Inhaltsverzeichnis

Abschnitt	Gegenstand		Seite
	Titelseite	-4	1
	Inhaltsverzeichnis	1	2
Positionspläne	Version 1		3
	Version 2		4
Vorbemerkung			5
Lastannahme	Pos.:L.1) - L.3)		6
Berechnung der einzelnen Bauteile	Pos.:1) Pluta-Binder		7
	Nebenrechnung		8
	Pos.:1) Pluta-Binder		9
	Pos.:2) Dachterrasse Pos.3) 4)		16
	Pos.:5) Dachträger		17
1	Pos. 6)7)8) Abfangkonstr. Version 1		18
	Bemessung Pos.: 6) 7)	4	23
	Bemessung Pos.: 8)		24
	Pos.: 6)7)8) Version 2		25
	Dübelverbindung für Version 2		30
	Sparrenanschluß an Träger		31
	Schweißnahtberechnung		32
.**	Schweißnähte am Stützenkopf		33
	Schlußbemerkung		34

Vorbemerkung

Nachstehende Berechnung bezieht sich auf die Zeichnungen des Architekten im M.-1:100 vom 16.4.99. In dem bestehenden Dachraum soll eine bestehende Dachwohnung umgebaut, und im weiteren Dachbereich eine Dachwohnung geschaffen werden.

Wesentliche Merkmale dieser Planung sind in jedem Haus eine Dachterrasse.

Die oberste Etagendecke -unter dem Dach- ist, wie alle Etagendecken in diesem Haus, eine Omnia-Decke ohne besonderenn Druckbeton. Eine Verstärkung der Decke für die erhöhten Lasten aus den neu geplanten Dachterrassen ist daher nicht möglich. Die normale Nutzlast für Decken ist seinerzeit eingerechnet worden.

aher werden die Dachterrassen mittels einer separaten Stahlkonstruktion über die vorhandene Decke mit 3 cm Zwischenraum gebaut. Die Stahlkonstruktion trägt auch die abgeschnittenen "Pluta-Binder", welche in ca.80 cm Abstand ohne Dachstuhl über die gesamte Haustiefe reichen.

Die zur Zeit gültigen DIN-Vorschriften werden beachtet.

Es sind 2 Versionen gerechnet woden:

Version 1

Die Pluta-Binder weden mittels Vertikalkraft-Joch im Bereich des Knoten 4) abgestützt. Zuganker an jedem Pluta-Binder halten die Horizontalkräfte aus Eigengewicht zusammen. (Rundstahl Ø 12 mit Gewinde-Spannschloß).

Dann werden die Sparren abgeschnitten und die Stahlkonstruktion eingepaßt.

Vorteil: Der Abfangträger Pos.:5) ist nach Verkleidung der Sparren praktisch nicht mehr warnehmbar.

Version 2

Die Stahlkonstruktion wird zuerst aufgestellt. Der Träger Pos.:5) liegt an der Unterseite der Sparren an.

Für jeden Sparren werden 2 Winkeleisen auf den Träger befestigt.(Schrauben oer schweißen)

Mittels Dübel und Bolzen werden die Sparren mit dem Träger Pos.:5) kraftschüssig verbunden.

Vorteil: Leichterer Einbau der Stahlkonstruktion. Nachteil: Ein beachtliches "Paket" befindet sich unter der Dachschräge.

Lastannahme nach DIN 1055

Pos.:L.1) Vorhandenes Pluta-Dach

Die Lasten sind der Ursprungs-Statik des Hauses entnommen worden:

achneigung	3				
tg.	χ=	4,70/5,65		=	0,832
α=		ATAN(0,832)		=	39,760
cot	g.α=	TAN(90-39,76)		=	1,202
	.α=	SIN(39,76)		=	0,640
	OS(39,76)	(,,		=	0,769
	lastung:				
	indige Last				
	zziegel=				0,550 kN/m ²
Ko	nstruktion=				0,050 kN/m ²
			g	=	0,600 kN/m ²
Au	sbau:				
Kli	malit 2,5 cm=				0,110 kN/m ²
	einwolle,Sparschalung=				0,040 kN/m ²
	tz=				0,200 kN/m ²
			ga	=	0,350 kN/m ²
Wi	nd=	1,3*0,8*0,64		=	0,666 kN/m²
Sc	hnee=	distribution and the entry of the Control of the Co			0,550 kN/m ²

Pos.: L.2) Kehlbalkenlage

Es ist keine Belastung durch Nutzlast vorgesehen.

