uesday, October 4, 2022 5:21 PM

## LECTURE 13 - MATH 6301

Approximation of measurable functions by simple functions

## THEOREM (SIMPLE FUNCTIONS APPROXIMATION THEOREM)

Let  $S \subset B(X)$  be a 5-algebra and  $f: X \to \mathbb{R}$  be an 5-measurable function. Then there exists a sequence of simple 3-measurable functions  $G_n: X \to \mathbb{R}$  such that

$$\forall \qquad f(x) = \lim_{n \to \infty} \delta_n(x)$$

$$xe \times$$

i.e every 5-measurable function is a limit of a sequence of 5-measurable simple functions

PROOF: We define the simple functions on: X -> IR by

$$(x) \qquad \begin{cases} n & \text{if } f(\alpha) > n \\ \frac{k}{2^n} & \text{if } -n \leq \frac{k}{2^n} \leq f(\alpha) < \frac{k+1}{2^n} \leq n \\ -n & \text{if } f(\alpha) \leq -n \end{cases}$$
 ke  $\mathbb{Z}$ 



$$E_{k} = 6_{n}^{-1} \left( \frac{k}{2^{n}} \right) \qquad -n2^{n} < k < n2^{n}$$

$$E_{k} = 2 \times e \times : \frac{k}{2^{n}} \leq f(a) \leq \frac{k+1}{2^{n}}$$

5- measurable sets

In addition, if  $f(x) = \pm \infty$  then  $f_n(x) = \pm n$  and clearly  $f_n(x) = \pm n$   $\xrightarrow{n \to \infty} \pm \infty$ .

On the other hand if  $f(a) \neq \pm \infty$ , then  $\exists n \in \mathbb{N}$   $-n \leq f(a) < n$ 

On the other hand if  $f(x) \neq \pm \infty$ , then  $\exists n \in \mathbb{N}$   $-n \leq f(x) < n$ and, herefore  $G_n(x) = \frac{k}{2^n}$  where  $\frac{k}{2^n} \leq f(x) < \frac{k+1}{2^n}$ which means  $\left| f(\alpha) - 6_n(\alpha) \right| < \frac{1}{2^n} \longrightarrow 0$ REMARK: 1) Notice that if the function f: X > R is a bounded 5- measurable function, New one construct a sequence on: X -> IR of simple 5-meanoble functions, which is uniformly convergent to f  $\forall \exists \forall \forall |f(x)-6_n(x)| < \varepsilon$ €>0 N ^3N X € X Indeed, if  $-H \le f(a) \le M$  then, take on defined by (x) and native that  $f(a) \ge M$  we have  $|f(x)-f_n(x)|<\frac{1}{2^{n}}$ 2) In the case  $f:X \to \mathbb{R}$  is non-nepative S-measurable function from the segmence  $6n:X \to \mathbb{R}$  given by (x) substitutes  $0 \le G_1(a) \le G_2(x) \le \dots \le G_n(a) \le G_n(a) \le \dots \le G_n(a) \le G_n$ 3) If 5 < 5' are two 6-algebras in X Hen every 5-measurely function  $f: X \to \mathbb{R}$  is also S'-measurable. THEOREM: Let 5, c B(X1) and 5, c B(X2) he two 5-algebras and f: X1 x X2 -> R be an S1 x Se-measureble function. Then (a)  $\forall f_{\alpha_1}(a_2) := f(\alpha_1, a_2)$  is  $S_2$  -measurable (b)  $\forall f^{2}(\alpha_{1}) = f(\alpha_{11}\alpha_{2})$  is  $S_{1}$ -measureable PROOF; Notice that for all a GR we have (for fixed & j \in X,)  $\{\alpha_2 \in X_2 : f(\alpha_2) > \alpha \} = \{\alpha_2 \in X_2 : f(\alpha_1, \alpha_2) > \alpha \}$ =  $(q(\alpha', \alpha_2): f(\alpha', \alpha_2) \rightarrow \alpha f) \leftarrow S_2$ -meannable Six Si - meanurable \_

