

Computer Graphics Seminar Real-time Rendering of Refractive Objects in Participating Media

Michael Pfeuti Universität Bern

b UNIVERSITÄT BERN

Contents

- > Goal
- > Reference Rendering Pipeline
- Adaptive Rendering Pipeline
- Evaluation
- Conclusion and Future Work

$u^{^{\scriptscriptstyle\mathsf{b}}}$

b UNIVERSITÄT BERN

Contents

- > Goal
- > Reference Rendering Pipeline
- > Adaptive Rendering Pipeline
- > Evaluation
- Conclusion and Future Work

Basis

b UNIVERSITÄT BERN

ACM SIGGRAPH 2008 Paper

Interactive Relighting Of Dynamic Refractive Objects

by

Xin Sun, Kun Zhou, Eric Stollnitz, Jiaoying Shi, and Baining Guo

Goal

UNIVERSITÄT BERN

> Demo

> Our goal:

- Reimplementation
- Acceleration of pipeline

$u^{\scriptscriptstyle \mathsf{b}}$

b UNIVERSITÄT BERN

Contents

- > Goal
- > Reference Rendering Pipeline
- > Adaptive Rendering Pipeline
- > Evaluation
- Conclusion and Future Work

UNIVERSITÄT BERN

Reference Pipeline

- Main idea:
 - Photon Marching
 - Store data in 3D arrays (voxel grids)
 - GPU implementation
- Data:
 - Scene (refraction indices/model, participating medium coefficients)
 - Illumination (radiance)
- Voxel grids cover participating media.

Voxel Grid

$oldsymbol{u}^{^{b}}$

8

UNIVERSITÄT

Reference Rendering Pipeline Passes

$u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT BERN

Reference Rendering Pipeline Passes

- Voxelization:
 - Build voxel grids
 - Model represented through refraction indices

Model Voxel Grid

u^{b}

UNIVERSITÄT

Reference Rendering Pipeline Passes

- > Octree:
 - Acceleration structure for photon marching

$u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT

Reference Rendering Pipeline Passes

> Photon Generation:

$u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT BERN

Reference Rendering Pipeline Passes

- > Photon Marching:
 - Move photons stepwise
 - Thread for each photon
 - → atomic write

b UNIVERSITÄ

Reference Rendering Pipeline Passes

- Viewing Pass:
 - Ray marching
 - Radiance lookup after each step

$u^{\scriptscriptstyle \mathsf{b}}$

Contents

b UNIVERSITÄT BERN

- > Goal
- > Reference Rendering Pipeline
- Adaptive Rendering Pipeline
- > Evaluation
- Conclusion and Future Work

UNIVERSITÄT BERN

Adaptive Rendering Pipeline

- > Main idea: Reduce photons to accelerate pipeline.
- Shoot less photons through homogeneous regions.

universität

Adaptive Rendering Pipeline

> This means distributing the photons **non-uniformly**.

universităt

Adaptive Rendering Pipeline

This means distributing the photons non-uniformly.

We substitute the Photon Generation and Tracing pass.

universität

Adaptive Rendering Pipeline

> Adaptive photon tracing

Model → Voxelization → Octree

D UNIVERSITÄT BERN

Adaptive Rendering Pipeline

- > Adaptive photon tracing
 - Phase 1: Determine distribution

b UNIVERSITÄT BERN

Adaptive Rendering Pipeline

- > Adaptive photon tracing
 - Phase 1: Determine distribution
 - Phase 2: Compute illumination in voxel grid

16. Dezember 2009

20

Adaptive Rendering Pipeline

- > Adaptive photon tracing
 - Phase 1: Determine distribution
 - Phase 2: Compute illumination in voxel grid
 - Reconstruction: Compute a smooth radiance distribution

b UNIVERSITÄT BERN

- > Find in-/homogeneous regions.
- Shoot few "pilot" photons (~4000 photons)
- Select voxels for tight sampling

Pilot photon result

b Universität Bern

- > Find in-/homogeneous regions.
- Shoot few "pilot" photons (~4000 photons)
- Select voxels for tight sampling
 - Gradient threshold for selecting voxel with larger gradients

Selection in reference image

UNIVERSITÄT Bern

- > Find in-/homogeneous regions.
- Shoot few "pilot" photons (~4000 photons)
- Select voxels for tight sampling
 - Gradient threshold for selecting voxel with larger gradients
 - Luminance threshold for selecting voxels in shadow

Selection in reference image

b Universität Bern

- > Find in-/homogeneous regions.
- Shoot few "pilot" photons (~4000 photons)
- Select voxels for tight sampling
 - Gradient threshold for selecting voxel with larger gradients
 - Luminance threshold for selecting voxels in shadow
- Pilot Photon Marching:
 - Store origin data per voxel

Selection in reference image

U b UNIVERSITĂT

Phase 1 (cont.)

> Compute probability density function for photon distribution.

Origin Data for each Voxel

UNIVERSITÄT

Phase 1 (cont.)

> Compute probability density function for photon distribution.

Phase 2

UNIVERSITÄT BERN

Photon generation according to the photon distribution from Phase 1

- > Photon marching as in reference except:
 - Collect photon count per voxel
 - Collect average photon weight per voxel (from Monte-Carlo Integration)

u^{b}

UNIVERSITÄT BERN

Reconstruction

- Radiance voxel grid needs filtering.
- Tightly sampled regions
 - Hardly any filtering necessary
- Sparsely sampled regions
 - Much filtering needed

Noise in Voxel Grid

29

Reconstruction

Simple approaches do not work (constant filter radius, k-NN).

1-NN

b UNIVERSITÄT BERN

31

Advanced Filtering

- > We built a new filter:
 - Based on average photon weight
 - Center-surround filter

UNIVERSITÄT

Advanced Filtering

- We built a new filter:
 - Based on average photon weight
 - Center-surround filter

- > Photon Weight Filter:
 - When photon weight
 - Large → Sparse sampled region → large filter radius
 - Small → Tight sampled region → small filter radius
 - Linear scaling of weight determines filter radius

$$radius = \alpha \cdot photon_weight$$

UNIVERSITÄT BERN

Center-Surround Filter

- > Compares two filter radii
 - Increase radius as long as difference decreases
 - Stop at increase

$oldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

Combination

UNIVERSITÄT BERN

- Neither on its own is sufficient
 - Photon-Weight: Too large radii in sparse sampled regions
 - Center-Surround: Too large radii in tight sampled regions

Photon-Weight

Center-Surround

$u^{\scriptscriptstyle \mathsf{D}}$

UNIVERSITÄT BERN

Combination

Take minimum of the two.

Combination

Photon-Weight

Center-Surround

$u^{^{\scriptscriptstyle \mathsf{b}}}$

Contents

b UNIVERSITÄT BERN

- > Goal
- > Reference Rendering Pipeline
- > Adaptive Rendering Pipeline
- > Evaluation
- Conclusion and Future Work

b Universität Bern

Evaluation

- > Hardware:
 - nVdidia GTX 260, 896MB RAM
- > General Settings:
 - 128x128x128 voxel grids
 - 800x600 images
- > Adaptive Pipeline Setting:
 - ~4000 pilot photons

UNIVERSITÄT RERN

Sphere Scene

Reference ~122'000 photons ~2.6 FPS Adaptive ~50'000 photons ~2.5 FPS

UNIVERSITÄT Bern

Cube Scene

Reference ~125'000 photons ~2.2 FPS

Adaptive ~46'000 photons ~2.2 FPS

UNIVERSITÄT RERN

Armadillo Scene

Reference ~106'000 photons ~2.1 FPS

Adaptive ~49'000 photons ~2.0 FPS

UNIVERSITÄT BERN

Armadillo Close-Ups

Reference

Adaptive

UNIVERSITÄT

Performance

Sphere Scene

	Reference	Adaptive
Voxelization	25 ms	25 ms
Octree	5 ms	5 ms
Photon Generation	< 1 ms	< 1 ms
Photon Marching	110 ms	10 ms
Photon Distribution	-	5 ms
Photon Generation	-	2 ms
Photon Marching	-	85 ms
Filtering	-	30 ms
Viewing Pass (+copy)	189 (+ 44) ms	189 (+ 44) ms
	373 ms	395 ms

47 ms overhead !!!

u^{b}

Problem

Half of the photons does not lead to a photon marching twice as fast.

> Reason:

- Atomic conflicts in photon marching (we trace the photon that are most likely to cause collisions)
- Collection of additional data (photon weight, photon count)
- Additional passes take more time than we could save with photon reduction
 - Adaptive pipeline is faster when reference pipeline uses
 >200'000 photons

$u^{\scriptscriptstyle \mathsf{b}}$

b UNIVERSITÄT BERN

Contents

- > Goal
- > Reference Rendering Pipeline
- > Adaptive Rendering Pipeline
- > Evaluation
- Conclusion and Future Work

$u^{^{b}}$

Conclusion

- Implemented Sun et al. pipeline
- > Extended Sun et al. pipeline with adaptive photon sampling
- We were able to halve the number of photons with equal quality.
- We were **not** able to accelerate the pipeline
 - Additional passes are too costly
 - Photon marching more expensive than expected

u^{b}

UNIVERSITÄT Bern

Future Work

- > Overhead minimization
- Atomic conflict reduction
- > Automatic threshold adjustment
- Management of large scenes
- > Multiple scattering, thin-film interference, ...

Thin-film interference

Thank you for your attention!

Questions?

u^{b}

UNIVERSITÄT Bern

Octree

16. Dezember 2009

48

Photon Marching

UNIVERSITÄT BERN

> Photon paths are computed with

$$x_{i+1} = x_i + \frac{\Delta s}{n} v_i$$

$$v_{i+1} = v_i + \Delta s \nabla n$$

- > Arbitrary step size Δs (in our case given by octree)
- Formulas can be derived from the eikonal equation and the transport equation from geometric optics.

Photon Marching

- > Update the radiance through every voxel a photon passed.
- Attenuate photon energy after each step (=> absorption).

$u^{\scriptscriptstyle \mathsf{b}}$

b UNIVERSITÄT BERN

Viewing Pass

- Shoot viewing rays and march as photons through grid.
- Evaluate scattering after each step (=> single scattering).

Light

Performance (cont.)

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Performance and Sampling

- > We use Hammersley sequence for sampling
 - Good visual results
 - Good performance
- Visual:
 - Hammersley shows hardly any noise

UNIVERSITÄT BERN

Performance and Sampling (cont.)

> Performance:

- Good trade-off between
 - Memory Access Pattern
 - Atomic Conflicts

UNIVERSITÄT **BERN**

Performance and Sampling (cont.)

