RULES

- No books or notes or calculators allowed.
- No bathroom breaks until after you have completed and turned in your test.
- Out of consideration for your classmates, do not make disturbing noises during the exam.
- Phones and other electronic devices must be off or in silent mode.

Cheating will not be tolerated. If there is any indication that a student received unauthorized aid on this test, the case will be handed over the dicial Affairs. When you finish the exam, please sign the following states.	o the ISU	J Office of Ju-
that you understand this policy:		
"On my honor as a student I,	, have	neither given
Signature	Date:	2016_02_10

Page	Points	Score
3	14	
4	15	
5	16	
6	15	
7	15	
Total:	75	

	1. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ be vectors in \mathbb{R}^n .
(3pts)	(a) Define the dot product of \mathbf{x} and \mathbf{y} .

(3pts) (b) What does it mean to say that \mathbf{x} and \mathbf{y} are parallel?

(4pts) (c) What does it mean to say that \mathbf{x} and \mathbf{y} are *orthogonal*?

(4pts) (d) Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are also vectors in \mathbb{R}^n . What does it mean to say that \mathbf{x} is a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$?

Score for this page: _____ out of 14

- (10pts) 2. Recall Prop. 2.1 of our text says that the dot product satisfies the following properties: for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ and $c \in \mathbb{R}$,
 - 1. $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$;
 - 2. $\mathbf{x} \cdot \mathbf{x} = ||\mathbf{x}||^2 \ge 0$, with equality if and only if $\mathbf{x} = 0$;
 - 3. $(c\mathbf{x}) \cdot \mathbf{y} = c(\mathbf{x} \cdot \mathbf{y});$
 - 4. $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$.

Prove that if \mathbf{x} is orthogonal to each of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, then \mathbf{x} is orthogonal to every linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$. (For full credit, identify places in your proof where properties from the list above are used; to refer to these properties, use the letters given above.)

(5pts) 3. State a theorem about existence and uniqueness of solutions to the system $A\mathbf{x} = \mathbf{b}$. You may state more than one theorem if you wish, but quality is better than quantity. Only write what you know is true and **carefully state your assumptions**. If you make a broad statement that, in fact, only applies under a narrow set of conditions, and you leave out those conditions, then you will not receive very much credit. (Use only the space provided below.)

Score for this page: _____ out of 15

- 4. For the given matrix, write down the letters corresponding to true statements in each case. Select from the following statements:
 - A. For every $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ is consistent.
 - B. For every $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ is inconsistent.
 - C. For every $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ has exactly one solution.
 - D. For every $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
 - E. There exists $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ is consistent.
 - F. There exists $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ is inconsistent.
 - G. There exists $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ has exactly one solution.
 - H. There exists $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (4pts) (a) If the matrix A has reduced echelon form $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

then which of the statements (a)–(h) above is true? (Select all that apply.)

- A. B. C. D. E. F. G. H.
- (4pts) (b) If the matrix A has reduced echelon form $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$,

then which of the statements (a)–(h) above is true? (Select all that apply.)

- A. B. C. D. E. F. G. H.
- (4pts) (c) If the matrix A has reduced echelon form $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$, then which of the statements (a)–(h) above is true? (Select all that apply.)
 - A. B. C. D. E. F. G. H.
- (4pts) (d) If the matrix A has reduced echelon form $\begin{bmatrix} 1 & 0 & -1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 3 & 0 & -2 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$

then which of the statements (a)–(h) above is true? (Select all that apply.)

A. B. C. D. E. F. G. H.

5.	Let $A \in \mathbb{R}^{m \times n}$,	B	$\in \mathbb{R}^{n \times m}$,	$C \in$	$\mathbb{R}^{n\times m}$,	and \mathbf{I}	$\mathbf{o} \in \mathbb{R}^m$. For	each	statement	below,	either
	prove the claim	or	write FA	LSE	and gir	ve a c	ounter-	exam	ple.			

(5pts) (a) Claim: If $AB = I_m$, then a solution to $A\mathbf{x} = \mathbf{b}$, if it exists, is unique.

(5pts) (b) Claim: If $CA = I_n$, then a solution to $A\mathbf{x} = \mathbf{b}$, if it exists, is unique.

(5pts) (c) Claim: If $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$, then for every $\mathbf{b} \in \mathbb{R}^m$ there is exactly one solution to $A\mathbf{x} = \mathbf{b}$.

6. Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

(8pts) (a) Find A^{-1} .

(5pts) (b) Use your answer to (a) to solve $A\mathbf{x} = \mathbf{b}$.

(2pts) (c) Use your answer to (b) to express ${\bf b}$ as a linear combination of the columns of A. (Fill in the blanks with your answers.)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Score for this page: _____ out of 15