流水线处理器 设计工程化方法

提纲

- 1. 集中式译码与分布式译码
- 2. 基础指令集与流水线设计规划
- 3. 无转发数据通路构造方法
- 4. 功能部件控制信号构造方法
- 5. 数据冒险的一般性分析方法
- 6. 暂停机制生成方法
- 7. 转发机制生成方法
- 8. 控制冒险处理机制

1、集中式控制器与分布式控制器

□ 集中式控制器

- ◆ 控制器只在ID阶段
- 控制器产生全部的译码信号
- 流水所有的译码信号

1、集中式控制器与分布式控制器

- □ 分布式式控制器
 - 控制器分布在多个流水线阶段
 - 每级控制器只产生该级功能部件相关的译码信号
 - ◆ 流水指令

1、集中式控制器与分布式控制器

□ 资源使用率:集中式控制器

▶ 结构简洁性: 分布式控制器

□ 项目维护性:分布式控制器

□ 代码可读性:分布式控制器

提纲

- 1. 集中式译码与分布式译码
- 2. 基础指令集与流水线设计规划
- 3. 无转发数据通路构造方法
- 4. 功能部件控制信号构造方法
- 5. 数据冒险的一般性分析方法
- 6. 暂停机制生成方法
- 7. 转发机制生成方法
- 8. 控制冒险处理机制

2、基础指令集与标准流水线

- 指令集
 - ◆ lw, sw, addu, subu, ori, lui, beq, j, jal, jalr
- □ 典型指令;可以支持大多数程序需求
- □ jal, jalr: 涉及2个写入操作, PC写入, RF写入
 - Jal: PC←PC[31..28] || JumpAddr<<2; GPR[31]← PC + 4
 - Jalr: PC ← GPR[rs]; GPR[rd] ← PC + 4 (Jarl与 ja 配套使用)

Ja	l编码
	▗ヺゖゖゔ だ 开リ
JS	兴 坚

Op	JumpAddr
(31-26)	(25-0)
000011	26位目的地址

Jalr编码 R类型

Op	Rs	Rt	Rd	Shamt	Func
(31-26)	(25-21)	(20-16)	(15-11)	(10-6)	(5-0)
00000	Rs	00000	Rd	00000	001001

2、基础指令集与标准流水线

- 流水线: 以性能为目标的标准流水线
 - □ 数据冒险:转发、暂停
 - □ 控制冒险: 分支比较前移、转发、暂停

三控制器架构

- □ 功能部件控制器: 就是书中的控制器
 - ◆ 译码指令,控制各个功能部件
 - ▲ 属于功能性设计范畴:即与指令的功能相关,与性能无关
 - 无论单周期还是流水线,设计思路相同
- □ 暂停控制器
 - ◆ 将IF/ID指令与前序指令(位于后序流水段)分析,决定是否暂停
 - ▲ 属于性能设计范畴
- □ 转发控制器
 - ◆ 分析各级指令的相关性,决定如何转发
 - ◆ 属于性能设计范畴
- □ 三控制器架构特点
 - ◆ 结构清晰,易于理解
 - ◆ 暂停控制器、转发控制器:独立,相互不干扰

流水线功能部件

- 延用单周期数据通路功能部件
 - □ D级分支比较器CCMP
 - □ D级NPC用于计算beq/j/jal/jalr下条指令地址

阶段	部件	输入	输出	描述
ππ/±	PC	D	Q	程序计数器
取值 (F级)	ADD4	PC, +4	PC4	完成PC+4
(1 3)	IM	Α	D	指令存储器
\V +3 +\+	RF	A1, A2	RD1, RD2	寄存器对读操作数
译码/读 操作数	EXT	I16	IMM32	16位立即数扩展32位
(D级)	NPC	PC, 126	NextPC	为B类/J类计算下条地址
	CMP	D1, D2	Result	比较2个数
计算 (E级)	ALU	А, В	ALU	算数/逻辑运算
访存 (M级)	DM	A, WD	RD	数据存储器
回写 (W级)	RF	A3, WD		寄存器堆写入

