```
In [1]: import pandas as pd
        import numpy as np
        import csv
        import os
In [2]: #Join path for data and create a data frame for the student data
        students = os.path.join('students complete.csv')
        students df = pd.read csv(students)
        students df['Passed Reading'] = np.where(students df['reading score']>=70, 1,
        students_df['Passed Math'] = np.where(students_df['math_score']>=70, 1, 0)
In [3]: #Import schools data, sort values for the school, create a data frame for de
        schools = os.path.join('schools complete.csv')
        schools df = pd.read csv(schools)
        schools df = schools df.sort values('name').reset index()
        schools_df = schools_df.drop(columns = ['index', 'School ID'])
        schools_df = pd.DataFrame(schools_df)
In [4]: school_district = schools_df.loc[schools_df['type'] == 'District', : ]
        school district = pd.DataFrame(school district)
In [5]: student_district = pd.DataFrame()
        for school in school_district['name']:
            student district = student district.append(students df.loc[students df[
In [6]: Create a high level snapshot (in table form) of the district's key metrics
       verage reading score = student district['reading score'].mean()
       verage math score = student district['math score'].mean()
       otal school = school district['name'].count()
       otal student = school district['size'].sum()
       otal_budget = school_district['budget'].sum()
       eading score = student district.loc[student district['reading score'] >= 70,
       assing reading = (reading score/total student)*100
       ath score = student district.loc[student district['math score'] >= 70, 'math
       assing math = (math score/total student)*100
       verage_passing = (passing_math + passing_reading)/2
       istrict_summary = pd.DataFrame({"Total Schools": [total_school], "Total Stude")
       istrict summary = district summary[['Total Schools', 'Total Students', 'Total
       istrict summary
Out[6]:
```

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
0	7	26976	17347923	76.987026	80.962485	66.518387	80.905249	73.711818

#Part 2 for schools summary In [7]: summary = pd.DataFrame() summary[''] = schools_df['name'] summary['School Type'] = schools_df['type'] summary['Total Students'] = schools_df['size'] summary['Total Budget'] = schools_df['budget'] summary['Per Student Budget'] = summary['Total Budget']/summary['Total Stude summary['Average Reading Score'] = students df.groupby(students df['school' summary['Average Math Score'] = students_df.groupby(students_df['school'])[reading_passed = students_df.groupby(students_df['school'])['Passed Reading summary['% Passing Reading'] = (reading passed['Passed Reading']/schools df| math_passed = students_df.groupby(students_df['school'])['Passed Math'].sum(summary['% Passing Math'] = (math_passed['Passed Math']/schools_df['size']); summary['% Overall Passing Rate'] = (summary['% Passing Reading'] + summary[summary.set_index('', inplace = True) summary

Out[7]:

	School Type	Total Students	Total Budget	Per Student Budget	Average Reading Score	Average Math Score	% Passing Reading	% Passing Math	% Ove Pas: F
Bailey High School	District	4976	3124928	628.0	81.033963	77.048432	81.933280	66.680064	74.306
Cabrera High School	Charter	1858	1081356	582.0	83.975780	83.061895	97.039828	94.133477	95.586
Figueroa High School	District	2949	1884411	639.0	81.158020	76.711767	80.739234	65.988471	73.363
Ford High School	District	2739	1763916	644.0	80.746258	77.102592	79.299014	68.309602	73.804
Griffin High School	Charter	1468	917500	625.0	83.816757	83.351499	97.138965	93.392371	95.265
Hernandez High School	District	4635	3022020	652.0	80.934412	77.289752	80.862999	66.752967	73.807
Holden High School	Charter	427	248087	581.0	83.814988	83.803279	96.252927	92.505855	94.379
Huang High School	District	2917	1910635	655.0	81.182722	76.629414	81.316421	65.683922	73.500
Johnson High School	District	4761	3094650	650.0	80.966394	77.072464	81.222432	66.057551	73.639
Pena High School	Charter	962	585858	609.0	84.044699	83.839917	95.945946	94.594595	95.270
Rodriguez High School	District	3999	2547363	637.0	80.744686	76.842711	80.220055	66.366592	73.293

