$k \approx 8$	(0.1)
k = 3.9	(0.2)
γ	(0.3)
α	(0.4)
α	(0.5)
α	(0.6)
α	(0.7)
α	(0.8)
γ	(0.9)
α	(0.10)
γ	(0.11)
α	(0.12)
α	(0.13)
α	(0.14)
n	(0.15)
k	(0.16)
k	(0.17)
k	(0.18)
k+1	(0.19)
C	(0.20)
\Leftrightarrow	(0.21)
\subset	(0.22)
\Rightarrow	(0.23)
k_d	(0.24)
$E_{ m A}$	(0.25)
$p_{ m partial}$	(0.26)
σ_z	(0.27)
au	(0.28)
$t_{ m relax}$	(0.29)

(0.30)

t = 59

t = 65	(0.31)
t = 75	(0.32)
t = 85	(0.33)
t = 95	(0.34)
t = 100	(0.35)
n	(0.36)
1	(0.37)
1	(0.38)
1	(0.39)
n	(0.40)
n	(0.41)
n	(0.42)
n	(0.43)
$n \log n$	(0.44)
n	(0.45)
n	(0.46)
n	(0.47)
n	(0.48)
1	(0.49)
n	(0.50)
$rac{r_c^3}{s^3}n^2$	(0.51)
n	(0.52)
1	(0.53)
1	(0.54)
1	(0.55)
r_s^3	(0.56)
r_s^3	(0.57)
c	(0.58)
n+c	(0.59)
$n \log c$	(0.60)

$\log c$	(0.61)
$\log c$	(0.62)
1	(0.63)
$r_s^3 \log c$	(0.64)
$r_s^3 \log c$	(0.65)
$\log c$	(0.66)
$n + c^{\frac{2}{3}}$	(0.67)
$n \log n$	(0.68)
$\log n$	(0.69)
$\log n$	(0.70)
$\log n$	(0.71)
$r_s^3 \log n$	(0.72)
$r_s^3 \log n$	(0.73)
$\log n$	(0.74)
n	(0.75)
$n \log n$	(0.76)
$k \log k$	(0.77)
$k \log k$	(0.78)
$k \log k$	(0.79)
$r_s^3 + n^{\frac{1}{3}}$	(0.80)
r_s^3	(0.81)
1	(0.82)
nk	(0.83)
n	(0.84)
1	(0.85)
1	(0.86)
1	(0.87)
n	(0.88)
n	(0.89)

(0.90)

n

n	(0.91)
n	(0.92)
k	(0.93)
b	(0.94)
k_r	(0.95)
$d \le r_c$	(0.96)
r_c	(0.97)
r_s	(0.98)
s	(0.99)
$\frac{\log c}{c}$	(0.100)
$d\log 2$	
atoms	(0.101)
size[3]	(0.102)
depth	(0.103)
atoms, spacesize, depth	(0.104)
$cellsize[0] \leftarrow spacesize[0] \cdot 2^{-depth}$	(0.105)
$cellsize[1] \leftarrow spacesize[1] \cdot 2^{-depth}$	(0.106)
$cellsize[2] \leftarrow spacesize[2] \cdot 2^{-depth}$	(0.107)
$root \leftarrow$	(0.108)
depth	(0.109)
atom	(0.110)
atoms	(0.111)
$cellindex[0] \leftarrow \lfloor atom.pos[0]/cellsize[0] \rfloor$	(0.112)
$cellindex[1] \leftarrow \lfloor atom.pos[1]/cellsize[1] \rfloor$	(0.113)
$cellindex[2] \leftarrow \lfloor atom.pos[2]/cellsize[2] \rfloor$	(0.114)
$cell \leftarrow$	(0.115)
root, cell index	(0.116)
root	(0.117)
root	(0.118)
i[3]	(0.119)
allocate	(0.120)

