

Europäisches Patentamt European Patent Office Office européen des brevets

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication 15.04.1998 Bulletin 1998/16 (51) Int CL⁶. **B29C 70/20**, B29B 11/16

- (21) Application number. 97307517.9
- (22) Date of filing: 25.09.1997

AL LT LV RO SI

- (84) Designated Contracting States

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE

 Designated Extension States
- (30) Priority 01.10.1996 GB 9620408
- (71) Applicant: NEW MILLENNIUM COMPOSITES LIMITED
 Alton, Hampshire GU34 2QF (GB)
- (72) Inventor Cheshire, Edward John New Alresford, Hampshire SW24 9EH (GB)
- (74) Representative: Lerwill, John et al A.A. Thornton & Co. Northumberland House 303-306 High Holborn London, WC1V 7LE (GB)

(54) Manufacture of fibre reinforced composites

(57) A method for manufacturing an article of fibre reinforced resin material comprises the preparation of a reinforcement preform which includes one or more roves of staple fibres with sufficiently low twist to enable the fibres to slide relative to each other and thereby the rove to elongate when subjected to tension. The rein-

forcement preform is shaped by deforming the preform into the desired three dimensional shape of the article being manufactured. The shaping can be carried out before, after or simultaneously with impregnation with matrix material. The matrix material may be thermoplastic material incorporated in or with the preform

Description

This invention is concerned with the manufacture of reinforced composites naving fibre reinforcing elements incorporated in a matrix. The invention is of particular relevance to the manufacture of shaped articles with fibre reinforcement within a resin matrix.

As technology improves in relation to fibre reinforced composites, such materials are becoming used more and more in the manufacture of articles, especially for applications where high strength and light weight are desirable in order to obtain the required strength characteristics in the production of fibre reinforced composites the fibres must be controlled accurately as regards their positioning orientation and amount. Sheet materias lie essentially two dimensional products are reasonably straightforward to manufacture, but three dimensional articles present considerable problems in redard to the control of the fibre reinforcement. For examgie when a fibre mat or fabric is shaped by pressing ina mould such as in a hemispherical mould cavity defined by male and female mould parts, there is a strong tendency for the fibre mat or fabric to fold and tear in an uncontrollable manner with the result that the fibre positioning will not be ideal for the article being produced 25 and the aricle may have unacceptable weaknesses

Reinforcement products used in the manufacture of fibre reinforced composites, such as woven fibre mats frequently use continuous filaments in order to achieve maximum strength, but such filaments are incapable of stretching to conform to a three dimensional shape. Consequently, the amount to which such mats can deform is limited, especially, if they are to be used to preciare a shaped reinforcement preform to be subsequently impregnated with and embedded in a matrix, such as thermosettirig resin, metal or ceramic.

It is also known to use staple fibre yarns as reinforcement elements in reinforced composites, such as in spin winding processes wherein the yarn is wound ento a mandrel to build up layers of reinforcement. The yarns are generally produced with the fibres or filaments twisted so tightly that they are unable to slide relative to each other due to the friction between the fibres, and as a consequence the yarns will not elongate under tension and will break before stretching to any significant extent

In WC 91:*3195 there is described a method of manufacturing a fibre reinforced composite wherein the reinforcement comprises a staple yarn of discontinuous fibres with cw twist, which yarn is subjected to a prelimnary controlled stretching with a view to obtaining desired characteristics in the finished composite. The stretched yarn can be used to produce a shaped preform which is subsequently impregnated with resin eig during a separate moulding step. The need to produce a preform including a yarn which has been subjected to controlled stretching limits the potential of the described method for large scale production of shaped articles.

The present invention addresses this problem and as an especially neat and simple solution it provides a method of manufacturing an article of reinforced composite material comprising preparing a reinforcement preform including a rove of staple fibres with low twist to enable the fibres to slide relative to each other and thereby the rove to elongate when subjected to tension the rove being substantially unstretched and substantially uniform along to ength in the completed preform shaping the reinforcement preform by deforming the preform before lafter or simultaneously with impregnation of the preform with matrix material so that the rove of staple fibres undergoes permanent elongation.

