Classification with Generative Models (2)

MGTF 495

Class Outline

- Parametric Methods
 - Generative Models
 - Naive Bayes
 - Binary Features, Multinomial Features
 - Hands-On
 - Gaussian Generative Model
 - Fisher Linear Discriminant Analysis
 - Hands-On

The univariate Gaussian

The Gaussian $N(\mu, \sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

But what if we have **two** variables?

Bivariate distributions

Simplest option: treat each variable as independent.

Example: For a large collection of people, measure the two variables

$$H = height$$

$$W = weight$$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h) Pr(W = w),$$

which would also imply E(HW) = E(H) E(W).

Is this an accurate approximation?

No: we'd expect height and weight to be positively correlated.

Types of correlation

H, W positively correlated. This also implies

$$\mathbb{E}(HW) > \mathbb{E}(H)\mathbb{E}(W)$$
.

Pearson (1903): fathers and sons

How to quantify the degree of correlation?

Correlation pictures

Covariance and correlation

Suppose X has mean μ_{χ} and Y has mean μ_{χ}

Covariance

$$cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Maximized when X = Y, in which case it is var(X). In general, it is at most std(X)std(Y).

Correlation

$$corr(X, Y) = \frac{cov(X, Y)}{std(X) std(Y)}$$

This is always in the range [-1, 1].

For variables X and Y, cov(X,Y)=0.

Are X and Y independent?

For variables X and Y, cov(X,Y)=0.

Are X and Y independent? No.

$$E[XY] = -1x1/3 + 0x1/3 + 1x1/3 = 0$$
 $E[XY] = -1x1/3 + 0x1/3 + 1x1/3 = 0$
 $E[X] = 0$
 $E[X] = 0$
 $E[Y] = 2/3$
 $E[Y] = E[X] = 0$

P(X=1,Y=1) = 1/3 P(X=1) = 1/3, P(Y=1) = 2/3

 $P(X,Y) \neq P(X)P(Y)$

Random variables X and Y are uncorrelated.

Are X and Y independent?

Random variables X and Y are uncorrelated.

Are X and Y independent? No.

$$corr(X, Y) = \frac{cov(X, Y)}{std(X) std(Y)}$$

Random variables X and Y are independent.

Can X and Y be correlated?

Random variables X and Y are independent.

Can X and Y be correlated? No.

$$P(X,Y) = P(X)P(Y)$$

$$E[XY] = E[X]E[Y]$$

$$Cov(X,Y) = E[XY] - E[X]E[Y] = 0$$

Covariance and correlation: example 1

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

$$\mu_X = 0$$
 $\mu_Y = -1/3$
 $\nu_{X} = 0$
 $\nu_{X} = 0$

In this case, X, Y are independent. Independent variables always have zero covariance and correlation.

Covariance and correlation: example 2

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

			$\mu_X = 0$
X	y	Pr(x, y)	$\mu_Y = 0$
-1	-10	1/6	var(X) = 1
-1	10	1/3	$\operatorname{var}(Y) = 100$
1	-10	1/3	cov(X, Y) = -10/3
1	10	1/6	
			$\operatorname{corr}(X,Y) = -1/3$

In this case, X and Y are negatively correlated.

The univariate Gaussian

The Gaussian $N(\mu, \sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$
But what if we have **two** variables? interexists a vertex

The bivariate (2-d) Gaussian

A distribution over $(x, y) \in \mathbb{R}^2$, parametrized by:

- Mean $(\mu_x, \mu_y) \in \mathbb{R}^2$
- Covariance matrix

$$\Sigma = \left[egin{array}{ccc} \Sigma_{xx} & \Sigma_{xy} \ \Sigma_{yx} & \Sigma_{yy} \end{array}
ight]$$

where $\Sigma_{xx} = \text{var}(X)$, $\Sigma_{yy} = \text{var}(Y)$, $\Sigma_{xy} = \Sigma_{yx} = \text{cov}(X, Y)$

Density
$$p(x,y) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}\right)$$

The density is highest at the mean, and falls off in ellipsoidal contours.

Bivariate Gaussian: examples

In either case, the mean is (1, 1).

$$\Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Sigma = \left[\begin{array}{cc} 4 & 1.5 \\ 1.5 & 1 \end{array} \right]$$

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^p

- mean: $\mu \in \mathbb{R}^p$
- covariance: $p \times p$ matrix Σ

Density
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Let $X = (X_1, X_2, \dots, X_p)$ be a random draw from $N(\mu, \Sigma)$.

 \bullet μ is the vector of coordinate-wise means:

$$\mu_1 = \mathbb{E}X_1, \ \mu_2 = \mathbb{E}X_2, \ldots, \ \mu_p = \mathbb{E}X_p.$$

Σ is a matrix containing all pairwise covariances:

$$\Sigma_{ij} = \Sigma_{ji} = \text{cov}(X_i, X_j)$$
 if $i \neq j$
 $\Sigma_{ii} = \text{var}(X_i)$

• In matrix/vector form: $\mu = \mathbb{E}X$ and $\Sigma = \mathbb{E}[(X - \mu)(X - \mu)^T]$.

