10

15

25

30

MANNOSIDASE STRUCTURES

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention relates to crystal structures. In particular, the invention relates to crystals comprising a mannosidase II ligand binding domain (LBD), optionally having a ligand which is associated therewith. The structures may be used to determine mannosidase homologues and information about the secondary and tertiary structures of polypeptides which are as yet structurally uncharacterised. The structures may also be used to identify ligands which are capable of binding the ligand binding domain. Such ligands may be capable of acting as modulators of mannosidase II activity.

BACKGROUND

20 Mannosidase II enzymes

There has been widespread interest in mannosidases in recent years, largely due to their role in a multitude of biological systems and, as a result, their potential as therapeutic targets. In particular, mammalian Golgi α -mannosidase II is involved in glycoprotein biosynthesis (especially in the maturation of N-linked oligosaccharides on newly synthesized glycoproteins) and is currently an important therapeutic target for the development of anticancer agents (Goss et al (1995) Clin. Cancer Res. 1:935-944).

Golgi α-mannosidase II (mannosyl oligosaccharide 1,3-1,6-α-mannosidase II, EC 3.2.1.114; also referred to herein as "GMII") belongs to the glycosyl hydrolase family 38 (Henrissat, 1991; Coutinho and Henrissat, 1999) and is central to the Golgi processing pathway, as it specifically trims two mannose residues from the branched GlcNAcMan₅GlcNAc₂ mannose

intermediate (Figure 8A) to form the core GlcNAcMan₃GlcNAc₂ glycosyl structure, an essential precursor for the further addition of *N*-acetyl-glucosamine units. GMII is a Type II transmembrane protein, approximately 125 kD in size, composed of a short N-terminal cytoplasmic tail, a single-span transmembrane domain and a large lumenal C-terminal catalytic portion (Moremen and Touster, 1985, 1986). The enzyme is highly specific for the presence of the single GlcNAc attached in a α1,2 linkage to the Man α1,3-Man arm of the GlcNAcMan₅GlcNAc₂-Asn-X substrate (Harpaz and Schachter, 1980). It removes the dimannose branch (M6, M7; Figure 8A) by hydrolysis of both glycosidic bonds with net retention of sugar anomeric configuration, resulting in the final tri-mannose GlcNAcMan₃GlcNAc₂ core. There is little or no experimental evidence to date addressing whether the two bonds are cleaved in separate binding sites or sequentially in the same binding site, nor whether or not the singly-hydrolyzed product is released from the enzyme between the two cleavage events.

Mammalian lysosomal-mannosidase has significant sequence similarity to the GM II enzyme and is responsible for glycoprotein degradation (Moremen *et al* (1994) Glycobiology 4 113-125; Liao et al (1996) J. Biol. Chem. 271:28348-28358). In particular, lysosomal α-mannosidase II is involved in the catabolism of N-linked glycoproteins through the sequential degradation of high mannose, hybrid and complex oligosaccharides.

20

25

30

5

10

Mutations in the gene encoding mannosidase II cause α -mannosidosis, an autosomal recessive lysosomal storage disease (Ockermann (1967) Lancet 2:239-241).

A number of mannosidase II genes have been characterised from different sources, including the Drosophila gene (Foster et al (1995) Gene 154:183-186; Rabouille et al (1999) J. Cell Sci. 112:3319-3330), rat gene (Spiro et al (1997) J. Biol. Chem. 272:29356-29363) and human, mouse, bovine and feline genes (Beccari et al (1999) Bioscience reports 19:158-162). These mannosidases have been categorized as class II mannosidases, based on sequence alignment, and belong to family 38 in Henrissat's glycosidase classification (Moremen et al (1994) as above, Henrissat and Bairoch (1996) Biochem J. 316:695-696).

To date there have been significant problems with high level expression of these enzymes, which has impeded structural and mechanistic studies. Indeed, problems with expression have meant that α-mannosidase from Jack Bean (*Canavalia ensiformis*) has been used as a model enzyme for structural and functional characterisation (Howard et al (1998) J. Biol. Chem. 273:2067-2072; Kimura et al (1999) Eur. J. Biochem. 164:168-175). In view of the potential therapeutic application of mannosidase inhibitors, there is a need for direct structural characterisation of these enzymes.

10 Swainsonine

Swainsonine (SW) is an indolizidine alkaloid found in Australian Swainsona canescens (Colegate et al., Aust J Chem 32:2257-2264, 1979), North American plants of the genera Astragalus and (Molyneux R J and James L F., Science 215:190-191, 1981), and also the fungus Rhizoctonia leguminicola (Schneider et al., Tetrahedron 39;29-31, 1983).

15

20

5

Swainsonine is a potent and specific inhibitor of the lysosomal and golgi forms of alphamannosidase (Cenci di Bello et al., Biochem. J. 215, 693 (1983); Tulsiani et al., J. Biol. Chem. 257, 7936 (1982)). It has potential therapeutic value as an antimetastatic (Humpheries et al., Cancer Res. 48, 1410 (1988)), and tumor-proliferative (Dennis, Cancer Res. 46, 5131 (1986)), or immunoregulatory agent (Kino et al., J. Antibiot. 38, 936 (1985)). Swainsonine has also been shown to have positive effects on cellular immunity in mice (reviewed in Humphries M. J. and Olden K., Pharmacol Ther. 44:85-105, 1989, and Olden et al., Pharmacol Ther 50:285-290, 1991)).

25

Structural information about the interaction between swainsonine and mannosidase II enzymes would provide a basis for rational modification of swainsonine derivatives with altered activities. It would also provide a framework on which new ligands could be designed which mimic some of the swainsonine:mannosidase atomic interactions.

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention is based on the finding that, after extensive modifications to the protocol, it is possible to express mannosidase II in appreciable quantities. The present invention is also based on the finding that it is possible to crystallize the protein mannosidase II, both alone and in combination with a selection of different ligands. More particularly, it has been possible to identify the specific sites of mannosidase II which are associated with binding to swainsonine and the mannose-like compound deoxymannojirimycin (DMNJ). The structure was also shown to exhibit a previously unobserved folding pattern enabling the design of novel GMII-specific inhibitors.

Binding domains are of significant utility in drug discovery. The association of natural ligands and substrates with the binding domains of mannosidases is the basis of many biological mechanisms. In addition, many drugs (e.g. swainsonine) exert their effects through association with the binding domains of mannosidases. The associations may occur with all or any parts of a binding domain. An understanding of these associations will lead to the design and optimization of drugs having more favorable associations with their target enzyme and thus provide improved biological effects. Therefore, information about the shape and structure of mannosidases and their ligand-binding domains is invaluable in designing potential modulators of mannosidases for use in treating diseases and conditions associated with or modulated by the mannosidases.

Thus, according to a first aspect of the invention, there is provided a crystal comprising a mannosidase II ligand-binding domain. In a preferred embodiment the crystal is a crystal of a mannosidase II enzyme. The structure of a crystal of mannosidase II has been solved and is set forth in Table 1, Table 2, or Table 8.

The crystal may comprise a complex between a mannosidase II ligand-binding domain and at least one ligand, for example an inhibitor of mannosidase II. In a particularly preferred embodiment that crystal comprises a complex between mannosidase II and swainsonine. The

structure of a crystal of a complex between mannosidase II and swainsonine has been solved, and is set forth in Table 2 or Table 8.

In a second aspect, the present invention provides a crystal comprising swainsonine or a derivative thereof. In a preferred embodiment, the crystal comprises a complex between swainsonine (or a derivative thereof) and a mannosidase II ligand-binding domain. The structure of a crystal of a complex between mannosidase II and swainsonine has been solved, and is set forth in Table 2, or Table 8.

According to a third aspect of the invention, there is provided a model of at least part of a mannosidase II, made using a crystal according to the first aspect of the invention. In a preferred embodiment, the model comprises the mannosidase II ligand-binding domain. There is also provided a model of swainsonine or a derivative thereof made using a crystal according to the second aspect of the invention.

15

20

25

30

5

The crystal of the first and second aspect of the invention and a model of the third aspect of the invention may be provided in the form of a computer readable medium.

The crystals and models of earlier aspects of the invention may provide information about the atomic contacts involved in the interaction between the enzyme and a known ligand, which can be used to screen for unknown ligands. According to a fourth aspect of the invention, there is provided a method of screening for a ligand capable of binding a mannosidase II ligand binding domain, comprising the use of a crystal according to the first or second aspects of the invention or a model according to the third aspect of the invention. For example, the method may comprise the step of contacting the ligand binding domain with a test compound, and determining if said test compound binds to said ligand binding domain.

In a fifth aspect, the present invention provides a ligand identified by a screening method of the fourth aspect of the invention. Preferably the ligand is a modulator that is capable of modulating the activity of a mannosidase II enzyme. A crystal and/or model of the invention may be used to design, evaluate, and identity modulators of a mannosidase II or homologues thereof other than ligands that associate with a mannosidase II. The modulators may be based on the shape and structure of a mannosidase II, or a ligand binding domain or atomic interaction, or atomic contacts thereof. Therefore modulators may be derived from ligand binding domains or analogues or parts thereof.

Modulators (e.g. ligands) which are capable of modulating the activity of mannosidase II enzymes have considerable therapeutic and prophylactic potential. In a sixth aspect, the present invention provides the use of a modulator of the invention in the manufacture of a medicament to treat and/or prevent a disease in a mammalian patient. There is also provided a pharmaceutical composition comprising a modulator and a method of treating and/or preventing a disease comprising the step of administering such a modulator or pharmaceutical composition to a mammalian patient.

15

10

5

A potential modulator of a mannosidase II identified by a method of the present invention may be confirmed as a modulator by synthesizing the compound, and testing its effect on the enzymatic activity of mannosidase II in an assay. Such assays are known in the art.

- Therefore, the methods of the invention for identifying ligands or modulators may comprise one or more of the following additional steps:
 - (a) testing whether the modulator or ligand is a modulator of the activity of a mannosidase
 II, preferably testing the activity of the modulator or ligand in cellular assays and animal model assays;
- 25 (b) modifying the modulator or ligand;
 - (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator or ligand.

Steps (a), (b) (c) and (d) may be carried out in any order, at different points in time, and they need not be sequential.

10

The crystal structures and models described above also provide information about the secondary and tertiary structure of mannosidase II enzymes. This can be used to gleen structural information about other, previously uncharacterised polypeptides. According to a seventh aspect of the invention there is provided a method of determining the secondary and/or tertiary structures of polypeptides with unknown (or only partially known) structure comprising the step of using such a crystal or model. The polypeptide under investigation is preferably structurally or functionally related to the mannosidase II enzyme. For example, the polypeptide may show a degree of homology over some or all parts of the primary amino acid sequence. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the mannosidase II enzyme.

Aspects of the invention are presented in the accompanying claims and in the following description, drawings, and Tables.

15 DESCRIPTION OF THE FIGURES AND TABLES

The present invention will now be described only by way of example and with reference to the accompanying figures and tables, wherein:

20 Figure 1 shows the active site of mannosidase II.

Figure 2 shows the secondary structure of Drosophila Golgi α -mannosidase II. Helices are in blue and β sheets are in red.

25 Figure 3 shows the Drosophila golgi α-mannosidase II molecule with the colours representing where it is identical to human GMII. The red and blue represent deletions or insertions with respect to the human sequence. The green is a disulphide bond.

15

20

25

30

Figure 4 shows the whole Drosophila golgi α -mannosidase II molecule in sticks with residues that are identical in the lysosomal manII as coloured balls (red or blue depending whether they are in the N-terminal or C-terminal part of the molecule).

5 Figure 5 shows the active site of a Drospholiga mannosidase.

Figure 6 shows the DNA sequence of an expressed Drosophila mannosidase.

Figure 7 shows an alignment of expressed secreted Drosophila mannosidase with human mannosidase.

Figure 8 shows A). Schematic representation of the high mannose GlcNAcMan₅GlcNAc₂ substrate of dGMII. B) Ribbon representation of the dGMII structure, top-view, C) side-view. The loop formed by residues 527-540 is shown in yellow. All molecular images were prepared using MOLSCRIPT (Kraulis, 1991) and rendered using Raster3D (Merritt and Bacon, 1997)

Figure 9 shows a molecular surface representation of the convex face (A) and the planar face (B) of the dGMII molecule. Molecular surface images are colored for electrostatic potential (red for negative, blue for positive). C) Molecular surface representation of the planar face of dGMII, colored for homology with the sequence of human Golgi α-mannosidase II (dark-green for identical, light-green for homologous, yellow for similar, and white for different residues). Alignment of human and *Drosophila* Golgi α-mannosidase II sequences (SwissProt accession numbers Q16706 and Q24451, respectively) was performed using the GAP program of the Wisconsin package (Version 10, Genetics Computer Group) using the default parameters without any manual intervention. The scores were used to colour the molecular surface. All molecular surface images were produced using GRASP (Nicholls et al., 1991).

Figure 10 shows stereo views of the active site of dGMII with bound Tris (A), DMNJ (B), and swainsonine (C) molecules. The active site zinc ion is shown in turquoise, the bound inhibitor

10

molecules are rendered in gold and water molecules are represented as transparent red spheres. Hydrogen bonds are shown as blue dashed lines.

Figure 11 shows A) Molecular surface representation of dGMII showing the position of the active site bound Tris molecule and the 2-methyl-2,4-pentanediol (MPD) binding site. B) Molecular surface representation of dGMII with the GlcNAcMan₅GlcNAc₂ substrate modeled into the binding pocket. The substrate molecule is positioned into the binding pocket with α 1,6-linked mannose M6 (shown in green) docked into the active site and β 1,2-GlcNAc residue G3 (shown in black) placed in the MPD binding site. Individual mannose residues of the substrate are colored according to the coloring scheme used in Figure 8A. C) Representation of the sequential trimming of the α 1,6 (M6) and α 1,3-linked (M7) mannose residues. Figure 11A was produced using LIGPLOT (Wallace et al., 1995). All molecular surface images were produced using GRASP (Nicholls et al., 1991).

Table 1 shows the structural coordinates of a Drosophila Golgi α -mannosidase II.

Table 2 shows the structural coordinates of a Drosophila Golgi α -mannosidase II with swainsonine.

Table 3 shows the ligand binding domain (active site) of a mannosidase II.

Table 4 shows the intermolecular contacts of a Drosophila Golgi α -mannosidase II swainsonine complex.

Table 5 shows crystallographic refinement statistics for the native Drosophila Golgi mannosidase II.

Table 6 shows crystallographic refinement statistics for Drosophila Golgi mannosidase II associated with swainsonine.

Table 7 shows a list of Mannosidase II enzymes.

Table 8 shows the structural coordinates of a Drosophila Golgi α-mannosidase II with swainsonine, a zinc ion, Tris molecule and an N-glycan.

5

Table 9 shows data collection statistics for MAD (Se-Met) of dGMII and native dGMII.

Table 10 shows refinement statistics of dGMII, dGMII-swainsonine complex, and dGMII-DMNJ complex.

10

15

In Tables 1, 2, and 8 from the left, the second column identifies the atom number; the third identifies the atom type; the fourth identifies the amino acid type; the sixth identifies the residue number; the seventh identifies the x coordinates; the eighth identifies the y coordinates; the ninth identifies the z coordinates; the tenth identifies the occupancy; and the eleventh identifies the temperature factor.

DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Current Protocols in Molecular Biology (Ansubel) for definitions and terms of the art. Abbreviations for amino acid residues are the standard 3-letter and/or 1-letter codes used in the art to refer to one of the 20 common L-amino acids.

In a first aspect, the present invention relates to a crystal comprising a mannosidase II ligand binding domain.

Crystal

30

As used herein, the term "crystal" means a structure (such as a three dimensional (3D) solid aggregate) in which the plane faces intersect at definite angles and in which there is a regular

5

10

15

20

structure (such as internal structure) of the constituent chemical species. Thus, the term "crystal" can include any one of: a solid physical crystal form such as an experimentally prepared crystal, a crystal structure derivable from the crystal (including secondary and/or tertiary and/or quaternary structural elements), a 2D and/or 3D model based on the crystal structure, a representation thereof such as a schematic representation thereof or a diagrammatic representation thereof, or a data set thereof for a computer.

In one aspect, the crystal is usable in X-ray crystallography techniques. Here, the crystals used can withstand exposure to X-ray beams used to produce a diffraction pattern data necessary to solve the X-ray crystallographic structure. A crystalline form of a mannosidase, may be characterized as being capable of diffracting x-rays in a pattern defined by one of the crystal forms depicted in Blundel et al 1976, Protein Crystallography, Academic Press.

A crystal of the invention includes a mannosidase II or part thereof (e.g. ligand binding domain) in association with one or more moieties, including heavy-metal atoms i.e. a derivative crystal, a metal cofactor, or one or more ligands or substrates i.e. a co-crystal.

The term "associate", "association" or "associating" refers to a condition of proximity between a moiety (i.e. chemical entity or compound or portions or fragments thereof), and a mannosidase II, or parts or fragments thereof (e.g. binding sites or domains). The association may be non-covalent i.e. where the juxtaposition is energetically favoured by for example, hydrogen-bonding, van der Waals, or electrostatic or hydrophobic interactions, or it may be covalent.

The term "heavy-metal atoms" refers to an atom that can be used to solve an x-ray crystallography phase problem, including but not limited to a transition element, a lanthanide metal, or an actinide metal. Lanthanide metals include elements with atomic numbers between 57 and 71, inclusive. Actinide metals include elements with atomic numbers between 89 and 103, inclusive.

Multiwavelength anomalous diffraction (MAD) phasing may be used to solve protein structures using selenomethionyl (SeMet) proteins. Therefore, a complex of the invention may comprise a crystalline mannosidase II or part thereof (e.g. ligand binding domain) with selenium associated with the methionine residues of the protein.

5

In an embodiment of the invention, a ligand binding domain is in association with a metal cofactor in the crystal. A "metal cofactor" refers to a metal required for mannosidase activity and/or stability. For example, the metal cofactor may be zinc, and other similar atoms or metals. In a preferred embodiment a LBD is in association with Zn²⁺.

10

A ligand binding domain in a complex with a cofactor preferably comprises one or more of the residues involved in coordination of a Zn^{2+} ion, namely: aspartate residues 92 and 204, and histidines 90 and 471.

15

The crystal may comprise a complex between a ligand-binding domain and one or more ligands. In other words the ligand binding domain may be associated with one or more ligands in the crystal. The ligand may be any compound which is capable of interacting stably and specifically with the ligand binding domain. The ligand may, for example, be an inhibitor of mannosidase II, including but not limited to swainsonine and the mannose-like compound deoxymannojirimycin (DMNJ).

20

25

In a preferred embodiment the ligand associated with said mannosidase II ligand binding domain is swainsonine, or an analogue or derivative thereof. Swainsonine is an indolizidine alkaloid found in a variety of sources (Colegate et al., (1979); Molyneux and James (1981); and Schneider et al. (1983) all as above) which has been known to be an inhibitor of mannosidase II enzymes for some time. Derivatives of swainsonine are also known in the art, for example US 5962467, US 5,650,413, and U.S. 6,048,870, describe various derivatives of swainsonine, processes for their preparation and their use as therapeutic agents.

10

15

20

25

In an embodiment a crystal of the invention comprises a ligand binding domain of a mannosidase II in association with swainsonine. These complexes may have the structural coordinates shown in Table 2, or Table 8.

In a second aspect, the present invention also provides a crystal comprising swainsonine or a derivative thereof. Preferably the swainsonine molecule has the three dimensional structure defined by the relevant structural coordinates shown in Table 2, or Table 8.

The crystal may also comprise a complex between mannosidase II (or part thereof) and a substrate, or analogue thereof. The term "substrate" refers to molecules that associate with a mannosidase II as it hydrolyzes linkages between mannose residues. Mannosidases II enzymes release α -D-mannose as a first formed product and they follow a double-displacement mechanism in which a glycosyl-enzyme intermediate is formed and hydrolyzed via oxocarbenium ion-like transition states. The formation of the intermediate is assisted by general acid catalysis from a carboxylic acid located in the active site. The residue also serves as the general base catalyst for the second deglycosylation step. A second carboxylic acid serves as the nucleophile that forms the covalent intermediate. Thus, the substrate molecule may comprise molecules such as the glycosyl moiety that forms an intermediate with the enzyme. (See Howard, S. et al, J. Biol. Chem. (1998) 273. 2067-2072 and references 11, 12, 14, 15, and 16 therein). An analogue of a substrate is one which mimics the substrate binding in the LBD, but which is incapable (or has a significantly reduced capacity) to take part in the catalytic reaction.

A number of substrates for Golgi α -mannosidase II are known including the artificial substrate PNP-mannose (Rabouille et al (1999) as above). Lysosomal mannosidase II is involved in glycoprotein degradation. In particular lysosomal mannosidase II hydrolyses $\alpha(1,2)$ $\alpha(1,3)$ and $\alpha(1,6)$ linkages between mannose residues. Substrates for this enzyme are thought to include high mannose, hybrid and complex oligosaccharides.

In an embodiment, the substrate comprises GlcNAcMan₅GlcNAc₂-Asn-.

15

25

A complex may comprise one or more of the intermolecular interactions identified in Table 4. A structure of a complex of the invention may be defined by selected intermolecular contacts, preferably the intermolecular contacts as defined in Table 4.

5 A crystal of the invention may be characterized by an N-terminal α/β domain, a C-terminal portion comprising a three-helical bundle, and an all-β C-terminal domain, connected by 5 internal disulfide bonds and stabilized by a zinc binding site (Figure 8B).

The N-terminal α/β domain is characterized as follows:

- (a) comprising an inner core of three β-sheets (A, B and C, Figure 8B) consisting of 11, mostly parallel β-strands, surrounded by 16 α-helices;
- (b) comprising a GlcNAc residue at a consensus N-glycosylation site (Asn-194), located at the N-terminus of helix 7.
- (c) stabilized by three disulfide bonds: between Cys-31 and Cys-1032 connecting the N and C-terminal extremes of dGMII; Cys-275 and Cys-282 linking helices 10 and 11; Cys-283 and Cys-297 linking helix 11 with a loop between helix 13 and the core of parallel β-sheets.

The C-terminal portion is characterized as follows:

- 20 (a) a three-helix bundle comprises helices 18, 20 and 21 connected to the N-terminal α/β-domain via a zinc binding site.
 - (b) a zinc ion coordinated in a T₅-square-based pyramidal geometry involving residues: Asp-90, His-92, Asp-204 and His-471.
 - (c) two immunoglobulin-like domains: a small β -sandwich consisting of 12 anti-parallel strands from β -sheets D and E, and a large 21-strand structure involving β -sheets F and G.
 - (d) a barrel formed by the three-helix bundle, helix-23, and the two β -sandwich structures providing a narrow pore in the center of the C-terminal domain.

The barrel in the C-terminal portion is lined by six arginine residues: Arg-540, 565, 617, 770, 777 and 893, contributing to the overall positive charge of the pore (Figure 9A). A hairpin loop, connecting two strands of β -sheet D (Figure 8B and C, residues 527-540, shown in yellow) protrudes into the center of the barrel on the planar side of the molecule. Arginine residue 530, located at the tip of the type-I β -turn in this loop, plugs the pore preventing an open channel through the protein. The resulting crater-like cavity on the convex side of the molecule is 20Šdeep, with a diameter of 20Šfunneling to 8Šat the bottom of the cavity. The loop has a higher degree of flexibility compared to the rest of the structure (average B-factor values: ~33Ų and ~15Ų, respectively).

10

15

25

5

A crystal of the invention may enable the determination of structural data for a ligand or substrate. In order to be able to derive structural data for the ligand or substrate, it is necessary for the molecule to have sufficiently strong electron density to enable a model of the molecule to be built using standard techniques. For example, there should be sufficient electron density to allow a model to be built using XTALVIEW (McRee 1992 J. Mol. Graphics. 10 44-46).

Preferably, the crystal of the invention belongs to space group P2₁2₁2₁

The term "space group" refers to the lattice and symmetry of the crystal. In a space group designation the capital letter indicates the lattice type and the other symbols represent symmetry operations that can be carried out on the contents of the asymmetric unit without changing its appearance.

Preferably, a crystal of said complex comprises a unit cell having the following unit dimensions: $a=69 (\pm 5) \text{ Å}$, $b=110 (\pm 5) \text{ Å}$, $c=139 (\pm 5) \text{ Å}$.

The term "unit cell" refers to the smallest and simplest volume element (i.e. parallelpiped-shaped block) of a crystal that is completely representative of the unit of pattern of the crystal. The unit cell axial lengths are represented by a, b, and c. Those of skill in the art understand

5

10

15

20

25

30

that a set of atomic coordinates determined by X-ray crystallography is not without standard error.

In a highly preferred embodiment, the crystal comprises the structural coordinates as shown in Table 1, Table 2, or Table 8.

As used herein, the term "structural coordinates" refer to a set of values that define the position of one or more amino acid residues with reference to a system of axes. The term refers to a data set that defines the three dimensional structure of a molecule or molecules (e.g. Cartesian coordinates, temperature factors, and occupancies). Structural coordinates can be slightly modified and still render nearly identical three dimensional structures. A measure of a unique set of structural coordinates is the root-mean-square deviation of the resulting structure. Structural coordinates that render three dimensional structures (in particular a three dimensional structure of an SGC domain) that deviate from one another by a root-mean-square deviation of less than 5 Å, 4 Å, 3 Å, 2 Å, or 1.5 Å may be viewed by a person of ordinary skill in the art as very similar.

Variations in structural coordinates may be generated because of mathematical manipulations of the structural coordinates of a mannosidase described herein. For example, the structural coordinates of Table 1, 2, or 8 may be manipulated by crystallographic permutations of the structural coordinates, fractionalization of the structural coordinates, integer additions or substractions to sets of the structural coordinates, inversion of the structural coordinates or any combination of the above.

Variations in the crystal structure due to mutations, additions, substitutions, and/or deletions of the amino acids, or other changes in any of the components that make up the crystal may also account for modifications in structural coordinates. If such modifications are within an acceptable standard error as compared to the original structural coordinates, the resulting structure may be the same. Therefore, a ligand that bound to a ligand binding domain of a mannosidase would also be expected to bind to another ligand binding domain whose

20

30

5

structural coordinates defined a shape that fell within the acceptable error. Such modified structures of a ligand binding domain thereof are also within the scope of the invention.

Various computational analyses may be used to determine whether a molecule or the ligand binding domain thereof is sufficiently similar to all or parts of a ligand binding domain thereof. Such analyses may be carried out using conventional software applications and methods as described herein.

The crystal may also be specifically characterised by the refinement statistics set out in Tables 5, 6, or 10.

MANNOSIDASE II

The term "mannosidase II" refers to eukaryotic mannosidases involved in the biosynthesis of glycoproteins, glycolipids, glycosylphosphatidylinositols and other complex glycoconjugates, and prokaryotic mannosidases involved in the synthesis of carbohydrate structures of bacteria and viruses. In particular, the term refers to the class of mannosidases categorized as class II mannosidases, based on sequence alignment, belonging to family 38 in Henrissat's glycosidase classification (Moremen, K.W. et al (1994) GlycoBiology 4, 113-125; Henrissat, B. and Bairoch A. (1996) Biochem J. 316, 695-696; Henrissat, B. and Bairoch A. (1993) Biochem J. 293, 781-788; Henrissat, B. and Bairoch A. (1991) Biochem J. 280, 309-316). Examples of mannosidase II enzymes include those listed in Table 7 (from http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf 38.html).

The invention generally relates to mannosidase II enzymes and parts thereof. Mannosidase II enzymes catalyze the first committed step in the biosynthesis of complex N-glycans and they control conversion of high mannose to complex N-glycans.

Mannosidases are derivable from a variety of sources, including viruses, bacteria, fungi, plants, and animals. In a preferred embodiment the glycosyltransferase is derivable from an

animal, preferably a mammal including but not limited to bovine, ovine, porcine, murine equine, most preferably a human. The enzyme may be from any source, whether natural, synthetic, semi-synthetic, or recombinant.

A mannosidase or part thereof in the present invention may be a wild type enzyme, or part thereof, or a mutant, variant or homologue of such an enzyme.

The term "wild type" refers to a polypeptide having a primary amino acid sequence which is identical with the native enzyme (for example, the mammalian enzyme).

10

The term "mutant" refers to a polypeptide having a primary amino acid sequence which differs from the wild type sequence by one or more amino acid additions, substitutions or deletions. Preferably, the mutant has at least 90% sequence identity with the wild type sequence. Preferably, the mutant has 20 mutations or less over the whole wild-type sequence. More preferably the mutant has 10 mutations or less, most preferably 5 mutations or less over

15

the whole wild-type sequence.

The term "variant" refers to a naturally occurring polypeptide which differs from a wild-type sequence. A variant may be found within the same species (i.e. if there is more than one isoform of the enzyme) or may be found within a different species. Preferably the variant has at least 90% sequence identity with the wild type sequence. Preferably, the variant has 20 mutations or less over the whole wild-type sequence. More preferably, the variant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

20

The term "part" indicates that the polypeptide comprises a fraction of the wild-type amino acid sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. In an embodiment, the "part" comprises a wild type mannosidase enzyme with the cytosolic and transmembrane domains and most of the stalk region eliminated, preferably the "part" comprises amino acid residues 31-1044 of Golgi α-30 mannosidase. The "part" may comprise a ligand binding domain as described herein. The

polypeptide may also comprise other elements of sequence, for example, it may be a fusion protein with another protein (such as one which aids isolation or crystallisation of the polypeptide). Preferably the polypeptide comprises at least 50%, more preferably at least 65%, most preferably at least 80% of the wild-type sequence.

5

The term "homologue" means a polypeptide having a degree of homology with the wild-type amino acid sequence. The term "homology" can be equated with "identity".

10

In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the wild-type sequence. Typically, the homologues will comprise the same sites (for example ligand binding domain) as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

15

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

20

Percentage homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

25

30

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most

sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux *et al.*, 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel *et al.*, 1999 ibid – Chapter 18), FASTA (Atschul *et al.*, 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel *et al.*, 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8 and tatiana@ncbi.nlm.nih.gov).

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

10

5

Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

15

The sequences may have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent enzyme. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP
		ILV
	Polar – uncharged	CSTM
		NQ
	Polar – charged	DE
		KR
AROMATIC		HFWY

The polypeptide may also have a homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue, with an alternative residue) i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.

Replacements may also be made by unnatural amino acids include; alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine*, p-Cl-phenylalanine*, p-Br-phenylalanine*, p-I-phenylalanine*, L-allyl-glycine*, β-alanine*, L-α-amino butyric acid*, L-γ-amino butyric acid*, L-α-amino isobutyric acid*, L-ε-amino caproic acid*, 7-amino heptanoic acid*, L-methionine sulfone*, L-norleucine*, L-norvaline*, p-nitro-L-phenylalanine*, L-hydroxyproline*, L-thioproline*, methyl derivatives of phenylalanine (Phe) such as 4-methyl-Phe*, pentamethyl-Phe*, L-Phe (4-amino)*, L-Tyr (methyl)*, L-Phe (4-isopropyl)*, L-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid)*, L-diaminopropionic acid * and L-Phe (4-benzyl)*. The notation * has been utilised for the purpose of the discussion above (relating to

25

homologous or non-homologous substitution), to indicate the hydrophobic nature of the derivative whereas # has been utilised to indicate the hydrophilic nature of the derivative, #* indicates amphipathic characteristics.

5 Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or β-alanine residues. A further form of variation, involving the presence of one or more amino acid residues in peptoid form, will be well understood by those skilled in the art. For the avoidance of doubt, "the peptoid form" is used to refer to variant amino acid residues wherein the α-carbon substituent group is on the residue's nitrogen atom rather than the α-carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon RJ et al., PNAS (1992) 89(20), 9367-9371 and Horwell DC, Trends Biotechnol. (1995) 13(4), 132-134.

15 LIGAND-BINDING DOMAIN

As used herein, the term "ligand binding domain (LBD)" refers to a region of a molecule or molecular complex that as a result of its shape, favourably associates with a ligand or a part thereof. For example, it may be a region of a mannosidase that is responsible for binding a substrate or modulator (e.g. swainsonine). With reference to the crystal of the present invention residues in the LBD may be defined by their spatial proximity to the ligand (for example swainsonine or substrate) in the crystal structure.

"Ligand" refers to a compound or entity that associates with a ligand binding domain, including substrates or analogues or parts thereof, or modulators of a mannosidase including inhibitors. A ligand may be designed rationally by using a model according to the present invention.

The term "ligand binding domain (LBD)" also includes a homologue of the ligand binding domain or a portion thereof.

As used herein, the term "homologue" in reference to a ligand binding domain refers to ligand binding domain or a portion thereof which may have deletions, insertions or substitutions of amino acid residues as long as the binding specificity of the molecule is retained. In this regard, deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the binding specificity of the ligand binding domain is retained.

As used herein, the term "portion thereof" means the structural coordinates corresponding to a sufficient number of amino acid residues of the mannosidase II LBD (or homologues thereof) that are capable of interacting with a test compound capable of binding to the LBD. This term includes mannosidase II ligand binding domain amino acid residues having an amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural coordinates provided in the crystal structure may contain a subset of the amino acid residues in the LBD which may be useful in the modelling and design of compounds that bind to the LBD.

A ligand binding domain may be defined by its association with a ligand. With reference to a crystal of the present invention, residues in the LBD may be defined by their spatial proximity to a ligand in the crystal structure. For example, such may be defined by their proximity to a substrate or modulator (e.g. swainsonine).

The active site of a mannosidase II crystal of the invention may be characterized as follows:

- (a) a small cavity lined by aromatic residues Trp-95, Phe-206, Tyr-269 and Tyr-727;
- 25 (b) a zinc ion binding site within the cavity characterized by a T₅-square-based pyramidal geometry and 'elec-His-Zn motifs'.

A binding domain for a GMII inhibitor such as swainsonine and DMNJ, comprises one or more of Trp-95, Phe-206 and Tyr-727 which form a binding cavity for the inhibitor. The inhibitor ring structures can be stacked against Trp-95, and stabilized by hydrogen bonds and

5

10

15

20

30

10

15

25

interactions with the zinc ion. When bound to an inhibitor the zinc ion binding domain of the GMII can be transformed into T₆-octahedral coordination. The binding domain allows for the formation of a hydrogen bond between the zinc-coordinating OD1 oxygen of Asp-204 and the N4 nitrogen at the fusion of the five and six-membered rings of swainsonine. The zinc coordinating oxygen atoms of the inhibitors are involved in hydrogen bond interactions with the neighboring metal binding residues of the enzyme.

The position of the inhibitor molecules is stabilized in the active site by hydrogen bonds between carboxylic oxygens OD1 and OD2 of residue Asp-472 and hydroxyl oxygens O3 and O4 (O5 in swainsonine) of the inhibitors. DMNJ is involved in additional hydrogen bonds, via water molecules, with the NH₂ nitrogen of Arg-228, the hydroxyl oxygen of Tyr-269, the backbone carbonyl oxygen of Arg-876, and the OD1 oxygen of Asp-204.

In an embodiment, a ligand binding domain comprises one or more of the following amino acid residues: His 471, His 90, and Asp 92, and Asp 204; or a homologue thereof

In a second embodiment, a ligand binding domain comprises one or more of the following amino acid residues: Trp-95, Phe-206, Tyr-269, and Tyr-727.

In another embodiment, a ligand binding domain comprises one or more of the following amino acid residues: Asp-92, Asp-204, His-90, His-471.

In still another embodiment, a ligand binding domain comprises one or more of the following amino acid residues: His 471, Asp 204, Asp 341, His 90, Asp 92, Asp 472, Phe 206, Tyr 727 and Trp 95; or a homologue thereof

In yet another embodiment a ligand binding domain comprises one or more of the following groups:

30 (a) GVWKQG (residues 60-65)

- (b) VFVVPHSHND (residues 83-92)
- (c) WAIDPFGH (residues 201-208)
- (d) HMMPFYSYDIPHTCGPDPK^V/₁CCQFDFKR (residues 262-289)
- (e) LL¹/_APLGDDFR (residues 334-343):

In an aspect of the invention, a ligand binding domain comprises one or more of the enzyme residues shown in Table 3 and/or Table 4.

A crystal of a binding domain may be defined by selected atomic contacts.

10

In an embodiment, the binding site of the mannosidase II inhibitor swainsonine is described in Table 3, and details of the atomic interactions of the binding site are set out in Table 4. In the swainsonine binding site there are direct hydrogen bonds between the inhibitor and the enzyme. Atomic contacts on the enzyme comprise Trp-95, Phe-206, Tyr-727, Asp-472, Asp 204 (see Table 4, Figures 1 and 5).

15

In a particular embodiment of the invention, a secondary or three-dimensional structure of a binding domain of a mannosidase II that associates with an inhibitor of a mannosidase II is provided comprising at least two or three atomic contacts of the atomic interactions in Table 4, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the inhibitor, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the mannosidase II (i.e. enzyme atomic contact). Preferably, the binding domain is defined by the atoms of the enzyme atomic contacts having the structural coordinates for the atoms listed in Table 1, 2, or 8.

25

20

METHOD OF MAKING A CRYSTAL

The present invention also provides a method of making a crystal according to the invention.

The crystal may be formed from an aqueous solution comprising a purified polypeptide

comprising a mannosidase II or part or fragment thereof (e.g. a catalytic portion, ligand

binding domain). A method may utilize a purified polypeptide comprising a mannosidase II ligand binding domain to form a crystal

The term "purified" in reference to a polypeptide, does not require absolute purity such as a homogenous preparation rather it represents an indication that the polypeptide is relatively purer than in the natural environment. Generally, a purified polypeptide is substantially free of other proteins, lipids, carbohydrates, or other materials with which it is naturally associated, preferably at a functionally significant level for example at least 85% pure, more preferably at least 95% pure, most preferably at least 99% pure. A skilled artisan can purify a polypeptide comprising a mannosidase II using standard techniques for protein purification. A substantially pure polypeptide comprising a mannosidase II will yield a single major band on a non-reducing polyacrylamide gel. The purity of the mannosidase II can also be determined by amino-terminal amino acid sequence analysis.

A polypeptide used in the method may be chemically synthesized in whole or in part using techniques that are well-known in the art. Alternatively, methods are well known to the skilled artisan to construct expression vectors containing the native or mutated mannosidase II coding sequence and appropriate transcriptional/translational control signals. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* recombination/genetic recombination. See for example the techniques described in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks. (See also Sarker et al, Glycoconjugate J. 7:380, 1990; Sarker et al, Proc. Natl. Acad, Sci. USA 88:234-238, 1991, Sarker et al, Glycoconjugate J. 11: 204-209, 1994; Hull et al, Biochem Biophys Res Commun 176:608, 1991 and Pownall et al, Genomics 12:699-704, 1992).

Crystals may be grown from an aqueous solution containing the purified mannosidase II polypeptide by a variety of conventional processes. These processes include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods. (See for example, McPherson, 1982 John Wiley, New York; McPherson, 1990, Eur. J. Biochem. 189: 1-23; Webber. 1991,

Adv. Protein Chem. 41:1-36). Generally, the native crystals of the invention are grown by adding precipitants to the concentrated solution of the mannosidase II polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.

Derivative crystals of the invention can be obtained by soaking native crystals in a solution containing salts of heavy metal atoms. A complex of the invention can be obtained by soaking a native crystal in a solution containing a compound that binds the polypeptide, or they can be obtained by co-crystallizing the polypeptide in the presence of one or more compounds. In order to obtain co-crystals with a compound which binds deep within the tertiary structure of the polypeptide it is necessary to use the second method.

Once the crystal is grown it can be placed in a glass capillary tube and mounted onto a holding device connected to an X-ray generator and an X-ray detection device. Collection of X-ray diffraction patterns are well documented by those skilled in the art (See for example, Ducruix and Geige, 1992, IRL Press, Oxford, England). A beam of X-rays enter the crystal and diffract from the crystal. An X-ray detection device can be utilized to record the diffraction patterns emanating from the crystal. Suitable devices include the Marr 345 imaging plate detector system with an RU200 rotating anode generator.

Methods for obtaining the three dimensional structure of the crystalline form of a molecule or complex are described herein and known to those skilled in the art (see Ducruix and Geige 1992, IRL Press, Oxford, England). Generally, the x-ray crystal structure is given by the diffraction patterns. Each diffraction pattern reflection is characterized as a vector and the data collected at this stage determines the amplitude of each vector. The phases of the vectors may be determined by the isomorphous replacement method where heavy atoms soaked into the crystal are used as reference points in the X-ray analysis (see for example, Otwinowski, 1991, Daresbury, United Kingdom, 80-86). The phases of the vectors may also be determined by molecular replacement (see for example, Naraza, 1994, Proteins 11:281-296). The

10

15

20

25

30

amplitudes and phases of vectors from the crystalline form of a mannosidase II determined in accordance with these methods can be used to analyze other related crystalline polypeptides.

The unit cell dimensions and symmetry, and vector amplitude and phase information can be used in a Fourier transform function to calculate the electron density in the unit cell i.e. to generate an experimental electron density map. This may be accomplished using the PHASES package (Furey, 1990). Amino acid sequence structures are fit to the experimental electron density map (i.e. model building) using computer programs (e.g. Jones, TA. et al, Acta Crystallogr A47, 100-119, 1991). This structure can also be used to calculate a theoretical electron density map. The theoretical and experimental electron density maps can be compared and the agreement between the maps can be described by a parameter referred to as R-factor. A high degree of overlap in the maps is represented by a low value R-factor. The R-factor can be minimized by using computer programs that refine the structure to achieve agreement between the theoretical and observed electron density map. For example, the XPLOR program, developed by Brunger (1992, Nature 355:472-475) can be used for model refinement.

A three dimensional structure of a molecule or complex may be described by atoms that fit the theoretical electron density characterized by a minimum R value. Files can be created for the structure that defines each atom by coordinates in three dimensions.

MODEL

A crystal structure of the present invention may be used to make a model of the mannosidase II or a part thereof, (e.g.a ligand-binding domain). A model may, for example, be a structural model (or a representation thereof), or a computer model. A model may represent the secondary, tertiary and/or quaternary structure of the mannosidase II. The model itself may be in two or three dimensions. It is possible for a computer model to be in three dimensions despite the constraints imposed by a conventional computer screen, if it is possible to scroll along at least a pair of axes, causing "rotation" of the image.

Thus, for example, the structural coordinates provided in the crystal structure and/or model structure may comprise the amino acid residues of the mannosidase II LBD, or a portion of the mannosidase II LBD or a homologue thereof useful in the modelling and design of test compounds capable of binding to the mannosidase II LBD.

As used herein, the term "modelling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term "modelling" includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models.

Preferably, modelling is performed using a computer and may be further optimized using known methods. This is called modelling optimisation.

15

10

5

Overlays and super positioning with a three dimensional model of the mannosidase II LBD, and/or a portion thereof, can also be used for modelling optimisation. Additionally, alignment and/or modelling can be used as a guide for the placement of mutations on the mannosidase II LBD surface to characterise the nature of the site in the context of a cell.

20

25

30

The three dimensional structure of a new crystal may be modelled using molecular replacement. The term "molecular replacement" refers to a method that involves generating a preliminary model of a molecule or complex whose structural coordinates are unknown, by orienting and positioning a molecule whose structural coordinates are known within the unit cell of the unknown crystal, so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This, in turn, can be subject to any of the several forms of refinement to provide a final, accurate structure of the unknown crystal. Lattman, E., "Use of the Rotation and Translation Functions", in Methods in Enzymology, 115, pp. 55-77 (1985);

10

15

20

25

M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York, (1972).

Commonly used computer software packages for molecular replacement are X-PLOR (Brunger 1992, Nature 355: 472-475), AMORE (Navaza, 1994, Acta Crystallogr. A50:157-163), the CCP4 package (Collaborative Computational Project, Number 4, "The CCP4 Suite: Programs for Protein Crystallography", Acta Cryst., Vol. D50, pp. 760-763, 1994), the MERLOT package (P.M.D. Fitzgerald, J. Appl. Cryst., Vol. 21, pp. 273-278, 1988) and XTALVIEW (McCree et al (1992) J. Mol. Graphics 10: 44-46. It is preferable that the resulting structure not exhibit a root-mean-square deviation of more than 3 Å.

The quality of the model may be analysed using a program such as PROCHECK or 3D-Profiler [Laskowski et al 1993 J. Appl. Cryst. 26:283-291; Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined.

Other molecular modelling techniques may also be employed in accordance with this invention. See, e.g., Cohen, N. C. et al, "Molecular Modelling Software and Methods for Medicinal Chemistry", J. Med. Chem., 33, pp. 883-894 (1990). See also, Navia, M. A. and M. A. Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Using the structural coordinates of the crystal complexes provided by this invention, molecular modelling may be used to determine the structure coordinates of a crystalline mutant or homologue of mannosidase II LBD or of a related protein. By the same token, a crystal of the second aspect of the invention can be used to provide a model of swainsonine. Modelling techniques can then be used to approximate the three dimensional structure of swainsonine derivatives and other compounds which may be able to mimic the atomic contacts between swainsonine and the LBD.

10

15

20

25

30

COMPUTER FORMAT OF CRYSTALS/MODELS

Information derivable from the crystal of the present invention (for example the structural coordinates) and/or a model of the present invention may be provided in a computer-readable format.

Therefore, the invention provides a computer readable medium or a machine readable storage medium which comprises the structural coordinates of a mannosidase II including all or any parts of the mannosidase II (e.g ligand-binding domain), ligands including portions thereof, or substrates including portions thereof. Such storage medium or storage medium encoded with these data are capable of displaying on a computer screen or similar viewing device, a three-dimensional graphical representation of a molecule or molecular complex which comprises the enzyme or ligand binding domains or similarly shaped homologous enzymes or ligand binding domains. Thus, the invention also provides computerized representations of a crystal of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation.

- In an aspect the invention provides a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a mannosidase II or ligand binding domain thereof defined by structural coordinates of mannosidase II amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:
 - (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a mannosidase II amino acids according to Table 1, 2, or 8 or a ligand binding domain thereof, or a ligand (e.g. swainsonine) according to Table 2, or Table 8;
 - (b) a working memory for storing instructions for processing said machine-readable data;

- (c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

A homologue may comprise a mannosidase II or ligand binding domain thereof, or ligand or substrate that has a root mean square deviation from the backbone atoms of not more than 1.5 angstroms.

10

5

The invention also provides a computer for determining at least a portion of the structural coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex wherein said computer comprises:

15

(a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates according to Table 1, 2, or 8;

(b) a machine-readable data storage medium comprising a data storage material

20

encoded with machine readable data wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;

(c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);

(d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structural coordinates; and

25

(e) a display coupled to said central-processing unit for displaying said structural coordinates of said molecule or molecular complex.

10

15

20

25

STRUCTURAL DETERMINATIONS

The present invention also provides a method for determining the secondary and/or tertiary structures of a polypeptide by using a crystal, or a model according to the present invention. The polypeptide may be any polypeptide for which the secondary and or tertiary structure is uncharacterised or incompletely characterised. In a preferred embodiment the polypeptide shares (or is predicted to share) some structural or functional homology to the mannosidase II crystal. For example, the polypeptide may show a degree of structural homology over some or all parts of the primary amino acid sequence. For example the polypeptide may have one or more domains which shows homology with a mannosidase II domain (Kapitonov and Yu (1999) Glycobiology 9(10): 961-978).

The polypeptide may be a mannosidase II with a different specificity for a ligand or substrate. The polypeptide may be a mannosidase II which requires a different metal cofactor. Alternatively (or in addition) the polypeptide may be a mannosidase II from a different species.

The polypeptide may be a mutant of the wild-type mannosidase II. A mutant may arise naturally, or may be made artificially (for example using molecular biology techniques). The mutant may also not be "made" at all in the conventional sense, but merely tested theoretically using the model of the present invention. A mutant may or may not be functional.

Thus, using the model of the present invention, the effect of a particular mutation on the overall two and/or three dimensional structure of a mannosidase II and/or the interaction between the enzyme and a ligand or substrate can be investigated. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the mannosidase II enzyme. For example the polypeptide may remove, transport, or add on a sugar residue.

The polypeptide may also be the same as the polypeptide of the crystal, but in association with a different ligand (for example, modulator or inhibitor) or cofactor. In this way it is possible to investigate the effect of altering a ligand or compound with which the polypeptide is associated on the structure of the LBD.

5

Secondary or tertiary structure may be determined by applying the structural coordinates of the crystal or model of the present invention to other data such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Homology modeling, molecular replacement, and nuclear magnetic resonance methods using these other data sets are described below.

10

15

20

25

Homology modeling (also known as comparative modeling or knowledge-based modeling) methods develop a three dimensional model from a polypeptide sequence based on the structures of known proteins (i.e. mannosidase II of the crystal). The method utilizes a computer model of the crystal of the present invention (the "known structure"), a computer representation of the amino acid sequence of the polypeptide with an unknown structure, and standard computer representations of the structures of amino acids. The method in particular comprises the steps of; (a) identifying structurally conserved and variable regions in the known structure; (b) aligning the amino acid sequences of the known structure and unknown structure (c) generating coordinates of main chain atoms and side chain atoms in structurally conserved and variable regions of the unknown structure based on the coordinates of the known structure thereby obtaining a homology model; and (d) refining the homology model to obtain a three dimensional structure for the unknown structure. This method is well known to those skilled in the art (Greer, 1985, Science 228, 1055; Bundell et al 1988, Eur. J. Biochem. 172, al., 1992, 513: Knighton et Science 258:130-135, http://biochem.vt.edu/courses/modeling/homology.htn). Computer programs that can be used in homology modeling are Quanta and the Homology module in the Insight II modelling package distributed by Molecular Simulations Inc, or MODELLER (Rockefeller University, www.iucr.ac.uk/sinris-top/logical/prg-modeller.html).

30

10

15

20

25

30

In step (a) of the homology modeling method, the known mannosidase II structure is examined to identify the structurally conserved regions (SCRs) from which an average structure, or framework, can be constructed for these regions of the protein. Variable regions (VRs), in which known structures may differ in conformation, also must be identified. SCRs generally correspond to the elements of secondary structure, such as alpha-helices and beta-sheets, and to ligand- and substrate-binding sites (e.g. acceptor and donor binding sites). The VRs usually lie on the surface of the proteins and form the loops where the main chain turns.

Many methods are available for sequence alignment of known structures and unknown structures. Sequence alignments generally are based on the dynamic programming algorithm of Needleman and Wunsch [J. Mol. Biol. 48: 442-453, 1970]. Current methods include FASTA, Smith-Waterman, and BLASTP, with the BLASTP method differing from the other two in not allowing gaps. Scoring of alignments typically involves construction of a 20x20 matrix in which identical amino acids and those of similar character (i.e., conservative substitutions) may be scored higher than those of different character. Substitution schemes which may be used to score alignments include the scoring matrices PAM (Dayhoff et al., Meth. Enzymol. 91: 524-545, 1983), and BLOSUM (Henikoff and Henikoff, Proc. Nat. Acad. Sci. USA 89: 10915-'0919, 1992), and the matrices based on alignments derived from three-dimensional structures including that of Johnson and Overington (JO matrices) (J. Mol. Biol. 233: 716-738, 1993).

Alignment based solely on sequence may be used; however, other structural features also may be taken into account. In Quanta, multiple sequence alignment algorithms are available that may be used when aligning a sequence of the unknown with the known structures. Four scoring systems (i.e. sequence homology, secondary structure homology, residue accessibility homology, CA-CA distance homology) are available, each of which may be evaluated during an alignment so that relative statistical weights may be assigned.

When generating coordinates for the unknown structure, main chain atoms and side chain atoms, both in SCRs and VRs need to be modeled. A variety of approaches known to those

skilled in the art may be used to assign coordinates to the unknown. In particular, the coordinates of the main chain atoms of SCRs will be transferred to the unknown structure. VRs correspond most often to the loops on the surface of the polypeptide and if a loop in the known structure is a good model for the unknown, then the main chain coordinates of the known structure may be copied. Side chain coordinates of SCRs and VRs are copied if the residue type in the unknown is identical to or very similar to that in the known structure. For other side chain coordinates, a side chain rotamer library may be used to define the side chain coordinates. When a good model for a loop cannot be found fragment databases may be searched for loops in other proteins that may provide a suitable model for the unknown. If desired, the loop may then be subjected to conformational searching to identify low energy conformers if desired.

Once a homology model has been generated it is analyzed to determine its correctness. A computer program available to assist in this analysis is the Protein Health module in Quanta which provides a variety of tests. Other programs that provide structure analysis along with output include PROCHECK and 3D-Profiler [Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined. Refinement may consist of energy minimization with restraints, especially for the SCRs. Restraints may be gradually removed for subsequent minimizations. Molecular dynamics may also be applied in conjunction with energy minimization.

Molecular replacement involves applying a known structure to solve the X-ray crystallographic data set of a polypeptide of unknown structure. The method can be used to define the phases describing the X-ray diffraction data of a polypeptide of unknown structure when only the amplitudes are known. Thus in an embodiment of the invention, a method is provided for determining three dimensional structures of polypeptides with unknown structure by applying the structural coordinates of the crystal of the present invention to provide an X-ray crystallographic data set for a polypeptide of unknown structure, and (b) determining a low energy conformation of the resulting structure.

Molecular replacement computer programs generally involve the following steps: (1) determining the number of molecules in the unit cell and defining the angles between them (self rotation function); (2) rotating the known structure against diffraction data to define the orientation of the molecules in the unit cell (rotation function); (3) translating the known structure in three dimensions to correctly position the molecules in the unit cell (translation function); (4) determining the phases of the X-ray diffraction data and calculating an R-factor calculated from the reference data set and from the new data wherein an R-factor between 30-50% indicates that the orientations of the atoms in the unit cell have been reasonably determined by the method; and (5) optionally, decreasing the R-factor to about 20% by refining the new electron density map using iterative refinement techniques known to those skilled in the art (refinement).

In an embodiment of the invention, a method is provided for determining three dimensional structures of polypeptides with unknown structure (e.g. additional native or mutated mannosidase II enzymes) by applying the structural coordinates of a mannosidase II structure to provide an X-ray crystallographic data set for a polypeptide of unknown structure, and (b) determining a low energy conformation of the resulting structure.

The structural coordinates of the crystal of the present invention may be applied to nuclear magnetic resonance (NMR) data to determine the three dimensional structures of polypeptides with uncharacterised or incompletely characterised sturcture. (See for example, Wuthrich, 1986, John Wiley and Sons, New York: 176-199; Pflugrath et al., 1986, J. Molecular Biology 189: 383-386; Kline et al., 1986 J. Molecular Biology 189:377-382). While the secondary structure of a polypeptide may often be determined by NMR data, the spatial connections between individual pieces of secondary structure are not as readily determined. The structural coordinates of a polypeptide defined by X-ray crystallography can guide the NMR spectroscopist to an understanding of the spatial interactions between secondary structural elements in a polypeptide of related structure. Information on spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data

from two-dimensional NMR experiments. In addition, applying the structural coordinates after the determination of secondary structure by NMR techniques simplifies the assignment of NOE's relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure.

5

10

15

In an embodiment, the invention relates to a method of determining three dimensional structures of polypeptides with unknown structures, by applying the structural coordinates of a crystal of the present invention to nuclear magnetic resonance (NMR) data of the unknown structure. This method comprises the steps of: (a) determining the secondary structure of an unknown structure using NMR data; and (b) simplifying the assignment of through-space interactions of amino acids. The term "through-space interactions" defines the orientation of the secondary structural elements in the three dimensional structure and the distances between amino acids from different portions of the amino acid sequence. The term "assignment" defines a method of analyzing NMR data and identifying which amino acids give rise to signals in the NMR spectrum.

SCREENING METHOD

20

The present invention also provides a method of screening for a ligand that associates with a ligand binding domain and/or modulates the function of mannosidase II, by using a crystal or a model according to the present invention. The method may involve investigating whether a test compound is capable of associating with or binding a ligand binding domain.

25

In accordance with an aspect of the present invention, a method is provided for screening for a ligand capable of binding to a ligand binding domain, wherein said method comprises the use of a crystal or model according to the invention.

In another aspect, the invention relates to a method of screening for a ligand capable of binding to a ligand binding domain, wherein the ligand binding domain is defined by the amino acid residue structural coordinates given herein, the method comprising contacting the

15

20

25

30

ligand binding domain with a test compound and determining if said test compound binds to said ligand binding domain.

In one embodiment, the present invention provides a method of screening for a test compound capable of interacting with a key amino acid residue of the ligand binding domain of mannosidase II.

Another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- (c) preparing a quantity of said one or more ligands.

A further aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- (c) preparing a pharmaceutical composition comprising said one or more ligands.

Once a test compound capable of interacting with a key amino acid residue in a mannosidase II LBD has been identified, further steps may be carried out either to select and/or to modify compounds and/or to modify existing compounds, to modulate the interaction with the key amino acid residues in the mannosidase II LBD.

Yet another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain;
- (c) modifying said one or more ligands capable of binding to a ligand binding domain;
- (d) performing said method of screening for a ligand as described above;
- (e) optionally preparing a pharmaceutical composition comprising said one or more ligands.

As used herein, the term "test compound" means any compound which is potentially capable of associating with a ligand binding domain. If, after testing, it is determined that the test compound does bind to the LBD, it is known as a "ligand".

5

10

15

A "test compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not. The test compound may be designed or obtained from a library of compounds which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the test compound may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic test compound, a semi-synthetic test compound, a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised test compound, a peptide cleaved from a whole protein, or a peptides synthesised synthetically (such as, by way of example, either using a peptide synthesizer or by recombinant techniques or combinations thereof), a recombinant test compound, a natural or a non-natural test compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof.

20

The test compound may be screened as part of a library or a data base of molecules. Data bases which may be used include ACD (Molecular Designs Limited), NCI (National Cancer Institute), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service), Derwent (Derwent Information Limited), Maybridge (Maybridge Chemical Company Ltd), Aldrich (Aldrich Chemical Company), DOCK (University of California in San Francisco), and the Directory of Natural Products (Chapman & Hall). Computer programs such as CONCORD (Tripos Associates) or DB-Converter (Molecular Simulations Limited) can be used to convert a data set represented in two dimensions to one represented in three dimensions.

25

20

25

Test compounds may be tested for their capacity to fit spatially into a mannosidsase II LBD. As used herein, the term "fits spatially" means that the three-dimensional structure of the test compound is accommodated geometrically in a cavity or pocket of the mannosidase II LBD. The test compound can then be considered to be a ligand.

5

A favourable geometric fit occurs when the surface areas of the test compound is in close proximity with the surface area of the cavity or pocket without forming unfavorable interactions. A favourable complementary interaction occurs where the test compound interacts by hydrophobic, aromatic, ionic, dipolar, or hydrogen donating and accepting forces. Unfavourable interactions may be steric hindrance between atoms in the test compound and

10 atoms in the binding site.

If a model of the present invention is a computer model, the test compounds may be positioned in an LBD through computational docking. If, on the other hand, the model of the present invention is a structural model, the test compounds may be positioned in the LBD by, for example, manual docking.

As used herein the term "docking" refers to a process of placing a compound in close proximity with a mannosidase II LBD, or a process of finding low energy conformations of a test compound/glycosyltransferase complex.

A screening method of the present invention may comprise the following steps:

- (i) generating a computer model of a mannosidase II or a selected site thereof using a crystal according to the first aspect of the invention;
- (ii) docking a computer representation of a test compound with the computer model;
 - (iii) analysing the fit of the compound in the mannosidase II or selected site.

In an aspect of the invention a method is provided comprising the following steps:

10

15

20

30

- (a) docking a computer representation of a structure of a test compound into a computer representation of a binding domain of a mannosidase II defined in accordance with the invention using a computer program, or by interactively moving the representation of the test compound into the representation of the binding domain;
- (b) characterizing the geometry and the complementary interactions formed between the atoms of the binding domain and the compound; optionally
- (c) searching libraries for molecular fragments which can fit into the empty space between the compound and binding domain and can be linked to the compound; and
- (d) linking the fragments found in (c) to the compound and evaluating the new modified compound.

In an embodiment of the invention a method is provided which comprises the following steps:

- (a) docking a computer representation of a test compound from a computer data base with a computer representation of a selected site (e.g. the inhibitor binding domain) on a mannosidase II structure defined in accordance with the invention to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the selected site as potential modulators of the mannosidase II.

A method of the invention may be applied to a plurality of test compounds, to identify those that best fit the selected site.

The model used in the screening method may comprise the ligand-binding domain of a mannosidase II enzyme either alone or in association with one or more ligands and/or cofactors. For example, the model may comprise the ligand-binding domain in association with a substrate or analogue thereof.

If the model comprises an unassociated ligand binding domain, then the selected site under investigation may be the LBD itself. The test compound may, for example, mimic a known substrate for the enzyme in order to interact with the LBD. The selected site may alternatively be another site on the enzyme.

If the model comprises an associated LBD, for example an LBD in association with a substrate molecule or analogue thereof, the selected site may be the LBD or a site made up of the LBD and the complexed ligand, or a site on the ligand itself. The test compound may be investigated for its capacity to modulate the interaction with the associated molecule.

A test compound (or plurality of test compounds) may be selected on the basis of its similarity to a known ligand for the mannosidase II. For example, the screening method may comprise the following steps:

- (i) generating a computer model of the LBD of a mannosidase II in complex with a ligand;
- (ii) searching for a test compound with a similar three dimensional structure and/or similar chemical groups; and
- (iii) evaluating the fit of the test compound in the LBD.

Searching may be carried out using a database of computer representations of potential compounds, using methods known in the art.

The present invention also provides a method for designing ligands for a mannosidase II. It is well known in the art to use a screening method as described above to identify a test compound with promising fit, but then to use this test compound as a starting point to design a ligand with improved fit to the model. A known modulator can also be modified to enhance its fit with a model of the invention. Such techniques are known as "structure–based ligand design" (See Kuntz et al., 1994, Acc. Chem. Res. 27:117; Guida, 1994, Current Opinion in Struc. Biol. 4: 777; and Colman, 1994, Current Opinion in Struc. Biol. 4: 868, for reviews of

15

10

5

20

25

30

structure-based drug design and identification; and Kuntz et al 1982, J. Mol. Biol. 162:269; Kuntz et al., 1994, Acc. Chem. Res. 27: 117; Meng et al., 1992, J. Compt. Chem. 13: 505; Bohm, 1994, J. Comp. Aided Molec. Design 8: 623 for methods of structure-based modulator design).

5

Examples of computer programs that may be used for structure-based ligand design are CAVEAT (Bartlett et al., 1989, in "Chemical and Biological Problems in Molecular Recognition", Roberts, S.M. Ley, S.V.; Campbell, N.M. eds; Royal Society of Chemistry: Cambridge, pp 182-196); FLOG (Miller et al., 1994, J. Comp. Aided Molec. Design 8:153); PRO Modulator (Clark et al., 1995 J. Comp. Aided Molec. Design 9:13); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function, and Genetics 8:195); and, GRID (Goodford, 1985, J. Med. Chem. 28:849).

The method may comprise the following steps:

15

20

25

10

- (i) docking a model of a test compound with a model of a selected site;
- (ii) identifying one or more groups on the test compound which may be modified to improve their fit in the selected site;
- (iii) replacing one or more identified groups to produce a modified test compound model; and
- (iv) docking the modified test compound model with the model of the selected site.

Evaluation of fit may comprise the following steps:

- (a) mapping chemical features of a test compound such as by hydrogen bond donors or acceptors, hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites; and
- (b) adding geometric constraints to selected mapped features.

The fit of the modified test compound may then be evaluated using the same criteria.

The chemical modification of a group may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the test compound and the key amino acid residue(s) of the selected site. Preferably the group modifications involve the addition, removal, or replacement of substituents onto the test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of the selected site.

Identified groups in a test compound may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo groups. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided.

15

10

5

If a modified test compound model has an improved fit, then it may bind to the selected site and be considered to be a "ligand". Rational modification of groups may be made with the aid of libraries of molecular fragments which may be screened for their capacity to fit into the available space and to interact with the appropriate atoms. Databases of computer representations of libraries of chemical groups are available commercially, for this purpose.

20

25

30

A test compound may also be modified "in situ" (i.e. once docked into the potential binding site), enabling immediate evaluation of the effect of replacing selected groups. The computer representation of the test compound may be modified by deleting a chemical group or groups, replacing chemical groups, or by adding a chemical group or groups. After each modification to a compound, the atoms of the modified compound and potential binding site can be shifted in conformation and the distance between the modulator and the active site atoms may be scored on the basis of geometric fit and favourable complementary interactions between the molecules. This technique is described in detail in Molecular Simulations User Manual, 1995 in LUDI.

Examples of ligand building and/or searching computer include programs in the Molecular Simulations Package (Catalyst), ISIS/HOST, ISIS/BASE, and ISIS/DRAW (Molecular Designs Limited), and UNITY (Tripos Associates).

5

10

15

The "starting point" for rational ligand design may be a known ligand for the enzyme. For example, in order to identify potential modulators of the mannosidase II, a logical approach would be to start with a known ligand (for example a substrate molecule or inhibitor) to produce a molecule which mimics the binding of the ligand. Such a molecule may, for example, act as a competitive inhibitor for the true ligand, or may bind so strongly that the interaction (and inhibition) is effectively irreversible.

Such a method may comprise the following steps:

(i) generating a computer model of a LBD of a mannosidase II in complex with a ligand;

(ii) replacing one or more groups on the ligand model to produce a modified ligand; and

(iii) evaluating the fit of the modified ligand in the LBD.

The replacement groups could be selected and replaced using a compound construction program which replaces computer representations of chemical groups with groups from a computer database, where the representations of the compounds are defined by structural coordinates.

In an embodiment, a screening method is provided for identifying a ligand of a mannosidase II comprising the step of using the structural coordinates of a substrate molecule or swainsonine or component thereof, defined in relation to its spatial association with a mannosidase II structure or a ligand binding domain of the invention, to generate a compound that is capable of associating with the mannosidase II or ligand binding domain.

In an embodiment of the invention, a screening method is provided for identifying a ligand of a mannosidase II comprising the step of using the structural coordinates of swainsonine listed in Table 2 or 8 to generate a compound for associating with a ligand binding domain of a mannosidase II as described herein. The following steps are employed in a particular method of the invention: (a) generating a computer representation of swainsonine, defined by its structural coordinates listed in Table 2 or 8; (b) searching for molecules in a data base that are structurally or chemically similar to the defined swainsonine, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

10

15

5

The screening methods of the present invention may be used to identify compounds or entities that associate with a molecule that associates with a mannosidase II enzyme (for example, a substrate molecule).

Compounds and entities (e.g. ligands) of mannosidase II identified using the above-described methods may be prepared using methods described in standard reference sources utilized by those skilled in the art. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill.

20

25

30

Test compounds and ligands which are identified using a crystal or model of the present invention can be screened in assays such as those well known in the art. Screening can be, for example, *in vitro*, in cell culture, and/or *in vivo*. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds to the receptor), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity. The biological assay, may also be an assay for the ligand binding activity of a compound that selectively binds to the LBD compared to other nuclear receptors.

LIGANDS/COMPOUNDS/MODULATORS

The present invention provides a ligand or compound or entity identified by a screening method of the present invention. A ligand or compound may have been designed rationally by using a model according to the present invention. A ligand or compound identified using the screening methods of the invention specifically associate with a target compound. In the present invention the target compound may be the mannosidase II enzyme or a molecule that is capable of associating with the mannosidase II enzyme (for example a substrate molecule). In a preferred embodiment the ligand is capable of binding to the LBD of a mannosidase II.

A ligand or compound identified using a screening method of the invention may act as a "modulator", i.e. a compound which affects the activity of a mannosidase II. A modulator may reduce, enhance or alter the biological function of a mannosidase II. For example a modulator may modulate the capacity of the enzyme to hydrolyse mannose residues. An alteration in biological function may be characterised by a change in specificity. For example, a modulator may cause the enzyme to accept a different substrate molecule, to transfer a different sugar, or to work with a different metal cofactor. In order to exert its function, the modulator commonly binds to the ligand binding domain.

20

25

30

5

10

15

A "modulator" which is capable of reducing the biological function of the enzyme may also be known as an inhibitor. Preferably an inhibitor reduces or blocks the capacity of the enzyme to hydrolyse mannose residues. The inhibitor may mimic the binding of a substrate molecule, for example, it may be a substrate analogue. A substrate analogue may be designed by considering the interactions between the substrate molecule and the enzyme (for example by using information derivable from the crystal of the invention) and specifically altering one or more groups (as described above).

In a highly preferred embodiment, a modulator acts as an inhibitor of the mannosidase II and is capable of inhibiting N-glycan biosynthesis. <u>In another embodiment, a modulator enhances mannosidase II activity and is capable of regulating the immune system.</u>

The present invention also provides a method for modulating the activity of a mannosidase II within a cell using a modulator according to the present invention. It would be possible to monitor the expression of N-glycans on the cell surface following such treatment by a number of methods known in the art (for example by detecting expression with an N-glycan specific antibody).

In another preferred embodiment, the modulator modulates the catalytic mechanism of the enzyme.

10

15

20

25

30

5

A modulator may be an agonist, partial agonist, partial inverse agonist or antagonist of the mannosidase II.

As used herein, the term "agonist" means any ligand, which is capable of binding to a ligand binding domain and which is capable of increasing a proportion of the enzyme that is in an active form, resulting in an increased biological response. The term includes partial agonists and inverse agonists.

As used herein, the term "partial agonist" means an agonist that is unable to evoke the maximal response of a biological system, even at a concentration sufficient to saturate the specific receptors.

As used herein, the term "partial inverse agonist" is an inverse agonist that evokes a submaximal response to a biological system, even at a concentration sufficient to saturate the specific receptors. At high concentrations, it will diminish the actions of a full inverse agonist.

The invention relates to a mannosidase II ligand binding domain antagonist, wherein said ligand binding domain is that defined by the amino acid structural coordinates described herein. For example the ligand may antagonise the inhibition of mannosidase by swainsonine.

As used herein, the term "antagonist" means any agent that reduces the action of another agent, such as an agonist. The antagonist may act at the same site as the agonist (competitive antagonism). The antagonistic action may result from a combination of the substance being antagonised (chemical antagonism) or the production of an opposite effect through a different receptor (functional antagonism or physiological antagonism) or as a consequence of competition for the binding site of an intermediate that links receptor activation to the effect observed (indirect antagonism).

As used herein, the term "competitive antagonism" refers to the competition between an agonist and an antagonist for a receptor that occurs when the binding of agonist and antagonist becomes mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent but overlapping sites. A third possibility is that different sites are involved but that they influence the receptor macromolecules in such a way that agonist and antagonist molecules cannot be bound at the same time. If the agonist and antagonist form only short lived combinations with the receptor so that equilibrium between agonist, antagonist and receptor is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations. In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it and the antagonism becomes insurmountable when no spare receptors remain.

As mentioned above, an identified ligand or compound may act as a ligand model (for example, a template) for the development of other compounds. A modulator may be a mimetic of a ligand or ligand binding domain. A mimetic of a ligand may compete with a natural ligand for a mannosidase II and antogonize a physiological effect of the enzyme in an animal. A mimetic of a ligand may be an organically synthesized compound. A mimetic of a ligand binding domain, may be either a peptide or other biopharmaceutical (such as an organically synthesized compound) that specifically binds to a natural substrate molecule for a mannosidase II and antagonize a physiological effect of the enzyme in an animal.

A modulator may be one or a variety of different sorts of molecule. For example, a modulator may be a peptide, member of random peptide libraries and combinatorial chemistry-derived molecular libraries, phosphopeptide (including members of random or partially degenerate, directed phosphopeptide libraries), a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound antibody, carbohydrate, nucleoside or nucleotide or part thereof, and small organic or inorganic molecule. A modulator may be an endogenous physiological compound, or it may be a natural or synthetic compound. The modulators of the present invention may be natural or synthetic. The term "modulator" also refers to a chemically modified ligand or compound, and includes isomers and racemic forms.

Once a ligand has been optimally selected or designed, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to the mannosidase II LBD by the same computer methods described above.

Preferably, positions for substitution are selected based on the predicted binding orientation of a ligand to the mannosidase II LBD.

A technique suitable for preparing a modulator will depend on its chemical nature. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. Peptides can be synthesized by solid phase techniques (Roberge JY *et al* (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Once cleaved from the resin, the peptide may be

purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures and Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, *supra*).

5

If a modulator is a nucleotide, or a polypeptide expressable therefrom, it may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH *et al* (1980) Nuc Acids Res Symp Ser 215-23, Horn T *et al* (1980) Nuc Acids Res Symp Ser 225-232), or it may be prepared using recombinant techniques well known in the art.

10

Direct synthesis of a ligand or mimetics thereof can be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences obtainable from the ligand, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant ligand.

20

15

In an alternative embodiment of the invention, the coding sequence of a ligand or mimetics thereof may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH *et al* (1980) Nuc Acids Res Symp Ser 215-23, Horn T *et al* (1980) Nuc Acids Res Symp Ser 225-232).

25

A wide variety of host cells can be employed for expression of the nucleotide sequences encoding a ligand of the present invention. These cells may be both prokaryotic and eukaryotic host cells. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the expression products to produce an appropriate mature polypeptide. Processing includes but is

not limited to glycosylation, ubiquitination, disulfide bond formation and general post-translational modification.

In an embodiment of the present invention, the ligand may be a derivative of, or a chemically modified ligand. The term "derivative" or "derivatised" as used herein includes the chemical modification of a ligand.

A chemical modification of a ligand and/or a key amino acid residue of a ligand binding domain of the present invention may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the ligand and the key amino acid residue(s) of the mannosidase II LBD. By way of example, steric hinderance is a common means of changing the interaction of the mannosidase II LBD binding domain with the activation domain.

Preferably such modifications involve the addition of substituents onto a test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of mannosidase II LBD of the present invention. Typical modifications may include, for example, the replacement of a hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

The invention also relates to classes of modulators of mannosidase II based on the structure and shape of a substrate, defined in relation to the substrate's molecule's spatial association with a mannosidase II structure of the invention or part thereof. Therefore, a modulator may comprise a substrate molecule having the shape or structure, preferably the structural coordinates, of a substrate molecule in the active site binding pocket of a reaction catalyzed by a mannosidase II. In an embodiment, the substrate comprises GlcNAcMan₅GlcNAc₂-Asn-

A modulator may be an inhibitor of a mannosidase II such as swainsonine or a derivative or mimetic thereof.

20

25

30

5

10

15

A class of modulators of mannosidase II enzymes may comprise a compound containing a structure of swainsonine, and having one or more, preferably all, of the structural coordinates of swainsonine of Table 2 or 8. Functional groups in the swainsonine modulators may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo, or they may be modified using techniques known in the art. Substituents will be selected to optimize the activity of the modulator.

PHARMACEUTICAL COMPOSITION

10

5

The present invention also provides the use of a ligand or modulator according to the invention, in the manufacture of a medicament to treat and/or prevent a disease in a mammalian patient. There is also provided a pharmaceutical composition comprising such a ligand or modulator and a method of treating and/or preventing a disease comprising the step of administering such a modulator or pharmaceutical composition to a mammalian patient.

15

In an embodiment, the invention relates to a pharmaceutical composition which comprises a crystal structure of the invention or a part thereof (e.g. a binding domain), or a modulator of the invention in an amount effective to regulate one or more of the conditions described herein (e.g. tumor growth or metastasis) and a pharmaceutically acceptable carrier, diluent or excipient.

20

The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine and will typically comprise a pharmaceutically acceptable carrier, diluent, excipient, adjuvant or combination thereof.

25

30

Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard

pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

5 A pharmaceutical composition of the invention can be administered to a subject in an appropriate carrier or diluent, co-administered with enzyme inhibitors or in an appropriate carrier such as microporous or solid beads or liposomes. Liposomes include water-in-oil-inwater emulsions as well as conventional liposomes (Strejan et al., (1984) J. Neuroimmunol 7:27).

10

20

25

Preservatives, stabilizers, dyes and even flavouring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may also be used.

15 The routes for administration (delivery) include, but are not limited to, one or more of: oral (e.g. as a tablet, capsule, or as an ingestable solution), topical, mucosal (e.g. as a nasal spray or aerosol for inhalation), nasal, parenteral (e.g. by an injectable form), gastrointestinal, intraspinal, intraperitoneal, intramuscular, intravenous, intrauterine, intraocular, intradermal, intracranial, intratracheal, intravaginal, intracerebroventricular, intracerebral, subcutaneous, ophthalmic (including intravitreal or intracameral), transdermal, rectal, buccal, vaginal, epidural, sublingual.

Where the pharmaceutical composition is to be delivered mucosally through the gastrointestinal mucosa, it should be able to remain stable during transit through the gastrointestinal tract; for example, it should be resistant to proteolytic degradation, stable at acid pH and resistant to the detergent effects of bile.

It is to be understood that not all of the agent need be administered by the same route.

10

Where appropriate, the pharmaceutical compositions can be administered by inhalation, in the form of a suppository or pessary, topically in the form of a lotion, gel, hydrogel, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose or chalk, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art.

If the agent of the present invention is administered parenterally, then examples of such administration include one or more of: intravenously, intra-arterially, intraperitoneally, intrathecally, intraventricularly, intraurethrally, intrasternally, intracranially, intramuscularly or subcutaneously administering the agent; and/or by using infusion techniques.

For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

The tablets may contain excipients such as microcrystalline cellulose, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate and glycine, disintegrants such as starch (preferably corn, potato or tapioca starch), sodium starch glycollate, croscarmellose sodium and certain complex silicates, and granulation binders such as polyvinylpyrrolidone, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, stearic acid, glyceryl behenate and talc may be included.

25

5

10

15

20

25

Solid compositions of a similar type may also be employed as fillers in gelatin capsules. Preferred excipients in this regard include lactose, starch, cellulose, milk sugar or high molecular weight polyethylene glycols. For aqueous suspensions and/or elixirs, the agent may be combined with various sweetening or flavouring agents, colouring matter or dyes, with emulsifying and/or suspending agents and with diluents such as water, ethanol, propylene glycol and glycerin, and combinations thereof.

As indicated, a therapeutic agent of the present invention can be administered intranasally or by inhalation and is conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurised container, pump, spray or nebuliser with the use of a suitable propellant, dichlorodifluoromethane. e.g. trichlorofluoromethane. dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFA 134ATM) or 1,1,1,2,3,3,3-heptafluoropropane (HFA 227EATM), carbon dioxide or other suitable gas. In the case of a pressurised aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. The pressurised container, pump, spray or nebuliser may contain a solution or suspension of the active compound, e.g. using a mixture of ethanol and the propellant as the solvent, which may additionally contain a lubricant, e.g. sorbitan trioleate. Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of the agent and a suitable powder base such as lactose or starch.

Therapeutic administration of polypeptide modulators may also be accomplished using gene therapy. A nucleic acid including a promoter operatively linked to a heterologous polypeptide may be used to produce high-level expression of the polypeptide in cells transfected with the nucleic acid. DNA or isolated nucleic acids may be introduced into cells of a subject by conventional nucleic acid delivery systems. Suitable delivery systems include liposomes, naked DNA, and receptor-mediated delivery systems, and viral vectors such as retroviruses, herpes viruses, and adenoviruses.

10

15

20

25

30

APPLICATIONS

The modulators and compositions of the invention may be used to modulate the biological activity of a mannosidase II in a cell, including modulating a pathway in a cell regulated by the mannosidase II or modulating a mannosidase II with inappropriate activity in a cellular organism. In addition, a mannosidase II structure of the invention may be used to devise protocols to modulate the biological activity of a mannosidase II in a cell.

Cellular assays, as well as animal model assays *in vivo*, may be used to test the activity of a potential modulator of a mannosidase II as well as diagnose a disease associated with inappropriate mannosidase II activity. *In vivo* assays are also useful for testing the bioactivity of a potential modulator designed by the methods of the invention.

The invention further provides a method of treating a mammal, the method comprising administering to a mammal a modulator or pharmaceutical composition of the present invention.

Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient and severity of the condition. The dosages below are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited.

The specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. By way of example, the pharmaceutical composition of the present invention may be administered in accordance with a regimen of 1 to 10 times per day, such as once or twice per day.

15

20

25

30

For oral and parenteral administration to human patients, the daily dosage level of the agent may be in single or divided doses.

5 The modulators (e.g. inhibitors) identified using the methods of the invention may be useful in the treatment and prophylaxis of tumor growth and metastasis of tumors. Anti-metastatic effects of inhibitors can be demonstrated using a lung colonization assay. For example, melanoma cells treated with an inhibitor may be injected into mice and the ability of the melanoma cells to colonize the lungs of the mice may be examined by counting tumor nodules on the lungs after death. Suppression of tumor growth in mice by the inhibitor administered orally or intravenously may be examined by measuring tumor volume.

An inhibitor identified using the invention may have particular application in the prevention of tumor recurrence after surgery i.e. as an adjuvant therapy.

An inhibitor may be especially useful in the treatment of various forms of neoplasia such as leukemias, lymphomas, melanomas, adenomas, sarcomas, and carcinomas of solid tissues in patients. In particular, inhibitors can be used for treating malignant melanoma, pancreatic cancer, cervico-uterine cancer, ovarian cancer, cancer of the kidney such as metastatic renal cell carcinoma, stomach, lung, rectum, breast, bowel, gastric, liver, thyroid, head and neck cancers such as unresectable head and neck cancers, lymphangitis carcinamatosis, cancers of the cervix, breast, salivary gland, leg, tongue, lip, bile duct, pelvis, mediastinum, urethra, bronchogenic, bladder, esophagus and colon, non-small cell lung cancer, and Karposi's Sarcoma which is a form of cancer associated with HIV-infected patients with Acquired Immune Deficiency Syndrome (AIDS). The inhibitors may also be used for other antiproliferative conditions such as bacterial and viral infections, in particular AIDS.

An inhibitor identified in accordance with the present invention may be used to treat immunocompromised subjects. For example, they may be used in a subject infected with HIV, or other viruses or infectious agents including bacteria, fungi, and parasites, in a subject

10

15

20

25

undergoing bone marrow transplants, and in subjects with chemical or tumor-induced immune suppression.

Inhibitors may be used as hemorestorative agents and in particular to stimulate bone marrow cell proliferation, in particular following chemotherapy or radiotherapy. The myeloproliferative activity of an inhibitor of the invention may be determined by injecting the inhibitor into mice, sacrificing the mice, removing bone marrow cells and measuring the ability of the inhibitor to stimulate bone marrow proliferation by directly counting bone marrow cells and by measuring clonogenic progenitor cells in methylcellulose assays. The inhibitors can also be used as chemoprotectants, and in particular to protect mucosal epithelium following chemotherapy.

An inhibitor identified in accordance with the invention also may be used as an antiviral agent in particular on membrane enveloped viruses such as retroviruses, influenza viruses, cytomegaloviruses and herpes viruses. An inhibitor may also be used to treat bacterial, fungal, and parasitic infections. An inhibitor may also be used in the treatment of inflammatory diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease, and atherosclerosis.

An inhibitor may also be used to augment the anti-cancer effects of agents such as interleukin-2 and poly-IC, to augment natural killer and macrophage tumoricidal activity, induce cytokine synthesis and secretion, enhance expression of LAK and HLA class I specific antigens; activate protein kinase C, stimulate bone marrow cell proliferation including hematopoietic progenitor cell proliferation, and increase engraftment efficiency and colony-forming unit activity, to confer protection against chemotherapy and radiation therapy (e.g. chemoprotective and radioprotective agents), and to accelerate recovery of bone marrow cellularity particularly when used in combination with chemical agents commonly used in the treatment of human diseases including cancer and acquired immune deficiency syndrome (AIDS). For example, an inhibitor can be used as a chemoprotectant in combination with anti-

10

15

20

25

30

cancer agents including doxorubicin, 5-fluorouracil, cyclophosphamide, and methotrexate, and in combination with isoniazid or NSAID.

Alpha-mannosidosis may also be amendable to treatment or prophylaxis by the method of the present invention.

The loss of mannosidase II has been found to alter N-glycan branching and attenuate the immune system's ability to maintain self-tolerance (Chui et al, PNAS 98(3):1142-1147, 2001). Therefore, the structures, modulators, compositions, and methods of the invention may be useful in the treatment or prophylaxis of autoimmune disease including systemic lupus erythematosus.

The present invention thus provides a method for treating the above-mentioned conditions in a subject comprising administering to a subject an effective amount of a modulator of the invention. The invention also contemplates a method for stimulating or inhibiting tumor growth or metastasis in a subject comprising administering to a subject an effective amount of a modulator of the invention.

The following non-limiting examples are illustrative of the present invention.

EXAMPLES

Example 1

Drosophila Mannosidase II preparation and structure determination

Expression Plasmids

Constructs designed to expressed dGMII in *Drosophila* Schneider (S2) cells were based on the DES expression system available from *InVitrogen* with extensive modifications. Expression plasmids were constructed which had the dGMII under the control either of the inducible metallothioneine (MT) promoter or the strong constitutive actin 5.1 promoter (AC5). Amino terminal purification tags were inserted in place of the C-terminal tags in the commercially available vectors. Earlier attempts, to truncate the mouse enzyme from at the C-terminus resulted in inactive protein, as had also been noted with the GlcNAc-transferases. Thus, it was elected to keep the C-terminus free. Expression vectors were created with either a 6His-tag, for purification on metal chelate columns such as Ni-NTA (*Qiagen*) or cobalt based Talon columns (*Clontech*), or with a Strep-tag for purification on streptavidin-Sepharose. These affinity tags are initially non-cleavable and add approximately 8-10 residues to the end

10

15

of the protein. Finally, constructs were made either lacking or containing the Bip secretion sequence to direct the expressed protein into the cells or medium respectively.

Blasticidin Selection

Initial attempts at stable transfection with the recommended hygromycin selection system were unsuccessful. Therefore a new selection plasmid, pCopBlast was created which encodes blasticidin S deaminase under the control of the constitutive *copia* promoter. Blasticidin S has been used for stable transfectants of mammalian and plant cells, as well as yeast. Commercially available control plasmids expressing MT-induced secreted green fluorescent protein (GFP), or constitutive and MT-induced unsecreted bacterial β-galactosidase (LacZ) were used to test the suitability of blasticidin selection in S2 cells, and to optimize conditions for transfection, selection, and metallothionein induction. Stable transfectants could be selected with 16 μg/ml blasticidin in Schneider's S2 medium containing 10% fetal bovine serum. Copper and cadmium were the only metals found to activate the MT promoter; copper favoured internally expressed proteins and cadmium, secreted proteins. Maintenance of the altered phenotype was also demonstrated for many weeks in the absence of the selective pressure of blasticidin demonstrating that these were indeed stably transfected cell lines.

Creation of Stably Expressing dGMH cell lines.

Starting with the pProtA expression plasmid from initial published studies [Rabouille *et al*, 1999], the mannosidase coding region was excised, and inserted into an in-frame *EcoRI* site immediately at the end of the affinity tag in the new plasmids. The position of a unique 3' restriction site outside the coding region meant that 100-200 bp of extra sequence was added between the stop codon and the SV40 polyadenylation site. This extra sequence was removed with a short PCR amplification using a unique internal restriction site. Both ends of the constructs were sequenced to verify proper reading frame and lack of PCR errors. The resulting constructs consist of the dGMII catalytic region with a short length of the stalk region, in a variety of "flavours" of promoter, affinity tag, and expression location.

10

15

20

25

Co-transfection of the pCopBlast selection plasmid with the mannosidase expression plasmids, followed by selection for blasticidin resistance allowed stable expressing cell lines after approximately one month. Mannosidase activity was measured using PNP-mannoside, in a microtitre plate assay. Protein was detected on Western blots using anti-PentaHis antibody (*Qiagen*). Only the secreted products showed activity, with similar levels in the constitutive and MT-promoter constructs. No difference in mannosidase activity was seen between His or Strep tagged protein. All subsequent work was carried out with the secreted constructs.

Insect cells do not grow at low population densities. Therefore, the initial population of selected cells was a mixed population with each cell in the culture having somewhat different levels of incorporated expression plasmid. To select individual cells with high levels of expression the stably transfected population was diluted to single cells in a 50:50 mix of conditioned medium and fresh medium with blasticidin. These were then plated in 96-well culture plates. After five weeks, about 10% of the wells showed growths of colonies large enough to transfer, of which roughly 30% had activity. The highest expressors had approximately 5 times the activity of the initial population in the MT-inducible strains. High-expressing clones of the constitutively expressed dGMII, were obtained suggesting that the continued production mannosidase by the cells may be detrimental, especially under the stressful conditions of single-cell selection.

Expression and purification of dGMII.

The availability of a stable clones expressing considerable amounts of mannosidase allowed optimization of induction, expression and purification conditions. In contrast to mammalian cells, insect cells are not highly adherent and will grow to high cell densities in a variety of culture vessels including roller bottles, spinners, fermentors and shake flasks. No CO₂ is required, and temperatures in the range of 25-28°C are optimal. With stably transfected cells, the difficulties that accompany baculoviral infection do not arise.

Initial experiments were carried out in S2 medium containing 10% bovine serum. Metal concentrations used to induce and time of induction were optimized for dGMII production. 10-20 μ M cadmium proved optimal for induction. Although copper (at approximately 500-1000 μ M) is generally used in the literature for induction, the sensitivity of dGMII to inhibition by copper (IC₅₀ = 25 μ M,[26]) precluded its use. Cadmium has been reported to be detrimental to the growth of cells. However, at the concentrations used here, the cells continued to grow and maintain greater than 90% viability (as assessed by Trypan blue exclusion) until the end of the induction period. Cells were maintained in the continous presence of cadmium for up to three passages.

10

5

As the dGMII was secreted into the medium, it was badly contaminated with bovine serum albumin (BSA). Attempts to remove the impurity by Blue Agarose or Ni-NTA chromatography were unsuccessful. To circumvent this contamination problem a number of serum-free media were evaluated for growth and expression levels. There are very few serum-free media developed for *Drosophila* cells so ones that have been used with baculovirus expression systems were evaluated. Ultimately the Excel420 medium from JRH Biosciences was successful.

20

15

A further advantage to this medium is the incorporation of seleno-methionine in place of methionine for crystallographic phasing purposes. A custom preparation of this medium was purchased from JRH free of Met and Cu. Inclusion of 50 µg/ml of SeMet resulted in the production of protein with high enough incorporation (approximately 50% by mass spectrometry) for accurate phasing.

25

30

Cells were adapted to serum-free growth by gradual dilution with CCM3 medium and then they were switched into the other media for the expression studies. Excel420, CCM3 and SFX-Insect were clearly superior for maintaining healthy growth, though CCM3 provided slightly lower levels of expression. Levels of cadmium required for induction were optimized for each medium and were considerably lower than those required in S2 medium. For unknown reasons, constitutive expression of dGMII was much lower in serum-free medium.

5

10

15

20

Therefore, all subsequent scale-up and purifications were carried out with the MT-inducible 6His tagged constructs.

To scale-up protein expression cells were first grown as suspensions in spinner cultures. These were subsequently put into 2.8 litre Fernbach flasks (1 litre Excel 420/flask) shaken at 100 rpm at 28°C. Cells were induced for 72 hours with 10 µM cadmium. After this time the medium was asceptically harvested and the cells are placed in the same volume of fresh medium for a further round of induction. This can be repeated at least one more time without significant cell death or loss of protein expression. Based on activity measurements up to 50 mg/litre of medium can be expressed every three days. This is approximately 1000 fold greater than in initial expression experiments in CHOP cells [Rabouille *et al*, 1999]. This procedure requires about 2 weeks of dedicated time in an incubator/shaker.

Purification is effected by batch binding first to Blue-Agarose, with elution by 350 mM NaCl, and then to Ni-NTA resin, with elution by 50 mM imidizole. Initial, secreted protein from the medium of the serum-free grown cells was loaded in batch to Blue-Agarose. The beads were then loaded into a column and washed with 20 column volumes of 50 mM NaCl in 20 mM Tris pH8. The majority of the mannosidase was eluted with 350 mM NaCl. This pooled eluant was loaded onto NiNTA, washed with low imidizole, and eluted with 50 mM imidizole to achieve crystallization purity. The protein is then dialysed extensively against 10 mM Tris, pH 8.3 and 100 mM NaCl and concentrated (to greater than 20 mg/ml) for crystallization trials. All crystallization has been carried out from a single protein preparation.

Crystallization

25 Crystals of Drosophila Mannosidase II and complexes of the enzyme with various inhibitors were grown at room temperature using vapor diffusion and micro-batch crystallization techniques. Crystals were obtained under a wide variety of conditions. Polyethylene glycol (PEG) was used as a precipitant (with sizes: 4000; 6000; 8000; 10000; and 20000) at concentrations varying from 5-20%, in the presence of 5% 2,4-methyl-pentanediol (MPD) or 0-30% glycerol. Crystallization solutions were buffered at pH 7-7.5 using 100 mM buffer

10

15

25

solutions of Tris, Hepes or Mes. The crystals belong to the orthorhombic space group $P2_12_12_1$ with cell dimensions: a=69Å; b=110Å; c=139Å; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$. For the initial structure determination Seleno-Methionine-derivatized Mannosidase II crystals were grown in 8.5% PEG 6000, 5% MPD and 100 mM Tris pH 7.0, using micro seeds obtained from wild-type enzyme crystals. Data were collected from crystals that were frozen in liquid nitrogen after a stepwise increase of the MPD concentration in the crystallization solution from 5% to 25%.

A crystal of the invention is illustrated in the Figures. In particular, Figure 1 shows the active site of a mannosidase II. Figure 2 shows the secondary structure of Drosophila Golgi α -mannosidase II. Helices are in blue and β sheets are in red. Figure 3 shows the Drosophila golgi α -mannosidase II molecule with the colours representing where it is identical to human GMII. The red and blue represent deletions or insertions with respect to the human sequence. The green is a disulphide bond. Figure 4 shows the whole Drosophila golgi α -mannosidase II molecule in sticks with residues that are identical in the lysosomal manII as coloured balls (red or blue depending whether they are in the N-terminal or C-terminal part of the molecule). Figure 5 shows the active site of a Drospholiga mannosidase. Figure 6 shows the DNA sequence of an expressed Drosophila mannosidase. Figure 7 shows an alignment of expressed secreted Drosophila mannosidase with human mannosidase.

20 Example 2

Experimental Procedures

Protein Overexpression and Purification

Expression, purification and crystallization of the dGMII will be described in detail elsewhere. Briefly, the cDNA was inserted behind an inducible promoter, and used to stably transfect *Drosophila* S2 cells. Single cell clones secreting high levels of dGMII were chosen and adapted to serum-free medium. Unlabelled dGMII was isolated from the supernatants of cells grown in Fernbach flasks by batch binding to Blue-Agarose (Sigma). The protein was eluted from the Blue-Agarose using NaCl and further purified by Ni-NTA chromatography (Qiagen). EDTA (5 mM) was added to scavenge any free nickel. The protein was extensively

dialyzed against 10 mM Tris pH 8 containing 100 mM NaCl, concentrated to 25 mg/ml, and stored in aliquots at -80 °C.

For seleno-methionine labeling, a custom batch of Ex-Cell 420 (#006140E JRH Biosciences, Lenexa KS) was used which lacked any added methionine or copper. Cells were grown to high cell density in a spinner flask in standard medium, resuspended in the "methionine-free" medium and allowed to starve for 4 hours prior to the addition of 50 mg/l of seleno-methionine (Sigma). After 70 hrs of induction the protein was purified from the supernatant as outlined above except that 5 mM β-mercaptoethanol was present throughout the purification.

10

15

20

25

5

Crystallization and Data Collection

Crystals of Drosophila Mannosidase II and complexes of the enzyme with various inhibitors were grown at room temperature using vapor diffusion and micro-batch crystallization techniques. Crystals were obtained under a wide variety of conditions. Polyethylene glycol (PEG) was used as a precipitant (with sizes: 4000; 6000; 8000; 10000; and 20000) at concentrations varying from 5-20%, in the presence of 5% 2,4-methyl-pentane-diol (MPD) or 0-30% glycerol. Crystallization solutions were buffered at pH 7-7.5 using 100 mM buffer solutions of Tris, Hepes or Mes. The crystals belong to the orthorhombic space group P2₁2₁2₁ with cell dimensions: a=69Å; b=110Å; c=139Å; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$. For the initial structure determination Seleno-Methionine-derivatized Mannosidase II crystals were grown in 8.5% PEG 6000, 5% MPD and 100 mM Tris pH 7.0, using micro seeds obtained from wild-type enzyme crystals. Data were collected from crystals that were frozen in liquid nitrogen after a stepwise increase of the MPD or glycerol concentration in the crystallization solution from 5% to 25%. Data collection was performed at the Advanced Photon Source facility at Argonne National Laboratories, Argonne, Illinois. Beam line BM14D was used for collection of multiple wavelength anomalous dispersion data and BM14C for collection of highresolution data.

Structure Determination

The structure of uncomplexed dGMII was determined by MAD phasing at the Selenium absorption edge with datasets collected at an absorption peak wavelength of 0.9786 Å, inflection wavelength of 0.9790Å and a remote wavelength of 0.9770 Å. Initial positions of 26 out of 28 Selenium atoms were determined with the program Solve (Terwilliger et al., 1987) with an initial Figure of Merit (FOM) of 0.67. The experimental map obtained after density modification, using the program DM of the CCP4 program package (Cowtan, 1994), showed continuous density of very high quality for the whole molecule. The structure was traced using the program O (Jones et al., 1991) using the density modified experimental map. The model was refined using the program CNS (Brünger et al., 1998).

10

15

5

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

The metal content in dGMII samples was analyzed by inductively coupled plasma atomic emission spectroscopy using the ICP-AES model 'Optima 3000 DV' (Dual View) from Perkin Elmer. The zinc content in the protein samples was determined relative to an equivalent amount of dGMII assay buffer.

RESULTS AND DISCUSSION

Protein expression

- The cDNA for *Drosophila* GMII is predicted to encode a protein of 1108 amino acids. For protein expression in *Drosophila* cells the first 75 amino acids consisting of the cytosolic and transmembrane domains and most of the stalk region were eliminated. The remaining cDNA was cloned in-frame behind a secretion signal.
- Numbering of our construct starts at the point where the expressed protein is expected to be cleaved, by signal peptidase, from the secretion signal. Three extra amino terminal residues, a 6-histidine tag, and a glycine, glutamine and phenylalanine were added in cloning. The first aspartate (D13) of the construct corresponds to aspartate 76 of the native protein. The first residue seen in the structure (C31) corresponds to C94, and the final residue S1044 to S1107, of the full-length sequence.

10

15

20

25

Structure Determinations

The structure of Drosophila Golgi α-mannosidase II has been determined by the multi-wavelength anomalous dispersion (MAD) phasing method using a data set collected from a crystal of Seleno-methionine derivatized enzyme (Table 9). This is the first reported structure of a Se-Met substituted enzyme produced in a Drosophila overexpression system. The native dGMII structure has been refined to a resolution of 1.76Å with some data to 1.4Å resolution (see refinement statistics presented in Table 10). The model contains residues 31-1044 of the recombinant enzyme (numbered as described above), as well as a zinc ion, an N-glycan residue, a molecule of the cryo-protectant, 2-methyl-2,4-pentanediol (MPD), and a tris(hydroxymethyl)-aminomethane (Tris) molecule. The presence of the enzyme-bound zinc ion was confirmed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The final structure of the dGMII-swainsonine complex has been refined at 1.87Å resolution and the dGMII-DMNJ complex to 1.69Å resolution, with some data to 1.5Å resolution.

Overall Architecture of dGMII

The structure of dGMII reveals a previously unobserved protein fold consisting of an N-terminal α/β domain, a three-helical bundle and an all- β C-terminal domain forming a single compact entity, connected by 5 internal disulfide bonds and stabilized by a zinc binding site (Figure 8B). The oval shaped molecule has two distinct faces (Figure 8C). The N-terminal face of the molecule is convex, whereas the opposing face of the enzyme has a planar surface. N-terminal residue Cys-31 is the last residue of the so-called stalk region, the linkage between the catalytic domain and the transmembrane domain. Cys-31 is located at the convex face of the molecule, indicating that this surface of the molecule presumably faces the inner side of the Golgi membrane, while the planar surface, containing the active site cavity (see below), faces the Golgi lumen.

The N-terminal α/β domain is comprised of an inner core of three β -sheets (A, B and C, 30 Figure 8B) consisting of 11, mostly parallel β -strands, surrounded by 16 α -helices. This

domain contains a GlcNAc residue found in the electron density map at a consensus N-glycosylation site (Asn-194), located at the N-terminus of helix 7. The α/β domain is stabilized by three disulfide bonds: between Cys-31 and Cys-1032 connecting the N and C-terminal extremes of dGMII; Cys-275 and Cys-282 linking helices 10 and 11; Cys-283 and Cys-297 linking helix 11 with a loop between helix 13 and the core of parallel β -sheets. The cysteines forming the latter two disulfide-bonds are conserved in the human Golgi α -mannosidase II sequence.

The C-terminal half of the protein contains a three-helix bundle, comprised of helices 18, 20 and 21, and is connected to the N-terminal α/β -domain via a zinc binding site. The zinc ion is coordinated in a T₅-square-based pyramidal geometry involving residues: Asp-90, His-92, Asp-204 and His-471. Furthermore, the C-terminal domain contains two immunoglobulin-like domains: a small β -sandwich consisting of 12 anti-parallel strands from β -sheets D and E, and a large 21-strand structure involving β -sheets F and G.

15

20

25

10

5

A barrel formed by the three-helix bundle and helix-23 together with the two β -sandwich structures result in a narrow pore in the center of the C-terminal domain. The pore is lined by six arginine residues: Arg-540, 565, 617, 770, 777 and 893, contributing to the overall positive charge of the pore (Figure 9A). A hairpin loop, connecting two strands of β -sheet D (Figure 8B and C, residues 527-540, shown in yellow) protrudes into the center of the barrel on the planar side of the molecule. Arginine residue 530, located at the tip of the type-I β -turn in this loop, plugs the pore preventing an open channel through the protein. The resulting crater-like cavity on the convex side of the molecule is 20Šdeep, with a diameter of 20Šfunneling to 8Šat the bottom of the cavity. B-factor values of residues within the loop indicate a higher degree of flexibility compared to the rest of the structure (average B-factor values: ~33Ų and ~15Ų, respectively).

Active Site

5

10

15

20

25

30

The molecular surface representation of the planar face of dGMII reveals an extended pocket in the N-terminal α/β -domain, formed primarily by acidic residues (Figure 9B). These same residues form the core of a large, contiguous, surface-exposed patch, of highly conserved amino acids, in comparison with the human GMII sequence (Figure 9C). The active site of the enzyme is located in a small cavity in the side of this conserved, negatively charged region. The cavity is lined by aromatic residues Trp-95, Phe-206, Tyr-269 and Tyr-727, which are involved in hydrophobic and hydrogen-bond interactions with a bound Tris molecule in the unliganded structure (Figure 10A). Tris is known to inhibit dGMII activity (Rabouille et al., 1999). Additional hydrophobic and hydrogen bond interactions are observed with Asp-92 and Asp-204. At the open side of the cavity the Tris molecule hydrogen bonds with Arg-228, Tyr-269 and Asp-341 (not shown) via water molecules.

A key feature of the active site is the coordination of the zinc ion by the Tris hydroxyl group O2. In the enzyme-Tris complex the zinc ion is bound in a T₅-square-based pyramidal geometry, coordinated by the OD1 oxygen moieties of aspartate residues 92 and 204; the NE2 nitrogens of histidines 90 and 471; and the hydroxyl oxygen O2 of the bound Tris molecule, as represented in Figure 10A. The T₅ geometry is further stabilized by hydrogen bonds between the zinc coordinating atoms and the existence of H-bonds between the ND1 nitrogen atoms of the histidines 90 and 471 with the carbonyl oxygen of seleno-methionine 167 and a water molecule, respectively (not shown). The presence of these, so called, 'elec-His-Zn motifs' is believed to increase the basicity and the ligand strength of the histidine and arrange it correctly for interaction with the metal (Alberts et al., 1998). In an uninhibited enzyme, Tris would likely be replaced by a coordinating water molecule. As discussed below, this arrangement has implications for substrate binding and transition state stabilization.

The occurrence of zinc in Family 38 glycosyl hydrolases has been described by Snaith (1975) in Jack-bean α -mannosidase. A possible role for zinc in catalysis was indicated by inactivation of the enzyme by chelating agents and bivalent metal ions such as Cu²⁺. Copper

has also been shown to effectively inactivate *Drosophila* and mouse GMII (Rabouille et al., 1999).

Inhibitor Binding

5

10

15

20

25

The structures of dGMII in complex with the inhibitors DMNJ and swainsonine show that both compounds bind to the same active site in a similar manner (Figure 10B and C). The binding of both inhibitors involves a large contribution of hydrophobic interactions involving aromatic residues Trp-95, Phe-206 and Tyr-727, forming the walls of the cavity. The inhibitor ring structures are stacked against Trp-95, a feature seen in several carbohydrate binding and hydrolyzing proteins (see Boraston et al., 2000 and review papers therein), and stabilized by hydrogen bonds and interactions with the zinc ion. In the complexes of dGMII with either DMNJ or swainsonine the T₅ geometry of the bound zinc ion, as seen in the Tris-bound enzyme, is transformed into T₆-octahedral coordination. In both the dGMII complexes the inhibitor O2 hydroxyl oxygen replaces the O2 oxygen of Tris and the O3 hydroxyl oxygen forms the apex of the second pyramid. In order to obey the restraints of the T₆ geometry, the plane of the swainsonine ring structure is tilted with respect to the saccharide-like ring of the bound DMNJ molecule. This enables the formation of a hydrogen bond between the zinccoordinating OD1 oxygen of Asp-204 and the N4 nitrogen at the fusion of the five and sixmembered rings of swainsonine. As in the Tris-bound enzyme, the zinc coordinating oxygen atoms of the inhibitors are involved in hydrogen bond interactions with the neighboring metal binding residues of the enzyme.

The position of the DMNJ and swainsonine molecules is stabilized in the active site by hydrogen bonds between carboxylic oxygens OD1 and OD2 of residue Asp-472 and hydroxyl oxygens O3 and O4 (O5 in swainsonine) of the inhibitors, analogous to the O1 and O2 interactions seen in the enzyme-Tris complex. As in the Tris-bound enzyme, DMNJ is involved in additional hydrogen bonds, via water molecules, with the NH2 nitrogen of Arg-228, the hydroxyl oxygen of Tyr-269, the backbone carbonyl oxygen of Arg-876 (not shown) and the OD1 oxygen of Asp-204.

10

15

20

25

30

The displacement of the Tris molecule by either of the inhibitors only slightly affects the zinc binding site by weakening the internal hydrogen bonds between Asp-204 and histidines 90 and 471. No major conformational changes are observed between the Tris-bound and the inhibitor-bound mannosidase molecules as their backbones are virtually superimposable, with root-mean-square-deviations between $C\alpha$ atoms of 0.068Å (dGMII-DMNJ complex) and 0.087Å (dGMII-swainsonine complex).

Catalytic mechanism

Golgi α-mannosidase II is a retaining mannosyl hydrolase, which cleaves the linkage between the C1 atom of M7 and M6 (Figure 8A) and, respectively, the O3 and O6 atom of the α1,6-linked mannosyl branch (M4) of GlcNAcMan₅GlcNAc₂. The catalytic mechanism is proposed to follow a very similar path to the corresponding retaining β-glycosidases (Braun et al., 1995; White and Rose, 1997). This is a two-stage reaction that usually involves two carboxylic acids, one acting as a nucleophile attacking the glycosidic bond, and the other as a general acid/base catalyst. Nucleophilic attack of one carboxylic acid results in glycosylation of the enzyme by forming a covalent intermediate followed by a second deglycosylation step, each step passing through an oxocarbonium ion-like transition state.

Based on the structure of the dGMII-inhibitor complexes we speculate that the mannose residues on the α 1,6-linked mannosyl branch (M4) bind to the enzyme at the same site and in the same manner as mannose-like inhibitor DMNJ. Coordination of the zinc ion with the O2 and O3 hydroxyl oxygens thereby contributes to the enzyme's specificity for mannose. Four acidic amino acid residues, Asp-92, Asp-204, Asp-341 and Asp-472, are candidates for catalytic side chains based on their proximity to the active site (Figure 10C). Results from a recent study on the mechanism of catalysis in Jack-bean α -mannosidase by Withers and coworkers, using reagents that trap the glycosyl-enzyme intermediate, identified an aspartate residue as the catalytic nucleophile in that enzyme (Howard et al., 1998). Comparison of the highly conserved sequence region surrounding this aspartate in Jack-bean α -mannosidase with the same sequence region in dGMII suggests that aspartate residue 204 in dGMII is the catalytic nucleophile that attacks the glycosidic linkage. For this reaction it is required that

10

15

20

25

30

Asp-204 is close to the anomeric carbon of the mannose substrate. In the dGMII-DMNJ complex, however, the equivalent anomeric carbon is located 4.6Å from the nucleophile. Binding of the C2 and C3 substituent hydroxyl oxygens of the flattened five-membered ring in swainsonine causes the inhibitor molecule to tilt, bringing its bridgehead nitrogen N4, in the analogous position to C1 in the substrate, significantly closer to the putative nucleophilic Asp-204 (3.2Å). This tilted binding mode, stabilized by a hydrogen bond between N4 and Asp-204 and by van der Waals stacking interactions between the 6-membered ring of swainsonine and Phe-206, may resemble the mode of binding of the ring-flattened transition state mannosyl cation. Thus, Phe-206 would stabilize the transition state by compensating for the loss of stacking interactions of the substrate with Trp-95. The highly complementary shape of swainsonine with the active site of dGMII, and its structural analogy with the skewed boat transition state conformation, could therefore explain its 10,000 times higher binding affinity for the enzyme, compared to the substrate-mimic DMNJ (data not shown).

The OD1 oxygen of Asp-204, the putative nucleophile, directly coordinates the zinc ion, implicating a role for the zinc in positioning the nucleophile and in the stabilization of protonation states of the reacting partners. It is tempting to speculate that the change of zinc coordination from T5 to the less favored T6 state (Alberts et al., 1998) on substrate binding may also contribute to the mechanism. From the Tris and DMNJ structures, it is predicted that the coordination would revert to T5 on product release. If so, this transition may energetically facilitate the deglycosylation step. Such evidence of direct zinc involvement in the catalytic mechanism of a glycosyl hydrolase is unprecedented. Arg-288 positions Asp-204 for nucleophilic attack by virtue of hydrogen bond interactions between its NE and NH2 nitrogens and the OD2 oxygen of Asp-204 (Figure 10C). Based on the expected distance between the two catalytic residues (~5.5Å, Davies and Henrissat, 1995) likely candidates for the catalytic base are Asp-341 and Asp-472 (preliminary indications are that the D341N mutant is catalytically inactive, DAK unpublished results). Recent data suggest that other residues, such as tyrosines, possibly play a role in glycosidic bond cleavage (Davies and Henrissat, 1995). Tyrosine residues 269 are 727 are positioned to help stabilize the transition state.

10

15

20

25

Substrate Binding and Cleavage

The function of GMII is dependent on the presence of β 1,2-GlcNAc (G3, Figure 8A), added to α 1,3-linked mannose (M5) by GlcNAc transferase I (see reviews: Kornfeld and Kornfeld, 1985; Moremen et al., 1994). This β 1,2-GlcNAc dependence suggests the presence of an additional saccharide-binding site in GMII. Evidence for such a binding site is provided by the observation of an MPD molecule in the structure of dGMII, in the vicinity of the active site cavity. MPD was used as a cryo-protectant during the procedure of flash-freezing of the crystal, prior to data collection (see experimental procedures). The replacement of MPD by the alternative cryo-protectant glycerol resulted in the occupation of this same position by a glycerol molecule. Glycerol has been shown to mimic saccharide binding in structures of glycosyl hydrolases (Schmidt et al., 1998, Vallée et al., 2000).

The observation of the binding of MPD and glycerol near dGMII's active site (Figure 11A) enables a hypothesis regarding the binding and cleavage of α 1,6 and α 1,3-linked mannoses on the α1,6-linked mannose branch of the GlcNAcMan₅GlcNAc₂ oligosaccharide. In this hypothesis, the MPD binding site is suggested to be the putative site of interaction for β1,2-GlcNAc (G3, Figure 8A), enabling anchoring of the oligosaccharide substrate in the conserved negatively charged pocket. In Figure 11B a model is shown of a GlcNAcMan₅GlcNAc₂ structure with the β1,2-GlcNAc residue placed in the MPD binding site and the α 1,6-linked M6 mannose docked into the active site, with its hydroxyl oxygens O2 and O3 coordinating the zinc ion. As required, the asparagine linked \(\beta_1.4\)-GlcNAc residues G1 and G2 extend away from the surface of the molecule (into the Golgi lumen). Both M4 and the second substrate \alpha1,3-linked M7 mannose are located within the conserved negatively charged pocket pointing away from the active site cavity. In this orientation it can be easily visualized that after cleavage of the α 1,6-linked M6 the second, α 1,3-linked M7 can be brought into the active site cavity by a ~180° rotation, through the extended pocket, around the flexible α 1,6-linkage of M4 (see Figure 11C). In addition to the dependence of GMII's action on the presence of the G3 \(\beta_1,2\)-GlcNAc, this model provides a mechanism for the

cleavage of both mannose residues without major conformational change of the enzyme, and more importantly, without release of the polypeptide-carbohydrate complex, anchored by the stationary GlcNAc, between the two cleavage events. Finally, this model suggests that the α 1,6-linked M6 mannose is preferentially cleaved first, enabling the shorter α 1,3-linked M7 residue to rotate through the pocket with minimal steric hindrance; according to our model, the proposed 'swivel' mechanism would be slightly hampered should the M7 mannose be cleaved first. This is supported by data reported for α -mannosidase II from mung bean seedlings, Xenopus liver, Rat liver Golgi and for enzyme-activity in homogenates of insect cells, showing preferential hydrolytic activity on the M6 mannosyl residue (Kaushal et al., 1990; Altmann and Martz, 1995; Ren et al., 1997).

Conclusions

The structure of the catalytic domain of Golgi α -mannosidase II provides the basis for its zinc ion mediated specificity for mannose, as well as insight into its reaction mechanism. In addition, the result illustrates the structural basis for the mechanism of inhibition by the anticancer agent swainsonine, which we propose mimics aspects of the transition state binding. This understanding is critical for the rational design of swainsonine variants and/or novel mechanism-based compounds as specific α -mannosidase II inhibitors, for the treatment of several forms of cancer. A bound MPD molecule identifies a putative GlcNAc binding pocket, located near the active site and enables a hypothesis explaining the enzyme's dependency on the single GlcNAc substitution of the GlcNAcMan₅GlcNAc₂ substrate for binding. Furthermore, it suggests a novel mechanism for successive hydrolysis of the α 1,6 and α 1,3-linked mannose residues, resulting in the tri-mannose core glycosyl structure. Finally, it opens the door to the design of novel highly specific inhibitors linking together functional sites in the enzyme.

15

20

10

5

Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry or biology or related fields are intended to be covered by the present invention. All publications mentioned in the above specification are herein incorporated by reference.

Structural coordinates of a Drosophila Golgi α-mannosidase II.

```
REMARK coordinates from simulated annealing refinement
     REMARK refinement resolution: 500.0 - 1.4 A
     REMARK starting r= 0.1816 free r= 0.2003
     REMARK final
                     r= 0.1894 free_r= 0.2063
     REMARK rmsd bonds= 0.004594 rmsd angles= 1.32379
     REMARK wa_initial= 0.264577 wa_dynamics= 0.28954 wa_final= 0.28836
     REMARK target= mlf md-method= torsion annealing schedule= slowcool
10
     REMARK starting temperature= 1000 total md steps= 40 * 6
     REMARK sg= P2(1)2(1)2(1) a= 68.865 b= 109.718 c= 138.599 alpha= 90 beta= 90
     gamma= 90
     REMARK parameter file 1 : CNS TOPPAR:protein_rep.param
                              : CNS TOPPAR:water_rep.param
     REMARK parameter file 2
15
                              : CNS_TOPPAR:ion.param
     REMARK parameter file 3
     REMARK parameter file 4
                              : trs.par
     REMARK parameter file 5
                              : mpd.par
     REMARK parameter file 6
                              : cis peptide.param
                              : CNS TOPPAR:carbohydrate.param
     REMARK parameter file 7
20
     REMARK molecular structure file: dgmllcgen.mtf
     REMARK input coordinates: dgmllcgen.pdb
     REMARK reflection file= ../semetHiR.cv
     REMARK ncs= none
     REMARK B-correction resolution: 6.0 - 1.4
     REMARK initial B-factor correction applied to fobs:
     REMARK
              B11=
                     0.609 B22= -0.765 B33=
     REMARK
              B12 =
                     0.000 B13=
                                  0.000 B23 =
                                               0.000
     REMARK B-factor correction applied to coordinate array B:
                                                                   0.042
     REMARK bulk solvent: density level= 0.35999 e/A^3, B-factor= 42.8385 A^2
30
     REMARK reflections with |Fobs|/sigma F < 0.0 rejected
     REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
     REMARK theoretical total number of refl. in resol. range:
                                                                  206243 (100.0%)
                                                                    59797 (29.0%)
     REMARK number of unobserved reflections (no entry or |F|=0):
                                                                        0 (0.0%)
     REMARK number of reflections rejected:
35
                                                                   146446 (71.0%)
     REMARK total number of reflections used:
                                                                   139067 (67.4%)
     REMARK number of reflections in working set:
     REMARK number of reflections in test set:
                                                                     7379 (3.6%)
              68.865 109.718 138.599 90.00 90.00 90.00 P 21 21 21
     CRYST1
     REMARK FILENAME="dgmllcan2 1.pdb"
40
     REMARK DATE:13-Jul-2000 03:16:24
                                             created by user: jvdelsen
     REMARK VERSION: 0.9a
               1
                             31
                                     41.938
                                             37.136 -18.751
                                                              1.00 22.64
                                                                              Α
     MOTA
                 С
                      CYS A
     MOTA
               2
                  0
                      CYS A
                             31
                                     41.423
                                             36.540 -19.699
                                                             1.00 22.74
     MOTA
               3
                  CB CYS A
                             31
                                     43.833
                                             38.473 -19.585
                                                              1.00 22.94
                                                                              Α
45
               4
                  SG
                     CYS A
                             31
                                     45.532
                                             39.110 -19.452
                                                              1.00 23.66
                                                                              A
     MOTA
     MOTA
               5
                  N
                      CYS A
                             31
                                     44.185
                                             36.072 -19.063
                                                              1.00 24.03
                                                                              Α
     MOTA
               6
                  CA CYS A
                             31
                                     43.449
                                             37.310 -18.673
                                                              1.00 23.18
                                                                              Α
                                             37.666 -17.760
                      GLN A
                                                              1.00 22.29
     MOTA
               7
                  N
                             32
                                     41.229
                                                                              Α
               8
                                             37.591 -17.754
                                                              1.00 22.06
                                                                              Α
     MOTA
                  CA GLN A 32
                                     39.775
50
               9
                                             38.061 -16.417
                                                              1.00 24.01
                                                                              Α
     MOTA
                  CB
                     GLN A 32
                                     39.196
                                                                              Α
                                             37.126 -15.248
                                                              1.00 27.12
     ATOM
              10
                  CG
                      GLN A 32
                                     39.409
                      GLN A 32
                                     38.470
                                             37.442 -14.098
                                                              1.00 28.66
                                                                              A
     MOTA
              11
                  CD
                                     37.252 37.307 -14.224
              12
                  OE1 GLN A 32
                                                             1.00 29.78
     MOTA
```

ind.

		ATOM	13		GLN A	32	39.031	37.872 -12.973	1.00 29.39	Α
		MOTA	14	С	GLN A	32	39.230	38.498 -18.848	1.00 20.52	Α
		ATOM	15	0	GLN A	32	39.817	39.534 -19.162	1.00 19.74	Α
	_	ATOM	16	N	ASP A	33	38.109	38.096 -19.432	1.00 19.11	Α
	5	ATOM	17	CA	ASP A	33	37.460	38.885 -20.470	1.00 17.47	А
		MOTA	18	CB	ASP A	33	36.651	37.955 -21.384	1.00 18.06	Α
		MOTA	19	CG	ASP A	33	35.993	38.681 -22.540	1.00 19.46	A
		ATOM	20		ASP A	33	35.738	38.020 -23.570	1.00 20.28	Α
		ATOM	21	OD2	ASP A	33	35.714	39.893 -22.421	1.00 19.63	А
	10	ATOM	22	С	ASP A	33	36.554	39.839 -19.692	1.00 16.94	А
		ATOM	23	0	ASP A	33	35.614	39.407 -19.033	1.00 18.06	A
		MOTA	24	N	VAL A	34	36.854	41.132 -19.748	1.00 13.82	А
		ATOM	25	CA	VAL A	34	36.076	42.121 -19.007	1.00 12.33	A
		MOTA	26	CB	VAL A	34	36.982	43.291 -18.536	1.00 11.75	A
	15	ATOM	27		VAL A	34	38.158	42.744 -17.744	1.00 12.48	A
		MOTA	28		VAL A	34	37.485	44.093 -19.737	1.00 11.56	A
		MOTA	29	С	VAL A	34	34.912	42.692 -19.806	1.00 11.58	Α
		ATOM	30	0	VAL A	34	34.227	43.610 -19.350	1.00 11.18	A
		MOTA	31	N	VAL A	35	34.668	42.129 -20.986	1.00 11.40	A
ī	20	ATOM	32	CA	VAL A	35	33.601	42.623 -21.847	1.00 11.88	A
. Fi		MOTA	33	CB	VAL A	35	34.164	43.016 -23.234	1.00 11.64	A
		ATOM	34		VAL A	35	33.031	43.463 -24.159	1.00 11.96	A
6,5 % 3,845		ATOM	35		VAL A	35	35.199	44.113 -23.082	1.00 11.54	A
i, ali		MOTA	36	С	VAL A	35	32.422	41.689 -22.106	1.00 12.53	А
	25	ATOM	37	0	VAL A	35	31.268	42.100 -22.012	1.00 12.16	A
		MOTA	38	N	GLN A	36	32.719	40.434 -22.422	1.00 13.91	A
		ATOM	39	CA	GLN A	36	31.685	39.471 -22.796	1.00 15.60	A
81		ATOM	40	CB	GLN A	36	32.217	38.631 -23.955	1.00 15.34	A
Contract of the state of the st	•	ATOM	41	CG	GLN A	36	32.986	39.457 -24.972	1.00 16.14	A
13	30	ATOM	42	CD	GLN A	36	33.458	38.641 -26.151	1.00 16.81	A
Mi:		ATOM	43	OE1		36	32.699	38.388 -27.084	1.00 18.19	A
		ATOM	44		GLN A	36	34.714	38.214 -26.110	1.00 16.46	A
1005		MOTA	45	С	GLN A	36	31.077	38.548 -21.748	1.00 17.41	A.
	25	ATOM	46	0	GLN A	36	30.128	37.825 -22.048	1.00 19.27	A
	35	MOTA	47	N	ASP A	37	31.609	38.557 -20.532	1.00 18.41	A
		ATOM	48	CA	ASP A	37	31.080	37.700 -19.475	1.00 18.97	A
		ATOM	49	СВ	ASP A	37	32.190	36.818 -18.885	1.00 21.17	A
		ATOM	50	CG	ASP A	37	32.759	35.834 -19.891	1.00 22.94	A
	40	ATOM	51		ASP A	37	31.965	35.181 -20.599	1.00 24.67	A
	40	ATOM	52		ASP A	37	34.000	35.707 -19.963	1.00 24.47	A
		ATOM	53	С	ASP A	37	30.444	38.513 -18.351	1.00 18.35	A
		ATOM	54	0	ASP A	37	31.145	39.128 -17.548	1.00 20.02	A
		ATOM	55	N	VAL A	38	29.117	38.511 -18.294	1.00 17.12	A
	45	ATOM	56	CA	VAL A	38	28.404	39.242 -17.250	1.00 16.29	A
	45	ATOM	57	СВ	VAL A	38	26.902	39.362 -17.579	1.00 16.90	A
		ATOM	58		VAL A	38	26.180	40.114 -16.468	1.00 16.50	A
		MOTA	59		VAL A	38	26.721	40.074 -18.915	1.00 16.46	A
		ATOM	60	С	VAL A	38	28.559	38.512 -15.917	1.00 15.90	A
	E 0	ATOM	61	0	VAL A	38	28.108	37.377 -15.763	1.00 15.86	A
	50	ATOM	62	N	PRO A	39	29.204	39.157 -14.933	1.00 15.02	A
		ATOM	63	CD	PRO A	39	29.892	40.459 -14.998	1.00 14.29	A
		MOTA	64	CA	PRO A	39	29.399	38.531 -13.623	1.00 14.60	A
		ATOM	65	CB	PRO A	39	30.154	39.603 -12.836	1.00 14.74	A
	e.	MOTA	66	CG	PRO A	39	30.927	40.321 -13.901	1.00 13.83	A
	55	ATOM	67	С	PRO A	39	28.089	38.150 -12.949	1.00 14.68	Α

										1 00 1 : 1	_
		ATOM	68	0	PRO A		27.092		-13.045	1.00 14.60	A
		ATOM	69	N	ASN A	40	28.095		-12.270	1.00 15.48	Α
		ATOM	70	CA	ASN A	40	26.913	36.557	-11.557	1.00 16.28	Α
		MOTA	71	CB	ASN A	40	26.727	35.048	-11.725	1.00 18.96	А
	5	MOTA	72	CG	ASN A		25.614	34.501	-10.855	1.00 21.26	Α
		ATOM	73		ASN A		24.500	35.026	-10.847	1.00 24.33	А
		ATOM	74		ASN A		25.909	33.437	-10.119	1.00 23.94	Α
		ATOM	75	C	ASN A		27.113		-10.089	1.00 15.67	А
		ATOM	76	Ö	ASN A		27.902	36.259	-9.396	1.00 15.97	A
	10	ATOM	77	N	VAL A		26.408	37.922	-9.623	1.00 14.19	A
	10		78	CA	VAL A		26.522	38.347	-8.232	1.00 12.77	A
		ATOM						39.764	-8.126	1.00 12.77	A
		ATOM	79	CB	VAL A		27.144			1.00 11.70	A
		ATOM	80		VAL A		28.584	39.738	-8.606	1.00 12.33	
	15	ATOM	81		VAL A		26.328	40.755	-8.946		A
	15	MOTA	82	С	VAL A		25:162	38.353	-7.547	1.00 12.71	A
		ATOM	83	0	VAL A		24.125	38.479	-8.198	1.00 13.39	A
		MOTA	84	N	ASP A		25.171	38.217	-6.226	1.00 11.92	A
		MOTA	85	CA	ASP A		23.934	38.211	-5.461	1.00 12.46	A
12		MOTA	86	CB	ASP A		24.210	37.791	-4.017	1.00 13.55	A
. 178	20	ATOM	87	CG	ASP A	42	24.708	36.366	-3.913	1.00 14.63	Α
		ATOM	88	OD1	ASP A	42	24.009	35.457	-4.416	1.00 16.11	A
المعطاء عاديد		ATOM	89	OD2	ASP A	42	25.788	36.144	-3.327	1.00 14.87	Α
() I		ATOM	90	С	ASP A	42	23.261	39.576	-5.480	1.00 11.96	Α
		MOTA	91	0	ASP A		22.036	39.675	-5.540	1.00 12.50	А
	25	ATOM	92	N	VAL A		24.066	40.632	-5.419	1.00 10.49	A
	_+	ATOM	93	CA	VAL A		23.537	41.987	-5.434	1.00 10.78	A
ijŤ		ATOM	94	СВ	VAL A		23.693	42.686	-4.056	1.00 10.05	A
		ATOM	95	CG1			23.072	44.078	-4.105	1.00 10.79	A
#1 84 24 6		ATOM	96		VAL A		23.042	41.848	-2.955	1.00 10.64	А
H _{aller} .	30	ATOM	97	C	VAL A		24.291	42.806	-6.471	1.00 9.86	А
ŧŲ.	50	ATOM	98	0	VAL A		25.515	42.922	-6.414	1.00 10.17	A
Hart Hart Hart		ATOM	99	N	GLN A		23.559	43.336	-7.443	1.00 9.59	A
4							24.158	44.174	-8.471	1.00 9.74	A
		MOTA	100	CA	GLN A				-9.860	1.00 9.50	A
	25	ATOM	101	CB	GLN A		23.920	43.576		1.00 9.04	A
8,	35	ATOM	102	CG	GLN A		24.977		-10.869	1.00 9.04	
		ATOM	103	CD	GLN A		25.078		-11.000		A
		MOTA	104	OE1			24.107		-11.348	1.00 10.00	A
		MOTA	105	NE2			26.255		-10.708	1.00 9.62	A
	40	ATOM	106	С	GLN A		23.409	45.489	-8.282	1.00 9.74	A
	4 0	MOTA	107	0	GLN A		22.203	45.562	-8.488	1.00 9.41	A
		ATOM	108	N	MSE A		24.125	46.526	-7.866	1.00 9.19	A
		ATOM	109	CA	MSE A		23.488	47.795	- 7.559	1.00 9.37	A
		MOTA	110	CB	MSE A	45	24.531	48.784	-7.035	1.00 10.21	A
		ATOM	111	CG	MSE A	45	25.149	48.353	-5.699	1.00 11.50	А
	45	MOTA	112	SE	MSE P	45	23.842	47.932	-4.319	1.00 18.05	А
		ATOM	113	CE	MSE A	45	23.146	49.711	-4.052	1.00 15.91	А
		ATOM	114	С	MSE A		22.606	48.459	-8.606	1.00 8.92	A
		ATOM	115	0	MSE A		21.614	49.094	-8.245	1.00 9.44	А
		ATOM	116	N	LEU A		22.942	48.327	-9.886	1.00 9.08	А
	50	ATOM	117	CA	LEU A		22.108		-10.923	1.00 9.97	Α
	50	ATOM	118	CB	LEU A		22.793		-12.294	1.00 10.46	A
			119	CG	LEU A		22.793		-13.430	1.00 10.75	A
		ATOM							-13.436	1.00 10.75	A
		ATOM	120		LEU A		22.054			1.00 11.00	A
	==	ATOM	121		LEU A		22.706		-14.760		
	55	MOTA	122	С	LEU A	46	20.783	48.1/4	-10.974	1.00 10.31	А

		7.0001	100	^	7 THE B	4.0	10 716	40 772	-11.109	1.00 9.89	7.
		ATOM	123	0	LEU A	46	19.716				A
		ATOM	124	N	GLU A	47	20.860		-10.848	1.00 11.31	Α
		ATOM	125	CA	GLU A	47	19.662		-10.880	1.00 12.80	A
		ATOM	126	CB	GLU A	47	20.050	44.538	-10.943	1.00 13.61	A
	5	ATOM	127	CG	GLU A	47	18.875	43.590	-11.181	1.00 16.25	Α
		ATOM	128	CD	GLU A	47	18.100	43.257	-9.920	1.00 18.05	Α
		ATOM	129	OE1	GLU A	47	16.963	42.754	-10.042	1.00 20.21	Α
		ATOM	130		GLU A	47	18.622	43.479	-8.809	1.00 18.69	Α
		ATOM	131	C	GLU A	47	18.810	46.295	-9.648	1.00 12.80	А
	10	ATOM	132	0	GLU A	47	17.586	46.385	-9.736	1.00 12.50	A
	10								-8.499	1.00 12.30	A
		ATOM	133	N	LEU A	48	19.460	46.444		1.00 12.14	
		MOTA	134	CA	LEU A	48	18.740	46.716	-7.263		A
		ATOM	135	CB	LEU A	48	19.705	46.729	-6.076	1.00 14.14	A
		ATOM	136	CG	LEU A	48	19.055	46.870	-4.697	1.00 15.25	A
	15	ATOM	137		LEU A	48	18.053	45.745	-4.474	1.00 16.69	Α
		ATOM	138	CD2	LEU A	48	20.130	46.847	-3.620	1.00 16.69	А
		ATOM	139	С	LEU A	48	18.019	48.057	-7.367	1.00 12.34	А
		ATOM	140	0	LEU A	48	16.863	48.187	-6.966	1.00 12.49	А
g:sq:		MOTA	141	N	TYR A	49	18.704	49.054	-7.918	1.00 11.81	Α
V,-2	20	MOTA	142	CA	TYR A	49	18.113	50.376	-8.081	1.00 12.23	Α
Ų		ATOM	143	СВ	TYR A	49	19.149	51.349	-8.666	1.00 11.90	Α
		ATOM	144	CG	TYR A	49	19.709	52.296	-7.630	1.00 10.96	А
		ATOM	145	CD1		49	20.175	51.815	-6.403	1.00 10.54	А
1775 1,22		ATOM	146		TYR A	49	20.626	52.679	-5.416	1.00 10.82	A
	25	ATOM	147		TYR A	49	19.719	53.674	-7.847	1.00 10.08	A
	23			CE2		49	20.170	54.552	-6.863	1.00 10.64	A
1625 1626		MOTA	148					54.046	-5.649	1.00 10.04	A
W.		ATOM	149	CZ	TYR A	49	20.617	54.902			A
##		ATOM	150	ОН	TYR A	49	21.025		-4.653	1.00 10.90	
1:20	20	ATOM	151	С	TYR A	49	16.874	50.330	-8.972	1.00 12.98	A
J	30	ATOM	152	0	TYR A	49	15.900	51.047	-8.740	1.00 13.38	A
		ATOM	153	N	ASP A	50	16.910	49.470	-9.983	1.00 13.83	A
		MOTA	154	CA	ASP A	50	15.793		-10.910	1.00 15.90	A
		MOTA	155	CB	ASP A	50	16.187		-12.060	1.00 16.89	Α
		ATOM	156	CG	ASP A	50	15.410	48.680		1.00 18.91	A
ing:	35	ATOM	157	OD1	ASP A	50	15.524	47.869	-14.279	1.00 21.08	A
		MOTA	158	OD2	ASP A	50	14.698	49.705	-13.401	1.00 19.63	А
		MOTA	159	С	ASP A	50	14.555	48.792	-10.194	1.00 16.66	A
		ATOM	160	0	ASP A	50	13.430	49.204	-10.484	1.00 16.29	Α
		ATOM	161	N	ARG A	51	14.772	47.882	-9.248	1.00 17.87	Α
	40	MOTA	162	CA	ARG A	51	13.678	47.256	-8.501	1.00 19.68	A
		ATOM		СВ	ARG A				-8.075	1.00 22.37	Α
		ATOM	164	CG	ARG A	51	14.210	44.853	-9.219	1.00 26.10	A
		ATOM	165	CD	ARG A	51	14.327	43.409	-8.730	1.00 29.22	А
		ATOM	166	NE	ARG A	51	15.547	43.159	-7.964	1.00 31.13	A
	45	ATOM	167	CZ	ARG A	51	15.681	43.377	-6.659	1.00 32.25	A
	40		168		ARG A	51	14.665	43.851	-5.950	1.00 32.23	A
		MOTA						43.121	-6.063	1.00 33.43	A
		ATOM	169		ARG A	51	16.838				
		ATOM	170	C	ARG A	51	13.182	48.008	-7.267	1.00 19.33	A
	F 0	ATOM	171	0	ARG A	51	11.999	47.938	-6.935	1.00 20.01	A
	50	ATOM	172	N	MSE A	52	14.080	48.708	-6.582	1.00 19.03	A
		MOTA	173	CA	MSE A	52	13.722	49.450	-5.374	1.00 19.27	A
		MOTA	174	CB	MSE A	52	14.976	50.053	-4.742	1.00 20.66	A
		ATOM	175	CG	MSE A	52	15.912	49.042	-4.122	1.00 22.65	A
		ATOM	176	SE	MSE A	52	17.569	49.884	-3.600	1.00 27.63	А
	55	ATOM	177	CE	MSE A	52	16.866	51.229	-2.405	1.00 24.75	Α

		ATOM	178	С	MSE A	. 52	12.698	50.557	-5.597	1.00 18.62	А
		MOTA	179	0	MSE A	52	12.690	51.209	-6.640	1.00 18.85	Α
		MOTA			SER A		11.850	50.777	-4.595	1.00 18.04	A
			180	N							
	_	ATOM	181	CA	SER A		10.814	51.805	-4.673	1.00 18.07	А
	5	ATOM	182	CB	SER A	53	9.525	51.291	-4.028	1.00 19.37	Α
		ATOM	183	OG	SER A	53	9.062	50.124	-4.689	1.00 21.66	Α
		ATOM	184	С	SER A		11.233	53.118	-4.010	1.00 17.33	А
									-4.235	1.00 17.18	A
		MOTA	185	0	SER A		10.615	54.158			
		ATOM	186	N	PHE A		12.276	53.058	-3.188	1.00 16.61	А
	10	ATOM	187	CA	PHE A	54	12.800	54.229	-2.488	1.00 16.04	А
		MOTA	188	CB	PHE A	54	13.474	55.196	-3.474	1.00 15.36	Α
		MOTA	189	CG	PHE A		14.708	54.642	-4.140	1.00 13.72	А
		ATOM	190		PHE A		14.604	53.800	-5.242	1.00 13.06	A
	4 5	ATOM	191		PHE A		15.973	54.979	-3.672	1.00 13.80	A
	15	ATOM	192		PHE A		15.745	53.301	-5.874	1.00 13.32	A
		MOTA	193	CE2	PHE A	54	17.121	54.488	-4.294	1.00 13.91	Α
		MOTA	194	CZ	PHE A	54	17.006	53.646	-5.400	1.00 13.56	Α
		ATOM	195	С	PHE A		11.760	55.008	-1.680	1.00 16.83	Α
41125.		ATOM	196	Õ	PHE A		11.858	56.228	-1.555	1.00 16.55	A
The same same same same same same same sam	20										
ij	20	ATOM	197	N	LYS A		10.768	54.319	-1.126	1.00 17.41	A
.79		MOTA	198	CA	LYS A	55	9.757	55.016	-0.337	1.00 19.14	A
4454F		MOTA	199	CB	LYS A	55	8.554	54.107	-0.078	1.00 19.64	Α
5,3 8		ATOM	200	CG	LYS A	5.5	7.836	53.664	-1.343	1.00 20.85	Α
		ATOM	201	CD	LYS A		7.418	54.851	-2.206	1.00 22.09	А
	25	ATOM	202	CE	LYS A		6.676	54.383	-3.454	1.00 23.32	A
	23										
3 ftg.		MOTA	203	NZ	LYS A		6.271	55.511	-4.340	1.00 24.17	A
(M		ATOM	204	С	LYS A	55	10.354	55.486	0.985	1.00 19.50	A
R:		ATOM	205	0	LYS A	5.5	11.028	54.726	1.679	1.00 20.05	Α
		ATOM	206	N	ASP A	56	10.102	56.745	1.324	1.00 19.60	A
	30	MOTA	207	CA	ASP A		10.622	57.341	2.549	1.00 20.15	А
الهجارة		MOTA	208	СВ	ASP A		11.139	58.753	2.240	1.00 19.39	A
ind Junio											
ļ.,≰.		ATOM	209	CG	ASP A		11.741	59.441	3.450	1.00 19.05	A
		ATOM	210		ASP A		12.273	58.744	4.338	1.00 19.04	A
		ATOM	211	OD2	ASP A	56	11.697	60.689	3.503	1.00 19.38	А
į.	35	ATOM	212	С	ASP A	56	9.551	57.383	3.635	1.00 20.95	А
		ATOM	213	0	ASP A		8.972	58.432	3.912	1.00 21.55	Α
		ATOM	214	N	ILE A		9.295	56.236	4.254	1.00 21.88	A
									5.301	1.00 22.85	A
		ATOM	215	CA	ILE A		8.283	56.158			
	40	ATOM	216	CB	ILE A		7.404	54.895	5.141	1.00 24.33	A
	40	ATOM	217		ILE A		6.848	54.823	3.723	1.00 24.60	Α
		MOTA	218	CG1	ILE A	57	8.224	53.639	5.437	1.00 25.50	A
		ATOM	219		ILE A	57	7.404	52.363	5.446	1.00 26.92	А
		ATOM	220	C	ILE A		8.897	56.146	6.695	1.00 22.59	A
		ATOM	221	Ö	ILE A		10.038	55.722	6.881	1.00 22.42	A
	45										
	45	MOTA	222	N	ASP A		8.128	56.623	7.669	1.00 22.17	A
		MOTA	223	CA	ASP A	58	8.566	56.667	9.059	1.00 21.75	A
		ATOM	224	CB	ASP A	58	7.605	57.538	9.873	1.00 22.45	А
		ATOM	225	CG	ASP A	58	8.017	57.674	11.327	1.00 23.28	Α
		ATOM	226		ASP A		7.417	58.514	12.033	1.00 24.70	А
	50									1.00 22.76	
	50	MOTA	227		ASP A		8.929	56.948	11.771		A
		ATOM	228	С	ASP A		8.580	55.243	9.604	1.00 21.36	A
		ATOM	229	0	ASP A		7.528	54.637	9.801	1.00 20.84	A
		ATOM	230	N	GLY A	59	9.775	54.712	9.842	1.00 19.94	А
		MOTA	231	CA	GLY A		9.887	53.355	10.346	1.00 19.09	Α
	55	ATOM	232	C	GLY A		9.859	53.221	11.858	1.00 18.34	A
		ATON	272	_	א זחר	57	5.059	JJ. ZZ.1	11.000	2.00 10.04	

		ATOM	233	0	GLY A	4 5	59	10.062	52.128	12.383	1.00	18.39	Α
		ATOM	234	N	GLY A		60	9.605	54.321	12.559	1.00	17.94	А
		ATOM	235	CA	GLY A		60	9.567	54.280	14.012	1.00	17.49	Α
		ATOM	236	C	GLY A		60	10.801	54.927	14.615	1.00	16.45	Α
	5	ATOM	237	ō	GLY A		60	11.318	55.898	14.062	1.00		А
	•	ATOM	238	N	VAL A		61	11.273	54.405	15.747	1.00		A
		ATOM	239	CA	VAL A		61	12.464	54.962	16.383	1.00		А
		ATOM	240	CB	VAL A		61	12.836	54.209	17.683	1.00		A
		ATOM	241		VAL A		61	11.775	54.473	18.746	1.00		A
	10	ATOM	242		VAL A		61	12.964	52.721	17.418	1.00		A
	10	ATOM	243	C	VAL A		61	13.618	54.907	15.385	1.00		A
		ATOM	243	0	VAL A		61	14.481	55.784	15.373	1.00		A
		ATOM	245	N	TRP A		62	13.641	53.863	14.561	1.00		A
		ATOM	245	CA	TRP F		62	14.645	53.770	13.507	1.00		A
	15	ATOM	247	CB	TRP A		62	15.020	52.316	13.194	1.00		A
	13			CG				15.020	52.310	12.037	1.00		A
		ATOM	248		TRP A		62				1.00		
		ATOM	249		TRP A		52 52	16.349	50.990	11.343			A A
1.55		ATOM	250		TRP A		62	17.259	51.355	10.322	1.00		
	20	ATOM	251		TRP A		62	15.994	49.640	11.483	1.00		A
i 🚉	20	ATOM	252		TRP A		52	16.676	53.205	11.427	1.00		A
1		ATOM	253		TRP F		62	17.438	52.711	10.396	1.00		A
		ATOM	254		TRP F		62	17.817	50.420	9.444	1.00		A
		ATOM	255		TRP A		62	16.550	48.708	10.610	1.00		A
	25	ATOM	256		TRP A		52	17.452	49.105	9.602	1.00		A
1 1 1	25	ATOM	257	С	TRP F		52	13.846	54.378	12.361	1.00		A
M.		MOTA	258	0	TRP F		52	13.164	53.677	11.615	1.00		A
m		MOTA	259	N	LYS F		53	13.923	55.700	12.255	1.00		A
EI		ATOM	260	CA	LYS F		63	13.170	56.456	11.262	1.00		A
1,2	20	ATOM	261	CB	LYS F		53	13.613	57.922	11.290	1.00		A
	30	ATOM	262	CG	LYS A		63	13.218	58.676	12.559	1.00		A
		MOTA	263	CD	LYS F		63	11.705	58.848	12.658	1.00		A
g parti		ATOM	264	CE	LYS F		63	11.305	59.678	13.873	1.00		A
1,222		ATOM	265	ΝZ	LYS F		53	11.653	59.027	15.170	1.00		A
ing.	0.5	ATOM	266	C	LYS F		53	13.187	55.954	9.826	1.00		A
£	35	ATOM	267	0	LYS F		53	12.175	56.038	9.129	1.00		A
		MOTA	268	N	GLN A		54	14.320	55.430	9.378	1.00		A
		ATOM	269	CA	GLN F		54	14.419	54.964	8.001	1.00		A
		ATOM	270	CB	GLN A		54	15.635	55.615	7.344	1.00		A
	40	ATOM	271	CG	GLN A		54	15.555	57.133	7.373	1.00		A
	40	MOTA	272	CD	GLN A		54	16.908	57.787	7.211	1.00		A
		ATOM	273		GLN F		54	17.851	57.465	7.933			A
		ATOM	274		GLN F		54	17.011	58.718	6.265	1.00		A
		ATOM	275	C	GLN F		54	14.472	53.449	7.856	1.00		A
	45	ATOM	276	0	GLN A		54	14.847	52.929	6.805	1.00		A
	45	MOTA	277	N	GLY F		55	14.076	52.749	8.915	1.00		A
		MOTA	278	CA	GLY A		55	14.064	51.297	8.887	1.00		Α
		ATOM	279	С	GLY A		65	12.710	50.744	9.298	1.00		A
		ATOM	280	0	GLY F		55	11.687	51.085	8.703	1.00		A
	=0	ATOM	281	N	TRP F		56	12.709	49.889	10.316	1.00		А
	50	MOTA	282	CA	TRP F		56	11.482	49.283	10.830	1.00		A
		MOTA	283	CB	TRP P		56	11.106	48.058	9.987	1.00		A
		ATOM	284	CG	TRP A		56	12.040	46.889	10.153	1.00		A
		ATOM	285		TRP A		56	13.248	46.644	9.422	1.00		А
		MOTA	286		TRP P		56	13.804	45.445	9.923	1.00		А
	55	MOTA	287	CE3	TRP A	, 6	56	13.915	47.321	8.391	1.00	14.47	A

		MOTA	288	CD1	TRP A	66	11.918	45.861	11.043	1.00 15.31	Α
		ATOM	289		TRP A	66	12.972	44.988	10.911	1.00 16.13	А
		ATOM	290		TRP A	66	14.998	44.907	9.429	1.00 14.84	Α
		ATOM	291		TRP A	66	15.105	46.785	7.900	1.00 14.49	A
	5	ATOM	292		TRP A	66	15.633	45.589	8.421	1.00 14.85	A
	3		293	C	TRP A	66	11.751	48.864	12.271	1.00 15.70	A
		ATOM									
		ATOM	294	0	TRP A	66	12.888	48.946	12.734	1.00 15.45	A
		ATOM	295	N	ASN A	67	. 10.717	48.428	12.985	1.00 16.28	A
	4.0	MOTA	296	CA	ASN A	67	10.899	47.991	14.368	1.00 16.95	Α
	10	ATOM	297	CB	ASN A	67	9.564	47.958	15.119	1.00 19.00	A
		ATOM	298	CG	ASN A	67	8.948	49.331	15.270	1.00 20.01	Α
		MOTA	299	OD1	ASN A	67	9.638	50.304	15.574	1.00 22.02	A
		MOTA	300	ND2	ASN A	67	7.637	49.417	15.071	1.00 22.35	A
		MOTA	301	С	ASN A	67	11.517	46.599	14.371	1.00 16.92	A
	15	ATOM	302	0	ASN A	67	10.837	45.604	14.111	1.00 16.93	Α
		MOTA	303	N	ILE A	68	12.809	46.533	14.669	1.00 16.90	A
		ATOM	304	CA	ILE A	68	13.518	45.262	14.681	1.00 17.11	A
		MOTA	305	СВ	ILE A	68	15.043	45.472	14.801	1.00 16.47	A
\$122 <u>5</u>		MOTA	306		ILE A	68	15.759	44.130	14.753	1.00 17.44	А
Terrer Pare	20	MOTA	307		ILE A	68	15.538	46.370	13.664	1.00 16.41	А
الميارة حد	20	ATOM	308		ILE A	68	17.000	46.764	13.794	1.00 15.35	A
		ATOM	309	C	ILE A	68	13.066	44.365	15.824	1.00 18.00	A
		ATOM	310	0	ILE A	68	12.954	44.804	16.968	1.00 17.72	A
		ATOM	311	N	LYS A	69	12.804	43.106	15.497	1.00 17.72	A
Const Const	25									1.00 20.70	A
111	23	ATOM	312	CA	LYS A	69	12.387	42.127	16.488		
8 % 6 % %		ATOM	313	CB	LYS A	69	10.977	41.616	16.171	1.00 22.97	A
ijħ.		ATOM	314	CG	LYS A	69	9.890	42.661	16.395	1.00 25.78	A
\$1.		MOTA	315	CD	LYS A	69	8.500	42.137	16.054	1.00 28.76	A
	20	MOTA	316	CE	LYS A	69	8.355	41.859	14.566	1.00 29.99	A
	30	MOTA	317	ΝZ	LYS A	69	6.952	41.507	14.203	1.00 31.16	A
M		ATOM	318	С	LYS A	69	13.386	40.981	16.465	1.00 20.51	A
la.		ATOM	319	0	LYS A	69	13.944	40.659	15.416	1.00 20.04	А
		MOTA	320	N	TYR A	70	13.630	40.378	17.623	1.00 20.85	A
fiper.		ATOM	321	CA	TYR A	70	14.568	39.268	17.702	1.00 21.35	А
į:±	35	MOTA	322	CB	TYR A	70	15.959	39.770	18.116	1.00 20.92	A
		ATOM	323	CG	TYR A	70	16.035	40.362	19.508	1.00 20.30	А
		MOTA	324	CD1	TYR A	70	16.151	39.544	20.634	1.00 20.51	A
		ATOM	325	CE1	TYR A	70	16.223	40.089	21.915	1.00 20.34	A
		MOTA	326	CD2	TYR A	70	15.989	41.741	19.700	1.00 20.52	Α
	40	MOTA	327	CE2	TYR A	70	16.059	42.295	20.974	1.00 20.68	Α
		MOTA		CZ	TYR A	70	16.175	41.466	22.076	1.00 20.53	Α
		ATOM	329	ОН	TYR A	70	16.238	42.018	23.334	1.00 21.78	Α
		MOTA	330	С	TYR A	70	14.082	38.215	18.685	1.00 22.16	А
		ATOM	331	0	TYR A	70	13.295	38.506	19.587	1.00 22.38	А
	45	ATOM	332	N	ASP A	71	14.548	36.988	18.493	1.00 23.35	А
	10	ATOM	333	CA	ASP A	71	14.179	35.885	19.366	1.00 24.52	A
		ATOM	334	CB	ASP A	71	14.123	34.585	18.560	1.00 25.65	A
				CG		71	13.887	33.368	19.431	1.00 26.58	A
		ATOM	335		ASP A					1.00 20.38	
	EΩ	ATOM	336		ASP A	71	13.235	33.505	20.487		A
	50	ATOM	337		ASP A	71	14.345	32.271	19.047	1.00 28.15	A
		ATOM	338	С	ASP A	71	15.219	35.792	20.477	1.00 25.08	A
		MOTA	339	0	ASP A	71	16.368	35.427	20.234	1.00 25.05	A
		MOTA	340	N	PRO A	72	14.825	36.126	21.716	1.00 25.93	A
	c.	MOTA	341	CD	PRO A	72	13.445	36.362	22.173	1.00 25.99	A
	55	ATOM	342	CA	PRO A	72	15.746	36.077	22.855	1.00 26.65	A

		MOTA	343	CB	PRO A	72	14.839	36.385	24.048	1.00 26.60	Α
		MOTA	344	CG	PRO A	72	13.502	35.879	23.600	1.00 26.93	Α
		ATOM	345	С	PRO A	72	16.481	34.750	23.002	1.00 26.94	Α
		ATOM	346	Ō	PRO A	72	17.587	34.701	23.540	1.00 27.06	Α
	5	ATOM	347	N	LEU A	73	15.869	33.679	22.507	1.00 27.10	Α
	9			CA	LEU A	73	16.465	32.353	22.595	1.00 27.36	A
		MOTA	348				15.371	31.285	22.502	1.00 27.30	A
		MOTA	349	СВ	LEU A	73					
		ATOM	350	CG	LEU A	73	14.303	31.343	23.599	1.00 28.89	A
		ATOM	351		LEU A	73	13.227	30.303	23.328	1.00 29.29	A
	10	MOTA	352	CD2	LEU A	73	14.951	31.109	24.958	1.00 29.04	А
		MOTA	353	С	LEU A	73	17.522	32.105	21.521	1.00 27.02	A
		ATOM	354	0	LEU A	73	18.121	31.031	21.468	1.00 26.79	A
		ATOM	355	N	LYS A	74	17.756	33.099	20.669	1.00 26.77	Α
		ATOM	356	CA	LYS A	74	18.748	32.960	19.611	1.00 27.29	Α
	15	MOTA	357	СВ	LYS A	74	18.743	34.193	18.707	1.00 28.07	Α
		ATOM	358	CG	LYS A	74	19.729	34.113	17.553	1.00 29.63	Α
		ATOM	359	CD	LYS A	74	19.556	35.284	16.603	1.00 30.36	A
		ATOM	360	CE	LYS A	74	20.482	35.162	15.405	1.00 31.13	A
::==:			361		LYS A	74	20.256	36.260	14.427	1.00 31.13	A
	20	ATOM		NZ				32.762	20.200	1.00 27.08	A
ij	20	ATOM	362	С	LYS A	74	20.141			1.00 27.08	
ij		ATOM	363	0	LYS A	74	20.942	31.990	19.678		A
197		ATOM	364	N	TYR A	75	20.428	33.470	21.286	1.00 27.82	A
		MOTA	365	CA	TYR A	75	21.724	33.347	21.936	1.00 28.44	A
192 198		MOTA	366	CB	TYR A	75	22.359	34.730	22.130	1.00 28.35	A
	25	MOTA	367	CG	TYR A	75	22.677	35.420	20.821	1.00 28.28	A
14		MOTA	368	CD1	TYR A	75	21.796	36.346	20.261	1.00 28.89	Α
		ATOM	369	CE1	TYR A	75	22.058	36.931	19.021	1.00 28.65	A
£Į.		ATOM	370	CD2	TYR A	75	23.832	35.098	20.111	1.00 28.33	А
		MOTA	371	CE2	TYR A	75	24.101	35.673	18.872	1.00 29.04	A
Ţ	30	MOTA	372	CZ	TYR A	75	23.211	36.585	18.333	1.00 28.89	Α
518 B		ATOM	373	ОН	TYR A	75	23.471	37.131	17.095	1.00 29.25	Α
W		ATOM	374	С	TYR A	75	21.577	32.634	23.274	1.00 29.07	Α
ļ.		ATOM	375	0	TYR A	75	20.599	32.840	23.992	1.00 29.15	Α
		MOTA	376	N	ASN A	76	22.547	31.782	23.591	1.00 29.40	Α
ļ.i	35	ATOM	377	CA	ASN A	76	22.533	31.029	24.839	1.00 30.49	Α
		ATOM	378	СВ	ASN A	76	21.742	29.729	24.668	1.00 31.72	Α
		ATOM	379	CG	ASN A	76	22.463	28.717	23.804	1.00 32.78	А
		ATOM	380		ASN A	76	22.765	28.979	22.643	1.00 33.93	А
			381		ASN A	76	22.746	27.550	24.372	1.00 34.66	A
	40	MOTA				76	23.962	30.710	25.265	1.00 34.00	A
	40	ATOM	382	C	ASN A				24.626	1.00 29.75	A
		ATOM	383	0	ASN A	76	24.919	31.143			A
		ATOM	384	N	ALA A	77	24.101	29.945	26.343	1.00 30.87	
		ATOM	385	CA	ALA A	77	25.416	29.580	26.857	1.00 31.38	A
	4 ==	MOTA	386	CB	ALA A	77	25.264	28.622	28.033	1.00 31.94	A
	45	MOTA	387	С	ALA A	77	26.316	28.957	25.794	1.00 31.58	A
		ATOM	388	0	ALA A	77	27.535	29.119	25.834	1.00 31.89	А
		ATOM	389	N	HIS A	78	25.715	28.252	24.841	1.00 31.69	Α
		MOTA	390	CA	HIS A	78	26.481	27.599	23.785	1.00 31.63	Α
		MOTA	391	СВ	HIS A	78	25.811	26.278	23.399	1.00 33.87	Α
	50	ATOM	392	CG	HIS A	78	25.580	25.359	24.557	1.00 35.97	Α
		ATOM	393		HIS A	78	24.448	24.784	25.028	1.00 36.95	Α
		ATOM	394		HIS A	78	26.597	24.938	25.388	1.00 37.02	А
		ATOM	395		HIS A	78	26.101	24.144	26.320	1.00 37.60	Α
		ATOM	396		HIS A	78	24.799	24.034	26.124	1.00 37.80	A
	55		397	NE.Z	HIS A	78	26.646	28.470	22.545	1.00 37.00	A
	<i>J</i>	ATOM	371	C	итэ н	70	20.040	20.410	26.343	1.00 50.07	1.

		MOTA	398	0	HIS A	78	27.360	28.103	21.612	1.00 30.09	Α
		ATOM	399	N	HIS A	79	25.989	29.625	22.541	1.00 27.75	A
		ATOM	400	CA	HIS A	79	26.066	30.541	21.409	1.00 25.19	А
		ATOM	401	СВ	HIS A	79	25.030	30.141	20.354	1.00 25.68	Α
	5	ATOM	402	CG	HIS A	79	25.122	30.926	19.082	1.00 25.61	A
	9		403		HIS A	79	25.873	30.737	17.971	1.00 25.84	A
		ATOM									
		MOTA	404		HIS A	79	24.386	32.069	18.856	1.00 26.22	A
		MOTA	405		HIS A	79	24.679	32.549	17.661	1.00 25.96	A
	40	ATOM	406		HIS A	79	25.579	31.759	17.103	1.00 25.37	A
	10	ATOM	407	C	HIS A	79	25.822	31.965	21.897	1.00 22.98	А
		ATOM	408	0	HIS A	79	24.692	32.449	21.906	1.00 22.36	A
		ATOM	409	N	LYS A	80	26.899	32.626	22.307	1.00 20.90	A
		ATOM	410	CA	LYS A	80	26.821	33.985	22.825	1.00 19.06	A
		ATOM	411	CB	LYS A	80	27.850	34.187	23.937	1.00 20.08	А
	15	ATOM	412	CG	LYS A	80	27.757	33.211	25.095	1.00 21.73	A
		ATOM	413	CD	LYS A	80	28.851	33.513	26.106	1.00 23.84	А
		ATOM	414	CE	LYS A	80	28.813	32.556	27.283	1.00 25.02	А
		ATOM	415	NZ	LYS A	80	29.906	32.856	28.253	1.00 26.36	A
11700		ATOM	416	С	LYS A	80	27.071	35.042	21.761	1.00 17.49	A
	20	MOTA	417	Ö	LYS A	80	27.679	34.772	20.726	1.00 17.57	A
	20	ATOM	418	N	LEU A	81	26.596	36.251	22.035	1.00 14.89	A
۱.D		ATOM	419	CA	LEU A	81	26.796	37.376	21.134	1.00 13.66	A
n											
		ATOM	420	CB	LEU A	81	25.622	38.352	21.223	1.00 13.09	A
र्वशस्त्रहरू सम्बद्ध	25	ATOM	421	CG	LEU A	81	25.728	39.609	20.349	1.00 12.56	A
	25	MOTA	422		LEU A	81	25.752	39.205	18.874	1.00 13.02	A
fill the		MOTA	423		LEU A	81	24.553	40.541	20.631	1.00 14.10	A
ijħ.		MOTA	424	С	LEU A	81	28.075	38.067	21.594	1.00 14.00	A
81		MOTA	425	0	LEU A	81	28.161	38.525	22.733	1.00 13.98	A
		ATOM	426	N	LYS A	82	29.070	38.121	20.714	1.00 12.74	Α
	30	ATOM	427	CA	LYS A	82	30.344	38.759	21.028	1.00 13.21	A
التيطية. BVS S.		ATOM	428	CB	LYS A	82	31.487	38.017	20.328	1.00 15.38	A
Page 1		ATOM	429	CG	LYS A	82	31.631	36.570	20.782	1.00 19.55	Α
ļ:4:		ATOM	430	CD	LYS A	82	32.517	35.748	19.852	1.00 22.61	A
		MOTA	431	CE	LYS A	82	33.960	36.225	19.859	1.00 24.15	Α
į,d.	35	MOTA	432	NZ	LYS A	82	34.815	35.366	18.989	1.00 26.27	A
•		ATOM	433	С	LYS A	82	30.253	40.191	20.533	1.00 12.63	А
		ATOM	434	0	LYS A	82	30.047	40.427	19.343	1.00 13.50	А
		ATOM	435	N	VAL A	83	30.399	41.142	21.451	1.00 11.19	A
		ATOM	436	CA	VAL A	83	30.296	42.553	21.112	1.00 11.54	A
	40	MOTA	437	CB	VAL A	83	29.237	43.245	22.000	1.00 10.36	A
	-10	ATOM	438		VAL A			44.708		-	A
						83		42.516	21.873	1.00 10.33	A
		ATOM	439		VAL A		27.911				
		ATOM	440	C	VAL A	83	31.613	43.300	21.260	1.00 11.60	A
	15	ATOM	441	0	VAL A	83	32.242	43.278	22.318	1.00 11.88	A
	45	ATOM	442	N	PHE A	84	32.023	43.969	20.187	1.00 10.64	A
		MOTA	443	CA	PHE A	84	33.247	44.753	20.206	1.00 11.09	A
		ATOM	444	CB	PHE A	84	34.150	44.394	19.025	1.00 12.04	A
		MOTA	445	ÇG	PHE A	84	34.799	43.048	19.144	1.00 12.77	А
		ATOM	446	CD1	PHE A	84	34.299	41.954	18.450	1.00 13.33	А
	50	ATOM	447		PHE A	84	35.915	42.876	19.955	1.00 14.39	А
		ATOM	448	CE1	PHE A	84	34.903	40.702	18.561	1.00 15.01	А
		MOTA	449		PHE A	84	36.528	41.632	20.076	1.00 14.37	А
		ATOM	450	CZ	PHE A	84	36.020	40.542	19.375	1.00 14.86	А
		MOTA	451	С	PHE A	84	32.901	46.234	20.135	1.00 10.24	А
	55	ATOM	452	0	PHE A	84	32.378	46.706	19.125	1.00 10.64	А

		ATOM	453	N	VAL A	85	33.172	46.952	21.222	1.00	9.19	Α
		ATOM	454	CA	VAL A	85	32.933	48.389	21.287	1.00	9.61	Α
		ATOM	455	CB	VAL A	85	32.563	48.823	22.718	1.00	8.87	Α
		ATOM	456	CG1	VAL A	85	32.403	50.334	22.787	1.00	10.61	Α
	5	ATOM	457	CG2	VAL A	85	31.269	48.132	23.138	1.00	10.27	Α
		ATOM	458	С	VAL A	85	34.258	49.012	20.865	1.00	8.92	A
		ATOM	459	0	VAL A	85	35.274	48.855	21.546	1.00	9.82	Α
		MOTA	460	N	VAL A	86	34.236	49.716	19.735	1.00	7.99	Α
		ATOM	461	CA	VAL A	86	35.438	50.310	19.161	1.00	8.62	Α
	10	MOTA	462	CB	VAL A	86	35.561	49.893	17.675	1.00	8.93	A
		ATOM	463	CG1	VAL A	86	36.882	50.390	17.093	1.00	9.60	Α
		ATOM	464	CG2	VAL A	86	35.458	48.373	17.557	1.00	10.05	Α
		ATOM	465	С	VAL A	86	35.499	51.833	19.267	1.00	7.68	Α
		MOTA	466	0	VAL A	86	34.862	52.551	18.489	1.00	7.87	Α
	15	ATOM	467	N	PRO A	87	36.282	52.348	20.230	1.00	8.07	Α
		ATOM	468	CD	PRO A	87	36.951	51.612	21.316	1.00	8.47	Α
		MOTA	469	CA	PRO A	87	36.420	53.795	20.423	1.00	8.11	Α
		ATOM	470	CB	PRO A	87	37.274	53.896	21.690	1.00	8.31	A
		ATOM	471	CG	PRO A	87	36.939	52.630	22.428	1.00	9.52	Α
1 1 1	20	ATOM	472	С	PRO A		37.109	54.437	19.222	1.00	8.18	А
		MOTA	473	0	PRO A	87	38.100	53.906	18.716	1.00	7.38	A
ign T		ATOM	474	N	HIS A		36.580	55.568	18.766	1.00	7.67	А
4,5 ±		MOTA	475	CA	HIS A		37.169	56.267	17.630	1.00	8.52	Α
		ATOM	476	CB	HIS A	88	36.613	55.709	16.308	1.00	8.65	А
4 de 1	25	MOTA	477	CG	HIS A		35.167	56.015	16.077	1.00	9.36	A
M.		ATOM	478		HIS A		34.045	55.391	16.505	1.00	9.20	A
ijħ.		MOTA	479		HIS A		34.744	57.098	15.335	1.00	8.08	А
Ħ(·		ATOM	480		HIS A	88	33.423	57.126	15.317	1.00	8.99	A
FIRST.	20	ATOM	481		HIS A	88	32.974	56.102	16.021	1.00	9.70	A
ŧ.	30	ATOM	482	С	HIS A	88	36.927	57.765	17.718	1.00	9.68	A
		MOTA	483	0	HIS A		36.108	58.238	18.512	1.00	8.71	A
		ATOM	484	N	SER A		37.661	58.511	16.904	1.00	8.64	A
1		MOTA	485	CA	SER A		37.551	59.958	16.889	1.00	8.97	A
iai La	25	ATOM	486	CB	SER A		38.657	60.562	17.758	1.00	9.29	A
Š:	35	MOTA	487	OG	SER A	89	38.626	61.978	17.733	1.00	9.37	A
		ATOM	488	С	SER A	89	37.708	60.408	15.449	1.00	8.81	A
		ATOM	489	0	SER A		38.771	60.233	14.856	1.00	8.86	A
		MOTA	490	N	HIS A		36.648	60.971	14.881 13.499	1.00	8.95 8.92	A
	40	MOTA	491	CA	HIS A		36.714	61.427 61.494	12.895	1.00	9.62	A
	40	ATOM	492	CB	HIS A	90 90	35.313 35.310	61.809	12.693	1.00	8.56	A A
		ATOM	493	CG	HIS A			62.880	10.757	1.00	9.62	
		ATOM	494		HIS A		34.836 35.874	60.977	10.737	1.00	9.02	A A
		ATOM ATOM	495 496		HIS A		35.748	61.523	9.295	1.00	9.31	A
	45	ATOM	497		HIS A		35.122	62.679	9.430	1.00	8.59	A
	40					90	37.391	62.792	13.418	1.00	8.62	A
		ATOM ATOM	498 499	C 0	HIS A	90	36.849	63.799	13.883	1.00	9.74	A
		ATOM	500		ASN A		38.584	62.817	12.829	1.00	9.20	A
		ATOM	501	N CA	ASN A	91	39.354	64.052	12.706	1.00	9.16	A
	50	ATOM	502	CB	ASN A		40.744	63.867	13.317	1.00	9.59	A
	50	ATOM	503	CG	ASN A	91	40.744	63.716	14.822	1.00	9.87	A
		MOTA	504		ASN A	91	40.703	62.787	15.351		12.09	A
		ATOM	505		ASN A	91	41.353	64.633	15.521	1.00	7.48	A
		ATOM	506	C C	ASN A		39.504	64.516	11.266		10.50	A
	55	ATOM	507	0	ASN A		40.300	63.969	10.503		11.67	A
		A I ON	507	U	AJN A	フェ	40.500	03.303	10.00	1.00	11.0/	Ŋ

		MOTA	508	N	ASP A	Δ ,	92	38.738	65.534	10.900	1.00	9.47	Α
					AUL I	.7	24	50.750	00.004	10.00	1.00	J	n.
		ATOM	509	CA	ASP A		92	38.796	66.078	9.551	1.00	9.42	Α
		ATOM	510	СВ	ASP A		92	37.562	66.934	9.282	1.00	9.14	А
		ATOM	511	CG	ASP A		92	36.314	66.113	9.149	1.00	10.48	Α
	5	ATOM	512		ASP A		92	36.328	65.197	8.310	1.00	10.31	А
		ATOM	513		ASP A		92	35.328	66.372	9.873	1.00	12.87	А
		ATOM	514	С	ASP A	A :	92	40.034	66.930	9.337	1.00	9.30	А
		ATOM	515	0	ASP A		92	40.256	67.890	10.067	1.00	9.36	А
		ATOM	516	N	PRO A		93	40.864	66.582	8.338	1.00	9.43	А
	10	MOTA	517	CD	PRO A		93	40.895	65.288	7.638	1.00	8.82	A
		ATOM	518	CA	PRO A		93	42.078	67.351	8.048	1.00	9.47	Α
		MOTA	519	СВ	PRO A		93	42.877	66.416	7.140	1.00	9.10	А
		ATOM	520	CG	PRO A		93	42.378	65.052	7.507	1.00	11.35	А
		ATOM	521	С	PRO A		93	41.655	68.632	7.336	1.00	10.26	А
	15	ATOM	522	0	PRO A		93	42.020	68.883	6.182	1.00	10.84	А
		ATOM	523	N	GLY A		94	40.859	69.424	8.048	1.00	9.66	А
		ATOM	524	CA	GLY A		94	40.336	70.663	7.516	1.00	10.36	Α
		ATOM	525	С	GLY A		94	38.862	70.516	7.177	1.00	10.89	A
g room.		ATOM	526	0	GLY A		94	38.440	69.492	6.634	1.00	10.38	А
	20	ATOM	527	N	TRP A		95	38.082	71.528	7.538	1.00	10.58	A
1,1,2		MOTA	528	CA	TRP A		95	36.653	71.588	7.245	1.00	10.62	A
Ū		ATOM	529	CB	TRP A		95	35.854	70.479	7.948	1.00	10.51	А
		ATOM	530	CG	TRP A		95	34.387	70.607	7.634	1.00	11.04	А
fine.		ATOM	531	CD2	TRP A		95	33.288	70.466	8.545	1.00	11.08	Α
W.	25	ATOM	532		TRP A		95	32.109	70.765	7.825	1.00	11.49	А
M.		ATOM	533	CE3	TRP A		95	33.184	70.120	9.901	1.00	11.93	А
iji.		ATOM	534	CD1	TRP A	A .	95	33.840	70.963	6.431	1.00	10.57	А
		MOTA	535		TRP A		95	32.475	71.065	6.539	1.00	10.89	A
31 44 5		ATOM	536		TRP A		95	30.839	70.731	8.415	1.00	12.07	A
	30	ATOM	537		TRP A		95	31.918	70.086	10.487	1.00	12.97	А
h,L.P.		ATOM	538				95	30.765	70.391	9.741	1.00	13.12	А
		ATOM	539	С	TRP A		95	36.151	72.968	7.669	1.00	11.53	А
į.b.		ATOM	540	0	TRP A		95	36.063	73.865	6.834	1.00	10.86	А
		ATOM	541	N	ILE A		96	35.829	73.151	8.947	1.00	11.91	А
	35	ATOM	542	CA	ILE A	4 9	96	35.389	74.467	9.405	1.00	13.09	А
		ATOM	543	СВ	ILE A	A .	96	34.240	74.389	10.434	1.00	14.40	А
		MOTA	544	CG2	ILE A	4 9	96	32.993	73.840	9.758	1.00	15.73	А
		MOTA	545	CG1	ILE A	4 9	96	34.656	73.549	11.638	1.00	16.78	Α
		MOTA	546	CD1	ILE A	4	96	33.689	73.638	12.798	1.00	18.96	А
	40	ATOM	547	С	ILE A	4 9	96	36.579	75.207	10.007	1.00	12.25	А
		ATOM	548	0	ILE A	4 2	96	36.486	76.378	10.374	1.00	13.34	А
		ATOM	549	N	GLN A	4 6	97	37.698	74.496	10.102	1.00	11.48	А
		ATOM	550	CA	GLN A	A .	97	38.960	75.042	10.585	1.00	10.81	А
		ATOM	551	СВ	GLN A	4 9	97	39.239	74.617	12.030	1.00	13.00	A
	45	ATOM	552	ÇG	GLN A	4 2	97	38.316	75.252	13.059	1.00	15.72	A
		MOTA	553	CD	GLN A	4 9	97	38.781	75.011	14.481	1.00	18.59	A
		MOTA	554	OE1	GLN A	4 5	3 7	39.922	75.320	14.834	1.00	21.45	Α
		ATOM	555	NE2	GLN A	4 9	97	37.899	74.460	15.309	1.00	20.61	A
		ATOM	556	С	GLN A	A 9	97	40.007	74.431	9.660	1.00	9.61	A
	50	ATOM	557	0	GLN A		97	39.740	73.424	9.007	1.00	9.16	А
		ATOM	558	N	THR A		98	41.185	75.037	9.580	1.00	9.03	А
		ATOM	559	CA	THR A		98	42.238	74.487	8.732	1.00	8.85	А
		ATOM	560	СВ	THR A		98	43.363	75.495	8.486	1.00	9.21	А
		ATOM	561	OG1	THR A		98	43.987	75.813	9.736	1.00	9.92	А
	55	ATOM	562		THR A		98	42.818	76.769	7.854	1.00	8.60	А

		MOTA	563	С	THR		98	42.862	73.289	9.437	1.00	8.61	A
		ATOM	564	0	THR	Α	98	42.598	73.039	10.617	1.00	8.91	A
		ATOM	565	N	PHE	Α	99	43.686	72.552	8.704	1.00	8.51	А
		ATOM	566	CA	PHE	Α	99	44.377	71.395	9.255	1.00	8.31	А
	5	ATOM	567	CB	PHE	Α	99	45.359	70.837	8.220	1.00	8.62	А
		MOTA	568	CG	PHE	Α	99	46.236	69.737	8.745	1.00	8.46	Α
		MOTA	569	CD1	PHE	A	99	45.831	68.407	8.668	1.00	8.79	Α
		ATOM	570	CD2	PHE	Α	99	47.469	70.031	9.322	1.00	9.06	A
		ATOM	571	CE1	PHE	Α	99	46.642	67.383	9.156	1.00	9.28	A
	10	ATOM	572	CE2	PHE	Α	99	48.286	69.020	9.813	1.00	9.90	А
		ATOM	573	CZ	PHE	Α	99	47.873	67.687	9.730	1.00	8.95	А
		ATOM	574	С	PHE	Α	99	45.144	71.809	10.509	1.00	8.94	Α
		ATOM	575	0	PHE	Α	99	45.011	71.193	11.566	1.00	8.71	Α
		ATOM	576	N	GLU	Α	100	45.948	72.861	10.386	1.00	9.46	Α
	15	ATOM	577	CA	GLU	Α	100	46.756	73.331	11.505	1.00	10.17	A
		ATOM	578	CB	GLU	Α	100	47.739	74.405	11.026	1.00	10.59	Α
		ATOM	579	CG	GLU	Α	100	48.778	74.836	12.059	1.00 1	12.88	Α
		ATOM	580	CD	GLU	A	100	49.649	73.692	12.552	1.00 1	14.60	Α
2000		ATOM	581	OE1	GLU	Α	100	49.825	72.698	11.812	1.00	14.74	Α
fired LPE	20	MOTA	582	OE2	GLU	A	100	50.177	73.797	13.680	1.00	15.45	Α
1,54		ATOM	583	С	GLU	A	100	45.921	73.854	12.668	1.00	10.39	A
		ATOM	584	0	GLU	Α	100	46.275	73.630	13.828	1.00	9.60	А
1,11		ATOM	585	N	GLU			44.816	74.537	12.369	1.00 1	10.05	A
		ATOM	586	CA	GLU	Α	101	43.952	75.059	13.429	1.00 1	10.07	А
frij	25	MOTA	587	СВ	GLU	Α	101	42.822	75.918	12.845	1.00 1	10.88	Α
4		MOTA	588	CG	GLU	Α	101	43.287	77.260	12.266	1.00 1	13.03	A
M		MOTA	589	CD	GLU			42.154	78.075	11.658	1.00 1	L4.64	A
E)		ATOM	590	OE1	GLU	Α	101	41.250	77.481	11.036	1.00	L3.48	A
		ATOM	591	OE2	GLU	A	101	42.176	79.319	11.788	1.00 1	L7.65	A
Ū	30	ATOM	592	С	GLU			43.366	73.901	14.234	1.00	9.98	A
1,540 1811		ATOM	593	0	GLU			43.383	73.920	15.468	1.00	9.79	Α
W		MOTA	594	N	TYR	Α	102	42.846	72.892	13.539	1.00	9.17	A
la.		MOTA	595	CA	TYR			42.286	71.726	14.222	1.00	9.45	A
i;200 i;200		MOTA	596	СВ	TYR			41.704	70.719	13.231	1.00	9.69	A
14	35	ATOM	597	CG	TYR			40.295	70.970	12.749	1.00	9.66	А
		ATOM	598	CD1				39.247	71.205	13.643	1.00 1	10.46	А
		ATOM	599	CE1	TYR	Α	102	37.928	71.319	13.188	1.00	9.87	А
		ATOM	600	CD2	TYR	Α	102	39.989	70.865	11.392	1.00	9.78	А
		MOTA	601	CE2	TYR	Α	102	38.688	70.973	10.934	1.00 1	10.12	Α
	40	MOTA	602	CZ	TYR	A	102	37.661	71.197	11.830	1.00 1	10.79	Α
		ATOM	603	ОН	TYR	Α	102	36.374	71.266	11.352	1.00 1	10.63	A
		ATOM	604	С	TYR			43.375	71.009	15.008	1.00 1	10.28	А
		ATOM	605	0	TYR			43.138	70.515	16.112		9.91	А
		ATOM	606	N	TYR			44.567	70.926	14.429	1.00 1		А
	45	MOTA	607	CA	TYR			45.656	70.245	15.108	1.00 1	1.21	А
		MOTA	608	CB	TYR			46.920	70.226	14.250	1.00 1	1.30	А
		MOTA	609	CG	TYR			48.077	69.577	14.968	1.00 1	1.06	А
		ATOM	610		TYR			48.080	68.207	15.224	1.00 1		А
		ATOM	611		TYR			49.103	67.614	15.954	1.00 1		А
	50	ATOM	612		TYR			49.137	70.342	15.460	1.00 1		A
		ATOM	613		TYR			50.164	69.760	16.195	1.00 1		A
		ATOM	614	CZ	TYR			50.141	68.397	16.440	1.00 1		A
		ATOM	615	OH	TYR			51.145	67.818	17.187	1.00 1		A
		ATOM	616	C	TYR			45.971	70.909	16.440	1.00 1		A
	55	ATOM	617	0	TYR			46.092	70.240	17.462	1.00 1		A
			01,	•		• •	-00	10.072		_ , . 102	2.00 1		

		MOTA	618	N	GLN	Α	104	46.099	72.231	16.422	1.00 11.78	Α
		ATOM	619	CA	GLN			46.419	72.981	17.631	1.00 13.08	Α
		ATOM	620	СВ	GLN			46.770	74.427	17.271	1.00 12.77	Α
		ATOM	621	CG	GLN			48.091	74.597	16.541	1.00 13.19	Α
	5	MOTA	622	CD	GLN			49.268	74.058	17.336	1.00 14.03	Α
	•	ATOM	623		GLN			49.305	74.172	18.564	1.00 14.60	Α
		ATOM	624		GLN			50.242	73.483	16.640	1.00 14.23	A
		ATOM	625	C	GLN			45.301	72.992	18.667	1.00 14.02	Α
		ATOM	626	Ö	GLN			45.552	72.849	19.863	1.00 14.69	А
	10	ATOM	627	N	HIS			44.067	73.152	18.202	1.00 14.24	A
	10	ATOM	628	CA	HIS			42.912	73.235	19.091	1.00 15.29	A
		ATOM	629	СВ	HIS			41.796	74.035	18.412	1.00 18.09	A
		ATOM	630	CG	HIS			42.228	75.377	17.907	1.00 21.36	A
		ATOM	631		HIS			43.322	76.126	18.181	1.00 23.58	A
	15	ATOM	632		HIS			41.481	76.105	17.005	1.00 23.59	A
	10	ATOM	633		HIS			42.098	77.244	16.744	1.00 24.20	A
		ATOM	634		HIS			43.217	77.281	17.445	1.00 24.69	A
		MOTA	635	C	HIS			42.330	71.905	19.552	1.00 15.14	A
g1:28 <u>5.</u>		ATOM	636	0	HIS			41.815	71.807	20.665	1.00 15.70	A
	20	MOTA	637	N	ASP			42.416	70.880	18.712	1.00 13.68	A
₩	20	MOTA	638	CA	ASP			41.818	69.600	19.064	1.00 13.41	A
₩.		ATOM	639	CB	ASP			40.556	69.386	18.221	1.00 15.33	A
		MOTA	640	CG	ASP			39.513	70.461	18.449	1.00 17.76	A
		ATOM	641		ASP			38.857	70.435	19.509	1.00 18.23	A
14	25	ATOM	642		ASP			39.359	71.337	17.570	1.00 19.51	A
4.000 4.000	20	MOTA	643	C	ASP			42.673	68.346	18.960	1.00 12.48	Α
		ATOM	644	Ö	ASP			42.942	67.684	19.957	1.00 11.86	Α
		ATOM	645	N	THR			43.095	68.025	17.745	1.00 11.48	Α
El gr as p		ATOM	646	CA	THR			43.845	66.805	17.490	1.00 10.31	А
	30	ATOM	647	СВ	THR			44.169	66.694	15.991	1.00 9.81	Α
¶,i _{ad} i, na k		ATOM	648	OG1	THR			42.964	66.919	15.247	1.00 9.72	Α
ij.		ATOM	649		THR			44.710	65.302	15.656	1.00 9.56	A
[.d.		ATOM	650	С	THR			45.100	66.517	18.305	1.00 10.15	Α
1,000		ATOM	651	0	THR			45.309	65.377	18.722	1.00 9.55	Α
ļ.4	35	ATOM	652	N	LYS			45.940	67.515	18.555	1.00 10.06	Α
		MOTA	653	CA	LYS			47.142	67.223	19.323	1.00 10.48	Α
		ATOM	654	СВ	LYS			48.109	68.416	19.322	1.00 11.26	Α
		ATOM	655	CG	LYS			47.753	69.597	20.206	1.00 12.62	Α
		ATOM	656	CD	LYS			48.842	70.661	20.066	1.00 13.56	Α
	40	ATOM	657	CE	LYS			48.632	71.837	21.000	1.00 14.90	Α
		ATOM	658	NZ	LYS	Α	108	49.762	72.815	20.901	1.00 16.47	A
		ATOM	659	С	LYS			46.777	66.809	20.744	1.00 10.06	Α
		MOTA	660	0	LYS			47.483	66.013	21.364	1.00 10.31	Α
		ATOM	661	N	HIS			45.663	67.330	21.246	1.00 10.31	Α
	45	ATOM	662	CA	HIS			45.210	66.985	22.590	1.00 10.51	Α
		ATOM	663	СВ	HIS			44.215	68.031	23.086	1.00 12.57	Α
		ATOM	664	CG	HIS			44.791	69.410	23.154	1.00 14.27	Α
		ATOM	665		HIS			44.510	70.530	22.448	1.00 16.35	Α
		ATOM	666		HIS			45.821	69.743	24.008	1.00 16.64	Α
	50	ATOM	667		HIS			46.148	71.010	23.825	1.00 16.26	Α
		ATOM	668		HIS			45.368	71.510	22.884	1.00 16.75	Α
		ATOM	669	С	HIS			44.578	65.598	22.594	1.00 10.63	Α
		ATOM	670	0	HIS			44.765	64.824	23.530	1.00 10.59	Α
		ATOM	671	N	ILE			43.832	65.283	21.543	1.00 10.70	Α
	55	ATOM	672	CA	ILE			43.202	63.975	21.426	1.00 10.48	Α

		ATOM	673	CB	ILE A		42.369	63.881	20.125	1.00 10.18	A
		MOTA	674	CG2	ILE A	110	41.950	62.435	19.864	1.00 10.02	A
		ATOM	675	CG1	ILE A	110	41.151	64.802	20.229	1.00 10.13	Α
		ATOM	676	CD1	ILE A	110	40.395	64.989	18.921	1.00 10.58	Α
	5	ATOM	677	С	ILE A	110	44.279	62.889	21.407	1.00 10.11	Α
		MOTA	678	0	ILE A	110	44.187	61.892	22.125	1.00 9.62	Α
		MOTA	679	N	LEU A	111	45.307	63.087	20.591	1.00 10.21	Α
		ATOM	680	CA	LEU A		46.382	62.112	20.490	1.00 10.24	Α
		ATOM	681	СВ	LEU A		47.233	62.400	19.245	1.00 9.69	Α
	10	ATOM	682	CG	LEU A		46.511	62.066	17.933	1.00 10.41	Α
		ATOM	683		LEU A		47.335	62.524	16.739	1.00 10.20	Α
		ATOM	684		LEU A		46.261	60.566	17.865	1.00 11.30	А
		ATOM	685	C	LEU A		47.253	62.049	21.741	1.00 10.20	A
		ATOM	686	0	LEU A		47.695	60.971	22.138	1.00 10.28	A
	15		687	N	SER A		47.490	63.196	22.371	1.00 10.20	A
	10	ATOM					48.305	63.227	23.579	1.00 10.02	A
		ATOM	688	CA	SER A				23.993	1.00 12.22	A
		ATOM	689	CB	SER A		48.593	64.668			A
		ATOM	690	OG	SER A		49.388	64.701	25.165	1.00 16.62	
	20	ATOM	691	C	SER A		47.586	62.502	24.710	1.00 11.85	A
ij	20	ATOM	692	0	SER A		48.193	61.735	25.464	1.00 11.71	A
ı.D		MOTA	693	N	ASN A		46.285	62.737	24.830	1.00 11.70	A
171		ATOM	694	CA	ASN A		45.535	62.080	25.886	1.00 12.34	A
112.00 112.00 112.00		ATOM	695	CB	ASN A		44.252	62.858	26.187	1.00 12.62	A
4,525 93.5		ATOM	696	CG	ASN A		44.546	64.218	26.802	1.00 14.17	Α
Min Com	25	MOTA	697		ASN A		45.603	64.414	27.404	1.00 16.67	А
15		MOTA	698	ND2	ASN A	113	43.620	65.155	26.663	1.00 15.15	A
(T		ATOM	699	С	ASN A	113	45.254	60.616	25.558	1.00 12.29	Α
#(ATOM	700	0	ASN A	113	45.082	59.797	26.460	1.00 12.15	A
		ATOM	701	N	ALA A	114	45.230	60.275	24.272	1.00 11.71	A
	30	ATOM	702	CA	ALA A	114	45.014	58.885	23.885	1.00 11.74	A
		MOTA	703	CB	ALA A	114	44.847	58.773	22.373	1.00 10.96	Α
14		ATOM	704	С	ALA A	114	46.240	58.097	24.332	1.00 11.77	A
g ± .		ATOM	705	0	ALA A		46.129	56.983	24.846	1.00 11.90	A
		ATOM	706	N	LEU A		47.415	58.688	24.139	1.00 12.06	А
ij≈ ± .	35	ATOM	707	CA	LEU A		48.663	58.045	24.517	1.00 12.83	A
		ATOM	708	СВ	LEU A		49.854	58.922	24.114	1.00 13.32	Α
		ATOM	709	CG	LEU A		51.247	58.411	24.497	1.00 13.43	A
		ATOM	710		LEU A		51.472	57.025	23.924	1.00 13.50	А
		ATOM	711		LEU A		52.301	59.368	23.984	1.00 14.02	А
	40	ATOM	712	C	LEU A		48.696	57.788	26.019	1.00 13.61	Α
	10	ATOM	713	Ö	LEU A		49.035	56.692		1.00 13.52	А
		ATOM	714	N	ARG A		48.328	58.801	26.792	1.00 14.73	А
		ATOM	715	CA	ARG A		48.323	58.683	28.243	1.00 16.31	A
		MOTA	716	CB	ARG A		48.074	60.057	28.870	1.00 20.55	A
	45	MOTA	717	CG	ARG A		49.189	61.051	28.594	1.00 27.46	A
	40			CD	ARG A		48.820	62.464	29.011	1.00 27.40	A
		ATOM	718					63.410	28.707	1.00 32.03	A
		ATOM	719	NE	ARG A		49.890	64.728	28.840	1.00 30.07	A
		ATOM	720	CZ	ARG A		49.786				
	50	ATOM	721		ARG A		48.654	65.265	29.274	1.00 40.46	A
	50	ATOM	722		ARG A		50.815	65.510	28.542	1.00 40.54	A
		ATOM	723	С	ARG A		47.289	57.684	28.753	1.00 15.28	A
		ATOM	724	0	ARG A		47.615	56.783	29.529	1.00 14.55	A
		ATOM	725	N	HIS A		46.045	57.833	28.311	1.00 14.65	A
		ATOM	726	CA	HIS A		44.978	56.946	28.758	1.00 14.93	A
	55	ATOM	727	CB	HIS A	117	43.626	57.505	28.326	1.00 15.81	А

	ATOM	728	CG	HIS A	A 117	43.174	58.659	29.164	1.00 18.36	А
	MOTA	729	CD2	HIS A		43.285	59.995	28.977	1.00 19.28	Α
	ATOM	730	ND1	HIS A	117	42.608	58.492	30.411	1.00 18.96	Α
	ATOM	731	CE1	HIS A	117	42.394	59.677	30.957	1.00 19.96	Α
5	ATOM	732	NE2	HIS A	117	42.797	60.605	30.108	1.00 19.61	Α
	ATOM	733	С	HIS A	117	45.120	55.494	28.337	1.00 14.42	Α
	ATOM	734	0	HIS A	117	44.809	54.598	29.113	1.00 13.52	Α
	ATOM	735	N	LEU A	118	45.585	55.248	27.119	1.00 13.01	Α
	ATOM	736	CA	LEU A	118	45.769	53.876	26.669	1.00 13.05	А
10	ATOM	737	CB	LEU A	118	46.041	53.838	25.161	1.00 12.57	Α
	ATOM	738	CG	LEU A		44.841	54.238	24.292	1.00 14.54	Α
	ATOM	739		LEU A		45.260	54.333	22.832	1.00 14.69	А
	ATOM	740		LEU A		43.728	53.215	24.456	1.00 14.25	А
	ATOM	741	С	LEU A		46.930	53.265	27.445	1.00 12.95	А
15	ATOM	742	0	LEU A		46.867	52.112	27.877	1.00 13.64	А
	ATOM	743	N	HIS A		47.988	54.044	27.639	1.00 13.37	Α
	ATOM	744	CA	HIS A		49.140	53.560	28.383	1.00 13.90	А
	MOTA	745	CB	HIS A		50.209	54.657	28.465	1.00 15.67	Α
00	ATOM	746	CG	HIS A		51.375	54.311	29.338	1.00 18.23	А
20	ATOM	747		HIS A		52.589	53.792	29.039	1.00 19.68	Α
	ATOM	748		HIS A		51.363	54.493	30.705	1.00 20.08	Α
	MOTA	749		HIS A		52.521	54.104	31.209	1.00 20.46	A
	ATOM	750		HIS A		53.283	53.673	30.219	1.00 20.35	A
25	ATOM	751	C	HIS A		48.716	53.131	29.788	1.00 14.72	A
25	ATOM	752	0	HIS A		49.100	52.061	30.255	1.00 15.00	A
	ATOM	753	N	ASP A		47.901	53.954	30.444	1.00 14.48	A
	ATOM	754	CA	ASP A		47.453	53.664	31.808	1.00 14.75	A
	ATOM	755 756	CB	ASP A		47.077	54.964	32.523	1.00 15.77	A
30	ATOM	756 757	CG	ASP A		48.267	55.877	32.737	1.00 16.92 1.00 19.17	A
50	ATOM	757 758		ASP A		49.409	55.375 57.097	32.760	1.00 19.17	A
	ATOM ATOM	759	C C	ASP A		48.060 46.305	52.666	32.902 31.976	1.00 19.89	A A
	ATOM	760	0	ASP A		46.051	52.201	33.090	1.00 14.84	A
	ATOM	761	N	ASN A		45.613	52.340	30.888	1.00 14.02	A
35	ATOM	762	CA	ASN A		44.492	51.402	30.937	1.00 13.52	A
00	ATOM	763	CB	ASN A		43.171	52.152	30.762	1.00 13.80	A
	ATOM	764	CG	ASN A		42.971	53.227	31.815	1.00 13.90	A
	ATOM	765		ASN A		43.327	54.394	31.615	1.00 15.49	A
	MOTA	766		ASN A		42.416	52.833	32.957	1.00 13.19	А
40	ATOM	767	С	ASN A		44.673	50.374	29.827	1.00 14.09	A
	MOTA	768	0	ASN A	121	44.160	50.534	28.721	1.00 13.05	A
	MOTA	769	И	PRO F	122	45.406	49.290	30.121	1.00 14.55	A
	ATOM	770	CD	PRO F	122	45.858	48.944	31.481	1.00 15.39	A
	ATOM	771	CA	PRO F	122	45.704	48.200	29.187	1.00 14.85	Α
45	MOTA	772	CB	PRO P	122	46.410	47.169	30.072	1.00 15.58	A
	ATOM	773	CG	PRO P	122	45.853	47.446	31.436	1.00 17.22	Α
	ATOM	774	С	PRO P	122	44.565	47.592	28.371	1.00 15.15	Α
	MOTA	775	0	PRO F	122	44.795	47.126	27.254	1.00 15.89	Α
	ATOM	776	N	GLU P	123	43.348	47.588	28.908	1.00 15.16	Α
50	ATOM	777	CA	GLU A	123	42.218	47.015	28.179	1.00 15.87	А
	MOTA	778	CB	GLU P	123	41.214	46.386	29.150	1.00 18.34	Α
	ATOM	779	CG	GLU A	123	41.622	45.016	29.679	1.00 23.44	А
	ATOM	780	CD	GLU A		42.880	45.055	30.520	1.00 26.21	А
	MOTA	781		GLU A		42.873	45.729	31.571	1.00 28.94	Α
55	ATOM	782	OE2	GLU A	. 123	43.877	44.409	30.131	1.00 29.25	А

			_								_
		MOTA	783	С	GLU A		41.490		27.269	1.00 14.24	Α
		ATOM	784	0	GLU A		40.654			1.00 14.23	
		ATOM	785	N	MSE A		41.798			1.00 12.95	
	_	ATOM	786	CA	MSE A	124	41.158			1.00 12.17	
	5	ATOM	787	CB	MSE A		41.390			1.00 13.28	Α
		ATOM	788	CG	MSE A		40.655			1.00 14.49	
		ATOM	789	SE	MSE A		38.739			1.00 19.78	A
		ATOM	790	CE	MSE A		38.233			1.00 15.56	
		ATOM	791	С	MSE A		41.740		25.155	1.00 12.04	A
	10	ATOM	792	0	MSE A		42.918			1.00 11.44	Α
		ATOM	793	N	LYS A		40.904		24.157	1.00 10.65	A
		ATOM	794	CA	LYS A		41.310		22.751	1.00 11.22	
		ATOM	795	CB	LYS A		40.634		22.056	1.00 12.76	
		ATOM	796	CG	LYS A		40.903		22.714	1.00 15.07	
	15	MOTA	797	CD	LYS A		42.347			1.00 17.58	A
		MOTA	798	CE	LYS A		42.641			1.00 19.16	
		MOTA	799	NZ	LYS A		41.712		22.986	1.00 20.18	Α
		MOTA	800	С	LYS A		40.933			1.00 11.10	
		ATOM	801	0	LYS A		40.10			1.00 10.44	А
	20	ATOM	802	N	PHE A		41.527		20.858	1.00 9.90	
: 1		MOTA	803	CA	PHE A		41.268			1.00 9.14	А
		MOTA	804	СВ	PHE A		42.037			1.00 9.51	А
4;5 F		MOTA	805	CG	PHE A		41.681		20.236	1.00 8.79	
रेशक्त इ.स. इ.		ATOM	806		PHE A		40.364		20.235	1.00 9.46	
W.	25	ATOM	807		PHE A		42.689		19.837	1.00 9.29	
		MOTA	808		PHE A		40.053			1.00 9.45	
i)Ti		ATOM	809	CE2			42.392		19.452	1.00 9.40	
#]		ATOM	810	CZ	PHE A		41.069			1.00 8.66	
	20	ATOM	811	С	PHE A		41.759		18.657	1.00 9.49	
Ę	30	MOTA	812	0	PHE A		42.823		18.448	1.00 9.51	
		ATOM	813	N	ILE A		40.982			1.00 8.68	
Į.↓		ATOM	814	CA	ILE A		41.420		16.282	1.00 8.06	
		MOTA	815	СВ	ILE A		40.391		15.381	1.00 8.73	
	25	MOTA	816	CG2	ILE A		40.280		15.821	1.00 9.17	
E***	35	MOTA	817	CG1			39.027		15.415	1.00 8.60	
		MOTA	818	CD1			38.045		14.387	1.00 9.58	A
		ATOM	819	С	ILE A		41.690		15.706	1.00 8.78	A
		ATOM	820	0	ILE A		41.069		16.120	1.00 8.81	
	40	ATOM	821	N	TRP A		42.631		14.770	1.00 8.59	
	4 0	ATOM	822	CA	TRP A		42.997		14.156	1.00 8.27	A
		ATOM	823	CB	TRP A		44.323			1.00 8.26	
		MOTA	824	CG	TRP A		44.564		14.381	1.00 8.27	A
		MOTA	825		TRP A		44.001		15.044	1.00 8.03	
	4 =	MOTA	826		TRP A		44.411			1.00 8.27	
	45	MOTA	827		TRP A		43.181		16.172	1.00 8.19	
		MOTA	828		TRP A		45.282			1.00 8.35	
		MOTA	829		TRP A		45.192		13.287	1.00 8.32	A
		ATOM	830		TRP A		44.031		14.711	1.00 9.09	
	50	MOTA	831		TRP A		42.802		16.549	1.00 8.49	
	50	MOTA	832		TRP A		43.229		15.817	1.00 9.77	A
		MOTA	833	С	TRP A		43.115		12.644	1.00 8.27	A
		ATOM	834	0	TRP A		43.754		12.153	1.00 8.12	A
		ATOM	835	N	ALA A		42.534			1.00 8.70	A
	cr	MOTA	836	CA	ALA A		42.549		10.449	1.00 9.71	A
	55	ATOM	837	CB	ALA A	129	41.125	56.886	9.932	1.00 10.43	A

		ATOM	838	С	ALA A	129	43.414	57.791	9.694	1.00 10.28	А
		ATOM	839	0	ALA A	129	44.088	57.422	8.734	1.00 11.35	Α
		ATOM	840	N	GLU A		43.387	59.054	10.114	1.00 10.58	А
	_	ATOM	841	CA	GLU A		44.116	60.124	9.426	1.00 10.04	А
	5	ATOM	842	CB	GLU A	130	43.411	61.461	9.678	1.00 11.26	А
		ATOM	843	CG	GLU A	130	41.913	61.457	9.368	1.00 11.65	Α
		ATOM	844	CD	GLU A		41.064	60.935	10.515	1.00 13.66	А
								60.582	11.573	1.00 14.42	А
		ATOM	845		GLU A		41.629				
		ATOM	846	OE2	GLU A		39.823	60.885	10.361	1.00 15.28	A
	10	ATOM	847	С	GLU A	130	45.596	60.259	9.770	1.00 10.03	Α
		ATOM	848	0	GLU A	130	45.962	60.900	10.755	1.00 9.29	А
		ATOM	849	N	ILE A	131	46.454	59.692	8.927	1.00 9.13	А
		ATOM	850	CA	ILE A		47.890	59.737	9.176	1.00 9.11	A
	4	MOTA	851	CB	ILE A		48.618	58.700	8.292	1.00 9.01	A
	15	MOTA	852	ÇG2	ILE A	131	50.109	58.686	8.606	1.00 9.14	A
		ATOM	853	CG1	ILE A	131	48.019	57.311	8.555	1.00 8.24	А
		MOTA	854	CD1	ILE A	131	47.979	56.917	10.038	1.00 9.81	Α
		ATOM	855	С	ILE A		48.518	61.127	9.030	1.00 9.70	А
		ATOM	856	Ö	ILE A		49.559	61.401	9.632	1.00 9.54	A
	20										
ı.I	20	ATOM	857	N	SER A		47.900	62.012	8.251	1.00 7.89	A
, PH		MOTA	858	CA	SER A		48.432	63.369	8.125	1.00 8.13	А
Tribali Armani		ATOM	859	CB	SER A	132	47.508	64.231	7.254	1.00 8.35	А
131		ATOM	860	OG	SER A		46.173	64.210	7.732	1.00 9.16	Α
المين أ		ATOM	861	C	SER A		48.546	63.970	9.532	1.00 8.70	А
	25								9.878	1.00 8.62	A
2 72F	23	ATOM	862	0	SER A		49.561	64.576			
ij.		ATOM	863	N	TYR A		47.507	63.785	10.342	1.00 8.09	A
1,75		ATOM	864	CA	TYR A	133	47.495	64.289	11.715	1.00 8.79	Α
2)		ATOM	865	CB	TYR A	133	46.093	64.185	12.317	1.00 8.24	А
		ATOM	866	CG	TYR A	133	45.175	65.342	12.002	1.00 7.35	Α
9,200 ¹	30	ATOM	867		TYR A		43.908	65.117	11.476	1.00 8.15	A
	50								11.223	1.00 9.16	A
		ATOM	868		TYR A		43.035	66.165			
j.j.		ATOM	869		TYR A		45.556	66.659	12.271	1.00 8.71	A
3155		MOTA	870	CE2	TYR A	133	44.688	67.722	12.020	1.00 9.71	A
		MOTA	871	CZ	TYR A	133	43.430	67.466	11.497	1.00 9.62	Α
ind.	35	MOTA	872	ОН	TYR A	133	42.562	68.503	11.238	1.00 10.12	A
		ATOM	873	С	TYR A		48.449	63.512	12.616	1.00 9.14	Α
			874	0	TYR A		49.164	64.103	13.430	1.00 9.28	A
		MOTA									
		MOTA	875	N	PHE A		48.452	62.189	12.485	1.00 8.42	Α
	_	MOTA	876	CA	PHE A	134	49.312	61.379	13.335	1.00 9.57	Α
	4 0	MOTA	877	CB	PHE A	134	49.070	59.889	13.112	1.00 8.94	Α
		MOTA	878	CG	PHE A	134	49.609	59.032	14.222	1.00 9.95	Α
		ATOM	879		PHE A		48.867	58.831	15.384	1.00 9.54	A
		ATOM	880		PHE A		50.885	58.487	14.139	1.00 10.64	A
	45	ATOM	881		PHE A		49.393	58.101	16.448	1.00 10.14	A
	45	MOTA	882	CE2	PHE A		51.420	57.756	15.198	1.00 10.36	Α
		MOTA	883	CZ	PHE A	134	50.672	57.565	16.354	1.00 9.82	A
		ATOM	884	С	PHE A	134	50.786	61.689	13.115	1.00 10.39	Α
		ATOM	885	Ö	PHE A		51.559	61.757	14.070	1.00 10.24	A
	EΛ	ATOM	886	N	ALA A		51.177	61.876	11.859	1.00 10.93	A
	50	ATOM	887	CA	ALA A	135	52.567	62.186	11.551	1.00 11.81	Α
		ATOM	888	CB	ALA A	135	52.786	62.166	10.042	1.00 11.65	Α
		ATOM	889	С	ALA A	135	52.921	63.560	12.129	1.00 12.73	А
		ATOM	890	0	ALA A		54.002	63.745	12.689	1.00 14.32	Α
			891		ARG A		52.006	64.514	11.991	1.00 14.32	A
	EE	ATOM		N							
	55	ATOM	892	CA	ARG A	130	52.213	65.868	12.510	1.00 13.88	Α

		ATOM	893	СВ	ARG A	136	50.980	66.735	12.225	1.00 14.42	A
		ATOM	894	CG	ARG A				12.879	1.00 15.79	А
		ATOM	895	CD	ARG A			69.145	12.040	1.00 17.40	A
		ATOM	896	NE	ARG A				12.680	1.00 17.54	А
	5	ATOM	897	CZ	ARG A				13.765	1.00 17.89	А
	•	ATOM	898		ARG A				14.325	1.00 18.15	А
		ATOM	899		ARG A				14.300	1.00 16.63	A
		ATOM	900	C	ARG A				14.018	1.00 14.79	A
		ATOM	901	0	ARG A				14.552	1.00 16.05	А
	10	ATOM	902	N	PHE A		51.720		14.692	1.00 13.05	A
	10	ATOM	903	CA	PHE A		51.823		16.136	1.00 13.29	A
		ATOM	904	CB	PHE A		50.607		16.639	1.00 13.13	A
		ATOM	905	CG	PHE A		50.611		18.116	1.00 13.13	A
		ATOM	906		PHE A		50.372		19.000	1.00 13.65	A
	15	ATOM	907		PHE A		50.864		18.624	1.00 14.23	A
	15	MOTA	908		PHE A		50.381		20.372	1.00 14.25	A
			909		PHE A		50.876		20.005	1.00 14.75	A
		MOTA	910	CZ	PHE A		50.633		20.875	1.00 13.02	A
		MOTA							16.557	1.00 13.04	A
	20	MOTA	911	С	PHE A		53.089		17.387	1.00 13.44	A
Ü	20	ATOM	912	0	PHE A		53.866				
		ATOM	913	N	TYR A		53.287		15.974	1.00 13.77	A
M		ATOM	914	CA	TYR A		54.427		16.291	1.00 14.96	A
124		ATOM	915	CB	TYR A		54.433		15.375	1.00 14.56	A
Restr Relp	25	ATOM	916	CG	TYR A		55.421		15.795	1.00 14.71	A
 	25	ATOM	917		TYR A		55.125		16.836	1.00 14.96	A
ii.		ATOM	918	CE1	TYR A		56.030		17.230	1.00 15.31	A
M		ATOM	919		TYR A		56.653		15.156	1.00 15.19	A
\$ }		ATOM	920	CE2	TYR A		57.567		15.544	1.00 15.16	A
	20	ATOM	921	CZ	TYR A		57.247		16.579	1.00 15.51	A
7 1 1 1	30	ATOM	922	ОН	TYR A		58.138		16.958	1.00 17.55	A
W		ATOM	923	С	TYR A		55.783		16.198	1.00 16.54	A
j.		ATOM	924	0	TYR A		56.625		17.084	1.00 16.24	A
		MOTA	925	N	HIS A		56.001		15.128	1.00 17.34	A
	25	MOTA	926	CA	HIS A		57.277		14.948	1.00 19.15	A
į.⊾.	35	MOTA	927	СВ	HIS A		57.381		13.525	1.00 19.96	A
		MOTA	928	CG	HIS A		57.571		12.483	1.00 21.16	A
		MOTA	929		HIS A		56.802		11.429	1.00 21.41	A
		MOTA	930		HIS A		58.666		12.467	1.00 21.98	A
	40	MOTA	931		HIS A				11.448	1.00 22.61	A
	40	MOTA	932	_	HIS A		57.443		10.802	1.00 21.85	A
		ATOM	933	С	HIS A		57.546		15.975	1.00 19.75	A
		ATOM	934	0	HIS A		58.683		16.133	1.00 20.84	A
		ATOM	935	N	ASP A		56.505		16.675	1.00 18.81	A
	4 =	ATOM	936	CA	ASP A		56.658		17.697	1.00 18.99	A
	4 5	ATOM	937	CB	ASP A		55.438		17.705	1.00 20.32	А
		ATOM	938	CG	ASP A		55.559		16.702	1.00 21.99	A
		ATOM	939		ASP A		56.308		15.717	1.00 23.53	А
		MOTA	940	OD2	ASP A		54.901		16.894	1.00 22.73	А
		ATOM	941	С	ASP A	140	56.855		19.080	1.00 18.52	А
	50	MOTA	942	0	ASP A	140	57.154	66.781	20.048	1.00 18.42	А
		MOTA	943	N	LEU A	141	56.692	64.762	19.166	1.00 18.16	А
		MOTA	944	CA	LEU A	141	56.851	64.043	20.426	1.00 18.15	А
		MOTA	945	CB	LEU A	141	56.171	62.674	20.355	1.00 17.96	А
		MOTA	946	CG	LEU A	141	54.651	62.547	20.381	1.00 17.86	А
	55	MOTA	947	CD1	LEU A	141	54.285	61.069	20.292	1.00 17.13	А

		MOTA	948	CD2	LEU	Α	141	54.097	63.154	21.662	1.00	17.42	A
		ATOM	949	C	LEU			58.306	63.816	20.805	1.00	19.03	А
		ATOM	950	0	LEU			59.168	63.651	19.943		18.72	A
								58.569	63.802	22.108		20.19	A
	-	MOTA	951	N	GLY							21.21	A
	5	ATOM	952	CA	GLY			59.913	63.545	22.585			
		MOTA	953	С	GLY			60.161	62.057	22.424		22.12	A
		MOTA	954	0	GLY			59.209	61.283	22.295		21.38	A
		MOTA	955	N	GLU	A	143	61.425	61.646	22.437		23.15	A
		MOTA	956	CA	GLU	Α	143	61.772	60.239	22.267	1.00	24.67	A
	10	MOTA	957	CB	GLU	Α	143	63.287	60.052	22.381	1.00	27.38	A
		MOTA	958	CG	GLU	Α	143	63.763	58.660	21.997	1.00	30.77	Α
		ATOM	959	CD	GLU			63.303	58.253	20.609	1.00	32.52	Α
		ATOM	960	OE1	GLU			63.586	58.993	19.643	1.00	33.98	A
		ATOM	961	OE2	GLU			62.656	57.192	20.484		33.85	А
	15	ATOM	962	C	GLU			61.066	59.311	23.252		24.07	A
	15		963	0	GLU			60.625	58.225	22.880		23.09	A
		ATOM						60.958	59.736	24.506		23.61	A
		ATOM	964	N	ASN				58.924	25.525		23.85	A
		ATOM	965	CA	ASN			60.302					
	20	MOTA	966	CB	ASN			60.329	59.652	26.874		25.76	A
iñ	20	MOTA	967	CG	ASN			59.589	58.897	27.967		27.79	A
		MOTA	968		ASN			58.360	58.797	27.949		28.98	A
7 desdi* atti≆e		ATOM	969	ND2	ASN	Α	144	60.338	58.359	28.923		28.61	Α
n		ATOM	970	С	ASN	Α	144	58.864	58.610	25.124		22.68	A
4 mm 1 mm		ATOM	971	0	ASN	Α	144	58.425	57.462	25.202		22.15	Α
W	25	ATOM	972	N	LYS	A	145	58.139	59.634	24.682	1.00	21.73	А
n de la comp		ATOM	973	CA	LYS	Α	145	56.749	59.470	24.270	1.00	20.84	A
		ATOM	974	СВ	LYS	Α	145	56.073	60.837	24.132	1.00	22.57	A
		MOTA	975	CG	LYS			55.854	61.561	25.455	1.00	24.93	A
ē; ∴ræs.		MOTA	976	CD	LYS			54.914	60.778	26.361	1.00	27.02	A
	30	MOTA	977	CE	LYS			54.640	61.523	27.661	1.00	28.49	A
j		ATOM	978	NZ	LYS			55.882	61.756	28.449		29.61	А
Ç.		ATOM	979	C	LYS			56.617	58.689	22.965		19.52	A
[al		ATOM	980	0	LYS			55.654	57.940	22.784		18.64	A
								57.571	58.866	22.054		18.73	A
	35	ATOM	981	N	LYS				58.137	20.788		17.79	A
<u></u>]	33	ATOM	982	CA	LYS			57.535				17.55	A
		ATOM	983	CB	LYS			58.730	58.502	19.898			
		MOTA	984	CG	LYS			58.589	59.813	19.139		17.75	A
		MOTA	985	CD	LYS			59.758	60.012	18.181		18.32	A
		MOTA	986	CE	LYS			59.592	61.275	17.344		18.96	A
	40	MOTA	987	NZ	LYS			60.778	61.526	16.481		22.20	A
		ATOM	988	С	LYS	Α	146	57.576	56.647	21.097		17.36	А
		ATOM	989	0	LYS	Α	146	56.859	55.856	20.487		16.67	A
		ATOM	990	N	LEU	Α	147	58.419	56.273	22.055	1.00	17.41	А
		ATOM	991	CA	LEU	Α	147	58.557	54.880	22.461	1.00	17.08	А
	45	ATOM	992	CB	LEU	Α	147	59.735	54.727	23.429	1.00	18.23	Α
		MOTA	993	CG	LEU			61.111	54.969	22.802	1.00	19.30	Α
		ATOM	994		LEU			62.186	54.935	23.876	1.00	19.92	Α
		ATOM	995		LEU			61.380	53.909	21.741	1.00	20.31	А
		ATOM	996	C	LEU			57.273	54.362	23.103		16.49	A
	50	ATOM	997	0	LEU			56.855	53.235	22.841		15.40	A
	50		998		GLN			56.645	55.179	23.944		16.51	A
		ATOM		N				55.395	54.769	24.572		16.83	A
		ATOM	999	CA	GLN					24.572		18.73	A
		ATOM	1000	CB	GLN			54.917	55.815				
	EF	ATOM	1001	CG	GLN			55.746	55.891	26.849		21.13	A
	55	ATOM	1002	CD	GLN	Α	148	55.121	56.796	27.894	1.00	23.21	A

		MOTA	1003		GLN A		55.652	56.951	28.996	1.00 25.13	А
		MOTA	1004	NE2	GLN A		53.986	57.397	27.556	1.00 24.08	A
		MOTA	1005	С	GLN A	148	54.333	54.585	23.491	1.00 16.17	Α
		MOTA	1006	0	GLN A	148	53.519	53.666	23.556	1.00 16.06	A
	5	ATOM	1007	N	MSE A	149	54.350	55.462	22.493	1.00 15.44	Α
		ATOM	1008	CA	MSE A	149	53.380	55.375	21.409	1.00 15.77	А
		MOTA	1009	CB	MSE A	149	53.494	56.595	20.492	1.00 17.35	Α
		ATOM	1010	CG	MSE A	149	52.475	56.619	19.359	1.00 19.00	Α
		ATOM	1011	SE	MSE A	149	50.649	56.669	19.994	1.00 24.67	Α
	10	MOTA	1012	CE	MSE A	149	50.424	58.578	20.144	1.00 23.17	Α
		ATOM	1013	С	MSE A	149	53.589	54.099	20.601	1.00 15.13	Α
		ATOM	1014	0	MSE A	149	52.633	53.397	20.281	1.00 13.65	A
		ATOM	1015	N	LYS A	150	54.840	53.796	20.270	1.00 15.43	Α
		MOTA	1016	CA	LYS A		55.128	52.594	19.498	1.00 15.61	A
	15	ATOM	1017	СВ	LYS A		56.620	52.516	19.155	1.00 16.35	Α
		ATOM	1018	CG	LYS A		57.081	53.610	18.200	1.00 19.37	A
		ATOM	1019	CD	LYS A	150	58.582	53.563	17.941	1.00 22.38	Α
		ATOM	1020	CE	LYS A		58.987	52.322	17.169	1.00 24.63	Α
d 1,000		ATOM	1021	NZ	LYS A		60.441	52.335	16.840	1.00 26.82	Α
des des and the first term to the first term	20	ATOM	1022	С	LYS A		54.702	51.349	20.266	1.00 14.98	Α
1,12±2. n=1		ATOM	1023	Ō	LYS A		54.265	50.365	19.672	1.00 15.43	Α
ŧ, <u>i,_</u> i.		ATOM	1024	N	SER A		54.806	51.400	21.591	1.00 15.45	Α
1,51		ATOM	1025	CA	SER A		54.438	50.257	22.415	1.00 15.79	Α
		ATOM	1026	СВ	SER A		54.936	50.450	23.851	1.00 17.27	А
iŲ.	25	ATOM	1027	OG	SER A		54.181	51.437	24.526	1.00 21.28	A
		MOTA	1028	C	SER A		52.936	49.975	22.422	1.00 15.04	А
Ŋ.		ATOM	1029	0	SER A		52.530	48.818	22.315	1.00 15.10	А
		ATOM	1030	N	ILE A		52.105	51.010	22.545	1.00 14.25	Α
31 4:≈¶		ATOM	1031	CA	ILE A		50.666	50.771	22.554	1.00 13.46	А
The Acres Surf. Bull.	30	ATOM	1032	CB	ILE A		49.857	51.979	23.115	1.00 14.01	Α
A.J.J.		ATOM	1033		ILE A		50.228	52.203	24.577	1.00 14.32	А
II.		ATOM	1034		ILE A		50.103	53.243	22.295	1.00 13.78	А
į.J.		MOTA	1035		ILE A		49.179	54.395	22.676	1.00 13.84	А
ij.		ATOM	1036	C	ILE A		50.149	50.383	21.172	1.00 13.41	Α
ļ.d.	35	ATOM	1037	0	ILE A		49.048	49.856	21.044	1.00 13.62	А
_	50	ATOM	1038	N	VAL A		50.942	50.642	20.136	1.00 12.90	А
		ATOM	1039	CA	VAL A		50.548	50.253	18.786	1.00 13.40	А
		ATOM	1040	СВ	VAL A		51.242	51.122	17.709	1.00 13.08	A
		ATOM	1040		VAL A		51.050	50.501	16.322	1.00 13.04	A
	40	MOTA	1042		VAL A		50.665	52.530	17.737	1.00 13.27	A
	40	ATOM	1042	C	VAL A		50.965	48.798	18.610	1.00 14.30	A
		ATOM	1043	0	VAL A		50.195	47.970	18.121	1.00 14.16	A
			1044	N	LYS A		52.182	48.487	19.038	1.00 14.99	A
		ATOM	1045		LYS A		52.696	47.130	18.926	1.00 16.69	A
	45	ATOM		CA	LYS A		54.157	47.130	19.383	1.00 17.97	A
	43	ATOM	1047	CB			54.157	45.775	19.034	1.00 21.07	A
		ATOM	1048	CG	LYS A			45.789	19.466	1.00 23.29	A
		ATOM	1049	CD	LYS A		56.327		20.976	1.00 25.47	A
		ATOM	1050	CE	LYS A		56.476	45.645		1.00 25.47	A
	F0	ATOM	1051	NZ	LYS A		55.866	46.770	21.737		
	50	ATOM	1052	С	LYS A		51.859	46.146	19.745	1.00 16.92	A
		ATOM	1053	0	LYS A		51.667	45.003	19.328	1.00 17.42	A
		MOTA	1054	N	ASN A		51.351	46.587	20.895	1.00 16.90	A
		ATOM	1055	CA	ASN A		50.546	45.712	21.752	1.00 17.32	A
		MOTA	1056	CB	ASN A		50.651	46.135	23.226	1.00 19.11	A
	55	ATOM	1057	CG	ASN A	155	49.813	47.363	23.557	1.00 20.16	A

	ATOM	1058	OD1	ASN	A	155		49.021	47.831	22.743	1.00	21.67	А
	ATOM	1059	ND2	ASN	A	155		49.980	47.883	24.772		20.93	А
	ATOM	1060	С	ASN	A	155		49.076	45.635	21.341		17.02	А
	MOTA	1061	0	ASN	A	155		48.293	44.909	21.949		18.03	Α
5	MOTA	1062	N	GLY	Α	156		48.700	46.404	20.324	1.00	15.86	Α
	MOTA	1063	CA	GLY				47.332	46.359	19.837		15.20	А
	MOTA	1064	С	GLY				46.276	47.254	20.463		14.17	Α
	ATOM	1065	0	GLY				45.097	47.107	20.146		15.09	Α
	MOTA	1066	N	GLN	A	157		46.663	48.172	21.344		12.63	Α
10	MOTA	1067	CA	GLN				45.672	49.058	21.953		11.77	A
	ATOM	1068	СВ	GLN				46.214	49.694	23.225		11.96	A
	MOTA	1069	CG	GLN				46.326	48.750	24.399		12.30	A
	MOTA	1070	CD	GLN				46.581	49.503	25.680		11.07	A
a ==	MOTA	1071	OE1	GLN				45.677	50.125	26.244		14.09	A
15	ATOM	1072	NE2	GLN				47.823	49.477	26.136		11.57	A
	MOTA	1073	С	GLN				45.255	50.160	20.985		10.91	A
	MOTA	1074	0	GLN				44.077	50.484	20.880		10.65	A
	ATOM	1075	N	LEU				46.238	50.747	20.308		11.05	A
20	ATOM	1076	CA	LEU				45.987	51.788	19.320		10.93	A
20	MOTA	1077	СВ	LEU				46.989	52.935	19.479		12.25	A
	MOTA	1078	CG	LEU				46.895	54.117	18.507		14.64	A
	ATOM	1079		LEU				47.377	53.725	17.123		17.13	A
	ATOM	1080		LEU				45.471	54.612	18.461		15.49	A
25	ATOM	1081	C	LEU				46.177	51.111	17.971		11.18	A
25	ATOM	1082	0	LEU				47.258	50.600	17.671		11.17	A
	ATOM	1083	N	GLU				45.126	51.102	17.161	1.00	9.90	A
	ATOM	1084	CA	GLU				45.201	50.456	15.861 15.829	1.00	9.47 10.02	A A
	ATOM	1085	CB	GLU				44.247	49.263	14.506		10.65	A
30	MOTA	1086	CG CD	GLU GLU				44.206 43.223	48.531 47.383	14.500		12.18	A
30	ATOM	1087	OE1	GLU				43.223	46.369	15.209		11.96	A
	ATOM ATOM	1088 1089	OE2	GLU				42.168	47.502	13.203		11.42	A
	ATOM	1009	C	GLU				44.864	51.409	14.732	1.00	8.85	A
	ATOM	1091	0	GLU				43.871	52.133	14.786	1.00	9.51	A
35	ATOM	1092	N	PHE				45.707	51.409	13.709	1.00	8.61	A
00	ATOM	1093	CA	PHE			•	45.475	52.259	12.557	1.00	8.11	A
	ATOM	1094	CB	PHE				46.802	52.613	11.881	1.00	8.37	A
	ATOM	1095	CG	PHE				47.698	53.447	12.743	1.00	8.91	A
	ATOM	1096	CD1	PHE				48.761	52.872	13.437	1.00	9.51	A
40	ATOM	1097		PHE				47.444	54.801	12.906	1.00	9.15	Α
	ATOM	1098		PHE				49.555	53.643	14.284	1.00	9.60	А
	MOTA	1099		PHE				48.233	55.581	13.754	1.00	9.20	A
	ATOM	1100	CZ	PHE				49.288	54.997	14.442	1.00	10.42	А
	MOTA	1101	С	PHE	A	160		44.553	51.558	11.576	1.00	8.64	А
45	MOTA	1102	0	PHE	A	160		44.726	50.374	11.270	1.00	8.99	Α
	MOTA	1103	N	VAL	Α	161		43.551	52.293	11.111	1.00	8.21	Α
	MOTA	1104	CA	VAL	A	161		42.603	51.767	10.147	1.00	8.58	А
	MOTA	1105	CB	VAL	Α	161		41.147	51.874	10.679	1.00	7.15	A
	ATOM	1106	CG1	VAL	Α	161		40.961	50.891	11.846	1.00	8.25	Α
50	ATOM	1107	CG2	VAL	Α	161		40.848	53.290	11.153	1.00	8.29	Α
	MOTA	1108	С	VAL	Α	161		42.815	52.542	8.847	1.00	8.27	Α
	ATOM	1109	0	VAL	A	161		42.899	53.774	8.848	1.00	8.98	A
	ATOM	1110	N	THR	Α	162		42.926	51.788	7.755	1.00	8.30	Α
_	MOTA	1111	CA	THR	Α	162		43.203	52.294	6.403	1.00	8.76	A
55	ATOM	1112	CB	THR	A	162		42.296	53.473	5.984	1.00	8.95	Α

		ATOM	1113	OG1	THR	Α	162	40.920	53.089	6.084	1.00 10.	09 .	Α
		MOTA	1114	CG2	THR	Α	162	42.580	53.855	4.532	1.00 10.	53	Α
		ATOM	1115	C	THR	Α	162	44.656	52.759	6.347	1.00 8.	36	Α
		ATOM	1116	0	THR	Α	162	45.478	52.184	5.633	1.00 8.	75	Α
	5	ATOM	1117	N	GLY			44.972	53.800	7.107	1.00 8.	59	A
	•	ATOM	1118	CA	GLY			46.338	54.286	7.133	1.00 8.		A
		ATOM	1119	С	GLY			46.702	55.259	6.032			A
		ATOM	1120	Ō	GLY			47.880	55.450	5.747			A
		ATOM	1121	N	GLY			45.699	55.864	5.405			A
	10	ATOM	1122	CA	GLY			45.975	56.836	4.364			A
	10	ATOM	1123	C	GLY			46.278	58.189	4.979			A
		ATOM	1124	0	GLY			46.015	58.419	6.160			A
		ATOM	1125	N	TRP			46.845	59.092	4.188			A
		ATOM	1126	CA	TRP			47.159	60.428	4.678			A
	15	ATOM	1127	CB	TRP			47.767	61.255	3.545			A
	10	ATOM	1128	CG	TRP			48.563	62.437	4.001			A
		ATOM	1129		TRP			49.760	62.414	4.791			A
		ATOM	1130		TRP			50.184	63.753	4.945			A
) (22 1.		ATOM	1131		TRP			50.517	61.392	5.383			A
	20	ATOM	1132		TRP			48.316	63.748	3.717			A
₩.	20	ATOM	1132	NE1	TRP			49.286	64.546	4.281			A
ij		ATOM	1133	CZ2				51.334	64.100	5.670	1.00 10.		A
m		ATOM	1134		TRP			51.662	61.738	6.103	1.00 10.		A
		ATOM	1136		TRP			52.056	63.080	6.238	1.00 11.		A
ij	25		1137	Сп2	TRP			45.854	61.061	5.163			A
	23	ATOM	1137	0	TRP			45.838	61.822	6.138			A
		MOTA						44.766	60.720	4.477			A
		ATOM	1139	N	VAL			43.430	61.215	4.800			A
£;		MOTA	1140	CA CB	VAL VAL			43.430	62.406	3.882			A
ij.	30	MOTA	1141					44.041	63.541	4.018			A
	50	ATOM	1142		VAL			42.956	61.943	2.426			A
m. Lui		MOTA	1143	CGZ	VAL			42.930	60.096	4.560			A
i.		ATOM	1144		VAL			42.787	58.962	4.258			A
1,22E		MOTA	1145	0	VAL				60.424	4.743			A
ia. Įa.	35	ATOM	1146	N	MSE			41.137	59.517	4.458			A
ž:*** .	33	ATOM	1147	CA	MSE			40.022	59.517	5.590	1.00 7.		A
		ATOM	1148	CB	MSE			39.001		5.322	1.00 10.		A
		MOTA	1149	CG	MSE			37.784	58.669		1.00 10.		A
		MOTA	1150	SE	MSE			36.562	58.804	6.790	1.00 17.		A
	40	MOTA	1151	CE	MSE			37.703	58.023	8.131			A
	40	ATOM	1152	С	MSE			39.494	60.275	3.245			
		MOTA	1153	0	MSE			38.701	61.204	3.368			A n
		ATOM	1154	N	PRO			39.919	59.870	2.045			A a
		ATOM	1155	CD	PRO			40.680	58.649	1.716			A
	4 =	MOTA	1156	CA	PRO			39.499	60.558	0.829			A
	45	MOTA	1157	CB	PRO			40.437	59.975	-0.219			A
		MOTA	1158	CG	PRO			40.514	58.546	0.200			A
		MOTA	1159	С	PRO			38.070	60.528	0.355			A
		MOTA	1160	0	PRO			37.304	59.615	0.657			A
	- 0	MOTA	1161	N	ASP			37.732	61.572	-0.395			A
	·50	MOTA	1162	CA	ASP			36.439	61.673	-1.043			A
		MOTA	1163	CB	ASP			36.341	63.006	-1.790			A
		MOTA	1164	CG	ASP			35.205	63.039	-2.791			A
		MOTA	1165		ASP			34.118	62.511	-2.486			A
		MOTA	1166	OD2	ASP	A	169	35.399	63.609	-3.885			A
	55	MOTA	1167	С	ASP	A	169	36.529	60.520	-2.035	1.00 7.	30	A

		ATOM	1168	0	ASP A	169	37.622	60.171	-2.484	1.00	7.72	Α
		ATOM	1169	N	GLU A		35.397	59.917	-2.367	1.00	7.11	Α
							35.402	58.807	-3.308	1.00	7.03	A
		ATOM	1170	CA	GLU A							
	_	ATOM	1171	CB	GLU A		34.793	57.568	-2.635	1.00	7.28	A
	5	MOTA	1172	CG	GLU A		35.628	57.106	-1.433	1.00	6.70	A
		MOTA	1173	CD	GLU A	170	35.087	55.863	-0.743	1.00	8.50	Α
		MOTA	1174	OE1	GLU A	170	34.335	55.098	-1.377	1.00	8.21	A
		ATOM	1175	OE2	GLU A	170	35.445	55.640	0.435	1.00	10.30	А
		ATOM	1176	С	GLU A	170	34.678	59.144	-4.607	1.00	6.58	А
	10	ATOM	1177	0	GLU A		34.651	58.338	-5.532	1.00	6.89	А
	~~	ATOM	1178	N	ALA A		34.116	60.348	-4.689	1.00	6.82	A
							33.395	60.760	-5.887	1.00	7.07	A
		ATOM	1179	CA	ALA A							
		MOTA	1180	CB	ALA A		32.181	61.600	-5.496	1.00	7.61	A
	4-	ATOM	1181	С	ALA A		34.235	61.531	-6.900	1.00	7.36	A
	15	ATOM	1182	0	ALA A		34.266	61.190	-8.077	1.00	7.95	A
	*	ATOM	1183	N	ASN A	172	34.919	62.568	-6.430	1.00	7.26	А
		ATOM	1184	CA	ASN A	172	35.711	63.440	-7.293	1.00	7.01	А
		ATOM	1185	CB	ASN A	172	35.647	64.866	-6.747	1.00	6.83	A
g stare		ATOM	1186	CG	ASN A		34.230	65.390	-6.639	1.00	8.36	Α
	20	ATOM	1187		ASN A		33.547	65.570	-7.645	1.00	10.35	А
		ATOM	1188		ASN A		33.784	65.645	-5.413	1.00	8.74	A
\Ī		ATOM	1189	C	ASN A		37.176	63.059	-7.444	1.00	6.72	A
M.							37.838	63.476	-8.388	1.00	6.28	A
		ATOM	1190	0	ASN A							
919 2 1	25	MOTA	1191	N	SER A		37.678	62.276	-6.505	1.00	6.15	A
Ų	25	ATOM	1192	CA	SER A		39.078	61.878	-6.510	1.00	5.69	A
100		MOTA	1193	CB	SER A		39.411	61.182	-5.192	1.00	5.95	A
ij.		MOTA	1194	OG	SER A	173	38.522	60.099	-4.972	1.00	7.26	A
ã)		ATOM	1195	С	SER A	173	39.470	60.970	-7.661	1.00	5.64	A
		ATOM	1196	0	SER A	173	38.714	60.081	-8.057	1.00	6.47	A
. 74	30	ATOM	1197	N	HIS A	174	40.660	61.201	-8.206	1.00	5.59	A
		ATOM	1198	CA	HIS A		41.154	60.349	-9.276	1.00	5.24	A
		ATOM	1199	СВ	HIS A		42.168		-10.130	1.00	5.98	A
]; <u>.</u> 4.		ATOM	1200	CG	HIS A		42.448		-11.429	1.00	6.54	A
		ATOM	1201		HIS A		42.041		-12.686	1.00	6.89	A
j.d.	35		1201		HIS A		43.161		-11.516	1.00	7.16	A
2	33	ATOM							-12.772			
		ATOM	1203		HIS A		43.175			1.00	7.66	A
		ATOM	1204		HIS A		42.502		-13.501	1.00	8.19	A
		ATOM	1205	С	HIS A		41.819	59.155	-8.587	1.00	5.74	A
	40	MOTA	1206	0	HIS A		42.465	59.321	-7.553	1.00	5.68	А
	40	MOTA	1207	N	TRP A		41.669	57.956	-9.141	1.00	4.96	Α
		ATOM	1208	CA	TRP A	175	42.259	56.788	-8.496	1.00	5.44	A
		ATOM	1209	CB	TRP A	175	41.995	55.505	-9.301	1.00	5.91	А
		ATOM	1210	CG	TRP A	175	42.826	55.326	-10.548	1.00	5.89	А
		ATOM	1211		TRP A		44.114		-10.634	1.00	6.41	А
	45	MOTA	1212		TRP A		44.502		-11.992	1.00	6.86	A
		MOTA	1213		TRP A		44.979	54.125		1.00	6.58	А
		ATOM	1214		TRP A		42.493		-11.823	1.00	5.81	A
											6.79	
		ATOM	1215		TRP A		43.495		-12.697	1.00		A
	~ 0	ATOM	1216		TRP A		45.721		-12.434	1.00	6.92	A
	50	ATOM	1217		TRP A		46.190		-10.129	1.00	7.55	A
		MOTA	1218	CH2	TRP A		46.548		-11.491	1.00	7.43	А
		ATOM	1219	С	TRP A	175	43.751	56.954	-8.260	1.00	6.06	А
		MOTA	1220	0	TRP A	175	44.277	56.456	-7.272	1.00	6.00	A
		ATOM	1221	N	ARG A	176	44.434	57.665	-9.152	1.00	6.01	А
	55	ATOM	1222	CA	ARG A		45.868	57.866	-8.983	1.00	6.21	А

		7 mc;;	1000	~~	nn	126		FO 533	10 105	1 00	7 10	•
		MOTA	1223	CB	ARG A	176	46.434		-10.195	1.00	7.10	А
		ATOM	1224	CG	ARG A	176	46.488	57.732	-11.429	1.00	7.74	А
		ATOM	1225	CD	ARG A	176	46.454	58.549	-12.698	1.00	9.22	Α
		ATOM	1226	NE	ARG A	176	47.557	59.491	-12.790	1.00	9.75	Α
	5	ATOM	1227	CZ	ARG A		47.708		-13.801		10.35	A
	J		1228						-14.791		10.58	A
		ATOM			ARG A		46.825					
		MOTA	1229		ARG A		48.729		-13.817		11.03	A
		ATOM	1230	С	ARG A	176	46.178	58.617	-7.690	1.00	5.98	Α
		MOTA	1231	0	ARG A	176	47.167	58.317	-7.011	1.00	7.04	A
	10	MOTA	1232	N	ASN A	177	45.329	59.579	-7.335	1.00	5.86	A
		ATOM	1233	CA	ASN A		45.551	60.343	-6.110	1.00	5.50	А
		ATOM	1234	СВ	ASN A		44.900	61.723	-6.208	1.00	6.39	А
		ATOM	1235	CG	ASN A		45.571	62.590	-7.241	1.00	8.49	A
	4 F	ATOM	1236		ASN A		46.756	62.416	-7.528	1.00	7.81	A
	15	ATOM	1237		ASN A		44.825	63.533	-7.806	1.00	9.47	Α
		MOTA	1238	С	ASN A	177	45.065	59.598	-4.877	1.00	5.82	A
		ATOM	1239	0	ASN A	177	45.568	59.814	-3.768	1.00	5.55	Α
		ATOM	1240	N	VAL A	178	44.086	58.721	-5.059	1.00	5.11	A
2-250.		MOTA	1241	CA	VAL A		43.619	57.922	-3.934	1.00	5.43	А
filter. Figure	20	ATOM	1242	СВ	VAL A		42.405	57.054	-4.310	1.00	5.87	A
	20	ATOM						56.045	-3.199	1.00	6.99	A
, 15E			1243		VAL A		42.125					
ijŤ.		MOTA	1244		VAL A		41.189	57.933	-4.523	1.00	7.19	A
4,5 °. .:::::::::::::::::::::::::::::::::::		MOTA	1245	С	VAL A		44.794	57.013	-3.570	1.00	5.88	А
13	_	MOTA	1246	0	VAL A	178	45.102	56.816	-2.396	1.00	6.98	А
	25	MOTA	1247	N	LEU A	179	45.463	56.469	-4.581	1.00	6.29	A
Similar Simila Simila Simila Simila Simila Simila Simila Simila Simila Simila		MOTA	1248	CA	LEU A	179	46.609	55.606	-4.321	1.00	6.10	Α
		ATOM	1249	СВ	LEU A	1.79	47.081	54.914	-5.610	1.00	6.48	A
		ATOM	1250	CG	LEU A		48.388	54.104	-5.494	1.00	6.83	А
2)		ATOM	1251		LEU A		48.249	52.970	-4.471	1.00	7.54	A
	30											
	30	ATOM	1252		LEU A		48.737	53.534	-6.862	1.00	7.81	A
Ũ		ATOM	1253	C	LEU A		47.760	56.409	-3.720	1.00	6.01	A
194		ATOM	1254	Ο,	LEU A	179	48.436	55.947	-2.801	1.00	5.97	А
ļuk.		MOTA	1255	N	LEU A	180	47.971	57.619	-4.234	1.00	5.99	Α
		ATOM	1256	CA	LEU A	180	49.047	58.476	-3.751	1.00	5.46	А
į. <u></u>	35	ATOM	1257	CB	LEU A	180	49.034	59.816	-4.493	1.00	6.21	A
•		MOTA	1258	CG	LEU A		50.171	60.777	-4.137	1.00	8.11	А
		ATOM	1259		LEU A		51.464	60.276	-4.762	1.00	8.40	A
		ATOM	1260		LEU A		49.844	62.174	-4.644	1.00	8.88	A
					LEU A					1.00		
	40	ATOM	1261	C			48.917	58.733	-2.259		5.49	A
	40	ATOM	1262	0	LEU A		49.873	58.539	-1.504	1.00	6.38	A
		ATOM	1263	N	GLN A		47.732	59.147	-1.823	1.00	5.36	А
		MOTA	1264	CA	GLN A	181	47.558	59.450	-0.408	1.00	6.03	A
		ATOM	1265	CB	GLN A	181	46.263	60.243	-0.177	1.00	6.02	А
		ATOM	1266	CG	GLN A		44.963	59.508	-0.445	1.00	7.15	А
	45	MOTA	1267	CD	GLN A		44.584	58.572	0.681	1.00	6.82	А
	10	ATOM	1268		GLN A		44.809	58.871	1.858	1.00	7.67	A
		ATOM	1269		GLN A		43.983	57.445	0.330	1.00	8.04	A
		MOTA	1270	С	GLN A		47.616	58.203	0.466	1.00	5.96	A
		ATOM	1271	0	GLN A	181	48.110	58.257	1.593	1.00	6.48	А
	50	ATOM	1272	N	LEU A	182	47.137	57.073	-0.052	1.00	5.92	Α
		MOTA	1273	CA	LEU A		47.190	55.826	0.709	1.00	5.60	А
		ATOM	1274	СВ	LEU A		46.467	54.701	-0.037	1.00	6.36	A
		ATOM	1275	CG	LEU A		46.529	53.321	0.626	1.00	6.42	A
								53.341	1.957	1.00	7.96	
	==	ATOM	1276		LEU A		45.774					A
	55	ATOM	1277	CD2	LEU A	185	45.924	52.275	-0.313	1.00	7.27	А

