II. 自由副有限群の center

§1. 分解群と「構造の輸送」

(ブーケとは限らないが、 ブーケに必ずホモトープになる)

連結なグラフの被覆 $\Gamma' \to \Gamma$ を考えよう。

 $(I, \S 4$ のように) 下のグラフのループ $\Gamma_* \subseteq \Gamma$ が与えられたとする。

すると、 Γ_* に対して、 $\Gamma' \to \Gamma$ の Γ_* への制限の連結成分 Δ_* を固定する <u>分解群</u>

$$D_* \subseteq \operatorname{Gal}(\Gamma'/\Gamma)$$

が定まり、 Δ_* を取り替えても D_* は 共役を除いて変わらない。

次に、有限群 G が Γ に作用し、

$$G \curvearrowright \Gamma$$

その作用によって被覆 $\Gamma' \to \Gamma$ の <u>同型類</u> が保たれると仮定しよう。これはつまり、 $\forall g \in G$ に対して、g によって引き起こされる Γ の自己同型 α_g を次のような可換図式の中に埋め込めることを意味する:

$$\Gamma' \xrightarrow{\alpha'_g} \Gamma'$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma \xrightarrow{\alpha_g} \Gamma$$

ただし、 Γ' の自己同型 α'_g は、 $\operatorname{Gal}(\Gamma'/\Gamma)$ の元との合成を除いてしか決まらない。

次に、前の分解群の話を思い出してみよう。 α_q がループ Γ_* を別のループ

$$\alpha_g: \Gamma_* \mapsto \Gamma_\circ \stackrel{\mathrm{def}}{=} \alpha_g(\Gamma_*)$$

に写したとすると、部分群 $D_* \subseteq \operatorname{Gal}(\Gamma'/\Gamma)$ の <u>共役類</u>[D_*] は、 α_g によって

$$\alpha_g: [D_*] \mapsto [D_\circ]$$

と、 Γ 。の分解群の共役類に写される。

この現象のことを、

「<u>構造の輸送</u> (<u>transport of structure</u>)」 と呼ぶ。 §2. 自由群の生成元の中心化群の計算

G は 自由副有限群 とし、

$$\gamma \in G$$

はG の生成元の系に現れる元とする。すると、 γ で生成される G の閉部分群

$$H \stackrel{\mathrm{def}}{=} \langle \gamma \rangle \subseteq G$$

は、 $\widehat{\mathbb{Z}}$ (つまり、 \mathbb{Z} の副有限完備化) と <u>同型</u> になる (G の $\underline{\mathcal{P}}$ に落とすと分かるように)。

本講義 I, II の主定理は次の通りである:

定理: γ の G 内の 中心化群= centralizer

 $Z_G(H) \stackrel{\mathrm{def}}{=} \{ \sigma \in G \mid \sigma \cdot h = h \cdot \sigma, \ \forall h \in H \}$ は H になる。

 $\underline{\mathcal{A}}$:Gが「複数元生成」ならその 中心= center

$$Z(G) \stackrel{\mathrm{def}}{=} \{ \sigma \in G \mid \sigma \cdot g = g \cdot \sigma, \ \forall g \in G \}$$
は自明である。

定理の証明:

Gを、(ブーケのような) 連結な

グラフ Γ の基本群の副有限完備化

と見て、H が、ある $\underline{\nu}-\underline{\jmath}$ $\Gamma_* \subseteq \Gamma$ に付随する 分解群 として生じたと仮定する。

次に、 $\sigma \in Z_G(H)$ とする。すると、(副有限完備化の定義より) G の任意の正規開部分群 $N \triangleleft G$ に対して、

$$\sigma \in H \cdot N$$

を証明すれば十分である。

次に、 $N \subseteq G$ に付随する <u>有限次被覆</u> を $\Gamma' \to \Gamma$ と書く。この被覆を Γ_* に制限して得られる被覆の適切な(= H に対応するような)連結成分 Γ'_* をとると、他の連結成分は、

$$\zeta \cdot \Gamma'_*, \quad \zeta \in \operatorname{Gal}(\Gamma'/\Gamma) = G/N$$

のような形に書けて、剰余類集合 $G/H \cdot N$ の元に 1 対 1 に対応する。

一方、N は、グラフ Γ' の基本群の副有限完備化と見ることができ、その中の Γ'_* の分解群の(N 内の!)共役類は

$[N \cap H]$

となり、 $\zeta \cdot \Gamma'_*$ の分解群は

$$\zeta \cdot [N \cap H] \cdot \zeta^{-1}$$

となる。特に、 $\sigma \mapsto \zeta$ とすると、

$$\sigma \in Z_G(H)$$

より、 $\zeta \cdot \Gamma'_* \neq \Gamma'_*$ の分解群は $[N \cap H]$ となる。しかし、相異なるループを最短のパスで結ぶことによって容易に示せるように、相異なるループの分解群(の共役類)が一致することはあり得ない!この矛盾によって、 $\sigma \in H \cdot N$ となり、証明は完成する。 \square

