Задача 9-3. Обогрев дома.

Республика Беларусь тратит значительно количество энергии на обогрев помещений. Экономия ресурсов, затрачиваемых на отопление, является важной государственной проблемой. В данной задаче Вам необходимо рассмотреть некоторые возможности уменьшения расходов на поддержание комфортных температур в жилых помещениях.

При решении задачи вам понадобится закон теплопроводности (сформулированный французским физиком Ш. Фурье). В упрощенной форме он формулируется следующим образом. Пусть одна сторона плоскопараллельной пластины толщиной h поддерживается при постоянной температуре t_1 , а вторая при температуре t_2 . Тогда плотность потока теплоты q через пластину пропорционален разности температур и обратно пропорционален толщине пластины

$$q = \lambda \frac{t_1 - t_2}{h} \,, \tag{1}$$

Коэффициент пропорциональности зависит только от материала пластины и называется теплопроводностью материала.

Плотностью потока теплоты называется количество теплоты, которое перетекает через площадку единичной площади в единицу времени (чтобы избежать путаницы в данной задаче температуру будем обозначать t, а время τ)

$$q = \frac{\Delta Q}{\Delta S \Delta \tau} \tag{2}$$

Справочные данные:

	Плотность	Удельная	Теплопроводность
		теплоемкость	
Воздух	$\rho_0 = 1.2 \frac{\kappa 2}{M^3}$	$c_0 = 1.0 \frac{\kappa \cancel{\square} \cancel{\cancel{>}} \cancel{c}}{\kappa \cancel{c} \cdot \cancel{K}}$	$\lambda_0 = 2.4 \cdot 10^{-2} \frac{Bm}{M \cdot K}$
Бетон	$\rho_1 = 2.2 \cdot 10^3 \frac{\kappa z}{M^3}$	$c_1 = 0.92 \frac{\kappa \angle J \varkappa c}{\kappa z \cdot K}$	$\lambda_1 = 1.2 \frac{Bm}{M \cdot K}$
Утеплитель (стекловата)			$\lambda_2 = 6.0 \cdot 10^{-2} \frac{Bm}{M \cdot K}$

<u>Примечание.</u> Плотность, теплоемкость и теплопроводность воздуха зависят от температуры и давления. Однако, в данной задачей этими зависимостями следует пренебречь и использовать приведенные в таблице средние значения.

Часть 1. Бетонная коробка.

Основу дома является бетонная коробка, внутренние размеры которой $a \times b \times H = 6,0 \times 6,0 \times 2,5 m$. Толщина стен, пола и потолка равна $h = 20 \, cm$.

- 1.1 Рассчитайте массу бетона, из которого изготовлена коробка.
- 1.2 Рассчитайте теплоемкость коробки C_1 .
- 1.3 Оцените массу воздуха внутри дома и его теплоемкость C_0 .

Теплоемкостью тела C (не путайте с удельной теплоемкостью вещества) называется количество теплоты, которое требуется, чтобы нагреть тело на 1° .

Влиянием окон и дверей на потери теплоты можно пренебречь. Пол и потолок дома хорошо теплоизолированы (потолок поверх слоя бетоны, а пол снизу слоя бетона), поэтому потери теплоты проходят только через стены дома.

Часть 2. Обогрев без утеплителя

В данной части задачи рассматриваются возможности обогрева рассмотренного в Части 1. Для обогрева дома используется печь, работающая на дизельном топливе. Коэффициент полезного действия печи примем равным 70% (т.е. 30% выделяемой теплоты улетает «в трубу»). Максимальная полезная мощность печи равна $P_0 = 10\kappa Bm$.

2.1 Рассчитайте стоимость ($s_0 \frac{py\delta}{\varOmega m}$) 1 Джоуля теплоты, идущего на нагревание дома.

Плотность дизельного топлива $\rho = 860 \frac{\kappa z}{M^3}$, удельная теплота его сгорания $q = 43 \frac{M \cancel{Д} ж}{\kappa z}$, цена 1 литра топлива 1,2 руб.

2.2 Пусть мощность теплоты идущей на обогрев комнаты равна P, температура наружного воздуха t_0 . Получите формулу для установившейся температуры воздуха внутри дома t_1 .

Считайте, что температура поверхности стен внутри дома равна t_1 , а снаружи - t_0 . Для передачи теплоты от стен к наружному воздуху температура стены должна быть немного выше, чем температура воздуха. Однако эта разность обычно мала и ею можно пренебречь.

- **2.3** Пусть средняя температура наружного воздуха равна $t_0 = 0.0^{\circ}C$. Какова должна быть мощность теплоты P_1 , идущей на обогрев, что бы температура воздуха внутри дома была равна $t_1 = 20^{\circ}C$? Рассчитайте стоимость дизельного топлива, которое потребуется на обогрев дома в течение суток.
- **2.4** Рассмотрим разогрев дома. Пусть начальная температура воздуха в доме и температура стен равна температуре наружного воздуха $t_0 = 0.0^{\circ}C$. Печь разжигают.

Рассчитайте:

- количество теплоты, которое пойдет на разогрев воздуха в комнате до температуры $t_1 = 20$ °C;
- количество теплоты, которое пойдет на нагревание стен, потолка и пола до достижения установившейся температуры;
- стоимость «разогрева» дома в рублях.

Оцените время разогрева дома до установившейся температуры. Если мощность печи равна максимальной полезной мощности печи $P_0 = 10\kappa Bm$.

Часть 3. Утепление

Пусть теплота перетекает через некоторый слой вещества. На основании закона Фурье можно записать, что плотность потока теплоты через слой выражается формулой

$$q = \alpha \Delta t \,, \tag{3}$$

где коэффициент α (назовем ее тепловой проводимостью) зависит от материала слоя и его толщины, Δt - разность температур на границах слоя.

- **3.1** Рассчитайте численное значение коэффициента α для бетонной стены рассматриваемого дома.
- **3.2** Путь теплота протекает через два параллельных слоя, тепловые проводимости которых равны α_1 и α_2 . Покажите, что плотность потока теплоты через составной слой может быть записана в виде

$$t_1 \longrightarrow t_2$$

$$q = \alpha (t_1 - t_2) \tag{4}$$

Выразите значение коэффициента α для составного слоя, через значения коэффициентов α_1 и α_2 .

Для уменьшения расходов стены дома утепляют, покрывая их слоем утеплителя (стекловаты), толщиной $h_2 = 10 \, cm$.

- **3.3** Какова должна быть мощность теплоты P_2 , идущей на обогрев дома, чтобы поддерживать внутри постоянную температуру $t_1 = 20^{\circ}C$ при температуре наружного воздуха $t_0 = 0.0^{\circ}C$.
- 3.4 Во сколько раз уменьшаться финансовые расходы на поддержание температуры в доме.
- **3.5** Оцените время и стоимость «разогрева» утепленного дома от $t_0 = 0.0^{\circ}C$ до установившейся температуры $t_1 = 20^{\circ}C$, если включить печь на максимальную полезную мощность $P_0 = 10\kappa Bm$.
- **3.6** Допустим, что житель города наезжает в свой загородный дом (рассматриваемый в данной задаче) только на выходные дни. Дайте совет что экономически выгоднее, разогревать дом по приезде в субботу, или поддерживать его установившуюся температуру в течение будних дней?