

YEAR 12 MATHEMATICS SPECIALIST

SEMESTER ONE 2019

TEST 2: Functions

By daring & by doing

Name: Sourross

Friday 5th April

Time: 45 minutes

Total marks: $\frac{1}{19} + \frac{2}{26} = \frac{45}{45}$

Calculator free section – maximum 19 minutes

This graph is of a function y = f(x) which has a point discontinuity at (1,-1), with asymptotes and intercept as shown.

If
$$f(x) = \frac{a(x-b)(x-c)}{(x-c)(x-d)}$$
, evaluate a, b, c and d .

2. [5 marks - 3 and 2]

This graph can be represented by y = f(x) = a + b |x + c|

(a) Evaluate
$$a$$
, b and c

(b) Add
$$y = |2x - 3|$$
 to the graph and determine the values of x for which $|2x - 3| = f(x)$

3. [10 marks - 1, 1, 1, 2, 2, 1 and 2]

$$f(x) = \sqrt{x+3}$$
 and $g(x) = 4 - x^2$

Determine:

(a) the domain of f(x)

(b) the range of g(x)

(c) $f \circ g(-1)$

(d) $x \text{ if } f \circ f(x) = 2$

$$J(x) + 3 = 2$$

 $J(x) + 3 = 4$
 $J(x) = \sqrt{x+3} = 1$

(e) the domain of $g \circ f(x) = 4 - (\pi + 3) = 1 - \chi$

(f) the range of $g \circ f(x)$

(g) which, if any, of these functions has a properly defined inverse. Justify your choice.

Year 12 Specialist Test 2: Functions

Name:	
-	26

Time: 26 minutes

26 marks

Calculator assumed section

4. [7 marks -2, 2 and 3]

This screenshot shows the graphs of $y_1 = |x+1| - |x+3|$ and $y_2 = |x+3| - |x+1|$

(a) Write a piecewise (algebraic) definition of y_1

blue:

(b) Graph $y_3 = |2x+1| - |2x-5|$ and $y_4 = |2x-5| - |2x+1|$ on these axes:

(c) Use differences of absolute values to write the equations of y_5 and y_6 for:

$$y_5 = \left| \frac{2}{2} + 2 \right| - \left| \frac{2}{2} - 2 \right|$$

$$y_6 = \left| \frac{2}{2} - 2 \right| - \left| \frac{2}{2} + 2 \right|$$

5. [13 marks – 3, 2, 2, 1, 2 and 3]

Graphs of y = f(x) and $y = g(x) = 2^{x-2}$ are given over the restricted domains shown.

Determine:

(a) the domain and range of $f \circ g(x)$

(b) the domain and range of $g \circ f(x)$

g exists for
$$f(\pi) \stackrel{>}{\sim} 0$$

i. for $-1 \le \pi < 2$
range is $\frac{1}{4} \le y \le \sqrt{2}$ $\left(2^{2\sqrt{5}-2}\right)$

On these separate axes, sketch:

(c)
$$y = \frac{1}{f(x)}$$

(d)
$$y = g^{-1}(x)$$

(e)
$$y = -f(|x|)$$

Calculate:

(f) a simplified algebraic expression for $g^{-1}(x)$ over a specified domain.

Interchange:
$$x = 2^{y-2}$$

$$\log x = y-2$$

$$y = \log x + 2 \qquad \text{for } \frac{1}{4} \le x < 4$$

- 6. [6 marks –2, 1 and 3]
 - (a) For $f(x) = \frac{2x+3}{3x+2}$, show that $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$ $f(\pi) = \frac{\frac{2}{x}+3}{\frac{3}{x}+2} \times \frac{\pi}{\pi} = \frac{2+3\pi}{3+2\pi} = \frac{1}{f(\pi)}$

(b) Give a further example of a function with $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$

Any function of the form x", |n" | or ax+ 5

(c) Is $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$ universally true? Explain and/or justify your conclusion, with reference to at least two further functions.

No; there are many counter-escamples. $f(n) = x^2 + 1$ has $f(\frac{1}{x}) = \frac{1}{n^2} + 1 + \frac{1}{x^2 + 1}$ $g(n) = e^{x}$ has $g(\frac{1}{x}) = e^{x^2} + \frac{1}{e^{x}}$ Only true for some special cases.