LLIÇÓ 8: LA MATRIU INVERSA IDEES CLAU, DEFINICIONS, PROPIETATS, MÈTODES...

Matrius invertibles

- Una matriu quadrada A és *invertible* si i només si existeix una matriu B amb AB = I
- Si A és invertible llavors, la *inversa* de A és l'única matriu A^{-1} per a la qual $AA^{-1} = I$

Càlcul de la inversa

$$\left[\mathsf{A} \ \middle| \ I \ \right] \xrightarrow{Gauss\text{-Jordan}} \left[\ I \ \middle| \ \mathsf{A}^{-1} \right]$$

Propietats

Si A és invertible llavors,

- $AA^{-1} = A^{-1}A = I$
- $(A^{-1})^{-1} = A$
- A i A⁻¹ són productes de matrius elementals

Inversa del producte

- A_1A_2 és invertible si i només si A_1 i A_2 són invertibles i $(A_1A_2)^{-1} = A_2^{-1}A_1^{-1}$
- $A_1A_2...A_p$ és invertible si i només si $A_1, A_2, ..., A_p$ són invertibles i

$$(A_1A_2...A_p)^{-1} = A_p^{-1}...A_2^{-1}A_1^{-1}$$

Caracteritzacions

Si A és una matriu quadrada $n \times n$, totes les afirmacions següents són equivalents:

- 1. A és invertible
- 2. $\operatorname{rang} A = n$
- 3. La forma esglaonada reduïda de A és la matriu identitat
- 4. Existeix B amb AB = I
- 5. Existeix B amb BA = I
- 6. A és producte de matrius elementals
- 7. Les files de A són linealment independents
- 8. Les columnes de A són linealment independents
- 9. L'equació matricial AX = I és compatible
- 10. Per a qualsevol vector \vec{b} el sistema lineal $A\vec{x} = \vec{b}$ és determinat
- 11. El sistema lineal $A\vec{x} = \vec{0}$ és determinat
- 12. Nul $A = \{\vec{0}\}\$

Caracteritzacions futures

- Si A és una matriu quadrada $n \times n$, totes les afirmacions següents són equivalents:
 - 1. A és invertible
 - 13. El determinant de A no és zero
 - 14. L'espai columna de A és Col A = \mathbb{K}^n
 - 15. L'espai nul de la matriu transposada A^t és $\operatorname{Nul} A^t = \{\vec{0}\}$
 - 16. L'espai fila de A és Fil $A = \mathbb{K}^n$
 - 17. El nucli de l'aplicació lineal $f(\vec{x}) = A\vec{x}$ és Nuc $f = \{\vec{0}\}$
 - 18. L'aplicació lineal $f(\vec{x}) = A\vec{x}$ és injectiva
 - 19. L'aplicació lineal $f(\vec{x}) = A\vec{x}$ és suprajectiva
 - 20. L'aplicació lineal $f(\vec{x}) = A\vec{x}$ és bijectiva
 - 21. El nombre 0 no és valor propi de A
 - 22. El nombre 0 no és valor singular de A