MAADSBML AutoML Report For OTICS ADVANCED ANALYTICS Generated On: 2024-07-08 16:10:55 (UTC)

Best Model(s) Report For admin_aesopowerdemandlogistic_csv

MODEL DESCRIPTION

Model Trained On: 2024/07/08 Training Start Time: 1607 Training End Time: 1610 Was Data Normalized: Yes Was Data Normanzeu. Was Data Shuffled: Yes Deep Analysis: No Total Training Data Set: 961 Training Data Percentage: 75% Total Test Data Set: 319 Total # of Variables: 4 Adjusted for Seasonality: N Total Algorithms Run: 450 Removed Outliers: N ROC AUC: 0.500

Precision: 0.786 (0.319 For Class=0) Recall: 0.677 (0.450 For Class=0) F1-Score: 0.727 (0.374 For Class=0)

Best Distribution FOR ACTUAL Y: RECIPINVGAUS Dependent Variable: AESO POWER DEMAND LABEL

Independent Variables: ['Calgary_Weather', 'Edmonton_Weather', 'FtMac_Weather']

IMPORTANT FILE PATHS FOR RAW AND OUTPUT DATA

NOTE: These are DOCKER CONTAINER Paths. You can view these files inside the container by using the command: docker exec -it {container id} bash If you have re-run the container, these files will be GONE but they exist on your HOST machine. The HOST MACHINE location is based on the volumes you mapped when you ran the Docker container. The Docker RUN Volume Mappings are :: (For example here is the docker run command (use multiple -v for multiple mappings):

DOCKER RUN COMMAND: docker run -d -p 5595:5595 -p 5495:5495 -p 10000:10000 -v {HOST MACHINE FOLDER}:{CONTAINER FOLDER}:z --env TRAININGPORT=5595 --env PREDICTIONPORT=5495 --env ABORTPORT=10000 --env COMPANYNAME=MYCOMPANY --env MAXRUNTIME=20 --env MAINHOST=127.0.0.1 maadsdocker/maads-batchautoml-otics

Docker Volume Mappings:

- 1. {HOST MACHINE FOLDER}/csvuploads:/maads/agentfilesdocker/dist/maadsweb/csvuploads:z 2. {HOST MACHINE FOLDER}/pdfreports:/maads/agentfilesdocker/dist/maadsweb/pdfreports:z

- 2. (HOST MACHINE FOLDER)/purreports:/maads/agentiflesdocker/dist/maadsweb/purreports:/ 3. (HOST MACHINE FOLDER)/autofeatures:/maads/agentfilesdocker/dist/maadsweb/autofeatures:2 4. (HOST MACHINE FOLDER)/sqlloads:/maads/agentfilesdocker/dist/maadsweb/sqlloads:z 6. (HOST MACHINE FOLDER)/networktemp:/maads/agentfilesdocker/dist/maadsweb/networktemp:z 7. (HOST MACHINE FOLDER)/networks:/maads/agentfilesdocker/dist/maadsweb/networktemp:z
- 8. (HOST MACHINE FOLDER)/exception:/maads/agentfilesdocker/dist/maadsweb/exception:z 9. {HOST MACHINE FOLDER}/staging:/maads/agentfilesdocker/dist/staging:z

Path for Training Dataset File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/aesopowerdemandlogistic.csv
Path for PDF Report (i.e. this file): /maads/agentfilesdocker/dist/maadsweb/pdfreports/admin_aesopowerdemandlogistic_csv_no_seasons.pdf
Path for AutoFeature File: /maads/agentfilesdocker/dist/maadsweb/autofeatures/admin_aesopowerdemandlogistic_csv_csv
Path for Outliers File: /maads/agentfilesdocker/dist/maadsweb/outliers/admin_aesopowerdemandlogistic_csv_csv
Path for Algo JSON File: /maads/agentfilesdocker/dist/maadsweb/exception/admin_aesopowerdemandlogistic_csv_trained_algo_no_seasons.json

Folder Path for MySQL Scripts: /maads/agentfilesdocker/dist/maadsweb/sqlloads/ Path for Detailed Prediction File: /maads/agentfilesdocker/dist/maadsweb/csvuplo

Path for Detailed Prediction File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/admin_aesopowerdemandlogistic_csv_prediction_details.csv
Path for Algorithm Zip File (i.e pickle files): /maads/agentfilesdocker/dist/maadsweb/networktemp/admin_aesopowerdemandlogistic_csv.zip

Path for Algorithm Pickle Files:
1. /maads/agentfilesdocker/networks/Otics Advanced Analytics_ADMIN_AESOPOWERDEMANDLOGISTIC_CSVALLSEASON_AG1_4_VotingClassifier_normal_961_ensemble_.pkl

