9.2 Compound Inequalities

Introductory Set Theory

Definition 9.2.1 (Set). a set is a collection of *distinct* objects; each object in the set is called an *element*

Definition 9.2.2 (Intersection of Sets). the intersection of sets A and B is given as $A \cap B$ and is the set of elements that are found in *both* sets

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

Definition 9.2.3 (Union of Sets). the union of sets A and B is given as $A \cup B$ and is the set of elements that are found *either* set

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

Definition 9.2.4 (Set Substraction). the subtraction of two sets A and B is given as $A \setminus B$ and represents what remains after all elements that occur in B are removed from A

$$A\backslash B=\{x\mid x\in A \text{ and } x\notin B\}$$

Definition 9.2.5 (Set Cardinality). the cardinality (size) of a set is the number of distinct elements in the set and is given by ||A||

Example 9.2.1. Given $A = \{a, b, c, d, e, f\}$ and $B = \{b, d, f, h, j, l\}$, find each of the following:

1.
$$A \cap B =$$

5.
$$||A \cap B|| =$$

2.
$$A \cup B =$$

6.
$$||A \cup B|| =$$

3.
$$A \setminus B =$$

7.
$$||A \setminus B|| =$$

4.
$$B \setminus A =$$

8.
$$\|B \setminus A\| =$$

Page 1 of 4

Math 0098

Example 9.2.2. Given $A = \{1, 2, 3, ..., 10\}$ and $B = \{2, 4, 6, ..., 20\}$, find each of the following:

1.
$$A \cap B =$$

5.
$$||A \cap B|| =$$

2.
$$A \cup B =$$

6.
$$||A \cup B|| =$$

3.
$$A \setminus B =$$

7.
$$||A \setminus B|| =$$

4.
$$B \setminus A =$$

8.
$$\|B \setminus A\| =$$

Compound Inequalities with "And"

A number is a solution of a compound inequality involving "and" if and only if it satisfies both of the given inequalities. In other words, the solution set is the *intersection* of the solution to each individual inequality.

Example 9.2.3. Solve the compound inequality:

$$x + 2 < 5$$
 and $2x - 4 < -2$

Math 0098 Page 2 of 4

Example 9.2.4. Solve the compound inequality:

$$4x - 5 > 7$$
 and $5x - 2 < 3$

Example 9.2.5. Solve the compound inequality:

$$1 \leqslant 2x + 3 < 11$$

Math 0098 Page 3 of 4

Compound Inequalities with "Or"

A number is a solution of a compound inequality with the word "or" if it is a solution of either inequality. In other words, the solution set is the *union* of the solution to each individual inequality.

Example 9.2.6. Solve the compound inequality:

$$3x - 5 \le -2 \text{ or } 10 - 2x < 4$$

Example 9.2.7. Solve the compound inequality:

$$2x + 5 \ge 3$$
 or $2x + 3 < 3$

Math 0098 Page 4 of 4