Maximise The Function

There are N integers A_0 , A_1 , A_{n-1} .

Consider a function $f(x) = \sum_{i=0}^{i=n-1} (A_i * bit (i))$, where bit (i) is the ith bit in the

number x.

A number m is also given.

Output the maximum value of f (x) where $x \in [0, m]$.

Input

N: Number of integers

Next Line contains N integers A_0 , A_1 , A_{n-1}

Next Line Contains m in binary representation as a string $s_0s_1....s_{n-1}$

Where m =
$$\sum_{i=0}^{i=n-1} 2^{i} * s_{i}$$

Constraints

$$1 \le A_i \le 100000$$

Output

The maximum value of the function f (x), $x \in [0, m]$

Sample Input

2

38

10

Output

3

Explanation

m = 1, so x can be 0 or 1, f(0) = 0, f(1) = 3. Hence 3 is the answer.