

R-HTA in LMICs

Increasing accessibility to R for HTA in LMICs

23rd February 2022

Challenges Modelling COVID-19: Excell vs R

Ivan Ricardo Zimmermann

Epidemiology & Bioestatistics

Department of Public Health

11 de novembro de 2021

ORIGINAL ARTICLE

Projection of COVID-19 intensive care hospitalizations in the Federal District, Brazil: an analysis of the impact of social distancing measures

doi: 10.1590/S1679-49742020000500022

Ivan Zimmermann¹ – ⑤ orcid.org/0000-0001-7757-7519

Mauro Sanchez¹ – ⑥ orcid.org/0000-0002-0472-1804

Jonas Brant¹ – ⑥ orcid.org/0000-0003-2248-9102

Domingos Alves² – ⑥ orcid.org/0000-0002-0800-5872

¹Universidade de Brasília, Faculdade de Ciências da Saúde, Brasília, DF, Brasil ²Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil

https://doi.org/10.1590/S1679-49742020000500022

Background

Non-pharmacological interventions

"Non-pharmacological interventions (NPIs) include personal protection measures, environmental interventions, **social distancing** and travel-related policies" (OPAS,2020)

Cases by week in Brazil

Deaths by week in Brazil

Background

Mathematical modeling

The mathematical model that led the UK to fight Covid-19

"The British government's strategy against the coronavirus was based on "mitigating" the pandemic and "herd immunization", or infection of a large part of the population, which in theory would develop herd immunity with the aim of protecting all citizens." (G1, 2020)

"[...] the model shows that the peak of contagion will be reached in three months, it will infect about 80% of the population and leave 510 thousand dead in the UK and about 2.2 million in the US." (G1, 2020)

Imperial College London

Fonte: Fergunson, 2020

Methods

Design

Case study, based on Scenario Analysis

Local

All administrative regions of the Federal District, whose total population was estimated at 3,223,048 inhabitants in 2020

Analysis scenarios

Scenario A - COVID-19 spread profile with no adherence to social distancing measures

Scenario B - COVID-19 spread profile maintaining adherence to social distancing

Scenario C - COVID-19 spread profile based on the observed dynamics of a falling level of social distancing

Fonte: Wikipedia, 2020

Compartmental models in Epidemiology

The SIR Kermack-McKendrick model.

Fonte: https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

The SIR model

$$\dot{S}(t) = -\frac{\beta}{N}I(t)S(t)$$

$$\dot{I}(t) = \frac{\beta}{N}I(t)S(t) - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

Fonte: https://en.wikipedia.org/wiki/Compartmental models in epidemiology

The **SEIR** model

Source: Adapted from Hill. 15

Figure 1 – Representation of the structure of the compartmental dynamic model used

Parameters

Table 1 – List of values, parametric uncertainties, distributions and sources of the main parameters of the model of the spread of COVID-19 in the Federal District, Brazil

Parameter	Point estimation	Lower limit	Upper Iimit	Probability function	Description	Source	
Incubation (days)	5.10	4.50	5.80	Lognormal	Incubation time	Sanches et al. ²⁶	
Duration — mild (days)	3.65	3.21	4.09	Gama	Duration of condition until isolation or hospitalization	Linton et al. ²⁷	
Severe clinical picture (%)	4.57	2.72	9.32	Beta	Proportion of infected people who will have severe or critical clinical picture (hospitalization)	Verity et al. ²⁸	
Length of hospitalization (days)	8.00	6.00	10.00	Lognormal	Average length of hospitalization in a ward	Ferguson et al. ²⁹	
ICU ^a hospitalization (%)	46.30	44.31	48.06	Beta	Percentage of severe patients needing intensive care	Epidemiological Bulletins ¹⁹	
Time in ICU ^a (days)	9.00	6.00	13.00	Lognormal	Average length of hospitalization in ICU ^a	Grasselli et al. ³⁰	
Lethality (%)	0.576	0.315	1.140	Beta	Lethality of infected people adjusted for the region	Verity et al. ²⁸	
Time until death (days)	17.80	16.02	19.58	Lognormal	Average time from symptom onset to death Verity et a		
ICU ^a mortality (%)	27.23	12.85	47.81	Not applicable	e Probability of death in ICU ^a Calibrated by leth		

a) ICU: intensive therapy unit.

