CH4010 Assignment-1: Targetting

Given stream data:

Stream No.	Туре	Heat Capacity* Flow Rate	Supply Temperature	Target Temperature	
		kW / K	°C	°C	
1	Hot	2.1	180	40	
2	Hot	4	150	40	
3	Cold	3	60	180	
4	Cold	2.6	30	130	

Since $(\Delta T)_{min} = 9$ degrees C (even roll number), we can shift the hot stream below by 9/2 = 4.5 degrees and the cold stream above by 4.5 degrees. This results in:

Modified stream data:

Stream No.	Туре	Heat Capacity* Flow Rate	Supply Temperature	Target Temperature	
		kW / K	°C	°C	
1	Hot	2.1	175.5	35.5	
2	Hot	4	145.5	35.5	
3	Cold	3	64.5	184.5	
4	Cold	2.6	34.5	134.5	

Part-1: Pinch-point, Q_c , Q_H and composite curves

Using the problem table algorithm, one can arrive at the following table:

	2.1	4	3	2.6	Σ (FC _{p, hot}) (in kW/C)	$\Sigma(FC_{p, cold})$ (in kW/C)	ΔT (in C)	ΔH (in kW)	q _{transfer} (in kW)
184.5	0	0	1	0	0	3	9	27	0
175.5	1	0	1	0	2.1	3	30	27	-27
145.5	1	1	1	0	6.1	3	11	-34.1	-54
134.5	1	1	1	1	6.1	5.6	70	-35	-19.9
64.5	1	1	0	1	6.1	2.6	29	-101.5	15.1

35.5	0	0	0	1	0	2.6	1	2.6	116.6
34.5	0	0	0	0	0	0			114

We can see the lowest $q_{transfer}$ is -54 kW. So if we provide a heating of 54 kW, all heat transfers will be non-negative (and hence heat won't flow from lower temperature to higher temperature).

	2.1	4	3	2.6	Σ (FC _{p, hot})	Σ(FC _{p, cold})	ΔT (in C)	ΔH	q _{transfer} (in kW)
					(in kW/C)	(in kW/C)	(in C)	(in kW)	
184.5	0	0	1	0	0	3	9	27	54
175.5	1	0	1	0	2.1	3	30	27	27
145.5	1	1	1	0	6.1	3	11	-34.1	0
134.5	1	1	1	1	6.1	5.6	70	-35	34.1
64.5	1	1	0	1	6.1	2.6	29	-101.5	69.1
35.5	0	0	0	1	0	2.6	1	2.6	170.6
34.5	0	0	0	0	0	0			168

Hence from the above Problem Table we obtain the following:

Pinch point: i) cold stream pinch = 145.5° C - 4.5° C = 141° C

ii) hot stream pinch = $145.5^{\circ} C + 4.5^{\circ} C = 150^{\circ} C$

Heating utility required, Q_h = **54 kW**

Cooling utility required, $Q_c = 168 \text{ kW}$

Plot 1a): Composite curves. Red: hot curve; blue: cold curve

Plot 1b): Composite curves with the pinch point marked. Red: hot curve; blue: cold curve

Plot 2: Showing different parts of the system where heat exchangers have to be used.