Teoretisk bestemmelse af energiniveauer i hyrogenlignende atom

Louis Clément, 3.i

Hillerød Tekniske Skole

Område Matematik A, Fysik A Vejledere Mikkel Oglesby Jacob Skytte Salgaard Bendtsen

18. december 2020

Resumé

Jeg undersøger en teoretisk kvantemekanisk model for Hydrogenlignende atomer, og sammenligner den med den empiriske Rydbergformel, for til slut at udlede spektrumlinjer på et hydrogenlampespektrum.

Indhold

1	Introduktion		
	1.1	Opgaveformulering	1
2	Gennemgang af matematiske metoder		
	2.1	Hilbertrum	1
	2.2	Linære operatorer	3
3	Atomfysik og kvantemekaniske principper		
	3.1		5
	3.2	Tilstand	5
	3.3	Schrödinger-ligningen	5
4	1-d i	imensionel uendelig partkelbrønd	8
5	Hydrogenatomet		11
	5.1	Potentialenergi	11
	5.2	Spektrum	13
	5.3	Analytisk løsning	13

6 Konklusion 13

1 Introduktion

1.1 Opgaveformulering

Hovedspørgsmålet lyder

Teoretiskbestemmelse af energiniveauer i et hydrogenlignende atom

Dertil en række arbejdsspørgsmål

- Redegør for Schrödinger-ligningen
- Redegør for de matematiske begreber og metoder, der ligger bag Schrödingerligningen, og løsningen af denne
- Løs Schrödinger-ligningen for en partikel i en en-dimensionaluendelige potentialbrønd.
- Bestem energiniveauerne for et hydrogenlignende atom
- Analyser og perspektiverde teoretiske energiniveauer, til eksperimentelle værdier og/eller tabelværdier for hydrogens spektrum.

2 Gennemgang af matematiske metoder

2.1 Hilbertrum

Definition 2.1. Et Hilbertrum \mathcal{H} er et komplet vektorrum over et felt \mathbb{F} med associeret indre produkt. Vi beskæftiger os med rum, hvori det gælder

at

$$\langle \psi | \psi \rangle = \int_{\mathbb{R}} \psi^*(x) \psi(x) \ dx < \infty$$
 (2.1)

for $|\psi\rangle \in \mathcal{H}$. Denne betingelse gør ψ til en del af $L^2(\mathbb{F})$ rum, og gælder for \mathbb{R} eller \mathbb{C} . Vi kan konstruere et ∞ -dimensionelt Hilbertrum ved at overveje et kontinuert basis med elementerne $|a\rangle$ navngivet med en kontinuer variabel a, normaliseret således at

$$\langle a|\tilde{a}\rangle = \delta(a-\tilde{a}) \tag{2.2}$$

hvilket betyder vi kan skrive

$$|\psi\rangle = \int \psi(a) |a\rangle da$$
 (2.3)

Definition 2.2. En ket vektor $|V\rangle$ betegner en vektor af et abstrakt vektorrum. I et endeligdimensionelt vektorrum kan en ket vektor repræsenteres som

$$|V\rangle \leftrightarrow \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \tag{2.4}$$

Definition 2.3. En bra vektor $\langle V |$ betegner en et element af dual vektorrum (dualrum). Den kan repræsenteres som det transponerede konjugat af den ket

vektor den er dual på

$$|V\rangle \leftrightarrow \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \leftrightarrow \begin{bmatrix} v_1^* & v_2^* & \cdots & v_n^* \end{bmatrix} \leftrightarrow \langle V|$$
 (2.5)

Dualrum \mathcal{H}^* består af linære afbildninger $\mathcal{H}^* \to \mathcal{H}$, defineret med det indre produkt for $\langle \phi, \cdot \rangle \in \mathcal{H}$ som $\langle \phi, \cdot \rangle : \psi \mapsto \langle \phi | \psi \rangle$.

