

Machine Learning Concepts

Machine Learning

Definition

- Herbert A. Simon
 - "Learning is any process by which a system improves performance from experience "
- Tom M. Mitchell
 - "A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*"
- Wikipedia
 - "The development and study of statistical algorithms that can *learn from data and generalize to unseen data*, and thus *perform tasks without explicit instructions*"

- Example spam filtering program
 - Task T
 - Identify spam email and automatically remove them
 - Performance P
 - Accuracy (% of correct identification)
 - Experience E
 - Email + user feedback (spam / normal)

- Example spam filtering program
 - Machine Learning algorithm
 - Improves performance from experience

ML Models/Algorithms

https://en.wikipedia.org/wiki/Machine_learning

ML Applications

https://rampavanphd2018.blogspot.com/2019/06/machine-learning-in-real-world.html

Types of Machine Learning

- Types
 - Supervised learning (지도 학습)
 - Unsupervised learning (비지도 학습)
 - Reinforcement learning (강화 학습)

Using unlabeled data Learn hidden structure Unsupervised Learning

Supervised Learning

Using labeled data Learn a model to predict label

Reinforcement Learning

Using reward from actions Learn action policy

- Learning a function that maps an input x to an output y based on example input-output pairs (training data)
 - Given: <x, y> examples
 - Learning: build <y = f(x)> (model) to give the right answer(y) for new data(x)

- Regression : predicting target values
 - From x (house size) → predict y (house price)

- Classification : predicting class labels
 - From x (cell sze) → predict class label y (cancer): {Yes, No}

Classification

From x1, x2 (cell sze and weight) → predict class label y (cancer): {Yes, No}

Classification

From x1 ~ x9 (patient attributes) → predict class label y: {benign, malignant} label

Relati	Relation: wisconsin-breast-cancer									
No.	Clump_Thi	Cell_Size_	Cell_Shape	Marginal_A	Single_Epi	Bare_Nucli	Bland_Chr	Normal_N	Mitoses	Class
	Numer	Num	Nur	Nume			Nume	Numer	Numeric	Nominal
1	5,0	1,0	1,0	1,0			3,0	1,0	1,0	benign
2	5,0	4,0	4.0	5,0			3,0	2,0		benign
3	3,0	1,0		1,0	2,0		3,0	1,0		benign
4	6,0	8,0	8,0	1,0			3,0	7,0	1,0	benign
5	4.0		1,0	3,0			3,0	1,0		benign
6	8,0	10,0	10,0	8,0			9,0	7,0	1,0	malignant
7	1,0			1,0	2,0		3,0	1,0	1,0	benign
8	2,0			1,0	2,0		3,0	1,0		benign
9	2,0			1,0	2,0		1,0	1,0		benign
10	4.0	2,0	1,0	1,0			2,0	1,0		benign
11	1,0			1,0			3,0	1,0		benign
12	2,0			1,0			2,0	1,0		benign
13	5,0	3,0	3,0	3,0			4,0	4,0	1,0	malignant
14	1,0			1,0			3,0	1,0		benign
15	8,0			10,0			5,0	5,0		malignant
16	7,0			4,0			4,0	3,0	1,0	malignant
17	4.0				2,0		2,0	1,0		benign
18	4,0			1,0	2,0		3,0	1,0		benign
19	10,0			6,0			4,0	1,0		malignant
20	6,0			1,0	2,0		3,0			benign
21	7, 0	3, 0	2,0	10,0	5,0	10,0	5,0	4, 0	4,0	malignant

<5.0, 2.0, 3.0, 4.0, 2.0, 7.0, 3.0, 6.0, 1.0> → Model → benign/malignant?

Classification

From X (image data) → predict class label y: {airplane, automobile, bird, cat, ... }

label

→ Model

→ airplane/bird/cat/dog ··· ?

