(19) 日本国特許厅(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特期2004-193252 (P2004-193252A)

(43) 公開日 平成16年7月8日 (2004.7.8)

(51) Int.C1.⁷
HO1L 21/027
GO2B 13/24
GO3F 7/20

F I HO1 L 21/30 GO2 B 13/24 テーマコード (参考) 515D 2HO87 5FO46

GO3F 7/20 521

審査請求 未請求 請求項の数 10 OL (全 15 頁)

(21) 出願番号 (22) 出願日 特願2002-357956 (P2002-357956) 平成14年12月10日 (2002.12.10) (71) 出願人 000004112

株式会社ニコン

東京都千代田区丸の内3丁目2番3号

(74) 代理人 100064908

弁理士 志賀 正武

(74) 代理人 100108578

弁理士 高橋 韶男 (74)代理人 100101465

弁理士 青山 正和

(74)代理人 100107836

弁理士 西 和哉 (72) 発明者 日高 康弘

東京都千代田区丸の内3丁目2番3号 株

式会社ニコン内

最終頁に続く

(54) [発明の名称] 露光方法及びデバイス製造方法

(57)【要約】

【課題】液浸法で基板のエッジ領域を露光する際、基板の外側への液体の流出を防ぎつつ露光処理できる露光方法を提供する。

【解決手段】投影光学系PLと基板Pとの間の少なくとも一部を液体で満たし、液体と投影光学系PLとを介してパターンの像を基板P上に投影することによって、基板Pを露光する際、基板Pと投影光学系PLとの間に配置された透明板8と、透明板8と投影光学系PLとの間に満たされた液体とを介して基板P上にパターンの像を投影する。

【選択図】

図2

【特許請求の範囲】

【請求項1】

投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系と を介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光方 法において、

【請求項2】

前記基板と前記透明板との間に液体が満たされていることを特徴とする請求項1記載の露光方法。

【請求項3】

前記透明板は前記基板より大きいことを特徴とする請求項1又は2記載の露光方法。

【請求項4】

投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系と を介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光方 法において、

前記基板と前記投影光学系との間に配置された、前記基板より大きい透明板と前記液体と を介して前記基板上にパターンの像を投影することを特徴とする露光方法。

【請求項5】

前記液体は、前記透明板と前記基板との間に満たされていることを特徴とする請求項4記載の露光方法。

【請求項6】

前記透明板は、前記投影光学系の先端の光学素子と兼用することを特徴とする請求項 4 又は 5 記載の露光方法。

【請求項7】

投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系と を介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光方 法において、

前記基板の周囲の少なくとも一部をカバー部材で覆い、前記基板の外側への前記液体の流 出を抑えることを特徴とする露光方法。

【請求項8】

前記カバー部材は、前記基板より大きい透明部材であることを特徴とする請求項 7 記載の 露光方法。

【請求項9】

前記カバー部材は所定幅の輪帯状に形成されていることを特徴とする請求項7記載の露光 方法。

【請求項10】

請求項1~請求項9のいずれか一項記載の露光方法を用いることを特徴とするデバイス製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、投影光学系と基板との間に液体を満たした状態で基板にパターンを露光する露 光方法及びデバイス製造方法に関するものである。

[0002]

【従来の技術】

半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基

10

20

30

板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短くなるほど、また投影光学系の開口数が大きい光を高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長は、ΚェFエキシマレーザの248nmであるが、更に短波長のAェFエキシマレーザの193nmも実用化されつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。

 $R = k_1 \cdot \lambda / N A$

. (1)

 $\delta = \pm k_2 \cdot \lambda / N A^2 \qquad \cdots \qquad (2)$

ここで、 λ は露光波長、NAは投影光学系の開口数、 k_1 、 k_2 はプロセス係数である。(1)式、(2)式より、解像度 R を高めるために、露光波長 λ を短くして、開口数 NA を大きくすると、焦点深度 δ が狭くなることが分かる。