		ATOM	1278	С	LEU A	182	48.654	55.448	0.900	1.00	6.22	А
		MOTA	1279	0	LEU A	182	49.071	55.048	1.986	1.00	6.59	A
		MOTA	1280	N	THR A		49.437	55.590	-0.163	1.00	6.40	Α
		ATOM	1281	CA	THR A	183	50.854	55.254	-0.103	1.00	6.70	Α
	5	ATOM	1282	СВ	THR A	183	51.488	55.323	-1.510	1.00	7.61	А
		ATOM	1283	OG1	THR A	183	50.795	54.429	-2.392	1.00	6.66	А
		ATOM	1284	CG2	THR A	183	52.948	54.924	-1.453	1.00	8.69	А
		ATOM	1285	С	THR A	183	51.601	56.197	0.843	1.00	6.95	А
		ATOM	1286	0	THR A	183	52.477	55.773	1.594	1.00	6.77	A
	10	ATOM	1287	N	GLU A	184	51.248	57.477	0.815	1.00	6.54	A
		MOTA	1288	CA	GLU A	184	51.907	58.454	1.678	1.00	7.23	A
		MOTA	1289	CB	GLU A	184	51.345	59.852	1.399	1.00	8.96	Α
		MOTA	1290	CG	GLU A	184	52.194	61.013	1.919	1.00	10.85	Α
		ATOM	1291	CD	GLU A	184	53.598	61.053	1.324	1.00	11.51	A
	15	ATOM	1292	OE1	GLU A	184	53.778	60.668	0.149	1.00	13.38	Α
		ATOM	1293	OE2	GLU A	184	54.523	61.490	2.037	1.00	14.02	Α
		ATOM	1294	С	GLU A	184	51.704	58.082	3.148	1.00	7.89	Α
		ATOM	1295	0	GLU A	184	52.651	58.072	3.938	1.00	8.95	Α
بغده ا الحدولة		ATOM	1296	N	GLY A	185	50.465	57.767	3.506	1.00	7.49	А
Ü	20	MOTA	1297	CA	GLY A .	185	50.165	57.395	4.876	1.00	7.51	Α
1 P		MOTA	1298	С	GLY A	185	50.754	56.056	5.292	1.00	7.61	A
		MOTA	1299	0	GLY A		51.324	55.934	6.379	1.00	7.79	Α
inger Gin e		ATOM	1300	N	GLN A	186	50.638	55.045	4.437	1.00	7.55	Α
Rom# ENRE		ATOM	1301	CA	GLN A	186	51.154	53.732	4.803	1.00	7.94	А
	25	ATOM	1302	CB	GLN A	186	50.573	52.653	3.890	1.00	7.79	A
		ATOM	1303	CG	GLN A	186	49.075	52.469	4.067	1.00	9.35	A
		ATOM	1304	CD	GLN A		48.647	51.045	3.819		10.10	А
£ }		ATOM	1305	OE1			49.239	50.349	2.999		12.28	А
CJ	20	MOTA	1306		GLN A		47.615	50.598	4.525	1.00	9.16	A
j	30	MOTA	1307	С	GLN A		52.670	53.652	4.802	1.00	8.34	A
Ŋ		MOTA	1308	0	GLN A		53.251	52.893	5.575	1.00	7.45	A
i A		MOTA	1309	N	THR A		53.322	54.417	3.937	1.00	8.73	A
		MOTA	1310	CA	THR A		54.776	54.393	3.914	1.00	8.31	A
	25	ATOM	1311	CB	THR A		55.313	55.199	2.723	1.00	8.96	A
green .	35	ATOM	1312	OG1	THR A		54.836	54.603	1.510	1.00	8.94	A
		ATOM	1313	CG2	THR A		56.839	55.194	2.709	1.00	9.08	A
		ATOM	1314	С	THR A		55.280	54.966	5.239	1.00	8.89	A
		MOTA	1315	0	THR A		56.236	54.451	5.826	1.00	8.76	A
	40	MOTA	1316	N	TRP A		54.620	56.016	5.720	1.00	8.63	A
	40	MOTA	1317	CA	TRP A		54.992	56.628	6.989	1.00	8.92 9.67	A
		ATOM	1318	CB	TRP A		54.131 54.583	57.863	7.265	1.00	9.58	A
		ATOM	1319	CG	TRP A			58.643	8.464 9.834	1.00	9.95	A
		ATOM	1320		TRP A		54.248	58.383 59.304	10.622	1.00	10.10	A A
	45	ATOM	1321		TRP A		54.973	57.458	10.622	1.00	9.95	A
	45	ATOM	1322				53.409				10.29	A
		ATOM	1323		TRP A		55.466	59.685	8.477 9.770		10.29	
		ATOM	1324		TRP A		55.708 54.888	60.086			9.73	A
		ATOM	1325		TRP A			59.328	12.018	1.00	10.52	A
	50	MOTA	1326		TRP A		53.325	57.480 58.411	11.866 12.621		10.52	A
	50	ATOM	1327		TRP A		54.062			1.00		A
		ATOM	1328	С	TRP A		54.773	55.604 55.399	8.104 8.958	1.00	8.69 8.79	A A
		ATOM	1329	O N			55.635 53.614	54.955	8.958	1.00	8.25	A A
		ATOM	1330	N CA	LEU A		53.614	53.962	9.126	1.00	9.12	
	55	ATOM	1331	CA	LEU A				8.936	1.00	8.95	A A
		ATOM	1332	СВ	LEU A	103	51.918	53.387	0.930	1.00	0.93	A

		ATOM	1333	CG	LEU Z	189	9 50.767	54.284	9.391	1.00	8.34	А
		MOTA	1334	CD1	LEU Z			53.610	9.072	1.00	9.27	A
		MOTA	1335		LEU A			54.545	10.894	1.00	9.17	A
	5	ATOM	1336	C	LEU			52.820	9.155	1.00	9.47	Α
		ATOM	1337	o	LEU A			52.371	10.229	1.00		A
								52.340	7.989	1.00	8.83	A
		ATOM	1338	N	LYS A							
		ATOM	1339	CA	LYS A			51.240	7.965	1.00		A
		MOTA	1340	CB	LYS A			50.721	6.538	1.00		А
	_	ATOM	1341	CG	LYS A	190	56.763	49.460	6.471	1.00 1		A
	10	MOTA	1342	CD	LYS A	190	56.884	48.941	5.050	1.00 1	18.07	А
		ATOM	1343	CE	LYS A	A 190	57.597	47.600	5.015	1.00 2	20.94	A
		MOTA	1344	NZ	LYS Z	A 190	58.942	47.678	5.649	1.00 2	22.98	A
		MOTA	1345	С	LYS A			51.682	8.543	1.00 1	11.26	A
		MOTA	1346	0	LYS I			50.964	9.333	1.00 1		A
	15	ATOM	1347	N	GLN A			52.872	8.157	1.00 1		A
	10	ATOM	1348	CA	GLN A			53.396	8.625	1.00		A
		ATOM	1349	CB	GLN A			54.655	7.836	1.00		A
				CG	GLN A			55.263	8.265	1.00 1		A
1100		ATOM	1350							1.00 2		A
1,92	20	ATOM	1351	CD	GLN A			56.459	7.425			
ıJ	20	ATOM	1352		GLN A			57.079	7.675	1.00 2		A
ı,II		MOTA	1353	NE2				56.789	6.422	1.00 2		A
ij.		MOTA	1354	С	GLN A			53.711	10.116	1.00 1		A
45F 7		MOTA	1355	0	GLN A	19:		53.345	10.797	1.00 1		A
		ATOM	1356	N	PHE 2	1 192		54.372	10.631	1.00 1		Α
	25	ATOM	1357	CA	PHE A	192	57.760	54.756	12.040	1.00 1	13.50	A
IŲ.		ATOM	1358	CB	PHE A	192	57.333	56.220	12.166	1.00 1	13.17	А
ijħ		ATOM	1359	CG	PHE A	192	2 58.233	57.171	11.433	1.00 1	13.74	Α
21		ATOM	1360	CD1	PHE A	192	57.918	57.600	10.147	1.00 1	13.68	A
		ATOM	1361		PHE A			57.611	12.014	1.00 1	14.33	A
र्ग (कार्य) , नेप्यत	30	MOTA	1362		PHE Z			58.453	9.449	1.00 1	13.88	A
ij.		MOTA	1363		PHE A			58.466	11.322	1.00 1		Α
14		ATOM	1364	CZ	PHE A			58.887	10.040	1.00 1		A
ļ.		ATOM	1365	C	PHE A			53.908	13.040	1.00 1		A
			1366	0	PHE A			53.864	14.216	1.00 1		A
jak.	25	ATOM						53.248	12.598	1.00 1		A
ä	35	ATOM	1367	N	MSE A					1.00 1		A
		ATOM	1368	CA	MSE A			52.408	13.496			
		ATOM	1369	CB	MSE A			52.680	13.337	1.00 1		A
		MOTA	1370	CG	MSE A			53.917	14.029	1.00 1		A
	40	MOTA	1371	SE	MSE A			54.201	15.886	1.00 2		A
	40	MOTA	1372	CE	MSE A			55.450	15.340	1.00	9.34	A
		MOTA	1373	С	MSE A			50.919	13.235	1.00 1		A
		ATOM	1374	0	MSE A	193		50.077	14.027	1.00 1		Α
		ATOM	1375	N	ASN A	194	55.954	50.599	12.118	1.00 1		A
		ATOM	1376	CA	ASN A	194	56.204	49.212	11.739	1.00 1	12.23	A
	45	ATOM	1377	CB	ASN A	194	57.146	48.540	12.747	1.00 1	13.82	A
		ATOM	1378	CG	ASN A			47.163	12.295	1.00 1	15.07	А
		ATOM	1379		ASN A			46.920	11.099	1.00 1	16.05	А
		ATOM	1380		ASN A			46.268	13.258	1.00 1		A
		MOTA	1381	C	ASN A			48.416	11.628	1.00 1		A
	50	ATOM	1381	0	ASN A			47.287	12.114	1.00 1		A
	50							49.017	10.998	1.00 1		A
		ATOM	1383	N	VAL A				10.998			
		ATOM	1384	CA	VAL A			48.353		1.00 1		A
		ATOM	1385	CB	VAL A			48.684	11.937	1.00 1		A
		ATOM	1386		VAL A			48.252	13.288	1.00 1		A
	55	ATOM	1387	CG2	VAL A	195	5 51.268	50.165	11.935	1.00 1	12.78	Α

		ATOM	1388	С	VAL A	195	52.000	48.793	9.486	1.00	11.41	A
		ATOM	1389	0	VAL A		52.227	49.914	9.029	1.00	10.81	A
		MOTA	1390	N	THR A		51.230	47.894	8.882	1.00		Α
							50.536	48.171	7.627	1.00		A
	-	MOTA	1391	CA	THR A							
	5	ATOM	1392	CB	THR A		51.191	47.438	6.429	1.00		A
		MOTA	1393	OG1	THR A	196	52.554	47.862	6.288	1.00		Α
		ATOM	1394	CG2	THR A	196	50.440	47.753	5.143	1.00	11.97	А
		ATOM	1395	С	THR A	196	49.096	47.680	7.785	1.00	10.00	А
		ATOM	1396	0	THR A		48.838	46.476	7.812	1.00	10.58	A
	10	ATOM	1397	N	PRO A		48.137	48.610	7.903	1.00	9.62	A
	10		1398	CD	PRO A		48.314	50.068	8.022	1.00	9.15	A
		ATOM									9.26	A
		MOTA	1399	CA	PRO A		46.727	48.245	8.060	1.00		
		MOTA	1400	CB	PRO A		46.024	49.600	8.096	1.00	9.55	A
		MOTA	1401	CG	PRO A	197	47.040	50.487	8.717	1.00	9.10	А
	15	ATOM	1402	С	PRO A	197	46.192	47.375	6.929	1.00	9.50	Α
		ATOM	1403	0	PRO A	197	46.534	47.579	5.762	1.00	9.51	A
		ATOM	1404	N	THR A		45.355	46.404	7.279	1.00	9.16	Α
		ATOM	1405	CA	THR A		44.743	45.540	6.278	1.00	9.69	Α
2122.		ATOM	1406	CB	THR A		45.125	44.060	6.466	1.00		А
	20							43.600	7.739	1.00		A
1,2	20	ATOM	1407	OG1	THR A		44.660			1.00		A
à 17.50 19.5		MOTA	1408	CG2	THR A		46.635	43.887	6.368			
įį.		MOTA	1409	С	THR A		43.229	45.682	6.363	1.00	8.80	A
412 E		MOTA	1410	0	THR A	198	42.491	44.986	5.671	1.00	8.81	А
	25	ATOM	1411	N	ALA A	199	42.776	46.586	7.227	1.00	8.53	A
194		ATOM	1412	CA	ALA A	199	41.353	46.865	7.387	1.00	8.67	A
		ATOM	1413	CB	ALA A	199	40.887	46.477	8.790	1.00	9.80	A
ij.		ATOM	1414	C	ALA A		41.146	48.360	7.157	1.00	8.79	A
		ATOM	1415	0	ALA A		41.870	49.182	7.721	1.00	8.61	А
2) 2) 22					SER A		40.162	48.707	6.332	1.00	8.10	A
i in the second	30	ATOM	1416	N			39.873		6.023	1.00	8.52	A
.2	30	MOTA	1417	CA	SER A			50.102				
		MOTA	1418	CB	SER A		39.724	50.280	4.511	1.00	8.51	A
		MOTA	1419	OG	SER A		39.498	51.638	4.174		10.82	А
		MOTA	1420	С	SER A	200	38.620	50.603	6.740	1.00	8.16	А
		MOTA	1421	0	SER A	200	37.663	49.854	6.951	1.00	8.18'	
į.	35	ATOM	1422	N	TRP A	201	38.646	51.882	7.101	1.00	8.42	А
		ATOM	1423	CA	TRP A	201	37.563	52.539	7.827	1.00	8.34	А
		ATOM	1424	СВ	TRP A		38.057	52.782	9.263	1.00	8.58	A
		MOTA	1425	CG	TRP A		37.224	53.618	10.202	1.00	8.17	А
			1426		TRP A		36.231	53.144	11.123	1.00	9.44	A
	40	MOTA						54.245	11.919	1.00	9.61	A
	40	MOTA	1427		TRP A		35.838					
		MOTA	1428		TRP A		35.641	51.896	11.359		10.07	A
		ATOM	1429		TRP A		37.375	54.950	10.461	1.00	9.35	A
		MOTA	1430	NE1	TRP A	201	36.552	55.333	11.492	1.00	9.72	А
		ATOM	1431	CZ2	TRP A	201	34.882	54.135	12.935	1.00	9.92	А
	45	ATOM	1432	CZ3	TRP A	201	34.688	51.784	12.372	1.00	10.54	A
	_	ATOM	1433		TRP A		34.321	52.900	13.147	1.00	10.12	A
		ATOM	1434	C	TRP A		37.220	53.844	7.111	1.00	8.73	A
							37.995	54.796	7.144	1.00	9.70	A
		MOTA	1435	0	TRP A						8.52	A
	EO	MOTA	1436	N	ALA A		36.066	53.873	6.447	1.00		
	50	MOTA	1437	CA	ALA A		35.617	55.062	5.716	1.00	8.40	A
		ATOM	1438	CB	ALA A		35.678	54.808	4.211	1.00	9.54	А
		ATOM	1439	С	ALA A	202	34.192	55.400	6.144	1.00	8.89	А
		ATOM	1440	0	ALA A	202	33.220	55.018	5.495	1.00	8.55	Α
		ATOM	1441	N	ILE A		34.082	56.134	7.242	1.00	8.07	А
	55	ATOM	1442	CA	ILE A		32.785	56.484	7.800	1.00	8.51	А
	55	111 011	- 1 1 2	~. ·	47	_ 5 5	5255					- *

		MOTA	1443	СВ	ILE	Α	203	32.842	56.503	9.354	1.00	8.05	Α
		ATOM	1444	CG2	ILE	Α	203	33.116	55.091	9.885	1.00	8.11	Α
		ATOM	1445	CG1	ILE	Α	203	33.907	57.500	9.832	1.00	9.39	Α
		ATOM	1446	CD1	ILE	Α	203	33.900	57.737	11.341	1.00	8.65	Α
	5	ATOM	1447	С	ILE	Α	203	32.186	57.806	7.348	1.00	8.80	А
		ATOM	1448	0	ILE	Α	203	31.025	58.073	7.648	1.00	8.92	А
		ATOM	1449	N	ASP	Α	204	32,939	58.621	6.609	1.00	8.61	А
		ATOM	1450	CA	ASP	Α	204	32.408	59.923	6.216	1.00	9.22	А
		ATOM	1451	CB	ASP	Α	204	33.146	61.022	6.987	1.00	8.73	А
	10	ATOM	1452	CG	ASP	A	204	32.240	62.188	7.356	1.00	9.80	А
		ATOM	1453	OD1	ASP	Α	204	32.765	63.280	7.652	1.00	9.95	А
		ATOM	1454	OD2	ASP	Α	204	31.004	62.019	7.370	1.00	10.59	Α
		MOTA	1455	С	ASP	Α	204	32.318	60.338	4.739	1.00	9.40	A
		ATOM	1456	0	ASP	A	204	31.638	61.318	4.433	1.00	10.33	A
	15	MOTA	1457	N	PRO	A	205	33.009	59.641	3.815	1.00	9.27	Α
		ATOM	1458	CD	PRO	Α	205	34.005	58.559	3.926	1.00	10.07	Α
		ATOM	1459	CA	PRO	A	205	32.872	60.086	2.418	1.00	9.44	Α
		MOTA	1460	CB	PRO	A	205	33.667	59.040	1.641	1.00	10.86	Α
		MOTA	1461	CG	PRO	A	205	34.756	58.679	2.611	1.00	11.93	Α
Ü	20	ATOM	1462	С	PRO	A	205	31.384	60.090	2.055	1.00	9.61	Α
		MOTA	1463	0	PRO			30.629	59.244	2.530	1.00		А
m		ATOM	1464	N	PHE	A	206	30.964	61.032	1.214	1.00	9.55	Α
		ATOM	1465	CA	PHE	A	206	29.544	61.153	0.867	1.00	9.41	Α
Marie man Marie Annie Marie Marie		ATOM	1466	CB	PHE			29.220	62.618	0.553	1.00	9.27	Α
	25	ATOM	1467	CG	PHE .	A	206	30.037	63.607	1.354	1.00	9.04	Α
		ATOM	1468		PHE			30.301	63.389	2.705	1.00	8.94	А
		ATOM	1469		PHE			30.555	64.749	0.748	1.00	9.10	A
2)	30	ATOM	1470	CE1	PHE			31.074	64.294	3.440	1.00	8.93	А
		ATOM	1471	CE2	PHE.			31.326	65.660	1.475	1.00	9.22	A
.0		ATOM	1472	CZ	PHE			31.587	65.431	2.821	1.00	9.28	A
Marie Test Contract		ATOM	1473	С	PHE.			29.169	60.246	-0.301	1.00	9.31	Α
[- - -		ATOM	1474	0	PHE			28.950	60.696	-1.427	1.00	9.75	А
		ATOM	1475	N	GLY .			29.062	58.958	-0.005	1.00	8.61	А
	٥-	ATOM	1476	CA	GLY .			28.775	57.982	-1.037	1.00	8.81	A
. 4	35	ATOM	1477	С	ĢLY .			30.072	57.210	-1.191	1.00	8.17	А
		ATOM	1478	0	GLY .			31.137	57.730	-0.858	1.00	8.29	A
		ATOM	1479	N	HIS.			30.001	55.990	-1.712	1.00	7.51	A
		ATOM	1480	CA	HIS .			31.190	55.155	-1.851	1.00	7.28	A
	40	ATOM	1481	CB	HIS .			31.135	54.027	-0.819	1.00	7.61	A
	40	ATOM	1482	CG	HIS .			31.256	54.505	0.596	1.00	8.45	A
		ATOM	1483		HIS .			30.314	54.797	1.523	1.00	8.55	A
		ATOM	1484		HIS .			32.471	54.778	1.185	1.00	9.69	A
		ATOM	1485		HIS .			32.273	55.218	2.415	1.00 1		A
	15	ATOM	1486		HIS .			30.973	55.240	2.645	1.00	9.28	A
	45	ATOM	1487	С	HIS .			31.401	54.574	-3.242	1.00	7.09	A
		ATOM	1488	0	HIS .			30.449	54.248	-3.960	1.00	7.30	A
		MOTA	1489	N	SER .			32.673	54.429	-3.600	1.00	6.59	A
		ATOM	1490	CA	SER .			33.068	53.925	-4.907	1.00	6.62	A
	50	ATOM	1491	CB	SER .			33.960	54.960	-5.598	1.00	6.86	A
	50	ATOM	1492	OG C	SER .			34.520	54.434	-6.790	1.00	6.54	A A
		ATOM	1493	С	SER .			33.813	52.599	-4.864	1.00	7.08	A
		ATOM	1494	0	SER .			34.622	52.360	-3.972 -5.941	1.00	6.40	A A
		ATOM	1495	N	PRO .			33.548	51.717	-5.841 -6.895	1.00	7.03	A A
	55	ATOM	1496	CD	PRO .			32.525	51.830	-6.895	1.00	7.72	A
	55	MOTA	1497	CA	PRO .	Η	∠1U	34.221	50.415	-5.898	1.00	7.22	A

												_
		ATOM	1498	СВ	PRO A	A 210	33.456	49.675	-6.997	1.00	7.15	A
		ATOM	1499	CG	PRO A	A 210	32.977	50.795	-7.889	1.00	7.88	А
		ATOM	1500	С		A 210	35.712	50.582	-6.211	1.00	7.12	A
		ATOM	1501	Ö		210	36.481	49.620	-6.181	1.00	6.74	A
	5							51.806	-6.529		6.80	A
	3	ATOM	1502	N		A 211	36.124			1.00		
		ATOM	1503	CA		A 211	37.531	52.044	-6.793	1.00	7.50	А
		ATOM	1504	CB	THR A	4 211	37.762	53.482	-7.288	1.00	7.37	A
		ATOM	1505	OG1	THR A	A 211	37.233	53.596	-8.613	1.00	8.05	A
		ATOM	1506	CG2	THR A		39.250	53.833	-7.292	1.00	8.53	Α
	10	ATOM	1507	С		211	38.321	51.800	-5.510	1.00	7.51	А
	10						39.492	51.420	-5.554	1.00	7.20	A
		MOTA	1508	0		211						
		ATOM	1509	N		1 212	37.678	52.017	-4.365	1.00	8.07	A
		MOTA	1510	CA	MSE A		38.349	51.801	-3.087	1.00	8.67	A
		MOTA	1511	CB	MSE A	1 212	37.480	52.311	-1.933	1.00	11.85	A
	15	MOTA	1512	CG	MSE A	1 212	37.190	53.803	-2.011	1.00	16.12	Α
		MOTA	1513	SE	MSE A	212	38.764	54.895	-2.346	1.00	25.32	Α
		ATOM	1514	CE	MSE A		39.602	54.743	-0.621		21.14	A
		ATOM	1515	C	MSE A		38.735	50.333	-2.883	1.00	8.11	A
	20	MOTA	1516	0	MSE A		39.910	50.025	-2.667	1.00	7.43	A
٠Ī	20	ATOM	1517	N		1 213	37.762	49.403	-2.937	1.00	7.29	А
Ţ		ATOM	1518	CD	PRO A	213	36.293	49.497	-2.956	1.00	7.20	А
* j.j.,		ATOM	1519	CA	PRO A	213	38.192	48.014	-2.751	1.00	7.53	Α
ij.		ATOM	1520	CB		213	36.876	47.222	-2.776	1.00	8.34	А
		ATOM	1521	CG		A 213	35.903	48.141	-3.484	1.00	7.20	А
	25	ATOM	1522	C		A 213	39.173	47.581	-3.843	1.00	7.60	A
											7.87	A
i inte		ATOM	1523	0		213	40.033	46.734	-3.609	1.00		
		ATOM	1524	N		1 214	39.053	48.166	-5.034	1.00	7.06	A
B.;		ATOM	1525	CA	TYR A	1 214	39.960	47.822	-6.131	1.00	8.43	A
11/25	30	ATOM	1526	CB	TYR A	1 214	39.659	48.668	-7.367	1.00	8.58	A
		ATOM	1527	CG	TYR A	214	40.588	48,408	-8.538	1.00	9.57	А
والمعادر		ATOM	1528		TYR A		40.374	47.332	-9.398	1.00	11.97	А
		ATOM	1529		TYR A		41.196		-10.507		12.57	A
[=		MOTA	1530		TYR A		41.656	49.264		1.00	8.93	A
	25	MOTA	1531		TYR A		42.484	49.063			10.94	A
ļa	35	MOTA	1532	CZ	TYR A		42.246		-10.757		11.50	A
		MOTA	1533	OH	TYR A		43.038		-11.874		13.46	Α
		MOTA	1534	С	TYR A	214	41.402	48.078	-5.705	1.00	8.88	A
		ATOM	1535	0	TYR A	1 214	42.256	47.190	~5.783	1.00	9.14	A
		ATOM	1536	N	ILE A		41.665	49.305	-5.262	1.00	7.76	А
	40	ATOM	1537	CA	ILE A		42.996	49.702	-4.825	1.00	7.71	A
	10	ATOM	1538			215			-4.594			
		ATOM	1539		ILE A		44.404	51.616	-3.975	1.00	7.15	A
		ATOM	1540		ILE A		42.850	51.961	-5.920	1.00	8.07	А
		ATOM	1541	CD1	ILE A	215	42.746	53.466	-5.778	1.00	10.41	А
	45	ATOM	1542	С	ILE A	215	43.410	48.990	-3.536	1.00	7.79	А
		ATOM	1543	0	ILE A	215	44.530	48.491	-3.424	1.00	7.37	А
		ATOM	1544	N	LEU A		42.500	48.931	-2.571	1.00	7.76	Α
		ATOM	1545	CA	LEU A		42.799	48.298	-1.290	1.00	7.87	A
											7.69	
	50	ATOM	1546	CB	LEU A		41.606	48.452	-0.338	1.00		A
	50	ATOM	1547	CG	LEU A		41.251	49.889	0.065	1.00	9.45	A
		MOTA	1548	CD1	LEU A	216	39.960	49.897	0.863		10.13	Α
		MOTA	1549	CD2	LEU A	216	42.393	50.495	0.876	1.00	10.14	Α
		MOTA	1550	С	LEU A		43.170	46.823	-1.419	1.00	8.19	Α
		ATOM	1551	0	LEU A		44.148	46.371	-0.823	1.00	7.52	А
	55	ATOM	1552	N	GLN A		42.392	46.081	-2.201	1.00	8.30	A
	<i>J J</i>	A I OM	1937	IA	оти у	1 41/	72.336	40.001	2.201	1.00	0.50	A

		ATOM	1553	CA	GLN	Α	217	42.639	44.654	-2.381	1.00 8.72	Α
		MOTA	1554	СВ	GLN			41.504	44.043	-3.210	1.00 10.69	Α
		MOTA	1555	CG	GLN			41.475	42.521	-3.264	1.00 11.14	Α
		ATOM	1556	CD	GLN			42.430	41.960	-4.290	1.00 13.44	Α
	5	ATOM	1557		GLN			42.639	42.561	-5.342	1.00 14.29	А
	·	ATOM	1558	NE2	GLN			43.002	40.796	-4.001	1.00 14.07	А
		ATOM	1559	C	GLN			44.002	44.415	-3.035	1.00 9.26	А
		ATOM	1560	0	GLN			44.649	43.394	-2.792	1.00 10.31	А
		ATOM	1561	N	LYS			44.442	45.367	-3.854	1.00 8.72	A
	10	ATOM	1562	CA	LYS			45.738	45.277	-4.522	1.00 8.85	A
	10			CB	LYS			45.673	45.974	-5.884	1.00 9.16	A
		ATOM	1563		LYS			44.893	45.182	-6.925	1.00 9.85	A
		ATOM	1564	CG					45.102	-8.195	1.00 9.03	A
		ATOM	1565	CD	LYS			44.682		-9.372	1.00 11.30	A
	15	ATOM	1566	CE	LYS			44.293	45.113			A
	15	ATOM	1567	NZ	LYS			43.099	44.252	-9.123	1.00 12.85	
		ATOM	1568	С	LYS			46.837	45.899	-3.657	1.00 9.01	A
		ATOM	1569	0	LYS			47.991	46.024	-4.079	1.00 8.66	A
		ATOM	1570	N	SER			46.469	46.286	-2.441	1.00 8.09	A
	20	ATOM	1571	CA	SER			47.414	46.886	-1.513	1.00 8.36	A
Ä	20	ATOM	1572	CB	SER			47.055	48.354	-1.260	1.00 7.23	A
, FE		MOTA	1573	OG	SER			47.135	49.106	-2.464	1.00 8.36	A
:3 5		MOTA	1574	С	SER			47.467	46.119	-0.192	1.00 7.81	A
<u> </u>		MOTA	1575	0	SER			47.783	46.688	0.852	1.00 8.25	А
		ATOM	1576	N	GLY			47.144	44.828	-0.256	1.00 8.61	Α
	25	MOTA	1577	CA	GLY	Α	220	47.196	43.969	0.918	1.00 8.94	А
		MOTA	1578	С	GLY	А	220	45.996	43.912	1.847	1.00 9.36	А
(7)		ATOM	1579	0	GLY			45.996	43.126	2.794	1.00 9.85	А
6 }		MOTA	1580	N	PHE	Α	221	44.971	44.717	1.593	1.00 9.14	A
		MOTA	1581	CA	PHE			43.805	44.721	2.471	1.00 8.46	А
	30	MOTA	1582	CB	PHE	Α	221	42.925	45.940	2.198	1.00 7.99	A
%±# 16.5		MOTA	1583	CG	PHE	A	221	43.475	47.212	2.752	1.00 7.21	А
ĬŲ.		ATOM	1584	CD1	PHE	Α	221	44.593	47.813	2.176	1.00 7.00	Α
fair.		MOTA	1585	CD2	PHE	Α	221	42.881	47.812	3.858	1.00 7.00	Α
		ATOM	1586	CE1	PHE	A	221	45.112	48.993	2.695	1.00 6.41	A
1	35	ATOM	1587	CE2	PHE	Α	221	43.389	48.990	4.387	1.00 7.19	А
		ATOM	1588	CZ	PHE	Α	221	44.511	49.587	3.804	1.00 7.27	А
		ATOM	1589	С	PHE	Α	221	42.945	43.475	2.388	1.00 8.81	A
		MOTA	1590	0	PHE	Α	221	42.883	42.812	1.354	1.00 9.31	A
		MOTA	1591	N	LYS	Α	222	42.269	43.178	3.493	1.00 9.34	Α
	40	MOTA	1592	CA	LYS	Α	222	41.393	42.024	3.575	1.00 10.17	Α
		ATOM	1593	СВ	LYS	Α	222	41.963	41.009	4.568	1.00 13.29	A
		ATOM	1594	CG	LYS			43.259	40.373	4.095	1.00 17.15	А
		ATOM	1595	CD	LYS			43.759	39.319	5.065	1.00 21.70	A
		ATOM	1596	CE	LYS			44.853	38.475	4.430	1.00 23.71	A
	45	ATOM	1597	ΝZ	LYS			45.964	39.310	3.898	1.00 25.58	A
		ATOM	1598	C	LYS			39.976	42.409	3.988	1.00 9.40	А
		ATOM	1599	Ö	LYS			39.045	41.623	3.817	1.00 9.41	Α
		ATOM	1600	N	ASN			39.810	43.618	4.520	1.00 7.78	А
		ATOM	1601	CA	ASN			38.493	44.072	4.963	1.00 8.74	A
	50	ATOM	1602	CB	ASN			38.245	43.690	6.428	1.00 8.42	A
	50	ATOM	1602	CG	ASN			38.351	42.205	6.680	1.00 9.69	A
		ATOM	1603		ASN			39.393	41.707	7.120	1.00 12.33	A
		ATOM	1604		ASN			37.277	41.485	6.397	1.00 12.33	A
					ASN			38.326	45.577	4.865	1.00 7.18	A
	55	MOTA	1606	С						4.863	1.00 8.40	A
	55	ATOM	1607	0	ASN	Α	223	39.296	46.321	4.908	1.00 8.40	А

		ATOM	1608	N	MET	Α	224	37.084	46.017	4.696	1.00 8.46	А
		ATOM	1609	CA	MET	Δ	224	36.789	47.440	4.639	1.00 8.92	Α
									47.985	3.205	1.00 9.87	A
		MOTA	1610	CB	MET			36.907				
	_	MOTA	1611	CG	MET			35.838	47.523	2.223	1.00 10.12	Α
	5	MOTA	1612	SD	MET	Α	224	36.006	48.350	0.600	1.00 7.76	Α
		ATOM	1613	CE	MET	Α	224	35.537	49.942	1.024	1.00 11.95	Α
		ATOM	1614	С	MET			35.402	47.725	5.204	1.00 9.03	А
					MET			34.516	46.857	5.208	1.00 9.02	А
		ATOM	1615	0								
		ATOM	1616	N	LEU			35.232	48.942	5.704	1.00 8.45	A
	10	ATOM	1617	CA	LEU	Α	225	33.968	49.371	6.274	1.00 7.61	Α
		ATOM	1618	CB	LEU	Α	225	34.106	49.510	7.795	1.00 7.96	Α
		ATOM	1619	CG	LEU	Α	225	32.908	50.089	8.556	1.00 8.82	Α
		ATOM	1620		LEU			32.890	49.535	9.972	1.00 9.70	Α
		ATOM	1621		LEU			32.974	51.612	8.562	1.00 8.60	А
	15											A
	15	ATOM	1622	С	LEU			33.548	50.702	5.662		
		ATOM	1623	0	LEU			34.374	51.600	5.483	1.00 7.68	A
		ATOM	1624	N	ILE	Α	226	32.262	50.814	5.340	1.00 7.66	Α
		ATOM	1625	CA	ILE	Α	226	31.702	52.033	4.768	1.00 8.84	Α
grain.		ATOM	1626	СВ	ILE	Α	226	31.376	51.846	3.266	1.00 8.66	Α
en Energy	20	ATOM	1627					32.658	51.514	2.510	1.00 9.89	Α
	20		1628		ILE			30.349	50.730	3.069	1.00 8.55	A
١,٥		ATOM										
171		MOTA	1629	CD1	ILE			29.922	50.548	1.617	1.00 10.07	A
		MOTA	1630	С	ILE			30.453	52.428	5.557	1.00 8.74	Α
firm#		MOTA	1631	0	ILE	Α	226	29.889	51.610	6.291	1.00 8.14	Α
W.	25	ATOM	1632	N	GLN	Α	227	30.021	53.676	5.412	1.00 9.54	Α
grafi Sum		ATOM	1633	CA	GLN			28.873	54.172	6.168	1.00 9.75	А
M		ATOM	1634	СВ	GLN			29.391	54.976	7.372	1.00 9.88	А
				CG	GLN			28.464	56.067	7.921	1.00 11.96	A
Ř!		ATOM	1635									
a	•	ATOM	1636	CD	GLN			27.124	55.547	8.407	1.00 12.75	A
	30	ATOM	1637	OE1	GLN			27.004	54.398	8.836	1.00 14.70	Α
19.5		MOTA	1638	NE2	GLN	Α	227	26.108	56.404	8.362	1.00 13.56	Α
14		MOTA	1639	С	GLN	Α	227	27.846	55.006	5.405	1.00 10.51	Α
4		MOTA	1640	0	GLN			26.645	54.738	5.481	1.00 10.20	А
		ATOM	1641	N	ARG			28.299	56.021	4.679	1.00 10.04	А
[a	35			CA	ARG			27.355	56.876	3.982	1.00 9.98	A
=	55	ATOM	1642								1.00 9.92	A
		ATOM	1643	CB	ARG			27.947	58.273	3.781		
		MOTA	1644	CG	ARG			28.069	59.090	5.065	1.00 10.20	A
		MOTA	1645	CD	ARG	Α	228	28.533	60.505	4.744	1.00 10.13	Α
		ATOM	1646	NE	ARG	Α	228	28.804	61.332	5.918	1.00 10.21	Α
	40	MOTA	1647	CZ	ARG	Α	228	27.894	62.037	6.585	1.00 11.44	Α
		MOTA	1648		ARG			26.622	62.022	6.208	1.00 12.48	А
								28.268	62.786	7.616	1.00 12.71	A
		MOTA	1649		ARG							
		ATOM	1650	С	ARG			26.817	56.352	2.666	1.00 10.13	A
		ATOM	1651	0	ARG			27.382	56.593	1.597	1.00 11.44	Α
	45	ATOM	1652	N	THR	Α	229	25.714	55.621	2.770	1.00 9.97	А
		ATOM	1653	CA	THR	Α	229	25.025	55.072	1.617	1.00 9.89	A
		ATOM	1654	СВ	THR			25.125	53.531	1.560	1.00 10.00	A
		ATOM	1655	OG1				24.514	52.964	2.724	1.00 10.96	А
											1.00 10.02	A
	EO	ATOM	1656		THR			26.583	53.096	1.493		
	50	MOTA	1657	С	THR			23.569	55.490	1.778	1.00 9.89	A
		MOTA	1658	0	THR	A	229	23.106	55.742	2.894	1.00 11.00	Α
		ATOM	1659	N	HIS	Α	230	22.856	55.573	0.661	1.00 9.52	Α
		ATOM	1660	CA	HIS			21.450	55.979	0.642	1.00 9.76	А
		ATOM	1661	СВ	HIS			20.883	55.708	-0.754	1.00 10.27	Α
	SE.											A
	55	ATOM	1662	CG	HIS	Α	230	19.595	56.415	-1.043	1.00 10.51	А

		ATOM	1663	CD2	HIS	A 23	0 19.286	57.353	-1.969	1.00 11.88	А
		ATOM	1664		HIS			56.153	-0.359	1.00 11.10	A
		ATOM	1665		HIS			56.899	-0.852	1.00 11.36	A
		MOTA	1666	NE2	HIS			57.636	-1.830	1.00 11.11	А
	5	MOTA	1667	C	HIS			55.234	1.704	1.00 9.83	A
	Ū	ATOM	1668	0	HIS			54.018	1.826	1.00 10.51	A
		ATOM	1669	N	TYR			55.963	2.466	1.00 10.15	A
		ATOM	1670	CA	TYR			55.327	3.511	1.00 10.13	A
		ATOM	1671	CB	TYR			56.372	4.246	1.00 10.68	A
	10	ATOM	1672	CG	TYR			57.136	3.381	1.00 10.55	A
	10	ATOM	1673		TYR			56.648	3.151	1.00 10.48	A
		MOTA	1674	CE1	TYR			57.361	2.372	1.00 10.40	A
				CD2				58.359	2.805	1.00 11.02	A
		ATOM	1675					59.079	2.022	1.00 11.23	A
	15	ATOM	1676	CE2	TYR					1.00 11.02	A
	13	ATOM	1677	CZ	TYR.			58.573	1.813	1.00 11.99	A
		ATOM	1678	ОН	TYR			59.278	1.054	1.00 12.91	
		MOTA	1679	С	TYR			54.188	2.984		A
41000		MOTA	1680	0	TYR			53.220	3.699 1.736	1.00 12.09 1.00 10.94	A A
	20	MOTA	1681	N Gr	SER.			54.288	1.756		A A
Ų	20	ATOM	1682	CA	SER .			53.238 53.708	-0.163	1.00 11.93	
1,5		ATOM	1683	CB	SER .					1.00 12.92	A
ijŦ.		ATOM	1684	OG	SER .			54.731	0.063	1.00 15.26	A
		ATOM	1685	С	SER			51.976	0.915	1.00 11.85	A
Ų	25	MOTA	1686	0	SER .			50.861	1.025	1.00 11.64	A
eren e	25	MOTA	1687	N	VAL			52.158	0.580	1.00 11.60	A
		ATOM	1688	CA	VAL .			51.038	0.336	1.00 11.31	A
		ATOM	1689	СВ	VAL .			51.527	-0.295	1.00 10.85	A
di.		ATOM	1690		VAL .			50.406	-0.300	1.00 10.34	A
	20	ATOM	1691		VAL .			51.999	-1.724	1.00 11.98	A
ijĴ	30	ATOM	1692	C	VAL.			50.315	1.653	1.00 11.28	A
100		ATOM	1693	0	VAL .			49.085	1.706	1.00 11.15	A
];= 1 :		ATOM	1694	N	LYS .			51.080	2.716	1.00 10.86	A
		ATOM	1695	CA	LYS .			50.477	4.020	1.00 10.69	A
]±	25	ATOM	1696	CB	LYS .			51.563	5.075	1.00 10.64	A
=	35	ATOM	1697	CG	LYS .			52.286	4.946	1.00 11.25	A
		ATOM	1698	CD	LYS .			53.516	5.841	1.00 11.31	A
		ATOM	1699	CE	LYS .			54.189	5.810	1.00 10.54	A
		ATOM	1700	NZ	LYS .			53.574	6.772	1.00 10.11	A
	40	MOTA	1701	С	LYS .			49.609	4.424	1.00 11.48	A
	40	ATOM	1702	0	LYS .			48.484	4.884	1.00 11.20	A
		ATOM	1703	N	LYS .			50.135	4.238	1.00 11.59	A
		ATOM	1704	CA	LYS .			49.400	4.595	1.00 12.69	A
		ATOM	1705	CB	LYS .			50.286	4.401	1.00 13.05	A
	4 =	ATOM	1706	CG	LYS .			49.630	4.827	1.00 13.80	A
	45	MOTA	1707	CD	LYS .			50.593	4.692	1.00 14.78	A
		ATOM	1708	CE	LYS .			49.963	5.174	1.00 16.08	A
		ATOM	1709	NZ	LYS			50.872	4.963	1.00 18.03	A
		ATOM	1710	C	LYS .			48.122	3.775	1.00 12.66	A
	E0.	ATOM	1711	0	LYS .			47.056	4.322	1.00 13.44	A
	50	MOTA	1712	N	GLU .			48.230	2.467	1.00 13.43	A
		MOTA	1713	CA	GLU .			47.085	1.572	1.00 13.76	A
		MOTA	1714	CB	GLU .			47.531	0.119	1.00 15.66	A
		ATOM	1715	CG	GLU .			46.435	-0.919	1.00 19.35	A
		ATOM	1716	CD	GLU .			46.120	-1.139	1.00 21.36	A
	55	ATOM	1717	OE1	GLU	A 236	5 15.157	45.192	-1.921	1.00 23.68	А

	ATOM	1718	OE2	GLU	Α	236	14.594	46.799	-0.539	1.00	23.54	A
	ATOM	1719	С	GLU	Α	236	17.963	45.983	1.908	1.00	13.53	Α
	ATOM	1720	0	GLU	Α	236	17.596	44.817	2.035		13.84	А
_	ATOM	1721	N			237	19.232	46.346	2.051		12.28	Α
5	MOTA	1722	CA	LEU	Α	237	20.251	45.355	2.364	1.00	11.83	А
	MOTA	1723	CB			237	21.649	45.952	2.180		11.01	А
	ATOM	1724	CG	LEU	Α	237	21.993	46.436	0.767	1.00	12.53	А
	ATOM	1725	CD1	LEU	Α	237	23.396	47.036	0.776		13.20	A
	MOTA	1726	CD2	LEU			21.905	45.280	-0.227		12.87	А
10	ATOM	1727	С			237	20.094	44.808	3.781		11.90	A
	MOTA	1728	0			237	20.376	43.640	4.032		12.05	А
	MOTA	1729	N			238	19.641	45.647	4.706		12.02	А
	MOTA	1730	CA			238	19.456	45.205	6.084		12.54	A
	ATOM	1731	CB			238	19.050	46.380	6.962		12.67	A
15	ATOM	1732	С			238	18.389	44.115	6.146		13.90	A
	MOTA	1733	0			238	18.547	43.120	6.853		13.71	Α
	ATOM	1734	N			239	17.309	44.304	5.396		14.65	Α
	ATOM	1735	CA			239	16.216	43.335	5.391		16.12	A
00	MOTA	1736	СВ			239	15.050	43.858	4.544		17.16	Α
20	MOTA	1737	CG			239	14.476	45.180	5.040		20.68	A
	MOTA	1738	CD			239	13.320	45.684	4.193		21.84	А
	ATOM	1739		GLN			13.385	45.678	2.962		24.34	A
	ATOM	1740	NE2			239	12.258	46.139	4.852		23.09	A
0.5	MOTA	1741	С			239	16.649	41.959	4.888		16.39	A
25	ATOM	1742	0			239	16.067	40.944	5.267		16.74	A
	ATOM	1743	N			240	17.673	41.923	4.042		15.26	A
	ATOM	1744	CA			240	18.164	40.661	3.493		15.33	A
	ATOM	1745	СВ			240	18.389	40.803	1.986		17.66	A
20	ATOM	1746	CG			240	17.204	41.396	1.241		20.48	A
30	ATOM	1747	CD			240	15.975	40.514	1.292		22.28	A
	ATOM	1748	OE1				14.857	40.979	1.065		25.19	A
	ATOM	1749	NE2			240	16.173	39.232	1.579 4.155		23.21	A A
	ATOM	1750	С			240	19.471	40.250 39.274	3.748		13.55	A
35	ATOM	1751 1752	O N			240 241	20.100 19.863	40.991	5.187		13.13	A
55	ATOM ATOM	1753	CA			241	21.115	40.740	5.889		12.19	A
	ATOM	1754	CB			241	21.113	39.430	6.684		13.02	A
	ATOM	1755	CG			241	20.025	39.457	7.810		15.02	A
	ATOM	1756	CD	ARG			20.249	38.323	8.798		16.85	A
40	ATOM	1757	NE	ARG			20.265	37.021	8.141		19.77	A
10	ATOM	1758	CZ			241	20.649	35.894	8.732		20.67	A
	ATOM	1759		ARG			21.049	35.910	9.997		21.43	A
	ATOM	1760		ARG			20.641	34.754	8.056		21.54	A
	ATOM	1761	C			241	22.254	40.694	4.876		11.37	A
45	ATOM	1762	Ö			241	23.069	39.774	4.863		10.26	A
10	ATOM	1763	N			242	22.290	41.706	4.016		11.13	A
	ATOM	1764	CA			242	23.323	41.811	2.995		10.98	A
•	ATOM	1765	CB			242	22.682	41.863	1.602		11.23	A
	ATOM	1766	CG			242	21.894	40.607	1.237		11.67	A
50	ATOM	1767	CD			242	21.187	40.729	-0.098		11.70	A
	ATOM	1768		GLN			20.617	41.770	-0.412		13.37	A
	ATOM	1769		GLN			21.208	39.656	-0.884		12.95	A
	ATOM	1770	C			242	24.178	43.055	3.233		10.67	A
	ATOM	1771	Ö			242	24.695	43.651	2.289		10.60	A
55	ATOM	1772	N			243	24.322	43.440	4.500		10.44	A
				-	-	-						

		ATOM	1773	CA	LEU A	243	25.128	44.606	4.852	1.00 9.93	А
		ATOM	1774	СВ	LEU A		24.704	45.154	6.216	1.00 10.62	A
		ATOM	1775	CG	LEU P		23.328	45.826	6.244	1.00 11.00	A
		ATOM	1776		LEU A		22.896	46.028	7.688	1.00 11.00	A
	5	ATOM	1777		LEU A		23.370	47.158	5.490	1.00 11.86	A
	9	ATOM	1778	C	LEU A		26.613	44.260	4.853	1.00 10.25	A
		ATOM	1779	0	LEU A		27.465	45.144	4.827	1.00 10.25	A
				N					4.827		A
		ATOM	1780		GLU A		26.922	42.969			
	10	ATOM	1781	CA	GLU A		28.306	42.519	4.841	1.00 8.98	A
	10	ATOM	1782	CB	GLU A		28.693	41.695	6.073	1.00 9.51	A
		ATOM	1783	CG	GLU A		28.875	42.595	7.291	1.00 10.20	A
		ATOM	1784	CD	GLU A		29.326	41.864	8.538	1.00 10.87	A
		ATOM	1785		GLU A		28.790	40.773	8.818	1.00 11.28	A
	15	ATOM	1786		GLU A		30.207	42.402	9.249	1.00 10.96	A
	15	ATOM	1787	C	GLU A		28.339	41.703	3.569	1.00 9.24	A
		ATOM	1788	0	GLU A		27.536	40.788	3.386	1.00 10.29	A
		ATOM	1789	N	PHE A		29.260	42.053	2.680	1.00 8.67	A
		ATOM	1790	CA	PHE A		29.337	41.396	1.389	1.00 8.89	A
	20	ATOM	1791	CB	PHE A		28.379	42.114	0.431	1.00 8.55	A
٠J	20	ATOM	1792	CG	PHE A		28.521	43.615	0.444	1.00 8.85	A
1.2		ATOM	1793		PHE A		29.493	44.250	-0.327	1.00 8.41	A
		ATOM	1794		PHE A		27.689	44.392	1.245	1.00 8.58	A
		ATOM	1795		PHE A		29.631	45.646	-0.300	1.00 8.68	A
Ann A	٥-	ATOM	1796		PHE A		27.817	45.782	1.283	1.00 8.53	Α
141	25	MOTA	1797	CZ	PHE A		28.790	46.409	0.509	1.00 8.54	А
		ATOM	1798	С	PHE A		30.730	41.382	0.793	1.00 8.60	А
		ATOM	1799	0	PHE A		31.619	42.115	1.235	1.00 8.82	А
ñ?		ATOM	1800	N	LEU A		30.917	40.532	-0.212	1.00 8.87	A
	20	ATOM	1801	CA	LEU A		32.187	40.446	-0.913	1.00 8.06	А
Ü	30	ATOM	1802	СВ	LEU A		32.466	39.001	-1.333	1.00 9.53	А
IU		ATOM	1803	CG	LEU A		32.800	38.076	-0.154	1.00 11.53	A
į.		ATOM	1804		LEU A		32.772	36.626	-0.602	1.00 13.79	А
		MOTA	1805		LEU A		34.166	38.447	0.402	1.00 13.15	A
ing.	٥	ATOM	1806	С	LEU A		32.033	41.364	-2.120	1.00 8.24	А
i isan	35	ATOM	1807	0	LEU A		31.392	41.019	-3.115	1.00 8.61	А
		MOTA	1808	N	TRP A		32.611	42.552	-2.002	1.00 7.63	A
		ATOM	1809	CA	TRP A		32.522	43.574	-3.037	1.00 7.37	А
		ATOM	1810	СВ	TRP A		32.718	44.947	-2.388	1.00 7.55	Α
	40	MOTA	1811	CG	TRP A		32.238	46.118	-3.199	1.00 7.27	A
	4 0	ATOM	1812		TRP A		32.240	47.492	-2.791	1.00 7.02	А
		ATOM	1813		TRP A		31.685	48.247	-3.850	1.00 7.18	А
		MOTA	1814	CE3	TRP A	247	32.659	48.160	-1.631	1.00 7.47	A
		ATOM	1815		TRP A		31.699	46.093	-4.455	1.00 7.86	А
		MOTA	1816	NE1	TRP A	247	31.363	47.371	-4.853	1.00 7.55	А
	45	MOTA	1817		TRP A		31.538	49.638	-3.784	1.00 8.05	A
		ATOM	1818		TRP A		32.514	49.542	-1.565	1.00 6.90	А
		ATOM	1819	CH2	TRP A	247	31.958	50.267	-2.636	1.00 7.34	Α
		MOTA	1820	С	TRP A	247	33.546	43.372	-4.145	1.00 7.92	Α
		MOTA	1821	0	TRP A	247	34.749	43.559	-3.939	1.00 8.05	Α
	50	ATOM	1822	N	ARG A	248	33.062	42.993	-5.326	1.00 7.42	А
		MOTA	1823	CA	ARG A		33.932	42.786	-6.477	1.00 7.87	Α
		MOTA	1824	СВ	ARG A		33.690	41.415	-7.109	1.00 8.53	Α
		ATOM	1825	CG	ARG A		32.327	41.277	-7.775	1.00 8.64	Α
		MOTA	1826	CD	ARG A		32.236	39.987	-8.581	1.00 10.45	А
	55	ATOM	1827	NE	ARG A		32.326	38.807	-7.727	1.00 11.08	А

		MOTA	1828	CZ	ARG A	248	32.317	37.558 -8.185	1.00 12.28	A
		ATOM	1829	NH1	ARG A	248	32.228	37.330 -9.488	1.00 13.21	А
		MOTA	1830	NH2	ARG A	248	32.382	36.537 -7.339	1.00 12.78	A
		ATOM	1831	С	ARG A	248	33.645	43.856 -7.521	1.00 7.64	Α
	5	MOTA	1832	0	ARG A	. 248	32.605	44.515 -7.474	1.00 7.91	A
		ATOM	1833	N	GLN A	249	34.560	44.010 -8.472	1.00 7.42	A
		ATOM	1834	CA	GLN A	249	34.389	44.994 -9.531	1.00 7.77	Α
		MOTA	1835	CB	GLN A	249	35.713	45.188 -10.272	1.00 8.10	Α
		ATOM	1836	CG	GLN A	249	36.832	45.675 -9.353	1.00 8.22	Α
	10	ATOM	1837	CD	GLN A	249	36.448	46.940 -8.598	1.00 8.40	Α
		ATOM	1838	OE1	GLN A	249	36.432	46.970 -7.358	1.00 10.28	Α
		ATOM	1839	NE2	GLN A	249	36.136	47.993 -9.341	1.00 7.14	Α
		MOTA	1840	С	GLN A	249	33.280	44.546 -10.480	1.00 8.70	Α
		ATOM	1841	0	GLN A	249	33.042	43.349 -10.654	1.00 9.20	Α
	15	MOTA	1842	N	ILE A	250	32.600	45.511 -11.093	1.00 9.12	Α
		MOTA	1843	CA	ILE A	250	31.480	45.200 -11.979	1.00 9.19	Α
		ATOM	1844	CB	ILE A	250	30.791	46.503 -12.492	1.00 9.85	Α
		MOTA	1845	CG2	ILE A	250	30.175	47.259 -11.313	1.00 10.38	A
1100		ATOM	1846	CG1	ILE A	. 250	31.797	47.390 -13.227	1.00 11.20	Α
Paradi . Ç=Ea	20	MOTA	1847		ILE A		31.197	48.698 -13.725	1.00 11.47	Α
1,63		MOTA	1848	С	ILE A		31.780	44.286 -13.169	1.00 10.02	Α
		ATOM	1849	0	ILE A		30.878	43.622 -13.675	1.00 10.72	Α
ijĪ		ATOM	1850	N	TRP A		33.037	44.231 -13.594	1.00 10.74	Α
		ATOM	1851	CA	TRP A		33.428	43.399 -14.736	1.00 12.59	Α
	25	ATOM	1852	СВ	TRP A		34.414	44.165 -15.611	1.00 12.54	Α
dinin dinin		ATOM	1853	CG	TRP A		35.724	44.337 -14.919	1.00 14.60	Α
M		ATOM	1854		TRP A		36.151	45.478 -14.175	1.00 14.42	Α
		ATOM	1855		TRP A		37.400	45.159 -13.599	1.00 15.03	A
# (1884		ATOM	1856		TRP A		35.597	46.742 -13.934	1.00 14.69	Α
I.	30	ATOM	1857		TRP A		36.708	43.397 -14.775	1.00 15.34	А
1,4		ATOM	1858		TRP A		37.715	43.882 -13.982	1.00 15.12	A
199		ATOM	1859		TRP A		38.107	46.058 -12.795	1.00 15.07	A
[al-		ATOM	1860		TRP A		36.299	47.636 -13.136	1.00 15.29	А
		ATOM	1861		TRP A		37.541	47.288 -12.577	1.00 15.76	Α
1.1	35	ATOM	1862	C	TRP A		34.096	42.089 -14.328	1.00 13.99	Α
•	00	ATOM	1863	0	TRP A		34.429	41.268 -15.182	1.00 13.91	Α
		ATOM	1864	N	ASP A		34.301	41.903 -13.030	1.00 13.53	A
		ATOM	1865	CA	ASP A		34.982	40.719 -12.509	1.00 14.68	А
		ATOM	1866	CB	ASP A		35.582	41.062 -11.142	1.00 13.69	А
	4 0	ATOM	1867	CG	ASP A		36.337	39.907 -10.523	1.00 15.31	Α
	10	ATOM			ASP A			38.929 -11.241		Α
		ATOM	1869		ASP A		36.637	39.988 -9.313	1.00 15.02	Α
		ATCM	1870	C	ASP A		34.111	39.469 -12.413	1.00 15.48	А
		ATOM	1871	Ö	ASP A		33.357	39.291 -11.459	1.00 15.34	А
	45	ATOM	1872	N	ASN A		34.239	38.587 -13.398	1.00 16.95	A
	10	ATOM	1873	CA	ASN A		33.440	37.371 -13.420	1.00 18.55	А
		MOTA	1874	CB	ASN A		33.378	36.815 -14.844	1.00 20.21	A
		ATOM	1875	CG	ASN A		32.069	36.113 -15.132	1.00 22.48	A
		ATOM	1876		ASN A		31.805	35.031 -14.615	1.00 24.09	A
	50	ATOM	1877		ASN A		31.231	36.740 -15.950	1.00 23.35	A
	50	ATOM	1878	ND2	ASN A		33.948	36.293 -12.466	1.00 23.33	A
			1879		ASN A		33.158	35.532 -11.911	1.00 10.73	A
		ATOM		O N	LYS A			36.235 -12.269	1.00 19.57	A
		ATOM	1880	N Cn	LYS A		35.261 35.850	35.229 -11.388	1.00 19.33	A
	55	ATOM	1881	CA				35.010 -11.751	1.00 23.00	A
	55	ATOM	1882	СВ	LYS A	. 234	37.322	55.010 -11.751	1.00 23.00	А

										1 00 05 55	_
		MOTA	1883	CG	LYS A		37.954		-11.101	1.00 25.67	A
		MOTA	1884	CD	LYS A	254	39.370	33.561	-11.616	1.00 27.42	A
		ATOM	1885	CE	LYS A	254	39.961	32.259	-11.089	1.00 28.32	A
		ATOM	1886	NZ	LYS A	254	40.034	32.228	-9.602	1.00 28.78	Α
	5	ATOM	1887	С	LYS A		35.730	35.616	-9.916	1.00 20.23	Α
	•	ATOM	1888	0	LYS A		35.481	34.762	-9.061	1.00 20.70	Α
		ATOM	1889	N	GLY A		35.914	36.901	-9.624	1.00 19.06	A
		ATOM	1890	CA	GLY A		35.811	37.372	-8.253	1.00 17.83	A
		ATOM	1891	C	GLY A		37.130	37.609	-7.534	1.00 17.06	A
	10	ATOM	1892	0	GLY A		37.140	37.810	-6.320	1.00 16.43	A
	10				ASP A		38.239	37.608	-8.268	1.00 16.43	A
		ATOM	1893	N						1.00 16.71	A
		ATOM	1894	CA	ASP A		39.548	37.818	-7.652		
		ATOM	1895	CB	ASP A		40.670	37.546	-8.658	1.00 20.30	A
	4 ==	ATOM	1896	CG	ASP A		40.680	36.113	-9.147	1.00 22.97	A
	15	MOTA	1897		ASP A		40.535	35.196	-8.309	1.00 25.34	A
		MOTA	1898	OD2	ASP A		40.844		-10.368	1.00 25.26	А
		ATOM	1899	С	ASP A		39.738	39.212	-7.059	1.00 15.66	А
		MOTA	1900	0	ASP A	256	40.640	39.426	-6.253	1.00 15.19	Α
		ATOM	1901	N	THR A	257	38.900	40.163	-7.457	1.00 13.06	Α
	20	MOTA	1902	CA	THR A	257	39.010	41.523	-6.926	1.00 12.42	Α
1,5±# . 145		ATOM	1903	СВ	THR A	257	38.501	42.579	-7.926	1.00 12.11	Α
i inter		ATOM	1904	OG1			37.112	42.348	-8.194	1.00 11.97	А
(M		ATOM	1905	CG2			39.303	42.528	-9.218	1.00 12.56	Α
		ATOM	1906	C	THR A		38.204	41.716	-5.644	1.00 12.57	А
Hon.	25	ATOM	1907	Ö	THR A		38.301	42.759	-5.000	1.00 13.02	А
IU		ATOM	1908	N	ALA A		37.420	40.707	-5.277	1.00 11.47	A
		ATOM	1909	CA	ALA A		36.568	40.785	-4.096	1.00 10.47	A
		ATOM	1910	CB	ALA A		35.819	39.475	-3.907	1.00 11.26	A
8) 2:225		ATOM	1911	C	ALA A		37.262	41.162	-2.794	1.00 10.09	A
	30		1911	0	ALA A		38.349	40.675	-2.481	1.00 10.03	A
ij	30	ATOM					36.608	42.038	-2.461	1.00 11.10	A
Ŋ		ATOM	1913	N	LEU A						A
fut.		MOTA	1914	CA	LEU A		37.106	42.486	-0.747		
		ATOM	1915	CB	LEU A		37.709	43.889	-0.846		A
lak	25	ATOM	1916	CG	LEU A		38.434	44.373	0.416	1.00 8.50	A
i inter	35	MOTA	1917		LEU A		39.634	43.466	0.702	1.00 9.84	A
		ATOM	1918		LEU A		38.890	45.818	0.226	1.00 10.21	A
		MOTA	1919	С	LEU A		35.923	42.506	0.211	1.00 8.64	A
		ATOM	1920	0	LEU A		34.890	43.119	-0.074	1.00 8.01	A
		ATOM	1921	N	PHE A		36.068	41.829	1.347	1.00 8.58	А
	40	MOTA	1922	CA	PHE A	260	34.997	41.785	2.333	1.00 8.58	Α
		ATOM	1923	CB	PHE A		35.405	40.932	3.533	1.00 8.62	A
		MOTA	1924	ÇG	PHE A	260	34.301	40.738	4.529	1.00 9.48	A
		ATOM	1925	CD1	PHE A	260	33.310	39.786	4.310	1.00 11.03	Α
		ATOM	1926	CD2	PHE A	260	34.233	41.523	5.670	1.00 9.44	A
	45	ATOM	1927	CE1	PHE A	260	32.269	39.619	5.217	1.00 10.46	Α
		ATOM	1928		PHE A		33.194	41.366	6.587	1.00 10.60	А
		ATOM	1929	CZ	PHE A		32.210	40.413	6.358	1.00 10.54	А
		ATOM	1930	c	PHE A		34.669	43.198	2.800	1.00 7.96	А
		MOTA	1931	Ö	PHE A		35.548	43.943	3.240	1.00 8.25	А
	50	ATOM	1932	N	THR A		33.393	43.555	2.723	1.00 7.64	A
			1933	CA	THR A		32.951	44.887	3.098	1.00 7.65	A
		ATOM					32.467	44.667	1.849	1.00 7.03	A
		ATOM	1934	CB	THR A				0.881	1.00 8.64	A
		ATOM	1935		THR A		33.522	45.707			
	C.E.	ATOM	1936		THR A		32.039	47.064	2.212	1.00 8.16	A
	55	ATOM	1937	С	THR A	261	31.817	44.875	4.111	1.00 7.68	A

		ATOM	1938	0	THR A	261	30.870	44.096	3.992	1.00	8.41	Α
		ATOM	1939	N	HIS A	262	31.922	45.758	5.100	1.00	6.93	Α
		ATOM	1940	CA	HIS A	262	30.901	45.912	6.123	1.00	7.90	Α
		ATOM	1941	CB	HIS A	262	31.519	45.801	7.522	1.00	8.17	A
	5	ATOM	1942	CG	HIS F	262	30.578	46.163	8.632	1.00	8.05	A
		ATOM	1943	CD2	HIS A	262	30.160	47.368	9.091	1.00	8.34	А
		ATOM	1944		HIS A		29.948	45.218	9.414	1.00	8.69	А
		ATOM	1945		HIS A		29.185	45.825	10.308	1.00	8.74	Α
		ATOM	1946		HIS A		29.296	47.130	10.134	1.00	9.13	А
	10	ATOM	1947	C	HIS A		30.274	47.293	5.964	1.00	8.58	Α
		ATOM	1948	0	HIS A		30.973	48.307	6.012	1.00	8.10	Α
		MOTA	1949	N	MSE F		28.965	47.333	5.747	1.00	8.26	A
		ATOM	1950	CA	MSE A		28.257	48.600	5.633	1.00	9.29	Α
		ATOM	1951	СВ	MSE A		27.263	48.572	4.469		10.58	Α
	15	ATOM	1952	CG	MSE A		26.474	49.869	4.305		10.98	A
		ATOM	1953	SE	MSE A		24.989	49.720	3.067		16.18	Α
		ATOM	1954	CE	MSE A		25.986	49.431	1.449		13.27	Α
		ATOM	1955	С	MSE A		27.493	48.822	6.935	1.00	9.90	Α
1:00		ATOM	1956	0	MSE F		26.734	47.949	7.372		10.15	Α
fical Life	20	ATOM	1957	N	MSE F		27.709	49.973	7.567	1.00	9.48	Α
		ATOM	1958	CA	MSE F		27.000	50.294	8.800		11.38	A
		ATOM	1959	СВ	MSE A		27.599	51.544	9.434		13.97	Α
1,71		ATOM	1960	CG	MSE F		28.998	51.276	9.969		18.24	А
		ATOM	1961	SE	MSE F		29.922	52.842	10.605		30.43	А
ru	25	ATOM	1962	CE	MSE F		28.649	53.434	11.918		25.37	А
		ATOM	1963	C	MSE F		25.544	50.473	8.391		10.63	Α
ijŦ.		ATOM	1964	Ō	MSE F		25.254	50.951	7.296	1.00	10.87	А
£1		ATOM	1965	N	PRO P		24.605	50.109	9.274		10.69	А
		ATOM	1966	CD	PRO F		24.819	49.543	10.620		10.66	А
Tradit.	30	ATOM	1967	CA	PRO F		23.177	50.203	8.973		11.01	Α
	-	MOTA	1968	СВ	PRO F		22.610	49.052	9.785		10.51	А
14		ATOM	1969	CG	PRO F		23.392	49.183	11.069		10.95	А
į.d.		MOTA	1970	C	PRO F		22.390	51.468	9.232		11.27	А
		ATOM	1971	0	PRO F		21.302	51.635	8.681	1.00	11.33	А
] 	35	ATOM	1972	N	PHE A		22.929	52.361	10.048		11.35	А
		ATOM	1973	CA	PHE F		22.177	53.540	10.421		11.37	А
		ATOM	1974	СВ	PHE P		22.134	53.589	11.952		10.85	А
		MOTA	1975	CG	PHE F		21.602	52.310	12.573	1.00	10.84	Α
		ATOM	1976		PHE P		22.225	51.740	13.679	1.00	10.84	А
	40	MOTA	1977		PHE P		20.487	51.669	12.031		11.07	Α
		MOTA	1978		PHE P		21.748	50.551	14.236	1.00	10.63	А
		ATOM	1979		PHE P		20.001	50.481	12.580		10.14	А
		ATOM	1980	CZ	PHE P		20.633	49.921	13.682	1.00	9.88	A
		ATOM	1981	C	PHE A		22.564	54.885	9.812		11.36	А
	45	ATOM	1982	0	PHE A		23.495	54.988	9.017		11.87	Α
		ATOM	1983	N	TYR A		21.812	55.907	10.203		11.40	A
		ATOM	1984	CA	TYR A		21.949	57.273	9.709		11.71	А
		ATOM	1985	СВ	TYR F		20.814	58.099	10.319		12.66	A
		ATOM	1986	CG	TYR A		20.908	59.594	10.143		12.67	A
	50	ATOM	1987		TYR F		20.575	60.204	8.934		13.51	A
	00	ATOM	1988		TYR A		20.613	61.597	8.798		14.20	A
		MOTA	1989		TYR F		21.288	60.406	11.211		13.73	A
		ATOM	1990		TYR A		21.330	61.786	11.085		14.05	A
		ATOM	1991	CZ	TYR A		20.990	62.376	9.882		15.05	A
	55	ATOM	1992	OH	TYR A		21.017	63.747	9.784		16.91	A
	55	ATOM	1 フフム	ОП	IIN	201	21.01/	00.191	2.704	1.00	10.71	1.1

	ATOM	1993	С	TYR	Α	267	23.284	57.987	9.916	1.00 11.75	А
	ATOM	1994	0	TYR	Α	267	23.685	58.807	9.085	1.00 11.62	А
	MOTA	1995	N	SER	A	268	23.973	57.684	11.008	1.00 11.53	A
	MOTA	1996	CA			268	25.240	58.346	11.299	1.00 10.96	A
5	MOTA	1997	CB	SER	Α	268	24.975	59.572	12.178	1.00 11.47	A
	MOTA	1998	OG	SER	Α	268	26.180	60.184	12.600	1.00 13.03	Α
	ATOM	1999	С	SER	Α	268	26.236	57.432	11.992	1.00 10.90	А
	MOTA	2000	0			268	25.891	56.329	12.417	1.00 10.38	A
	ATOM	2001	N			269	27.480	57.892	12.094	1.00 10.75	A
10	MOTA	2002	CA			269	28.514	57.127	12.775	1.00 10.42	A
	MOTA	2003	CB	TYR	Α	269	29.872	57.282	12.069	1.00 10.68	A
	MOTA	2004	CG			269	30.306	58.714	11.844	1.00 10.71	A
	ATOM	2005	CD1			269	30.698	59.529	12.909	1.00 10.21	·A
	ATOM	2006		TYR			31.055	60.864	12.702	1.00 11.28	A
15	MOTA	2007	CD2	TYR			30.288	59.265	10.565	1.00 10.99	A
	MOTA	2008	CE2	TYR			30.642	60.595	10.348	1.00 10.95	A
	MOTA	2009	CZ			269	31.020	61.387	11.420	1.00 11.31	A
	MOTA	2010	ОН			269	31.331	62.711	11.209	1.00 11.28	А
•••	MOTA	2011	С			269	28.627	57.587	14.227	1.00 10.96	A
20	MOTA	2012	0			269	29.444	57.060	14.981	1.00 10.70	A
	ATOM	2013	N	ASP			27.816	58.570	14.625	1.00 10.74	A
	MOTA	2014	CA	ASP			27.879	59.042	16.006	1.00 10.41	A
	MOTA	2015	СВ	ASP			27.196	60.416	16.178	1.00 11.57	A
05	MOTA	2016	CG	ASP			25.710	60.404	15.861	1.00 11.76	Α
25	ATOM	2017		ASP			25.095	59.320	15.799	1.00 12.51	A
	ATOM	2018		ASP			25.150	61.513	15.693	1.00 14.61	A
	ATOM	2019	С	ASP			27.292	57.998	16.950	1.00 10.60	A
	MOTA	2020	0	ASP			26.684	57.020	16.511	1.00 10.31	A
20	ATOM	2021	N	ILE			27.492	58.192	18.246	1.00 10.34	A
30	ATOM	2022	CA			271	27.027	57.212	19.214	1.00 10.55	A
	ATOM	2023	СВ			271	27.536	57.588	20.622	1.00 10.92	A
	ATOM	2024	CG2	ILE			27.035	56.589	21.659	1.00 10.05	A
	MOTA	2025		ILE			29.071	57.563	20.602	1.00 11.08	A
25	ATOM	2026	CD1				29.745	58.096	21.846	1.00 11.63	A
35	MOTA	2027	С	ILE			25.518	56.956	19.185	1.00 10.58	A
	ATOM	2028	0	ILE			25.083	55.807	19.260	1.00 10.41	A
	ATOM	2029	N			272	24.700	58.011	19.057	1.00 10.98	A
	ATOM	2030	CD			272	24.985	59.453 57.758	19.156 19.022	1.00 11.33 1.00 10.92	A A
40	ATOM	2031	CA			272	23.255				
40	ATOM	2032	CB	PRO			22.665	59.160	18.878	1.00 11.04 1.00 11.74	A
	ATOM	2033	CG	PRO			23.659	60.016	19.626	1.00 11.74	A A
	MOTA	2034 2035	С	PRO			22.826 21.785	56.829 56.180	17.876 17.959	1.00 11.09	A
	ATOM	2035	O	PRO			23.629	56.750	16.815	1.00 10.74	A
45	ATOM		N	HIS			23.629	55.908	15.672	1.00 10.74	A
40	ATOM	2037 2038	CA	HIS			23.276	56.767	14.405	1.00 10.78	A
	ATOM		CB CG	HIS			22.235	57.887	14.403	1.00 10.02	A
	MOTA	2039		HIS HIS			22.233	59.169	14.491	1.00 11.20	A
	ATOM	2040						57.727	14.202	1.00 9.33	A
50	ATOM	2041		HIS			20.897				
50	ATOM	2042		HIS			20.261	58.862 59.753	14.433 14.859	1.00 9.52 1.00 13.79	A A
	ATOM	2043		HIS			21.137	54.711	15.456	1.00 13.79	A
	ATOM	2044 2045	C 0	HIS HIS			24.195 24.260	54.711	14.353	1.00 11.09	A
	ATOM	2045	N	THR			24.260	54.163	16.508	1.00 11.13	A
55	MOTA	2046	CA	THR			25.782	53.140	16.385	1.00 11.34	A
55	ATOM	2041	CA	7111	М	214	23.102	22.140	10.303	1.00 11.09	r,

	ATOM	2048	СВ	THR	Α	274	27.269	53.578	16.377	1.00 12.31	A
	ATOM	2049	OG1	THR	Α	274	27.513	54.504	17.442	1.00 11.45	Α
	MOTA	2050	CG2	THR	Α	274	27.620	54.224	15.053	1.00 11.39	Α
_	MOTA	2051	С			274	25.598	52.033	17.425	1.00 11.88	A
5	MOTA	2052	0			274	26.215	50.976	17.311	1.00 12.79	А
	MOTA	2053	N			275	24.752	52.250	18.429	1.00 11.97	A
	MOTA	2054	CA			275	24.543	51.214	19.445	1.00 12.65	A
	MOTA	2055	С			275	23.361	50.321	19.105	1.00 12.65	A
	ATOM	2056	0			275	23.291	49.169	19.536	1.00 12.89	Α
10	MOTA	2057	CB			275	24.315	51.845	20.824	1.00 13.02	A
	ATOM	2058	SG			275	22.586	51.943	21.413	1.00 13.25	A
	MOTA	2059	N			276	22.433	50.865	18.329	1.00 12.85	A
	MOTA	2060	CA			276	21.243	50.130	17.954	1.00 12.82	A
	ATOM	2061	С			276	20.329	51.021	17.139	1.00 12.23	A
15	MOTA	2062	0			276	20.704	52.149	16.813	1.00 12.13	Α
	ATOM	2063	N			277	19.113	50.558	16.812	1.00 11.60	Α
	MOTA	2064	CD			277	18.595	49.229	17.187	1.00 11.96	A
	MOTA	2065	CA			277	18.123	51.294	16.021	1.00 12.04	Α
••	ATOM	2066	CB			277	17.119	50.208	15.650	1.00 12.10	A
20	ATOM	2067	CG			277	17.116	49.352	16.885	1.00 10.84	A
	MOTA	2068	С			277	17.435	52.502	16.652	1.00 11.83	A
	ATOM	2069	0			277	16.844	53.310	15.938	1.00 12.62	Α
	ATOM	2070	N			278	17.500	52.628	17.973	1.00 12.62	A
	ATOM	2071	CA			278	16.834	53.741	18.650	1.00 13.37	A
25	MOTA	2072	СВ			278	15.969	53.213	19.799	1.00 13.54	A
	ATOM	2073	CG			278	15.045	54.274	20.368	1.00 14.93	A
	MOTA	2074		ASP			15.194	55.456	20.004	1.00 15.72	A
	MOTA	2075		ASP			14.168	53.925	21.185	1.00 15.70	A
20	ATOM	2076	С			278	17.814	54.773	19.194	1.00 13.23	A
30	ATOM	2077	0			278	18.426	54.568	20.241	1.00 13.99	A
	ATOM	2078	N			279	17.962	55.908	18.493	1.00 13.69	A
	ATOM	2079	CD			279	17.262	56.315	17.263	1.00 13.30	A
	ATOM	2080	CA			279	18.886	56.952	18.944	1.00 13.86	A
25	ATOM	2081	CB			279	18.834	57.975	17.809	1.00 13.40	A
35	ATOM	2082	CG			279	17.448	57.815	17.269	1.00 13.26	A
	ATOM	2083	С			279	18.537	57.555	20.302	1.00 14.31 1.00 14.71	A
	ATOM	2084	0			279	19.415	58.042	21.011		A
	ATOM	2085	N			280	17.260	57.518	20.669	1.00 15.00 1.00 16.46	A
40	ATOM	2086	CA			280	16.841	58.061	21.957	1.00 16.46	A
4 0	ATOM	2087	CB			280	15.316	58.029	22.084	1.00 17.33	A
	ATOM	2088	CG			280	14.798	58.566	23.413 23.472	1.00 20.74	A A
	ATOM	2089	CD			280	13.277		23.472	1.00 25.15	A
	ATOM	2090	CE			280 280	12.733 13.197	57.124 56.302	24.586	1.00 23.33	A
45	ATOM	2091 2092	NZ C				17.469	57.244	23.080	1.00 27.40	· A
43	ATOM					280	17.409	57.771	24.152	1.00 10.31	A
	ATOM	2093 2094	O N			280	17.770	55.953	24.132	1.00 17.31	A
	ATOM		N			281	18.276	55.067	23.814	1.00 13.70	A
	ATOM	2095	CA			281 281		53.598	23.602	1.00 14.33	A
50	ATOM	2096	CB				17.837	52.687		1.00 15.03	A
50	ATOM	2097 2098		VAL VAL			18.565 16.328	53.475	24.585 23.775	1.00 15.57	A
	ATOM	2098	CG2			281	19.797	55.132	23.773	1.00 13.33	A
	ATOM	2099	0			281	20.488	55.285	24.725	1.00 14.77	A
	ATOM	2100	N			282	20.488	55.021	24.723	1.00 13.31	A
55	ATOM	2101	N CA			282	20.317	55.056	22.296	1.00 13.87	A
55	ATOM	2102	CH	C13	Н	202	21.133	55.050	22.230	1.00 13.30	Д

		ATOM	2103	С	CYS	Α	282	22.402	56.340	22.804	1.00 13	3.26	Α	
		ATOM	2104	0	CYS			23.524	56.320	23.308	1.00 12	2.92	Α	
		ATOM	2105	СВ	CYS			22.086	54.884	20.814	1.00 13	3.80	Α	
		ATOM	2106	SG	CYS			21.707	53.243	20.122	1.00 13	3.83	Α	
	5	ATOM	2107	N	CYS			21.695	57.458	22.673	1.00 12	2.97	Α	
	•	ATOM	2108	CA	CYS			22.241	58.727	23.130	1.00 13		А	
		ATOM	2109	C	CYS			22.543	58.688	24.624	1.00 13		А	
		ATOM	2110	0	CYS			23.435	59.387	25.102	1.00 12		Α	
		ATOM	2111	СВ	CYS			21.274	59.876	22.829	1.00 19		A	
	10		2112	SG	CYS			22.121	61.486	22.906	1.00 1		A	
	10	MOTA			GLN			21.804	57.860	25.359	1.00 12		A	
		ATOM	2113	N					57.740	26.797	1.00 13		A	
		ATOM	2114	CA	GLN			22.003		27.433	1.00 1		A	
		ATOM	2115	CB	GLN			20.821	57.006					
	- P	ATOM	2116	CG	GLN			19.496	57.719	27.260	1.00 19		A	
	15	MOTA	2117	CD	GLN			18.338	56.905	27.790	1.00 15		A	
		MOTA	2118		GLN			18.315	56.530	28.962	1.00 1		A	
		ATOM	2119	NE2	GLN			17.372	56.622	26.929	1.00 10		A	
		MOTA	2120	С	GLN			23.292	57.009	27.136	1.00 13		A	
		MOTA	2121	0	GLN			23.675	56.925	28.302	1.00 13		A	
	20	MOTA	2122	N	PHE			23.960	56.479	26.116	1.00 12		A	
ř		ATOM	2123	CA	PHE	Α	285	25.201	55.759	26.336	1.00 13		A	
		MOTA	2124	CB	PHE	Α	285	25.045	54.319	25.839	1.00 12	2.17	A	
•		MOTA	2125	CG	PHE	Α	285	24.074	53.520	26.671	1.00 12	2.29	A	
Ì		ATOM	2126	CD1	PHE	Α	285	24.485	52.917	27.858	1.00 12	2.76	A	
Ì	25	ATOM	2127	CD2	PHE	Α	285	22.728	53.453	26.317	1.00 13	3.09	А	
		ATOM	2128	CE1	PHE	Α	285	23.565	52.262	28.686	1.00 13	3.11	A	
<u> </u>		ATOM	2129		PHE			21.800	52.803	27.136	1.00 1	4.38	А	
		ATOM	2130	CZ	PHE			22.221	52.208	28.324	1.00 13	3.55	A	
;		ATOM	2131	C	PHE			26.414	56.471	25.748	1.00 1	1.90	A	
	30	ATOM	2132	Ō	PHE			27.469	55.876	25.521	1.00 13	1.81	A	
	00	ATOM	2133	N	ASP			26.233	57.764	25.504	1.00 1		А	
		ATOM	2134	CA	ASP			27.303	58.639	25.038	1.00 1		А	
		ATOM	2135	CB	ASP			26.844	59.533	23.889	1.00 1		А	
		ATOM	2136	CG	ASP			27.944	60.464	23.414	1.00 1		A	
	35	ATOM	2137		ASP			28.966	60.569	24.128	1.00 1		A	
	55	ATOM	2137		ASP			27.790	61.092	22.347	1.00 1		A	
			2139	C	ASP			27.497	59.475	26.298	1.00 1		A	
		ATOM		0	ASP			26.840	60.497	26.488	1.00 1		A	
		ATOM	2140 2141	N	PHE			28.395	59.028	27.165	1.00 1		A	
	40	ATOM						28.603	59.697	28.437	1.00 1		A	
	40	ATOM	2142	CA	PHE			29.377	58.764	29.374	1.00 1		A	
		ATOM	2143	CB	PHE				57.473	29.651	1.00 1		A	
		ATOM	2144	CG	PHE			28.648		28.826	1.00 1		A	
		ATOM	2145		PHE			28.821	56.366		1.00 1		A	
	4.5	ATOM	2146		PHE			27.717	57.397	30.683				
	45	ATOM	2147		PHE			28.076	55.206	29.020	1.00 1		A	
		ATOM	2148		PHE			26.964	56.239	30.885	1.00 1		A	
		MOTA	2149	CZ	PHE			27.143	55.141	30.049	1.00 1		A	
		MOTA	2150	С	PHE			29.207	61.091	28.414	1.00 1		A	
		ATOM	2151	0	PHE			29.405	61.695	29.465	1.00 1		A	
	50	ATOM	2152	N	LYS			29.482	61.620	27.227	1.00 1		A	
		MOTA	2153	CA	LYS			30.023	62.970	27.149	1.00 1		A	
		ATOM	2154	CB	LYS			30.933	63.128	25.924	1.00 1		A	
		ATOM	2155	CG	LYS	Α	288	31.689	64.457	25.905	1.00 1		А	
		MOTA	2156	CD	LYS			32.592	64.586	24.684	1.00 1		А	
	55	ATOM	2157	CE	LYS	Α	288	33.413	65.868	24.753	1.00 1	3.29	Α	

	ATOM	2158	NZ	LYS	A	288	34.359	66.002	23.603	1.00 14.76	А
	ATOM	2159	С	LYS	Α	288	28.866	63.968	27.060	1.00 16.58	А
	ATOM	2160	0	LYS	Α	288	29.080	65.176	27.059	1.00 16.11	Α
	ATOM	2161	N	ARG	A	289	27.637	63.461	27.007	1.00 17.84	А
5	ATOM	2162	CA	ARG	Α	289	26.471	64.335	26.894	1.00 20.20	Α
	MOTA	2163	CB	ARG	Α	289	25.498	63.776	25.852	1.00 18.53	А
	MOTA	2164	CG	ARG	Α	289	26.110	63.516	24.487	1.00 16.64	А
	MOTA	2165	CD	ARG	Α	289	25.021	63.230	23.477	1.00 15.80	A
	MOTA	2166	NE	ARG	Α	289	25.545	62.852	22.168	1.00 13.90	А
10	MOTA	2167	CZ	ARG	Α	289	25.094	63.347	21.021	1.00 14.07	А
	MOTA	2168	NH1	ARG	Α	289	24.119	64.248	21.023	1.00 14.29	A
	ATOM	2169	NH2	ARG	Α	289	25.603	62.931	19.871	1.00 13.78	А
	MOTA	2170	С	ARG	Α	289	25.701	64.571	28.193	1.00 23.25	А
	ATOM	2171	0	ARG	Α	289	24.473	64.635	28.174	1.00 23.38	A
15	MOTA	2172	N	MSE			26.398	64.717	29.314	1.00 27.14	А
	MOTA	2173	CA	MSE	Α	290	25.691	64.930	30.572	1.00 30.56	А
	ATOM	2174	CB	MSE	Α	290	26.309	64.067	31.681	1.00 33.87	A
	MOTA	2175	CG	MSE	Α	290	26.223	62.573	31.377	1.00 37.48	A
	MOTA	2176	SE	MSE	Α	290	26.343	61.383	32.902	1.00 42.06	A
20	ATOM	2177	CE	MSE	Α	290	28.253	61.093	32.905	1.00 40.46	Α
	MOTA	2178	С	MSE	Α	290	25.578	66.389	31.019	1.00 30.92	A
	MOTA	2179	0	MSE	Α	290	24.852	66.690	31.971	1.00 31.50	A
	MOTA	2180	N	$\operatorname{GL} Y$	Α	291	26.278	67.294	30.338	1.00 30.12	A
	ATOM	2181	CA	GLY	Α	291	26.182	68.701	30.698	1.00 28.34	A
25	ATOM	2182	С	GLY	Α	291	27.455	69.531	30.733	1.00 27.01	A
	MOTA	2183	0			291	27.560	70.545	30.040	1.00 27.30	А
	ATOM	2184	N	SER	Α	292	28.422	69.108	31.541	1.00 24.80	A
	ATOM	2185	CA	SER	Α	292	29.682	69.831	31.686	1.00 21.72	A
	MOTA	2186	CB	SER	Α	292	30.552	69.152	32.744	1.00 22.53	А
30	MOTA	2187	OG			292	30.886	67.833	32.350	1.00 22.82	A
	ATOM	2188	С			292	30.488	69.984	30.396	1.00 20.05	А
	ATOM	2189	0			292	31.362	70.848	30.311	1.00 18.67	A
	ATOM	2190	N			293	30.202	69.151	29.399	1.00 18.19	A
	ATOM	2191	CA			293	30.919	69.220	28.128	1.00 17.46	A
35	MOTA	2192	CB			293	31.136	67.819	27.546	1.00 16.98	A
	MOTA	2193	CG			293	32.049	66.956	28.361	1.00 15.98	A
	ATOM	2194		PHE			31.535	66.066	29.295	1.00 16.38	A
	MOTA	2195		PHE			33.427	67.032	28.191	1.00 15.50	A
	ATOM	2196		PHE			32.383	65.258	30.050	1.00 16.47	A
40	MOTA	2197		PHE			34.284	66.230	28.939	1.00 16.29	A
	MOTA	2198	CZ			293	33.760	65.342	29.870	1.00 16.44	A
	MOTA	2199	С			293	30.197	70.070	27.095	1.00 17.55	A
	MOTA	2200	0			293	30.658	70.200	25.960	1.00 16.94	A
4=	MOTA	2201	N			294	29.064	70.644	27.484	1.00 17.08	A
45	MOTA	2202	CA			294	28.314	71.471	26.557	1.00 17.66	A
	ATOM	2203	С			294	27.592	70.671	25.489	1.00 17.59	A
	MOTA	2204	0			294	27.302	71.181	24.407	1.00 18.62	A
	MOTA	2205	N			295	27.309	69.409	25.788	1.00 17.46	A
	ATOM	2206	CA			295	26.604	68.543	24.854	1.00 17.07	A
50	ATOM	2207	CB			295	27.514	67.400	24.392	1.00 17.17	A
	ATOM	2208	CG			295	28.783	67.787	23.625	1.00 17.32	A
	MOTA	2209		LEU			29.647	66.554	23.406	1.00 17.83	A
	MOTA	2210		LEU			28.405	68.418	22.290	1.00 17.46	A
	ATOM	2211	С			295	25.379	67.972	25.552	1.00 17.33	A
55	ATOM	2212	0	LEU	A	295	25.344	67.869	26.777	1.00 18.00	A

				000	_	006	04 271	67 610	24 760	1.00 17.40	70
	MOTA	2213	N			296	24.371	67.610	24.769		A
	ATOM	2214	CA			296	23.147	67.047	25.319	1.00 18.18	A
	MOTA	2215	СВ			296	22.162	68.167	25.679	1.00 18.23	Α
	MOTA	2216	OG			296	21.859	68.973	24.553	1.00 19.31	Α
5	ATOM	2217	С	SER	Α	296	22.518	66.101	24.310	1.00 18.33	А
	ATOM	2218	0	SER	Α	296	23.031	65.931	23.203	1.00 17.91	Α
	ATOM	2219	N	CYS	Α	297	21.415	65.476	24.708	1.00 18.81	Α
	ATOM	2220	CA	CYS			20.698	64.549	23.842	1.00 19.38	А
	ATOM	2221	C	CYS			19.429	65.212	23.322	1.00 19.86	A
10	MOTA	2222	Ö	CYS			18.542	65.562	24.098	1.00 20.21	А
10		2223	СВ	CYS			20.355	63.268	24.609	1.00 19.22	A
	ATOM							62.162	24.797	1.00 13.22	A
	ATOM	2224	SG	CYS			21.786				A
	ATOM	2225	N	PRO			19.332	65.400	21.997	1.00 19.98	
a =	MOTA	2226	CD			298	20.330	65.059	20.966	1.00 20.03	A
15	MOTA	2227	CA	PRO			18.154	66.031	21.395	1.00 20.06	A
	MOTA	2228	CB	PRO			18.557	66.189	19.929	1.00 20.76	A
	MOTA	2229	CG	PRO			19.494	65.041	19.709	1.00 20.96	A
	ATOM	2230	С	PRO	Α	298	16.863	65.237	21.571	1.00 19.89	Α
	MOTA	2231	0	PRO	Α	298	15.772	65.778	21.399	1.00 20.14	А
20	ATOM	2232	N	TRP	Α	299	16.991	63.961	21.921	1.00 19.23	А
	ATOM	2233	CA			299	15.827	63.105	22.124	1.00 19.96	A
	ATOM	2234	СВ			299	16.196	61.644	21.833	1.00 19.20	А
	ATOM	2235	CG			299	16.531	61.437	20.381	1.00 18.35	А
	ATOM	2236	CD2	TRP			17.834	61.499	19.781	1.00 18.02	Α
25	ATOM	2237	CE2			299	17.662	61.346	18.388	1.00 18.44	A
20	MOTA	2238	CE3	TRP			19.130	61.674	20.286	1.00 18.03	A
		2239	CD1				15.650	61.248	19.355	1.00 18.36	A
	ATOM							61.193	18.155	1.00 19.07	A
	MOTA	2240	NE1	TRP			16.321				A
20	ATOM	2241		TRP			18.738	61.363	17.492	1.00 18.17	
30	MOTA	2242	CZ3	TRP			20.200	61.691	19.396	1.00 18.03	A
	ATOM	2243	CH2	TRP			19.994	61.536	18.014	1.00 17.94	A
	MOTA	2244	С			299	15.247	63.270	23.530	1.00 21.12	A
	ATOM	2245	0			299	14.351	62.531	23.937	1.00 21.04	A
	ATOM	2246	N	LYS	Α	300	15.783	64.242	24.265	1.00 22.23	A
35	ATOM	2247	CA	LYS	Α	300	15.306	64.591	25.606	1.00 23.37	A
	ATOM	2248	CB	LYS	Α	300	13.795	64.829	25.552	1.00 25.08	A
	ATOM	2249	CG	LYS	Α	300	13.400	65.978	24.643	1.00 26.56	A
	ATOM	2250	CD	LYS	Α	300	11.890	66.085	24.505	1.00 28.74	Α
	ATOM	2251	CE	LYS	Α	300	11.497	67.267	23.632	1.00 29.78	A
40	ATOM	2252	NZ	LYS			11.893	68.565	24.247	1.00 31.18	А
	ATOM	2253	С			300	15.628	63.703	26.806	1.00 23.29	А
	ATOM	2254	Ö			300	15.248		27.930	1.00 23.45	А
	ATOM	2255	N	VAL			16.304	62.579	26.591	1.00 22.63	А
	ATOM	2256	CA	VAL			16.669	61.717	27.709	1.00 22.92	A
45		2257		VAL			16.100	60.282	27.553	1.00 23.50	, A
40	ATOM		CB					60.328	27.567	1.00 24.41	A
	ATOM	2258		VAL			14.582				
	ATOM	2259		VAL			16.582	59.652	26.267	1.00 24.91	A
	ATOM	2260	С	VAL			18.191	61.686	27.783	1.00 22.38	A
	MOTA	2261	0			301	18.858	61.129	26.913	1.00 22.87	A
50	ATOM	2262	N			302	18.761	62.302	28.827	1.00 21.66	A
	ATOM	2263	CD	PRO	Α	302	18.069	63.041	29.901	1.00 21.57	A
	ATOM	2264	CA	PRO	Α	302	20.211	62.357	29.013	1.00 21.07	A
	ATOM	2265	СВ	PRO	Α	302	20.375	63.492	30.014	1.00 21.45	А
	ATOM	2266	CG			302	19.184	63.292	30.899	1.00 21.82	А
55	ATOM	2267	С			302	20.851	61.072	29.513	1.00 20.23	А

			0000	_		200	0.0	170	60 100	20 050	1 00	10 53	70
		ATOM	2268	0	PRO A			0.179	60.190	30.050		19.53	A
		ATOM	2269	N	PRO A			2.170	60.941	29.323		19.82	A
		ATOM	2270	CD	PRO A	. 303	23	3.105	61.819	28.596		19.67	А
		ATOM	2271	CA	PRO A	303	22	2.835	59.730	29.798	1.00	19.97	А
	5	ATOM	2272	CB	PRO A	303	24	1.204	59.800	29.126	1.00	19.91	Α
		ATOM	2273	CG	PRO A	303	24	1.451	61.270	29.009	1.00	20.65	А
		ATOM	2274	С	PRO A	303	22	2.919	59.817	31.318	1.00	20.45	А
		ATOM	2275	0	PRO A		22	2.892	60.912	31.885	1.00	19.95	А
		ATOM	2276	N	ARG A			2.992	58.667	31.974	1.00	20.89	А
	10	ATOM	2277	CA	ARG A			3.089	58.624	33.424		22.04	А
	-0	ATOM	2278	СВ	ARG A			1.800	58.056	34.028		25.18	A
		ATOM	2279	CG	ARG A			0.672	59.076	34.134		29.57	A
		ATOM	2280	CD	ARG A			9.369	58.432	34.585		33.21	A
		ATOM	2281	NE	ARG A			3.778	57.601	33.540		36.53	A
	15	ATOM	2282	CZ	ARG A			3.380	58.058	32.355		37.94	A
	15	ATOM	2283		ARG A			3.509	59.345	32.057		38.71	A
					ARG A			7.851	57.229	31.466		38.86	A
		ATOM	2284		ARG A				57.777	33.837		20.49	A
		ATOM	2285	С				1.279					
	20	ATOM	2286	0	ARG A			1.479	56.674	33.323		19.54 19.35	A A
ı, 🗓	20	ATOM	2287	N	THR A			5.074	58.306	34.760		18.46	A
# 140g		ATOM	2288	CA	THR A			5.251	57.607	35.253			
M		ATOM	2289	CB	THR A			5.901	58.378	36.418		18.86	A
10 m		ATOM	2290		THR A			7.312	59.671	35.955		20.18	A
######################################	25	ATOM	2291		THR A			3.108	57.629	36.957		19.09	A
14	25	MOTA	2292	С	THR A			5.864	56.216	35.729		17.72	A
		MOTA	2293	0	THR A			1.914	56.056	36.495		18.70	A
1,77		ATOM	2294	N	ILE A			5.598	55.210	35.268		16.09	A
Ē1		ATOM	2295	CA	ILE A			5.306	53.837	35.654		16.08	A
	20	ATOM	2296	СВ	ILE A			7.031	52.829	34.738		15.93	A
ı.C	30	ATOM	2297		ILE A			5.627	51.403	35.113		14.98	A
Į.		ATOM	2298		ILE A			5.689	53.110	33.271		14.91	A
arear ∫arab		ATOM	2299		ILE A			5.204	53.036	32.943		14.74	A
		ATOM	2300	С	ILE A			5.717	53.579	37.101		17.29	A
	٥	MOTA	2301	0	ILE A			7.793	53.989	37.539		17.58	A
F.	35	MOTA	2302	N	SER A			5.844	52.898	37.839		18.29	A
		MOTA	2303	CA	SER A			5.094	52.571	39.238		20.08	А
		MOTA	2304	СВ	SER A			5.339	53.539	40.151		19.58	A
		ATOM	2305	OG	SER A			3.939	53.426	39.962		20.03	А
		MOTA	2306	С	SER A			5.605	51.154	39.496		21.11	A
	40	ATOM	2307	0	SER A			1.856	50.600	38.696		20.76	A
		MOTA	2308	N	ASP A			5.029	50.569	40.612		22.96	А
		ATOM	2309	CA	ASP A	308		5.604	49.219	40.966		24.81	A
		MOTA	2310	CB	ASP A			5.243	48.800	42.292		26.28	А
		ATOM	2311	CG	ASP A	308	27	7.729	48.532	42.165		27.47	A
	45	ATOM	2312	OD1	ASP A	308	28	3.388	49.190	41.333		28.21	А
		ATOM	2313	OD2	ASP A	308	28	3.244	47.669	42.907	1.00	28.87	А
		ATOM	2314	С	ASP A	308	24	1.085	49.210	41.099	1.00	25.44	A
		ATOM	2315	0	ASP A	308	23	3.432	48.185	40.908	1.00	24.73	A
		MOTA	2316	N	GLN A	309	23	3.538	50.378	41.412	1.00	26.20	Α
	50	ATOM	2317	CA	GLN A	309		2.107	50.564	41.600	1.00	27.19	Α
		ATOM	2318	СВ	GLN A		21	.883	51.841	42.418	1.00	29.43	А
		ATOM	2319	CG	GLN A			0.482	52.415	42.375		31.19	А
		ATOM	2320	CD	GLN A			.365	53.699	43.180		32.48	А
		ATOM	2321		GLN A			9.472	54.514	42.948		32.65	А
	55	ATOM	2322		GLN A			.266	53.880	44.138		32.90	А

		ATOM	2323	С	GLN	Α	309	21.283	50.609	40.311	1.00 26.61	А
		MOTA	2324	0			309	20.108	50.240	40.314	1.00 27.21	А
		MOTA	2325	N			310	21.882	51.052	39.209	1.00 24.42	Α
		ATOM	2326	CA			310	21.139	51.128	37.954	1.00 22.88	A
	5	MOTA	2327	СВ			310	21.008	52.585	37.493	1.00 22.90	A
	9	ATOM	2328	CG			310	22.346	53.205	37.122	1.00 22.75	A
		ATOM	2329		ASN			23.261	52.516	36.676	1.00 21.47	A
		ATOM	2330		ASN			22.455	54.519	37.287	1.00 22.83	A
	40	ATOM	2331	С			310	21.733	50.314	36.810	1.00 21.49	A
	10	ATOM	2332	0	ASN	Α	310	21.148	50.254	35.731	1.00 20.97	A
		MOTA	2333	N	VAL	A	311	22.881	49.687	37.042	1.00 20.33	А
		MOTA	2334	CA	VAL	Α	311	23.546	48.921	35.991	1.00 19.01	А
		ATOM	2335	CB	VAL	Α	311	24.889	48.332	36.490	1.00 18.91	A
		ATOM	2336	CG1	VAL	Α	311	24.640	47.246	37.520	1.00 18.96	А
	15	MOTA	2337		VAL			25.696	47.800	35.307	1.00 18.47	Α
		ATOM	2338	С	VAL			22.694	47.804	35.389	1.00 19.05	А
		ATOM	2339	0	VAL			22.771	47.546	34.189	1.00 17.89	A
		ATOM	2340	N	ALA			21.876	47.146	36.205	1.00 17.91	A
Ŀ		ATOM	2341	CA	ALA			21.075	46.073	35.685	1.00 17.95	A
	20	ATOM	2342	CB	ALA			20.285	45.386	36.828	1.00 17.33	A
	20											
		ATOM	2343	C	ALA			20.046	46.609	34.652	1.00 17.45	A
ļ		ATOM	2344	0	ALA			19.895	46.033	33.574	1.00 17.13	A
:		ATOM	2345	N	ALA			19.377	47.712	34.979	1.00 17.23	A
	0.5	ATOM	2346	CA	ALA			18.402	48.316	34.074	1.00 17.36	А
! :.	25	MOTA	2347	CB	ALA			17.579	49.367	34.813	1.00 17.23	А
		MOTA	2348	С	ALA	Α	313	19.075	48.946	32.858	1.00 17.38	А
-		ATOM	2349	0	ALA	Α	313	18.564	48.854	31.741	1.00 17.13	А
		ATOM	2350	N	ARG	Α	314	20.215	49.591	33.079	1.00 17.39	A
		MOTA	2351	CA	ARG	Α	314	20.947	50.228	31.989	1.00 17.17	А
:	30	MOTA	2352	СВ	ARG			22.158	50.990	32.533	1.00 17.21	А
		MOTA	2353	CG	ARG			21.830	52.175	33.433	1.00 17.48	А
		ATOM	2354	CD	ARG			21.503	53.431	32.635	1.00 19.04	A
		MOTA	2355	NE	ARG			20.138	53.446	32.120	1.00 19.31	A
•		ATOM	2356	CZ	ARG			19.659	54.381	31.306	1.00 19.35	A
	35	ATOM	2357		ARG			20.439	55.377	30.905	1.00 19.82	A
	33		2358		ARG			18.396		30.908	1.00 19.86	A
		MOTA							54.338			
		ATOM	2359	С	ARG			21.420	49.160	31.010	1.00 17.18	A
		ATOM	2360	0	ARG			21.331	49.334	29.794	1.00 16.68	A
	40	MOTA	2361	N	SER			21.921	48.053	31.552	1.00 16.39	A
	4 0	MOTA	2362	CA	SER			22.412	46.949	30.730	1.00 16.91	А
		ATOM	2363	СВ	SER			23.072	45.879	31.605	1.00 15.94	A
		MOTA	2364	OG	SER			24.251	46.372	32.217	1.00 16.96	A
		ATOM	2365	С	SER	Α	315	21.284	46.319	29.929	1.00 17.74	А
		ATOM	2366	0	SER	Α	315	21.459	45.971	28.762	1.00 17.97	А
	45	MOTA	2367	N	ASP	Α	316	20.123	46.170	30.556	1.00 18.36	A
		ATOM	2368	CA	ASP	Α	316	18.985	45.573	29.875	1.00 19.21	А
		ATOM	2369	СВ	ASP			17.793	45.468	30.828	1.00 20.93	Α
		MOTA	2370	CG	ASP			16.731	44.517	30.321	1.00 22.66	A
		ATOM	2371		ASP			17.092	43.388	29.924	1.00 24.08	A
	50	ATOM	2372		ASP			15.541	44.894	30.324	1.00 24.17	A
		ATOM	2372	C	ASP			18.611	46.398	28.645	1.00 24.17	A
		ATOM	2374					18.301	45.845	27.590	1.00 18.31	
				O N	ASP							A
		ATOM	2375	N	LEU			18.653	47.720	28.778	1.00 18.38	A
	cc	ATOM	2376	CA	LEU			18.328	48.606	27.664	1.00 18.01	A
	55	ATOM	2377	CB	LEU	A	317	18.223	50.057	28.145	1.00 19.46	А

	ATOM	2378	CG	LEU	Α	317	16.873	50.535	28.682	1.00 2		A
	ATOM	2379	CD1	LEU	A	317	17.023	51.923	29.288	1.00 2		Α
	ATOM	2380	CD2	LEU			15.855	50.552	27.550	1.00 2		А
	ATOM	2381	С	LEU			19.376	48.523	26.560	1.00 1		Α
5	ATOM	2382	0	LEU			19.041	48.400	25.382	1.00 1		Α
	ATOM	2383	N	LEU	Α	318	20.645	48.583	26.949	1.00 1		A
	MOTA	2384	CA	LEU			21.740	48.541	25.985	1.00 1		A
	ATOM	2385	CB	LEU	Α	318	23.067	48.836	26.687	1.00 1		A
	ATOM	2386	CG	LEU	Α	318	24.286	48.971	25.768	1.00 1		A
10	MOTA	2387		LEU			24.029	50.057	24.731	1.00 1		A
	ATOM	2388	CD2	LEU			25.514	49.305	26.600	1.00 1		А
	MOTA	2389	С	LEU			21.840	47.217	25.237	1.00 1		A
	MOTA	2390	0	LEU			21.967	47.198	24.012	1.00 1		A
	ATOM	2391	N			319	21.786	46.108	25.967	1.00 1		A
15	ATOM	2392	CA	VAL	Α	319	21.871	44.799	25.331	1.00 1		A
	MOTA	2393	CB	VAL	Α	319	21.846	43.664	26.380	1.00 1		A
	MOTA	2394		VAL			21.744	42.313	25.690	1.00 1		А
	MOTA	2395	CG2	VAL			23.113	43.716	27.219	1.00 1		А
	MOTA	2396	С			319	20.719	44.611	24.346	1.00 1		A
20	MOTA	2397	0			319	20.881	43.986	23.298	1.00 1		A
	MOTA	2398	N			320	19.554	45.153	24.683	1.00 1		A
	MOTA	2399	CA			320	18.398	45.047	23.802	1.00 1		А
	MOTA	2400	CB			320	17.170	45.680	24.462	1.00 1		A
	MOTA	2401	CG	ASP			15.951	45.656	23.568	1.00 1		А
25	MOTA	2402		ASP			15.498	46.742	23.155	1.00 1		A
	ATOM	2403	OD2	ASP			15.448	44.551	23.276	1.00 1		A
	ATOM	2404	С			320	18.709	45.740	22.474	1.00 1		A
	MOTA	2405	0			320	18.373	45.231	21.404	1.00 1		A
•	MOTA	2406	N			321	19.351	46.903	22.547	1.00 1		A
30	MOTA	2407	CA	GLN			19.722	47.639	21.343	1.00 1		A
	MOTA	2408	CB			321	20.332	48.994	21.711	1.00 1		A
	ATOM	2409	CG			321	19.315	50.024	22.159	1.00 1		A
	MOTA	2410	CD			321	18.279	50.298	21.088	1.00 1		A
0-	ATOM	2411	OE1				18.612	50.718	19.980	1.00 1		A
35	MOTA	2412	NE2	GLN			17.013	50.059	21.412	1.00 1		A
	MOTA	2413	С			321	20.735	46.829	20.542	1.00 1		A
	MOTA	2414	0			321	20.627	46.707	19.321	1.00 1		A
	ATOM	2415	N			322	21.722	46.277	21.240	1.00 1		A
40	ATOM	2416	CA			322	22.749	45.475	20.590	1.00 1		A
40	ATOM	2417	СВ			322	23.773	44.969	21.609	1.00 1		A
	ATOM	2418	CG			322	24.703	46.009	22.163	1.00 1		A
	ATOM	2419		TRP			25.605	45.841	23.261	1.00 1		A
	ATOM	2420		TRP			26.321	47.050	23.404	1.00 1		A
4.5	ATOM	2421		TRP			25.879	44.782	24.138	1.00 1		A
45	MOTA	2422		TRP			24.899	47.279	21.696	1.00 1		A
	ATOM	2423		TRP			25.871	47.911	22.438	1.00 1		A
	ATOM	2424		TRP			27.297	47.233	24.393	1.00 1		A
	ATOM	2425		TRP			26.850	44.963	25.122	1.00 1		A
50	ATOM	2426		TRP			27.545	46.180	25.240	1.00 1		A
50	MOTA	2427	С			322	22.156	44.278	19.859	1.00 1		A
	MOTA	2428	0			322	22.532	43.988	18.722	1.00 1		A
	ATOM	2429	N			323	21.236	43.575	20.511	1.00 1		A
	ATOM	2430	CA			323	20.632	42.404	19.890	1.00 1		A
	ATOM	2431	CB			323	19.855	41.593	20.930	1.00 1		A
55	ATOM	2432	CG	LYS	A	323	20.799	40.871	21.888	1.00 1	5./6	А

	ATOM	2433	CD	LYS A	323	20.079	40.005	22.904	1.00 17.29	Α
	ATOM	2434	CE	LYS A	323	21.086	39.198	23.708	1.00 18.79	Α
	ATOM	2435	NZ	LYS A	323	20.428	38.323	24.710	1.00 21.17	Α
	ATOM	2436	С	LYS A	323	19.762	42.766	18.700	1.00 13.15	А
5	ATOM	2437	0	LYS A	323	19.599	41.968	17.780	1.00 13.47	Α
	ATOM	2438	N	LYS A	324	19.207	43.970	18.706	1.00 13.05	А
	ATOM	2439	CA	LYS A	324	18.406	44.406	17.570	1.00 12.21	Α
	ATOM	2440	CB	LYS A	324	17.600	45.655	17.930	1.00 12.37	Α
	MOTA	2441	CG	LYS A	324	16.388	45.327	18.789	1.00 13.50	А
10	MOTA	2442	CD	LYS A	324	15.678	46.561	19.319	1.00 13.76	Α
	MOTA	2443	CE	LYS A	324	14.437	46.144	20.106	1.00 15.09	Α
	MOTA	2444	NZ	LYS A	324	13.801	47.285	20.820	1.00 16.19	А
	MOTA	2445	С	LYS A	324	19.353	44.685	16.407	1.00 12.02	A
	MOTA	2446	0	LYS A	324	19.080	44.304	15.270	1.00 11.97	A
15	ATOM	2447	N	LYS A	325	20.476	45.339	16.691	1.00 11.78	Α
	MOTA	2448	CA	LYS A	325	21.447	45.624	15.639	1.00 11.37	Α
	MOTA	2449	CB	LYS A	325	22.614	46.454	16.191	1.00 10.87	Α
	MOTA	2450	CG	LYS A		23.515	47.051	15.105	1.00 10.75	A
	ATOM	2451	CD	LYS A		24.642	47.893	15.698	1.00 11.00	Α
20	ATOM	2452	CE	LYS A	325	25.433	48.604	14.603	1.00 11.39	Α
	ATOM	2453	NZ	LYS A	325	26.585	49.360	15.164	1.00 12.31	A
	ATOM	2454	С	LYS A	325	21.978	44.304	15.077	1.00 11.90	Α
	ATOM	2455	0	LYS A	325	22.136	44.147	13.865	1.00 11.75	A
	ATOM	2456	N	ALA A	326	22.240	43.351	15.968	1.00 11.87	Α
25	ATOM	2457	CA	ALA A	326	22.760	42.047	15.567	1.00 12.64	A
	MOTA	2458	CB	ALA A	326	23.024	41.192	16.804	1.00 12.66	A
	MOTA	2459	С	ALA A		21.839	41.299	14.603	1.00 13.43	А
	MOTA	2460	0	ALA A		22.294	40.453	13.831	1.00 13.86	A
	MOTA	2461	N	GLU A		20.545	41.599	14.653	1.00 13.80	A
30	MOTA	2462	CA	GLU A	327	19.584	40.942	13.770	1.00 14.81	A
	MOTA	2463	CB	GLU A		18.153	41.327	14.152	1.00 16.43	A
	ATOM	2464	CG	GLU A		17.575	40.504	15.277	1.00 18.89	A
	MOTA	2465	CD	GLU A		17.577	39.020	14.960	1.00 18.94	A
	ATOM	2466	OE1	GLU A		16.918	38.609	13.979	1.00 20.74	A
35	ATOM	2467		GLU A		18.244	38.265	15.691	1.00 20.08	A
	ATOM	2468	С	GLU A		19.810	41.296	12.308	1.00 14.28	A
	MOTA	2469	0	GLU A		19.367	40.581	11.409	1.00 15.39	A
	MOTA	2470	N	LEU A		20.504	42.404	12.075	1.00 13.70	A
40	ATOM	2471	CA	LEU A		20.764	42.860	10.718	1.00 12.00	A
40	ATOM		CB	LEU A					1.00 12.41	A
	MOTA	2473	CG	LEU A		19.833	45.202	11.399	1.00 12.20	A
	ATOM	2474		LEU A		20.108	46.687	11.208	1.00 13.82	A
	MOTA	2475		LEU A		18.465	44.838	10.828	1.00 13.12	A
4.5	MOTA	2476	C	LEU A		21.984	42.206	10.075	1.00 12.08	A
45	ATOM	2477	0	LEU A		22.240	42.411	8.888	1.00 12.28	A
	MOTA	2478	N	TYR A		22.731	41.422	10.851	1.00 11.18	A
	MOTA	2479	CA	TYR A		23.930	40.758	10.344	1.00 11.25	A
	ATOM	2480	CB	TYR A		25.175	41.342	11.018	1.00 11.22	A
F 0	ATOM	2481	CG	TYR A		25.376	42.809	10.695	1.00 11.53	A
50	ATOM	2482		TYR A		24.786	43.808	11.477	1.00 11.42	A
	ATOM	2483		TYR A		24.917	45.157	11.147	1.00 12.31	A
	ATOM	2484		TYR A		26.106	43.197	9.573	1.00 11.20	A
	ATOM	2485		TYR A		26.241	44.545	9.233	1.00 11.91	A
EE	ATOM	2486	CZ	TYR A		25.643	45.516	10.023	1.00 11.77	A
55	ATOM	2487	ОН	TYR A	329	25.764	46.845	9.678	1.00 12.68	А

		ATOM	2488	С	TYR	Α	329	23.890	39.240	10.492	1.00 1	2.08	F	Ą
		ATOM	2489	0	TYR			23.029	38.703	11.188	1.00 1	2.83	I	Ą
		ATOM	2490	N	ARG	Α	330	24.835	38.553	9.857	1.00 1	2.23	I	Ą
		ATOM	2491	CA	ARG	A	330	24.839	37.094	9.864	1.00 1	2.24	I	Ą
	5	ATOM	2492	СВ	ARG	A	330	25.202	36.589	8.465	1.00 1	1.88	I	J.
		ATOM	2493	CG	ARG	Α	330	24.278	37.129	7.393	1.00 1	1.69	I	A
		ATOM	2494	CD	ARG	Α	330	24.531	36.502	6.035	1.00 1		I	Į.
		ATOM	2495	NE	ARG	Α	330	23.611	37.062	5.052	1.00 1	2.25	I	4
		ATOM	2496	CZ	ARG			23.371	36.544	3.852	1.00 1	4.24	I	Ą
	10	MOTA	2497		ARG	Α	330	23.986	35.437	3.461	1.00 1	5.29	7	Ą
		ATOM	2498		ARG			22.503	37.137	3.043	1.00 1	4.59	I	Ą
		ATOM	2499	С	ARG			25.649	36.311	10.894	1.00 1	2.88	I	Ą
		ATOM	2500	0	ARG			25.425	35.109	11.046	1.00 1	4.62	I	Ą
		ATOM	2501	N	THR			26.584	36.950	11.588	1.00 1	2.94	1	A.
	15	ATOM	2502	CA	THR			27.372	36.225	12.584	1.00 1	2.09	I	Ą
		ATOM	2503	СВ	THR			28.890	36.471	12.418	1.00 1	1.53	1	4
		ATOM	2504	OG1	THR	А	331	29.216	37.792	12.869	1.00 1	1.21	I	Ą
		ATOM	2505		THR			29.298	36.310	10.956	1.00 1	2.94	I	ł.
		ATOM	2506	C	THR			26.990	36.640	13.996	1.00 1	2.54	1	Ą
	20	ATOM	2507	Ō	THR			26.150	37.516	14.188	1.00 1	3.43	7	4
		ATOM	2508	N	ASN			27.615	36.001	14.981	1.00 1	2.33	I	Ą
		ATOM	2509	CA	ASN			27.359	36.315	16.382	1.00 1	2.94	I	4
		ATOM	2510	СВ	ASN			27.323	35.028	17.218	1.00 1	3.86	I	4
		ATOM	2511	CG	ASN			28.676	34.344	17.310	1.00 1	5.72	I	Ą
	25	ATOM	2512		ASN			29.431	34.298	16.342	1.00 1	7.44	I	4
		ATOM	2513		ASN			28.979	33.789	18.481	1.00 1	7.45	I	Ą
		ATOM	2514	С	ASN			28.433	37.264	16.907	1.00 1	2.83	I	Ą
		ATOM	2515	0	ASN			28.721	37.300	18.105	1.00 1	3.18	I	4
		ATOM	2516	N	VAL			29.024	38.027	15.990	1.00 1		I	Ą
į	30	ATOM	2517	CA	VAL			30.055	39.005	16.323	1.00 1		1	Ą
	00	ATOM	2518	СВ	VAL			31.356	38.731	15.536	1.00 1	1.95	I	Ą
		ATOM	2519		VAL			32.431	39.733	15.937	1.00 1		I	J.
		ATOM	2520		VAL			31.827	37.312	15.796	1.00 1		I	Ą
		ATOM	2521	C	VAL			29.491	40.363	15.918	1.00 1	1.33	I	4
	35	ATOM	2522	Ö	VAL			29.179	40.582	14.752	1.00 1	1.56	1	Ą
	00	ATOM	2523	N	LEU			29.368	41.273	16.880	1.00 1		I	Ą
		ATOM	2524	CA	LEU			28.789	42.584	16.618	1.00 1		I	Ą
		ATOM	2525	СВ	LEU			27.590	42.796	17.550	1.00 1		I	4
		ATOM	2526	CG	LEU			26.775	44.076	17.371	1.00 1		Ī	A
	40	ATOM	2527		LEU					16.036	1.00 1		7	Ą
	10	ATOM	2528		LEU			25.780	44.215	18.514	1.00 1		Ĩ	Ą
		ATOM	2529	C	LEU			29.759	43.750	16.770	1.00 1		Ī	4
		ATOM	2530	0	LEU			30.512	43.827	17.739	1.00 1			4
		ATOM	2531	N	LEU			29.724	44.663	15.805	1.00 1			4
	45	ATOM	2532	CA	LEU			30.585	45.839	15.827		9.42		Ą
	40	ATOM	2533	CB	LEU			31.087	46.154	14.418		8.92		Δ,
		ATOM	2534	CG	LEU			31.857	47.471	14.284		9.26		A
		ATOM	2535		LEU			33.158	47.388	15.065	1.00 1			4
		ATOM	2536		LEU			32.128	47.755	12.813	1.00 1			Ą
	50	ATOM	2537	CDZ	LEU			29.812	47.041	16.351		9.28		4
	50	ATOM	2538	0	LEU			28.774	47.405	15.800	1.00 1			Α.
		ATOM	2539	N	ILE			30.324	47.654	17.412		9.16		Ą
			2539	CA	ILE			29.686	48.824	17.996		9.09		Ą
		ATOM	2541	CB	ILE			29.152	48.535	19.424		9.68		Ą
	55	ATOM	2541		ILE			28.562	49.805	20.024	1.00 1			Δ.
	55	ATOM	2342	CGZ	тпр	Δ,	550	20.302	17.003	20.024	1.00 1		•	-

		ATOM	2543	CG1	ILE A	336	28.089	47.432	19.383	1.00 9.33	A
		ATOM	2544		ILE A		26.848	47.786	18.595	1.00 10.48	Α
		ATOM	2545	C	ILE A		30.674	49.988	18.074	1.00 8.75	Α
					ILE A		31.454	50.087	19.018	1.00 9.03	A
	-	ATOM	2546	0						1.00 8.98	A
	5	MOTA	2547	N	PRO A		30.674	50.871	17.061		
		MOTA	2548	CD	PRO A		29.982	50.807	15.763	1.00 8.96	A
		ATOM	2549	CA	PRO A		31.598	52.008	17.104	1.00 9.22	A
		ATOM	2550	CB	PRO A	337	31.359	52.702	15.764	1.00 8.51	A
		ATOM	2551	CG	PRO A	337	30.921	51.585	14.871	1.00 8.89	А
	10	MOTA	2552	С	PRO A	337	31.217	52.913	18,271	1.00 8.95	A
	_ •	ATOM	2553	0	PRO A		30.039	53.021	18.609	1.00 10.28	Α
		ATOM	2554	N	LEU A		32.210	53.548	18.886	1.00 8.46	Α
		MOTA	2555	CA	LEU A		31.956	54.462	19.994	1.00 8.68	А
			2556	CB	LEU A		32.335	53.815	21.329	1.00 9.38	A
	15	MOTA							22.549	1.00 10.48	A
	15	ATOM	2557	CG	LEU A		31.988	54.674			
		MOTA	2558		LEU A		30.481	54.631	22.801	1.00 11.37	A
		ATOM	2559		LEU A		32.732	54.160	23.768	1.00 11.85	A
		MOTA	2560	С	LEU A		32.781	55.727	19.775	1.00 9.16	A
1:52		MOTA	2561	0	LEU A	338	33.925	55.823	20.220	1.00 9.47	А
	20	MOTA	2562	N	GLY A	339	32.194	56.695	19.079	1.00 9.45	Α
i juji		MOTA	2563	CA	GLY A	339	32.914	57.926	18.807	1.00 9.23	Α
Ų		ATOM	2564	С	GLY A		32.105	58.931	18.017	1.00 9.65	A
		ATOM	2565	0	GLY A		30.938	58.694	17.703	1.00 9.88	Α
		ATOM	2566	N	ASP A		32.739	60.054	17.690	1.00 9.87	A
ĨŲ.	25	ATOM	2567	CA	ASP A		32.103	61.130	16.943	1.00 9.83	А
	23						31.101	61.863	17.841	1.00 10.38	A
		MOTA	2568	CB	ASP A			62.568	17.041	1.00 10.50	A
1		ATOM	2569	CG	ASP A		30.001			1.00 11.04	A
8 }		MOTA	2570		ASP A		30.195	62.883	15.865		A
	20	ATOM	2571		ASP A		28.937	62.826	17.667	1.00 12.92	
13	30	MOTA	2572	С	ASP A		33.214	62.090	16.518	1.00 10.19	A
N.		MOTA	2573	0	ASP A	340	34.401	61.792	16.683	1.00 9.86	A
1 to		ATOM	2574	N	ASP A	341	32.825	63.244	15.991	1.00 10.61	А
[ali		MOTA	2575	CA	ASP A	341	33.785	64.242	15.532	1.00 10.48	A
1,25		ATOM	2576	CB	ASP A	341	33.048	65.413	14.884	1.00 12.00	. A
į.až	35	ATOM	2577	CG	ASP A		32.468	65.055	13.534	1.00 13.27	А
•	•	ATOM	2578		ASP A		32.494	63.861	13.173	1.00 13.14	A
		ATOM	2579		ASP A		31.984	65.972	12.832	1.00 17.12	A
		ATOM	2580	C	ASP A		34.694	64.765	16.637	1.00 10.31	
					ASP A		34.221	65.254	17.664	1.00 11.01	A
	40	ATOM	2581	0					16.404	1.00 11.01	A
	40	MOTA	2582	N	PHE A		36.000	64.657			
		ATOM		CA	PHE A			65.114		1.00 9.96	
		MOTA	2584	CB	PHE A		37.207	66.632	17.204	1.00 10.12	Α
		MOTA	2585	CG	PHE A	342	37.737	67.057	15.856	1.00 10.10	A
		ATOM	2586	CD1	PHE A	342	36.873	67.462	14.838	1.00 10.88	А
	45	ATOM	2587	CD2	PHE A	342	39.106	67.025	15.598	1.00 9.64	A
		ATOM	2588	CE1	PHE A	342	37.367	67.828	13.583	1.00 10.53	A
		ATOM	2589		PHE A		39.608	67.387	14.354	1.00 9.71	A
		ATOM	2590	CZ	PHE A		38.737	67.790	13.342	1.00 9.85	А
		ATOM	2591	C	PHE A		36.746	64.731	18.800	1.00 10.16	A
	50		2592	0	PHE A		36.740	65.543	19.721	1.00 11.34	A
	50	MOTA					36.339	63.482	19.002	1.00 11.34	A
		ATOM	2593	N G P	ARG A						
		ATOM	2594	CA	ARG A		36.068	62.981	20.345	1.00 10.14	A
		ATOM	2595	CB	ARG A		35.056	61.830	20.306	1.00 9.08	A
		ATOM	2596	CG	ARG A		33.613	62.266	20.104	1.00 9.69	A
	55	ATOM	2597	CD	ARG A	343	33.191	63.269	21.172	1.00 10.14	A

		ATOM	2598	NE	ARG .	Α	343	31.	763	63.572	21.122	1.00	11.19	Α
		ATOM	2599	CZ	ARG .			30.		62.853	21.722	1.00	10.93	Α
		ATOM	2600		ARG			31.		61.774	22.427		10.27	A
		ATOM	2601		ARG			29.		63.226	21.630		10.56	A
	5		2602	C	ARG .			37.		62.510	21.041		11.10	A
	5	ATOM								62.413	20.427		10.83	A
		ATOM	2603	0	ARG .			38.						A
		ATOM	2604	N	PHE.			37.		62.220	22.331		12.00	
		ATOM	2605	CA	PHE .			38.		61.762	23.168		12.90	A
		MOTA	2606	CB	PHE .			38.		60.398	22.681		12.98	A
	10	MOTA	2607	CG	PHE .	A	344	37.	794	59.305	22.851		12.50	A
		MOTA	2608	CD1	PHE .	Α	344	36.	975	58.922	21.796		12.67	A
		ATOM	2609	CD2	PHE .	A	344	37.	608	58.710	24.095	1.00	13.77	Α
		ATOM	2610	CE1	PHE .	Α	344	35.	981	57.966	21.975	1.00	12.90	A
		MOTA	2611	CE2	PHE .	Α	344	36.	617	57.752	24.286	1.00	13.51	A
	15	ATOM	2612	CZ	PHE .			35.		57.379	23.224	1.00	12.69	A
		ATOM	2613	С	PHE			39.		62.784	23.222	1.00	14.41	Α
		ATOM	2614	0	PHE			40.		62.458	23.059	1.00	14.24	Α
		ATOM	2615	N	LYS			39.		64.027	23.486		15.81	A
Janu.		ATOM	2616	CA	LYS			39.		65.152	23.566		18.16	Α
	20	ATOM	2617	CB	LYS .			39.		66.388	22.959		19.39	A
Ų.	20		2618	CG	LYS			40.		67.660	23.093		21.38	A
ij		ATOM			LYS			39.		68.841	22.535		23.37	A
m		ATOM	2619	CD						70.139	22.721		24.23	A
in the second		ATOM	2620	CE	LYS			40.					24.23	A
der den find total total find that	25	MOTA	2621	NZ	LYS			39.		71.293	22.183			
14	25	MOTA	2622	С	LYS			40.		65.463	24.997		19.45	A
Ų		MOTA	2623	0	LYS			41.		65.661	25.268		21.28	A
ijī.		MOTA	2624	N	GLN			39.		65.514	25.903		20.22	A
ā:		MOTA	2625	CA	GLN			39.		65.820	27.303		20.84	A
II.		ATOM	2626	CB	GLN			38.		66.640	27.879		23.49	A
Ē	30	MOTA	2627	CG	GLN			38.		67.921	27.116		27.90	A
		MOTA	2628	CD	GLN	A	346	36.	943	68.547	27.504		30.08	A
i 3≠		MOTA	2629	OE1	GLN	A	346	36.	708	68.850	28.673		32.64	A
ļ. 4 .		MOTA	2630	NE2	GLN	A	346	36.	068	68.742	26.522	1.00	31.15	A
		ATOM	2631	С	GLN	A	346	39.	882	64.562	28.142	1.00	20.09	А
}.:. :	35	MOTA	2632	0	GLN	A	346	39.	241	63.540	27.902	1.00	18.93	A
		MOTA	2633	N	ASN	Α	347	40.	763	64.647	29.135	1.00	19.30	A
		MOTA	2634	CA	ASN	A	347	41.	021	63.515	30.015	1.00	18.58	A
		ATOM	2635	СВ	ASN			42.		63.896	31.098	1.00	20.07	A
		ATOM	2636	CG	ASN			43.		64.081	30.546	1.00	21.88	А
	40	ATOM	2637		ASN			43.		63.181	29.909		22.61	А
	10	ATOM	2638		ASN			44.		65.250		1.00		A
		ATOM	2639	C	ASN			39.		63.067	30.669		17.30	А
			2640	0	ASN			39.		61.873	30.780		16.74	A
		ATOM						38.		64.036	31.094		16.16	A
	45	ATOM	2641	N	THR THR			37.		63.738	31.737		15.64	A
	40	ATOM	2642	CA						65.032	32.191		16.49	A
		ATOM	2643	CB	THR			36.			31.090		17.92	A
		ATOM	2644		THR			36.		65.945				
		MOTA	2645		THR			37.		65.692	33.332		17.02	A
	-0	MOTA	2646	C	THR			36.		62.956	30.803		14.77	A
	50	MOTA	2647	0	THR			35.		62.139	31.256		14.29	A
		ATOM	2648	N	GLU			36.		63.207	29.501		12.93	A
		MOTA	2649	CA	GLU			36.		62.497	28.523		12.93	A
		ATOM	2650	CB	GLU	Α	349	36.	149	63.146	27.142		12.36	A
		ATOM	2651	CG	GLU	Α	349	35.	352	62.407	26.079		12.45	A
	55	ATOM	2652	CD	GLU	Α	349	35.	495	62.998	24.691	1.00	12.49	A

	ATOM	2653	OE1	GLU	Α	349	34.930	62.400	23.754	1.00 13.64	А
	ATOM	2654	OE2	GLU	Α	349	36.158	64.044	24.535	1.00 13.87	Α
	ATOM	2655	С	GLU	Α	349	36.469	61.037	28.437	1.00 12.59	Α
	ATOM	2656	0	GLU	Α	349	35.632	60.134	28.384	1.00 12.35	Α
5	MOTA	2657	N	TRP	Α	350	37.778	60.804	28.414	1.00 12.37	Α
	ATOM	2658	CA			350	38.283	59.438	28.361	1.00 11.74	А
	ATOM	2659	СВ			350	39.816	59.412	28.372	1.00 10.85	A
	ATOM	2660	CG			350	40.438	59.655	27.030	1.00 10.74	А
	ATOM	2661		TRP			40.744	58.664	26.042	1.00 11.29	A
10	ATOM	2662		TRP			41.266	59.341	24.919	1.00 11.06	A
10	ATOM	2663		TRP			40.625	57.269	25.997	1.00 12.34	A
	ATOM	2664		TRP			40.780	60.861	26.482	1.00 12.34	A
									25.215	1.00 11.42	A
	ATOM	2665	NE1			350	41.279	60.679			
15	ATOM	2666		TRP			41.668	58.669	23.759	1.00 11.09	A
15	ATOM	2667		TRP			41.025	56.601	24.844	1.00 12.75	A
	MOTA	2668		TRP			41.539	57.303	23.740	1.00 12.45	A
	ATOM	2669	С			350	37.752	58.675	29.569	1.00 12.68	A
	ATOM	2670	0			350	37.269	57.552	29.443	1.00 12.87	A
20	ATOM	2671	N			351	37.828	59.300	30.739	1.00 13.49	A
20	MOTA	2672	CA	ASP	Α	351	37.357	58.670	31.965	1.00 14.43	А
	ATOM	2673	CB			351	37.669	59.542	33.184	1.00 15.49	А
	ATOM	2674	CG	ASP	Α	351	39.148	59.628	33.482	1.00 18.09	А
	ATOM	2675	OD1	ASP	Α	351	39.866	58.633	33.250	1.00 19.99	A
	MOTA	2676	OD2	ASP	Α	351	39.588	60.690	33.970	1.00 20.85	А
25	ATOM	2677	С	ASP	Α	351	35.864	58.374	31.960	1.00 13.60	А
	ATOM	2678	0	ASP	Α	351	35.451	57.260	32.286	1.00 14.13	А
	ATOM	2679	N	VAL	A	352	35.053	59.362	31.598	1.00 13.66	A
	MOTA	2680	CA	VAL	Α	352	33.612	59.165	31.609	1.00 13.97	А
	MOTA	2681	СВ	VAL	Α	352	32.855	60.483	31.278	1.00 15.02	А
30	MOTA	2682	CG1	VAL	Α	352	32.894	60.769	29.791	1.00 15.28	Α
	ATOM	2683	CG2	VAL	A	352	31.429	60.401	31.788	1.00 16.97	А
	ATOM	2684	С	VAL			33.160	58.043	.30.675	1.00 14.02	A
	MOTA	2685	0	VAL			32.286	57.256	31.031	1.00 14.06	А
	ATOM	2686	N	GLN			33.757	57.947	29.491	1.00 12.99	А
35	ATOM	2687	CA	GLN			33.367	56.888	28.569	1.00 12.34	А
	ATOM	2688	СВ	GLN			33.887	57.187	27.154	1.00 11.41	А
	ATOM	2689	CG	GLN			33.348	58.484	26.546	1.00 11.76	А
	ATOM	2690	CD	GLN			31.900	58.381	26.080	1.00 11.91	A
	ATOM	2691		GLN			31.080	57.703	26.698	1.00 12.30	А
40	ATOM	2692		GLN			31.578	59.072	24.991	1.00 11.88	A
10	ATOM	2693	C	GLN			33.890	55.528	29.042	1.00 12.28	A
	ATOM	2694	0	GLN			33.130	54.561	29.132	1.00 12.59	A
	ATOM	2695	N	ARG			35.179	55.455	29.365	1.00 11.64	A
	ATOM	2696	CA	ARG			35.775	54.192	29.799	1.00 12.41	A
45		2697					37.286	54.340	29.993	1.00 12.41	A
40	ATOM		CB	ARG				53.065		1.00 12.23	
	ATOM	2698	CG	ARG			37.955		30.508	1.00 12.77	A
	ATOM	2699	CD	ARG			39.456	53.247	30.716		A
	ATOM	2700	NE	ARG			39.768	54.280	31.702	1.00 15.21	A
Ε0	ATOM	2701	CZ	ARG			39.593	54.156	33.016	1.00 15.91	A
50	ATOM	2702		ARG			39.104	53.032	33.526	1.00 16.33	A
	ATOM	2703		ARG			39.912	55.158	33.824	1.00 16.46	A
	MOTA	2704	С	ARG			35.183	53.595	31.069	1.00 12.83	Α
	ATOM	2705	0	ARG			34.817	52.422	31.089	1.00 12.74	A
	MOTA	2706	N	VAL			35.102	54.395	32.128	1.00 12.88	A
55	ATOM	2707	CA	VAL	Α	355	34.577	53.912	33.401	1.00 13.28	А

		ATOM	2708	СВ	VAL	Α	355	34.650	55.009	34.485	1.00	13.60	А
		ATOM	2709	CG1	VAL	Α	355	34.053	54.498	35.789		16.28	А
		ATOM	2710	CG2	VAL	Α	355	36.100	55.418	34.706		14.36	Α
		ATOM	2711	С	VAL	Α	355	33.146	53.399	33.313		12.98	Α
	5	ATOM	2712	0	VAL	Α	355	32.836	52.322	33.826		13.34	Α
		MOTA	2713	N	ASN	Α	356	32.270	54.162	32.670		13.08	Α
		ATOM	2714	CA	ASN	Α	356	30.886	53.740	32.550		12.48	Α
		ATOM	2715	CB	ASN .			30.035	54.877	31.990		12.67	А
	_	MOTA	2716	CG	ASN.	Α	356	29.735	55.928	33.036		13.47	А
	10	ATOM	2717		ASN.			29.056	55.647	34.029		13.87	A
		MOTA	2718	ND2	ASN			30.250	57.138	32.835		13.69	A
		MOTA	2719	С	ASN.	A	356	30.751	52.472	31.716		12.85	A
		MOTA	2720	0	ASN.	A	356	29.980	51.576	32.066		12.64	А
		MOTA	2721	N	TYR .			31.504	52.370	30.627		12.12	А
	15	MOTA	2722	CA	TYR .			31.415	51.162	29.823		12.64	А
		MOTA	2723	CB	TYR .			32.072	51.358	28.451		12.21	А
		MOTA	2724	CG	TYR .			31.083	51.882	27.439		11.70	A
		ATOM	2725	CD1				30.894	53.251	27.261		11.24	A
į	• •	MOTA	2726	CE1	TYR .			29.917	53.736	26.393		11.52	A
	2 0	MOTA	2727	CD2				30.273	51.004	26.718		12.23	A
		ATOM	2728	CE2	TYR .			29.291	51.477	25.850		12.04	A
ε :-		ATOM	2729	CZ	TYR .			29.118	52.842	25.693		11.95	A
i' :		MOTA	2730	ОН	TYR .			28.142	53.306	24.847		12.56	A
} (0.5	MOTA	2731	С	TYR .			32.015	49.970	30.558		12.74	A
	25	MOTA	2732	0	TYR			31.524	48.848	30.430		12.97	A
		ATOM	2733	N	GLU			33.064	50.206	31.341		13.29	A
•		ATOM	2734	CA	GLU .			33.669	49.118	32.104		13.40	A
		ATOM	2735	СВ	GLU			34.871	49.612	32.910		15.05	A
ì.	20	ATOM	2736	CG	GLU			36.138	49.838	32.092		16.80	A
-	30	ATOM	2737	CD	GLU			37.310	50.270	32.956		18.32	A
		ATOM	2738		GLU .			37.115	50.453	34.176		20.90	A
		ATOM	2739		GLU .			38.426	50.430	32.421		18.81	A
;		ATOM	2740	C	GLU .			32.631	48.526	33.059		13.69	A
	25	ATOM	2741	0	GLU .			32.554	47.312	33.221		13.52	A
:	35	ATOM	2742	N	ARG .			31.833	49.387	33.686		13.66	A
		ATOM	2743	CA	ARG .			30.804	48.920	34.616		14.36 14.85	A A
		ATOM	2744	CB	ARG .			30.150	50.103 50.815	35.327 36.303		17.92	A
		MOTA	2745 2746	CG CD	ARG .			31.061 30.433	52.125	36.740		20.12	A
	40	ATOM	2740		ARG			31.315	52.896	37.608		22.12	A
	40	ATOM	2747	CZ	ARG			31.333	54.224	37.653		23.24	A
		ATOM ATOM	2749		ARG			30.516	54.926	36.874		23.08	A
		ATOM	2750		ARG .			32.168	54.850	38.473		24.71	A
		ATOM	2751	C	ARG .			29.737	48.108	33.893		13.89	A
	45	ATOM	2752	0	ARG			29.218	47.130	34.432		14.23	A
	40	ATOM	2753	N	LEU			29.406	48.517	32.672		13.60	A
		ATOM	2754	CA	LEU			28.410	47.803	31.886		13.35	A
		ATOM	2755	CB	LEU			28.031	48.621	30.645		12.99	A
		ATOM	2756	CG	LEU .			27.200	49.878	30.934		13.00	A
	50	ATOM	2757		LEU .			27.222	50.806	29.731		14.39	A
		ATOM	2758		LEU			25.771	49.481	31.276		14.37	A
		ATOM	2759	C	LEU			28.945	46.431	31.480		13.93	A
		ATOM	2760	0	LEU			28.239	45.430	31.585		14.58	A
		ATOM	2761	N	PHE			30.198	46.385	31.032		13.62	A
	55	ATOM	2762	CA	PHE			30.825	45.130	30.618		13.96	A
			2.02	Ų. I				50.525					

		ATOM	2763	CB	PHE	Α	361	32.254	45.375	30.115	1.00 13.34	Α
		ATOM	2764	CG	PHE			32.338	46.176	28.843	1.00 12.91	Α
		ATOM	2765		PHE			33.535	46.793	28.485	1.00 13.34	A
		ATOM	2766		PHE			31.238	46.310	28.002	1.00 12.77	A
	5									27.307	1.00 12.77	
	5	ATOM	2767		PHE			33.636	47.537			A
		ATOM	2768		PHE			31.329	47.052	26.819	1.00 12.47	A
		ATOM	2769	CZ	PHE			32.531	47.665	26.474	1.00 12.92	A
		ATOM	2770	С	PHE			30.889	44.134	31.774	1.00 14.49	А
		ATOM	2771	0	PHE			30.559	42.959	31.614	1.00 14.15	Α
	10	ATOM	2772	N	GLU	Α	362	31.329	44.601	32.939	1.00 15.28	Α
		MOTA	2773	CA	GLU	Α	362	31.441	43.712	34.089	1.00 15.96	Α
		ATOM	2774	СВ	GLU	Α	362	31.969	44.459	35.316	1.00 18.25	А
		ATOM	2775	CG	GLU			32.329	43.518	36.464	1.00 22.03	Α
		ATOM	2776	CD	GLU			32.708	44.244	37.740	1.00 24.32	А
	15	ATOM	2777	OE1				33.483	45.218	37.667	1.00 25.76	А
		ATOM	2778	OE2				32.238	43.829	38.821	1.00 26.40	A
		ATOM	2779	C	GLU			30.095	43.084	34.427	1.00 15.98	A
		ATOM	2780	0	GLU			30.010	41.886	34.691	1.00 16.22	A
		MOTA	2781		HIS			29.044	43.894	34.417	1.00 15.25	A
And the	20	ATOM	2782	N				27.717	43.387	34.732	1.00 15.25	A
	20			CA	HIS						1.00 15.49	
13		ATOM	2783	CB	HIS			26.727	44.537	34.914		A
		MOTA	2784	CG	HIS			25.345	44.085	35.267	1.00 17.92	A
		ATOM	2785		HIS			24.204	44.054	34.539	1.00 18.79	A
fictor [®] sus s	05	MOTA	2786		HIS			25.034	43.533	36.491	1.00 18.98	А
	25	MOTA	2787		HIS			23.761	43.180	36.502	1.00 18.19	A
44		MOTA	2788		HIS			23.234	43.484	35.330	1.00 19.23	А
		ATOM	2789	С	HIS	Α	363	27.199	42.450	33.650	1.00 15.11	А
Bţ		MOTA	2790	0	HIS	Α	363	26.834	41.309	33.925	1.00 15.10	A
		ATOM	2791	N	ILE	А	364	27.168	42.937	32.415	1.00 14.72	A
	30	ATOM	2792	CA	ILE	Α	364	26.679	42.146	31.297	1.00 14.52	Α
1,1551 848 S		MOTA	2793	CB	ILE	Α	364	26.810	42.932	29.975	1.00 13.45	Α
113		ATOM	2794	CG2	ILE	Α	364	26.416	42.043	28.795	1.00 13.94	A
		ATOM	2795	CG1	ILE	Α	364	25.914	44.172	30.027	1.00 13.32	A
		ATOM	2796	CD1				26.170	45.165	28.912	1.00 13.44	А
[.4.	35	ATOM	2797	С	ILE			27.388	40.807	31.141	1.00 14.67	А
•		ATOM	2798	0	ILE			26.741	39.769	30.996	1.00 15.31	А
		ATOM	2799	N	ASN			28.715	40.822	31.175	1.00 15.38	A
		ATOM	2800	CA	ASN			29.480	39.594	31.005	1.00 15.76	A
		ATOM	2801	СВ	ASN			30.957	39.917	30.771	1.00 15.37	A
	40	ATOM	2802	CG	ASN			31.177	40.768	29.533	1.00 15.04	A
	40		2803		-			30.276	40.700	28.710	1.00 13.04	Ā
		MOTA			ASN					29.393	1.00 14.75	
		ATOM	2804		ASN			32.383	41.305			A
		ATOM	2805	C	ASN			29.348	38.609	32.162	1.00 17.60	A
	45	ATOM	2806	0	ASN			29.662	37.430	32.005	1.00 17.46	A
	45	MOTA	2807	N	SER			28.879	39.087	33.313	1.00 19.18	A
		ATOM	2808	CA	SER			28.717	38.226	34.484	1.00 21.16	А
		ATOM	2809	CB	SER	A	366	29.114	38.976	35.761	1.00 21.81	A
		MOTA	2810	OG	SER			28.220	40.039	36.033	1.00 22.86	A
		ATOM	2811	С	SER	Α	366	27.287	37.714	34.622	1.00 22.10	Α
	50	ATOM	2812	0	SER	Α	366	27.020	36.810	35.414	1.00 22.66	Α
		MOTA	2813	N	GLN	A	367	26.373	38.299	33.854	1.00 23.09	Α
		ATOM	2814	CA	GLN	Α	367	24.968	37.903	33.877	1.00 24.10	Α
		ATOM	2815	СВ	GLN			24.064	39.132	33.749	1.00 25.62	Α
		ATOM	2816	CG	GLN			24.086	40.044	34.963	1.00 28.14	Α
	55	ATOM	2817	CD	GLN			23.515	39.374	36.195	1.00 29.20	А

		ATOM	2818	OE1	GLN	Α	367	22.337	39.015	36.229	1.00 30.22	А
		ATOM	2819		GLN			24.348	39.197	37.215	1.00 30.01	Α
		ATOM	2820	С	GLN			24.693	36.942	32.726	1.00 23.83	А
		ATOM	2821	Ö	GLN			24.413	37.363	31.604	1.00 23.81	A
	5	ATOM	2822	N	ALA			24.765	35.649	33.019	1.00 23.74	А
	•	ATOM	2823	CA	ALA			24.549	34.608	32.020	1.00 23.29	A
		ATOM	2824	CB	ALA			24.533	33.244	32.700	1.00 23.52	А
		ATOM	2825	C	ALA			23.293	34.771	31.165	1.00 23.34	A
		ATOM	2826	0	ALA			23.315	34.476	29.970	1.00 23.34	A
	10	ATOM	2827	N	HIS			22.202	35.238	31.767	1.00 23.07	A
	10	ATOM	2828	CA	HIS			20.948	35.400	31.036	1.00 23.07	A
			2829		HIS			19.854	35.924	31.030	1.00 24.69	A
		ATOM		CB				20.074	37.327	32.448	1.00 25.89	A
		ATOM	2830	CG	HIS					33.619	1.00 25.69	A
	15	ATOM	2831		HIS			20.553	37.810			
	15	ATOM	2832		HIS			19.795	38.427	31.666	1.00 26.84	A
		ATOM	2833		HIS			20.090	39.527	32.335	1.00 26.51	A
		ATOM	2834		HIS			20.553	39.180	33.523	1.00 27.03	A
		ATOM	2835	C	HIS			21.064	36.299	29.803	1.00 21.99	A
	20	ATOM	2836	0	HIS			20.220	36.245	28.908	1.00 22.01	A
1	20	MOTA	2837	N	PHE			22.110	37.119	29.755	1.00 21.21	A
1 (1 mg)		MOTA	2838	CA	PHE			22.329	38.006	28.615	1.00 19.78	A
		MOTA	2839	CB	PHE			23.266	39.156	28.998	1.00 21.09	A
Tieser E ^l E B		MOTA	2840	CG	PHE			22.592	40.279	29.736	1.00 21.42	A
	~=	ATOM	2841		PHE			23.168	40.813	30.883	1.00 22.09	A
	25	ATOM	2842		PHE			21.401	40.826	29.267	1.00 22.35	A
i di		ATOM	2843		PHE			22.571	41.879	31.553	1.00 22.54	А
		ATOM	2844		PHE			20.795	41.894	29.931	1.00 22.87	A
#1		ATOM	2845	CZ	PHE			21.384	42.420	31.076	1.00 22.18	А
i ang		ATOM	2846	С	PHE			22.953	37.235	27.456	1.00 18.22	A
	30	ATOM	2847	0	PHE			22.673	37.515	26.288	1.00 17.08	A
7,5 527 149 €		ATOM	2848	N	ASN			23.802	36.268	27.791	1.00 16.98	A
195		MOTA	2849	CA	ASN	A	371	24.498	35.463	26.794	1.00 15.64	A
ļat.		MOTA	2850	CB	ASN	Α	371	23.500	34.613	26.004	1.00 16.15	A
		ATOM	2851	CG	ASN	A	371	22.826	33.565	26.870	1.00 16.71	A
1.4	35	ATOM	2852	OD1	ASN	A	371	23.483	32.668	27.401	1.00 18.32	A
		MOTA	2853	ND2	ASN	A	371	21.513	33.679	27.024	1.00 17.75	A
		ATOM	2854	С	ASN	A	371	25.281	36.383	25.865	1.00 15.24	A
		MOTA	2855	0	ASN	A	371	25.259	36.232	24.640	1.00 15.41	Α
		MOTA	2856	N	VAL	A	372	25.973	37.340	26.478	1.00 14.72	Α
	40	MOTA	2857	CA	VAL	A	372	26.784	38.318	25.763	1.00 14.11	A
		MOTA	2858	CB	VAL .	A	372	26.121	39.723	25.792	1.00 14.33	Α
		ATOM	2859		VAL .			27.095	40.780	25.264	1.00 13.94	Α
		MOTA	2860		VAL			24.847	39.720	24.964	1.00 14.60	А
		MOTA	2861	С	VAL .			28.161	38.447	26.407	1.00 14.50	А
	45	ATOM	2862	0	VAL .	Α	372	28.302	38.339	27.624	1.00 14.25	Α
		ATOM	2863	N	GLN			29.172	38.661	25.573	1.00 14.04	A
		ATOM	2864	CA	GLN			30.539	38.877	26.031	1.00 14.11	Α
		ATOM	2865	СВ	GLN			31.452	37.713	25.631	1.00 14.92	A
		ATOM	2866	CG	GLN .			32.933	37.914	25.971	1.00 16.67	A
	50	ATOM	2867	CD	GLN			33.172	38.273	27.432	1.00 17.93	A
		ATOM	2868		GLN .			32.509	37.754	28.329	1.00 19.36	A
		ATOM	2869		GLN .			34.136	39.154	27.675	1.00 17.77	A
		ATOM	2870	C	GLN .			30.946	40.155	25.307	1.00 13.61	A
		ATOM	2871	0	GLN .			31.222	40.133	24.106	1.00 13.01	A
	55		2872		ALA .			30.950	41.263	26.040	1.00 13.94	Ā
	55	MOTA	2012	N	ALA .	Α.	J 14	30.930	41.202	20.040	1.00 12.03	W

			0070	~ -		274	21 201	40 550	05 466	1 00 10 16	
		ATOM	2873	CA	ALA A	3/4	31.281	42.558	25.466	1.00 12.16	A
		ATOM	2874	CB	ALA A	. 374	30.183	43.553	25.800	1.00 11.40	А
		ATOM	2875	С	ALA A	374	32.623	43.085	25.949	1.00 12.23	Α
		ATOM	2876	Ō	ALA A		33.012	42.869	27.094	1.00 11.95	A
	=										
	5	MOTA	2877	N	GLN A		33.323	43.796	25.074	1.00 11.84	Α
		MOTA	2878	CA	GLN A	. 375	34.619	44.356	25.432	1.00 12.49	Α
		ATOM	2879	CB	GLN A	375	35.685	43.258	25.461	1.00 14.15	A
		ATOM	2880	CG	GLN A		35.804	42.468	24.160	1.00 17.09	А
					GLN A		34.957	41.211	24.165	1.00 19.74	A
	10	ATOM	2881	CD							
	10	MOTA	2882		GLN A		35.187	40.302	24.964	1.00 21.17	A
		MOTA	2883	NE2	GLN A	. 375	33.971	41.151	23.274	1.00 20.69	Α
		MOTA	2884	С	GLN A	. 375	35.059	45.424	24.448	1.00 11.84	A
		ATOM	2885	0	GLN A	375	34.518	45.526	23.348	1.00 11.73	A
		ATOM	2886	N	PHE A		36.032	46.232	24.859	1.00 11.18	A
	15										
	15	MOTA	2887	CA	PHE A		36.579	47.245	23.969	1.00 10.74	A
		ATOM	2888	CB	PHE A		37.515	48.197	24.720	1.00 10.14	A
		MOTA	2889	CG	PHE A	376	36.814	49.112	25.681	1.00 10.91	Α
		MOTA	2890	CD1	PHE A	376	37.163	49.120	27.028	1.00 11.12	Α
212276.		ATOM	2891		PHE A		35.807	49.971	25.243	1.00 11.24	A
	20				PHE A		36.518	49.970	27.927	1.00 11.39	A
.D	20	ATOM	2892								
		ATOM	2893		PHE A		35.158	50.825	26.138	1.00 11.60	А
Telephone andrean		ATOM	2894	CZ	PHE A	376	35.516	50.821	27.482	1.00 11.57	А
5,3 B		ATOM	2895	С	PHE A	376	37.386	46.450	22.954	1.00 11.25	Α
		MOTA	2896	0	PHE A		38.015	45.448	23.297	1.00 10.76	Α
M	25	ATOM	2897	N	GLY A		37.364	46.882	21.702	1.00 11.05	Α
PTET	20				GLY A			46.171	20.693	1.00 10.92	A
		MOTA	2898	CA			38.121				
iji.		ATOM	2899	С	GLY A		38.524	47.092	19.565	1.00 10.93	A
El		ATOM	2900	0	GLY A	377	38.196	48.277	19.577	1.00 10.75	A
		ATOM	2901	N	THR A	378	39.257	46.549	18.600	1.00 10.49	A
	30	MOTA	2902	CA	THR A	378	39.674	47.333	17.447	1.00 11.19	Α
1,00	-	MOTA	2903	СВ	THR A		41.187	47.214	17.182	1.00 11.98	A
į.		ATOM	2904	OG1			41.508	45.860	16.845	1.00 11.89	A
4194		ATOM	2905	CG2			41.981	47.640	18.411	1.00 12.75	А
		ATOM	2906	С	THR A	378	38.924	46.809	16.228	1.00 10.71	А
[a4:	35	ATOM	2907	0	THR A	378	38.233	45.788	16.296	1.00 10.80	Α
		ATOM	2908	N	LEU A	379	39.059	47.509	15.111	1.00 10.53	A
		ATOM	2909	CA	LEU A		38.386	47.101	13.888	1.00 9.83	А
										1.00 9.72	
		ATOM	2910	CB	LEU A		38.605	48.160	12.803		A
	40	MOTA	2911	CG	LEU A		37.862	47.943	11.483	1.00 9.77	A
	40	ATOM	2912		LEU A		36.357	47.930	11.748	1.00 10.37	Α
		ATOM	2913	CD2	LEU A	379	38.227	49.050	10.493	1.00 10.95	Α
		ATOM	2914	С	LEU A	379	38.879	45.738	13.399	1.00 10.38	Α
		ATOM	2915	0	LEU A		38.083	44.878	13.017	1.00 10.10	А
					GLN A			45.538		1.00 10.27	
	1=	ATOM	2916	N			40.193		13.415		A
	45	MOTA	2917	CA	GLN A		40.764	44.274	12.964	1.00 10.67	А
		ATOM	2918	CB	GLN A	380	42.292	44.339	13.003	1.00 11.35	A
		ATOM	2919	CG	GLN A	380	42.975	43.119	12.410	1.00 14.06	Α
		ATOM	2920		GLN A		42.611	42.913	10.957	1.00 15.62	А
		ATOM	2921		GLN A		42.678	43.846	10.155	1.00 16.75	A
	EΩ										
	50	ATOM	2922		GLN A		42.228	41.687	10.604	1.00 17.08	A
		MOTA	2923	С	GLN A		40.262	43.114	13.825	1.00 10.55	Α
		MOTA	2924	0	GLN A	380	40.008	42.021	13.316	1.00 11.04	A
		ATOM	2925	N	GLU A	381	40.117	43.347	15.127	1.00 10.91	A
		ATOM	2926	CA	GLU A		39.633	42.298	16.016	1.00 11.75	А
	55										A
		ATOM	2927	СВ	GLU A	201	39.657	42.768	17.473	1.00 13.13	А

		ATOM	2928	CG	GLU A	381	41.0	63 43.	061 1	7.981	1.00	16.73	А
		ATOM	2929	CD	GLU A	381	41.1	08 43.	354 1	9.465	1.00	19.29	А
		ATOM	2930		GLU A		40.2	66 44.	141 1	9.941	1.00	18.94	Α
		ATOM	2931		GLU A		41.9		805 2	20.154	1.00	22.67	А
	5	ATOM	2932	С	GLU A		38.2	19 41.	884 1	5.621	1.00	10.96	А
		ATOM	2933	0	GLU A		37.8			5.661	1.00	12.22	А
		ATOM	2934	N	TYR A	382	37.3		857 1	5.244	1.00	10.23	A
		ATOM	2935	CA	TYR A		36.0			4.821	1.00	9.86	А
		ATOM	2936	СВ	TYR A		35.2			4.488	1.00	10.34	A
	10	ATOM	2937	CG	TYR A		33.9			3.784	1.00	9.83	А
		ATOM	2938		TYR A		32.8			4.467	1.00	9.54	А
		MOTA	2939		TYR A		31.7	02 42.	700 1	3.809	1.00	9.35	Α
		ATOM	2940°		TYR A		33.8		839 1	2.418	1.00	10.35	А
		ATOM	2941		TYR A		32.6		528 1	1.750	1.00	10.43	A
	15	ATOM	2942	CZ	TYR A		31.5	31 42.	957 1	2.453	1.00	10.11	Α
		MOTA	2943	ОН	TYR A	382	30.4	10 42.	625 1	1.805	1.00	10.25	А
		ATOM	2944	С	TYR A	382	36.0	51 41.	676 1	3.581	1.00	10.29	Α
		ATOM	2945	0	TYR A	382	35.4	38 40.	617 1	3.546	1.00	10.12	A
į (mili		MOTA	2946	N	PHE A	383	36.7	75 42.	120 1	2.553	1.00	9.08	A
	20	MOTA	2947	CA	PHE A	383	36.8	52 41.	353 1	1.320	1.00	9.53	Α
*,6±8 , ≥≠8		ATOM	2948	СВ	PHE A	383	37.6	57 42.	121 1	0.268	1.00	9.49	Α
9,5 ₄ 2 41995		ATOM	2949	CG	PHE A	383	36.8	98 43.	262	9.638	1.00	9.73	А
1,5 S		ATOM	2950	CD1	PHE A	383	37.4	06 44.	555	9.676	1.00	9.70	А
		MOTA	2951		PHE A		35.6	78 43.	038	9.003	1.00	10.22	Α
	25	ATOM	2952	CE1	PHE A	383	36.7)9 45.	613	9.091	1.00	10.19	А
4		MOTA	2953	CE2	PHE A	383	34.9	71 44.	088	8.415	1.00	11.04	А
M		ATOM	2954	CZ	PHE A	383	35.4	90 45.	378	8.459	1.00	11.28	А
ĒĮ.		ATOM	2955	С	PHE A	383	37.4	11 39.	961 1	1.528	1.00	9.84	А
		ATOM	2956	0	PHE A	383	36.9	71 38.	993 1	0.926	1.00	10.29	A
1000 1000 1000 1000 1000 1000 1000 100	30	MOTA	2957	N	ASP A	384	38.4	56 39.	851 1	2.370	1.00	10.93	A
		MOTA	2958	CA	ASP A	384	39.0	57 38.	543 1	2.625	1.00	12.16	А
1 1 27		MOTA	2959	CB	ASP A	384	40.2	39 38.		3.608	1.00	13.63	A
5120E		MOTA	2960	CG	ASP A	384	41.4	32 39.	262 1	2.980	1.00	14.89	A
		MOTA	2961		ASP A		41.5			1.735		16.13	А
ļ.	35	MOTA	2962	OD2	ASP A		42.3			3.739		17.90	A
		ATOM	2963	С	ASP A		38.0			3.196		11.66	А
		ATOM	2964	0	ASP A		37.9			2.777		11.92	A
		MOTA	2965	N	ALA A		37.2			4.147		11.48	A
	40	MOTA	2966	CA	ALA A		36.1			4.771		11.44	A
	40	MOTA	2967	CB	ALA A		35.5			5.957		12.50	A
		ATOM	2968	С	ALA A		35.0			3.765		11.73	A
		ATOM	2969	0	ALA A		34.6			3.758		11.52	A
		ATOM	2970	N	VAL A		34.7			2.912		11.15	A
	45	ATOM	2971	CA	VAL A		33.6			1.904		11.93	A
	4 5	MOTA	2972	CB	VAL A		33.43			1.042		11.54	A
		ATOM	2973		VAL A		32.5		471	9.826		12.39	A
		ATOM	2974		VAL A		32.7			1.874		12.20	A
		ATOM	2975	С	VAL A		34.1			0.986		12.29	A
	50	ATOM	2976	0	VAL A		33.3			0.706		12.49	A
	50	ATOM	2977	N	HIS A		35.3			0.513		12.25	A
		ATOM	2978	CA	HIS A		35.83		440	9.619		12.83	A
		MOTA	2979	CB	HIS A		37.09			8.899		12.37	A
		ATOM	2980	CG	HIS A		36.83		039	7.942		13.26	A
	C C	ATOM	2981		HIS A		37.28			7.909		13.42	A
	55	ATOM	2982	ND1	HIS A	387	35.9	0 36.	916	6.886	1.00	14.23	А

		T TO M	2002	CE1	UTC	70	207	25 071	20 060	6.245	1.00 14.01	71
		ATOM	2983		HIS			35.871	38.069			A
		ATOM	2984		HIS			36.668	38.934	6.846	1.00 13.21	A
		ATOM	2985	С			387	36.049	34.111	10.331	1.00 13.93	Α
		MOTA	2986	0			387	35.995	33.050	9.708	1.00 13.04	Α
	5	MOTA	2987	N	GLN	Α	388	36.281	34.166	11.639	1.00 14.93	Α
		MOTA	2988	CA	GLN	Α	388	36.446	32.944	12.413	1.00 17.07	Α
		MOTA	2989	CB	GLN	Α	388	36.914	33.272	13.833	1.00 18.68	Α
		ATOM	2990	CG	GLN	Α	388	38.403	33.574	13.937	1.00 22.09	Α
		ATOM	2991	CD	GLN			38.764	34.330	15.206	1.00 24.01	Α
	10	ATOM	2992		GLN			38.272	34.020	16.291	1.00 26.13	Α
		ATOM	2993		GLN			39.637	35.324	15.075	1.00 25.42	A
		ATOM	2994	C	GLN			35.081	32.260	12.443	1.00 23.12	A
		ATOM	2995	0	GLN			34.983	31.039	12.342	1.00 17.57	A
	1 =	ATOM	2996	N	ALA			34.027	33.063	12.566	1.00 18.15	A
	15	ATOM	2997	CA	ALA			32.663	32.543	12.594	1.00 19.02	Α
		ATOM	2998	CB	ALA			31.688	33.647	12.990	1.00 18.44	Α
		MOTA	2999	С	ALA	A	389	32.310	31.996	11.215	1.00 20.03	Α
		MOTA	3000	0	ALA	Α	389	31.630	30.976	11.093	1.00 20.84	Α
		MOTA	3001	N	GLU	Α	390	32.776	32.688	10.178	1.00 20.86	A
tioner Little	20	ATOM	3002	CA	GLU	A	390	32.535	32.278	8.800	1.00 22.27	Α
1, <u>1</u>		ATOM	3003	СВ	GLU			33.109	33.326	7.839	1.00 21.67	Α
		ATOM	3004	CG	GLU			33.223	32.874	6.390	1.00 22.55	Α
		ATOM	3005	CD	GLU			33.774	33.964	5.491	1.00 22.57	A
		ATOM	3006		GLU			34.653	34.722	5.953	1.00 22.88	A
Ŋ	25	MOTA	3000		GLU			33.341	34.722	4.323	1.00 22.60	A
Marie 1	20							33.181	30.920	8.544	1.00 23.75	A
		ATOM	3008	С	GLU							
44,4		ATOM	3009	0	GLU			32.563	30.028	7.960	1.00 23.58	A
āŧ		ATOM	3010	N	ARG			34.426	30.769	8.984	1.00 25.19	A
	20	ATOM	3011	CA	ARG			35.147	29.514	8.810	1.00 27.32	A
	30	ATOM	3012	CB	ARG			36.609	29.675	9.233	1.00 28.48	Α
		MOTA	3013	CG	ARG	A	391	37.457	30.466	8.248	1.00 30.71	Α
1 T		MOTA	3014	CD	ARG	Α	391	38.898	30.573	8.723	1.00 32.35	Α
[-1.		MOTA	3015	NE	ARG	Α	391	39.021	31.418	9.907	1.00 34.70	Α
		MOTA	3016	CZ	ARG	Α	391	40.147	31.591	10.591	1.00 35.47	Α
ind:	35	ATOM	3017	NH1	ARG	А	391	41.259	30.973	10.212	1.00 36.35	Α
		ATOM	3018		ARG			40.165	32.386	11.652	1.00 36.12	Α
		ATOM	3019	С	ARG			34.488	28.403	9.621	1.00 27.87	Α
		ATOM	3020	0	ARG			34.553	27.230	9.250	1.00 28.52	A
		ATOM	3021	N	ALA			33.855	28.774	10.729	1.00 28.42	A
	40	ATOM	3022	CA	ALA			33.174	27.798	11.572	1.00 29.34	A
	40	ATOM	3023								1.00 29.39	A
		ATOM	3024	C	ALA			31.918	27.334	10.843	1.00 29.94	A
		ATOM	3025	0	ALA			31.238	26.404	11.278	1.00 30.20	A
	4	ATOM	3026	N	GLY			31.621	27.997	9.729	1.00 30.21	A
	45	MOTA	3027	CA	GLY			30.459	27.647	8.936	1.00 30.73	А
		MOTA	3028	С	GLY	Α	393	29.137	28.156	9.476	1.00 30.90	Α
		ATOM	3029	0	GLY	Α	393	28.089	27.583	9.186	1.00 30.72	Α
		ATOM	3030	N	GLN	Α	394	29.167	29.230	10.258	1.00 31.23	Α
		ATOM	3031	CA	GLN	А	394	27.926	29.762	10.803	1.00 31.55	Α
	50	ATOM	3032	СВ	GLN			28.125	30.254	12.243	1.00 32.81	Α
		ATOM	3033	CG	GLN			28.869	31.566	12.379	1.00 34.09	A
		ATOM	3034	CD	GLN			28.756	32.150	13.777	1.00 34.34	A
		ATOM	3035		GLN			29.246	31.573	14.749	1.00 34.54	A
		ATOM	3035		GLN			28.099	33.299	13.883	1.00 34.30	A
	55											A
	<i>JJ</i>	ATOM	3037	С	GLN	Н	J 7 4	27.373	30.892	9.944	1.00 30.68	А

	ΛΤΩM	3030	0	CIN	Λ	301	26 308	31 434	10 233	1 00	31 18	А
												A
												A
												A
_												
5												A
												A
												A
												A
												A
10												Α
	ATOM											A
	MOTA	3049										A
	ATOM	3050	OE2				24.054					A
	ATOM	3051	C	GLU	A	396	27.610	34.134				A
15	ATOM	3052	0	GLU	Α	396	26.559	34.675	4.147	1.00	22.54	А
	ATOM	3053	N	PHE	Α	397	28.528	34.756				А
	ATOM	3054	CA	PHE	A	397	28.313	36.134	2.661			Α
	ATOM	3055	CB	PHE	Α	397	29.530	36.988	3.024	1.00	14.03	А
	ATOM	3056	CG	PHE	Α	397	29.830	37.014	4.493	1.00	11.87	A
20	ATOM	3057	CD1	PHE	Α	397	30.916	36.315	5.008	1.00	12.64	A
	ATOM	3058	CD2	PHE	A	397	29.010	37.718	5.367	1.00	11.17	Α
	ATOM						31.181	36.318	6.379	1.00	12.60	A
	ATOM		CE2	PHE	Α	397		37.725	6.737	1.00	11.98	A
								37.024	7.240	1.00	12.05	А
25							27.998	36.295		1.00	13.50	A
							28.549		0.334	1.00	13.62	А
									0.857	1.00	11.54	A
												А
												А
30												A
												А
												А
												A
												A
35												A
00												A
												A
												A
												A
40												A
40												
												A
												A
												A
4 =												
45												A
												A
												A
												A
F 0												A
วบ												A
												A
												A
			С									A
	MOTA		0									A
55	MOTA	3092	N	GLY	A	402	28.943	47.069	-8.021	1.00	7.28	А
	5 10 15 20 25 30 35 40 45 50	10 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 3039 ATOM 3040 ATOM 3041 ATOM 3042 ATOM 3043 ATOM 3044 ATOM 3045 ATOM 3046 10 ATOM 3047 ATOM 3049 ATOM 3050 ATOM 3051 15 ATOM 3052 ATOM 3053 ATOM 3054 ATOM 3055 ATOM 3056 ATOM 3057 ATOM 3058 ATOM 3058 ATOM 3060 ATOM 3061 ATOM 3061 ATOM 3062 ATOM 3063 ATOM 3063 ATOM 3063 ATOM 3063 ATOM 3063 ATOM 3063 ATOM 3065 ATOM 3065 ATOM 3067 ATOM 3067 ATOM 3070 ATOM 3070 ATOM 3071 35 ATOM 3070 ATOM 3071 ATOM 3075 ATOM 3076 ATOM 3076 ATOM 3076 ATOM 3076 ATOM 3077 ATOM 3078 ATOM 3078 ATOM 3079 ATOM 3079 ATOM 3080 ATOM 3080 ATOM 3080 ATOM 3081 ATOM 3088 ATOM 3088 ATOM 3089	ATOM 3039 N ATOM 3040 CA ATOM 3041 CB ATOM 3041 CB ATOM 3042 C ATOM 3043 O ATOM 3044 N ATOM 3045 CA ATOM 3046 CB ATOM 3046 CB ATOM 3047 CG ATOM 3049 OE1 ATOM 3050 OE2 ATOM 3051 C ATOM 3051 C ATOM 3052 O ATOM 3053 N ATOM 3055 CB ATOM 3055 CB ATOM 3056 CG ATOM 3055 CB ATOM 3056 CG ATOM 3057 CD1 ATOM 3060 CE2 ATOM 3060 CE2 ATOM 3060 CE2 ATOM 3061 CZ ATOM 3061 CZ ATOM 3062 C ATOM 3065 CD ATOM 3066 CA ATOM 3066 CA ATOM 3067 CB ATOM 3066 CA ATOM 3067 CB ATOM 3069 C ATOM 3070 O ATOM 3071 N 35 ATOM 3070 O ATOM 3071 N 35 ATOM 3072 CA ATOM 3070 CB ATOM 3070 CB ATOM 3071 N 3070 CB ATOM 3071 N 3070 CB ATOM 3071 CB ATOM 3071 CB ATOM 3070 CCB ATOM 3077 CCB ATOM 3066 CCB ATOM 3066 CCB ATOM 3067	ATOM 3039 N ALA ATOM 3040 CA ALA ATOM 3041 CB ALA ATOM 3042 C ALA ATOM 3044 N GLU ATOM 3045 CA GLU ATOM 3046 CB GLU ATOM 3047 CG GLU ATOM 3049 OE1 GLU ATOM 3050 OE2 GLU ATOM 3051 C GLU ATOM 3051 C GLU ATOM 3052 O GLU ATOM 3053 N PHE ATOM 3055 CB PHE ATOM 3055 CB PHE ATOM 3056 CG PHE ATOM 3061 CZ PHE ATOM 3061 CZ PHE ATOM 3066 CA	ATOM 3039 N ALA A ATOM 3040 CA ALA A ATOM 3041 CB ALA A ATOM 3042 C ALA A ATOM 3043 O ALA A ATOM 3045 CA GLU A ATOM 3046 CB GLU A ATOM 3046 CB GLU A ATOM 3047 CG GLU A ATOM 3050 OE2 GLU A ATOM 3050 OE2 GLU A ATOM 3051 C GLU A ATOM 3051 C GLU A ATOM 3051 C GLU A ATOM 3055 CB PHE A ATOM 3055 CB PHE A ATOM 3055 CB PHE A ATOM 3056 CG PHE A ATOM 3056 CG PHE A ATOM 3056 CD PHE A ATOM 3060 CE2 PHE A ATOM 3070 O PRO A ATOM 3070 O PRO A ATOM 3071 N THR A ATOM 3070 CO PRO A ATOM 3071 N THR A ATOM 3070 CE2 THR A	ATOM 3039 N ALA A 395 ATOM 3040 CA ALA A 395 ATOM 3041 CB ALA A 395 ATOM 3042 C ALA A 395 ATOM 3043 O ALA A 395 ATOM 3044 N GLU A 396 ATOM 3045 CA GLU A 396 ATOM 3046 CB GLU A 396 ATOM 3047 CG GLU A 396 ATOM 3048 CD GLU A 396 ATOM 3050 OE2 GLU A 396 ATOM 3051 C GLU A 396 ATOM 3051 C GLU A 396 ATOM 3051 C GLU A 396 ATOM 3055 CB PHE A 397 ATOM 3055 CB PHE A 397 ATOM 3056 CG PHE A 397 ATOM 3056 CG PHE A 397 ATOM 3057 CD1 PHE A 397 ATOM 3058 CD2 PHE A 397 ATOM 3060 CE2 PHE A 397 ATOM 3061 CZ PHE A 397 ATOM 3060 CE2 PHE A 397 ATOM 3061 CZ PHE A 397 ATOM 3062 C PHE A 397 ATOM 3063 O PHE A 397 ATOM 3066 CA PRO A 398 ATOM 3067 CB PRO A 398 ATOM 3066 CA PRO A 398 ATOM 3067 CB PRO A 398 ATOM 3068 CG PRO A 398 ATOM 3069 C PRO A 398 ATOM 3070 O PRO A 398 ATOM 3071 N THR A 399 ATOM 3071 CB THR A 399 ATOM 3072 CA THR A 399 ATOM 3073 CB THR A 399 ATOM 3074 CG1 THR A 399 ATOM 3076 C THR A 399 ATOM 3077 O THR A 399 ATOM 3070 C PRO A 398 ATOM 3070 C	ATOM 3039 N ALA A 395 28.091 ATOM 3040 CA ALA A 395 27.644 ATOM 3041 CB ALA A 395 27.939 ATOM 3042 C ALA A 395 28.263 ATOM 3042 C ALA A 395 29.413 ATOM 3043 O ALA A 395 29.413 ATOM 3045 CA GLU A 396 27.472 ATOM 3046 CB GLU A 396 27.081 ATOM 3047 CG GLU A 396 25.079 ATOM 3049 OE1 GLU A 396 25.079 ATOM 3050 OE2 GLU A 396 25.079 ATOM 3051 C GLU A 396 25.079 ATOM 3051 C GLU A 396 27.610 ATOM 3052 O GLU A 396 27.610 ATOM 3055 CB GLU A 396 27.610 ATOM 3055 CB PHE A 397 28.528 ATOM 3055 CB PHE A 397 29.530 ATOM 3056 CG PHE A 397 29.630 ATOM 3058 CD2 PHE A 397 29.010 ATOM 3050 CE2 PHE A 397 30.916 ATOM 3050 CE2 PHE A 397 30.916 ATOM 3056 CG PHE A 397 29.630 ATOM 3057 CD1 PHE A 397 30.916 ATOM 3060 CE2 PHE A 397 29.630 ATOM 3066 CG PHE A 397 29.670 ATOM 3067 CD PHE A 397 29.670 ATOM 3068 CD2 PHE A 397 29.670 ATOM 3069 CE1 PHE A 397 29.670 ATOM 3061 CZ PHE A 397 29.670 ATOM 3061 CZ PHE A 397 29.670 ATOM 3060 CE2 PHE A 397 29.670 ATOM 3061 CZ PHE A 397 29.670 ATOM 3061 CZ PHE A 397 29.670 ATOM 3066 CA PRO A 398 26.694 ATOM 3067 CB PRO A 398 26.694 ATOM 3068 CG PRO A 398 26.694 ATOM 3069 C PRO A 398 25.111 ATOM 3069 C PRO A 398 25.111 ATOM 3069 C PRO A 398 25.111 ATOM 3069 C PRO A 398 26.765 ATOM 3073 CB THR A 399 27.729 ATOM 3073 CB THR A 399 27.932 ATOM 3075 CG2 THR A 399 27.932 ATOM 3070 C PRO A 398 26.713 ATOM 3070 CB THR A 399 27.897 ATOM 3070 CB THR A 399 27.897 ATOM 3070 CB THR A 399 27.897 ATOM 3070 CB THR A 399 27.932 ATOM 3070 CB THR A 399 27.932 ATOM 3070 CB THR A 399 27.932 ATOM 3070 CB THR A 399 27.093 ATOM 3080 CB LEU A 400 28.042 ATOM 3081 CG LEU A 400 28.958 ATOM 3083 CD2 LEU A 400 28.958 ATOM 3083 CD2 LEU A 400 28.958 ATOM 3088 CB SER A 401 29.117 ATOM 3088 CB SER A 401 29.371 ATOM 3080 CB SER A 401 29.371 ATOM 3080 CB SER A 401 29.371	ATOM 3040 CA ALA A 395	ATOM	ATOM	ATOM 3039 N ALA A 395

		ATOM	3093	CA	GLY	Α	402	28.252	48.332	-8.222	1.00 7.9	5 A
		MOTA	3094	С	GLY			28.860	49.410	-7.346	1.00 8.1	3 A
								29.905	49.190	-6.724	1.00 8.7	
		MOTA	3095	0	GLY							
	_	ATOM	3096	N	ASP			28.220	50.575	-7.297	1.00 7.9	
	5	ATOM	3097	CA	ASP	Α	403	28.720	51.670	-6.473	1.00 8.0	
		MOTA	3098	CB	ASP	Α	403	29.229	52.815	-7.360	1.00 8.3	3 A
		MOTA	3099	CG	ASP	А	403	28.112	53.578	-8.037	1.00 10.1	3 A
		ATOM	3100		ASP			26.994	53.039	-8.160	1.00 12.4	
											1.00 12.4	
	10	ATOM	3101		ASP			28.363	54.724	-8.460		
	10	ATOM	3102	С	ASP			27.623	52.162	-5.541	1.00 8.9	
		MOTA	3103	0	ASP	Α	403	26.516	51.609	-5.521	1.00 8.7	6 A
		MOTA	3104	N	PHE	Α	404	27.933	53.192	-4.761	1.00 7.1	1 A
		ATOM	3105	CA	PHE	Α	404	26.967	53.740	-3.827	1.00 7.0	3 A
		ATOM	3106	СВ	PHE			27.338	53.341	-2.391	1.00 7.2	
	15	ATOM	3107	CG	PHE			27.292	51.852	-2.163	1.00 7.9	
	10											
		MOTA	3108		PHE			28.457	51.092	-2.183		
		MOTA	3109		PHE			26.070	51.203	-1.994	1.00 8.7	
		ATOM	3110		PHE			28.407	49.702	-2.042	1.00 8.9	
1157		ATOM	3111	CE2	PHE	Α	404	26.010	49.813	-1.853	1.00 8.4	6 A
	20	ATOM	3112	CZ	PHE	Α	404	27.180	49.064	-1.877	1.00 9.1	1 A
1,		MOTA	3113	С	PHE			26.785	55.247	-3.957	1.00 5.9	7 A
J		ATOM	3114	Ö	PHE			26.922	55.998	-2.994	1.00 6.8	
197								26.470	55.664	-5.180	1.00 7.4	
j		ATOM	3115	N	PHE							
म् _{रक्ष्म}	0-	ATOM	3116	CA	PHE			26.190	57.059	-5.512	1.00 8.3	
	25	MOTA	3117	CB	PHE			27.228	57.624	-6.494	1.00 7.1	
14		MOTA	3118	CG	PHE	Α	405	28.618	57.725	-5.930	1.00 7.0	6 A
m		MOTA	3119	CD1	PHE	Α	405	29.676	57.062	-6.542	1.00 8.4	8 A
		ATOM	3120	CD2	PHE	Α	405	28.875	58.492	-4.797	1.00 7.6	9 A
#1 		ATOM	3121		PHE			30.975	57.159	-6.033	1.00 7.7	2 A
	30	ATOM	3122		PHE			30.171	58.595	-4.280	1.00 7.8	
ij	50											
4		MOTA	3123	CZ	PHE			31.221	57.926	-4.901	1.00 7.7	
[* 1		MOTA	3124	С	PHE			24.832	56.989	-6.216	1.00 9.7	
		MOTA	3125	0	PHE	A	405	24.548	56.000	-6.894	1.00 11.5	
		ATOM	3126	N	THR	Α	406	23.989	58.009	-6.080	1.00 10.2	0 A
[.4.	35	ATOM	3127	CA	THR	Α	406	24.266	59.205	-5.302	1.00 9.2	2 A
		MOTA	3128	CB	THR	А	406	23.738	60.449	-6.047	1.00 8.1	8 A
		ATOM	3129	OG1				24.579	60.693	-7.179	1.00 10.1	
		ATOM	3130	CG2				23.724	61.677	-5.149	1.00 8.4	
	40	ATOM	3131	С	THR			23.638	59.107	-3.918		
	40	MOTA	3132	0	THR			22.478	58.721	-3.761	1.00 10.3	
		MOTA	3133	N	TYR	A	407				1.00 9.0	
		ATOM	3134	CA	TYR	Α	407	24.030	59.418	-1.520	1.00 9.2	
		ATOM	3135	CB	TYR	Α	407	25.276	59.650	-0.660	1.00 9.8	3 A
		ATOM	3136	CG	TYR			25.047	59.828	0.824	1.00 10.1	1 A
	45	ATOM	3137		TYR			24.571	58.779	1.614	1.00 9.7	
	10	MOTA	3138		TYR			24.448	58.918	2.997	1.00 10.8	
		ATOM	3139		TYR			25.383	61.024	1.453	1.00 9.9	
		MOTA	3140		TYR	A	407	25.265	61.175	2.833	1.00 9.6	
		MOTA	3141	CZ	TYR	A	407	24.802	60.119	3.600	1.00 9.9	
	50	MOTA	3142	ОН	TYR	A	407	24.732	60.257	4.967	1.00 10.5	1 A
		MOTA	3143	С	TYR			22.954	60.423	-1.129	1.00 10.3	
		ATOM	3144	Ö	TYR			22.947	61.559	-1.593	1.00 10.3	
			3145		ALA			22.043	59.976	-0.272	1.00 10.7	
		ATOM		N								
	CC	ATOM	3146	CA	ALA			20.980	60.809	0.279	1.00 10.5	
	55	ATOM	3147	CB	ALA	A	408	19.652	60.549	-0.432	1.00 12.0	9 A

		MOTA	3148	С	ALA A 408	3 20.900	60.360	1.732	1.00 10.90	Α
		MOTA	3149	0	ALA A 408	3 20.748	59.165	1.999	1.00 10.68	Α
		ATOM	3150	N	ASP A 409		61.296	2.671	1.00 10.55	Α
		ATOM	3151	CA	ASP A 409		60.933	4.084	1.00 11.69	A
	5						61.795	4.920	1.00 11.33	A
	3	ATOM	3152	СВ	ASP A 409					
		ATOM	3153	CG	ASP A 409		63.292	4.869	1.00 10.60	A
		ATOM	3154	OD1	ASP A 409	21.024	63.770	3.898	1.00 11.47	A
		ATOM	3155	OD2	ASP A 409	22.065	64.004	5.811	1.00 12.60	Α
		MOTA	3156	С	ASP A 409	19.549	60.987	4.641	1.00 12.81	Α
	10	MOTA	3157	0	ASP A 409	19.258	60.388	5.680	1.00 14.02	A
	10	ATOM	3158	N	ARG A 410		61.683	3.935	1.00 13.88	А
			3159		ARG A 410		61.785	4.343	1.00 15.32	A
		ATOM		CA						
		ATOM	3160	СВ	ARG A 410		62.574	5.652	1.00 17.28	A
		ATOM	3161	CG	ARG A 410		64.009	5.620	1.00 20.04	A
	15	ATOM	3162	CD	ARG A 410	17.627	64.579	7.035	1.00 23.14	А
		ATOM	3163	NE	ARG A 410	18.215	65.913	7.135	1.00 26.24	Α
		ATOM	3164	CZ	ARG A 410	17.598	67.038	6.787	1.00 28.17	Α
		ATOM	3165		ARG A 410		67.004	6.310	1.00 28.33	A
		MOTA	3166		ARG A 410		68.201	6.924	1.00 28.66	A
	20	MOTA	3167	C	ARG A 410		62.426	3.256	1.00 15.93	A
ıD	20								1.00 15.40	A
100		ATOM	3168	0	ARG A 410		63.174	2.416		
i i sali.		ATOM	3169	N	SER A 411		62.110	3.282	1.00 15.97	A
ijī.		ATOM	3170	CA	SER A 411		62.624	2.320	1.00 16.02	А
1:2		ATOM	3171	CB	SER A 413	13.602	63.984	2.787	1.00 17.79	А
	25	ATOM	3172	OG	SER A 411	14.647	64.906	3.039	1.00 20.12	А
Ŋ		ATOM	3173	С	SER A 411	14.673	62.723	0.892	1.00 15.26	А
: 125°		ATOM	3174	0	SER A 413		61.725	0.322	1.00 15.04	А
ijħ		ATOM	3175	N	ASP A 412		63.919	0.313	1.00 13.50	А
#1		ATOM	3176	CA	ASP A 412		64.133	-1.052	1.00 13.01	A
	30						64.937	-1.848	1.00 13.83	A
. 75	30	ATOM	3177	CB	ASP A 412					
88.5		ATOM	3178	CG	ASP A 412		66.369	-1.354	1.00 14.01	A
i 🔑		ATOM	3179		ASP A 412		66.672	-0.241	1.00 13.33	А
		MOTA	3180	OD2	ASP A 412	13.310	67.196	-2.077	1.00 15.12	А
		ATOM	3181	С	ASP A 412	16.423	64.871	-1.054	1.00 12.08	А
ļ.	35	ATOM	3182	0	ASP A 412	16.822	65.439	-2.071	1.00 12.37	A
2		ATOM	3183	N	ASN A 413	3 17.108	64.857	0.087	1.00 11.65	А
		ATOM	3184	CA	ASN A 413		65.538	0.215	1.00 11.09	A
		ATOM	3185	CB	ASN A 413		65.851	1.683	1.00 11.71	A
			3186	CG	ASN A 413		66.933	2.271	1.00 11.32	A
	40	ATOM								
	40	ATOM	3187		ASN A 413		67.432	3.364	1.00 12.21	A
		ATOM	3188		ASN A 413		67.293	1.559	1.00 11.39	A
		ATOM	3189	С	ASN A 413		64.709	-0.365	1.00 11.02	А
		ATOM	3190	0	ASN A 413		64.039	0.373	1.00 11.48	A
		ATOM	3191	N	TYR A 414	19.688	64.758	-1.687	1.00 10.66	A
	45	ATOM	3192	CA	TYR A 414		64.029	-2.367	1.00 10.00	A
		ATOM	3193	СВ	TYR A 414		63.638	-3.787	1.00 10.30	A
		ATOM	3194	CG	TYR A 414		62.505	-3.824	1.00 10.55	A
		ATOM	3195		TYR A 414		62.741	-3.616	1.00 10.75	A
		ATOM	3196		TYR A 414		61.688	-3.606	1.00 10.98	A
	50	ATOM	3197		TYR A 414		61.191	-4.025	1.00 10.20	Α
		ATOM	3198	CE2	TYR A 414	18.844	60.134	-4.016	1.00 10.67	A
		ATOM	3199	CZ	TYR A 414	17.502	60.390	-3.806	1.00 10.80	А
		ATOM	3200	ОН	TYR A 414		59.340	-3.796	1.00 10.77	А
		ATOM	3201	C	TYR A 414		64.899	-2.419	1.00 10.13	А
	55	ATOM	3202	0	TYR A 414		66.075	-2.778	1.00 10.53	A
		A I ON	J2 U2	0	TIV W Ale	21.246	00.073	2.110	1.00 10.00	А

		MOTA	3203	N	TRP A	415	23.142	64.302	-2.072	1.00	9.52	Α
		ATOM	3204	CA	TRP A		24.416	65.010	-2.030	1.00	9.26	А
		ATOM	3205	CB	TRP A		25.320	64.366	-0.971	1.00	9.67	А
		ATOM	3206	CG	TRP A		24.786	64.442	0.441	1.00	9.03	A
	5	ATOM	3207		TRP A		25.545	64.689	1.632	1.00	9.61	A
	3						24.650	64.605	2.725	1.00	9.55	A
		ATOM	3208		TRP A				1.882	1.00	9.25	A
		ATOM	3209		TRP A		26.896	64.972			9.72	
		ATOM	3210		TRP A		23.494	64.225	0.851	1.00		A
	40	ATOM	3211	NE1			23.408	64.321	2.220	1.00	9.57	A
	10	ATOM	3212		TRP A		25.064	64.794	4.051	1.00	9.83	A
		ATOM	3213		TRP A		27.309	65.158	3.201	1.00	9.05	A
		MOTA	3214	CH2	TRP A		26.393	65.068	4.270	1.00	9.98	A
		MOTA	3215	С	TRP A		25.140	65.041	-3.372	1.00	9.53	А
		MOTA	3216	0	TRP A	415	26.251	64.528	-3.495		10.20	A
	15	MOTA	3217	N	SER A	416	24.514	65.639	-4.379	1.00	9.04	A
		ATOM	3218	CA	SER A	416	25.143	65.724	-5.690	1.00	8.92	A
		MOTA	3219	СВ	SER A	416	24.144	65.357	-6.798	1.00	8.51	Α
		ATOM	3220	OG	SER A	416	22.870	65.939	-6.574	1.00	8.91	A
2 (202)		ATOM	3221	С	SER A		25.728	67.110	-5.933	1.00	8.58	A
	20	ATOM	3222	0	SER A		26.388	67.346	-6.939	1.00	8.72	А
4, ⊒		ATOM	3223	N	GLY A		25.504	68.023	-4.995	1.00	8.72	A
٠ <u></u>		ATOM	3224	CA	GLY A		26.035	69.361	-5.155	1.00	9.16	Α
		ATOM	3225	C	GLY A		27.549	69.389	-5.084	1.00	8.20	А
		ATOM	3226	0	GLY A		28.194	70.109	-5.846	1.00	8.68	A
	25	ATOM	3227	N	TYR A		28.125	68.591	-4.187	1.00	8.03	A
5 547 549 B	25		3227				29.575	68.583	-4.018	1.00	7.87	A
		ATOM		CA	TYR A		29.955	67.891	-2.699	1.00	7.48	A
ijħ.		ATOM	3229	CB	TYR A				-2.762	1.00	7.93	A
榖		ATOM	3230	CG	TYR A		30.086	66.390			7.95	A
	20	ATOM	3231	CD1			31.328	65.794	-2.973	1.00		
ı,C	30	ATOM	3232	CE1			31.467	64.414	-2.997	1.00	7.84	A
191		MOTA	3233		TYR A		28.978	65.563	-2.583	1.00	8.11	A
ing:		ATOM	3234		TYR A		29.104	64.177	-2.608	1.00	8.06	A
110mm		MOTA	3235	CZ	TYR A		30.354	63.611	-2.813	1.00	7.96	A
		MOTA	3236	ОН	TYR A		30.501	62.248	-2.817	1.00	8.02	A
l.L	35	MOTA	3237	С	TYR A		30.346	67.988	-5.199	1.00	7.88	A
		MOTA	3238	0	TYR A	418	31.576	67.989	-5.208	1.00	7.86	А
		MOTA	3239	N	TYR A	419	29.627	67.477	-6.194	1.00	7.67	А
		MOTA	3240	CA	TYR A	419	30.282	66.952	-7.388	1.00	7.72	А
		ATOM	3241	CB	TYR A	419	29.290	66.179	-8.265	1.00	7.93	А
	4 0	MOTA	3242	CG	TYR A	419	28.676	64.947	-7.644	1.00	7.53	A
		ATOM	3243	CD1	TYR A	419	27.487	64.416	-8.152	1.00	7.43	А
		ATOM	3244	CE1	TYR A	419	26.926	63.261	- 7.619	1.00	8.40	A
		ATOM	3245		TYR A		29.289	64.285	-6.579	1.00	7.84	А
		ATOM	3246		TYR A		28.735	63.123	-6.041	1.00	8.37	А
	45	ATOM	3247	CZ	TYR A		27.553	62.619	-6.567	1.00	8.35	А
		ATOM	3248	ОН	TYR A		26.995	61.474	-6.047	1.00	8.31	А
		ATOM	3249	C	TYR A		30.803	68.150	-8.190	1.00	7.72	А
		ATOM	3250	Ö	TYR A		31.616	67.988	-9.103	1.00	8.10	A
							30.338	69.348	-7.832	1.00	7.79	A
	50	ATOM	3251	N C	THR A		30.338	70.574	-8.531	1.00	7.63	A
	50	ATOM	3252	CA	THR A						7.52	
		ATOM	3253	CB	THR A		29.503	71.111	-9.333	1.00		A A
		MOTA	3254		THR A		29.016		-10.199	1.00	8.69	A
		ATOM	3255	CG2			29.889		-10.171	1.00	9.65	A
		ATOM	3256	С	THR A		31.261	71.712	-7.658	1.00	8.05	A
	55	ATOM	3257	0	THR A	420	32.050	72.527	-8.131	1.00	8.13	А

		ATOM	3258	N	SER A	A 4	21	30.844	71.77	1 -6.396	1.00	8.23	Α
		MOTA	3259	CA	SER	4 4	21	31.277	72.84	0 -5.491	1.00	8.39	Α
		ATOM	3260	CB	SER A	4 4	21	30.894	72.48	8 -4.054	1.00	8.23	Α
		ATOM	3261	OG	SER I	A 4.	21	29.493	72.32	8 -3.942	1.00	9.95	Α
	5	MOTA	3262	С	SER A	4	21	32.766	73.17	2 -5.553	1.00	8.54	Α
		MOTA	3263	0	SER I	4 4	21	33.612	72.27	6 -5.532	1.00	8.31	А
		ATOM	3264	N	ARG .	4.	22	33.076	74.46	8 -5.600	1.00	8.47	А
		MOTA	3265	CA	ARG I	A 4	22	34.457	74.94	4 -5.683	1.00	8.89	А
		ATOM	3266	CB	ARG A	A 4	22	35.200	74.65	5 -4.373	1.00	9.32	A
	10	ATOM	3267	CG	ARG I	A 4	22	35.001	75.70	8 -3.275	1.00	8.93	А
		MOTA	3268	CD	ARG A	4	22	33.541	75.91	5 -2.854	1.00	8.00	Α
		ATOM	3269	NE	ARG A	4 4	22	33.480	76.88	9 -1.761	1.00	8.83	A
		ATOM	3270	CZ	ARG A	4 4	22	33.533	76.58	0 -0.468		9.12	А
		MOTA	3271	NH1	ARG A	4 4	22	33.622	75.31	6 -0.081	1.00	10.31	А
	15	ATOM	3272	NH2	ARG A	4 4	22	33.565	77.54	5 0.444	1.00	9.63	А
		MOTA	3273	С	ARG A	4 4	22	35.174	74.28	5 -6.865	1.00	8.93	Α
		ATOM	3274	0	ARG A	4 4	22	36.201	73.61	6 -6.705		8.08	A
		ATOM	3275	N	PRO Z	4 4	23	34.648	74.48		1.00	8.34	A
		MOTA	3276	CD	PRO A			33.511	75.34			8.14	A
. IT	20	ATOM	3277	CA	PRO I			35.258	73.88			8.20	А
		MOTA	3278	CB	PRO I			34.248		2 -10.372		7.99	A
e signific		MOTA	3279	CG	PRO I			33.720	75.54			8.18	Α
inar		MOTA	3280	С	PRO A			36.679	74.34			8.42	A
		MOTA	3281	0	PRO A	A 4:	23	37.406		5 -10.300		7.85	A
W	25	MOTA	3282	N	TYR A			37.086	75.51			8.22	A
Ų		ATOM	3283	CA	TYR A			38.440	75.98			8.69	A
m		MOTA	3284	CB	TYR A			38.678	77.35			8.94	A
E)		MOTA	3285	CG	TYR A			40.056	77.92		1.00	9.20	A
	•	MOTA	3286		TYR A			40.304		7 -10.156		10.09	A
ă	30	MOTA	3287		TYR A			41.569		0 -10.411		11.78	A
1. C.		MOTA	3288		TYR A			41.117	77.69		1.00	9.18	A
		MOTA	3289		TYR A			42.388	78.21			11.36	А
		MOTA	3290	CZ	TYR A			42.606	78.97			11.41	A
	0.5	MOTA	3291	OH	TYR A			43.854	79.51			13.60	A
j.d.	35	ATOM	3292	С	TYR A			39.446	74.99		1.00	8.12	A
		MOTA	3293	0	TYR A			40.409	74.60		1.00	8.51	A
		MOTA	3294	N	HIS A			39.204	74.58		1.00	8.00	A
		MOTA	3295	CA	HIS A			40.102	73.67		1.00	7.92	A
	40	ATOM	3296	CB	HIS A			39.841	73.79		1.00	8.82	A
	40	ATOM	3297	CG	HIS A			39.830	75.21		1.00	9.54	A
		ATOM	3298		HIS A			38.817	76.10		1.00	8.63	A
		ATOM	3299		HIS A			40.985	75.91			11.50	A
		ATOM	3300		HIS A			40.684	77.18		1.00	9.24	A
	4 =	ATOM	3301		HIS A			39.376	77.32			12.26	A
	45	ATOM	3302	С	HIS A			39.982	72.24		1.00	7.65	A
		ATOM	3303	0	HIS A			40.937	71.47		1.00	6.25	A
		ATOM	3304	N	LYS A			38.809	71.89		1.00	6.92	A
		ATOM	3305	CA	LYS A			38.601	70.56		1.00	7.10	A
	EΩ	ATOM	3306	CB	LYS A			37.130	70.38		1.00	7.64	A
	50	ATOM	3307	CG	LYS A			36.233	69.95		1.00	7.33	A
		MOTA	3308	CD	LYS A			34.758	69.97		1.00	8.18 7.20	A A
		ATOM	3309	CE	LYS A			33.893	69.11		1.00		A n
		MOTA	3310	ΝZ	LYS A			33.897	69.56		1.00	8.35	A
	55	MOTA	3311	С	LYS A			39.500	70.46		1.00	6.80	A
	<i>55</i>	ATOM	3312	О	LYS A	1 4 4	20	40.130	69.42	9 -9.950	1.00	7.71	A

		ATOM	3313	N	ARG A	427	39.562	71.536 -10.493	1.00	6.95	Α
		ATOM	3314	CA	ARG A	427	40.403	71.558 -11.677	1.00	7.61	Α
		ATOM	3315	СВ	ARG A	427	40.055	72.780 -12.535	1.00	7.49	Α
		ATOM	3316	CG	ARG A	427	41.045	73.105 -13.645	1.00	8.69	Α
	5	MOTA	3317	CD	ARG A	427	41.239	71.986 -14.660	1.00	9.36	Α
		ATOM	3318	NE	ARG A	427	42.275	72.376 -15.614	1.00	11.26	А
		ATOM	3319	CZ	ARG A	427	43.047	71.530 -16.288	1.00	11.18	A
		ATOM	3320		ARG A		42.911	70.220 -16.132	1.00	11.18	А
		ATOM	3321		ARG A		43.985	72.004 -17.101	1.00	11.85	A
	10	MOTA	3322	С	ARG A		41.871	71.587 -11.251	1.00	7.82	A
	_	ATOM	3323	0	ARG A	427	42.708	70.901 -11.833	1.00	7.39	А
		MOTA	3324	N	MSE A		42.179	72.370 -10.220	1.00	7.89	A
		ATOM	3325	CA	MSE A		43.550	72.457 -9.729	1.00	7.92	A
		ATOM	3326	СВ	MSE A		43.613	73.415 -8.542	1.00	9.64	A
	15	ATOM	3327	CG	MSE A		45.022	73.778 -8.109	1.00	9.04	A
		ATOM	3328	SE	MSE A		44.978	75.197 -6.818	1.00	16.90	Α
		ATOM	3329	CE	MSE A		46.844	75.667 -6.794	1.00	10.50	Α
		ATOM	3330	C	MSE A		44.058	71.072 -9.319	1.00	7.61	A
g PCTE		ATOM	3331	0	MSE A		45.223	70.741 -9.528	1.00	6.75	Α
	20	ATOM	3332	N	ASP A		43.173	70.264 -8.742	1.00	7.36	A
		ATOM	3333	CA	ASP A		43.532	68.915 -8.323	1.00	6.76	A
		ATOM	3334	СВ	ASP A		42.302	68.199 -7.764	1.00	7.80	А
		ATOM	3335	CG	ASP A		42.567	66.742 -7.454	1.00	7.25	А
		ATOM	3336		ASP A		42.305	65.877 -8.322	1.00	7.35	Α
frein frein	25	ATOM	3337		ASP A		43.050	66.464 -6.339	1.00	8.83	А
Transport		ATOM	3338	C	ASP A		44.110	68.101 -9.477	1.00	6.82	А
		ATOM	3339	Ö	ASP A		45.126	67.426 -9.324	1.00	6.20	А
		ATOM	3340	N	ARG A		43.465	68.174 -10.636	1.00	6.28	А
E!		ATOM	3341	CA	ARG A		43.925	67.415 -11.790	1.00	6.60	А
	30	ATOM	3342	СВ	ARG A		42.864	67.436 -12.886	1.00	7.13	А
4,1_1		ATOM	3343	CG	ARG A		41.575	66.745 -12.489	1.00	6.81	А
TŲ.		ATOM	3344	CD	ARG A		41.821	65.302 -12.057	1.00	7.18	А
14		ATOM	3345	NE	ARG A		40.578	64.536 -12.052	1.00	7.42	А
		ATOM	3346	CZ	ARG A		39.899	64.186 -10.965	1.00	7.01	А
į,, <u>l</u>	35	ATOM	3347		ARG A		40.329	64.520 -9.754	1.00	6.58	А
•		ATOM	3348		ARG A		38.770	63.504 -11.092	1.00	7.28	А
		ATOM	3349	C	ARG A		45.247	67.938 -12.331	1.00	6.64	А
		ATOM	3350	Ō	ARG A		46.071	67.164 -12.828	1.00	6.98	Α
		ATOM	3351	N	VAL A		45.448	69.246 -12.248	1.00	6.93	А
	40	ATOM	3352	CA	VAL A		46.693	69.838 -12.717	1.00	7.00	A
		ATOM	3353	СВ	VAL A		46.613	71.381 -12.697	1.00	7.25	А
		ATOM	3354		VAL A		47.966	71.984 -13.059	1.00	7.90	А
		ATOM	3355		VAL A		45.553	71.856 -13.684	1.00	7.34	А
		ATOM	3356	C	VAL A		47.835	69.361 -11.814	1.00	7.33	А
	45	MOTA	3357	0	VAL A		48.867	68.890 -12.291	1.00	6.53	А
	10	ATOM	3358	N	LEU A		47.648	69.477 -10.504	1.00	6.42	А
		ATOM	3359	CA	LEU A		48.683	69.051 -9.574	1.00	7.15	А
		ATOM	3360	CB	LEU A		48.314	69.449 -8.144	1.00	7.42	А
		ATOM	3361	CG	LEU A		49.320	69.099 -7.040	1.00	7.44	А
	50	ATOM	3362		LEU A		50.706	69.655 -7.368	1.00	7.97	A
	50	ATOM	3363		LEU A		48.815	69.674 -5.718	1.00	7.95	A
		MOTA	3364	CD2	LEU A		48.906	67.545 -9.676	1.00	6.90	A
		ATOM	3365	0	LEU A		50.031	67.073 -9.538	1.00	7.14	A
			3366		MSE A		47.839	66.789 -9.921	1.00	6.62	A
	55	ATOM	3367	N CA	MSE A		47.039	65.343 -10.071	1.00	6.77	A
		ATOM	2201	CH	DOE H	4 J J	31.313	00.040 10.071	1.00	J.,,	

		ATOM	3368	СВ	MSE	A	433	46.650	64.728	-10.520	1.00	7.49	A
		ATOM	3369	CG	MSE			46.765	63.261	-10.899	1.00	7.23	A
		MOTA	3370	SE	MSE			45.147		-11.645	1.00	14.77	A
		ATOM	3371	CE	MSE			45.309	63.312	-13.420	1.00	11.03	Α
	5	ATOM	3372	Ċ	MSE			49.030		-11.130	1.00	6.61	А
	Ū	ATOM	3373	Ō	MSE			49.915		-10.933	1.00	5.99	А
		ATOM	3374	N	HIS			48.926		-12.255	1.00	5.72	A
		ATOM	3375	CA	HIS			49.855		-13.352	1.00	6.68	А
		ATOM	3376	СВ	HIS			49.340		-14.620	1.00	7.17	А
	10	ATOM	3377	CG	HIS			50.306		-15.755	1.00	6.69	A
	10	ATOM	3378		HIS			50.676		-16.524	1.00	6.66	A
			3379		HIS			51.107		-16.134	1.00	9.42	A
		MOTA						51.932		-17.086	1.00	6.23	A
		MOTA	3380		HIS			51.692		-17.339	1.00	9.56	A
	15	MOTA	3381		HIS			51.259		-13.054	1.00	6.95	A
	15	ATOM	3382	С	HIS					-13.034	1.00	6.29	A
		ATOM	3383	0	HIS			52.242		-12.417	1.00	6.61	A
		ATOM	3384	N	TYR			51.353		-12.417	1.00	8.18	A
		ATOM	3385	CA	TYR			52.656		-11.431	1.00	9.43	A
	20	ATOM	3386	CB	TYR			52.500 52.370		-11.431 -12.385		12.33	A
. 1	20	ATOM	3387	CG	TYR							12.80	A
		ATOM	3388	CD1	TYR			51.432		-13.417		13.62	A
,₩ #9%		MOTA	3389	CE1	TYR			51.272		-14.251			A
4,5 S 49 76		MOTA	3390		TYR			53.151		-12.211		14.28 15.81	A
	O.E.	MOTA	3391		TYR			53.001		-13.034		15.15	A
	25	MOTA	3392	CZ	TYR			52.059		-14.050		17.94	A
W.		ATOM	3393	OH	TYR			51.896		-14.841			
M		ATOM	3394	С	TYR			53.414		-11.128	1.00	6.75	A
23		ATOM	3395	0	TYR			54.636		-11.226	1.00	7.81	A A
Ş	20	ATOM	3396	N	VAL			52.700		-10.195	1.00	5.90	A
J	30	MOTA	3397	CA	VAL			53.355	65.305	-9.263	1.00	6.76 6.54	A
		MOTA	3398	CB	VAL			52.382	64.850	-8.153	1.00		A
		MOTA	3399		VAL			52.963	63.665	-7.384	1.00	7.70	
		MOTA	3400		VAL			52.132	66.009	-7.200	1.00	6.54	A A
	25	ATOM	3401	С	VAL			53.892		-10.034	1.00	6.75	
8.≄	35	ATOM	3402	0	VAL			55.041	63.698	- 9.857	1.00	6.38	A
		ATOM	3403	N	ARG			53.069		-10.905	1.00	5.91	A
		ATOM	3404	CA	ARG			53.518		-11.693	1.00	6.53	A
		ATOM	3405	CB	ARG			52.406		-12.621	1.00	6.39	A
	40	MOTA	3406	CG	ARG			52.904		-13.674	1.00	7.38 7.95	A
	40	MOTA	3407	CD	ARG			51.779		-14.552	1.00		A
		MOTA	3408	NE	ARG			52.287		-15.735	1.00	6.99	A
		ATOM	3409	CZ	ARG			51.550		-16.486	1.00	7.60	A
		ATOM	3410		ARG			50.282		-16.170	1.00	8.52	A
		ATOM	3411		ARG			52.075		-17.559	1.00	7.42	A
	45	MOTA	3412	С	ARG			54.743		-12.528	1.00	6.68	A
		ATOM	3413	0	ARG			55.725		-12.558	1.00	6.83	A
		ATOM	3414	N	ALA			54.682		-13.217	1.00	6.53	A
		MOTA	3415	CA	ALA			55.790		-14.066	1.00	7.02	A
		MOTA	3416	CB	ALA			55.385		-14.887	1.00	7.20	A
	50	MOTA	3417	С	ALA			57.061		-13.269	1.00	6.87	A
		MOTA	3418	0	ALA			58.165	•	-13.702	1.00	8.03	A
		ATOM	3419	N	ALA			56.909		-12.110	1.00	7.12	A
		ATOM	3420	CA	ALA	A	439	58.061		-11.276	1.00	6.67	А
		ATOM	3421	CB	ALA	Α	439	57.637		-10.123	1.00	7.46	А
	55	ATOM	3422	С	ALA	Α	439	58.708	64.289	-10.741	1.00	7.35	А

	A TOM	3423	^	ALA	л	130	59.930	64 141	-10.770	1.00	6.65	А
	ATOM ATOM	3423	O N	GLU			57.897		-10.248	1.00	6.24	A
	ATOM	3425	CA	GLU			58.458	62.116	-9.739	1.00	7.04	A
	ATOM	3426	CB	GLU			57.382	61.279	-9.041	1.00	7.73	A
5	MOTA	3427	CG	GLU			56.853	61.911	-7.762	1.00	8.18	A
J	ATOM	3428	CD	GLU			56.186	60.904	-6.843		10.22	A
	ATOM	3429	OE1	GLU			55.089	60.406	-7.173		10.17	А
	ATOM	3430	OE2				56.773	60.603	-5.787		10.50	А
	ATOM	3431	C	GLU			59.112		-10.851	1.00	6.93	А
10	MOTA	3432	0	GLU			60.152		-10.639	1.00	7.92	А
10	ATOM	3433	N	MSE			58.517		-12.040	1.00	6.93	А
	ATOM	3434	CA	MSE			59.084		-13.141	1.00	7.41	А
	ATOM	3435	СВ	MSE			58.068	60.378	-14.277	1.00	8.35	А
	ATOM	3436	CG	MSE			58.580	59.571	-15.465	1.00	8.46	А
15	ATOM	3437	SE	MSE			57.255		-16.865		13.95	A
	ATOM	3438	CE	MSE			56.081	58.134	-15.968	1.00	10.73	Α
	ATOM	3439	Ç	MSE			60.377		-13.677	1.00	7.44	Α
	ATOM	3440	0	MSE			61.381	60.423	-13.818	1.00	8.04	А
	ATOM	3441	N	LEU			60.354	62.416	-13.979	1.00	7.67	A
20	ATOM	3442	CA	LEU			61.539	63.085	-14.509	1.00	8.05	A
	ATOM	3443	СВ	LEU	A	442	61.233	64.553	-14.813	1.00	8.28	А
	MOTA	3444	CG	LEU	A	442	60.557	64.823	-16.161	1.00	8.01	А
	MOTA	3445	CD1	LEU	Α	442	59.999	66.236	-16.193	1.00	9.63	A
	MOTA	3446	CD2	LEU	A	442	61.564	64.612	-17.283	1.00	10.08	А
25	MOTA	3447	C	LEU	Α	442	62.750	62.999	-13.592	1.00	8.72	А
	ATOM	3448	0	LEU	Α	442	63.881		-14.060	1.00	8.81	A
	MOTA	3449	И	SER	A	443	62.523		-12.284	1.00	8.42	A
	ATOM	3450	CA	SER			63.635		-11.346	1.00	8.63	А
	ATOM	3451	CB	SER			63.306		-10.077	1.00	8.25	A
30	MOTA	3452	OG	SER			62.192	63.273	-9.387	1.00	8.38	A
	ATOM	3453	С	SER			64.038		-10.975	1.00	9.17	A
	MOTA	3454	0	SER			65.105		-10.399		10.14	A
	ATOM	3455	N	ALA			63.201		-11.324	1.00	8.08	A
0.5	ATOM	3456	CA	ALA			63.488		-11.004	1.00	8.59	A
35	ATOM	3457	CB	ALA			62.237		-11.202	1.00	9.58 9.05	A A
	ATOM	3458	C	ALA			64.629		-11.833 -11.416	1.00	9.03	A
	MOTA	3459	0	ALA			65.268 64.886		-11.410	1.00	9.47	A
	ATOM ATOM	3460 3461	N CA	TRP TRP			65.939		-13.869		10.27	A
40	ATOM	3462	CB	TRP			65.943		-15.210	1.00	9.48	A
40	ATOM	3463	CG	TRP			64.665		-15.975	1.00	8.72	A
	ATOM	3464		TRP			64.211		-16.648	1.00	8.20	A
	ATOM	3465		TRP			62.926		-17.163	1.00	7.89	A
	ATOM	3466		TRP			64.763		-16.862	1.00	9.03	А
45	ATOM	3467		TRP			63.670		-16.112	1.00	9.25	А
10	ATOM	3468		TRP			62.623		-16.821	1.00	8.67	А
	ATOM	3469		TRP			62.181		-17.881	1.00	7.85	А
	ATOM	3470		TRP			64.024		-17.575	1.00	9.31	А
	ATOM	3471		TRP			62.744		-18.076	1.00	8.54	Α
50	ATOM	3472	С	TRP			67.329		-13.251		10.91	А
	ATOM	3473	Ō	TRP			68.195		-13.594		12.14	А
	ATOM	3474	N	HIS			67.541		-12.348	1.00	11.75	А
	ATOM	3475	CA	HIS			68.836		-11.691		12.74	А
	ATOM	3476	CB	HIS			69.470	61.232	-11.985	1.00	14.40	А
55	ATOM	3477	CG	HIS			69.853	61.443	-13.413	1.00	15.98	А

		ATOM	3478	CD2	HIS	Α	446	71.011	61.196	-14.070	1.00 17.49	A
		MOTA	3479		HIS			69.000	62.008	-14.336	1.00 16.71	Α
		MOTA	3480		HIS			69.618	62.103	-15.500	1.00 17.82	A
		ATOM	3481		HIS			70.838		-15.365	1.00 17.18	Α
	5	ATOM	3482	С	HIS			68.734		-10.181	1.00 12.44	Α
	•	ATOM	3483	Ō	HIS			67.658	59.891	-9.595	1.00 12.19	А
		ATOM	3484	N	SER			69.887	59.573	-9.559	1.00 13.41	А
		ATOM	3485	CA	SER			69.984	59.553	-8.115	1.00 13.93	A
		ATOM	3486	CB	SER			71.047	58.549	-7.667	1.00 15.77	A
	10	ATOM	3487	OG	SER			71.107	58.470	-6.255	1.00 19.30	А
	10	MOTA	3488	C	SER			70.452	60.989	-7.864	1.00 14.00	A
		MOTA	3489	0	SER			71.316	61.492	-8.586	1.00 14.59	A
		MOTA	3490	N	TRP			69.874	61.665	-6.878	1.00 13.08	A
		ATOM	3491	CA	TRP			70.259	63.045	-6.614	1.00 13.81	A
	15	ATOM	3492	CB	TRP			69.037	63.961	-6.688	1.00 13.00	A
	10	ATOM	3493	CG	TRP			68.381	63.979	-8.032	1.00 11.48	A
		ATOM	3494					68.523	64.987	-9.035	1.00 10.99	A
		ATOM	3495	CE2				67.738		-10.140	1.00 10.00	A
		ATOM	3496		TRP			69.238	66.192	-9.108	1.00 10.00	A
(20	ATOM	3497		TRP			67.541	63.035	-8.551	1.00 11.04	A
1	20	ATOM	3498		TRP			67.150	63.395	-9.818	1.00 10.64	A
Tribuli . prej		MOTA	3499		TRP			67.646		-11.306	1.00 11.20	A
j		ATOM	3500		TRP			69.147		-10.270	1.00 10.82	A
1,11			3501	CH2	TRP			68.355		-11.353	1.00 10.02	A
	25	ATOM ATOM	3502	Сп2	TRP			70.945	63.261	-5.278	1.00 15.52	A
W.	23	ATOM	3502	0	TRP			70.609	62.621	-4.283	1.00 15.44	A
, ing			3504	N.	ASP			71.905	64.180	-5.270	1.00 17.52	A
		ATOM		CA	ASP			72.627	64.520	-4.055	1.00 17.52	A
Ę!		ATOM ATOM	3505 3506	CB	ASP			73.780	65.473	-4.380	1.00 13.03	A
1,000	30		3507	CG	ASP			74.655	65.764	-3.177	1.00 25.00	A
	30	MOTA MOTA	3508		ASP			74.191	66.458	-2.248	1.00 26.37	A
		MOTA	3509		ASP			75.811	65.290	-3.161	1.00 27.45	A
		ATOM	3510	C C	ASP			71.627	65.202	-3.128	1.00 27.43	A
jai.		ATOM	3511	0	ASP			70.729	65.909	-3.589	1.00 19.09	A
	35	ATOM	3512	N	GLY			71.780	64.985	-1.826	1.00 20.01	A
į. 4 .	33	ATOM	3513	CA	GLY			70.870	65.581	-0.864	1.00 20.00	A
		ATOM	3514	C	GLY			70.735	67.089	-0.962	1.00 20.23	A
		MOTA	3515	0	GLY			69.690	67.646	-0.616	1.00 19.88	A
		MOTA	3516	N	MET			71.786	67.755	-1.432	1.00 20.10	A
	40	MOTA	3517	CA	MET			71.768	69.209	-1.561	1.00 20.63	A
	10	ATOM	3518	CB	MET			73.166	69.735	-1.896	1.00 23.63	A
		ATOM	3519	CG	MET			74.203	69.506	-0.815	1.00 27.14	A
		ATOM	3520	SD	MET			75.744	70.366	-1.188	1.00 32.31	A
		ATOM	3521	CE	MET			76.487	69.235	-2.362	1.00 29.66	A
	45	ATOM	3522	C	MET			70.787	69.704	-2.616	1.00 18.82	A
	10	ATOM	3523	0	MET			70.419	70.877	-2.622	1.00 18.97	A
		MOTA	3524	N	ALA			70.373	68.814	-3.512	1.00 17.14	A
		MOTA	3525	CA	ALA			69.433	69.181	-4.564	1.00 16.09	A
		ATOM	3526	CB	ALA			69.469	68.149	-5.682	1.00 15.55	A
	50		3527		ALA			68.019	69.307	-4.006	1.00 15.58	A
	50	ATOM	3527	С	ALA			67.134	69.862	-4.655	1.00 15.31	A
		ATOM		O N	ALA			67.134	68.780	-2.802	1.00 13.31	A
		ATOM	3529	N CA					68.844	-2.133	1.00 14.93	A
		ATOM	3530	CA	ARG			66.520	70.296	-2.133 -1.757	1.00 15.12	A
	55	ATOM	3531	CB	ARG			66.209		-0.853	1.00 18.85	A
	55	ATOM	3532	CG	ARG	А	453	67.260	70.927	-0.033	1.00 19.15	А

		MOTA	3533	CD	ARG	Α	453	67.014	72.415	-0.653	1.00 21.70	Α
		ATOM	3534	NE	ARG	Α	453	65.762	72.680	0.047	1.00 23.84	A
		MOTA	3535	CZ	ARG	Α	453	65.266	73.896	0.255	1.00 25.33	A
		ATOM	3536	NH1	ARG	Α	453	65.917	74.967	-0.187	1.00 25.98	Α
	5	ATOM	3537		ARG			64.120	74.043	0.905	1.00 25.91	Α
		ATOM	3538	С	ARG			65.376	68.269	-2.967	1.00 13.88	А
		ATOM	3539	0	ARG	Α	453	64.232	68.701	-2.843	1.00 14.25	А
		ATOM	3540	N	ILE			65.683	67.289	-3.810	1.00 11.74	A
		ATOM	3541	CA	ILE			64.666	66.666	-4.648	1.00 11.41	A
	10	ATOM	3542	СВ	ILE			65.310	65.691	-5.662	1.00 11.24	A
		ATOM	3543		ILE			64.225	64.960	-6.447	1.00 12.28	A
		ATOM	3544		ILE			66.260	66.456	-6.594	1.00 12.69	A
		ATOM	3545		ILE			65.605	67.562	-7.396	1.00 13.45	A
		ATOM	3546	C	ILE			63.633	65.910	-3.804	1.00 11.43	A
	15	ATOM	3547	Ö	ILE			62.429	66.142	-3.936	1.00 10.95	A
		ATOM	3548	N	GLU			64.100	65.013	-2.939	1.00 11.35	A
		ATOM	3549	CA	GLU			63.196	64.234	-2.092	1.00 11.75	A
		ATOM	3550	СВ	GLU			63.981	63.274	-1.188	1.00 12.29	A
		ATOM	3551	CG	GLU			64.595	62.071	-1.896	1.00 12.76	A
	20	ATOM	3552	CD	GLU			65.938	62.375	-2.539	1.00 13.14	A
		ATOM	3553		GLU			66.381	63.541	-2.473	1.00 14.41	A
Ū		ATOM	3554		GLU			66.544	61.441	-3.108	1.00 12.50	A
m		ATOM	3555	C	GLU			62.337	65.153	-1.230	1.00 11.49	A
457 H		ATOM	3556	Ö	GLU			61.145	64.907	-1.025	1.00 11.15	A
2	25	ATOM	3557	N	GLU			62.948	66.218	-0.729	1.00 12.01	A
14	20	ATOM	3558	CA	GLU			62.249	67.183	0.107	1.00 12.01	A
(Contraction)		MOTA	3559	CB	GLU			63.216	68.281	0.545	1.00 14.58	A
(T		ATOM	3560	CG	GLU			62.624	69.300	1.494	1.00 17.19	A
91		ATOM	3561	CD	GLU			63.514	70.515	1.653	1.00 17.13	A
	30	MOTA	3562		GLU			64.749	70.360	1.554	1.00 20.97	A
Control of Control	00	ATOM	3563		GLU			62.982	71.621	1.887	1.00 20.95	A
		ATOM	3564	C	GLU			61.072	67.817	-0.635	1.00 20.33	A
14		ATOM	3565	0	GLU			59.950	67.859	-0.126	1.00 11.43	A
		ATOM	3566	N	ARG			61.332	68.321	-1.836	1.00 11.00	A
	35	ATOM	3567	CA	ARG			60.286	68.964	-2.622	1.00 10.38	A
1	00	MOTA	3568	CB	ARG			60.898	69.660	-3.847	1.00 11.74	A
		ATOM	3569	CG	ARG			61.302	71.116	-3.608	1.00 14.55	A
		ATOM	3570	CD	ARG			62.235	71.277	-2.416	1.00 17.43	A
		ATOM	3571	NE	ARG			62.539	72.681	-2.130	1.00 19.26	A
	40	ATOM	3572	CZ	ARG			63.355	73.442	-2.855	1.00 21.10	A
	10	ATOM	3573		ARG			63.963	72.944	-3.924	1.00 21.18	A
		ATOM	3574		ARG			63.566	74.706	-2.507	1.00 21.77	A
		ATOM	3575	C	ARG			59.191	67.995	-3.054	1.00 9.31	A
		ATOM	3576	Ö	ARG			58.013	68.348	-3.048	1.00 8.43	A
	45	ATOM	3577	N	LEU			59.575	66.776	-3.421	1.00 8.92	A
	10	ATOM	3578	CA	LEU			58.594	65.783	-3.844	1.00 9.14	A
		ATOM	3579	CB	LEU			59.293	64.572	-4.465	1.00 8.78	A
		ATOM	3580	CG	LEU			59.992	64.878	-5.799	1.00 8.90	A
		ATOM	3581		LEU			60.677	63.624	-6.313	1.00 9.97	A
	50	ATOM	3582		LEU			58.970	65.395	-6.825	1.00 9.94	A
	<i>5</i> 0	ATOM	3583	CD2	LEU			57.706	65.350	-2.685	1.00 9.64	A
		ATOM	3584	0	LEU			56.511	65.124	-2.872	1.00 9.04	A
		ATOM	3585	N	GLU				65.243	-1.487	1.00 10.33	A
		ATOM	3586	CA	GLU			57.481	64.852	-0.328	1.00 9.21	A
	55			CB						0.902		A
		ATOM	3587	CB	GLU	Н	409	58.372	64.654	0.502	1.00 11.30	А

		ATOM	3588	CG	GLU	Α	459		57.603	64.225	2.146	1.00	13.61	А
		MOTA	3589	CD	GLU	Α	459		58.497	63.617	3.213	1.00	15.23	Α
		ATOM	3590		GLU				59.217	64.371	3.897	1.00	18.32	A
		ATOM	3591						58.482	62.377	3.358		17.20	A
	5	ATOM	3592	C	GLU				56.445	65.940	-0.059	1.00	9.87	А
	•	ATOM	3593	ō	GLU				55.279	65.653	0.205	1.00	8.53	А
		ATOM	3594	N	GLN				56.874	67.197	-0.137	1.00	8.94	A
		ATOM	3595	CA	GLN				55.962	68.312	0.083	1.00	9.46	A
		ATOM	3596	CB	GLN			•	56.706	69.640	-0.067		11.33	A
	10									70.862	0.130		14.48	A
	10	ATOM	3597	CG	GLN				55.828					
		ATOM	3598		GLN				56.541	72.153	-0.221		16.73	A
		ATOM	3599		GLN				56.024	73.242	0.020		20.84	A
		MOTA	3600		GLN				57.729	72.036	-0.803		18.45	A
	4-	ATOM	3601	С	GLN				54.823	68.246	-0.937	1.00	9.40	A
	15	ATOM	3602	0	GLN				53.651	68.330	-0.580	1.00	8.87	A
		MOTA	3603	N	ALA				55.169	68.081	-2.210	1.00	8.69	A
		MOTA	3604	CA	ALA	Α	461		54.146	68.023	-3.247	1.00	8.76	A
		MOTA	3605	CB	ALA	A	461		54.796	67.910	-4.622	1.00	8.72	Α
21723.		ATOM	3606	С	ALA	Α	461		53.160	66.877	-3.034	1.00	8.44	Α
	20	ATOM	3607	0	ALA	A	461		51.947	67.073	-3.113	1.00	8.84	Α
ı,D		MOTA	3608	N	ARG	Α	462		53.678	65.684	-2.763	1.00	7.93	Α
,D		MOTA	3609	CA	ARG	Α	462		52.812	64.529	-2.548	1.00	7.87	A
iji.		ATOM	3610	CB	ARG	Α	462		53.629	63.255	-2.292	1.00	7.57	A
		ATOM	3611	CG	ARG				54.346	62.679	-3.515	1.00	7.40	A
	25	ATOM	3612	CD	ARG				54.815	61.252	-3.233	1.00	7.74	А
		ATOM	3613	NE	ARG				55.726	61.190	-2.089	1.00	7.74	A
		MOTA	3614	CZ	ARG				57.043	61.352	-2.169	1.00	8.73	A
		ATOM	3615		ARG				57.621	61.578	-3.344	1.00	8.89	A
21		ATOM	3616		ARG				57.787	61.303	-1.070	1.00	9.62	A
162	30	ATOM	3617	C	ARG				51.882	64.747	-1.365	1.00	8.16	A
Ü	50	MOTA	3618	Ö	ARG				50.707	64.389	-1.416	1.00	7.32	A
T)		ATOM	3619	Ŋ	ARG				52.399	65.344	-0.298	1.00	8.35	A
ļ.									51.576	65.546	0.884	1.00	9.21	A
		ATOM	3620	CA	ARG						2.093	1.00	9.46	A
	25	ATOM	3621	CB	ARG				52.473	65.823				
i.l.	35	ATOM	3622	CG	ARG				53.219	64.564	2.500	1.00	9.86	A
		ATOM	3623	CD	ARG				54.152	64.737	3.681		11.93	A
		ATOM	3624	NE	ARG				54.673	63.433	4.075		13.77	A
		ATOM	3625	CZ	ARG				55.453	63.216	5.128		14.71	A
	40	ATOM	3626		ARG				55.815	64.225	5.906		15.88	A
	40	MOTA	3627		ARG				55.857	61.982	5.405		15.92	A
		MOTA	3628	С	ARG				50.485	66.599	0.742			Α
		ATOM	3629	0	ARG				49.386	66.420	1.266	1.00	8.63	A
		ATOM	3630	N	GLU				50.760	67.681	0.020	1.00	8.86	A
		ATOM	3631	CA	GLU				49.743	68.712	-0.149	1.00	8.79	А
	45	MOTA	3632	CB	GLU	А	464		50.359	69.995	-0.719	1.00	10.23	Α
		MOTA	3633	CG	GLU	A	464		51.526	70.535	0.118	1.00	12.65	A
		ATOM	3634	CD	GLU	Α	464		51.115	71.035	1.501	1.00	15.53	A
		ATOM	3635	OE1	GLU	Α	464		50.127	70.527	2.075	1.00	15.74	А
		ATOM	3636	OE2	GLU	Α	464		51.802	71.936	2.027	1.00	18.42	А
	50	MOTA	3637	С	GLU				48.638	68.193	-1.064	1.00	8.27	Α
		ATOM	3638	0	GLU				47.459	68.460	-0.830	1.00	8.83	A
		ATOM	3639	N	LEU				49.012	67.449	-2.102	1.00	8.19	А
		ATOM	3640	CA	LEU				48.008	66.887	-3.000	1.00	7.76	А
		ATOM	3641	СВ	LEU				48.666	66.269	-4.240	1.00	7.54	A
	55	ATOM	3642	CG	LEU				47.706	65.594	-5.231	1.00	7.30	A
		A I OU	3072	CG	טבע	1-1	4 U J		,	55.554	3.231	1.00		- 1

		ATOM	3643	CD1	LEU	Α	465	46.652	66.591	-5.710	1.00	8.29	A
		ATOM	3644	CD2	LEU	Α	465	48.502	65.043	-6.405	1.00	8.63	Α
		ATOM	3645	С	LEU	Α	465	47.219	65.817	-2.241	1.00	7.24	Α
		ATOM	3646	0	LEU	Α	465	45.995	65.720	-2.368	1.00	7.02	А
	5	MOTA	3647	N	SER	Α	466	47.920	65.014	-1.444	1.00	6.60	Α
		MOTA	3648	CA	SER	Α	466	47.258	63.972	-0.670	1.00	7.04	Α
		ATOM	3649	CB	SER	Α	466	48.284	63.145	0.106	1.00	7.46	Α
		ATOM	3650	OG	SER	Α	466	49.039	62.325	-0.766	1.00	8.02	Α
		ATOM	3651	С	SER	Α	466	46.249	64.567	0.303	1.00	6.94	Α
	10	ATOM	3652	0	SER	Α	466	45.140	64.053	0.443	1.00	6.64	Α
		ATOM	3653	N	LEU	Α	467	46.638	65.649	0.969	1.00	6.68	Α
		MOTA	3654	CA	LEU	Α	467	45.759	66.306	1.922	1.00	7.53	Α
		MOTA	3655	CB	LEU	Α	467	46.462	67.522	2.532	1.00	7.48	A
		ATOM	3656	CG	LEU	A	467	45.653	68.259	3.601	1.00	9.74	А
	15	ATOM	3657	CD1	LEU	Α	467	45.493	67.369	4.816	1.00	11.77	Α
		ATOM	3658	CD2	LEU	А	467	46.359	69.555	3.975	1.00	11.14	Α
		MOTA	3659	С	LEU	A	467	44.462	66.753	1.251	1.00	7.29	Α
		MOTA	3660	0	LEU	Α	467	43.381	66.624	1.826	1.00	7.06	Α
5 14 Mg		MOTA	3661	N	PHE	Α	468	44.570	67.270	0.029	1.00	6.97	А
	20	ATOM	3662	CA	PHE			43.392	67.756	-0.680	1.00	6.88	Α
		ATOM	3663	CB	PHE	Α	468	43.800	68.553	-1.925	1.00	7.64	Α
		ATOM	3664	CG	PHE			42.688	69.391	-2.491	1.00	7.18	А
m		ATOM	3665		PHE			42.039	70.331	-1.695	1.00	7.53	А
		MOTA	3666	CD2	PHE	Α	468	42.264	69.221	-3.804	1.00	7.39	Α
	25	MOTA	3667		PHE			40.979	71.089	-2.198	1.00	7.30	Α
e de la composition della comp		MOTA	3668		PHE			41.204	69.972	-4.314	1.00	7.16	A
M		ATOM	3669	CZ	PHE			40.561	70.907	-3.510	1.00	7.44	A
21		ATOM	3670	C	PHE			42.402	66.662	-1.069	1.00	6.45	А
	20	ATOM	3671	0	PHE			41.259	66.964	-1.413	1.00	7.00	A
	30	ATOM	3672	N	GLN			42.829	65.401	-1.018	1.00	6.03	A
", i±d" 3 § €		MOTA	3673	CA	GLN			41.931	64.302	-1.352	1.00	6.57	A
W.		MOTA	3674	СВ	GLN			42.707	62.998	-1.542	1.00	6.70	A
ĝ,d⊾. ∴as		MOTA	3675	CG	GLN			43.795	63.094	-2.600	1.00	7.58	A
1,000	25	ATOM	3676	CD	GLN			43.304	63.745	-3.878	1.00	7.69	A
į.	35	ATOM	3677	OE1	GLN			43.860	64.748	-4.329	1.00	9.02	A
		ATOM	3678	NE2	GLN			42.258	63.184	-4.465	1.00	5.38	A
		ATOM	3679	С	GLN			40.898	64.121	-0.250	1.00	6.50	A
		ATOM	3680	0	GLN			39.927	63.383	-0.416	1.00	7.49	A
	40	MOTA	3681	N	HIS			41.119	64.792	0.878	1.00	6.70 7.12	A
	40	ATOM	3682	CA	HIS			40.195 40.563	64.727 65.781	2.004 3.047	1.00	7.12	A A
		ATOM	3683	CB	HIS			39.594	65.852	4.183	1.00	7.78	A
		ATOM	3684 3685	CG	HIS HIS			38.969	64.869	4.872	1.00	7.00	A
		ATOM							67.041	4.715	1.00	9.94	A
	45	ATOM ATOM	3686 3687		HIS HIS			39.144 38.281	66.786	5.683	1.00	6.65	A
	40	ATOM	3688		HIS			38.157	65.476	5.797		10.50	A
		ATOM	3689	C	HIS			38.758	64.969	1.537	1.00	6.99	A
		ATOM	3690	0	HIS			38.527	65.722	0.587	1.00	6.65	A
		ATOM	3691	N	HIS			37.793	64.351	2.215	1.00	7.65	A
	50	ATOM	3692	CA	HIS			36.398	64.503	1.824	1.00	7.92	A
	50	ATOM	3693	CB	HIS			35.532	63.380	2.417	1.00	7.70	A
		MOTA	3694	CG	HIS			35.636	63.249	3.901	1.00	7.75	A
		ATOM	3695		HIS			34.904	63.802	4.894	1.00	8.79	A
		ATOM	3696		HIS			36.612	62.493	4.515	1.00	8.77	A
	55	ATOM	3697		HIS			36.476	62.589	5.825	1.00	8.02	A
		A I Ou	3031	CLI	1113	ч	4 / T	30.470	02.309	J. UZJ	1.00	0.02	Λ

		B. (1) 0.14	2600	1100		471	25 440	(2 277	C 000	1 00	0 27	70
		ATOM	3698		HIS A		35.448	63.377	6.080	1.00	8.27	A
		ATOM	3699	С	HIS A		35.775	65.873	2.102	1.00	8.28	Α
		ATOM	3700	0	HIS A	471	34.566	66.039	1.965	1.00	8.06	Α
		ATOM	3701	N	ASP A	472	36.598	66.839	2.510	1.00	8.09	Α
	5	MOTA	3702	CA	ASP A	472	36.138	68.219	2.681	1.00	8.05	Α
		ATOM	3703	CB	ASP A	472	36.134	68.660	4.144	1.00	9.12	Α
		ATOM	3704	CG	ASP A	472	35.001	68.046	4.927	1.00	8.91	А
		ATOM	3705		ASP A		33.837	68.191	4.490	1.00 1	0.33	А
		ATOM	3706		ASP A		35.274	67.426	5.974	1.00	9.95	Α
	10	ATOM	3707	C	ASP A		37.083	69.111	1.880	1.00	8.31	A
	10		3707	0	ASP A		36.989	70.341	1.921	1.00	8.71	A
		ATOM									7.76	
		ATOM	3709	N	GLY A		37.991	68.476	1.143 0.329	1.00		A
		ATOM	3710	CA	GLY A		38.941	69.214		1.00	6.95	A
	15	ATOM	3711	С	GLY A		38.449	69.319	-1.098	1.00	6.25	A
	15	ATOM	3712	0	GLY A		37.781	70.286	-1.461	1.00	7.15	A
		ATOM	3713	N	ILE A	474	38.753	68.306	-1.904	1.00	7.12	A
		ATOM	3714	CA	ILE A		38.345	68.297	-3.302	1.00	7.43	A
		MOTA	3715	CB	ILE A		38.883	67.023	-4.011	1.00	6.98	Α
4124		ATOM	3716	CG2	ILE A	474	38.271	65.774	-3.383	1.00	7.56	A
	20	ATOM	3717	CG1	ILE A	474	38.604	67.097	-5.514	1.00	7.17	Α
ŧ,D		ATOM	3718	CD1	ILE A	474	39.279	65.983	-6.308	1.00	9.11	Α
ı,D		ATOM	3719	С	ILE A	474	36.824	68.408	-3.468	1.00	8.30	A
		ATOM	3720	0	ILE A		36.334	68.865	-4.500	1.00	8.97	A
		ATOM	3721	N	THR A		36.087	68.009	-2.436	1.00	7.83	А
19 B:	25	ATOM	3722	CA	THR A		34.625	68.054	-2.440		8.11	A
		ATOM	3723	СВ	THR A		34.066	67.378	-1.189		8.53	A
		ATOM	3724		THR A		34.589	68.053	-0.038	1.00	8.85	A
ijħ.		ATOM	3725		THR A		34.458	65.905	-1.139	1.00	9.50	A
21		ATOM	3726	C	THR A		34.067	69.482	-2.456		8.06	A
I I	30	ATOM	3727	0			32.906	69.702	-2.817		8.47	A
4 D	30				THR A						7.78	
		ATOM	3728	N	GLY A		34.888	70.448	-2.051	1.00		A
		ATOM	3729	CA	GLY A		34.435	71.828	-2.020		8.58	A
		ATOM	3730	С	GLY A		33.424	72.078	-0.914		8.79	A
	25	MOTA	3731	0	GLY A		32.534	72.917	-1.062		8.66	A
i-L	35	MOTA	3732	N	THR A		33.558	71.354	0.195		8.54	A
		ATOM	3733	CA	THR A		32.634	71.502	1.315	1.00	9.22	A
		ATOM	3734	CB	THR A		32.012	70.134	1.700		8.79	Α
		MOTA	3735	OG1	THR A	477	33.053	69.184	1.974	1.00	8.67	Α
		ATOM	3736	CG2	THR A	477	31.150	69.610	0.558	1.00	9.58	Α
	40	ATOM	3737	С	THR A	477	33.239	72.144	2.567	1.00	9.40	Α
		MOTA	3738	0	THR A	477	32.671	72.034	3.655	1.00 1	0.45	A
		MOTA	3739	N	ALA A	478	34.374	72.826	2.417	1.00	9.36	A
		ATOM	3740	CA	ALA A		35.022	73.479	3.558		9.20	A
		ATOM	3741	СВ	ALA A		36.535	73.254	3.501	1.00 1		A
	45	MOTA	3742	C	ALA A		34.722	74.979	3.619		9.62	А
	10	ATOM	3743	0	ALA A		34.225	75.572	2.657		8.69	A
		ATOM	3744	N	LYS A		35.016	75.598	4.759		9.96	A
			3745	CA	LYS A		34.775	77.030	4.888	1.00 1		A
		MOTA					34.773	77.492	6.337	1.00 1		A
	50	ATOM	3746	CB	LYS A							
	50	ATOM	3747	CG	LYS A		33.942	76.890	7.300	1.00 1		A
		MOTA	3748	CD	LYS A		34.018	77.529	8.677	1.00 1		A
		ATOM	3749	CE	LYS A		33.187	78.798	8.755	1.00 2		A
		ATOM	3750	NZ	LYS A		31.717	78.517	8.701	1.00 1		A
		MOTA	3751	С	LYS A		35.746	77.761	3.972	1.00 1		A
	55	MOTA	3752	0	LYS A	479	36.793	77.225	3.607	1.00 1	0.46	А

		ATOM	3753	N	THR P	480	35.393	78.984	3.603	1.00 1	1.10	А
		ATOM	3754	CA	THR A	480	36.214	79.784	2.707	1.00 1	1.50	Α
		ATOM	3755	CB	THR A	480	35.646	81.208	2.584	1.00 1		Α
		ATOM	3756	OG1	THR A	480	34.331	81.139	2.021	1.00 1	.4.84	A
	5	ATOM	3757	CG2	THR A	480	36.529	82.068	1.683	1.00 1	3.82	Α
		ATOM	3758	С	THR A	480	37.696	79.870	3.059	1.00 1	1.02	А
		ATOM	3759	0	THR A	480	38.548	79.651	2.192	1.00 1	0.46	А
		ATOM	3760	N	HIS A	481	38.025	80.179	4.310	1.00 1	.0.35	А
		ATOM	3761	CA	HIS A	481	39.437	80.296	4.655	1.00	9.50	Α
	10	ATOM	3762	CB	HIS A	481	39.621	80.983	6.023	1.00 1	0.43	A
		ATOM	3763	CG	HIS A	481	39.453	80.077	7.204	1.00 1	0.15	Α
		ATOM	3764	CD2	HIS A	481	40.366	79.556	8.057	1.00 1	0.66	Α
		ATOM	3765	ND1	HIS A	481	38.223	79.632	7.641	1.00 1	1.08	Α
		ATOM	3766	CE1	HIS A	481	38.387	78.878	8.712	1.00 1	1.48	A
	15	ATOM	3767	NE2	HIS A	481	39.678	78.816	8.986	1.00 1	.0.90	Α
		ATOM	3768	С	HIS A		40.169	78.955	4.610	1.00	9.97	Α
		ATOM	3769	0	HIS A		41.390	78.914	4.454	1.00 1	0.08	Α
		ATOM	3770	N	VAL A		39.423	77.859	4.726	1.00	9.90	Α
s ,		MOTA	3771	CA	VAL A		40.030	76.534	4.671	1.00	9.55	Α
	20	MOTA	3772	СВ	VAL A		39.103	75.471	5.296	1.00	8.77	Α
•		ATOM	3773	CG1	VAL A		39.771	74.101	5.263	1.00	8.62	Α
Ī		ATOM	3774	CG2	VAL A	482	38.794	75.852	6.744	1.00	9.85	Α
		ATOM	3775	С	VAL A	482	40.327	76.206	3.206	1.00	9.39	Α
		ATOM	3776	0	VAL A	482	41.374	75.646	2.886	1.00	9.70	Α
#	25	ATOM	3777	N	VAL A		39.405	76.568	2.319	1.00	9.35	Α
ŀ		MOTA	3778	CA	VAL A		39.612	76.356	0.893	1.00	9.49	A
į.		ATOM	3779	СВ	VAL A		38.412	76.872	0.075	1.00	9.54	A
•		ATOM	3780	CG1			38.728	76.821	-1.412	1.00 1	0.64	A
		ATOM	3781	CG2	VAL A		37.182	76.023	0.377	1.00 1	0.55	A
ř	30	ATOM	3782	С	VAL A	483	40.873	77.126	0.487	1.00	9.63	Α
e.		ATOM	3783	0	VAL A		41.693	76.636	-0.290	1.00	9.14	А
		ATOM	3784	N	VAL A		41.034	78.328	1.037	1.00 1	0.23	А
<u>.</u>		MOTA	3785	CA	VAL A		42.203	79.142	0.734	1.00 1	0.83	А
		MOTA	3786	CB	VAL A		42.112	80.524	1.410	1.00 1	0.78	А
	35	MOTA	3787	CG1	VAL A	484	43.445	81.261	1.292	1.00 1	1.71	А
		MOTA	3788	CG2	VAL A	484	41.009	81.333	0.754	1.00 1	1.99	А
		ATOM	3789	С	VAL A		43.477	78.442	1.187		0.65	А
		MOTA	3790	0	VAL A	484	44.488	78.473	0.484	1.00 1	1.13	Α
		ATOM	3791	N	ASP A	485	43.431	77.809	2.357	1.00	9.92	А
	40	ATOM	3792	CA	ASP A	485	44.596	77.094	2.862	1.00	9.04	А
		MOTA	3793	СВ	ASP A		44.331	76.550	4.271	1.00 1	0.28	А
		MOTA	3794	CG	ASP A	485	45.571	75.944	4.904	1.00 1	0.84	А
		ATOM	3795	OD1	ASP A		45.531	74.760	5.291	1.00 1		А
		ATOM	3796		ASP A		46.592	76.657	5.013	1.00 1	3.22	A
	45	ATOM	3797	С	ASP A	485	44.960	75.945	1.922	1.00	8.24	Α
		ATOM	3798	0	ASP A		46.131	75.739	1.613	1.00	8.35	А
		ATOM	3799	N	TYR A		43.959	75.192	1.474	1.00	8.00	Α
		ATOM	3800	CA	TYR A		44.211	74.088	0.550		8.25	Α
		ATOM	3801	СВ	TYR A		42.912	73.357	0.205	1.00	8.89	А
	50	ATOM	3802	CG	TYR A		42.326	72.506	1.311	1.00	8.67	A
	-	ATOM	3803		TYR A		40.953	72.504	1.542	1.00	8.68	A
		ATOM	3804		TYR A		40.386	71.694	2.520		8.58	A
		ATOM	3805		TYR A		43.131	71.669	2.095	1.00	9.01	A
		ATOM	3806		TYR A		42.567	70.848	3.085	1.00	9.81	A
	55	ATOM	3807	CZ	TYR A		41.192	70.872	3.284	1.00	9.19	A
							_					

								7.7				
		MOTA	3808	ОН	TYR	Α	486	40.607	70.075	4.245	1.00 10.42	А
		ATOM	3809	С	TYR	Α	486	44.831	74.618	-0.740	1.00 9.13	A
		ATOM	3810	0	TYR	Α	486	45.748	74.009	-1.283	1.00 8.83	Α
		MOTA	3811	N	GLU	A	487	44.324	75.748	-1.229	1.00 9.52	Α
	5	ATOM	3812	CA	GLU	Α	487	44.841	76.345	-2.456	1.00 10.36	Α
		MOTA	3813	CB	GLU	Α	487	44.007	77.563	-2.865	1.00 11.32	А
		ATOM	3814	CG	GLU			44.321	78.044	-4.282	1.00 13.08	А
		MOTA	3815	CD	GLU			43.569	79.300	-4.677	1.00 15.53	A
		ATOM	3816	OE1				42.384	79.441	-4.310	1.00 16.78	А
	10	ATOM	3817		GLU			44.163	80.147	-5.377	1.00 17.62	А
		ATOM	3818	С	GLU			46.296	76.771	-2.293	1.00 11.00	A
		ATOM	3819	0	GLU			47.125	76.522	-3.168	1.00 10.62	A
		ATOM	3820	N	GLN			46.601	77.423	-1.175	1.00 11.10	A
		MOTA	3821	CA	GLN			47.962	77.875	-0.910	1.00 12.20	A
	15	ATOM	3822	СВ	GLN			48.031	78.621	0.425	1.00 15.17	A
	10	MOTA	3823	CG	GLN			47.343	79.970	0.426	1.00 19.59	A
		ATOM	3824	CD	GLN			47.395	80.642	1.782	1.00 21.97	· A
		MOTA	3825		GLN			47.075	81.821	1.912	1.00 21.37	A
		ATOM	3826	NE2				47.795	79.890	2.804	1.00 24.06	A
	20	ATOM	3827	C	GLN			48.904	76.684	-0.865	1.00 24.00	A
11	20											
		ATOM	3828	0	GLN			50.000	76.727	-1.421	1.00 10.97	A
iji.		MOTA	3829	N	ARG			48.473	75.621	-0.190	1.00 9.60	A
4,8 F		ATOM	3830	CA	ARG			49.278	74.416	-0.083	1.00 9.37	A
	25	ATOM	3831	CB	ARG			48.571	73.385	0.804	1.00 9.55	A
IJ	25	ATOM	3832	CG	ARG			48.601	73.714	2.294	1.00 10.40	A
194		ATOM	3833	CD	ARG			47.660	72.790	3.063	1.00 10.86	A
Ħ		MOTA	3834	NE	ARG			47.738	72.969	4.513	1.00 11.17	A
fi)		ATOM	3835	CZ	ARG			48.620	72.361	5.302	1.00 12.00	A
4.5	00	MOTA	3836		ARG			49.513	71.522	4.792	1.00 13.64	A
	30	MOTA	3837		ARG			48.606	72.593	6.610	1.00 12.68	Α
1 dags 249 S		MOTA	3838	С	ARG			49.528	73.835	-1.472	1.00 9.02	A
. (ATOM	3839	0	ARG			50.656	73.468	-1.801	1.00 8.75	А
ļė.		MOTA	3840	N	MSE			48.487	73.766	-2.297	1.00 9.23	A
	05	MOTA	3841	CA	MSE			48.666	73.224	-3.639	1.00 9.79	A
1,2	35	MOTA	3842	CB	MSE			47.314	72.964	-4.314	1.00 10.83	A
		MOTA	3843	CG	MSE			46.571	71.768	-3.719	1.00 11.89	A
		MOTA	3844	SE	MSE			45.198	71.045	-4.876	1.00 18.09	A
		MOTA	3845	CE	MSE			43.813	72.317	-4.470	1.00 13.98	A
		MOTA	3846	С	MSE			49.539	74.117	-4.519	1.00 10.09	A
	40	ATOM	3847	0	MSE	-		50.254	73.620	-5.387	1.00 9.19	A
		MOTA	3848	N	GLN			49.490	75.427	-4.300	1.00 10.39	Α
		ATOM	3849	CA	GLN	Α	491	50.314	76.332	-5.093	1.00 12.11	Α
		ATOM	3850	CB	GLN	A	491	49.972	77.790	-4.786	1.00 14.32	А
		MOTA	3851	CG	GLN	Α	491	50.755	78.791	-5.620	1.00 19.08	A
	45	ATOM	3852	CD	GLN	Α	491	50.647	78.520	-7.109	1.00 21.56	А
		MOTA	3853	OE1	GLN	Α	491	51.427	77.746	-7.676	1.00 23.81	Α
		ATOM	3854	NE2	GLN	Α	491	49.669	79.145	-7.750	1.00 23.81	Α
		MOTA	3855	С	GLN	A	491	51.779	76.064	-4.769	1.00 11.74	Α
		ATOM	3856	0	GLN			52.630	76.040	-5.658	1.00 10.95	Α
	50	MOTA	3857	N	GLU			52.068	75.851	-3.489	1.00 11.42	Α
		ATOM	3858	CA	GLU			53.432	75.570	-3.066	1.00 12.73	А
		ATOM	3859	СВ	GLU			53.511	75.506	-1.536	1.00 15.62	A
		ATOM	3860	CG	GLU			52.957	76.743	-0.844	1.00 21.31	A
		ATOM	3861	CD	GLU			53.040	76.666	0.668	1.00 24.20	A
	55	ATOM	3862		GLU			52.577	75.660	1.249	1.00 26.61	A
						- •		02.0.				

