Funções

Max Jauregui

25 de julho de 2022

1 Definições básicas

Sejam A e B conjuntos quaisquer. Uma relação de A em B é um conjunto arbitrário de pares ordenados (x,y), em que $x \in A$ e $y \in B$. Uma função f de A em B é uma relação especial de A em B que tem as seguintes propriedades:

- 1. para cada $x \in A$ existe $y \in B$ tal que (x, y) pertence à relação;
- 2. se (x,y) e (x,z) pertencem à relação, então y=z.

Em outras palavras, cada $x \in A$ está associado a um único elemento $y \in B$, o qual será denotado por f(x) e será chamado de valor da função f no ponto x.

Exemplo 1.1. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{3, 5, 7\}$.

- 1. A relação $F = \{(1,3), (2,3), (3,5), (4,5)\}$ é uma função de A em B.
- 2. A relação $R = \{(1,3), (3,5), (4,7)\}$ não é uma função de A em B pois $2 \in A$ não está relacionado com nenhum $y \in B$;
- 3. A relação $S=\{(1,3),(2,5),(3,5),(4,5),(3,7)\}$ não é uma função de A em B, pois (3,5) e (3,7) pertencem à relação.

Uma função f de A em B é denotada de forma simbólica por $f:A\to B$. O conjunto A é chamado de domínio de f e o conjunto B de contradomínio de f.

Exemplo 1.2. No exemplo 1.1 foi definida uma função $F: A \to B$. Nesse caso, tem-se que F(1) = 3, F(2) = 3, F(3) = 5 e F(4) = 5.

Uma função $f:A\to B$ é chamada de uma função real de uma variável real quando $A\subset\mathbb{R}$ e $B\subset\mathbb{R}$. Essa classe de funções será o nosso principal objeto de estudo neste curso.

Embora que para definir uma função seja necessário conhecer o seu domínio, na prática, comumente definem-se funções simplesmente por equações da forma

 $f(x) = \exp \operatorname{ressão} \operatorname{envolvendo} \operatorname{a variável} x$.

Nesse caso, assume-se que o domínio da função f é o conjunto de todos os números $x \in \mathbb{R}$ para os quais a expressão do lado direito faz sentido.

Exemplo 1.3.

- 1. A equação $f(x) = 3x^2 5x + 7$ define uma função f cujo domínio é \mathbb{R} , pois a expressão do lado direito faz sentido para qualquer $x \in \mathbb{R}$.
- 2. A equação $g(x) = \frac{3}{x+5} 3x^3$ define uma função g cujo domínio é o conjunto $\mathbb{R} \{-5\}$, pois a expressão do lado direito só faz sentido se $x \neq -5$;
- 3. A equação $h(x) = 6\sqrt{3-2x}$ define uma função h cujo domínio é o intervalo $(-\infty, 3/2]$, pois a expressão do lado direito só faz sentido se $x \le 3/2$.

Exercício 1.4. No exemplo anterior vimos que a função $h(x) = 6\sqrt{3-2x}$ tem como domínio o intervalo $(-\infty, 3/2]$. Determine os valores da função nos pontos 3/2, 0, -3 e 1-t, em que t>0.

Define-se a imagem de uma função f como o conjunto de todos os valores f(x), com x no domínio de f.

Exemplo 1.5. Vamos determinar o domínio e a imagem da função definida pela equação

$$f(x) = \sqrt{4 - 2x} + 5.$$

Como a expressão do lado direito só faz sentido se $4-2x\geq 0$, segue que o domínio de f é o intervalo $(-\infty,2]$. Para determinamos a imagem de f começamos notando que, independentemente do valor de $x\in (-\infty,2], \sqrt{4-2x}\geq 0$ e, por conseguinte, $f(x)\geq 5$. Isso quer dizer que a imagem de f está contida no intervalo $[5,\infty)$. Para concluir que todo esse intervalo é a imagem de f, devemos mostrar que para qualquer $y\in [5,\infty)$ podemos achar $x\in (-\infty,2]$ tal que $y=\sqrt{4-2x}+5$. Resolvendo essa equação, obtemos que

$$x = \frac{4 - (y - 5)^2}{2} = 2 - \frac{(y - 5)^2}{2}$$
.