Calibration

Source: InLoco public database data.11

Figure 2 — Evolution of percentage social isolation in relation to the implementation date of COVID-19 combat measures in the Federal District, Brazil

Supplementary Material 3 – Time series of cumulative confirmed COVID-19 cases, intensive care hospitalizations, number of deaths and percentage social isolation in the Federal District, Brazil

Date	Cumulative cases	ICU ^a hospitalizations	Cumulative deaths	Percentage isolation
1/3/2020	1	-	-	0.4090
2/3/2020	1	-	-	0.2740
3/3/2020	1	_	_	0.2810
4/3/2020	1	_	_	0.2930
5/3/2020	1	_	_	0.2960
6/3/2020	1	_	_	0.2900
7/3/2020	1	-	-	0.3180
15/5/2020	3.786	86	55	0,4120
16/5/2020	4.140	84	56	0,4472
17/5/2020	4.368	116	59	0,5176
18/5/2020	4.618	121	66	0,4248
19/5/2020	4.853	125	72	0,4205
20/5/2020	5.271	142	78	0,4120
21/5/2020	5.542	138	84	0,4121

Results

Maintaining an average level of social isolation of 30.0%, as the simulations reached a peak of 6,214 ICU admissions (IQR: 4,618 to 8,415) on the probable date of 7/14/2020 (IQR: 7/9/2020). 2020) on 7/20/2020).

Until June 2020, the Federal District had a **total of 1,534 adult ICU beds**. Demand greater than the number of public ICU beds registered would be maintained for at least 125 days (IIQ: 115 to 135)

Chalenges with Excel?

Is it transparent?

On some level yes, but there is limited interpretation

Modelo de Projeção da Demanda por leitos de UTI por COVID-19 [Demand for critical care beds during COVID-19 Model]

Published: 8 September 2020 | Version 3 | DOI: 10.17632/bypzkmwnrv.3

Contributor: Ivan Zimmermann

Description

17-04-2020: Esta proposta de análise faz uso de projeções com um modelo modelo compartimental SEIR baseado em iniciativas anteriores (ver aba referências). A partir dos dados de entrada na aba Modelo, são conduzidas as projeções. [This spreadsheet do projections with a SEIR compartment based on previous initiatives (see references tab). Results are based on the input data on the Model tab]

25-05-2020: Nova versão do modelo com correções e atualizações. Nesta versão:

- Incluída a condução de simulações de Monte Carlo
- Estimativas de transmissão de acordo nível de isolamento social disponibilizado por InLoco (https://mapabrasileirodacovid.inloco.com.br)

17-08-2020: Nova versão do modelo com atualizações. Nesta versão:

- O Fator de calibração (tau) ajustado de acordo com a série histórica do nível de isolamento social disponibilizado por InLoco (https://mapabrasileirodacovid.inloco.com.br) e do número acumulado de óbitos por Covid-19 no Distrito Federal até a data de 30/07/2020

Download All 11 MB

Files

 $Zimmer mann_et_al_Modelo_SEIIIRD_COVID_Demanda_Hospitalar_DF_Isolamento_17_08_2020.xlsm$

Zimmermann, Ivan (2020), "Modelo de Projeção da Demanda por leitos de UTI por COVID-19 [Demand for critical care beds during COVID-19 Model]", Mendeley Data, V3, doi: 10.17632/bypzkmwnrv.3

