Pattern Recognition

(EE5907R)

Jiashi FENG

Email: elefjia@nus.edu.sg

What people think about Pattern Recognition

What we are doing with Pattern Recognition

Color images

"A man riding a bicycle"

"3" or "8" ...

An Example of Pattern Recognition

What kind of research we can do with facial images?

Cross-Age Face Recognition

Kinship or NOT?

Positive (left) and negative (right) examples

Eye?

Hair?

Mouth?

Face Recognition as Login Password

Textbooks and References

(no fixed textbook)

Books

- R. O. Duda, P. E. Hart & D.G. Stork,
 "Pattern Classification",
 John Wiley, 2001.
- K. P. Murphy,
 "Machine Learning: A Probabilistic Perspective",
 MIT Press, 2012.

References

 Lists of important papers will be provided with some lectures

Outlines

- Representation Learning
 - Unsupervised Feature Learning (PCA, NMF)
 - Supervised Feature Learning (LDA, GE)
 - Clustering and Applications
- Patter Recognition Methods
 - Gaussian Mixture Model and Boosting
 - Support Vector Machines
 - Deep Learning

Outlines

- Representation Learning
 - Unsupervised Feature Learning (PCA, NMF)
 - Supervised Feature Learning (LDA, GE)
 - Clustering and Applications
- Patter Recognition Methods
 - Gaussian Mixture Model and Boosting
 - Support Vector Machines
 - Deep Learning

Unsupervised Feature Learning I: Principal Component Analysis

What is Feature Learning

- Feature learning refers to mapping the raw data into another (possibly lower-dimensional) space.
- Such that, in the new space, one can perform pattern recognition more easily.
- Criterion for feature learning is different in different problem settings.
 - Unsupervised: minimize information loss (no class information)
 - Supervised: maximize discrimination (with class information)

What is Feature Learning

Feature Extraction vs. Feature Selection

- Feature Extraction
 - All original features are used
 - The transformed features are linear combinations of the original features.

- Feature Selection
 - Only a subset of the original features are used.

Why need feature selection?

Why Feature Extraction?

Many pattern recognition techniques may not be effective for high-dimensional data

Curse of Dimensionality

 Computational cost increases rapidly along with the dimension increases

- Patterns may have small intrinsic din
 - E.g., # genes responsible for a certain disease may be small
 - E.g., face images of one person captured with different illumination conditions

Why Feature Extraction?

 Visualization: projecting high-dimensional data onto 2D or 3D planes

Data compression: efficient storage and retrieval

Noise removal: positive effect on testing accuracy

Applications of Feature Learning

- Face recognition
- Handwritten digit recog.
- Text mining
- Image retrieval
- Protein classification

Face Images

Proteins

Feature Extraction Algorithms

Unsupervised

- Principal Component Analysis (PCA)
- Nonnegative Matrix Factorization (NMF)
- Independent Component Analysis (ICA) [Reading]

Supervised

- Linear Discriminant Analysis (LDA)
- General Graph Embedding (GE)
- Canonical Correlation Analysis (CCA) [Reading, encouraged]

Semi-supervised

Research topic [Further study, encouraged]

Principal Component Analysis

- Probably the most widely-used and well-known multivariate analysis method.
- Introduced by Pearson (1901)
- First applied in ecology by Goodall (1954) under the name "factor analysis".

Least Square Fitting to Data

What is Principal Component Analysis?

- Principal component analysis (PCA)
 - Reduce the dimensionality of a collection of observations by finding a new set of variables, smaller than the original set of variables
 - Capture big (principal) variability in the data and ignore small variability

- Variation in samples
 - The new variables, called principal components (PCs), are ordered by variations corresponding to different PCs.

- The 1st PC \mathcal{Z}_1 is a minimum distance fit to a line in X space
- The $2^{\rm nd}$ PC Z_2 is a minimum distance fit to a line in the plane orthogonal to the $1^{\rm st}$ PC

PCs are a series of linear least squares fits to a sample set, each orthogonal to all the previous ones.

linear least squares fit: Large

linear least squares fit: Small

Algebraic Definition of PCs

Given a sample set of n observations on a vector of d variables

$$\{x_1, x_2, \dots, x_n\} \subset \Re^d$$

define the first principal component by the linear projection a_1

$$z_1 = a_1^T x$$

where the vector $a_1 = (a_{11}, a_{21}, \dots, a_{d1})^T$

is chosen such that $var[z_1]$ is maximum.

Algebraic Definition of PCs

To find a_1 first note that

$$var[z_1] = E((z_1 - \overline{z_1})^2) = \frac{1}{n} \sum_{i=1}^n (a_1^T x_i - a_1^T \overline{x})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} a_{i}^{T} \left(x_{i} - \overline{x} \right) \left(x_{i} - \overline{x} \right)^{T} a_{1} = a_{1}^{T} S a_{1}$$

where
$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$
 What is S?

is the covariance matrix,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 is the mean.