Segue daqui que, independentemente do valor de $y \in [5, \infty)$, $x \in (-\infty, 2]$. Portanto, a imagem de f é o intervalo $[5, \infty)$.

Uma função f pode ser representada graficamente marcando os pontos (x, f(x)), com x no domínio de f, no plano cartesiano. Em geral, esse processo gera uma curva, a qual é chamada de gráfico de f. Como cada x no domínio de f está associado a um único valor de f(x), o gráfico de f é uma curva tal que qualquer reta vertical corta a curva em no máximo um ponto (veja a figura online).

Exercício 1.6. Esboce o gráfico da função definida no exemplo 1.5 e determine os interceptos com os eixos.

2 Funções monótonas, pares e ímpares

Há quatro tipos de funções monótonas:

- 1. Uma função f é monótona crescente em um intervalo I se, dados $x_1, x_2 \in I$ com $x_1 < x_2$, tem-se que $f(x_1) < f(x_2)$.
- 2. Uma função f é monótona não-decrescente em um intervalo I se, dados $x_1, x_2 \in I$ com $x_1 < x_2$, tem-se que $f(x_1) \le f(x_2)$.
- 3. Uma função f é monótona decrescente em um intervalo I se, dados $x_1, x_2 \in I$ com $x_1 < x_2$, tem-se que $f(x_1) > f(x_2)$.
- 4. Uma função f é dita monótona não-crescente em um intervalo I se, dados $x_1, x_2 \in I$ com $x_1 < x_2$, tem-se que $f(x_1) \ge f(x_2)$.

O gráfico de uma função monótona crescente é uma curva que sobe quando olhada de esquerda para a direita. Por outro lado, o gráfico de uma função monótona decrescente é uma curva que desce quando olhada de esquerda para a direita.

Exemplo 2.1. Consideremos a função f definida pela equação $f(x) = x^2$. Vamos mostrar que f é monótona crescente no intervalo $[0, \infty)$ e é monótona decrescente no intervalo $(-\infty, 0]$. Dados $x_1, x_2 \in [0, \infty)$ com $x_1 < x_2$, temos que $x_1^2 < x_2^2$, ou seja, $f(x_1) < f(x_2)$. Portanto, f é monótona crescente no intervalo $[0, \infty)$. Por outro lado, dados $x_1, x_2 \in (-\infty, 0]$ com $x_1 < x_2$, temos que $-x_1 > -x_2 \ge 0$. Logo, $(-x_1)^2 > (-x_2)^2$, o que implica que $x_1^2 > x_2^2$, ou seja, $f(x_1) > f(x_2)$. Portanto, f é monótona decrescente no intervalo $(-\infty, 0]$.

O exemplo anterior revela que uma função pode ser monótona crescente em um intervalo e conjuntamente ser monótona decrescente em outro.

Diz-se que uma função f é par se f(-x) = f(x) para todo x no domínio de f (isso implica tacitamente que -x também pertence ao domínio de f). Por outro lado, diz-se que uma função g é impar se g(-x) = -g(x) para todo x no domínio de g. Dessas definições, pode-se concluir diretamente que o gráfico de uma função par é simétrico em relação ao eixo g enquanto que o gráfico de uma função impar é simétrico em relação à origem.

Exemplo 2.2.

1. A função $f(x) = x^4 - 3$ é uma função par, pois

$$f(-x) = (-x)^4 - 3 = x^4 - 3 = f(x)$$
.

2. A função $g(x) = x^7 - 5x^3 + x$ é uma função ímpar, pois

$$g(-x) = (-x)^7 - 5(-x)^3 + (-x) = -x^7 + 5x^3 - x = -g(x)$$
.

3. A função $h(x) = 5x^2 + 3x - 7$ não é uma função par nem é uma função ímpar, pois podemos achar um valor de x no domínio de h (por exemplo, x = 1) tal que $h(-x) \neq h(x)$ e $h(-x) \neq -h(x)$.

3 Operações com funções

Sejam f e g duas funções.