流水线寄存器

- □ 需要设置4级流水线寄存器
 - ◆ 5级流水线的最后一级寄存器为RF
- □ 标记X: 代表对应流水级需要设置相应寄存器
 - ◆ IR: 4个流水级均需要
 - ◆ AO: 仅M级和W级需要

名称	功能	D级 IF/ID	E级 ID/EX	M级 EX/MEM	W级 MEM/WB
IR	传递指令	X	X	X	X
PC4	下一条指令地址	X	X	X	X
RS	RF的RS值(RD1输出)		X		
RT	RF的RT值(RD2输出)		X	X	
EXT	扩展后的32位立即数		X		
AO	ALU计算结果			X	X
DR	DM读出结果				X

提纲

- 1. 集中式译码与分布式译码
- 2. 基础指令集与流水线设计规划
- 3. 无转发数据通路构造方法
- 4. 功能部件控制信号构造方法
- 5. 数据冒险的一般性分析方法
- 6. 暂停机制生成方法
- 7. 转发机制生成方法
- 8. 控制冒险处理机制

流水线数据通路构造表格

- 每级由寄存器和功能部件组成
 - □ 按流水线5个阶段划分
- X@Y:代表Y阶段的X寄存器
 - □ IR@W: W级的IR
- PC操作:出现在3个阶段
 - □ F级: 取指令
 - □ D级: 更新, 保存PC+4
 - □ E级: 更新, 保存B/J/JAL/JALR的值(NPC)
- RF: 出现在2个阶段
 - □ D阶段:准备操作数
 - □ W阶段:回写结果

部件 PC F级功能部件 ADD4 IM D级更新PC IR@D D级流水线寄存器 PC4@D **A1** RF **EXT** D级功能部件 D1 **CMP** D2 PC4 **NPC** 126 E级更新PC IR@E PC4@E E级流水线寄存器 RS@E RT@E EXT@E ALU E级功能部件 IR@M PC4@M M级流水线寄存器 AO@M RT@M M级功能部件 DM WD IR@W PC4@W W级流水线寄存器 AO@W DR@W **A3** W级功能部件 RF

S1: LW的数据通路

□ 根据RTL描述建立各级流水线寄存器、功能部件间连接关系

◆ LW:5级

- □ IR必填
 - ◆ 采用分布式译码
- □ 指令不涉及的不需要填:如PC4
- □ X[y]: 代表X部件的y域
- □ IR@D[i16]: D级IR的16位立即数

6	5	5	5	5	6
Op	Rs	Rt	Rd	Shamt	Func

Op	Rs	Rt	16 bit Address or Immediate
----	----	----	-----------------------------

Op	26 bit Address (for Jump Instruction)
----	--

部件	输入	LW	SW	ADDU	SUBU	ORI	BEQ	,_	JAL	JALR
PC			C1.	个立	収まらる	本门之	打握通	記		
ADD4		PC	PC	TC H	环指 :	(H O S ,	人加州	段	PC	PC
IM		PC	PC	PC	PC	PC	PC	PC	PC	PC
PC		ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4
IR@D		IM	IM	IM	IM	IM	IM	IM	IM	IM
PC4@D							ADD4	ADD4	ADD4	ADD4
DE	A1	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]		IR@D[rs]
RF	A2			IR@D[rt]	IR@D[rt]	-	IR@D[rt]	IR@D[rt]		
EXT		IR@D[i16]	IR@D[i16]		-	IR@D[i16]				
CMD	D1					_	RF.RD1			
CMP	D2						RF.RD2			
NDC	PC4						PC4@D	PC4@D	PC4@D	
NPC	I26						IR@D[i16]	IR@D[i26]	IR@D[i26]	
PC							NPC	NPC	NPC	RF.RD1
IR@E		IR@D	IR@D	IR@D	IR@D	IR@D			IR@D	IR@D
PC4@E									PC4@D	PC4@D
RS@E		RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1				
RT@E			RF.RD2	RF.RD2	RF.RD2					
EXT@E		EXT	EXT			EXT				
A 1 11	A	RS@E	RS@E	RS@E	RS@E	RS@E				
ALU	В	EXT@E	EXT@E	RT@E	RT@E	EXT@E				
IR@M		IR@E	IR@E	IR@E	IR@E	IR@E			IR@E	IR@E
PC4@M									PC4@E	PC4@E
AO@M		ALU	ALU	ALU	ALU	ALU				
RT@M			RT@E							
DM	A	AO@M	AO@M							
DM	WD		RT@M							
IR@W		IR@M		IR@M	IR@M	IR@M			IR@M	IR@M
PC4@W									PC4@M	PC4@M
AO@W				AO@M	AO@M	AO@M				_
DR@W		DM								
DE	A3	IR@W[rt]		IR@W[rd]	IR@W[rd]	IR@W[rt]			0x1F	IR@W[rd]
RF	WD	DR@W		AO@W	AO@W	AO@W			PC4@W	PC4@W

