Trees

What is a Tree?

- T is a **tree** if either
 - T has no nodes, or
 - T is of the form:

where r is a node and T_1 , T_2 , ..., T_k are trees.

Tree Terminology

Parent – The parent of node n is the node directly above in the tree.

Child – The child of node n is the node directly below in the tree.

• If node m is the parent of node n, node n is the child of node m.

Root – The only node in the tree with no parent.

Leaf – A node with no children.

Siblings – Nodes with a common parent.

Ancestor – An ancestor of node n is a node on the path from the root to n.

Descendant – A descendant of node n is a node on the path from n to a leaf.

Subtree – A subtree of node n is a tree that consists of a child (if any) of n and the child's descendants (a tree which is rooted by a child of node n)

4/4/19

3

A Tree – Example

- -Node A has 6 *children*: B, C, D, E, F, G.
- −B, C, H, I, P, Q, K, L, M, N are *leaves* in the tree above.
- -K, L, M are *siblings* since F is parent of all of them.

What is a Tree?

- The root of each sub-tree is said to be *child* of r, and r is the *parent* of each sub-tree's root.
- If a tree is a collection of N nodes, then it has N-1 edges. Why?
- A path from node n₁ to n_k is defined as a sequence of nodes n₁,n₂, ...,n_k such that n_i is parent of n_{i+1} (1 ≤ i < k)
 - There is a path from every node to itself.
 - There is exactly one path from the root to each node. Why?

Level of a node

Level – The level of node n is the number of nodes on the path from root to node n.

Definition: *The level of node n in a tree T*

- If n is the root of T, the level of n is 1.
- If n is not the root of T, its level is 1 greater than the level of its parent.

Height of A Tree

Height – number of nodes on **longest path** from the root to any leaf.

- The height of a tree T in terms of the levels of its nodes is defined as:
 - If T is empty, its height is 0
 - If T is not empty, its height is equal to the maximum level of its nodes.
- Or, the height of a tree T can be defined as recursively as:
 - If T is empty, its height is 0.
 - If T is non-empty tree, then since T is of the form:

 $height(T) = 1 + max\{height(T_1), height(T_2), ..., height(T_k)\}$

Binary Tree

- A binary tree T is a set of nodes with the following properties:
 - The set can be empty.
 - Otherwise, the set is partitioned into three disjoint subsets:
 - a tree consists of a distinguished node r, called root, and
 - two possibly empty sets are binary tree, called left and right subtrees of r.
- T is a binary tree if either
 - T has no nodes, or
 - T is of the form:

where r is a node and T_L and T_R are binary trees.

Binary Tree Terminology

Left Child – The left child of node n is a node directly below and to the left of node n in a binary tree.

Right Child – The right child of node n is a node directly below and to the right of node n in a binary tree.

Left Subtree – In a binary tree, the left subtree of node n is the left child (if any) of node n plus its descendants.

Right Subtree – In a binary tree, the right subtree of node n is the right child (if any) of node n plus its descendants.

Binary Tree -- Example

- A is the root.
- B is left child of A, C is right child of A.
- D doesn't have a right child.
- H doesn't have a left child.
- B, F, G and I are leaves.

Binary Tree – Representing Algebraic Expressions

Height of Binary Tree

- The height of a binary tree T can be defined as recursively as:
 - If T is empty, its height is 0.
 - If T is non-empty tree, then since T is of the form ...

... height of T is 1 greater than height of its root's taller subtree; ie.

height(T) = $1 + \max\{\text{height}(T_L), \text{height}(T_R)\}$

Height of Binary Tree (cont.)

Binary trees with the same nodes but different heights

Number of Binary trees with Same # of Nodes

n=0 → empty tree

$$n=1 \rightarrow$$
 (1 tree)

$$n=2 \rightarrow$$
 (2 trees)

$$n=3 \Rightarrow$$
 (5 trees)

n is even
$$\rightarrow NumBT(N) = 2 \sum_{i=0}^{(n-1)/2} (NumBT(i)NumBT(n-i-1))$$

n is odd →
$$NumBT(N) = 2 \sum_{i=0}^{((n-1)/2)-1} (NumBT(i)NumBT(n-i-1)) + NumBT((n-1)/2)NumBT((n-1)/2)$$

Full Binary Tree

- In a full binary tree of height h, all nodes that are at a level less than h
 have two children each.
- Each node in a full binary tree has left and right subtrees of the same height.
- Among binary trees of height h, a full binary tree has as many leaves as possible, and leaves all are at level h.
- A full binary tree has no missing nodes.
- Recursive definition of full binary tree:
 - If T is empty, T is a full binary tree of height 0.
 - If T is not empty and has height h>0, T is a full binary tree if its root's subtrees are both full binary trees of height h-1.

4/4/19 15

Full Binary Tree – Example

A full binary tree of height 3

Complete Binary Tree

- A complete binary tree of height h is a binary tree that is full down to level h-1, with level h filled in from left to right.
- A binary tree T of height h is complete if
 - 1. All nodes at level h-2 and above have two children each, and
 - 2. When a node at level h-1 has children, all nodes to its left at the same level have two children each, and
 - 3. When a node at level h-1 has one child, it is a left child.
- A full binary tree is a complete binary tree.

Complete Binary Tree – Example

Balanced Binary Tree

• A binary tree is **balanced** (or **height balanced**), if the height of any node's right subtree and left subtree **differ no more** than 1.

A complete binary tree is a balanced tree. Why?

