Recherche sur le problème du voyageur de commerce

Abdallah Meebed

 $7~\mathrm{juin}~2022$

Table des matières

1	Définitions et motivations		3
	1.1	Définitions	3
	1.2	Classification des problèmes algorithmiques	5
	1.3	Problème P $\stackrel{?}{=}$ NP	6
2	Approximation des problèmes NP-complet		7
	2.1	Problème du voyageur de commerce	7
	2 2	Conclusion	Q

1 Définitions et motivations

La théorie de la complexité est le domaine des mathématiques qui étudie le temps de calcul et la mémoire nécessaire par un ordinateur pour résoudre un problème algorithmique (un problème qui peut être résolu avec un algorithme). Les algorithmes qui résolvent le problème sont évalués selon des critères pour trouver celui l'algorithme le plus optimale (et approprié) avec les ressources disponibles. Des critères possibles sont la vitesse de résolution ou l'espace de mémoire nécessaire pour résoudre le problème. Dans un premier temps les définitions de ces critères sera présentée. Dans un autre temps, la notion de classification des problèmes sera introduite; les problèmes sont classés selon leur « difficulté » à résoudre à l'aide des algorithmes actuels les plus optimales.

1.1 Définitions

Définition 1.1. La complexité en temps représente le temps mis par un algorithme pour résoudre un problème. C'est une des notions les plus importantes dans la théorie de la complexité. Les notations grand O de Landau sont utilisées pour évaluer le temps nécessaire pour résoudre un problème. On définit la notation O(f(n)) avec f(n) comme variable discrète et n la taille des entrées pour voir la croissance du nombre d'opérations maximum (et par la suite, le temps maximum pris pour résoudre le problème) quand $n \to \infty$. Seulement le terme le plus important (le terme qui croit le plus rapidement) est pris en considération, sans son coefficient. Un algorithme f(n) est résolu dans un temps polynomial quand $f(n) = O(n^k)$ pour $k \in \mathbb{Z}^+$ et quand $n \to \infty$. Quand un algorithme résout le problème dans un temps polynomial ou moins (logarithmique), il est considéré comme un algorithme rapide 1.

Par exemple, 2 algorithmes sont utilisés pour chercher un mot dans un dictionnaire de taille n mots. Le premier compare les mots par ordre alphabétique jusqu'à trouver le mot désiré. L'autre est l'algorithme de recherche dichotomique (binary search en anglais) : il divise l'ensemble des mots en 2 parties égaux évalue dans quelle sous-ensemble le mot appartient (selon l'ordre alphabétique) et recommence la première étape avec le sous-ensemble (redivise le sous-ensemble en 2) jusqu'à trouver le mot dans le dictionnaire. Le premier prends n étapes au pire des cas (le mot cherché est le dernier mot dans le dictionnaire), il est donc d'ordre O(n). Il est facile de trouver l'ordre de complexité de la recherche dichotomique. Le nombre maximal de recherche est $\lceil \log_2 n \rceil$ et $\log_2 n = \log n/\log 2$ (changement de base) alors la recherche dichotomique est d'ordre $O(\log n)$ (le

^{1.} A la limite que l'ordre du polynomial soit raisonnablement solvable par un ordinateur actuel

coefficient $1/\log 2$ n'est pas pris en considération). Par la suite la recherche dichotomique est plus optimale pour chercher un mot dans un dictionnaire.

Les ordres de grandeur les plus communs sont les suivants : O(1) pour ordre constant, $O(\log n)$ pour ordre logarithmique, $O(n^k)$ avec $k \in \mathbb{Z}^+$ pour ordre polynomial (cas spécial pour k = 1, ordre linéaire), $O(k^n)$ pour ordre exponentiel et O(n!) pour ordre factoriel. La difficulté d'un problème algorithmique dépend de l'ordre de grandeur de l'algorithme qui le résolve le plus efficacement.

Définition 1.2. Une machine du Turing est un concept abstrait qui représente un ordinateur. Cette machine joue le rôle d'une personne capable de suivre des instructions simples (voir vidéo par Computerphile ² pour aller plus loin, ce n'est pas nécessaire). Simplement dit, une machine de Turing déterministe fait tout ce qu'un ordinateur moderne peut faire ³.