	School Type	Total Students	Total Budget	Per Student Budget	Average Reading Score	Average Math Score	% Passing Reading	% Passing Math	% Ove Pas: F
Shelton High School	Charter	1761	1056600	600.0	83.725724	83.359455	95.854628	93.867121	94.860
Thomas High School	Charter	1635	1043130	638.0	83.848930	83.418349	97.308869	93.272171	95.290
Wilson High School	Charter	2283	1319574	578.0	83.989488	83.274201	96.539641	93.867718	95.203
Wright High School	Charter	1800	1049400	583.0	83.955000	83.682222	96.611111	93.333333	94.972

In [8]: #Top 5 schools have the highest overall passing rate
top_5 = summary.sort_values('% Overall Passing Rate').tail()
top_5

Out[8]:

	School Type	Total Students	Total Budget	Per Student Budget	Average Reading Score	Average Math Score	% Passing Reading	% Passing Math	% Overa Passin Rat
Wilson High School	Charter	2283	1319574	578.0	83.989488	83.274201	96.539641	93.867718	95.20367
Griffin High School	Charter	1468	917500	625.0	83.816757	83.351499	97.138965	93.392371	95.26566
Pena High School	Charter	962	585858	609.0	84.044699	83.839917	95.945946	94.594595	95.27027
Thomas High School	Charter	1635	1043130	638.0	83.848930	83.418349	97.308869	93.272171	95.29052
Cabrera High School	Charter	1858	1081356	582.0	83.975780	83.061895	97.039828	94.133477	95.58665

In [9]: #Bottom 5 schools have the lowest overall passing rate
bottom_5 = summary.sort_values('% Overall Passing Rate').head()
bottom_5

Out[9]:

	School Type	Total Students	Total Budget	Per Student Budget	Average Reading Score	Average Math Score	% Passing Reading	% Passing Math	% Ove Pass R
Rodriguez High School	District	3999	2547363	637.0	80.744686	76.842711	80.220055	66.366592	73.293
Figueroa High School	District	2949	1884411	639.0	81.158020	76.711767	80.739234	65.988471	73.363
Huang High School	District	2917	1910635	655.0	81.182722	76.629414	81.316421	65.683922	73.500 ⁻
Johnson High School	District	4761	3094650	650.0	80.966394	77.072464	81.222432	66.057551	73.639!
Ford High School	District	2739	1763916	644.0	80.746258	77.102592	79.299014	68.309602	73.804

In [10]: #Create a dataframe of math score by grade for each school
 math_score_by_grade = students_df.groupby(['school', 'grade'])['math_score']
 math_score_by_grade = math_score_by_grade.rename(columns = {'school': '', 'c
 math_score_by_grade = math_score_by_grade.pivot(index = '', columns=' ', val
 math_score_by_grade

Out[10]:

	10th	11th	12th	9th
Bailey High School	76.996772	77.515588	76.492218	77.083676
Cabrera High School	83.154506	82.765560	83.277487	83.094697
Figueroa High School	76.539974	76.884344	77.151369	76.403037
Ford High School	77.672316	76.918058	76.179963	77.361345
Griffin High School	84.229064	83.842105	83.356164	82.044010
Hernandez High School	77.337408	77.136029	77.186567	77.438495
Holden High School	83.429825	85.000000	82.855422	83.787402
Huang High School	75.908735	76.446602	77.225641	77.027251
Johnson High School	76.691117	77.491653	76.863248	77.187857
Pena High School	83.372000	84.328125	84.121547	83.625455
Rodriguez High School	76.612500	76.395626	77.690748	76.859966
Shelton High School	82.917411	83.383495	83.778976	83.420755
Thomas High School	83.087886	83.498795	83.497041	83.590022
Wilson High School	83.724422	83.195326	83.035794	83.085578
Wright High School	84.010288	83.836782	83.644986	83.264706

