(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 10 mai 2002 (10.05,2002)

PCT

(10) Numéro de publication internationale WO 02/36787 A2

- (51) Classification internationale des brevets7: C12N 15/82
- (21) Numéro de la demande internationale :

PCT/FR01/03364

(22) Date de dépôt international :

30 octobre 2001 (30.10.2001)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

FR

(30) Données relatives à la priorité : 00/13942 30 octobre 2000 (30.10.2000)

- (71) Déposant (pour tous les États désignés sauf US): AVEN-TIS CROPSCIENCE S.A. [FR/FR]; 55, avenue René Cassin, F-69009 Lyon (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): ZINK, Olivier [FR/FR]; 1, place du Sausage, F-63000 Clermont-Ferrand (FR). PAGET, Eric [FR/FR]; 123, avenue du Général de Gaulle, F-69300 Caluire (FR). ROLLAND, Anne [FR/FR]; 41, rue Louis Bouquet, F-69009 Lyon (FR). SAILLAND, Alain [FR/FR]; 47 chemin de Crécy, F-63370 Saint-Didier-au-Mont-d'Or (FR). FREYSSINET, Georges [FR/FR]; 21, rue de Nervieux, F-69450 Saint-Cyr-au-Mont-d'Or (FR).
- (74) Mandataire: MONCONDUIT, Hervé; Aventis Crop-Science S.A., 14-20, rue Pierre Baizet, B.P. 9163, F-69263 Lyon Cedex 09 (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM,

HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Déclarations en vertu de la règle 4.17 :

- relative au droit du déposant de demander et d'obienir un brevet (règle 4.17.ii)) pour les désignations suivantes AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet européen (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

 sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: HERBICIDE-TOLERANT PLANTS THROUGH BYPASSING METABOLIC PATHWAY
- (54) Titre: PLANTES TOLERANTES AUX HERBICIDES PAR CONTOURNEMENT DE VOIE METABOLIQUE
- (57) Abstract: The invention concerns a novel method for making herbicide-tolerant plants, in particular to HPPD inhibiting herbicides, the nucleic acid sequences coding for enzymes capable of being used in said method, expression cassettes containing them and transgenic plants comprising at least one of said expression cassettes.
- (57) Abrégé: La présente invention concerne une nouvelle méthode permettant de rendre les plantes tolérantes aux herbicides, en particulier aux herbicides inhibiteurs d'HPPD, les séquences d'acides nucléiques codant pour des enzymes susceptibles d'être employées dans cette méthode, les cassettes d'expression les contenant et les plantes transgéniques comprenant au moins l'une de ces cassettes d'expression.

WO 02/36787 PCT/FR01/03364

Plantes tolérantes aux herbicides par contournement de voie métabolique

La présente invention concerne une nouvelle méthode permettant de rendre les plantes tolérantes aux herbicides, en particulier aux herbicides inhibiteurs d'HPPD, les séquences d'acide nucléique codant pour des enzymes susceptibles d'être employées dans cette méthode, les cassettes d'expression les contenant et les plantes transgéniques comprenant au moins l'une de ces cassettes d'expression.

Les hydroxy-phényl pyruvate dioxygénases sont des enzymes qui catalysent la réaction de transformation du para-hydroxy-phényl-pyruvate (HPP) en homogentisate. Cette réaction a lieu en présence de fer (Fe²⁺) en présence d'oxygène (Crouch N.P. & al., Tetrahedron, 53, 20, 6993-7010, 1997).

On connaît par ailleurs certaines molécules inhibitrices de cette enzyme, qui viennent se fixer à l'enzyme pour inhiber la transformation de l'HPP en homogentisate. Certaines de ces molécules ont trouvé un emploi comme herbicides, dans la mesure où l'inhibition de la réaction dans les plantes conduit à un blanchiment des feuilles des plantes traitées, et à la mort des dites plantes (Pallett K. E. et *al.* 1997 Pestic. Sci. <u>50</u> 83-84). De tels herbicides ayant pour cible l'HPPD décrits dans l'état de la technique sont notamment les isoxazoles (EP 418 175, EP 470 856, EP 487 352, EP 527 036, EP 560 482, EP 682 659, US 5 424 276) en particulier l'isoxaflutole, herbicide sélectif du maïs, les dicétonitriles (EP 496 630, EP 496 631), en particulier la 2-cyano-3-cyclopropyl-1-(2-SO₂ CH₃-4-CF₃ phényl) propane-1,3-dione et la 2-cyano-3-cyclopropyl-1-(2-SO₂ CH₃-4-2,3 Cl₂ phényl) propane-1, 3-dione, les tricétones (EP 625 505, EP 625 508, US 5,506,195), en particulier la sulcotrione ou la mésotrione, ou encore les pyrazolinates.

Des essais pour confirmer que l'HPPD est bien la cible des dicétonitriles (DKN) et pour mettre en évidence que l'HPPD est, au moins à certaines doses, la cible unique des dicétonitriles ont été effectués en laboratoire en faisant germer des graines d'*Arabidopsis* sur trois types de milieux en conditions stériles in-vitro :

1 milieu Murashig et Skoog(Murashige, T. and Skoog, F. 1962. A revised medium for a rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473-479), expérience contrôle de la germination

2 milieu MS plus DKN à la dose de 1ppm

10

15

20

25

30

3 milieu MS plus DKN à la même dose + Homogentisate à la concentration de 5 mM.

Il est très net que sur le milieu 1 la germination se fait normalement, chaque

plantule développant deux cotylédons bien verts. Le développement se fait ensuite normalement. Sur le milieu 2, la germination a lieu mais la plantule qui émerge est blanche, les deux cotylédons ne présentant aucune pigmentation. Les plantules meurent ensuite en quelques jours. Sur le milieu 3, la germination se fait normalement, les cotylédons sont bien verts. Les plantules se développent mais très rapidement, la quantité d'homogentisate dans le milieu diminuant, les premiers symptômes de blanchiment apparaissent et la croissance des plantes s'arrêtent, elles finissent par mourir comme dans l'essai effectué sur le milieu n°2.

5

10

15

20

25

30

Ceci permet de confirmer que l'HPPD est bien la cible des DKN in planta et qu'elle semble être la cible unique. Ceci montre aussi que l'homogentisate est transporté du milieu de culture jusqu'au site cellulaire où il est nécessaire pour le bon fonctionnement de la cellule et la survie de la plante.

Pour rendre les plantes tolérantes aux herbicides, on dispose actuellement de trois stratégies, (1) la détoxification de l'herbicide par une enzyme venant transformer l'herbicide, ou son métabolite actif, en produits de dégradation non toxique, comme par exemple les enzymes de tolérance au bromoxynil ou au basta (EP 242 236, EP 337 899); (2) la mutation de l'enzyme cible en une enzyme fonctionnelle moins sensible à l'herbicide, ou son métabolite actif, comme par exemple les enzymes de tolérance au glyphosate (EP 293 356, Padgette S. R. & al., J. Biol. Chem., 266, 33, 1991); ou (3) la surexpression de l'enzyme sensible, de manière à produire dans la plante des quantités suffisantes d'enzyme cible au regard des constantes cinétiques de cette enzyme vis à vis de l'herbicide de manière à avoir suffisamment d'enzyme fonctionnelle, malgré la présence de son inhibiteur.

C'est cette troisième stratégie qui a été décrite pour obtenir avec succès des plantes tolérantes aux inhibiteurs d'HPPD (WO 96/38567), étant entendu que pour la première fois une stratégie de simple surexpression de l'enzyme cible sensible (non mutée) était employée avec succès pour conférer aux plantes une tolérance à un niveau agronomique à un herbicide. L'identification d'HPPD mutées dans leur partie C-terminal présentant une tolérance améliorée aux inhibiteurs d'HPPD a permis d'obtenir une amélioration de la tolérance des plantes par la mise en œuvre de la deuxième stratégie (WO 99/24585).

La présente invention consiste en une nouvelle méthode permettant de rendre les plantes tolérantes à un herbicide qui met en œuvre une nouvelle ou quatrième stratégie de tolérance herbicide, cette nouvelle stratégie comprenant le contournement de la voie métabolique inhibée par ledit herbicide. Ce contournement métabolique peut se résumer comme suit :

> soit un herbicide « H » actif en inhibant l'activité d'une enzyme « E » qui transforme le substrat « S » en produit « P », ledit produit P et ses métabolites étant essentiels à la vie de la plante,

5

10

15

25

30

- le contournement métabolique consiste à exprimer dans la plante au moins une nouvelle enzyme « NE » hétérologue insensible à « H » permettant la conversion de « S » en un produit intermédiaire « I », lequel est ensuite transformé en « P » soit pas les voies de biosynthèse naturelles de la plante soit par l'expression d'au moins une autre enzyme hétérologue « AE » également insensible à « H »,
- ➤ le contournement métabolique consistant également à exprimer au moins une autre enzyme hétérologue « AE » insensible à « H » permettant la conversion de « I » en « P », « I » étant soit un intermédiaire naturellement produit par la plante soit obtenu par l'expression d'au moins une nouvelle enzyme hétérologue « NE » insensible à « H » permettant la conversion de « S » en « I ».

La présente invention concerne plus particulièrement une nouvelle méthode permettant de rendre les plantes tolérantes aux inhibiteurs d'HPPD, ladite méthode comprenant le contournement métabolique de l'HPPD.

Aucune voie de contournement métabolique n'a été décrite à ce jour dans les plantes.

On connaît de la littérature que la conversion de l'HPP en homogentisate peut être obtenue en effectuant d'abord une conversion de l'HPP en acide 4-hydroxyphénylacétique (4-HPA) par un extrait enzymatique présentant une activité HPP oxydase suivie de la conversion du 4-HPA en homogentisate par un extrait enzymatique présentant une activité 4-HPA 1-hydrolase (WO 99/34008). Cette voie de contournement est représentée par la Figure 1.

Une étude bibliographique révèle que les activités enzymatiques nécessaires pour la construction de la voie de contournement de l'HPPD ont été caractérisées sur des extraits bruts bactériens dans les années 1970. Ainsi, les activités HPP oxydase (HPPO, E.C. 1.2.3.-) et 4-HPA 1-hydroxylase (HPAH, E.C. 1.14.13.18.) ont été identifiées respectivement chez *Arthrobacter globiformis* (Blakley, 1977) et chez *Pseudomonas acidovorans* (Hareland *et al.*, 1975). Depuis lors, seule la HPAH a été purifiée par

Suemori *et al.* (1996), cependant, ni la séquence protéique ni la séquence nucléique ne sont publiées. Il faut donc identifiés les gènes codant ces activités enzymatiques.

Dans la voie de contournement, la conversion de l'HPP en HGA se fait via le 4-HPA. Or, le 4-HPA est un composé rarement identifié chez les plantes. Il est présent chez l'Astilbe chinensis (Kindl, 1969), dans les Plantago sp. (Swiatek, 1977), dans le pissenlit (Taraxacum officinale; Dey & Harborne, 1997), chez les Artemisia (Swiatek et al., 1998), dans le fruit du Forsythia suspensa (Liu et al., 1998) et enfin chez l'algue marine Ulva lactuca (Flodin et al., 1999). Il y a peu de données sur son origine. Il semble pouvoir provenir de la tyrosine, du shikimate, de la tyramine. Il n'y a pas davantage d'information sur son devenir et son rôle dans la plante. Kindl (1969) a montré sa dégradation via l'acide 3,4-dihydroxyphénylacétique tandis que Flodin et al. (1999) ont démontré sa conversion via l'acide 4-hydroxymandélique en 2,4,6-tribromophénol qui s'accumule dans l'algue verte Ulva lactuca. Gross (1975) suggère que le 4-HPA pourrait être un régulateur de croissance chez certaines plantes supérieures et Abe et al. (1974) le considèrent comme un analogue d'auxine chez les algues.

Pour mettre en œuvre la voie de contournement métabolique de l'HPPD il aura fallu au préalable identifier et isoler les gènes et les séquences d'acide nucléique codant pour la ou les enzymes responsables des deux activités ci-dessus.

Définitions selon l'invention

10

15

20

25

30

« Séquence d'acide nucléique » : une séquence nucléotidique ou polynucléotide, pouvant être de type ADN ou ARN, de préférence de type ADN, notamment double brin. La séquence d'acide nucléique peut être d'origine naturelle, en particulier ADN génomique ou ADNc, ou encore une séquence synthétique ou semi-synthétique, les acides nucléiques la comprenant ayant été choisis soit pour optimiser les codons d'une séquence codante en fonction de l'organisme hôte dans lequel elle sera exprimée, soit pour introduire ou éliminer un ou plusieurs sites de restriction. Les méthodes de préparation des séquences d'acide nucléique synthétiques ou semi-synthétiques sont bien connues de l'homme du métier.

« Séquence capable de s'hybridiser de manière sélective » : les séquences d'acide nucléique qui s'hybrident avec une séquence d'acide nucléique de référence à un niveau suppérieur au bruit de fond de manière significative. Le bruit de fond peut être lié à l'hybridisation d'autres séquences d'ADN présentes, notamment d'autres ADNc

présentes dans une banque d'ADNc. Le niveau du signal généré par l'interaction entre la séquence capable de s'hybridiser de manière sélective et les séquences définies par les séquence ID ci-dessus selon l'invention est généralement 10 fois, de préférence 100 fois plus intense que celui de l'interaction des autres séquences d'ADN générant le bruit de fond. Le niveau d'interaction peut être mesuré par exemple, par marquage de la sonde avec des éléments radioactifs, comme le 32P. L'hybridation sélective est généralement obtenue en employant des conditions de milieu très sévères (par exemple NaCl 0,03 M et citrate de sodium 0,03 M à environ 50°C-60°C). L'hybridation peut bien entendu être effectuée selon les méthodes usuelles de l'état de la technique (notamment Sambrook & al., 1989, Molecular Cloning : A Labratory Manual).

5

10

15

20

25

30

« Homologue d'une séquence d'acide nucléique » : séquence d'acide nucléique présentant une ou plusieurs modifications de séquence par rapport à une séquence d'acide nucléique de référence. Ces modifications peuvent être obtenues selon les techniques usuelles de mutation, ou encore en choisissant les oligonucléotides synthétiques employés dans la préparation de ladite séquence par hybridation. Au regard des multiples combinaisons d'acides nucléiques pouvant conduire à l'expression d'un même acide aminé, les différences entre la séquence de référence selon l'invention et l'homologue correspondant peuvent être importantes. De manière avantageuse, le degré d'homologie sera d'au moins 60 % par rapport à la séquence de référence, de préférence d'au moins 70 %, plus préférentiellement d'au moins 80%, encore plus préférentiellement d'au moins 90 %. Ces modifications sont généralement et de préférence neutres, c'est à dire que pour une séquence codante elles n'affectent pas la séquence primaire de la protéine ou du peptide codé. Elles peuvent toutefois introduire des modifications non silencieuses, ou mutations, qui n'affectent pas la fonction de la séquence d'acide nucléique par rapport à la séquence de référence. Les méthodes de mesure et d'identification des homologies entre les séquences d'acides nucléiques sont bien connues de l'homme du métier. On peut employer par exemple les programmes PILEUP ou BLAST (notamment Altschul & al., 1993, J. Mol. Evol. 36:290-300; Altschul & al., 1990, J. Mol. Biol. 215:403-10).

« Fragments » : fragment d'une séquence d'acide nucléique ou polypeptidique de référence pour laquelle des parties ont été délétées mais qui conservent la fonction de ladite séquence de référence.

« Hétérologue » : séquence d'acide nucléique différente de la séquence d'acide

nucléique ayant la même fonction dans un organisme naturel. Une séquence hétérologue peut consister en une séquence d'acide nucléique modifiée *in situ* dans son environement naturel. Il peut également s'agir d'une séquence d'acide nucléique isolée de son organisme naturel puis réintroduite dans ce même organisme. Il peut également s'agit d'une séquence d'acide nucléique hétérologue par rapport à une autre séquence d'acide nucléique, c'est à dire une séquence associée à une autre séquence, cette association ne se trouvant pas dans la nature. C'est le cas notamment des cassettes d'expression constituées de différentes séquences d'acide nucléique ne se trouvant pas généralement associées dans la nature.

5

10

15

20

25

30

« Homologue d'une séquence protéique » : séquences protéiques dont la séquence primaire est différente de la séquence primaire de la protéine de référence, mais qui remplit la même fonction que cette séquence de référence. Les méthodes de mesure et d'identification des homologies entre polypeptides ou protéines sont également connues de l'homme du métier. On peut employer par exemple le « package » UWGCG et le programme BESTFITT pour calculer les homologies (Deverexu & al., 1984, Nucleic Acid Res. 12, 387-395).

« Cassette d'expression » : séquence d'acide nucléique comprenant différents éléments fonctionnels nécessaires à l'expression d'une séquence codante dans un organisme hôte. Ces éléments fonctionnels comprennent dans le sens de la transcription une séquence de régulation promotrice, également appelée promoteur, liée de manière fonctionnelle à une séquence codante et une séquence de régulation terminatrice, également appelée terminateur ou stop. La cassette d'expression peut également comprendre entre la séquence de régulation promotrice et la séquence codante des éléments de régulations tels que des activateurs de transcription ou « enhancers » et/ou des introns.

« Organisme hôte » : on entend essentiellement selon l'invention les cellules végétales ou les plantes. Pour les vecteurs de clonages, les organismes hôtes peuvent également être des bactéries, des champignons ou des levures.

« Cellule végétale » : cellule issue d'une plante et pouvant constituer des tissus indifférenciés tels que des cals, des tissus différenciés tels que des embryons, des parties de plantes, des plantes ou des semences.

« Plante » : organisme multicellulaire différencié capable de photosynthèse, en particulier monocotylédone ou dicotylédone, plus particulièrement des plantes de

culture destinées ou non à l'alimentation animale ou humaine, comme le riz, le maïs, le blé, l'orge, la canne à sucre, le colza, le soja, la betterave, la pomme de terre, le tabac, le coton, le trèfle, le gazon, ou les plantes ornementales comme les pétunias, ou encore les bananiers, la vigne, les framboises, les fraises, les tomates, les salades, etc.

5

10

15

20

25

30

« Séquence de régulation promotrice » : Comme séquence de régulation promotrice dans les plantes, on peut utiliser toute séquence de régulation promotrice d'un gène s'exprimant naturellement dans les plantes en particulier un promoteur s'exprimant notamment dans les feuilles des plantes, comme par exemple des promoteurs dits constitutifs d'origine bactérienne, virale ou végétale ou encore des promoteurs dits lumière dépendants comme celui d'un gène de la petite sous-unité de ribulosebiscarboxylase/oxygénase (RuBisCO) de plante ou tout promoteur convenable connu pouvant être utilisé. Parmi les promoteurs d'origine végétale on citera les promoteurs d'histone tels que décrits dans la demande EP 0 507 698, ou le promoteur d'actine de riz (US 5,641,876). Parmi les promoteurs d'un gène de virus de plante, on citera celui de la mosaïque du choux fleur (CAMV 19S ou 35S), du CsVMV (US ...) ou le promoteur du circovirus (AU 689 311). On peut encore utiliser une séquence de régulation promotrice spécifique de régions ou de tissus particuliers des plantes, et plus particulièrement des promoteurs spécifiques des graines ([22] Datla, R.& al., Biotechnology Ann. Rev. (1997) 3, 269-296), notamment les promoteurs de la napine (EP 255 378), de la phaseoline, de la glutenine, de l'héliantinine (WO 92/17580), de l'albumine (WO 98/45460), de l'oélosine (WO 98/45461), de l'ATS1 ou de l'ATS3 (PCT/US98/06978, déposée le 20 octobre 1998, incorporée ici par référence). On peut également employer un promoteur inductible avantageusement choisi parmi les promoteurs de phénylalanine ammoniac lyase (PAL), d'HMG-CoA reductase (HMG), de chitinases, de glucanases, d'inhibiteurs de proteinase (PI), de gènes de la famille PR1, de la nopaline synthase (nos) ou du gène vspB (US 5 670 349, Tableau 3), le promoteur HMG2 (US 5 670 349), le promoteur de la beta-galactosidase (ABG1) de pomme ou le promoteur de l'amino cyclopropane carboxylate syntase (ACC synthase) de pomme (WO 98/45445).

« Activateurs de transcription ("enhancer") » : on citera par exemple l'activateur de transcription du virus de la mosaïque du tabac (VMT) décrit dans la demande WO 87/07644, ou du virus etch du tabac (VET) décrit par Carrington & Freed.

« Introns » : séquences d'acide nucléique non traduites. On citera par exemple l'intron 1 du gène d'histone d'Arabidopsis tel que décrit dans la demande de brevet

WO 97/04114 pour une expression dans les plantes dicotylédones, le premier intron de l'actine de riz décrit dans la demande de brevet WO 99/34005, ou l'intron adh1 de maïs pour une expression dans les plantes monocotylédones.

« Séquence codante » : séquence d'acide nucléique traduite. Elle comprend une séquence codant pour une protéine ou un peptide d'intérêt, éventuellement fusionnée en 5' ou en 3' avec une séquence codant pour un peptide signal ou d'adressage vers un compartiment cellulaire particulier.

5

10

15

20

25

30

« Peptide signal ou d'adressage » : peptides fusionnés à une protéine ou à un peptide d'intérêt dans leur partie N- ou C-terminale, reconnus par la machinerie cellulaire permettant l'adressage de la protéine ou du peptide d'intérêt vers un compartiment cellulaire particulier. Il s'agit en particulier de peptides de transit chloroplastiques permettant l'adressage de la protéine ou du peptide d'intérêt dans les chloroplastes, ou de peptides signaux vers divers compartiments cellulaires, par exemple la vacuole, les mitochondries, le réticulum endoplastique, l'appareil de golgi, etc. Le rôle de telles séquences protéiques sont notamment décrites dans le numéro 38 de le revue Plant molecular Biology (1998) consacré en grande partie aux transports des protéines dans les différents compartiments de la cellule végétale (Sorting of proteins to vacuoles in plant cells pp 127-144; the nuclear pore complex pp145-162; protein translocation into and across the chloroplastic enveloppe membranes pp 91-207; multiple pathways for the targeting of thylakoid proteins in chloroplasts pp 209-221; mitochondrial protein import in plants pp 311-338).

« Peptide de transit chloroplastique » : le peptide de transit chloroplastique est codé par une séquence d'acide nucléique en 5' de la séquence d'acide nucléique codant pour une protéine ou un peptide d'intérêt, de manière à permettre l'expression d'une protéine de fusion peptide de transit/protéine (peptide) d'intérêt. Le peptide de transit permet d'adresser la protéine ou le peptide d'intérêt dans les plastes, plus particulièrement les chloroplastes, la protéine de fusion étant clivée entre le peptide de transit et la protéine ou le peptide d'intérêt au passage de la membrane des plastes. Le peptide de transit peut être simple, comme un peptide de transit d'EPSPS (US 5,188,642) ou un peptide de transit de la petite sous-unité de ribulose-biscarboxylase/oxygénase (ssu RuBisCO) d'une plante, éventuellement comprenant quelques acides aminés de la partie N-terminale de la ssu RuBisCO mature (EP 189 707) ou encore un peptide de transit multiple comprenant un premier peptide de transit de plante fusionné à une partie de la

séquence N-terminale d'une protéine mature à localisation plastidiale, fusionnée à un deuxième peptide de transit de plante tel que décrit dans le brevet EP 508 909, et plus particulièrement le peptide de transit optimisé comprenant un peptide de transit de la ssu RuBisCO de tournesol fusionné à 22 acides aminés de l'extrémité N-terminale de la ssu RuBisCO de maïs fusionnée au peptide de transit de la ssu RuBisCO de maïs tel que décrit avec sa séquence codante dans le brevet EP 508 909.

5

10

15

20

25

30

« Peptide signal » : ces séquences peptidiques sont notamment décrites dans le numéro 38 de le revue Plant molecular Biology (1998) consacré en grande partie aux transports des protéines dans les différents compartiments de la cellule végétale (Sorting of proteins to vacuoles in plant cells pp 127-144; the nuclear pore complex pp145-162; protein translocation into and across the chloroplastic enveloppe membranes pp 91-207; multiple pathways for the targeting of thylakoid proteins in chloroplasts pp 209-221; mitochondrial protein import in plants pp 311-338). Des peptides d'adressage vers la vacuole sont largements décrits dans la littérature (Neuhaus J.M. and Rogers J.C Sorting of proteins to vacuoles in plant cellsPlant molecular Biology 38 : 127-144, 1998). De préférence, le peptide vacuolaire est le peptide vacuolaire de la protéine décrite dans J.M. Ferullo et al (Plant Molecular Biology 33 : 625-633, 1997), fusionné à la partie C-terminale de la protéine ou du peptide d'intérêt.

« Séquence de régulation terminatrice » : comprenant également les séquences de polyadénylation, on entend toute séquence fonctionnelle dans les cellules végétales ou les plantes qu'elles soient d'origine bactérienne, comme par exemple le terminateur nos d'*Agrobacterium tumefaciens*, d'origine virale, comme par exemple le terminateur du CaMV 35S, ou encore d'origine végétale, comme par exemple un terminateur d'histone tel que décrit dans la demande EP 0 633 317.

« Vecteur » : vecteur de clonage et/ou d'expression pour la transformation d'un organisme hôte contenant au moins une cassette d'expression. Le vecteur comprend outre la cassette d'expression, au moins une origine de réplication. Le vecteur peut être constitué par un plasmide, un cosmide, un bactériophage ou un virus, transformés par l'introduction de la cassette d'expression. De tels vecteurs de transformation en fonction de l'organisme hôte à transformer sont bien connus de l'homme du métier et largement décrits dans la littérature. Pour la transformation des cellules végétales ou des plantes, il s'agira notamment d'un virus qui peut être employé pour la transformation des plantes développées et contenant en outre ses propres éléments de réplication et d'expression.

De manière préférentielle, le vecteur de transformation des cellules végétales ou des plantes est un plasmide.

HPP Oxydase

10

15

25

Un premier objet de l'invention concerne une séquence d'acide nucléique codant pour une HPP Oxydase, et le polypeptide correspondant. De manière préférentielle, l'HPP oxydase est insensible aux inhibiteurs d'HPPD, en particulier aux isoxazoles comme l'isoxaflutole et leurs dikétonitriles, notamment ceux définis précédemment. L'HPP oxydase est notamment une HPP oxydase d'origine bactérienne, par exemple d'*Arthrobacter*, en particulier d'*Arthrobacter globiformis*. L'HPP oxydase est avantageusement une protéine dont la séquence primaire d'acides aminés est représentée par l'identificateur de séquence n°2 (SEQ ID NO 2) ses séquences homologues et ses fragments.

Des séquences protéiques d'HPP oxydases homologues de la SEQ ID NO 2 sont notamment représentées par les SEQ ID NO 4 et 6, ses séquences homologues et ses fragments.

L'HPP oxydase représentée par la SEQ ID NO 4 correspond à l'HPP oxydase de la SEQ ID NO 2 pour laquelle une Glycine est remplacée par une Alanine.

La présente invention concerne également une séquence d'acide nucléique codant pour une HPP oxydase telle que définie ci-dessus.

De manière préférentielle, la séquence codant pour l'HPP oxydase est une séquence d'ADN, notamment ADN génomique ou ADN-c, en particulier une séquence hétérologue ou isolée.

La séquence codant pour une HPP oxydase selon l'invention est notamment choisie parmi les séquences codantes des séquences d'ADN représentées par les SEQ ID NO 1, 3, 5 ou 15, leurs séquences homologues, leurs fragments et les séquences capable de s'hybrider de manière sélective aux SEQ ID 1, 3, 5 ou 15.

La séquence codante de la SEQ ID NO 5 compre nd trois mutations en positions 463, 602 et 1511 par rapport à la SEQ ID NO 1 qui sont silencieuses, c'est à dire n'introduisant aucune modification du polypeptide correspondant.

30 4-HPA 1-hydroxylase

Un deuxième objet de l'invention concerne les moyens nécessaires à l'expression de la 4-HPA 1-hydroxylase. Contrairement à ce qui était attendu de la littérature sur l'activité de certains extraits protéiques, il a été constaté que l'activité 4-HPA 1-

hydroxylase dans les bactéries, en particulier *Pseudomonas*, résultait de la somme de l'activité de deux enzymes dénommées ci-après HPAH et HPAC.

HPAH

5

10

15

25

L'HPAH permet la conversion de l'HPA en métabolite intermédiaire dénommé ciaprès métabolite Z dont la structure reste indéterminée. Il peut être envisagé sérieusement que l'HPAH permet l'hydroxylation du noyau aromatique de l'HPA, le métabolite Z se stabilisant sous forme d'une cétone. Cette hypothèse d'activité enzymatique est représentée sur la figure 2.

Un deuxième objet de l'invention concerne donc une séquence d'acide nucléique codant pour une HPAH, et le polypeptide correspondant. De manière préférentielle, l'HPAH est insensible aux inhibiteurs d'HPPD, en particulier aux isoxazoles comme l'isoxaflutole et leurs dikétonitriles, notamment ceux définis précédemment. L'HPAH est notamment une HPAH d'origine bactérienne, par exemple de *Pseudomonas*, en particulier de *Pseudomonas acidovorans*. L'HPAH est avantageusement une protéine dont la séquence primaire d'acides aminés est représentée par les identificateurs de séquence n°8 et 18 (SEQ ID NO 8 et SEQ ID NO 18) leurs séquences homologues et leurs fragments.

La présente invention concerne également une séquence d'acide nucléique codant pour une HPAH telle que définie ci-dessus.

De manière préférentielle, la séquence codant pour l'HPAH est une séquence d'ADN, notamment ADN génomique ou ADN-c, en particulier une séquence hétérologue ou isolée.

La séquence codant pour une HPAH selon l'invention est notamment choisie parmi les parties codantes des séquences représentées par les SEQ ID NO 7 ou 17, leurs séquences homologues, leurs fragments et les séquences capable de s'hybrider de manière sélective aux SEQ ID NO 7 ou 17.

HPAC

L'HPAC est la deuxième enzyme permetant la conversion du métabolite Z en en homogentisate.

Un troisième objet de l'invention concerne donc une séquence d'acide nucléique codant pour une HPAC, et le polypeptide correspondant. De manière préférentielle, l'HPAC est insensible aux inhibiteurs d'HPPD, en particulier aux isoxazoles comme l'isoxaflutole et leurs dikétonitriles, notamment ceux définis précédemment. L'HPAH

est notamment une HPAC d'origine bactérienne, par exemple de *Pseudomonas*, en particulier de *Pseudomonas acidovorans*. L'HPAH est avantageusement une protéine dont la séquence primaire d'acides aminés est représentée par l'identificateur de séquence n°10 (SEQ ID NO 10) ses séquences homologues et ses fragments.

Des séquences protéiques d'HPAC homologues de la SEQ ID NO 10 sont notamment représentées par les SEQ ID NO 12, 14 et 20, leurs séquences homologues et leurs fragments.

La présente invention concerne également une séquence d'acide nucléique codant pour une HPAC telle que définie ci-dessus.

De manière préférentielle, la séquence codant pour l'HPAC est une séquence d'ADN, notamment ADN génomique ou ADN-c, en particulier une séquence hétérologue ou isolée.

La séquence codant pour une HPAC selon l'invention est notamment choisie parmi les parties codantes des séquences représentées par les SEQ ID NO 9, 11, 13 ou 19, leurs séquences homologues, leurs fragments et les séquences capables de s'hybrider de manière sélective aux SEQ ID NO 9, 11, 13 ou 19.

Cassettes d'expression

5

10

15

20

25

30

La présente invention concerne également une cassette d'expression dont la séquence codante comprend une séquence d'acide nucléique sélectionnée parmi les séquences d'acide nucléique codant pour une HGA oxydase, une HGAH ou HGAC telles que définies ci-dessus.

La séquence codante peut également comprendre en 5' ou en 3' une séquence codant pour un peptide signal ou un peptide de transit. De manière avantageuse, la séquence codante comprend en 5' de la séquence codant pour HGA oxydase, une HGAH ou une HGAC, une séquence codant pour un peptide de transit d'adressage chloroplastique, en particulier un peptide de transit multiple, plus particulièrement le peptide de transit optimisé.

La présente invention concerne donc également une protéine de fusion peptide de transit/HGA oxydase, peptide de transit/HGAH ou peptide de transit/HGAC, la séquence du peptide de transit étant définie précédemment, en particulier la séquence du peptide de transit optimisé tel que décrit dans la demande de brevet EP 508 909.

De manière préférentielle, la séquence de régulation promotrice est choisie parmi les séquence de régulation promotrice permettant une expression constitutive de la séquence codante. Il s'agira en particulier des séquences des promoteurs du CaMV 35S, du CsVMV, de l'actine de riz ou d'histone.

On peut également choisir d'exprimer les séquences codantes selon l'invention à un niveau d'expression voisin du niveau d'expression du gène que l'on cherche à contourner. On pourra employer dans la cassette d'expression selon l'invention une séquence de régulation promotrice choisie parmi les séquences de régulation promotrices d'HPPD de plantes.

5

10

15

20

25

30

Pour l'expression des trois enzymes HPP oxydase, HGAH et HGAC dans une même plante, on pourra choisir les cassettes d'expression des séquences codantes correspondantes, des séquences de régulation promotrices différentes présentant des profils d'expression différents, par leur force et/ou leur localisation dans les différents organes fonctionnels de la plante.

On pourra choisir des séquences de régulation promotrice permettant un gradient d'expression HGAC>HGAH>HPP oxydase ou inversement.

Pour l'expression de l'HPP oxydase, de l'HGAH et de l'HGAC, la séquence de régulation promotrice est avantageusement choisie parmi le groupe comprenant les promoteurs d'HPPD de plante, d'histone H3 ou H4, notamment d'Arabidopsis ou de maïs, en particulier ceux décrits dans la demande de brevet EP 507 698, de SSU de RuBisCO de plante, en particulier de tournesol ou de maïs comme décrit dans la demande de brevet WO 99/25842, du CaMV 35S ou du CsVMV, et leurs combinaisons, en particulier les promoteurs hybrides histone/35S tels que décrits dans les exemples de la demande de brevet EP 507 698. Pour une expression dans les plantes monocotylédones, ces séquences de régulation promotrices seront avantageusement associées avec le premier intron de l'actine de riz.

Selon un mode de réalisation de l'invention, la cassette d'expression codant pour une HPP oxydase comprend un promoteur d'histone, une séquence codant pour une HPP oxydase et un terminateur d'histone (Figure 12; SEQ ID NO 15).

Selon un autre mode de réalisation de l'invention, la cassette d'expression codant pour une HPAH comprend un promoteur CaMV 35S, une séquence codant pour une HPAHet un terminateur NOS (Figure 11 ; SEQ ID NO 17).

Selon un autre mode de réalisation de l'invention, la cassette d'expression codant pour une HPAC comprend un promoteur CsVMV, une séquence codant pour une HPAC et un terminateur NOS (Figure 10 ; SEQ ID NO 19).

Vecteurs:

10

20

30

La présente invention concerne également un vecteur de clonage et/ou d'expression comprenant au moins une cassette d'expression selon l'invention.

Selon un premier mode de réalisation de l'invention, le vecteur comprend une seule des cassettes d'expression selon l'invention choisie parmi les cassettes comprenant une séquence codante pour une HPP oxydase, une HGAH ou HGAC telles que définies précédemment.

Selon un deuxième mode de réalisation de l'invention, le vecteur comprend deux cassettes d'expression selon l'invention choisies parmi les cassettes comprenant une séquence codante pour une HPP oxydase, une HGAH ou HGAC telles que définies précédemment associées deux à deux dans un même vecteur : HPP oxydase et HGAH, HPP oxydase et HGAC, HGAH et HGAC.

Un vecteur comprenant une cassette d'expression codant pour l'HPAH etune autre codant pour l'HPAC peut comprendre la combinaison des deux cassettes d'expression définies précédemment (SEQ ID NO 17 et 19). Une telle cassette d'expression est représentée par la Figure 13 et la SEQ ID NO 21.

Selon un troisième mode de réalisation de l'invention, le vecteur comprend trois cassettes d'expression selon l'invention, une première cassette d'expression de l'HPP oxydase, une deuxième cassette d'expression de l'HGAH et une troisième cassette d'expression de l'HGAC. Une telle cassette d'expression peut comprendre la combinaison des trois cassettes définies précédement (SEQ ID NO 15, 17 et 19). Un tel vecteur est représentée sur la figure 14 et la SEQ ID NO 22.

Les vecteurs selon l'invention tels que définis ci-dessus peuvent également comprendre des cassettes d'expression d'autres protéines ou peptides d'intérêt.

Lorsque le vecteur comprend plusieurs cassettes d'expression, ces dernières peuvent prendre différentes orientations deux à deux l'une par rapport à l'autre, colinéaires, divergentes ou convergentes.

Les cassettes d'expression d'autres protéines ou peptides d'intérêt comprennent une séquence d'acide nucléique codant pour des protéines ou peptides d'intérêt différents de l'HPP oxydase, de l'HGAH et de l'HGAC définis ci-dessus.

Il peut s'agir de séquences d'un gène codant pour un marqueur de sélection comme d'un gène conférant à la plante transformée de nouvelles propriétés agronomiques, ou d'un gène d'amélioration de la qualité agronomique de la plante transformée.

Marqueurs de Sélection

Parmi les gènes codant pour des marqueurs de sélection, on peut citer les gènes de résistance aux antibiotiques, les gènes de tolérance aux herbicides (bialaphos, glyphosate ou isoxazoles), des gènes codant pour des enzymes rapporteurs facilement identifiables comme l'enzyme GUS, des gènes codant pour des pigments ou des enzymes régulant la production de pigments dans les cellules transformées. De tels gènes marqueurs de sélection sont notamment décrits dans les demandes de brevet EP 242 236, EP 242 246, GB 2 197 653, WO 91/02071, WO 95/06128, WO 96/38567 ou WO 97/04103.

Gènes d'intérêt

5

10

15

20

25

30

Parmi les gènes conférant de nouvelles propriétés agronomiques aux plantes transformées, on peut citer les gènes conférant une tolérance à certains herbicides, ceux conférant une résistance à certains insectes, ceux conférant une tolérance à certaines maladies, etc. De tels gènes sont notamment décrits dans les demandes de brevet WO 91/02071 et WO 95/06128.

Tolérance herbicide

La présente invention est particulièrement appropriée pour l'expression de gènes conférant une tolérance à certains herbicides aux cellules végétales et aux plantes monocotylédones transformées. Parmi les gènes conférant une tolérance à certains herbicides, on peut citer le gène Bar conférant une tolérance au bialaphos, le gène codant pour une EPSPS appropriée conférant une résistance aux herbicides ayant l'EPSPS comme cible comme le glyphosate et ses sels (US 4,535,060, US 4,769,061, US 5,094,945, US 4,940,835, US 5,188,642, US 4,971,908, US 5,145,783, US 5,310,667, US 5,312,910, US 5,627,061, US 5,633,435, FR 2 736 926), le gène codant pour la glyphosate oxydoréductase (US 5,463,175), ou encore un gène codant pour une HPPD conférant une tolérance aux herbicides ayant pour cible l'HPPD comme les isoxazoles, notamment l'isoxafutole (FR 95 06800, FR 95 13570), les dicétonitriles (EP 496 630, EP 496 631) ou les tricétones, notamment la sulcotrione (EP 625 505, EP 625 508, US 5,506,195). De tels gènes codant pour une HPPD conférant une tolérance aux herbicides ayant pour cible l'HPPD sont décrits dans la demande de brevet WO 96/38567.