院

S2: 综合全部指令的数据通路

- □ 水平方向归并
 - 去除冗余输入来源
- □ 在每个输入来源个数大于1的输入端前增加1个MUX
 - ◆ 注意:同时需要相应的控制信号
- □ 特例: NPC的i16和i26归并为i26

6	5	5	5	5	6
Op	Rs	Rt	Rd	Shamt	Func
Op	Rs	Rt	16 bit .	Address or In	nmediate
	I		•		
Op	26 bit Address (for Jump Instruction)				
	•				

7								
Z I	部件	输入	į	输入来源		MUX	控制	
	PC							
	ADD4		PC					
	IM		PC					
	PC		ADD4	NPC	RF.RD1	M1	PCSel	
	IR@D		IM					
	PC4@D		ADD4					
	RF	A1	IR@D[rs]					
	M	A2	IR@D[rt]					
	EXT		IR@D[i16]					
	СМР	D1	RF.RD1					
	CIVIT	D2	RF.RD2					
	NPC	PC4	PC4@D					
	NFC	I26	IR@D[i26]					
	IR@E		IR@D					
	PC4@E		PC4@D					
	RS@E		RF.RD1					
	RT@E		RF.RD2					
	EXT@E		EXT					
	ALU	A	RS@E					
	ALU	В	EXT@E	RT@E		M2	BSel	
	IR@M		IR@E					
	PC4@M		PC4@E					
_	AO@M		ALU					
	RT@M		RT@E					
	DM	A	AO@M					
_	DM	WD	RT@M					
	IR@W		IR@M					
	PC4@W		PC4@M					
	AO@W		AO@M					
	DR@W		DM					
	RF	A3	IR@W[rt]	IR@W[rd]	0x1F	М3	WRSe ¹	
	Kr	WD	DR@W	AO@W	PC4@W	M4	WDSe	

提纲

- 1. 集中式译码与分布式译码
- 2. 基础指令集与流水线设计规划
- 3. 无转发数据通路构造方法
- 4. 功能部件控制信号构造方法
- 5. 数据冒险的一般性分析方法
- 6. 暂停机制生成方法
- 7. 转发机制生成方法
- 8. 控制冒险处理机制

功能部件控制信号构造方法

- □ 控制信号产生基本原理:与单周期相同
- □ 分歧点:集中式译码?分布式译码?
 - ◆ 集中式:
 - 与单周期控制器设计完全相同
 - 流水控制信号
 - ◆ 分布式:多个小控制器
 - 每个小控制器的设计思路与单周期相同
 - 流水指令

提纲

- 1. 集中式译码与分布式译码
- 2. 基础指令集与流水线设计规划
- 3. 无转发数据通路构造方法
- 4. 功能部件控制信号构造方法
- 5. 数据冒险的一般性分析方法
- 6. 暂停机制生成方法
- 7. 转发机制生成方法
- 8. 控制冒险处理机制

数据冒险:需求与供给时间能否匹配?

