Thursday, September 3, 2020 12:53 PM

Relation

Let A and B be two Sets, then the relation R is the Subset of AXB.

i.e, R C AXB

 $A = \{1, 2\}$ $B = \{a, b\}$ AXB= {1,2} x {a,b} $A \times B = \left\{ (\underline{1}, a), (\underline{1}, b), (\underline{2}, a), (\underline{2}, b) \right\}$

P(= { (1,a), (2,a) $\sqrt{R_2} = \{ (2,a), (2,b) \}$ VR3= { (2,9) }

Counting of relations

M(A) = 2, M(B) = 2

 $M(A \times B) = 2 \times 2 = 4$

 $\frac{A \times B}{R = \{ \} } -$

Total no of Relation = 2×2×2×2

 $= 2 = 2 \qquad = 2 \qquad = 2$

__X___

Q het A and B be two Sets having n and m element then find the total no of Relation from the Set A to Set B.

Sol": no. of elements in Set A = n

mo. of elements in Ser B = m

Total no. of Relation = 2 $\frac{n(A) \times n(B)}{2}$

 $\gamma_1(A) \times \gamma_1(A)$ $\gamma_1 \times \gamma_2$

ga Page 1

Ta 1-1 ... 0 1

Total no of Relation from Sur \underline{A} to Sur \underline{A} = $\frac{n(A) \times n(A)}{2} = 2 = 2$

- Reflexive relation: Let A be a non-empty Set, then the relation R defined on AXA is called reflexive.

 if aRa + a ∈ A
- 2) Symmetric relation: Let A be a non-empory sur, then the ordation R defined on AXA is called Symmetric if (a,b) CR then (b,a) CR
- 3) Transitive Relation: that A be a non-emptyler, then the greaterism R defined on AXA is called transitive if (a,b) (-R and (b,c) (-R => (a,c) (-R => -X -
- (ii) Transitive.
- $S_{6}M$: $A = \{ 1, 2, 3 \}$ $R = \{ (1,1), (2,2), (1,2), (2,3), (1,3) \}$
 - (1) Refrexive
 As (3,3) &R => Relation is not refrexive.
 - 2) Symmetric (1,2) ER but (2,1) & R =) Relation is not Symmetric
 - 3 Transitive
 As (1,2) (R, (2,3) (R =) (1,3) (R

1) Iransitive

As
$$(1/2) \in \mathbb{R}$$
, $(2/3) \in \mathbb{R}$ =) $(1/3) \in \mathbb{R}$

=) Relation is transitive.

Pt Let IN be the Set of natural nos. define a relation of R on INXIN by $R = \{(a,b): a < b\}$. Prove that this relation is refereive, transitive but not symmetric.

$$Sg^{n}$$
: $R = \{(a,b): a \leq b\}$
(i) Reflexive.

As every element is less than or equal to itself
ie, $a \le a$ $\forall a \in \mathbb{N}$ $\Rightarrow (a,a) \in \mathbb{R}$ $\forall a \in \mathbb{N}$ This relation is reflexive.

Transitive Let $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$ $a \leq b$ and $b \leq c$ $a \leq b \leq c \Rightarrow a \leq c$ $\Rightarrow (a,c) \in \mathbb{R}$

This relation is transitive.

p het L be the Set of all lines in a plane define a relation

p het L be the Set of all lines in a plane define a relation
Ron LxL by R= {(l, l2): l, Ll2}. Prove that this relation
is Symmetric but it is neither reflexive nor transitive.
$S_{q}^{\prime\prime}$ $R = \left\{ (l_{1}, l_{2}) : l_{1} \perp l_{2} \right\}$
(1) Reflexive
No line can be I to itself
ie, l, x l,
$=) (l_1, l_1) \notin R \forall l_1 \in \mathbf{L}$
>) Tuis relation is not reflexive.
_
2 Symmetric
het (l ₁ , l ₂) ER
$=$ $l_1 \perp l_2$
$\Rightarrow (\ell_2,\ell_1) \in \mathbb{R}$
=) Tais relation is Symmetric.
3 Transitive
Let (1,12) ER and (12,13) (-R
4112 and less
\rightarrow $l_1 \perp l_3$
$=$ $(l_1, l_3) \notin \mathbb{R}$
=> This relation is not transitive.
X
« Equivalence relation: Let A be a non-empty Set.
<u> </u>
Define a relation R on AXA trus très relation is
called an equivalence relation if it is

called an equivalence refarin if it is

1) Refrexive -

 $a|b=\frac{b}{a}$

- 3 Symmetric
- (8) Transitive

P Let M be the Ser of natural no.s. define a relation R on NXN as R= f(a,b): a|by, Check that relation is not an equivalence relation.