Unterdecke=	6,0*(2*0,02*0,12+0,05*	-,,,	0,048 kN/m² 0,400 kN/m²
			0,400 147111
		g =	0,568 kN/m ²
Nutzlast p=			1,000 kN/m ²
<u>q=</u>	g+p	=	1,568 kN/m ²

Pos.:L.3) Dachterrasse

Fläche=	4,76*2,2		=	10,472 kN/m ²
Fiesen= Zementestrich i.M.=	22*0,015		_	0,330 kN/m²
Klebung= Stahlbeton-Hohldielen 10cm=	22*0,045		-	0,990 kN/m² 0,150 kN/m² 2,100 kN/m²
		g	=	3,570 kN/m ²
Nutzlast p=				3,500 kN/m ²
<u>q=</u>	g+p		=	7,070 kN/m ²

Berechnung der einzelnen Bauteile

Vorbenmerkung:

Im Bereich der neuen Dachterrassen werden die Untersparren der "Pluta-Binder" abgeschnitten.

Dieverbleibenden Binder werden hier nachgerechnet, speziell, um die Auflagerkräfte für den "Pfettenträger" zu erhalten.

Binderform 1.

Materialwerte Kennziffer 1				
E=	10000 MN/m ²			
Stabwerte	10000 IVIIV/III			
	2)3)4) H=			22,000 cm
0145 1/2	A=	5*22	=	110,000 cm ²
	J=	5*223/12	=	4436,667 cm4
Stab 5)	H=			12,000 cm
A	=	2*2*12+5*3	=	63,000 cm ²
s.Neben	nrechnung J=			587,250 cm4
Stab 7)	H=	8,000	=	# 0,000 cm
Α	,=	2,4*8	=	19,200 cm ²
J	=	8*2, 4 ³ /12	=	9,216 cm4
Bindera	abstand a=			0,790 m
Lastfall 1) Ständig				
Stab 1)				
aus L.1)		(0,600/COS(39,76)+0,35)*a	=	0,893 kN/m
Stab 2)3				
aus L1)		0,600/COS(39,76)*a	=	0,617 kN/m
Stab 5)		0.500		0.440.1117
aus L.2)	g=	0,568*a	=	0,449 kN/m
Stab 7)	g=	6,0*0,03*0,08	=	0,014 kN/m
Lastfall 2) Schnee	elast			
Schnee	last=	0,55*a	=	0,435 kN/m
Lastfall 3) Windla				
Stab 1)2				
Windlas	st=	0,666*a	=	0,526 kN/m
Lastfall 4) Kehlba		2.4		
aus L.2)) p=	1,0*a	=	0,790 kN/m

Projekt Dachausbau Pichelsd.Str.55/57 Seite 8
Datum Progamm 730 Version 7.4 WIN Proj.bez PICHELS

Pos.: Nebenr. Querschnittswerte

Vorbemerkung:

Es handelt sich hierbei um den Kehlbalken des Pluta-Binders.

