Formazione di semiacetali e semichetali

Pentosi ed esosi possono ciclizzare attraverso la reazione tra un OH e il gruppo chetonico/ aldeidico

Il glucoso forma un semiacetale intramolecolare tra il C1 aldeidico e l'OH in C5 per formare un ciclo a sei termini (struttura piranosica, dal pirano).

6CH2OH

OH

36%

ΗÓ

TRASFORMARE FISHER IN HAWORTH

La testa e la coda della molecola vengono ora avvicinate: la struttura ciclica comincia a prendere forma. Prima di poterla chiudere è necessario però ruotare il C-5 per portare nel piano dell'anello l'OH che deve reagire con il gruppo aldeidico

La chiusura dell'anello porta alla formazione degli anomeri $\underline{\alpha}$ e $\underline{\beta}$

Se gli OH sono a destra vanno scritti in basso

combia i legami a

Nomenclatura isomeri (auomeri) · zucchen con cui si parte (D-gluco_ nome eterociclo (piano / Puano) ~ vedi p successiva @ · -05io

La ciclizzazione del D-glucosio produce un nuovo centro di asimmetria al C1. I due stereoisomeri sono chiamati anomeri α e β .

Nella proiezione di Haworth, se si parte da un monosaccaride di tipo D, quando il gruppo OH legato al C1 è al di sotto del piano dell'anello si chiama α mentre se è al di sopra si chiama β

Se si parte da L si inverte tutto

D-glucoso

FURANO

(mens Pregnente)

saper fare le ciditatione

alfa-D-glucofuranoso

beta-D-glucofuranoso

La ciclizzazione coinvolge sempre il gruppo =O

D-fruttoso

alfa-D-fruttofuranoso

beta-D-fruttofuranoso

Mutarotazione del D-Glucosio

Ynotazien anza reazion dimica/

β-D-Glucopiranosio

Iniziale: $[\alpha_i]_n + 18.7^\circ$

_{∞-D}-Glucopiranosio

Iniziale: $[\alpha]_n$ +112.2°

POTERE DOLCIFICANTE

I dolcificanti sono sostanze naturali o di sintesi, capaci di conferire un sapore dolce agli alimenti a cui vengono aggiunte. Il loro impiego, non si limita al solo settore alimentare, ma si estende anche a quello medico e sanitario; dolcificanti naturali e di sintesi vengono ad esempio utilizzati per impartire un sapore gradevole alle preparazioni medicinali o fitoterapiche introdotte per via orale (sciroppi, tisane, infusi), ma anche e soprattutto in sostituzione dello zucchero nei prodotti per diabetici e in quelli dietetici.

Neotame	8000		
Sucralosio	600		
Saccarina	300		
Acesulfame-K	200		
Aspartame	200		
Fruttosio	1,5		
SACCAROSIO RIFE RIMENTO 1			
Glucosio	0,75	netural	
Maltosio	0,32	-	
Galattosio	0,22		
Lattosio	0,20		

Potere dolcificante di alcuni edulcoranti naturali

DOLCIFICAN TE	POTERE EDULCORANTE (in peso)	ORIGINE E NOTE
Fruttosio	1,5	Carboidrato: non innalza significativamente la <u>glicemia</u> , ma dev'essere comunque consumato con moderazione.
Saccarosio	1	Carboidrato: elevato indice glicemico, sconsigliato ai diabetici.
<u>Miele</u>	> 1	Per l'abbondante presenza di fruttosio, il miele un potere dolcificante leggermente superiore allo zucchero raffinato; è comunque sconsigliato ai diabetici, che lo devono consumare con moderazione.
Glicirizzina	50	Terpene estratto dalla liquirizia (<i>Glycyrrhiza glabra</i>); il <u>gusto</u> dolce viene percepito più tardi ma rimane più a lungo in bocca. Può causare <u>ipertensione</u> ed <u>edemi</u> se consumata in grandi quantità.
Xilitolo	1.0	Polialcol: potere calorico inferiore del 40% rispetto allo zucchero; acariogeno, utile per diabetici, può avere effetti <u>lassativi</u> .
Sorbitolo	0.6	Polialcol: potere calorico inferiore del 36% rispetto allo zucchero; può avere effetti lassativi.
Mannitolo	0.5	Polialcol: potere calorico inferiore del 60% rispetto allo zucchero; acariogeno, utile per diabetici, può avere effetti <u>lassativi</u> .
<u>Tagatosio</u>	0.9	Isomero del fruttosio con potere calorico inferiore del 45% rispetto allo zucchero; utile per diabetici, acariogeno.
Monellina	3000	Proteina estratta dal frutto di <i>Dioscoreophyllum cumminsii</i> , vitigno tropicale tipico della foresta pluviale. Si denatura alle alte temperature.
Miraculina	2000	Proteina estratta dal frutto di <i>Synsepalum dulcificum</i> or <i>Richadella dulcifica</i> , arbusto nativo dell'Africa orientale. Modifica la percezione del gusto, convertendo l'acido in dolce.
Taumatina	2000-3000	Proteina isolata dal frutto africano del <i>Thaumatococcus daniellii</i> , la cui azione dolcificante è molto lenta ma persistente. Regolarmente ammessa nel commercio europeo (E 957).
Osladina - Polipodoside A	500-600	Steroide (saponine steroidee) isolato dal rizoma di <i>Polypodium vulgare</i> , detta felce dolce o falsa liquirizia, diffusa nei climi temperati.
Pentadina	500	Proteina isolata dal frutto di Pentadiplandra brazzeana, arbusto rampicante tropicale.
Luo han guo	300	Estratti del frutto di Siraitia grosvenorii, rampicante erbaceo perenne originario del Sud est asiatico.
Stevoside	300	Terpene: foglie di <i>Stevia rebuidiana</i> , utilizzate dalle popolazioni autoctone centro e sudamericane per addolcire il matè.

Aldosi e chetosi danno saggio positivo ai reagenti di:
Fehling-Tollens-Benedict

Solfano romerro o diventa rameoso esperimento h marzo and con gli quadreni rid

H C-OH C-OH FORMA

Per questo motivo vengono detti zuccheri riducenti

si ossidano Solo gl

ÓН

α-L-Rhamnose