		ATOM	3863	OE2	GLU	Δ	492	53.564	77.622	1.280	1.00	27.33	А
		ATOM	3864	C	GLU			53.863	74.236	-3.669		10.97	A
												11.10	
		MOTA	3865	0	GLU			55.014	74.065	-4.073			A
	_	ATOM	3866	N	ALA			52.929	73.292	-3.734	1.00	9.75	A
	5	ATOM	3867	CA	ALA			53.215	71.979	-4.301	1.00	8.02	А
		ATOM	3868	CB	ALA	Α	493	52.018	71.048	-4.097	1.00	8.73	Α
		ATOM	3869	С	ALA	Α	493	53.544	72.100	-5.792	1.00	8.05	Α
		ATOM	3870	0	ALA	Α	493	54.453	71.436	-6.290	1.00	7.12	Α
		ATOM	3871	N	LEU	Α	494	52.802	72.948	-6.501	1.00	8.32	Α
	10	MOTA	3872	CA	LEU			53.046	73.145	-7.925	1.00	9.14	A
		ATOM	3873	СВ	LEU			51.979	74.069	-8.530	1.00	9.65	Α
		ATOM	3874	CG	LEU			50.611	73.420	-8.773		10.02	A
		ATOM	3875		LEU			49.579	74.489	-9.132		10.77	A
					LEU			50.729	72.390	-9.889		10.73	A
	15	MOTA	3876									9.07	A
	15	ATOM	3877	C	LEU			54.437	73.726	-8.145	1.00		
		ATOM	3878	0	LEU			55.158	73.297	-9.043	1.00	9.80	A
		ATOM	3879	N	LYS			54.816	74.694	-7.315	1.00	9.88	A
		ATOM	3880	CA	LYS			56.137	75.307	-7.427		10.44	A
4;*** <u>*</u>		MOTA	3881	CB	LYS			56.260	76.494	-6.467		12.88	А
2	20	MOTA	3882	CG	LYS	Α	495	55.346	77.657	-6.831		16.66	Α
		ATOM	3883	CD	LYS	Α	495	55.583	78.879	-5.955	1.00	19.89	A
٤		ATOM	3884	CE	LYS	Α	495	55.238	78.611	-4.501	1.00	21.23	А
m		ATOM	3885	NZ	LYS	Α	495	55.445	79.824	-3.656	1.00	23.31	Α
Ş		ATOM	3886	С	LYS	Α	495	57.221	74.273	-7.138	1.00	10.02	Α
ĩŲ.	25	ATOM	3887	0	LYS			58.268	74.260	-7.788	1.00	10.29	А
111		ATOM	3888	N	ALA			56.965	73.397	-6.170	1.00	8.63	A
		ATOM	3889	CA	ALA			57.923	72.351	-5.832	1.00	8.27	А
ijħ.		ATOM	3890	СВ	ALA			57.433	71.564	-4.613	1.00	9.05	А
Ħ?		ATOM	3891	C	ALA			58.094	71.419	-7.037	1.00	8.71	A
	30	ATOM	3892	0	ALA			59.211	71.028	-7.387	1.00	8.19	A
4	50		3893		CYS			56.982	71.028	-7.676	1.00	8.28	A
		MOTA		N Cn					70.192	-8.838	1.00	8.42	A
i in		ATOM	3894	CA	CYS			57.032					
		ATOM	3895	СВ	CYS			55.618	69.845	-9.313	1.00	7.83	A
1,23	25	MOTA	3896	SG	CYS			54.759	68.649	-8.261	1.00	8.61	A
jerp.	35	MOTA	3897	С	CYS			57.813	70.848	-9.970	1.00	8.81	A
		MOTA	3898	0	CYS			58.639		-10.615	1.00	8.25	A
		MOTA	3899	N	GLN			57.550		-10.212	1.00	8.64	A
		ATOM	3900	CA	GLN			58.248		-11.272		10.15	A
		ATOM	3901	CB	GLN	A	498	57.765	74.293	-11.355		11.26	A
	40	ATOM	3902	CG	GLN	A	498	58.576	75.132	- 12.335	1.00	14.98	A
		ATOM	3903	CD	GLN	Α	498	58.111	76.573	-12.423	1.00	17.06	А
		ATOM	3904	OE1	GLN	Α	498	58.033	77.280	-11.412	1.00	19.34	А
		ATOM	3905	NE2	GLN	Α	498	57.814	77.023	-13.636	1.00	16.12	А
		MOTA	3906	С	GLN	Α	498	59.755	72.824	-11.040	1.00	10.31	А
	45	ATOM	3907	0	GLN			60.532	72.590	-11.966	1.00	9.65	А
		ATOM	3908	N	MSE			60.165	73.080	-9.801	1.00	9.78	А
		ATOM	3909	CA	MSE			61.580	73.090	-9.457		11.48	А
		ATOM	3910	CB	MSE			61.751	73.411	-7.968		15.37	А
		ATOM	3911	ÇG	MSE			63.163	73.223	-7.420		19.93	A
	50								74.312	-8.276		30.03	A
	50	ATOM	3912	SE	MSE			64.512	76.038			24.23	
		MOTA	3913	CE	MSE			63.919		-7.664			A
		ATOM	3914	С	MSE			62.226	71.748	-9.783		10.06	A
		MOTA	3915	0	MSE			63.261		-10.445	1.00	9.59	A
		MOTA	3916	N	VAL			61.602	70.665	-9.328	1.00	9.10	A
	55	MOTA	3917	CA	VAL	Α	500	62.134	69.336	-9.572	1.00	8.89	A

		ATOM	3918	CB	VAL			68.274		1.00 8.59	
		MOTA	3919	CG1	VAL A	A 50		66.871		1.00 8.21	
		MOTA	3920	CG2	VAL .			68.486		1.00 10.28	Α
	_	ATOM	3921	С	VAL A				-11.062	1.00 8.51	Α
	5	MOTA	3922	0	VAL	A 50			-11.573	1.00 9.06	
		ATOM	3923	N	MSE .				-11.752	1.00 8.86	
		MOTA	3924	CA	MSE	A 50	1 60.975		-13.181	1.00 8.89	
		MOTA	3925	CB	MSE A				-13.698	1.00 11.27	
		ATOM	3926	CG	MSE A	A 50.	1 58.472		-13.164	1.00 12.53	Α
	10	MOTA	3927	SE	MSE	A 50	1 56.723		-13.426	1.00 20.16	
		ATOM	3928	CE	MSE A			69.004	-15.314	1.00 15.92	
		MOTA	3929	С	MSE A	A 50	1 62.051	69.751	-13.993	1.00 8.69	
		MOTA	3930	0	MSE I			69.124	-14.793	1.00 8.53	
		ATOM	3931	N	GLN A	A 50	2 62.193	71.057	-13.793	1.00 9.61	
	15	MOTA	3932	CA	GLN A	A 50	2 63.183	71.813	-14.551	1.00 9.86	
		MOTA	3933	CB	GLN Z	A 50	2 62.972	73.318	-14.351	1.00 10.38	Α
		ATOM	3934	CG	GLN A	A 50	2 63.229	73.852	-12.958	1.00 10.99	A
		MOTA	3935	CD	GLN I	A 50	2 64.644	74.356	-12.798	1.00 11.92	Α
£1000		ATOM	3936	OE1	GLN A	A 50	2 65.370	74.510	-13.782	1.00 11.67	A
	20	MOTA	3937	NE2	GLN A	A 50	2 65.042	74.633	-11.563	1.00 12.62	A
1,121		MOTA	3938	С	GLN A	A 50	2 64.620	71.396	-14.236	1.00 10.24	Α
ŧ,Ū		ATOM	3939	0	GLN A	A 50	2 65.463	71.366	-15.131	1.00 9.31	Α
(31)		MOTA	3940	N	GLN .	A 50	3 64.909	71.062	-12.980	1.00 9.34	A
		ATOM	3941	CA	GLN .	A 50	3 66.260	70.608	-12.642	1.00 10.05	A
IJ	25	MOTA	3942	CB	GLN /	A 50	3 66.408	70.369	-11.135	1.00 10.04	А
14		MOTA	3943	CG	GLN			71.616	-10.285	1.00 11.30	A
ijī.		ATOM	3944	CD	GLN .	A 50	3 67.985	72.265	-10.503	1.00 12.37	A
		ATOM	3945	OE1	GLN :	A 50	3 68.979	71.588	-10.775	1.00 13.68	А
ii (ATOM	3946	NE2	GLN	A 50	3 68.035	73.582	-10.354	1.00 12.98	А
	30	ATOM	3947	С	GLN A			69.291	-13.374	1.00 9.96	А
ų.		MOTA	3948	0	GLN .			69.048	-13.876	1.00 10.50	A
M.		ATOM	3949	N	SER .			68.435	-13.425	1.00 9.59	A
Įm.		ATOM	3950	CA	SER .			67.141	-14.085	1.00 9.96	A
		ATOM	3951	CB	SER I			66.291	-13.824	1.00 10.16	A
[.L	35	ATOM	3952	OG	SER A	A 50		66.012	-12.440	1.00 9.72	A
1		ATOM	3953	C	SER				-15.584	1.00 9.31	А
		ATOM	3954	Ö	SER .			66.589	-16.159	1.00 8.89	Α
		ATOM	3955	N	VAL			68.167	-16.219	1.00 9.28	А
		ATOM	3956	CA	VAL			68.371	-17.655	1.00 9.59	Α
	40	ATOM	3957	CB	VAL			69.399	-18.175	1.00 9.08	A
		MOTA	3958		VAL	A 50		69.782	-19.618	1.00 9.37	А
		ATOM	3959		VAL				-18.095	1.00 9.95	A
		ATOM	3960	С	VAL				-17.987	1.00 9.71	А
		ATOM	3961	0	VAL				-18.940	1.00 10.10	Α
	45	ATOM	3962	N	TYR				-17.193	1.00 9.87	А
		MOTA	3963	CA	TYR				-17.438	1.00 11.11	А
		ATOM	3964	CB	TYR				-16.423	1.00 12.61	А
		ATOM	3965	CG	TYR .				-16.747	1.00 14.68	A
		MOTA	3966		TYR				-17.951	1.00 15.77	А
	50	ATOM	3967		TYR				-18.275	1.00 17.48	A
	<i>5</i> 0	ATOM	3968		TYR				-15.868	1.00 15.76	A
		ATOM	3969		TYR .				-16.185	1.00 17.87	A
		ATOM	3970	CZ	TYR .				-17.390	1.00 17.40	A
		ATOM	3971	OH	TYR .				-17.715	1.00 17.40	A
	55			С	TYR .				-17.370	1.00 11.07	A
	55	ATOM	3972	C	IIK .	M 30	0 09.330	09.173	11.570	1.00 11.07	ri.

		7.004	2072	_	mvn	70	T 0 C	70 422	69.091 -18.208	1.00 11.91	A
		MOTA	3973	0			506	70.433			
		ATOM	3974	N	ARG			69.409	68.297 -16.381	1.00 10.61	A
		MOTA	3975	CA	ARG			70.360	67.198 -16.233	1.00 10.72	Α
		ATOM	3976	CB	ARG	Α	507	70.183	66.538 -14.863	1.00 11.26	Α
	5	MOTA	3977	CG	ARG	Α	507	71.244	65.498 -14.526	1.00 12.91	Α
	-	ATOM	3978	CD	ARG			71.069	64.994 -13.106	1.00 13.23	А
		ATOM	3979	NE	ARG			72.063	63.986 -12.746	1.00 15.07	A
		ATOM	3980	CZ	ARG			72.164	63.442 -11.536	1.00 15.08	A
		MOTA	3981		ARG			71.334	63.813 -10.572	1.00 15.72	Α
	10	ATOM	3982	NH2	ARG	Α	507	73.081	62.514 -11.294	1.00 16.84	Α
		MOTA	3983	С	ARG	Α	507	70.219	66.148 -17.339	1.00 10.75	Α
		ATOM	3984	0	ARG	Α	507	71.211	65.609 -17.829	1.00 10.91	Α
		ATOM	3985	N	LEU			68.983	65.863 -17.734	1.00 9.85	A
		ATOM	3986	CA	LEU			68.726	64.865 -18.769	1.00 10.20	Α
	15	ATOM	3987	СВ	LEU			67.242	64.483 -18.766	1.00 9.54	A
	13										
		ATOM	3988	CG	LEU			66.755	63.648 -17.574		A
		MOTA	3989		LEU			65.238	63.747 -17.461	1.00 9.92	A
		ATOM	3990	CD2	LEU	Α	508	67.205	62.206 -17.737	1.00 10.33	A
i stanting		MOTA	3991	С	LEU	Α	508	69.120	65.287 -20.182	1.00 9.83	Α
1,00	20	ATOM	3992	0	LEU	Α	508	69.387	64.434 -21.035	1.00 10.94	A
		MOTA	3993	N	LEU			69.159	66.593 -20.436	1.00 10.67	Α
ı,Ö		ATOM	3994	CA	LEU			69.484	67.089 -21.768	1.00 10.38	A
			3995		LEU			68.299	67.893 -22.320	1.00 9.95	A
		ATOM		CB							
ने (क्वानी अध्यक्त	O.F.	MOTA	3996	CG	LEU			67.025	67.078 -22.584	1.00 8.90	A
Ù	25	ATOM	3997		LEU			65.900	68.010 -23.009	1.00 8.36	A
(Crist		MOTA	3998	CD2	LEU			67.289	66.029 -23.659	1.00 10.74	Α
m		ATOM	3999	С	LEU	Α	509	70.763	67.910 -21.897	1.00 11.19	А
Ķi		MOTA	4000	0	LEU	Α	509	70.928	68.652 -22.863	1.00 11.27	А
		ATOM	4001	N	THR	Α	510	71.673	67.781 -20.938	1.00 11.02	А
	30	ATOM	4002	CA	THR			72.930	68.516 -21.011	1.00 11.45	Α
Ų		ATOM	4003	СВ	THR			73.089	69.481 -19.814	1.00 11.70	A
									70.417 -19.815	1.00 10.96	A
į. . .		ATOM	4004	OG1	THR			72.005			A
		ATOM	4005		THR			74.408	70.253 -19.904	1.00 11.60	
j		MOTA	4006	С	THR			74.092	67.533 -21.029	1.00 12.46	A
<u>}</u> '₹.	35	ATOM	4007	0	THR	A	510	74.105	66.568 -20.266	1.00 12.49	A
		ATOM	4008	N	LYS	Α	511	75.055	67.772 -21.915	1.00 13.67	A
		ATOM	4009	CA	LYS	Α	511	76.217	66.897 -22.012	1.00 15.49	A
		ATOM	4010	CB	LYS	Α	511	77.275	67.512 -22.930	1.00 17.27	A
		ATOM	4011	CG	LYS			78.509	66.643 -23.110	1.00 20.21	А
	40	ATOM	4012	CD	LYS			79.482	67.269 -24.092	1.00 22.41	А
			4013		LYS			80.704			A
		MOTA									
		ATOM	4014	ΝZ	LYS			81.639	66.957 -25.300	1.00 26.86	A
		MOTA	4015	С	LYS			76.774	66.718 -20.608	1.00 15.51	Α
		MOTA	4016	0	LYS			77.049	67.692 -19.908	1.00 14.86	А
	45	MOTA	4017	N	PRO	Α	512	76.943	65.460 -20.175	1.00 16.19	Α
		MOTA	4018	CD	PRO	Α	512	76.648	64.242 -20.952	1.00 16.95	Α
		MOTA	4019	CA	PRO			77.457	65.111 -18.849	1.00 16.40	А
		ATOM	4020	СВ	PRO			77.744	63.620 -18.983	1.00 17.38	A
		ATOM	4021	CG	PRO			76.652	63.172 -19.886	1.00 17.83	A
	50								65.890 -18.347	1.00 17.03	A
	30	ATOM	4022	C	PRO			78.669			
		ATOM	4023	0	PRO			78.664	66.387 -17.223	1.00 16.51	A
		ATOM	4024	N	SER			79.701	66.000 -19.177	1.00 16.07	Α
		MOTA	4025	CA	SER	А	513	80.920	66.701 -18.778	1.00 16.40	Α
		ATOM	4026	СВ	SER	A	513	82.074	66.309 -19.708	1.00 16.21	А
	55	ATOM	4027	OG	SER	A	513	81.769	66.605 -21.058	1.00 17.37	Α

		MOTA	4028	C	SER	Α	513	80.796	68.221	-18.727	1.00 1	5.15	Α
		ATOM	4029	0	SER	Α	513	81.738	68.910	-18.335	1.00 1	6.45	Α
		ATOM	4030	N	ILE			79.637		-19.121	1.00 19		A
			4031	CA	ILE			79.391		-19.110	1.00 19		A
	5	ATOM											
	9	ATOM	4032	CB	ILE			78.813		-20.468	1.00 16		A
		ATOM	4033		ILE			78.339		-20.355	1.00 1		Α
		ATOM	4034	CG1	ILE	A	514	79.874		-21.563	1.00 1		Α
		ATOM	4035	CD1	ILE	Α	514	79.427	70.989	-22.933	1.00 19	9.29	Α
		ATOM	4036	С	ILE	Α	514	78.410	70.538	-17.993	1.00 15	5.13	Α
	10	ATOM	4037	0	ILE	А	514	78.466	71.630	-17.428	1.00 14	1.53	Α
		ATOM	4038	N	TYR			77.522		-17.679	1.00 14	1.27	А
		ATOM	4039	CA	TYR			76.510		-16.638	1.00 13		A
		ATOM	4040	CB				75.831		-16.389	1.00 13		A
					TYR								
	15	ATOM	4041	CG	TYR			74.793		-15.295	1.00 13		A
	15	MOTA	4042		TYR			73.628		-15.392	1.00 12		A
		MOTA	4043		TYR			72.649		-14.395	1.00 12		Α
		MOTA	4044	CD2	TYR	Α	515	74.961		-14.177	1.00 13		Α
		ATOM	4045	CE2	TYR	Α	515	73.999	67.534	-13.182	1.00 12	2.19	Α
g comp		ATOM	4046	CZ	TYR	A	515	72.846	68.290	-13.295	1.00 12	2.93	Α
i de la constantina della cons	20	ATOM	4047	ОН	TYR	Α	515	71.893	68.211	-12.308	1.00 13	3.77	Α
		ATOM	4048	С	TYR			77.104		-15.338	1.00 13	3.79	А
Ţ		ATOM	4049	Ö	TYR			77.937		-14.703	1.00 13	-	A
m		ATOM	4050	N	SER			76.669		-14.951	1.00 14		A
											1.00 15		A
1;cd	25	ATOM	4051	CA	SER			77.152		-13.733			
	25	ATOM	4052	CB	SER			78.192		-14.091	1.00 16		A
duf.		ATOM	4053	OG	SER			78.809		-12.928	1.00 18		A
į, Ti		ATOM	4054	С	SER			75.948		-13.059	1.00 16		A
El.		ATOM	4055	0	SER	Α	516	75.719	74.037	-13.184	1.00 16	5.36	Α
		ATOM	4056	N	PRO	Α	517	75.166	72.037	-12.315	1.00 16	5.21	Α
Tuest one.	30	ATOM	4057	CD	PRO	Α	517	75.323	70.583	-12.117	1.00 16	5.72	Α
ŧ, 📮		ATOM	4058	CA	PRO .	Α	517	73.971	72.522	-11.630	1.00 16	5.81	Α
IJ		ATOM	4059	СВ	PRO			73.208		-11.345	1.00 16	5.87	А
į.		ATOM	4060	CG	PRO			74.317		-11.013	1.00 16		А
		ATOM	4061	C	PRO			74.067	73.387		1.00 17		Α
	35		4062		PRO .			74.007	73.182		1.00 18		A
i ist	33	ATOM		0	ASP				74.364		1.00 17		A
		ATOM	4063	N				73.169					
		ATOM	4064	CA	ASP.			72.998	75.251	-9.191	1.00 17		A
		ATOM	4065	CB	ASP.			72.942	76.716		1.00 18		Α
		ATOM	4066	CG	ASP.			72.657	77.650	-8.454	1.00 20		A
	40	ATOM	4067		ASP .			72.026	77.206	-7.469	1.00 20		Α
		ATOM	4068	OD2	ASP .	Α	518	73.048	78.833	-8.523	1.00 21	1.51	Α
		MOTA	4069	С	ASP.	Α	518	71.597	74.788	-8.807	1.00 16	5.83	Α
		MOTA	4070	0	ASP.			70.624	75.139	-9.471	1.00 16	5.54	Α
		ATOM	4071	N	PHE			71.495	73.982	-7.757	1.00 16		Α
	45	MOTA	4072	CA	PHE .			70.205	73.440	-7.348	1.00 16		A
	10	ATOM	4073	CB	PHE .			70.415	72.389	-6.256	1.00 15		A
		MOTA	4074	CG	PHE .			71.267	71.229	-6.697	1.00 15		A
		MOTA	4075		PHE .			70.980	70.553	-7.881	1.00 15		Α
	~~	MOTA	4076		PHE .			72.352	70.811	-5.932	1.00 15		Α
	50	MOTA	4077	CE1	PHE .	A	519	71.759	69.481	-8.298	1.00 14	1.89	Α
		MOTA	4078	CE2	PHE .	A	519	73.138	69.736	-6.341	1.00 15		Α
		MOTA	4079	CZ	PHE .	A	519	72.841	69.071	-7.525	1.00 19	5.53	Α
		MOTA	4080	С	PHE .			69.136	74.442	-6.925	1.00 16		Α
		ATOM	4081	Ō	PHE			68.004	74.057	-6.638	1.00 16		А
	55	ATOM	4082	N	SER .			69.479	75.724	-6.898	1.00 17		A
	55	VI OLI	1002	TA	JUN .	t_7	320	07.317	10.167	V. 0 2 0	1.00 1		7-3

		ATOM	4083	CA	SER	Α	520	68.510	76.751 -	-6.523	1.00	17.76	Α
		ATOM	4084	CB	SER			69.097	77.672 -	-5.453	1.00	18.35	Α
		ATOM	4085	OG	SER			70.142	78.465 -	5.993	1.00	20.78	Α
		MOTA	4086	С	SER			68.138		7.744	1.00	17.75	Α
	5	ATOM	4087	Ō	SER			67.238		7.683		18.10	A
	•	ATOM	4088	N	PHE			68.829		8.852		17.53	A
		ATOM	4089	CA	PHE			68.620	78.085 -1			17.29	A
		MOTA	4090	CB	PHE			69.929	78.114 -1			17.61	A
		ATOM	4091	CG	PHE			69.910	79.058 -1			18.36	A
	10	MOTA	4091		PHE			69.988	80.433 -1			19.34	A
	10							69.797	78.574 -1			18.76	A
		ATOM	4093		PHE								
		ATOM	4094		PHE			69.953	81.313 -1			19.83	A
		ATOM	4095		PHE			69.762	79.445 -1			19.30	A
	45	MOTA	4096	CZ	PHE			69.839	80.818 -1			19.85	A
	15	ATOM	4097	C	PHE			67.504	77.534 -1			16.99	A
		MOTA	4098	0	PHE			67.261	76.328 -1			17.26	A
		MOTA	4099	N	SER			66.833	78.434 -1			16.98	A
		MOTA	4100	CA	SER			65.759	78.052 -1			16.45	A
출1 ^{대폭}	••	ATOM	4101	CB	SER			64.590	79.036 -1			18.00	A
र्द्धाः . अस्त्र	20	MOTA	4102	OG	SER			63.937	78.923 -1	.1.243	1.00	21.58	A
		ATOM	4103	С	SER			66.282	78.028 -1	4.033	1.00	14.76	A
ŧ.₽		ATOM	4104	0	SER	A	522	66.362	79.066 -1	4.695		15.51	A
M		ATOM	4105	N	TYR	Α	523	66.646	76.839 -1	4.503	1.00	13.04	Α
		ATOM	4106	CA	TYR	A	523	67.155	76.676 -1	5.860	1.00	12.11	Α
Ŋ	25	MOTA	4107	CB	TYR	Α	523	67.879	75.338 -1	6.003	1.00	12.66	Α
IJ		ATOM	4108	CG	TYR	Α	523	69.152	75.276 -1	5.205	1.00	12.36	A
. .		MOTA	4109	CD1	TYR	Α	523	69.172	74.722 -1	3.926	1.00	11.48	A
		ATOM	4110		TYR			70.337	74.718 -1	3.167	1.00	13.82	A
8\$ 1188#L		MOTA	4111		TYR			70.331	75.824 -1	5.707	1.00	12.94	A
	30	ATOM	4112		TYR			71.497	75.828 -1			13.68	А
١ <u>. </u>		MOTA	4113	CZ	TYR			71.493	75.275 -1			14.52	A
W.		ATOM	4114	ОН	TYR			72.642	75.297 -1			15.63	А
į.d.		ATOM	4115	C	TYR			66.028	76.753 -1			12.04	A
		ATOM	4116	Ö	TYR			66.232	77.175 -1			11.26	A
	35	MOTA	4117	N	PHE			64.840	76.332 -1			11.79	A
g (mar) .	00	ATOM	4118	CA	PHE			63.664	76.371 -1			11.61	A
		ATOM	4119	CB	PHE			63.287	74.984 -1			11.49	A
		ATOM	4120	CG	PHE			64.319	74.353 -1			10.85	A
		ATOM	4121		PHE			65.356	73.609 -1			11.04	A
	40	ATOM	4122		PHE			64.241	74.482 -2			11.26	A
	40	ATOM			PHE				72.998 -1			11.78	A
									73.876 -2			10.39	
		MOTA	4124		PHE			65.179					A
		ATOM	4125	CZ	PHE			66.211	73.132 -2			11.02	A
	15	ATOM	4126	C	PHE			62.466	76.873 -1			13.17	A
	45	ATOM	4127	0	PHE			62.380	76.701 -1			13.07	A
		MOTA	4128	N	THR			61.540	77.479 -1			14.04	A
		ATOM	4129	CA	THR			60.298	77.967 -1			15.95	A
		MOTA	4130	CB	THR			60.069	79.455 -1			17.37	. A
	-0	ATOM	4131		THR			61.109	80.242 -1			21.08	А
	50	MOTA	4132		THR			58.725	79.917 -1			20.26	Α
		ATOM	4133	С	THR			59.206	77.138 -1			14.82	A
		MOTA	4134	0	THR			59.222	76.953 -1	8.575	1.00	14.60	Α
		ATOM	4135	N	LEU	Α	526	58.276	76.616 -1	6.565	1.00	14.08	А
		MOTA	4136	CA	LEU	Α	526	57.184	75.830 -1	7.122	1.00	14.04	А
	55	ATOM	4137	СВ	LEU	A	526	56.468	75.030 -1	6.029	1.00	14.91	А

		ATOM	4138	CG	LEU .	A 526	56.977	73.638 -15.661	1.00 16.17	Α
		ATOM	4139			A 526	56.169	73.104 -14.483	1.00 17.46	Α
		ATOM	4140			A 526	56.844	72.710 -16.858	1.00 16.37	Α
		ATOM	4141	C		A 526	56.176	76.754 -17.785	1.00 13.66	Α
	5	MOTA	4142	0		A 526	55.864	77.825 -17.265	1.00 15.13	A
	5							76.339 -18.941	1.00 13.13	A
		MOTA	4143	N		A 527	55.675			
		MOTA	4144	CA		A 527	54.671	77.113 -19.644	1.00 12.88	A
		MOTA	4145	CB		A 527	55.142	77.470 -21.055	1.00 13.45	A
		MOTA	4146	CG		A 527	54.139	78.332 -21.797	1.00 15.23	A
	10	MOTA	4147			A 527	53.873	79.462 -21.335	1.00 15.10	A
		ATOM	4148	OD2	ASP .	A 527	53.612	77.881 -22.837	1.00 16.86	А
		ATOM	4149	С	ASP .	A 527	53.444	76.221 -19.715	1.00 12.90	Α
		ATOM	4150	0	ASP .	A 527	53.486	75.152 -20.315	1.00 14.82	A
		ATOM	4151	N		A 528	52.363	76.651 -19.079	1.00 12.04	Α
	15	ATOM	4152	CA		A 528	51.126	75.879 -19.064	1.00 11.43	Α
	10	ATOM	4153	СВ		A 528	50.757	75.525 -17.622	1.00 11.67	Α
		ATOM	4154	CG		A 528	49.732	74.413 -17.538	1.00 11.75	A
							48.723	74.470 -18.271	1.00 11.28	A
		ATOM	4155			A 528			1.00 11.20	A
1:22	20	MOTA	4156			A 528	49.935	73.486 -16.729	1.00 11.32	A
	20	MOTA	4157	C		A 528	50.039	76.744 -19.687		A
1/2#2 1/2#2		MOTA	4158	0		A 528	49.701	77.793 -19.157	1.00 10.88	
المجاد المجادة		ATOM	4159	N		A 529	49.489	76.300 -20.811	1.00 12.60	A
133		MOTA	4160	CA		A 529	48.468	77.083 -21.491	1.00 13.59	A
Ü		ATOM	4161	CB	SER .	A 529	48.470	76.759 -22.988	1.00 15.60	A
ĩU	25	ATOM	4162	OG	SER .	A 529	48.039	75.431 -23.218	1.00 20.83	A
ii.		ATOM	4163	С	SER .	A 529	47.057	76.912 -20.940	1.00 12.92	A
		MOTA	4164	0	SER .	A 529	46.164	77.682 -21.287	1.00 14.25	A
		MOTA	4165	N	ARG .	A 530	46.843	75.926 -20.074	1.00 11.90	A
2! 		MOTA	4166	CA	ARG .	A 530	45.501	75.711 -19.549	1.00 12.42	A
We thin the full	30	ATOM	4167	CB		A 530	44.964	74.373 -20.060	1.00 11.67	Α
J.		ATOM	4168	CG		A 530	44.887	74.353 -21.581	1.00 12.07	Α
		ATOM	4169	CD		A 530	44.248	73.092 -22.123	1.00 12.73	Α
1.4		ATOM	4170	NE		A 530	44.981	71.897 -21.729	1.00 12.73	Α
1≔€		ATOM	4171	CZ		A 530	44.758	70.691 -22.240	1.00 13.69	Α
4	35	ATOM	4172			A 530	43.821	70.527 -23.164	1.00 13.80	A
ğilizət .	55	ATOM	4173			A 530	45.476	69.655 -21.832	1.00 14.84	A
			4174	C		A 530	45.327	75.825 -18.041	1.00 12.87	A
		ATOM		0		A 530	44.268	75.496 -17.507	1.00 14.42	A
		MOTA	4175			A 530	46.365	76.285 -17.354	1.00 14.42	A
	40	MOTA	4176	N					1.00 12.10	A
	40	MOTA	4177	CA		A 531	46.272	76.496 ~15.915 75.221 ~15.115	1.00 12.30	
		ATOM	4178	СВ		A 531	46.546			A
		MOTA	4179	CG		A 531	46.479	75.516 -13.647	1.00 13.89	A
		MOTA	4180			A 531	45.292	75.619 -12.853	1.00 15.00	A
		ATOM	4181			A 531	45.683	76.062 -11.570	1.00 14.42	A
	45	MOTA	4182			A 531	43.934	75.385 -13.103	1.00 14.98	А
		ATOM	4183			A 531	47.516	75.883 -12.831	1.00 14.62	A
		ATOM	4184	NE1	TRP .	A 531	47.045	76.214 -11.585	1.00 16.00	A
		MOTA	4185	CZ2	TRP .	A 531	44.763	76.275 -10.537	1.00 15.89	A
		ATOM	4186	CZ3	TRP .	A 531	43.019	75.598 -12.078	1.00 15.43	Α
	50	ATOM	4187			A 531	43.440	76.039 -10.811	1.00 15.65	Α
		ATOM	4188	С		A 531	47.239	77.578 -15.454	1.00 13.17	Α
		ATOM	4189	Ö		A 531	48.436	77.495 -15.708	1.00 13.12	Α
		ATOM	4190	N		A 532	46.728	78.603 -14.753	1.00 13.97	Α
		ATOM	4191	CD		A 532	47.581	79.550 -14.016	1.00 14.36	А
	55	ATOM	4192	CA		A 532	45.319	78.790 -14.388	1.00 14.97	А
	55	17 1 013	コエブム	UM.	1110		19.319	.5.,50 14,500	2.00 2,	

	ATOM	4193	СВ	PRO	Α	532	45.360	80.011 -	13.472	1.00	14.79	А
	ATOM	4194	CG	PRO			46.709	79.897 -	12.832	1.00	14.98	Α
	ATOM	4195	С	PRO	Α	532	44.433	79.009 -	15.610	1.00	16.32	Α
	ATOM	4196	0	PRO	Α	532	43.214	78.863 -	15.538	1.00	16.43	Α
5	ATOM	4197	N	GLY	Α	533	45.058	79.363 -	16.729	1.00	18.09	Α
	ATOM	4198	CA	GLY	Α	533	44.313	79.573 -	17.956	1.00	20.35	Α
	ATOM	4199	С	GLY	Α	533	44.110	81.021 -	18.355	1.00	22.43	Α
	ATOM	4200	0	GLY	Α	533	44.136	81.924 -	17.517	1.00	21.90	A
	ATOM	4201	N	SER			43.908	81.236 -	19.650	1.00	24.34	А
10	MOTA	4202	CA	SER			43.684	82.574 -	20.183	1.00	26.30	А
	ATOM	4203	СВ	SER			43.577	82.517 -	21.709	1.00	27.62	A
	ATOM	4204	OG	SER			43.326	83.801 -	22.252	1.00	29.22	A
	ATOM	4205	С	SER			42.396	83.135 -		1.00	26.95	A
	ATOM	4206	0	SER			41.366	82.461 -	19.579	1.00	27.04	A
15	MOTA	4207	N	GLY			42.458	84.369 -	19.104	1.00	27.48	Α
	ATOM	4208	CA	GLY			41.282	84.985 -		1.00	28.19	А
	ATOM	4209	С	GLY			41.168	84.676 -	17.036	1.00	28.77	Α
	ATOM	4210	0	GLY			40.300	85.208 -	16.342	1.00	28.75	Α
	ATOM	4211	N	VAL			42.047	83.805 -	16.551	1.00	28.86	А
20	ATOM	4212	CA	VAL			42.054	83.429 -	15.144	1.00	29.39	Α
	ATOM	4213	СВ	VAL			42.205	81.900 -	14.973	1.00	29.14	A
	ATOM	4214	CG1	VAL			42.127	81.526 -	13.500	1.00	28.72	Α
	ATOM	4215	CG2	VAL			41.120	81.183 -		1.00	28.88	А
	ATOM	4216	С	VAL			43.222	84.126 -		1.00	30.17	Α
25	ATOM	4217	0	VAL			43.062	84.745 -		1.00	29.60	А
	ATOM	4218	N	GLU			44.399	84.026 -		1.00	31.25	A
	ATOM	4219	CA	GLU			45.595	84.651 -		1.00	32.73	Α
	ATOM	4220	СВ	GLU			46.093	83.859 -	13.303	1.00	33.69	А
	ATOM	4221	CG	GLU			47.378	84.400 -	12.690	1.00	35.24	A
30	MOTA	4222	CD	GLU			47.769	83.681 -		1.00	36.16	A
	ATOM	4223	OE1	GLU			48.825	84.023 -	10.836	1.00	36.68	А
	ATOM	4224	OE2	GLU			47.023	82.777 -	10.977	1.00	36.57	A
	MOTA	4225	С	GLU			46.702	84.738 -	15.560	1.00	33.20	A
	ATOM	4226	0	GLU			47.132	83.720 -	16.101	1.00	33.31	A
35	ATOM	4227	N	ASP	Α	538	47.156	85.953 -	15.852	1.00	33.93	А
	MOTA	4228	CA	ASP	Α	538	48.236	86.131 -	16.816	1.00	34.52	A
	ATOM	4229	СВ	ASP	Α	538	48.368	87.600 -	17.225	1.00	36.03	Α
	ATOM	4230	CG	ASP	Α	538	49.455	87.816 -	18.263	1.00	37.32	Α
	MOTA	4231	OD1	ASP	Α	538	49.350	87.232 -		1.00	37.91	Α
40	ATOM	4232	OD2	ASP	Α	538	50.414	88.565 -	17.979		38.51	A
	ATOM	4233	С	ASP			49.500	85.677 -	16.103	1.00	33.98	А
	MOTA	4234	0	ASP	A	538	50.185	86.474 -	15.462	1.00	34.26	A
	ATOM	4235	N	SER	Α	539	49.798	84.388 -	16.212	1.00	32.86	A
	ATOM	4236	CA	SER	Α	539	50.958	83.813 -	15.547	1.00	31.79	A
45	MOTA	4237	CB	SER	Α	539	50.523	82.598 -	14.725	1.00	31.81	A
	ATOM	4238	OG	SER	Α	539	49.889	81.634 -	15.551	1.00	32.64	А
	ATOM	4239	С.	SER	Α	539	52.093	83.405 -	16.477	1.00	30.65	Α
	MOTA	4240	0	SER	Α	539	53.264	83.579 -	16.142	1.00	30.92	Α
	ATOM	4241	N	ARG	Α	540	51.755	82.858 -	17.640	1.00	29.09	Α
50	ATOM	4242	CA	ARG	Α	540	52.784	82.416 -	18.571	1.00	26.85	Α
	MOTA	4243	СВ	ARG			52.164	81.572 -	19.691	1.00	26.27	A
	ATOM	4244	CG	ARG			50.972	82.187 -		1.00	24.91	А
	MOTA	4245	CD	ARG			50.198	81.126 -		1.00	21.40	A
	MOTA	4246	NE	ARG			51.053	80.373 -		1.00	18.78	А
55	ATOM	4247	CZ	ARG			50.621	79.799 -			18.16	Α

		MOTA	4248	NH1	ARG A	540	49.343	79.892 -	-23.549	1.00 17.98	A
		MOTA	4249		ARG A		51.468	79.143 -		1.00 17.24	
		ATOM	4250	C	ARG A		53.627	83.550 -		1.00 25.67	
										1.00 26.07	
	_	MOTA	4251	0	ARG A		53.131	84.638 -			
	5	MOTA	4252	N	THR A		54.919	83.275 -		1.00 23.91	
		ATOM	4253	CA	THR A	541	55.877	84.246 -		1.00 22.62	
		ATOM	4254	CB	THR A	541	57.299	83.885 -	-19.316	1.00 23.68	A
		ATOM	4255	OG1	THR A	541	57.696	82.662 -	-19.945	1.00 24.78	A
		ATOM	4256	CG2	THR A		57.352	83.702 -		1.00 23.48	
	10	ATOM	4257	C	THR A		55.887	84.337 -		1.00 20.98	
	10									1.00 20.38	
		MOTA	4258	0	THR A		55.492	83.405 -			
		MOTA	4259	N	THR A		56.345	85.477 -		1.00 18.43	
		MOTA	4260	CA	THR A		56.448	85.695 -	-23.211	1.00 16.38	
		ATOM	4261	CB	THR A	542	56.098	87.151 -	-23.592	1.00 16.52	
	15	ATOM	4262	OG1	THR A	542	54.729	87.420 -	-23.269	1.00 16.56	A
		ATOM	4263	CG2	THR A		56.322	87.383 -	-25.081	1.00 16.03	A
		ATOM	4264	C	THR A		57.900	85.445 -		1.00 14.95	
			4265	Ö	THR A		58.808	85.888 -		1.00 14.70	
		ATOM									
i i i i i	00	MOTA	4266	N	ILE A		58.124	84.710 -		1.00 13.40	
	20	MOTA	4267	CA	ILE A		59.482	84.463 -		1.00 12.55	
9, <u>6,4</u> 7		MOTA	4268	CB	ILE A	543	59.553	83.220 -		1.00 12.30	A
اليَّارِ:		MOTA	4269	CG2	ILE A	543	60.943	83.095 -	-26.627	1.00 12.36	A
Ţ		ATOM	4270	CG1	ILE A	543	59.200	81.973 -	-25.190	1.00 12.14	A
		ATOM	4271		ILE A		59.126	80.694 -		1.00 11.44	Α
IJ	25	ATOM	4272	C	ILE A		59.838	85.723 -		1.00 13.00	
# **	20		4273	0	ILE A		59.273	85.990 -		1.00 13.68	
thing.		ATOM									
477		MOTA	4274	N	ILE A		60.753	86.510 -		1.00 13.31	
Ē.		MOTA	4275	CA	ILE A		61.158	87.762 -		1.00 13.70	
12		MOTA	4276	CB	ILE A	544	61.448	88.825 -		1.00 14.36	
fact.	30	MOTA	4277	CG2	ILE A	544	61.862	90.134 -	-25.521	1.00 15.40	A
ų,		ATOM	4278	CG1	ILE A	544	60.192	89.038 -	-24.022	1.00 15.13	A
ių.		MOTA	4279	CD1	ILE A	544	60.359	90.045 -	-22.898	1.00 17.93	A
The first field		ATOM	4280	C	ILE A		62.370	87.590 -		1.00 14.58	
		ATOM	4281	Õ	ILE A		63.464	87.254 -		1.00 14.06	
tendi	35						62.148	87.812 -		1.00 14.60	
	33	ATOM	4282	N	LEU A						
		ATOM	4283	CA	LEU A		63.195	87.691 -		1.00 14.96	
		MOTA	4284	CB	LEU A		62.841	86.592 -		1.00 14.72	
		MOTA	4285	CG	LEU A		62.557	85.197 -	-29.596	1.00 14.29	
		ATOM	4286	CD1	LEU A	545	62.158	84.259 -	-30.725	1.00 14.25	A
	4 0	ATOM	4287	CD2	LEU A	545	63.792	84.672 -	-28.877	1.00 13.93	A
		ATOM	4288	С	LEU A	545	63.345	89.019 -	-29.887	1.00 15.87	Α
		ATOM	4289	0	LEU A		62.393	89.791 -		1.00 16.34	
		ATOM	4290	N	GLY A		64.544	89.275 -		1.00 16.68	
								90.512 -			
	4 F"	ATOM	4291	CA	GLY A		64.795			1.00 18.01	
	45	MOTA	4292	С	GLY A		66.227	90.584 -		1.00 19.27	
		ATOM	4293	0	GLY A	546	67.138	90.083 -	-30.942	1.00 17.83	
		ATOM	4294	N	GLU A	547	66.426	91.220 -	-32.745	1.00 21.14	A
		MOTA	4295	CA	GLU A	547	67.754	91.359 -	-33.334	1.00 23.92	A
		MOTA	4296	СВ	GLU A		67.679	92.234 -		1.00 27.11	
	50	ATOM	4297	CG	GLU A		66.677	91.771 -		1.00 32.07	
	50				GLU A			92.796 -		1.00 32.07	
		ATOM	4298	CD			66.480				
		ATOM	4299		GLU A		67.457	93.089 -		1.00 35.80	
		ATOM	4300		GLU A		65.350	93.314 -		1.00 35.52	
		ATOM	4301	С	GLU A	547	68.756	91.980 -	-32.368	1.00 23.56	
	55	ATOM	4302	0	GLU A	547	69.926	91.600 -	-32.342	1.00 24.12	A

						_				21 574		00 01	
		ATOM	4303	N	ASP			68.291	92.939			22.91	A
		ATOM	4304	CA	ASP	Α	548	69.159	93.634	-30.630		22.77	A
		MOTA	4305	CB	ASP	Α	548	68.772	95.114	-30.561	1.00	23.80	A
		ATOM	4306	CG	ASP	Α	548	68.956	95.830	-31.884	1.00	24.78	Α
	5	ATOM	4307		ASP			70.097	95.863	-32.391	1.00	26.00	Α
	•	ATOM	4308		ASP			67.959	96.363			25.77	Α
		ATOM	4309	C	ASP			69.159	93.058			22.13	A
		ATOM	4310	0	ASP			69.669	93.692			22.21	A
	10	ATOM	4311	N			549	68.600	91.866			20.62	A
	10	ATOM	4312	CA	ILE			68.570	91.286			19.69	A
		MOTA	4313	CB	ILE			67.253	91.667			20.73	Α
		MOTA	4314	CG2	ILE	Α	549	66.047	91.126			20.71	A
		ATOM	4315	CG1	ILE	Α	549	67.280	91.132	-25.535		21.62	A
		ATOM	4316	CD1	ILE	Α	549	68.364	91.745	-24.675	1.00	23.70	А
	15	ATOM	4317	С	ILE	Α	549	68.758	89.771	-27.647	1.00	18.85	Α
		MOTA	4318	0	ILE	Α	549	69.579	89.276	-26.875	1.00	18.42	Α
		ATOM	4319	N	LEU			68.011	89.038	-28.466	1.00	17.47	A
		ATOM	4320	CA	LEU			68.104	87.580		1.00	16.89	Α
		ATOM	4321	СВ	LEU			67.420	87.014			17.32	А
A THE	20	ATOM	4322	CG	LEU			67.461	85.495			17.26	А
. <u> </u>	20	MOTA	4323		LEU			68.903	85.039			17.29	A
Ę.		ATOM	4324		LEU			66.649	85.096			17.14	A
			4325		LEU			67.444	87.015			16.51	A
9,8 F. 415 F E		MOTA		C								16.78	A
	25	ATOM	4326	0	LEU			66.238	87.160				
	23	ATOM	4327	N	PRO			68.226	86.351			16.11	A
Contra		MOTA	4328	CD	PRO			69.696	86.234			16.87	A
		ATOM	4329	CA	PRO			67.675	85.783			15.76	A
¥2		ATOM	4330	CB	PRO			68.915	85.591			16.77	A
	20	ATOM	4331	CG	PRO			69.962	85.248			18.35	A
	30	MOTA	4332	С	PRO			66.849	84.502			14.86	Α
P _e		MOTA	4333	0	PRO			65.944	84.279			15.49	Α
		MOTA	4334	N	SER	Α	552	67.152	83.661		1.00	13.64	A
jak -		ATOM	4335	CA	SER	А	552	66.415	82.407	-30.589	1.00	12.75	А
122		ATOM	4336	CB	SER	Α	552	67.084	81.317	-31.425	1.00	13.26	А
14	35	MOTA	4337	OG	SER	Α	552	68.373	81.018 -	-30.924	1.00	15.05	Α
=		MOTA	4338	С	SER	Α	552	66.276	81.919	-29.156	1.00	11.84	Α
		ATOM	4339	0	SER	Α	552	66.931	82.422	-28.246	1.00	11.84	Α
		ATOM	4340	N	LYS			65.422	80.917		1.00	10.82	A
		ATOM	4341	CA	LYS			65.153	80.350			11.24	А
	40	MOTA	4342	CB	LYS			63.958	81.071		1.00	11.54	A
		ATOM	4343		LYS					-25.742			
		ATOM	4344	CD	LYS			64.467	80.532			13.25	A
		ATOM	4345	CE	LYS			64.703	81.972			13.22	A
		ATOM	4346	NZ	LYS			65.871	82.085			14.05	A
	45				LYS				78.861			10.65	A
	45	MOTA	4347	С				64.843 64.058	78.422			10.51	A
		ATOM	4348	0	LYS								
		ATOM	4349	N	HIS			65.464	78.088			10.75	A
		ATOM	4350	CA	HIS			65.211	76.656			11.14	A
	~ 0	MOTA	4351	CB	HIS			66.426	75.894			12.98	A
	50	MOTA	4352	CG	HIS			67.562	75.806			14.49	A
		MOTA	4353		HIS			68.093	76.726			16.00	A
		ATOM	4354		HIS			68.315	74.662			17.03	Α
		ATOM	4355	CE1	HIS	A	554	69.261	74.883 -		1.00	14.97	A
		MOTA	4356	NE2	HIS	A	554	69.148	76.128 -			18.38	Α
	55	MOTA	4357	С	HIS	Α	554	64.028	76.358	-25.906	1.00	10.44	Α

						_			76 676 61 513		10 56	_
		ATOM	4358	0	HIS			63.874	76.972 -24.848		10.76	А
		ATOM	4359	N	VAL	Α	555	63.194	75.422 -26.340	1.00	10.09	А
		ATOM	4360	CA	VAL	Α	555	62.049	74.971 -25.562	1.00	9.37	А
		ATOM	4361	CB	VAL	Α	555	60.697	75.425 -26.165	1.00	9.28	Α
	5	ATOM	4362		VAL			60.560	76.934 -26.045	1.00	9.53	А
	-	ATOM	4363		VAL			60.584	74.987 -27.613	1.00	9.57	Α
		ATOM	4364	C	VAL			62.123	73.452 -25.554	1.00	9.23	A
		ATOM	4365	0	VAL			62.656	72.849 -26.485	1.00	9.24	A
								61.601	72.836 -24.499	1.00	7.97	A
	10	ATOM	4366	N	VAL						7.89	A
	10	MOTA	4367	CA	VAL			61.629	71.385 -24.368	1.00		
		ATOM	4368	CB	VAL			62.664	70.944 -23.299	1.00	7.99	A
		ATOM	4369		VAL			62.584	69.440 -23.078	1.00	7.88	A
		MOTA	4370		VAL			64.066	71.352 -23.717	1.00	9.27	A
		ATOM	4371	С	VAL			60.266	70.857 -23.940	1.00	7.33	A
	15	ATOM	4372	0	VAL			59.616	71.443 -23.077	1.00	7.50	Α
		MOTA	4373	N	MSE	Α	557	59.840	69.757 -24.551	1.00	7.30	A
		ATOM	4374	CA	MSE	Α	557	58.571	69.130 -24.197	1.00	8.38	A
		ATOM	4375	CB	MSE	Α	557	57.688	68.912 -25.433	1.00	9.38	A
2 SPE.		MOTA	4376	CG	MSE	Α	557	56.636	69.984 -25.676	1.00	12.19	Α
	20	ATOM	4377	SE	MSE	Α	557	57.378	71.731 -25.960	1.00	17.55	А
₹ <mark>.</mark>		ATOM	4378	CE	MSE	Α	557	58.381	71.378 -27.570	1.00	13.47	A
Ü		MOTA	4379	С	MSE	Α	557	58.824	67.782 -23.543	1.00	8.15	A
		ATOM	4380	0	MSE			59.712	67.037 -23.955	1.00	8.86	Α
		ATOM	4381	N	HIS			58.040	67.482 -22.515	1.00	7.51	A
868 S 46 75.	25	ATOM	4382	CA	HIS			58.134	66.204 -21.823	1.00	6.67	Α
2 L .		ATOM	4383	СВ	HIS			58.318	66.401 -20.318	1.00	7.78	А
IJ		ATOM	4384	CG	HIS			58.239	65.129 -19.529		7.30	A
ijħ.		MOTA	4385		HIS			58.985	63.999 -19.577	1.00	7.61	A
91		MOTA	4386		HIS			57.301	64.926 -18.539	1.00	7.80	A
IJ	30	ATOM	4387		HIS			57.473	63.727 -18.012	1.00	7.28	A
Ū	30								63.143 -18.623	1.00	7.93	A
		MOTA	4388		HIS			58.489	65.433 -22.061	1.00	7.17	A
114		ATOM	4389	С	HIS			56.845	66.011 -22.049	1.00	6.98	A
ing.		ATOM	4390	0	HIS			55.757				
ina Tak	25	MOTA	4391	N	ASN			56.976	64.129 -22.283	1.00	6.57	A
l.L	35	ATOM	4392	CA	ASN			55.832	63.253 -22.511	1.00	6.63	A
		ATOM	4393	CB	ASN			55.926	62.621 -23.905	1.00	7.17	A
		ATOM	4394	CG	ASN			54.910	61.516 -24.119	1.00	7.78	A
		MOTA	4395		ASN			53.821	61.540 -23.550	1.00	8.71	Α
		MOTA	4396		ASN			55.261	60.542 -24.960	1.00	8.27	A
	40	MOTA	4397	С	ASN	А	559	55.857	62.165 -21.443	1.00	6.46	А
		ATOM	4398	0	ASN	Α	559	56.619	61.210 -21.545	1.00	7.32	А
		MOTA	4399	N	THR	Α	560	55.015	62.306 -20.425	1.00	6.42	Α
		ATOM	4400	CA	THR	Α	560	54.983	61.336 -19.335	1.00	7.03	А
		ATOM	4401	CB	THR	Α	560	54.219	61.925 -18.120	1.00	6.72	А
	45	MOTA	4402	OG1	THR	Α	560	54.541	61.177 -16.940	1.00	6.98	A
		MOTA	4403		THR			52.720	61.877 -18.350	1.00	7.05	Α
		ATOM	4404	С	THR			54.390	59.969 -19.714	1.00	7.51	А
		MOTA	4405	0	THR			54.588	58.982 -18.999	1.00	7.07	Α
		ATOM	4406	N	LEU			53.674	59.904 -20.835	1.00	7.49	А
	50	ATOM	4407	CA	LEU			53.065	58.646 -21.273	1.00	7.71	A
		MOTA	4408	CB	LEU			51.904	58.925 -22.233	1.00	8.47	A
					LEU			50.776	59.818 -21.701	1.00	9.12	A
		ATOM	4409	CG				49.724	60.008 -22.787	1.00	9.86	A
		ATOM	4410		LEU				59.187 -20.462	1.00	7.91	A
	55	ATOM	4411		LEU			50.147				A A
	55	ATOM	4412	С	LEU	А	201	54.089	57.728 -21.949	1.00	7.77	А

		ATOM	4413	0	LEU	Α	561	54.993	58.196 -	-22.649	1.00	8.16	А
		ATOM	4414	N	PRO			53.943	56.404 -	-21.765	1.00	8.25	A
		ATOM	4415	CD	PRO			52.970	55.743 -	-20.872	1.00	7.40	Α
		ATOM	4416	CA	PRO			54.862	55.419 -	-22.346	1.00	8.17	Α
	5	ATOM	4417	СВ	PRO	Α	562	54.675	54.212 -	-21.439	1.00	8.14	Α
	-	MOTA	4418	CG	PRO			53.202	54.266 -	-21.158	1.00	8.36	Α
		MOTA	4419	С	PRO			54.705	55.064 -	-23.821	1.00	8.36	Α
		ATOM	4420	0	PRO			54.825	53.902 -		1.00	9.39	Α
		ATOM	4421	N	HIS			54.422	56.058 -		1.00	8.47	A
	10	ATOM	4422	CA	HIS			54.322	55.820 -	-26.081	1.00	9.07	Α
		ATOM	4423	CB	HIS			52.926	55.308 -		1.00	9.42	A
		MOTA	4424	CG	HIS			51.790	56.182 -	-26.058	1.00	10.44	A
		ATOM	4425		HIS			51.289	57.326 -		1.00	9.83	A
		ATOM	4426		HIS			50.998	55.881 -			10.12	Α
	15	ATOM	4427		HIS			50.056	56.799 -		1.00	10.52	Α
		MOTA	4428		HIS			50.210	57.688 -		1.00	10.71	Α
		ATOM	4429	С	HIS			54.643	57.118 -		1.00	9.23	A
		ATOM	4430	0	HIS			54.465	58.197 -	-26.224	1.00	10.26	Α
		ATOM	4431	N	TRP			55.157	57.014 -		1.00	9.71	Α
	20	ATOM	4432	CA	TRP			55.470	58.210 -		1.00	9.67	Α
43		MOTA	4433	CB	TRP			55.966	57.858 -			10.28	A
1913		ATOM	4434	CG	TRP			57.389	57.435 -		1.00	10.78	Α
M		ATOM	4435		TRP			58.527	58.285 -			12.00	Α
		ATOM	4436		TRP			59.674	57.461 -			11.44	Α
10	25	ATOM	4437		TRP			58.692	59.667 -		1.00	12.35	A
, , , , , , , , , , , , , , , , , , ,		ATOM	4438		TRP			57.872	56.169 -			11.14	A
194 20%		ATOM	4439		TRP			59.243	56.175 -			11.65	Α
(T		ATOM	4440		TRP			60.972	57.971 -		1.00	12.05	A
S)-		ATOM	4441		TRP			59.982	60.174 -		1.00	12.66	А
	30	MOTA	4442		TRP			61.105	59.326 -	-30.645	1.00	13.34	A
ij.		MOTA	4443	С	TRP			54.198	59.018 -		1.00	9.59	A
14		ATOM	4444	0	TRP			53.116	58.466 -		1.00	10.25	Α
ļa∔ .		ATOM	4445	N	ARG			54.314	60.327 -		1.00	9.71	A
		ATOM	4446	CA	ARG			53.134	61.160 -		1.00	10.44	А
g _{ind} .	35	MOTA	4447	СВ	ARG			52.547	61.423 -		1.00	10.22	Α
E (****		MOTA	4448	CG	ARG			51.315	62.336 -			12.89	A
		ATOM	4449	CD	ARG			50.491	62.296 -	-26.146	1.00	12.46	A
		ATOM	4450	NE	ARG			51.287	62.544 -	-24.949	1.00	12.69	A
		ATOM	4451	CZ	ARG			50.804	63.063 -	-23.823	1.00	12.00	А
	40	ATOM	4452	NH1	ARG			49.521	63.401 -	-23.736	1.00	11.76	A
		ATOM	4453	NH2	ARG	Α	565	51.603	63.240 -	-22.782	1.00	10.34	A
		ATOM	4454	С	ARG			53.396	62.477 -	-29.515		10.54	A
		ATOM	4455	0	ARG			54.441	63.104 -		1.00	11.41	А
		ATOM	4456	N	GLU			52.443	62.865 -	-30.352	1.00	11.57	A
	45	MOTA	4457	CA	GLU			52.500	64.139 -	-31.048	1.00	12.67	A
		ATOM	4458	CB	GLU			52.281	63.976 -	-32.551	1.00	14.55	A
		ATOM	4459	CG	GLU			53.360	63.207 -		1.00	16.81	Α
		ATOM	4460	CD	GLU			53.167	63.239 -			18.39	A
		ATOM	4461		GLU			52.025	63.017 -			20.87	А
	50	ATOM	4462		GLU			54.155	63.483 -			20.56	А
		ATOM	4463	C	GLU			51.352	64.949 -			12.51	А
		ATOM	4464	Ö	GLU			50.280	64.414 -			13.17	А
		ATOM	4465	N	GLN			51.584	66.238 -			11.15	А
		ATOM	4466	CA	GLN			50.559	67.117 -			11.24	А
	55	ATOM	4467	СВ	GLN			50.489	67.000 -			12.08	A
		01.											

		MOTA	4468	CG	GLN A	567	49.477	67.948 -27.579	1.00 11.81	Α
		ATOM	4469	CD	GLN A	567	49.819	68.294 -26.141	1.00 12.83	Α
		ATOM	4470	OE1	GLN A		49.777	67.441 -25.255	1.00 11.48	A
		ATOM	4471		GLN A		50.171	69.553 -25.905	1.00 14.01	A
	5									
	9	ATOM	4472	C	GLN A		50.941	68.533 -30.116		A
		MOTA	4473	0	GLN A		52.122	68.879 -30.126		Α
		MOTA	4474	N	LEU A	. 568	49.951	69.349 -30.451	1.00 10.33	A
		MOTA	4475	CA	LEU A	568	50.247	70.734 -30.766	1.00 9.94	A
		ATOM	4476	CB	LEU A	568	49.051	71.439 -31.410	1.00 11.28	А
	10	ATOM	4477	CG	LEU A		48.657	71.080 -32.842	1.00 11.61	Α
		ATOM	4478		LEU A		47.653	72.113 -33.339		A
		MOTA	4479		LEU A		49.884	71.073 -33.745		A
		ATOM	4480	С	LEU A		50.568	71.426 -29.452	1.00 10.03	A
	4 -	MOTA	4481	0	LEU A		49.926	71.171 -28.430		A
	15	ATOM	4482	N	VAL A	569	51.581	72.279 -29.477	1.00 8.96	A
		ATOM	4483	CA	VAL A	569	51.965	73.042 -28.300	1.00 9.33	A
		ATOM	4484	СВ	VAL A	569	53.331	72.585 -27.724	1.00 8.58	Α
		ATOM	4485	CG1	VAL A		53.201	71.179 -27.135	1.00 9.88	Α
		MOTA	4486		VAL A		54.402	72.607 -28.808	1.00 9.77	А
100	20	MOTA	4487	C	VAL A		52.046	74.503 -28.716	1.00 9.59	A
ŧ.Ū	20						52.314	74.815 -29.877	1.00 10.28	A
		MOTA	4488	0	VAL A					
ी होतार्थी संस्थानक		ATOM	4489	N	ASP A		51.790	75.405 -27.779	1.00 9.31	A
ŋ		ATOM	4490	CA	ASP A		51.846	76.820 -28.108	1.00 10.77	А
		ATOM	4491	CB	ASP A	570	50.434	77.409 -28.195	1.00 12.92	A
T.	25	ATOM	4492	CG	ASP A	570	49.759	77.514 -26.841	1.00 16.24	Α
14		MOTA	4493	OD1	ASP A	570	49.620	76.479 -26.159	1.00 20.02	А
		MOTA	4494	OD2	ASP A	570	49.367	78.635 -26.459	1.00 20.35	Α
\$,5 E		ATOM	4495	С	ASP A		52.662	77.594 -27.093	1.00 10.43	А
E1		ATOM	4496	0	ASP A		52.761	77.208 -25.928	1.00 11.33	A
	30	ATOM	4497	N	PHE A		53.267	78.681 -27.558	1.00 10.09	A
	50								1.00 10.03	
ng.		ATOM	4498	CA	PHE A		54.069	79.546 -26.704		A
		ATOM	4499	CB	PHE A		55.569	79.321 -26.929	1.00 10.14	A
.		ATOM	4500	CG	PHE A		56.064	77.980 -26.482	1.00 9.15	A
		MOTA	4501	CD1	PHE A	571	56.053	76.891 -27.344	1.00 8.69	Α
1,.1	35	ATOM	4502	CD2	PHE A	571	56.544	77.809 -25.190	1.00 9.56	A
•		ATOM	4503	CE1	PHE A	571	56.517	75.645 -26.921	1.00 9.22	A
		ATOM	4504		PHE A		57.006	76.570 -24.758	1.00 8.84	Α
		ATOM	4505	CZ	PHE A		56.991	75.489 -25.628	1.00 9.29	А
		ATOM	4506	C	PHE A		53.761	80.984 -27.075	1.00 10.51	A
	40	ATOM	4507	0	PHE A		53.379	81.263 -28.212	1.00 11.02	A
	10							81.890 -26.114		
		MOTA	4508	N	TYR A					A
		ATOM	4509	CA	TYR A		53.721	83.308 -26.381	1.00 11.05	A
		ATOM	4510	СВ	TYR A	572	53.298	84.069 -25.123	1.00 12.13	А
		ATOM	4511	CG	TYR A	572	51.862	83.889 -24.686	1.00 14.07	Α
	45	ATOM	4512	CD1	TYR A	572	50.897	83.376 -25.550	1.00 14.81	А
		MOTA	4513	CE1	TYR A	572	49.562	83.266 -25.154	1.00 15.92	A
		MOTA	4514		TYR A		51.461	84.286 -23.412	1.00 16.47	А
		ATOM	4515		TYR A		50.135	84.184 -23.009	1.00 16.38	A
			4516				49.191	83.676 -23.882	1.00 16.33	A
	50	ATOM		CZ	TYR A					
	50	ATOM	4517	ОН	TYR A		47.874	83.592 -23.481	1.00 17.51	A
		ATOM	4518	C	TYR A		55.078	83.839 -26.826	1.00 11.07	А
		MOTA	4519	0	TYR A	572	56.094	83.557 -26.188	1.00 10.80	A
		MOTA	4520	N	VAL A	573	55.096	84.596 -27.920	1.00 10.87	Α
		MOTA	4521	CA	VAL A	573	56.335	85.174 -28.438	1.00 11.44	А
	55	ATOM	4522	СВ	VAL A		56.782	84.475 -29.745	1.00 11.72	А

									1 00 11 00	•
		ATOM	4523		VAL A		57.329	83.084 -29.429	1.00 11.99	Α
		ATOM	4524	CG2	VAL A	573	55.613	84.371 -30.710	1.00 12.32	А
		ATOM	4525	С	VAL A	573	56.135	86.667 -28.699	1.00 11.37	A
		MOTA	4526	0	VAL A	573	55.021	87.107 -28.967	1.00 12.01	A
	5	ATOM	4527	N	SER A	574	57.218	87.435 -28.624	1.00 12.19	Α
		ATOM	4528	CA	SER A		57.156	88.885 -28.817	1.00 13.05	Α
		ATOM	4529	СВ	SER A		58.338	89.554 -28.117	1.00 13.31	А
		ATOM	4530	OG	SER A		59.566	89.132 -28.680	1.00 13.02	A
		ATOM	4531	C	SER A		57.116	89.347 -30.270	1.00 13.02	A
	10				SER A			90.550 -30.538	1.00 15.55	A
	10	MOTA	4532	0			57.090			
		ATOM	4533	N	SER A		57.120	88.402 -31.203	1.00 14.20	A
		ATOM	4534	CA	SER A		57.071	88.732 -32.621	1.00 14.88	A
		ATOM	4535	CB	SER A		58.483	88.846 -33.197	1.00 15.07	A
		MOTA	4536	OG	SER A		58.440	88.996 -34.607	1.00 16.15	A
	15	MOTA	4537	С	SER A		56.312	87.661 -33.387	1.00 14.98	Α
		MOTA	4538	0	SER A	575	56.349	86.488 -33.027	1.00 14.24	Α
		ATOM	4539	N	PRO A	576	55.599	88.055 -34.450	1.00 15.06	Α
		ATOM	4540	CD	PRO A	576	55.309	89.435 -34.884	1.00 15.77	A
# : Table		ATOM	4541	CA	PRO A	576	54.845	87.084 -35.244	1.00 14.91	Α
	20	MOTA	4542	CB	PRO A		53.797	87.950 -35.929	1.00 15.59	A
۱J.		ATOM	4543	CG	PRO A		54.558	89.221 -36.184	1.00 16.60	A
		ATOM	4544	С	PRO A		55.763	86.385 -36.246	1.00 14.44	Α
171		ATOM	4545	Ō	PRO A		55.411	85.360 -36.821	1.00 14.89	Α
		ATOM	4546	N	PHE A		56.951	86.948 -36.443	1.00 14.84	A
ij.	25	ATOM	4547	CA	PHE A		57.912	86.400 -37.390	1.00 15.08	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	MOTA	4548	CB	PHE A		58.680	87.546 -38.050	1.00 16.28	A
W				CG	PHE A		57.790	88.549 -38.732	1.00 18.45	A
		ATOM	4549					89.913 -38.617	1.00 10.43	A
23		ATOM	4550		PHE A		58.042		1.00 19.42	
	20	ATOM	4551		PHE A		56.699	88.131 -39.487		A
. 7	30	MOTA	4552		PHE A		57.218	90.847 -39.243	1.00 20.70	A
\$45 S		MOTA	4553		PHE A		55.867	89.059 -40.119	1.00 20.04	A
. G.		ATOM	4554	CZ	PHE A		56.129	90.418 -39.995	1.00 20.44	A
		MOTA	4555	С	PHE A		58.870	85.440 -36.703	1.00 14.78	A
1,02 1,02 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,03		MOTA	4556	0	PHE A		60.053	85.728 -36.528	1.00 14.56	Α
i.i.	35	ATOM	4557	N	VAL A		58.335	84.288 -36.317	1.00 14.00	A
•		MOTA	4558	CA	VAL A	578	59.112	83.268 -35.635	1.00 14.21	Α
		ATOM	4559	CB	VAL A	578	58.641	83.116 -34.172	1.00 14.17	Α
		ATOM	4560	CG1	VAL A	578	59.412	82.000 -33.481	1.00 14.20	Α
		ATOM	4561	CG2	VAL A	578	58.840	84.429 -33.431	1.00 14.11	Α
	40	ATOM	4562	С	VAL A	578	58.971	81.932 -36.352	1.00 13.94	A
		MOTA	4563	0	VAL A	578	57.887	81.567 -36.806	1.00 14.31	Α
		MOTA	4564	N	SER A		60.083	81.218 -36.465	1.00 14.83	Α
		ATOM	4565	CA	SER A		60.096	79.920 -37.117	1.00 14.80	А
		ATOM	4566	СВ	SER A		60.997	79.956 -38.356	1.00 16.06	А
	45	ATOM	4567	OG	SER A		62.294	80.415 -38.032	1.00 19.90	А
	10	ATOM	4568	C	SER A		60.588	78.875 -36.127	1.00 14.00	А
		MOTA	4569	0	SER A		61.340	79.188 -35.204	1.00 13.81	A
								77.637 -36.326	1.00 12.34	A
		ATOM	4570	N	VAL A		60.157	76.542 -35.444	1.00 12.34	A
	50	ATOM	4571	CA	VAL A		60.528			
	50	ATOM	4572	CB	VAL A		59.269	75.835 -34.898	1.00 11.61	A
		ATOM	4573		VAL A		59.662	74.778 -33.871	1.00 11.03	A
		MOTA	4574		VAL A		58.321	76.858 -34.284	1.00 10.91	A
		MOTA	4575	С	VAL A		61.388	75.498 -36.144	1.00 12.49	A
		ATOM	4576	0	VAL A		61.185	75.192 -37.320	1.00 13.11	A
	55	ATOM	4577	N	THR A	581	62.347	74.956 -35.402	1.00 12.19	Α

				_	_	_				25 22:	1 00 10 01	~
		ATOM	4578	CA	THR			63.236		-35.894	1.00 13.34	A
		ATOM	4579	CB	THR			64.618		-36.315	1.00 13.96	A
		ATOM	4580		THR			65.119		-35.295	1.00 15.16	A
	_	ATOM	4581	CG2				64.516		-37.632	1.00 13.79	A
	5	ATOM	4582	С	THR	Α	581	63.465		-34.762	1.00 14.12	Α
		ATOM	4583	0	THR	A	581	63.316		-33.593	1.00 13.78	Α
		MOTA	4584	N	ASP	A	582	63.791	71.676	-35.104	1.00 15.79	Α
		ATOM	4585	CA	ASP	Α	582	64.086	70.687	-34.075	1.00 17.41	Α
		ATOM	4586	CB	ASP	Α	582	63.674	69.271	-34.522	1.00 17.61	Α
	10	ATOM	4587	CG	ASP	Α	582	64.382	68.801	-35.782	1.00 17.96	Α
		ATOM	4588		ASP			63.942	67.774	-36.345	1.00 19.58	А
		ATOM	4589		ASP			65.367	69.434	-36.205	1.00 17.28	А
		ATOM	4590	С	ASP			65.592	70.831	-33.866	1.00 19.39	Α
		ATOM	4591	0	ASP			66.209	71.675	-34.512	1.00 18.93	Α
	15	ATOM	4592	N	LEU			66.205		-32.983	1.00 21.85	А
		ATOM	4593	CA	LEU			67.636		-32.777	1.00 23.92	A
		ATOM	4594	CB	LEU			68.138		-31.549	1.00 25.99	A
		ATOM	4595	CG	LEU			69.423		-31.024	1.00 27.28	A
		MOTA	4596		LEU			69.104		-30.548	1.00 28.01	A
	20	ATOM	4597		LEU			70.019		-29.898	1.00 28.61	A
Ü	20	MOTA	4598	C	LEU			68.491		-33.988	1.00 24.12	A
ī		ATOM	4599	o	LEU			69.615		-34.120	1.00 25.14	A
		ATOM	4600	N	ALA			67.965		-34.873	1.00 23.00	A.
		ATOM	4601	CA	ALA			68.703		-36.074	1.00 21.20	A
l≈ #	25	ATOM	4601	CB	ALA			68.157		-36.649	1.00 21.20	A
W.	23	MOTA	4602	СВ	ALA			68.561		-37.091	1.00 20.45	A
16		ATOM	4604	0	ALA			68.994		-38.237	1.00 19.17	A
		ATOM	4604	N	ASN			67.944		-36.651	1.00 20.39	A
91		ATOM	4605	CA	ASN			67.725		-37.487	1.00 20.49	A
	30	ATOM	4600	CB	ASN			69.052		-38.058	1.00 22.80	A
ı, İİ	50	ATOM	4607	CG	ASN			69.389		-37.585	1.00 24.67	A
ii.		ATOM	4609		ASN			68.643		-37.833	1.00 25.57	A
E 1887		MOTA	4610		ASN			70.514		-36.891	1.00 26.67	A
		ATOM	4611	C	ASN			66.727		-38.616	1.00 19.93	A
	35	ATOM	4612	0	ASN			66.715		-39.603	1.00 20.20	A
l-i	55		4613	N	ASN			65.894		-38.473	1.00 20.20	A
		ATOM		CA				64.872		-39.471	1.00 13.43	A
		MOTA	4614 4615	CB	ASN ASN			64.329		-39.317	1.00 17.70	A
		ATOM ATOM	4616	CG	ASN			65.396		-39.465	1.00 18.83	A
	40	ATOM	4617		ASN			66.205		-40.388	1.00 18.59	A
	40							65.392		-38.560	1.00 18.33	A
		ATOM	4618		ASN			63.720		-39.241	1.00 13.31	A
		ATOM	4619	С	ASN					-38.118	1.00 17.17	A
		ATOM	4620	0	ASN			63.244		-40.296	1.00 15.87	A
	45	ATOM	4621	N	PRO			63.261		-40.230 -41.710	1.00 10.47	
	45	ATOM	4622	CD	PRO			63.673				A
		ATOM	4623	CA	PRO			62.149		-40.080	1.00 15.85	A
		MOTA	4624	CB	PRO			61.983		-41.447	1.00 16.75	A
		ATOM	4625	CG	PRO			62.443		-42.400	1.00 17.77	A
	50	ATOM	4626	С	PRO			60.894		-39.630	1.00 14.91	A
	50	ATOM	4627	0	PRO			60.666		-40.009	1.00 15.09	A
		ATOM	4628	N	VAL			60.096		-38.795	1.00 13.83	A
		MOTA	4629	CA	VAL			58.857		-38.298	1.00 13.91	A
		ATOM	4630	СВ	VAL			58.902		-36.764	1.00 14.00	A
		MOTA	4631		VAL			57.570		-36.263	1.00 14.23	A
	55	ATOM	4632	CG2	VAL	A	588	60.028	71.285	-36.390	1.00 13.60	A

ATOM 4633 C VAL A 588 57.733 73.395 -38.655 1.00 13.82 ATOM 4636 N GLU A 589 56.677 72.886 -39.282 1.00 14.01 ATOM 4636 CA GLU A 589 55.559 73.740 -39.666 1.00 14.78 ATOM 4638 CG GLU A 589 55.559 73.740 -39.666 1.00 14.78 ATOM 4639 CD GLU A 589 53.508 73.841 -41.153 1.00 20.93 ATOM 4639 CD GLU A 589 53.508 73.841 -41.153 1.00 20.93 ATOM 4640 OEI GLU A 589 52.388 73.083 -41.743 1.00 22.74 ATOM 4641 OEZ GLU A 589 52.386 73.841 -41.153 1.00 20.93 ATOM 4641 OEZ GLU A 589 52.543 71.952 -42.229 1.00 25.02 ATOM 4641 OEZ GLU A 589 54.940 74.370 -38.428 1.00 14.21 ATOM 4643 O GLU A 589 54.679 73.686 -37.436 1.00 13.85 ATOM 4645 CA ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4646 O ALA 589 54.679 73.686 -37.436 1.00 12.68 ATOM 4646 O ALA 589 54.679 73.686 -37.436 1.00 12.81 ATOM 4646 O ALA 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4649 N GLN A 591 55.215 77.169 -36.643 1.00 12.81 ATOM 4649 N GLN A 591 55.295 77.691 -38.979 1.00 12.10 ATOM 4650 CA GLN A 591 55.195 77.14 -36.842 1.00 11.58 ATOM 4651 CB GLN A 591 55.195 77.14 -36.842 1.00 11.58 ATOM 4650 CA GLN A 591 55.195 77.14 -36.842 1.00 11.58 ATOM 4651 CB GLN A 591 51.099 78.640 -37.099 1.00 11.01 ATOM 4652 CG GLN A 591 51.099 78.640 -37.099 1.00 11.01 ATOM 4656 CB GLN A 591 51.099 78.640 -37.099 1.00 11.01 ATOM 4657 O GLN A 591 51.099 78.640 -37.099 1.00 11.01 ATOM 4658 N ZAL A 592 50.978 80.966 -36.416 1.00 11.23 ATOM 4659 CC GLN A 591 51.140 79.714 -36.007 1.00 11.76 ATOM 4650 CB VAL A 592 50.978 80.966 -36.416 1.00 11.22 ATOM 4657 O GLN A 591 51.335 79.419 -34.825 1.00 11.75 ATOM 4658 CC GLN A 591 51.335 79.419 -34.825 1.00 11.75 ATOM 4658 CC GLN A 591 51.340 79.719 -35.461 1.00 11.22 ATOM 4659 C SER A 593 46.594 81.333 -33.344 1.00 11.23 ATOM 4650 CB VAL A 592 50.978 80.966 -36.416 1.00 11.23 ATOM 4667 CB SER A 593 47.704 83.319 -34.027 1.00 11.22 ATOM 4667 CB SER A 593 46.594 81.255 -34.339 1.00 11.31 ATOM 4668 CG SER A 593 47.704 83.399 -34.227 1.00 12.29 ATOM 4667 CB SER A 593 46.699 86.523 -32.004 1.00 12.29 ATOM 4668 CC SER A 593 46.699 86.523 -32.004 1.														
ATOM 4635 N GLU A 589 55.66.677 72.886 -39.282 1.00 14.01 ATOM 4637 CB GLU A 589 55.599 73.740 -39.666 1.00 14.78 ATOM 4637 CB GLU A 589 53.508 73.841 -41.153 1.00 20.73 ATOM 4639 CD GLU A 589 53.508 73.841 -41.153 1.00 20.73 ATOM 4640 OEI GLU A 589 52.388 73.083 -41.743 1.00 22.74 ATOM 4640 OEI GLU A 589 52.543 71.952 -42.229 1.00 25.02 ATOM 4641 OEI GLU A 589 52.543 71.952 -42.229 1.00 25.02 ATOM 4642 C GLU A 589 54.679 73.688 -37.436 1.00 14.21 ATOM 4643 O GLU A 589 54.679 73.688 -37.436 1.00 13.85 ATOM 4644 N ALA A 590 54.703 75.673 -38.428 1.00 14.21 ATOM 4645 CA ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4646 CB ALA A 590 54.703 75.673 -38.491 1.00 12.81 ATOM 4640 O ALA A 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4649 N GLN A 591 52.295 77.691 -38.979 1.00 12.30 ATOM 4650 CA GLN A 591 52.295 77.691 -38.979 1.00 12.10 ATOM 4651 CB GLN A 591 52.196 77.714 -36.842 1.00 11.58 ATOM 4651 CB GLN A 591 59.746 77.924 -37.004 1.00 11.34 ATOM 4654 OEI GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4655 CD GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4656 CB GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4657 O GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4658 N ALA A 590 59.74 1.00 10.88 ATOM 4659 CD GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4650 CD GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4650 CD GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4650 CD GLN A 591 51.140 79.714 -36.802 1.00 11.59 ATOM 4650 CD GLN A 591 51.305 79.419 -34.825 1.00 11.07 ATOM 4650 CD GLN A 591 51.305 79.419 -34.825 1.00 11.07 ATOM 4650 CD GLN A 591 51.305 79.419 -34.825 1.00 11.07 ATOM 4650 CD GLN A 591 51.400 79.714 -36.000 79.100 11.76 ATOM 4650 CD GLN A 591 51.400 79.714 -36.000 79.100 11.76 ATOM 4660 CD VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CD VAL A 592 50.960 82.059 -35.461 1.00 11.23 ATOM 4660 CD VAL A 592 50.960 82.059 -35.461 1.00 11.29 ATOM 4660 CD VAL A 592 50.960 82.059 -35.461 1.00 11.20 1.20 1.20 1.20 1.20 1.20 1.		ATOM	4633	С	VAL	Α	588			73.395	-38.655	1.00	13.82	А
ATOM 4636 CA GLU A 589 55.559 73.740 - 39.666 1.00 14.78		ATOM	4634	0	VAL	Α	588	57.	829	74.590	-38.371	1.00	13.34	Α
5 ATOM 4637 CB GUU A 589 54.492 72.945 -40.417 1.00 16.78 ATOM 4638 CG GUU A 589 53.508 73.841 -41.153 1.00 20.93 ATOM 4639 CD GUU A 589 52.538 73.083 -41.743 1.00 22.74 ATOM 4641 0E2 GUU A 589 52.543 71.952 -42.229 1.00 22.74 ATOM 4641 0E2 GUU A 589 51.213 73.628 -41.733 1.00 24.68 10 ATOM 4643 0 GUU A 589 54.679 73.688 -37.436 1.00 14.21 ATOM 4643 0 GUU A 589 54.679 73.688 -37.436 1.00 13.29 ATOM 4644 N ALA A 590 54.679 73.688 -37.436 1.00 13.29 ATOM 4646 CB ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4646 N GUN A 591 55.215 77.169 -36.643 1.00 12.81 ATOM 4648 N GUN A 591 52.925 77.691 -38.979 1.00 12.10 ATOM 4655 CA GLO A 591 52.925 77.691 -38.979 1.00 12.10 ATOM 4654 OE1 GUN A 591 52.925 77.7691 -38.979 1.00 12.10 ATOM 4654 OE1 GUN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4654 OE1 GUN A 591 49.746 77.924 -37.009 1.00 11.34 ATOM 4654 OE1 GUN A 591 49.746 77.924 -37.009 1.00 11.34 ATOM 4655 CD GUN A 591 49.746 77.924 -37.009 1.00 11.34 ATOM 4656 OE1 GUN A 591 49.746 77.924 -37.009 1.00 11.34 ATOM 4655 CD GUN A 591 49.746 77.924 -37.009 1.00 11.34 ATOM 4656 CD GUN A 591 49.746 77.924 -37.009 1.00 11.34 ATOM 4658 N VAL A 592 50.960 82.059 -35.461 1.00 11.31 ATOM 4658 N VAL A 592 50.960 82.059 -35.461 1.00 11.32 ATOM 4650 CD GUN A 591 51.140 79.714 -36.806 1.00 11.31 ATOM 4656 CD GUN A 591 51.140 79.714 -36.807 1.00 11.76 ATOM 4656 CD GUN A 591 51.35 79.419 -34.825 1.00 11.76 ATOM 4656 CD GUN A 591 51.35 79.419 -34.825 1.00 11.37 ATOM 4666 CD VAL A 592 50.960 82.059 -35.461 1.00 11.29 ATOM 4667 CD VAL A 592 50.960 82.059 -35.461 1.00 11.29 ATOM 4667 CD VAL A 592 49.550 82.637 -35.433 1.00 11.39 ATOM 4666 CD VAL A 592 49.550 82.637 -35.433 1.00 11.30 ATOM 4667 CD VAL A 592 49.550 82.637 -35.433 1.00 11.30 ATOM 4667 CD VAL A 592 49.550 82.637 -35.433 1.00 11.30 ATOM 4667 CD VAL A 592 49.550 82.637 -35.433 1.00 11.29 ATOM 4667 CD PRO A 594 46.838 82.848 -34.227 1.00 12.29 ATOM 4667 CD PRO A 594 46.838 82.848 -34.227 1.00 12.29 ATOM 4667 CD PRO A 594 46.		MOTA	4635	N	GLU	А	589	56.	677	72.886	-39.282	1.00	14.01	Α
ATOM 4638 CG GLU A 589 53.508 73.841 -41.153 1.00 22.74 ATOM 4640 OE1 GLU A 589 52.338 73.083 -41.743 1.00 22.74 ATOM 4640 OE1 GLU A 589 52.338 71.952 -42.229 1.00 25.02 ATOM 4641 OE2 GLU A 589 51.213 73.628 -41.733 1.00 24.68 10 ATOM 4642 C GLU A 589 51.213 73.628 -41.733 1.00 24.68 ATOM 4643 O GLU A 589 54.940 74.370 -38.428 1.00 14.21 ATOM 4644 N ALA A 590 54.703 75.673 -38.428 1.00 14.21 ATOM 4646 CB ALA A 590 54.703 75.673 -38.491 1.00 12.268 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.68 ATOM 4648 O ALA A 590 55.215 77.169 -36.643 1.00 12.30 ATOM 4649 N GLN A 591 55.215 77.169 -36.643 1.00 12.30 ATOM 4649 N GLN A 591 52.196 77.714 -36.842 1.00 11.58 ATOM 4650 CA GLN A 591 51.099 78.640 -37.079 1.00 12.10 ATOM 4651 CB GLN A 591 49.746 77.924 -37.004 1.00 11.58 ATOM 4653 CD GLN A 591 49.746 77.924 -37.004 1.00 11.63 ATOM 4655 NE2 GLN A 591 47.220 78.186 -36.836 1.00 11.63 ATOM 4655 NE2 GLN A 591 47.220 78.186 -36.836 1.00 11.63 ATOM 4655 NE2 GLN A 591 51.140 79.714 -36.007 1.00 12.28 ATOM 4655 NE2 GLN A 591 51.140 79.714 -36.007 1.00 12.28 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.93 ATOM 4658 N VAL A 592 50.960 82.059 -35.461 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.70 ATOM 4665 C SER A 593 46.584 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4667 O SER A 593 46.554 81.255 -34.339 1.00 12.10 ATOM 4667 O PRO A 594 46.831 83.39 -34.020 1.00 12.21 ATOM 4667 O PRO A 594 46.831 83.99 -34.00 1.00 12.21 ATOM 4667 O PRO A 594 46.831 83.99 -34.00 10.10 12.10 ATOM 4668 C SER A 593 46.554 81.255 -34.339 1.00 12.90 ATOM 4667 O PRO A 594 46.831 83.99 -34.00 1.00 12.91 ATOM 4667 O PRO A 594 46.831 84.913 -30.374 1.00 12.91 ATOM 4668 C SER A 593 46.554 81.255 -34.339 1.00 12.91 ATOM 4668 C SER A 593 46.560 86.842 -25.299 1.00 12.94 ATOM 4667 O PRO A 594 46.838 84.629 -32.29		ATOM	4636	CA	GLU	Α	589	55.	559	73.740	-39.666	1.00	14.78	Α
ATOM 4638 CG GLU A 589 53.508 73.841 -41.153 1.00 20.93 ATOM 4640 OD GLU A 589 52.338 73.083 -41.743 1.00 22.74 ATOM 4640 OEI GLU A 589 52.338 73.083 -41.743 1.00 22.74 ATOM 4641 OE2 GLU A 589 52.338 71.952 -42.229 1.00 25.02 ATOM 4643 O GLU A 589 51.213 73.628 -41.733 1.00 24.68 ATOM 4643 O GLU A 589 54.940 74.370 -38.428 1.00 14.21 ATOM 4644 N ALA A 590 54.703 75.673 -384.281 1.00 13.29 ATOM 4646 CB ALA A 590 54.703 75.673 -384.91 1.00 13.29 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.26 ATOM 4646 N GLU A 589 55.215 77.169 -36.643 1.00 12.30 ATOM 4648 N GLU A 589 55.215 77.169 -36.643 1.00 12.30 ATOM 4649 N GLU A 590 52.925 77.691 -38.979 1.00 12.30 ATOM 4650 CB GLU A 591 51.099 78.640 -37.079 1.00 11.58 ATOM 4651 CB GLU A 591 49.746 77.924 -37.004 1.00 11.58 ATOM 4653 CD GLU A 591 49.746 77.924 -37.004 1.00 11.84 ATOM 4655 NE2 GLU A 591 47.220 78.186 -36.836 1.00 11.63 ATOM 4655 NE2 GLU A 591 51.099 78.640 -37.079 1.00 10.88 ATOM 4655 NE2 GLU A 591 51.997 78.193 1.00 12.28 ATOM 4656 CB GLU A 591 51.409 79.714 -36.607 1.00 11.93 ATOM 4658 N VAL A 592 50.960 82.059 -35.461 1.00 11.93 ATOM 4656 CB VAL A 592 50.960 82.059 -35.461 1.00 11.93 ATOM 4666 CB VAL A 592 50.960 82.059 -35.461 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.70 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.93 ATOM 4666 CB VAL A 592 51.983 82.848 -34.227 1.00 12.13 ATOM 4666 CB VAL A 592 51.983 82.849 -34.227 1.00 12.13 ATOM 4666 CB VAL A 592 51.983 82.848 -34.227 1.00 12.13 ATOM 4667 D SER A 593 46.554 81.255 -34.339 1.00 11.93 ATOM 4667 D SER A 593 46.554 81.255 -34.339 1.00 11.93 ATOM 4667 D SER A 593 46.554 81.255 -34.339 1.00 11.93 ATOM 4667 D PRO A 594 46.880 88.545 -32.299 1.00 12.94 ATOM 4667 D PRO A 594 46.881 89.55 82.833 -36.477 1.00 12.19 ATOM 4667 CP PRO A 594 46.881 89.55 82.833 -36.477 1.00 12.19 ATOM 4667 CP RO A 594 46.881 89.55 82.833 -36.477 1.00 12.90 ATOM 4668 CB VAL A 595 46.680 86.842 -25.299 1.00 12.94 ATOM 4667 CP RO A 594 46.680 86.842 -25.999 1.00 12.90 ATOM 4686 CA TRP A 596 45.86	5	ATOM	4637	СВ	GLU	A	589	54.	492	72.945	-40.417	1.00	16.78	Α
ATOM 4639 CD GUU A 589 52.338 73.083 -41.743 1.00 22.74 ATOM 4641 OE1 GUU A 589 52.543 71.952 -42.229 1.00 25.02 ATOM 4641 OE2 GUU A 589 51.213 73.628 -41.733 1.00 24.68 10 ATOM 4642 C GUU A 589 54.940 74.370 -38.428 1.00 14.21 ATOM 4643 O GUU A 589 54.679 73.688 -37.436 1.00 13.85 ATOM 4644 N ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4646 CB ALA A 590 54.703 75.673 -38.491 1.00 12.26 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.81 15 ATOM 4646 O ALA A 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4646 O ALA A 590 55.215 77.691 -38.979 1.00 12.10 ATOM 4646 O ALA A 590 52.925 77.691 -38.979 1.00 12.10 ATOM 4650 CA GUN A 591 51.099 78.640 -37.079 1.00 11.58 ATOM 4651 CB GUN A 591 51.099 78.640 -37.079 1.00 11.34 ATOM 4652 CG GUN A 591 48.551 78.880 -37.069 1.00 11.34 ATOM 4654 OE1 GUN A 591 48.551 78.880 -37.069 1.00 11.34 ATOM 4655 ND GUN A 591 46.380 77.714 -36.836 1.00 11.31 ATOM 4655 ND GUN A 591 46.380 77.714 -36.007 1.00 11.32 ATOM 4655 ND GUN A 591 46.380 77.136 -37.416 1.00 11.31 ATOM 4656 C GUN A 591 46.380 77.734 -36.007 1.00 11.31 ATOM 4657 O GUN A 591 46.380 77.136 -37.416 1.00 11.31 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 11.07 25 ATOM 4657 O GUN A 591 51.335 79.419 -34.825 1.00 11.07 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 11.07 ATOM 4666 CG VAL A 592 50.960 82.059 -35.461 1.00 11.07 ATOM 4667 N SER A 593 47.004 83.399 -34.020 1.00 12.13 ATOM 4668 O VAL A 592 51.983 83.158 -35.891 1.00 11.59 ATOM 4667 N SER A 593 47.704 83.399 -34.020 1.00 12.13 ATOM 4667 N PRO A 594 46.831 85.457 -32.999 1.00 12.94 ATOM 4667 C PRO A 594 45.609 86.523 -32.004 1.00 12.94 ATOM 4667 N PRO A 594 46.881 85.469 -32.999 1.00 12.94 ATOM 4667 C PRO A 594 45.609 86.523 -32.004 1.00 12.99 ATOM 4667 C PRO A 594 45.609 86.523 -32.004 1.00 12.99 ATOM 4668 C C PRO A 594 45.609 86.523 -32.004 1.00 12.99 ATOM 4668 C R VAL A 595 45.609 86.523 -32.004 1.00 12.90 ATOM 4668 C R VAL A 595 45.609 86.523 -32.004 1.00 12.90 ATOM 4668 C R VAL A 595 45.609 86.523 -32.004 1.00 12.90 ATOM 4668 C R VAL A 595 45.609								53.	508	73.841	-41.153	1.00	20.93	А
ATOM 4640 OE1 GUU A 589 52.543 71.952 -42.229 1.00 25.02 4.68 10 ATOM 4641 OE2 GUU A 589 51.213 73.628 -41.733 1.00 24.68 ATOM 4644 N ALA A 599 54.940 74.370 -38.428 1.00 14.21 ATOM 4644 N ALA A 590 54.703 75.673 -38.428 1.00 13.29 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4646 N GLU A 589 54.703 77.329 -37.804 1.00 12.81 ATOM 4649 N GLU A 590 55.215 77.169 -36.643 1.00 12.80 ATOM 4649 N GLU A 590 55.225 77.691 -38.979 1.00 12.30 ATOM 4649 N GLU A 590 52.925 77.691 -38.979 1.00 12.30 ATOM 4650 CA GLU A 591 51.099 78.640 -37.079 1.00 11.58 ATOM 4650 CB GLU A 591 48.551 78.880 -37.069 1.00 11.58 ATOM 4655 CB GLU A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4655 CB GLU A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4655 CB GLU A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4655 CB GLU A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4656 CB GLU A 591 46.988 77.136 -37.416 1.00 12.28 ATOM 4655 CB GLU A 591 46.988 77.136 -37.416 1.00 12.28 ATOM 4655 CB GLU A 591 46.988 77.136 -37.416 1.00 12.28 ATOM 4656 CB GLU A 591 51.409 79.714 -34.825 1.00 11.07 22.88 ATOM 4656 CB GLU A 592 50.960 82.059 -35.461 1.00 11.07 22.88 ATOM 4656 CB VAL A 592 50.960 82.059 -35.461 1.00 11.07 22.88 ATOM 4666 CB VAL A 592 50.960 82.059 -35.461 1.00 11.07 22.88 ATOM 4666 CB VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.72 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.72 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.72 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.23 ATOM 4666 CB VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4666 CB VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4667 CB SER A 593 46.554 81.255 -34.33 1.00 11.38 ATOM 4667 CB SER A 593 46.554 81.255 -34.33 1.00 11.38 ATOM 4668 CB VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4668 CB VAL A 595 46.636 86.829 -29.209 1.00 12.94 AT					GLU	Α	589	52.	338	73.083	-41.743	1.00	22.74	Α
ATOM												1.00	25.02	А
10 ATOM 4642 C GLU A 589 54.940 74.370 -38.428 1.00 14.21 ATOM 4644 N ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4645 CA ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.30 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.30 ATOM 4646 CB ALA A 590 55.215 77.169 -38.643 1.00 12.30 ATOM 4649 N GLN A 591 52.196 77.714 -36.842 1.00 11.58 ATOM 4651 CB GLN A 591 52.196 77.714 -36.842 1.00 11.58 ATOM 4652 CG GLN A 591 49.746 77.924 -37.004 1.00 12.30 ATOM 4653 CD GLN A 591 48.551 78.880 -37.069 1.00 11.34 ATOM 4654 OEI GLN A 591 48.551 78.880 -37.069 1.00 11.34 ATOM 4655 NE2 GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.76 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.76 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.76 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.93 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.93 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.93 ATOM 4656 C GLN A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4657 C GLN A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4656 C GLN A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.402 1.00 12.21 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.29 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.57 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.57 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.57 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.59 ATOM 4668 C R TRO A 594 46.818 84.629 -32.297 1.00 13.46 ATOM 4677 C PRO A 594 46.818												1.00	24.68	А
ATOM 4643 O GLU A 589 54.679 73.688 -37.436 1.00 13.85 ATOM 4644 N ALA A 590 54.703 75.673 -38.491 1.00 13.29 ATOM 4646 CB ALA A 590 54.130 76.387 -37.365 1.00 12.68 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.81 15 ATOM 4647 C ALA A 590 55.215 77.169 -36.643 1.00 12.81 ATOM 4648 O ALA A 590 52.925 77.691 -38.979 1.00 12.30 ATOM 4649 N GLN A 591 52.196 77.714 -36.842 1.00 11.58 ATOM 4650 CA GLN A 591 51.099 78.640 -37.079 1.00 10.88 ATOM 4651 CB GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4651 CB GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4653 CD GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4655 NE2 GLN A 591 48.551 78.880 -37.079 1.00 10.88 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 11.28 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 11.27 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 11.07 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4659 CA VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4659 CA VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4650 CG VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4665 C GLN A 591 51.340 79.714 -34.825 1.00 11.93 ATOM 4665 C GLN A 591 51.340 79.714 -34.825 1.00 11.93 ATOM 4665 C GLN A 592 50.960 82.059 -35.461 1.00 10.29 ATOM 4665 C GLN A 592 50.960 82.059 -35.461 1.00 10.29 ATOM 4665 C GLN A 592 50.960 82.059 -35.461 1.00 10.29 ATOM 4665 C GLN A 592 51.942 84.405 -34.990 1.00 12.13 30 ATOM 4666 C GLN A 592 51.942 84.935 82.653 -34.990 1.00 12.13 30 ATOM 4666 C GLN A 592 51.942 84.935 82.653 -34.990 1.00 12.13 ATOM 4666 C GLN A 592 51.942 84.935 82.653 -34.990 1.00 12.13 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.41 ATOM 4667 C B SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.41 ATOM 4667 C B SER A 593 46.554 81.255 -34.333 1.00 11.38 ATOM 4667 C B SER A 593 46.554 81.255 -34.333 1.00 11.38 ATOM 4667 C B SER A 593 46.554 81.255 -34.333 1.00 11.253 ATOM 4667 C C PRO A 594 46.803 88.846 29.32.297 1.00 13.46 ATOM 4678 N VAL A 595 46.690 86.523 -32.004 1.00 12.57 ATOM	10													А
ATOM 4644 N ALA A 590	10											1.00	13.85	А
ATOM 4645 CA ALA A 590 54.130 76.387 -37.365 1.00 12.68 ATOM 4646 CB ALA A 590 55.215 77.169 -36.643 1.00 12.81 15 ATOM 4647 C ALA A 590 55.215 77.169 -36.643 1.00 12.81 15 ATOM 4648 O ALA A 590 55.215 77.169 -36.643 1.00 12.81 12.30 ATOM 4649 N GLN A 591 52.196 77.714 -36.842 1.00 12.10 12.10 ATOM 4650 CA GLN A 591 51.099 78.640 -37.079 1.00 10.88 ATOM 4651 CB GLN A 591 49.746 77.7924 -37.004 1.00 11.34 12.10 ATOM 4652 CG GLN A 591 48.551 78.880 -37.069 1.00 11.34 ATOM 4653 CD GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4655 NE2 GLN A 591 46.380 78.777 -35.993 1.00 12.28 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 11.07 11.07 ATOM 4658 N VAL A 592 50.960 82.059 -35.461 1.00 11.07 11.07 ATOM 4658 N VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CB VAL A 592 50.960 82.059 -35.461 1.00 11.29 ATOM 4661 CG1 VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4666 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4666 CG VAL A 592 51.983 82.848 -34.227 1.00 12.21 30 ATOM 4666 CA SER A 593 46.574 82.845 33.39 1.00 12.29 ATOM 4666 CA SER A 593 46.575 82.337 -33.444 1.00 12.29 ATOM 4666 CA SER A 593 46.575 82.337 -33.444 1.00 12.53 ATOM 4666 CA SER A 593 46.575 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.575 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 47.704 83.399 -34.020 1.00 12.41 38 ATOM 4671 CB SER A 593 46.575 82.337 -33.444 1.00 12.59 ATOM 4671 CB SER A 593 47.704 83.399 -34.020 1.00 12.41 38 ATOM 4671 CB SER A 593 46.594 81.255 -34.339 1.00 11.38 ATOM 4673 CB SER A 593 46.594 81.255 -34.339 1.00 12.29 ATOM 4674 CB SER A 593 47.704 83.399 -34.020 1.00 12.21 41 30.00 12.256 ATOM 4677 CB SER A 593 47.704 83.399 -34.020 1.00 12.29 47.704 868 CB SER A 593 47.704 83.399 -34.020 1.00 12.29 47.704 868 CB SER A 593 47.704 83.399 -34.020 1.00 12.29 47.704 868 CB SER A 593 47.704 83.399 -34.020 1.00 12.29 47.704 868 CB SER A 593 47.704 83.399 -34.020 1.00 12.29 47.704 868 CB SER A 593 47.704 83.399 -34.020 1.00 12.29 47.704 83.399 -34.020 1.00														А
ATOM										76.387	-37.365	1.00	12.68	А
15												1.00	12.81	А
ATOM 4648 N GLN A 590 52.925 77.691 -38.979 1.00 12.10 ATOM 4650 CA GLN A 591 51.099 78.640 -37.079 1.00 10.88 ATOM 4651 CB GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4653 CD GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4653 CD GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4653 CD GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4654 OEI GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4655 NE2 GLN A 591 51.140 79.714 -36.007 1.00 11.07 ATOM 4656 C GLN A 591 51.335 79.419 -34.825 1.00 11.07 ATOM 4657 O GLN A 591 51.335 79.419 -34.825 1.00 11.07 ATOM 4659 CA VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CGI VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4663 C VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 48.935 82.853 -36.477 1.00 12.13 ATOM 4666 CA SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 46.757 82.337 -33.444 1.00 12.29 ATOM 4666 CA SER A 593 46.757 82.337 -33.444 1.00 12.29 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.29 ATOM 4668 O SER A 593 46.757 82.337 -33.444 1.00 12.29 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 O SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.59 ATOM 4671 N PRO A 594 46.831 85.415 -32.2959 1.00 12.94 ATOM 4671 N PRO A 594 46.831 85.415 -32.2959 1.00 12.94 ATOM 4670 C SER A 593 48.828 84.629 -32.297 1.00 12.56 ATOM 4670 C PRO A 594 46.831 85.415 -32.2959 1.00 12.94 ATOM 4670 C PRO A 594 46.881 85.415 -32.2959 1.00 12.94 ATOM 4670 C PRO A 594 46.881 85.415 -32.2959 1.00 12.94 ATOM 4670 C PRO A 594 46.881 85.415 -32.2959 1.00 12.94 ATOM 4670 C PRO A 594 46.881 85.415 -32.2959 1.00 12.90 ATOM 4680 CB VAL A 595 46.600 86.842 -22.811 1.00 12.90 ATOM 4680 CB VAL A 595 46.600 86.842 -22.811 1.00 12.90 ATOM 4680 CB VAL A 595 46.600 86.84	15													A
ATOM 4649 N GLN A 591 52.196 77.714 -36.842 1.00 11.58 ATOM 4651 CB GLN A 591 51.099 78.640 -37.079 1.00 10.88 ATOM 4652 CG GLN A 591 49.746 77.924 -37.004 1.00 11.34 20 ATOM 4652 CG GLN A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4653 CD GLN A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 11.28 ATOM 4655 NE2 GLN A 591 46.380 78.777 -35.993 1.00 11.76 ATOM 4656 C GLN A 591 46.380 78.777 -35.993 1.00 11.76 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4650 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4660 CB VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4661 CG1 VAL A 592 51.339 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.431 1.00 11.16 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4667 CB SER A 593 47.704 83.399 -34.020 1.00 12.21 ATOM 4669 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4660 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4660 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4660 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 CB PRO A 594 46.831 85.415 -32.959 1.00 13.46 ATOM 4673 CD PRO A 594 46.803 85.588 -33.877 1.00 12.56 ATOM 4674 CB PRO A 594 46.803 84.629 -32.297 1.00 13.46 ATOM 4676 C PRO A 594 46.603 86.523 -32.004 1.00 12.57 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4679 CD PRO A 594 46.618 86.038 -30.583 1.00 11.95 ATOM 4670 O PRO A 594 46.618 86.909 86.523 -32.004 1.00 12.57 ATOM 4678 N VAL A 595 46.660 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.660 86.549 -28.221 1.00 12.80 ATOM 4680 CB VAL A 595 46.660 86.549 -28.221 1.00 12.80 ATOM 4680 CB VAL A 595 4	10													А
ATOM 4650 CA GLN A 591 51.099 78.640 -37.079 1.00 10.88 ATOM 4651 CB GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4652 CG GLN A 591 49.746 77.924 -37.004 1.00 11.34 ATOM 4653 CD GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4657 O GLN A 591 51.335 79.419 -34.825 1.00 11.07 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 11.07 ATOM 4659 CA VAL A 592 50.978 80.966 -36.416 1.00 11.22 ATOM 4669 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CGI VAL A 592 51.742 84.405 -34.991 0.00 12.13 ATOM 4663 C VAL A 592 53.399 82.641 -35.584 1.00 11.36 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.16 ATOM 4666 CA SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 46.554 81.255 -34.339 1.00 12.53 ATOM 4667 CB SER A 593 46.554 81.255 -34.339 1.00 12.53 ATOM 4667 CB SER A 593 46.554 81.255 -34.339 1.00 12.53 ATOM 4667 CB SER A 593 46.554 81.255 -34.339 1.00 12.53 ATOM 4667 CB SER A 593 46.554 81.255 -34.339 1.00 12.53 ATOM 4667 CB SER A 593 46.554 81.255 -34.339 1.00 12.53 ATOM 4667 CB SER A 593 46.554 81.255 -34.339 1.00 12.54 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 ATOM 4673 CA PRO A 594 46.831 85.415 -32.959 1.00 12.94 ATOM 4670 O SER A 593 48.88 84.629 -32.297 1.00 12.55 ATOM 4670 C SER A 593 48.88 84.629 -32.297 1.00 12.55 ATOM 4670 C SER A 594 46.831 85.415 -32.959 1.00 12.55 ATOM 4670 C SER A 594 46.831 85.415 -32.959 1.00 12.94 ATOM 4670 C SER A 594 46.831 85.415 -32.959 1.00 12.56 ATOM 4670 CAL A 595 46.660 86.549 -28.221 1.00 12.57 ATOM 4670 C SER A 594 46.893 86.882 -29.605 1.00 13.06 ATOM 4680 CB VAL A 595 46.660 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.660 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.660 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.660 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.660 86.842 -25.811														А
ATOM 4651 CB GLN A 591 49.746 77.924 -37.004 1.00 11.34 A 504 ATOM 4652 CG GLN A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4653 CD GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4654 OEI GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4656 C GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4657 O GLN A 591 51.140 79.714 -36.007 1.00 11.07 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 11.22 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CG1 VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4663 C VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4666 CG2 VAL A 592 51.742 84.405 -34.990 1.00 12.13 ATOM 4666 CG2 VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4666 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4666 C SER A 593 47.704 83.399 -34.020 1.00 12.29 ATOM 4666 C SER A 593 47.704 83.399 -34.020 1.00 12.29 ATOM 4666 C SER A 593 47.704 83.399 -34.020 1.00 12.53 ATOM 4669 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 C SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 C SER A 593 46.554 81.255 -34.339 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.74 ATOM 4673 CA PRO A 594 46.891 85.588 -33.877 1.00 12.57 ATOM 4674 CB PRO A 594 46.891 85.588 -33.877 1.00 12.57 ATOM 4676 C PRO A 594 46.693 85.588 -33.877 1.00 12.57 ATOM 4676 C PRO A 594 46.693 85.588 -33.877 1.00 12.57 ATOM 4677 CO PRO A 594 46.694 86.820 -29.605 1.00 11.95 ATOM 4678 C PRO A 594 46.694 86.820 29.605 1.00 11.95 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.59 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4681 CG1 VAL A 595 46.650 86.549 -28.221 1.00 13.36 ATOM 4686 CA TRP A 596 44.264 86.583 -27.865 1.00 13.30 14.05 ATOM 4686 CA TRP A 596 44.264 86.583 -27.865 1.00 13.30 14.05 ATOM 4686 CA TRP A 596 44														А
20 ATOM 4652 CG GLN A 591 48.551 78.880 -37.069 1.00 11.63 ATOM 4653 CD GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4654 OEI GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4655 NE2 GLN A 591 46.948 77.77 -35.993 1.00 11.76 ATOM 4656 C GLN A 591 51.340 78.777 -35.993 1.00 11.76 ATOM 4656 C GLN A 591 51.340 78.777 -35.993 1.00 11.76 ATOM 4657 O GLN A 591 51.340 78.777 -35.993 1.00 11.07 11.07 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4659 CA VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4661 CGI VAL A 592 50.960 82.059 -35.461 1.00 11.59 ATOM 4661 CGI VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CGI VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4663 C VAL A 592 48.550 82.637 -35.433 1.00 11.38 ATOM 4665 N SER A 593 49.038 82.848 -34.227 1.00 12.01 ATOM 4665 N SER A 593 49.038 82.848 -34.227 1.00 12.01 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 ATOM 4669 C SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4667 N PRO A 594 46.831 85.415 -32.959 1.00 13.46 ATOM 4670 O SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4673 CA PRO A 594 46.831 85.415 -32.959 1.00 13.46 ATOM 4673 CA PRO A 594 46.803 85.588 -33.877 1.00 12.90 ATOM 4676 CB PRO A 594 46.803 85.588 -33.877 1.00 12.90 ATOM 4676 CB PRO A 594 46.803 85.588 -33.877 1.00 12.56 ATOM 4677 CB PRO A 594 46.603 87.083 3.3915 1.00 12.90 ATOM 4676 CB PRO A 594 46.603 87.083 3.3915 1.00 12.90 ATOM 4676 CB PRO A 594 46.604 86.82 -29.605 1.00 11.95 ATOM 4677 CA PRO A 594 46.605 87.083 -33.915 1.00 12.90 ATOM 4676 CB PRO A 594 46.605 86.549 -28.221 1.00 12.90 ATOM 4676 CB PRO A 594 46.605 87.083 -33.915 1.00 12.90 ATOM 4677 CA PRO A 594 46.605 87.083 -33.915 1.00 12.90 ATOM 4676 CB PRO A 594 46.605 87.083 -33.915 1.00 12.90 ATOM 4676 CB PRO A 594 46.605 87.083 -33.915 1.00 12.90 ATOM 4680 CB VAL A 595 46.605 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.605 86.549 -28.221 1.00 13.06 ATOM 4681 CGI VAL A 595 47.280 86.842 -25.811 1.00 13.30 ATOM 4686 CB VAL A 595 47.280														А
ATOM 4653 CD GLN A 591 47.220 78.186 -36.836 1.00 11.31 ATOM 4654 OE1 GLN A 591 46.948 77.136 -37.416 1.00 12.28 ATOM 4655 NE2 GLN A 591 46.948 77.136 -37.416 1.00 11.76 ATOM 4655 NE2 GLN A 591 51.140 79.714 -36.007 1.00 11.07 25 ATOM 4657 O GLN A 591 51.335 79.419 -34.825 1.00 11.93 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4650 CB VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CG1 VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4662 CG2 VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4666 CA SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4667 C B SER A 593 47.704 83.399 -34.020 1.00 12.41 36 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4671 C B PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4671 C B PRO A 594 46.831 85.415 -32.959 1.00 12.56 ATOM 4675 C B PRO A 594 46.831 85.415 -32.959 1.00 12.56 ATOM 4676 C PRO A 594 46.831 85.415 -32.959 1.00 12.57 ATOM 4670 C B PRO A 594 46.831 85.415 -32.959 1.00 12.56 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4671 C B PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4671 C B PRO A 594 46.831 85.488 -33.877 1.00 12.56 ATOM 4675 C B PRO A 594 46.831 85.493 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.80 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 C B VAL A 595 46.665 86.549 -28.221 1.00 12.90 ATOM 4680 C B VAL A 595 46.665 86.549 -28.221 1.00 12.90 ATOM 4680 C B VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 C B VAL A 595 47.280 86.842 -25.811 1.00 13.76 ATOM 4684 O VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4685 N TRP A 596 44.264 86.683 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 44.264 86.683 -27.805 1.0	20													A
ATOM 4654 OE1 GLN A 591	20													A
ATOM 4655 NE2 GLN A 591														A
ATOM 4656 C GLN A 591 51.140 79.714 -36.007 1.00 11.07 25 ATOM 4657 O GLN A 591 51.335 79.419 -34.825 1.00 11.93 ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4659 CA VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CGI VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4662 CG2 VAL A 592 49.550 82.637 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.453 1.00 11.38 ATOM 4666 CA SER A 593 49.038 82.885 -36.477 1.00 12.01 ATOM 4666 CA SER A 593 49.038 82.884 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4669 C SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 47.838 84.533 -33.018 1.00 12.72 ATOM 4667 O SER A 593 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4670 O SER A 593 46.838 84.629 -32.297 1.00 12.94 40 ATOM 4673 CA PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4676 C PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4676 C PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4676 C PRO A 594 46.641 86.038 -30.883 1.00 12.82 45 ATOM 4677 O PRO A 594 46.641 86.038 -30.883 1.00 12.82 45 ATOM 4678 N VAL A 595 46.650 87.083 -33.915 1.00 12.85 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4681 CGI VAL A 595 47.761 87.006 -27.247 1.00 13.06 ATOM 4684 O VAL A 595 49.020 86.176 -27.467 1.00 13.06 ATOM 4684 O VAL A 595 49.020 86.176 -27.467 1.00 13.30 ATOM 4686 CA TRP A 596 44.264 86.583 -27.865 1.00 13.30 ATOM 4686 CA TRP A 596 44.264 86.583 -27.865 1.00 13.30														A
25 ATOM 4657 O GLN A 591														A
ATOM 4658 N VAL A 592 50.978 80.966 -36.416 1.00 10.29 ATOM 4659 CA VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CG1 VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4662 CG2 VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4664 O VAL A 592 49.550 82.853 -36.477 1.00 12.01 ATOM 4665 N SER A 593 49.038 82.8848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4666 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4670 O SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4676 C PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4676 C PRO A 594 46.641 86.038 -33.877 1.00 12.56 ATOM 4676 C PRO A 594 46.641 86.038 -33.815 1.00 12.82 45 ATOM 4677 O PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4678 N VAL A 595 46.651 86.539 -28.221 1.00 12.90 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4688 C WAL A 595 47.761 87.006 -27.249 1.00 13.36 ATOM 4680 CB VAL A 595 47.280 86.842 -29.605 1.00 11.95 ATOM 4680 CB VAL A 595 47.280 86.842 -29.605 1.00 13.36 ATOM 4684 O VAL A 595 47.280 86.854 -27.845 1.00 12.80 ATOM 4688 C VAL A 595 47.280 86.854 -27.845 1.00 13.36 ATOM 4688 N TRP A 596 44.264 86.580 -27.845 1.00 14.05	25													A
ATOM 4659 CA VAL A 592 50.960 82.059 -35.461 1.00 11.22 ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CG1 VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4662 CG2 VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4664 O VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4665 N SER A 593 49.038 82.883 -36.477 1.00 12.01 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4666 CA SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4670 O SER A 593 48.828 84.629 -32.297 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4673 CA PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4675 CG PRO A 594 45.802 87.471 -32.471 1.00 12.57 ATOM 4676 C PRO A 594 45.802 87.471 -32.471 1.00 12.90 ATOM 4676 C PRO A 594 46.818 84.913 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.641 86.038 -30.583 1.00 12.82 ATOM 4678 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 ATOM 4679 CA VAL A 595 46.650 87.083 -33.915 1.00 12.80 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4684 O VAL A 595 47.280 86.842 -25.811 1.00 13.36 ATOM 4688 C VAL A 595 49.020 86.176 -27.467 1.00 13.36 ATOM 4688 C NAL A 595 49.020 86.176 -27.467 1.00 13.36 ATOM 4688 C VAL A 595 49.020 86.176 -27.467 1.00 13.30 ATOM 4688 C NAL A 595 44.264 86.583 -27.805 1.00 14.57 ATOM 4688 C NAL A 595 44.264 86.583 -27.805 1.00 14.57 ATOM 4686 CA TRP A 596 44.264 86.583 -27.805 1.00 14.05	25													A
ATOM 4660 CB VAL A 592 51.983 83.158 -35.831 1.00 11.59 ATOM 4661 CG1 VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4662 CG2 VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4666 O VAL A 592 48.935 82.853 -36.477 1.00 12.01 ATOM 4665 N SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4666 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4660 C SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4667 CD SER A 593 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 46.693 85.588 -33.877 1.00 12.56 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4676 C PRO A 594 45.693 85.588 -33.877 1.00 12.57 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.90 ATOM 4678 N VAL A 595 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 49.020 86.176 -27.467 1.00 13.35 50 ATOM 4688 C VAL A 595 49.020 86.176 -27.467 1.00 13.36 ATOM 4688 N VAL A 595 49.020 86.176 -27.467 1.00 13.36 ATOM 4688 N VAL A 595 49.020 86.176 -27.467 1.00 13.36 ATOM 4688 N VAL A 595 49.020 86.176 -27.467 1.00 13.36 ATOM 4688 N VAL A 595 49.020 86.176 -27.467 1.00 13.36									-					A
30 ATOM 4661 CG1 VAL A 592 51.742 84.405 -34.990 1.00 12.13 30 ATOM 4662 CG2 VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4664 O VAL A 592 48.935 82.853 -36.477 1.00 12.01 ATOM 4665 N SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4666 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 46.554 81.255 -34.339 1.00 12.72 ATOM 4670 O SER A 593 48.828 84.629 -32.297 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4674 CB PRO A 594 45.693 85.588 -33.877 1.00 12.57 ATOM 4675 CG PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4676 C PRO A 594 45.802 87.471 -32.471 1.00 12.90 ATOM 4677 O PRO A 594 46.818 84.913 -30.374 1.00 12.82 45 ATOM 4677 O PRO A 594 46.818 84.913 -30.374 1.00 12.82 47 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 13.35 ATOM 4681 CG1 VAL A 595 47.761 87.006 -27.249 1.00 13.35 ATOM 4682 CG2 VAL A 595 47.280 86.842 -25.811 1.00 13.35 ATOM 4688 O VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4688 O VAL A 595 45.366 87.315 -27.927 1.00 13.30 ATOM 4685 N TRP A 596 44.264 86.583 -27.865 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30														A
30 ATOM 4662 CG2 VAL A 592 53.399 82.641 -35.584 1.00 11.16 ATOM 4663 C VAL A 592 49.550 82.637 -35.433 1.00 11.38 ATOM 4664 O VAL A 592 48.935 82.848 -34.227 1.00 12.01 ATOM 4665 N SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4669 C SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4670 O SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4671 N PRO A 594 46.831 85.415 -32.297 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td></td<>														A
ATOM 4663 C VAL A 592	20													A
ATOM 4664 O VAL A 592 48.935 82.853 -36.477 1.00 12.01 ATOM 4665 N SER A 593 49.038 82.848 -34.227 1.00 12.29 ATOM 4666 CA SER A 593 47.704 83.399 -34.020 1.00 12.41 35 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4670 O SER A 593 48.828 84.629 -32.297 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 46.831 85.415 -32.959 1.00 12.94 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4674 CB PRO A 594 45.663 87.083 -33.915 1.00 12.57 ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.82 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.80 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4688 C CA TRP A 596 44.264 86.583 -27.805 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 14.55	30													A
ATOM 4665 N SER A 593														A
ATOM 4666 CA SER A 593														A
35 ATOM 4667 CB SER A 593 46.757 82.337 -33.444 1.00 12.53 ATOM 4668 OG SER A 593 46.554 81.255 -34.339 1.00 13.81 ATOM 4669 C SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4670 O SER A 593 48.828 84.629 -32.297 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4675 CG PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4676 C PRO A 594 45.560 87.083 -30.583 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td></t<>														A
ATOM 4668 OG SER A 593	25													A
ATOM 4669 C SER A 593 47.833 84.533 -33.018 1.00 12.72 ATOM 4670 O SER A 593 48.828 84.629 -32.297 1.00 13.46 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 40 ATOM 4672 CD PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4674 CB PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4681 CG1 VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 14.05	33													A
ATOM 4670 O SER A 593														A
40 ATOM 4671 N PRO A 594 46.831 85.415 -32.959 1.00 12.94 ATOM 4672 CD PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4674 CB PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4684 O VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 14.05														A
40 ATOM 4672 CD PRO A 594 45.693 85.588 -33.877 1.00 12.56 ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4674 CB PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
ATOM 4673 CA PRO A 594 46.909 86.523 -32.004 1.00 12.57 ATOM 4674 CB PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4684 O VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 14.57 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05	40													A
ATOM 4674 CB PRO A 594 45.802 87.471 -32.471 1.00 13.02 ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4684 O VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 14.57 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05	40													
ATOM 4675 CG PRO A 594 45.560 87.083 -33.915 1.00 12.90 ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
ATOM 4676 C PRO A 594 46.641 86.038 -30.583 1.00 12.82 45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
45 ATOM 4677 O PRO A 594 46.185 84.913 -30.374 1.00 12.85 ATOM 4678 N VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
ATOM 4678 N VAL A 595 46.943 86.882 -29.605 1.00 11.95 ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05	4 =													A
ATOM 4679 CA VAL A 595 46.650 86.549 -28.221 1.00 12.90 ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05	45													A
ATOM 4680 CB VAL A 595 47.761 87.006 -27.249 1.00 12.80 ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
ATOM 4681 CG1 VAL A 595 47.280 86.842 -25.811 1.00 13.35 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
50 ATOM 4682 CG2 VAL A 595 49.020 86.176 -27.467 1.00 13.76 ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
ATOM 4683 C VAL A 595 45.366 87.315 -27.927 1.00 13.06 ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05														A
ATOM 4684 O VAL A 595 45.369 88.545 -27.845 1.00 14.57 ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05	50	ATOM												A
ATOM 4685 N TRP A 596 44.264 86.583 -27.805 1.00 13.30 ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05		ATOM		С										A
ATOM 4686 CA TRP A 596 42.967 87.187 -27.539 1.00 14.05		ATOM	4684	0										A
		ATOM	4685	N										A
55 ATOM 4687 CB TRP A 596 41.879 86.522 -28.391 1.00 13.01		MOTA	4686	CA	TRP	Α	596	42.	967					A
	55	MOTA	4687	СВ	TRP	A	596	41.	879	86.522	-28.391	1.00	13.01	A

	ATOM	4688	CG	TRP	Α	596	42.037	86.706 -29.862	1.00 13.11	А
	ATOM	4689		TRP			41.728	87.883 -30.615	1.00 13.30	Α
	ATOM	4690		TRP			42.009	87.600 -31.969	1.00 13.52	Α
	ATOM	4691		TRP			41.241	89.153 -30.275	1.00 13.42	Α
5	ATOM	4692	CD1	TRP	Α	596	42.483	85.780 -30.765	1.00 13.06	Α
	ATOM	4693	NE1				42.467	86.310 -32.034	1.00 13.17	А
	ATOM	4694	CZ2	TRP	Α	596	41.818	88.541 -32.987	1.00 13.38	А
	MOTA	4695	CZ3				41.050	90.089 -31.288	1.00 13.71	А
	ATOM	4696	CH2			596	41.339	89.776 -32.627	1.00 14.26	А
10	ATOM	4697	С	TRP	Α	596	42.567	87.072 -26.078	1.00 15.30	А
	ATOM	4698	0	TRP	Α	596	42.741	86.024 -25.456	1.00 15.31	А
	ATOM	4699	N	SER	Α	597	42.027	88.159 -25.540	1.00 16.68	A
	ATOM	4700	CA	SER	Α	597	41.559	88.187 -24.164	1.00 18.42	Α
	ATOM	4701	СВ	SER	Α	597	42.486	89.040 -23.298	1.00 19.42	A
15	ATOM	4702	OG	SER	Α	597	42.563	90.359 -23.797	1.00 21.78	Α
	ATOM	4703	С	SER	Α	597	40.160	88.788 -24.185	1.00 18.74	А
	ATOM	4704	0	SER	Α	597	39.907	89.768 -24.892	1.00 19.83	Α
	MOTA	4705	N	TRP	Α	598	39.249	88.194 -23.425	1.00 18.70	Α
	MOTA	4706	CA	TRP	Α	598	37.881	88.683 -23.377	1.00 19.40	Α
20	ATOM	4707	CB	TRP	Α	598	36.896	87.515 -23.328	1.00 16.72	Α
	MOTA	4708	CG	TRP	Α	598	36.870	86.734 -24.603	1.00 14.05	Α
	ATOM	4709	CD2	TRP	Α	598	35.866	86.791 -25.621	1.00 13.09	Α
	MOTA	4710	CE2	TRP	Α	598	36.272	85.922 -26.656	1.00 12.49	А
	ATOM	4711	CE3	TRP	Α	598	34.660	87.494 -25.760	1.00 12.76	Α
25	ATOM	4712	CD1	TRP	Α	598	37.817	85.859 -25.048	1.00 13.40	A
	MOTA	4713	NE1				37.466	85.366 -26.281	1.00 12.12	A
	MOTA	4714	CZ2	TRP	Α	598	35.516	85.734 -27.816	1.00 12.90	A
	MOTA	4715		TRP			33.907	87.306 -26.917	1.00 12.25	A
	ATOM	4716	CH2				34.341	86.433 -27.929	1.00 12.83	A
30	ATOM	4717	С			598	37.673	89.595 -22.183	1.00 21.86	Α
	ATOM	4718	0			598	38.185	89.340 -21.093	1.00 22.28	A
	ATOM	4719	N			599	36.917	90.663 -22.397	1.00 25.14	Α
	ATOM	4720	CA			599	36.662	91.627 -21.341	1.00 29.11	Α
٥-	MOTA	4721	CB			599	37.513	92.875 -21.575	1.00 30.89	A
35	ATOM	4722	CG			599	38.982	92.597 -21.638	1.00 32.98	A
	MOTA	4723	CD2				39.844	92.597 -22.682	1.00 33.68	A
	MOTA	4724		HIS			39.722	92.242 -20.531	1.00 33.67	A
	MOTA	4725		HIS			40.977	92.036 -20.890	1.00 34.01	A
40	MOTA	4726		HIS			41.078	92.246 -22.190	1.00 34.05	A
40	MOTA	4727					35.197			A
	ATOM	4728	0	HIS			34.520	92.156 -22.281	1.00 30.43	A
	MOTA	4729	N	HIS			34.712	92.188 -20.037	1.00 33.98	A
	ATOM	4730	CA	HIS			33.333	92.589 -19.818	1.00 37.06	A
45	ATOM	4731	CB	HIS			32.835	92.083 -18.463	1.00 38.91	A
45	MOTA	4732	CG	HIS			31.366	92.279 -18.250	1.00 40.97	A
	ATOM	4733		HIS			30.390	91.404 -17.910	1.00 41.66	A
	ATOM	4734		HIS			30.750	93.504 -18.389	1.00 41.78	A
	ATOM	4735		HIS			29.458	93.376 -18.145	1.00 42.26	A
EΩ	ATOM	4736		HIS			29.213	92.111 -17.852	1.00 42.52	A
50	ATOM	4737	C	HIS			33.339	94.109 -19.837	1.00 37.98	A
	ATOM	4738	0	HIS			33.560	94.752 -18.811	1.00 38.39	A
	ATOM	4739	N G7	ASP			33.113	94.677 -21.016	1.00 39.04	A
	ATOM	4740	CA	ASP			33.108	96.123 -21.185	1.00 40.24	A
55	ATOM	4741	CB	ASP				96.472 -22.660	1.00 41.10	A A
55	ATOM	4742	CG	ASP	А	001	33.283	97.906 -22.976	1.00 42.18	A

		MOTA	4743	OD1	ASP A	4 601	32.722	98.825	-22.344	1.00 42.37	Α
		MOTA	4744		ASP A		34.139	98.112	-23.862	1.00 42.54	Α
		MOTA	4745	С	ASP A	601	32.010	96.768	-20.344	1.00 40.49	Α
		ATOM	4746	0	ASP A	4 601	30.829	96.678	-20.675	1.00 40.39	Α
	5	ATOM	4747	N	THR A	602	32.413	97.415	-19.254	1.00 40.63	A
		ATOM	4748	CA	THR A	602	31.476	98.077	-18.352	1.00 40.68	Α
		ATOM	4749	СВ	THR A	602	32.200	98.623	-17.102	1.00 41.47	А
		ATOM	4750	OG1	THR A		32.869	97.550	-16.429	1.00 42.23	Α
		MOTA	4751	CG2	THR A		31.204	99.271	-16.146	1.00 42.22	Α
	10	MOTA	4752	С	THR A		30.762	99.237	-19.039	1.00 39.69	Α
		MOTA	4753	0	THR A	602	29.652	99.608	-18.656	1.00 40.04	A
		MOTA	4754	N	LEU A	603	31.404	99.804	-20.056	1.00 38.12	Α
		ATOM	4755	CA	LEU A	603		100.927	-20.790	1.00 36.37	А
		ATOM	4756	СВ	LEU A		31.944	101.732	-21.478	1.00 37.67	A
	15	MOTA	4757	CG	LEU A		32.888	102.554	-20.593	1.00 38.43	А
		ATOM	4758	CD1	LEU A		32.080	103.570	-19.799	1.00 38.88	А
		ATOM	4759		LEU A		33.665	101.640	-19.659	1.00 39.02	Α
		MOTA	4760	С	LEU A		29.800	100.499	-21.825	1.00 34.34	Α
		MOTA	4761	0	LEU A	603	28.645	100.915	-21.763	1.00 33.94	Α
(20	MOTA	4762	N	THR A	604	30.217	99.667	-22.775	1.00 31.91	Α
ı,D		MOTA	4763	CA	THR A	604	29.321	99.199	-23.828	1.00 29.56	A
		ATOM	4764	CB	THR A	604	30.110	98.674	-25.040	1.00 29.91	Α
		ATOM	4765	OG1	THR A		30.920		-24.639	1.00 30.03	A
		ATOM	4766	CG2	THR A	604	31.004	99.768	-25.608	1.00 29.97	А
IJ.	25	MOTA	4767	С	THR A	604	28.385	98.092	-23.355	1.00 27.84	A
8 5 # 9 8 8		MOTA	4768	0	THR A	604	27.447	97.722	-24.060	1.00 27.19	А
		MOTA	4769	N	LYS A		28.642	97.567	-22.162	1.00 26.35	A
ijŤ.		MOTA	4770	CA	LYS A	605	27.819	96.499	-21.605	1.00 25.31	A
Hi		MOTA	4771	CB	LYS A		26.381	96.985	-21.411	1.00 25.79	А
	30	MOTA	4772	CG	LYS A	605	26.247	98.128	-20.418	1.00 26.37	A
Ç.		ATOM	4773	CD	LYS A	605	26.700	97.703	-19.028	1.00 26.73	А
ii.		ATOM	4774	CE	LYS A	605	26.600	98.853	-18.038	1.00 26.90	А
		ATOM	4775	NZ	LYS A	605	27.012	98.438	-16.669	1.00 27.43	А
		MOTA	4776	С	LYS A	605	27.831	95.270	-22.507	1.00 24.34	Α
	35	ATOM	4777	0	LYS A	605	26.802	94.624	-22.708	1.00 24.15	А
<u> </u>		MOTA	4778	N	THR A	606	29.000	94.959	-23.055	1.00 22.88	Α
		MOTA	4779	CA	THR A	606	29.157	93.801	-23.925	1.00 21.84	A
		MOTA	4780	CB	THR A	606	29.277	94.207	-25.412	1.00 22.73	Α
		MOTA	4781	OG1	THR A	606	30.419	95.057	-25.584	1.00 23.70	Α
	40	ATOM	4782	CG2	THR A	606	28.024	94.932	-25.873	1.00 23.17	А
		ATOM	4783	С	THR A	606	30.417	93.038	-23.545	1.00 20.46	A
		ATOM	4784	0	THR A	606	31.310	93.575	-22.893	1.00 20.36	A
		ATOM	4785	N	ILE A	607	30.473	91.775	-23.948	1.00 19.22	А
		ATOM	4786	CA	ILE A	607	31.627	90.930	-23.678	1.00 18.27	А
	45	ATOM	4787	CB	ILE A	607	31.194	89.579	-23.081	1.00 18.14	A
		MOTA	4788	CG2	ILE A	607	32.419	88.737	-22.744	1.00 18.10	A
		MOTA	4789	CG1	ILE A	607	30.362	89.819	-21.818	1.00 18.82	Α
		MOTA	4790	CD1	ILE A	607	29.723	88.569	-21.261	1.00 20.02	A
		ATOM	4791	C	ILE A	607	32.291	90.705	-25.032	1.00 17.90	A
	50	ATOM	4792	0	ILE A	607	31.746	90.012	-25.891	1.00 17.34	Α
		ATOM	4793	N	HIS A	608	33.458	91.307	-25.229	1.00 17.94	Α
		ATOM	4794	CA	HIS A		34.155	91.173	-26.498	1.00 18.20	Α
		ATOM	4795	СВ	HIS A	608	33.909	92.409	-27.365	1.00 19.84	Α
		ATOM	4796	CG	HIS A		34.468	93.673	-26.792	1.00 21.38	Α
	55	ATOM	4797		HIS A		35.447	94.494	-27.238	1.00 22.64	Α

						_			04 005	05 614	1 00	00 00	70
		ATOM	4798	-	HIS			34.012		-25.614		22.82	A
		MOTA	4799	CE1	HIS	A	608	34.686	95.332	-25.360	1.00	22.93	Α
		ATOM	4800	NE2	HIS	Α	608	35.563	95.518	-26.330	1.00	23.21	Α
		ATOM	4801	С	HIS			35.649		-26.317		17.54	A
	5				HIS			36.212		-25.262		17.84	A
	3	ATOM	4802	0									
		MOTA	4803	N	PRO			36.313		-27.355		16.61	А
		ATOM	4804	CD	PRO			35.716	89.852	-28.578		15.98	А
		ATOM	4805	CA	PRO	A	609	37.748	90.148	-27.310	1.00	16.72	А
		ATOM	4806	СВ	PRO	A	609	37.873	88.927	-28.203	1.00	16.83	Α
	10	ATOM	4807	CG	PRO			36.923		-29.305	1.00	16.57	A
	10	ATOM	4808	C	PRO			38.648		-27.784		17.16	A
		ATOM	4809	0	PRO			38.322		-28.725		18.05	A
		MOTA	4810	N	GLN	A	610	39.789		-27.118		17.75	A
		ATOM	4811	CA	GLN	Α	610	40.785	92.408	-27.464	1.00	19.28	А
	15	MOTA	4812	CB	GLN	A	610	41.057	93.346	-26.285	1.00	22.02	Α
	_	ATOM	4813	CG	GLN			39.869	94.195	-25.867	1.00	26.25	A
		ATOM	4814	CD	GLN			40.254		-24.875		28.59	Α
										-23.808		30.20	A
		MOTA	4815		GLN			40.799					
g: tall		MOTA	4816		GLN			39.973		-25.225		30.13	Α
f _{ille}	20	MOTA	4817	С	GLN	Α	610	42.048	91.633	-27.802	1.00	18.53	A
٩,Q		MOTA	4818	0	GLN	Α	610	42.391	90.671	-27.116	1.00	17.85	Α
The first that the first the first		MOTA	4819	N	GLY	Α	611	42.732	92.043	-28.863	1.00	18.19	Α
175		ATOM	4820	CA	GLY			43.945		-29.257		18.07	Α
9,5 F		ATOM	4821	C	GLY			45.190		-28.840		18.33	A
i e	25											18.55	A
rij	23	MOTA	4822	0	GLY			45.206		-28.816			
G		MOTA	4823	N	SER			46.236		-28.498		18.22	A
M		MOTA	4824	CA	SER	A	612	47.497	91.969	-28.091		18.50	А
4°5 5		MOTA	4825	CB	SER	A	612	48.366	90.941	-27.365	1.00	17.71	A
51		ATOM	4826	OG	SER	Α	612	49.646	91.474	-27.077	1.00	17.75	А
	30	ATOM	4827	C	SER			48.247		-29.308	1 00	18.79	A
j	50				SER			48.194		-30.385		18.12	A
Neser BUSE.		MOTA	4828	0									
Ŋ		ATOM	4829	N	THR			48.951		-29.134		20.66	A
. .		MOTA	4830	CA	THR			49.713		-30.229		22.22	A
		MOTA	4831	CB	THR	A	613	49.428	95.704	-30.370		23.24	А
1.2	35	ATOM	4832	OG1	THR	Α	613	49.860	96.385	-29.187	1.00	23.40	А
8		ATOM	4833	CG2	THR	A	613	47.939	95.952	-30.571	1.00	22.92	А
		ATOM	4834	С	THR			51.212		-30.007	1.00	22.80	А
		ATOM	4835	Ö	THR			52.030		-30.749		23.76	A
										-28.992		22.98	A
	40	ATOM	4836	N	THR .			51.568					
	40	ATOM	4837	CA	THR			52.974		-28.672		23.21	A
		ATOM	4838	CB	THR .	A	614	53.417		-27.469		23.94	А
		ATOM	4839	OG1	THR	A	614	52.563	93.541	-26.352	1.00	24.76	A
		ATOM	4840	CG2	THR .	Α	614	53.353	95.302	-27.803	1.00	25.13	А
		ATOM	4841	С	THR.			53.288	91.514	-28.349	1.00	22.57	А
	45	ATOM	4842	0	THR			54.453		-28.253		22.85	A
	40									-28.176			
		ATOM	4843	N	LYS .			52.247				21.12	A
		ATOM	4844	CA	LYS .			52.404	89.297			20.03	Α
		MOTA	4845	CB	LYS .	Α	615	51.862	89.040			22.00	Α
		ATOM	4846	CG	LYS .	Α	615	51.894	87.593	-25.987	1.00	24.67	Α
	50	ATOM	4847	CD	LYS .			51.077	87.399		1.00	25.80	Α
		ATOM	4848	CE	LYS			51.569	88.291			25.99	A
					LYS .			50.774	88.097			26.04	A
		ATOM	4849	NZ									
		ATOM	4850	С	LYS .			51.629	88.463			18.41	A
		MOTA	4851	0	LYS .			50.534	88.846			17.64	A
	55	ATOM	4852	N	TYR .	A	616	52.194	87.328	-29.271	1.00	16.73	А

		ATOM	4853	CA	TYR	Α	616	51.	533	86.452	-30.236	1.00	15.58	А
		ATOM	4854	СВ	TYR	Α	616	52.	100	86.679	-31.641	1.00	15.83	А
		ATOM	4855	CG	TYR	Α	616	52.	139	88.135	-32.028	1.00	18.36	A
		ATOM	4856	CD1	TYR			53.2			-31.651	1.00	18.36	A
	5	ATOM	4857		TYR			53.2			-31.937		20.30	Α
	-	ATOM	4858		TYR			51.0			-32.709		18.83	А
		ATOM	4859		TYR			51.0			-33.000		20.65	A
		ATOM	4860	CZ	TYR			52.			-32.610		20.53	А
		ATOM	4861	ОН	TYR			52.			-32.890		23.34	A
	10	MOTA	4862	C	TYR			51.			-29.847		14.72	A
		ATOM	4863	0	TYR			52.			-29.102		13.98	A
		ATOM	4864	N	ARG			50.8			-30.347		13.93	A
		MOTA	4865	CA	ARG			50.8			-30.049		13.86	A
		ATOM	4866	CB	ARG			49.5			-29.800		15.40	A
	15	ATOM	4867	CG	ARG			48.8			-28.527		16.68	A
	10	MOTA	4868	CD	ARG			47.4			-28.463		17.77	A
		ATOM	4869	NE	ARG			47.4			-28.441		17.57	A
		ATOM	4870	CZ	ARG			46.8			-29.258		17.88	A
		ATOM	4871		ARG			45.9			-30.176		17.64	A
	20	ATOM	4872		ARG			46.9			-29.165		17.23	A
25 25 25	20	ATOM	4873	C	ARG			51.4			-31.210		13.44	A
* i== .		MOTA	4874	0	ARG			51.0			-32.337		14.13	A
		ATOM	4875	N	ILE			52.5			-30.953		11.96	A
€,5 0°		ATOM	4876	CA	ILE			53.0			-32.016		11.92	A
	25	MOTA	4877	CB	ILE			54.6			-32.179		11.58	A
Ü	20	ATOM	4878	CG2	ILE			55.3			-30.910		12.31	A
Ę.		ATOM	4879	CG1	ILE			55.0			-33.375		12.90	A
Ţ		ATOM	4880		ILE			56.3			-33.976		13.57	A
51		ATOM	4881	C	ILE			52.			-31.651		11.14	A
	30	ATOM	4882	0	ILE			52.8			-30.495		11.79	A
	00	ATOM	4883	N	ILE			52.2			-32.643		11.17	A
J.		ATOM	4884	CA	ILE			51.			-32.466		11.40	A
[4 [4		ATOM	4885	СВ	ILE			50.2			-32.779		12.11	A
		ATOM	4886		ILE			49.7			-32.455		14.03	A
	35	ATOM	4887		ILE			49.5			-32.017		13.46	A
1.4		ATOM	4888		ILE			48.3			-32.670		13.83	A
		ATOM	4889	C	ILE			52.4			-33.409		11.42	A
		ATOM	4890	Ö	ILE			52.6			-34.594		11.66	A
		ATOM	4891	N	PHE			52.8			-32.895		10.46	A
	40	ATOM	4892	CA	PHE			53.5			-33.742	1.00	9.92	A
	10	ATOM	4893	СВ	PHE			54.9			-33.964	1.00	9.89	A
		ATOM	4894	CG	PHE			55.8			-32.734	1.00	8.70	A
		ATOM	4895		PHE			56.4			-32.415		10.02	A
		ATOM	4896		PHE			56.0			-31.906	1.00	9.02	A
	45	MOTA	4897		PHE			57.3			-31.289	1.00	9.45	A
	10	ATOM	4898		PHE			56.8			-30.778		10.10	A
		ATOM	4899	CZ	PHE			57.4			-30.471		10.05	A
		ATOM	4900	C	PHE			53.3			-33.133		10.03	A
		ATOM	4901	0	PHE			53.0			-31.938		10.25	A
	50	ATOM	4902	N	LYS			53.5			-33.963		10.49	A
	50	MOTA	4902	CA	LYS			53.3			-33.498		11.17	A
		ATOM	4903	CB	LYS			52.8			-34.649		12.49	A
		ATOM	4904	CG	LYS			52.6			-34.247		14.18	A
			4905	CD	LYS			51.8			-34.247		16.44	A
	55	MOTA	4906	CE	LYS			52.4			-36.648		17.70	A
		ATOM	4 70 /	CE	пιэ	М	071	54.4	102	00.733	- 50.040	1.00	17.70	n

		MOTA	4908	NZ	LYS	Α	621	51.667	66.023 -37.636	1.00 19.59	Α
		MOTA	4909	Ç	LYS	Α	621	54.685	69.362 -32.926	1.00 10.69	Α
		MOTA	4910	0	LYS	Α	621	55.711	69.322 -33.605	1.00 11.83	Α
		MOTA	4911	N	ALA	Α	622	54.648	68.972 -31.656	1.00 10.33	Α
	5	MOTA	4912	CA	ALA	Α	622	55.825	68.413 -31.008	1.00 9.91	Α
		MOTA	4913	СВ	ALA			55.932	68.924 -29.568	1.00 9.70	Α
		ATOM	4914	С	ALA			55.684	66.896 -31.012	1.00 10.39	Α
		ATOM	4915	Ō	ALA			54.596	66.371 -30.780	1.00 11.60	Α
		MOTA	4916	N	ARG			56.777	66.201 -31.308	1.00 10.44	A
	10	ATOM	4917	CA	ARG			56.792	64.741 -31.313	1.00 11.01	A
	10	ATOM	4918	CB	ARG			57.229	64.207 -32.680	1.00 12.30	A
		ATOM	4919	CG	ARG			57.263	62.690 -32.746	1.00 14.39	A
		ATOM	4920	CD	ARG			57.233	62.180 -34.181	1.00 16.76	A
		ATOM	4921	NE	ARG			57.497	60.744 -34.244	1.00 18.23	A
	15	ATOM	4922	CZ	ARG			58.706	60.204 -34.134	1.00 19.11	Α
	10	ATOM	4923		ARG			59.771	60.976 -33.964	1.00 20.24	A
		ATOM	4924		ARG			58.851	58.889 -34.182	1.00 20.27	A
		ATOM	4925	C	ARG			57.795	64.364 -30.232	1.00 10.32	A
		ATOM	4926	0	ARG			58.981	64.682 -30.334	1.00 10.86	A
	20	ATOM	4927	N	VAL			57.306	63.687 -29.197	1.00 9.90	A
J	20	ATOM	4928	CA	VAL			58.121	63.333 -28.040	1.00 9.26	A
1 1		ATOM	4929	CB	VAL			57.547	64.045 -26.794	1.00 8.57	A
		ATOM	4930		VAL			58.547	64.015 -25.651	1.00 8.67	A
164 ±			4930	CG2				57.158	65.476 -27.160	1.00 9.69	A
	25	ATOM ATOM	4931	CGZ	VAL			58.191	61.831 -27.770	1.00 9.00	A
IJ	23	ATOM	4932	0	VAL			57.189	61.130 -27.868	1.00 9.09	A
Ŋ		ATOM	4934	N	PRO			59.381	61.325 -27.401	1.00 9.44	A
ijħ.		ATOM	4935	CD	PRO			60.665	62.037 -27.290	1.00 10.05	A
5ł		ATOM	4936	CA	PRO			59.555	59.895 -27.121	1.00 9.16	A
	30	MOTA	4937	CB	PRO			61.054	59.765 -26.851	1.00 10.20	A
J	30	ATOM	4938	CG	PRO			61.654	60.942 -27.563	1.00 10.52	A
īŢ.		ATOM	4939	C	PRO			58.754	59.432 -25.911	1.00 9.12	A
14.		ATOM	4940	0	PRO			58.307	60.249 -25.100	1.00 8.82	A
		ATOM	4941	N	PRO			58.571	58.111 -25.769	1.00 9.36	A
	35	ATOM	4942	CD	PRO			59.055	57.027 -26.644	1.00 9.11	A
[: 4 ·	55	MOTA	4943	CA	PRO			57.824	57.575 -24.628	1.00 8.73	A
		ATOM	4944	CB	PRO			57.916	56.063 -24.830	1.00 8.19	A
		ATOM	4945	CG	PRO			58.096	55.913 -26.329	1.00 9.53	A
		ATOM	4946	C	PRO			58.566	58.008 -23.364	1.00 8.14	A
	40	ATOM	4947	0	PRO			59.786	57.847 -23.286	1.00 9.15	A
	10	ATOM	4948	N	MSE			57.847	58.564 -22.390	1.00 7.51	А
		ATOM	4949	CA	MSE			58.460	59.002 -21.130	1.00 8.21	A
		ATOM	4950	CB	MSE			58.747	57.783 -20.250	1.00 10.53	А
		ATOM	4951	CG	MSE			57.500	56.983 -19.914	1.00 10.63	Α
	45	ATOM	4952	SE	MSE			57.871	55.262 -19.133	1.00 20.00	A
	10	ATOM	4953	CE	MSE			58.495	55.837 -17.415	1.00 15.15	A
		ATOM	4954	C	MSE			59.755	59.755 -21.414	1.00 8.18	A
		ATOM	4955	0	MSE			60.759	59.584 -20.712	1.00 7.85	A
		ATOM	4956	N	GLY			59.718	60.602 -22.442	1.00 8.18	A
	50	ATOM	4957	CA	GLY			60.908	61.329 -22.841	1.00 8.72	A
	50	ATOM	4958	С	GLY			60.819	62.826 -23.028	1.00 8.56	A
		ATOM	4959	0	GLY			59.847	63.470 -22.627	1.00 7.33	A
		ATOM	4960	N	LEU			61.853	63.366 -23.663	1.00 7.72	A
		ATOM	4961	CA	LEU			61.972	64.797 -23.912	1.00 8.61	A
	55	ATOM	4962	CB	LEU			63.027	65.391 -22.979	1.00 8.59	A
		VI OU	7 702	CD		L	UL J	03.021	00.001 22.010	1.00 0.00	

		ATOM	4963	CG	LEU A	629	62.778	65.233 -21.480	1.00 9.21	Α
		ATOM	4964		LEU A	629	64.046	65.560 -20.708	1.00 9.45	Α
		ATOM	4965		LEU A		61.632	66.140 -21.064	1.00 9.65	A
		ATOM	4966	C	LEU A		62.382	65.079 -25.347	1.00 8.71	A
	5									A
	3	ATOM	4967	0	LEU A		63.088	64.284 -25.966		
		ATOM	4968	N	ALA A		61.931	66.212 -25.871	1.00 8.74	A
		ATOM	4969	CA	ALA A		62.276	66.625 -27.229	1.00 9.15	A
		ATOM	4970	CB	ALA A	630	61.157	66.286 -28.197	1.00 9.76	Α
		ATOM	4971	C .	ALA A	630	62.514	68.126 -27.201	1.00 9.28	Α
	10	ATOM	4972	0	ALA A	630	61.702	68.884 -26.663	1.00 8.90	Α
		MOTA	4973	N	THR A	631	63.632	68.548 -27.784	1.00 9.16	Α
		ATOM	4974	CA	THR A		64.020	69.955 -27.810	1.00 9.71	Α
		ATOM	4975	СВ	THR A		65.524	70.096 -27.498	1.00 10.27	А
		ATOM	4976	OG1	THR F		65.823	69.394 -26.284	1.00 10.07	A
	15	ATOM	4977	CG2			65.914	71.559 -27.344	1.00 10.84	A
	10							70.623 -29.155	1.00 10.04	
		ATOM	4978	С	THR A		63.754			A
		ATOM	4979	0	THR F		64.015	70.038 -30.205	1.00 10.56	A
		ATOM	4980	N	TYR A		63.226	71.844 -29.108	1.00 9.56	A
£1:000	00	ATOM	4981	CA	TYR F		62.958	72.628 -30.310	1.00 9.78	Α
	20	ATOM	4982	CB	TYR A		61.457	72.724 -30.597	1.00 10.51	Α
₹ <u></u>		ATOM	4983	CG	TYR F	632	60.827	71.415 -31.011	1.00 10.25	Α
i,Li		MOTA	4984	CD1	TYR A	632	60.461	70.466 -30.058	1.00 9.79	А
ijī.		ATOM	4985	CE1	TYR A	632	59.891	69.256 -30.432	1.00 11.56	А
		ATOM	4986	CD2	TYR A	632	60.608	71.116 -32.356	1.00 9.93	Α
ii.	25	ATOM	4987	CE2	TYR A	632	60.042	69.906 -32.743	1.00 11.41	A
19		MOTA	4988	CZ	TYR A		59.686	68.981 -31.774	1.00 10.98	A
Erter 4:5∓b		ATOM	4989	ОН	TYR F		59.133	67.779 -32.152	1.00 12.83	A
M		ATOM	4990	С	TYR F		63.528	74.027 -30.123	1.00 9.80	А
RI.		ATOM	4991	0	TYR A		63.821	74.449 -29.001	1.00 9.66	A
ing.	30	ATOM	4992	N	VAL A		63.680	74.749 -31.227	1.00 9.77	A
Ţ	00	ATOM	4993	CA	VAL A		64.226	76.096 -31.188	1.00 10.76	A
i.		ATOM	4994	CB	VAL A		65.618	76.152 -31.867	1.00 10.70	A
		ATOM	4995		VAL A		66.193	77.557 -31.768	1.00 11.04	A
								75.144 -31.225	1.00 13.11	A
	25	ATOM	4996		VAL A		66.556			
į.±	35	ATOM	4997	С	VAL A		63.304	77.076 -31.906	1.00 10.49	A
		MOTA	4998	0	VAL A		62.811	76.786 -32.995	1.00 10.92	A
		ATOM	4999	N	LEU A		63.060	78.220 -31.277	1.00 11.11	Α
		ATOM	5000	CA	LEU A		62.227	79.265 -31.866	1.00 12.07	Α
	40	MOTA	5001	CB	LEU A		61.213	79.800 -30.853	1.00 12.58	A
	40	MOTA	5002	CG	LEU A	634	60.244	78.792 -30.237	1.00 15.79	А
		ATOM	5003	CD1	LEU A	634	59.242	79.541 -29.371	1.00 15.32	Α
		MOTA	5004	CD2	LEU A	634	59.527	78.022 -31.322	1.00 17.18	A
		ATOM	5005	С	LEU A	634	63.181	80.379 -32.269	1.00 12.31	Α
		ATOM	5006	0	LEU A	634	63.947	80.872 -31.443	1.00 12.05	А
	45	MOTA	5007	N	THR A		63.135	80.768 -33.540	1.00 12.28	Α
		ATOM	5008	CA	THR A		64.018	81.804 -34.059	1.00 13.14	А
		ATOM	5009	СВ	THR A		64.983	81.207 -35.099	1.00 12.77	А
		MOTA	5010		THR A		65.667	80.086 -34.522	1.00 13.31	A
		ATOM	5010		THR A		66.004	82.244 -35.542	1.00 12.18	A
	50									
	50	ATOM	5012	С	THR A		63.238	82.943 -34.706	1.00 13.84	A
		ATOM	5013	0	THR A		62.285	82.718 -35.449	1.00 13.21	A
		ATOM	5014	N	ILE A		63.655	84.171 -34.424	1.00 15.47	A
		ATOM	5015	CA	ILE A		62.982	85.334 -34.985	1.00 16.90	A
		MOTA	5016	CB	ILE A		63.064	86.544 -34.022	1.00 17.25	A
	55	ATOM	5017	CG2	ILE A	636	64.492	87.069 -33.958	1.00 17.16	А

		ATOM	5018	CG1	ILE A	636	62.120	87.653 -34.495	1.00 16.98	Α
		ATOM	5019		ILE A		62.027	88.831 -33.538	1.00 17.62	Α
		ATOM	5020	C	ILE A		63.610	85.712 -36.321	1.00 18.42	A
							64.781	85.430 -36.570	1.00 10.42	A
	=	ATOM	5021	0	ILE A				1.00 17.70	
	5	MOTA	5022	N	SER A		62.811	86.330 -37.184		A
		ATOM	5023	CA	SER A		63.275	86.780 -38.492	1.00 22.79	A
		MOTA	5024	CB	SER A		62.850	85.797 -39.587	1.00 23.81	A
		ATOM	5025	OG	SER A	637	61.442	85.665 -39.645	1.00 26.10	A
		MOTA	5026	С	SER A	637	62.651	88.149 -38.739	1.00 24.15	Α
	10	ATOM	5027	0	SER A	637	61.724	88.545 -38.035	1.00 23.27	А
		ATOM	5028	N	ASP A	638	63.160	88.874 -39.730	1.00 26.58	Α
		MOTA	5029	CA	ASP A		62.641	90.203 -40.034	1.00 28.99	A
		ATOM	5030	CB	ASP A		63.643	90.978 -40.897	1.00 31.15	A
		ATOM	5031	CG	ASP A		63.893	90.317 -42.240	1.00 33.16	Α
	15	ATOM	5032		ASP A		62.934	90.185 -43.030	1.00 34.91	А
		ATOM	5033		ASP A		65.050	89.930 -42.507	1.00 34.82	А
		ATOM	5034	C	ASP A		61.289	90.154 -40.737	1.00 29.32	A
		ATOM	5035	0	ASP A		60.477	91.070 -40.599	1.00 30.07	A
			5036		SER A		61.046	89.080 -41.482	1.00 28.95	A
100	20	MOTA		N			59.793	88.930 -42.210	1.00 28.76	A
ı.T	20	ATOM	5037	CA	SER A			89.203 -43.699	1.00 28.70	A
		ATOM	5038	CB	SER A		60.020			
: E		ATOM	5039	OG	SER A		60.995	88.324 -44.232	1.00 29.52	A
ēş≣ # game		ATOM	5040	С	SER A		59.192	87.542 -42.029	1.00 28.41	A
	05	ATOM	5041	0	SER A		59.794	86.670 -41.403	1.00 27.60	A
IJ	25	ATOM	5042	N	LYS A		58.002	87.343 -42.586	1.00 27.73	A
rų.		MOTA	5043	CA	LYS A		57.315	86.063 -42.481	1.00 27.72	A
i F		MOTA	5044	СВ	LYS A		56.025	86.081 -43.305	1.00 29.03	A
Ħį		ATOM	5045	CG	LYS A		55.001	87.094 -42.820	1.00 31.44	A
		ATOM	5046	CD	LYS A	640	53.668	86.941 -43.539	1.00 32.89	А
ij j	30	ATOM	5047	CE	LYS A	640	53.799	87.189 -45.032	1.00 33.76	A
f _{ilime} n nun n		ATOM	5048	NZ	LYS A	640	52.485	87.054 -45.718	1.00 34.46	Α
W.		ATOM	5049	С	LYS A	640	58.186	84.897 -42.928	1.00 26.49	Α
į.		MOTA	5050	0	LYS A	640	58.627	84.839 -44.076	1.00 26.60	A
		ATOM	5051	N	PRO A	641	58.453	83.950 -42.014	1.00 25.24	Α
i.	35	ATOM	5052	CD	PRO A	641	58.068	83.956 -40.592	1.00 25.03	Α
		ATOM	5053	CA	PRO A		59.275	82.780 -42.327	1.00 24.06	A
		ATOM	5054	СВ	PRO A		59.570	82.191 -40.951	1.00 24.74	А
		ATOM	5055	CG	PRO A		58.346	82.531 -40.181	1.00 25.06	Α
		ATOM	5056	C	PRO A		58.544	81.804 -43.246	1.00 23.11	А
	40	ATOM	5057	0	PRO A		57.314	81.732 -43.250	1.00 22.10	Α
	10	ATOM	5058	N	GLU A		59.316	81.052 -44.019	1.00 22.60	А
		ATOM	5059	CA	GLU A		58.772	80.090 -44.969	1.00 22.59	A
		ATOM	5060	CB	GLU A		59.920	79.413 -45.725	1.00 24.75	A
		ATOM	5061	CG	GLU A		59.482	78.292 -46.655	1.00 27.41	A
	45						60.650	77.630 -47.364	1.00 29.34	A
	40	ATOM	5062	CD OD1	GLU A				1.00 23.34	A
		ATOM	5063		GLU A		60.415	76.662 -48.118		
		MOTA	5064		GLU A		61.801	78.077 -47.167	1.00 30.38	A
		ATOM	5065	С	GLU A		57.863	79.011 -44.387	1.00 21.56	A
	-0	ATOM	5066	0	GLU A		56.864	78.641 -45.001	1.00 22.04	A
	50	ATOM	5067	N	HIS A		58.202	78.511 -43.204	1.00 20.18	Α
		ATOM	5068	CA	HIS A		57.427	77.434 -42.597	1.00 18.61	A
		ATOM	5069	CB	HIS A	643	58.391	76.385 -42.044	1.00 19.22	A
		ATOM	5070	CG	HIS A	643	59.281	75.789 -43.088	1.00 19.81	А
		ATOM	5071	CD2	HIS A	643	60.558	76.071 -43.437	1.00 19.90	А
	55	ATOM	5072	ND1	HIS A	643	58.851	74.816 -43.963	1.00 20.57	А

		ATOM	5073	CE1	HIS	A 64	3 59.825	74.523	-44.806	1.00	20.30	A
		ATOM	5074	NE2	HIS .	A 64		75.272	-44.509	1.00	19.73	А
		ATOM	5075	С	HIS A	A 64		77.828	-41.527	1.00	17.54	Α
		MOTA	5076	0	HIS A			76.978	-40.764	1.00	16.42	Α
	5	ATOM	5077	N	THR				-41.474	1.00	15.71	А
	•	ATOM	5078	CA	THR				-40.503		15.08	A
		MOTA	5079	CB	THR				-39.524		14.66	A
		ATOM	5080	OG1					-38.808		14.87	A
		ATOM	5081	CG2				81.122			14.03	A
	10								-41.236		15.17	A
	10	ATOM	5082	C	THR							
		ATOM	5083	0	THR A				-42.092		15.67	A
		ATOM	5084	N	SER A				-40.909		14.18	A
		MOTA	5085	CA	SER A			_	-41.514		13.57	A
	1 =	ATOM	5086	CB	SER A				-41.989		14.13	A
	15	ATOM	5087	OG	SER A				-40.892		14.02	Α
		MOTA	5088	С	SER A				-40.467		13.45	A
		ATOM	5089	0	SER A	4 64			-39.276		13.19	А
		ATOM	5090	N	TYR A	A 64	6 49.896	82.129	-40.910	1.00	13.22	Α
2122.		MOTA	5091	CA	TYR A	4 64	6 49.167	83.006	-40.003	1.00	13.22	Α
	20	ATOM	5092	CB	TYR A	A 64	6 49.536	84.464	-40.279	1.00	14.27	А
		ATOM	5093	CG	TYR A	A 64	6 51.011	84.707	-40.096	1.00	14.12	Α
Ų		MOTA	5094	CD1	TYR A	A 64	6 51.917	84.400	-41.110	1.00	14.67	Α
		ATOM	5095	CE1	TYR Z	A 64	6 53.287	84.520	-40.910	1.00	15.68	А
		MOTA	5096	CD2	TYR Z	A 64	6 51.513	85.150	-38.875	1.00	14.12	Α
	25	ATOM	5097		TYR A			85.274	-38.664	1.00	14.90	A
145 88 E		ATOM	5098	CZ	TYR A				-39.685		14.72	А
14		ATOM	5099	ОН	TYR A				-39.472	1.00	16.28	А
		ATOM	5100	С	TYR A			82.815			13.24	А
5 1		ATOM	5101	0	TYR A			82.807			14.84	A
	30	ATOM	5102	N	ALA A			82.670			12.63	A
. 3	50	ATOM	5103	CA	ALA A			82.463			12.30	A
Cing Cing		ATOM	5103	CB	ALA A			82.017			12.86	A
is.		ATOM	5104	C	ALA A			83.697			12.48	A
		ATOM	5106	0	ALA A			84.832			12.90	A
	35	ATOM	5107		SER A			83.464			12.72	A
į́.d∷.	55			N				84.556			12.72	A
		MOTA	5108	CA	SER A							
		ATOM	5109	CB	SER A			84.192			14.58	A
		ATOM	5110	OG	SER A			83.036			17.12	A
	40	ATOM	5111	С	SER A			84.716			12.22	A
	40	ATOM	5112	0	SER A				-38.222		12.30	A
		ATOM	5113	N	ASN A			85.906			11.83	A
		ATOM	5114	CA	ASN A			86.163			11.16	A
		MOTA	5115	CB	ASN A			86.971			11.94	A
	. =	ATOM	5116	CG	ASN A			86.208			12.08	А
	45	MOTA	5117		ASN A			85.394			11.76	A
		ATOM	5118	ND2	ASN A	4 64	9 43.547	86.456	-36.544	1.00	12.65	А
		ATOM	5119	С	ASN A	4 64	39.200	86.917	-38.132	1.00	12.07	А
		MOTA	5120	0	ASN A	4 64	39.300	87.899	-38.870	1.00	12.58	A
		ATOM	5121	N	LEU A	4 65	38.041	86.445	-37.692	1.00	11.67	А
	50	ATOM	5122	CA	LEU A			87.046	-38.053	1.00	11.94	А
		MOTA	5123	СВ	LEU A			86.099			11.82	А
		ATOM	5124	CG	LEU A			86.449			11.91	А
		ATOM	5125		LEU A			87.731			12.74	A
		ATOM	5126		LEU A			85.294			13.05	A
	55	ATOM	5127	C	LEU A			87.314			12.84	A
		AT OF	J121	_	TO 0 1	. 00	33.747	01.0714	50.750	1.00	12.01	11

		ATOM	5128	0	LEU A		35.635	86.390 -36.040	1.00 12.29	A
		ATOM	5129	N	LEU A	651	35.609	88.579 -36.574	1.00 13.28	A
		MOTA	5130	CA	LEU A		34.828	88.972 -35.410	1.00 13.95	Α
	_	MOTA	5131	CB	LEU A		35.427	90.233 -34.775	1.00 15.51	Α
	5	ATOM	5132	CG	LEU A		34.996	90.608 -33.352	1.00 17.09	Α
		MOTA	5133	CD1	LEU A	651	33.573	91.118 -33.352	1.00 18.83	Α
		MOTA	5134	CD2	LEU A	651	35.144	89.403 -32.434	1.00 17.37	Α
		MOTA	5135	С	LEU A	651	33.396	89.227 -35.860	1.00 14.48	Α
		MOTA	5136	0	LEU A	651	33.128	90.156 -36.624	1.00 15.41	Α
	10	ATOM	5137	N	LEU A	652	32.481	88.391 -35.383	1.00 14.89	Α
		ATOM	5138	CA	LEU A	652	31.079	88.497 -35.747	1.00 15.05	Α
		ATOM	5139	CB	LEU A	652	30.513	87.104 -36.041	1.00 14.75	Α
		ATOM	5140	CG	LEU A	652	31.240	86.327 -37.142	1.00 14.59	A
		MOTA	5141	CD1	LEU A	652	30.672	84.919 -37.249	1.00 14.90	Α
	15	ATOM	5142	CD2	LEU A	652	31.101	87.068 -38.471	1.00 14.78	Α
		ATOM	5143	С	LEU A	652	30.230	89.179 -34.684	1.00 16.72	Α
		ATOM	5144	0	LEU A	652	30.096	88.687 -33.560	1.00 15.79	Α
		ATOM	5145	N	ARG A	653	29.668	90.324 -35.050	1.00 18.41	Α
2:52.		MOTA	5146	CA	ARG A		28.800	91.083 -34.164	1.00 21.34	Α
	20	MOTA	5147	CB	ARG A	653	29.502	91.426 -32.848	1.00 22.76	Α
ŧ,		ATOM	5148	CG	ARG A		30.545	92.524 -32.929	1.00 25.26	Α
		ATOM	5149	CD	ARG A		30.599	93.251 -31.595	1.00 27.66	Α
M		ATOM	5150	NE	ARG A	653	31.884	93.887 -31.338	1.00 29.57	Α
		ATOM	5151	CZ	ARG A		32.159	94.575 -30.235	1.00 30.35	A
195	25	ATOM	5152		ARG A		31.235	94.718 -29.295	1.00 30.94	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	5153		ARG A		33.361	95.108 -30.064	1.00 31.04	Α
2 % 2 5 %		ATOM	5154	С	ARG A		28.365	92.369 -34.838	1.00 22.58	Α
		ATOM	5155	0	ARG A		28.976	92.810 -35.811	1.00 22.35	Α
£!		ATOM	5156	N	LYS A		27.300	92.961 -34.314	1.00 24.79	A
4.00	30	ATOM	5157	CA	LYS A		26.787	94.214 -34.841	1.00 26.87	Α
ųĪ.		ATOM	5158	СВ	LYS A		25.297	94.350 -34.518	1.00 28.87	A
19 444		ATOM	5159	CG	LYS A		24.403	93.357 -35.251	1.00 31.28	А
[L		ATOM	5160	CD	LYS A		23.517	94.059 -36.275	1.00 33.37	Α
		ATOM	5161	CE	LYS A		24.341	94.806 -37.315	1.00 34.26	A
ine.	35	ATOM	5162	NZ	LYS A		23.486	95.582 -38.259	1.00 35.77	Α
ğ. -		MOTA	5163	C	LYS A		27.567	95.349 -34.186	1.00 27.13	A
		ATOM	5164	Ó	LYS A		28.051	95.207 -33.063	1.00 27.36	A
		ATOM	5165	N	ASN A		27.696	96.465 -34.893	1.00 27.40	Α
		ATOM	5166	CA	ASN A		28.411	97.626 -34.376	1.00 27.55	Α
	40	MOTA	5167	CB	ASN A		27.671	98.196 -33.165	1.00 29.06	Α
		ATOM	5168	CG	ASN A		26.166	98.203 -33.353	1.00 30.72	Α
		ATOM	5169		ASN A		25.651	98.755 -34.327	1.00 31.94	А
		ATOM	5170		ASN A		25.451	97.585 -32.419	1.00 31.37	A
		ATOM	5171	С	ASN A		29.843	97.273 -33.978	1.00 26.37	А
	45	ATOM	5172	Ö	ASN A		30.257	97.502 -32.841	1.00 26.45	A
		MOTA	5173	N	PRO A		30.621	96.708 -34.911	1.00 25.13	Α
		ATOM	5174	CD	PRO A		30.269	96.273 -36.276	1.00 24.78	А
		ATOM	5175	CA	PRO A		32.003	96.346 -34.595	1.00 23.93	Α
		ATOM	5176	CB	PRO A		32.340	95.333 -35.678	1.00 23.98	A
	50	ATOM	5177	CG	PRO A		31.621	95.907 -36.863	1.00 24.37	A
	50	MOTA	5178	C	PRO A		32.939	97.547 -34.637	1.00 23.11	A
		MOTA	5178	0	PRO A		32.640	98.561 -35.267	1.00 22.26	A
		ATOM	5180	N	THR A		34.067	97.422 -33.948	1.00 22.32	A
		ATOM	5181	CA	THR A		35.079	98.466 -33.930	1.00 21.57	A
	55		5182	CB	THR A		35.217	99.113 -32.534	1.00 21.37	A
		ATOM	2107	CD	TUK H	001	33.411	JJ.11J -J2.JJ4	1.00 21.07	7.1

									00 00=				_
		MOTA	5183		THR			35.326		-31.536	1.00 22		A
		MOTA	5184		THR			34.010		-32.237	1.00 21		A
		ATOM	5185	С	THR			36.392		-34.329	1.00 21		A
	_	ATOM	5186	0	THR			36.543		-34.210	1.00 20		A
	5	MOTA	5187	N	SER			37.335		-34.806	1.00 20		A
		ATOM	5188	CA	SER			38.626		-35.249	1.00 20		Α
		MOTA	5189	CB	SER			39.533		-35.660	1.00 20		Α
		MOTA	5190	OG	SER				100.035		1.00 21		Α
		ATOM	5191	С	SER			39.337		-34.197	1.00 20		A
	10	MOTA	5192	0	SER			39.126		-32.997	1.00 20		Α
		ATOM	5193	N	LEU			40.186		-34.670	1.00 20		A
		ATOM	5194	CA	LEU	Α	659	40.954		-33.800	1.00 21		Α
		ATOM	5195	CB	LEU	А	659	40.294		-33.719	1.00 21		A
		ATOM	5196	CG	LEU	Α	659	38.979	93.982	-32.941	1.00 21		Α
	15	MOTA	5197		LEU			38.354		-33.155	1.00 22		A
		MOTA	5198	CD2	LEU	A	659	39.243	94.224	-31.466	1.00 21		Α
		MOTA	5199	С	LEU	Α	659	42.372	95.328	-34.340	1.00 21		Α
		MOTA	5200	0	LEU	Α	659	42.695		-35.019	1.00 21		Α
		MOTA	5201	N	PRO	Α	660	43.235	96.318	-34.061	1.00 21		Α
	20	ATOM	5202	CD	PRO	Α	660	42.965	97.547	-33.295	1.00 21		А
, F		ATOM	5203	CA	PRO	Α	660	44.625		-34.526	1.00 21		Α
4424		MOTA	5204	CB	PRO	Α	660	45.129		-34.179	1.00 21	58	Α
fizzi		MOTA	5205	CG	PRO	Α	660	44.359		-32.941	1.00 22	2.16	А
		MOTA	5206	С	PRO	Α	660	45.405	95.190	-33.812	1.00 20	.87	Α
Min Ann	25	MOTA	5207	0	PRO	Α	660	45.139	94.888	-32.649	1.00 20	.82	Α
IŲ.		MOTA	5208	N	LEU	Α	661	46.365	94.595	-34.510	1.00 21		A
		ATOM	5209	CA	LEU	Α	661	47.158	93.517	-33.931	1.00 22	2.22	A
2;		MOTA	5210	CB	LEU	Α	661	46.761	92.187	-34.573	1.00 21	97	A
#") # <u>"</u>		ATOM	5211	CG	LEU	Α	661	45.311	91.743	-34.360	1.00 22	2.01	А
3	30	ATOM	5212	CD1	LEU	Α	661	45.039	90.474	-35.154	1.00 21	.83	Α
		MOTA	5213	CD2	LEU	Α	661	45.061	91.514	-32.878	1.00 21	98	A
		ATOM	5214	С	LEU	Α	661	48.661	93.731	-34.079	1.00 23	3.14	А
		MOTA	5215	0	LEU	Α	661	49.430	92.771	-34.137	1.00 22	2.28	Α
		MOTA	5216	N	GLY	Α	662	49.076	94.991	-34.143	1.00 24		Α
į.	35	ATOM	5217	CA	GLY	Α	662	50.490	95.293	-34.276	1.00 25	.42	A
		ATOM	5218	C	GLY	Α	662	51.141	94.711	-35.517	1.00 26	5.28	Α
		MOTA	5219	0	GLY	Α	662	50.702	94.961	-36.639	1.00 26	.88	Α
		MOTA	5220	N	GLN	А	663	52.189	93.919	-35.313	1.00 26	5.82	A
		MOTA	5221	CA	GLN	Α	663	52.925	93.311	-36.416	1.00 27		A
	40	MOTA	5222	CB	GLN	Α	663	54.290	92.827	-35.926	1.00 29	76	Α
		MOTA	5223	CG	GLN	Α	663	55.126	93.886	-35.235	1.00 32	2.87	Α
		MOTA	5224	CD	GLN	Α	663	56.472	93.350	-34.796	1.00 34	.37	A
		ATOM	5225		GLN			57.304	92.975	-35.624	1.00 34	.97	Α
		ATOM	5226		GLN			56.692	93.302	-33.486	1.00 35	.06	А
	45	MOTA	5227	С	GLN			52.211	92.147	-37.097	1.00 25	.74	Α
		ATOM	5228	0	GLN			52.647	91.685	-38.151	1.00 25	6.61	Α
		ATOM	5229	N	TYR			51.122	91.669	-36.502	1.00 24	.78	A
		MOTA	5230	CA	TYR			50.390		-37.077	1.00 23	3.54	A
		ATOM	5231	СВ	TYR			49.099		-36.296	1.00 21		Α
	50	ATOM	5232	CG	TYR			48.511		-36.523	1.00 18		Α
		ATOM	5233		TYR			49.099		-35.959	1.00 17		A
		ATOM	5234		TYR			48.558		-36.167	1.00 16		A
		ATOM	5235		TYR			47.369		-37.304	1.00 16		А
		ATOM	5236		TYR			46.824		-37.520	1.00 16		Α
	55	ATOM	5237	CZ	TYR			47.421		-36.949	1.00 15		A
		111011	525,	~ <u>u</u>		• •	J						

							1/0	,				
	ATOM	5238	ОН	TYR	А	664	46.871	85.138	-37.157	1.00 1	4.24	А
	ATOM	5239	С	TYR			50.077	90.788	-38.556	1.00 2	3.88	Α
	ATOM	5240	0	TYR			49.453	91.787	-38.917	1.00 2	3.82	Α
	ATOM	5241	N	PRO			50.511	89.865	-39.430	1.00 2	4.84	Α
5	MOTA	5242	CD	PRO			51.277	88.674	-39.021	1.00 2		Α
•	ATOM	5243	CA	PRO			50.341		-40.887	1.00 2		A
	ATOM	5244	СВ	PRO			50.859		-41.304	1.00 2		Α
	ATOM	5245	CG	PRO			51.930		-40.314	1.00 2		А
	ATOM	5246	C	PRO			48.947		-41.450	1.00 2		А
10	MOTA	5247	0	PRO			48.771		-42.249	1.00 2		A
10	ATOM	5248	N	GLU			47.960		-41.048	1.00 2		A
	ATOM	5249	CA	GLU			46.609		-41.575	1.00 2		A
	ATOM	5250	CB	GLU			45.952		-41.804	1.00 2		A
	ATOM	5251	CG	GLU			44.712		-42.688	1.00 2		A
15	ATOM	5252	CD	GLU			44.229		-43.159	1.00 3		A
13	ATOM	5253	OE1	GLU			45.049		-43.703	1.00 3		A
		5254		GLU			43.026		-42.997	1.00 3		A
	ATOM	5255	C	GLU			45.689		-40.728	1.00 2		A
	ATOM	5256	0	GLU			45.671		-39.501	1.00 2		A
20	MOTA MOTA	5256	N	ASP			44.916		-41.406	1.00 2		A
20		5257	CA				43.984		-40.741	1.00 2		A
	ATOM	5259	CB	ASP ASP			43.616		-41.674	1.00 1		A
	ATOM			ASP			44.833		-42.205	1.00 2		A
	ATOM	5260	CG OD1	ASP			45.630		-41.387	1.00 2		A
25	MOTA MOTA	5261 5262		ASP			44.993		-43.443	1.00 2		A
23	ATOM	5263	C C	ASP			42.713		-40.332	1.00 1		A
	MOTA	5264	0	ASP			42.220		-41.060	1.00 1		A
	ATOM	5265	N	VAL			42.189		-39.163	1.00 1		A
	ATOM	5266	CA	VAL			40.967		-38.668	1.00 1		A
30	ATOM	5267	CB	VAL			40.652		-37.226	1.00 1		A
50	ATOM	5268		VAL			39.311		-36.772	1.00 1		A
	MOTA	5269		VAL			41.761		-36.286	1.00 1		A
	ATOM	5270	C	VAL			39.803		-39.576	1.00 1		A
	ATOM	5270	0	VAL			39.730		-40.068	1.00 1		A
35	ATOM	5272	N	LYS			38.903		-39.800	1.00 1		A
33	ATOM	5273	CA	LYS			37.729		-40.640	1.00 1		A
	ATOM	5274	CB	LYS			37.589		-41.643	1.00 1		A
	ATOM	5275	CG	LYS			38.834		-42.500	1.00 2		A
	ATOM	5276	CD	LYS			38.865		-43.178	1.00 2		A
40	ATOM	5277	CE	LYS			40.204		-43.872	1.00 2		A
10	ATOM	5278	NZ	LYS			40.319		-44.474	1.00 2		A
	ATOM	5279	C	LYS			36.501		-39.738	1.00 1		A
	ATOM	5280	0	LYS			36.484		-38.656	1.00 1		А
	ATOM	5281	N	PHE			35.477		-40.177	1.00 1		A
45	ATOM	5282	CA	PHE			34.263		-39.386	1.00 1		A
10	ATOM	5283	СВ	PHE			34.122		-38.881	1.00 1		A
	ATOM	5284	CG	PHE			35.310		-38.100	1.00 1		A
	ATOM	5285		PHE			36.455		-38.755	1.00 1		A
	MOTA	5286		PHE			35.301		-36.707	1.00 1		A
50	ATOM	5287		PHE			37.577		-38.034	1.00 1		A
50	ATOM	5288		PHE			36.417		-35.978	1.00 1		A
	ATOM	5289	CZ			670	37.558		-36.645	1.00 1		A
	ATOM	5290	C	PHE			33.019		-40.168	1.00 1		A
	ATOM	5290	0	PHE			33.052		-41.392	1.00 1		A
55	ATOM	5291	N	GLY			31.921		-39.450	1.00 1		A
	AION	3636	14	GLI	Λ	0,1	J1.761	J1.101	33.330	1.00 1	J . 1 .	••

							17	O				
	ATOM	5293	CA	GLY	А	671	30.675	90.729	-40.097	1.00	15.10	А
	ATOM	5294	С	GLY			29.551	90.550	-39.097	1.00	15.27	A
	ATOM	5295	0	GLY			29.796	90.431	-37.897	1.00	14.16	А
	ATOM	5296	N	ASP			28.311	90.551	-39.575	1.00	15.65	Α
5	ATOM	5297	CA	ASP			27.181		-38.676	1.00	16.95	А
	ATOM	5298	СВ	ASP			25.855		-39.358		18.42	A
	ATOM	5299	CG	ASP			25.741		-39.695		20.16	A
	ATOM	5300		ASP			26.285		-38.942		21.62	A
	ATOM	5301		ASP			25.085		-40.707		22.09	A
10	ATOM	5301	C	ASP			27.137		-38.271		17.16	A
10		5302					27.137		-39.002		16.41	A
	ATOM		O N	ASP							17.20	
	ATOM	5304	N	PRO			26.565		-37.094			A
	ATOM	5305	CD	PRO			25.975		-36.095		17.66	A
15	ATOM	5306	CA	PRO			26.483		-36.647		17.71	A
15	ATOM	5307	CB	PRO			25.575		-35.428		17.79	A
	MOTA	5308	CG	PRO			25.920		-34.858		18.25	A
	ATOM	5309	С	PRO			25.883		-37.750		17.63	A
	ATOM	5310	0	PRO			24.986		-38.479		17.66	Α
•	ATOM	5311	N	ARG			26.393		-37.881		17.42	Α
20	ATOM	5312	CA	ARG			25.901		-38.887		17.69	Α
	ATOM	5313	CB	ARG	Α	674	26.367		-40.289		18.49	Α
	ATOM	5314	CG	ARG	Α	674	27.866		-40.540	1.00	19.76	Α
	MOTA	5315	CD	ARG	Α	674	28.155	84.525	-42.038		21.74	Α
	ATOM	5316	NE	ARG	A	674	29.545	84.220	-42.371	1.00	23.11	A
25	ATOM	5317	CZ	ARG	Α	674	30.535	85.107	-42.374	1.00	23.99	Α
	ATOM	5318	NH1	ARG	Α	674	30.301	86.375	-42.059	1.00	24.74	Α
	ATOM	5319	NH2	ARG	Α	674	31.763	84.727	-42.703	1.00	24.81	А
	ATOM	5320	С	ARG	Α	674	26.422	82.792	-38.575	1.00	17.54	А
	ATOM	5321	0	ARG	Α	674	27.386	82.639	-37.825	1.00	17.04	A
30	ATOM	5322	N	GLU	Α	675	25.780	81.779	-39.144	1.00	18.31	А
	ATOM	5323	CA	GLU			26.218		-38.919		19.05	А
	ATOM	5324	CB	GLU			25.157		-39.396		21.17	А
	ATOM	5325	CG	GLU			23.805		-38.744		23.24	А
	ATOM	5326	CD	GLU			22.959		-38.757		25.19	А
35	ATOM	5327	OE1	GLU			22.873		-39.816		26.11	A
••	ATOM	5328	OE2	GLU			22.373		-37.704		26.65	A
	ATOM	5329	C	GLU			27.519		-39.679		19.07	A
	ATOM	5330	Ö	GLU			27.723		-40.754		19.20	A
	ATOM	5331	N	ILE			28.403		-39.115		18.72	A
40	ATOM	5332	CA	ILE			29.686		-39.745		19.45	A
10	ATOM	5333	CB	ILE			30.816		-39.066		21.20	A
	MOTA	5334		ILE			30.544		-39.162		23.12	A
		5335		ILE			30.934		-37.605		22.04	A
	ATOM								-36.886		23.61	A
45	ATOM	5336		ILE			32.131					
43	MOTA	5337	С	ILE			30.042		-39.665		18.82	A
	ATOM	5338	0	ILE			29.551		-38.796		18.47	A
	ATOM	5339	N	SER			30.905		-40.577		18.44	A
	MOTA	5340	CA	SER			31.370		-40.630		18.86	A
F0	MOTA	5341	СВ	SER			30.769		-41.842		20.56	A
50	MOTA	5342	OG	SER			31.231		-41.925		24.04	A
	MOTA	5343	С	SER			32.889		-40.743		18.55	A
	MOTA	5344	0	SER			33.451		-41.474		18.59	Α
	ATOM	5345	N	LEU			33.554		-40.019		17.21	A
	MOTA	5346	CA	LEU			35.009		-40.039		17.53	Α
55	ATOM	5347	CB	LEU	A	678	35.587	75.588	-38.802	1.00	18.74	A

	ATOM	5348	CG	LEU A	678	35.405	77.100 -38.669	1.00 19.72	Α
	ATOM	5349	CD1	LEU A	678	35.871	77.548 -37.292	1.00 20.83	Α
	ATOM	5350	CD2	LEU A	678	36.192	77.808 -39.759	1.00 21.63	Α
		5351	С	LEU A	678	35.522	73.465 -40.075	1.00 17.34	Α
5						34.862	72.544 -39.591	1.00 16.69	Α
-							73.295 -40.650	1.00 17.12	Α
									Α
									A
									Α
10									A
10									A
									A
									A
									A
15									A
13									A
									A
									A
									A
20									A
20									
									A
									A
									A
O.E.									A
25									A
									A
									A
									A
20									A
30									A
									A
									A
									A
٥٣									A
33									A
									A
								_	A
									A
40									A
40									A
									A
									A
									A
45									A
45									A
									A
									A
									A
									Α
50	ATOM	5397							A
	ATOM								A
	MOTA	5399	С						A
	ATOM	5400	0						Α
	ATOM	5401	N						A
55°	ATOM	5402	CA	LEU A	686	31.865	71.429 -37.321	1.00 14.02	Α
	5 10 15 20 25 30 35 40 45 50	5 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 5349 ATOM 5350 ATOM 5351 ATOM 5352 ATOM 5353 ATOM 5354 ATOM 5355 ATOM 5356 ATOM 5356 ATOM 5357 ATOM 5358 ATOM 5360 ATOM 5360 ATOM 5361 ATOM 5362 ATOM 5363 ATOM 5363 ATOM 5363 ATOM 5363 ATOM 5365 ATOM 5366 ATOM 5367 ATOM 5367 ATOM 5368 ATOM 5367 ATOM 5370 ATOM 5370 ATOM 5371 ATOM 5371 ATOM 5373 ATOM 5373 ATOM 5373 ATOM 5376 ATOM 5376 ATOM 5376 ATOM 5378 ATOM 5378 ATOM 5380 ATOM 5381	5 ATOM 5349 CD1 ATOM 5350 CD2 ATOM 5351 C ATOM 5351 C ATOM 5352 O ATOM 5353 N ATOM 5354 CA ATOM 5355 CB ATOM 5355 CB ATOM 5356 CG 10 ATOM 5357 CD ATOM 5358 NE ATOM 5360 NH1 ATOM 5361 NH2 ATOM 5361 NH2 ATOM 5362 C ATOM 5363 O ATOM 5363 CA ATOM 5366 CB ATOM 5366 CB ATOM 5366 CB ATOM 5367 CG1 ATOM 5366 CB ATOM 5367 CG1 ATOM 5368 CG2 ATOM 5369 C ATOM 5370 O ATOM 5371 N 25 ATOM 5371 N 25 ATOM 5372 CA ATOM 5373 C ATOM 5374 O ATOM 5375 N ATOM 5375 N ATOM 5376 CA ATOM 5377 CB ATOM 5378 CG ATOM 5379 OD1 ATOM 5380 ND2 ATOM 5381 C ATOM 5380 ND2 ATOM 5381 C ATOM 5382 O ATOM 5381 C ATOM 5380 ND2 ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5380 CG ATOM 5390 CB ATOM 5391 CG ATOM 5391 CG ATOM 5399 CA ATOM 5399 CA ATOM 5399 CC	ATOM 5349 CD1 LEU A ATOM 5350 CD2 LEU A ATOM 5351 C LEU A ATOM 5351 C LEU A ATOM 5353 N ARG A ATOM 5355 CB ARG A ATOM 5355 CB ARG A ATOM 5355 CD ARG A ATOM 5356 CG ARG A ATOM 5359 CZ ARG A ATOM 5360 NH1 ARG A ATOM 5361 NH2 ARG A ATOM 5361 NH2 ARG A ATOM 5361 NH2 ARG A ATOM 5366 CB VAL A ATOM 5366 CB VAL A ATOM 5366 CB VAL A ATOM 5366 CB VAL A ATOM 5366 CB VAL A ATOM 5367 CG1 VAL A ATOM 5367 CG1 VAL A ATOM 5367 CG1 VAL A ATOM 5370 O VAL A ATOM 5371 N GLY A ATOM 5371 N GLY A ATOM 5372 CA GLY A ATOM 5373 C GLY A ATOM 5373 C GLY A ATOM 5374 O GLY A ATOM 5375 N ASN A ATOM 5376 CA ASN A ATOM 5376 CA ASN A ATOM 5377 CB ASN A ATOM 5378 CG ASN A ATOM 5378 CG ASN A ATOM 5379 OD1 ASN A ATOM 5380 ND2 ASN A ATOM 5381 C ASN A ATOM 5381 C ASN A ATOM 5381 C ASN A ATOM 5382 O ASN A ATOM 5383 N GLY A ATOM 5385 C GLY A ATOM 5386 O GLY A ATOM 5381 C ASN A ATOM 5381 C ASN A ATOM 5382 O ASN A ATOM 5383 N GLY A ATOM 5383 N GLY A ATOM 5384 CA GLY A ATOM 5385 C GLY A ATOM 5385 C GLY A ATOM 5380 ND2 ASN A ATOM 5380 ND2 ASN A ATOM 5380 ND2 ASN A ATOM 5380 CB PRO A ATOM 5380 CB PRO A ATOM 5389 CA PRO A ATOM 5389 CA PRO A ATOM 5389 CA PRO A ATOM 5389 CB PRO A ATOM 5393 O PRO A ATOM 5393 O PRO A ATOM 5393 O PRO A ATOM 5393 C PRO A ATOM 5399 C PRO A ATOM 5399 C THR	ATOM 5350 CD2 LEU A 678 ATOM 5351 C LEU A 678 ATOM 5351 C LEU A 678 ATOM 5352 O LEU A 678 ATOM 5353 N ARG A 679 ATOM 5355 CB ARG A 679 ATOM 5355 CB ARG A 679 ATOM 5355 CB ARG A 679 ATOM 5356 CG ARG A 679 ATOM 5357 CD ARG A 679 ATOM 5358 NE ARG A 679 ATOM 5360 NH1 ARG A 679 ATOM 5361 NH2 ARG A 679 ATOM 5362 C ARG A 679 ATOM 5362 C ARG A 679 ATOM 5363 O ARG A 679 ATOM 5366 CB VAL A 680 ATOM 5366 CB VAL A 680 ATOM 5367 CG1 VAL A 680 ATOM 5368 CG2 VAL A 680 ATOM 5368 CG2 VAL A 680 ATOM 5367 CG1 VAL A 680 ATOM 5367 CG1 VAL A 680 ATOM 5367 CG1 VAL A 680 ATOM 5367 CG1 VAL A 680 ATOM 5371 N GLY A 681 ATOM 5372 CA GLY A 681 ATOM 5373 C GLY A 681 ATOM 5375 N ASN A 682 ATOM 5376 CA ASN A 682 ATOM 5377 CB ASN A 682 ATOM 5378 CG ASN A 682 ATOM 5379 OD1 ASN A 682 ATOM 5380 ND2 ASN A 682 ATOM 5381 C ASN A 682 ATOM 5381 C ASN A 682 ATOM 5381 C ASN A 682 ATOM 5380 ND2 ASN A 682 ATOM 5381 C ASN A 682 ATOM 5381 C ASN A 682 ATOM 5381 C ASN A 682 ATOM 5382 C ASN A 682 ATOM 5385 C GLY A 683 ATOM 5385 C GLY A 683 ATOM 5386 CD PRO A 684 ATOM 5387 N PRO A 684 ATOM 5388 CD PRO A 684 ATOM 5389 CA PRO A 684 ATOM 5390 CB PRO A 684 ATOM 5391 CG PRO A 684 ATOM 5391 CG PRO A 684 ATOM 5392 C PRO A 684 ATOM 5393 O PRO A 684 ATOM 5393 O PRO A 684 ATOM 5393 O PRO A 684 ATOM 5393 O PRO A 684 ATOM 5390 CB PRO A 684 ATOM 5391 CG THR A 685 ATOM 5390 CB THR A 685	ATOM 5349 CD1 LEU A 678 35.871 ATOM 5350 CD2 LEU A 678 36.192 ATOM 5351 C LEU A 678 36.192 ATOM 5352 O LEU A 678 34.862 ATOM 5352 C LEU A 678 34.862 ATOM 5353 N ARG A 679 36.708 ATOM 5355 CB ARG A 679 37.344 ATOM 5355 CB ARG A 679 37.461 ATOM 5356 CG ARG A 679 37.461 ATOM 5357 CD ARG A 679 37.461 ATOM 5358 NE ARG A 679 37.211 ATOM 5358 NE ARG A 679 37.683 ATOM 5360 NH1 ARG A 679 37.683 ATOM 5361 NH2 ARG A 679 37.352 ATOM 5361 NH2 ARG A 679 37.352 ATOM 5363 O ARG A 679 38.068 ATOM 5363 O ARG A 679 39.412 ATOM 5365 CA VAL A 680 40.980 ATOM 5366 CB VAL A 680 40.980 ATOM 5367 CG1 VAL A 680 41.460 ATOM 5368 CG2 VAL A 680 41.514 ATOM 5371 N GLY A 681 42.500 ATOM 5372 CA GLY A 681 42.500 ATOM 5375 N ASN A 682 42.098 ATOM 5376 CC ARS A 682 42.098 ATOM 5376 CC ARS A 682 42.098 ATOM 5377 CB ASN A 682 42.098 ATOM 5378 CG ASN A 682 42.484 ATOM 5379 OD1 ASN A 682 42.484 ATOM 5379 OD1 ASN A 682 42.308 ATOM 5380 CA SN A 682 42.484 ATOM 5381 C ASN A 682 42.484 ATOM 5385 CA ASN A 682 42.308 ATOM 5380 CA ASN A 682 42.308 ATOM 5381 C ASN A 682 42.484 ATOM 5389 CA ASN A 682 42.308 ATOM 5380 CA ASN A 682 42.308 ATOM 5381 C ASN A 682 42.308 ATOM 5383 N GLY A 683 37.475 ATOM 5385 CA BASN A 682 43.151 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 42.308 ATOM 5380 CA BASN A 682 43.151 ATOM 5380 CA BASN A 682 43.151 ATOM 5380 CA BASN A 682 43.151 ATOM 5380 CA BASN A 682 43.507 ATOM 5380 CA BASN A 682 33.500 ATOM 5380 CA BASN A 682 33.600 ATOM 5389 CA BASN A 682 33.600 ATOM 5389 CA BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 682 33.600 ATOM 5390 CB BASN A 685 33.600 ATOM 5390 CB BASN A 685 33.600 ATOM 5390 CB	ATOM 5349 CD1 LEU A 678 35.871 77.548 -37.292 ATOM 5350 CD LEU A 678 35.871 77.808 -39.759 ATOM 5351 C LEU A 678 35.522 73.465 -40.075 ATOM 5353 N ARG A 679 36.708 73.295 -40.650 ATOM 5353 N ARG A 679 36.708 73.295 -40.650 ATOM 5355 CB ARG A 679 37.344 71.990 -40.733 ATOM 5355 CB ARG A 679 37.344 71.990 -40.733 ATOM 5356 CG ARG A 679 37.211 69.164 -43.403 ATOM 5357 CD ARG A 679 37.211 69.164 -43.403 ATOM 5358 NE ARG A 679 37.627 67.765 -43.377 ATOM 5358 NE ARG A 679 37.627 67.765 -43.377 ATOM 5360 NH1 ARG A 679 37.627 67.455 -45.639 ATOM 5361 NH2 ARG A 679 37.352 67.455 -45.639 ATOM 5362 C ARG A 679 38.068 65.716 -44.322 ATOM 5364 N VAL A 680 40.980 72.146 -40.741 ATOM 5365 CA VAL A 680 40.980 71.489 -39.755 ATOM 5366 CB VAL A 680 40.980 71.489 -39.755 ATOM 5367 CG1 VAL A 680 41.041 73.163 -37.888 ATOM 5368 CG2 VAL A 680 41.041 73.163 -37.888 ATOM 5369 C VAL A 680 41.041 73.163 -37.888 ATOM 5367 CG1 VAL A 680 41.041 73.163 -37.888 ATOM 5369 C VAL A 680 41.041 73.163 -37.888 ATOM 5367 CG1 VAL A 680 41.041 73.163 -37.888 ATOM 5369 C VAL A 680 41.041 73.163 -37.888 ATOM 5367 CG1 VAL A 680 41.041 73.163 -37.888 ATOM 5369 C VAL A 680 41.041 73.163 -37.888 ATOM 5371 N GLY A 681 42.500 70.173 -411.15 ATOM 5372 CA GLY A 681 42.500 70.173 -41.115 ATOM 5373 C GLY A 681 42.000 68.071 -42.262 ATOM 5376 CA ASN A 682 41.101 68.571 -42.232 ATOM 5377 CB ASN A 682 42.988 66.763 -42.580 ATOM 5378 C GA ASN A 682 41.101 68.943 -41.634 ATOM 5379 ODI ASN A 682 42.988 66.763 -42.580 ATOM 5380 ND2 ASN A 682 42.986 66.763 -42.580 ATOM 5381 C ASN A 682 42.986 66.093 -45.003 ATOM 5380 ND2 ASN A 682 42.484 64.889 -44.580 ATOM 5387 C GA SN A 682 42.484 64.889 -42.580 ATOM 5380 ND2 ASN A 682 42.484 64.889 -44.580 ATOM 5380 ND2 ASN A 682 42.484 64.889 -44.580 ATOM 5380 ND2 ASN A 682 42.484 64.889 -44.580 ATOM 5380 ND2 ASN A 682 43.151 64.013 -45.058 ATOM 5380 C C ROA 684 37.015 66.260 -38.508 ATOM 5380 C C ROA 684 37.015 66.260 -38.508 ATOM 5393 C C ROA 684 37.015 66.260 -38.508 ATOM 5398 C C TOA 684 35.507 66.605 -36.391 ATOM 5399 C THR A 6	ATOM

		ATOM	5403	CB	LEU A	686	32.612	71.775 -		1.00	14.50	Α
		MOTA	5404	CG	LEU A	686	33.527	70.713 -		1.00	16.33	Α
		ATOM	5405	CD1	LEU A	686	34.004	71.202 -	34.058	1.00	15.65	Α
		ATOM	5406	CD2	LEU A	686	32.796	69.394 -	35.273	1.00	16.36	Α
	5	MOTA	5407	С	LEU A	686	31.073	72.646 -	37.770	1.00	13.55	Α
		ATOM	5408	0	LEU A	686	31.625	73.570 -	38.369	1.00	13.84	Α
		MOTA	5409	N	ALA A	687	29.778	72.638 -	37.475	1.00	12.69	A
		ATOM	5410	CA	ALA A	687	28.898	73.746 -	37.822	1.00	12.84	А
		ATOM	5411	CB	ALA A	687	27.683	73.236 -	38.592	1.00	12.65	A
	10	MOTA	5412	С	ALA A	687	28.454	74.430 -	36.534	1.00	12.45	Α
		ATOM	5413	0	ALA A	687	28.133	73.763 -	35.544	1.00	12.43	А
		ATOM	5414	N	PHE A	688	28.436	75.761 -	36.549	1.00	12.17	Α
		MOTA	5415	CA	PHE A	688	28.042	76.535 -	35.380	1.00	11.59	Α
		MOTA	5416	CB	PHE A	688	29.215	77.384 -	34.884	1.00	11.95	Α
	15	MOTA	5417	CG	PHE A	688	30.453	76.596 -		1.00	11.60	Α
		ATOM	5418	CD1	PHE A	688	31.252	76.122 -	35.623	1.00	11.51	Α
		MOTA	5419	CD2	PHE A	688	30.810	76.310 -		1.00	11.55	Α
		MOTA	5420	CE1	PHE A	688	32.394	75.369 -	35.355		11.61	Α
		MOTA	5421	CE2	PHE A	688	31.950	75.558 -			11.40	Α
	20	MOTA	5422	CZ	PHE A	688	32.743	75.087 -			11.47	Α
r ingi		MOTA	5423	С	PHE A	688	26.876	77.460 -	35.677		12.06	A
1,547 11875		MOTA	5424	0	PHE A	688	26.697	77.900 -			13.38	Α
हु,हु ड अक्टू		MOTA	5425	N	SER A	689	26.091	77.756 -			12.46	A
(A)		ATOM	5426	CA	SER A		24.955	78.662 -	34.780		13.44	А
Ŋ	25	MOTA	5427	CB	SER A	689	24.022	78.518 -			13.79	Α
		MOTA	5428	OG	SER A	689	24.633	79.032 -			14.51	Α
Ü		MOTA	5429	С	SER A	689	25.518	80.081 -			14.49	A
II;		MOTA	5430	0	SER A		26.713	80.282 -			14.70	A
		ATOM	5431	N	GLU A		24.665	81.066 -			15.35	A
13	30	MOTA	5432	CA	GLU A		25.133	82.447 -			16.16	Α
Ŋ		MOTA	5433	CB	GLU A		24.073	83.367 -			18.48	А
## -		ATOM	5434	CG	GLU A		22.813	83.539 -			21.37	A
9:34E		MOTA	5435	CD	GLU A		21.855	84.530 -			23.24	A
		ATOM	5436		GLU A		21.335	84.233 -			25.21	A
104	35	MOTA	5437	OE2			21.632	85.608 -			25.58	A
		MOTA	5438	С	GLU A		25.493	82.926 -			16.10	A
		ATOM	5439	0	GLU A		25.997	84.035 -			15.36	A
		ATOM	5440	N	GLN A		25.232	82.084 -			15.90	A
	40	ATOM	5441	CA	GLN A		25.554	82.413 -			16.38	A
	40	ATOM	5442	CB	GLN A		24.451	81.913 -			18.37	A
		ATOM	5443	CG	GLN A		23.129	82.632 -			21.65	A
		MOTA	5444	CD	GLN A		21.940	81.747 -			24.27	A
		ATOM	5445		GLN A		21.755	81.289 -			25.45	A
	45	ATOM	5446		GLN A		21.125	81.495 -			25.38	A
	45	MOTA	5447	С	GLN A		26.892	81.783 -			14.99	A
		ATOM	5448	0	GLN A		27.304	81.830 -			16.19	A
		MOTA	5449	N	GLY A		27.557	81.187 -			13.74	A
		ATOM	5450	CA	GLY A		28.856	80.576 -			13.44	A
	- 0	ATOM	5451	С	GLY A		28.843	79.231 -			12.84	A
	50	ATOM	5452	0	GLY A		29.870	78.788 -			12.87	A
		ATOM	5453	N	LEU A		27.690	78.572 -			12.59	A
		ATOM	5454	CA	LEU A		27.563	77.270 -			12.95	A
		ATOM	5455	CB	LEU A		26.332	77.257 -			14.47	A
		MOTA	5456	CG	LEU A		26.373	78.185 -			15.50	A
	55	ATOM	5457	CD1	LEU A	693	24.963	78.374 -	27.671	1.00	16.99	А

		ATOM	5458	CD2	LEU .	Α	693	27.294	77.606 -27.143	1.00 16.14	Α
		ATOM	5459	С	LEU 2	Α	693	27.460	76.141 -31.347	1.00 12.58	Α
		ATOM	5460	0	LEU A	A	693	26.797	76.269 -32.377	1.00 13.69	A
		ATOM	5461	N	LEU .	Α	694	28.121	75.030 -31.045	1.00 12.10	А
	5	ATOM	5462	CA	LEU A	A ·	694	28.107	73.868 -31.921	1.00 12.19	Α
		ATOM	5463	CB	LEU A	Α	694	28.833	72.702 -31.246	1.00 11.89	Α
		MOTA	5464	CG	LEU Z	A	694	29.022	71.436 -32.082	1.00 12.29	Α
		ATOM	5465	CD1	LEU A	A	694	29.975	71.722 -33.223	1.00 12.88	Α
		ATOM	5466	CD2	LEU A	A	694	29.583	70.320 -31.207	1.00 12.25	Α
	10	MOTA	5467	С	LEU	A	694	26.681	73.445 -32.261	1.00 12.42	Α
		ATOM	5468	0	LEU A	A	694	25.807	73.430 -31.397	1.00 12.36	Α
		MOTA	5469	N	LYS 2	A	695	26.460	73.101 -33.527	1.00 13.99	Α
		MOTA	5470	CA	LYS	A	695	25.146	72.662 -33.989	1.00 15.49	А
		MOTA	5471	CB	LYS 2	A	695	24.586	73.660 -35.011	1.00 18.76	Α
	15	ATOM	5472	CG	LYS A	A	695	23.323	73.196 -35.720	1.00 23.70	A
		MOTA	5473	CD	LYS A	Α	695	22.622	74.345 -36.438	1.00 25.84	Α
		ATOM	5474	CE	LYS A	Α	695	22.035	75.337 -35.442	1.00 27.62	Α
		MOTA	5475	NZ	LYS A	A	695	21.248	76.413 -36.105	1.00 29.16	Α
		MOTA	5476	С	LYS	Α	695	25.195	71.266 -34.601	1.00 14.81	Α
ıД	20	ATOM	5477	0	LYS Z	A	695	24.228	70.509 -34.502	1.00 15.17	Α
, <u>T</u>		MOTA	5478	N	SER I	A	696	26.316	70.923 -35.228	1.00 14.07	Α
		MOTA	5479	CA	SER A	Α	696	26.461	69.612 -35.854	1.00 14.25	Α
interior and the second		MOTA	5480	СВ	SER Z	A	696	25.703	69.574 -37.189	1.00 15.32	А
f _e cad ese e		ATOM	5481	OG	SER Z			26.328	70.388 -38.168	1.00 16.47	Α
14	25	ATOM	5482	С	SER Z			27.917	69.232 -36.092	1.00 14.33	Α
		MOTA	5483	0	SER I	A	696	28.802	70.093 -36.124	1.00 13.52	Α
131		ATOM	5484	N	ILE A	A	697	28.151	67.932 -36.256	1.00 13.96	A
717 7 73		MOTA	5485	CA	ILE	A	697	29.483	67.393 -36.508	1.00 14.22	A
		ATOM	5486	СВ	ILE A	A	697	30.032	66.600 -35.293	1.00 13.78	А
ı.D	30	ATOM	5487	CG2	ILE A	A	697	31.390	66.011 -35.637	1.00 13.83	Α
ij		ATOM	5488	CG1	ILE A	A	697	30.148	67.504 -34.066	1.00 12.86	Α
i.		ATOM	5489	CD1	ILE A	A	697	30.618	66.766 -32.813	1.00 12.78	Α
		MOTA	5490	С	ILE A	A	697	29.424	66.422 -37.683	1.00 15.65	Α
Ress∄ E•.		MOTA	5491	0	ILE A	A	697	28.589	65.518 -37.700	1.00 16.00	Α
į.	35	MOTA	5492	N	GLN A	Α	698	30.306	66.614 -38.658	1.00 15.69	Α
		ATOM	5493	CA	GLN A	A	698	30.370	65.729 -39.816	1.00 17.15	A
		ATOM	5494	CB	GLN A	A	698	30.268	66.519 -41.123	1.00 18.03	A
		MOTA	5495	CG	GLN Z	A	698	29.969	65.629 -42.324	1.00 19.29	А
		ATOM	5496	CD	GLN A	A	698	30.226	66.307 -43.654	1.00 20.84	A
	40	MOTA	5497	OE1	GLN I	A	698	29.680	65.904 -44.683	1.00 22.50	Α
		ATOM	5498	NE2	GLN A	A	698	31.073	67.327 -43.647	1.00 20.89	А
		MOTA	5499	С	GLN A	A.	698	31.726	65.043 -39.743	1.00 17.98	Α
		MOTA	5500	0	GLN A	A	698	32.758	65.675 -39.957	1.00 17.04	A
		ATOM	5501	N	LEU A	A.	699	31.725	63.748 -39.440	1.00 19.25	A
	45	MOTA	5502	CA	LEU A	A	699	32.970	63.000 -39.306	1.00 21.55	A
		MOTA	5503	СВ	LEU A	A	699	32.673	61.570 -38.841	1.00 21.34	А
		MOTA	5504	CG	LEU Z	A	699	32.002	61.458 -37.469	1.00 21.19	Α
		ATOM	5505	CD1	LEU Z	A	699	31.836	59.991 -37.098	1.00 20.78	A
		MOTA	5506	CD2	LEU A	A.	699	32.844	62.180 -36.426	1.00 20.96	A
	50	ATOM	5507	С	LEU Z	Α	699	33.829	62.966 -40.564	1.00 23.75	Α
		ATOM	5508	0	LEU A	A	699	35.041	63.176 -40.498	1.00 23.54	Α
		MOTA	5509	N	THR			33.205	62.700 -41.706	1.00 26.14	Α
		ATOM	5510	CA	THR			33.930	62.644 -42.969	1.00 29.36	Α
		ATOM	5511	СВ	THR			34.070	61.192 -43.472	1.00 29.32	Α
	55	ATOM	5512		THR			32.770	60.641 -43.717	1.00 29.71	Α

	ATOM	5513	CG2	THR	Д	700	34.790	60.339	-42.439	1.00	29.80	А
	ATOM	5514	C			700	33.214		-44.034		31.01	A
	ATOM	5515	0			700	32.058		-43.863		31.06	A
	ATOM	5516	N			701	33.908		-45.135		33.87	A
5	ATOM	5517	CA			701	33.334		-46.223		36.58	A
•	ATOM	5518	СВ			701	34.371		-47.331		38.30	A
	ATOM	5519	CG			701	35.669		-46.849		40.75	A
	ATOM	5520	CD			701	36.609		-47.985		42.07	A
	ATOM	5521		GLN			36.275		-48.852		42.75	A
10	ATOM	5522		GLN			37.793		-47.985		42.60	A
10	ATOM	5523	C			701	32.096		-46.793		37.22	A
	ATOM	5524	0			701	31.206		-47.333		37.80	A
	ATOM	5525	N			702	32.045		-46.659		37.89	A
	ATOM	5526	CA			702	30.924		-47.164		38.35	A
15	ATOM	5527	CB			702	31.383		-47.104		39.66	A
13		5527					32.727		-47.477		40.51	A
	ATOM		CG			702						
	ATOM	5529		ASP			32.854		-49.267		40.84	A A
	ATOM	5530		ASP			33.659		-47.624		37.81	
20	ATOM	5531	С			702	29.784		-46.152 -46.492			A
20	ATOM	5532	0			702	28.623				38.20	A
	ATOM	5533	N			703	30.130		-44.907		36.53	A
	ATOM	5534	CA			703	29.155		-43.829		34.85	A
	ATOM	5535	CB			703	29.877		-42.498		35.05	A
25	ATOM	5536	OG			703	30.729		-42.191		34.27	A
25	ATOM	5537	C			703	28.242		-43.715		33.65	A
	ATOM	5538	0			703	28.536		-44.256		33.57	A
	ATOM	5539	N			704	27.109		-43.008		32.60	A
	ATOM	5540	CD	PRO			26.549		-42.547		32.80	A
20	ATOM	5541	CA	PRO			26.141		-42.816		31.41	A
30	ATOM	5542	CB			704	24.836		-42.613		32.30	A
	ATOM	5543	CG			704	25.286		-41.823		32.47	A
	ATOM	5544	C			704	26.468		-41.632		30.08	A
	ATOM	5545	0			704	27.347		-40.824		29.54	A
25	ATOM	5546	N	HIS			25.750		-41.543		28.15	A
35	ATOM	5547	CA	HIS			25.939		-40.461		26.08	A
	ATOM	5548	CB			705	25.513		-40.917		27.16	A
	ATOM	5549	CG			705	26.327		-42.051		28.61	A
	ATOM	5550		HIS			26.004		-43.343		29.18	A
40	ATOM	5551		HIS			27.659		-41.921		28.94	A
40	ATOM	5552		HIS			28.122		-43.084			A
	ATOM	5553		HIS			27.138		-43.964		29.86	A
	MOTA	5554	C			705	25.107		-39.259		24.00	A
	ATOM	5555	0	HIS			23.914		-39.178		23.98	A
4 =	ATOM	5556	N	VAL			25.747		-38.322		21.51	A
4 5	ATOM	5557	CA	VAL			25.063		-37.132		18.99	A
	ATOM	5558	CB	VAL			25.909		-36.407		18.10	А
	ATOM	5559		VAL			25.145		-35.214		17.35	А
	MOTA	5560	CG2	VAL			26.273		-37.370		18.04	A
5 0	MOTA	5561	С	VAL			24.745		-36.141		18.65	А
50	MOTA	5562	0	VAL	Α	706	25.638		-35.695	1.00	17.89	А
	MOTA	5563	N	PRO			23.462		-35.787		17.80	А
	MOTA	5564	CD	PRO			22.283		-36.380		18.52	А
	ATOM	5565	CA	PRO	А	707	23.053		-34.838		17.47	А
	MOTA	5566	CB	PRO	A	707	21.532		-34.802		18.04	А
55	MOTA	5567	CG	PRO	Α	707	21.209	66.424	-36.175	1.00	18.64	Α

		ATOM	5568	С	PRO	Α	707	23.678	66.	892	-33.455	1.00	16.45	Α
		ATOM	5569	0	PRO			23.489	65.	860	-32.809	1.00	16.71	Α
		ATOM	5570	N	VAL			24.441		891	-33.025	1.00	15.43	Α
		ATOM	5571	CA	VAL			25.093			-31.719	1.00	14.68	А
	5	ATOM	5572	СВ	VAL			26.551			-31.802		14.15	А
	J	ATOM	5573		VAL			27.195			-30.417		13.61	A
		ATOM	5574		VAL			26.579			-32.361		14.23	A
		ATOM	5575	C	VAL			25.070			-31.323		14.72	A
			5576					25.855			-31.831		15.38	A
	10	ATOM		0	VAL						-30.431		14.54	A
	10	ATOM	5577	N	HIS			24.153						
		ATOM	5578	CA	HIS			23.990			-30.011		15.48	A
		ATOM	5579	CB	HIS			22.525			-30.163		17.30	A
		ATOM	5580	CG	HIS			22.015			-31.568		20.53	A
	4-	ATOM	5581		HIS			21.881			-32.429		21.41	A
	15	MOTA	5582		HIS			21.546			-32.233		22.57	A
		ATOM	5583		HIS			21.144			-33.442		22.45	A
		MOTA	5584	NE2	HIS			21.337			-33.587		21.98	Α
		MOTA	5585	С	HIS	Α	709	24.421			-28.586		14.93	Α
1122 1122 1122		ATOM	5586	0	HIS	Α	709	24.001			-27.647		14.53	А
Ō	20	ATOM	5587	N	PHE	Α	710	25.258	72.	424	-28.435	1.00	13.24	А
. F		ATOM	5588	CA	PHE	Α	710	25.707	72.	864	-27.123	1.00	13.07	Α
		ATOM	5589	СВ	PHE	Α	710	.27.122	73.	446	-27.192	1.00	13.58	А
Ę,3 E 2:2≠.		ATOM	5590	CG	PHE	А	710	28.199	72.	500	-26.726	1.00	13.26	А
1,2		ATOM	5591	CD1	PHE			29.349			-27.484	1.00	14.61	А
il.	25	ATOM	5592		PHE			28.075		820	-25.516	1.00	13.82	Α
M.		ATOM	5593		PHE			30.364			-27.043	1.00	14.19	Α
ijT.		ATOM	5594		PHE			29.084			-25.067		13.68	A
51 51		ATOM	5595	CZ	PHE			30.228			-25.832		14.33	A
		ATOM	5596	C	PHE			24.727			-26.676		13.63	A
	30	ATOM	5597	Ö	PHE			24.308			-27.473		13.76	A
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la 50	ATOM	5598	N	LYS			24.359			-25.404		13.07	A	
U		ATOM	5599	CA	LYS			23.427			-24.847		14.24	A
		ATOM	5600	CB	LYS			21.991			-24.992		16.69	A
13			5601	CG	LYS			20.926			-24.410		18.89	A
ļ.L	35	ATOM	5602		LYS			19.534			-24.410		20.95	A
	33	MOTA		CD				19.334			-25.964		21.44	A
		MOTA	5603	CE	LYS						-26.067		22.65	A
		ATOM	5604	NZ	LYS			17.747			-23.378		14.02	A
		MOTA	5605	С	LYS			23.751						
	40	ATOM	5606	0	LYS			24.144			-22.678		14.38	A
	40	MOTA	5607	N	PHE			23.609			-22.917		12.94	A
		MOTA	5608	CA	PHE			23.861			-21.521		12.60	A
		MOTA	5609	CB	PHE			24.859			-21.384		13.19	A
		MOTA	5610	CG	PHE			26.279			-21.691		12.74	A
	4.5	MOTA	5611		PHE			26.761			-22.996		12.90	A
	45	ATOM	5612		PHE			27.125			-20.675		12.44	A
		MOTA	5613		PHE			28.066			-23.288		13.16	A
		ATOM	5614	CE2	PHE			28.428			-20.953		12.13	A
		MOTA	5615	CZ	PHE	A	712	28.903			-22.262		12.53	A
		ATOM	5616	С	PHE	Α	712	22.549	76.	994	-20.838	1.00	12.78	А
	50	MOTA	5617	0	PHE	Α	712	21.752	77.	773	-21.365	1.00	12.67	Α
		ATOM	5618	N	LEU			22.324	76.	401	-19.672	1.00	12.69	A
		ATOM	5619	CA	LEU			21.105		643	-18.916	1.00	12.88	А
		ATOM	5620	СВ	LEU			20.166			-19.013		13.49	А
		ATOM	5621	CG	LEU			19.790			-20.421		13.72	А
	55	ATOM	5622		LEU			20.763			-20.883		14.92	A
		0	~ ~ ~ ~	201		- •		_003	•			3		

	ATOM	5623	CD2	LEU A	713	18.365	74.407	-20.414	1.00 14.75	А
	ATOM	5624	С	LEU F	713	21.447	76.915	-17.461	1.00 13.49	Α
	MOTA	5625	0	LEU A	713	22.605	76.806	-17.054	1.00 13.14	Α
	ATOM	5626	N	LYS A	714	20.441	77.274	-16.674	1.00 13.55	Α
5	MOTA	5627	CA	LYS A	714	20.676	77.554	-15.270	1.00 14.74	Α
	MOTA	5628	CB	LYS A	714	20.715	79.066	-15.034	1.00 17.89	Α
	MOTA	5629	CG	LYS A	714	19.463	79.798	-15.483	1.00 20.78	А
	ATOM	5630	CD	LYS A	714	19.519	81.279	-15.113	1.00 23.52	Α
	ATOM	5631	CE	LYS F	714	20.706	81.976	-15.763	1.00 25.00	А
10	MOTA	5632	NZ	LYS A	714	20.789	83.418	-15.394	1.00 26.77	Α
	ATOM	5633	С	LYS F	714	19.637	76.933	-14.354	1.00 14.83	Α
	ATOM	5634	0	LYS A	714	18.448	76.890	-14.674	1.00 15.62	Α
	ATOM	5635	N	TYR A	715	20.108	76.429	-13.220	1.00 13.72	Α
	ATOM	5636	CA	TYR F	715	19.234	75.853	-12.212	1.00 12.72	A
15	MOTA	5637	CB	TYR A	715	19.814	74.563	-11.624	1.00 12.76	Α
	MOTA	5638	CG	TYR A	715	19.709	73.345	-12.507	1.00 11.86	A
	MOTA	5639	CD1	TYR A	715	20.797	72.912	-13.266	1.00 11.71	Α
	ATOM	5640	CE1	TYR A	715	20.717	71.766	-14.053	1.00 10.85	A
	ATOM	5641	CD2	TYR A	715	18.530	72.601	-12.561	1.00 11.46	A
20	ATOM	5642	CE2	TYR A	715	18.438	71.453	-13.345	1.00 12.03	A
	MOTA	5643	CZ	TYR A	715	19.535	71.039	-14.088	1.00 11.99	Α
	MOTA	5644	ОН	TYR A	715	19.452	69.898	-14.853	1.00 12.00	Α
	MOTA	5645	С	TYR A	715	19.149	76.884	-11.097	1.00 13.26	A
	ATOM	5646	0	TYR A	715	20.106	77.619	-10.848	1.00 13.06	Α
25	MOTA	5647	N	GLY A	716	18.004	76.934	-10.429	1.00 13.36	А
	ATOM	5648	CA	GLY A		17.832	77.871	-9.338	1.00 13.61	A
	MOTA	5649	С	GLY A	716	17.746	77.146	-8.010	1.00 15.27	A
	ATOM	5650	0	GLY A	716	18.096	75.965	-7.906	1.00 15.61	A
	ATOM	5651	N	VAL A	717	17.270	77.858	-6.997	1.00 15.67	A
30	ATOM	5652	CA	VAL A	717	17.123	77.316	-5.655	1.00 16.91	A
	ATOM	5653	CB	VAL A	717	18.060	78.055	-4.672	1.00 16.38	Α
	MOTA	5654	CG1	VAL A	717	17.825	77.577	-3.252	1.00 17.56	A
	MOTA	5655	CG2	VAL A	717	19.512	77.823	-5.076	1.00 16.85	A
	ATOM	5656	С	VAL A	717	15.670	77.474	-5.217	1.00 17.83	A
35	ATOM	5657	0	VAL A	717	14.981	78.398	-5.650	1.00 18.06	A
	ATOM	5658	N	ARG A	718	15.204	76.569	-4.364	1.00 18.88	A
	MOTA	5659	CA	ARG A	718	13.826	76.607	-3.889	1.00 20.57	A
	MOTA	5660	CB	ARG A	718	13.470	75.274	-3.232	1.00 19.83	A
_	MOTA	5661	CG	ARG A	718	13.580	74.112	-4.198	1.00 19.14	A
40	MOTA	5662	CD	ARG A		13.483	72.765	-3.511	1.00 18.32	A
	ATOM	5663	NE	ARG A		13.768	71.695	-4.460	1.00 17.75	A
	ATOM	5664	CZ	ARG A	718	13.765	70.401	-4.161	1.00 17.53	A
	ATOM	5665	NH1	ARG A	718	13.485	69.999	-2.928	1.00 17.28	А
	MOTA	5666	NH2	ARG A	718	14.048	69.508	-5.101	1.00 17.74	А
45	ATOM	5667	С	ARG A	718	13.562	77.753	-2.924	1.00 22.46	A
	ATOM	5668	0	ARG A	718	14.398	78.078	-2.085	1.00 22.85	A
	ATOM	5669	N	SER A	719	12.391	78.365	-3.059	1.00 24.66	A
	ATOM	5670	CA	SER A	719	12.000	79.475	-2.201	1.00 27.21	А
	MOTA	5671	CB	SER A	719	11.082	80.431	-2.966	1.00 27.33	A
50	ATOM	5672	OG	SER A	719	9.936	79.751	-3.447	1.00 28.77	A
	ATOM	5673	С	SER A		11.280	78.942	-0.969	1.00 28.70	А
	ATOM	5674	0	SER A		10.976	79.690	-0.039	1.00 29.02	А
	ATOM	5675	N	HIS A		11.009	77.641	-0.977	1.00 30.58	A
	MOTA	5676	CA	HIS A	720	10.328	76.981	0.128	1.00 32.12	A
55	ATOM	5677	CB	HIS A	720	8.873	76.683	-0.246	1.00 34.89	А

		ATOM	5678	CG	HIS	A 7	20	8.133	77.865	-0.791	1.00	37.77	Α
		ATOM	5679	CD2	HIS	A 7	20	7.534	78.066	-1.989	1.00	38.94	Α
		ATOM	5680		HIS			7.945	79.024	-0.069	1.00	39.13	Α
		ATOM	5681		HIS			7.262	79.888	-0.799	1.00	39.81	Α
	5	ATOM	5682		HIS			7.001	79.331	-1.968	1.00		А
	9			C	HIS			11.042	75.670	0.443	1.00		A
		ATOM	5683										
		ATOM	5684	0	HIS			11.506	74.977	-0.462	1.00		A
		MOTA	5685	N	GLY			11.133	75.337	1.726	1.00		A
	_	MOTA	5686	CA	GLY			11.782	74.100	2.119	1.00		А
	10	MOTA	5687	С	GLY	A 7	21	13.299	74.148	2.131	1.00	26.81	Α
		ATOM	5688	0	GLY	A 7	21	13.900	75.210	2.278	1.00	26.70	Α
		MOTA	5689	N	ASP	A 7	22	13.912	72.980	1.964	1.00	24.89	Α
		ATOM	5690	CA	ASP			15.365	72.837	1.970	1.00	22.79	А
		ATOM	5691	СВ	ASP			15.726	71.351	1.955	1.00	21.90	A
	15	ATOM	5692	CG	ASP			15.174	70.607	3.158	1.00		Α
	10	ATOM	5693		ASP			15.057	69.367	3.086	1.00		A
			5694		ASP			14.865	71.261	4.179	1.00		A
		ATOM							73.544	0.801	1.00		A
diles.		ATOM	5695	C	ASP			16.045					
	20	ATOM	5696	0	ASP			15.605	73.440	-0.343	1.00		A
١.J	20	ATOM	5697	N	ARG			17.127	74.257	1.102	1.00		A
۱ <u>۳</u>		MOTA	5698	CA	ARG			17.880	74.988	0.089	1.00		A
M		MOTA	5699	CB	ARG			18.196	76.408	0.572	1.00		A
		ATOM	5700	CG	ARG			17.039	77.396	0.483	1.00		A
11000 11000		ATOM	5701	CD	ARG			15.997	77.176	1.566	1.00		А
14	25	MOTA	5702	NE	ARG	A 7	23	14.917	78.157	1.468	1.00	35.16	A
		ATOM	5703	CZ	ARG	A 7	23	13.956	78.314	2.374	1.00	36.54	A
iği M		MOTA	5704	NH1	ARG	A 7	23	13.931	77.555	3.462	1.00	37.74	A
9)		ATOM	5705	NH2	ARG	A 7	23	13.019	79.236	2.194	1.00	37.45	А
T.		ATOM	5706	С	ARG			19.188	74.300	-0.286	1.00	18.02	Α
Ü	30	ATOM	5707	0	ARG			19.798	73.602	0.528	1.00	16.96	Α
		ATOM	5708	N	SER			19.612	74.508	-1.528	1.00	16.11	А
		MOTA	5709	CA	SER			20.857	73.940	-2.017	1.00	14.57	Α
14		ATOM	5710	CB	SER			20.993	74.174	-3.521	1.00		А
		ATOM	5711	OG	SER			19.919	73.589	-4.227	1.00		А
ļ.:4:	35	ATOM	5712	C	SER			22.023	74.610	-1.302	1.00		A
-	55				SER			21.949	75.786	-0.932	1.00		A
		ATOM	5713	0					73.760	-0.932	1.00		A
		ATOM	5714	N	GLY			23.101					A
		ATOM	5715	CA	GLY			24.286	74.378	-0.466	1.00		
	40	ATOM	5716	С	GLY			25.497	73.661	-1.030	1.00	9.87	A
	40	ATOM	5717	0	GLY			25.408	73.054	-2.093	1.00		A
		ATOM	5718	N	ALA			26.623	73.718	-0.325	1.00		A
		ATOM	5719	CA	ALA	A 7	26	27.844	73.068	-0.785	1.00	9.51	Α
		ATOM	5720	CB	ALA	A 7	26	28.981	73.331	0.200	1.00	10.07	А
		MOTA	5721	С	ALA	A 7	26	27.696	71.564	-1.004	1.00	10.03	A
	45	ATOM	5722	0	ALA	A 7	26	28.359	70.995	-1.876	1.00	9.75	А
		ATOM	5723	N	TYR			26.839	70.918	-0.216	1.00	9.25	Α
		ATOM	5724	CA	TYR			26.648	69.475	-0.343	1.00	9.04	Α
		ATOM	5725	СВ	TYR			26.434	68.811	1.025	1.00	9.17	А
		MOTA	5726	CG	TYR			27.431	69.165	2.099	1.00	9.57	A
	50		5727		TYR			27.306	70.345	2.833	1.00		A
	50	ATOM			TYR			28.201	70.656	3.851	1.00		A
		ATOM	5728							2.407	1.00		A
		ATOM	5729		TYR			28.486	68.305				
		ATOM	5730		TYR			29.386	68.609	3.422	1.00		A
		MOTA	5731	CZ	TYR			29.237	69.783	4.142	1.00		A
	55	MOTA	5732	ОН	TYR	A 7	21	30.101	70.075	5.170	1.00	11.18	А

								=			
		ATOM	5733	С	TYR A	727	25.456	69.084	-1.200	1.00 9.43	Α
		ATOM	5734	0	TYR A	727	25.570	68.247	-2.096	1.00 9.80	A
		ATOM	5735	N	LEU A	728	24.314	69.695	-0.907	1.00 9.86	Α
		ATOM	5736	CA	LEU A	728	23.060	69.371	-1.576	1.00 10.29	Α
	5	MOTA	5737	CB	LEU A	728	21.906	69.519	-0.581	1.00 10.54	Α
		ATOM	5738	CG	LEU A	728	22.078	68.918	0.817	1.00 9.48	Α
		MOTA	5739	CD1	LEU A	728	20.799	69.151	1.618	1.00 11.57	Α
		ATOM	5740	CD2	LEU A	728	22.398	67.434	0.725	1.00 10.76	Α
		ATOM	5741	С	LEU A	728	22.687	70.135	-2.836	1.00 10.59	Α
	10	ATOM	5742	0	LEU A	728	22.895	71.343	-2.938	1.00 11.53	Α
		MOTA	5743	N	PHE A	729	22.115	69.399	-3.786	1.00 11.08	Α
		MOTA	5744	CA	PHE A	729	21.625	69.956	-5.040	1.00 11.31	Α
		MOTA	5745	CB	PHE A	729	22.157	69.154	-6.233	1.00 10.97	Α
		MOTA	5746	CG	PHE A	729	21.677	69.653	-7.576	1.00 10.34	Α
	15	MOTA	5747	CD1	PHE A	729	21.609	68.783	-8.659	1.00 10.55	Α
		MOTA	5748	CD2	PHE A	729	21.322	70.990	-7.766	1.00 11.51	Α
		ATOM	5749	CE1	PHE A		21.194	69.228	-9.910	1.00 10.69	Α
		ATOM	5750	CE2	PHE A	729	20.906	71.447	-9.020	1.00 10.06	Α
		MOTA	5751	CZ	PHE A	729	20.843	70.563	-10.092	1.00 11.02	A
4.0	20	ATOM	5752	С	PHE A	729	20.109	69.792	-4.940	1.00 11.73	Α
		MOTA	5753	0	PHE A	729	19.589	68.682	-5.040	1.00 11.22	A
		ATOM	5754	N	LEU A	730	19.408	70.900	-4.725	1.00 12.20	А
		MOTA	5755	CA	LEU A	730	17.955	70.886	-4.592	1.00 13.36	А
1;==7 24, 8		MOTA	5756	CB	LEU A	730	17.564	71.222	-3.151	1.00 13.41	А
14 <u>1</u>	25	MOTA	5757	CG	LEU A	730	17.990	70.185	-2.104	1.00 13.71	Α
		MOTA	5758	CD1	LEU A	730	17.919	70.781	-0.712	1.00 13.88	A
1,51		MOTA	5759	CD2	LEU A	730	17.095	68.961	-2.208	1.00 14.18	А
3 ;		MOTA	5760	С	LEU A	730	17.371	71.910	-5.552	1.00 13.24	A
		MOTA	5761	0	LEU A	730	16.881	72.961	-5.139	1.00 13.97	A
Ü	30	MOTA	5762	N	PRO A		17.414	71.607	-6.857	1.00 13.87	A
		ATOM	5763	CD	PRO A		,17.825	70.324	-7.455	1.00 13.91	A
į.: . i.		ATOM	5764	CA	PRO A		16.893	72.513	-7.882	1.00 14.19	A
		MOTA	5765	CB	PRO A		17.232	71.788	-9.177	1.00 13.69	A
ia.	25	ATOM	5766	CG	PRO A		17.111	70.346	-8.782	1.00 13.97	Α
2	35	MOTA	5767	С	PRO A		15.409	72.819	- 7.769	1.00 15.00	A
		MOTA	5768	0	PRO A		14.627	72.015	-7.257	1.00 14.35	A
		MOTA	5769	N	ASN A		15.033	73.998	-8.249	1.00 16.03	A
		MOTA	5770	CA	ASN A		13.640	74.412	-8.242	1.00 17.20	A
	40	MOTA	5771	CB	ASN A		13.531	75.915	-7.954	1.00 18.72	A
	40	ATOM	5772	CG	ASN A		14.202	76.766	-9.013	1.00 19.71	A
		ATOM	5773		ASN A		15.289	76.446	-9.485	1.00 21.05	A
		ATOM	5774		ASN A		13.559	77.871	-9.380	1.00 21.04	A
		ATOM	5775	С	ASN A		13.084	74.075	-9.620	1.00 16.86	A
	4-	ATOM	5776	0	ASN A		12.561		-10.330	1.00 17.62	A
	45	ATOM	5777	N	GLY A		13.222	72.806	-9.993	1.00 15.74	A
		ATOM	5778	CA	GLY A		12.737		-11.281	1.00 16.20	A
		MOTA	5779	С	GLY A		13.820		-12.340	1.00 15.85	Α
		ATOM	5780	0	GLY A		14.979	72.600		1.00 15.63	A
		MOTA	5781	N	PRO A		13.475		-13.546	1.00 15.55	A
	50	ATOM	5782	CD	PRO A	734	12.159		-13.935	1.00 16.13	А
		ATOM	5783	CA	PRO A		14.433		-14.646	1.00 15.56	А
		ATOM	5784	CB	PRO A		13.565	71.152		1.00 16.06	А
		ATOM	5785	CG	PRO A		12.510		-15.106	1.00 17.37	A
		MOTA	5786	С	PRO A		15.091		-14.953	1.00 15.30	A
	55	ATOM	5787	0	PRO A	734	14.519	74.042	-14.691	1.00 14.97	А