 $\frac{\text{System}}{M = 1}:10$

Polygon mit 12 Ecken

Koordinaten der Eckpunkte

Punkt Nr.	y[cm]	z[cm]	Punkt Nr.	y[cm]	z[cm]
1	0.000	0.000	11	2.000	12.000
2	2.000	0.000	12	0.000	12.000
2	2.000	4.500			
4	7.000	4.500			
5	7.000	0.000			
	9.000	0.000			
6 7	9.000	12.000			
8	7.000	12.000			
9	7.000	7.500			
10	2.000	7.500			

statische	Werte bez	ogen	auf die	Schwerachsen	y-z
Fläche=	63.000	cm2	Umfan	g= 60.000	cm
Schwerpun ys =		cm	ZS	= 6.000	cm
Widerstan	dsmomente		Trägh	eitsmomente	
Wyo =	97.875	cm3	Iys	587.250	cm4
Wyu =	97.875	cm3	Izs	= 635.250	cm4
Wzr =	141.167	cm3	Iyzs	0.000	cm4
Wzl =	141.167	cm3			

Projekt Dachausbau Pichelsd.Str.55/57 Selte 9
Datum Pogamm 610 Version 7.4 WIN Proj.bez PICHELS

Pos.: Pos.:1) Berechnung der abgeschnittenen Binder.

Vorbemerkung:

Die vorhandenen Pluta-Dachinder im Abstand von 79cm werden insbesondere wegen der neuen Auflagerlast vorgenommen.

 $\frac{\text{System}}{M = 1}:85$

Knotenbeschreibung	Knoten X(m)		Y (m) Ki		ien X(m	m) Y(m)	
	1 XY	0.00				2.70	
	5 XY	8.91	4.84 2.20	6	5.76		
	Festhaltu	ing: X=	horizont	al Y=	vertikal '	R=Drehung	

Stabbe	schrei	bung
--------	--------	------

St	von	bis	I (4)	Α (h	Mnr
	Knoten	Knoten	(cm4)	(cm2)	(mm)	
1	1	2	4437	110	220	1
2	2	3 M	4437	110	220	1
	3	4	4437	110	220	1
4	4	5	4437	110	220	1
5	4 M	6	587	63.0	120	1
ε	2 M	ϵ	587	63.0	120	1
7	3 M	6 M	9.20	19.2	8.0	1
N=No	rmalkraf	t-, Q=Que	rkraft-,	M=Mome	ntenge	lenk

F1 = 1 + 1C :	Dachausbau	Pichelso	i.Str.55/57	Section	10
Datum				Position	Pos.:1)
Progamm	610	Version	7.4 WIN	Proj.bez	PICHELS

Materialwerte

Elastizitätsmodul E = 10000 MN/m2Temperaturdehnzahl aT = 0.0e+000 1/K

Bandbreite optimiert von 5 auf 3

Belastung Bild 1 M = 1 : 85

Lastfall 2+3+4

Bild 2 M = 1 :85 Lastfall 1+5

Lf	Lastart 	St	K	P.	sl/a (m)	sr/s (m)	q li/Q (kN/m,kN)	q re/M (kN/m, kNm)
ĩ	Gleichlast	1		Y			0.89	0.89
		2		Y			0.62	0.62
		3		Y			0.62	0.62
		4		Y			0.89	0.89
		5		Y			0.45	0.45
		6		Y			0.45	0.45
2	Gleichlast	1		Y			0.44	0.44
		2		Y			0.44	0.44
		3		Y			0.44	0.44
		4		Y			0.44	0.44
3	Gleichlast	5		Y			0.79	0.79
		6		Y			0.79	0.79
4	Gleichlast	1		Х			0.53	0.53
		2		X			0.53	0.53
5	Gleichlast	3		Х			-0.53	-0.53
		4		X			-0,53	-0.53

Proj.bez PICHELS Lastkombinationen Lk Art Bemerkung ______ 1 Addition 2 Addition Lastkombinations- Lk *LF 1 LF 2 LF 3 LF 4 LF 5 LF 6 faktoren 1.00 1.00 1.00 1.00 1.00 2 1.00 * = Lastfall ständig vorhanden Schnittgrößen Stab x(m) N(kN) Q(kN) M(kNm)Lastkomb.1 0.00 -13.17 1.77 0.00 1.77 -12.48 0.00 **1.56** 4.20 -11.52 -2.44 -1.41 ______ 2 0.00 -4.59 1.82 -1.41 2.17 -4.03 0.00 **0.56** 3.32 -3.73 -0.97 -0.00 3 0.00 -4.14 0.49 0.00 0.78 -4.54 0.00 **0.19** 3.32 -5.87 -1.58 -1.82 4 0.00 -12.80 2.64 0.78 -13.32 2.02 0.00 5 0.00

