

Recitation 5

[Definitions used today]

- Topkis theorem, Supermodularity, Increasing Differences
- Recursive and dynamically consistent family of utility function, time separablity, ICC axiom

Question 1

Consider the following utility functions

- a $u(c_1, c_2, c_3) = \min\{2c_1 + c_2 + c_3, c_1 + c_2 + 2c_3\}$
- b $u(c_1, c_2, c_3) = c_1 + \sqrt{c_2} + \sqrt{c_3}$
- 1. Show that (a) does not have state-separable representation
- 2. Show that (b) does not have expected utility representation
- 3. Find $\pi \in \Delta \subset \mathbb{R}^3$ s.t. $u(c_1, c_2, c_3)$ is strictly risk averse with respect to π
- 4. Show that there is no $\pi\Delta\subset\mathbb{R}^3$ s.t. $u(c_1,c_2,c_3)$ is strictly risk averse with respect to π

Question 2 [Properties of state separable u]

- a Prove that every recursive family of utility functions $\{U_t\}$ is dynamically consistent if the aggregator function $G(\cdot, \cdot)$ is strictly increasing in continuation
- b $S \geq 3$ and \succeq increasing and continuous. Prove that \succeq has state-separable representation then ICC holds.
- c For S=2 all increasing functions obey ICC. Show that for $u(c_1,c_2)=c_1\sqrt{c_2}+c_1+c_2$ it does not have state separable utility function

Question 3 [Topkis theorem]

If S is a lattice, f is supermodular in x for fixed t, and f has nondecreasing differences in (x;t), then $\varphi^*(t) = \arg\max_{x \in S} f(x,t)$ is monotone nondecreasing in t.

Solution 3

Monotone comparative statics is based on mathematical theories of super-modularity and vector lattices developed by D.M. Topkis and others (see the book by Topkis (1998), Topkis (1978) or Milgrom Shannon (1994).

Definition 0.1. For two vectors $x, y \in \mathbb{R}^n$, the lattice operations are the supremum- join:

$$x \vee y = (\max\{x_1, y_1\}, \dots, \max\{x_n, y_n\})$$

and the **infimum- meet**:

$$x \wedge y = (\min\{x_1, y_1\}, \dots, \min\{x_n, y_n\}).$$

- Recitation 5

Note: $x + y = x \lor y + x \land y$.

Definition 0.2. A set $S \subseteq \mathbb{R}^n$ is said to be a **lattice** if $x \vee y \in S$ and $x \wedge y \in S$ for all $x, y \in S$.

Interval $[a, b] \subset \mathbb{R}^n$ and \mathbb{R}^n_+ is a lattice.

Definition 0.3. Let $X \subset \mathbb{R}^n$ be a lattice. A function $f: X \to \mathbb{R}$ is supermodular on X if

$$f(x \lor y) - f(x) \ge f(y) - f(x \land y), \forall x, y \in X$$

$$(0.1)$$

Note: An equivalent formulation:

$$f(x \lor y) + f(x \land y) \ge f(x) + f(y), \forall x, y \in X$$

Let X be a subset of \mathbb{R}^n . We will generally assume that either $X = \mathbb{R}^n$ or $X = \mathbb{R}^n_+$. Let $T \subseteq \mathbb{R}^m$. For a function $f: X \times T \to \mathbb{R}^n$ and a set $S \subseteq X$, consider the problem

$$\max_{x \in S} f(x, t)$$

Let the correspondence $\varphi^*(t)$ denote the set of solutions for a given t, i.e.,

$$\varphi^*(t) = \arg\max_{x \in S} f(x, t)$$

Definition 0.4. \leq_{sso} is the **strong set order** if for every $x \in \varphi^*(t)$ and $x' \in \varphi^*(t')$, $x \wedge x' \in \varphi^*(t)$ and $x \vee x' \in \varphi^*(t')$. Note that if $\varphi^*(t)$ and $\varphi^*(t')$ are singletons, the strong set order is the same as the usual order on vectors.

