Corso di Algebra per Informatica

Lezione 29: Esercizi

- (1) Elencare tutti gli elementi dell'insieme $[41]_5 \cap \{n \in \mathbb{Z} \mid n^2 \le 20\}$.
- (2) Definire un'operazione binaria interna $\overline{+}$ a \mathbb{Z}_0 tale che sia possibile costruire un'isomorfismo tra $(\mathbb{Z}_0, \overline{+})$ e $(\mathbb{Z}, +)$.
- (3) Calcolare $101 \mod 10$, 101%(-1) e $30093 \mod 3$.
- (4) Verificare se $\mathbb{Z}_3 = \{ [30]_3, [2]_3, [11]_3, [-8]_3 \}.$
- (5) Verificare se $\mathbb{Z}_5 = \{[30]_5, [2]_5, [11]_5, [-8]_5, [3]_5\}.$
- (6) Calcolare 484289374098279340! mod 3879374.
- (7) Sia * l'operazione binaria di \mathbb{Z} definita da $(\forall a, b \in \mathbb{Z})((2 \not| b \to a * b = a + b) \land (2 \mid b \to a * b = a + b/2))$. Dimostrare che \equiv_2 non è una congruenza rispetto a *.
- (8) Sia * l'operazione binaria di \mathbb{Z} definita da $(\forall a, b \in \mathbb{Z})(a * b = 2ab)$. Dimostrare che \equiv_2 è una congruenza rispetto a *.
- (9) Sia * l'operazione binaria di $\mathbb{Z} \times \mathbb{Z}$ definita da $(\forall a, b, c, d \in \mathbb{Z})((a, b) * (c, d) = (a + b, c + d))$ e sia \sim una relazione di equivalenza su $\mathbb{Z} \times \mathbb{Z}$ definita da $(\forall a, b, c, d \in \mathbb{Z})((a, b) \sim (c, d) \leftrightarrow (2|ab-cd))$. Dimostrare che \sim è una relazione di equivalenza che non è una congruenza rispetto a *.
- (10) La relazione di equivalenza \sim in $P(\mathbb{Z})$ definita da $(\forall x, y \in P(\mathbb{Z})(x \sim y \leftrightarrow x \cap \mathbb{N} = y \cap \mathbb{N}))$ è una congruenza in $(P(\mathbb{N}, \cap, \cup)$? E quella definita da $(\forall x, y \in P(\mathbb{Z})(x \sim y \leftrightarrow x \cup \mathbb{N} = y \cup \mathbb{N}))$?
- (11) Elencare i divisori dello zero e gli invertibili di \mathbb{Z}_4 , \mathbb{Z}_8 e \mathbb{Z}_9 .