অষ্টম শ্ৰেণি

উপপাদ্য ২। বৃত্তের সকল সমান জ্যা কেন্দ্র থেকে সমদূরবর্তী।

মনে করি, O বৃত্তের কেন্দ্র এবং AB ও CD বৃত্তের দুইটি সমান জ্যা। প্রমাণ করতে হবে যে, O থেকে AB এবং CD জ্যাদ্বয় সমদূরবর্তী।

অঙ্কন: O থেকে AB এবং CD জ্যা- এর উপর যথাক্রমে OE এবং OF লম্ব রেখাংশ আঁকি। O, A এবং O,C যোগ করি।

	<u></u>
ধাপ	যথাৰ্থতা
(\$) OE⊥AB	[কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো
ଓ OF ⊥ CD	জ্যা- এর উপর অঙ্কিত লম্ব জ্যাকে
সুতারাং, AE = BE এবং CF = DF	সমদ্বিখণ্ডিত করে]
$AE = \frac{3}{2}AB$ এবং $CF = \frac{3}{2}CD$ (২) কিন্তু $AB = CD$ $\therefore AE = CF$ (৩) এখন $\triangle OAE$ এবং $\triangle OCF$ সমকোণী ত্রিভুজদ্বয়ের	[কল্পনা]
মধ্যে। অতিভুজে OA = অতিভুজ OC এবং AE = CF ∴ ΔOAE ≅ ΔOCF ∴ OE = OF (8) কিন্তু OE এবং OF কেন্দ্র O থেকে যথাক্রমে AB জ্যা এবং CD জ্যা- এর দূরত্ব। সুতারাং, AB এবং CD জ্যাদ্বয় বৃত্তের কেন্দ্র থেকে সমদূরবর্তী। (প্রমাণিত)	[উভয় একই বৃত্তের ব্যাসার্ধ] [ধাপ ২] [সমকোণী ত্রিভুজের অতিভুজ- বাহু সর্মসমতা উপপাদ্য]

অষ্টম শ্ৰেণি

উপপাদ্য ৩। বৃত্তের কেন্দ্র থেকে সমদূরবর্তী সকল জ্যা পরস্পর সমান।

সমাধান:

মনে করি, O বৃত্তের কেন্দ্র এবং AB ও CD দুইটি জ্যা। O থেকে AB ও CD এর উপর যথাক্রমে ও OE ও OF লম্ব। তাহলে OE ও OF কেন্দ্র থেকে যথাক্রমে AB ও CD জ্যা- এর দূরত্ব নির্দেশ করে। OE = OF হলে প্রমাণ করতে হবে যে, AB = CD.

অঙ্কন: O, A এবং O,C যোগ করি।

ধাপ	যথাৰ্থতা
(১) যেহেতু OE ⊥AB ও OF ⊥CD	[সমকোণ]
সুতারাং,∠OEA =∠OFC = এক সমকোণ	
(২) এখন, ΔΟΑΕ এবং ΔΟCF সমকোণী ত্রিভুজদ্বয়ের	
মধ্যে	
অতিভুজ $\mathrm{OA}=$ অতিভুজ OC এবং	[উভয় একই বৃত্তের ব্যাসার্ধ]
OE = OF	[কল্পনা]
$\therefore \Delta OAE \cong \Delta OCF$	[সমকোণী ত্রিভুজের অতিভুজ- বাহু
∴ AE = CF	সর্মসমতা উপপাদ্য]
3	[কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা-
(৩) $AE = \frac{3}{5}AB$ এবং $CF = \frac{3}{5}CD$ ।	এর উপর অঙ্কিত লম্ব জ্যাকে
3 3	সমদ্বিখন্ডিত করে]
(৪) সুতারাং $\frac{5}{2}$ AB = $\frac{5}{2}$ CD	(11411 0 0 1311]
অর্থাৎ AB = CD	

অষ্টম শ্ৰেণি

উদাহরণ ৪। প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।

সমাধান:

মনে করি, O কেন্দ্রবিশিষ্ট ABCD একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা। প্রমাণ করতে হবে যে, AB CD > CD

অঙ্কন: O, C এবং O, D যোগ করি।

প্রমাণ:

OA = OB = OC = OD [একই বৃত্তের ব্যাসার্ধ] এখন ΔOCD এ OC + CD > CDবা, OA + OB > CDঅর্থাৎ AB > CD