 -8.04
 -1.19
 0.00

 -8.04
 0.00
 -0.57

 -8.04
 1.97
 1.00

 0.96 2.55 6 0.00 -8.04 1.19 0.00 0.96 -8.04 0.00 **0.57** 2.54 -8.04 -1.97 -1.00 _____

 0.00
 3.94
 0.00
 0.00

 2.14
 3.94
 0.00
 0.00

 Extreme Feldmomente sind fett gedruckt Verformungen K x(cm) y(cm) r(rad) Lastkomb.1

 0.000
 0.000
 -0.00563

 0.203
 -0.316
 0.00163

 -0.024
 -0.065
 0.00094

 0.138
 0.151
 -0.00159

 0.000
 0.000
 -0.00312

 0.171
 -0.109
 0.00092

 1 2 3 5 vorgegebene Verschiebungen sind enthalten

Seite 12
Position Pos.:1)

Projekt

Progamm 610

Datum

Dachausbau Pichelsd.Str.55/57

Version 7.4 WIN

Projekt	Dachausbau	Pichelso	i.Str	.55/57	Seile	13
Datum					Position	Pos.:1)
Progamm	610	Version	7.4	WIN	Proj.bez	PICHELS

K	X(kN)	Y(kN)	M(kNm)
1	8.96	9.82	0.00
5	-11.52	6.97	0.00
	K 1 5	1 8.96	1 8.96 9.82

Querkraft (kN) M = 1 :85

Projekt Dachausbau Pichelsd.Str.55/57 Seite 14
Datum Progamm 610 Version 7.4 WIN Proj.bez PICHELS

Biegemoment (kNm) M = 1 :85

Schnittgrößen Lastkomb.2

Stab	x (m)	N(kN)	0 (1 27)	
=====	========	=========	Q(kN)	M(kNm)
1	0.00 4.20	-8.07 -6.23	0.90 -1.29	0.00 -0.82
2	0.00 3.32	-3.00 -1.99	0.85 -0.36	 -0.82 0.00
3	0.00 3.32	-1.62 -1.76	0.80 -1.13	0.00 -0.55
4	0.00 0.78	-4.99 -5.13	1.00	-0.55 0.00
5	0.00 2.55	-3.85 -3.85	-0.43 0.72	0.00
6	0.00 2.54	-3.85 -3.85	0.43 -0.72	0.00 -0.36
7	0.00	1.43 1.43	0.00	0.00

Projekt Dachausbau Pichelsd.Str.55/57 Seite 15
Datum
Progamm 610 Version 7.4 WIN Proj.bez PICHELS

Auflagerkräfte Lastkomb.2	K		X(kN)	Y(kN)	M(kNm)
	1	*	5.61 5.21	5.88	0.00
	5	*	-4.21 -5.21	5.57 2.97	0.00
				3.27 = Anteil der	0.00 ständigen Last

Pos.: 2) Dachterrasse

<u>L=</u>			2,350 m
aus L.3) q=			7,070 kN/m²
gew.: Weber-Stahlbeton-H	ohldielen d=10 cm 2 Ø 10 / D	<u> Piele</u>	
q.zul.=			9,680 kN/m²
A= B=	7,07*2,35/2 A	= =	8,307 kN/m 8,307 kN/m
s.: 3) Außenträger			
L=	4,75+0,2	=	4,950 cm²/m
HEB 140 n= 1 Stück h= 14 cm b= 14 cm Wy= 216 cm³ g= 0,377 kN/r	m		
Eigengewicht g= aus Pos.2)B)=	g B	=	0,377 kN/m 8,307 kN/m
		q =	8,684 kN/m
A= B=	q*L/2 A	=	21,493 kN 21, 493 kN
M=	q*L²/8	=	26,597 kNm
σ= σ _{zul} =	M*100/Wy	=	12,313 kN/cm² 14,000 kN/cm²
os.:4) Innenträger			
L=	4,75+0,2	=	4,950 cm²/m
usführung in allen Teilen wie I	Pos.: 3)		