		ATOM	5788	N	ALA A	735	16.288	72.926 - 15.525	1.00 15.31	Α
		ATOM	5789	CA	ALA A	735	17.041	74.128 -15.856	1.00 15.45	Α
		ATOM	5790	CB	ALA A	735	18.440	73.745 -16.324	1.00 15.38	Α
		ATOM	5791	С	ALA A	735	16.355	74.991 -16.910	1.00 16.40	Α
	5	MOTA	5792	0	ALA A	735	15.641	74.488 -17.777	1.00 16.52	Α
		ATOM	5793	N	SER A	736	16.584	76.298 -16.816	1.00 17.32	Α
		MOTA	5794	CA	SER A	736	16.019	77.265 -17.747	1.00 18.50	Α
		ATOM	5795	CB	SER A	73.6	15.387	78.427 -16.978	1.00 19.12	A
		ATOM	5796	OG	SER A	736	14.401	77.959 -16.074	1.00 22.89	А
	10	MOTA	5797	С	SER A	736	17.158	77.779 -18.622	1.00 19.11	А
		ATOM	5798	0	SER A	736	18.259	78.019 -18.134	1.00 18.19	А
		MOTA	5799	N	PRO A	737	16.907	77.955 -19.928	1.00 19.88	A
		ATOM	5800	CD	PRO A	737	15.659	77.671 -20.656	1.00 20.64	Α
		MOTA	5801	CA	PRO A	737	17.943	78.443 -20.845	1.00 20.87	A
	15	ATOM	5802	CB	PRO A		17.215	78.502 -22.188	1.00 21.48	Α
		ATOM	5803	CG	PRO A	737	16.162	77.441 -22.058	1.00 21.45	Α
		ATOM	5804	С	PRO A	737	18.504	79.803 -20.441	1.00 21.50	Α
		ATOM	5805	0	PRO A		17.764	80.685 -20.004	1.00 21.33	Α
100		MOTA	5806	N	VAL A		19.816	79.966 -20.577	1.00 22.39	Α
The same of the same same	20	ATOM	5807	CA	VAL A		20.456	81.234 -20.254	1.00 23.03	А
Ü		ATOM	5808	CB	VAL A		21.993	81.082 -20.119	1.00 22.73	A
171		MOTA	5809		VAL A		22.645	82.456 -19.993	1.00 22.43	Α
g sang		ATOM	5810	CG2	VAL A		22.332	80.229 -18.903	1.00 21.84	А
1400F		MOTA	5811	С	VAL A		20.162	82.191 ~21.407	1.00 24.47	A
Harin Carin	25	ATOM	5812	0	VAL A		20.342	81.834 -22.570	1.00 24.12	A
152		MOTA	5813	N	GLU A		19.692	83.392 -21.088	1.00 25.62	A
ijŦ		MOTA	5814	CA	GLU A		19.398	84.380 -22.121	1.00 26.93	A
E!		ATOM	5815	CB	GLU A		18.604	85.546 -21.531	1.00 28.81	A
	20	ATOM	5816	CG	GLU A		17.210	85.155 -21.066	1.00 32.07	A
	30	ATOM	5817	CD	GLU A		16.327	84.675 -22.205	1.00 33.84	A
K.		ATOM	5818		GLU A		15.194	84.226 -21.932	1.00 35.19	A
1.4		ATOM	5819		GLU A		16.763	84.749 -23.374	1.00 34.81	A
		MOTA	5820	С	GLU A		20.731	84.866 -22.671	1.00 26.25	A
14	25	ATOM	5821	0	GLU A		21.498	85.525 -21.971	1.00 25.93	Α.
#	35	ATOM	5822	N	LEU A		20.996	84.537 -23.931	1.00 26.09	A
		MOTA	5823	CA	LEU A		22.257	84.889 -24.574	1.00 25.99	A
		ATOM	5824	CB	LEU A		22.631	83.803 -25.583	1.00 26.19 1.00 25.97	A
		ATOM	5825	CG	LEU A		22.563	82.362 -25.073 81.411 -26.208	1.00 25.97	A A
	40	ATOM	5826		LEU A		22.900 23.525			
	40	MOTA	5827		LEU A			86.240 -25.273	1.00 26.32	A A
		MOTA	5828	C	LEU A		22.304	86.795 -25.463	1.00 25.32	A
		ATOM	5829	0	LEU A		23.384	86.767 -25.656	1.00 25.85	A
		ATOM	5830	N	GLY A		21.146 21.127	88.040 -26.353	1.00 26.72	A
	45	ATOM ATOM	5831 5832	CA C	GLY A		21.127	87.872 -27.692	1.00 26.42	A
	40			0	GLY A		21.522	86.883 -28.387	1.00 20.42	A
		ATOM	5833 5834		GLI A		22.666	88.831 -28.060	1.00 26.36	A
		MOTA	5835	N CA	GLN A		23.407	88.766 -29.318	1.00 25.57	A
		ATOM	5836	CB	GLN A		23.407	89.953 -30.214	1.00 29.15	A
	50	ATOM ATOM	5837	CG	GLN A		21.557	89.999 -30.588	1.00 23.15	A
	50	ATOM	5838	CD	GLN A		21.200	91.197 -31.449	1.00 35.16	A
		ATOM	5839		GLN A		21.723	91.366 -32.551	1.00 33.30	A
		ATOM	5840		GLN A		20.299	92.036 -30.948	1.00 37.11	A
		MOTA	5841	C	GLN A		24.895	88.800 -28.977	1.00 30.73	A
	55	ATOM	5842	0	GLN A		25.555	89.829 -29.113	1.00 23.07	A
	55	HIOH	2072	_	OTIM M	, 12	20.000	00.000 40.110		• •

		ATOM	5843	N	PRO A 743		87.660 -28.530	1.00 20.48	А
		MOTA	5844	CD	PRO A 743		86.343 -28.449	1.00 19.61	Α
		MOTA	5845	CA	PRO A 743		87.558 -28.157	1.00 18.31	A
	_	MOTA	5846	CB	PRO A 743		86.164 -27.544	1.00 18.28	Α
	5	ATOM	5847	CG	PRO A 743		85.390 -28.358	1.00 18.15	A
		ATOM	5848	С	PRO A 743		87.760 -29.277	1.00 16.88	Α
		MOTA	5849	0	PRO A 743		87.516 -30.449	1.00 16.70	Α
		MOTA	5850	N	VAL A 744		88.218 -28.893	1.00 14.74	Α
	_	MOTA	5851	CA	VAL A 744		88.437 -29.840	1.00 13.49	A
	10	ATOM	5852	CB	VAL A 744		89.464 -29.296	1.00 12.90	Α
		ATOM	5853		VAL A 744		89.655 -30.287	1.00 12.99	Α
		ATOM	5854		VAL A 744		90.789 -29.030	1.00 13.89	A
		ATOM	5855	С	VAL A 744		87.105 -30.070	1.00 12.96	A
		MOTA	5856	0	VAL A 744		86.401 -29.117	1.00 12.48	A
	15	ATOM	5857	N	VAL A 745		86.763 -31.338	1.00 11.61	Α
		ATOM	5858	CA	VAL A 745		85.514 -31.717	1.00 11.18	Α
		ATOM	5859	CB	VAL A 745		84.672 -32.615	1.00 10.82	A
		ATOM	5860		VAL A 745		83.359 -32.981	1.00 11.01	A
	••	MOTA	5861		VAL A 745		84.430 -31.904	1.00 10.80	A
1	20	MOTA	5862	C	VAL A 745		85.765 -32.463	1.00 11.19	A
Ö.		ATOM	5863	0	VAL A 745		86.564 -33.403	1.00 11.51	A
M		ATOM	5864	N	LEU A 746		85.077 -32.041	1.00 10.48	A
5		MOTA	5865	CA	LEU A 746		85.208 -32.662	1.00 10.17	A
Poss# BG #	0.5	ATOM	5866	CB	LEU A 746		85.575 -31.611	1.00 11.05	A
W.	25	MOTA	5867	CG	LEU A 746		85.599 -32.087	1.00 11.54	A
6 Cmm		ATOM	5868		LEU A 746		86.671 -33.153	1.00 13.05	A
		MOTA	5869		LEU A 746		85.863 -30.900	1.00 13.86	A
£i.		MOTA	5870	С	LEU A 746		83.908 -33.347	1.00 10.30	A
	20	ATOM	5871	0	LEU A 746		82.847 -32.718	1.00 10.42	A
	30	MOTA	5872	N	VAL A 747		83.992 -34.639	1.00 10.07	A
		ATOM	5873	CA	VAL A 747		82.824 -35.412	1.00 10.40	A
[d		ATOM	5874	CB	VAL A 747		82.644 -36.658	1.00 10.85	A
		ATOM	5875		VAL A 747		81.361 -37.385	1.00 10.29 1.00 10.45	A
fas.	35	ATOM	5876		VAL A 747		82.631 -36.248 82.964 -35.878	1.00 10.45	A A
8	33	MOTA	5877	C	VAL A 747		83.908 -36.592	1.00 11.23	A
		MOTA	5878	0	VAL A 747		82.033 -35.458	1.00 10.82	A
		ATOM	5879	N CA	THR A 748 THR A 748		82.046 -35.866	1.00 10.02	A
		ATOM	5880 5881	CB	THR A 748		82.030 -34.646	1.00 12.00	A
	40	ATOM ATOM	5882	OG1	THR A 748		83.201 -33.853		A
	40	MOTA	5883		THR A 748		82.010 -35.089	1.00 13.11	A
		ATOM	5884	CGZ	THR A 748		80.804 -36.715	1.00 13.11	A
		ATOM	5885	0	THR A 748		79.689 -36.273	1.00 12.33	A
		ATOM	5886	N	LYS A 748		81.004 -37.949	1.00 11.99	A
	45	ATOM	5887	CA	LYS A 749		79.898 -38.868	1.00 12.97	A
	40	ATOM	5888	CB	LYS A 749		80.099 -40.140	1.00 14.41	A
		ATOM	5889	CG	LYS A 749		79.009 -41.176	1.00 17.12	A
		ATOM	5890	CD	LYS A 749		79.222 -42.384	1.00 19.62	A
		ATOM	5891	CE	LYS A 749		78.154 -43.438	1.00 21.33	A
	50	ATOM	5892	NZ	LYS A 749		78.377 -44.648	1.00 24.55	A
	<i>5</i> 0	ATOM	5893	C	LYS A 749		79.758 -39.230	1.00 12.94	A
		ATOM	5894	0	LYS A 749		80.671 -39.797	1.00 12.54	A
		ATOM	5895	N	GLY A 750		78.603 -38.903	1.00 12.33	A
		ATOM	5896	CA	GLY A 750		78.351 -39.196	1.00 12.38	A
	55	ATOM	5897	CA	GLY A 750		76.977 -39.796	1.00 12.30	A
		MION	2021	C	OPI W 120	34.021	, 0. 7 , 37. 190	1.00 10.00	

		ATOM	5898	0	GLY A	750	43.726	76.130	-39.752	1.00	14.37	A
		ATOM	5899	N	LYS A	751	45.802	76.755	-40.362	1.00	13.85	Α
		ATOM	5900	CA	LYS A	751	46.122	75.474	-40.976	1.00	14.48	Α
		ATOM	5901	CB	LYS A		47.423	75.588	-41.774	1.00	17.11	Α
	5	ATOM	5902	CG	LYS F		47.355	76.562	-42.939	1.00	21.85	A
		ATOM	5903	CD	LYS A		46.358	76.094	-43.990	1.00	25.31	А
		ATOM	5904	CE	LYS F	751	46.339		-45.190	1.00	26.61	A
		ATOM	5905	NZ	LYS A		45.405	76.557	-46.249	1.00	28.25	А
		ATOM	5906	С	LYS F	751	46.264	74.370	-39.933	1.00	13.47	А
	10	ATOM	5907	0	LYS A	751	45.878	73.228	-40.174	1.00	13.67	А
		ATOM	5908	N	LEU A		46.812	74.718	-38.774	1.00	12.85	А
		ATOM	5909	CA	LEU A		47.018		-37.711		12.63	А
		MOTA	5910	CB	LEU F		48.386		-37.059		12.95	А
		ATOM	5911	CG	LEU A		49.612		-37.976		13.92	A
	15	ATOM	5912		LEU A		50.867		-37.137	1.00	14.66	А
		MOTA	5913		LEU P		49.663		-38.752	1.00	15.60	Α
		ATOM	5914	С	LEU A		45.947		-36.627		12.32	А
		ATOM	5915	0	LEU A		45.616		-36.033		11.49	А
		MOTA	5916	N	GLU A		45.403		-36.372		11.65	A
	20	MOTA	5917	CA	GLU A		44.400		-35.332		11.90	А
ī		ATOM	5918	СВ	GLU A		45.087		-34.000		12.47	А
		MOTA	5919	CG	GLU A		44.140		-32.822		14.62	А
inati dia a		ATOM	5920	CD	GLU A		44.852		-31.567		16.59	А
		ATOM	5921	OE1			45.201		-31.489		19.53	А
and the same	25	MOTA	5922		GLU A		45.072		-30.664		19.34	A
Ŋ		ATOM	5923	С	GLU A		43.399		-35.650		11.79	А
		ATOM	5924	0	GLU A		43.776		-36.064		12.11	А
5 }		ATOM	5925	N	SER A		42.124		-35.453		10.70	A
		ATOM	5926	CA	SER A		41.050		-35.675		10.81	А
ı,Ţ	30	ATOM	5927	СВ	SER A		40.227		-36.901		11.07	А
12		ATOM	5928	OG	SER A		40.988		-38.086		10.80	А
i.d.		ATOM	5929	С	SER A		40.172		-34.436		10.66	А
₹:## 8.~~		ATOM	5930	0	SER A		40.221		-33.638		10.36	А
		ATOM	5931	N	SER A		39.373		-34.258		10.33	А
	35	ATOM	5932	CA	SER A		38.506		-33.097	1.00	11.56	А
		MOTA	5933	СВ	SER A		39.317		-31.842		12.90	A
		ATOM	5934	OG	SER A		39.816		-31.904		15.50	A
		ATOM	5935	С	SER A		37.378		-33.233		10.74	A
		ATOM	5936	0	SER A		37.442		-34.026		10.96	A
	40	ATOM	5937	N	VAL A		36.335		-32.449	1.00	9.84	А
		ATOM	5938	CA	VAL A	756	35.177	79.574	-32.397	1.00	10.44	А
		MOTA	5939	СВ	VAL A		33.920		-32.961		10.20	Α
		ATOM	5940		VAL A		32.716		-32.774		10.96	А
		ATOM	5941		VAL A		34.127		-34.432		12.18	А
	45	ATOM	5942	С	VAL A		34.967		-30.919		10.58	Α
		ATOM	5943	0	VAL A		34.764		-30.120		10.80	А
		ATOM	5944	N	SER A		35.041		-30.552		10.27	А
		ATOM	5945	CA	SER A		34.864		-29.164		10.99	A
		ATOM	5946	СВ	SER A		36.148		-28.631		11.96	A
	50	ATOM	5947	OG	SER A		37.258		-28.808		14.85	A
		ATOM	5948	C	SER A		33.724		-29.062		10.89	A
		ATOM	5949	Ô	SER A		33.579		-29.917		11.64	A
		ATOM	5950	N	VAL A		32.918		-28.015		10.48	A
		ATOM	5951	CA	VAL A		31.801		-27.827		11.21	A
	55	ATOM	5952	CB	VAL A		30.471		-28.285		11.67	A
		131 OF	J / J &	CD	AUD W	, 50	50.411	52.070	20.203	1.00	11.0,	11

		MOTA	5953	CG1	VAL A	758	30.239	81.372 -27.539		Α
		MOTA	5954	CG2	VAL A	758	29.315	83.636 -28.06		Α
		ATOM	5955	С	VAL A	758	31.691	83.790 -26.376	1.00 11.49	A
		ATOM	5956	0	VAL A	758	31.858	82.995 -25.446	1.00 11.17	Α
	5	ATOM	5957	N	GLY A		31.429	85.081 -26.196	1.00 11.26	Α
	•	ATOM	5958	CA	GLY A		31.295	85.645 -24.86		А
		ATOM	5959	C	GLY A		29.854	85.610 -24.396		А
		ATOM	5960	0	GLY A		29.064	86.505 -24.696		A
		ATOM	5961	N	LEU A		29.509	84.560 -23.663		A
	10	ATOM	5962	CA	LEU A		28.160	84.388 -23.139		A
	10							82.905 -23.173		A
		MOTA	5963	CB	LEU A		27.776			A
		MOTA	5964	CG	LEU A		27.892	82.180 -24.513		
		MOTA	5965		LEU A		27.612	80.696 -24.316		A
	a =	MOTA	5966		LEU A		26.920	82.785 -25.518		A
	15	ATOM	5967	С	LEU A		28.107	84.883 -21.703		A
		MOTA	5968	0	LEU A		29.143	85.085 -21.068		Α
		MOTA	5969	N	PRO A		26.897	85.102 -21.168		A
		ATOM	5970	CD	PRO A	761	25.570	85.177 -21.802		Α
		ATOM	5971	CA	PRO A	761	26.844	85.569 -19.783		A
	20	MOTA	5972	CB	PRO A	761	25.349	85.777 -19.54		Α
		MOTA	5973	CG	PRO A	761	24.850	86.157 -20.905	1.00 15.81	A
1975 1975		MOTA	5974	С	PRO A	761	27.429	84.489 -18.867	1.00 14.74	Α
0,		ATOM	5975	0	PRO A		26.973	83.343 -18.879	1.00 15.36	A
1,2		ATOM	5976	N	SER A	762	28.451	84.864 -18.104	1.00 13.55	А
ing ma	25	ATOM	5977	CA	SER A		29.122	83.967 -17.166		А
		ATOM	5978	CB	SER A		28.093	83.188 -16.33		А
17		ATOM	5979	OG	SER A		27.255	84.053 -15.59		A
21 21		ATOM	5980	C	SER A		30.080	82.961 -17.794		A
		MOTA	5981	0	SER A		30.784	82.252 -17.074		A
1000 1000 345	30	ATOM	5982	N	VAL A		30.121	82.888 -19.120		A
J	30						30.993	81.911 -19.760		A
Ŋ		MOTA	5983	CA	VAL A		30.250	80.563 -19.992		A
į,d:		ATOM	5984	CB	VAL A					Ā
		ATOM	5985		VAL A		31.211	79.528 -20.572		
ļabi	25	ATOM	5986	CG2	VAL A		29.642	80.057 -18.700		A
1	35	ATOM	5987	С	VAL A		31.566	82.298 -21.111		A
		ATOM	5988	0	VAL A		30.822	82.642 -22.02		A
		MOTA	5989	N	VAL A		32.889	82.258 -21.23		Α
		MOTA	5990	CA	VAL A		33.497	82.488 -22.536		A
		MOTA	5991	CB	VAL A	764	34.865	83.201 -22.449		A
	40	MOTA	5992	CG1	VAL A	764	35.489	83.291 -23.844	1.00 11.18	Α
		ATOM	5993	CG2	VAL A	764	34.684	84.601 -21.868		Α
		ATOM	5994	С	VAL A	764	33.675	81.038 -23.000	1.00 10.11	А
		ATOM	5995	0	VAL A	764	34.513	80.296 -22.470	1.00 9.72	Α
		ATOM	5996	N	HIS A	765	32.843	80.638 -23.95	1.00 9.99	А
	45	ATOM	5997	CA	HIS A		32.814	79.281 -24.502	2 1.00 9.87	Α
		ATOM	5998	СВ	HIS A		31.361	78.921 -24.825		A
		ATOM	5999	CG	HIS A		31.172	77.533 -25.348		А
		MOTA	6000		HIS A		31.366	76.329 -24.762		Α
		MOTA	6001		HIS A		30.686	77.271 -26.613		A
	50		6002		HIS A		30.586	75.965 -26.779		A
	50	ATOM						75.370 -25.67		A
		ATOM	6003		HIS A		30.992			A
		ATOM	6004	C	HIS A		33.684	79.178 -25.750		
		ATOM	6005	0	HIS A		33.546	79.975 -26.674		A
		ATOM	6006	N	GLN A		34.569	78.189 -25.78		A
	55	ATOM	6007	CA	GLN A	766	35.473	78.041 -26.91	1.00 10.36	A

		ATOM	6008	CB	GLN	А	766	36.886	78.461	-26.503	1.00	11.74	A
		ATOM	6009	CG	GLN			36.963		-25.740	1.00	16.65	А
		ATOM	6010	CD	GLN			38.093	79.787	-24.720		18.99	Α
		ATOM	6011	OE1	GLN			39.248	79.518	-25.054	1.00	20.56	А
	5	ATOM	6012	NE2	GLN			37.761		-23.465		19.49	A
	Ū	ATOM	6013	C	GLN			35.534		-27.450	1.00	9.67	A
		ATOM	6014	Ō	GLN			35.657		-26.679	1.00	9.31	A
		ATOM	6015	N	THR			35.447		-28.770	1.00	9.57	A
		ATOM	6016	CA	THR			35.537		-29.427	1.00	9.97	A
	10	ATOM	6017	СВ	THR			34.326		-30.336	1.00	9.80	A
	10	ATOM	6018	OG1	THR			33.124		-29.567		10.60	A
		ATOM	6019	CG2	THR			34.423		-30.943		10.52	A
		MOTA	6020	C	THR			36.797		-30.277		10.72	A
		MOTA	6021	0	THR			36.890		-31.201		10.96	A
	15	ATOM	6022	N	ILE			37.767		-29.955		10.84	A
	13	ATOM	6022					39.044		-30.659		11.39	A
				CA	ILE			40.207		-29.653		11.17	A
		ATOM	6024	CB	ILE					-30.391		12.50	A
i i angi		ATOM	6025	CG2				41.536					
11000) 11000) 1000	20	ATOM	6026	CG1	ILE			39.986		-28.739		12.86	A
	20	ATOM	6027	CD1	ILE			40.930		-27.552		14.09	A
Ü		ATOM	6028	C	ILE			39.210		-31.499		11.59	A
m		ATOM	6029	0	ILE			38.924		-31.044		11.70	A
1		ATOM	6030	N	MSE			39.679		-32.729		11.90	A
ming comp	25	ATOM	6031	CA	MSE			39.878		-33.662		12.55	A
191	25	ATOM	6032	CB	MSE			39.004		-34.898		15.34	A
		ATOM	6033	CG	MSE			37.519		-34.597		16.83	A
		ATOM	6034	SE	MSE			36.503		-35.920		26.54	A
81; Julius		MOTA	6035	CE	MSE			36.555		-35.079		19.56	A
	20	MOTA	6036	C	MSE			41.336		-34.088		12.98	A
	30	MOTA	6037	0	MSE			41.948		-34.531		12.06	A
		ATOM	6038	N	ARG			41.891		-33.960		13.68	A
. i.		MOTA	6039	CA	ARG			43.275		-34.339		15.07	A
		MOTA	6040	CB	ARG			44.140		-33.089		17.11	A
ļsā:		MOTA	6041	CG	ARG			44.074		-32.165		20.18	A
ā	35	MOTA	6042	CD	ARG			44.923		-30.919		23.42	A
		ATOM	6043	NE	ARG			44.600		-29.908		26.56	A
		ATOM	6044	CZ	ARG			45.160		-28.705		27.92	A
		ATOM	6045	NH1	ARG	A	770	46.084		-28.353		28.57	A
		ATOM	6046	NH2	ARG			44.790		-27.850		28.79	A
	40	ATOM	6047	С	ARG	Α	770	43.435	69.434	-35.253	1.00	15.19	A
		MOTA	6048	0	ARG			44.541		-35.442		15.98	А
		ATOM	6049	N	GLY	Α	771	42.325		-35.814	1.00	15.00	А
		ATOM	6050	CA	GLY	A	771	42.390	67.836	-36.720		15.83	A
		ATOM	6051	С	GLY	Α	771	41.638	66.602	-36.266	1.00	16.49	А
	45	ATOM	6052	0	GLY	A	771	41.371	65.706	-37.071	1.00	18.18	А
		ATOM	6053	N	GLY	A	772	41.310	66.543	-34.979	1.00	15.66	A
		ATOM	6054	CA	GLY	Α	772	40.581	65.404	-34.446	1.00	15.30	А
		ATOM	6055	С	GLY	A	772	39.374	65.872	-33.659	1.00	13.91	Α
		ATOM	6056	0	GLY	A	772	38.767	66.886	-33.999	1.00	13.73	Α
	50	ATOM	6057	N	ALA			39.012		-32.613		13.00	Α
		ATOM	6058	CA	ALA			37.877		-31.790	1.00	12.18	Α
		MOTA	6059	СВ	ALA			37.699		-30.642		12.99	Α
		ATOM	6060	C	ALA			38.162		-31.249		11.57	А
		ATOM	6061	0	ALA			39.277		-30.819		12.06	A
	55	ATOM	6062	N	PRO			37.161		-31.273		11.20	A
				-		-	-			· - · -			-

						_							_
		MOTA	6063	CD	PRO			35.782	67.673 -31.7		1.00 1		A
		ATOM	6064	CA	PRO			37.409	69.152 -30.7		1.00 1		Α
		ATOM	6065	CB	PRO			36.142	69.910 -31.1		1.00 1		A
		ATOM	6066	CG	PRO			35.089	68.847 -31.1		1.00 1		Α
	5	MOTA	6067	С	PRO	A 7	774	37.660	69.219 -29.2		1.00 1		Α
		ATOM	6068	0	PRO	A 7	774	37.322	68.300 -28.5	07	1.00	9.96	Α
		ATOM	6069	N	GLU	A 7	775	38.287	70.311 -28.8	149		9.33	А
		ATOM	6070	CA	GLU	A 7	775	38.550	70.565 -27.4	45	1.00	9.07	Α
		ATOM	6071	СВ	GLU	A 7	775	39.992	71.021 -27.2	13	1.00	9.95	Α
	10	ATOM	6072	CG	GLU	A 7	775	40.302	71.305 -25.7	38	1.00 1	2.24	Α
		ATOM	6073	CD	GLU	A 7	775	41.714	71.809 -25.4	99	1.00 1	5.25	Α
		ATOM	6074	OE1	GLU	A 7	775	42.609	71.504 -26.3	14	1.00 1	9.42	А
		ATOM	6075	OE2	GLU	A 7	775	41.934	72.497 -24.4	78	1.00 1	6.73	Α
		ATOM	6076	С	GLU	A 7	775	37.608	71.701 -27.0	96	1.00	9.08	A
	15	ATOM	6077	0	GLU	A 7	775	37.431	72.632 -27.8	86	1.00	9.71	Α
		MOTA	6078	N	ILE	A 7	776	36.988	71.620 -25.9	31	1.00	9.14	Α
		ATOM	6079	CA	ILE	A 7	776	36.083	72.666 -25.4	91	1.00	9.39	Α
		ATOM	6080	СВ	ILE	A 7	776	34.696	72.103 -25.1	14	1.00 1	0.30	Α
100		ATOM	6081	CG2	ILE	A 7	776	33.749	73.248 -24.7	85	1.00 1	1.43	Α
. P	20	ATOM	6082	CG1	ILE	A 7	776	34.154	71.219 -26.2	40	1.00 1	2.19	Α
`;car , P5		ATOM	6083	CD1	ILE	A 7	776	34.033	71.908 -27.5	87	1.00 1	3.48	Α
1,55 1,55		MOTA	6084	С	ILE			36.683	73.295 -24.2	45	1.00	8.89	A
		MOTA	6085	0	ILE			37.173	72.585 -23.3	69	1.00	8.86	A
1.3		ATOM	6086	N	ARG			36.670	74.622 -24.1		1.00	9.64	A
W 400	25	MOTA	6087	CA	ARG			37.178	75.329 -23.0	07	1.00	9.16	Α
M.		ATOM	6088	CB	ARG	A 7	777	38.486	76.062 -23.3	06	1.00 1	0.34	А
1,54		ATOM	6089	CG	ARG			39.647	75.161 -23.6	555	1.00 1	0.26	A
31		ATOM	6090	CD	ARG			40.943	75.946 -23.7	59	1.00 1	1.46	A
		MOTA	6091	NE	ARG			42.013	75.116 -24.3		1.00 1	2.09	А
	30	MOTA	6092	CZ	ARG			43.198	75.575 -24.6	97	1.00 1	3.87	А
		MOTA	6093	NH1	ARG			43.482	76.869 -24.5	93	1.00 1	5.34	A
		ATOM	6094		ARG			44.090	74.744 -25.2	21	1.00 1	5.77	Α
		MOTA	6095	С	ARG			36.139	76.346 -22.5	89	1.00	8.98	A
		ATOM	6096	0	ARG			35.619	77.093 -23.4	23	1.00	9.21	A
14	35	ATOM	6097	N.	ASN			35.821	76.355 -21.3		1.00	8.45	А
		ATOM	6098	CA	ASN			34.863	77.301 -20.7	56	1.00	8.73	A
		MOTA	6099	СВ	ASN			33.672	76.597 -20.0	98	1.00	9.56	A
		ATOM	6100	CG	ASN			32.726	75.971 -21.0	94	1.00 1	0.18	A
		ATOM	6101	OD1	ASN			32.682	76.360 -22.2	61	1.00 1	0.34	А
	40	ATOM	6102		ASN			31.939	75.007 -20.6	29	1.00	9.32	Α
		ATOM	6103	С	ASN			35.529	78.141 -19.6			8.82	Α
		ATOM	6104	0	ASN			36.000	77.600 -18.6		1.00	8.41	A
		ATOM	6105	N	LEU			35.586	79.453 -19.8			9.10	А
		ATOM	6106	CA	LEU			36.133	80.338 -18.8	68	1.00	9.56	А
	45	ATOM	6107	СВ	LEU			36.792	81.574 -19.4		1.00 1		А
		MOTA	6108	CG	LEU			37.363	82.583 -18.4		1.00 1	2.38	Α
		ATOM	6109		LEU			38.443	81.931 -17.6		1.00 1		A
		ATOM	6110		LEU			37.924	83.779 -19.2		1.00 1	4.30	А
		ATOM	6111	C	LEU			34.869	80.723 -18.1			9.41	А
	50	ATOM	6112	Ö	LEU			34.092	81.567 -18.5		1.00 1		A
		ATOM	6113	N	VAL			34.659	80.083 -16.9			8.89	A
		ATOM	6114	CA	VAL			33.457	80.297 -16.1			9.72	A
		ATOM	6115	CB	VAL			32.948	78.948 -15.6			9.29	A
		MOTA	6116		VAL			31.607	79.142 -14.9		1.00 1		A
	55	ATOM	6117		VAL			32.827	77.927 -16.7			9.53	A
		ATOP1	011/	CGZ	A LITT	/	, , ,	22.021			1.00		• •

		MOTA	6118	С	VAL A 7	80	33.607	81.290	-15.036	1.00 10).33	Α
		ATOM	6119	0	VAL A 7	80	34.404	81.090	-14.123	1.00 10	0.64	Α
		ATOM	6120	N	ASP A 7	81	32.832	82.368	-15.105	1.00 11	L.16	Α
		ATOM	6121	CA	ASP A 7		32.838	83.401	-14.076	1.00 13	1.93	Α
	5	ATOM	6122	СВ	ASP A 7		33.522		-14.583	1.00 14		Α
	•	ATOM	6123	CG	ASP A 7		33.596		-13.522	1.00 15		Α
		ATOM	6124		ASP A 7		34.106		-13.823	1.00 18		A
									-12.384	1.00 15		A
		ATOM	6125		ASP A 7		33.146					
	10	ATOM	6126	C	ASP A 7		31.384		-13.748	1.00 12		A
	10	MOTA	6127	0	ASP A 7		30.751		-14.372	1.00 11		A
		MOTA	6128	N	ILE A 7		30.861		-12.770	1.00 13		A
		ATOM	6129	CA	ILE A 7		29.474		-12.348	1.00 15		A
		MOTA	6130	CB	ILE A 7		29.110		-11.399	1.00 15		A
		ATOM	6131	CG2	ILE A 7	82	29.747		-10.032	1.00 15		А
	15	MOTA	6132	CG1	ILE A 7	82	27.595	81.776	-11.289	1.00 15	5.55	Α
		MOTA	6133	CD1	ILE A 7	82	27.163	80.458	-10.671	1.00 15		Α
		ATOM	6134	С	ILE A 7	82	29.202	84.437	-11.680	1.00 16	5.86	Α
		ATOM	6135	0	ILE A 7	82	28.061	84.759	-11.341	1.00 18	3.15	Α
122		MOTA	6136	N	GLY A 7	83	30.260	85.224	-11.503	1.00 17	7.28	Α
1122	20	ATOM	6137	CA	GLY A 7		30.126	86.545	-10.908	1.00 19	9.48	Α
*(±±ि . १८५		ATOM	6138	С	GLY A 7		29.290	86.621	-9.646	1.00 20	0.51	Α
		ATOM	6139	0	GLY A 7		29.538	85.895	-8.682	1.00 21	L.41	Α
ijT.		ATOM	6140	N	SER A 7		28.293	87.503	-9.649	1.00 22		Α
		ATOM	6141	CA	SER A 7		27.435	87.675	-8.483	1.00 23		A
W	25	MOTA	6142	CB	SER A 7		27.325	89.160	-8.128	1.00 24		A
IJ	23	ATOM	6143	OG	SER A 7		26.727	89.896	-9.180	1.00 26		A
ijī.			6144	C	SER A 7		26.035	87.086	-8.649	1.00 24		A
		ATOM					25.109	87.470	-7.934	1.00 24		A
El John.		ATOM	6145	0	SER A 7					1.00 24		A
	20	ATOM	6146	N	LEU A 7		25.880	86.158	-9.589			
	30	ATOM	6147	CA	LEU A 7		24.585	85.520	-9.819	1.00 24		A
94		ATOM	6148	СВ	LEU A 7		24.589		-11.147	1.00 25		A
in the		MOTA	6149	CG	LEU A 7		24.586		-12.444	1.00 26		A
Ü		ATOM	6150		LEU A 7		25.792		-12.492	1.00 27		A
	0.5	ATOM	6151		LEU A 7		24.597		-13.631	1.00 27		A
ļ.di∵	35	ATOM	6152	С	LEU A 7		24.282	84.554	-8.678	1.00 24		A
		MOTA	6153	0	LEU A 7		24.590	83.364	-8.760	1.00 24		A
		MOTA	6154	N	ASP A 7	86	23.666	85.068	-7.620	1.00 23		А
		ATOM	6155	CA	ASP A 7	86	23.345	84.247	-6.460	1.00 22		Α
		MOTA	6156	CB	ASP A 7	86	22.877	85.130	-5.302	1.00 24	1.01	Α
	40	ATOM	6157	CG	ASP A 7	86	23.851	86.245	-4.993	1.00 25		Α
		ATOM	6158	OD1	ASP A 7	86	25.048	85.955	-4.776	1.00 24	1.91	А
		MOTA	6159	OD2	ASP A 7	86	23.418	87.417	-4.968	1.00 26	5.93	A
		ATOM	6160	С	ASP A 7		22.289	83.188	-6.747	1.00 20	0.42	A
		ATOM	6161	0	ASP A 7		21.423	83.368	-7.604	1.00 20	0.14	Α
	45	MOTA	6162	N	ASN A 7		22.378	82.085	-6.012	1.00 18	3.59	Α
		ATOM	6163	CA	ASN A 7		21.450	80.971	-6.145	1.00 17	7.29	Α
		ATOM	6164	СВ	ASN A 7		20.104	81.341	-5.522	1.00 18		Α
		MOTA	6165	CG	ASN A 7		20.230	81.678	-4.054	1.00 19		Α
		ATOM	6166		ASN A 7		20.851	80.936	-3.292	1.00 20		A
	50	ATOM	6167		ASN A 7		19.644	82.799	-3.646	1.00 22		A
	50							80.536	-7.590	1.00 16		A
		ATOM	6168	С	ASN A 7		21.267	80.387	-7.390 -8.077	1.00 10		A
		ATOM	6169	0	ASN A 7		20.145					
		ATOM	6170	N G P	THR A 7		22.389	80.321	-8.266	1.00 14		A A
		ATOM	6171	CA	THR A 7		22.382	79.901	-9.656	1.00 13		A
	55	ATOM	6172	CB	THR A 7	88	22.718	81.081	-10.594	1.00 15	0.15	A

		ATOM	6173		THR A		21.782	82.145 -10.380	1.00 15.54	А
		MOTA	6174		THR A		22.649	80.646 -12.053	1.00 14.91	A
		ATOM	6175	С	THR A		23.427	78.817 -9.874	1.00 12.17	A
	_	ATOM	6176	0	THR A		24.516	78.872 -9.306	1.00 12.24	A
	5	MOTA	6177	N	GLU A		23.075	77.823 -10.679	1.00 11.16	A
		MOTA	6178	CA	GLU A		23.993	76.750 -11.021	1.00 10.70	A
		MOTA	6179	CB	GLU A		23.523	75.417 -10.417	1.00 10.65	A
		ATOM	6180	CG	GLU A		23.410	75.468 -8.893	1.00 11.01	A
	40	ATOM	6181	CD	GLU A		23.467	74.103 -8.230	1.00 10.75	Α
	10	ATOM	6182		GLU A		24.244	73.242 -8.700	1.00 11.43	A
		ATOM	6183		GLU A		22.751	73.900 -7.224	1.00 11.36	Α
		MOTA	6184	С	GLU A		23.977	76.717 -12.545	1.00 10.53	A
		MOTA	6185	0	GLU A		22.925	76.541 -13.159	1.00 12.21	A
	4-	ATOM	6186	N	ILE A		25.141	76.929 -13.151	1.00 9.89	A
	15	MOTA	6187	CA	ILE A		25.258	76.951 -14.603	1.00 11.05	Α
		MOTA	6188	CB	ILE A		26.356	77.928 -15.063	1.00 11.53	Α
		ATOM	6189		ILE A		26.444	77.932 -16.584	1.00 11.91	A
		ATOM	6190		ILE A		26.048	79.335 -14.545	1.00 14.02	A
	20	MOTA	6191		ILE A		27.164	80.331 -14.786	1.00 16.91	A
₩.	20	ATOM	6192	С	ILE A		25.601	75.577 -15.143	1.00 10.36	A
- 1		ATOM	6193	0	ILE A		26.590	74.967 -14.735	1.00 10.51	A
		MOTA	6194	N	VAL A		24.783	75.096 -16.070	1.00 10.03	A
1 12 12 12 12 12 12 12 12 12 12 12 12 12		MOTA	6195	CA	VAL A		25.003	73.790 -16.664	1.00 10.13	A
	25	ATOM	6196	CB	VAL A		23.792	72.848 -16.409	1.00 10.46	A
ių.	25	MOTA	6197		VAL A		22.582	73.304 -17.224	1.00 11.49	A
1 545 1 545		ATOM	6198		VAL A		24.163	71.414 -16.760	1.00 11.24	A
		ATOM	6199	C	VAL A		25.239	73.873 -18.166	1.00 9.93	A
\$1 		MOTA	6200	0	VAL A		24.653	74.714 -18.860	1.00 10.16	A
the trail that	20	ATOM	6201	N	MSE A		26.128	73.022 -18.662	1.00 9.51	A
	30	ATOM	6202	CA	MSE A		26.394	72.954 -20.092	1.00 9.67	A
rj.		MOTA	6203	CB	MSE A		27.892	72.921 -20.392	1.00 11.43	A
ļ:#		ATOM	6204	CG	MSE A		28.185	72.769 -21.881	1.00 12.60	A
		ATOM	6205	SE	MSE A		30.059	72.856 -22.319	1.00 18.80	A
į.d.	35	ATOM	6206	CE	MSE A		30.632	71.215 -21.499	1.00 14.20	A
•	33	ATOM	6207	C	MSE A		25.749	71.657 -20.559	1.00 9.89	A
		ATOM	6208	0	MSE A		26.063	70.581 -20.046	1.00 10.12 1.00 9.88	A A
		ATOM	6209	N	ARG A		24.843	71.760 -21.524 70.589 -22.027	1.00 9.88 1.00 9.40	A
		ATOM	6210	CA	ARG A		24.143	70.756 -21.786	1.00 9.40	A
	40	ATOM	6211	CB	ARG A		22.636 21.775	69.579 -22.249	1.00 9.08	A
	40	ATOM	6212	CG	ARG A				1.00 9.24	A
		ATOM	6213	CD	ARG A		20.300	69.824 -21.940	1.00 10.28	A
		ATOM	6214	NE	ARG A		20.051 18.958	70.427 -19.959	1.00 11.04	A
		ATOM	6215	CZ	ARG A		17.995		1.00 10.72	A
	45	MOTA	6216		ARG A			70.922 -20.733 70.473 -18.640	1.00 12.36	A
	43	ATOM	6217		ARG A		18.832	70.333 -23.503		
		ATOM	6218	С	ARG A		24.396			A
		ATOM	6219	0	ARG A		24.593	71.264 -24.286 69.055 -23.866	1.00 10.28 1.00 10.51	A
		ATOM	6220	N	LEU A		24.393			A
	50	ATOM	6221	CA	LEU A		24.563	68.618 -25.248	1.00 10.31	A
	50	ATOM	6222	CB	LEU A		25.730	67.633 -25.370 68.240 -25.492	1.00 11.42 1.00 11.51	A
		MOTA	6223	CG CD1	LEU A		27.129		1.00 11.31	A A
		ATOM	6224		LEU A		28.180	67.207 -25.131	1.00 12.30	
		ATOM	6225		LEU A		27.336	68.748 -26.914		A
	55	MOTA	6226	С	LEU A		23.265	67.921 -25.643	1.00 11.62	A
	55	ATOM	6227	0	LEU A	194	22.789	67.038 -24.931	1.00 10.91	А

		MOTA	6228	N	GLU A	795	22.686	68.330	-26.766	1.00 11.83	Α
		ATOM	6229	CA	GLU A	795	21.444	67.731	-27.244	1.00 13.21	А
		ATOM	6230	СВ	GLU A	795	20.373	68.814	-27.427	1.00 13.79	Α
		ATOM	6231	CG	GLU A		20.156	69.665	-26.184	1.00 16.95	A
	5	MOTA	6232	CD	GLU A		19.134		-26.382	1.00 18.99	A
	•	ATOM	6233		GLU A		19.138		-27.460	1.00 21.87	A
		ATOM	6234		GLU A		18.339		-25.452	1.00 20.56	A
		ATOM	6235	C	GLU A		21.716		-28.565	1.00 13.30	A
		ATOM	6236	0	GLU A		22.259		-29.500	1.00 13.30	A
	10								-28.637	1.00 13.57	A
	10	ATOM	6237	N	THR A		21.352				
		ATOM	6238	CA	THR A		21.577		-29.846	1.00 13.15	A
		MOTA	6239	CB	THR A		22.771		-29.688	1.00 12.88	A
		MOTA	6240	OG1			22.372		-28.900	1.00 11.73	A
		ATOM	6241	CG2			23.935		-29.002	1.00 13.25	A
	15	ATOM	6242	С	THR A		20.369		-30.203	1.00 13.86	A
		MOTA	6243	0	THR A	796	19.355		-29.509	1.00 16.03	Α
		MOTA	6244	N	HIS A	797	20.511	63.341	-31.284	1.00 15.53	Α
		MOTA	6245	CA	HIS A	797	19.465	62.444	-31.764	1.00 16.70	Α
		MOTA	6246	CB	HIS A	797	19.343	62.542	-33.283	1.00 18.40	Α
	20	MOTA	6247	CG	HIS A	797	18.639	63.775	-33.747	1.00 18.87	A
Ü		ATOM	6248	CD2	HIS A	797	17.877	64.669	-33.075	1.00 18.85	Α
197		MOTA	6249	ND1	HIS A	797	18.669	64.204	-35.056	1.00 19.59	Α
		ATOM	6250		HIS A		17.95€		-35.169	1.00 19.23	A
1,52		ATOM	6251		HIS A		17.465		-33.981	1.00 18.80	А
	25	ATOM	6252	С	HIS A		19.762		-31.381	1.00 17.12	A
ru.		MOTA	6253	0	HIS A		19.058		-31.799	1.00 18.02	A
ijŦ.		ATOM	6254	N	ILE A		20.814		-30.595	1.00 15.17	A
El		ATOM	6255	CA	ILE A		21.190		-30.158	1.00 14.07	A
			6256	CB	ILE A		22.492		-29.330	1.00 13.19	A
1,825 ,195	30	ATOM							-28.802	1.00 13.13	A
	50	MOTA	6257		ILE A		22.845			1.00 12.33	A
W		ATOM	6258		ILE A		23.623		-30.207		
		ATOM	6259	CD1	ILE A		24.934		-29.468	1.00 13.56	A
		MOTA	6260	С	ILE A		20.047		-29.331	1.00 13.73	A
[-	0.5	MOTA	6261	0	ILE A		19.554		-28.399	1.00 13.69	A
	35	MOTA	6262	N	ASP A		19.617		-29.697	1.00 14.35	A
		MOTA	6263	CA	ASP A		18.519		-29.013	1.00 14.00	A
		MOTA	6264	CB	ASP A		17.849		-29.970	1.00 15.90	A
		MOTA	6265	CG	ASP A		16.539		-29.436	1.00 17.22	A
		ATOM	6266	OD1	ASP A	799	16.007	54.522	-30.025	1.00 18.99	Α
	40	MOTA	6267	OD2	ASP A	799	16.036		-28.434	1.00 19.56	Α
		ATOM	6268	С	ASP A	799	19.031	56.270	-27.780	1.00 13.90	A
		ATOM	6269	0	ASP A	799	18.965	55.045	-27.701	1.00 13.45	Α
		ATOM	6270	N	SER A	800	19.529	57.031	-26.812	1.00 13.23	Α
		MOTA	6271	CA	SER A	800	20.077	56.462	-25.587	1.00 12.57	Α
	45	MOTA	6272	CB	SER A		21.039		-24.943	1.00 12.35	A
		ATOM	6273	OG	SER A		20.372		-24.618	1.00 11.94	А
		ATOM	6274	С	SER A		19.021		-24.570	1.00 11.90	А
		ATOM	6275	0	SER A		19.303		-23.679	1.00 11.76	А
		ATOM	6276	N	GLY A		17.812		-24.694	1.00 11.77	A
	50	ATOM	6277	CA	GLY A		16.751		-23.766	1.00 11.77	A
	50								-22.367	1.00 11.04	A
		ATOM	6278	С	GLY A		16.994				
		ATOM	6279	0	GLY A		17.063		-22.157	1.00 12.52	A
		ATOM	6280	N	ASP A		17.118		-21.406	1.00 11.43	A
		ATOM	6281	CA	ASP A		17.358		-20.021	1.00 11.22	A
	55	ATOM	6282	CB	ASP A	802	16.274	55.636	-19.107	1.00 13.10	А

		ATOM	6283	CG	ASP .	A 802	16.173	54.118 -19.201	1.00 13.45	А
		ATOM	6284	OD1	ASP .	A 802	15.264	53.554 -18.553	1.00 15.07	Α
		ATOM	6285	OD2	ASP .	A 802	16.990	53.486 -19.908	1.00 15.03	А
		MOTA	6286	С	ASP .	A 802	18.736	55.771 -19.556	1.00 10.91	А
	5	ATOM	6287	0	ASP A	A 802	19.041	55.807 -18.362	1.00 10.76	Α
		ATOM	6288	N	ILE A	803 A	19.571	55.370 -20.507	1.00 9.82	Α
		ATOM	6289	CA	ILE A	803 A	20.910	54.888 -20.197	1.00 9.93	Α
		ATOM	6290	CB	ILE A	803 A	21.208	53.572 -20.958	1.00 9.82	A
		ATOM	6291	CG2	ILE A	803 A	22.634	53.103 -20.670	1.00 9.69	А
	10	ATOM	6292	CG1	ILE A	E08 A	20.191	52.496 -20.564	1.00 9.60	A
		ATOM	6293	CD1	ILE A	803	20.226	52.125 -19.093	1.00 10.76	Α
		ATOM	6294	С	ILE A	803 A	22.020	55.872 -20.537	1.00 9.64	Α
		MOTA	6295	0	ILE A	E08 A	21.969	56.562 -21.556	1.00 9.87	A
		ATOM	6296	N	PHE	A 804	23.020	55.940 -19.662	1.00 9.22	А
	15	ATOM	6297	CA	PHE A	A 804	24.188	56.776 -19.889	1.00 8.73	А
		MOTA	6298	CB	PHE	A 804	23.913	58.265 -19.583	1.00 8.57	Α
		MOTA	6299	CG	PHE A	A 804	23.561	58.572 -18.151	1.00 8.50	Α
		MOTA	6300	CD1	PHE A	A 804	24.496	59.178 -17.311	1.00 8.09	А
(MOTA	6301		PHE I		22.272	58.351 -17.667	1.00 8.51	Α
1, 2	20	MOTA	6302	CE1	PHE A	A 804	24.152	59.568 -16.016	1.00 8.03	А
J		MOTA	6303		PHE A		21.917	58.738 -16.370	1.00 9.55	А
		MOTA	6304	CZ	PHE	A 804	22.862	59.351 -15.546	1.00 9.47	А
		MOTA	6305	С	PHE A	A 804	25.324	56.208 -19.059	1.00 8.03	А
W.		MOTA	6306	0		A 804	25.100	55.363 -18.192	1.00 8.86	А
10	25	MOTA	6307	N		4 805	26.543	56.636 -19.346	1.00 7.73	A
1 U		ATOM	6308	CA		805 A	27.696	56.117 -18.635	1.00 7.16	А
		MOTA	6309	CB		805 A	28.558	55.279 -19.582	1.00 7.36	А
ii.		MOTA	6310	CG		4 805	27.858	54.059 -20.133	1.00 8.65	A
	20	MOTA	6311	CD1		A 805	26.873	54.174 -21.117	1.00 9.16	A
J	30	ATOM	6312	CE1		A 805	26.232	53.047 -21.626	1.00 8.73	A
		ATOM	6313		TYR A		28.184	52.786 -19.669	1.00 8.73	A
j.L		ATOM	6314	CE2		A 805	27.547	51.651 -20.171	1.00 9.56	A
		ATOM	6315	CZ		A 805	26.576	51.792 -21.149	1.00 10.03	A
ļ.Ł	35	ATOM	6316	ОН		805	25.956	50.674 -21.664	1.00 10.71 1.00 7.37	A
•	33	MOTA	6317	C		4 805 4 805	28.536	57.232 -18.052	1.00 7.37	A
		MOTA	6318	0			28.700	58.275 -18.675 57.011 -16.844	1.00 7.62	A A
		ATOM ATOM	6319 6320	N CA		4 806 4 806	29.046 29.908	57.985 -16.187	1.00 7.02	A
		ATOM	6321	CB		806	29.179	58.741 ~15.060	1.00 7.14	A
	40	ATOM	6322	OG1		4 806	28.822	57.829 -14.016	1.00 7.00	A
	40	ATOM	6323		THR A		27.922	59.398 -15.586	1.00 7.42	A
		ATOM	6324	C		806	31.062	57.188 -15.599	1.00 7.29	A
		ATOM	6325	0		4 806	30.936	55.986 -15.368	1.00 7.37	A
		ATOM	6326	N		A 807	32.195	57.834 -15.366	1.00 7.07	A
	45	ATOM	6327	CA	ASP A		33.319	57.096 -14.820	1.00 7.59	A
	10	ATOM	6328	СВ	ASP A		34.632	57.567 -15.444	1.00 8.85	A
		ATOM	6329	CG	ASP A		35.082	58.908 -14.912	1.00 9.02	A
		MOTA	6330		ASP A		36.215	58.983 -14.389	1.00 10.87	A
		ATOM	6331		ASP A		34.310	59.883 -15.013	1.00 9.58	A
	50	ATOM	6332	C	ASP A		33.418	57.207 -13.313	1.00 7.31	A
		ATOM	6333	0	ASP A		32.801	58.069 -12.686	1.00 7.29	A
		ATOM	6334	N		808	34.193	56.299 -12.742	1.00 7.26	A
		ATOM	6335	CA	LEU A		34.435	56.291 -11.315	1.00 6.64	A
		ATOM	6336	CB	LEU A		33.996	54.960 -10.697	1.00 7.52	A
	55	ATOM	6337	CG	LEU A		32.480	54.762 -10.576	1.00 7.74	A
					-					

	ATOM	6338	CD1	LEU	Δ	ឧ∩ឧ	32.171	53 301	-10.300	1.00	9.05	А
	ATOM	6339		LEU			31.927	55.646		1.00	8.74	A
	ATOM	6340	C			808	35.931		-11.120	1.00	7.13	A
	ATOM	6341	0			808	36.740		-11.537	1.00	6.82	А
5	MOTA	6342	N			809	36.284		-10.536	1.00	6.18	A
	ATOM	6343	CA			809	37.671		-10.229	1.00	6.39	A
	ATOM	6344	СВ			809	38.141	57.084	-9.077	1.00	5.55	А
	ATOM	6345	CG	ASN			37.154	57.061	-7.935	1.00	6.45	A
	ATOM	6346		ASN			37.176	57.931	-7.051	1.00	8.57	Α
10	ATOM	6347		ASN			36.259	56.083	-7.957	1.00	4.53	А
	ATOM	6348	C			809	38.643		-11.401	1.00	6.62	А
	ATOM	6349	0	ASN			39.830		-11.202	1.00	6.76	А
	MOTA	6350	N			810	38.144		-12.618	1.00	6.22	А
	ATOM	6351	CA	GLY			38.998		-13.795	1.00	7.72	A
15	ATOM	6352	C C	GLY			39.568		-14.038	1.00	8.56	A
10	ATOM	6353	Õ	GLY			40.536		-14.788	1.00	9.54	A
	ATOM	6354	N	LEU			38.950		-13.420	1.00	7.78	A
	ATOM	6355	CA			811	39.410		-13.532	1.00	8.21	A
	ATOM	6356	CB	LEU			39.541		-12.127	1.00	8.72	A
20	ATOM	6357	CG	LEU			39.955		-12.012		10.15	A
_0	ATOM	6358		LEU			41.366		-12.539		11.19	A
	ATOM	6359		LEU			39.874		-10.559		10.32	A
	ATOM	6360	C	LEU			38.520		-14.370	1.00	9.02	A
	ATOM	6361	0	LEU			39.015		-15.108		10.92	A
25	ATOM	6362	N	GLN			37.212		-14.262	1.00	8.03	A
	ATOM	6363	CA			812	36.264		-14.962	1.00	8.29	A
	ATOM	6364	CB	GLN			35.907		-14.056	1.00	9.25	A
	ATOM	6365	CG	GLN			35.335		-12.710		10.20	A
	ATOM	6366	CD	GLN			35.023		-11.756		12.79	A
30	ATOM	6367		GLN			34.052		-11.938		13.30	A
00	ATOM	6368		GLN			35.851		-10.727		13.55	A
	ATOM	6369	C	GLN			34.992		-15.298	1.00	8.35	А
	ATOM	6370	Ö	GLN			34.680		-14.671	1.00	7.86	А
	ATOM	6371	N			813	34.260		-16.291	1.00	7.68	А
35	ATOM	6372	CA			813	32.993		-16.656	1.00	7.67	А
	ATOM	6373	CB			813	32.926		-18.155	1.00	7.05	А
	ATOM	6374	CG			813	33.686		-18.546	1.00	7.39	А
	ATOM	6375		PHE			35.072		-18.646	1.00	7.39	А
	ATOM	6376		PHE			33.019		-18.741	1.00	8.36	А
40	ATOM	6377		PHE			35.788	56.170	-18.932	1.00	9.02	A
	ATOM	6378		PHE			33.725		-19.027	1.00	8.21	А
	ATOM	6379	CZ			813	35.115		-19.121	1.00	8.05	А
	ATOM	6380	C			813	31.876		-16.240	1.00	7.95	А
	ATOM	6381	0	PHE			31.884		-16.561	1.00	8.99	А
45	ATOM	6382	N	ILE			30.921		-15.509	1.00	7.80	А
	ATOM	6383	CA	ILE			29.799		-14.990	1.00	8.05	А
	ATOM	6384	CB	ILE			29.720		-13.450	1.00	7.86	А
	ATOM	6385		ILE			29.397		-13.102	1.00	8.17	А
	ATOM	6386		ILE			28.668		-12.851	1.00	8.21	A
50	ATOM	6387		ILE			28.763		-11.329	1.00	8.23	А
	ATOM	6388	C	ILE			28.490		-15.646	1.00	7.18	A
	ATOM	6389	0	ILE			28.262		-15.900	1.00	6.96	A
	ATOM	6390	N	LYS			27.641		-15.933	1.00	7.64	A
	ATOM	6391	CA	LYS			26.355		-16.557	1.00	8.17	A
55	ATOM	6392	CB	LYS			25.764		-17.078	1.00	9.06	A
			~-		••						- /	

		MOTA	6393	CG	LYS A	815	24.457	50.909 -17.845	1.00 11.44	A
		ATOM	6394	CD	LYS A	815	24.060	49.539 -18.389	1.00 13.34	Α
		ATOM	6395	CE	LYS A	815	22.850	49.609 -19.297	1.00 16.25	A
		MOTA	6396	NZ	LYS A		22.538	48.269 -19.879	1.00 18.48	A
	5	ATOM	6397	С	LYS A		25.392	52.744 -15.572	1.00 7.90	A
	_	ATOM	6398	0	LYS A		25.240	52.288 -14.437	1.00 7.72	А
		ATOM	6399	N	ARG A		24.752	53.817 -16.016	1.00 7.58	
		ATOM	6400	CA	ARG A		23.779	54.533 -15.205	1.00 7.54	А
		ATOM	6401	CB	ARG A		24.133	56.023 -15.103	1.00 8.01	
	10	ATOM	6402	CG	ARG A		25.524	56.341 -14.580	1.00 8.73	
	10	ATOM	6403	CD	ARG A		25.718	55.751 -13.203	1.00 9.16	
		ATOM	6404	NE	ARG A		26.879	56.317 -12.522	1.00 8.38	
		ATOM	6405	CZ	ARG A		27.259	55.952 -11.304	1.00 8.64	
		ATOM	6406		ARG A		26.567	55.027 -10.654	1.00 7.99	
	15	MOTA	6407		ARG A		28.311	56.519 -10.728	1.00 8.64	
	10	ATOM	6408	C	ARG A		22.419	54.436 -15.874	1.00 8.06	
		ATOM	6409	Ö	ARG A		22.327	54.376 -17.099	1.00 7.94	
		ATOM	6410	N	ARG A		21.366	54.419 -15.066	1.00 8.58	A
g (279)		ATOM	6411	CA	ARG A		20.016	54.403 -15.606	1.00 9.41	
1,=# , ==;	20	MOTA	6412	CB	ARG A		19.302	53.073 -15.330	1.00 9.62	
	20	ATOM	6413	CG	ARG A		17.830	53.098 -15.749	1.00 11.25	
1,1,2 1,1,25		ATOM	6414	CD	ARG A		17.123	51.758 -15.571	1.00 13.10	
(T		ATOM	6415	NE	ARG A		17.649	50.728 -16.460	1.00 13.49	
		ATOM	6416	CZ	ARG A		18.408	49.713 -16.062	1.00 14.00	
	25	ATOM	6417		ARG A		18.736	49.588 -14.781	1.00 13.99	
rj.	25	ATOM	6418		ARG A		18.838	48.820 -16.942	1.00 15.05	
M		ATOM	6419	C	ARG A		19.249	55.539 -14.953	1.00 13.03	
		ATOM	6420	0	ARG A		19.118	55.586 -13.731	1.00 10.49	
j		ATOM	6421	N	ARG A		18.780	56.475 -15.772	1.00 9.41	A
fiadi .Ffi	30	ATOM	6422	CA	ARG A		18.003	57.598 -15.276	1.00 11.11	
	50	ATOM	6423	CB	ARG A		17.653	58.548 -16.422	1.00 12.00	
		ATOM	6424	CG	ARG A		16.996	59.843 -15.967	1.00 12.11	A
j.		ATOM	6425	CD	ARG A		16.321	60.572 -17.123	1.00 13.88	A
Ü		ATOM	6426	NE	ARG A		15.045	59.954 -17.470	1.00 16.57	
ind.	35	ATOM	6427	CZ	ARG A		14.776	59.370 -18.634	1.00 15.90	
	33	MOTA	6428	NH1	ARG A		15.694	59.317 -19.591	1.00 15.20	
		MOTA	6429		ARG A		13.580	58.832 -18.837	1.00 13.20	
		ATOM	6430	C	ARG A		16.723	57.005 -14.703	1.00 17.03	
		ATOM	6431	0	ARG A		16.058	56.209 -15.366	1.00 12.29	
	40	ATOM	6432	N	LEU A		16.382	57.384 -13.477	1.00 11.61	
	40	ATOM	6433	CA	LEU A		15.179	56.873 -12.829	1.00 12.56	A
		ATOM	6434	CB	LEU A		15.545	56.177 -11.517	1.00 13.02	
		ATOM	6435	CG	LEU A		16.481	54.969 -11.645	1.00 13.02	A
		ATOM	6436		LEU A		16.901	54.493 -10.260	1.00 13.84	A
	45	ATOM	6437		LEU A		15.787	53.856 -12.420	1.00 14.25	A
	45	ATOM	6438	C	LEU A		14.210	58.013 -12.554	1.00 13.08	A
		ATOM	6439	0	LEU A		14.459	58.857 -11.696	1.00 12.85	A
		ATOM	6440	N	ASP A		13.101	58.037 -13.281	1.00 14.34	A
		ATOM	6441	CA	ASP A		12.130	59.097 -13.088	1.00 14.92	A
	50				ASP A			59.133 -14.261	1.00 14.02	A
	<i>5</i> 0	ATOM	6442 6443	CB CG	ASP A		11.147 11.841	59.387 -15.586	1.00 10.01	
		ATOM			ASP A		12.852	60.123 -15.596	1.00 17.57	A
		ATOM	6444					58.862 -16.619	1.00 17.31	
		ATOM	6445		ASP A		11.378		1.00 19.76	A
	55	ATOM	6446	С	ASP A		11.397	58.964 -11.757		A
	55	ATOM	6447	0	ASP A	820	10.706	59.888 -11.329	1.00 15.17	А

											_
		MOTA	6448	N	LYS			11.559	57.824 -11.089	1.00 14.77	A
		ATOM	6449	ÇA	LYS	Α	821	10.913	57.630 -9.795	1.00 14.66	Α
		ATOM	6450	CB	LYS	Α	821	10.826	56.138 -9.445	1.00 14.60	Α
		MOTA	6451	CG	LYS	А	821	12.163	55.452 -9.211	1.00 14.35	Α
	5	ATOM	6452	CD	LYS			11.997	53.942 -9.154	1.00 14.29	A
	,										
		MOTA	6453	CE	LYS			13.335	53.242 -8.952	1.00 14.37	A
		MOTA	6454	NZ	LYS			13.215	51.764 -9.110	1.00 13.74	A
		MOTA	6455	С	LYS	Α	821	11.699	58.384 -8.723	1.00 14.86	Α
		ATOM	6456	0	LYS	Α	821	11.250	58.520 -7.586	1.00 15.44	A
	10	MOTA	6457	N	LEU	Α	822	12.873	58.882 -9.102	1.00 14.33	Α
		ATOM	6458	CA	LEU	Α	822	13.718	59.644 -8.188	1.00 13.96	Α
		ATOM	6459	СВ	LEU			15.136	59.067 -8.157	1.00 13.85	А
		ATOM	6460	CG	LEU			15.292	57.607 -7.720	1.00 14.60	A
										1.00 14.62	A
	15	ATOM	6461		LEU			16.770	57.238 -7.716		
	15	MOTA	6462		LEU			14.682	57.401 -6.338	1.00 14.91	A
		MOTA	6463	С	LEU			13.771	61.091 -8.666	1.00 14.06	Α
		ATOM	6464	0	LEU	Α	822	13.600	61.362 -9.854	1.00 14.20	Α
		ATOM	6465	N	PRO	Α	823	14.007	62.040 -7.747	1.00 13.37	Α
144		ATOM	6466	CD	PRO	Α	823	14.170	61.894 -6.290	1.00 13.31	Α
	20	ATOM	6467	CA	PRO			14.073	63.450 -8.146	1.00 13.08	А
9,5±3		ATOM	6468	СВ	PRO			14.109	64.191 -6.810	1.00 13.38	А
1,0				CG				14.794	63.219 -5.902	1.00 14.39	A
(M		ATOM	6469		PRO						
		ATOM	6470	С	PRO			15.287	63.743 -9.026	1.00 12.91	A
	0-	MOTA	6471	0	PRO			16.253	62.982 -9.050	1.00 12.74	Α
ã tạ i na c	25	MOTA	6472	N	LEU	Α	824	15.222	64.855 -9.749	1.00 12.02	А
10		MOTA	6473	CA	LEU	Α	824	16.284	65.262 -10.658	1.00 11.44	А
1,77		ATOM	6474	CB	LEU	Α	824	16.019	66.702 -11.119	1.00 11.62	Α
E)		ATOM	6475	CG	LEU	Α	824	16.802	67.283 -12.297	1.00 11.24	A
\$4 55		ATOM	6476		LEU			16.058	68.500 -12.841	1.00 11.66	А
	30	ATOM	6477		LEU			18.217	67.649 -11.863	1.00 11.13	A
1,44	50							17.692	65.146 -10.066	1.00 11.55	A
		ATOM	6478	C	LEU						
į.4		ATOM	6479	0	LEU			18.583	64.559 -10.684	1.00 11.18	A
		ATOM	6480	N	GLN			17.884	65.694 -8.870	1.00 11.18	A
		MOTA	6481	CA	GLN			19.197	65.675 -8.226	1.00 10.79	A
al	35	ATOM	6482	CB	GLN	Α	825	19.175	66.502 -6.931	1.00 11.13	A
		ATOM	6483	CG	GLN	Α	825	18.246	65.972 -5.846	1.00 10.84	Α
		ATOM	6484	CD	GLN	Α	825	16.829	66.517 -5.952	1.00 11.30	А
		ATOM	6485		GLN			16.400	66.980 -7.011	1.00 12.37	А
		ATOM	6486		GLN			16.092	66.450 -4.850	1.00 11.42	Α
	40	ATOM	6487	C	GLN			19.741	64.280 -7.934	1.00 11.24	A
	10			_				20.953		1.00 11.24	A
		ATOM	6488	0	GLN						
		ATOM	6489	N	ALA			18.855	63.291 -7.866	1.00 10.37	A
		ATOM	6490	CA	ALA	A	826	19.278	61.921 -7.597	1.00 10.73	A
		ATOM	6491	CB	ALA	Α	826	18.088	61.085 -7.131	1.00 10.59	А
	45	MOTA	6492	С	ALA	Α	826	19.884	61.304 -8.851	1.00 10.42	Α
		ATOM	6493	0	ALA	Α	826	20.657	60.348 -8.776	1.00 11.05	Α
		ATOM	6494	N	ASN			19.532	61.857 -10.008	1.00 9.96	A
		MOTA	6495	CA	ASN			20.039	61.349 -11.272	1.00 9.71	A
									61.489 -12.349	1.00 9.71	
	50	ATOM	6496	CB	ASN			18.964			A
	50	ATOM	6497	CG	ASN			17.836	60.490 -12.157	1.00 11.62	A
		ATOM	6498		ASN			18.050	59.282 -12.241	1.00 11.81	A
		MOTA	6499	ND2	ASN	Α	827	16.639	60.986 -11.879	1.00 12.88	Α
		ATOM	6500	С	ASN	Α	827	21.343	62.005 -11.694	1.00 9.32	Α
		ATOM	6501	0	ASN			21.849	61.765 -12.788	1.00 9.65	А
	55	ATOM	6502	N	TYR			21.883	62.834 -10.807	1.00 9.16	A
		111 019	3302	1.4	TIL	. 1	020	21.000	12.031 10.007		• •

									1 00 0 5:	_
		ATOM	6503	CA	TYR A		23.160		1.00 8.54	A
		MOTA	6504	CB	TYR A		23.222	64.852 -10.378	1.00 8.84	A
		ATOM	6505	CG	TYR A	828	23.250	65.996 -11.363	1.00 9.15	Α
		ATOM	6506	CD1	TYR A	A 828	22.189	66.211 -12.243	1.00 8.96	Α
	5	MOTA	6507	CE1	TYR A	828	22.235	67.235 -13.187	1.00 9.56	A
		ATOM	6508	CD2	TYR A	A 828	24.357	66.839 -11.447	1.00 9.13	A
		MOTA	6509	CE2	TYR A	828	24.412	67.863 -12.384	1.00 10.20	A
		ATOM	6510	CZ	TYR A	A 828	23.351	68.055 -13.252	1.00 9.60	А
		ATOM	6511	ОН	TYR A		23.418	69.048 -14.198	1.00 10.53	A
	10	ATOM	6512	С	TYR A		24.224	62.573 -10.459	1.00 8.13	А
	_	ATOM	6513	0	TYR A		24.041	62.030 -9.370	1.00 9.32	А
		ATOM	6514	N		A 829	25.324	62.398 -11.182	1.00 7.92	А
		ATOM	6515	CA		A 829	26.414	61.550 -10.726	1.00 7.93	А
		MOTA	6516	СВ		A 829	26.458	60.251 -11.533	1.00 7.94	A
	15	ATOM	6517	CG		A 829	25.293	59.338 -11.271	1.00 8.32	Α
		ATOM	6518		TYR A		24.122	59.432 -12.023	1.00 8.62	A
		MOTA	6519		TYR A		23.028	58.613 -11.752	1.00 8.83	Α
		ATOM	6520		TYR A		25.346	58.402 -10.241	1.00 7.20	Α
4 1 mg		ATOM	6521	CE2			24.258	57.579 -9.958	1.00 8.66	Α
	20	ATOM	6522	CZ		829	23.103	57.690 -10.717	1.00 8.09	A
		MOTA	6523	ОН		829	22.023	56.884 -10.434	1.00 9.63	Α
ŧ,⊈		ATOM	6524	С		A 829	27.745	62.257 -10.887	1.00 7.92	Α
Ţ		ATOM	6525	Ō		A 829	27.848	63.264 -11.584	1.00 8.32	A
		ATOM	6526	N		830	28.787	61.740 -10.228	1.00 7.99	А
1,0	25	ATOM	6527	CD		A 830	28.853	60.610 -9.286	1.00 9.08	A
14		MOTA	6528	CA		830	30.085	62.395 -10.376	1.00 8.33	A
M		ATOM	6529	СВ		830	30.971	61.672 -9.355	1.00 10.29	А
## T		MOTA	6530	CG		830		60.995 -8.414	1.00 10.63	А
er græfg		ATOM	6531	С		A 830	30.588	62.134 -11.797	1.00 7.87	А
	30	ATOM	6532	0		830	30.367	61.050 -12.345	1.00 7.95	А
1, <u>1,2</u> 1	-	ATOM	6533	N		831	31.225	63.128 -12.406	1.00 7.13	А
		ATOM	6534	CA		A 831	31.816	62.946 -13.728	1.00 7.22	A
ğı ağı		MOTA	6535	CB		831	31.253	63.925 -14.791	1.00 7.38	A
122		ATOM	6536		ILE A		31.722	63.484 -16.179	1.00 7.54	А
i.	35	MOTA	6537		ILE A		29.715	63.962 -14.744	1.00 7.69	A
		ATOM	6538		ILE A		29.019	62.634 -15.056	1.00 7.75	А
		ATOM	6539	С		A 831	33.285	63.274 -13.468	1.00 7.77	A
		ATOM	6540	0		831	33.774	64.351 -13.821	1.00 7.24	А
		ATOM	6541	N		A 832	34.007	62.353 -12.810	1.00 7.31	А
	40	MOTA	6542	CD	PRO A	A 832	33.562	61.108 -12.159	1.00 7.92	A
		ATOM	6543	CA		A 832	35.417	62.626 -12.525	1.00 8.14	А
		ATOM	6544	СВ		832	35.821	61.469 -11.600	1.00 7.96	A
		ATOM	6545	CG		A 832	34.862	60.381 -11.944	1.00 8.53	А
		ATOM	6546	C		832	36.322	62.793 -13.739	1.00 8.42	А
	45	ATOM	6547	0		832	37.307	63.523 -13.665	1.00 10.36	А
		ATOM	6548	N		833	35.996	62.142 -14.853	1.00 7.99	А
		ATOM	6549	CA		833	36.822	62.293 -16.049	1.00 7.57	Α
		ATOM	6550	СВ		A 833	38.028	61.346 -16.004	1.00 9.46	А
		ATOM	6551	OG		833	37.664	60.014 -16.297	1.00 11.27	A
	50	ATOM	6552	C		833	36.082	62.103 -17.370	1.00 7.78	А
		ATOM	6553	0		. 833 4 833	36.607	62.443 -18.426	1.00 6.86	A
		ATOM	6554	N	GLY A		34.868	61.570 -17.328	1.00 6.96	A
		ATOM	6555	CA	GLY A		34.156	61.391 -18.582	1.00 7.42	A
		MOTA	6556	C		3 834	32.773	60.792 -18.479	1.00 6.62	A
	55	ATOM	6557	0		A 834	32.773	60.209 -17.462	1.00 8.20	A
		ATON	000,	~	1011	. 554	52.554	13.202 1.1.02		

										_
		ATOM	6558	N	MSE .			60.942 -19.556	1.00 6.65	A
		ATOM	6559	CA	MSE .			60.420 -19.609	1.00 7.41	A
		MOTA	6560	СВ	MSE			61.418 -18.964	1.00 9.50	Α
	_	ATOM	6561	CG	MSE .			62.740 -19.725	1.00 10.76	A
	5	ATOM	6562	SE	MSE			64.091 -18.811	1.00 18.06	Α
		MOTA	6563	CE	MSE .			63.069 -18.482	1.00 14.51	Α
		ATOM	6564	С	MSE .			60.220 -21.071	1.00 7.29	A
		MOTA	6565	0	MSE .			60.874 -21.960	1.00 7.55	Α
	4.0	MOTA	6566	N	PHE .			59.302 -21.329	1.00 7.61	Α
	10	ATOM	6567	CA	PHE A			59.098 -22.697	1.00 8.24	A
		MOTA	6568	CB	PHE .			58.263 -23.501	1.00 7.78	A
		MOTA	6569	CG	PHE			56.824 -23.057	1.00 8.69	Α
		ATOM	6570		PHE A			55.834 -23.536	1.00 8.19	A
		ATOM	6571		PHE .			56.444 -22.232	1.00 9.29	Α
	15	MOTA	6572		PHE 2			54.489 -23.205	1.00 10.52	Α
		MOTA	6573		PHE .			55.100 -21.896	1.00 9.66	Α
		MOTA	6574	CZ	PHE			54.122 -22.388	1.00 9.92	Α
) . TT III.		MOTA	6575	С	PHE I			58.493 -22.795	1.00 9.14	Α
	•••	MOTA	6576	0	PHE			57.927 -21.832	1.00 8.90	A
٠.D	20	MOTA	6577	N	ILE A			58.686 -23.956	1.00 9.21	A
١,۵		ATOM	6578	CA	ILE .			58.120 -24.257	1.00 9.71	Α
17		MOTA	6579	CB	ILE A			59.175 -24.341	1.00 9.37	A
		MOTA	6580		ILE .			59.587 -22.947	1.00 10.54	A
	0=	MOTA	6581		ILE			60.357 -25.208	1.00 9.45	A
144	25	MOTA	6582		ILE .			61.309 -25.552	1.00 9.78	A
		MOTA	6583	С	ILE .			57.468 -25.616	1.00 9.49	A
		ATOM	6584	0	ILE			57.878 -26.413	1.00 9.37	A
E1		ATOM	6585	N	GLU .			56.442 -25.881	1.00 9.39	A
	20	ATOM	6586	CA	GLU .			55.748 -27.155	1.00 10.00	A
J	30	ATOM	6587	CB	GLU A			54.751 -27.114	1.00 10.07	A
4		MOTA	6588	CG	GLU I			53.609 -26.121	1.00 11.82	A
17		ATOM	6589	CD	GLU A			52.585 -26.066	1.00 12.98	A
1:25		ATOM	6590		GLU Z			51.612 -25.296	1.00 15.20	A
1,1	2=	ATOM	6591		GLU A			52.737 -26.784	1.00 15.16	A
•	35	ATOM	6592	C	GLU .			54.978 -27.484	1.00 10.72	A
		ATOM	6593	0	GLU A			54.747 -26.626 54.621 -28.754	1.00 10.48 1.00 11.70	A A
		ATOM	6594	N	ASP A			53.778 -29.192	1.00 11.70	A A
		ATOM	6595	CA	ASP A				1.00 12.02	A
	40	ATOM	6596	CB	ASP A			54.533 -30.004 55.233 -31.231	1.00 12.02	A
	40	ATOM	6597	CG	ASP A			54.777 -31.810	1.00 11.00	A
		ATOM	6598		ASP A			56.247 -31.629	1.00 15.05	A
		ATOM	6599		ASP A			52.704 -30.014	1.00 13.03	A
		ATOM	6600	C	ASP A			52.517 -29.891	1.00 12.39	A
	45	ATOM	6601	0	ASP A			51.990 -30.846	1.00 11.90	A
	43	MOTA	6602	N	ALA				1.00 12.31	A
		ATOM	6603	CA	ALA			50.931 -31.634	1.00 13.57	
		ATOM	6604	CB	ALA			50.198 -32.427		A
		ATOM	6605	C	ALA			51.387 -32.579	1.00 13.48	A
	EΩ	ATOM	6606	0	ALA			50.650 -32.815	1.00 14.95	A
	50	ATOM	6607	N	ASN A			52.606 -33.100	1.00 13.29	A
		ATOM	6608	CA	ASN A			53.083 -34.073	1.00 12.90	A
		ATOM	6609	CB	ASN A			53.445 -35.377	1.00 14.72	A A
		MOTA	6610	CG	ASN A			52.304 -35.927	1.00 15.43	A
	SE.	ATOM	6611		ASN A			51.207 -36.136	1.00 18.11	A
	55	ATOM	6612	ND2	ASN A	4 841	22.301	52.560 -36.167	1.00 17.87	А

									5. 050 00 515		10.00	
		ATOM	6613	С	ASN			26.011	54.258 -33.718		12.20	A
		MOTA	6614	0	ASN			27.100	54.389 -34.274		12.69	A
		ATOM	6615	N	THR			25.557	55.111 -32.810		11.81	A
	_	ATOM	6616	CA	THR			26.317	56.307 -32.485		11.57	A
	5	MOTA	6617	CB	THR			25.569	57.557 -33.001		11.76	A
		ATOM	6618					25.148	57.338 -34.354		13.92	A
		ATOM	6619	CG2				26.470	58.786 -32.954		11.70	A
		ATOM	6620	С	THR			26.594	56.505 -31.005		10.99	A
		MOTA	6621	0	THR			25.796	56.123 -30.154		11.90	A
	10	MOTA	6622	N	ARG			27.738	57.116 -30.712		10.93	A
		MOTA	6623	CA	ARG			28.110	57.411 -29.338	1.00	9.78	A
		MOTA	6624	CB	ARG			29.132	56.403 -28.801		10.05	A
		MOTA	6625	CG	ARG	A	843	29.601	56.731 -27.380		9.72	A
		ATOM	6626	CD	ARG			30.786	55.880 -26.941	1.00	9.07	A
	15	ATOM	6627	NE	ARG	Α	843	30.421	54.502 -26.612		9.80	A
		ATOM	6628	CZ	ARG	A	843	31.241	53.644 -26.011	1.00		A
		ATOM	6629	NH1	ARG	Α	843	32.469	54.019 -25.675		9.81	A
		ATOM	6630	NH2	ARG	Α	843	30.833	52.415 -25.731		10.05	A
1,22		ATOM	6631	С	ARG	Α	843	28.713	58.805 -29.262		9.19	A
1,2	20	MOTA	6632	0	ARG	A	843	29.414	59.245 -30.179		8.90	A
Ţ		ATOM	6633	N	LEU			28.409	59.501 -28.175		8.29	Α
1132		MOTA	6634	CA	LEU	A	844	28.956	60.826 -27.930		7.96	А
1,544 1,644 1,15 p		ATOM	6635	CB	LEU	A	844	27.871	61.908 -27.944			А
रुद्धार्थ संदर्भ		ATOM	6636	CG	LEU	Α	844	28.466	63.319 -27.799		9.51	Α
	25	MOTA	6637	CD1	LEU	A	844	29.388	63.614 -28.981		10.57	A
N		MOTA	6638	CD2	LEU	Α	844	27.353	64.350 -27.716		11.46	A
157		MOTA	6639	С	LEU	A	844	29.597	60.755 -26.555		7.93	А
ñ,		ATOM	6640	0	LEU	A	844	28.924	60.463 -25.561			А
		MOTA	6641	N	THR	A	845	30.900	61.007 -26.516		8.37	А
	30	ATOM	6642	CA	THR	A	845	31.647	60.968 -25.268			А
1ij		ATOM	6643	CB	THR	A	845	32.823	59.975 -25.346			A
lat.		MOTA	6644		THR			32.344	58.688 -25.762			A
		MOTA	6645	CG2	THR	A	845	33.494	59.837 -23.988			А
		ATOM	6646	С	THR	Α	845	32.220	62.342 -24.949		8.06	A
ļaš:	35	MOTA	6647	0	THR	A	845	32.815	62.996 -25.807			A
		MOTA	6648	N	LEU	A	846	32.025	62.777 -23.713			A
		MOTA	6649	CA	LEU			32.552	64.054 -23.264			A
		MOTA	6650	CB	LEU			31.444	64.924 -22.667			A
		ATOM	6651	CG	LEU			31.893	66.296 -22.158			A
	4 0	MOTA	6652	CD1	LEU	A	846	32.337	67.159 -23.333			A
		ATOM	6653	CD2	LEU	A	846	30.751	66.964 -21.402		11.17	A
		ATOM	6654	С	LEU	A	846	33.583	63.733 -22.193			A
		ATOM	6655	0	LEU	A	846	33.241	63.165 -21.155			A
		MOTA	6656	N	LEU			34.843	64.057 -22.467			A
	45	MOTA	6657	CA	LEU			35.919	63.824 -21.509			A
		ATOM	6658	CB	LEU	A	847	37.194	63.357 -22.214			A
		MOTA	6659	CG	LEU	Α	847	37.177	62.018 -22.965			А
		ATOM	6660	CD1	LEU	A	847	36.564	60.942 -22.078			A
		MOTA	6661	CD2	LEU	Α	847	36.393	62.144 -24.267			A
	50	ATOM	6662	С	LEU	A	847	36.181	65.138 -20.786			А
		ATOM	6663	0	LEU	Α	847	36.068	66.214 -21.389			А
		ATOM	6664	N	THR	Α	848	36.531	65.058 -19.503			А
		ATOM	6665	CA	THR	Α	848	36.781	66.268 -18.716			А
		ATOM	6666	СВ	THR			35.796	66.393 -17.537	1.00	9.99	Α
	55	ATOM	6667	OG1	THR			36.158	65.457 -16.510	1.00	12.32	А

		ATOM	6668	CG2	THR A	848	34.383	66.109 -17.986	1.00 10.74	Α
		MOTA	6669	С	THR A	848	38.183	66.365 -18.127	1.00 8.03	A
		ATOM	6670	0	THR A	848	38.852	65.354 -17.886	1.00 8.97	Α
		ATOM	6671	N	GLY A	849	38.620	67.598 -17.891	1.00 7.93	Α
	5	ATOM	6672	CA	GLY A	849	39.923	67.822 -17.298	1.00 7.56	Α
		ATOM	6673	С	GLY A	849	39.761	68.195 -15.836	1.00 7.38	Α
		MOTA	6674	0	GLY A	849	40.708	68.628 -15.182	1.00 7.22	A
		ATOM	6675	N	GLN A	850	38.544	68.027 -15.328	1.00 6.67	Α
		MOTA	6676	CA	GLN A	850	38.219	68.334 -13.940	1.00 7.10	A
	10	ATOM	6677	CB	GLN A	850	38.021	69.847 -13.759	1.00 7.43	А
		MOTA	6678	CG	GLN A	850	36.891	70.455 -14.612	1.00 7.11	Α
		ATOM	6679	CD	GLN A	850	37.239	70.552 -16.086	1.00 7.63	А
		MOTA	6680	OE1	GLN A	850	38.338	70.967 -16.454	1.00 8.22	A
		MOTA	6681	NE2	GLN A	850	36.289	70.183 -16.945	1.00 7.13	A
	15	MOTA	6682	С	GLN A		36.939	67.601 -13.543	1.00 7.56	Α
		MOTA	6683	0	GLN A	850	36.058	67.387 -14.375	1.00 7.52	Α
		MOTA	6684	N	PRO A	851	36.827	67.194 -12.269	1.00 6.72	A
		MOTA	6685	CD	PRO A		37.849	67.209 -11.207	1.00 6.45	A
1122	•	MOTA	6686	CA	PRO A		35.619	66.492 -11.829	1.00 6.46	Α
ı,D	20	ATOM	6687	CB	PRO A		36.060	65.825 -10.525	1.00 6.15	A
		MOTA	6688	CG	PRO A		37.056	66.810 -9.976	1.00 6.55	Α
		ATOM	6689	С	PRO A		34.473	67.474 -11.623	1.00 7.19	A
		ATOM	6690	0	PRO A		34.643	68.516 -10.982	1.00 7.03	A
रैशक्ष्य ं प्रसुद्ध	0-	ATOM	6691	N	LEU A		33.316	67.144 -12.190	1.00 7.54	A
Com Com	25	ATOM	6692	CA	LEU A		32.120	67.977 -12.083	1.00 8.39	A
IU.		ATOM	6693	СВ	LEU A		32.022	68.920 -13.290	1.00 8.88	A
		ATOM	6694	CG	LEU A		33.166	69.925 -13.485	1.00 8.62	A
81		MOTA	6695		LEU A		33.096	70.522 -14.891	1.00 9.44	A
	20	ATOM	6696		LEU A		33.089	71.015 -12.431	1.00 8.95	A
	30	ATOM	6697	C	LEU A		30.905	67.055 -12.048	1.00 8.99	A
M		ATOM	6698	0	LEU A		31.022	65.872 -12.351	1.00 10.89	A
į.l		MOTA	6699	N	GLY A		29.750	67.593 -11.673	1.00 7.59 1.00 7.39	A
		ATOM	6700	CA	GLY A		28.545	66.781 -11.619 66.774 -12.955	1.00 7.39 1.00 7.76	A A
	35	MOTA	6701 6702	С	GLY A		27.827 27.871	67.760 -13.699	1.00 7.76	A
E	33	MOTA	6702	O N	GLY A		27.157	65.672 -13.273	1.00 7.30	A
		ATOM	6704	CA	GLY A		26.458	65.610 -14.543	1.00 8.09	A
		ATOM ATOM	6704	CA	GLY A		25.406	64.527 -14.623	1.00 7.89	A
		ATOM	6706	0	GLY A		25.239	63.734 -13.695	1.00 8.50	A
	40	MOTA	6707	N	SER A		24.703	64.480 -15.749	1.00 8.37	A
	10	ATOM	6708	CA	SER A		23.649	63.494 -15.931	1.00 9.33	A
		MOTA	6709	CB	SER A		22.461	63.853 -15.032	1.00 10.99	A
		ATOM	6710	OG	SER A		21.407	62.906 -15.128	1.00 10.64	A
		ATOM	6711	C	SER A		23.186	63.483 -17.378	1.00 9.38	A
	45	ATOM	6712	0	SER A		23.755	64.156 -18.237	1.00 9.01	A
	10	ATOM	6713	N	SER A		22.153	62.687 -17.629	1.00 9.89	A
		ATOM	6714	CA	SER A		21.502	62.599 -18.933	1.00 10.04	A
		ATOM	6715	СВ	SER A		21.872	61.313 -19.670	1.00 9.85	A
		ATOM	6716	OG	SER A		21.144	61.223 -20.889	1.00 10.25	A
	50	ATOM	6717	C	SER A		20.041	62.560 -18.515	1.00 10.83	A
		ATOM	6718	0	SER A		19.507	61.496 -18.203	1.00 11.04	A
		ATOM	6719	N	LEU A		19.405	63.729 -18.491	1.00 11.03	A
		ATOM	6720	CA	LEU A		18.020	63.834 -18.051	1.00 11.33	A
		MOTA	6721	CB	LEU A		17.776	65.233 -17.475	1.00 12.21	A
	55	ATOM	6722	CG	LEU A		18.613	65.514 -16.224	1.00 12.41	A
								- · · ·	1	

		MOTA	6723	CD1	LEU A	857	18.420	66.959 -15.772	1.00 12.54	Α
		MOTA	6724	CD2	LEU A	857	18.213	64.538 -15.117	1.00 13.38	Α
		ATOM	6725	C	LEU A		16.970	63.499 -19.099	1.00 11.41	А
							15.775	63.478 -18.800	1.00 12.16	A
	_	MOTA	6726	0	LEU A					
	5	MOTA	6727	N	ALA A		17.422	63.235 -20.320	1.00 10.23	Α
		ATOM	6728	CA	ALA A	858	16.532	62.871 -21.417	1.00 10.98	А
		ATOM	6729	CB	ALA A	858	15.852	64.117 -21.999	1.00 10.30	А
		ATOM	6730	С	ALA A	858	17.333	62.156 -22.494	1.00 11.53	Α
		ATOM	6731	0	ALA A		18.530	62.395 -22.655	1.00 11.99	Α
	10	ATOM	6732	N	SER A		16.667	61.270 -23.226	1.00 11.71	Α
	10	ATOM	6733	CA	SER A		17.314	60.518 -24.287	1.00 11.84	A
								59.722 -25.077	1.00 12.18	A
		ATOM	6734	CB	SER A		16.265			
		ATOM	6735	OG	SER A		16.863	58.942 -26.094	1.00 13.57	A
		MOTA	6736	С	SER A		18.063	61.465 -25.218	1.00 11.69	А
	15	ATOM	6737	0	SER A	859	17.535	62.508 -25.612	1.00 12.09	Α
		ATOM	6738	N	GLY A	860	19.299	61.101 -25.542	1.00 11.53	Α
		ATOM	6739	CA	GLY A		20.117	61.904 -26.435	1.00 11.19	Α
		ATOM	6740	С	GLY A		20.846	63.073 -25.798	1.00 11.05	Α
\$1º00		ATOM	6741	0	GLY A		21.585	63.780 -26.483	1.00 10.94	А
?;≈ 2 ? ≈=.	20			N	GLU A		20.665	63.276 -24.496	1.00 10.54	A
المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم المنظم	20	ATOM	6742						1.00 10.72	A
		MOTA	6743	CA	GLU A		21.318	64.390 -23.812		
M		MOTA	6744	CB	GLU A		20.309	65.181 -22.981	1.00 11.69	A
		MOTA	6745	CG	GLU A	861	19.143	65.764 -23.742	1.00 13.84	А
		MOTA	6746	CD	GLU A	861	18.277	66.649 -22.863	1.00 14.55	Α
E €# sax	25	MOTA	6747	OE1	GLU A	861	18.521	66.706 -21.638	1.00 15.28	Α
		ATOM	6748	OE2	GLU A	861	17.348	67.291 -23.395	1.00 16.06	A
		ATOM	6749	С	GLU A	861	22.460	64.020 -22.874	1.00 10.67	Α
ā;		MOTA	6750	Õ	GLU A		22.543	62.907 -22.357	1.00 10.90	Α
		ATOM	6751	N	LEU A		23.333	64.998 -22.665	1.00 10.06	A
1100F	30							64.894 -21.736	1.00 9.88	A
J	30	ATOM	6752	CA	LEU A		24.455			
		MOTA	6753	CB	LEU A		25.775	64.590 -22.451	1.00 9.80	A
ļ.		ATOM	6754	CG	LEU A		26.088	63.195 -22.990	1.00 9.38	Α
		ATOM	6755	CD1	LEU A	862	27.467	63.212 -23.644	1.00 8.93	А
l-T		MOTA	6756	CD2	LEU A	862	26.054	62.182 -21.852	1.00 10.32	Α
1	35	ATOM	6757	С	LEU A	862	24.553	66.286 -21.143	1.00 9.97	Α
		ATOM	6758	0	LEU A	862	24.420	67.272 -21.865	1.00 10.40	Α
		MOTA	6759	N	GLU A	863	24.748	66.387 -19.838	1.00 9.17	Α
		ATOM	6760	CA	GLU A		24.905	67.705 -19.243	1.00 8.61	Α
		ATOM	6761	СВ	GLU A		23.562	68.289 -18.791	1.00 9.86	А
	40						22.976	67.732 -17.514	1.00 9.77	A
	40	ATOM	6762	CG	GLU A				1.00 10.41	
		ATOM	6763	CD	GLU A		21.678	68.431 -17.154		A
		ATOM	6764		GLU A		21.570	68.956 -16.028	1.00 10.63	A
		ATOM	6765	OE2	GLU A		20.764	68.458 -18.008	1.00 11.95	Α
		ATOM	6766	С	GLU A	863	25.878	67.629 -18.090	1.00 9.12	Α
	45	ATOM	6767	0	GLU A	863	25.975	66.608 -17.408	1.00 7.97	Α
		ATOM	6768	N	ILE A	864	26.612	68.713 -17.887	1.00 9.26	Α
		ATOM	6769	CA	ILE A		27.608	68.757 -16.835	1.00 9.59	Α
		ATOM	6770	СВ	ILE A		28.987	68.324 -17.416	1.00 9.91	A
								69.265 -18.541	1.00 10.24	A
	E 0	ATOM	6771		ILE A		29.401			
	50	ATOM	6772		ILE A		30.040	68.250 -16.308	1.00 10.77	A
		MOTA	6773		ILE A		31.299	67.497 -16.735	1.00 11.71	Α
		ATOM	6774	С	ILE A	864	27.649	70.161 -16.234	1.00 9.24	А
		ATOM	6775	0	ILE A	864	27.713	71.164 -16.956	1.00 9.45	Α
		MOTA	6776	N	MSE A	865	27.580	70.226 -14.908	1.00 8.75	Α
	55	ATOM	6777	CA	MSE A		27.580	71.496 -14.193	1.00 9.06	Α
		·								

		T TOM	6770	CD	MSE A	065	27.176	71.269	-12 733	1.00 11.05	А
		ATOM	6778	CB				72.478		1.00 11.05	A
		ATOM	6779	CG	MSE A		26.538				
		MOTA	6780	SE	MSE A		24.827	72.915		1.00 18.59	A
	_	ATOM	6781	CE	MSE A		23.751	71.627		1.00 12.98	A
	5	MOTA	6782	С	MSE A	865	28.936	72.200	-14.257	1.00 9.30	A
		MOTA	6783	0	MSE A	865	29.984	71.569	-14.105	1.00 9.37	A.
		MOTA	6784	N	GLN A	866	28.903	73.514	-14.467	1.00 9.20	A
		ATOM	6785	CA	GLN A	866	30.121	74.316	-14.581	1.00 8.74	Α
		ATOM	6786	СВ	GLN A		29.942	75.368	-15.673	1.00 9.56	Α
	10	ATOM	6787	CG	GLN A		29.577	74.765		1.00 9.63	А
	10	ATOM	6788	CD	GLN A		30.598	73.749		1.00 9.75	А
		MOTA	6789	OE1			31.725	74.097		1.00 10.41	A
		ATOM	6790		GLN A		30.215	72.479		1.00 9.11	A
							30.513	74.986		1.00 9.34	A
	15	ATOM	6791	С	GLN A						
	15	ATOM	6792	0	GLN A		31.686	75.021		1.00 9.31	A
		ATOM	6793	N	ASP A		29.529	75.549		1.00 9.02	A
		ATOM	6794	CA	ASP A		29.770	76.177		1.00 9.28	A
		ATOM	6795	CB	ASP A		30.539	77.495		1.00 9.80	Α
		MOTA	6796	CG	ASP A		31.224	77.920		1.00 9.59	A
ı,D	20	ATOM	6797	OD1	ASP A	867	31.051		-9.089	1.00 9.81	А
ŧΞ		ATOM	6798	OD2	ASP A	867	31.944	78.937	-10.144	1.00 11.47	A
		ATOM	6799	С	ASP A	867	28.430	76.428	-10.630	1.00 9.67	Α
agy u g(aug		ATOM	6800	0	ASP A	867	27.381	76.361	-11.281	1.00 10.05	Α
fired en k		ATOM	6801	N	ARG A		28.470	76.705	-9.335	1.00 10.02	Α
	25	ATOM	6802	CA	ARG A		27.263	76.958	-8.573	1.00 10.34	А
W.		MOTA	6803	СВ	ARG A		26.748	75.646	-7.969	1.00 10.15	A
		ATOM	6804	CG	ARG A		27.773	74.880	-7.138	1.00 10.84	A
B;		ATOM	6805	CD	ARG A		27.464	73.380	-7.140	1.00 10.25	A
		ATOM	6806	NE	ARG A		26.101	73.108	-6.696	1.00 9.69	A
1;≈# .;≈#;	30						25.761	72.818	-5.444	1.00 9.26	A
ij	50	ATOM	6807	CZ	ARG A			72.743	-4.496	1.00 9.20	A
i Çi		MOTA	6808		ARG A		26.687				
į.≱.		ATOM	6809		ARG A		24.486	72.628	-5.136	1.00 9.51	A
		MOTA	6810	С	ARG A		27.570	77.977	-7.486	1.00 10.82	A
[d	2-	ATOM	6811	0	ARG A		28.606	77.901	-6.825	1.00 11.25	A
2	35	ATOM	6812	N	ARG A		26.671	78.944	-7.333	1.00 10.70	A
		ATOM	6813	CA	ARG A		26.816	80.003	-6.337	1.00 11.61	A
		ATOM	6814	CB	ARG A		26.990	81.357	-7.037	1.00 11.61	А
		MOTA	6815	CG	ARG A	869	27.262	82.532	-6.103	1.00 12.74	A
		ATOM	6816	CD	ARG A	869	27.557	83.804	-6.889	1.00 13.91	Α
	40	MOTA	6817	NE	ARG A	869	27.739	84.974	-6.029	1.00 15.08	A
		ATOM	6818	CZ	ARG A	869	28.853	85.263	-5.364	1.00 15.70	Α
		ATOM	6819	NH1	ARG A		29.911	84.470	-5.451	1.00 16.09	А
		ATOM	6820		ARG A		28.907	86.351	-4.605	1.00 17.21	А
		ATOM	6821	С	ARG A		25.525	79.962	-5.531	1.00 12.83	А
	45	ATOM	6822	0	ARG A		24.445	80.221	-6.061	1.00 12.65	А
	10	ATOM	6823	N	LEU A		25.650	79.610	-4.255	1.00 13.19	A
							24.505	79.472	-3.357	1.00 14.88	A
		ATOM	6824	CA	LEU A				-2.934	1.00 14.84	A
		ATOM	6825	CB	LEU A		24.395	78.012			
	F 0	ATOM	6826	CG	LEU A		24.440	77.060	-4.132	1.00 16.12	A
	50	ATOM	6827		LEU A		24.778	75.671	-3.659	1.00 16.16	A
		ATOM	6828		LEU A		23.116	77.092	-4.880	1.00 15.69	A
		MOTA	6829	С	LEU A		24.603	80.362	-2.123	1.00 15.84	A
		ATOM	6830	0	LEU A	870	25.596	80.333	-1.396	1.00 15.42	A
		ATOM	6831	N	ALA A	871	23.548	81.131	-1.877	1.00 17.32	А
	55	ATOM	6832	CA	ALA A	871	23.521	82.055	-0.752	1.00 19.19	Α

		ATOM	6833	CB	ALA	Α	871	22.497	83.152	-1.023	1.00 19.49	Α
		MOTA	6834	С	ALA	Α	871	23.250	81.427	0.611	1.00 20.12	Α
		ATOM	6835	0	ALA			23.687	81.954	1.634	1.00 21.06	Α
		ATOM	6836	N	SER			22.546	80.303	0.640	1.00 20.24	А
	5	ATOM	6837	CA	SER			22.227	79.684	1.921	1.00 20.96	А
	9	ATOM	6838	CB	SER			20.729	79.374	1.988	1.00 22.69	A
								20.723	78.455	0.981	1.00 26.69	A
		MOTA	6839	OG	SER				78.430	2.275	1.00 20.07	A
		ATOM	6840	С	SER			23.016				
	10	ATOM	6841	0	SER			23.619	77.782	1.418	1.00 19.32	A
	10	ATOM	6842	N	ASP			23.009	78.115	3.567	1.00 19.80	A
		MOTA	6843	CA	ASP			23.680	76.938	4.105	1.00 19.26	A
		ATOM	6844	CB	ASP			24.046	77.187	5.572	1.00 19.50	А
		ATOM	6845	CG	ASP			24.426	75.918	6.308	1.00 19.97	А
		MOTA	6846	OD1	ASP	Α	873	23.546	75.332	6.977	1.00 19.80	Α
	15	ATOM	6847	OD2	ASP	Α	873	25.602	75.505	6.214	1.00 20.62	Α
		ATOM	6848	С	ASP	Α	873	22.697	75.779	3.979	1.00 18.67	Α
		ATOM	6849	0	ASP	Α	873	21.488	75.985	4.077	1.00 18.83	Α
		ATOM	6850	N	ASP			23.201	74.568	3.752	1.00 17.49	Α
jias,		ATOM	6851	CA	ASP	Α	874	22.318	73.417	3.602	1.00 16.56	Α
العدرا	20	ATOM	6852	СВ	ASP			22.678	72.623	2.338	1.00 15.33	Α
ı,Q		MOTA	6853	CG	ASP			24.160	72.341	2.217	1.00 15.79	Α
		ATOM	6854		ASP			24.932	72.741	3.115	1.00 14.72	A
in i		ATOM	6855		ASP			24.547	71.716	1.210	1.00 13.54	A
i i								22.226	72.486	4.809	1.00 17.23	A
14	25	ATOM	6856	C	ASP			22.220	71.269	4.668	1.00 17.23	A
1 14 7	23	ATOM	6857	0	ASP			22.119	73.083	5.995	1.00 17.24	A
		ATOM	6858	N	GLU							
(T		ATOM	6859	CA	GLU			22.132	72.370	7.261	1.00 18.30	A
#1		MOTA	6860	CB	GLU			20.653	72.025	7.481	1.00 21.02	A
	20	ATOM	6861	CG	GLU			19.741	73.249	7.502	1.00 24.64	A
	30	MOTA	6862	CD	GLU			18.302	72.916	7.858	1.00 26.93	A
19 S		ATOM	6863		GLU			18.069	72.346	8.945	1.00 28.85	A
1927 1 a		ATOM	6864	OE2	GLU	Α	875	17.401	73.230	7.053	1.00 29.01	А
		MOTA	6865	С	GLU	Α	875	22.977	71.123	7.503	1.00 17.56	А
		ATOM	6866	0	GLU	А	875	22.499	70.160	8.109	1.00 17.20	A
Ęu≇.	35	MOTA	6867	N	ARG	Α	876	24.226	71.130	7.051	1.00 16.12	A
		ATOM	6868	CA	ARG	Α	876	25.091	69.980	7.285	1.00 15.68	Α
		MOTA	6869	СВ	ARG	Α	876	25.519	69.343	5.955	1.00 14.98	Α
		ATOM	6870	CG	ARG	Α	876	24.365	68.665	5.196	1.00 14.42	A
		ATOM	6871	CD	ARG	Α	876	23.701	67.581	6.046	1.00 13.74	А
	40	MOTA	6872	NE	ARG			22.636	66.850	5.354	1.00 13.11	Α
	20	ATOM	6873	CZ	ARG			21.460	67.366	5.004	1.00 13.22	А
		MOTA	6874		ARG			21.179	68.636	5.267	1.00 12.68	А
		ATOM	6875		ARG			20.548	66.601	4.411	1.00 12.89	A
			6876	C	ARG			26.307	70.364	8.130	1.00 15.55	A
	45	ATOM						27.273	69.605	8.231	1.00 16.13	A
	43	ATOM	6877	0	ARG						1.00 15.42	A
		ATOM	6878	N	GLY			26.249	71.548	8.738		
		MOTA	6879	CA	GLY			27.328	71.996	9.601	1.00 14.96	A
		ATOM	6880	С	GLY			28.340	72.984	9.049	1.00 14.99	A
		ATOM	6881	0	GLY			29.112	73.563	9.818	1.00 14.85	A
	50	MOTA	6882	N	LEU	A	878	28.344	73.192	7.736	1.00 14.62	А
		ATOM	6883	CA	LEU	A	878	29.299	74.113	7.122	1.00 15.39	А
		ATOM	6884	СВ	LEU	A	878	29.168	74.072	5.597	1.00 14.87	A
		ATOM	6885	CG	LEU	А	878	30.078	74.997	4.782	1.00 15.40	Α
		MOTA	6886	CD1	LEU	А	878	31.532	74.844	5.224	1.00 15.22	Α
	55	ATOM	6887		LEU			29.928	74.663	3.308	1.00 15.32	А

		ATOM	6888	С	LEU	Α	878	29.134	75.543	7.630	1.00	15.66	А
		ATOM	6889	Ō			878	30.119	76.257	7.823		15.76	A
		ATOM	6890	N			879	27.888	75.957	7.843		15.47	A
	=	ATOM	6891	CA			879	27.631	77.293	8.355		16.15	A
	5	ATOM	6892	С			879	27.788	78.428	7.361		16.58	Α
		ATOM	6893	0			879	27.968	79.580	7.755		17.29	А
		ATOM	6894	N	GLN	Α	880	27.729	78.108	6.074	1.00	16.52	А
		ATOM	6895	CA	GLN	Α	880	27.843	79.125	5.035	1.00	16.57	A
		ATOM	6896	CB	GLN	Α	880	29.284	79.648	4.919	1.00	16.88	А
	10	ATOM	6897	CG			880	30.329	78.599	4.526		17.13	А
		ATOM	6898	CD			880	31.561	79.211	3.873		17.00	A
		ATOM	6899	OE1			880	31.577	79.470	2.665		18.68	A
		ATOM	6900		GLN			32.594	79.458	4.668		15.41	A
	4 -	ATOM	6901	С			880	27.415	78.556	3.696		16.89	A
	15	MOTA	6902	0	GLN	Α	880	27.350	77.338	3.519		17.17	A
		ATOM	6903	N	GLY	Α	881	27.104	79.447	2.762	1.00	17.12	Α
		ATOM	6904	CA	GLY	Α	881	26.725	79.010	1.436	1.00	16.41	Α
		ATOM	6905	С	GLY	Α	881	28.008	78.947	0.634	1.00	15.96	А
		ATOM	6906	0	GLY			29.092	78.817	1.203	1.00	16.71	А
ŀ	20	ATOM	6907	N			882	27.893	79.037	-0.682		14.79	A
:		ATOM	6908	CA			882	29.060	79.011	-1.552	1.00		A
		ATOM						28.998	77.814	-2.520		13.86	A
			6909	CB	VAL								
		ATOM	6910	CG1				30.185	77.843	-3.463		13.33	A
	0.5	ATOM	6911	CG2			882	28.987	76.517	-1.726		14.87	A
	25	ATOM	6912	С	VAL	Α	882	29.029	80.320	-2.328		13.86	A
		ATOM	6913	0	VAL	Α	882	28.353	80.432	-3.348	1.00	13.36	A
		ATOM	6914	N	LEU	Α	883	29.755	81.312	-1.823	1.00	13.97	A
		ATOM	6915	CA	LEU	Α	883	29.791	82.635	-2.440	1.00	14.37	А
		ATOM	6916	СВ			883	29.119	83.650	-1.505		14.55	А
	30	ATOM	6917	CG	LEU			27.615	83.481	-1.256		14.33	A
		ATOM	6918		LEU			27.175	84.299	-0.052		14.92	A
		ATOM	6919		LEU			26.859	83.928	-2.490		14.87	A
		ATOM	6920	С	LEU			31.209	83.100	-2.761		14.74	A
	25	ATOM	6921	0			883	31.432	84.280	-3.044		16.88	A
	35	ATOM	6922	N	ASP			32.162	82.174	-2.723		14.04	А
		ATOM	6923	CA	ASP			33.555	82.500	-2.998		14.10	Α
		MOTA	6924	CB	ASP	Α	884	34.458	81.898	-1.918	1.00	14.38	А
		ATOM	6925	CG	ASP	Α	884	34.250	80.402	-1.737	1.00	15.01	Α
		ATOM	6926	OD1	ASP	Α	884	34.925	79.826	-0.858	1.00	16.17	A
	40	ATOM	6927	OD2	ASP	Α	884	33.421	79.803	-2.461	1.00	13.93	А
		ATOM	6928	С	ASP			34.021	82.044	-4.376	1.00	13.67	A
		ATOM	6929	0	ASP			35.193	81.721	-4.570		13.79	A
		ATOM	6930	N	ASN			33.095	82.024	-5.329		12.72	A
									81.620	-6.695		12.83	A
	45	ATOM	6931	CA	ASN			33.404					
	45	MOTA	6932	CB			885	32.163	81.746	-7.579		12.72	A
		ATOM	6933	CG	ASN			30.973	81.001	-7.024		12.80	А
		ATOM	6934		ASN			30.700	79.860	-7.403		13.90	A
		MOTA	6935	ND2	ASN	Α	885	30.257	81.640	-6.109		12.56	Α
		ATOM	6936	С	ASN	Α	885	34.499	82.493	-7.289	1.00	12.83	Α
	50	MOTA	6937	0	ASN			34.643	83.666	-6.936	1.00	12.92	Α
		ATOM	6938	N	LYS			35.265	81.910	-8.202		13.20	A
		ATOM	6939	CA	LYS			36.329	82.624	-8.887		13.92	A
		ATOM	6940	CB	LYS			37.657	82.454	-8.140		16.49	A
												17.99	
	55	MOTA	6941	CG	LYS			38.096	81.015	-7.938			A
	55	MOTA	6942	CD	LYS	A	886	39.235	80.913	-6.924	1.00	20.54	А

	ATOM	6943	CE	LYS	Α	886	40.472	81.669	-7.386	1.00	21.34	А
	MOTA	6944	NZ			886	41.570	81.615	-6.383	1.00	22.47	Α
	ATOM	6945	С	LYS			36.420	82.055	-10.295	1.00	12.96	Α
	ATOM	6946	0	LYS			36.052	80.903	-10.534	1.00	12.96	Α
5	MOTA	6947	N			887	36.890	82.859	-11.256	1.00	12.00	Α
	ATOM	6948	CD			887	37.275	84.279	-11.160	1.00	12.17	А
	ATOM	6949	CA			887	37.002	82.378	-12.633	1.00	10.97	A
	MOTA	6950	CB			887	37.687	83.537	-13.348	1.00	11.84	А
	ATOM	6951	CG			887	37.179	84.731	-12.593	1.00	12.42	Α
10	ATOM	6952	C			887	37.805	81.087	-12.734	1.00	10.67	А
	MOTA	6953	0	PRO			38.866	80.951	-12.129	1.00	11.60	Α
	ATOM	6954	N	VAL			37.282	80.137	-13.498	1.00	9.48	A
	ATOM	6955	CA	VAL			37.955		-13.692	1.00	8.96	А
	ATOM	6956	СВ	VAL			37.335	77.755	-12.797	1.00	9.00	А
15	ATOM	6957		VAL			35.836	77.648	-13.048	1.00	9.81	А
	ATOM	6958		VAL			38.021		-13.064	1.00	9.13	А
	ATOM	6959	С	VAL			37.852	78.466	-15.153	1.00	8.88	Α
	ATOM	6960	0	VAL			36.823	78.697	-15.802	1.00	8.91	A
	ATOM	6961	N	LEU			38.928	77.890	-15.677	1.00	7.75	А
20	MOTA	6962	CA	LEU			38.935		-17.058	1.00	8.80	А
	ATOM	6963	СВ			889	40.257	77.794	-17.745	1.00	9.25	А
	ATOM	6964	CG	LEU			40.336	77.379	-19.223	1.00	9.85	А
	ATOM	6965		LEU			39.386		-20.050	1.00	11.06	Α
	ATOM	6966		LEU			41.766		-19.728	1.00	12.10	А
25	ATOM	6967	С	LEU			38.731	75.924	-17.113	1.00	8.95	А
-	ATOM	6968	0	LEU			39.648	75.150	-16.820	1.00	9.54	А
	ATOM	6969	N			890	37.519	75.508	- 17.462	1.00	7.95	A
	ATOM	6970	CA			890	37.214	74.086	-17.580	1.00	8.10	А
	ATOM	6971	СВ	HIS			35.725	73.824	-17.360	1.00	7.90	А
30	ATOM	6972	CG			890	35.281	73.998	-15.944	1.00	8.99	А
	ATOM	6973	CD2	HIS			34.112	74.441	-15.426	1.00	9.25	A
	ATOM	6974		HIS			36.066	73.637	-14.870	1.00	9.76	A
	ATOM	6975		HIS			35.399	73.851	-13.751	1.00	9.66	A
	ATOM	6976		HIS			34.210	74.339	-14.060	1.00	10.10	A
35	ATOM	6977	С	HIS	Α	890	37.584	73.618	-18.977	1.00	7.85	А
	ATOM	6978	0	HIS	Α	890	37.361	74.335	-19.952	1.00	8.19	А
	ATOM	6979	N	ILE	Α	891	38.136	72.415	-19.079	1.00	7.06	А
	ATOM	6980	CA	ILE	Α	891	38.519	71.885	-20.376	1.00	7.02	А
	ATOM	6981	CB	ILE	Α	891	40.055	71.799	-20.507	1.00	6.50	A
40	ATOM	6982	CG2	ILE	Α	891	40.666	73.181	-20.267	1.00	9.58	А
	ATOM	6983	CG1	ILE	Α	891	40.627	70.806	-19.492	1.00	7.14	А
	ATOM	6984	CD1	ILE	Α	891	42.131	70.611	-19.644	1.00	7.48	A
	ATOM	6985	С	ILE	Α	891	37.886	70.523	-20.633	1.00	6.87	A
	ATOM	6986	0	ILE	Α	891	37.640	69.751	-19.699	1.00	6.90	А
45	ATOM	6987	N	TYR	Α	892	37.619	70.244	-21.905	1.00	6.24	A
	ATOM	6988	CA	TYR	Α	892	36.982	68.996	-22.326	1.00	6.85	А
	ATOM	6989	CB	TYR	Α	892	35.454	69.156	-22.391	1.00	6.74	Α
	MOTA	6990	CG	TYR	Α	892	34.795	69.841	-21.224	1.00	6.68	A
	ATOM	6991	CD1	TYR	Α	892	34.759	71.233	-21.128	1.00	7.35	А
50	MOTA	6992	CE1	TYR	Α	892	34.141	71.860	-20.048	1.00	6.58	А
	MOTA	6993	CD2	TYR	Α	892	34.200		-20.214	1.00	7.90	Α
	ATOM	6994	CE2	TYR	Α	892	33.589	69.699	-19.136	1.00	8.12	А
	ATOM	6995	CZ	TYR	Α	892	33.560	71.080	-19.054	1.00	7.15	А
	MOTA	6996	ОН			892	32.959	71.661	-17.970	1.00	8.40	A
55	ATOM	6997	С	TYR	A	892	37.395	68.586	-23.731	1.00	7.49	А

			co.o.o	_	m	000	20.011	60 240 0: :50	1 00 7 00	•
		ATOM	6998	0	TYR A		38.014	69.349 -24.463	1.00 7.08	A
		MOTA	6999	N	ARG A		37.038	67.355 -24.091	1.00 7.23	A
		ATOM	7000	CA	ARG A		37.233	66.847 -25.449	1.00 7.84	A
	-	MOTA	7001	CB	ARG A		38.323	65.771 -25.534	1.00 8.25	A
	5	ATOM	7002	CG	ARG A		39.761	66.292 -25.460	1.00 9.07	A
		ATOM	7003	CD	ARG A		40.094	67.317 -26.556	1.00 8.68	A
		MOTA	7004	NE	ARG A		40.144	66.752 -27.905	1.00 10.22	A
		ATOM	7005	CZ	ARG A		41.105	65.951 -28.358	1.00 9.15	A
	10	ATOM	7006		ARG A		42.118	65.605 -27.570	1.00 11.22	A
	10	ATOM	7007	NH2			41.058	65.496 -29.603	1.00 12.32	A
		ATOM	7008	C	ARG A		35.867	66.244 -25.776	1.00 8.20	A
		ATOM	7009	0	ARG A		35.258	65.580 -24.933	1.00 8.49	A
		ATOM	7010	N	LEU A		35.374	66.502 -26.984	1.00 8.73	A
	15	MOTA	7011	CA	LEU A		34.071	65.995 -27.402	1.00 9.10	A
	15	ATOM	7012	CB	LEU A		33.175	67.152 -27.847	1.00 10.48	A
		ATOM	7013	CG	LEU A		31.735	66.780 -28.215	1.00 11.47	A
		ATOM	7014		LEU A		31.013	66.238 -26.992	1.00 12.94	A
		ATOM	7015		LEU A		31.013	68.001 -28.757	1.00 12.24	A
	20	ATOM	7016	С	LEU A		34.275	65.019 -28.550	1.00 8.70	A
	20	ATOM	7017	0	LEU A		34.684	65.410 -29.642	1.00 9.47	A
1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>		MOTA	7018	N	VAL A		33.977	63.749 -28.296	1.00 8.58	A
m		ATOM	7019	CA	VAL A		34.173	62.699 -29.284	1.00 8.99	A
E 1442		ATOM	7020	CB	VAL A		35.094	61.598 -28.705	1.00 9.22	A
	25	ATOM	7021		VAL A		35.461	60.598 -29.786	1.00 10.34	A
14	25	ATOM	7022		VAL A		36.340	62.229 -28.102	1.00 9.86	A
185		ATOM	7023	С	VAL A		32.892	62.033 -29.790	1.00 10.00	A
		ATOM	7024	0	VAL A		32.234	61.289 -29.057	1.00 10.19	A
E1		ATOM	7025	N	LEU A		32.546	62.310 -31.045	1.00 10.27	A
J	30	ATOM	7026	CA	LEU A		31.376	61.699 -31.677	1.00 10.89 1.00 11.43	A
ı,Ü	30	ATOM	7027	CB	LEU A		30.666	62.688 -32.607	1.00 11.43	A A
N		ATOM	7028	CG	LEU A		29.525	62.085 -33.436 61.713 -32.528	1.00 12.13	A
Į.≈ i :		ATOM	7029 7030		LEU A		28.370 29.061	63.089 -34.479	1.00 12.60	A
		ATOM ATOM	7030	CDZ	LEU A		31.938	60.545 -32.501	1.00 12.03	A
la.	35	MOTA	7031	0	LEU A		32.880	60.731 -33.269	1.00 11.72	A
	55	ATOM	7032	N	GLU A		31.371	59.354 -32.339	1.00 11.10	A
		ATOM	7033	CA	GLU A		31.869	58.189 -33.065	1.00 13.03	A
		ATOM	7034	CB	GLU A		32.844	57.397 -32.192	1.00 13.03	A
		ATOM	7036	CG	GLU A		34.027	58.161 -31.656	1.00 14.30	A
	40	ATOM	7037	CD	GLU A		34.778	57.365 -30.601	1.00 16.72	A
	10	ATOM	7038		GLU A		34.184	57.079 -29.539	1.00 18.39	A
		ATOM	7039		GLU A		35.955	57.027 -30.838	1.00 19.39	A
		ATOM	7040	C	GLU A		30.770	57.228 -33.478	1.00 12.78	A
		ATOM	7041	0	GLU A		29.699	57.192 -32.873	1.00 12.49	A
	45	ATOM	7042	N	LYS A		31.056	56.441 -34.509	1.00 14.12	А
	10	ATOM	7043	CA	LYS A		30.134	55.415 -34.967	1.00 15.19	A
		ATOM	7044	CB	LYS A		30.283	55.175 -36.470	1.00 16.61	A
		ATOM	7045	CG	LYS A		29.981	56.394 -37.328	1.00 19.37	A
		ATOM	7046	CD	LYS A		28.614	56.986 -37.004	1.00 21.68	A
	50	ATOM	7047	CE	LYS A		27.500	55.967 -37.189	1.00 23.36	A
		ATOM	7048	NZ	LYS A		26.169	56.541 -36.865	1.00 24.72	A
		ATOM	7048	C	LYS A		30.596	54.186 -34.192	1.00 24.72	A
		ATOM	7050	0	LYS A		31.791	53.885 -34.154	1.00 17.00	A
		ATOM	7051	N	VAL A		29.666	53.482 -33.562	1.00 17.00	A
	55	ATOM	7052	CA	VAL A		30.038	52.318 -32.773	1.00 14.35	A
		71 OF	, 032	U17	WILL IN		50.050	32.310 32.773	1.00 14.20	* *

		ATOM	7053	СВ	VAL	Α	899	29.804	52.590 -31.270 1.00 14.32 A	
		ATOM	7054	CG1	VAL	Α	899	30.809	53.622 -30.771 1.00 15.02 A	
		MOTA	7055		VAL			28.386	53.096 -31.044 1.00 13.91 A	
		ATOM	7056	C	VAL			29.305	51.043 -33.173 1.00 14.59 A	
	5	ATOM	7057	ō	VAL			29.321	50.056 -32.441 1.00 14.07 A	
	5							28.675	51.060 -34.341 1.00 15.09 A	
		ATOM	7058	N	ASN					
		ATOM	7059	CA	ASN			27.941	49.893 -34.813 1.00 16.30 A	
		ATOM	7060	CB	ASN			27.189	50.229 -36.105 1.00 17.35 A	
	4.0	MOTA	7061	CG	ASN			28.098	50.780 -37.182 1.00 18.71 A	
	10	MOTA	7062		ASN			28.719	51.830 -37.011 1.00 21.26 A	
		MOTA	7063	ND2	ASN			28.182	50.073 -38.304 1.00 20.56 A	
		MOTA	7064	С	ASN	Α	900	28.841	48.677 -35.041 1.00 16.24 A	
		MOTA	7065	0	ASN	Α	900	28.366	47.541 -35.023 1.00 16.99 A	
		MOTA	7066	N	ASN	Α	901	30.135	48.907 -35.243 1.00 15.40 A	
	15	ATOM	7067	CA	ASN	Α	901	31.073	47.810 -35.477 1.00 15.76 A	
		ATOM	7068	CB	ASN	Α	901	32.054	48.177 -36.592 1.00 17.95 A	
		ATOM	7069	CG	ASN			31.405	48.194 -37.955 1.00 20.12 A	
		ATOM	7070		ASN			30.737	47.238 -38.345 1.00 22.38 A	
100		ATOM	7071		ASN			31.606	49.280 -38.694 1.00 21.62 A	
	20	ATOM	7072	C	ASN			31.867	47.398 -34.246 1.00 15.11 A	
	20	ATOM	7073	Ö	ASN			32.655	46.454 -34.300 1.00 15.56 A	
Tilings arman		ATOM	7074	N	CYS			31.667	48.100 -33.138 1.00 14.34 A	
M		ATOM	7075	CA	CYS			32.398	47.784 -31.916 1.00 14.62 A	
		· -			CYS			31.829	46.594 -31.165 1.00 13.93 A	
Harris William	25	ATOM	7076	С					46.407 -31.101 1.00 14.93 A	
ių.	23	ATOM	7077	0	CYS			30.616		
		ATOM	7078	CB	CYS			32.394	48.968 -30.954 1.00 16.27 A	
		ATOM	7079	SG	CYS			33.091	50.528 -31.570 1.00 18.03 A	
81 2125		ATOM	7080	N	VAL			32.717	45.798 -30.584 1.00 13.19 A	
	00	MOTA	7081	CA	VAL			32.294	44.656 -29.789 1.00 13.49 A	
1	30	MOTA	7082	CB	VAL			33.403	43.584 -29.706 1.00 12.99 A	
		MOTA	7083		VAL			32.985	42.466 -28.755 1.00 14.69 A	
[.d.		MOTA	7084	CG2	VAL	A	903	33.674	43.021 -31.095 1.00 14.28 A	
		MOTA	7085	С	VAL	A	903	32.024	45.228 -28.400 1.00 13.60 A	
fired gradi		ATOM	7086	0	VAL	Α	903	32.952	45.524 -27.646 1.00 15.18 A	
gover.	35	ATOM	7087	N	ARG	Α	904	30.749	45.409 -28.078 1.00 13.74 A	
		ATOM	7088	CA	ARG	Α	904	30.361	45.971 -26.792 1.00 13.73 A	
		ATOM	7089	СВ	ARG	Α	904	29.311	47.066 -27.001 1.00 14.82 A	
		ATOM	7090	CG	ARG	Α	904	29.874	48.318 -27.644 1.00 15.86 A	
		MOTA	7091	CD	ARG	Α	904	28.816	49.366 -27.921 1.00 17.64 A	
	40	MOTA	7092	NE	ARG			28.022	49.029 -29.095 1.00 18.11 A	
		ATOM	7093	CZ	ARG			27.057	49.799 -29.589 1.00 18.82 A	
		ATOM	7094		ARG			26.763	50.955 -29.007 1.00 19.22 A	
		ATOM	7095		ARG			26.390	49.414 -30.668 1.00 19.04 A	
		ATOM	7096	C	ARG			29.814	44.929 -25.829 1.00 12.99 A	
	45	ATOM	7090	0	ARG			29.454	43.817 -26.232 1.00 13.24 A	
	43								45.273 -24.533 1.00 12.45 A	
		ATOM	7098	N	PRO			29.758		
		ATOM	7099	CD	PRO			30.305	46.482 -23.890 1.00 12.91 A	
		MOTA	7100	CA	PRO			29.236	44.339 -23.533 1.00 12.91 A	
	5 0	MOTA	7101	CB	PRO			29.412	45.099 -22.220 1.00 12.51 A	
	50	MOTA	7102	CG	PRO			30.581	45.995 -22.491 1.00 12.54 A	
		ATOM	7103	С	PRO			27.764	44.086 -23.835 1.00 13.36 A	
		ATOM	7104	0	PRO			27.128	44.879 -24.531 1.00 13.15 A	
		MOTA	7105	N	SER	A	906	27.224	42.987 -23.318 1.00 14.23 A	
		ATOM	7106	CA	SER	Α	906	25.817	42.679 -23.540 1.00 16.23 A	
	55	ATOM	7107	СВ	SER	A	906	25.479	41.285 -23.014 1.00 17.70 A	

		ATOM	7108	OG	SER	Α	906	25.354	41.297	-21.605	1.00	19.81	Α
		ATOM	7109	С	SER			24.969	43.712	-22.808	1.00	16.91	Α
		ATOM	7110	0	SER			25.478	44.485	-21.993	1.00	16.27	Α
		ATOM	7111	N	LYS			23.673	43.709	-23.093	1.00	18.02	Α
	5	ATOM	7112	CA	LYS			22.745	44.652	-22.484	1.00	19.95	Α
	_	ATOM	7113	СВ	LYS			21.350		-23.085	1.00	22.55	А
		ATOM	7114	CG	LYS			21.266		-24.569		26.38	Α
		ATOM	7115	CD	LYS			19.889		-25.136		28.71	А
		ATOM	7116	CE	LYS			18.782		-24.396		30.39	Α
	10	ATOM	7117	NZ	LYS			18.936		-24.487	1.00	31.53	А
	10	ATOM	7118	C	LYS			22.663		-20.967		18.84	А
		MOTA	7119	0	LYS			22.262		-20.287		20.33	A
		ATOM	7120	N	LEU			23.047		-20.434		17.98	A
		ATOM	7121	CA	LEU			22.982		-18.993		17.30	A
	15	ATOM	7122	CB	LEU			22.520		-18.704		18.78	A
	10	ATOM	7123	CG	LEU			21.150		-19.284		19.88	A
		ATOM	7123		LEU			20.846		-18.980		19.94	A
		ATOM	7124		LEU			20.070		-18.701		20.79	A
٠,		ATOM	7126	CDZ	LEU			24.289		-18.255		15.70	A
# 1	20	ATOM	7120	0	LEU			24.341		-17.028		15.90	A
	20		7127	N	HIS			25.340		-18.992		14.37	A
		ATOM			HIS			26.628		-18.365		12.69	A
5		ATOM	7129	CA	HIS			27.737		-19.415		12.14	A
		MOTA	7130	CB CG	HIS			29.101		-18.842		10.96	A
ļ.	25	MOTA	7131		HIS			29.934		-18.912		11.76	A
	25	MOTA	7132		HIS			29.752		-18.079		10.65	A
· .		MOTA	7133		HIS			30.928		-17.706		11.60	A
1.		ATOM	7134		HIS			31.063		-18.199		11.85	A
		ATOM	7135		HIS			26.572		-17.704		11.79	A
	30	ATOM	7136	C 0	HIS			26.102		-18.304		12.37	A
	50	ATOM	7137		PRO			27.053		-16.455		10.34	A
		MOTA	7138	N	PRO			27.033		-15.540		11.26	A
;		MOTA	7139	CD	PRO			27.331		-15.734		10.21	A
		MOTA	7140	CA				27.184		-14.268		10.93	A
ŗ	35	ATOM	7141	CB	PRO PRO			26.839		-14.242		11.48	A
	33	ATOM	7142	CG	PRO			28.118		-16.116	1.00	9.86	A
		ATOM	7143	С						-15.631	1.00	9.94	A
		ATOM	7144	0	PRO ALA			28.100		-16.957	1.00	9.55	A
		MOTA	7145	N				29.061 30.138		-17.342	1.00	9.81	A
	40	MOTA	7146	CA	ALA			31.482		-17.070		9.39	A
	40	MOTA	7147	CB	ALA			30.088		-18.786	1.00	9.68	A
		ATOM	7148	C	ALA			29.354		-19.614		10.29	A
		ATOM	7149	0	ALA						1.00	9.71	A
		ATOM	7150	N	GLY			30.893		-19.064	1.00	9.40	A
	4 =	ATOM	7151	CA	GLY			31.022		-20.397	1.00	9.56	A
	45	MOTA	7152	C	GLY			32.504		-20.589	1.00	9.93	A
		ATOM	7153	0	GLY			33.244		-19.607		9.13	A
		ATOM	7154	N	TYR			32.943		~21.838	1.00		
		ATOM	7155	CA	TYR			34.351		-22.132	1.00	9.27	A
	F 0	MOTA	7156	CB	TYR			35.042		-22.547	1.00	8.76	A
	50	MOTA	7157	CG	TYR			35.014		-21.470	1.00	8.89	A
		ATOM	7158		TYR			34.036		-21.460		10.18	A
		MOTA	7159		TYR			33.962		-20.423		10.05	A
		MOTA	7160		TYR			35.923		-20.418	1.00		A
		ATOM	7161		TYR			35.858		-19.376	1.00	9.58	A
	55	ATOM	7162	CZ	TYR	A	913	34.875	46.790	-19.383	1.00	10.29	А

		MOTA	7163	ОН	TYR A	913	34.789	45.897 -18.341	1.00 10.44	А
		ATOM	7164	С	TYR A	913	34.548	52.013 -23.230	1.00 9.23	Α
		MOTA	7165	0	TYR A	913	33.759	52.093 -24.173	1.00 9.94	А
		ATOM	7166	N	LEU A	914	35.617	52.790 -23.101	1.00 9.01	А
	5	ATOM	7167	CA	LEU A		35.946	53.811 -24.082	1.00 8.49	A
	J	ATOM	7168	CB	LEU A		36.951	54.809 -23.507	1.00 8.20	A
			7169		LEU A			55.679 -22.326	1.00 8.55	A
		ATOM		CG CD1			36.543			
		ATOM	7170		LEU A		37.659	56.679 -22.057	1.00 8.59	A
	10	MOTA	7171		LEU A		35.240	56.408 -22.635	1.00 8.59	A
	10	MOTA	7172	С	LEU A		36.568	53.215 -25.332	1.00 8.86	A
		ATOM	7173	0	LEU A		37.033	52.075 -25.337	1.00 9.04	A
		ATOM	7174	N	THR A		36.570	54.021 -26.387	1.00 9.49	A
		ATOM	7175	CA	THR A	915	37.187	53.656 -27.647	1.00 10.01	Α
		MOTA	7176	CB	THR A	915	36.498	54.345 -28.831	1.00 11.05	Α
	15	MOTA	7177	OG1	THR A	915	36.474	55.758 -28.590	1.00 12.54	A
		ATOM	7178	CG2	THR A	915	35.080	53.833 -29.011	1.00 12.14	A
		ATOM	7179	С	THR A	915	38.593	54.237 -27.542	1.00 10.47	Α
		ATOM	7180	0	THR A		38.879	55.037 -26.641	1.00 10.28	Α
a steen.		ATOM	7181	N	SER A		39.464	53.853 -28.465	1.00 11.05	Α
lia#	20	ATOM	7182	CA	SER A		40.828	54.357 -28.482	1.00 11.00	А
ţŢ		ATOM	7183	СВ	SER A		41.574	53.795 -29.690	1.00 12.42	A
		ATOM	7184	OG	SER A		42.793	54.485 -29.888	1.00 16.48	A
iπ		ATOM	7185	C	SER A		40.857	55.881 -28.539	1.00 10.40	A
Ü		ATOM	7186	0	SER A		41.572	56.528 -27.776	1.00 10.02	A
	25	ATOM	7187	N	ALA A		40.069	56.455 -29.442	1.00 10.02	A
# %# ####	23							57.903 -29.593	1.00 10.04	A
		ATOM	7188	CA	ALA A		40.040			
M		ATOM	7189	CB	ALA A		39.119	58.292 -30.738	1.00 10.71	A
B)		ATOM	7190	C	ALA A		39.612	58.621 -28.319	1.00 9.48	A
	20	ATOM	7191	0	ALA A		40.199	59.638 -27.950	1.00 9.99	A
4 1	30	ATOM	7192	N	ALA A		38.592	58.099 -27.644	1.00 9.40	A
ij		MOTA	7193	CA	ALA A		38.110	58.736 -26.420	1.00 8.86	А
3 1		ATOM	7194	CB	ALA A		36.788	58.114 -25.988	1.00 9.92	А
[4		ATOM	7195	С	ALA A	918	39.141	58.627 -25.300	1.00 8.91	A
		ATOM	7196	0	ALA A	918	39.331	59.569 -24.524	1.00 7.94	А
ļ:=	35	ATOM	7197	N	HIS A		39.799	57.477 -25.210	1.00 8.73	А
		MOTA	7198	CA	HIS A	919	40.818	57.279 -24.189	1.00 8.75	А
		ATOM	7199	CB	HIS A	919	41.320	55.833 -24.211	1.00 9.47	А
		ATOM	7200	CG	HIS A	919	42.438	55.570 -23.249	1.00 10.68	А
		ATOM	7201	CD2	HIS A	919	42.499	55.686 -21.901	1.00 12.48	A
	40	ATOM	7202	ND1	HIS A	919	43.689	55.158 -23.656	1.00 13.04	A
		ATOM	7203	CE1	HIS A	919		55.032 -22.599	1.00 12.08	Α
		ATOM	7204		HIS A		43.776	55.346 -21.523	1.00 13.28	А
		ATOM	7205	С	HIS A		41.979	58.239 -24.430	1.00 8.59	А
		ATOM	7206		HIS A		42.459	58.892 -23.503	1.00 8.31	А
	45	ATOM	7207		LYS A		42.429	58.341 -25.675	1.00 7.96	A
	10	ATOM	7208		LYS A		43.528	59.250 -25.969	1.00 9.08	A
		ATOM	7209		LYS A		44.009	59.077 -27.411	1.00 10.76	A
		ATOM	7210	CG	LYS A		44.880	57.833 -27.582	1.00 13.02	A
	50	ATOM	7211	CD	LYS A		45.559	57.777 -28.938	1.00 14.64	A
	50	ATOM	7212	CE	LYS A		46.493	56.579 -29.030	1.00 15.02	A
		ATOM	7213	NZ	LYS A		47.658	56.686 -28.103	1.00 15.98	A
		ATOM	7214		LYS A		43.116	60.694 -25.701	1.00 8.52	A
		ATOM	7215		LYS A		43.928	61.496 -25.236	1.00 8.56	A
		ATOM	7216		ALA A		41.855	61.024 -25.972	1.00 8.30	А
	55	ATOM	7217	CA	ALA A	921	41.372	62.380 -25.729	1.00 8.01	Α

		7 m 4 M	7218	CD.	7 T 7 7	021	39.947	62.540 -26.263	1.00 7.47	А
		MOTA		CB	ALA A					
		MOTA	7219	С	ALA A		41.421	62.667 -24.227	1.00 7.72	A
		ATOM	7220	0	ALA A		41.770	63.772 -23.801	1.00 8.39	A
	_	MOTA	7221	N	SER A		41.076	61.670 -23.417	1.00 7.17	Α
	5	MOTA	7222	CA	SER A		41.120	61.854 -21.969	1.00 7.27	Α
		MOTA	7223	CB	SER A	922	40.549	60.627 -21.251	1.00 7.70	А
		ATOM	7224	OG	SER A	922	40.649	60.781 -19.841	1.00 7.96	А
		ATOM	7225	С	SER A	922	42.565	62.083 -21.532	1.00 7.89	А
		MOTA	7226	0	SER A	922	42.839	62.944 -20.698	1.00 8.87	A
	10	ATOM	7227	N	GLN A	923	43.494	61.321 -22.104	1.00 8.46	А
		ATOM	7228	CA	GLN A	923	44.904	61.476 -21.760	1.00 8.76	А
		ATOM	7229	CB	GLN A	923	45.744	60.379 -22.423	1.00 8.95	А
		MOTA	7230	CG	GLN A		45.466	58.979 -21.895	1.00 8.79	A
		ATOM	7231	CD	GLN A		46.396	57.936 -22.495	1.00 10.09	А
	15	ATOM	7232		GLN A		46.537	57.847 -23.715	1.00 11.44	Α
		ATOM	7233		GLN A		47.028	57.133 -21.635	1.00 9.11	А
		MOTA	7234	C	GLN A		45.435	62.849 -22.163	1.00 9.21	A
		ATOM	7235	0	GLN A		46.318	63.396 -21.501	1.00 9.10	А
4:25		ATOM	7236	N	SER A		44.886	63.417 -23.236	1.00 8.93	A
	20	ATOM	7237	CA	SER A		45.333	64.729 -23.703	1.00 9.54	A
%,5±55 . }=9;	20		7238	CB	SER A		44.733	65.048 -25.081	1.00 10.43	A
₹ <u>.</u> 5 <u>.5</u> 5		MOTA	7239		SER A		43.373	65.457 -24.987	1.00 10.43	A
		ATOM		OG				65.819 -22.709	1.00 11.08	A
		ATOM	7240	С	SER A		44.941		1.00 9.68	
Ann Com	25	ATOM	7241	0	SER A		45.572	66.874 -22.648		A
	25	ATOM	7242	N	LEU A		43.898	65.554 -21.931	1.00 9.32	A
151		ATOM	7243	CA	LEU A		43.412	66.508 -20.941	1.00 8.62	A
21		ATOM	7244	CB	LEU A		41.904	66.335 -20.738	1.00 8.40	A
		ATOM	7245	CG	LEU A		40.991	66.609 -21.938	1.00 7.47	A
(nd) *=.	20	ATOM	7246		LEU A		39.556	66.255 -21.569	1.00 8.87	A
ij.	30	MOTA	7247		LEU A		41.094	68.077 -22.349	1.00 8.87	A
		ATOM	7248	C	LEU A		44.106	66.351 -19.593	1.00 9.08	A
i.d		ATOM	7249	0	LEU A		44.532	67.333 -18.984	1.00 9.69	A
		ATOM	7250	N	LEU A		44.236	65.110 -19.141	1.00 8.72	A
!= .	0.5	MOTA	7251	CA	LEU A		44.837	64.834 -17.842	1.00 8.73	A
•	35	MOTA	7252	CB	LEU A		44.287	63.518 -17.291	1.00 9.50	A
		ATOM	7253	CG	LEU A		42.771	63.509 -17.070	1.00 10.76	А
		ATOM	7254		LEU A		42.339	62.149 -16.537	1.00 11.48	A
		MOTA	7255		LEU A		42.388	64.618 -16.095	1.00 12.65	А
		MOTA	7256	С	LEU A		46.356	64.804 -17.790	1.00 8.63	Α
	40	MOTA	7257	0	LEU A		46.946	65.189 -16.783	1.00 8.46	A
		ATOM	7258	N	ASP A		46.989	64.340 -18.861	1.00 7.51	Α
		ATOM	7259	CA	ASP A	927	48.444	64.262 -18.891	1.00 8.28	A
		ATOM	7260	СВ	ASP A	927	48.891	62.819 -18.644	1.00 7.75	A
		ATOM	7261	CG	ASP A	927	48.570	62.350 -17.234	1.00 8.29	A
	45	ATOM	7262	OD1	ASP A	927	49.295	62.740 -16.293	1.00 8.68	Α
		ATOM	7263	OD2	ASP A	927	47.580	61.609 -17.067	1.00 9.56	Α
		ATOM	7264	С	ASP A	927	49.008	64.787 -20.204	1.00 8.04	A
		MOTA	7265	0	ASP A	927	49.595	64.049 -20.995	1.00 7.83	A
		ATOM	7266	N	PRO A		48.830	66.088 -20.452	1.00 8.56	Α
	50	ATOM	7267	CD	PRO A		48.226	67.103 -19.569	1.00 9.25	Α
		ATOM	7268	CA	PRO A		49.334	66.697 -21.683	1.00 8.71	А
		ATOM	7269	СВ	PRO A		48.708	68.088 -21.649	1.00 9.22	А
		ATOM	7270	CG	PRO A		48.717	68.403 -20.190	1.00 10.86	A
		ATOM	7271	C	PRO A		50.855	66.770 -21.665	1.00 8.77	A
	55	ATOM	7272	0	PRO A		51.492	66.449 -20.661	1.00 9.15	A
		VI OIJ	1212	0	LINO A	120	21.72	00.337 20.001	1.00 7.10	4.4

	ATOM	7273	N	LEU	Α	929	51.446	67.178 -	-22.778	1.00	8.33	А
	ATOM	7274	CA	LEU	Α	929	52.891	67.338 -	-22.810	1.00	7.61	Α
	ATOM	7275	СВ	LEU	Α	929	53.368	67.690 -	-24.221	1.00	8.02	А
	ATOM	7276	CG	LEU	Α	929	53.200	66.682 -	-25.351	1.00	8.18	А
5	MOTA	7277	CD1	LEU	Α	929	53.766	67.292 -	-26.632	1.00	8.11	A
	ATOM	7278	CD2	LEU	Α	929	53.934	65.391 -	-25.012	1.00	7.77	Α
	ATOM	7279	С	LEU	Α	929	53.234	68.505 -	-21.887	1.00	8.11	Α
	ATOM	7280	0	LEU	Α	929	52.452	69.445 -	-21.748	1.00	9.64	Α
	ATOM	7281	N	ASP	Α	930	54.394	68.441 -	-21.248	1.00	7.51	Α
10	ATOM	7282	CA	ASP	Α	930	54.841	69.534 -	-20.390	1.00	7.84	A
	ATOM	7283	CB	ASP	Α	930	55.582	68.979 -	-19.182	1.00	8.72	A
	ATOM	7284	CG	ASP	Α	930	54.742	68.005 -	-18.411	1.00	9.94	Α
	ATOM	7285	OD1	ASP	Α	930	53.688	68.437 -	-17.903	1.00	12.39	A
	MOTA	7286	OD2	ASP	Α	930	55.121	66.818 -	-18.334	1.00	9.76	А
15	ATOM	7287	С	ASP	Α	930	55.767	70.394 -	-21.237	1.00	8.70	Α
	ATOM	7288	0	ASP	Α	930	56.531	69.870 -	-22.055	1.00	9.26	Α
	MOTA	7289	N	LYS	Α	931	55.702	71.705 -	-21.047	1.00	8.39	Α
	ATOM	7290	CA	LYS	Α	931	56.517	72.627 -	-21.831	1.00	8.99	Α
	ATOM	7291	CB	LYS	Α	931	55.6 05	73.584 -	-22.605	1.00	10.48	Α
20	ATOM	7292	CG	LYS	Α	931	54.622	72.897 -	-23.547		11.73	Α
	MOTA	7293	CD	LYS	Α	931	53.708	73.912 -			14.44	A
	MOTA	7294	CE	LYS			52.828	74.625 -			16.26	А
	MOTA	7295	NZ	LYS			52.017	75.703 -			16.66	А
	MOTA	7296	С	LYS			57.479	73.425 -		1.00	9.43	A
25	MOTA	7297	0	LYS			57.081	74.021 -		1.00	9.83	A
	ATOM	7298	N	PHE	A	932	58.747	73.439 -		1.00	8.58	А
	MOTA	7299	CA	PHE			59.781	74.160 -		1.00	8.60	А
	ATOM	7300	CB	PHE			60.852	73.191 -		1.00	8.76	A
	ATOM	7301	CG	PHE			60.326	72.107 -		1.00	9.77	A
30	ATOM	7302		PHE			59.725	70.970 -			10.21	A
	ATOM	7303		PHE			60.450	72.216 -			10.48	A
	MOTA	7304		PHE			59.259	69.952 -			10.04	A
	ATOM	7305		PHE			59.986	71.205 -			10.11	A
25	ATOM	7306	CZ	PHE			59.391	70.073 -			10.61	A
35	MOTA	7307	C	PHE			60.451	75.194 -		1.00	9.09	A
	ATOM	7308	0	PHE			60.755	74.910 -		1.00	9.97	A
	ATOM	7309	N	ILE			60.674	76.389 -		1.00	9.13	A
	ATOM	7310	CA	ILE			61.331	77.462 -		1.00	9.38 9.33	A A
40	MOTA	7311	CB	ILE			60.531	78.783 - 79.868 -		1.00	9.12	A
40	ATOM	7312		ILE			61.247	78.578		1.00		A
	ATOM	7313		ILE			59.108 58.197	79.778 -		1.00	9.86	A
	ATOM	7314		ILE			62.685	77.704 -			10.17	A
	ATOM	7315	С	ILE ILE			62.743	78.009 -		1.00	9.98	A
45	ATOM	7316 7317	O N	PHE			63.772	77.564 -		1.00		A
43	ATOM	7317	CA	PHE			65.094	77.789 -			11.19	A
	ATOM ATOM	7319	CB	PHE			66.193	77.479 -			11.54	A
	ATOM	7319	CG	PHE			67.570	77.438 -			12.50	A
	ATOM	7321		PHE			67.947	76.400 -			13.12	A
50	ATOM	7321		PHE			68.486	78.449 -			13.26	A
50	ATOM	7323		PHE			69.216	76.371 -			14.59	A
	ATOM	7323		PHE			69.754	78.432 -			14.88	A
	ATOM	7324	CZ	PHE			70.122	77.392 -			15.40	A
	MOTA	7326	C	PHE			65.182	79.247 -			12.24	A
55	ATOM	7327	0	PHE			64.892	80.165 -			11.22	A
55	A I OU	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	F 11 L		/ / 3	01.072	50.105				

	ATOM	7328	N	Δ.1Δ	Δ	935	65.586	79.453	-19.552	1.00 13	3.19	А
	ATOM	7329	CA			935	65.662		-18.987	1.00 14		A
	ATOM	7330	СВ			935	65.718		-17.466	1.00 15		A
	ATOM	7331	C			935	66.808		-19.492	1.00 16		A
5	ATOM	7332	Ō			935	66.590		-19.891	1.00 17		A
•	ATOM	7333	N			936	68.022		-19.467	1.00 16		A
	ATOM	7334	CA			936	69.211		-19.898	1.00 17		A
	ATOM	7335	CB			936	70.467		-19.468	1.00 20		A
	ATOM	7336	CG			936	70.634		-17.957	1.00 22		A
10	ATOM	7337	CD			936	71.701		-17.566	1.00 24		A
10	ATOM	7338	OE1				71.485		-17.782	1.00 25		A
	ATOM	7339	OE2				72.757		-17.048	1.00 25		A
	ATOM	7340	C			936	69.246		-21.404	1.00 17		A
	ATOM	7341	0			936	68.448		-22.154	1.00 16		A
15	ATOM	7341	N	ASN			70.182		-21.847	1.00 17		A
15	ATOM	7342	CA	ASN			70.102		-23.267	1.00 17		A
	ATOM	7343	CB	ASN			71.132		-23.207	1.00 17		A
	ATOM	7344	CG	ASN			70.445		-22.963	1.00 19		A
				ASN			69.224		-23.065	1.00 19		A
20	ATOM	7346 7347		ASN			71.224		-22.415	1.00 20		A
20	ATOM			ASN			70.872		-24.083	1.00 20		A
	ATOM	7348	С				70.872		-24.003	1.00 17		A
	ATOM	7349 7350	0	ASN GLU					-23.231	1.00 17		A
	ATOM		N				71.808			1.00 18		A
25	ATOM	7351	CA	GLU			72.420		-24.200	1.00 13		A
23	ATOM	7352	CB	GLU			73.815		-24.706 -25.356	1.00 25		A
	ATOM	7353	CG	GLU			74.555					
	ATOM	7354	CD	GLU			75.752		-26.169	1.00 27		A A
	ATOM	7355	OE1	GLU			76.636		-25.613			
30	ATOM	7356	OE2				75.809		-27.369	1.00 29		A
30	ATOM	7357	C	GLU			72.512		-23.337	1.00 17		A
	ATOM	7358	0	GLU			72.883		-22.167	1.00 17		A
	ATOM	7359	N	TRP			72.172		-23.935	1.00 17		A
	ATOM	7360	CA			939	72.205		-23.254	1.00 16		A
25	ATOM	7361	CB			939	70.869		-23.479	1.00 15		A
35	ATOM	7362	CG			939	70.741		-22.850	1.00 13		A
	ATOM	7363	CD2	TRP			69.654		-23.030	1.00 12		A
	ATOM	7364	CE2				69.933		-22.250	1.00 12		A
•	ATOM	7365	CE3				68.469		-23.776	1.00 11		A
40	ATOM	7366		TRP			71.615		-21.991	1.00 13		A
4 0	ATOM	7367	NE1	TRP			71.135		-21.627	1.00 12		A
	ATOM	7368		TRP			69.068		-22.196	1.00 11		A
	ATOM	7369		TRP			67.609		-23.723	1.00 11		A
	ATOM	7370		TRP			67.915		-22.938	1.00 12		A
45	ATOM	7371	С			939	73.362		-23.814	1.00 17		A
45	ATOM	7372	0	TRP			73.224		-24.836	1.00 18		A
	ATOM	7373	N	ILE			74.509		-23.144	1.00 18		A
	ATOM	7374	CA	ILE			75.690		-23.583	1.00 19		A
	MOTA	7375	СВ	ILE			76.958		-22.879	1.00 20		A
50	MOTA	7376		ILE			78.178		-23.335	1.00 21		A
50	ATOM	7377		ILE			77.143		-23.194	1.00 21		A
	ATOM	7378		ILE			78.336		-22.506	1.00 22		A
	ATOM	7379	С	ILE			75.553		-23.302	1.00 18		A
	MOTA	7380	0	ILE			75.154		-22.209	1.00 18		A
	ATOM	7381	N	GLY			75.880		-24.298	1.00 17		A
55	ATOM	7382	CA	GLY	A	941	75.795	71.327	-24.131	1.00 16	.47	А

												_
	ATOM	7383	С			941	74.396		-24.300	1.00		А
	MOTA	7384	0	GLY	Α	941	74.140	69.610	-23.953	1.00	14.65	А
	MOTA	7385	N	ALA	Α	942	73.490	71.572	-24.839	1.00	15.44	Α
	ATOM	7386	CA	ALA	Α	942	72.112	71.147	-25.047	1.00	15.43	Α
5	ATOM	7387	CB	ALA	Α	942	71.295	72.300	-25.618	1.00	15.09	А
	ATOM	7388	C			942	72.002		-25.967	1.00		А
	ATOM	7389	0			942	72.715		-26.964	1.00		A
		7390				943	71.098		-25.619	1.00		A
	ATOM		N									
10	ATOM	7391	CA			943	70.853		-26.410	1.00		A
10	MOTA	7392	CB	GLN			71.049		-25.553	1.00		A
	MOTA	7393	CG			943	72.424	66.493	-24.914	1.00		Α
	MOTA	7394	CD	GLN	Α	943	72.627	65.219	-24.123	1.00	20.93	A
	ATOM	7395	OE1	GLN	Α	943	71.773	64.829	-23.326	1.00	22.95	А
	ATOM	7396	NE2	GLN	Α	943	73.764	64.565	-24.333	1.00	22.03	A
15	ATOM	7397	С			943	69.422		-26.934	1.00		Α
	ATOM	7398	Ö	GLN			68.554		-26.302	1.00		A
	ATOM	7399	N	GLY			69.171		-28.080	1.00		A
							67.853		-28.677	1.00		A
	ATOM	7400	CA	GLY								
20	ATOM	7401	С	GLY			66.789		-28.261	1.00		A
20	ATOM	7402	0	GLY			65.615		-28.569	1.00		А
	MOTA	7403	N	GLN	Α	945	67.169	65.318	-27.551	1.00	14.07	А
	ATOM	7404	CA	GLN	Α	945	66.180	64.328	-27.168	1.00	14.57	Α
	ATOM	7405	CB	GLN	Α	945	65.814	63.516	-28.412	1.00	15.05	A
	ATOM	7406	CG	GLN	Α	945	64.863	62.360	-28.204	1.00	17.81	А
25	ATOM	7407	CD	GLN			64.575		-29.503	1.00		A
	ATOM	7408		GLN			63.803		-30.341	1.00		A
	ATOM	7409		GLN			65.208		-29.684	1.00		A
	ATOM	7410	C	GLN			66.620		-26.049	1.00		A
20	ATOM	7411	0	GLN			67.812		-25.838	1.00		A
30	ATOM	7412	N			946	65.637		-25.320	1.00		A
	MOTA	7413	CA	PHE			65.871		-24.249	1.00		А
	MOTA	7414	CB	PHE	Α	946	65.816		-22.866	1.00		А
	ATOM	7415	CG	PHE	Α	946	65.710	61.567	-21.742	1.00	11.33	A
	MOTA	7416	CD1	PHE	Α	946	66.766	60.708	-21.455	1.00	11.76	A
35	ATOM	7417	CD2	PHE	A.	946	64.532	61.447	-21.013	1.00	11.56	А
	ATOM	7418	CE1				66.648	59.735	-20.456	1.00	12.23	А
	ATOM	7419	CE2				64.402		-20.016	1.00		А
	ATOM	7420	CZ			946	65.463		-19.738	1.00		A
	ATOM	7421	C	PHE			64.765		-24.338	1.00		A
40		7421	_				63.599		-24.522	1.00		A
40	ATOM		0	PHE								
	ATOM	7423	N	GLY			65.134		-24.222	1.00		A
	MOTA	7424	CA	GLY			64.146		-24.270	1.00		A
	ATOM	7425	С	GLY			63.815		-25.631	1.00		A
	MOTA	7426	0	GLY			62.848		-25.763	1.00		А
45	ATOM	7427	N	GLY	A	948	64.604	58.306	-26.644	1.00	14.12	A
	ATOM	7428	CA	GLY	Α	948	64.346	57.786	-27.973	1.00	15.63	А
	ATOM	7429	С	GLY	Α	948	64.401	56.271	-28.021	1.00	17.10	Α
	MOTA	7430	0	GLY	Α	948	63.854	55.652	-28.934	1.00	18.33	A
	ATOM	7431	N	ASP			65.055		-27.033	1.00		А
50	ATOM	7432	CA	ASP			65.183		-26.973	1.00		A
50		7433	CB	ASP			66.614		-26.570	1.00		A
	ATOM	7433		ASP			66.955		-25.154	1.00		
	ATOM		CG									A
	ATOM	7435		ASP			66.613		-24.764	1.00		A
	MOTA	7436		ASP			67.577		-24.430	1.00		A
55	MOTA	7437	С	ASP	A	949	64.179	53.573	-26.019	1.00	17.78	А

		ATOM	7438	0	ASP A	949	64.194	52.356 -25.834	1.00 18.75	А
		ATOM	7439	N	HIS A		63.310	54.380 -25.411	1.00 16.45	А
		ATOM	7440	CA	HIS A		62.297	53.841 -24.503	1.00 14.81	Α
		ATOM	7441	СВ	HIS A		61.548	54.952 -23.758	1.00 13.22	A
	5	ATOM	7442	CG	HIS A		62.378	55.720 -22.778	1.00 12.93	A
	_	ATOM	7443		HIS A		62.106	56.855 -22.095	1.00 10.00	A
		ATOM	7444		HIS A		63.630	55.316 -22.365	1.00 13.22	A
		ATOM	7445		HIS A		64.091	56.172 -21.469	1.00 10.93	A
		ATOM	7446		HIS A		63.185	57.115 -21.287	1.00 13.26	A
	10	ATOM	7447	C	HIS A		61.263	53.076 -25.326	1.00 14.43	A
	10	ATOM	7448	0	HIS A		60.886	53.508 -26.414	1.00 15.25	A
		ATOM	7449	N	PRO A		60.788	51.931 -24.818	1.00 15.24	A
		ATOM	7450	CD	PRO A		61.323	51.140 -23.696	1.00 16.21	A
		ATOM	7451	CA	PRO A		59.788	51.164 -25.566	1.00 14.93	A
	15	ATOM	7452	CB	PRO A		59.614	49.906 -24.715	1.00 16.19	A
	10	ATOM	7453	CG	PRO A		60.975	49.727 -24.112	1.00 16.73	A
		ATOM	7454	C	PRO A		58.484	51.952 -25.692	1.00 14.35	A
		ATOM	7455	Ö	PRO A		58.084	52.657 -24.762	1.00 14.20	A
21700		ATOM	7456	N	SER A		57.832	51.849 -26.845	1.00 13.71	A
	20	ATOM	7457	CA	SER A		56.566	52.538 -27.064	1.00 13.35	A
۱.		ATOM	7458	CB	SER A		56.500	53.103 -28.484	1.00 13.35	A
Ų		ATOM	7459	OG	SER A		55.421	54.013 -28.630	1.00 14.37	A
		ATOM	7460	C	SER A		55.489	51.482 -26.851	1.00 13.53	A
		ATOM	7461	Ö	SER A		55.179	50.696 -27.752	1.00 13.71	A
N	25	ATOM	7462	N	ALA A		54.933	51.473 -25.643	1.00 13.61	A
W		ATOM	7463	CA	ALA A		53.924	50.504 -25.236	1.00 13.14	A
		MOTA	7464	CB	ALA A		53.755	50.556 -23.719	1.00 13.24	A
		ATOM	7465	C	ALA A		52.562	50.619 -25.902	1.00 13.16	A
Bi Alessa		ATOM	7466	Ö	ALA A		52.190	51.671 -26.421	1.00 12.81	A
	30	MOTA	7467	N	ARG A		51.824	49.511 -25.877	1.00 13.06	А
ŧ,Ū		ATOM	7468	CA	ARG A		50.486	49.452 -26.446	1.00 14.74	А
		ATOM	7469	CB	ARG A		49.857	48.094 -26.142	1.00 18.83	A
į.4.		ATOM	7470	CG	ARG A		48.477	47.891 -26.737	1.00 25.14	A
		ATOM	7471	CD	ARG A		48.371	46.517 -27.377	1.00 30.81	А
ğ.d.	35	ATOM	7472	NE	ARG A		46.988	46.066 -27.486	1.00 35.73	A
		MOTA	7473	CZ	ARG A		46.241	45.713 -26.447	1.00 38.06	А
		ATOM	7474		ARG A		46.748	45.760 -25.224	1.00 39.95	А
		ATOM	7475		ARG A		44.990	45.309 -26.628	1.00 39.73	Α
		MOTA	7476	С	ARG A		49.658	50.583 -25.837	1.00 12.99	А
	40	ATOM	7477	0	ARG A		49.792	50.893 -24.651		A
		ATOM	7478	N	GLU A		48.792	51.178 -26.652	1.00 12.43	А
		ATOM	7479	CA	GLU A			52.320 -26.241	1.00 12.31	А
		ATOM	7480	СВ	GLU A		47.073	52.751 -27.400	1.00 13.73	А
		ATOM	7481	CG	GLU A		45.904	51.825 -27.665	1.00 16.19	А
	45	ATOM	7482	CD	GLU A		45.042	52.303 -28.814	1.00 17.59	Α
		ATOM	7483		GLU A		44.870	53.531 -28.958	1.00 20.32	А
		ATOM	7484		GLU A		44.528	51.454 -29.567	1.00 19.35	А
		ATOM	7485	С	GLU A		47.140	52.203 -24.970	1.00 11.08	А
		ATOM	7486	0	GLU A		46.859	53.216 -24.326	1.00 10.87	Α
	50	ATOM	7487	N	ASP A		46.734	50.992 -24.602	1.00 10.57	А
	_ •	ATOM	7488	CA	ASP A		45.919	50.829 -23.403	1.00 11.30	A
		ATOM	7489	СВ	ASP A		44.937	49.656 -23.567	1.00 12.11	A
		ATOM	7490	CG	ASP A		45.624	48.339 -23.887	1.00 13.69	A
		ATOM	7491		ASP A			48.317 -24.078	1.00 14.76	A
	55	ATOM	7492		ASP A			47.313 -23.949	1.00 15.09	A
						, , ,	,	2	20.00	

	ATOM	7493	С	ASP	Δ	956	46.731	50.665	-22.124	1.00	10.25	А
	ATOM	7494	Ö			956	46.164		-21.042		11.79	A
	ATOM	7495	N	LEU			48.053		-22.244	1.00	9.84	A
	ATOM	7496	CA	LEU			48.922		-21.080	1.00	9.73	A
5	ATOM	7497	CB	LEU			50.052		-21.387		11.24	А
Ū	ATOM	7498	CG	LEU			50.977		-20.230		12.99	А
	ATOM	7499		LEU			50.171		-19.144		14.77	A
	ATOM	7500		LEU			52.086		-20.742		13.87	A
	ATOM	7501	C	LEU			49.524		-20.668	1.00	9.37	A
10	ATOM	7502	0	LEU			49.927		-21.512	1.00		A
10	ATOM	7503	N	ASP			49.582		-19.366	1.00	8.45	A
	ATOM	7504	CA	ASP			50.169		-18.876	1.00	7.96	A
	ATOM	7505	CB	ASP			49.071		-18.495	1.00	8.11	A
	ATOM	7506	CG	ASP			49.620		-18.179	1.00	7.70	A
15	ATOM	7507		ASP			50.731		-18.644	1.00	8.38	A
15		7508		ASP			48.925		-17.472	1.00	9.30	A
	ATOM	7509	C C	ASP			51.054		-17.672	1.00	7.71	A
	ATOM	7510	0	ASP			50.831		-16.922	1.00	7.72	A
	ATOM			VAL					-17.529	1.00	7.72	A
20	ATOM	7511	N				52.090 52.982		-16.381	1.00	7.45	A
20	ATOM	7512	CA	VAL					-16.769	1.00	8.17	A
	ATOM	7513 7514	CB			959	54.446		-15.508	1.00	8.69	A
	ATOM			VAL			55.310		-17.649	1.00	9.44	A
	ATOM	7515		VAL			54.957				7.71	
25	ATOM	7516	C			959	52.435		-15.529 -15.641	1.00	7.71	A A
25	ATOM	7517	0			959	52.868					
	ATOM	7518	N	SER			51.437		-14.717	1.00	8.00	A
	ATOM	7519	CA			960	50.759		-13.860	1.00	8.19	A
	ATOM	7520	CB			960	49.654		-13.065	1.00	8.71	A
20	ATOM	7521	OG	SER			48.832		-13.917	1.00	9.90	A
30	ATOM	7522	С			960	51.708		-12.901	1.00	8.29	A
	ATOM	7523	0			960	51.571		-12.626	1.00	7.81	A
	ATOM	7524	N	VAL			52.664		-12.391	1.00	8.17	A
	MOTA	7525	CA	VAL			53.641		-11.447	1.00	8.74	A
25	ATOM	7526	СВ	VAL			53.272	55.682	-9.984	1.00	9.01	A
35	ATOM	7527		VAL			54.391	56.118	-9.037	1.00	8.99	A
	ATOM	7528		VAL			51.954	56.332	-9.576	1.00	9.73	A
	MOTA	7529	С	VAL			55.039		-11.685	1.00	8.56	A
	ATOM	7530	0	VAL			55.211		-11.966	1.00	8.35	A
40	ATOM	7531	N	MSE			56.025		-11.601	1.00	7.97	A
40	ATOM	7532	CA	MSE			57.426		-11.672	1.00		A
	ATOM	7533	CB	MSE			58.105		-12.982	1.00	9.07	A
	MOTA	7534	CG			962	59.572		-12.957		10.29	A
	ATOM	7535	SE			962	60.468		-14.600		16.74	А
	ATOM	7536	CE			962	62.233		-14.146		11.26	A
45	ATOM	7537	С	MSE			58.024		-10.533	1.00	8.28	A
	ATOM	7538	0	MSE			57.996		-10.553	1.00	8.57	A
	ATOM	7539	N			963	58.547	56.125	-9.528	1.00	7.92	A
	MOTA	7540	CA			963	59.101	56.792	-8.357	1.00	8.31	A
_	ATOM	7541	CB			963	58.032	56.827	-7.253	1.00	8.77	А
50	MOTA	7542	CG	ARG	Α	963	58.504	57.343	-5.892	1.00	9.81	Α
	ATOM	7543	CD			963	57.395	57.201	-4.839	1.00	9.72	A
	ATOM	7544	NE			963	56.184	57.886	-5.277	1.00	7.97	А
	ATOM	7545	CZ	ARG	Α	963	54.952	57.396	-5.169	1.00	7.38	А
	MOTA	7546	NH1	ARG	Α	963	54.737	56.207	-4.615	1.00	7.56	A
55	ATOM	7547	NH2	ARG	Α	963	53.932	58.084	-5.670	1.00	7.55	А

	n mon	7540	_	NDC	n	063	60 220	56 101	-7.815	1.00	7.62	71
	MOTA MOTA	7548 7549	С 0			963 963	60.339	56.101 54.920	-7.493		7.67	A A
	ATOM	7550	N			964	61.449	56.828	-7.716		8.28	A
		7551	CA				62.647	56.225	-7.145		8.89	A
5	ATOM	7552				964 964	63.884	57.089	-7.143		8.93	A
3	ATOM ATOM	7553	CB CG			964	65.167	56.450	-6.869		9.00	A
							66.407	57.176	-7.367	1.00 1		A
	ATOM	7554	CD			964		57.011	-8.807	1.00 1		A
	ATOM	7555	NE C2			964	66.602	56.134	-9.362	1.00 1		A
10	ATOM	7556	CZ			964	67.433			1.00 1		A
10	ATOM	7557		ARG			68.166	55.324	-8.605 -10.684	1.00 1		
	ATOM	7558		ARG			67.545					A
	ATOM	7559	C			964	62.329	56.156	-5.655		9.28	A
	ATOM	7560	0			964	61.892	57.143	-5.057		9.41	A
15	ATOM	7561	N			965	62.543	54.987	-5.066		9.53	A
15	ATOM	7562	CA			965	62.217	54.754	-3.663		9.91	A
	ATOM	7563	CB			965	61.586	53.367	-3.524	1.00 1		A
	MOTA	7564	CG			965	60.391	53.090	-4.442	1.00 1		A
	ATOM	7565		LEU			60.038	51.612	-4.420	1.00 1		A
20	MOTA	7566		LEU			59.205	53.929	-4.000	1.00 1		A
20	MOTA	7567	С			965	63.387	54.869	-2.695	1.00 1		A
	ATOM	7568	0			965	63.196	54.816	-1.478	1.00 1		A
	ATOM	7569	N			966	64.588	55.037	-3.234	1.00 1		A
	MOTA	7570	CA			966	65.791	55.136	-2.413	1.00 1		A
25	MOTA	7571	CB			966	66.782	54.007	-2.762	1.00 1		A
25	MOTA	7572	OG1			966	66.908	53.906	-4.186	1.00 1		A
	ATOM	7573	CG2			966	66.304	52.678	-2.204	1.00 1		A
	MOTA	7574	С			966	66.527	56.454	-2.599	1.00 1		A
	ATOM	7575	0			966	66.485	57.045	-3.678	1.00 1		A
20	ATOM	7576	N			967	67.193	56.907	-1.540	1.00 1		A
30	ATOM	7577	CA			967	67.986	58.129	-1.591	1.00 1		A
	MOTA	7578	CB			967	68.110	58.758	-0.202	1.00 1		A
	ATOM	7579	CG			967	66.814	59.377	0.312	1.00 1		A
	ATOM	7580	CD			967	67.054	60.147	1.600	1.00 2		A
0.5	MOTA	7581	CE			967	65.797	60.856	2.074	1.00 2		A
35	ATOM	7582	ΝZ			967	66.063	61.668	3.296	1.00 2		A
	ATOM	7583	С			967	69.361	57.728	-2.129	1.00 1		А
	MOTA	7584	0			967	69.669	56.541	-2.218	1.00 1		A
	MOTA	7585	N			968	70.180	58.713	-2.482	1.00 1		A
40	MOTA	7586	CA			968	71.497	58.452	-3.061	1.00 1		A
40	MOTA	7587	CB	SER			72.183		-3.415	1.00 1		A
	MOTA	7588	OG			968	72.434	60.550	-2.257	1.00 1		А
	ATOM	7589	С	SER	A	968	72.464	57.592	-2.250	1.00 1		А
	ATOM	7590	0			968	73.327	56.931	-2.826	1.00 1		A
	ATOM	7591	N			969	72.320	57.593	-0.929	1.00 1		А
45	ATOM	7592	CA			969	73.214	56.819	-0.065	1.00 1		А
	ATOM	7593	CB	SER	Α	969	73.108	57.320	1.376	1.00 1		A
	MOTA	7594	OG	SER	Α	969	71.782	57.194	1.862	1.00 2		А
	ATOM	7595	С			969	72.999	55.306	-0.089	1.00 1		А
	MOTA	7596	0	SER	Α	969	73.839	54.552	0.408	1.00 1		А
50	ATOM	7597	N	ALA	A	970	71.887	54.856	-0.662	1.00 1		А
	ATOM	7598	CA	ALA	Α	970	71.595	53.427	-0.723	1.00 1		Α
	ATOM	7599	СВ	ALA	Α	970	70.111	53.207	-0.997	1.00 1	7.81	А
	ATOM	7600	С	ALA	A	970	72.427	52.697	-1.772	1.00 1	8.18	Α
	MOTA	7601	0	ALA	Α	970	72.379	53.027	-2.959	1.00 1	8.06	А
55	ATOM	7602	N	LYS	Α	971	73.185	51.696	-1.328	1.00 1	8.93	Α

								50 005	0 006		10 00	
	ATOM	7603	CA	LYS			74.021	50.905	-2.226		19.90	A
	ATOM	7604	CB	LYS			74.726	49.793	-1.447		21.65	A
	ATOM	7605	CG	LYS			75.912	50.260	-0.619		24.85	A
_	ATOM	7606	CD	LYS			76.437	49.145	0.278		25.97	A
5	MOTA	7607	CE	LYS			76.653	47.850	-0.495		26.95	А
	ATOM	7608	NZ	LYS	Α	971	77.570	48.023	-1.653		27.59	А
	MOTA	7609	С	LYS	Α	971	73.185	50.290	-3.341		18.94	А
	ATOM	7610	0	LYS	Α	971	73.598	50.269	-4.500	1.00	20.08	А
	ATOM	7611	N	THR	Α	972	72.013	49.778	-2.982	1.00	18.05	A
10	ATOM	7612	CA	THR	Α	972	71.116	49.182	-3.961	1.00	16.90	A
	ATOM	7613	СВ	THR	Α	972	70.563	47.820	-3.483	1.00	17.94	A
	ATOM	7614	OG1	THR	Α	972	71.649	46.913	-3.252	1.00	19.39	A
	ATOM	7615	CG2	THR			69.641	47.222	-4.538	1.00	18.08	А
	MOTA	7616	С			972	69.949	50.135	-4.183	1.00	15.14	А
15	ATOM	7617	0			972	69.116	50.327	-3.298	1.00	14.90	Α
	ATOM	7618	N			973	69.903	50.746	-5.361		13.21	Α
	ATOM	7619	CA			973	68.832	51.678	-5.688		12.53	А
	ATOM	7620	CB			973	69.267	52.585	-6.841		11.85	Α
	ATOM	7621	CG			973	70.371	53.557	-6.466		11.87	Α
20	ATOM	7622	CD	GLN			69.924	54.569	-5.432		12.68	А
20	ATOM	7623	OE1				70.548	54.720	-4.377		14.40	A
	ATOM	7624		GLN			68.840	55.275	-5.731		10.57	A
	ATOM	7625	C			973	67.565	50.923	-6.062		11.92	A
	ATOM	7626	0			973	67.623	49.851	-6.656		12.62	A
25	ATOM	7627	N	ARG			66.415	51.485	-5.706		11.58	A
25	ATOM	7628	CA	ARG			65.143	50.856	-6.022		11.62	A
	ATOM	7629	CB	ARG			64.485	50.318	-4.750		12.80	A
	ATOM	7630	CG	ARG			65.324	49.299	-3.994		14.41	A
	ATOM	7631	CD	ARG			64.713	48.990	-2.633		15.71	A
30	ATOM	7632	NE	ARG			63.450	48.264	-2.738		19.08	A
50	ATOM	7633	CZ	ARG			62.310	48.656	-2.176		18.19	A
		7633		ARG			62.263	49.776	-1.466		19.24	A
	ATOM ATOM	7634		ARG			61.217	47.919	-2.317		19.09	A
				ARG			64.215	51.865	-6.685		10.37	A
35	ATOM	7636	С				64.117	53.012	-6.246		11.02	A
33	ATOM	7637	0	ARG				51.436	-7.750		10.47	A
	MOTA	7638	N	VAL			63.547 62.612	52.300	-7.750 -8.458		10.13	A
	ATOM	7639	CA	VAL				52.680	-9.860		10.13	A
	ATOM	7640	CB	VAL			63.130		-10.579		10.06	A
40	MOTA	7641		VAL			62.104	53.423			10.88	
40	ATOM	7642		VAL			64.450		-9.736			A
	ATOM	7643	С	VAL			61.287	51.567	-8.594		10.08	A
	MOTA	7644	0	VAL			61.232	50.423	-9.063	1.00	9.41	A
	ATOM	7645	N			976	60.217	52.232	-8.178	1.00	9.67	A
4 ==	ATOM	7646	CA	GLY			58.904	51.622	-8.247	1.00	9.24	A
45	MOTA	7647	С			976	58.067	52.121	-9.405	1.00	8.66	A
	ATOM	7648	0			976	58.142	53.290	-9.793	1.00	8.68	A
	ATOM	7649	N			977	57.268	51.218	-9.958	1.00	8.45	A
	ATOM	7650	CA	TYR			56.390		-11.072	1.00	8.07	A
	ATOM	7651	CB	TYR			56.874		-12.374	1.00	8.64	A
50	ATOM	7652	CG	TYR			58.271		-12.791	1.00	8.17	Α
	MOTA	7653		TYR			59.371		-12.312	1.00	8.99	A
	ATOM	7654		TYR			60.664		-12.706	1.00	9.30	A
	ATOM	7655		TYR			58.496		-13.673	1.00	8.85	A
	MOTA	7656		TYR			59.773		-14.068		10.31	A
55	ATOM	7657	CZ	TYR	A	977	60.855	51.947	-13.586	1.00	9.76	А

	7.0014	7.650	0,11	mun n	077	60 105	ED 202 12 000	1 00 11 26	7
	ATOM	7658	OH	TYR A		62.125	52.302 -13.980 51.012 -10.822		A A
	ATOM	7659	С	TYR A		54.993			A
	ATOM	7660	0	TYR A		54.828	49.906 -10.307 51.807 -11.174	1.00 7.18	A
5	ATOM	7661	N	VAL A		53.987		1.00 7.18	A
3	MOTA	7662	CA	VAL A		52.613	51.346 -11.084 52.298 -10.300		A
	ATOM	7663	CB	VAL A		51.693			A
	ATOM	7664	CG1			50.250	51.818 -10.418		A
	ATOM	7665		VAL A		52.098	52.321 -8.837 51.312 -12.537		A
10	ATOM	7666	C	VAL A		52.168			A
10	MOTA	7667	0	VAL A		52.203	52.333 -13.225		
	ATOM	7668	N	LEU A		51.794	50.126 -13.000		A
	ATOM	7669	CA	LEU A		51.350	49.919 -14.369		A
	ATOM	7670	СВ	LEU A		52.084	48.724 -14.982		A
45	ATOM	7671	CG	LEU A		53.417	48.976 -15.684	1.00 16.22	A
15	MOTA	7672		LEU A		53.139	49.476 -17.089		A
	ATOM	7673	CD2	LEU A		54.262	49.969 -14.897	1.00 16.92	A
	MOTA	7674	С	LEU A		49.856	49.663 -14.417		A
	ATOM	7675	0	LEU A		49.343	48.787 -13.724	1.00 10.75	A
20	ATOM	7676	N	HIS A		49.152	50.435 -15.233		A
20	MOTA	7677	CA	HIS A		47.724	50.240 -15.370		A
	ATOM	7678	СВ	HIS A		46.926	51.443 -14.863		A
	MOTA	7679	CG	HIS A		45.447	51.254 -14.994	1.00 9.39	A
	MOTA	7680		HIS A		44.602	50.431 -14.332		A
0-	ATOM	7681		HIS A		44.693	51.871 -15.969		A
25	ATOM	7682		HIS A		43.448	51.432 -15.903		A
	ATOM	7683	NE2	HIS A		43.367	50.555 -14.918	1.00 10.79	A
	MOTA	7684	С	HIS A		47.348	50.005 -16.817		A
	ATOM	7685	0	HIS A		47.788	50.728 -17.705		A
•	ATOM	7686	N	ARG A		46.537	48.984 -17.052		A
30	MOTA	7687	CA	ARG A		46.076	48.711 -18.397		A
	MOTA	7688	CB	ARG A		46.436	47.295 -18.832		A
	MOTA	7689	CG	ARG A		46.052	46.995 -20.272		A
	ATOM	7690	CD	ARG A		46.568	45.634 -20.691		A
	ATOM	7691	NE	ARG A		46.118	45.254 -22.024	1.00 23.55	A
35	ATOM	7692	CZ	ARG A		46.338	44.058 -22.564		A
	ATOM	7693		ARG A		47.001	43.135 -21.880		A
	ATOM	7694		ARG A		45.890	43.780 -23.782		A
	ATOM	7695	С	ARG A		44.572	48.872 -18.360		A
4.0	ATOM	7696	0	ARG A		43.892	48.218 -17.576		A
40	ATOM	7697	N	THR A	982	44.056	49.770 -19.185		A
	MOTA	7698	CA	THR A		42.621	49.990 -19.245		Α
	ATOM	7699	CB	THR A		42.322	51.447 -19.679		A
	ATOM	7700	OG1			40.921	51.716 -19.547		A
	MOTA	7701		THR A		42.772	51.685 -21.120		A
45	ATOM	7702	С	THR A		42.095	48.993 -20.280		A
	ATOM	7703	0	THR A	982	42.833	48.111 -20.716		A
	ATOM	7704	N	ASN A	983	40.824	49.100 -20.642		A
	ATOM	7705	CA	ASN A	983	40.261	48.211 -21.652	1.00 10.07	Α
	MOTA	7706	CB	ASN A	983	39.252	47.227 -21.057		A
50	ATOM	7707	CG	ASN A	983	38.746	46.233 -22.088		Α
	ATOM	7708	OD1	ASN A	983	39.470	45.322 -22.493		Α
	ATOM	7709	ND2	ASN A	983	37.510	46.418 -22.535		А
	ATOM	7710	С	ASN A	983	39.560	49.077 -22.682		Α
	MOTA	7711	0	ASN A	983	38.624	49.811 -22.359	1.00 10.83	Α
55	ATOM	7712	N	LEU A	984	40.029	48.994 -23.920	1.00 11.31	Α

		ATOM	7713	CA	LEU A	984	39.461	49.778 -25.003	1.00 13.01	A
		MOTA	7714	CB	LEU A	984	40.574	50.464 -25.790	1.00 13.38	A
		ATOM	7715	CG	LEU A	984	41.532	51.306 -24.945	1.00 13.55	А
		ATOM	7716	CD1	LEU A	984	42.655	51.828 -25.825	1.00 14.92	Α
	5	ATOM	7717		LEU A		40.774	52.448 -24.282	1.00 13.40	Α
		ATOM	7718	С	LEU A		38.674	48.868 -25.919	1.00 14.57	А
		ATOM	7719	0	LEU A		39.067	47.731 -26.167	1.00 14.53	Α
		ATOM	7720	N	MSE A		37.557	49.371 -26.422	1.00 16.64	А
		ATOM	7721	CA	MSE A		36.724	48.579 -27.307	1.00 20.14	Α
	10	ATOM	7722	СВ	MSE A		35.417	49.300 -27.593	1.00 22.91	Α
		ATOM	7723	CG	MSE A	985	34.540	49.482 -26.392	1.00 26.23	А
		ATOM	7724	SE	MSE A		32.730	49.389 -26.975	1.00 32.71	А
		ATOM	7725	CE	MSE A	985	32.637	51.060 -27.940	1.00 29.41	А
		ATOM	7726	С	MSE A		37.403	48.274 -28.625	1.00 21.11	A
	15	MOTA	7727	0	MSE A	985	38.127	49.101 -29.178	1.00 21.04	А
		ATOM	7728	N	GLN A		37.169	47.070 -29.124	1.00 22.25	Α
		ATOM	7729	CA	GLN A		37.721	46.669 -30.403	1.00 23.97	A
		ATOM	7730	СВ	GLN A	986	38.052	45.174 -30.389	1.00 26.84	Α
		MOTA	7731	CG	GLN A		36.990	44.298 -29.749	1.00 30.56	А
	20	ATOM	7732	CD	GLN A		37.548	42.971 -29.263	1.00 32.21	А
. Fi		MOTA	7733	OE1	GLN A		36.814	42.126 -28.750	1.00 33.51	Α
1455 1455		ATOM	7734		GLN A		38.856	42.785 -29.416	1.00 33.24	Α
4,8 °.		ATOM	7735	С	GLN A		36.626	46.995 -31.407	1.00 23.34	А
figger ass n		ATOM	7736	0	GLN A		35.513	46.474 -31.314	1.00 23.11	А
(Tilly (Tilly)	25	ATOM	7737	N	CYS A		36.929	47.885 -32.346	1.00 22.85	А
IJ		MOTA	7738	CA	CYS A	987	35.944	48.289 -33.338	1.00 23.08	A
i i		ATOM	7739	С	CYS A		36.405	48.051 -34.771	1.00 24.34	А
21		MOTA	7740	0	CYS A	987	35.897	48.679 -35.701	1.00 24.34	A
		ATOM	7741	СВ	CYS A	987	35.592	49.767 -33.160	1.00 22.10	А
	30	MOTA	7742	SG	CYS A	987	35.108	50.279 -31.476	1.00 21.61	A
W		ATOM	7743	N	GLY A	988	37.371	47.156 -34.949	1.00 25.32	A
14		ATOM	7744	CA	GLY A	988	37.845	46.849 -36.287	1.00 28.05	A
\$15000 \$10000		MOTA	7745	С	GLY A	988	39.102	47.560 -36.744	1.00 29.88	A
		ATOM	7746	0	GLY A	988	39.416	47.558 -37.937	1.00 29.77	А
į.	35	MOTA	7747	N	THR A	989	39.826	48.170 -35.813	1.00 31.64	A
		ATOM	7748	CA	THR A	989	41.057	48.868 -36.159	1.00 33.74	А
		ATOM	7749	CB	THR A	989	41.213	50.170 -35.354	1.00 33.53	А
		ATOM	7750	OG1	THR A	989	40.077	51.012 -35.584	1.00 34.03	A
		ATOM	7751	CG2	THR A		42.472	50.909 -35.781	1.00 33.57	А
	40	MOTA	7752	Ċ	THR A	989	42.253	47.967 -35.875	1.00 35.49	Α
		ATOM	7753	0	THR A	989	42.463	47.537 -34.741	1.00 35.26	A
		MOTA	7754	N	PRO A	990	43.052	47.666 -36.912	1.00 37.38	A
		ATOM	7755	CD	PRO A	990	42.900	48.144 -38.298	1.00 37.60	А
		ATOM	7756	CA	PRO A	990	44.236	46.810 -36.788	1.00 39.24	А
	45	ATOM	7757	CB	PRO A	990	44.979	47.076 -38.090	1.00 38.87	А
		ATOM	7758	CG	PRO A	990	43.853	47.242 -39.061	1.00 38.12	А
		ATOM	7759	С	PRO A	990	45.087	47.105 -35.553	1.00 41.21	Α
		ATOM	7760	0	PRO A	990	45.363	46.205 -34.759	1.00 41.51	А
		MOTA	7761	N	GLU A	991	45.499	48.360 -35.395	1.00 43.24	А
	50	ATOM	7762	CA	GLU A	991	46.316	48.756 -34.250	1.00 45.36	Α
		ATOM	7763	СВ	GLU A	991	45.471	48.710 -32.975	1.00 46.82	Α
		ATOM	7764	CG	GLU A	991	44.233	49.595 -33.029	1.00 48.73	Α
		ATOM	7765	CD	GLU A	991	43.276	49.336 -31.881	1.00 49.86	А
		ATOM	7766	OE1	GLU A	991	43.701	49.450 -30.713	1.00 50.20	Α
	55	ATOM	7767		GLU A		42.097	49.018 -32.149	1.00 50.38	Α

				_						_
		ATOM	7768	С	GLU A		47.513	47.816 -34.120	1.00 45.81	A
		ATOM	7769	0	GLU A		47.428	46.774 -33.470	1.00 46.00	Α
		ATOM	7770	N	GLU A		48.630	48.193 -34.733	1.00 46.27	Α
		ATOM	7771	CA	GLU A	992	49.825	47.359 -34.705	1.00 46.79	Α
	5	ATOM	7772	CB	GLU A	992	50.172	46.919 -36.130	1.00 47.94	Α
		ATOM	7773	CG	GLU A	992	49.080	46.124 -36.825	1.00 49.54	Α
		ATOM	7774	CD	GLU A	992	49.384	45.880 -38.291	1.00 50.48	Α
		ATOM	7775	OE1	GLU A	992	50.469	45.341 -38.596	1.00 50.94	Α
		ATOM	7776		GLU A		48.534	46.226 -39.140	1.00 51.09	Α
	10	ATOM	7777	С	GLU A		51.052	48.015 -34.075	1.00 46.42	Α
		ATOM	7778	0	GLU A		50.947	48.832 -33.161	1.00 46.39	Α
		ATOM	7779	N	HIS A		52.214	47.625 -34.593	1.00 45.82	A
		ATOM	7780	CA	HIS A		53.526	48.105 -34.167	1.00 44.90	A
		ATOM	7781	CB	HIS A		54.113	49.027 -35.249	1.00 46.12	A
	15	ATOM	7782	CG	HIS A		53.206	50.144 -35.668	1.00 47.42	A
	10	ATOM	7783		HIS A		52.148	50.721 -35.049	1.00 47.42	A
		ATOM	7784		HIS A		53.364	50.818 -36.860	1.00 47.03	A
								51.758 -36.959	1.00 47.77	A
21778		ATOM	7785		HIS A		52.442 51.691	51.736 -36.939	1.00 48.01	A
	20	ATOM	7786		HIS A					
·D	20	ATOM	7787	C	HIS A		53.669	48.760 -32.794	1.00 43.41	A
ij		ATOM	7788	0	HIS A		53.618	49.983 -32.662	1.00 43.54	A
		ATOM	7789	N	THR A		53.858	47.923 -31.776	1.00 41.20	A
		ATOM	7790	CA	THR A		54.058	48.377 -30.401	1.00 38.33	A
10 m	25	ATOM	7791	CB	THR A		52.741	48.405 -29.592	1.00 38.20	A
	25	ATOM	7792	OG1			52.211	47.079 -29.480	1.00 37.64	A
3 %±		ATOM	7793		THR A		51.721	49.307 -30.267	1.00 37.89	A
ijī		ATOM	7794	C	THR A		55.028	47.405 -29.734	1.00 36.67	A
B}-		ATOM	7795	0	THR A		54.980	46.200 -29.982	1.00 36.66	A
	20	ATOM	7796	N	GLN A		55.908	47.931 -28.889	1.00 34.18	A
	30	ATOM	7797	CA	GLN A		56.899	47.105 -28.210	1.00 31.74	A
N		ATOM	7798	CB	GLN A		58.227	47.851 -28.120	1.00 32.78	A
[, 4 .		ATOM	7799	CG	GLN A		58.693	48.461 -29.423	1.00 34.00	A
		MOTA	7800	CD	GLN A		59.846	49.417 -29.219	1.00 35.18	A
te i.≟	0.5	MOTA	7801		GLN A		60.953	49.009 -28.862	1.00 35.89	A
31/200	35	MOTA	7802		GLN A		59.589	50.703 -29.428	1.00 34.40	Α
		MOTA	7803	С	GLN A		56.467	46.719 -26.804	1.00 29.41	A
		MOTA	7804	0	GLN A		55.719	47.446 -26.150	1.00 28.31	A
		MOTA	7805	N	LYS A		56.952	45.573 -26.341	1.00 27.07	A
	40	MOTA	7806	CA	LYS A	_	56.639	45.110 -25.000	1.00 25.50	A
	40	ATOM	7807	CB	LYS A			43.678 -24.793	1.00 27.59	Α
		MOTA	7808	CG	LYS A		56.424	42.636 -25.635	1.00 30.19	А
		MOTA	7809	CD	LYS A		54.951	42.545 -25.263	1.00 31.86	Α
		ATOM	7810	CE	LYS A	996	54.246	41.461 -26.063	1.00 32.41	А
		MOTA	7811	ΝZ	LYS A		54.837	40.117 -25.811	1.00 33.07	А
	45	MOTA	7812	С	LYS A	996	57.333	46.045 -24.024	1.00 23.02	A
		ATOM	7813	0	LYS A	996	58.498	46.399 -24.210	1.00 21.73	А
		ATOM	7814	N	LEU A	997	56.613	46.456 -22.989	1.00 20.46	Α
		MOTA	7815	CA	LEU A	997	57.183	47.350 -21.998	1.00 18.95	Α
		MOTA	7816	СВ	LEU A	997	56.180	48.443 -21.622	1.00 18.97	А
	50	ATOM	7817	CG	LEU A	997	56.621	49.367 -20.483	1.00 19.50	Α
		MOTA	7818	CD1	LEU A	997	57.859	50.141 -20.903	1.00 19.83	Α
		ATOM	7819	CD2	LEU A	997	55.493	50.316 -20.125	1.00 19.35	Α
		ATOM	7820	С	LEU A		57.582	46.588 -20.748	1.00 17.48	А
		MOTA	7821	0	LEU A		56.732	46.021 -20.065	1.00 17.65	Α
	55	ATOM	7822	N	ASP A		58.880	46.566 -20.467	1.00 16.19	А

	MOTA	7823	CA	ASP	A 998	59.399	45.910	-19.273	1.00 15.60	А
	ATOM	7824	CB		A 998	60.500		-19.633	1.00 16.76	Α
	ATOM	7825	CG	ASP	A 998	61.145	44.295	-18.408	1.00 17.89	А
	ATOM	7826			A 998	62.170	43.600	-18.564	1.00 18.83	Α
5	MOTA	7827	OD2	ASP	A 998	60.626	44.503	-17.289	1.00 17.40	Α
	ATOM	7828	С	ASP	A 998	59.976	47.028	-18.414	1.00 14.75	A
	MOTA	7829	0	ASP	A 998	61.117		-18.609	1.00 14.20	Α
	MOTA	7830	N	VAL	A.999	59.185	47.521	-17.469	1.00 14.42	Α
	ATOM	7831	CA	VAL	A 999	59.642	48.617	-16.628	1.00 14.11	Α
10	ATOM	7832	CB	VAL	A 999	58.532	49.089	-15.655	1.00 13.61	Α
	MOTA	7833	CG1	VAL	A 999	57.346	49.614	-16.447	1.00 14.23	Α
	ATOM	7834	CG2	VAL	A 999	58.109	47.955	-14.738	1.00 14.31	A
	ATOM	7835	С	VAL	A 999	60.897	48.299	-15.827	1.00 14.57	А
	ATOM	7836	0	VAL	A 999	61.669	49.195	-15.494	1.00 14.03	Α
15	ATOM	7837	N		A1000	61.116	47.027	-15.527	1.00 15.40	Α
	ATOM	7838	CA		A1000	62.288	46.673	-14.750	1.00 16.88	Α
	ATOM	7839	С		A1000	63.609	46.871	-15.487	1.00 16.40	Α
	ATOM	7840	0		A1000	64.666	46.894	-14.864	1.00 16.72	Α
	ATOM	7841	СВ		A1000	62.159	45.245	-14.220	1.00 17.93	Α
20	ATOM	7842	SG		A1000	61.365	45.181	-12.575	1.00 21.77	Α
	ATOM	7843	N		A1001	63.555	47.033	-16.806	1.00 16.66	Α
	ATOM	7844	CA		A1001	64.779	47.258	-17.569	1.00 17.02	A
	ATOM	7845	СВ		A1001	64.903	46.251	-18.720	1.00 17.37	A
	ATOM	7846	CG		A1001	65.459		-18.303	1.00 18.58	Α
25	ATOM	7847			A1001	66.716		-18.368	1.00 18.89	А
	ATOM	7848			A1001	64.693		-17.698	1.00 18.64	A
	ATOM	7849			A1001	65.455		-17.408	1.00 19.12	А
	MOTA	7850			A1001	66.687		-17.804	1.00 19.79	А
	ATOM	7851	C		A1001	64.896		-18.109	1.00 17.08	Α
30	ATOM	7852	Ö		A1001	65.742		-18.960	1.00 17.52	A
	ATOM	7853	N		A1002	64.053		-17.615	1.00 16.75	Α
	ATOM	7854	CA		A1002	64.101		-18.057	1.00 16.76	А
	ATOM	7855	CB		A1002	62.885		-17.545	1.00 16.55	A
	ATOM	7856	CG		A1002	61.597		-18.337	1.00 15.47	А
35	ATOM	7857	CD1		A1002	60.434		-17.648	1.00 15.32	Α
00	ATOM	7858			A1002	61.775		-19.754	1.00 16.05	А
	ATOM	7859	C		A1002	65.380		-17.566	1.00 17.51	А
	ATOM	7860	0		A1002	65.901		-18.205	1.00 18.66	А
	ATOM	7861	N		A1003	65.869		-16.418	1.00 17.61	А
40	ATOM	7862	CA		A1003	67.108		-15.847	1.00 18.02	А
40	ATOM	7863	CB		A1003	66.906		-14.387	1.00 18.59	А
	ATOM	7864	CG		A1003	66.180		-14.184	1.00 20.43	A
	ATOM	7865			A1003	65.881		-12.717	1.00 20.90	A
	ATOM	7866			A1003	67.041		-14.716	1.00 20.41	A
45	ATOM	7867	C		A1003	68.135		-15.957	1.00 18.42	A
43	ATOM	7868	0		A1003	67.802		-15.805	1.00 17.92	A
	ATOM	7869	N		A1003	69.399		-16.229	1.00 18.76	A
		7870			A1004	69.943		-16.433	1.00 19.13	A
	ATOM		CD		A1004 A1004	70.453		-16.364	1.00 13.13	A
50	ATOM	7871	CA			71.580		-17.022	1.00 19.50	A
50	ATOM	7872	CB		A1004			-17.022	1.00 19.50	A
	ATOM	7873	CG		A1004	71.443		-15.071	1.00 19.07	A
	ATOM	7874	С		A1004	70.903			1.00 19.22	A
	MOTA	7875	0		A1004	70.568		-13.968 -15.233	1.00 18.33	A
==	ATOM	7876	N G P		A1005	71.658		-15.233	1.00 19.25	A
55	MOTA	7877	CA	ASN	A1005	72.210	47.420	-14.112	1.00 19.09	М

		MOTA	7878	CB	ASN	A1005	73.166	48.321 -13.330	1.00 20.66	Α
		ATOM	7879	CG	ASN	A1005	74.151	49.043 -14.231	1.00 21.46	А
		ATOM	7880	OD1	ASN	A1005	74.441	50.223 -14.030	1.00 23.60	Α
		ATOM	7881	ND2	ASN	A1005	74.673	48.336 -15.225	1.00 22.61	Α
	5	MOTA	7882	С		A1005	71.156	46.857 -13.163	1.00 19.34	Α
	•	ATOM	7883	Ō		A1005	71.314	46.933 -11.945	1.00 19.19	А
		ATOM	7884	N		A1006	70.087	46.291 -13.713	1.00 19.06	A
		ATOM	7885	CA		A1006	69.036	45.723 -12.876	1.00 19.31	A
		ATOM	7886	CB		A1006	67.747	45.434 -13.693	1.00 19.18	A
	10	ATOM	7887			A1006	68.019	44.404 -14.773	1.00 19.10	A
	10					A1006		44.957 -12.764	1.00 19.49	A
		ATOM	7888				66.639			
		ATOM	7889	С		A1006	69.545	44.435 -12.230	1.00 19.15	A
		ATOM	7890	0		A1006	70.094	43.563 -12.906	1.00 19.87	A
	4 -	ATOM	7891	N		A1007	69.368	44.331 -10.916	1.00 18.45	A
	15	ATOM	7892	CA		A1007	69.817	43.169 -10.154	1.00 18.81	Α
		MOTA	7893	CB		A1007	70.580	43.629 -8.919	1.00 18.61	Α
		ATOM	7894	С	ALA	A1007	68.652	42.272 -9.748	1.00 19.17	Α
.,		ATOM	7895	0		A1007	68.836	41.086 -9.472	1.00 19.63	Α
1100		ATOM	7896	N	ARG	A1008	67.455	42.844 -9.695	1.00 19.17	A
	20	MOTA	7897	CA	ARG	A1008	66.265	42.078 -9.349	1.00 19.29	Α
		ATOM	7898	CB	ARG	A1008	66.261	41.696 -7.863	1.00 22.65	Α
m		ATOM	7899	CG	ARG	A1008	66.156	42.852 -6.896	1.00 27.30	Α
		ATOM	7900	CD	ARG	A1008	66.010	42.347 -5.466	1.00 31.10	A
र्ग,क् ट्रा 848 8		MOTA	7901	NE		A1008	67.134	41.503 -5.065	1.00 34.46	Α
3	25	ATOM	7902	CZ		A1008	68.392	41.924 -4.962	1.00 36.16	Α
¥		ATOM	7903			A1008	68.699	43.187 -5.228	1.00 37.00	А
		ATOM	7904			A1008	69.347	41.078 -4.596	1.00 37.06	А
81		MOTA	7905	С		A1008	65.003	42.855 -9.688	1.00 17.93	А
		ATOM	7906	0		A1008	65.010	44.085 -9.738	1.00 17.30	A
	30	ATOM	7907	N		A1009	63.927	42.118 -9.933	1.00 16.65	A
16 22 86 8	50	ATOM	7908	CA		A1009	62.636	42.698 -10.276	1.00 16.67	A
W.		ATOM	7909	C		A1009	61.592	41.996 -9.427	1.00 15.78	A
			7910	0		A1009	61.519	40.768 -9.412	1.00 15.70	A
		ATOM							1.00 13.09	A
[-4]	35	ATOM	7911	CB		A1009	62.339	42.464 -11.753		
	55	MOTA	7912	SG		A1009	60.816	43.242 -12.385	1.00 21.28	A
		MOTA	7913	N		A1010	60.776	42.775 -8.727	1.00 14.67	A
		ATOM	7914	CA		A1010	59.761	42.197 -7.866	1.00 14.58	A
		ATOM	7915	CB		A1010	60.174	42.376 -6.401	1.00 15.93	A
	40	MOTA	7916	CG		A1010	61.501	41.712 -6.045	1.00 18.90	A
	40	MOTA	7917	CD		A1010	62.107	42.248 -4.760	1.00 20.54	A
		ATOM	7918			A1010	62.440	43.452 -4.712	1.00 22.00	A
		ATOM	7919			A1010	62.255	41.466 -3.796	1.00 22.46	A
		MOTA	7920	С		A1010	58.394	42.827 -8.075	1.00 13.40	A
		ATOM	7921	0		A1010	58.284	44.024 -8.347	1.00 13.98	А
	45	MOTA	7922	N	ARG	A1011	57.354	42.009 -7.970	1.00 12.76	А
		ATOM	7923	CA	ARG	A1011	55.991	42.512 -8.072	1.00 12.10	А
		MOTA	7924	CB	ARG	A1011	55.034	41.430 -8.573	1.00 13.80	Α
		MOTA	7925	CG	ARG	A1011	53.614	41.929 -8.812	1.00 18.17	А
		ATOM	7926	CD	ARG	A1011	52.618	40.774 -8.865	1.00 22.69	Α
	50	ATOM	7927	NE		A1011	52.950	39.783 -9.883	1.00 27.58	A
		ATOM	7928	CZ		A1011	52.911	40.010 -11.192	1.00 28.97	A
		ATOM	7929			A1011	52.554	41.203 -11.651	1.00 30.64	A
		ATOM	7930			A1011	53.224	39.040 -12.044	1.00 29.56	A
		MOTA	7931	C		A1011	55.666	42.853 -6.621	1.00 23.50	A
	55	ATOM	7932	0		A1011	55.977	42.076 -5.712	1.00 11.33	A
		AIUM	1336	U	MKG	WIGII	JJ.711	12.010 -3.112	1.00 11.3/	М

		MOTA	7933	N	дит	A1012	55.062	44.012	-6.397	1.00	10.37	Α
		MOTA	7934	CA		A1012	54.734	44.446	-5.045	1.00	9.85	A
		ATOM	7935	CB		A1012	55.624	45.631	-4.618		11.29	A
			7936			A1012	55.297	46.777	-5.421		10.95	A
	5	ATOM					57.097	45.301	-4.810		11.40	A
	3	ATOM	7937			A1012					10.13	Ā
		ATOM	7938	С		A1012	53.295	44.931	-4.955			
		ATOM	7939	0		A1012	52.595	45.038	-5.961	1.00	9.43	A
		ATOM	7940	N		A1013	52.858	45.216	-3.733	1.00	9.30	A
	4.0	ATOM	7941	CA		A1013	51.532	45.772	-3.522	1.00	9.02	A
	10	MOTA	7942	CB		A1013	51.229	45.899	-2.024	1.00	9.03	A
		MOTA	7943			A1013	52.399	46.365	-1.344	1.00	8.79	A
		MOTA	7944	CG2		A1013	50.809	44.553	-1.442		10.35	A
		MOTA	7945	C	THR	A1013	51.622	47.164	-4.163	1.00	8.71	A
		ATOM	7946	0	THR	A1013	52.721	47.685	-4.366	1.00	8.56	А
	15	ATOM	7947	N	LEU	A1014	50.484	47.776	-4.469	1.00	8.27	A
		ATOM	7948	CA	LEU	A1014	50.504	49.082	-5.133	1.00	7.70	Α
		ATOM	7949	СВ	LEU	A1014	49.085	49.520	-5.491	1.00	7.86	Α
		ATOM	7950	CG		A1014	48.309	48.581	-6.414	1.00	7.61	A
i T i		ATOM	7951			A1014	47.005	49.264	-6.789	1.00	8.33	A
	20	ATOM	7952			A1014	49.116	48.242	-7.667	1.00	8.06	A
1,1,4		ATOM	7953	C		A1014	51.197	50.205	-4.376	1.00	7.40	А
1,2		ATOM	7954	Ö		A1014	51.552	51.228	-4.964	1.00	7.36	А
ijĦ.		ATOM	7955	N		A1015	51.382	50.011	-3.076	1.00	7.72	Α
		ATOM	7956	CA		A1015	52.037	50.991	-2.220	1.00	7.89	A
dull dull	25	ATOM	7957	CB		A1015	51.511	50.885	-0.794	1.00	8.20	A
Ü	23	ATOM	7958			A1015	51.649	49.527	-0.362	1.00	8.50	A
						A1015	50.045	51.287	-0.724	1.00	8.31	A
		ATOM	7959					50.741	-2.166	1.00	8.46	A
E)		ATOM	7960	С		A1015	53.544 54.274	51.501	-1.528	1.00	9.16	A
	30	ATOM	7961	0		A1015			-2.823	1.00	8.59	A
Ų	30	MOTA	7962	N		A1016	53.988	49.668	-2.867	1.00	9.00	A
		ATOM	7963	CA		A1016	55.402	49.273				
[.d.		ATOM	7964	CB		A1016	56.298	50.457	-3.263	1.00	9.48	A
		ATOM	7965	CG		A1016	55.972	51.061	-4.598	1.00	8.69	A
lai lai	25	MOTA	7966			A1016	55.795	52.438	-4.718	1.00	8.66	A
, (see.	35	MOTA	7967			A1016	55.877	50.270	-5.738	1.00	8.29	A
		MOTA	7968			A1016	55.528	53.016	-5.956	1.00	8.19	A
		MOTA	7969			A1016	55.609	50.841	-6.981	1.00	9.07	A
		MOTA	7970	CZ		A1016	55.435	52.213	-7.089	1.00	9.64	А
		MOTA	7971	С		A1016	55.899	48.744	-1.523	1.00	9.84	А
	40	ATOM	7972	0		A1016	57.089	48.470	-1.368		10.75	А
		MOTA	7973	N	LEU	A1017	54.996	48.579	-0.562			A
		MOTA	7974	CA	LEU	A1017	55.400	48.144	0.773	1.00	10.97	A
		ATOM	7975	CB	LEU	A1017	54.430	48.717	1.808	1.00	10.65	А
		ATOM	7976	CG	LEU	A1017	54.380	50.250	1.792	1.00	9.95	А
	45	ATOM	7977	CD1	LEU	A1017	53.336	50.737	2.780	1.00	10.62	A
		ATOM	7978	CD2	LEU	A1017	55.749	50.828	2.133	1.00	11.90	Α
		MOTA	7979	С		A1017	55.607	46.655	1.024	1.00	11.87	A
		MOTA	7980	0		A1017	56.252	46.289	2.006	1.00	13.86	A
		ATOM	7981	N		A1018	55.066	45.794	0.169		12.59	А
	50	ATOM	7982	CA		A1018	55.262	44.359	0.352		14.35	А
		ATOM	7983	CB		A1018	54.001	43.689	0.912		16.37	A
		ATOM	7984	CG		A1018	54.197	42.192	1.161		19.20	A
		ATOM	7985	CD		A1018	52.916	41.454	1.503	1.00		A
		ATOM	7985			A1018	52.916	40.236	1.694		23.07	A
	55						51.809	42.182	1.578		21.22	A
	33	ATOM	7987	NFZ	GTW	A1018	21.003	46.107	1.0/0	1.00	41.66	n

	ATOM	7988	С	GLN	A1018	55.634	43.680	-0.959	1.00 14.71	А
	ATOM	7989	0	GLN	A1018	55.018	43.933	-1.995	1.00 14.64	Α
	MOTA	7990	N	ASN	A1019	56.647	42.819	-0.914	1.00 15.34	Α
	MOTA	7991	CA	ASN	A1019	57.069	42.092	-2.104	1.00 16.71	Α
5	MOTA	7992	CB	ASN	A1019	58.536	41.665	-1.989	1.00 17.63	A
	ATOM	7993	CG	ASN	A1019	59.475	42.847	-1.852	1.00 19.02	А
	ATOM	7994	OD1	ASN	A1019	59.322	43.858	-2.540	1.00 19.65	А
	ATOM	7995	ND2	ASN	A1019	60.462	42.722	-0.971	1.00 19.85	Α
	MOTA	7996	С	ASN	A1019	56.178	40.867	-2.253	1.00 17.34	A
10	ATOM	7997	0	ASN	A1019	56.054	40.063	-1.327	1.00 18.14	A
	ATOM	7998	N	LEU	A1020	55.564	40.727	-3.422	1.00 17.74	A
	MOTA	7999	CA	LEU	A1020	54.657	39.618	-3.685	1.00 18.66	A
	MOTA	8000	CB	LEU	A1020	53.373	40.144	-4.331	1.00 18.41	A
	ATOM	8001	CG	LEU	A1020	52.582	41.198	-3.551	1.00 17.65	A
15	MOTA	8002	CD1	LEU	A1020	51.433	41.703	-4.405	1.00 18.32	Α
	MOTA	8003	CD2	LEU	A1020	52.064	40.602	-2.251	1.00 17.91	Α
	MOTA	8004	С	LEU	A1020	55.249	38.527	-4.571	1.00 19.82	Α
	ATOM	8005	0	LEU	A1020	54.851	37.363	-4.474	1.00 20.37	· A
	ATOM	8006	N	GLU	A1021	56.190	38.900	-5.432	1.00 20.85	Α
20	ATOM	8007	CA	GLU	A1021	56.808	37.942	-6.347	1.00 22.64	А
	ATOM	8008	СВ	GLU	A1021	55.947	37.778	-7.601	1.00 24.55	Α
	ATOM	8009	CG	GLU	A1021	54.627	37.066	-7.415	1.00 27.54	Α
	ATOM	8010	CD	GLU	A1021	53.845	36.990	-8.713	1.00 29.04	A
	ATOM	8011	OE1	GLU	A1021	54.450	36.632	-9.746	1.00 29.72	А
25	ATOM	8012	OE2	GLU	A1021	52.631	37.283	-8.701	1.00 30.41	A
	ATOM	8013	С	GLU	A1021	58.207	38.331	-6.804	1.00 22.88	A
	ATOM	8014	0	GLU	A1021	58.474	39.494	-7.100	1.00 21.59	А
	ATOM	8015	N	HIS	A1022	59.093	37.343	-6.870	1.00 23.24	A
	ATOM	8016	CA	HIS	A1022	60.451	37.559	-7.348	1.00 24.68	А
30	MOTA	8017	CB	HIS	A1022	61.438	36.663	-6.595	1.00 25.87	А
	ATOM	8018	CG	HIS	A1022	62.860	36.831	-7.032	1.00 27.45	А
	MOTA	8019	CD2	HIS	A1022	63.768	35.930	-7.477	1.00 28.54	А
	MOTA	8020	ND1	HIS	A1022	63.500	38.052	-7.033	1.00 28.74	A
	ATOM	8021	CE1	HIS	A1022	64.740	37.896	-7.460	1.00 29.03	A
35	ATOM	8022	NE2	HIS	A1022	64.929	36.618	-7.736	1.00 29.19	А
	ATOM	8023	С	HIS	A1022	60.359	37.146	-8.813	1.00 24.90	A
	MOTA	8024	0	HIS	A1022	60.105	35.982	-9.122	1.00 25.14	A
	MOTA	8025	N	LEU	A1023	60.549	38.104	-9.711	1.00 25.03	A
	ATOM	8026	CA	LEU	A1023	60.432	37.846	-11.140	1.00 26.27	А
40	ATOM	8027	CB	LEU	A1023	59.975		-11.843	1.00 25.95	А
	MOTA	8028	CG	LEU	A1023	58.679		-11.267	1.00 25.51	А
	MOTA	8029	CD1	LEU	A1023	58.382	41.052	-11.901	1.00 25.87	А
	ATOM	8030	CD2	LEU	A1023	57.537		-11.506	1.00 26.07	А
	MOTA	8031	С	LEU	A1023	61.685	37.303	-11.816	1.00 27.30	А
45	MOTA	8032	0	LEU	A1023	62.747		-11.778	1.00 26.61	А
	ATOM	8033	N	ASP	A1024	61.546	36.139	-12.443	1.00 29.41	А
	MOTA	8034	CA	ASP	A1024	62.659		-13.143	1.00 31.40	А
	ATOM	8035	CB	ASP	A1024	62.283	34.091	-13.582	1.00 33.04	А
	ATOM	8036	CG	ASP	A1024	62.251	33.111	-12.424	1.00 34.34	А
50	MOTA	8037	OD1	ASP	A1024	61.961		-12.661	1.00 35.68	А
	ATOM	8038	OD2	ASP	A1024	62.521	33.529	-11.278	1.00 35.28	Α
	ATOM	8039	С	ASP	A1024	63.049	36.336	-14.358	1.00 32.07	А
	MOTA	8040	0	ASP	A1024	62.202	36.977	-14.985	1.00 32.21	A
	MOTA	8041	N	GLY	A1025	64.336	36.318	-14.686	1.00 32.46	А
55	ATOM	8042	CA	GLY	A1025	64.816	37.080	-15.821	1.00 33.39	А

								•		
		ATOM	8043	С	GLY	A1025	64.726	38.564 -15.534	1.00 33.83	Α
		ATOM	8044	0	GLY	A1025	65.055	39.392 -16.382	1.00 33.62	Α
		ATOM	8045	N	MSE	A1026	64.277	38.894 -14.326	1.00 34.40	Α
		ATOM	8046	CA	MSE	A1026	64.133	40.281 -13.904	1.00 35.14	Α
	5	ATOM	8047	CB	MSE	A1026	65.504	40.943 -13.809	1.00 38.95	Α
		ATOM	8048	CG		A1026	66.467	40.210 -12.900	1.00 43.37	Α
		ATOM	8049	SE	MSE	A1026	68.190	41.048 -12.869	1.00 48.57	Α
		ATOM	8050	CE		A1026	68.959	40.193 -14.422	1.00 46.31	Α
		ATOM	8051	С		A1026	63.260	41.041 -14.890	1.00 33.31	Α
	10	ATOM	8052	0		A1026	63.493	42.218 -15.166	1.00 32.52	А
		ATOM	8053	N		A1027	62.254	40.358 -15.420	1.00 31.46	А
		ATOM	8054	CA		A1027	61.348	40.965 -16.380	1.00 30.23	А
		ATOM	8055	СВ		A1027	61.201	40.088 -17.639	1.00 30.01	Α
		ATOM	8056			A1027	60.185	40.706 -18.591	1.00 29.55	А
	15	ATOM	8057			A1027	62.547	39.942 -18.326	1.00 29.41	Α
		ATOM	8058	С		A1027	59.969	41.185 -15.778	1.00 29.79	А
		ATOM	8059	O		A1027	59.340	40.252 -15.280	1.00 29.23	А
		ATOM	8060	N		A1028	59.508	42.430 -15.821	1.00 28.92	Α
i tad		ATOM	8061	CA		A1028	58.194	42.773 -15.298	1.00 28.80	А
	20	ATOM	8062	СВ		A1028	58.184	44.213 -14.799	1.00 28.67	А
الله		ATOM	8063	С		A1028	57.189	42.600 -16.428	1.00 28.40	А
Ų		ATOM	8064	0		A1028	57.167	43.387 -17.373	1.00 28.55	А
iji)		ATOM	8065	N		A1029	56.354	41.554 -16.353	1.00 27.78	А
		MOTA	8066	CD		A1029	56.301	40.519 -15.304	1.00 27.81	A
om of the state of	25	ATOM	8067	CA		A1029	55.350	41.298 -17.390	1.00 27.71	А
Ŋ		ATOM	8068	СВ		A1029	54.858	39.895 -17.047	1.00 28.01	А
		ATOM	8069	CG	PRO	A1029	54.958	39.870 -15.559	1.00 28.02	А
Et		MOTA	8070	С		A1029	54.226	42.329 -17.378	1.00 27.12	А
(. <u></u>		ATOM	8071	0	PRO	A1029	53.868	42.859 -16.327	1.00 27.82	А
Ü	30	MOTA	8072	N	GLU	A1030	53.674	42.618 -18.551	1.00 26.11	A
": isp" 8 18 8		ATOM	8073	CA	GLU	A1030	52.591	43.585 -18.643	1.00 24.92	А
10		ATOM	8074	СВ	GLU	A1030	52.275	43.902 -20.106	1.00 25.04	Α
],- <u>1</u> .		ATOM	8075	CG	GLU	A1030	53.484	44.338 -20.920	1.00 25.00	A
1:00		ATOM	8076	CD	GLU	A1030	53.107	44.817 -22.307	1.00 25.45	А
į.4	35	ATOM	8077	OE1	GLU	A1030	52.177	44.237 -22.903	1.00 26.43	А
		MOTA	8078	OE2	GLU	A1030	53.749	45.765 -22.806	1.00 24.53	Α
		ATOM	8079	С	GLU	A1030	51.357	43.019 -17.953	1.00 23.99	Α
		ATOM	8080	0	GLU	A1030	51.256	41.810 -17.731	1.00 25.08	А
		ATOM	8081	N	VAL	A1031	50.418	43.896 -17.618	1.00 22.66	A
	40	MOTA	8082	CA	VAL	A1031	49.204	43.480 -16.933	1.00 20.61	Α
		ATOM	8083	CB		A1031	48.801	44.515 -15.860	1.00 21.38	A
		MOTA	8084	CG1	VAL	A1031	49.925	44.673 -14.851	1.00 21.76	A
		ATOM	8085	CG2	VAL	A1031	48.487	45.847 -16.508	1.00 20.47	А
		ATOM	8086	С	VAL	A1031	48.022	43.257 -17.869	1.00 19.15	А
	45	ATOM	8087	0		A1031	48.063	43.621 -19.044	1.00 19.47	A
		MOTA	8808	N	CYS	A1032	46.974	42.649 -17.326	1.00 17.67	Α
		ATOM	8089	CA		A1032	45.755	42.352 -18.069	1.00 16.55	Α
		MOTA	8090	С		A1032	44.838	43.566 -18.141	1.00 14.35	A
		MOTA	8091	0	CYS	A1032	45.002	44.520 -17.384	1.00 12.80	Α
	50	MOTA	8092	CB		A1032	44.989	41.225 -17.384	1.00 17.91	Α
		MOTA	8093	SG		A1032	45.736	39.571 -17.486	1.00 21.70	Α
		ATOM	8094	N	PRO	A1033	43.854	43.544 -19.056	1.00 13.48	Α
		ATOM	8095	CD	PRO	A1033	43.599	42.542 -20.108	1.00 13.27	Α
		ATOM	8096	CA	PRO	A1033	42.927	44.672 -19.176	1.00 12.75	А
	55	ATOM	8097	CB	PRO	A1033	41.964	44.212 -20.270	1.00 13.14	Α

	ATOM	8098	CG	A1033	42.837		-21.136	1.00 13.23	A
	ATOM	8099	С	A1033	42.210		-17.844	1.00 12.09	А
	MOTA	8100	0	A1033	41.721		-17.209	1.00 11.14	Α
_	MOTA	8101	N	A1034	42.161		-17.442	1.00 11.64	Α
5	ATOM	8102	CA	A1034	41.531		-16.201	1.00 12.45	Α
	MOTA	8103	CB	A1034	40.099		-16.084	1.00 12.75	A
	ATOM	8104	CG	A1034	39.156		-17.161	1.00 13.48	А
	ATOM	8105	SE	A1034	39.229		-17.394	1.00 18.29	Α
40	ATOM	8106	CE	A1034	38.290		-15.785	1.00 15.04	A
10	ATOM	8107	С	A1034	42.320		-14.950	1.00 13.04	A
	ATOM	8108	0	A1034	41.844		-13.833	1.00 15.57	A
	MOTA	8109	N	A1035	43.530		-15.139	1.00 12.47	А
	ATOM	8110	CA	A1035	44.379		-14.016	1.00 12.77	А
1-	ATOM	8111	CB	A1035	45.068		-14.282	1.00 15.80	A
15	ATOM	8112	CG	A1035	46.248		-13.359	1.00 20.78	A
	ATOM	8113	CD	A1035	46.741		-13.450	1.00 22.65	A
	ATOM	8114	OE1	A1035	47.035		-14.571	1.00 23.74	A
	ATOM	8115		A1035	46.841		-12.390	1.00 24.85	A
20	ATOM	8116	С	A1035	45.429		-13.773	1.00 11.49	A
20	ATOM	8117	0	A1035	45.795		-14.680	1.00 10.22	A
	ATOM	8118	N	A1036	45.893		-12.531	1.00 10.28	A
	MOTA	8119	CA	A1036	46.919		-12.125	1.00 9.92	A
	ATOM	8120	CB	A1036	46.343		-11.245	1.00 9.77	A
25	ATOM	8121	OG1	A1036	45.278		-11.937	1.00 10.21	A
25	MOTA	8122	CG2	A1036	47.418		-10.914	1.00 10.57	A
	MOTA	8123	С	A1036	47.906		-11.293	1.00 9.13	A
	ATOM	8124	0	A1036	47.502		-10.400	1.00 10.16	A
	ATOM	8125	N	A1037	49.192		-11.594	1.00 9.44	A
30	ATOM	8126	CA	A1037	50.225		-10.865	1.00 9.72	A
30	ATOM	8127	СВ	A1037	50.747		-11.705	1.00 10.95 1.00 9.84	A
	ATOM	8128 8129	С	A1037	51.361		-10.537	1.00 9.84	A A
	MOTA	8130	0	A1037	51.516	46.693	-11.177 -9.533	1.00 10.76	A A
	ATOM ATOM	8131	N CA	A1038 A1038	52.152 53.283	47.515	-9.333 -9.144	1.00 9.30	A A
35	ATOM	8132	CB	A1038	53.263	48.080	-7.747	1.00 8.30	A A
33	ATOM	8133	СВ	A1038	54.534	46.656	-9.180	1.00 8.90	A
	ATOM	8134	0	A1038	54.497	45.481	-8.813	1.00 7.98	A
	ATOM	8135	N	A1030	55.634	47.245	-9.635	1.00 7.30	A
	ATOM	8136	CA	A1039	56.903	46.540	-9.707	1.00 10.18	A
40	ATOM	8137	CB	A1039			-11.151	1.00 10.13	A
10	ATOM	8138	CG	A1039	56.243		-11.837	1.00 10.33	A
	ATOM	8139		A1039	55.324		-12.746	1.00 12.61	A
	ATOM	8140		A1039	54.405		-13.394	1.00 14.80	A
	ATOM	8141		A1039	56.216		-11.589	1.00 12.35	A
45	ATOM	8142		A1039	55.301		-12.228	1.00 13.71	A
20	ATOM	8143	CZ	A1039	54.401		-13.131	1.00 15.21	A
	ATOM	8144	ОН	A1039	53.508		-13.783	1.00 17.85	A
	ATOM	8145	C	A1039	58.009	47.422	-9.164	1.00 10.60	A
	ATOM	8146	0	A1039	57.950	48.644	-9.269	1.00 11.19	A
50	ATOM	8147	N	A1040	59.019	46.795	-8.575	1.00 10.57	A
	ATOM	8148	CA	A1040	60.158	47.529	-8.058	1.00 10.83	A
	ATOM	8149	CB	A1040	60.223	47.503	-6.513	1.00 10.80	A
	ATOM	8150		A1040	61.527	48.144	-6.034	1.00 10.81	A
	ATOM	8151		A1040	59.039	48.259	-5.934	1.00 11.19	A
55	ATOM	8152	C	A1040	61.414	46.884	-8.615	1.00 11.68	A
			~	 	V				• •

	ATOM	8153	0	VAL	A10	40	61.634	45.6	681	-8.454	1.00	12.74	А
	ATOM	8154	N	SER	A10	41	62.221	47.6	680	-9.303	1.00	11.34	А
	ATOM	8155	CA	SER	A10	41	63.465	47.		-9.855		12.00	Α
	MOTA	8156	CB	SER	A10	41	63.679			-11.281		12.02	A
5	ATOM	8157	OG	SER	A10	41	63.674	49.	114	-11.326		13.73	А
	ATOM	8158	С	SER	A10	41	64.600	47.6	627	-8.947	1.00	12.06	A
	ATOM	8159	0	SER	A10	41	64.608	48.	759	-8.464		11.83	А
	ATOM	8160	N	SER	A10	42	65.544	46.	726	-8.695	1.00	12.11	Α
	ATOM	8161	CA	SER	A10	42	66.696	47.0	38	-7.858	1.00	12.84	А
10	ATOM	8162	СВ	SER			66.899	45.9	959	-6.793	1.00	11.51	А
	ATOM	8163	OG	SER			65.783	45.9	904	-5.918	1.00	14.87	A
	ATOM	8164	С	SER			67.906	47.	117	-8.772	1.00	13.04	A
	ATOM	8165	0	SER			68.061	46.3	301	-9.682	1.00	14.12	A
	ATOM	8166	N	HIS			68.757	48.	106	-8.530	1.00	14.49	A
15	ATOM	8167	CA	HIS			69.931	48.3	318	-9.363	1.00	15.99	A
	ATOM	8168	СВ	HIS			69.709			-10.193	1.00	15.32	А
	ATOM	8169	CG	HIS			68.402			-10.922	1.00	14.89	Α
	ATOM	8170		HIS			67.158			-10.514	1.00	13.91	А
	ATOM	8171		HIS			68.260			-12.199	1.00	14.17	Α
20	ATOM	8172	CE1				66.986			-12.547	1.00	15.10	А
20	ATOM	8173		HIS			66.296			-11.540		14.41	A
	ATOM	8174	C	HIS			71.199	48.		-8.530		17.89	A
	ATOM	8175	Ö	HIS			71.251	49.		-7.541	1.00	17.26	А
	ATOM	8176	N	SER			72.220	47.		-8.943		20.49	А
25	ATOM	8177	CA	SER			73.493	47.		-8.237		23.36	А
20	ATOM	8178	СВ		A10		74.196	46.		-8.480		23.82	А
	ATOM	8179	OG		A10		74.218	46.		-9.862		25.95	А
	ATOM	8180	C		A10		74.404	48.		-8.649		24.24	А
	ATOM	8181	0		A10		74.018	49.		-9.554		24.99	А
30	ATOM	8182	OXT	SER			75.497	48.		-8.053		25.64	A
30	ATOM	8183	OH2	WAT		2	42.042	63.		-7.164	1.00	6.41	W
	ATOM	8184	OH2			3	53.550			-19.873	1.00	8.14	W
	ATOM	8185		WAT		4	39.197			-19.106	1.00	7.97	W
	ATOM	8186		WAT		5	52.209	54.		-4.846	1.00	8.40	W
35	ATOM	8187		WAT		6	56.128	53.		-0.630	1.00	8.30	W
33	ATOM	8188		TAW		7	31.282			-23.972		10.14	W
	ATOM	8189		WAT		8	49.807	48.		1.372	1.00	9.31	W
	ATOM	8190		WAT		9	36.893	57.		13.387	1.00	9.61	W
	ATOM	8191		WAT		10	26.802	68.		-9.206	1.00	9.53	W
40	ATOM	8192		WAT			39.233			-14.778			W
40	ATOM	8193		WAT		12	34.214	58.		-8.785	1.00	7.85	W
	ATOM	8194		WAT		13	61.037	59.		-8.191	1.00		W
		8195		WAT		14	36.556	72.		0.269		10.25	W
	ATOM	8196		WAT		15	31.717	47.		-8.074	1.00	8.83	W
45	ATOM	8197		WAT		16	30.129	55.		17.242	1.00	9.77	W
45	ATOM			WAT		17	26.161			-13.680	1.00	9.92	W
	ATOM	8198				18	37.670			-21.093		11.68	W
	ATOM	8199		WAT				62.		0.070	1.00	7.76	W
	ATOM	8200		WAT		19	33.074			-11.748	1.00		W
EΛ	ATOM	8201		WAT		20	24.794	61.		-7.515	1.00		M
50	ATOM	8202		TAW		21	63.100					11.28	W
	ATOM	8203		WAT		22	41.220	59.		13.470		16.11	W
	ATOM	8204		WAT		23	47.214			-15.391			W
	ATOM	8205		WAT		24	56.347	55.		-2.127	1.00		W
	ATOM	8206		WAT		25	67.413	60.				12.47	
55	ATOM	8207	OH2	WAT	W	26	26.340	48.	ひ 95	-10.998	1.00	9.95	W

	ATOM	8208	OH2	WAT	TaJ	27	65.658	60.301	-7.681	1.00 9.86	W
	ATOM	8209		WAT		28	32.556	60.049	-1.797	1.00 9.32	W
	ATOM	8210		WAT		29	20.112	54.723	16.205	1.00 11.76	W
	ATOM	8211		WAT		30	23.748	55.505		1.00 10.76	W
5	MOTA	8212		TAW		31	39.332	57.340	14.891	1.00 9.99	W
3	ATOM	8213		WAT		32	20.372	58.804		1.00 10.68	W
	ATOM	8214		WAT		33	28.005	60.998	19.501	1.00 12.43	W
	ATOM	8215		WAT		34	34.100		-26.283	1.00 8.61	W
	ATOM	8216		WAT		35	26.313	40.065	7.967	1.00 12.45	W
10	ATOM	8217		WAT		36	63.802		-14.014	1.00 12.13	W
10	MOTA	8218		WAT		37	37.571	56.991	1.737	1.00 9.76	W
	ATOM	8219		WAT		38	24.021	41.933	6.905	1.00 11.36	W
	ATOM	8220		WAT		39	31.878	65.446	18.975	1.00 15.13	W
	ATOM	8221		WAT		40	51.480	56.691	-5.611	1.00 19.19	W
15	ATOM	8222		WAT		41	20.134	56.063	7.164	1.00 12.78	W
10	ATOM	8223		WAT		42	28.304	43.888	13.163	1.00 9.88	W
	ATOM	8224		WAT		43	30.243		-11.811	1.00 8.09	W
	ATOM	8225		WAT		44	64.815	59.321	-3.585	1.00 13.31	W
	ATOM	8226		WAT		45	46.389		-15.597	1.00 13.31	W
20	ATOM	8227		WAT		46	60.782	58.212	-2.813	1.00 13.23	W
20	ATOM	8228		WAT		47	60.514	62.158	-1.234	1.00 13.28	W
	ATOM	8229		WAT		48	53.646	59.923	-9.348	1.00 13.25	W
	ATOM	8230		WAT		49	18.643		-12.404	1.00 11.23	W
	ATOM	8231		WAT		50	28.831		-11.918	1.00 11.63	M
25	ATOM	8232		WAT		51	34.530	79.088	-9.168	1.00 11.03	W
20	ATOM	8233		WAT		52	21.612	57.986	-7.797	1.00 10.97	W
	ATOM	8234		WAT		53	37.026	71.830	-4.514	1.00 9.38	W
	ATOM	8235		WAT		54	55.613		-11.500	1.00 3.30	W
	ATOM	8236		WAT		55	36.685	44.923	-5.472	1.00 11.75	W
30	ATOM	8237		WAT		56	51.323		-23.928	1.00 12.92	M
50	ATOM	8238		WAT		57	35.162		-17.524	1.00 13.57	W
	ATOM	8239			W	58	60.531	54.758	-0.381	1.00 14.45	W
	ATOM	8240		WAT		59	42.905	56.765	6.206	1.00 11.63	W
	ATOM	8241		WAT		60	47.859	59.294		1.00 13.35	W
35	ATOM	8242		WAT		61	37.863	73.312	-2.170	1.00 12.61	W
50	ATOM	8243		WAT		62	19.405	55.246	11.583	1.00 14.08	W
	ATOM	8244		WAT		63	25.931	39.712	5.244	1.00 11.23	W
	ATOM	8245		WAT		64	23.345	54.021	-3.621	1.00 13.72	W
	ATOM	8246		WAT		65	34.262	52.377	-0.944	1.00 9.34	W
40	ATOM		OH2			66		44.292	-8.032	1.00 10.74	W
10	ATOM	8248		WAT		67	37.640	58.989	11.075	1.00 12.29	W
	ATOM	8249		WAT		68	16.554		24.070	1.00 15.16	W
	ATOM	8250		WAT		69	19.376	53.552	8.216	1.00 12.07	W
	ATOM	8251		WAT		70	11.858	51.549	14.335	1.00 16.74	W
45	ATOM	8252		WAT		72	17.143	56.270	10.273	1.00 13.60	W
10	ATOM	8253		WAT		73	68.006	65.561	-3.446	1.00 12.60	W
	ATOM	8254		WAT		75	22.889		-24.420	1.00 14.72	W
	ATOM	8255		WAT		76	52.059	50.629	6.400	1.00 10.61	W
	ATOM	8256		WAT		77	17.622	52.779		1.00 11.97	W
50	ATOM	8257		WAT		78	68.809	58.261	-5.093	1.00 14.29	W
50	ATOM	8258		WAT		78 79	33.495		-10.195	1.00 14.23	W
	ATOM	8259		WAT		80	26.727		-13.197	1.00 12.70	W
	ATOM	8260		WAT		81	26.797		-3.250	1.00 12.70	W
	ATOM	8261		WAT		82	49.560		-8.627	1.00 10.23	W
55	ATOM	8262		WAT		83	41.032		-16.918	1.00 3.52	W
55	A I OF	0202	VIIZ	M.V.1	**	ر ن	41.072	52.300	10.710	1.00 12.01	**

	ATOM	8263	OH 2	WAT	T _A 7	84	31	1.381	76.8	322	-6.3	22	1 00	12.79	W
	ATOM	8264		WAT		85		3.389			-24.9			14.18	W
	ATOM	8265		WAT		86		2.757			-11.6			11.78	W
	ATOM	8266		WAT		87		0.527			-19.6			12.21	W
5	ATOM	8267		WAT		88		0.275	62.6		6.0		1.00	9.15	W
9								2.187			-24.5			14.89	W
	ATOM	8268		WAT		89								15.24	W
	ATOM	8269		WAT		90		1.548	41.8		-0.5				
	ATOM	8270		WAT		91		3.578			-31.6			14.89	W
10	ATOM	8271		WAT		92		2.315			-12.00			10.46	W
10	ATOM	8272		WAT		93		3.241			-30.69			15.15	W
	ATOM	8273		WAT		94		5.678	51.6		3.7			11.00	W
	ATOM	8274		WAT		95		3.700	62.2		8.3			12.20	W
	ATOM	8275		WAT		96		7.482	45.9		3.6			10.29	W
15	ATOM	8276		TAW		97		3.607			-35.93			18.29	W
15	ATOM	8277		TAW		98		2.325			-29.63			13.68	W
	ATOM	8278		WAT		99		9.188	38.9		17.2			16.44	M
	MOTA	8279		WAT				5.929	53.0		1.3			10.90	M
	ATOM	8280		TAW				1.480	60.0		5.1			14.27	W
20	ATOM	8281		WAT				1.754	57.1		5.13			12.46	W
20	MOTA	8282		WAT				3.069	48.0		11.2			12.39	W
	MOTA	8283		WAT		104		5.920	72.8		5.6			14.15	W
	MOTA	8284		WAT				7.565			-21.5			14.53	W
	MOTA	8285		WAT				3.286	78.5		-5.09			12.24	W
0=	MOTA	8286		WAT				0.058			-11.52			10.57	W
25	MOTA	8287		WAT				5.555	51.2		-9.4			11.34	W
	MOTA	8288		WAT).153	56.2		5.7			12.76	W
	ATOM	8289		WAT				1.046	59.7		-3.42			15.15	W
	MOTA	8290		WAT				679			-11.76			11.58	W
20	ATOM	8291		WAT				5.397	63.6		17.05			19.25	W
30	MOTA	8292		WAT				9.842			-11.72			15.86	M
	ATOM	8293		WAT				7.093	48.5		11.5			16.31	W
	MOTA	8294		WAT				7.773			-25.68			12.31	W
	ATOM	8295		WAT				2.941	51.7		-8.73			17.21	M
25	ATOM	8296		WAT				5.531			-36.70			15.24	W
35	ATOM	8297		WAT		118		610	57.4		-5.24			10.52	W
	MOTA	8298		WAT				3.199	60.6		24.36			19.10	W
	ATOM	8299		WAT				329			-32.49			14.40	W
	MOTA	8300		WAT				3.335	40.0		1.67			13.35	W
40	ATOM	8301		WAT				3.833	58.2		6.35			12.19	W
40	ATOM	8302		WAT				.240			-20.03			17.38	W
	MOTA	8303		WAT				.287			-14.10			13.36	W
	MOTA	8304		TAW				2.832	58.9		-1.73			12.54	W
	MOTA	8305		WAT				.931	49.5		13.8			12.59	M
. –	ATOM	8306		WAT				.204	43.6		28.72			14.94	M
45	ATOM	8307		WAT				.476	60.5		-6.23			11.38	W
	ATOM	8308		WAT				3.626			-19.20			12.06	W
	ATOM	8309	OH2	WAT	W	130	39	.684			-20.75			14.19	W
	MOTA	8310	OH2	TAW	W	131	33	3.156	36.6	26	-4.36			14.10	W
	ATOM	8311	OH2	WAT	W	132	14	.394	63.8	154	-16.38			15.65	W
50	MOTA	8312	OH2	WAT	W	133	47	.541	42.9	87	-2.38			16.31	W
	MOTA	8313	OH2	WAT	W	134	46	.862	55.8	23	-25.40			15.03	W
	ATOM	8314	OH2	WAT	W	136	32	2.224	58.5	64	-28.54	14	1.00	13.45	W
	ATOM	8315		WAT				.223	49.9	49	28.32	25	1.00	19.29	W
	MOTA	8316		WAT			26	3.323	37.3	326	29.41	16	1.00	19.14	W
55	ATOM	8317	OH2	WAT	W	139	51	.830	46.5	24	1.29) 5	1.00	12.33	W

