where $\theta_r = (\theta_{r,1}, \theta_{r,2}, \dots, \theta_{r,d})$

• Each $\theta_{r,i}$ in vector θ_r is the angle of \mathbf{r} in the i-th dimension.

3/21/2024 @ZhiqingSun, Invited Lecture on RotatE

23

Geometric Interpretation

• Define the distance function of RotatE as

$$d_{\mathbf{r}}(\mathbf{h}, \mathbf{t}) = ||\mathbf{h} \circ \mathbf{r} - \mathbf{t}||$$

| hr-t| hr

(a) TransE models r as translation in real line.

(b) RotatE models r as rotation in complex plane.

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Modeling Symmetric and Antisymmetric

$$r_i = e^{i\theta_{r,i}}$$
 $d_r(\boldsymbol{h}, \boldsymbol{t}) = ||\mathbf{h} \circ \mathbf{r} - \mathbf{t}||$

• A relation **r** is **symmetric** if and only if $r_i^2 = 1$ or $r_i = \pm 1$, i.e.,

$$\theta_{r,i} = 0 \ or \ \pi$$

• An example in the space of $\mathbb C$

 $r(h,t) \Rightarrow r(t,h) \ \forall h,t$

$$r_i = -1$$
 or $\theta_{r,i} = \pi$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

2.0

25

Modeling Symmetric and Antisymmetric

$$r_i = e^{i\theta_{r,i}}$$

$$d_r(\boldsymbol{h}, \boldsymbol{t}) = ||\boldsymbol{h} \circ \boldsymbol{r} - \boldsymbol{t}||$$

• A relation r is **antisymmetric** if and only if $r \circ r \neq 1$

20-15-10-5-0 π 1 π 2 π

(b) hypernym

 $r(h,t) \Rightarrow \neg r(t,h) \ \forall h, t$

A symmetric relation

An antisymmetric relation

Figure: The histogram of θ_i

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

26

Modeling the Inverse Relations

$$r_i = e^{i\theta_{r,i}}$$

$$d_r(\boldsymbol{h}, \boldsymbol{t}) = ||\boldsymbol{h} \circ \boldsymbol{r} - \boldsymbol{t}||$$

• Two relations r_1 and r_2 are **inverse** if and only if $\mathbf{r}_1 \circ \mathbf{r}_2 = \mathbf{1}$ or $\mathbf{r}_2 = \overline{\mathbf{r}_1}$, i.e.,

$$\theta_{2,i} = -\theta_{1,i}$$

hypernym is the **inverse** relation of hyponym

(c) hypernym o hyponym

Figure: The histogram of $\theta_{1,i} + \theta_{2,i}$

3/21/2024 @ZhiqingSun, Invited Lecture on RotatE

27

27

Modeling the Composition Relations

$$r_i = e^{i\theta_{r,i}}$$

$$d_r(\boldsymbol{h}, \boldsymbol{t}) = ||\boldsymbol{h} \circ \boldsymbol{r} - \boldsymbol{t}||$$

• d relation $r_3 = e^{i\theta_3}$ is a **composition** of two relations $r_1 = e^{i\theta_1}$ and $r_2 = e^{i\theta_2}$ if only if $r_3 = r_1 \circ r_2$, i.e.,

$$\theta_3 = \theta_1 + \theta_2$$

Figure 2: Histograms of relation embedding phases $\{\theta_{r,i}\}$ $(r_i=e^{i\theta_{r,i}})$, where for 1 represents relation award_nominee/award_nominations./award/award_nomination/nominated_for, winner represents relation award_category/winners./award/award_honor/award_winner and for 2 represents award_category/nominees./award/award_nomination/nominated_for.

Figure: The histogram of $\theta_{1,i} + \theta_{2,i} - \theta_{3,i}$

3/21/2024 @ZhiqingSun, Invited Lecture on RotatE

Optimization

Negative sampling loss

$$L = -\log \sigma (\gamma - d_r(\boldsymbol{h}, \boldsymbol{t})) - \sum_{i=1}^{k} \frac{1}{k} \log \sigma (d_r(\boldsymbol{h}'_i, \boldsymbol{t}'_i) - \gamma)$$

• γ is a fixed margin, σ is the sigmoid function, and (h'_i, r, t'_i) is the i-th negative triplet.

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

20

29

Self-adversarial Negative Sampling

- Traditionally, the negative samples are drawn in a uniform way
 - Inefficient as training goes on since many samples are obviously false
 - Does not provide useful information
- A self-adversarial negative sampling
 - Sample negative triplets according to the current embedding model
 - Starts from easier samples to more and more difficult samples
 - Curriculum Learning

$$p(h'_j, r, t'_j | \{(h_i, r_i, t_i)\}) = \frac{\exp \alpha f_r(\mathbf{h}'_j, \mathbf{t}'_j)}{\sum_i \exp \alpha f_r(\mathbf{h}'_i, \mathbf{t}'_i)}$$

• α is the temperature of sampling. $f_r(h'_j, t'_j)$ measures the salience of the triplet

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

The Final Objective

• Instead of sampling, treating the sampling probabilities as weights.