Parmi les gènes codant pour une EPSPS appropriée conférant une résistance aux herbicides ayant l'EPSPS comme cible, on citera plus particulièrement le gène codant pour une EPSPS végétale, en particulier de maïs, présentant deux mutations 102 et 106, décrit dans la demande de brevet FR 2 736 926, dénommé ci-dessous EPSPS double mutant, ou encore le gène codant pour une EPSPS isolée d'Agrobacterium décrit par les séquences ID 2 et ID 3 du brevet US 5,633,435, dénommé ci-dessous CP4.

Parmi les gènes codant pour une HPPD conférant une tolérance aux herbicides ayant pour cible l'HPPD, on citera plus particulièrement l'HPPD de Pseudomonas et celle d'Arabidopsis, décrites dans la demande de brevet WO 96/38567.

Dans les cas des gènes codant pour EPSPS ou HPPD, et plus particulièrement pour les gènes ci-dessus, la séquence codant pour ces enzymes est avantageusement précédée par une séquence codant pour un peptide de transit, en particulier pour le peptide de transit dit peptide de transit optimisé décrit dans les brevets US 5,510,471 ou US 5,633,448.

Résistance aux Insectes

5

10

15

20

25

30

Parmi les protéines d'intérêt conférant de nouvelles propriétés de résistance aux insectes, on citera plus particulièrement les protéines *Bt* largement décrites dans la littérature et bien connues de l'homme du métier. On citera aussi les protéines extraites de bactéries comme *Photorabdus* (WO 97/17432 & WO 98/08932).

Résistance aux Maladies

Parmi les protéines ou peptides d'intérêt conférant de nouvelles propriétés de résistance aux maladies on citera notamment les chitinases, les glucanases, l'oxalate oxydase, toutes ces protéines et leurs séquences codantes étant largement décrites dans la littérature, ou encore les peptides antibactériens et/ou antifongiques, en particulier les peptides de moins de 100 acides aminés riches en cystéines comme les thionines ou défensines de plantes, et plus particulièrement les peptides lytiques de toutes origines comprenant un ou plusieurs ponts disulfures entre les cystéines et des régions comprenant des acides aminés basiques, notamment les peptides lytiques suivants : l'androctonine (WO 97/30082 et PCT/FR98/01814, déposée le 18 août 1998) ou la drosomicine (PCT/FR98/01462, déposée le 8 juillet 1998).

Selon un mode particulier de réalisation de l'invention, la protéine ou peptide d'intérêt est choisi parmi les peptides éliciteurs fongiques, en particulier les élicitines (Kamoun & al., 1993; Panabières & al., 1995).

Modification de la qualité

On peut également citer les gènes modifiant la constitution des plantes modifiées, en

particulier la teneur et la qualité de certains acides gras essentiels (EP 666 918) ou encore la teneur et la qualité des protéines, en particuliers dans les feuilles et/ou les graines desdites plantes. On citera en particulier les gènes codant pour des protéines enrichies en acides aminés soufrés (Korit, A.A. & al., Eur. J. Biochem. (1991) 195, 329-334; WO 98/20133; WO 97/41239; WO 95/31554; WO 94/20828; WO 92/14822). Ces protéines enrichies en acides aminés soufrés auront également pour fonction de piéger et stocker la cystéine et/ou la méthionine excédentaire, permettant d'éviter les problèmes éventuels de toxicité liés à une surproduction de ces acides aminés soufrés en les piégeant. On peut citer également des gènes codant pour des peptides riches en acides aminés soufrés et plus particulièrement en cystéines, les dits peptides ayant également une activité antibactérienne et/ou antifongique. On citera plus particulièrement les défensines de plantes, de même que les peptides lytiques de toute origine, et plus particulièrement les peptides lytiques suivants : l'androctonine (WO 97/30082 et PCT/FR98/01814, déposée le 18 août 1998) ou la drosomicine (PCT/FR98/01462, déposée le 8 juillet 1998.

Cellules végétales et plantes transgéniques

5

10

15

25

30

La présente invention concerne également des cellules végétales et des plantes transformées comprenant au moins une cassette d'expression d'une HPP oxydase, d'une HGAH ou d'une HGAC telles que définies ci-dessus.

Selon un premier mode de réalisation de l'invention, les cellules végétales ou les plantes comprennent une seule des cassettes d'expression selon l'invention choisie parmi les cassettes comprenant une séquence codante pour une HPP oxydase, une HGAH ou HGAC telles que définies précédemment.

Selon un deuxième mode de réalisation de l'invention, les cellules végétales ou les plantes comprennent deux cassettes d'expression selon l'invention choisies parmi les cassettes comprenant une séquence codante pour une HPP oxydase, une HGAH ou HGAC telles que définies précédemment associées deux à deux dans un même vecteur : HPP oxydase et HGAH, HPP oxydase et HGAC, HGAH et HGAC.

Selon un troisième mode de réalisation de l'invention, les cellules végétales ou les plantes comprennent trois cassettes d'expression selon l'invention, une première cassette d'expression de l'HPP oxydase, une deuxième cassette d'expression de l'HGAH et une troisième cassette d'expression de l'HGAC.

Les cellules végétales ou les plantes selon l'invention tellees que définis ci-dessus

peuvent également comprendre des cassettes d'expression d'autres protéines ou peptides d'intérêt définies précédemment.

De manière préférentielle, les cassettes d'expression sont intégrées de manière stable dans le génome des cellules végétales ou des plantes. Plus préférentiellement, les plantes selon l'invention sont fertiles, les cassettes d'expression selon l'invention étant transférées à leur descendance.

La présente invention concerne également des graines de plantes transgéniques cidessus, lesquelles graines comprennent une cassette d'expression selon l'invention codant pour une HPP oxydase, une HGAH ou une HGAC.

Les différentes cassettes d'expression dans les plantes transformées selon l'invention peuvent provenir soit de la même plante transformée parente, et dans ce cas la plante est issue d'un seul procédé de transformation/régénération avec les différentes cassettes d'expression contenues dans un même vecteur ou par co-transformation au moyen de plusieurs vecteurs. Elle peut également être obtenue par le croisement de plantes parentes contenant chacune au moins une cassette d'expression selon l'invention.

Transformation des cellules végétales et des plantes

5

20

25

30

L'invention a encore pour objet un procédé de transformation des des cellules végétales et des plantes par introduction d'au moins une séquence d'acide nucléique ou une cassette d'expression selon l'invention telles que définies précédemment, transformation qui peut être obtenue par tout moyen connu approprié, amplement décrit dans la littérature spécialisée et notamment les références citées dans la présente demande, plus particulièrement par le vecteur selon l'invention.

Une série de méthodes consiste à bombarder des cellules, des protoplastes ou des tissus avec des particules auxquelles sont accrochées les séquences d'ADN. Une autre série de méthodes consiste à utiliser comme moyen de transfert dans la plante un gène chimère inséré dans un plasmide Ti d'Agrobacterium tumefaciens ou Ri d'Agrobacterium rhizogenes. D'autres méthodes peuvent être utilisées telles que la micro-injection ou l'électroporation, ou encore la précipitation directe au moyen de PEG. L'homme du métier fera le choix de la méthode appropriée en fonction de la nature de l'organisme hôte, en particulier de la cellule végétale ou de la plante.

Lorsque l'on souhaite introduire plusieurs séquences d'acide nucléique ou cassettes d'expression, on peut le faire au moyen d'un seul vecteur selon l'invention comprenant

les différentes cassettes d'expression. Elles peuvent également être introduites dans l'organisme hôte par co-transformation au moyen de plusieurs vecteurs, chacun comprenant au moins une cassette d'expression.

D'une manière générale, les plantes transgéniques selon l'invention sont obtenues par transformation de cellules végétales puis régénération d'une plante, de préférence fertile à partir de la cellule transformée. La régénération est obtenue par tout procédé approprié qui dépend de la nature de l'espèce, comme par exemple décrit dans les références ci-dessus. Pour les procédés de transformation des cellules végétales et de régénération des plantes, on citera notamment les brevets et demandes de brevet suivants: US 4,459,355, US 4,536,475, US 5,464,763, US 5,177,010, US 5,187,073, EP 267,159, EP 604 662, EP 672 752, US 4,945,050, US 5,036,006, US 5,100,792, US 5,371,014, US 5,478,744, US 5,179,022, US 5,565,346, US 5,484,956, US 5,508,468, US 5,538,877, US 5,554,798, US 5,489,520, US 5,510,318, US 5,204,253, US 5,405,765, EP 442 174, EP 486 233, EP 486 234, EP 539 563, EP 674 725, WO 91/02071 et WO 95/06128.

Désherbage sélectif

10

15

20

25

30

L'invention a aussi pour objet un procédé de désherbage sélectif de plantes, notamment de cultures, à l'aide d'un inhibiteur de l'HPPD notamment un herbicide définit auparavant, caractérisé en ce qu'on applique cet herbicide sur des plantes transformées selon l'invention, tant en présemis, en prélevée qu'en postlevée de la culture.

La présente invention concerne également un procédé de contrôle des mauvaises herbes dans une surface d'un champ comprenant des graines ou des plantes transformées selon l'invention, lequel procédé comprend l'application dans la dite surface du champ d'une dose toxique pour les dites mauvaises herbes d'un herbicide inhibiteur d'HPPD, sans toutefois affecter de manière substantielle les graines ou plantes transformée selon l'invention.

La présente invention concerne également un procédé de culture des plantes transformées selon l'invention lequel procédé comprend le semis des graines des dites plantes transformées dans une surface d'un champ approprié pour la culture des dites plantes, l'application sur la dite surface du dit champ une dose toxique pour les mauvaises herbes d'un herbicide ayant pour cible l'HPPD défini ci-dessus en cas de présence de mauvaises herbes, sans affecter de manière substantielle les dites graines ou

5

10

15

20

25

30

les dites plantes transformées, puis la récolte des plantes cultivées lorsqu'elles arrivent à la maturité souhaitée et éventuellement la séparation des graines des plantes récoltées.

Par « sans affecter de manière substantielle les dites graines ou les dites plantes transformées », on entend selon l'invention que les plantes transformées selon l'invention soumises à une application d'une dose d'herbicide toxique pour les mauvaises herbes, présentent une phytotoxicité légère ou nulle. Par dose toxique pour les mauvaises herbes, on entend selon l'invention une dose d'application de l'herbicide pour laquelle les mauvaises herbes sont tuées. Par phytotoxicité légère on entend selon l'invention un pourcentage de feuilles blanchies inférieur à 25%, préférentiellement inférieur à 10%, plus préférentiellement inférieur à 5%. Il est entendu également selon la présente invention que l'application de la même dose toxique sur une plante autrement comparable non transformée, c'est à dire ne comprenant pas au moins une cassette d'expression selon l'invention, conduirait à observer sur ladite plante des symptômes de phytotoxicité suppérieurs à ceux observés pour la plante transformée selon l'invention.

Dans les deux procédés ci-dessus, l'application de l'herbicide ayant pour cible l'HPPD peut être faite selon l'invention, tant en présemis, en prélevée qu'en postlevée de la culture.

Par herbicide au sens de la présente invention on entend une matière active herbicide seule ou associée à un additif qui modifie son efficacité comme par exemple un agent augmentant l'activité (synergiste) ou limitant l'activité (en anglais safener). Les herbicides inhibiteurs d'HPPD sont en particulier définis auparavant. Bien entendu, pour leur application pratique, les herbicides ci-dessus sont associée de manière en soi connue aux adjuvants de formulations utilisés habituellement en agrochimie

Lorsque la plante transformée selon l'invention comprend un autre gène de tolérance à un autre herbicide (comme par exemple un gène codant pour une EPSPS mutée ou non conférant à la plante une tolérance au glyphosate), ou lorsque la plante transformée est naturellement insensible à un autre herbicides, le procédé selon l'invention peut comprendre l'application simultanée ou décalée dans le temps d'un inhibiteur d'HPPD en association avec ledit herbicide, par exemple le glyphosate.

Les différents aspects de l'invention seront mieux compris à l'aide des exemples expérimentaux ci-dessous.

Toutes les méthodes ou opérations décrites ci-dessous dans ces exemples sont

données à titre d'exemples et correspondent à un choix, effectué parmi les différentes méthodes disponibles pour parvenir au même résultat. Ce choix n'a aucune incidence sur la qualité du résultat et par conséquent, toute méthode adaptée peut être utilisée par l'homme de l'art pour parvenir au même résultat. La plupart des méthodes d'ingénierie des fragments d'ADN sont décrites dans Coligan *et al.* (1995), Ausubel *et al.* (1995) ; Maniatis *et al.* (1982), Sambrook *et al.*

Les références bibliographiques citées précédement sont intégrées par référence à la présente demande de brevet, en particulier les références bibliographiques définissant les séquences d'acide nucléique codant pour des HPPD natives, chimères ou mutées, éventuellement combinées avec un peptide signal ou peptide de transit.

Exemple I: IDENTIFICATION DU GENE CODANT L'HPP OXYDASE D'ARTHROBACTER GLOBIFORMIS

L'HPP oxydase (HPPO) convertit l'HPP en 4-HPA par une réaction de décarboxylation. Cette enzyme catalyse donc la première activité enzymatique nécessaire pour la construction de la voie métabolique contournant l'HPPD. L'activité HPP oxydase a été caractérisée dans des extraits bruts de *Rhodococcus erythropolis* S1 (Suemori et al., 1995) ou dans un extrait partiellement purifiée d'Arthrobacter globiformis (Blakley, 1977). A notre connaissance, la protéine n'a pas été purifiée. Afin de pouvoir introduire cette activité enzymatique dans la plante, il est nécessaire d'en identifier le gène. Différentes approches sont envisageables: (1) la mutagenèse insertionnelle et donc l'identification du gène par la perte de l'activité enzymatique, (2) la complémentation fonctionnelle d'un microorganisme en utilisant une banque génomique, (3) la purification de la protéine pour remonter à la séquence nucléique.

Les trois approches furent utilisées. La complémentation fonctionnelle et la mutagenèse insertionnelle seront peu développées, ces techniques n'ayant pas permis d'identifier le gène HPPO.

I.1 Matériels et Méthodes

5

10

20

25

30

I.1.1- Les conditions de culture

I.1.1.1- Les milieux riches

Le milieu Luria-Bertani (LB; commercialisé par Bio101) est utilisé pour cultiver les bactéries (*E. coli*, *P. fluorescens*) lors des expériences de biologie moléculaire. Pour la culture d'*A. globiformis* on préfèrera le milieu Columbia-ANC enrichi avec 5% de

sang de mouton (BioMérieux). Ce milieu riche contient deux antibiotiques (acide nalidixique et colimycine) inhibiteurs des germes à Gram négatif. Bien que les trois bactéries poussent sur milieu riche à 37°C, on cultive en général A. globiformis et P. fluorescens à 29°C.

I.1.1.2- Le milieu de culture M^{Ag}

5

10

15

20

25

30

Le milieu de culture décrit par Blakley (1977) précipite, il faut donc le filtrer avant utilisation. Nous avons changé progressivement le milieu afin d'atteindre un milieu "minimal" optimal. Les facteurs considérés sont la vitesse de croissance d'A. globiformis et l'activité enzymatique de l'HPPO. Le milieu retenu (M^Ag) est un milieu M9 (Maniatis et al., 1982) légèrement modifié: Na₂HPO₄ 12 H₂O (6 g/L); KH₂PO₄ (3 g/L); NH₄Cl (1 g/L); NaCl (0.5 g/L); CaCl₂ (6 mg/L); FeSO₄ 7 H₂O (6 mg/L); extrait de levure (20 mg/L); et enfin le substrat (HPP ou tyrosine ou citrate) à la concentration 1g/L. Le milieu est autoclavé. Avant utilisation, 1 mL de MgSO₄ 1 M stérile est ajouté par litre de milieu.

Ce milieu minimum est aussi utilisé pour cultiver P. fluorescens.

I.1.2- Construction d'une banque génomique d'Arthrobacter globiformis

Il n'existe pas de technique fiable permettant de faire une banque de cDNA bactériens complets. Nous avons donc décidé de créer une banque génomique d'*Arthrobacter globiformis*. Pour la réaliser, nous choisissons le système cosmidique. La banque cosmidique fut réalisée pour les expériences de complémentation fonctionnelle, puis fut utilisée plus tard pour rechercher le ou les cosmides contenant le gène *hpp*O.

I.1.2.1- Le vecteur cosmidique pLAFR5

I.1.2.1.1- Description du vecteur

Nous choisissons le vecteur cosmidique conjugatif pLAFR-5 (Keen *et al.*, 1988) qui peut recevoir un insert d'environ 20 kb. Pourvu d'une origine de transfert et d'une origine de réplication à large spectre d'hôte à Gram négatif, il peut être transmis à d'autres genres bactériens par conjugaison tri-parentale ce qui peut être utile pour tester la complémentation fonctionnelle chez différents genres bactériens. Il confère une résistance à la tétracycline.

I.1.2.1.2- Préparation du vecteur

Le plasmide pLAFR-5 est purifié par un protocole de lyse alcaline (Maniatis et al., 1982), traité à la RNAse puis digéré par Bam HI et Sca I. La digestion par Bam HI

permet d'ouvrir le site dans lequel seront "ligués" les inserts d'ADN génomique digéré par Sau3A. La digestion par Sca I permet de libérer les sites cos qui permettent l'encapsidation. Après extraction phénolique puis chloroformique, l'ADN est précipité à l'éthanol. L'ADN sec est solubilisé dans l'eau. Le vecteur ainsi préparé est conservé à -20°C.

I.1.2.1- Préparation de l'ADN génomique d'A. globiformis

5

10

15

20

25

30

Une culture de 24 heures (200 mL, 180 rpm, 29°C) réalisée dans le milieu (200 mL) décrit par Blakley (1977) est centrifugée à 3000 g à 4°C pendant 15 minutes. Le culot cellulaire, repris par 10 mL de solution de lyse (TE pH 8; 0,5 % SDS; 1 mg protéinase K), est incubé à 37°C au bain-marie avec une agitation douce toutes les 20 minutes. Au bout de 90 minutes, la suspension de cellules lysées est versée dans un tube JA-20 en polypropylène. On ajoute alors 10 mL de phénol/chloroforme/isoamylalcool (25/24/1) puis on centrifuge à 6 000 g pendant 15 minutes à 4°C. Le surnageant est alors transféré dans un nouveau tube JA20 auquel on ajoute 1,8 mL d'acétate d'ammonium 10 M et 10 mL d'isopropanol. Après centrifugation à 20 000 g pendant 20 minutes à 4°C, le culot est rincé à l'éthanol 70 %. Le culot sec est repris avec 1 mL TE pH 8 puis transféré dans un tube Eppendorf de 2 mL auquel 10 μL de RNAse (10 mg.mL⁻¹) sont additionnés. Après 30 min à 37°C, 800 μL de phénol/ chloroforme/ isoamylalcool sont rajoutés. Après centrifugation, le surnageant est transféré dans un nouveau tube Eppendorf et extrait avec 0,8 mL de chloroforme. Le surnageant est alors transféré dans un dernier tube Eppendorf auquel 200 µL d'acétate d'ammonium 10 M et 800 µL d'isopropanol sont ajoutés. Après centrifugation, le culot est rincé à l'éthanol 70% puis, une fois sec, repris dans 500 µL d'eau. L'ADN génomique est alors stocké à -20°C.

I.1.2.3- Digestion ménagée de l'ADN génomique d'A. globiformis

Seuls les cosmides faisant 40-45 kb peuvent être encapsidés. Le vecteur faisant 21,5 kb, les inserts d'ADN génomique d'A. globiformis doivent avoir une taille comprise entre 19 et 22 kb. Ces fragments sont obtenus en réalisant une digestion ménagée de l'ADN génomique d'Arthrobacter globiformis. Pour définir les conditions optimales de la digestion ménagée nous réalisons des digestions de l'ADN génomique d'A. globiformis avec des quantités variables d'enzyme de restriction Sau 3A. Il apparaît que la meilleure condition de digestion utilise 0,08 unité enzymatique Sau 3A pendant 30 minutes à 37°C. L'ADN génomique ainsi digéré présente une taille comprise entre

15 et 22 kb. L'ADN génomique ainsi digéré est extrait au phénol puis au chloroforme et enfin précipité à l'éthanol.

I.1.2.4- Ligation de l'ADN génomique d'A. globiformis dans le vecteur cosmidique

La réaction de ligation se fait dans un volume final de 10 μL, contenant 500 ng de pLAFR-5 digéré par *Bam* HI et *Sca* I, 650 ng d'ADN génomique digéré par *Sau* 3A, 320 unités de T₄ DNA ligase (N.E.B.) et 5 mM d'ATP. La ligation se déroule à 12°C pendant la nuit (environ 16 heures). Les 5 mM d'ATP permettent d'éviter les ligations entre les extrémités franches (*Sca* I) (Feretti & Sgaramella, 1981) de telle sorte que les dimères de vecteurs n'ayant pas d'insert ne puissent pas s'encapsider dans la tête des phages λ.

I.1.2.5- Encapsidation des cosmides et amplification de la banque cosmidique

L'encapsidation des cosmides, réalisée en utilisant le kit GIGAPACK II XL (Stratagène) en respectant les instructions du fournisseur, assure une efficacité de transfection supérieure à celles obtenues avec les techniques classiques de transformation. Pour amplifier la banque cosmidique, Keen et al. (1988) conseillent d'utiliser les Escherichia coli DH-1 et HB101. En effet, lorsque ces souches sont cultivées sur maltose, elles produisent une protéine membranaire qui permet une meilleure fixation du phage et donc une transfection plus efficace des cosmides. La banque, amplifiée en suivant les recommandations de Stratagène, est conservée à – 80°C. Pour évaluer la banque cosmidique, l'ADN plasmidique isolé d'une trentaine de clone est digéré par Apa I ou Eco RI. Les profils de restriction sont observés sur gel d'agarose à 0,8%.

I.1.3- Purification de l'HPP oxydase

5

10

15

20

25

30

I.1.3.1- Test colorimétrique de l'activité HPP oxydase

Afin de pouvoir contrôler les étapes de purification, l'activité HPP oxydase est suivie en utilisant le test colorimétrique décrit par Blakley (1977). La réaction enzymatique est stoppée par l'ajout de 2,4 dinitrophénylhydrazine (2,4-DNPH), en solution dans l'HCl 2 M. La 2,4-DNPH réagit avec la fonction cétone en alpha d'une fonction carboxylique (ex: l'HPP). Il se forme ainsi une hydrazone que l'on peut révéler en alcalinisant le milieu. Lorsque l'HPP est convertit en totalité en 4-HPA pendant la réaction enzymatique, l'hydrazone ne peut pas se former, on obtient donc, en milieu

5

10

15

20

25

30

basique, la couleur jaune caractéristique de la 2,4-DHPA. Si l'HPP n'est pas entièrement convertit en 4-HPA lors de la réaction enzymatique, la formation d'hydrazone est possible. Ces hydrazones prennent une couleur brune en milieu basique. Une variation de coloration entre ces deux extrêmes est obtenue en fonction de la quantité d'HPP consommé. Les mesures d'absorption sont faites à 445 ou 450 nm. Afin de rendre ce test plus facilement manipulable, nous l'avons adapté au format microplaque à 96 puits. Le mélange réactionnel comprend GSH (900 μM); HPP (135 μM); TPP (1,8 mM); MgCl₂ (4.5 mM); FAD (4 µM); tampon phosphate de potassium (90 mM) pH 7.4. Le mélange est conservé sur glace. Dans chaque puits on dépose 50 µL de la fraction à tester et 150 μL de mélange réactionnel. Après 20 min à 30°C, la réaction enzymatique est stoppée avec 13 µL de solution 2,4-DNPH (0.1% dans HCl 2 M). Laisser réagir 20 min à température ambiante. On révèle la formation d'hydrazone en ajoutant 13 µL de solution NaOH 10 M. Pour réaliser la gamme étalon, des mélanges réactionnels avec des concentrations variables d'HPP sont préparés. Les 50 µL de fraction protéique sont remplacés par 50 µL de tampon d'extraction de la protéine. La courbe étalon est réalisée pour chaque nouvelle solution de 2,4-DNPH (la solution de 2,4-DNPH est stable 6 mois à l'obscurité). L'avantage de ce test est sa rapidité, sa simplicité, mais il a le défaut de mesurer une disparition de substrat et non pas une apparition de produit. En outre, la possibilité d'avoir des faux positifs existe : une activité tyrosine amino-transférase donnera le même résultat que l'activité de l'HPPO. En effet, dans les deux cas, la fonction cétone a disparu. Nous avons donc développé une méthode HPLC rapide et sensible qui permette de confirmer la production de 4-HPA.

I.1.3.2- Test d'activité analysé par HPLC

Une méthode HPLC a été mise au point en utilisant une petite colonne Sphérisorb ODS2 50 x 4,6 mm et de granulométrie 3 μm. La chromatographie est réalisée en isocratique **A**: 90%; **B**: 10% (où tampon A: H₂0 0,1% TFA et tampon B: acétonitrile), débit 0,8 mL.min⁻¹ et l'élution est suivie à 230 nm. Dans ces conditions, il est possible de séparer le 4-HPA, l'HGA, le 3,4-DHPA et l'HPP en 5 minutes après l'injection. La colonne a été réalisée à façon par Merck.

I.1.3.3- Purification de la protéine

Lors de la mise au point de ce protocole, un souci de simplicité a été recherché.

I.1.3.3.1- Tests préliminaires

Les tests préliminaires ont pour but de déterminer l'influence de composés

(NaCl, KCl, propanol-1, éthylène glycol, etc ...) et du pH sur l'activité enzymatique. Les réactions sont réalisées avec des extraits bruts d'A. globiformis cultivé sur milieu M^{Ag} contenant de la tyrosine comme seule source de carbone (M^{Ag} -tyrosine). Le composé à tester est ajouté dans le milieu réactionnel. Pour mesurer l'influence du pH sur l'activité enzymatique de l'HPPO, différents tampons phosphate sont réalisés.

I.1.3.3.2- Protocole de purification

5

15

20

25

30

La souche d'Arthrobacter globiformis est étalée sur milieu gélosé LB ou sur milieu gélosé Columbia-ANC. Après 16 heures de culture à 29°C, une colonie est prélevée et ensemencée dans 5 mL de milieu LB, en croissance pendant 8 heures à 29°C, 180 rpm. 50 μL de cette préculture sont alors inoculés dans 1,5 L de milieu M^Ag-Tyrosine ou MAg-HPP, la culture est alors réalisée à 29°C, 180 rpm, dans des Erlenmeyer à ailettes (Belco). Après 48 heures de culture, les cellules sont collectées par centrifugation à 5 000 g pendant 15 minutes à 4°C. Les cellules sont remises en suspension dans du tampon Tris-HCl 50 mM pH 7,4 puis centrifugées comme précédemment. Le culot est repris dans 2 mL de tampon Tris-HCl 50 mM pH 7,4. Les cellules sont soniquées (Vibra Cell, Sonic Materials INC., Connecticut, USA) pendant 15 minutes, puissance 4, pulse de 30%, dans la glace fondante. Les débris insolubles sont éliminés par une centrifugation de 25 min à 20 000 g, 4°C. Le surnageant est récupéré, il constitue "l'extrait brut". Il peut être congelé dans l'azote liquide puis conservé à -80°C (pendant 6 mois sans perte apparente d'activité). L'extrait brut est chargé, sans dessalage préalable, sur une colonne échangeuse faible d'anions 'EMD/DEAE 650 S' (Merck) équilibrée en tampon phosphate 50 mM pH 7,4. L'élution de l'activité enzymatique est obtenue en appliquant un gradient de concentration de NaCl (en solution dans un tampon phosphate 50 mM pH 7,4. Les fractions contenant l'activité enzymatique sont rassemblées. La solution protéigue obtenue est diluée d'un facteur 2,7 avec du tampon phosphate 50 mM pH 7,4. Les protéines sont alors chargées sur une colonne (XK16, Pharmacia) échangeuse forte d'anions 'source Q' (30 mL, Pharmacia) préalablement équilibrée avec un tampon phosphate 50 mM pH 7.4. Les fractions protéiques intéressantes, identifiées par l'activité enzymatique, sont rassemblées puis concentrées sur membrane UVIKON 10 kDa. L'extrait protéique résultant est alors dessalé par la technique de gel-filtration en utilisant une colonne 'PD10' (Pharmacia) équilibrée en tampon phosphate 10 mM pH 7,4 et élué avec ce même tampon. Les protéines sont alors déposées sur une colonne (XK9/15, Pharmacia) d'hydroxyapatite (2 mL; Hydroxyapatite DNA grade Bio-Gel®HTP gel; Bio-Rad) équilibrée avec 10 mM tampon phosphate pH 7,4. On élue l'activité enzymatique en appliquant un gradient phosphate. Les fractions contenant l'activité enzymatique sont rassemblées et concentrées. On conserve les protéines actives lorsque la concentration protéique est supérieure à 1 mg/mL en ajoutant du FAD, GSH et glycérol afin d'obtenir les concentrations finales suivantes : 27 μM FAD, 110 μM GSH, 0,8% glycérol. Les protéines ainsi préparées peuvent être congelées à -80°C pendant au moins 6 mois.

I.1.3.3.3 - Dosage des protéines

5

15

20

25

30

Le dosage des protéines se fait selon la méthode de Bradford (1976) en utilisant la γ-globuline pour standard.

I.1.3.3.4- Coloration des gels de protéines

Les fractions protéiques sont analysées sur gel de polyacrylamide à 10 % selon la méthode de Laemmli (1970). Après migration, les protéines du gel sont colorées soit en utilisant la méthode au Bleu de Coomassie (Chua, 1980) soit en utilisant la méthode au nitrate d'argent (Schoenle *et al.*, 1984).

I.1.4- Microséquençage protéique de l'extrémité N-terminale et de peptides internes

Le microséquençage de la protéine est réalisé en utilisant la méthode d'Edman (Laursen, 1971). Pour obtenir les meilleurs résultats lors du séquençage, le gel est préparé le jour même.

I.1.4.1- Préparation du gel d'acrylamide et son électrophorèse

Les gels (8,5%, 10% ou 12%) sont réalisés selon la méthode de Laemmli (1970) en utilisant le système de minigels d'Hoefer[®]. Les protéines sont diluées au tiers avec une solution 'bleu de dépôt dénaturant' (Tris-HCl 150 mM pH 6,8; SDS 4 %; β-mercaptoéthanol 2% (v/v); glycérol 3,3% (v/v); bleu de Bromophénol 0,03% qsp 10 mL d'eau milliQ). Après avoir été bouillies 5 minutes, les protéines sont chargées sur le gel d'acrylamide. La migration est réalisée à température ambiante en utilisant un tampon de migration dénaturant (Tris base 25 mM; glycine 250 mM; β-mercaptoéthanol 0,014% (v/v); SDS 0,1 %) et en appliquant une intensité de 15 mA par gel.

I.1.4.2- Préparatifs pour le séquençage de l'extrémité N-terminale

Afin de pouvoir réaliser le séquençage de l'extrémité N-terminale, le gel est transféré sur membrane PVDF (PROBLOTT® - Applied Biosystems) en utilisant la technique de transfert semi-sec. L'électrotransfert des polypeptides se fait en 30 minutes

à 300 mA avec l'appareil 'Semy Dry Electroblotter' (Bio-Rad) et dans un milieu à base de CAPS (tampon de transfert: CAPS 10 mM pH 11,0; méthanol 10% (v/v)). Le tampon de transfert ne contient pas de glycine qui risquerait de "polluer" le séquençage. Après le transfert, la membrane est rincée quelques secondes à l'eau milliQ. Elle est alors immergée quelques secondes dans une solution de coloration à base d'amido-schwarz (Aldrich; ref: 19,524-3). La solution est constituée de méthanol 45% (v/v), d'acide acétique 1% (v/v), d'amido-schwarz 0,1% (m/v) et d'eau 63,9% (v/v). Lorsque la bande correspondante à la protéine d'intérêt est visible, la membrane est rincée abondamment à l'eau milliQ puis elle est séchée à l'air. La partie de la membrane contenant la protéine d'intérêt (60 kDa) est découpée et envoyée pour le séquençage.

5

10

15

20

25

30

I.1.4.3- Préparatifs en vu du séquençage des peptides internes

Pour visualiser les protéines dans le gel, on utilise un protocole de coloration à l'Amido-Schwarz légèrement différent de celui utilisé pour colorer la membrane PVDF. Après migration, le gel est fixé deux fois trente minutes avec une solution constituée de méthanol 50 %, d'acide acétique 10 %, d'eau milliQ 40 %. La coloration est réalisée avec une solution constituée de méthanol 45 %, d'acide acétique 10 %, d'eau 45 %, d'Amido-Schwarz 0,003 % (p/v). Les protéines apparaissent progressivement. Lorsque la coloration est suffisante pour repérer la protéine, le gel est rincé abondamment à l'eau milliQ. La bande d'intérêt est découpée puis deshydratée au speed-vac (Savant). La bande de gel, ayant perdue environ un tiers de sa longueur, est envoyé pour le séquençage. Les peptides internes sont obtenus après digestion de la protéine par l'endoprotéase Lys-C (sequencing grade Boehringer). La protéine dans le gel de polyacrylamide est digérée dans 150 µL de tampon Tris-HCl pH 8,6 (0,1 M) contenant 0,03% de SDS, à 35°C pendant 18 heures en présence de 0,4 µg d'endoprotéase Lys-C. La protéine digérée est injectée sur colonne HPLC DEAE-C18 (diamètre 1 mm); les peptides sont élués en utilisant un gradient d'acétonitrile (de 2 à 75 %) contenant du TFA à 0,1%. L'endoprotéase Lys-C clive spécifiquement les polypeptides du côté carboxylique des lysines.

I.1.5.1- Validation théorique en utilisant le gène *Mnd*D d'*Arthrobacter globiformis*

Une partie (867 pb) du gène *Mnd*D est amplifié par PCR en utilisant les amorces 'OZ-MndD-S711': ACGTCACCGA AGAGGATGAA AAC et 'OZ-MndD-AS1578': ACGGCCATTT CGGACTTTTC. La PCR est réalisée en utilisant le programme suivant:

95°C 5 min; 25 cycles: 95°C 45 sec, 56°C 45 sec; 72°C 1 min; 72°C 5 min; 4°C en attente. Le mélange réactionnel comprend 200 à 500 μ M de dNTP, 20 à 200 ng d'ADN cosmidique ou génomique et 100 pmol de chaque amorce dans un volume final de 50 μ L.

I.1.5.2- Identification par PCR d'une partie du gène codant l'HPP oxydase

La PCR est réalisée en utilisant le kit 'Advantage®-GC Genomic PCR' (Clontech). Ce kit comprend, entre-autres, un adjuvant à base de bétaïne 'GC melt' et un mélange de polymérases thermorésistantes - principalement avec de la *Thermus thermophilus* (*Tth*) -. L'amplification est réalisée sur l'ADN génomique d'*Arthrobacter globiformis*, en utilisant la programmation suivante : 94°C 5 min; 30 cycles: 94°C 20 sec, 60°C 30 sec, 72°C 3 min; 72°C 6 min; 4°C en attente. Les conditions réactionnelles sont 400 μM dNTP, 50 ng d'ADN génomique, 100 pmol de chaque amorce, 'GC melt' 1X, pour un volume réactionnel de 50 μL. Dans ces conditions, nous amplifions une bande de 937 pb que nous dénommons Z2.

L'amplification par PCR peut être aussi réalisée en utilisant la *Tth* d'Epicentre ou la *Tbr* (*Thermus brockianus* - Finnzyme). La *Tbr* est la seule polymérase thermorésistante testée à pouvoir réaliser la PCR sans additifs (DMSO, glycérol, bétaïne); c'est en outre une enzyme de haute fidélité.

I.1.6- Criblage de la banque cosmidique

5

10

15

20

25

30

Le criblage de la banque cosmidique est réalisé en utilisant la technique des sondes froides marquées à la dioxygénine (Boehringer Mannheim, 1995).

I.1.6.1- Préparation de la sonde Z2-Dig

Le marquage de la sonde à la digoxygénine est faite par PCR dans un volume final de 50 μ L, dans les conditions définies au paragraphe II.5.2, sauf pour le mélange de dNTP constitué par : dUTP-Dig 90 μ M; dTTP 135 μ M; dATP 225 μ M; dCTP 225 μ M. On quantifie la sonde amplifiée en déposant 3 μ L de la réaction sur un gel agarose à 0,8%. Il apparaît un léger bruit de fond, c'est à dire que la PCR n'est pas suffisamment spécifique. Afin d'éviter tous problèmes ultérieurs, la totalité de la PCR est déposée sur gel et la bande d'intérêt est extraite en utilisant le kit Qiaex II (Qiagen).

I.1.6.2- Transfert de la banque cosmidique sur membrane Hybond N

Le stock glycérol de la banque cosmidique réalisée dans E. coli HB101 est utilisé pour inoculer 2 mL de milieu LBT¹⁵. Après 8 heures de croissance la DO₆₀₀ est

estimée; des dilutions en cascade sont réalisées afin d'étaler environ 1000 clones par boîte (144 cm²). Après 16 heures de croissance à 37°C, les bactéries sont transférées sur des membranes Hybond N (Amersham) et lysées en suivant les recommandations de Boehringer Mannheim (1995). L'ADN libéré est fixé à la membrane par exposition aux U.V. (120 mJ délivrés en 45 sec – Stratalinker; Stratagène). Les membranes sont débarassées des débris cellulaires en réalisant le traitement à la protéinase K comme préconisé par Boehringer Mannheim (1995).

