EECS 16A Designing Information Devices and Systems I Summer 2020 Discussion 6A

Reference: Inner products

Let \vec{x} , \vec{y} , and \vec{z} be vectors in real vector space \mathbb{V} . A mapping $\langle \cdot, \cdot \rangle$ is said to be an inner product on \mathbb{V} if it satisfies the following three properties:

(a) Symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$

(b) Linearity: $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ and $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$

(c) Positive-definiteness: $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

We define the norm of \vec{x} as $||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$.

Cross-correlation:

The cross-correlation between two signals r[n] and s[n] is defined as follows:

$$\operatorname{corr}_r(s)[k] = \sum_{i=-\infty}^{\infty} r[i]s[i-k].$$

1. Mechanical Inner Products

For the following pairs of vectors, find the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.

(a)

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Answer: Recall that the inner product of two vectors \vec{x} and \vec{y} is $\vec{x}^T \vec{y}$, thus:

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 3 = 4$$

(b)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Answer: When working with real numbers, the inner product is commutative. Thus, using our work from the previous part, the inner product of these two vectors is 4.

(c)

$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

Answer:

$$\begin{bmatrix} 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} = -3 + 3 = 0$$

2. Inner Product Properties

Demonstrate the following properties of inner products for any vectors in \mathbb{R}^2 , assuming we are working with the Euclidean inner product and norm.

(a) Symmetry

Answer: Let $x_i, y_i \in \mathbb{R}$, then

$$\left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle = x_1 \cdot y_1 + x_2 \cdot y_2$$
$$= y_1 \cdot x_1 + y_2 \cdot x_2$$
$$= \left\langle \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\rangle$$

(b) Linearity

Answer: Let $\alpha, \beta, w_i, x_i, z_i \in \mathbb{R}$.

$$\left\langle \alpha \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \beta \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \alpha v_1 + \beta w_1 \\ \alpha v_2 + \beta w_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle$$

$$= (\alpha v_1 + \beta w_1)z_1 + (\alpha v_2 + \beta w_2)z_2$$

$$= \alpha (v_1 z_1 + v_2 z_2) + \beta (w_1 z_1 + w_2 z_2)$$

$$= \alpha v_1 z_1 + \alpha v_2 z_2 + \beta w_1 z_1 + \beta w_2 z_2$$

$$= \alpha \left\langle \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle + \beta \left\langle \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle$$

Signal 2

2

3. Correlation

We are given the following two signals, $s_1[n]$ and $s_2[n]$ respectively.

Find the cross correlations, $corr_{s_1}(s_2)$ and $corr_{s_2}(s_1)$ for signals $s_{[n]}$ and $s_{2[n]}$. Recall

$$\operatorname{corr}_{\boldsymbol{x}}(\boldsymbol{y})[k] = \sum_{i=-\infty}^{\infty} \boldsymbol{x}[i]\boldsymbol{y}[i-k].$$

$\operatorname{corr}_{ec{s_1}}(ec{s_2})[k]$														
\vec{s}_1	0		0		1		2		3		0		0	
$\vec{s}_2[n+2]$														
$\langle \vec{s}_1, \vec{s}_2[n+2] \rangle$		+		+		+		+		+		+		=

Answer: The linear cross-correlation is calculated by shifting the second signal both forward and backward until there is no overlap between the signals. When there is no overlap, the cross-correlation goes to zero. Both of these cross-correlations should have only zeros outside the range: $-2 \le n \le 2$.

$\vec{s}_2[n]$	0		0		2		4		3	0		0	
$\vec{s}_1[n+1]$	0		1		2		3		0	0		0	
$\langle \vec{s}_2, \vec{s}_1[n+1] \rangle$	0	+	0	+	4	+	12	+	0 +	0	+	0	= 16

Notice that $\operatorname{corr}_{\vec{s}_1}(\vec{s}_2)[k] = \operatorname{corr}_{\vec{s}_2}(\vec{s}_1)[-k]$, i.e. changing the order of the signals reverses the cross-correlation sequence.