Teorema: RSA difficile ed H ROM allora KEM su RSA è CCA sicuro
Backguaund:
COSTRUZIONE KEM SU RSA (ROM): [T]: (Gen, Encaps, Decaps) 1. Gen: (N, e, ol) Qen RSA (1 ^m) 2. (C, K) Encaps _{pk} (1 ^m)
1. Gen: $(N_{i}l_{i}0l_{i}) \leftarrow Gen RSA(1^{m})$ 2. $(C_{i}K) \leftarrow Encaps_{pk}(1^{m})$ 3. $C_{i}b \leftarrow \{0,1\}_{i}$ PL= $(N_{i}l_{i}0l_{i}) \leftarrow K_{i}=K_{i}$
2. Eneaps: $C=r^2M_{00}N$ \leftarrow Eneaps p_K (1 ^m) $K=H(r)$ con $r\in \mathbb{Z}_1^*$ e con if $V=1$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
3. Decaps: K: Comed N = Decaps (e) Ne 6'= 6 allower Cant 1 els 0.
DIMOSTRAZIONE:
Siang: - QUERT = "A queeny + ad H" - SUCCESS = "b=b"
Pr[success] = Pr[success A QUERY] + Pr[success A QUERY]
Pr[SUCCESS 1 QUERY] + Pr[QUERY] dimatrerio ele questa somma vale
1/2 + negl(n)

Alla fine dell'executione di A, se c'è un entry (t, K) in LH per cui 1º= e mod N suitarna r A' da in eut put una ralur eauetta quando QUERT si curifica, ma dato che RSA è difficil allara