[0003]

焦点深度 δ が狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のマージンが不足する恐れがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特許文献 1 に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、液体中での露光光の波長が、空気中の 1 / n (n は液体の屈折率で通常 1 . 2 ~ 1 . 6 程度)になることを利用して解像度を向上するとともに、焦点深度を約 n 倍に拡大するというものである。

[0004]

【特許文献1】

国際公開第99/49504号パンフレット

[0005]

【発明が解決しようとする課題】

ところで、上記従来技術には以下に述べる問題が存在する。 上記従来技術は、図9(a)に示す模式図のように、投影光学系PLの像面側であるである。 と基板(ウエハ)Pとの間を局所的に液体50で満たした状態で、照明光学系ILLを選光光ELでマスクMを照明し、マスクMのパターンの像を基板ステージPSTに支持されている基板Pに露光する構成であり、基板Pの中央付近(中央領域)のショットの選光する場合には液体50の基板P外側への流出は生じない。しかしながら、図9(Lこのは式図のように、基板Pの周辺領域(エッジ領域)とに露光光ELを照射しての分間域とを露光しようとすると、基板Pと基板ステージPSTとの段差の分の大きでできなくなり液体50は基板Pの外側や周辺装置に流出してしまう。

基板Pと基板Pと基板Pと基板Pと基板ステージPSTとの段差部分をを変光しようと、基板Pの外側を関連に流出している。と、基板Pの外側を置に流出している。と、基板Pの外側を置に流出している。と、基板Pの外側を置に流出している。との場合では、マスクMのパターンの像が基板P上で結像しないおかにの場合でなく、この流出した液体50を放置しておりでなく、この流出した液体50を放出をでは、多種光学的検出を置いたの光路上のにで、の変動をもたらし、各種光学的検出をである光路上のの変化をはいる。を生じる。基板Pのエッジ領域Eを認め、といるを生じる。基板Pのエッジ領域Eにも露光処理を施してパターンを成れるにすることも考えられるが、エッジ領域Eにも露光処理を施してパターンにはないと、後工程である例えばCMP(化学的機械的研磨)処理時において、CM

能性がある。 【0006】

本発明はこのような事情に鑑みてなされたものであって、投影光学系と基板との間を液体で満たした状態で露光処理する場合において、例えば基板のエッジ領域を露光する際にも 基板の外側への液体の流出を防ぎつつ露光処理できる露光方法、及びこの露光方法を用い

P装置の研磨面に対してウエハである基板Pが片当たりして良好に研磨できないという可

10

'n

40

るデバイス製造方法を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記の課題を解決するため、本発明は実施の形態に示す図 1 ~図 8 に対応付けした以下の 構成を採用している。

本発明の露光方法は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光方法において、基板(P)と投影光学系(PL)との間に配置された透明板(8、14、15)と、透明板(8、14、15)と投影光学系(PL)との間に満たされた液体(50)とを介して基板(P)上にパターンの像を投影することを特徴とする。

[0008]

本発明によれば、基板と投影光学系との間に透明板を設けることにより、例えば投影光学系と透明板との間に液体を配置する際、透明板の大きさを基板より十分に大きくしておけば、液体が配置される空間において基板のエッジ領域に対応する部分に段差は形成されない。したがって、基板のエッジ領域を露光する際にも段差による基板外側への液体の流出を抑えることができる。

[0009]

本発明の露光方法は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光方法において、基板(P)と投影光学系(PL)との間に配置された、基板(P)より大きい透明板(8、14、15)と液体(50)とを介して基板(P)上にパターンの像を投影することを特徴とする。

[0010]

本発明によれば、投影光学系と基板との間に基板より大きい透明板を設けたことにより、 液体が配置される空間において透明板により基板のエッジ領域に対応する部分に段差は形成されない。したがって、基板のエッジ領域を露光する際にも段差による基板外側への液 体の流出を抑えることができる。