	()
cell, id, allocate	(0.121)
$d \leftarrow$	(0.122)
d = 0	(0.123)
cell.children	(0.124)
$cell.children \leftarrow$	(0.125)
$childid \leftarrow$	(0.126)
2^{d-1}	(0.127)
$2\cdot$	(0.128)
2^{d-1}	(0.129)
$4\cdot$	(0.130)
2^{d-1}	(0.131)
cell.children [childid], i, allocate	(0.132)
=	(0.133)
N	(0.134)
points	(0.135)
k	(0.136)
$points, dim \leftarrow 0$	(0.137)
$n \leftarrow$	(0.138)
n = 0	(0.139)
points, dim	(0.140)
points	(0.141)
dim	(0.142)
$root \leftarrow points\left[\lfloor \frac{n}{2} \rfloor\right]$	(0.143)
$dim \leftarrow (dim + 1) \mod k$	(0.144)
$root.left \leftarrow$	(0.145)
$points\left[0:\lfloor rac{n}{2} floor-1 ight], dim$	(0.146)
$root.right \leftarrow$	(0.147)
$points \left[\left\lfloor \frac{n}{2} \right\rfloor + 1 : n - 1 \right], dim$	(0.148)
root	(0.149)

k	(0.150)
k	(0.151)
k+1	(0.152)
r_d	(0.153)
α	(0.154)
α	(0.155)
$\alpha o \infty$	(0.156)
$\alpha \to 0$	(0.157)
$\alpha \approx r_{\rm bond}$	(0.158)
0	(0.159)
$_{0}\in$	(0.160)
$ eq \emptyset$	(0.161)
\in	(0.162)
\	(0.163)
\in	(0.164)
\cap	(0.165)
\cap	(0.166)
\	(0.167)
$r_d > \alpha$	(0.168)
$r_d < \alpha$	(0.169)
$\sim t$	(0.170)
$\sim t$	(0.171)
$\sim n_{\rm cyc.}$	(0.172)
$ec{F}(X)$	(0.173)
V(X)	(0.174)
V	(0.175)
$r_i j$	(0.176)
$\vec{F}_{ij}(r_{ij}) = \vec{\nabla}V(r_{ij})$	(0.177)
$E = \sum_{i} \sum_{j \neq i} V(r_{ij})$	(0.178)
i $j{ eq}i$	

$$V_{\rm LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$
 (0.179)

$$V(r_i j) \tag{0.180}$$

$$r_{\rm cut} \tag{0.181}$$

$$E = \sum_{i} \sum_{j \neq i} V_2(r_{ij}) + \sum_{i} \sum_{\substack{j \neq i \\ k \neq j}} \sum_{\substack{k \neq i \\ k \neq j}} V_3(r_{ij}, r_{ik}, \theta_{ijk}) + \dots$$
(0.182)

$$V_{\alpha\beta}(r_{ij}) \tag{0.183}$$

$$i (0.184)$$

$$F_{\alpha} \tag{0.185}$$

$$\rho_{\beta}(r_{ij}) \tag{0.186}$$

$$E = \sum_{i} \left[F_{\alpha} \left(\sum_{j \neq i} \rho_{\beta} \left(r_{ij} \right) \right) + \frac{1}{2} \sum_{j \neq i} V_{\alpha\beta} \left(r_{ij} \right) \right]$$
(0.187)

$$\alpha \tag{0.188}$$

$$\beta \tag{0.189}$$

$$\sigma \tag{0.190}$$

$$\pi \tag{0.191}$$

$$\pi \tag{0.192}$$

$$E_{\text{bond}}$$
 (0.193)

$$E_{\rm lp} \tag{0.194}$$

$$E_{\text{over}}$$
 (0.195)

$$E_{\text{under}}$$
 (0.196)

$$\pi \tag{0.197}$$

$$E_{\text{val}}$$
 (0.198)

$$E_{\rm pen} \tag{0.199}$$

$$E_{\rm coa} \tag{0.200}$$

$$E_{\rm C2}$$
 (0.201) (0.202)