I.1.6.3- Préhybridation - hybridation - détection

5

10

15

20

25

30

Les étapes de préhybridation et hybridation se font dans un sac disposé sur un plateau à bascule, en utilisant la technique d'hybridation avec la sonde marquée à la digoxygénine (Boehringer Mannheim, 1995). La préhybridation (5x SSC; 0,5% SDS; 0,1% N-laurylsarcosine; 1% agents bloquants (Boehringer Mannheim, ref: 1096 176); 100 µg.mL⁻¹ sperme de saumon soniqué et dénaturé) est réalisée pendant 4 heures à 65°C. L'hybridation de la membrane est faite pendant la nuit à 68°C (milieu préhybridation frais contenant 20 ng.mL⁻¹ de sonde marquée à la digoxygénine et dénaturée pendant 5 min à 100°C). Le lendemain, l'excès de sonde et les hybridations aspécifiques sont éliminées par quatre lavages avec le tampon A (0,5x SSC; 0,1% SDS, 65°C). Les membranes sont alors équilibrées pendant 5 min à température ambiante dans le tampon B (acide malique 138 mM, NaCl 142 mM, ajusté à pH 7,5 avec des pastilles de soude, 0,3% tween 20). Puis elles sont saturées par des agents bloquants (Boehringer Mannheim) durant 30 minutes avant d'être hybridées avec l'anticorps Anti-Digoxigénine couplé à la phosphatase alcaline ('Anti-Digoxigénine-AP, Fab fragments'; Boehringer Mannheim) dilué au 1/10000 dans une solution fraîche d'agents bloquants. Après 30 minutes, les membranes sont rincées deux fois 15 minutes dans du tampon B, puis équilibrées 5 minutes dans le tampon réactionnel de la phosphatase alcaline (Tris 0,1 M; NaCl 0,1 M; MgCl₂ 0,05 M pH 9,5). Les membranes sont recouvertes avec 1 mL de CSPD prêt à l'emploi puis incubées 15 min à 37°C. Cette étape à 37°C permet une activation rapide de la phosphatase alcaline couplée à l'anticorps. On révèle les membranes en exposant des Hyperfilm® ECL (Amersham) pendant 1 à 15 minutes.

I.1.6.4- Analyse des cosmides positifs par Southern et PCR

Les cosmides identifiés lors de l'hybridation sur membrane sont confirmés par PCR et par la technique de Southern. Dans ce cas, l'ADN cosmidique, purifié par lyse alcaline (Maniatis et al., 1982), est digéré par des enzymes de restriction puis séparé sur

gel d'agarose à 0,8 %. Les gels sont transférés sur membrane Hybond N⁺ (Amersham) par la technique de Southern en 20x SSC (Ausubel *et al.*, 1995). Après transfert, la membrane est rincée au 2x SSC, puis l'ADN est fixé à la membrane grâce aux U.V. (120 mJ délivrés en 45 sec – Stratalinker; Stratagène). La membrane est alors révélée en utilisant la technique de sonde froide décrite précédemment.

I.1.7- Vecteurs de clonage et bactéries hôtes

Les séquences d'ADN amplifiées par PCR sont généralement clonées dans le plasmide p-GEMT-easy (Proméga) qui permet un criblage par le technique "bleublanc". Pour la surexpression, on utilise le plasmide pKK223-3 (Pharmacia) qui place le gène sous la dépendance d'un promoteur *tac*. Les clonages sont généralement réalisés en utilisant *E. coli* DH5α (New England Biolabs) ou *E. coli* XL1 Blue (Stratagène). Pour la surexpression on préférera *E. coli* BL21(DE3).

I.1.8- Activité enzymatique de l'acétolactate synthase (ALS)

L'activité acétolactate synthase (ALS) est mesurée en utilisant la méthode colorimétrique décrite par Chang et Duggleby (1997). Les réactions sont conduites en microplaques avec un volume total de 250 μL. Pour chaque réaction, 25 μL d'enzyme sont incubées 30 min à 37°C dans 225 μL de milieu réactionnel constitué de KPi 50 mM pH 7,0; pyruvate de sodium 50 mM; TPP 1 mM; MgCl₂ 10 mM; FAD 10 μM. La réaction est arrêtée par ajout de 25 μL d'H₂SO₄ 10 %. Les microplaques alors sont incubées à 60°C pendant 15 min. Puis on ajoute 250 μL de créatine 0,5 % et 250 μL d'α-naphtol à 5 % dans du NaOH 4 M (la solution d'α-naphtol doit être préparée moins de 10 min avant usage). La microplaque est alors incubée 15 minutes à 60°C puis 15 minutes à température ambiante. Une couleur rouge cerise apparaît. La lecture est réalisée à 525 nm (ε_M= 22 700 M⁻¹ cm⁻¹).

I.2- Résultats - Discussion

25

30

L'HPP oxydase est la première activité enzymatique que nous souhaitons introduire dans la plante dans le cadre de la création de la voie métabolique contournant l'HPPD. Afin de pouvoir identifier le gène codant l'activité HPP oxydase différentes approches furent développées: (1) la mutagenèse insertionnelle et donc l'identification du gène par la perte de l'activité enzymatique, (2) la complémentation fonctionnelle d'un microorganisme en utilisant une banque génomique, (3) la purification de la protéine pour remonter à la séquence nucléique. C'est la troisième voie qui a été préférée.

I.2.1- Purification de l'HPPO

5

15

20

25

I.2.1.1- Optimisation des conditions de culture

Avant de commencer à purifier la protéine, il est utile de déterminer quels sont les conditions de culture qui permettent son expression dans la bactérie. Les résultats d'optimisation des conditions de culture montrent que l'activité HPP oxydase n'est pas détectable lorsque la croissance d' A. globiformis est faite au dépend d'une source de carbone telle que le succinate, le fumarate ou le glucose. Par contre l'activité HPP oxydase est détectée lorsqu' A. globiformis est cultivé en utilisant l'HPP, la tyrosine ou la phénylalanine comme seule source de carbone. Si l'on augmente la quantité d'extrait de levure (par exemple 200 mg.L⁻¹ au lieu de 20 mg.L⁻¹) on observe une diminution de l'activité enzymatique produite. Sur la base de ces observations, le milieu M^{Ag} est défini. Enfin, on observe qu'une culture à forte densité (en début de phase stationnaire ; $DO_{600} \sim 1$) présente une activité enzymatique HPP oxydase plus faible que dans le cas d'une culture en phase exponentielle de croissance ($DO_{600} \sim 0,4$).

I.2.1.2- Tests préliminaires

Nous venons de définir le milieu optimal pour la production de l'HPPO, nous allons maintenant rechercher les conditions qui n'altèrent pas la stabilité de l'activité HPP oxydase lors des processus de purification. Pour les chromatographies impliquant les résines échangeuses d'anions et les chromatographies en fonction du pH, il est important de connaître la sensibilité de l'enzyme au pH et aux sels. Nous observons que le pH optimum est compris entre pH 7,0 et 7,8 ainsi que l'avait déjà démontré Blakley (1977). L'enzyme semble peu sensible aux sels (NaCl et KCl) puisqu'il faut des concentrations supérieures à 750 mM pour observer une baisse de l'activité enzymatique. Nous connaissons maintenant les conditions permettant une bonne expression de l'activité enzymatique et nous avons déterminé la sensibilité de l'activité HPP oxydase à des facteurs pouvant intervenir lors de la purification. La purification de l'HPPO peut donc commencer.

I.2.2.3- Purification de l'HPPO

Pour purifier l'HPPO, on applique le protocole décrit précédemment. L'activité enzymatique est éluée de la DEAE EMD 650S avec 150 à 200 mM de NaCl en solution dans un tampon phosphate 50 mM pH 7,4. Les fractions contenant l'activité enzymatique sont rassemblées et conservées pendant la nuit à 4°C. En effet la congélation à cette étape entraîne une perte d'activité. Les protéines sont ensuite

5

10

15

20

25

30

chargées sur une résine Source Q. L'activité enzymatique est alors éluée avec une concentration en NaCl comprises entre 150 et 200 mM en solution dans un tampon phosphate 50 mM pH 7,4. Les fractions contenant l'activité enzymatique sont rassemblées puis concentrées sur membrane UVIKON 10 kDa, et conservées à 4°C pendant la nuit. Enfin l'HPPO est purifiée lors d'une troisième étape en appliquant un gradient phosphate sur colonne d'hydroxyapatite. L'activité est éluée avec une concentration de phosphate voisine de 30 mM. Les fractions contenant l'activité enzymatique HPP oxydase, en sortie de colonne d'hydroxyapatite, sont alors analysées sur un gel SDS-PAGE à 8,5% coloré au nitrate d'argent. Le gel présente l'évolution de deux bandes protéiques. Par comparaison entre le profil d'activité enzymatique et le profil d'élution des protéines, nous considérons que l'HPPO correspond à la protéine de plus haut poids moléculaire (environ 60 kDa). Dans l'essai présenté, la purification est initiée avec 1,5 g de protéines solubles extraites d'A. globiformis et nous avons récupéré 150 μg d'un mélange de protéines (dont environ 70 μg d'HPPO). Le facteur de purification en terme d'activité spécifique n'a pas été déterminé. En effet, nous utilisons des conditions de réaction totale pour suivre l'élution de l'activité enzymatique. En outre, la problématique était davantage l'identification de la protéine que la mise au point d'un protocole de purification. L'analyse HPLC, des réactions faites au sortir de chaque étape de purification, montre l'apparition d'un produit qui présente le même temps de rétention que le standard 4-HPA (SIGMA). Quarante picomoles de la protéine HPPO (60 kDa) sont transférées sur une membrane PVDF et sont envoyées pour le séquençage en même temps que 40 pmol de la protéine incluse dans le gel d'acrylamide. Les protéines transférées sur membranes servent à déterminer la séquence N-terminale tandis que les protéines incluses dans le gel sont utilisées pour déterminer la séquence de peptides internes.

I.2.2.4- Résultats de séquençage de l'HPPO

Peu de peptides internes sont obtenus en sortie d'HPLC après digestion de l'HPPO par l'endoprotéase Lys-C. Ce résultat suggère que la protéine contient peu de lysine, en effet l'endopeptidase Lys-C coupe après les lysines. Si la lysine est peu fréquente, la digestion par l'endopeptidase K génère des fragments peptidiques longs qui restent adsorbés dans la colonne et ne peuvent pas être élués, même en utilisant des conditions très hydrophobes. En se basant sur la forme des pics chromatographiques ainsi que sur la quantité apparente, on sélectionne puis on séquence trois peptides. Leur

dénomination est fonction de leur ordre de sortie de la colonne HPLC: peptide N°4, peptide N°6, peptide N°11. Leur séquence est respectivement: (A) WWAEALK, AAAGRILRLL DDAAGANASK, XDNRFTAVDF XT (où X est un acide aminé non déterminé). La séquence des 30 premiers acides aminés N-terminaux est obtenue avec un rendement initial de 40 %: TSLTVSGRVA QVLSSYVSD VFGVMGNGNV Y. L'acide aminé (méthionine ou valine) correspondant au codon initiation (ATG ou GTG) n'est pas retrouvé. Le rendement initial obtenu (15 pmol équivalent BSA), comparé avec celui obtenu pour les peptides internes (30 à 35 pmol équivalent BSA), suggère qu'une partie des protéines étaient bloquées en N-terminal. La séquence N-terminale et les séquences internes obtenues ne présentent aucune homologie dans les bases de données. En nous basant sur les séquences peptidiques obtenues, des oligonucléotides dégénérés sont synthétisés afin d'identifier le gène HPPO par PCR.

1.2.3- Validation des techniques PCR et identification d'une partie du gène hppO

I.2.3.1- Validation des techniques PCR

5

10

15

20

25

30

La teneur en base guanine et cytosine (GC %) de la majorité des ADN génomiques des Arthrobacter sp. est comprise entre 59 et 66 %, cependant il est de 67 à 69 % pour A. agilis (anciennement Micrococcus agilis) (Koch et al., 1995), de 70 % pour A. atrocyaneus (Jones et al., 1991) et de 73 % pour un Arthrobacter sp. identifié dans les glaces arctiques (Junge et al., 1998). Ces fortes teneurs en guanine et cytosine peuvent rendre plus difficile la mise en œuvre de la PCR. Pour cette raison que nous avons validé nos méthodes PCR (ADN génomique, polymérases, ...) en utilisant le gène codant la 'Manganese dependent Dioxygenase' (MndD) d'Arthrobacter globiformis (Boldt et al., 1995). Cette enzyme de la voie de dégradation de l'HPP catalyse l'ouverture du cycle aromatique du 3,4-dihydroxyphénylacétate. Pour l'amplification contrôle du gène MndD, nous avons testé des polymérases thermorésistantes de thermophilus aquaticus (Taq) commercialisées par différents fournisseurs (Perkin Elmer, ATGC, Appligène, Qiagen, Sigma). Dans tous les cas, l'amplification du gène MndD est obtenue. Cependant, dans des conditions équivalente, en utilisant les amorces dégénérées codant les peptides de l'HPPO, l'amplification du gène hppO n'est pas obtenue même en utilisant des additifs (DMSO, glycérol).

I.2.3.2- Identification par PCR de la partie N-terminale du gène hppO

Nous amplifions de manière spécifique une séquence d'ADN de 936 pb qui

pourrait correspondre à la partie N-terminale du gène hppO. L'amplification est obtenue en utilisant d'une part les amorces dégénérées Ox3: TTNGCNCCNG CNGCRTCRTC et OZ10N: GAYGTNTTYG GNGTNATGGG NAAYGG correspondant respectivement à une partie du peptide N°6 et à une partie de la séquence peptidique N-terminale et d'autre part le kit 'Advantage GC Genomic PCR' (Clontech). Le kit de Clontech est conçu pour réaliser des PCR sur des génomes riches en bases GC. Il contient un mélange de polymérases thermorésistantes (dont la *Tth*) et un additif à base de bétaïne. La *Tth* est une polymérase thermorésistante purifiée à partir de Thermus thermophilus. La dégénérescence de chaque amorce est de 1024; c'est à dire qu'une amorce sur 1024 présente la séquence nucléique exacte du gène recherché. La dégénérescence provient du fait qu'un acide aminé peut être codé par plusieurs codons, pour exemple, l'alanine est codée par quatre codons (GCA, GCC, GCG, CGT). Le code de dégénérescence utilisé pour les amorces est défini comme suit : N = A ou T ou G ou C; R = A ou G; Y = T ou C. Les températures théoriques d'hybridation sont respectivement de 55,4°C et 57,6°C. Malgré une température d'hybridation de 60°C utilisée lors de la PCR, l'amorce OX3 seule permet des amplifications non spécifiques. Nous avons amplifié par PCR un fragment d'ADN de 936 pb de manière spécifique en utilisant deux amorces dégénérées. Nous devons nous assurer que cet ADN amplifié correspond bien au gène hppO recherché.

I.2.4- Caractéristique du fragment d'ADN de 936 pb

5

10

15

20

25

30

Le fragment d'ADN de 936 pb, amplifiée par PCR, est purifié sur gel d'agarose. Il est alors cloné dans pGEM-T easy, selon les instructions du fournisseur, puis séquencé. Lorsque l'on traduit la séquence nucléique obtenue, on observe qu'elle code aux deux extrémités pour la totalité du peptide N°6 et pour une bonne partie de la séquence N-terminale. Nous sommes donc sûr d'avoir amplifié une partie du gène codant la protéine purifiée et microséquencée, l'HPPO. La séquence nucléique contient 73% de bases guanine (G) et cytosine (C) on note en outre la possible formation de structures secondaires dites "en épingles à cheveux" (stem-loop) dans les 250 premières bases de l'ARN messager. Cette haute teneur en bases G et C ainsi que l'existence de ces structures secondaires peuvent expliquer en partie les difficultés rencontrées pour parvenir à l'amplification par PCR d'une partie de ce gène. La séquence nucléique de 936 pb ainsi que la séquence protéique correspondante ne présentent pas d'homologies avec les séquences enregistrées dans les bases de données. Nous possédons maintenant

une séquence de 936 pb, orientée de N-terminal vers le peptide interne N°6. La protéine faisant environ 60 kDa, nous recherchons un gène d'environ 1650 pb. Il reste donc à identifier environ 700 pb. Pour cela nous allons cribler la banque génomique d'A. globiformis réalisée dans le cosmide pLAFR5 et amplifiée dans E. coli HB101.

I.2.5- Criblage de la banque cosmidique d'A. globiformis

5

10

15

20

30

La banque génomique réalisée est transférée sur membrane, puis criblée en utilisant, comme sonde, le fragment d'ADN de 936 pb marqué à la digoxygénine. Le protocole standard est adapté pour un ADN "classique" (60% AT), tandis que le fragment de 936 pb présente une proportion estimée de 23% AT. Si nous gardons le même rapport dUTP-Dig/dTTP que dans le cas d'un ADN classique nous obtenons une sonde faiblement marquée donc une détection moins sensible. Nous avons donc optimisé la proportion dUTP-Dig/dTTP nécessaire pour le marquage de la sonde (paragraphe II.7.1). Le criblage de la banque génomique a permis d'identifier quatre cosmides (Cos1A, Cos2A, Cos4A, Cos17A1) ayant des profils de restriction différents. En comparant les résultats d'hybridation de Southern obtenus à partir des cosmides avec ceux obtenus à partir de l'ADN génomique d'Arthrobacter globiformis, nous sélectionnons le cosmide 2A. La figure N°14 illustre la démarche utilisée en prenant pour exemple la digestion des cosmides par l'enzyme de restriction Not I. Nous observons tout d'abord que le vecteur cosmidique pLAFR5, digéré par Not I, n'hybride pas avec la sonde Z2-Dig. Par contre, nous observons que le cosmide 1A présente une seule bande d'hybridation à 2,3 kb alors que les cosmides 2A, 4A et 17A présentent deux bandes d'hybridation à 4,3 et 2,3 kb. Or la digestion du génome d'A. globiformis par Not I produit deux bandes de 4,3 et 2,3 kb; de fait nous considérons que le cosmide 1A ne contient pas toute l'information que nous recherchons. En nous basant sur d'autres restrictions et en utilisant une démarche équivalente nous éliminons les cosmides 4A et 17A. Le Cosmide 2A est alors séquencé sur une distance d'environ 3 kb de part et d'autre du site Not I identifié au milieu de la sonde Z2-Dig. Les résultats d'hybridation de l'ADN génomique montrent en outre que le gène est présent à une seule copie. Nous avons identifié le cosmide 2A que nous avons fait séquencer sur 6,2 kb. Nous allons maintenant pouvoir analyser cette séquence d'ADN issue de génome d'Arthrobacter globiformis.

I.2.6- Analyse globale de 6,2 kb d'ADN génomique d'Arthrobacter globiformis.

En utilisant le logiciel Vector Nti, la position des gènes potentiels est définie à partir de la séquence nucléique de 6255 pb obtenue en séquençant le cosmide 2A. Nous retrouvons la séquence de 936 pb, identifiée par PCR, comme faisant partie d'un gène potentiel. Ce gène potentiel correspond donc vraisemblablement au gène *hpp*O. Quatre autres gènes (A, B, C, D) sont potentiellement identifiés (Figure 3) en effectuant une recherche par homologie en utilisant l'algorithme BLASTX. Le gène A coderait un transporteur d'acide aminés, le gène B coderait une histidinol-phosphate aminotransférase cependant de précédents travaux montrent que cette enzyme possède l'activité tyrosine aminotransférase chez la bactérie à Gram positif *Bacillus subtilis* (Nester & Montoya, 1976), le gène C coderait un régulateur de transcription, tandis que le gène D coderait un régulateur d'opéron.

I.2.7- Analyse du gène hppO

5

10

15

20

25

30

I.2.7.1- Description générale

Sur la séquence obtenue de 6256 pb, le gène hppO (en vert) est délimité en 5' par le codon d'initiation ATG en position 3143 et en 3' par le codon stop TAG (en rouge) en position 4823. Le gène présente donc une longueur réelle de 1680 pb. Il présente une forte teneur en bases G et C (71,4 % GC). La recherche d'homologies au niveau des séquences nucléiques (BLASTN), ne permet aucune identification. Afin de mieux caractériser le gène, nous recherchons les éléments spécifiques de la transcription et de la traduction.

I.2.7.2- Eléments caractérisant la transcription et la traduction du gène hppO Nous identifions les potentielles boîtes promotrices de la transcription (Figure 4). La boîte «-10», dite « boîte de Pribnow», est située entre les positions 3082 à 3088 (AAAAATA) et la boîte «-35» est située en position 3055 à 3059 (TTGCA). Les boîtes ainsi définies sont légèrement différentes des séquences canoniques (respectivement TATAAT et TTGACA; Singer & Berg, 1992). Cela peut refléter une interaction faible avec les facteurs permettant la transcription constitutive ou bien la nécessaire interaction avec des facteurs de transcription différents. L'adénine en position 3096 pourrait être la base d'initiation de la transcription. Enfin nous identifions entre les positions 3068 à 3072 (TGTGA) une séquence correspondant au site d'attachement de la protéine CAP (catabolic gene activator protein). Le fait de retrouver ce site de

fixation de la protéine CAP va dans le sens des résultats obtenus lors de l'optimisation des conditions de culture. En conclusion la transcription du gène hppO est vraisemblablement sous le contrôle d'un promoteur faible, notamment régulé par le glucose. La séquence de Shine-Dalgarno (Singer & Berg, 1992) permet la fixation de la petite sous unité ribosomique. Elle est identifiée (GACGAT; en position 3131 à 3136) 12 bases en amont du codon d'initiation (ATG) de la traduction, par analogie avec la séquence consensus AGGA. On observe en outre que la partie 5' terminale (environ 250 bases) de l'ARN messager est capable de se structurer en épingle à cheveux (stemloop). Or la structure secondaire de la région de l'ARNm qui avoisine l'ATG initiateur influence l'étape d'initiation de la traduction. Ainsi l'initiation est nulle ou peu efficace lorsque l'ATG initiateur ou la séquence Shine-Dalgarno sont impliqués dans un appariement intramoléculaire. On peut donc se poser la question d'un éventuel rôle régulateur de la traduction des structures en épingle à cheveux observées.

10

15

20

25

30

I.2.7.3- Expression de l'HPPO sous la dépendance du promoteur tac

La surexpression de l'HPPO est intéressante pour définir les caractéristiques cinétiques, pour permettre la production d'anticorps, mais aussi en vu de l'analyse structurale. Le gène est cloné dans un vecteur pKK223-3 en deux étapes. Le gène, amplifié par PCR dans les conditions définies pour l'identification du gène hppO et en utilisant les amorces HPP-N-sens (CATGACTTCA CTTACAGTGT CC) et HPP-C-term (CAAACTGAGT AGCAGCTCAG G), est cloné dans le vecteur pGEMT-easy. On sélectionne le clone présentant le gène hppO en antisens du promoteur lac. On le digère alors par Eco RI. Ce faisant on récupère le gène hppO que l'on insert dans le vecteur pKK223-3 digéré par Eco RI. Le clone pKK3-2, présentant le gène hppO sous le contrôle du promoteur tac, est retenu. Lorsque l'on induit l'expression du clone pKK3-2 par l'ajout d'IPTG, on peut détecter une activité HPP oxydase. Cependant la protéine surexprimée (57,4 kDa) n'est pas décelable dans un extrait brut séparé sur gel acrylamide dénaturant. Il reste donc à améliorer le protocole de surexpression. Nous envisageons en outre de cloner l'HPPO en fusion avec une séquence Tag, (GST, polyhistidine, protéine A....) afin de faciliter la purification de la protéine surexprimée. Nous venons définitivement de montrer que le gène identifié codait une activité HPP oxydase. Cependant, en réalisant des recherches d'homologie au niveau des séquences protéiques (BLASTX ou BLASTP), nous observons que la protéine HPPO présente

jusqu'à 25% d'identité avec des acétolactate synthases (ALS), des pyruvate oxydases (POX) et des pyruvate deshydrogénases (PDH). Il est ainsi possible d'identifier des motifs très conservés tel ceux concernant la fixation du cofacteur TPP (Figure 5). En outre le profil d'hydrophobicité de l'HPPO est très proche de celui obtenu pour des ALS (non montré). Afin d'être sûr que le gène identifié code réellement l'HPPO et non pas une ALS, une POX ou une PDH ayant une activité annexe de type HPP oxydase, nous décidons de tester l'HPPO pour une éventuelle activité annexe.

I.2.8- HPPO versus ALS

15

20

30

Les recherches d'homologies protéique montrent que l'HPPO présente jusqu'à 25% d'identité avec des ALS. Ce résultat, bien que surprenant au premier abord, présente une certaine logique. En effet ces deux enzymes utilisent le FAD et le TPP comme cofacteurs réactionnels. Elles réalisent toutes deux une décarboxylation. Par ailleurs, l'un des substrats de l'ALS est le pyruvate, or notre substrat un pyruvate \beta substitué : l'hydroxyphénylpyruvate. Il est donc possible que la structure du site actif soit voisine et que par conséquence ces protéines partagent des activités enzymatiques communes. Nous avons utilisé la grande sous-unité recombinante et purifiée des ALS d'Arabidopsis thaliana (Chang & Duggleby, 1997) et de E. coli (Hill & Duggleby, 1998) pour servir de contrôle positif dans nos expériences réalisées pour rechercher une activité ALS chez l'HPPO. Les résultats obtenus montrent que l'HPPO ne présente pas d'activité ALS. Nous montrons aussi à cette occasion que les deux ALS testées n'ont pas d'activité HPP oxydase. Enfin nous observons que l'HPPO n'est pas inhibé par 115 ppm d'imazapyr (inhibiteur d'ALS, Cyanamid). Ces résultats montrent que bien qu'en dépit de points communs (séquence protéique et hydrophobicité) les ALS et l'HPPO sont des enzymes bien distinctes, n'ayant pas d'activités enzymatiques secondaires.

25 Exemple 2 IDENTIFICATION DES GENES CODANT LA 4-HPA 1-HYDROXYLASE

La 4-HPA 1-hydroxylase (HPAH) convertit le 4-HPA en HGA par une réaction d'hydroxylation accompagnée par un déplacement de la chaîne acétyle. Son activité a été caractérisée sur extraits bruts de *Rhodococcus erythropolis* S1(Suemori *et al.*, 1995) ou sur extrait partiellement purifiés de *P. acidovorans* (Hareland, 1975). Elle a été purifiée par Suemori *et al.* (1996) cependant les séquences protéique et génétique ne sont pas publiées. Afin de pouvoir introduire cette activité enzymatique dans la plante, il est nécessaire d'identifier le gène.

Différentes approches sont envisageables: (1) la complémentation phénotypique et/ou fonctionnelle en utilisant une banque génomique, (2) la mutagenèse insertionnelle et donc l'identification du gène par la perte de l'activité enzymatique, (3) la purification de la protéine pour remonter à la séquence nucléique. Nous avons choisi de développer ces trois approches avec *Pseudomonas acidovorans* car il y a de nombreux outils de biologie moléculaire dont l'efficacité a été démontrée sur différentes espèces et souches de Pseudomonas. A titre d'exemples nous pouvons citer le transposon mini-Tn5 (De Lorenzo et al., 1990), les vecteurs large spectre d'hôte tels pBBR1MCS (Kovach et al., 1994, 1995; D'Souza et al., 2000), les techniques de transfert par conjugaison. Le transposon mini-Tn5 peut être utilisé soit pour perturber un gène (de Lorenzo et al., 1990; Fedi et al., 1996; Campos-Garcia et al., 2000) soit pour introduire un gène dans le génome bactérien (Prieto et al., 1999). Nous avons commencé par l'approche par la complémentation phénotypique car c'est ce qui paraissait le plus rapide et le plus simple. Cette approche a été suivie par les deux autres simultanément. Cependant, nous n'aborderons pas ici l'approche par mutagenèse insertionnelle, cette voie n'ayant pas été exploitée par la suite.

II.1- Matériels et Méthodes

10

15

25

II.1.1- Construction d'une banque génomique de P. acidovorans dans E. coli

Pour construire la banque nous utilisons le cosmide pLAFR5 et l'ADN génomique 20 de P. acidovorans. Nous utilisons la souche hôte E. coli HB101.

II.1.2- Purification de la 4-HPA 1-hydroxylase

II.1.2.1- Test d'activité spectrophotométrique

Dans la réaction catalysée par la 4-HPA 1-hydroxylase, décrite par Hareland et al. (1975), il y a consommation d'oxygène moléculaire et de NADH,H⁺. Nous avons choisi de mesurer l'activité enzymatique en suivant l'oxydation du NADH,H⁺ en NAD⁺. Le milieu réactionnel comprend: NADH,H⁺ 300 μM; FAD 6,7 μM; KPi 100 mM; DTT 1 mM; 10 à 50 μg de protéines. La réaction est déclenchée par l'ajout du substrat: 4-HPA 1 mM. La réaction est suivie à 340 nm ou à 292 nm pendant 2 à 10 min. En effet, la consommation du NADH,H⁺ se traduit par une diminution de l'absorbance à 340 nm 30 tandis que la production d'homogentisate se traduit par une augmentation de l'absorbance à 292 nm. Le test spectrophotométrique est très rapide, il est utilisé en routine pour suivre l'élution des protéines lors des étapes de purification.

L'analyse des réactions enzymatiques par HPLC permet de confirmer la production d'HGA (temps de rétention, spectre UV). Le test enzymatique est réalisé dans les mêmes conditions que ci-dessus. Cependant la réaction est arrêtée par ajout d'un tiers de volume d'acide perchlorique 20%. Les réactions sont alors analysées par HPLC en élution isocratique avec 90% de phase A et 10 % de phase B ou 92% de phase A et 8% de phase B. La phase A est de l'eau milli Q contenant 0,1% d'acide trifluoroacétique (TFA) et la phase B correspond à de l'acétonitrile. Dans l'élution en isocratique 90% - 10%, l'HGA est élué en 1,2 min alors qu'en système isocratique 92% - 8% il est élué en 1,4 min. L'élution est enregistrée généralement à 230 nm. Van den Tweel et al. (1986) ont utilisé le 2,2'-bipyridyl (inhibiteur de protéine à fer non hémique) pour inhiber l'homogentisate dioxygénase et ainsi permettre l'accumulation de l'HGA. Pour cette raison, nous ajoutons dans certains milieu réactionnel 2 mM de 2,2-bipyridyl. Dans ces conditions chromatographiques, il est possible d'identifier le 4-HPA et l'HGA. La chaîne HPLC est constituée d'une HPLC Alliance 2690 (Waters) et d'un détecteur à barette diode 996(Waters).

II.1.2.3- Purification de la protéine HPAH

5

10

15

20

25

30

Pseudomonas acidovorans est cultivé 48 heures sur milieu M63 contenant du 4-HPA comme seule source de carbone, à 29°C, 220 rpm. Les bactéries sont centrifugées à 3 000 g pendant 15 min à 6°C (Beckmann J2/21 M/E centrifuge). Le culot bactérien est repris dans le tampon de sonication (KPi 0,1 M pH 7,2; MgSO₄ 1mM; DTT 1mM; benzamidine hydrochloride 1 mM; acide caproïque 5 mM). La benzamidine hydrochloride et l'acide caproïque sont des inhibiteurs de protéases. La sonication est réalisée pendant 9 minutes en sonicant toutes les quarante secondes pendant vingt secondes à la puissance 5 (Vibra Cell, Sonic Materials INC., Connecticut, USA). Durant la sonication, l'échantillon est maintenu à la température de la glace fondante. L'extrait soniqué est centrifugé à 15 000 g pendant 15 min à 4°C. Le surnageant récupéré est précipité avec 1 % de sulfate de streptomycine. Le précipité est éliminé par centrifugation à 15 000 g pendant 15 min à 4°C. Le surnageant est dessalé sur colonne PD10 (Pharmacia) puis chargé sur colonne DEAE/EMD 650 S équilibrée en tampon A (KPi 20 mM pH 7,2, glycérol 10 %, MgSO₄ 1 mM, DTT 1 mM). L'élution se fait en utilisant un tampon B (tampon A; KCl 1 M; 100 µM FAD). L'activité 4-HPA 1hydroxylase est éluée pour une concentration en KCl voisine de 150 mM. Les fractions

actives, concentrées sur membrane UVIKON 10 kDa puis dessalées sur colonne PD10, sont alors déposées sur une colonne d'affinité Red (Red 120 Agarose type 3000 CL, SIGMA Ref R-0503) équilibrée en tampon A (ci dessus). L'élution est réalisée en deux étapes. La première est un lavage de la colonne Red en utilisant le tampon A enrichi avec du FAD 50 μM final. La deuxième permet l'élution de la protéine; pour cela le tampon A est enrichi en FAD (3 mM) et en NADH,H⁺ (10 mM). Les fractions, contenant la protéine d'intérêt, sont rassemblées, concentrées et congelées à –80°C.

II.1.3- Microséquençage protéique de l'extrémité N-terminale et de peptides internes

Le même protocole que celui décrit dans le cas de l'HPP oxydase a été utilisé pour réaliser le séquençage de la protéine purifiée. Cependant, pour produire les peptides internes, la protéine a été digérée à la trypsine au lieu de l'endopeptidase Lys-C. La trypsine coupe après les arginines et les lysines. La digestion par la trypsine conduit généralement à l'obtention de fragments plus petits que ceux obtenus lors d'une digestion par l'endopeptidase Lys-C. Afin de pouvoir séquencer avec précision les peptides récupérés, il est parfois nécessaire de repurifier par HPLC les peptides récupérés.

II.1.4- Identification d'une partie du gène codant l'HPAH par PCR dégénérée

Pour la synthèse des amorces dégénérées on utilise le code de dégénérescence présenté en page 43. La PCR est réalisée dans un volume final de 50 μL, dans des tubes de 200 μL. La solution réactionnelle contient le tampon Perkin Elmer, 250 μM dNTP, 50 ng d'ADN génomique de *P. acidovorans*, 2 unités enzymatiques d'AmpliTaq (Perkin Elmer). La réaction est réalisée en utilisant un thermocycleur "Hybaid Touchdown": 3 min à 94°C, puis quarante cinq cycles : 30 sec à 94°C, 1 min à 50°C, 1 min 30 sec à 72°C, suivi d'une élongation finale de 5 min à 72°C avant de revenir à 4°C. La PCR est évaluée après dépôt de 10 μL sur gel 1% agarose. Dans ces conditions une bande de 536 pb est identifiée.

II.1.5- Criblage de la banque cosmidique de P. acidovorans

Etalement de la banque cosmidique sur milieu LBT¹⁵ et croissance pendant 16 h00 à 37°C. Les boîtes sont alors transférées à 4°C. Au bout d'une heure, les colonies sont transférées sur membranes Hybond N (Amersham) selon la méthode de Grunstein & Hogness (1975). Les membranes sont hybridées en utilisant le fragment PCR de 536 pb

précédemment identifié et purifié. La détection est réalisée en ³²P. La sonde est marquée en utilisant le kit « DNA Ready to Go » (Pharmacia). La pré-hybridation, l'hybridation et les lavages sont réalisés en ampoules. Les membranes sont pré-hydridées dans une solution composée de SSC 5x, Denhardt 6%, SDS 0,5% pendant 4 heures à 68°C. L'hybridation est réalisée pendant 16 heures à 68°C. Les lavages sont effectués à 65°C en SSC 2x, SDS 0,1%. Les membranes sont révélées en exposant des films Kodak ou Amersham.

II.1.6- Milieux de croissance de P. putida

15

20

25

Pseudomonas putida est cultivé sur milieu riche de Luria-Bertani (LB) ou 2YT contenant 100 μg.mL⁻¹ de rifampicine. En fonction des besoins d'autres antibiotiques sont ajoutés (exemple : tétracycline à 15 μg.mL⁻¹). Le milieu minimum M63 contenant 1,5 g.L⁻¹ de 4-HPA comme seule source de carbone est utilisé pour tester la complémentation fonctionnelle. Dans ce cas les antibiotiques sont omis. Toutes les cultures sont réalisées à 29°C.

II.1.7- Transformation de *P. putida* par électroporation

1 litre de milieu LB Rifampicine (100 µg.mL⁻¹) est inoculé avec une culture de P. putida mise en croissance à 29°C pendant environ 16 heures en agitation à 180 rpm. Lorsque la DO_{600nm} est voisine de 1,2, les cellules sont collectées par centrifugation pendant 15 min à 3 000 g, 4°C. Le milieu de culture est éliminé et les cellules sont reprises avec 400 mL de glycérol 10% à 4°C. Les cellules sont centrifugées une nouvelle fois à 3000 g, 20 min, 4°C. Deux nouvelles étapes de lavage sont effectuées avec respectivement 200 puis 100 mL de glycérol 10%, 4°C. Enfin, les bactéries sont reprises par 3 à 10 mL de glycérol 10% puis réparties en aliquotes de 100 µL immédiatement congelées dans l'azote liquide. Les bactéries ainsi préparées se conservent au moins six mois à - 80°C. Lors de la préparation, on observe une perte de bactéries due à la lyse. L'ADN cosmidique (Tet^R) est introduit par électroporation dans les P. putida (Rif^R). L'électroporation (Bio-Rad Gene PulserTM) de 80 ng d'ADN cosmidique dans 100 µL P. putida électrocompétentes se fait en cuvette d'électroporation de 2 mm sous une tension de 0,9 volt avec une résistance de l'électroporateur de 200 Ω . Dans ces conditions, la constante de temps τ \square est d'environ 4,5 msec. Après le choc électrique, les cellules sont reprises avec 900 µL de LB et mise en culture pendant 1h30 à 29°C, 180 rpm. Les P. putida transformées sont sélectionnées sur milieu gélosé LB Rif¹⁰⁰ Tet¹⁵.

II.1.8- Modification du vecteur large spectre d'hôte pBBR1MCS-Gm^R

Nous avons utilisé les vecteurs à large spectre d'hôte à Gram négatif de la série des pBBR1MCS (Kovach *et al.*, 1994, 1995). Ces plasmides, qui possèdent une origine de réplication de *Bordetella bronchiseptica*, se répliquent à environ 20-30 copies par cellule chez *E. coli*. Ils contiennent deux sites *Not* I. Afin de faciliter les clonages ultérieurs on supprime le site *Not* I présent hors du multi-site de clonage (MCS) sur le plasmide pBBR1MCS-Gm^R. Pour cela, le plasmide est coupé par *Sfi* I (50°C) puis traité à la T4 DNA polymérase afin d'obtenir des bouts francs. Le plasmide est religué sur lui même (T4 DNA Ligase - New England Biolabs). Après ligation (16 heures, 16°C), une digestion par *Sfi* I est réalisée afin d'éliminer les éventuels plasmides " sauvages ", puis on électropore *E. coli* DH5α. L'ADN plasmidique est isolé des clones sélectionnés sur milieu LB Gm²⁰. Les ADN plasmidiques sont caractérisés par deux digestions: *Not* I et *Not* I/*Bgl* II. Un clone est retenu: pBBR1MCS-Gm-Not-U.

II.1.9- Sous-clonage du Ccos8 dans pBBR1MCS-Gm-U

10

25

Le cosmide Ccos8 est restreint par *Not* I puis déposé sur gel agarose. Après migration, 6 bandes d'ADN sont visualisées : 1,7 – 3 – 4 – 5 – 8 – 10 kbp. Les bandes sont purifiées par Quiaex II. Par ailleurs, pBBR1MCS-Gm-Not-U est restreint par *Not* I, déphosphorylé en utilisant la phosphatase alcaline de crevette (S.A.P.; shrimp alkaline phosphatase). Les différentes bandes sont alors liées (T4 DNA ligase, 16 heures, 16°C) dans le vecteur en utilisant des rapports "insert/vecteur" variables. Les produits de ligation sont transformés dans *E. coli* DH5α.