Unsupervised Learning

- Learning hidden structures(patterns) from unlabeled data
- Clustering
 - Given: <x> examples of cells
 - Learning: <clusters> of data

		class label		clusters
x1	x2	у		\uparrow
size	weight	cancer		
0.75	0.9	1 (/ /es)	x2	
0.82	0.8	1 (yes)	(weight)	
0.26	0.4	(no)	, ,	
0.54	0.7	(nd)		
		/		,
		/		x1 (size)

Unsupervised Learning

- Example : Microarray expression data → Find hierarchical clusters
 - Row represents an individual gene, Column represents a tissue sample
 - Each cell in the matrix represents the expression level red is high

Reinforcement Learning

- learning how to take actions in an environment in order to maximize the cumulative reward
 - Given: <action, reward> examples
 - Learning: <f(state)=action> (rules) for right action

Reinforcement Learning

Example: Find best action for each location

rules for action

Basic Terminology and Notations

- Example: Classification of 'iris' to one of 3 classes
 - Data instance : feature values + label
 - No. of features : dimension

Basic Terminology and Notations

- Iris dataset
 - Features: sepal length, sepal width, petal leangth, petal width
 - Labels: {Setosa, Versicolor, Virginica}
 - Dataset size: 150 instances
- A data $x = (x_1, x_2, x_3, x_4)$, label = y
- Dataset X, target labels y, predicted labels ŷ

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \\ \dots \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_4^{(2)} \\ x_1^{(3)} & x_2^{(3)} & x_3^{(3)} & x_4^{(3)} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \dots \end{bmatrix}$$

Building Machine Learning Systems

■ Preprocessing → Learning (training dataset)

→ Evaluation (test dataset) → Prediction

- Data cleaning
 - Fill in missing values

Handling noisy data, identify or remove outliers

- Data transformation
 - Normalization: rescaling the feature values into a range of [0,1]
 - Make all the features contribute equally to the model
 - Standardization: rescaling the feature values to have mean of 0 and a standard deviation of 1 (unit variance)

Age	Salary
25	2000000
35	2500000
50	4000000

Age	Salary
-0.93	-0.80
-0.13	-0.32
1.06	1.12

Discretization: transferring continuous values into discrete labels

(18, 27, 63, 32, 48, ...)
$$\Longrightarrow$$
 (Y, Y, O, Y, O, ...)

Feature selection

- The process of selecting relevant features for use in model construction
 - Enhanced generalization by reducing overfitting
 - Simplification of models → easier to interpret
 - Shorter training time
 - Avoid the curse of dimensionality

A1	A2	A 3	A4	A5

- Dimensionality reduction
 - Transform data from a high-dimensional space into a low-dimensional space
 - Principle Component Analysis (PCA)
 - Convert data into linearly uncorrelated variables principal components
 - The first principal component has the largest possible variance

A1	A2	A3	A4	P1	P2

Principal components

Example: Apply PCA to iris data to reduce it to 2D

	sepal length	sepal width	petal length	petal width
0	-0.900681	1.032057	-1.341272	-1.312977
1	-1.143017	-0.124958	-1.341272	-1.312977
2	-1.385353	0.337848	-1.398138	-1.312977
3	-1.506521	0.106445	-1.284407	-1.312977
4	-1.021849	1.263460	-1.341272	-1.312977

	principal component 1	principal component 2
0	-2.264542	0.505704
1	-2.086426	-0.655405
2	-2.367950	-0.318477
3	-2.304197	-0.575368
4	-2.388777	0.674767

Various algorithms

Various model complexity

Overfitting

- An analysis that corresponds too closely to training data
- Therefore fail to fit test data or predict future reliably

$$y = ax^5 + bx^4 + ...$$

$$ax_1 + bx_2 + c > 0$$
?

$$ax_1 + bx_2 + cx_1x_2$$

+ $dx_1^2 + ex_2^2$
+ $fx_1^2x_2 + gx_1x_2^2 + ...$
> 0 ?