- 1. Define-se a função f+g pela equação (f+g)(x)=f(x)+g(x). O domínio de f+g é a interseção dos domínios de f e g.
- 2. Define-se a função f g pela equação (f g)(x) = f(x) g(x). O domínio de f g é a interseção dos domínios de f e g.
- 3. Define-se a função fg pela equação (fg)(x)=f(x)g(x). O domínio de fg é a interseção dos domínios de f e g.
- 4. Define-se a função f/g pela equação (f/g)(x) = f(x)/g(x). O domínio de f/g é a interseção dos domínios de f e g excluíndo os pontos x nos quais g(x) = 0.

Exemplo 3.1. Sejam as funções $f(x) = 3x^2 + 5$ e $g(x) = \sqrt{2x - 7}$. Nesse caso, a função f/g está definida por

$$(f/g)(x) = \frac{3x^2 + 5}{\sqrt{2x - 7}}.$$

O domínio de $f \in \mathbb{R}$ e o domínio de $g \in \mathcal{G}$ o intervalo $[7/2, \infty)$. Logo, a interseção dos domínios \mathcal{G} $[7/2, \infty)$. Além disso, como g(7/2) = 0, o domínio da função $f/g \in \mathcal{G}$ o intervalo $(7/2, \infty)$.

4 Composição de funções

Sejam $f:A\to B$ e $g:C\to D$ duas funções. Se a imagem de f é um subconjunto de C, pode-se definir a função composta $g\circ f:A\to D$ por

$$(q \circ f)(x) = q(f(x)).$$

Exemplo 4.1. Consideremos as funções $f(x) = 5x^2 + 3$ e g(x) = 2x - 1. O domínio de ambas as funções é \mathbb{R} . Logo, a imagem de qualquer uma das funções está contida no domínio da outra e, por conseguinte, as funções compostas $g \circ f$ e $f \circ g$ podem ser definidas. Vamos encontrar as expressões dessas funções compostas. Temos que

$$(g \circ f)(x) = g(f(x)) = g(5x^2 + 3) = 2(5x^2 + 3) - 1 = 10x^2 + 5.$$

A expressão de $(q \circ f)(x)$ também pode ser obtida da seguinte maneira:

$$(g \circ f)(x) = g(f(x)) = 2f(x) - 1 = 2(5x^2 + 3) - 1 = 10x^2 + 5.$$

Por outro lado, temos que

$$(f \circ g)(x) = f(g(x)) = 5[g(x)]^2 + 3 = 5(2x - 1)^2 + 3 = 5(4x^2 - 4x + 1) + 3 = 20x^2 - 20x + 8.$$

Assim, notamos que mesmo quando as funções compostas $g \circ f$ e $f \circ g$ podem ser definidas, elas em geral são diferentes funções. Em outras palavras, a operação de composição de funções não é comutativa.

Exercício 4.2. A energia cinética de uma partícula de massa m que se move com uma velocidade v é dada por

$$E = \frac{mv^2}{2} \,.$$

Se a partícula realiza um movimento de queda livre, a sua velocidade em cada instante de tempo t é dada por

$$v = v_0 - gt,$$

em que v_0 e g são constantes. Determine a expressão da energia cinética da partícula para qualquer instante de tempo t.

5 Funções elementares

5.1 Funções lineares

Uma função linear é definida pela equação f(x) = ax + b, em que $a, b \in \mathbb{R}$ são constantes. Se a = 0, a função linear f(x) = b é chamada de uma função constante. O domínio de qualquer função linear é \mathbb{R} . Em relação ao gráfico de uma função linear f(x) = ax + b, temos os seguintes casos (veja a figura online):

- 1. se a > 0, o gráfico de f é uma reta que sobe quando olhada de esquerda para a direita;
- 2. se a = 0, o gráfico de f é uma reta horizontal;
- 3. se a < 0, o gráfico de f é uma reta que desce quando olhada de esquerda para a direita.