Algebraic Derivation of PCs

To find a_1 that maximizes $var[z_1]$ subject to $a_1^T a_1 = 1$

Let λ be a Lagrange multiplier

$$L = a_1^T S a_1 - \lambda (a_1^T a_1 - 1)$$

$$\Rightarrow \frac{\partial}{\partial a_1} L = S a_1 - \lambda a_1 = 0$$

$$\Rightarrow (S - \lambda I_d) a_1 = 0$$

therefore a_1 is an eigenvector of S

corresponding to the largest eigenvalue $\lambda = \lambda_1$.

Algebraic Derivation of PCs

Similarly, a_2 is also an eigenvector of S whose eigenvalue $\lambda=\lambda_2$ is the second largest.

In general

$$\operatorname{var}[z_k] = a_k^T S a_k = \lambda_k$$

- The k^{th} largest eigenvalue of S is the variance of the k^{th} PC.
- The k^{th} PC z_k retains the k^{th} greatest variation in the samples

Algebraic Derivation of PCs

- Main steps for computing PCs
 - Calculate the covariance matrix S.
 - Compute its eigenvectors: $\{a_i\}_{i=1}^d$
 - The first *p* eigenvectors $\{a_i\}_{i=1}^p$ form the *p* PCs.
 - The transformation matrix G consists of the p PCs:

$$G \leftarrow [a_1, a_2, \cdots, a_p]$$
$$y = G^T x$$

Practical Computation of PCA

- In practice, we compute the PCs via singular value decomposition (SVD) on the centered data matrix.
- Form the centered data matrix:

$$X_{d,n} = \left[(x_1 - \overline{x}) \dots (x_n - \overline{x}) \right]$$

• Compute its SVD:

$$X = U_{d,d} D_{d,n} (V_{n,n})^T$$

• U and V are orthogonal matrices, D is a diagonal matrix

Practical Computation of PCA

• Note that the scatter/covariance matrix can be written as:

$$S = XX^T = UD^2U^T$$

• Take only a few significant eigenvalue-eigenvector pairs *p* << *d*. The new reconstructed sample from low-dim space is:

$$\widehat{x}_i = \overline{x} + U_{d,p} (U_{d,p})^T (x_i - \overline{x})$$

PCA and Classification

- Classification with PCA
 - Project both training and testing data into the PCs space
 - For each testing datum, use NN for classification
 - Issue: accuracy is sensitive to the number of PCs
- PCA is not always an optimal feature extraction procedure for classification purpose
 - Suppose there are C classes in the training data
 - PCA is based on the sample covariance which characterizes the scatter of the entire data set, irrespective of class-membership
 - The projection axes chosen by PCA might not provide good discrimination power

How to determine the number of PCs?

How many principal components to keep?

 To choose p based on percentage of variation to retain, we can use the following criterion (smallest p):

$$\frac{\sum_{i=1}^{p} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}} \geq Threshold (e.g., 0.95)$$

Visualize PCs

Data points are represented in a rotated orthogonal coordinate system: the origin is the mean of the data points and the axes are provided by the eigenvectors.

Visualize PCs

Face images

Eigenfaces, how to plot like this?

Reconstruction with PCs

 $\widehat{x}_i = \overline{x} + U_{d,p} (U_{d,p})^T (x_i - \overline{x})$

What shall happen for Other Objects

 For faces of person not in training set or non-faces (upper), what shall the reconstruction results (bottom) be?

PCA Remarks

- PCA
 - finds orthonormal basis for data
 - Sorts dimensions in order of "importance"
 - Discard low significance dimensions
- Uses:
 - Get compact description
 - Ignore noise
 - Improve classification (hopefully)

PCA Remarks

PCA cannot capture NON-LINEAR structure!

Note: Curvilinear Component Analysis can solve this case. Study this work if you are interested.

PCA doesn't know class labels

Summary of PCA

Algorithm 1 Algorithm for PCA

Input: Samples $\{x_1, x_2, \cdots, x_N\}$.

1. Compute the covariance matrix:

$$S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T;$$

- 2. Perform Eigenvalue Decomposition: [U] = eig(S);
- 3. Output PCs matrix U(:, 1:p).

Discussions

 What can we do with PCA (given that it is generally worse for classification than other supervised algorithms)?

Unsupervised Feature Extraction II: Nonnegative Matrix Factorization

A Quick Review of Linear Algebra

• Every vector can be expressed as the linear combination of basis vectors

$$\begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 6 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 0 \cdot \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$

Can think of images as big vectors

(Raster scan image into vector)

• This means we can express an image as the linear combination of a set of basis images

PCA Review

• Find a set of orthogonal principal components (basis)

• The reconstructed image is a linear combination of the principal components plus mean face

Original

What we do not like about PCA?