Roves of staple fibres can be oriented in the preform so that the desired characteristics are dotained in the finished article due to the stretching of the roves produced when shaping the preform being predictable and controlled. The reinforcement preform may be formed entirely of roves of staple fibres, but this is not essential and in some cases at least it will be possible to include other forms of reinforcement, such as continuous strand mat, continuous filaments, encoped stand mat, or the ke

By the method of the invention it is possible to mould conveniently, three dimensional articles of reinforced composite material since a flat fibre assembly can be deformed to the required shape as the mould is closed while ensuring an appropriate distribution of the reinforcement fibres throughout the matrix material in the trished article.

in the case of a simple two dimensional preform of essentially sheet-like form staple fibre roves may be aid side-by-side and parallet to each other. According to the nature of the article to be produced and in particplan the stress loadings to which it is likely to be subjected in use lit may be sufficient for the roves to extend in a single direction. They could if required be sandwiched between layers of further reinforcement, such as continuous strandiglass fibre matior other extensible reinforcement. Alternatively, the loves could be laid in two or more layers with roves in different layers directed at different angles to obtain the desired strength characteristics in different directions, in regions or directions. where little or no deformation is experienced during shaping of the preform, and hence no rove elongation will occur continuous filaments may be incorporated with the roves, which may be desirable to impart additional strength to these regions in the finish article

When a two dimensional or flat sheet preform is to be shaped in a three dimensional mould it will generally be necessary to clamp the preform at least at some peripheral locations in order to control the deformation of the preform as the mould is closed.

A preform whether in two or three dimensional form may be stabilised to fix the libres relative to each other temporarily until they are anchored in the matrix material. One stabilization technique is to sprinkle the fibres of the preform with a thermoplastic leigh polyester.

25

binder powder and to heat the preform so that the binder melts and fuses the fibres. The binder can be dissolved in the matrix material, e.g. a thermosetting polyester resin, when the preform is subsequently impregnated in a mould. Alternatively the binder may constitute part of the final matrix. By selective application of the binder, either by confining the areas of application or controlling the amount of binder applied, it is possible to adjust the tendency of the roves to stretch in certain locations during shaping of the preform and thereby control the portions of the preform which will be subjected to greatest deformation and elongation of the staple fibre roves to obtain the desired reinforcement distribution.

It may be preferable to prepare a three dimensional preform shaped to fit a mould for subsequent impregnation. Conveniently a two dimensional fibre preform is first produced and this preform is subjected to one or more pressing steps to achieve the desired shape. In the case of a simple shape a single pressing step in which the initial flat preform is deformed between complementary press tools will be adequate. When a more complex shape or a deep three dimensional form is required a series of successive pressing steps may be employed. Fusing binder may be applied during or after any of the pressing steps either to assist control of the preform deformation in the next pressing stage or to maintain the final shape of the preform. The binder which may be selectively applied as mentioned above, could be fused by heat or UV light. Another way to apply a binder is to spray the preform with an emulsion of a resin soluble binder in water, the water being removed by dry-

During a final preform pressing stage sufficient binder is preferably added to stabilise the preform until it is to be used, e.g. in a moulding operation. At this time up to 10% by weight of the preform may consist of binder. The periphery of the shaped preform may be trimmed if necessary to fit the mould employed for matrix impregnation. The trimming operation can be effected in any convenient manner, such as a cutting operation preformed during the final pressing stage by means of the press tooling, manually or by laser cutting. Trimming at this stage can avoid any need for a post moulding trimming operation.

The preform prepared for use in the method of the invention can be provided with holes and/or additional reinforcement elements as may be desired according to the article being manufactured

As mentioned above the preform prepared with the rove of staple fibres with low twist is shaped before or as the preform is inserted in a mould for impregnation. As an alternative, the initial sheet preform can be incorporated with a thermoplastic matrix material to be shaped and impregnated by application of heat and pressure. Thus, co-mingled fibre reinforcement and filaments of thermoplastic material which will melt to form the matrix can be pressed directly into a flat stock sheet or blanks from which shaped articles can be produced.

subsequently. As with other embodiments, the staple fibre rove(s) with low twist may constitute only part of the reinforcement. For example there can be utilised in addition continuous strand mats, or additional chopped strands of reinforcement. A two dimensional reinforcement preform sheet can be pressed at high pressure between two sheets of thermoplastic material, or other layers of material which will form the matrix, such as pellets of polypropylene, polyethyleneteraphthalate or nylon, Under the application of heat and pressure the thermoplastic material melts and impregnates the reinforcement preform. The resulting sheets or blanks can be heated and pressed or vacuum formed in accordance with conventional practices for deforming thermoplastic sheet into three dimensional configurations, but during such forming the lightly twisted fibres included in the rove of stable fibres will slide under applied tension forces resulting in an elongation of the rove It will be understood that the matrix material needs to be melted sufficiently to enable such fibre movement and higher temperatures than usually employed in the performance of such thermoforming processes may be required to ensure the necessary reduced viscosity of the matrix material

It will be understood that when the matrix material is initially provided in the form of fibres or filaments comingled with the reinforcement fibres, it is not essential to prepare a flat composite preform for further forming to the required shape and the preform of reinforcement and matrix fibres can be directly formed into a finished shaped article by applying pressure with heating to a temperature sufficient for the thermoplastic material to melt and impregnate the reinforcement.