অনুশীলনী ১০.২

১। বৃত্তের দুইটি সমান জ্যা পরস্পারকে ছেদ করলে দেখাও যে, এদের একটি অংশদ্বয় অপরটির অংশদ্বয়ের সমান।

সমাধান:

অষ্টম শ্ৰেণি

বিশেষ নির্বচন : মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে দুইটি সমান জ্যা AB ও CD পরস্পর P বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, PA = PD এবং PB = PC

অঙ্কন : কেন্দ্র O থেকে AB ও CD এর উপর যথাক্রমে OM এবং ON লম্ব অঙ্কন করি। O, P যোগ করি।

ধাপ	যথাৰ্থতা
(১) Δ MOP ও Δ NOP সমকোণী ত্রিভুজ দুইটির	
মধ্যে	, , , , , , , , , , , , , , , , , , ,
OM = ON	[সমান সমান জ্যা কেন্দ্র <mark>হতে সম</mark> দূরবর্তী]
OP = OP	[সাধারণ বাহু]
$\Delta MOP \stackrel{\sim}{=} \Delta NOP$	[অতিভুজ- বাহু <mark>উপ</mark> পাদ্য]
$\therefore PM = PN$	
(২) এখন, OM, AB এর উপর লম্ব হওয়ায়,	
$AM = \frac{\lambda}{AB}$	[কেন্দ্ৰ হতে অঙ্কিত লম্ব জ্যাকে
AW - AB	সমদ্বিখন্ডিত করে]
এবং ON, CD এর উপর লম্ব হওয়ায়,	
$DN = \frac{5}{CD}$	[কেন্দ্ৰ হতে অঙ্কিত লম্ব জ্যাকে
DIV = CD	সমদ্বিখন্ডিত করে]
(৩) যেহেতু AB = CD	[কল্পনা]
$\therefore AM = DN$	[ধাপ- ২ হতে]
$\therefore PM + AM = PN + DN$	
সুতারাং PA = PD	
(8) আবার, AB = CD	
বা, AB – PA = CD – PD	[ধাপ- ৩ হতে]
$\therefore PB = PC$	
অতএব, PA = PD এবং PB = PC	
(প্রমাণিত)	
সুতারাং ∠OMA =∠OMB = 1 সমকোণ।	
অতএব, OM⊥AB (প্রমাণিত)	

অষ্ট্রম শ্রেণি

২। প্রমাণ কর যে, বৃত্তের সমান জ্যা- এর মধ্যবিন্দুগুলো সমবৃত।

সমাধান:

সাধারণ নির্বচন: প্রমাণ করতে হবে যে, বৃত্তের সমান জ্যা এর মধ্যবিন্দুগুলো সমবৃত্ত।

বিশেষ নির্বচন: মনে করি, ABCD বৃত্তের কেন্দ্র O। AB, CD ও EF তিনটি পরস্পর সমান জ্যা। M, N এবং P যথাক্রমে AB, EF ও CD এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, M, N এবং P সমর্ত্ত।

অঙ্কন: O, M; O, N এবং O, P যোগ করি।

ধাপ	যথাৰ্থতা
(১) যেহেতু M, AB এর মধ্যবিন্দু এবং OM	[বৃত্তের কেন্দ্র ও ব্যাস ভিন্ন যেকোনো
কেন্দ্রগামী রেখাংশ।	জ্যা- এর মধ্যবিন্দুর সংযোজক রেখাংশ
∴ OM, AB এর উপর লম্ব।	ঐ জ্যা- এর উপর লম্ব]
OP, CD এর উপর লম্ব এবং ON, EF এর উপর	[উপপাদ্য - ২]
লম্ব। সেহেতু OM = OP = ON	[বৃত্তের সকল সমান জ্যা কেন্দ্র হতে
	সমদূরবর্তী]
(২) সুতারাং <mark>O কে কেন্দ্র</mark> করে OM বা OP বা ON	
এর সমান ব্যাসার্ধ নিয়ে বৃত্ত অঙ্কন করলে M, N ও	
P বিন্দু দিয়ে যাবে।	
অতএব, M, N ও P সম্বৃত্ত। (প্রমাণিত)	