2.2 Linære operatorer

Definition 2.4. En linær operator eller linær transformation T er en funktion $T: \mathbb{V}_1 \to \mathbb{V}_2$ således at

$$T(cv_1 + v_2) = c(Tv_1) + Tv_2 (2.6)$$

Igennem denne tekst vil de kun repræsenteres som matricer M, således at T(x) = Mx. En linær operator kan i øvrigt repræsenteres som $|\psi\rangle\langle\phi|\in\mathcal{H}\otimes\mathcal{H}^*$.

Definition 2.5. En kommutator er defineret som

$$[\Omega, \Lambda] = \Omega \Lambda - \Lambda \Omega \tag{2.7}$$

hvor $\Omega, \Lambda \in \mathcal{H} \otimes \mathcal{H}^*$. Hviss. $[\Omega, \Lambda] = 0$ kommuterer operatorerne.

Definition 2.6. Enhver operator i $\mathbb{V}^n(C)$ har n eigenværdier. Eigenværdi-

ligningen (en omskrevet version) er

$$(\Omega - \omega \hat{I}) |V\rangle = |0\rangle \tag{2.8}$$

Betingelsen for eigenvektoren er

$$\det\left(\Omega - \omega\hat{I}\right) = 0\tag{2.9}$$

hvor \hat{I} er identitetsoperatoren. Vi kan omskrive eigenværdiligningen (ved at projicere den på en basis $\langle i| \rangle$ til

$$\langle i | \Omega - \omega \hat{I} | V \rangle = 0$$

$$\sum_{j} (\Omega_{ij} - \omega \delta_{ij}) v_{j} = 0$$
(2.10)

Sættes determinanten til 0 får vi karakterligningen

$$\sum_{m=0}^{n} c_w \omega^m = 0 \tag{2.11}$$

og karakterpolynomiet

$$P^n(\omega) = \sum_{m=0}^n c_w \omega^m \tag{2.12}$$

3 Atomfysik og kvantemekaniske principper

3.1

3.2 Tilstand

Tilstanden af et partikel er beskrevet med en tilstandsvektor $|\psi\rangle \in \mathcal{H}$. Alle observerbare kvantiteter har en associeret linær Hermitisk operator, som vi kan bruge i sammenhæng med førnævnte tilstandsvektor. Givet en operator, Ω , kan man kun fysisk observere denne operators egenværdier ω

$$\Omega |\psi_i\rangle = \omega_i |\psi_i\rangle \tag{3.1}$$

(3.1) følger af at enhver tilstand kan omskrives til en linær kombination af andre tilstande, som

$$|\psi\rangle = \sum c_i \psi_i \tag{3.2}$$

Efterfølgende en observation, kollapser tilstanden på en givet egentilstand. Det er vigtigt at pointere at de eneste mulige resultater for en given operators Ω observation, er dens egenværdier.

3.3 Schrödinger-ligningen

Schrödinger-ligningen er et postulat om hvordan kvantemekaniske tilstande følger givet information om tilstanden eller dens omstændigheder. Man kan

skrive den tidsafhængige Schrödinger-ligning (TDSE) som

$$\hat{H} |\psi(t)\rangle = i\hbar \partial_t |\psi(t)\rangle \tag{3.3}$$

Hvor \hat{H} er Hamiltonoperatoren. I positionsrum vil tilstandsvektoren udtrykkes i en basis bestående af positionsvektoren $|x\rangle$ for $x \in \mathbb{R}$, som $\langle x|\psi\rangle$. Fra (2.3) får vi

$$|\psi\rangle = \int_{\mathbb{R}} \psi(\tilde{x}) |\tilde{x}\rangle d\tilde{x}$$
$$\langle x|\psi\rangle = \int_{\mathbb{R}} \psi(\tilde{x}) \langle x|\tilde{x}\rangle d\tilde{x}$$
$$= \psi(x,t)$$