The correspondence φ^* is monotone nondecreasing in t if

$$\varphi^*(t) \leq_{sso} \varphi^*(t'), \ \forall t \leq t'$$

Definition 0.5. A function $f: X \times T \to \mathbb{R}$ has **nondecreasing differences in** (x;t) if the difference f(x',t) - f(x,t) is monotone nondecreasing in t for every $x' \geq x$, i.e.,

$$f(x', t') - f(x, t') \ge f(x', t) - f(x, t), \ \forall x' \ge x, \ \forall t' \ge t.$$

Theorem 0.6. Topkis Theorem

If S is a lattice, f is supermodular in x, and f has nondecreasing differences in (x;t), then $\varphi^*(t) = \arg\max_{x \in S} f(x,t)$ is monotone nondecreasing in t.

Proof. Step 1: Show that $x \vee x' \in \varphi^*(t')$

Let $t \leq t'$, let $x \in \varphi^*(t)$, and let $x' \in \varphi^*(t')$. First, we will show that $x \vee x' \in \varphi^*(t')$. Supermodularity in x implies that

$$f(x \lor x', t') \ge f(x', t') + f(x, t') - f(x \land x', t'). \tag{0.2}$$

Nondecreasing differences in (x;t) implies

$$f(x,t') - f(x \wedge x',t') \ge f(x,t) - f(x \wedge x',t). \tag{0.3}$$

Since S is a lattice, $x \wedge x' \in S$. Using this and the fact that $x \in \varphi^*(t)$, we have

$$f(x,t) - f(x \wedge x',t) \ge 0 \tag{0.4}$$

- Recitation 5

Combining (0.2), (0.3), and (0.4), we get

$$f(x \lor x', t') - f(x', t') \ge 0$$

and so

$$f(x \lor x', t') \ge f(x', t') \tag{0.5}$$

Again, since S is a lattice, $x \vee x' \in S$. Since $x' \in \varphi^*(t')$, (0.5) implies that $x \vee x' \in \varphi^*(t')$.

Step 2: Show that $x \wedge x' \in \varphi^*(t)$.

Supermodularity in x implies that

$$f(x \wedge x', t) \ge f(x, t) + f(x', t) - f(x \vee x', t).$$
 (0.6)

Nondecreasing differences in (x;t) implies

$$f(x \lor x', t') - f(x', t') \ge f(x \lor x', t) - f(x', t). \tag{0.7}$$

We can rearrange this as

$$f(x',t) - f(x \lor x',t) \ge f(x',t') - f(x \lor x',t'). \tag{0.8}$$

Since S is a lattice, $x \vee x' \in S$. Using this and the fact that $x' \in \varphi^*(t')$, we have

$$f(x',t') - f(x \lor x',t') \ge 0$$

$$f(x',t') - f(x \lor x',t') \ge 0 \tag{0.9}$$

Combining (0.6) and (0.9), we get

$$f(x \wedge x', t) \ge f(x, t). \tag{0.10}$$

Again, since S is a lattice, $x \wedge x' \in S$. Since $x \in \varphi^*(t)$, (0.10) implies that $x \wedge x' \in \varphi^*(t)$.

Question 4 254 [I.1 Spring 2018 majors]

Consider the problem of finding a Pareto optimal allocation of aggregate resources $\omega \in \mathbb{R}^n_+$ in an economy with two agents:

$$\max_{x} \mu_1 u_1(x) + \mu_2 u_2(\omega - x)$$

subject to $0 \le x \le \omega$

where $u_i : \mathbb{R}^n_+ \to \mathbb{R}$ are agents' utility functions (assumed continuous) and $\mu_i > 0$ are welfare weights for i = 1, 2. Let $x^* (\mu_1, \mu_2)$ be the set of solutions.

- a State a definition of utility function u_i being supermodular. Show that if u_i is supermodular, then $u_i(\omega x)$ is supermodular in x
- b Show that, if u_1 and u_2 are strictly increasing and supermodular in x then $x^*(\mu_1, \mu_2)$ is non-decreasing in μ_1 . You may assume that $x^*(\mu)$ is single-valued. Is $x^*(\mu_1, \mu_2)$ non-increasing in μ_2 ? Justify your answer. If you use a known mathematical theorem in your proof, make sure that you state that theorem clearly.
- c Under what conditions on u_1 and u_2 is the solution $x^*(\mu_1, \mu_2)$ unique. Justify your answer.