□ 需求者:需要引用reg值做源操作数的部件

◆ D级CMP: beq指令

◆ E级ALU:运算类指令

◆ M级DM: store类指令

□ 供给者:保存有reg新结果的流水线寄存器

◆ 运算类指令ALU的结果: EX/MEM、MEM/WB

◆ load类指令取得的数据: MEM/WB

□ 数据冒险可以转化为:需求与供给的时间匹配

◆ 无法匹配: 暂停

• 可以匹配:转发

需求者的最晚时间模型

- □ 时间零点:需求指令进入IF/ID寄存器(进入流水线D级)
- T_{use}(time-to-use): 从时间零点起,需求指令其后的某个功能部件 再经过多少cycle就必须要使用相应的寄存器值
 - ◆ 特点: 同一条指令可以有2个不同的Tuse
 - ◆ R型计算类指令的Tuse为1:
 - rs/rt值:最晚被ID/EX寄存器驱动(ALU运算需要)
 - ◆ store型计算类指令的T_{use}分别为1和2
 - rs值:最晚被ID/EX寄存器驱动(ALU计算DM地址需要)
 - rt值:最晚被EX/MEM寄存器驱动(DM写入数据需要)
 - ◆ Q: Beq指令的T_{use?}

供给者的最早时间模型

- □ *T_{new}*(time-to-new) : (<mark>从时间零点计算</mark>)供给者需要多少cycle能 够产生需求者需要的寄存器值。
 - ◆ 供给者可能处于ID/EX、EX/MEM、MEM/WB
 - ◆ Tnew与指令类型和指令当前所处的流水级相关
 - ◆ 例如,R型计算类指令的T_{new}。
 - 1: 指令位于ID/EX, ALU正在计算(1个周期后, 写入EX/MEM寄存器)。
 - 0: 指令位于EX/MEM和MEM/WB(直接由对应流水线寄存器提供)
 - ◆ 例如, load型指令的Tnew:
 - 2:指令位于ID/EX,尚未读取存储器(2个周期后,写入MEM/WB寄存器)。
 - 1: 指令位于EX/MEM,正在读取存储器(1个周期后,写入MEM/WB寄存器)
 - 0: 指令位于MEM/WB,包含了结果(MEM/WB寄存器直接提供)

供给者的最早时间模型

数据冒险的策略分析

- □ T_{new} = 0: 表明结果已经产生
 - ◆ 指令位于MEM/WB: 那么虽然结果尚未最终写入RF, 但RF设计使得W结果可以被正确的读出,因此无需任何操作
 - ◆ 指令位于EX/MEM: 通过转发解决数据相关
- T_{new} ≠ 0: 表明结果尚未产生
 - ◆ T_{new} > T_{use}: 不可能及时供给数据,只能暂停流水线
 - T_{new}≤T_{use}: 由于结果产生时间早于读取时间,因此当结果产生后可以通过 转发解决数据冒险
- □ 暂停: T_{new} > T_{use}
- 转发: T_{new} = 0&指令不在MEM/WB 或 T_{new} ≤ T_{use}
 - ◆ 由于在ID级、EX级、MEM级均涉及操作数读取,因此分析量大
- □ 思路: 先解决暂停, 再解决转发
 - ◆ 去除暂停部分后,有助于减少转发的分析量

提纲

- 1. 集中式译码与分布式译码
- 2. 形式建模综合方法概述
- 3. 基础指令集与流水线设计规划
- 4. 无转发数据通路构造方法
- 5. 功能部件控制信号构造方法
- 6. 数据冒险的一般性分析方法
- 7. 暂停机制生成方法
- 8. 转发机制生成方法
- 9. 控制冒险处理机制

构造Tuse表和Tnew表

- □ 示例指令集
 - ◆ add, sub: cal_r类,即R型计算类指令
 - ◆ andi, ori: cal_i类,即I型计算类指令
 - ◆ beq: b_type类
 - ◆ lw: ld类
 - ◆ sw: st类
- □ 会产生结果的指令: cal_r类, cal_i类, load类
- □ 用指令分类可以大幅度简化分析工作量

```
cal_r = add + sub + or + ...
cal_i = addi + ori + andi + ...
ld = lw + lb + lh + ...
st = sw + sb + ...
```

