thus $W^{\perp} \cap U \subseteq W \cap U$, and since U is totally isotropic, $U \subseteq U^{\perp}$, which yields

$$W^{\perp} \cap U \subset W \cap U \subset W \cap U^{\perp} = (0),$$

contradicting the fact that $U \cap W^{\perp} \neq (0)$.

Therefore, there is some $u \in W^{\perp}$ such that $u \notin W + U^{\perp}$. Since $U \subseteq U^{\perp}$, we can add to u any vector $z \in W^{\perp} \cap U \subseteq U^{\perp}$ so that $u + z \in W^{\perp}$ and $u + z \notin W + U^{\perp}$ (if $u + z \in W + U^{\perp}$, since $z \in U^{\perp}$, then $u \in W + U^{\perp}$, a contradiction). Since $W^{\perp} \cap U \neq (0)$ is totally isotropic and $u \notin W + U^{\perp} = (W^{\perp} \cap U)^{\perp}$, we can invoke Lemma 29.28 to find a $z \in W^{\perp} \cap U$ such that $\varphi(u + z, u + z) = 0$. See Figure 29.1. If we write x = u + z, then $x \notin W + U^{\perp}$, so W' = W + Kx is a totally isotropic subspace of dimension s + 1. Furthermore, we claim that $W' \cap U^{\perp} = 0$.

Figure 29.1: A schematic illustration of W and x = u + z

Otherwise, we would have $y=w+\lambda x\in U^\perp$, for some $w\in W$ and some $\lambda\in K$, and then we would have $\lambda x=-w+y\in W+U^\perp$. If $\lambda\neq 0$, then $x\in W+U^\perp$, a contradiction. Therefore, $\lambda=0,\ y=w$, and since $y\in U^\perp$ and $w\in W$, we have $y\in W\cap U^\perp=(0)$, which means that y=0. Therefore, W' is the required subspace and this completes the proof. \square

Here are some consequences of Proposition 29.29. If we set W=(0) in Proposition 29.29(2), then we get the following theorem showing that if E is not anisotropic (there is some nonzero isotropic vector) then weak nontrivial Witt decompositions exist.

Theorem 29.30. Let φ be an ϵ -Hermitian form on E which is nondegenerate and satisfies property (T). For any totally isotropic subspace U of E of finite dimension $r \geq 1$, there exists a totally isotropic subspace U' of dimension r such that $U \cap U' = (0)$ and $U \oplus U'$ is nondegenerate. As a consequence, if E is not anisotropic, then $(U, U', (U \oplus U')^{\perp})$ is a weak nontrivial Witt decomposition for E. Furthermore, by Proposition 29.29(1), the block A in the matrix of φ is the identity matrix.