[0011]

本発明の露光方法は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光方法において、基板(P)の周囲の少なくとも一部をカバー部材(15)で覆い、基板(P)の外側への液体(50)の流出を抑えることを特徴とする。

[0012]

本発明によれば、基板の周囲をカバー部材で覆うことにより、基板外側への液体の流出を防止することができる。したがって、周辺装置に錆びを生じさせるなどの不都合の発生を抑えることができる。

[0013]

本発明のデバイス製造方法は、上記いずれか記載の露光方法を用いることを特徴とする。本発明によれば、基板のエッジ領域を露光処理する際にも基板外側への液体の流出を抑えた状態で液浸法により露光処理できるので、基板の中央領域とエッジ領域との双方に対して良好にパターンを転写することができる。したがって、後工程の例えばСMP処理における基板とСMP装置の研磨面との片当たりといった不都合の発生を防ぐことができるので、所望の性能を有するデバイスを製造することができる。

[0.014]

【発明の実施の形態】

以下、本発明の露光方法及びデバイス製造方法について図面を参照しながら説明する。図 1は本発明の露光方法が適用される露光装置の一実施形態を示す概略構成図である。図1 において、露光装置 EXは、マスクMを支持するマスクステージMSTと、基板 Pを支持

する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。基板Pと投影光学系PLとの間には透明板8が配置されている。透明板8は支持部材9を介して基板ステージPST上に設けられている。

[0015]

[0016]

「明光学系ILは、マスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態では、ArFエキシマレーザ光を用いる。

[0017]

マスクステージMSTは、マスクMを支持するものであって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθΖ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDにより駅動される。マスクステージ駆動装置MSTDは制御装置CONTにより制御される。マスクステージ駆動装置MSTDは制御装置CONTによりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。

[0018]

投影光学系 P L は、マスク M のパターンを所定の投影倍率 β で基板 P に投影露光するものであって、複数の光学素子(レンズ)で構成されており、これら光学素子は金属部材としての鏡筒 P K で支持されている。本実施形態において、投影光学系 P L は等倍系及び拡大系のいずれでもよい。また、投影光学系 P L は光学特性(結像特性)の補正を行う結像特性調整装置 P L C は、例えば投影光学系 P L を構成する一部のレンズ群の間隔調整機構や一部のレンズ群のレンズ室内の気体圧力調整機構を有しており、これら調整を行うことにより、投影光学系 P L の投影倍率、歪曲収差等の光学特性の補正を行う。結像特性調整装置 P L C は制御装置 C O N T により制御される

[0019]

基板ステージPSTは、基板Pを支持するものであって、基板Pを基板ホルダを介して保持するZステージ51と、Zステージ51を支持するXYステージ52と、XYステージ

5 2 を支持するベース 5 3 とを備えている。基板ステージ P S T はリニアモータ等の基板 ステージ駆動装置PSTDにより駆動される。基板ステージ駆動装置PSTDは制御装置 CONTにより制御される。2ステージ51を駆動することにより、2ステージ51に保 持されている基板PのΖ軸方向における位置(フォーカス位置)、及びθΧ、θΥ方向に おける位置が制御される。また、XYステージ52を駆動することにより、基板PのXY 方向における位置(投影光学系PLの像面と実質的に平行な方向の位置)が制御される。 すなわち、Zステージ51は、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表 面をオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ 込み、ХҮステージ52は基板РのХ軸方向及びҮ軸方向における位置決めを行う。なお 、ZステージとXYステージとを一体的に設けてよいことは言うまでもない。

[0020]

基板ステージPST(2ステージ51)上には移動鏡54が設けられている。また、移動 鏡54に対向する位置にはレーザ干渉計55が設けられている。基板ステージPST上の 基板Pの2次元方向の位置、及び回転角はレーザ干渉計55によりリアルタイムで計測さ れ、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計 5 5 の 計測結果に基づいて基板ステージ駆動装置 PSTDを駆動することで基板ステージ PST に支持されている基板Pの位置決めを行う。

