Practical 11

Question 1. Find the propensity of alpha helices using the following sequence and secondary structure assignments.

Solution. Propensities, one for each type of secondary structure, are obtained from statistical analysis of proteins of known secondary structure, as ratio of the fractional occurrence of the residue in secondary structure elements of a given type to the fractional occurrence in all structures. The formula for propensity is:

(1)
$$propensity_{\alpha}(i) = \frac{\%_of_residue_in_\alpha_helix}{\%_of_all_residue_in_\alpha_helix}$$

(2)
$$\%_of_residue_in_\alpha_helix = \frac{n_{\alpha}(i)}{N(i)}$$

(3)
$$\%_of_all_residue_in_\alpha_helix = \frac{n_{\alpha}}{N}$$

```
\begin{array}{ll} propensity_{\alpha}(i) = \text{propensity of amino acid i in given conformation alpha} \\ n_{\alpha}(i) = \text{number of residues of type i in } \alpha - helix \\ N(i) = \text{number of residues of type i in the whole dataset} \\ n_{\alpha} = \text{total number of residues in a-helix} \\ N = \text{total number of residues in the whole dataset} \end{array}
```

```
16 amino_acids = list(amino_acid_list.keys())
17
18 amino_helix = [0 for i in range(20)]
19 total_seq = [0 for i in range(20)]
20 propensity = [0 for i in range(20)]
21
22 total_helix = type.count("H")
23 total_data = len(type)
24
25 # Computing the frequency of each amino acid and their corresponding helix
     structure
26 for i in range(len(seq)):
      total_seq[amino_acid_list[seq[i]]] += 1
      if type_seq[i] == "H":
28
          amino_helix[amino_acid_list[seq[i]]] += 1
29
30
  # Calculating the propensity
  for i in range(len(propensity)):
32
      numerator = amino_helix[i] / total_seq[i]
33
34
      denominator = total_helix / total_data
35
      propensity[i] = numerator / denominator
37 data = {"Amino Acid Symbol": amino_acids, "Propensity": propensity}
38 import pandas as pd
39 df = pd.DataFrame(data)
```

LISTING 2. Code to compute the propensity of alpha helices

Amino Acid Symbol	Propensity	Amino Acid Symbol	Propensity
Α	1.551020	L	1.224490
R	0.680272	κ	0.000000
N	1.360544	М	1.530612
D	0.000000	F	1.020408
С	1.020408	P	0.226757
Q	0.000000	S	1.360544
E	0.408163	Т	0.765306
G	1.061224	w	1.113173
н	0.874636	Υ	0.583090
1	1.200480	v	0.583090

(A) Amino acids 1-10

(B) Amino acids 10-20

Figure 1. Propensity of alpha helices

Amino acid	Propensity	Amino acid	Propensity
A	1.551020	L	1.224490
R	0.680272	K	0.000000
N	1.360544	M	1.530612
D	0.000000	F	1.020408
С	1.020408	P	0.226757
Q	0.000000	S	1.360544
Е	0.408163	Т	0.765306
G	1.061224	W	1.113173
Н	0.874636	Y	0.583090
Ι	1.200480	V	0.583090

Question 2. Find the propensity of alpha helices manually for the sequence in question 1.

Solution. The following images show the manual calculation of propensity of α helices. In the manual manner, I have only shown the calculation of a few amino acids. The values match those obtained from the code. The same way, propensity can be calculated for all the 20 amino acids.

Proposite 507	you	(c) Johnsty and the	Por Alarine,
Amino Acid			$P[A] = \frac{n_x[A]/N[A)}{n_x/N} = \frac{19/25}{98/200} = 1.55$
1 Find the preque	(1) Find the frequency of helix sec structure for each amino acid (3) Length of total see = 200 [N]		$P[R] = \frac{3/9}{98/200} = [0.68]$
(9) Length of helix 1	10 STANSO	oc surph God	$P[N] = \frac{2/3}{98/300} = 1.36$
Amino Acid	frequency in sep entirety [N(i)]	Frequency in X helix structure [nex (1)]	$-\frac{9600}{n_{\infty}(N)} = \frac{0/5}{98/200} = 0$
R N	9 Anomarowa 3	2	
_ D	4	0 2	$P[C] = \frac{n_{\lambda}[C]/N[C]}{n_{\lambda}/N} = \frac{2/4}{q_{\lambda}/200} = \boxed{1.02}$
T E G	5 25	13	$P(E) = \frac{n_{\kappa}(E)}{n_{\kappa}/N} = \frac{1/5}{98/200} = 0.408$
I A	17	10	$P[A] = \frac{n_{\kappa}[6]/N[6]}{n_{\kappa}/N} = \frac{13/25}{98/500} = [1.06]$
K	4	3	Rest can be calculated manually same way.
F	20	1	P(i) = nali]/N(i)
T W	8	3	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 7	2	
		CONTRACTOR OF THE PARTY OF THE	

Figure 2. Frequency table (left) and Propensity calculation (right)

Question 3. Using the rules for helices and strands, identify the helical and strand segments in the following sequence

```
seq =

"KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWCN
DGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQAWIRGCRL"
```

LISTING 3. Given sequence input

Solution. The different stages of code to compute the above are as follows:

```
1 \text{ seq} =
2 "KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWCNDGR
   TPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQAWIRGCRL"
5 chou_alpha =
  {"E": 1, "A": 1, "L": 1, "H": 1, "M": 1,
   "Q": 1, "W": 1, "V": 1, "F": 1, "K": 0.5,
   "I":0.5, "D": 0, "T": 0, "S": 0, "R": 0,
   "C": 0, "N":-1, "Y":-1, "P":-1, "G":-1}
10 chou_alpha_val =
  {"E": 1.53, "A": 1.45, "L": 1.34, "H": 1.24, "M": 1.20,
   "Q": 1.17, "W": 1.14, "V": 1.14, "F": 1.12, "K": 1.07,
12
   "I": 1.00, "D": 0.98, "T": 0.82, "S": 0.79, "R": 0.79,
13
   "C": 0.77, "N": 0.73, "Y": 0.61, "P": 0.59, "G": 0.53}
14
15
16 min_amino_len = 6
17
18 chou_beta =
  {"M": 1, "V": 1, "I": 1, "C": 1, "Y": 1,
   "F": 1, "Q": 1, "L": 1, "T": 1, "W": 1,
20
   "A":0.5, "R": 0, "G": 0, "D": 0, "K":-1,
21
   "S":-1, "H":-1, "N":-1, "P":-1, "E":-1}
23 chou_beta_val =
  {"M": 1.67, "V": 1.65, "I": 1.60, "C": 1.30, "Y": 1.29,
   "F": 1.28, "Q": 1.23, "L": 1.22, "T": 1.20, "W": 1.19,
   "A": 0.97, "R": 0.90, "G": 0.81, "D": 0.80, "K": 0.74,
26
   "S": 0.72, "H": 0.71, "N": 0.65, "P": 0.62, "E": 0.26}
27
28
29 min_beta_len = 5
30
  type_sec_alpha = ["-"]*len(seq)
32 type_sec_beta = ["-"]*len(seq)
```

LISTING 4. Storing the Chou-Fasman parameters

Rules for identifying secondary structures

- Rules for identifying α helices: The values of the six parameters are given. Scan for window of 6 residues, where score ≥ 4 , i.e. at least four helix formers and not more than one helix breaker; extend the length in both directions until 4-residue window has the average propensity; 1; continue the search and locate all helical regions in the sequence.
- Rules for identifying β strands: The values of the six parameters are given. Scan for window of 5 residues, where score ≥ 3 , i.e. at least three formers and not more than one strand breaker; extend the length in both directions until 3-residue window has the average propensity; 1; continue the search and locate all strand regions in the sequence.
- Conflict situation: A region containing overlapping helical and strand assignments is considered as a helix (or strand) if average propensity of α -helix (β -strand) is greater than that of β -strand (α -helix)

```
extend_alpha(type_sec, index):
       for i in range(index+3, 3, -1):
2
           # print(i, seg[i-4:i])
3
           extend_score = 0
4
           temp\_seq = seq[i-4:i]
5
           for a in range(len(temp_seq)):
6
7
               extend_score += chou_alpha_val[temp_seq[a]]
8
           # print(temp_seq, extend_score)
           if extend_score >= 4:
9
10
               type_sec[i-4] = "H"
11
12
               break
13
       for i in range(index+min_amino_len-4, len(seq)-3):
14
           # print(i, seq[i:i+4])
15
           extend_score = 0
16
           temp_seq = seq[i:i+4]
17
18
           for a in range(len(temp_seq)):
               extend_score += chou_alpha_val[temp_seq[a]]
19
           # print(temp_seq, extend_score)
20
21
           if extend_score >= 4:
               type_sec[i+3] = "H"
22
23
           else:
24
               break
25
       return type_sec
26
27
      extend_beta(type_sec, index):
28
       for i in range(index+3, 2, -1):
29
           # print(i, seq[i-4:i])
30
           extend_score = 0
31
           temp_seq = seq[i-3:i]
32
           for a in range(len(temp_seq)):
33
               extend_score += chou_beta_val[temp_seq[a]]
34
           # print(temp_seq, extend_score)
35
           if extend_score >= 3:
36
               type_sec[i-3] = "B
37
38
           else:
39
               break
40
       for i in range(index+min_beta_len-3, len(seq)-2):
41
           # print(i, seq[i:i+4])
42
           extend_score = 0
43
           temp_seq = seq[i:i+3]
44
           for a in range(len(temp_seq)):
45
               extend_score += chou_beta_val[temp_seq[a]]
46
           # print(temp_seq, extend_score)
47
           if extend_score >= 3:
48
49
               type_sec[i+2] = "B"
50
           else:
51
52
      return type_sec
53
```

LISTING 5. Extend functions for α helices and β sheets

```
while(j<len(seq)-min_amino_len+1):</pre>
      temp_seq = seq[j:j+min_amino_len]
      temp\_score = 0
4
      for k in range(len(temp_seq)):
5
           temp_score += chou_alpha[temp_seq[k]]
      if temp_score >= 4:
6
7
           for l in range(j, j+min_amino_len):
               type_sec_alpha[1] = "H"
8
9
           type_sec_alpha = extend_alpha(type_sec_alpha, j)
10
           j += min_amino_len
11
           continue
12
      j += 1
13
  while(j<len(seq)-min_beta_len+1):</pre>
      temp_seq = seq[j:j+min_beta_len]
14
      temp\_score = 0
15
16
      for k in range(len(temp_seq)):
           temp_score += chou_beta[temp_seq[k]]
17
18
      if temp_score >= 3:
           for l in range(j, j+min_beta_len):
19
               type_sec_beta[1] = "B"
20
21
           type_sec_beta = extend_beta(type_sec_beta, j)
           j += min_beta_len
22
23
           continue
      j += 1
24
25
26 type_final = ""
27 segment = ""
28 start_segment = 0
  for i in range(len(seq)):
      if type_sec_alpha[i] == "H" and type_sec_beta[i] == "B":
30
31
           segment = segment + seq[i]
      else:
32
33
           score_a = 0
           score_b = 0
34
35
           for k in range(len(segment)):
               score_a += chou_alpha_val[segment[k]]
36
               score_b += chou_beta_val[segment[k]]
37
38
           if score_a >= score_b:
               type_final = type_final + "H"*len(segment)
39
40
           else:
               type_final = type_final + "B"*len(segment)
41
           segment = ""
42
43
           if type_sec_alpha[i] == "H" and type_sec_beta[i] != "B":
44
               type_final = type_final + "H"
46
           elif type_sec_alpha[i] != "H" and type_sec_beta[i] ==
47
               type_final = type_final + "B"
48
49
           else:
50
51
               type_final = type_final + "-"
52
53 print(seq)
54 print(type_final)
```

LISTING 6. Applying individual rules and resolving conflict situations

First line of code output is the given sequence. Second line is the positions of α helices obeying only rules of α helices. Third line is the positions of β helices obeying only rules of β strands. Fourth line is obtained after addressing conflicts.

α helix regions	positions	
ELAAAMKRH	(7,8,9,10,11,12,13,14,15)	
KFESNF	(33,34,35,36,37,38)	
MNAWVAWRN	(105,106,107,108,109,110,111,112,113)	
β helix regions	positions	
KVFGRC	(1,2,3,4,5,6)	
NWVCAA	(27,28,29,30,31,32)	
TDYGILQIN	(51,52,53,54,55,56,57,58,59)	
GTDVQAWIRGCRL	(117,118,119,120,121,122,123,124,125,126,127,128,129)	

Question 4. Verify one of the helical and strand segments, manually.

Solution. The following images show the manual verification of one of α helix and beta strand segments. In the manual manner, I have only shown the calculation of one of each. The values match those obtained from the code.

FIGURE 3. Verification of β strand

Helical strands

Position (5-15) was classified helix (before the conflict for a and B segments were resolved).

First checking 6 segment RCELAA

RCELAA $\Rightarrow 0 + 0 + 1 + 1 + 1 + 1 = 4$ (Using Chou-Fagman parameters) Now, take last 4 incrementally hill >4.

ELAA \Rightarrow 1.53 + 1.34 + 1.45 + 1.45 = 5.77 74 LAAA \Rightarrow 1.34 + 1.45 + 1.45 = 5.69 > 4 AAAM \Rightarrow 1.45 + 1.45 + 1.20 = 5.55 > 4 AAMK \Rightarrow 1.45 + 1.45 + 1.20 + 1.07 = 5.17 > 4 AMKR \Rightarrow 1.45 + 1.20 + 1.07 + 0.79 = 4.51 > 9 MKRH \Rightarrow 1.20 + 1.07 + 0.79 + 1.24 = 4.3 \Rightarrow 6 KRHG \Rightarrow 1.07 + 0.78 + 1.24 + 0.53 = 3.63 < 9

Since [KRMG gives < 4], we terminate at

=) RCELARAMKRH is holical street segment Cwithout considering conflicts)

I Extending backward

GRCF => 0.53 + 0.79 + 0.77 + 1:53 = [3.624] => No backward extension.