অষ্টম শ্ৰেণি

৩। দেখাও যে, ব্যাসের দুই প্রান্ত থেকে এর বিপরীত দিকে দুইটি সমান জ্যা অঙ্কন করলে এরা সমান্তরাল হয়।

সমাধান:

সাধারণ নির্বচন: দেখতে হবে যে, ব্যাসের দুই প্রান্ত থেকে তার বিপরীত দিকে দুইটি সমান জ্যা অঙ্কন করলে তারা সমান্তরাল হয়।

বিশেষ নির্বচন: মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তের AB ব্যাস। AB ব্যাসের A প্রান্ত থেকে AD জ্যা এবং B প্রান্ত থেকে BC জ্যা অঙ্কন করা হয়েছে। প্রমাণ করতে হবে যে, AD। BC

ধাপ	যথাৰ্থতা
(১) যেহেতু AD = BC	[কল্পনা]
এবং AB তাদের ছেদক	
∴ ∠ BAD =∠ABC	[একান্তর কোণ বলে]
(২) ছেদকের উভয় পাশের একান্তর কোণগুলো	
সমান হলে রেখাদ্বয় সমান্তরাল।	
∴ AD। J BC (প্রমাণিত)	

অষ্টম শ্ৰেণি

৪। দেখাও যে, ব্যাসের দুই প্রান্ত থেকে এর বিপরীত দিকে দুইটি সমান্তরাল জ্যা আঁকলে এরা সমান হয়। সমাধান :

বিশেষ নির্বচন : মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ব্যাস। AB এর A প্রান্ত থেকে AD জ্যা আঁকা হল এবং B প্রান্ত থেকে BC জ্যা আঁকা হল এবং AD|| BC। প্রমাণ করতে হবে যে, AD = BC

অঙ্কন: কেন্দ্র O থেকে AD ও BC এর উপর যথাক্রমে OM ও ON লম্ব আঁকি।

ধাপ	যথাৰ্থতা
(১) সমকোণী $\triangle AOM$ ও $\triangle BON$ এ, $AO = BO$	[কম্পনা]
এবং AM = BN ∴ ΔAOM = ΔBON ∴ OM = ON	[অতিভুজ- বাহু উপপাদ্য]
(২) সুতারাং AD = BC (প্রমাণিত)	[বৃত্তের কেন্দ্র হতে সমদূরবর্তী সকল জ্যা সমান]

অষ্টম শ্ৰেণি

৫। দেখাও যে, বৃত্তের দুইটি জ্যা- এর মধ্যে বৃহত্তম জ্যা- টি ক্ষুদ্রতর জ্যা অপেক্ষা কেন্দ্রের নিকটতর। সমাধান:

বিশেষ নির্বচন : মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তে AB ও CD দুইটি জ্যা এবং AB > CD। AB ও CD এর উপরে লম্বদ্ধয় যথাক্রমে OE ও OF। দেখাতে হবে যে, OE < OF

অঙ্কন: O, A ও O, C যোগ করি।

<u> </u>	
ধাপ 🧷	যথাৰ্থতা
(১) যেহেতু OE⊥AB এবং OF⊥CD	<i>y</i>
$AE = \frac{5}{2} AB, CF = \frac{5}{2} CD$ বৃত্তের (২) কিন্তু $AB > CD$ $\therefore AE > CF$	[বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন জ্যা এর উপর অঙ্কিত জ্যাকে সমদ্বিখণ্ডিত করে]
(৩) এখন, ΔΟΑΕ ও ΔΟCF এর মধ্যে	
$OA^2 = AE^2 + OE^2$	[অতিভুজ উপর অঙ্কিত বর্গ অপর দুই
এবং $OC^2 = CF^2 + OF^2$	বাহুর উপর অঙ্কিত বর্গের সমষ্টির
কিন্ত OA = OC	সমান]
$\therefore OA^2 = OC^2$	[একই বৃত্তের ব্যাসার্ধ]
$\therefore AE^2 + OE^2 = CF^2 + OF^2$	·
(৪) এখন, AE > CF হওয়ায়	
$AE^2 > CF^2$	[sets) (a) acros [
$\therefore OE^2 < OF^2$	[ধাপ (৩) হতে]
বা, OE < OF	
অর্থাৎ বৃহত্তর জ্যাটি ক্ষুদ্রতর জ্যা অপেক্ষা কেন্দ্রের	
নিকটতর। (দেখানো হলো)	