Overfitting

Performance Evaluation

- Accuracy
 - Ratio of number of correct predictions to the total number of input data
- Learning curve

- False/true positive, false/true negative, precision, recall
- AUC
 - Area under the ROC curve

Performance Evaluation

K-fold cross validation

- 1. Shuffle the dataset
- 2. Split the dataset into k group
- 3. For each group, take it as a test set, and remaining groups as a training set
- 4. Fit the model on the training set and evaluate it on the test set
- 5. Average the results

Hyperparameter Tuning

- Hyperparameter
 - Parameter define the model
 - Ex> y = 1 if $x_2 0.9 x_1 + 65 > 0 \rightarrow$ coefficient 0.9, 65
 - Hyperparameter define the learning algorithm
 - Ex> gradient descent \rightarrow learning rate α = 0.01 보정의 크기가 어느정도이냐? regression parameter C = 0.1

convolutional neural network model \rightarrow size of filters

Deep Learning Models

- Deep neural networks for analyzing 2D data
 - 2D data: image
 - Extract relevant features in images
 - Convolution layer
- CNN(Convolutional Neural Networks)

Deep Learning Models

- Deep neural networks for analyzing sequential data
 - Sequential data : text, stock price ...
 - Process a sequence
 - Applying a recurrence formula
- RNN(Recurrent Neural Networks)

What is Scikit-learn?

Scikit-learn

- Open source machine learning library for the Python that supports supervised and unsupervised learning
- It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries
- It also provides various tools for model fitting, data preprocessing, model selection and evaluation, and many other utilities.

https://scikit-learn.org/stable/

scikit-learn.org

https://scikit-learn.org/stable/

Tutorial

https://scikit-learn.org/stable/tutorial/

API

https://scikit-learn.org/stable/modules/classes.html

Training a Model

- Task
 - Classify x = (x1, x2, x3) to y = 1 or 0
- Training dataset
 - 5 instances (example data) with known labels

```
X = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1], [0, 0, 1]])

y = np.array([1, 0, 1, 1, 0])
```

3 features

label

у		X	
1	1	1,	0,
0	1	0,	1,
1	1	1,	1,
1	1	1,	0,
0	1	0,	0,

5 instances

Training a Model

- Training (learning) fit
 - Learning Decision Tree Classifier model with the training dataset

```
from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()
clf.fit(X, y)

DecisionTreeClassifier()
```


Predicting using the Model

- Test dataset
 - 2 new instances

```
X_test = np.array([[0, 0, 0], [1, 1, 0]])
y_test = np.array([0, 1])
```

new instances

X_test			y_predicted
0,	0,	0	?
1,	1,	0	?

Predicting using the Model

- Predicting labels predict
 - Predict the label of new x using the learned model

```
y_predicted = clf.predict(X_test)
y_predicted
array([0, 1])
```


Visualize the Model

Visualizing Decision Tree model using graphviz

```
from sklearn import tree
import graphviz

dot_data = tree.export_graphviz(clf, filled=True, out_file=None)
graph = graphviz.Source(dot_data)
graph
```

```
X[1] \le 0.5
gini = 0.48
samples = 5
value = [2, 3]
True
False
gini = 0.0
samples = 2
value = [2, 0]
gini = 0.0
samples = 3
value = [0, 3]
```

What is TensorFlow?

TensorFlow

- TensorFlow is an open source platform for machine learning
 - Originally developed by Google Brain team to conduct machine learning and deep neural networks research
- It has a comprehensive ecosystem of tools, libraries and resources
- TensorFlow computations are expressed as dataflow graphs on tensors
- It can run on multiple CPUs and GPUs
- TensorFlow 2.0
 - Introduced a number of simplifications
 - Improvements to the performance on GPU

https://www.tensorflow.org/

tensorflow.org

https://www.tensorflow.org/

Tutorial

https://www.tensorflow.org/tutorials

Keras

https://www.tensorflow.org/guide/keras

API

https://www.tensorflow.org/api_docs/python/tf