M	od	elo

Wodelo							
t	Data	Suscetíveis	Expostos	Infectado (I₁)	Infectado (I ₂)	Infectado (I ₃)	Recuperados
(22/03/2020	3221203	1307		10	1	0
1	23/03/2020	3220888	1296	724	18	1	121
2	24/03/2020	3220512	1348	869	29	2	288
3	25/03/2020	3220129	1394	992	42	3	488
4	26/03/2020	321977	1403	1096	56	5	717
	27/03/2020	3219462	1361	1176	70	7	971
6	28/03/2020	3219133	1350	1226	84	10	1244
7	29/03/2020	3218792	1354	1261	97	13	1529
3	30/03/2020	3218443	1364	1289	110	16	1823
ç	31/03/2020	3218089	1377	1312	122	19	2125
10	01/04/2020	3217732	1390	1332	133	23	2432
11	02/04/2020	3217377	1398	1351	144	26	2745
12	03/04/2020	3217025	1400	1368	153	30	3063

fх

= X8 + ((PROCV(V8; AZ7: BG312; 6; FALSO))*W8*Y8) + ((PROCV(V8; AZ7: BG312; 7; FALSO))*W8*Z8) + ((PROCV(V8; AZ7: BG312; 8; FALSO))*W8*AA8) - alfa*X8) + ((PROCV(V8; AZ7: BG312; 8; FALSO))*W8*AA8) + ((PROCV(V8; AZ7: BG312; 8; FALSO))*W8*AA8) + ((PROCV(V8; AZ7: BG312; 8; FALSO))*W8*AA8) + ((PROCV(V8; AZ7: BG312

Chalenges with Excel?

Is it transparent?

On some level yes, but limited interpretation

Is it Safe?

Not at all...Prone to errors (typo) and no backups (when dealing with on VBA)

Modelo							
t	Data	Suscetíveis	Expostos	Infectado (I ₁)	Infectado (I ₂)	Infectado (I ₃)	Recuperados
0	22/03/2020	3221544	977	516	1	0 1	0
1	23/03/2020	3221264	1013	609	1	9 1	141
2	24/03/2020	3220966	#NOME?	684	3	0 2	308
3	25/03/2020	3220669	#NOME?	#NOME?	4	1 3	496
4	26/03/2020	#NOME?	#NOME?	#NOME?	#NOME?	5	#NOME?
5	27/03/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
6	28/03/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
7	29/03/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
8	30/03/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
9	31/03/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
10	01/04/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
11	02/04/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
12	03/04/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?
13	04/04/2020	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?	#NOME?

It takes several weeks (or even months) to build your model. But, it only takes seconds to destroy it (ie: running a wrong VBA code)...

So, remember to save dozens (or even hundreds) of backup versions...

Based on a true story.