	ATOM	8318	OH2	WAT	W	140	41.682	58.681	-16.050	1.00	12.26	W
	ATOM	8319		WAT			13.888	54.182	4.446		16.48	W
	ATOM	8320		WAT			67.770		-25.268		12.57	W
	ATOM	8321		WAT			42.134		-15.965		14.75	W
5	ATOM	8322		WAT		144	23.116	55.996	30.863		16.59	W
J	ATOM	8323		WAT			56.923	61.000	1.609		15.10	W
	ATOM	8324		WAT			20.034	74.341	-6.831		14.78	. W
	ATOM	8325		WAT			13.513	53.486	1.857		19.02	W
	ATOM	8326		WAT			34.238	34.360	16.148		20.31	W
10	MOTA	8327		WAT			34.031	64.487			13.24	W
10		8328		WAT			14.014	49.063	15.378		17.37	W
	ATOM	8329		WAT			30.347		-12.372		20.68	W
	ATOM						18.389	54.932	14.146		14.59	W
	ATOM	8330		WAT WAT			15.531	60.384	15.495		15.81	W
15	ATOM	8331						74.574	-2.964		16.76	W
15	ATOM	8332		TAW			16.835				16.90	W
	ATOM	8333		WAT			56.537		-17.410		12.93	W
	ATOM	8334		TAW			45.674		-18.274			W
	ATOM	8335		WAT			28.029		-35.413		16.49 18.99	W
20	ATOM	8336		WAT			73.011	65.045	-7.742			
20	MOTA	8337		WAT			73.834		-17.552		17.40	W
	ATOM	8338		WAT			59.358	49.999	-0.640		16.59	W
	MOTA	8339		TAW			23.060		-24.854		16.96	W
	MOTA	8340		WAT			14.343		-16.113		16.49	W
0.5	ATOM	8341		WAT			43.420	73.075	5.809		11.62	W
25	ATOM	8342		WAT			11.844		-12.346		15.84	W
	ATOM	8343	OH2				63.502	44.660	-6.843		14.23	W
	MOTA	8344		TAW			24.666		-24.012		13.46	W
	ATOM	8345		WAT			35.548		-27.375		19.03	W
•	ATOM	8346		WAT			28.659		-24.380		17.39	W
- 30	ATOM	8347		WAT			54.858		-23.538		13.45	W
	ATOM	8348		WAT			24.206	63.494	7.574		12.75	W
	ATOM	8349		WAT			49.747	57.598	-7.598		10.26	W
	ATOM	8350	OH2			172	45.989	70.940	0.068		14.02	W
	MOTA	8351		WAT			24.402	55.716	-1.779		13.43	W
35	ATOM	8352	OH2	WAT	W	174	28.620		-21.645		14.74	W
	ATOM	8353		TAW			37.102	45.554	27.479		13.25	W
	ATOM	8354	OH2	WAT	W	176	41.571		-17.611		18.25	M
	ATOM	8355	OH2	WAT	W	177	40.223		-31.989		14.62	W
	MOTA	8356	OH2	WAT	W	178	49.238		-28.693		20.38	M
40	ATOM	8357	OH2	WAT	W	179	64.381	39.377	-10.391		21.32	W
	ATOM	8358	OH2	WAT	W	180	19.168	72.461	3.018		18.78	M
	ATOM	8359	OH2	WAT	W	181	17.075		-16.266		12.96	W
	ATOM	8360	OH2	WAT	W	182	9.392	52.493	16.921		23.15	W
	MOTA	8361	OH2	WAT	W	183	53.939	71.254	-36.857		13.91	W
45	MOTA	8362	OH2	WAT	W	184	50.885	70.915	-23.550	1.00	16.66	W
	ATOM	8363	OH2	WAT	W	185	49.412	44.201	4.399	1.00	13.57	W
	ATOM	8364	OH2	WAT	W	186	59.279	68.219	2.499	1.00	19.23	W
	ATOM	8365		WAT			25.484	53.702	11.101	1.00	17.16	W
	MOTA	8366		WAT			69.101	61.416	-2.408	1.00	16.03	W
50	ATOM	8367		WAT			58.277		-38.485		14.92	W
	ATOM	8368		WAT			44.347	46.042	9.977		14.65	W
	ATOM	8369		WAT			46.569		-18.708	1.00	13.28	W
	ATOM	8370		WAT			33.581		-10.326		15.89	W
	ATOM	8371		WAT			47.072		-30.250		17.11	W
55	ATOM	8372		WAT			44.472		-15.367		16.02	W
~ -			_									

	ATOM	8373	OH2	ሴ፤ እ ጥ	TAT	105	13.135	66.801	-4.751	1 00	16.44	W
	ATOM	8374	OH2				24.508		-11.494		20.79	W
	ATOM	8375	OH2				41.658		-29.773		17.50	W
	ATOM	8376	OH2				27.188	41.368	13.298		15.13	W
5	ATOM	8377	OH2				42.058		-40.915		15.24	W
0	ATOM	8378	OH2				70.003		-12.626		14.74	W
	ATOM	8379	OH2				64.179		-35.248		14.07	W
	ATOM	8380	OH2				20.804	65.342	7.755		17.03	W
	ATOM	8381	OH2				11.345		-18.469		19.28	W
10	ATOM	8382	OH2				24.586	70.556	-8.728		13.10	W
10	ATOM	8383	OH2				25.042	40.064	14.311		17.71	W
	ATOM	8384	OH2				22.658		-33.219		18.83	W
	ATOM	8385	OH2				41.629	43.251	7.933		14.67	W
	ATOM	8386	OH2				20.931	51.833	47.478		16.92	W
15	ATOM	8387	OH2				41.310	50.343	33.238		20.76	W
10	ATOM	8388	OH2				45.951		-19.108		16.03	W
	ATOM	8389	OH2				51.426		-40.924		25.44	W
	ATOM	8390	OH2				25.622		-31.896		16.09	W
	ATOM	8391	OH2				12.541	56.291	5.425		17.15	W
20	ATOM	8392	OH2				22.523		-34.105		17.30	W
	ATOM	8393	OH2				43.796		-41.912		18.18	W
	ATOM	8394	OH2				44.637		-15.909	1.00	16.17	W
	ATOM	8395	OH2				31.266	81.750	0.557	1.00	18.18	W
	ATOM	8396	OH2				52.052		-30.316		20.40	W
25	ATOM	8397	OH2				17.201		-23.298		21.76	W
	ATOM	8398	OH2				37.700	46.928	29.873	1.00	18.65	W
	ATOM	8399	OH2				49.781		-29.054	1.00	18.35	W
	ATOM	8400	OH2				36.227	79.122	-4.990	1.00	18.76	W
	ATOM	8401	OH2				62.292	62.423	25.645	1.00	21.53	W
30	ATOM	8402	OH2				11.410	53.122	6.820	1.00	16.14	W
	ATOM	8403	OH2				13.875	60.774	-22.493	1.00	17.65	W
	ATOM	8404	OH2	WAT	W	227	50.785	61.911	26.371	1.00	20.81	W
	MOTA	8405	OH2	WAT	W	228	68.609	78.746	-18.153	1.00	20.98	W
	MOTA	8406	OH2	WAT	W	229	84.248	68.254	-17.382	1.00	16.45	W
- 35	ATOM	8407	OH2	WAT	W	230	21.921	40.287	-8.763	1.00	25.24	W
	ATOM	8408	OH2	WAT	W	231	52.792	69.689	18.337	1.00	23.67	W
	MOTA	8409	OH2	WAT	W	233	42.635	53.302	35.623		21.27	W
	ATOM	8410	OH2	WAT	W	234	70.643	52.132	-12.652		19.68	W
	MOTA	8411	OH2	WAT	W	235	34.668	70.219	13.058		21.89	W
40	MOTA	8412	OH2	WAT	W	236	27.265	46.404	13.634	1.00	16.31	W
	MOTA	8413	OH2	WAT	W	237	14.320	49.792	19.854		16.31	W
	MOTA	8414	OH2	WAT	W	238	49.691	73.425	-21.732	1.00	21.90	W
	MOTA	8415	OH2	WAT	W	239	48.829	44.275	-6.153	1.00	18.55	W
	MOTA	8416	OH2	WAT	W	240	61.398		-39.730		19.88	W
45	MOTA	8417	OH2	WAT	W	241	22.807		-30.326		23.15	W
	MOTA	8418	OH2	WAT	W	242	43.596		-38.551		15.45	W
	MOTA	8419	OH2	WAT	W	243	35.783	77.456			14.79	W
	ATOM	8420	OH2	TAW	W	244	24.815	68.296			19.19	W
	ATOM	8421	OH2				68.075	49.207			19.95	W
50	ATOM	8422	OH2				54.280	47.750			20.36	W
	MOTA	8423	OH2				55.069	50.670			24.95	W
	MOTA	8424	OH2				39.430		-32.780		23.67	W
	ATOM	8425	OH2				22.569		-13.489		19.28	W
	MOTA	8426	OH2				67.180	55.272			14.46	W
55	ATOM	8427	OH2	WAT	W	251	47.980	44.000	-8.660	1.00	18.47	W

		MOTA	8428	OH2	WAT	W	252	26.921	87.791	-23.599	1.00	22.16	W
		ATOM	8429	OH2	WAT	W	253	18.923	48.496	37.716	1.00	19.77	W
		ATOM	8430	OH2	WAT	W	254	83.559	67.682	-22.775	1.00	25.26	W
		ATOM	8431	OH2	WAT	W	255	42.958	59.618	-18.847	1.00	23.27	W
	5	ATOM	8432	OH2	WAT	W	256	47.414	79.105	-40.375	1.00	19.23	W
		ATOM	8433	он2	WAT	W	258	8.630	57.709	-6.814	1.00	21.71	W
		ATOM	8434	OH2	WAT	W	259	54.925	90.238	-23.447	1.00	24.47	W
		ATOM	8435	OH2	WAT	W	260	27.570	36.487	-19.572	1.00	23.33	W
		MOTA	8436	OH2	TAW	W	261	72.138	58.735	-11.226	1.00	25.73	M
	10	MOTA	8437	OH2	TAW	W	262	34.255	67.576	12.146	1.00	16.16	M
		MOTA	8438	OH2	TAW	W	263	11.762	59.422	-4.906	1.00	19.04	W
		MOTA	8439	OH2	WAT	W	264	23.706	45.995	-15.875	1.00	18.11	W
		ATOM	8440	OH2	WAT	W	265	50.139	70.863	-17.624	1.00	21.18	M
		ATOM	8441		WAT			45.026		-25.430	1.00	19.76	W
	15	ATOM	8442	OH2	WAT	W	267	16.075	72.079	-18.963		21.64	W
		ATOM	8443		WAT			20.115	52.673	-24.264	1.00	18.48	W
		ATOM	8444	OH2	WAT	W	269	59.537	76.497	-8.952	1.00	18.23	W
		MOTA	8445	OH2	WAT	W	270	66.843		-27.172		20.64	W
172		MOTA	8446		TAW			38.606		-29.882		24.46	W
	20	MOTA	8447		TAW			40.396		-10.648		14.99	W
ij		ATOM	8448		TAW		273	42.125	48.704	31.281		17.97	W
1,550 1975		ATOM	8449		WAT			24.053	52.876	-5.945		25.34	W
(T)		ATOM	8450		WAT			53.271		-25.039		18.91	W
	~=	ATOM	8451		WAT			32.411		-43.013		24.77	W
denti i	25	ATOM	8452		WAT			36.026	36.057	-4.541		19.29	W
ĩŲ.		ATOM	8453		WAT			70.071		-29.789		21.14	W
M		MOTA	8454		WAT		280	49.683		-43.824		19.21	M
ŧi.		MOTA	8455		TAW			68.342		-34.832		23.24	W
	20	MOTA	8456		TAW			29.226	46.817	37.090		20.39	W
ille ille	30	ATOM	8457		WAT			18.522	69.968	4.257		15.36	W
iii.		ATOM	8458	OH2	WAT			14.166	68.276	-7.752		18.68	W
į.		MOTA	8459		WAT		285	50.272	72.263	9.147		23.64	W
		MOTA	8460		TAW		286	39.675		-40.325		19.11	W
tei Nat.	25	MOTA	8461		WAT		287	28.646	65.114	19.694		17.93	W
int.	35	ATOM	8462		WAT			11.705	58.754	7.964		21.41	W
		ATOM	8463		WAT			52.597		-17.448		22.13	W
		MOTA	8464		TAW			18.473		-26.958 -33.259		19.14	W W
		MOTA	8465		TAW			44.625		6.342		19.78 17.11	W
	40	ATOM	8466		WAT WAT			36.100	80.964	-28.155		19.52	W
	40	ATOM	8467					16.566				28.58	W
		ATOM	8468		TAW			29.722 8.813	55.020	-17.892 -6.064		20.11	W
		ATOM	8469		WAT					-25.945		20.11	W
		ATOM	8470		WAT			46.636 42.898	82.218	-9.891		24.94	W
	45	ATOM	8471 8472		TAW TAW			10.335	50.645	18.833		25.27	W
	40	ATOM ATOM	8473		TAW			12.852	42.541	12.566		17.91	W
		ATOM	8474		WAT			35.895	45.124	30.854		20.00	W
					WAT			15.792		-11.626		21.01	W
		ATOM ATOM	8475 8476		WAT			25.222		-20.840		23.20	W
	50											25.71	W
	50	ATOM	8477		WAT			56.890	64.828	24.222 -41.997		22.28	W
		ATOM	8478		WAT			38.567		-34.927		19.36	W
		ATOM ATOM	8479 8480		WAT WAT			34.734 33.032		-17.616		25.42	W
					WAT			33.032 20.752	42.619	-7.465		17.80	W
	55	ATOM	8481					19.062	76.610	4.854		27.92	W
		MOTA	8482	Onz	WAT	W	200	13.002	10.010	4.004	1.00	21.72	VV

		_			_						00 00	
		ATOM	8483	OH2 WA			43.300	80.72			22.89	W
		MOTA	8484	OH2 WA			32.873	85.30			20.83	W
		ATOM	8485	OH2 WA			31.185	33.49			24.76	W
	_	MOTA	8486	OH2 WA			21.436	78.46			20.14	W
	5	ATOM	8487	OH2 WA			55.286	59.00			16.44	W
		MOTA	8488	OH2 WA			13.406		2 -19.877		20.13	W
		MOTA	8489	OH2 WA	T W	315	16.922	50.82	4 -19.239		24.71	W
		MOTA	8490	OH2 WA	T W	316	14.323	62.81	8 -12.022	1.00	20.05	W
		MOTA	8491	OH2 WA	T W	317	53.131	86.67	0 -21.375	1.00	24.00	M
	10	ATOM	8492	OH2 WA	T W	318	70.984	49.51	1 -0.110	1.00	23.19	W
		MOTA	8493	OH2 WA	T W	319	58.047	42.40	2 1.566	1.00	23.65	W
		ATOM	8494	OH2 WA	T W	320	74.768	76.36	9 -14.340	1.00	27.79	W
		MOTA	8495	OH2 WA	T W	321	24.787	83.12	8 -16.877	1.00	20.99	W
		MOTA	8496	OH2 WA	T W	322	56.915	67.70	0 -35.396	1.00	21.88	W
	15	ATOM	8497	OH2 WA	T W	323	48.769	50.55	9 -29.520	1.00	24.35	W
		MOTA	8498	OH2 WA	T W	325	66.709	71.60	7 -6.852	1.00	19.70	W
		MOTA	8499	OH2 WA	T W	326	28.790	93.74	6 -38.512	1.00	23.49	W
		ATOM	8500	OH2 WA	T W	327	32.509	64.76	8 -9.926	1.00	17.49	W
2 1 mm		MOTA	8501	OH2 WA	T W	328	13.454	50.92	2 -1.603	1.00	22.73	W
	20	ATOM	8502	OH2 WA	T W	329	39.346	49.24	4 30.155	1.00	19.73	W
IJ.		MOTA	8503	OH2 WA			67.888	58.66	3 -24.054	1.00	19.93	W
		MOTA	8504	OH2 WA	T W	331	20.779	58.98	5 -34.524	1.00	18.17	W
		ATOM	8505	OH2 WA			37.550	75.64	1 -42.326	1.00	19.39	M
		MOTA	8506	OH2 WA			31.895		4 -35.392		20.49	W
100	25	ATOM	8507	OH2 WA			12.860	71.20		1.00	26.50	W
ij		ATOM	8508	OH2 WA			37.017		6 -24.664		26.87	W
M		ATOM	8509	OH2 WA			19.245	42.74			24.91	W
		MOTA	8510	OH2 WA			50.102	44.09			17.71	W
3 (2005) 2 (ATOM	8511	OH2 WA			37.447		1 -25.539		18.16	W
	30	ATOM	8512	OH2 WA			75.300		6 -19.617		26.79	W
ŧ₽		ATOM	8513	OH2 WA			50.344		3 -31.161		19.20	W
IJ		ATOM	8514	OH2 WA			42.877		7 -31.559		24.68	W
ļ.d.		ATOM	8515	OH2 WA			13.262	68.81			21.56	W
		ATOM	8516	OH2 WA			40.735		0 -31.321		26.31	W
.	35	MOTA	8517	OH2 WA			27.084	52.28			28.70	W
F .		ATOM	8518	OH2 WA			12.534	66.37			20.41	W
		ATOM	8519	OH2 WA			42.619		3 -15.769		22.12	W
		ATOM	8520	OH2 WA			48.091	48.43			17.55	W
		ATOM	8521	OH2 WA			11.547	46.87		1.00	24.28	W
	40	ATOM	8522	OH2 WA			16.474		8 -19.969		19.28	W
		ATOM	8523	OH2 WA			5.038	52.91	4 -5.886		27.53	W
		ATOM	8524	OH2 WA			56.273		7 -25.706		22.05	W
		ATOM	8525	OH2 WA			39.139		0 -27.376		21.38	W
		ATOM	8526	OH2 WA			60.719	56.85			26.22	W
	45	ATOM	8527	OH2 WA			13.419	51.47			19.40	W
	10	ATOM	8528	OH2 WA			43.394		9 -37.655		21.87	W
		ATOM	8529	OH2 WA			28.161	35.31			20.76	W
		ATOM	8530	OH2 WA			80.258		7 -21.537		25.16	W
		MOTA	8531	OH2 WA			51.563	45.06			28.77	W
	50	ATOM	8532	OH2 WA			21.446		0 ~17.598		23.85	W
	50	ATOM	8533	OH2 WA			47.431		6 -20.273		25.46	W
		ATOM	8534	OH2 WA			21.320		9 -31.086		28.86	W
		ATOM	8535	OH2 WA			32.967	66.86			21.01	W
		MOTA	8536	OH2 WA			14.670		9 -14.512		20.46	W
	55	ATOM	8537	OH2 WA			50.391		6 -25.274		22.28	พ
		AIOM	0221	Onz WA	1 44	202	JU. J J I	13.12	0 23.214	1.00	22.20	**

		ATOM	8538		WAT				.946	79.336	6 -23.444		25.26	W
		MOTA	8539	OH2	TAW	W	367		.090	45.369			22.87	M
		ATOM	8540	OH2	WAT	W	368	50	.764	76.382		1.00	20.54	W
		MOTA	8541	OH2	WAT	W	369	38	.488		6 - 33.680		23.10	W
	5	ATOM	8542	OH2	WAT	W	370	61	.315		3 -28.914		24.07	W
		ATOM	8543		WAT			53	.733	46.764	23.505	1.00	28.94	W
		MOTA	8544	OH2	WAT	W	372	56	.967	43.140	-20.141		24.44	W
		ATOM	8545	OH2	WAT	W	373	67	.533		9 -18.257		21.67	W
		MOTA	8546	OH2	TAW	M	374		.392		2 -31.723		29.17	W
	10	ATOM	8547		WAT				.171		7 -39.774		22.24	W
		ATOM	8548		WAT				.168	61.164			24.42	W
		ATOM	8549		WAT				.832	45.100			26.77	W
		ATOM	8550		WAT				.919	51.178			27.88	W
		MOTA	8551		TAW				.740	62.410			25.59	W
	15	MOTA	8552		WAT				.278	33.367			24.89	W
		MOTA	8553		WAT				.478	59.295			20.20	M
		MOTA	8554		WAT				.720		30.466		30.57	W
		ATOM	8555		WAT				.949	58.005			19.27	W
	•	ATOM	8556		WAT				.207	76.417			28.48	W
	20	MOTA	8557		WAT				.814	67.60			26.23	W
		MOTA	8558		TAW				.984	39.094			24.84	W
197		ATOM	8559		WAT				.873	46.425			21.53	W
inee ¥°is is		MOTA	8560		WAT				.274		2 -18.311		26.55	W
	0-	MOTA	8561		WAT				.687	39.332			18.94	W
e Grani	25	MOTA	8562		WAT				.662		3 -18.087		19.74	W
i Ciri		MOTA	8563		WAT				.147		31.558		25.38	W
		MOTA	8564		WAT				.586		4 -16.614		27.92	W
B)		MOTA	8565		TAW				.468		1 -13.049		17.12	W
	20	MOTA	8566		WAT				.521	75.061			22.89	W
ij	30	MOTA	8567		WAT				.061	39.148			24.66	W
		ATOM	8568		WAT				.299	47.235			23.69 25.00	W W
14		ATOM	8569		WAT				.155		2 -41.480		32.51	W
13		ATOM	8570		WAT				.628	55.293			26.37	W
toar. Ēgalt.	35	ATOM	8571		WAT				.625		4 -38.993 3 22.645		25.45	W
ž.,	33	MOTA	8572		WAT				.975	42.908	5 ~22.427		28.89	W
		ATOM	8573		WAT				.227	34.952			24.65	W
		ATOM ATOM	8574 8575		WAT WAT				.137	80.720			25.21	W
		ATOM	8576		WAT				.222	41.802			24.08	W
	40	ATOM	8577		WAT				.340		3.365			W
	40	ATOM	8578		WAT				.671		2 -22.208		22.00	W
		ATOM	8579		WAT				.526		3 -18.523		22.94	M
		ATOM	8580		WAT				.691		2 -37.372		21.41	W
		ATOM	8581		WAT				.926		7 15.141		27.39	W
	45	ATOM	8582		WAT				.335		9 -15.222		26.73	W
	10	ATOM	8583		WAT				.923		17.732		29.75	W
		ATOM	8584		TAW				.041		3 -43.820		21.70	W
		ATOM	8585		WAT				.543		9 -19.119		29.10	W
		ATOM	8586		TAW				.561	68.418			25.39	W
	50	ATOM	8587		WAT				.142		3 -17.334		24.13	W
	50	ATOM	8588		WAT				.330		6.541		31.13	W
		ATOM	8589		WAT				.111		-28.613		21.15	W
		ATOM	8590		WAT				.096		9 -25.745		29.17	W
		MOTA	8591		TAW				.889		23.713		22.69	W
	55	ATOM	8592		WAT				.570		29.297		28.90	W
		111 (11)	0372	OHZ	****	••	120	22		50.011				••

		ATOM	8593		WAT		24.823		-36.234	1.00 28.1	
		MOTA	8594		TAW		58.331	34.694	-6.071	1.00 28.9	
		ATOM	8595		WAT		50.546		-15.583	1.00 27.8	
	_	MOTA	8596		WAT		17.745	68.564	24.329	1.00 32.5	
	5	ATOM	8597		WAT		56.367		-29.437	1.00 24.6	
		ATOM	8598		WAT		52.556	73.131	4.237	1.00 33.9	
		MOTA	8599		TAW		28.063	67.208	7.740	1.00 24.9	
		ATOM	8600		WAT		22.030	36.775	0.168	1.00 21.7	
	40	ATOM	8601		WAT		40.079		-28.245	1.00 25.4	
	10	ATOM	8602		WAT		10.576	77.090	-5.015	1.00 30.9	
		ATOM	8603		WAT		27.152	65.194	9.060	1.00 25.2	
		ATOM	8604		WAT		72.751		-20.984	1.00 26.9	
		ATOM	8605		WAT		79.826		-17.648	1.00 28.4	
	4-	MOTA	8606		WAT		66.841	74.355	-4.271	1.00 30.3	
	15	ATOM	8607		WAT		48.154		-28.370	1.00 22.20	
		ATOM	8608		WAT		42.519	39.358	-1.503	1.00 25.7	
		ATOM	8609		WAT		63.183		-31.749	1.00 27.2	
		ATOM	8610		WAT		24.165		-14.685	1.00 23.4	
	00	ATOM	8611		WAT		27.758	50.897	13.213	1.00 19.4	
J	20	ATOM	8612		WAT		38.638		-39.787	1.00 22.9	
Ú		MOTA	8613		TAW		76.697		-26.770	1.00 29.6	
		ATOM	8614		WAT		28.767	72.466	22.467	1.00 25.8	
		ATOM	8615		WAT		20.751		-35.607	1.00 31.0	
10	OF.	MOTA	8616			444	24.098	57.242	38.823	1.00 24.7	
191	25	ATOM	8617		WAT		38.190		-10.134	1.00 38.2	
		MOTA	8618		WAT		23.326		-40.633	1.00 24.8 1.00 27.7	
M		ATOM	8619		WAT		17.246		-26.245 -22.218	1.00 27.7	
R!		ATOM	8620		TAW		66.919		-27.991	1.00 23.6	
	30	ATOM	8621			450	52.681 20.704	68.074	8.597	1.00 41.6	
ı,D	30	ATOM	8622			451	61.634		-30.745	1.00 21.0	
		ATOM	8623		WAT		9.806	59.916	6.504	1.00 29.4	
14		MOTA	8624 8625		WAT WAT		31.630		-19.824	1.00 22.2	
		MOTA MOTA	8626		WAT		28.063		-41.579	1.00 27.5	
į,±	35	MOTA	8627		WAT		44.698		-30.429	1.00 20.6	
.	33	ATOM	8628		WAT		59.485		-34.677	1.00 26.1	
		ATOM	8629			458	70.244		-12.495	1.00 28.6	
		ATOM	8630		WAT		46.088	46.117	16.230	1.00 29.4	
		ATOM	8631		WAT		46.004		-25.325	1.00 29.7	
	40	MOTA	8632		WAT		56.907		-20.060	1.00 25.7	
	10	ATOM	8633		WAT		73.660	74.098	-5.829	1.00 23.6	
		ATOM	8634		WAT		19.646	43.105	33.835	1.00 25.0	
		ATOM	8635		WAT		79.264	51.116	-0.590	1.00 21.3	
		ATOM	8636		WAT		66.047	45.418	-3.282	1.00 26.6	
	45	ATOM	8637		WAT		48.396	78.020	-9.778	1.00 24.1	
	10	ATOM	8638		WAT		29.998	34.084	-1.514	1.00 22.9	
		ATOM	8639		TAW		16.176		-24.051	1.00 31.8	
		ATOM	8640		WAT		17.617	39.367	35.721	1.00 38.0	
		ATOM	8641		WAT		22.534	31.157	29.484	1.00 28.5	
	50	ATOM	8642		WAT		33.369		-18.330	1.00 15.9	
	50	ATOM	8643		WAT		41.250		-39.511	1.00 24.3	
		ATOM	8644		WAT		44.232		-27.639	1.00 23.3	
		ATOM	8645		WAT		30.862	57.188	4.543	1.00 17.9	
		ATOM	8646			476	65.908	66.089	-0.376	1.00 24.0	
	55	ATOM	8647		WAT		46.470	68.518	26.475	1.00 28.3	
			J J .	٠٠		 				-	

	ATOM	8648		WAT				0.032			-20.342		28.95	W
	ATOM	8649		WAT				3.576			-26.085		32.69	W
	ATOM	8650	OH2	WAT	W	480	2	5.257	71.3	144	22.415		28.48	W
_	ATOM	8651	OH2	WAT	W	481	1	4.011	69.3		26.764	1.00	25.72	W
5	MOTA	8652	OH2	WAT	W	482	6	2.091	80.	708	-18.944	1.00	22.51	W
	ATOM	8653	OH2	WAT	W	483	2	7.568	47.6	649	45.829	1.00	30.99	W
	ATOM	8654	OH2	WAT	W	484	2	4.924	34.3	183	0.541	1.00	31.69	W
	ATOM	8655	OH2	WAT	W	485	5	7.542	69.0	040	13.372	1.00	35.06	W
	ATOM	8656	OH2	WAT	W	486	•	7.964	48.0	092	11.826	1.00	24.78	W
10	ATOM	8657		WAT		487		1.310	59.7		1.011		30.00	W
	ATOM	8658		WAT				7.619			-23.404		24.62	W
	ATOM	8659		WAT				2.380			-13.498		29.76	W
	ATOM	8660		WAT				7.878	52.		42.550		28.52	W
	ATOM	8661		WAT				2.024	62.6		33.804		29.60	W
15	ATOM	8662		WAT				9.396			-26.287		39.41	W
13	ATOM	8663		WAT				4.320			-10.560		30.89	W
											29.080		25.09	W
	ATOM	8664		WAT				0.216	36.4					
	ATOM	8665		WAT				8.571	49.5		5.657		35.32	W
20	ATOM	8666		WAT				1.955	67.3		29.326		25.76	W
20	ATOM	8667		WAT				2.402			-27.267		28.93	W
	ATOM	8668		WAT				8.848	44.3		12.960		29.54	W
	ATOM	8669		WAT				1.065			-15.336		30.91	W
	ATOM	8670		WAT				1.462			-24.401		26.41	W
0.5	MOTA	8671		WAT				9.798	66.9		31.423		27.70	W
25	MOTA	8672		WAT				3.321	52.7		26.356		25.71	W
	MOTA	8673		WAT		505		6.304			-27.111		28.70	W
	ATOM	8674	OH2	TAW	W	506	1	9.649	52.5	518	-27.061	1.00	26.07	W
	MOTA	8675	OH2	WAT	W	507	70	0.823	95.1	128	-34.949	1.00	33.07	W
	MOTA	8676	OH2	WAT	W	508	4 8	3.072			-25.801	1.00	25.60	W
30	MOTA	8677	OH2	TAW	W	509	4	4.452	64.6	662	-35.219	1.00	35.32	W
	ATOM	8678	OH2	WAT	W	510	13	8.126	52.8	356	35.976	1.00	29.35	W
	ATOM	8679	OH2	WAT	W	511	8	3.591	70.0	051	-20.249	1.00	24.79	W
	MOTA	8680	OH2	WAT	W	512	4	3.836	79.9	945	-42.480	1.00	26.76	W
	ATOM	8681	OH2	WAT	W	513	2:	2.688	62.5	534	16.084	1.00	24.30	W
35	ATOM	8682		WAT				5.760	79.2	249	-7.906	1.00	24.96	W
	MOTA	8683		TAW			2.0	6.801	88.0		-4.103	1.00	32.00	W
	ATOM	8684		WAT				3.743			-22.199	1.00	30.07	W
	ATOM	8685		WAT				6.884	29.1		13.084		31.77	W
	ATOM	8686		WAT				0.410	65.5		27.349		30.30	W
40	ATOM	8687		WAT							2.971		32.47	W
10	ATOM	8688		WAT				1.217			-12.932		22.54	W
	MOTA	8689		WAT				3.095	49.2		38.335		25.33	W
	ATOM	8690		WAT				9.442			-25.576		24.39	W
	ATOM	8691		WAT				9.537	67.3		-2.706		23.69	W
45		8692		WAT				3.446	41.7		-7.635		26.49	W
43	ATOM													
	ATOM	8693		WAT				3.643			-22.750		19.36	W
	ATOM	8694		WAT				5.385	81.7		-3.635		41.05	W
	MOTA	8695		TAW				5.767			-16.111		28.81	W
50	MOTA	8696		WAT				3.571	51.1		22.159		21.40	W
50	MOTA	8697		TAW				1.235	45.9		4.993		33.49	W
	MOTA	8698		WAT				5.524			-42.585		25.30	W
	ATOM	8699		WAT				1.643			-20.062		25.12	W
	ATOM	8700		WAT				1.128			-36.724		28.07	W
	MOTA	8701		TAW				7.969			16.453		39.22	W
55	ATOM	8702	OH2	WAT	W	534	58	3.573	34.8	364	-12.260	1.00	28.74	W

	ATOM	8703		WAT			21.002		-23.639		27.60	W
	MOTA	8704		WAT			51.295		-20.170		17.32	W
	MOTA	8705		WAT			32.081	85.225	-8.550	1.00	25.94	W
_	ATOM	8706		WAT			21.710	29.081			31.53	W
5	MOTA	8707		WAT			22.095	87.545	-7.194		35.62	W
	ATOM	8708	OH2	WAT	W	540	31.578	57.434	37.279	1.00	27.30	W
	ATOM	8709	OH2	WAT	W	541	17.488	81.399	-17.281	1.00	34.73	W
	ATOM	8710	OH2	WAT	W	542	51.884	58.999	6.332	1.00	41.97	W
	ATOM	8711	OH2	WAT	W	544	21.957	80.184	-35.949	1.00	24.09	W
10	ATOM	8712	OH2	WAT	W	545	24.829	74.038	9.017	1.00	26.59	W
	ATOM	8713	OH2	WAT	W	546	21.438	79.893	5.316	1.00	27.77	W
	MOTA	8714		WAT			48.301	94.016	-37.157	1.00	32.94	W
	ATOM	8715		WAT			39.887	38.849	-3.487		22.74	W
	ATOM	8716		WAT			39.630	96.139	-28.202		36.55	W
15	ATOM	8717		WAT			36.804		-15.757		29.05	M
	ATOM	8718		WAT			34.920	45.669	33.370		19.31	W
	ATOM	8719		WAT			55.621	77.953			32.69	W
	MOTA	8720		TAW			70.242	61.953	-0.089		28.70	W
	ATOM	8721		WAT			46.112	74.216	22.600		30.69	W
20	ATOM	8722		WAT			48.424		-23.172		27.05	W
	ATOM	8723		WAT			60.520		-28.475		29.32	W
	ATOM	8724		WAT			37.929	62.300	35.419		28.02	W
	ATOM	8725		WAT			29.431		-37.425		39.57	W
	MOTA	8726		WAT			61.433		-31.702		37.37	W
25	ATOM	8727		WAT			62.085		-38.287		25.83	W
	ATOM	8728		WAT			62.988		-20.951		25.61	W
	MOTA	8729		WAT			53.472	44.227	22.714		28.63	W
	ATOM	8730		WAT			30.645	34.628	-9.707		30.01	W
	ATOM	8731		WAT		565	29.635	31.443	21.942		30.77	W
30	MOTA	8732		WAT		566	78.625		-12.005		25.23	W
	ATOM	8733		WAT			31.369		-45.418		31.91	W
	ATOM	8734		WAT			73.477		-21.188		26.33	W
	ATOM	8735		WAT			47.244		-23.950		29.92	W
	ATOM	8736		WAT			20.446	37.879	12.137		27.15	W
35	ATOM	8737		WAT			34.990		-32.269		28.71	W
00	ATOM	8738		WAT			17.230	41.552	9.181		29.09	W
	ATOM	8739		WAT			20.459		-33.664		36.30	W
	ATOM	8740		WAT			49.151		-24.092		27.95	W
	ATOM	8741		WAT			43.768	44.908	19.223		30.88	W
40	ATOM	8742		WAT		-	21.182		-5.151		30.52	W
10	ATOM	8743		WAT					-24.138		28.32	W
	ATOM	8744				578	46.841		-21.480		24.30	W
	ATOM	8745				579	71.566		-27.060		31.49	W
	ATOM	8746		WAT			19.970		25.719		26.74	W
45	ATOM	8747		WAT			59.366		-45.758		30.58	W
43	ATOM	8748		WAT			51.734		-7.865		37.38	W
	ATOM	8749		WAT			56.216		-14.684		33.27	W
		8750		WAT			28.884		-39.556		21.83	W
	ATOM	8751					45.187		-43.201		32.24	W
50	ATOM	8751		WAT					-43.201 -42.870		30.89	
50	ATOM	8752 8753		WAT			29.669				28.76	W
	ATOM			WAT			28.252		-42.596 -29.590			W
	ATOM	8754		WAT			19.626		-28.580		37.20	W
	ATOM	8755		WAT			37.741		-30.667		33.56	W
55	ATOM	8756		WAT					-31.708		35.51	W
<i>5</i> 5	ATOM	8757	OH2	WAT	W	231	21.114	41.599	35.229	1.00	29.14	W

						_		_		20 -			20.25	
		ATOM	8758		WAT				9.247	30.34			38.89	W
		ATOM	8759	OH2			593		2.099		1 -22.844		28.21	W
		ATOM	8760				594		1.040	68.45			24.91	W
	_	ATOM	8761				595		7.896	67.87			35.64	W
	5	ATOM	8762				596		5.003		1 -25.860		25.42	W
		ATOM	8763	OH2			597		9.601	72.44			21.34	W
		ATOM	8764	OH2			599		1.559		3 -38.650		36.64	W
		ATOM	8765		WAT				9.128	62.34			26.23	W
	10	ATOM	8766				602		1.205	79.27			23.39	W
	10	ATOM	8767		WAT				1.242	60.39			38.73	W
		ATOM	8768		WAT				9.833		L -35.483		27.48	W
		ATOM	8769		WAT				4.014	60.65			26.81	W
		ATOM	8770		TAW				1.603	61.649			32.24	W
	15	ATOM	8771				608		5.226		2 -19.378		23.64	W
	15	ATOM	8772		WAT				6.743		1 -28.596		34.41	W
		ATOM	8773		WAT				0.872		-21.500		28.24	W
		ATOM	8774		WAT				8.668		-46.081		39.60	W
		ATOM	8775		WAT				0.006	35.39			24.43	W
	20	ATOM	8776		WAT				8.904		-11.812		29.72	W
Ü	20	ATOM	8777		WAT				4.971	79.73			31.04	W
		ATOM	8778		WAT				2.774		-12.245 2 -19.201		33.51	W W
17		ATOM	8779		WAT		616		3.009	75.479			32.27 23.61	
		MOTA	8780		TAW TAW		617		7.062				33.95	W W
	25	ATOM	8781 8782		WAT				0.829	58.092 77.218			30.34	W
114	23	ATOM	8783						0.615				36.42	W
# H		MOTA MOTA	8784		TAW TAW		620		8.468	45.385			24.96	W
		ATOM	8785		WAT		622		3.139 3.385		9 -19.404		35.03	W
8(ATOM	8786		WAT		623		3.787		3 -15.050		32.82	W
	30	MOTA	8787		WAT		624		9.449		3 -26.140		13.06	W
١Ţ	50	ATOM	8788		WAT				7.151	33.80			33.81	W
IJ.		ATOM	8789		WAT				1.759		7 -18.009		27.73	W
į.		ATOM	8790		WAT				4.323) -44.782		32.70	W
		ATOM	8791		WAT				4.347	77.058			32.46	W
į.	35	ATOM	8792		WAT				5.947	55.944			41.57	W
•	00	MOTA	8793		WAT				0.659	51.202			36.36	W
		ATOM	8794		WAT				4.265		-13.764		37.73	W
		ATOM	8795		WAT				1.136	54.633			34.03	W
		ATOM	8796		WAT				4.453	50.762			26.77	W
	40	ATOM	8797		WAT				5.475		3 -33.051		31.56	W
		ATOM	8798		WAT						-29.293	1.00	31.95	W
		ATOM	8799		WAT				5.875	38.711			35.90	W
		ATOM	8800		WAT				7.492	83.840			33.70	W
		ATOM	8801		WAT				5.485	55.126			31.21	W
	45	MOTA	8802	OH2	WAT	W	642	6	6.889		-11.141	1.00	29.67	W
		ATOM	8803		WAT				0.401	89.429	-19.494	1.00	34.59	W
		MOTA	8804		WAT				3.726	56.577	33.715	1.00	23.89	W
		ATOM	8805		WAT				6.389		-30.348	1.00	38.11	W
		ATOM	8806		WAT				3.345	57.663		1.00	33.20	W
	50	MOTA	8807		WAT				2.132		-21.140	1.00	30.17	W
		ATOM	8808		WAT				2.795		-22.094		43.84	W
		ATOM	8809		WAT						13.657		38.17	W
		ATOM	8810		WAT						-27.698		27.71	W
		ATOM	8811		WAT				3.502	70.141			24.86	W
	55	ATOM	8812		WAT				0.670		-41.587	1.00	24.16	W

	ATOM	8813	OH2	WAT	TAT	653	39.252	43.518	26.888	1.00 2	8 02	W
	ATOM	8814		WAT			11.931	70.822	2.485	1.00 2		W
				WAT			36.424		-38.251	1.00 2		W
	ATOM	8815		WAT			76.055	83.157		1.00 2		W
5	ATOM	8816								1.00 3		W
3	ATOM	8817		WAT			37.608	80.454	-0.581			
	ATOM	8818		WAT			47.350	53.378	35.765	1.00 3		W
	ATOM	8819		WAT			48.604		-33.661	1.00 2		W
	ATOM	8820		WAT			63.595		-45.655	1.00 3		W
	MOTA	8821		WAT			60.081	71.509	0.342	1.00 3		W
10	MOTA	8822		WAT			41.130		-29.424	1.00 3		W
	ATOM	8823	OH2	WAT	M	663	55.384		-12.570	1.00 4		W
	MOTA	8824	OH2	WAT	W	664	74.977	83.935	-22.956	1.00 3	3.05	W
	MOTA	8825	OH2	WAT	W	665	63.406	52.047	-0.358	1.00 2	6.92	W
	MOTA	8826	OH2	WAT	W	666	37.221	36.481	18.964	1.00 3	9.54	W
15	ATOM	8827	OH2	WAT	W	667	57.641	36.009	-2.585	1.00 3	6.41	W
	ATOM	8828		WAT			23.115	48.814	-36.297	1.00 3	2.39	W
	ATOM	8829		WAT			17.636		-29.530	1.00 3		W
	ATOM	8830		WAT			30.674	40.378	38.143	1.00 3		W
	ATOM	8831		WAT			27.433	50.036	23.323	1.00 3		W
20	ATOM	8832		WAT			30.557	48.124	40.431	1.00 3		W
20	ATOM	8833		WAT		673	59.855		-30.690	1.00 3		W
	ATOM	8834		WAT		674	44.853	40.592	13.345	1.00 2		W
									36.057	1.00 2		W
	ATOM	8835		WAT			34.115	47.984		1.00 3		W
25	MOTA	8836		TAW			27.358	82.247	3.089			W
25	ATOM	8837		WAT			58.497		-42.235	1.00 3		
	MOTA	8838		WAT			49.253		-37.624	1.00 3		W
	ATOM	8839		WAT			53.379		-16.924	1.00 2		W
	ATOM	8840		WAT		680	57.626		-15.503	1.00 3		W
•	MOTA	8841		WAT		681	28.297		-29.713	1.00 2		M
30	MOTA	8842		WAT		682	48.852		-38.154	1.00 3		M
	MOTA	8843	OH2	WAT	W	683	35.576		-43.062	1.00 2		W
	ATOM	8844	OH2	\mathtt{WAT}	W	684	9.623	58.535	17.852	1.00 3		M
	MOTA	8845	OH2	WAT	W	686	61.093	45.523	-3.654	1.00 2	9.72	M
	ATOM	8846	OH2	WAT	W	687	65.483	78.684	-5.700	1.00 2	7.73	W
35	MOTA	8847	OH2	WAT	W	688	7.036	58.084	14.815	1.00 3	6.18	W
	MOTA	8848	OH2	WAT	W	689	49.432	50.626	32.574	1.00 2	7.09	W
	MOTA	8849	OH2	WAT	W	690	18.651	62.429	22.834	1.00 4	2.61	W
	ATOM	8850	OH2	WAT	W	691	30.258	34.015	21.108	1.00 3	4.14	W
	ATOM	8851		WAT			17.405		-14.008	1.00 2	6.24	W
40	ATOM	8852		WAT			28.725		39.985	1.00 2		W
	ATOM	8853		WAT			50.875		-8.928	1.00 1		W
	ATOM	8854		WAT			43.729		-28.635	1.00 1		W
	ATOM	8855		WAT			38.088		-31.356	1.00 1		W
	ATOM	8856		WAT			32.349		-4.925	1.00 1		W
45		8857		WAT			60.345		-18.133	1.00 1		W
40	ATOM									1.00 1		W
	ATOM	8858		WAT			63.195	58.590				
	ATOM	8859		WAT			60.694	60.822	-3.596	1.00 1		W
	ATOM	8860		WAT			46.601	74.399		1.00 1		W
F0	ATOM	8861		WAT			54.966	57.537	-0.483	1.00 1		W
50	MOTA	8862		WAT			30.225		-29.275	1.00 1		W
	MOTA	8863		WAT			58.878	56.724	-1.422	1.00 1		W
	ATOM	8864		WAT			58.700	52.597		1.00 1		W
	ATOM	8865	OH2	WAT	W	714	63.107	61.088	-4.839	1.00 1		W
	ATOM	8866	OH2	WAT	W	716	27.955		12.047	1.00 1		W
55	ATOM	8867	OH2	WAT	W	717	66.623	56.169	-20.267	1.00 1	7.13	W

	ATOM	8868	OH2 WAT	W 718	19.936	46.755 -14.350	1.00 16.77	W
	ATOM	8869	OH2 WAT	W 719	38.627	69.291 -38.085	1.00 17.45	W
	ATOM	8870	OH2 WAT	W 720	33.604	60.216 23.237	1.00 13.28	W
	MOTA	8871	OH2 WAT	W 721	39.652	55.611 3.022	1.00 13.93	W
5	MOTA	8872	OH2 WAT	W 722	24.646	61.455 9.397	1.00 14.96	W
	MOTA	8873	OH2 WAT	W 723	16.774	57.081 13.004	1.00 14.37	W
	ATOM	8874	OH2 WAT	W 724	39.450	69.183 -35.373	1.00 14.13	W
	ATOM	8875	OH2 WAT	W 725	49.892	67.527 4.244	1.00 18.93	W
	MOTA	8876	OH2 WAT	W 726	27.672	53.307 20.113	1.00 14.50	W
10	MOTA	8877	OH2 WAT	W 728	29.774	83.030 2.442	1.00 22.49	W
	ATOM	8878	OH2 WAT	W 729	28.084	90.857 -25.245	1.00 18.36	W
	MOTA	8879	OH2 WAT	W 730		77.662 9.467	1.00 18.68	W
	MOTA	8880	OH2 WAT	W 732	12.563	49.413 17.711	1.00 22.37	M
	ATOM	8881	OH2 WAT	W 733		68.406 -11.410	1.00 22.16	M
15	MOTA	8882	OH2 WAT	W 734		44.788 -6.895	1.00 14.61	W
	MOTA	8883	OH2 WAT	W 735		67.851 -27.467	1.00 21.17	M
	ATOM	8884	OH2 WAT	W 736		50.502 24.242	1.00 21.49	W
	ATOM	8885	OH2 WAT	W 737		46.510 -1.449	1.00 22.53	W
	ATOM	8886		W 738		50.439 8.116	1.00 23.35	W
20	MOTA	8887	OH2 WAT	W 739		40.902 -1.043	1.00 22.37	W
	MOTA	8888	OH2 WAT	W 740		74.445 3.962	1.00 24.93	W
	MOTA	8889	OH2 WAT			55.093 -18.224	1.00 23.58	W
	MOTA	8890	OH2 WAT			66.338 -15.493	1.00 19.93	W
^ -	MOTA	8891	OH2 WAT			69.111 -36.939	1.00 23.36	W
25	MOTA	8892	OH2 WAT			70.185 -38.125	1.00 23.72	W
	MOTA	8893	OH2 WAT			72.422 34.299	1.00 24.92	W
	MOTA	8894	OH2 WAT			61.422 -32.436	1.00 21.97	W
	MOTA	8895	OH2 WAT			48.994 21.252	1.00 21.06	W
20	ATOM	8896	OH2 WAT			59.488 -31.444	1.00 21.62	W
30	MOTA	8897	OH2 WAT			34.321 -3.215	1.00 21.00	W
	ATOM	8898	OH2 WAT			59.043 -33.539	1.00 21.08	W W
	ATOM	8899	OH2 WAT			59.205 14.822	1.00 24.82	W
	ATOM	8900		W 752		56.207 -19.111	1.00 25.71 1.00 48.44	W
35	ATOM	8901	OH2 WAT			87.559 -44.311 76.348 -10.460	1.00 48.44	W
33	ATOM	8902	OH2 WAT			50.972 -11.546	1.00 21.23	W
	ATOM	8903	OH2 WAT			51.645 -18.478	1.00 39.01	W
	ATOM	8904 8905	OH2 WAT			52.103 13.079	1.00 10.77	W
	ATOM ATOM	8906	OH2 WAT			63.958 -28.517	1.00 25.13	W
40	ATOM					66.604 -9.978	1.00 23.13	W
40	ATOM	8907 8908	OH2 WAT			56.438 2.724	1.00 21.00	W
	ATOM	8909	OH2 WAT			65.114 -36.107	1.00 19.42	W
	ATOM	8910	OH2 WAT			66.012 27.868	1.00 26.73	W
	ATOM	8911	OH2 WAT			63.583 -16.941	1.00 21.03	W
45	ATOM	8912	OH2 WAT			86.295 -17.790	1.00 27.96	W
10	ATOM	8913	OH2 WAT			60.334 -20.514	1.00 24.44	W
	ATOM	8914	OH2 WAT			48.702 -2.429	1.00 28.25	W
	ATOM	8915	OH2 WAT			56.964 31.024	1.00 28.09	W
	ATOM	8916	OH2 WAT			52.932 36.459	1.00 28.11	W
50	ATOM	8917	OH2 WAT			47.339 28.976	1.00 22.00	W
-0	ATOM	8918	OH2 WAT			34.395 15.460	1.00 23.97	W
	ATOM	8919	OH2 WAT			50.889 24.775	1.00 26.83	W
	ATOM	8920	OH2 WAT			83.105 -1.002	1.00 29.02	W
	ATOM	8921	OH2 WAT			51.685 -12.118	1.00 24.44	W
55	ATOM	8922	OH2 WAT			50.593 35.188	1.00 27.91	W
_		•						

	ATOM	8923	ОН2	WAT	W	777	48.088	41.570	-5.478	1.00	25.82	W
	ATOM	8924	OH2				22.201	40.755	-11.309	1.00	22.86	W
	ATOM	8925	OH2				16.035	36.324	16.220	1.00	33.87	W
	ATOM	8926	OH2				22.449	68.096	20.372	1.00	25.52	W
5	ATOM	8927	OH2				72.144		-17.924		27.21	W
0	ATOM	8928	OH2				40.774		-11.931		23.09	W
	ATOM	8929	OH2				56.758	46.693	15.829		26.36	W
		8930	OH2				51.826	63.844	24.459		25.35	W
	ATOM		OH2				56.613	58.444	1.389		27.95	W
10	ATOM	8931						58.417	5.430		28.29	W
10	MOTA	8932	OH2				57.457		-16.398		25.10	W
	MOTA	8933	OH2				75.229					W
	MOTA	8934	OH2				14.676		-23.121		24.85	
	MOTA	8935	OH2				13.074		-15.015		26.93	W
4-	MOTA	8936	OH2				13.077		-25.010		28.53	W
15	ATOM	8937	OH2				23.191		-32.614		29.37	W
	MOTA	8938	OH2				66.312		-14.185		25.05	W
	MOTA	8939	OH2	WAT	W	793	47.318		-28.719		27.79	W
	MOTA	8940	OH2				52.473	70.852	5.989		28.42	W
	MOTA	8941	OH2				40.973		-33.310		27.84	M
20	MOTA	8942	OH2	TAW	W	796	30.245	66.418	10.988		25.30	W
	MOTA	8943	OH2	WAT	W	797	39.668	39.709	19.992	1.00	28.66	W
	ATOM	8944	OH2	WAT	W	798	44.704	55.276	36.258	1.00	32.18	W
	ATOM	8945	OH2	WAT	W	799	13.966	62.480	14.594	1.00	26.13	W
	ATOM	8946	OH2	WAT	W	800	40.024	39.702	-0.423	1.00	27.38	W
25	ATOM	8947	OH2	TAW	W	801	32.549	69.495	22.160	1.00	28.57	W
	ATOM	8948	OH2				41.883	44.124	-11.770	1.00	25.88	W
	ATOM	8949	OH2				26.947	41.616	-27.654	1.00	30.54	W
	ATOM	8950	OH2				19.843	41.627	-5.057	1.00	25.74	W
	ATOM	8951	OH2				13.685	60.590	7.622	1.00	25.20	W
30	ATOM	8952	OH2				46.720	45.811	11.549		29.52	W
00	ATOM	8953	OH2				42.921		-29.946		27.18	W
	ATOM	8954	OH2				24.412	53.888	-8.318		33.09	W
	ATOM	8955	OH2				47.609		-16.650		25.75	W
	ATOM	8956	OH2				58.802		-27.521		28.20	W
35	ATOM	8957	OH2				31.338		-42.859		29.67	W
55		8958	OH2				22.092		-13.217		24.02	W
	ATOM		OH2				52.770		-23.358		26.46	W
	MOTA	8959					60.321	50.996	20.144		31.94	W
	ATOM	8960	OH2 OH2				60.777	56.054	2.005		27.67	W
40	ATOM	8961					19.477		-36.746		23.57	W
40	ATOM	8962	OH2						12.462		54.57	W
	ATOM	8963	OH2				30.153	49.938			26.81	W
	ATOM	8964	OH2				26.284	66.727	19.939			
	ATOM	8965	OH2				11.971	41.446	19.843		29.18	M
4 =	ATOM	8966	OH2				69.267		-34.141		25.35	W
45	MOTA	8967	OH2				16.589	42.916	-2.539		26.70	W
	MOTA	8968	OH2				35.924		-37.655		33.22	W
	MOTA	8969	OH2				34.054		-42.550		34.74	W
	MOTA	8970	OH2				57.237		-14.386		32.76	W
	MOTA	8971	OH2				37.157	37.518	2.919		29.99	W
50	ATOM	8972	OH2				51.214	66.642	8.544		21.97	W
	ATOM	8973	OH2	WAT	W	829	10.791	51.469			26.06	W
	ATOM	8974	OH2	WAT	W	830	30.338		-14.953		24.37	W
	ATOM	8975	OH2				42.244	54.832	-17.439	1.00	27.73	W
	ATOM	8976	ОН2				48.355	76.393	8.326	1.00	29.41	W
55	ATOM	8977	ОН2				29.663	76.034	10.889	1.00	28.76	W

	ATOM	8978	OH2	WAT	W	834	43.0	10	98.114	-37.134	31.67	W
	MOTA	8979		WAT			24.4		65.295	9.661	27.20	W
	MOTA	8980	OH2	WAT	W	836	64.6		78.684	-1.585	26.20	W
	MOTA	8981	OH2	WAT	W	837	43.2	54		-22.987	27.81	W
5	ATOM	8982	OH2	WAT	W	838	59.4		49.064	2.200	31.34	W
	MOTA	8983		WAT			68.9			-17.211	28.54	W
	MOTA	8984	OH2	TAW	W	840	24.7			-39.983	23.32	W
	MOTA	8985		WAT			23.7			-24.123	30.99	W
	MOTA	8986		WAT			46.9			-24.515	24.37	W
10	ATOM	8987		WAT			53.3			-30.034	30.89	W
	ATOM	8988		TAW			24.8		34.332	35.789	31.04	W
	MOTA	8989		WAT			13.2		52.427	25.888	29.86	W
	MOTA	8990		TAW			51.6		44.456	2.991	29.74	W
4 -	MOTA	8991		WAT			21.4		55.374	39.891	35.10	W
15	MOTA	8992		WAT			64.2		70.580	-5.272	32.06	W
	ATOM	8993		WAT			46.7			-23.288	33.91	M
	ATOM	8994		TAW			8.1		53.068	-7.667	30.58	M
	MOTA	8995		WAT			22.0			-42.196	29.19	W
•	MOTA	8996		TAW			63.8			-30.493	41.52	W
20	MOTA	8997		WAT			18.5			-19.927	32.70	W
	MOTA	8998		WAT			59.2		76.946	-4.206	31.52	W
	MOTA	8999		WAT			21.0			-12.178	32.20	W
	MOTA	9000		WAT			55.5		67.407	13.403	41.93	W
25	ATOM	9001		WAT			19.2			-31.228	36.10	W
25	MOTA	9002		WAT			67.3			-35.959	35.41	W
	ATOM	9003		TAW			29.6		74.968	22.211	25.23	W W
	ATOM	9004		TAW			32.8		84.208	0.305	28.56	W
	ATOM	9005		TAW			45.7		65.469		29.35 27.17	W
20	ATOM	9006		TAW			12.9		62.062	-2.298	27.83	W
30	ATOM	9007		WAT			25.7		63.240	13.712	30.38	W
	MOTA	9008		WAT			28.5 35.7		34.868 68.453	32.152 23.134	30.35	W
	ATOM	9009		WAT		867	31.8		33.726	17.240	35.41	W
	ATOM	9010 9011		WAT WAT			41.5		84.247	-2.302	34.07	W
35	ATOM	9011		WAT					100.019		38.43	W
33	ATOM ATOM	9013		WAT			28.4		63.613	10.869	28.44	W
	ATOM	9013		WAT			54.8			-44.567	37.79	W
	ATOM	9015		WAT			69.9		53.571		29.60	W
	ATOM	9016		WAT			36.9		79.069	-2.526	44.59	W
40	ATOM	9017		WAT			12.2		64.242		28.33	W
10	ATOM	9018		WAT			39.3		50.117	36.307	33.21	W
	ATOM	9019		WAT			28.0		44.594	38.197	29.80	W
	ATOM	9020		WAT			27.7			-22.666	30.70	W
	ATOM	9021		WAT			72.3			-31.128	32.23	W
45	ATOM	9022		WAT			76.3			-11.610	34.32	W
10	ATOM	9023		WAT			21.4			-38.837	33.31	W
	ATOM	9024		WAT			23.3			-30.166	33.88	W
	ATOM	9025		WAT			20.8		31.662	31.576	30.80	W
	ATOM	9026		WAT			29.6			-28.740	39.46	W
50	ATOM	9027		WAT			42.8			-27.321	34.86	W
	ATOM	9028		WAT			55.8		51.939	27.423	30.74	W
	ATOM	9029		WAT			31.6			-40.938	50.66	W
	ATOM	9030		WAT			18.4		42.922	27.406	25.20	W
	ATOM	9031		WAT			62.0			-44.200	40.76	W
55	ATOM	9032		WAT			7.4		54.408	17.306	30.35	W

	MOTA	9033	OH2	WAT	W	890	18.101	41.684	25.245		32.73	W
	MOTA	9034	OH2	WAT	W	891	27.429	82.562			36.27	W
	MOTA	9035		TAW			38.868	53.058			30.70	W
_	MOTA	9036	OH2	WAT	W	893	12.036	67.258			42.94	W
5	MOTA	9037		WAT			4.469	56.610			29.55	W
	ATOM	9038	OH2	WAT	W	895	21.857	76.782			31.52	W
	MOTA	9039	OH2	WAT	W	896	25.676		-42.799		39.01	W
	ATOM	9040		WAT			10.540		-12.196		31.66	W
	ATOM	9041	OH2	WAT	W	898	44.607		-44.474		32.45	W
10	MOTA	9042		TAW			37.212	39.898			34.20	W
	ATOM	9043		WAT			23.165		-37.906		35.10	W
	ATOM	9044		WAT			70.029		-24.229		35.37	W
	ATOM	9045		WAT			23.331	65.414			33.45	W
	ATOM	9046		WAT			67.038	38.543			29.50	W
15	MOTA	9047		TAW			65.467		-41.084		36.40	W
	ATOM	9048		WAT			14.017	43.333			35.15	W
	ATOM	9049		WAT		906	13.469	48.254	1.397		37.34	W
	ATOM	9050	OH2	WAT	W	907	55.436		-37.827		30.40	W
	ATOM	9051		WAT			26.966		-23.954		29.40	W
20	MOTA	9052	OH2	TAW	W	909	69.728		-33.947		32.27	W
	ATOM	9053	OH2	WAT	W	910	11.998	62.183			38.70	W
	ATOM	9054		WAT			30.793	29.732			37.65	W
	MOTA	9055		WAT			19.179	36.459			40.49	W
	ATOM	9056		WAT			27.736		-14.732		31.73	W
25	MOTA	9057		WAT			66.117	50.416			30.39	W
	ATOM	9058		WAT			28.492	63.881			29.55	W
	MOTA	9059		WAT			51.974	60.105			30.69	W
	MOTA	9060		WAT			52.332	72.483			29.21	W
20	ATOM	9061		WAT			47.072	74.947			30.57	W
30	MOTA	9062		WAT			65.371	81.208			32.50	M
	ATOM	9063		WAT			48.492		-26.185		32.28	W
	MOTA	9064		WAT			59.945		-38.880		29.65	W
	MOTA	9065		WAT			22.864		-16.984		38.49	W
0.5	ATOM	9066		WAT			25.956		-38.830		30.40	M
35	ATOM	9067		WAT			20.018		-28.969		42.04	W
	ATOM	9068		WAT			59.188	55.422			33.12	W
	MOTA	9069		TAW			44.334		-15.927		42.21	W
	ATOM	9070		WAT			64.029		-40.494		32.61	W
40	ATOM	9071		WAT			14.068	58.271	16.406		21.84	W
40	ATOM	9072		WAT			13.929		19.009		21.02	W
	ATOM	9073		WAT					11.562		29.26	W W
	ATOM	9074		TAW			28.117				15.34	W
	ATOM	9075		WAT			28.948		-35.632		24.97 19.33	W
45	ATOM	9076		WAT			12.359 81.546		-15.197		21.02	W
45	ATOM	9077		TAW					-13.758 0.971		20.10	W
	ATOM	9078		TAW			59.050	58.105 68.129			24.02	W
	ATOM	9079		WAT			49.194		-28.528		22.06	W
	ATOM	9080		WAT			68.412				25.06	M
50	ATOM	9081		TAW			26.119				23.57	₩
50	ATOM	9082		WAT			32.842	69.360	24.703 -19.194		26.24	W
	ATOM	9083		WAT					-19.194		26.76	W
	ATOM	9084		WAT			71.801				28.86	W
	ATOM	9085		WAT			79.342					W
EE	MOTA	9086		TAW			37.052				26.37	
55	ATOM	9087	OH2	WAT	W.	TOTI	59.408	51.958	2.554	1.00	28.10	W

DOSCIDE DOST

	ATOM	9088	OH2	WAT	W1012	19.601		-18.370	1.00 28.43	W
	MOTA	9089			W1013	43.956		-21.470	1.00 32.67	W
	MOTA	9090	OH2	WAT	W1014	58.023	52.829	26.220	1.00 28.82	W
_	MOTA	9091			W1015	17.061		-36.404	1.00 28.26	W
5	ATOM	9092			W1016	46.665	43.031	9.625	1.00 30.00	W
	ATOM	9093	OH2	WAT	W1017	27.197	72.121	34.046	1.00 34.22	W
	MOTA	9094	OH2	WAT	W1018	7.536		-10.230	1.00 25.55	W
	ATOM	9095			W1019	24.878	52.245	43.415	1.00 40.21	W
	ATOM	9096			W1020	49.909		-30.749	1.00 31.80	W
10	ATOM	9097	OH2	WAT	W1021	42.581		-29.540	1.00 35.27	M
	ATOM	9098	OH2	WAT	W1022	27.591		-12.263	1.00 30.74	W
	ATOM	9099	OH2	\mathtt{WAT}	W1023	56.603		-43.608	1.00 30.70	W
	ATOM	9100	OH2	WAT	W1024	13.964	44.811	26.794	1.00 36.36	W
	ATOM	9101	OH2	WAT	W1025	69.388		-35.992	1.00 27.38	W
15	ATOM	9102	OH2	WAT	W1026	57.993		-24.988	1.00 27.86	W
	ATOM	9103	OH2	WAT	W1027	64.598	70.559	-7.944	1.00 45.98	W
	ATOM	9104	OH2	WAT	W1028	46.112	39.784	-0.055	1.00 27.99	W
	ATOM	9105	OH2	WAT	W1029	37.083	37.317	25.012	1.00 33.64	W
	ATOM	9106	OH2	WAT	W1030	52.414	68.316	4.826	1.00 31.30	W
20	ATOM	9107	OH2	WAT	W1031	17.744	50.810	38.215	1.00 29.84	W
	ATOM	9108	OH2	WAT	W1032	15.243	76.915	-13.620	1.00 29.17	W
	ATOM	9109	OH2	WAT	W1033	20.102	39.479	-12.507	1.00 34.90	W
	MOTA	9110	OH2	WAT	W1034	49.415	45.555	31.017	1.00 29.53	W
	MOTA	9111	OH2	WAT	W1035	46.778	72.403	-17.522	1.00 29.14	W
25	ATOM	9112			W1036	70.421	78.009	-26.052	1.00 28.22	W
	ATOM	9113			W1037	58.470	52.894	4.808	1.00 24.37	W
	MOTA	9114			W1038	35.575	55.341	-34.684	1.00 34.14	W
	MOTA	9115			W1039	41.336	82.761	-28.764	1.00 34.42	W
	ATOM	9116			W1040	47.748	66.115	26.835	1.00 30.73	W
30	ATOM	9117			W1041	28.436	68.129	11.340	1.00 30.03	W
	ATOM	9118			W1043	39.499		-21.986	1.00 34.41	W
	ATOM	9119			W1044	22.020	65.686	32.120	1.00 29.09	W
	ATOM	9120			W1045	58.777	48.905	18.951	1.00 31.31	W
	ATOM	9121			W1046	31.999	80.814	6.975	1.00 45.48	W
35	ATOM	9122			W1047	50.409	44.928	-24.885	1.00 35.65	W
00	ATOM	9123			W1048	62.308	60.740	0.550	1.00 29.11	W
	ATOM	9124			W1049	67.874		-35.117	1.00 29.34	W
	ATOM	9125			W1050	23.178		-15.604	1.00 36.12	W
	ATOM	9126			W1051	35.884		-29.986	1.00 34.46	W
40	ATOM	9127			W1052	73.994		-10.916		W
10	ATOM	9128			W1053	40.966	81.760	-3.585	1.00 34.92	W
	ATOM	9129			W1053	12.972	62.847		1.00 42.92	W
	ATOM	9130			W1054	56.938	75.884	0.308	1.00 32.67	W
	ATOM	9131			W1056	74.294	52.058	1.453	1.00 31.78	W
45	ATOM	9132			W1050	22.310		-35.052	1.00 32.26	W
45		9133			W1057	77.454		-14.847	1.00 28.32	W
	ATOM				W1058 W1059	17.651	41.747		1.00 47.09	W
	ATOM	9134				10.105		-15.140	1.00 33.54	W
	MOTA	9135			W1060		79.593	4.983	1.00 33.34	W
50	MOTA	9136			W1061	46.034 14.610	46.758		1.00 29.10	W
50	ATOM	9137			W1062			12.439	1.00 30.79	W
	ATOM	9138			W1063	34.557	77.270	6.116	1.00 27.02	W
	ATOM	9139			W1064	47.268	40.156		1.00 33.32	W
	ATOM	9140			W1065	18.619	39.189		1.00 35.06	W
e.e.	ATOM	9141			W1066	26.043		-38.980		W
55	MOTA	9142	OH2	WAT	W1067	10.705	51.86/	-20.854	1.00 35.84	W

						_					
	MOTA	9143			W106		8.759	56.628	16.327	1.00 41	
	ATOM	9144			W106		78.041		-10.242	1.00 33	
	MOTA	9145			W107		24.072	82.790	-3.954	1.00 45	
_	MOTA	9146			W107		44.516	40.813	7.609	1.00 39	
5	MOTA	9147	_		W107		35.419	62.216	34.108	1.00 29	
	MOTA	9148			W107		27.207		-31.767	1.00 34	
	MOTA	9149	OH2	TAW	W107	4	74.676		-20.637	1.00 34	
	ATOM	9150	OH2	WAT	W107	5	49.177	41.888	8.315	1.00 31	
	MOTA	9151	OH2	WAT	W107	6	44.832	92.668	-25.355	1.00 33	.39 W
10	ATOM	9152	OH2	WAT	W107	7	52.396	48.868	25.516	1.00 32	
	MOTA	9153	OH2	WAT	W107	8	9.675	53.484	-12.053	1.00 29	.84 W
	ATOM	9154	OH2	WAT	W107	9	58.765	51.065	14.476	1.00 46	.60 W
	ATOM	9155	OH2	WAT	W108	0	51.794	50.452	27.587	1.00 30	.65 W
	MOTA	9156	OH2	WAT	W108	1	25.081	88.824	-25.170	1.00 31	.67 W
15	MOTA	9157	OH2	WAT	W108	2	7.589	58.168	0.166	1.00 32	.04 W
	ATOM	9158	OH2	WAT	W108	3	11.415	58.349	19.950	1.00 34	.77 W
	ATOM	9159	OH2	WAT	W108	4	18.559	60.815	-37.787	1.00 30	.54 W
	ATOM	9160	OH2	WAT	W108	5	46.111	60.046	-31.330	1.00 34	.66 W
	MOTA	9161			W108		5.566	57.763	6.910	1.00 31	.07 W
20	ATOM	9162			W108		13.431	66.030	-11.696	1.00 39	.54 W
	ATOM	9163	OH2	WAT	W108	8	47.191	81.448	-17.052	1.00 31.	.72 W
	MOTA	9164	C1	NAG		1	58.272	44.933	12.939	1.00 54	.15 C
	ATOM	9165	C2	NAG		1	59.491	44.597	13.810	1.00 54	.12 C
	ATOM	9166	N2	NAG		1	60.574	45.520	13.526	1.00 56	
25	ATOM	9167	С7	NAG		1	60.706	46.633	14.241	1.00 68	
	MOTA	9168	07	NAG		1	60.206	47.706	13.905	1.00 84	
	ATOM	9169	C8	NAG		1	61.520	46.545	15.522	1.00 55	
	ATOM	9170	С3	NAG		1	59.957	43.162	13.548	1.00 55	
	ATOM	9171	03	NAG		1	60.989	42.822	14.463	1.00 58	.48 C
30	ATOM	9172	C4	NAG		1	58.791	42.186	13.705	1.00 51	
	ATOM	9173	04	NAG		1	59.208	40.880	13.335	1.00 55	
	ATOM	9174	C5	NAG		1	57.623	42.627	12.819	1.00 61.	
	ATOM	9175	05	NAG		1	57.227	43.975	13.158	1.00 49	
	ATOM	9176	C6	NAG		1	56.402	41.745	12.991	1.00 77.	.13 C
35	ATOM	9177	06	NAG		1	56.268	40.837	11.908	1.00 60	.25 C
	ATOM	9178	С	TRS		1	31.353	66.569	7.597	1.00 15	.84 т
	ATOM	9179	C1	TRS		1	31.240	66.938	6.107	1.00 15	. 64 т
	ATOM	9180	C2	TRS		1	32.708	66.586	7.995	1.00 15	.85 т
	ATOM	9181	С3	TRS		1	30.629	65.227	7.717	1.00 16	.29 т
40	ATOM	9182	N	TRS		1	30.638	67.570	8.399	1.00 15	. 69 т
	ATOM	9183	01	TRS		1	31.683	68.184	5.843	1.00 15	
	ATOM	9184	02	TRS		1	33.643	65.910	7.226	1.00 13	. 34 т
	ATOM	9185	03	TRS		1	30.581	64.645	8.982	1.00 18	
	ATOM	9186	C1	MPD		1	14.883	61.068	10.331	1.00 17.	.96 м
45	ATOM	9187	C2	MPD		1	16.351	61.254	10.649	1.00 18	
	ATOM	9188	02	MPD		1	16.957	60.096	9.890	1.00 19	
	ATOM	9189	CM	MPD		1	17.188	62.371	10.051	1.00 19	
	ATOM	9190	C3	MPD		1	16.549	61.049	12.169	1.00 18	
	ATOM	9191	C4	MPD		1	17.848	60.686	12.721	1.00 17	
50	ATOM	9192	04	MPD		1	17.567		13.729	1.00 16	
	ATOM	9193	C5	MPD		1	18.419	61.960	13.429	1.00 17	
	ATOM	9194	ZN	ZN		1	34.680	64.059	7.920	1.00 9	
	END	ノエノヨ	211	٠.٠	2	-	37.000	0000		2.20	-
	שוזם										

Table 2
Structural coordinates of a Drosophila Golgi α-mannosidase II with swainsonine.

```
REMARK coordinates from restrained individual B-factor refinement
 5
     REMARK refinement resolution: 500.0 - 1.87 A
     REMARK starting r= 0.1835 free r= 0.2089
     REMARK final
                    r = 0.1801 free r = 0.2084
     REMARK B rmsd for bonded mainchain atoms= 0.707
                                                       target= 1.5
     REMARK B rmsd for bonded sidechain atoms= 1.139
                                                      target= 2.0
10
                                                      target= 2.0
     REMARK B rmsd for angle mainchain atoms= 1.167
     REMARK B rmsd for angle sidechain atoms= 1.765
                                                      target= 2.5
     REMARK wa= 1.14241
     REMARK rweight=0.269445
     REMARK target= mlf steps= 30
15
     REMARK sg= P2(1)2(1)2(1) a= 68.902 b= 110.015 c= 138.472 alpha= 90 beta= 90
     gamma= 90
     REMARK parameter file 1 : CNS TOPPAR:protein_rep.param
     REMARK parameter file 2 : CNS TOPPAR:water rep.param
     REMARK parameter file 3
                             : CNS TOPPAR:ion.param
20
     REMARK parameter file 4
                             : swainsonine2.par
     REMARK parameter file 5
                             : ../zntrmp/mpd.par
     REMARK parameter file 6 : cis_peptide.param
     REMARK parameter file 7 : CNS_TOPPAR:carbohydrate.param
     REMARK molecular structure file: swainsoninegen.mtf
25
     REMARK input coordinates: swainsonine ann 1.pdb
     REMARK reflection file= dqm2native rejmerge.cv
     REMARK ncs= none
     REMARK B-correction resolution: 6.0 - 1.87
     REMARK initial B-factor correction applied to fobs :
30
                    0.513 B22= -0.085 B33= -0.428
     REMARK
              B11 =
                                0.000 B23 =
                                               0.000
     REMARK
              B12 =
                    0.000 B13=
     REMARK B-factor correction applied to coordinate array B:
     REMARK bulk solvent: density level= 0.353213 e/A^3, B-factor= 42.0423 A^2
     REMARK reflections with |Fobs|/sigma F < 0.0 rejected
35
     REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
     REMARK theoretical total number of refl. in resol. range:
                                                                   87643 ( 100.0
     REMARK number of unobserved reflections (no entry or |F|=0):
                                                                    2814 (3.2%)
     REMARK number of reflections rejected:
                                                                       0 (0.0%)
40
     REMARK total number of reflections used:
                                                                   84829 (96.8%)
     REMARK number of reflections in working set:
                                                                   80543 (91.9%)
                                                                    4286 (4.9%)
     REMARK number of reflections in test set:
                                              90.00 90.00 P 21 21 21
              68.902 110.015 138.472 90.00
     REMARK FILENAME="swainsonine ann lbi.pdb"
     REMARK DATE:15-Jul-2000 00:41:05
45
                                            created by user: jvdelsen
     REMARK VERSION: 0.9a
               1 C
                     CYS A
                            31
                                     41.925 37.251 -18.672 1.00 24.62
     MOTA
     MOTA
               2
                 0
                     CYS A 31
                                     41.435
                                            36.638 -19.619
                                                            1.00 24.13
               3 CB CYS A 31
                                     43.816 38.560 -19.547
                                                            1.00 23.99
                                                                             Α
     MOTA
                                                                             Α
50
               4 SG CYS A 31
                                     45.498 39.239 -19.413 1.00 23.62
     MOTA
               5 N
                      CYS A 31
                                     44.191 36.197 -18.869 1.00 25.37
                                                                             Α
     MOTA
              6 CA CYS A 31
                                     43.431 37.448 -18.573 1.00 24.59
     MOTA
```

	ATOM	7	N	GLN	Α	32	41.195	37.782 -17.695	1.00 24.51	Α
	ATOM	8	CA	GLN	Α	32	39.740	37.694 -17.701	1.00 24.50	А
	ATOM	9	СВ	GLN	Α	32	39.148	38.167 -16.372	1.00 25.89	Α
	ATOM	10	CG	GLN	Α	32	39.164	37.148 -15.257	1.00 28.92	Α
5	ATOM	11	CD	GLN	Α	32	38.247	37.547 -14.117	1.00 30.46	Α
	ATOM	12	OE1	GLN	Α	32	37.028	37.625 -14.286	1.00 31.32	Α
	ATOM	13	NE2	GLN	Α	32	38.827	37.811 -12.951	1.00 31.69	А
	ATOM	14	С	GLN	Α	32	39.201	38.595 -18.801	1.00 23.50	Α
	MOTA	15	0	GLN	Α	32	39.787	39.632 -19.112	1.00 22.91	Α
10	MOTA	16	N	ASP	Α	33	38.084	38.194 -19.389	1.00 22.48	A
	ATOM	17	CA	ASP	Α	33	37.455	38.986 -20.432	1.00 21.66	A
	ATOM	18	CB	ASP	Α	33	36.645	38.066 -21.350	1.00 21.90	А
	ATOM	19	CG	ASP	Α	33	36.033	38.799 -22.524	1.00 23.08	А
	ATOM	20		ASP		33	35.768	38.140 -23.553	1.00 22.70	A
15	ATOM	21	OD2	ASP		33	35.804	40.023 -22.415	1.00 23.45	A
	MOTA	22	С	ASP		33	36.554	39.956 -19.671	1.00 20.60	A
	ATOM	23	0	ASP	Α	33	35.617	39.536 -18.999	1.00 21.58	Α
	ATOM	24	N	VAL		34	36.846	41.250 -19.759	1.00 18.58	A
	ATOM	25	CA	VAL		34	36.066	42.246 -19.030	1.00 16.33	A
20	MOTA	26	CB	VAL		34	36.971	43.414 -18.559	1.00 16.29	A
	MOTA	27		VAL		34	38.137	42.869 -17.752	1.00 16.34	A
	MOTA	28		VAL		34	37.493	44.200 -19.760	1.00 15.50	A
	MOTA	29	С	VAL		34	34.895	42.818 -19.819	1.00 15.89	A
0-	ATOM	30	0	VAL		34	34.213	43.728 -19.353	1.00 14.74	A
25	ATOM	31	N	VAL		35	34.641	42.268 -21.001	1.00 14.60	A
	ATOM	32	CA	VAL		35	33.559	42.769 -21.837	1.00 15.46	A
	ATOM	33	CB	VAL		35	34.095	43.167 -23.237	1.00 15.53	A
	ATOM	34		VAL		35	32.950	43.676 -24.118	1.00 15.86	A
20	ATOM	35		VAL		35	35.188	44.216 -23.098	1.00 14.85	A
30	ATOM	36	C	VAL		35	32.383	41.821 -22.065	1.00 16.31	A
	ATOM	37	0	VAL		35	31.225	42.207 -21.908	1.00 15.61 1.00 17.91	A A
	ATOM	38	N	GLN		36	32.692	40.579 -22.418 39.590 -22.771	1.00 17.91	A
	ATOM	39	CA	GLN		36	31.673	38.736 -23.913	1.00 19.40	A
35	ATOM ATOM	40	CB CG	GLN		36 36	32.219 32.976	39.558 -24.943	1.00 19.09	A
33	ATOM	41 42	CD	GLN GLN		36	33.442	38.735 -26.117	1.00 20.71	A
	ATOM	43		GLN		36	32.667	38.436 -27.022	1.00 21.13	A
	ATOM	44		GLN		36	34.714	38.355 -26.106	1.00 21.31	A
	ATOM	45	C	GLN		36	31.065	38.670 -21.721	1.00 20.47	A
40	ATOM	46	0	GLN		36	30.117		1.00 20.77	A
40	ATOM	47	N	ASP		37	31.593	38.674 -20.504	1.00 21.45	A
	ATOM	48	CA	ASP		37	31.051	37.811 -19.459	1.00 22.08	A
	ATOM	49	CB	ASP		37	32.147	36.912 -18.869	1.00 23.31	А
	ATOM	50	CG	ASP		37	32.736	35.956 -19.887	1.00 24.58	А
45	ATOM	51		ASP		37	31.959	35.302 -20.610	1.00 25.48	А
	ATOM	52		ASP		37	33.979	35.851 -19.955	1.00 25.49	А
	ATOM	53	C	ASP		37	30.416	38.614 -18.330	1.00 21.91	А
	ATOM	54	0	ASP		37	31.120	39.195 -17.506	1.00 22.46	А
	ATOM	55	N	VAL		38	29.088	38.635 -18.292	1.00 21.35	Α
50	ATOM	56	CA	VAL		38	28.363	39.354 -17.249	1.00 21.02	Α
	ATOM	57	CB	VAL		38	26.860	39.448 -17.578	1.00 21.79	Α
	ATOM	58		VAL		38	26.122	40.191 -16.466	1.00 21.12	Α
	ATOM	59		VAL		38	26.669		1.00 21.34	А
	ATOM	60	С	VAL		38	28.523		1.00 21.06	Α
55	ATOM	61	0	VAL		38	28.042	37.511 -15.734	1.00 20.07	А

		ATOM	62	N	PRO	Α	39	29.209	39.268	-14.951	1.00 20	0.56	Α
		ATOM	63	CD	PRO	Α	39	29.929	40.552	-15.034	1.00 20	0.77	Α
		ATOM	64	CA	PRO	Α	39	29.407	38.646	-13.640	1.00 20	0.50	Α
		ATOM	65	СВ	PRO	Α	39	30.153	39.725	-12.858	1.00 20	0.74	Α
	5	ATOM	66	CG	PRO		39	30.950		-13.922	1.00 19	9.82	Α
	•	ATOM	67	C	PRO		39	28.100		-12.962	1.00 20		A
		ATOM	68	0	PRO		39	27.092		-13.066	1.00 20		A
		ATOM	69	N	ASN		40	28.114		-12.273	1.00 2		A
								26.931		-11.555	1.00 2		A
	10	ATOM	70	CA	ASN		40	26.737			1.00 2		A
	10	ATOM	71	CB	ASN		40			-11.702			
		ATOM	72	CG	ASN		40	25.572		-10.881	1.00 25		A
		ATOM	73		ASN		40	24.457		-10.971	1.00 28		A
		ATOM	74		ASN		40	25.820		-10.073	1.00 2		A
	4 F	MOTA	75	С	ASN		40	27.119		-10.085	1.00 20		A
	15	MOTA	76	0	ASN		40	27.906	36.386	-9.384	1.00 19		Α
		ATOM	77	N	VAL		41	26.405	38.040	-9.620	1.00 18		Α
		MOTA	78	CA	VAL	Α	41	26.515	38.459		1.00 1		Α
		ATOM	79	CB	VAL	Α	41	27.126	39.873	-8.117	1.00 1	7.28	A
171		ATOM	80		VAL		41	28.559	39.861	-8.627	1.00 1		Α
. Fi	20	ATOM	81	CG2	VAL	Α.	41	26.291	40.860	-8.919	1.00 1	7.64	Α
neser. ⊾FE		ATOM	82	С	VAL	Α	41	25.154	38.454	-7.545	1.00 1	5.81	Α
		ATOM	83	0	VAL	Α	41	24.118	38.550	-8.202	1.00 10	5.76	Α
13.5		ATOM	84	N	ASP	Α	42	25.161	38.333	-6.223	1.00 10	5.37	Α
IJ		ATOM	85	CA	ASP	Α	42	23.922	38.315	-5.459	1.00 1	5.16	Α
IJ	25	ATOM	86	СВ	ASP		42	24.204	37.903	-4.012	1.00 1	7.05	Α
IJ		ATOM	87	CG	ASP		42	24.742	36.488	-3.906	1.00 1		Α
į,T		ATOM	88		ASP		42	24.073	35.565	-4.414	1.00 18		А
		ATOM	89		ASP		42	25.824	36.297	-3.316	1.00 1		Α
4 122F		ATOM	90	C	ASP		42	23.255	39.681	-5.484	1.00 16		A
fired.	30	ATOM	91	Õ	ASP		42	22.029	39.786	-5.518	1.00 16		A
i 📜	50	ATOM	92	N	VAL		43	24.071	40.729	-5.459	1.00 19		A
		ATOM	93	CA	VAL		43	23.563	42.092	-5.486	1.00 15		A
į:4.		ATOM	94	CB	VAL		43	23.726	42.788	-4.118	1.00 19		A
									44.194	-4.175	1.00 15		A
ļ:±	35	ATOM	95 06		VAL		43	23.132	41.968	-3.024	1.00 1		A
51	33	ATOM	96		VAL		43	23.059			1.00 14		
		ATOM	97	С	VAL		43	24.315	42.920	-6.521			A
		ATOM	98	0	VAL		43	25.540	43.030	-6.470	1.00 14		A
		ATOM	99	N	GLN		44	23.578	43.480	-7.472	1.00 13		A
	40	MOTA	100	CA	GLN		44	24.173	44.329	-8.497	1.00 13		A
	4 0	MOTA	101		GLN		44	23.958	43.724	-9.889	1.00 13		A
		ATOM	102	CG	GLN		44	25.023		-10.898	1.00 12		A
		MOTA	103	CD	GLN		44	25.129		-11.016	1.00 12		A
		MOTA	104		GLN		4 4	24.145		-11.302	1.00 12		A
		ATOM	105		GLN		4 4	26.325		-10.792	1.00 13		A
	45	ATOM	106	С	GLN	Α	44	23.413	45.642	-8.323	1.00 13		A
		ATOM	107	0	GLN	Α	4 4	22.210	45.717	-8.576	1.00 13	3.21	Α
		ATOM	108	N	MET	Α	45	24.118	46.675	-7.874	1.00 13	3.15	Α
		ATOM	109	CA	MET	Α	45	23.485	47.952	-7.577	1.00 13	3.00	Α
		ATOM	110	СВ	MET		45	24.536	48.945	-7.075	1.00 13	3.03	Α
	50	ATOM	111	CG	MET		45	25.143	48.547	-5.728	1.00 13	3.17	Α
		ATOM	112	SD	MET		45	23.891	48.155	-4.467	1.00 19		Α
		ATOM	113	CE	MET		45	23.318	49.806	-4.040	1.00 14		А
		ATOM	114	C	MET		45	22.593	48.603	-8.632	1.00 12		A
		ATOM	115	0	MET		45	21.596	49.231	-8.278	1.00 12		A
	55	ATOM	116	N	LEU		46	22.929	48.469		1.00 12		A
		A LOG	110	14	ULU	Λ	- U	24.747	40.403	J. JII	1.00 12		

		ATOM	117	CA	LEU A	46	22.087	49.066 -10.947	1.00 13.13	Α
		ATOM	118	СВ	LEU A	46	22.778	49.012 -12.316	1.00 12.68	А
		ATOM	119	CG	LEU A	46	22.021	49.708 -13.456	1.00 11.38	Α
		ATOM	120		LEU A	46	21.998	51.215 -13.217	1.00 12.44	Α
	5	ATOM	121		LEU A	46	22.686	49.394 -14.788	1.00 12.03	A
	0	ATOM	122	C	LEU A	46	20.770	48.290 -11.003	1.00 14.23	A
							19.687	48.876 -11.131	1.00 14.23	A
		ATOM	123	0	LEU A	46				
		MOTA	124	N	GLU A	47	20.867	46.966 -10.895	1.00 15.02	A
	10	ATOM	125	CA	GLU A	47	19.682	46.114 -10.929	1.00 16.69	A
	10	ATOM	126	CB	GLU A	47	20.087	44.635 -10.951	1.00 17.61	Α
		ATOM	127	CG	GLU A	47	18.929	43.666 -11.196	1.00 20.72	А
		MOTA	128	CD	GLU A	47	18.124	43.357 -9.947	1.00 22.35	A
		ATOM	129	OE1		47	17.009	42.805 -10.080	1.00 23.46	Α
		MOTA	130	OE2	GLU A	47	18.601	43.648 -8.831	1.00 23.19	Α
	15	ATOM	131	С	GLU A	47	18.824	46.414 -9.705	1.00 16.45	Α
		MOTA	132	0	GLU A	47	17.609	46.569 -9.812	1.00 17.05	Α
		MOTA	133	N	LEU A	48	19.465	46.511 -8.545	1.00 16.44	A
		ATOM	134	CA	LEU A	48	18.755	46.809 -7.304	1.00 16.52	Α
21700.		ATOM	135	СВ	LEU A	48	19.737	46.869 -6.128	1.00 16.70	А
	20	ATOM	136	CG	LEU A	48	19.127	47.139 -4.748	1.00 17.63	A
١IJ		ATOM	137		LEU A	48	18.115	46.053 -4.415	1.00 19.01	A
		ATOM	138		LEU A	48	20.225	47.188 -3.695	1.00 18.67	A
471		ATOM	139	C	LEU A	48	18.019	48.141 -7.420	1.00 16.10	A
in the					LEU A	48	16.859	48.254 -7.029	1.00 16.36	A
	25	ATOM	140	0					1.00 15.59	
8 14 5	23	ATOM	141	N	TYR A	49	18.694	49.145 -7.968		A
19		ATOM	142	CA	TYR A	49	18.093	50.466 -8.127	1.00 15.59	A
		MOTA	143	CB	TYR A	49	19.121	51.445 -8.712	1.00 14.86	A
E ?		MOTA	144	CG	TYR A	49	19.675	52.401 -7.678	1.00 14.18	A
	20	ATOM	145	CD1		49	20.150	51.929 -6.451	1.00 13.14	A
	30	MOTA	146		TYR A	49	20.600	52.807 -5.464	1.00 13.25	A
		MOTA	147	CD2	TYR A	49	19.672	53.779 -7.899	1.00 13.52	А
111		MOTA	148	CE2	TYR A	49	20.120	54.666 -6.920	1.00 13.75	А
		MOTA	149	CZ	TYR A	49	20.578	54.175 -5.706	1.00 13.51	A
		MOTA	150	ОН	TYR A	49	20.979	55.051 -4.723	1.00 13.85	Α
1.4	35	ATOM	151	С	TYR A	49	16.850	50.415 -9.009	1.00 16.60	Α
		MOTA	152	0	TYR A	49	15.879	51.136 -8.779	1.00 15.53	A
		ATOM	153	N	ASP A	50	16.883	49.547 -10.012	1.00 17.82	Α
		ATOM	154	CA	ASP A	50	15.764	49.399 -10.931	1.00 20.30	A
		MOTA	155	СВ	ASP A	50	16.153	48.440 -12.061	1.00 21.45	Α
	40	ATOM	156	CG	ASP A	50	15.329	48.645 -13.318	1.00 23.77	Α
		ATOM	157		ASP A	50	15.403	47.778 -14.215	1.00 24.48	А
		ATOM	158		ASP A	50	14.626	49.674 -13.418	1.00 23.86	A
		ATOM	159	C	ASP A	50	14.526	48.868 -10.198	1.00 21.12	A
		ATOM	160	0	ASP A	50	13.403	49.294 -10.476	1.00 20.00	A
	45	MOTA	161	N	ARG A	51	14.741	47.951 -9.256	1.00 20.00	A
	40	ATOM	162	CA	ARG A	51	13.651	47.336 -8.494	1.00 23.40	A
		ATOM	163	CB	ARG A	51	14.044	45.918 -8.059	1.00 25.60	A
		MOTA	164	CG	ARG A	51	14.163	44.925 -9.192	1.00 28.61	A
	50	ATOM	165	CD	ARG A	51	14.338	43.491 -8.689	1.00 31.12	A
	50	ATOM	166	NE	ARG A	51	15.625	43.263 -8.034	1.00 33.00	Α
		MOTA	167	CZ	ARG A	51	15.868	43.467 -6.743	1.00 33.65	A
		ATOM	168		ARG A	51	14.908	43.906 -5.940	1.00 34.72	А
		ATOM	169	NH2	ARG A	51	17.077	43.228 -6.253	1.00 33.58	Α
		ATOM	170	С	ARG A	51	13.156	48.096 -7.262	1.00 23.04	Α
	55	ATOM	171	0	ARG A	51	11.979	48.014 -6.921	1.00 23.00	Α

		ATOM	172	N1	MET A	52	14.047	48.820	-6.591	1.00 22.18	Α
				N							
		ATOM	173	CA	MET A	52	13.680	49.564	-5.385	1.00 22.46	A
		ATOM	174	CB	MET A	52	14.924	50.192	-4.757	1.00 22.88	Α
		ATOM	175	CG	MET A	52	15.886	49.195	-4.152	1.00 24.34	Α
	5	ATOM	176	SD	MET A	52	17.406	50.015	-3.629	1.00 25.98	Α
		ATOM	177	CE	MET A	52	16.778	51.075	-2.331	1.00 26.01	А
		ATOM	178	С	MET A	52	12.642	50.652	-5.617	1.00 21.82	А
		ATOM	179	0	MET A	52	12.606	51.271	-6.681	1.00 21.80	Α
		MOTA	180	N	SER A	53	11.810	50.894	-4.606	1.00 21.18	Α
	10	ATOM	181	CA	SER A	53	10.762	51.908	-4.696	1.00 21.22	А
		ATOM	182	СВ	SER A	53	9.477	51.386	-4.048	1.00 21.76	A
		ATOM	183	OG	SER A	53	8.985	50.253	-4.745	1.00 23.57	A
		ATOM	184	C	SER A	53	11.156	53.238	-4.055	1.00 20.40	A
		ATOM	185	0	SER A	53	10.531	54.267	-4.311	1.00 20.31	A
	15					54	12.185	53.204	-3.214	1.00 20.31	A
	15	ATOM	186	N C D	PHE A			54.399	-2.538	1.00 19.37	A
		ATOM	187	CA	PHE A	54	12.686				
		ATOM	188	CB	PHE A	54	13.354	55.343	-3.545	1.00 18.86	A
		ATOM	189	CG	PHE A	54	14.600	54.784	-4.174	1.00 17.89	A
1,22°	20	MOTA	190	CD1		54	14.522	53.912	-5.256	1.00 17.68	A
Ü	20	ATOM	191		PHE A	54	15.852	55.127	-3.677	1.00 17.36	Α
1,12		ATOM	192		PHE A	54	15.674	53.387	-5.837	1.00 17.70	Α
1,2		ATOM	193		PHE A	54	17.015	54.609	-4.247	1.00 17.77	Α
		ATOM	194	CZ	PHE A	54	16.929	53.736	-5.329	1.00 18.12	Α
		ATOM	195	С	PHE A	54	11.644	55.188	-1.747	1.00 19.63	Α
	25	ATOM	196	0	PHE A	54	11.729	56.414	-1.660	1.00 18.67	Α
W		ATOM	197	N	LYS A	55	10.664	54.504	-1.165	1.00 19.83	А
(T		ATOM	198	CA	LYS A	55	9.653	55.211	-0.387	1.00 20.73	А
		ATOM	199	СВ	LYS A	55	8.437	54.313	-0.134	1.00 20.77	A
£ (ATOM	200	CG	LYS A	55	7.748	53.848	-1.403	1.00 20.88	А
	30	ATOM	201	CD	LYS A	55	7.336	55.018	-2.284	1.00 21.60	A
		ATOM	202	CE	LYS A	55	6.699	54.527	-3.578	1.00 21.98	А
Ų		ATOM	203	NZ	LYS A	55	6.215	55.652	-4.429	1.00 21.47	A
1.4		ATOM	204	C	LYS A	55	10.265	55.652	0.936	1.00 20.90	A
		ATOM	205	0	LYS A	55	10.205	54.870	1.615	1.00 21.59	A
Paradi =	35	ATOM	206	N	ASP A	56	10.045	56.912	1.291	1.00 21.05	A
į.	33					56	10.582		2.522	1.00 21.70	A
		ATOM	207	CA	ASP A			57.478	2.322	1.00 21.70	
		ATOM	208	CB	ASP A	56	11.094	58.897		1.00 20.78	A
		ATOM	209	CG	ASP A	56	11.697	59.567	3.450		A
	40	ATOM	210		ASP A	56	12.238	58.861	4.324	1.00 20.21	A
	40	ATOM	211		ASP A	56	11.642	60.812	3.523	1.00 20.23	A
		MOTA	212	С	ASP A	56	9.520	57.493	3.622	1.00 22.51	A
		MOTA	213	0	ASP A	56	8.954	58.536	3.939	1.00 23.55	A
		ATOM	214	N	ILE A	57	9.251	56.331	4.207	1.00 23.05	Α
		ATOM	215	CA	ILE A	57	8.245	56.249	5.259	1.00 23.95	Α
	45	ATOM	216	CB	ILE A	57	7.368	54.981	5.114	1.00 25.04	Α
		ATOM	217	CG2	ILE A	57	6.858	54.859	3.681	1.00 24.66	А
		ATOM	218	CG1	ILE A	57	8.172	53.737	5.485	1.00 25.72	Α
		MOTA	219	CD1	ILE A	57	7.335	52.480	5.564	1.00 27.21	Α
		MOTA	220	С	ILE A	57	8.869	56.250	6.647	1.00 23.45	Α
	50	ATOM	221	0	ILE A	57	10.022	55.859	6.824	1.00 23.83	Α
	- 0	ATOM	222	N	ASP A	58	8.091	56.698	7.627	1.00 23.42	А
		ATOM	223	CA	ASP A	58	8.528	56.758	9.017	1.00 23.11	A
		ATOM	224	CB	ASP A	58	7.566	57.641	9.815	1.00 24.05	A
		MOTA	225	CG	ASP A	58	7.986	57.817	11.264	1.00 24.03	A
	55									1.00 24.31	A
	55	ATOM	226	ODI	ASP A	58	7.391	58.677	11.948	1.00 20.00	А

		MOTA	227		ASP A		58	8.898	57.102	11.725	1.00 24.36	A
		ATOM	228	С	ASP A	A	58	8.552	55.347	9.599	1.00 22.47	Α
		ATOM	229	0	ASP A	Α	58	7.503	54.736	9.798	1.00 22.40	Α
		ATOM	230	N	GLY A	Α	59	9.749	54.835	9.871	1.00 21.17	Α
	5	ATOM	231	CA	GLY A	A	59	9.870	53.491	10.411	1.00 20.10	Α
		ATOM	232	С	GLY I		59	9.836	53.398	11.926	1.00 18.92	A
		ATOM	233	0	GLY Z		59	10.040	52.321	12.486	1.00 18.96	А
		ATOM	234	N	GLY .		60	9.576	54.518	12.592	1.00 18.14	Α
		ATOM	235	CA	GLY		60	9.529	54.523	14.045	1.00 18.27	A
	10	ATOM	236	C	GLY A		60	10.796	55.130	14.620	1.00 17.46	A
	10	ATOM	237	0	GLY A		60	11.352	56.062	14.038	1.00 17.61	A
		ATOM	238	N	VAL		61	11.264	54.612	15.752	1.00 17.01	A
		ATOM	239	CA	VAL		61	12.484	55.146	16.349	1.00 17.40	A
		ATOM	240	CB	VAL A		61	12.865	54.402	17.653	1.00 16.73	A
	15							11.824	54.706	18.728	1.00 16.73	
	13	ATOM	241		VAL		61					A
		ATOM	242		VAL		61	12.957	52.904	17.413	1.00 16.85	A
		ATOM	243	С	VAL A		61	13.613	55.075	15.321	1.00 16.90	A
		ATOM	244	0	VAL		61	14.443	55.981	15.244	1.00 16.19	A
i ma	20	ATOM	245	N	TRP A		62	13.651	53.998	14.537	1.00 16.72	A
	20	ATOM	246	CA	TRP A		62	14.641	53.903	13.470	1.00 17.14	Α
, = 		ATOM	247	CB	TRP A		62	15.017	52.448	13.160	1.00 16.77	A
1197		ATOM	248	CG	TRP A		62	15.981	52.323	11.999	1.00 16.61	A
1,5 E.		ATOM	249		TRP A		62	16.334	51.125	11.291	1.00 16.64	Α
		ATOM	250	CE2	TRP A	A	62	17.238	51.495	10.266	1.00 16.47	Α
M	25	ATOM	251	CE3	TRP A	4	62	15.974	49.776	11.421	1.00 16.05	А
		ATOM	252	CD1	TRP A	4	62	16.671	53.339	11.393	1.00 16.29	А
		MOTA	253	NE1	TRP A	4	62	17.424	52.850	10.351	1.00 16.78	A
E)		ATOM	254	CZ2	TRP A	4	62	17.786	50.565	9.376	1.00 15.87	A
		ATOM	255	CZ3	TRP A	Ą	62	16.518	48.849	10.537	1.00 15.80	A
	30	ATOM	256	CH2	TRP A	4	62	17.416	49.249	9.525	1.00 16.42	A
1,j ₂ 2		ATOM	257	С	TRP A	4	62	13.854	54.516	12.319	1.00 17.81	А
12		ATOM	258	0	TRP A	Ą	62	13.199	53.816	11.542	1.00 18.20	А
į.		ATOM	259	N	LYS A	Ą	63	13.904	55.841	12.241	1.00 18.39	A
13		MOTA	260	CA	LYS A	A	63	13.159	56.598	11.243	1.00 18.98	А
L	35	ATOM	261	CB	LYS A	Ą	63	13.590	58.066	11.290	1.00 20.04	A
		ATOM	262	CG	LYS A		63	13.128	58.814	12.549	1.00 22.71	А
		ATOM	263	CD	LYS A		63	11.608	58.979	12.573	1.00 25.03	Α
		ATOM	264	CE	LYS A		63	11.129	59.810	13.761	1.00 26.33	А
		ATOM	265	NZ	LYS A		63	11.459	59.217	15.099	1.00 28.40	А
	40	ATOM	266	С	LYS A		63	13.180		9.800		Α
		ATOM	267	0	LYS A		63	12.175	56.225	9.090	1.00 18.80	А
		ATOM	268	N	GLN A		64	14.302	55.557	9.358	1.00 17.70	A
		ATOM	269	CA	GLN A		64	14.400	55.102	7.976	1.00 17.10	A
		ATOM	270	СВ	GLN A		64	15.610	55.768	7.320	1.00 16.66	A
	45	ATOM	271	CG	GLN A		64	15.510	57.285	7.347	1.00 16.52	A
	10	ATOM	272	CD	GLN A		64	16.850	57.969	7.152	1.00 16.43	A
		ATOM	273		GLN A		64	17.818	57.674	7.859	1.00 16.43	A
			274						58.894	6.198	1.00 10.22	A
		ATOM	275		GLN A		64	16.910 14.461	53.586	7.817	1.00 15.17	
	50	ATOM		С	GLN A		64					A
	50	ATOM	276	0	GLN A		64	14.839	53.073	6.759	1.00 16.20	A
		ATOM	277	N	GLY A		65	14.070	52.880	8.873	1.00 16.63	A
		ATOM	278	CA	GLY A		65	14.060	51.429	8.844	1.00 17.03	A
		ATOM	279	С	GLY A		65	12.713	50.881	9.284	1.00 17.98	A
	CC	ATOM	280	0	GLY A		65	11.680	51.204	8.692	1.00 17.73	A
	55	ATOM	281	N	TRP A	4	66	12.722	50.052	10.324	1.00 18.46	Α

		ATOM	282	CA	TRP		66	11.495	49.454	10.852	1.00 19.30	A
		ATOM	283	CB	TRP	Α	66	11.101	48.231	10.012	1.00 18.93	Α
		ATOM	284	CG	TRP	Α	66	12.024	47.045	10.179	1.00 18.71	Α
		MOTA	285	CD2	TRP	Α	66	13.222	46.776	9.440	1.00 18.40	Α
	5	MOTA	286	CE2	TRP	Α	66	13.768	45.575	9.950	1.00 18.17	Α
		ATOM	287	CE3	TRP	Α	66	13.890	47.435	8.396	1.00 18.28	A
		ATOM	288	CD1	TRP	Α	66	11.897	46.026	11.081	1.00 18.40	Α
		ATOM	289	NE1	TRP		66	12.938	45.139	10.949	1.00 18.80	Α
		ATOM	290	CZ2			66	14.952	45.015	9.452	1.00 18.67	A
	10	ATOM	291	CZ3	TRP		66	15.067	46.881	7.901	1.00 18.13	А
		ATOM	292	CH2	TRP		66	15.587	45.681	8.431	1.00 18.63	A
		ATOM	293	C	TRP		66	11.768	49.028	12.289	1.00 19.82	A
		ATOM	294	Ö	TRP		66	12.906	49.117	12.751	1.00 19.90	A
		ATOM	295	N	ASN		67	10.735	48.581	13.000	1.00 20.61	A
	15	ATOM	296	CA	ASN		67	10.733	48.133	14.380	1.00 20.01	A
	15			CB	ASN		67	9.580	48.089	15.132	1.00 21.14	A
		ATOM	297							15.382	1.00 23.90	A
		ATOM	298	CG	ASN		67	9.005	49.469		1.00 23.90	
		ATOM	299		ASN		67	9.737	50.419	15.660		A
k	20	ATOM	300		ASN		67	7.684	49.580	15.308	1.00 24.85	A
	20	ATOM	301	С	ASN		67	11.534	46.742	14.365	1.00 21.15	A
i i		ATOM	302	0	ASN		67	10.859	45.751	14.076	1.00 20.49	A
r b		ATOM	303	N	ILE		68	12.822	46.669	14.680	1.00 20.89	A
B 1-		ATOM	304	CA	ILE		68	13.524	45.395	14.676	1.00 20.74	A
	0=	MOTA	305	СВ	ILE		68	15.047	45.602	14.791	1.00 20.37	A
P	25	MOTA	306	CG2	ILE	Α	68	15.754	44.256	14.762	1.00 20.22	A
		MOTA	307	CG1	ILE	А	68	15.541	46.489	13.643	1.00 19.43	A
		ATOM	308	CD1	ILE	А	68	16.996	46.907	13.771	1.00 18.98	A
		ATOM	309	С	ILE	Α	68	13.074	44.489	15.816	1.00 21.81	Α
		ATOM	310	0	ILE	Α	68	12.958	44.923	16.961	1.00 21.06	A
r. 5	30	ATOM	311	N	LYS	Α	69	12.820	43.227	15.486	1.00 22.54	Α
F 1		ATOM	312	CA	LYS	Α	69	12.402	42.240	16.472	1.00 23.75	Α
ļ		ATOM	313	СВ	LYS	Α	69	10.990	41.731	16.154	1.00 25.70	Α
ŧ.		ATOM	314	CG	LYS	Α	69	9.910	42.796	16.310	1.00 28.27	Α
		ATOM	315	CD	LYS		69	8.529	42.293	15.899	1.00 30.99	Α
÷	35	ATOM	316	CE	LYS		69	8.470	41.949	14.415	1.00 32.58	Α
		ATOM	317	NZ	LYS		69	7.069	41.696	13.953	1.00 33.89	А
		ATOM	318	С	LYS		69	13.399	41.087	16.440	1.00 23.31	А
		ATOM	319	0	LYS		69	13.965	40.779	15.394	1.00 22.08	А
		ATOM	320	N	TYR		70	13.627	40.463	17.590	1.00 22.98	А
	40	ATOM	321	CA	TYR		70	14.558	39.347	17.659	1.00 23.39	А
		ATOM	322	СВ	TYR		70	15.955	39.838	18.069	1.00 22.09	А
		ATOM	323	CG	TYR		70	16.033	40.441	19.454	1.00 21.39	A
		ATOM	324		TYR		70	16.250	39.641	20.577	1.00 21.26	A
		ATOM	325		TYR		70	16.301	40.193	21.854	1.00 21.28	A
	45	ATOM	326		TYR		70	15.870	41.810	19.646	1.00 20.94	A
	40				TYR		70	15.076	42.371	20.915	1.00 20.34	A
		ATOM	327						41.560	22.014	1.00 21.13	
		ATOM	328	CZ	TYR		70	16.131				A
		ATOM	329	OH	TYR		70 70	16.160	42.120	23.270	1.00 21.29	A
	EO	ATOM	330	С	TYR		70	14.067	38.291	18.639	1.00 24.36	A
	50	ATOM	331	0	TYR		70	13.299	38.587	19.556	1.00 24.37	A
		ATOM	332	N	ASP		71	14.506	37.058	18.426	1.00 25.28	A
		ATOM	333	CA	ASP		71	14.134	35.952	19.295	1.00 26.59	A
		MOTA	334	CB	ASP		71	14.108	34.650	18.491	1.00 27.54	A
		ATOM	335	CG	ASP		71	13.865	33.430	19.358	1.00 28.68	A
	55	MOTA	336	OD1	ASP	Α	71	13.325	33.583	20.474	1.00 29.32	Α

		ATOM	337	OD2	ASP A	71	14.208	32.315	18.913	1.00 29.61	Α
		ATOM	338	С	ASP A	71	15.166	35.878	20.414	1.00 27.11	Α
			339	Ö	ASP A	71	16.324	35.542	20.181	1.00 27.07	A
		ATOM						36.205	21.650	1.00 27.95	A
	_	ATOM	340	N	PRO A	72	14.758				
	5	MOTA	341	CD	PRO A	72	13.382	36.467	22.102	1.00 28.09	A
		MOTA	342	CA	PRO A	72	15.682	36.167	22.788	1.00 28.21	Α
		ATOM	343	CB	PRO A	72	14.777	36.487	23.981	1.00 28.36	А
		ATOM	344	CG	PRO A	72	13.431	36.001	23.536	1.00 29.13	А
		ATOM	345	С	PRO A	72	16.430	34.848	22.949	1.00 28.47	A
	10	MOTA	346	0	PRO A	72	17.544	34.819	23.478	1.00 28.39	A
		ATOM	347	N	LEU A	73	15.831	33.761	22.476	1.00 28.12	А
		ATOM	348	CA	LEU A	73	16.458	32.450	22.589	1.00 28.34	Α
		ATOM	349	CB	LEU A	73	15.396	31.350	22.521	1.00 28.75	А
		ATOM	350	CG	LEU A	73	14.394	31.348	23.678	1.00 29.26	A
	15							30.228	23.480	1.00 29.98	A
	13	ATOM	351		LEU A	73	13.386			1.00 29.98	A
		ATOM	352		LEU A	73	15.137	31.176	24.999		
		MOTA	353	С	LEU A	73	17.526	32.200	21.530	1.00 28.03	A
		MOTA	354	0	LEU A	73	18.172	31.155	21.531	1.00 27.41	А
i i i i i i		MOTA	355	N	LYS A	74	17.717	33.159	20.629	1.00 27.84	А
	20	MOTA	356	CA	LYS A	74	18.719	33.010	19.580	1.00 28.11	A
7,5 4,0 7 775		MOTA	357	CB	LYS A	74	18.719	34.238	18.669	1.00 28.49	А
4		MOTA	358	CG	LYS A	74	19.670	34.132	17.489	1.00 29.82	Α
		MOTA	359	CD	LYS A	74	19.495	35.303	16.537	1.00 30.64	Α
		MOTA	360	CE	LYS A	74	20.364	35.143	15.302	1.00 31.81	А
	25	ATOM	361	NZ	LYS A	74	20.171	36.267	14.342	1.00 31.98	Α
		ATOM	362	С	LYS A	74	20.107	32.821	20.188	1.00 28.09	А
		MOTA	363	Ö	LYS A	74	20.905	32.019	19.708	1.00 27.62	А
		ATOM	364	N	TYR A	75	20.390	33.567	21.249	1.00 28.79	A
Ē}			365			75	21.678	33.470	21.243	1.00 29.44	A
	20	ATOM		CA	TYR A				22.135	1.00 20.44	A
Į.	30	ATOM	366	CB	TYR A	75	22.267	34.870			
		MOTA	367	CG	TYR A	75	22.560	35.593	20.839	1.00 31.19	A
Į.		MOTA	368		TYR A	75	21.682	36.552	20.330	1.00 32.32	A
21525 21525		MOTA	369		TYR A	75	21.919	37.167	19.097	1.00 32.54	A
#] -		MOTA	370		TYR A	75	23.685	35.268	20.085	1.00 31.91	A
į.Ł	35	MOTA	371	CE2	TYR A	75	23.929	35.871	18.854	1.00 33.09	А
		ATOM	372	CZ	TYR A	75	23.043	36.816	18.365	1.00 33.06	A
		ATOM	373	OH	TYR A	75	23.281	37.385	17.133	1.00 34.74	A
		MOTA	374	С	TYR A	75	21.533	32.738	23.246	1.00 29.32	А
		ATOM	375	0	TYR A	75	20.536	32.903	23.947	1.00 28.56	Α
	40	ATOM	376	N	ASN A	76	22.524	31.914	23.573	1.00 29.65	Α
		ATOM	377	CA	ASN A	76	22.515	31.153	24.817	1.00 30.92	Α
		ATOM	378	CB	ASN A	76	21.679	29.879	24.663	1.00 31.88	A
		ATOM	379	CG	ASN A	76	22.350	28.844	23.789	1.00 32.89	А
		ATOM	380		ASN A	76	22.597	29.077	22.610	1.00 34.45	A
	45		381		ASN A	76	22.652	27.686	24.368	1.00 35.12	A
	40	ATOM							25.217	1.00 33.12	A
		ATOM	382	C	ASN A	76	23.940	30.786			
		ATOM	383	0	ASN A	76	24.898	31.163	24.544	1.00 31.17	A
		ATOM	384	N	ALA A	77	24.071	30.042	26.311	1.00 31.88	A
		MOTA	385	CA	ALA A	77	25.377	29.634	26.820	1.00 32.55	A
	50	ATOM	386	CB	ALA A	77	25.197	28.651	27.972	1.00 33.07	Α
		ATOM	387	С	ALA A	77	26.297	29.028	25.763	1.00 33.01	Α
		ATOM	388	0	ALA A	77	27.516	29.186	25.831	1.00 33.48	A
		ATOM	389	N	HIS A	78	25.718	28.340	24.785	1.00 33.14	Α
		MOTA	390	CA	HIS A	78	26.512	27.700	23.741	1.00 33.71	A
	55	ATOM	391	СВ	HIS A	78	25.869	26.367	23.349	1.00 35.33	Α

		ATOM	392	CG	HIS	Α	78	25.613	25.459	24.511	1.00 37.19	Α
		ATOM	393	CD2	HIS	Α	78	24.467	24.910	24.978	1.00 37.95	Α
		ATOM	394	ND1	HIS	Α	78	26.616	25.029	25.354	1.00 38.44	Α
		ATOM	395	CE1	HIS	Α	78	26.098	24.255	26.291	1.00 39.01	Α
	5	ATOM	396	NE2	HIS	Α	78	24.796	24.166	26.085	1.00 38.98	Α
		ATOM	397	С	HIS	Α	78	26.689	28.570	22.501	1.00 32.69	А
		ATOM	398	0	HIS	Α	78	27.445	28.221	21.594	1.00 32.79	Α
		ATOM	399	N	HIS		79	25.997	29.703	22.471	1.00 31.30	Α
		ATOM	400	CA	HIS	Α	79	26.075	30.617	21.337	1.00 29.39	Α
	10	ATOM	401	СВ	HIS	А	79	25.026	30.220	20.294	1.00 29.56	Α
		ATOM	402	CG	HIS		79	25.097	31.011	19.026	1.00 30.05	A
		ATOM	403	CD2	HIS		79	25.904	30.892	17.945	1.00 30.18	Α
		ATOM	404		HIS		79	24.269	32.083	18.769	1.00 30.14	A
		MOTA	405		HIS		79	24.564	32.590	17.585	1.00 30.18	Α
	15	MOTA	406	NE2	HIS	Α	79	25.552	31.886	17.064	1.00 29.64	Α
		MOTA	407	С	HIS		79	25.848	32.049	21.821	1.00 27.72	Α
		ATOM	408	0	HIS	Α	79	24.724	32.546	21.818	1.00 27.38	Α
		ATOM	409	N	LYS		80	26.929	32.701	22.239	1.00 25.74	Α
		ATOM	410	CA	LYS		80	26.864	34.067	22.751	1.00 24.30	А
	20	ATOM	411	СВ	LYS		80	27.894	34.265	23.864	1.00 25.55	A
1,44		ATOM	412	CG	LYS		80	27.771	33.315	25.047	1.00 27.24	Α
		ATOM	413	CD	LYS		80	28.848	33.636	26.074	1.00 28.76	Α
1,17		ATOM	414	CE	LYS		80	28.801	32.686	27.260	1.00 30.53	A
		ATOM	415	NZ	LYS		80	29.897	32.984	28.235	1.00 31.64	Α
Ŋ	25	ATOM	416	С	LYS	Α	80	27.117	35.130	21.687	1.00 23.05	Α
		ATOM	417	0	LYS		80	27.735	34.861	20.655	1.00 21.91	Α
m		ATOM	418	N	LEU		81	26.634	36.340	21.961	1.00 20.81	А
81		ATOM	419	CA	LEU	Α	81	26.826	37.476	21.069	1.00 19.46	А
1 ·		ATOM	420	СВ	LEU		81	25.639	38.444	21.163	1.00 18.84	Α
	30	ATOM	421	CG	LEU		81	25.719	39.706	20.294	1.00 18.97	Α
1,12		ATOM	422	CD1	LEU	Α	81	25.692	39.316	18.819	1.00 18.21	Α
W.		ATOM	423	CD2	LEU	Α	81	24.558	40.637	20.616	1.00 18.43	Α
[.d.		ATOM	424	С	LEU	Α	81	28.097	38.179	21.532	1.00 19.09	A
Ü		ATOM	425	0	LEU	Α	81	28.168	38.669	22.660	1.00 18.47	Α
lai.	35	ATOM	426	N	LYS	Α	82	29.108	38.198	20.670	1.00 18.24	Α
		ATOM	427	CA	LYS	Α	82	30.379	38.844	20.984	1.00 18.10	A
		ATOM	428	СВ	LYS	Α	82	31.523	38.130	20.258	1.00 20.34	Α
		ATOM	429	CG	LYS	Α	82	31.736	36.693	20.723	1.00 23.59	Α
		ATOM	430	CD	LYS	Α	82	32.626	35.899	19.769	1.00 26.71	Α
	40	ATOM	431	CE	LYS	Α	82	34.047	36.436	19.723	1.00 28.41	Α
		ATOM	432	NZ	LYS	Α	82	34.880	35.658	18.761	1.00 31.12	Α
		MOTA	433	С	LYS	Α	82	30.283	40.289	20.517	1.00 17.55	Α
		ATOM	434	0	LYS	Α	82	30.112	40.550	19.327	1.00 16.98	Α
		ATOM	435	N	VAL	Α	83	30.392	41.226	21.454	1.00 15.95	Α
	45	ATOM	436	CA	VAL	Α	83	30.285	42.638	21.119	1.00 15.21	Α
		ATOM	437	СВ	VAL	Α	83	29.253	43.349	22.035	1.00 14.49	Α
		ATOM	438	CG1	VAL	Α	83	29.126	44.814	21.648	1.00 13.69	Α
		MOTA	439	CG2	VAL	Α	83	27.895	42.658	21.926	1.00 15.01	Α
		ATOM	440	С	VAL	Α	83	31.615	43.375	21.229	1.00 15.13	Α
	50	ATOM	441	0	VAL		83	32.297	43.302	22.252	1.00 15.11	Α
		ATOM	442	N	PHE		84	31.976	44.084	20.163	1.00 15.08	Α
		ATOM	443	CA	PHE		84	33.207	44.868	20.142	1.00 14.60	Α
		ATOM	444	СВ	PHE		84	34.081	44.489	18.944	1.00 15.76	Α
		MOTA	445	CG	PHE		84	34.765	43.163	19.085	1.00 17.05	A
	55	ATOM	446		PHE		84	34.321	42.055	18.371	1.00 17.71	Α

	ATOM	447	CD2	PHE	A 84		35.859	43.021	19.935	1.00	18.34	Α
	ATOM	448	CE1	PHE	A 84		34.961	40.819	18.500	1.00	18.55	Α
	ATOM	449	CE2	PHE	A 84		36.507	41.795	20.073	1.00	18.71	Α
	ATOM	450	CZ	PHE			36.058	40.690	19.354	1.00	19.03	Α
5	ATOM	451	С	PHE			32.876	46.355	20.061	1.00	14.25	Α
_	ATOM	452	0	PHE			32.342	46.819	19.054	1.00	14.04	Α
	ATOM	453	N	VAL			33.183	47.085	21.130	1.00	13.03	Α
	ATOM	454	CA	VAL			32.955	48.527	21.193	1.00	13.03	A
	ATOM	455	СВ	VAL			32.596	48.976	22.629	1.00	12.58	A
10	ATOM	456		VAL			32.408	50.493	22.680	1.00		А
	ATOM	457		VAL			31.318	48.272	23.072	1.00		A
	ATOM	458	C	VAL			34.267	49.165	20.762	1.00		А
	ATOM	459	0	VAL			35.280	49.049	21.451	1.00		A
	ATOM	460	N	VAL			34.240	49.840	19.618	1.00		А
15	ATOM	461	CA	VAL			35.442	50.442	19.058	1.00		А
10	ATOM	462	CB	VAL			35.580	50.032	17.571	1.00		A
	ATOM	463		VAL			36.907	50.523	17.002	1.00		A
	ATOM	464		VAL			35.458	48.511	17.442	1.00		A
	ATOM	465	C	VAL			35.508	51.967	19.168	1.00		A
20	ATOM	466	0	VAL			34.875	52.683	18.393	1.00		A
20	ATOM	467	N	PRO			36.292	52.478	20.133	1.00		A
	ATOM	468	CD	PRO			37.015	51.722	21.169	1.00		A
			CA	PRO			36.448	53.923	20.344	1.00		A
	ATOM	469		PRO			37.307	54.000	21.610	1.00		A
25	ATOM	470	CB				37.008	52.695	22.311	1.00		A
23	ATOM	471 472	CG C	PRO PRO			37.145	54.569	19.146	1.00		A
	ATOM						38.123	54.023	18.624	1.00		A
	ATOM	473	0 N	PRO			36.646	55.725	18.714		10.80	A
	ATOM	474	N	HIS				56.427	17.577		11.53	A
30	ATOM	475	CA	HIS			37.235 36.662	55.885	16.257	1.00		A
30	ATOM	476	CB	HIS					16.257	1.00		A
	ATOM	477	CG	HIS			35.211	56.191		1.00		A
	ATOM	478		HIS			34.098	55.515	16.420 15.397	1.00		A
	ATOM	479		HIS			34.773	57.323				A
25	ATOM	480		HIS			33.453	57.330	15.371		11.92 11.27	A
35	ATOM	481		HIS	-		33.018	56.244	15.986			
	MOTA	482	C	HIS			37.015	57.933	17.666		12.18	A
	ATOM	483	0	HIS			36.203	58.417	18.459		11.77	A
	ATOM	484	N	SER			37.753	58.670	16.845		11.89	A
40	ATOM	485	CA	SER			37.671	60.122	16.833	1.00		A
4 0	ATOM	486	СВ	SER			38.775	60.702	17.728	1.00		A
	MOTA	487	OG	SER			38.737	62.117	17.764	1.00		A
	ATOM	488	С	SER			37.852	60.577	15.393	1.00		A
	ATOM	489	0	SER			38.928	60.417	14.815		12.41	A
4=	MOTA	490	N	HIS			36.792	61.130	14.814		11.46	A
45	ATOM	491	CA	HIS			36.835	61.592	13.432	1.00		A
	MOTA	492	CB	HIS			35.415	61.640	12.859	1.00		A
	MOTA	493	CG	HIS			35.368	61.922	11.391		10.05	A
	ATOM	494		HIS			34.794	62.930	10.695	1.00	9.72	A
	ATOM	495		HIS			35.986	61.116	10.460		10.72	A
50	MOTA	496		HIS			35.795	61.615	9.253		10.25	A
	ATOM	497	NE2	HIS)	35.074	62.716	9.368	1.00	9.97	A
	ATOM	498	С	HIS	A 90)	37.491	62.969	13.355		11.84	A
	ATOM	499	0	HIS	A 90)	36.912	63.971	13.787		11.75	А
	ATOM	500	N	ASN	A 93	-	38.704	63.005	12.809	1.00		А
55	MOTA	501	CA	ASN	A 93		39.466	64.243	12.680	1.00	12.03	A

	ATOM	502	СВ	ASN	Α	91	40.857	64.082	13.304	1.00 12.04	А
	ATOM	503	CG	ASN	Α	91	40.812	63.945	14.810	1.00 12.39	Α
	MOTA	504	OD1	ASN	Α	91	40.213	63.011	15.348	1.00 14.18	Α
_	MOTA	505	ND2	ASN	Α	91	41.451	64.877	15.503	1.00 10.68	Α
5	MOTA	506	С	ASN	Α	91	39.628	64.671	11.226	1.00 12.39	Α
	ATOM	507	0	ASN	Α	91	40.322	64.014	10.450	1.00 12.84	A
	ATOM	508	N	ASP	Α	92	38.996	65.783	10.873	1.00 11.57	Α
	MOTA	509	CA	ASP		92	39.063	66.308	9.517	1.00 12.43	Α
40	ATOM	510	CB	ASP		92	37.827	67.155	9.224	1.00 11.83	А
10	MOTA	511	CG	ASP		92	36.555	66.377	9.378	1.00 12.30	A
	MOTA	512		ASP		92	36.335	65.462	8.565	1.00 12.29	A
	ATOM	513		ASP		92	35.791	66.671	10.319	1.00 13.77	A
	MOTA	514	С	ASP		92	40.293	67.168	9.282	1.00 12.14	A
45	MOTA	515	0	ASP		92	40.522	68.136	10.005	1.00 12.62	A
15	ATOM	516	N	PRO		93	41.115	66.810	8.284	1.00 12.65	A
	ATOM	517	CD	PRO		93	41.195	65.488	7.637	1.00 12.43	A
	ATOM	518	CA	PRO		93	42.311	67.603	7.988	1.00 12.86	A
	ATOM	519	CB	PRO		93	43.108	66.697	7.052	1.00 12.57	A
20	ATOM	520	CG	PRO		93	42.686	65.311	7.478	1.00 13.74	A
20	ATOM	521	С	PRO		93	41.823	68.876	7.290	1.00 13.17	A
	ATOM	522	0	PRO		93	42.157	69.139	6.132	1.00 13.70	A
	ATOM	523	N	GLY		94	41.008	69.641	8.010	1.00 12.62	A
	ATOM	524	CA	GLY		94	40.446	70.868	7.481	1.00 11.94	A
25	MOTA	525	C	GLY		94	38.965	70.725	7.160	1.00 12.22	A
25	MOTA	526	0	GLY		94	38.530	69.697	6.636	1.00 10.48	A
	ATOM	527	N	TRP		95	38.191	71.751	7.506	1.00 12.07	A
	ATOM	528 529	CA CB	TRP TRP		95 95	36.755	71.808 70.737	7.232 7.996	1.00 13.08 1.00 12.61	A A
	ATOM ATOM	530	CG	TRP		95 95	35.964 34.480	70.737	7.674	1.00 12.81	A
30	ATOM	531	CD2	TRP		95	33.381	70.507	8.556	1.00 12.37	A
50	ATOM	532	CE2	TRP		95	32.191	70.721	7.812	1.00 12.30	A
	ATOM	533		TRP		95	33.285	70.701	9.900	1.00 11.32	A
	ATOM	534		TRP		95	33.923	71.138	6.469	1.00 12.33	A
	ATOM	535	NE1			95	32.551	71.079	6.545	1.00 12.46	A
35	ATOM	536		TRP		95	30.919	70.501	8.366	1.00 12.42	A
	ATOM	537	CZ3	TRP		95	32.015	69.928	10.453	1.00 12.35	A
	ATOM	538		TRP		95	30.853	70.116	9.684	1.00 12.53	A
	ATOM	539	C	TRP		95	36.241	73.191	7.623	1.00 13.99	Α
	ATOM	540	0	TRP		95	36.115	74.066	6.770	1.00 13.09	Α
40	ATOM	541	N	ILE	Α	96	35.938	73.385	8.906	1.00 15.45	А
	ATOM	542	CA	ILE		96	35.475	74.693	9.365	1.00 16.71	А
	MOTA	543	СВ	ILE	Α	96	34.333	74.581	10.399	1.00 18.64	А
	ATOM	544	CG2	ILE	Α	96	33.083	74.028	9.719	1.00 18.36	А
	ATOM	545	CG1	ILE	Α	96	34.760	73.709	11.576	1.00 20.42	А
45	ATOM	546	CD1	ILE	Α	96	33.740	73.664	12.692	1.00 23.56	Α
	ATOM	547	С	ILE	Α	96	36.658	75.456	9.955	1.00 16.73	Α
	ATOM	548	0	ILE	Α	96	36.567	76.644	10.261	1.00 16.70	А
	ATOM	549	N	GLN	A	97	37.768	74.741	10.107	1.00 16.15	Α
	MOTA	550	CA	GLN	Α	97	39.028	75.295	10.585	1.00 16.16	A
50	MOTA	551	CB	GLN		97	39.325	74.865	12.027	1.00 18.11	Α
	MOTA	552	CG	GLN		97	38.431	75.503	13.087	1.00 22.05	Α
	MOTA	553	CD	GLN		97	38.907	75.206	14.504	1.00 25.07	Α
	ATOM	554		GLN		97	40.041	75.525	14.872	1.00 27.71	А
	ATOM	555		GLN		97	38.041	74.592	15.306	1.00 27.57	А
55	ATOM	556	С	GLN	А	97	40.069	74.685	9.649	1.00 14.57	Α

				_		_			70	0 000	1 00 12 77	_
		ATOM	557	0	GLN		97	39.795	73.683	8.988	1.00 13.77	Α
		ATOM	558	N	THR	Α	98	41.249	75.283	9.574	1.00 13.40	Α
		ATOM	559	CA	THR	Α	98	42.293	74.742	8.713	1.00 12.50	Α
		ATOM	560	СВ	THR	Α	98	43.402	75.763	8.456	1.00 12.05	Α
	5	ATOM	561	OG1	THR		98	44.038	76.073	9.700	1.00 13.52	A
	_	ATOM	562	CG2	THR		98	42.841	77.040	7.836	1.00 11.40	Α
		ATOM	563	C	THR		98	42.942	73.551	9.411	1.00 12.44	A
							98	42.713	73.331	10.601	1.00 12.49	A
		ATOM	564	0	THR					8.666	1.00 12.43	A
	10	ATOM	565	N	PHE		99	43.754	72.810			
	10	MOTA	566	CA	PHE		99	44.462	71.665	9.221	1.00 12.23	A
		ATOM	567	CB	PHE		99	45.472	71.120	8.204	1.00 11.49	A
		ATOM	568	CG	PHE		99	46.350	70.017	8.745	1.00 12.06	Α
		MOTA	569		PHE		99	45.941	68.687	8.686	1.00 11.94	А
		MOTA	570	CD2	PHE	Α	99	47.589	70.312	9.314	1.00 11.54	Α
	15	MOTA	571	CE1	PHE	Α	99	46.752	67.663	9.182	1.00 12.73	Α
		ATOM	572	CE2	PHE	Α	99	48.408	69.298	9.814	1.00 12.59	Α
		MOTA	573	CZ	PHE	Α	99	47.988	67.968	9.747	1.00 12.47	Α
		ATOM	574	С	PHE	Α	99	45.211	72.088	10.486	1.00 12.42	Α
a vitrani.		ATOM	575	0	PHE		99	45.055	71.479	11.540	1.00 12.95	Α
	20	ATOM	576	N	GLU			46.026	73.134	10.370	² 1.00 13.15	Α
Ü		ATOM	577	CA	GLU			46.818	73.617	11.502	1.00 14.12	Α
ıI		ATOM	578	CB	GLU			47.789	74.708	11.034	1.00 14.54	Α
M.		ATOM	579	CG	GLU			48.842	75.113	12.062	1.00 15.92	A
		ATOM	580	CD	GLU			49.753	73.965	12.474	1.00 17.24	A
9,000 ² 88.8	25		581	OE1	GLU			49.923	73.012	11.680	1.00 16.33	A
	23	ATOM						50.316	74.028	13.591	1.00 10.33	A
W.		ATOM	582	OE2	GLU					12.666	1.00 14.27	A
		ATOM	583	C	GLU			45.973	74.135		1.00 14.27	A
Ħţ		ATOM	584	0	GLU			46.330	73.936	13.827		
	20	ATOM	585	N	GLU			44.860	74.798	12.364	1.00 14.44	A
" jeaf".	30	MOTA	586	CA	GLU			43.989	75.313	13.420	1.00 14.32	A
°abadii. BASE		MOTA	587	СВ	GLU			42.850	76.150	12.823	1.00 15.58	A
W.		ATOM	588	CG	GLU			43.314	77.445	12.156	1.00 16.71	Α
į.		MOTA	589	CD	GLU	Α	101	42.163	78.275	11.601	1.00 17.74	A
		ATOM	590	OE1	GLU	Α	101	41.227	77.690	11.020	1.00 16.12	A
i de	35	ATOM	591	OE2	GLU	Α	101	42.205	79.518	11.736	1.00 18.27	А
•		ATOM	592	С	GLU	Α	101	43.416	74.144	14.224	1.00 14.11	Α
		ATOM	593	0	GLU	Α	101	43.411	74.169	15.456	1.00 13.45	Α
		ATOM	594	N	TYR	Α	102	42.930	73.120	13.526	1.00 13.09	Α
		ATOM	595	CA	TYR	Α	102	42.385	71.947	14.205	1.00 13.59	Α
	40	ATOM	596	СВ	TYR	Α	102	41.819	70.934	13.210	1.00 13.65	Α
		ATOM	597	CG	TYR			40.407	71.173	12.737	1.00 13.71	Α
		ATOM	598		TYR			39.354	71.343	13.641	1.00 14.39	А
		ATOM	599		TYR			38.030	71.454	13.190	1.00 14.14	А
		ATOM	600		TYR			40.106	71.131	11.376	1.00 13.81	A
	45	ATOM	601		TYR			38.806	71.240	10.921	1.00 13.84	A
	40				TYR			37.771	71.399	11.826	1.00 13.69	A
		ATOM	602	CZ								A
		MOTA	603	OH	TYR			36.487	71.490	11.343	1.00 13.18	
		MOTA	604	C	TYR			43.482	71.247	14.999	1.00 13.51	A
	50	ATOM	605	0	TYR			43.258	70.795	16.123	1.00 12.77	A
	50	ATOM	606	N	TYR			44.663	71.136	14.402	1.00 13.52	A
		ATOM	607	CA	TYR			45.763	70.471	15.081	1.00 14.48	A
		MOTA	608	CB			103	47.024	70.464	14.217	1.00 13.22	A
		ATOM	609	CG	TYR	Α	103	48.189	69.805	14.918	1.00 13.75	А
		ATOM	610	CD1	TYR	Α	103	48.191	68.431	15.163	1.00 13.55	А
	55	MOTA	611	CE1	TYR	Α	103	49.230	67.827	15.867	1.00 13.28	Α

	ATOM	612	CD2	TYR	Α	103	49.262	70.561	15.394	1.00	14.16	А
	MOTA	613	CE2	TYR	Α	103	50.304	69.967	16.101	1.00	14.10	Α
	ATOM	614	CZ	TYR	Α	103	50.281	68.601	16.335	1.00	14.07	A
	MOTA	615	ОН	TYR	Α	103	51.301	68.009	17.045	1.00	14.60	Α
5	MOTA	616	С	TYR	Α	103	46.083	71.148	16.407	1.00	15.20	A
	MOTA	617	0	TYR	Α	103	46.206	70.489	17.438	1.00	15.39	Α
	MOTA	618	N	GLN	Α	104	46.214	72.468	16.372		15.88	Α
	MOTA	619	CA	GLN	Α	104	46.546	73.233	17.568		16.71	Α
	MOTA	620	СВ	GLN	A	104	46.905	74.676	17.189		17.21	А
10	ATOM	621	CG	GLN	Α	104	48.221	74.831	16.436	1.00	16.37	Α
	ATOM	622	CD	GLN	A	104	49.408	74.295	17.221	1.00	17.63	Α
	MOTA	623	OE1	GLN			49.456	74.404	18.449		17.43	А
	MOTA	624	NE2	GLN	A	104	50.378	73.722	16.514		16.09	Α
	MOTA	625	С	GLN	A	104	45.438	73.259	18.610	1.00	17.34	A
15	MOTA	626	0	GLN	A	104	45.702	73.153	19.805		17.27	А
	ATOM	627	N	HIS	Α	105	44.197	73.392	18.157		17.76	А
	ATOM	628	CA	HIS	Α	105	43.063	73.479	19.068		18.88	А
	ATOM	629	CB	HIS	Α	105	41.928	74.271	18.408		21.57	А
	ATOM	630	CG	HIS			42.350	75.595	17.851		24.72	A
20	MOTA	631	CD2	HIS	A	105	43.543	76.237	17.874		26.28	А
	MOTA	632	ND1	HIS	A	105	41.486	76.419	17.161		26.75	A
	ATOM	633		HIS			42.129	77.510	16.783		27.01	A
	ATOM	634	NE2	HIS			43.378	77.424	17.203		27.01	А
	ATOM	635	С	HIS			42.492	72.154	19.563		18.41	A
25	ATOM	636	0	HIS			42.010	72.076	20.692		18.04	A
	ATOM	637	N	ASP	A	106	42.552	71.114	18.733		16.87	А
	ATOM	638	CA	ASP			41.956	69.835	19.108		16.42	A
	MOTA	639	CB	ASP			40.668	69.634	18.301		16.96	A
20	ATOM	640	CG	ASP			39.650	70.730	18.541		18.76	A
30	MOTA	641		ASP			38.962	70.684	19.579		19.47	A
	MOTA	642		ASP			39.547	71.644	17.694		19.48	A
	ATOM	643	С	ASP			42.792	68.567	18.978		15.43	A
	ATOM	644	0	ASP			43.061	67.885	19.965		15.33	A
0.5	MOTA	645	N	THR			43.192	68.251	17.752		14.43	A
35	ATOM	646	CA	THR			43.931	67.027	17.470		13.03	A
	ATOM	647	CB	THR			44.290	66.949	15.982		13.11	A
	ATOM	648	OG1	THR			43.104	67.149	15.203		11.86	A
	ATOM	649	CG2				44.876	65.574	15.648		12.11	A
40	ATOM	650	C	THR			45.182	66.709	18.287		13.20	A
40	ATOM		0	THR			45.365	65.565	18.704		12.11	Α.
	ATOM	652	N	LYS			46.053	67.685	18.515		12.87	A
	MOTA	653	CA	LYS			47.254		19.280		13.87	A
	ATOM	654	CB	LYS			48.252	68.534	19.277		14.10	A
45	ATOM	655	CG	LYS			47.860	69.751	20.090		15.29	A
45	ATOM	656	CD	LYS			48.944	70.823	19.971		15.77	A
	ATOM	657	CE	LYS			48.719	71.975	20.937		16.23 16.57	A
	ATOM	658	NZ	LYS			49.829	72.973	20.871			A
	MOTA	659	С	LYS			46.891	66.964	20.706 21.330		13.55 13.59	A
50	ATOM	660	0	LYS			47.588	66.169				A
50	ATOM	661	N	HIS			45.790	67.505	21.213 22.565		14.16 14.77	A A
	ATOM	662	CA	HIS			45.343	67.179	23.050		16.40	A
	ATOM	663	CB	HIS			44.353	68.232 69.614	23.050		18.18	A
	ATOM	664 665	CC	HIS			44.924	70.706	23.077		18.18	A
55	ATOM	665 666		HIS			44.655		23.939		19.58	A
JJ	ATOM	666	NDI	HIS	А	103	45.937	69.981	63.939	1.00	19.00	M

											_
		ATOM	667	CE1	HIS A	109	46.266	71.241	23.714	1.00 19.97	Α
		ATOM	668	NE2	HIS A	109	45.503	71.703	22.739	1.00 20.15	Α
		ATOM	669	С	HIS A	109	44.699	65.797	22.571	1.00 14.18	Α
		ATOM	670	Ō	HIS A		44.864	65.024	23.515	1.00 13.72	Α
	5				ILE A		43.967	65.492	21.506	1.00 13.63	Α
	3	MOTA	671	N							
		ATOM	672	CA	ILE A		43.319	64.195	21.376	1.00 12.97	A
		ATOM	673	CB	ILE A		42.494	64.121	20.072	1.00 13.70	Α
		ATOM	674	CG2	ILE A	110	42.039	62.686	19.822	1.00 13.17	Α
		ATOM	675	CG1	ILE A	110	41.309	65.091	20.158	1.00 13.46	Α
	10	ATOM	676		ILE A		40.505	65.217	18.870	1.00 13.46	Α
		ATOM	677	C	ILE A		44.378	63.096	21.355	1.00 13.01	Α
		ATOM	678	Ö	ILE A		44.259	62.088	22.053	1.00 12.30	A
								63.295	20.557	1.00 12.30	A
		MOTA	679	N	LEU A		45.419				
	a ==	MOTA	680	CA	LEU A		46.479	62.303	20.455	1.00 13.22	A
	15	MOTA	681	CB	LEU A		47.348	62.584	19.222	1.00 13.48	Α
		ATOM	682	CG	LEU A	111	46.624	62.258	17.910	1.00 13.21	Α
		ATOM	683	CD1	LEU A	111	47.448	62.722	16.714	1.00 12.52	Α
		MOTA	684	CD2	LEU A	111	46.359	60.755	17.848	1.00 13.63	Α
3:85		ATOM	685	С	LEU A		47.338	62.239	21.709	1.00 13.73	Α
	20	ATOM	686	0	LEU A		47.777	61.158	22.113	1.00 14.06	A
٩Ū	20		687	N	SER A		47.573	63.388	22.332	1.00 14.19	A
ţŌ		ATOM									
175		MOTA	688	CA	SER A		48.381	63.412	23.545	1.00 14.98	A
1,225 40, −		MOTA	689	CB	SER A		48.673	64.852	23.965	1.00 15.68	A
[page		MOTA	690	OG	SER A	112	49.509	64.869	25.110	1.00 19.16	Α
Ŋ	25	MOTA	691	С	SER A	112	47.665	62.675	24.676	1.00 15.17	Α
		MOTA	692	0	SER A	112	48.271	61.878	25.397	1.00 14.77	Α
ijħ		ATOM	693	N	ASN A	113	46.371	62.935	24.833	1.00 14.95	Α
		ATOM	694	CA	ASN A		45.623	62.269	25.887	1.00 15.42	Α
£ (ATOM	695	СВ	ASN A		44.348	63.055	26.202	1.00 16.09	Α
the trail that	30		696	CG	ASN A		44.661	64.407	26.829	1.00 17.13	A
ij.	50	ATOM							27.547	1.00 17.13	A
111		MOTA	697		ASN A		45.649	64.541			
į.		ATOM	698		ASN A		43.832	65.404	26.566	1.00 16.69	A
		ATOM	699	С	ASN A		45.331	60.805	25.554	1.00 15.52	Α
		ATOM	700	0	ASN A	113	45.154	59.983	26.455	1.00 14.44	Α
į.4.	35	ATOM	701	N	ALA A	114	45.306	60.470	24.265	1.00 15.03	Α
		MOTA	702	CA	ALA A	114	45.081	59.082	23.865	1.00 15.59	Α
		ATOM	703	СВ	ALA A		44.906	58.977	22.348	1.00 15.62	Α
		ATOM	704	C	ALA A		46.296	58.272	24.308	1.00 15.90	Α
		ATOM	705	0	ALA A		46.160	57.181	24.862	1.00 15.90	A
	40						47.487	58.814	24.061	1.00 15.81	A
	40	ATOM	706	N	LEU A						
		ATOM	707	CA	LEU A		48.725	58.142	24.443	1.00 16.69	A
		MOTA	708	CB	LEU A		49.942	58.992	24.044	1.00 17.24	Α
		ATOM	709	CG	LEU A	115	51.322	58.478	24.479	1.00 17.48	А
		ATOM	710	CD1	LEU A	115	51.533	57.062	23.962	1.00 17.85	Α
	45	MOTA	711	CD2	LEU A	115	52.412	59.402	23.963	1.00 17.89	Α
		ATOM	712	С	LEU A		48.742	57.892	25.952	1.00 17.69	Α
		ATOM	713	Ō	LEU A		49.020	56.780	26.407	1.00 16.58	А
			714				48.426	58.927	26.720	1.00 18.38	Α
		ATOM		N	ARG A						
	- 0	ATOM	715	CA	ARG A		48.416	58.816	28.173	1.00 20.26	A
	50	MOTA	716	CB	ARG A		48.148	60.188	28.795	1.00 23.40	Α
		MOTA	717	CG	ARG A	116	49.265	61.185	28.545	1.00 28.54	Α
		ATOM	718	CD	ARG A	116	48.916	62.579	29.037	1.00 32.84	Α
		ATOM	719	NE	ARG A		50.016	63.516	28.816	1.00 36.19	Α
		ATOM	720	CZ	ARG A		49.955	64.819	29.078	1.00 38.16	Α
	55	ATOM	721		ARG A		48.842	65.347	29.572	1.00 39.38	A
		WI OLI	, _ 1	T411 T	DING A	110	.0.042	55.54,	~ > . >		• •

		D. (70.1	700		7 F C F	116	E1 000	CE E04	28.851	1.00 39.35	А
		ATOM	722		ARG A		51.009	65.594			
		ATOM	723	С	ARG A		47.386	57.811	28.674	1.00 19.24	A
		MOTA	724	0	ARG A		47.713	56.895	29.433	1.00 18.59	A
		MOTA	725	N	HIS A	117	46.142	57.974	28.240	1.00 18.94	Α
	5	MOTA	726	CA	HIS A	117	45.076	57.087	28.673	1.00 19.08	Α
		MOTA	727	CB	HIS A	117	43.731	57.653	28.237	1.00 20.04	А
		ATOM	728	CG	HIS A	117	43.239	58.738	29.140	1.00 22.31	Α
		ATOM	729	CD2	HIS A	117	43.367	60.084	29.070	1.00 23.10	Α
		ATOM	730	ND1	HIS A	117	42.627	58.474	30.347	1.00 22.39	Α
	10	ATOM	731	CE1	HIS A	117	42.403	59.610	30.984	1.00 23.51	Α
		ATOM	732		HIS A		42.844	60.603	30.231	1.00 23.78	Α
		ATOM	733	С	HIS A		45.208	55.630	28.267	1.00 18.21	Α
		ATOM	734	0	HIS A		44.894	54.747	29.060	1.00 17.60	A
		ATOM	735	N	LEU A		45.667	55.367	27.047	1.00 17.82	А
	15	ATOM	736	CA	LEU A		45.841	53.986	26.608	1.00 17.73	Α
		ATOM	737	СВ	LEU A		46.097	53.924	25.097	1.00 17.32	Α
		ATOM	738	CG	LEU A		44.910	54.378	24.234	1.00 17.44	Α
		ATOM	739		LEU A		45.295	54.362	22.762	1.00 17.28	Α
		ATOM	740		LEU A		43.719	53.466	24.485	1.00 17.73	А
	20	ATOM	741	C	LEU A		47.014	53.375	27.368	1.00 18.47	А
ı,I	20	ATOM	742	0	LEU A		46.991	52.201	27.739	1.00 19.15	А
.1		ATOM	743	N	HIS A		48.049	54.176	27.594	1.00 18.56	A
(A		ATOM	744	CA	HIS A		49.212	53.702	28.324	1.00 19.21	А
		ATOM	745	CB	HIS A		50.264	54.817	28.413	1.00 20.87	A
W	25	ATOM	746	CG	HIS A		51.429	54.483	29.292	1.00 23.01	A
14 14	20	ATOM	747		HIS A		52.607	53.873	29.019	1.00 24.14	A
			748		HIS A		51.442	54.752	30.644	1.00 24.46	A
17		ATOM	749		HIS A		52.578	54.732	31.166	1.00 24.96	A
£:		ATOM	750		HIS A		53.303	53.785	30.201	1.00 24.88	A
	30	ATOM	751	C	HIS A		48.795	53.703	29.725	1.00 19.46	A
ı, II	30	ATOM	752	0	HIS A		49.180	52.169	30.175	1.00 19.45	A
Į.		MOTA			ASP A		47.981	54.063	30.392	1.00 13.43	A
		ATOM	753	N			47.524	53.772	31.751	1.00 19.04	A
		ATOM	754	CA	ASP A		47.324	55.071	32.464	1.00 13.04	A
	2 =	ATOM	755	CB	ASP A			55.994	32.464	1.00 18.77	A
ļ. 4	35	ATOM	756	CG	ASP A		48.325		32.675	1.00 13.47	A
		ATOM	757		ASP A		49.473	55.504	32.830	1.00 18.88	A
		ATOM	758		ASP A		48.102	57.212	31.899	1.00 21.38	A
		ATOM	759	С	ASP A		46.366	52.783 52.286	32.998	1.00 19.13	A
	40	ATOM	760	0	ASP A		46.121			1.00 18.84	
	40	ATOM	761	N	ASN A		45.655	52.504	30.809		A
		ATOM	762	CA	ASN A		44.523	51.576	30.850	1.00 19.16	A
		ATOM	763	CB	ASN A		43.209	52.344	30.659	1.00 18.77	A
		ATOM	764	CG	ASN A		43.000	53.421	31.719	1.00 19.68	A
	45	ATOM	765		ASN A		43.437	54.567	31.560	1.00 19.47	A
	45	ATOM	766		ASN A		42.343	53.052	32.812	1.00 17.58	A
		ATOM	767	С	ASN A		44.681	50.515	29.761	1.00 19.99	A
		ATOM	768	0	ASN A		44.107	50.629	28.676	1.00 19.59	A
		ATOM	769	N	PRO A		45.452	49.452	30.052	1.00 20.58	A
		MOTA	770	CD	PRO A		45.971	49.147	31.397	1.00 21.14	A
	50	ATOM	771	CA	PRO A		45.731	48.345	29.130	1.00 20.26	Α
		ATOM	772	CB	PRO A	122	46.423	47.310	30.026	1.00 21.39	Α
		MOTA	773	CG	PRO A	122	45.933	47.649	31.409	1.00 22.22	А
		ATOM	774	С	PRO A		44.581	47.752	28.314	1.00 20.19	А
		ATOM	775	0	PRO A	122	44.802	47.304	27.188	1.00 19.85	А
	55	ATOM	776	N	GLU A	123	43.365	47.751	28.858	1.00 19.32	Α

		ATOM	777	CA	GLU	Α	123	42.224	47.190	28.133	1.00	19.92	Α
		ATOM	778	СВ	GLU	Α	123	41.204	46.586	29.101	1.00	21.89	Α
		ATOM	779	CG	GLU			41.481	45.143	29.478	1.00	26.85	А
		ATOM	780	CD	GLU			42.679	44.995	30.383		29.19	A
	5	ATOM	781		GLU			42.681	45.630	31.459		31.66	A
	J	ATOM	782		GLU			43.612	44.244	30.022		32.08	A
			783	C	GLU			41.504	48.168	27.213		18.82	A
		ATOM											
		ATOM	784	0	GLU			40.677	47.759	26.396		18.51	A
	10	ATOM	785	N	MET			41.799	49.456	27.350		17.76	A
	10	MOTA	786	CA	MET			41.165	50.462	26.505		17.02	Α
		MOTA	787	CB	MET			41.418	51.861	27.068		17.84	Α
		MOTA	788	CG	MET			40.641	52.961	26.357		17.84	А
		ATOM	789	SD	MET			38.862	52.633	26.331		18.84	Α
		MOTA	790	CE	MET	A	124	38.252	54.142	25.567	1.00	17.66	Α
	15	ATOM	791	С	MET .	Α	124	41.744	50.351	25.092	1.00	16.66	Α
		MOTA	792	0	MET .	Α	124	42.921	50.022	24.922	1.00	15.61	Α
		ATOM	793	N	LYS .	A	125	40.913	50.622	24.089	1.00	15.94	Α
		ATOM	794	CA	LYS .	A	125	41.328	50.543	22.691	1.00	15.72	Α
inte.		ATOM	795	CB	LYS .	Α	125	40.633	49.355	22.018	1.00	17.14	Α
1,22g ² 1200	20	ATOM	796	CG	LYS .			40.955	48.002	22.649	1.00	19.31	Α
۱, 🍱		ATOM	797	CD	LYS .			42.349	47.527	22.274		20.94	Α
		ATOM	798	CE	LYS			42.741	46.260	23.032		22.65	Α
m		ATOM	799	NZ	LYS			41.809	45.126	22.787		22.71	A
		ATOM	800	C	LYS			40.984	51.839	21.952		14.98	A
	25	ATOM	801	0	LYS .			40.178	52.641	22.430		14.40	A
	20	ATOM	802	N	PHE			41.576	52.039	20.778		13.76	A
		ATOM	803	CA	PHE .			41.328	53.263	20.017		12.78	A
ij.			804		PHE .			42.085	54.418	20.695		12.70	A
3;		ATOM		CB								12.49	
	30	ATOM	805	CG	PHE .			41.714	55.796	20.199			A
ı	30	ATOM	806		PHE .			40.391	56.230	20.210		12.40	A
ISI.		ATOM	807		PHE.			42.706	56.687	19.794		12.56	A
		ATOM	808		PHE .			40.061	57.533	19.831		12.41	A
31:000 .		ATOM	809		PHE .			42.390	57.993	19.411		13.74	Α
		ATOM	810	CZ	PHE .			41.063	58.418	19.431		12.79	Α
	35	ATOM	811	С	PHE .			41.825	53.079	18.582		12.52	Α
		ATOM	812	0	PHE .			42.898	52.523	18.365		12.34	Α
		ATOM	813	N	ILE .			41.043	53.525	17.603	1.00	12.50	Α
		ATOM	814	CA	ILE .			41.472	53.415	16.212	1.00	12.28	Α
		ATOM	815	CB	ILE .	A		40.427	52.685	15.341		12.64	Α
	40	ATOM	816	CG2	ILE .	Α	127	40.257	51.258	15.844	1.00	13.41	Α
		ATOM	817	CG1	ILE .	A	127	39.090	53.432	15.366	1.00	12.14	Α
		ATOM	818	CD1	ILE .	Α	127	38.065	52.865	14.402	1.00	11.36	Α
		ATOM	819	С	ILE .	Α	127	41.735	54.806	15.640	1.00	12.00	A
		ATOM	820	0	ILE .			41.066	55.777	16.016	1.00	12.38	Α
	45	ATOM	821	N	TRP .			42.720	54.905	14.749		11.18	A
		ATOM	822	CA	TRP .			43.067	56.187	14.137		10.75	А
		ATOM	823	СВ	TRP			44.379	56.714	14.713		10.60	A
		ATOM	824	CG	TRP .			44.614	58.143	14.353		11.47	A
		ATOM	825		TRP			44.052	59.285	15.004		11.70	A
	50	ATOM	826		TRP			44.492	60.427	14.298		11.23	A
	50		827					43.214	59.455	16.117		11.54	A
		ATOM			TRP .								
		ATOM	828		TRP .			45.353	58.620	13.307		12.07	A
		ATOM	829		TRP .			45.285	59.995	13.268		11.96	A
	E E	ATOM	830		TRP A			44.122	61.726	14.670		11.49	A
	55	ATOM	831	CZ3	TRP	A	158	42.847	60.747	16.484	1.00	11.63	Α

		D TOM	022	CIIO	TRP A	120	43.302	61.865	15.761	1.00 11.38	А
		ATOM	832						-		
		ATOM	833	С	TRP A		43.180	56.072	12.618	1.00 10.84	Α
		MOTA	834	0	TRP A		43.820	55.157	12.102	1.00 9.94	Α
		ATOM	835	N	ALA A		42.582	57.024	11.904	1.00 10.82	Α
	5	ATOM	836	CA	ALA A	129	42.584	56.974	10.442	1.00 10.83	Α
		ATOM	837	СВ	ALA A	129	41.146	57.062	9.939	1.00 10.81	А
		ATOM	838	С	ALA A	129	43.439	57.982	9.675	1.00 11.28	А
		ATOM	839	0	ALA A		44.077	57.620	8.690	1.00 12.05	А
		ATOM	840	N	GLU A		43.450	59.234	10.122	1.00 11.63	А
	10	ATOM	841	CA	GLU A		44.178	60.298	9.426	1.00 11.80	A
	10	ATOM	842	CB	GLU A		43.488	61.640	9.687	1.00 13.00	A
			843	CG	GLU A		41.996	61.654	9.375	1.00 13.00	A
		ATOM						61.054	10.488	1.00 13.47	A
		ATOM	844	CD	GLU A		41.150				
	15	ATOM	845		GLU A		41.706	60.745	11.564	1.00 13.75	A
	15	ATOM	846		GLU A		39.925	60.903	10.289	1.00 14.95	A
		ATOM	847	С	GLU A		45.663	60.422	9.756	1.00 12.54	A
		ATOM	848	0	GLU A		46.044	61.043	10.751	1.00 11.25	Α
		ATOM	849	N	ILE A		46.507	59.871	8.889	1.00 12.10	А
i strati		ATOM	850	CA	ILE A	131	47.943	59.908	9.125	1.00 12.15	А
1,225° ≃=	20	ATOM	851	CB	ILE A	131	48.672	58.902	8.205	1.00 12.97	А
1		ATOM	852	CG2	ILE A	131	50.158	58.847	8.544	1.00 13.74	Α
۱J		ATOM	853	CG1	ILE A	131	48.058	57.509	8.395	1.00 12.19	A
		ATOM	854		ILE A		47.933	57.084	9.859	1.00 13.31	А
		MOTA	855	С	ILE A		48.564	61.303	9.002	1.00 12.69	A
Marie Marie	25	ATOM	856	Ō	ILE A		49.597	61.571	9.622	1.00 12.44	А
# 5±2		ATOM	857	N	SER A		47.944	62.192	8.226	1.00 11.77	A
		ATOM	858	CA	SER A		48.462	63.553	8.087	1.00 12.31	A
ij.		ATOM	859	CB	SER A		47.519	64.417	7.231	1.00 12.20	A
Ęŧ			860		SER A		46.188	64.405	7.729	1.00 12.20	A
	30	MOTA		OG					9.485	1.00 12.12	A
١Ħ	30	ATOM	861	C	SER A		48.606	64.161	9.809	1.00 12.41	A
Ñ		ATOM	862	0	SER A		49.629	64.772			
1 1		ATOM	863	N	TYR A		47.578	63.979	10.310	1.00 12.31	A
fri.		MOTA	864	CA	TYR A		47.588	64.481	11.682	1.00 12.43	A
	0.5	ATOM	865	CB	TYR A		46.191	64.393	12.299	1.00 12.01	A
[.4	35	ATOM	866	CG	TYR A		45.288	65.569	12.000	1.00 11.67	A
		ATOM	867		TYR A		44.018	65.373	11.464	1.00 11.27	A
		MOTA	868		TYR A		43.172	66.448	11.205	1.00 11.78	А
		ATOM	869	CD2	TYR A	133	45.699	66.875	12.274	1.00 11.66	Α
		ATOM	870	CE2	TYR A	133	44.864	67.959	12.022	1.00 12.29	Α
	40	ATOM	871	CZ	TYR A	133	43.603	67.738	11.488	1.00 12.81	Α
		ATOM	872	ОН	TYR A	133	42.772	68.809	11.248	1.00 13.96	Α
		ATOM	873	С	TYR A	133	48.553	63.689	12.564	1.00 12.72	А
		ATOM	874	0	TYR A		49.314	64.275	13.339	1.00 13.12	A
		ATOM	875	N	PHE A		48.526	62.363	12.449	1.00 12.21	A
	45	ATOM	876	CA	PHE A		49.397	61.539	13.282	1.00 13.09	A
	10	ATOM	877	СВ	PHE A		49.144	60.048	13.053	1.00 12.74	A
		ATOM	878	CG	PHE A		49.661	59.181	14.168	1.00 12.47	A
							48.915	59.008	15.332	1.00 12.47	A
		ATOM	879		PHE A				14.090	1.00 12.04	A
	EΩ	ATOM	880		PHE A		50.921	58.600			
	50	ATOM	881		PHE A		49.420	58.273	16.405	1.00 12.65	A
		ATOM	882		PHE A		51.437	57.864	15.155	1.00 12.74	A
		MOTA	883	CZ	PHE A		50.684	57.702	16.318	1.00 12.65	A
		ATOM	884	С	PHE A		50.874	61.829	13.055	1.00 14.10	A
		ATOM	885	0	PHE A		51.655	61.896	14.009	1.00 13.54	А
	55	ATOM	886	N	ALA A	135	51.261	61.990	11.793	1.00 14.28	Α

	ATOM	887	CA	ALA A	135	52.653	62.271	11.466	1.00 15.41	A
	ATOM	888	CB	ALA A	135	52.841	62.273	9.955	1.00 14.73	А
	MOTA	889	С	ALA A	135	53.065	63.619	12.062	1.00 16.07	Α
	MOTA	890	0	ALA A	135	54.161	63.756	12.607	1.00 17.46	Α
5	MOTA	891	N	ARG A	136	52.178	64.604	11.954	1.00 15.92	Α
	ATOM	892	CA	ARG A	136	52.413	65.947	12.487	1.00 17.41	Α
	ATOM	893	СВ	ARG A	136	51.188	66.829	12.215	1.00 18.09	А
	ATOM	894	CG	ARG A		51.225	68.223	12.856	1.00 19.04	А
	ATOM	895	CD	ARG A		51.950	69.249	11.986	1.00 20.59	А
10	ATOM	896	NE	ARG A		51.870	70.596	12.557	1.00 20.53	А
10	ATOM	897	CZ	ARG A		52.504	70.967	13.665	1.00 21.02	A
				ARG A		53.268	70.094	14.309	1.00 21.02	A
	ATOM	898					70.034	14.138	1.00 20.47	A
	ATOM	899		ARG A		52.366				A
15	MOTA	900	С	ARG A		52.659	65.866	13.997	1.00 17.71	
15	MOTA	901	0	ARG A		53.552	66.521	14.536	1.00 17.71	A
	ATOM	902	N	PHE A		51.856	65.045	14.666	1.00 16.73	A
	MOTA	903	CA	PHE A		51.948	64.856	16.109	1.00 16.04	A
	ATOM	904	CB	PHE A		50.730	64.065	16.589	1.00 16.01	A
	MOTA	905	CG	PHE A	137	50.711	63.815	18.066	1.00 16.01	А
20	MOTA	906	CD1	PHE A	137	50.393	64.839	18.952	1.00 16.16	А
	ATOM	907	CD2	PHE A	137	51.009	62.553	18.572	1.00 16.49	А
	MOTA	908	CE1	PHE A	137	50.370	64.611	20.323	1.00 16.36	Α
	MOTA	909	CE2	PHE A	137	50.989	62.316	19.947	1.00 16.39	А
	MOTA	910	CZ	PHE A		50.667	63.349	20.821	1.00 16.41	А
25	MOTA	911	С	PHE A		53.218	64.115	16.518	1.00 16.50	А
	ATOM	912	Ō	PHE A		54.012	64.600	17.329	1.00 15.50	А
	ATOM	913	N	TYR A		53.398	62.930	15.944	1.00 16.96	А
	ATOM	914	CA	TYR A		54.544	62.084	16.243	1.00 19.17	А
	ATOM	915	CB	TYR A		54.547	60.866	15.323	1.00 18.81	A
30	ATOM	916	CG	TYR A		55.577	59.830	15.706	1.00 19.98	A
50	ATOM	917	CD1	TYR A		55.330	58.927	16.736	1.00 20.01	A
						56.272	57.965	17.093	1.00 20.01	A
	ATOM	918	CE1	TYR A			59.751	15.040	1.00 21.20	A
	ATOM	919	CD2	TYR A		56.801			1.00 19.71	A
25	ATOM	920	CE2	TYR A		57.752	58.791	15.390		
35	ATOM	921	CZ	TYR A		57.477	57.902	16.414	1.00 20.46	A
	MOTA	922	ОН	TYR A		58.393	56.934	16.753	1.00 21.98	A
	MOTA	923	С	TYR A		55.895	62.788	16.137	1.00 20.16	A
	MOTA	924	0	TYR A		56.737	62.662	17.030	1.00 19.95	A
	ATOM	925	N	HIS A		56.116	63.516	15.047	1.00 21.15	A
40	MOTA	926	CA	HIS A	139	57.391	64.206		1.00 23.05	A
	MOTA	927	CB	HIS A	139	57.491	64.788	13.459	1.00 23.52	А
	ATOM	928	CG	HIS A	139	57.664	63.749	12.394	1.00 25.29	А
	ATOM	929	CD2	HIS A	139	56.872	63.396	11.353	1.00 25.23	A
	ATOM	930	ND1	HIS A	139	58.766	62.922	12.333	1.00 26.05	А
45	MOTA	931		HIS A		58.645	62.106	11.301	1.00 26.57	А
	ATOM	932		HIS A		57.505	62.373	10.690	1.00 25.58	А
	ATOM	933	С	HIS A		57.628	65.297	15.910	1.00 23.20	А
	ATOM	934	0	HIS A		58.763	65.722	16.121	1.00 23.77	A
	ATOM	935	N	ASP A		56.559	65.743	16.560	1.00 23.11	A
50	ATOM	936	CA	ASP A		56.663	66.772	17.590	1.00 23.11	A
50			CB			55.405	67.644	17.591	1.00 23.33	A
	ATOM	937		ASP A			68.827	16.646	1.00 24.33	A
	ATOM	938	CG	ASP A		55.514				
	ATOM	939		ASP A		56.367	68.786	15.734	1.00 26.58	A
	ATOM	940		ASP A		54.742	69.796	16.812	1.00 26.82	A
55	MOTA	941	С	ASP A	140	56.879	66.164	18.980	1.00 22.72	А

											_
		ATOM	942	0	ASP F		57.232	66.868	19.925	1.00 22.14	A
		ATOM	943	N	LEU P	141	56.674	64.855	19.094	1.00 21.94	Α
		ATOM	944	CA	LEU A	141	56.850	64.155	20.366	1.00 22.28	Α
		ATOM	945	CB	LEU F	141	56.191	62.774	20.322	1.00 22.07	Α
	5	ATOM	946	CG	LEU P	141	54.673	62.622	20.389	1.00 22.20	Α
		ATOM	947	CD1	LEU F	141	54.324	61.135	20.279	1.00 21.62	Α
		ATOM	948		LEU F		54.144	63.195	21.695	1.00 21.60	А
		ATOM	949	С	LEU F		58.308	63.959	20.747	1.00 22.47	Α
		ATOM	950	Ō	LEU A		59.178	63.846	19.886	1.00 21.96	А
	10	ATOM	951	N	GLY F		58.567	63.916	22.050	1.00 23.34	Α
	10	ATOM	952	CA	GLY F		59.918	63.687	22.524	1.00 24.09	A
		ATOM	953	C	GLY F		60.200	62.205	22.356	1.00 24.71	A
		ATOM	954	0	GLY F		59.268	61.410	22.220	1.00 24.43	A
			955				61.473	61.826	22.371	1.00 25.38	A
	15	ATOM		N	GLU A			60.432	22.196	1.00 25.30	A
	13	ATOM	956	CA	GLU A		61.861			1.00 20.27	A
		ATOM	957	CB	GLU A		63.379	60.292	22.323		
		ATOM	958	CG	GLU A		63.922	58.940	21.884	1.00 29.88	A
		ATOM	959	CD	GLU A		63.538	58.590	20.455	1.00 31.60	A
	20	ATOM	960		GLU F		63.736	59.433	19.555	1.00 33.17	A
	20	ATOM	961	OE2	GLU F		63.042	57.467	20.230	1.00 32.74	A
. PS		MOTA	962	С	GLU F		61.170	59.477	23.166	1.00 26.12	A
4:3%		ATOM	963	0	GLU A		60.738	58.394	22.772	1.00 25.94	Α
6,5 5		ATOM	964	N	ASN P		61.067	59.871	24.430	1.00 26.24	A
		ATOM	965	CA	ASN A		60.421	59.028	25.431	1.00 26.68	Α
ffeit ffeit	25	MOTA	966	CB	ASN A	144	60.460	59.713	26.806	1.00 28.10	Α
		ATOM	967	CG	ASN A	144	59.674	58.953	27.866	1.00 30.54	A
ŊĦ.		ATOM	968	OD1	ASN A	144	58.439	58.938	27.854	1.00 31.68	A
81		ATOM	969	ND2	ASN A	144	60.390	58.316	28.791	1.00 31.00	A
1:1 21		ATOM	970	С	ASN A	144	58.977	58.725	25.031	1.00 25.49	A
	30	ATOM	971	0	ASN A	144	58.539	57.575	25.089	1.00 25.02	Α
اليابة		ATOM	972	N	LYS P	145	58.249	59.757	24.613	1.00 24.88	Α
		ATOM	973	CA	LYS F	145	56.855	59.595	24.205	1.00 24.21	А
		ATOM	974	СВ	LYS F		56.180	60.964	24.072	1.00 24.66	А
		ATOM	975	CG	LYS F		55.898	61.642	25.410	1.00 26.34	Α
la.	35	ATOM	976	CD	LYS A		54.937	60.805	26.245	1.00 27.93	А
#		ATOM	977	CE	LYS F		54.660	61.433	27.608	1.00 29.60	Α
		ATOM	978	NZ	LYS F		55.876	61.471	28.469	1.00 31.08	А
		ATOM	979	C	LYS F		56.705	58.804	22.907	1.00 23.37	Α
		ATOM	980	Ō	LYS F		55.740	58.055	22.745	1.00 22.99	Α
	40	ATOM	981	N	LYS A		57.648			1.00 22.74	Α
	10	ATOM	982	CA	LYS F		57.594	58.226	20.724	1.00 21.93	A
		ATOM	983	CB	LYS F		58.764	58.599	19.804	1.00 22.03	A
		ATOM	984	CG	LYS F		58.632	59.956	19.126	1.00 22.74	A
			985	CD			59.765	60.194	18.136	1.00 23.91	A
	45	MOTA			LYS F		59.607	61.537	17.437	1.00 23.31	A
	43	ATOM	986	CE	LYS F				16.495	1.00 24.00	A
		ATOM	987	ΝZ	LYS A		60.724	61.791			
		ATOM	988	С	LYS A		57.652	56.735	21.034	1.00 21.31	A
		ATOM	989	0	LYS F		56.973	55.935	20.396	1.00 20.71	A
	F0	ATOM	990	N	LEU F		58.466	56.371	22.022	1.00 20.89	A
	50	ATOM	991	CA	LEU F		58.612	54.978	22.427	1.00 20.24	A
		ATOM	992	CB	LEU P		59.790	54.829	23.396	1.00 21.06	A
		ATOM	993	CG	LEU F		61.170	55.069	22.769	1.00 21.23	A
		ATOM	994		LEU F		62.262	54.965	23.827	1.00 22.02	A
		ATOM	995	CD2	LEU F		61.405	54.044	21.668	1.00 22.53	Α
	55	ATOM	996	С	LEU P	147	57.325	54.455	23.067	1.00 20.09	А

				_		_						_
		ATOM	997	0	LEU			56.907	53.330	22.796	1.00 19.03	A
		ATOM	998	N	GLN			56.699	55.260	23.920	1.00 20.05	Α
		MOTA	999	CA	GLN	Α	148	55.448	54.839	24.541	1.00 20.20	Α
		ATOM	1000	СВ	GLN	Α	148	54.951	55.874	25.553	1.00 21.98	Α
	5	ATOM	1001	CG	GLN	Α	148	55.697	55.876	26.873	1.00 26.14	Α
		ATOM	1002	CD	GLN	Α	148	55.039	56.771	27.910	1.00 28.69	Α
		MOTA	1003		GLN			55.477	56.830	29.061	1.00 30.91	Α
		MOTA	1004		GLN			53.980	57.472	27.507	1.00 28.81	Α
		ATOM	1005	C	GLN			54.387	54.657	23.459	1.00 18.95	A
	10	ATOM	1006	Ō	GLN			53.566	53.743	23.527	1.00 18.96	A
	10	ATOM	1007	N	MET			54.410	55.533	22.462	1.00 17.60	A
		ATOM	1007	CA	MET			53.440	55.462	21.376	1.00 16.91	A
		ATOM	1000	CB	MET			53.563	56.690	20.471	1.00 10.31	A
										19.344		A
	15	ATOM	1010	CG	MET			52.539	56.743		1.00 17.23	
	15	ATOM	1011	SD	MET			50.830	56.820	19.927	1.00 19.29	A
		ATOM	1012	CE	MET			50.590	58.587	20.083	1.00 18.52	Α
		ATOM	1013	С	MET			53.641	54.190	20.558	1.00 16.89	A
		ATOM	1014	0	MET			52.680	53.502	20.226	1.00 14.92	A
j ****	20	ATOM	1015	N	LYS			54.892	53.872	20.239	1.00 17.09	Α
	20	MOTA	1016	CA	LYS			55.171	52.675	19.458	1.00 18.24	Α
Tribuli PRo		MOTA	1017	СВ	LYS			56.660	52.593	19.106	1.00 19.09	Α
1 100 m		MOTA	1018	CG	LYS			57.130	53.715	18.192	1.00 22.02	Α
		ATOM	1019	CD	LYS	Α	150	58.638	53.704	17.997	1.00 24.66	Α
		ATOM	1020	CE	LYS	A	150	59.093	52.476	17.234	1.00 26.81	Α
Ŋ	25	ATOM	1021	ΝZ	LYS	Α	150	60.558	52.520	16.961	1.00 29.58	Α
111		MOTA	1022	С	LYS	Α	150	54.745	51.422	20.209	1.00 18.20	Α
17		ATOM	1023	0	LYS	Α	150	54.317	50.446	19.597	1.00 18.07	Α
		ATOM	1024	N	SER	Α	151	54.843	51.455	21.536	1.00 18.74	Α
Ei Janear		ATOM	1025	CA	SER	Α	151	54.474	50.295	22.339	1.00 19.47	Α
	30	ATOM	1026	СВ	SER	Α	151	55.005	50.440	23.770	1.00 21.09	Α
ų.		MOTA	1027	OG	SER			54.283	51.425	24.481	1.00 24.31	Α
W		MOTA	1028	С	SER			52.968	50.029	22.371	1.00 19.31	Α
14 .		ATOM	1029	0	SER			52.547	48.875	22.278	1.00 18.16	Α
		ATOM	1030	N	ILE			52.150	51.073	22.499	1.00 18.86	Α
ļ.	35	ATOM	1031	CA	ILE			50.710	50.848	22.526	1.00 18.53	А
Ē		ATOM	1032	СВ	ILE			49.926	52.069	23.075	1.00 18.94	A
		ATOM	1033		ILE			50.259	52.272	24.547	1.00 19.11	A
		ATOM	1034		ILE			50.243	53.328	22.272	1.00 18.05	A
		ATOM	1035		ILE			49.361	54.503	22.647	1.00 19.59	A
	40	ATOM	1036					50.176			1.00 18.93	A
	10	ATOM	1037	0	ILE				49.940	21.026	1.00 18.92	A
		ATOM	1038	N	VAL			50.962	50.720	20.105		A
		ATOM	1039	CA	VAL			50.561	50.720	18.752	1.00 10.77	A
		ATOM	1039	CB	VAL			51.279	51.193	17.683	1.00 19.00	A
	45									16.295		
	40	MOTA	1041		VAL				50.589		1.00 18.53	A
		ATOM	1042		VAL			50.745	52.617	17.716	1.00 18.92	A
		ATOM	1043	С	VAL			50.959	48.878	18.580	1.00 19.85	A
		ATOM	1044	0	VAL			50.177	48.053	18.108	1.00 18.89	A
	50	ATOM	1045	N	LYS			52.183	48.564	18.993	1.00 20.46	Α
	50	ATOM	1046	CA	LYS			52.696	47.205	18.893	1.00 22.15	Α
		MOTA	1047	CB	LYS			54.143	47.155	19.397	1.00 23.38	Α
		ATOM	1048	CG	LYS			54.885	45.877	19.026	1.00 26.39	Α
		MOTA	1049	CD	LYS			56.375	45.976	19.337	1.00 28.38	Α
		ATOM	1050	CE	LYS	A	154	56.662	45.794	20.822	1.00 30.74	Α
	55	MOTA	1051	NZ	LYS	A	154	55.974	46.793	21.694	1.00 32.22	Α

		ATOM	1052	С	LYS	Α	154		51.836	46.218	19.685	1.00 22.01	А
		ATOM	1053	0	LYS	Α	154		51.608	45.090	19.236	1.00 22.53	Α
		ATOM	1054	N	ASN	Α	155		51.349	46.642	20.852	1.00 21.36	Α
		MOTA	1055	CA	ASN	Α	155		50.529	45.771	21.691	1.00 21.36	Α
	5	ATOM	1056	CB	ASN	Α	155		50.643	46.174	23.172	1.00 22.78	Α
		ATOM	1057	CG	ASN	Α	155		49.845	47.425	23.515	1.00 23.55	A
		MOTA	1058	OD1	ASN	Α	155		49.106	47.954	22.687	1.00 24.96	Α
		MOTA	1059	ND2	ASN	Α	155		49.987	47.898	24.753	1.00 22.79	Α
		MOTA	1060	С	ASN	Α	155		49.054	45.709	21.285	1.00 20.96	Α
	10	ATOM	1061	0	ASN	Α	155		48.271	44.991	21.899	1.00 20.84	Α
		MOTA	1062	N	GLY	Α	156		48.672	46.476	20.267	1.00 20.22	Α
		ATOM	1063	CA	GLY	Α	156		47.298	46.431	19.790	1.00 19.12	Α
		ATOM	1064	С	GLY				46.256	47.367	20.378	1.00 18.60	Α
		ATOM	1065	0	GLY				45.082	47.270	20.011	1.00 18.18	Α
	15	ATOM	1066	N	GLN				46.652	48.266	21.276	1.00 17.29	Α
		ATOM	1067	CA	GLN				45.689	49.195	21.871	1.00 16.05	Α
		MOTA	1068	СВ	GLN				46.242	49.809	23.150	1.00 16.21	Α
		ATOM	1069	CG	GLN			•	46.297	48.867	24.333	1.00 16.29	Α
		ATOM	1070	CD	GLN				46.569	49.621	25.612	1.00 16.60	Α
•	20	ATOM	1071	OE1				_	45.672	50.249	26.178	1.00 18.00	Α
		ATOM	1072	NE2				-	47.813	49.591	26.060	1.00 15.39	Α
ŀ		ATOM	1073	C	GLN				45.305	50.320	20.917	1.00 15.53	Α
		ATOM	1074	Ö	GLN				44.142	50.700	20.832	1.00 15.19	А
i.		ATOM	1075	N	LEU				46.298	50.881	20.235	1.00 14.97	А
	25	ATOM	1076	CA	LEU				46.048	51.937	19.265	1.00 15.35	А
		MOTA	1077	CB	LEU				47.045	53.089	19.439	1.00 16.96	А
		ATOM	1078	CG	LEU				46.943	54.280	18.473	1.00 19.11	А
,		ATOM	1079		LEU				47.454	53.891	17.096	1.00 21.08	А
		ATOM	1080		LEU				45.509	54.763	18.388	1.00 20.07	A
	30	ATOM	1081	C	LEU				46.229	51.276	17.907	1.00 14.83	A
ŀ	50	ATOM	1082	0	LEU				47.308	50.773	17.594	1.00 13.42	A
		ATOM	1082	N	GLU				45.169	51.273	17.107	1.00 13.60	A
:		ATOM	1084	CA	GLU				45.227	50.636	15.802	1.00 13.04	A
		ATOM	1085	CB	GLU				44.271	49.442	15.771	1.00 13.44	A
	35	ATOM	1085	CG	GLU				44.212	48.714	14.436	1.00 12.38	A
•	33	ATOM	1087	CD	GLU			٠	43.265	47.531	14.476	1.00 13.56	A
		ATOM	1087	OE1					43.594	46.533	15.152	1.00 12.89	A
		ATOM	1088	OE1					42.190	47.603	13.841	1.00 13.05	A
		ATOM	1009	C	GLU				44.888	51.594	14.671	1.00 12.84	A
	40	ATOM	1091	0	GLU				43.910	52.333		1.00 12.78	A
	40	ATOM	1091	N	PHE				45.709	51.578	13.632	1.00 12.42	A
			1092	CA	PHE				45.467	52.437	12.491	1.00 12.12	A
		ATOM	1093	CB	PHE				46.782	52.808	11.807	1.00 12.20	A
		ATOM		CG					47.712	53.586	12.689	1.00 12.41	A
	45	MOTA	1095		PHE				48.758	52.951	13.354	1.00 12.41	A
	43	ATOM	1096		PHE PHE					54.947	12.897	1.00 12.02	A
		ATOM	1097						47.512 49.589	53.661	14.216	1.00 12.75	A
		ATOM	1098		PHE							1.00 12.03	A
		ATOM	1099		PHE				48.339	55.666	13.760	1.00 13.12	A
	E0	ATOM	1100	CZ	PHE				49.375	55.020	14.418		
	50	ATOM	1101	C	PHE				44.546	51.734	11.515	1.00 12.26	A
		ATOM	1102	0	PHE				44.719	50.549	11.216	1.00 11.96	A
		ATOM	1103	N	VAL				43.546	52.470	11.047	1.00 12.03	A
		ATOM	1104	CA	VAL				42.592	51.945	10.087	1.00 11.93	A
		ATOM	1105	CB	VAL				41.139	52.092	10.605	1.00 11.85	A
	55	ATOM	1106	CG1	VAL	A	161		40.918	51.135	11.778	1.00 11.73	A

		B. (10.14	1107	CC2	11DT D	1.61	4	0.874	53.526	11.059	1 00	11.37	А
		ATOM	1107		VAL A					8.792		12.32	A
		ATOM	1108	C	VAL A			2.807	52.720				
		MOTA	1109	0	VAL A			2.890	53.953	8.802		12.53	A
	_	ATOM	1110	N	THR A			2.913	51.977	7.690		12.37	A
	5	MOTA	1111	CA	THR A			3.179	52.519	6.358		12.07	Α
		ATOM	1112	CB	THR A	162	4	2.266	53.716	5.990		11.93	Α
		ATOM	1113	OG1	THR A	162	4	0.893	53.308	6.020	1.00	11.88	Α
		ATOM	1114	CG2	THR A	162	4	2.591	54.204	4.576	1.00	11.95	Α
		ATOM	1115	С	THR A	162	4	4.640	52.971	6.310	1.00	12.30	Α
	10	ATOM	1116	0	THR A		4	5.448	52.416	5.565	1.00	12.72	Α
		ATOM	1117	N	GLY A			4.981	53.973	7.112	1.00	11.76	Α
		ATOM	1118	CA	GLY A			6.356	54.444	7.144	1.00		А
		ATOM	1119	C	GLY A			6.722	55.405	6.032		12.16	А
		ATOM	1120	0	GLY A			7.895	55.554	5.698		11.80	А
	15	ATOM	1121	N	GLY A			5.718	56.049	5.449		11.89	A
	15		1122	CA	GLY A			5.979	57.012	4.397		11.02	A
		ATOM						6.273	58.376	4.995		10.65	A
		ATOM	1123	C	GLY A					6.169		10.03	A
		ATOM	1124	0	GLY A			5.990	58.626			10.36	A
	20	ATOM	1125	N	TRP A			6.849	59.263	4.192			A
Firedi Nei	20	ATOM	1126	CA	TRP A			7.163	60.607	4.662		10.35	
4 <u>,</u>		ATOM	1127	СВ	TRP A			7.748	61.432	3.511		10.07	A
J		ATOM	1128	CG	TRP A			8.536	62.640	3.941		11.12	A
		ATOM	1129		TRP A			9.723	62.652	4.747		10.98	A
		ATOM	1130		TRP A			0.142	63.999	4.855		11.20	Α
111	25	ATOM	1131	CE3	TRP A	165		0.474	61.657	5.385		11.21	A
		MOTA	1132	CD1	TRP A	165	4	8.291	63.943	3.605		10.95	А
# 45E		ATOM	1133	NE1	TRP A	165	4	9.251	64.764	4.151	1.00	11.36	А
ĮĦ.		ATOM	1134	CZ2	TRP A	165	5	1.282	64.378	5.580	1.00	11.19	А
91		ATOM	1135	CZ3	TRP A	165	5	1.611	62.036	6.106	1.00	12.25	A
	30	ATOM	1136	CH2	TRP A	165	5	2.000	63.384	6.194	1.00	11.49	Α
Phy min		ATOM	1137	С	TRP A		4	5.852	61.224	5.157	1.00	10.30	А
111		ATOM	1138	0	TRP A		4	5.827	61.956	6.148	1.00	10.10	Α
[d		ATOM	1139	N	VAL A		4	4.761	60.896	4.470	1.00	9.73	A
		ATOM	1140	CA	VAL A			3.430	61.395	4.824	1.00	10.15	A
	35	ATOM	1141	СВ	VAL A			3.021	62.605	3.929	1.00	9.63	А
ļ:#·	00	ATOM	1142		VAL A			4.055	63.729	4.045	1.00	9.13	A
		ATOM	1143		VAL A			2.896	62.159	2.463	1.00	9.97	A
		ATOM	1144	C	VAL A			2.400	60.287	4.594		10.04	А
		ATOM	1145	Ö	VAL A			2.758	59.151	4.295		10.65	A
	40	ATOM	1145		MET A			1.127	60.632	4.772		10.36	A
	40	ATOM		CA	MET A			0.001	59.734	4.499		10.42	A
			1147					8.989	59.745	5.645		10.35	A
		ATOM	1148	CB	MET A				58.933	5.360		10.42	A
		ATOM	1149	CG	MET A			37.730		6.731		11.54	A
	45	ATOM	1150	SD	MET A			6.561	58.990				
	45	ATOM	1151	CE	MET A			37.552	58.165	8.029		10.43	A
		ATOM	1152	С	MET A			9.454	60.498	3.298		10.44	A
		MOTA	1153	0	MET A			8.655	61.425	3.444		10.65	A
		ATOM	1154	N	PRO A			9.878	60.111	2.086		10.26	Α
		ATOM	1155	CD	PRO A	168		0.630	58.883	1.758	1.00	9.75	Α
	50	ATOM	1156	CA	PRO A	168	3	9.445	60.792	0.868	1.00	9.97	A
		ATOM	1157	CB	PRO A	168	4	0.371	60.202	-0.189	1.00	9.78	A
		ATOM	1158	CG	PRO A	168	4	0.438	58.762	0.240	1.00	9.78	Α
		ATOM	1159	С	PRO A		3	88.004	60.763	0.400	1.00	10.51	А
		ATOM	1160	0	PRO A			37.240	59.844	0.690	1.00	9.40	А
	55	ATOM	1161	N	ASP A			37.663	61.809	-0.344		10.38	А
				-	• •		-						

				~ -	n		24 272	C1 015	0 001	1 00 1	O E 4	n
		ATOM	1162	CA		A 169		61.915	-0.981	1.00 1		A
		ATOM	1163	CB		A 169		63.231	-1.755	1.00	9.36	A
		MOTA	1164	CG		A 169		63.227	-2.776	1.00	9.43	A
	_	ATOM	1165		ASP .			62.705	-2.462	1.00	8.82	A
	5	ATOM	1166		ASP .			63.758	-3.885	1.00	9.69	A
		MOTA	1167	С		A 169		60.746	-1.959	1.00 1		A
		ATOM	1168	0		A 169		60.380	-2.373	1.00 1		A
		ATOM	1169	N		A 170		60.151	-2.322	1.00 1		A
	10	ATOM	1170	CA		A 170		59.027	-3.249	1.00 1		A
	10	MOTA	1171	CB		A 170		57.779	-2.578	1.00 1		A
		ATOM	1172	CG		A 170		57.256	-1.428	1.00 1		A
		MOTA	1173	CD		A 170		56.067	-0.694	1.00 1		A
		ATOM	1174		GLU .			55.321	-1.311	1.00	9.84	A
	4 F	ATOM	1175	OE2		A 170		55.869	0.497	1.00 1		A
	15	MOTA	1176	С		A 170		59.325	-4.569	1.00 1		A
		MOTA	1177	0		A 170		58.491	-5.473	1.00 1		A
		ATOM	1178	N		A 171		60.529	-4.690	1.00 1		A
		ATOM	1179	CA		A 171		60.914	-5.907	1.00 1		A
	20	MOTA	1180	CB		A 171		61.722	-5.542	1.00 1		A
, F	20	ATOM	1181	С		A 171		61.697	-6.920	1.00 1		A
		ATOM	1182	0		A 171		61.351	-8.102	1.00 1		A
1,5 4 5		ATOM	1183	N		A 172		62.753	-6.447	1.00 1		A
9,3 B		ATOM	1184	CA		A 172		63.633	-7.298	1.00	9.89	A
	25	ATOM	1185	CB		A 172		65.048	-6.723	1.00	9.48	A
ij.	25	ATOM	1186	CG		A 172		65.588	-6.609	1.00 1		A
		ATOM	1187		ASN .			65.848	-7.616	1.00 1		A A
(T		ATOM	1188		ASN .			65.758	-5.377	1.00 1		A
Ē:		ATOM	1189	С		A 172		63.225	-7.459	1.00	9.84	A
	30	ATOM	1190	0		A 172		63.593 62.470	-8.431 -6.498	1.00	9.67	A
: 🖺	30	ATOM	1191	N C D		A 173		62.470	-6.511	1.00	9.66	A
		ATOM	1192	CA		A 173		61.359	-5.194	1.00	8.38	A
į.L		ATOM	1193	CB OG		A 173		60.305	-4.959	1.00	9.36	A
		ATOM	1194			A 173 A 173		61.127	-7.659	1.00	9.64	A
	35	ATOM	1195	C 0		A 173 A 173		60.246	-8.050	1.00	8.79	A
	33	ATOM	1196	N		A 174	•	61.338	-8.203	1.00	9.71	A
		ATOM ATOM	1197 1198	CA		A 174		60.477	-9.271	1.00	9.94	A
		ATOM	1199	CB		A 174			-10.139	1.00		A
		ATOM	1200	CG		A 174			-11.458	1.00 1		A
	40	ATOM	1201		HIS				-12.704			A
	40	ATOM	1201		HIS			59.362		1.00 1		A
		ATOM	1202		HIS			58.984		1.00 1		A
		ATOM	1203		HIS				-13.548	1.00 1		A
		ATOM	1205	C		A 174		59.294	-8.564		9.67	A
	45	ATOM	1206	Ö		A 174		59.477	-7.524		8.97	A
	10	ATOM	1207	N		A 175		58.088	-9.111	1.00	9.37	А
		ATOM	1207	CA		A 175		56.920	-8.458	1.00	9,44	A
		ATOM	1209	CB		A 175		55.632		1.00	9.23	A
		ATOM	1210	CG		A 175			-10.506	1.00	9.39	A
	50	ATOM	1211		TRP				-10.588	1.00	9.59	А
	50	ATOM	1211		TRP				-11.945	1.00	9.59	A
		ATOM	1212		TRP				-9.644	1.00	9.58	A
		ATOM	1213		TRP			55.828		1.00	9.27	A
		ATOM	1214		TRP				-12.651	1.00	9.38	A
	55		1215		TRP				-12.384	1.00	9.09	A
		MOTA	1210	C42	IKP	U 113	45.700	77.740	12.304	1.00	J. U.J	

	ATOM	1217	CZ3	TRP	А	175	46.165	53.737	-10.080	1.00	9.89	А
	ATOM	1218	CH2	TRP			46.531	53.788	-11.442	1.00	10.05	Α
	ATOM	1219	С	TRP			43.725	57.083	-8.223	1.00	9.46	А
	ATOM	1220	0	TRP			44.261	56.583	-7.233	1.00	9.08	Α
5	ATOM	1221	N	ARG	Α	176	44.401	57.788	-9.124	1.00	9.19	Α
_	ATOM	1222	CA	ARG			45.831	58.004	-8.973	1.00	9.28	А
	ATOM	1223	СВ	ARG			46.373		-10.191	1.00	9.85	А
	ATOM	1224	CG	ARG			46.429		-11.447		10.18	А
	ATOM	1225	CD	ARG			46.402		-12.722		10.64	A
10	ATOM	1226	NE	ARG			47.500		-12.818		11.19	A
10	ATOM	1227	CZ	ARG			47.662		-13.844		10.95	A
	ATOM	1228		ARG			46.796		-14.853		11.00	A
	ATOM	1229		ARG			48.679		-13.860		10.96	A
	ATOM	1230	C	ARG			46.146	58.758	-7.676	1.00	9.20	A
15	ATOM	1231	Ö	ARG			47.117	58.435	-6.984	1.00	9.53	A
10	ATOM	1232	N	ASN			45.326	59.750	-7.335	1.00	8.80	A
		1232		ASN			45.561	60.511	-6.108	1.00	8.75	A
	ATOM ATOM	1233	CA CB				44.906	61.894	-6.190	1.00	8.74	A
				ASN			45.577	62.784	-7.217		10.06	A
20	ATOM	1235	CG	ASN			46.762	62.764	-7.507		10.31	A
20	ATOM	1236		ASN ASN					-7.766		11.06	A
	ATOM	1237					44.826	63.734		1.00	8.84	A
	ATOM	1238	С	ASN			45.077	59.759	-4.870	1.00		
	ATOM	1239	0	ASN			45.578	59.981	-3.763	1.00	8.42	A A
25	ATOM	1240	N	VAL			44.100	58.876	-5.049		8.65	
25	ATOM	1241	CA	VAL			43.623	58.075	-3.928	1.00	8.81	A
	ATOM	1242	CB	VAL			42.408	57.198	-4.329	1.00	9.88	A
	ATOM	1243		VAL			42.061	56.223	-3.200	1.00		A
	ATOM	1244		VAL			41.211	58.086	-4.645	1.00	9.98	A
20	ATOM	1245	C	VAL			44.804	57.173	-3.550	1.00	8.79	A
30	ATOM	1246	0	VAL			45.104	56.982	-2.371	1.00	9.06	A
	ATOM	1247	N	LEU			45.481	56.633	-4.564	1.00	8.48	A
	ATOM	1248	CA	LEU			46.637	55.771	-4.325	1.00	8.63	A
	ATOM	1249	CB	LEU			47.104	55.103	-5.624	1.00	9.00	A
25	ATOM	1250	CG	LEU			48.406	54.287	-5.506	1.00	9.81	A
35	ATOM	1251		LEU			48.243	53.164	-4.479	1.00	9.86	A
	ATOM	1252		LEU			48.764	53.714	-6.872		10.42	A
	ATOM	1253	C	LEU			47.790	56.575	-3.739	1.00	8.69	A
	ATOM	1254	0	LEU			48.494	56.104	-2.839	1.00	9.30	A
40	ATOM	1255	N	LEU			47.983	57.789	-4.250	1.00	8.07	A
40	ATOM	1256		LEU			49.063			1.00		A
	MOTA	1257	CB	LEU			49.064	59.980	-4.521	1.00	8.65	A
	ATOM	1258	CG	LEU			50.203		-4.175	1.00	9.33	A
	ATOM	1259		LEU			51.511	60.398	-4.746	1.00	9.58	A
4	ATOM	1260		LEU			49.913	62.335	-4.735	1.00	9.53	А
45	MOTA	1261	С	LEU			48.926	58.903	-2.262	1.00	8.44	А
	ATOM	1262	0	LEU			49.881	58.708	-1.501	1.00	9.34	А
	ATOM	1263	N	GLN	Α	181	47.743	59.329	-1.825	1.00	7.79	А
	MOTA	1264	CA	GLN	Α	181	47.550	59.623	-0.408	1.00	8.83	А
	ATOM	1265	CB	GLN	Α	181	46.254	60.426	-0.184	1.00	8.07	Α
50	ATOM	1266	CG	GLN	А	181	44.935	59.689	-0.427	1.00	9.20	Α
	ATOM	1267	CD	GLN	Α	181	44.568	58.748	0.710	1.00	9.64	А
	ATOM	1268	OE1	GLN	Α	181	44.834	59.035	1.884		10.23	Α
	ATOM	1269	NE2	GLN	Α	181	43.940	57.627	0.371	1.00	8.92	А
	ATOM	1270	С	GLN	Α	181	47.591	58.379	0.474	1.00	8.83	А
55	ATOM	1271	0	GLN	Α	181	48.063	58.448	1.607	1.00	9.20	А

	MOTA	1272	N	LEU	Α	182	47.110	57.246	-0.035	1.00	8.67	А
	MOTA	1273	CA	LEU	Α	182	47.155	56.012	0.743	1.00	8.95	Α
	ATOM	1274	CB	LEU	Α	182	46.432	54.871	0.011	1.00	8.61	Α
	MOTA	1275	CG	LEU	Α	182	46.498	53.481	0.664	1.00	8.86	Α
5	ATOM	1276	CD1	LEU	Α	182	45.753	53.482	1.997	1.00	8.49	A
	ATOM	1277	CD2	LEU	Α	182	45.889	52.443	-0.283	1.00	9.99	Α
	MOTA	1278	С	LEU	Α	182	48.626	55.642	0.933	1.00	9.47	Α
	ATOM	1279	0	LEU	A	182	49.058	55.298	2.033	1.00	9.33	Α
	MOTA	1280	N	THR	Α	183	49.395	55.737	-0.149	1.00	9.38	Α
10	MOTA	1281	CA	THR	Α	183	50.815	55.407	-0.113	1.00	10.00	А
	MOTA	1282	СВ	THR	Α	183	51.440	55.484	-1.537	1.00	10.83	A
	MOTA	1283	OG1	THR	Α	183	50.713	54.627	-2.430	1.00	9.77	Α
	ATOM	1284	CG2	THR	Α	183	52.906	55.045	-1.506	1.00	11.31	Α
	MOTA	1285	С	THR	Α	183	51.570	56.352	0.825	1.00	10.11	Α
15	ATOM	1286	0	THR			52.438	55.923	1.595	1.00	9.89	Α
	ATOM	1287	N	GLU	Α	184	51.239	57.638	0.772	1.00		Α
	MOTA	1288	CA	GLU			51.914	58.613	1.624	1.00		Α
	MOTA	1289	CB	GLU			51.370	60.019	1.345	1.00		А
•	MOTA	1290	CG	GLU			52.226	61.167	1.881	1.00		Α
20	MOTA	1291	CD	GLU			53.620	61.223	1.262	1.00		А
	ATOM	1292		GLU			53.768	60.907	0.063	1.00		Α
	MOTA	1293		GLU			54.568	61.607	1.977	1.00		А
	ATOM	1294	С	GLU			51.714	58.248	3.099	1.00		Α
٥	MOTA	1295	0	GLU			52.664	58.249	3.885	1.00		Α
25	ATOM	1296	N	GLY			50.479	57.922	3.463	1.00		Α
	MOTA	1297	CA	GLY			50.182	57.557	4.839	1.00		A
	MOTA	1298	С	GLY			50.768	56.222	5.268	1.00		A
	ATOM	1299	0	GLY			51.355	56.110	6.351	1.00	9.76	A
20	ATOM	1300	N	GLN			50.622	55.200	4.430	1.00		A
30	ATOM	1301	CA	GLN			51.144	53.884	4.788	1.00		A
	ATOM	1302	CB	GLN			50.560	52.803	3.874	1.00		A
	ATOM	1303	CG	GLN			49.047	52.623	4.010	1.00		A
	ATOM	1304	CD	GLN GLN			48.618	51.182	3.793 2.965	1.00		A A
35	ATOM ATOM	1305 1306	OE1 NE2	GLN			49.190 47.602	50.479 50.741	4.528	1.00		A
33	ATOM	1300	C	GLN			52.668	53.800	4.781	1.00		A
	ATOM	1307	0	GLN			53.255	53.000	5.548	1.00		A
	ATOM	1309	N	THR			53.314	54.571	3.916	1.00		A
	ATOM	1310	CA	THR			54.770	54.548	3.875	1.00		A
40	ATOM	1311		THR			55.300			1.00		A
10	ATOM	1312		THR			54.843	54.733	1.460	1.00		A
	ATOM	1313		THR			56.829	55.372	2.666	1.00		A
	ATOM	1314	C	THR			55.289	55.130	5.191	1.00		A
	ATOM	1315	Ö	THR			56.252	54.627	5.770	1.00		A
45	ATOM	1316	N	TRP			54.632	56.180	5.674	1.00		А
	ATOM	1317	CA	TRP			55.033	56.792	6.936	1.00		А
	ATOM	1318	CB	TRP			54.184	58.034	7.236	1.00		A
	ATOM	1319	CG	TRP			54.647	58.790	8.456	1.00		А
	ATOM	1320		TRP			54.293	58.517	9.818	1.00		А
50	ATOM	1321		TRP			55.038	59.403	10.630	1.00		А
	ATOM	1322		TRP			53.423	57.606	10.431	1.00		А
	ATOM	1323		TRP			55.562	59.807	8.495	1.00		А
	MOTA	1324		TRP			55.804	60.178	9.798	1.00		Α
	ATOM	1325		TRP			54.940	59.402	12.025	1.00		А
55	ATOM	1326		TRP			53.327	57.604	11.824	1.00 1	5.69	Α

								_			
	ATOM	1327	CH2	TRP	Α	188	54.081	58.497	12.602	1.00 15.	84 A
	MOTA	1328	С	TRP	Α	188	54.837	55.763	8.052	1.00 12.	21 A
	ATOM	1329	0	TRP	Α	188	55.725	55.555	8.875	1.00 12.	03 A
	ATOM	1330	N	LEU	Α	189	53.672	55.116	8.071	1.00 12.	09 A
5	ATOM	1331	CA	LEU	Α	189	53.375	54.112	9.091	1.00 12.	32 A
	ATOM	1332	СВ			189	51.966	53.538	8.896	1.00 11.	84 A
	ATOM	1333	CG			189	50.798	54.434	9.314	1.00 11.	10 A
	ATOM	1334		LEU			49.475	53.718	9.013	1.00 10.	
	ATOM	1335		LEU			50.912	54.757	10.806	1.00 10.	
10	ATOM	1336	C			189	54.376	52.962	9.111	1.00 12.	
10	ATOM	1337	Ö			189	54.792	52.513	10.181	1.00 12.	
	ATOM	1338	N			190	54.757	52.473	7.936	1.00 12.	
	ATOM	1339	CA			190	55.709	51.370	7.882	1.00 15.	
	ATOM	1340	СВ			190	55.916	50.886	6.444	1.00 16.	
15	ATOM	1341	CG			190	56.750	49.605	6.350	1.00 18.	
10	ATOM	1341	CD			190	56.958	49.174	4.906	1.00 21.	
	ATOM	1342	CE			190	57.529	47.761	4.821	1.00 24.	
	ATOM	1343	NZ			190	58.713	47.598	5.708	1.00 24.	
		1344	C			190	57.052	51.793	8.464	1.00 20.	
20	ATOM							51.793	9.254	1.00 15.	
20	ATOM	1346	O N			190	57.654 57.514	52.974	8.075	1.00 15.0	
	ATOM	1347	N Cr	GLN					8.548	1.00 10.0	
	ATOM	1348	CA	GLN			58.794	53.477 54.722			
	ATOM	1349	CB	GLN			59.199		7.750	1.00 19.0	
25	ATOM	1350	CG	GLN			60.526	55.324	8.202	1.00 23.3	
25	ATOM	1351	CD	GLN			60.944	56.540	7.390	1.00 24.	
	ATOM	1352	OE1				61.989	57.140	7.651	1.00 27.3	
	MOTA	1353	NE2				60.132	56.909	6.402	1.00 25.	
	ATOM	1354	C	GLN			58.848	53.800	10.041	1.00 17.	
20	ATOM	1355	0	GLN			59.810	53.434	10.717	1.00 18.3	
30	ATOM	1356	N			192	57.827	54.474	10.563	1.00 17.3	
	ATOM	1357	CA	PHE			57.841	54.854	11.974	1.00 17.	
	ATOM	1358	CB	PHE			57.419	56.320	12.116	1.00 16.3	
	ATOM	1359	CG	PHE			58.324	57.279	11.402	1.00 16.3	
· 0E	ATOM	1360		PHE			58.020	57.717	10.115	1.00 15.3	
35	ATOM	1361	CD2				59.495	57.726	12.004	1.00 16.	
	ATOM	1362		PHE			58.867	58.585	9.439	1.00 16.2	
	ATOM	1363		PHE			60.354	58.598	11.334	1.00 17.0	
	ATOM	1364	CZ	PHE			60.040	59.029	10.050	1.00 16.0	
40	ATOM	1365	C	PHE			57.045	54.009	12.972	1.00 18.3	
40	MOTA	1366	0	PHE			57.395	53.972	14.154	1.00 18.8	
	MOTA	1367	N	MET			55.989	53.340	12.519	1.00 17.	
	ATOM	1368	CA	MET			55.170	52.518	13.418	1.00 19.2	
	MOTA	1369	CB	MET			53.684	52.877	13.282	1.00 20.3	
4.5	MOTA	1370	CG	MET			53.272	54.222	13.862	1.00 21.0	
45	MOTA	1371	SD	MET			53.652	54.404	15.629	1.00 25.9	
	MOTA	1372	CE	MET			54.978	55.547	15.464	1.00 22.	
	MOTA	1373	С	MET			55.336	51.022	13.153	1.00 19.0	
	MOTA	1374	0	MET	Α	193	54.858	50.189	13.928	1.00 18.3	
	ATOM	1375	N	ASN	Α	194	56.001	50.693	12.050	1.00 20.2	
50	ATOM	1376	CA	ASN	Α	194	56.234	49.306	11.662	1.00 22.	12 A
	ATOM	1377	CB	ASN	Α	194	57.165	48.627	12.676	1.00 26.8	36 A
	ATOM	1378	CG	ASN	A	194	57.617	47.247	12.225	1.00 32.	
	ATOM	1379	OD1	ASN	Α	194	57.780	46.999	11.028	1.00 31.8	35 A
	ATOM	1380	ND2	ASN	Α	194	57.832	46.357	13.191	1.00 38.9	94 A
55	ATOM	1381	С	ASN	Α	194	54.929	48.517	11.534	1.00 20.	58 A

	ATOM	1382	0	ASN	А	194	54.833	47.373	11.978	1.00	19.15	А
	ATOM	1383	N			195	53.920	49.139	10.935	1.00		A
	ATOM	1384	CA			195	52.634	48.479	10.742	1.00		Α
	ATOM	1385	СВ			195	51.628	48.794	11.888	1.00		Α
5	ATOM	1386		VAL			52.173	48.301	13.227	1.00	19.15	А
_	ATOM	1387		VAL			51.342	50.288	11.941	1.00		А
	ATOM	1388	С			195	52.006	48.928	9.428	1.00		А
	ATOM	1389	0			195	52.232	50.051	8.975	1.00		А
	ATOM	1390	N			196	51.229	48.034	8.825	1.00		Α
10	ATOM	1391	CA			196	50.527	48.309	7.574	1.00	14.36	Α
	MOTA	1392	СВ			196	51.159	47.554	6.377	1.00	14.11	Α
	ATOM	1393	OG1			196	52.516	47.978	6.196	1.00	14.55	Α
	ATOM	1394	CG2			196	50.374	47.830	5.105	1.00		Α
	ATOM	1395	С			196	49.093	47.818	7.746	1.00	13.73	A
15	MOTA	1396	0			196	48.845	46.613	7.787	1.00	13.60	Α
	ATOM	1397	N	PRO	Α	197	48.130	48.745	7.859	1.00	13.55	Α
	ATOM	1398	CD			197	48.302	50.207	7.944	1.00	13.01	Α
	ATOM	1399	CA			197	46.722	48.375	8.029	1.00	13.52	Α
	ATOM	1400	СВ	PRO	Α	197	46.014	49.726	8.085	1.00	13.17	Α
20	ATOM	1401	CG	PRO	Α	197	47.057	50.632	8.681	1.00	12.88	Α
	ATOM	1402	С	PRO	Α	197	46.181	47.507	6.898	1.00	13.94	Α
	ATOM	1403	0	PRO	Α	197	46.536	47.699	5.733	1.00	13.93	Α
	ATOM	1404	N	THR	Α	198	45.335	46.542	7.249	1.00	13.37	Α
	ATOM	1405	CA	THR	A	198	44.721	45.677	6.250	1.00	13.41	Α
25	MOTA	1406	CB	THR	Α	198	45.065	44.185	6.457	1.00	13.58	Α
	ATOM	1407	OG1	THR	Α	198	44.601	43.759	7.740	1.00	13.61	A
	ATOM	1408	CG2	THR	Α	198	46.567	43.963	6.342	1.00	14.13	A
	ATOM	1409	С	THR	Α	198	43.210	45.841	6.322	1.00		А
	ATOM	1410	0	THR	Α	198	42.473	45.152	5.623	1.00		Α
30	MOTA	1411	N			199	42.760	46.757	7.179	1.00		Α
	ATOM	1412	CA	ALA	Α	199	41.336	47.050	7.332	1.00		Α
	ATOM	1413	CB	ALA	Α	199	40.856	46.659	8.736	1.00		Α
	ATOM	1414	С	ALA	Α	199	41.110	48.547	7.092	1.00		А
	MOTA	1415	0			199	41.807	49.386	7.667	1.00		A
35	ATOM	1416	N	SER	Α	200	40.135	48.879	6.252	1.00		Α
	ATOM	1417	CA			200	39.844	50.276	5.937	1.00		A
	ATOM	1418	CB			200	39.680	50.459	4.426	1.00		Α
	ATOM	1419	OG			200	39.531	51.830	4.097	1.00		Α
40	MOTA	1420	С			200	38.607	50.795	6.658	1.00		A
40	MOTA		0			200	37.635	50.057		1.00		A
	ATOM	1422	N			201	38.654	52.077	7.008	1.00		A
	MOTA	1423	CA			201	37.592		7.745	1.00		A
	MOTA	1424	CB			201	38.110		9.176	1.00		A
45	MOTA	1425	CG			201	37.296	53.856	10.113	1.00		A
45	MOTA	1426		TRP			36.309	53.406	11.051	1.00		A
	MOTA	1427		TRP			35.917	54.529	11.819	1.00		A
	MOTA	1428		TRP			35.722	52.162	11.322	1.00		A
	MOTA	1429		TRP			37.448	55.199	10.338	1.00		A
F0	MOTA	1430		TRP			36.627	55.608	11.361	1.00		A
50	MOTA	1431		TRP			34.964	54.444	12.841	1.00		A
	ATOM	1432		TRP			34.772	52.077	12.344	1.00		A
	MOTA	1433		TRP			34.405	53.215	13.089	1.00		A
	ATOM	1434	C			201	37.225	54.074	7.040	1.00		A
EE	ATOM	1435	0			201	37.995		7.058	1.00		A
55	MOTA	1436	N	ALA	A	202	36.053	54.102	6.408	1.00	11.54	А

IDOECHDE JOHIOI

	ATOM	1437	CA	ALA A	A 20	2	35.578	55.285	5.686		11.82	A
	ATOM	1438	CB	ALA A	A 20	2	35.620	55.026	4.180	1.00	12.16	Α
	MOTA	1439	С	ALA A			34.152	55.613	6.129		11.83	А
	MOTA	1440	0	ALA A	4 20	12	33.184	55.165	5.519		11.26	A
5	ATOM	1441	N	ILE A	A 20	13	34.039	56.420	7.181		11.80	A
	MOTA	1442	CA	ILE A	4 20	13	32.747	56.774	7.762		11.97	A
	MOTA	1443	CB	ILE A			32.830	56.770	9.311		12.02	Α
	ATOM	1444	CG2	ILE A	A 20	13	33.134	55.350	9.821		12.31	A
	ATOM	1445	CG1	ILE A	A 20	13	33.914	57.756	9.772	1.00	12.87	A
10	ATOM	1446	CD1	ILE A	A 20	13	33.998	57.941	11.286		13.55	A
	ATOM	1447	С	ILE A	4 20	13	32.115	58.101	7.347		11.95	Α
	MOTA	1448	0	ILE A	4 20	13	30.937	58.324	7.633		11.82	A
	MOTA	1449	N	ASP A	4 20	4	32.861	58.978	6.677		11.66	A
	MOTA	1450	CA	ASP A	A 20	4	32.278	60.269	6.305		12.21	Α
15	MOTA	1451	CB	ASP A	4 20	4	32.986	61.406	7.053		11.72	A
	MOTA	1452	CG	ASP A	4 20	14	32.058	62.589	7.336		11.97	A
	MOTA	1453	OD1	ASP A	A 20	4	32.557	63.712	7.559		12.03	A
	ATOM	1454	OD2	ASP A	A 20	4	30.823	62.401	7.351	1.00	11.68	A
	MOTA	1455	С	ASP A			32.162	60.651	4.824		12.19	А
20	MOTA	1456	0	ASP A	A 20	14	31.420	61.580	4.496		12.41	A
	ATOM	1457	N	PRO A	A 20	15	32.888	59.969	3.911		12.60	A
	MOTA	1458	CD	PRO A	A 20	15	33.888	58.895	4.047		12.94	A
	MOTA	1459	CA	PRO A			32.739	60.366	2.500		12.61	A
	ATOM	1460	СВ	PRO A			33.573	59.323	1.758		12.97	А
25	MOTA	1461	CG	PRO A	A 20)5	34.666	59.017	2.747	1.00	13.56	А
	MOTA	1462	С	PRO A	4 20)5	31.257	60.328	2.109	1.00	12.65	А
	ATOM	1463	0	PRO Z	A 20)5	30.520	59.451	2.557		13.12	А
	ATOM	1464	N	PHE A	A 20)6	30.828	61.266	1.267		12.48	A
	ATOM	1465	CA	PHE Z	A 20)6	29.418	61.367	0.872		11.65	A
30	MOTA	1466	CB	PHE A	A 20)6	29.094	62.829	0.542		10.97	A
	MOTA	1467	CG	PHE A	A 20)6	29.933	63.823	1.310		11.31	А
	MOTA	1468	CD1	PHE A	A 20	06	30.170	63.652	2.673		10.59	A
	MOTA	1469	CD2	PHE A	A 20)6	30.497	64.926	0.668		11.93	A
	MOTA	1470	CE1	PHE A	A 20)6	30.957	64.559	3.385		10.69	А
35	MOTA	1471	CE2	PHE A	A 20)6	31.286	65.842	1.372		11.78	А
	MOTA	1472	CZ	PHE A			31.518	65.656	2.734		10.49	A
	MOTA	1473	С	PHE A			29.064	60.456	-0.306		11.76	A
	MOTA	1474	0	PHE A			28.869	60.914	-1.431		11.63	A
	ATOM	1475	N	GLY A			28.946	59.164	-0.017		11.94	A
40	ATOM	1476	CA				28.677				11.86	A
	ATOM	1477	С	GLY A			29.978	57.409	-1.186		11.58	A
	MOTA	1478	0	GLY A			31.034	57.942	-0.840		11.47	A
	MOTA	1479	N	HIS A			29.922	56.173	-1.681		11.57	A
	ATOM	1480	CA	HIS A			31.125	55.351	-1.800		11.22	A
45	MOTA	1481	CB	HIS A			31.074	54.238	-0.753		11.82	A
	MOTA	1482	CG	HIS A			31.157	54.741	0.654		12.72	A
	ATOM	1483		HIS A			30.195	54.971	1.578		12.86	А
	ATOM	1484		HIS A			32.349	55.099	1.245		13.33	A
	ATOM	1485		HIS A			32.118	55.527	2.473		13.14	A
50	ATOM	1486		HIS A			30.819	55.460	2.700		12.64	A
	ATOM	1487	С	HIS			31.364	54.757	-3.181		10.90	A
	ATOM	1488	0	HIS			30.421	54.409	-3.899		11.18	A
	MOTA	1489	N	SER A			32.638	54.629	-3.536		10.51	A
	MOTA	1490	CA	SER A			33.037	54.107	-4.841		10.62	A
55	MOTA	1491	CB	SER A	A 20)9	33.915	55.137	-5.554	1.00	10.69	А

	ATOM	1492	OG	SER .	A 209	34.48	4 54.588	-6.735	1.00 11.16	Α
	ATOM	1493	С		A 209	33.79		-4.783	1.00 10.51	A
	MOTA	1494	0		A 209	34.60		-3.875	1.00 9.87	A
	ATOM	1495	N		A 210	33.55		-5.762	1.00 10.42	A
5	ATOM	1496	CD	PRO .	A 210	32.55		-6.845	1.00 10.36	Α
	MOTA	1497	CA	PRO .	A 210	34.22	2 50.589	-5.820	1.00 10.49	Α
	ATOM	1498	CB	PRO .	A 210	33.45	2 49.846	-6.910	1.00 10.13	Α
	ATOM	1499	CG	PRO .	A 210	33.02		-7.828	1.00 10.41	А
	MOTA	1500	С	PRO .	A 210	35.70		-6.147	1.00 10.64	A
10	ATOM	1501	0	PRO .	A 210	36.48	1 49.808	-6.066	1.00 10.74	A
	ATOM	1502	N	THR .	A 211	36.10		-6.523	1.00 9.89	A
	MOTA	1503	CA	THR .	A 211	37.51		-6.792	1.00 10.11	A
	MOTA	1504	CB	THR .	A 211	37.77		-7.261	1.00 9.96	A
	MOTA	1505	OG1	THR .	A 211	37.23		-8.578	1.00 9.80	А
15	ATOM	1506	CG2	THR .	A 211	39.27	0 53.961	-7.287	1.00 9.72	A
	MOTA	1507	С	THR .	A 211	38.30	9 51.956	- 5.504	1.00 9.81	Α
	MOTA	1508	0	THR .	A 211	39.47	9 51.571	-5.552	1.00 9.54	A
	MOTA	1509	N	MET .	A 212	37.67		-4.353	1.00 10.26	A
	ATOM	1510	CA	MET	A 212	38.36	0 51.942	-3.080	1.00 10.69	A
20	ATOM	1511	CB	MET	A 212	37.51	4 52.455	-1.909	1.00 11.51	A
	ATOM	1512	CG	MET	A 212	37.20	7 53.947	-1.963	1.00 13.25	A
	ATOM	1513	SD	MET	A 212	38.66	7 54.999	-2.246	1.00 15.34	A
	MOTA	1514	CE	MET	A 212	39.45	7 54.946	-0.633	1.00 14.30	A
	ATOM	1515	С	MET	A 212	38.74	1 50.471	-2.866	1.00 10.61	Α
25	MOTA	1516	0	MET	A 212	39.90			1.00 10.52	A
	ATOM	1517	N	PRO	A 213	37.76	7 49.546	-2.935	1.00 10.33	А
	MOTA	1518	CD	PRO	A 213	36.30	0 49.654	-3.018	1.00 10.77	A
	ATOM	1519	CA	PRO	A 213	38.18	5 48.152		1.00 10.25	А
	ATOM	1520	CB	PRO	A 213	36.85	8 47.377		1.00 10.19	А
30	ATOM	1521	CG	PRO	A 213	35.91	8 48.291		1.00 10.86	Α
	ATOM	1522	С	PRO	A 213	39.16	6 47.707		1.00 10.35	Α
	ATOM	1523	0	PRO	A 213	40.03	3 46.865	-3.586	1.00 10.07	А
	ATOM	1524	N	TYR	A 214	39.03	2 48.277	-5.021	1.00 10.06	А
	MOTA	1525	CA	TYR	A 214	39.93		-6.120	1.00 10.18	A
35	MOTA	1526	CB	TYR	A 214	39.61	9 48.786	-7.349	1.00 10.58	Α
	ATOM	1527	CG	TYR	A 214	40.54	6 48.531	-8.519	1.00 11.85	Α
	MOTA	1528	CD1	TYR	A 214	40.37	6 47.416	-9.343	1.00 12.70	A
	MOTA	1529	CE1	TYR	A 214	41.20			1.00 13.49	A
	MOTA	1530	CD2	TYR	A 214	41.57			1.00 11.15	A
40	MOTA	1531	CE2	TYR	A 214	42.41	0 49.215	-9.914	1.00 11.99	A
	MOTA	1532	CZ	TYR	A 214	42.22		-10.726	1.00 12.95	A
	ATOM	1533	OH	TYR	A 214	43.02		-11.836	1.00 13.94	A
	ATOM	1534	С	TYR	A 214	41.38	4 48.213	-5.705	1.00 10.67	А
	ATOM	1535	0	TYR	A 214	42.25	2 47.341	-5.808	1.00 10.14	А
45	ATOM	1536	N	ILE	A 215	41.63			1.00 10.04	Α
	ATOM	1537	CA	ILE	A 215	42.96	5 49.848	-4.809	1.00 10.06	А
	MOTA	1538	CB	ILE	A 215	43.00	5 51.384	-4.572	1.00 10.31	Α
	MOTA	1539	CG2	ILE	A 215	44.34			1.00 10.36	Α
	MOTA	1540	CG1	ILE	A 215	42.74	5 52.119	-5.890	1.00 11.37	Α
50	ATOM	1541			A 215	42.71			1.00 12.28	Α
	ATOM	1542	С		A 215	43.39	9 49.135	-3.523	1.00 10.17	Α
	ATOM	1543	0		A 215	44.52	9 48.659	-3.413	1.00 9.97	Α
	ATOM	1544	N		A 216	42.49		-2.552	1.00 10.00	Α
	ATOM	1545	CA		A 216	42.81		-1.277	1.00 9.82	А
55	ATOM	1546	СВ		A 216	41.63		-0.303	1.00 9.65	Α

										a		_
		ATOM	1547	CG	LEU			41.248	50.040	0.047	1.00 10.00	A
		ATOM	1548		LEU			39.930	50.050	0.812	1.00 9.64	Α
		ATOM	1549		LEU			42.361	50.692	0.874	1.00 11.22	Α
		ATOM	1550	С	LEU			43.145	46.929	-1.417	1.00 10.48	Α
	5	MOTA	1551	0	LEU			44.115	46.449	-0.825	1.00 9.64	Α
		ATOM	1552	N	GLN	A 2	217	42.344	46.204	-2.195	1.00 10.39	Α
		MOTA	1553	CA	GLN	A 2	217	42.565	44.773	-2.385	1.00 11.31	Α
		MOTA	1554	СВ	GLN	A 2	217	41.417	44.187	-3.216	1.00 13.02	Α
		MOTA	1555	CG	GLN	A 2	217	41.367	42.662	-3.309	1.00 13.54	Α
	10	MOTA	1556	CD	GLN	A 2	217	42.291	42.117	-4.371	1.00 14.73	A
		ATOM	1557	OE1	GLN			42.492	42.749	-5.406	1.00 16.14	А
		ATOM	1558	NE2				42.849	40.934	-4.131	1.00 14.69	Α
		ATOM	1559	С	GLN	A 2	217	43.922	44.529	-3.050	1.00 11.72	A
		MOTA	1560	0	GLN	A 2	217	44.561	43.499	-2.824	1.00 11.92	A
	15	MOTA	1561	N	LYS			44.365	45.491	-3.857	1.00 11.23	Α
		ATOM	1562	CA	LYS	A 2	218	45.655	45.397	-4.537	1.00 11.32	Α
		ATOM	1563	CB	LYS	A 2	218	45.589	46.102	-5.899	1.00 11.09	A
		MOTA	1564	CG	LYS			44.804	45.324	-6.959	1.00 12.02	Α
1.45		ATOM	1565	CD	LYS			44.608	46.141	-8.238	1.00 11.87	Α
	20	MOTA	1566	CE	LYS			44.232	45.257	-9.421	1.00 12.02	Α
		MOTA	1567	NZ	LYS			43.101	44.326	-9.148	1.00 12.06	A
		ATOM	1568	С	LYS			46.762	46.019	-3.679	1.00 11.45	A
(JL		ATOM	1569	0	LYS			47.904	46.154	-4.118	1.00 11.78	A
		MOTA	1570	N	SER			46.412	46.397	-2.453	1.00 10.93	A
N.	25	MOTA	1571	CA	SER			47.372	46.993	-1.533	1.00 11.29	A
		ATOM	1572	СВ	SER			47.014	48.460	-1.264	1.00 10.87	A
191		ATOM	1573	OG	SER			47.094	49.223	-2.459	1.00 10.59	A
		ATOM	1574	С	SER			47.434	46.213	-0.219	1.00 11.22	A
El Luciono	••	MOTA	1575	0	SER			47.748	46.768	0.836	1.00 10.76	A
	30	ATOM	1576	N	GLY			47.118	44.922	-0.296	1.00 11.64	A
ı,İİ		MOTA	1577	CA	GLY			47.176	44.066	0.878	1.00 12.01	A
		ATOM	1578	С	GLY			45.984	44.042	1.820	1.00 12.11	A
		ATOM	1579	0	GLY			45.995	43.298	2.801	1.00 12.08	A
1122	25	ATOM	1580	N	PHE			44.947	44.825	1.541	1.00 12.32	A
į.i.	35	ATOM	1581	CA	PHE			43.794	44.844	2.435	1.00 11.98	A
•		ATOM	1582	CB	PHE			42.909	46.065	2.168	1.00 12.08	A
		MOTA	1583	CG	PHE			43.466	47.344	2.716	1.00 11.83	A
		ATOM	1584		PHE			44.586	47.935 47.955	2.139 3.816	1.00 10.91 1.00 11.28	A A
	40	ATOM	1585		PHE			42.876 45.111	47.955	2.651		A
	40	ATOM	1586		PHE					4.338	1.00 10.48	A
		ATOM	1587		PHE			43.394	49.145 49.727	3.752	1.00 10.77	A
		ATOM	1588	CZ	PHE			44.514		2.363	1.00 10.34	A
		MOTA	1589	С	PHE			42.939	43.593 42.913	1.341	1.00 12.33	A
	15	ATOM	1590	0	PHE			42.892 42.257	42.913	3.466	1.00 12.04	A
	45	ATOM	1591	N	LYS			42.237	43.303	3.546	1.00 12.92	A
		ATOM	1592	CA	LYS LYS			41.365	41.125	4.523	1.00 14.03	A
		ATOM	1593	CB	LYS			43.173	40.401	3.950	1.00 10.83	A
		ATOM	1594	CG	LYS			43.173	39.446	4.945	1.00 24.43	A
	50	ATOM	1595	CD	LYS			44.802	38.537	4.250	1.00 25.85	A
	50	ATOM	1596	CE	LYS			44.802	39.315	3.420	1.00 23.83	A
		ATOM	1597 1598	NZ C	LYS			39.974	42.533	3.966	1.00 27.76	A
		ATOM			LYS			39.974	42.333	3.804	1.00 13.76	A
		ATOM	1599	O NI	ASN			39.043	43.747	4.492	1.00 12.70	A
	55	ATOM	1600	N CA	ASN			39.819	44.224	4.492	1.00 12.54	A
	$\mathcal{I}\mathcal{I}$	MOTA	1601	CH	NON	n 2	دعا	20.212	17.44	3.740	1.00 12.04	4.1

	ATOM	1602	СВ	ASN	Α	223	38.274	43.836	6.404	1.00 12.58	Α
	MOTA	1603	CG	ASN	Α	223	38.364	42.345	6.641	1.00 13.38	Α
	ATOM	1604	OD1	ASN	Α	223	39.396	41.832	7.092	1.00 14.56	Α
	ATOM	1605	ND2	ASN	Α	223	37.286	41.637	6.336	1.00 10.53	Α
5	ATOM	1606	С	ASN	Α	223	38.345	45.738	4.826	1.00 11.96	Α
	ATOM	1607	0	ASN	Α	223	39.318	46.485	4.891	1.00 11.78	Α
	ATOM	1608	N	MET	Α	224	37.101	46.183	4.668	1.00 12.00	Α
	ATOM	1609	CA	MET	Α	224	36.800	47.609	4.598	1.00 12.07	Α
	ATOM	1610	СВ	MET	Α	224	36.915	48.134	3.165	1.00 12.02	Α
10	MOTA	1611	CG	MET	Α	224	35.849	47.631	2.207	1.00 12.35	Α
	ATOM	1612	SD	MET	Α	224	36.063	48.400	0.596	1.00 12.43	А
	ATOM	1613	CE	MET	Α	224	35.436	50.044	0.920	1.00 12.22	A
	ATOM	1614	С	MET	Α	224	35.402	47.892	5.142	1.00 12.41	Α
	ATOM	1615	0	MET	Α	224	34.516	47.029	5.113	1.00 11.89	А
15	ATOM	1616	N	LEU	Α	225	35.221	49.106	5.649	1.00 11.22	Α
	ATOM	1617	CA	LEU	Α	225	33.950	49.530	6.219	1.00 11.40	Α
	ATOM	1618	CB	LEU	Α	225	34.090	49.648	7.738	1.00 10.91	Α
	MOTA	1619	CG	LEU	A	225	32.929	50.260	8.531	1.00 11.65	Α
	ATOM	1620	CD1	LEU	Α	225	32.932	49.685	9.935	1.00 11.52	Α
20	ATOM	1621		LEU			33.046	51.798	8.559	1.00 11.31	A
	ATOM	1622	С			225	33.525	50.868	5.626	1.00 11.04	Α
	ATOM	1623	0			225	34.351	51.762	5.451	1.00 10.88	Α
	ATOM	1624	N			226	32.237	50.997	5.315	1.00 11.47	Α
	ATOM	1625	CA			226	31.699	52.232	4.747	1.00 11.81	Α
25	ATOM	1626	СВ	ILE	Α	226	31.371	52.059	3.242	1.00 11.66	Α
	ATOM	1627	CG2	ILE	Α	226	32.645	51.699	2.478	1.00 11.16	Α
	ATOM	1628	CG1	ILE	Α	226	30.315	50.968	3.048	1.00 11.34	A
	ATOM	1629	CD1	ILE	Α	226	29.894	50.771	1.596	1.00 11.84	Α
	ATOM	1630	C			226	30.441	52.632	5.516	1.00 12.31	. A
30	ATOM	1631	0	ILE	Α	226	29.856	51.805	6.222	1.00 12.85	Α
	ATOM	1632	N	GLN	Α	227	30.020	53.888	5.381	1.00 12.34	Α
	ATOM	1633	CA	GLN	Α	227	28.853	54.367	6.118	1.00 12.23	Α
	ATOM	1634	СВ			227	29.334	55.170	7.334	1.00 12.52	А
	MOTA	1635	CG			227	28.376	56.253	7.845	1.00 12.98	Α
35	ATOM	1636	CD	GLN	Α	227	27.053	55.713	8.357	1.00 13.37	Α
	ATOM	1637	OE1	GLN	Α	227	26.951	54.552	8.753	1.00 14.02	Α
	ATOM	1638	NE2	GLN	Α	227	26.034	56.568	8.375	1.00 12.44	Α
	ATOM	1639	С	GLN	Α	227	27.814	55.187	5.351	1.00 12.86	Α
	ATOM	1640	0	GLN	Α	227	26.618	54.888	5.408	1.00 12.43	Α
40	MOTA	1641	N	ARG	Α	228	28.252	56.225	4.645	1.00 12.28	Α
	ATOM	1642	CA	ARG	Α	228	27.303	57.070	3.941	1.00 12.28	Α
	ATOM	1643	CB	ARG	Α	228	27.893	58.470	3.726	1.00 12.59	A
	MOTA	1644	CG	ARG	Α	228	28.063	59.258	5.022	1.00 12.49	A
	ATOM	1645	CD	ARG	Α	228	28.404	60.729	4.772	1.00 12.20	A
45	MOTA	1646	NE	ARG	Α	228	28.640	61.461	6.022	1.00 12.35	Α
	ATOM	1647	CZ	ARG	Α	228	27.683	61.920	6.828	1.00 14.14	Α
	MOTA	1648	NH1	ARG	Α	228	26.400	61.736	6.525	1.00 14.04	Α
	ATOM	1649	NH2	ARG	Α	228	28.007	62.554	7.951	1.00 13.35	Α
	ATOM	1650	С	ARG	Α	228	26.759	56.523	2.628	1.00 12.67	А
50	MOTA	1651	0	ARG	Α	228	27.323	56.744	1.557	1.00 12.03	Α
	ATOM	1652	N			229	25.653	55.795	2.735	1.00 12.60	Α
	ATOM	1653	CA			229	24.976	55.240	1.573	1.00 12.10	А
	ATOM	1654	СВ			229	25.136	53.695	1.490	1.00 12.81	Α
	ATOM	1655		THR			24.559	53.075	2.648	1.00 12.19	Α
55	ATOM	1656		THR			26.617	53.324	1.405	1.00 11.20	А

		ATOM	1657	С	THR	Α	229	23.506	55.619	1.729	1.00	12.60	Α
		ATOM	1658	0	THR	Α	229	23.035	55.849	2.848	1.00	13.73	Α
		ATOM	1659	N	HIS	Α	230	22.796	55.701	0.608	1.00	12.44	А
		ATOM	1660	CA	HIS	Α	230	21.380	56.080	0.589	1.00	12.74	Α
	5	ATOM	1661	СВ	HIS			20.803	55.794	-0.803	1.00	13.25	A
	-	ATOM	1662	CG	HIS			19.545	56.546	-1.111	1.00	13.82	А
		ATOM	1663		HIS			19.268	57.462	-2.070		14.52	Α
		ATOM	1664		HIS			18.382	56.384	-0.389		13.28	А
		ATOM	1665		HIS			17.443	57.169	-0.889		13.41	A
	10	ATOM	1666		HIS			17.954	57.834	-1.910		12.86	A
	•	ATOM	1667	C	HIS			20.570	55.343	1.656		12.53	A
		ATOM	1668	0	HIS			20.672	54.125	1.788		12.07	A
		ATOM	1669	N	TYR			19.756	56.080	2.413		12.70	A
		ATOM	1670	CA	TYR			18.958	55.453	3.463		13.53	A
	15	ATOM	1671	СВ	TYR			18.105	56.499	4.200		13.42	A
	10	ATOM	1672	CG	TYR			17.122	57.268	3.337		14.84	A
		ATOM	1673		TYR			15.840	56.772	3.088		14.12	A
		ATOM	1674		TYR			14.934	57.484	2.305		14.51	A
*****		ATOM	1675		TYR			17.474	58.500	2.776		14.31	A
	20	ATOM	1676		TYR			16.576	59.217	1.992		14.26	A
	20	ATOM	1677	CZ	TYR			15.308	58.704	1.761		14.26	A
ij.		ATOM	1678	OH	TYR			14.421	59.409	0.982		14.93	A
íji		ATOM	1679	C	TYR			18.081	54.316	2.936		14.05	A
		ATOM	1680	0	TYR			17.785	53.368	3.661		14.36	A
	25	ATOM	1681	N	SER			17.675	54.399	1.674		14.47	A
	25	ATOM	1682	CA	SER			16.847	53.348	1.086		15.06	A
145±		ATOM	1683	CB	SER			16.235	53.823	-0.233		15.79	A
ijŤ.		ATOM	1684	OG	SER			15.246	54.811	-0.004		17.41	A
E1		ATOM	1685	C	SER			17.650	52.071	0.854		14.95	A
	30	ATOM	1686	0	SER			17.120	50.966	0.967		13.88	A
	30	ATOM	1687	N	VAL			18.931	52.229	0.529		14.34	A
Ŋ.		ATOM	1688	CA	VAL			19.807	51.085	0.295		13.73	A
Į .		ATOM	1689	CB	VAL			21.136	51.534	-0.355		13.75	A
int.		ATOM	1690		VAL			22.122	50.372	-0.397		13.01	A
ind.	35	ATOM	1691		VAL			20.868	52.043	-1.769		13.28	A
5	33	ATOM	1692	C	VAL			20.000	50.364	1.616		13.86	A
		ATOM	1693	0	VAL			20.031	49.131	1.679		13.64	A
		ATOM	1694	N	LYS			20.329	51.137	2.668		13.48	A
		ATOM	1695	CA	LYS			20.583	50.569	3.987		14.03	A
	40	ATOM	1696		LYS			20.800				14.30	A
	10	ATOM	1697	CG	LYS			22.142	52.414	4.890		14.69	A
		ATOM	1698	CD	LYS			22.193	53.642	5.799		13.66	A
		ATOM	1699	CE	LYS			23.563	54.329	5.762		13.23	A
		ATOM	1700	NZ	LYS			24.575	53.699	6.669		12.68	A
	45	ATOM	1701	C	LYS			19.392	49.706	4.405		14.10	A
	40	ATOM	1701	0	LYS			19.563	48.582	4.877		13.22	A
			1702	N	LYS			18.186	50.233	4.218		15.31	A
		ATOM . ATOM	1703	CA	LYS			16.973	49.502	4.584		16.19	A
			1704					15.739	50.378	4.359		17.38	A
	50	MOTA		CB	LYS				49.778	4.897		17.88	A
	50	ATOM	1706	CG	LYS LYS			14.446 13.270	50.694	4.697		18.37	A
		ATOM	1707	CD					50.115	5.171		20.00	A
		ATOM	1708	CE N2	LYS			11.979 10.809	50.113	4.811		20.45	A
		ATOM	1709	NZ C	LYS			16.846	48.212	3.780		16.38	A
	55	ATOM	1710		LYS					4.339		16.89	A
	<i>JJ</i>	ATOM	1711	О	LYS	А	233	16.594	47.143	4.339	1.00	10.03	А

			1710			026	17 021	40 314	2.460	1 00 17 01	7
		ATOM	1712	N	GLU A		17.031	48.314	2.469	1.00 17.01	A
		MOTA	1713	CA	GLU A		16.933	47.157	1.583	1.00 17.20	A
		ATOM	1714	CB	GLU A		17.130	47.599	0.129	1.00 19.36	A
	_	MOTA	1715	CG	GLU A		16.943	46.487	-0.894	1.00 22.75	Α
	5	MOTA	1716	CD	GLU A		15.493	46.037	-1.033	1.00 24.36	Α
		MOTA	1717	OE1	GLU A	236	15.237	45.125	-1.844	1.00 26.15	А
		MOTA	1718	OE2	GLU A	236	14.610	46.592	-0.341	1.00 25.45	Α
		MOTA	1719	С	GLU A	236	17.946	46.063	1.931	1.00 16.81	А
		MOTA	1720	0	GLU A	236	17.585	44.895	2.078	1.00 16.28	А
	10	ATOM	1721	N	LEU A	237	19.216	46.433	2.064	1.00 15.97	А
		ATOM	1722	CA	LEU A		20.238	45.447	2.387	1.00 15.97	А
		ATOM	1723	СВ	LEU A		21.635	46.048	2.220	1.00 15.23	А
		ATOM	1724	CG	LEU A		21.976	46.514	0.799	1.00 15.74	Α
		ATOM	1725		LEU A		23.356	47.142	0.797	1.00 16.24	A
	15	ATOM	1726		LEU A		21.919	45.337	-0.173	1.00 16.31	А
	10	ATOM	1727	C	LEU A		20.066	44.898	3.800	1.00 15.86	А
		ATOM	1728	Ö	LEU A		20.324	43.719	4.047	1.00 16.07	А
		ATOM	1729	N	ALA A		19.624	45.743	4.725	1.00 15.71	A
Jume.		ATOM	1730	CA	ALA A		19.420	45.302	6.099	1.00 16.72	A
	20	ATOM	1731	CB	ALA A		18.976	46.473	6.968	1.00 14.76	A
ij	20	ATOM	1732	C	ALA A		18.373	44.187	6.149	1.00 17.50	A
		ATOM	1733	0	ALA A		18.559	43.177	6.832	1.00 17.31	A
M		ATOM	1734	N	GLN A		17.279	44.374	5.418	1.00 18.24	A
			1735		GLN A		16.199	43.391	5.394	1.00 19.52	A
M	25	MOTA	1736	CA CB	GLN A		15.031	43.915	4.550	1.00 20.50	A
	20	ATOM			GLN A		14.442	45.225	5.068	1.00 23.60	A
ı.		MOTA	1737	CG			13.275	45.728	4.235	1.00 25.24	A
		MOTA	1738	CD	GLN A		13.364	45.728	3.009	1.00 23.24	A
Eş. '-		ATOM	1739	OE1	GLN A		12.175	46.069	4.900	1.00 27.04	A
	30	ATOM	1740		GLN A		16.652	42.028	4.872	1.00 27.03	A
ųJ.	30	ATOM	1741	С				41.000	5.230	1.00 19.01	A
M		ATOM	1742	0	GLN A		16.080		4.029	1.00 19.30	A
ļ.		ATOM	1743	N	GLN A		17.679	42.018	3.472	1.00 19.18	A
		ATOM	1744	CA	GLN A		18.189	40.768		1.00 18.91	A
j.±	25	ATOM	1745	CB	GLN A		18.421	40.927	1.969	1.00 21.14	A
gram.	35	ATOM	1746	CG	GLN A		17.200	41.421	1.212	1.00 25.55	A
		ATOM	1747	CD	GLN A		16.065	40.422	1.230	1.00 28.30	
		ATOM	1748	OE1			14.910	40.777	0.998	1.00 28.30	A
		ATOM	1749		GLN A		16.387	39.160	1.494 4.139		A
	40	ATOM	1750	C	GLN A		19.495	40.350		1.00 17.92 1.00 16.97	A
	40	ATOM	1751	0			20.113	39.364	3.737		A
		MOTA	1752	N	ARG A		19.895	41.090	5.171	1.00 16.88	A
		ATOM	1753	CA	ARG A		21.149	40.831	5.871	1.00 16.09	A
		MOTA	1754	СВ	ARG A		21.084	39.521	6.668	1.00 17.31	A
	4 =	MOTA	1755	CG	ARG A		20.052	39.549	7.792	1.00 18.25	A
	45	MOTA	1756	CD	ARG A		20.258	38.407	8.776	1.00 19.71	A
		MOTA	1757	NE	ARG A		20.252	37.106	8.114	1.00 21.50	A
		ATOM	1758	CZ	ARG A		20.610	35.966	8.700	1.00 23.01	A
		MOTA	1759		ARG A		21.004	35.962	9.969	1.00 23.30	A
		MOTA	1760	NH2	ARG A		20.583	34.831	8.014	1.00 23.18	А
	50	MOTA	1761	С	ARG A	241	22.284	40.784	4.853	1.00 15.76	Α
		ATOM	1762	0	ARG A	241	23.092	39.850	4.824	1.00 14.26	A
		ATOM	1763	N	GLN A	242	22.327	41.807	4.004	1.00 15.05	Α
		MOTA	1764	CA	GLN A		23.360	41.912	2.979	1.00 14.63	А
		ATOM	1765	СВ	GLN A	242	22.721	41.946	1.584	1.00 14.76	А
	55	ATOM	1766	CG	GLN A	242	21.909	40.704	1.233	1.00 15.30	А

