

# 计算机科学与技术学院

# 毕业设计

| 论文题目 | 基于 SSD 网络模型的房屋瓦片损害检测 |             |             |
|------|----------------------|-------------|-------------|
| 学校导师 | 刘立                   | 职称          | 教授          |
| 企业导师 | 刘立                   | 职称          | 教授          |
| 学生姓名 | 李开运                  | 学号          | 20144330106 |
| 专业班级 | 物联网                  | 班级          | 14级01班      |
| 系主任  | 毛宇                   | 院长          | 刘振宇         |
| 起止时间 | 2017年6月              | 5 日至 2018 4 | 年 5 月 22 日  |

2018年3月8日

## 目录

| 第一章 | 前吉         | 5  |
|-----|------------|----|
| 第二章 | 为什么要使用 SSD | 6  |
| 第三章 | 如何使用 SSD   | 7  |
| 第四章 | 实验过程与结果    | 8  |
| 第五章 | 总结         | 9  |
| 第六章 | 致谢         | 10 |

#### 基于 SSD 网络模型的房屋瓦片损害检测

**摘 要:** 这也是一个摘要 **关键词:** 人工智能,机器视觉

#### 我参考了这篇文章 [1]

#### 第一章 前言

在深度学习正式介入之前,传统的目标检测方法都是区域选择提取特征分类回归三部曲,这样就有两个难以解决的问题;其一是区域选择的策略效果差、时间复杂度高;其二是手工提取的特征鲁棒性较差。云计算时代来临后,目标检测算法大家族主要划分为两大派系,一个是 R-CNN 系两刀流,另一个则是以 YOLO 为代表的一刀流派下面分别解释一下两刀流和一刀流。

$$a^2 + b^2 = c^2 (1)$$

等等。

在深度学习正式介入之前,传统的目标检测方法都是区域选择提取特征分类回归三部曲,这样就有两个难以解决的问题;其一是区域选择的策略效果差、时间复杂度高;其二是手工提取的特征鲁棒性较差。云计算时代来临后,目标检测算法大家族主要划分为两大派系,一个是 R-CNN 系两刀流,另一个则是以 YOLO 为代表的一刀流派下面分别解释一下两刀流和一刀流。a+b=c,哈哈。



图 1.1: 南华大学校徽

在深度学习正式介入之前,传统的目标检测方法都是区域选择提取特征分类回归三部曲,这样就有两个难以解决的问题;其一是区域选择的策略效果差、时间复杂度高;其二是手工提取的特征鲁棒性较差。云计算时代来临后,目标检测算法大家族主要划分为两大派系,一个是 R-CNN 系两刀流,另一个则是以 YOLO 为代表的一刀流派下面分别解释一下两刀流和一刀流

#### 第二章 为什么要使用 SSD

### 第三章 如何使用 SSD

### 第四章 实验过程与结果

### 第五章 总结

## 第六章 致谢

#### 参考文献

[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings* of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.