[0021]

基板ステージPSTに支持されている基板Pと投影光学系PLの下面7との間には透明板 8 が設けられている。透明板 8 は支持部材 9 を介して基板ステージ P S T の Z ステージ 5 1 に支持されている。透明板 8 は露光光 E L を透過可能な材料により構成されており、本 実施形態ではガラスプレートにより構成されている。なお、透明板8は露光光ELに対し て透過性を有していればよく、透明板8としてガラスプレート以外のものを採用可能であ る。透明板8は平行平面板であって上下両面は平坦面である。そして、透明板8は平面視 略円形状に設けられ、同じく略円形状に形成されている基板(ウエハ)Pより大きく形成 されている。すなわち、透明板8の径は基板Pより大きく(基板Pの径以上に)設定され ている。透明板 8 を支持する支持部材 9 は略円環状に形成されており、基板 P の周囲に配 置されている。

[0022]

透明板8の上面と投影光学系PLの下面7とは離間しており、投影光学系PLと透明板8 との間に空間 5 6 が形成されている。また、支持部材 9 に支持されている透明板 8 と基板 Pとも離間しており、透明板8、支持部材9及びZステージ51の上面との間に空間57 が形成されている。空間57は略密閉空間である。

[0023]

本実施形態では、露光波長を実質的に短くして解像度を向上するとともに、焦点深度を実 質的に広くするために、液浸法を適用する。そのため、少なくともマスクMのパターンの 像を基板P上に転写している間は、基板Pの表面と投影光学系PLの基板P側の光学素子 の先端面(下面)7との間に所定の液体50(50A、50B)が満たされる。本実施形 態において、液体50には純水が用いられる。純水は、ArFエキシマレーザ光のみなら ず、露光光ELを例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及 びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)とした場合、こ の露光光ELを透過可能である。また、投影光学系PLの先端面7には露光光ELを透過 可能な平行平面板が設けられている。この平行平面板は投影光学系PLの一部を構成する

[0024]

露光装置EXは、投影光学系PLの先端面7と透明板8との間の空間56に所定の液体5 O A を供給する液体供給装置 1 と、空間 5 6 の液体 5 O A を回収する液体回収装置 2 とを 備えている。液体供給装置1は、液体50Aを収容するタンク、加圧ポンプ、及び空間5 6に対して供給する液体 5 0 A を所定の温度に調整する温度調整装置などを備えている。 液体供給装置1には供給管3の一端部が接続され、供給管3の他端部には供給ノズル4が

50

接続されている。液体供給装置1は供給管3及び供給ノズル4を介して空間56に液体5 OAを供給する。ここで、液体供給装置 1 に設けられている温度調整装置は、空間 5 6 に 供給する液体50Aの温度を、例えば露光装置EXが収容されているチャンバ内の温度と 同程度に設定する。

[0025]

液体回収装置2は、吸引ポンプ、回収した液体50Aを収容するタンクなどを備えている 。液体回収装置2には回収管6の一端部が接続され、回収管6の他端部には回収ノズル5 が接続されている。液体回収装置2は回収ノズル5及び回収管6を介して空間56の液体 5 O A を回収する。空間 5 6 に液体 5 O A を満たす際、制御装置 C O N T は液体供給装置 1 を駆動し、供給管 3 及び供給ノズル 4 を介して空間 5 6 に対して単位時間当たり所定量 の液体 5 0 A を供給するとともに、液体回収装置 2 を駆動し、回収ノズル 5 及び回収管 6 を介して単位時間当たり所定量の液体50Aを空間56より回収する。これにより、投影 光学系PLの先端面7と基板Pとの間の空間56に所定量の液体50Aが配置される。