(0.201)

$$_{2}$$
 (0.203)

$$E_{\rm tors} \tag{0.204}$$

$$E_{\text{conj}}$$
 (0.205)

$$E_{\rm vdWaals} \qquad (0.207) \\ E_{\rm Coulomb} \qquad (0.208) \\ E_{\rm System} = E_{\rm bond} + E_{\rm lp} + E_{\rm over} + E_{\rm under} + E_{\rm val} + E_{\rm pen} + E_{\rm coa} + E_{\rm C2} \\ + E_{\rm tors} + E_{\rm conj} + E_{\rm H-bond} + E_{\rm vdWaals} + E_{\rm Coulomb} \\ t_{\rm relax} \qquad (0.210) \\ \tau \qquad (0.211) \\ t_{\rm relax} \qquad (0.212) \\ \tau \qquad (0.213) \\ t_{\rm relax} = 50 \, {\rm ps} \qquad (0.214) \\ \tau = 0.02 \, {\rm fs} \qquad (0.215) \\ \psi \qquad (0.216) \\ \sigma_z = 1.2 \, {\rm Å} \qquad (0.217) \\ \sigma_z = 6.4 \, {\rm Å} \qquad (0.218) \\ \sigma_z = 8.0 \, {\rm Å} \qquad (0.219) \\ \doteq \qquad (0.220) \\ \kappa = 3.9 \qquad (0.221) \\ \kappa \qquad (0.222) \\ \kappa \qquad (0.223) \\ \kappa \qquad (0.223) \\ \kappa \qquad (0.224) \\ X_0 \qquad (0.225) \\ \chi \qquad (0.226) \\ t_0 = 0 \qquad (0.227) \\ X_n \in \mathbb{X} \qquad (0.228) \\ E_i \qquad (0.229) \\ X_{n-1} \qquad (0.230) \\ X_n^i \qquad (0.231) \\ E_i : X_{n-1} \rightarrow X_n^i \in \mathbb{X} , \quad i \in [1,N] \qquad (0.232) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.234) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.234) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.233) \\ E_i \qquad (0.234) \\ E_i \qquad (0.233) \\ E_i \qquad (0.234) \\ E_i \qquad (0.233) \\ E_i \qquad (0.234) \\ E_i$$

 $E_{\text{H-bond}}$

(0.206)

 r_i

$$R_{i} \qquad (0.235)$$

$$R_{N} \qquad (0.236)$$

$$R_{i} = \sum_{j \leq i} r_{j} \qquad (0.237)$$

$$u \qquad (0.238)$$

$$X_{i} \qquad (0.239)$$

$$X_{n} \qquad (0.240)$$

$$X_{n} = X_{i}^{i} : R_{i-1} \leq uR_{N} < R_{i} \quad u \in [0,1) \text{ gleichverteilt} \qquad (0.241)$$

$$R_{N} \qquad (0.242)$$

$$t_{n} = t_{n-1} + \frac{-\ln(u')}{R_{N}} \quad u' \in [0,1) \text{ gleichverteilt} \qquad (0.243)$$

$$X_{n+1} \qquad (0.244)$$

$$N = 0 \qquad (0.245)$$

$$R_{N} = 0 \qquad (0.245)$$

$$R_{N} = 0 \qquad (0.246)$$

$$t_{n} > t_{\text{fin}} \qquad (0.247)$$

$$E_{i} \qquad (0.248)$$

$$n \qquad (0.249)$$

$$X_{n} \qquad (0.250)$$

$$\alpha \qquad (0.251)$$

$$\tau \qquad (0.252)$$

$$t_{\text{relax}} \qquad (0.253)$$

$$\tau_{p} \qquad (0.254)$$

$$R \qquad (0.255)$$

$$R \qquad (0.255)$$

$$R \qquad (0.255)$$

$$R \qquad (0.256)$$

$$m \qquad (0.257)$$

$$\vec{r} \qquad (0.258)$$

$$\vec{p} \qquad (0.259)$$

$$\vec{F}(R) \qquad (0.260)$$

$$N \qquad (0.261)$$

$$V \qquad (0.2621)$$

E

(0.263)