II.1.10- Conjugaison tri-parentale entre E. coli et P. putida

Afin de transférer les différents sous-clones de Ccos8 (Gm^R) de *E. coli* DH5α vers *P. putida* (Rif^R), on opère par conjugaison tri-parentale sur filtre en utilisant le protocole décrit par De Lorenzo *et al.* (1990). Les bactéries récupérées sont étalées sur LB Rif¹⁰⁰Gm²⁰ et sur M63 ayant le 4-HPA comme seule source de carbone.

II.1.11- Elimination du plasmide p5kbC

Pour éliminer rapidement le plasmide p5kbC de *P. putida*, nous utilisons la stratégie des origines de réplication incompatibles et nous forçons la perte du p5kbC à l'aide d'antibiotiques. On transforme *P. putida* (Rif¹⁰⁰) complémenté par le plamide p5kbC (Gm^R) avec pBBR1MCS Kn^R. Les clones obtenus (Rif¹⁰⁰ Gm^R Kn^R) sont vérifiés pour leur activité de complémentation. Les clones sont alors cultivés sur deux milieux : LB Rif¹⁰⁰ Kn¹⁵⁰ Gm²⁰ et LB Rif¹⁰⁰ Kn¹⁵⁰. Ce faisant nous maintenons la pression de

sélection pour p5kbC et pBBR1MCS Kn^R ou bien seulement pour pBBR1MCS Kn^R. Les croissances sont réalisées à 29°C. Le repiquage est réalisé tous les trois jours. Au huitième repiquage, les colonies sont repiquées sur 4 milieux différents (M63, M63 + 4-HPA, LB Rif¹⁰⁰ Kn¹⁵⁰ Gm²⁰ et LB Rif¹⁰⁰ Kn¹⁵⁰) quelle que soit la boîte d'origine. L'état de croissance est alors relevé au bout de 2 et 7 jours.

II.1.12- Identification des protéines participant à l'activité enzymatique.

II.1.12.1- Préparation d'extraits bruts de P. putida

Deux clones *P. putida* sont cultivés sur LB Gm²⁰ pendant 24 heures. Le premier comporte le plasmide pBBR1MCS-Gm-Not-U tandis que le second contient le plasmide de complémentation p5kbC. Après sonication dans un tampon (KPi 0.1 M; MgSO4 1mM; DTT 1mM; benzamidine hydrochloride 1 mM; acide caproïque 5 mM), puis centrifugation à 20 000 g pendant 10 min à 4°C, le surnageant est testé pour son activité 4-HPA 1-hydroxylase en utilisant les deux méthodes de mesure de l'activité enzymatique. Les extraits bruts sont, en outre, analysés par SDS-PAGE à 10%.

II.1.12.2- Transfert sur membrane, Séquençage N-terminal

Le séquençage est réalisé comme en exemple I.

II.1.12.3- Gel Filtration S75

5

10

15

20

25

30

L'éluat (5 mL) est concentrée d'un facteur 10 en utilisant un MacrosepTM 10 K (Pall Filtron) pendant deux heures à 4°C. Les 500 μL concentrés sont injectés sur une colonne de gel filtration SuperdexTM 75 prep grade (HiLoad 16/60, Pharmacia) préalablement équilibrée avec 700 mL de tampon (KPi 0,02 M pH 7,2; glycérol 10%; MgSO₄ 1 mM; DTT 1 mM; 4°C) à un débit de 0,7 mL.min⁻¹. La chromatographie est réalisée à 4°C avec un débit de 1 mL.min⁻¹. Les fractions sont collectées toutes les minutes et conservées à 4°C.

II.1.12.4- Construction de pBBR1MCS FT12Δ1

Pour construire le plasmide pBBR1MCS FT12Δ1 on utilise une stratégie de clonage en deux étapes. Le plasmide p5kbC est digéré par Nsi I et Not I. L'insert obtenu, codant les gènes 1, hpaH et 3, est alors cloné dans pBBR1MCS-Gm-Not-U digéré Pst I et Not I. Le clone résultant, dénommé pBBR1MCS FT12, est restreint par Hind III et Asc I, puis rendu bout-francs et enfin religué. Ce faisant, les gènes 1 et 3 sont détruits et le gène hpaH se trouve sous la dépendance du promoteur lac du vecteur originel. Nous obtenons ainsi le plasmide pBBR1MCS FT12Δ1 (Figure 6).

II.1.12.5- Construction de pL1lac2

Le laboratoire possède un plasmide dénommé "Clone L". Cette construction correspond au clonage du promoteur et du gène de l'HPPD de P. fluorescens dans le vecteur pBBR1MCS-Kn^R. Le promoteur du gène HPPD est fonctionnel chez P. putida et chez E. coli. Le plasmide "Clone L" est digéré par Bam HI et Hin dIII ce qui permet de récupérer l'insert contenant le promoteur et le gène HPPD de P. fluorescens. Cet insert est alors ligué dans le vecteur pBBR1MCS-Gm^R digéré par Bam HI et Hin dIII. Le clone résultant est dénommé pBBRG-L-HPPD. Le plasmide obtenu, digéré par Nco I pour éliminer le gène codant l'HPPD, est ligué avec le gène hpaC amplifié par PCR et digéré par Afl III. La construction obtenue est appelée pBBRG-L-ORF1. Pour l'amplification du gène hpaC par PCR, on utilise des amorces qui permettent d'introduire un site Afl III en début et en fin de gène (le site Afl III est compatible avec le site Not I). Les amorces utilisées sont : en 5' du gène : GCAGGATGCA CATGTCCACC AAGAC et en 3' du gène : CGGACGCCGA CATGTATCAG CCTTC. La PCR est réalisée en utilisant 1 unité de KlenTaq polymérase (Sigma), 250 µM de dNTP, 200 nM de chaque amorce et 50 ng du plasmide p5kbC. Le programme de PCR est défini comme suit sur Perkin Elmer 9600 : 3 min à 95°C; puis 20 cycles : 94°C pendant 1 min, 60°C pendant 30 sec, 68°C pendant 3 min; enfin une dernière étape de 10 min à 68°C est réalisée. Le plasmide pBBR1MCS FT12Δ1 précédemment obtenu est restreint par Ssp I et Not I. Le site Not I est rendu franc par traitement avec la Pfu. Le fragment récupéré (2468 pb), contenant le gène hpaH sous la dépendance du promoteur lac, est ligué dans pBBRG-L-ORF1 digéré par Ssp I. Le clone présentant les gènes hpaC et hpaH en antisens est retenu, il est nommé pL1lac2. Tous ces clonages sont réalisée dans E. coli DH5α.

II.2- Résultats

10

15

20

Différentes approches sont envisageables pour identifier le gène codant l'activité 4-HPA 1-hydroxylase de *P. acidovorans*. Nous décidons dans un premier temps d'utiliser une approche par coloration phénotypique. Cette approche paraît simple et rapide. En effet, nous possédons au laboratoire un outil de criblage phénotypique pour détecter la production d'HGA. Or l'enzyme que nous recherchons convertit le 4-HPA en HGA.

II.2.1- Approche par coloration phénotypique

Nous avons observé au laboratoire qu'E. coli K12 ne peut pas croître en utilisant la tyrosine ou le 4-HPA comme seule source de carbone. Nous savons d'autre part qu'E.

coli K12 possède l'activité tyrosine aminotransférase qui permet la synthèse de tyrosine à partir d'HPP. Cette activité enzymatique est réversible, la cellule peut donc produire de l'HPP à partir de la tyrosine. Si le milieu riche de culture est enrichi en tyrosine (1 g.L-1), la tyrosine est importé dans les bactéries qui l'accumulent puis la transforme en HPP, selon la constante d'équilibre de la réaction de conversion entre HPP et tyrosine. Au laboratoire, nous avons déjà observé que si nous introduisons l'HPPD de P. fluorescens dans E. coli K12 alors l'HPP produit lors de la désamination de la tyrosine, est transformé en homogentisate (HGA). La réaction catalysée par l'HPPD étant irréversible, l'HGA s'accumule dans la cellule où il s'oxyde puis polymérise spontanément pour former un pigment ochronotique présentant une coloration brune. Nous avons donc là un moyen de détecter la production d'HGA. La 4-HPA 1hydroxylase recherchée convertit le 4-HPA en HGA. On étale donc les E. coli HB101 contenant la banque génomique de Pseudomonas acidovorans sur milieu gélosé 2YT enrichi en 4-HPA. Après deux jours, deux colonies brunissent : elles produisent donc de l'homogentisate. Cependant, les activités enzymatiques réalisées sur les extraits bruts de ces deux clones révèlent une activité enzymatique de type HPPD alors que l'activité 4-HPA 1-hydroxylase recherchée est discrète, voire inexistante. A priori cette approche a permis de sélectionner les clones dont le cosmide contient le gène codant une HPPD de P. acidovorans et non pas la 4-HPA 1-hydroxylase. Lors de l'étude préliminaire in vitro sur les extraits bruts de P. acidovorans, l'activité HPPD n'a pas été identifiée. On peut supposer que l'activité HPPD de P. acidovorans s'exprimerait lorsque la bactérie est cultivée sur milieu riche tandis que l'activité 4-HPA 1-hydroxylase s'exprimerait lorsque le 4-HPA est la seule source de carbone. Cette approche ne permettant pas l'identification de la 4-HPA 1-hydroxylase nous décidons de purifier l'enzyme. Une fois la protéine identifiée, il sera possible de remonter au gène correspondant.

II.2.2- Purification de la 4-HPA 1-hydroxylase

10

15

20

25

30

Pour suivre la purification de la protéine, nous utilisons le dosage de son activité NADH,H⁺ oxydase dépendante du 4-HPA. Nous purifions ainsi la protéine à quasi homogénéité en appliquant le protocole de purification décrit précédemment. Le facteur d'enrichissement de l'activité spécifique NADH,H⁺ oxydase est généralement compris entre 50 et 100 selon les préparations. Sur SDS-PAGE, la protéine présente un poids moléculaire apparent de 60 kDa. En fait, nous observons que l'activité NADH,H⁺ oxydase et la production d'HGA sont bien visibles en sortie de DEAE/EMD 650S. Par

contre en sortie de colonne d'affinité, la production d'HGA est très difficilement décelable; l'activité NADH,H⁺ oxydase reste cependant dépendante de l'ajout du 4-HPA dans le milieu réactionnel. Si nous partons de l'hypothèse que l'enzyme est monomérique, la perte de l'activité catalytique permettant la production d'HGA peut s'expliquer en supposant qu'une partie de la protéine a été endommagée (ex : perte d'un cofacteur fortement lié) lors de son passage sur la colonne Red. Le site catalysant l'oxydation du NADH,H⁺ ne serait pas touché. On peut aussi supposer que l'enzyme recherchée est un hétérodimère. La perte de l'activité catalytique s'expliquerait alors par la perte du monomère responsable de la production d'HGA. Dans la littérature de nombreuses monooxygénases hétérodimériques à flavine ont été identifiées, ayant toutes un substrat aromatique, dans des espèces bactériennes variées (Adachi *et al.*, 1964; Arunachalam *et al.*, 1992, 1994; Prieto *et al.*, 1993; Prieto & Garcia, 1994; Arunachalam & Massey, 1994; Takizawa *et al.*, 1995; Xun, 1996; Xun & Sandvik, 2000). Cependant, il existe deux hypothèses pour expliquer le fonctionnement de ces enzymes hétérodimériques:

5

10

15

- (1) Arunachalam *et al.* (1992, 1994) proposent que la 4-hydroxyphénylacétate 3-hydroxylase de *P. putida* soit constituée d'une flavoprotéine homodimérique de 65 kDa ainsi que d'une protéine de couplage de 38,5 kDa. La flavoprotéine seule est capable d'oxyder le NADH,H⁺ indépendamment de la présence de 4-HPA. Cette oxydation du NADH,H⁺ permet de renouveler le "pool" de NAD⁺, mais produit de l'H₂O₂ dans des proportions stoechiométriques. Si la protéine de couplage est ajoutée, le complexe protéique devient capable d'hydroxyler le 4-HPA en acide 3,4-dihydroxyphénylacétique. Ainsi, l'oxydation du NADH,H⁺ n'est pas gaspillée et permet la synthèse d'un métabolite. La protéine de couplage seule n'a pas d'activité enzymatique.
- 25 (2) Prieto *et al.* (1993, 1994) et Xun & Sandvik (2000) suggèrent que la 4-HPA 3-hydroxylase de *E. coli* W (ATCC 11105) soit considérée comme un nouveau membre des monooxygénases à flavine à deux composantes mobiles (TC-FDM). Les deux composantes seraient d'une part la 4-hydroxyphénylacétate 3-hydroxylase, une enzyme monomérique de 59 kDa codée par le gène *Hpa*B, et d'autre part une flavine:NADH oxydoréductase monomérique de 19 kDa, codée par le gène *Hpa*C. Dans ce cas, le FAD est réduit au dépend du NADH,H⁺ par la flavine:NADH,H⁺ oxydoréductase. Le FADH₂ est alors utilisé par l'oxygénase pour permettre l'oxydation du substrat en utilisant l'oxygène moléculaire.

L'enzyme que nous avons purifiée oxyde fortement le NADH,H⁺ mais produit très peu d'homogentisate. En outre l'oxydation du NADH,H⁺ est dépendante de l'ajout de 4-HPA. Ceci suggère que nous possédons une enzyme du type de celle décrite par Prieto *et al.* Nous considérons donc que l'enzyme purifiée est la 4-HPA 1-hydroxylase (HPAH) recherchée. Il est possible, que par la suite, il soit nécessaire d'identifier une protéine de couplage pour optimiser l'activité enzymatique. L'approche biochimique peut donc se poursuivre avec la protéine purifiée.

II.2.3- Obtention des peptides internes et de la séquence N-terminale.

La protéine purifiée est envoyée à l'Institut Pasteur pour être micro-séquencée. 10 C'est ainsi que l'on obtient la séquence N-terminale SHPAISLQAL RGSGADIQSI HIPYER et six peptides internes nommés respectivement peptides N° 11C, 12D, 20A, 22B, 23, 24 en fonction de leur ordre de sortie de colonne: ATDFITPK, LGVGQPMVDK, VVFAGDSAHG VSPFX, VTALEPQAEG AL, IDFQLGWDAD PEEEK, LSVPATLHGS ALNTPDTDTF. Sur la séquence N-terminale, on ne retrouve pas l'acide aminé (méthionine ou valine) correspondant normalement au codon 15 d'initiation du gène (ATG ou GTG). Les analyses d'homologies dans les bases protéiques en utilisant l'algorithme BLASTP ne permettent pas d'identifier de protéines homologues. Sur la base des séquences protéiques obtenues, nous faisons synthétiser les oligonucléotides dégénérés correspondants. Ceux-ci sont utilisés dans des réactions de PCR afin d'identifier une partie du gène codant la protéine HPAH purifiée et 20 partiellement séquencée.

II.2.4- Obtention du fragment PCR

5

25

30

L'amplification par PCR d'une portion (536 pb) du gène codant la 4-HPA 1-hydroxylase est obtenue en utilisant les amorces dégénérées Hy4R: TCYTCNGGRT CNGCRTCCCA et Hy5F: GGNGTNGGNC ARCCNATGGT qui codent respectivement les peptides 23 et 12D. Ces amorces ont une température d'hybridation de 55,4°C et présentent une dégénérescence de 128 et 512 respectivement. La séquence amplifiée est clonée dans le vecteur pGEMT-easy puis elle est séquencée. L'analyse de la séquence obtenue permet de retrouver, outre les séquences codant les peptides Hy4R et Hy5F, la séquence nucléique codant le peptide interne 22B. Ce dernier élément permet de confirmer que nous avons bien amplifié une partie du gène codant la protéine HPAH purifiée. A ce stade, les recherches d'homologies dans les bases protéiques, en utilisant l'algorithme BLASTX, font ressortir quelques faibles homologies avec des

hydroxylases, des oxydases et des monooxygénases. En utilisant la séquence de 536 pb amplifiée par PCR, nous allons pouvoir cribler une banque cosmidique de *P. acidovorans* afin de rechercher le cosmide contenant le gène complet.

II.2.5- Criblage de la banque cosmidique de P. acidovorans

5

10

15

20

25

30

Le criblage de la banque cosmidique, en utilisant comme sonde la séquence obtenue ci-dessus, a permis d'identifier 4 groupes de cosmides considérés comme différents sur la base de leurs profils de restriction et d'hybridation après transfert par la technique de Southern. Les cosmides N° 1, 2, 6 forment le premier groupe, les cosmides N° 3, 7, 9 forment le second tandis que les cosmides N° 5 et 8 forment le troisième. Le dernier groupe est représenté par le cosmide N° 4. Les résultats d'hydridation suggèrent en outre que le gène *hpa*H recherché est présent en un seul exemplaire dans le génome de *Pseudomonas acidovorans*. Nous avons identifié des cosmides comportant au moins une partie du gène codant la protéine HPAH purifiée. Entre temps, nous avons observé que *P. putida* était incapable de croître sur 4-HPA mais pouvait croître en utilisant l'HGA comme seule source de carbone. Nous possédons donc là un excellent crible pour la complémentation fonctionnelle; nous pourrons ainsi définir lequel de ces cosmides comporte le gène fonctionnel codant l'activité 4-HPA 1-hydroxylase.

II.2.6- Complémentation fonctionnelle avec les cosmides

Les neuf cosmides précédemment identifiés sont introduits dans *P. putida* par électroporation. Les clones obtenus sont alors repiqués sur milieu M63 contenant du 4-HPA comme seule source de carbone. Au bout de 7-8 jours seules les bactéries possédant le cosmide N°8 ont réussi à croître. C'est à dire que seul le cosmide N°8 contient toute l'information exprimable permettant la conversion du 4-HPA en HGA utilisable par *P. putida*. Le cosmide est alors dénommé Ccos8. La transformation avec l'ensemble des cosmides est répétée. C'est toujours le cosmide 8 qui permet la complémentation après un certain délai (6-10 jours). Afin de pouvoir avancer dans notre approche de détermination du fragment d'ADN minimum exprimant l'activité 4-HPA 1-hydroxylase, il nous faut sous-cloner le Ccos8. La sélection du sous-clone intéressant se fera en utilisant le crible de la complémentation fonctionnelle.

II.2.7- Sous clonage par complémentation fonctionnelle

La digestion par *Not* I du cosmide permet d'obtenir 6 fragments d'ADN de taille comprise entre 1,7 et 10 kb. Ces fragments sont clonés dans pBBR1MCS-Gm-Not-U. Cinq sous-clones de Ccos8 sont obtenus. L'analyse par restriction montre que les

fragments de 4 et 10 kb ne sont pas sous clonés. En revanche, nous observons que la bande de 5 kb observée initialement était en fait une bande double de 5,1 et 5,2 kb. Ces clones sont passés, par conjugaison tri-parentale, de *E. coli* à *P. putida*. Au bout de 5 jours, seul *P. putida* contenant le sous-clone correspondant à la bande de 5,2 kb du cosmide Ccos8 a poussé sur M63 contenant le 4-HPA comme seule source de carbone. Nous venons donc d'identifier le fragment minimal comportant l'activité 4-HPA 1-hydroxylase. Les clones correspondants à la bande de 5,2 kb sont nommés 5kbC. Pour confirmer le résultat de la complémentation fonctionnelle, nous provoquons l'élimination du plasmide p5kbC en utilisant la stratégie des origines de réplication incompatibles et en forçant l'élimination du plasmide p5kbC par la pression de sélection des antibiotiques utilisés. Nous observons que *P. putida* perd la capacité à croître sur 4-HPA comme seule source de carbone lorsqu'il a perdu le plasmide p5kbC. Nous en concluons que l'activité enzymatique 4-HPA 1-hydroxylase est bien portée par le plasmide p5kbC. Nous pouvons donc faire séquencer l'insert de 5,2 kb, ce qui devrait nous permettre d'identifier le gène *hpa*H fonctionnel.

II.2.8- Analyse de la séquence de 5,2 kb

10

15

20

L'insert de 5,2 kb du plasmide p5kbC est séquencé. Une recherche d'homologie nucléique (BLASTN) permet d'identifier ainsi trois parties dans l'insert. La première partie comprise entre les bases N° 1 et 1465 est parfaitement homologue d'une partie du plasmide Birmingham IncP-alpha. Il s'agit donc vraisemblablement d'une séquence issue de pLAFR5. Une seconde partie nucléique comprise entre les bases N° 1466 et 1695 présente une homologie parfaite avec une partie du plasmide de clonage M13mp8/pUC8. Cette séquence fait donc encore partie du pLAFR-5; en effet le multisite de clonage de pLAFR-5 provient de pUC8 (Keen et al., 1988). Ainsi, les sites Eco RI et Sma I (Figure 7) en position respective 1689 et 1695 sont vraisemblablement les sites de clonage du pLAFR-5. La troisième partie, comprise entre les bases 1696 et 5264 (soit 3568 pb) ne présente pas d'homologies fortes. Cette partie d'ADN provient du génome de P. acidovorans. Lorsque la séquence de 5,2 kb est analysée en utilisant l'agorithme BLASTX, on identifie des protéines probables (Figure 7). Ainsi la protéine codée par le gène 1 présente de faibles homologies avec à des béta-lactamases, des déhydrases et des cyclases. La protéine purifiée est codée par le gène 2 puisque l'on retrouve les séquences codant les peptides internes précédemment obtenus ; c'est donc vraisemblablement la 4-HPA 1-hydroxylase. Les alignements protéiques montrent que

cette protéine présente quelques homologies avec des oxygénases et des hydroxylases. La protéine potentiellement codée par le gène 3 ne présente pas d'homologies avec les bases de données. Enfin le gène 4 code vraisemblablement un régulateur d'opéron.

Faisons maintenant à une analyse plus fine du gène *hpa*H. D'après la séquence protéique N-terminale obtenue, le codon initiation ATG de la protéine 4-HPA 1-hydroxylase se trouve en fait 78 pb en aval d'un codon initiateur GTG en phase avec l'ATG. La séquence Shine-Dalgarno AGGA, permettant la fixation des ribosomes, est retrouvée en amont de l'ATG initiateur mais pas en amont du codon initiateur GTG; ce qui confirme que la région codante commence au codon initiateur ATG. La portion comprise entre les codons GTG et ATG ne correspond donc vraisemblablement pas à une préprotéine. Ainsi défini, le gène *hpa*H est long de 1737 pb et se termine par le codon stop TGA. Le gène est constitué à 70,9 % de bases GC.

Maintenant que nous avons défini avec précision les limites du gène *hpa*H, analysons le produit de sa traduction : la protéine HPAH

II.2.9- Analyse de la protéine HPAH

5

10

15

20

25

30

La séquence hpaH est traduite en utilisant le sytème universel des codons. Nous obtenons ainsi une protéine de 563 acides aminés, ce qui représente un poids moléculaire de 62,2 kDa. Les recherches d'homologies protéique (BLASTP) montre que l'HPAH présente environ 15 à 25 % d'identité essentiellement avec des protéines d'organismes à Gram positif codant pour des activités enzymatiques apparemment très différentes de celle recherchée. Ainsi on retrouve une oxygénase de Streptomyces argillaceus, la 3-(3-hydroxy-phényl)propionate hydroxylase (EC 1.14.13.-) d'E. coli, la 2.4-dihydroxybenzoate monooxygénase de Sphingomonas sp., l'enzyme catalysant la 6hydroxylation de la tétracycline chez Streptomyces aureofaciens, une oxygénase potentielle de Streptomyces fradiae. En fait, l'HPAH présente des homologies avec les protéines de la famille des phénol monooxygénases (pheA) et celles de la famille des 2,4-dichlorophénol hydroxylase (tfdB). L'alignement correspondant aux protéines précitées est réalisé en utilisant l'algoritme ClustalW (Figure 8). Il permet de mettre en évidence des boîtes très conservées. On relèvera entre autre trois motifs d'interaction avec le FAD. Le premier (GXGXXG) correspond au motif structurel $\beta-\alpha-\beta$ qui permet l'interaction de la partie ADP du FAD avec la protéine. Le deuxième motif (A/C)DG est impliqué dans la fixation du **FAD** tandis que 1e troisième motif G(R) VXX(A) GD(A) XH permet l'interaction avec la partie flavine du FAD. Bien que

l'enzyme utilise du NADH, H⁺ le site de fixation correspondant (GDH) n'est pas identifié. Cette absence de site de fixation au NADH,H⁺ est une caractéristique souvent observée chez d'autres monooxygénases à FAD. Enfin, on observe un motif (DXXXLXWKLX XXXXXXXXXX LLXXYXXER) que l'on retrouve aussi chez d'autres hydroxylases (Ferrandez *et al.*, 1997), mais dont la signification n'est pas éclaircie. Bien que la 3-(3-hydroxyphényl)-propionate hydroxylase d'*E. coli* catalyse une réaction d'hydroxylation sur un substrat structurellement proche du 4-HPA, les informations acquises par ces analyses bioinformatiques ne permettent pas de s'assurer que nous avons bien identifié la 4-HPA 1-hydroxylase. La seule manière de le faire, c'est d'exprimer le gène *hpa*H et d'étudier son activité enzymatique.

10

II.2.10- Identité des protéines impliquées dans l'activité 4-HPA 1-hydroxylase II.2.10.1- Expression du gène *hpa*H codant la 4-HPA 1-Hydroxylase

Afin de confirmer que le gène hpaH code l'activité 4-HPA 1-hydroxylase, il est nécessaire d'exprimer le gène. Pour ce faire, une stratégie de clonage en deux étape est utilisée permettant d'éliminer les gènes N° 1 et 3 et de placer le gène hpaH sous la dépendance du promoteur lac du vecteur originel pBBR1MCS-Gm-Not-U. Le plasmide obtenu est dénommé pBBR1MCS FT12\Delta1. Un extrait brut est réalisé à partir d'une culture sur milieu riche de P. putida transformée avec ce plasmide. La recherche d'activité par spectrophotométrie (à 340 et 292 nm) montre que le clone possède certes l'activité NADH,H+ oxydase induite par l'ajout de 4-HPA, mais ne possède pas la 20 capacité de synthèse de l'homogentisate à partir du 4-HPA. En revanche on observe l'apparition d'une molécule Z ayant un temps de rétention très proche (tr = 1,2 minutes versus 1,4 minutes) mais un spectre UV très différent de celui de l'HGA. Nous posons l'hypothèse que l'HPAH oxyde le NADH,H+ pour réduire son cofacteur FAD. La réoxydation du FAD se fait au détriment du 4-HPA puisque c'est l'ajout du 4-HPA qui 25 initie la réaction. Le 4-HPA est donc convertit en métabolite Z. Le spectre UV de ce métabolite suggère que le cycle n'est plus aromatique mais peut être cependant insaturé. Nous présentons en figure 2 une hypothèse structurale pour le métabolite Z. Cette expérience montre que le promoteur lac est fonctionnel chez P. putida en absence d'inducteur IPTG, ce qui suggère que le répresseur lacI est naturellement absent chez P. putida. Nous démontrons en outre que la protéine initialement purifiée (HPAH) est réellement une NADH,H⁺ oxydase dépendante du 4-HPA qui convertit le 4-HPA en un métabolite Z. La HPAH ne produit pas d'HGA. Il est donc nécessaire d'identifier la ou

les protéines partenaires de cette NADH,H⁺ oxydase dépendante du 4-HPA et dont l'ajout permet de restorer l'activité 4-HPA 1-hydroxylase.

II.2.10.2- Identification de la protéine HPAC par gel filtration

5

10

15

20

25

30

Nous avons vu que l'activité 4-HPA 1-hydroxylase disparaissait lors de la purification de l'HPAH sur colonne d'affinité Red. Nous posons donc l'hypothèse que la ou les protéines partenaires de la NADH,H+ oxydase dépendante du 4-HPA n'ont pas été retenus par la résine d'affinité Red 120 agarose et sont donc récupérées dans le "flow-through". Nous décidons donc de purifier le "flow-through" et de rechercher la ou les protéines qui ajoutées à la HPAH permettent de restorer l'activité 4-HPA 1hydroxylase. Pour ce faire, le "flow-through" est concentrée par ultrafiltration (Macrosep™ 10K) puis chargée sur une colonne de gel filtration S75. Un débit de 1 mL.min⁻¹ est appliqué et les fractions de 1 mL sont collectées. On réalise alors des réactions enzymatiques mettant en présence 50 μL de chaque fraction et 10 μL d'HPAH préalablement purifié sur colonne Red, dans les conditions réactionnelles normales. Les réactions stoppées sont alors analysées par HPLC. On observe que les fractions 90 à 108, lorsque additionnées à de la protéine HPAH, permettent de produire davantage du métabolite Z. La production du métabolite Z est détectée dans ces même fractions en l'absence d'apport d'HPAH. Par ailleurs, sur les gels d'acrylamide correspondants à ces fractions, nous observons une protéine de poids moléculaire équivalent à HPAH. Nous concluons que le "flow-through" contenait encore un peu de protéine HPAH. Lorsque les fractions 109 à 143 sont additionnées à de la protéine HPAH, on observe la production d'HGA. Plus la production d'HGA est forte, plus celle du métabolite Z est faible. Le maximum de production d'homogentisate est obtenu pour les fractions 116 à 128. Le dépôt sur gel acrylamide de des fractions comprises entre 95 et 145 montre qu'une protéine est fortement enrichie dans les fractions 109 à 143, c'est à dire que le profil chromatographique de cette protéine coïncide avec le profil de production d'HGA. Nous décidons de dénommer cette protéine HPAC. La protéine HPAC est excisées du gel puis microséquencée en N-terminal. La séquence obtenue, MTTKTFA, montre que cette protéine est codée par le gène 1 (Figure 7) que nous dénommons dorénavant hpaC. Cette expérience montre que l'activité 4-HPA 1-hydroxylase implique deux protéines, l'HPAH et l'HPAC. Cependant, nous n'avons pas défini la nature de l'interaction entre ces deux protéines : (1) HPAH et HPAC sont elles toutes deux des enzymes ou bien (2) est-ce l'HPAH qui possède une activité enzymatique

modifiable en fonction de l'interaction avec l'HPAC.

II.2.10.3- Nature des interactions entre HPAH et HPAC

L'expérience précédente démontre que les protéines HPAH et HPAC sont nécessaires pour reconstituer l'activité 4-HPA 1-hydroxylase. Deux hypothèses pour expliquer le rôle respectif de ces protéines sont posées. Dans ce paragraphe nous présentons les résultats qui suggèrent que l'HPAC est une enzyme à part entière. Les fractions 100, 101 et 102 de la gel filtration sont rassemblés. Elles contiennent la HPAH c'est à dire l'activité NADH,H+ oxydase qui permet de produire le métabolite Z à partir du 4-HPA. Par ailleurs, les fractions 123, 124 et 125 de la gel filtration sont rassemblées. Elles contiennent la HPAC. Différentes réactions enzymatiques sont réalisées en utilisant l'HPAH et/ou l'HPAC. Ces réactions sont réalisées en deux temps. Une première réaction est réalisée avec l'HPAH (respectivement HPAC), elle est stoppée au bout de 30 minutes par un traitement thermique (100°C, 10 min). On ajoute alors la HPAC (respect. HPAH) et la réaction est poursuivie pour 30 minutes. La réaction est finalement arrêtée par un ajout d'acide perchlorique. Des réactions sont aussi réalisées en remplaçant l'une des enzymes par de l'eau. Enfin, des expériences équivalentes sont réalisées en filtrant les réactions sur NanosepTM 10 kD (Pall Filtron) au lieu de les bouillir.

Le tableau N°1 synthétise les résultats obtenus.

Expérience N°	"Enzyme" N°1	"Enzyme" N°2	Métabolite observé
	НРАН, НРАС	/	HGA
A	НРАН	H ₂ O	métabolite Z
В	НРАН	HPAC	HGA
C	H ₂ O	HPAC	/
D	HPAC	H ₂ O	/
E	HPAC	НРАН	métabolite Z
F	· H ₂ O	НРАН	Métabolite Z

20

25

5

10

15

Nous observons que la seule manière de produire de l'HGA c'est d'avoir les deux protéines HPAH et HPAC simultanément ou successivement dans cet ordre. Lorsque l'HPAH est seule, ou lorsque l'HPAC est introduite avant l'HPAH, seul le métabolite Z est détectable. Enfin, la protéine HPAC n'a aucune activité enzymatique sur le 4-HPA. Ces résultats suggèrent que le métabolite Z est un intermédiaire réactionnel. L'HPAH convertirait le 4-HPA en métabolite Z, cette réaction permettant

l'oxydation du NADH,H⁺. Le métabolite Z serait alors convertit en HGA par la HPAC. Les interactions physiques entre les deux protéines n'apparaissent pas nécessaires puisque la protéine HPAH peut être dénaturée ou éliminée par filtration avant ajout de l'HPAC. Nous avons montré *in vitro* que l'activité 4-HPA 1-hydroxylase dépendait des protéines HPAC et HPAH. Cependant la protéine HPAC n'est pas pure en sortie de gel filtration, elle est seulement enrichie. Il reste donc possible qu'en réalité se soit une autre protéine contenue dans cet extrait enrichi qui convertisse le métabolite Z en HGA. Pour éliminer les doutes, nous décidons de cloner les deux gènes (*hpa*C et *hpa*H) sur un même vecteur, nous devrions dans ce cas produire l'activité 4-HPA 1-hydroxylase et donc être capable de faire croître *P. putida* sur milieu minimum contenant du 4-HPA comme seule source de carbone.

II.2.10.4- Complémentation fonctionnelle de P. putida par hpaH et hpaC

Le plasmide pL1lac2 (Figure 9) est un vecteur pBBR1MCS-Gm^R contenant le gène hpaC sous la dépendance du promoteur de l'HPPD de P. fluorescens et en opposition, le gène hpaH sous la dépendance d'un promoteur lac. Le plasmide est introduit dans P. putida par électroporation. Les bactéries sont alors étalées sur milieu minimum contenant ou non du 4-HPA comme seule source de carbone. Après 5 jours, les colonies sont visibles seulement sur boîtes contenant le 4-HPA comme seule source de carbone. Au bout de 8 jours, les colonies sont de belles tailles. L'ADN plasmidique extrait à partir de ces colonies confirme la présence du plasmide pL1lac2 intègre. Par ailleurs P. putida est incapable de croître sur 4-HPA lorsque la bactérie est transformée avec le vecteur pBBR1MCS-GM^R contenant soit le gène hpaC soit le gène hpaH. La complémentation fonctionnelle obtenue dans cette expérience confirme que les gènes hpaC et hpaH sont nécessaires et suffisants pour instaurer l'activité 4-HPA 1-hydroxylase recherchée.

Exemple III: constructions des différentes cassettes d'expression cytosolique.

III.1 HPAC

5

10

20

25

Le gène HPAC a été isolé de Pseudomonas acidovorans par PCR sur un plasmide dérivé (p5kbC) d'une banque cosmidique d'ADN génomique, en utilisant les oligonucléotides suivants:

Start ORF1 (AfIIII): GCAGGATGCA CATGTCCACC AAGAC

ORF1 Fin (HindIII): CGGACGCAAG CTTGCATCAG CCTTC

La réaction a été effectuée selon les conditions standards. Le fragment amplifié d'une taille de 993 pb a été sous-cloné dans le plasmide pGEMTeasy (Promega) selon le protocole du fournisseur. Le plasmide pOZ150 ainsi obtenu a été séquencé. La cassette obtenue par digestion EcoRI + SpeI a été clonée dans le plasmide pBluescriptII-KS+ ouvert par les mêmes enzymes pour donner le plasmide pEPA13. Le promoteur CsVMV est isolé du plasmide pCH27, dérivé du plasmide pUC19 contenant la cassette d'expression d'un gène de tolérance herbicide sous le contrôle du CsVMV. Pour cela une PCR standard a été réalisée sur thermocycler avec la Pfu polymérase générant des bouts francs; 1 cycle de 5 min à 95°C, 30 cycles [95°C 30 sec, 57°C 30 sec, 72°C 1 min], 72°C 3 min. Les amorces utilisées sont:

N-CsVMV: GCCCTCGAGG TCGACGGTAT TGATCAGCTT CC introduisant les sites XhoI et BclI

C-CsVMV: CGCTCTAGAA TTCAGATCTA CAAAC (EcoRI)

Le fragment de 565 pb généré est digéré par XhoI+EcoRI avant d'être inséré dans le plasmide pEPA13 préalablement digéré par XhoI+EcoRI; le plasmide pEPA14 est obtenu. Le terminateur Nos est isolé du plasmide pRD11, dérivé de pBlueScript II-SK(-) dans lequel est cloné le terminateur Nos, par digestion HindII+NotI. Le fragment de 292 pb obtenu est cloné dans le plasmide pEPA14 ouvert par les mêmes enzymes, donnant pEPA15.

Cassette pEPA15 = promoteur CsVMV-hpa C- terminateur Nos (Figure 10; SEQ ID NO 19)

III.2. HPAH

5

10

15

20

Le gène HPAH a isolé de Pseudomonas acidovorans par PCR sur un plasmide 25 dérivé (p5kbC) d'une banque cosmidique d'ADN génomique, en utilisant les oligonucléotides suivants:

Start ORF2 (AfIIII): CAGAGGACGA ACAACATGTC CCACC

ORF2 Fin 3(HindIII): CTGTGGATGA AGCTTAAGAG GTTCAGGC

La réaction a été effectuée selon les conditions standard. Le fragment amplifié d'une taille de 1729pb a été sous-cloné bouts-francs dans le plasmide pBlueScript II SK digéré par EcoRV. Le plasmide pEPA16 ainsi obtenu a été séquencé. Le promoteur CaMV 35S est isolé du plasmide pCH14, dérivé du plasmide pBI 121 contenant la cassette d'expression GUS: promoteur CaMV 35S-GUS-terminateur Nos. Pour cela une

PCR standard a été réalisée sur thermocycleravec la Pfu polymérase générant des bouts francs; 1 cycle de 5 min à 95°C, 30 cycles [95°C 30 sec, 63°C 30 sec, 72°C 1 min], 72°C 3 min. Les amorces utilisées sont:

N-CaMV: GCATGCCTCG AGCCCACAGA TGG introduisant le site Xhol

5 C-CaMV: CCACCGGGG ATCCTCTAGA G introduisant le site BamHI

Le fragment de 839 pb généré est digéré par XhoI+BamHI avant d'être inséré dans le plasmide pEPA16 préalablement digéré par XhoI + BcII; Le plasmide pEPA17 est ainsi obtenu. Le terminateur Nos est isolé du plasmide pRD11 par PCR, sous les mêmes conditions que précédemment, pour 1 cycle de 5 min à 95°C, 30 cycles [95°C 30 sec, 57°C 30 sec, 72°C 1 min], 72°C 3 min., avec les amorces suivantes:

N-Nos: CAAGCTTATC GATACCGTCG ACG introduisant HindIII

C-Nos: GAATTGCGGC CGCAATTCCC GACCTAGGA ACATAG introduisant NotI et AvrII.