Il existe aussi une machine de Turing non déterministe qui peut choisir entre plusieurs étapes à exécuter (c'est une manière de formaliser mathématiquement une recherche exhaustive de toutes les combinaisons ensuite les évaluer). Il est important de noter que c'est un concept abstrait.

Définition 1.3. Un problème de décision est un problème pour lequel la solution est soit (0,0) ou (0,0)

Définition 1.4. Un problème de fonction est un problème pour lequel la solution n'est pas simplement « oui » ou « non ». Par exemple quels sont les diviseurs non-triviaux de l'entier positif n? La solution est une liste de diviseurs (ou non si n est premier).

Définition 1.5. Une réduction est un algorithme qui transforme une instance de problème X à un autre problème Y. Si cet algorithme existe, on dit alors que le problème X se réduit au problème Y, s'écrit aussi comme $X \leq Y$ ou bien $X \propto Y$. La réduction est utile dans plusieurs cas :

- 1. Rapidement résoudre X. Généralement un nouveau problème est réduit à un problème déjà solvable pour le résoudre et utiliser la solution pour résoudre le nouveau problème.
- 2. Montrer que résoudre X n'est pas plus difficile (parlant en complexité de temps et d'espace) que résoudre Y^4 .

^{2.} Lien hypertexte pour la version électronique, sinon le titre est *Turing Machines Explained - Computerphile* sur Youtube

 $^{3. \ \} Les \ langues \ de \ programmations \ utilisées \ dans \ un \ ordinateur \ (C, C++, Python, \ etc.) \ sont \ dites \ langues \ Turing-complet$

^{4.} Si l'algorithme s'exécute dans un temps polynomial

1.2 Classification des problèmes algorithmiques

Les problèmes algorithmiques sont classifiés selon les ressources temporaires et spatiales nécessaires pour les résoudre efficacement. Il est intéressant pour la suite de connaître seulement les classes spécifiés dans Figure 1.1.

Définition 1.6. Classe P est la classe des problèmes de décision résolus dans un temps polynomial (ou moins) par une machine de Turing déterministe pour tout instance d'entrée. Les problèmes de classe P sont considérés comme des problèmes qui sont rapide à résoudre, et par la suite faciles. Quelques problèmes dans la classe P : évaluation d'un circuit logique, déterminer si un mot est un palindrome et déterminer si un entier positif n est premier.

Définition 1.7. Classe NP est la classe des problèmes de décision résolus dans un temps polynomial par une machine de Turing non déterministe pour tout instance d'entrée. Par contre, une solution donnée peut être vérifiée dans un temps polynomial par une machine de Turing déterministe. En pratique, les ordinateurs actuels sont équivalents à des machines de Turing déterministe. Dans ce contexte, un problème de classe NP ne peut pas être résolu par une machine de Turing déterministe dans un temps polynomial (actuellement, voir Section 1.3).

Le problème le plus connu dans la classe NP est la factorisation d'un entier en nombres premiers. Les facteurs premiers ne peuvent pas être trouvés dans un temps polynomial (actuellement) mais si les facteurs sont donnés, il est rapide de vérifier si leur produit est bien égale au nombre. C'est la base de la cryptographie moderne.

Définition 1.8. Classe NP-complet est la classe des problèmes NP mais avec une propriété supplémentaire : tout autre problème en classe NP peut être réduit dans un temps polynomial à un problème NP-complet. Il est important de noter aussi que n'importe quel problème dans NP-complet peut être réduit dans un temps polynomial à un problème NP-difficile. Les 21 problèmes NP-complet de Karp [1] sont les exemples les plus connus de problèmes NP-complet. Par exemple, le problème suivant fait partie de la classe NP-complet : Soit G(V, A) un graphe quelconque, est-ce qu'il existe un cycle Hamiltonien (un cycle qui passe par tout les sommets une seule fois et revient au sommet initiale)?

