MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2011 SOLUTION KEY

Round 3

A) Applying the Pythagorean Theorem, in right $\triangle PSR$ (PS = 3, SR = 4 $\Rightarrow PR = 5$) and in right $\triangle PRQ$ (PR = 5, RQ = 12 $\Rightarrow PQ = 13$).

Alternate Solution:

The Pythagorean Theorem extends to 3D as follows:

The distance between points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$
.

Thus,
$$PQ = \sqrt{(6-3)^2 + (3-(-1))^2 + (-8-4)^2} = \sqrt{9+16+144} = \sqrt{169} = \underline{13}$$

B) $(x+1)^2 + y^2 = 6 \Rightarrow \text{Center } (-1, 0) \text{ and } r = \sqrt{6}$ $h = \sqrt{(4+1)^2 + (-3-0)^2} = \sqrt{34} \Rightarrow t^2 = 34 - 6 = 28$ $\Rightarrow t = 2\sqrt{7}$

Since translations do not alter distances, translating the circle and given point one unit to the right (so that the circle is centered at the origin) gives the same result.

$$[x^2 + y^2 = 6 \text{ and } (5, -3)]$$

C) The slope of \mathcal{L}_2 is $\frac{3}{4}$ and the slope of \overrightarrow{PQ} is $-\frac{4}{3}$.

Therefore,
$$\frac{PR}{RQ} = \frac{4}{3} \Rightarrow 25n^2 = 100 \Rightarrow n = 2.$$

$$Q(7+6, 11-8) = (13, 3)$$

The equation of \mathcal{L}_2 is

$$(y-3) = \frac{3}{4}(x-13) \Leftrightarrow 3x-4y = 27$$

Letting
$$x$$
, $y = 0$, we have $X(9, 0)$ and $Y(0, -\frac{27}{4})$.

Alternate Solution (Norm Swanson)

Since $\mathcal{L}_1 \parallel \mathcal{L}_2$, its equation has the form 3x - 4y + k = 0.

Any point on \mathcal{L}_2 is 10 units from \mathcal{L}_1 . Applying the point to line distance formula, the

distance from (7, 11) on
$$\mathcal{L}_1$$
 to \mathcal{L}_2 is given by $\frac{|3(7) - 4(11) + k|}{\sqrt{3^2 + 4^2}} = 10$

$$\Leftrightarrow$$
 $|21-44+k|=50 \Leftrightarrow |k-23|=50 \Leftrightarrow k=-27,53$

3x-4y+53=0 is a line "above" \mathcal{L}_1 and is rejected (Q would be to the left of P),

so the equation of \mathcal{L}_2 is 3x - 4y - 27 = 0 and we proceed as above.