```
a) max \rightarrow x_1 + x_2

x_1 - x_2 + x_3 = 1;

5x_1 + x_2 + x_4 = 1;

x_j \ge 0, \ j = 1, \dots, 4.
```


Пошаговая реализация симплекс-метода на примере 3 задач

Пошаговая реализация симплекс-метода

Есть отрицательные оценки.

Выбираем $k \notin B$: $k = argmin\{\Delta_{j}, j \in I \backslash B\}$.

Принимаем k = 1.

Строим
$$B_k^+ = \{i: i \in B, g_{i,k} > 0\} = \{3, 4\}.$$

Поскольку построенное множество непусто, выбираем $l \in B$:

$$\frac{x_l}{g_{l,k}} = min(\frac{x_i}{g_{l,k}}), \ i \in B_k^+$$

$$\frac{x_3}{g_{3,1}} = \frac{1}{1}$$

$$\frac{x_4}{g_{4,1}} = \frac{1}{5}$$

Переходим к новому базису $B' = B \setminus \{l\} + \{k\} = \{1, 3\}.$

Пересчитаем симплексную таблицу:

пошаговая реализация симплекс-метода

Полагаем B := B', G(B) := G(B').

Есть отрицательные оценки.

$$k = 2$$

Строим $B_k^+ = \{i: i \in B, \ g_{i,2} > 0\} = \{1\}, g_{1,2}^- = 0.2 > 0.$

Выбираем $l \in B$:

$$\frac{x_l}{g_{l,k}} = min(\frac{x_l}{g_{l,k}}), i \in B_k^+$$

$$\frac{x_1}{g_{1,2}} = \frac{0.2}{0.2} = 1$$

$$\Rightarrow l = 1$$

$$B' = \{1, 3\} \setminus \{1\} + \{2\} = \{2, 3\}.$$

Переход к G(B'):

Пошаговая реализация симплекс-метода

Все оценки неотрицательны. Базис оптимальный.

Итак, есть решение $x^* = (0, 1, 2, 0), f^* = 1.$

$$\begin{array}{lll} b) & max \rightarrow x_1 \ -x_2 \ +4x_3 \\ & x_1 \ +2x_2 \ -3x_3 \ =3; \\ & 2x_1 \ -x_2 \ +4x_3 \ =1; \\ & x_j \geq 0, \ j=1,2,3. \end{array}$$

В качестве исходного допустимого базиса возьмите $B=\{1,2\}.$

Пошаговая реализация симплекс-метода на примере 3 задач

решение заданных задач ○ Задача 3. ◯ Задача 2. x_1 - x_2 +4 x_3 max $-x_1+4x_2-x_3$ max x_1+x_2 max $x_1+2x_2-3x_3 = 3;$ $x_1+2x_2+x_3 = 3;$ $x_1-x_2+x_3$ =1; $5x_1+x_2 +x_4 =1;$ $2x_1 - x_2 + 4x_3 = 1;$ $2x_1 + x_2 - x_3 = 0;$ $x_j \ge 0$, j=1,2,3,4. $x_j \ge 0$, j=1,2,3. $x_j \ge 0$, j=1,2,3. CTAPT

Пошаговая реализация симплекс-метода на примере 3 задач

Пошаговая реализация симплекс-метода

Есть отрицательные оценки. Базис не оптимален. Определяем столбец с минимальным дельта:

$$k = 3.$$

Строим
$$B_3^+ = \{i: i \in B, g_{i,3} > 0\} = \{1\}.$$

Тогда
$$B' = B \setminus \{1\} + \{k\} = \{2, 3\}$$
 и $G(B')$:

Пошаговая реализация симплекс-метода

Нет среди оценок отрицательных. Базис оптимален.

Ответ:
$$x^* = (0, 3, 1), f^* = 1$$

c)
$$max \rightarrow -x_1 + 4x_2 - x_3$$

 $x_1 + 2x_2 + x_3 = 3;$

$$2x_1 + x_2 - x_3 = 0;$$

$$x_j \ge 0, j = 1, 2, 3.$$

В качестве исходного допустимого базиса возьмите $B = \{1,3\}.$

Есть отрицательные оценки - базис не оптимален.

$$k = 2$$

Строим
$$B_2^+ = \{i: i \in B, g_{i,2} > 0\} = \{1, 3\}.$$

Выбираем $l \in B$:

$$\frac{x_{l}}{g_{l,k}} = min(\frac{x_{l}}{g_{l,k}}), i \in B_{k}^{+}$$

$$\frac{x_{1}}{g_{1,2}} = \frac{1}{1} = 1$$

$$\frac{x_{3}}{g_{3,2}} = \frac{2}{1} = 2$$

$$B' = B \setminus \{1\} + \{2\} = \{2, 3\}$$
 и $G(B')$:

Пошаговая реализация симплекс-метода

Все оценки неотрицательны. Базис оптимален.

Ответ:
$$x^* = (0, 1, 1), f^* = 3.$$