Définition 1.9. Classe NP-difficile est la classe des problèmes (pas forcément des problèmes de décision) résolus dans un temps polynomial par une machine de Turing non déterministe et une solution donnée ne peut pas être vérifiée dans un temps polynomial par une machine de Turing déterministe. Autrement dit, il n'y a pas de méthode pour

rapidement vérifier la solution. Le problème du voyageur de commerce est un problème classé dans NP-difficile.

FIGURE 1.1 – Diagramme d'Euler sur les classes de complexité

1.3 Problème $P \stackrel{?}{=} NP$

Vérifier l'égalité $P \stackrel{?}{=} NP$ est une question essentielle dans la théorie de la complexité mais qui n'est pas encore résolue. Pour l'instant, tant qu'il n'y a pas de preuve d'algorithme qui résout un problème NP dans un temps polynomial, on suppose $P \neq NP$. Dans ce cas, certaines problèmes très importantes (factorisation des entiers en cryptographie, la conception de protéines en médecine, etc.) dans beaucoup de domaines resteront non-solvable d'une manière exacte à partir d'une taille d'entrée assez grande. Sinon, une preuve que P = NP peut se présenter sous forme d'un algorithme qui s'exécute dans un temps polynomial. Dans ce cas, le reste des problèmes de classe NP peuvent être résolu dans un temps polynomial car par définition ils peuvent être réduits à un problème NP-complet.

2 Approximation des problèmes NP-complet

Un approche commune pour résoudre rapidement (dans un temps polynomial) un problème de classe NP est d'obtenir une approximation qui est prouvé d'être proche de la solution, c'est une ϵ -approximation.

Définition 2.1. Un algorithme est ϵ -approximé pour un problème P_1 ssi soit (i) P_1 est un problème de maximisation et pour tout instance de P_1

$$|(F^* - \hat{F})/F^*| \le \epsilon, \quad 0 < \epsilon < 1,$$

ou bien (ii) P_1 est un problème de minimisation et pour tout instance de P_1

$$|(F^* - \hat{F})/F^*| \le \epsilon, \quad \epsilon > 0,$$

avec F^* la solution optimale (supposé strictement positive) et \hat{F} la solution approximative obtenue.

Ce document présente la partie du théorème de [2] concernant le problème du voyageur de commerce.

2.1 Problème du voyageur de commerce

Dans cette section, le problème du voyageur de commerce et la preuve du théorème de [2] sont présentés. Il est important de noter que si P=NP, l'approximation resterait un problème dans la classe NP-complet (les deux classes sont équivalents). Pour la suite il est supposé que $P \neq NP$, qui impliquera que n'importe quelle algorithme pour résoudre le problème dans un temps polynomial doit produire des mauvaises approximations dans au moins un instance.

Problème de voyageur de commerce : Soit un graphe G(N, A) un graphe complet avec une fonction poids $\omega : A \to Z$, trouver le cycle Hamiltonien (le cycle qui passe par tout les sommets exactement une fois) le plus optimal selon les critères suivantes :

- 1. Minimiser la longueur du cycle Hamiltonien.
- 2. Minimiser le temps d'arrivé moyen aux sommets. Le temps d'arrivé est mesuré selon le premier sommet et le poids des arêtes étant le temps pour aller d'un sommet à un autre. Soit $i_1, i_2, \dots, i_n, i_{n+1} = i_1$ un cycle Hamiltonien, alors le temps d'arrivé Y_k au sommet i_k est :

$$Y_k = \sum_{j=1}^{k-1} \omega(i_j, i_{j+1}), \quad 1 < k \le n+1$$

Le temps d'arrivé moyen (à minimiser) est alors

$$\bar{Y} = \frac{1}{n} \sum_{k=2}^{n+1} Y_k = \frac{1}{n} \sum_{j=1}^{n} (n+1-j)\omega(i_j, i_{j+1})$$

3. Minimiser la variance des temps d'arrivés, qui est défini comme

$$\sigma = \frac{1}{n} \sum_{k=2}^{n+1} (Y_k - \bar{Y})^2$$

Afin de prouver que n'importe quelle approximation de ce problème est de classe au moins NP-complet, ce problème sera réduit à un problème prouvé être NP-complet selon [1] : Vérifier si un graphe contient un cycle Hamiltonien.

