Public key cryptology, RSA, ElGamal, Elliptic Curve

Jason Pearson and

November 27, 2015

Key Terms

Plain text: typically a simple text such as this line Cipher text: a message after it has been encrypted Prime Number: a whole number that can only be divided evenly by one and itself also it is greater than one

Types of Encryption

Symmetric Encryption Asymmetric Encryption Hashing Hybrid Encryption

Symmetric Encryption

Encryption and Decryption use the same key

Asymmetric Encryption

Public key and private key pair
Public key is used to encrypt a message
Private key is used to decrypt a message
Creating the key tends to be computationally expensive

Hashing

We may or may not want to talk about this?

Hybrid Encryption

Uses ideas from symmetric and asymmetric encryption methods An asymmetric cryptosystem is used for key encapsulation and an symmetric system is used for data encapsulation

Padding Schemes

RSA Cryptosystem

First designed in 1973 and declassified in 1997.

Named after its founders Ron Rivest, Adi Shamir and Leonar Adleman

Uses large prime numbers to create a private and public key

Security arises from the presumed difficulty of factoring large prime numbers

RSA Generating Public and Private Keys

Generate two large prime numbers and use to calculate n Compute Euler's Totient Function Create Public Key and Private Key

Generating Large Prime Numbers

Generate two large prime numbers.

Typically uses AKS testing and/or the Miller-Rabin test for prime numbers

These two values we will call p and q

$$p = 991$$

$$q = 821$$

We next calculate
$$n = p * q$$

So we have
$$n = 991 * 821 = 813611$$

Public Information	Secret Information
n = 813611	q = 821
	p = 991

Euler's Totient

We then can determine Euler's totient value by using the following equation.

$$\phi(n) = \phi(p) \phi(q) = (p-1)(q-1) = n - (p+q-1)$$

And for $\phi(n) = \phi(813611) = 811800$

Public Information	Secret Information
n = 813611	q = 821
	p = 991
	$\phi\left(\mathbf{n}\right)=811800$

Create Public and Private Keys

To create a public key we pick an arbitrary number e between $1 < e < \phi(n)$ for example we will use e = 7423

To create a private key we need to find the modular multiplicative inverse of e.

This is commonly done using the Extended Euclidean Algorithm.

$$d \equiv e^{-1} \pmod{(\phi(n))}$$

This makes our value of $d = 788287$

Public Information	Secret Information
n = 813611	q = 821
e = 7423	p = 991
	$\phi\left(\mathbf{n}\right) = 811800$
	d = 788287

Working Example

Using these values we can create a cipher text c and decrypt it using the following equations

$$c \equiv m^e \pmod{(n)}$$
 and $m \equiv c^d \pmod{(n)}$

Finishing up our example we will encrypt "Hi" using our new values plain text m=72105, e=7423, d=788287, n=813611

Public Encrypt	Private Encrypt
$c \equiv m^{e} \left(mod \left(n \right) \right)$	$c \equiv m^d (mod (n))$
$c \equiv 72105^{7423} mod(813611)$	$c \equiv 72105^{788287} mod(813611)$
c = 707473	c = 616895
Private Decrypt	Public Decrypt
$m \equiv c^d (mod (n))$	$m \equiv c^e (mod(n))$
$m \equiv 707473^{788287} \mod(813611)$	$m \equiv 616895^{7423} mod(813611)$
m = 72105	m = 72105

RSA Practical Usage

ElGamal Cryptosystem

This method for cryptogphy uses discrete logarithms with a large prime modulus

The first step in creating is to create a large prime number

Then we create a Public and Private key

These can be used to encrypt and decrypt information

Generating Large Prime Numbers

First we generate a large prime number p

For us p = 17

We then create a generator g of multiplicative group \mathbb{Z}_p^* of integers modulo p

For this example g = 6

Public Information	Private Information
p = 17	
g = 6	

ElGamal Creating Public and Private Keys

We then select a private key a where $1 \le a \le p-2$ For this example a=5

We can then use this to generate the last part of the public key $g^a \text{mod} p = 6^5 \text{mod} 17 = 7$

Public Information	Private Information
p = 17	a = 5
g = 6	
$g^a \bmod p = 7$	

Encrypting a Message

We will have our message m = 13

A public sender to send a message to the private key holder picks a random value k for this example k=10

We then compute $c_1 = g^k mod p = 15$

Now $c_2 = m * g^k \mod p = 13 * 6^{10} \mod 17 = 8$

Cipher text sent through c_1 and c_2 to private key holder

Public Information	Private Information
p = 17	a = 5
g = 6	
$g^a \bmod p = 7$	

Decrypting a Message

First we must calculate the shared secret

$$s = (c_1^a) * c_2 \bmod p = (15^5) * 8 \bmod 17 = 16$$

We then take the modular inverse of s and multiply it by c_2 Finding the modular inverse is commonly done with the Extended Euclidean Algorithm

$$m = (c_{2^*}s^{-1}) \bmod p = (8*8) \bmod 17 = 64 \bmod 17 = 13$$

Public Information	Private Information
p = 17	a = 5
g = 6	
$g^a \bmod p = 7$	

ElGamal Practical Usage

Cipher text double the size in bits than the message Commonly used in hybrid Cryptosystems

Elliptic Curve

Conclusion

References

 $http://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf \\ http://doctrina.org/Why-RSA-Works-Three-Fundamental-Questions-Answered.html \\ http://doctrina.org/How-RSA-Works-With-Examples.html$