- PCA involves adding up some basis vectors then subtracting others
- Basis vectors aren't physically intuitive (negative) for many applications, e.g. documents
- Subtracting doesn't make sense in context of some applications
 - How do you subtract a face?
 - What does subtraction mean in the context of document classification?

Non-negative Matrix Factorization

• Like PCA, except that the coefficients in the linear combination cannot be negative

Proposed by D. Lee and H. Seung (NIPS 2000)

Non-negative Matrix Factorization

- Matrix factorization: V≈WH
 - V: n×m matrix. Each column of which contains n nonnegative pixel values of one of the m facial images.
 - W: $(n \times r)$: r columns of W are called basis images.
 - H: (r×m): each column of H is called encoding.

V: an image is a column vector

W: a basis image is a column vector

H: a coefficient vector (shown as matrix here) is a column vector

NMF Basis Vectors

- Only allowing adding basis vectors makes intuitive sense
 - Has physical similarity in neurons
- Forcing the reconstruction coefficients to be nonnegative leads to nice basis vectors
 - To reconstruct vector (image), all you can do is to add in more basis vectors
 - This leads to basis vectors that represent parts

Objective Function

• Assume V is the sample matrix, the task is to approximate the original data matrix with two nonnegative data matrices:

$$\min_{W,H} \|V - WH\|^2 \quad \text{s.t.} \quad W \ge 0, H \ge 0.$$

• Let the value of a pixel in the original input image be $V_{i\mu}$. Let $(WH)_{i\mu}$ be the reconstructed pixel.

$$V_{i\mu} = (WH)_{i\mu} = \sum_{a=1}^{r} W_{ia} H_{a\mu}$$

How do we derive the update rules (Honly, W similar)?

Use gradient descent to find a local minimum

• The gradient descent update rule is:

$$H_{a\mu} \leftarrow H_{a\mu} + \eta_{a\mu} \left[(W^T V)_{a\mu} - (W^T W H)_{a\mu} \right]$$

Deriving Update Rules (H only, W similar)

Gradient Descent Rule:

$$H_{a\mu} \leftarrow H_{a\mu} + \eta_{a\mu} \left[(W^T V)_{a\mu} - (W^T W H)_{a\mu} \right]$$

• Set
$$\eta_{a\mu} = \frac{H_{a\mu}}{(W^T W H)_{a\mu}}$$

The update rule becomes

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}}$$

What's significant about this?

- This is a multiplicative update
 - If the initial values of W and H are all non-negative, then the W and H can never become negative.
- This lets us produce a non-negative factorization

 See NIPS Paper for full proof that this will converge if you are interested.

http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

Example: Faces

- Training set: 2429 examples
- First 25 examples shown at right
- Set consists of 19x19 face images

Example: Faces

• Basis Images:

- Basis no.: 49

- Iterations: 50

Face Reconstruction from Basis Vectors

Original

W

=

W * h

How to get h?

Example: Cars

- Training set: 200 examples
- First 25 examples shown at right
- Set consists of car images taken at various orientations

Example: Cars

Basis Images

- Basis no.: 49

- Iterations: 310

Car Reconstruction from Basis Vectors

Originals (1-25)

Output (1-25)

Car Reconstruction from Basis Vectors

Original image

Reconstructed image

Why fence disappeared?

Discussions

 For new image, how to obtain the reconstruction coefficients?

• How to use NMF for classification, e.g. face recognition?

Summary of NMF

Algorithm 2 Algorithm for NMF

Input: Sample matrix $V = [v_1, v_2, \dots, v_N]$. Initialize W^0 and H^0 as arbitrary positive matrices.

for
$$t = 0:1:T_{max}$$
 do

$$\begin{split} H_{a\mu}^{t+1} &= H_{a\mu}^t \frac{(W^{tT}V)_{a\mu}}{(W^{tT}W^tH^t)_{a\mu}}; \\ W_{a\mu}^{t+1} &= W_{a\mu}^t \frac{(VH^{t+1T})_{a\mu}}{(W^tH^{t+1}H^{t+1T})_{a\mu}}; \\ \text{If } \|W^t - W^{t+1}\| < \epsilon \text{ and } \|H^t - H^{t+1}\| < \epsilon \\ \text{return;} \\ \text{end for} \end{split}$$

3. Output matrices W and H.

Discussions

What are differences between NMF and PCA?

	NMF	PCA
Representation	Part-based	Holistic
Basis Image	Localized features	Eigenfaces
Constrains on W and H	Allow multiple basis images to represent a face but only additive combinations	Each face is approximated by a linear combination of all eigenfaces

Papers to Read and Self-Study

- D. Lee and H. Seung. <u>Algorithms for Non-negative Matrix Factorization</u> NIPS (2000).
- ICA (Independent Component Analysis):
 http://en.wikipedia.org/wiki/Independent component analysis
- CCA (Canonical Correlation Analysis):
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.6359&rep
 =rep1&type=pdf