Pos.: 5) Dachträger

L=		4,75+0,2		=	4,950 m
HEB 260 n= h= b= s= t= Jy= Wy= Jz= Wz= g=	1 Stück 26 cm 26 cm 1 cm 1,75 cm 14920 cm4 1150 cm³ 5130 cm4 395 cm³ 0,930 kN/m				
Vertikallas					0.000 / 11/
Egengewi aus Pos.1		g 6,97/0,79		=	0,930 kN/m 8,823 kN/m
4451 65.1) 1(11 5) 1) –	0,0170,70			0,020 1111111
			V	=	11,782 kN/m
Horizonta aus Pos.1	llast) Kn5)X) H=	11,52/0,79		=	14,582 kN/cm²
Av=		V*L/2		=	29,160 kN
Bv=		Av		=	29,160 kN
		7717 12			
Ah= Bh=		H*L/2 Ah		=	36,090 kN 36,090 kN
DII-		All		-	30,090 KIN
Mv=		V*L2/8		=	36,086 kNm
Mh=		H*L ² /8		=	44,662 kN
σ v=		Mv*100/Wy		=	3,138 kN/cm²
σh=		Mh*100/Wz		_	11,307 kN/cm ²
			Sigma k	=	14,611 kN/cm²
			Olyma K		THO I RIVOIII
σzul=					16,000 kN/cm ²

Pos.:6)7)8) Abfangkonstruktion

Vorwerte

Hierzu Positionsplan Seite 3

5,765

37,200 kNm

Pos.: 8) Unterzug

M=

N=				35,800 kN
HEB 180				
n=	_ 1 Stück			
<u>n=</u> h=	18 cm			
b=	18 cm			
s=	0,85 cm			
t=	1,4 cm			
Jy=	3830 cm4			
Wy=	426 cm ³			
Jz=	1360 cm4			
Wz=	151 cm ³			
g=	0,512 kN/m			
A=	106 cm ²			
σb=		M*100/Wy	=	8,732 kN/cm ²
σN=		N/A	=	0,338 kN/cm ²
Σσ=		σb+σN	=	9,070 kN/cm ²
f=		576,5/1,421	=	406
fzul=		SECOND STATE OF STATE		300

Pos.: 6) Stahlstütze

sk=				2,070 m
N=				30,300 kN
HEB 120 n= h= b= s= Jy= Wy= Jz= Wz= g=	1 Stück 12 cm 12 cm 0,65 cm 864 cm4 144 cm³ 318 cm³ 52,9 cm³ 0,267 kN/m			
g= A=	0,204 kN/m ¤ 34 cm²			
iy=		√(Jy/A)	=	5,041 cm
λ=		sk*100/iy	=	41
ω=				1,140
$\sigma\omega =$		Ν*ω/Α	=	1,016 kN/cm ²
σb=		14,8*100/Wy	=	10,278 kN/cm ²
$\Sigma \sigma =$		σ b +σω	=	11,294 kN/cm ²

Pos.: 7) Stahlstrebe

sk=		$\sqrt{(1,66^2+1,98^2)}$	=	2,584 m
N=				58,500 kN
HEB 100				
	1 Stück		50	
<u>n=</u> h=	10 cm			
b=	10 cm			
s=	0,6 cm			
t=	1,0 cm			8
Jy=	450 cm4			
Wy=	89,9 cm ³			
Jz=	167 cm4			
Wz=	33,5 cm ³			
g=	0,204 kN/m =			
A=	26 cm ²			
i=		√(Jy/A)	=	4,160 cm
λ=		sk*100/i	=	62,115 cm
ω=				1,330
σω=		ω*N/A	=	2,993 kN/cm ²
σ _{zul} =		and a second control of the second control o		14,000 kN/cm ²