Le fragment de 305 pb obtenu est digéré par NotI + HindIII avant d'être cloné dans le plasmide pEPA17 ouvert par les mêmes enzymes, donnant pEPA18.

Cassette pEPA18 = promoteur CaMV 35S-hpa H- terminateur Nos (Figure 11; SEQ ID NO17).

III.3. HPPO

10

30

Le gène HPPO a été isolé d'Arthrobacter globiformis par PCR sur le cosmide 2A issu d'une banque cosmidique d'ADN génomique, en utilisant les oligonucléotides suivants:

N-term-HPPO-ScaI: GAATTCAGTA CTTCACTTAC AGTGTCCGGC introduisant les sites de restriction EcoRI et ScaI.

C-term-HPPO-AsuII-XhoI: GAATTCTCGA GTTCGAACAA ACTGAGTAGC
25 AGCTCA introduisant les sites EcoRI, XhoI et AsuII

La réaction a été effectuée selon les conditions standard. Le fragment de 1800 pb obtenu est cloné dans le vecteur pGEMT-easy (Promega) selon le protocole du fournisseur. Le plasmide pOZ151 ainsi obtenu a été séquencé. La cassette obtenue par digestion SphI + XhoI a été clonée dans le plasmide pBBR1-MCS (Gm) ouvert par les mêmes enzymes pour donner le plasmide pEPA20. Le promoteur simple histone est isolé du plasmide pCH9, dérivé du plasmide pUC19 contenant la cassette d'expression de l'EPSPS: promoteur simple histone-intron2-OTP-EPSPS-terminateur Histone. Pour cela une PCR standard a été réaliséeavec Pfu polymérase générant des bouts francs: 1

cycle de 5 min à 95°C, 5 cycles [95°C 30 sec, 45°C 30 sec, 72°C 1 min], 30 cycles [95°C 30 sec, 65°C 30 sec, 72°C 1 min], 72°C 3 min. Les amorces utilisées sont:

N-SH: GCTTGCATGC CTAGGTCGAG GAGAAATATG introduisant les sites SphI et AvrII

C-SH: CATGAGGGGT TCGAAATCGA TAAGC

5

10

25

Le fragment de 970 pb généré est digéré par SphI avant d'être inséré dans le plasmide pEPA20 préalablement digéré par SphI + ScaI; Dans le plasmide pEPA21 obtenu, l'ATG d'initiation du gène HPPO est recréé derrière le promoteur Simple Histone. Le terminateur Histone est isolé du même plasmide pCH9 par PCR, sous les mêmes conditions que précédemment, pour 1 cycle de 5 min à 95°C, 35 cycles [95°C 30 sec, 55°C 30 sec, 72°C 1 min], 72°C 3 min., avec les amorces suivantes:

N-Hister: CTAGACCTAG GGGATCCCCC GATC introduisant AvrII

C-Hister: CCCACTAGTG TTTAAATGAT CAGTCAGGCC GAAT introduisant SpeI et BcII.

Le fragment de 726 pb obtenu est digéré par SpeI + AvrII avant d'être cloné dans le plasmide pEPA21 ouvert par SpeI, donnant pEPA22.

Cassette pEPA22 = promoteur simple histone-hppO-teminateur histone (Figure 12; SEQ ID NO 15).

III.4. Association des gènes

La cassette contenant le gène HPAC est extraite de pEPA15 par digestion NotI et clonée dans pEPA18 (NotI+Bsp120I) pour former pEPA19 (Figure 13 ; SEQ ID NO 21). Ce dernier est digéré par AvrII pour cloner la cassette extraite dans les sites AvrII+SpeI de pEPA22. Le plasmide contenant les trois constructions est pEPA23 (Figure 14 ; SEQ ID NO 22).

III.5. Vecteur binaire

Afin de transformer les plantes par Agrobacterium, les trois constructions sont extractibles par Bell afin d'être introduites dans un vecteur binaire d'Agrobactéries.

Abréviations :

IPTG

acide 3,4-dihydoxyphénylacétique 3,4-DHPA 4-HPA acide 4-hydroxyphénylacétique **ADN** acide désoxyribonucléique **APcI** Ionisation chimique à Pression Atmosphérique **ARN** acide ribonucléique **ARNm** acide ribonucléique messager **BET** bromure d'éthidium **BLAST** Basic Local Alignment Search Tool 10 **BSA** albumine de sérum bovin C^{100} carbénicilline (100 µg/mL) **CRLD** Centre de Recherche La Dargoire Da Dalton **DKN** dicétonitrile de l'isoxaflutole 15 **DMSO** diméthylsulfoxyde dATP 2'désoxyadénosine 5'-triphosphate **dCTP** 2'désoxycytidine 5'-triphosphate dGTP 2'désoxyguanosine 5'-triphosphate **dNTP** 2'-désoxynucléotides 5'-triphosphate dTTP 20 2'désoxythymidine 5'-triphosphate DTE dithioerithriol DTT 1,4-dithiothréitol **EDTA** acide éthylène diamine tétraacétique **FAD** flavine adénine dinucléotide 25 **FPLC** "fast protein liquid chromatography" Gm^{20} gentamycine (20µg/mL) **HGA** acide homogentisique HPLC chromatographie liquide haute performance **HPP** acide hydroxyphénylpyruvique 30 **HPPD** acide hydroxyphénylpyruvrique dioxygénase **HPPO** hydroxyphénylpyruvate oxydase **IFT** isoxaflutole

isopropyl-β-thiogalactopyranoside

Kn⁵⁰ kanamycine (50 μg/mL)

kb kilo bases

Km constante de Michaelis Menten

L-DOPA 3,4-dihydroxyphénylalanine

5 LB milieu de Luria Bertani

min minutes

mJ milli-joules

MNDD manganese dependant dioxygenase

MndD gène codant la MNDD

10 NAD⁺(H,H⁺) nicotinamide adénine dinucléotide (forme oxydée/forme

réduite)

OGM Organisme génétiquement modifié

OTP Optimised Transit Peptid; peptide de transit optimisé

pb paire de bases

15 pBBR1MCS-Gm plasmide pBBR1MCS résistant à la gentamycine

PCR réaction de polymérisation en chaîne

ppm partie par million; mg.L⁻¹

PVDF polyvinylène difluoride

qsp quantité suffisante pour

20 Q.r. coefficient respiratoire

Rif¹⁰⁰ Rifampicine (100 μg/mL)

RMN résonance magnétique nucléaire

SDS dodécyle sulfate de sodium

sec seconde

25 TBE tris borate EDTA

TEV "tobacco etch virus"

TFA acide trifluoroacétique

TrEMBL banque génomique EMBL traduite (translated EMBL

bank)

30 Tris tris(hydroxyméthyl)aminométhane

U.V. ultra-violet

vs versus

X-gal 5-bromo-4-chloro-3-β-D-galactopyranoside

Références

20

25

180

Abe, H.; Uchiyama, M.; Sato, R. (1974) Isolation of phenylacetic acid and its phydroxyderivative as auxin-like substances from *Undaria pinnatifida*. *Agric. Biol. Chem.* **38**: 897-898

Adachi, K.; Takeda, Y.; Senoh, S.; Kita, H. (1964) Metabolism of phydroxyphenylacetic acid in *Pseudomonas ovalis*. *Biochem. Biophys. Acta* **93**: 483-493

Appert, C.; Logemann, E.; Hahlbrock, K.; Schmid, J.; Amrhein, N.; (1994) Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (*Petroselinum crispum* Nym.); *Eur. J. Biochem.*; **225**:491-499

Arunachalam, U.; Massey, V.; Vaidyanathan, C.S. (1992) p-hydroxyphenylacetate 3-hydroxylase. *J. Biol. Chem.* **267**: 25848-25855

Arunachalam, U.; Massey, V. (1994) Studies on the oxidative half-reaction of phydroxyphenylacetate 3-hydroxylase. *J. Biol. Chem.* **269**: 11795-11801

Arunachalam, U.; Massey, V.; Miller, S.M. (1994) Mechanism of p-15 hydroxyphenylacetate 3-hydroxylase. *J. Biol. Chem.* **269**: 150-155

Aubert, S. (1994) Effet multiples du glycérol sur le métabolisme de la cellule végétale non chlorophylienne. These. Université Joseph Fourier – Grenoble - France

Aubert, S.; Gout, E.; Bligny, R.; Marty-Mazars, D.; Barrieu, F.; Alabouvette, J; Marty, F.; Douce, R. (1996a) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. *J. Cell Biol.* **133**: 1251-1263

Aubert, S.; Alban, C.; Bligny, R.; Douce, R. (1996b) Induction of beta-methylcrotonyl-coenzyme A carboxylase in higher plant cells during carbohydrate starvation: evidence for a role of MCCase in leucine metabolism. *FEBS Lett.* **383**: 175-

Aubert, S.; Bligny, R.; Douce, R. (1996c). NMR studies of metabolism in cell suspensions and tissue cultures, in "Nuclear Magnetic Resonance in Plant Physiology" (Y. Shachar-Hill and P. Pfeffer, Eds.), pp.109-154, American Society of Plant Physiologists, Rockville, USA.

Aubert, S.; Bligny, R.; Day, D.A.; Whelan, J.; Douce, R. 1997. Induction of alternative oxidase synthesis by herbicides inhibiting branched-chain amino acid synthesis. *Plant J.* 11:649-657

Aubert, S.; Curien, G.; Bligny, R.; Gout, E.; Douce, R. (1998) Transport,

compartimentation and metabolism of homoserine in higher plant cells. Carbon-13 and phosphorus-31-nuclear magnetic resonance studies. *Plant Physiol.* **116**: 547-557

Aubert, S.; Pallett, K. (2000) Combined use of ¹³C- and ¹⁹F-NMR to analyse the mode of action and the metabolism of the fluoride herbicide isoxaflutole. *Plant Physiol. Biochem.*, **38**: 517-523

5

15

Ausubel, F.M.; Brent, R.; Kingston, R.E.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. (1995) Current protocols in molecular biology(volume 1-4). Wiley ed., Massachusetts General Hospital & Harward Medical School.

Bate, N.J.; Orr, J.; Ni, W.; Meromi, A.; Nadler-Hassar, T.; Doerner, P.W.; Dixon, R.A.; Lamb, C.J.; Elkind, Y. (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. *Proc. Natl. Acad. Sci. USA* 91: 7608-12

Battersby, A.R.; Chrystal, E.J.; Staunton, J. (1980) Studies of enzyme-mediated reactions. Part 12. Stereochemical course of the decarboxylation of (2S)-tyrosine to tyramine by microbial, mammalian and plant systems. *J. Chem. Soc.* 1: 31-42

Bickel, H.; Palme, L.; Schultz, G. (1978) Incorporation of shikimate and other precursors into aromatic amino acids and prenylquinones of isolated spinach chloroplasts. *Phytochemistry*. **17**: 119-124

Bickel, H.; Buchholz, G.; Schultz, G. (1979) On the compartimentation of the biosynthesis of aromatic amino acids and prenylquinones in higher plants. In *Advances in the biochemistry and physiology of plant lipids*, Appelqvist, L.A. Liljenberg, C., eds. Elsevier, Amsterdam pp 369-375

Biswas, I.; Gruss, A.; Ehrlich, S.D.; Maguin, E. (1993) High-efficiency gene inactivation and replacement system for Gram-positive bacteria. *J. Bacteriol.* **175**: 3628-3635

Blakley, E.R. (1977) The catabolism of L-tyrosine by an *Arthrobacter* sp., *Can. J. Microbiol.* **23**: 1128-1139

Bligny, R.; Leguay, J.J. (1987) Techniques of cell cultures. Meth. Enzymol. 148: 30 3-16

Boehringer Mannheim (1995) The DIG system user's guide for filter hybridization

Boldt, Y.R.; Sadowsky, M.J.; Ellis, L.B.M.; Que, L.; Wackett, L.P. (1995) A

Manganese-dependent Dioxygenase from *Arthrobacter globiformis* CM-2 belongs to the major extradiol dioxygenase family. *J. Bacteriol.* **177**: 1225-1232

Borresen, T; Klausen, N.K.; Larsen, L.M.; Sorensen, H. (1989) Purification and characterisation of tyrosine decarboxylase and aromatic-L-amino-acid decarboxylase.

5 Biochem. Biophys. Acta 993: 108-115

15

Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **72**: 248-254

Brouquisse, R.; James, F.; Pradet, A.; Raymond, P. (1992) Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. *Planta*. **188**: 384-395

Callis, J. (1995) regulation of proteine degradation. Plant Cell. 7:845-857

Campos-Garcia J., Najera R., Camarena L., Soberon-Chavez G. (2000) The *Pseudomonas aeruginosa* motR gene involved in regulation of bacterial motility. *FEMS Microbiol Lett.* **184**: 57-62

Chan, M.T.; Chao, Y.C.; Yu, S.M. (1994) Novel gene expression system for plant cells based on induction of alpha-amylase promoter by carbohydrate starvation. *J. Biol Chem.* **269**: 17635-17641

Chang, A.K.; Duggleby, R.G. (1997) Expression, purification and characterization of *Arabidopsis thaliana* acetohydroxyacid synthase. *Biochem. J.* **327**: 161-169

Chevalier, C.; Bourgeois, E.; Just, D.; Raymond, P.; (1996) Metabolic regulation of asparagine synthetase gene expression in maize (*Zea mays* L.) root tips. *Plant J.* 9: 1-11

25 Chua, N.H. (1980) electrophoretic analysis of chloroplast proteins. *Methods*Enzymol. 69: 434-446

Coligan, J.E.; Dunn, B.M.; Ploegh, H.L.; Speicher, D.W.; Wingfield, P.T. Current protocols in protein science. Wiley ed.

Coligan, J.E. (1997) Chapter 11: Chemical analysis in *Current Protocols in Protein Science*. Coligan, J.E.; Dunn, B.M.; Ploegh, H.L.; Speicher, D.W.; Wingfield, P.T. (eds.) Wiley. Vol. 1.

David, C.; Daro, A.; Szalai, E.; Atarhouch, T.; Mergeay, M.(1996) Formation of polymeric pigments in the presence of bacteria and comparison with chemical oxidative

coupling-II. Catabolism of tyrosine and hydroxyphenylacetic acid by *Alcaligenes* eutrophus CH34 and mutants. Eur. Polym. J., 32: 669-679

De Lorenzo V., Herrero M., Jakubzik U., Timmis K.N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. *J Bacteriol*. **172**: 6568-6572

5

15

20

D'Souza LM, Willson RC, Fox GE (2000) Expression of marker RNAs in *Pseudomonas putida Curr Microbiol.* **40**: 91-95

Despeghel, J.P.; Delrot, S. (1983) Energetics of amino acids uptake by *Vicia faba* leaf tissue. *Plant Physiol.* 71: 1-6

Dey & Harborne (1997) Plant Biochemistry, page 389, Ed. P.M. Dey &J.B. Harborne, Academic Press

Fedi S., Brazil D., Dowling D.N., O'Gara F. (1996) Construction of a modified mini-Tn5 lacZY non-antibiotic marker cassette: ecological evaluation of a lacZY marked *Pseudomonas* strain in the sugarbeet rhizosphere. *FEMS Microbiol Lett.* **135**: 251-257

Feretti, L.; Sgaramella, V. (1981) Specific and reversible inhibition of the blunt end joining activity of the T4 DNA ligase. *Nucleic Acid Res.* 9: 3695-3705

Ferrandez, A.; Garcia, J.L.; Diaz, E. (1997) Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)-propionate catabolic pathway of *Escherichia coli* K12. *J. Bacteriol.* **179**: 2573-2581

Filleur, S.; Daniel-Vedele, F. (1999) Expression analysis of a high affinity nitrate transporter isolated from *Arabidopsis thaliana* by differential display. *Planta* **207**: 461-469

Flodin, C.; Whitfield, F.B. (1999) 4-hydroxybenzoic acid: a likely precursor of 2,4,6-tribromophenol in *Ulva lactuca. Phytochemistry.* **51**: 249-255

Flügge, U.-I. (1998) Metabolite transporters in plastids. *Curr. Opinion Plant Biotech.*, **1**: 201-206

Folch, J.; Lees, M.; Sloane-Stanley, G.H. (1957) A simple method for the isolation and purification of lipids from animal tissues. *J Biol Chem* **226**: 497-509

Frommer, W.B.; Kwart, M.; Hirner, B.; Fischer, W.N.; Hummel, S.; Ninnemann, O. (1994) Transporters for nitrogenous compounds in plants. *Plant Mol. Biol.* **26**: 1651-1670

Gaines, C.G.; Byng, G.S.; Whitaker, R.J.; Jensen, R.A. (1982) L-tyrosine

regulation and biosynthesis via arogenatedehydrogenase in suspension-cultured cells of *Nicotiana silvestris* speg. et comes. *Planta*, **156**: 233-240

Galan, B.; Diaz, E.; Prieto, M.A. (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of *Escherichia coli* W: a prototype of a new flavin: NAD(P)H reductase subfamily. *J. Bacteriol.* **182**: 627-636

5

20

Garcia, I.; Rodgers, M.; Lenne, C.; Rolland, A.; Sailland, A.; Matringe, M. (1997) Subcellular localisation and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterisation of the corresponding cDNA. *Biochem. J.*; **325**: 761

Garcia, I.; Rodgers, M.; Pépin, R.; Ksieh, T.-F., Matringe, M. (1999)

Characterization and subcellular compartmentation of recombinant 4hydroxyphenylpyruvate dioxygenase from *Arabidopsis* in transgenic tobacco. Plant
Physiol. 119: 1507-1516

Gazzarini, S.; Lejay, L.; Gojon, A.; Ninnemann, O.; Frommer, W.B.; von Wiren, N. (1999) Three functional transporters for constitutive, diurnally regulated and starvation-induced uptake of ammonium into Arabidopsis roots. *Plant Cell*. **11**: 937-948

Genix, P.; Bligny, R.; Martin, J.B.; Douce, R. (1990) Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. *Plant Physiol.* **94**: 717-722

Georgalaki, M.D.; Sarantinopoulos, P.; Ferreira, E.S.; De Vuyst, L.; Kalantzopoulos, G.; Tsakalidou, E. (2000) Biochemical properties of *Streptococcus macedonicus* strains isolated from Greek Kasseri cheese. *J. Appl. Microbiol.* **88**: 817-825

Goodchild, J.A.; Givan, C.V. (1990) Influence of ammonium and external pH on the amino and organic acid content of suspension culture cells of *Acer pseudoplatanus* L. *Physiol. plant* **78**: 29-37

Goodwin & Mercer (1988) Introduction to plant biochemistry, 2nd edition. Pergamon Press p. 356

30 Gout, E.; Bligny, R.; Genix, P.; Tissut, M.; Douce, R. (1992). Effect of glyphosate on plant cell metabolism. ³¹P and ¹³C NMR studies. *Biochimie*. 74: 875-882

Greenberg, D.M. () Metabolic pathways. Amino acids and tetrapyrroles, 3rd edition, Academic Press, vol. III: p. 148

Gross, D. (1975) Growth regulating substances of plant origin. *Phytochemistry*. **14**: 2105-2112

Grunstein, M.; Hogness, D.S. (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. *Proc. Natl. Acad. Sci. U.S.A.* **72**: 3961-3965

5

10

15

20

25

30

Hahlbrock, K.; Scheel, D.; (1989) Physiology and molecular biology of phenylpropanoid metabolism. *Ann. Rev. Plant Physiol. Plant Mol. Biol.*; **40**: 347-369

Hareland, W.A.; Crawford, R.L.; Chapman, P.J.; Dagley, S. (1975) Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from *Pseudomonas acidovorans. J.Bacteriol.*, **121**: 272-285

Hess, J.L. (1993) Vitamine E, α-Tocophérols. In Antioxidans in Higher Plants Edited by Alscher, R.; Hess, J.; Boca Raton: CRC: p.:111-134

Hill, C.M.; Duggleby, R.G. (1998) Mutagenesis of *Escherichia coli* acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. *Biochem. J.* **335**: 653-661

Homeyer, U.; Litek, K.; Huchzermeyer, B.; Schultz, G. (1989) Uptake of phenylalanine into isolated barley vacuoles is driven by both tonoplast adenosine triphosphatase and pyrophosphatase. *Plant Physiol.* **89**: 1388-1393

Jones, D.; Keddie, R.M. (1991) The genus *Arthrobacter*. In: The procaryotes (Balows, A.; Trüper, H.G.; Dworkin, M;; Harder, W.; Schleifer, K.H., eds.) 2nd eds., Springer-Verlag, New-York

Journet E.P., Bligny R., Douce R. (1986) Biochemical changes during sucrose deprivation in higher plant cells. *J. Biol. Chem.* **261**: 3193-3199

Junge, K.; Gosink, J.J.; Hoppe, H.-G.; Staley, J.T. (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov.. System. Appl. Microbiol., 21: 306-314

Kaiser, G.; Martinoia, E.; Wiemken, A. (1982) Rapid appearance of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method. *Z. Pflanzenphysiol.* 107: 103-113

Keen, N.T., Tamaki, S., Kobayashi, D., Trollinger, D., (1988), Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria, *Gene*, **70**, 191-197

Kindl, H. (1969) Biosynthesis and metabolism of hydroxyphenylacetic acids in higher plants. *Eur. J. Biochem.*. 7: 340-347

Koch, C.; Schumann, P.; Stackebrandt, E. (1995) Reclassification of *Micrococcus agilis* (Ali-Cohen 1889) to the genus *Arthrobacter* as *Arthrobacter agilis* comb. nov. and emendation of the genus *Arthrobacter*. *Int. J. Syst. Bacteriol.* **45**: 837-839

Kovach ME, Phillips RW, Elzer PH, Roop RM 2nd, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. *Biotechniques* **16**: 800-802

5

20

Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**: 175-176

Kruk, J.; Strzalka, K. (1998) Identification of plastoquinone-C in spinach and maple leaves by reverse-phase high-performance liquid chromatography. *Phytochemistry* **49**: 2267-2271

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*. **227**: 680-683

Lamport, D.T.A.; Northcote, D.H. (1960) Hydroxyproline in primary cell walls of higher plants. *Nature*: **188**: 665-666

Laursen, R.A. (1971) Solid-phase Edman degradation. An automatic peptide sequencer. *Eur. J. Biochem.* **20**: 89-102.

Li, Z.-C; Bush, D.R. (1990) ΔpH-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet leaves. I. Evidence for carrier-mediated, electrogenic flux through multiple transport systems. *Plant Physiol.* **94**: 268-277

Li, Z.-C; Bush, D.R. (1991) ΔpH-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet (*Beta vulgaris* L.) leaves. II. Evidence for multiple aliphatic, neutral amino acid symports. *Plant Physiol.* **96**: 1338-1344

Liu, D.-L.; Xu, S.-X.; Wang, W.-F. (1998) a novel lignan glucoside from 25 Forsythia suspensa Vahl. J. Chin. Pharmaceut. Sci. 7: 49-51

Löffelhardt, W. (1977) The biosynthesis of phenylacetic acids in blue-green alga *Anacystis nidulans*: evidence for the involvement of a thylakoïd-bound L-amino acid oxidase. *Z. Naturforsch.* **32**: 345-350

Luscombe, B.M.; Palett, K.E.; Loubierre, P.; Millet, J.-C.; Melgarejo, J.; Vrabel, T.E. (1995) RPA 201772 a novel herbicide for broad leaf and grass weeds control in maize and sugar cane, *Proc. Brighton Crop Prot. Conf. Weeds*, 1: 35

Luscombe, B.M.; Pallett, K.E.; (1996) Isoxaflutole for weed control in maize, *Pesticide Outlook*, **December**, 29

Lutterbach, R.; Stöckigt, J. (1994) *in vivo* investigation of plant cell metabolism by means of natural-abundance ¹³C-NMR spectroscopy. *Helv. Chim. Acta*, 77: 2153-2161

Lutterbach, R.; Stöckigt, J.;(1995), Dynamics of the biosynthesis of methylursubin in plant cells employing in vivo ¹³C-NMR without labelling. *Phytochemistry*, **40**: 801-806

MacLaughlin, P.J.; Weihrauch, J.L. (1979) Vitamine E content of foods. J. Am. Diet. Assoc.75: 647-665

Maniatis, T.; Fritsch, E.F.; Sambrook, J. (1982) Molecular cloning – A laboratory

manual eds Cold Spring Harbor Laboratory

Martin, M.; Gibello, A.; Fernandez, J.; Ferrer, E.; Garrido-Pertierra, A. (1991) Catabolism of 3- and 4-hydroxyphenylacetic acid by *Klebsiella pneumoniae*. *J. Gen. Microbiol.* **132**: 621-628.

Mayer, M.P.; Beyer, P.; Kleinig, H. (1990) Quinone compounds are able to replace molecular oxygen as terminal electron acceptor in phytoen desaturation in chromoplasts of *Narcissus pseudonarcissus* L. *Eur. J. Biochem.* **191**: 359-363

Mayer, M.P.; Nievelstein, V.; Beyer, P. (1992) Purification and characterization of a NADPH dependent oxidoreductase from chromoplasts of *Narcissus pseudonarcissus*: a redox-mediator possibly involved in carotene desaturation. *Plant Physiol. Biochem.* 30: 389-398

20

Mazelis, M. (1980) Amino acid metabolism. In "the biochemistry of plants" (Stumpf, PK, Conn, E.E; eds.), vol.5: amino acids and derivatives. Academic press, London, New York, pp: 1-55

Michal, G. - ed.- (1999) Biochemical Pathways, An atlas of biochemistry and molecular biology, Wiley & Spektrum eds., p. 60

Miflin, B.J.; Lea, P.J. (1982) Ammonium assimilation and amino acid metabolism. In A.B. Boulter, B. Parthiers, eds, Encyclopedia of Plant Physiology, Vol. 14, Nucleic Acids and Proteins in Plants 1. Springer Verlag, Berlin, PP: 5-64

Moreno-Arribas, V.; Lonvaud-Funel, A. (1999) Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiology Letters. 180: 55-60

Moreno-Arribas, V.; Torlois, S.; Joyeux, A.; Bertrand, A.; Lonvaud-Funel, A. (2000) Isolation, properties and behaviour of tyramine-producing lactic acid bacteria

from wine. J. Appl. Microbiol. 88: 584-593

20

30

Morot-Gaudry, J.F. (1997) Assimilation de l'azote chez les plantes. Aspects physiologique, biochimique et moléculaire. INRA Editions.

Mouillon, J.M.; Aubert, S.; Bourguignon, J.; Gout, E.; Douce, R.; Rebeillé, F. (1999)

Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. *Plant J.* **20**: 197-205

Murashige, T.; Skoog (1962) A revised medium for rapid growth and bio assays with tabacco tissue cultures. *Physiol. Plant.* **15**: 473

Negrel, J.; Javelle, F.;(1995); Induction of phenylpropanoid and tyramine metabolism in pectinase or pronase elicited cell suspension cultures of tabacco (*Nicotiana tabacum*); *Physiologia Plantarum*, **95**: 569-574

Nester, E.W.; Montoya, A.L. (1976) An enzyme common to histidine and aromatic amino acid biosynthesis in *Bacillus subtilis*. J. Bacteriol. **126**: 699-705

Norris, S.R.; Barette, T.R.; DellaPenna, D. (1995) Genetic dissection of carotenoid synthesis in *Arabidopsis* defines plastoquinone as an essential component of phytoene desaturation. *Plant Cell* 7: 2139-2149

Pallett, K.E.; Little, J.P.; Sheekey, M.; Veerasekaran, P. (1998) The mode of action of Isoxaflutole. I. Physiological effects, metabolism and selectivity. *Pestic. Biochem. Physiol.* **62**: 113-124

Prieto, M.A.; Perez-Randa, A.; Garcia, J.L. (1993) Characterization of an *Escherichia coli* aromatic hydroxylase with a broad substrat range. *J. Bacteriol.* **175**: 2162-2167

Prieto, M.A.; Garcia, J.L.; (1994) Molecular characterization of 4-25 hydroxyphenylacetate 3-hydroxylase of *Escherichia coli. J. Biol. Chem.* **269**: 22823-22829

Prieto, M.A.; Diaz, E.; Garcia, J.L. (1996) Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of *Escherichia coli* W: engineering a mobile aromatic degradative cluster. *J. Bacteriol.* **178**: 111-120

Prieto M.A., Kellerhals M.B., Bozzato G.B., Radnovic D., Witholt B., Kessler B. (1999) Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. *Appl Environ Microbiol.* **65**: 3265-3271

Roberts, J.K.M. (2000) NMR adventures in the metabolic labyrinth within plants.

Trends Plant Sci. 5:30-34

Roby, C.; Martin, J.B.; Bligny, R.; Douce, R. (1987) Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear resonance magnetic studies. *J. Biol. Chem.* **262**: 5000-5007

Sailland, A.; Matringe, M.; Rolland, A.; Pallett, K. (1995) Gène de l'hydroxyphényl pyruvate dioxygénase et obtention de plantes contenant ce gène résistantes aux herbicides. WO 96/38567

Sailland, A., Derose, R. (1999) Method for enzymatic preparation of homogentisate. WO9934008 A 19990708

Sambrook; Fritsch; Maniatis. Molecular cloning. A laboratory manual, 2nd edition Schroeder, C.; Sommer, J.; Humpfer, E.; Stöckigt, J. (1997) Inverse correlated ¹H
¹³C in vivo NMR as a probe to follow the metabolism of unlabelled vanillin by plant cell cultures. *Tetrahedron*, **53**: 927-934

Schoenle, E.J.; Adams, L.D.; Sammons, D.W. (1984) Insulin-induced rapid decrease of a major protein in fat cell plasma membranes. *J. Biol. Chem.* **259**: 12112-12116

Shachar-Hill, Y.; Pfeffer, P.E.; Germann, M.W. (1996) Following plant metabolism in vivo and in extracts with heteronuclear two-dimensional nuclear magnetic resonance spectroscopy. *Analytic. Biochem.*, **243**: 110-118

Singer, M.; Berg, P. (1992) Genes & Genomes. Ed. VIGOT, Paris

Sparnins, V.L.; Dagley, S. (1975) Alternative routes of aromatic catabolism in *Pseudomonas acidovorans* and *Pseudomonas putida*: Gallic acid as a substrate and inhibitor of dioxygenases. *J. Bacteriol.* **124**: 1374-1381

Stafford, H.A.; (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. *Plant Sci.*; **101**: 91-98

Suemori, A.; Nakajima, K.; Kurane, R.; Nakamura, Y. (1995) L-Phenylalanine and L-Tyrosine degradative pathways in *Rhodococcus erythropolis*. *Report Nat. Inst. Biosci. Hum. Tech.* **3**: 33-36

Suemori, A.; Nakajima, K.; Kurane, R.; Nakamura, Y. (1996) Purification and characterization of o-hydroxyphenylacetate 5-hydroxylase, m-hydroxyphenylacetate 6-hydroxylase and p-hydroxyphenylacetate 1-hydroxylase from *Rhodococcus erythropolis*. *Journal of Fermentation and Bioengineering*, **81**: 133-137

Swiatek, L.; Grabias, B.; Kalemba, D. (1998) Phenolic acids in certain medicinal

plants of the genus Artemisia. Pharm. Pharmacol. Lett. 4: 158-160

Swiatek, L. (1977) kwasy fenolowe I Glukozydy irydoidowe w niektorych krajowych gatunkach leczniczych z rodzaju *Plantago. Herba Polonica* **XXIII** (3): 201-209

Takizawa, N.; Yokoyama, H.; Yanagihara, K.; Hatta, T.; Kiyohara, H. (1995) A locus of *Pseudomonas pickettii* DTP0602. *had*, that encodes 2,4,6-trichlorophenol 4-dechlorinase with hydroxylase activity, and hydroxylation of various chlorophenols by the enzyme. *J. Ferment. Bioeng.* **80**: 318-326

Trieu-Cuot, P.; Carlier, C.; Poyart-Salmeron, C.; Courvalin, P. (1991) An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from Gram-positive bacteria. *Gene* **106**: 21-27

10

20

25

30

Tseng, T.C.; Tsai, T.H.; Lue, M.Y.; Lee, H.T. (1995) Identification of sucrose-regulated genes in cultured rice cells using mRNA differential display. *Gene.* **161**: 179-1782

Vertes, A.; Asai, Y.; Inui, M.; Kobayashi, M.; Kurusu, Y.; Yukawa, H., (1994)
Transposon mutagenesis of Coryneform bacteria, *Mol. Gen. Genet.*, **245**, 397-405

Vierstra, R.D. (1993) Protein degradation in plants. *Ann. Rev. Plant Physiol. Plant Mol. Biol.* 44: 385-410

Viviani, F.; Little, J.; Pallett, K.E. (1998) Mode of action of Isoxaflutole - 2-Characterisation of the inhibition of the carrot 4-hydroxyphenylpyruvate dioxygenase by the diketonitrile derivative of isoxaflutole; *Pestic. Biochem. Physiol.* **62**: 125-134

Whistance, G.R.; Threlfall, D.R. (1970) Biosynthesis of phytoquinones. Homogentisic acid: a precursor of plastoquinones, tocopherols and alphatocopherolquinone in higher plants, green algae and blue-green algae. *Biochem. J.* 117: 593-600

Xun, L.Y. (1996) Purification and characterization of chlorophenol 4-monooxygenase from *Burkholderia cepacia* AC1100. *J. Bacteriol.* **178**: 2645-2649

Xun, L. & Sandvik, E.R. (2000) Characterization of 4-hydroxyphenylacetate 3-hydroxylase (*HpaB*) of *Escherichia coli* as a reduced Flavin Adenine Dinucleotide-utilizing monooxygenase. *Appl. Env. Microbiol.* **66**: 481-486

5

10

15

25

30

Revendications

- 1. Procédé permettant de rendre les plantes tolérantes à un herbicide caractérisé en ce que l'on exprime dans lesdites plantes au moins une enzyme permettant le contournement de la voie métabolique inhibée par ledit herbicide.
 - 2. Procédé selon la revendication 1, caractérisé en ce que l'herbicide est un inhibiteur d'HPPD.
 - 3. Procédé selon la revendication 2, caractérisé en ce que l'on exprime dans la plante une HPP oxydase et/ou une HPAH et/ou une HPAC.
 - 4. Polypeptide, caractérisé en ce qu'il possède une activité HPP oxydase.
 - 5. Polypeptide selon la revendication 4, caractérisé en ce qu'il est insensible aux inhibiteurs d'HPPD.
- 6. Polypeptide selon l'une des revendications 4 ou 5, caractérisé en ce qu'il comprend la séquence d'acides aminés de la SEQ ID NO 2, ses fragments et ses séquences homologues.
- 7. Polypeptide selon la revendication 6, caractérisé en ce qu'il comprend une séquence d'acides aminés sélectionnée parmi le groupe comprenant SEQ ID NO 4 et SEQ ID NO 6, leurs fragments et leurs séquences homologues
 - 8. Polypeptide, caractérisé en ce qu'il possède une activité HPAH.
- 9. Polypeptide selon la revendication 8, caractérisé en ce qu'il est insensible aux inhibiteurs d'HPPD.
 - 10. Polypeptide selon l'une des revendications 8 ou 9, caractérisé en ce qu'il comprend la séquence d'acides aminés de la SEQ ID NO 8, ses fragments et ses séquences homologues.
 - 11. Polypeptide, caractérisé en ce qu'il possède une activité HPAC.
 - 12. Polypeptide selon la revendication 11, caractérisé en ce qu'il est insensible aux inhibiteurs d'HPPD.
 - 13. Polypeptide selon l'une des revendications 11 ou 12, caractérisé en ce qu'il comprend la séquence d'acides aminés de la SEQ ID NO 10, ses fragments et ses séquences homologues.
 - 14. Polypeptide selon la revendication 13, caractérisé en ce qu'il comprend une séquence d'acides aminés sélectionnée parmi le groupe comprenant SEQ ID NO 12 et SEQ ID NO 14, leurs fragments et leurs séquences homologues

- 15. Séquence d'acide nucléique caractérisée en ce qu'elle code pour un polypeptide selon l'une des revendications 4 à 14.
- 16. Séquence d'acide nucléique codant pour une HPP oxydase, caractérisée en ce qu'elle comprend une séquence d'acide nucléique sélectionnée parmi le groupe comprenant les séquences codantes des SEQ ID NO 1, SEQ ID NO 3, SEQ ID NO 5 ou SEQ ID NO 15, leurs séquences homologues, leurs fragments et les séquences capables de s'hybrider de manière sélective aux dites SEQ ID NO 1, 3, 5 ou 15.

5

- 17. Séquence d'acide nucléique codant pour une HPAH, caractérisée en ce qu'elle comprend une séquence d'acide nucléique sélectionnée parmi le groupe comprenant les séquences codantes des SEQ ID NO 7 ou SEQ ID NO 17, leurs séquences, homologues, leurs fragments et les séquences capables de s'hybrider de manière sélective aux dites SEQ ID NO 7 ou 17.
- 18. Séquence d'acide nucléique codant pour une HPAC, caractérisée en ce qu'elle comprend une séquence d'acide nucléique sélectionnée parmi le groupe comprenant les séquences codantes des SEQ ID NO 9, SEQ ID NO 11, SEQ ID NO 13 ou SEQ ID NO 19, leurs séquences homologues, leurs fragments et les séquences capables de s'hybrider de manière sélective aux dites SEQ ID NO 9, 11, 13 ou 19.
- 19. Cassette d'expression comprenant une séquence codante, caractérisée en 20 ce que la séquence codante comprend une séquence d'acide nucléique selon l'une des revendications 15 à 18.
 - 20. Vecteur de clonage et/ou d'expression, caractérisé en ce qu'il comprend au moins une cassette d'expression selon la revendication 19.
- 21. Cellule végétale transformée, caractérisée en ce qu'elle comprend au 25 moins une cassette d'expression selon la revendication 19.
 - 22. Plante transformée, caractérisée en ce qu'elle comprend au moins une cassette d'expression selon la revendication 19.
 - 23. Graines de plantes transformées selon la revendication 22, caractérisées en ce qu'elles comprennent au moins une cassette d'expression selon la revendication 19.
 - 24. Procédé de transformation des plantes, caractérisé en ce que l'on intorduit dans leur génome au moins une cassette d'expression selon la revendication 19.