In [11]: #Create a dataframe of reading score by grade for each school
 reading_score_by_grade = students_df.groupby(['school', 'grade'])['reading_scoreading_score_by_grade = reading_score_by_grade.rename(columns = {'school':
 reading_score_by_grade = reading_score_by_grade.pivot(index = '', columns='
 reading_score_by_grade

Out[11]:

	10th	11th	12th	9th
Bailey High School	80.907183	80.945643	80.912451	81.303155
Cabrera High School	84.253219	83.788382	84.287958	83.676136
Figueroa High School	81.408912	80.640339	81.384863	81.198598
Ford High School	81.262712	80.403642	80.662338	80.632653
Griffin High School	83.706897	84.288089	84.013699	83.369193
Hernandez High School	80.660147	81.396140	80.857143	80.866860
Holden High School	83.324561	83.815534	84.698795	83.677165
Huang High School	81.512386	81.417476	80.305983	81.290284
Johnson High School	80.773431	80.616027	81.227564	81.260714
Pena High School	83.612000	84.335938	84.591160	83.807273
Rodriguez High School	80.629808	80.864811	80.376426	80.993127
Shelton High School	83.441964	84.373786	82.781671	84.122642
Thomas High School	84.254157	83.585542	83.831361	83.728850
Wilson High School	84.021452	83.764608	84.317673	83.939778
Wright High School	83.812757	84.156322	84.073171	83.833333

In [12]: #Scores by School Spending

school_spending = summary.drop(columns = ['School Type', 'Total Budget'])
school_spending['Reading'] = (school_spending['Average Reading Score'] * sch
school_spending['Math'] = (school_spending['Average Math Score'] * school_sp
school_spending['Number Passed Reading'] = (school_spending['% Passing Readi
school_spending['Number Passed Math'] = (school_spending['% Passing Math'];
school_spending = school_spending.drop(columns = ['Average Reading Score', '

```
#Create a new dataframe for the school spending result
In [13]:
         average reading = []
         average_math = []
         percent_reading = []
         percent_math = []
         less_585 = school_spending.loc[school_spending['Per Student Budget'] < float
         average_reading.append(less_585['Reading'].sum()/less_585['Total Students'].
         average math.append(less 585['Math'].sum()/less 585['Total Students'].sum()]
         percent_reading.append((less_585['Number Passed Reading'].sum()/less_585['To
         percent_math.append((less_585['Number Passed Math'].sum()/less_585['Total St
         more 585 = school spending.loc[(float(585) <= school spending['Per Student F
         average_reading.append(more_585['Reading'].sum()/more_585['Total Students'].
         average math.append(more 585['Math'].sum()/more 585['Total Students'].sum()]
         percent_reading.append((more_585['Number Passed Reading'].sum()/more_585['To
         percent_math.append((more_585['Number Passed Math'].sum()/more_585['Total St
         more 615 = school spending.loc[(float(615) <= school spending['Per Student F
         average_reading.append(more_615['Reading'].sum()/more_615['Total Students'].
         average math.append(more 615['Math'].sum()/more 615['Total Students'].sum()]
         percent_reading.append((more_615['Number Passed Reading'].sum()/more_615['To
         percent_math.append((more_615['Number Passed Math'].sum()/more_615['Total St
         more 645 = school spending.loc[(float(645) <= school spending['Per Student E
         average_reading.append(more_645['Reading'].sum()/more_645['Total Students'].
         average_math.append(more_645['Math'].sum()/more_645['Total Students'].sum())
         percent reading.append((more 645['Number Passed Reading'].sum()/more 645['To
         percent math.append((more 645['Number Passed Math'].sum()/more 645['Total St
         result = pd.DataFrame({"Spending Ranges (Per Student)": ["<$585", "$585-615"
         result['% Overall Passing Rate'] = (result['% Passing Math'] + result['% Pas
         result = result[['Spending Ranges (Per Student)', 'Average Math Score', 'Ave
         result.set index('Spending Ranges (Per Student)', inplace = True)
         result
```