2. /maads/agentfilesdocker/networks/Otics Advanced
Analytics_ADMIN_AESOPOWERDEMANDLOGISTIC_CSVALLSEASON_AG1_4_VotingClassifier_normal_961_ensemble_scalerx_.pkl

DESCRIPTIVE STATISTICS Variables T-Statistic Count Mean STD MIN 25% 50% 75% MAX Calgary Weather -3.505 961.0 5.862 -27.75 10.113 -0.4 6.85 14.0 23.85 Edmonton_Weather -3.116 961.0 5.916 -26.64 11.759 -2.25 7.16 16.1 25.75 5226935007991609.0 FtMac Weather 961.0 2.367 -32.4 13.694 7.65 4.56 14.8 23.85 AESO POWER DEMAND LABEL NA 961.0 0.591 0.0 0.492 0.0 1.0 1.0 1.0

BEST ALGORITHM FOUND FOR THIS DATASET (Note: This trained model will be used to predict AESO_POWER_DEMAND_LABEL)								
Algorithm	lgorithm Description Model Results		ROC/AUC	Precision	Recall	F1- Score	Forecast Months	Season
<u>VotingClassifier</u>	KandomForest, & nearest neighbour, GaussNB, Extra tree, ADA boost, etc)	VotingClassifier(estimators=[('dt', DecisionTreeClassifier(class_weight='balanced', criterion='entropy', max_features='sqrt', max_leaf_nodes=9, min_impurity_decrease=0.00441716834910456, min_samples_leaf=4, min_samples_split=5, min_weight_fraction_leaf=0.16503756467101086, random_state=12, splitter='random')), ('knn', KNeighborsClassifier(leaf_size=10, n_eighb AdaBoostClassifier(learning_rate=10.860757629056561, n_estimators=12, random_state=274)), ('et', ExtraTreesClassifier(class_weight='balanced_subsample', criterion='entropy', max_depth=4, min_impurity_decrease=2.1186350546310497, min_samples_leaf=8, min_samples_split=9, min_weight_fraction_leaf=0.1085548075000529, n_estimators=59, random_state=88))], voting='soft')	0.500	0.786: Class=1 (0.319: Class=0)	(0.450:	0.727: Class=1 (0.374: Class=0)		allseason

Νı	ım Alg	gorithm	Model ROC/AUC	Details	Season	Description		
1	Vot	o <u>tingClassifier</u>	0.5000	Recall: 0.677 (class 1) Precision: 0.786 (class 1) F1 Score: 0.727 (class 1) Recall: 0.45 (class 0) Precision: 0.319 (class 0) F1 Score: 0.374 (class 0) False Positive Rate: 13.8% Fue Negaive Rate: 13.8% False Negative Rate: 24.2% True Positive Rate: 50.7%	allseason	VOTING CLASSIFIER: Combination of different classifers (DecisionTree, RandomForest,K nearest neighbour,GaussNB,Extra tree,ADA boost, etc)		
2	Loç	gisticRegression	0.4660	Recall: 0.437 (class 1) Precision: 0.933 (class 1) F1 Score: 0.595 (class 1) Recall: 0.907 (class 0) Precision: 0.351 (class 0) F1 Score: 0.506 (class 0) False Positive Rate: 2.3% True Negaive Rate: 2.3% True Positive Rate: 32.7% False Negative Rate: 42.2%	allseason	LOGISTIC REGRESSION:		
3	Vot	tingClassifier_knclassifier	0.4360	Recall: 0.659 (class 1) Precision: 0.789 (class 1) F1 Score: 0.718 (class 1) Recall: 0.477 (class 0) Precision: 0.32 (class 0) F1 Score: 0.383 (class 0) False Positive Rate: 13.2% True Negaive Rate: 25.5% False Negative Rate: 49.3%	allseason	K-NEAREST NEIGHBOUR: k-nearest neighbour		

Bins	[-2.66e+01, -2.14e+01]	[-2.14e+01, -1.62e+01]	[-1.62e+01, -1.09e+01]	[-1.09e+01, -5.68e+00]	[-5.68e+00,	[-4.45e- 01, 4.79e+00]
Count	16	55	81	96	133	205
Share	1.0%	4.0%	6.0%	8.0%	10.0%	16.0%
Total Rows	1280	1280	1280	1280	1280	1280
Min	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01
Max	2.50e+01	2.50e+01	2.50e+01	2.50e+01	2.50e+01	2.50e+01
Number of Bins	6	6	6	6	6	6

Bins	[-2.24e+01,	[-1.79e+01,	[-1.34e+01,	[-8.91e+00,	[-4.42e+00,	[7.50e-02,
Dins	-1.79e+01]	-1.34e+01]	-8.91e+00]	-4.42e+00]	7.50e-02]	4.57e+00]
Count	20	18	15	21	40	59
Share	6.0%	6.0%	5.0%	7.0%	13.0%	18.0%
Total Rows	319	319	319	319	319	319
Min	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01
Max	2.20e+01	2.20e+01	2.20e+01	2.20e+01	2.20e+01	2.20e+01
Number of Bins	6	6	6	6	6	6

The confusion matrix shows the True Negatives (top left)/True Positives (bottom right) on the diagonals, and False Negatives (top right) and False Positives (bottom left).

