Лекция 2

1 Напоминание

Формула имеет ДНФ если она дизъюнктивно конъюктивна

Пример : $x\tilde{y} \vee \tilde{x}\tilde{z} \vee x\tilde{y}z$ (3 конъюнкта - $x\tilde{y}, \tilde{x}\tilde{z}, x\tilde{y}z$)

Замечание : По ДНФ легко считать значение выражения.

Выражение истинно \Leftrightarrow есть хотя бы один конъюнкт, который истинен.

Конъюнкт истинен ⇔ все литералы истинны

Пример: конъюнкт $x\tilde{y}z$ истинен \Leftrightarrow x=1; y=0; z=1

Замечание: Задача поиска значения переменных, при которых формула в ДНФ ложно, - это вычислительно сложная задача.(т.е. Неизвестна эффективность алгоритмов, которые в общем случае быстрее полного перебора значений переменных)

Приведение к ДНФ 2

Задача: Дана логическая формула, нужно получить эквивалентную в ДНФ.

```
1. Метод Алгебраических Преобразований.
- см. все преобразования, которые были
-ДНФ всех логических связок
ху - ДНФ
```

 $x \lor y$ — ДНФ

 $x\Rightarrow y=\tilde{x}\vee y$ (2 конъюнкта по 1 литералу)

 $x \Leftrightarrow y = (x \Rightarrow y)(y \Rightarrow x) = (\tilde{x} \vee y)(\tilde{y} \vee x) = \tilde{x}\tilde{y} \vee \tilde{x}\tilde{x} \vee \tilde{y}y \vee yx = \tilde{x}\tilde{y} \vee xy$

Запомним : $x \Leftrightarrow y = \tilde{x}\tilde{y} \lor xy$

Осталось только x + y

 $x + y = \widetilde{x \Leftrightarrow y} =$

см. Таблицу Истинности (далее - ТИ) = $(\tilde{x}\vee y)(\tilde{y}\vee x)$ = $\widetilde{\tilde{x}\vee y}\vee\widetilde{\tilde{y}\vee x}$ =

 $x\tilde{y}\vee y\tilde{x}$

x	У	x+y	$x \Leftrightarrow y$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Запомним : $x + y = x\tilde{y} \lor y\tilde{x}$

Пример преобразований:

$$(x\Leftrightarrow yz)\Rightarrow x=\widetilde{x\Leftrightarrow yz}\lor x=(x+yz)\lor x=(x\widetilde{yz}\lor \widetilde{x}yz)\lor x=x(\widetilde{y}\lor\widetilde{z})\lor \widetilde{x}yz\lor x=x\widetilde{y}\lor x\widetilde{z}\lor \widetilde{x}yz\lor x$$
 - ДНФ исходной формулы

2.Получение ДНФ по таблице истинности

Дана ТИ (n - переменных):

$x1, x2 \dots x_n$	логическая формула
0 0 0	0
	1
	0
	0
	1
111	0

Рассмотрим строки с 1 в столбце значений, это строки

$$x_1^{(1)}x_2^{(1)}...x_n^{(1)} 1$$

 $x_1^{(2)}x_2^{(2)}...x_n^{(2)} 1$

$$x_1^{(k)}x_2^{(k)}...x_n^{(k)}$$
 1
Таких строк : k штук

Составим ДНФ следующим образом:

к конъюнктов , конъюнкт имеет вид :
$$\tilde{x}_1, \tilde{x}_2...\tilde{x}_n$$
, отрицание если $x_1^{(i)}=0, x_2^{(i)}=0,...x_n^{(i)}=0$

Пример:

хух	$(x \Leftrightarrow yz)x$
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	$1(\tilde{x}yz)$
100	$1(x\tilde{y}\tilde{z})$
101	$1(x\tilde{y}z)$
1 1 0	$1(xy\tilde{z})$
1 1 1	1(xyz)

Из этого следует такая ДНФ:

 $\tilde{x}yz \lor x\tilde{y}\tilde{z} \lor x\tilde{y}z \lor xy\tilde{z} \lor xyz$

Формула ДНФ, построенная этим методом эквивалентна исходной формуле.

Доказательство : проверим, что её ТИ такая же для строки і

$$x_1^{(i)}, x_2^{(i)}, ...x_n^{(i)}$$

 $x_1^{(i)}, x_2^{(i)}, ... x_n^{(i)}$ равен 1 только если

$$x_1 = x_1^{(i)}$$
 $x_2 = x_2^{(i)}$
 $x_2 = x_2^{(i)}$
 $x_1 = x_2^{(i)}$

$$x_2 = x_2^{(i)}$$

$$m - m^{(i)}$$

$$x_n = x_n^{(i)}$$

Его таблица истинности:

x_1x_n	$x_1^{(?)}, x_2^{(?)}x_n^{(?)}$		
	0		
	0		
$x_1^{(i)}, x_2^{(i)}x_n^{(i)}$	1		
	0		
	0		
	0		
	0		

Дизъюнкция всех конъюнктов даёт ТИ, совпадающую с исходной

Замечание: может быть много ДНФ

Пример : $\tilde{x}yz \lor x\tilde{y}\tilde{z} \lor x\tilde{y}z \lor xy\tilde{z} \lor xyz = x\tilde{y} \lor x\tilde{z} \lor \tilde{x}yz \lor x$

Можно ли найти самую короткую?

(Считаем литералы и дизъюнкции, 19 против 11).

Поиск самой короткой вычислительно сложная задача. Если бы мы умели её искать эффективно, мы бы могли эффективно решить задачу проверки на взаимность поля:

 $xyz \lor x\tilde{y}z \lor xy\tilde{z} = 1 \ (1) \ , =$ иногда 0 иногда $1 \ (2), =$ можно вычислить (3)min ДНФ $x \vee \tilde{x}, y \vee \tilde{y}$ соответствует 1

Другой ответ соответствует 2 (0 или 1).

Поэтому поиск min ДНФ - Перебор ДНФ.

Как его оптимизировать?

В примере $x\vee x\tilde{y}\vee x\tilde{z}\vee \tilde{x}yz=x(1\vee \tilde{y}\vee \tilde{z})\vee \tilde{x}yz$ (подчеркнутый текст равен $(1) = x \lor \tilde{x}yz$ (Вспомним $a \lor bc = (\overline{a \lor b)(a \lor c})) = (x \lor \tilde{x})(x \lor yz)$ (Подчеркнутое равно 1) = $x \vee yz$

3 Идеи упрощения ДНФ

Метод поиска min ДНФ - у нас : метод n-мерного кубика.

Каждая вершина - конъюнкт оси хуz, каждая вершина - координаты из 0

и 1

Как выглядит схлопывание на кубике? $\tilde{x}yz \lor xyz = yz(\text{pe6po})$

Ребро - конъюнкт из двух переменных.

у
z - ребро (у=1,z=1)
$$\tilde{y}\tilde{z}-$$
 - это ребро (x=0, z=0)

А что значит $\tilde{x}\tilde{y}\tilde{z}\vee\tilde{x}yz\vee x\tilde{y}z\vee xyz=z$?

Это 4 вершины = грань. Грань - конъюнкт из 1 литерала.

Грань z - это грань z=1

Пример:

- $1)\tilde{x}yz\vee xyz\vee xy\tilde{z}\vee x\tilde{y}z\vee x\tilde{y}\tilde{z}=$
- $2){=}x\tilde{y}\vee x\tilde{z}\vee \tilde{x}yz\vee x=$
- $3){=}x \vee \tilde{x}yz =$
- $4)=x\vee yz$