Se (x_1, y_1) e (x_2, y_2) são dois pontos distintos quaisquer de uma reta, a *inclinação* da reta é definida por

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \,.$$

Como o gráfico de uma função linear f(x) = ax + b é uma reta, podemos determinar a sua inclinação. Para isso, escolhendo, por exemplo, os pontos (0, f(0)) e (1, f(1)), vamos ter que a inclinação da reta é

$$m = \frac{f(1) - f(0)}{1 - 0} = \frac{a + b - b}{1} = a.$$

Assim concluímos que o gráfico da função linear f(x) = ax + b é uma reta com inclinação a.

Exemplo 5.1. Vamos encontrar a função linear cujo gráfico é uma reta que passa pelos pontos (11, -4) e (-4, 5). A inclinação da reta é

$$m = \frac{5 - (-4)}{-4 - 11} = -\frac{9}{15} = -\frac{3}{5}$$
.

Logo, a função linear deve ter a forma $f(x) = -\frac{3}{5}x + b$. Para encontrar o valor de b, usamos o fato de que f(11) = -4. Logo,

$$-4 = -\frac{3}{5}(11) + b$$

e, por conseguinte, b=13/5. Portanto, a função linear desejada é $f(x)=-\frac{3}{5}x+\frac{13}{5}$.

5.2 Funções polinomiais

Uma função polinomial é definida pela equação

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

em que $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$ são constantes. O domínio de qualquer função polinomial é \mathbb{R} . Se $a_n \neq 0$, diz-se que a função polinomial f tem $grau\ n$ e que a_n é o seu $coeficiente\ lider$. Uma função polinomial de grau 2 é chamada de uma $função\ quadrática$. Uma função polinomial de grau 3 é chamada de uma $função\ cúbica$.

Exemplo 5.2. O gráfico da função polinomial $f(x) = x^n$ para alguns valores de $n \in \mathbb{N}$ pode ser visto em uma figura online.

Diz-se que um número $a \in \mathbb{R}$ é uma raiz de uma função polinomial f se f(a) = 0.

Exemplo 5.3. Vamos encontrar as raízes da função polinomial $f(x) = x^3 - 3x^2 - 4x$. Para isso, devemos resolver a equação

$$x^3 - 3x^2 - 4x = 0.$$

Reescrevendo essa equação como

$$x(x^2 - 3x - 4) = 0,$$

obtemos que x=0 ou $x^2-3x-4=0$. Logo, o número 0 é uma raiz de f. Para determinar outras (caso existam), devemos resolver a equação $x^2-3x-4=0$. Fazendo isso, temos que

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-4)}}{2(1)} = \frac{3 \pm \sqrt{9 + 16}}{2} = \begin{cases} 4\\ -1 \end{cases}.$$

Portanto, as raízes de f são -1, 0 e 4.

Dada uma função f, diz-se que f(x) tende para L quando x tende para infinito e escreve-se $f(x) \to L$ quando $x \to \infty$ se f(x) assume valores próximos do número L desde que se considerem valores positivos de x suficientemente grandes. Analogamente pode-se definir a situação $f(x) \to L$ quando $x \to -\infty$.

Exemplo 5.4. Se $f(x) = 2 + \frac{1}{x}$, temos que $f(x) \to 2$ quando $x \to \infty$ e também quando $x \to -\infty$.

Dada uma função f, diz-se que f(x) tende para infinito quando x tende para infinito e escreve-se $f(x) \to \infty$ quando $x \to \infty$ se f(x) assume valores positivos muito grandes desde que se considerem valores positivos de x suficientemente grandes. Outras situações podem ser definidas de forma análoga.

Exemplo 5.5. Se $f(x) = x^2$, temos que $f(x) \to \infty$ quando $x \to \infty$ e também quando $x \to -\infty$.

Para fazer um esboço do gráfico de uma função polinomial f é conveniente realizar previamente as seguintes tarefas:

- 1. determinar as raízes de f;
- 2. descobrir o comportamento de f(x) quando $x \to \infty$ e quando $x \to -\infty$.

Exemplo 5.6. No exemplo 5.3 foram determinadas as raízes da função polinomial $f(x) = x^3 - 3x^2 - 4x$. Para descobrir o comportamento de f(x) quando $x \to \infty$, escrevemos a expressão de f(x) como

$$f(x) = x^3 \left(1 - \frac{3}{x} - \frac{4}{x^2} \right)$$
.

