Fourier Dönüşümü Özellikleri

Kaynak: Bilgisayar Uygulamalarıyla Sayısal İşaret İşleme, Ahmet H. Kayran ve Ender M. Ekşioğlu, Birsen Yayınevi, 2004.

Tablo 1 Fourier Dönüşümü (İntegrali) Özellikleri

1	Doğrusallık	$\mathscr{F}[ax(t) + by(t)] = aX(\omega) + bY(\omega)$
2	Frekans kaydırma	$\mathscr{F}[x(t)e^{j\omega_0 t}] = X(\omega - \omega_0)$
3	Zaman kaydırma	$\mathscr{F}[x(t-t_0)] = X(\omega)e^{-j\omega t_0}$
4	Zaman türevi	$\mathscr{F}\left[\frac{dx(t)}{dt}\right] = j\omega X(\omega)$
5	Zaman integrali	$\mathscr{F}\left[\int_{-\infty}^{t} x(\tau)d\tau\right] = \frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$
6	Zaman domeninde	$\mathscr{F}[x(t) * y(t)] = X(\omega)Y(\omega)$
	konvolüsyon	$x(t) * y(t) \triangleq \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$
7	Frekans domeninde	$\mathscr{F}[X(\omega) * Y(\omega)] = x(t)y(t)$
	konvolüsyon	$X(\omega) * Y(\omega) \triangleq \int_{-\infty}^{\infty} X(\alpha)Y(\omega - \alpha)d\alpha$
8	Ölçekleme	$\mathscr{F}[x(at)] = \frac{1}{ a } X(\frac{\omega}{a}); \text{ gerçel } a \text{ için}$

Tablo 1 (devam)

	Table I (devail)				
9	Parseval Teoremi	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$			
10	Dualite (Zaman-Frekans)	$\mathscr{F}[X(t)] = 2\pi x(-\omega)$			
11	Korelasyon	$\mathscr{F}\left[\int_{-\infty}^{\infty} x(t)y(t+\tau)dt\right] =$			
		$\mathscr{F}[x(t) * y(-t)] = X(\omega)Y^*(\omega)$			
12	Karmaşık eşlenik	$\mathscr{F}[x^*(t)] = X^*(-\omega)$			
13	Genlik modülasyonu	$\mathscr{F}[x(t)\cos\omega_0 t] = \frac{1}{2}X(\omega + \omega_0) + \frac{1}{2}X(\omega - \omega_0)$			
14	Simetri (Çift-Tek)	$\mathscr{F}[x_{ ext{qift}}(t)] = X_{ ext{qift}}(\omega)$			
		$\mathscr{F}[x_{\mathrm{tek}}(t)] = X_{\mathrm{tek}}(\omega)$			
15	Frekans türevi	$\mathscr{F}[tx(t)] = j\frac{dX(\omega)}{d\omega}$			
16	Gerçel $x(t)$	$X(\omega) = X^*(-\omega)$			
		$Re[X(\omega)] = Re[X(-\omega)]$			
		$Im[X(\omega)] = -Im[X(-\omega)]$			
		$ X(\omega) = X(-\omega) $			
		$\angle X(\omega) = -\angle X(-\omega)$			

 ${\bf Tablo}~{\bf 2}~$ Bazı önemli Fourier dönüşümleri

1	İmpuls	$x(t) = A\delta(t)$	$X(\omega)$ A $X(\omega) = A$
2	Sabit	x(t) = A	$X(\omega) = 2\pi A \delta(\omega)$
3	Kosinüs	$x(t) = \cos(\omega_0 t)$	$X(\omega) = \pi \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right)$
4	Sinüs	$x(t) = \sin(\omega_0 t)$	$X(\omega) = j\pi \left(\delta(\omega + \omega_0) - \delta(\omega - \omega_0)\right)$
5	Basamak		$jX(\omega)$
		$x(t) = u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$	$X(\omega) = \pi \delta(\omega) + \frac{1}{j\omega}$

6	Kompleks üstel	$x(t) = e^{j\omega_0 t}$	$X(\omega) = 2\pi\delta(\omega-\omega_0)$
7	Darbe	x(t) = u(t+a) - u(t-a)	$X(\omega) = 2a \frac{\sin(\omega a)}{\omega a}$
8	Sınırlı Bantlı İşaret	$\frac{1}{\omega_c} \frac{\omega_c}{\omega_c} \frac{\omega_c}{\omega_c}$ $\omega_c \sin(\omega_c t)$	$ \frac{\omega a}{\sum_{-\omega_c} 0 \omega_c} $ $ X(\omega) = u(\omega + \omega_c) - u(\omega - \omega_c) $
9	Üçgen	$x(t) = \frac{\omega_c \sin(\omega_c t)}{\pi \omega_c t}$ $x(t) = 1 - \frac{1}{2a} t ; t < 2a$	$X(\omega) = 2a \frac{\sin^2(\omega a)}{(\omega a)^2}$
10	Tek-taraflı üstel işaret	$x(t) = e^{-at}u(t); \ a > 0$	$X(\omega) = \frac{1}{a + j\omega}$

11	İki-taraflı üstel işaret	$x(t) = e^{-a t }; \ a > 0$	$X(\omega) = \frac{2a}{\omega^2 + a^2}$
12	Gauss işareti	$x(t) = e^{-at^2}$	$X(\omega) = \sqrt{\frac{\pi}{a}} e^{\omega^2 4a}$
			,
13	İmpuls treni	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$x(t) = x_T(t)$ $= \sum_{n=-\infty}^{\infty} \delta(t - nT)$	$X(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$ $\omega_0 \equiv 2\pi/T$
		Fourier Serisi	
14	Periyodik işaret	$- \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{-T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \end{array} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \\ 0 \\ 0 \end{aligned} }_{T} \underbrace{ \begin{array}{c} \mathbf{x}_{T}(t) \\ 0 \\ 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$x_T(t) = x_T(T+t)$ $= \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$	$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} X_k \delta(\omega - k\omega_0)$
		X_k :Fourier Serisi Katsayıları	$\omega_0 \equiv 2\pi/T$