构造Tuse表和Tnew表

□ Tuse表:以指令位于IF/ID来分析

◆ 流水线在指令被存储在IF/ID后就决定是否需要暂停

□ Tnew表:只需分析处于ID/EX和EX/MEM这2种情况

◆ IF/ID: 无任何结果

◆ MEM/WB: 如果结果到达该阶段,则通过RF设计可以消除数据冒险

IF/	IF/ID当前指令					
指令 类型	源寄 存器	Tuse				
beq	rs/rt	0				
cal_r	rs/rt	1				
cal_i	rs	1				
load	rs	1				
store	rs	1				
store	rt	2				

ID/EX	EX/MEM	MEM/WB			
(Tnew)	(Tnew)	(Tnew)			
cal_r cal_i load	<u> </u>	cal_r cal_i load			

构造阻塞矩阵

- □ 凡是T_{new} > T_{use} 的指令序列,都需要阻塞
- □ 示例
 - ◆ 序列1 cal_r beq: 由于cal_r需要1个cycle后才能得到结果,而beq现在就需要读取寄存器,因此只能暂停
 - ◆ 序列2 load store: store要读取的rs将在1个cycle后必须使用,而位于ID/EX的load必须经过2个cycle后才能读出DM的数据,因此只能暂停

IF/IC	当前排	旨令		EX/MEM (T _{new})		
指令类型	源寄 存器	T _{use}	cal_r 1/rd	cal_i 1/rt	load 2/rt	load 1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	rs/rt	1			暂停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

暂停控制信号

□ 建立分类指令的暂停条件

29

□ 建立最终的暂停条件

$$stall = stall_b + ...$$

- □ 建立控制信号
- □ PC.en = !stall
- □ IR D

 IF/IC	当前排	旨令		ID/EX		EX/MEM
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(T_{new})		(T _{new})
指令 类型	源寄 存器	T_{use}	cal_r 1/rd	cal_i 1/rt	load 2/rt	load 1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	<u>rs/rt</u>	1			暂停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

暂停控制信号

□ 执行动作:

- ◆ ①冻结IF/ID: sub继续被保存
- ◆ ②清除ID/EX: 指令全为0,等价于插入NOP

◆ ③禁止PC: 防止PC继续计数, PC应保持为PC+4

```
IR_D.en = !stall
IR_E.clr = stall
PC.en = !stall
```

提纲

- 1. 集中式译码与分布式译码
- 2. 基础指令集与流水线设计规划
- 3. 无转发数据通路构造方法
- 4. 功能部件控制信号构造方法
- 5. 数据冒险的一般性分析方法
- 6. 暂停机制生成方法
- 7. 转发机制生成方法
- 8. 控制冒险处理机制

转发机制生成方法

□ S1: 根据Tuse和Tnew构造每个转发MUX

□ S2:构造每个转发MUX的控制信号表达式

- □ 按照指令分类,梳理指令在各级流水线的rs或rt读需求
 - ◆ D级CMP, E级ALU, M级的DM
- □ 每个读需求对应1个转发MUX
- □ 转发MUX的输入端0: 固定为本级流水线寄存器
 - ◆ 对于ID级来说,输入0则来自是RF的输出
- □ 【建议】命名应遵循一定的规则

流水级	源寄 存器	涉及指令			
D级	rs	beq	MFRSD	ForwardRSD	RF.RD1
(CMP)	rt	beq	MFRTD	ForwardRTD	RF.RD2
E级	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E
(ALU)	rt	cal_r, st	MFRTE	ForwardRTE	RT@E
M级(DM)	rt	st	MFRTM	ForwardRTM	RT@M
			转发MUX	控制信号	输入0

