BERT

V BERT: Complete Revision Notes

• 1. What is BERT?

- BERT = Bidirectional Encoder Representations from Transformers
- Developed by Google (2018).
- Based on the **Transformer Encoder** (only the encoder side is used).
- Allows **contextual understanding of words in both directions** (left-to-right & right-to-left simultaneously).

• 2. Why BERT?

- Traditional NLP models (like Word2Vec, GloVe) are **context-free**.
 - Example: "bank" in "river bank" vs "money bank" same embedding.
- BERT provides contextual embeddings: "bank" has different vectors depending on context.

◆ 3. Architecture of BERT

- Based on the **Transformer Encoder stack**.
- Common versions:
 - bert-base-uncased: 12 layers (transformer blocks), 768 hidden units, 12 attention heads, 110M parameters.
 - bert-large-uncased: 24 layers, 1024 hidden units, 16 heads, 340M parameters.
- Input Embedding = Token Embedding + Segment Embedding + Positional Embedding

4. BERT Input Format

BERT expects a specific input format:

[CLS] Sentence A [SEP] Sentence B [SEP]

- [CLS]: Special classification token used for tasks like classification.
- [SEP]: Separator token between two sentences.

5. BERT Tokenization (WordPiece)

- Words are broken into subword units.
- Example:
 - o "playing" → "play", "##ing"
- Helps handle unknown and rare words.

6. BERT Pretraining Tasks

烤 a. Masked Language Modeling (MLM)

- Randomly masks 15% of input tokens.
- The model predicts these masked tokens.

• Unlike traditional LMs, it uses bidirectional context.

★ b. Next Sentence Prediction (NSP)

- Given two sentences, predict if Sentence B follows Sentence A in original text.
- Input:
 - Sentence A → "The man went to the store."
 - Sentence B → "He bought a gallon of milk." → Label: IsNext
 - Negative example → random sentence → Label: NotNext

◆ 7. Fine-Tuning BERT

- BERT can be fine-tuned for downstream tasks with minimal changes:
 - **Text Classification** (add classifier head to [CLS] token)
 - Named Entity Recognition (NER) (token-level classification)
 - Question Answering (start & end token prediction)
 - Text Similarity / Semantic Search
 - Summarization / Paraphrasing (with encoder-decoder variants)

♦ 8. Applications of BERT

- Sentiment Analysis
- Intent Classification
- Question Answering (like SQuAD)
- Semantic Textual Similarity
- Sentence Embedding Generation
- Named Entity Recognition (NER)
- Zero-shot Learning (via models like BART or T5)

9. Popular BERT Variants

Variant	Purpose		
DistilBERT	Smaller, faster version of BERT (student model)		
RoBERTa	Robustly optimized BERT, no NSP, trained longer		
ALBERT	A Lite BERT – parameter reduction for speed		
TinyBERT	Very small, efficient model for mobile devices		
BioBERT, SciBERT	Domain-specific (biomedical, scientific)		
mBERT	Multilingual BERT (100+ languages)		

10. Limitations of BERT

• No decoder, hence not good for generative tasks (e.g., text

generation, summarization).

- Heavy computation and memory usage.
- Trained on relatively **short input length** (up to 512 tokens).

♦ 11. Key Differences with GPT & T5

Model	Direction	Architectur e	Pretraining Task	Use Case
BERT	Bidirectional	Encoder- only	MLM + NSP	Classificatio n, QA
GPT	Unidirection al (Left-to- right)	Decoder- only	Causal LM	Text generation
Т5	Encoder- Decoder	Seq2Seq	Text-to-Text	Translation, Summarizati on