Nome

- Modelo_SEIR_COVID_Demanda_Hospitalar_v_5.xlsx
- Modelo SEIR COVID Demanda Hospitalar v 4.xlsx
- Modelo_SEIR_COVID_Demanda_Hospitalar_v_3.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v1.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_backup.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_7.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_6.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_5.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_4.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_3.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_v_2.xlsx
- Modelo SEIIIRD COVID Demanda Hospitalar v 1.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_MC_v3.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_MC_v2.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_MC_v1.xlsx
- Modelo_SEIIIRD_COVID_Demanda_Hospitalar_Geral.xlsx
- Modelo SFIIRD COVID Demanda Hospitalar Analise Manaus v 1 vlsv

```
2 # Script para modelo de transição dinâmica na COVID-19 (SEIRO)
   # Ultima atualizacao em: 25/11/2020 (ivanzricardo@gmail.com)
 #Chamar os pacotes
7 library(deSolve)
                      # solução das equações do modelo
   library(reshape2) # transformação da estrutura dos dados
   library(ggplot2)
                      # pacote pro gráfico
10
11 ## ENTRADAS
12
                              35 ## MODELO
   #Definindo os valores das e
13
                              36
                                  #Definindo os parâmetros no modelo
   #valores digitados
                                  estados_iniciais <- c(S = suscetiveis_ini,
                               37
  N <- 30000000 # Entrada da
                                                           E = expostos_ini,
  Rt <- 0.8 # Número de repr 39
                                                           I = infectados_ini,
17 infectados_ini <- 6000 # Nú 40
                                                           R = recuperados_ini,
18 recuperados_ini <- 220000 # 41
                                                           0 = obitos_ini
   obitos_ini <- 4000 # Número 42
20 tempo_incubacao <- 3 # Temp 43
                                  parametros <- c(lambda = lambda, gama = gama, mu = mu, beta = beta, N = N, Rt = Rt)
21 tempo_infectante <- 5 # Tem 44
                                  tempo \leftarrow seg(from = 0, to = horizonte, by = 1)
22 tempo_morte <- 10 # Tempo m 45
23 letalidade <- 0.015 # Taxa 46
                                  #Definindo as equações do modelo
24 horizonte <- 60 # Duração d 47 modelo_siro <- function(tempo, estado, parametros) {
                                    with(as.list(c(estado, parametros)), {
                                      #Equacoes diferenciais
                              51
                                      dS \leftarrow -beta*I/N*S
                                      dE <- beta*I/N * S - lambda*E
                                      dI <- lambda*E - gama * (1-letalidade)*I - mu * (letalidade)*I</pre>
                               54
                                      dR <- gama * (1-letalidade)*I
                                      d0 <- mu * (letalidade)*I</pre>
                              55
                              56
                               57
                                      return(list(c(dS,dE,dI, dR, d0)))
                              58 △
                              59
                              60 - }
```

The whole model in less than 30 lines of code...

```
# Script para modelo de transição dinâmica na COVID-19 (SEIRO)
    # Ultima atualizacao em: 25/11/2020 (ivanzricardo@gmail.com)
    #Chamar os pacotes
    library(dasalya) ## MODELO
    library( 36 #Definindo os parâmetros no modelo
    library( 37 estados_iniciais <- c(S = suscetiveis_ini,</pre>
10
                         35 ## MODELO
    ## ENTRA 39
                             #Definindo os parâmetros no modelo
                             estados_iniciais <- c(S = suscetiveis_ini,
               41
                         38
    #Definin 42
                         39
                                   35 ## MODELO
    #valores 43
                   paran 40
                                      #Definindo os parâmetros no modelo
    N <- 300 44
                   tempc 41
                                      estados_iniciais <- c(S = suscetiveis_ini,
    Rt <- 0. 45
                                                                 E = expostos_ini,
                  #Defi 43
    infectad 46
                             paran 39
                                                                 I = infectados_ini,
    recupera 47 model 44
                            tempc 40
                                                                 R = recuperados_ini,
                         45
                                                                 0 = obitos_ini
    obitos_i 49
                     wit 46
                            #Defi 42
    tempo_in 50
20
                       # 47 - model 43
                                      parametros <- c(lambda = lambda, gama = gama, mu = mu, beta = beta, N = N, Rt = Rt)
21 tempo_in 51
                       0 48
                                      tempo \leftarrow seg(from = 0, to = horizonte, by = 1)
                                   44
22
    tempo_mo 52
                       C 49 -
                               wit 45
    letalida 53
                       c 50
                                      #Definindo as equações do modelo
    horizont 54
                       c 51
                                 f 47 modelo_siro <- function(tempo, estado, parametros) {</pre>
                       c 52
                                 48
                        53
                                        with(as.list(c(estado, parametros)), {
                                 0 49
               57
                       r 54
                                 c 50
                                           #Equacoes diferenciais
                     }) 55
               58 -
                                 <sup>C</sup> 51
                                           dS \leftarrow -beta*I/N*S
                         56
                                           dE <- beta*I/N * S - lambda*E
                                   52
                         57
                                           dI <- lambda*E - gama * (1-letalidade)*I - mu * (letalidade)*I</pre>
                                 r 53
                         58 -
                               }) 54
                                           dR <- gama * (1-letalidade)*I</pre>
                         59
                                   55
                                           dO <- mu * (letalidade)*I
                        60 -
                                   56
                                   57
                                           return(list(c(dS,dE,dI, dR, d0)))
                                  58 <sup>-</sup>
                                        })
                                  60 - 3
```

Several models in the same script

Chalenges with Excel?

