CS 310 (sec 20) - Winter 2003 - Midterm Exam (solutions)

SOLUTIONS

1. (Proofs.) Use mathematical induction to prove the following statement for $n \ge 1$:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}.$$

Solution:

1. Basis Step: For n = 1 we have

$$\frac{1}{1\cdot 2} = 1 - \frac{1}{1\cdot 2}$$

which is obviously true.

2. Inductive Step: Assume that the statement is true up to some value of n. We must prove that it is also true for n+1. So:

$$\underbrace{\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}}_{\substack{1 - \frac{1}{n+1} \\ \text{(induction hypothesis)}}} + \underbrace{\frac{1}{(n+1)(n+2)}}_{\substack{1 - \frac{1}{n+1} \\ \text{(induction hypothesis)}}} = 1 - \frac{1}{n+1} + \underbrace{\frac{1}{(n+1)(n+2)}}_{\substack{\frac{1}{n+1} - \frac{1}{n+2} \\ \text{(induction hypothesis)}}}_{\substack{\frac{1}{n+1} - \frac{1}{n+2} \\ \text{(induction hypothesis)}}}$$

which proves the statement for n+1.

Hence the statement is true for every $n \geq 1$.

- **2.** (Relations.) For each of the following relations defined on \mathbb{R} determine whether it is reflexive, symmetric, antisymmetric, transitive:
 - 1. $x\mathcal{R}y$ if x=2y.
 - 2. $x\mathcal{R}y$ if x = ky for some integer $k \in \mathbb{Z}$.
 - 3. $x\mathcal{R}y$ if $x-y\in\mathbb{Q}$.
 - 4. $x\mathcal{R}y$ if $x-y\in\mathbb{Z}^+$.

Solution:

- 1. Antisymmetric.
- 2. Reflexive, transitive.
- 3. Reflexive, symmetric, transitive.
- 4. Antisymmetric, transitive.

Explanation:

- 1. In general $x \neq 2x$ (unless x = 0), so not reflexive. x = 2y does not imply y = 2x, so not symmetric. x = 2y and y = 2x implies x = 4x, which implies x = 0 and y = 0, so x = y, hence it is antisymmetric. x = 2y and y = 2x implies x = 4y, which does not imply x = 2y, so not transitive.
- 2. $x = 1 \cdot x$, so it is reflexive. x = ky does not imply y = k'x (e.g. $6 = 2 \cdot 3$, but $3 \neq k \cdot 6$ for $k \in \mathbb{Z}$), so not symmetric. $x = (-1) \cdot (-x)$ and $-x = (-1) \cdot x$, but $x \neq -x$ (unless x = 0), so not antisymmetric. x = ky and y = k'z implies x = kk'z and $kk' \in \mathbb{Z}$, so it is transitive.
- 3. $x-x=0\in\mathbb{Q}$, so it is reflexive. $x-y=r\in\mathbb{Q}$ implies $y-x=-r\in\mathbb{Q}$, so it is symmetric. $x-y\in\mathbb{Q}$ and $y-z\in\mathbb{Q}$ does not imply x=y (e.g. consider $x=1,\,y=0,$ so $1-0=1\in\mathbb{Q}$ and $0-1=-1\in\mathbb{Q}$, but $0\neq 1$, so not antisymmetric. $x-y=r\in\mathbb{Q}$ and $y-z=r'\in\mathbb{Q}$ implies $x-z=r+r'\in\mathbb{Q}$, so it is transitive.
- 4. $x x = 0 \notin \mathbb{Z}^+$, so not reflexive. $x y = r \in \mathbb{Z}^+$ does not imply $y x = -r \in \mathbb{Z}^+$, so not symmetric. $x y \in \mathbb{Z}^+$ and $y z \in \mathbb{Z}^+$ is always false (x y and y x cannot be both positive), so the implication $(x y \in \mathbb{Z}^+) \wedge (y z \in \mathbb{Z}^+) \implies x = y$ is vacuously true, hence the relation is antisymmetric. $x y = k \in \mathbb{Z}^+$ and $y z = k' \in \mathbb{Z}^+$ implies $x z = k + k' \in \mathbb{Z}^+$, so it is transitive.

3. (Functions.) Let $f, g : \mathbb{R} \to \mathbb{R}$ the functions f(x) = 2x + 2, g(x) = x/2. Find $f \circ g, g \circ f, f^{-1}, g^{-1}, (f \circ g)^{-1}, (g \circ f)^{-1}, f^{-1} \circ g^{-1}$ and $g^{-1} \circ f^{-1}$.

Solution:

$$(f \circ g)(x) = f(g(x)) = 2g(x) + 2 = x + 2.$$

$$(g \circ f)(x) = g(f(x)) = f(x)/2 = x + 1.$$

$$f^{-1}(x) = \frac{x-2}{2}.$$

$$g^{-1}(x) = 2x.$$

$$(f \circ g)^{-1}(x) = x - 2.$$

$$(g \circ f)^{-1}(x) = x - 1.$$

$$(f^{-1} \circ g^{-1})(x) = x - 1.$$

$$(g^{-1} \circ f^{-1})(x) = x - 2.$$

4. (Modular Arithmetic.) Use the Euclidean algorithm for finding a number x between 0 and 62 such that $10x \equiv 1 \pmod{63}$.

Solution:

We use the Euclidean algorithm for finding gcd(63, 10) = 1 and solving simultaneously the Diophantine equation 10x + 63y = 1.

$$63 = 6 \cdot 10 + 3 \rightarrow 3 = 63 - 6 \cdot 10$$

 $10 = 3 \cdot 3 + 1 \rightarrow 1 = 10 - 3 \cdot 3$

Hence: $1 = 10 - 3 \cdot 3 = 10 - 3 \cdot (63 - 6 \cdot 10) = 3 \cdot 63 + 19 \cdot 10$; so: $19 \equiv 10 \pmod{63}$. Hence the answer is x = 19.

- **5.** (Counting.) Consider all possible strings of length 8 made of a's, b's and c's, for instance abbcbacb.
 - 1. How many of them are there?
 - 2. How many of them have 5 a's, 2 b's and 1 c?
 - 3. How many of them have exactly 3 a's?

You do not need to compute the final answer completely.

Solution:

- 1. Three choices for each of 8 letters: $3^8 = 6561$.
- 2. Permutations with repeated elements: $P(8;5,2,1) = \frac{8!}{5!2!1!} = 168$
- 3. There are 2^5 strings of a's and b's of length 5, and we permute them with 3 a's: $P(8;3,5) \cdot 2^5 = \boxed{\frac{8!}{3!5!} \cdot 2^5 = 1792}$.

6. (Recurrences.) Solve the following recurrence:

$$x_n = \frac{x_{n-1} + x_{n-2}}{2}$$

with the initial conditions: $x_0 = 0$, $x_1 = 1$.

Solution:

The characteristic equation is:

$$2x^2 - x - 1 = 0,$$

which has the roots $x_1 = 1$, $x_2 = -1/2$. So the general solution is

$$x_n = A \cdot 1^n + B(-1/2)^n$$
.

Now we determine A and B from the initial conditions:

$$\begin{cases} A + B = 0 & (n = 0) \\ A - \frac{1}{2}B = 1 & (n = 1) \end{cases}$$

The solution is A = 2/3, B = -2/3, hence:

$$x_n = \frac{2}{3} - \frac{2}{3} \left(-\frac{1}{2} \right)^n.$$