- Later, we look at other height balanced trees.
 - AVL trees
 - Red-Black trees,

Maximum and Minimum Heights of a Binary Tree

- Efficiency of most binary tree operations depends on tree height.
- E.g. maximum number of key comparisons for retrieval, deletion, and insertion operations for BSTs is the height of the tree.
- The maximum of height of a binary tree with n nodes is n. How?
- Each level of a minimum height tree, except the last level, must contain as many nodes as possible.
 - Should the tree be a Complete Binary Tree?

Maximum and Minimum Heights of a Binary Tree

A maximum-height binary tree with seven nodes

Some binary trees of height 3

21

Counting the nodes in a full binary tree of height h

Level	Number of nodes at
	this level

Number of nodes at this and previous levels

$$1 = 2^{\circ}$$

$$1 = 2^1 - 1$$

$$2 = 2^{1}$$

$$3 = 2^2 - 1$$

$$4 = 2^2$$

$$7 = 2^3 - 1$$

$$8 = 2^3$$

$$15 = 2^4 - 1$$

3

h
$$2^{h-1}$$

$$2^{h} - 1$$

Some Height Theorems

Theorem: A full binary tree of height h≥0 has 2^h-1 nodes.

 The maximum number of nodes that a binary tree of height h can have is 2^h-1.

 We cannot insert a new node into a full binary tree without increasing its height.

Some Height Theorems

Theorem 10-4: The minimum height of a binary tree with n nodes is $\lceil \log_2(n+1) \rceil$.

Proof: Let h be the smallest integer such that $n \le 2^h-1$. We can establish following facts:

Fact 1 - A binary tree whose height is $\leq h-1$ has < n nodes.

Otherwise h cannot be smallest integer in our assumption.

Fact 2 – There exists a complete binary tree of height h that has exactly n nodes.

- A full binary tree of height h-1 has 2^{h-1}-1 nodes.
- Since a binary tree of height h cannot have more than 2^h-1 nodes.
- At level h, we will reach n nodes.

Fact 3 – The minimum height of a binary tree with n nodes is the smallest integer h such that $n \le 2^h-1$.

So,
$$\rightarrow$$
 2^{h-1}-1 < n \leq 2^h-1

→
$$2^{h-1}$$
 < $n+1 \le 2^h$

$$\rightarrow$$
 h-1 < log₂(n+1) \leq h

Thus, \rightarrow h = $\lceil \log_2(n+1) \rceil$ is the minimum height of a binary tree with n nodes.

UML Diagram for BinaryTree ADT

• What is an **ADT**?

Binary tree root left subtree right subtree createTree() destroyBinaryTree() isEmpty() getRootData() setRootData() attachRight() attachLeftSubtree() attachRightSubtree() detachLeftSubtree() detachRightSubtree() getLeftSubtree() getRightSubtree() preorderTraverse() inorderTraverse() postorderTraverse()

25

An Array-Based Implementation of Binary Trees

```
public class BinaryTree <Value>
  private class Node
    private Value val;
    private int left, right;
    public Node (Value val)
        this.val = val;
        this.left = this.right = -1;
  // An array of tree nodes
  Node[MAX NODES] tree;
  int root;
  int free;
      // methods
```

An Array-Based Implementation (cont.)

(b)

- A *free list* keeps track of available nodes.
- To insert a new node into the tree, we first obtain an available node from the free list.
- When we delete a node from the tree, we have to place into the free list so that we can use it later.

(0)		CIEE		
	item	leftChild	rightChild	root
0	Jane	1	2	0
1	Bob	3	4	free
2	Tom	5	-1	6
3	Alan	-1	-1	
4	Ellen	-1	-1	
5	Nancy	-1	-1	
6	?	-1	7	
7	?	-1	8	
8	?	-1	9	
•	•	•	•	Free list
•	•	•	•	
				丿

tree

An Array-Based Representation of a Complete Binary Tree

- If we know that our binary tree is a **complete binary tree**, we can use a simpler array-based representation for complete binary trees
 - without using leftChild, rightChild links
- We can number the nodes level by level, and left to right (starting from 0, the root will be 0). If a node is numbered as i, in the ith location of the array, tree[i], contains this node without links.
- Using these numbers we can find leftChild, rightChild, and parent of a node i.

The left child (if it exists) of node i is tree[2*i+1]

The right child (if it exists) of node i is tree [2*i+2]

The parent (if it exists) of node i is tree[(i-1)/2]

An Array-Based Representation of a Complete Binary Tree (cont.)

0	Jane
1	Bob
2	Tom
3	Alan
4 5 6	Ellen
5	Nancy
6	
7	

Linked Implementation of Binary Trees

Linked Implementation of a Binary Tree Node

```
public class BinaryTree <Value>
  private class Node
      private Value val;
      private Node left, right;
      public Node(Value val)
         this.val = val;
         this.left= this.right = null;
  private Node root;
             // methods
```

Binary tree root left subtree right subtree createTree() destroyBinaryTree() isEmpty() getRootData() setRootData() attachRight() attachLeftSubtree() attachRightSubtree() detachLeftSubtree() detachRightSubtree() getLeftSubtree() getRightSubtree() preorderTraverse() inorderTraverse()

postorderTraverse()

Binary Tree Traversals

Preorder Traversal

The node is visited before its left and right subtrees,

Postorder Traversal

The node is visited after both subtrees.

Inorder Traversal

- The node is visited between the subtrees,
- Visit left subtree, visit the node, and visit the right subtree.

Binary Tree Traversals

(a) Preorder: 60, 20, 10, 40, 30, 50, 70

(b) Inorder: 10, 20, 30, 40, 50, 60, 70

(c) Postorder: 10, 30, 50, 40, 20, 70, 60

34

(Numbers beside nodes indicate traversal order.)

Complexity of Traversals

What is the complexity of each traversal type?

- Preorder traversal
- Postorder traversal
- Inorder traversal