また、基板Pと透明板8との間、すなわち空間57にも液体50Bが満たされている。空 間57に液体50Bを満たす際には、例えば、露光処理前において基板ステージPST(Zステージ51)上の円環状支持部材9の円環内部に液体50Bを投入し、次いで、支持 部材9の上端を透明板8で覆うことにより空間57に液体50Bが満たされる。ここで、 空間57は略密閉空間であり、空間57に満たされた液体50Bは空間外部に流出しない

[0027] 次に、上述した露光装置EXを用いてマスクMのパターンを基板Pに露光する方法につい て図2を参照しながら説明する。

基板ステージPSTに対して基板Pがロードされると、制御装置CONTは、円環状部材 である支持部材 9 の円環内部に液体 5 0 B を投入した後、支持部材 9 の上端を透明板 8 で 覆う。これにより、基板 P と透明板 8 との間の空間 5 7 に液体 5 0 B が満たされた状態と なる。次いで、制御装置CONTは、液体供給装置1及び液体回収装置2それぞれを駆動 し、投影光学系PLと透明板8との間に液体50Aの液浸部分を形成する。そして、制御 装置CONTは、照明光学系ILによりマスクMを露光光ELで照明し、マスクMのパタ ーンの像を投影光学系PL、透明板8、及び液体50A、50Bを介して基板Pに投影す 30 る。ここで、図2(a)の模式図に示すように、基板Pの中央付近(中央領域)のショッ ト領域を露光している間は、液体供給装置1から供給された液体50は液体回収装置2に より回収されることで、基板Pの外側に流出しない。

[0028]

一方、図2(b)に示すように、基板Pのエッジ領域(基板Pの周縁近傍領域)Eを露光 処理する際にも、基板Pと投影光学系PLとの間には基板Pより十分に大きい透明板8が 配置されているので、基板Pのエッジの外側にも透明板8の平坦部分が十分に確保される 。すなわち、基板Pの中央付近とエッジ付近とのいずれを露光する場合にも、液体50が 供給される空間56を、投影光学系PLと透明板8との間に維持することができる。した がって、基板Pのエッジ領域Eを露光する際にも、液体50Aは投影光学系PLと透明板 8との間から外部に流出することがなく、基板 P の中央領域に対する露光条件と同等の条 件でエッジ領域Eを露光することができる。

[0029]

また、空間57は略密閉空間であり、露光処理中において空間57内部の液体50Bは大 きく流動しない。したがって、液体の流動による基板P表面に対する影響を抑えることが できる。

[0030]

なお、本実施形態の露光装置EXは所謂スキャニングステッパである。-X方向に基板P を移動させて走査露光を行う場合、制御装置CONTは-X方向に液体50Aを流す。-方、+X方向に基板Pを移動させて走査露光を行う場合、制御装置CONTは+X方向に 液体 5 0 を流す。このように、制御装置 C O N T は、液体供給装置 1 及び液体回収装置 2 を用いて、基板 P の移動方向に沿って液体 5 0 を流す。この場合、例えば液体供給装置 1 から供給ノズル 4 を介して供給される液体 5 0 は基板 P の - X 方向への移動に伴って空間 5 6 に引き込まれるようにして流れるので、液体供給装置 1 の供給エネルギーが小さくでも液体 5 0 を空間 5 6 に容易に供給できる。そして、走査方向に応じて液体 5 0 を流す方向を切り替えることにより、 + X 方向、又は - X 方向のどちらの方向に基板 P を走査する場合にも、レンズ 6 0 の先端面 7 と基板 P との間を液体 5 0 で満たすことができ、髙い解像度及び広い焦点深度を得ることができる。

[0031]

[0032]

以上説明したように、投影光学系PLと基板Pとの間に基板Pより大きい透明板8を設けたので、基板Pのエッジ領域Eを露光する際にも液体50Aの外部への流出を抑えることができ、液浸露光を行う際、基板Pの中央領域とエッジ領域とのそれぞれに対して液体配置に関して同一条件で露光することができる。

[0033]

