UFV - Universidade Federal de Viçosa

CCE - Departamento de Matemática

3^a Prova de MAT 137

Nome:	Matrícula:	

- 1^a Questão Verifique se as sentenças abaixo são verdadeiras ou falsas. Justifique suas respostas.
- a) (10 pontos) Se $T: \mathbb{R}^2 \to \mathbb{R}^2$ é uma transformação linear tal que T(1,2)=(-1,-2) e T(-1,-1)=(1,1), então $T^3(2,-1)=(-2,1)$.
- **b)** (10 pontos) Sejam $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear, B uma base do \mathbb{R}^2 e

$$[T]_B^B = \left[\begin{array}{cc} 4 & 8 \\ 1 & 2 \end{array} \right].$$

Então T é um isomorfismo.

c) (10 pontos) Sejam $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear, $A \in B$ duas bases do \mathbb{R}^3 e

$$[I]_B^A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

a matriz de mudança da base A para a base B. Então a matriz de mudança da base B para a base A é

$$[I]_A^B = \begin{bmatrix} 1 & -2 & 5 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}.$$

 2^a Questão Seja $T:\mathbb{R}^3 \to \mathbb{R}^2$ tal que

$$T(x, y, z) = (x - 2y + z, -2x - y - 2z).$$

Faça o que se pede:

- a) (10 pontos) Mostre que T é uma transformação linear.
- b) (10 pontos) Determine o núcleo de T e sua dimensão.
- c) (10 pontos) Determine a imagem de T e uma base para ela.
- d) (10 pontos) Enuncie e verifique o Teorema do Núcleo e da Imagem para T.

 3^a Questão (40 pontos) Seja $T:\mathbb{R}^3\to\mathbb{R}^3$ o operador linear tal que

$$T(x, y, z) = (x + 2y - z, 3y + z, 4z).$$

Verifique se T é diagonalizável. Em caso afirmativo, escreva a matriz de T numa base formada por autovetores.