§3. Survey: リーマン面の被覆と基本群

種数 = genus g の(コンパクトで向き付け可能な) 曲面 R は、次元 2g のトーラス J (=「ヤコビアン」)の中に 自然に 埋め込むことができる:

$$R \hookrightarrow J \cong \mathbb{R}^{2g}/\mathbb{Z}^{2g}$$

この埋め込みが「<u>自然</u>」であるということは、例えば、有限群GがRに作用するとき、

$$G \curvearrowright R$$

その作用によって、G の J への作用が誘導される

$$G \curvearrowright J$$

ことを意味する。

$$\widehat{\Pi}_R, \quad \widehat{\Pi}_J$$

が定義される。また、Jの被覆を(分解群の話のときと同様に)Rに<u>制限する</u>ことによって、自然な群準同型が定義される:

$$\widehat{\Pi}_R \to \widehat{\Pi}_J \cong \widehat{\mathbb{Z}}^{2g}$$

この群準同型は、実は 全射 であり、その核は、 $\hat{\Pi}_R$ の 交換子部分群の閉包 になる。つまり、この群準同型は、 $\hat{\Pi}_R$ の アーベル化 と同一視することができる。しかも、「自然」であるということは、準同型は両辺への Gの 外作用(=共役を除いての作用)と 両立するということである。

次に、 $\hat{\Pi}_J$ について考えよう。 $\hat{\Pi}_J$ は、実は、Jの <u>等分点</u> から生じる加群

 $\operatorname{Hom}(\mathbb{Q}/\mathbb{Z},J)$

 $(\cong \operatorname{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{R}^{2g}/\mathbb{Z}^{2g}) \cong \widehat{\mathbb{Z}}^{2g})$

と <u>自然に同型</u> になる。一方、トーラス J の等分点たち $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},J)$ は、J の中で 稠密 = dense である。従って、

 $\hat{\Pi}_{J}$ に自明に (外) 作用する $g \in G$ は、 $1 \in G$ しかない。

$$\left(\frac{2}{2}\right)^{28} \leq \left(\frac{R}{2}\right)^{28}$$

<u>定理</u>: $\widehat{\Pi}_R$ の <u>中心= center</u> $Z(\widehat{\Pi}_R)$ は自明である。

証明:

 $\sigma \in Z(\widehat{\Pi}_R)$ が、任意の正規開部分群 $N \triangleleft G$ に対して、 $\sigma \in N$ を満たすことを示せばよい。N に付随する有限次被覆を

$$R' \to R$$

と書くと、 $\widehat{\Pi}_{R'}=N$ となり、「 $\sigma\in Z(\widehat{\Pi}_R)$ 」より、 σ による共役は、 $\widehat{\Pi}_{R'}$ に自明に外作用する。従って、アーベル化をとると、 σ は $\widehat{\Pi}_{J'}$ にも自明に(外)作用するため、 σ の $\widehat{\Pi}_{R}/\widehat{\Pi}_{R'}$ 内の像は(上の議論より)自明になり、即ち「 $\sigma\in\widehat{\Pi}_{R'}=N$ 」が成立する。 \square

統一的な原理=パターン ($\S 2$ を参照)

「上に上がっても、それで尽きているのではなく、上の幾何が忠実に反映されるだけの (便利な!)'自然な残留物'がある。」

§4. Survey: p 進局所体と類体論

p は <u>素数</u> とする。すると、有理数体 $\mathbb Q$ に p 進位相 が入る。「p 進位相」とは、

 $\lceil a, b \in \mathbb{Q}$ が 近い」 \iff

 $\lceil a - b \mid t \mid p \mid D$ 大きいベキ で割り切れる」

で定義される位相である。有理数体 \mathbb{Q} を \underline{p} 進位相 で完備化することによって得られる「 \underline{p} 進数体」を、 \mathbb{Q}_p と書く。

次に、p 進数体 \mathbb{Q}_p の <u>代数閉包</u> $\overline{\mathbb{Q}}_p$ が与えられたとする。 \mathbb{Q}_p の「<u>絶対ガロア群</u>」を、

$$G_{\mathbb{Q}_p} \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$$

と定義する。すると、 $G_{\mathbb{Q}_p}$ の 開部分群 $H \subseteq G_{\mathbb{Q}_p}$ は、 \mathbb{Q}_p の 有限次拡大体 $K \subseteq \overline{\mathbb{Q}_p}$ (= $\lceil p$ 進局所体」)と 1 対 1 に対応する。このとき、

$$G_K \stackrel{\text{def}}{=} H, \quad K^{\times} \stackrel{\text{def}}{=} K \setminus \{0\}$$

と書く。

このような設定では、「<u>局所類体論</u>」により、 G_K の アーベル化 への 自然な埋め込み

$$K^{\times} \hookrightarrow G_K^{\mathrm{ab}}$$

が定義される。この埋め込みが「自然」であるということは、 $K\subseteq \mathbb{Q}_p$ を保つ任意の $\sigma\in G_{\mathbb{Q}_p}$ の <u>両辺への作用と両立的</u> である ということである。

つまり、この局所類体論による自然な埋め 込みは、§3の理論における

<u>ヤコビアンと同様な役割を果たす</u> ということである。

従って、§3の理論と同様に次の帰結が従う。

<u>定理</u>: G_K の <u>中心= center</u> $Z(G_K)$ は自明である。

証明:

 $\sigma \in Z(G_K)$ が、任意の正規開部分群 $N \triangleleft G_K$ に対して、 $\sigma \in N$ を満たすことを示せばよい。N に付随する有限次拡大体を

$$K \subseteq K' \subseteq \overline{\mathbb{Q}}_p$$

と書くと、 $G_{K'}=N$ となり、「 $\sigma \in Z(G_K)$ 」より、 σ による共役は、 $G_{K'}$ に自明に外作用する。従って、アーベル化をとると、 σ は $G_{K'}^{ab}$ 、特に $(K')^{\times}$ にも自明に(外)作用するため、 σ の $G_K/G_{K'}$ 内の像は(上の議論より)自明になり、即ち「 $\sigma \in G_{K'}=N$ 」が成立する。口