Álgebra I — Final — 14/5/2021

1	2	3	4	5	Calificación

Nombre:

No. de libreta:

Carrera:

1. Demostrar por inducción matemática que para todo $n \ge 2$ natural se cumple que:

$$\frac{4^n}{n+1} < \binom{2n}{n}.$$

- 2. En el conjunto $X = \mathcal{P}(\{1, 2, 3, \dots, 12\})$ se define la relación \mathcal{R} del siguiente modo: $A\mathcal{R}B$ si A y B tienen la misma cantidad de números pares. Probar que \mathcal{R} es una relación de equivalencia y demostrar que existe una clase de equivalencia con más de 1000 elementos.
- 3. Sea $a \in \mathbb{Z}$. Calcular los posibles valores de $(a^{60}+6:560)$ y para cada valor hallado encontrar algún $a \in \mathbb{Z}$ que lo realice.
- 4. Sea w una raíz primitiva de la unidad de orden 10. Calcular la parte real de $w+w^3+w^4+w^8$.
- 5. Consideramos el polinomio

$$P = X^6 + X^5 + 5\,X^4 + 4\,X^3 + 8\,X^2 + 4\,X + 4 \in \mathbb{Q}[X]$$

Encuentre su factorización como producto de polinomios irreducibles en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que tiene una raíz imaginaria pura múltiple. Indique cuáles son las raíces de este polinomio y cuáles sus multiplicidades.