As a variation of the method in which the fibre reinforcement including the rove of staple fibres is combined with filaments of thermoplastic material which are melted to provide the matrix if the fibres are themselves formed of a thermoplastic material they can themselves provide the matrix using a technique known as "hot compaction" In such a method a bundle of oriented thermoplastic fibres is subjected to pressure and heating so that the fibres melt at their surfaces and the melted material fills the voids between the fibres and upon subsequent cooling forms a strong bond between the fibres The product of this method can be seen as a single phase composite inasmuch that the same material forms the reinforcement and the matrix. A preform can be prepared and be compacted leig by pressing or in an autoclave to the final shape. Alternatively, as the material is thermoplastic hot compaction can be used to produce a preform e.g. a sheet which can be post formed to a final shape. The rove of staple fibres in the fibre bundle will be subjected to elongation, either before or after incorporation in the bundle of fibres, prior to hot compaction in order to obtain the desired characteristics in the finished article being manufactured. Alternatively it could be possible for such elongation to be produced during the hot compaction process

The present invention includes within its scope a blank or preferm for use in performing the method of the invention and comprising a rove of staple fibres of sufficiently low twist that the rove is elongated under tension applied during shaping of the preform

Furthermore the invention also extends to an article croduced by the method

By the rove of staple fibres being substantially unstationed and substantially unform along its length when the preform is initially prepared it is meant that the rove has not been subjected to a deliberate stretching operation to reduce its cross-section or the number of fibres incorporated in the rove at any point along its length so that the properties in particular the weight per unit length of the rove remain substantially constant along the length of the rove. The important aspect of the invention is that the rove is subjected to a degree of eighteen without the rove being parted at any location along its length, during a subsequent forming operation to shape the reinforcement in conformity with the article of reinforced composite material being manufactured.

In many instances it will be convenient and appropriate initially to prepare the preform in a flat condition. However, this is not essential and the preform can be prepared with an initial three dimensional form and be subsequently deformed to the desired shape and 'cleffect the elongation of the roves of staple fibres with low twist.

The length of fibres in the rove of staple fibres used n preparing a preform in accordance with the invention s not crucial but is an important consideration. Athough the ideal length will depend on the dimensions of the article being produced and in particular the distances between pinch points where no or very little elongation will occur during the shaping deformation of the pretorm if the fibres are short, there may be a tendency for the rove to part at a point at which initial elongation takes clade. Long fibres are generally desirable from a strength point of view but the fibres should not be so long that more than a very small percentage extend between the pinch points since these fibres must clearly the broken to enable elongation of the rove. Preferably the fibre length, is such that elongation will occur substantially evenly over a major portion of the rove length between pinch points. This will ensure the reduction in the number of fibres in the rove at any position along the length due to the stretching is minimised

The fibres used in performance of the invention can be of any known type including glass, carbon or aramid

Claims

 A method of manufacturing an article of reinforced composite material comprising the steps of preparing a reinforcement preform including a rove of staple fibres with sufficiently low twist to enable the fibres to slide relative to each other and thereby the rove to clongate when subjected to tension characterised in that the rove is substantially unstretched and substantially uniform along its length in the initially completed preform, and the reinforcement preform is shaped by deforming the preform before after and or simultaneously with impregnation of the preform with matrix material so that said rove of stapie fibres undergoes permanent elongation.

