

Extracting rotational structure from motor cortical data

Cunningham JP*, Churchland MM*, Kaufman MT, and Shenoy KV

Department of Engineering, University of Cambridge, UK Dept EE. and Neurosci. program, Stanford University, CA

Motivation

Goals:

- 1) We want hypothesis-guided dimensionality reduction for summarizing and analyzing neural data.
- 2) Rotations/oscillations are common of neural circuitry. We want to see these fundamental features.
- 3) We want a method that will find this particular structure IF AND ONLY IF it is present in the data.

We have some data we want to summarize/analyze/project:

But maybe we know that the (same) data is actually time series data:

A bit of linear algebra:

General (square) matrix

• $M \in \mathbb{R}^{n \times n}$

complex eigenvalues

(function)

(linear vector field)

Symmetric matrix

• $M_{sym} \in \mathbb{S}^{n \times n}$

• $M_{sym} = (M + M^T)/2 = M_{sym}^T$

- real eigenvalues
- (even part of function)
- (divergence, no curl)

Skew-symmetric matrix

- $M_{skew} \in \mathbb{S}^{n \times n}$
- $M_{skew} = (M M^T)/2 = -M_{skew}^T$
- imaginary eigenvalues
- (odd part of function)
- (curl, no divergence)

The rest of this poster:

- 1) We derive jPCA: a method that finds the best rotational dynamical system describing the data.
- 2) We use jPCA on toy data, real leech data, and real monkey data to demonstrate its properties.
- 3) We point to the neuroscientific implications of these findings (see M Churchland poster tomorrow).

Math

Time series data:

$$X \in \mathbb{R}^{T \times n}$$
 $\mathbf{x}(t) = [x_1(t), ..., x_n(t)]$

Fitting a linear dynamical system (matrix notation):

$$M^* = \operatorname{argmin}_{M \in \mathbb{R}^{n \times n}} ||\dot{X} - XM||_F$$

Awkward but helpful vector notation (same problem):

$$\mathbf{m}^* = \operatorname{argmin}_{\mathbf{m} \in \mathbb{R}^{n^2}} ||\dot{\mathbf{x}} - \tilde{X}\mathbf{m}||_2$$

 $\mathbf{m} = M(:) \in \mathbb{R}^{n^2}$ $\dot{\mathbf{x}} = \dot{X}(:)$ X = blkdiag(X)

Defining skew-symmetric matrices in vector notation:

 $\mathbf{k} \in I\!\!R^{n(n-1)/2}$ $\mathbf{m} = H\mathbf{k}$ where

Fitting a rotational dynamical system:

$$M^* = \operatorname{argmin}_{M \in \mathbb{S}^{n \times n}} ||\dot{X} - XM||_F \iff$$

$$\mathbf{k}^* = \operatorname{argmin}_{\mathbf{k} \in \mathbb{R}^{\frac{1}{2}n(n-1)}} ||\dot{\mathbf{x}} - \tilde{X}H\mathbf{k}||_2$$

jPCA:

(1) Make summary matrix

$$M^* = \operatorname{argmin}_{M \in \mathbb{S}^{n \times n}} ||\dot{X} - XM||_F$$

(2) Eigenvalue decomposition and projection

1) Eigenvectors in conjugate pairs, hence:

Implementation notes:

$$\mathbf{u}_{i,1} = \mathbf{v}_{i,1} + \mathbf{v}_{i,2}^*$$
 $\mathbf{u}_{i,2} = j(\mathbf{v}_{i,1} - \mathbf{v}_{i,2}^*)$

2) Creating big matrices can be burdensome, so we avoid explicit representation using a gradient method: very fast, global optimizer.

Conclusions

simulated population

neural population

1) jPCA: global optimizer that finds the best rotational dynamical system describing the data.

34% of variance captured

40% of variance captured

projection onto PC₁

- 2) jPCA yields simple projection vectors so the interpretation of results is identical to PCA.
- 3) Many more results and their neuroscientific implications: M Churchland poster tomorrow.
- 4) (choice of skew-sym is not critical... could also create "symmetric PCA" based on M_{sym} .)

Acknowledgments: K. Briggman and W. Kristan for leech data, M. Risch for animal care. Funding: UK EPSRC EP/H019472/1, NIH Pioneer, Burroughs Wellcome, NIH CRCNS R01.