Cost Function | Coursera 5/5/17, 5:39 PM

 ✔ Back to Week 1
 X Lessons
 Prev
 Next

Cost Function

We can measure the accuracy of our hypothesis function by using a **cost function**. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's and the actual output y's.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x_i) - y_i \right)^2$$

To break it apart, it is $\frac{1}{2}$ \bar{x} where \bar{x} is the mean of the squares of $h_{\theta}(x_i) - y_i$, or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or "Mean squared error". The mean is halved $\left(\frac{1}{2}\right)$ as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the $\frac{1}{2}$ term. The following image summarizes what the cost function does:

Cost Function | Coursera 5/5/17, 5:39 PM

minimize $\frac{1}{2m} \frac{1}{8} \left(h_{\bullet}(x^{(i)}) - y^{(i)} \right)^2$ $h_{\bullet}(x^{(i)}) = 0_{\bullet} + \theta_{i} x^{(i)}$

J(00,01) = 1 = (ho(x(1)-y(1))

Idea: Choose $\underline{\theta_0}, \underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples $(\underline{x}, \underline{y})$

Miximize J(00,01) 00,01 Lost function

Squared error faction

Andrew Ng

✓ Complete