上述したように、本実施形態における液体 5 0 は純水により構成されている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板 P 上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板 P の表面、及び投影光学系 P L の先端面に設けられている光学素子の表面を洗浄する作用も期待できる。

[0034]

そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1. 47であるため、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約131nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1. 47倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。

[0035]

本実施形態では、投影光学系PLの先端面7には露光光ELを透過可能な平行平面板が設けられている。この平行平面板は投影光学系PLの先端面に着脱(交換)自在に取り付けられている。液体50と接触する光学素子を、レンズより安価な平行平面板とすることにより、露光装置EXの運搬、組立、調整時等において投影光学系PLの透過率、基板P上での露光光ELの照度、及び照度分布の均一性を低下させる物質(例えばシリコン系有機物等)がその平行平面板に付着しても、液体50を供給する直前にその平行平面板を交換するだけでよく、液体50と接触する光学素子をレンズとする場合に比べてその交換コス

トが低くなるという利点がある。すなわち、露光光ELの照射によりレジストから発生する飛散粒子、または液体50中の不純物の付着などに起因して液体50に接触する光学素子を定期的に交換する必要があるが、この光学素を安価な平行平面板とすることができた。ないできる。などでできる。などの先端面に取り付ける光学素子としては、投影光学系PLの先端面に取り付ける光学素子としては、投影光学系PLの先端面に取り付き素子としては、投影光学系PLの先端面に取り付き素子としてといる光学系PLの先端であってもよい。また、投影光学系PLの先端面に取り付き素子としてといる光学系PLの先端を光学素子としてといる光学系PLの先端を表示であってもない。また、投影光学系 PLの先端部において、光学素子として出た。また、投影光学系 PLの先端部において、光学素子として光学であってもない。また、投影光学系 PLの先端部において、光学素子として出たののみを液体 50に接触させ、鏡筒 PKを接触させない構成とすることにより、金属からなる鏡筒 PKの腐蝕等が防止される。

10

20

[0036]

なお、液体 5 0 A の流れによって生じる投影光学系 P L の先端の光学素子と基板 P との間に大きな圧力が生じる場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。

[00.37]

なお、本実施形態の液体 5 0 は水であるが、水以外の液体であってもよい、例えば、露光光 E L の光源が F 2 レーザである場合、この F 2 レーザ光は水を透過しないので、この場合、液体 5 0 としては F 2 レーザ光を透過可能な例えばフッ素系オイルであってもよい。また、液体 5 0 としては、その他にも、露光光 E L に対する透過性があってできるだけ屈折率が高く、投影光学系 P L や基板 P 表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。

[0038]

また、上記実施形態において、空間 5 6 と空間 5 7 とのそれぞれには同じ種類の液体が満たされるように説明したが、投影光学系 P L と透明板 8 との間を第 1 の液体で満たし、基板 P と透明板 8 との間を前記第 1 の液体とは別の第 2 の液体で満たすこともできる。

[0039]

なお、上記実施形態では、空間 5 7 は略密閉空間であり、空間 5 7 の液体 5 0 B はほぼ流動しないように説明したが、図 3 に示すように、支持部材 9 の一部で第 2 液体供給装置の一部を構成する供給ノズル 1 0 を支持し、支持部材 9 の他の一部で第 2 液体回収装置の一部を構成する回収ノズル 1 1 を支持し、これら供給ノズル 1 0 及び回収ノズル 1 1 のそれぞれを空間 5 7 に接続し、露光処理中において、空間 5 7 に対する液体 5 0 B の供給及び回収動作を行うようにしてもよい。これにより、空間 5 7 の液体 5 0 B は常時交換され、温度調整された液体 5 0 B が供給されるので、空間 5 7 における液体 5 0 B の温度変化を抑制できる。

30

[0040]