										1 00 17 07	_
		ATOM	1767	CD	GLN A		21.188	40.836	-0.096	1.00 15.32	А
		ATOM	1768	OE1	GLN A	242	20.643	41.892	-0.411	1.00 15.92	Α
		ATOM	1769	NE2	GLN A	4 242	21.170	39.759	-0.878	1.00 15.08	Α
		ATOM	1770	С	GLN A	242	24.197	43.175	3.198	1.00 14.54	Α
	5	ATOM	1771	0	GLN A	242	24.712	43.753	2.242	1.00 13.67	Α
	•	ATOM	1772	N	LEU A		24.323	43.594	4.458	1.00 13.82	А
		ATOM	1773	CA		4 243	25.106	44.779	4.808	1.00 14.57	A
					LEU A		24.690	45.307	6.185	1.00 14.76	A
		ATOM	1774	CB							A
	10	ATOM	1775	CG	LEU A		23.302	45.958	6.227	1.00 16.04	
	10	ATOM	1776		LEU A		22.895	46.231	7.673	1.00 16.58	A
		ATOM	1777		LEU A		23.321	47.258	5.413	1.00 16.24	A
		MOTA	1778	С		A 243	26.598	44.455	4.786	1.00 14.27	A
		MOTA	1779	0	LEU A		27.440	45.352	4.712	1.00 14.53	A
		MOTA	1780	N	GLU Z		26.918	43.168	4.875	1.00 13.75	A
	15	ATOM	1781	CA	GLU A	244	28.302	42.720	4.789	1.00 13.31	Α
		MOTA	1782	CB	GLU A	244	28.702	41.897	6.017	1.00 13.04	А
		MOTA	1783	CG	GLU A	244	28.891	42.777	7.249	1.00 12.64	A
		ATOM	1784	CD	GLU A	244	29.323	42.010	8.476	1.00 13.11	Α
g rang		ATOM	1785	OE1	GLU A	244	28.806	40.897	8.699	1.00 12.89	Α
	20	ATOM	1786		GLU Z		30.173	42.532	9.225	1.00 13.62	Α
₹ <u>,</u> ,,,,,,,		ATOM	1787	С	GLU Z		28.326	41.893	3.522	1.00 13.46	А
Ū		ATOM	1788	Ō	GLU Z		27.505	40.992	3.344	1.00 13.61	А
M		ATOM	1789	N		A 245	29.256	42.215	2.631	1.00 13.16	А
		ATOM	1790	CA		A 245	29.330	41.534	1.349	1.00 12.82	A
Ŋ	25	ATOM	1791	CB		A 245	28.365	42.226	0.379	1.00 12.71	A
	20	ATOM	1792	CG		1 245	28.495	43.731	0.367	1.00 13.34	A
ijŦ							29.477	44.358	-0.396	1.00 13.34	A
		ATOM	1793		PHE A					1.00 13.20	A
£1		ATOM	1794		PHE A		27.653	44.518	1.152		
	20	ATOM	1795		PHE A		29.620	45.761	-0.377	1.00 14.25	A
ij	30	ATOM	1796		PHE A		27.785	45.915	1.181	1.00 13.45	A
W.		MOTA	1797	CZ		A 245	28.771	46.536	0.416	1.00 13.39	A
į,l.		ATOM	1798	С		4 245	30.732	41.529	0.759	1.00 12.74	A
		ATOM	1799	0		4 245	31.610	42.268	1.202	1.00 12.98	A
		MOTA	1800	N	LEU A		30.934	40.676	-0.239	1.00 12.93	Α
j. ±.,	35	ATOM	1801	CA	LEU A		32.209	40.590	-0.931	1.00 12.80	A
		MOTA	1802	CB	LEU A		32.480	39.143	-1.352	1.00 14.15	A
		MOTA	1803	CG	LEU A	246	32.798	38.226	-0.162	1.00 15.44	A
		ATOM	1804	CD1	LEU A	4 246	32.721	36.755	-0.566	1.00 16.21	Α
		MOTA	1805	CD2	LEU A	4 246	34.186	38.567	0.356	1.00 16.84	A
	40	ATOM	1806	С	LEU A	4 246	32.062	41.506	-2.140	1.00 12.88	A
		ATOM	1807	0	LEU A	246	31.450	41.142	-3.143	1.00 12.86	Α
		ATOM	1808	N		A 247	32.616	42.709	-2.021	1.00 12.15	A
		ATOM	1809	CA		A 247	32.528	43.725	-3.064	1.00 10.93	А
		ATOM	1810	CB		A 247	32.730	45.109	-2.428	1.00 11.30	A
	45	ATOM	1811	CG		247	32.227	46.275	-3.234	1.00 10.64	А
	10	ATOM	1812		TRP A		32.231	47.653	-2.835	1.00 10.92	А
		ATOM	1813		TRP A		31.620	48.394	-3.875	1.00 10.68	A
			1814		TRP A		32.690	48.333	-1.699	1.00 10.84	A
		ATOM					31.638	46.237	-4.465	1.00 10.04	A
	50	ATOM	1815		TRP A						
	50	ATOM	1816		TRP A		31.267	47.509	-4.858	1.00 10.24	A
		ATOM	1817		TRP A		31.455	49.783	-3.809	1.00 11.19	A
		ATOM	1818		TRP A		32.527	49.715	-1.635	1.00 10.19	A
		ATOM	1819		TRP A		31.914	50.424	-2.684	1.00 10.43	A
		MOTA	1820	С		4 247	33.547	43.517	-4.181	1.00 11.11	A
	55	ATOM	1821	0	TRP A	4 247	34.749	43.713	-3.979	1.00 11.48	Α

	ATOM	1822	N	ARG A	248	33.062	43.116	-5.355	1.00 10.75	Α
	ATOM	1823	CA	ARG A		33.929	42.905	-6.509	1.00 10.77	Α
	ATOM	1824	СВ	ARG A	248	33.699	41.518	-7.123	1.00 11.28	Α
	ATOM	1825	CG	ARG A	248	32.347	41.360	-7.812	1.00 12.39	Α
5	ATOM	1826	CD	ARG A	248	32.287	40.064	-8.622	1.00 12.96	Α
	ATOM	1827	NE	ARG A	248	32.307	38.877	-7.771	1.00 13.78	Α
	ATOM	1828	CZ	ARG A	248	32.297	37.627	-8.232	1.00 15.01	Α
	ATOM	1829	NH1	ARG A	248	32.272	37.396	-9.540	1.00 14.24	Α
	ATOM	1830		ARG A		32.303	36.603	-7.387	1.00 15.39	Α
10	ATOM	1831	С	ARG A		33.618	43.973	-7.557	1.00 10.84	Α
	ATOM	1832	Ō	ARG A		32.565	44.613	-7.508	1.00 10.46	Α
	ATOM	1833	N	GLN A		34.531	44.154	-8.504	1.00 10.83	A
	ATOM	1834	CA	GLN A		34.351	45.141	-9.560	1.00 11.65	A
	ATOM	1835	СВ	GLN A		35.678		-10.298	1.00 11.30	А
15	ATOM	1836	CG	GLN A		36.810	45.827	-9.377	1.00 11.05	А
10	ATOM	1837	CD	GLN A		36.444	47.085	-8.598	1.00 11.05	A
	ATOM	1838	OE1	GLN A		36.457	47.098	-7.361	1.00 12.77	Α
	ATOM	1839	NE2	GLN A		36.111	48.148	-9.320	1.00 9.23	A
	ATOM	1840	C	GLN A		33.256		-10.524	1.00 12.10	A
20	ATOM	1841	0	GLN A		33.049		-10.725	1.00 11.94	A
20	ATOM	1842	N	ILE A		32.553		-11.122	1.00 12.93	A
	ATOM	1843	CA	ILE A		31.453		-12.026	1.00 13.51	A
	ATOM	1844	CB	ILE A		30.767		-12.572	1.00 13.77	A
	ATOM	1845		ILE A		30.103		-11.428	1.00 13.59	A
25	ATOM	1845		ILE A		31.785		-13.296	1.00 13.49	A
25	ATOM	1847	CD1	ILE A		31.191		-13.837	1.00 14.87	A
	ATOM	1848	C	ILE A		31.782		-13.208	1.00 14.67	A
				ILE A		30.896		-13.721	1.00 14.61	A
	MOTA	1849	0	TRP A		33.043		-13.626	1.00 15.25	A
30	ATOM	1850	N	TRP A		33.455		-14.761	1.00 16.73	A
30	ATOM	1851	CA	TRP A		34.444		-15.625	1.00 16.94	A
	ATOM	1852	CB			35.745		-14.923	1.00 10.34	A
	ATOM	1853	CG	TRP A		36.159		-14.196	1.00 17.70	A
	ATOM	1854	CD2	TRP A					1.00 17.86	A
25	ATOM	1855	CE2	TRP A		37.412		-13.618	1.00 17.30	A
35	ATOM	1856		TRP A		35.591		-13.974	1.00 17.14	A
	ATOM	1857		TRP A		36.738		-14.765	1.00 17.65	A
	ATOM	1858	NE1			37.740		-13.981	1.00 17.83	A
	ATOM	1859		TRP A		38.108		-12.830	1.00 17.71	A
40	ATOM	1860		TRP A		36.282		-13.191	1.00 17.37	_
40	MOTA	1861		TRP A		37.529		-12.628		A
	ATOM	1862	С	TRP A		34.121		-14.344	1.00 18.00	A
	ATOM	1863	0	TRP A		34.454		-15.194	1.00 18.22	A
	ATOM	1864	N	ASP A		34.325		-13.043	1.00 18.23	A
4 ==	ATOM	1865	CA	ASP A		34.996		-12.499	1.00 19.34	A
45	ATOM	1866	СВ	ASP A		35.549		-11.110	1.00 18.94	A
	MOTA	1867	CG	ASP A		36.320		-10.484	1.00 20.28	A
	ATOM	1868		ASP A		36.654		-11.207	1.00 20.52	A
	MOTA	1869		ASP A		36.596		-9.267	1.00 18.06	A
	MOTA	1870	С	ASP A		34.121		-12.436	1.00 19.79	A
50	MOTA	1871	0	ASP A		33.323		-11.520	1.00 19.33	A
	MOTA	1872	N	ASN A		34.292		-13.417	1.00 21.32	A
	MOTA	1873	CA	ASN A		33.513		-13.487	1.00 22.54	Α
	ATOM	1874	CB	ASN A	253	33.580		-14.907	1.00 24.16	А
	ATOM	1875	CG	ASN A	253	32.717		-15.085	1.00 25.52	Α
55	ATOM	1876	OD1	ASN A	253	33.192	34.684	-15.530	1.00 26.98	A

	ATOM	1877	ND2	ASN	Α	253	31.439	35.845	-14.744	1.00	25.84	А
	ATOM	1878	С			253	33.980	36.456	-12.490	1.00	22.75	Α
	ATOM	1879	0	ASN	Α	253	33.162	35.747	-11.903	1.00	23.28	А
	ATOM	1880	N	LYS	Α	254	35.290	36.355	-12.295		23.59	А
5	ATOM	1881	CA	LYS	Α	254	35.855	35.357	-11.385	1.00	24.65	Α
	ATOM	1882	СВ	LYS	Α	254	37.324	35.101	-11.744	1.00	26.71	А
	MOTA	1883	CG	LYS	Α	254	37.939	33.877	-11.070	1.00	28.98	Α
	MOTA	1884	CD	LYS	Α	254	39.324		-11.640	1.00	30.99	Α
	ATOM	1885	CE	LYS	A	254	39.916		-11.055	1.00	31.41	Α
10	MOTA	1886	NZ	LYS	Α	254	40.115	32.383	-9.580		32.32	Α
	MOTA	1887	С	LYS	Α	254	35.741	35.749	-9.912		24.07	А
	MOTA	1888	0	LYS	Α	254	35.532	34.893	-9.048		23.89	А
	MOTA	1889	N	GLY	Α	255	35.888	37.040	-9.628		23.13	A
	MOTA	1890	CA	GLY	Α	255	35.788	37.510	-8.257		22.09	A
15	MOTA	1891	С			255	37.110	37.715	-7.534		21.87	А
	MOTA	1892	0	GLY			37.128	37.864	-6.313		21.29	Α
	MOTA	1893	N			256	38.216	37.735	-8.270		21.62	Α
	MOTA	1894	CA	ASP			39.525	37.919	-7.648		21.86	Α
••	MOTA	1895	CB	ASP			40.647	37.613	-8.645		25.21	A
20	ATOM	1896	CG	ASP			40.638	36.171	-9.112		28.23	A
	MOTA	1897		ASP			40.472	35.269	-8.260		30.23	A
	ATOM	1898		ASP			40.808		-10.329		30.53	A
	ATOM	1899	С			256	39.741	39.319	-7.074		20.26	A
0=	ATOM	1900	0	ASP			40.663	39.532	-6.291		19.39	A
25	ATOM	1901	N			257	38.902	40.274	-7.465		17.90	A
	ATOM	1902	CA			257	39.037	41.639	-6.958		16.74	A
	MOTA	1903	CB			257	38.540	42.668	-7.985		16.55	A
	ATOM	1904	OG1			257	37.135	42.482	-8.200		16.27	A
20	ATOM	1905	CG2			257	39.283	42.510	-9.303 5.675		16.66 16.22	A A
30	ATOM	1906	С			257	38.233	41.848	-5.675		15.96	A
	ATOM	1907	0			257	38.341	42.894 40.847	-5.028 -5.315		14.88	A
	ATOM	1908	N			258	37.434 36.578	40.847	-4.137		14.24	A
	ATOM	1909	CA	ALA			35.847	39.583	-3.957		14.17	A
35	ATOM	1910 1911	CB C			258 258	37.267	41.296	-2.831		13.50	A
33	ATOM	1911	0	ALA			38.358	40.821	-2.524		13.51	A
	ATOM ATOM	1913	N			259	36.601	42.159	-2.068		12.70	A
	ATOM	1913	CA	LEU			37.092	42.610	-0.768		12.24	A
	ATOM	1915	CB			259	37.696	44.016	-0.867		11.63	A
40	ATOM	1916		LEU					0.408		11.76	A
10	ATOM	1917		LEU			39.562	43.608	0.743		11.66	A
	ATOM	1918		LEU			38.849		0.220		12.00	А
	ATOM	1919	C			259	35.901	42.634	0.186		11.86	А
	ATOM	1920	0			259	34.875	43.245	-0.111		11.05	А
45	ATOM	1921	N			260	36.032	41.959	1.324		11.65	А
10	ATOM	1922	CA			260	34.951	41.921	2.303		11.54	А
	ATOM	1923	СВ			260	35.345	41.055	3.501		11.54	А
	ATOM	1924	CG			260	34.245	40.882	4.503		12.18	А
	ATOM	1925		PHE			33.242	39.934	4.301		12.98	А
50	ATOM	1926		PHE			34.195	41.679	5.640	1.00	12.01	Α
	ATOM	1927		PHE			32.209	39.786	5.218	1.00	12.59	А
	ATOM	1928		PHE			33.167	41.541	6.565	1.00	12.09	А
	ATOM	1929	CZ			260	32.170	40.593	6.355		12.78	Α
	ATOM	1930	С			260	34.627		2.773		11.53	Α
55	ATOM	1931	0			260	35.507	44.076	3.222	1.00	11.50	А

	ATOM	1932	N	THR	Α	261	33.356	43.707	2.680	1.00 11.	54 A	Ą
	ATOM	1933	CA	THR	Α	261	32.931	45.044	3.061	1.00 11.	72 I	4
	ATOM	1934	CB	THR	Α	261	32.464	45.834	1.822	1.00 12.	10 A	4
	ATOM	1935	OG1	THR	Α	261	33.510	45.841	0.842	1.00 12.	08 <i>I</i>	Ą
5	MOTA	1936	CG2	THR	Α	261	32.114	47.273	2.195	1.00 12.	27 I	Ą
	ATOM	1937	С	THR	Α	261	31.796	45.041	4.075	1.00 11.	96 <i>I</i>	4
	ATOM	1938	0	THR	Α	261	30.841	44.275	3.954	1.00 11.	91 <i>I</i>	Ą
	ATOM	1939	N	HIS	Α	262	31.909	45.918	5.065	1.00 11.	38 <i>I</i>	4
	ATOM	1940	CA	HIS	Α	262	30.894	46.069	6.095	1.00 11.	42 A	Ą
10	ATOM	1941	CB	HIS	Α	262	31.522	45.971	7.485	1.00 12.	15 <i>F</i>	1
	ATOM	1942	CG	HIS	Α	262	30.589	46.339	8.598	1.00 12.	10 F	Ą
	MOTA	1943	CD2	HIS	Α	262	30.188	47.547	9.065	1.00 12.	09 <i>I</i>	4
	MOTA	1944	ND1	HIS	Α	262	29.950	45.398	9.376	1.00 11.	76 <i>I</i>	4
	MOTA	1945	CE1	HIS	Α	262	29.199	46.010	10.277	1.00 12.		1
15	MOTA	1946	NE2	HIS			29.327	47.314	10.111	1.00 12.	08 <i>P</i>	Ŧ.
	ATOM	1947	С	HIS	Α	262	30.271	47.451	5.945	1.00 11.	76 I	Ą
	ATOM	1948	0			262	30.965	48.463	6.052	1.00 10.		1
	MOTA	1949	N	MET	Α	263	28.968	47.491	5.689	1.00 11.	17 P	1
	MOTA	1950	CA			263	28.267	48.759	5.561	1.00 12.		
20	MOTA	1951	CB			263	27.257	48.715	4.410	1.00 11.		
	MOTA	1952	CG	MET	Α	263	26.484	50.024	4.207	1.00 12.		
	ATOM	1953	SD			263	25.055	49.848	3.084	1.00 13.		
	ATOM	1954	CE			263	25.884	49.600	1.504	1.00 12.		
	MOTA	1955	С			263	27.520	48.990	6.868	1.00 12.		
25	ATOM	1956	0			263	26.764	48.122	7.314	1.00 11.		
	MOTA	1957	N			264	27.740	50.143	7.492	1.00 12.		
	MOTA	1958	CA			264	27.038	50.454	8.730	1.00 13.		
	ATOM	1959	CB			264	27.631	51.712	9.366	1.00 15.		
20	ATOM	1960	CG			264	29.035	51.450	9.916	1.00 17.		
30	MOTA	1961	SD	MET			29.953	52.918	10.450	1.00 22.		
	MOTA	1962	CE	MET			28.945	53.487	11.811	1.00 21.		
	ATOM	1963	C	MET			25.573	50.613	8.326	1.00 14.		
	MOTA	1964	0	MET			25.275	51.066	7.220	1.00 14.		
25	MOTA	1965	N			265	24.640	50.241	9.216	1.00 13.		
35	ATOM	1966	CD			265	24.882	49.677	10.559	1.00 13.		
	MOTA	1967	CA			265	23.203	50.312	8.938	1.00 14.		
	ATOM	1968	CB			265	22.661	49.173	9.787	1.00 14.		
	ATOM	1969	CG			265	23.456	49.357	11.058	1.00 14.		
40	ATOM	1970	C	PRO			22.424	51.589	9.194	1.00 14.		
40	ATOM	1971	0	PRO			21.335			1.00 14.		, j
	ATOM	1972	N			266	22.973	52.482	10.001	1.00 14.		
	ATOM	1973	CA			266	22.229		10.359	1.00 14. 1.00 12.		
	ATOM	1974	CB			266	22.185	53.727	11.889 12.517	1.00 12.		
45	ATOM	1975	CG			266	21.650	52.451	13.655	1.00 13.		
43	ATOM	1976 1977		PHE			22.244 20.555	51.907 51.792	11.957	1.00 12.		
	ATOM	1977		PHE			20.333	50.723	14.224	1.00 12.		
	ATOM			PHE			20.055	50.723	12.515	1.00 13.		
	MOTA	1979		PHE								
50	ATOM ATOM	1980 1981	CZ C			266 266	20.655 22.600	50.073 55.025	13.651 9.743	1.00 12. 1.00 14.		
50		1981	0	PHE			23.519	55.139	8.930	1.00 14.		
	ATOM ATOM	1982	N			267	23.319	56.038	10.142	1.00 14.		
	ATOM	1983	CA	TYR			21.041	57.413	9.655	1.00 14.		
	ATOM	1985	CB	TYR			20.829	58.232	10.294	1.00 14.		
55	ATOM	1986	CG	TYR			20.825		10.234	1.00 15.		
	11100	100	-0	T 11/	~1	201	20.003	55.125	10.007	1.00 10.		-

	ATOM	1987	CD1	TYR	Α	267	20.538	60.310	8.877	1.00	17.30	А
	ATOM	1988	CE1	TYR	Α	267	20.534	61.705	8.717	1.00	17.59	Α
	ATOM	1989	CD2	TYR	Α	267	21.239	60.571	11.149	1.00	16.80	Α
	ATOM	1990	CE2	TYR	Α	267	21.242	61.954	11.001	1.00	17.38	Α
5	ATOM	1991	CZ	TYR	Α	267	20.887	62.514	9.789	1.00	18.05	Α
	ATOM	1992	ОН	TYR	Α	267	20.876	63.883	9.659	1.00	18.70	A
	ATOM	1993	С	TYR	Α	267	23.293	58.120	9.861	1.00	14.81	Α
	ATOM	1994	0	TYR	Α	267	23.699	58.943	9.035	1.00	13.98	Α
	ATOM	1995	N	SER	Α	268	23.977	57.810	10.955	1.00	14.04	Α
10	MOTA	1996	CA	SER	Α	268	25.247	58.465	11.242	1.00	14.27	A
	ATOM	1997	СВ	SER	Α	268	24.980	59.724	12.075	1.00	14.25	Α
	ATOM	1998	OG	SER	Α	268	26.173	60.276	12.600	1.00	14.87	Α
	ATOM	1999	С	SER			26.230	57.559	11.972	1.00	13.84	А
	ATOM	2000	0	SER	Α	268	25.871	56.468	12.426	1.00	13.95	Α
15	ATOM	2001	N	TYR			27.477	58.011	12.072	1.00	13.39	Α
	ATOM	2002	CA	TYR			28.503	57.255	12.773	1.00	12.49	Α
	ATOM	2003	СВ			269	29.861	57.390	12.066	1.00	11.88	Α
	ATOM	2004	CG			269	30.310	58.820	11.840	1.00	11.45	Α
	ATOM	2005	CD1				30.728	59.623	12.903	1.00	10.84	А
20	ATOM	2006		TYR			31.110	60.956	12.698	1.00	12.04	Α
	ATOM	2007		TYR			30.288	59.378	10.560	1.00	11.68	Α
	ATOM	2008	CE2	TYR			30.666	60.704	10.343	1.00	12.15	А
	ATOM	2009	CZ			269	31.070	61.487	11.411	1.00	11.80	А
	ATOM	2010	ОН			269	31.402	62.805	11.190	1.00	12.70	A
25	ATOM	2011	C			269	28.625	57.739	14.218	1.00		Α
	ATOM	2012	Ö			269	29.446	57.222	14.974	1.00		Α
	ATOM	2013	N	ASP			27.821	58.729	14.607	1.00		А
	ATOM	2014	CA	ASP			27.897	59.218	15.984	1.00		А
	ATOM	2015	СВ	ASP			27.202	60.585	16.151	1.00		А
30	ATOM	2016	CG	ASP			25.709	60.549	15.862	1.00		А
	ATOM	2017		ASP			25.112	59.453	15.808	1.00		Α
	ATOM	2018		ASP			25.129	61.649	15.708	1.00	15.21	Α
	ATOM	2019	C	ASP			27.312	58.179	16.936	1.00		Α
	ATOM	2020	Ō	ASP			26.657	57.232	16.504	1.00	12.66	Α
35	ATOM	2021	N	ILE			27.556	58.343	18.230	1.00	12.62	Α
	ATOM	2022	CA	ILE			27.082	57.360	19.192	1.00	12.36	Α
	ATOM	2023	СВ	ILE			27.586	57.716	20.610	1.00		Α
	ATOM	2024		ILE			27.051	56.718	21.634	1.00		Α
	ATOM	2025		ILE			29.120	57.666	20.615	1.00		Α
40	ATOM	2026		ILE			29.774	58.239	21.866	1.00		Α
	ATOM	2027	C	ILE			25.570	57.113	19.170	1.00	12.34	Α
	MOTA	2028	Ō			271	25.131	55.966	19.244	1.00		Α
	ATOM	2029	N			272	24.754	58.172	19.049	1.00		А
	ATOM	2030	CD			272	25.057	59.612	19.135	1.00		Α
45	ATOM	2031	CA			272	23.305	57.943	19.022	1.00		A
10	ATOM	2032	СВ			272	22.737	59.352	18.875	1.00		А
	ATOM	2033	CG			272	23.745	60.190	19.610	1.00		Α
	ATOM	2034	C			272	22.856	57.017	17.881	1.00		A
	ATOM	2035	0			272	21.801	56.394	17.966	1.00		A
50	ATOM	2036	N			273	23.661	56.918	16.825	1.00		A
30	ATOM	2037	CA	HIS			23.313	56.077	15.678	1.00		A
	ATOM	2037	CB			273	23.273	56.938	14.412	1.00		A
	ATOM	2036	CG			273	22.261	58.040	14.473	1.00		A
	ATOM	2039		HIS			22.363	59.319	14.904	1.00		A
55	ATOM	2040		HIS			20.940	57.859	14.121	1.00		A
	ATON	2011	1		4.3	2.5	20.510	2			-	

	ATOM	2042	CE1	HIS	Α	273	20.273	58.979	14.333	1.00 13.45	Α
	ATOM	2043	NE2	HIS	Α	273	21.112	59.881	14.809	1.00 16.34	А
	MOTA	2044	С	HIS	Α	273	24.233	54.876	15.457	1.00 13.37	Α
	MOTA	2045	0	HIS	Α	273	24.334	54.360	14.339	1.00 12.85	Α
5	ATOM	2046	N	THR	А	274	24.895	54.421	16.518	1.00 13.98	Α
	MOTA	2047	CA	THR	Α	274	25.788	53.276	16.395	1.00 13.68	Α
	ATOM	2048	CB	THR	Α	274	27.274	53.726	16.415	1.00 13.90	Α
	MOTA	2049	OG1	THR	Α	274	27.480	54.682	17.459	1.00 13.47	Α
	MOTA	2050	CG2	THR	Α	274	27.656	54.346	15.079	1.00 12.79	Α
10	ATOM	2051	С	THR	Α	274	25.586	52.153	17.420	1.00 14.02	Α
	MOTA	2052	0	THR	Α	274	26.143	51.069	17.257	1.00 14.90	Α
	MOTA	2053	N	CYS	Α	275	24.795	52.390	18.466	1.00 14.38	Α
	ATOM	2054	CA	CYS	Α	275	24.569	51.344	19.471	1.00 14.59	Α
	ATOM	2055	С	CYS	Α	275	23.380	50.457	19.110	1.00 14.87	A
15	ATOM	2056	0	CYS			23.303	49.298	19.525	1.00 14.62	Α
	ATOM	2057	СВ	CYS			24.331	51.965	20.851	1.00 15.94	Α
	ATOM	2058	SG	CYS			22.592	52.094	21.403	1.00 16.28	Α
	ATOM	2059	N	GLY			22.456	51.017	18.337	1.00 14.95	Α
	ATOM	2060	CA			276	21.266	50.290	17.940	1.00 15.51	Α
20	ATOM	2061	С			276	20.345	51.178	17.124	1.00 15.57	Α
	ATOM	2062	0			276	20.714	52.312	16.811	1.00 15.76	Α
	ATOM	2063	N			277	19.131	50.704	16.783	1.00 14.99	Α
	ATOM	2064	CD			277	18.615	49.379	17.174	1.00 15.17	A
	ATOM	2065	CA			277	18.129	51.430	15.993	1.00 15.46	Α
25	ATOM	2066	СВ			277	17.105	50.343	15.667	1.00 15.74	Α
	ATOM	2067	CG			277	17.128	49.514	16.907	1.00 14.95	A
	ATOM	2068	C			277	17.462	52.650	16.626	1.00 15.44	А
	ATOM	2069	Ö			277	16.880	53.468	15.915	1.00 15.14	А
	ATOM	2070	N			278	17.536	52.777	17.948	1.00 15.72	А
30	ATOM	2071	CA	ASP			16.887	53.899	18.628	1.00 16.37	Α
50	ATOM	2072	CB			278	16.015	53.382	19.778	1.00 16.45	А
	ATOM	2072	CG			278	15.089	54.449	20.333	1.00 17.33	Α
	ATOM	2073		ASP			15.253	55.635	19.972	1.00 17.28	А
	ATOM	2075		ASP			14.201	54.102	21.134	1.00 16.81	А
35	ATOM	2076	C			278	17.865	54.934	19.174	1.00 16.20	А
33	ATOM	2077	0			278	18.482	54.729	20.219	1.00 15.93	А
	ATOM	2078	N			279	18.003	56.073	18.480	1.00 16.64	А
	ATOM	2079	CD			279	17.320	56.464	17.234	1.00 16.82	А
	ATOM	2080	CA			279	18.921	57.126	18.928	1.00 17.09	A
40	ATOM	2081	CB			279	18.850			1.00 16.72	А
40	ATOM	2082	CG			279	17.464	57.968	17.253	1.00 17.23	А
	ATOM	2083	C			279	18.571	57.723	20.291	1.00 17.34	А
	ATOM	2084	0			279	19.447	58.221	20.996	1.00 17.37	А
	ATOM	2085	N			280	17.296	57.676	20.667	1.00 17.71	A
45	ATOM	2085	CA			280	16.887	58.217	21.960	1.00 18.13	A
43		2087	CB			280	15.363	58.214	22.097	1.00 19.17	A
	ATOM	2088	CG			280	14.871	58.892	23.370	1.00 21.45	A
	ATOM	2089	CD			280	13.358	58.837	23.491	1.00 23.26	A
	ATOM					280	12.876	57.413	23.710	1.00 26.06	A
50	ATOM	2090	CE					56.812	24.960	1.00 28.16	A
50	ATOM	2091	NZ			280	13.446	57.389	23.081	1.00 28.10	A
	ATOM	2092	С			280	17.500 17.784	57.902	24.165	1.00 17.02	A
	ATOM	2093	0			280	17.784	56.102	22.819	1.00 10.30	A
	ATOM	2094	N CA			281	18.299	55.215	23.810	1.00 17.07	A
==	ATOM	2095	CA			281		53.748	23.510	1.00 10.41	A
55	MOTA	2096	CB	٧AL	Α	281	17.845	33.140	23.333	1.00 17.50	Λ

									A		_
		ATOM	2097		VAL A		18.577	52.827	24.568	1.00 16.56	A
		MOTA	2098	CG2	VAL A	281	16.334	53.631	23.793	1.00 16.45	А
		MOTA	2099	С	VAL A	281	19.824	55.281	23.705	1.00 16.33	Α
		MOTA	2100	0	VAL A	281	20.522	55.440	24.705	1.00 15.54	Α
	5	ATOM	2101	N	CYS A	282	20.337	55.163	22.484	1.00 15.75	Α
	•	ATOM	2102	CA	CYS A		21.780	55.198	22.266	1.00 16.11	Α
		ATOM	2103	С	CYS A		22.426	56.483	22.773	1.00 16.13	A
		ATOM	2104	Ö	CYS A		23.551	56.463	23.282	1.00 16.09	Α
		ATOM	2105	СВ	CYS A		22.096	55.029	20.780	1.00 15.93	А
	10		2106	SG	CYS A		21.730	53.383	20.093	1.00 16.46	А
	10	ATOM		N	CYS A		21.720	57.600	22.640	1.00 15.64	A
		ATOM	2107				22.271	58.870	23.088	1.00 16.03	A
		ATOM	2108	CA	CYS A				24.582	1.00 16.35	A
		ATOM	2109	C	CYS A		22.575	58.830		1.00 16.33	A
	45	MOTA	2110	0	CYS A		23.480	59.514	25.061		
	15	MOTA	2111	CB	CYS A		21.309	60.023	22.785	1.00 17.15	A
		MOTA	2112	SG	CYS A		22.169	61.628	22.845	1.00 17.80	A
		ATOM	2113	N	GLN A		21.820	58.019	25.315	1.00 16.07	A
		MOTA	2114	CA	GLN A		22.013	57.898	26.754	1.00 16.46	Α
		MOTA	2115	CB	GLN A	284	20.823	57.169	27.382	1.00 16.54	Α
Ü	20	MOTA	2116	CG	GLN A	284	19.513	57.918	27.223	1.00 17.45	Α
Ü		MOTA	2117	CD	GLN A	284	18.334	57.129	27.737	1.00 17.46	Α
iji		MOTA	2118	OE1	GLN A	284	18.291	56.743	28.907	1.00 18.95	Α
1,3 s		ATOM	2119	NE2	GLN A	284	17.367	56.880	26.865	1.00 18.72	A
		MOTA	2120	С	GLN A	284	23.300	57.168	27.095	1.00 16.25	Α
IJ	25	ATOM	2121	0	GLN A		23.680	57.077	28.262	1.00 16.37	Α
190		ATOM	2122	N	PHE A		23.978	56.654	26.075	1.00 15.74	A
177		ATOM	2123	CA	PHE A		25.216	55.938	26.309	1.00 15.95	A
81		ATOM	2124	СВ	PHE A		25.060	54.495	25.821	1.00 16.02	А
		ATOM	2125	CG	PHE A		24.080	53.705	26.652	1.00 16.47	А
	30	ATOM	2126		PHE A		24.487	53.090	27.832	1.00 16.88	Α
1,12	50	ATOM	2127		PHE A		22.732	53.660	26.306	1.00 17.20	А
Ŋ.			2128		PHE A		23.566	52.444	28.664	1.00 17.28	A
i.4.		ATOM	2129		PHE A		21.799	53.017	27.129	1.00 18.31	A
		MOTA			PHE A		22.220	52.409	28.312	1.00 18.03	A
j.d.	35	ATOM	2130	CZ	PHE A		26.439	56.637	25.730	1.00 15.58	A
7	33	ATOM	2131	С				56.025	25.730	1.00 15.30	A
		ATOM	2132	0	PHE A				25.496	1.00 15.20	A
		MOTA	2133	N	ASP A			57.938	25.430	1.00 15.00	A
		MOTA	2134	CA	ASP A			58.802	23.875	1.00 15.20	A
	40	MOTA	2135	CB	ASP A			59.691			
	40	MOTA	2136		ASP A					1.00 15.24	A
		ATOM	2137		ASP A			60.683	24.074	1.00 15.09	A
		ATOM	2138	OD2	ASP A			61.247	22.331	1.00 14.65	A
		ATOM	2139	С	ASP A			59.644	26.296	1.00 15.45	A
		MOTA	2140	0	ASP A			60.677	26.468	1.00 15.12	A
	45	MOTA	2141	N	PHE A			59.189	27.186	1.00 15.64	A
		ATOM	2142	CA	PHE A	A 287		59.873	28.449	1.00 16.17	A
		MOTA	2143	CB	PHE I	A 287	29.340	58.939	29.411	1.00 15.78	А
		ATOM	2144	CG	PHE A	A 287	28.596	57.652	29.661	1.00 15.58	А
		ATOM	2145	CD1	PHE A	A 287	28.811	56.538	28.856	1.00 14.97	А
	50	ATOM	2146		PHE A			57.584	30.646	1.00 15.57	Α
		ATOM	2147		PHE			55.378	29.025	1.00 15.24	Α
		ATOM	2148		PHE			56.428	30.821	1.00 15.22	А
		ATOM	2149	CZ		287		55.323	30.008	1.00 15.06	А
		ATOM	2150	C	PHE A			61.258	28.424	1.00 17.09	А
	55	ATOM	2151	0		A 287		61.850	29.471	1.00 16.59	A
		AIOM	Z 1 J 1	J	r 111	. 201	27.711	51.550			

	ATOM	2152	N	LYS	Α	288	29.493	61.788	27.232	1.00 17.81	А
	ATOM	2153	CA	LYS			30.053	63.131	27.139	1.00 17.75	Α
	ATOM	2154	СВ	LYS			30.972	63.261	25.912	1.00 17.97	A
	ATOM	2155	CG	LYS			31.716	64.598	25.846	1.00 17.53	Α
5	ATOM	2156	CD	LYS			32.660	64.693	24.649	1.00 16.44	A
_	ATOM	2157	CE	LYS	Α	288	33.438	66.003	24.686	1.00 17.49	Α
	ATOM	2158	NZ	LYS			34.386	66.162	23.535	1.00 17.95	А
	ATOM	2159	С	LYS			28.900	64.132	27.025	1.00 18.16	Α
	ATOM	2160	0	LYS			29.121	65.337	26.953	1.00 17.87	Α
10	ATOM	2161	N	ARG			27.667	63.634	27.027	1.00 19.07	Α
	ATOM	2162	CA	ARG			26.507	64.513	26.891	1.00 20.41	Α
	ATOM	2163	СВ	ARG			25.549	63.961	25.830	1.00 19.03	Α
	ATOM	2164	CG	ARG			26.173	63.698	24.468	1.00 17.69	A
	MOTA	2165	CD	ARG			25.092	63.465	23.431	1.00 17.66	А
15	ATOM	2166	NE	ARG			25.623	63.059	22.132	1.00 16.20	Α
	ATOM	2167	CZ	ARG			25.144	63.492	20.970	1.00 16.63	A
	ATOM	2168		ARG			24.132	64.353	20.949	1.00 15.95	A
	ATOM	2169		ARG			25.660	63.052	19.831	1.00 15.30	Α
	ATOM	2170	С	ARG			25.711	64.769	28.171	1.00 22.16	Α
20	ATOM	2171	0	ARG			24.487	64.884	28.118	1.00 22.14	Α
	ATOM	2172	N	MET			26.381	64.881	29.312	1.00 24.35	Α
	MOTA	2173	CA	MET			25.653	65.113	30.556	1.00 26.07	Α
	ATOM	2174	СВ	MET	Α	290	26.232	64.241	31.677	1.00 27.03	Α
	MOTA	2175	CG	MET			26.008	62.749	31.441	1.00 27.88	Α
25	MOTA	2176	SD	MET	Α	290	26.517	61.649	32.787	1.00 29.89	Α
	MOTA	2177	CE	MET	Α	290	28.257	61.423	32.409	1.00 28.24	Α
	ATOM	2178	С	MET	Α	290	25.566	66.577	30.999	1.00 26.78	Α
	MOTA	2179	0	MET	Α	290	24.848	66.894	31.953	1.00 28.04	A
	MOTA	2180	N	GLY	Α	291	26.280	67.469	30.311	1.00 26.38	A
30	ATOM	2181	CA	GLY	Α	291	26.213	68.879	30.666	1.00 25.03	A
	ATOM	2182	С	GLY	Α	291	27.500	69.688	30.697	1.00 24.62	Α
	ATOM	2183	0	GLY	Α	291	27.636	70.675	29.967	1.00 23.97	А
	ATOM	2184	N	SER	Α	292	28.442	69.282	31.546	1.00 22.93	A
	MOTA	2185	CA	SER	Α	292	29.711	69.989	31.691	1.00 21.82	A
35	MOTA	2186	CB	SER	Α	292	30.584	69.289	32.734	1.00 22.87	A
	ATOM	2187	OG	SER			30.945	67.989	32.304	1.00 23.87	Α
	ATOM	2188	С			292	30.512	70.161	30.399	1.00 20.97	Α
	MOTA	2189	0			292	31.381	71.032	30.321	1.00 19.65	А
	MOTA	2190	N	PHE			30.231	69.333	29.394	1.00 19.55	Α
40	ATOM	2191	CA			293	30.942	69.418	28.119	1.00 19.27	A
	ATOM	2192	CB			293	31.173		27.530	1.00 19.08	A
	ATOM	2193	CG			293	32.119	67.173	28.329	1.00 18.85	A
	ATOM	2194		PHE			31.641	66.288	29.286	1.00 19.32	A
	ATOM	2195		PHE			33.491	67.266	28.127	1.00 18.76	A
45	MOTA	2196		PHE			32.517	65.501	30.032	1.00 19.71	A
	ATOM	2197		PHE			34.379	66.487	28.866	1.00 19.38	A
	MOTA	2198	CZ			293	33.892	65.601	29.821	1.00 19.67	A
	MOTA	2199	С			293	30.204	70.271	27.091	1.00 19.29	Α
	MOTA	2200	0			293	30.661	70.420	25.954	1.00 17.76	A
50	MOTA	2201	N	GLY			29.063	70.825	27.489	1.00 19.35	A
	MOTA	2202	CA	GLY			28.295	71.652	26.576	1.00 19.35	A
	MOTA	2203	С	GLY			27.538	70.859	25.525	1.00 19.82	A
	MOTA	2204	0	GLY			27.101	71.414	24.515	1.00 20.44	A
	MOTA	2205	N	LEU			27.386	69.558	25.757	1.00 19.26	A
55	ATOM	2206	CA	LEU	A	295	26.670	68.694	24.826	1.00 18.91	А

	ATOM	2207	СВ	LEU	A	295	27.576	67.555	24.344	1.00 19.27	A
	ATOM	2208	CG	LEU			28.849	67.928	23.578	1.00 19.09	Α
	ATOM	2209		LEU			29.678	66.677	23.321	1.00 19.10	A
	ATOM	2210	CD2	LEU			28.479	68.607	22.261	1.00 19.06	Α
5	ATOM	2211	С	LEU			25.448	68.108	25.525	1.00 19.05	A
	MOTA	2212	0	LEU			25.417	68.003	26.749	1.00 19.27	A
	MOTA	2213	N	SER	Α	296	24.445	67.731	24.742	1.00 19.20	A
	MOTA	2214	CA	SER	Α	296	23.229	67.149	25.294	1.00 19.84	A
	MOTA	2215	CB	SER			22.259	68.252	25.732	1.00 19.56	A
10	MOTA	2216	OG	SER			21.869	69.062	24.637	1.00 19.91	A
	MOTA	2217	С	SER			22.564	66.263	24.253	1.00 19.90	A
	MOTA	2218	0			296	23.019	66.184	23.110	1.00 19.47	A
	ATOM	2219	N	CYS			21.488	65.597	24.661	1.00 20.34	A
	MOTA	2220	CA	CYS	Α	297	20.741	64.713	23.776	1.00 20.55	A
15	ATOM	2221	С	CYS			19.469	65.383	23.268	1.00 21.46	A
	MOTA	2222	0	CYS	Α	297	18.579	65.721	24.047	1.00 22.22	A
	MOTA	2223	CB	CYS			20.394	63.415	24.509	1.00 20.17	A
	MOTA	2224	SG			297	21.832	62.324	24.724	1.00 19.68	A
	ATOM	2225	N	PRO	A	298	19.368	65.583	21.946	1.00 21.80	A
20	MOTA	2226	CD	PRO	A	298	20.350	65.215	20.909	1.00 21.82	A
	MOTA	2227	CA			298	18.192	66.219	21.346	1.00 22.23	A
	MOTA	2228	CB	PRO	Α	298	18.583	66.349	19.875	1.00 22.37	A
	MOTA	2229	CG	PRO	Α	298	19.498	65.187	19.664	1.00 22.37	A
	MOTA	2230	С			298	16.892	65.441	21.541	1.00 22.49	A
25	MOTA	2231	0			298	15.805	66.004	21.411	1.00 22.25	A
	MOTA	2232	N			299	17.006	64.153	21.856	1.00 22.24	A
	MOTA	2233	CA			299	15.829	63.316	22.069	1.00 22.85	A
	MOTA	2234	CB			299	16.174	61.845	21.781	1.00 21.59	A
	ATOM	2235	CG			299	16.531	61.619	20.329	1.00 20.98	A
30	MOTA	2236	CD2			299	17.846	61.653	19.747	1.00 20.85	A
	ATOM	2237	CE2			299	17.691	61.495	18.351	1.00 20.88	A
	MOTA	2238	CE3	TRP			19.137	61.808	20.270	1.00 20.11	A
	MOTA	2239	CD1			299	15.660	61.438	19.288	1.00 20.52	A
	MOTA	2240	NE1			299	16.350	61.364	18.098	1.00 21.16	A
35	MOTA	2241	CZ2			299	18.781	61.488	17.470	1.00 21.31	A
	MOTA	2242	CZ3			299	20.221	61.801	19.394	1.00 21.02	A
	MOTA	2243	CH2			299	20.033	61.642	18.008	1.00 20.63	A
	MOTA	2244	С			299	15.264	63.495	23.483	1.00 23.67	A
40	ATOM	2245	0			299	14.364	62.767	23.903	1.00 23.41	A
40	MOTA	2246	N			300		64.470		1.00 24.99	A
	MOTA	2247	CA			300	15.363	64.832	25.558	1.00 25.96	A
	MOTA	2248	CB			300	13.856	65.087	25.543	1.00 27.34	A
	ATOM	2249	CG			300	13.416	66.108	24.516	1.00 29.33	A
45	MOTA	2250	CD			300	11.914	66.327	24.577	1.00 31.29	A
45	ATOM	2251	CE			300	11.454	67.255	23.468	1.00 32.58	A
	ATOM	2252	ΝZ			300	12.209	68.536	23.490	1.00 34.20	A
	ATOM	2253	С			300	15.686	63.912	26.735	1.00 25.72	A
	MOTA	2254	0			300	15.271	64.187	27.859	1.00 25.71	A
	ATOM	2255	N			301	16.401	62.821	26.493	1.00 25.17	A
50	ATOM	2256	CA			301	16.765	61.917	27.576	1.00 24.82	A
	ATOM	2257	СВ			301	16.254	60.484	27.323	1.00 25.15	A
	ATOM	2258		VAL			16.543	59.615	28.533	1.00 24.99	A
	ATOM	2259		VAL			14.760	60.506	27.034	1.00 25.25	A
	ATOM	2260	С			301	18.287	61.906	27.672	1.00 24.84	A
55	MOTA	2261	0	VAL	A	301	18.973	61.397	26.785	1.00 24.60	А

	ATOM	2262	N	PRO	Α	302	18.834	62.476	28.756	1.00 24.68	Α
	ATOM	2263	CD	PRO			18.109	63.142	29.855	1.00 24.61	Α
	ATOM	2264	CA	PRO			20.280	62.547	28.976	1.00 24.22	Α
	ATOM	2265	СВ	PRO			20.403	63.655	30.009	1.00 24.42	Α
5	ATOM	2266	CG	PRO			19.207	63.391	30.875	1.00 24.71	Α
_	ATOM	2267	С	PRO			20.904	61.253	29.470	1.00 23.88	Α
	MOTA	2268	0	PRO			20.224	60.390	30.019	1.00 23.34	Α
	MOTA	2269	N	PRQ			22.219	61.096	29.264	1.00 23.79	Α
	ATOM	2270	CD	PRO			23.170	61.936	28.513	1.00 23.70	А
10	ATOM	2271	CA	PRO			22.853	59.867	29.740	1.00 23.66	Α
	ATOM	2272	СВ	PRO			24.212	59.884	29.043	1.00 23.89	А
	ATOM	2273	CG	PRO			24.507	61.346	28.915	1.00 24.48	А
	ATOM	2274	C	PRO			22.968	59.964	31.258	1.00 24.01	А
	ATOM	2275	Ö	PRO			23.011	61.065	31.815	1.00 23.16	А
15	ATOM	2276	N	ARG			22.997	58.820	31.927	1.00 24.25	Α
10	ATOM	2277	CA	ARG			23.115	58.801	33.378	1.00 25.17	Α
	ATOM	2278	CB	ARG			21.833	58.251	34.013	1.00 26.88	Α
	ATOM	2279	CG	ARG			20.700	59.270	34.090	1.00 29.46	Α
	ATOM	2280	CD	ARG			19.390	58.630	34.533	1.00 32.28	Α
20	ATOM	2281	NE	ARG			18.811	57.784	33.491	1.00 34.83	A
20	ATOM	2282	CZ	ARG			18.400	58.229	32.304	1.00 36.04	A
	ATOM	2283		ARG			18.501	59.518	32.000	1.00 36.26	A
	ATOM	2284		ARG			17.886	57.386	31.419	1.00 37.33	A
		2285	C	ARG			24.305	57.958	33.789	1.00 24.35	A
25	ATOM	2286		ARG			24.503	56.858	33.276	1.00 23.88	A
2.5	ATOM		O N	THR			25.102	58.487	34.710	1.00 23.66	A
	ATOM	2287	N	THR			26.276	57.779	35.194	1.00 23.00	A
	ATOM	2288	CA				26.278	58.528	36.375	1.00 23.22	A
	ATOM	2289	CB	THR				59.823	35.934	1.00 25.33	A
20	ATOM	2290	OG1	THR			27.347		36.920	1.00 23.64	A
30	ATOM	2291	CG2	THR			28.106	57.759	35.643	1.00 23.04	A
	MOTA	2292	С	THR			25.866	56.385		1.00 22.81	A
	MOTA	2293	0	THR			24.868	56.224	36.346	1.00 22.49	A
	ATOM	2294	N			306	26.628	55.378	35.227	1.00 22.00	A
25	ATOM	2295	CA			306	26.327	54.000	35.597 34.696	1.00 21.93	A
35	MOTA	2296	CB			306	27.073	52.991		1.00 21.34	A
	MOTA	2297	CG2	ILE			26.633	51.565	35.035	1.00 21.28	A
	MOTA	2298	CG1	ILE			26.803	53.301	33.220	1.00 20.62	
	MOTA	2299	CD1	ILE			25.337	53.240	32.822		A
40	ATOM	2300	С			306	26.734	53.747	37.046	1.00 22.59	A
40	ATOM	2301	0			306	27.800	54.180	37.487	1.00 21.84	A
	ATOM	2302	N	SER			25.875	53.044	37.779	1.00 23.35	A
	MOTA	2303	CA	SER			26.132	52.716	39.178	1.00 24.13	A
	MOTA	2304	СВ	SER			25.371	53.675	40.094	1.00 23.72	A
	ATOM	2305	OG	SER			23.973	53.550	39.900	1.00 23.17	A
45	MOTA	2306	С	SER			25.659	51.292	39.443	1.00 24.92	A
	ATOM	2307	0	SER			24.927	50.721	38.639	1.00 24.44	A
	ATOM	2308	N	ASP	Α	308	26.079	50.719	40.567	1.00 26.08	A
	MOTA	2309	CA	ASP			25.669	49.363	40.922	1.00 27.21	A
	ATOM	2310	CB	ASP			26.296	48.955	42.257	1.00 28.74	A
50	MOTA	2311	CG	ASP			27.785	48.707	42.148	1.00 30.44	A
	ATOM	2312		ASP			28.394	49.166	41.160	1.00 31.50	Α
	ATOM	2313	OD2	ASP	Α	308	28.351	48.060	43.055	1.00 32.13	Α
	ATOM	2314	С	ASP	Α	308	24.152	49.325	41.040	1.00 26.58	Α
	ATOM	2315	0	ASP	A	308	23.522	48.284	40.858	1.00 26.24	А
55	ATOM	2316	N	GLN	A	309	23.582	50.487	41.331	1.00 26.55	A

	ATOM	2317	CA	GLN			22.147	50.651	41.504	1.00 26.62	A
	ATOM	2318	CB	GLN			21.899	51.936	42.306	1.00 28.47	A
	ATOM	2319	CG	GLN			20.524	52.551	42.178	1.00 30.34	A
_	ATOM	2320	CD	GLN			20.373	53.799	43.039	1.00 32.12	A
5	MOTA	2321		GLN			19.548	54.672	42.757	1.00 32.61	A
	ATOM	2322	NE2				21.166	53.881	44.102	1.00 32.15	A
	ATOM	2323	С	GLN			21.331	50.654	40.210	1.00 25.60	A
	ATOM	2324	0	GLN			20.210	50.148	40.189	1.00 26.28	A
	ATOM	2325	N	ASN			21.881	51.205	39.131	1.00 23.60	A
10	ATOM	2326	CA	ASN			21.142	51.251	37.870	1.00 22.29	A
	MOTA	2327	CB	ASN			20.991	52.700	37.388	1.00 21.33	A
	MOTA	2328	CG	ASN			22.324	53.345	37.034	1.00 20.86	A
	MOTA	2329		ASN			23.260	52.670	36.606	1.00 19.45	A
	MOTA	2330		ASN			22.407	54.661	37.195	1.00 20.66	A
15	ATOM	2331	С	ASN			21.744	50.429	36.734	1.00 21.87	A
	ATOM	2332	0	ASN			21.162	50.356	35.656	1.00 21.72	A
	MOTA	2333	N	VAL			22.897	49.811	36.970	1.00 21.87	A
	MOTA	2334	CA	VAL			23.572	49.035	35.929	1.00 21.29	A
	ATOM	2335	СВ	VAL			24.907	48.445	36.446	1.00 21.36	A
20	MOTA	2336		VAL			24.639	47.333	37.448	1.00 21.68	A
	MOTA	2337		VAL			25.746	47.940	35.270	1.00 20.87	A
	ATOM	2338	С	VAL			22.741	47.912	35.302	1.00 21.68	A
	ATOM	2339	0			311	22.857	47.652	34.104	1.00 20.40	A
0.5	ATOM	2340	N			312	21.906	47.247	36.095	1.00 20.96	A
25	ATOM	2341	CA			312	21.083	46.167	35.557	1.00 21.12	A
	MOTA	2342	CB			312	20.368	45.424	36.692	1.00 21.66	A
	ATOM	2343	С			312	20.065	46.698	34.552	1.00 21.29	A
	ATOM	2344	0			312	19.860	46.103	33.493	1.00 21.31	A
20	ATOM	2345	N			313	19.431	47.821	34.885	1.00 21.28	A
30	MOTA	2346	CA			313	18.431	48.434	34.014	1.00 21.25	A A
	ATOM	2347	CB			313	17.637	49.478	34.785	1.00 20.73 1.00 21.41	A
	ATOM	2348	C			313	19.078	49.077	32.789 31.679	1.00 21.41	A
	ATOM	2349	0			313	18.547	49.003 49.722	33.000	1.00 20.33	A
25	ATOM	2350	N			314	20.218		31.901	1.00 21.33	A
35	ATOM	2351	CA			314	20.934	50.365 51.139	32.444	1.00 21.63	A
	ATOM	2352	CB			314	22.138 21.790	52.300	33.368	1.00 21.03	A
	ATOM	2353	CG			314	21.790	53.566	32.596	1.00 22.71	A
	ATOM	2354	CD			314	20.076	53.563	32.081	1.00 23.17	A
40	ATOM	2355	NE C7			314	19.589	54.488	31.260	1.00 23.56	A
40	MOTA	2356 2357	CZ	ARG		314	20.357	55.490	30.854	1.00 24.71	A
	ATOM	2358		ARG			18.330	54.422	30.855	1.00 23.76	A
	ATOM					314	21.406	49.299	30.911	1.00 21.67	A
	ATOM	2359 2360	С			314	21.304	49.476	29.695	1.00 21.54	A
45	ATOM		O N			314	21.912	48.190	31.441	1.00 21.71	A
45	ATOM	2361	N C D				22.399	47.088	30.612	1.00 22.55	A
	ATOM	2362	CA			315 315	23.062	46.016	31.481	1.00 21.53	A
	ATOM	2363	CB				24.246	46.507	32.082	1.00 21.33	A
	ATOM	2364	OG			315	21.266	46.461	29.815	1.00 23.17	A
50	ATOM	2365	С			315 315	21.200	46.461	28.637	1.00 23.17	A
50	ATOM	2366 2367	O Ni			316	20.118	46.287	30.459	1.00 23.47	A
	ATOM	2367	N CA			316	18.971	45.694	29.789	1.00 23.03	A
	ATOM		CA			316	17.790	45.597	30.759	1.00 24.11	A
	ATOM	2369	CB			316	16.723	44.632	30.733	1.00 28.47	A
55	ATOM	2370	CG OD1				17.060	43.467	29.973	1.00 20.47	A
55	ATOM	2371	ODI	ASP	А	210	17.000	43.407	27.713	1.00 27.71	n

		ATOM	2372	OD2	ASP Z	A 316	15.544	45.037	30.226	1.00 29.93	А
		ATOM	2373	C		A 316	18.604	46.543	28.573	1.00 23.57	А
		ATOM	2374	Ö		A 316	18.309	46.012	27.502	1.00 23.16	A
										1.00 23.10	A
	-	ATOM	2375	N		A 317	18.635	47.863	28.737		
	5	ATOM	2376	CA		A 317	18.321	48.769	27.637	1.00 21.62	A
		MOTA	2377	CB		A 317	18.253	50.217	28.132	1.00 22.62	A
		MOTA	2378	CG	LEU A	A 317	16.882	50.779	28.506	1.00 23.63	Α
		ATOM	2379	CD1	LEU I	A 317	17.055	52.191	29.061	1.00 24.97	Α
		ATOM	2380	CD2	LEU A	A 317	15.978	50.796	27.281	1.00 23.92	A
	10	ATOM	2381	С	LEU A	A 317	19.364	48.682	26.529	1.00 20.23	A
		ATOM	2382	0		A 317	19.024	48.571	25.352	1.00 19.59	Α
		ATOM	2383	N		A 318	20.634	48.735	26.915	1.00 19.08	А
		ATOM	2384	CA		A 318	21.726	48.690	25.948	1.00 18.36	A
		ATOM	2385	CB		A 318	23.061	48.959	26.647	1.00 17.32	A
	15						24.279	49.101	25.727	1.00 17.32	A
	15	ATOM	2386	CG		A 318					
		ATOM	2387		LEU A		24.040	50.232	24.732	1.00 16.94	A
		ATOM	2388		LEU A		25.527	49.370	26.563	1.00 16.17	A
		MOTA	2389	С		A 318	21.797	47.361	25.208	1.00 18.02	Α
		MOTA	2390	0		A 318	21.841	47.326	23.977	1.00 17.93	Α
	20	MOTA	2391	N	VAL A	A 319	21.816	46.265	25.958	1.00 17.30	Α
. 1		MOTA	2392	CA	VAL A	A 319	21.883	44.948	25.343	1.00 17.29	Α
182		ATOM	2393	CB	VAL 2	A 319	21.822	43.835	26.408	1.00 17.01	Α
ą,β 8 21 00 2.		ATOM	2394	CG1	VAL A	A 319	21.644	42.479	25.742	1.00 17.97	Α
1,00		ATOM	2395		VAL A		23.103	43.843	27.232	1.00 17.03	А
	25	ATOM	2396	С		A 319	20.743	44.768	24.345	1.00 16.94	Α
I.		ATOM	2397	0		A 319	20.925	44.167	23.289	1.00 17.15	А
1,04		ATOM	2398	N		A 320	19.571	45.301	24.671	1.00 16.74	А
£1		ATOM	2399	CA		A 320	18.422	45.186	23.776	1.00 16.82	А
		ATOM	2400	CB		A 320	17.181	45.794	24.433	1.00 18.14	А
final final	30	ATOM	2401	CG		A 320	15.978	45.788	23.521	1.00 17.78	A
ŧ.D	50		2401		ASP A		15.529	46.885	23.129	1.00 17.70	A
		ATOM								1.00 18.82	A
ļ.		ATOM	2403		ASP A		15.482	44.690	23.195		
		MOTA	2404	С		A 320	18.717	45.878	22.444	1.00 16.65	A
grang.	2=	MOTA	2405	0		A 320	18.351	45.380	21.379	1.00 15.66	A
2	35	ATOM	2406	N		4 321	19.377	47.031	22.508	1.00 16.01	A
		ATOM	2407	CA		A 321	19.741	47.762	21.297	1.00 15.56	А
		MOTA	2408	CB		A 321	20.367	49.113	21.652	1.00 15.14	A
		ATOM	2409	CG	GLN A	A 321	19.358	50.150	22.095	1.00 15.99	A
		MOTA	2410	CD	GLN A	A 321	18.322	50.421	21.027	1.00 16.42	A
	40	MOTA	2411	OE1	GLN A	A 321	18.652	50.847	19.917	1.00 15.10	A
		MOTA	2412	NE2	GLN A	A 321	17.060	50.170	21.352	1.00 16.60	Α
		ATOM	2413	С		A 321	20.742	46.937	20.501	1.00 15.56	A
		ATOM	2414	0		A 321	20.632	46.816	19.280	1.00 15.19	А
		ATOM	2415	N		A 322	21.722	46.372	21.203	1.00 15.41	А
	45	ATOM	2416	CA		A 322	22.742	45.550	20.565	1.00 15.95	A
	10	ATOM	2417	CB		A 322	23.751	45.031	21.594	1.00 15.32	A
						A 322		46.063	22.138	1.00 16.14	A
		ATOM	2418	CG			24.698			1.00 16.14	
		ATOM	2419		TRP A		25.591	45.900	23.246		A
	50	ATOM	2420		TRP A		26.331	47.097	23.369	1.00 16.22	A
	50	ATOM	2421		TRP A		25.839	44.856	24.148	1.00 16.86	A
		MOTA	2422		TRP A		24.922	47.316	21.649	1.00 16.34	A
		MOTA	2423		TRP A		25.904	47.945	22.382	1.00 16.27	A
		MOTA	2424		TRP A		27.303	47.280	24.360	1.00 16.63	Α
		MOTA	2425	CZ3	TRP A	A 322	26.807	45.037	25.134	1.00 16.10	Α
	55	ATOM	2426	CH2	TRP A	A 322	27.526	46.240	25.231	1.00 16.78	Α

	ATOM	2427	С	TRP A		22.136	44.356	19.834	1.00 16.03	A
	ATOM	2428	0	TRP A		22.475	44.088	18.681	1.00 15.82	A
	ATOM	2429	N	LYS A		21.249	43.632	20.510	1.00 15.91	A
_	ATOM	2430	CA	LYS A		20.624	42.466	19.897	1.00 16.68	A
5	ATOM	2431	CB	LYS A		19.824	41.683	20.942	1.00 16.48	A
	MOTA	2432	CG	LYS A		20.741	40.900	21.882	1.00 17.56	A
	ATOM	2433	CD	LYS A		19.971	40.046	22.879	1.00 19.27	A
	ATOM	2434	CE	LYS A		20.935	39.208	23.709	1.00 19.50	A
10	ATOM	2435	ΝZ	LYS A		20.226	38.348	24.692	1.00 21.53	A
10	MOTA	2436	С	LYS A		19.759	42.833	18.699	1.00 16.16	A
	ATOM	2437	0	LYS A		19.619	42.046	17.766	1.00 16.35	A
	MOTA	2438	N	LYS A		19.183	44.029	18.713	1.00 16.26 1.00 15.66	A A
	ATOM	2439	CA	LYS A		18.377	44.460	17.579	1.00 15.66	A
15	ATOM	2440	CB	LYS A		17.549	45.694	17.943	1.00 13.03	A
15	ATOM	2441	CG	LYS A		16.381	45.363	18.866 19.275	1.00 17.11	A
	ATOM	2442	CD	LYS A		15.589	46.597		1.00 17.10	A
	ATOM	2443	CE	LYS A		14.397	46.197	20.148 20.691	1.00 17.89	A
	ATOM	2444	NZ	LYS A		13.676	47.384		1.00 15.15	A
20	ATOM	2445	С	LYS A		19.312	44.757	16.412 15.273	1.00 15.00	A
20	ATOM	2446	0	LYS A		19.040	44.376	16.696	1.00 13.11	A
	ATOM	2447	N	LYS A		20.429	45.422 45.733	15.643	1.00 14.73	A
	ATOM	2448	CA	LYS A		21.391 22.545	46.579	16.198	1.00 14.73	A
	ATOM	2449	CB	LYS A		23.442	47.177	15.118	1.00 13.74	A
25	ATOM	2450	CG	LYS A		24.584	48.006	15.707	1.00 13.40	A
23	MOTA	2451	CD	LYS A		25.403	48.663	14.600	1.00 12.33	A
	ATOM ATOM	2452 2453	CE NZ	LYS A		26.596	49.381	15.126	1.00 13.83	A
	ATOM	2453	C	LYS A		21.938	44.422	15.120	1.00 15.45	A
	ATOM	2455	0	LYS A		22.105	44.279	13.862	1.00 15.46	A
30	ATOM	2455	N	ALA A		22.202	43.464	15.961	1.00 15.77	A
30	ATOM	2450	CA	ALA A		22.733	42.159	15.570	1.00 16.36	A
	ATOM	2458	CB	ALA A		22.977	41.306	16.812	1.00 16.30	А
	ATOM	2459	C	ALA A		21.835	41.400	14.589	1.00 16.25	А
	MOTA	2460	0	ALA A		22.311	40.550	13.834	1.00 16.73	А
35	ATOM	2461	N	GLU A		20.541	41.697	14.605	1.00 16.39	А
00	ATOM	2462	CA	GLU A		19.601	41.030	13.706	1.00 16.62	А
	ATOM	2463	СВ	GLU A		18.162	41.372	14.090	1.00 17.67	Α
	ATOM	2464	CG	GLU A		17.628	40.572	15.251	1.00 19.60	А
	ATOM	2465	CD	GLU P		17.582	39.087	14.945	1.00 19.61	Α
40	ATOM	2466		GLU F		16.906		13.970	1.00 20.21	А
	ATOM	2467		GLU P		18.224	38.312	15.678	1.00 19.93	Α
	ATOM	2468	С	GLU F		19.820	41.409	12.247	1.00 16.26	A
	ATOM	2469	0	GLU F		19.375	40.705	11.341	1.00 16.58	Α
	ATOM	2470	N	LEU F		20.505	42.525	12.022	1.00 15.87	A
45	ATOM	2471	CA	LEU F		20.749	42.991	10.667	1.00 14.87	А
	ATOM	2472	CB	LEU F		20.909	44.517	10.660	1.00 14.25	Α
	ATOM	2473	CG	LEU P		19.804	45.322	11.357	1.00 14.52	Α
	ATOM	2474	CD1	LEU P		20.035	46.811	11.130	1.00 13.79	A
	ATOM	2475		LEU F		18.435	44.905	10.826	1.00 14.50	Α
50	ATOM	2476	С	LEU F		21.968	42.337	10.026	1.00 14.72	Α
-	ATOM	2477	0	LEU A		22.224	42.542	8.840	1.00 15.39	Α
	ATOM	2478	N	TYR A		22.713	41.550	10.803	1.00 14.33	Α
	ATOM	2479	CA	TYR A		23.906	40.874	10.292	1.00 14.79	А
	ATOM	2480	СВ	TYR A	329	25.164	41.451	10.953	1.00 14.59	А
55	ATOM	2481	CG	TYR A	329	25.358	42.921	10.635	1.00 14.92	А

							.	40 000		1 00 14 40	70
		ATOM	2482		TYR A		24.740	43.912	11.404	1.00 14.49	Α
		ATOM	2483	CE1	TYR A	329	24.861	45.262	11.075	1.00 14.49	Α
		ATOM	2484	CD2	TYR A	329	26.107	43.322	9.526	1.00 14.27	Α
		ATOM	2485	CE2	TYR A	329	26.233	44.668	9.188	1.00 14.38	Α
	5	ATOM	2486	CZ	TYR A		25.608	45.632	9.966	1.00 14.49	Α
		ATOM	2487	ОН	TYR A		25.722	46.963	9.632	1.00 14.95	Α
		ATOM	2488	C	TYR A		23.844	39.351	10.451	1.00 15.24	А
				0	TYR A		22.958	38.826	11.131	1.00 15.30	A
		ATOM	2489					38.649	9.833	1.00 15.25	A
	10	MOTA	2490	N	ARG A		24.792			1.00 15.25	
	10	ATOM	2491	CA	ARG A		24.797	37.189	9.841		A
		MOTA	2492	CB	ARG A		25.167	36.688	8.439	1.00 15.44	A
		ATOM	2493	CG	ARG A		24.273	37.268	7.350	1.00 15.40	A
		ATOM	2494	CD	ARG A		24.497	36.617	5.990	1.00 15.70	A
		MOTA	2495	NE	ARG A		23.578	37.185	5.008	1.00 16.37	A
	15	ATOM	2496	CZ	ARG A	330	23.309	36.645	3.823	1.00 17.09	Α
		ATOM	2497	NH1	ARG A	330	23.889	35.509	3.454	1.00 16.94	Α
		ATOM	2498	NH2	ARG A	330	22.446	37.239	3.007	1.00 16.97	Α
		ATOM	2499	С	ARG A	330	25.618	36.416	10.876	1.00 16.06	Α
4:74:		ATOM	2500	0	ARG A	330	25.376	35.226	11.071	1.00 16.42	Α
البيدا نعد	20	ATOM	2501	N	THR A		26.586	37.053	11.528	1.00 16.07	Α
الِيلِة		ATOM	2502	CA	THR A		27.382	36.329	12.521	1.00 15.58	Α
		ATOM	2503	CB	THR A		28.900	36.578	12.352	1.00 15.84	Α
1,71		ATOM	2504	OG1	THR A		29.222	37.895	12.813	1.00 14.68	А
		ATOM	2505	CG2	THR A		29.314	36.436	10.888	1.00 15.90	А
	25	ATOM	2506	C	THR F		27.005	36.735	13.938	1.00 15.84	A
Ñ	25		2507	0	THR A		26.157	37.607	14.141	1.00 15.86	A
1 IL		ATOM					27.646	36.100	14.915	1.00 16.04	A
(M		ATOM	2508	N	ASN A		27.394	36.403	16.318	1.00 16.70	A
Ri		ATOM	2509	CA	ASN A					1.00 10.70	A
1,22	20	ATOM	2510	СВ	ASN A		27.380	35.108	17.151		A
	30	ATOM	2511	CG	ASN A		28.749	34.452	17.251	1.00 19.65	
Ū		MOTA	2512		ASN F		29.525	34.447	16.295	1.00 19.62	A
į de		MOTA	2513		ASN A		29.043	33.876	18.416	1.00 20.32	A
		MOTA	2514	С	ASN A		28.458	37.373	16.837	1.00 16.36	A
		MOTA	2515	0	ASN P		28.714	37.454	18.041	1.00 16.17	A
lay.	35	ATOM	2516	N	VAL F	333	29.076	38.106	15.911	1.00 15.18	A
		ATOM	2517	CA	VAL A	333	30.095	39.094	16.253	1.00 14.95	A
		MOTA	2518	CB	VAL A	333	31.409	38.846	15.476	1.00 15.34	A
		ATOM	2519	CG1	VAL A	333	32.449	39.892	15.866	1.00 15.33	A
		ATOM	2520	CG2	VAL A	333	31.926	37.448	15.767	1.00 15.82	А
	4 0	MOTA	2521	С	VAL A	333	29.520	40.453	15.857	1.00 14.77	Α
		ATOM	2522	0	VAL A		29.192	40.674	14.691	1.00 15.06	Α
		MOTA	2523	N	LEU A		29.406	41.361	16.823	1.00 13.87	Α
		ATOM	2524	CA	LEU F		28.814	42.670	16.568	1.00 13.41	А
		ATOM	2525	CB	LEU F		27.608	42.860	17.494	1.00 13.88	А
	45	ATOM	2526	CG	LEU A		26.789	44.140	17.337	1.00 13.89	А
	10	ATOM	2527		LEU F		26.070	44.123	15.992	1.00 14.77	А
			2528		LEU F		25.787	44.244	18.479	1.00 13.69	A
		ATOM							16.720	1.00 13.04	A
		ATOM	2529	С	LEU A		29.758	43.865	17.713	1.00 13.04	A
	E 0	ATOM	2530	0	LEU A		30.475	43.981		1.00 12.82	A
	50	MOTA	2531	N	LEU F		29.735	44.758	15.735		
		MOTA	2532	CA	LEU F		30.579	45.954	15.759	1.00 12.73	A
		MOTA	2533	СВ	LEU F		31.079	46.285	14.349	1.00 12.26	A
		ATOM	2534	CG	LEU A		31.843	47.608	14.216	1.00 12.34	A
		ATOM	2535		LEU A		33.151	47.533	14.988	1.00 12.28	A
	55	MOTA	2536	CD2	LEU A	335	32.107	47.900	12.749	1.00 12.78	Α

	λ ΠΟM	2527	C	LEU	71	335	29.795	47.144	16.299	1.00 12.79	A
	ATOM ATOM	2537 2538	С 0	LEU			28.723	47.466	15.793	1.00 13.65	A
	ATOM	2539	N	ILE			30.337	47.797	17.324	1.00 12.68	A
	ATOM	2540	CA	ILE			29.694	48.961	17.925	1.00 12.47	A
5	ATOM	2541	CB	ILE			29.181	48.659	19.366	1.00 11.61	А
3	ATOM	2542		ILE			28.538	49.904	19.969	1.00 12.59	А
	ATOM	2543		ILE			28.157	47.516	19.342	1.00 12.32	А
	ATOM	2544	CD1	ILE			26.853	47.851	18.625	1.00 12.23	Α
	ATOM	2545	C	ILE			30.679	50.127	18.003	1.00 12.15	Α
10	ATOM	2546	0	ILE			31.429	50.253	18.965	1.00 12.42	А
10	ATOM	2547	N	PRO			30.710	50.981	16.970	1.00 12.21	Α
	ATOM	2548	CD	PRO			30.050	50.890	15.657	1.00 11.90	А
	ATOM	2549	CA	PRO			31.636	52.118	17.017	1.00 12.00	А
	ATOM	2550	СВ	PRO			31.406	52.809	15.674	1.00 11.62	A
15	ATOM	2551	CG	PRO			30.989	51.687	14.776	1.00 11.75	Α
10	ATOM	2552	C	PRO			31.255	53.032	18.181	1.00 11.64	Α
	ATOM	2553	Ō	PRO			30.079	53.141	18.521	1.00 12.05	Α
	ATOM	2554	N	LEU			32.247	53.678	18.789	1.00 11.36	Α
	ATOM	2555	CA	LEU			31.991	54.601	19.894	1.00 12.19	А
20	ATOM	2556	СВ	LEU			32.392	53.982	21.239	1.00 11.63	Α
	ATOM	2557	CG	LEU	Α	338	32.104	54.867	22.461	1.00 12.93	Α
	ATOM	2558	CD1	LEU			30.602	54.924	22.705	1.00 12.80	A
	MOTA	2559		LEU			32.820	54.318	23.695	1.00 12.39	A
	ATOM	2560	С	LEU			32.800	55.874	19.670	1.00 12.31	Α
25	ATOM	2561	0	LEU	Α	338	33.941	55.967	20.107	1.00 13.27	Α
	ATOM	2562	N	GLY	Α	339	32.208	56.850	18.987	1.00 12.98	А
	MOTA	2563	CA	GLY	Α	339	32.922	58.092	18.734	1.00 12.65	А
	ATOM	2564	С	GLY	Α	339	32.129	59.114	17.943	1.00 13.02	A
	MOTA	2565	0	GLY	Α	339	30.971	58.888	17.591	1.00 13.12	A
30	ATOM	2566	N	ASP	Α	340	32.768	60.245	17.660	1.00 12.52	A
	MOTA	2567	CA	ASP	A	340	32.141	61.331	16.921	1.00 12.74	A
	ATOM	2568	CB	ASP			31.162	62.075	17.831	1.00 12.87	A
	MOTA	2569	CG	ASP	A	340	30.042	62.758	17.065	1.00 13.84	A
	ATOM	2570		ASP			30.240	63.114	15.881	1.00 14.29	A
35	ATOM	2571	OD2	ASP			28.961	62.954	17.662	1.00 13.88	A
	MOTA	2572	С	ASP			33.265	62.273	16.475	1.00 12.96	A
	ATOM	2573	0	ASP			34.445	61.955	16.636	1.00 12.55	A
	ATOM	2574	N	ASP			32.903	63.432	15.935	1.00 12.80	A
40	ATOM	2575	CA	ASP			33.898	64.397	15.466	1.00 13.10	A
40	MOTA		СВ	ASP			33.214			1.00 12.71	A
	MOTA	2577	CG	ASP			32.535	65.232	13.494	1.00 12.61	A
	ATOM	2578		ASP			32.480	64.029	13.170	1.00 12.74	A
	ATOM	2579		ASP			32.057	66.153	12.796	1.00 12.47	A
45	ATOM	2580	С	ASP			34.809	64.909	16.573	1.00 12.92 1.00 13.34	A
45	ATOM	2581	0	ASP			34.341	65.381	17.611	1.00 13.34	A A
	ATOM	2582	N	PHE			36.113	64.815 65.274	16.330	1.00 12.09	A
	ATOM	2583	CA	PHE			37.127		17.265	1.00 12.79	A
	ATOM	2584	CB	PHE			37.318	66.788	17.123 15.779	1.00 12.64	A
E0	ATOM	2585	CG	PHE			37.856 36.992	67.209 67.542	14.737	1.00 12.04	A
50	ATOM	2586		PHE				67.258	15.551	1.00 13.03	A
	ATOM	2587		PHE			39.230 37.487	67.236	13.486	1.00 13.23	A
	ATOM	2588		PHE			39.737	67.633	14.306	1.00 12.07	A
	ATOM	2589		PHE			38.863	67.965	13.271	1.00 13.13	A
55	ATOM	2590	CZ			342	36.831	64.917	18.718	1.00 13.27	A
55	ATOM	2591	С	PHE	Н	242	J0.071	04.51/	10.710	1.00 15.55	••

	ATOM	2592	0	סטק	Λ	342	36.970	65.752	19.618	1.00 12.91	А
	ATOM	2593	N	ARG			36.428	63.669	18.937	1.00 13.14	A
	ATOM	2594	CA	ARG			36.133	63.188	20.279	1.00 14.72	A
	ATOM	2595	CB	ARG			35.127	62.032	20.227	1.00 14.28	A
5	ATOM	2596	CG			343	33.681	62.469	20.032	1.00 15.00	A
9	ATOM	2597	CD			343	33.260	63.441	21.137	1.00 14.90	A
	ATOM	2598	NE			343	31.833	63.745	21.098	1.00 15.26	A
	ATOM	2599	CZ			343	30.891	63.011	21.682	1.00 15.55	A
	ATOM	2600		ARG			31.216	61.916	22.360	1.00 13.99	A
10	ATOM	2601		ARG			29.619	63.377	21.592	1.00 15.63	A
10		2602	С			343	37.398	62.727	20.994	1.00 14.93	A
	ATOM			ARG			38.469	62.616	20.390	1.00 14.35	A
	ATOM	2603	0				37.253	62.456	22.287	1.00 14.43	A
	ATOM	2604	N	PHE				62.006	23.138	1.00 16.71	A
15	ATOM	2605	CA	PHE			38.349	60.647	22.662	1.00 16.71	A
15	ATOM	2606	CB	PHE			38.863		22.802	1.00 16.44	A
	ATOM	2607	CG	PHE			37.857	59.550		1.00 15.84	A
	ATOM	2608		PHE			37.093	59.128	21.735 24.067	1.00 15.84	A
	ATOM	2609		PHE			37.624	58.979			A
20	ATOM	2610	CE1	PHE			36.110	58.157	21.893	1.00 16.36 1.00 16.62	A
20	MOTA	2611	CE2	PHE			36.643	58.006	24.235		
	ATOM	2612	CZ			344	35.883	57.595	23.144	1.00 16.74	A
	ATOM	2613	C	PHE			39.484	63.009	23.223	1.00 17.76 1.00 17.64	A
	MOTA	2614	0	PHE			40.659	62.659	23.087		A
25	ATOM	2615	N	LYS			39.110	64.259	23.478	1.00 18.99	A
25	ATOM	2616	CA	LYS			40.055	65.358	23.593	1.00 20.91	A
	ATOM	2617	CB	LYS			39.408	66.638	23.064	1.00 21.42	A
	ATOM	2618	CG	LYS			40.277	67.872	23.144	1.00 22.74	A
	MOTA	2619	CD			345	39.499	69.088	22.660	1.00 24.20	A
20	ATOM	2620	CE			345	40.312	70.360	22.774	1.00 24.77	A
30	MOTA	2621	NZ	LYS			39.503	71.536	22.349	1.00 26.64	A
	ATOM	2622	С	LYS			40.500	65.568	25.041	1.00 21.83	A
	MOTA	2623	0	LYS			41.691	65.570	25.333	1.00 23.15	A
	ATOM	2624	N			346	39.539	65.734	25.943	1.00 22.48	A
0.5	MOTA	2625	CA			346	39.835	65.967	27.353	1.00 23.29	A
35	MOTA	2626	CB			346	38.714	66.797	27.977	1.00 24.88	A
	MOTA	2627	CG			346	38.454	68.110	27.271	1.00 27.88	A
	MOTA	2628	CD			346	37.092	68.679	27.605	1.00 29.73	A
	MOTA	2629	OE1				36.791	68.960	28.767	1.00 32.34	A
4.0	MOTA	2630		GLN			36.253	68.847	26.585	1.00 30.40	A
40	ATOM		С	GLN				64.682	28.158	1.00 22.88	A
	MOTA	2632	0	GLN			39.354	63.675	27.887	1.00 21.72	A
	MOTA	2633	N			347	40.887		29.156	1.00 22.84	A
	ATOM	2634	CA	ASN			41.121	63.566	30.012	1.00 23.28	A
	MOTA	2635	CB			347	42.124	63.903	31.120	1.00 25.05	A
45	MOTA	2636	CG	ASN			43.495	64.219	30.584	1.00 27.25	А
	ATOM	2637		ASN			44.103	63.404	29.891	1.00 28.96	A
	ATOM	2638	ND2	ASN			43.999	65.410	30.902	1.00 28.82	А
	MOTA	2639	С	ASN	Α	347	39.804	63.156	30.651	1.00 21.95	А
	ATOM	2640	0	ASN	A	347 .	39.491	61.969	30.759	1.00 21.83	Α
50	ATOM	2641	N	THR	A	348	39.037	64.154	31.077	1.00 20.97	Α
	ATOM	2642	CA	THR	A	348	37.752	63.912	31.711	1.00 20.12	Α
	ATOM	2643	CB	THR	A	348	37.073	65.235	32.104	1.00 21.04	Α
	ATOM	2644	OG1	THR	Α	348	37.007	66.100	30.961	1.00 22.00	Α
	ATOM	2645	CG2	THR	Α	348	37.857	65.921	33.216	1.00 21.79	Α
55	ATOM	2646	С	THR	A	348	36.837	63.129	30.781	1.00 19.30	Α

	ATOM	2647	0	THR	Α	348	36.039	62.306	31.233	1.00 18.3	0 A
	ATOM	2648	N			349	36.960	63.381	29.479	1.00 17.4	
	ATOM	2649	CA			349	36.142	62.674	28.500	1.00 17.0	
	ATOM	2650	СВ			349	36.267	63.306	27.110	1.00 16.6	
5	ATOM	2651	CG			349	35.463	62.551	26.052	1.00 16.7	
-	ATOM	2652	CD			349	35.593	63.135	24.657	1.00 15.8	
	ATOM	2653	OE1			349	35.037	62.529	23.717	1.00 15.9	
	ATOM	2654	OE2	GLU			36.242	64.188	24.498	1.00 16.0	
	ATOM	2655	C			349	36.554	61.207	28.423	1.00 16.5	
10	ATOM	2656	Õ			349	35.700	60.323	28.379	1.00 16.1	
	ATOM	2657	N			350	37.859	60.946	28.394	1.00 16.1	
	ATOM	2658	CA			350	38.334	59.570	28.338	1.00 16.1	
	ATOM	2659	CB			350	39.864	59.509	28.341	1.00 15.2	
	ATOM	2660	CG			350	40.487	59.770	27.003	1.00 15.1	
15	ATOM	2661	CD2			350	40.782	58.797	25.996	1.00 15.6	
10	ATOM	2662	CE2			350	41.322	59.490	24.888	1.00 14.5	
	ATOM	2663	CE3	TRP			40.643	57.404	25.920	1.00 15.0	
	ATOM	2664		TRP			40.850	60.983	26.481	1.00 15.5	
	ATOM	2665		TRP			41.352	60.821	25.212	1.00 14.8	
20	ATOM	2666		TRP			41.719	58.837	23.718	1.00 14.9	
20	ATOM	2667	CZ3	TRP			41.039	56.754	24.754	1.00 15.0	
	ATOM	2668	CH2	TRP			41.570	57.471	23.669	1.00 15.3	
	ATOM	2669	C			350	37.798	58.801	29.539	1.00 16.5	
	ATOM	2670	0			350	37.798	57.683	29.404	1.00 15.9	
25	ATOM	2671	N			351	37.200	59.411	30.714	1.00 17.3	
20	ATOM	2672	CA			351	37.428	58.774	31.937	1.00 17.3	
	ATOM	2673	CB	ASP			37.735	59.641	33.162	1.00 19.6	
	ATOM	2674	CG	ASP			39.210	59.706	33.481	1.00 21.4	
	ATOM	2675		ASP			39.210	58.701	33.264	1.00 21.4	
30	ATOM	2676		ASP			39.656	60.762	33.970	1.00 23.8	
30	ATOM	2677	C	ASP			35.938	58.481	31.931	1.00 23.0	
	ATOM	2678	0			351	35.519	57.360	32.238	1.00 18.2	
	ATOM	2679	N			352	35.134	59.484	31.589	1.00 18.0	
	ATOM	2680	CA	VAL			33.691	59.309	31.606	1.00 10.0	
35		2681	CB	VAL			32.958	60.655	31.351	1.00 17.5	
33	ATOM	2682		VAL			32.882	60.956	29.862	1.00 18.7	
	ATOM	2683		VAL			31.578	60.619	31.986	1.00 10.7	
	ATOM	2684		VAL			33.198	58.236	30.633	1.00 19.3	
	ATOM	2685	C O	VAL			32.236	57.526	30.033	1.00 17.0	
40	ATOM								29.482	1.00 16.3	
40	ATOM	2686	N	GLN			33.850	58.103 57.080	28.528	1.00 15.4	
	ATOM	2687	CA	GLN			33.436		27.114	1.00 15.9	
	ATOM	2688	CB	GLN			33.941	57.415 58.719	26.529	1.00 16.0	
	MOTA	2689	CG			353	33.384			1.00 16.3	
45	MOTA	2690	CD	GLN			31.939	58.608	26.049	1.00 17.1	
45	ATOM	2691		GLN			31.114	57.935	26.666		
	ATOM	2692	NE2				31.626	59.291	24.948	1.00 16.9	
	ATOM	2693	С	GLN			33.960	55.705	28.964	1.00 15.8	
	MOTA	2694	0	GLN			33.206	54.732	28.994	1.00 16.1	
Ε0	MOTA	2695	N	ARG			35.242	55.627	29.317	1.00 15.4	
50	ATOM	2696	CA	ARG			35.837	54.356	29.732	1.00 15.9	
	MOTA	2697	CB	ARG			37.353	54.498	29.916	1.00 15.7	
	ATOM	2698	CG	ARG			38.025	53.234	30.454	1.00 16.6	
	ATOM	2699	CD	ARG			39.527	53.419	30.652	1.00 17.3	
F-F-	MOTA	2700	NE	ARG			39.844	54.426	31.664	1.00 18.4	
55	ATOM	2701	CZ	ARG	A	354	39.642	54.276	32.971	1.00 18.9	7 A

		ATOM	2702	NH1	ARG A	354	39.118	53.153	33.444	1.00 18.45	А
		MOTA	2703	NH2			39.974	55.248	33.810	1.00 18.25	A
		ATOM	2704	C	ARG A		35.247	53.756	31.006	1.00 16.32	A
		ATOM	2705	Ö	ARG A		34.881	52.581	31.029	1.00 15.52	A
	5	ATOM	2706	N	VAL A		35.159	54.560	32.064	1.00 15.32	A
	3	ATOM	2700	CA	VAL A		34.639	54.079	33.342	1.00 10.73	A
			2707						34.422	1.00 17.22	
		ATOM		CB	VAL A		34.705	55.184	35.705	1.00 18.19	A A
		ATOM	2709		VAL A		34.034	54.706			
	10	ATOM	2710	CG2			36.162	55.543	34.705	1.00 18.06 1.00 17.38	A
	10	MOTA	2711	С	VAL A		33.211	53.553	33.258 33.742		A
		ATOM	2712	0	VAL A		32.913	52.457		1.00 16.87	A
		MOTA	2713	N	ASN A		32.324	54.328	32.647	1.00 16.91	A
		ATOM	2714	CA	ASN A		30.942	53.899	32.527	1.00 16.67	A
	15	ATOM	2715	CB	ASN A		30.091	55.030	31.957	1.00 16.65	A
	13	ATOM	2716	CG	ASN A		29.787	56.091	32.994	1.00 17.54	A
		ATOM	2717		ASN A		29.078	55.830	33.970	1.00 17.65	A
		ATOM	2718		ASN A		30.335	57.288	32.804	1.00 15.84	A
		ATOM	2719	С	ASN A		30.803	52.630 51.749	31.696	1.00 16.96	A
ij	20	ATOM	2720	0	ASN A		30.013		32.035	1.00 16.52	A
	20	ATOM	2721	N G7	TYR A		31.572	52.519	30.616	1.00 16.22	A
1,5		ATOM	2722	CA	TYR A		31.492	51.316	29.799	1.00 16.78	A
ijī.		ATOM	2723	CB	TYR A		32.144	51.539	28.427	1.00 15.91	A
		ATOM	2724	CG	TYR A		31.149	52.056	27.414	1.00 14.97	A
(25	ATOM	2725	CD1	TYR A		30.957	53.424	27.222	1.00 14.35	A
	23	ATOM	2726	CE1	TYR A		29.976	53.900	26.353	1.00 14.39	A
1 91		ATOM	2727		TYR A		30.334	51.172	26.707	1.00 15.07	A
2 }		ATOM	2728		TYR A		29.347	51.634	25.842	1.00 14.68 1.00 14.63	A
		ATOM	2729	CZ	TYR A		29.172	52.998	25.670		A
1,5	30	ATOM	2730	ОН	TYR A		28.185	53.451	24.826 30.507	1.00 14.20 1.00 16.81	A
	30	ATOM	2731 2732	С	TYR A		32.098	50.107	30.307	1.00 10.81	A A
14		ATOM	2732	O N	TYR A		31.640 33.118	48.979 50.331	31.328	1.00 17.33	A
		ATOM ATOM	2733	CA	GLU A		33.720	49.223	32.067	1.00 17.12	A
4:2		ATOM	2735	CB	GLU A		34.941	49.692	32.860	1.00 17.30	A
14	35	ATOM	2736	CG	GLU A		36.183	49.960	32.018	1.00 18.33	A
	<i>5</i> 5	ATOM	2737	CD	GLU A		37.376	50.366	32.867	1.00 20.30	A
		ATOM	2738		GLU A		37.230	50.442	34.106	1.00 21.30	A
		ATOM	2739		GLU A		38.462	50.610	32.302	1.00 23.37	A
		ATOM	2740	C	GLU A		32.677	48.647	33.032	1.00 18.18	A
	40	ATOM	2741	0	GLU A		32.622	47.436	33.251	1.00 18.62	A
	10	ATOM	2742	N	ARG A		31.853	49.516	33.610	1.00 18.25	A
		ATOM	2743	CA	ARG A		30.816	49.067	34.540	1.00 19.06	A
		ATOM	2744	CB	ARG A		30.148	50.262	35.217	1.00 20.23	A
		ATOM	2745	CG	ARG A		31.040	50.962	36.217	1.00 23.21	A
	45	MOTA	2746	CD	ARG A		30.417	52.260	36.691	1.00 25.64	A
	10	ATOM	2747	NE	ARG A		31.326	52.987	37.572	1.00 27.54	A
		ATOM	2748	CZ	ARG A		31.389	54.312	37.640	1.00 28.87	A
		MOTA	2749		ARG A		30.592	55.052	36.876	1.00 28.85	A
		ATOM	2750		ARG A		32.252	54.896	38.464	1.00 20.03	A
	50	ATOM	2751	C	ARG A		29.768	48.239	33.814	1.00 23.34	A
	50	ATOM	2752	0	ARG A		29.700	47.224	34.333	1.00 16.91	A
		ATOM	2753	N	LEU A		29.407	48.675	32.611	1.00 10.51	A
		ATOM	2754	CA	LEU A		28.423	47.960	31.811	1.00 17.02	A
		ATOM	2755	CB	LEU A		28.923	48.782	30.576	1.00 13.02	A
	55	ATOM	2756	CG	LEU A		27.214	50.040	30.849	1.00 17.79	A
	55	VIOU	2130	CG	PPO A	500	61.614	30.040	30.049	1.00 17.75	А

	MOTA	2757	CD1	LEU	Α	360	27.164	50.912	29.602	1.00 17.80	Α
	ATOM	2758		LEU			25.807	49.639	31.282	1.00 17.86	Α
	ATOM	2759	С			360	28.950	46.590	31.392	1.00 18.31	Α
	ATOM	2760	0			360	28.222	45.599	31.446	1.00 18.36	Α
5	ATOM	2761	N			361	30.214	46.536	30.977	1.00 17.86	Α
	ATOM	2762	CA			361	30.831	45.277	30.562	1.00 18.13	Α
	MOTA	2763	СВ			361	32.253	45.518	30.038	1.00 17.21	А
	ATOM	2764	CG			361	32.313	46.324	28.768	1.00 16.77	Α
	ATOM	2765		PHE			33.507	46.927	28.376	1.00 17.09	Α
10	ATOM	2766		PHE			31.188	46.481	27.967	1.00 16.11	А
	ATOM	2767		PHE			33.577	47.676	27.204	1.00 15.66	А
	ATOM	2768	CE2	PHE			31.247	47.229	26.790	1.00 16.59	A
	ATOM	2769	CZ			361	32.442	47.826	26.410	1.00 17.03	A
	ATOM	2770	C			361	30.900	44.265	31.708	1.00 18.81	A
15	ATOM	2771	Ö			361	30.568	43.091	31.528	1.00 17.83	A
15	MOTA	2772	N			362	31.344	44.711	32.881	1.00 19.34	A
	ATOM	2773	CA			362	31.455	43.798	34.016	1.00 20.55	A
	ATOM	2774	CB			362	31.992	44.516	35.258	1.00 22.52	A
		2775	CG			362	32.331	43.551	36.397	1.00 25.60	A
20	ATOM		CD			362	32.723	44.256	37.683	1.00 23.00	A
20	ATOM	2776 2777	OE1				33.457	45.262	37.608	1.00 27.30	A
	ATOM	2778	OE2			362	32.309	43.796	38.770	1.00 29.36	A
	ATOM							43.790	34.343	1.00 20.30	A
	MOTA	2779	С			362	30.105 30.010	41.963	34.543	1.00 20.30	A
25	ATOM	2780	0			362		43.990	34.300	1.00 20.05	A
23	ATOM	2781	N			363	29.060		34.575	1.00 20.56	A
	MOTA	2782	CA			363	27.730	43.485		1.00 20.36	A
	ATOM	2783	CB			363	26.734	44.636	34.814	1.00 22.00	A
	ATOM	2784	CG			363	25.352	44.191	35.182		A
20	MOTA	2785		HIS			24.204	44.156	34.463	1.00 24.15	
30	ATOM	2786		HIS			25.043	43.673	36.421	1.00 24.49	A
	ATOM	2787		HIS			23.765	43.338	36.450	1.00 24.15	A
	ATOM	2788		HIS			23.233	43.620	35.274	1.00 24.25	A
	ATOM	2789	С			363	27.233	42.531	33.596	1.00 19.95	A
25	ATOM	2790	0			363	26.919	41.371	33.868	1.00 19.76	A
35	ATOM	2791	N			364	27.164	43.029	32.368	1.00 19.34	A
	ATOM	2792	CA			364	26.681	42.237	31.248	1.00 19.40	A
	ATOM	2793	СВ			364	26.783	43.031	29.929	1.00 18.87	A
	ATOM	2794	CG2	ILE			26.359	42.149	28.751	1.00 18.65	A
40	ATOM	2795		ILE			25.894	44.277	30.007	1.00 19.23	A
40	ATOM	2796		ILE				45.203		1.00 19.57	A
	ATOM	2797	С			364	27.400	40.902	31.079	1.00 19.15	A
	ATOM	2798	0			364	26.755	39.863	30.931	1.00 19.49	A
	ATOM	2799	N			365	28.728	40.921	31.112	1.00 18.92	A
	ATOM	2800	CA			365	29.491	39.691	30.934	1.00 20.01	A
45	ATOM	2801	CB			365	30.970	40.010	30.701	1.00 18.96	А
	ATOM	2802	CG			365	31.189	40.886	29.481	1.00 18.43	А
	MOTA	2803	OD1	ASN	Α	365	30.294	41.044	28.652	1.00 18.38	А
	ATOM	2804	ND2	ASN	Α	365	32.385	41.452	29.362	1.00 17.32	Α
	ATOM	2805	С	ASN	Α	365	29.356	38.697	32.088	1.00 21.35	Α
50	ATOM	2806	0	ASN	Α	365	29.670	37.519	31.928	1.00 21.12	А
	ATOM	2807	N	SER	Α	366	28.880	39.165	33.239	1.00 22.96	А
	ATOM	2808	CA	SER	Α	366	28.714	38.291	34.401	1.00 24.46	А
	ATOM	2809	СВ			366	29.198	38.999	35.674	1.00 24.61	А
	ATOM	2810	OG			366	28.384	40.117	35.978	1.00 24.98	А
55	ATOM	2811	С	SER	Α	366	27.264	37.843	34.577	1.00 25.44	А

COMPUME CONTRA

		ATOM	2812	0	SER	Α	366	26.956	37.046	35.460	1.00 25.76	A
		ATOM	2813	N	GLN			26.375	38.364	33.736	1.00 26.52	Α
		MOTA	2814	CA	GLN			24.961	38.003	33.779	1.00 27.62	A
		ATOM	2815	CB	GLN			24.083	39.251	33.640	1.00 28.64	Α
	5	ATOM	2816	CG	GLN			24.113	40.174	34.850	1.00 30.61	A
		ATOM	2817	CD	GLN			23.525	39.520	36.088	1.00 32.01	Α
		ATOM	2818	OE1				22.341	39.176	36.119	1.00 32.79	А
		ATOM	2819		GLN			24.352	39.340	37.113	1.00 32.51	А
		ATOM	2820	С	GLN			24.665	37.033	32.636	1.00 27.49	А
	10	ATOM	2821	Ö	GLN			24.335	37.447	31.524	1.00 27.23	A
	10	ATOM	2822	N	ALA			24.778	35.740	32.926	1.00 27.43	А
		ATOM	2823	CA	ALA			24.551	34.689	31.938	1.00 27.09	А
		ATOM	2824	CB	ALA			24.531	33.327	32.633	1.00 27.33	A
		ATOM	2825	С	ALA			23.291	34.851	31.087	1.00 26.68	A
	15	ATOM	2826	o	ALA			23.311	34.568	29.889	1.00 26.56	A
	15	ATOM	2827	N	HIS			22.199	35.303	31.697	1.00 26.31	A
					HIS			20.942	35.464	30.970	1.00 25.66	A
		ATOM	2828	CA	HIS			19.852	35.981	31.916	1.00 27.03	A
		ATOM	2829	CB				20.044	37.401	32.346	1.00 27.87	A
Ì	20	ATOM	2830	CG	HIS			20.642	37.401	33.441	1.00 27.07	A
	20	ATOM	2831		HIS			19.610	38.471	31.594	1.00 28.33	A
		ATOM	2832		HIS			19.010	39.597	32.207	1.00 28.26	A
		ATOM	2833		HIS				39.295	33.330	1.00 28.33	A
:		ATOM	2834		HIS			20.559			1.00 25.04	A
	25	ATOM	2835	С	HIS			21.059	36.375	29.744		A
	25	ATOM	2836	0	HIS			20.210	36.340	28.853	1.00 24.82	A
		MOTA	2837	N	PHE			22.109	37.189	29.697	1.00 24.10	
		ATOM	2838	CA	PHE			22.320	38.080	28.559	1.00 22.85	A A
		MOTA	2839	СВ	PHE			23.235	39.247	28.944		
ļ	20	MOTA	2840	CG	PHE			22.533	40.365	29.669	1.00 23.73	A
	30	ATOM	2841		PHE			23.086	40.915	30.819	1.00 24.30	A
		ATOM	2842		PHE			21.338	40.890	29.184	1.00 24.44	A
		ATOM	2843		PHE			22.460	41.973	31.480	1.00 24.01	A
		ATOM	2844		PHE			20.704	41.950	29.839	1.00 24.36	A
	0=	ATOM	2845	CZ	PHE			21.270	42.490	30.989	1.00 23.88	A
	35	ATOM	2846	С			370	22.964	37.308	27.414	1.00 21.51	A
		ATOM	2847	0	PHE			22.698	37.585	26.244	1.00 20.83	A
		MOTA	2848	N	ASN			23.806	36.339	27.768	1.00 19.82	A
		MOTA	2849	CA	ASN			24.521	35.528	26.789	1.00 19.02	A
	40	ATOM	2850	CB	ASN			23.538	34.661	26.007	1.00 19.65	A
	40	MOTA	2851	CG	ASN			22.892	33.599	26.877	1.00 20.03	A
		MOTA	2852		ASN			23.573	32.718	27.405	1.00 20.28	A
		ATOM	2853	ND2	ASN			21.578	33.682	27.038	1.00 20.15	A
		ATOM	2854	С	ASN			25.316	36.430	25.850	1.00 18.66	A
		ATOM	2855	0	ASN			25.340	36.229	24.633	1.00 17.96	A
	45	ATOM	2856	N	VAL			25.969	37.424	26.447	1.00 18.22	A
		MOTA	2857	CA	VAL			26.777	38.395	25.721	1.00 18.11	A
		MOTA	2858	CB			372	26.094	39.788	25.701	1.00 18.45	A
		ATOM	2859	CG1	VAL	Α	372	27.065	40.851	25.163	1.00 17.90	А
		ATOM	2860	CG2	VAL	Α	372	24.834	39.739	24.855	1.00 18.52	A
	50	ATOM	2861	С	VAL			28.146	38.564	26.372	1.00 18.05	Α
		ATOM	2862	0	VAL			28.274	38.520	27.594	1.00 17.93	A
		ATOM	2863	N	GLN	A	373	29.162	38.751	25.538	1.00 17.52	Α
		ATOM	2864	CA	GLN	Α	373	30.528	38.982	25.995	1.00 17.49	Α
		ATOM	2865	CB			373	31.442	37.823	25.579	1.00 18.60	А
	55	ATOM	2866	CG	GLN	Α	373	32.923	38.011	25.922	1.00 19.99	Α

	ATOM	2867	CD	GLN	Α	373	33.158	38.334	27.394	1.00 20.94	Α
	MOTA	2868	OE1	GLN	Α	373	32.526	37.756	28.279	1.00 21.70	A
	ATOM	2869	NE2	GLN	Α	373	34.082	39.252	27.659	1.00 20.60	Α
	MOTA	2870	С	GLN	Α	373	30.935	40.270	25.282	1.00 17.32	Α
5	ATOM	2871	0	GLN	Α	373	31.179	40.265	24.079	1.00 17.16	Α
	MOTA	2872	N	ALA	Α	374	30.984	41.371	26.023	1.00 16.74	Α
	MOTA	2873	CA	ALA	Α	374	31.325	42.665	25.445	1.00 16.51	Α
	MOTA	2874	CB	ALA	Α	374	30.217	43.671	25.756	1.00 15.86	Α
	MOTA	2875	С	ALA	Α	374	32.662	43.202	25.940	1.00 16.97	Α
10	ATOM	2876	0	ALA	Α	374	33.046	42.984	27.087	1.00 16.37	А
	MOTA	2877	N	GLN	Α	375	33.364	43.920	25.070	1.00 16.76	Α
	MOTA	2878	CA	GLN	Α	375	34.650	44.498	25.440	1.00 17.48	А
	MOTA	2879	CB	GLN	Α	375	35.731	43.415	25.509	1.00 19.85	А
	ATOM	2880	CG	GLN	Α	375	35.933	42.644	24.205	1.00 23.52	Α
15	ATOM	2881	CD	GLN	Α	375	35.066	41.404	24.129	1.00 26.57	Α
	MOTA	2882	OE1	GLN	Α	375	35.214	40.486	24.939	1.00 27.84	Α
	MOTA	2883	NE2	GLN			34.153	41.370	23.161	1.00 27.24	Α
	MOTA	2884	С	GLN	Α	375	35.085	45.548	24.431	1.00 16.70	A
	MOTA	2885	0	GLN	Α	375	34.534	45.632	23.335	1.00 15.55	Α
20	MOTA	2886	N	PHE	Α	376	36.069	46.356	24.814	1.00 15.17	А
	ATOM	2887	CA	PHE	Α	376	36.602	47.358	23.904	1.00 14.46	А
	MOTA	2888	CB	PHE	Α	376	37.543	48.320	24.637	1.00 13.95	А
	MOTA	2889	CG	PHE	Α	376	36.848	49.228	25.610	1.00 14.70	A
	MOTA	2890		PHE			37.246	49.273	26.940	1.00 14.81	Α
25	MOTA	2891	CD2	PHE	Α	376	35.798	50.044	25.195	1.00 14.57	A
	MOTA	2892	CE1	PHE	Α	376	36.610	50.117	27.848	1.00 15.62	А
	MOTA	2893	CE2	PHE	Α	376	35.157	50.894	26.098	1.00 15.64	A
	ATOM	2894	CZ	PHE	Α	376	35.567	50.928	27.428	1.00 14.70	A
•	MOTA	2895	С			376	37.396	46.567	22.877	1.00 13.69	А
30	MOTA	2896	0			376	38.028	45.566	23.214	1.00 13.20	А
	MOTA	2897	N	GLY			37.360	47.005	21.625	1.00 13.56	A
	MOTA	2898	CA	GLY			38.106	46.305	20.598	1.00 13.03	A
	MOTA	2899	С	GLY			38.537	47.240	19.490	1.00 13.47	A
05	ATOM	2900	0	GLY			38.226	48.432	19.519	1.00 12.17	A
35	ATOM	2901	N			378	39.270	46.704	18.522	1.00 13.13	A
	ATOM	2902	CA			378	39.712	47.492	17.384	1.00 14.10	A
	MOTA	2903	СВ	THR			41.226	47.348	17.129	1.00 14.13	A
	MOTA	2904	OG1	THR			41.521	46.003	16.739	1.00 15.02	A
40	MOTA	2905		THR			42.012	47.697	18.385	1.00 15.10	A
40	MOTA	2906	C	THR			38.961			1.00 13.64	A
	ATOM	2907	0	THR			38.278	45.945	16.238	1.00 13.55	A
	MOTA	2908	N	LEU			39.084	47.684	15.054	1.00 12.92	A
	ATOM	2909	CA	LEU			38.409	47.289	13.827	1.00 12.73	A
45	ATOM	2910	CB	LEU			38.649	48.342	12.742	1.00 12.44	A
45	ATOM	2911	CG	LEU			37.870	48.131	11.445	1.00 12.37	A
	ATOM	2912		LEU			36.372	48.184	11.741	1.00 11.04	A
	ATOM	2913		LEU			38.270	49.205	10.433	1.00 11.81	A
	ATOM	2914	С	LEU			38.896	45.924	13.338	1.00 13.00	A
EΩ	ATOM	2915	0	LEU			38.098	45.074	12.934	1.00 12.40	A
50	ATOM	2916	N	GLN			40.208	45.714	13.384	1.00 13.46	A
	ATOM	2917	CA	GLN			40.782	44.450	12.936	1.00 14.77	A
	ATOM	2918	CB	GLN			42.309	44.516	12.986	1.00 15.81	A
	ATOM	2919	CG	GLN			42.995	43.306	12.376	1.00 19.57	A
EE	ATOM	2920	CD	GLN			42.592	43.086	10.930	1.00 21.70	A
55	ATOM	2921	OE1	GLN	Α	380	42.669	44.001	10.106	1.00 22.56	Α

DIUSINEE DISTRI

	ATOM	2922	NE2	GLN	Α	380	42.162	41.866	10.612	1.00	22.92	А
	ATOM	2923	С	GLN	Α	380	40.285	43.285	13.791		14.48	А
	ATOM	2924	0	GLN	Α	380	40.054	42.187	13.280		13.99	А
	ATOM	2925	N	GLU	Α	381	40.127	43.522	15.090		14.50	Α
5	ATOM	2926	CA	GLU	Α	381	39.653	42.474	15.985	1.00	15.49	Α
	ATOM	2927	СВ	GLU	Α	381	39.648	42.962	17.439	1.00	17.08	Α
	MOTA	2928	CG	GLU	Α	381	41.038	43.325	17.957		21.28	А
	ATOM	2929	CD	GLU	Α	381	41.063	43.610	19.448		22.82	А
	ATOM	2930	OE1	GLU	Α	381	40.241	44.415	19.921	1.00	22.89	Α
10	ATOM	2931	OE2	GLU	Α	381	41.921	43.032	20.148	1.00	27.14	А
	ATOM	2932	С	GLU	Α	381	38.252	42.041	15.573		14.29	A
	ATOM	2933	0	GLU	Α	381	37.937	40.853	15.571		13.97	А
	MOTA	2934	N	TYR	Α	382	37.413	43.011	15.227		13.36	А
	MOTA	2935	CA	TYR	Α	382	36.058	42.709	14.796		13.03	А
15	ATOM	2936	CB	TYR	Α	382	35.294	43.993	14.468	1.00	13.08	Α
	ATOM	2937	CG	TYR	Α	382	33.985	43.722	13.763		13.27	Α
	MOTA	2938	CD1	TYR	Α	382	32.928	43.096	14.430		13.48	Α
	MOTA	2939	CE1	TYR	Α	382	31.746	42.766	13.764		11.84	А
	ATOM	2940	CD2	TYR	Α	382	33.826	44.020	12.407		12.53	Α
20	ATOM	2941	CE2	TYR	Α	382	32.650	43.693	11.732	1.00	12.76	Α
	ATOM	2942	CZ	TYR	Α	382	31.615	43.062	12.419	1.00	12.40	А
	ATOM	2943	ОН	TYR	Α	382	30.461	42.708	11.749	1.00	12.59	Α
	ATOM	2944	С	TYR	Α	382	36.078	41.820	13.554	1.00	13.04	A
	ATOM	2945	0	TYR	Α	382	35.451	40.761	13.522		12.38	А
25	MOTA	2946	N	PHE	Α	383	36.791	42.261	12.523		12.27	A
	MOTA	2947	CA	PHE	Α	383	36.864	41.496	11.285	1.00	13.24	А
	ATOM	2948	СВ	PHE	Α	383	37.653	42.281	10.227		13.43	А
	MOTA	2949	CG	PHE	Α	383	36.876	43.417	9.605	1.00	12.96	А
	ATOM	2950	CD1	PHE	Α	383	37.365	44.717	9.648	1.00	13.91	А
30	MOTA	2951	CD2	PHE	Α	383	35.659	43.181	8.968	1.00	14.11	Α
	ATOM	2952	CE1	PHE	Α	383	36.658	45.772	9.064	1.00	13.79	А
	ATOM	2953	CE2	PHE	Α	383	34.939	44.224	8.379	1.00	14.72	A
	ATOM	2954	CZ	PHE	Α	383	35.441	45.525	8.426	1.00	14.80	А
	ATOM	2955	С	PHE	Α	383	37.460	40.095	11.474		14.00	A
35	MOTA	2956	0	PHE	Α	383	36.984	39.129	10.873		13.60	А
	ATOM	2957	N	ASP	Α	384	38.494	39.976	12.303	1.00	14.72	А
	ATOM	2958	CA	ASP	Α	384	39.098	38.662	12.540	1.00	15.43	А
	ATOM	2959	CB	ASP	Α	384	40.272	38.759	13.517	1.00	16.51	А
	ATOM	2960	CG	ASP	Α	384	41.505	39.384	12.898		17.75	A
40	ATOM	2961	OD1	ASP	Α	384	41.584	39.464	11.652		18.23	A
	ATOM	2962	OD2	ASP	Α	384	42.405	39.782	13.666		19.50	A
	ATOM	2963	С	ASP	Α	384	38.054	37.710	13.116		15.26	A
	ATOM	2964	0	ASP	Α	384	37.960	36.553	12.704		15.46	A
	ATOM	2965	N	ALA	Α	385	37.265	38.206	14.064	1.00	14.92	А
45	ATOM	2966	CA	ALA	Α	385	36.226	37.398	14.696	1.00	15.13	А
	ATOM	2967	СВ			385	35.606	38.161	15.866	1.00	14.89	А
	ATOM	2968	С			385	35.149	37.013	13.688	1.00	15.31	А
	ATOM	2969	0			385	34.693	35.868	13.657	1.00	15.33	A
	ATOM	2970	N			386	34.737	37.969	12.863	1.00	15.18	Α
50	ATOM	2971	CA			386	33.722	37.698	11.851	1.00	15.40	Α
- •	ATOM	2972	СВ			386	33.453	38.941	10.980	1.00	15.05	Α
	ATOM	2973		VAL			32.561	38.567	9.793	1.00	15.44	А
	ATOM	2974		VAL			32.788	40.022	11.819		15.00	Α
	ATOM	2975	C			386	34.153	36.548	10.938		16.11	А
55	ATOM	2976	0			386	33.387	35.610	10.690	1.00	16.01	Α
	-			_								

	ATOM	2977	N	HIS	Α	387	35.382	36.613	10.443	1.00 16.13	А
	ATOM	2978	CA	HIS	Α	387	35.869	35.570	9.557	1.00 16.83	Α
	ATOM	2979	CB	HIS	Α	387	37.129	36.053	8.840	1.00 16.93	Α
	MOTA	2980	CG	HIS	Α	387	36.860	37.172	7.881	1.00 17.54	Α
5	ATOM	2981	CD2	HIS	Α	387	37.271	38.462	7.874	1.00 17.35	Α
	ATOM	2982	ND1	HIS	Α	387	36.022	37.030	6.796	1.00 17.71	Α
	ATOM	2983	CE1	HIS	Α	387	35.926	38.186	6.163	1.00 17.77	Α
	MOTA	2984	NE2	HIS	Α	387	36.674	39.072	6.798	1.00 17.27	А
	ATOM	2985	С	HIS	Α	387	36.090	34.243	10.274	1.00 17.78	Α
10	ATOM	2986	0	HIS			36.055	33.181	9.651	1.00 16.94	Α
	ATOM	2987	N	GLN	Α	388	36.307	34.300	11.583	1.00 19.02	А
	MOTA	2988	CA	GLN	Α	388	36.474	33.077	12.358	1.00 21.11	Α
	MOTA	2989	CB	GLN	Α	388	36.943	33.402	13.780	1.00 23.11	Α
	MOTA	2990	CG	GLN	Α	388	38.439	33.692	13.900	1.00 25.90	Α
15	MOTA	2991	CD	GLN	Α	388	38.804	34.341	15.230	1.00 28.63	Α
	MOTA	2992	OE1	GLN			38.246	34.000	16.275	1.00 30.49	A
	MOTA	2993	NE2				39.754	35.274	15.197	1.00 29.72	Α
	MOTA	2994	С	GLN			35.105	32.394	12.392	1.00 21.50	Α
	MOTA	2995	0	GLN			35.005	31.169	12.304	1.00 21.80	Α
20	MOTA	2996	N	ALA			34.050	33.196	12.506	1.00 21.77	A
	MOTA	2997	CA	ALA			32.686	32.674	12.535	1.00 22.68	А
	MOTA	2998	CB	ALA			31.707	33.781	12.912	1.00 22.05	Α
	MOTA	2999	С	ALA			32.341	32.109	11.161	1.00 23.68	A
0.5	MOTA	3000	0	ALA			31.684	31.069	11.045	1.00 23.65	Α
25	MOTA	3001	N	GLU			32.791	32.808	10.124	1.00 24.67	A
	MOTA	3002	CA	GLU			32.564	32.406	8.741	1.00 26.15	A
	MOTA	3003	CB	GLU			33.169	33.453	7.796	1.00 26.00	A
	ATOM	3004	CG	GLU			33.252	33.042	6.328	1.00 26.38	A
20	ATOM	3005	CD	GLU			33.855	34.137	5.456	1.00 26.52	A
30	ATOM	3006	OE1	GLU			34.755	34.851	5.944	1.00 25.91	A
	ATOM	3007	OE2	GLU			33.441	34.276	4.285	1.00 26.51	A
	ATOM	3008	С	GLU			33.195	31.042	8.483	1.00 27.33	A
	ATOM	3009	0	GLU			32.571	30.157	7.895	1.00 27.52	A
25	ATOM	3010	N	ARG			34.438	30.880	8.926	1.00 28.78 1.00 30.39	A
35	ATOM	3011	CA	ARG			35.157	29.626	8.751		A
	ATOM	3012	CB	ARG			36.623	29.794	9.160 8.153	1.00 31.73 1.00 33.97	A A
	ATOM	3013	CG	ARG ARG			37.466	30.566 30.722	8.640	1.00 35.57	A
	ATOM ATOM	3014 3015	CD NE	ARG			38.899 38.987	31.640	9.770	1.00 33.37	A
40	ATOM	3015		ARG			40.082			1.00 30.15	A
40	ATOM	3016		ARG			41.195	31.163	10.433	1.00 39.03	A
	ATOM	3017		ARG			40.065	32.693	11.506	1.00 40.21	A
	ATOM	3019	C	ARG			34.516	28.505	9.564	1.00 30.59	A
	ATOM	3020	0	ARG			34.605	27.333	9.198	1.00 30.33	A
45	ATOM	3020	N	ALA			33.874	28.867	10.669	1.00 30.51	A
10	ATOM	3022	CA	ALA			33.212	27.882	11.516	1.00 30.61	A
	ATOM	3023	CB	ALA			32.878	28.494	12.873	1.00 30.84	A
	ATOM	3023	C	ALA			31.939	27.415	10.819	1.00 30.66	A
	ATOM	3025	0	ALA			31.261	26.495	11.283	1.00 30.52	A
50	ATOM	3026	N	GLY			31.621	28.065	9.703	1.00 30.35	A
20	ATOM	3027	CA	GLY			30.442	27.708	8.939	1.00 30.05	A
	ATOM	3027	C	GLY			29.130	28.249	9.475	1.00 29.86	A
	ATOM	3029	0	GLY			28.073	27.679	9.208	1.00 29.53	A
	ATOM	3030	N	GLN			29.175	29.346	10.223	1.00 29.75	A
55	ATOM	3031	CA	GLN			27.939	29.902	10.755	1.00 29.86	A
	0	2021	U 11								

	ATOM	3032	СВ	CIN	Λ	394	28.138	30.415	12.188	1.00 30.87	А
	ATOM	3032	CG			394	28.875	31.732	12.311	1.00 30.07	A
	ATOM	3033	CD			394	28.756	32.326	13.706	1.00 32.39	A
				GLN			29.228	31.747	14.687	1.00 32.51	A
5	ATOM ATOM	3035		GLN			28.113	33.485	13.800	1.00 32.31	A
3		3036				394			9.878	1.00 31.11	A
	ATOM	3037	С				27.375	31.015			
	ATOM	3038	0			394	26.319	31.567	10.178	1.00 29.43	A
	ATOM	3039	N			395	28.067	31.336	8.789	1.00 28.59	A
10	ATOM	3040	CA			395	27.596	32.385	7.892	1.00 27.95	A
10	MOTA	3041	CB			395	27.824	33.753	8.533	1.00 28.94	A
	ATOM	3042	С			395	28.244	32.349	6.511	1.00 27.67	A
	MOTA	3043	0			395	29.419	32.013	6.367	1.00 27.22	А
	MOTA	3044	N			396	27.454	32.694	5.500	1.00 27.14	А
	ATOM	3045	CA	GLU	Α	396	27.917	32.745	4.118	1.00 27.12	A
15	MOTA	3046	CB			396	27.131	31.760	3.245	1.00 29.69	A
	MOTA	3047	CG	GLU	Α	396	26.527	30.582	4.002	1.00 34.14	А
	MOTA	3048	CD	GLU	Α	396	25.1 65	30.906	4.604	1.00 36.53	Α
	MOTA	3049	OE1	GLU	Α	396	25.068	31.857	5.413	1.00 38.43	А
	MOTA	3050	OE2	GLU	Α	396	24.187	30.204	4.263	1.00 38.46	Α
20	MOTA	3051	С	GLU	Α	396	27.613	34.173	3.685	1.00 25.18	A
	ATOM	3052	0	GLU	Α	396	26.524	34.680	3.958	1.00 25.88	Α
	ATOM	3053	N	PHE	Α	397	28.557	34.830	3.023	1.00 22.14	A
	ATOM	3054	CA	PHE	Α	397	28.328	36.211	2.619	1.00 19.29	А
	MOTA	3055	СВ	PHE	Α	397	29.530	37.079	2.998	1.00 18.47	Α
25	ATOM	3056	CG	PHE	Α	397	29.776	37.147	4.476	1.00 17.12	А
	ATOM	3057	CD1	PHE			30.814	36.426	5.056	1.00 17.39	А
	ATOM	3058	CD2				28.948	37.909	5.293	1.00 16.43	А
	ATOM	3059	CE1				31.025	36.462	6.438	1.00 15.91	А
	ATOM	3060	CE2				29.148	37.953	6.673	1.00 16.34	А
30	ATOM	3061	CZ			397	30.190	37.227	7.245	1.00 15.91	А
	ATOM	3062	C			397	27.999	36.403	1.148	1.00 18.17	А
	ATOM	3063	Ö			397	28.569	35.749	0.278	1.00 17.72	A
	ATOM	3064	N			398	27.072	37.327	0.857	1.00 16.93	А
	ATOM	3065	CD			398	26.367	38.194	1.819	1.00 17.16	A
35	ATOM	3066	CA			398	26.653	37.622	-0.512	1.00 16.50	A
00	ATOM	3067	CB			398	25.390	38.446	-0.301	1.00 16.82	A
	ATOM	3068	CG			398	25.741	39.246	0.916	1.00 16.85	A
	ATOM	3069	C			398	27.726	38.392	-1.282	1.00 15.76	A
	ATOM	3070	Ö			398	28.589	39.044	-0.684	1.00 15.25	A
40	ATOM	3071	N			399	27.670		-2.607	1.00 14.50	A
10	ATOM	3072	CA			399	28.603	38.994	-3.481	1.00 13.87	A
	ATOM	3072	CB			399	29.006	38.126	-4.684	1.00 13.66	A
		3073		THR			27.828	37.691	-5.378	1.00 13.00	A
	ATOM			THR			29.803	36.920	-4.221	1.00 12.63	A
45	ATOM	3075					27.881	40.238	-3.986	1.00 13.35	A
40	ATOM	3076	С			399		40.254		1.00 13.33	
	ATOM	3077	0			399	26.653	41.280	-4.082 -4.311	1.00 13.12	A
	ATOM	3078	N	LEU			28.636				A
	ATOM	3079	CA	LEU			28.019	42.517	-4.776	1.00 11.68	A
EO	ATOM	3080	CB	LEU			27.612	43.364	-3.559	1.00 11.72	A
50	ATOM	3081	CG	LEU			26.954	44.740	-3.743	1.00 11.84	A
	ATOM	3082		LEU			26.178	45.085	-2.489	1.00 11.84	A
	ATOM	3083		LEU			28.002	45.812	-4.032	1.00 11.75	A
	ATOM	3084	С	LEU			28.941	43.317	-5.678	1.00 11.82	A
	ATOM	3085	0	LEU			30.160	43.294	-5.508	1.00 10.86	A
55	ATOM	3086	N	SER	A	401	28.354	43.998	-6.660	1.00 11.77	А

		ATOM	3087	CA	SER A	401	29.117	44.857	-7.562	1.00 11.13	Α
		ATOM	3088	CB	SER A	401	29.352	44.188	-8.924	1.00 11.81	Α
		MOTA	3089	OG	SER A	401	28.186	44.215	-9.725	1.00 11.97	Α
		ATOM	3090	С	SER A	401	28.283	46.123	-7.739	1.00 11.29	Α
	5	ATOM	3091	0	SER A	401	27.062	46.092	-7.564	1.00 11.28	Α
	_	ATOM	3092	N	GLY A		28.942	47.230	-8.072	1.00 10.51	Α
		ATOM	3093	CA	GLY A		28.245	48.492	-8.256	1.00 11.12	Α
		ATOM	3094	С	GLY A		28.827	49.576	-7.362	1.00 11.67	А
		ATOM	3095	Ö	GLY A		29.852	49.361	-6.715	1.00 12.01	А
	10	ATOM	3096	N	ASP A		28.183	50.739	-7.322	1.00 11.30	А
	10	ATOM	3097	CA	ASP A		28.665	51.834	-6.489	1.00 11.42	А
		ATOM	3098	СВ	ASP A		29.180	52.983	-7.367	1.00 11.48	А
		ATOM	3099	CG	ASP A		28.063	53.737	-8.067	1.00 12.11	A
		ATOM	3100		ASP A		26.967	53.168	-8.236	1.00 13.59	Α
	15	ATOM	3101		ASP A		28.287	54.900	-8.461	1.00 12.95	A
	10	ATOM	3102	C	ASP A		27.556	52.333	-5.569	1.00 11.75	A
		ATOM	3102	0	ASP A		26.444	51.797	-5.570	1.00 11.42	A
		ATOM	3103	N	PHE A		27.864	53.355	-4.780	1.00 11.12	A
2:22.		ATOM	3105	CA	PHE A		26.887	53.913	-3.865	1.00 11.24	A
	20	ATOM	3105	CB	PHE A		27.233	53.526	-2.424	1.00 11.12	A
١,Ū	20	ATOM	3100	CG	PHE A		27.204	52.036	-2.184	1.00 11.08	A
1,5		ATOM	3107		PHE A		28.377	51.288	-2.207	1.00 10.94	A
i, i		MOTA	3100		PHE A		25.993	51.378	-1.980	1.00 10.57	A
		ATOM	3110		PHE A		28.347	49.899	-2.030	1.00 11.95	A
U	25	ATOM	3111		PHE A		25.949	49.992	-1.802	1.00 10.67	A
U	20	ATOM	3112	CZ	PHE A		27.126	49.250	-1.826	1.00 11.36	A
M		ATOM	3113	C	PHE A		26.737	55.422	-4.003	1.00 11.30	A
·		ATOM	3113	0	PHE A		26.912	56.178	-3.046	1.00 10.08	A
Ę)		ATOM	3115	N	PHE A		26.420	55.835	-5.228	1.00 11.82	A
	30	ATOM	3116	CA	PHE A		26.172	57.230	-5.575	1.00 12.35	A
١IJ	50	ATOM	3117	CB	PHE A		27.235	57.750	-6.550	1.00 12.94	A
r.		MOTA	3117	CG	PHE A		28.614	57.750	-5.958	1.00 13.35	A
ļ.d.		MOTA	3119		PHE A		29.699	57.250	-6.585	1.00 13.75	A
		ATOM	3120		PHE A		28.837	58.584	-4.789	1.00 13.48	A
ļ.	35	ATOM	3121		PHE A		30.987	57.366	-6.057	1.00 12.89	A
¥,	33	ATOM	3121		PHE A		30.126	58.706	-4.255	1.00 12.09	A
			3123	CZ	PHE A		31.198	58.095	-4.891	1.00 12.93	A
		ATOM	3123	C	PHE A		24.817	57.170	-6.290	1.00 12.33	A
		ATOM ATOM	3124	0	PHE A		24.539	56.187	-6.972	1.00 12.49	A
	40	ATOM	3125	N	THR A		23.973	58.192	-6.153	1.00 12.18	A
	40		3127	CA	THR A		24.254	59.382	-5.364	1.00 12.10	A
		ATOM ATOM	3128	CB	THR A		23.747	60.646	-6.108	1.00 12.33	A
			3129		THR A		24.631	60.929	-7.201	1.00 13.40	A
		ATOM ATOM	3129		THR A		23.683	61.848	-5.177	1.00 13.40	A
	45		3130	CGZ	THR A		23.611	59.280	-3.983	1.00 12.11	A
	40	ATOM					22.440	58.915	-3.838	1.00 12.69	A
		ATOM	3132	0	THR A		24.404	59.604	-2.971	1.00 12.03	A
		MOTA	3133	N	TYR A				-1.578	1.00 12.01	A
		MOTA	3134	CA	TYR A		23.985	59.559			A
	50	ATOM	3135	CB	TYR A		25.207	59.809	-0.697	1.00 12.23 1.00 13.17	A
	50	ATOM	3136	CG	TYR A		24.941	59.972	0.786	1.00 13.17	A
		ATOM	3137		TYR A		24.456	58.914	1.555		
		ATOM	3138		TYR A		24.326	59.033	2.942	1.00 12.87	A
		ATOM	3139		TYR A		25.277	61.160	1.436	1.00 12.63	A
	r-r-	ATOM	3140		TYR A		25.154	61.290	2.812	1.00 12.47	A
	55	MOTA	3141	CZ	TYR A	407	24.686	60.226	3.562	1.00 12.24	Α

		ATOM	3142	ОН	TYR	Α	407	24.637	60.347	4.933	1.00 11.95	А
		ATOM	3143	С	TYR			22.890	60.554	-1.211	1.00 13.79	А
		ATOM	3144	0	TYR	Α	407	22.830	61.664	-1.742	1.00 13.92	Α
		ATOM	3145	N	ALA	Α	408	22.026	60.129	-0.294	1.00 14.16	A
	5	ATOM	3146	CA	ALA			20.942	60.948	0.234	1.00 14.28	Α
	•	ATOM	3147	СВ	ALA			19.632	60.667	-0.505	1.00 14.27	Α
		ATOM	3148	С	ALA			20.839	60.506	1.685	1.00 14.52	A
		ATOM	3149	0	ALA			20.688	59.313	1.956	1.00 14.73	А
		ATOM	3150	N	ASP			20.955	61.444	2.622	1.00 14.31	A
	10	ATOM	3151	CA	ASP			20.881	61.082	4.031	1.00 14.91	Α
		ATOM	3152	СВ	ASP			21.835	61.956	4.870	1.00 14.46	A
		ATOM	3153	CG	ASP			21.512	63.441	4.803	1.00 14.85	А
		ATOM	3154		ASP			20.939	63.893	3.791	1.00 13.80	A
		ATOM	3155		ASP			21.860	64.164	5.768	1.00 14.51	A
	15	ATOM	3156	С	ASP			19.455	61.135	4.573	1.00 15.58	A
		ATOM	3157	0	ASP			19.159	60.546	5.610	1.00 15.51	A
		ATOM	3158	N	ARG			18.573	61.825	3.853	1.00 16.53	A
		ATOM	3159	CA	ARG			17.167	61.927	4.240	1.00 17.84	A
.		ATOM	3160	СВ	ARG			17.008	62.732	5.535	1.00 19.59	A
ë S	20	ATOM	3161	CG .	ARG			17.450	64.188	5.475	1.00 22.30	A
=		ATOM	3162	CD	ARG			17.305	64.806	6.861	1.00 25.55	A
j		ATOM	3163	NE	ARG			17.958	66.105	7.004	1.00 28.63	A
1		ATOM	3164	CZ	ARG			17.454	67.258	6.577	1.00 30.10	А
		ATOM	3165		ARG			16.273	67.292	5.967	1.00 31.30	А
	25	ATOM	3166		ARG			18.131	68.383	6.772	1.00 29.89	
	20	ATOM	3167	C	ARG			16.320	62.559	3.139	1.00 17.93	
		ATOM	3168	Ö	ARG			16.824	63.314	2.305	1.00 17.10	А
-		ATOM	3169	N	SER			15.031	62.230	3.150	1.00 17.62	
		ATOM	3170	CA	SER			14.061	62.737	2.182	1.00 18.15	
	30	ATOM	3171	CB			411	13.513	64.094	2.647	1.00 19.65	
	00	ATOM	3172	OG			411	14.555	65.020	2.893	1.00 22.94	А
		ATOM	3173	C	SER			14.586	62.846	0.754	1.00 16.96	А
:		ATOM	3174	0			411	15.010	61.850	0.162	1.00 16.97	
		ATOM	3175	N	ASP			14.538	64.053	0.198	1.00 15.76	
	35	ATOM	3176	CA	ASP			15.002	64.289	-1.165	1.00 15.28	
	33	ATOM	3177	CB	ASP			13.967	65.119	-1.939	1.00 15.42	
		ATOM	3178	CG			412	13.836	66.545	-1.408	1.00 16.05	
		ATOM	3179		ASP			14.311	66.820	-0.284	1.00 15.81	
		ATOM	3180		ASP			13.243	67.390	-2.117	1.00 15.35	
	40	ATOM	3181	C	ASP			16.346		-1.174		
	40	ATOM	3182	0			412	16.756	65.550	-2.200	1.00 14.24	А
		ATOM	3183	N			413	17.022	65.026	-0.029	1.00 14.32	
		ATOM	3184	CA			413	18.315	65.697	0.091	1.00 13.86	
		ATOM	3185	CB			413	18.632	66.010	1.557	1.00 14.09	
	45	ATOM	3186	CG			413	17.723	67.078	2.155	1.00 14.34	A
	40		3187		ASN			17.958	67.540	3.270	1.00 15.45	
		ATOM	3188		ASN			16.685	67.465	1.425	1.00 13.77	
		ATOM		C			413	19.453	64.857	-0.488	1.00 14.05	
		ATOM	3189	0			413	20.151	64.161	0.252	1.00 13.05	
	50	ATOM	3190				414	19.631	64.926	-1.806	1.00 13.36	
	50	ATOM	3191	N				20.696	64.186	-2.478	1.00 13.34	
		ATOM	3192	CA CB			414 414	20.090	63.760	-3.886	1.00 13.34	
		ATOM	3193	CB			414	19.261	62.627	-3.894	1.00 13.11	
		ATOM	3194					17.910	62.856	-3.619	1.00 12.33	
	55	ATOM	3195		TYR			16.990	61.802	-3.601	1.00 13.47	
	55	MOTA	3196	CEI	TYR	А	414	10.930	01.002	-2.001	1.00 13.24	п

	ATOM	3197	CD2	TYR	Α	414	19.669	61.316	-4.149	1.00 12.99	А
	ATOM	3198	CE2	TYR	Α	414	18.761	60.260	-4.129	1.00 12.68	А
	MOTA	3199	CZ	TYR	Α	414	17.425	60.508	-3.857	1.00 13.38	Α
	MOTA	3200	ОН	TYR	Α	414	16.531	59.457	-3.848	1.00 12.59	A
5	MOTA	3201	С	TYR	Α	414	21.940	65.067	-2.554	1.00 12.83	Α
	MOTA	3202	0	TYR	Α	414	21.867	66.235	-2.941	1.00 12.53	А
	MOTA	3203	N	TRP	Α	415	23.078	64.490	-2.188	1.00 12.46	А
	MOTA	3204	CA	TRP	Α	415	24.343	65.213	-2.152	1.00 12.74	A
	MOTA	3205	CB	TRP	Α	415	25.250	64.590	-1.088	1.00 12.36	Α
10	ATOM	3206	CG	TRP	Α	415	24.676	64.612	0.297	1.00 12.97	Α
	MOTA	3207	CD2	TRP	Α	415	25.388	64.862	1.512	1.00 13.40	А
	MOTA	3208	CE2	TRP	Α	415	24.461	64.742	2.573	1.00 13.64	A
	MOTA	3209	CE3	TRP	Α	415	26.723	65.175	1.810	1.00 13.48	А
	MOTA	3210	CD1	TRP	Α	415	23.379	64.356	0.658	1.00 12.64	A
15	MOTA	3211	NE1	TRP	Α	415	23.242	64.434	2.024	1.00 13.04	Α
	MOTA	3212	CZ2	TRP	Α	415	24.827	64.923	3.911	1.00 13.72	Α
	MOTA	3213	CZ3	TRP	Α	415	27.086	65.354	3.135	1.00 13.13	A
	MOTA	3214	CH2	TRP	Α	415	26.139	65.227	4.174	1.00 13.76	A
	MOTA	3215	С			415	25.086	65.255	-3.482	1.00 12.39	А
20	MOTA	3216	0	TRP	Α	415	26.224	64.805	-3.566	1.00 12.69	Α
	MOTA	3217	N	SER	A	416	24.453	65.795	-4.516	1.00 11.73	А
	MOTA	3218	CA	SER	Α	416	25.102	65.878	-5.815	1.00 11.54	Α
	MOTA	3219	СВ	SER	Α	416	24.117	65.508	-6.932	1.00 11.23	А
	MOTA	3220	OG	SER	Α	416	22.849	66.106	-6.727	1.00 10.80	А
25	ATOM	3221	С	SER	Α	416	25.678	67.271	-6.046	1.00 11.26	A
	ATOM	3222	0	SER	Α	416	26.311	67.526	-7.063	1.00 11.02	A
	MOTA	3223	N	GLY	A	417	25.468	68.165	-5.085	1.00 12.11	А
	MOTA	3224	CA	GLY	A	417	25.983	69.518	-5.214	1.00 12.23	A
	MOTA	3225	С	GLY	Α	417	27.500	69.582	-5.147	1.00 12.12	A
30	ATOM	3226	0	GLY	Α	417	28.130	70.296	-5.930	1.00 12.13	A
	MOTA	3227	N	TYR	Α	418	28.090	68.818	-4.230	1.00 11.66	A
	ATOM	3228	CA			418	29.541	68.813	-4.051	1.00 11.15	А
	MOTA	3229	CB			418	29.904	68.106	-2.738	1.00 10.71	А
	MOTA	3230	CG			418	30.049	66.597	-2.808	1.00 11.18	A
35	ATOM	3231	CD1	TYR			31.302	66.008	-2.993	1.00 10.96	A
	ATOM	3232	CE1	TYR			31.456	64.616	-2.990	1.00 10.46	A
	MOTA	3233		TYR			28.947	65.758	-2.632	1.00 11.76	A
	ATOM	3234		TYR			29.090	64.360	-2.628	1.00 11.02	A
40	MOTA	3235	CZ			418	30.348	63.803	-2.805	1.00 10.28	A
40	MOTA	3236	ОН	TYR				62.435		1.00 11.20	A
	ATOM	3237	С			418	30.313	68.207	-5.231	1.00 10.98	A
	ATOM	3238	0			418	31.545	68.208	-5.250	1.00 10.37	A
	ATOM	3239	N			419	29.591	67.683	-6.213	1.00 10.63	A
4.5	MOTA	3240	CA			419	30.245	67.144	-7.399	1.00 10.39	A
45	ATOM	3241	CB			419	29.247	66.380	-8.280	1.00 10.83	A
	ATOM	3242	CG			419	28.624	65.146	-7.656	1.00 10.85	A
	ATOM	3243		TYR			27.464	64.590	-8.198	1.00 11.08	A
	MOTA	3244		TYR			26.897	63.438	-7.660	1.00 11.16	A
ΕO	MOTA	3245		TYR			29.201	64.518	-6.555	1.00 10.49	A
50	ATOM	3246		TYR			28.640	63.359	-6.008	1.00 10.86	A
	ATOM	3247	CZ			419	27.489	62.827	-6.568	1.00 11.11	A
	ATOM	3248	ОН			419	26.935	61.675	-6.051	1.00 10.77	A
	MOTA	3249	С			419	30.766	68.351	-8.191	1.00 10.55	A
EE	ATOM	3250	0			419	31.607	68.203	-9.083	1.00 11.05	A
55	ATOM	3251	N	THR	Α	420	30.279	69.544	-7.843	1.00 10.27	А

		ATOM	3252	CA	THR	Α	420	30.663	70.770	-8.548	1.00 9.65	А
		ATOM	3253	СВ	THR	Α	420	29.458	71.312	-9.355	1.00 10.18	А
		ATOM	3254	OG1	THR	Α	420	28.971	70.285	-10.228	1.00 10.10	A
		ATOM	3255	CG2	THR			29.859	72.532	-10.190	1.00 9.96	А
	5	MOTA	3256	С	THR			31.224	71.918	-7.699	1.00 10.48	Α
	•	ATOM	3257	Ö	THR			32.033	72.708	-8.187	1.00 10.35	А
		ATOM	3258	N	SER			30.798	72.009	-6.440	1.00 10.65	A
			3259	CA	SER			31.240	73.077	-5.540	1.00 10.83	A
		ATOM						30.851	72.737	-4.099	1.00 9.91	A
	10	ATOM	3260	CB	SER				72.737	-3.991	1.00 11.04	A
	10	MOTA	3261	OG	SER			29.446				
		ATOM	3262	С	SER			32.733	73.390	-5.607	1.00 10.88	A
		ATOM	3263	0	SER			33.571	72.483	-5.612	1.00 10.61	A
		MOTA	3264	N	ARG			33.051	74.685	-5.637	1.00 11.06	A
		ATOM	3265	CA	ARG			34.434	75.158	-5.717	1.00 11.32	A
	15	MOTA	3266	CB	ARG			35.163	74.880	-4.400	1.00 12.09	A
		ATOM	3267	CG	ARG			34.966	75.954	-3.316	1.00 12.90	Α
		ATOM	3268	CD	ARG	A	422	33.507	76.183	-2.913	1.00 13.25	Α
		ATOM	3269	NE	ARG	Α	422	33.436	77.150	-1.813	1.00 14.01	Α
		ATOM	3270	CZ	ARG	Α	422	33.503	76.829	-0.524	1.00 14.36	Α
i Ti	20	ATOM	3271	NHl	ARG	Α	422	33.619	75.563	-0.153	1.00 14.25	Α
Q		ATOM	3272		ARG			33.519	77.783	0.400	1.00 15.13	А
*,issF £49#£		MOTA	3273	С	ARG			35.162	74.486	-6.885	1.00 11.33	А
		ATOM	3274	0	ARG			36.178	73.804	-6.704	1.00 11.04	А
1,3		ATOM	3275	N	PRO			34.660	74.700	-8.112	1.00 11.11	A
195	25	ATOM	3276	CD	PRO			33.538	75.594	-8.455	1.00 10.63	Α
	20	ATOM	3277	CA	PRO			35.249	74.111	-9.319	1.00 10.85	A
		MOTA	3278	CB	PRO			34.251		-10.410	1.00 11.30	A
41			3279	CG	PRO			33.748	75.829	-9.944	1.00 12.06	A
		ATOM							74.541	-9.644	1.00 10.60	A
	30	ATOM	3280	C	PRO			36.678		-10.320	1.00 10.00	A
ij	30	ATOM	3281	0	PRO			37.405				
		ATOM	3282	N	TYR			37.082	75.717	-9.175	1.00 10.48	A
		MOTA	3283	CA	TYR			38.439	76.192	-9.433	1.00 11.22	A
		ATOM	3284	CB	TYR			38.658	77.554	-8.769	1.00 12.13	A
<u></u>	0-	ATOM	3285	CG	TYR			40.028	78.140	-9.029	1.00 12.96	A
3,	35	MOTA	3286	CD1				40.274		-10.170	1.00 13.38	А
		ATOM	3287	CE1	TYR			41.533		-10.421	1.00 14.39	A
		MOTA	3288		TYR			41.084	77.922	-8.138	1.00 13.80	Α
		ATOM	3289	CE2	TYR	Α	424	42.355	78.450	-8.383	1.00 14.53	А
		MOTA	3290	CZ	TYR	Α	424	42.568	79.206	-9.526	1.00 14.85	A
	4 0	ATOM	3291	OH	TYR	Α	424	43.812	79.745	-9.785	1.00 15.46	A
		ATOM	3292	С	TYR	Α	424	39.451	75.196	-8.863	1.00 11.15	А
		MOTA	3293	0	TYR	Α	424	40.402	74.787	-9.536	1.00 10.39	A
		ATOM	3294	N	HIS			39.226	74.794	-7.617	1.00 10.48	А
		ATOM	3295	CA	HIS			40.125	73.872	-6.933	1.00 10.34	А
	45	ATOM	3296	СВ	HIS			39.876	73.985	-5.431	1.00 10.89	A
		ATOM	3297	CG	HIS			39.851	75.404	-4.959	1.00 11.17	А
		ATOM	3298		HIS			38.823	76.274	-4.820	1.00 10.14	Α
		ATOM	3299		HIS			41.000	76.127	-4.719	1.00 11.79	A
		MOTA	3300		HIS			40.682	77.382	-4.460	1.00 10.26	A
	50				HIS			39.368	77.499	-4.516	1.00 12.42	A
	50	ATOM	3301								1.00 12.42	A
		ATOM	3302	С	HIS			39.985	72.437	-7.431 -7.372		
		ATOM	3303	0	HIS			40.941	71.660	-7.372	1.00 9.68	A
		ATOM	3304	N	LYS			38.800	72.088	-7.923	1.00 10.04	A
		MOTA	3305	CA	LYS			38.581	70.752	-8.478	1.00 10.39	A
	55	ATOM	3306	CB	LYS	Α	426	37.106	70.563	-8.869	1.00 10.40	А

												_
	ATOM	3307	CG			426	36.193	70.161	-7.714		10.43	A
	MOTA	3308	CD			426	34.724	70.107	-8.150		10.31	A
	MOTA	3309	CE			426	33.871	69.281	-7.183		10.26	A
_	ATOM	3310	NZ			426	33.888	69.790	-5.777		10.85	A
5	ATOM	3311	С			426	39.470	70.629	-9.718		10.40	A
	ATOM	3312	0			426	40.073	69.579	-9.969		10.72	A
	ATOM	3313	N			427	39.549		-10.491	1.00	9.88	A
	ATOM	3314	CA			427	40.379		-11.691		10.35	A
40	MOTA	3315	СВ			427	40.019		-12.549		11.69	A
10	ATOM	3316	CG			427	40.997		-13.671		12.53	A
	ATOM	3317	CD			427	41.271		-14.618		12.72	А
	MOTA	3318	NE			427	42.265		-15.613		12.83	A
	ATOM	3319	CZ			427	43.039		-16.293		12.73	A
	MOTA	3320		ARG			42.948		-16.103		12.04	A
15	ATOM	3321	NH2	ARG	Α	427	43.928		-17.152		13.32	Α
	ATOM	3322	С	ARG	Α	427	41.849		-11.268		10.25	Α
	ATOM	3323	0	ARG	Α	427	42.695		-11.852	1.00	9.51	Α
	ATOM	3324	N			428	42.145		-10.230		10.68	A
	ATOM	3325	CA	MET	Α	428	43.514	72.644	-9.738		11.11	Α
20	ATOM	3326	CB	MET	Α	428	43.571	73.614	-8.556		12.20	A
	MOTA	3327	CG	MET	Α	428	44.976	73.931	-8.088		13.51	A
	MOTA	3328	SD	MET	Α	428	45.000	75.304	-6.918		15.32	A
	MOTA	3329	CE	MET	Α	428	46.751	75.650	-6.870		14.47	A
	MOTA	3330	С	MET	Α	428	44.019	71.258	-9.321		10.53	Α
25	MOTA	3331	0	MET	Α	428	45.199	70.934	-9.502	1.00	9.33	A
	ATOM	3332	N	ASP	Α	429	43.118	70.438	-8.780	1.00	9.95	A
	ATOM	3333	CA	ASP	Α	429	43.475	69.086	-8.352	1.00	9.37	A
	ATOM	3334	СВ	ASP	Α	429	42.251	68.358	-7.788		10.10	A
	ATOM	3335	CG	ASP	Α	429	42.535	66.894	-7.467		10.35	A
30	MOTA	3336	OD1	ASP	Α	429	42.230	66.024	-8.318		10.71	A
	ATOM	3337	OD2	ASP	Α	429	43.069	66.616	-6.372	1.00	9.82	A
	MOTA	3338	С	ASP	Α	429	44.063	68.268	-9.496	1.00	9.63	A
	ATOM	3339	0	ASP	Α	429	45.084	67.598	-9.332	1.00	8.73	A
	MOTA	3340	N	ARG	Α	430	43.417	68.328	-10.658	1.00	9.03	A
35	ATOM	3341	CA	ARG	Α	430	43.876	67.573	-11.820	1.00	8.89	A
	ATOM	3342	CB	ARG	Α	430	42.805	67.604	-12.911	1.00	9.00	A
	ATOM	3343	CG	ARG	Α	430	41.515	66.914	-12.507	1.00	9.05	А
	MOTA	3344	CD	ARG	Α	430	41.750	65.448	-12.150	1.00	9.51	Α
	MOTA	3345	NE	ARG	Α	430	40.505		-12.128	1.00	9.34	Α
40	ATOM	3346	CZ	ARG	Α	430	39.818	64.382	-11.029	1.00	10.40	Α
	ATOM	3347	NH1	ARG	Α	430	40.248	64.770	-9.837	1.00	9.53	Α
	ATOM	3348	NH2	ARG	Α	430	38.683	63.695	-11.129	1.00	10.19	A
	ATOM	3349	С	ARG	Α	430	45.201	68.087	-12.371	1.00	9.55	А
	ATOM	3350	0	ARG	Α	430	46.020	67.312	-12.878	1.00	8.82	A
45	ATOM	3351	N	VAL	Α	431	45.407	69.396	-12.282	1.00	8.68	А
	ATOM	3352	CA	VAL	Α	431	46.652	69.989	-12.751	1.00	10.08	A
	ATOM	3353	СВ	VAL	Α	431	46.580	71.537	-12.726	1.00	10.23	Α
	MOTA	3354	CG1	VAL	Α	431	47.954	72.137	-13.037	1.00	11.41	A
	ATOM	3355	CG2	VAL	Α	431	45.556	72.025	-13.745	1.00	9.77	А
50	ATOM	3356	С			431	47.790		-11.840	1.00	9.68	Α
	ATOM	3357	0			431	48.822		-12.313	1.00	9.76	А
	ATOM	3358	N			432	47.595		-10.531	1.00	9.64	А
	ATOM	3359	CA			432	48.632	69.206	-9.596	1.00	9.75	А
	ATOM	3360	СВ			432	48.255	69.588	-8.161	1.00	9.87	A
55	ATOM	3361	CG			432	49.292	69.268	-7.079	1.00	9.92	А
												

											0 06	_
		MOTA	3362		LEU			50.657	69.850 -7.467			A
		ATOM	3363		LEU			48.825	69.849 -5.738	1.00		Α
		ATOM	3364	С	LEU	Α	432	48.865	67.703 -9.698	1.00	9.62	Α
		ATOM	3365	0	LEU	Α	432	49.998	67.237 -9.587	1.00	10.09	Α
	5	ATOM	3366	N	MET	Α	433	47.795	66.945 -9.917	1.00	9.73	Α
		ATOM	3367	CA	MET			47.922	65.496 -10.058	1.00	9.45	А
		ATOM	3368	СВ	MET			46.595	64.870 -10.494	1.00	8.69	Α
		ATOM	3369	CG	MET			46.732	63.414 -10.924	1.00	10.44	Α
		ATOM	3370	SD	MET			45.195	62.708 -11.557		11.59	А
	10	ATOM	3370	CE	MET			45.222	63.316 -13.250		10.74	A
	10				MET			48.972	65.188 -11.117			A
		ATOM	3372	C					64.340 -10.918	1.00		A
		ATOM	3373	0	MET			49.849				A
		MOTA	3374	N	HIS			48.876	65.885 -12.246			
	4=	MOTA	3375	CA	HIS			49.813	65.676 -13.342			A
	15	MOTA	3376	CB	HIS			49.298	66.325 -14.629			A
		ATOM	3377	CG	HIS			50.281	66.257 -15.752		10.58	A
		MOTA	3378	CD2	HIS	Α	434	50.721	65.207 -16.487			Α
		MOTA	3379	ND1	HIS	Α	434	51.018	67.347 - 16.161		11.20	Α
		MOTA	3380	CE1	HIS	A	434	51.871	66.969 -17.098			Α
, Fi	20	ATOM	3381	NE2	HIS	Α	434	51.712	65.677 -17.313	1.00	11.60	Α
		MOTA	3382	С	HIS	Α	434	51.214	66.191 -13.048	1.00	10.24	Α
1,5 <u>22</u> 1		MOTA	3383	0	HIS			52.202	65.538 -13.391	1.00	9.05	Α
M		ATOM	3384	N	TYR			51.301	67.370 -12.434	1.00	10.57	A
		ATOM	3385	CA	TYR			52.599	67.943 -12.101		11.66	Α
	25	ATOM	3386	CB	TYR			52.436	69.314 -11.436		13.23	А
Ŋ		ATOM	3387	CG	TYR			52.318	70.480 -12.396		16.34	А
n		ATOM	3388		TYR			51.340	70.506 -13.391		17.44	A
			3389		TYR			51.199	71.613 -14.237		18.75	A
2 ;		MOTA			TYR			53.157	71.588 -12.270		18.76	A
	30	ATOM	3390					53.137	72.695 -13.105		20.26	A
i,Ū	30	ATOM	3391		TYR						20.16	A
M.		MOTA	3392	CZ	TYR			52.045	72.703 -14.083		22.28	A
į.i.		ATOM	3393	OH	TYR			51.903	73.818 -14.884			A
		ATOM	3394	С	TYR			53.364	67.018 -11.161		11.02	
[.±	0.5	ATOM	3395	0	TYR			54.578	66.868 -11.290		10.53	A
ğı ze :	35	ATOM	3396	N	VAL			52.658	66.400 -10.215			A
		ATOM	3397	CA	VAL			53.317	65.490 -9.280			A
		MOTA	3398	CB	VAL			52.341	65.008 -8.175			Α
		ATOM	3399		VAL			52.921	63.811 -7.440		10.24	A
		ATOM	3400	CG2	VAL			52.094	66.145 -7.185			А
	4 0	ATOM	3401	С	VAL	Α	436	53.885			10.04	A
		ATOM	3402	0	VAL	Α	436	55.043	63.917 -9.849	1.00	9.58	А
		ATOM	3403	N	ARG	Α	437	53.076	63.707 -10.914	1.00	9.63	А
		ATOM	3404	CA	ARG	Α	437	53.537	62.566 -11.696	1.00	10.51	Α
		ATOM	3405	СВ	ARG	Α	437	52.416	62.050 -12.607	1.00	10.60	A
	45	ATOM	3406	CG	ARG			52.915	61.118 -13.705	1.00	11.44	Α
		ATOM	3407	CD	ARG			51.778	60.538 -14.544		11.25	А
		ATOM	3408	NE	ARG			52.288	59.867 -15.739		10.78	А
		ATOM	3409	CZ	ARG			51.558	59.068 -16.516		10.87	А
		ATOM	3410		ARG			50.285	58.831 -16.224		10.01	A
	50							52.096	58.519 -17.597		10.75	A
	50	ATOM	3411		ARG			54.751	62.935 -12.547		10.73	A
		ATOM	3412	C	ARG						11.91	A
		ATOM	3413	0	ARG			55.736	62.194 -12.597			A
		ATOM	3414	N	ALA			54.680	64.080 -13.220		10.55	
		ATOM	3415	CA	ALA			55.771	64.523 -14.086		10.56	A
	55	ATOM	3416	СВ	ALA	A	438	55.345	65.764 -14.879	1.00	10.46	A

	n mon	2417	_	71 T T	7.	120	57.053	64 907	-13.309	1.00 10.58	А
	ATOM ATOM	3417 3418	C 0	ALA ALA			58.150		-13.763	1.00 10.30	A
	ATOM	3419	N	ALA			56.914		-12.136	1.00 9.89	A
	ATOM	3420	CA			439	58.074		-11.310	1.00 9.47	A
5	ATOM	3421	CB			439	57.657		-10.141	1.00 8.79	A
3	ATOM	3422	C			439	58.734		-10.785	1.00 9.84	A
	ATOM	3423	0			439	59.956		-10.838	1.00 8.81	A
	ATOM	3424	N			440	57.927		-10.270	1.00 9.60	A
	ATOM	3425	CA			440	58.469	62.283	-9.757	1.00 10.28	А
10	ATOM	3426	CB			440	57.367	61.451	-9.089	1.00 10.51	А
10	ATOM	3427	CG			440	56.796	62.085	-7.833	1.00 11.25	Α
	ATOM	3428	CD			440	56.134	61.071	-6.918	1.00 11.92	А
	ATOM	3429		GLU			55.012	60.614	-7.222	1.00 12.12	А
	ATOM	3430		GLU			56.753	60.718	-5.896	1.00 13.62	А
15	ATOM	3431	C			440	59.118		-10.872	1.00 10.35	A
10	ATOM	3432	0			440	60.171		-10.674	1.00 11.64	Α
	ATOM	3433	N			441	58.494		-12.045	1.00 10.26	Α
	ATOM	3434	CA			441	59.047		-13.158	1.00 10.07	Α
	ATOM	3435	СВ			441	58.010		-14.274	1.00 9.51	Α
20	ATOM	3436	CG			441	58.520		-15.507	1.00 9.93	Α
_+	ATOM	3437	SD			441	57.250	59.554	-16.783	1.00 10.71	Α
	ATOM	3438	CE			441	56.191	58.321	-16.011	1.00 11.36	Α
	MOTA	3439	С			441	60.325	61.281	-13.721	1.00 10.23	Α
	ATOM	3440	0	MET	Α	441	61.322	60.584	-13.913	1.00 9.58	A
25	ATOM	3441	N	LEU	Α	442	60.304	62.585	-13.982	1.00 10.26	Α
	ATOM	3442	CA	LEU	Α	442	61.483	63.251	-14.529	1.00 11.10	Α
	MOTA	3443	СВ	LEU	Α	442	61.175	64.719	-14.846	1.00 11.61	A
	ATOM	3444	CG	LEU	Α	442	60.559	64.982	-16.226	1.00 12.48	A
	MOTA	3445	CD1	LEU	Α	442	59.975		-16.271	1.00 12.40	A
30	MOTA	3446	CD2	LEU	Α	442	61.614		-17.305	1.00 12.40	Α
	MOTA	3447	С			442	62.697		-13.616	1.00 11.57	A
	ATOM	3448	0			442	63.826		-14.089	1.00 11.69	A
	ATOM	3449	N			443	62.474		-12.307	1.00 11.46	A
	ATOM	3450	CA			443	63.590		-11.373	1.00 11.37	A
35	MOTA	3451	СВ			443	63.257		-10.104	1.00 11.11	A
	MOTA	3452	OG			443	62.166	63.396		1.00 10.78	A
	MOTA	3453	С			443	64.003		-10.999	1.00 11.94	A
	ATOM	3454	0			443	65.064		-10.403	1.00 11.73 1.00 11.28	A
40	ATOM	3455	N			444	63.177		-11.360		A
40	ATOM	3456	CA			444	63.458		-11.043	1.00 11.76 1.00 11.73	A
	ATOM	3457	CB			444	62.204		-11.264	1.00 11.73	A A
	ATOM	3458	С			444	64.618		-11.846 -11.402	1.00 12.30	A
	ATOM	3459	0			444	65.267		-11.402	1.00 12.43	A
45	ATOM	3460	N			445	64.880		-13.021	1.00 12.37	A
45	ATOM	3461	CA			445	65.948		-15.218	1.00 13.43	A
	ATOM	3462	CB			445	65.945		-15.218	1.00 12.36	A
	ATOM	3463	CG			445	64.666		-16.645	1.00 12.00	A
	ATOM	3464		TRP			64.217 62.938		-10.043	1.00 11.74	A
50	ATOM	3465 3466		TRP TRP			64.772		-16.857	1.00 11.42	A
50	ATOM	3466 3467		TRP			63.671		-16.109	1.00 12.13	A
	MOTA MOTA	3467		TRP			62.630		-16.829	1.00 11.30	A
	ATOM	3469		TRP			62.198		-17.901	1.00 11.30	A
	ATOM	3470		TRP			64.037		-17.581	1.00 12.95	A
55	ATOM	3470		TRP			62.762		-18.094	1.00 12.11	A
55	Y 1 Old	24/1	CIIZ	1111	7	113	02.702	30.3.0			

	ATOM	3472	С	TRP A	445	67.333	58.917	-13.252	1.00 14.15	Α
	ATOM	3473	0	TRP A	445	68.201	58.097	-13.561	1.00 14.34	Α
	ATOM	3474	N	HIS A	446	67.543	59.894	-12.375	1.00 14.87	Α
	ATOM	3475	CA	HIS A	446	68.831	60.046	-11.709	1.00 15.74	Α
5	ATOM	3476	СВ	HIS A	446	69.462	61.414	-11.992	1.00 16.67	Α
	ATOM	3477	CG	HIS A	446	69.875	61.625	-13.413	1.00 18.24	Α
	ATOM	3478	CD2	HIS A	446	71.044	61.370	-14.047	1.00 19.05	Α
	ATOM	3479		HIS A		69.047	62.201	-14.350	1.00 18.92	Α
	ATOM	3480	CE1	HIS A	446	69.688	62.296	-15.501	1.00 19.41	Α
10	ATOM	3481		HIS A		70.901	61.799	-15.345	1.00 19.48	Α
	ATOM	3482	С	HIS A		68.711	59.942	-10.201	1.00 16.41	Α
	ATOM	3483	0	HIS A		67.625	60.071	-9.635	1.00 15.17	Α
	ATOM	3484	N	SER A		69.855	59.714	-9.566	1.00 16.74	А
	ATOM	3485	CA	SER A		69.946	59.673	-8.120	1.00 17.65	А
15	ATOM	3486	СВ	SER A		70.995	58.647	-7.685	1.00 18.93	Α
	ATOM	3487	OG	SER A		70.995	58.488	-6.280	1.00 20.59	Α
	ATOM	3488	C	SER A		70.432	61.099	-7.850	1.00 17.81	Α
	ATOM	3489	Ŏ	SER A		71.333	61.583	-8.538	1.00 18.00	Α
	ATOM	3490	N	TRP A		69.832	61.789	-6.886	1.00 17.24	Α
20	ATOM	3491	CA	TRP A		70.232	63.165	-6.619	1.00 17.67	Α
20	ATOM	3492	СВ	TRP A		69.020	64.097	-6.707	1.00 16.94	А
	ATOM	3493	CG	TRP A		68.372	64.127	-8.058	1.00 15.88	Α
	ATOM	3494	CD2	TRP A		68.520	65.144	-9.056	1.00 15.36	A
	ATOM	3495	CE2	TRP A		67.742		-10.168	1.00 14.69	А
25	MOTA	3496		TRP A		69.236	66.350	-9.120	1.00 14.92	A
20	MOTA	3497		TRP A		67.537	63.190	-8.587	1.00 15.27	A
	ATOM	3498	NE1	TRP A		67.154	63.555	-9.854	1.00 14.78	A
	ATOM	3499	CZ2	TRP A		67.659		-11.332	1.00 14.71	A
	ATOM	3500	CZ3	TRP A		69.154		-10.278	1.00 15.23	A
30	ATOM	3501	CH2	TRP A		68.368		-11.370	1.00 14.57	A
30	ATOM	3502	C	TRP A		70.919	63.392	-5.283	1.00 18.42	A
	ATOM	3502	0	TRP A		70.585	62.760	-4.284	1.00 17.49	A
		3503		ASP A		71.880	64.312	-5.282	1.00 20.05	A
	ATOM	3504	N CA	ASP A		72.605	64.659	-4.068	1.00 21.64	A
35	ATOM	3505	CB	ASP A		73.759	65.612	-4.397	1.00 23.78	A
33	ATOM	3507	CG	ASP A		74.633	65.915	-3.192	1.00 26.46	. A
	ATOM	3508		ASP A		74.187	66.658	-2.290	1.00 27.14	A
	ATOM			ASP A		75.772	65.402	-3.146	1.00 27.14	A
	ATOM	3509 3510	C	ASP A		71.607	65.344	-3.140	1.00 21.51	A
40	ATOM	3510	0	ASP A					1.00 21.31	A
40	ATOM	3511		GLY A		71.743	65.109	-1.839	1.00 21.76	A
	ATOM		N Ca			70.833	65.708	-0.881	1.00 21.96	A
	ATOM	3513	CA	GLY A		70.708	67.216	-0.997	1.00 22.35	A
	ATOM	3514	C	GLY A		69.662	67.782	-0.677	1.00 22.04	A
45	ATOM	3515	0	GLY A			67.872	-1.454	1.00 22.04	A
45	ATOM	3516	N	MET A		71.769		-1.593	1.00 21.07	A
	ATOM	3517	CA	MET A		71.756	69.323	-1.937	1.00 25.58	A
	ATOM	3518	CB	MET A		73.156	69.840		1.00 23.38	A
	ATOM	3519	CG	MET A		74.196	69.618	-0.856		
E0.	ATOM	3520	SD	MET A		75.742	70.474	-1.245	1.00 35.87	A n
50	ATOM	3521	CE	MET A		76.613	69.212	-2.205	1.00 33.78	A
	ATOM	3522	C	MET A		70.773	69.820	-2.649	1.00 21.28	A
	ATOM	3523	0	MET A		70.398	70.990	-2.644	1.00 21.56	A
	ATOM	3524	N	ALA A		70.366	68.937	-3.554	1.00 20.19	A
	ATOM	3525	CA	ALA A		69.434	69.314	-4.614	1.00 19.23	A
55	ATOM	3526	CB	ALA A	452	69.452	68.267	-5.724	1.00 19.32	A

	ATOM	3527	С	ALA	Α	452	68.017	69.482	-4.077	1.00 18.38	Α
	ATOM	3528	0	ALA			67.146	70.024	-4.760	1.00 17.97	Α
	ATOM	3529	N	ARG			67.795	69.004	-2.856	1.00 17.50	A
	ATOM	3530	CA	ARG	Α	453	66.488	69.096	-2.207	1.00 17.01	Α
5	ATOM	3531	СВ	ARG			66.180	70.559	-1.870	1.00 18.00	Α
	ATOM	3532	CG	ARG			67.249	71.225	-1.012	1.00 19.55	Α
	ATOM	3533	CD	ARG			66.942	72.698	-0.774	1.00 21.42	Α
	ATOM	3534	NE	ARG			65.716	72.891	-0.005	1.00 22.14	Α
	ATOM	3535	CZ	ARG			65.172	74.078	0.251	1.00 23.68	Α
10	ATOM	3536		ARG			65.745	75.187	-0.202	1.00 24.14	А
	ATOM	3537		ARG			64.054	74.156	0.963	1.00 23.59	А
•	ATOM	3538	С	ARG			65.360	68.510	-3.058	1.00 16.24	A
	ATOM	3539	0	ARG			64.227	68.987	-3.016	1.00 16.48	A
	ATOM	3540	N	ILE			65.673	67.471	-3.826	1.00 15.16	А
15	ATOM	3541	CA	ILE			64.681	66.830	-4.679	1.00 14.83	Α
	ATOM	3542	СВ	ILE			65.349	65.848	-5.667	1.00 15.09	Α
	ATOM	3543		ILE			64.286	65.111	-6.477	1.00 14.91	Α
	ATOM	3544	CG1				66.312	66.611	-6.587	1.00 14.75	Α
	ATOM	3545	CD1				65.660	67.697	-7.432	1.00 14.56	Α
20	ATOM	3546	С	ILE			63.638	66.077	-3.852	1.00 14.81	Α
	ATOM	3547	Ō	ILE			62.438	66.309	-4.002	1.00 14.37	A
	ATOM	3548	N	GLU			64.095	65.179	-2.981	1.00 14.40	А
	ATOM	3549	CA	GLU			63.178	64.410	-2.142	1.00 14.75	А
	ATOM	3550	СВ	GLU			63.944	63.458	-1.212	1.00 15.34	Α
25	ATOM	3551	CG	GLU			64.535	62.225	-1.883	1.00 14.65	А
	ATOM	3552	CD	GLU			65.880	62.484	-2.539	1.00 16.24	A
	ATOM	3553	OE1	GLU			66.344	63.646	-2.526	1.00 16.23	А
	ATOM	3554	OE2				66.473	61.518	-3.068	1.00 14.90	А
	ATOM	3555	С	GLU			62.323	65.349	-1.299	1.00 14.60	А
30	ATOM	3556	0	GLU			61.129	65.116	-1.103	1.00 13.65	А
	ATOM	3557	N	GLU			62.948	66.411	-0.800	1.00 14.87	А
	ATOM	3558	CA	GLU			62.258	67.394	0.025	1.00 15.38	Α
	ATOM	3559	СВ	GLU			63.229	68.502	0.432	1.00 17.41	A
	ATOM	3560	CG	GLU			62.669	69.473	1.454	1.00 20.04	Α
35	ATOM	3561	CD	GLU	Α	456	63.543	70.699	1.627	1.00 21.34	Α
	ATOM	3562	OE1	GLU	Α	456	64.773	70.581	1.457	1.00 22.77	А
	ATOM	3563	OE2	GLU	Α	456	63.002	71.780	1.941	1.00 22.99	Α
*	MOTA	3564	С	GLU	Α	456	61.070	68.011	-0.713	1.00 14.91	Α
	MOTA	3565	0	GLU	Α	456	59.940	67.995	-0.222	1.00 14.66	Α
40	ATOM	3566	N	ARG	Α	457	61.333	68.563	-1.893	1.00 14.02	Α
	MOTA	3567	CA	ARG	Α	457	60.281	69.196	-2.686	1.00 13.76	Α
	ATOM	3568	CB	ARG	Α	457	60.895	69.878	-3.917	1.00 14.11	А
	ATOM	3569	CG	ARG	A	457	61.308	71.340	-3.700	1.00 15.77	А
	ATOM	3570	CD	ARG	Α	457	62.227	71.524	-2.493	1.00 18.41	Α
45	ATOM	3571	NE	ARG	Α	457	62.485	72.936	-2.197	1.00 19.24	Α
	ATOM	3572	CZ	ARG	Α	457	63.341	73.709	-2.864	1.00 20.83	Α
	ATOM	3573	NH1	ARG	Α	457	64.041	73.217	-3.879	1.00 20.68	Α
	ATOM	3574	NH2	ARG	Α	457	63.497	74.982	-2.515	1.00 21.40	Α
	ATOM	3575	С	ARG			59.186	68.216	-3.110	1.00 12.75	A
50	ATOM	3576	0	ARG	Α	457	58.004	68.561	-3.105	1.00 11.81	Α
	ATOM	3577	N	LEU			59.571	66.996	-3.470	1.00 11.91	Α
	ATOM	3578	CA	LEU			58.586	66.002	-3.886	1.00 12.47	А
	ATOM	3579	СВ	LEU			59.279	64.788	-4.511	1.00 12.02	А
	ATOM	3580	CG	LEU			59.998	65.089	-5.834	1.00 11.94	А
55	ATOM	3581		LEU			60.693	63.829	-6.341	1.00 11.69	А

		MOTA	3582	CD2	LEU	A	458	58.985	65.601	-6.866	1.00 11.22	Α
		ATOM	3583	С	LEU	Α	458	57.696	65.559	-2.727	1.00 12.74	Α
		ATOM	3584	0	LEU	Α	458	56.505	65.318	-2.917	1.00 12.98	Α
		ATOM	3585	N	GLU	Α	459	58.265	65.451	-1.530	1.00 12.29	Α
	5	MOTA	3586	CA	GLU	Α	459	57.473	65.049	-0.374	1.00 13.18	Α
		ATOM	3587	СВ			459	58.365	64.846	0.857	1.00 14.23	Α
		ATOM	3588	CG			459	57.595	64.361	2.088	1.00 16.92	Α
		ATOM	3589	CD	GLU			58.497	63.766	3.159	1.00 18.01	A
		ATOM	3590		GLU			59.210	64.532	3.834	1.00 19.27	A
	10	ATOM	3591		GLU			58.497	62.525	3.316	1.00 18.89	A
	10	ATOM	3592	C	GLU			56.428	66.126	-0.096	1.00 10.09	A
			3593	0	GLU			55.259	65.824	0.050	1.00 12.30	A
		ATOM										
		ATOM	3594	N	GLN			56.847	67.388	-0.147	1.00 12.61	A
	15	ATOM	3595	CA	GLN			55.921	68.490	0.081	1.00 13.10	A
	15	ATOM	3596	CB	GLN			56.653	69.829	-0.041	1.00 15.39	A
		ATOM	3597	CG	GLN			55.765	71.037	0.211	1.00 17.90	A
		ATOM	3598	CD	GLN			56.432	72.346	-0.153	1.00 20.12	A
		MOTA	3599		GLN			55.906	73.421	0.135	1.00 23.01	Α
	••	MOTA	3600		GLN			57.590	72.265	-0.799	1.00 20.79	А
ı, 🗖	20	ATOM	3601	С	GLN			54.788	68.428	-0.950	1.00 12.41	A
۱Ġ		ATOM	3602	0	GLN	Α	460	53.612	68.505	-0.602	1.00 11.47	Α
m		MOTA	3603	N	ALA	А	461	55.145	68.278	-2.222	1.00 11.44	Α
		ATOM	3604	CA	ALA	Α	461	54.136	68.217	-3.275	1.00 10.82	Α
₹. <u></u> 3		MOTA	3605	CB	ALA	Α	461	54.810	68.096	-4.646	1.00 10.93	А
194	25	MOTA	3606	С	ALA	Α	461	53.147	67.069	-3.068	1.00 10.35	Α
enie Fine		MOTA	3607	0	ALA	Α	461	51.935	67.270	-3.152	1.00 10.11	А
i,T		ATOM	3608	N	ARG			53.659	65.869	-2.801	1.00 10.22	А
5 į		ATOM	3609	CA	ARG			52.797	64.708	-2.587	1.00 10.59	А
i*i		ATOM	3610	CB	ARG			53.630	63.443	-2.331	1.00 9.97	А
	30	ATOM	3611	CG	ARG			54.383	62.883	-3.541	1.00 9.98	А
Tribull BG H		ATOM	3612	CD	ARG			54.835	61.446	-3.254	1.00 10.20	A
		ATOM	3613	NE	ARG			55.747	61.380	-2.113	1.00 10.56	A
į.Ł		ATOM	3614	CZ	ARG			57.066	61.530	-2.202	1.00 11.65	A
		ATOM	3615		ARG			57.635	61.749	-3.383	1.00 11.19	A
į pada	35	ATOM	3616		ARG			57.818	61.469	-1.110	1.00 11.26	A
	55	ATOM	3617	C	ARG			51.860	64.925	-1.400	1.00 11.75	A
			3618	0	ARG			50.680	64.581	-1.451	1.00 10.88	A
		ATOM	3619	N	ARG			52.390	65.498	-0.325	1.00 10.00	A
		ATOM	3620		ARG			51.582	65.721	0.863	1.00 11.01	A
	40	ATOM		CA							1.00 11.09	
	40	ATOM	3621	CB	ARG			52.498				A
		ATOM	3622	CG	ARG			53.276	64.751	2.436	1.00 12.82	A
		ATOM	3623	CD	ARG			54.199	64.923	3.623	1.00 14.07	A
		ATOM	3624	NE	ARG			54.724	63.620	4.023	1.00 15.02	A
	4 -	MOTA	3625	CZ	ARG			55.481	63.409	5.094	1.00 15.38	A
	45	ATOM	3626		ARG			55.814	64.422	5.882	1.00 15.01	A
		ATOM	3627		ARG			55.893	62.180	5.381	1.00 15.17	Α
		ATOM	3628	С	ARG			50.497	66.787	0.730	1.00 11.52	Α
		MOTA	3629	0	ARG	Α	463	49.401	66.612	1.259	1.00 11.19	A
		ATOM	3630	N	GLU	Α	464	50.777	67.881	0.024	1.00 11.08	Α
	50	ATOM	3631	CA	GLU	Α	464	49.755	68.913	-0.137	1.00 11.07	Α
		ATOM	3632	СВ	GLU	A	464	50.361	70.206	-0.686	1.00 12.30	A
		ATOM	3633	CG	GLU			51.509	70.752	0.158	1.00 14.44	Α
		ATOM	3634	CD	GLU			51.083	71.173	1.560	1.00 15.33	A
		MOTA	3635		GLU			50.043	70.696	2.058	1.00 16.27	A
	55	ATOM			GLU			51.804	71.981	2.176	1.00 17.15	А
							·				-	-

	ATOM	3637	С	GLU	Α	464	48.653	68.409	-1.067	1.00	10.16	Α
	ATOM	3638	0	GLU	Α	464	47.481	68.714	-0.861	1.00	10.20	Α
	ATOM	3639	N	LEU	Α	465	49.022	67.646	-2.094	1.00	10.06	Α
	ATOM	3640	CA	LEU	Α	465	48.017	67.101	-3.005	1.00	10.13	A
5	ATOM	3641	СВ	LEU	Α	465	48.668	66.476	-4.247	1.00	9.70	A
	ATOM	3642	CG	LEU	Α	465	47.695	65.782	-5.215	1.00	9.35	Α
	ATOM	3643	CD1	LEU	Α	465	46.662	66.790	-5.716	1.00	9.18	A
	ATOM	3644	CD2	LEU	Α	465	48.459	65.178	-6.389	1.00	8.95	Α
	ATOM	3645	С	LEU	A	465	47.215	66.033	-2.263	1.00	9.87	А
10	ATOM	3646	0	LEU	Α	465	45.994	65.955	-2.400	1.00	9.64	A
	MOTA	3647	N	SER	Α	466	47.905	65.218	-1.468	1.00	9.22	Α
	ATOM	3648	CA	SER	Α	466	47.237	64.161	-0.713	1.00	9.23	A
	ATOM	3649	CB	SER	Α	466	48.261	63.303	0.038	1.00	9.47	A
	MOTA	3650	OG	SER	Α	466	49.045	62.538	-0.864	1.00	9.64	A
15	ATOM	3651	С	SER	Α	466	46.252	64.764	0.279	1.00	9.71	Α
	MOTA	3652	0	SER	Α	466	45.148	64.249	0.467	1.00	9.34	Α
	ATOM	3653	N	LEU	Α	467	46.656	65.861	0.910	1.00	9.09	Α
	MOTA	3654	CA	LEU	Α	467	45.795	66.521	1.879	1.00	9.59	Α
	MOTA	3655	СВ	LEU	Α	467	46.501	67.744	2.473	1.00	9.34	Α
20	MOTA	3656	CG	LEU	Α	467	45.771	68.418	3.636	1.00	11.49	Α
	MOTA	3657	CD1	LEU	Α	467	45.861	67.523	4.867	1.00	12.53	А
	ATOM	3658	CD2	LEU	Α	467	46.389	69.786	3.924	1.00	11.51	A
	ATOM	3659	С	LEU	Α	467	44.480	66.957	1.233	1.00	9.10	A
	ATOM	3660	0	LEU	Α	467	43.405	66.769	1.809	1.00	8.58	А
25	MOTA	3661	N	PHE	Α	468	44.569	67.521	0.032	1.00	8.59	A
	MOTA	3662	CA	PHE	A	468	43.386	68.005	-0.672	1.00	9.47	А
	MOTA	3663	CB	PHE	Α	468	43.792	68.803	-1.918	1.00	9.60	А
	MOTA	3664	CG	PHE	Α	468	42.667	69.600	-2.519	1.00		A
	MOTA	3665		PHE			41.953	70.514	-1.744	1.00		A
30	MOTA	3666		PHE			42.310	69.434	-3.854	1.00	9.96	A
	MOTA	3667	CE1	PHE	Α	468	40.898	71.250	-2.291	1.00	9.64	A
	MOTA	3668	CE2	PHE	A	468	41.256	70.166	-4.409	1.00	9.46	A
	MOTA	3669	CZ			468	40.549	71.076	-3.622	1.00	8.13	A
	MOTA	3670	С	PHE			42.405	66.901	-1.060	1.00	9.54	A
35	MOTA	3671	0	PHE			41.261	67.186	-1.400	1.00		A
	ATOM	3672	N			469	42.843	65.644	-1.012	1.00	9.36	A
	ATOM	3673	CA			469	41.951	64.536	-1.343	1.00	9.71	A
	MOTA	3674	CB			469	42.743		-1.555	1.00	9.78	A
40	MOTA	3675	CG			469	43.803	63.345	-2.645	1.00		A
40	MOTA	3676	CD	GLN			43.265	63.975	-3.917	1.00		A
	MOTA	3677		GLN			43.797	64.979	-4.397	1.00		A
	MOTA	3678		GLN			42.207	63.394	-4.468	1.00	8.19	A
	MOTA	3679	С			469	40.921		-0.234	1.00	9.75	A
4-	MOTA	3680	0			469	39.977	63.545	-0.392	1.00		A
45	MOTA	3681	N			470	41.111		0.884	1.00	9.95	A
	MOTA	3682	CA			470	40.200	64.937	2.029	1.00	9.97	A
	MOTA	3683	CB			470	40.571	65.989	3.082	1.00		A
	MOTA	3684	CG			470	39.592	66.076	4.213	1.00		A
	MOTA	3685		HIS			38.969		4.926	1.00		A
50	MOTA	3686		HIS			39.127	67.276	4.709	1.00		A
	MOTA	3687		HIS			38.258	67.043	5.676	1.00		A
	ATOM	3688		HIS			38.144	65.736	5.828	1.00		A
	MOTA	3689	С			470	38.754	65.165	1.583	1.00		A
	ATOM	3690	0			470	38.511	65.900	0.622	1.00	9.96	A
55	ATOM	3691	N	HIS	A	471	37.797	64.560	2.289	1.00	10.//	А

	7 TOM	3692	CA	HIS	Λ	171	36.391	64.709	1.923	1.00 11.23	А
	ATOM ATOM	3693	CB	HIS			35.525	63.621	2.593	1.00 11.19	A
		3694	CG	HIS			35.686	63.532	4.078	1.00 10.36	A
	ATOM	3695		HIS			35.001	64.122	5.086	1.00 10.59	A
5	ATOM	3696		HIS			36.646	62.744	4.678	1.00 10.71	A
3	ATOM	3697		HIS			36.545	62.853	5.990	1.00 10.31	A
	ATOM			HIS			35.555	63.683	6.263	1.00 9.96	A
	ATOM	3698	C	HIS			35.773	66.099	2.147	1.00 11.46	A
	ATOM	3699 3700		HIS			34.555	66.270	2.012	1.00 10.89	A
10	ATOM		0	ASP			36.606	67.080	2.502	1.00 11.51	A
10	ATOM	3701	N				36.163	68.467	2.651	1.00 11.16	A
	ATOM	3702	CA	ASP				68.929	4.108	1.00 12.11	A
	MOTA	3703	CB	ASP			36.184	68.316	4.100	1.00 12.11	A
	ATOM	3704	CG	ASP			35.075	68.402	4.475	1.00 11.43	A
15	ATOM	3705		ASP			33.913		5.991	1.00 12.70	A
15	ATOM	3706		ASP			35.363	67.755 69.337	1.834	1.00 12.45	A
	ATOM	3707	C	ASP			37.112			1.00 11.58	A
	ATOM	3708	0	ASP			37.043	70.568	1.870	1.00 11.03	A
	MOTA	3709	N	GLY			38.005	68.679	1.103		A
20	ATOM	3710	CA	GLY			38.956	69.394	0.275	1.00 10.57 1.00 10.47	A
20	ATOM	3711	С	GLY			38.445	69.511	-1.145		A
	MOTA	3712	0	GLY			37.745	70.464	-1.483	1.00 10.79 1.00 10.32	A
	MOTA	3713	N	ILE			38.783	68.529	-1.976	1.00 10.32	A
	MOTA	3714	CA	ILE			38.368	68.518	-3.375		
05	ATOM	3715	СВ	ILE			38.904	67.239	-4.090	1.00 11.01	A
25	ATOM	3716		ILE			38.293	65.985	-3.462	1.00 10.23	A
	ATOM	3717		ILE			38.614	67.314	-5.591	1.00 11.39	A
	ATOM	3718	CD1	ILE			39.203	66.158	-6.393	1.00 11.29	A
	ATOM	3719	С	ILE			36.844	68.618	-3.536	1.00 10.82	A
20	MOTA	3720	0	ILE			36.344	69.060	-4.573	1.00 10.27	A A
30	MOTA	3721	N	THR			36.119	68.220	-2.495	1.00 10.66	
	ATOM	3722	CA	THR			34.656	68.256	-2.483	1.00 11.04	A
	ATOM	3723	CB	THR			34.108	67.616	-1.205	1.00 10.92	A
	ATOM	3724	OG1	THR			34.649	68.312	-0.075	1.00 10.89	A
	MOTA	3725	CG2	THR			34.493	66.133	-1.123	1.00 9.32	A
35	MOTA	3726	С	THR			34.107	69.684	-2.520	1.00 11.15	A
	MOTA	3727	0	THR			32.939	69.899	-2.862	1.00 11.97	A
	ATOM	3728	N	GLY			34.940	70.649	-2.146	1.00 10.97	A
	ATOM	3729	CA	GLY			34.500	72.034	-2.124	1.00 11.23	A
4.0	ATOM	3730	С	GLY			33.508	72.291	-0.999	1.00 11.45	A
40	MOTA	3731	0	GLY			32.622		-1.127	1.00 11.61	A
	ATOM	3732	N	THR			33.656	71.569	0.110	1.00 11.28	A
	MOTA	3733	CA	THR			32.748	71.728	1.241	1.00 11.26	A
	ATOM	3734	CB	THR			32.089	70.369	1.618	1.00 11.46	A
	ATOM	3735	OG1				33.106	69.399	1.905	1.00 10.63	A
45	MOTA	3736	CG2				31.223	69.864	0.468	1.00 11.11	A
	ATOM	3737	С	THR			33.370	72.333	2.502	1.00 12.05	A
	ATOM	3738	0	THR			32.849	72.140	3.601	1.00 12.10	A
	ATOM	3739	N	ALA			34.469	73.072	2.354	1.00 12.04	A
	ATOM	3740	CA	ALA	A	478	35.116	73.694	3.512	1.00 12.48	A
50	ATOM	3741	CB	ALA	Α	478	36.632	73.485	3.445	1.00 11.99	Α
	MOTA	3742	С	ALA	Α	478	34.800	75.188	3.589	1.00 12.76	A
	ATOM	3743	0	ALA	Α	478	34.332	75.780	2.620	1.00 12.65	A
	ATOM	3744	N	LYS	Α	479	35.049	75.805	4.740	1.00 13.47	A
	ATOM	3745	CA	LYS	Α	479	34.783	77.235	4.860	1.00 13.72	A
55	ATOM	3746	СВ	LYS	A	479	34.926	77.699	6.316	1.00 15.00	А

ATOM 3746 CG LYS A 479 33.901 77.059 7.254 1.00 17.01 18.59 ATOM 3749 CC LYS A 479 33.941 77.653 8.660 1.00 18.59 ATOM 3750 CL LYS A 479 33.928 78.861 8.808 1.00 18.25 ATOM 3751 C LYS A 479 31.570 78.514 8.789 1.00 18.25 ATOM 3752 O LYS A 479 35.627 77.471 3.624 1.00 12.30 ATOM 3753 N THR A 480 35.997 99.202 3.591 1.00 13.63 ATOM 3755 CB THR A 480 35.997 99.202 3.591 1.00 13.88 ATOM 3755 CB THR A 480 35.997 80.038 2.713 1.00 13.88 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 ATOM 3756 CG1 THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3756 CG THR A 480 37.687 80.141 3.033 1.00 14.71 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.95 ATOM 3750 N HITS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3756 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3766 CB HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3766 CB HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3766 CB HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3766 CB HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3768 C HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3768 C HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3768 C HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3768 C HIS A 481 39.438 81.227 5.994 1.00 15.70 ATOM 3768 C HIS A 481 39.438 97.99 99.01 ATOM 3767 NEZ HIS A 481 39.739 79.051 8.949 1.00 15.70 ATOM 3768 C HIS A 481 39.439 79.951 8.949 1.00 15.70 ATOM 3776 N VAL A 482 39.474 78.104 4.698 1.00 15.70 ATOM 3777 N VAL A 482 39.462 77.111 0.063 1.00 12.25 ATOM 3778 C N VAL A 482 39.867 77.022 2.844 1.00 12.15 ATOM 3778 C N VAL A 482 39.867 77.032 2.884 1.00 12.15 ATOM 3786 C N VAL A 483 39.451 76.890 9 .00 12.27 ATOM 3778 C N VAL A 482 39.867 77.032 - 1.432 1.00 12.25 ATOM 3778 C N VAL A 482 39.867 77.322 2.844 1.00 12.15 ATOM 3778 C N VAL A 482 39.867 77.322 2.844 1.00 12.15 ATOM 3778 C N VAL A 483 39.461 76.592 0.867 1.00 12.27 ATOM 3786 C N VAL A 483 39.461 76.592 0.867 1.00 12.27 ATOM 3787 C N VAL A 484 44.1053 78.562 0.461 1.00 13.36 ATOM 3787 C N VAL A 484 44.1053 78.560	ATOM 3748 CD LYS A 479 33.941 77.653 8.660 1.00 18.59 A A TOM 3750 NZ LYS A 479 31.570 78.514 8.789 1.00 18.25 A ATOM 3751 C LYS A 479 35.761 77.974 3.6621 1.00 13.63 A ATOM 3752 O LYS A 479 35.761 77.974 3.6621 1.00 13.63 A ATOM 3753 N THE A 480 35.390 79.202 3.591 1.00 13.88 A ATOM 3755 CB THE A 480 35.608 81.462 2.643 1.00 14.71 A ATOM 3755 CB THE A 480 35.608 81.462 2.643 1.00 14.71 A ATOM 3755 CC THE A 480 36.427 81.86 2.643 1.00 14.71 A ATOM 3756 CG THE A 480 36.424 81.386 2.162 1.00 15.03 A ATOM 3756 CG THE A 480 36.424 81.386 2.162 1.00 15.03 A ATOM 3759 O THE A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3756 CG THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3758 C THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 13.60 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 15.14 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3766 CD HIS A 481 39.452 80.537 4.628 1.00 15.14 A ATOM 3767 O N VAL A 482 39.452 80.537 4.628 1.00 15.14 A ATOM 3767 O HIS A 481 40.412 79.799 8.016 1.00 15.14 A ATOM 3767 O HIS A 481 40.412 79.799 8.016 1.00 15.14 A ATOM 3767 O HIS A 481 40.429 79.199 8.016 1.00 15.14 A ATOM 3767 O HIS A 481 40.429 79.199 8.016 1.00 15.87 A ATOM 3767 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3767 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3770 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3770 O HIS A 482 39.451 79.309 8.693 1.00 12.67 A ATOM 3770 O HIS A 482 39.451 79.309 8.693 1.00 12.56 A ATOM 3771 O VAL A 482 39.451 79.309 6.693 1.00 12.56 A ATOM 3779 C VAL A 482 39.451 79.309 6.000 12.57 A ATOM 3780 O VAL A 483 39.451 76.699 2.297 1.00 1												
ATOM 3748 CD LYS A 479 33.941 77.653 8.660 1.00 18.59 ATOM 3760 CE LYS A 479 31.570 78.514 8.789 1.00 18.25 ATOM 3751 C LYS A 479 31.570 78.514 8.789 1.00 18.25 ATOM 3752 C LYS A 479 35.761 77.984 3.963 1.00 13.63 ATOM 3752 C LYS A 479 35.761 77.984 3.963 1.00 13.63 ATOM 3753 N THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3754 CA THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3755 CB THR A 480 35.908 81.462 2.643 1.00 14.71 10 ATOM 3755 CG THR A 480 35.698 81.462 2.643 1.00 14.71 10 ATOM 3755 CG THR A 480 35.630 82.352 1.701 1.00 15.64 ATOM 3755 CG THR A 480 37.667 80.141 3.033 1.00 13.75 ATOM 3757 CG2 THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3761 CA HTS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HTS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3763 C HTS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 C HTS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 C HTS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3764 CD2 HTS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3764 CD2 HTS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3764 CD2 HTS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3764 CD2 HTS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3763 C HTS A 481 39.634 79.867 7.626 1.00 15.70 ATOM 3763 C HTS A 481 39.797 99.951 8.949 1.00 15.70 ATOM 3763 C HTS A 481 39.797 99.951 8.949 1.00 15.70 ATOM 3764 CD2 HTS A 481 39.797 99.951 8.949 1.00 15.70 ATOM 3764 CD2 HTS A 481 39.764 79.867 7.626 1.00 15.70 ATOM 3776 C VAL A 482 39.162 75.704 5.261 1.00 11.59 ATOM 3777 C VAL A 482 39.162 75.704 5.261 1.00 11.59 ATOM 3777 C VAL A 482 39.162 75.704 5.261 1.00 12.15 ATOM 3778 C VAL A 482 39.162 75.704 5.261 1.00 12.15 ATOM 3778 C VAL A 482 39.836 76.993 1.00 13.36 ATOM 3778 C VAL A 482 39.162 75.704 5.261 1.00 12.24 ATOM 3780 C VAL A 483 39.451 76.890 9.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.890 9.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.890 9.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.890 9.297 1.00 12.27 ATOM 3783 C VAL A 484 444 444 44.497 77.392 2.844 1.00 12.25 ATOM 3793 C B VAL A 484 444 44.498 77.8650 1.00 14.14	ATOM 3748 CD LYS A 479 33.941 77.653 8.660 1.00 18.59 A A TOM 3750 NZ LYS A 479 31.570 78.514 8.789 1.00 18.25 A ATOM 3751 C LYS A 479 35.761 77.984 3.963 1.00 13.63 A ATOM 3752 C LYS A 479 35.761 77.984 3.963 1.00 13.63 A ATOM 3753 N THE A 480 35.390 79.202 3.591 1.00 13.88 A ATOM 3755 CB THE A 480 35.390 79.202 3.591 1.00 13.88 A ATOM 3755 CB THE A 480 35.608 81.462 2.643 1.00 14.71 A ATOM 3755 CC THE A 480 36.427 77.471 3.624 1.00 14.71 A ATOM 3756 CT THE A 480 36.426 81.386 2.162 1.00 15.03 A ATOM 3757 CC2 THE A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3758 CT THE A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3758 CT THE A 480 38.516 79.981 2.138 1.00 13.75 A ATOM 3758 C THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3758 C THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3758 C THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3763 CG THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3763 CG THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3763 CG THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3765 CD THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD THE A 481 39.452 80.537 4.628 1.00 13.63 A ATOM 3766 CD THE A 481 39.452 80.537 4.628 1.00 12.69 A ATOM 3766 CD THE A 481 39.452 80.537 4.628 1.00 12.69 A ATOM 3766 CD THE A 481 39.452 80.537 4.628 1.00 12.69 A ATOM 3767 CD VAL A 482 39.451 79.109 8.693 1.00 12.69 A ATOM 3770 CD VAL A 482 39.451 79.109 8.693 1.00 12.69 A ATOM 3770 CD VAL A 482 39.451 79.309 4.4451 1.00 12.15 A ATOM 3771 CD VAL A 482 39.451 79.309 4.4641 1.00 12.15 A ATOM 3779 CD VAL A 483 39.451 76			ATOM	3747	CG	LYS F	479	33.901	77.059	7.254	1.00 17.01	Α
ATOM 3749 CE LYS A 479 33.028 78.861 8.808 1.00 19.93 ATOM 3750 NZ LYS A 479 31.570 78.514 8.799 1.00 18.25 ATOM 3751 C LYS A 479 35.761 77.984 3.963 1.00 13.63 ATOM 3753 N THR A 480 35.390 77.202 3.591 1.00 13.08 ATOM 3755 CB THR A 480 36.197 80.038 2.713 1.00 13.88 ATOM 3755 CB THR A 480 35.390 77.202 3.591 1.00 13.88 ATOM 3755 CB THR A 480 35.390 81.462 2.643 1.00 14.71 ATOM 3756 CGI THR A 480 35.390 81.462 2.643 1.00 15.03 ATOM 3757 CG2 THR A 480 36.490 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N BIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 15.70 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3768 C HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3767 NC2 HIS A 481 39.497 79.051 8.999 1.00 15.70 ATOM 3768 C HIS A 481 39.497 79.051 8.999 1.00 15.70 ATOM 3768 C HIS A 481 39.497 79.051 8.999 1.00 15.70 ATOM 3768 C HIS A 481 39.799 79.051 8.999 1.00 15.70 ATOM 3767 NC2 HIS A 481 39.799 79.051 8.999 1.00 15.70 ATOM 3767 NC2 HIS A 481 39.799 79.051 8.999 1.00 15.70 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 15.70 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 15.70 ATOM 3773 CA VAL A 482 39.474 78.104 4.698 1.00 15.75 ATOM 3773 CA VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3773 CA VAL A 482 39.474 78.104 4.698 1.00 12.15 ATOM 3773 CA VAL A 482 39.474 78.104 4.698 1.00 12.15 ATOM 3773 CA VAL A 482 39.474 78.104 4.699 1.00 15.70 ATOM 3775 C VAL A 482 39.474 78.104 4.699 1.00 15.70 ATOM 3775 C VAL A 482 39.474 78.104 4.699 1.00 12.27 ATOM 3779 C A VAL A 483 39.461 76.592 1.00 10.12.15 ATOM 3786 CB VAL A 483 39.461 76.592 1.00 10.12.15 ATOM 3787 C AVAL A 484 44.497 78.652 1.00 11.00 12.27 ATOM	ATOM 3749 CE LYS A 479 33.028 78.861 8.808 1.00 19.93 A A A A A A A A A A A A A A A A A A A				3748	CD	LYS F	479	33.941	77.653	8.660	1.00 18.59	A
ATOM 3750 NZ LYS A 479 31.570 78.514 8.789 1.00 13.63	ATOM 3750 NZ LYS A 479 31,570 78,514 8,789 1.00 18.25 A ATOM 3752 O LYS A 479 35,761 77,984 3,963 1.00 13,63 A ATOM 3753 N THR A 480 35,390 79,202 3,591 1.00 12,30 A ATOM 3755 CA THR A 480 36,197 80,038 2,713 1.00 13,85 A ATOM 3755 CB THR A 480 36,197 80,038 2,713 1.00 13,85 A ATOM 3755 CG THR A 480 34,264 81,386 2,162 1.00 15,03 A ATOM 3757 CG2 THR A 480 36,430 82,352 1,701 1.00 15,64 A ATOM 3759 O THR A 480 36,430 82,352 1,701 1.00 15,64 A ATOM 3759 O THR A 480 38,516 79,981 2,138 1.00 13,75 A ATOM 3760 N HIS A 481 39,633 81,227 5,994 1.00 13,63 A ATOM 3760 N HIS A 481 39,633 81,227 5,994 1.00 13,00 A ATOM 3762 CB HIS A 481 39,633 81,227 5,994 1.00 15,14 A ATOM 3764 CD2 HIS A 481 39,633 81,227 5,994 1.00 15,14 A ATOM 3766 CB HIS A 481 39,633 81,227 5,994 1.00 15,14 A ATOM 3766 CB HIS A 481 39,633 81,227 5,994 1.00 15,14 A ATOM 3766 CB HIS A 481 39,633 81,227 5,994 1.00 15,14 A ATOM 3766 CB HIS A 481 39,633 81,227 5,994 1.00 15,14 A ATOM 3766 CB HIS A 481 39,469 80,139 7,176 1.00 15,14 A ATOM 3766 CB HIS A 481 39,469 80,139 7,176 1.00 15,14 A ATOM 3766 CB HIS A 481 39,473 79,051 8,949 1.00 15,16 A ATOM 3767 NEZ HIS A 481 39,473 79,051 8,949 1.00 15,16 A ATOM 3767 NEZ HIS A 481 39,474 78,104 4.669 1.00 11,97 A ATOM 3767 NEZ HIS A 481 39,474 78,104 4.669 1.00 11,97 A ATOM 3767 CB VAL A 482 39,836 74,327 5,235 1.00 1,91 A ATOM 3776 CB VAL A 482 39,836 74,327 5,235 1.00 1,91 A ATOM 3776 CB VAL A 482 39,836 74,327 5,235 1.00 1,91 A ATOM 3776 CB VAL A 483 39,41 76,592 0.867 1.00 1,24 A ATOM 3780 CG VAL A 483 37,187 76,220 0.867 1.00 1,26 A ATOM 3780 CG VAL A 483 37,187									78.861	8.808	1.00 19.93	Α
The color of th	S											1.00 18.25	А
ATOM 3752 O LYS A 479 36.827 77.471 3.624 1.00 12.30 ATOM 3753 N THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3755 CB THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3756 OGI THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3756 CG THR A 480 36.400 82.352 1.701 1.00 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.03 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.75 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.75 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 15.14 ATOM 3766 CD HIS A 481 39.633 81.227 5.994 1.00 15.14 ATOM 3766 CE HIS A 481 39.452 80.537 7.626 1.00 15.87 ATOM 3766 CE HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3767 NEZ HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3768 C HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3769 O HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3769 O HIS A 481 38.264 79.867 7.626 1.00 15.85 ATOM 3769 O HIS A 481 39.495 79.211 4.588 1.00 11.59 ATOM 3776 CV ALA 482 39.474 78.104 4.698 1.00 11.59 ATOM 3777 N VALA 482 39.474 78.104 4.698 1.00 11.59 ATOM 3778 CG VALA 482 39.836 74.327 5.255 1.00 9.91 ATOM 3778 CG VALA 482 39.836 76.337 79.525 1.00 9.91 ATOM 3778 CG VALA 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CG VALA 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CG VALA 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG VALA 483 39.451 76.809 -0.353 1.00 13.46 ATOM 3785 CG VALA 483 39.451 76.809 -0.353 1.00 13.46 ATOM 3786 CG VALA 483 39.451 76.809 -0.353 1.00 13.16 ATOM 3787 CG VALA 484 44.448 41.426 79.929 0.446 1.00 12.27 ATOM 3780 CG VALA 483 39.451 76.809 -0.353 1.00 13.46 ATOM 3787 CG VALA 484 44.2215 80.762 1.00 1.00 13.36 ATOM 3787 CG VALA 484 44.2215 80.762 1.00 1.00 13.36 ATOM 3788 CG2 VALA 484 44.489 78.683 0.430 1.00 14.29 ATOM 3789 C VALA 484 44.4489 78.683 0.430 1.00 14.29 ATOM 3791 N ASP A 485 44.644 44.489 78.683	ATOM 3752 O LYS A 479 36.827 77.471 3.624 1.00 12.30 A ATOM 3755 N THR A 480 36.197 80.038 2.713 1.00 13.88 A A ATOM 3755 CB THR A 480 36.197 80.038 2.713 1.00 13.85 A ATOM 3755 CB THR A 480 36.197 80.038 2.713 1.00 13.85 A ATOM 3755 CB THR A 480 36.430 82.352 1.701 1.00 15.03 A ATOM 3755 CC THR A 480 36.430 82.352 1.701 1.00 15.03 A ATOM 3755 C THR A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3755 C THR A 480 38.5166 79.981 2.138 1.00 13.79 A ATOM 3759 O THR A 481 38.039 80.400 4.209 1.00 13.63 A ATOM 3760 N HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG HIS A 481 39.463 80.319 7.176 1.00 15.14 A ATOM 3766 NDI HIS A 481 40.412 79.799 8.016 1.00 15.70 A ATOM 3766 NDI HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NP2 HIS A 481 38.244 79.109 8.693 1.00 16.85 A ATOM 3769 O HIS A 481 39.497 9.790 8.693 1.00 16.85 A ATOM 3769 O HIS A 481 40.422 79.199 8.693 1.00 16.85 A ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3767 CB VAL A 482 40.092 76.775 4.644 1.00 11.59 A ATOM 3767 CB VAL A 482 39.836 74.327 5.235 1.00 19.19 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 19.19 A ATOM 3776 CG VAL A 482 39.836 74.327 5.235 1.00 19.19 A ATOM 3778 CA VAL A 482 39.836 74.327 5.235 1.00 12.67 A ATOM 3778 CB VAL A 483 39.461 76.592 2.844 1.00 12.15 A ATOM 3778 CB VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 2.844 1.00 12.27 A ATOM 3780 CGI VAL A 484 41.426 75.892 2.844 1.00 13.36 A ATOM 3780 CGI VAL A 484 41.426 75.892 2.844 1.00 13.16 A ATOM 3780 CGI VAL A 484 41.426 75.892 2.841 1.00 13.16 A ATOM 3780 CGI VAL A 484		5										А
ATOM 3753 N THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3755 CB THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 10.01 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.761 1.00 15.03 ATOM 3758 C THR A 480 36.430 82.352 1.701 1.00 15.03 ATOM 3758 C THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.453 81.207 5.994 1.00 14.49 ATOM 3763 CC HIS A 481 39.463 80.319 7.176 1.00 15.14 ATOM 3763 CC HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3765 NDI HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CEI HIS A 481 38.244 79.867 7.626 1.00 15.87 ATOM 3768 C HIS A 481 39.498 80.399 1.00 16.85 ATOM 3768 C HIS A 481 39.493 79.909 8.693 1.00 16.85 ATOM 3768 C HIS A 481 39.793 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3773 CCI VAL A 482 39.836 74.327 5.235 1.00 11.97 ATOM 3776 C VAL A 482 39.836 74.327 5.235 1.00 12.15 ATOM 3778 C VAL A 482 39.836 74.327 5.235 1.00 12.15 ATOM 3779 C VAL A 482 39.836 74.327 5.235 1.00 12.25 ATOM 3779 C VAL A 482 39.836 76.599 -0.0867 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 11.57 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 483 39.461 76.592 0.466 1.00 12.15 ATOM 3780 C CVAL A 484 44.467 77.332 2.809 1.00 13.10 ATOM 3780 C CVAL A 484 44.467 77.332 2.809 1.00 13.10 ATOM 3780 C CVAL A 484 44.467 77.332 2.809 1.00 13.	ATOM 3753 N THR A 480 36.390 79.202 3.591 1.00 13.88 A ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 A ATOM 3756 CG THR A 480 35.608 81.462 2.643 1.00 14.71 A ATOM 3756 CG2 THR A 480 34.264 81.386 2.162 1.00 15.03 A ATOM 3756 CG2 THR A 480 37.687 80.141 3.033 1.00 13.85 A A ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.95 A ATOM 3750 O THR A 480 38.516 79.981 2.138 1.00 13.63 A A ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 A A A A A A A A A		J										
ATOM 3775 CR THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3755 CB THR A 480 34.264 81.386 2.162 1.00 14.71 ATOM 3756 CG2 THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.633 81.227 5.994 1.00 13.63 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 13.63 ATOM 3764 CD HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.465 80.319 7.176 1.00 15.70 ATOM 3766 CEI HIS A 481 38.464 79.867 7.626 1.00 15.87 ATOM 3767 NE2 HIS A 481 38.464 79.867 7.626 1.00 15.87 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 16.85 ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3777 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3777 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3777 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.086 1.00 12.35 ATOM 3780 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.66	ATOM 3754 CA THR A 480 36.197 80.038 2.713 1.00 13.85 A ATOM 3755 CB THR A 480 34.264 81.386 2.162 1.00 14.71 A ATOM 3756 CG1 THR A 480 34.264 81.386 2.162 1.00 15.03 A ATOM 3756 CC THR A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3756 C THR A 480 38.516 79.981 2.138 1.00 13.99 A ATOM 3750 N HIS A 481 38.039 80.400 4.290 1.00 13.63 A ATOM 3760 N HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3766 CB HIS A 481 39.452 80.537 4.628 1.00 15.14 A ATOM 3765 ND1 HIS A 481 39.466 80.319 7.176 1.00 15.14 A ATOM 3765 ND1 HIS A 481 39.466 80.319 7.176 1.00 15.14 A ATOM 3765 CB HIS A 481 39.467 80.319 7.176 1.00 15.87 A ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NE2 HIS A 481 39.439 79.051 8.949 1.00 15.87 A ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.87 A ATOM 3769 O HIS A 481 40.205 79.121 4.588 1.00 15.87 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3760 N VAL A 482 39.474 78.104 4.465 1.00 11.59 A ATOM 3770 CB VAL A 482 39.474 78.104 4.465 1.00 11.59 A ATOM 3770 CB VAL A 482 39.836 74.327 5.255 1.00 11.57 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.255 1.00 12.26 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.255 1.00 12.27 A ATOM 3779 CB VAL A 483 39.836 74.327 5.255 1.00 12.27 A ATOM 3778 CB VAL A 483 39.836 74.327 5.255 1.00 12.27 A ATOM 3778 CB VAL A 483 39.836 74.327 5.255 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.461 76.292 0.416 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.461 76.592 0.867 1.00 12.33 A ATOM 3780 CG1 VAL A 483 39.467 77.111 0.063 1.00 12.27 A ATOM 3780 CG VAL A 484 44.455 81.499 1.291 1.00 14.14 A ATOM 3788 CG VAL A 484 44.456 75.892 0.4616 1.00 12.27 A ATOM 3780 CG VAL A 484 44.456 75.892 0.4616 1.00 12.27 A ATOM 3780 CG VAL A 484 44.457 78.690 0.353 1.00 13.10 4.46 A ATOM 3789 CG VA												
ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 ATOM 3757 CG2 THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 38.516 79.981 2.138 1.00 13.99 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.453 81.257 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.463 80.537 4.628 1.00 15.04 ATOM 3766 CB HIS A 481 39.463 80.319 7.176 1.00 15.14 ATOM 3765 NDI HIS A 481 39.466 80.319 7.176 1.00 15.70 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3766 CEI HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3767 NE2 HIS A 481 39.79 79.051 8.949 1.00 16.85 ATOM 3767 NE2 HIS A 481 40.412 79.799 8.016 1.00 15.87 ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3767 NE2 HIS A 481 41.429 79.194 4.455 1.00 11.59 ATOM 3767 NE2 HIS A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.826 74.327 5.235 1.00 9.91 ATOM 3776 C VAL A 482 39.826 74.327 5.235 1.00 9.91 ATOM 3778 C VAL A 482 39.826 74.327 5.235 1.00 9.91 ATOM 3778 C VAL A 482 39.826 74.327 5.235 1.00 9.91 ATOM 3778 C VAL A 483 39.451 76.650 3.176 1.00 12.27 ATOM 3778 C VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.37 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 C VAL A 484 41.053 78.562 1.004 1.00 14.60 ATOM 3789 C VAL A 484 41.053 78.562 1.004 1.00 14.59 ATOM 3780 C VAL A 484 41.053 78.562 1.004 1.00 14.60 ATOM 3789 C VAL A 484 41.053 78.562 1.004 1	10 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 A ATOM 3756 CG2 THR A 480 36.430 82.352 1.701 1.00 15.03 A ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3755 C THR A 480 37.667 80.141 3.033 1.00 13.95 A ATOM 3756 C THR A 480 37.667 80.141 3.033 1.00 13.95 A ATOM 3760 N HIS A 481 38.039 80.400 4.230 1.00 13.63 A ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 C B HIS A 481 39.633 81.227 5.994 1.00 13.00 A ATOM 3763 C B HIS A 481 39.633 81.227 5.994 1.00 13.00 A ATOM 3766 C E1 HIS A 481 39.6486 80.319 7.176 1.00 15.70 A ATOM 3766 C E1 HIS A 481 38.264 79.867 7.626 1.00 15.70 A ATOM 3766 C E1 HIS A 481 39.268 80.397 7.998 1.00 15.70 A ATOM 3766 C E1 HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3769 C HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3760 C HIS A 481 40.205 79.211 4.588 1.00 11.59 A ATOM 37760 C HIS A 482 39.474 78.104 4.698 1.00 11.59 A ATOM 3776 C VAL A 482 39.474 78.104 4.698 1.00 11.59 A ATOM 3770 C VAL A 482 39.474 78.104 4.698 1.00 11.59 A ATOM 3771 C VAL A 482 39.467 79.775 4.												
10 ATOM 3756 OG1 THR A 480 36.436 81.386 2.162 1.00 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 37.667 80.141 3.033 1.00 13.79 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3764 CD2 HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3765 ND1 HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3767 NE2 HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.412 79.799 8.693 1.00 16.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.669 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 12.569 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 12.15 ATOM 3773 CG1 VAL A 482 39.474 78.104 4.698 1.00 12.15 ATOM 3775 C VAL A 482 39.474 78.104 4.698 1.00 12.15 ATOM 3776 O VAL A 482 39.474 78.104 4.698 1.00 12.24 ATOM 3776 O VAL A 482 39.486 77.592 2.804 1.00 12.24 ATOM 3777 N VAL A 482 39.867 74.327 5.235 1.00 9.91 ATOM 3778 CC VAL A 482 39.867 74.327 5.235 1.00 9.91 ATOM 3778 CC VAL A 482 39.867 74.327 5.235 1.00 9.91 ATOM 3778 CC VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3778 CC VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3778 CC VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.461 76.809 2.297 1.00 12.23 ATOM 3780 CG1 VAL A 484 41.005 37.856 2 0.416 1.00 12.24 ATOM 3780 CG VAL A 484 41.005 37.856 2 0.416 1.00 13.36 ATOM 3780 CG1 VAL A 484 41.005 37.856 2 0.416 1.00 14.31 ATOM 3780 CG1 VAL A 484 41.005 37.	10												
ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 40.12 79.799 8.016 1.00 15.70 ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3767 NEZ HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NEZ HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NEZ HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 12.58 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CG VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CA VAL A 482 40.092 76.775 4.664 1.00 11.50 ATOM 3778 CG VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CA VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 484 41.053 78.562 1.000 11.31 ATOM 3780 CG1 VAL A 484 41.053 78.562 1.000 11.00 13.36 ATOM 3780 CG1 VAL A 484 41.053 78.562 1.000 11.00 13.36 ATOM 3780 CG VAL A 484 41.053 78.562 1.000 11.00 13.36 ATOM 3780 CG VAL A 484 41.053 78.562 1.000 11.	ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 A ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 A ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 A ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 A ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 14.49 A ATOM 3764 CD2 HIS A 481 39.633 81.227 5.994 1.00 14.49 A ATOM 3765 ND1 HIS A 481 38.264 79.867 7.176 1.00 15.70 A ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3769 O HIS A 481 40.422 79.194 4.455 1.00 11.59 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3772 CG VAL A 482 39.162 75.704 5.261 1.00 11.50 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3776 N VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 482 40.092 76.775 4.664 1.00 12.15 A ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 CG2 VAL A 482 39.836 74.327 5.235 1.00 12.27 A ATOM 3777 O VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3777 O VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3777 CB VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3778 CC VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3778 CC VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3780 CC VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3780 CC VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3780 CC VAL A 483 39.481 76.450 3.176 1.00 12.27 A ATOM 3780 CC VAL A 483 39.451 76.890 -0.353 1.00 13.36 A ATOM 3780 CC VAL A 484 444 44.00 76.890 -0.353 1.00 13.36 A ATOM 3780 CC VAL A 484 444 44.00 76.890 -0.353 1.00 13.30 A ATOM 3780 CC VAL A 484 44.483 39.481 76.450 3.176 1.00 12.27 A ATOM 3780 CC VAL A 484 44.484 78.690 -0.353 1.00 13.36 A ATOM 3780 CC VAL A 484 44.484 44.699 78.683 0.430 1.00 14.59 A ATOM 3789 C VAL A 484 44.444 4.00 78.683 0.430 1.00 14.59 A ATOM 3790		10										
ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.468 80.319 7.176 1.00 15.14 ATOM 3766 CD2 HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.245 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.87 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CC VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3786 CG VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3788 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3788 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3788 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3788 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3788 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3788 CG2 VAL A 484 41.425 80.762 1.375 1.00 13.36 ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.36 ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.62 ATOM 3790 O VAL A 484 41.053 78.562 1.004 1.00 13.62 ATOM 3791 N ASP A 485 44.614 77.332 2.819 1.00 13.10 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.10 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.15 ATOM 3794 CG ASP A 485 44.6636 76.861 4.858 1.00 13.10 ATOM 3795 ODI ASP A 485 45.597 76.167 4.211 1.00 13.49	ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 A ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 A ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 A ATOM 3761 CA HIS A 481 39.633 80.297 7.5994 1.00 14.49 A ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 A ATOM 3764 CD2 HIS A 481 39.633 81.227 5.994 1.00 14.49 A ATOM 3765 ND1 HIS A 481 39.633 81.227 5.994 1.00 15.70 A ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.74 A ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.77 A ATOM 3767 NEZ HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NEZ HIS A 481 38.445 79.109 8.693 1.00 16.85 A ATOM 3767 NEZ HIS A 481 41.429 79.194 4.445 1.00 12.69 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 12.69 A ATOM 3770 N VALA 4 82 40.092 76.775 4.644 1.00 12.15 A ATOM 3771 CA VALA 482 40.092 76.775 4.644 1.00 12.15 A ATOM 3773 CG VALA 4 82 39.836 74.327 5.235 1.00 9.91 A ATOM 3776 CG VALA 4 82 39.836 74.327 5.235 1.00 9.91 A ATOM 3776 O VALA 4 82 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 CG VALA 4 82 40.381 76.450 3.176 1.00 12.24 A ATOM 3779 CB VALA 4 882 39.836 74.327 5.235 1.00 9.91 A ATOM 3779 CB VALA 4 882 39.836 74.327 5.235 1.00 9.91 A ATOM 3779 CB VALA 4 883 39.451 76.899 2.297 1.00 12.27 A ATOM 3779 CB VALA 4 883 39.451 76.899 2.297 1.00 12.27 A ATOM 3779 CB VALA 4 883 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CGI VALA 4 883 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CGI VALA 4 883 39.451 76.890 -0.353 1.00 13.10 A ATOM 3780 CGI VALA 4 883 39.451 76.890 -0.353 1.00 13.10 A ATOM 3780 CGI VALA 4 883 38.709 77.032 -1.432 1.00 13.36 A ATOM 3780 CGI VALA 4 883 39.451 76.890 -0.353 1.00 13.10 A ATOM 3780 CGI VALA 4 883 38.709 77.032 -1.432 1.00 13.36 A ATOM 3780 CGI VALA 4 884 41.659 76.890 -0.353 1.00 13.10 A ATOM 3780 CGI VALA 4 884 41.659 76.890 -0.353 1.00 13.10 A ATOM 3780 CGI VALA 4 884 41.659 76.890 -0.353 1.00 13.10 A ATOM 3780 CGI VALA 4 884 41.699 78.683 0.401 1.00 13.36 A ATOM 3780 CGI VALA 4 884 41.699 78.683 0.430 1.00 13.46 A ATOM 3799 CGI VALA 4 885 43.449 78.6652 2.320 1.00 13.1		10										
TATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 39.452 80.537 4.628 1.00 13.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 14.49 ATOM 3763 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 15.14 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3763 CG HIS A 481 481 40.412 79.799 8.016 1.00 15.70 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.29 79.194 4.445 1.00 11.59 ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 -0.335 1.00 13.10 4.70 ATOM 3785 CG VAL A 484 41.699 76.890 -0.353 1.00 13.10 4.70 ATOM 3786 CB VAL A 484 41.695 78.890 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL A 484 41.695 78.890 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL A 484 41.699 76.890 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL A 484 41.695 78.890 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL A 484 41.695 78.890 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL A 484 41.695 78.890 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL A 484 41.695 78.800 -0.353 1.00 13.10 4.70 ATOM 3780 CGI VAL	ATOM 3769 N HIS A 480 38.516 79.981 2.138 1.00 13.75 A ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG HIS A 481 39.468 80.319 7.176 1.00 15.14 A ATOM 3765 NDI HIS A 481 39.468 80.319 7.176 1.00 15.70 A ATOM 3765 NDI HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3766 CEI HIS A 481 38.445 79.109 8.693 1.00 16.85 A ATOM 3768 CEI HIS A 481 38.445 79.109 8.693 1.00 16.85 A ATOM 3768 O HIS A 481 40.205 79.211 4.588 1.00 11.59 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3769 O HIS A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3770 TCA VAL A 482 39.162 75.704 5.261 1.00 11.59 A ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 12.15 A ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 12.15 A ATOM 3775 C VAL A 482 39.886 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 482 39.886 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 482 39.867 76.093 6.699 1.00 12.67 A ATOM 3779 CB VAL A 482 39.867 76.093 6.699 1.00 12.24 A ATOM 3779 CB VAL A 482 39.866 74.327 5.235 1.00 9.91 A ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3781 CG2 VAL A 484 41.491 77.332 2.891 1.00 13.36 A ATOM 3780 CGI VAL A 484 41.491 77.332 2.891 1.00 13.10 A ATOM 3780 CGI VAL A 484 41.491 77.332 2.891 1.00 13.10 A ATOM 3780 CGI VAL A 484 41.491 77.332 2.891 1.00 13.10 A ATOM 3799 CC VAL A												
## ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.486 80.319 7.176 1.00 14.49 ATOM 3762 CB HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 39.486 80.319 7.176 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.867 76.395 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.809 2.297 1.00 12.27 ATOM 3776 O VAL A 482 40.381 76.809 2.297 1.00 12.27 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CG VAL A 482 40.381 76.809 2.297 1.00 12.27 ATOM 3778 CG VAL A 483 39.641 76.592 0.867 1.00 12.15 ATOM 3778 CG VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3780 CGI VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CGI VAL A 483 39.697 77.032 -1.432 1.00 13.46 ATOM 3780 CGI VAL A 483 41.699 76.890 -0.353 1.00 13.46 ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3780 CGI VAL A 484 42.125 79.382 0.696 1.00 14.31 ATOM 3780 CGI VAL A 484 42.125 79.382 0.696 1.00 14.31 ATOM 3785 CA VAL A 484 42.125 79.382 0.696 1.00 14.59 ATOM 3786 CG VAL A 484 42.125 79.382 0.696 1.00 14.31 ATOM 3780 CGI VAL A 484 43.487 78.663 0.447 1.00 13.46 ATOM 3787 CGI VAL A 484 43.487 78.663 0.447 1.00 13.46 ATOM 3793 CGI VAL A 484 43.487 78.663 0.430 1.00 14.29 ATOM 3790 CO VAL A 484 44.48	15 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 A A ATOM 3761 CA HIS A 481 39.452 80.537 4.6628 1.00 13.00 A ATOM 3762 CB HIS A 481 39.453 81.227 5.994 1.00 14.49 A ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 A ATOM 3765 NDI HIS A 481 39.486 80.319 7.176 1.00 15.14 A ATOM 3765 NDI HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NEZ HIS A 481 38.245 79.109 8.693 1.00 16.85 A ATOM 3767 NEZ HIS A 481 39.739 79.051 8.949 1.00 15.87 A ATOM 3767 NEZ HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3770 N VAL A 482 40.092 76.775 4.644 1.00 12.15 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 11.50 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 482 39.836 75.093 6.699 1.00 12.67 A ATOM 3777 N VAL A 482 39.836 75.093 6.699 1.00 12.24 A ATOM 3777 N VAL A 482 39.836 76.933 6.699 1.00 12.24 A ATOM 3778 CG VAL A 482 39.836 76.930 6.699 1.00 12.24 A ATOM 3778 CG VAL A 483 39.451 76.450 3.176 1.00 12.24 A ATOM 3778 CG VAL A 483 39.451 76.450 0.12 2.97 1.00 12.23 A ATOM 3780 CGI VAL A 483 39.451 76.5892 2.844 1.00 12.15 A ATOM 3780 CGI VAL A 483 39.451 76.5892 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.451 76.5892 0.867 1.00 12.27 A ATOM 3781 CG2 VAL A 483 39.451 76.5892 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.451 76.5892 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.451 76.5892 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.451 76.5892 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3780 CGI VAL A 484 44.489 78.683 0.430 1.00 14.59 A AT												
15 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 16.85 ATOM 3769 ND HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 ND HIS A 481 41.429 79.199 8.693 1.00 16.85 ATOM 3769 ND HIS A 481 41.429 79.194 4.455 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3772 CB VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.15 ATOM 3777 N VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.256 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 CG1 VAL A 483 40.892 77.366 0.447 1.00 12.33 ATOM 3781 CG2 VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 44.693 77.366 0.447 1.00 13.46 ATOM 3788 CG1 VAL A 484 44.693 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 42.125 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 79.382 0.696 1.00 14.59 ATOM 3789 C VAL A 484 44.489 78.562 1.004 1.00 13.68 ATOM 3789 C VAL A 484 44.489 78.652 1.004 1.00 13.68 ATOM 3799 C VAL A 484 44.489 78.663 0.762 1.375 1.00 14.10 ATOM 3799 C VAL A 484 44.489 78.663 0.762 1.375 1.00 14.10 ATOM 3799 C VAL A 484 44.489 78.663 0.762 1.375 1.00 14.10 ATOM 3799 C VAL A 484 44.489 78.663 0.762 1.375 1.00 14.10 ATOM 3799 C VAL A 484 44.489 78.663 0.762 1.375 1.00 13.11 ATOM 3799 C VAL A 485 44.644 77.332 2.819 1.00 13.11 ATOM 3799 C VAL A 485 44.644 77.332 2.819 1.00 13.11 ATOM 3799 C V	15 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 A ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 14.49 A ATOM 3763 CG HIS A 481 39.648 80.319 7.176 1.00 15.14 A ATOM 3763 CG HIS A 481 40.412 79.799 8.016 1.00 15.70 A ATOM 3765 ND1 HIS A 481 40.412 79.799 8.016 1.00 15.70 A ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NE2 HIS A 481 38.245 79.109 8.693 1.00 16.85 A ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3760 O HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.57 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3777 N VAL A 483 39.451 76.450 3.176 1.00 12.246 A ATOM 3779 CB VAL A 483 39.451 76.450 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.461 76.592 0.867 1.00 12.27 A ATOM 3778 CA VAL A 483 39.461 76.592 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 0.867 1.00 12.27 A ATOM 3780 CGI VAL A 483 39.461 76.592 0.867 1.00 12.27 A ATOM 3783 O VAL A 483 39.461 76.592 0.867 1.00 12.27 A ATOM 3784 N VAL A 483 39.461 76.592 0.867 1.00 12.27 A ATOM 3784 N VAL A 483 39.451 76.890 0.297 1.00 12.27 A ATOM 3784 N VAL A 484 41.099 76.890 -0.353 1.00 13.36 A ATOM 3784 N VAL A 484 41.099 76.890 -0.353 1.00 13.36 A ATOM 3784 N VAL A 484 41.093 78.562 1.004 1.00 13.36 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.453 1.00 14.40 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.453 1.00 14.59 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.414 1.00 13.68 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.414 1.00 13.36 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.414 1.00 13.36 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.453 1.00 14.59 A ATOM 3780 CGI VAL A 484 41.099 76.890 -0.455 1.00 14.59 A ATOM 3790 O VAL A 484 41.090 77.332 2.819 1.00 13.10 A ATOM 3790 O VAL A												
ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3766 CD2 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 16.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.162 75.704 5.261 1.00 12.15 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3777 N VAL A 482 38.828 76.093 6.699 1.00 12.567 ATOM 3777 N VAL A 483 39.451 76.450 3.176 1.00 12.24 ATOM 3778 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.451 76.890 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.57 ATOM 3783 C VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3786 CB VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3786 CC VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3786 CC VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3786 CC VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3786 CC VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3786 CC VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.36 ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 41.653 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 41.653 78.562 1.004 1.00 14.59 ATOM 3789 C VAL A 484 41.653 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 41.653 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 41.653 78.562 1.004 1.00 14.08 ATOM 3788 CG2 VAL A 484 41.653 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 41.653 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 41.653 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 485 41.466 41.466 75.891 1.00	ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 A ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 A ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 A ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NE2 HIS A 481 38.245 79.109 8.693 1.00 15.85 A ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.57 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.57 A ATOM 3772 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3777 N VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3778 CB VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3778 CG VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3778 CG VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CG1 VAL A 483 39.451 76.890 2.297 1.00 12.27 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3780 CG1 VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3786 CG VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3786 CG VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3787 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3789 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3789 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3789 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3789 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.40 A ATOM 3789 CG1 VAL A 484 41.065 75.892 2.819 1.00 14.10 A ATOM 3789 CG1 VAL A 484 41.065 75.892 0.696 1.00 14.11 A ATOM 3789 CG1 VAL A 485 44.444 77.552 2.819 1.00 14.10 13.62 A ATOM 3799 N TAR A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3799 N TAR A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3799 N T		4-										
20 ATOM 3763 CG HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.6266 1.00 15.85 ATOM 3767 NE2 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3770 N VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.867 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.15 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.56 ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.56 ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.27 ATOM 3780 CG1 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3786 CB VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3786 CB VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3786 CB VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3786 CB VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3786 CB VAL A 483 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3787 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.056 81.573 0.726 1.00 14.59 ATOM 3786 CB VAL A 484 41.056 81.573 0.726 1.00 14.59 ATOM 3789 CD VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 CD VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3799 CD VAL A 484 41.016 81.573 0.726	ATOM 3763 CG HIS A 481		15										
ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG1 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.36 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.36 ATOM 3783 O VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3783 O VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3783 O VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3783 C VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3788 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3788 CB VAL A 484 41.053 78.562 1.375 1.00 14.14 ATOM 3788 CB VAL A 484 41.053 78.562 1.375 1.00 14.19 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.457 78.674 1.144 1.00 14.59 ATOM 3789 C VAL A 484 43.457 78.674 1.144 1.00 14.59 ATOM 3789 C VAL A 484 43.457 78.674 1.144 1.00 14.59 ATOM 3793 CB ASP A 485 44.449 78.652 2.320 1.00 13.62 ATOM 3793 CB ASP A 485 44.449 78.652 2.320 1.00 13.10 13.46 ATOM 3793 CB ASP A 485 44.449 78.655 2.320 1.00 13.49 ATOM 3795 CD ASP A 485 44.4987 76.189 1.870 1.0	ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 A ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3766 CD1 HIS A 481 38.264 79.867 7.626 1.00 15.87 A ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3772 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 40.381 76.645 3.176 1.00 12.15 A ATOM 3775 C VAL A 482 40.381 76.645 3.176 1.00 12.24 A ATOM 3777 N VAL A 482 40.381 76.650 3.176 1.00 12.24 A ATOM 3778 CA VAL A 482 40.381 76.650 3.176 1.00 12.24 A ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3780 CC1 VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3780 CC1 VAL A 483 39.401 76.890 2.297 1.00 12.27 A ATOM 3780 CC1 VAL A 483 39.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.466 1.00 12.27 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.466 1.00 12.27 A ATOM 3781 CG2 VAL A 483 37.187 76.809 2.297 1.00 12.27 A ATOM 3781 CG2 VAL A 483 37.187 76.890 -0.353 1.00 13.36 A ATOM 3788 CG2 VAL A 483 41.699 77.036 0.447 1.00 13.46 A ATOM 3788 CG2 VAL A 484 41.695 76.890 -0.353 1.00 13.10 A ATOM 3786 CG VAL A 484 41.695 76.890 -0.353 1.00 13.10 A ATOM 3787 CG VAL A 484 41.695 76.890 -0.353 1.00 13.10 A ATOM 3789 CG VAL A 484 41.497 78.652 2.320 1.00 14.14 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.16 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.15 A ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.15 A ATOM 3799 O VAL A 485 44.614 77.332 2.819 1.00 13.15 A ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.15 A ATOM 3797 C ASP A 485 44.614 77.332 2.819 1.00 13.15 A ATOM 3799 O VAL A 485 44.614 77.332 2.819 1.00 13.15 A ATOM 3799 O TASP A 485 44.616 77.595 1.549 1.00 12.22 A ATOM 3799 N TYR A 486												
20 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3767 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3770 N VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3771 CA VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.67 ATOM 3775 C VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.57 ATOM 3780 CG1 VAL A 483 38.708 77.032 -1.432 1.00 13.36 ATOM 3780 CG1 VAL A 483 38.708 77.032 -1.432 1.00 13.36 ATOM 3784 N VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3785 CG VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3785 CG1 VAL A 484 41.053 78.562 1.004 1.00 12.27 ATOM 3785 CG1 VAL A 484 44.484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.59 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.58 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.50 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3793 CB ASP A 485 44.449 78.652 2.320 1.00 13.16 ATOM 3793 CB ASP A 485 44.644 77.332 2.819 1.00 13.18 ATOM 3794 CG ASP A 485 44.644 77.332 2.819 1.00 13.58 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.597 76.189 1.870 1.00 12.92	20 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 A A A A A A A A A A A A A A A A A A A												
20 ATOM 3766 CE1 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3771 CA VAL A 482 39.677 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.611 76.450 2.844 1.00 12.15 ATOM 3778 CA VAL A 483 39.451 76.450 2.874 1.00 12.274 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.450 9.277 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.451 76.592 0.867 1.00 12.274 ATOM 3783 C VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 C VAL A 483 37.187 76.282 0.416 1.00 12.274 ATOM 3783 C VAL A 483 37.187 76.282 0.416 1.00 12.274 ATOM 3783 C VAL A 483 37.187 76.282 0.416 1.00 12.274 ATOM 3783 C VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 44.2215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3789 C VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3780 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 ATOM 3790 C VAL A 485 44.644 77.332 2.320 1.00 13.58 ATOM 3791 N ASP A 485 44.647 78.052 2.320 1.00 13.58 ATOM 3793 CB ASP A 485 44.644 77.332 2.320 1.00 13.58 ATOM 3795 ODI ASP A 485 44.6636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.6636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.4987 76.189 1.870 1.00 12.92	20 ATOM 3766 CEI HIS A 481 38.445 79.109 8.693 1.00 16.85 A ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 A ATOM 3768 C HIS A 481 40.205 79.211 4.888 1.00 12.69 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 11.97 A ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3773 CGI VAL A 482 40.381 76.450 3.176 1.00 12.267 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.27 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.27 A ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3788 CG2 VAL A 483 41.699 76.890 -0.353 1.00 13.46 A ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3788 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3788 CG2 VAL A 484 41.056 81.573 0.726 1.00 14.31 A ATOM 3788 CG2 VAL A 484 41.056 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3799 C AASP A 485 44.487 78.652 2.320 1.00 13.62 A ATOM 3799 CA ASP A 485 44.487 78.652 2.320 1.00 13.62 A ATOM 3799 CA ASP A 485 44.487 78.675 4.114 1.00 14.02 13.68 A ATOM 3799 CA ASP A 485 44.487 78.675 4.114 1.00 14.02 13.62 A ATOM 3799 CA ASP A 485 44.487 78.652 2.320 1.00 13.58 A ATOM 3799 CA ASP A 485 44.487 78.652 2.320 1.00 13.62 A ATOM 3799 CA ASP A 485 44.487 78.661 4.488 1.00 12.22 A ATOM 3799 O ASP A 485 44.6162 75.995 1.549 1.00 12.22 A			MOTA	3764								
ATOM 3760 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.693 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CGI VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 80.762 1.375 1.00 14.14 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.08 ATOM 3791 N ASP A 485 44.614 77.332 2.320 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.320 1.00 13.15 ATOM 3793 CB ASP A 485 44.614 77.332 2.320 1.00 13.15 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 15.48	ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3772 CB VAL A 482 39.462 75.704 5.261 1.00 11.50 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.27 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.33 A ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3787 CGI VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 13.68 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.50 A ATOM 3780 CG VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 44.449 78.663 0.430 1.00 14.29 A ATOM 3792 CA ASP A 485 44.347 78.675 2.320 1.00 13.158 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.158 A ATOM 3794 CG ASP A 485 44.349 76.759 5.317 1.00 13.49 A ATOM 3795 ODI ASP A 485 44.349 76.759 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 45.597 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A			ATOM	3765								
ATOM 3760 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.693 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CGI VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 80.762 1.375 1.00 14.14 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.08 ATOM 3791 N ASP A 485 44.614 77.332 2.320 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.320 1.00 13.15 ATOM 3793 CB ASP A 485 44.614 77.332 2.320 1.00 13.15 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 15.48	ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3772 CB VAL A 482 39.462 75.704 5.261 1.00 11.50 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.27 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.33 A ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3787 CGI VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 13.68 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.50 A ATOM 3780 CG VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 44.449 78.663 0.430 1.00 14.29 A ATOM 3792 CA ASP A 485 44.347 78.675 2.320 1.00 13.158 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.158 A ATOM 3794 CG ASP A 485 44.349 76.759 5.317 1.00 13.49 A ATOM 3795 ODI ASP A 485 44.349 76.759 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 45.597 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A	. F	20	MOTA	3766	CE1	HIS A	481	38.445	79.109	8.693	_ : :	
ATOM 3760 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.693 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CGI VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 80.762 1.375 1.00 14.14 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.08 ATOM 3791 N ASP A 485 44.614 77.332 2.320 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.320 1.00 13.15 ATOM 3793 CB ASP A 485 44.614 77.332 2.320 1.00 13.15 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 15.48	ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 A ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 A ATOM 3772 CB VAL A 482 39.462 75.704 5.261 1.00 11.50 A ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.27 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.33 A ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3787 CGI VAL A 484 42.155 79.382 0.696 1.00 14.31 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 13.68 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.50 A ATOM 3780 CG VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 44.449 78.663 0.430 1.00 14.29 A ATOM 3792 CA ASP A 485 44.347 78.675 2.320 1.00 13.158 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.158 A ATOM 3794 CG ASP A 485 44.349 76.759 5.317 1.00 13.49 A ATOM 3795 ODI ASP A 485 44.349 76.759 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 45.597 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A	`:esf		ATOM	3767	NE2	HIS A	481	39.739	79.051	8.949	1.00 15.85	
25 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3791 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 13.49 50 ATOM 3797 C ASP A 485 46.636 76.861 4.858 1.00 15.48	ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 A A A TOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 A A TOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 A A TOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 A A TOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 A A TOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A A TOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A A TOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A A TOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 A A TOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 A A TOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 A A TOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 A A TOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A A TOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 A A TOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.46 A A TOM 3783 O VAL A 484 41.053 78.562 1.004 1.00 13.46 A A TOM 3783 CA VAL A 484 41.053 78.562 1.004 1.00 13.46 A A TOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.46 A A TOM 3785 CA VAL A 484 42.125 79.382 0.696 1.00 14.31 A A TOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A A TOM 3787 CGI VAL A 484 42.125 80.762 1.375 1.00 14.14 A A TOM 3787 CGI VAL A 484 43.458 81.573 0.726 1.00 14.59 A A TOM 3789 C VAL A 484 44.489 78.683 0.430 1.00 14.60 A A TOM 3789 CGI VAL A 484 44.489 78.683 0.430 1.00 14.29 A A TOM 3790 CDI ASP A 485 44.614 77.332 2.819 1.00 13.58 A A TOM 3791 N ASP A 485 44.614 77.332 2.819 1.00 13.58 A A TOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.58 A A TOM 3795 ODI ASP A 485 44.614 77.332 2.819 1.00 13.58 A A TOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 A A TOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 A A TOM 3798 O ASP A 485 44.614 77.332 2.819 1.00 13.58 A A TOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A A TOM 3799 N A TYR A 486 44.247 74.312 0.512 1.00 11.89 A	್ಯೆಟ್ಟ್ ಕಿರ್ಣಾ		MOTA	3768	С	HIS A	481	40.205	79.211	4.588	1.00 12.69	Α
25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3782 C VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.059 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3790 O VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3790 O VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3791 N ASP A 485 43.447 78.674 1.144 1.00 14.08 ATOM 3791 N ASP A 485 43.447 78.674 1.144 1.00 14.08 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.62 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 13.49 ATOM 3797 C ASP A 485 44.666 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 A ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3777 N VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.894 1.00 12.27 A ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.27 A ATOM 3779 CB VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3783 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 C VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 0.416 1.00 12.27 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.13 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.13 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.14 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3790 O VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3790 O VAL A 484 44.448 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 44.614 77.332 2.819 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3795 OD1 ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3798 O ASP A 485 44.614 77.332 2.819 1.00 13.59 A ATOM 3799 N ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3799 N ASP A 485 44.614 77.5015 5.317 1.00 14.29 A ATOM 3799 N ASP A 485 44.616 75.995 1.549 1.00 12.22 A ATOM 3799 N ASP A 485 44.616 75.995 1.549 1.00 12.22 A ATOM 3799 N ASP A 485 44.616 75.995 1.549 1.00 12.22 A ATOM 3799 N ASP A 485 44.616 75.995 1.549 1.00 12.22 A ATOM 3799 N ASP A 485 44.616 75.995 1.549 1.00 12.22 A ATOM 3799 N ASP A 485 44.616 75.9	131		MOTA	3769	0	HIS F	481	41.429	79.194	4.445	1.00 11.59	Α
ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.155 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.155 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 42.155 80.762 1.375 1.00 14.14 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3790 O VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3797 C ASP A 485 45.547 75.015 5.317 1.00 13.49 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.33 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.60 A ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.60 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3780 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3780 CB VAL A 484 42.125 80.762 1.375 1.00 14.60 A ATOM 3780 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3780 CB VAL A 484 44.489 78.663 0.430 1.00 14.59 A ATOM 3790 O VAL A 484 44.489 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.59 A ATOM 3791 N ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3795 CD ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 CD ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 CD ASP A 485 44.614 77.332 2.819 1.00 13.49 A ATOM 3796 OD2 ASP A 485 44.614 77.332 2.819 1.00 13.49 A ATOM 3797 C ASP A 485 44.614 77.50.5 5.317 1.00 13.49 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.24 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.46 A ATOM 3799 N TYR A 486 44.247 74.312 0.512 1.00 11.89 A			ATOM	3770	N	VAL A	482	39.474	78.104	4.698	1.00 11.97	A
ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 O VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3789 C VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.09 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3797 C ASP A 485 45.547 75.015 5.317 1.00 13.49 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 A ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.33 A ATOM 3779 CB VAL A 483 38.709 77.032 -1.432 1.00 12.36 A ATOM 3780 CG1 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.60 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 C VAL A 484 44.489 78.663 0.430 1.00 14.59 A ATOM 3790 O VAL A 484 44.489 78.674 1.144 1.00 14.08 A ATOM 3791 N ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 CDI ASP A 485 44.614 77.332 2.819 1.00 13.49 A ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 44.616 77.595 5.317 1.00 13.49 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.24 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.24 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.24 A ATOM 3799 N TYR A 486 44.247 74.312 0.512 1.00 11.89 A		25	MOTA	3771	CA	VAL A	482	40.092	76.775	4.644	1.00 12.15	A
ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3790 O VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 14.29 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.18 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 13.58 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.597 76.167 5.317 1.00 13.49 50 ATOM 3797 C ASP A 485 45.597 76.167 4.841 1.00 14.29	ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.27 A ATOM 3779 CB VAL A 483 39.451 76.592 0.867 1.00 12.27 A ATOM 3778 CG VAL A 483 39.451 76.592 0.867 1.00 12.27 A ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3788 CG1 VAL A 484 42.215 79.382 0.696 1.00 14.59 A ATOM 3788 CG2 VAL A 484 42.415 80.762 1.375 1.00 14.14 A ATOM 3788 CG2 VAL A 484 42.415 80.762 1.375 1.00 14.60 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3789 C VAL A 484 44.489 78.663 0.430 1.00 14.59 A ATOM 3790 O VAL A 484 44.489 78.663 0.430 1.00 14.59 A ATOM 3791 N ASP A 485 44.487 78.674 1.144 1.00 14.08 A ATOM 3790 C VAL A 484 44.489 78.663 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 44.449 78.652 2.320 1.00 13.11 A ATOM 3795 CD1 ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3795 CD1 ASP A 485 44.349 76.759 4.213 1.00 13.49 A ATOM 3795 CD1 ASP A 485 45.547 75.515 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 45.547 75.515 5.317 1.00 13.49 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.246 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.246 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.46 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.46 A ATOM 3799 N TYR A 486 44.247 74.312 0.512 1.00 11.89	ı,			3772	СВ			39.162	75.704	5.261	1.00 11.50	A
ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3790 O VAL A 484 43.447 78.052 2.320 1.00 14.08 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.62 ATOM 3795 OD1 ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49	ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 A ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.25 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.27 A ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.155 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3790 O VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3790 O VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3791 N ASP A 485 43.447 78.675 2.320 1.00 13.58 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 44.614 77.332 2.819 1.00 13.14 A ATOM 3797 C ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.247 74.312 0.512 1.00 11.89 A	ist		ATOM		CG1			39.836	74.327	5.235	1.00 9.91	A
ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.27 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.125 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3794 CG ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3795 ODI ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3795 ODI ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	30 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 A ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 A ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 A ATOM 3779 CB VAL A 483 39.641 76.592 0.867 1.00 12.33 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 40.892 77.366 0.447 1.00 12.27 A ATOM 3782 C VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3783 O VAL A 484 41.053 78.562 1.004 1.00 13.46 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 44.489 78.663 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 44.614 77.332 2.819 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 ODI ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 ODI ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 ODI ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3797 C ASP A 485 44.614 77.332 2.819 1.00 13.49 A ATOM 3798 O ASP A 485 44.987 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 44.614 77.595 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 44.987 76.167 4.841 1.00 14.32 A ATOM 3797 C ASP A 485 44.987 76.167 4.841 1.00 14.32 A ATOM 3797 C ASP A 485 44.987 76.167 4.841 1.00 13.49 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.528 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.528 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.528 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.528 1.00 12.46 A ATOM 3800 CA TYR A 486 43.990 75.426 1.528 1.00 12.46 A ATOM 3800 CA TYR A 486 43.990 75.426 1.528 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89									76.093	6.699	1.00 12.67	A
30 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.11 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.18 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.18 ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 ODI ASP A 485 45.597 76.189 1.870 1.00 12.92	30 ATOM 3776 O VAL A 482											1.00 12.24	A
ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG AVAL A 484 44.489 78.683 0.430 1.00 14.29 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 ATOM 3793 CB ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 13.49 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3777 N VAL A 483 39.491 76.592 0.867 1.00 12.27 A 370 3780 CG VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.125 80.762 1.004 1.00 13.68 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.31 A ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3780 C VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3780 C VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.62 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 44.614 77.332 2.819 1.00 13.49 A ATOM 3797 C ASP A 485 44.614 77.332 2.819 1.00 13.49 A ATOM 3797 C ASP A 485 44.5497 76.189 1.870 1.00 13.49 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A	₹snæf* , F¥6	30							75.892		1.00 12.15	A
ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.125 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3794 CG ASP A 485 44.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49	ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 A ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.672 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3797 C ASP A 485 44.6162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A	4,1,3	~~										А
ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 A ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.663 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 13.49 A ATOM 3796 OD2 ASP A 485 44.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 44.987 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 44.987 76.167 4.841 1.00 13.49 A ATOM 3797 C ASP A 485 44.987 76.167 4.841 1.00 13.49 A ATOM 3798 O ASP A 485 44.987 76.167 1.841 1.00 12.92 A ATOM 3799 N TYR A 486 44.987 76.189 1.870 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A												
ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 A ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 A ATOM 3789 C VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3794 CG ASP A 485 44.614 77.332 2.819 1.00 13.58 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD2 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 12.92 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A												A
35 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3790 O VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.58 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 A ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 A ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 A ATOM 3780 O VAL A 484 44.489 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A												
ATOM 3782 C VAL A 483	ATOM 3782 C VAL A 483		35										
ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 A ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 45.597 76.167 4.841 1.00 13.49 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 13.49 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 44.247 74.312 0.512 1.00 11.89	-	00										
ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 A ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89												
40 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	## ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 A ## ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ## ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ## ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ## ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ## ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ## ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ## ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ## ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ## ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ## ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ## ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ## ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ## ATOM 3799 N TYR A 486 44.247 74.312 0.512 1.00 11.89 A												
40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 A ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89												
ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 A ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3796 OD2 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3797 C ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3798 O ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89		40										
ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 A ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89		40										
ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 A ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89												
45 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29 A ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89												
45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62 A ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89												
ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11 A ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89		4 -										
ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58 A ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89		45										
ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32 A ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89												
ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49 A ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89 A												
50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48 A ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89 A												
ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92	ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92 A ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89 A												
	ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 A ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89 A		50	ATOM		OD2	ASP A	485					
ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22	ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46 A ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89 A			ATOM	3797	С	ASP A	485	44.987				
	ATOM 3800 CA TYR A 486 44.247 74.312 0.512 1.00 11.89 A			ATOM	3798	0	ASP A	485					
				MOTA	3799	N	TYR A	486	43.990	75.426			
				ATOM	3800	CA	TYR A	486	44.247	74.312	0.512		A
	55 ATOM 3801 CB TYR A 486 42.949 73.574 0.173 1.00 12.04 A		55			CB	TYR A	486	42.949	73.574	0.173	1.00 12.04	А