 Projekt
 Dachausbau
 Pichelsd.Str.55/57
 Seite
 19

 Datum
 Position
 6)7)8)

 Progamm
 610
 Version
 7.4 WIN
 Proj.bez
 PICHELS

Pos.: 6)7)8) Abfangkonstruktion

Vorbemerkung:

Hierzu Positionsplan Seite 3

 $\frac{\text{System}}{M = 1}:55$

Knotenbeschreibung	Knoten		X (m) Y (m)		Knoten		. X (m) Y		Y (m)
	1 X		0.00 5.13 3.15	0.00	4	Y	3.15 5.76 3.15 rtikal	0. 2.	00 00 00 07
Stabbeschreibung	st	von Knote	bi			I cm4)	A (cm2)	h (mm)	Mnr
	1 2 3 4 5	1 2 3 5 M 2 M	2 3 4 3 5	М		3830 3830 3830 450 450	65.3	180 100	1 1 1 1 1
*	6 N=No:	5 rmalkra	6 ft-,	Q=Que	rkra	450 ift-,	26.0 M=Momen		1 elenk
Materialwerte		tizität eraturd				E aT	= 210 = 1.2e	0000 M -005	IN/m2 1/K

Bandbreite optimiert von 4 auf 3

Projekt Dachausbau Pichelsd.Str.55/57 Seite 20
Datum
Progamm 610 Version 7.4 WIN Proj.bez PICHELS

Belastung
Bild 1
M = 1:55

Lastfall 1

Lf ====	Lastart 	St	K	R	sl/a (m)	sr/s (m)	4		q re/M (kN/m, kNm)
1	Gleichlast	1 2 3 4		Y Y Y L				 0.51 0.51 0.51 0.20	0.51 0.51 0.51 0.51 0.20
	Einzellast		2 6 6	X X			2	1.49 0.31 6.09	0.20
Verformungen Lastfall 1		_ F	ζ		x (cm)		y(cm)		r(rad)
		1 2 3 4 5		V	0.000 0.008 0.015 0.015 -0.667 -0.391 orgegebene	Verschi	-0.000 -1.421 -0.563 -0.000 -1.419 -1.421 ebungen		-0.00781
	agerkräfte fall 1	K			X(kN)		Y(kN)		M(kNm)
		<u>1</u> 4			-35.75 0.00		12.22 42.94		0.00

 Projekt
 Dachausbau Pichelsd.Str.55/57
 Seite
 21

 Datum
 Position
 6)7)8)

 Progamm
 610
 Version
 7.4 WIN
 Proj.bez
 PICHELS

Normalkraft (kN) Lastfall 1 M = 1 : 55

Querkraft (kN) Lastfall 1 M = 1 :55

 Projekt
 Dachausbau
 Pichelsd.Str.55/57
 Seite
 22

 Datum
 Position
 6)7)8)

 Progamm
 610
 Version
 7.4 WIN
 Proj.bez
 PICHELS

Biegemoment (kNm) Lastfall 1 M = 1 : 55

Poss.:6)7)8) Abfangkonstruktion Version 2

Hierzu Positionsplan Seite 4

Pos.: 6) wie vor HEB120

Pos.: 7) wie vor HEB100

Pos.: 8) Unterzug

M=				46,800 kNm
N=				45,000 kN
HEB 180				
	_ 1 Stück			
<u>n=</u> h=	18 cm			
b=	18 cm			
s=	0,85 cm			
t=	1,4 cm			
Jy=	3830 cm4			
Wy=	426 cm ³			
Jz=	1360 cm4			
Wz=	151 cm ³			
g=	0,512 kN/m			
Ä=	65,3 cm ²			
σ=		M*100/Wy+N/A	=	11,675 kN/cm ²
σzul=				16,000 kN/cm ²

