Primer parcial de Matemática Discreta 2 - Curso 2006 - IMERL

Lunes 15 de Mayo de 2006, 13:00 hs. Duración: 4 horas.

N ^o . Parcial	Cédula	Apellido, Nombre	

No se permite el uso de ningún tipo de material salvo calculadoras. Se deberá apagar los celulares.

Ejercicio 1. (9 puntos)

(1) (5 puntos) Enunciar y probar el teorema chino del resto.

(2) (4 puntos) Resolver el sistema
$$\begin{cases} x \equiv 2 \pmod{4} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{3} \end{cases}$$

Ejercicio 2. (10 puntos)

Se considera el anillo $(\mathbb{Z}_n, +, \cdot)$ de los enteros módulo $n \in \mathbb{N}$, con la suma y el producto definidos en clase, donde $n \ge 2$.

- 1. (3 puntos) Demostrar que $[a] \in \mathbb{Z}_n$ (la clase de $a \in \mathbb{Z}$ en \mathbb{Z}_n) es invertible si y sólo si mcd(a,n) = 1.
- 2. (2 puntos) Para $n = 30523 = 131 \times 233$, hallar el inverso de [a] en \mathbb{Z}_{30523} , si existe, para a = 524 y a = 63. Justificar.
- 3. (2 puntos) Hallar cuántos elementos invertibles hay en \mathbb{Z}_{30523} .
- 4. (3 puntos) Calcular 10000³⁰¹⁶⁰⁰⁰ (mod 30523).

Ejercicio 3. (12 puntos)

Sea G un grupo conmutativo finito y sea $n \in \mathbb{N}$.

Decimos que un elemento $g \in G$ es potencia n-ésima si $g = h^n$ para por lo menos algún $h \in G$.

Denotamos por H_n al subconjunto de G formado por las potencias n-ésimas.

- 1. (4 puntos) Probar que el cociente $\kappa = |G|/|H_n|$ siempre es un entero (donde |X| denota el cardinal de X o sea la cantidad de elementos del conjunto X).
- 2. (4 puntos) Probar que si $g \in H_n$ entonces la ecuación $x^n = g$ admite exactamente κ soluciones en G (κ es el entero de la parte 1.).
- 3. (4 puntos) Probar que en el caso en que mcd(|G|,n) = 1 se tiene que $G = H_n$. Sugerencia: Recordar que si d = mcd(a,b) entonces existen $s,t \in \mathbb{Z}$ tales que sa+tb=d.

Ejercicio 4. (9 puntos)

Las dos partes de este ejercicio son independientes.

- 1. (4 puntos) Hallar el resto de la división entera de 13⁶⁶³ entre 7.
- 2. (5 puntos) Determinar todos los enteros naturales a y b, con a < b tales que

$$m + 3d = 276$$
, $10 < d < 30$

siendo d = mcd(a,b) y m = mcm(a,b).

¡Buena Suerte!

PARA USO DOCENTE:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4
(1)	(1)	(1)	(1)
	(2)	(2)	
(2)	(3)	(3)	(2)
	(4)		
Total:	Total:	Total:	Total:

TOTAL PARCIAL: