Problem

Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

$$A \to BAB \mid B \mid \varepsilon$$
$$B \to 00 \mid \varepsilon$$

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Step-by-step solution

Step 1 of 7

Given CFG (Context-free Grammar) is

$$A \to BAB \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

Now, construct an equivalent CFG (Context-free Grammar) in Chomsky normal form.

Chomsky normal form:

A context i- free grammar s in **Chomsky normal form** if every rule is of the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

Here, ais terminal,

A, B and C are variables,

In addition, it permits the rule $S \to \mathcal{E}$, here S is the start variable.

convert the given CFG into an equivalent CFG in Chomsky normal form.

Comment

Step 2 of 7

Let's add a new start variable S_0 and the rule $S_0 \to A$.

Thus the obtained grammar is

$$S_0 \rightarrow A$$

$$A \rightarrow BAB \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

In the addition of new start variable guarantees that the start variable doesn't occur on the right-hand side of a rule.

Comment

Step 3 of 7

Removing all rules that containing ε .

Removing $A \to \varepsilon$ and $B \to \varepsilon$ gives

$$S_0 \to A \mid \varepsilon$$

$$A \rightarrow BAB \mid BA \mid AB \mid A \mid B \mid BB$$

$$B \rightarrow 00$$

The rule $S_0 \to \varepsilon$ is accepted since S_0 is the start variable and that is allowed in Chomsky normal form.

Comments (1)

Step 4 of 7	
Now remove the unit rules.	
Removing $A \rightarrow A$ gives	
$S_0 o A arepsilon$	
$A \rightarrow BAB \mid BA \mid AB \mid B \mid BB$	
$B \to 00$	
Removing $S \to B$ gives	
$S_0 o A arepsilon$	
$A \rightarrow BAB \mid BA \mid AB \mid 00 \mid BB$ $B \rightarrow 00$	
Removing $S_0 \to S$ gives	
$S_0 \rightarrow BAB \mid BA \mid AB \mid 00 \mid BB \mid \varepsilon$	
$A \rightarrow BAB \mid BA \mid AB \mid 00 \mid BB \mid 2$ $A \rightarrow BAB \mid BA \mid AB \mid 00 \mid BB$	
$B \rightarrow 00$	
Comments (2)	
Step 5 of 7	
Now replace ill placed terminals 0 by variable U with new	
$S_0 \to BAB \mid BA \mid AB \mid UU \mid BB \mid \varepsilon$	
$A \rightarrow BAB \mid BA \mid AB \mid UU \mid BB$	
$B \rightarrow UU$	
$U \rightarrow 0$	
Comment	
Step 6 of 7	
Shorten the right-hand side of rules with only 2 variables each.	
To shorten the rules, replace $S_0 \to BAB$ with two rules $S_0 \to BA_1$ and $A_1 \to AB$.	
The rule $A \to BAB$ is replaced by the two rules $A \to BA_2$ and $A_2 \to AB$.	
After replacing these rules, the final Context-free grammar in Chomsky normal form is $G = (V, \Sigma, R, S_0)$,	
Here the set of variables is $V = \{S_0, S, B, U, A_1, A_2\}$,	
the start variable is S_0 .	
The set of terminals is $\Sigma = \{0\}$, and the rules R are given by	
Comment	
Step 7 of 7	
$C \rightarrow DA \mid DA \mid CD \mid IIII \mid DD \mid C$	
$S_0 \to BA_1 \mid BA \mid SB \mid UU \mid BB \mid \varepsilon$ $A \to BA_1 \mid BA \mid SB \mid UU \mid BB$	
$A \to BA_1 \mid BA \mid SB \mid UU \mid BB$ $B \to UU$	
$U \rightarrow 0$	
$A_1 \rightarrow AB$	

This is the final CFG in Chomsky normal form equivalent to the given CFG.

Comments (4)