WO 02/36787 75 PCT/FR01/03364

- 25. Procédé de désherbage sélectif de plantes, notamment de cultures, à l'aide d'un inhibiteur de l'HPPD, caractérisé en ce qu'on applique cet herbicide sur des plantes transformées selon la revendication 22.
- 26. Procédé de contrôle des mauvaises herbes dans une surface d'un champ comprenant des graines selon la revendication 23 ou des plantes transformées selon la revendication 22, caractérisé en ce qu'il comprend l'application dans la dite surface du champ d'une dose toxique pour les dites mauvaises herbes d'un herbicide inhibiteur d'HPPD, sans toutefois affecter de manière substantielle les graines ou plantes transformée selon l'invention.
- 27. Procédé de culture des plantes transformées selon la revendication 22, caractérisé en ce qu'il comprend le semis des graines selon la revendication 23 dans une surface d'un champ approprié pour la culture des dites plantes, l'application sur la dite surface du dit champ une dose toxique pour les mauvaises herbes d'un herbicide ayant pour cible l'HPPD en cas de présence de mauvaises herbes, sans affecter de manière substantielle les dites graines ou les dites plantes transformées, puis la récolte des plantes cultivées lorsqu'elles arrivent à la maturité souhaitée et éventuellement la séparation des graines des plantes récoltées.
- 28. Procédé selon l'une des revendications 25 à 27, caractérisé en ce que l'herbicide est appliqué en pré-semis et/ou en post-levée.

5

10

Figure 2

Séquence codant le peptide N-terminal

Figure 3

SacI					
		AGCGGACCAG TCGCCTGGTC			2901
				SacI	
		GACGGCCTGC CTGCCGGACG			2951
		GGGCATAGGT CCCGTATCCA		01101100000	3001
		GATAAACTGC CTATTTGACG			3051
]					+2
GCATGACTTC		ATCCAGATCC TAGGTCTAGG			3101
					+2
		TGGCGCAGGT ACCGCGTCCA			3151
		*** *** *** *** ***			
		>			+2
		GCTAGGGCCG			4801
TTACGGCGGG	CGGAGCAGCT	CGATCCCGGC	CGCCACCGCC	CCGCTTCCTC	
		GCTCAGGGCG			4851
ACCCTTGCGG	AAGAGTCCCG	CGAGTCCCGC	GAGTCATGGT	AGGTTGGGTT	

Figure 4

Figure 5

Figure 7

Figure 6

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

LISTE DE SEQUENCES

<110> Aventis CropScience S.A.

<120> Plantes tolérantes aux herbicides par contournement de voie métabolique

<130> gènes du shunt

<140>

<141>

<160> 22

<170> PatentIn Ver. 2.1

<210> 1

<211> 1683

<212> ADN

<213> Arthrobacter globiformis

<220>

<221> CDS

<222> (1)..(1683)

<400> 1

atg act tca ctt aca gtg tcc ggc cgg gtg gcg cag gtc ctc agc agc 48
Met Thr Ser Leu Thr Val Ser Gly Arg Val Ala Gln Val Leu Ser Ser

1 10 15

tat gtc agc gat gtg ttc ggt gtg atg ggc aac gga aac gtc tac ttc 96
Tyr Val Ser Asp Val Phe Gly Val Met Gly Asn Gly Asn Val Tyr Phe
20 25 30

ctg gac gcc gcc gag aag gag ggc ctc cgc ttc acg gcc gta cgc cat 144 Leu Asp Ala Ala Glu Lys Glu Gly Leu Arg Phe Thr Ala Val Arg His 35 40 45

gaa ggt gcc gcc atc gcg gcg gcg gcc tac tat cgg gca tcc ggg 192 Glu Gly Ala Ala Ile Ala Ala Ala Asp Ala Tyr Tyr Arg Ala Ser Gly

cgc ctg gcg gcg ggg acc acc acc tac ggc ccc ggt tac acc aac gcc 240
Arg Leu Ala Ala Gly Thr Thr Thr Tyr Gly Pro Gly Tyr Thr Asn Ala
65 70 75 80

ctg acg gcc ctc gcc gag gcg gtc cag gcg cag atc ccc gtg gtg ctc 288 Leu Thr Ala Leu Ala Glu Ala Val Gln Ala Gln Ile Pro Val Val Leu 85 90 95

gtc acc ggg gac gcc ccg agc agc ggc gcc cgg cct tgg gac gtg gac 336 Val Thr Gly Asp Ala Pro Ser Ser Gly Ala Arg Pro Trp Asp Val Asp 100 105

cag gcc gcg atc gcc gcc ggg ctg ggg gcg gcg acc ttc acg gtc acc 384 Gln Ala Ala Ile Ala Ala Gly Leu Gly Ala Ala Thr Phe Thr Val Thr 115 120 125

cgt gaa gcc gca ggc tcc atc acg cag gaa gcg gtg gag tac gca ctt 432 Arg Glu Ala Ala Gly Ser Ile Thr Gln Glu Ala Val Glu Tyr Ala Leu 130 135

gcc cgg cgg acc gcc gtc gtg atc gcc gtt cca tac gac ctg tcg gcc 480 Ala Arg Arg Thr Ala Val Val Ile Ala Val Pro Tyr Asp Leu Ser Ala 145 150 155 160

ctt gag gcg gcg gag gaa gat ctt ccc gtg ccg ccg gcg gcc tcg gtt 528 Leu Glu Ala Ala Glu Glu Asp Leu Pro Val Pro Pro Ala Ala Ser Val

								•	_								
				165					170					175			
ccg Pro	gac Asp	gcc Ala	atc Ile 180	ggc Gly	ggc Gly	gga Gly	ctc Leu	gga Gly 185	cgg Arg	gcg Ala	gcc Ala	gaa Glu	gtg Val 190	cgg Arg	gcg Ala	576	
					ggc Gly											624	
ggt Gly	gcg Ala 210	cac His	ctc Leu	gca Ala	gga Gly	gcc Ala 215	ggc Gly	ccc Pro	gaa Glu	ctc Leu	cgg Arg 220	gaa Glu	ctc Leu	gcc Ala	gac Asp	672	
cgc Arg 225	ctc Leu	ggc Gly	gcg Ala	ctc Leu	acg Thr 230	gcc Ala	ggc Gly	acc Thr	gca Ala	ctg Leu 235	gcg Ala	ctg Leu	aac Asn	ctg Leu	ctg Leu 240	720	
cag Gln	ggc Gly	gag Glu	GJÀ ààà	tac Tyr 245	ctc Leu	ggc Gly	gtc Val	gcg Ala	ggc Gly 250	ggc Gly	ttc Phe	ggc Gly	acg Thr	gat Asp 255	acc Thr	768	
gcc Ala	gcc Ala	GJA āāā	ctc Leu 260	atg Met	ggc Gly	gag Glu	gcg Ala	gac Asp 265	gtg Val	gtg Val	ctc Leu	gtg Val	gcg Ala 270	gga Gly	gcc Ala	816	
agc Ser	ctg Leu	acc Thr 275	ccc Pro	ttc Phe	acc Thr	atg Met	cgc Arg 280	ttc Phe	ggc Gly	cac His	ctg Leu	atc Ile 285	ggc Gly	ccg Pro	gac Asp	864	
gcc Ala	acc Thr 290	gtg Val	atc Ile	cag Gln	atc Ile	gac Asp 295	acc Thr	gcc Ala	atg Met	gag Glu	ccg Pro 300	acg Thr	gac Asp	ccg Pro	cgg Arg	912	
gtg Val 305	gac Asp	ctg Leu	ttt Phe	gtc Val	agt Ser 310	gcg Ala	gac Asp	gcg Ala	aag Lys	gcc Ala 315	gct Ala	gcc Ala	ggc Gly	cgg Arg	atc Ile 320	960	
ctc Leu	cgg Arg	ctg Leu	ctg Leu	gat Asp 325	gac Asp	gcc Ala	gcc Ala	GJÀ Gàà	gcc Ala 330	aat Asn	gcg Ala	tcg Ser	aag Lys	gcc Ala 335	tgg Trp	1008	
cgc Arg	gcg Ala	gaa Glu	gca Ala 340	ctc Leu	aag Lys	cgt Arg	ctg Leu	gcc Ala 345	gaa Glu	gga Gly	ccc Pro	tgc Cys	cac His 350	cac His	ccc Pro	1056	
ggc Gly	acc Thr	gca Ala 355	gag Glu	acc Thr	acg Thr	gac Asp	ggc Gly 360	cgc Arg	ctt Leu	gac Asp	ccc Pro	cgg Arg 365	gcg Ala	ctt Leu	gct Ala	1104	
tcg Ser	gca Ala 370	ctg Leu	gat Asp	gcc Ala	gtc Val	ctg Leu 375	ccg Pro	gaa Glu	cgc Arg	cgc Arg	acc Thr 380	gtg Val	gtc Val	cag Gln	gac Asp	1152	
ggc Gly 385	gly ggg	cac His	ttc Phe	ctg Leu	ggc Gly 390	tgg Trp	gca Ala	ccc Pro	atg Met	tac Tyr 395	tgg Trp	cgc Arg	atc Ile	ccc Pro	cgt Arg 400	1200	
cct Pro	cag Gln	gac Asp	ctg Leu	gtc Val 405	atg Met	gtg Val	ggg Gly	acc Thr	gcg Ala 410	tac Tyr	cag Gln	tcg Ser	atc Ile	ggg Gly 415	ctt Leu	1248	
ggc Gly	ctg Leu	gcc Ala	agc Ser 420	gcc Ala	gtg Val	ggg Gly	gcg Ala	tcc Ser 425	cgg Arg	gcc Ala	gtg Val	gac Asp	gac Asp 430	ggc Gly	aat Asn	1296	
atc Ile	ctg Leu	gtg Val	ctg Leu	gcg Ala	gcg Ala	ggc Gly	gac Asp	ggc Gly	gga Gly	ttc Phe	ctg Leu	atg Met	ggc Gly	ctg Leu	tcc Ser	1344	

W O 02/30/0	,							3					10	1/1/10/	1/03304
	435					440					445				
gac ctg Asp Leu 450															1392
tac aac Tyr Asn 465															1440
ggg ctc Gly Leu															1488
att gcc Ile Ala															1536
gac ctc Asp Leu															1584
ttc gtg Phe Val 530															1632
agc gaa Ser Glu 545	tgg Trp	atg Met	agg Arg	gcc Ala 550	tcg Ser	caa Gln	gcg Ala	gcg Ala	aag Lys 555	gag Glu	gcg Ala	gtg Val	gcg Ala	ggc Gly 560	1680
tag															1683
<210> 2 <211> 56 <212> <213> Ar		obact	ter (glob:	iforr	nis									
<400> 2 Met Thr 1	Ser	Leu	Thr 5	Val	Ser	Gly	Arg	Val 10	Ala	Gln	Val	Leu	Ser 15	Ser	
Tyr Val	Ser	Asp 20	Val	Phe	Gly	Val	Met 25	Gly	Asn	Gly	Asn	Val 30	Tyr	Phe	
Leu Asp	Ala 35	Ala	Glu	Lys	Glu	Gly 40	Leu	Arg	Phe	Thr	Ala 45	Val	Arg	His	
Glu Gly 50	Ala	Ala	Ile	Ala	Ala 55	Ala	Asp	Ala	Tyr	Tyr 60	Arg	Ala	Ser	Gly	
Arg Leu 65	Ala	Ala	Gly	Thr 70	Thr	Thr	Tyr	Gly	Pro 75	Gly	Tyr	Thr	Asn	Ala 80	
Leu Thr	Ala	Leu	Ala 85	Glu	Ala	Val	Gln	Ala 90	Gln	Ile	Pro	Val	Val 95	Leu	

Gln Ala Ala Ile Ala Ala Gly Leu Gly Ala Ala Thr Phe Thr Val Thr 115

Arg Glu Ala Ala Gly Ser Ile Thr Gln Glu Ala Val Glu Tyr Ala Leu

Val Thr Gly Asp Ala Pro Ser Ser Gly Ala Arg Pro Trp Asp Val Asp

130 135 140

Ala Arg Arg Thr Ala Val Val Ile Ala Val Pro Tyr Asp Leu Ser Ala

145					150					155					160
Leu	Glu	Ala	Ala	Glu 165	Glu	Asp	Leu	Pro	Val 170	Pro	Pro	Ala	Ala	Ser 175	Val
Pro	Asp	Ala	Ile 180	Gly	Gly	Gly	Leu	Gly 185	Arg	Ala	Ala	Glu	Val 190	Arg	Ala
Ala	Glu	Leu 195	Leu	Ala	Gly	Ala	Lys 200	Arg	Pro	Leu	Ile	Leu 205	Ala	Gly	Arg
Gly	Ala 210	His	Leu	Ala	Gly	Ala 215	Gly	Pro	Glu	Leu	Arg 220	Glu	Leu	Ala	Asp
Arg 225	Leu	Gly	Ala	Leu	Thr 230	Ala	Gly	Thr	Ala	Leu 235	Ala	Leu	Asn	Leu	Leu 240
Gln	Gly	Glu	Gly	Tyr 245	Leu	Gly	Val	Ala	Gly 250	Gly	Phe	Gly	Thr	Asp 255	Thr
Ala	Ala	Gly	Leu 260	Met	Gly	Glu	Ala	Asp 265	Val	Val	Leu	Val	Ala 270	Gly	Ala
Ser	Leu	Thr 275	Pro	Phe	Thr	Met	Arg 280	Phe	Gly	His	Leu	Ile 285	Gly	Pro	Asp
Ala	Thr 290	Val	Ile	Gln	Ile	Asp 295	Thr	Ala	Met	Glu	Pro 300	Thr	Asp	Pro	Arg
Val 305	Asp	Leu	Phe	Val	Ser 310	Ala	Asp	Ala	Lys	Ala 315	Ala	Ala	Gly	Arg	Ile 320
Leu	Arg	Leu	Leu	Asp 325	Asp	Ala	Ala	Gly	Ala 330	Asn	Ala	Ser	Lys	Ala 335	Trp
Arg	Ala	Glu	Ala 340	Leu	Lys	Arg	Leu	Ala 345	Glu	Gly	Pro	Cys	His 350	His	Pro
Gly	Thr	Ala 355	Glu	Thr	Thr	Asp	Gly 360	Arg	Leu	Asp	Pro	Arg 365	Ala	Leu	Ala
Ser	Ala 370	Leu	Asp	Ala	Val	Leu 375	Pro	Glu	Arg	Arg	Thr 380	Val	Val	Gln	Asp
Gly 385	Gly	His	Phe	Leu	Gly 390	Trp	Ala	Pro	Met	Tyr 395	Trp	Arg	Ile	Pro	Arg 400
Pro	Gln	Asp	Leu	Val 405	Met	Val	Gly	Thr	Ala 410	Tyr	Gln	Ser	Ile	Gly 415	Leu
Gly	Leu	Ala	Ser 420	Ala	Val	Gly	Ala	Ser 425	Arg	Ala	Val	Asp	Asp 430	Gly	Asn
Ile	Leu	Val 435	Leu	Ala	Ala	Gly	Asp 440	Gly	Gly	Phe	Leu	Met 445	Gly	Leu	Ser
Asp	Leu 450	Glu	Ser	Leu	Val	Gly 455	Ala	Ala	Ser	Ser	Ala 460	Val	Val	Val	Ile
Tyr 465	Asn	Asp	Ala	Ala	Tyr 470	Gly	Ala	Glu	Ile	His 475	Gln	Tyr	Gly	Ser	Arg 480
Gly	Leu	Thr	Glu	Lys 485	Pro	Met	Leu	Ile	Pro 490	Glu	Val	Asp	Phe	Ser 495	Gly
Ile	Ala	Arg	Ala 500	Ile	Gly	Ala	Glu	Ser 505	Ala	Ile	Ile	Arg	Lys 510	Leu	Ser

Asp Leu Ser Ala Leu Thr Asp Trp Ile Glu Ala Gly Ala Arg Gly Thr 520 Phe Val Ala Asp Cys Arg Ile Thr Ser Ser Val Arg Ala Pro Trp Leu 535 Ser Glu Trp Met Arg Ala Ser Gln Ala Ala Lys Glu Ala Val Ala 550 555 Glv <210> 3 <211> 1944 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle: mutant d'HPPO d'A. globiformis <220> <221> CDS <222> (55)..(1737) <400> 3 ccgacgtcgc atgctcccgg ccgccatggc ggccgcggga attcgattga attc atg 1 act tea ett aca gtg tee gge egg gtg geg eag gte ete age age tat 105 Thr Ser Leu Thr Val Ser Gly Arg Val Ala Gln Val Leu Ser Ser Tyr gtc agc gat gtg ttc ggt gtg atg ggc aac gga aac gtc tac ttc ctg 153 Val Ser Asp Val Phe Gly Val Met Gly Asn Gly Asn Val Tyr Phe Leu gac gcc gcc gag aag gag ggc ctc cgc ttc acg gcc gta cgc cat gaa 201 Asp Ala Ala Glu Lys Glu Gly Leu Arg Phe Thr Ala Val Arg His Glu ggt gcc gcc atc gcg gcg gcg gcc tac tat cgg gca tcc ggg cgc 249 Gly Ala Ala Ile Ala Ala Ala Asp Ala Tyr Tyr Arg Ala Ser Gly Arg ctg gcg gcg ggg acc acc acc tac qqc ccc gqt tac acc aac qcc ctq 297 Leu Ala Ala Gly Thr Thr Thr Tyr Gly Pro Gly Tyr Thr Asn Ala Leu acg gcc ctc gcc gag gcg gtc cag gcg cag atc ccc gtg gtg ctc gtc 345 Thr Ala Leu Ala Glu Ala Val Gln Ala Gln Ile Pro Val Val Leu Val acc ggg gac gcc ccg agc agc ggc gcc cgg cct tgg gac gtg gac cag 393 Thr Gly Asp Ala Pro Ser Ser Gly Ala Arg Pro Trp Asp Val Asp Gln 100 gcc gcg atc gcc gcc ggg ctg ggg gcg acc ttc acg gtc acc cqt 441 Ala Ala Ile Ala Ala Gly Leu Gly Ala Ala Thr Phe Thr Val Thr Arg gaa gcc gca ggc tcc atc acg cag gaa gcg gtg gag tac gca ctt gcc 489 Glu Ala Ala Gly Ser Ile Thr Gln Glu Ala Val Glu Tyr Ala Leu Ala cgg cgg acc gcc gtc gtg atc gcc gtt cca tac gac ctg tcg gcc ctt 537

Arg Arg Thr Ala Val Val Ile Ala Val Pro Tyr Asp Leu Ser Ala Leu

								,	3							
				150					155					160		
	g gcg 1 Ala															585
gao As <u>r</u>	gcc Ala	atc Ile 180	ggc Gly	ggc Gly	gga Gly	ctc Leu	gga Gly 185	cgg Arg	gcg Ala	gcc Ala	gaa Glu	gtg Val 190	cgg Arg	gcg Ala	gcc Ala	633
	ttg Leu 195															681
	g cac a His)															729
	ggc Gly															777
Gl	gag Glu	Gly ggg	tac Tyr 245	ctc Leu	ggc Gly	gtc Val	gcg Ala	ggc Gly 250	ggc Gly	ttc Phe	ggc Gly	acg Thr	gat Asp 255	acc Thr	gcc Ala	825
	ggg Gly															873
	acc Thr 275															921
	gtg Val															969
	c ctg Leu															1017
	g ctg g Leu															1065
gcç Ala	ggaa Glu	gca Ala 340	ctc Leu	aag Lys	cgt Arg	ctg Leu	gcc Ala 345	gaa Glu	gga Gly	ccc Pro	tgc Cys	cac His 350	cac His	ccc Pro	ggc Gly	1113
aco Thi	gca Ala 355	gag Glu	acc Thr	acg Thr	gac Asp	ggc Gly 360	cgc Arg	ctt Leu	gac Asp	ccc Pro	cgg Arg 365	gcg Ala	ctt Leu	gct Ala	tcg Ser	1161
gca Ala 370	ctg Leu)	gat Asp	gcc Ala	gtc Val	ctg Leu 375	ccg Pro	gaa Glu	cgc Arg	cgc Arg	acc Thr 380	gtg Val	gtc Val	cag Gln	gac Asp	ggc Gly 385	1209
GJ7 āā6	g cac His	ttc Phe	ctg Leu	ggc 390	tgg Trp	gca Ala	ccc Pro	atg Met	tac Tyr 395	tgg Trp	cgc Arg	atc Ile	ccc Pro	cgt Arg 400	cct Pro	1257
caç Glr	gac Asp	ctg Leu	gtc Val 405	atg Met	gtg Val	Gl ^à ààà	acc Thr	gcg Ala 410	tac Tyr	cag Gln	tcg Ser	atc Ile	ggg Gly 415	ctt Leu	ggc Gly	1305
cto Lei	gcc Ala	agc Ser	gcc Ala	gtg Val	ggg Gly	gcg Ala	tcc Ser	cgg Arg	gcc Ala	gtg Val	gac Asp	gac Asp	ggc Gly	aat Asn	atc Ile	1353

420 425 430

														tcc Ser		1401
														atc Ile		1449
														cgg Arg 480		1497
														Gly		1545
gcc Ala	cgc Arg	gcg Ala 500	atc Ile	GJÀ āāā	gcg Ala	gaa Glu	tcc Ser 505	gca Ala	atc Ile	atc Ile	cgc Arg	aag Lys 510	ctg Leu	tcg Ser	gac Asp	1593
ctc Leu	tcc Ser 515	gcg Ala	ctc Leu	acg Thr	gac Asp	tgg Trp 520	atc Ile	gag Glu	gcc Ala	ggc Gly	gcc Ala 525	agg Arg	gga Gly	acc Thr	ttc Phe	1641
gtg Val 530	gcc Ala	gac Asp	tgc Cys	cgc Arg	atc Ile 535	acc Thr	tca Ser	agc Ser	gtc Val	cgg Arg 540	gcc Ala	ccg Pro	tgg Trp	ctg Leu	agc Ser 545	1689
gaa Glu	tgg Trp	atg Met	agg Arg	gcc Ala 550	tcg Ser	caa Gln	gcg Ala	gcg Ala	aag Lys 555	gag Glu	gcg Ala	gtg Val	gcg Ala	ggc Gly 560	tag	1737
ggc	cggc	ctc q	gtcga	aaat	gc c	gacat	ccaa	a cc	caact	cag	taco	cagct	ca (gggc	gttctc	1797
aggg	gctg	gga a	acgc	cctga	ag ct	gcta	actca	a ttt	gtto	cgaa	ctc	gagaa	att	caato	cactag	1857
tgaa	attc	gag g	gccg	cctg	ca go	gtcga	accat	ato	gggag	gagc	tcc	caac	gcg .	ttgga	atgcat	1917
agct	tgag	gta t	tcta	atagi	g to	cacct	:a									1944

<210> 4

<211> 561

<212>

<213> Séquence artificielle

<223> Description de la séquence artificielle: mutant d'HPPO d'A. globiformis

<400> 4

Met Thr Ser Leu Thr Val Ser Gly Arg Val Ala Gln Val Leu Ser Ser 1 5 10 15

Tyr Val Ser Asp Val Phe Gly Val Met Gly Asn Gly Asn Val Tyr Phe
20 25 30

Leu Asp Ala Ala Glu Lys Glu Gly Leu Arg Phe Thr Ala Val Arg His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Gly Ala Ala Ile Ala Ala Ala Asp Ala Tyr Tyr Arg Ala Ser Gly
50 60

Arg Leu Ala Ala Gly Thr Thr Thr Tyr Gly Pro Gly Tyr Thr Asn Ala 65 70 75 80

Leu Thr Ala Leu Ala Glu Ala Val Gln Ala Gln Ile Pro Val Val Leu
85 90 95

Val Thr Gly Asp Ala Pro Ser Ser Gly Ala Arg Pro Trp Asp Val Asp Gln Ala Ala Ile Ala Ala Gly Leu Gly Ala Ala Thr Phe Thr Val Thr 120 Arg Glu Ala Ala Gly Ser Ile Thr Gln Glu Ala Val Glu Tyr Ala Leu 135 Ala Arg Arg Thr Ala Val Val Ile Ala Val Pro Tyr Asp Leu Ser Ala 155 Leu Glu Ala Ala Glu Glu Asp Leu Pro Val Pro Pro Ala Ala Ser Val Pro Asp Ala Ile Gly Gly Leu Gly Arg Ala Ala Glu Val Arg Ala Ala Glu Leu Leu Ala Gly Ala Lys Arg Pro Leu Ile Leu Ala Gly Arg Gly Ala His Leu Ala Gly Thr Gly Pro Glu Leu Arg Glu Leu Ala Asp 215 Arg Leu Gly Ala Leu Thr Ala Gly Thr Ala Leu Ala Leu Asn Leu Leu Gln Gly Glu Gly Tyr Leu Gly Val Ala Gly Gly Phe Gly Thr Asp Thr Ala Ala Gly Leu Met Gly Glu Ala Asp Val Val Leu Val Ala Gly Ala Ser Leu Thr Pro Phe Thr Met Arg Phe Gly His Leu Ile Gly Pro Asp Ala Thr Val Ile Gln Ile Asp Thr Ala Met Glu Pro Thr Asp Pro Arg Val Asp Leu Phe Val Ser Ala Asp Ala Lys Ala Ala Ala Gly Arg Ile Leu Arg Leu Leu Asp Asp Ala Ala Gly Ala Asn Ala Ser Lys Ala Trp Arg Ala Glu Ala Leu Lys Arg Leu Ala Glu Gly Pro Cys His His Pro Gly Thr Ala Glu Thr Thr Asp Gly Arg Leu Asp Pro Arg Ala Leu Ala Ser Ala Leu Asp Ala Val Leu Pro Glu Arg Arg Thr Val Val Gln Asp Gly Gly His Phe Leu Gly Trp Ala Pro Met Tyr Trp Arg Ile Pro Arg 390 Pro Gln Asp Leu Val Met Val Gly Thr Ala Tyr Gln Ser Ile Gly Leu Gly Leu Ala Ser Ala Val Gly Ala Ser Arg Ala Val Asp Asp Gly Asn Ile Leu Val Leu Ala Ala Gly Asp Gly Gly Phe Leu Met Gly Leu Ser Asp Leu Glu Ser Leu Val Gly Ala Ala Ser Ser Ala Val Val Ile

450 455 460 Tyr Asn Asp Ala Ala Tyr Gly Ala Glu Ile His Gln Tyr Gly Ser Arg 470 475 Gly Leu Thr Glu Lys Pro Met Leu Ile Pro Glu Val Asp Phe Ser Gly 485 490 Ile Ala Arg Ala Ile Gly Ala Glu Ser Ala Ile Ile Arg Lys Leu Ser 505 Asp Leu Ser Ala Leu Thr Asp Trp Ile Glu Ala Gly Ala Arg Gly Thr 520 Phe Val Ala Asp Cys Arg Ile Thr Ser Ser Val Arg Ala Pro Trp Leu 530 535 Ser Glu Trp Met Arg Ala Ser Gln Ala Ala Lys Glu Ala Val Ala Gly 550 555 <210> 5 <211> 1962 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle: mutant d'HPPO d'A. globiformis <220>

<221> CDS <222> (111)..(1793) <400> 5 aggtgacact atagaatact caagctatgc atccaacgcg ttgggagctc tcccatatgg 60 tegacetgea ggeggeegeg aatteactag tgattggaag gateeggtge atg act 116 Met Thr tca ctt aca gtg tcc ggc cgg gtg gcg cag gtc ctc agc agc tat gtc 164 Ser Leu Thr Val Ser Gly Arg Val Ala Gln Val Leu Ser Ser Tyr Val age gat gtg tte ggt gtg atg gge aac gga aac gte tae tte etg gae 212 Ser Asp Val Phe Gly Val Met Gly Asn Gly Asn Val Tyr Phe Leu Asp 25 gcc gcc gag aag gag ggc ctc cgc ttc acg gcc gta cgc cat gaa qqt 260 Ala Ala Glu Lys Glu Gly Leu Arg Phe Thr Ala Val Arg His Glu Gly 35 40 45 gcc gcc atc gcg gcg gcg gcc tac tat cgg gca tcc ggg cqc ctq 308 Ala Ala Ile Ala Ala Ala Asp Ala Tyr Tyr Arg Ala Ser Gly Arg Leu 60 geg geg ggg acc acc acc tac ggc ccc ggt tac acc aac gcc ctg acg 356 Ala Ala Gly Thr Thr Thr Tyr Gly Pro Gly Tyr Thr Asn Ala Leu Thr 70 gcc ctc gcc gag gcg gtc cag gcg cag atc ccc gtg gtg ctc gtc acc 404 Ala Leu Ala Glu Ala Val Gln Ala Gln Ile Pro Val Val Leu Val Thr 90 ggg gac gcc ccg agc agc ggc gcc cgg cct tgg gac gtg gac cag gcc 452

								I	U							
Gly	Asp 100	Ala	Pro	Ser	Ser	Gly 105	Ala	Arg	Pro	Trp	Asp 110	Val	Asp	Gln	Ala	
gcg Ala 115	atc Ile	gcc Ala	ggc Gly	gly Gly	ctg Leu 120	ggg Gly	gcg Ala	gcg Ala	acc Thr	ttc Phe 125	acg Thr	gtc Val	acc Thr	cgt Arg	gaa Glu 130	500
gcc Ala	gca Ala	ggc Gly	tcc Ser	atc Ile 135	acg Thr	cag Gln	gaa Glu	gcg Ala	gtg Val 140	gag Glu	tac Tyr	gca Ala	ctt Leu	gcc Ala 145	cgg Arg	548
				gtg Val												596
				gat Asp												644
gcc Ala	atc Ile 180	ggc Gly	ggc Gly	gga Gly	ctc Leu	gga Gly 185	cgg Arg	gcg Ala	gcc Ala	gaa Glu	gtg Val 190	cgg Arg	gcg Ala	gcc Ala	gaa Glu	692
				gcg Ala												740
				gcc Ala 215												788
				gcc Ala												836
gag Glu	Gly ggg	tac Tyr 245	ctc Leu	ggc Gly	gtc Val	gcg Ala	ggc Gly 250	ggc Gly	ttc Phe	ggc Gly	acg Thr	gat Asp 255	acc Thr	gcc Ala	gcc Ala	884
ggg Gly	ctc Leu 260	atg Met	ggc Gly	gag Glu	gcg Ala	gac Asp 265	gtg Val	gtg Val	ctc Leu	gtg Val	gcg Ala 270	gga Gly	gcc Ala	agc Ser	ctg Leu	932
acc Thr 275	ccc Pro	ttc Phe	acc Thr	atg Met	cgc Arg 280	ttc Phe	ggc Gly	cac His	ctg Leu	atc Ile 285	ggc Gly	ccg Pro	gac Asp	gcc Ala	acc Thr 290	980
gtg Val	atc Ile	cag Gln	atc Ile	gac Asp 295	acc Thr	gcc Ala	atg Met	gag Glu	ccg Pro 300	acg Thr	gac Asp	ccg Pro	cgg Arg	gtg Val 305	gac Asp	1028
ctg Leu	ttt Phe	gtc Val	agt Ser 310	gcg Ala	gac Asp	gcg Ala	aag Lys	gcc Ala 315	gct Ala	gcc Ala	ggc Gly	cgg Arg	atc Ile 320	ctc Leu	cgg Arg	1076
ctg Leu	ctg Leu	gat Asp 325	gac Asp	gcc Ala	gcc Ala	GJÀ aaa	gcc Ala 330	aat Asn	gcg Ala	tcg Ser	aag Lys	gcc Ala 335	tgg Trp	cgc Arg	gcg Ala	1124
gaa Glu	gca Ala 340	ctc Leu	aag Lys	cgt Arg	ctg Leu	gcc Ala 345	gaa Glu	gga Gly	ccc Pro	tgc Cys	cac His 350	cac His	ccc Pro	ggc Gly	acc Thr	1172
gca Ala 355	gag Glu	acc Thr	acg Thr	gac Asp	ggc ggc	cgc Arg	ctt Leu	gac Asp	ccc Pro	cgg Arg 365	gcg Ala	ctt Leu	gct Ala	tcg Ser	gca Ala 370	1220
atg	gat	gcc	gtc	ctg	ccg	gaa	cgc	cgc	acc	gtg	gtc	cag	gac	ggc	ggg	1268

Leu Asp Ala Val Leu Pro Glu Arg Arg Thr Val Val Gln Asp Gly Gly 375 380 385	
cac ttc ctg ggc tgg gca ccc atg tac tgg cgc atc ccc cgt cct cag His Phe Leu Gly Trp Ala Pro Met Tyr Trp Arg Ile Pro Arg Pro Gln 390 395 400	1316
gac ctg gtc atg gtg ggg acc gcg tac cag tcg atc ggg ctt ggc ctg Asp Leu Val Met Val Gly Thr Ala Tyr Gln Ser Ile Gly Leu Gly Leu 405 410 415	1364
gcc agc gcc gtg ggg gcg tcc cgg gcc gtg gac gac ggc aat atc ctg Ala Ser Ala Val Gly Ala Ser Arg Ala Val Asp Asp Gly Asn Ile Leu 420 425 430	1412
gtg ctg gcg gcg ggc gac ggc gga ttc ctg atg ggc ctg tcc gac ctg Val Leu Ala Ala Gly Asp Gly Gly Phe Leu Met Gly Leu Ser Asp Leu 435 440 445 450	1460
gaa tcg ctc gtg ggc gcg gcg agc agc gcc gtc gtg gtg atc tac aac Glu Ser Leu Val Gly Ala Ala Ser Ser Ala Val Val Val Ile Tyr Asn 455 460 465	1508
gat gcc gcc tac ggg gcc gag atc cat cag tac ggc tca cgg ggg ctc Asp Ala Ala Tyr Gly Ala Glu Ile His Gln Tyr Gly Ser Arg Gly Leu 470 475 480	1556
acc gaa aag ccc atg ctg atc ccc gaa gtg gac ttc agc ggg att gcc Thr Glu Lys Pro Met Leu Ile Pro Glu Val Asp Phe Ser Gly Ile Ala 485 490 495	1604
cgc gcg atc ggg gcg gaa tcc gca atc atc cgc aag ctg tcg gac ctc Arg Ala Ile Gly Ala Glu Ser Ala Ile Ile Arg Lys Leu Ser Asp Leu 500 505 510	1652
tcc gcg ctc acg gac tgg atc gag gcc ggc gcc agg gga acc ttc gtg Ser Ala Leu Thr Asp Trp Ile Glu Ala Gly Ala Arg Gly Thr Phe Val 515 520 525 530	1700
gcc gac tgc cgc atc acc tca agc gtc cgg gcc ccg tgg ctg agc gaa Ala Asp Cys Arg Ile Thr Ser Ser Val Arg Ala Pro Trp Leu Ser Glu 535 540 545	1748
tgg atg agg gcc tcg caa gcg gcg aag gcg gtg gcg ggc tag Trp Met Arg Ala Ser Gln Ala Ala Lys Glu Ala Val Ala Gly 550 555 560	1793
ggccggcctc gtcgaaatgc cgccctccaa cccaactcag taccagctca gggcgttctc	: 1853
agggctggga acgccctgag ctgctactca gtttgttcga actcgagaat tcaatcgaat	1913
tcccgcggcc gccatggcgg ccgggagcat gcgacgtcgg gcccattcg	1962

<210> 6

<211> 541

<212>

<213> Séquence artificielle

<223> Description de la séquence artificielle: mutant d'HPPO d'A. globiformis

<400> 6

Val Phe Gly Val Met Gly Asn Gly Asn Val Tyr Phe Leu Asp Ala Ala

Glu Lys Glu Gly Leu Arg Phe Thr Ala Val Arg His Glu Gly Ala Ala
20 25 30

Ile Ala Ala Ala Asp Ala Tyr Tyr Arg Ala Ser Gly Arg Leu Ala Ala Gly Thr Thr Thr Tyr Gly Pro Gly Tyr Thr Asn Ala Leu Thr Ala Leu Ala Glu Ala Val Gln Ala Gln Ile Pro Val Val Leu Val Thr Gly Asp Ala Pro Ser Ser Gly Ala Arg Pro Trp Asp Val Asp Gln Ala Ala Ile Ala Gly Gly Leu Gly Ala Ala Thr Phe Thr Val Thr Arg Glu Ala Ala 105 Gly Ser Ile Thr Gln Glu Ala Val Glu Tyr Ala Leu Ala Arg Arg Thr Ala Val Val Ile Ala Val Pro Tyr Asp Leu Ser Ala Leu Glu Ala Ala Glu Glu Asp Leu Pro Val Pro Pro Ala Ala Ser Val Pro Asp Ala Ile Gly Gly Gly Leu Gly Arg Ala Ala Glu Val Arg Ala Ala Glu Leu Leu Ala Gly Ala Lys Arg Pro Leu Ile Leu Ala Gly Arg Gly Ala His Leu Ala Gly Ala Gly Pro Glu Leu Arg Glu Leu Ala Asp Arg Leu Gly Ala Leu Thr Ala Gly Thr Ala Leu Ala Leu Asn Leu Leu Gln Gly Glu Gly 215 Tyr Leu Gly Val Ala Gly Gly Phe Gly Thr Asp Thr Ala Ala Gly Leu Met Gly Glu Ala Asp Val Val Leu Val Ala Gly Ala Ser Leu Thr Pro Phe Thr Met Arg Phe Gly His Leu Ile Gly Pro Asp Ala Thr Val Ile Gln Ile Asp Thr Ala Met Glu Pro Thr Asp Pro Arg Val Asp Leu Phe Val Ser Ala Asp Ala Lys Ala Ala Ala Gly Arg Ile Leu Arg Leu Leu Asp Asp Ala Ala Gly Ala Asn Ala Ser Lys Ala Trp Arg Ala Glu Ala Leu Lys Arg Leu Ala Glu Gly Pro Cys His His Pro Gly Thr Ala Glu Thr Thr Asp Gly Arg Leu Asp Pro Arg Ala Leu Ala Ser Ala Leu Asp Ala Val Leu Pro Glu Arg Arg Thr Val Val Gln Asp Gly Gly His Phe Leu Gly Trp Ala Pro Met Tyr Trp Arg Ile Pro Arg Pro Gln Asp Leu Val Met Val Gly Thr Ala Tyr Gln Ser Ile Gly Leu Gly Leu Ala Ser 385 390