- 2. A method according to claim 1, wherein the preform is prepared entirely from roves of staple fibres with low twist.
- 3. A method according to claim 1 wherein the preform is prepared from one or more roves of staple fibres in combination with at least one other form of fibre reinforcement, such as continuous strand mat, continuous flaments, or chopped strand mat.
 - A method according to any of claims 1 to 3, wherein the preform comprises a substantially flat sheet
- 5. A method according to claim 4, wherein the flat sheet preform is clamped at at least some peripheral locations prior to shaping the preform.
 - A method according to any one of claims 1 to 5 wherein reinforcement fores included in the preform are stabilised.
 - 7. A method according to claim 6, wherein the reinforcement fibres are stabilised by a binder
- 35 8. A method according to claim 7 wherein the preform is shaped by deforming in at least two successive stages and binder is applied during or after any one or more of the deformation stages.
- 40 9. A method according to any one of claims 1 to 8 wherein the preform is trimmed at the edges before impregnation with matrix material.
 - A method according to any one of claims 1 to 9 wherein the shaped preform is impregnated with matrix material in a mould.
 - A method according to claim 10, wherein the preform is shaped by closure of the mould around the preform.
 - 12. A method according to any one of claims 1 to 9 wherein the reinforcement fibres of the preform are incorporated with thermoplastic resin material for the preform to be shaped and impregnated by application of heat and pressure.
 - 13. A method according to claim 12, wherein filaments

50

of thermoplastic resin are included in the preform.

14. A method according to claim 12. wherein the preform is sandwiched between layers of thermoplastic material.

15. A method according to claim 12.13 or 14. wherein a blank is formed from the preform and thermoplastic material for subsequent shaping by thermoforming.

10

16. A method according to claim 12 or 13. wherein reinforcement fibres included in the preform are formed of thermoplastic material and are partially melted to provide the matrix material

17. A preform for use in manufacturing an article by the method of claim 1 characterised by a rove of staple fibres of sufficiently low twist that the rove is elongated under tension applied during shaping of the 20 preform

18. A preform according to claim 17, wherein all the reinforcement fibres included in the preform consist entirely of roves of staple fibres with low twist

25

19. A preform according to claim 17. wherein one or more roves of staple fibres are combined with at least one other form of fibre reinforcement, such as continuous strand mat, continuous filaments or 30 chopped strand mat

20. A preform according to any one of claims 17 to 19. wherein the preform includes thermoplastic resin material which can be melted to impregnate the reinforcement fibres

21. A preform according to claim 20, wherein the preform includes filaments of thermoplastic material

40

22. An article of fibre reinforced composite material produced by the method of any one of claims 1 to 16 or form a preform as claimed in any one of claims 17 to 21

45

50

55

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 835 741 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 21.10.1998 Bulletin 1998/43

(51) Int CL⁶ **B29C 70/20**, B29B 11/16

- (43) Date of publication A2 15.04.1998 Bulletin 1998/16
- (21) Application number: 97307517.9
- (22) Date of filing. 25.09.1997
- (84) Designated Contracting States
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
 Designated Extension States
 AL LT LV RO SI
- (30) Priority 01.10.1996 GB 9620408
- (71) Applicant. NEW MILLENNIUM COMPOSITES LIMITED
 Alton, Hampshire GU34 2QF (GB)
- (72) Inventor Cheshire, Edward John New Alresford, Hampshire SW24 9EH (GB)
- (74) Representative Lerwill, John et al A.A. Thornton & Co. Northumberland House 303-306 High Holborn London, WC1V 7LE (GB)
- (54) Manufacture of fibre reinforced composites
- (57) A method for manufacturing an article of fibre reinforced resin material comprises the preparation of a reinforcement preform which includes one or more roves of staple fibres with sufficiently low twist to enable the fibres to slide relative to each other and thereby the rove to elongate when subjected to tension. The rein-

forcement preform is shaped by deforming the preform into the desired three dimensional shape of the article being manufactured. The shaping can be carried out before, after or simultaneously with impregnation with matrix material. The matrix material may be thermoplastic material incorporated in or with the preform

EUROPEAN SEARCH REPORT

Application Numbe

EP 97 30 7517

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Ottation of goodment with indication, where appropriate of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
D , X A	WO 91 13195 A (NEW MILLENNIUM COMPOSITES LTD) 5 September 1991 * the whole document *	17-21	B29C70/20 B29B11/16
A	US 5 147 721 A (BARON KENNETH S ET AL) 15 September 1992 * column 2. line 15 - line 57 *	1-22	

6)
-

particularly relevant if combined with another Dil populment disquirithe application	Place of search	Sate of completion of the search	ੂੰ⊼ਗਿੱਖਿ ਦੇ*	
particularly relevant if taken alone	THE HAGUE	31 August 1998	Van Wallene, A	
particularly relevant if combined with another Dil populment disquirithe application	CATEGORY OF GITED COCUMENTS			
	particularly relevant if taken alone			
303LMedf of the same date-doty	particularly relevant it combined with another document of the same nategory	Uil populment ored for other reasons		
	non-written a salasure	 x member of the same 	e patentifam fyr porrespor ding	