| $= (9(\alpha_1, \alpha_2): f(\alpha_1, \alpha_2) > \alpha f(\alpha_2, \alpha_2)$                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5, × 5, - meanurable                                                                                                                                                                                  |
|                                                                                                                                                                                                       |
| MEASURE AND OUTER HEASURE                                                                                                                                                                             |
| Let $S \subset \mathcal{G}(X)$ be a 5-algebra. A function $\mu: S \longrightarrow \overline{R}$                                                                                                       |
| is called a measure off                                                                                                                                                                               |
| $(\mu \Lambda)  \forall  \mu(E) \geqslant 0$ $E \in S$                                                                                                                                                |
| $(\mu 2)$ $\mu(\phi) = 0$                                                                                                                                                                             |
| (M3) \$ 1 En 1 c 5 such there En n Em = & for n= w                                                                                                                                                    |
|                                                                                                                                                                                                       |
| h=1                                                                                                                                                                                                   |
| Then, we will also say that (X, 5, m) is the measure space.                                                                                                                                           |
| To be prease, in certain siduation we will also suy that element EES                                                                                                                                  |
|                                                                                                                                                                                                       |
| ovre u-measurable sets.                                                                                                                                                                               |
| REMARK: If (X, S, M) is a measure space, E = 5, Hers                                                                                                                                                  |
| He restriction of M to $S_E := dF \in S: Fc E $ is a measure                                                                                                                                          |
| on E, which will be colled restricted to E measure.                                                                                                                                                   |
| Moreover, if Et, Ez,, E, JCS one disjoint sets then                                                                                                                                                   |
| $\mu(E_1 \cup E_2 \cup \cup E_4) = \mu(E_1) + \mu(E_2) + + \mu(E_4)$                                                                                                                                  |
|                                                                                                                                                                                                       |
| ADDITIONAL PROPERTIES: Assume (X,5, M) is a measure space                                                                                                                                             |
| IN FFER JFS                                                                                                                                                                                           |
| (1) If $F \subset E$ then $\mu \mid F \mid \leq \mu(E)$ Endead $E = (E \mid F) \cup F$<br>Since $E \mid F \cap F = \emptyset$ , we have by $(M37) \mu(E) = \mu(E \mid F) + \mu(F) \rightarrow \mu(F)$ |
| Since $E : F \cap F = \emptyset$ , we have by                                                                                                                                                         |
| $(hs)  \mu(E) = \mu(E F) + \mu(F) > \mu(F)$                                                                                                                                                           |
| (2) IT FCT and M(E) CO then M(E) = M(E) - M(E)                                                                                                                                                        |
| (3) If Ec En Hen G-subadditionity                                                                                                                                                                     |
| (3) If $E \subset \mathcal{O} E_n$ then $\mu(E) \leq \sum_{n=1}^{\infty} \mu(E_n)$ $\mu(\mathcal{O} E_n) \leq \sum_{n=1}^{\infty} \mu(E_n)$                                                           |
| N2.                                                                                                                                                                                                   |

 $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} F_n , \quad F_n = E_n , \quad \exists E_n, \quad \exists E_n, \quad \exists E_n, \quad \exists E_n \in E_n$ Fin Fin = Q, he nt us  $\mu(E) \leq \mu(\bigcup_{n=1}^{\infty} E_n) = \mu(\bigcup_{n=1}^{\infty} F_n) = \sum_{n=1}^{\infty} \mu(F_n) \leq \sum_{n=1}^{\infty} \mu(E_n)$ (4) If EncEac.... Hen M(lim En) = lim M(En)  $\lim_{n\to\infty} E_n = \bigcup_{n=1}^{\infty} E_n = E_1 \cup \bigcup_{n=2}^{\infty} F_n = E_1 \cup \bigcup_{n=2}^{\infty} (E_n \setminus E_{n-1})$  $\mu(\lim_{n\to\infty} E_n) = \mu(E_n) + \sum_{n=0}^{\infty} \mu(E_n \cdot E_{n-1})$  $\mu(E_n) = \mu(C) E_k = \mu(E_n \cup C_n \setminus E_n \setminus E_n)$ = M(E1) + 2 M(Ex Ex. ). So, by taking he limit as now we obtain that lius u(En) = u(E,)+ = u(Bic + Ek-1) and by company (x1 with (xx1, we get M(lim Enl= law M(Enl D PROPOSITION: Let (X, 5, M) and suppose E, > E2> E3>.. > E4> E4+, >... is a decreasing seprence of x-measurable sets such that J M(Em) <D Thon M (lim En ) = lim p(En)

M (NIN LI) PROUF  $A\left(\lim_{n\to\infty}E_n\right)=\mu\left(\bigcap_{n=1}^{\infty}E_n\right)$ By assumption  $\mu(E_m|<\infty)$  then  $\forall \mu(E_n) \leq \mu(E_m) < \infty$ and  $E_{y} = \int_{-\infty}^{\infty} E_{y}$   $E_{y} = \int_{-\infty}^{\infty} E_{y}$ = ling (M(Em) M(En)) = M(Em) - ling M(En)  $\int_{n=m}^{\infty} E_{n} = E_{m} \cap E_{n} = E_{m} \cap \lim_{n \to \infty} E_{n}$ hove  $\mathcal{H}(E_m \mid_{n \to \infty} E_y) = \mathcal{H}(E_m) - \mathcal{H}(\lim_{n \to \infty} E_n) \qquad (=) \lim_{n \to \infty} \mathcal{H}(E_y)$ M(lim (Em En)) = M(Em) - low M(Ey) lun µ(line Gn) EXAMPLE: Take X=N, S=B(N),
ACN
M(A)= | A is him by
otherwise (N, B(N), M) is a measure space Tale En:= 2 kgN: k > n 9 M (Enl= 00 then  $\lim_{n\to\infty} \mu(E_n) = \infty$  $E_n \supset E_{n+1} \supset \dots$   $E_n = \emptyset$ M ( hus Ey ) = M ( ) Ey / = M ( ) = 0 hus MEn & p (him En)

New Section 12 Page

For a given measure space  $(X, S, \mu)$  and a centary logical statement p(x),  $x \in X$  (we say that p(x) is time almost everywhere  $cu X \Longrightarrow \mu \neq \infty \in X : \sim p(x) = 0$  true a.e

 $A = 2 \times \times \times : p(x) = - \mu(A^c) = 0$