- □ 用Tnew中剔除非0后的表项,来分析转发MUX的后续输入
 - ◆ 注意:并非有N个O项就有N个后续输入

ID/EX (Tnew)		•		EX/MEM (Tnew)			MEM/WB (Tnew)									
cal_r	cal_	_	ad	cal_r	_	load										
1/rd	1/r	τ 2,	/rt	0/rd	0/rt	1/rt	0/ro	a U/I	rt	0/rt		· ·	ЛЕМ ew)		IEM/W (Tnew)	
流水纸		源寄 存器		涉及指	令							cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt
D级		rs		beq		MFRS	SD	Forwa	ardR	SD	RF.RD1					
(CMF	P)	rt		beq		MFR	ΓD	Forwa	ardR	TD	RF.RD2					
E级		rs	cal	_r, cal_	i, ld, st	MFR:	SE	Forwa	ardR	SE	RS@E					
(ALU	1)	rt		cal_r,	st	MFR	TΕ	Forwa	ardR	TE	RT@E					
M级(DI	VI)	rt		st		MFRT	M	Forwa	rdR	ТМ	RT@M					
						转发№	1UX	控制	J信·	륫	输入0					

- 构造每个转发MUX的后续输入
- □ 示例: MFRSD
 - ◆ EX/MEM: cal_r和cal_i指令都是计算类,结果必然由ALU产生,因此均填入 AO。即代表MFRSD的输入来自EX/MEM中的AO寄存器
 - AO: 代表ALUOut

◆ MEM/WB:由于这是最后一级,即所有指令的结果都通过M4(MUX)回写,

因此均填入M4。

							(Tnew)		(Tnew)	
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt
D级	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
(CMP)	rt	beq	MFRTD	ForwardRTD	RF.RD2					
E级	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E					
(ALU)	rt	cal_r, st	MFRTE	ForwardRTE	RT@E					
M级(DM)	rt	st	MFRTM	ForwardRTM	RT@M					
			转发MUX	控制信号	输入0					

EX/MEM

MEM/WB

- □ 根据前例,可以构造出全部的转发MUX
 - ◆ 当store类指令位于EX/MEM时,不可能再有同级的指令了
 - ◆ 因此有2项空白
- □ 构造更大指令集时,需求项及供给项可能均需要调整
 - ◆ 但由于MIPS的指令功能到格式映射的相对统一,因此调整不会剧烈

◆ 再次从一个侧面反映出MIPS指令集设计的水平! EX/MEM

						(Tn	ew)	((Tnew)	
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
D级	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
(CMP)	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
E级	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E	AO	AO	M4	M4	M4
(ALU)	rt	cal_r, st	MFRTE	ForwardRTE	RT@E	AO	AO	M4	M4	M4
M级(DM)	rt	st	MFRTM	ForwardRTM	RT@M			M4	M4	M4
•	•		转发MUX	控制信号	输入0					

□ 对于MFRSD来说,其最终有效输入为3个

- 输入0~RF.RD1; 输入1~AO; 输入2~M4
- 实现转发MUX时,需要剔除每级中的重复项

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

□ 在表格中保留重复项的目的在于有利于建立后续的控制信号方程

ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
ForwardRSE	RS@E	AO	AO	M4	M4	M4
ForwardRTE	RT@E	AO	AO	M4	M4	M4
ForwardRTM	RT@M			M4	M4	M4
控制信号	输入0			-		_
	ForwardRTD ForwardRSE ForwardRTE ForwardRTM	ForwardRTD RF.RD2 ForwardRSE RS@E ForwardRTE RT@E ForwardRTM RT@M	ForwardRTD RF.RD2 AO ForwardRSE RS@E AO ForwardRTE RT@E AO ForwardRTM RT@M	ForwardRTD RF.RD2 AO AO ForwardRSE RS@E AO AO ForwardRTE RT@E AO AO ForwardRTM RT@M	ForwardRTD RF.RD2 AO AO M4 ForwardRSE RS@E AO AO M4 ForwardRTE RT@E AO AO M4 ForwardRTM RT@M M4	ForwardRTD RF.RD2 AO AO M4 M4 ForwardRSE RS@E AO AO M4 M4 ForwardRTE RT@E AO AO M4 M4 ForwardRTM RT@M M4 M4