Is it transparent?

On some level yes, but there is limited interpretation

Is it Safe?

Not at all...Prone to errors (typo) and no backups (when dealing with on VBA)

Is it "updatable"?

Not at all...each update requires hard manipulation work

Calculadora R(t) Dados disponíveis Calculadora do Número Efetivo de Reprodução Tempo Insira seus dados Dependente Esta calculadora estima o número básico de reprodução tempo dependente - R(t). Abrangência Brasil A estimativa do R(t) é uma medida chave de quão rápido o vírus está se espalhando numa determinada população. Corresponde ao número médio de pessoas infectadas por uma pessoa infecciosa. Se o R(t) estiver acima de 1,0, indica que o Unidade Federada vírus está espalhando rapidamente na população e quando o R(t) está abaixo de 1.0, indica que o vírus está sob controle. Capital Importante destacar que a análise somente do R(t) não caracteriza um determinado território em relação à gravidade, você deve levar em consideração o R(t) e o número absoluto de casos. Por exemplo, um estado com 1000 novos casos por dia e R(t) = Município 1,0 está provavelmente em pior situação do que um estado com 10 novos casos por dia e R(t) = 1,1. O pior cenário é R(t) >> 1 e muitos casos novos por dia. R tempo dependente Período: to 2021-11-17 Simulação Padrão Personalizada Suporte: Sala de Situação - FS/UNB

Apr 2020

Jul 2020

Oct 2020

Jan 2021

Date

Apr 2021

Jul 2021

Oct 2021

https://sds.unb.br/calculadoraepidemiologica/

Take-home messages

- Excel remains a powerful tool in modeling and is easily accepted by decision makers.
- However, it is important to consider its limitations, especially in relation to its weaknesses in transparency, data security and automation.
- Reproducible models, like R models can deal better with these limitations

Referências

Edlin R, McCabe C, Hulme C, Hall P, Wright J. Cost Effectiveness Modelling for Health Technology Assessment: A Practical Course. ADIS, 2015. 208 p

Fergunson et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. 16 Mar 2020; doi.org/10.25561/77482

G1. Coronavírus: O que diz o modelo matemático que levou o Reino Unido a mudar radicalmente combate à Covid-19, 2020. Disponível em: https://g1.globo.com/bemestar/coronavirus/noticia/2020/03/19/coronavirus-o-que-diz-o-modelo-matematico-que-levou-o-reino-unido-a-mudar-radicalmente-combate-a-covid-19.ghtml

Goeree R. HTA, Modeling and MCDM for Decision Makers. Mcmaster University, 2014

Ribeiro et al. Diretriz metodológica para estudos de avaliação econômica de tecnologias em saúde no Brasil. J Bras Econ Saúde 2016;8(3): 174-184

Soarez et al. Modelos de decisão para avaliações econômicas de tecnologias em saúde. Ciênc. saúde coletiva vol.19 no.10 Rio de Janeiro out. 2014

OPAS. Considerações sobre medidas de distanciamento social e medidas relacionadas com as viagens no contexto da resposta à pandemia de COVID-19. Disponível em: https://iris.paho.org/handle/10665.2/52045

KeepCalmAndPosters.com

ivan.zimmermann@unb.br

Laboratório de Estudos Farmacêuticos da Unb - Lefar Campus Universitário Darcy Ribeiro, Brasília-DF | CEP 70910-900

https://www.lefarunb.com.br/