Se $x \to \pm \infty$, as expressões 3/x e $4/x^2$ claramente tendem para 0. Assim, a expressão entre parênteses tende para 1. Por outro lado, $x^3 \to \infty$ quando $x \to \infty$ e $x^3 \to -\infty$ quando $x \to -\infty$. Portanto, temos que $f(x) \to \infty$ quando $x \to \infty$ e $f(x) \to -\infty$ quando $x \to -\infty$ (ver figura online).

Exercício 5.7. Esboce o gráfico da função $f(x) = -2x^2 + 4x - 1$ determinando previamente as suas raízes e o comportamento de f(x) quando $x \to \pm \infty$. O gráfico de uma função quadrática qualquer é uma curva chamada de parábola (veja figura online).

5.3 Funções algébricas

Uma função f é dita uma função algébrica se a expressão de f(x) envolve operações elementares, potências inteiras ou radiciação.

Exemplo 5.8. As seguintes expressões definem funções algébricas:

1.
$$f(x) = \frac{3}{x^2} + 4x^3$$
;

2.
$$g(x) = 5(3x^2 - 7)^{1/3}$$
;

3.
$$h(x) = \frac{5x+1}{\sqrt{7x+1}}$$
.

Exercício 5.9. Determine o domínio das funções algébricas do exemplo 5.8.

Exemplo 5.10. O gráfico da função algébrica $f(x) = x^{1/n}$ pode ser encontrada em uma figura online.

6 Funções definidas por partes

Em alguns casos uma função f pode ser definida por diferentes expressões para diferentes partes do seu domínio.

Exemplo 6.1. Consideremos a função

$$f(x) = \begin{cases} x+3 & \text{se } x < 0\\ (x-2)^2 & \text{se } x \ge 0 . \end{cases}$$

O domínio de $f \in \mathbb{R}$. Notamos que f é uma função linear no intervalo $(-\infty,0)$ e é uma função quadrática no intervalo $[0,\infty)$. Para encontrar os interceptos do gráfico de f com o eixo x, devemos resolver a equação f(x)=0. Se x<0, temos a equação x+3=0, de onde obtemos x=-3. Por outro lado, se $x\geq 0$, temos a equação $(x-2)^2=0$, de onde obtemos x=2. Além disso, da definição de f podemos notar que $f(x)\to -\infty$ quando $x\to -\infty$ e que $f(x)\to \infty$ quando $x\to \infty$. Com essas informações podemos fazer um esboço do gráfico de f (veja a figura online).

7 Transformação de funções

Seja f uma função. Vamos considerar as seguintes transformações sobre a expressão de f(x): f(x) + c, f(x) - c, f(x + c), f(x - c), cf(x), f(cx), -f(x) e f(-x), em que c > 0. A seguinte tabela descreve os efeitos sobre o gráfico de f quando essas transformações são aplicadas.

Transformação sobre $f(c > 0)$	Efeito sobre o gráfico de f	
f(x) + c	O gráfico sobe uma distância c	
f(x) + c	O gráfico desce uma distância c (veja figura online)	
f(x+c)	O gráfico se translada para a esquerda uma	
	distância c	
f(x-c)	O gráfico se translada para a direita uma distância	
	c (veja figura online)	
cf(x)	O gráfico se estica (comprime) verticalmente se	
	$c > 1 \ (0 < c < 1) \ (veja figura online)$	
f(cx)	O gráfico se comprime (estica) horizontalmente se	
	$c > 1 \ (0 < c < 1) \ (veja figura online)$	
-f(x)	O gráfico se reflete em relação ao eixo x	
f(-x)	O gráfico se reflete em relação ao eixo y (veja figura	
	online)	

Exercício 7.1. Faça um esboço do gráfico da função f(x) = -|x+2| - 3 (veja a figura online).

8 Funções trigonométricas

8.1 Radianos

Neste curso ângulos serão medidos em radianos a menos que se especifique outra unidade. Um ângulo de s radianos (podemos escrever às vezes s rad) é o ângulo associado a um comprimento de arco de s unidades em uma circunferência de raio unitário (ver figura online). Sabemos que o comprimento de toda essa circunferência é 2π unidades. Como o ângulo em graus associado à circunferência completa é 360° , temos a seguinte relação:

$$2\pi = 360^{\circ}$$
.

