Introduction to Differential Equations

Find the general solution of each differential equation.

1)
$$\frac{dy}{dx} = 2x + 2$$

2)
$$f'(x) = -2x + 1$$

$$3) \frac{dy}{dx} = -\frac{1}{x^2}$$

4)
$$\frac{dy}{dx} = \frac{1}{(x+3)^2}$$

For each problem, find the particular solution of the differential equation that satisfies the initial condition. You may use a graphing calculator to sketch the solution on the provided graph.

5)
$$\frac{dy}{dx} = -4x + 1$$
, $y(-1) = -3$

6)
$$\frac{dy}{dx} = -2\sin x, \ y\left(\frac{2\pi}{3}\right) = 0$$

Introduction to Differential Equations

Find the general solution of each differential equation.

1)
$$\frac{dy}{dx} = 2x + 2$$
$$y = x^2 + 2x + C$$

2)
$$f'(x) = -2x + 1$$

 $f(x) = -x^2 + x + C$

3)
$$\frac{dy}{dx} = -\frac{1}{x^2}$$
$$y = \frac{1}{x} + C$$

4)
$$\frac{dy}{dx} = \frac{1}{(x+3)^2}$$

 $y = -\frac{1}{x+3} + C$

For each problem, find the particular solution of the differential equation that satisfies the initial condition. You may use a graphing calculator to sketch the solution on the provided graph.

5)
$$\frac{dy}{dx} = -4x + 1$$
, $y(-1) = -3$

6)
$$\frac{dy}{dx} = -2\sin x, \ y\left(\frac{2\pi}{3}\right) = 0$$

$$y = 2\cos x + 1$$