Special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p = \operatorname{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$$
 uncorrelated share the same variance

(off-diagonal elements zero, diagonal elements σ^2).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$:

$$\Pr(x) = \prod_{i=1}^{p} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu_i)^2 / 2\sigma^2} \right) = \frac{1}{(2\pi)^{p/2} \sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2} \right)$$

Density at a point depends only on its distance from μ :

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_p^2)$$

(all off-diagonal elements zero).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma_i^2)$:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma_1\cdots\sigma_p} \exp\left(-\sum_{i=1}^p \frac{(x_i-\mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axisaligned ellipsoids centered at μ :

The general Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^p

Eigendecomposition of Σ yields:

- **Eigenvalues** $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
- Corresponding eigenvectors
 u₁,..., u_p

Recall density:
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \underbrace{(x-\mu)^T \Sigma^{-1} (x-\mu)}_{\text{What is this?}}\right)$$

If we write $S = \Sigma^{-1}$ then S is a $p \times p$ matrix and

$$(x - \mu)^T \Sigma^{-1} (x - \mu) = \sum_{i,j} S_{ij} (x_i - \mu_i) (x_j - \mu_j),$$

a quadratic function of x.

Binary classification with Gaussian generative model

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \geq \theta,$$

where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a constant depending on the various parameters.

 $\Sigma_1 = \Sigma_2$: linear decision boundary. Otherwise, quadratic boundary.

Linear decision boundary

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$\times \underbrace{\Sigma^{-1}(\mu_1-\mu_2)}_{w} \geq \theta.$$

Geometric picture: Suppose w is a unit vector (that is, ||w|| = 1). Then $x \cdot w$ is the **projection** of vector x onto direction w.

And we can always make w a unit vector by dividing both sides of the inequality by ||w||.

Linear decision boundary

Let w be any vector in \mathbb{R}^p . What is meant by decision rule $w \cdot x \geq \theta$?

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 iff

$$\times \sum_{w}^{-1}(\mu_1-\mu_2) \geq \theta.$$

Example 1: Spherical Gaussians with $\Sigma = I_p$ and $\pi_1 = \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

One-d projection onto w:

Example 3: Non-spherical.

Rule: $w \cdot x \ge \theta$

- w, θ dictated by probability model, assuming it is a perfect fit
- Common practice: choose w as above, but fit θ to minimize training/validation error

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Example 2: Same thing in 1-d. $\mathcal{X} = \mathbb{R}$.

Example 3: A parabolic boundary.

Many other possibilities!

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To class a point x, pick $\arg_{j} \max f_{j}(x)$.

If $\Sigma_1 = \cdots = \Sigma_k$, the boundaries are **linear**.

Example: "wine" data set

Data from three wineries from the same region of Italy

- 13 attributes: hue, color intensity, flavanoids, ash content, ...
- 178 instances in all: split into 118 train, 60 test

Test error using multiclass discriminant analysis: 1/60

Example: MNIST

To each digit, fit:

- class probability π_{j}
- mean $\mu_i \in \mathbb{R}^{784}$
- covariance matrix $\Sigma_i \in \mathbb{R}^{784 \times 784}$

Problem: formula for normal density uses Σ_j^{-1} , which is singular.

- Need to regularize: $\Sigma_j \to \Sigma_j + \sigma^2 I$
- This is a good idea even without the singularity issue

Class Outline

- Parametric Methods
 - Generative Models
 - Naive Bayes
 - Binary Features, Multinomial Features
 - Hands-On
 - Gaussian Generative Model
 - Fisher Linear Discriminant Analysis
 - Hands-On

Fisher's linear discriminant

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov \Sigma_1$	cov Σ ₂
# pts <i>n</i> ₁	# pts <i>n</i> ₂

A linear classifier projects all data onto a direction w . Choose w so that:

- Projected means are well-separated, i.e. $(w \cdot \mu_1 w \cdot \mu_2)^2$ is large.
- Projected within-class variance is small.

Fisher LDA (linear discriminant analysis)

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T\Sigma_1w)+n_2(w^T\Sigma_2w)}{n_1+n_2}=w^T\Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

Solution: $w \propto \Sigma^{-1}(\mu_1 - \mu_2)$. Look familiar?

Recall: Linear decision boundary

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$\times \underbrace{\Sigma^{-1}(\mu_1-\mu_2)}_{w} \geq \theta.$$

Geometric picture: Suppose w is a unit vector (that is, ||w|| = 1). Then $x \cdot w$ is the **projection** of vector x onto direction w.

And we can always make w a unit vector by dividing both sides of the inequality by ||w||.

Fisher LDA: proof

Goal: find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

- **1** Assume Σ_1 , Σ_2 are full rank; else project.
- 2 Since Σ_1 and Σ_2 are p.d., so is their weighted average, Σ.
- **3** Write $u = \Sigma^{1/2}w$. Then

$$\max_{w} \frac{(w^{T}(\mu_{1} - \mu_{2}))^{2}}{w^{T}\Sigma w} = \max_{u} \frac{(u^{T}\Sigma^{-1/2}(\mu_{1} - \mu_{2}))^{2}}{u^{T}u}$$
$$= \max_{u:||u||=1} (u \cdot (\Sigma^{-1/2}(\mu_{1} - \mu_{2})))^{2}$$

- 4 Solution: *u* is the unit vector in direction $\Sigma^{-1/2}(\mu_1 \mu_2)$.
- **6** Therefore: $w = Σ^{-1/2} u ∝ Σ^{-1} (μ_1 μ_2)$.