 $S_{\underline{q}}^{M}$ $R = \{(a,b) : a|b\}$

- Deferive

 Every element divides itself

 i.e., a a + a ETM

 =) (a,a) (-R
- =) Relation is reflexive.

 Symmetric

 Let (a,b) (-R

 =) a|b

 $\frac{1}{2}$ b| a 4|8 => (b, a) 4|8

=) Relation is not Symmetric.

ive can say that this relation

is not an equivalence relation.

Integers define a Relation R on \mathbb{Z} by $\mathbb{R} = \{(a,b): 2 \text{ divides } a-b\}$. Prove that this relation is an equivalence or scalation.

 $S_{\bullet}M$ $R = \{(a_{1}b): 2 \text{ divides } a-b\}$

0

(1) Reflexive.

we know that 2/0/ 2/q-a. +atz 2 a-a + a + z

2 divides a-a + acz (a,a)∈R

=) Relation is reflexive.

2) Symmetric her (a,b) ER =) 2 (a-b), true 7 integer k s.t $\frac{a-b}{2} = K \qquad (K \in \mathbb{Z})$ a-b=2kMultiply both sides by -1 -(a-b) = 2(-K)(b-q) = 2(-K) 2 (b-a)

=) Relation is Symmetric 2/4, 2/6=)2/(4+6) 3 Transitive

Let (a,b) ER and (b,e) ER 2 (a-b) and 2 (b-c) 2(a+x)+(x-c)

2) (a-c)

=) (a/c)(-R

=) This relation is transitive.

-. This relation is an equivalence

I het IR be the Set of real moss. Define a Relation R= (a,b): |a|=|b| Prive that this relation is an equivalence relation.

 $S_{q}^{M} \qquad R = \left\{ (a,b) : |a| = |b| \right\}$

(b,a) -R

1) Reflexive Relation. (2) Symmetric

3 Transitive. LIT CO. WILD OUT TO ALLER

GCODERINDEED

		COODERMAN
1) Reflexive Relation.	2) Symmetric	3 Transitive.
As we know that	Let (a,b) ER	het (a,6)(-R and (b,c)(-R
$ a = a \forall a \in \mathbb{R}$	a = b	1a= b and b = c
=> (a,a)ER + a ER	or b = a	a = b = c
This relation is reflexive	(b,a) ER	=> a = c
THIS TOTOLINE IS A FICKLE	This relation is symmetric	=) (a,c)(-R
		This Relation is transitue
(Hence, we can say that
$R = \{(a,b): a \leq b\}$		
		tuis relation is an equivalence relation.
Tuis relation is	not Symmetric	—x —

her (a,b) ER 4 < 8 =) a < b 8< 4 \neq $b \leq a$ (b,a) € R . This relation is not an equivalence relation.

De het R be the relation over the Set NXN and is defined by (a,b) R(c,d) (=) At the Representation over the Set NXN and is defined and equivalence relation. Prove that this relation is Refrexive.
As we know that a+b=b+aSol O Reflexive
As we know that (a,b) R (a,b) + (a,b) ENX a+b = b+a (\hat{a},\hat{p}) $R(\hat{a},\hat{p})$ \forall $(a,b) \in M \times M$ => Refarion is reflexive Transitive Let $(\underline{a}_1b)R(c,\underline{d})$ and $(c,d)R(e,\underline{f})$ 2 Symmetric het (a,b) R (c,d) $\underbrace{a+d}_{=} = \underbrace{b+c}_{0} \qquad \underbrace{c+f}_{=} = \underbrace{d+e}_{2}$

Adding (1 & E), we get

a+d++++ = b+++++e

a+d= b+c

d+a=c+bC+b = d+a

(A) R(0,b)

Anti-Symmetric relation: Let A be a non-empty set, then
The relation R is called anti-Symmetric if

(a,b) (R and (b,a) (R then a=b)

How to express a relation in matrix form. $A = \{1, 2, 3\}$ $A = \{(1, 1), (1, 2), (2, 3), (2, 2)\}$ $A = \{(1, 1), (1, 2), (2, 3), (2, 2)\}$ $A = \{(1, 1), (1, 2), (2, 3), (2, 2)\}$ $A = \{(2, 1), (2, 2), (2, 3)\}$ $A = \{(2,$

$$A = \left\{ 1, 2, 3, 4 \right\}$$

$$R = \left\{ (1, 1), (1, 4), (2, 2), (2, 4), (3, 1), (3, 2), (4, 1), (4, 4) \right\}$$

Defⁿ of Partial order relation (P.O.R)

Let A be a non-empty Ser, then the Relation R on A

is /// Called Partial order relation if it is

Defⁿ of Partial order relation (P.O.R)

The House of the last of the l

2 Auri-Symmetric

(3) Transitive.