	ATOM	3802	CG	TYR	Â	486	42.350	72.740	1.292	1.00 12.07	Α
	ATOM	3803	CD1	TYR	Α	486	40.969	72.713	1.490	1.00 12.29	Α
	ATOM	3804		TYR			40.385	71.892	2.465	1.00 12.35	Α
	MOTA	3805	CD2	TYR	Α	486	43.147	71.922	2.104	1.00 12.28	Α
5	ATOM	3806	CE2	TYR	Α	486	42.569	71.091	3.086	1.00 12.05	А
	MOTA	3807	CZ	TYR	Α	486	41.185	71.086	3.253	1.00 11.64	Α
	ATOM	3808	OH	TYR	Α	486	40.587	70.270	4.193	1.00 12.66	Α
	ATOM	3809	С			486	44.869	74.836	-0.781	1.00 12.53	А
	ATOM	3810	0	TYR	Α	486	45.795	74.229	-1.317	1.00 11.35	A
10	MOTA	3811	N			487	44.353	75.960	-1.278	1.00 13.10	A
	MOTA	3812	CA	GLU	Α	487	44.861	76.552	-2.513	1.00 14.38	A
	ATOM	3813	CB	GLU	Α	487	44.027	77.771	-2.929	1.00 15.28	А
	ATOM	3814	CG			487	44.305	78.207	-4.367	1.00 16.75	А
	MOTA	3815	CD			487	43.592	79.489	-4.773	1.00 18.58	A
15	MOTA	3816		GLU			42.417	79.682	-4.394	1.00 19.25	А
	MOTA	3817		GLU			44.210	80.299	-5.494	1.00 19.30	Α
	MOTA	3818	С	GLU			46.315	76.979	-2.350	1.00 14.58	Α
	ATOM	3819	0			487	47.145	76.732	-3.223	1.00 14.02	А
••	ATOM	3820	N			488	46.617	77.633	-1.232	1.00 14.94	A
20	ATOM	3821	CA	GLN			47.980	78.083	-0.963	1.00 15.97	Α
	MOTA	3822	СВ			488	48.044	78.836	0.372	1.00 18.36	А
	MOTA	3823	CG			488	47.367	80.199	0.341	1.00 23.16	A
	MOTA	3824	CD	GLN			47.381	80.895	1.691	1.00 25.38	А
	MOTA	3825		GLN			47.039	82.072	1.794	1.00 28.24	Α
25	ATOM	3826		GLN			47.771	80.169	2.734	1.00 27.66	A
	MOTA	3827	С	GLN			48.923	76.888	-0.924	1.00 15.05	A
	ATOM	3828	0	GLN			50.023	76.938	-1.474	1.00 14.75	A
	ATOM	3829	N	ARG			48.490	75.821	-0.259	1.00 13.90	A
20	ATOM	3830	CA	ARG			49.290	74.607	-0.160	1.00 13.12	A
30	ATOM	3831	CB			489	48.587	73.575	0.731	1.00 13.40	A
	ATOM	3832	CG			489	48.624	73.893	2.230	1.00 14.57	A
	ATOM	3833	CD	ARG			47.686	72.965	3.003	1.00 16.26	A
	ATOM	3834	NE	ARG			47.765	73.149	4.453	1.00 16.44	A
25	ATOM	3835	CZ	ARG			48.672	72.572	5.238	1.00 17.26	A
35	ATOM	3836	NH1				49.590	71.766	4.722	1.00 16.10	A
	ATOM	3837		ARG			48.661	72.803	6.547	1.00 17.00	A
	ATOM	3838	С	ARG			49.526	74.009	-1.544	1.00 12.86 1.00 12.65	A A
	ATOM	3839	0			489	50.640	73.596	-1.872	1.00 12.65	
40	ATOM	3840	N	MET			48.483	73.956 73.400	-2.366 -3.701	1.00 11.94	A
40	ATOM	3841		MET							A
	ATOM	3842	CB	MET			47.304	73.153	-4.376	1.00 12.12 1.00 12.55	A A
	ATOM	3843	CG	MET			46.539	71.985	-3.753	1.00 12.55	
	ATOM	3844	SD	MET			45.194	71.345	-4.782	1.00 14.01	A
45	ATOM	3845	CE	MET			43.883	72.493 74.304	-4.346 -4.558	1.00 14.40	A A
45	ATOM	3846	C	MET			49.543	73.825		1.00 12.54	A
	ATOM	3847	0	MET			50.291 49.476	75.609	-5.409 -4.321	1.00 11.07	A
	MOTA	3848	N	GLN			50.299	76.540	-5.085	1.00 15.37	A
	MOTA	3849	CA	GLN						1.00 13.37	
50	ATOM	3850 3851	CB	GLN GLN			49.959 50.646	77.982 79.020	-4.711 -5.577	1.00 17.37	A A
50	ATOM	3851	CG				50.848	78.817	-7.057	1.00 21.77	A
	ATOM	3852 3853	CD OF 1	GLN			51.076	78.066	-7.738	1.00 25.64	A
	ATOM ATOM	3854		GLN GLN			49.334	79.476	-7.7559	1.00 25.84	A
	MOTA	3855	NEZ C	GLN			51.771	76.257	-4.790	1.00 25.84	A
55	ATOM	3856	0	GLN			52.610	76.237	-5.696	1.00 13.25	A
55	ATOM	2020	U	GTM	М	4 7 1	22.010	10.243	5.050	1.00 14.43	Л

	2 2014	2057			_	400	50 001	76 000	2 510	1 00 15 54	75.
	ATOM	3857	N			492	52.081	76.022	-3.519	1.00 15.54	A
	ATOM	3858	CA			492	53.451	75.730	-3.121	1.00 16.41	A
	ATOM	3859	CB			492	53.551	75.675	-1.593	1.00 18.54	A
=	ATOM	3860	CG			492	52.990	76.922	-0.915	1.00 23.76	A
5	ATOM	3861	CD			492	52.969	76.825	0.600	1.00 26.74	A
	ATOM	3862	OE1	GLU			52.527	75.783	1.134	1.00 28.59	A
	ATOM	3863	OE2	GLU			53.380	77.801	1.261	1.00 30.17	A
	ATOM	3864	C			492	53.875	74.395	-3.733	1.00 15.06	A
10	ATOM	3865	0			492	55.023	74.225	-4.143	1.00 15.14	A
10	ATOM	3866	N			493	52.940	73.451	-3.797	1.00 13.84	A
	ATOM	3867	CA			493	53.223	72.137	-4.374	1.00 12.38	A
	ATOM	3868	CB			493	52.017	71.213	-4.194	1.00 11.33	A
	ATOM	3869	С	ALA			53.555	72.290	-5.859	1.00 12.51	A
4 -	MOTA	3870	0			493	54.492	71.665	-6.366	1.00 11.30	A
15	ATOM	3871	N	LEU			52.783	73.118	-6.558	1.00 12.26	A
	ATOM	3872	CA	LEU			53.024	73.341	-7.981	1.00 13.51	A
	ATOM	3873	CB	LEU			51.970	74.295	-8.563	1.00 13.59	A
	MOTA	3874	CG	LEU			50.574	73.687	-8.745	1.00 14.46	A
20	MOTA	3875		LEU			49.568	74.768	-9.146	1.00 14.29	A
20	MOTA	3876		LEU			50.643	72.602	-9.807	1.00 14.76	A
	ATOM	3877	С	LEU			54.425	73.904	-8.202	1.00 13.48	A
	MOTA	3878	0	LEU			55.142	73.456	-9.093	1.00 13.66	A
	ATOM	3879	N	LYS			54.813	74.875	-7.379	1.00 14.20	A
	MOTA	3880	CA	LYS			56.135	75.488	-7.483	1.00 14.70	A
25	ATOM	3881	CB	LYS			56.254	76.665	-6.507	1.00 17.34	A
	ATOM	3882	CG	LYS			55.285	77.807	-6.813	1.00 20.77	A
	ATOM	3883	CD	LYS			55.564	79.047	-5.969	1.00 23.82	А
	ATOM	3884	CE			495	55.371	78.781	-4.484	1.00 25.78	А
••	ATOM	3885	ΝZ			495	55.661	79.995	-3.662	1.00 28.04	А
30	ATOM	3886	С	LYS			57.222	74.454	-7.197	1.00 14.05	A
	ATOM	3887	0	LYS	Α	495	58.270	74.449	-7.847	1.00 12.58	A
	ATOM	3888	N	ALA	Α	496	56.966	73.578	-6.228	1.00 12.65	А
	MOTA	3889	CA	ALA	Α	496	57.918	72.528	-5.884	1.00 12.33	А
	MOTA	3890	CB	ALA	Α	496	57.411	71.729	-4.687	1.00 12.48	A
35	ATOM	3891	С	ALA	Α	496	58.099	71.606	-7.089	1.00 12.17	A
	MOTA	3892	0	ALA	Α	496	59.220	71.230	-7.437	1.00 11.21	Α
	ATOM	3893	N	CYS	Α	497	56.988	71.232	-7.717	1.00 11.95	Α
	MOTA	3894	CA	CYS	Α	497	57.039	70.362	-8.885	1.00 11.78	А
_	MOTA	3895	CB	CYS			55.621	70.008	-9.358	1.00 11.55	А
40	MOTA	3896	SG	CYS	Α	497	54.771	68.821	-8.280	1.00 11.22	Α
	ATOM	3897	С	CYS	Α	497	57.816	71.034	-10.011	1.00 11.98	A
	MOTA	3898	0	CYS	A	497	58.656	70.404	-10.650	1.00 11.59	А
	ATOM	3899	N	GLN	Α	498	57.546	72.314	-10.250	1.00 12.50	A
	ATOM	3900	CA	GLN	Α	498	58.255	73.035	-11.305	1.00 13.65	А
45	MOTA	3901	CB	GLN	Α	498	57.775	74.488	-11.393	1.00 15.53	A
	ATOM	3902	CG	GLN	Α	498	58.581	75.330	-12.375	1.00 18.75	А
	ATOM	3903	CD	GLN	A	498	58.080	76.760	-12.484	1.00 20.66	А
	MOTA	3904	OE1	GLN	Α	498	57.903	77.448	-11.472	1.00 23.47	А
	MOTA	3905		GLN			57.861	77.220	-13.712	1.00 19.47	А
50	ATOM	3906	С	GLN			59.762		-11.054	1.00 13.54	А
	ATOM	3907	0			498	60.543		-11.969	1.00 13.09	А
	ATOM	3908	N	MET			60.172	73.291	-9.819	1.00 12.68	А
	ATOM	3909	CA	MET			61.597	73.298	-9.482	1.00 13.24	А
	ATOM	3910	СВ			499	61.786	73.636	-7.998	1.00 14.75	А
55	ATOM	3911	CG	MET			63.220	73.501	-7.483	1.00 17.49	А
-			_								

	ATOM	3912	SD	мет	Δ	499	64.441	74.502 -8.381	1.00 21.74	A
	ATOM	3913	CE			499	64.082	76.122 -7.740	1.00 19.60	A
	ATOM	3914	C			499	62.250	71.950 -9.798	1.00 12.44	A
	ATOM	3915	Ö			499	63.302	71.892 -10.430	1.00 11.75	A
5	ATOM	3916	N	VAL			61.621	70.867 -9.352	1.00 11.57	A
9	ATOM	3917	CA			500	62.153	69.530 -9.593	1.00 11.09	A
	ATOM	3918	CB			500	61.322	68.468 -8.837	1.00 10.85	A
	ATOM	3919		VAL			61.748	67.067 -9.247	1.00 10.52	A
	ATOM	3920		VAL			61.508	68.651 -7.331	1.00 11.06	A
10	ATOM	3921	C			500	62.168	69.200 -11.083	1.00 11.35	A
10	ATOM	3922	0	VAL			63.152	68.680 -11.606	1.00 11.33	A
	ATOM	3923	N	MET			61.074	69.510 -11.766	1.00 11.23	A
				MET			60.976	69.232 -13.192	1.00 11.55	A
	MOTA	3924	CA	MET			59.585	69.617 -13.702	1.00 11.34	A
15	MOTA	3925	CB	MET				68.705 -13.199	1.00 12.75	A
13	ATOM	3926	CG				58.476		1.00 13.12	A
	ATOM	3927	SD	MET			56.834	69.365 -13.536		
	ATOM	3928	CE	MET			56.676	69.003 -15.257	1.00 16.00	A
	ATOM	3929	С	MET			62.048	69.951 -14.006	1.00 12.05	A
20	ATOM	3930	0	MET			62.744	69.323 -14.809	1.00 12.43	A
20	ATOM	3931	N			502	62.189	71.259 -13.798	1.00 11.82	A
	ATOM	3932	CA	GLN			63.172	72.032 -14.553	1.00 12.11	A
	ATOM	3933	CB			502	62.967	73.534 -14.315	1.00 12.25	A
	ATOM	3934	CG	GLN			63.209	74.023 -12.898	1.00 12.56	A
25	MOTA	3935	CD	GLN			64.600	74.614 -12.725	1.00 13.84	A
25	MOTA	3936	OE1				65.350	74.757 -13.696	1.00 13.40	A
	MOTA	3937	NE2				64.944	74.972 -11.492	1.00 13.18	A
	MOTA	3938	С			502	64.612	71.609 -14.252	1.00 12.59	A
	MOTA	3939	0	GLN			65.449	71.571 -15.158	1.00 11.57	A
20	ATOM	3940	N			503	64.906	71.286 -12.995	1.00 12.09	A
30	MOTA	3941	CA	GLN			66.254	70.824 -12.651	1.00 13.27	A
	ATOM	3942	СВ	GLN			66.392	70.592 -11.142	1.00 13.43	A
	ATOM	3943	CG	GLN			66.600	71.849 -10.299	1.00 15.82	A
	MOTA	3944	CD			503	67.951	72.502 -10.544	1.00 16.04	A
٥.	MOTA	3945		GLN			68.944	71.820 -10.810	1.00 16.22	A
35	ATOM	3946		GLN			67.998	73.825 -10.437	1.00 17.27	A
	ATOM	3947	С	GLN			66.512	69.504 -13.381	1.00 12.92	A
	ATOM	3948	0	GLN			67.598	69.276 -13.911	1.00 13.19	A
	ATOM	3949	N	SER			65.505	68.632 -13.401	1.00 12.21	A
	ATOM	3950	CA	SER			65.629	67.338 -14.070	1.00 12.69	A
4 0	MOTA	3951	CB			504	64.376	66.487 -13.833	1.00 12.53	A
	MOTA	3952	OG	SER			64.240	66.150 -12.464	1.00 13.33	A
	ATOM	3953	С	SER	Α	504	65.860	67.487 -15.570	1.00 12.34	А
	ATOM	3954	0	SER			66.719	66.814 -16.143	1.00 12.28	А
	ATOM	3955	N	VAL			65.091	68.363 -16.207	1.00 12.19	A
45	ATOM	3956	CA	VAL			65.237	68.577 -17.644	1.00 12.76	А
	ATOM	3957	CB	VAL	Α	505	64.228	69.624 -18.166	1.00 12.70	А
	ATOM	3958	CG1	VAL	Α	505	64.573	70.019 -19.607	1.00 12.02	Α
	ATOM	3959	CG2	VAL	Α	505	62.811	69.051 -18.108	1.00 12.78	А
	ATOM	3960	С	VAL	Α	505	66.651	69.043 -17.973	1.00 13.11	Α
50	ATOM	3961	0	VAL	Α	505	67.276	68.554 -18.915	1.00 13.42	Α
	ATOM	3962	N	TYR	Α	506	67.161	69.983 -17.188	1.00 13.48	Α
	ATOM	3963	CA	TYR	Α	506	68.503	70.496 -17.423	1.00 14.99	A
	ATOM	3964	СВ	TYR			68.825	71.593 -16.406	1.00 16.52	Α
	ATOM	3965	CG	TYR			70.166	72.239 -16.635	1.00 18.96	Α
55	ATOM	3966		TYR			70.475	72.822 -17.865	1.00 20.22	Α

							020	,				
	ATOM	3967	CE1	TYR	Α	506	71.722	73.393	-18.098	1.00	22.60	А
	ATOM	3968	CD2	TYR	Α	506	71.139	72.244	-15.638	1.00	19.62	Α
	MOTA	3969	CE2	TYR	Α	506	72.394	72.811	-15.864	1.00	22.32	Α
	MOTA	3970	CZ	TYR	Α	506	72.674	73.380	-17.097	1.00	22.77	Α
5	ATOM	3971	ОН	TYR	Α	506	73.914	73.929	-17.337	1.00	27.54	Α
	MOTA	3972	С	TYR	Α	506	69.561	69.385	-17.359	1.00	14.96	А
	ATOM	3973	0	TYR	Α	506	70.468	69.325	-18.195	1.00	14.30	A
	ATOM	3974	N	ARG	Α	507	69.435	68.499	-16.377	1.00	14.25	А
	ATOM	3975	CA	ARG	A	507	70.384	67.399	-16.214	1.00	14.23	A
10	MOTA	3976	СВ	ARG	Α	507	70.197	66.751	-14.837	1.00	14.62	А
	ATOM	3977	CG	ARG	A	507	71.238	65.694	-14.492	1.00	15.49	А
	ATOM	3978	CD	ARG	Α	507	71.041	65.175	-13.075	1.00	16.94	A
	MOTA	3979	NE	ARG	A	507	72.055	64.190	-12.707	1.00	18.67	A
	MOTA	3980	CZ	ARG	Α	507	72.170	63.649	-11.497	1.00	18.55	A
15	ATOM	3981	NH1				71.333	63.996	-10.527	1.00	18.82	А
	ATOM	3982	NH2	ARG			73.122	62.758	-11.256	1.00	19.58	А
	ATOM	3983	С	ARG			70.247	66.334	-17.310	1.00	13.93	А
	ATOM	3984	0	ARG			71.241	65.776	-17.776	1.00	12.93	Α
	MOTA	3985	N	LEU	Α	508	69.016	66.062	-17.723	1.00	13.04	Α
20	MOTA	3986	CA	LEU			68.758	65.059	-18.752	1.00	13.40	Α
	ATOM	3987	СВ	LEU	Α	508	67.274	64.669	-18.738	1.00	12.96	Α
	ATOM	3988	CG	LEU	Α	508	66.779	63.783	-17.588	1.00	12.57	Α
	ATOM	3989	CD1	LEU	Α	508	65.251	63.836	-17.521	1.00	12.21	Α
	MOTA	3990	CD2	LEU	Α	508	67.264	62.354	-17.793	1.00	12.51	A
25	MOTA	3991	С	LEU	Α	508	69.139	65.486	-20.171	1.00	13.63	Α
	ATOM	3992	0	LEU	Α	508	69.386	64.637	-21.031		13.67	A
	ATOM	3993	N	LEU	Α	509	69.188	66.790	-20.422	1.00	13.58	А
	MOTA	3994	CA	LEU	Α	509	69.494	67.278	-21.763		13.53	Α
	ATOM	3995	CB	LEU	Α	509	68.302		-22.303		12.65	Α
30	ATOM	3996	CG	LEU	Α	509	67.030		-22.577		12.79	А
	ATOM	3997	CD1	LEU	Α	509	65.914	68.205	-23.012	1.00	11.70	Α
	MOTA	3998	CD2	LEU	Α	509	67.301		-23.657		12.41	А
	ATOM	3999	С	LEU	Α	509	70.766	68.107	-21.916		14.29	A
	ATOM	4000	0	LEU	Α	509	70.915	68.837	-22.900	1.00	14.16	Α
35	ATOM	4001	N	THR	A	510	71.680	67.992	-20.957		14.27	A
	ATOM	4002	CA	THR	Α	510	72.938		-21.015		14.89	Α
	ATOM	4003	CB	THR	Α	510	73.083		-19.803		14.99	Α
	ATOM	4004	OG1	THR	Α	510	71.994		-19.796		13.54	Α
_	MOTA	4005	CG2	THR	Α	510	74.400		-19.872		15.03	Α
40	MOTA	4006	С	THR			74.100		-21.022		15.57	A
	MOTA	4007	0	THR			74.106		-20.252		14.99	Α
	ATOM	4008	N	LYS	A	511	75.075		-21.900		16.82	A
	MOTA	4009	CA	LYS	A	511	76.234		-21.972		18.12	A
	ATOM	4010	CB	LYS			77.309		-22.902		19.84	A
45	ATOM	4011	CG	LYS			78.515		-23.058		22.03	A
	ATOM	4012	CD	LYS	Α	511	79.563	67.323	-23.988		24.78	A
	ATOM	4013	CE	LYS	Α	511	80.759	66.385	-24.094		26.41	A
	ATOM	4014	NZ	LYS	Α	511	81.834	66.924	-24.969		28.84	Α
	MOTA	4015	С	LYS	A	511	76.789		-20.564		17.91	A
50	ATOM	4016	0	LYS			77.076		-19.879		17.65	A
	ATOM	4017	N	PRO			76.943		-20.110		18.35	A
	ATOM	4018	CD	PRO			76.675		-20.868		18.80	Α
	ATOM	4019	CA	PRO			77.455		-18.773		18.48	Α
	ATOM	4020	CB	PRO			77.711		-18.854		19.18	A
55	ATOM	4021	CG	PRO	Α	512	76.629	63.379	-19.773	1.00	19.70	А

	ATOM	4022	С	PRO	Α	512		78.685	66.11	8 -18.29	9 1.00	18.38	А
	ATOM	4023	Ó	PRO				78.698	66.63	3 -17.182	2 1.00	18.96	Α
	ATOM	4024	N	SER	Α	513	-	79.714	66.19	9 -19.13	7 1.00	19.08	A
	ATOM	4025	CA	SER	Α	513	1	80.938	66.89	8 -18.75	1.00	18.72	Α
5	ATOM	4026	СВ	SER	Α	513	1	82.086	66.50	3 -19.69	1.00	19.04	Α
	ATOM	4027	OG	SER			8	81.770	66.76	8 -21.05	1.00	18.98	Α
	ATOM	4028	С	SER	Α	513	8	80.800	68.42	1 -18.70	1.00	18.92	А
	ATOM	4029	0	SER			8	81.720	69.11	3 -18.26	6 1.00	18.57	A
	ATOM	4030	N	ILE	Α	514	-	79.651	68.93	3 -19.13	1.00	18.74	A
10	ATOM	4031	CA	ILE	A	514	•	79.383	70.37	1 -19.13	1.00	19.04	Α
	ATOM	4032	СВ	ILE			•	78.787	70.83	1 -20.49	5 1.00	20.04	A
	ATOM	4033	CG2	ILE			•	78.309	72.28	1 -20.40	7 1.00	21.10	A
	ATOM	4034	CG1	ILE			•	79.837	70.68	6 -21.59	3 1.00	21.00	A
	ATOM	4035		ILE				79.333	71.05	1 -22.983	3 1.00	22.47	A
15	ATOM	4036	С	ILE			•	78.395	70.72	9 -18.01	6 1.00	18.79	A
	ATOM	4037	0	ILE				78.419	71.83	8 -17.483	2 1.00	17.84	A
	ATOM	4038	N	TYR				77.531	69.77	8 -17.67	1.00	18.53	A
	ATOM	4039	CA	TYR				76.517	69.96	3 -16.62	9 1.00	18.27	A
	ATOM	4040	СВ	TYR				75.828	68.61	9 -16.37	1 1.00	18.00	A
20	ATOM	4041	CG	TYR				74.789	68.61	4 -15.27	7 1.00	17.16	A
	ATOM	4042		TYR			•	73.637	69.39	8 -15.36	9 1.00	17.45	A
	ATOM	4043		TYR				72.658	69.35	9 -14.37	1.00	16.75	A
	MOTA	4044		TYR				74.940	67.79	3 -14.16	1.00	17.50	A
	ATOM	4045	CE2	TYR				73.977	67.74	6 -13.16	2 1.00	16.69	A
25	ATOM	4046	CZ	TYR	Α	515	•	72.838	68.52	9 -13.27	1.00	17.17	A
	ATOM	4047	ОН	TYR	Α	515	•	71.886	68.47	3 -12.27	6 1.00	17.04	A
	ATOM	4048	С	TYR	Α	515	•	77.102	70.52	9 -15.33	1.00	18.11	A
	ATOM	4049	0	TYR	А	515	•	77.924	69.89	0 -14.67		18.22	A
	ATOM	4050	N	SER	Α	516		76.671	71.73	7 -14.96	6 1.00	18.53	А
30	MOTA	4051	CA	SER	Α	516		77.146		4 -13.75		18.57	A
	ATOM	4052	CB	SER	Α	516		78.162	73.49	6 -14.12	9 1.00	18.96	A
	ATOM	4053	OG	SER	Α	516		78.760		3 - 12.97		20.03	A
	MOTA	4054	С	SER	А	516	•	75.936	73.04	7 -13.06		19.08	A
	ATOM	4055	0	SER	А	516	•	75.689		9 -13.18		18.41	A
35	MOTA	4056	N	PRO	А	517	•	75.174		0 -12.31		19.04	A
	MOTA	4057	CD	PRO	Α	517	•	75.364	70.79	3 -12.10		19.14	A
	ATOM	4058	CA	PRO				73.977		3 -11.61		19.54	A
	MOTA	4059	CB	PRO	А	517		73.238		2 -11.32		19.43	A
	MOTA	4060	CG	PRO				74.366		4 -10.99		19.51	A
40	MOTA	4061	С	PRO				74.075		2 -10.36		19.76	A
	MOTA	4062	0	PRO				74.933	73.36			20.43	A
	MOTA	4063	N	ASP				73.160		3 -10.29		20.28	A
	MOTA	4064	CA	ASP				72.983	75.41			20.46	A
	ATOM	4065	CB	ASP				72.984	76.87			21.58	A
45	MOTA	4066	CG	ASP				72.662	77.81			22.93	A
	ATOM	4067		ASP				72.006	77.36			22.28	Α
	ATOM	4068	OD2	ASP				73.048	78.99			24.17	A
	MOTA	4069	С	ASP				71.562	74.99			20.16	A
	MOTA	4070	0	ASP				70.602	75.42			19.99	Α
50	MOTA	4071	N	PHE				71.435	74.15			20.05	А
	MOTA	4072	CA			519		70.136	73.64			19.70	A
	ATOM	4073	CB			519		70.331	72.60			19.92	A
	ATOM	4074	CG			519		71.195	71.44			20.35	A
	ATOM	4075		PHE				70.936	70.76			20.35	A
55	ATOM	4076	CD2	PHE	A	519		72.275	71.04	6 -5.88	2 1.00	20.06	A

							022				
		ATOM	4077	CE1	PHE A	519	71.741	69.694	-8.253	1.00 20.4	9 A
		ATOM	4078		PHE A		73.085	69.983	-6.276	1.00 20.6	8 A
		ATOM	4079	CZ	PHE A		72.818	69.306	-7.464	1.00 20.6	5 A
		MOTA	4080	С	PHE A		69.073	74.656	-6.949	1.00 19.9	2 A
	5	ATOM	4081	ō	PHE A		67.926	74.283	-6.703	1.00 19.7	1 A
	9	MOTA	4082	N	SER A		69.438	75.932	-6.901	1.00 20.3	
		ATOM	4083	CA	SER A		68.482	76.974	-6.534	1.00 20.8	
		ATOM	4084	CB	SER A		69.072	77.879	-5.452	1.00 21.3	
		ATOM	4085	OG	SER A		70.122	78.674	-5.981	1.00 22.2	
	10	ATOM		C	SER A		68.136	77.826	-7.753	1.00 21.2	
	10		4086				67.272	78.700	-7.687	1.00 20.9	
		ATOM	4087	0	SER A		68.816	77.558	-8.862	1.00 20.7	
		ATOM	4088	N	PHE A				-10.096	1.00 20.7	
		ATOM	4089	CA	PHE A		68.625		-10.897	1.00 20.0	
	15	ATOM	4090	CB	PHE A		69.932		-12.034	1.00 22.1	
	15	MOTA	4091	CG	PHE A		69.950			1.00 23.3	
		MOTA	4092		PHE A		70.078		-11.787	1.00 24.3	
		ATOM	4093		PHE A		69.817		-13.349		
		MOTA	4094		PHE A		70.071		-12.837	1.00 24.4	
	00	MOTA	4095		PHE A		69.808		-14.405	1.00 23.7	
الآلة	20	MOTA	4096	CZ	PHE A		69.936		-14.149	1.00 24.5	
ij		MOTA	4097	С	PHE A		67.497		-10.973	1.00 20.4	
1,371		MOTA	4098	0	PHE A		67.238		-10.998	1.00 19.9	
		ATOM	4099	N	SER A		66.828		-11.693	1.00 20.3	
198	05	MOTA	4100	CA	SER A		65.746		-12.588	1.00 19.8	
450 (m) 450 (m)	25	MOTA	4101	CB	SER A		64.569		-12.474	1.00 20.8	
14		ATOM	4102	OG	SER A		63.902		-11.230	1.00 24.2	
		ATOM	4103	С	SER A		66.259		-14.023	1.00 18.6	
81		MOTA	4104	0	SER A		66.316		-14.686	1.00 18.4	
	•	MOTA	4105	N	TYR A		66.643		-14.495	1.00 17.5	
	30	ATOM	4106	CA	TYR A		67.149		-15.854	1.00 16.6	
M.		ATOM	4107	CB	TYR A		67.888		-16.013	1.00 17.4	
ļ4		MOTA	4108	CG	TYR A		69.163		-15.213	1.00 19.1	
		MOTA	4109	CD1	TYR A		69.191		-13.949	1.00 18.9	
ind ind	~ =	ATOM	4110	CE1	TYR A		70.363		-13.189	1.00 20.1	
g t-amer	35	MOTA	4111	CD2			70.338		-15.701	1.00 19.4	
		MOTA	4112	CE2			71.503		-14.954	1.00 19.8	
		MOTA	4113	CZ	TYR A		71.511		-13.700	1.00 20.2	
		MOTA	4114	ОН	TYR A		72.669		-12.955	1.00 20.8	
		MOTA	4115	С	TYR A		66.023		-16.865	1.00 16.1	
	40	MOTA	4116	0	TYR A		66.225		-18.000	1.00 15.4	
		MOTA	4117	N	PHE A		64.838		-16.452	1.00 15.2	
		MOTA	4118	CA	PHE A		63.664		-17.313	1.00 15.1	
		MOTA	4119	CB	PHE A		63.294		-17.852	1.00 14.2	
		ATOM	4120	CG	PHE A	524	64.335		-18.724	1.00 13.8	
	45	MOTA	4121	CD1	PHE A	524	65.403		-18.166	1.00 14.2	
		ATOM	4122	CD2	PHE A	524	64.226		-20.112	1.00 13.2	
		MOTA	4123	CE1	PHE A	524	66.349		-18.977	1.00 14.0	
		ATOM	4124	CE2	PHE A	524	65.166		-20.932	1.00 12.8	
		MOTA	4125	CZ	PHE A	524	66.231	73.344	-20.360	1.00 13.4	
	50	ATOM	4126	С	PHE A	524	62.461	77.103	-16.537	1.00 15.9	
		ATOM	4127	0	PHE A		62.394	76.980	-15.314	1.00 15.2	
		ATOM	4128	N	THR A	525	61.510	77.661	-17.274	1.00 16.5	
		ATOM	4129	CA	THR A		60.265	78.145	-16.708	1.00 18.2	
		ATOM	4130	СВ	THR A		60.026	79.627	-17.050	1.00 18.6	
	55	ATOM	4131	OG1	THR A	525	61.031	80.431	-16.419	1.00 22.9	A 06

		MOTA	4132	CG2	THR A 525	58.659	80.072 -16.565	1.00 21.52	Α
		ATOM	4133	С	THR A 525	59.181	77.308 -17.376	1.00 17.50	А
		MOTA	4134	0	THR A 525	59.190	77.147 -18.596	1.00 16.90	Α
		MOTA	4135	N	LEU A 526	58.265	76.757 -16.587	1.00 16.82	Α
	5	MOTA	4136	CA	LEU A 526	57.184	75.968 -17.159	1.00 17.40	Α
		ATOM	4137	СВ	LEU A 526	56.457	75.166 -16.072	1.00 18.26	Α
		ATOM	4138	CG	LEU A 526	57.000	73.796 -15.667	1.00 18.92	Α
		ATOM	4139	CD1	LEU A 526	56.213	73.271 -14.472	1.00 19.91	А
		ATOM	4140	CD2	LEU A 526	56.887	72.833 -16.837	1.00 19.01	Α
	10	MOTA	4141	С	LEU A 526	56.184	76.904 -17.832	1.00 17.33	Α
		ATOM	4142	0	LEU A 526	55.920	78.000 -17.335	1.00 17.26	А
		ATOM	4143	N	ASP A 527	55.649	76.481 -18.971	1.00 16.38	А
		ATOM	4144	CA	ASP A 527		77.271 -19.674	1.00 17.04	Α
		ATOM	4145	СВ	ASP A 527		77.631 -21.085	1.00 17.59	A
	15	MOTA	4146	CG	ASP A 527	54.133	78.520 -21.819	1.00 18.89	Α
		ATOM	4147	OD1	ASP A 527		79.640 -21.329	1.00 18.47	Α
		ATOM	4148		ASP A 527		78.097 -22.879	1.00 18.66	Α
		ATOM	4149	С	ASP A 527		76.396 -19.751	1.00 16.37	Α
1125		ATOM	4150	0	ASP A 527		75.340 -20.375	1.00 17.71	Α
	20	ATOM	4151	N	ASP A.528		76.825 -19.094	1.00 16.05	Α
1,66F . FFa		ATOM	4152	CA	ASP A 528		76.076 -19.078	1.00 14.81	Α
1,1,1		ATOM	4153	СВ	ASP A 528		75.718 -17.638	1.00 14.73	Α
121		ATOM	4154	CG	ASP A 528		74.612 -17.561	1.00 14.72	A
		ATOM	4155		ASP A 528		74.677 -18.288	1.00 13.92	A
Ŋ	25	ATOM	4156		ASP A 528		73.674 -16.763	1.00 15.10	Α
		ATOM	4157	C	ASP A 528		76.963 -19.691	1.00 15.02	А
ijħ		ATOM	4158	0	ASP A 528		78.009 -19.144	1.00 13.40	A
E!		ATOM	4159	N	SER A 529		76.546 -20.829	1.00 15.55	А
		ATOM	4160	CA	SER A 529		77.355 -21.494	1.00 17.05	A
	30	ATOM	4161	CB	SER A 529		77.064 -22.998	1.00 18.24	A
1,12	00	ATOM	4162	OG	SER A 529		75.815 -23.262	1.00 23.59	А
ï¥		ATOM	4163	C	SER A 529		77.159 -20.938	1.00 16.64	А
ļ.		ATOM	4164	0	SER A 529		77.913 -21.283	1.00 16.93	А
		ATOM	4165	N	ARG A 530		76.169 -20.070	1.00 15.67	A
ļ.L	35	ATOM	4166	CA	ARG A 530		75.927 -19.535	1.00 16.21	А
	00	ATOM	4167	СВ	ARG A 530		74.562 -20.015	1.00 15.39	А
		ATOM	4168	CG	ARG A 530		74.520 -21.531	1.00 15.38	A
		ATOM	4169	CD	ARG A 530		73.247 -22.059	1.00 15.32	А
		ATOM	4170	NE	ARG A 530		72.053 -21.673	1.00 15.99	A
	40	ATOM	4171	CZ	ARG A 530		70.845 -22.178	1.00 17.04	А
	10	ATOM	4172		ARG A 530		70.681 -23.091	1.00 16.99	A
		ATOM	4173		ARG A 530		69.802 -21.771	1.00 16.09	А
		ATOM	4174	C	ARG A 530		76.075 -18.029	1.00 16.59	А
		ATOM	4175	0	ARG A 530		75.781 -17.501	1.00 16.64	А
	4 5	ATOM	4176	N	TRP A 531		76.529 -17.337	1.00 15.99	А
	40	ATOM	4177	CA	TRP A 531		76.760 -15.900	1.00 17.02	А
			4178	CB	TRP A 531		75.489 -15.085	1.00 16.79	A
		ATOM			TRP A 531		75.776 -13.618	1.00 18.61	A
		ATOM	4179	CG	TRP A 531		75.854 -12.845	1.00 18.70	A
	50	ATOM	4180				76.258 -11.540	1.00 19.61	A
	50	ATOM	4181		TRP A 531		75.625 -13.127	1.00 19.31	A
		ATOM	4182		TRP A 531		76.124 -12.773	1.00 13.31	A
		ATOM	4183		TRP A 531		76.124 -12.773	1.00 19.66	A
		ATOM	4184		TRP A 531		76.416 -11.525	1.00 19.00	A
	FF	ATOM	4185		TRP A 531			1.00 20.36	A
	55	MOTA	4186	CZ3	TRP A 531	42.928	75.806 -12.111	1.00 13.32	А

ATOM 4188 C TRP A 531		3.0014	4107	~	MDD 7		42 222	76 207 10 225	1 00 20 15	75
ATOM 4199 O TRP A 531 48.445 77.745 -15.691 1.00 16.78 1.00 ATOM 4191 CD PRO A 532 46.740 78.855 -14.724 1.00 18.18 1.00 19.11 ATOM 4191 CD PRO A 532 47.581 79.813 -13.986 1.00 19.11 ATOM 4192 CA PRO A 532 45.327 79.028 -14.362 1.00 19.02 ATOM 4193 CB PRO A 532 45.327 79.028 -14.362 1.00 19.02 ATOM 4194 CG PRO A 532 46.705 80.142 -12.795 1.00 19.62 ATOM 4195 C PRO A 532 46.705 80.142 -12.795 1.00 19.62 ATOM 4196 O PRO A 532 44.21 79.230 -15.572 1.00 20.08 ATOM 4196 O PRO A 532 43.202 79.077 -15.479 1.00 19.73 ATOM 4196 O PRO A 532 44.21 79.230 -15.572 1.00 20.08 ATOM 4197 N GLY A 533 44.257 79.769 -17.920 1.00 22.81 ATOM 4199 C GLY A 533 44.257 79.769 -17.920 1.00 22.81 ATOM 4199 C GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4200 O GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4203 CB SER A 534 43.665 82.746 -21.662 1.00 29.277 ATOM 4203 CB SER A 534 43.665 82.746 -21.662 1.00 29.277 ATOM 4206 C SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4206 C SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4206 O SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4206 O SER A 534 43.40 84.017 -22.215 1.00 31.07 ATOM 4206 C SER A 534 43.40 84.017 -22.215 1.00 29.29 ATOM 4206 O SER A 534 44.402 82.714 -19.617 1.00 28.85 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 29.80 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 29.80 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 29.80 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 29.80 ATOM 4208 CR GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4210 CR GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4210 CR GLY A 535 42.518 84.592 -19.072 1.00 29.90 ATOM 4206 CR GLY A 535 41.402 82.144 -19.617 1.00 23.83 ATOM 4220 CR GLY A 535 42.518 84.891 -13.499 1.00 33.59 ATOM 4220 CR GLY A 536 42.89										A
ATOM 4190 N PRO A 532 46.740 78.855 -14.724 1.00 18.18 ATOM 4191 CD PRO A 532 47.581 79.813 -13.986 1.00 19.11 ATOM 4192 CA PRO A 532 45.327 79.028 -14.362 1.00 19.02 ATOM 4193 CB PRO A 532 45.327 79.028 -14.362 1.00 19.02 ATOM 4195 C PRO A 532 45.327 79.028 -14.362 1.00 19.02 ATOM 4195 C PRO A 532 45.337 80.248 -13.441 1.00 19.35 ATOM 4195 C PRO A 532 44.21 79.230 -15.572 1.00 20.08 ATOM 4197 N GLY A 533 45.024 79.574 -16.705 1.00 19.62 ATOM 4199 C GLY A 533 44.257 79.769 -17.920 1.00 22.81 ATOM 4199 C GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4200 O GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4202 CA SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4204 OG SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4206 O SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4207 N GLY A 535 42.468 83.369 -19.588 1.00 29.27 ATOM 4208 CA GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4209 C GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4201 O SER A 534 41.402 82.714 -19.617 1.00 29.80 ATOM 4206 O SER A 534 41.402 82.714 -19.617 1.00 29.80 ATOM 4207 N GLY A 535 41.300 85.22 -18.504 1.00 29.80 ATOM 4208 CA GLY A 535 41.300 85.22 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.300 85.22 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 42.518 84.592 -19.072 1.00 30.559 ATOM 4210 C GLY A 536 42.058 84.041 -16.516 1.00 31.00 ATOM 4211 N VAL A 536 42.058 84.041 -16.516 1.00 31.00 ATOM 4212 C VAL A 536 42.058 84.041 -16.516 1.00 31.00 ATOM 4213 CB VAL A 536 42.058 84.041 -16.516 1.00 31.09 ATOM 4216 C VAL A 536 42.058 84.041 -16.516 1.00 31.98 ATOM 4217 O VAL A 536 42.058 84.041 -16.516 1.00 31.98 ATOM 4218 N GLU A 537 47.534 84.295 -15.045 1.00 39.81 ATOM 4219 CG GLU A 537 47.938 83.477 -11.663 1.00 39.93 ATOM 4210 CG SUA A 536 42.058 84.034 -13.333 1.00 36.13 ATOM 4220 CB GLU A 537 47.938 83.477 -11.663 1.00 39.93 ATOM 4221 CG GLU A 537 47.938 84.295 -15.045 1.00 39.93 ATOM 4222 CD GLU A 537 47.938 84.295 -15.045 1.00 39.93 ATOM 4223 CG GLU A 5										A
S										A
ATOM 4192 CA PRO A 532 45.327 79.028 -14.362 1.00 19.02 ATOM 4194 CG PRO A 532 45.353 80.248 -13.441 1.00 19.35 ATOM 4195 C PRO A 532 46.705 80.142 -12.795 1.00 19.62 ATOM 4195 C PRO A 532 44.421 79.230 -15.572 1.00 20.08 ATOM 4197 N GLY A 533 45.024 79.574 -16.705 1.00 20.53 ATOM 4198 CA GLY A 533 45.024 79.574 -16.705 1.00 20.53 ATOM 4199 C GLY A 533 44.257 79.769 -17.792 1.00 22.81 ATOM 4199 C GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4200 O GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 26.45 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40	-									A
ATOM 4193 CB PRO A 532 45.353 80.248 -13.441 1.00 19.55 ATOM 4194 CG PRO A 532 46.705 80.142 -12.795 1.00 19.62 ATOM 4195 C PRO A 532 44.421 79.230 -15.572 1.00 20.08 10 ATOM 4197 N GLY A 533 44.221 79.574 -16.705 1.00 20.53 ATOM 4197 N GLY A 533 44.227 79.769 -17.920 1.00 20.53 ATOM 4198 CA GLY A 533 44.257 79.769 -17.920 1.00 24.62 ATOM 4199 C GLY A 533 44.068 81.218 -18.320 1.00 24.62 ATOM 4200 O GLY A 533 44.068 81.218 -18.320 1.00 24.61 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 24.61 ATOM 4201 N SER A 534 43.739 82.791 -20.153 1.00 27.99 ATOM 4203 CB SER A 534 43.665 82.746 -21.682 1.00 27.99 ATOM 4203 CB SER A 534 42.446 83.369 -19.588 1.00 27.99 ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 27.99 ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 28.53 ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4200 C GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4200 C GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4210 O GLY A 535 40.349 85.496 -16.338 1.00 30.53 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 30.59 ATOM 4212 CA VAL A 536 42.055 84.041 -16.516 1.00 31.00 31.89 ATOM 4213 CB VAL A 536 42.055 84.041 -16.516 1.00 31.00 31.89 ATOM 4217 O VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4217 O VAL A 536 42.035 81.491 -13.439 1.00 31.89 ATOM 4219 CA GLU A 537 45.592 84.881 -14.498 1.00 32.83 ATOM 4219 CA GLU A 537 45.592 84.881 -14.498 1.00 32.83 ATOM 4219 CA GLU A 537 45.592 84.881 -14.490 1.00 32.83 ATOM 4216 C VAL A 536 42.035 81.791 -13.439 1.00 31.89 ATOM 4220 C B GLU A 537 47.534 84.295 -15.045 1.00 33.99 ATOM 4221 CA VAL A 536 42.035 81.491 -14.495 1.00 33.99 ATOM 4221 CA VAL A 536 42.035 84.894 -13.337 1.00 33.89 ATOM 4221 CA VAL A 536 42.035 84.894 -13.337 1.00 33.89 ATOM 4221 CA VAL A 536 42.035 84.894 -13.339 1.00 33.89 ATOM 4221 CA VAL A 536 42.035 84.894 -13.339 1.00 33.99 ATOM 4222 CB GLU A 537 45.592 84.881 -14.498 1.00 33.91 ATOM 4226 CB GLU A 537 46.695 84.894 -13.307 1.00 33.89 ATOM 4229 CB ASPA 538 49.	5									A
ATOM 4194 CG PRO A 532 46.705 80.142 -12.795 1.00 19.62 ATOM 4195 C PRO A 532 44.421 79.230 -15.572 1.00 20.08 ATOM 4196 O PRO A 532 43.202 79.077 -15.479 1.00 19.73 ATOM 4197 N GLY A 533 45.024 79.574 -16.705 1.00 22.83 ATOM 4199 C GLY A 533 44.068 81.218 -18.320 1.00 24.61 ATOM 4200 O GLY A 533 44.068 81.218 -18.320 1.00 24.61 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4202 CA SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4203 CB SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4204 OG SER A 534 43.938 81.477 -19.6624 1.00 28.53 ATOM 4205 C SER A 534 43.665 82.746 -21.682 1.00 29.27 ATOM 4206 O SER A 534 43.408 84.017 -22.215 1.00 31.07 ATOM 4207 N GLY A 535 42.446 83.369 -19.588 1.00 29.27 ATOM 4208 CO GLY A 535 41.402 82.714 -19.617 1.00 28.85 ATOM 4209 C GLY A 535 41.340 84.592 -19.072 1.00 29.80 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4210 O GLY A 535 41.340 85.221 -18.504 1.00 30.53 ATOM 4210 C GLY A 535 42.038 83.680 -15.104 1.00 30.53 ATOM 4210 C GLY A 535 42.038 83.680 -15.104 1.00 31.90 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4214 CG1 VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4216 C VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4216 C VAL A 536 42.055 84.041 -16.516 1.00 31.91 ATOM 4216 CG2 VAL A 536 42.055 84.041 -16.516 1.00 31.91 ATOM 4217 O VAL A 536 43.080 84.894 -13.307 1.00 32.31 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4220 CB GLU A 537 47.933 83.477 -11.663 1.00 33.97 ATOM 4220 CB GLU A 537 47.933 83.477 -11.663 1.00 33.97 ATOM 4221 CG GLU A 537 47.933 83.477 -11.663 1.00 33.97 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 33.97 ATOM 4223 CE GLU A 537 47.935 84.295 -15.045 1.00 33.97 ATOM 4226 C GLU A 537 47.936 84.295 -15.045 1.00 33.97 ATOM 4227 CB GLU A 537 47.938 84.297 -19.456 1.00 33.91 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.848 49.478 -16.654 1.00 35.09 ATOM 4230 CB GLU A 537 47.936 88.938 -18.455 1.0										A
ATOM										A
ATOM										A
ATOM 4198 CA GLY A 533				С						A
ATOM 4198 CA GLY A 533	10	MOTA	4196	0				79.077 -15.479		A
ATOM 4199 C GLY A 533		MOTA	4197	N	GLY F	533	45.024			A
ATOM 4200 O GLY A 533 44.043 82.113 -17.472 1.00 24.61 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4202 CA SER A 534 43.938 82.791 -20.153 1.00 27.99 ATOM 4204 OG SER A 534 43.665 82.746 -21.682 1.00 29.27 ATOM 4205 C SER A 534 43.408 84.017 -22.215 1.00 31.07 ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 28.53 ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.80 ATOM 4208 C GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4210 O GLY A 535 40.349 85.496 -16.338 1.00 30.59 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 31.00 ATOM 4212 CA VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.89 ATOM 4216 C VAL A 536 42.095 81.791 -13.439 1.00 31.89 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 32.38 ATOM 4219 CA GLU A 537 44.378 84.295 -15.045 1.00 32.38 ATOM 4219 CA GLU A 537 45.592 84.881 -14.495 1.00 32.38 ATOM 4220 CB GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.6		MOTA	4198	CA	GLY F	533	44.257	79.769 -17.920		A
15 ATOM 4201 N SER A 534 43.938 81.447 -19.624 1.00 26.45 ATOM 4202 CA SER A 534 43.739 82.791 -20.153 1.00 27.99 ATOM 4203 CB SER A 534 43.665 82.746 -21.682 1.00 29.27 ATOM 4204 OG SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4206 O SER A 534 42.446 83.369 -19.588 1.00 28.53 ATOM 4206 O SER A 534 41.402 82.714 -19.617 1.00 28.85 ATOM 4208 CA GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4209 C GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4211 N VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4214 CG1 VAL A 536 42.095 81.791 -13.439 1.00 32.31 ATOM 4216 C VAL A 536 40.997 81.459 -15.658 1.00 31.94 ATOM 4218 N VAL A 536 40.997 81.459 -15.658 1.00 31.94 ATOM 4218 N VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4219 CA GLU A 537 46.085 84.091 -13.313 1.00 32.83 ATOM 4221 CG GLU A 537 46.085 84.091 -13.313 1.00 35.29 ATOM 4220 CB GLU A 537 46.085 84.091 -13.313 1.00 36.13 ATOM 4221 CG GLU A 537 46.085 84.091 -13.313 1.00 36.13 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 39.08 ATOM 4222 CD GLU A 537 47.934 84.273 -12.900 1.00 37.68 ATOM 4223 OEI GLU A 537 47.934 84.273 -12.900 1.00 37.68 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4228 CA SAP A 538 48.81 -14.495 1.00 35.94 ATOM 4229 CB ASP A 538 48.81 -14.495 1.00 35.94 ATOM 4223 OEI GLU A 537 47.036 83.959 -16.131 1.00 35.88 ATOM 4223 OEI GLU A 537 47.036 83.959 -16.131 1.00 35.88 ATOM 4223 OEI GLU A 537 47.036 83.062 -10.898 1.00 37.67 ATOM 4224 OE2 GLU A 537 47.036 83.062 -10.898 1.00 37.67 ATOM 4228 CA SAP A 538 48.81 -14.495 1.00 35.94 ATOM 4228 CA SAP A 538 48.81 -14.495 1.00 35.94 ATOM 4233 OE SAP A 538 48.81 -14.895 1.00 37.57 ATOM 4230 CB SAP A 538 48.894 -15.894 1.00 30.05 3.91 ATOM 4233 OB SAP		MOTA	4199	С	GLY F	533	44.068	81.218 -18.320	1.00 24.62	A
ATOM 4202 CA SER A 534 43.739 82.791 -20.153 1.00 27.99 ATOM 4204 OG SER A 534 43.665 82.746 -21.682 1.00 29.27 ATOM 4204 OG SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 28.53 20 ATOM 4206 O SER A 534 41.402 82.714 -19.617 1.00 28.85 ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 30.59 ATOM 4210 O GLY A 535 41.340 85.221 -18.504 1.00 30.59 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.038 83.660 -15.104 1.00 31.08 ATOM 4213 CB VAL A 536 42.038 83.660 -15.104 1.00 31.98 ATOM 4214 CGI VAL A 536 42.038 83.660 -15.104 1.00 31.89 ATOM 4215 CG2 VAL A 536 40.997 81.459 -15.658 1.00 31.89 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 32.83 ATOM 4219 CA GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4220 CB GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CB GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4223 CE GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4226 CB GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4227 N ASP A 538 48.183 86.371 -16.853 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.566 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.566 1.00 37.57 ATOM 4229 CB ASP A 538 48.183 86.377 -15.666 1.00 37.57 ATOM 4229 CB ASP A 538 48.183 86.377 -15.666 1.00 37.57 ATOM 4229 CB ASP A 538 48.183 86.377 -15.666 1.00 37.57 ATOM 4229 CB ASP A 538 48.183 86.377 -15.661 1.00 37.57 ATOM 4228 CA ASP A 538 48.183 86.377 -15.661 1.00 37.57 ATOM 4228 CA ASP A 538 48.183 86.377 -15.661 1.00 37.57 ATOM 4228 CA ASP A 538 48.183 86.377 -15.661 1.00 37.57 ATOM 4228 CA ASP A 538 48.183 86.377 -15.661 1.00 37.57 ATOM 4228 CA ASP A 538 48.183 86.377 -16.5263 1.00 35.97 ATOM 4234 O ASP A 538 48.812 -15.		ATOM	4200	0	GLY F	533	44.043	82.113 -17.472		Α
ATOM 4203 CB SER A 534	15	MOTA	4201	N	SER F	534	43.938	81.447 -19.624	1.00 26.45	Α
ATOM 4204 OG SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 28.53 ATOM 4206 O SER A 534 41.402 82.714 -19.617 1.00 28.85 ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4210 O GLY A 535 41.340 85.221 -18.504 1.00 30.59 ATOM 4210 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4213 CB VAL A 536 42.055 84.041 -16.516 1.00 31.98 ATOM 4213 CB VAL A 536 42.055 84.041 -16.516 1.00 31.98 ATOM 4215 CG2 VAL A 536 42.095 81.791 -13.439 1.00 32.31 ATOM 4215 CG2 VAL A 536 42.095 81.791 -13.439 1.00 31.89 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4220 CB GLU A 537 45.592 84.881 -14.495 1.00 33.97 ATOM 4221 CG GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4221 CG GLU A 537 47.534 84.273 -12.90 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4221 CG GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 39.01 ATOM 4224 OEZ GLU A 537 47.933 83.477 -11.663 1.00 39.91 ATOM 4224 OEZ GLU A 537 47.935 83.062 -10.899 1.00 39.11 ATOM 4224 OEZ GLU A 537 47.935 83.062 -10.899 1.00 39.11 ATOM 4227 N ASP A 538 47.172 86.190 -15.566 1.00 35.63 ATOM 4227 N ASP A 538 49.150 87.297 -19.456 1.00 35.99 ATOM 4229 CB ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297		ATOM	4202	CA	SER A	534	43.739	82.791 -20.153	1.00 27.99	Α
ATOM 4204 OG SER A 534 43.340 84.017 -22.215 1.00 31.07 ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 28.53 ATOM 4206 O SER A 534 41.402 82.714 -19.617 1.00 28.85 ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4210 O GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4210 O GLY A 535 42.518 84.592 -19.072 1.00 30.59 ATOM 4210 CA VAL A 536 42.038 83.680 -15.104 1.00 31.00 ATOM 4212 CA VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4215 CG2 VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4215 CG2 VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4216 C VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4217 O VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4220 CB GLU A 537 46.085 84.091 -13.333 1.00 36.13 ATOM 4221 CG GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4221 CG GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4221 CG GLU A 537 47.933 83.477 -11.663 1.00 39.01 ATOM 4224 OEZ GLU A 537 47.933 83.477 -11.663 1.00 39.01 ATOM 4224 OEZ GLU A 537 47.935 83.062 -10.899 1.00 39.11 ATOM 4224 OEZ GLU A 537 47.935 83.062 -10.899 1.00 39.11 ATOM 4227 N ASP A 538 47.127 86.190 -15.666 1.00 35.63 ATOM 4227 N ASP A 538 49.127 86.899 1.00 39.11 ATOM 4228 CA ASP A 538 49.130 86.371 -16.853 1.00 35.99 ATOM 4230 CG ASP A 538 49.235 88.387 -18.344 1.00 35.09 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456		ATOM	4203	CB	SER A	534	43.665	82.746 -21.682	1.00 29.27	Α
ATOM 4205 C SER A 534 42.446 83.369 -19.588 1.00 28.53 ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4210 O GLY A 535 41.340 85.221 -18.504 1.00 30.59 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4213 CB VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4215 CG2 VAL A 536 42.095 81.791 -13.439 1.00 32.31 ATOM 4216 C VAL A 536 42.095 81.791 -13.439 1.00 32.31 ATOM 4217 O VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4219 CA GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4210 CG GLU A 537 45.592 84.881 -14.495 1.00 33.29 ATOM 4220 CB GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4224 OE2 GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4226 O GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4227 N ASP A 538 47.127 86.199 -15.566 1.00 37.68 ATOM 4228 CA ASP A 538 47.127 86.199 -15.566 1.00 37.68 ATOM 4229 CB GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4220 CB GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4221 OG ASP A 538 47.127 86.199 -15.566 1.00 37.68 ATOM 4222 CD GLU A 537 47.935 83.062 -10.898 1.00 39.11 ATOM 4226 O GLU A 537 47.935 83.062 -10.898 1.00 39.11 ATOM 4227 N ASP A 538 47.127 86.199 -15.866 1.00 35.63 ATOM 4228 CA ASP A 538 49.139 83.079 -16.131 1.00 35.88 ATOM 4229 CB ASP A 538 49.139 83.079 -16.131 1.00 35.89 ATOM 4230 CG ASP A 538 49.130 88.037 -16.655 1.00 39.06 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4234 O ASP A 538 49.150 87.297 -19.456 1.00 39.01 ATOM 4236 CA SER A 539 50.056 81.969 -15.443 1.00 32.75 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 33.75 ATOM 4230 CS ER A 539 50.056 81.969 -15.443 1.00 33.71 ATOM 4230 C SER A 539 50.056 81.969 -15.		ATOM		OG	SER F	534	43.340	84.017 -22.215	1.00 31.07	Α
20 ATOM 4206 O SER A 534 41.402 82.714 -19.617 1.00 28.85 ATOM 4207 N GLY A 535 41.340 85.221 -18.504 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4210 O GLY A 535 40.349 85.496 -16.338 1.00 30.53 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.055 84.041 -16.516 1.00 31.98 ATOM 4214 CG1 VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4215 CG2 VAL A 536 42.038 83.680 -15.104 1.00 31.89 ATOM 4215 CG2 VAL A 536 42.095 81.791 -13.439 1.00 32.31 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 42210 CG GLU A 537 46.085 84.034 -13.313 1.00 36.13 ATOM 4221 CG GLU A 537 46.085 84.034 -13.313 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4224 O22 GB GLU A 537 47.933 83.477 -11.663 1.00 39.08 ATOM 4224 O22 GLU A 537 47.935 83.062 -10.898 1.00 39.11 ATOM 4225 C GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4225 C GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4226 CB GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4227 N ASPA 538 48.183 86.371 -16.853 1.00 35.89 ATOM 4228 CA ASPA 538 48.183 86.371 -16.853 1.00 35.99 ATOM 4229 CB ASP A 538 48.183 86.371 -16.853 1.00 35.99 ATOM 4229 CB ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4228 CA ASPA 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4229 CB ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4233 CB ASPA 538 49.235 88.037 -18.452 1.00 35.09 ATOM 4230 CG ASPA 538 49.235 88.037 -18.452 1.00 35.09 ATOM 4231 OD1 ASPA 538 49.235 88.037 -18.452 1.00 35.09 ATOM 4230 CG ASPA 538 49.235 88.037 -18.452 1.00 35.09 ATOM 4231 OD1 ASPA 538 49.235 88.037 -18.452 1.00 35.01 ATOM 4234 O ASPA 538 49.235 88.037 -18.452 1.00 35.01 ATOM 4234 O ASPA 538 49.235 88.037 -18.452 1.00 35.01 ATOM 4234 O ASPA 538 49.235 88.037 -18.452 1.00 35.01 ATOM 4234 O ASPA 538 49.235 88.037 -18.45			4205	С	SER F	534	42.446	83.369 -19.588	1.00 28.53	А
ATOM 4207 N GLY A 535 42.518 84.592 -19.072 1.00 29.09 ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4209 C GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4210 O GLY A 535 40.349 85.496 -16.338 1.00 30.53 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4214 CG1 VAL A 536 42.095 81.791 -13.439 1.00 31.89 ATOM 4215 CG2 VAL A 536 42.095 81.791 -13.439 1.00 31.89 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4210 CG GLU A 537 46.085 84.034 -13.313 1.00 36.13 35 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4223 OE1 GLU A 537 47.933 83.477 -11.663 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.933 83.477 -11.663 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4224 OE2 GLU A 537 47.086 83.959 -16.131 1.00 35.88 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.88 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4229 CB ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4220 CB ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4223 OC3 ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4223 OC3 ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4230 CG ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4233 C ASP A 538 49.135 88.037 -18.452 1.00 35.09 ATOM 4234 O ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4235 C ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4230 CG ASP A 538 49.135 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4233 C ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4234 O ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4235 C ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4236 C ASP A 538 50.036 81.	20			0				82.714 -19.617	1.00 28.85	Α
ATOM 4208 CA GLY A 535 41.340 85.221 -18.504 1.00 29.80 ATOM 4210 O GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4210 O GLY A 535 40.349 85.496 -16.338 1.00 30.59 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4214 CG1 VAL A 536 42.095 81.791 -13.439 1.00 31.89 ATOM 4215 CG2 VAL A 536 40.997 81.459 -15.658 1.00 31.94 30 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4219 CA GLU A 537 46.085 84.034 -13.313 1.00 36.13 35 ATOM 4221 CG GLU A 537 46.085 84.034 -13.313 1.00 36.13 36 ATOM 4222 CD GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4223 OE1 GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4224 OE2 GLU A 537 47.933 83.477 -11.663 1.00 39.08 ATOM 4226 O GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4227 N ASP A 538 48.183 86.371 -16.853 1.00 35.63 40 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.63 40 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.63 ATOM 4228 CCA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4220 CB ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4223 OE1 GASP A 538 49.235 88.037 -18.452 1.00 39.01 45 ATOM 4231 OD1 ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4232 OE2 ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4232 OE2 ASP A 538 49.235 88.037 -18.452 1.00 35.09 ATOM 4231 OD1 ASP A 538 49.235 88.037 -18.452 1.00 35.01 ATOM 4232 OE2 ASP A 538 49.235 88.037 -18.452 1.00 35.01 ATOM 4234 O ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4237 CB SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4230 C SER A 539 50.663 83.024 -14.689 1.00 32.02									1.00 29.09	А
ATOM 4209 C GLY A 535 41.207 84.931 -17.019 1.00 30.59 ATOM 4210 O GLY A 535 40.349 85.496 -16.338 1.00 30.53 25 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4214 CGI VAL A 536 42.035 81.791 -13.439 1.00 31.89 ATOM 4215 CG2 VAL A 536 40.997 81.459 -15.668 1.00 31.94 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.080 84.894 -13.307 1.00 32.83 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4218 N GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4220 CB GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4221 CG GLU A 537 47.933 83.477 -11.663 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4224 OE2 GLU A 537 47.933 83.477 -11.663 1.00 39.08 ATOM 4225 C GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4226 O GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4229 CB ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4220 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4220 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4221 CG ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4223 OCI GLU A 537 47.086 83.959 -16.131 1.00 35.88 ATOM 4224 OC2 ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4226 CA ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4231 ODI ASP A 538 49.255 88.037 -18.452 1.00 39.01 45 ATOM 4231 ODI ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4232 OD2 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4231 ODI ASP A 538 49.150 87.297 -19.456 1.00 39.05 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4230 CG ASP A 538 49.150 87.297 -19.456 1.00 35.09 ATOM 4231 ODI ASP A 538 50.034 88.938 -16.154 1.00 35.09 ATOM 4233 C ASP A 538 50.034 88.938 -16.154 1.00 35.01 ATOM 4230 C ASP A 538 50.056 81.969 -15.443 1.00 32.93										А
ATOM 4210 O GLY A 535										А
25 ATOM 4211 N VAL A 536 42.055 84.041 -16.516 1.00 31.00 ATOM 4212 CA VAL A 536 42.038 83.680 -15.104 1.00 31.98 ATOM 4213 CB VAL A 536 42.035 81.791 -13.439 1.00 32.31 ATOM 4214 CG1 VAL A 536 42.035 81.791 -13.439 1.00 31.89 ATOM 4215 CG2 VAL A 536 42.035 81.791 -13.439 1.00 31.89 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.080 84.894 -13.307 1.00 32.38 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4219 CA GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4220 CB GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4223 OE1 GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.08 ATOM 4226 O GLU A 537 47.035 83.062 -10.898 1.00 35.63 ATOM 4227 N ASP A 538 47.127 86.190 -15.866 1.00 35.97 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4228 CA ASP A 538 48.184 81.83 86.371 -16.853 1.00 35.97 ATOM 4230 CG ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4230 CG ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4230 CG ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4234 OD2 ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4235 N SER A 539 49.835 84.046 -15.603 1.00 32.93 ATOM 4235 N SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.663 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.66										А
ATOM 4212 CA VAL A 536	25									А
ATOM 4213 CB VAL A 536										А
ATOM 4214 CG1 VAL A 536										А
ATOM 4215 CG2 VAL A 536										A
30 ATOM 4216 C VAL A 536 43.218 84.343 -14.400 1.00 32.83 ATOM 4217 O VAL A 536 43.080 84.894 -13.307 1.00 32.38 ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4220 CB GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4220 CB GLU A 537 46.085 84.034 -13.313 1.00 36.13 35 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.01 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 <										A
ATOM 4217 O VAL A 536	30									A
ATOM 4218 N GLU A 537 44.378 84.295 -15.045 1.00 33.97 ATOM 4219 CA GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4220 CB GLU A 537 46.085 84.034 -13.313 1.00 36.13 35 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4223 OE1 GLU A 537 49.149 83.273 -11.450 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4225 C GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.63 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4232 OD2 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4233 C ASP A 538 49.150 87.297 -19.456 1.00 39.05 ATOM 4234 O ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4236 CA SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 32.75 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31	00									A
ATOM 4219 CA GLU A 537 45.592 84.881 -14.495 1.00 35.29 ATOM 4220 CB GLU A 537 46.085 84.034 -13.313 1.00 36.13 35 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4223 OE1 GLU A 537 47.035 83.062 -10.898 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4225 C GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.63 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.183 86.371 -16.853 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 45 ATOM 4231 OD1 ASP A 538 49.235 88.037 -18.452 1.00 39.65 ATOM 4232 OD2 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4233 C ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4234 O ASP A 538 49.477 85.981 -16.154 1.00 40.23 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 35.09 ATOM 4236 CA SER A 539 50.036 84.186 -15.603 1.00 32.93 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31										A
ATOM 4220 CB GLU A 537										A
35 ATOM 4221 CG GLU A 537 47.534 84.273 -12.900 1.00 37.68 47.534 ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4223 OE1 GLU A 537 49.149 83.273 -11.450 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4225 C GLU A 537 47.086 83.959 -16.131 1.00 35.63 40 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4229 CB ASP A 538 48.133 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 45 ATOM 4231 OD1										A
ATOM 4222 CD GLU A 537 47.933 83.477 -11.663 1.00 38.87 ATOM 4223 OE1 GLU A 537 49.149 83.273 -11.450 1.00 39.08 ATOM 4224 OE2 GLU A 537 47.035 83.062 -10.898 1.00 39.11 ATOM 4225 C GLU A 537 46.676 84.973 -15.566 1.00 35.63 40 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.88 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 45 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4232 OD2 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4233 C ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4234 O ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 53.321 83.848 -16.184 1.00 32.02	35									A
ATOM 4223 OE1 GLU A 537	55				-					A
ATOM 4224 OE2 GLU A 537										A
ATOM 4225 C GLU A 537 46.676 84.973 -15.566 1.00 35.63 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.88 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4232 OD2 ASP A 538 50.094 88.938 -18.344 1.00 40.23 ATOM 4233 C ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4234 O ASP A 538 50.132 86.812 -15.524 1.00 35.01 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 53.321 83.848 -16.184 1.00 32.02										A
40 ATOM 4226 O GLU A 537 47.086 83.959 -16.131 1.00 35.88 ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 45 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4232 OD2 ASP A 538 50.094 88.938 -18.344 1.00 40.23 ATOM 4233 C ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4234 O ASP A 538 50.132 86.812 -15.524 1.00										A
ATOM 4227 N ASP A 538 47.127 86.190 -15.860 1.00 35.94 ATOM 4228 CA ASP A 538 48.183 86.371 -16.853 1.00 35.97 ATOM 4229 CB ASP A 538 48.244 87.830 -17.318 1.00 37.57 ATOM 4230 CG ASP A 538 49.235 88.037 -18.452 1.00 39.01 ATOM 4231 OD1 ASP A 538 49.150 87.297 -19.456 1.00 39.65 ATOM 4232 OD2 ASP A 538 50.094 88.938 -18.344 1.00 40.23 ATOM 4233 C ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4234 O ASP A 538 50.132 86.812 -15.524 1.00 35.01 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4236 CA SER A 539 51.026 84.186 -15.603 1.00 32.93 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02	40									A
ATOM 4228 CA ASP A 538	40									
ATOM 4229 CB ASP A 538										A
ATOM 4230 CG ASP A 538										A
45 ATOM 4231 OD1 ASP A 538										A
ATOM 4232 OD2 ASP A 538 50.094 88.938 -18.344 1.00 40.23 ATOM 4233 C ASP A 538 49.477 85.981 -16.154 1.00 35.09 ATOM 4234 O ASP A 538 50.132 86.812 -15.524 1.00 35.01 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4236 CA SER A 539 51.026 84.186 -15.603 1.00 32.93 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02	4 =									A
ATOM 4233 C ASP A 538	45									A
ATOM 4234 O ASP A 538 50.132 86.812 -15.524 1.00 35.01 ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4236 CA SER A 539 51.026 84.186 -15.603 1.00 32.93 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02										A
ATOM 4235 N SER A 539 49.835 84.705 -16.263 1.00 34.01 ATOM 4236 CA SER A 539 51.026 84.186 -15.603 1.00 32.93 ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02										A
50 ATOM 4236 CA SER A 539 51.026 84.186 -15.603 1.00 32.93 1.00 1.00 32.93 1.00 1.00 32.75 1.00 1.00 32.75 1.00 1.00 32.75 1.00 1.00 32.75 1.00 1.00 32.75 1.00 1.00 32.75 1.00 1.00 1.00 33.31 1.00 1.00 33.31 1.00 1.00 1.00 33.31 1.00 1										A
ATOM 4237 CB SER A 539 50.633 83.024 -14.689 1.00 32.75 ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02										A
ATOM 4238 OG SER A 539 50.056 81.969 -15.443 1.00 33.31 ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02	50									А
ATOM 4239 C SER A 539 52.145 83.722 -16.525 1.00 31.91 ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02		ATOM	4237	CB	SER A	539				Α
ATOM 4240 O SER A 539 53.321 83.848 -16.184 1.00 32.02		MOTA	4238	OG						А
		MOTA	4239	С	SER A	539	52.145	83.722 -16.525		А
FF 200 4041 W 200 2 540 51 700 02 172 17 602 1 00 20 71		MOTA	4240	0	SER A	539	53.321	83.848 -16.184		A
55 ATOM 4241 N ARG A 540 51.792 83.173 -17.683 1.00 30.71	55	ATOM	4241	N	ARG A	540	51.792	83.173 -17.683	1.00 30.71	A

					_		50.014		~ -	10 506	1 00	20 22	70
	ATOM	4242	CA			540	52.816			-18.596		29.23	A
	ATOM	4243	CB			540	52.187			-19.708		29.16	A
	ATOM	4244	CG			540	50.939			-20.335		27.91	A
_	ATOM	4245	CD			540	50.191			-21.111		26.65	A
5	ATOM	4246	NE			540	51.057			-22.049		23.55	A
	ATOM	4247	CZ			540	50.631			-23.182		23.62	A
	ATOM	4248		ARG			49.350			-23.520		21.80	A
	ATOM	4249		ARG			51.482			-23.983		22.12 28.47	A
10	ATOM	4250	C			540	53.686			-19.170			A
10	ATOM	4251	0			540	53.212			-19.490		28.48	A
	ATOM	4252	N			541	54.974			-19.278		26.89	A
	ATOM	4253	CA			541	55.951			-19.773		25.79	A
	ATOM	4254	СВ			541	57.370			-19.319		26.95	A
15	ATOM	4255	OG1			541	57.856			-20.142		28.25	A
15	MOTA	4256	CG2			541	57.362			-17.870		26.32	A
	MOTA	4257	С			541	55.969			-21.288		24.23	A
	MOTA	4258	0			541	55.591			-21.991		24.17	A
	MOTA	4259	N			542	56.411			-21.784		22.20	A
•	MOTA	4260	CA			542	56.523			-23.214		19.97	A
20	MOTA	4261	СВ			542	56.167			-23.609		20.43	A
	MOTA	4262	OG1			542	54.789			-23.320		19.24	A
	MOTA	4263	CG2			542	56.419			-25.098		19.35	A
	MOTA	4264	С			542	57.978			-23.581		19.20	Α
^ -	ATOM	4265	0			542	58.884			-22.889		18.80	A
25	MOTA	4266	N			543	58.207			-24.644		17.47	А
	MOTA	4267	CA			543	59.567			-25.097		17.03	A
	ATOM	4268	СВ			543	59.649			-26.023		16.71	A
	MOTA	4269	CG2			543	61.033			-26.666		16.10	A
•	MOTA	4270		ILE			59.335			-25.215		16.14	A
30	MOTA	4271		ILE			59.378			-26.021		15.87	A
	MOTA	4272	С			543	59.899			-25.869		17.36	A
	MOTA	4273	0			543	59.317			-26.923		16.63	A
	MOTA	4274	N			544	60.808			-25.319		17.34	A
	MOTA	4275	CA			544	61.189			-25.935		17.68	Α
35	MOTA	4276	СВ			544	61.452			-24.854		18.33	A
	MOTA	4277	CG2				61.827			-25.504		18.51	A
	MOTA	4278		ILE			60.192			-24.000		19.26	A
	MOTA	4279		ILE			60.307			-22.934		21.06	A
4.0	MOTA	4280	С			544	62.412			-26.832		17.90	A
4 0	ATOM	4281	0			544	63.518					17.14	Α
	MOTA	4282	N			545	62.191			-28.129		17.81	Α
	MOTA	4283	CA	LEU			63.253			-29.118		18.43	A
	MOTA	4284	CB			545	62.913			-30.120		17.98	A
	MOTA	4285	CG			545	62.603			-29.530		17.86	A
45	MOTA	4286		LEU			62.153			-30.640		17.14	A
	MOTA	4287	CD2	LEU			63.837			-28.819		17.14	A
	MOTA	4288	С	LEU			63.412			-29.847		19.23	А
	MOTA	4289	0			545	62.471			-29.926		18.84	A
	ATOM	4290	N			546	64.607			-30.372		19.77	А
50	ATOM	4291	CA	GLY	Α	546	64.851	90.7	66	-31.087	1.00	20.96	А
	ATOM	4292	С	GLY	A	546	66.276		48	-31.598		21.61	А
	ATOM	4293	0	GLY	Α	546	67.199	90.3	68	-30.949	1.00	20.57	А
	ATOM	4294	N	GLU	Α	547	66.456	91.4	63	-32.761		23.26	A
	ATOM	4295	CA	GLU	Α	547	67.780	91.5	99	-33.361		25.04	А
55	ATOM	4296	СВ	GLU	Α	547	67.702	92.4	59	-34.624	1.00	27.57	А

	ATOM	4297	CG	GLU	Δ	547	66.673	92.001	-35.642	1.00 31.94	А
	ATOM	4298	CD	GLU			66.538		-36.800	1.00 34.18	A
	MOTA	4299		GLU			67.521		-37.558	1.00 35.72	Α
	ATOM	4300		GLU			65.452		-36.946	1.00 35.67	А
5	ATOM	4301	C	GLU			68.771		-32.397	1.00 24.63	Α
J	ATOM	4302	Ö	GLU			69.950		-32.372	1.00 24.67	Α
	ATOM	4303	N	ASP			68.286		-31.605	1.00 23.96	А
	ATOM	4304	CA	ASP			69.138		-30.660	1.00 23.90	А
	ATOM	4305	СВ	ASP			68.716		-30.582	1.00 24.37	А
10	ATOM	4306	CG	ASP			68.902		-31.894	1.00 25.10	А
10	ATOM	4307		ASP			70.041		-32.403	1.00 25.66	А
	ATOM	4308		ASP			67.910		-32.417	1.00 26.21	A
	ATOM	4309	C	ASP			69.166		-29.250	1.00 23.40	A
	ATOM	4310	0	ASP			69.753		-28.349	1.00 23.41	А
15	ATOM	4311	N			549	68.556		-29.046	1.00 22.05	Α
13	ATOM	4311	CA			549	68.546		-27.707	1.00 21.36	A
	ATOM	4312	CB			549	67.220		-26.966	1.00 21.60	A
	ATOM	4313	CG2	ILE			66.031		-27.727	1.00 21.55	A
	ATOM	4315	CG2	ILE			67.244		-25.545	1.00 23.19	A
20	ATOM	4315	CD1			549	68.321		-24.664	1.00 24.78	A
20		4317	CDI			549	68.766		-27.654	1.00 20.15	A
	MOTA	4317	0			549	69.594		-26.883	1.00 19.89	A
	ATOM	4319	N			550	68.038		-28.477	1.00 19.54	A
	ATOM ATOM	4319	CA			550	68.156		-28.483	1.00 19.00	A
25	ATOM	4320	CB			550	67.484		-27.231	1.00 19.06	A
25		4321	CG			550	67.584		-27.011	1.00 13.00	A
	ATOM	4322		LEU			69.034		-26.760	1.00 18.02	A
	ATOM ATOM	4323	CD1				66.722		-25.827	1.00 17.92	A
	ATOM	4325	CDZ			550	67.488		-29.729	1.00 18.70	A
30	ATOM	4325	0			550	66.286		-29.930	1.00 19.34	A
30		4327	N			551	68.260		-30.582	1.00 18.21	A
	ATOM ATOM	4327	CD			551	69.734		-30.610	1.00 18.48	A
	ATOM	4329	CA			551	67.687		-31.804	1.00 17.94	A
	ATOM	4329	CB			551	68.907		-32.709	1.00 18.38	A
35		4330	CG			551	69.995		-31.741	1.00 19.26	A
33	MOTA	4331	C			551	66.886		-31.679	1.00 17.64	A
	MOTA	4332	0			551	65.933		-32.431	1.00 18.20	A
	ATOM ATOM	4333	N			552	67.253		-30.743	1.00 16.28	A
	ATOM	4334	CA			552	66.539		-30.604	1.00 15.64	A
40	ATOM	4333				552	67.260		-31.393	1.00 15.46	A
40		4337	OG			552	68.562		-30.881	1.00 16.20	A
	ATOM ATOM	4337	C			552	66.361		-29.164	1.00 14.77	A
		4339	0			552	66.983		-28.246	1.00 14.68	A
	ATOM ATOM	4339	N			553	65.509		-28.988	1.00 14.88	A
45	ATOM	4340	CA			553	65.204		-27.672	1.00 14.72	A
40	ATOM	4341	CB			553	63.999		-27.082	1.00 15.55	A
	ATOM	4342	CG			553	63.458		-25.780	1.00 16.12	A
		4343	CD			553	64.486		-24.659	1.00 16.06	A
	ATOM					553	64.815		-24.273	1.00 17.14	A
50	ATOM	4345	CE N2				65.918		-23.265	1.00 17.14	A
50	ATOM	4346	NZ			553 553	64.898		-23.203	1.00 15.05	A
	MOTA	4347	С						-28.602	1.00 13.66	A
	ATOM	4348	O N			553	64.156		-26.806	1.00 15.49	A
	MOTA	4349	N			554 554	65.473		-26.747	1.00 15.45	A
55	ATOM	4350	CA			554	65.231		-26.747	1.00 13.73	A
55	ATOM	4351	CB	нт2	А	554	66.446	10.133	~20.107	1.00 17.73	A

	ATOM	4352	CG	HIS	A 554	67.584	76.035 -27.152	1.00 19.69	Α
	ATOM	4353	CD2	HIS	A 554	68.188	76.955 -27.939	1.00 20.84	Α
	MOTA	4354	ND1	HIS	A 554	68.259	74.851 -27.359	1.00 21.35	Α
	MOTA	4355	CE1	HIS	A 554	69.231	75.047 -28.230	1.00 20.38	Α
5	ATOM	4356	NE2	HIS	A 554	69.211	76.316 -28.597	1.00 21.79	Α
	ATOM	4357	С	HIS	A 554	64.040	76.598 -25.851	1.00 15.45	A
	MOTA	4358	0	HIS	A 554	63.872	77.221 -24.802	1.00 15.13	Α
	MOTA	4359	N	VAL	A 555	.63.223	75.641 -26.280	1.00 14.33	Α
	ATOM	4360	CA	VAL	A 555	62.062	75.193 -25.523	1.00 14.09	А
10	MOTA	4361	CB	VAL	A 555	60.725	75.652 -26.153	1.00 13.60	Α
	MOTA	4362	CG1	VAL	A 555	60.610	77.170 -26.086	1.00 15.20	Α
	ATOM	4363	CG2	VAL	A 555	60.616	75.158 -27.584	1.00 13.42	Α
	ATOM	4364	С	VAL	A 555	62.110	73.670 -25.528	1.00 13.62	А
	MOTA	4365	0	VAL	A 555	62.595	73.061 -26.487	1.00 14.40	Α
15	MOTA	4366	N	VAL	A 556	61.606	73.058 -24.463	1.00 12.29	Α
	MOTA	4367	CA	VAL	A 556	61.618	71.606 -24.346	1.00 11.85	Α
	ATOM	4368	СВ	VAL	A 556	62.659	71.151 -23.288	1.00 11.87	A
	MOTA	4369	CG1	VAL	A 556	62.602	69.634 -23.110	1.00 10.24	Α
	MOTA	4370	CG2	VAL	A 556	64.056	71.590 -23.704	1.00 11.21	Α
20	ATOM	4371	С	VAL	A 556	60.259	71.052 -23.929	1.00 11.36	Α
	ATOM	4372	0	VAL	A 556	59.624	71.583 -23.022	1.00 10.98	А
	ATOM	4373	N	MET	A 557	59.819	69.985 -24.590	1.00 11.49	А
	MOTA	4374	CA	MET	A 557	58.553	69.343 -24.241	1.00 11.87	А
	MOTA	4375	СВ	MET	A 557	57.681	69.128 -25.486	1.00 11.62	Α
25	ATOM	4376	CG	MET	A 557	56.648	70.219 -25.752	1.00 12.29	A
	MOTA	4377	SD	MET	A 557	57.365	71.858 -25.911	1.00 12.86	А
	MOTA	4378	CE	MET	A 557	58.354	71.664 -27.421	1.00 12.75	А
	ATOM	4379	С	MET	A 557	58.805	67.992 -23.572	1.00 11.62	А
	ATOM	4380	0	MET	A 557	59.714	67.255 -23.958	1.00 11.99	А
30	MOTA	4381	N	HIS	A 558	58.002	67.675 -22.562	1.00 11.19	А
	MOTA	4382	CA	HIS	A 558	58.114	66.397 -21.864	1.00 10.78	А
	ATOM	4383	CB	HIS	A 558	58.316	66.610 -20.363	1.00 10.37	А
	ATOM	4384	CG	HIS	A 558	58.227	65.348 -19.558	1.00 11.12	Α
	ATOM	4385	CD2	HIS	A 558	58.984	64.226 -19.570	1.00 10.73	А
35	ATOM	4386	ND1	HIS	A 558	57.259	65.146 -18.596	1.00 10.46	А
	ATOM	4387	CE1	HIS	A 558	57.426	63.955 -18.051	1.00 10.44	Α
	MOTA	4388	NE2	HIS	A 558	58.466	63.377 -18.623	1.00 11.40	А
	ATOM	4389	С	HIS	A 558	56.828	65.611 -22.086	1.00 10.70	A
	ATOM	4390	0		A 558		66.191 -22.090	1.00 11.40	A
40	ATOM	4391	N	ASN	A 559	56.962	64.299 -22.280	1.00 9.85	A
	ATOM	4392	CA	ASN	A 559		63.413 -22.494	1.00 10.04	A
	ATOM	4393	CB	ASN	A 559	55.880	62.807 -23.902	1.00 10.29	А
	ATOM	4394	CG	ASN	A 559		61.692 -24.102	1.00 10.99	А
	ATOM	4395	OD1	ASN	A 559		61.738 -23.557	1.00 10.85	А
45	MOTA	4396	ND2	ASN	A 559		60.692 -24.901	1.00 11.25	A
	ATOM	4397	С	ASN	A 559		62.307 -21.439	1.00 9.59	Α
	ATOM	4398	0	ASN	A 559	56.575	61.332 -21.555	1.00 9.79	А
	ATOM	4399	N	THR	A 560		62.455 -20.409	1.00 9.86	A
	ATOM	4400	CA	THR	A 560	54.989	61.472 -19.331	1.00 10.97	A
50	ATOM	4401	СВ	THR	A 560	54.244	62.042 -18.102	1.00 11.06	A
	MOTA	4402	OG1	THR	A 560		61.255 -16.949	1.00 10.92	А
	ATOM	4403	CG2	THR	A 560	52.737	62.039 -18.336	1.00 10.12	A
	ATOM	4404	С	THR	A 560	54.391	60.111 -19.717	1.00 11.41	А
	ATOM	4405	0	THR	A 560	54.603	59.112 -19.017	1.00 11.04	А
55	ATOM	4406	N	LEU	A 561	53.667	60.069 -20.834	1.00 10.95	А

		ATOM	4407	CA	LEU	Α	561	53.043	58.828	-21.306	1.00	11.48	А
		MOTA	4408	CB	LEU	Α	561	51.918	59.153	-22.295	1.00	12.27	Α
		MOTA	4409	CG	LEU	Α	561	50.793		-21.747		12.97	A
		MOTA	4410	CD1	LEU	Α	561	49.728		-22.818		12.43	А
	5	ATOM	4411	CD2	LEU	A	561	50.176		-20.511		13.32	A
		ATOM	4412	С	LEU	Α	561	54.070	57.892	-21.957	1.00	11.68	Α
		MOTA	4413	0	LEU	Α	561	54.992	58.345	-22.641	1.00	11.40	A
		MOTA	4414	N	PRO	Α	562	53.912	56.569	-21.759	1.00	11.32	А
		MOTA	4415	CD	PRO	Α	562	52.919	55.940	-20.867	1.00	10.81	А
	10	MOTA	4416	CA	PRO	Α	562	54.824		-22.312	1.00	11.80	A
		MOTA	4417	CB	PRO	A	562	54.605	54.367	-21.389	1.00	10.79	А
		MOTA	4418	CG	PRO	Α	562	53.137		-21.113	1.00	10.79	A
		MOTA	4419	С	PRO	Α	562	54.689		-23.788		12.65	A
		MOTA	4420	0	PRO	A	562	54.855	54.029	-24.158	1.00	13.27	Α
	15	MOTA	4421	N	HIS	Α	563	54.382	56.176	-24.628	1.00	12.72	Α
		MOTA	4422	CA	HIS	Α	563	54.294	55.951	-26.066	1.00	13.06	А
		MOTA	4423	CB	HIS	A	563	52.900	55.442	-26.495	1.00	12.83	A
		MOTA	4424	CG	HIS	A	563	51.757	56.313	-26.069	1.00	13.57	A
		ATOM	4425	CD2	HIS	Α	563	51.235	57.434	-26.622	1.00	13.78	А
	20	MOTA	4426	ND1	HIS	Α	563	50.971		-24.972	1.00	13.58	А
}.		MOTA	4427	CE1	HIS	Α	563	50.013	56.930	-24.871	1.00	13.87	A
1		MOTA	4428	NE2	HIS	Α	563	50.151	57.796	-25.860	1.00	14.57	A
:		MOTA	4429	С	HIS	Α	563	54.628	57.248	-26.786	1.00	13.25	A
		MOTA	4430	0	HIS	Α	563	54.463	58.332	-26.225		13.58	А
	25	MOTA	4431	N	TRP	Α	564	55.133	57.142	-28.009	1.00	13.21	Α
		MOTA	4432	CA	TRP	Α	564	55.458	58.336	-28.772	1.00	13.90	А
		MOTA	4433	СВ	TRP	Α	564	55.932	57.978	-30.181	1.00	14.45	A
		MOTA	4434	CG	TRP	Α	564	57.363		-30.235	1.00	14.66	A
		ATOM	4435	CD2	TRP	А	564	58.487	58.433	-30.411		15.15	Α
	30	MOTA	4436	CE2	TRP	А	564	59.646	57.630	-30.351	1.00	15.51	A
		MOTA	4437	CE3	TRP	А	564	58.628	59.814	-30.613		15.70	A
		ATOM	4438	CD1	TRP	А	564	57.864	56.310	-30.081		15.38	A
		MOTA	4439	NE1	TRP	А	564	59.238		-30.148		15.68	A
		MOTA	4440	CZ2	TRP	А	564	60.934		-30.484		15.36	A
	35	MOTA	4441	CZ3	TRP			59.911		-30.747		15.81	A
		MOTA	4442		TRP			61.046		-30.682		16.52	Α
		MOTA	4443	С	TRP			54.190		-28.866		13.86	A
		MOTA	4444	0	TRP			53.104		-29.046		13.89	A
	4.0	MOTA	4445	N	ARG			54.317		-28.738		14.17	A
	40	MOTA	4446	CA	ARG			53.135		-28.821		14.31	A
		MOTA	4447	СВ	ARG			52.560		-27.419		14.39	A
		ATOM	4448	CG	ARG			51.352		-27.424		15.52	A
		MOTA	4449	CD	ARG			50.536		-26.128		15.96	A
	4-	ATOM	4450	NE	ARG			51.334		-24.940		15.97	A
	45	MOTA	4451	CZ	ARG			50.831		-23.796		15.92	A
		ATOM	4452		ARG			49.525		-23.685		15.90	A
		ATOM	4453		ARG			51.631		-22.762		14.90	A
		MOTA	4454	С	ARG			53.385		-29.525		14.40	A
	=-0	MOTA	4455	0	ARG			54.436		-29.361		13.99	A
	50	MOTA	4456	N	GLU			52.413		-30.339		14.96	A
		MOTA	4457	CA	GLU			52.463		-31.044		15.90	A
		ATOM	4458	СВ	GLU			52.236		-32.546		17.55	A
		MOTA	4459	CG	GLU			53.338		-33.277		18.99	A
		MOTA	4460	CD	GLU			53.140		-34.783		20.96	A
	55	MOTA	4461	OE1	GLU	A	566	52.003	63.171	-35.238	1.00	21.39	А

		ATOM	4462	OE2	GLU	Α	566	54.119	63.688	-35.507	1.00	21.79	А
		ATOM	4463	С	GLU			51.325	65.102	-30.456	1.00	16.15	А
		ATOM	4464	0	GLU			50.262	64.561	-30.137	1.00	16.46	Α
		ATOM	4465	N	GLN			51.555	66.397	-30.294	1.00	15.49	Α
	5	ATOM	4466	CA	GLN			50.547		-29.744	1.00	15.72	A
	•	ATOM	4467	CB	GLN			50.471		-28.216		17.10	А
		ATOM	4468	CG	GLN			49.471		-27.571		17.38	А
		ATOM	4469	CD	GLN			49.793		-26.119		18.82	A
			4470		GLN			49.683		-25.238		17.65	A
	10	ATOM			GLN			50.198		-25.868		19.30	A
	10	ATOM	4471									15.02	A
		ATOM	4472	C	GLN			50.944		-30.090		14.23	A
		MOTA	4473	0	GLN			52.130		-30.065			
		MOTA	4474	N	LEU			49.966		-30.429		14.97	A
		ATOM	4475	CA	LEU			50.278		-30.735		13.72	A
	15	MOTA	4476	CB	LEU			49.096		-31.410		15.18	A
		MOTA	4477	CG	LEU			48.672		-32.821		14.75	Α
		ATOM	4478	CD1	LEU	Α	568	47.656		-33.352		15.08	A
		ATOM	4479	CD2	LEU	Α	568	49.885	71.161	-33.742		15.38	A
		ATOM	4480	С	LEU	Α	568	50.585	71.616	-29.413	1.00	13.98	А
r b	20	ATOM	4481	0	LEU	Α	568	49.939	71.354	-28.398	1.00	12.88	Α
ji S		MOTA	4482	N	VAL	Α	569	51.589	72.484	-29.427	1.00	13.42	Α
Ĭ.		MOTA	4483	CA	VAL	Α	569	51.969	73.244	-28.246	1.00	14.61	A
		ATOM	4484	СВ	VAL			53.335	72.776	-27.681	1.00	14.13	A
		ATOM	4485		VAL			53.202	71.370	-27.095	1.00	14.34	Α
	25	ATOM	4486		VAL			54.389		-28.781		14.63	А
		ATOM	4487	C	VAL			52.070		-28.676		14.28	A
		ATOM	4488	Ö	VAL			52.362		-29.833	1.00	14.20	A
		ATOM	4489	N	ASP			51.804		-27.762		14.70	A
		ATOM	4490	CA	ASP			51.894		-28.107		15.22	А
•	30	ATOM	4491	CB	ASP			50.491		-28.263		18.14	A
	50	ATOM	4492	CG	ASP			49.738		-26.948		20.68	A
į								49.536		-26.288		23.52	A
		ATOM	4493		ASP			49.343		-26.577		23.31	A
		ATOM	4494		ASP					-27.075		14.70	A
	25	ATOM	4495	С	ASP			52.699				13.72	A
	35	ATOM	4496	0	ASP			52.799		-25.915			A
		ATOM	4497	N	PHE			53.304		-27.520		13.84	
		ATOM	4498	CA	PHE			54.096		-26.651		14.16	A
		ATOM	4499	CB	PHE			55.602		-26.833		13.63	A
	40	MOTA	4500	CG	PHE			56.069		-26.470		13.26	A
	4 0	MOTA	4501		PHE			56.017		-27.398		13.24	A
		MOTA	4502		PHE			56.576		-25.201		13.50	A
		MOTA	4503	CE1	PHE	Α	571	56.468		-27.066		13.34	А
		MOTA	4504	CE2	PHE	Α	571	57.027		-24.860		13.94	A
		ATOM	4505	CZ	PHE	Α	571	56.972		-25.797		13.21	A
	45	MOTA	4506	С	PHE	Α	571	53.815		-27.040	1.00	14.55	A
		ATOM	4507	0	PHE	A	571	53.459	81.502	-28.185	1.00	14.25	А
		ATOM	4508	N	TYR			53.973	82.141	-26.089	1.00	14.89	А
		ATOM	4509	CA	TYR			53.792		-26.376	1.00	15.36	А
		ATOM	4510	СВ	TYR			53.373		-25.122		16.02	А
	50	ATOM	4511	CG	TYR			51.938		-24.681		18.23	Α
		ATOM	4512		TYR			51.021		-25.468		18.10	А
		ATOM	4513		TYR			49.692		-25.072		19.65	A
		ATOM	4514		TYR			51.489		-23.479		19.53	A
		ATOM	4515		TYR			50.162		-23.075		20.24	A
	55	ATOM	4516	CZ	TYR			49.270		-23.876		20.05	A
	55	AIOM	4710	CZ	11K	Α.	312	37.210	03.074	23.070	1.00	20.00	

	ATOM	4517	ОН	TYR	Α	572	47.956	83.742	-23.482	1.00 20.96	Α
	ATOM	4518	С			572	55.149	84.084	-26.832	1.00 15.16	Α
	ATOM	4519	0			572	56.165	83.783	-26.206	1.00 15.39	Α
	ATOM	4520	N			573	55.166	84.857	-27.916	1.00 15.22	Α
5	ATOM	4521	CA	VAL			56.405	85.436	-28.439	1.00 14.74	Α
_	ATOM	4522	СВ			573	56.841	84.759	-29.763	1.00 15.15	Α
	ATOM	4523	CG1	VAL	Α	573	57.300	83.327	-29.493	1.00 14.52	A
	ATOM	4524	CG2				55.690	84.765	-30.754	1.00 14.39	Α
	ATOM	4525	С			573	56.213	86.938	-28.683	1.00 15.63	Α
10	ATOM	4526	0			573	55.102		-28.943	1.00 15.28	Α
	ATOM	4527	N	SER			57.298		-28.602	1.00 16.43	Α
	ATOM	4528	CA	SER			57.233	89.156	-28.783	1.00 17.10	А
	ATOM	4529	СВ	SER			58.410	89.824	-28.067	1.00 16.27	Α
	ATOM	4530	OG	SER			59.639		-28.675	1.00 15.14	A
15	ATOM	4531	C	SER			57.206		-30.241	1.00 18.36	Α
10	ATOM	4532	Ō			574	57.258		-30.525	1.00 18.70	Α
	ATOM	4533	N			575	57.138		-31.162	1.00 18.80	Α
	ATOM	4534	CA			575	57.088		-32.584	1.00 19.82	Α
	ATOM	4535	СВ			575	58.496		-33.166	1.00 20.11	Α
20	ATOM	4536	OG			575	58.438		-34.582	1.00 19.88	А
_0	ATOM	4537	C			575	56.345		-33.343	1.00 19.97	А
	ATOM	4538	0			575	56.423		-32.997	1.00 20.29	А
	ATOM	4539	N			576	55.601		-34.387	1.00 20.08	А
	ATOM	4540	CD			576	55.277		-34.809	1.00 20.22	А
25	ATOM	4541	CA			576	54.856		-35.179	1.00 19.56	A
20	ATOM	4542	CB			576	53.800		-35.866	1.00 20.22	А
	ATOM	4543	CG			576	54.552		-36.125	1.00 20.64	А
	ATOM	4544	С			576	55.785		-36.177	1.00 19.20	А
	ATOM	4545	0			576	55.448		-36.741	1.00 19.27	А
30	ATOM	4546	N			577	56.961		-36.380	1.00 18.89	А
50	ATOM	4547	CA			577	57.938		-37.321	1.00 18.98	А
	ATOM	4548	CB			577	58.699		-37.969	1.00 20.18	А
	ATOM	4549	CG			577	57.805		-38.658	1.00 21.35	A
	ATOM	4550		PHE			58.050		-38.554	1.00 22.43	A
35	ATOM	4551		PHE			56.711		-39.404	1.00 21.36	А
55	ATOM	4552		PHE			57.216		-39.183	1.00 23.04	А
	ATOM	4553		PHE			55.870		-40.038	1.00 22.22	А
	ATOM	4554	CZ			577	56.125		-39.925	1.00 22.87	A
	ATOM	4555	C			577	58.907		-36.643	1.00 18.67	А
40	ATOM	4556	Ô			577	60.089			1.00 18.03	А
40	ATOM	4557	N			578	58.387		-36.280	1.00 18.09	А
	ATOM	4558	CA			578	59.170		-35.607	1.00 18.08	А
	ATOM	4559	CB			578	58.705		-34.135	1.00 17.94	A
		4560		VAL			59.526		-33.435	1.00 17.87	A
45	ATOM ATOM	4561		VAL			58.832		-33.404	1.00 18.13	A
43			CGZ			578	59.023		-36.326	1.00 17.84	A
	ATOM	4562				578	57.937		-36.786	1.00 17.01	A
	ATOM	4563	0			579	60.123		-36.428	1.00 18.30	A
	ATOM	4564	N				60.123		-37.081	1.00 18.55	A
50	ATOM	4565 4566	CA			579 579	60.110		-38.353	1.00 10.33	A
50	ATOM	4566	CB			579 579	62.307		-38.069	1.00 13.70	A
	ATOM	4567	OG C			579 579	62.307		-36.110	1.00 22.42	A
	ATOM	4568	С			579	61.420		-35.218	1.00 17.61	A
	ATOM	4569	O N			579 580			-36.292	1.00 16.54	A
55	ATOM	4570	N			580	60.173		-36.292	1.00 16.12	A
55	ATOM	4571	CA	VAL	А	580	60.558	10.132	-33.423	1.00 10.12	V

	MOTA	4572	CB			580	59.304		-34.851	1.00 16.0	
	MOTA	4573		VAL			59.706		-33.825	1.00 15.8	
	MOTA	4574	CG2	VAL	Α	580	58.374		-34.231	1.00 14.5	
_	MOTA	4575	С			580	61.400		-36.148	1.00 16.4	
5	MOTA	4576	0	VAL	Α	580	61.194		-37.331	1.00 16.1	
	ATOM	4577	N	THR	Α	581	62.348		-35.416	1.00 16.8	
	MOTA	4578	CA	THR	Α	581	63.231	74.063	-35.926	1.00 17.8	
	MOTA	4579	CB	THR	A	581	64.600	74.630	-36.369	1.00 17.6	
	MOTA	4580	OG1	THR	Α	581	65.180	75.374	-35.289	1.00 17.5	9 A
10	MOTA	4581	CG2	THR	Α	581	64.450	75.535	-37.592	1.00 17.6	7 A
	MOTA	4582	С	THR	Α	581	63.491	73.086	-34.780	1.00 18.6	7 A
	ATOM	4583	0	THR	Α	581	63.366	73.458	-33.611	1.00 17.8	3 A
	ATOM	4584	N	ASP	Α	582	63.830	71.839	-35.105	1.00 19.4	2 A
	ATOM	4585	CA	ASP	Α	582	64.150	70.870	-34.063	1.00 20.8	3 A
15	ATOM	4586	СВ	ASP	Α	582	63.734	69.448	-34.475	1.00 20.6	6 A
	ATOM	4587	CG	ASP	Α	582	64.403	68.966	-35.751	1.00 20.6	5 A
	ATOM	4588	OD1	ASP			63.887	67.988	-36.337	1.00 21.0	9 A
	ATOM	4589	OD2				65.434	69.536	-36.164	1.00 18.9	A 0
	ATOM	4590	С	ASP			65.658	70.992	-33.842	1.00 22.1	0 A
20	ATOM	4591	0	ASP			66.294	71.843	-34.460	1.00 21.7	6 A
	ATOM	4592	N	LEU			66.252	70.173	-32.981	1.00 23.9	7 A
	ATOM	4593	CA	LEU			67.682	70.345	-32.759	1.00 25.5	3 A
	ATOM	4594	СВ	LEU	Α	583	68.141	69.642	-31.482	1.00 27.1	3 A
	ATOM	4595	CG			583	69.400	70.340	-30.953	1.00 27.2	1 A
25	ATOM	4596	CD1	LEU			69.045	71.761	-30.536	1.00 27.7	5 A
	ATOM	4597	CD2	LEU	Α	583	69.984	69.584	-29.789	1.00 28.8	9 A
	ATOM	4598	С	LEU	Α	583	68.566	69.923	-33.926	1.00 25.6	9 A
	ATOM	4599	0	LEU	Α	583	69.760	70.217	-33.934	1.00 26.0	3 A
	ATOM	4600	N	ALA	Α	584	67.987	69.238	-34.909	1.00 25.0	8 A
30	ATOM	4601	CA	ALA	Α	584	68.746	68.822	-36.085	1.00 24.3	1 A
	ATOM	4602	СВ	ALA	Α	584	68.185	67.525	-36.648	1.00 24.5	3 A
	ATOM	4603	С	ALA	Α	584	68.630	69.942	-37.114	1.00 24.0	
	ATOM	4604	0	ALA	Α	584	69.059	69.809	-38.263	1.00 23.0	
	ATOM	4605	N	ASN	A	585	68.039	71.049	-36.678	1.00 23.9	
35	ATOM	4606	CA	ASN	Α	585	67.838	72.221	-37.517	1.00 24.1	6 A
	MOTA	4607	CB	ASN	Α	585	69.160	72.666	-38.148	1.00 26.5	0 A
	ATOM	4608	CG	ASN	Α	585	69.451		-37.906	1.00 28.1	
	ATOM	4609	OD1	ASN	Α	585	68.570	74.986	-38.038	1.00 28.3	7 A
	ATOM	4610	ND2	ASN	Α	585	70.695		-37.555	1.00 29.9	
40	ATOM	4611	С	ASN	Α	585	66.805	71.987	-38.614	1.00 23.6	0 A
	ATOM	4612	0	ASN	Α	585	66.774	72.719	-39.604	1.00 23.4	
	ATOM	4613	N	ASN	Α	586	65.970	70.965	-38.451	1.00 21.9	
	ATOM	4614	CA	ASN	Α	586	64.931	70.690	-39.435	1.00 21.7	
	ATOM	4615	CB	ASN	Α	586	64.356	69.280	-39.281	1.00 22.2	7 A
45	ATOM	4616	CG	ASN	Α	586	65.392		-39.440	1.00 23.4	
	ATOM	4617	OD1	ASN	Α	586	66.173	68.203	-40.391	1.00 23.1	
	ATOM	4618	ND2	ASN	Α	586	65.393	67.244	-38.511	1.00 22.9	
	ATOM	4619	С	ASN	Α	586	63.797	71.674	-39.190	1.00 21.1	
	MOTA	4620	0	ASN	Α	586	63.369	71.861	-38.053	1.00 20.2	
50	ATOM	4621	N	PRO	Α	587	63.296	72.318	-40.250	1.00 20.9	
	ATOM	4622	CD	PRO	Α	587	63.704	72.279	-41.666	1.00 21.6	
	ATOM	4623	CA	PRO	Α	587	62.197		-40.042	1.00 20.3	
	ATOM	4624	CB			587	62.034	73.914	-41.417	1.00 21.2	
	ATOM	4625	CG	PRO	Α	587	62.488		-42.360	1.00 21.8	
55	ATOM	4626	С	PRO	Α	587	60.943	72.525	-39.583	1.00 19.8	9 A

	ATOM	4627	0	PRO	Д	587	60.727	71.366	-39.937	1.00 1	9.71	А
	ATOM	4628	N	VAL			60.132		-38.773	1.00 1		А
	ATOM	4629	CA	VAL			58.897		-38.258	1.00 1		Α
	ATOM	4630	CB	VAL			58.953		-36.721	1.00 1		Α
5	ATOM	4631		VAL			57.621		-36.202	1.00 1		А
•	ATOM	4632					60.079		-36.338	1.00 1		А
	ATOM	4633	С	VAL			57.777		-38.617	1.00 1	8.17	А
	ATOM	4634	Ō	VAL			57.871		-38.325	1.00 1	7.36	Α
	ATOM	4635	N	GLU			56.727		-39.259	1.00 1	8.10	Α
10	ATOM	4636	CA	GLU			55.623		-39.646	1.00 1	8.70	Α
	ATOM	4637	СВ	GLU			54.571	73.176	-40.441	1.00 2	0.53	Α
	ATOM	4638	CG	GLU			53.667	74.093	-41.248	1.00 2	4.87	А
	ATOM	4639	CD	GLU			52.450	73.389	-41.801	1.00 2	7.02	Α
	ATOM	4640	OE1				52.585	72.232	-42.254	1.00 2	8.61	Α
15	MOTA	4641	OE2	GLU			51.357	73.999	-41.792	1.00 2	8.42	Α
	ATOM	4642	С	GLU			54.978	74.556	-38.410	1.00 1	7.96	Α
	MOTA	4643	0	GLU			54.703	73.860	-37.434	1.00 1	6.94	Α
	MOTA	4644	N	ALA			54.733	75.861	-38.464	1.00 1	6.87	Α
	ATOM	4645	CA	ALA	Α	590	54.134	76.569	-37.342	1.00 1	6.73	Α
20	MOTA	4646	CB	ALA	Α	590	55.209	77.342	-36.589	1.00 1	7.08	Α
	ATOM	4647	С	ALA	Α	590	53.041	77.522	-37.805	1.00 1	6.62	Α
	MOTA	4648	0	ALA	Α	590	52.951	77.857	-38.985	1.00 1	6.45	Α
	MOTA	4649	N	GLN	Α	591	52.211	77.946	-36.860	1.00 1	6.54	A
	ATOM	4650	CA	GLN	A	591	51.120	78.876	-37.125	1.00 1	6.07	Α
25	ATOM	4651	CB	GLN	Α	591	49.766	78.159	-37.076	1.00 1	6.36	Α
	ATOM	4652	CG	GLN	Α	591	48.563	79.105	-37.142	1.00 1	5.76	Α
	ATOM	4653	CD	GLN	Α	591	47.238	78.402	-36.876	1.00 1		А
	MOTA	4654	OE1	GLN	Α	591	46.964	77.337	-37.430	1.00 1		А
	ATOM	4655	NE2	GLN	Α	591	46.407	79.003	-36.030	1.00 1		A
30	MOTA	4656	С	GLN			51.142		-36.038	1.00 1		A
	ATOM	4657	0	GLN			51.308		-34.857	1.00 1		A
	MOTA	4658	N	VAL			50.987		-36.429	1.00 1		A
	MOTA	4659	CA	VAL			50.959		-35.449	1.00 1		A
	MOTA	4660	CB	VAL			51.977		-35.785	1.00 1		Α
35	ATOM	4661	CG1	VAL			51.755		-34.869	1.00 1		A
	MOTA	4662	CG2	VAL			53.398		-35.599	1.00 1		A
	MOTA	4663	С	VAL			49.551		-35.412	1.00 1		A
	ATOM	4664	0	VAL			48.917		-36.450	1.00 1		A
40	MOTA	4665	N	SER			49.057		-34.205	1.00 1		A
40	MOTA		CA	SER						1.00 1		A
	MOTA	4667	CB	SER			46.768		-33.434	1.00 1		A
	MOTA	4668	OG	SER			46.591		-34.328	1.00 1		A
	ATOM	4669	C	SER			47.868		-33.003	1.00 1		A
4 =	ATOM	4670	0	SER			48.875		-32.296	1.00 1 1.00 1		A
45	ATOM	4671	N	PRO			46.864		-32.931			A
	ATOM	4672	CD	PRO			45.738		-33.863	1.00 l 1.00 l		A A
	ATOM	4673	CA	PRO			46.941 45.831		-31.983 -32.453	1.00 1		A
	ATOM	4674	CB	PRO					-32.433	1.00 1		A
EΩ	ATOM	4675	CG	PRO			45.607		-30.561	1.00 1		A
50	ATOM	4676	С	PRO			46.676 46.239		-30.361	1.00 1		A
	MOTA	4677	O N	PRO VAL			46.239		-29.587	1.00 1		A
	ATOM	4678	N CA	VAL			46.933		-28.199	1.00 1		A
	ATOM	4679		VAL			47.782		-27.241	1.00 1		A
55	ATOM	4680 4681	CB CG1	VAL			47.782		-25.792	1.00 1		A
55	MOTA	4001	CGI	ΛYΓ	14	J J J	41.240	07.000	23.172	1.00 1	0.20	

	MOTA	4682	CG2	VAL			49.071	86.551 -2		1.00		Α
	ATOM	4683	С	VAL			45.382	87.572 -2		1.00		Α
	MOTA	4684	0	VAL			45.386	88.794 -2		1.00		Α
	MOTA	4685	N			596	44.277	86.838 -2		1.00		A
5	MOTA	4686	CA			596	42.979	87.441 -2		1.00		A
	MOTA	4687	CB			596	41.890	86.779 -2		1.00		A
	ATOM	4688	CG	TRP	А	596	42.053	86.944 -2		1.00		A
	MOTA	4689		TRP			41.740	88.111 -3		1.00		A
	ATOM	4690	CE2	TRP	Α	596	42.029	87.810 -3		1.00		A
10	MOTA	4691		TRP			41.243	89.383 -3		1.00		Α
	ATOM	4692	CD1	TRP	Α	596	42.509	86.010 -3		1.00		A
	ATOM	4693		TRP			42.494	86.521 -3		1.00		A
	MOTA	4694	CZ2	TRP	Α	596	41.837	88.734 -3		1.00		A
	ATOM	4695	CZ3	TRP	Α	596	41.050	90.305 -3		1.00		А
15	ATOM	4696	CH2	TRP	Α	596	41.348	89.974 -3		1.00		A
	ATOM	4697	С	TRP	Α	596	42.569	87.329 -2		1.00		A
	MOTA	4698	0	TRP	Α	596	42.689	86.267 -2	25.466	1.00		А
	MOTA	4699	N			597	42.084	88.434 -2		1.00		A
	MOTA	4700	CA	SER	Α	597	41.620	88.451 -2	24.137	1.00		А
20	ATOM	4701	CB	SER	Α	597	42.561	89.280 -2	23.261	1.00		Α
	MOTA	4702	OG	SER	Α	597	42.699	90.589 -2	23.774	1.00		A
	ATOM	4703	С	SER	Α	597	40.221	89.055 -2	24.127	1.00		A
	MOTA	4704	0	SER	Α	597	39.973	90.082 -2		1.00		A
	MOTA	4705	N	TRP	Α	598	39.306	88.411 -2	23.414	1.00		A
25	MOTA	4706	CA	TRP	Α	598	37.934	88.888 -2	23.343	1.00		A
	ATOM	4707	CB	TRP	Α	598	36.967	87.704 -2	23.289	1.00		А
	MOTA	4708	CG	TRP	Α	598	36.940	86.928 -2	24.570	1.00		А
	MOTA	4709	CD2	TRP	Α	598	35.925	86.976 -2		1.00		А
	MOTA	4710	CE2	TRP	Α	598	36.334	86.122 -2		1.00		А
30	ATOM	4711	CE3	TRP	Α	598	34.708	87.662 -2			19.08	A
	MOTA	4712	CD1	TRP	Α	598	37.898	86.070 -2	25.033		19.36	А
	ATOM	4713	NE1	TRP	Α	598	37.540	85.581 -2	26.269		18.19	А
	ATOM	4714	CZ2	TRP	Α	598	35.569	85.934 -2	27.782	1.00		А
	ATOM	4715	CZ3	TRP	Α	598	33.947	87.475 -2	26.849		18.32	A
35	MOTA	4716	CH2	TRP	Α	598	34.382	86.617 -2	27.876		18.60	А
	MOTA	4717	С	TRP	Α	598	37.718	89.802 -2	22.149		25.15	А
	MOTA	4718	0	TRP	Α	598	38.204	89.536 -2		1.00		Α
	MOTA	4719	N	HIS	Α	599	36.982	90.883 -2			27.74	Α
	ATOM	4720	CA			599	36.728	91.848 -2			30.86	Α
40	ATOM	4721	CB	HIS	Α	599	37.605	93.081 -2		1.00		A
	ATOM	4722	CG			599	39.068	92.770 -2			34.54	A
	ATOM	4723	CD2	HIS	Α	599	39.934	92.763 -2			35.10	A
	ATOM	4724	ND1	HIS	Α	599	39.793	92.372 -			35.25	A
	ATOM	4725	CE1	HIS	Α	599	41.042	92.135 -			35.53	А
45	ATOM	4726	NE2	HIS	Α	599	41.154	92.364 -			35.52	A
	ATOM	4727	С	HIS	Α	599	35.271	92.268 -			32.18	A
	ATOM	4728	0	HIS	Α	599	34.606	92.441 -			31.64	Α
	MOTA	4729	N	HIS	Α	600	34.779	92.420 -	20.019		34.30	A
	MOTA	4730	CA	HIS	Α	600	33.407	92.846 -	19.803		36.52	Α
50	MOTA	4731	СВ	HIS	A	600	32.895	92.352 -			38.40	Α
	MOTA	4732	CG	HIS	Α	600	31.437	92.609 -			40.80	А
	ATOM	4733	CD2	HIS	Α	600	30.432	91.782 -			41.76	А
	MOTA	4734		HIS			30.868	93.855 -			41.71	A
	ATOM	4735		HIS			29.575	93.784 -	18.120		42.34	A
55	MOTA	4736		HIS			29.285	92.537 -	17.794	1.00	42.76	Α

		MOTA	4737	С	HIS	Α	600	33.452	94.366	-19.820	1.00 36.	92 A
		ATOM	4738	0	HIS	Α	600	33.792	94.996	-18.820	1.00 37.	27 A
		ATOM	4739	N	ASP			33.128	94.948	-20.969	1.00 37.	29 A
		ATOM	4740	CA	ASP			33.150	96.395	-21.125	1.00 37.	
	5	ATOM	4741	СВ	ASP			32.959		-22.597	1.00 38.	
	9	ATOM	4742	CG	ASP			33.355		-22.895	1.00 38.	
								32.854		-22.211	1.00 38.	
		ATOM	4743		ASP							
		ATOM	4744		ASP			34.167		-23.819	1.00 39.	
	40	MOTA	4745	С	ASP			32.062		-20.280	1.00 38.	
	10	MOTA	4746	0	ASP			30.881		-20.619	1.00 37.	
		MOTA	4747	N	THR			32.474		-19.181	1.00 38.	
		ATOM	4748	CA	THR			31.548		-18.278	1.00 39.	
		MOTA	4749	CB	THR	Α	602	32.284	98.918	-17.040	1.00 39.	91 A
		ATOM	4750	OG1	THR	Α	602	32.925	97.847	-16,337	1.00 41.	22 A
	15	ATOM	4751	CG2	THR	Α	602	31.302	99.616	-16.103	1.00 40.	79 A
		ATOM	4752	С	THR	Α	602	30.826	99.510	-18.965	1.00 38.	24 A
		ATOM	4753	0	THR	Α	602	29.726	99.887	-18.565	1.00 38.	57 A
		ATOM	4754	N	LEU				100.063	-20.001	1.00 37.	19 A
4 1=4 ;		ATOM	4755	CA	LEU					-20.733	1.00 36.	14 A
	20	ATOM	4756	СВ	LEU					-21.408	1.00 37.	
١ <u>.</u>		ATOM	4757	CG	LEU					-20.508	1.00 38.	
٠Ū		ATOM	4758		LEU					-19.607	1.00 38.	
		ATOM	4759		LEU					-19.677	1.00 38.	
			4760	CDZ	LEU					-21.780	1.00 34.	
Ü	25	ATOM								-21.739	1.00 34.	
12	23	ATOM	4761	0	LEU						1.00 34.	
:=		ATOM	4762	N	THR			30.255		-22.717		
ijī.		ATOM	4763	CA	THR			29.364		-23.778	1.00 30.	
3)-		MOTA	4764	СВ	THR			30.162		-25.002	1.00 30.	
	20	ATOM	4765	OG1	THR			30.970		-24.632	1.00 30.	
	30	MOTA	4766	CG2	THR					-25.521	1.00 30.	
		ATOM	4767	С	THR			28.459		-23.329	1.00 29.	
jal.		ATOM	4768	0	THR			27.567		-24.065	1.00 28.	
		MOTA	4769	N	LYS			28.693		-22.121	1.00 28.	
1,000		ATOM	4770	CA	LYS	Α	605	27.897		-21.582	1.00 27.	
į.	35	ATOM	4771	CB	LYS	Α	605	26.457		-21.341	1.00 28.	11 A
		ATOM	4772	CG	LYS	Α	605	26.335	98.324	-20.344	1.00 28.	
		ATOM	4773	CD	LYS	Α	605	26.807	97.904	-18.959	1.00 29.	48 A
		MOTA	4774	CE	LYS	A	605	26.707	99.058	-17.972	1.00 29.	77 A
		ATOM	4775	NZ	LYS	Α	605	27.095	98.651	-16.595	1.00 30.	78 A
	40	ATOM	4776	C	LYS	Α	605	27.898	95.510	-22.511	1.00 27.	31 A
		MOTA	4777	0	LYS	Α	605	26.866	94.871	-22.710	1.00 26.	97 A
		ATOM	4778	N	THR			29.058		-23.085	1.00 26.	32 A
		MOTA	4779	CA	THR			29.202		-23.980	1.00 25.	
		ATOM	4780	СВ	THR			29.343		-25.457	1.00 26.	
	45	ATOM	4781		THR			30.502		-25.602	1.00 26.	
	10	ATOM	4782		THR			28.109		-25.912	1.00 26.	
		ATOM	4783	C	THR			30.457		-23.604	1.00 24.	
								31.376		-23.004	1.00 24.	
		MOTA	4784	0	THR							
	EΟ	ATOM	4785	N	ILE			30.484		-23.944	1.00 24.	
	50	MOTA	4786	CA	ILE			31.644		-23.664	1.00 22.	
		ATOM	4787	CB	ILE			31.224		-23.069	1.00 22.	
		ATOM	4788		ILE			32.460		-22.758	1.00 22.	
		MOTA	4789		ILE			30.404		-21.794	1.00 22.	
		MOTA	4790		ILE			29.720		-21.269	1.00 22.	
	55	MOTA	4791	С	ILE	A	607	32.333	90.954	-25.007	1.00 22.	58 A

												-
	ATOM	4792	0	ILE			31.809		-25.876	1.00		A
	ATOM	4793	N	HIS			33.502		-25.186	1.00		A
	ATOM	4794	CA	HIS	Α	608	34.219		-26.449	1.00		A
	MOTA	4795	CB	HIS	Α	608	33.964		-27.321		24.32	A
5	MOTA	4796	CG	HIS	Α	608	34.488		-26.738		26.13	Α
	MOTA	4797	CD2	HIS	Α	608	35.450		-27.172	1.00		Α
	ATOM	4798	ND1	HIS	Α	608	34.011		-25.560	1.00		А
	ATOM	4799	CE1	HIS	Α	608	34.656	95.597	-25.293	1.00	27.16	А
	ATOM	4800		HIS			35.535	95.811	-26.256	1.00	28.09	А
10	ATOM	4801	С	HIS			35.718	91.225	-26.273	1.00	22.57	А
	ATOM	4802	0	HIS			36.291	91.545	-25.228	1.00	23.04	A
	ATOM	4803	N			609	36.378		-27.308	1.00	22.03	А
	ATOM	4804	CD			609	35.781		-28.530		21.85	А
	ATOM	4805	CA			609	37.814		-27.261		21.59	А
15		4806	CB			609	37.950		-28.147		21.45	А
13	ATOM					609	36.992		-29.258		21.74	A
	ATOM	4807	CG						-27.732		21.64	A
	ATOM	4808	C			609	38.708		-28.653		21.84	A
	ATOM	4809	0			609	38.364				21.61	A
•	MOTA	4810	N			610	39.859		-27.082			
20	MOTA	4811	CA			610	40.851	•	-27.434		22.66	A
	MOTA	4812	CB			610	41.132		-26.256		24.57	A
	MOTA	4813	CG			610	39.950		-25.830		28.22	A
	MOTA	4814	CD	GLN	Α	610	40.335		-24.778		30.69	A
	MOTA	4815	OE1	GLN	Α	610	40.844		-23.708		32.27	A
25	MOTA	4816	NE2	GLN	Α	610	40.097		-25.079		31.93	A
	MOTA	4817	С	GLN	Α	610	42.115		-27.782		21.64	A
	MOTA	4818	0	GLN	Α	610	42.467		-27.096	1.00	21.23	A
	MOTA	4819	N	GLY	Α	611	42.786	92.314	-28.853	1.00	21.34	A
	ATOM	4820	CA	GLY	Α	611	43.999	91.630	-29.255		21.13	A
30	ATOM	4821	С	GLY	Α	611	45.250	92.379	-28.846	1.00	21.53	A
	ATOM	4822	O			611	45.275	93.612	-28.844	1.00	20.93	A
	ATOM	4823	N			612	46.292	91.635	-28.489	1.00	21.82	A
	ATOM	4824	CA			612	47.557		-28.088	1.00	22.69	A
	ATOM	4825	СВ			612	48.436		-27.373	1.00	22.23	A
35	ATOM	4826	OG			612	49.741		-27.170		22.93	А
33	ATOM	4827	C			612	48.303		-29.306		23.02	А
	ATOM	4828	0			612	48.214		-30.390		22.36	А
	ATOM	4829	N			613	49.042		-29.124		24.55	A
			CA			613	49.816		-30.215		26.10	A
40	ATOM	4830					49.543		-30.360			A
40	ATOM		CB			613			-29.146		26.56	A
	ATOM	4832		THR			49.906		-30.659		26.70	A
	MOTA	4833		THR			48.069		-29.981		26.90	A
	ATOM	4834	C			613	51.315				27.81	A
4	MOTA	4835	0			613	52.137		-30.751			
45	MOTA	4836	N			614	51.664		-28.926		27.11	A
	MOTA	4837	CA			614	53.065		-28.583		26.76	A
	ATOM	4838	CB			614	53.473		-27.334		26.86	A
	MOTA	4839	OG1	THR	Α	614	52.581		-26.257		27.69	Α
	ATOM	4840	CG2	THR			53.423		-27.611		27.62	A
50	ATOM	4841	С	THR	Α	614	53.373		-28.302		26.34	Α
	ATOM	4842	0			614	54.538	91.399	-28.220		26.24	Α
	ATOM	4843	N			615	52.327	90.990	-28.154	1.00	25.09	Α
	ATOM	4844	CA			615	52.472		-27.851	1.00	24.09	Α
	ATOM	4845	СВ			615	51.954		-26.431	1.00	25.41	А
55	ATOM	4846	CG			615	51.857		-26.014		27.19	А
	0	.5.5			- *							

		ATOM	4847	CD	LYS A	615	51.015	87.725 -24.744	1.00 27.93	А
							51.588	88.525 -23.584	1.00 27.89	A
		ATOM	4848	CE	LYS A					
		ATOM	4849	NZ	LYS A		50.778	88.352 -22.342	1.00 27.53	A
		MOTA	4850	С	LYS A		51.685	88.728 -28.856	1.00 23.27	Α
	5	ATOM	4851	0	LYS A	615	50.591	89.115 -29.270	1.00 22.28	А
		ATOM	4852	N	TYR A	616	52.245	87.584 -29.247	1.00 21.79	Α
		ATOM	4853	CA	TYR A	616	51.587	86.691 -30.203	1.00 21.06	Α
		ATOM	4854	СВ	TYR A		52.142	86.919 -31.612	1.00 21.55	Α
		ATOM	4855	CG	TYR A		52.149	88.375 -32.006	1.00 22.85	А
	10	ATOM	4856	CD1	TYR A		53.238	89.189 -31.703	1.00 23.03	A
	10							90.549 -31.980	1.00 24.34	A
		ATOM	4857	CE1	TYR A		53.219			
		ATOM	4858		TYR A		51.033	88.958 -32.608	1.00 23.49	A
		MOTA	4859		TYR A		51.001	90.323 -32.889	1.00 24.46	A
		ATOM	4860	CZ	TYR A	616	52.096	91.109 -32.571	1.00 24.68	А
	15	ATOM	4861	OH	TYR A	616	52.071	92.459 -32.834	1.00 26.72	Α
		ATOM	4862	С	TYR A	616	51.763	85.225 -29.818	1.00 20.41	Α
		ATOM	4863	0	TYR A		52.678	84.882 -29.074	1.00 19.70	Α
		ATOM	4864	N	ARG A		50.877	84.369 -30.325	1.00 19.68	А
		ATOM	4865	CA	ARG A		50.935	82.933 -30.040	1.00 19.19	А
	20		4866	CB	ARG A		49.532	82.362 -29.785	1.00 19.61	A
	20	ATOM					49.332	82.714 -28.463	1.00 19.01	A
, 		ATOM	4867	CG	ARG A					
7 ₁ 5±2 ² ±157€:-		ATOM	4868	CD	ARG A		47.484	82.072 -28.372	1.00 20.39	A
1,11		MOTA	4869	NE	ARG A		47.535	80.608 -28.387	1.00 20.23	A
The state street	_	ATOM	4870	CZ	ARG A	617	46.866	79.838 -29.242	1.00 20.36	A
194	25	MOTA	4871	NH1	ARG A	617	46.089	80.382 -30.168	1.00 20.60	А
111		ATOM	4872	NH2	ARG A	617	46.972	78.518 -29.173	1.00 19.63	Α
M		MOTA	4873	С	ARG A	617	51.528	82.154 -31.208	1.00 18.48	Α
		ATOM	4874	0	ARG A		51.040	82.269 -32.331	1.00 19.11	А
E)		ATOM	4875	N	ILE A		52.578	81.372 -30.960	1.00 17.34	A
	30	ATOM	4876	CA	ILE A		53.132	80.547 -32.026	1.00 15.98	А
ıj	50	ATOM	4877	CB	ILE A		54.666	80.704 -32.193	1.00 15.88	A
Ŋ							55.399	80.260 -30.938	1.00 15.95	A
		ATOM	4878		ILE A				1.00 15.55	A
3:32		MOTA	4879	CG1	ILE A		55.116	79.898 -33.418		
	25	MOTA	4880		ILE A		56.481	80.267 -33.950	1.00 16.76	A
į.L	35	MOTA	4881	С	ILE A		52.771	79.113 -31.666	1.00 15.58	A
		ATOM	4882	0	ILE A		52.940	78.687 -30.526	1.00 15.88	А
		ATOM	4883	N	ILE A	619	52.246	78.384 -32.643	1.00 15.22	А
		MOTA	4884	CA	ILE A	619	51.802	77.014 -32.439	1.00 15.30	Α
		ATOM	4885	CB	ILE A	619	50.287	76.916 -32.675	1.00 16.02	Α
	40	MOTA	4886	CG2	ILE A	619	49.788	75.529 -32.309	1.00 17.07	Α
		ATOM	4887		ILE A		49.568	78.006 -31.874	1.00 16.94	Α
		ATOM	4888		ILE A		48.223	78.411 -32.464	1.00 18.02	А
		ATOM	4889	C	ILE A		52.484	76.047 -33.399	1.00 15.21	A
							52.638	76.344 -34.581	1.00 14.85	A
	45	ATOM	4890	0	ILE A					
	45	ATOM	4891	N	PHE A		52.880	74.885 -32.891	1.00 14.42	A
		MOTA	4892	CA	PHE A			73.883 -33.736	1.00 14.06	A
		MOTA	4893	CB	PHE A		54.991	74.225 -33.971	1.00 13.22	A
		MOTA	4894	CG	PHE A	620	55.856	74.111 -32.747	1.00 13.06	Α
		ATOM	4895	CD1	PHE A	620	56.459	72.898 -32.416	1.00 13.53	Α
	50	MOTA	4896		PHE A		56.093	75.219 -31.941	1.00 12.76	Α
		ATOM	4897		PHE A		57.292	72.791 -31.299	1.00 12.66	А
		ATOM	4898		PHE A		56.925	75.125 -30.822	1.00 13.48	А
				CEZ			57.525	73.904 -30.503	1.00 13.40	A
		ATOM	4899		PHE A				1.00 13.00	A
	EE	ATOM	4900	С	PHE A		53.366	72.492 -33.137		
	55	MOTA	4901	0	PHE A	020	53.085	72.342 -31.951	1.00 14.92	A

												_
	MOTA	4902	N	LYS			53.544		-33.970	1.00 15		A
	MOTA	4903	CA	LYS			53.410		-33.525	1.00 16		Α
	MOTA	4904	CB	LYS			52.949		-34.697	1.00 17		Α
	MOTA	4905	CG	LYS			52.734		-34.335	1.00 19		Α
5	ATOM	4906	CD	LYS	Α	621	51.896		-35.388	1.00 20	-	Α
	MOTA	4907	CE	LYS	Α	621	52.568	67.041	-36.747	1.00 22		Α
	ATOM	4908	ΝZ	LYS	Α	621	51.720	66.378	-37.784	1.00 25		Α
	ATOM	4909	С	LYS	Α	621	54.697	69.547	-32.935	1.00 15	.54	Α
	ATOM	4910	0	LYS	Α	621	55.717	69.466	-33.617	1.00 15	. 67	Α
10	ATOM	4911	N	ALA	Α	622	54.652	69.178	-31.658	1.00 15	.03	Α
	ATOM	4912	CA	ALA	Α	622	55.821	68.606	-31.006	1.00 15	.03	Α
	ATOM	4913	СВ	ALA	Α	622	55.934	69.116	-29.564	1.00 14	.73	Α
	ATOM	4914	С	ALA	Α	622	55.682	67.086	-31.017	1.00 15	.03	Α
	ATOM	4915	0	ALA	Α	622	54.585	66.554	-30.851	1.00 15.	. 48	Α
15	ATOM	4916	N	ARG			56.795	66.394	-31.237	1.00 15	.27	Α
	ATOM	4917	CA	ARG			56.811	64.936	-31.256	1.00 14	. 94	Α
	ATOM	4918	СВ	ARG			57.245	64.427	-32.636	1.00 16.	.29	Α
	ATOM	4919	CG	ARG			57.267		-32.755	1.00 18.	. 27	Α
	ATOM	4920	CD	ARG			57.285		-34.216	1.00 20	.74	А
20	ATOM	4921	NE	ARG			57.525		-34.338	1.00 22		Α
	ATOM	4922	CZ	ARG			58.723		-34.232	1.00 23.	.12	Α
	ATOM	4923		ARG			59.796		-34.009	1.00 24	.09	Α
	ATOM	4924		ARG			58.847		-34.333	1.00 24	.41	Α
	ATOM	4925	С	ARG			57.804		-30.176	1.00 14	. 36	Α
25	ATOM	4926	Ö	ARG			58.992		-30.255	1.00 13	. 60	Α
	ATOM	4927	N	VAL			57.308		-29.162	1.00 13		А
	ATOM	4928	CA	VAL			58.131		-28.021	1.00 13		А
	ATOM	4929	СВ	VAL			57.581		-26.747	1.00 13	. 54	А
	ATOM	4930		VAL			58.635		-25.645	1.00 13	.13	Α
30	ATOM	4931		VAL			57.128	65.544	-27.075	1.00 14	. 31	Α
	ATOM	4932	С	VAL			58.200	61.943	-27.775	1.00 12	.85	A
	ATOM	4933	0	VAL			57.204	61.243	-27.906	1.00 12	.59	A
	ATOM	4934	N	PRO			59.384	61.435	-27.396	1.00 13	. 31	A
	ATOM	4935	CD	PRO			60.665	62.157	-27.305	1.00 13	. 68	А
35	ATOM	4936	CA	PRO			59.574	60.006	-27.128	1.00 12	. 93	Α
	ATOM	4937	СВ	PRO			61.074	59.900	-26.850	1.00 13	. 69	Α
	ATOM	4938	CG	PRO			61.660	61.067	-27.599	1.00 14	. 65	Α
	ATOM	4939	С	PRO			58.758	59.549	-25.917	1.00 12	.52	Α
	ATOM	4940	0	PRO			58.333	60.365	-25.099	1.00 10	.81	Α
40	ATOM	4941	N	PRO	Α	6 26	58.537	58.230	-25.787	1.00 12	.53	Α
	MOTA	4942	CD	PRO			59.072		-26.600	1.00 11.	. 95	А
	ATOM	4943	CA	PRO	Α	626	57.773	57.725	-24.643	1.00 12.	.15	Α
	ATOM	4944	СВ			626	57.838	56.207	-24.818	1.00 12	. 36	A
	ATOM	4945	CG			626	58.103	56.014	-26.296	1.00 12	. 88	A
45	ATOM	4946	С			626	58.526		-23.384	1.00 12	. 11	Α
	MOTA	4947	0	PRO			59.747		-23.325	1.00 12	. 43	Α
	ATOM	4948	N	MET			57.812		-22.391	1.00 11		А
	ATOM	4949	CA	MET			58.444		-21.146	1.00 11		Α
	ATOM	4950	CB	MET			58.725		-20.268	1.00 12		Α
50	ATOM	4951	CG	MET			57.458		-19.813	1.00 13		Α
	ATOM	4952	SD	MET			57.753		-19.152	1.00 15		A
	ATOM	4953	CE	MET			58.563		-17.601	1.00 15		A
	ATOM	4954	C	MET			59.745		-21.434	1.00 11		Α
	ATOM	4955	0	MET			60.749		-20.736	1.00 11		Α
55	ATOM	4956	N	GLY			59.716		-22.453	1.00 11		A
	111 011	. , , ,	• •	~						- -		

	MOTA	4957	CA	GLY	Α	628 .	60.917	61.460 -22.83		0 11.48	А
	ATOM	4958	С	GLY	Α	628	60.822	62.957 -23.04		0 11.99	А
	ATOM	4959	0	GLY	Α	628	59.846	63.600 -22.64	6 1.0	0 11.25	Α
	ATOM	4960	N	LEU	Α	629	61.854	63.506 -23.67	8 1.0	0 11.91	Α
5	ATOM	4961	CA	LEU	Α	629	61.943	64.938 -23.94	1 1.0	0 12.42	A
	ATOM	4962	СВ	LEU	Α	629	62.964	65.569 -22.99	6 1.0	0 12.70	A
	ATOM	4963	CG			629	62.725	65.362 -21.50		0 13.60	A
	ATOM	4964		LEU			63.990	65.686 -20.72		0 14.03	А
	ATOM	4965		LEU			61.566	66.241 -21.04		0 13.10	A
10	ATOM	4966	C			629	62.372	65.222 -25.37		0 12.55	A
10		4967				629	63.074	64.420 -25.99		0 12.86	A
	ATOM		0							0 12.00	A
	ATOM	4968	N	ALA			61.947	66.369 -25.89			
	ATOM	4969	CA	ALA			62.307	66.788 -27.25		0 13.46	A
4-	MOTA	4970	CB	ALA			61.203	66.436 -28.24		0 13.44	A
15	MOTA	4971	С	ALA			62.534	68.293 -27.21		0 13.75	Α
	MOTA	4972	0	ALA	Α	630	61.705	69.048 -26.69		0 13.55	A
	MOTA	4973	N	THR	Α	631	63.660	68.721 -27.77	9 1.0	0 13.65	A
	ATOM	4974	CA	THR	Α	631	64.035	70.134 -27.79	6 1.0	0 13.96	Α
	ATOM	4975	CB	THR	Α	631	65.534	70.284 -27.46	0 1.0	0 14.42	A
20	ATOM	4976	OG1	THR			65.822	69.568 -26.25	3 1.0	0 13.45	Α
	ATOM	4977	CG2	THR			65.910	71.751 -27.28		0 13.92	Α
	ATOM	4978	C	THR			63.782	70.815 -29.14		0 14.26	А
	ATOM	4979	0			631	64.048	70.237 -30.19		0 14.41	A
	ATOM	4980	N			632	63.264	72.042 -29.09		0 13.91	A
25						632	63.023	72.822 -30.30		0 13.94	A
23	ATOM	4981	CA					72.939 -30.61		0 13.86	A
	ATOM	4982	CB			632	61.526				
	MOTA	4983	CG			632	60.869	71.623 -30.96		0 14.19	A
	ATOM	4984	CD1				60.486	70.726 -29.96		0 14.07	A
•	ATOM	4985	CE1	TYR			59.911	69.499 -30.28		0 14.45	A
30	MOTA	4986		TYR	Α	632	60.658	71.260 -32.29		0 14.41	A
	ATOM	4987	CE2	TYR	Α	632	60.083	70.032 -32.62		0 14.34	A
	ATOM	4988	CZ	TYR	Α	632	59.715	69.157 -31.61	5 1.0	0 14.95	A
	ATOM	4989	OH	TYR	Α	632	59.163	67.936 -31.92	9 1.0	0 14.79	А
	ATOM	4990	С	TYR	Α	632	63.618	74.214 -30.12	2 1.0	0 14.02	A
35	MOTA	4991	0			632	63.963	74.607 -29.00	7 1.0	0 13.93	A
	ATOM	4992	N	VAL			63.739	74.954 -31.21		0 13.56	A
	ATOM	4993	CA	VAL			64.295	76.300 -31.17		0 14.28	А
	ATOM	4994	СВ	VAL			65.691	76.348 -31.84		0 14.34	А
	ATOM	4995		VAL			66.245	77.778 -31.81		0 14.97	A
40		4996		VAL			66.639	75.388 -31.13		0 15.01	A
40	ATOM									0 13.01	
	ATOM	4997	С	VAL			63.375	77.285 -31.89			A
	MOTA	4998	0	VAL			62.889	77.005 -32.99		0 14.06	A
	MOTA	4999	N	LEU			63.121	78.424 -31.26		0 14.84	A
	ATOM	5000	CA	LEU			62.284	79.461 -31.86		0 15.74	А
45	ATOM	5001	CB	LEU	Α	634	61.260	79.989 -30.85		0 16.60	А
	ATOM	5002	CG	LEU	Α	634	60.337	78.965 -30.18	8 1.0	0 18.43	А
	ATOM	5003	CD1	LEU	Α	634	59.245	79.713 -29.43	0 1.0	0 18.47	A
	ATOM	5004		LEU			59.723	78.042 -31.22	4 1.0	0 18.25	A
	ATOM	5005	С	LEU			63.225	80.586 -32.26		0 16.10	A
50	ATOM	5006	Ö	LEU			63.980	81.095 -31.44		0 15.57	А
50	ATOM	5007	N	THR			63.180	80.965 -33.53		0 16.37	A
										0 16.57	A
	ATOM	5008	CA	THR			64.056	82.008 -34.05			
	ATOM	5009	CB	THR			65.024	81.425 -35.09		0 16.04	A
	ATOM	5010		THR			65.704	80.297 -34.52		0 15.93	A
55	ATOM	5011	CG2	THR	Α	635	66.044	82.469 -35.52	ช 1.0	0 15.17	А

	MOTA	5012	С	THR	Α	635	63.260	83.132 -34.70	8 1.00	17.49	А
	ATOM	5013	0			635	62.313	82.883 -35.45	3 1.00	17.17	А
	ATOM	5014	N			636	63.656	84.370 -34.43	4 1.00	18.82	Α
	ATOM	5015	CA			636	62.970	85.524 -35.00	3 1.00	20.25	А
5	ATOM	5016	СВ			636	63.010	86.730 -34.02	8 1.00	20.80	Α
	ATOM	5017		ILE			64.445	87.193 -33.83		20.78	Α
	ATOM	5018		ILE			62.156	87.881 -34.56	8 1.00	20.89	Α
	ATOM	5019	CD1			636	62.027	89.054 -33.60		22.07	Α
	ATOM	5020	С			636	63.628	85.922 -36.32		21.26	Α
10	ATOM	5021	0			636	64.806	85.647 -36.54		21.01	А
	ATOM	5022	N			637	62.854	86.548 -37.20		23.08	А
	ATOM	5023	CA			637	63.370	87.011 -38.48		24.95	A
	ATOM	5024	CB			637	63.007	86.033 -39.60		25.80	A
	ATOM	5025	OG			637	61.607	85.875 -39.72		28.22	A
15	ATOM	5026	C			637	62.765	88.386 -38.75		25.93	A
10	ATOM	5027	Ö			637	61.821	88.792 -38.08		25.09	A
	ATOM	5028	N			638	63.310	89.105 -39.72		27.88	A
	ATOM	5029	CA			638	62.805	90.437 -40.04		30.30	A
	ATOM	5030	CB	ASP			63.804	91.193 -40.92		32.47	A
20	ATOM	5030	CG	ASP			64.112	90.463 -42.22		35.12	A
20	ATOM	5032		ASP			63.169	90.178 -42.98		36.91	A
	ATOM	5032		ASP			65.304	90.178 -42.47		37.58	A
	ATOM	5034	C	ASP			61.438	90.398 -40.71		30.50	A
	ATOM	5035	0			638	60.624	91.306 -40.53		31.30	A
25	ATOM	5036	N			639	61.181	89.339 -41.47		30.26	A
23	ATOM	5037	CA			639	59.913	89.202 -42.18		30.20	A
	ATOM	5037	CB			639	60.112	89.497 -43.67		30.34	A
	ATOM	5039	OG			639	61.072	88.619 -44.23		30.45	A
	ATOM	5040	C			639	59.313	87.812 -42.01		29.83	A
30	ATOM	5040	0			639	59.906	86.942 -41.38		29.34	A
50	ATOM	5041	N			640	58.135	87.609 -42.59		29.49	A
	ATOM	5043	CA			640	57.448	86.328 -42.50		29.38	A
	ATOM	5043	CB			640	56.160	86.354 -43.33		30.45	A
	ATOM	5044	CG			640	55.128	87.348 -42.82		32.56	A
35	ATOM	5045	CD			640	53.757	87.126 -43.44		34.03	A
33	ATOM	5047	CE			640	53.763	87.376 -44.94		34.65	A
	ATOM	5047	NZ			640	52.396	87.213 -45.51		35.65	A
	ATOM	5049	C			640	58.303	85.140 -42.93		28.37	A
	ATOM	5050	0			640	58.718	85.041 -44.08		28.39	A
40	ATOM	5050	N			641	58.581	84.221 -41.99		27.43	A
10	ATOM	5052	CD	PRO			58.213	84.267 -40.57		27.13	A
	ATOM	5052	CA			641	59.387	83.034 -42.28		26.57	A
	ATOM	5054	CB	PRO			59.674	82.465 -40.90		27.13	A
	ATOM	5055	CG	PRO			58.461	82.844 -40.13		27.56	A
45	ATOM	5056	C	PRO			58.630	82.056 -43.18		25.67	A
43	ATOM	5057	0			641	57.400	82.001 -43.17		24.50	A
		5058		GLU			59.382	81.282 -43.95		25.02	A
	ATOM		N					80.318 -44.89		23.02	A
	ATOM	5059	CA	GLU			58.813			24.72	A
50	ATOM	5060	CB	GLU			59.945	79.622 -45.65			
50	ATOM	5061	CG	GLU			59.484	78.486 -46.56) 27.49) 29.77	A
	ATOM	5062	CD	GLU			60.635	77.795 -47.27			A A
	ATOM	5063		GLU			60.378	76.791 -47.97		30.73	A
	ATOM	5064		GLU			61.791	78.252 -47.14		30.00	. A
EF	ATOM	5065	С	GLU			57.885	79.255 -44.30		24.21	A
55	ATOM	5066	0	GLU	A	642	56.865	78.921 -44.90	3 1.00	24.08	А

		ATOM	5067	N	HIS A	643	58.223	78.728 -43	3.133	1.00 23.20	Α (
		ATOM	5068	CA	HIS A	643	57.416	77.665 -42	2.538	1.00 22.09	9 A
		ATOM	5069	CB	HIS A	643	58.345	76.582 -43		1.00 23.03	2 A
		ATOM	5070	CG	HIS A	643	59.256	76.004 -43	3.029	1.00 24.08	3 A
	5	ATOM	5071	CD2	HIS A	643	60.556	76.255 -43	3.312	1.00 24.4	
		ATOM	5072	NDl	HIS A	643	58.831	75.083 -43	3.961	1.00 25.1	
		ATOM	5073	CE1	HIS A	643	59.830	74.789 -4	4.774	1.00 25.08	3 A
		ATOM	5074	NE2	HIS A	643	60.888	75.487 -4	4.402	1.00 24.83	3 A
		MOTA	5075	С	HIS A	643	56.420	78.078 -43	1.464	1.00 21.2	
	10	ATOM	5076	0	HIS A	643	55.944	77.238 -40	0.697	1.00 20.1	1 A
		ATOM	5077	N	THR A	644	56.101	79.365 -43	1.411	1.00 20.0	
		ATOM	5078	CA	THR A	644	55.146	79.865 -40	0.435	1.00 20.00	
		MOTA	5079	CB	THR A	644	55.805	80.877 -39	9.475	1.00 20.19	
		ATOM	5080	OG1	THR A	644	56.886	80.236 -38	8.782	1.00 19.60	
	15	ATOM	5081	CG2	THR A	644	54.791	81.395 -38	8.451	1.00 19.4	
		MOTA	5082	С	THR A	644	53.986	80.542 -43	1.162	1.00 20.3	
		MOTA	5083	0	THR A	644	54.200	81.413 -42	2.009	1.00 20.3	
		ATOM	5084	N	SER A	645	52.765	80.121 -40	0.847	1.00 19.4	
		ATOM	5085	CA	SER A	645	51.576	80.702 -43		1.00 18.89	
	20	ATOM	5086	CB	SER A	645	50.636	79.604 -43	1.977	1.00 19.6	
		ATOM	5087	OG	SER A	645	50.103	78.821 -40	0.917	1.00 18.5	
		MOTA	5088	С	SER A	645	50.859	81.556 -40		1.00 18.4	2 A
•		ATOM	5089	0	SER A	645	51.124	81.445 -39	9.217	1.00 17.3	
		MOTA	5090	N	TYR A	646	49.951	82.408 -40		1.00 17.2	
	25	MOTA	5091	CA	TYR A	646	49.211	83.278 -39		1.00 16.8	
		MOTA	5092	CB	TYR A	646	49.590	84.737 -40	0.243	1.00 17.0	
		ATOM	5093	CG	TYR A	646	51.069	84.965 -40	0.045	1.00 17.2	
		ATOM	5094	CD1	TYR A	646	51.980	84.670 -41	1.059	1.00 17.6	
		MOTA	5095	CE1	TYR A	646	53.352	84.771 -46		1.00 17.9	
	30	ATOM	5096	CD2	TYR A	646	51.567	85.374 -38		1.00 17.5	
		ATOM	5097	CE2	TYR A	646	52.935	85.478 -38		1.00 17.5	
		ATOM	5098	CZ	TYR A	646	53.820	85.173 -39		1.00 17.6	
		ATOM	5099	ОН	TYR A	646	55.174	85.253 -3		1.00 18.1	
		MOTA	5100	С	TYR A	646	47.712	83.081 -40		1.00 16.2	
	35	ATOM	5101	0	TYR A		47.158	83.071 -43		1.00 16.0	
		ATOM	5102	N	ALA A		47.062	82.916 -38		1.00 15.5	
		MOTA	5103	CA	ALA A		45.627	82.699 -3		1.00 15.3	
		MOTA	5104	CB	ALA A		45.219	82.251 -3		1.00 16.4	
		ATOM	5105	С	ALA A		44.837	83.939 -3		1.00 15.4	
	4 0	MOTA	5106	0	ALA A		45.273			1.00 15.2	
		MOTA	5107	N	SER A		43.669	83.722 -3		1.00 16.1	
		ATOM	5108	CA	SER A		42.802	84.829 -40		1.00 16.3	
		ATOM	5109	CB	SER A		41.952	84.479 -4		1.00 17.2	
		ATOM	5110	OG	SER A		41.126	83.360 -43		1.00 18.7	
	4 5	MOTA	5111	С	SER A		41.914	84.985 -3		1.00 16.2	
		ATOM	5112	0	SER A		41.754	84.037 -3		1.00 16.1	
		MOTA	5113	N	ASN A		41.348	86.171 -3		1.00 15.7	
		MOTA	5114	CA	ASN A		40.481	86.413 -3		1.00 15.8	
		MOTA	5115	CB	ASN A		41.216	87.235 -3		1.00 15.8	
	50	ATOM	5116	CG	ASN A		42.396	86.491 -3		1.00 15.9	
		ATOM	5117		ASN A		42.250	85.747 -3		1.00 15.0	
		ATOM	5118		ASN A		43.573	86.684 -3		1.00 15.2	
		ATOM	5119	С	ASN A		39.236	87.156 -3		1.00 16.1	
		ATOM	5120	0	ASN A		39.321	88.131 -31		1.00 15.9	
	55	ATOM	5121	N	LEU A	650	38.083	86.686 -3	1.666	1.00 16.9	3 A

			~ ~		_	650	26 004	07 200	-38.020	1 00	17.30	А
	MOTA	5122	CA	LEU			36.804				16.88	A
	ATOM	5123	СВ	LEU			36.025		-38.946			A
	MOTA	5124	CG	LEU			34.612		-39.340		17.13	
	ATOM	5125		LEU			34.670		-40.202		17.16	A
5	MOTA	5126	CD2	LEU			33.933		-40.091		16.83	A
	MOTA	5127	С	LEU			35.985		-36.768		18.02	A
	ATOM	5128	0	LEU	Α	650	35.627		-36.025		17.29	Α
	ATOM	5129	N	LEU	Α	651	35.687		-36.540	1.00	18.59	Α
	ATOM	5130	CA	LEU	Α	651	34.911	89.255	-35.380	1.00	19.22	Α
10	ATOM	5131	СВ	LEU	Α	651	35.512	90.534	-34.783	1.00	20.86	Α
	ATOM	5132	CG	LEU			35.142	90.917	-33.345	1.00	21.95	А
	ATOM	5133		LEU			33.696		-33.262	1.00	23.51	A
	ATOM	5134		LEU			35.403		-32.429		22.19	А
	ATOM	5135	C	LEU			33.473		-35.825		19.82	А
15				LEU			33.191		-36.558		19.72	A
13	ATOM	5136	0				32.565		-35.378		19.69	A
	ATOM	5137	N	LEU								A
	MOTA	5138	CA	LEU			31.166		-35.755		19.98	
	MOTA	5139	CB	LEU			30.586		-36.052		19.30	A
	MOTA	5140	CG	LEU			31.315		-37.156		19.06	A
20	MOTA	5141		LEU			30.723		-37.283		18.94	A
	MOTA	5142	CD2	LEU	Α	652	31.207		-38.477		18.77	A
	ATOM	5143	С	LEU	Α	652	30.320	89.449	-34.700	1.00	21.51	A
	ATOM	5144	0	LEU	Α	652	30.212	88.988	-33.560	1.00	20.61	Α
	ATOM	5145	N	ARG			29.726	90.570	-35.094	1.00	22.71	А
25	ATOM	5146	CA	ARG			28.865	91.332	-34.207	1.00	24.81	Α
	ATOM	5147	СВ	ARG			29.582	91.658	-32.901	1.00	25.37	A
	ATOM	5148	CG	ARG			30.646		-33.008		27.04	А
	ATOM	5149	CD	ARG			30.498		-31.839		29.21	А
		5150	NE	ARG			31.775		-31.261		30.48	А
30	ATOM		CZ	ARG			31.897		-30.141		31.74	A
30	ATOM	5151							-29.482		32.11	A
	ATOM	5152		ARG			30.814		-29.462		32.44	A
	ATOM	5153		ARG			33.100					A
	MOTA	5154	С	ARG			28.435		-34.868		25.66	
	MOTA	5155	0	ARG			29.062		-35.821		24.91	A
35	MOTA	5156	N	LYS			27.360		-34.354		27.38	A
	MOTA	5157	CA	LYS			26.858		-34.879		29.48	A
	MOTA	5158	CB	LYS	Α	654	25.366	94.605	-34.568		30.53	A
	MOTA	5159	CG	LYS	Α	654	24.503	93.495	-35.159		32.00	A
	ATOM	5160	CD	LYS	Α	654	23.402	94.053	-36.050	1.00	33.77	Α
40	ATOM	5161	CE	LYS	Α	654	23.983	94.797	-37.244	1.00	34.37	Α
	ATOM	5162	NZ	LYS			22.917	95.372	-38.117	1.00	36.17	A
	ATOM	5163	С	LYS			27.645		-34.204	1.00	29.80	Α
	ATOM	5164	Ö	LYS			28.156		-33.097		30.41	А
	ATOM	5165	N	ASN			27.751		-34.878		30.31	А
45		5166		ASN			28.470		-34.337		30.30	A
40	MOTA		CA				27.714		-33.134		32.65	A
	ATOM	5167	CB	ASN							34.87	A
	MOTA	5168	CG	ASN			26.223		-33.384			
	ATOM	5169		ASN			25.784		-34.379		36.57	A
	ATOM	5170		ASN			25.432		-32.482		35.70	A
50	ATOM	5171	С	ASN			29.892		-33.920		29.09	A
	ATOM	5172	0	ASN	A	655	30.272		-32.760		28.95	A
	MOTA	5173	N	PRO	Α	656	30.699	97.000	-34.867		28.12	А
	ATOM	5174	CD	PRO	Α	656	30.370	96.630	-36.257		27.68	Α
	ATOM	5175	CA			656	32.076	96.627	-34.544	1.00	27.59	Α
55	ATOM	5176	СВ			656	32.417	95.634	-35.643	1.00	27.64	Α

	ATOM	5177	CG	PRO	Α 6	556	31.728	96.247	-36.827	1.00 27.46	А
	ATOM	5178	С	PRO			33.008	97.832	-34.570	1.00 27.27	A
	ATOM	5179	0	PRO			32.700	98.856	-35.180	1.00 26.04	Α
	ATOM	5180	N	THR			34.143	97.700	-33.893	1.00 26.93	Α
5	ATOM	5181	CA	THR			35.152	98.748	-33.864	1.00 27.12	Α
	ATOM	5182	СВ	THR			35.302	99.365	-32.455	1.00 27.52	А
	ATOM	5183	OG1	THR	A 6	657	35.484	98.324	-31.489	1.00 27.21	A
	ATOM	5184	CG2	THR			34.067	100.186	-32.099	1.00 27.48	Α
	ATOM	5185	С	THR			36.462		-34.280	1.00 27.11	А
10	ATOM	5186	0	THR			36.618	96.873	-34.158	1.00 27.18	А
	ATOM	5187	N	SER			37.395	98.890	-34.779	1.00 26.83	Α
	ATOM	5188	CA	SER			38.682	98.380	-35.229	1.00 26.73	Α
	ATOM	5189	СВ	SER			39.576	99.539	-35.671	1.00 26.98	A
	ATOM	5190	OG	SER			39.848	100.401	-34.581	1.00 27.98	А
15	ATOM	5191	С	SER			39.401	97.559	-34.159	1.00 26.39	Α
	ATOM	5192	0	SER			39.191	97.753	-32.961	1.00 25.68	Α
	ATOM	5193	N	LEU			40.246	96.639	-34.616	1.00 25.99	Α
	ATOM	5194	CA	LEU			41.023	95.772	-33.739	1.00 25.88	Α
	ATOM	5195	СВ	LEU	A 6	659	40.381	94.383	-33.649	1.00 26.05	Α
20	ATOM	5196	CG	LEU			39.071	94.250	-32.868	1.00 25.86	Α
	ATOM	5197		LEU			38.453	92.874	-33.107	1.00 26.79	Α
	ATOM	5198		LEU			39.342	94.466	-31.392	1.00 25.65	Α
	ATOM	5199	С	LEU			42.437	95.640	-34.294	1.00 25.93	Α
	ATOM	5200	0	LEU			42.758	94.663	-34.974	1.00 26.37	А
25	ATOM	5201	N	PRO			43.297	96.635	-34.030	1.00 25.74	Α
	MOTA	5202	CD	PRO			43.052	97.866	-33.256	1.00 25.96	Α
	MOTA	5203	CA	PRO			44.679	96.592	-34.520	1.00 25.77	Α
	MOTA	5204	СВ	PRO	A 6	660	45.195	97.994	-34.209	1.00 25.89	А
	ATOM	5205	CG	PRO			44.463	98.340	-32.952	1.00 25.60	A
30	MOTA	5206	С	PRO	A 6	660	45.461	95.497	-33.793	1.00 25.59	Α
	MOTA	5207	0	PRO	Α 6	660	45.154	95.169	-32.649	1.00 25.45	A
	MOTA	5208	N	LEU	Α 6	661	46.469	94.938	-34.453	1.00 26.17	А
	ATOM	5209	CA	LEU	A 6	661	47.256	93.867	-33.846	1.00 26.47	А
	MOTA	5210	CB	LEU	A 6	661	46.827	92.522	-34.439	1.00 26.01	А
35	MOTA	5211	CG	LEU	Α 6	661	45.373	92.111	-34.197	1.00 25.85	Α
	MOTA	5212	CD1	LEU	A 6	661	45.053	90.850	-34.990	1.00 25.80	Α
	MOTA	5213	CD2	LEU	Α 6	561	45.148	91.885	-32.707	1.00 25.90	Α
	ATOM	5214	С	LEU	A 6	561	48.764	94.046	-34.013	1.00 26.80	Α
	ATOM	5215	0	LEU	Α 6	661	49.495		-34.217	1.00 26.97	A
40	MOTA	5216	N	GLY	A 6	662	49.228	95.287	-33.925	1.00 27.05	Α
	MOTA	5217	CA	GLY			50.649		-34.066	1.00 27.15	А
	MOTA	5218	С	GLY	A 6	662	51.246		-35.356	1.00 27.55	А
	MOTA	5219	0	GLY	A 6	562	50.791		-36.447	1.00 27.88	Α
	MOTA	5220	N	GLN	Α 6	663	52.260		-35.228	1.00 27.70	Α
45	MOTA	5221	CA	GLN	Α (663	52.948		-36.383	1.00 27.75	А
	ATOM	5222	CB	GLN	Α 6	663	54.338		-35.972	1.00 29.23	A
	ATOM	5223	CG	GLN			55.162		-35.205	1.00 31.06	Α
	MOTA	5224	CD	GLN	Α 6	663	56.475		-34.733	1.00 31.96	А
	MOTA	5225	OE1	GLN	A 6	663	57.324		-35.544	1.00 32.29	Α
50	MOTA	5226	NE2	GLN			56.647		-33.418	1.00 31.97	Α
	ATOM	5227	С	GLN	Α (663	52.227		-37.063	1.00 26.71	A
	MOTA	5228	0	GLN	Α 6	663	52.634		-38.140	1.00 26.75	Α
	MOTA	5229	N	TYR	Α 6	664	51.168		-36.445	1.00 26.28	A
	ATOM	5230	CA	TYR	A 6	664	50.438		-37.020	1.00 25.87	A
55	MOTA	5231	CB	TYR	A 6	664	49.138	90.557	-36.251	1.00 24.54	А

					_			00 101	26 475	1 00	22 00	70
	ATOM	5232	CG	TYR			48.551		-36.475		22.88	A
	ATOM	5233	CD1	TYR	Α	664	49.145		-35.915	1.00		A
	MOTA	5234	CE1	TYR	Α	664	48.608		-36.124		21.08	Α
	ATOM	5235	CD2	TYR	Α	664	47.407		-37.254		21.95	Α
5	ATOM	5236	CE2	TYR	Α	664	46.866	87.748	-37.472	1.00	20.70	Α
-	MOTA	5237	CZ	TYR	Α	664	47.469	86.634	-36.904	1.00	21.25	Α
	ATOM	5238	OH	TYR			46.923		-37.114		19.20	А
		5239	C	TYR			50.146		-38.507		26.39	A
	ATOM			TYR			49.503		-38.884		26.43	A
10	ATOM	5240	0						-39.367		27.21	A
10	MOTA	5241	N			665	50.618					
	MOTA	5242	CD	PRO			51.335		-38.908		26.98	A
	MOTA	5243	CA	PRO			50.490		-40.830		27.74	A
	MOTA	5244	CB	PRO			51.064		-41.209		27.97	A
	MOTA	5245	CG	PRO	Α	665	52.074		-40.153		27.69	Α
15	ATOM	5246	С	PRO	Α	665	49.111	90.302	-41.455	1.00	28.39	А
	ATOM	5247	0	PRO	Α	665	48.996	90.999	-42.463	1.00	28.61	А
	ATOM	5248	N			666	48.071	89.703	-40.881	1.00	28.52	Α
	ATOM	5249	CA			666	46.738		-41.461	1.00	28.27	Α
	ATOM	5250	СВ			666	46.116		-41.709		30.04	Α
20	ATOM	5251	CG			666	44.880		-42.593		33.21	A
20		5252	CD			666	44.407		-43.071		34.36	A
	ATOM						45.226		-43.652		36.02	A
	ATOM	5253	OE1								34.72	A
	MOTA	5254		GLU			43.214		-42.876			
0.5	MOTA	5255	С			666	45.770		-40.651		27.30	A
25	ATOM	5256	0			666	45.712		-39.425		26.86	A
	ATOM	5257	N			667	45.003		-41.361		25.51	A
	ATOM	5258	CA			667	44.024		-40.741		24.38	A
	ATOM	5259	CB			667	43.629		-41.715		25.91	A
	ATOM	5260	CG	ASP	Α	667	44.821	94.302	-42.220	1.00	27.61	A
30	MOTA	5261	OD1	ASP	Α	667	45.584	94.826	-41.382		28.24	A
	MOTA	5262	OD2	ASP	Α	667	44.993	94.393	-43.454	1.00	28.96	A
	ATOM	5263	С			667	42.765	91.654	-40.324	1.00	22.12	Α
	ATOM	5264	0			667	42.275	90.789	-41.047	1.00	21.74	A
	ATOM	5265	N			668	42.239	91,999	-39.159	1.00	20.90	A
35	ATOM	5266	CA			668	41.025		-38.662		20.03	А
33	ATOM	5267	CB			668	40.715		-37.221		19.83	A
		5268		VAL			39.392		-36.754		19.61	A
	MOTA						41.851		-36.291		19.72	A
	MOTA	5269		VAL					-30.291 -39.565		20.16	A
40	ATOM	5270	С			668	39.863					
40	MOTA	5271	0	VAL			39.808		-40.053		19.96	A
	MOTA	5272	N			669	38.948		-39.792		19.66	A
	MOTA	5273	CA			669	37.770		-40.623		20.28	A
	MOTA	5274	CB	LYS	Α	669	37.615		-41.641		21.78	А
	MOTA	5275	CG	LYS	Α	669	38.806	89.805	-42.586		25.50	А
45	MOTA	5276	CD	LYS	Α	669	38.919	88.405	-43.182		28.10	A
	ATOM	5277	CE	LYS	Α	669	40.207	88.254	-43.992	1.00	29.47	A
	ATOM	5278	NZ			669	40.464	86.846	-44.414	1.00	29.99	A
	ATOM	5279	С			669	36.547		-39.713	1.00	19.68	Α
	ATOM	5280	0			669	36.546		-38.631		18.99	A
50	ATOM	5281	N			670	35.513		-40.142		18.45	A
50							34.303		-39.341		18.50	A
	ATOM	5282	CA			670			-39.341		18.47	A
	ATOM	5283	CB			670	34.158					
	ATOM	5284	CG			670	35.344		-38.045		18.53	A
	MOTA	5285		PHE				94.382			18.06	A
55	MOTA	5286	CD2	PHE	A	670	35.345	93.859	-36.655	1.00	18.27	А

	ATOM	5287	CE1	PHE	Α	670	37.593	94.800	-37.981	1.00	18.42	А
	ATOM	5288	CE2	PHE	Α	670	36.457	94.275	-35.928	1.00	19.20	Α
	ATOM	5289	CZ	PHE	Α	670	37.583	94.745	-36.593	1.00	18.35	Α
	ATOM	5290	С	PHE	Α	670	33.049	91.600	-40.121	1.00	18.27	Α
5	MOTA	5291	0	PHE	Α	670	33.090	91.430	-41.339		18.35	Α
	MOTA	5292	N	GLY	Α	671	31.937	91.460	-39.410	1.00	18.50	Α
	MOTA	5293	CA	GLY	Α	671	30.687		-40.059		18.15	Α
	MOTA	5294	С	GLY			29.565		-39.062		18.46	Α
	ATOM	5295	0	GLY	Α	671	29.804	90.822	-37.858		17.12	Α
10	MOTA	5296	N	ASP	Α	672	28.332	90.853	-39.553		18.63	Α
	ATOM	5297	CA	ASP	Α	672	27.196	90.639	-38.671		19.58	Α
	MOTA	5298	СВ	ASP	Α	672	25.873	90.951	-39.376	1.00	21.20	А
	MOTA	5299	CG	ASP	Α	672	25.692	92.426	-39.673	1.00	22.59	А
	MOTA	5300	OD1	ASP	Α	672	26.358	93.258	-39.024	1.00	24.13	Α
15	MOTA	5301	OD2	ASP	Α	672	24.861		-40.547	1.00	23.78	Α
	ATOM	5302	С	ASP	Α	672	27.189	89.173	-38.263	1.00	19.65	Α
	MOTA	5303	0	ASP	Α	672	27.695	88.318	-38.987	1.00	18.43	Α
	MOTA	5304	N	PRO	Α	673	26.618	88.865	-37.091	1.00	19.89	Α
	ATOM	5305	CD	PRO	Α	673	26.012	89.784	-36.111		20.15	Α
20	MOTA	5306	CA	PRO	Α	673	26.557	87.480	-36.619		20.31	Α
	MOTA	5307	CB	PRO	Α	673	25.659	87.580	-35.392		20.38	Α
	MOTA	5308	CG	PRO	А	673	25.978	88.940	-34.859		20.50	Α
	MOTA	5309	С	PRO	Α	673	25.950		-37.705		20.50	Α
	MOTA	5310	0	PRO	Α	673	25.009		-38.392	1.00	19.86	Α
25	MOTA	5311	N	ARG	Α	674	26.499		-37.870	1.00	20.93	Α
	MOTA	5312	CA	ARG	Α	674	25.997		-38.871		21.72	А
	MOTA	5313	CB	ARG	А	674	26.445	84.881	-40.276		21.99	А
	MOTA	5314	CG	ARG	Α	674	27.941	84.754	-40.537		22.77	А
	MOTA	5315	CD	ARG	А	674	28.221	84.804	-42.033		24.81	А
30	ATOM	5316	NE	ARG	A	674	29.603		-42.369		26.31	А
	MOTA	5317	CZ	ARG	Α	674	30.609		-42.367		27.19	A
	MOTA	5318		ARG			30.399		-42.046		28.25	A
	MOTA	5319	NH2	ARG	Α	674	31.828		-42.701		27.77	А
	ATOM	5320	С	ARG	А	674	26.516		-38.575		21.85	A
35	ATOM	5321	0	ARG			27.503		-37.859		21.35	А
	ATOM	5322	N	GLU			25.850		-39.120		22.23	A
	MOTA	5323	CA	GLU			26.294		-38.897		22.85	A
	ATOM	5324	CB	GLU			25.243		-39.378		24.28	A
	ATOM	5325	CG	GLU			23.886		-38.724		25.01	A
40	MOTA	5326	CD				23.065			1.00		A
	ATOM	5327		GLU			23.076		-39.769		26.65	A
	MOTA	5328		GLU			22.403		-37.716		27.89	A
	MOTA	5329	С	GLU			27.593		-39.655		23.14	A
45	MOTA	5330	0	GLU			27.812		-40.710		23.14	A
45	MOTA	5331	N	ILE			28.467		-39.106		22.54	A
	ATOM	5332	CA	ILE			29.740		-39.752		22.87	A
	ATOM	5333	CB	ILE			30.892		-39.105		24.28	A
	MOTA	5334		ILE			30.575		-39.112		25.64	Α
	ATOM	5335		ILE			31.117		-37.677		24.43	Α
50	ATOM	5336		ILE			32.453		-37.106		26.48	Α
	MOTA	5337	С	ILE			30.086		-39.664		22.36	A
	MOTA	5338	0	ILE			29.569		-38.814		22.01	A
	ATOM	5339	N	SER			30.971		-40.555		21.98	A
	MOTA	5340	CA	SER			31.428		-40.606		22.60	A
55	ATOM	5341	СВ	SER	A	677	30.861	75.404	-41.845	1.00	22.88	А

	7 mov4	5340	06	CED	ν.	677	31.	340	74.07	7 _1	1 030	1 00	25.66	А
	ATOM	5342	OG C	SER SER			32.		76.12				22.27	A
	ATOM	5343	-	SER			33.		77.00				22.32	A
	ATOM	5344	0	LEU			33.		75.17				21.75	A
5	ATOM	5345	N	LEU			35.		75.11				21.96	A
3	ATOM	5346	CA				35.		75.74				22.31	A
	ATOM	5347	CB	LEU			35.		77.26				22.76	A
	ATOM	5348	CG	LEU					77.62				22.70	A
	ATOM	5349		LEU			36.		77.87				23.14	A
10	ATOM	5350		LEU			36.		73.68) 22.13	A
10	ATOM	5351	C	LEU			35.						22.13	A
	ATOM	5352	0	LEU			34.		72.74					
	ATOM	5353	N	ARG			36.		73.52) 22.18	A
	ATOM	5354	CA	ARG			37.		72.21				23.61	A A
4 =	MOTA	5355	CB	ARG			36.		71.53				24.89	
15	ATOM	5356	CG	ARG			37.		70.09				27.40	A
	ATOM	5357	CD	ARG			37.		69.45				29.86	A
	MOTA	5358	NE	ARG			37.		68.05				32.30	A
	MOTA	5359	CZ	ARG			37.		67.26				33.42	A
00	ATOM	5360		ARG			37.		67.73				34.22	A
20	MOTA	5361		ARG			37.		66.00				34.11	A
	ATOM	5362	С	ARG			38.		72.34				23.38	A
	ATOM	5363	0	ARG			39.		73.04				23.17	A
	ATOM	5364	N	VAL			39.		71.67				22.77	A
	MOTA	5365	CA	VAL			40.		71.69				22.34	A
25	ATOM	5366	СВ	VAL			41.		71.95				22.26	A
	MOTA	5367		VAL			42.		71.86				21.52	A
	MOTA	5368		VAL			40.		73.32				21.17	A
	ATOM	5369	С	VAL			41.		70.34				23.12	A
•	ATOM	5370	0	VAL			41.		69.29				22.47	A
30	ATOM	5371	N	GLY			42.		70.37				24.09	A
	MOTA	5372	CA	GLY			43.		69.14				25.82	A
	MOTA	5373	С	GLY			42.		68.27				27.00	A
	ATOM	5374	0	GLY			41.		68.77				26.66	A
	ATOM	5375	N	ASN			42.		66.96				28.40	A
35	ATOM	5376	CA	ASN			41.		66.02				30.08	A
	MOTA	5377	СВ	ASN			41.		64.78				32.01	A
	MOTA	5378	CG	ASN			42.		65.08				34.27	A
	MOTA	5379		ASN			43.		64.17				36.87	A
	ATOM	5380		ASN			42.		66.34				35.56	A
40	MOTA	5381	С	ASN									29.67	A
	ATOM	5382	0	ASN			39.		64.63				30.68	А
	ATOM	5383	N	GLY	A	683	40.		66.35				28.63	A
	MOTA	5384	CA	GLY	Α	683	39.		66.05				27.13	A
	MOTA	5385	С	GLY	Α	683	37.	867	66.32				25.71	А
45	MOTA	5386	0	GLY	Α	683	37.		66.45				25.68	A
	ATOM	5387	N	PRO	Α	684	37.	027	66.41				24.04	A
	ATOM	5388	CD	PRO	Α	684	37.	354	66.24				24.02	A
	MOTA	5389	CA	PRO	Α	684	35.	597	66.66	7 -3	8.759		23.26	А
	ATOM	5390	СВ	PRO	Α	684	35.	014	66.32	1 -3	7.394	1.00	23.35	A
50	MOTA	5391	CG	PRO	Α	684	36.	104	66.76	3 -3	6.462	1.00	24.03	А
	MOTA	5392	С	PRO	Α	684	35.	298	68.10	8 -3	9.159	1.00	22.03	А
	MOTA	5393	0			684	36.	136	68.99	6 -3	9.004	1.00	21.92	А
	MOTA	5394	N			685	34.		68.32	2 -3	9.694	1.00	21.27	А
	MOTA	5395	CA			685	33.	661	69.65	3 -4	0.091	1.00	20.07	А
55	ATOM	5396	СВ			685	33.	047	69.64	9 -4	1.506	1.00	19.84	А
_														

Incenta and the

	ATOM	5397	061	THR	Δ	685	34	.051	69 284	-42.458	1.00	19.96	А
	ATOM	5398		THR				. 495		-41.855		19.80	A
	ATOM	5399	C	THR				. 596		-39.078		19.41	A
	ATOM	5400	0	THR				. 600		-38.918		19.79	A
5		5401	N	LEU				.811		-38.388		18.82	A
5	ATOM ATOM	5401	CA	LEU				.872		-37.375		18.60	A
			CB	LEU				.606		-36.061		18.99	A
	ATOM	5403	CG	LEU				.539		-35.466		20.30	A
	MOTA	5404						. 969		-34.072		19.83	A
10	ATOM	5405		LEU						-35.393		20.32	A
10	ATOM	5406		LEU				.849				18.14	A
	ATOM	5407	С	LEU				.109		-37.807		17.46	A
	ATOM	5408	0	LEU				. 679		-38.397		17.55	A
	ATOM	5409	N	ALA				.815		-37.505		18.33	A
1 =	ATOM	5410	CA	ALA				. 956		-37.841			A
15	ATOM	5411	CB	ALA				.759		-38.658		18.09	
	ATOM	5412	С	ALA				.483		-36.552		18.18	A
	ATOM	5413	0	ALA				.116		-35.596		18.07	A
	ATOM	5414	N	PHE				. 488		-36.536		17.57	A
20	MOTA	5415	CA	PHE				.073		-35.365		16.78	A
20	ATOM	5416	CB	PHE				.242		-34.830		16.30	A
	ATOM	5417	CG	PHE				. 477		-34.526		15.14	A
	ATOM	5418		PHE				.286		-35.552		14.69	A
	MOTA	5419		PHE				.837		-33.208		15.04	A
	MOTA	5420		PHE				.437		-35.271		14.91	A
25	MOTA	5421		PHE				.986		-32.915		14.60	A
	ATOM	5422	CZ	PHE				.788		-33.948		14.65	A
	ATOM	5423	С	PHE				.921		-35.689		17.40	A
	ATOM	5424	0	PHE				.760		-36.830		18.04	A
	MOTA	5425	N	SER				.129		-34.674		17.46	A
30	ATOM	5426	CA	SER	Α	689		.006		-34.837		18.27	A
	ATOM	5427	CB	SER	А	689		.012		-33.689		17.90	A
	ATOM	5428	OG	SER				.564		-32.473		17.73	A
	ATOM	5429	С	SER	A	689		.574		-34.815		18.53	A
	MOTA	5430	0	SER			26.	.765		-34.561		17.93	A
35	ATOM	5431	N	GLU				.729		-35.077		19.26	A
	MOTA	5432	CA	GLU				.188		-35.077		20.14	А
	MOTA	5433	CB	GLU	Α	690		.130		-35.697		22.21	А
	MOTA	5434	CG	GLU	Α	690	22	.856		-34.890		24.08	A
	ATOM	5435	CD	GLU	A	690	21	.919		-35.489		26.32	A
40	ATOM	5436	OE1	GLU	А	690	21.	.439		-36.623		26.83	А
	MOTA	5437	OE2	GLU				.670		-34.829		28.62	A
	MOTA	5438	С	GLU	Α	690		.539		-33.669		19.89	А
	MOTA	5439	0	GLU	Α	690	26	.028		-33.490		19.45	A
	MOTA	5440	N	GLN	Α	691	25	.279	82.347	-32.672	1.00	19.85	А
45	ATOM	5441	CA	GLN	Α	691	25	.611	82.677	-31.289	1.00	20.01	A
	ATOM	5442	CB	GLN	Α	691	24	.519	82.182	-30.340	1.00	22.21	А
	ATOM	5443	CG	GLN	Α	691	23	.204	82.921	-30.479	1.00	25.23	А
	ATOM	5444	CD	GLN	Α	691	22	.014	81.998	-30.363		27.55	А
	ATOM	5445	OE1	GLN	Α	691	21	.813	81.345	-29.336	1.00	28.65	А
50	ATOM	5446		GLN				.215		-31.423	1.00	29.19	Α
	ATOM	5447	С			691		.948		-30.925	1.00	19.08	А
	ATOM	5448	0			691		.359		-29.766	1.00	19.03	Α
	ATOM	5449	N			692		.615		-31.925		18.05	А
	ATOM	5450	CA			692		.907		-31.702		17.80	А
55	ATOM	5451	C			692		.877		-30.986		17.67	А

DISTRUCTOR OF THE

	MOTA	5452	0	GLY			29.878		-30.409	1.00 18.07	Α
	MOTA	5453	N	LEU	Α	693	27.735		-31.024	1.00 17.63	А
	ATOM	5454	CA	LEU			27.601		-30.368	1.00 17.63	Α
_	ATOM	5455	CB	LEU			26.369		-29.462	1.00 19.17	A
5	MOTA	5456	CG	LEU			26.470		-28.239	1.00 20.12	Α
	MOTA	5457		LEU			25.076		-27.735	1.00 22.01	Α
	MOTA	5458	CD2	LEU			27.290		-27.158	1.00 20.87	Α
	MOTA	5459	С	LEU	А	693	27.503		-31.367	1.00 17.45	Α
	MOTA	5460	0	LEU	Α	693	26.901		-32.435	1.00 16.57	Α
10	MOTA	5461	N	LEU	Α	694	28.095		-31.008	1.00 17.12	Α
	MOTA	5462	CA	LEU			28.085		-31.866	1.00 17.42	Α
	MOTA	5463	CB	LEU	Α	694	28.785		-31.164	1.00 17.16	Α
	MOTA	5464	CG	LEU	А	694	28.960	71.618	-31.993	1.00 16.87	A
	MOTA	5465	CD1	LEU	Α	694	29.935	71.876	-33.132	1.00 16.72	Α
15	MOTA	5466	CD2	LEU	Α	694	29.480	70.495	-31.097	1.00 16.91	Α
	ATOM	5467	С	LEU	Α	694	26.658	73.659	-32.223	1.00 17.52	Α
	MOTA	5468	0	LEU	Α	694	25.764	73.707	-31.380	1.00 16.45	Α
	ATOM	5469	N	LYS	Α	695	26.458	73.264	-33.478	1.00 18.82	Α
	MOTA	5470	CA	LYS	Α	695	25.147	72.847	-33.961	1.00 20.55	Α
20	MOTA	5471	CB	LYS	Α	695	24.614	73.868	-34.971	1.00 22.63	Α
	MOTA	5472	CG	LYS	Α	695	23.347	73.447	-35.697	1.00 26.75	А
	MOTA	5473	CD	LYS	Α	695	22.670	74.641	-36.378	1.00 29.24	Α
	MOTA	5474	CE	LYS	Α	695	22.138	75.631	-35.345	1.00 30.84	A
	ATOM	5475	NZ	LYS			21.443	76.797	-35.961	1.00 32.11	Α
25	ATOM	5476	С	LYS			25.197	71.466	-34.602	1.00 20.01	Α
	ATOM	5477	0	LYS	Α	695	24.230	70.710	-34.527	1.00 20.35	Α
	ATOM	5478	N	SER	A	696	26.323	71.136	-35.230	1.00 19.98	Α
	MOTA	5479	CA	SER	Α	696	26.470	69.838	-35.882	1.00 19.65	Α
	MOTA	5480	СВ	SER			25.755	69.844	-37.238	1.00 19.79	A
30	MOTA	5481	OG	SER			26.472	70.618	-38.188	1.00 19.06	Α
	MOTA	5482	С	SER			27.926	69.450	-36.095	1.00 19.73	Α
	ATOM	5483	0	SER			28.813	70.308	-36.131	1.00 19.51	А
	MOTA	5484	N	ILE	Α	697	28.157	68.148	-36.243	1.00 18.94	А
	ATOM	5485	CA	ILE			29.488	67.599	-36.476	1.00 19.29	Α
35	MOTA	5486	СВ	ILE			30.004	66.795	-35.257	1.00 18.22	А
	ATOM	5487	CG2	ILE			31.349	66.159	-35.584	1.00 17.95	Α
	ATOM	5488		ILE			30.130	67.701	-34.032	1.00 17.15	А
	ATOM	5489	CD1	ILE			30.598	66.968	-32.782	1.00 16.28	Α
	ATOM	5490	С	ILE			29.435	66.633	-37.660	1.00 20.96	Α
40	ATOM	5491	0	ILE			28.591	65.734	-37.694	1.00 21.08	Α
	ATOM	5492	N	GLN			30.325	66.825	-38.627	1.00 22.27	А
	ATOM	5493	CA	GLN			30.396	65.943	-39.786	1.00 23.77	Α
	ATOM	5494	СВ	GLN			30.292		-41.096	1.00 24.36	А
	ATOM	5495	CG	GLN			29.972		-42.291	1.00 25.87	A
45	ATOM	5496	CD	GLN			30.216		-43.631	1.00 27.18	А
10	ATOM	5497	OE1				29.671		-44.654	1.00 28.35	A
	ATOM	5498	NE2				31.046		-43.635	1.00 27.17	А
	ATOM	5499	С	GLN			31.743		-39.725	1.00 24.33	А
	ATOM	5500	Ö	GLN			32.788		-39.951	1.00 24.42	А
50	ATOM	5501	N	LEU			31.719		-39.423	1.00 25.41	A
50	ATOM	5502	CA	LEU			32.944		-39.301	1.00 26.65	A
	ATOM	5503	CB	LEU			32.615		-38.821	1.00 26.18	A
	ATOM	5504	CG	LEU			31.898		-37.467	1.00 25.56	A
	ATOM	5505		LEU			31.704		-37.076	1.00 24.95	A
55		5506		LEU			32.713		-36.410	1.00 25.37	A
	MOTA	2200	CDZ	пeО	'n	099	22.113	02.301	50.410	1.00 20.07	• •

	ATOM	5507	С	LEU A	699	33.785	63.095 -40.569	1.00 28.22	А
	ATOM	5508	Ö	LEU A		35.008	63.219 -40.514	1.00 28.15	А
	ATOM	5509	N	THR A		33.137	62.895 -41.711	1.00 30.08	Α
	ATOM	5510	CA	THR A		33.853	62.820 -42.979	1.00 32.39	Α
5	ATOM	5511	СВ	THR A		33.986	61.360 -43.462	1.00 32.28	Α
	ATOM	5512	OG1	THR A		32.682	60.798 -43.660	1.00 32.31	Α
	ATOM	5513	CG2	THR A		34.740	60.531 -42.438	1.00 31.92	Α
	ATOM	5514	C	THR A		33.123	63.625 -44.045	1.00 33.91	A
	ATOM	5515	Ō	THR A		31.955	63.968 -43.878	1.00 33.85	A
10	ATOM	5516	N	GLN A		33.816	63.927 -45.137	1.00 36.39	А
	ATOM	5517	CA	GLN A		33.222	64.698 -46.224	1.00 38.80	Α
	ATOM	5518	СВ	GLN A		34.245	64.908 -47.342	1.00 39.86	Α
	MOTA	5519	CG	GLN A		35.569	65.462 -46.860	1.00 41.67	Α
	ATOM	5520	CD	GLN A		36.454	65.926 -47.998	1.00 42.85	А
15	ATOM	5521	OE1	GLN A		36.088	66.830 -48.753	1.00 43.40	A
	ATOM	5522		GLN A		37.628	65.313 -48.129	1.00 43.29	Α
	ATOM	5523	С	GLN A		31.997	63.987 -46.782	1.00 39.49	Α
	ATOM	5524	0	GLN A	701	31.102	64.617 -47.343	1.00 40.50	Α
	ATOM	5525	N	ASP A	702	31.962	62.669 -46.615	1.00 40.44	Α
20	MOTA	5526	CA	ASP A	702	30.854	61.856 -47.101	1.00 41.22	Α
	ATOM	5527	СВ	ASP A	702	31.325	60.416 -47.314	1.00 42.70	A
	ATOM	5528	CG	ASP A	702	32.717	60.341 -47.909	1.00 43.88	Α
	MOTA	5529	OD1	ASP A	702	32.906	60.804 -49.056	1.00 44.15	Α
	MOTA	5530	OD2	ASP A	702	33.624	59.822 -47.221	1.00 44.63	Α
25	ATOM	5531	С	ASP A	702	29.698	61.859 -46.105	1.00 40.87	A
	ATOM	5532	0	ASP A	702	28.556	62.159 -46.457	1.00 41.18	A
	MOTA	5533	N	SER A	703	30.014	61.520 -44.859	1.00 39.98	А
	MOTA	5534	CA	SER A	703	29.029	61.452 -43.786	1.00 38.58	A
	ATOM	5535	СВ	SER A	703	29.739	61.217 -42.450	1.00 38.76	А
30	MOTA	5536	OG		703	30.659	62.258 -42.172	1.00 37.91	A
	ATOM	5537	С		703	28.147	62.693 -43.683	1.00 37.58	A
	ATOM	5538	0	SER A	703	28.471	63.751 -44.224	1.00 37.44	A
	MOTA	5539	N	PRO A		27.009	62.572 -42.983	1.00 36.57	A
	ATOM	5540	CD		704	26.426	61.309 -42.488	1.00 36.72	A
35	ATOM	5541	CA		704	26.068	63.677 -42.798	1.00 35.60	A
	MOTA	5542	СВ		704	24.751	62.956 -42.571	1.00 36.25	A
	ATOM	5543	CG		704	25.184	61.784 -41.753	1.00 36.32	A
	ATOM	5544	С		704	26.434	64.571 -41.616	1.00 34.44	A
40	MOTA	5545	0	PRO A		27.327	64.250 -40.832	1.00 33.95	A
4 0	MOTA	5546			705	25.730		1.00 32.79	A
	ATOM	5547	CA		705	25.946	66.640 -40.416	1.00 30.84	A A
	ATOM	5548	CB		705	25.500		1.00 31.81 1.00 33.35	A
	ATOM	5549	CG		A 705	26.333	68.634 -41.932	1.00 33.33	A
45	ATOM	5550		HIS A		26.029	68.952 -43.212	1.00 34.13	A
45	ATOM	5551		HIS		27.664	68.951 -41.764	1.00 33.09	A
	MOTA	5552		HIS A		28.145	69.437 -42.894	1.00 33.37	A
	ATOM	5553		HIS		27.173	69.448 -43.789	1.00 34.00	A
	ATOM	5554	C		705	25.136	66.186 -39.209 66.491 -39.096	1.00 28.15	A
E0.	ATOM	5555	0		705	23.952		1.00 26.49	A
50	MOTA	5556	N		706	25.781	65.452 -38.310 64.950 -37.120	1.00 24.60	A
	ATOM	5557	CA		706	25.109	63.920 -36.384	1.00 24.00	A
	MOTA	5558	CB CC1		706	25.994 25.276	63.404 -35.148	1.00 23.73	A
	MOTA	5559		VAL		25.276 26.335		1.00 23.27	A
==	ATOM	5560		VAL		26.335		1.00 23.30	A
55	ATOM	5561	С	VAL	706	24.757	00.073 -30.134	1.00 23.10	n

	ATOM	5562	0	VAL .	Α	706	25.622		-35.745	1.00 23.66	
	ATOM	5563	N	PRO .	A	707	23.473	66.187	-35.780	1.00 23.08	8 A
	ATOM	5564	CD	PRO .	Α	707	22.320	65.469	-36.351	1.00 23.24	A A
	ATOM	5565	CA	PRO .			23.025	67.229	-34.853	1.00 22.31	A
5	ATOM	5566	CB	PRO .			21.507	67.042	-34.831	1.00 22.67	7 A
	ATOM	5567	CG	PRO .			21.213		-36.188	1.00 22.98	
	ATOM	5568	C	PRO .			23.635		-33.456	1.00 21.45	
	ATOM	5569	0	PRO .			23.396		-32.761	1.00 21.52	
		5570		VAL .			24.433		-33.063	1.00 20.14	
10	ATOM		N				25.070		-31.748	1.00 18.90	
10	ATOM	5571	CA	VAL .			26.532		-31.740	1.00 18.48	
	ATOM	5572	CB	VAL .						1.00 17.73	
	ATOM	5573		VAL .			27.171		-30.422		
	ATOM	5574		VAL .			26.569		-32.319	1.00 17.97	
	MOTA	5575	С	VAL .			25.046		-31.349	1.00 19.08	
15	MOTA	5576	0	VAL .			25.819		-31.863	1.00 18.79	
	MOTA	557 <i>7</i>	N	HIS.	A	709	24.142		-30.445	1.00 19.13	
	ATOM	5578	CA	HIS.	Α	709	24.001	71.310	-30.030	1.00 19.46	
	ATOM	5579	CB	HIS .	Α	709	22.541	71.758	-30.180	1.00 21.51	L A
	ATOM	5580	CG	HIS	Α	709	22.012	71.661	-31.577	1.00 24.16	5 A
20	MOTA	5581	CD2	HIS.	Α	709	21.797	70.590	-32.378	1.00 25.73	3 A
	ATOM	5582	ND1	HIS.	Α	709	21.600	72.764	-32.295	1.00 26.33	3 A
	ATOM	5583		HIS			21.152	72.377	-33.477	1.00 26.24	A A
	ATOM	5584		HIS			21.261		-33.552	1.00 25.69) A
	ATOM	5585	С	HIS			24.441		-28.602	1.00 18.62	
25	ATOM	5586	Ö	HIS			24.065		-27.679	1.00 18.93	
20	ATOM	5587	N	PHE			25.244		-28.435	1.00 17.43	
	ATOM	5588	CA	PHE			25.705		-27.120	1.00 16.63	
	ATOM	5589	CB	PHE			27.123		-27.195	1.00 16.20	
							28.204		-26.716	1.00 16.1	
20	ATOM	5590	CG	PHE			29.374		-27.451	1.00 16.64	
30	ATOM	5591		PHE						1.00 16.3	
	ATOM	5592		PHE			28.069		-25.512		
	MOTA	5593		PHE			30.398		-26.994	1.00 16.33	
	ATOM	5594		PHE			29.086		-25.046	1.00 16.04	
	MOTA	5595	CZ	PHE			30.251		-25.790	1.00 16.18	
35	ATOM	5596	С	PHE			24.730		-26.678	1.00 17.2	
	ATOM	5597	0	PHE			24.296		-27.487	1.00 16.24	
	MOTA	5598	N	LYS	Α	711	24.380		-25.399	1.00 16.58	
	ATOM	5599	CA	LYS	Α	711	23.453		-24.854	1.00 18.02	
	MOTA	5600	CB	LYS			22.016		-25.000	1.00 19.78	
40	MOTA	5601	CG	LYS	Α	711	20.960	75.492	-24.411	1.00 22.4	7 A
	MOTA	5602	CD	LYS	Α	711	19.566	74.874	-24.524	1.00 24.0	
	MOTA	5603	CE	LYS	Α	711	19.132	74.717	-25.973	1.00 24.28	3 A
	MOTA	5604	ΝZ	LYS			17.796	74.059	-26.070	1.00 26.13	3 A
	ATOM	5605	С	LYS			23.776	75.309	-23.384	1.00 17.48	3 A
45	MOTA	5606	Ō	LYS			24.155		-22.681	1.00 17.60) A
10	ATOM	5607	N	PHE			23.636		-22.926	1.00 16.29	
	ATOM	5608	CA	PHE			23.898		-21.532	1.00 15.83	
		5609	CB	PHE			24.890		-21.413	1.00 15.7	
	ATOM		CG	PHE			26.312		-21.718	1.00 15.10	
50	ATOM	5610		PHE			26.800		-23.020	1.00 14.6	
50	ATOM	5611								1.00 14.0	
	ATOM	5612		PHE			27.149		-20.703		
	MOTA	5613		PHE			28.103		-23.308	1.00 14.8	
	ATOM	5614		PHE			28.453		-20.977	1.00 14.5	
	ATOM	5615	CZ	PHE			28.932		-22.282	1.00 14.6	
55	MOTA	5616	С	PHE	A	/12	22.590	11.209	-20.845	1.00 15.4	9 A

	ATOM	5617	0	PHE	Α	712	21.801	78.000	-21.361	1.00 15.25	Α
	ATOM	5618	N	LEU	Α	713	22.347	76.594	-19.693	1.00 15.13	A
	ATOM	5619	CA	LEU	Α	713	21.122	76.853	-18.949	1.00 15.92	Α
	ATOM	5620	СВ	LEU	Α	713	20.165	75.654	-19.040	1.00 15.54	
5	MOTA	5621	CG	LEU	Α	713	19.731	75.215	-20.442	1.00 16.03	
	ATOM	5622	CD1	LEU	Α	713	20.687	74.147	-20.966	1.00 16.71	. A
	ATOM	5623	CD2	LEU	Α	713	18.310	74.655	-20.398	1.00 15.98	A
	ATOM	5624	С	LEU	Α	713	21.452	77.150	-17.495	1.00 16.60	A
	ATOM	5625	0	LEU			22.615	77.106	-17.092	1.00 16.74	A
10	ATOM	5626	N	LYS			20.432	77.469	-16.709	1.00 16.73	A
	ATOM	5627	CA	LYS			20.648	77.766	-15.307	1.00 17.78	A
	ATOM	5628	СВ	LYS			20.707	79.282	-15.083	1.00 20.35	A
	ATOM	5629	CG	LYS			19.521	80.049	-15.640	1.00 23.01	A
	ATOM	5630	CD	LYS			19.545		-15.208	1.00 25.87	A
15	ATOM	5631	CE	LYS			20.797		-15.693	1.00 27.66	A
	ATOM	5632	NZ	LYS			20.843		-15.245	1.00 29.31	. A
	ATOM	5633	С	LYS			19.585		-14.405	1.00 17.94	Α
	ATOM	5634	0	LYS			18.399		-14.752	1.00 17.86	A
	ATOM	5635	N	TYR			20.034		-13.255	1.00 17.22	
20	ATOM	5636	CA	TYR			19.153		-12.253	1.00 16.49	
	ATOM	5637	CB	TYR			19.738		-11.658	1.00 15.95	
	ATOM	5638	CG			715	19.644		-12.540	1.00 14.81	
	ATOM	5639	CD1				20.718		-13.334	1.00 15.39	
	ATOM	5640	CE1	TYR			20.634		-14.142	1.00 14.36	
25	ATOM	5641	CD2	TYR			18.479		-12.572	1.00 14.77	
20	ATOM	5642	CE2	TYR			18.383		-13.372	1.00 14.23	
	ATOM	5643	CZ			715	19.459		-14.151	1.00 14.55	
	ATOM	5644	OH			715	19.356		-14.936	1.00 13.86	
	MOTA	5645	C			715	19.068		-11.145	1.00 17.13	
30	ATOM	5646	0			715	20.021		-10.916	1.00 17.00	
30	ATOM	5647	N			716	17.936		-10.455	1.00 17.07	
	ATOM	5648	CA			716	17.783	78.116	-9.368	1.00 16.98	
	ATOM	5649	C			716	17.685	77.390	-8.040	1.00 17.56	
	ATOM	5650	0			716	18.003	76.200	-7.943	1.00 17.72	
35		5651	N			717	17.253	78.108	-7.012	1.00 17.71	
33	MOTA	5652	CA			717	17.099	77.536	-5.683	1.00 18.46	
	ATOM ATOM	5653	CB			717	18.017	78.246	-4.671	1.00 18.67	
		5654		VAL			17.805	77.675	-3.284	1.00 20.04	
	ATOM ATOM	5655		VAL			19.478	78.078	-5.094	1.00 18.36	
40	ATOM		C	VAL			15.643			1.00 19.21	
40		5657	_			717	14.963	78.622	-5.664	1.00 18.75	
	ATOM		O N			718	15.165	76.754	-4.435	1.00 19.97	
	ATOM	5658	N Cn			718	13.781	76.791	-3.976	1.00 21.50	
	MOTA	5659	CA			718	13.408	75.451	-3.335	1.00 20.47	
45	ATOM	5660	CB				13.489	74.288	-4.302	1.00 20.11	
45	ATOM	5661	CG			718		72.943	-3.604	1.00 20:11	
	ATOM	5662	CD			718	13.385 13.656	72.943	-3.504	1.00 19.26	
	MOTA	5663	NE			718		70.569	-4.228	1.00 19.20	
	ATOM	5664	CZ			718	13.681				
EΩ	ATOM	5665		ARG			13.449	70.180	-2.980 -5.164	1.00 19.86	
50	ATOM	5666		ARG			13.944	69.668	-5.164	1.00 19.58	
	ATOM	5667	C			718	13.524	77.924	-2.992	1.00 22.88	
	ATOM	5668	0			718	14.349	78.214	-2.130	1.00 22.82	
	ATOM	5669	N			719	12.371	78.567	-3.132	1.00 25.26	
	MOTA	5670	CA			719	12.001	79.666	-2.250	1.00 27.91	
55	ATOM	5671	CB	SER	Α	719	11.035	80.614	-2.964	1.00 28.09) A

		ATOM	5672	00	SER A	710	9.875	79.922	-3.389	1.00 29.06	A
				OG C	-						
		ATOM	5673	С	SER A		11.346	79.111	-0.990	1.00 29.36	A
		ATOM	5674	0	SER A		11.204	79.812	0.009	1.00 29.63	Α
	_	ATOM	5675	N	HIS A		10.952	77.841	-1.049	1.00 31.11	Α
	5	MOTA	5676	CA	HIS A	720	10.311	77.173	0.077	1.00 32.47	Α
		ATOM	5677	CB	HIS A	720	8.848	76.867	-0.252	1.00 34.68	Α
		ATOM	5678	CG	HIS A	720	8.066	78.062	-0.697	1.00 37.29	Α
		ATOM	5679	CD2	HIS A	720	7.384	78.304	-1.842	1.00 38.42	A
		ATOM	5680		HIS A		7.922	79.190	0.081	1.00 38.37	А
	10	ATOM	5681		HIS A		7.185	80.077	-0.565	1.00 38.97	A
	10	ATOM	5682		HIS A		6.846	79.564	-1.734	1.00 39.06	A
		ATOM	5683	C	HIS A		11.026	75.865	0.403	1.00 33.00	A
									-0.497	1.00 31.34	A
		ATOM	5684	0	HIS A		11.453	75.142			
	15	MOTA	5685	N	GLY A		11.153	75.569	1.692	1.00 30.87	A
	15	ATOM	5686	CA	GLY A		11.798	74.335	2.105	1.00 29.22	A
		MOTA	5687	С	GLY A		13.315	74.357	2.100	1.00 27.82	Α
		MOTA	5688	0	GLY A		13.935	75.412	2.210	1.00 27.64	Α
		MOTA	5689	N	ASP A	722	13.906	73.172	1.966	1.00 26.07	Α
1622.		ATOM	5690	CA	ASP A	722	15.356	73.002	1.960	1.00 24.10	Α
	20	ATOM	5691	СВ	ASP A	722	15.692	71.509	1.918	1.00 23.11	A
ı,Q		ATOM	5692	CG	ASP A		15.151	70.755	3.125	1.00 22.96	А
4. L		ATOM	5693		ASP A		15.073	69.509	3.069	1.00 21.33	А
ij.		ATOM	5694		ASP A		14.814	71.412	4.134	1.00 22.49	A
		ATOM	5695	C	ASP A		16.029	73.717	0.795	1.00 23.18	A
₹1 22 7 168 5	25	ATOM	5696	0	ASP A		15.590	73.611	-0.348	1.00 23.10	A
194	25				ASP A				1.096	1.00 22.31	A
		ATOM	5697	N			17.101	74.444			
		ATOM	5698	CA	ARG A		17.844	75.179	0.080	1.00 22.26	A
21		ATOM	5699	CB	ARG A		18.173	76.595	0.567	1.00 24.76	A
\$ 1000 Mg	20	ATOM	5700	CG	ARG A		17.039	77.606	0.440	1.00 29.74	A
	30	MOTA	5701	CD	ARG A		15.975	77.422	1.506	1.00 33.28	A
1,44		ATOM	5702	NE	ARG A		14.938	78.450	1.411	1.00 36.56	А
		ATOM	5703	CZ	ARG A	723	13.960	78.617	2.297	1.00 38.09	А
ļak		ATOM	5704	NH1	ARG A	723	13.874	77.822	3.358	1.00 39.31	Α
		MOTA	5705	NH2	ARG A	723	13.067	79.584	2.126	1.00 39.06	Α
i di	35	ATOM	5706	С	ARG A	723	19.144	74.486	-0.310	1.00 20.66	A
2		MOTA	5707	0	ARG A	723	19.776	73.811	0.506	1.00 19.49	Α
		ATOM	5708	N	SER A		19.537	74.665	-1.567	1.00 18.62	А
		ATOM	5709	CA	SER A		20.771	74.087	-2.075	1.00 17.82	A
		ATOM	5710	CB	SER A		20.882	74.309	-3.586	1.00 16.97	A
	40	ATOM	5711	OG	SER A		19.807	73.698	-4.279	1.00 17.89	A
	40							74.763	-1.381	1.00 17.03	
		MOTA	5712	С	SER A		21.947				A
		MOTA	5713	0	SER A		21.888	75.952	-1.053	1.00 17.26	A
		ATOM	5714	N	GLY A		23.013	73.999	-1.164	1.00 16.49	A
	4	MOTA	5715	CA	GLY A		24.207	74.530	-0.526	1.00 14.92	А
	45	MOTA	5716	С	GLY A		25.428	73.840	-1.110	1.00 14.29	А
		ATOM	5717	0	GLY A	725	25.351	73.275	-2.201	1.00 14.17	A
		ATOM	5718	N	ALA A	726	26.548	73.871	-0.392	1.00 13.42	Α
		MOTA	5719	CA	ALA A	726	27.778	73.241	-0.869	1.00 12.82	Α
		MOTA	5720	CB	ALA A	726	28.916	73.496	0.126	1.00 12.13	A
	50	ATOM	5721	С	ALA A		27.624	71.736	-1.104	1.00 12.97	А
		ATOM	5722	Ö	ALA A		28.265	71.171	-1.994	1.00 13.34	A
		ATOM	5723	N	TYR A		26.777	71.088	-0.309	1.00 12.39	A
		ATOM	5724	CA	TYR A		26.574	69.647	-0.440	1.00 12.54	A
								68.993		1.00 12.34	
	55	MOTA	5725	CB	TYR A		26.372		0.930		A
	55	ATOM	5726	CG	TYR A	121	27.389	69.346	1.980	1.00 11.70	А

		ATOM	5727	CD1	TYR A	727	27.230	70.474	2.785	1.00 11.79	Α
		MOTA	5728	CE1	TYR A	727	28.162	70.785	3.776	1.00 12.23	Α
		ATOM	5729	CD2			28.506	68.539	2.185	1.00 10.95	Α
		ATOM	5730	CE2			29.441	68.840	3.165	1.00 10.75	А
	5	ATOM	5731	CZ	TYR A		29.265	69.959	3.959	1.00 11.16	А
	Ū	ATOM	5732	ОН	TYR A		30.175	70.230	4.950	1.00 11.14	Α
		ATOM	5733	C	TYR A		25.368	69.272	-1.287	1.00 12.80	А
		ATOM	5734	0	TYR A		25.465	68.461	-2.210	1.00 12.13	A
		ATOM	5735	N	LEU A		24.227	69.864	-0.948	1.00 13.19	A
	10	ATOM	5736	CA	LEU A		22.965	69.563	-1.608	1.00 13.13	A
	10	ATOM	5737	CB	LEU A		21.815	69.751	-0.611	1.00 13.02	A
					LEU A		21.813	69.108	0.769	1.00 13.83	A
		ATOM	5738	CG			20.719	69.334	1.599	1.00 12.34	A
		ATOM	5739		LEU A						A
	15	ATOM	5740		LEU A		22.260	67.627	0.608	1.00 13.66	
	15	ATOM	5741	С	LEU A		22.616	70.325	-2.879	1.00 14.23	A
		ATOM	5742	0	LEU A		22.853	71.527	-2.992	1.00 14.66	A
		MOTA	5743	N	PHE A		22.038	69.592	-3.828	1.00 14.78	A
		ATOM	5744	CA	PHE A		21.569	70.148	-5.089	1.00 15.09	A
11:22	20	MOTA	5745	CB	PHE A		22.097	69.338	-6.278	1.00 14.90	A
	20	MOTA	5746	CG	PHE A		21.636	69.848	-7.624	1.00 14.75	A
्राध्याने , स्वर्थः		MOTA	5747		PHE A		21.579	68.992	-8.719	1.00 14.83	A
		ATOM	5748		PHE A		21.280	71.186	-7.801	1.00 14.81	Α
1,11		MOTA	5749		PHE A		21.174	69.456	-9.973	1.00 14.77	A
		MOTA	5750	CE2	PHE A		20.875	71.661	-9.051	1.00 14.05	A
	25	MOTA	5751	CZ	PHE A		20.821	70.797	-10.137	1.00 14.66	Α
		MOTA	5752	С	PHE A		20.047	70.000	-4.997	1.00 15.61	A
		ATOM	5753	0	PHE A	729	19.519	68.893	-5.089	1.00 15.12	A
E1:		MOTA	5754	N	LEU A	730	19.353	71.116	-4.794	1.00 15.87	A
		MOTA	5755	CA	LEU A	730	17.899	71.115	-4.673	1.00 16.28	A
	30	MOTA	5756	CB	LEU A	730	17.504	71.461	-3.238	1.00 15.75	A
1,4,3		MOTA	5757	CG	LEU A	730	17.891	70.417	-2.186	1.00 16.05	A
IJ		ATOM	5758	CD1	LEU A	730	17.851	71.032	-0.800	1.00 16.81	А
ļ:±		MOTA	5759	CD2	LEU A	730	16.947	69.228	-2.281	1.00 15.75	A
		MOTA	5760	С	LEU A	730	17.325	72.146	-5.631	1.00 16.38	Α
į.i.	35	MOTA	5761	0	LEU A	730	16.851	73.203	-5.212	1.00 16.56	Α
u		MOTA	5762	N	PRO A	731	17.353	71.843	-6.937	1.00 16.67	Α
		ATOM	5763	CD	PRO A	731	17.697	70.533	-7.522	1.00 16.03	А
		ATOM	5764	CA	PRO A	731	16.843	72.752	-7.964	1.00 16.82	Α
		MOTA	5765	СВ	PRO A	731	17.196	72.031	-9.257	1.00 16.40	A
	40	MOTA	5766	CG	PRO A	731	17.024	70.590	-8.872	1.00 16.72	A
		MOTA	5767	С	PRO A		15.356	73.060	-7.873	1.00 17.55	A
		MOTA	5768	0	PRO A		14.557	72.231	-7.429	1.00 16.89	Α
		ATOM	5769	N	ASN A		14.997	74.268	-8.294	1.00 18.54	A
		ATOM	5770	CA	ASN A		13.604	74.686	-8.298	1.00 19.97	А
	45	ATOM	5771	СВ	ASN A		13.494	76.193	-8.029	1.00 21.38	А
		ATOM	5772	CG	ASN A		14.176	77.033	-9.092	1.00 22.50	А
		ATOM	5773		ASN A		15.257	76.694	-9.569	1.00 23.48	A
		ATOM	5774		ASN A		13.551	78.148	-9.457	1.00 23.21	A
		ATOM	5775	C	ASN A		13.051	74.335	-9.673	1.00 19.85	A
	50	ATOM	5776	0	ASN A		12.525		-10.389	1.00 19.03	A
	50	ATOM	5777	N	GLY A		13.198		-10.038	1.00 20.43	A
				N CA					-10.038	1.00 19.13	A
		ATOM	5778		GLY A		12.711				A
		ATOM	5779	C	GLY A		13.785		-12.384	1.00 19.05	
	EE.	ATOM	5780	0	GLY A		14.950		-12.126	1.00 18.33	A
	55	ATOM	5781	N	PRO A	134	13.424	12.020	-13.596	1.00 18.74	A

		MOTA	5782	CD	PRO A	734	12.079	71.580 -14.004	1.00 19.27	Α
		ATOM	5783	CA	PRO A	734	14.372	71.878 -14.704	1.00 18.72	Α
		ATOM	5784	CB	PRO A	734	13.488	71.423 -15.864	1.00 18.91	Α
		ATOM	5785	CG	PRO A	734	12.381	70.691 -15.187	1.00 19.56	Α
	5	ATOM	5786	C	PRO A	734	15.040	73.216 -14.994	1.00 18.56	Α
	•	ATOM	5787	Ö	PRO A		14.472	74.272 -14.716	1.00 17.70	А
		ATOM	5788	N	ALA A		16.236	73.163 -15.569	1.00 18.32	А
		ATOM	5789	CA	ALA A		16.990	74.370 -15.885	1.00 18.62	A
			5790	CB	ALA A		18.389	73.996 -16.359	1.00 17.27	A
	10	ATOM						75.230 -16.939	1.00 17.27	A
	10	ATOM	5791	С	ALA A		16.298			
		MOTA	5792	0	ALA A		15.526	74.731 -17.756	1.00 19.40	A
		MOTA	5793	N	SER A		16.585	76.528 -16.902	1.00 19.80	A
		ATOM	5794	CA	SER A		16.024	77.488 -17.846	1.00 20.40	A
		MOTA	5795	CB	SER A		15.392	78.664 -17.097	1.00 20.65	Α
	15	MOTA	5796	OG	SER A		14.423	78.217 -16.164	1.00 23.95	Α
		ATOM	5797	С	SER A	736	17.168	78.000 -18.716	1.00 20.53	Α
		MOTA	5798	0	SER A	736	18.277	78.210 -18.229	1.00 19.37	Α
		ATOM	5799	N	PRO A	737	16.911	78.217 -20.013	1.00 21.05	Α
.,~~		ATOM	5800	CD	PRO A	737	15.647	78.006 -20.737	1.00 21.76	Α
	20	ATOM	5801	CA	PRO A	737	17.955	78.705 -20.919	1.00 22.31	Α
i II		ATOM	5802	CB	PRO A		17.227	78.812 -22.261	1.00 22.46	Α
J		ATOM	5803	CG	PRO A		16.133	77.790 -22.147	1.00 22.19	Α
M		ATOM	5804	C	PRO A		18.539	80.048 -20.489	1.00 22.95	Α
Ö		ATOM	5805	0	PRO A		17.816	80.923 -20.015	1.00 22.83	А
f;;;;;f° R÷2:3	25	ATOM	5806	N	VAL A		19.851	80.205 -20.641	1.00 24.07	A
12	20	ATOM	5807	CA	VAL A		20.498	81.466 -20.301	1.00 24.73	A
IJ		ATOM	5808	CB	VAL A		22.040	81.312 -20.194	1.00 25.09	A
1,31			5809		VAL A		22.700	82.688 -20.102	1.00 24.86	A
E1		ATOM						80.477 -18.973	1.00 24.00	A
1	30	ATOM	5810		VAL A		22.403	82.436 -21.441	1.00 24.29	A
: 5	30	ATOM	5811	С	VAL A		20.183			
		MOTA	5812	0	VAL A		20.322	82.083 -22.610	1.00 25.41	A
		ATOM	5813	N	GLU A		19.741	83.644 -21.102	1.00 26.97	A
fal.		ATOM	5814	CA	GLU A		19.428	84.650 -22.114	1.00 28.25	A
		ATOM	5815	CB	GLU A		18.665	85.818 -21.488	1.00 30.01	A
lak:	35	ATOM	5816	CG	GLU A		17.303	85.431 -20.940	1.00 33.60	A
		ATOM	5817	CD	GLU A		16.353	84.951 -22.022	1.00 35.66	Α
		ATOM	5818		GLU A		15.220	84.545 -21.681	1.00 37.20	A
		ATOM	5819	OE2	GLU A	739	16.734	84.983 -23.213	1.00 37.11	A
		ATOM	5820	С	GLU A	739	20.755	85.130 -22.681	1.00 27.58	Α
	40	ATOM	5821	0	GLU A	739	21.543	85.764 -21.981	1.00 27.38	Α
		ATOM	5822	N	LEU A	740	20.989	84.826 -23.952	1.00 27.14	Α
		ATOM	5823	CA	LEU A	740	22.244	85.170 -24.610	1.00 26.75	Α
		ATOM	5824	CB	LEU A		22.579	84.100 -25.645	1.00 26.88	Α
		ATOM	5825	CG	LEU A		22.553	82.653 -25.153	1.00 26.56	A
	45	ATOM	5826		LEU A		22.920	81.733 -26.304	1.00 26.17	А
	10	ATOM	5827		LEU A		23.520	82.479 -23.985	1.00 26.74	А
		ATOM	5828	C	LEU A		22.323	86.532 -25.282	1.00 26.81	А
		ATOM	5829	0	LEU A		23.419	87.060 -25.475	1.00 26.49	A
		MOTA	5830	N	GLY A		21.177	87.100 -25.642	1.00 26.45	A
	50								1.00 26.66	A
	50	MOTA	5831	CA	GLY A		21.192	88.383 -26.318	1.00 26.47	A
		ATOM	5832	С	GLY A		21.866	88.202 -27.666		
		ATOM	5833	0	GLY A		21.623	87.211 -28.352	1.00 27.08	A
		MOTA	5834	N	GLN A		22.713	89.150 -28.050	1.00 26.64	A
		ATOM	5835	CA	GLN A		23.431	89.070 -29.319		A
	55	MOTA	5836	CB	GLN A	742	23.055	90.256 -30.214	1.00 28.36	А

						301				
	ATOM	5837	CG	GLN A	742	21.562	90.324 -30.	534	1.00 31.41	Α
	ATOM	5838	CD	GLN A		21.193	91.499 -31.		1.00 33.06	А
	ATOM	5839	OE1			21.654	91.603 -32.		1.00 35.27	Α
	ATOM	5840	NE2			20.353	92.389 -30.		1.00 34.23	Α
5	ATOM	5841	C	GLN A		24.924	89.088 -28.		1.00 24.83	A
J	ATOM	5842	0	GLN A		25.595	90.106 -29.		1.00 25.14	А
		5843	N	PRO A		25.460	87.942 -28.		1.00 23.56	A
	ATOM			PRO A		24.758	86.644 -28.		1.00 22.94	A
	ATOM	5844	CD			26.869	87.778 -28.		1.00 21.91	A
10	ATOM	5845	CA	PRO A			86.355 -27.		1.00 22.16	A
10	ATOM	5846	CB	PRO A		26.910			1.00 22.10	A
	ATOM	5847	CG	PRO A		25.902	85.654 -28.		1.00 22.00	A
	ATOM	5848	С	PRO A		27.886	87.995 -29.			
	MOTA	5849	0	PRO A		27.612	87.742 -30.		1.00 20.15	A
	MOTA	5850	N	VAL A		29.068	88.469 -28.		1.00 19.08	A
15	MOTA	5851	CA	VAL A		30.146	88.704 -29.		1.00 17.97	A
	MOTA	5852	CB	VAL A	744	31.143	89.751 -29.		1.00 17.62	A
	MOTA	5853	CG1			32.305	89.900 -30.		1.00 16.50	A
	MOTA	5854	CG2	VAL A	744	30.435	91.090 -29.		1.00 18.66	A
	MOTA	5855	С	VAL A	744	30.875	87.385 -30.		1.00 17.11	Α
20	MOTA	5856	0	VAL A	744	31.257	86.704 -29.	125	1.00 16.81	A
	MOTA	5857	N	VAL A	745	31.054	87.028 -31.	344	1.00 15.64	A
	ATOM	5858	CA	VAL A	745	31.719	85.784 -31.	712	1.00 14.94	А
	ATOM	5859	СВ	VAL A	745	30.820	84.932 -32.	634	1.00 13.94	А
	ATOM	5860	CG1	VAL A	745	31.534	83.643 -33.	011	1.00 14.63	Α
25	ATOM	5861	CG2	VAL A	745	29.501	84.635 -31.	943	1.00 14.28	A
	ATOM	5862	С	VAL A		33.033	86.033 -32.	436	1.00 14.70	A
	MOTA	5863	0	VAL A		33.090	86.826 -33.	375	1.00 14.58	A
	ATOM	5864	N	LEU A		34.089	85.351 -31.		1.00 14.53	A
	ATOM	5865	CA	LEU A		35.402	85.494 -32.		1.00 14.40	А
30	ATOM	5866	СВ	LEU A		36.460	85.856 -31.		1.00 14.29	А
50	ATOM	5867	CG	LEU A		37.910	85.863 -32.		1.00 14.37	А
	ATOM	5868		LEU A		38.105	86.957 -33.		1.00 15.10	А
	ATOM	5869		LEU A		38.853	86.084 -30.		1.00 15.27	А
	ATOM	5870	C	LEU A		35.815	84.204 -33.		1.00 14.39	А
35		5871	0	LEU A		35.920	83.152 -32.		1.00 13.94	A
33	ATOM			VAL A		36.066	84.298 -34.		1.00 14.21	A
	MOTA	5872 5873	N	VAL A		36.467	83.135 -35.		1.00 15.07	A
	ATOM		CA			35.556	82.952 -36.		1.00 14.86	A
	MOTA	5874	CB	VAL A		35.974	81.703 -37.		1.00 15.78	A
40	ATOM	5875		VAL A			82.851 -36.		1.00 13.76	A
40	ATOM	5876		VAL A		34.098			1.00 14.32	A
	ATOM	5877	C	VAL A		37.909	83.263 -35.		1.00 15.47	
	ATOM	5878	0	VAL A		38.272	84.217 -36.			A
	ATOM	5879	N	THR A		38.736	82.305 -35.		1.00 15.28	A
	MOTA	5880	CA	THR A		40.134	82.299 -35.		1.00 16.46	A
45	MOTA	5881	CB	THR A		41.065	82.284 -34.		1.00 16.60	A
	MOTA	5882	OG1			40.862	83.485 -33.		1.00 16.45	A
	MOTA	5883	CG2	THR A	748	42.531	82.197 -35.		1.00 16.62	A
	MOTA	5884	С	THR A	748	40.361	81.048 -36.		1.00 17.60	Α
	ATOM	5885	0	THR A	748	40.133	79.931 -36.	228	1.00 17.28	А
50	ATOM	5886	N	LYS A		40.796	81.236 -37.	938	1.00 18.35	А
	ATOM	5887	CA	LYS A		41.031	80.112 -38.	829	1.00 19.29	А
	ATOM	5888	СВ	LYS A		40.192	80.263 -40.	099	1.00 21.29	А
	ATOM	5889	CG	LYS A		40.406	79.139 -41.	100	1.00 23.49	Α
	ATOM	5890	CD	LYS A		39.530	79.306 -42.		1.00 26.20	А
55	ATOM	5891	CE	LYS A		39.772	78.172 -43.		1.00 27.68	А
	711011	5571		11		.				