Usando essa relação encontramos, por exemplo, que $180^\circ = \pi$, $90^\circ = \pi/2$, $45^\circ = \pi/4$ e $30^\circ = \pi/6$. Também podemos encontrar que

$$1 = \left(\frac{360}{2\pi}\right)^{\circ} \approx 57^{\circ} \,.$$

Exercício 8.1.

- 1. Escreva 210° em radianos.
- 2. Escreva $11\pi/6$ em graus.

8.2 Definição das funções trigonométricas

No plano cartesiano consideremos uma circunferência de raio unitário com centro na origem de coordenadas (ponto O). Logo, consideremos um ponto P da circunferência cujas coordenadas sejam (x,y). Vamos chamar de θ o ângulo que começa no semieixo x positivo e termina no segmento OP (ver figura online). Definem-se as seguintes funções trigonométricas:

9

- 1. Função seno: $sen \theta = y$;
- 2. Função cosseno: sen $\theta = x$;
- 3. Função tangente: $\tan \theta = \frac{y}{r}$;
- 4. Função cotangente: $\cot \theta = \frac{x}{y}$;
- 5. Função secante: $\sec \theta = \frac{1}{x}$;
- 6. Função cossecante: $\csc \theta = \frac{1}{y}$.

Dessas equações notamos imediatamente que as funções seno e cosseno estão definidas para todo ângulo θ , ou seja, ambas tem $\mathbb R$ como domínio. As funções tangente e secante estão definidas se $x \neq 0$. Isso corresponde a valores de θ diferentes de $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \ldots$ Logo, o domínio das funções tangente e secante é o conjunto

$$\mathbb{R} - \left\{ \frac{(2n-1)\pi}{2} : n \in \mathbb{Z} \right\}.$$

Finalmente as funções cotangente e cossecante estão definidas se $y \neq 0$, o que corresponde a valores de θ diferentes de $0, \pm \pi, \pm 2\pi, \ldots$ Portanto, o domínio das funções cotangente e cossecante é o conjunto

$$\mathbb{R} - \{n\pi : n \in \mathbb{Z}\}.$$

Exemplo 8.2. A seguinte tabela contém os valores das funções seno, cosseno e tangente para alguns ângulos especiais:

Ângulo	Seno	Cosseno	Tangente
0	0	1	0
$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	Indefinido
π	0	-1	0
$3\pi/2$	-1	0	Indefinido
2π	0	1	0

Seja P um ponto com coordenadas (x, y) que pertence a uma circunferência de raio r centrada na origem de coordenadas (ponto O). Se o ângulo que sai do semieixo x positivo e chega no segmento $OP \in \theta$, usando semelhança de triângulos, podemos concluir que (veja a figura online)

$$x = r \cos \theta$$
 e $y = r \sin \theta$.

Levando em conta isso, podemos chegar nas definições elementares das funções trigonométricas para os ângulos agudos de um triângulo retângulo.

Exercício 8.3. Kowalski se encontra a 2 m de distância de uma haste vertical. Usando um apontador laser colocado no chão, ele aponta no topo da haste. Se o ângulo que o apontador laser faz com o chão é de 60°, determine a altura da haste.

8.3 Identidades trigonométricas

Vamos listar algumas identidades trigonométricas que serão de utilidade:

1. Identidades recíprocas:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad e \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta} \quad e \quad \csc \theta = \frac{1}{\sin \theta}.$$

2. Identidades pitagóricas:

$$sen^2 \theta + \cos^2 \theta = 1, \quad 1 + \tan^2 \theta = \sec^2 \theta \quad e \quad 1 + \csc^2 \theta = \cot^2 \theta.$$

3. Adição ou subtração de ângulos:

$$sen(\theta \pm \phi) = sen \theta cos \phi \pm cos \theta sen \phi.$$

$$\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$$
.

4. Ângulo duplo:

$$sen(2\theta) = 2 sen \theta cos \theta$$

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$
.