MFRSD	ForwardRSD	RF.RD1	AO@M	M4
MFRTD	ForwardRTD	RF.RD2	AO@M	M4
MFRSE	ForwardRSE	RS@E	AO@M	M4
MFRTE	ForwardRTE	RT@E	AO@M	M4
MFRTM	ForwardRTM	RT@M	M4	
转发MUX	控制信号	输入0	输入1	输入2

数据通路增加转发MUX

- 遍历数据通路的功能部件,找 到所有出现rs和rt的需求点
- □ 注意ALU.B和RT@M,这两个rt需求是相同的!
 - ◆ 这意味着它们应该来自同一个转发 MUX

		-				
部件	输入	Ž	輸入来源		MUX	控制
PC						
ADD4		PC				
IM		PC				
PC		ADD4	NPC	RF.RD1	M1	PCSel
IR@D		IM				
PC4@D		ADD4				
RF	A1	IR@D[rs]				
Kľ	A2	IR@D[rt]				
EXT		IR@D[i16]				
СМР	D1	RF.RD1				
CIVIT	D2	RF.RD2				
NPC	PC4	PC4@D				
IVI C	I26	IR@D[i26]				
IR@E		IR@D				
PC4@E		PC4@D				
RS@E		RF.RD1				
RT@E		RF.RD2				
EXT@E		EXT				
ALU	A	RS@E				
ALU	В	EXT@E	RT@E		M2	BSel
IR@M		IR@E				
PC4@M		PC4@E				
AO@M		ALU				
RT@M		RT@E				
DM	A	AO@M				
DIVI	WD	RT@M				
IR@W		IR@M				
PC4@W		PC4@M				
AO@W		AO@M				
DR@W		DM				
RF	A3	IR@W[rt]	IR@W[rd]	0x1F	М3	WRSel
KF	WD	DR@W	AO@W	PC4@W	M4	WDSel

数据通路增加转发MUX

- 遍历数据通路的功能部件,找 到所有出现rs和rt的需求点
- 将对应的输入替换为转发MUX 的输出
 - ◆ 注意ALU.B和RT@M,这两个rt需求

-	- I			L_L 11\	NPC	ru4	$r_{C4}w_D$		
툿	是相同的,	凶此 应该	用同一个写	抟友	INPC	I26	IR@D[i26]		
I.	/IUX				IR@E		IR@D		
IV.	πολ				PC4@E		PC4@D		
. >-	┾ ╧ ╶╌┸	ъс + Т	+->++ ++ ++		RS@E		RF.RD1		
<u>・ ン</u>	主意:对于	TPC,田士	VIUX	RT@E		RF.RD2			
Á	勺示例指令	生中没有	EXT@E		EXT				
			1.5	ALU	A	MFRSE			
2	因此缺乏相	旭的转友	X <u>T</u> / Y		В	EXT@E	MFRTE		
					IR@M		IR@E		
				Ī	PC4@M		PC4@E		
MFRSD	RF.RD1	AO@M	M4		AO@M		ALU		
					RT@M		MFRTE		
MFRTD	RF.RD2	AO@M	M4		DM	A	AO@M		
MFRSE	RS@E	AO@M	M4		DIVI	WD	MFRTM		
WILKSE	NowL	70@101	1714		IR@W		IR@M		
MFRTE	RT@E	AO@M	M4		PC4@W		PC4@M		
NAEDTNA	DT @ N 4	D 4 4		AO@W		AO@M			
MFRTM	RT@M	M4			DR@W		DM		
转发MUX	输入0	输入1	输入2		RF	A3	IR@W[rt]	IR@W[rd]	0x1F
14 X 1010 X	ייחד (ייחד	בי / ניחד	אינמד 🚄		KI	WD	DR@W	AO@W	PC4@V

