50.040 Natural Language Processing

Lu, Wei

Tasks in NLP

POS Tagging Chunking **Document Classification** Information Extraction Syntactic Parsing Semantic Parsing Natural Language Generation **Machine Translation** Sentiment Analysis Coreference Resolution **Question Answering**

Word Clusters

GloVe, word2vec

Topic Modeling

Language Modeling

ELMo, BERT

Supervised

Unsupervised

Three Tasks

These three tasks are closely related!

Word Embedding

Mikolov et al. (2013)

CBOW

Word Embedding

One observation:

It learns for each word token a vector.

A word may have multiple senses.

Word Senses

A word may have multiple senses.

Question

How do we automatically model multiple senses of a word?

Need a way to dynamically capture the specific context.

$$p(x_1,x_2,\ldots,x_m) = \prod_{i=1,\ldots,m} p(x_i|x_1,\ldots,x_{i-1})$$

We discussed:

1) n-gram language model

2) a neural language model (Bengio et al, 2003)

$$p(x_1,x_2,\ldots,x_m) = \prod_{i=1,\ldots,m} p(x_i|x_1,\ldots,x_{i-1})$$
 Context

We discussed:

1) n-gram language model

2) a neural language model (Bengio et al, 2003)

Both models rely on the Markov (independence) assumption.

$$p(x_1,x_2,\ldots,x_m) = \prod_{i=1,\ldots,m} p(x_i|x_1,\ldots,x_{i-1})$$
 Context

We discussed:

1) n-gram language model

2) a neural language model (Bengio et al, 2003)

Both models rely on the Markov (independence) assumption.

Can we remove this assumption now (since we use word embeddings)?

$$p(x_1,x_2,\ldots,x_m) = \prod_{i=1,\ldots,m} p(x_i|x_1,\ldots,x_{i-1})$$
 Context

We discussed:

1) *n*-gram language model

2) a neural language model (Bengio et al, 2003)

Both models rely on the Markov (independence) assumption.

Need a way to *dynamically* capture the specific *context*.

Contextual Embedding

(Long Short-term Memory)

Hochreiter & Schmidhuber (1997)

 c_{t-1}

The long-term memory

 h_{t-1}

The working memory

The current word

Sundermeyer et al. (2012)

Individual probability at each position:

- 1. project $\overrightarrow{h_t}$ to a |V| dimensional space
 - 2. apply softmax on top of the vector
- 3. get the probability of generating the desired word w_{t+1}

Sundermeyer et al. (2012)

$$\overrightarrow{h_t} = \overrightarrow{ ext{LSTM}}(w_1, w_2, \dots, w_t)$$

Context Embedding!

A function over a sequence of word embeddings.

Sundermeyer et al. (2012)

$$\overrightarrow{h_{m-1}} = \overrightarrow{ ext{LSTM}}(w_1, w_2, \dots, w_{m-1})$$

Sentence Embedding!

It's essentially a special context embedding.

Sundermeyer et al. (2012)

$$\overleftarrow{h_t} = \overleftarrow{ ext{LSTM}}(w_m, w_{m-1}, \dots, w_t)$$

Contextual Embedding!

A function over the sequence of word embeddings.

Bidirectional LSTM

Context Embedding

$$[\overrightarrow{h_t};\overleftarrow{h_t}]$$

Bidirectional LSTM

Context Embedding $[\overrightarrow{h_t}; \overleftarrow{h_t}]$

Bidirectional LSTM

Context Embedding

$$[\overrightarrow{h_t}; \overleftarrow{h_t}] = \mathbf{h}_t$$

Doc2Vec Le & Mikolov (2014)

Training

Almost the same as CBOW, except that there is an additional document vector from the input layer

Concatenation was preferred (over sum/averaging) when constructing the projection layer

Inference

parameters
(including the learned word embeddings), fine tune the document embedding

$$\min_d f(d, w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}, w_t)$$

Note that this is a simplified optimization problem!!

