IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (currently amended): A composition for external application, which comprises a diamide derivative represented by the following formula (1):

$$R^{1a} = C = N - R^{2a} = C - \left(R^3 - O\right) - \left(R^3 - O\right) - \left(R^{2b} - O\right) - \left(R^{1b} - O\right)$$

(wherein, R^{1a} and R^{1b} are the same or different and each represents a C_{1-23} hydrocarbon group, R^{2a} and R^{2b} are the same or different and each represents a divalent C_{1-6} hydrocarbon group, R^3 s are the same or different and each represents a divalent C_{2-6} hydrocarbon group and n stands for 1 to 100)

wherein said diamide is present in said composition, in an amount of 0.001 to 50 wt.
%.

Claim 2 (original): A composition for external application, which comprises a diamide derivative represented by the following formula (1):

$$R^{1a} = C = N - R^{2a} = C - R^{3} = C - R^{1b}$$
 (1)

(wherein, R^{la} and R^{lb} are the same or different and each represents a C_{1-23} hydrocarbon group, R^{2a} and R^{2b} are the same or different and each represents a divalent C_{1-6} hydrocarbon group, R^3 s are the same or different and each represents a divalent C_{2-6} hydrocarbon group and n stands for 1 to 100) and an intercellular lipid component of the horny layer.

Claim 3 (original): A composition for external application according to claim 2 wherein the intracellular lipid component of the horny layer is at least one member selected

from the group consisting of ceramides, pseudoceramids, sphingoglycolipids, sphingophospholipids, sphingosines and derivatives thereof, sphinganines and derivatives thereof, higher fatty acids and cholesterols and derivatives thereof.

- 4. (original): A composition for external application according to any of claims 1 to 3, which is a cosmetic composition.
- 5. (currently amended): A humectant, which comprises as an effective ingredient, a diamide derivative represented by the following formula (1):

$$R^{1a} = C = N - R^{2a} = C - R^{3} = N - C - R^{1b}$$
 (1)

(wherein, R^{la} and R^{lb} are the same or different and each represents a C_{1-23} hydrocarbon group, R^{2a} and R^{2b} are the same or different and each represents a divalent C_{1-6} hydrocarbon group, R^3 s are the same or different and each represents a divalent C_{2-6} hydrocarbon group and n stands for 1 to 100)

wherein said diamide is present in said composition, in an amount of 0.001 to 50 wt.
%.

6. (currently amended) A skin barrier function reinforcing agent, which comprises as an effective ingredient, a diamide derivative represented by the following formula (1):

$$R^{1a} = C = N - R^{2a} = C - R^{3} = 0 - R^{2b} = N - C - R^{1b}$$
 (1)

(wherein, R^{la} and R^{lb} are the same or different and each represents a C_{l-23} hydrocarbon group, R^{2a} and R^{2b} are the same or different and each represents a divalent C_{l-6}

Application No. 10/082,115 Reply to Office Action of December 18, 2003

: ر

hydrocarbon group, R^3 s are the same or different and each represents a divalent C_{2-6} hydrocarbon group and n stands for 1 to 100)

wherein said diamide is present in said composition, in an amount of 0.001 to 50 wt.
%.

Claims 7-13 (canceled)

14. (currently amended) A diamide derivative according to claim 12, which is represented by the following formula (C):

- 15. (new) The composition of claim 1, further comprises an oily base.
- 16. (new) The composition claim 15, wherein said oily base is at least one member selected from the group consisting of vegetable oils, animal oils, synthetic oils, fatty acids, natural glycerides and synthetic glycerides.
- 17. (new) The composition of claim 1, which comprises 0.001 to 5 wt. % of said diamide.
 - 18. (new) The composition of claim 17, further comprising an anionic surfactant.
- 19. (new) The composition of claim 18, wherein said anionic surfactant is present in an amount of 5 to 30 wt.%.
- 20. (new) The composition of claim 1, which comprises 0.1 to 20 wt. % of said diamide.
- 21. (new) The composition of claim 20, further comprising at least one surfactant selected from the group consisting of cationic surfactant and non-ionic surfactant.

Application No. 10/082,115 Reply to Office Action of December 18, 2003

- 22. (new) The composition of claim 21, wherein said surfactant is present in an amount of 0.1 to 50 wt.%.
- 23. (new) The composition of claim 1, wherein said composition comprises 0.01 to 5 wt.% of said diamide.
- 24. (new) The composition of claim 23, wherein said composition further comprises a nonionic surfactant.
- 25. (new) The composition of claim 24, wherein said nonionic surfactant is present in an amount of 0.01 to 20 wt.%.