	PC						
	ADD4		PC				
	IM		PC				
	PC		ADD4	NPC	RF.RD1	M1	PCSe:
	IR@D		IM				
	PC4@D		ADD4				
	RF	A1	IR@D[rs]				
		A2	IR@D[rt]				
	EXT		IR@D[i16]				
	СМР	D1	MFRSD				
	CMP	D2	MFRTD				
	NPC	PC4	PC4@D				
	NPC	I26	IR@D[i26]				
	IR@E		IR@D				
	PC4@E		PC4@D				
	RS@E		RF.RD1				
	RT@E		RF.RD2				
	EXT@E		EXT				
	ALU	A	MFRSE				
		В	EXT@E	MFRTE		M2	BSel
	IR@M		IR@E				
	PC4@M		PC4@E				
	AO@M		ALU				
	RT@M		MFRTE				
	DM	A	AO@M				
	DIVI	WD	MFRTM				
	IR@W		IR@M				
	PC4@W		PC4@M				
	AO@W		AO@M				
	DR@W		DM				
	RF	A3	IR@W[rt]	IR@W[rd]	0x1F	М3	WRSe
	Νr	WD	DR@W	AO@W	PC4@W	M4	WDSe

输入来源

MUX

输入

转发机制生成方法

- □ S1: 根据Tuse和Tnew构造每个转发MUX
- □ S2: 构造每个转发MUX的控制信号表达式

S2: 构造每个转发MUX的控制信号表达式

- □ 控制信号表达式构造的基本思路
 - 精确控制每个转发选择
 - ◆ 所有非转发的条件都用于选择输入0

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

					EX/MEM		MEM/WB		/B	
						(Tnew)		(Tnew)		
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	АО	AO	M4	M4	M4
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	ID/EX.RS	AO	AO	M4	M4	M4
	rt	cal_r, st	MFRTE	ForwardRTE	ID/EX.RT	AO	AO	M4	M4	M4
EX/MEM	rt	st	MFRTM	ForwardRTM	EX/MEM.RT			M4	M4	M4
			转发MUX	控制信号	输入0					

示例: always语句建模MF_RS_D的控制信号表达式

- [」] <mark>宏定义</mark>提高可读性和一致性
 - `define *op* 31:26
 - `define *rs* 25:21

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

□ 顺序代表优先级

rt

beq

MEM/WB EX/MEM 多条前序指令写同一个寄存器 (Tnew) (Tnew) ld cal r cal i cal r cal i 源寄 流水级 涉及指令 存器 0/rd | 0/rt | 0/rd | 0/rt | 0/rt IF/ID **ForwardRSD MFRSD** RF.RD1 AO AO beq **M4 M4 M4** rs

ForwardRTD

MFRTD

转发MUX|

控制信号 输入0

RF.RD2

AO

AO

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

M4

M4

M4

提纲

- 1. 集中式译码与分布式译码
- 2. 形式建模综合方法概述
- 3. 基础指令集与流水线设计规划
- 4. 无转发数据通路构造方法
- 5. 功能部件控制信号构造方法
- 6. 数据冒险的一般性分析方法
- 7. 暂停机制生成方法
- 8. 转发机制生成方法
- 9. 控制冒险处理机制

控制冒险处理机制

□ 分歧点1: 是否实现延迟槽

◆ 如果实现,需要注意jal及jalr指令应保存PC+8(或者更多,取决于是否前移)

□ 分歧点2: 执行是否前移至ID阶段

□ 课程要求: 实现延迟槽, 并且前移至ID阶段

延迟槽前移	是	否					
是	硬件无需处理 编译调度指令	B类:有条件清除IF/ID J类:无条件清除IF/ID					
否		B类: 有条件清除IF/ID、ID/EX J类: 无条件清除IF/ID、ID/EX、EX/MEM					

Q: JAL、JALR的回写寄存器怎么处理呢?

A: 视同普通的回写

总结

- □ 流水线设计的复杂性在于对冲突的覆盖性分析
 - ▼ 覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
 - ◆ 分析避免了频繁的、无谓的试错
 - ◆ 提高开发效率,确保开发正确性
- □ 教科书中存在的不足
 - 没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
 - ◆ 没有覆盖性分析,必然遗漏部分数据相关
 - 如lw~sw指令,必须暂停。但事实上可以通过增加转发MUX实现不停顿
 - 如cal~sw指令,未明确指出处理机制
 - ◆ RF内部的数据转发语焉不详
 - 内部转发: 当读和写同一个寄存器时, 读出的数据应该为要写入的数据