This is a process for finding an analytical solution to a minimization problem that involves words in the document!

$$\min_d f(d, w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}, w_t)$$

Note that this is a simplified optimization problem!!

The sentence embedding is again a context embedding - a function of the word embeddings.

$$d = g(w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}, w_t)$$

The sentence embedding is again a context embedding - a function of the word embeddings.

Deep Contextual Embedding

ELMo

(Embeddings from Language Models) Peters et al. (2018)

$$egin{aligned} \sum_{t=1,\ldots,m} (\log p(w_t|w_1,\ldots,w_{t-1};\Theta_x,\overrightarrow{\Theta}_{LSTM},\Theta_s) \ &+ \log p(w_t|w_{t+1},\ldots,w_m;\Theta_x,\overleftarrow{\Theta}_{LSTM},\Theta_s)) \end{aligned}$$

Tie the parameters for both the token representation (Θ_x) , and softmax layer (Θ_s) .

Separate parameters for the LSTMs in each direction.

ELMo(Embeddings from Language Models)

ELMO(Embeddings from Language Models)

ELMo

(Embeddings from Language Models)

Three Tasks

These three tasks are closely related!

POS Tagging Chunking **Document Classification** Information Extraction Syntactic Parsing Semantic Parsing Natural Language Generation **Machine Translation** Sentiment Analysis Coreference Resolution **Question Answering**

Word Clusters
GloVe, word2vec
Topic Modeling
Language Modeling
ELMo, BERT

Supervised

Unsupervised

Question What about the unsupervised HMM that we learned in the ML class?

POS Tagging Chunking **Document Classification** Information Extraction Syntactic Parsing Semantic Parsing Natural Language Generation **Machine Translation** Sentiment Analysis Coreference Resolution **Question Answering**

Word Clusters

GloVe, word2vec

Topic Modeling

Language Modeling

ELMo, BERT

Supervised

Unsupervised

Hidden Markov Model Supervised Learning

$$p(x_1,\ldots,x_m,\overset{\downarrow}{y_0},y_1,\ldots,y_m,\overset{\downarrow}{y_{m+1}})$$

$$egin{aligned} y_1^*,\ldots,y_m^*\ &=rg\max_{y_1,\ldots,y_m}p(x_1,\ldots,x_m,y_0,y_1,\ldots,y_m,y_{m+1}) \end{aligned}$$

Hidden Markov Model Unsupervised Learning

$$p(x_1,\ldots,x_m)$$

Hidden Markov Model Unsupervised Learning

$$p(x_1,\ldots,x_m) \ = \sum_{m{x}_1,\ldots,m{x}_m,y_1,\ldots,y_m} p(x_1,\ldots,x_m,y_0,y_1,\ldots,y_m,y_{m+1})$$

$$egin{aligned} y_1^*,\dots,y_m^* \ &= rg\max_{y_1,\dots,y_m} p(x_1,\dots,x_m,y_0,y_1,\dots,y_m,y_{m+1}) \end{aligned}$$

Contextual Embedding

Low-Dimensional One-hot Vectors Similar to Brown Clusters (Brown et al. 1992)

Contextual Embedding

Use Forward-backward Algorithm to find probabilities for all tags at each position

like

flies

Fruit

banana

Contextual Embedding

Use Forward-backward Algorithm to find probabilities for all tags at each position

POS Tagging Chunking **Document Classification** Information Extraction Syntactic Parsing Semantic Parsing Natural Language Generation **Machine Translation** Sentiment Analysis Coreference Resolution **Question Answering**

Word Clusters

GloVe, word2vec

Topic Modeling

Language Modeling

ELMo, BERT

Supervised

Unsupervised

POS Tagging Chunking **Document Classification** Information Extraction Syntactic Parsing **Semantic Parsing** Natural Language Generation **Machine Translation** Sentiment Analysis Next Class Coreference Resolution **Question Answering**