Ala Val Gly Ala Ser Arg Ala Val Asp Asp Gly Asn Ile Leu Val Leu Ala Ala Gly Asp Gly Gly Phe Leu Met Gly Leu Ser Asp Leu Glu Ser 425 Leu Val Gly Ala Ala Ser Ser Ala Val Val Ile Tyr Asn Asp Ala Ala Tyr Gly Ala Glu Ile His Gln Tyr Gly Ser Arg Gly Leu Thr Glu 455 Lys Pro Met Leu Ile Pro Glu Val Asp Phe Ser Gly Ile Ala Arg Ala Ile Gly Ala Glu Ser Ala Ile Ile Arg Lys Leu Ser Asp Leu Ser Ala Leu Thr Asp Trp Ile Glu Ala Gly Ala Arg Gly Thr Phe Val Ala Asp Cys Arg Ile Thr Ser Ser Val Arg Ala Pro Trp Leu Ser Glu Trp Met Arg Ala Ser Gln Ala Ala Lys Glu Ala Val Ala Gly 535 <210> 7 <211> 1692 <212> ADN <213> Pseudomonas acidovorans <220> <221> CDS <222> (1)..(1692) <400> 7 atg tcc cac ccc gcc atc tcc ctg caa gcg ctg cgc ggc agc gca 48 Met Ser His Pro Ala Ile Ser Leu Gln Ala Leu Arg Gly Ser Gly Ala gac ata cag tee ate cac ate eee tae gag ege cat gee gae cag gae 96 Asp Ile Gln Ser Ile His Ile Pro Tyr Glu Arg His Ala Asp Gln Asp ged ggt geg gad acg ded ged egg dat ded gtd gtd gtd ggd ged 144 Ala Gly Ala Asp Thr Pro Ala Arg His Pro Val Val Ile Val Gly Ala ggc ccc gtg ggc ctg tcg ctg gcc atc gac ctg gcc cag cgc ggc cag 192 Gly Pro Val Gly Leu Ser Leu Ala Ile Asp Leu Ala Gln Arg Gly Gln ege gtg gtg etg etg gae aac gae tge egg etg tee aeg gge teg ege 240 Arg Val Val Leu Leu Asp Asn Asp Cys Arg Leu Ser Thr Gly Ser Arg gcc atc tgc ttt tcc aag cgc acg ctg gag atc tgg gac cgc ctg ggc 288 Ala Ile Cys Phe Ser Lys Arg Thr Leu Glu Ile Trp Asp Arg Leu Gly gtg ggc cag ccc atg gtg gac aag ggc gtg tcc tgg aac ctg ggc aag 336 Val Gly Gln Pro Met Val Asp Lys Gly Val Ser Trp Asn Leu Gly Lys 100 105 gtc ttc ttc aag gac cag ccg ctg tac cgc ttc gac ctg ctg ccc gag 384

Val	Phe	Phe 115	Lys	Asp	Gln	Pro	Leu 120	Tyr	Arg	Phe	Asp	Leu 125	Leu	Pro	Glu	
	ggc Gly 130															432
	gcc Ala															480
	tgg Trp															528
	ctg Leu															576
	gtc Val															624
	cag Gln 210															672
	gtg Val															720
	ccg Pro															768
	gat Asp															816
	gaa Glu	Ğlu	Lys	Lys	Pro	Glu	Asn	Ile		Pro	Arg	Ile	Ārg			864
	ggc Gly 290															912
	gcc Ala															960
gcg Ala	GJA GGC	gac Asp	agc Ser	gcc Ala 325	cac His	ggc Gly	gtc Val	tcg Ser	ccg Pro 330	ttt Phe	ggc	gca Ala	cgc Arg	ggc Gly 335	gcc Ala	1008
aac Asn	agc Ser	ggc Gly	gtg Val 340	cag Gln	gat Asp	gcc Ala	gag Glu	aac Asn 345	ctg Leu	gca Ala	tgg Trp	aag Lys	ctg Leu 350	gac Asp	cgc Arg	1056
gtg Val	ctg Leu	cgc Arg 355	ggc Gly	cag Gln	gcc Ala	gat Asp	gcc Ala 360	tcg Ser	ctg Leu	atc Ile	gcc Ala	acc Thr 365	tac Tyr	Gly ggc	gcc Ala	1104
gag Glu	cgc Arg 370	gaa Glu	tac Tyr	gcg Ala	gcc Ala	gac Asp 375	gag Glu	aac Asn	atc Ile	cgc Arg	aac Asn 380	tcc Ser	acg Thr	cgc Arg	gcc Ala	1152
acc	gac	ttc	atc	acg	ccc	aag	agc	gag	atc	agc	cgc	ctg	ttt	cgc	gac	1200

Thr 385	Asp	Phe	Ile	Thr	Pro 390	Lys	Ser	Glu	Ile	Ser 395	Arg	Leu	Phe	Arg	Asp 400	
	gtg Val															1248
	agc Ser															1296
	acg Thr															1344
gtg Val	ctg Leu 450	gcc Ala	gat Asp	gcg Ala	ccc Pro	atg Met 455	cgc Arg	cgg Arg	ccc Pro	ggc Gly	gca Ala 460	gac Asp	ggc	acg Thr	gcc Ala	1392
tgg Trp 465	ctg Leu	ctg Leu	cgc Arg	gca Ala	ctg Leu 470	gga Gly	ccg Pro	gac Asp	ttc Phe	acg Thr 475	ctg Leu	ctg Leu	cac His	ttc Phe	gac Asp 480	1440
ccc Pro	acg Thr	ccc Pro	gcc Ala	tgg Trp 485	gcg Ala	cag Gln	gcg Ala	ctg Leu	ccc Pro 490	ggc Gly	gtg Val	ctc Leu	aac Asn	ctg Leu 495	tcc Ser	1488
	gcg Ala															1536
	cgc Arg															1584
tac Tyr	ctg Leu 530	ctg Leu	cgg Arg	cct Pro	gac Asp	cag Gln 535	cat His	gtc Val	tgc Cys	gcg Ala	cgc Arg 540	tgg Trp	cgc Arg	cgc Arg	ccc Pro	1632
gac Asp 545	gaa Glu	gcc Ala	Ser	gtg Val	Arg	Ala	gcg Ala	ctg Leu	Gln	aga Arg 555	Āla	tgc Cys	ggc Gly	gcc Ala	gcc Ala 560	1680
	acg Thr		tga													1692
<21:	0> 8 1> 56 2> 3> Ps		omona	as ac	cidov	orar	ıs									
	0> 8 Ser	His	Pro	Ala 5	Ile	Ser	Leu	Gln	Ala 10	Leu	Arg	Gly	Ser	Gly 15	Ala	
Asp	Ile	Gln	Ser 20	Ile	His	Ile	Pro	Tyr 25	Glu	Arg	His	Ala	Asp 30	Gln	Asp	
Ala	Gly	Ala 35	Asp	Thr	Pro	Ala	Arg 40	His	Pro	Val	Val	Ile 45	Val	Gly	Ala	
Gly	Pro 50	Val	Gly	Leu	Ser	Leu 55	Ala	Ile	Asp	Leu	Ala 60	Gln	Arg	Gly	Gln	
Arg 65	Val	Val	Leu	Leu	Asp 70	Asn	Asp	Cys	Arg	Leu 75	Ser	Thr	Gly	Ser	Arg 80	

Ala Ile Cys Phe Ser Lys Arg Thr Leu Glu Ile Trp Asp Arg Leu Gly Val Gly Gln Pro Met Val Asp Lys Gly Val Ser Trp Asn Leu Gly Lys 105 Val Phe Phe Lys Asp Gln Pro Leu Tyr Arg Phe Asp Leu Leu Pro Glu Asp Gly His Glu Arg Pro Ala Phe Ile Asn Leu Gln Gln Tyr Tyr Ala 135 Glu Ala Tyr Leu Val Glu Arg Ala Leu Gln Leu Pro Leu Ile Asp Leu Arg Trp His Ser Lys Val Thr Ala Leu Glu Pro Gln Ala Glu Gly Ala 165 170 Leu Leu Thr Val Glu Thr Pro Asp Gly Ser Tyr Arg Ile Asp Ala Gln 185 Trp Val Leu Ala Cys Asp Gly Ser Arg Ser Pro Leu Arg Gly Leu Leu 200 205 Gly Gln Glu Ser His Gly Arg Ile Phe Arg Asp Arg Phe Leu Ile Ala Asp Val Lys Met His Ala Glu Phe Pro Thr Glu Arg Trp Phe Trp Phe 235 Asp Pro Pro Phe His Pro Gly Gln Ser Val Leu Leu His Arg Gln Pro 250 Asp Asp Val Trp Arg Ile Asp Phe Gln Leu Gly Trp Asp Ala Asp Pro 265 Glu Glu Glu Lys Lys Pro Glu Asn Ile Val Pro Arg Ile Arg Ala Leu 280 Leu Gly Lys Asp Ala Pro Phe Glu Leu Glu Trp Ala Ser Val Tyr Thr 295 Phe Ala Cys Leu Arg Met Asp Arg Phe Val His Gly Arg Val Val Phe Ala Gly Asp Ser Ala His Gly Val Ser Pro Phe Gly Ala Arg Gly Ala Asn Ser Gly Val Gln Asp Ala Glu Asn Leu Ala Trp Lys Leu Asp Arg Val Leu Arg Gly Gln Ala Asp Ala Ser Leu Ile Ala Thr Tyr Gly Ala Glu Arg Glu Tyr Ala Ala Asp Glu Asn Ile Arg Asn Ser Thr Arg Ala 375 Thr Asp Phe Ile Thr Pro Lys Ser Glu Ile Ser Arg Leu Phe Arg Asp 385 Ala Val Leu Asp Leu Ala Arg Asp His Glu Phe Ala Arg Arg Ile Val 410 Asn Ser Gly Arg Leu Ser Val Pro Ala Thr Leu His Gly Ser Ala Leu 420 Asn Thr Pro Asp Thr Asp Thr Phe Asp Gly Thr Gln Leu Pro Gly Ala 440 445

Val Leu Ala Asp Ala Pro Met Arg Arg Pro Gly Ala Asp Gly Thr Ala 455 Trp Leu Leu Arg Ala Leu Gly Pro Asp Phe Thr Leu Leu His Phe Asp 475 Pro Thr Pro Ala Trp Ala Gln Ala Leu Pro Gly Val Leu Asn Leu Ser 490 Ile Ala Ala Glu Gly Glu Ala His Ala Pro Asp Ala Asp Leu Ile Asp 505 Ala Arg Gly Leu Ala Ala Lys Arg Leu Asp Ala Arg Pro Gly Thr Ser Tyr Leu Leu Arg Pro Asp Gln His Val Cys Ala Arg Trp Arg Arg Pro 535 Asp Glu Ala Ser Val Arg Ala Ala Leu Gln Arg Ala Cys Gly Ala Ala Ala Thr Ala <210> 9 <211> 966 <212> ADN <213> Pseudomonas acidovorans <220> <221> CDS <222> (1)..(966) <400> 9 atg acc acc aag acc ttt gcc tcc gcc gcc gac ctc gaa atc aag cag 48 Met Thr Thr Lys Thr Phe Ala Ser Ala Ala Asp Leu Glu Ile Lys Gln gtc agc ttc gac aag ctc tcc gag cac gcc tat gcc tac acg gcc gaa 96 Val Ser Phe Asp Lys Leu Ser Glu His Ala Tyr Ala Tyr Thr Ala Glu gge gae eee aae aee gge ate ate att gge gae gae geg gtg atg gtg 144 Gly Asp Pro Asn Thr Gly Ile Ile Ile Gly Asp Asp Ala Val Met Val 40 ate gae ace cag gee acg ece gte atg gee cag gae gtg ate ege ege 192 Ile Asp Thr Gln Ala Thr Pro Val Met Ala Gln Asp Val Ile Arg Arg atc cgt gag gtc acg gac aag ccc atc aag tac gtg acg ctg tcg cac 240 Ile Arg Glu Val Thr Asp Lys Pro Ile Lys Tyr Val Thr Leu Ser His 288 Tyr His Ala Val Arg Val Leu Gly Ala Ser Ala Phe Phe Ala Glu Gly gcc gaa cac atc att gcc agc cag gac acc tac gac ctc atc gtg gag 336 Ala Glu His Ile Ile Ala Ser Gln Asp Thr Tyr Asp Leu Ile Val Glu ege gge gag cag gac aag gee age gag ate gge ege ttt eee ege etg 384 Arg Gly Glu Gln Asp Lys Ala Ser Glu Ile Gly Arg Phe Pro Arg Leu 115 ttc cag aac gtg gaa agc gtg ccc gat ggc atg acc tgg ccc acc ctc

								-	•							
Phe	Gln 130	Asn	Val	Glu	Ser	Val 135	Pro	Asp	Gly	Met	Thr 140	Trp	Pro	Thr	Leu	
				aag Lys												480
				ggc Gly 165												528
				aag Lys												576
				gcg Ala												624
ctg Leu	gac Asp 210	gcc Ala	atc Ile	gcc Ala	gcc Ala	ctg Leu 215	cag Gln	ccc Pro	gaa Glu	aag Lys	ctc Leu 220	gtg Val	ccc Pro	ggc Gly	cgg Arg	672
				cag Gln												720
				atc Ile 245												768
				gac Asp												816
				tac Tyr												864
ttc Phe	gat Asp 290	gtg Val	acc Thr	cgc Arg	Ala	tat Tyr 295	gac Asp	gag Glu	gca Ala	tcg Ser	ggc Gly 300	cac His	gcc Ala	gac Asp	cca Pro	912
cgc Arg 305	atc Ile	tgg Trp	acc Thr	gcc Ala	gag Glu 310	cgc Arg	gac Asp	cgc Arg	cag Gln	atg Met 315	tgg Trp	ctg Leu	gcg Ala	ctc Leu	gaa Glu 320	960
ggc Gly	tga															966
<211 <212		22	omona	as ac	cidor	orar	ns									
)> 1(Thr		Lys	Thr	Phe	Ala	Ser	Ala	Ala	Asp	Leu	Glu	Ile	Lys	Gln	
1				5 Lys					10					15		
			20					25					30			
GTÀ	Asp	Pro 35	Asn	Thr	GТĀ	тте	Ile 40	TTE	GTA	Asp	Asp	Ala 45	Val	Met	Val	
Ile	Asp 50	Thr	Gln	Ala	Thr	Pro 55	Val	Met	Ala	Gln	Asp 60	Val	Ile	Arg	Arg	

Ile Arg Glu Val Thr Asp Lys Pro Ile Lys Tyr Val Thr Leu Ser His Tyr His Ala Val Arg Val Leu Gly Ala Ser Ala Phe Phe Ala Glu Gly Ala Glu His Ile Ile Ala Ser Gln Asp Thr Tyr Asp Leu Ile Val Glu Arg Gly Glu Gln Asp Lys Ala Ser Glu Ile Gly Arg Phe Pro Arg Leu Phe Gln Asn Val Glu Ser Val Pro Asp Gly Met Thr Trp Pro Thr Leu Thr Phe Thr Gly Lys Met Thr Leu Trp Leu Gly Lys Leu Glu Val Gln Ile Leu Gln Leu Gly Arg Gly His Thr Lys Gly Asp Thr Val Val Trp Leu Pro Gln Asp Lys Val Leu Phe Ser Gly Asp Leu Val Glu Phe Gly Ala Thr Pro Tyr Ala Gly Asp Ala Tyr Phe Gln Asp Trp Pro His Thr Leu Asp Ala Ile Ala Ala Leu Gln Pro Glu Lys Leu Val Pro Gly Arq 215 Gly Ala Ala Leu Gln Thr Pro Ala Glu Val Gln Ala Gly Leu Ala Gly Thr Arg Asp Phe Ile Ser Asp Leu Trp Thr Glu Val Lys Ala Gly Ala Asp Ala Gln Gln Asp Leu Arg Lys Val Tyr Glu Ala Ala Phe Ala Lys Leu Gln Pro Lys Tyr Gly Gln Trp Val Ile Phe Asn His Cys Met Pro Phe Asp Val Thr Arg Ala Tyr Asp Glu Ala Ser Gly His Ala Asp Pro 295 Arg Ile Trp Thr Ala Glu Arg Asp Arg Gln Met Trp Leu Ala Leu Glu 310 315 Gly <210> 11 <211> 966 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle: mutant d'HPAC de P. acidovorans <220> <221> CDS

<400> 11 atg tee ace aag ace ttt gee tee gee gee gae ete gaa ate aag eag

<222> (1)..(966)

atg toc acc aag acc ttt gcc toc gcc gcc gac ctc gaa atc aag cag Met Ser Thr Lys Thr Phe Ala Ser Ala Ala Asp Leu Glu Ile Lys Gln

1				5					10					15		
	agc Ser															96
	gac Asp															144
	gac Asp 50															192
	cgt Arg															240
	cac His															288
	gaa Glu															336
	ggc Gly															384
	cag Gln 130															432
acc Thr 145	ttc Phe	acc Thr	ggc Gly	aag Lys	atg Met 150	acg Thr	ctg Leu	tgg Trp	ctg Leu	ggc Gly 155	aag Lys	ctg Leu	gaa Glu	gtg Val	cag Gln 160	480
	ctg Leu															528
	ccc Pro															576
gcc Ala	acg Thr	ccc Pro 195	tat Tyr	gcg Ala	ggc Gly	gat Asp	gcc Ala 200	tac Tyr	ttc Phe	cag Gln	gac Asp	tgg Trp 205	ccg Pro	cac His	acg Thr	624
	gac Asp 210															672
ggc Gly 225	gcc Ala	gcg Ala	ctg Leu	cag Gln	acg Thr 230	ccg Pro	gcc Ala	gag Glu	gtg Val	cag Gln 235	gcc Ala	ggc Gly	ctg Leu	gcc Ala	ggc Gly 240	720
acg Thr	cgc Arg	gac Asp	ttc Phe	atc Ile 245	agc Ser	gac Asp	ctg Leu	tgg Trp	acc Thr 250	gag Glu	gtc Val	aag Lys	gcc Ala	ggc Gly 255	gcc Ala	768
gat Asp	gcc Ala	cag Gln	cag Gln 260	gac Asp	ctg Leu	cgc Arg	aag Lys	gtc Val 265	tac Tyr	gag Glu	gcc Ala	gcc Ala	ttc Phe 270	gcc Ala	aag Lys	816
ctg Leu	cag Gln	ccc Pro	aag Lys	tac Tyr	ggc Gly	cag Gln	tgg Trp	gtg Val	atc Ile	ttc Phe	aac Asn	cac His	tgc Cys	atg Met	ccc Pro	864

275 280 285

ttc gat gtg acc cgc gcc tat gac gag gca tcg ggc cac gcc gac cca 912
Phe Asp Val Thr Arg Ala Tyr Asp Glu Ala Ser Gly His Ala Asp Pro
290 295 300

cgc atc tgg acc gcc gag cgc gac cgc cag atg tgg ctg gcg ctc gaa 960 Arg Ile Trp Thr Ala Glu Arg Asp Arg Gln Met Trp Leu Ala Leu Glu 305 310 315 320

ggc tga 966 Gly

<210> 12

<211> 322

<212>

<213> Séquence artificielle

<400> 12

Met Ser Thr Lys Thr Phe Ala Ser Ala Ala Asp Leu Glu Ile Lys Gln 1 5 10 15

Val Ser Phe Asp Lys Leu Ser Glu His Ala Tyr Ala Tyr Thr Ala Glu 20 25 30

Gly Asp Pro Asn Thr Gly Ile Ile Ile Gly Asp Asp Ala Val Met Val
35 40 45

Ile Asp Thr Gln Ala Thr Pro Val Met Ala Gln Asp Val Ile Arg Arg 50 55 60

Ile Arg Glu Val Thr Asp Lys Pro Ile Lys Tyr Val Thr Leu Ser His 65 70 75 80

Tyr His Ala Val Arg Val Leu Gly Ala Ser Ala Phe Phe Ala Glu Gly 85 90 95

Ala Glu His Ile Ile Ala Ser Gln Asp Thr Tyr Asp Leu Ile Val Glu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Arg Gly Glu Gln Asp Lys Ala Ser Glu Ile Gly Arg Phe Pro Arg Leu 115 120 125

Phe Gln Asn Val Glu Ser Val Pro Asp Gly Met Thr Trp Pro Thr Leu 130 135 140

Thr Phe Thr Gly Lys Met Thr Leu Trp Leu Gly Lys Leu Glu Val Gln
145 150 155 160

Ile Leu Gln Leu Gly Arg Gly His Thr Lys Gly Asp Thr Val Val Trp
165 170 175

Leu Pro Gln Asp Lys Val Leu Phe Ser Gly Asp Leu Val Glu Phe Gly
180 185 190

Ala Thr Pro Tyr Ala Gly Asp Ala Tyr Phe Gln Asp Trp Pro His Thr 195 200 205

Leu Asp Thr Ile Ala Ala Leu Gln Pro Glu Lys Leu Val Pro Gly Arg 210 215 220

Gly Ala Ala Leu Gln Thr Pro Ala Glu Val Gln Ala Gly Leu Ala Gly 225 230 235 240

Thr Arg Asp Phe Ile Ser Asp Leu Trp Thr Glu Val Lys Ala Gly Ala

22 255 245 250 Asp Ala Gln Gln Asp Leu Arg Lys Val Tyr Glu Ala Ala Phe Ala Lys 265 Leu Gln Pro Lys Tyr Gly Gln Trp Val Ile Phe Asn His Cys Met Pro Phe Asp Val Thr Arg Ala Tyr Asp Glu Ala Ser Gly His Ala Asp Pro Arg Ile Trp Thr Ala Glu Arg Asp Arg Gln Met Trp Leu Ala Leu Glu Gly <210> 13 <211> 966 <212> ADN <213> Séquence artificielle <220> <223> Description de la séquence artificielle: mutant d'HPAC de P. acidovorans <220> <221> CDS <222> (1)..(966) <400> 13 atg tcc acc aag acc ttt gcc tcc gcc gcc gac ctc gaa atc aag cag 48 Met Ser Thr Lys Thr Phe Ala Ser Ala Ala Asp Leu Glu Ile Lys Gln gtc agc ttc gac aag ctc tcc gag cac gcc tat gcc tac acg gcc gaa 96 Val Ser Phe Asp Lys Leu Ser Glu His Ala Tyr Ala Tyr Thr Ala Glu ggc gac ccc aac acc ggc atc atc att ggc gac gac gcg gtg atg gtg 144 Gly Asp Pro Asn Thr Gly Ile Ile Ile Gly Asp Asp Ala Val Met Val 192 ate gae ace cag gee acg eee gte atg gee cag gae gtg ate ege ege Ile Asp Thr Gln Ala Thr Pro Val Met Ala Gln Asp Val Ile Arg Arg atc cgt gag gtc acg gac aag ccc atc aag tac gtg acg ctg tcg cac 240 Ile Arg Glu Val Thr Asp Lys Pro Ile Lys Tyr Val Thr Leu Ser His 288 Tyr His Ala Val Arg Val Leu Gly Ala Ser Ala Phe Phe Ala Glu Gly gcc gaa cac atc att gcc agc cag gac acc tac gac ctc atc gtg gag 336 Ala Glu His Ile Ile Ala Ser Gln Asp Thr Tyr Asp Leu Ile Val Glu 100 105 cgc ggc gag cag gac aag gcc agc gag atc ggc cgc ttt ccc cgc ctg

384 Arg Gly Glu Gln Asp Lys Ala Ser Glu Ile Gly Arg Phe Pro Arg Leu 115 120 ttc cag aac gtg gaa agc gtg ccc gat ggc atg acc tgg ccc acc ctc 432 Phe Gln Asn Val Glu Ser Val Pro Asp Gly Met Thr Trp Pro Thr Leu 135 acc ttc acc ggc aag atg acg ctg tgg ctg ggc aag ctg gaa gtg cag 480

																	
	Thr 145	Phe	Thr	Gly	Lys	Met 150	Thr	Leu	Trp	Leu	Gly 155	Lys	Leu	Glu	Val	Gln 160	
						cgc Arg											528
						gtg Val											576
						ggc											624
						gcc Ala											672
						acg Thr 230											720
						agc Ser											768
						ctg Leu											816
						ggc Gly											864
						gcc Ala											912
						gag Glu 310											960
	ggc Gly	tga															966
<210> 14 <211> 322 <212> <213> Séquence artificielle <223> Description de la séquence artificielle: mutant d'HPAC de P. acidovorans																	
	Met)> 14 Ser		Lys		Phe	Ala	Ser	Ala		Asp	Leu	Glu	Ile		Gln	
	1 Val	Ser	Phe		5 Lys	Leu	Ser	Glu		10 Ala	Tyr	Ala	Tyr		15 Ala	Glu	
	Gly	Asp		20 Asn	Thr	Gly	Ile		25 Ile	Gly	Asp	Asp		30 Val	Met	Val	
	Ile		35 Thr	Gln	Ala	Thr		40 Val	Met	Ala	Gln		45 Val	Ile	Arg	Arg	
		50					55					60					

Ile Arg Glu Val Thr Asp Lys Pro Ile Lys Tyr Val Thr Leu Ser His

75 65 70 80 Tyr His Ala Val Arg Val Leu Gly Ala Ser Ala Phe Phe Ala Glu Gly Ala Glu His Ile Ile Ala Ser Gln Asp Thr Tyr Asp Leu Ile Val Glu Arg Gly Glu Gln Asp Lys Ala Ser Glu Ile Gly Arg Phe Pro Arg Leu 120 Phe Gln Asn Val Glu Ser Val Pro Asp Gly Met Thr Trp Pro Thr Leu 135 Thr Phe Thr Gly Lys Met Thr Leu Trp Leu Gly Lys Leu Glu Val Gln 150 Ile Leu Gln Leu Gly Arg Gly His Thr Lys Gly Asp Thr Val Val Trp Leu Pro Gln Asp Lys Val Leu Phe Ser Gly Asp Leu Val Glu Phe Gly 185 Ala Thr Pro Tyr Ala Gly Asp Ala Tyr Phe Gln Asp Trp Pro His Thr Leu Asp Ala Ile Ala Ala Leu Gln Pro Glu Lys Leu Val Pro Gly Arg Gly Ala Ala Leu Gln Thr Pro Ala Glu Val Gln Ala Gly Leu Ala Gly 230 Thr Arg Asp Phe Ile Ser Asp Leu Trp Thr Glu Val Lys Ala Gly Ala Asp Ala Gln Gln Asp Leu Arg Lys Val Tyr Glu Ala Ala Phe Ala Lys Leu Gln Pro Lys Tyr Gly Gln Trp Val Ile Phe Asn His Cys Met Pro Phe Asp Val Thr Arg Ala Tyr Asp Glu Ala Ser Gly His Ala Asp Pro Arg Ile Trp Thr Ala Glu Arg Asp Arg Gln Met Trp Leu Ala Leu Glu 305 315 Gly <210> 15 <211> 3549 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle: cassette d'expression <220> <221> promoter <222> (1)..(928) <220> <221> CDS <222> (965)..(2647)

<220>

<221> terminator <222> (2811)..(3549)

tgcatgccta ggtcgaggag aaatatgagt cgaggcatgg atacactaag ttcccctgaa 60 gtgagcatga tctttgatgc tgagatgatt cccagagcaa gatagtttgt gctgcaagtg 120 acacaattgt aatgaaacca ccactcaacg aatttacttg tggctttgac atgtcgtgtg 180 ctctgtttgt atttgtgagt gccggttggt aattattttt gttaatgtga ttttaaaacc 240 tcttatgtaa atagttactt tatctattga agtgtgttct tgtggtctat agtttctcaa 300 agggaaatta aaatgttgac atcccattta caattgataa cttggtatac acaaactttg 360 taaatttggt gatatttatg gtcgaaagaa ggcaataccc attgtatgtt ccaatatcaa 420 tatcaatacg ataacttgat aatactaaca tatgattgtc attgtttttc cagtatcaat 480 atacattaag ctactacaaa attagtataa atcactatat tataaatctt tttcggttgt 540 aacttqtaat tcgtgggttt ttaaaataaa aqcatqtqaa aattttcaaa taatqtgatq 600 gcgcaatttt attttccgag ttccaaaata ttgccgcttc attaccctaa tttgtggcgc 660 cacatgtaaa acaaaagacg attcttagtg gctatcactg ccatcacgcg gatcactaat 720 atgaaccgtc gattaaaaca gatcgacggt ttatacatca ttttattgta cacacggatc 780 gatatctcag ccgttagatt taatatgcga tctgattgct caaaaaaatag actctccgtc 840 tttgcctata aaaacaattt cacatctttc tcacccaaat ctactcttaa ccgttcttct 900 tcttctacag acatcaattt ctctcgactc tagaggatcc aagcttatcg atttcgaacc 960 cctc atg act tca ctt aca gtg tcc ggc cgg gtg gcg cag gtc ctc agc Met Thr Ser Leu Thr Val Ser Gly Arg Val Ala Gln Val Leu Ser age tat gte age gat gtg tte ggt gtg atg gge aac gga aac gtc tae 1057 Ser Tyr Val Ser Asp Val Phe Gly Val Met Gly Asn Gly Asn Val Tyr tto ctg gac gcc gcc gag aag gag ggc ctc cgc ttc acg gcc gta cgc 1105 Phe Leu Asp Ala Ala Glu Lys Glu Gly Leu Arg Phe Thr Ala Val Arg cat gaa ggt gcc gcc atc gcg gcg gcg gac gcc tac tat cgg gca tcc 1153 His Glu Gly Ala Ala Ile Ala Ala Ala Asp Ala Tyr Tyr Arg Ala Ser ggg cgc ctg gcg gcg ggg acc acc acc tac ggc ccc ggt tac acc aac 1201 Gly Arg Leu Ala Ala Gly Thr Thr Thr Tyr Gly Pro Gly Tyr Thr Asn 65 gcc ctg acg gcc ctc gcc gag gcg gtc cag gcg cag atc ccc gtg gtg 1249 Ala Leu Thr Ala Leu Ala Glu Ala Val Gln Ala Gln Ile Pro Val Val 80 ete gte ace ggg gae gee eeg age age gge gee egg eet tgg gae gtg 1297 Leu Val Thr Gly Asp Ala Pro Ser Ser Gly Ala Arg Pro Trp Asp Val 100 gac cag gcc gcg atc gcc gcc ggg ctg ggg gcg gcc acc ttc acg gtc 1345 Asp Gln Ala Ala Ile Ala Ala Gly Leu Gly Ala Ala Thr Phe Thr Val

					gaa Glu			1393
					gtt Val			1441
					gtg Val 170			1489
					cgg Arg			1537
					ccg Pro			1585
					gaa Glu			1633
					gca Ala			1681
					ggc Gly 250			1729
					gtg Val			1777
					ggc Gly			1825
					atg Met			1873
					aag Lys			1921
					gcc Ala 330			1969
					gaa Glu			2017
					ctt Leu			2065
					cgc Arg			2113
					atg Met			2161

cgt cct cag gac ctg gtc atg gtg ggg acc gcg tac cag tcg atc ggg 22 Arg Pro Gln Asp Leu Val Met Val Gly Thr Ala Tyr Gln Ser Ile Gly 400 405 410 415	209
ctt ggc ctg gcc agc gcc gtg ggg gcg tcc cgg gcc gtg gac gac ggc 22 Leu Gly Leu Ala Ser Ala Val Gly Ala Ser Arg Ala Val Asp Asp Gly 420 425 430	257
aat atc ctg gtg ctg gcg gcg ggc ggc gga ttc ctg atg ggc ctg Asn Ile Leu Val Leu Ala Ala Gly Asp Gly Gly Phe Leu Met Gly Leu 435 440 445	305
tcc gac ctg gaa tcg ctc gtg ggc gcg gcg agc agc gcc gtc gtg gtg Ser Asp Leu Glu Ser Leu Val Gly Ala Ala Ser Ser Ala Val Val 450 455 460	353
atc tac aac gac gcc gcc tac ggg gcc gag atc cat cag tac ggc tca 24 Ile Tyr Asn Asp Ala Ala Tyr Gly Ala Glu Ile His Gln Tyr Gly Ser 465 470 475	401
cgg ggg ctc acc gaa aag ccc atg ctg atc ccc gaa gtg gac ttc agc 24 Arg Gly Leu Thr Glu Lys Pro Met Leu Ile Pro Glu Val Asp Phe Ser 480 485 490 495	449
ggg att gcc cgc gcg atc ggg gcg gaa tcc gca atc atc cgc aag ctg 24 Gly Ile Ala Arg Ala Ile Gly Ala Glu Ser Ala Ile Ile Arg Lys Leu 500 505 510	497
tcg gac ctc tcc gcg ctc acg gac tgg atc gag gcc ggc gcc agg gga 25 Ser Asp Leu Ser Ala Leu Thr Asp Trp Ile Glu Ala Gly Ala Arg Gly 515 520 525	545
acc ttc gtg gcc gac tgc cgc atc acc tca agc gtc cgg gcc ccg tgg Thr Phe Val Ala Asp Cys Arg Ile Thr Ser Ser Val Arg Ala Pro Trp 530 535 540	593
ctg agc gaa tgg atg agg gcc tcg caa gcg gcg aag gag gcg gtg gcg Leu Ser Glu Trp Met Arg Ala Ser Gln Ala Ala Lys Glu Ala Val Ala 545 550 555	641
ggc tag ggccggcctc gtcgaaatgc cgccctccaa cccaactcag taccagctca 26 Gly 560	697
gggcgttctc agggctggga acgccctgag ctgctactca tttgttcgaa ctcgaggtcg 27	757
acggtatcga taagcttgat atcgaattcc tgcagcccgg gggatccact aggggatccc 28	317
ccgatccgcg tttgtgtttt ctgggtttct cacttaagcg tctgcgtttt acttttgtat 28	377
tgggtttggc gtttagtagt ttgcggtagc gttcttgtta tgtgtaatta cgctttttct 29	937
tcttgcttca gcagtttcgg ttgaaatata aatcgaatca agtttcactt tatcagcgtt 29	997
gttttaaatt ttggcattaa attggtgaaa attgcttcaa ttttgtatct aaatagaaga 30)57
gacaacatga aattcgactt ttgacctcaa atcttcgaac atttatttcc tgatttcacg 31	117
atggatgagg ataacgaaag ggcggttcct atgtccggga aagttcccgt agaagacaat 31	L77
gagcaaagct actgaaacgc ggacacgacg tcgcattggt acggatatga gttaaaccga 32	237
ctcaattcct ttattaagac ataaaccgat tttggttaaa gtgtaacagt gagctgatat 32	297
aaaaccgaaa caaaccggta caagtttgat tgagcaactt gatgacaaac ttcagaattt 33	357
tggttattga atgaaaatca tagtctaatc gtaaaaaatg tacagaagaa aagctagagc 34	117

agaacaaaga ttctatattc tggttccaat ttatcatcgc tttaacgtcc ctcagatttg 3477 atcgggctgc aggaattcgg cctgactgat catttaaaca ctagttctag agcggccgcc 3537 accgcggtgg ag 3549

<210> 16

<211> 241

<212>

<213> Séquence artificielle

<223> Description de la séquence artificielle: cassette
 d'expression

<400> 16

Leu Arg Leu Leu Asp Asp Ala Ala Gly Ala Asn Ala Ser Lys Ala Trp 1 5 10 15

Arg Ala Glu Ala Leu Lys Arg Leu Ala Glu Gly Pro Cys His His Pro 20 25 30

Gly Thr Ala Glu Thr Thr Asp Gly Arg Leu Asp Pro Arg Ala Leu Ala 35 40 45

Ser Ala Leu Asp Ala Val Leu Pro Glu Arg Arg Thr Val Val Gln Asp
50 60

Gly Gly His Phe Leu Gly Trp Ala Pro Met Tyr Trp Arg Ile Pro Arg 65 70 75 80

Pro Gln Asp Leu Val Met Val Gly Thr Ala Tyr Gln Ser Ile Gly Leu 85 90 95

Gly Leu Ala Ser Ala Val Gly Ala Ser Arg Ala Val Asp Asp Gly Asn 100 105 110

Ile Leu Val Leu Ala Ala Gly Asp Gly Gly Phe Leu Met Gly Leu Ser 115 120 125

Asp Leu Glu Ser Leu Val Gly Ala Ala Ser Ser Ala Val Val Ile 130 135 140

Gly Leu Thr Glu Lys Pro Met Leu Ile Pro Glu Val Asp Phe Ser Gly 165 170 175

Ile Ala Arg Ala Ile Gly Ala Glu Ser Ala Ile Ile Arg Lys Leu Ser 180 185 190

Asp Leu Ser Ala Leu Thr Asp Trp Ile Glu Ala Gly Ala Arg Gly Thr 195 200 205

Phe Val Ala Asp Cys Arg Ile Thr Ser Ser Val Arg Ala Pro Trp Leu 210 215 220

Ser Glu Trp Met Arg Ala Ser Gln Ala Ala Lys Glu Ala Val Ala Gly 225 230 235 240

<210> 17

<211> 2838

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: cassette

d'expression

<220> <221> promoter <222> (1)..(807) <220> <221> CDS <222> (847)..(2538) <220> <221> terminator <222> (2539)..(2838) <400> 17 ggcccccct cgagcccaca gatggttaga gaggcttacg cagcaggtct catcaagacg 60 atctacccga gcaataatct ccaggaaatc aaataccttc ccaagaaggt taaagatgca 120 gtcaaaagat tcaggactaa ctgcatcaag aacacagaga aagatatatt tctcaagatc 180 agaagtacta ttccagtatg gacgattcaa ggcttgcttc acaaaccaag gcaagtaata 240 gagattggag tetetaaaaa ggtagtteee aetgaateaa aggeeatgga gteaaagatt 300 caaatagagg acctaacaga actcgccgta aagactggcg aacagttcat acagagtctc 360 ttacgactca atgacaagaa gaaaatcttc gtcaacatgg tggagcacga cacacttgtc 420 tactccaaaa atatcaaaga tacagtctca gaagaccaaa gggcaattga gacttttcaa 480 caaagggtaa tatccggaaa cctcctcgga ttccattgcc cagctatctg tcactttatt 540 gtgaagatag tggaaaagga aggtggctcc tacaaatgcc atcattgcga taaaggaaag 600 gccatcgttg aagatgcctc tgccgacagt ggtcccaaag atggaccccc acccacgagg 660 agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat 720 atctccactg acgtaaggga tgacgcacaa tcccactatc cttcgcaaga cccttcctct 780 atataaggaa gttcatttca tttggagaga acacggggga ctctagagga tcagaggacg 840 aacaac atg tcc cac ccc gcc atc tcc ctg caa gcg ctg cgc ggc agc 888 Met Ser His Pro Ala Ile Ser Leu Gln Ala Leu Arg Gly Ser ggc gca gac ata cag tcc atc cac atc ccc tac gag cgc cat gcc gac 936 Gly Ala Asp Ile Gln Ser Ile His Ile Pro Tyr Glu Arg His Ala Asp 15 cag gac gcc ggt gcg gac acg ccc gcc cgg cat ccc gtc gtc atc gtc 984 Gln Asp Ala Gly Ala Asp Thr Pro Ala Arg His Pro Val Val Ile Val 35 gge gee gge eee gtg gge etg teg etg gee ate gae etg gee eag ege 1032 Gly Ala Gly Pro Val Gly Leu Ser Leu Ala Ile Asp Leu Ala Gln Arg ggc cag cgc gtg gtg ctg ctg gac aac gac tgc cgg ctg tcc acg ggc 1080 Gly Gln Arg Val Val Leu Leu Asp Asn Asp Cys Arg Leu Ser Thr Gly 70 teg ege gee ate tge ttt tee aag ege aeg etg gag ate tgg gae ege 1128 Ser Arg Ala Ile Cys Phe Ser Lys Arg Thr Leu Glu Ile Trp Asp Arg 80 85 ctg ggc gtg ggc cag ccc atg gtg gac aag ggc gtg tcc tgg aac ctg