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^{n} p(h'_i, r, t'_i) \log \sigma(d_r(\mathbf{h}'_i, \mathbf{t}'_i) - \gamma)$$

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

31

Connections to Rotation in Real Space

- Rotation in real space corresponds to the orthogonal matrices with the determinant as +1, known as special orthogonal group SO(n)
 - n = 1 : [1]
 - $n = 2 : \begin{bmatrix} \cos \theta, -\sin \theta \\ \sin \theta, \cos \theta \end{bmatrix} \theta$ is the rotation angle
 - n > 2: there exists an orthogonal matrix P that brings the rotation matrix Q into

block diagonal:
$$P^{\mathrm{T}}QP = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{bmatrix} (n \text{ even}), \ P^{\mathrm{T}}QP = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & 1 \end{bmatrix} (n \text{ odd}).$$

- Each R_i is a 2 x 2 rotation matrix
- This is the same as RotatE!!

3/21/2024

@ZhigingSun, Invited Lecture on RotatE

Experimental Results on FB15K and WN18

- Task: Link prediction, (h, r, ?) or (?, r, t)
- RotatE achieves state-of-the-art performance

	FB15k					WN18				
	MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10
TransE [♥]	-	.463	.297	.578	.749	-	.495	.113	.888	.943
DistMult [♦]	42	.798	-	=	.893	655	.797	=	-	.946
HolE	-	.524	.402	.613	.739	-	.938	.930	.945	.949
ComplEx	-	.692	.599	.759	.840	-	.941	.936	.945	.947
ConvE	51	.657	.558	.723	.831	374	.943	.935	.946	.956
pRotatE	43	.799	.750	.829	.884	254	.947	.942	.950	.957
RotatE	40	.797	.746	.830	.884	309	.949	.944	.952	.959

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

33

33

Results on FB15k-237 and WN18RR

• RotatE achieves state-of-the-art performance

	FB15k-237				WN18RR					
	MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10
TransE [♥]	357	.294	-	-	.465	3384	.226	-	-	.501
DistMult	254	.241	.155	.263	.419	5110	.43	.39	.44	.49
ComplEx	339	.247	.158	.275	.428	5261	.44	.41	.46	.51
ConvE	244	.325	.237	.356	.501	4187	.43	.40	.44	.52
pRotatE	178	.328	.230	.365	.524	2923	.462	.417	.479	.552
RotatE	177	.338	.241	.375	.533	3340	.476	.428	.492	.571

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Further Experiments

- Comparing with the other models trained with self-adversarial
- Similar results are observed

	FB	315k	FB15k-237		
	MRR	H@10	MRR	H@10	
TransE	.735	.871	.332	.531	
ComplEx	.780	.890	.319	.509	
RotatE	.797	.884	.338	.533	

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

2 5

35

Limitations

- Many relations are generally non-commutative
 - You father's wife does not equal to your wife's father

•
$$r_1 \circ r_2 \neq r_2 \circ r_1$$

Model	Score Function	Symmetry	Antisymmetry	Inversion	Composition	commutative	non- commutative
SE	$-\ oldsymbol{W}_{r,1}\mathbf{h}-oldsymbol{W}_{r,2}\mathbf{t}\ $	Х	Х	Х	Х	Х	√
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	X	✓	✓	✓	√	Х
TransX	$-\ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t})\ $	✓	✓	Х	Х	х	√
DistMult	$\langle \mathbf{h}, \mathbf{r}, \mathbf{t} angle$	✓	X	X	X	✓	х
ComplEx	$\operatorname{Re}(\langle \mathbf{h}, \mathbf{r}, \overline{\mathbf{t}} \rangle)$	✓	/	1	X	✓	х
RotatE	$-\ \mathbf{h} \circ \mathbf{r} - \mathbf{t}\ $	/	/	/	✓	√	Х

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

Limitations

- The relations are generally non-commutative
 - You father's wife does not equal to your wife's father

•
$$r_1 \circ r_2 \neq r_2 \circ r_1$$

• Solution: rotation in four-dimensional space through Quaternion

$$a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k}$$

ij = k ji = -k ij = -ji

Zhang S, Tay Y, Yao L, Liu Q. Quaternion knowledge graph embeddings. Advances in neural information processing systems. 2019;32.

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE

27

37

Summary

- Modeling relation patterns is critical for knowledge base completion
 - Symmetric/Antisymmetric, Inverse, and composition
- RotatE: define each relation as an **element-wise rotation** from the head entity to the tail entity in the complex vector space
 - Capable of modeling and inferring all the four types of relation patterns
- A new self-adversarial negative sampling approach
 - Sampling the negative samples according to current embeddings
 - Curriculum learning
- State-of-the-art results on all existing benchmark data sets

3/21/2024

@ZhiqingSun, Invited Lecture on RotatE