HW4

chaofan tao

February 2019

Contents

1	Problem 1	2
2	Problem 3	4
3	Problem 4	5
4	Problem 5	6
5	Problem 6	7

- a. it is irreflexive, transitive, anti-symmetric, and asymmetric
- **b.** it is reflexive, transitive, anti-symmetric
- **c.** it is reflexive, transitive, symmetric
- **d.** it is reflexive, transitive, symmetric

Proof:

Reflexive: $\forall a \in \mathbb{R}, \exists b \in \mathbb{R} s.t.a > b$ Since $b \leq a \implies aRa \implies$ They are reflexive.

Transitive: $\forall a, b, c \in \mathbb{R}s.t.aRb, bRc, \exists d \in \mathbb{R}s.t.a > d, b > d, c > d \implies a > d, d \leq c \implies aRc \implies$ The relation is transitive

Symmetric: $\forall a, b \in \mathbb{R} s.t.aRb, \exists c \in \mathbb{R} s.t.a > c, b \geq c \implies a \geq c-1, b > c-1 \implies bRa \implies$ The relation is symmetric

e. R is empty, and thus it is transitive, symmetric, anti-symmetric, asymmetric, and irreflexive

Proof:

irreflexive: $\forall x \in \mathbb{R}$, xRx does not hold since R is an empty set \implies it is not reflexive

transitive, symmetric, anti-symmetric, asymmetric Since the antecedent conditions are false, the statements would be true.

f. It is reflexive, transitive, symmetric

Proof:

Reflexive: $\forall x \in \mathbb{R}, x - x = 0 \in \mathbb{Q} \implies xRx$

Transitive: $\forall a, b, c \in \mathbb{R}s.t.aRb, bRc \implies \exists q_1, q_2 \in \mathbb{Q}s.t.a - b = q_1, b - c = q_2 \implies a - c = a - b + b - c = q_1 + q_2 \in \mathbb{Q} \implies aRc \implies \text{the relation is transitive}$

a. f is injective

$$\forall x, y \in \mathbb{R}^+$$
, assume $f(x) = f(y) \Longrightarrow 2^x = 2^y \Longrightarrow \log_2 2^x = \log_2 2^y \Longrightarrow x = y$
 \Longrightarrow There is only one x that could lead to $f(x)$

f is injective

f is not surjective, since $2.5 \in \mathbb{R}^+$, but cannot be reached with the function.

b. f is not injective since 5=7-2=8 - 3, it could be reached from (7,2) and $(8,3)\in \mathcal{A}$

f is surjective

$$\forall b \in B, b+1 \in \mathbb{Z}, 1 \in \mathbb{Z}^+ \implies (b+1,1) \in A \implies \forall b \in B, \exists a \in A$$

$$s.t. f(a) = b \implies \text{it is surjective}$$

c. f is not surjective, since $-\sqrt{2}$ is never reachable from the f(A).

f is injective.

 $\forall x,y\in\mathbb{R}, x>y,$ assume f(x) = f(y). There are three conditions: x,y ≤ 1 , or $x>1,y\leq 1,$ or x,y>1

If
$$x,y \le 1$$
, $f(x) = f(y) \implies 2 - x = 2 - y \implies x = y$

If $x > 1, y \le 1$, $f(x) = f(y) \implies \frac{1}{x} = 2 - y$ However, $x > 1 \implies \frac{1}{x} < 1$, and $y \le 1 \implies 2 - y > 1 \implies$ This condition does not exist.

If
$$x, y > 1$$
, $f(x) = f(y) \implies \frac{1}{x} = \frac{1}{y} \implies x = y$

There is only one x that could lead to f(x)

Q.E.D.

a. Given fog is bijective over a finite set X, we first prove that f is bijective. Assume fog is defined over $A \to C$, g is defined over $A \to B$, f is defined as $B \to C$, given fog is bijective, we know that every element on C has an in-order of 1. Since $|A| = |B| = |C| \implies$ function f is surjective and injective \implies f is bijective.

Then we prove g is bijective. Since $|A| = |C| \implies \forall c \in C$, there is only one corresponding unique $a \in A$, and $\forall a \in A$, there is one corresponding c. \implies out-order of g=1.

f is bijective $\implies \forall b \in B$, there is one corresponding c and $\forall c \in C$, there is only one corresponding unique b \in B

 $\implies \forall b \in B$ there is only one corresponding $a \in A \implies g$ is injective. Given the $out-order_g=1$, g is injective \implies g is surjective. Q.E.D.

b. A counter example is $X = \mathbb{R}^+$, g=x+1, f=x-1 if x > 1, and f=0 if x=1. In this case, 1 is not in the range of g, thus g is not surjective.

Lets first define two students A and B in the DAG form a chain iff A < B, and thus the problem is just to prove that there exists a chain whose size is larger than 13.

According to Dilworth's Lemma, $\forall t > 0$ the students must have either a chain of size grater than t, or an antichain of size at least $\frac{170}{t}$. Let t=13.

If there is a chain of size 14, the problem is proved. Suppose that there is not a chain of size 14 \implies there is an antichain of size at least 14. According to the definition of antichain, $\forall A, B \in antichain$, $A > B \implies$ the antichain forms a decreasing sequence. \implies It also satisfies the requirements of the problem. Q.E.D.

a. We first prove R is reflexive. \forall $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, since $ab = ba \implies$ $(a,b)R(a,b) \implies$ reflexive

Then we prove R is transitive. \forall (a,b), (c,d), (e,f) $\in \mathbb{Z}^+ \times \mathbb{Z}^+$, (a,b)R(c,d), (c,d)R(e,f) \Longrightarrow ad=bc, cf=ed \Longrightarrow $a = \frac{bc}{d}$, $f = \frac{ed}{c} \Longrightarrow$ $af = \frac{becd}{cd} = be \Longrightarrow$ (a, b)R(e,f)

Then we prove R is symmetric. \forall (a,b), (c,d) $\in \mathbb{Z}^+ \times \mathbb{Z}^+$ s,t, (a,b)R(c,d), \Longrightarrow $ad = bc \implies cb = da \implies$ (c,d)R(a,b) Q.E.D

b. The function f is:

 $\forall (a,b) \in \text{the set of equivalence classes induced by R, if gcd(a,b)} = 1$, then $f = \frac{a}{b}$ Prove it is bijective: We first prove it is injective.

 $\forall (a,b)(c,d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ that f(a,b) and f(c,d) are not None, if f(a,b) = f(c,d) $\Longrightarrow \frac{a}{b} = \frac{c}{d}$. Because $gcd(a,b) = gcd(c,d) = 1 \implies a=c, b=d \implies (a,b) = (c,d)$

Then prove that the function is surjective. $\forall r \in \mathbb{R}^+$, r could be represented as $\frac{m}{n}, m, n \in \mathbb{Z}^+$ and $\gcd(m,n)=1$. Then according to the definition of the set of equivalence classes of R, m,n must be in one of the equivalence classes \Longrightarrow f(m,n)=r

Q.E.D.