1176

30																
Leu 95	Gly	Val	Gly	Gln	Pro 100	Met	Val	Asp	Lys	Gly 105	Val	Ser	Trp	Asn	Leu 110	
	aag Lys															1224
	gag Glu															1272
	gcc Ala															1320
	ctg Leu 160															1368
	gcg Ala															1416
gcg Ala	caa Gln	tgg Trp	gtc Val	ctg Leu 195	gcc Ala	tgc Cys	gat Asp	ggc Gly	tcg Ser 200	cgc Arg	tcg Ser	ccg Pro	ctg Leu	cgc Arg 205	ggc Gly	1464
	ctg Leu															1512
	gcc Ala															1560
	ttc Phe 240															1608
cag Gln 255	ccc Pro	gac Asp	gat Asp	gtc Val	tgg Trp 260	cgc Arg	atc Ile	gac Asp	ttc Phe	cag Gln 265	ctg Leu	ggc Gly	tgg Trp	gac Asp	gcg Ala 270	1656
	ccc Pro															1704
gcc Ala	ctg Leu	ctg Leu	ggc Gly 290	aag Lys	gac Asp	gcg Ala	ccc Pro	ttc Phe 295	gag Glu	ctg Leu	gaa Glu	tgg Trp	gcc Ala 300	agc Ser	gtc Val	1752
	acc Thr															1800
	ttt Phe 320															1848
ggc Gly 335	gcc Ala	aac Asn	agc Ser	GJA Gàc	gtg Val 340	cag Gln	gat Asp	gcc Ala	gag Glu	aac Asn 345	ctg Leu	gca Ala	tgg Trp	aag Lys	ctg Leu 350	1896
gac Asp	cgc Arg	gtg Val	ctg Leu	cgc Arg 355	ggc Gly	cag Gln	gcc Ala	gat Asp	gcc Ala 360	tcg Ser	ctg Leu	atc Ile	gcc Ala	acc Thr 365	tac Tyr	1944
ggc	gcc	gag	cgc	gaa	tac	gcg	gcc	gac	gag	aac	atc	cgc	aac	tcc	acg	1992

31										
Gly Ala Glu Arg Glu Tyr Ala Ala Asp Glu Asn Ile Arg Asn Ser Thr 370 375 380										
cgc gcc acc gac ttc atc acg ccc aag agc gag atc agc cgc ctg ttt 2 Arg Ala Thr Asp Phe Ile Thr Pro Lys Ser Glu Ile Ser Arg Leu Phe 385 390 395	2040									
cgc gac gcc gtg ctg gac ctg gcg cgc gac cat gaa ttc gcg cgc cgc 2 Arg Asp Ala Val Leu Asp Leu Ala Arg Asp His Glu Phe Ala Arg Arg 400 405 410	2088									
atc gtc aac agc ggg cgg ctg tcc gtg ccg gcc acg ctg cac ggc tcc Ile Val Asn Ser Gly Arg Leu Ser Val Pro Ala Thr Leu His Gly Ser 425 430	2136									
gcg ctc aac acg cct gac acc gac acc ttc gac gga acg cag ctg ccc 2 Ala Leu Asn Thr Pro Asp Thr Asp Thr Phe Asp Gly Thr Gln Leu Pro 435 440 445	2184									
ggc gcc gtg ctg gcc gat gcg ccc atg cgc cgg ccc ggc gca gac ggc 2 Gly Ala Val Leu Ala Asp Ala Pro Met Arg Arg Pro Gly Ala Asp Gly 450 455 460	2232									
acg gcc tgg ctg ctg cgc gca ctg gga ccg gac ttc acg ctg ctg cac 2 Thr Ala Trp Leu Leu Arg Ala Leu Gly Pro Asp Phe Thr Leu Leu His 465 470 475	2280									
ttc gac ccc acg ccc gcc tgg gcg cag gcg ctg ccc ggc gtg ctc aac 2 Phe Asp Pro Thr Pro Ala Trp Ala Gln Ala Leu Pro Gly Val Leu Asn 480 485 490	2328									
ctg tcc atc gcg gcc gag ggc gag gcc cat gcg cca gac gcc gac ctc Leu Ser Ile Ala Ala Glu Gly Glu Ala His Ala Pro Asp Ala Asp Leu 495 500 505 510	2376									
atc gat gcg cgc ggc ctg gcg gcc aaa cgc ctg gat gca cgc ccc ggc 2 Ile Asp Ala Arg Gly Leu Ala Ala Lys Arg Leu Asp Ala Arg Pro Gly 515 520 525	2424									
acc agc tac ctg ctg cgg cct gac cag cat gtc tgc gcg cgc tgg cgc 2 Thr Ser Tyr Leu Leu Arg Pro Asp Gln His Val Cys Ala Arg Trp Arg 530 540	2472									
cgc ccc gac gaa gcc agc gtg cgc gcc gcg ctg caa aga gcc tgc ggc 2 Arg Pro Asp Glu Ala Ser Val Arg Ala Ala Leu Gln Arg Ala Cys Gly 545 550 555	2520									
gcc gcc gcc acg gcc tga acctcttaag cttatcgata ccgtcgacga 2 Ala Ala Thr Ala 560	2568									
attteccega tegtteaaac atttggeaat aaagtttett aagattgaat eetgttgeeg 2	2628									
gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta ataattaaca 2	2688									
tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg caattataca 2	2748									
tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta tcgcgcgcgg 2	2808									
tgtcatctat gttcctaggt cgggaattgc	2838									

<210> 18

<211> 284
<212>
<213> Séquence artificielle
<223> Description de la séquence artificielle: cassette
d'expression

Leu Glu Trp Ala Ser Val Tyr Thr Phe Ala Cys Leu Arg Met Asp Arg 20 25 30

Phe Val His Gly Arg Val Val Phe Ala Gly Asp Ser Ala His Gly Val 35 40 45

Ser Pro Phe Gly Ala Arg Gly Ala Asn Ser Gly Val Gln Asp Ala Glu 50 55 60

Asn Leu Ala Trp Lys Leu Asp Arg Val Leu Arg Gly Gln Ala Asp Ala 65 70 75 80

Ser Leu Ile Ala Thr Tyr Gly Ala Glu Arg Glu Tyr Ala Ala Asp Glu 85 90 95

Asn Ile Arg Asn Ser Thr Arg Ala Thr Asp Phe Ile Thr Pro Lys Ser

Glu Ile Ser Arg Leu Phe Arg Asp Ala Val Leu Asp Leu Ala Arg Asp 115 120 125

His Glu Phe Ala Arg Arg Ile Val Asn Ser Gly Arg Leu Ser Val Pro 130 135 140

Ala Thr Leu His Gly Ser Ala Leu Asn Thr Pro Asp Thr Asp Thr Phe 145 150 155 160

Asp Gly Thr Gln Leu Pro Gly Ala Val Leu Ala Asp Ala Pro Met Arg 165 170 175

Arg Pro Gly Ala Asp Gly Thr Ala Trp Leu Leu Arg Ala Leu Gly Pro 180 185 190

Asp Phe Thr Leu Leu His Phe Asp Pro Thr Pro Ala Trp Ala Gln Ala 195 200 205

Leu Pro Gly Val Leu Asn Leu Ser Ile Ala Ala Glu Gly Glu Ala His 210 215 220

Ala Pro Asp Ala Asp Leu Ile Asp Ala Arg Gly Leu Ala Ala Lys Arg 225 230 235 240

Leu Asp Ala Arg Pro Gly Thr Ser Tyr Leu Leu Arg Pro Asp Gln His 245 250 255

Val Cys Ala Arg Trp Arg Arg Pro Asp Glu Ala Ser Val Arg Ala Ala 260 265 270

Leu Gln Arg Ala Cys Gly Ala Ala Ala Thr Ala 275 280

<210> 19

<211> 1839

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: cassette d'expression

<220>

<221> promoter

<222> (1)..(547) <220> <221> CDS <222> (574)..(1539) <220> <221> terminator <222> (1540)..(1839) <400> 19 ccccctcgag gtcgacggta ttgatcagct tccagaaggt aattatccaa gatgtagcat 60 caagaatcca atgtttacgg gaaaaactat ggaagtatta tgtgagctca gcaagaagca 120 gatcaatatg cggcacatat gcaacctatg ttcaaaaatg aagaatgtac agatacaaga 180 tectatactg ecagaatacg aagaagaata egtagaaatt gaaaaagaag aaccaggega 240 agaaaagaat cttgaagacg taagcactga cgacaacaat gaaaagaaga agataaggtc 300 ggtgattgtg aaagagacat agaggacaca tgtaaggtgg aaaatgtaag ggcggaaagt 360 aaccttatca caaaggaatc ttatccccca ctacttatcc ttttatattt ttccgtgtca 420 tttttgccct tgagttttcc tatataagga accaagttcg gcatttgtga aaacaagaaa 480 aaatttggtg taagctattt totttgaagt actgaggata caacttcaga gaaatttgta 540agtttgtaga tctgaattcg atgcaggatg cac atg tcc acc aag acc ttt gcc Met Ser Thr Lys Thr Phe Ala tee gee gee gae ete gaa ate aag eag gte age tte gae aag ete tee 642 Ser Ala Ala Asp Leu Glu Ile Lys Gln Val Ser Phe Asp Lys Leu Ser gag cac gcc tat gcc tac acg gcc gaa ggc gac ccc aac acc ggc atc 690 Glu His Ala Tyr Ala Tyr Thr Ala Glu Gly Asp Pro Asn Thr Gly Ile atc att ggc gac gac gcg gtg atg gtg atc gac acc cag gcc acq ccc 738 Ile Ile Gly Asp Asp Ala Val Met Val Ile Asp Thr Gln Ala Thr Pro 40 gtc atg gcc cag gac gtg atc cgc cgc atc cgt gag gtc acg gac aag 786 Val Met Ala Gln Asp Val Ile Arg Arg Ile Arg Glu Val Thr Asp Lys ccc atc aag tac gtg acg ctg tcg cac tac cac gcg gtg cgc gtg ctg 834 Pro Ile Lys Tyr Val Thr Leu Ser His Tyr His Ala Val Arg Val Leu ggc gcc tcg gcc ttc ttc gcg gaa ggc gcc gaa cac atc att gcc agc 882 Gly Ala Ser Ala Phe Phe Ala Glu Gly Ala Glu His Ile Ile Ala Ser 90 100 cag gac ace tac gac etc ate gtg gag ege gge gag cag gac aag gee 930 Gln Asp Thr Tyr Asp Leu Ile Val Glu Arg Gly Glu Gln Asp Lys Ala 110 115 age gag ate gge ege ttt eee ege etg tte eag aac gtg gaa age gtg 978 Ser Glu Ile Gly Arg Phe Pro Arg Leu Phe Gln Asn Val Glu Ser Val 120 125 ccc gat ggc atg acc tgg ccc acc ctc acc ttc acc ggc aag atg acg 1026 Pro Asp Gly Met Thr Trp Pro Thr Leu Thr Phe Thr Gly Lys Met Thr

145

140

ctg tgg ctg ggc aag ctg gaa gtg cag atc ctg cag ctg ggc cgc ggc Leu Trp Leu Gly Lys Leu Glu Val Gln Ile Leu Gln Leu Gly Arg Gly 155 160 165	1074
cac acc aag ggc gac acc gtg gtc tgg ctg ccc cag gac aag gtg ctg His Thr Lys Gly Asp Thr Val Val Trp Leu Pro Gln Asp Lys Val Leu 170 175 180	1122
ttc agc ggc gac ctg gtg gag ttc ggc gcc acg ccc tat gcg ggc gat Phe Ser Gly Asp Leu Val Glu Phe Gly Ala Thr Pro Tyr Ala Gly Asp 185 190 195	1170
gcc tac ttc cag gac tgg ccg cac acg ctg gac gcc atc gcc gcc ctg Ala Tyr Phe Gln Asp Trp Pro His Thr Leu Asp Ala Ile Ala Ala Leu 200 205 210 215	1218
cag ccc gaa aag ctc gtg ccc ggc cgg ggc gcc gcg ctg cag acg ccg Gln Pro Glu Lys Leu Val Pro Gly Arg Gly Ala Ala Leu Gln Thr Pro 220 225 230	1266
gcc gag gtg cag gcc ggc ctg gcc ggc acg cgc gac ttc atc agc gac Ala Glu Val Gln Ala Gly Leu Ala Gly Thr Arg Asp Phe Ile Ser Asp 235 240 245	1314
ctg tgg acc gag gtc aag gcc ggc gcc gat gcc cag cag gac ctg cgc Leu Trp Thr Glu Val Lys Ala Gly Ala Asp Ala Gln Gln Asp Leu Arg 250 255 260	1362
aag gtc tac gag gcc gcc ttc gcc aag ctg cag ccc aag tac ggc cag Lys Val Tyr Glu Ala Ala Phe Ala Lys Leu Gln Pro Lys Tyr Gly Gln 265 270 275	1410
tgg gtg atc ttc aac cac tgc atg ccc ttc gat gtg acc cgc gcc tat Trp Val Ile Phe Asn His Cys Met Pro Phe Asp Val Thr Arg Ala Tyr 280 285 290 295	1458
gac gag gca tcg ggc cac gcc gac cca cgc atc tgg acc gcc gag cgc Asp Glu Ala Ser Gly His Ala Asp Pro Arg Ile Trp Thr Ala Glu Arg 300 305 310	1506
gac cgc cag atg tgg ctg gcg ctc gaa ggc tga tgcaagctta tcgataccgt Asp Arg Gln Met Trp Leu Ala Leu Glu Gly 315 320	1559
cgacgaattt ccccgatcgt tcaaacattt ggcaataaag tttcttaaga ttgaatcctg	1619
ttgccggtct tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa	1679
ttaacatgta atgcatgacg ttatttatga gatgggtttt tatgattaga gtcccgcaat	1739
tatacattta atacgcgata gaaaacaaaa tatagcgcgc aaactaggat aaattatcgc	1799
gegeggtgte atetatgtta etagateggg aattgeggee	1839

<210> 20

<400> 20

Ala Gly Asp Ala Tyr Phe Gln Asp Trp Pro His Thr Leu Asp Ala Ile

<211> 142

<212>

<213> Séquence artificielle

<223> Description de la séquence artificielle: cassette d'expression

Lys Val Leu Phe Ser Gly Asp Leu Val Glu Phe Gly Ala Thr Pro Tyr 1 5 10 15

20 25 30

Ala Ala Leu Gln Pro Glu Lys Leu Val Pro Gly Arg Gly Ala Ala Leu 35 40 45

Gln Thr Pro Ala Glu Val Gln Ala Gly Leu Ala Gly Thr Arg Asp Phe 50 55 60

Ile Ser Asp Leu Trp Thr Glu Val Lys Ala Gly Ala Asp Ala Gln Gln 65 70 75 80

Asp Leu Arg Lys Val Tyr Glu Ala Ala Phe Ala Lys Leu Gln Pro Lys 85 90 95

Tyr Gly Gln Trp Val Ile Phe Asn His Cys Met Pro Phe Asp Val Thr 100 105 110

Arg Ala Tyr Asp Glu Ala Ser Gly His Ala Asp Pro Arg Ile Trp Thr 115 120 125

Ala Glu Arg Asp Arg Gln Met Trp Leu Ala Leu Glu Gly 130 135 140

<210> 21

<211> 4677

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: cassette d'expression

<400> 21

ccccctcgag gtcgacggta ttgatcagct tccagaaggt aattatccaa gatgtagcat 60 caagaatcca atgtttacgg gaaaaactat ggaagtatta tgtgagctca gcaagaagca 120 gatcaatatg cggcacatat gcaacctatg ttcaaaaatg aagaatgtac agatacaaga 180 tectatactg ecagaatacg aagaagaata egtagaaatt gaaaaagaag aaccaggega 240 agaaaagaat cttgaagacg taagcactga cgacaacaat qaaaagaaga agataaggtc 300 ggtgattgtg aaagagacat agaggacaca tgtaaggtgg aaaatgtaag ggcggaaagt 360 aaccttatca caaaggaatc ttatccccca ctacttatcc ttttatattt ttccgtgtca 420 tttttgccct tgagttttcc tatataagga accaagttcg gcatttgtga aaacaagaaa 480 aaatttggtg taagctattt tctttgaagt actgaggata caacttcaga qaaatttgta 540 agtttgtaga tctgaattcg atgcaggatg cacatgtcca ccaagacctt tgcctccgcc 600 gccgacctcg aaatcaagca ggtcagcttc gacaagctct ccqagcacgc ctatgcctac 660 acggccgaag gcgaccccaa caccggcatc atcattggcg acgacgcggt gatggtgatc 720 gacacccagg ccacgcccgt catggcccag gacgtgatcc gccqcatccg tgaggtcacg 780 gacaageeea teaagtaegt gaegetgteg cactaceaeg eggtgegegt getgggegee 840 teggeettet tegeggaagg egeegaacae ateattgeea geeaggaeae etaegaeete 900 atcgtggagc gcggcgagca ggacaaggcc agcgagatcg gccgctttcc ccgcctgttc 960 cagaacgtgg aaagcgtgcc cgatggcatg acctggccca ccctcacctt caccggcaag 1020

atgacgctgt ggctgggcaa gctggaagtg cagatcctgc agctgggccg cggccacacc 1080 aagggcgaca ccgtggtctg gctgccccag gacaaggtgc tgttcagcgg cgacctggtg 1140 gagttcggcg ccacgcccta tgcgggcgat gcctacttcc aggactggcc gcacacgctg 1200 gacgccatcg ccgccctgca gcccgaaaag ctcgtgcccg gccggggcgc cgcgctgcag 1260 acgccggccg aggtgcaggc cggcctggcc ggcacgcgcg acttcatcag cgacctgtgg 1320 accgaggtca aggccggcgc cgatgcccag caggacctgc gcaaggtcta cgaggccgcc 1380 ttcgccaagc tgcagcccaa gtacggccag tgggtgatct tcaaccactg catgcccttc 1440 gatgtgaccc gcgcctatga cgaggcatcg ggccacgccg acccacgcat ctggaccgcc 1500 gagegegace gecagatgtg getggegete gaaggetgat geaagettat egatacegte 1560 gacgaatttc cccgatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt 1620 tgccggtctt gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat 1680 taacatgtaa tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt 1740 atacatttaa tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg 1800 cgcggtgtca tctatgttac tagatcggga attgcggccc cccctcgagc ccacagatgg 1860 ttagagaggc ttacgcagca ggtctcatca agacgatcta cccgagcaat aatctccagg 1920 aaatcaaata ccttcccaag aaggttaaag atgcagtcaa aagattcagg actaactgca 1980 tcaagaacac agagaaagat atatttctca agatcagaag tactattcca gtatggacga 2040 ttcaaggctt gcttcacaaa ccaaggcaag taatagagat tggagtctct aaaaaggtag 2100 ttcccactga atcaaaggcc atggagtcaa agattcaaat agaggaccta acagaactcg 2160 ccgtaaagac tggcgaacag ttcatacaga gtctcttacg actcaatgac aagaagaaaa 2220 tettegteaa eatggtggag caegacaeae ttgtetaete caaaaatate aaagatacag 2280 teteagaaga eeaaagggea attgagaett tteaacaaag ggtaatatee ggaaacetee 2340 teggatteea ttgeecaget atetgteaet ttattgtgaa gatagtggaa aaggaaggtg 2400 gctcctacaa atgccatcat tgcgataaag gaaaggccat cgttgaagat gcctctgccg 2460 acagtggtcc caaagatgga cccccaccca cgaggagcat cgtggaaaaa gaagacgttc 2520 caaccacgtc ttcaaagcaa gtggattgat gtgatatctc cactgacgta agggatgacg 2580 cacaatccca ctatccttcg caagaccctt cctctatata aggaagttca tttcatttgg 2640 agagaacacg ggggactcta gaggatcaga ggacgaacaa catgtcccac cccgccatct 2700 ccctgcaagc gctgcgcggc agcggcgcag acatacagtc catccacatc ccctacgagc 2760 gccatgccga ccaggacgcc ggtgcggaca cgcccgcccg gcatcccgtc gtcatcgtcg 2820 gcgccggccc cgtgggcctg tcgctggcca tcgacctggc ccagcgcggc cagcgcgtgg 2880 tgctgctgga caacgactgc cggctgtcca cgggctcgcg cgccatctgc ttttccaagc 2940 gcacgctgga gatctgggac cgcctgggcg tgggccagcc catggtggac aagggcgtgt 3000 cctggaacct gggcaaggtc ttcttcaagg accagccgct gtaccgcttc gacctgctgc 3060

ccgaggacgg ccacgagcgc ccggccttca tcaacctgca gcagtactac gccgaggcct 3120 atctggtcga gcgcgcactg cagctgccgc tgatcgacct gcgctggcac agcaaggtca 3180 cggcactgga gccgcaggcc gagggcgcgc tgctgaccgt ggagacgcct gacggcagct 3240 accgcatcga tgcgcaatgg gtcctggcct gcgatggctc gcgctcgccg ctgcgcggcc 3300 tgctgggcca ggaaagccat ggccgcatct tccgcgaccg cttcctgatc gccgacgtga 3360 agatgcacgc cgaattcccc accgagcgct ggttctggtt cgacccgccc ttccacccgg 3420 gccagagcgt gctgctgcac cgccagcccg acgatgtctg gcgcatcgac ttccagctgg 3480 gctgggacgc ggaccccgag gaagagaaaa agcccgagaa catcgtgccg cgcatccgcg 3540 ccctgctggg caaggacgcg cccttcgagc tggaatgggc cagcgtctac accttcgcct 3600 gcctgcgcat ggaccgcttc gtccatggcc gcgtggtctt tgcgggcgac agcgcccacg 3660 gcgtctcgcc gtttggcgca cgcggcgcca acagcggcgt gcaggatgcc gagaacctgg 3720 catggaaget ggacegegtg etgegeggee aggeegatge etegetgate gecacetaeg 3780 gcgccgagcg cgaatacgcg gccgacgaga acatccgcaa ctccacgcgc gccaccgact 3840 teateacgee caagagegag ateageegee tgtttegega egeegtgetg gaeetggege 3900 gcgaccatga attcgcgcgc cgcatcgtca acagcgggcg gctgtccgtg ccggccacgc 3960 tgcacggctc cgcgctcaac acgcctgaca ccgacacctt cgacggaacg cagctgcccg 4020 gegeegtget ggeegatgeg eccatgegee ggeeeggege agaeggeaeg geetggetge 4080 tgcgcgcact gggaccggac ttcacgctgc tgcacttcga ccccacgccc gcctgggcgc 4140 aggcgctgcc cggcgtgctc aacctgtcca tcgcggccga gggcgaggcc catgcgccag 4200 acgccgacct catcgatgcg cgcgcctgg cggccaaacg cctggatgca cgccccggca 4260 ccagctacct gctgcggcct gaccagcatg tctgcgcgcg ctggcgccgc cccgacgaag 4320 ccagcgtgcg cgccgcgctg caaagagcct gcggcgccgc cgccacggcc tgaacctctt 4380 aagcttatcg ataccgtcga cgaatttccc cgatcgttca aacatttggc aataaagttt 4440 cttaagattg aatcctgttg ccggtcttgc gatgattatc atataatttc tgttgaatta 4500 cgttaagcat gtaataatta acatgtaatg catgacgtta tttatgagat gggtttttat 4560 gattagagtc ccgcaattat acatttaata cgcgatagaa aacaaaatat agcgcgcaaa 4620 ctaggataaa ttatcgcgcg cggtgtcatc tatgttccta ggtcgggaat tgcggcc 4677

<210> 22

<211> 8187

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: cassette
 d'expression

<400> 22

ccccctcgag gtcgacggta ttgatcagct tccagaaggt aattatccaa gatgtagcat 60 caagaatcca atgtttacgg gaaaaactat ggaagtatta tgtgagctca gcaagaagca 120

gatcaatatg cggcacatat gcaacctatg ttcaaaaatg aagaatgtac agatacaaga 180 tcctatactg ccagaatacg aagaagaata cgtagaaatt gaaaaagaag aaccaggcga 240 agaaaagaat cttgaagacg taagcactga cgacaacaat gaaaagaaga agataaggtc 300 ggtgattgtg aaagagacat agaggacaca tgtaaggtgg aaaatgtaag ggcggaaagt 360 aacettatea caaaggaate ttateeecea etaettatee ttttatattt tteegtgtea 420 tttttgccct tgagttttcc tatataagga accaagttcg gcatttgtga aaacaagaaa 480 aaatttggtg taagctattt tctttgaagt actgaggata caacttcaga gaaatttgta 540 agtttgtaga tctgaattcg atgcaggatg cacatgtcca ccaagacctt tgcctccgcc 600 geogaeeteg aaateaagea ggteagette gaeaagetet eegageaege etatgeetae 660 acggccgaag gcgaccccaa caccggcatc atcattggcg acgacgcggt gatggtgatc 720 gacacccagg ccacgcccgt catggcccag gacgtgatcc gccgcatccg tgaggtcacg 780 gacaageeca teaagtaegt gacgetgteg cactaecaeg eggtgegegt getgggegee 840 teggeettet tegeggaagg egeegaacae ateattgeea geeaggaeae etaegaeete 900 ategtggage geggegagea ggacaaggee agegagateg geegetttee eegeetgtte 960 cagaacgtgg aaagcgtgcc cgatggcatg acctggccca ccctcacctt caccggcaag 1020 atgacgctgt ggctgggcaa gctggaagtg cagatcctgc agctgggccg cggccacacc 1080 aagggcgaca ccgtggtctg gctgccccag gacaaggtgc tgttcagcgg cgacctggtg 1140 gagttcggcg ccacgcccta tgcgggcgat gcctacttcc aggactggcc gcacacgctg 1200 gacgccateg cegecetgea geeegaaaag etegtgeeeg geeggggege egegetgeag 1260 acgccggccg aggtgcaggc cggcctggcc ggcacgcgcg acttcatcag cgacctgtgg 1320 accgaggtea aggeeggege egatgeeeag eaggaeetge geaaggteta egaggeegee 1380 ttcgccaagc tgcagcccaa gtacggccag tgggtgatct tcaaccactg catgcccttc 1440 gatgtgaccc gcgcctatga cgaggcatcg ggccacgccg acccacgcat ctggaccgcc 1500 gagegegace geeagatgtg getggegete gaaggetgat geaagettat egatacegte 1560 gacgaatttc cccgatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt 1620 tgccggtctt gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat 1680 taacatgtaa tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt 1740 atacatttaa tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg 1800 cgcggtgtca tctatgttac tagatcggga attgcggccc cccctcgagc ccacagatgg 1860 ttagagaggc ttacgcagca ggtctcatca agacgatcta cccgagcaat aatctccagg 1920 aaatcaaata ccttcccaag aaggttaaag atgcagtcaa aagattcagg actaactgca 1980 tcaagaacac agagaaagat atatttctca agatcagaag tactattcca gtatggacga 2040 ttcaaggctt gcttcacaaa ccaaggcaag taatagagat tggagtctct aaaaaggtag 2100 ttcccactga atcaaaggcc atggagtcaa agattcaaat agaggaccta acagaactcg 2160

ccgtaaagac tggcgaacag ttcatacaga gtctcttacg actcaatgac aagaagaaaa 2220 tettegteaa eatggtggag cacgacacae ttgtetaete caaaaatate aaagatacag 2280 tetcagaaga ecaaagggea attgagaett tteaacaaag ggtaatatee ggaaacetee 2340 teggatteea ttgeecaget atetgteact ttattgtgaa gatagtggaa aaggaaggtg 2400 gctcctacaa atgccatcat tgcgataaag gaaaggccat cgttgaagat gcctctgccg 2460 acagtggtcc caaagatgga cccccaccca cgaggagcat cgtggaaaaa gaagacgttc 2520 caaccacgtc ttcaaagcaa gtggattgat gtgatatctc cactgacgta agggatgacg 2580 cacaatccca ctatccttcg caagaccctt cctctatata aggaagttca tttcatttgg 2640 agagaacacg ggggactcta gaggatcaga ggacgaacaa catgtcccac cccgccatct 2700 ccctgcaage getgegegge ageggegeag acatacagte catecacate ccctaegage 2760 gecatgeega ceaggaegee ggtgeggaea egecegeeeg geateeegte gteategteg 2820 gegeeggeee egtgggeetg tegetggeea tegaeetgge ceagegegge eagegegtgg 2880 tgctgctgga caacgactgc cggctgtcca cgggctcgcg cgccatctgc ttttccaagc 2940 geacgetgga gatetgggae egeetgggeg tgggeeagee eatggtggae aagggegtgt 3000 cctggaacct gggcaaggtc ttcttcaagg accagccgct gtaccgcttc gacctgctgc 3060 ccgaggacgg ccacgagcgc ccggccttca tcaacctgca gcagtactac gccgaggcct 3120 atctggtcga gcgcgcactg cagctgccgc tgatcgacct gcgctggcac agcaaggtca 3180 cggcactgga gccgcaggcc gagggcgcgc tgctgaccgt ggagacgcct gacggcaqct 3240 accgcatcga tgcgcaatgg gtcctggcct gcgatggctc gcgctcgccg ctgcgcgcc 3300 tgctgggcca ggaaagccat ggccgcatct tccgcgaccg cttcctgatc gccgacgtga 3360 agatgcacgc cgaattcccc accgagcgct ggttctggtt cgacccgccc ttccacccgg 3420 gccagagcgt gctgctgcac cgccagcccg acgatgtctg gcgcatcgac ttccagctgg 3480 gctgggacgc ggaccccgag gaagagaaaa agcccgagaa catcgtgccg cgcatccgcg 3540 ccctgctggg caaggacgcg cccttcgagc tggaatgggc cagcgtctac accttcgcct 3600 gcctgcgcat ggaccgcttc gtccatggcc gcgtggtctt tgcgggcgac agcgccacg 3660 gcgtctcgcc gtttggcgca cgcggcgcca acagcggcgt gcaggatgcc gagaacctgg 3720 catggaaget ggacegegtg etgegeggee aggeegatge etegetgate gecaectaeg 3780 gegeegageg egaataegeg geegaegaga acateegeaa etecaegege geeaeegaet 3840 tcatcacgcc caagagcgag atcagccgcc tgtttcgcga cgccgtgctg gacctggcgc 3900 gcgaccatga attcgcgcgc cgcatcgtca acagcgggcg gctgtccgtg ccggccacgc 3960 tgcacggctc cgcgctcaac acgcctgaca ccgacacctt cgacggaacg cagctgcccg 4020 gegeegtget ggeegatgeg eccatgegee ggeeeggege agaeggeaeg geetggetge 4080 tgcgcgcact gggaccggac ttcacgctgc tgcacttcga ccccacgccc gcctgggcgc 4140 aggegetgee eggegtgete aacetgteea tegeggeega gggegaggee catgegeeag 4200

acgccgacct	catcgatgcg	cgcggcctgg	cggccaaacg	cctggatgca	cgccccggca	4260
ccagctacct	gctgcggcct	gaccagcatg	tctgcgcgcg	ctggcgccgc	cccgacgaag	4320
ccagcgtgcg	cgccgcgctg	caaagagcct	gcggcgccgc	cgccacggcc	tgaacctctt	4380
aagcttatcg	ataccgtcga	cgaatttccc	cgatcgttca	aacatttggc	aataaagttt	4440
cttaagattg	aatcctgttg	ccggtcttgc	gatgattatc	atataatttc	tgttgaatta	4500
cgttaagcat	gtaataatta	acatgtaatg	catgacgtta	tttatgagat	gggtttttat	4560
gattagagtc	ccgcaattat	acatttaata	cgcgatagaa	aacaaaatat	agcgcgcaaa	4620
ctaggataaa	ttatcgcgcg	cggtgtcatc	tatgttccta	ggtcgaggag	aaatatgagt	4680
cgaggcatgg	atacactaag	ttcccctgaa	gtgagcatga	tctttgatgc	tgagatgatt	4740
cccagagcaa	gatagtttgt	gctgcaagtg	acacaattgt	aatgaaacca	ccactcaacg	4800
aatttacttg	tggctttgac	atgtcgtgtg	ctctgtttgt	atttgtgagt	gccggttggt	4860
aattatttt	gttaatgtga	ttttaaaacc	tcttatgtaa	atagttactt	tatctattga	4920
agtgtgttct	tgtggtctat	agtttctcaa	agggaaatta	aaatgttgac	atcccattta	4980
caattgataa	cttggtatac	acaaactttg	taaatttggt	gatatttatg	gtcgaaagaa	5040
ggcaataccc	attgtatgtt	ccaatatcaa	tatcaatacg	ataacttgat	aatactaaca	5100
tatgattgtc	attgtttttc	cagtatcaat	atacattaag	ctactacaaa	attagtataa	5160
atcactatat	tataaatctt	tttcggttgt	aacttgtaat	tcgtgggttt	ttaaaataaa	5220
agcatgtgaa	aattttcaaa	taatgtgatg	gcgcaatttt	attttccgag	ttccaaaata	5280
ttgccgcttc	attaccctaa	tttgtggcgc	cacatgtaaa	acaaaagacg	attcttagtg	5340
gctatcactg	ccatcacgcg	gatcactaat	atgaaccgtc	gattaaaaca	gatcgacggt	5400
ttatacatca	ttttattgta	cacacggatc	gatatctcag	ccgttagatt	taatatgcga	5460
tctgattgct	caaaaaatag	actctccgtc	tttgcctata	aaaacaattt	cacatctttc	5520
tcacccaaat	ctactcttaa	ccgttcttct	tcttctacag	acatcaattt	ctctcgactc	5580
tagaggatcc	aagcttatcg	atttcgaacc	cctcatgact	tcacttacag	tgtccggccg	5640
ggtggcgcag	gtcctcagca	gctatgtcag	cgatgtgttc	ggtgtgatgg	gcaacggaaa	5700
cgtctacttc	ctggacgccg	ccgagaagga	gggcctccgc	ttcacggccg	tacgccatga	5760
aggtgccgcc	atcgcggcgg	cggacgccta	ctatcgggca	teegggegee	tggcggcggg	5820
gaccaccacc	tacggccccg	gttacaccaa	cgccctgacg	gccctcgccg	aggcggtcca	5880
ggcgcagatc	cccgtggtgc	tcgtcaccgg	ggacgccccg	agcagcggcg	cccggccttg	5940
ggacgtggac	caggccgcga	tegeegeegg	gctgggggcg	gcgaccttca	cggtcacccg	6000
tgaagccgca	ggctccatca	cgcaggaagc	ggtggagtac	gcacttgccc	ggcggaccgc	6060
cgtcgtgatc	gccgttccat	acgacctgtc	ggcccttgag	gcggcggagg	aagatcttcc	6120
cgtgccgccg	gcggcctcgg	ttccggacgc	catcggcggc	ggactcggac	gggcggccga	6180
agtgcgggcg	gccgaattgc	tggcgggcgc	gaagcggccg	ctcatccttg	ccggccgcgg	6240

tgcgcacctc	gcaggaaccg	gccccgaact	ccgggaactc	gccgaccgcc	tcggcgcgct	6300
cacggccggc	accgcactgg	cgctgaacct	gctgcagggc	gaggggtacc	tcggcgtcgc	6360
gggcggcttc	ggcacggata	ccgccgccgg	gctcatgggc	gaggcggacg	tggtgctcgt	6420
ggcgggagcc	agcctgaccc	ccttcaccat	gcgcttcggc	cacctgatcg	gcccggacgc	6480
caccgtgatc	cagatcgaca	ccgccatgga	gccgacggac	ccgcgggtgg	acctgtttgt	6540
cagtgcggac	gcgaaggccg	ctgccggccg	gatecteegg	ctgctggatg	acgccgccgg	6600
ggccaatgcg	tcgaaggcct	ggcgcgcgga	agcactcaag	cgtctggccg	aaggaccctg	6660
ccaccacccc	ggcaccgcag	agaccacgga	cggccgcctt	gacccccggg	cgcttgcttc	6720
ggcactggat	gccgtcctgc	cggaacgccg	caccgtggtc	caggacggcg	ggcacttcct	6780
gggctgggca	cccatgtact	ggcgcatccc	ccgtcctcag	gacctggtca	tggtggggac	6840
cgcgtaccag	tcgatcgggc	ttggcctggc	cagcgccgtg	ggggcgtccc	gggccgtgga	6900
cgacggcaat	atcctggtgc	tggcggcggg	cgacggcgga	ttcctgatgg	gcctgtccga	6960
cctggaatcg	ctcgtgggcg	cggcgagcag	cgccgtcgtg	gtgatctaca	acgacgccgc	7020
ctacggggcc	gagatccatc	agtacggctc	acgggggctc	accgaaaagc	ccatgctgat	7080
ccccgaagtg	gacttcagcg	ggattgcccg	cgcgatcggg	gcggaatccg	caatcatccg	7140
caagctgtcg	gacctctccg	cgctcacgga	ctggatcgag	gccggcgcca	ggggaacctt	7200
cgtggccgac	tgccgcatca	cctcaagcgt	ccgggccccg	tggctgagcg	aatggatgag	7260
ggcctcgcaa	gcggcgaagg	aggcggtggc	gggctagggc	cggcctcgtc	gaaatgccgc	7320
cctccaaccc	aactcagtac	cagctcaggg	cgttctcagg	gctgggaacg	ccctgagctg	7380
ctactcattt	gttcgaactc	gaggtcgacg	gtatcgataa	gcttgatatc	gaattcctgc	7440
agcccggggg	atccactagg	ggatcccccg	atccgcgttt	gtgttttctg	ggtttctcac	7500
ttaagcgtct	gcgttttact	tttgtattgg	gtttggcgtt	tagtagtttg	cggtagcgtt	7560
cttgttatgt	gtaattacgc	tttttcttct	tgcttcagca	gtttcggttg	aaatataaat	7620
cgaatcaagt	ttcactttat	cagcgttgtt	ttaaattttg	gcattaaatt	ggtgaaaatt	7680
gcttcaattt	tgtatctaaa	tagaagagac	aacatgaaat	tcgacttttg	acctcaaatc	7740
ttcgaacatt	tatttcctga	tttcacgatg	gatgaggata	acgaaagggc	ggttcctatg	7800
tccgggaaag	ttcccgtaga	agacaatgag	caaagctact	gaaacgcgga	cacgacgtcg	7860
cattggtacg	gatatgagtt	aaaccgactc	aattccttta	ttaagacata	aaccgatttt	7920
ggttaaagtg	taacagtgag	ctgatataaa	accgaaacaa	accggtacaa	gtttgattga	7980
gcaacttgat	gacaaacttc	agaattttgg	ttattgaatg	aaaatcatag	tctaatcgta	8040
aaaaatgtac	agaagaaaag	ctagagcaga	acaaagattc	tatattctgg	ttccaattta	8100
tcatcgcttt	aacgtccctc	agatttgatc	gggctgcagg	aattcggcct	gactgatcat	8160
ttaaacacta	ggtcgggaat	tgcggcc				8187