Fra den klassiske formidling af energi kan vi forstå Hamiltonen H som at repræsentere summen af kinetisk T og potentielt energi V i et system som

$$H = T(p) + V(q) \tag{3.4}$$

I næste sektion vil vi bruge denne formidling for et punktpartikel (x=x(q) for gen. koordinat transformation, siden position er den eneste frihedsgrad), hvor det gælder at $p=mv^2$, således at man får

$$H = \frac{p^2}{2m} + V(x) \tag{3.5}$$

I kvanteteori bliver vi nødt til at beskrive disse kvantiteter, p og x (og Hamiltonen sig selv) som observerbare variable vi kan finde ved at anvende

deres tilsvarende operator på en tilstand. Dermed får vi

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \tag{3.6}$$

4 1-dimensionel uendelig partkelbrønd

Figur 1: V(x) potentialet

Vi begynder med en beskrivelse af et 1-dimensionelt potentiale V(x) som set på Figur 1. Potentialet er ∞ udenfor længden L, samt 0 indenfor, heraf navnet "partikelbrønd". Dette kan beskrives således

$$V(x) = \begin{cases} 0, & -\frac{L}{2} < x < \frac{L}{2} \\ \infty, & x \le -\frac{L}{2} \\ \infty, & x \ge \frac{L}{2} \end{cases}$$
 (4.1)

I en positionsbasis kan vi omskrive TISE fra (??) til

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + \frac{2m}{\hbar} (E - V(x))\psi = 0 \tag{4.2}$$

Det er oplagt at inddele bølgefunktionen ind i tre regioner per potentialet. Jeg har denoteret bølgefunktionen venstre og højre region i "væggen" med hhv. 1

og 3 (ikke at forvirres med kvantetal). Indenfor væggene er bølgefunktionen kaldt ψ_2 . Siden dette rimeligt kunstige potentiale er uendeligt kan et partikel selvfølgelig ikke befinde sig deri, da får vi at $\psi_1 = 0$ og $\psi_3 = 0$. Vi kan vise dette ved at løse (4.2), hvori V(x) i regionen sættes til et udefineret $\tilde{V} > E$, således at vi kan tilnærme os den faktiske V som grænseværdi

$$\underbrace{\lim_{\tilde{V}\to\infty} \left[\frac{\mathrm{d}^2 \psi_1}{\mathrm{d}x^2} - \frac{2m}{\hbar^2} (\tilde{V} - E) \psi_1 \right]}_{\tilde{\psi}_1} = 0$$
(4.3)

Denne ligning er en andensorden linær homogen differentialligning. Som set i (X.X), er løsningen for indholdet af parentesen af formen

$$\tilde{\psi}_1 = Ae^{-kx} + Be^{kx} \tag{4.4}$$

Hvor $k=\sqrt{\frac{2m(\tilde{V}-E)}{\hbar^2}}$. Siden denne region er defineret for $x\leq -\frac{L}{2}$, kræves der at $\psi_1\in L^2(\mathbb{R}^-)$ som set i (2.1) for at dette skal repræsentere noget fysisk. Vi kan løse dette ved at sætte A=0, da Ae^{-kx} divergerer når $x\to -\infty$, hvorved vi ender med $\tilde{\psi}_1=Be^{kx}$. Nu kan vi løse grænseværdien som

$$\psi_1 = \lim_{\tilde{V} \to \infty} B e^{kx} = 0 \tag{4.5}$$

Lignende kan det omvendte vises for at $\psi_3 = 0$. Siden V = 0 for ψ_2 , kan vi referere til (X.X) for at få en løsning af formen

$$\psi_2 = Ae^{ikx} + Be^{-ikx} \tag{4.6}$$

Hvor $k=\sqrt{\frac{2mE}{\hbar^2}}$. Den totale bølgefunktion ψ skal selvfølgelig være kontinuer, da kræver vi at

$$\psi_1\left(-\frac{L}{2}\right) = \psi_2\left(-\frac{L}{2}\right) = 0\tag{4.7}$$

samt at

$$\psi_3\left(\frac{L}{2}\right) = \psi_2\left(\frac{L}{2}\right) = 0 \tag{4.8}$$