Projekt Dachausbau Pichelsd.Str.55/57 Seite 26
Datum Progamm 610 Version 7.4 WIN Proj.bez PICHELS

Pos.: 2. Versio Abfangkonstruktion

 $\frac{\text{System}}{M = 1}:55$

Knotenbeschreibung	Knote	en X	X (m) Y (m)		Knote	en X (m)	Y (m)	
	3 5	2.	.62 .61	0.00	4 Y 6	2.61 5.74 2.61 vertikal	0. 2.	. 07	
Stabbeschreibung	St	von Knoten			I (cm4)	A (cm2)	h (mm)	Mnr	
	1 2 3 4 5	1 2 3 5 M 2 M	2 3 4 3 1 5	vi	3830 3830 3830 450 864	65.3 65.3 26.0	180 180 100	1 1 1 1 1	
	6 N=Nor	5 rmalkraft	€ :-,			34.0 M=Mome		1 elenk	
Materialwerte		izitätsm eraturdeh			E aT	= 21 = 1.2e			

Bandbreite optimiert von 4 auf 3

Projekt Datum Progamm

610

Dachausbau Pichelsd.Str.55/57

Version

7.4 WIN

Seite

Proj.bez

27 Position 2.Versio PICHELS

Belastung
Bild 1
M = 1:55

Lastfall 1+2+3

Lf	Lastart	St	K	R	sl/a (m)	sr/s (m)		q li/Q I/m, kN)	q re(kN/m, kl	
1	Gleichlast	1 2 3 4 5		Y Y Y L L L				0.51 0.51 0.51 0.20 0.27 0.27	0 0 0 0	.51 .51 .51 .20 .27
2	Einzellast		6	Y X				29.88 36.09		
3	Einzellast	2		Y	0.49			21.49		
Las	tkombinationen	Lk	Art	=		Bemerkung				
		1	Add	dition						
		Lk	*]	LF 1	LF 2	LF 3	LF	4 L!	7 5 L	F 6
Iak'	toren	1		1.00	1.00	1.00 * = Lastf	all	ständi	g vorhan	den

Progamm 610	Version	7.4 WIN		Position Proj.bez	
Schnittgrößen Lastkomb.1	Stab	x (m)	N(kN)	Q(kN)	M(kNm)
Lastrono.1	2	0.00 0.25 0.49 0.49 0.50 0.75 1.01 1.26 1.51 1.76 2.01	45.01 45.01 45.01 45.01 45.01 45.01 45.01	20.62 20.50 20.37 -1.12 -1.13 -1.25 -1.38 -1.51 -1.64 -1.77 -1.90	36.71 41.88 46.76 46.76 46.74 46.45 46.11 45.75 45.35 44.93 44.47
Verformungen Lastkomb.1	K	x(cm)	у(с	em)	r(rad)
	1 2 3 4 5 €	0.000 0.007 0.014 0.014 -0.418 -0.293 vorgegebene	-1.7 -1.1 0.0 -1.7	51 83 00 49 51	-0.00874 -0.00269 0.00849 0.01160 -0.00193 -0.00361 enthalten
Auflagerkräfte Lastkomb.1	K 	X(kN)	Y (k	N)	M(kNm)
Normalkraft (kN) M = 1:55	1 4	-36.30 0.00	14. 39.		0.00

Seite

Position 2.Versio

28

Projekt Dachausbau Pichelsd.Str.55/57

Datum

ProjektDachausbauPichelsd.Str.55/57Seite29DatumPosition2.VersioProgamm610Version7.4 WINProj.bezPICHELS

Querkraft (kN) M = 1:55

Biegemoment (kNm)
M = 1 :55

Version 2

Dübelverbindungen

Jeder Pluta-Binder-Sparren wird mittels Bulldog-Dübel zwischen 2 Winkeleisen gehalten.