Out[13]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Spending Ranges (Per Student)					
<\$585	83.363065	83.964039	93.702889	96.686558	95.194724
\$585-615	83.529196	83.838414	94.087404	95.850165	94.968784
\$615-645	78.061578	81.434031	71.400428	83.614770	77.507599
\$645-675	77.049297	81.005604	66.230813	81.109397	73.670105

```
In [14]: reading = []
        math = []
        percentage math = []
        percentage reading = []
        small = school spending.loc[school spending['Total Students'] < 1000, : ]</pre>
        reading.append(small['Reading'].sum()/small['Total Students'].sum())
        math.append(small['Math'].sum()/small['Total Students'].sum())
        percentage_reading.append((small['Number Passed Reading'].sum()/small['Total
        percentage math.append((small['Number Passed Math'].sum()/small['Total Studer
        medium = school_spending.loc[(1000 <= school_spending['Total Students']) & (2
        reading.append(medium['Reading'].sum()/medium['Total Students'].sum())
        math.append(medium['Math'].sum()/medium['Total Students'].sum())
        percentage reading.append((medium['Number Passed Reading'].sum()/medium['Tota
        percentage math.append((medium['Number Passed Math'].sum()/medium['Total Stud
        large = school_spending.loc[(2000 <= school_spending['Total Students']) & (50
        reading.append(large['Reading'].sum()/large['Total Students'].sum())
        math.append(large['Math'].sum()/large['Total Students'].sum())
        percentage reading.append((large['Number Passed Reading'].sum()/large['Total
        percentage math.append((large['Number Passed Math'].sum()/large['Total Studer
        result 2 = pd.DataFrame({"School Size": ["Small (<1000)", "Medium (1000-2000)
        result_2['% Overall Passing Rate'] = (result_2['% Passing Math'] + result_2[
        result_2 = result_2[['School Size', 'Average Math Score', 'Average Reading Sc
        result_2.set_index('School Size', inplace = True)
        result 2
```

Out[14]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
School Size					
Small (<1000)	83.828654	83.974082	93.952484	95.968323	94.960403
Medium (1000- 2000)	83.372682	83.867989	93.604788	96.773058	95.188923
Large (2000- 5000)	77.477562	81.198640	68.652380	82.125158	75.388769

```
In [15]: #Create a for loop function for charter school type
    school_charter = schools_df.loc[schools_df['type'] == 'Charter', : ]
    student_charter = pd.DataFrame()
    for school in school_charter['name']:
        student_charter = student_charter.append(students_df.loc[students_df['school]);
```

In [16]: # Create a high level snapshot (in table form) of the charter's key metrics
 average_reading_score_1 = student_charter['reading_score'].mean()
 average_math_score_1 = student_charter['math_score'].mean()
 total_student_1 = school_charter['size'].sum()
 reading_passed_1 = ((student_charter['Passed Reading'].sum())/total_student_
 math_passed_1 = ((student_charter['Passed Math'].sum())/total_student_1)*10(
 average_passing_1 = (math_passed_1 + reading_passed_1)/2
 charter_summary = pd.DataFrame({"School Type": "Charter", "Average Math Score', 'Average Mat

In [17]: district_summary_1 = district_summary.drop(columns = ['Total Schools', 'Total
district_summary_1['School Type'] = "District"
district_summary_1 = district_summary_1[['School Type','Average Math Score',

In [18]: by_school_type = pd.concat([charter_summary, district_summary_1])
 by_school_type.set_index('School Type', inplace = True)
 by_school_type

Out[18]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
School Type					
Charter	83.406183	83.902821	93.701821	96.645891	95.173856
District	76.987026	80.962485	66.518387	80.905249	73.711818

