TBJ – Transistor Bipolar de Junção

10K

Conteúdo

- Válvulas
- O primeiro Transistor
- Estrutura do TBJ
- Operação do TBJ
 - Polarização
 - Configurações

Antes do TBJ

- 1904 1947: Válvula
- Primeiro Triodo
- Amplificação de sinais
- Muito grande
- Precisava aquecer para funcionar
- Esquentava (baixa eficiência energética)
- Altas tensões

Válvula

1908 - Lee De Forest

Válvula

CRT

CRT

Primeiro Transistor (*Point-Contact Transistor*)

Morgan Sparks segurando um protótipo do primeiro transistor.

Fonte: http://www.embarcados.com.br/a-historia-do-primeiro-transistor/

Primeiro Transistor (*Point-Contact Transistor*)

1947 - Bell Labs

Primeiro Transistor (*Point-Contact Transistor*)

TBJ – Transistor Bipolar de Junção

"Aplicando uma carga elétrica apenas no polo positivo, nada acontecia: o germânio atuava como um isolante, bloqueando a corrente.

Porém, quando era aplicada tensão também no filamento de controle, o bloco de germânio se tornava condutor e a carga elétrica passava a fluir para o polo negativo.

Haviam criado um dispositivo que substituía a válvula, que não possuía partes móveis, gastava uma fração da eletricidade e, ao mesmo tempo, era muito mais rápido."

TBJ – Transistor Bipolar de Junção

- Estrutura
- Funcionamento
- Polarização (alimentação)
- Amplificação de sinais
- Chave digital (porta lógica)

TBJ – Estrutura

Região central: baixa dopagem e muito estreita

TBJ – Estrutura

TBJ – Estrutura

TBJ – Fabricação

TBJ – Dispositivo

TBJ – Dispositivo

Portadores minoritários atravessam a junção inversamente polarizada Depletion regions

$$I_E = I_C + I_B$$

 $I_C \cong I_E$ Aproximação

TBJ – Polarização

Uma das junções PN do TBJ é reversamente polarizada, enquanto a outra é diretamente polarizada

Símbolos e convenções

A seta define o sentido da corrente do emissor segundo a notação convencional

Configurações do TBJ

- Base Comum
- Coletor Comum
- Emissor Comum

Configuração Base Comum

A Base é comum tanto à entrada quanto à saída

Configuração Base Comum

A Base é comum tanto à entrada quanto à saída

Configuração Base Comum

Caracterização

DOIS conjuntos:

- Parâmetros de ENTRADA
- Parâmetros de SAÍDA

Parâmetros de ENTRADA

Parametrizado por V_{CB} (tensão de saída)

Parâmetros de SAÍDA

Regiões de Operação do TBJ

Região Ativa

TBJ como Amplificador

A junção B-C do TBJ é reversamente polarizada, enquanto a junção B-E é diretamente polarizada

Imite inferior da Região Ativa

Região de Corte

As junções B-C e B-E do

TBJ como Chave Aberta

Região de Saturação

TBJ como Chave Fechada

As junções B-C e B-E do TBJ são diretamente polarizadas

Região de Saturação

i- Variações em V_{CB} ignoradas

i- Variações em V_{CB} ignoradas

ii- Relação Linear

i- Variações em V_{CB} ignoradas

ii- Relação Linear

iii - Ignorando a inclinação

Região Ativa

Polarização Base Comum

Região Ativa

- (a) Using the characteristics of Fig. 3.8, determine the resulting collector current if $I_E = 3 \text{ mA}$ and $V_{CB} = 10 \text{ V}$.
- (b) Using the characteristics of Fig. 3.8, determine the resulting collector current if I_E remains at 3 mA but V_{CB} is reduced to 2 V.
- (c) Using the characteristics of Figs. 3.7 and 3.8, determine V_{BE} if $I_C = 4$ mA and $V_{CB} = 20$ V.
- (d) Repeat part (c) using the characteristics of Figs. 3.8 and 3.10c.

Características de Entrada

Modelo Base-Comum

(Verificar estas ordens de grandeza nos parâmetros de entrada e de saída)

$$I_i \approx I_L \rightarrow \frac{V_i}{R_i} = \frac{V_L}{R_o||R_L} \rightarrow \frac{V_L}{V_i} \cong \frac{R_L}{R_i} = 250$$

$$I_i \approx I_L \rightarrow \frac{V_i}{R_i} = \frac{V_L}{R_o||R_L} \rightarrow \frac{V_L}{V_i} \cong \frac{R_L}{R_i} = 250$$

$$Ganho de tensão \Rightarrow relação entre resistências$$

Transistor = Transfer + Resistor