なお、上記実施形態では、基板ステージPST上に基板Pを配置した後、基板Pの周囲の支持部材9の内部に液体50Bを投入してから透明板8で覆うことにより液体50Bを満たした空間57を形成するように説明したが、図4に示すように、内部空間12Aを有する容器12を用意し、この容器12の内部空間12Aに液体50B及び基板Pを予め配置しておき、露光処理する際に搬送装置Hにより基板Pを容器12ごと基板ステージPSTにロードするようにしてもよい。なお、容器12はガラスなどの透明部材により形成され、内部空間12Aは略密閉空間である。露光処理する際には投影光学系PLと容器12の上面12Bとの間に液体50Aが液体供給装置1より供給される。

40

[0041]

また、上記実施形態では、透明板8を支持部材9で支持しているが、支持部材9なしに、 液体50Bを介して透明板8と基板Pとを密着させるようにしてもよい。すなわち、基板 ステージPST上に基板Pを配置した後、1~2mmの厚さで基板Pの全面を覆える程度 の液体50Bを基板P上に供給する。そして、そこに透明板8を載せて、表面張力により 透明板8と基板Pとの間に液体50Bを保持する。この場合、基板ステージPSTの移動

により透明板8が動く恐れがある場合には、透明板8を載せた後に、その透明板8を固定 してやればよい。

[0042]

次に、図5を参照しながら本発明の第2実施形態について説明する。以下の説明において 上述した実施形態と同一又は同等の構成部分については同一の符号を付しその説明を簡略 もしくは省略する。

本実施形態の特徴的な部分は、投影光学系PLと基板Pとの間に配置される透明板として 、投影光学系PLの先端面に設けられた大きな光学素子である平行平面板14が用いられ ている点である。本実施形態において、平行平面板(透明板) 1 4 の大きさは基板 P より 大きく設定されている。また、上述したように、平行平面板 1 4 は投影光学系 P L (鏡筒 PK)に対して着脱可能である。そして、平行平面板14は投影光学系PLの下面に密着 あるいは僅かに離間しており、水平方向に移動可能(スライド可能)に設けられている。 平行平面板 1 4 の一部は支持部材 1 3 を介して基板ステージ P S T (Z ステージ 5 1) の 上面に接続されている。ここで、支持部材13は平行平面板14の複数の所定位置と基板 ステージPSTとを接続する棒部材により構成されている。図5(a)に示すように、基 板Pを露光する際には、制御装置CONTは、第1供給装置1に接続している供給ノズル 4 より平行平面板 1 4 と基板 P との間に液体 5 0 を供給するとともに第 2 回収装置 2 に接 続している回収ノズル 5 より液体 5 0 を回収しつつ、平行平面板 1 4 及び液体 5 0 を介し てマスクMのパターンの像を基板 P に露光する。そして、図 5 (b) に示すように基板 P のエッジ領域 E に対してパターンの像を露光する際にも、基板 P より大きい平行平面板 1 4 が基板 P と投影光学系 P L との間に配置されているので、基板 P と平行平面板 1 4 との 間に液体50を満たした状態でエッジ領域Eを露光することができる。

次に、図6を参照しながら本発明の第3実施形態について説明する。本実施形態の特徴的 部分は、基板 P の周囲に基板 P 外側への液体 5 0 の流出を抑えるカバー部材 1 5 を設けた

図6において、基板Pの周囲には支持部材9が設けられており、支持部材9の上端にはカ バー部材15が接続されている。カバー部材15は、図7に示す平面図のように所定幅1 5 Dを有する輪帯状に形成されている。このカバー部材 1 5 の幅 1 5 D は例えば投影光学 系PLの下面7の半径以上に設定されている。カバー部材15は例えばガラス等の透明部 材により形成されている。そして、図6 (a)に示すように、カバー部材15の上面は基 板Pの上面より高く設定されているとともに、カバー部材15と基板Pとは離間している 。また、カバー部材15の内側領域15Aと基板Pのエッジ領域Eとは水平方向において 重複するように設定されている。すなわち、カバー部材 1 5 の内径は基板 P の外径より小 さく設定されている。一方、カバー部材15の外径は基板Pより十分大きく設定されてい る。