True Positives: 83 False Positives: 68 True Negatives: 145 False Negatives: 145 Total Population: 600

The False Positve Rate(FPR) is: 13.83% The False Negative Rate is: 24.17% The True Positive Rate is: 50.67% The True Negative Rate is: 11.33%

The Positive Likelihood Ratio (True Positive Rate/False Positive Rate)is: 3.66

The Negative Likelihood Ratio (False Negative Rate/True Negative Rate) is: 2.13

Accuracy: 0.5 Precision: 0.786 Recall: 0.677 F1 Score: 0.727

Precision Curve: [0.748, 0.748, 0.748, 0.747, 0.747, 0.747, 0.747, 0.746, 0.749, 0.749, 0.749, 0.753, 0.755, 0.755, 0.755, 0.757, 0.758, 0.759, 0.760, 0.759, 0.759, 0.759, 0.759, 0.762, 0.762, 0.765, 0.764, 0.763, 0.764, 0.766, 0.767, 0.767, 0.771, 0.770, 0.770, 0.773, 0.773, 0.776, 0.780, 0.783, 0.787, 0.786, 0.788, 0.792, 0.791, 0.792, 0.792, 0.794, 0.793, 0.795, 0.795, 0.794, 0.793, 0.795, 0.795, 0.795, 0.795, 0.796, 0.796, 0.795, 0.795, 0.794, 0.793, 0.791, 0.790, 0.789, 0.788, 0.786, $\begin{matrix} 0.786, 0.784, 0.783, 0.783, 0.782, 0.782, 0.782, 0.781, 0.779, 0.776, 0.777, 0.788, 0.795, 0.796, 0.804, 0.804, 0.804, 0.805, 0.812, 0.814, 0.825, 0.831, 0.834, 0.834, 0.838, 0.837, 0.838, 0.845, 0.856, 0.864, 0.862, 0.865, 0.868, 0.871, 0.877, 0.876, 0.893, 0.897, 0.896, 0.900, 0.903, 0.907, 0.912, 0.917, 0.915, 0.919, 0.916, 0.926, 0.931, 0.931, 0.942, 0.941, 0.947, 0.960, 0.968, 0.967, 0.975, 0.974, 0.973, 0.982, 0.991, 1.000$ $1.000,\, 1.00$ 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

Recall Curve: [1.000, 0.998, 0.991, 0.978, 0.971, 0.960, 0.935, 0.922, 0.904, 0.891, 0.891, 0.886, 0.880, 0.862, 0.857, 0.849, 0.844, 0.840, 0.835, 0.826, 0.822, 0.813, 0.811, 0.806, 0.802, 0.797, 0.795, 0.793, 0.795, 0.793, 0.794, 0.891, 0.891, 0.891, 0.891, 0.896, 0.802, 0.805, 0.805, 0.805, 0.806, 0.802, 0.794, 0.795, 0.795, 0.795, 0.793, 0.793, 0.793, 0.786, 0.786, 0.786, 0.786, 0.786, 0.764, 0.762, 0.759, 0.755, 0.748, 0.746, 0.746, 0.746, 0.744, 0.739, 0.737, 0.737, 0.737, 0.735, 0.735, 0.735, 0.735, 0.728, 0.726, 0.724, 0.724, 0.722, 0.719, 0.717, 0.715, 0.713, 0.710, 0.708, 0.702, 0.697, 0.693, 0.686, 0.679, 0.677, 0.670, 0.668, 0.6664, 0.661, 0.659, 0.650, 0.641, 0.621, 0.595, 0.581, 0.566, 0.557, 0.539, 0.523, 0.510, 0.497, 0.494, 0.492, 0.481, 0.470, 0.461, 0.445, 0.437, 0.425, 0.423, 0.410, 0.403, 0.401, 0.396, 0.392, 0.381, 0.379, 0.372, 0.367, 0.365, 0.361, 0.352, 0.347, 0.345, 0 $0.040,\,0.038,\,0.033,\,0.031,\,0.029,\,0.024,\,0.022,\,0.020,\,0.018,\,0.016,\,0.011,\,0.007,\,0.004,\,0.002,\,0.000]$