Hierzu Auflagerkräfte aus Seite 13

Knoten 5

X= Y= 11,520 kN

1000

6,970 kN

R=

 $\sqrt{(X^2+Y^2)}$

=

13,464 kN

gew.: Bulldog-Dübel 2 Ø 75 mm als Dübelpaar auf einem Bolzen M 16

P.zul.=

8,5*2

=

17,000 kN

zu Pos.: 5) Version 2) Dachträger

L=

4,950 m

zusätzlich zur Doppelbiegung erhält der Träger auch Torsion (Bild auf Seite 31).

Das max. Torsionsmoment befindet sich im Auflagerbereich; daher keine Addition der Biegespannungen und der Torsionsspannungen.

Normalkraft aus Pos.1) Stab 4) Seite 13)

N= Mt= Mx= λ= 13,3/0,79 N*0,24 Mt*L/2 = 16,835 kN/m = 4,040 kNm/m = 9,999 kNm

t*L/2

0,00796 cm^-1 158 cm²

w_M= C_M= J_T=

1728000 cm^6 721 cm4

	Berechnung wegen TANHYP mit Excel							
Α	В	С	D	E				
3	L=	495	495	cm				
4	N=	=13,3/0,79	16,8354430379747	kN/m				
5	Mt=	=C4*0,24	4,04050632911392	kNm/m				
6	Mx=	=C5*C3/2	1000,0253164557	kNcm				
7	λ=	0,00796	0,00796	cm^-1				
8	wM=	158	158	cm				
9	CM=	1728000	1728000	cm6				
10	JT=	721	721	cm4				
11	TANHYP=	=TANHYP((0,00796*495/2))	0,961853089952701					
12	Mwa=	=C6*C11/C7	120838,874455256	kNcm				
13	max s tau=	=C12*C8/C9	11,0489248633857	kN/cm				
14	sigma zul=	14	14	kN/cm				

Ing.-Büro Bertram

Juni 99

Auftrag 771 Seite 031

Pichelsdorfer Straße 55/57 Dachgeschoß-Umbau

M. -1:10

Version 2

Sparrenanschluß an Träger

Schweißnahtberechnung

zu Pos.: 5) Sparrenhaltewinkel

Normalkraft aus Pos:1) Stab4) Seite 13

N= h= (26+22)2 = 13,300 kN 48 cm

 $Mh = N^*h = 638,400 \text{ kNcm}$

je Haltewinkel L200/100/10 mm werden 4 Schweißnähte vorgesehen.

2 Stück = 1 Paar parallel zum Sparren halten die Normalkraft;

2 Stück = 1 Paar quer zum Sparren halten das Ausmittenmoment.

Zulässige Schweißspannung σ = 9 kN/cm² 0,400 cm Schweißnahtlänge S= N/2/a/ σ = 1,847 cm

gew.: 2 Schweißnähte a 4 mm 25 mm lang (pararrel zum Sparren)

N= 13,300 kN d= 20 cm

+-P P = Mh/d = 31,920 kN

S= $P/a/\sigma$ = 8,867 cm

gew.: 2 Schweißnähte a 4 mm 10 cm lang (quer zum Sparren)

Schweißnaht zwischen Träger und Stiel

Hierzu Seite 33.

Die Berechnung der Schweißnähte wird nachgeliefert.

Verbesserungsvorschläge der Stahlbaufirma werden dankend entgegengenommen.

Pichelsdorfer Straße 55/57 Dachgeschoß-Umbau

M. - 1:10

Version 2

Schweißnähte am Stützenkopf

Schweißnahtdicke a=6mm

Schlußbemerkung.

Die Hilfskonstruktionen werden je nach Entscheidung des Bauherrn ob Version 1 oder 2 gewählt werden, als Statikanhang mit Berechnung und Zeichnung nachgeliefert.

13465 Berlin-Frohnau, am 16.6.1999

Heimich Bentonne

(Heinrich Bertram)

Dipl.-Ing.

Dipl.-Ing.

Heinrich Bertram

Beratender Ingenieur

P 0139