DETERMINISTIC PDA

Ms. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Design pushdown automata for any CFL (K3)
 - To Understand the concept of Deterministic PDA

DETERMINISTIC PDA'S

- A PDA M = $(Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ is said to be deterministic if
 - $-\delta(p, a, \beta) = (q, \gamma)$
 - ie. To be deterministic, there must be at most one choice of move for any state p, input symbol a, and stack symbol β .
 - $-\delta(p, ε, β)$ is not empty then $\delta(p, a, β)$ must be empty for every a∈ Σ, p∈Q, β∈Γ.
 - ie. there must not be a choice between using input ε or real input.
 - Formally, $\delta(p, \epsilon, \beta)$ and $\delta(p, a, \beta)$ cannot both be nonempty.

ALLOWED TRANSITIONS

(deterministic choices)

ALLOWED TRANSITIONS

(deterministic choices)

NOT ALLOWED TRANSITIONS

(non deterministic choices)

EXAMPLE

$$L(M) = \{a^n b^n : n \ge 0\}$$

DETERMINISTIC CF

 A language L is Deterministic CF if there exists some DPDA that accepts it.

Example:

The language
$$L(M) = \{a^n b^n : n \ge 0\}$$

is deterministic context-free

EXAMPLE OF NON-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

EXAMPLE OF NON-DPDA (PDA)

Not allowed in DPDAs

SUMMARY

Definition of Deterministic PDA

TEST YOUR KNOWLEDGE

- With reference of a DPDA, which among the following do we perform from the start state with an empty stack?
 - a) process the whole string
 - b) end in final state
 - c) end with an empty stack
 - d) all of the mentioned

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