Thresholds: [0.406, 0.407, 0.408, 0.409, 0.410, 0.411, 0.412, 0.413, 0.414, 0.415, 0.416, 0.417, 0.418, 0.419, 0.420, 0.421, 0.423, 0.424, 0.425, 0.426, 0.427, 0.428, 0.429, 0.430, 0.431, 0.433, 0.434, 0.435, 0.436, 0.437, 0.438, 0.439, 0.440, 0.441, 0.442, 0.443, 0.444, 0.446, 0.447, 0.448, 0.449, 0.450, 0.451, 0.452, 0.452, $\begin{array}{c} 0.452, \ 0.454, \ 0.457, \ 0.458, \ 0.459, \ 0.461, \ 0.463, \ 0.464, \ 0.468, \ 0.469, \ 0.473, \ 0.476, \ 0.477, \ 0.479, \ 0.484, \ 0.489, \ 0.490, \ 0.491, \ 0.492, \ 0.494, \ 0.497, \ 0.498, \ 0.469, \ 0.451, \ 0.452, \ 0.552, \ 0.556$ 0.657, 0.658, 0.659, 0.711, 0.714, 0.720, 0.722, 0.724, 0.725, 0.726, 0.727, 0.728, 0.730]

MODEL EXPLANATION

- The x-axis represents the model's output values of AESO_POWER_DEMAND_LABEL

 The plot is centered on the x-axis at explainer.expected value.

 All values are relative to the model's expected value like a linear model's effects are relative to the intercept.

 The y-axis lists the model's features. By default, the features are ordered by descending importance.

 The importance is calculated over the observations plotted. This is usually different than the importance ordering for the entire dataset.

 In addition to feature importance ordering, the decision plot also supports hierarchical cluster feature ordering and user-defined feature ordering.
- Each observation's prediction is represented by a colored line.
 At the top of the plot, each line strikes the x-axis at its corresponding observation's predicted value. This value determines the color of the line on a
- Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model's base value.
 This shows how each feature contributes to the overall prediction.
 At the bottom of the plot, the observations converge at explainer.expected_value.
 The points in the graph are the values of the feature in the training dataset.

FEATURE SELECTION					
RFE Variable (Most important to Least Important)					
FtMac_Weather	0.008				
Edmonton_Weather	0.005				
Calgary_Weather	0.003				
Best Variable(s) From Genetic Algorithm					
FtMac_Weather					
Calgary_Weather					
Excluded Variable(s)					
Edmonton_Weather					
PCA for Best Variable(s)	Value				
AESO_POWER_DEMAND_LABEL_pca_1	0.139				
AESO_POWER_DEMAND_LABEL_pca_2	-0.990				
AESO_POWER_DEMAND_LABEL_pca_3	0.011				
Calgary_Weather_pca_1	-0.701				
Calgary_Weather_pca_2	-0.090				
Calgary_Weather_pca_3	0.708				
FtMac_Weather_pca_1	-0.700				
FtMac_Weather_pca_2	-0.106				
FtMac_Weather_pca_3	-0.706				
PCA Explained Variance	Value				
PCA1	0.649				
PCA2	0.327				
PCA3	0.024				

- Feature selection shows which variables were more influential than other variables

 It uses two core algorithms: Recursive Feature Elimination (RFE) and Genetic Algorithm to determine influence

 It also performs PCA (principal component analysis) analysis to determine the influence of the best variables in the model

 These results should be used in conjunction with other information as well as theory to establish relevance and confidence in the chosen model formulation

CORRELATED FEATURES					
Feature(s)	Feature(s) Feature(s) Correlation >= 0.100				
O Calgary_Weather	FtMac_Weather	0.929			
1 Edmonton_Weather	FtMac_Weather	0.964			
2 Calgary_Weather	Edmonton_Weather	0.970			
3 Calgary_Weather	Calgary_Weather	NaN			

SUGGESTED CORRELATED FEATURES TO DELETE						
	2 Feature(s) to Delete	Correlation				
	O Calgary_Weather	0.929				
	1 Edmonton_Weather	0.964				

END OF REPORT

MAADSBML Python Library: https://pypi.org/project/maadsbml/
MAADSBML Docker Container For Windows: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics
MAADSBML Docker Container For MAC: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics-arm64
MAADSBML Sample Code and Setup: https://github.com/smaurice101/raspberrypi/tree/main/maadsbml

MAADSBML
Developed and Maintained by: Otics Advanced Analytics, Inc.
Toronto, Ontario, Canada
https://www.otics.ca
Email: support@otics.ca