UFRJ – IM - DCC

Sistemas Operacionais I

Unidade I Introdução

ORGANIZAÇÃO DA UNIDADE

- Introdução
 - Conceituação de SO
 - Funções Básicas
 - Breve Histórico
 - Tipos de SO
- Fundamentos de Hardware e Software
- Estruturas de Sistemas Operacionais

Introdução Conceitos

O que é um Sistema Operacional?

- É um programa (software)
- Atua como intermediário entre o Usuário e o Hardware
- Fornece um ambiente onde o usuário possa executar programas
- Garante uma utilização eficiente do Hardware
- □ Protege o Sistema de Computação e os usuários

OK, agora você fará o que eu mando fazer!!

Introdução

Componentes de um sistema de computação

Recursos de um SC

São recursos de hardware

- Tempo de Processador (CPU)
- Espaço em Memória
- Espaço para armazenamento de arquivos
- Dispositivos de Entrada e de Saída
- Dispositivos de Comunicação de Dados

São recursos de software

- Programas Utilitários
- Bibliotecas de Funções DLLs
- Rotinas de Serviço
- Programas Aplicativos
- Programas de Interface com Dispositivos Drivers

Compartilhamento de Recursos

O que significa?

 Compartilhar recursos significa que diferentes usuários ou programas usam os recursos de forma concorrente.

Por que ocorre?

 Ocorre porque num mesmo computador ou sistema computacional pode-se ter mais de um programa ou mais de um usuário operando ao mesmo tempo.

Como administrar seu uso?

 Os recursos são limitados e, assim, o uso dos mesmos pelos diferentes programas ou usuários precisa ser controlado e administrado de forma a evitar possíveis conflitos. Tal tarefa cabe ao Sistema Operacional.

Visão simplificada de um S.O.

Comandos e Menus

Interface com o Usuário

Gerenciamento dos Recursos

Interface com o Hardware

Dependente do Hardware

- Processador
- Memória
- Arquivos
- E / S
- Comunicação
- Proteção
- Segurança

Introdução Interface com o usuário

Provê facilidades para o usuário

- Acessar o Sistema segurança de acesso
- Criar e Gerir Diretórios / Arquivos e Programas
- Executar Programas
- Acessar Dispositivos de E / S
- Acessar conteúdo de Arquivos
- Detectar Erros de execução
- Contabilizar o Uso do sistema

Evolução - Motivação

- Em função da evolução do Hardware
 - novas tecnologias
 - novos processadores
 - novas abordagens de solução
- Novos serviços e funcionalidades
 - oferta gera demanda que gera problemas e novas necessidades
- Correção de Falhas (Bugs)

Histórico – Primeira Geração

- Período: 1945 a 1955
- Primeiros Computadores Mark I e ENIAC
- Hardware
 - Máquinas baseadas em circuitos valvulares
- Sistema Operacional
 - Inexistente
 - Execução de um programa por vez
 - Os programas acionavam diretamente o Hardware

Histórico – Segunda Geração

- Período:1956 a 1965
- Primeiro computador comercial UNIVAC I
- Hardware
 - Máquinas baseadas em transistores
- Sistema Operacional
 - Simples, conhecido como Monitor
 - Execução de um programa de usuário por vez
 - Proteção mínima garantida pelo sistema
 - Canal de E/S, Spooling, interrupção, bibliotecas, JCL

Histórico – Segunda Geração

Disco rígido de <u>5MB</u> de 1956....

Em Setembro de 1956 a IBM lançou o 305 RAMAC, o primeiro Computador com Hard Disk (HD).

O HD pesava perto de 1 Ton e tinha a capacidade de 5Mb...

Faz-nos apreciar melhor um PEN Drive de 2 GB, não?...

Estrutura de um Monitor

Exemplo de JCL

- Linguagem de programação especial
- Interface Usuário x Máquina
- Informa ao monitor o que carregar e em que ordem

Histórico – Terceira Geração

- Período: 1966 a 1980
- Mainframes Famílias IBM 360 e 370
- Hardware
 - Máquinas baseadas em circuitos integrados
- Sistema Operacional
 - Complexo e bastante longo
 - Execução de vários programas de usuário por vez
 - Time-Sharing
 - Proteção e segurança garantida pelo sistema
 - Memória Virtual, Configurações com várias CPUs

Sistema MULTICS

MULTiplexed Information and Computing Service

- Construção iniciada em 1965 / concluída em 1972
- Esforço cooperativo entre: General Electric, Bell Telephone Labs e Project MAC do MIT
- Projetado para:
 - acesso simultâneo a elevado número de usuários
 - elevado poder de computação e de armazenamento de dados
 - facilidade para diferentes usuários compartilharem dados
 - base para sistemas mais modernos, inclusive o UNIX

17

Histórico – Quarta Geração

- Período: 1981 ...
- Computadores Pessoais e Estações de Trabalho
- Hardware
 - Máquinas baseadas em circuitos integrados 5^a geração
 - Pipeline
 - Arquiteturas SIMD e MIMD
- Sistema Operacional complexo porém modular
- Operações fortemente paralelas
- Computadores em Rede
- Processamento Distribuído

Multitarefa x Monotarefa

- Sistema Monotarefa: Admite e gerencia apenas uma tarefa em execução por vez. Ex: DOS
- Sistema Multitarefa: Admite e gerencia vários tarefas em processamento concorrente. Ex: Windows 98, Windows 2000/NT/XP, Linux ...

- Ganhos e perdas?
- Multitarefa e multiprogramação são a mesma coisa?

Introdução Classificação Monousuário x Multiusuário

 Sistema Monousuário: Admite e gerencia apenas um usuário – não permite que mais de um usuário esteja "logado" simultaneamente

Ex: Windows 98, Windows NT (exceto versão com Terminal Server)

 Sistema Multiusuário: Admite e gerencia vários usuários – permite que mais de um usuário esteja "logado" no sistema simultaneamente.

Ex: Linux, Windows 2000, VMS

Monoprocessado x Multiprocessado

Sistemas Monoprocessados

- Somente reconhece uma única CPU
- Multitarefa ou monotarefa
- Ex: Windows 98

Sistemas Multiprocessados

- Reconhece mais de uma CPU
- execução simultânea
- Ex:Windows 2000/NT/XP, Linux

Batch x Time Sharing

Sistemas Batch

Os programas são processados em Lote, um de cada vez, não havendo interação com o usuário.

Sistemas Time Sharing

Os usuários compartilham o tempo de uso do computador que, em sequência, dedica uma fatia do tempo de processamento para cada usuário.

Aplicações Específicas

Sistemas de Tempo Real

Sistemas que possuem um forte vínculo com o tempo. O resultado correto deve ser dado no tempo previsto.

Sistemas Embarcado

Sistemas inseridos em produtos com funções específicas como forno de microondas, VCR, equipamentos bélicos etc.

Introdução Confiabilidade do Sistema Operacional é importante?

UFRJ – IM – DCC

Profa. Valeria M. Bastos