Théorème 2.1. L' ϵ -approximation du problème de voyageur des commerces est NP-complète.

 $D\acute{e}monstration.$ Soit G(N,A) un graphe quel conque. Chaque critère d'optimisation sera traité séparément :

1. Trouver un cycle Hamiltonien $\propto \epsilon$ -approximation du voyageur de commerce (minimiser la longueur du cycle) : Soit $G_1(V, E)$ un graphe complet $(E = \{(u, v) \mid u, v \in V\})$ avec V = N et n = |N|. La fonction de poids et définie :

$$\omega\{u,v\} = \begin{cases} 1 \text{ si } (u,v) \in A, \\ k \text{ sinon} \end{cases}$$

k est une valeur à choisir ultérieurement. Pour k > 1, la solution du TSP sur G_1 aura une longueur n ssi G contient un cycle Hamiltonien, sinon la solution aura une longueur au moins k + n - 1. Si on choisi $k \ge (1 + \epsilon)n$, il suffit juste d'évaluer la solution approximative : si elle est inférieure ou égale à $(1 + \epsilon)n$ (ne pas oublier l'erreur commise par l'approximation) alors G contient un cycle Hamiltonien. Sinon, G n'en contient pas. Cela revient à résoudre le problème de trouver si un graphe contient un cycle Hamiltonien (un problème NP-complet).

2. Trouver un cycle Hamiltonien $\propto \epsilon$ -approximation du voyageur de commerce (minimiser le temps d'arrivé moyen) : Soit $G_1(V, E)$ comme défini ci-dessus. Le temps d'arrivé moyen de G_1 est au maximum (n+1)/2 ssi G contient un cycle Hamiltonien. Sinon, $\bar{Y} \geq k/n + (n-1)/2$. Si on choisi $k > (1+\epsilon)n(n+1)/2$, il suffit juste d'évaluer la solution approximative : si elle est inférieur ou égale à $(1+\epsilon)(n+1)/2$, alors la solution exacte sera (n+1)/2 et donc G contient un cycle Hamiltonien. Sinon, G n'en contient pas.

3. Trouver un cycle Hamiltonien $\propto \epsilon$ -approximation du voyageur de commerce (minimiser la variance du temps d'arrivé) : Utilisant, G(N, A), on construit un graphe $G_1(N_1, A_1)$ (voir Figure 2.1) avec :

$$N_1 = N \cup \{\alpha, \beta, \gamma, \delta\}, \quad A_1 = A \cup \{(r, \alpha), (\alpha, \beta), (\beta, \gamma), (\gamma, \delta)\} \quad \cup \{(\delta, z) + | (r, z) \in A\}$$
 pour r comme sommet quelconque dans G .

FIGURE 2.1 – Construction de G_1 , les lignes pointillées représentent les arêtes supplémentaires, exclusives à G_1

2.2 Conclusion

Pour résumer, tout algorithme ϵ -approximative du TSP est NP-complet. Ceci à été établi en réduisant le problème à un problème prouvé d'être NP-complet. Autrement dit, si un algorithme peut approximer la solution du TSP pour n'importe quelle graphe, il est au moins assez difficile que résoudre le problème : Est-ce que ce graphe contient un cycle Hamiltonien? La solution de cette question n'est pas obtenue dans un temps polynomial et donc soit l'algorithme approximative ne résolve pas le problème dans un temps polynomial ou bien il n'est pas ϵ -approximative.

Références

- [1] Richard M. KARP. "Reducibility among Combinatorial Problems". In: Boston, MA: Springer US, 1972, p. 85-103. DOI: 10.1007/978-1-4684-2001-2_9.
- [2] Sartaj Sahni et Teofilo Gonzalez. "P-Complete Approximation Problems". In : J. ACM 23.3 (1976), 555–565. ISSN: 0004-5411. DOI: 10.1145/321958.321975. URL: https://doi.org/10.1145/321958.321975.