$$N = \text{const.}$$
 $V = \text{const.}$ $E = \text{const.}$ (0.264)

$$\dot{\vec{r}}_i = \frac{\vec{p}_i}{m_i} \tag{0.266}$$

$$\dot{\vec{p}}_i = m\vec{a}_i = \vec{F}_i(R) \tag{0.267}$$

$$T (0.268)$$

$$N = \text{const.}$$
 $V = \text{const.}$ $T = \text{const.}$ (0.269)

$$T_{\rm Ziel}$$
 (0.270)

$$\overline{E_{kin}} = \frac{1}{2}\overline{mv^2} = \frac{d}{2}k_B T_{\text{Ziel}} \tag{0.271}$$

$$T_{\rm Ziel}$$
 (0.272)

$$\tau \tag{0.273}$$

$$\vec{v}_i' = \vec{v}_i \cdot \sqrt{1 + \frac{\Delta t}{\tau} \left(\frac{T_{\text{Ziel}}}{T} - 1\right)}$$
 (0.274)

$$s (0.275)$$

$$\dot{\vec{p}}_i = \vec{F}_i - s\vec{p}_i \tag{0.276}$$

$$s (0.277)$$

$$\tau \tag{0.278}$$

$$M (0.279)$$

$$M \tag{0.280}$$

$$\tau \tag{0.281}$$

$$\dot{s} = \frac{1}{\tau M} \left(\sum_{i} \frac{p_i^2}{2m_i} - Ndk_B T \right) \tag{0.282}$$

$$N = \text{const.}$$
 $p = \text{const.}$ $T = \text{const.}$ (0.283)

$$PV = Nk_B T + \frac{1}{d} \sum_{i=1}^{N} \vec{r}_i \cdot \vec{F}_i$$
 (0.284)

$$\vec{X}_0 \tag{0.285}$$

$$\nabla E(X) \tag{0.286}$$

$$\alpha$$
 (0.287)

$$\Rightarrow$$
 (0.288)

$$\Rightarrow$$
 (0.289)

$$\vec{X}_i = \vec{X}_{i-1} - \alpha \nabla E(\vec{X}_{i-1}) \tag{0.290}$$

$$|\vec{X}_i - \vec{X}_{i-1}| < X_{\text{tol}} \tag{0.291}$$

$$\max_{k} |X_{i,k} - X_{i-1,k}| < X_{\text{tol}} \tag{0.292}$$

$$|\nabla E(\vec{X}_{i-1})| < E_{\text{tol}} \tag{0.293}$$

$$i > i_{\text{tol}} \tag{0.294}$$

$$\min_{\alpha} f(X_i + \alpha \vec{s}_i) \to \alpha_i$$

$$\vec{X}_i = \vec{X}_{i-1} - \alpha_i \vec{s}_i$$
(0.295)

$$\vec{X}_i = \vec{X}_{i-1} - \alpha_i \vec{s}_i \tag{0.296}$$

$$\vec{s_i} = \Delta \vec{X_i} + \beta_i \vec{s_{i-1}} \tag{0.297}$$

$$\beta_{i} = \max \left(0, \frac{\Delta \vec{X}_{i} \cdot \left(\Delta \vec{X}_{i} - \Delta \vec{X}_{i-1} \right)}{\Delta \vec{X}_{i-1} \cdot \Delta \vec{X}_{i-1}} \right)$$
(Polak-Ribire) (0.298)

$$Id (0.299)$$

$$_{2}$$
 (0.300)

$$t_{\rm relax}$$
 (0.301)

$$t = 80 \tag{0.303}$$