[0044]

基板Pの中央付近のショット領域を露光する際には、図6(a)に示すように投影光学系 P L と基板 P との間に液体 5 0 が満たされる。一方、基板 P のエッジ領域 E を露光する際 には、図6(b)に示すように液体50はカバー部材15及びこれを支持する支持部材9 により外側への流出が抑えられる。特に、カバー部材15の外径が基板Pより大きく設定 されており、カバー部材15の上面は基板Pの上面より高く設定されているので、エッジ 領域Eを露光する際の液体50の流出を確実に抑えることができる。

[0045]

なお、本実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、 ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるい は露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が 適用される。

[0046]

露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露

光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。

[0047]

露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。

[0048]

また、本発明は、特開平10-163099号公報、特開平10-214783号公報、特表2000-505958号公報などに開示されているツインステージ型の露光装置にも適用できる。

[0049]

基板ステージPSTやマスクステージMSTにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。

[0050]

各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。

[0051]

基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、 特開平8-166475号公報(USP5,528,118)に記載されているように、 フレーム部材を用いて機械的に床(大地)に逃がしてもよい。 ススタステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように

マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8-330224号公報(US S/N 08/416,558)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。

[0052]

以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成 要素を含む各種サブシステムを、所定の機械的精度、光学的精度を保つての機械的精度を確保するために、 名種光学される。これら各種精度を確保するために、 名種光学系についた学的精度を達成するための調整、各種電気系については電気を通過である。 各種代表での調整、各種電気系については電気を通りである。 各種である。 各種である。 名種である。 る。 総合調整が行われ、 この各種特度が確保される。 なお、 この各種に、 ことが望ましい。 造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。

[0053]

半導体デバイス等のマイクロデバイスは、図8に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204

10

20

30

40

、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。

[0054]

【発明の効果】

本発明によれば、液浸法により基板を露光する場合において、基板のエッジ領域を露光する際にも基板外側への液体の流出を抑えることができる。したがって、流出した液体による周辺装置の錆びの発生や露光処理環境の変化といった不都合の発生を抑えることができる。また、基板の中央領域とエッジ領域との双方に対して良好にパターンを転写することができるので、後工程のCMP処理において基板とCMP装置の研磨面との片当たりといった不都合の発生を防ぐことができる。したがって、所望の性能を有するデバイスを製造することができる。

10

【図面の簡単な説明】

- 【図1】本発明の露光方法に用いる露光装置の一実施形態を示す概略構成図である。
- 【図2】本発明の露光方法の第1実施形態を説明するための模式図である。
- 【図3】本発明の露光方法の変形例を説明するための模式図である。
- 【図4】本発明の露光方法の変形例を説明するための模式図である。
- 【図 5 】本発明の露光方法の第 2 実施形態を説明するための模式図である。
- 【図6】本発明の露光方法の第3実施形態を説明するための模式図である。
- 【図7】カバー部材を示す平面図である。
- 【図8】半導体デバイスの製造工程の一例を示すフローチャート図である。
- 【図9】従来の課題を説明するための模式図である。

【符号の説明】

8 …透明板、14 …平行平面板(透明板、光学素子)、15 …カバー部材、50 (50 A、50 B) …液体、EX …露光装置、M …マスク、P …基板、P L …投影光学系

【図1】

[図3]

[図4]

【図5】

【図6】

【図7】

[図8]

フロントページの続き

(72)発明者 大和 壮一 東京都千代田区丸の内3丁目2番3号 株式会社ニコン内 (72)発明者 内川 清 東京都千代田区丸の内3丁目2番3号 株式会社ニコン内 Fターム(参考) 2H087 KA21 LA21 NA04 UA09 5F046 BA04 BA05 CB12 CB19 CB27