Vi omskriver (4.6) til at være

$$\psi_2 = A\cos(kx) + B\sin(kx) \tag{4.9}$$

Jeg undersøger nu hvor denne nulfaktor skal komme fra ved x=+L/2,-L/2. Antager man at den skal opstå fra $\sin(kx)$ kræves der at kx=0 ved f.eks x=L/2. Det er muligt såfremt at

$$k = \frac{n\pi}{L}, \quad n = 0, \pm 2, \pm 4, \dots$$
 (4.10)

I dette tilfælde kræves der at A=0. Gør vi det samme med $\cos(kx)$ finder man en række løsninger af samme form som (4.10), hvori n er alle ulige naturlige tal. Dette efterlader os med en række løsninger for bølgefunktionen

$$\psi_n = \begin{cases} A \sin\left(\frac{n\pi x}{L}\right) & n = \pm 2, \pm 4, \dots \\ B \cos\left(\frac{n\pi x}{L}\right) & n = \pm 1, \pm 3, \dots \end{cases}$$
(4.11)

Vi kan kort konkludere at A = B, samt finde normaliseringsfaktoren som

$$\langle \psi_n | \psi_n \rangle = A \int_{-\frac{L}{2}}^{\frac{L}{2}} \sin^2 \left(\frac{n\pi x}{L} \right) dx = 1$$

$$A = \sqrt{\frac{2}{L}}$$
(4.12)

Vi kan udlede energiegenværdierne E_n fra relationen

$$k = \sqrt{\frac{2mE_n}{\hbar^2}} = \frac{n\pi}{L} \tag{4.13}$$

da får vi

$$E_n = \frac{\hbar^2}{2m} k_n^2 = \frac{\hbar^2 \pi^2 n^2}{2mL^2} \tag{4.14}$$

5 Hydrogenatomet

5.1 Potentialenergi

Et Hydrogenlignende atom er ethvert atom der består af ét elektron samt et eller flere protoner. Problemet vi undersøger har med at gøre to ladninger, hhv. -e og +e, samt to masser m og M som korresponderer til hhv. elektronet og protonet. Den reducerede masse $\mu = \frac{mM}{m+M}$. Fra Coulomb's lov, får man

$$V(r) = \frac{-e^2}{4\pi\epsilon_0 r} \tag{5.1}$$

Hvilket beskriver potentialenergien mellem en elektronladning og atomkernen. Den kinetiske energi kan udledes fra den klassiske formalisme i.e.

$$T(q) = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial q^2} \tag{5.2}$$

Hvilket giver os

$$T(r) = \frac{-\hbar^2}{2\mu} \nabla^2 \tag{5.3}$$

Dette udgør nu vores Hamiltonoperator $\hat{H} = T(r) + V(r),$ og i TISE får vi da

$$\left[\frac{-\hbar^2}{2\mu}\nabla^2 - \frac{-e^2}{4\pi\epsilon_0 r}\right]\psi(r,\theta,\phi) = E\psi(r,\theta,\phi)$$
 (5.4)

Vi kan repræsentere ∇^2 i sfæriske koordinater fra

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}, \tag{5.5}$$

Hvorfra vi kan omskrive (5.4) som

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] - \frac{e^2}{4\pi \epsilon_0 r} \psi = E \psi$$
(5.6)

- 5.2 Spektrum
- 5.3 Analytisk løsning
- 6 Konklusion

Litteratur

- Griffiths, David J (2005). Introduction to electrodynamics.
- Hamill, P. (2014). A Student's Guide to Lagrangians and Hamiltonians. Student's Guides. Cambridge University Press. ISBN: 9781107042889.
- Hoffman, K. og R.A. Kunze (1971). *Linear Algebra 2Nd Ed.* Prentice-Hall Of India Pvt. Limited. ISBN: 9788120302709.
- Shankar, R. (1994). Principles of Quantum Mechanics. Springer. ISBN: 9780306447907.
- Wolfson, Richard (2009). Essential University (Physics Volume 2). Bd. 2. Pearson Education India.