٠,١

	MOTA	5892	NZ	LYS	Α	749	38.949	78.318	-44.543	1.00 30.91	Α
	ATOM	5893	С	LYS	Α	749	42.498	79.971	-39.202	1.00 19.15	A
	ATOM	5894	0	LYS	Α	749	43.095	80.878	-39.791	1.00 18.79	Α
	MOTA	5895	N	GLY	Α	750	43.069	78.821	-38.862	1.00 18.42	Α
5	ATOM	5896	CA	GLY	Α	750	44.465	78.568	-39.164	1.00 18.50	Α
	MOTA	5897	С			750	44.660	77.198	-39.774	1.00 18.80	A
	MOTA	5898	0			750	43.759	76.354	-39.732	1.00 18.11	А
	ATOM	5899	N			751	45.839		-40.346	1.00 19.14	Α
	ATOM	5900	CA			751	46.161		-40.977	1.00 19.90	А
10	ATOM	5901	СВ			751	47.461		-41.777	1.00 22.12	Α
10	ATOM	5902	CG			751	47.381		-42.990	1.00 26.04	А
	ATOM	5903	CD	LYS			46.556		-44.111	1.00 28.95	A
	ATOM	5904	CE	LYS			46.615		-45.385	1.00 29.97	A
	ATOM	5905	NZ	LYS			45.821		-46.492	1.00 31.69	A
15	ATOM	5906	C			751	46.315		-39.949	1.00 18.94	A
15		5907	0	LYS			45.995		-40.227	1.00 18.88	A
	ATOM					752	46.805		-38.764	1.00 17.91	A
	ATOM	5908	N						-37.709	1.00 17.31	A
	ATOM	5909	CA			752	47.018 48.396		-37.073	1.00 17.88	A
20	ATOM	5910	CB			752	48.396			1.00 17.88	A
20	ATOM	5911	CG			752			-37.989		A
	ATOM	5912		LEU			50.882		-37.146	1.00 19.24 1.00 19.87	A
	ATOM	5913		LEU			49.674		-38.753		
	ATOM	5914	С			752	45.957		-36.615	1.00 16.94	A
25	MOTA	5915	0			752	45.637		-36.010	1.00 16.36	A
25	MOTA	5916	N			753	45.415		-36.361	1.00 15.88	A
	MOTA	5917	CA			753	44.409		-35.322	1.00 16.00	A
	MOTA	5918	СВ			753	45.089		-33.986	1.00 16.54	A
	MOTA	5919	CG			753	44.133		-32.803	1.00 19.19	A
20	ATOM	5920	CD			753	44.826		-31.535	1.00 20.56	A
30	ATOM	5921		GLU			45.182		-31.454	1.00 21.29	A
	MOTA	5922		GLU			45.022		-30.619	1.00 22.13	A
	MOTA	5923	С			753	43.418		-35.648	1.00 16.08	A
	MOTA	5924	0			753	43.807		-36.049	1.00 15.51	A
	MOTA	5925	N			754	42.137		-35.474	1.00 15.21	A
35	ATOM	5926	CA			754	41.086		-35.710	1.00 14.74	Α
	MOTA	5927	CB			754	40.266		-36.945	1.00 15.36	A
	MOTA	5928	OG			754	41.069		-38.111	1.00 15.30	А
	MOTA	5929	C	SER	Α	754	40.205		-34.477	1.00 15.07	Α
	MOTA	5930	0	SER	Α	754	40.272		-33.707	1.00 15.07	A
40	MOTA	5931	N	SER	Α	755	39.383		-34.277	1.00 14.22	Α
	MOTA	5932	CA	SER	Α	755	38.510		-33.115	1.00 15.10	А
	ATOM	5933	СВ	SER	Α	755	39.316		-31.848	1.00 16.03	А
	ATOM	5934	OG	SER	Α	755	39.812	79.737	-31.867	1.00 16.70	A
	MOTA	5935	С	SER	Α	755	37.378		-33.230	1.00 14.43	А
45	ATOM	5936	0	SER	Α	755	37.424	80.045	-34.038	1.00 14.90	A
	MOTA	5937	N	VAL	Α	756	36.354	78.898	-32.419	1.00 13.70	A
	MOTA	5938	CA	VAL	Α	756	35.208	79.784	-32.360	1.00 14.05	A
	ATOM	5939	СВ			756	33.937	79.117	-32.913	1.00 13.69	А
	ATOM	5940		VAL			32.736		-32.701	1.00 14.07	Α
50	ATOM	5941		VAL			34.122		-34.391	1.00 14.09	Α
	ATOM	5942	С			756	35.019		-30.879	1.00 13.94	А
	ATOM	5943	Ö			756	34.833		-30.078	1.00 14.01	А
	ATOM	5944	N			757	35.085		-30.522	1.00 13.67	А
	ATOM	5945	CA			757	34.936		-29.136	1.00 14.33	A
55	ATOM	5946	СВ			757	36.245		-28.642	1.00 14.45	A
-		0010					· · · ·				_

	ATOM	5947	OG	SER	Л	757	37.343	81 536	-28.866	1.00 17.98	А
	ATOM	5948	C	SER			33.815		-29.029	1.00 13.90	A
	ATOM	5949	0	SER			33.703		-29.872	1.00 14.57	А
	ATOM	5950	N	VAL			32.985		-27.997	1.00 13.86	A
5	ATOM	5951	CA	VAL			31.883		-27.820	1.00 14.32	A
,	ATOM	5952	CB	VAL			30.539	83.031		1.00 14.99	A
	ATOM	5953		VAL			30.255		-27.652	1.00 15.26	A
	ATOM	5954		VAL			29.400		-28.089	1.00 14.66	A
	ATOM	5955	C	VAL			31.737		-26.366	1.00 14.81	A
10	ATOM	5956	Ö	VAL			31.849		-25.439	1.00 14.83	А
10	ATOM	5957	N	GLY			31.514		-26.176	1.00 14.65	А
	ATOM	5958	CA	GLY			31.352		-24.843	1.00 15.14	А
	ATOM	5959	C	GLY			29.902		-24.406	1.00 16.00	Α
	ATOM	5960	Ö	GLY			29.102		-24.738	1.00 15.45	А
15	ATOM	5961	N	LEU			29.560		-23.663	1.00 15.97	Α
10	ATOM	5962	CA	LEU			28.205		-23.168	1.00 17.13	Α
	ATOM	5963	СВ	LEU			27.828		-23.228	1.00 17.83	Α
	ATOM	5964	CG	LEU			27.974		-24.585	1.00 17.97	A
	ATOM	5965		LEU			27.745		-24.427	1.00 18.75	Α
20	ATOM	5966		LEU			26.981	83.061	-25.575	1.00 19.05	Α
	ATOM	5967	C	LEU			28.147		-21.726	1.00 17.20	Α
	ATOM	5968	Ō	LEU			29.181		-21.076	1.00 17.55	Α
	ATOM	5969	N	PRO			26.939		-21.203	1.00 17.67	А
	ATOM	5970	CD	PRO			25.623		-21.859	1.00 17.96	Α
25	MOTA	5971	CA	PRO			26.863	85.817	-19.811	1.00 18.19	Α
	ATOM	5972	СВ	PRO			25.365	86.026	-19.600	1.00 18.69	Α
	ATOM	5973	CG	PRO			24.888	86.419	-20.969	1.00 18.84	А
	ATOM	5974	С	PRO			27.434	84.735	-18.889	1.00 18.29	A
	ATOM	5975	0	PRO			26.957	83.597	-18.892	1.00 18.07	Α
30	ATOM	5976	N	SER			28.464	85.094	-18.127	1.00 17.62	Α
	ATOM	5977	CA	SER			29.121	84.189	-17.182	1.00 17.31	А
	ATOM	5978	СВ	SER			28.084	83.390	-16.379	1.00 17.41	A
	MOTA	5979	OG	SER	Α	762	27.237	84.229	-15.623	1.00 18.47	A
	MOTA	5980	С	SER	Α	762	30.094	83.196	-17.808	1.00 17.10	Α
35	MOTA	5981	0	SER	Α	762	30.812	82.493	-17.087	1.00 17.23	A
	MOTA	5982	N	VAL	Α	763	30.134	83.126		1.00 16.20	A
	MOTA	5983	CA	VAL			31.013		-19.782	1.00 16.03	A
	ATOM	5984	CB	VAL			30.283		-19.995	1.00 15.77	Α
	MOTA	5985		VAL			31.236		-20.606	1.00 15.66	A
40	MOTA	5986	CG2	VAL	Α	763	29.720		-18.680	1.00 16.14	A
	MOTA	5987	С	VAL			31.564		-21.140	1.00 15.81	A
	MOTA	5988	0	VAL			30.815		-22.031	1.00 16.03	A
	MOTA	5989	N	VAL			32.881		-21.288	1.00 14.86	A
	MOTA	5990	CA	VAL			33.496		-22.580	1.00 14.90	A
45	MOTA	5991	CB	VAL			34.873		-22.464	1.00 15.02	A
	MOTA	5992		VAL			35.533		-23.838	1.00 15.39	A
	MOTA	5993		VAL			34.701		-21.888	1.00 14.57	A
	MOTA	5994	С	VAL			33.666		-23.041	1.00 15.18	A
	MOTA	5995	0	VAL			34.509		-22.518	1.00 14.33	A
50	MOTA	5996	N	HIS			32.818		-23.982	1.00 14.66	A
	ATOM	5997	CA	HIS			32.788		-24.524	1.00 14.46	A
	ATOM	5998	CB	HIS			31.340		-24.895	1.00 14.53	A
	ATOM	5999	CG	HIS			31.153		-25.359	1.00 15.89	A
	ATOM	6000		HIS			31.423		-24.754	1.00 14.81	A
55	ATOM	6001	ND1	HIS	A	765	30.614	77.437	-26.589	1.00 16.76	А

DOGEDDE DOGED

		ATOM	6002	CE1	HIS A	765	30.562	76.124 -26.7	22 1.0	0 15.67	А
		ATOM	6003		HIS A		31.048	75.575 -25.6		0 17.15	А
		ATOM	6004	C	HIS A		33.684	79.424 -25.7		0 14.53	Α
		MOTA	6005	0	HIS A		33.570	80.235 -26.6		0 13.37	A
	5	ATOM	6006	N	GLN A		34.567	78.431 -25.7		00 14.08	A
	J	MOTA	6007	CA	GLN A		35.490	78.280 -26.8		0 15.14	A
		ATOM	6008	СВ	GLN A		36.898	78.699 -26.4		0 16.53	А
		ATOM	6009	ÇG	GLN A		36.955	79.975 -25.6		0 20.12	А
		ATOM	6010	CD	GLN A		38.142	79.989 -24.6		0 23.07	Α
	10	ATOM	6011	OE1	GLN A		39.288	79.816 -25.0		00 24.43	A
	10	ATOM	6012		GLN A		37.868	80.191 -23.3		0 22.97	A
		ATOM	6013	C	GLN A		35.557	76.859 -27.4		0 14.87	A
		ATOM	6014	0	GLN A		35.689	75.900 -26.6		0 14.51	A
		ATOM	6015	N	THR A		35.464	76.732 -28.7		0 13.43	A
	15	ATOM	6016	CA	THR A		35.564	75.433 -29.4		00 13.83	A
	15	ATOM	6017	CB	THR A		34.340	75.141 -30.3		0 13.86	A
		ATOM	6018		THR A		33.150	75.212 -29.5		0 14.60	A
		ATOM	6019		THR A		34.444	73.741 -30.9		0 14.49	A
			6020	CGZ	THR A		36.828	75.495 -30.2		0 14.12	A
1,25	20	ATOM	6020	0	THR A		36.919	76.284 -31.2		00 14.12	A
	20	ATOM	6021	N	ILE A		37.808	74.668 -29.9		00 14.54	A
Tulesii. , i⇔e		ATOM					39.088	74.651 -30.6		00 15.59	A
J.		ATOM	6023	CA	ILE A		40.243	74.766 -29.5		00 15.69	A
1,71		ATOM	6024	CB				74.700 -29.3		00 17.18	A
	25	ATOM	6025		ILE A		41.561 39.970	75.931 -28.6		00 17.10	A
i.	25	ATOM	6026					76.027 -27.4		00 17.37	A
IŲ.		ATOM	6027		ILE A		40.946 39.274	73.391 -31.4		00 15.73	A
		MOTA	6028	С	ILE A		39.274	72.279 -30.9		00 15.73	A
E1		MOTA	6029	0	ILE A		39.736	73.570 -32.6		00 15.45	A
	30	ATOM	6030	N	MET A		39.736	72.449 -33.5		00 10.42	A
f 1975 1987 1988	30	ATOM	6031	CA	MET A					00 17.23	A
₹,i±ë 16 8		ATOM	6032	CB	MET A		39.030	72.612 -34.8 72.608 -34.4		00 10.73	A
W		ATOM	6033	CG	MET A		37.549	73.303 -35.7		00 22.39	A
ļ,da		ATOM	6034	SD	MET A		36.524 36.428	74.985 -35.2		00 22.33	A
	25	ATOM	6035	CE	MET A			72.320 -34.0		00 22.33	A
į.	35	ATOM	6036	C	MET A		41.384	73.302 -34.4		00 16.93	A
		ATOM	6037	0	MET A		42.004	71.101 -33.9		00 10.33	A
		ATOM	6038	N	ARG A		41.914	70.849 -34.3		00 17.77	A
		ATOM	6039	CA	ARG A		43.289 44.161	70.649 -34.5		00 10.03	A
	40	MOTA	6040	CB	ARG A		44.144	71.853 -32.2		00 22.50	A
	40	ATOM	6041	CG			44.144	71.633 -32.2		00 24.80	A
		ATOM	6042	CD	ARG A		44.861	72.752 -30.0		00 24.00	A
		ATOM	6043	NE	ARG A			72.799 -28.8		00 27.70	A
		ATOM	6044	CZ	ARG A		45.414	71.769 -28.3		00 29.18	A
	4 =	MOTA	6045		ARG A		46.118			00 30.25	A
	45	MOTA	6046		ARG A		45.262			00 30.23	A
		ATOM	6047	С	ARG A		43.424	69.645 -35.3			
		ATOM	6048	0	ARG A		44.527	69.147 -35.5		00 19.08	A
		ATOM	6049	N ~-	GLY A		42.302	69.177 -35.8		00 19.13	A
	50	ATOM	6050	CA	GLY A		42.346	68.045 -36.7		00 20.15	A
	50	MOTA	6051	С	GLY A		41.608	66.810 -36.2		00 20.51	A
		ATOM	6052	0	GLY A		41.376	65.886 -37.0		00 22.20	A
		ATOM	6053	N	GLY A		41.250	66.777 -34.9		00 20.11	A
		ATOM	6054	CA	GLY A		40.530	65.631 -34.4		00 19.12	A
		MOTA	6055	С	GLY A		39.341	66.092 -33.6		00 18.40	A
	55	ATOM	6056	0	GLY A	772	38.737	67.125 -33.9	57 1.0	00 17.47	A

	MOTA	6057	N	ALA A	773	38.994	65.334	-32.617	1.00 17.19	A
	ATOM	6058	CA	ALA A		37.880	65.721	-31.770	1.00 16.28	Α
	ATOM	6059	СВ	ALA A		37.730	64.744	-30.609	1.00 16.74	Α
	ATOM	6060	С	ALA A		38.208	67.118	-31.249	1.00 15.85	Α
5	ATOM	6061	0	ALA A		39.344	67.396	-30.858	1.00 15.72	Α
_	ATOM	6062	N	PRO A		37.220	68.021	-31.252	1.00 14.95	Α
	ATOM	6063	CD	PRO A		35.834	67.870	-31.729	1.00 14.54	Α
	ATOM	6064	CA	PRO A		37.465	69.382	-30.769	1.00 14.51	А
	ATOM	6065	СВ	PRO A		36.203	70.128	-31.190	1.00 14.89	Α
10	ATOM	6066	CG	PRO A		35.147	69.068	-31.100	1.00 15.90	A
	ATOM	6067	C	PRO A		37.696		-29.264	1.00 14.10	А
	ATOM	6068	0	PRO A		37.293	68.574	-28.509	1.00 13.79	Α
	ATOM	6069	N	GLU A		38.366		-28.842	1.00 13.81	A
	ATOM	6070	CA	GLU A		38.613		-27.432	1.00 13.78	A
15	ATOM	6071	CB	GLU A		40.059		-27.187	1.00 14.79	Α
10	ATOM	6072	CG	GLU A		40.363		-25.712	1.00 17.46	А
	ATOM	6073	CD	GLU A		41.780		-25.473	1.00 19.38	А
	ATOM	6074	OE1			42.685		-26.246	1.00 21.30	А
	ATOM	6075		GLU A		41.993		-24.496	1.00 20.86	А
20	ATOM	6076	C	GLU A		37.664		-27.074	1.00 13.37	Α
20	ATOM	6077	0	GLU A		37.471		-27.863	1.00 13.38	A
	MOTA	6078	N	ILE A		37.051		-25.904	1.00 13.11	A
	ATOM	6079	CA	ILE A		36.138		-25.469	1.00 13.46	A
	ATOM	6080	CB	ILE A		34.744		-25.117	1.00 14.14	A
25	ATOM	6081	CG2	ILE A		33.790		-24.809	1.00 14.86	A
20	ATOM	6082	CG1	ILE A		34.217		-26.256	1.00 14.67	A
	ATOM	6083		ILE A		34.074		-27.589	1.00 15.09	A
	ATOM	6084	C	ILE P		36.717		-24.211	1.00 13.09	A
		6085	0	ILE P		37.173		-23.313	1.00 13.03	A
30	ATOM ATOM	6086	N	ARG A		36.715		-24.155	1.00 13.21	A
30			CA	ARG A		37.210		-22.981	1.00 13.21	A
	ATOM	6087 6088	CB	ARG A		38.529		-23.285	1.00 13.71	A
	ATOM	6089	CG	ARG A		39.679		-23.657	1.00 13.71	A
	ATOM ATOM	6099	CD	ARG A		40.982		-23.811	1.00 14.60	A
35		6091	NE	ARG A		42.053		-24.350	1.00 14.70	A
33	ATOM	6091	CZ	ARG A		43.222		-24.782	1.00 14.70	A
	MOTA	6092		ARG A		43.477		-24.737	1.00 17.89	A
	ATOM			ARG A		44.133		-25.272	1.00 17.03	A
	ATOM	6094				36.165		-22.567	1.00 12.89	A
40	ATOM	6095	С	ARG A		35.654		-23.404	1.00 12.83	A
40	ATOM	6096	0	ARG A				-21.281	1.00 12.53	A
	MOTA	6097	N	ASN A		35.834		-20.740	1.00 12.32	A
	MOTA	6098	CA	ASN A		34.867			1.00 12.48	A
	ATOM	6099	CB	ASN A		33.681		-20.080	1.00 13.02	Ā
45	ATOM	6100	CG	ASN A		32.744		-21.080	1.00 12.77	A
45	ATOM	6101		ASN A		32.722		-22.259		
	ATOM	6102		ASN A		31.944		-20.604	1.00 11.18	A
	MOTA	6103	C	ASN A		35.519		-19.677	1.00 13.06	A
	MOTA	6104	0	ASN A		35.991		-18.661	1.00 12.54	A
- 0	ATOM	6105	N	LEU A		35.557		-19.907	1.00 12.87	A
50	MOTA	6106	CA	LEU P		36.100		-18.905	1.00 13.87	A
	ATOM	6107	СВ	LEU A		36.749		-19.562	1.00 15.11	A
	ATOM	6108	CG	LEU A		37.244		-18.603	1.00 16.41	A
	MOTA	6109		LEU F		38.237		-17.610	1.00 17.15	A
	MOTA	6110		LEU F		37.882		-19.403	1.00 17.46	A
55	MOTA	6111	С	LEU F	779	34.857	80.992	-18.121	1.00 13.84	A

	7.004	6110	_			770	24 120	01 004	10 510	1 00	14 16	70
	MOTA	6112	0			779	34.120		-18.519		14.16	A
	MOTA	6113	N			780	34.627		-17.012		14.09	Α
	MOTA	6114	CA	VAL	Α	780	33.450	80.509	-16.181	1.00	14.38	Α
	ATOM	6115	CB	VAL	Α	780	32.975	79.160	-15.578	1.00	13.50	Α
5	ATOM	6116	CG1	VAL	Α	780	31.658	79.348	-14.830	1.00	14.96	Α
	ATOM	6117	CG2	VAL	Α	780	32.813	78.131	-16.681	1.00	12.78	Α
	ATOM	6118	С			780	33.612		-15.046		14.62	А
	ATOM	6119	Ö			780	34.436		-14.156		14.42	A
	ATOM								-15.096		15.08	A
10		6120	N	ASP			32.810					
10	MOTA	6121	CA	ASP			32.824		-14.069		15.19	A
	MOTA	6122	СВ	ASP			33.503		-14.582		16.51	А
	MOTA	6123	CG	ASP	Α	781	33.578	85.975	-13.522		17.79	Α
	MOTA	6124	OD1	ASP	Α	781	34.045	87.088	-13.847	1.00	19.59	Α
	ATOM	6125	OD2	ASP	Α	781	33.174	85.718	-12.366	1.00	17.43	А
15	ATOM	6126	С	ASP	Α	781	31.371	83.909	-13.738	1.00	15.21	Α
	ATOM	6127	O	ASP			30.736		-14.363		14.21	Α
	ATOM	6128	N	ILE			30.851		-12.758		15.24	A
	ATOM	6129	CA	ILE			29.467		-12.344		16.76	A
20	ATOM	6130	CB			782	29.075		-11.416		16.22	A
20	MOTA	6131	CG2	ILE			29.673		-10.025		15.94	Α
	ATOM	6132	CG1	ILE			27.555		-11.348		16.35	Α
	ATOM	6133	CD1				27.095		-10.765	1.00	14.49	А
	ATOM	6134	С	ILE	Α	782	29.203	84.673	-11.664	1.00	18.22	A
	ATOM	6135	0	ILE	Α	782	28.070	84.988	-11.311	1.00	19.23	Α
25	ATOM	6136	N	GLY	Α	783	30.257	85.466	-11.493	1.00	19.97	А
	ATOM	6137	CA	GLY			30.117		-10.890		22.08	А
	ATOM	6138	C	GLY			29.283	86.844	-9.624		23.38	A
	ATOM	6139	Ö	GLY			29.552	86.123	-8.663		23.43	A
				SER								
30	ATOM	6140	N				28.266	87.702	-9.616		24.74	A
30	ATOM	6141	CA	SER			27.412	87.840	-8.439		26.45	A
	ATOM	6142	CB	SER			27.329	89.311	-8.014		27.09	Α
	MOTA	6143	OG	SER			26.712	90.107	-9.012		29.22	Α
	MOTA	6144	С	SER	Α	784	26.002	87.274	-8.628	1.00	27.13	А
	MOTA	6145	0	SER	Α	784	25.067	87.676	-7.933	1.00	27.56	Α
35	ATOM	6146	N	LEU	Α	785	25.853	86.339	-9.563	1.00	26.95	А
	ATOM	6147	CA	LEU	Α	785	24.558	85.712	-9.820	1.00	26.92	А
	ATOM	6148	СВ	LEU			24.587		-11.152	1.00	27.50	А
	ATOM	6149	CG	LEU			24.491		-12.461		28.53	A
	ATOM	6150		LEU			25.503		-12.478		29.75	A
40	ATOM	6151		LEU			24.729		-13.629		28.80	A
40												
	ATOM	6152	C	LEU			24.230	84.739	-8.691		26.47	A
	ATOM	6153	0	LEU			24.457	83.531	-8.810		26.29	A
	ATOM	6154	N	ASP			23.688	85.265	-7.598		25.45	A
	ATOM	6155	CA	ASP			23.348	84.438	-6.446		24.78	A
45	ATOM	6156	CB	ASP	Α	786	22.884	85.315	-5.281	1.00	26.58	A
	ATOM	6157	CG	ASP	Α	786	23.875	86.409	-4.947	1.00	28.38	А
	ATOM	6158	OD1	ASP	Α	786	25.073	86.102	-4.770	1.00	27.73	Α
	ATOM	6159		ASP			23.449	87.581	-4.863		30.70	А
	ATOM	6160	C	ASP			22.284	83.383	-6.731		22.89	A
50	ATOM	6161	0	ASP			21.401	83.573	-7.572		22.07	A
50												
	ATOM	6162	N	ASN			22.380	82.274	-6.006		21.19	A
	ATOM	6163	CA	ASN			21.450	81.161	-6.135		20.77	A
	ATOM	6164	СВ	ASN			20.110	81.522	-5.495		21.66	Α
	ATOM	6165	CG	ASN			20.249	81.835	-4.020		23.65	Α
55	ATOM	6166	OD1	ASN	Α	787	20.912	81.103	-3.283	1.00	24.06	А

	ATOM	6167	ND2	ASN	Α	787	19.629	82.922	-3.580	1.00	24.91	А
	ATOM	6168	С	ASN			21.261	80.749	-7.583	1.00	19.69	А
	ATOM	6169	0	ASN	Α	787	20.141	80.599	-8.070	1.00	19.17	Α
	ATOM	6170	N	THR	Α	788	22.381	80.556	-8.265	1.00	18.19	Α
5	MOTA	6171	CA	THR	Α	788	22.365	80.155	-9.658	1.00	17.22	Α
	ATOM	6172	СВ	THR	Α	788	22.704	81.349	-10.579	1.00	18.00	А
	ATOM	6173	OG1	THR	Α	788	21.749	82.399	-10.370	1.00	18.28	А
	ATOM	6174	CG2	THR	Α	788	22.669	80.926	-12.044	1.00	18.47	Α
	ATOM	6175	С	THR	Α	788	23.398	79.058	-9.886	1.00	15.98	Α
10	ATOM	6176	0	THR	Α	788	24.492	79.096	-9.322	1.00	15.00	Α
	ATOM	6177	N	GLU	Α	789	23.030	78.074	-10.695	1.00	14.52	Α
	MOTA	6178	CA	GLU	Α	789	23.937	76.990	-11.045	1.00	14.59	А
	MOTA	6179	СВ	GLU	Α	789	23.469	75.661	-10.433	1.00	14.05	A
	ATOM	6180	CG	GLU	Α	789	23.440	75.701	-8.906	1.00	14.04	Α
15	ATOM	6181	CD	GLU	Α	789	23.457	74.328	-8.256	1.00	14.08	Α
	ATOM	6182	OE1	GLU	Α	789	24.222	73.453	-8.724	1.00	13.65	Α
	MOTA	6183	OE2	GLU	Α	789	22.719	74.136	-7.262	1.00	13.58	Α
	MOTA	6184	С	GLU	Α	789	23.928	76.939	-12.565	1.00	14.52	Α
	ATOM	6185	0	GLU	Α	789	22.884	76.737	-13.186	1.00	14.93	Α
20	MOTA	6186	N	ILE	Α	790	25.094	77.161	-13.160	1.00	13.89	Α
	MOTA	6187	CA	ILE	Α	790	25.228	77.164	-14.608	1.00	13.95	Α
	ATOM	6188	CB	ILE	Α	790	26.320	78.148	-15.056	1.00	14.54	A
	MOTA	6189	CG2	ILE	Α	790	26.396	78.178	-16.576	1.00	15.34	Α
	MOTA	6190	CG1	ILE	Α	790	26.012	79.547	-14.508		16.25	Α
25	ATOM	6191	CD1	ILE	Α	790	27.135	80.551	-14.712	1.00	18.66	Α
	MOTA	6192	С	ILE	Α	790	25.574		-15.134	1.00	14.00	A
	MOTA	6193	0	ILE	Α	790	26.532	75.151	-14.680		13.91	Α
	ATOM	6194	N	VAL	Α	791	24.791		-16.094	1.00	13.84	Α
	ATOM	6195	CA	VAL	Α	791	25.024	73.991	-16.668	1.00	13.77	A
30	ATOM	6196	СВ	VAL	Α	791	23.811	73.054	-16.417		14.65	A
	MOTA	6197		VAL			22.581		-17.164		14.60	Α
	MOTA	6198	CG2	VAL	Α	791	24.143	71.633	-16.854		13.66	А
	MOTA	6199	С	VAL			25.274		-18.167		14.13	A
	MOTA	6200	0	VAL			24.707		-18.853		14.03	А
35	MOTA	6201	N	MET			26.153		-18.664		13.29	А
	MOTA	6202	CA	MET			26.438		-20.092		13.85	А
	MOTA	6203	CB	MET			27.941		-20.365		14.34	A
	MOTA	6204	CG	MET			28.273		-21.841		14.06	А
	MOTA	6205	SD	MET			30.043		-22.209		15.67	A
40	MOTA	6206	CE	MET			30.667		-21.346	1.00		Α
	MOTA	6207	С	MET			25.803		-20.564		13.88	A
	MOTA	6208	0	MET			26.139		-20.067		13.81	A
	MOTA	6209	N	ARG			24.884		-21.518		14.28	A
4 =	MOTA	6210	CA	ARG			24.184		-22.022		14.14	A
45	MOTA	6211	CB	ARG			22.674		-21.766		14.51	A
	MOTA	6212	CG	ARG			21.804		-22.242		14.54	A
	ATOM	6213	CD	ARG			20.322		-21.946		15.61	A
	MOTA	6214	NE	ARG			20.062		-20.511		16.05	A
	MOTA	6215	CZ	ARG			18.974		-19.982		16.93	A
50	MOTA	6216		ARG			18.031		-20.768		16.82	A
	ATOM	6217		ARG			18.830		-18.662		17.05	A
	ATOM	6218	C	ARG			24.423		-23.503		14.27	A
	ATOM	6219	0	ARG			24.637		-24.285		14.21	A
	MOTA	6220	N	LEU			24.396		-23.873		14.02	A
55	ATOM	6221	CA	LEU	A	794	24.556	68.837	-25.257	1.00	14.74	А

									•			
	ATOM	6222	CB	LEU	Α	794	25.730	67.857	-25.391	1.00		Α
	MOTA	6223	CG	LEU			27.138		-25.460	1.00		Α
	MOTA	6224	CD1	LEU	Α	794	28.176		-25.009	1.00		Α
	MOTA	6225	CD2	LEU			27.414		-26.885	1.00		Α
5	MOTA	6226	С	LEU			23.253		-25.658	1.00		Α
	MOTA	6227	0	LEU	Α	794	22.765		-24.941	1.00		Α
	MOTA	6228	N	GLU	Α	795	22.680	68.561	-26.787	1.00		Α
	MOTA	6229	CA	GLU	Α	795	21.437		-27.274	1.00	16.52	Α
	MOTA	6230	CB	GLU			20.368		-27.464	1.00		Α
10	MOTA	6231	CG	GLU	Α	795	20.156	69.921	-26.228	1.00		A
	MOTA	6232	CD	GLU	Α	795	19.114		-26.423	1.00 2		Α
	MOTA	6233	OE1				19.073		-27.515	1.00 2		Α
	MOTA	6234	OE2	GLU	Α	795	18.348	71.281	-25.475	1.00 2		Α
	MOTA	6235	С	GLU	Α	795	21.710	67.244	-28.597	1.00	16.30	A
15	MOTA	6236	0	GLU	Α	795	22.263	67.829	-29.526	1.00		A
	MOTA	6237	N	THR	Α	796	21.337		-28.673	1.00		Α
	MOTA	6238	CA	THR	Α	796	21.553	65.181	-29.883	1.00		Α
	MOTA	6239	CB	THR	Α	796	22.744	64.211	-29.737	1.00		Α
	ATOM	6240	OG1	THR	Α	796	22.345	63.091	-28.932	1.00		Α
20	MOTA	6241	CG2	THR	Α	796	23.935	64.910	-29.086	1.00	16.74	Α
	ATOM	6242	С	THR	A	796	20.333	64.329	-30.221	1.00	17.22	Α
	MOTA	6243	0	THR	Α	796	19.332	64.347	-29.509	1.00		Α
	MOTA	6244	N	HIS	Α	797	20.443	63.577	-31.312	1.00	_	Α
	MOTA	6245	CA	HIS	Α	797	19.377	62.691	-31.769	1.00 2		Α
25	MOTA	6246	CB	HIS	Α	797	19.235	62.775	-33.291	1.00 2		Α
	MOTA	6247	CG	HIS	Α	797	18.600		-33.769	1.00 2		Α
	MOTA	6248		HIS			17.956		-33.097	1.00 2		Α
	MOTA	6249		HIS			18.574		-35.099	1.00 2		A
	MOTA	6250	CE1	HIS	Α	797	17.941		-35.223	1.00 2		A
30	MOTA	6251	NE2	HIS	Α	797	17.556		-34.023	1.00 2		Α
	ATOM	6252	С	HIS	Α	797	19.677		-31.368	1.00 2		А
	ATOM	6253	0	HIS	А	797	18.952	60.332	-31.743	1.00 2		Α
	MOTA	6254	N	ILE	Α	798	20.749		-30.605	1.00		Α
	MOTA	6255	CA	ILE	Α	798	21.132		-30.157	1.00		A
35	MOTA	6256	CB	ILE			22.422		-29.302	1.00		Α
	MOTA	6257	CG2	ILE			22.770		-28.786	1.00		A
	ATOM	6258	CG1	ILE			23.570		-30.154	1.00		Α
	ATOM	6259	CD1			798	24.874		-29.395	1.00		A
	ATOM	6260	С	ILE	Α	798	19.997		-29.349	1.00		А
40	MOTA	6261	0			798	19.477		-28.418	1.00		Α
	MOTA	6262	N			799	19.609		-29.723	1.00		Α
	MOTA	6263	CA			799	18.522		-29.056	1.00		Α
	ATOM	6264	СВ	ASP			17.872		-30.031	1.00 2		Α
	ATOM	6265	CG			799	16.543		-29.530	1.00 2		A
45	ATOM	6266		ASP			16.070		-30.053	1.00 2		A
	MOTA	6267	OD2	ASP			15.968		-28.616	1.00 2		Α
	MOTA	6268	C			799	19.024		-27.828	1.00		Α
	ATOM	6269	0			799	18.977		-27.777	1.00		Α
	ATOM	6270	N			800	19.493		-26.834	1.00		A
50	MOTA	6271	CA			800	20.023		-25.610	1.00		Α
	ATOM	6272	CB			800	21.013		-24.959	1.00		A
	ATOM	6273	OG			800	20.383		-24.673	1.00		A
	MOTA	6274	С	SER			18.947		-24.597	1.00		A
	MOTA	6275	0			800	19.195		-23.711	1.00		Α
55	ATOM	6276	N	GLY	A	801	17.760	56.780	-24.719	1.00	16.72	А

	ATOM	6277	CA	GLY	Α	801	16.684	56.458	-23.798	1.00 16.4	9 A
	ATOM	6278	C	GLY			16.937		-22.387	1.00 15.9	3 A
	ATOM	6279	Ö	GLY			17.034		-22.162	1.00 16.5	
	ATOM	6280	N	ASP			17.042		-21.433	1.00 15.8	
5	ATOM	6281	CA	ASP			17.290		-20.042	1.00 15.5	
3	ATOM	6282	CB			802	16.203		-19.125	1.00 16.2	
		6283				802	16.093		-19.229	1.00 17.2	
	ATOM		CG				15.201		-18.559	1.00 17.2	
	ATOM	6284		ASP					-19.967	1.00 17.3	
10	ATOM	6285		ASP			16.884		-19.571	1.00 17.3	
10	MOTA	6286	C			802	18.672			1.00 13.3	
	ATOM	6287	0			802	18.969		-18.378		
	ATOM	6288	N			803	19.514		-20.517	1.00 14.3	
	MOTA	6289	CA			803	20.862		-20.207	1.00 14.4	
	ATOM	6290	СВ			803	21.166		-20.968	1.00 14.4	
15	MOTA	6291		ILE			22.583		-20.656	1.00 13.8	
	ATOM	6292		ILE			20.139		-20.593	1.00 15.0	
	ATOM	6293	CD1	ILE	Α	803	20.150		-19.127	1.00 15.7	
	ATOM	6294	С	ILE	Α	803	21.981		-20.540	1.00 14.0	
	MOTA	6295	0	ILE	Α	803	21.923	56.781	-21.533	1.00 13.8	
20	ATOM	6296	N	PHE	Α	804	22.998		-19.686	1.00 13.5	
	ATOM	6297	CA	PHE	Α	804	24.166	56.931	-19.915	1.00 13.2	
	ATOM	6298	CB	PHE	Α	804	23.886	58.420	-19.614	1.00 12.5	8 A
	ATOM	6299	CG	PHE	Α	804	23.523	58.726	-18.184	1.00 12.4	7 A
	ATOM	6300	CD1	PHE	Α	804	24.455	59.316	-17.327	1.00 12.5	6 A
25	ATOM	6301		PHE			22.231	58.500	-17.714	1.00 12.5	9 A
	ATOM	6302		PHE			24.100	59.682	-16.025	1.00 12.2	2 A
	MOTA	6303		PHE			21.866	58.859	-16.416	1.00 12.7	'0 A
	ATOM	6304	CZ			804	22.804	59.455	-15.569	1.00 13.2	.3 A
	ATOM	6305	C			804	25.304	56.377	-19.074	1.00 13.1	.5 A
30	ATOM	6306	Ö			804	25.084		-18.196	1.00 13.4	0 A
	ATOM	6307	N			805	26.523		-19.366	1.00 13.1	.2 A
	ATOM	6308	CA			805	27.674		-18.633	1.00 12.3	
	ATOM	6309	CB			805	28.549		-19.552	1.00 12.5	
	ATOM	6310	CG			805	27.851		-20.112	1.00 14.1	
35	ATOM	6311	CD1			805	26.860		-21.090	1.00 14.0	
55	ATOM	6312		TYR			26.225		-21.615	1.00 14.2	
	ATOM	6313		TYR			28.190		-19.667	1.00 14.1	
		6314		TYR			27.560		-20.183	1.00 14.3	
	ATOM	6315	CZ			805	26.583		-21.156	1.00 14.5	
40	ATOM					805	25.973		-21.675	1.00 14.2	
40	ATOM	6316	ОН				28.509		-18.050	1.00 12.2	
	ATOM	6317	C			805	28.649		-18.657	1.00 11.8	
	ATOM	6318	0			805	29.045		-16.858	1.00 11.3	
	ATOM	6319	N			806				1.00 11.3	
4.	MOTA	6320	CA			806	29.898		-16.180	1.00 11.8	
45	MOTA	6321	СВ			806	29.140		-15.055		
	ATOM	6322	OG1			806	28.769		-14.032	1.00 12.6	
	MOTA	6323	CG2			806	27.877		-15.614	1.00 10.8	
	MOTA	6324	С			806	31.058		-15.605	1.00 11.4	
^	MOTA	6325	0			806	30.934		-15.407	1.00 11.8	
50	ATOM	6326	N			807	32.189		-15.352	1.00 10.7	
	MOTA	6327	CA			807	33.327		-14.822	1.00 10.9	
	ATOM	6328	CB	ASP	Α	807	34.630		-15.470	1.00 10.5	
	ATOM	6329	CG			807	35.086		-14.953	1.00 10.2	
	ATOM	6330		ASP			36.235		-14.480	1.00 11.3	
55	MOTA	6331	OD2	ASP	Α	807	34.308	60.061	-15.026	1.00 11.1	.9 A

		ATOM	6332	С	ASP			33.438	57.385 -13.314	1.00 10.70	Α
		MOTA	6333	0	ASP	Α	807	32.855	58.278 -12.699	1.00 9.93	Α
		MOTA	6334	N	LEU	Α	808	34.182	56.456 -12.729	1.00 10.38	Α
		MOTA	6335	CA	LEU	Α	808	34.418	56.452 -11.299	1.00 10.47	Α
	5	ATOM	6336	CB	LEU	Α	808	33.963	55.124 -10.676	1.00 10.91	Α
		ATOM	6337	CG	LEU	A	808	32.445	54.927 -10.532	1.00 10.80	Α
		ATOM	6338	CD1	LEU	Α	808	32.126	53.458 -10.277	1.00 12.22	Α
		ATOM	6339		LEU			31.917	55.782 -9.391	1.00 11.26	Α
		ATOM	6340	C	LEU			35.910	56.655 -11.087	1.00 10.25	Α
	10	ATOM	6341	0	LEU			36.722	55.806 -11.462	1.00 10.25	Α
		ATOM	6342	N	ASN			36.261	57.810 -10.527	1.00 9.42	Α
		ATOM	6343	CA	ASN			37.647	58.149 -10.219	1.00 9.53	Α
		ATOM	6344	СВ	ASN			38.121	57.262 -9.073	1.00 8.78	Α
		ATOM	6345	CG	ASN			37.128	57.226 -7.933	1.00 8.98	Α
	15	ATOM	6346		ASN			37.110	58.114 -7.075	1.00 11.42	Α
	10	ATOM	6347		ASN			36.272	56.215 -7.934	1.00 7.45	Α
		ATOM	6348	C	ASN			38.623	58.046 -11.386	1.00 9.64	A
		ATOM	6349	0	ASN			39.807	57.785 -11.177	1.00 9.79	Α
		ATOM	6350	N	GLY			38.133	58.261 -12.604	1.00 10.08	A
	20	ATOM	6351	CA	GLY			38.997	58.182 -13.774	1.00 10.96	Α
ı Ti	20	ATOM	6352	C	GLY			39.586	56.797 -13.984	1.00 12.28	A
1(345) 145 145		ATOM	6353	0	GLY			40.611	56.633 -14.659	1.00 13.07	A
		ATOM	6354	N	LEU			38.923	55.795 -13.419	1.00 11.50	A
ಕೈಕಿಸಿ ಎಚಿಯಾ		ATOM	6355	CA	LEU			39.384	54.414 -13.501	1.00 11.55	Α
	25	ATOM	6356	CB	LEU			39.490	53.835 -12.085	1.00 11.82	A
P.	25	ATOM	6357	CG	LEU			39.816	52.344 -11.968	1.00 13.81	A
A Tring		ATOM	6358		LEU			41.218	52.097 -12.510	1.00 14.31	A
iji.		ATOM	6359		LEU			39.706	51.896 -10.515	1.00 13.02	A
āį.		ATOM	6360	CDZ	LEU			38.511	53.487 -14.344	1.00 11.64	A
	30	ATOM	6361	0	LEU			39.022	52.644 -15.086	1.00 12.98	Α
Ü	30	ATOM	6362	N	GLN			37.197	53.647 -14.235	1.00 10.70	A
101		ATOM	6363	CA	GLN			36.261	52.779 -14.942	1.00 11.31	A
i iz		ATOM	6364	CB	GLN			35.885	51.613 -14.031	1.00 12.03	A
i.±.		ATOM	6365	CG	GLN			35.287	52.098 -12.693	1.00 12.84	A
	35	ATOM	6366	CD	GLN			34.982	50.970 -11.722	1.00 14.63	A
ļ.d:	55	ATOM	6367		GLN			33.988	50.258 -11.867	1.00 15.09	A
		ATOM	6368		GLN			35.843	50.804 -10.723	1.00 14.88	A
		ATOM	6369	C	GLN			34.995	53.534 -15.292	1.00 11.14	A
		ATOM	6370	0	GLN			34.692	54.549 -14.670	1.00 11.87	A
	40	ATOM	6371		PHE			34.259			A
	40		6372	CA	PHE			32.999	53.652 -16.666	1.00 10.98	A
		ATOM		CB	PHE			32.957	53.952 -18.170	1.00 11.42	A
		ATOM	6373	CG	PHE			33.707	55.197 -18.544	1.00 11.42	A
		ATOM	6374					35.098	55.202 -18.578	1.00 11.51	A
	45	MOTA	6375		PHE			33.025	56.385 -18.795	1.00 12.99	A
	43	ATOM	6376		PHE				56.372 -18.851	1.00 12.33	A
		ATOM	6377		PHE			35.803		1.00 11.23	A
		ATOM	6378		PHE			33.722	57.562 -19.070	1.00 12.39	A
		ATOM	6379	CZ	PHE			35.114	57.550 -19.096		
	ΕO	ATOM	6380	C	PHE			31.876	52.714 -16.261	1.00 11.59	A A
	50	ATOM	6381	0	PHE			31.889	51.510 -16.573	1.00 11.72	A
		ATOM	6382	N	ILE			30.914	53.269 -15.539	1.00 11.18	A
		ATOM	6383	CA	ILE			29.799	52.493 -15.037	1.00 11.06	A
		ATOM	6384	CB	ILE			29.722	52.625 -13.494	1.00 11.10	A
	EE	ATOM	6385		ILE			29.416	54.066 -13.103	1.00 11.45	A
	55	ATOM	6386	CG1	ILE	A	814	28.669	51.664 -12.931	1.00 11.83	А

		ATOM	6387	CD1	ILE			28.662	51.592 -11.402	1.00 11.69	Α
		ATOM	6388	С	ILE	A	814	28.487	52.933 -15.681	1.00 11.26	Α
		ATOM	6389	0	ILE	Α	814	28.261	54.118 -15.923	1.00 10.34	Α
		ATOM	6390	N	LYS	Α	815	27.629	51.960 -15.967	1.00 11.46	Α
	5	ATOM	6391	CA	LYS	Α	815	26.343	52.232 -16.593	1.00 11.88	Α
		ATOM	6392	СВ	LYS	Α	815	25.751	50.926 -17.135	1.00 12.12	Α
		ATOM	6393	CG	LYS	Α	815	24.392	51.047 -17.815	1.00 14.24	Α
		ATOM	6394	CD	LYS	Α	815	23.997	49.696 -18.420	1.00 16.46	Α
		ATOM	6395	CE	LYS			22.678	49.769 -19.164	1.00 19.21	Α
	10	ATOM	6396	NZ	LYS			22.321	48.454 -19.780	1.00 20.77	A
		ATOM	6397	С	LYS			25.384	52.879 -15.603	1.00 11.66	Α
		ATOM	6398	0	LYS			25.252	52.423 -14.468	1.00 12.12	А
		ATOM	6399	N	ARG			24.733	53.953 -16.043	1.00 11.64	Α
		ATOM	6400	CA	ARG			23.768	54.689 -15.232	1.00 11.48	Α
	15	ATOM	6401	CB	ARG			24.129	56.178 -15.165	1.00 11.74	A
	10	ATOM	6402	CG	ARG			25.517	56.492 -14.641	1.00 12.05	A
		ATOM	6403	CD	ARG			25.687	55.935 -13.245	1.00 12.44	A
		ATOM	6404	NE	ARG			26.852	56.488 -12.560	1.00 11.57	A
3. Pets.		ATOM	6405	CZ	ARG			27.222	56.119 -11.339	1.00 12.04	A
den hen hen hen dech	20	ATOM	6406		ARG			26.517	55.201 -10.691	1.00 10.85	A
ĻŪ	20	ATOM	6407		ARG			28.281	56.672 -10.764	1.00 10.30	A
Ü		ATOM	6408	C	ARG			22.400	54.586 -15.884	1.00 10.30	A
		ATOM	6409	0	ARG			22.300	54.506 -17.105	1.00 10.94	A
					ARG			21.351	54.582 -15.073	1.00 10.34	A
n.	25	MOTA	6410	N CA	ARG			20.000	54.551 -15.615	1.00 12.22	A
TŲ.	25	MOTA	6411					19.293	53.210 -15.334	1.00 12.22	A
. Y		ATOM	6412	CB	ARG			17.827	53.210 -15.802	1.00 12.63	A
		MOTA	6413	CG CD	ARG ARG			17.027	51.865 -15.632	1.00 13.07	A
B) -		ATOM	6414		ARG			17.111	50.837 -16.532	1.00 14.02	A
T) L)	30	ATOM	6415	NE				18.366	49.804 -16.144	1.00 16.50	A
ij,	30	ATOM	6416	CZ	ARG			18.682	49.654 -14.864	1.00 10.30	A
IJ.		ATOM	6417		ARG ARG			18.793	48.919 -17.035	1.00 17.13	A
<u></u>		ATOM	6418					19.213	55.687 -14.981	1.00 10.75	A
		ATOM	6419	C	ARG			19.213	55.724 -13.764	1.00 12.99	A
la.	35	ATOM	6420	0	ARG			18.778	56.636 -15.805	1.00 12.33	A
# ····	33	ATOM	6421	N	ARG				57.752 -15.319	1.00 12.00	A
		ATOM	6422	CA	ARG			17.983 17.625	58.699 -16.469	1.00 13.30	A
		ATOM	6423	CB	ARG			16.925	59.978 -16.019	1.00 13.33	A
		ATOM	6424	CG CD	ARG ARG			16.277	60.714 -17.186	1.00 15.79	A
	40	ATOM ATOM	6425					14.988	60.122 -17.540		A
	40		6426		ARG			14.714	59.543 -18.707	1.00 18.39	A
		ATOM	6427	CZ	ARG			15.638	59.467 -19.659	1.00 16.55	A
		ATOM	6428		ARG				59.034 -18.920	1.00 10.34	A
		ATOM	6429		ARG			13.508	57.143 -14.754	1.00 13.11	A
	45	ATOM	6430	С	ARG			16.705		1.00 13.31	A
	45	ATOM	6431	0	ARG			16.060	56.330 -15.421	1.00 14.71	A
		ATOM	6432	N	LEU			16.350	57.524 -13.532	1.00 13.42	A
		ATOM	6433	CA	LEU			15.146	57.007 -12.884		
		ATOM	6434	CB	LEU			15.511	56.302 -11.571	1.00 14.98	A A
	F 0	MOTA	6435	CG	LEU			16.430	55.080 -11.695	1.00 15.76	
	50	ATOM	6436		LEU			16.851	54.606 -10.312	1.00 15.83	A
		ATOM	6437		LEU			15.714	53.972 -12.456	1.00 15.44	A
		ATOM	6438	С	LEU			14.180	58.150 -12.604	1.00 15.35	A
		ATOM	6439	0	LEU			14.431	58.995 -11.745	1.00 15.18	A
		ATOM	6440	N	ASP			13.068	58.176 -13.329	1.00 16.48	A
	55	ATOM	6441	CA	ASP	А	820	12.100	59.238 -13.138	1.00 17.08	Α

	MOTA	6442	СВ	ASP	Α	820	11.		59.271	-14.30	6	1.00	18.98	Α
	MOTA	6443	CG	ASP	А	820	11.		59.547				20.10	А
	MOTA	6444	OD1	ASP	Α	820	12.	762	60.341				21.45	Α
	MOTA	6445	OD2	ASP	Α	820	11.	377	58.980				22.62	Α
5	ATOM	6446	С	ASP			11.		59.106				17.02	A
	ATOM	6447	0	ASP			10.		60.042				16.56	A
	ATOM	6448	N	LYS			11.		57.953				16.60	Α
	ATOM	6449	CA	LYS			10.		57.756	-9.86			16.60	Α
	ATOM	6450	CB	LYS			10.		56.265	-9.50			17.21	Α
10	ATOM	6451	CG	LYS			12.		55.579	-9.31			17.29	A
	MOTA	6452	CD	LYS			11.		54.073	-9.15			16.45	A
	ATOM	6453	CE	LYS			13.		53.374	-9.05			16.98	A
	MOTA	6454	NZ	LYS			13.		51.888	-9.11			15.59	A
	MOTA	6455	С	LYS			11.		58.516	-8.79			16.66	A
15	MOTA	6456	0	LYS			11.3		58.638	-7.65			16.84	A
	ATOM	6457	N	LEU			12.		59.030	-9.18			15.85	A
	ATOM	6458	CA	LEU			13.		59.804	-8.27			15.43	A
	ATOM	6459	CB	LEU			15.0		59.235	-8.23			14.68	A.
	MOTA	6460	CG	LEU			15.3		57.795	-7.72			14.77	A
20	MOTA	6461		LEU			16.		57.370	-7.74			14.13	A
	ATOM	6462		LEU			14.		57.704	-6.30			13.61	A
i. ·	MOTA	6463	С	LEU			13.		61.257	-8.74			15.52	A
i i	ATOM	6464	0	LEU			13.		61.538	-9.92			15.57	A
	MOTA	6465	N	PRO			13.		62.202	-7.81			15.92	A
25	ATOM	6466	CD	PRO			14.		62.039	-6.36			15.59	A
	ATOM	6467	CA			823	13.		63.617	-8.20			15.73	A
	ATOM	6468	СВ			823	14.		64.342	-6.85			15.56	A
	MOTA	6469	CG			823	14.		63.362	-5.95			16.99	A
20	MOTA	6470	С	PRO			15.		63.927	-9.07			15.83	A
-30	ATOM	6471	0	PRO			16.		63.176	-9.08			16.38	A
	ATOM	6472	N	LEU			15.		65.043	-9.78			15.04	A
•	ATOM	6473	CA	LEU			16.		65.461				14.32	A
	ATOM	6474	CB	LEU			15.		66.908				14.06	A
25	ATOM	6475	CG	LEU			16.		67.440				13.30 13.69	A
35	ATOM	6476		LEU			15.		68.633				12.50	A A
	ATOM	6477		LEU			18.		67.827				14.34	A
	ATOM	6478	С	LEU			17.		65.333 64.717				13.76	A
	ATOM	6479	0	LEU			18. 17.		65.903	-8.91			13.89	A
40	ATOM	6480	N	GLN			19.		65.876				14.21	A
4 0	ATOM	6481	CA	GLN					66.650	-6.95			13.86	A
	ATOM	6482	CB	GLN			19.		66.091	-5.92			14.09	A
	MOTA	6483	CG CD	GLN GLN			18.1 16.		66.678	-6.04			13.72	A
	ATOM	6484		GLN			16.		67.096	-7.12			14.70	A
45	ATOM	6485 6486		GLN			16.		66.697	-4.93			12.85	A
40	ATOM	6487		GLN			19.		64.473	-8.01			14.39	A
	ATOM		С			825	20.		64.283	-7.90			13.92	A
	ATOM	6488	O				18.		63.494	-7.89			13.71	A
	ATOM	6489	N CA	ALA.			19.		62.120	-7.64			13.79	A
50	ATOM ATOM	6490 6491	CB	ALA ALA			18.		61.283	-7.16			14.08	A
30	ATOM	6491	СВ	ALA			19.		61.510	-8.90			13.92	A
		6492	0	ALA			20.						14.14	A
	ATOM ATOM	6494	N	ASN			19.		62.051				13.45	A
	ATOM	6495	CA	ASN				974	61.541				12.85	A
55	ATOM	6495	CB	ASN			18.		61.690				14.30	A
33	WION	0470	CD	UOIN	~	027	10.	710	51.070	16.41	_		11.50	• •

		MOTA	6497	CG	ASN	Α	827	17.765	60.704 -12.234	1.00 15.77	Α
		ATOM	6498	OD1	ASN	Α	827	17.962	59.491 -12.318	1.00 15.57	A
		MOTA	6499	ND2	ASN	Α	827	16.567	61.218 -11.972	1.00 16.77	Α
		MOTA	6500	С	ASN	Α	827	21.290	62.200 -11.726	1.00 12.33	Α
	5	ATOM	6501	0	ASN	Α	827	21.813	61.956 -12.812	1.00 11.17	Α
		MOTA	6502	N	TYR	Α	828	21.820	63.046 -10.846	1.00 12.25	A
		ATOM	6503	CA	TYR			23.109	63.677 -11.098	1.00 12.12	Α
		ATOM	6504	СВ	TYR			23.200	65.057 -10.438	1.00 12.01	A
		ATOM	6505	CG	TYR			23.230	66.205 -11.434	1.00 12.71	Α
	10	ATOM	6506		TYR			22.160	66.432 -12.297	1.00 11.49	Α
		ATOM	6507		TYR			22.191	67.472 -13.230	1.00 12.16	А
		ATOM	6508		TYR			24.338	67.051 -11.522	1.00 11.99	Α
		ATOM	6509		TYR			24.380	68.092 -12.450	1.00 12.59	Α
		ATOM	6510	CZ	TYR			23.306	68.297 -13.300	1.00 11.81	Α
	15	ATOM	6511	OH	TYR			23.356	69.311 -14.231	1.00 12.90	А
		ATOM	6512	C	TYR			24.151	62.747 -10.485	1.00 11.84	Α
		ATOM	6513	Ō	TYR			23.953	62.220 -9.387	1.00 11.86	Α
		ATOM	6514	N	TYR			25.246	62.540 -11.208	1.00 11.25	Α
4122		ATOM	6515	CA	TYR			26.330	61.674 -10.759	1.00 11.17	Α
fage!	20	ATOM	6516	СВ	TYR			26.365	60.376 -11.576	1.00 11.21	А
۱.Ü		ATOM	6517	CG	TYR			25.203	59.451 -11.315	1.00 11.79	А
		ATOM	6518		TYR			24.042	59.516 -12.087	1.00 11.45	Α
M		MOTA	6519		TYR			22.945	58.691 -11.809	1.00 12.46	Α
		ATOM	6520		TYR			25.248	58.540 -10.261	1.00 11.44	Α
17 114	25	ATOM	6521		TYR			24.165	57.718 -9.973	1.00 12.38	Α
Ŋ		ATOM	6522	CZ	TYR			23.017	57.797 -10.745	1.00 12.11	Α
		ATOM	6523	OH	TYR			21.944	56.993 -10.433	1.00 12.60	Α
		ATOM	6524	C	TYR			27.676	62.365 -10.916	1.00 10.97	А
E)		ATOM	6525	Ö	TYR			27.799	63.357 -11.630	1.00 10.60	А
	30	ATOM	6526	N	PRO			28.708	61.846 -10.239	1.00 10.67	А
t, <u>L</u> .		ATOM	6527	CD	PRO			28.721	60.751 -9.255	1.00 10.48	Α
14		ATOM	6528	CA	PRO			30.030	62.464 -10.363	1.00 10.76	Α
į.		ATOM	6529	СВ	PRO			30.889	61.657 -9.386	1.00 11.38	Α
Ü		ATOM	6530	CG	PRO			29.906	61.114 -8.396	1.00 11.76	A
14	35	ATOM	6531	C	PRO			30.534	62.284 -11.796	1.00 10.70	A
		ATOM	6532	0	PRO			30.317	61.230 -12.400	1.00 10.23	A
		ATOM	6533	N	ILE			31.179	63.309 -12.348	1.00 10.28	A
		ATOM	6534	CA	ILE			31.765	63.194 -13.680	1.00 10.20	Α
		ATOM	6535	СВ	ILE			31.182	64.207 -14.704	1.00 10.32	А
	40	ATOM	6536		ILE			31.702	63.865 -16.095	1.00 10.76	Α
		ATOM	6537	CG1	ILE	Α	831	29.648	64.174 -14.698	1.00 10.68	A
		ATOM	6538		ILE			29.035	62.797 -15.006	1.00 10.20	А
		ATOM	6539	С	ILE			33.240	63.524 -13.458	1.00 10.52	Α
		ATOM	6540	0	ILE			33.725	64.578 -13.870	1.00 10.07	A
	45	ATOM	6541	N	PRO			33.974	62.622 -12.786	1.00 10.57	А
		ATOM	6542	CD	PRO			33.527	61.378 -12.135	1.00 11.09	Α
		ATOM	6543	CA	PRO			35.393	62.875 -12.525	1.00 10.76	A
		ATOM	6544	СВ	PRO			35.807	61.697 -11.632	1.00 10.28	Α
		ATOM	6545	CG	PRO			34.817	60.615 -11.981	1.00 11.64	A
	50	ATOM	6546	C	PRO			36.286	63.046 -13.744	1.00 10.48	Α
		ATOM	6547	0	PRO			37.273	63.773 -13.678	1.00 11.05	А
		ATOM	6548	N	SER			35.954	62.395 -14.856	1.00 10.53	A
		ATOM	6549	CA	SER			36.783	62.546 -16.049	1.00 10.75	A
		ATOM	6550	CB	SER			37.996	61.609 -15.981	1.00 11.44	A
	55	ATOM	6551	OG	SER			37.643	60.273 -16.285	1.00 13.55	Α

	3.0014	6550		000	_	000	26 051	(2 220 17 271	1 00 10 9	. א
	ATOM	6552	C	SER			36.051 36.581	62.330 -17.371 62.672 -18.425	1.00 10.8	
	ATOM	6553	0			833		61.769 -17.327	1.00 10.6	
	ATOM	6554	N	GLY			34.845		1.00 10.3	
5	ATOM	6555	CA	GLY			34.120 32.723	61.548 -18.569 60.968 -18.454	1.00 10.7	
5	ATOM	6556	C	GLY					1.00 10.0	
	ATOM	6557	0	GLY			32.341	60.395 -17.430		
	ATOM	6558	N	MET			31.959	61.116 -19.532	1.00 11.2	
	ATOM	6559	CA	MET			30.591	60.621 -19.588	1.00 11.4	
10	ATOM	6560	CB	MET			29.642	61.643 -18.952	1.00 12.2	
10	ATOM	6561	CG	MET			29.507	62.945 -19.744	1.00 11.7	
	ATOM	6562	SD	MET			28.685	64.277 -18.832	1.00 13.7	
	ATOM	6563	CE	MET			27.082	63.543 -18.510	1.00 12.3	
	ATOM	6564	С	MET			30.216	60.421 -21.056	1.00 11.7	
a ==	ATOM	6565	0	MET			30.779	61.071 -21.945	1.00 11.1	
15	ATOM	6566	N			836	29.277	59.519 -21.318	1.00 11.6	
	MOTA	6567	CA			836	28.855	59.306 -22.693	1.00 12.0	
	MOTA	6568	CB			836	29.915	58.499 -23.481	1.00 11.9	
	MOTA	6569	CG			836	30.074	57.049 -23.058	1.00 14.0	
••	ATOM	6570		PHE			29.200	56.066 -23.525	1.00 14.0	
20	MOTA	6571		PHE			31.144	56.659 -22.253	1.00 14.2	
	ATOM	6572		PHE			29.392	54.715 -23.202	1.00 16.2	
	MOTA	6573	CE2				31.347	55.308 -21.921	1.00 15.0	
	MOTA	6574	CZ			836	30.468	54.335 -22.398	1.00 15.7	
	MOTA	6575	С			836	27.488	58.670 -22.820	1.00 12.5	
25	MOTA	6576	0			836	26.971	58.083 -21.869	1.00 11.7	
	MOTA	6577	N			837	26.887	58.848 -23.993	1.00 11.6	
	MOTA	6578	CA			837	25.593	58.260 -24.303	1.00 12.1	
	MOTA	6579	CB			837	24.466	59.312 -24.403	1.00 11.6	
	MOTA	6580	CG2				24.032	59.742 -23.007	1.00 11.5	
30	MOTA	6581		ILE			24.920	60.489 -25.270	1.00 11.0	
	MOTA	6582		ILE			23.771	61.408 -25.698	1.00 10.7	
	ATOM	6583	С			837	25.758	57.599 -25.660	1.00 12.2	
	MOTA	6584	0			837	26.612	58.006 -26.457	1.00 11.9	
	MOTA	6585	N	GLU	А	838	24.955	56.579 -25.928	1.00 13.2	
35	MOTA	6586	CA			838	25.063	55.887 -27.203	1.00 13.2	
	ATOM	6587	CB	GLU	Α	838	26.232	54.901 -27.153	1.00 14.3	
	MOTA	6588	CG	GLU	А	838	25.978	53.751 -26.166	1.00 15.1	
	MOTA	6589	CD			838	27.091	52.715 -26.120	1.00 16.7	
_	MOTA	6590		GLU			26.937	51.720 -25.382	1.00 18.4	
4 0	MOTA	6591	OE2	GLU	Α	838	28.114	52.884 -26.812	1.00 17.7	
	MOTA	6592	С	GLU	Α	838	23.807	55.100 -27.538	1.00 14.0	
	MOTA	6593	0	GLU	Α	838	22.977	54.827 -26.671	1.00 13.4	
	MOTA	6594	N	ASP	Α	839	23.655	54.773 -28.816	1.00 14.7	7 A
	MOTA	6595	CA	ASP	Α	839	22.561	53.913 -29.240	1.00 15.5	
45	MOTA	6596	CB	ASP	Α	839	21.494	54.633 -30.085	1.00 15.8	0 A
	MOTA	6597	CG	ASP	Α	839	22.061	55.405 -31.260	1.00 15.7	
	MOTA	6598	OD1	ASP	Α	839	23.091	55.001 -31.838	1.00 15.8	
	MOTA	6599	OD2	ASP	Α	839	21.434	56.424 -31.618	1.00 17.8	
	ATOM	6600	С	ASP	Α	839	23.267	52.823 -30.028	1.00 16.2	2 A
50	MOTA	6601	0	ASP	Α	839	24.471	52.624 -29.859	1.00 15.9	4 A
	MOTA	6602	N	ALA	Α	840	22.545	52.114 -30.882	1.00 16.7	3 A
	ATOM	6603	CA	ALA	А	840	23.160	51.042 -31.645	1.00 17.2	6 A
	ATOM	6604	СВ			840	22.083	50.279 -32.418	1.00 18.3	6 A
	ATOM	6605	С			840	24.258	51.500 -32.603	1.00 17.4	3 A
55	ATOM	6606	0			840	25.200	50.749 -32.871	1.00 17.5	2 A

	3 50 64	6607		2011	~	0.41	24 164	E2 722	22 006	1.00 1	6 91	А
	ATOM	6607	N 	ASN			24.164		-33.096	1.00 1		A
	ATOM	6608	CA	ASN			25.136		-34.076			
	ATOM	6609	СВ	ASN			24.406		-35.377	1.00 1		A
_	ATOM	6610	CG	ASN			23.592		-35.900	1.00 2		A
5	MOTA	6611		ASN			24.122		-36.126	1.00 2		A
	ATOM	6612	ND2	ASN			22.295		-36.092	1.00 1		A
	MOTA	6613	С	ASN			26.021		-33.725	1.00 1		Α
	MOTA	6614	0	ASN	Α	841	27.129		-34.254	1.00 1		A
	MOTA	6615	N	THR	Α	842	25.542	55.278	-32.850	1.00 1	6.36	Α
10	MOTA	6616	CA	THR	Α	842	26.298	56.479	-32.517	1.00 1	6.16	Α
	MOTA	6617	СВ	THR	Α	842	25.564	57.724	-33.075	1.00 1	6.66	А
	MOTA	6618	OG1	THR	Α	842	25.204	57.490	-34.444	1.00 1	7.07	А
	ATOM	6619	CG2	THR			26.452	58.958	-32.999	1.00 1	6.18	А
	ATOM	6620	С	THR			26.547	56.699	-31.031	1.00 1	5.76	Α
15	ATOM	6621	Ō	THR			25.713		-30.190	1.00 1	6.36	Α
10	ATOM	6622	N	ARG			27.704		-30.718	1.00 1		Α
	ATOM	6623	CA	ARG			28.057		-29.335	1.00 1		Α
	MOTA	6624	CB	ARG			29.056		-28.775	1.00 1		A
		6625	CG	ARG			29.577		-27.375	1.00 1		A
20	MOTA	6626	CD	ARG			30.764		-26.924	1.00 1		A
20	ATOM						30.764		-26.606	1.00 1		A
	ATOM	6627	NE	ARG					-26.029	1.00 1		A
	ATOM	6628	CZ	ARG			31.216		-25.705	1.00 1		A
	ATOM	6629		ARG			32.452					A
25	ATOM	6630		ARG			30.809		-25.772	1.00 1		
25	MOTA	6631	C	ARG			28.685		-29.266	1.00 1		A
	MOTA	6632	0	ARG			29.402		-30.177	1.00 1		A
	MOTA	6633	N	LEU			28.396		-28.185	1.00 1		A
	MOTA	6634	CA	LEU			28.969		-27.967	1.00 1		A
	MOTA	6635	CB	LEU			27.890		-27.967	1.00 1		A
30	MOTA	6636	CG	LEU	Α	844	28.458		-27.823	1.00 1		A
	MOTA	6637		LEU			29.375		-29.005	1.00 1		A
	MOTA	6638	CD2	LEU	Α	844	27.334		-27.757	1.00 1		А
	MOTA	6639	С	LEU	Α	844	29.624	60.922	-26.598	1.00 1	1.63	A
	ATOM	6640	0	LEU	Α	844	28.958	60.622	-25.601	1.00 1	1.42	Α
35	MOTA	6641	N	THR	Α	845	30.926	61.187	-26.553	1.00 1	1.41	Α
	ATOM	6642	CA	THR	Α	845	31.662	61.150	-25.295	1.00 1	1.95	A
	MOTA	6643	СВ	THR	Α	845	32.833	60.144	-25.357	1.00 1	2.35	A
	ATOM	6644	OG1	THR	Α	845	32.335	58.849	-25.721	1.00 1	3.45	Α
	ATOM	6645		THR	Α	845	33.537	60.051	-24.003	1.00 1	2.11	Α
40	ATOM	6646				845	32.244	62.520	-24.965	1.00 1	1.55	A
	MOTA	6647	Ō			845	32.867		-25.808	1.00 1	1.72	A
	ATOM	6648	N			846	32.037		-23.732	1.00 1		Α
	ATOM	6649	CA			846	32.572		-23.290	1.00 1	1.18	A
	ATOM	6650	CB			846	31.454		-22.730	1.00 1		А
45	ATOM	6651	CG			846	31.881		-22.148	1.00 1		А
43	ATOM	6652		LEU			32.435		-23.263	1.00 1		A
		6653		LEU			30.693		-21.471	1.00 1		A
	ATOM						33.584		-22.196	1.00 1		A
	ATOM	6654	C			846				1.00	9.21	A
EO	ATOM	6655	0			846	33.226		-21.161			
50	ATOM	6656	N			847	34.847		-22.443	1.00 1		A
	MOTA	6657	CA			847	35.917		-21.474	1.00 1		A
	MOTA	6658	СВ			847	37.187		-22.175	1.00 1		A
	ATOM	6659	CG			847	37.166		-22.922	1.00	9.45	A
	ATOM	6660		LEU			36.463		-22.070		8.42	A
55	ATOM	6661	CD2	LEU	A	847	36.465	62.318	-24.268	1.00	9.43	А

	ATOM	6662	С	LEU A	36.213	65.350 66.412		1.00 11.19 1.00 10.50	A A
	ATOM	6663	0	LEU A	36.141				
	MOTA	6664	N	THR A	36.557	65.291		1.00 9.84	A
_	ATOM	6665	CA	THR A	36.826	66.507		1.00 10.43	A
5	ATOM	6666	CB	THR A	35.864	66.642		1.00 11.02	A
	ATOM	6667	OG1	THR A	36.281	65.757		1.00 12.33	A
	MOTA	6668	CG2	THR A	34.448	66.292		1.00 11.23	A
	ATOM	6669	С	THR F	38.233	66.590		1.00 10.77	A
10	ATOM	6670	0	THR F	38.909	65.574		1.00 10.97	A
10	ATOM	6671	N	GLY A	38.659	67.820		1.00 10.37	A
	ATOM	6672	CA	GLY F	39.968	68.042		1.00 10.72	A
	ATOM	6673	С	GLY F	39.792	68.412		1.00 10.76	A
	ATOM	6674	0	GLY F	40.719	68.881		1.00 10.54	A
4 F	ATOM	6675	N	GLN A	38.580	68.198		1.00 10.62	A
15	ATOM	6676	CA	GLN A	38.250	68.497		1.00 10.79	A
	ATOM	6677	CB	GLN A	38.049	70.008		1.00 10.45	A
	ATOM	6678	CG	GLN A	36.893	70.617		1.00 10.58	A
	MOTA	6679	CD	GLN A	37.197	70.722		1.00 11.77	A
20	ATOM	6680	OE1	GLN A	38.292	71.135		1.00 12.48	A
20	ATOM	6681	NE2	GLN A	36.220	70.365		1.00 10.17	A
	MOTA	6682	С	GLN A	36.969	67.764		1.00 11.10	A
	MOTA	6683	0	GLN F	36.101	67.530		1.00 10.49	A
	ATOM	6684	N	PRO F	36.838	67.380		1.00 10.84	A
25	ATOM	6685	CD	PRO F	37.835	67.430		1.00 10.05	A
25	ATOM	6686	CA	PRO F	35.624	66.678		1.00 10.83	A
•	ATOM	6687	CB	PRO F	36.051	66.010		1.00 10.06	A
	MOTA	6688	CG	PRO F	37.021	67.017	- 9.960	1.00 10.19	A
	ATOM	6689	C	PRO F	34.484	67.673		1.00 11.55	A
20	ATOM	6690	0	PRO F	34.668	68.732		1.00 10.88 1.00 11.38	A A
30	ATOM	6691	N	LEU F	33.316	67.327		1.00 11.58	A
	MOTA	6692	CA	LEU F	32.122	68.164		1.00 11.58	A
	MOTA	6693	CB	LEU A	32.015	69.075		1.00 11.56	A
	ATOM	6694	CG	LEU A	33.136 33.028	70.099 70.713		1.00 12.15	A
35	ATOM	6695		LEU A	33.028	71.184		1.00 12.15	A
33	ATOM	6696		LEU A	30.902	67.247		1.00 11.00	A
	ATOM	6697	C	LEU A	31.016	66.044		1.00 12.75	A
	ATOM ATOM	6698 6699	O N	LEU F	29.739	67.807		1.00 12.75	A
	ATOM	6700	CA	GLY F	28.537	66.994		1.00 11.60	A
40	ATOM	6701	C	GLY F	27.792	66.992		1.00 11.73	A
40	ATOM	6702	0	GLY F	27.732	67.980		1.00 11.73	A
	ATOM	6702	N	GLY F	27.116			1.00 11.53	A
	ATOM	6704	CA	GLY F	26.398			1.00 12.12	A
	ATOM	6705	CA	GLY F	25.351	64.753		1.00 12.12	A
45	ATOM	6706	0	GLY F	25.157	63.980		1.00 11.99	A
45	ATOM	6707	N	SER A	24.680	64.686		1.00 12.94	A
	ATOM	6708	CA	SER A	23.634	63.689		1.00 13.86	A
	ATOM	6709	CB	SER A	22.441	64.003		1.00 14.27	A
	ATOM	6710	OG	SER F	21.402	63.043		1.00 14.27	A
50	ATOM	6711	C	SER F	23.162	63.680		1.00 14.27	A
50	ATOM	6712	0	SER F	23.716	64.374		1.00 13.52	. A
	ATOM	6713	N	SER F	22.143	62.863		1.00 14.72	A
	ATOM	6714	CA	SER A	21.492	62.752		1.00 14.69	A
	ATOM	6715	CB	SER A	21.838			1.00 15.13	A
55	ATOM	6716	OG	SER A	21.175	61.330		1.00 15.73	A
	111011	0,10	-	JLK F	 				

		MOTA	6717	С	SER	Α	856	20.025	62.750	-18.560	1.00		Α
		ATOM	6718	0	SER	Α	856	19.469	61.702	-18.216	1.00	14.82	Α
		ATOM	6719	N	LEU	Α	857	19.404	63.926	-18.570	1.00	14.83	Α
		ATOM	6720	CA	LEU	A	857	18.023	64.041	-18.121	1.00	15.04	A
	5	ATOM	6721	СВ	LEU	Α	857	17.787	65.444	-17.555	1.00	15.79	Α
		ATOM	6722	CG	LEU	Α	857	18.656	65.766	-16.335	1.00	15.73	Α
		ATOM	6723	CD1	LEU	Α	857	18.423	67.199	-15.903	1.00	16.46	А
		ATOM	6724	CD2	LEU	Α	857	18.325	64.802	-15.193	1.00	16.82	А
		MOTA	6725	С	LEU	Α	857	16.959		-19.153		15.01	A
	10	MOTA	6726	0	LEU	Α	857	15.774		-18.831		16.21	Α
		ATOM	6727	N	ALA	Α	858	17.386		-20.384	1.00	14.17	A
		MOTA	6728	CA	ALA	Α	858	16.476		-21.463		15.27	A
		MOTA	6729	CB	ALA	Α	858	15.840		-22.080		14.55	A
		MOTA	6730	С	ALA	Α	858	17.287		-22.508		15.22	A
	15	MOTA	6731	0	ALA	Α	858	18.491		-22.631		15.05	Α
		MOTA	6732	N	SER	Α	859	16.628		-23.247		15.43	A
		MOTA	6733	CA			859	17.300		-24.280		15.40	A
		ATOM	6734	CB			859	16.272		-25.085		15.64	A
		ATOM	6735	OG			859	16.898		-26.118		15.79	A
t PE	20	MOTA	6736	С			859	18.067		-25.208		15.90	A
		MOTA	6737	0			859	17.551		-25.612		16.40	A
°.∺≓ £®Fa		MOTA	6738	N			860	19.300		-25.531		15.03	A
5,5 K		MOTA	6739	CA			860	20.128		-26.416		14.88	A
ing.	0=	ATOM	6740	С			860	20.837		-25.778		14.74	A
Ŋ	25	MOTA	6741	0			860	21.556		-26.461		14.83	A
W)		MOTA	6742	N			861	20.657		-24.477		14.40	A
M		ATOM	6743	CA			861	21.296		-23.802		14.66	A
Đ		MOTA	6744	CB			861	20.274		-22.982		15.09 15.73	A A
	20	MOTA	6745	CG			861	19.167		-23.771		16.26	A
	30	ATOM	6746	CD			861	18.274		-22.881 -21.648		16.77	A
III		ATOM	6747	OE1				18.499		-21.646 -23.410		16.56	A
i.e.		ATOM	6748		GLU			17.349 22.441		-23.410		14.50	A
		ATOM	6749	С			861	22.441		-22.338		13.85	A
tar kar	35	ATOM	6750	0			861 862	23.321		-22.668		14.08	A
i san	33	ATOM ATOM	6751 6752	N CA			862	24.443		-21.740		14.26	A
		ATOM	6753	CB			862	25.767		-22.452		13.73	A
		ATOM	6754	CG			862	26.100		-23.028		13.69	A
		ATOM	6755		LEU			27.463		-23.706		12.07	А
	40	ATOM	6756		LEU					-21.933			А
	10	ATOM	6757	C			862	24.516		-21.156		14.16	А
		ATOM	6758	0			862	24.308		-21.870		14.09	А
		ATOM	6759	N			863	24.773		-19.862		13.64	А
		ATOM	6760	CA			863	24.902		-19.272		13.16	A
	45	ATOM	6761	СВ			863	23.535		-18.860		13.14	А
	10	ATOM	6762	CG			863	23.007		-17.508	1.00	12.61	A
		ATOM	6763	CD			863	21.683		-17.191	1.00	13.43	Α
		ATOM	6764		GLU			21.529		-16.061	1.00	14.53	А
		ATOM	6765		GLU			20.792		-18.071	1.00	14.31	Α
	50	ATOM	6766	C			863	25.851		-18.094	1.00	12.83	Α
		ATOM	6767	ō			863	25.918		-17.394		11.84	А
		ATOM	6768	N			864	26.600		-17.891	1.00	12.45	А
		ATOM	6769	CA			864	27.574		-16.814	1.00	12.34	А
		ATOM	6770	СВ			864	28.953		-17.355		13.29	А
	55	ATOM	6771		ILE			29.406		-18.497	1.00	13.38	А

	ATOM	6772	CG1	ILE	Α	864	29.979	68.411	-16.226	1.00 12.8	7 A
	ATOM	6773	CD1	ILE			31.255	67.696	-16.632	1.00 15.03	3 A
	ATOM	6774	С	ILE			27.626	70.363	-16.245	1.00 12.28	3 A
	ATOM	6775	0	ILE			27.749	71.339	-16.989	1.00 12.73	L A
5	ATOM	6776	N	MET			27.506	70.466	-14.925	1.00 12.09	5 A
_	ATOM	6777	CA	MET			27.504	71.751	-14.229	1.00 12.20	5 A
	ATOM	6778	СВ	MET			27.077	71.548	-12.773	1.00 12.43	3 A
	ATOM	6779	CG	MET			26.485	72.787	-12.127	1.00 11.69	9 A
	ATOM	6780	SD	MET			24.884	73.169	-12.872	1.00 13.80	6 A
10	ATOM	6781	CE	MET			23.850		-12.046	1.00 12.2	l A
	ATOM	6782	C	MET			28.872		-14.273	1.00 12.23	3 A
	ATOM	6783	0	MET			29.903		-14.082	1.00 11.5	
	ATOM	6784	N			866	28.869		-14.501	1.00 12.20) A
	ATOM	6785	CA			866	30.106		-14.592	1.00 12.1	7 A
15	ATOM	6786	СВ			866	29.973		-15.694	1.00 12.0	
10	ATOM	6787	CG			866	29.638		-17.037	1.00 13.10	
	ATOM	6788	CD			866	30.648		-17.455	1.00 13.7	
	ATOM	6789		GLN			31.806		-17.750	1.00 13.63	
	ATOM	6790		GLN			30.219		-17.468	1.00 12.8	
20	ATOM	6791	C			866	30.501		-13.279	1.00 12.3	
20	ATOM	6792	Ö			866	31.672		-12.910	1.00 12.0	
	ATOM	6793	N			867	29.523		-12.595	1.00 12.3	
	ATOM	6794	CA	ASP			29.759		-11.303	1.00 12.5	
	ATOM	6795	CB			867	30.532		-11.450	1.00 12.4	
25	ATOM	6796	CG			867	31.204		-10.147	1.00 12.2	
20		6797		ASP			31.032	77.471	-9.115	1.00 11.8	
	MOTA	6798		ASP			31.912		-10.157	1.00 12.7	
	MOTA					867	28.409		-10.664	1.00 13.5	
	MOTA	6799	С			867	27.371		-11.334	1.00 12.9	
30	ATOM	6800	0			868	28.427	76.923	-9.363	1.00 13.40	
30	MOTA	6801	N				27.210	77.183	-8.618	1.00 14.1	
	ATOM	6802	CA			868	26.683	75.872	-8.023	1.00 13.5	
	ATOM	6803	CB			868	27.697	75.114	-7.172	1.00 13.5	
	ATOM	6804	CG			868	27.390	73.114	-7.182	1.00 13.3	
25	ATOM	6805	CD			868 868	26.035	73.331	-6.723	1.00 12.0	
35	ATOM	6806	NE				25.714	73.036	-5.467	1.00 12.0	
•	ATOM	6807	CZ	ARG		868	26.655	72.970	-4.534	1.00 12.3	
	ATOM	6808						72.822	-5.141	1.00 11.8	
	ATOM	6809		ARG			24.445	78.189	-7.519	1.00 14.3	
40	ATOM	6810	C			868	27.513	78.087	-6.840	1.00 14.9	
40	ATOM	6811	0			868	28.536			1.00 14.9	
	ATOM	6812	N			869	26.627	79.167	-7.363 -6.352	1.00 14.4	
	ATOM	6813	CA			869	26.777	80.213		1.00 14.5	
	ATOM	6814	CB			869	26.938	81.578	-7.037	1.00 15.0	
4 🗆	ATOM	6815	CG			869	27.263	82.745	-6.104	1.00 18.2	
45	ATOM	6816	CD			869	27.492	84.039	-6.890		
	MOTA	6817	NE			869	27.678	85.202	-6.019	1.00 19.1	
	ATOM	6818	CZ			869	28.805	85.495	-5.376	1.00 19.2	
	MOTA	6819		ARG			29.870	84.718	-5.500	1.00 19.5	
5 0	MOTA	6820		ARG			28.865	86.569	-4.597	1.00 19.4	
50	MOTA	6821	С			869	25.497	80.164	-5.521	1.00 15.6	
	ATOM	6822	0			869	24.416	80.479	-6.015	1.00 15.1	
	MOTA	6823	N			870	25.629	79.749	-4.265	1.00 16.1	
	MOTA	6824	CA			870	24.490	79.609		1.00 17.8	
	MOTA	6825	CB			870	24.396	78.153	-2.915	1.00 18.1	
55	MOTA	6826	CG	LEU	A	870	24.411	77.209	-4.122	1.00 19.6	0 A

										1 00 00 54	
	MOTA	6827		LEU			24.773	75.815	-3.688	1.00 20.54	A
	ATOM	6828		LEU			23.056	77.244	-4.818	1.00 20.32	A
	ATOM	6829	С	LEU			24.583	80.530	-2.148	1.00 18.52	A
	MOTA	6830	0	LEU			25.576	80.523	-1.419	1.00 18.31	A
5	ATOM	6831	N	ALA			23.529	81.308	-1.926	1.00 19.42	Α
	ATOM	6832	CA	ALA	A	871	23.496	82.259	-0.823	1.00 21.24	A
	MOTA	6833	CB	ALA	Α	871	22.452	83.341	-1.109	1.00 20.93	Α
	MOTA	6834	С	ALA	Α	871	23.244	81.658	0.556	1.00 22.09	Α
	ATOM	6835	0	ALA	Α	871	23.668	82.223	1.563	1.00 23.73	Α
10	MOTA	6836	N			872	22.567	80.518	0.617	1.00 21.91	Α
	MOTA	6837	CA			872	22.272	79.922	1.914	1.00 21.65	А
	ATOM	6838	СВ			872	20.769	79.658	2.034	1.00 23.19	А
	ATOM	6839	OG			872	20.338	78.730	1.055	1.00 26.58	A
	ATOM	6840	C			872	23.036	78.646	2.239	1.00 20.75	A
15	ATOM	6841	Ö	SER			23.617	78.005	1.364	1.00 19.55	А
10	ATOM	6842	N	ASP			23.031	78.301	3.522	1.00 19.61	А
	ATOM	6843	CA	ASP			23.689	77.104	4.029	1.00 19.17	A
	ATOM	6844	CB	ASP			24.112	77.329	5.482	1.00 19.04	A
			CG				24.112	76.059	6.156	1.00 19.71	A
20	ATOM	6845		ASP			23.811	75.502	6.971	1.00 19.71	A
20	ATOM	6846		ASP				75.612	5.863	1.00 20.20	A
	ATOM	6847		ASP			25.706		3.945	1.00 20.20	A
	ATOM	6848	С			873	22.696	75.948		1.00 18.73	A
	MOTA	6849	0			873	21.498	76.154	4.135		
25	MOTA	6850	N	ASP			23.183	74.742	3.660	1.00 17.54	A
25	MOTA	6851	CA	ASP			22.299	73.585	3.551	1.00 17.33	A
	ATOM	6852	CB	ASP			22.635	72.762	2.297	1.00 16.01	A
	MOTA	6853	CG	ASP			24.122	72.502	2.138	1.00 16.32	A
	ATOM	6854		ASP			24.901	72.857	3.052	1.00 15.05	A
	ATOM	6855	OD2	ASP			24.506	71.936	1.091	1.00 16.01	A
30	MOTA	6856	С	ASP			22.248	72.681	4.788	1.00 17.97	A
	ATOM	6857	0	ASP	Α	874	22.029	71.476	4.685	1.00 18.00	А
	MOTA	6858	N	GLU	Α	875	22.460	73.284	5.953	1.00 18.50	A
	MOTA	6859	CA	GLU	Α	875	22.382	72.597	7.238	1.00 19.21	А
•	ATOM	6860	CB	GLU	Α	875	20.910	72.346	7.585	1.00 21.54	A
35	ATOM	6861	CG	GLU	Α	875	20.038	73.592	7.559	1.00 25.14	А
	MOTA	6862	CD	GLU	Α	875	18.589	73.289	7.885	1.00 27.52	A
	ATOM	6863	OE1	GLU	Α	875	18.310	72.853	9.020	1.00 30.03	Α
	ATOM	6864	OE2	GLU	Α	875	17.727	73.479	7.003	1.00 30.33	Α
	ATOM	6865	С	GLU	Α	875	23.150	71.295	7.451	1.00 18.48	А
40	ATOM	6866	0	GLU	Α	875	22.627	70.367	8.070	1.00 17.86	Α
	ATOM	6867	N	ARG	Α	876	24.380	71.208	6.956	1.00 17.24	Α
	ATOM	6868	CA	ARG	Α	876	25.161	69.997	7.180	1.00 16.73	А
	ATOM	6869	СВ			876	25.517	69.320	5.848	1.00 16.77	A
	ATOM	6870	CG			876	24.312	68.684	5.133	1.00 15.41	Α
45	ATOM	6871	CD			876	23.606	67.656	6.027	1.00 15.04	А
	ATOM	6872	NE			876	22.518	66.949	5.348	1.00 14.38	А
	ATOM	6873	CZ			876	21.355	67.497	4.999	1.00 14.98	Α
	ATOM	6874		ARG			21.107	68.776	5.259	1.00 12.60	А
	ATOM	6875		ARG			20.435	66.759	4.389	1.00 14.55	А
50	ATOM	6876	C			876	26.420	70.301	7.995	1.00 16.61	A
50	ATOM	6877	0			876	27.312	69.460	8.120	1.00 16.31	A
						877	26.483	71.511	8.552	1.00 16.19	A
	ATOM	6878	N Cn					71.887	9.375	1.00 16.15	A
	ATOM	6879	CA			877	27.619		8.829	1.00 15.13	A
	ATOM	6880	С			877	28.605	72.908			
55	ATOM	6881	0	GLY	A	877	29.426	73.435	9.586	1.00 16.37	А

	ATOM	6882	N	LEU	А	878	28.537	73.198	7.534	1.00 16.26	А
	ATOM	6883	CA			878	29.460	74.157	6.931	1.00 16.37	А
	ATOM	6884	СВ			878	29.297	74.159	5.410	1.00 15.68	А
	ATOM	6885	CG			878	30.187	75.111	4.605	1.00 15.99	А
5	ATOM	6886		LEU			31.649	74.925	4.994	1.00 15.30	А
-	ATOM	6887		LEU			29.992	74.846	3.123	1.00 14.75	A
	ATOM	6888	C			878	29.271	75.569	7.490	1.00 17.09	А
	ATOM	6889	Ō			878	30.240	76.308	7.672	1.00 16.41	A
	ATOM	6890	N			879	28.023	75.942	7.756	1.00 17.19	A
10	ATOM	6891	CA			879	27.757	77.257	8.315	1.00 18.15	A
10	ATOM	6892	C			879	27.833	78.419	7.342	1.00 18.91	A
	ATOM	6893	0			879	27.929	79.574	7.760	1.00 19.29	A
	ATOM	6894	N			880	27.798	78.122	6.047	1.00 18.66	A
	ATOM	6895	CA			880	27.838	79.162	5.028	1.00 18.43	A
15	ATOM	6896	CB			880	29.244	79.774	4.910	1.00 18.45	A
10	ATOM	6897	CG			880	30.361	78.774	4.586	1.00 18.43	A
	ATOM	6898	CD			880	31.589	79.432	3.963	1.00 18.32	A
	ATOM	6899	OE1				31.611	79.730	2.764	1.00 10.32	A
	ATOM	6900	NE2	GLN			32.609	79.670	4.776	1.00 20.47	A
20	ATOM	6901	C			880	27.424	78.615	3.670	1.00 10.33	A
20	ATOM	6902	0			880	27.389	77.399	3.455	1.00 18.09	A
	ATOM	6903	N			881	27.095	79.527	2.763	1.00 18.09	A
	ATOM	6904	CA			881	26.730	79.129	1.421	1.00 13.10	A
	ATOM	6905	CA			881	28.014	79.125	0.613	1.00 17.00	A
25	ATOM	6906	0			881	29.110	79.143	1.175	1.00 16.85	A
20		6907				882	27.887	79.100	-0.705	1.00 15.89	A
	MOTA MOTA	6907	N				29.045	79.203	-1.578	1.00 15.83	A
	ATOM	6909	CA CB			882 882	29.043	78.059	-2.570	1.00 15.85	A
							30.229			1.00 15.45	A A
30	ATOM	6910	CG1					78.105 76.746	-3.476	1.00 15.71	A
30	ATOM	6911		VAL			28.974		-1.800		
	ATOM	6912	С			882	28.998	80.558	-2.330	1.00 15.96	A
	ATOM	6913	0			882	28.308	80.684	-3.338	1.00 15.41 1.00 16.91	A
	ATOM	6914	N			883	29.727	81.542	-1.815		A
35	ATOM	6915	CA			883	29.761	82.872	-2.415	1.00 17.79	A
33	ATOM	6916	CB			883	29.092	83.874	-1.467	1.00 18.67	A
	ATOM	6917	CG			883	27.586	83.717	-1.225	1.00 19.39	A
	ATOM	6918		LEU			27.161	84.532	-0.011	1.00 20.65	A
	ATOM	6919		LEU			26.829	84.178	-2.453	1.00 20.59	A
40	ATOM	6920	С	LEU			31.184	83.331	-2.726	1.00 17.96	A
40	ATOM	6921	0	LEU			31.420	84.518	-2.953	1.00 19.51	A
	ATOM	6922	N	ASP					-2.745	1.00 17.04	A
	ATOM	6923	CA	ASP			33.521		-3.016	1.00 16.75	A
	ATOM	6924	CB	ASP			34.422	82.110	-1.934	1.00 17.01	A
45	ATOM	6925	CG	ASP			34.187	80.623	-1.738	1.00 17.63	A
45	ATOM	6926		ASP			34.839		-0.842	1.00 17.95	A
	ATOM	6927		ASP			33.358	80.035	-2.471	1.00 16.72	A
	ATOM	6928	С	ASP			33.996	82.269	-4.395	1.00 16.25	Α
	ATOM	6929	0	ASP			35.171		-4.590	1.00 16.24	Α
-0	ATOM	6930	N	ASN			33.073	82.252	-5.350	1.00 15.54	Α
50	MOTA	6931	CA	ASN			33.380	81.857	-6.719	1.00 15.55	А
	MOTA	6932	СВ	ASN			32.129	81.978	-7.584	1.00 15.27	А
	MOTA	6933	CG	ASN			30.959	81.217	-7.014	1.00 16.04	А
	MOTA	6934		ASN			30.708	80.069	-7.383	1.00 17.31	A
	ATOM	6935		ASN			30.244		-6.089	1.00 14.69	A
55	MOTA	6936	С	ASN	Α	885	34.464	82.737	-7.316	1.00 15.81	Α

			_		_		24 522	02 010	6 064	1 00	15 21	70
	MOTA	6937	0	ASN			34.593	83.910	-6.964		15.21	A
	ATOM	6938	N	LYS			35.234	82.163	-8.231		15.55	A
	ATOM	6939	CA	LYS			36.291	82.891	-8.911		16.47	A
_	ATOM	6940	СВ	LYS			37.616	82.746	-8.154		18.07	A
5	ATOM	6941	CG	LYS			38.108	81.316	-8.023		18.63	A
	MOTA	6942	CD	LYS			39.241	81.199	-7.009		20.71	A
	MOTA	6943	CE	LYS			40.446	82.032	-7.408		20.48	A
	MOTA	6944	NZ	LYS			41.570	81.853	-6.454		21.54	A A
10	ATOM	6945	C	LYS			36.402		-10.311		15.79	
10	MOTA	6946	0	LYS			36.057		-10.535		16.23 15.53	A
	ATOM	6947	N	PRO			36.870		-11.280			A
	MOTA	6948	CD	PRO			37.247		-11.189		15.01	A
	ATOM	6949	CA	PRO			37.003		-12.652		14.09	A
4 =	ATOM	6950	СВ	PRO			37.711		-13.363		15.12	A A
15	MOTA	6951	CG	PRO			37.187		-12.629		15.47 13.98	
	MOTA	6952	С	PRO			37.793		-12.740			A A
	ATOM	6953	0	PRO			38.849		-12.125		14.06	A
	MOTA	6954	N	VAL			37.261		-13.497		12.52	A
20	ATOM	6955	CA	VAL			37.927		-13.687		12.09 12.98	A
20	ATOM	6956	CB	VAL			37.300		-12.802			A
	MOTA	6957		VAL			35.794		-13.026		13.02 12.38	A
	MOTA	6958		VAL			37.959		-13.117		12.38	A
	MOTA	6959	C	VAL			37.833		-15.155		12.30	A
25	MOTA	6960	0	VAL			36.821		-15.815 -15.670		11.73	A
25	ATOM	6961	N			889	38.898				11.73	A
	MOTA	6962	CA	LEU			38.918		-17.056		12.37	A
	ATOM	6963	CB			889	40.252		-17.726 -19.208		12.93	A
	ATOM	6964	CG			889	40.314		-19.208		13.51	A
20	ATOM	6965		LEU			39.392		-19.728		14.04	A
30	ATOM	6966		LEU			41.745 38.712		-17.114		11.67	A
	ATOM	6967	С			889	39.629		-16.818		11.61	A
	ATOM	6968	0			889 890	37.503		-17.475		11.59	A
	ATOM	6969 6970	N	HIS			37.195		-17.595		11.80	A
35	ATOM		CA CB			890	35.699		-17.405		11.62	A
33	ATOM	6971 6972	CG			890	35.227		-15.995		12.11	A
	ATOM ATOM	6973		HIS			34.057		-15.495		11.32	A
	ATOM	6974		HIS			35.981		-14.909		12.14	A
	ATOM	6975		HIS			35.296		-13.800		12.02	· A
40		6976		HIS			34.125		-14.128		12.08	A
40	ATOM ATOM	6977	C			890	37.582		-18.991		11.45	A
	ATOM	6978	0			890	37.374		-19.957		11.89	A
	ATOM	6979	N			891	38.129		-19.105		11.16	А
	ATOM	6980	CA			891	38.527		-20.409		10.51	A
45	ATOM	6981	CB			891	40.065		-20.529	1.00	9.62	A
40	ATOM	6982		ILE			40.674		-20.275		10.29	A
	ATOM	6983		ILE			40.626		-19.515	1.00	9.60	А
		6984				891 .	42.118		-19.709	1.00	9.63	A
	MOTA	6985	C			891	37.910		-20.685		10.45	A
50	ATOM ATOM	6986	0			891	37.677		-19.764		11.02	A
50	ATOM	6987	N			892	37.644		-21.959	1.00	9.88	A
	ATOM	6988	CA			892	37.034		-22.374		10.43	A
	ATOM	6989	CB			892	35.499		-22.415		10.07	A
	ATOM	6990	CG			892	34.838		-21.247		10.62	A
55		6991		TYR			34.810		-21.142	1.00	9.84	A
55	ATOM	ひフプエ	CDI	IIK	Α.	0 92	24.010	.1.555	-1.134			• •

					_		24 102	70 001	00 056	1 00	10 43	70
	ATOM	6992		TYR			34.193		-20.056		10.41	A
	ATOM	6993		TYR			34.234		-20.241		10.00	A
	ATOM	6994	CE2	TYR			33.620		-19.159		11.35	A
_	MOTA	6995	CZ	TYR			33.601		-19.068		10.30	A
5	ATOM	6996	ОН	TYR			32.989		-17.986		10.40	A
	ATOM	6997	С	TYR			37.446		-23.781		10.21	A
	ATOM	6998	0	TYR			38.067		-24.505	1.00	9.47	А
	ATOM	6999	N	ARG			37.082		-24.151		11.39	Α
	ATOM	7000	CA	ARG			37.275		-25.507		11.89	А
10	ATOM	7001	CB	ARG			38.353		-25.595		11.65	A
	MOTA	7002	CG	ARG	A	893	39.800	66.473	-25.503		12.03	A
	ATOM	7003	CD	ARG	A	893	40.146	67.534	-26.559	1.00	12.81	A
	ATOM	7004	NE	ARG	Α	893	40.179	67.020	-27.929	1.00	13.22	А
	ATOM	7005	CZ	ARG	Α	893	41.094	66.177	-28.402	1.00	13.50	A
15	ATOM	7006	NH1	ARG	Α	893	42.072	65.734	-27.620	1.00	13.17	A
	ATOM	7007	NH2	ARG	Α	893	41.037	65.782	-29.666	1.00	13.35	A
	ATOM	7008	С	ARG	Α	893	35.901	66.470	-25.809	1.00	12.56	Α
	ATOM	7009	0	ARG	Α	893	35.315	65.801	-24.951	1.00	12.29	A
	ATOM	7010	N	LEU	Α	894	35.371	66.740	-26.999	1.00	12.89	Α
20	ATOM	7011	CA	LEU			34.061	66.224	-27.387	1.00	13.29	Α
	ATOM	7012	СВ	LEU			33.136		-27.812	1.00	14.11	A
	ATOM	7013	CG	LEU			31.689	66.956	-28.119	1.00	13.84	Α
	ATOM	7014		LEU			31.050	66.397	-26.859		15.01	A
	ATOM	7015		LEU			30.885		-28.631		14.69	А
25	ATOM	7016	C	LEU			34.254		-28.541		13.05	А
	ATOM	7017	Ö	LEU			34.643		-29.642		13.01	А
	ATOM	7018	N	VAL			33.976		-28.278		13.11	Α
	ATOM	7019	CA	VAL			34.166		-29.273		14.21	А
	ATOM	7020	СВ	VAL			35.048		-28.711	1.00	14.02	А
30	ATOM	7021		VAL			35.395		-29.822		13.83	А
	ATOM	7022		VAL			36.304		-28.072		14.27	А
	ATOM	7023	C	VAL			32.884		-29.788		14.24	А
	ATOM	7024	Ö	VAL			32.204		-29.047		14.21	А
	ATOM	7025	N	LEU			32.565		-31.056		14.43	A
35	ATOM	7026	CA	LEU			31.397		-31.690		15.16	А
00	ATOM	7027	СВ	LEU			30.692		-32.632		16.09	A
	ATOM	7028	CG	LEU			29.533		-33.441		16.60	А
	ATOM	7029		LEU			28.388		-32.507		16.94	A
	ATOM	7023		LEU			29.055		-34.489		17.67	A
40	ATOM	7031	C	LEU					-32.498		15.44	A
10	ATOM	7032	0	LEU			32.934		-33.240		15.11	A
	ATOM	7032	N	GLU			31.382		-32.348		15.78	A
	ATOM	7033	CA	GLU			31.882		-33.052		16.64	A
	ATOM	7034	CB	GLU			32.838		-32.157		17.33	A
45	ATOM	7035	CG	GLU			34.005		-31.591		18.67	A
45	ATOM	7030	CD	GLU			34.770		-30.583		18.78	A
		7037		GLU			34.770		-29.530		20.08	A
	ATOM			GLU			35.941		-30.850		20.18	A
	ATOM	7039					30.789		-33.455		16.86	A
50	ATOM	7040	С	GLU			29.731		-32.834		16.37	A
50	ATOM	7041	0	GLU							17.54	A
	ATOM	7042	N	LYS			31.070		-34.491		18.69	A
	ATOM	7043	CA	LYS			30.149		-34.935			
	ATOM	7044	CB	LYS			30.296		-36.438		19.99 21.82	A A
55	ATOM	7045	CG	LYS			29.903		-37.323		24.25	A A
33	ATOM	7046	CD	LYS	Н	0 70	28.480	30.902	-37.034	1.00	24.23	A

	ATOM	7047	CE	LYS	Α	898	27.461	55.858	-37.177	1.00	25.50	Α
	MOTA	7048	NZ	LYS			26.080	56.336	-36.892	1.00	27.51	Α
	ATOM	7049	С	LYS	Α	898	30.619	54.359	-34.145	1.00	18.71	Α
	MOTA	7050	0	LYS	Α	898	31.815	54.072	-34.095	1.00	19.42	Α
5	ATOM	7051	N	VAL	Α	899	29.691	53.647	-33.517	1.00	18.14	Α
	ATOM	7052	CA	VAL	Α	899	30.062	52.486	-32.720	1.00	17.77	Α
	ATOM	7053	СВ	VAL	Α	899	29.804	52.759	-31.219	1.00	17.74	Α
	ATOM	7054	CG1	VAL	Α	899	30.749	53.847	-30.719	1.00	17.93	A
	MOTA	7055	CG2	VAL	Α	899	28.354	53.189	-31.009		17.25	Α
10	MOTA	7056	С	VAL	Α	899	29.329	51.204	-33.117	1.00	17.99	A
	ATOM	7057	0	VAL	Α	899	29.343	50.225	-32.375	1.00	16.80	Α
	MOTA	7058	N	ASN	Α	900	28.696	51.204	-34.286	1.00	18.17	Α
	ATOM	7059	CA	ASN	Α	900	27.960	50.022	-34.727	1.00	19.54	А
	ATOM	7060	СВ	ASN	Α	900	27.149	50.336	-35.993	1.00	21.01	Α
15	MOTA	7061	CG	ASN	Α	900	27.997		-37.096		22.59	Α
	ATOM	7062	OD1	ASN	Α	900	28.594	51.989	-36.935		24.04	Α
	MOTA	7063	ND2	ASN	Α	900	28.058	50.231	-38.230		23.54	Α
	ATOM	7064	С	ASN	Α	900	28.858		-34.979		19.41	А
	ATOM	7065	0	ASN	Α	900	28.390	47.676	-34.950		19.92	A
20	ATOM	7066	N	ASN	Α	901	30.142	49.048	-35.226		18.98	Α
	ATOM	7067	CA	ASN	Α	901	31.067	47.946	-35.478		19.29	Α
	MOTA	7068	СВ	ASN	Α	901	32.053		-36.589		20.87	A
	MOTA	7069	CG	ASN	Α	901	31.401	48.359	-37.948		23.08	А
	MOTA	7070		ASN			30.649		-38.315		24.77	A
25	ATOM	7071	ND2	ASN			31.695		-38.712		24.33	A
	ATOM	7072	С	ASN	Α	901	31.855		-34.243		18.73	A
	ATOM	7073	0	ASN	Α	901	32.631		-34.288		18.51	A
	MOTA	7074	N	CYS			31.660		-33.142		17.77	A
	ATOM	7075	CA	CYS			32.382		-31.913		17.80	A
30	MOTA	7076	С	CYS			31.806		-31.162		17.57	A
	MOTA	7077	0			902	30.591		-31.087		18.35	A
	MOTA	7078	СВ	CYS			32.370		-30.963		18.11	A
	MOTA	7079	SG	CYS			33.114		-31.563		18.40	A
٥-	ATOM	7080	N			903	32.688		-30.596		17.18	A
35	MOTA	7081	CA	VAL			32.258		-29.809		16.95	A
	ATOM	7082	СВ			903	33.354		-29.739		16.42	A
	ATOM	7083		VAL			32.911		-28.820		16.29	A
	ATOM	7084		VAL			33.643		-31.134		16.61	A
40	ATOM	7085	C	VAL			31.993		-28.411		17.40	A
40	ATOM	7086	0	VAL					-27.659		17.19 17.57	A
	ATOM	7087	N	ARG			30.721		-28.076		19.09	A A
	ATOM	7088	CA	ARG			30.339		-26.781 -26.985		19.60	
	ATOM	7089	CB	ARG			29.312				20.55	A
45	ATOM	7090	CG	ARG			29.902 28.834		-27.636 -27.962		22.04	A A
45	ATOM	7091	CD	ARG					-29.123		22.98	A
	ATOM	7092	NE	ARG			28.034 27.079		-29.123		24.10	A
	ATOM	7093	CZ	ARG			26.807		-29.049		23.36	A
	ATOM	7094		ARG					-30.713		23.49	A
50	ATOM	7095		ARG			26.402 29.778		-30.713		18.91	A
50	ATOM	7096	C	ARG			29.778 29.445		-26.233		19.16	A
	ATOM	7097 7098	O N	ARG			29.445		-26.233 -24.531		18.86	A
	ATOM	7098 7099	N CD			905 905	30.225		-24.551		18.98	A
	ATOM	7100	CA			905	29.152		-23.530		18.75	A
55	ATOM	7100	CB			905	29.132		-22.217		18.15	A
55	ATOM	,101	CD	FILO	ч	JUJ	29.330	30.1//	c.c C 1 /	1.00	10.10	**

		ATOM	7102	CG	PRO F	905	30.531	46.064 -22.503	1.00 18.29	А
		ATOM	7103	С	PRO F	905	27.677	44.182 -23.811	1.00 19.11	Α
		MOTA	7104	0	PRO F	905	27.020	45.011 -24.447	1.00 18.48	Α
		MOTA	7105	N	SER A	906	27.156	43.052 -23.339	1.00 19.65	Α
	5	MOTA	7106	CA	SER A	906	25.747	42.741 -23.548	1.00 20.62	Α
		MOTA	7107	СВ	SER F		25.405	41.351 -23.011	1.00 21.91	Α
		ATOM	7108	OG	SER A		25.224	41.388 -21.605	1.00 23.95	A
		ATOM	7109	С	SER A		24.911	43.774 -22.809	1.00 20.80	Α
		ATOM	7110	Ō	SER A		25.427	44.536 -21.988	1.00 19.32	Α
	10	ATOM	7111	N	LYS A		23.615	43.782 -23.095	1.00 21.12	Α
	10	ATOM	7112	CA	LYS A		22.692	44.721 -22.474	1.00 22.75	Α
		ATOM	7113	CB	LYS A		21.291	44.523 -23.063	1.00 25.21	Α
		ATOM	7114	CG	LYS A		21.187	44.877 -24.541	1.00 28.17	А
			7115	CD	LYS A		19.869	44.394 -25.156	1.00 30.78	A
	15	ATOM		CE	LYS A		18.652	44.921 -24.398	1.00 32.30	A
	15	ATOM	7116		LYS A		18.558	46.411 -24.413	1.00 34.30	A
		ATOM	7117	NZ			22.631	44.606 -20.952	1.00 34.50	A
		ATOM	7118	C	LYS A			45.552 -20.272	1.00 21.00	A
		ATOM	7119	0	LYS A		22.243	43.454 -20.417	1.00 20.87	A
	20	ATOM	7120	N	LEU A		23.023		1.00 20.37	A
J	20	MOTA	7121	CA	LEU A		22.972	43.237 -18.974		A
ιŌ		MOTA	7122	CB	LEU A		22.543	41.793 -18.686	1.00 21.33	
(F)		MOTA	7123	CG	LEU A		21.169	41.386 -19.238	1.00 22.83	A
415 - 415 -		MOTA	7124		LEU A		20.891	39.928 -18.905	1.00 22.96	A
1,225 113.5	~-	MOTA	7125		LEU A		20.081	42.285 -18.650	1.00 23.40	A
19	25	MOTA	7126	С	LEU A		24.271	43.549 -18.226	1.00 18.65	A
W.		MOTA	7127	0	LEU A		24.307	43.506 -16.996	1.00 18.58	A
ij.		MOTA	7128	N	HIS A		25.330	43.864 -18.962	1.00 17.27	A
81		MOTA	7129	CA	HIS A		26.618	44.178 -18.345	1.00 16.78	A
		ATOM	7130	CB	HIS A			44.152 -19.409	1.00 16.00	A
Ţ	30	MOTA	7131	CG	HIS A		29.093	43.939 -18.857	1.00 16.16	Α
		MOTA	7132	CD2	HIS A	909	29.923	42.871 -18.927	1.00 15.42	A
i i		MOTA	7133		HIS A		29.764	44.899 -18.129	1.00 15.64	A
[.1 		MOTA	7134	CE1	HIS A	909	30.948	44.432 -17.776	1.00 16.06	A
		ATOM	7135	NE2	HIS A	909	31.070	43.203 -18.249	1.00 16.03	A
<u></u>	35	ATOM	7136	С	HIS A	909	26.535	45.561 -17.688	1.00 15.94	A
		ATOM	7137	0	HIS A	909	26.027	46.509 -18.286	1.00 15.96	А
		ATOM	7138	N	PRO A	910	27.028	45.689 -16.445	1.00 15.17	A
		ATOM	7139	CD	PRO A	910	27.462	44.595 -15.561	1.00 15.87	Α
		MOTA	7140	CA	PRO A	910	27.004	46.958 -15.706	1.00 14.56	Α
	40	ATOM	7141	CB	PRO A	910	27.193	46.525 -14.246	1.00 14.78	Α
		ATOM	7142	CG	PRO A		26.902	45.041 -14.247	1.00 15.77	A
		ATOM	7143	С	PRO A	910	28.076	47.971 -16.108	1.00 13.94	А
		ATOM	7144	0	PRO A	910	28.051	49.112 -15.642	1.00 14.38	A
		ATOM	7145	N	ALA A	911	29.016	47.561 -16.952	1.00 13.17	A
	45	ATOM	7146	CA	ALA A			48.455 -17.354	1.00 13.46	А
		ATOM	7147	СВ	ALA A			47.784 -17.086	1.00 13.95	Α
		ATOM	7148	C	ALA A			48.933 -18.797	1.00 12.94	А
		ATOM	7149	Ō	ALA A			48.431 -19.621	1.00 12.72	А
		ATOM	7150	N	GLY A			49.914 -19.081	1.00 13.06	Α
	50	ATOM	7151	CA	GLY A			50.468 -20.415	1.00 13.02	A
	50	ATOM	7152	C	GLY A			50.752 -20.614	1.00 13.32	A
		ATOM	7153	0	GLY A			50.894 -19.630	1.00 13.24	A
		ATOM	7154	N	TYR A			50.830 -21.865	1.00 12.99	A
			7154	CA	TYR A			51.097 -22.148	1.00 13.02	A
	55	ATOM		CB	TYR			49.804 -22.546	1.00 13.02	A
	55	ATOM	7156	CB	IIK A	, JIJ	33.007	39.003 -ZZ.J40	1.00 13.32	

		~			_			40 754	01 160	1 00	12 60	70
	ATOM	7157	CG	TYR			35.020		-21.462		13.68	А
	ATOM	7158	CD1	TYR	Α	913	34.023	47.782	-21.451		14.79	А
	ATOM	7159	CE1	TYR	Α	913	33.927	46.864	-20.409	1.00	14.26	Α
	ATOM	7160	CD2	TYR	A	913	35.929	48.780	-20.406	1.00	13.81	Α
5	ATOM	7161	CE2				35.842	47.868	-19.358	1.00	14.11	A
	ATOM	7162	CZ	TYR			34.835		-19.367		14.91	A
				TYR			34.717		-18.322		15.05	A
	ATOM	7163	OH									
	ATOM	7164	С	TYR			34.536		-23.243		12.69	A
	ATOM	7165	0	TYR			33.729		-24.164		12.95	A
10	MOTA	7166	N	LEU	Α	914	35.614	52.904	-23.130	1.00	12.39	A
	ATOM	7167	CA	LEU	Α	914	35.934	53.934	-24.110	1.00	11.88	Α
	ATOM	7168	CB	LEU	Α	914	36.920	54.953	-23.523	1.00	10.80	А
	ATOM	7169	CG	LEU			36.488		-22.354	1.00	11.21	А
	ATOM	7170		LEU			37.606		-22.050		10.84	A
15									-22.701		11.02	A
13	MOTA	7171		LEU			35.199					
	MOTA	7172	С	LEU			36.563		-25.361		12.53	A
	ATOM	7173	0	LEU			37.001		-25.380		11.85	A
	MOTA	7174	N	THR	Α	915	36.594	54.162	-26.406	1.00	12.37	Α
	ATOM	7175	CA	THR	A	915	37.207	53.810	-27.674	1.00	12.90	Α
20	ATOM	7176	СВ	THR			36.520	54.514	-28.850	1.00	13.18	Α
	ATOM	7177	OG1	THR			36.487		-28.588		14.07	А
		7178	CG2	THR			35.107		-29.050		13.81	A
	ATOM										13.07	
	MOTA	7179	С	THR			38.609		-27.571			A
0=	ATOM	7180	0	THR			38.890		-26.674		12.57	A
25	MOTA	7181	N	SER			39.479		-28.494		13.02	A
	ATOM	7182	CA	SER	Α	916	40.846	54.504	-28.517	1.00	13.32	А
	ATOM	7183	CB	SER	Α	916	41.584	53.933	-29.727	1.00	14.65	А
	MOTA	7184	OG	SER	Α	916	42.822	54.591	-29.917	1.00	18.31	А
	ATOM	7185	С	SER			40.883	56.031	-28.580	1.00	13.17	А
30	ATOM	7186	Ō	SER			41.628		-27.842		11.89	A
50		7187	N	ALA			40.074		-29.463		12.45	А
	MOTA										12.29	A
	ATOM	7188	CA	ALA			40.043		-29.620			
	MOTA	7189	СВ	ALA			39.113		-30.764		13.11	A
	ATOM	7190	С	ALA			39.609		-28.343		12.12	A
35	MOTA	7191	0	ALA	Α	917	40.201	59.779	-27.951		11.03	A
	MOTA	7192	N	ALA	Α	918	38.569	58.248	-27.702	1.00	11.73	A
	ATOM	7193	CA	ALA	Α	918	38.060	58.851	-26.474	1.00	11.66	А
	ATOM	7194	CB	ALA			36.761	58.174	-26.062	1.00	11.10	А
	MOTA	7195	C	ALA			39.089		-25.353		11.78	А
40	ATOM	7196	Ö	ALA			39.261		-24.555		11.86	A
40									-25.289		10.86	A
	ATOM	7197	N	HIS			39.773					
	MOTA	7198	CA	HIS			40.785		-24.262		11.84	A
	ATOM	7199	CB	HIS			41.281		-24.287		11.67	А
	MOTA	7200	CG	HIS	Α	919	42.386		-23.315		13.50	А
45	ATOM	7201	CD2	HIS	Α	919	42.420	55.735	-21.963	1.00	13.61	А
	ATOM	7202		HIS			43.658	55.331	-23.716	1.00	13.89	Α
	ATOM	7203		HIS			44.427		-22.654		13.39	А
									-21.577		14.91	A
	MOTA	7204		HIS			43.701					
F.0	MOTA	7205	C	HIS			41.952		-24.473		11.88	A
50	MOTA	7206	0	HIS			42.399		-23.532		11.54	Α
	MOTA	7207	N	LYS	Α	920	42.440	58.473	-25.706		11.97	А
	MOTA	7208	CA	LYS	Α	920	43.547	59.378	-25.979	1.00	12.11	А
	MOTA	7209	СВ	LYS			44.042		-27.421	1.00	13.63	Α
	ATOM	7210	CG	LYS			44.909		-27.617		14.69	Α
55	ATOM	7211	CD	LYS			45.591		-28.978		15.57	А
55	ATON	, , , , ,	CD	פוע	~	720	40.001	57.540	20.7.0	1.00	13.3.	* * *

							• • •					
	ATOM	7212	CE	LYS	Α	920	46.543	56.769	-29.089	1.00		А
	ATOM	7213	NZ	LYS	Α	920	47.665	56.868	-28.111	1.00		Α
	ATOM	7214	С	LYS	Α	920	43.145		-25.712	1.00		Α
	MOTA	7215	0	LYS	Α	920	43.962		-25.251	1.00		Α
5	MOTA	7216	N	ALA	A	921	41.886		-25.989	1.00		Α
	ATOM	7217	CA	ALA	A	921	41.399		-25.757		11.42	Α
	ATOM	7218	CB	ALA	Α	921	39.972		-26.297		10.82	Α
	ATOM	7219	С	ALA	A	921	41.443	62.810	-24.256	1.00		Α
	ATOM	7220	0	ALA	Α	921	41.803	63.914	-23.841	1.00	12.03	Α
10	ATOM	7221	N	SER	Α	922	41.085	61.824	-23.439	1.00	10.96	А
	ATOM	7222	CA	SER	Α	922	41.120		-21.992	1.00		Α
	MOTA	7223	CB	SER	Α	922	40.574	60.783	-21.263	1.00		Α
	ATOM	7224	OG	SER	Α	922	40.661	60.964	-19.855	1.00	9.29	Α
	ATOM	7225	С	SER	Α	922	42.560	62.257	-21.547	1.00	10.95	Α
15	ATOM	7226	0	SER	Α	922	42.824	63.116	-20.709	1.00	11.72	Α
	ATOM	7227	N	GLN	Α	923	43.493	61.498	-22.113	1.00	11.31	Α
	ATOM	7228	CA	GLN	Α	923	44.897	61.650	-21.755	1.00		Α
	ATOM	7229	СВ	GLN	Α	923	45.740	60.551	-22.404	1.00	11.10	Α
	ATOM	7230	CG	GLN	Α	923	45.413	59.139	-21.923	1.00	10.78	Α
20	ATOM	7231	CD	GLN	Α	923	46.344	58.104	-22.518	1.00	11.62	Α
	ATOM	7232	OE1	GLN	Α	923	46.500	58.031	-23.738	1.00	12.23	Α
	MOTA	7233	NE2	GLN	Α	923	46.973	57.294	-21.659	1.00	11.02	Α
	ATOM	7234	С	GLN			45.433	63.023	-22.157	1.00	11.58	Α
	ATOM	7235	0	GLN			46.312	63.566	-21.486	1.00	11.23	Α
25	MOTA	7236	N	SER			44.902	63.585	-23.241	1.00	11.01	A
	ATOM	7237	CA	SER	Α	924	45.343	64.900	-23.704	1.00		Α
	MOTA	7238	СВ	SER	Α	924	44.727	65.236	-25.069	1.00	13.21	Α
	ATOM	7239	OG	SER	Α	924	43.363	65.616	-24.936	1.00		Α
	MOTA	7240	С	SER	Α	924	44.948	65.981	-22.702	1.00		А
30	ATOM	7241	0	SER	Α	924	45.590	67.030	-22.625	1.00	13.44	А
	MOTA	7242	N	LEU	Α	925	43.886	65.728	-21.944	1.00	11.76	A
	MOTA	7243	CA	LEU	Α	925	43.408	66.684	-20.950	1.00		А
	MOTA	7244	CB	LEU	Α	925	41.892	66.533	-20.759	1.00	12.13	Α
	ATOM	7245	CG	LEU	Α	925	41.000	66.792	-21.977	1.00	11.95	А
35	ATOM	7246	CD1	LEU	Α	925	39.552	66.421	-21.645	1.00		A
	ATOM	7247	CD2	LEU	Α	925	41.101	68.252	-22.387	1.00	12.24	A
	ATOM	7248	С	LEU	Α	925	44.092	66.524	-19.593	1.00	11.32	А
	ATOM	7249	0	LEU	Α	925	44.483	67.507	-18.962	1.00	11.10	Α
	MOTA	7250	N	LEU	Α	926	44.240	65.282	-19.148	1.00	10.58	Α
40	MOTA	7251	CA	LEU	A	926	44.837	65.021	-17.843	1.00	10.87	Α
	MOTA	7252	CB	LEU	Α	926	44.268	63.725	-17.257	1.00		А
	MOTA	7253	CG	LEU	Α	926	42.756	63.720	-17.008	1.00		A
	ATOM	7254	CD1	LEU	Α	926	42.337	62.385	-16.410	1.00		A
	MOTA	7255	CD2	LEU	Α	926	42.385	64.867	-16.070	1.00		Α
45	ATOM	7256	С	LEU	Α	926	46.356	64.961	-17.808	1.00	11.34	А
	MOTA	7257	0	LEU	Α	926	46.962	65.305	-16.795	1.00	11.49	А
	MOTA	7258	N	ASP	Α	927	46.975	64.519	-18.897	1.00	10.72	А
	MOTA	7259	CA	ASP			48.430	64.415	-18.928	1.00	11.43	А
	ATOM	7260	СВ	ASP	Α	927	48.847	62.968	-18.666	1.00	10.70	А
50	ATOM	7261	CG	ASP			48.500	62.520	-17.260	1.00	11.69	А
	ATOM	7262		ASP			49.209		-16.315	1.00	10.68	А
	ATOM	7263		ASP			47.509		-17.098	1.00	11.79	А
	ATOM	7264	С	ASP			49.022	64.910	-20.238	1.00	10.90	А
	ATOM	7265	Ō	ASP			49.586		-21.015	1.00		А
55	ATOM	7266	N	PRO			48.900		-20.493	1.00	11.75	A
				-								

	ATOM	7267	CD	PRO			48.353		-19.583		11.72	А
	MOTA	7268	CA	PRO			49.418		-21.714		11.93	А
	MOTA	7269	CB	PRO			48.776		-21.688		12.47	Α
	ATOM	7270	CG	PRO			48.823		-20.232		12.77	Α
5	ATOM	7271	С	PRO			50.932		-21.666		11.95	Α
	ATOM	7272	0	PRO	A	928	51.550		-20.632		12.15	А
	ATOM	7273	N	LEU	Α	929	51.531		-22.790		11.74	А
	MOTA	7274	CA	LEU	Α	929	52.972		-22.829		11.78	Α
	MOTA	7275	CB	LEU			53.441		-24.238		11.20	A
10	MOTA	7276	CG	LEU			53.239		-25.387		10.78	A
	MOTA	7277		LEU			53.803		-26.667		10.05	А
	MOTA	7278	CD2	LEU			53.945		-25.076		10.07	A
	ATOM	7279	С	LEU	Α	929	53.282		-21.904		11.69	A
	MOTA	7280	0	LEU	A	929	52.479		-21.778		12.26	Α
15	MOTA	7281	N	ASP	Α	930	54.433		-21.245		11.94	A
	ATOM	7282	CA	ASP	A	930	54.852	69.694	-20.381		12.26	А
	ATOM	7283	CB	ASP	Α	930	55.596		-19.167		11.95	A
	ATOM	7284	CG	ASP	Α	930	54.766	68.167	-18.392		12.69	A
	MOTA	7285	OD1	ASP	A	930	53.734	68.594	-17.835		12.39	A
20	ATOM	7286	OD2	ASP	Α	930	55.134	66.973	-18.357		11.41	A
	ATOM	7287	С	ASP	Α	930	55.778		-21.227		12.84	А
	ATOM	7288	0	ASP	Α	930	56.532	70.039	-22.052		13.10	A
	MOTA	7289	N	LYS	Α	931	55.723	71.870	-21.025	1.00	12.78	A
	MOTA	7290	CA	LYS	Α	931	56.542		-21.807		13.16	A
25	MOTA	7291	CB	LYS	Α	931	55.630		-22.600	1.00	13.75	A
	MOTA	7292	CG	LYS	Α	931	54.632	73.015	-23.505	1.00	13.74	А
	MOTA	7293	CD	LYS	Α	931	53.724		-24.235		15.47	A
	MOTA	7294	CE	LYS	Α	931	52.865	74.794	-23.260		16.58	A
	ATOM	7295	NZ	LYS	Α	931	51.992	75.781	-23.944	1.00	16.56	A
30	ATOM	7296	С	LYS	Α	931	57.512	73.605	-20.964	1.00	13,32	A
	ATOM	7297	0	LYS	Α	931	57.118		-19.985	1.00	13.84	A
	MOTA	7298	N	PHE	Α	932	58.780	73.606	-21.371	1.00	13.15	Α
	ATOM	7299	CA	PHE	Α	932	59.822	74.337	-20.659	1.00	12.96	А
	ATOM	7300	CB	PHE	Α	932	60.893		-20.136		12.56	A
35	ATOM	7301	CG	PHE	Α	932	60.359	72.279	-19.260	1.00	13.12	А
	ATOM	7302	CD1	PHE	Α	932	59.737	71.165	-19.814		13.77	A
	ATOM	7303	CD2	PHE	Α	932	60.501		-17.877	1.00	14.17	A
	ATOM	7304	CE1	PHE	Α	932	59.266	70.129	-19.002	1.00	14.15	А
	MOTA	7305	CE2	PHE	Α	932	60.035		-17.056		14.64	А
40	ATOM	7306	CZ	PHE	Α	932	59.416	70.213	-17.619	1.00	14.94	А
	ATOM	7307	С	PHE	Α	932	60.509	75.378	-21.544		12.75	A
	ATOM	7308	0	PHE	Α	932	60.875	75.090	-22.678	1.00	12.07	А
	ATOM	7309	N	ILE	Α	933	60.674	76.589	-21.018	1.00	12.97	A
	ATOM	7310	CA	ILE	Α	933	61.343	77.668	-21.750		12.57	A
45	ATOM	7311	CB	ILE	Α	933	60.542	78.986	-21.685	1.00	12.77	A
	ATOM	7312	CG2	ILE	Α	933	61.264	80.066	-22.486	1.00	11.64	А
	ATOM	7313	CG1	ILE	Α	933	59.118	78.771	-22.204	1.00	12.09	А
	ATOM	7314	ĊD1	ILE	Α	933	58.212	79.983	-22.024	1.00	12.14	А
	ATOM	7315	C	ILE			62.696	77.921	-21.084	1.00	13.11	А
50	MOTA	7316	0	ILE			62.749	78.206	-19.888	1.00	13.09	Α
	ATOM	7317	N	PHE			63.786		-21.842	1.00	13.10	А
	ATOM	7318	CA	PHE			65.107		-21.265	1.00	14.56	А
	ATOM	7319	СВ	PHE			66.205		-22.286		14.68	А
	ATOM	7320	CG	PHE			67.580		-21.690		15.61	А
55	ATOM	7321		PHE			67.960		-20.828		15.02	А

	n mon	7222	CD2	DUE	7.	024	60	101	70 7	50	-21.952	1 00	15.60	А
	ATOM	7322		PHE				.481			-21.932		16.49	A
	ATOM	7323		PHE				.220					16.52	A
	MOTA	7324		PHE				742			-21.360			
-	ATOM	7325	CZ	PHE				113			-20.494		16.83	A
5	ATOM	7326	С	PHE				.202			-20.808		15.07	A
	MOTA	7327	0	PHE				.926			-21.581		14.45	A
	MOTA	7328	N	ALA				.597			-19.554		16.05	A
	MOTA	7329	CA	ALA				.682			-18.978		17.74	A
	ATOM	7330	CB	ALA				.734			-17.458		18.05	A
10	MOTA	7331	С	ALA				.825			-19.468		19.42	A
	MOTA	7332	0	ALA	Α	935		6.605			-19.805		20.11	A
	MOTA	7333	N	GLU	A	936		.038			-19.500		19.30	A
	MOTA	7334	CA	GLU			69	.213			-19.927		20.81	А
	MOTA	7335	CB	GLU	Α	936	70	.488			-19.485		21.98	A
15	MOTA	7336	CG	GLU	Α	936	70	.651			-17.975	1.00	24.47	A
	ATOM	7337	CD	GLU	Α	936	71	.765	80.3	43	-17.592	1.00	26.26	A
	ATOM	7338	OE1	GLU	Α	936	71	.580	79.1	17	-17.761	1.00	26.72	Α
	ATOM	7339	OE2	GLU	Α	936	72	.829	80.8	07	-17.131	1.00	27.77	Α
	MOTA	7340	С	GLU	Α	936	69	.252	82.3	90	-21.437	1.00	20.69	A
20	ATOM	7341	0	GLU	Α	936	68	.439	81.8	41	-22.180	1.00	20.44	Α
	ATOM	7342	N	ASN	Α	937	70	.204	83.1	99	-21.889	1.00	20.78	A
	ATOM	7343	CA	ASN			70	.318	83.4	85	-23.311	1.00	21.36	A
	ATOM	7344	СВ	ASN				.173	84.7	35	-23.544	1.00	22.75	А
	MOTA	7345	CG	ASN			70	.505	85.9	96	-23.033	1.00	24.01	A
25	MOTA	7346		ASN			69	.288	86.1	62	-23.152	1.00	23.86	A
	ATOM	7347		ASN				.298	86.9	00	-22.477	1.00	25.45	A
	ATOM	7348	С	ASN			70	.888	82.3	16	-24.101	1.00	21.20	A
	ATOM	7349	0	ASN				.477			-25.236	1.00	21.22	A
	ATOM	7350	N	GLU				.827	81.5	85	-23.507	1.00	21.16	A
30	ATOM	7351	CA	GLU			72	.426	80.4	42	-24.189	1.00	22.06	А
	ATOM	7352	СВ	GLU			73	.828	80.7	95	-24.700	1.00	23.73	А
	ATOM	7353	CG	GLU			74	.576	79.5	99	-25.276	1.00	26.61	А
	ATOM	7354	CD	GLU			75	.794	79.9	92	-26.085	1.00	29.03	A
	ATOM	7355	OE1				76	.633	80.7	61	-25.569	1.00	30.78	A
- 35	ATOM	7356	OE2					.913			-27.238	1.00	30.10	А
-	ATOM	7357	С	GLU				.501			-23.327		21.20	А
	ATOM	7358	0	GLU				.890			-22.159		21.04	A
	ATOM	7359	N	TRP				1.122			-23.923	1.00	21.05	А
	ATOM	7360	CA	TRP				.140			-23.240	1.00	20.83	A
40	ATOM	7361	СВ	TRP				.826	76.0	26	-23.509	1.00	19.37	А
10	ATOM	7362	CG	TRP				.706			-22.853		17.33	А
	ATOM	7363		TRP				.626			-23.011		16.09	А
	ATOM	7364		TRP				.929			-22.225		16.09	А
	ATOM	7365		TRP				.432			-23.743		15.61	А
45	ATOM	7366		TRP				.596			-22.000		17.03	А
10	MOTA	7367		TRP				.137			-21.618		16.57	A
	ATOM	7368		TRP				0.079			-22.150		15.03	А
	ATOM	7369		TRP				2.585			-23.669		15.11	A
	ATOM	7370		TRP				.915			-22.876		14.62	A
50		7370	Cnz	TRP				3.329			-23.764		21.47	A
30	MOTA							3.244			-24.799		21.83	A
	MOTA	7372	O N	TRP				.442			-24.799		22.34	A
	ATOM	7373	N C D	ILE				6.652			-23.449		23.09	A
	ATOM	7374	CA	ILE				5.883			-23.449		23.89	A
55	ATOM	7375 7376	CB	ILE				3.139			-23.108		24.48	A
55	MOTA	1310	CGZ	The	Α.	240	7 0		19.1	J 4	23.100	1.00	21.30	

							302	•				
	ATOM	7377	CG1	ILE	Α	940	77.034	77.399	-23.064	1.00	24.81	Α
	ATOM	7378		ILE			78.176		-22.348		25.61	Α
	ATOM	7379	C	ILE			75.548		-23.178	1.00	22.56	Α
	ATOM	7380	Ō	ILE			75.178	73.418	-22.083	1.00	23.32	Α
5	MOTA	7381	N	GLY			75.865	73.032	-24.188	1.00	22.27	А
	ATOM	7382	CA	GLY			75.806	71.589	-24.034	1.00	21.71	Α
	ATOM	7383	С	GLY			74.420	71.002	-24.242	1.00	21.38	А
	ATOM	7384	0	GLY			74.192	69.822	-23.964	1.00	20.47	А
	ATOM	7385	N	ALA			73.497	71.819	-24.744	1.00	20.82	Α
10	ATOM	7386	CA	ALA			72.127	71.379	-24.990	1.00	20.86	Α
	ATOM	7387	СВ	ALA	Α	942	71.307	72.534	-25.561	1.00	20.40	Α
	MOTA	7388	С	ALA			72.023	70.170	-25.920	1.00	20.97	Α
	ATOM	7389	0	ALA			72.756	70.062	-26.904	1.00	20.70	Α
	ATOM	7390	N	GLN			71.101	69.265	-25.600	1.00	20.56	A
15	MOTA	7391	CA	GLN	Α	943	70.868	68.071	-26.409	1.00	20.90	Α
	ATOM	7392	СВ	GLN	Α	943	71.085	66.807	-25.575	1.00	21.74	A
	ATOM	7393	CG	GLN	Α	943	72.449	66.764	-24.900		24.32	А
	ATOM	7394	CD	GLN	Α	943	72.713	65.453	-24.187		26.18	Α
	MOTA	7395	OE1	GLN	Α	943	71.852		-23.469		27.65	А
20	MOTA	7396	NE2	GLN	Α	943	73.912		-24.373	1.00	26.08	А
	ATOM	7397	С	GLN	Α	943	69.437		-26.936	1.00	20.33	A
	MOTA	7398	0	GLN	Α	943	68.570	68.759	-26.325		19.79	А
	ATOM	7399	N	GLY	Α	944	69.184	67.475	-28.061		19.43	A
	MOTA	7400	CA	GLY	Α	944	67.862		-28.656		19.33	A
25	MOTA	7401	С	GLY	A	944	66.799		-28.246		19.13	A
	ATOM	7402	0	GLY			65.624		-28.546		18.88	A
	ATOM	7403	N	GLN	Α	945	67.179		-27.557		18.55	A
	MOTA	7404	CA	GLN			66.181		-27.185		18.84	A
• •	MOTA	7405	СВ	GLN			65.800		-28.438		20.33	A
30	MOTA	7406	CG	GLN			64.869		-28.233		22.92	A
	ATOM	7407	CD	GLN			64.602		-29.534		24.47	A
	ATOM	7408	OE1				63.852		-30.393		25.99	A
	MOTA	7409	NE2				65.231		-29.693		25.24	A
2.5	ATOM	7410	С	GLN			66.631		-26.085		18.08	A
35	MOTA	7411	0	GLN			67.823		-25.907		17.45 16.69	A A
	ATOM	7412	N	PHE			65.653		-25.348			A
	ATOM	7413	CA	PHE			65.890 65.869		-24.288 -22.906		16.10 16.05	A
	ATOM	7414	CB	PHE			65.756		-22.300		16.43	A
40	ATOM	7415	CG	PHE			66.783		-21.774		16.58	A
40	ATOM	7416		PHE PHE			64.595		-21.008		16.91	A
	ATOM	7417 7418		PHE			66.657		-20.514		17.50	A
	ATOM	7419		PHE			64.454		-20.003		17.48	A
	ATOM ATOM	7419	CZ			946	65.489		- 19.755		17.10	A
45		7420	C Z			946	64.793		-24.345		15.93	A
45	ATOM ATOM	7421	0			946	63.613		-24.472		15.13	A
	ATOM	7423	N	GLY			65.189		-24.256		16.02	A
		7423		GLY			64.226		-24.275		15.95	A
	ATOM ATOM	7424	C	GLY			63.868		-25.635		16.90	A
50	ATOM	7425	0	GLY			62.901		-25.758		16.77	А
50		7427	N	GLY			64.634		-26.661		17.57	A
	ATOM ATOM	7427	CA	GLY			64.347		-27.987		18.79	A
	ATOM	7429	C	GLY			64.376		-28.010		19.63	A
	ATOM	7430	0	GLY			63.774		-28.879		20.35	A
55	ATOM	7430	N			949	65.070		-27.043		20.59	A
55	VI Ou	,401	r.A	1 1 O E	r,	フュン	55.070	55.051	27.035		_ , ,	

		ATOM	7432	CA	ASP	Α	949	65.182	54.381	-26.961	1.00	21.92	Α
		ATOM	7433	СВ	ASP	A	949	66.603	53.991	-26.538	1.00	23.50	Α
		ATOM	7434	CG	ASP	Α	949	66.942	54.453	-25.134	1.00		Α
		MOTA	7435	OD1	ASP	Α	949	66.489	55.550	-24.737	1.00		Α
	5	ATOM	7436	OD2	ASP	Α	949	67.673	53.726	-24.429		28.01	Α
		MOTA	7437	С	ASP	Α	949	64.164	53.755	-26.007	1.00	21.81	Α
		ATOM	7438	0	ASP	Α	949	64.149	52.535	-25.829	1.00	22.12	A
		ATOM	7439	N	HIS	Α	950	63.320	54.579	-25.387	1.00	20.91	Α
		MOTA	7440	CA	HIS	Α	950	62.304	54.051	-24.476	1.00		А
	10	ATOM	7441	СВ	HIS	Α	950	61.564	55.173	-23.741	1.00	19.60	А
		ATOM	7442	CG	HIS	Α	950	62.390	55.898	-22.725	1.00	18.82	А
		ATOM	7443	CD2	HIS	Α	950	62.137	57.027	-22.023	1.00	17.61	А
		ATOM	7444	ND1	HIS	Α	950	63.626	55.457	-22.308	1.00	19.62	А
		ATOM	7445	CE1	HIS	Α	950	64.101	56.285	-21.394		18.39	А
	15	ATOM	7446	NE2	HIS	Α	950	63.216	57.245	-21.203		19.83	А
		ATOM	7447	С	HIS			61.279	53.276	-25.294	1.00	20.04	A
		MOTA	7448	0	HIS			60.911	53.693	-26.389	1.00	20.31	Α
		ATOM	7449	N	PRO			60.806	52.133	-24.776	1.00	20.23	Α
;		ATOM	7450	CD	PRO	Α	951	61.345	51.371	-23.634	1.00	20.95	A
	20	ATOM	7451	CA	PRO			59.813	51.343	-25.507	1.00	19.76	A
		ATOM	7452	СВ	PRO			59.683	50.081	-24.655	1.00	20.56	А
;		ATOM	7453	CG	PRO	Α	951	61.048	49.953	-24.038	1.00	20.81	Α
		ATOM	7454	С	PRO			58.488	52.100	-25.622	1.00	19.07	A
		ATOM	7455	0	PRO			58.066	52.771	-24.679	1.00	18.22	Α
	25	MOTA	7456	N	SER			57.842	52.003	-26.780	1.00	18.29	A
		ATOM	7457	CA	SER			56.561	52.670	-26.996	1.00	18.67	А
		ATOM	7458	СВ	SER			56.487	53.235	-28.418	1.00	18.74	A
		ATOM	7459	OG	SER			55.403	54.137	-28.564	1.00	18.56	А
		ATOM	7460	С	SER			55.493	51.605	-26.791	1.00	19.01	Α
	30	ATOM	7461	0	SER			55.198	50.824	-27.701	1.00	19.67	A
		ATOM	7462	N	ALA			54.920	51.581	-25.589	1.00	18.23	Α
		ATOM	7463	CA	ALA			53.916	50.591	-25.214	1.00	17.70	A
		ATOM	7464	СВ	ALA			53.744	50.589	-23.699	1.00	16.83	А
		ATOM	7465	С	ALA			52.553	50.731	-25.874	1.00	17.59	Α
	35	ATOM	7466	0	ALA	Α	953	52.178	51.804	-26.349	1.00	16.84	Α
		MOTA	7467	N	ARG	Α	954	51.813	49.625	-25.874		17.23	А
		ATOM	7468	CA	ARG	Α	954	50.476	49.572	-26.443	1.00	18.11	А
		ATOM	7469	СВ	ARG	Α	954	49.859	48.202	-26.170		21.07	A
		MOTA	7470	CG	ARG	Α	954	48.514	47.967	-26.832	1.00	25.46	А
	40	ATOM	7471	CD	ARG	Α	954	48.386	46.508	-27.244	1.00	29.24	A
		ATOM	7472	NE	ARG	Α	954	46.998		-27.381		32.43	A
		ATOM	7473	CZ	ARG	Α	954	46.192	45.838	-26.355		33,96	A
		ATOM	7474	NH1	ARG	Α	954	46.641	45.975	-25.116		35.54	A
		ATOM	7475	NH2	ARG	Α	954	44.940	45.450	-26.565		35.55	A
	45	MOTA	7476	С	ARG	Α	954	49.641	50.689	-25.821	1.00	17.03	А
		MOTA	7477	0	ARG	Α	954	49.743	50.962	-24.620	1.00	15.07	Α
		ATOM	7478	N	GLU			48.809	51.319	-26.646	1.00	16.23	Α
		ATOM	7479	CA	GLU			47.995		-26.226		16.38	А
		ATOM	7480	СВ	GLU			47.110	52.917	-27.389	1.00	17.11	Α
	50	ATOM	7481	CG	GLU			45.917		-27.646	1.00	19.34	Α
	_ =	MOTA	7482	CD	GLU			45.092		-28.823	1.00	20.46	А
		ATOM	7483		GLU			44.961		-29.014	1.00	22.05	Α
		ATOM	7484		GLU			44.564		-29.551		21.62	Α
		ATOM	7485	C	GLU			47.136		-24.971		15.39	А
	55	ATOM	7486	0	GLU			46.846		-24.324	1.00	14.75	A

	7004	7407	NT.	מ מסת	056	46.722	51.114 -	24 617	1 00	15.12	А
	ATOM	7487	N	ASP A			50.957 -			15.34	A
	ATOM	7488	CA	ASP F		45.892					
	MOTA	7489	CB	ASP A		44.895	49.793 -			15.33	A
_	MOTA	7490	CG	ASP A		45.572	48.461 -			16.25	A
5	MOTA	7491	OD1	ASP A	956	46.815	48.419 -			16.76	Α
	MOTA	7492	OD2	ASP A	956	44.847	47.446 -	23.995		16.97	Α
	MOTA	7493	С	ASP A	956	46.714	50.777 -	22.152	1.00	14.55	Α
	MOTA	7494	0	ASP A	956	46.161	50.593 -	21.067	1.00	15.14	Α
	ATOM	7495	N	LEU A		48.035	50.847 -	22.279	1.00	14.22	Α
)	ATOM	7496	CA	LEU F		48.907	50.701 -		1.00	13.40	Α
3	ATOM	7497	СВ	LEU A		50.043	49.719 -		1.00	14.46	Α
	ATOM	7498	CG	LEU F		50.898	49.274 -			16.61	А
		7499		LEU A		50.032	48.511 -			17.21	A
	MOTA					52.040	48.387 -			16.91	A
=	MOTA	7500		LEU A			52.048 -			12.80	A
5	ATOM	7501	C	LEU A		49.500				12.44	A
	MOTA	7502	0	LEU A		49.850	52.857 -				
	MOTA	7503	N	ASP A		49.607	52.289 -			11.71	A
	MOTA	7504	CA	ASP A		50.186	53.535 -			11.33	A
_	ATOM	7505	СВ	ASP A		49.078	54.535 -			11.55	A
0	MOTA	7506	CG	ASP A		49.623	55.918 -			11.50	Α
	MOTA	7507	OD1	ASP A	958	50.712	56.269 -			10.43	A
	ATOM	7508	OD2	ASP A	958	48.952	56.657 -	17.458	1.00	11.83	A
	MOTA	7509	С	ASP A	958	51.060	53.274 -	17.718	1.00	11.04	Α
	ATOM	7510	0	ASP A	958	50.828	52.322 -	16.972	1.00	11.67	Α
5	MOTA	7511	N	VAL A	959	52.095	54.091 -	17.558	1.00	10.57	A
_	MOTA	7512	CA	VAL A		52.967	54.015 -	16.392	1.00	10.41	Α
	MOTA	7513	СВ	VAL A		54.442	54.315 -		1.00	11.51	A
	MQTA	7514		VAL A		55.281	54.462 -		1.00	11.36	А
	ATOM	7515		VAL A		55.003	53.187 -		1.00	11.45	А
)	ATOM	7516	C	VAL A		52.401	55.148 -			10.64	А
J	MOTA	7517	0	VAL A		52.819	56.301 -			10.64	А
	ATOM	7518	N	SER A		51.413	54.810 -			10.31	A
	ii et ealle-		CA	SER A		50.737	55.779 -			10.37	A
	MOTA	7519				49.642	55.072 -		1.00	9.61	A
=	AT@M	7520	CB	SER A						10.39	A
5	ATOM	7521	OG	SER A		48.815	54.293 -			10.59	A
	ATOM	7522	С	SER A		51.687	56.485 -				
	ATOM	7523	0	SER A		51.541	57.684 -			10.54	A
	ATOM	7524	N	VAL A		52.649	55.731 -			10.80	A
_	ATOM	7525	CA	VAL A		53.624	56.267 -			11.36	A
Э	MOTA	7526	CB	VAL A		53.239	55.948	-9.971		11.55	A
	MOTA	7527	CG1	VAL A	961	54.337		-9.019		12.60	А
	ATOM	7528	CG2	VAL A	961	51.898		-9.615		10.23	A
	ATOM	7529	С	VAL A	961	55.008	55.681 -	-11.680	1.00	11.90	A
	ATOM	7530	0	VAL A	961	55.159	54.481 -	-11.935	1.00	11.41	Α
5	ATOM	7531	N	MET A	962	56.008	56.555 -	-11.615	1.00	11.23	A
	ATOM	7532	CA	MET A	962	57.402	56.166 -	-11.705	1.00	11.17	Α
	ATOM	7533	СВ	MET A		58.056	56.592 -	-13.017	1.00	11.57	Α
	ATOM	7534	CG	MET A		59.531	56.213 -		1.00	13.15	А
	ATOM	7535	SD	MET A		60.354	56.539 -			12.96	А
)	ATOM	7536	CE	MET A		62.025	55.936 -			13.82	A
,			CE	MET A		58.006	56.954 -			11.31	A
	ATOM	7537				57.985	58.186 -			11.39	A
	ATOM	7538	0	MET A				-9.559		11.55	A
	ATOM	7539	N	ARG A		58.524	56.247			11.46	A
_	ATOM	7540	CA	ARG A			56.909	-8.387			
5	ATOM	7541	СВ	ARG A	963	58.004	56.968	-7.285	1.00	12.00	А

	ATOM	7542	CG	ARG	Α	963	58.487	57.451	-5.911	1.00	12.06	Α
	ATOM	7543	CD	ARG			57.365	57.332	-4.865	1.00	12.84	A
	ATOM	7544	NE	ARG			56.177	58.061	-5.303	1.00	11.77	Α
	ATOM	7545	CZ	ARG			54.932	57.600	-5.231	1.00	11.37	Α
5	ATOM	7546		ARG			54.681	56.400	-4.719	1.00	10.90	Α
	ATOM	7547		ARG			53.938	58.326	-5.723	1.00	9.67	А
	ATOM	7548	С	ARG			60.304	56.203	-7.846	1.00	11.53	А
	ATOM	7549	Ō	ARG			60.241	55.021	-7.522		11.39	Α
	ATOM	7550	N	ARG			61.423	56.920	-7.756		12.34	A
10	ATOM	7551	CA	ARG			62.629	56.323	-7.191		12.88	A
10	ATOM	7552	CB	ARG			63.861	57.200	-7.444		12.19	А
	ATOM	7553	CG	ARG			65.153	56.591	-6.891		12.53	А
	ATOM	7554	CD	ARG			66.387	57.332	-7.390		12.58	A
	ATOM	7555	NE	ARG			66.594	57.155	-8.827		13.49	A
15	ATOM	7556	CZ	ARG			67.474	56.317	-9.367		14.26	A
13	ATOM	7557		ARG			68.246	55.561	-8.595		14.57	A
	ATOM	7558	NH2				67.597		-10.686		14.48	A
	ATOM	7559	C	ARG			62.314	56.255	-5.702		12.97	A
	ATOM	7560	0	ARG			61.874	57.243	-5.109		13.45	A
20		7561	N	LEU			62.531	55.089	-5.104		12.82	A
20	ATOM	7562		LEU			62.205	54.871	-3.697		12.51	A
	ATOM		CA	LEU			61.550	53.494	-3.547		12.65	A
	ATOM	7563	CB				60.338	53.224	-4.448		12.27	A
	ATOM	7564	CG CD1	LEU			59.993	51.743	-4.424		11.69	A
25	ATOM	7565		LEU				54.071	-3.986		12.48	A
25	ATOM	7566					59.151 63.382	54.071	-2.732		13.34	A
	ATOM	7567	C	LEU				54.895	-2.732		12.58	A
	ATOM	7568	0	LEU			63.197 64.583	55.160	-3.271		12.89	A
	ATOM	7569	N	THR				55.252	-2.444		14.47	A
20	ATOM	7570	CA	THR			65.779	54.113	-2.444		14.67	A
30	ATOM	7571	CB	THR			66.766	54.115	-4.189		15.14	A
	ATOM	7572	OG1	THR			66.992	52.770	-2.315		14.12	A
	ATOM	7573	CG2	THR			66.214	56.566	-2.513 -2.619		15.23	A
	ATOM	7574	С	THR			66.527	57.166	-3.695		14.67	A
2=	ATOM	7575	0	THR			66.504		-1.553		15.85	A
35	ATOM	7576	N	LYS			67.187	57.005	-1.603		17.59	A
	MOTA	7577	CA	LYS			67.984	58.221				A
	ATOM	7578	CB	LYS			68.095	58.847	-0.213		18.92 21.33	A
	ATOM	7579	CG	LYS			66.756	59.361	0.317		23.62	A
40	ATOM	7580	CD	LYS			66.940	60.188	1.576		25.85	A
40	MOTA	7581	CE	LYS			65.629	60.790	2.045			
	ATOM	7582	NZ	LYS			65.838	61.623	3.264		28.29	A
	MOTA	7583	С	LYS			69.362	57.835	-2.151		17.80	A
	MOTA	7584	0	LYS			69.672	56.649	-2.267		17.70	A
45	MOTA	7585	N	SER			70.181	58.828	-2.484		18.45	A
45	ATOM	7586	CA	SER			71.495	58.576	-3.074		19.54	A
	ATOM	7587	CB	SER			72.170	59.903	-3.443		19.67	A
	MOTA	7588	OG	SER			72.503	60.649	-2.287		21.14	A
	MOTA	7589	С	SER			72.480	57.732	-2.263		20.02	A
	MOTA	7590	0	SER			73.350	57.084	-2.841		20.37	A
50	ATOM	7591	N	SER			72.348	57.726	-0.942		20.75	A
	MOTA	7592	CA			969	73.271	56.961	-0.100		21.87	A
	MOTA	7593	CB			969	73.197	57.456	1.346		22.66	A
	MOTA	7594	OG			969	71.899	57.264	1.880		25.79	A
	ATOM	7595	С			969	73.054	55.447	-0.125		21.74	A
55	MOTA	7596	0	SER	A	969	73.905	54.688	0.346	1.00	21.39	A

	ATOM	7597	N	ALA	Α	970	71.926	55.008	-0.676	1.00 21	.45	Α
	ATOM	7598	CA	ALA	Α	970	71.613	53.580	-0.741	1.00 21	.30	Α
	ATOM	7599	CB	ALA	Α	970	70.122	53.385	-1.012	1.00 21	.26	Α
	ATOM	7600	С	ALA	Α	970	72.429	52.823	-1.786	1.00 21	.32	Α
5	ATOM	7601	0	ALA	Α	970	72.369	53.132	-2.979	1.00 21	.38	Α
_	ATOM	7602	N	LYS			73.186	51.825	-1.334	1.00 21	.84	Α
	ATOM	7603	CA	LYS			74.003	51.011	-2.232	1.00 21	.84	Α
	ATOM	7604	СВ	LYS			74.683	49.874	-1.464	1.00 23		Α
	ATOM	7605	CG	LYS			76.011	50.243	-0.817	1.00 26		Α
10	ATOM	7606	CD	LYS			76.600	49.058	-0.056	1.00 27		Α
10	ATOM	7607	CE	LYS			76.656	47.801	-0.922	1.00 28		A
	ATOM	7608	NZ	LYS			77.431	47.996	-2.177	1.00 29		A
	ATOM	7609	C	LYS			73.144	50.415	-3.335	1.00 21		A
				LYS			73.519	50.413	-4.506	1.00 21		A
15	ATOM	7610	0					49.862	-2.953	1.00 20		A
15	ATOM	7611	N	THR			71.997			1.00 19		A
	MOTA	7612	CA	THR			71.087	49.279	-3.923			
	MOTA	7613	СВ	THR			70.526	47.917	-3.436	1.00 18		A
	MOTA	7614	OG1	THR			71.604	46.985	-3.270	1.00 18		A
20	ATOM	7615	CG2				69.545	47.345	-4.454	1.00 18		A
20	MOTA	7616	С	THR			69.936	50.252	-4.157	1.00 17		A
	MOTA	7617	0	THR			69.116	50.492	-3.266	1.00 16		A
	MOTA	7618	N	GLN			69.895	50.830	-5.352	1.00 16		Α
	ATOM	7619	CA	GLN	A	973	68.842	51.772	-5.699	1.00 16		Α
	ATOM	7620	CB	GLN	Α	973	69.288	52.673	-6.854	1.00 15		Α
25	ATOM	7621	CG	GLN	Α	973	70.386	53.651	-6.475	1.00 15	.07	Α
	ATOM	7622	CD	GLN	Α	973	69.945	54.648	-5.422	1.00 15	.76	Α
	ATOM	7623	OE1	GLN	Α	973	70.600	54.812	-4.389	1.00 17	.45	Α
	MOTA	7624	NE2	GLN	Α	973	68.835	55.329	-5.680	1.00 14	.14	Α
	ATOM	7625	С	GLN	Α	973	67.572	51.030	-6.086	1.00 15	.69	Α
30	MOTA	7626	0	GLN	Α	973	67.623	49.947	-6.670	1.00 15	.91	Α
	ATOM	7627	N	ARG			66.432	51.621	-5.752	1.00 15	.66	Α
	MOTA	7628	CA	ARG			65.150	51.019	-6.067	1.00 15	.61	Α
	MOTA	7629	СВ	ARG			64.501	50.477	-4.793	1.00 16	5.37	Α
	MOTA	7630	CG	ARG			65.322	49.406	-4.075	1.00 18	.08	Α
35	ATOM	7631	CD	ARG			64.715	49.070	-2.711	1.00 19		Α
• •	ATOM	7632	NE	ARG			63.449	48.345	-2.819	1.00 21	. 95	Α
	MOTA	7633	CZ	ARG			62.324	48.706	-2.208	1.00 22		Α
	ATOM	7634		ARG			62.297	49.790	-1.443	1.00 23		Α
	ATOM	7635		ARG			61.225	47.978	-2.353	1.00 22		A
40	ATOM	7636	C	ARG			64.226	52.034	-6.727			A
10	ATOM	7637	0	ARG			64.137	53.191	-6.296	1.00 14		A
		7638		VAL			63.547	51.594	-7.780	1.00 14		A
	ATOM		N						-8.500	1.00 13		A
	ATOM	7639	CA	VAL			62.615	52.449	-9.908	1.00 13		A
4 5	MOTA	7640	CB	VAL			63.149	52.808				
45	ATOM	7641		VAL			62.161		-10.628	1.00 13		A
	ATOM	7642		VAL			64.502	53.493	-9.783	1.00 13		A
	MOTA	7643	С	VAL			61.295	51.706	-8.624	1.00 13		A
	MOTA	7644	0	VAL			61.251	50.561	-9.084	1.00 13		Α
	MOTA	7645	N	GLY			60.220	52.360	-8.196	1.00 13		Α
50	MOTA	7646	CA	GLY			58.911	51.741	-8.252	1.00 11		A
	MOTA	7647	С	GLY			58.063	52.232	-9.406	1.00 11		Α
	ATOM	7648	0	GLY			58.130	53.404	-9.800	1.00 11		Α
	ATOM	7649	N	TYR	Α	977	57.263	51.324	-9.949	1.00 11		Α
	ATOM	7650	CA	TYR	А	977	56.381		-11.062	1.00 11		А
55	MOTA	7651	CB	TYR	Α	977	56.870	50.992	-12.362	1.00 11	.44	Α

		ATOM	7652	CG	TYR	Α	977	5	8.265	51.359	-12.787	1.00	12.42	Α
		ATOM	7653	CD1	TYR .	Α	977	5	9.372	50.674	-12.286	1.00	12.45	Α
		ATOM	7654	CE1	TYR .	Α	977	6	0.669	51.011	-12.691	1.00	12.91	Α
		ATOM	7655	CD2	TYR .	A	977	5	8.482	52.390	-13.700	1.00	12.69	А
	5	ATOM	7656	CE2	TYR .	Α	977	5	9.764	52.735	-14.108	1.00	12.73	Α
		ATOM	7657	CZ	TYR .	Α	977	6	0.853	52.047	-13.604	1.00	13.25	Α
		ATOM	7658	ОН	TYR.	Α	977	6	2.124	52.406	-14.009	1.00	12.80	Α
		ATOM	7659	С	TYR .	Α	977	5	4.981	51.110	-10.823	1.00	11.50	Α
		ATOM	7660	0	TYR .	Α	977	5	4.805	49.989	-10.347	1.00	11.45	A
	10	ATOM	7661	N	VAL	Α	978	5	3.985	51.921	-11.157	1.00	11.25	A
		ATOM	7662	CA	VAL	Α	978	5	2.607	51.483	-11.058	1.00	11.69	Α
		ATOM	7663	СВ	VAL .	Α	978	5	1.729	52.453	-10.250	1.00	12.09	Α
		ATOM	7664	CG1	VAL .	Α	978	5	0.267	52.034	-10.360	1.00	11.83	Α
		ATOM	7665	CG2	VAL	Α	978	5	2.160	52.438	-8.784		11.63	A
	15	MOTA	7666	С	VAL .	A	978	5	2.148	51.447	-12.512		12.55	Α
		MOTA	7667	0	VAL	A	978	5	2.174	52.463	-13.209		11.76	Α
		MOTA	7668	N	LEU	Α	979	5	1.775	50.256	-12.968	1.00	12.63	A
		ATOM	7669	CA	LEU .	Α	979	5	1.330	50.048	-14.337	1.00	14.77	Α
125		ATOM	7670	CB	LEU	A	979	5	2.064	48.855	-14.957	1.00	16.74	A
a T	20	MOTA	7671	CG	LEU			5	3.380		-15.694		19.88	Α
		ATOM	7672	CD1	LEU .	Α	979	5	3.085		-17.036		20.58	Α
197		ATOM	7673	CD2	LEU				4.293		-14.851		21.07	A
5 (222) 1 (3)		ATOM	7674	С	LEU				9.841		-14.406		14.34	A
		ATOM	7675	0	LEU				9.334		-13.760		14.54	A
	25	ATOM	7676	N	HIS				9.140		-15.196		13.95	A
		ATOM	7677	CA	HIS				7.713		-15.347		13.39	A
M		ATOM	7678	CB	HIS				6.922		-14.823		13.91	A
¥ŧ		ATOM	7679	CG	HIS				5.444		-14.999		14.48	A
		ATOM	7680		HIS				4.542		-14.315		13.79	A
ı,E	30	ATOM	7681		HIS				4.752		-16.042		15.45	A
Ñ.		ATOM	7682		HIS				3.488		-15.993		14.19	A
14		MOTA	7683		HIS				3.334		-14.955		15.58	A
		ATOM	7684	С	HIS				7.337		-16.798		13.58	A
1:±	25	ATOM	7685	0	HIS				7.783		-17.689		13.07	A
F 1-200	35	ATOM	7686	N	ARG				6.521		-17.026		13.43	A
		ATOM	7687	CA	ARG				6.053		-18.367		14.40	A
		ATOM	7688	CB	ARG				6.438		-18.777		16.66	A A
		ATOM	7689	CG	ARG				6.067		-20.213		20.47	A
	40	MOTA	7690	CD	ARG				6.616 6.190		-20.602 -21.939		25.91	A
	40	ATOM	7691	NE	ARG						-21.939		27.69	A
		ATOM	7692	CZ	ARG				6.447 7.129		-21.787		27.99	A
		ATOM	7693		ARG				6.017		-23.698		28.19	A
		MOTA	7694	C NH Z	ARG				4.541		-18.351		13.60	A
	45	ATOM	7695		ARG ARG				3.850		-17.592		14.15	A
	43	MOTA	7696	O N	THR				4.031		-19.170		13.91	A
		MOTA	7697	N					2.597		-19.170 -19.252		13.49	A
		ATOM	7698	CA	THR				2.303		-19.691		13.43	A
		ATOM	7699 7700	CB OC1	THR THR				0.900		-19.587		13.78	A
	50	MOTA							2.764		-21.128		13.65	A
	<i>5</i> 0	ATOM	7701 7702	CGZ	THR THR				2.764		-20.293		14.08	A
		ATOM	7703		THR				2.817		-20.743		13.64	A
		ATOM	7704	O N	ASN				0.798		-20.743		13.57	A
		ATOM	7704	N CA	ASN				0.736		-20.632		13.69	A
	55	ATOM	7706	CB	ASN				9.218		-21.076		13.01	A
	55	ATOM	1100	CD	NON	7	203	3	J. Z. I.O	4,.500	21.004	1.00	10.01	13

	ATOM	7707	CG	ASN A	983	38.721	46.370 -22		1.00 13.68	Α
	MOTA	7708	OD1	ASN A	983	39.472	45.510 -22		1.00 13.48	Α
	MOTA	7709	ND2	ASN A		37.456	46.497 -22		1.00 13.45	Α
	MOTA	7710	С	ASN A		39.542	49.212 -22		1.00 14.04	Α
5	ATOM	7711	0		A 983	38.623	49.957 -22		1.00 13.01	Α
	MOTA	7712	N	LEU A		39.994	49.110 -23		1.00 14.70	A
	MOTA	7713	CA	LEU A	984	39.425	49.888 -25		1.00 16.23	Α
	MOTA	7714	СВ	LEU A	984	40.536	50.572 -25		1.00 16.53	A
	MOTA	7715	CG	LEU A	984	41.501	51.426 -25		1.00 17.01	А
10	MOTA	7716	CD1	LEU A	A 984	42.580	51.988 -25		1.00 17.22	A
	ATOM	7717	CD2	LEU A	A 984	40.735	52.542 -24		1.00 17.01	A
	MOTA	7718	С	LEU A	A 984	38.640	48.976 -25		1.00 17.29	A
	MOTA	7719	0	LEU A	A 984	39.058	47.854 -26		1.00 17.30	A
	MOTA	7720	N	MET A	A 985	37.500	49.458 -26	.438	1.00 18.60	A
15	MOTA	7721	CA	MET A	A 985	36.673	48.656 -27	.328	1.00 20.77	А
	MOTA	7722	CB	MET A	A 985	35.347	49.356 -27	.614	1.00 21.25	А
	ATOM	7723	CG	MET A	A 985	34.437	49.491 -26		1.00 21.90	Α
	ATOM	7724	SD	MET A	A 985	32.759	49.775 -26	.972	1.00 24.87	А
	ATOM	7725	CE	MET A	A 985	32.919	51.381 -27	.747	1.00 22.32	Α
20	ATOM	7726	С	MET A	A 985	37.352	48.365 -28	.653	1.00 22.12	Α
	MOTA	7727	0	MET A	A 985	38.039	49.216 -29	.220	1.00 22.17	А
	ATOM	7728	N	GLN A	986	37.158	47.149 -29	.142	1.00 23.89	Α
	ATOM	7729	CA	GLN Z	A 986	37.712	46.758 -30	.425	1.00 25.08	Α
	MOTA	7730	СВ		A 986	38.079	45.271 -30	.414	1.00 27.59	Α
25	ATOM	7731	CG	GLN A	A 986	37.124	44.382 -29	.638	1.00 30.79	Α
	ATOM	7732	CD		A 986	37.779	43.086 -29	.186	1.00 32.59	A
	ATOM	7733	OE1		A 986	37.146	42.246 -28	.543	1.00 33.26	Α
	ATOM	7734	NE2			39.059	42.923 -29	.516	1.00 33.73	A
	ATOM	7735	С		A 986	36.617	47.063 -31	.435	1.00 24.80	A
30	ATOM	7736	0		A 986	35.529	46.483 -31	.386	1.00 24.42	A
	ATOM	7737	N		A 987	36.899	48.003 -32	.330	1.00 23.92	Α
	ATOM	7738	CA		A 987	35.922	48.412 -33	.327	1.00 24.36	A
	ATOM	7739	С		A 987	36.386	48.179 -34	.761	1.00 26.38	Α
	ATOM	7740	0	CYS	A 987	35.896	48.827 -35	.689	1.00 26.19	Α
35	ATOM	7741	CB		A 987	35.583	49.888 -33	.138	1.00 22.23	A
	ATOM	7742	SG		A 987	35.117	50.372 -31	.445	1.00 20.59	A
	ATOM	7743	N		A 988	37.338	47.268 -34	.942	1.00 28.36	A
	ATOM	7744	CA		A 988	37.814	46.963 -36	.280	1.00 31.14	A
	ATOM	7745	С		A 988	39.096	47.634 -36	.730	1.00 33.50	Α
40	ATOM	7746	0		A 988	39.502	47.474 -37	.882	1.00 33.42	Α
	ATOM	7747	N		A 989	39.733	48.391 -35	.844	1.00 35.82	Α
	ATOM	7748	CA		A 989	40.981	49.060 -36	.192	1.00 38.40	А
	ATOM	7749	СВ		A 989	41.153	50.377 -35	.414	1.00 38.55	A
	ATOM	7750	OG1		A 989	40.093	51.277 -35	.759	1.00 39.22	A
45	ATOM	7751	CG2		A 989	42.486	51.026 -35		1.00 38.94	A
10	ATOM	7752	C		A 989	42.158	48.140 -35		1.00 40.35	А
	ATOM	7753	Ö		A 989	42.344	47.718 -34		1.00 40.39	А
	ATOM	7754	N		A 990	42.969	47.816 -36		1.00 42.23	А
	ATOM	7755	CD		A 990	42.821	48.277 -38		1.00 42.52	A
50	ATOM	7756	CA		A 990	44.139	46.943 -36		1.00 43.92	А
50	ATOM	7757	CB		A 990	44.879	47.172 -38		1.00 43.82	А
	ATOM	7758	CG		A 990	43.749	47.342 -39		1.00 43.19	Α
	ATOM	7759	C		A 990	45.011	47.221 -35		1.00 45.81	А
	ATOM	7760	0		A 990	45.322	46.301 -34		1.00 46.16	А
55	ATOM	7761	N		A 991	45.406	48.479 -35		1.00 47.49	А
55	AION	1101	1.4	0110		33.300				

	MOTA	7762	CA	GLU A	991	46.240	48.856 -34.213	1.00 49.39	А
	ATOM	7763	СВ	GLU A	991	45.384	48.904 -32.942	2 1.00 50.54	Α
	MOTA	7764	CG	GLU A	991	44.254	49.927 -33.000	1.00 52.51	Α
	ATOM	7765	CD	GLU A	991	43.249	49.762 -31.872	2 1.00 53.74	Α
5	ATOM	7766	OE1	GLU A	991	43.668	49.746 -30.695	5 1.00 54.22	Α
	ATOM	7767	OE2	GLU A	991	42.037	49.649 -32.163	3 1.00 54.31	А
	ATOM	7768	С	GLU A	991	47.386	47.857 -34.034	1 1.00 49.78	Α
	ATOM	7769	0	GLU A	991	47.270	46.890 -33.280	1.00 49.97	Α
	MOTA	7770	N	GLU A	992	48.495	48.103 -34.725	5 1.00 50.30	A
10	ATOM	7771	CA	GLU A	992	49.640	47.202 -34.666	5 1.00 50.80	Α
	ATOM	7772	CB	GLU A	992	49.945	46.680 -36.073	3 1.00 51.80	Α
	ATOM	7773	CG	GLU A	992	48.776	45.982 -36.753	1.00 53.22	Α
	ATOM	7774	CD	GLU A	992	49.063	45.644 -38.204	1 1.00 54.07	Α
	ATOM	7775	OE1	GLU A	992	50.053	44.926 -38.46	7 1.00 54.55	A
15	MOTA	7776	OE2	GLU A	992	48.299	46.097 -39.083	3 1.00 54.47	Α
	ATOM	7777	С	GLU A		50.913	47.810 -34.07	7 1.00 50.44	Α
	MOTA	7778	0	GLU A		50.869	48.734 -33.26	1.00 50.69	Α
	ATOM	7779	N	HIS A		52.042	47.259 -34.518	3 1.00 49.81	Α
	ATOM	7780	CA	HIS A		53.391	47.656 -34.116	5 1.00 48.87	Α
20	ATOM	7781	СВ	HIS A		54.081	48.396 -35.27	7 1.00 49.88	Α
	MOTA	7782	CG	HIS A		53.335	49.596 -35.779	9 1.00 51.14	Α
	MOTA	7783		HIS A		52.287	50.283 -35.264	1.00 51.72	A
	ATOM	7784		HIS A		53.669	50.236 -36.954	1.00 51.70	А
	ATOM	7785	CE1	HIS A		52.860	51.263 -37.143	1.00 51.91	A
25	ATOM	7786				52.012	51.315 -36.130	1.00 52.16	Α
	ATOM	7787	С	HIS A		53.594	48.436 -32.815	1.00 47.56	A
	ATOM	7788	O	HIS A		53.594	49.669 -32.802	2 1.00 47.73	A
	ATOM	7789	N	THR A		53.783	47.695 -31.725	5 1.00 45.51	A
	MOTA	7790	CA	THR A		54.036	48.275 -30.400	5 1.00 42.92	A
30	MOTA	7791	CB	THR A		52.744	48.419 -29.568	3 1.00 43.20	Α
	ATOM	7792	OG1	THR A		52.156	47.129 -29.359	1.00 43.29	Α
	ATOM	7793	CG2	THR A		51.747	49.325 -30.27	7 1.00 42.99	A
	MOTA	7794	С	THR A		55.006	47.354 -29.66	7 1.00 41.17	A
	MOTA	7795	0	THR A		54.929	46.130 -29.788	3 1.00 41.12	А
35	ATOM	7796	N	GLN A	995	55.920	47.945 -28.905	5 1.00 38.56	Α
	MOTA	7797	CA	GLN A		56.913	47.173 -28.173	1.00 35.93	Α
	ATOM	7798	СВ	GLN A		58.205	47.974 -28.040	1.00 36.57	Α
	ATOM	7799	CG	GLN A		58.663	48.637 -29.320	1.00 37.34	Α
	ATOM	7800	CD	GLN A	995	59.782	49.622 -29.072	2 1.00 38.00	Α
4 0	MOTA	7801	OE1	GLN A	995	60.896	49.239 -28.70	5 1.00 38.62	Α
	ATOM	7802		GLN A		59.488	50.904 -29.25	5 1.00 36.97	Α
	ATOM	7803	С	GLN A		56.442	46.789 -26.77	7 1.00 33.93	A
	MOTA	7804	0	GLN A		55.653	47.500 -26.15	1.00 33.07	А
	MOTA	7805	N	LYS A		56.938	45.660 -26.289	9 1.00 31.39	A
45	ATOM	7806	CA	LYS A		56.590	45.209 -24.95	1 1.00 29.57	Α
	ATOM	7807	СВ	LYS A		57.060	43.768 -24.73		А
	ATOM	7808	CG	LYS A		56.341	42.743 -25.602	2 1.00 32.81	Α
	ATOM	7809	CD	LYS A		54.854	42.682 -25.265		А
	ATOM	7810	CE	LYS A		54.150	41.601 -26.06		Α
50	ATOM	7811	NZ	LYS A		54.719	40.254 -25.77		Α
20	ATOM	7812	C	LYS A		57.299	46.139 -23.98		А
	ATOM	7813	Ö	LYS A		58.473	46.462 -24.16		А
	MOTA	7814	N	LEU A		56.585	46.584 -22.95		А
	ATOM	7815	CA	LEU A		57.181	47.470 -21.968		A
55	MOTA	7816	CB	LEU A		56.211	48.595 -21.592		A
55	111011	.510	ŲD	220 A	,,,	J J . Z I I			

	MOTA	7817	CG	LEU	A 997	56.692	49.527 -20.46		А
	MOTA	7818	CD1	LEU	A 997	57.965	50.247 -20.89		Α
	ATOM	7819	CD2	LEU	A 997	55.599	50.530 -20.13		Α
	ATOM	7820	С	LEU	A 997	57.573	46.705 -20.71		A
5	ATOM	7821	0	LEU	A 997	56.723	46.139 -20.03		A
	MOTA	7822	N	ASP	A 998	58.871	46.683 -20.43	3 1.00 21.36	А
	ATOM	7823	CA	ASP	A 998	59.398	46.018 -19.24		A
	ATOM	7824	СВ	ASP	A 998	60.477	45.001 -19.63	5 1.00 21.93	А
	ATOM	7825	CG	ASP	A 998	61.146	44.373 -18.42	6 1.00 22.40	Α
10	ATOM	7826	OD1	ASP	A 998	62.161	43.667 -18.61	1 1.00 22.65	А
	ATOM	7827			A 998	60.658	44.581 -17.29	2 1.00 22.00	А
	ATOM	7828	С		A 998	60.009	47.121 -18.39	6 1.00 20.26	Α
	ATOM	7829	0		A 998	61.182	47.459 -18.55	3 1.00 19.78	А
	ATOM	7830	N		A 999	59.210	47.689 -17.50	0 1.00 19.60	А
15	ATOM	7831	CA		A 999	59.687	48.774 -16.65	5 1.00 18.89	A
	ATOM	7832	СВ		A 999	58.575	49.289 -15.70	1 1.00 18.56	A
	ATOM	7833			A 999	57.399	49.796 -16.51	5 1.00 18.40	Α
	ATOM	7834			A 999	58.136	48.191 -14.74		А
	ATOM	7835	C		A 999	60.918	48.419 -15.82		А
20	ATOM	7836	0		A 999	61.682	49.303 -15.44		А
	ATOM	7837	N		A1000	61.130	47.136 -15.56		A
	ATOM	7838	CA		A1000	62.291	46.767 -14.77		Α
	ATOM	7839	С		A1000	63.615	46.972 -15.50	2 1.00 19.66	А
	ATOM	7840	0		A1000	64.669	46.995 -14.87		А
25	ATOM	7841	СВ		A1000	62.157	45.333 -14.25	8 1.00 21.94	A
	ATOM	7842	SG		A1000	61.388	45.277 -12.59	9 1.00 25.12	A
	ATOM	7843	N		A1001	63.566	47.136 -16.82	1 1.00 20.20	A
	ATOM	7844	CA		A1001	64.793	47.372 -17.57	7 1.00 20.55	A
	ATOM	7845	СВ		A1001	64.928	46.373 -18.72	9 1.00 20.76	A
30	ATOM	7846	CG		A1001	65.456	45.039 -18.30	5 1.00 20.70	A
	ATOM	7847	CD2	HIS	A1001	66.715	44.542 -18.29	8 1.00 20.88	A
	MOTA	7848	ND1	HIS	A1001	64.656	44.060 -17.75	6 1.00 20.78	A
	ATOM	7849	CE1	HIS	A1001	65.399	43.019 -17.42		A
	ATOM	7850	NE2	HIS	A1001	66.653	43.285 -17.74	5 1.00 21.10	Α
35	ATOM	7851	С	HIS	A1001	64.903	48.800 -18.10	9 1.00 20.63	A
	ATOM	7852	0	HIS	A1001	65.752	49.092 -18.95	3 1.00 21.06	A
	ATOM	7853	N	LEU	A1002	64.048	49.693 -17.61		A
	ATOM	7854	CA	LEU	A1002	64.087	51.088 -18.04	8 1.00 20.34	Α
	ATOM	7855	CB	LEU	A1002	62.875	51.855 -17.51		A
40	MOTA	7856	CG	LEU	A1002	61.592	51.670 -18.33		А
	MOTA	7857	CD1	LEU	A1002	60.440	52.384 -17.64		A
	ATOM	7858	CD2	LEU	A1002	61.801	52.212 -19.74		A
	ATOM	7859	С	LEU	A1002	65.371	51.737 -17.55		A
	MOTA	7860	0	LEU	A1002	65.920	52.622 -18.21		A
45	MOTA	7861	N	LEU	A1003	65.840	51.298 -16.39		А
	MOTA	7862	CA	LEU	A1003	67.087	51.802 -15.83		А
	MOTA	7863	CB	LEU	A1003	66.902	52.223 -14.37		Α
	MOTA	7864	CG	LEU	A1003	66.045	53.476 -14.17		Α
	MOTA	7865	CD1	LEU	A1003	65.966	53.806 -12.70		A
50	ATOM	7866	CD2	LEU	A1003	66.650	54.644 -14.93		Α
	ATOM	7867	С	LEU	A1003	68.111	50.677 -15.94		А
	ATOM	7868	0	LEU	A1003	67.774	49.503 -15.78		Α
	ATOM	7869	N	PRO	A1004	69.376	51.021 -16.22		A
	ATOM	7870	CD	PRO	A1004	69.907	52.386 -16.39		Α
55	ATOM	7871	CA	PRO	A1004	70.445	50.029 -16.36	0 1.00 21.82	Α

	MOTA	7872	СВ	PRO	A1004	71.565		-17.005	1.00 22.03	А
	ATOM	7873	CG		A1004	71.412		-16.331	1.00 21.74	A
	ATOM	7874	С	PRO	A1004	70.901		-15.070	1.00 22.14	Α
	ATOM	7875	0		A1004	70.577		-13.964	1.00 21.00	Α
5	MOTA	7876	N		A1005	71.649		-15.235	1.00 22.33	Α
	ATOM	7877	CA		A1005	72.208		-14.114	1.00 22.54	A
	ATOM	7878	СВ	ASN	A1005	73.152	48.442	-13.333	1.00 24.42	Α
	ATOM	7879	CG	ASN	A1005	74.150	49.147	-14.230	1.00 26.07	Α
	ATOM	7880	OD1	ASN	A1005	74.346	50.361	-14.126	1.00 27.74	Α
10	ATOM	7881	ND2	ASN	A1005	74.790	48.392	-15.115	1.00 25.81	Α
	ATOM	7882	С	ASN	A1005	71.165	46.949	-13.167	1.00 22.28	Α
	MOTA	7883	0	ASN	A1005	71.360	46.950	-11.952	1.00 22.03	Α
	ATOM	7884	N	VAL	A1006	70.065	46.448	-13.714	1.00 22.19	Α
	ATOM	7885	CA	VAL	A1006.	69.022	45.869	-12.877	1.00 22.43	A
15	ATOM	7886	СВ	VAL	A1006	67.735	45.579	-13.690	1.00 21.96	Α
	MOTA	7887	CG1		A1006	68.026	44.599	-14.810	1.00 21.98	Α
	ATOM	7888	CG2		A1006	66.649	45.035	-12.768	1.00 21.52	Α
	ATOM	7889	C		A1006	69.537	44.580	-12.239	1.00 22.76	A
	ATOM	7890	0		A1006	70.095	43.718	-12.920	1.00 23.29	A
20	ATOM	7891	N		A1007	69.361		-10.927	1.00 22.95	A
	ATOM	7892	CA		A1007	69.813		-10.181	1.00 23.43	Α
	ATOM	7893	СВ		A1007	70.578	43.737	-8.935	1.00 23.72	Α
	ATOM	7894	C		A1007	68.640	42.398	-9.793	1.00 23.92	Α
	ATOM	7895	Ō		A1007	68.816	41.207	-9.533	1.00 23.84	А
25	ATOM	7896	N		A1008	67.445	42.975	-9.736	1.00 23.57	Α
	ATOM	7897	CA		A1008	66.251	42.204	-9.413	1.00 24.00	A
	ATOM	7898	СВ		A1008	66.236	41.782	-7.938	1.00 26.17	A
	ATOM	7899	CG		A1008	66.171	42.910	-6.933	1.00 29.81	A
	ATOM	7900	CD		A1008	66.045	42.358	-5.513	1.00 33.34	А
30	ATOM	7901	NE		A1008	67.188	41.524	-5.140	1.00 35.30	А
	ATOM	7902	CZ		A1008	68.436	41.969	-5.011	1.00 36.73	Α
	ATOM	7903	NH1		A1008	68.718	43.249	-5.222	1.00 36.58	A
	ATOM	7904			A1008	69.409	41.129	-4.676	1.00 37.44	А
	ATOM	7905	С		A1008	64.983	42.973	-9.748	1.00 23.14	A
35	ATOM	7906	Ö		A1008	64.981	44.206	-9.811	1.00 22.18	A
-	ATOM	7907	N		A1009	63.910	42.225	-9.979	1.00 22.25	А
	ATOM	7908	CA		A1009	62.617	42.797	-10.322	1.00 21.69	Α
	ATOM	7909	С		A1009	61.572	42.099	-9.472	1.00 20.98	Α
	ATOM	7910	0		A1009	61.501	40.868	-9.453	1.00 19.71	А
40	ATOM	7911	СВ		A1009		42.559	-11.799	1.00 23.19	Α
	ATOM	7912	SG		A1009	60.805	43.356	-12.416	1.00 25.61	Α
	ATOM	7913	N		A1010	60.759	42.881	-8.771	1.00 19.93	A
	ATOM	7914	CA		A1010	59.743	42.307	-7.905	1.00 19.15	А
	ATOM	7915	СВ		A1010	60.178	42.459	-6.444	1.00 20.68	A
45	ATOM	7916	CG		A1010	61.488	41.748	-6.110	1.00 23.17	А
10	ATOM	7917	CD		A1010	62.113	42.241	-4.819	1.00 24.63	А
	ATOM	7918			A1010	62.533	43.419	-4.773	1.00 25.13	А
	ATOM	7919			A1010	62.183	41.452	-3.849	1.00 25.95	А
	ATOM	7920	C		A1010	58.372	42.943	-8.091	1.00 18.57	А
50	ATOM	7921	Ö		A1010	58.258	44.148	-8.334	1.00 17.62	Α
	ATOM	7922	N		A1011	57.333	42.122	-7.995	1.00 17.73	A
	ATOM	7923	CA		A1011	55.970	42.623	-8.087	1.00 17.39	A
	ATOM	7924	CB		A1011	55.009	41.537	-8.571	1.00 19.53	A
	ATOM	7925	CG		A1011	53.590	42.048	-8.816	1.00 23.41	A
55	ATOM	7926	CD		A1011	52.581	40.910	-8.808	1.00 27.12	А
	W101.1	, , , , , 0		. 11.0		52.501		3.200	- · · · - · · · - ·	

	ATOM	7927	NE	ARG	A1011	52.897	39.879	-9.790	1.00 31.70	Α
	MOTA	7928	CZ	ARG	A1011	52.840	40.054	-11.107	1.00 33.53	Α
	ATOM	7929	NH1	ARG	A1011	52.477		-11.607	1.00 35.13	A
	MOTA	7930	NH2	ARG	A1011	53.145	39.052	-11.925	1.00 34.20	A
5	ATOM	7931	С	ARG	A1011	55.654	42.980	-6.637	1.00 16.18	A
	ATOM	7932	0	ARG	A1011	55.992	42.226	-5.722	1.00 15.62	Α
	ATOM	7933	N	THR	A1012	55.021	44.126	-6.423	1.00 14.81	Α
	MOTA	7934	CA	THR	A1012	54.702	44.562	-5.071	1.00 13.76	Α
	ATOM	7935	СВ	THR	A1012	55.600	45.742	-4.635	1.00 14.36	Α
10	ATOM	7936	OG1	THR	A1012	55.252	46.904	-5.404	1.00 13.90	Α
	MOTA	7937	CG2	THR	A1012	57.072	45.422	-4.858	1.00 12.72	Α
	ATOM	7938	С	THR	A1012	53.268	45.060	-4.984	1.00 13.68	A
	ATOM	7939	0	THR	A1012	52.568	45.170	-5.989	1.00 13.39	Α
	MOTA	7940	N	THR	A1013	52.838	45.355	-3.764	1.00 12.69	Α
15	ATOM	7941	CA		A1013	51.518	45.915	-3.552	1.00 12.46	Α
	ATOM	7942	СВ		A1013	51.225	46.036	-2.046	1.00 12.35	Α
	MOTA	7943	OG1		A1013	52.406	46.482	-1.367	1.00 11.61	Α
	ATOM	7944	CG2		A1013	50.807	44.676	-1.472	1.00 12.82	Α
	ATOM	7945	С		A1013	51.611	47.303	-4.203	1.00 12.06	Α
20	ATOM	7946	Ö		A1013	52.716	47.809	-4.424	1.00 11.69	Α
	ATOM	7947	N		A1014	50.473	47.920	-4.509	1.00 12.08	Α
	ATOM	7948	CA		A1014	50.479	49.228	-5.171	1.00 11.50	Α
	ATOM	7949	СВ		A1014	49.051	49.659	-5.504	1.00 11.09	A
	ATOM	7950	CG		A1014	48.261	48.712	-6.406	1.00 10.82	А
25	ATOM	7951			A1014	46.957	49.394	-6.801	1.00 10.20	А
20	ATOM	7952			A1014	49.076	48.353	-7.647	1.00 10.52	А
	ATOM	7953	C		A1014	51.172	50.340	-4.404	1.00 11.34	А
	ATOM	7954	0		A1014	51.532	51.368	-4.984	1.00 11.68	А
	ATOM	7955	N		A1015	51.360	50.133	-3.105	1.00 11.33	А
30	MOTA	7956	CA		A1015	52.019	51.106	-2.240	1.00 11.07	A
30	ATOM	7957	CB		A1015	51.500	51.004	-0.800	1.00 11.10	A
	ATOM	7958	OG1		A1015	51.640	49.648	-0.353	1.00 11.46	A
		7959	CG2		A1015	50.032	51.427	-0.714	1.00 10.67	A
	MOTA	7960	CGZ		A1015	53.528	50.866	-2.193	1.00 11.04	A
35	ATOM ATOM	7961	0		A1015	54.262	51.636	-1.563	1.00 11.09	A
33	ATOM	7962	N		A1015	53.972	49.794	-2.850	1.00 11.39	A
		7963	CA		A1016	55.388	49.408	-2.897	1.00 12.27	A
	ATOM ATOM	7964	CB		A1016	56.271	50.604	-3.287	1.00 12.26	A
		7965	CG		A1016	55.966	51.184	-4.639	1.00 12.20	A
40	ATOM					55.835	52.562	-4.797	1.00 12.08	A
40	ATOM	7966			A1016	55.823	50.366	-5.751	1.00 12.00	A
	ATOM	7967			A1016	55.561	53.115	-6.046	1.00 11.07	A
	ATOM	7968			A1016		50.912	-7.008	1.00 11.07	A
	ATOM	7969			A1016	55.549	52.286	-7.152	1.00 11.94	A
4 =	ATOM	7970	CZ		A1016	55.417	48.879	-7.152 -1.550	1.00 11.93	A
45	MOTA	7971	C		A1016	55.881			1.00 13.14	A
	MOTA	7972	0		A1016	57.067	48.584	-1.394		
	MOTA	7973	N		A1017	54.976	48.739	-0.585	1.00 13.12	A
	MOTA	7974	CA		A1017	55.369	48.299	0.751	1.00 13.58	A
50	MOTA	7975	СВ		A1017	54.374	48.855	1.779	1.00 12.73	A
50	MOTA	7976	CG		A1017	54.334	50.394	1.786	1.00 12.87	A
	MOTA	7977			A1017	53.323	50.893	2.805	1.00 12.49	A
	ATOM	7978			A1017	55.720	50.950	2.105	1.00 12.43	A
	MOTA	7979	С		A1017	55.595	46.808	0.988	1.00 14.53	A
	MOTA	7980	0		A1017	56.271	46.437	1.946	1.00 15.09	A
55	ATOM	7981	N	GLN	A1018	55.042	45.949	0.137	1.00 15.38	А

	ATOM	7982	CA	GLN	A1018	55.246	44.513	0.310	1.00 17.15	Α
	ATOM	7983	CB		A1018	53.994	43.841	0.892	1.00 18.62	A
	ATOM	7984	CG		A1018	54.187	42.336	1.128	1.00 21.17	A
	ATOM	7985	CD		A1018	52.903	41.592	1.466	1.00 23.14	A
5	ATOM	7986	OE1		A1018	52.917	40.373	1.668	1.00 25.29	A
3	ATOM	7987	NE2		A1018	51.789	42.313	1.522	1.00 22.60	A
	ATOM	7988	C		A1018	55.608	43.822	-1.003	1.00 17.88	A
	ATOM	7989	0		A1018	54.975	44.054	-2.033	1.00 16.65	A
	ATOM	7990	N		A1010	56.628	42.971	-0.963	1.00 18.66	A
10	ATOM	7991	CA		A1019	57.036	42.238	-2.154	1.00 20.53	A
10		7992			A1019	58.498	41.798	-2.043	1.00 21.07	A
	ATOM		CB		A1019	59.446	42.971	-1.879	1.00 22.32	A
	MOTA	7993	CG OD1		A1019 A1019	59.313	43.991	-2.561	1.00 22.32	A
	MOTA	7994			A1019	60.419	42.830	-0.982	1.00 22.05	A
15	ATOM	7995					41.022	-2.285	1.00 21.52	A
15	ATOM	7996	С		A1019	56.127 55.948	40.267	-1.330	1.00 21.32	A
	ATOM	7997	0		A1019		40.267	-3.466	1.00 22.30	A
	MOTA	7998	N		A1020	55.548	39.725	-3.400	1.00 22.00	A
	MOTA	7999	CA		A1020	54.639			1.00 23.30	A
20	ATOM	8000	CB		A1020	53.345	40.233	-4.347 -3.618	1.00 23.29	A
20	ATOM	8001	CG		A1020	52.546	41.316	-3.618 -4.524	1.00 23.35	A
	ATOM	8002			A1020	51.427	41.815		1.00 23.03	A
	ATOM	8003			A1020	51.983	40.763	-2.320	1.00 23.16	A
	MOTA	8004	С		A1020	55.238	38.648	-4.600		
O.E.	MOTA	8005	0		A1020	54.876	37.474	-4.491	1.00 24.00	A A
25	MOTA	8006	N		A1021	56.145	39.044	-5.488	1.00 25.74	
	ATOM	8007	CA		A1021	56.759	38.093	-6.412	1.00 27.47	A
	MOTA	8008	СВ		A1021	55.919	37.969	-7.684	1.00 28.95	A
	MOTA	8009	CG		A1021	54.604	37.243	-7.551	1.00 31.78	A
20	MOTA	8010	CD		A1021	53.917	37.088	-8.897	1.00 33.30	A
30	ATOM	8011	OE1		A1021	54.587	36.643	-9.856	1.00 33.68	A
	ATOM	8012	OE2		A1021	52.712	37.408	-8.998	1.00 35.00	A
	ATOM	8013	С		A1021	58.174	38.440	-6.847	1.00 27.78	A
	ATOM	8014	0		A1021	58.484	39.599	-7.125	1.00 27.14	A
0-	MOTA	8015	N		A1022	59.024	37.420	-6.915	1.00 28.61	A
35	ATOM	8016	CA		A1022	60.394	37.587	-7.377	1.00 29.85	A
	MOTA	8017	CB		A1022	61.343	36.652	-6.624	1.00 31.37	A
	MOTA	8018	CG		A1022	62.782	36.825	-6.999	1.00 32.90	A
	MOTA	8019			A1022	63.692	35.944	-7.480	1.00 33.73	A
40	ATOM	8020			A1022	63.438	38.034	-6.897	1.00 33.99	A
40	MOTA	8021			A1022	64.688	37.890	-7.299	1.00 34.21	A
	ATOM	8022	NE2		A1022	64.868	36.631	-7.659	1.00 34.14	A
	MOTA	8023	С		A1022	60.298			1.00 29.97	A
	MOTA	8024	0		A1022	60.054	36.022		1.00 29.65	A
	MOTA	8025	N		A1023	60.477	38.159		1.00 29.90	A
45	MOTA	8026	CA		A1023	60.354		-11.165	1.00 30.66	Α
	MOTA	8027	CB		A1023	59.901		-11.837	1.00 30.06	А
	MOTA	8028	CG	LEU	A1023	58.644		-11.194	1.00 29.45	Α
	MOTA	8029			A1023	58.367		-11.757	1.00 30.04	Α
	ATOM	8030	CD2	LEU	A1023	57.466		-11.432	1.00 29.81	Α
50	MOTA	8031	С	LEU	A1023	61.603		-11.854	1.00 31.31	Α
	ATOM	8032	0	LEU	A1023	62.656		-11.836	1.00 30.70	Α
	ATOM	8033	N	ASP	A1024	61.470		-12.470	1.00 32.74	A
	ATOM	8034	CA	ASP	A1024	62.583		-13.179	1.00 33.94	Α
	ATOM	8035	СВ	ASP	A1024	62.202		-13.646	1.00 36.11	Α
55	ATOM	8036	CG	ASP	A1024	62.346	33.163	-12.547	1.00 38.17	Α

						- 1 0 0 1	60 074	21 274 12 212	1 00 40 17	70
		ATOM	8037			A1024	62.074	31.974 -12.818	1.00 40.17	A
		ATOM	8038	OD2		A1024	62.737	33.531 -11.417	1.00 39.44	Α
		ATOM	8039	С		A1024	63.001	36.454 -14.373	1.00 33.60	Α
		ATOM	8040	0	ASP	A1024	62.179	37.150 -14.973	1.00 33.92	Α
	5	ATOM	8041	N	GLY	A1025	64.284	36.393 -14.712	1.00 33.05	Α
		ATOM	8042	CA	GLY	A1025	64.788	37.165 -15.832	1.00 32.63	Α
		ATOM	8043	С	GLY	A1025	64.714	38.650 -15.547	1.00 32.42	Α
		ATOM	8044	0		A1025	65.062	39.474 -16.394	1.00 32.65	А
		ATOM	8045	N		A1026	64.262	38.990 -14.344	1.00 31.91	А
	10	ATOM	8046	CA		A1026	64.135	40.381 -13.932	1.00 31.78	А
	10	ATOM	8047	CB		A1026	65.515	41.036 -13.860	1.00 32.40	A
		ATOM	8048	ÇG		A1026	66.511	40.278 -13.002	1.00 33.57	A
			8049	SD		A1026	68.098	41.116 -12.885	1.00 35.28	A
		ATOM					68.895	40.532 -14.379	1.00 33.20	A
	15	ATOM	8050	CE		A1026		41.135 -14.920	1.00 34.34	A
	15	ATOM	8051	С		A1026	63.254			
		ATOM	8052	0		A1026	63.496	42.302 -15.221	1.00 30.28	A
		MOTA	8053	N		A1027	62.228	40.457 -15.422	1.00 30.91	A
		MOTA	8054	CA		A1027	61.316	41.068 -16.377	1.00 31.71	A
	20	MOTA	8055	CB		A1027	61.178	40.212 -17.650	1.00 31.61	A
1,2	20	MOTA	8056			A1027	60.155	40.839 -18.589	1.00 32.07	A
		MOTA	8057			A1027	62.524	40.089 -18.340	1.00 31.52	Α
		MOTA	8058	С		A1027	59.929	41.273 -15.788	1.00 31.69	Α
		MOTA	8059	0		A1027	59.295	40.327 -15.320	1.00 31.57	Α
ائيدية د دود		MOTA	8060	N	ALA	A1028	59.463	42.516 -15.814	1.00 31.73	Α
Thursday,	25	MOTA	8061	CA	ALA	A1028	58.140	42.839 -15.300	1.00 32.08	Α
M.		ATOM	8062	СВ	ALA	A1028	58.114	44.265 -14.754	1.00 32.15	Α
(71		MOTA	8063	С	ALA	A1028	57.145	42.694 -16.441	1.00 31.91	А
Ří		MOTA	8064	0	ALA	A1028	57.116	43.514 -17.361	1.00 32.68	A
		MOTA	8065	N	PRO	A1029	56.323	41.638 -16.405	1.00 31.39	A
13	30	MOTA	8066	CD	PRO	A1029	56.223	40.615 -15.348	1.00 31.43	А
1,500 848 B		MOTA	8067	CA		A1029	55.327	41.406 -17.454	1.00 31.08	Α
		ATOM	8068	СВ		A1029	54.819	40.005 -17.132	1.00 31.27	Α
		ATOM	8069	CG		A1029	54.878	39.979 -15.639	1.00 31.48	А
		ATOM	8070	C		A1029	54.217	42.454 -17.398	1.00 30.48	Α
[l.	35	ATOM	8071	Ö		A1029	53.919	42.995 -16.334	1.00 30.65	А
	00	ATOM	8072	N		A1030	53.612	42.743 -18.545	1.00 29.57	A
		ATOM	8073	CA		A1030	52.539	43.725 -18.595	1.00 28.77	A
		ATOM	8074	CB		A1030	52.224	44.094 -20.047	1.00 29.04	A
		ATOM	8075	CG		A1030	53.447	44.504 -20.861	1.00 28.71	A
	40	ATOM	8076			A1030		44.989 -22.253		A
	40		8077			A1030	52.176	44.395 -22.867	1.00 29.16	A
		ATOM				A1030	53.716	45.952 -22.738	1.00 27.83	A
		ATOM	8078					43.153 -17.914	1.00 27.83	A
		ATOM	8079	С		A1030	51.300			
	4 =	ATOM	8080	0		A1030	51.190	41.939 -17.717	1.00 28.78	A
	45	MOTA	8081	N		A1031	50.366	44.026 -17.558	1.00 26.52	A
		MOTA	8082	CA		A1031	49.153	43.595 -16.883	1.00 24.32	A
		MOTA	8083	CB		A1031	48.745	44.606 -15.791	1.00 25.20	A
		MOTA	8084			A1031	49.850	44.709 -14.752	1.00 25.47	A
		MOTA	8085	CG2		A1031	48.466	45.961 -16.408	1.00 24.31	Α
	50	ATOM	8086	С		A1031	47.977	43.388 -17.826	1.00 22.92	Α
		MOTA	8087	0		A1031	48.032	43.752 -18.998	1.00 22.93	А
		MOTA	8088	N	CYS	A1032	46.917	42.790 -17.295	1.00 21.33	Α
		ATOM	8089	CA	CYS	A1032	45.703	42.511 -18.051	1.00 20.05	Α
		MOTA	8090	С	CYS	A1032	44.804	43.740 -18.132	1.00 18.10	Α
	55	MOTA	8091	0	CYS	A1032	44.982	44.698 -17.381	1.00 17.38	А

	A MOM	0000	CD	CVC	71022	44.923	41.377 -17.380	1.00 20.75	А
	ATOM	8092	CB		A1032 A1032	45.684	39.722 -17.453	1.00 20.73	A
	ATOM	8093	SG			43.820	43.727 -19.049	1.00 22.04	A
	ATOM	8094 8095	N CD		A1033 A1033	43.568	42.726 -20.104	1.00 16.27	A
5	ATOM	8096	CA		A1033	42.906	44.865 -19.183	1.00 16.00	A
3	ATOM ATOM	8097	CB		A1033	41.941	44.404 -20.275	1.00 15.70	A
			CG		A1033	42.811	43.529 -21.138	1.00 16.00	A
	ATOM	8098				42.192	45.116 -17.853	1.00 10.00	A
	ATOM	8099	C		A1033	41.725	44.178 -17.206	1.00 13.33	A
10	ATOM	8100	0		A1033	42.119	46.385 -17.462	1.00 14.40	A
10	ATOM	8101	N		A1034		46.815 -16.221	1.00 15.20	A
	ATOM	8102	CA		A1034	41.482	46.308 -16.143	1.00 15.34	A
	ATOM	8103	CB		A1034	40.041	46.875 -17.223	1.00 15.40	A
	ATOM	8104	CG		A1034	39.132	48.680 -17.336	1.00 16.32	A
15	MOTA	8105	SD		A1034	39.209	49.170 -15.883	1.00 10.36	A
15	ATOM	8106	CE		A1034	38.245	46.391 -14.972	1.00 17.70	A
	ATOM	8107	C		A1034	42.246	46.484 -13.860	1.00 10.00	A
	ATOM	8108	0		A1034	41.726		1.00 17.93	A
	ATOM	8109	N		A1035	43.477	45.930 -15.161		
20	MOTA	8110	CA		A1035	44.318	45.517 -14.044	1.00 17.13	A
20	MOTA	8111	CB		A1035	44.989	44.166 -14.342	1.00 19.35	A
	ATOM	8112	CG		A1035	46.198	43.864 -13.453	1.00 23.20	A
	ATOM	8113	CD		A1035	46.687	42.421 -13.550	1.00 25.99	A
	ATOM	8114	OE1		A1035	46.973	41.943 -14.674	1.00 26.11	A
0.5	ATOM	8115			A1035	46.794	41.766 -12.488	1.00 28.07	A
25	MOTA	8116	С		A1035	45.386	46.570 -13.765	1.00 16.00	A
	ATOM	8117	0		A1035	45.777	47.328 -14.652	1.00 14.36	A
	MOTA	8118	N		A1036	45.839	46.620 -12.518	1.00 15.22	A
	MOTA	8119	CA		A1036	46.881	47.554 -12.116	1.00 14.15	A
00	MOTA	8120	СВ		A1036	46.323	48.705 -11.253	1.00 13.96	A
30	ATOM	8121	OG1		A1036	45.285	49.383 -11.967	1.00 13.25	A
	MOTA	8122	CG2		A1036	47.427	49.701 -10.914	1.00 13.39	A
	MOTA	8123	С		A1036	47.877	46.768 -11.279	1.00 13.98	A
	ATOM	8124	0		A1036	47.487	46.031 -10.375	1.00 13.86	A
0.5	MOTA	8125	N		A1037	49.159	46.912 -11.584	1.00 13.57	A
35	MOTA	8126	CA		A1037	50.186	46.213 -10.832	1.00 14.07	A
	ATOM	8127	CB		A1037	50.706	45.022 -11.626	1.00 14.55	A
	MOTA	8128	С		A1037	51.320	47.171 -10.526	1.00 14.09	A
	MOTA	8129	0		A1037	51.442	48.226 -11.149	1.00 14.87	A
40	MOTA	8130	N		A1038	52.134	46.810 -9.544	1.00 13.48	A
40	ATOM	8131	CA		A1038		47.633 -9.164		A
	MOTA	8132	CB		A1038	53.066	48.207 -7.774	1.00 12.35	A
	MOTA	8133	С		A1038	54.512	46.766 -9.193	1.00 13.30	A
	ATOM	8134	0		A1038	54.468	45.590 -8.823	1.00 13.16	A
4-	MOTA	8135	N		A1039	55.612	47.347 -9.655	1.00 13.78	A
45	MOTA	8136	CA		A1039	56.879	46.642 -9.722	1.00 14.56	A
	ATOM	8137	СВ		A1039	57.218	46.242 -11.160	1.00 14.67	A
	MOTA	8138	CG		A1039	56.188	45.367 -11.836	1.00 16.22	Α
	MOTA	8139			A1039	55.247	45.914 -12.707	1.00 17.34	А
	MOTA	8140			A1039	54.306	45.111 -13.349	1.00 18.80	Α
50	ATOM	8141			A1039	56.162	43.990 -11.616	1.00 17.38	A
	ATOM	8142	CE2	TYR	A1039	55.223	43.178 -12.253	1.00 18.40	А
	ATOM	8143	CZ		A1039	54.301	43.745 -13.118	1.00 19.04	Α
	ATOM	8144	ОН		A1039	53.377	42.949 -13.758	1.00 21.01	Α
	ATOM	8145	С		A1039	57.979	47.546 -9.204	1.00 14.90	A
55	ATOM	8146	0	TYR	A1039	57.925	48.767 -9.362	1.00 14.95	Α

											=
		MOTA	8147	N		A1040	58.97			1.00 15.13	A
		ATOM	8148	CA		A1040	60.11		-8.064	1.00 15.16	А
		MOTA	8149	CB	VAL	A1040	60.17		-6.521	1.00 15.50	Α
		MOTA	8150			A1040	61.47		-6.029	1.00 15.65	Α
	5	ATOM	8151	CG2		A1040	58.97		-5.937	1.00 14.36	А
		MOTA	8152	С		A1040	61.35		-8.635	1.00 16.26	Α
		ATOM	8153	0		A1040	61.53		-8.510	1.00 16.39	Α
		ATOM	8154	N		A1041	62.19		-9.291	1.00 16.31	Α
		MOTA	8155	CA		A1041	63.43		-9.860	1.00 17.09	Α
	10	ATOM	8156	CB		A1041	63.61		-11.299	1.00 16.94	A
		ATOM	8157	OG		A1041	63.69		-11.352	1.00 16.34	Α
		MOTA	8158	С		A1041	64.58		-8.987	1.00 17.15	A
		MOTA	8159	0		A1041	64.61			1.00 16.29	A
		ATOM	8160	N		A1042	65.52		-8.706	1.00 17.84	A
	15	MOTA	8161	CA		A1042	66.69		-7.890	1.00 18.46	A
		MOTA	8162	СВ		A1042	66.89		-6.810	1.00 18.36	A
		ATOM	8163	OG		A1042	65.76		-5.961	1.00 19.21	A
		MOTA	8164	С		A1042	67.90		-8.802	1.00 18.79	A
1,44	••	MOTA	8165	0		A1042	68.05			1.00 18.69	A
4,	20	MOTA	8166	N		A1043	68.76			1.00 19.78	A
ı,II		MOTA	8167	CA		A1043	69.94		-9.397	1.00 20.82	A
171		ATOM	8168	CB		A1043	69.74		-10.234	1.00 19.47	A
		MOTA	8169	CG		A1043	68.44		-10.966	1.00 18.50	A
	0-	ATOM	8170			A1043	67.20		-10.569	1.00 17.78	A
14	25	ATOM	8171			A1043	68.29		-12.236	1.00 17.74	A
i 1941 dispe		MOTA	8172			A1043	67.02		-12.587	1.00 17.63	A
M		MOTA	8173			A1043	66.34		-11.593	1.00 18.16	A
E!		ATOM	8174	С		A1043	71.21		-8.565	1.00 22.62	A
The first that	20	ATOM	8175	0		A1043	71.26			1.00 22.60	A
ij	30	ATOM	8176	N		A1044	72.24			1.00 24.94	A
ijij.		ATOM	8177	CA		A1044	73.50		-8.275	1.00 27.40	A
į.		ATOM	8178	CB		A1044	74.21		-8.532	1.00 28.13	A
		ATOM	8179	OG		A1044	74.19		-9.911	1.00 29.65	A
ļ.	25	ATOM	8180	C		A1044	74.43		-8.632	1.00 28.23	A A
a	35	ATOM	8181	0		A1044	74.03		-9.448	1.00 28.56	A
		ATOM	8182	OXT		A1044	75.55		-8.077	1.00 29.86 1.00 8.05	W
		ATOM	8183		WAT		41.97		-7.156 -19.784	1.00 8.03	W
		ATOM	8184		WAT WAT		53.60 39.16		-19.784	1.00 11.44	W
	40	ATOM	8185				52.11		-4.860		W
	40	MOTA	8186		WAT		56.13			1.00 10.79	W
		ATOM	8187		WAT		31.38		-24.059	1.00 10.75	W
		MOTA	8188		WAT		49.85		1.284	1.00 10.90	W
		ATOM	8189		TAW TAW		36.99		13.375	1.00 12.00	W
	45	ATOM ATOM	8190 8191		WAT		26.75			1.00 11.38	W
	40		8192		WAT		39.32		-14.901	1.00 12.67	W
		ATOM	8193		WAT		34.19		-8.711	1.00 12.07	W
		ATOM	8194		WAT		60.95			1.00 11.38	W
		ATOM	8195		WAT		36.62			1.00 11.30	W
	50	ATOM					31.70			1.00 10.89	W
	50	ATOM ATOM	8196 8197		TAW TAW		30.14			1.00 10.05	W
			8197		WAT		26.11		-13.740	1.00 10.75	W
		ATOM	8198		WAI		37.63		-21.150	1.00 10.75	W
		ATOM	8200		WAT		33.01			1.00 12.30	W
	55	ATOM	8200 8201		WAT		24.68		-11.753	1.00 10.02	W
		MOTA	0201	Onz	WM 1	** 13	24.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.,00	2.00 11.02	**

								60 105	61 515 7 501	1 00 10 40	W
		MOTA	8202	OH2 W			20	63.105	61.515 -7.581	1.00 10.48	
		ATOM	8203	OH2 W			21	41.285	59.153 13.532	1.00 12.85	W
		ATOM	8204	OH2 W			22	47.287	55.959 -15.370	1.00 14.81	W
	_	MOTA	8205	OH2 W			23	56.380	55.892 -2.106	1.00 8.54	W
	5	ATOM	8206	OH2 W			24	67.351	60.850 -5.664	1.00 14.58	W
		ATOM	8207	OH2 W			25	26.262	48.939 -10.894	1.00 13.65	W
		ATOM	8208	OH2 W	TAV	W	26	65.620	60.396 -7.599	1.00 14.15	W
		ATOM	8209	OH2 W	IAV	W	27	32.469	60.318 -1.870	1.00 10.93	W
		MOTA	8210	OH2 W	TAV	W	28	20.127	54.851 16.211	1.00 17.01	W
	10	MOTA	8211	OH2 W	TAV	W	29	23.824	55.676 -23.371	1.00 12.86	W
		ATOM	8212	OH2 W	VAT	W	30	39.335	57.550 14.798	1.00 11.81	W
		MOTA	8213	OH2 W			31	20.371	58.963 -21.881	1.00 12.24	W
		MOTA	8214	OH2 W			32	28.075	61.166 19.435	1.00 13.45	W
		ATOM	8215	OH2 W			33	34.058	56.487 -26.256	1.00 11.49	W
	15	ATOM	8216	OH2 W			34	26.341	40.112 7.993	1.00 15.36	W
		ATOM	8217	OH2 W			35	63.796	50.324 -14.022	1.00 12.67	W
		ATOM	8218	OH2 W			36	37.486	57.200 1.752	1.00 12.39	W
		ATOM	8219	OH2 W			37	24.088	42.135 6.847	1.00 14.18	W
g:100g;		ATOM	8220	OH2 W			38	31.966	65.565 18.975	1.00 15.73	W
	20	ATOM	8221	OH2 W			39	51.492	56.797 -5.607	1.00 8.86	W
F.(100)	~0	ATOM	8222	OH2 W			40	20.056	56.197 7.115	1.00 13.43	W
1,500 2100		ATOM	8223	OH2 W			41	28.261	43.988 13.133	1.00 11.93	W
M		ATOM	8224	OH2 W			42	30.237	58.632 -11.794	1.00 11.17	W
		ATOM	8225	OH2 W			43	64.887	59.396 -3.618	1.00 16.12	W
M	25	ATOM	8226	OH2 W			44	46.340	67.858 -15.581	1.00 15.57	W
N	20	ATOM	8227	OH2 W			45	60.698	58.457 -2.874	1.00 13.59	W
(Ji		ATOM	8228	OH2 W			46	60.499	62.267 -1.276	1.00 14.53	W
8)		ATOM	8229	OH2 W			47	53.593	60.068 -9.458	1.00 12.82	W
		ATOM	8230	OH2 W			48	18.566	51.203 -12.450	1.00 15.00	W
i.d	30	ATOM	8231	OH2 W			49	28.876	42.922 -11.951	1.00 16.11	W
F,i _{se} F non h	30	ATOM	8232	OH2 W			50	34.497	79.288 -9.194	1.00 12.70	W
		ATOM	8233	OH2 W			51	21.521	58.048 -7.816	1.00 13.55	W
		ATOM	8234	OH2 W			52	36.974	72.026 -4.632	1.00 11.46	W
		ATOM	8235	OH2 W			53	55.633	59.600 -11.527	1.00 12.06	W
ļ.	35	ATOM	8236	OH2 W			54	36.685	44.992 -5.521	1.00 12.94	W
	00	ATOM	8237	OH2 W			55	51.282	53.464 -24.055	1.00 15.04	W
		ATOM	8238	OH2 W			56	35.178	50.782 -17.540	1.00 18.13	W
		ATOM	8239	OH2 W			57	60.506	54.958 -0.396	1.00 15.58	W
		ATOM	8240	OH2 W			58	42.909	56.986 6.187	1.00 11.90	W
	40	ATOM	8241	OH2 W			59	47.858	59.457 -25.679	1.00 15.94	W
	10	ATOM	8242	OH2 V			60	37.848	73.645 -2.364	1.00 13.96	W
		ATOM	8243	OH2 W			61	19.391	55.464 11.518	1.00 14.93	W
		ATOM	8244	OH2 V			62	25.911	39.813 5.195	1.00 11.56	W
		ATOM	8245	OH2 V			63	23.258	54.236 -3.647	1.00 15.92	W
	45	ATOM	8246	OH2 V			64	34.294	52.614 -1.083	1.00 12.31	W
	40	ATOM	8247	OH2 V			65	50.997	44.377 -7.959	1.00 13.40	W
		ATOM	8248	OH2 V			66	37.875	59.168 11.062	1.00 12.70	W
		ATOM	8249	OH2 V			67	16.619	49.176 24.039	1.00 17.09	W
		ATOM	8250	OH2 V			68	19.392	53.623 8.170	1.00 14.32	W
	50		8250	OH2 V			69	11.769	51.733 14.377	1.00 14.32	W
	50	ATOM					70	17.139	56.383 10.249	1.00 13.40	W
		ATOM	8252 8253	OH2 V			71	67.983	65.707 -3.476	1.00 14.66	W
		ATOM	8253	OH2 V			72	22.822	53.249 -24.440	1.00 18.17	W
		ATOM		OH2 V			73	52.061	50.772 6.360	1.00 10.17	W
	55	MOTA	8255					17.596	52.950 6.333	1.00 11.54	W
	55	MOTA	8256	OH2 V	NAT	W	74	17.590	12.310 0.333	1.00 13.34	**

		ATOM	8257	OH2	WAT	W	75	68.801	58.401	-5.067	1.00 15.47	W
		ATOM	8258		WAT		76	33.510	48.227	-10.155	1.00 10.97	W
		ATOM	8259		WAT		77	26.793		-13.173	1.00 13.87	W
		ATOM	8260		WAT		78	26.744	61.077	-3.285	1.00 11.60	W
	5		8261		WAT		79	49.480	62.451	-8.644	1.00 9.33	W
	5	ATOM						41.021		-16.991	1.00 13.50	W
		MOTA	8262		WAT		80					
		MOTA	8263		TAW		81	31.434		-6.264	1.00 15.03	M
		MOTA	8264		WAT		82	43.379		-24.915	1.00 14.16	W
		ATOM	8265	OH2	WAT	W	83	32.764		-11.715	1.00 13.97	W
	10	MOTA	8266	OH2	WAT	W	84	20.523		-19.639	1.00 13.09	W
		MOTA	8267	OH2	WAT	W	85	40.401	62.934	6.179	1.00 12.03	W
		MOTA	8268	OH2	WAT	W	86	42.119	47.453	-24.559	1.00 17.53	W
		ATOM	8269	OH2	WAT	W	87	44.524	42.002	-0.591	1.00 19.33	W
		MOTA	8270	OH2	WAT	W	88	38.626	55.309	-31.696	1.00 13.53	W
	15	ATOM	8271		WAT		89	22.307	54.475	-11.945	1.00 12.50	W
		ATOM	8272		WAT		90	48.303		-30.628	1.00 20.34	W
		ATOM	8273		WAT		91	36.707	51.821	3.758	1.00 11.30	W
		ATOM	8274		WAT		92	38.733	62.443	8.416	1.00 13.40	W
21:22-		ATOM	8275		WAT		93	47.443	46.140	3.623	1.00 9.98	W
	20		8276		WAT		94	33.576		-35.875	1.00 16.19	W
١Ū	20	ATOM	8277		WAT		95	32.312		-29.560	1.00 14.95	W
١Ĵ		ATOM						39.250	39.226	17.190	1.00 14.33	W
		ATOM	8278		WAT		96					W
1:20		ATOM	8279		WAT		97	35.930	53.330	1.320	1.00 9.48	
	05	MOTA	8280		WAT		98	14.447	60.154	5.058	1.00 17.17	W
15.1 16.1	25	MOTA	8281		TAW		99	21.655	57.292	5.020	1.00 11.98	W
iiii		MOTA	8282	OH2				43.040	48.234	11.162	1.00 12.84	W
m		ATOM	8283		WAT		101	26.080	73.018	5.559	1.00 14.30	W
21		MOTA	8284		WAT			27.431		-21.557	1.00 22.43	W
الحرا		ATOM	8285		WAT			33.294		-4.985	1.00 13.70	W
	30	ATOM	8286		TAW			49.992	59.656	-11.582	1.00 9.75	M
88.5		ATOM	8287	OH2	WAT	W	105	25.582	51.390	-9.530	1.00 14.63	W
1 %		ATOM	8288	OH2	WAT	W	106	40.201	56.515	5.849	1.00 11.03	M
		ATOM	8289	OH2	WAT	W	107	14.015	59.894	-3.431	1.00 15.09	M
		MOTA	8290	OH2	WAT	W	108	19.701	53.654	-11.750	1.00 14.70	W
4	35	ATOM	8291		WAT			26.513	63.805	17.151	1.00 21.71	W
		ATOM	8292		WAT			19.778		-11.786	1.00 15.33	W
		ATOM	8293		WAT			47.187	48.533	11.420	1.00 22.52	W
		ATOM	8294		WAT			67.813		-25.634	1.00 15.49	W
		ATOM	8295		WAT			22.910	51.833	-8.728	1.00 17.22	W
	40	ATOM	8296		WAT			46.597		-36.714	1.00 16.13	W
	10		8297		WAT			20.543	57.579	-5.285	1.00 11.86	W
		MOTA			WAT			18.154	60.637	24.428	1.00 23.17	W
		MOTA	8298							-32.512	1.00 25.17	W
		ATOM	8299		TAW			41.280				
	4 =	MOTA	8300		TAW			38.328	40.122	1.665	1.00 12.98	W
	45	MOTA	8301		WAT			23.855	58.244	6.312	1.00 12.38	W
		ATOM	8302		WAT			18.101		-20.092	1.00 23.40	W
		MOTA	8303		WAT			41.276		-14.102	1.00 15.70	W
		MOTA	8304		WAT			52.842	59.201	-1.699	1.00 21.35	W
		MOTA	8305		TAW			47.942	49.607		1.00 12.65	W
	50	MOTA	8306	OH2	WAT	W	124	35.232	43.720	28.641	1.00 15.37	M
		ATOM	8307	OH2	WAT	W	125	59.499	60.738	-6.298	1.00 12.21	W
		ATOM	8308		WAT			53.661	72.740	-19.148	1.00 13.77	W
		ATOM	8309		WAT			39.796		-20.838	1.00 20.47	W
		ATOM	8310		WAT			33.113	36.777		1.00 19.85	W
	55	ATOM	8311		WAT			14.324		-16.361	1.00 16.40	W
		011				•••						

		0010	0110			120	47 511	42 001	-2.434	1.00 1	5 15	W
	ATOM	8312		WAT			47.511	43.081		1.00 1		W
	ATOM	8313		TAW			46.904		-25.485	1.00 1		W
	ATOM	8314		WAT			32.138		-28.468 28.230	1.00 1		W
_	ATOM	8315		TAW			49.264	50.050	29.332	1.00 2		W
5	ATOM	8316		WAT			26.292	37.411	1.206	1.00 2		W
	ATOM	8317		WAT			51.883	46.667	-16.022	1.00 1		W
	MOTA	8318		WAT			41.713			1.00 1		W
	ATOM	8319		WAT			13.817	54.250	4.446			W
10	ATOM	8320		WAT			67.797		-25.331	1.00 1		W
10	MOTA	8321		WAT			42.168		-16.021	1.00 10		W
	MOTA	8322		WAT			23.119	56.194	30.804	1.00 1		W
	MOTA	8323		WAT			56.988	61.152				W
	ATOM	8324		WAT			20.075	74.547		1.00 1		
15	ATOM	8325		WAT			13.378	53.661	1.806	1.00 1		W
15	MOTA	8326		TAW			34.280	34.507	16.087	1.00 20		
	MOTA	8327		WAT			33.932		-32.236	1.00 1		W
	MOTA	8328		WAT			14.061	49.293	15.438	1.00 1		W W
	MOTA	8329		WAT			30.384		-12.407	1.00 20		
20	MOTA	8330		WAT			18.403	55.006		1.00 1		W
20	MOTA	8331		WAT			15.636	60.472	15.465	1.00 2		W
	ATOM	8332		TAW			16.791	74.875	-3.047	1.00 2		W
	MOTA	8333		WAT			56.518		-17.443	1.00 1		W
	MOTA	8334		WAT			45.628		-18.241	1.00 1		W
25	MOTA	8335		WAT			28.171		-35.426	1.00 1		W
25	MOTA	8336		WAT			73.029	65.246	-7.720	1.00 1		W
	MOTA	8337		TAW			73.770		-17.640	1.00 1		W
	MOTA	8338		TAW			59.259	50.047		1.00 1		W
	MOTA	8339		WAT			23.044		-24.838	1.00 2		W
20	MOTA	8340		WAT			14.298		-16.068	1.00 1		W
30	MOTA	8341		WAT			43.558	73.338	5.809	1.00 1		W W
	MOTA	8342		WAT			11.895		-12.525	1.00 1		
	MOTA	8343		WAT			63.550	44.738	-6.929	1.00 1		W
	ATOM	8344		WAT			24.753		-24.121	1.00 1		W
25	ATOM	8345		WAT			35.486		-27.380	1.00 1		W
35	ATOM	8346		TAW			28.688		-24.414	1.00 2		W
	ATOM	8347		TAW			54.813		-23.474	1.00 1		W
	ATOM	8348		WAT			23.604	63.804	7.820	1.00 2		W
	ATOM	8349		WAT			49.744	57.760	-7.648	1.00 1		W
40	ATOM	8350		TAW			46.061 24.323	71.148 55.822	0.115 -1.895	1.00 2		W
40	ATOM	8351		TAW					-21.778	1.00 1		W
	ATOM	8352		TAW			28.647 37.052		27.466	1.00 1		W
	ATOM	8353		TAW					-17.622	1.00 1		W
	ATOM	8354		TAW			41.487		-31.970	1.00 1		W
4 =	ATOM	8355		TAW			40.305			1.00 1		W
45	ATOM	8356		TAW			49.313		-28.687	1.00 1		W
	ATOM	8357		WAT			64.386		-10.440 2.908	1.00 2		W
	ATOM	8358		WAT			19.168	72.621		1.00 2		W
	ATOM	8359		TAW			17.064		-16.407			W
50	MOTA	8360		TAW			9.518		16.850	1.00 2		W
50	ATOM	8361		TAW			53.879		-36.735	1.00 1		W
	ATOM	8362		TAW			50.889		-23.486			W
	ATOM	8363		TAW			49.384	44.309		1.00 1		W
	ATOM	8364		TAW			59.367	68.444	2.370	1.00 2		W
EE	ATOM	8365		TAW			25.439	53.900		1.00 1		
55	MOTA	8366	OH2	TAW	W	184	69.086	61.568	-2.411	1.00 1	0.23	W

	ATOM	8367	OH2	WAT	W	185	58.341	77.603	-38.440	1.00 18.02	W
	ATOM	8368	OH2	WAT	W	186	44.390	46.220	9.936	1.00 17.37	W
	ATOM	8369	OH2	WAT	W	187	46.547	57.491	-18.779	1.00 13.56	W
	MOTA	8370	OH2	WAT	W	188	33.493	83.726	-10.384	1.00 16.90	W
5	ATOM	8371	OH2	WAT	W	189	47.052	68.688	-30.395	1.00 20.70	W
	ATOM	8372	ОН2	WAT	W	190	44.386	56.163	-15.436	1.00 17.54	W
	ATOM	8373	OH2	WAT	W	191	13.141	67.021	-4.770	1.00 16.21	W
	ATOM	8374	OH2	WAT	W	192	24.512	39.271	-11.474	1.00 19.84	W
	ATOM	8375	OH2	WAT	W	193	41.591	61.284	-29.731	1.00 17.96	W
10	ATOM	8376	OH2	WAT	W	194	27.187	41.479	13.299	1.00 18.70	W
	ATOM	8377	OH2	WAT	W	195	42.003	88.025	-40.833	1.00 20.34	W
	MOTA	8378	OH2	WAT	W	196	69.850	70.102	-12.637	1.00 18.95	W
	MOTA	8379	OH2	WAT	W	197	64.133	78.095	-35.174	1.00 15.70	W
	ATOM	8380	OH2	WAT	W	198	20.411	65.476	7.641	1.00 22.81	W
15	ATOM	8381	OH2	WAT	W	199	11.382	61.518	-18.592	1.00 24.08	W
	ATOM	8382	OH2	WAT	W	200	24.515	70.804	-8.824	1.00 12.95	W
	ATOM	8383	OH2	WAT	W	201	25.028	40.143	14.192	1.00 15.50	W
	ATOM	8384	OH2	WAT	W	202	22.728	63.442	-33.182	1.00 19.12	W
	ATOM	8385	OH2	WAT	W	203	41.675	43.431	7.944	1.00 16.39	W
20	ATOM	8386		WAT			21.035	51.916	47.273	1.00 21.06	W
	ATOM	8387	OH2	WAT	W	205	41.323	50.434	33.218	1.00 21.10	W
	ATOM	8388	OH2	WAT	W	206	45.961	52.944	-19.253	1.00 20.91	W
	ATOM	8389		WAT			51.427	76.534	-40.959	1.00 29.19	W
	MOTA	8390	OH2	WAT	W	208	25.701	86.532	-31.930	1.00 16.19	M
25	ATOM	8391		WAT			12.460	56.457	5.406	1.00 18.11	W
	MOTA	8392	OH2	WAT	W	210	22.528	56.988	-34.123	1.00 19.06	W
	ATOM	8393	OH2	TAW	W	211	43.856	72.929	-42.044	1.00 28.46	W
	ATOM	8394	OH2	WAT	W	212	44.594	58.887	-16.004	1.00 14.67	W
	ATOM	8395	ОН2	WAT	W	213	31.327	81.894	0.496	1.00 18.34	W
30	ATOM	8396	OH2	WAT	W	214	51.990	56.524	-30.250	1.00 22.59	W
	ATOM	8397	OH2	WAT	W	215	17.291	70.212	-23.398	1.00 26.14	W
	ATOM	8398	OH2	WAT	W	216	37.674	47.140	29.767	1.00 18.64	W
	ATOM	8399	OH2	WAT	W	217	49.763	55.189	-28.946	1.00 20.75	W
	ATOM	8400	OH2	TAW	W	218	36.224	79.442	-5.010	1.00 20.29	W
35	MOTA	8401	OH2	WAT	W	219	62.253	62.767	25.731	1.00 18.51	W
	ATOM	8402	OH2	WAT	W	220	11.367	53.252	6.826	1.00 16.35	W
	MOTA	8403	OH2	TAW	W	221	13.918	60.924	-22.492	1.00 17.57	W
	ATOM	8404	OH2	WAT	W	222	50.826	62.132	26.293	1.00 18.66	W
	MOTA	8405	OH2	WAT	W	223	68.567		-18.104	1.00 23.07	W
40	MOTA	8406	OH2	WAT	W	224	84.246	68.535	-17.436		W
	MOTA	8407		WAT			21.706	40.481		1.00 39.04	W
	ATOM	8408	OH2	WAT	W	226	52.774			1.00 29.32	W
	MOTA	8409	OH2	WAT	W	227	42.710	53.366		1.00 23.23	W
	ATOM	8410	OH2	WAT	W	228	70.573		-12.697	1.00 18.76	W
45	MOTA	8411	OH2	WAT	W	229	34.677	70.519		1.00 15.62	
	ATOM	8412	OH2	WAT	W	230	27.183	46.437		1.00 17.02	W
	ATOM	8413	OH2	TAW	W	231	14.461	49.789		1.00 21.18	W
	ATOM	8414	OH2	WAT	W	232	49.677	73.603	-21.812	1.00 20.74	W
	ATOM	8415	OH2	WAT	W	233	48.689	44.397		1.00 23.27	W
50	ATOM	8416	OH2	WAT	W	234	61.411		-39.605	1.00 20.10	W
	ATOM	8417		WAT			22.867		-30.351	1.00 27.37	M
	ATOM	8418	OH2	WAT	W	236	43.608		-38.512	1.00 22.55	M
	ATOM	8419	OH2	WAT	W	237	35.757	77.729		1.00 14.57	W
	ATOM	8420		WAT			24.900	68.466		1.00 17.96	
55	ATOM	8421	OH2	WAT	W	239	68.063	49.283	-1.100	1.00 22.72	M

		ATOM	8422	QH2	WAT	W	240	54.299	48.026	15.591	1.00 25	.88	W
		ATOM	8423	OH2	WAT	W	241	55.049	50.600	16.690	1.00 28	.67	W
		ATOM	8424	OH2	TAW	W	242	39.361	48.842	-32.770	1.00 25	.18	W
		ATOM	8425	OH2	WAT	W	243	22.699	45.380	-13.467	1.00 21	.72	W
	5	ATOM	8426	OH2	WAT	W	244	67.040	55.442	0.924	1.00 15	.31	W
		ATOM	8427	OH2	WAT	W	245	47.931	44.056	-8.657	1.00 22	.96	W
		ATOM	8428	OH2	WAT	W	246	26.926	87.957	-23.673	1.00 20	.73	W
		ATOM	8429	OH2	WAT	W	247	18.939	48.658	37.726	1.00 21	.79	W
		ATOM	8430	OH2	WAT	W	248	83.613	67.735	-22.892	1.00 25	.89	W
	10	ATOM	8431	OH2	WAT	W	249	43.080	59.956	-19.011	1.00 22	.21	W
		ATOM	8432	OH2	WAT	W	250	47.447	79.280	-40.381	1.00 21	.91	W
		ATOM	8433	OH2	WAT	W	251	8.610	57.762	-6.870	1.00 27	.88	W
		ATOM	8434	OH2	WAT	W	252	54.864	90.452	-23.484	1.00 28	.07	W
		MOTA	8435	OH2	WAT	W	253	27.829	36.704	-19.683	1.00 24	.79	M
	15	ATOM	8436	OH2	WAT	W	254	72.041	58.809	-11.211	1.00 23	.82	W
		ATOM	8437	OH2	WAT	W	255	34.317	67.941	12.414	1.00 12	.73	W
		ATOM	8438	ОН2	WAT	W	256	11.689	59.501	-4.979	1.00 21	.37	W
		ATOM	8439	OH2	WAT	W	257	23.547	46.199	-15.862	1.00 24	.69	W
1		ATOM	8440	OH2	WAT	W	258	50.148	70.938	-17.614	1.00 19	.04	W
	20	MOTA	8441	OH2	WAT	W	259	45.026	90.336	-25.359	1.00 23	.05	W
		ATOM	8442	OH2	WAT	W	260	16.051	72.410	-19.141	1.00 18	.99	W
		ATOM	8443	OH2	WAT	W	261	20.057	52.682	-24.371	1.00 18	.41	W
		ATOM	8444	OH2	WAT	W	262	59.525	76.638	-8.915	1.00 20	.35	W
		ATOM	8445	OH2	WAT	W	263	67.003	60.112	-27.213	1.00 21	.44	W
	25	ATOM	8446	OH2	WAT	W	264	38.567	51.573	-29.906	1.00 19	.02	W
		ATOM	8447	OH2	WAT	W	265	40.324	83.008	-10.715	1.00 18	.13	W
		ATOM	8448	OH2	WAT	W	266	42.243	48.804	31.283	1.00 18	.64	M
		MOTA	8449	OH2	WAT	W	267	24.084	53.092	-6.116	1.00 17	.16	W
		ATOM	8450	OH2	WAT	W	268	53.144	47.239	-24.933	1.00 20	.15	W
	30	ATOM	8451	OH2	WAT	W	269	32.591	89.326	-43.014	1.00 25	.83	W
		ATOM	8452	OH2	WAT	W	270	35.918	36.131	-4.652	1.00 19	.94	M
		ATOM	8453	OH2	WAT	W	271	70.097	83.236	-29.819	1.00 25	.99	W
		ATOM	8454	OH2	WAT	W	272	49.672	82.609	-43.732	1.00 22	.21	W
		ATOM	8455	OH2	WAT	W	273	68.303	79.781	-34.802	1.00 25		W
	35	ATOM	8456	OH2	WAT	W	274	29.275	46.925	37.053	1.00 24		W
		ATOM	8457	OH2	WAT	W	275	18.487	70.059	4.190	1.00 14		W
		MOTA	8458	OH2	WAT	M	276	14.136	68.374	-7.960	1.00 20		W
		ATOM	8459	OH2	WAT	W	277	50.303	72.617	9.138	1.00 33		M
		ATOM	8460		WAT			39.685		-40.177	1.00 20		M
	40	ATOM	8461	OH2	WAT	W	279	28.798		19.691	1.00 15		M
		MOTA	8462		WAT			11.686	58.802	7.875	1.00 22		W
		ATOM	8463	OH2	WAT	W	281	52.678	79.065	-17.312	1.00 23		W
		MOTA	8464		WAT			18.551		-27.061	1.00 24		M
		ATOM	8465		WAT			44.655		-33.163	1.00 23		M
	45	ATOM	8466	OH2	WAT	W	284	36.141	81.260	6.293	1.00 20		M
		ATOM	8467	OH2	TAW	W	285	16.704		-28.283	1.00 26		W
		MOTA	8468	OH2	WAT	W	286	29.546		-17.987	1.00 29		W
		ATOM	8469		WAT			8.873	55.123	-6.136	1.00 25		M
		MOTA	8470		WAT			46.657		-25.940	1.00 21		W
	50	MOTA	8471	OH2	WAT	M	289	42.933		-10.072	1.00 30		M
		MOTA	8472		WAT			10.304	50.828	18.854	1.00 22		W
		MOTA	8473		WAT			12.803	42.588		1.00 17		W
		MOTA	8474		WAT			35.953	45.284	30.852	1.00 21		W
		MOTA	8475		WAT			15.695		-11.773	1.00 28		W
	55	MOTA	8476	OH2	WAT	W	294	25.241	46.933	-20.851	1.00 26	.50	W

	ATOM	8477	OH2	WAT	M	295		6.985	65.09			25.11	W
	ATOM	8478		WAT			3	8.666		0 -42.035		24.62	W
	MOTA	8479		WAT			3	4.710		3 -34.933		22.62	W
	ATOM	8480		WAT			3	2.944	41.33	1 -17.505		26.13	W
5	MOTA	8481	OH2	WAT	W	299	2	0.657	42.76	8 -7.509		21.95	W
	MOTA	8482	OH2				1	9.155	76.98			38.11	W
	ATOM	8483	OH2	WAT	W	301	4	3.373	80.84	0 4.965		24.73	W
	MOTA	8484	OH2	WAT	W	302	3	32.881	85.48			21.36	W
	MOTA	8485	OH2	WAT	W	303	3	31.104	33.60			24.21	W
10	MOTA	8486	OH2	WAT	W	304		1.396	78.74			21.96	W
	MOTA	8487	OH2	WAT	W	305	5	5.254	59.21			21.45	W
	ATOM	8488	OH2	WAT	W	306	1	3.447		5 -19.982		20.72	W
	ATOM	8489	OH2	WAT	W	307	1	6.955	51.04	2 -19.284		29.66	W
	ATOM	8490	OH2	WAT	W	308	1	4.307		6 -12.146		18.26	W
15	MOTA	8491	OH2	WAT	W	309	5	3.317	86.99	4 -21.280		26.84	W
	MOTA	8492	OH2	WAT	W	310	7	0.858	49.58	8 -0.140		24.53	W
	MOTA	8493	OH2	WAT	W	311	5	7.961	42.56			26.85	W
	ATOM	8494	OH2	WAT	W	312	7	4.694		2 -14.248	1.00	29.16	W
	ATOM	8495	OH2	WAT	W	313	2	4.860	83.24	4 -16.897	1.00	20.51	W
20	MOTA	8496	OH2	WAT	W	314	5	6.992	67.91	8 -35.378	1.00	23.70	W
	MOTA	8497	OH2	WAT	W	315	4	8.877	50.82	3 -29.576	1.00	27.22	W
	ATOM	8498	OH2	WAT	W	316	6	6.517	71.81	1 -6.772		20.99	W
	ATOM	8499	OH2	WAT	W	317	2	8.748	93.97	6 -38.371		26.19	W
	ATOM	8500	OH2	WAT	W	318	3	32.645	64.84	3 -10.052	1.00	16.14	W
25	MOTA	8501	OH2	WAT	W	319	1	3.378	51.12	8 -1.741		26.12	W
	MOTA	8502	OH2	WAT	W	320	3	39.215	49.39	8 30.134	1.00	22.80	W
	MOTA	8503	OH2	WAT	W	321	6	7.798	58.79	8 -23.988	1.00	20.43	W
	MOTA	8504	OH2	WAT	W	322	2	20.725	59.17	1 -34.517	1.00	19.35	W
	MOTA	8505	OH2	WAT	W	323	3	37.620	75.87	6 -42.374	1.00	22.17	W
30	ATOM	8506	OH2	WAT	W	324	3	31.748	51.40	2 -35.453	1.00	25.15	W
	ATOM	8507	OH2	WAT	W	325	1	3.024	71.44		1.00	29.86	W
	MOTA	8508	OH2	WAT	W	326	3	36.937	41.11	6 -24.855	1.00	27.46	W
	ATOM	8509	OH2	WAT	W	327	1	.9.245	42.68	6 -2.510		29.66	W
	MOTA	8510	OH2	WAT	W	328	4	19.929	44.23	0 7.118	1.00	23.60	W
35	MOTA	8511	OH2	WAT	W	329	3	37.331	45.56	0 -25.526	1.00	26.02	W
	MOTA	8512	OH2	WAT	W	330	7	5.334	74.27	6 -19.598	1.00	24.04	W
	ATOM	8513	OH2	WAT	W	331	5	0.302	61.34	3 -31.180		20.21	W
	MOTA	8514	OH2	WAT	W	332	4	2.966		3 -31.510	1.00	28.63	W
	MOTA	8515	OH2	WAT	W	333	1	.3.218	68.99			23.46	W
40	MOTA	8516	OH2	WAT	W	334	4	10.987	83.07	4 -31.356		27.25	W
	ATOM	8517	OH2	WAT	W	335	2	26.940	52.51			28.73	W
	ATOM	8518	OH2	WAT	W	336	1	2.531	66.52	4 -9.404	1.00	21.80	M
	ATOM	8519	OH2	WAT	W	337	4	12.599	39.44	4 -15.832	1.00	27.01	M
	MOTA	8520	OH2	WAT	W	338	4	18.048	48.44	1 16.333	1.00	19.47	W
45	ATOM	8521	OH2	WAT	W	339	1	1.378	46.85	4 17.807	1.00	30.09	W
	ATOM	8522	OH2	WAT	W	340	1	6.441	67.94	7 -19.971	1.00	21.87	W
	MOTA	8523		WAT				5.169	52.97	6 -6.017	1.00	34.52	W
	ATOM	8524	OH2	WAT	W	342	5	66.366	91.39	4 -25.691	1.00	22.25	W
	ATOM	8525		WAT				39.138	83.53	6 -27.276	1.00	21.07	W
50	ATOM	8526		WAT				50.932	57.02		1.00	33.10	W
_ •	ATOM	8527		WAT				3.476	51.60		1.00	23.52	W
	ATOM	8528		WAT				13.478		9 -37.697		26.37	W
	ATOM	8529		WAT				28.012	35.39			24.58	M
	ATOM	8530		WAT				30.215		6 -21.465		25.69	W
55	ATOM	8531		WAT				51.571	45.25			32.98	W
							_						

	7) TPOM	8532	0113	WAT	Tall	350	21.425	16 768	-17.469	1.00	30 25	W
	ATOM ATOM	8533		WAT			47.390	-	-20.194		22.19	W
	ATOM	8534		WAT			21.553		-30.890	1.00		W
	ATOM	8535		WAT			33.014	67.065		1.00		W
5	ATOM	8536		WAT			14.654		-14.551		20.03	W
9	ATOM	8537		WAT			50.342		-25.133	1.00		W
	ATOM	8538		WAT			41.982		-23.663	1.00		W
	ATOM	8539		WAT		357	39.987	45.435	25.472		27.22	W
	ATOM	8540		WAT		358	50.966	76.620			25.22	W
10	ATOM	8541		WAT		359	38.560		-33.596	1.00		W
10	ATOM	8542		WAT			61.497		-28.826	1.00		W
	ATOM	8543		WAT			53.745	46.872		1.00		W
	ATOM	8544		WAT			57.002		-20.162	1.00		W
	ATOM	8545		WAT			67.620		-18.283		25.83	W
15	ATOM	8546		WAT			42.433		-31.603		35.61	W
	ATOM	8547		WAT			29.079		-39.782		28.70	W
	ATOM	8548		WAT		366	26.835	61.857	10.737		29.62	W
	ATOM	8549		WAT		367	45.820	45.105	22.830	1.00	32.71	W
	ATOM	8550		WAT			35.144	51.275		1.00	30.60	W
20	ATOM	8551		WAT			57.657	62.439			30.02	W
	ATOM	8552		WAT			25.335	33.634	13.186		24.09	W
	ATOM	8553		WAT			27.668	59.493	8.703	1.00		W
	MOTA	8554		WAT			42.896		-30.168	1.00	42.53	W
	ATOM	8555		WAT			13.858	58.126	-1.438	1.00	27.82	W
25	MOTA	8556	OH2	WAT	W	374	49.215	76.579	5.508	1.00	27.65	W
	ATOM	8557		WAT			27.926	67.675	28.190	1.00	26.72	W
	MOTA	8558	OH2	TAW	W	376	41.928	39.313	16.708	1.00	34.69	W
	ATOM	8559	он2	WAT	W	377	58.774	46.538	-1.484	1.00	18.42	W
	MOTA	8560	OH2	WAT	W	378	73.332	76.951	-18.539		31.21	W
30	ATOM	8561	OH2	WAT	W	379	19.667	39.457	17.556		20.16	W
	ATOM	8562	OH2	WAT	W	380	39.703	59.128	-18.068	1.00	17.51	W
	MOTA	8563	OH2	WAT	W	381	28.065		-31.490	1.00	27.85	W
	ATOM	8564	OH2	WAT	W	382	68.593	47.077	-16.564		25.08	W
	MOTA	8565	OH2	WAT	W	383	66.499		-13.279	1.00		W
35	MOTA	8566	OH2	WAT	W	384	26.536	75.252	2.031	1.00		W
	MOTA	8567	OH2	TAW	W	385	39.980	39.135	9.175		29.93	W
	ATOM	8568		WAT		386	21.531	47.191	39.117	1.00		W
	MOTA	8569		WAT		387	42.190		-41.376	1.00		W
40	MOTA	8570		WAT			14.674	55.669		1.00		W
40	MOTA	8571		WAT			28.615		-39.093	1.00		W
	MOTA	8572		WAT			39.193	43.075			29.86	W
	ATOM	8573		WAT			16.422		-22.476		34.66	W
	MOTA	8574		TAW			27.247	35.033			28.11	M
45	ATOM	8575		TAW			17.206	80.910			30.36	M.
45	MOTA	8576		WAT			48.207	41.926			28.31	W
	ATOM	8577		TAW			73.428		-11.339		36.34	W
	MOTA	8578		WAT			58.697		-22.198		22.68	W
	MOTA	8579		WAT			47.595		-18.600		24.41	W
Ε0	ATOM	8580		TAW			40.846		-37.242		26.13	W
50	ATOM	8581		TAW			61.087	63.855			28.95	W
	ATOM	8582		WAT			59.255		-15.381		33.77	W
	ATOM	8583		TAW			21.106		17.584		37.08	W
	ATOM	8584		WAT			46.149		-43.888		30.85	W
EE	ATOM	8585		WAT			21.596		-19.077		33.24 27.53	W W
55	ATOM	8586	OH2	TAW	W	404	20.559	00.440	22.185	1.00	21.33	W

	ATOM	8587	OH2	WAT	W	405	45.436	70.103	-18.246	1.00 28.94	W
	ATOM	8588	OH2	WAT	W	406	17.493	70.844	6.619	1.00 35.50	W
	ATOM	8589	OH2	WAT	W	407	51.184	52.976	-28.552	1.00 26.56	W
	ATOM	8590	OH2	WAT	W	408	19.132	83.539	-25.709	1.00 32.11	W
5	ATOM	8591	OH2	WAT	W	409	40.020	86.351	-21.792	1.00 26.97	M
	ATOM	8592	OH2	WAT	W	410	22.565	66.347	29.045	1.00 35.45	W
	ATOM	8593	OH2	WAT	W	411	24.909	59.408	-36.350	1.00 33.36	W
	ATOM	8594	OH2	WAT	W	412	58.513	34.945	-5.934	1.00 31.42	W
	MOTA	8595	OH2	WAT	W	413	50.569	79.331	-15.684	1.00 27.02	W
10	ATOM	8596	OH2	WAT	W	414	17.529	68.704	24.307	1.00 44.71	W
	ATOM	8597	OH2	WAT	W	415	56.496	93.001	-29.377	1.00 26.99	W
	ATOM	8598	OH2	WAT	W	416	52.554	73.396	4.320	1.00 35.30	W
	ATOM	8599	OH2	WAT	W	417	21.928	36.838	0.097	1.00 26.39	W
	MOTA	8600	он2	WAT	W	418	40.066	79.962	-28.061	1.00 30.33	W
15	ATOM	8601	OH2	WAT	W	419	10.502	77.343	-5.022	1.00 32.53	W
	ATOM	8602	OH2	WAT	W	420	26.186	64.608	8.450	1.00 14.74	W
	ATOM	8603	OH2	WAT	W	421	72.878		-21.052	1.00 28.29	W
	MOTA	8604	OH2	WAT	W	422	79.844	74.115	-17.720	1.00 34.35	W
	ATOM	8605	OH2	WAT	W	423	66.750	74.589	-4.406	1.00 29.82	W
20	MOTA	8606	OH2	WAT	W	424	48.124	64.413	-28.378	1.00 28.57	W
	ATOM	8607	OH2	WAT	W	425	42.583	39.574	-1.485	1.00 33.08	W
	MOTA	8608	OH2	WAT	W	426	63.043	67.969	-31.856	1.00 31.53	W
	MOTA	8609		TAW			24.135	42.133	-14.640	1.00 26.73	W
	MOTA	8610		WAT			27.597	50.981	13.326	1.00 22.07	W
25	ATOM	8611		WAT			38.642		-39.756	1.00 27.77	W
	MOTA	8612		WAT			76.638		-26.811	1.00 31.44	W
	MOTA	8613		WAT			28.844	72.533	22.350	1.00 24.75	W
	MOTA	8614	OH2	WAT	W	432	20.733		-35.819	1.00 32.46	W
	MOTA	8615		WAT			24.102	57.306	38.832	1.00 32.79	W
30	ATOM	8616		TAW			38.103		-10.508	1.00 52.88	W
	MOTA	8617		WAT			23.463		-40.699	1.00 25.30	W
	MOTA	8618		WAT			17.159		-26.028	1.00 32.43	W
	ATOM	8619				437	66.940		-22.088	1.00 39.61	W
0.5	MOTA	8620		WAT			52.706		-28.075	1.00 53.96	W
35	MOTA	8621		WAT			20.674	68.515	8.679	1.00 31.64	W
	MOTA	8622		TAW			61.511		-30.897	1.00 35.45	W
	MOTA	8623		WAT			9.843	60.222	6.745	1.00 31.89	W
	ATOM	8624		WAT			31.554		-19.875	1.00 28.33	W
40	ATOM	8625		WAT			28.136		-41.587	1.00 32.96	W
40	ATOM	8626		TAW			44.810		-30.419	1.00 22.80	W
	ATOM	8627		WAT			59.422		-34.536	1.00 27.17	W
	ATOM	8628		TAW			70.306		-12.670	1.00 30.28 1.00 38.72	W W
	ATOM	8629		TAW			46.148	46.108	16.196		W
45	ATOM	8630		WAT			46.024		-25.271	1.00 30.80	W
45	MOTA	8631		TAW			56.891		-19.945	1.00 30.66	W
	ATOM	8632		TAW			73.703	74.266	-5.840	1.00 24.67	W
	MOTA	8633		WAT			19.765	43.348	33.805	1.00 26.93	
	ATOM	8634		TAW			79.355	51.266	-0.720	1.00 22.05 1.00 33.03	W W
Ε0	ATOM	8635		TAW			65.936	45.515	-3.341		
50	ATOM	8636		WAT			48.270	78.072	-9.661	1.00 26.82 1.00 31.61	W
	ATOM	8637		WAT			30.106	34.247	-1.347		W W
•	ATOM	8638		WAT			16.244		-24.092	1.00 37.53 1.00 43.47	W
	ATOM	8639		WAT			17.587	39.584	35.892	1.00 43.47	W
EE	ATOM	8640		WAT			22.585	31.274	29.286	1.00 34.33	W
55	MOTA	8641	OH2	WAT	W	459	33.432	84.505	-18.281	1.00 10.32	VV

	ATOM	8642		WAT			41.293		-39.456		30.13	W
	ATOM	8643		WAT			44.216		-27.693		29.54	W
	ATOM	8644		WAT			30.848	57.443	4.499		24.35	W
_	ATOM	8645		WAT			65.858	66.382	-0.390		23.54	W
5	ATOM	8646		WAT			46.496	68.686	26.430		34.50	W
	ATOM	8647		WAT			70.058		-20.503		32.36	W
	MOTA	8648		WAT			23.603		-25.989		36.74	W
	ATOM	8649		WAT		467	25.313	71.229	22.334		35.00	W
	ATOM	8650		WAT			13.930	69.551	26.567		25.16	W
10	ATOM	8651	OH2	WAT	W	469	62.150		-19.141		29.07	W
	MOTA	8652	OH2	WAT	W	470	27.702	47.846	45.920		36.32	W
	MOTA	8653	OH2	WAT	W	471	24.849	34.267	0.227		38.79	W
	MOTA	8654	OH2	WAT	W	472	57.544	69.087	13.346		41.68	W
	MOTA	8655	OH2	WAT	W	473	7.918	47.992	11.814		26.20	W
15	MOTA	8656	OH2	WAT	W	474	71.374	59.946	0.845		32.73	W
	ATOM	8657	OH2	WAT	W	475	67.611	88.261	-23.317	1.00	26.99	W
	ATOM	8658	OH2	WAT	W	476	12.265	75.299	-13.600	1.00	38.45	W
	ATOM	8659	OH2	WAT	W	477	28.053	52.171	42.293	1.00	30.60	W
	ATOM	8660	OH2	WAT	W	478	22.099	62.997	33.586	1.00	29.07	W
20	ATOM	8661	OH2	WAT	W	479	59.364	67.033	-26.345	1.00	55.26	W
	MOTA	8662	OH2	WAT	W	480	34.109	87.415	-10.585	1.00	34.81	W
	ATOM	8663	OH2	WAT	W	481	30.244	36.564	29.055	1.00	26.04	W
	ATOM	8664	OH2	WAT	W	482	8.622	49.766	5.623	1.00	39.99	W
	MOTA	8665	OH2	TAW	W	483	41.947	67.496	29.311	1.00	29.88	W
25	ATOM	8666	OH2	WAT	W	484	72.522	75.947	-27.187	1.00	34.08	W
	ATOM	8667	OH2	TAW	W	485	8.810	44.612	12.806	1.00	30.32	W
	MOTA	8668	OH2	WAT	W	486	71.081	43.226	-15.424	1.00	37.75	W
	ATOM	8669	OH2	WAT	W	487	41.603	44.813	-24.389	1.00	26.97	W
	MOTA	8670	OH2	WAT	W	488	39.942	66.979	31.389	1.00	33.16	W
30	MOTA	8671		WAT			53.330	52.741	26.220	1.00	30.83	W
	ATOM	8672		WAT			26.012	44.653	-26.984	1.00	30.08	M
	ATOM	8673		WAT			19.614	52.647	-27.178	1.00	30.06	W
	ATOM	8674		WAT			71.069	95.514	-34.992	1.00	35.85	W
	ATOM	8675		WAT			47.995	64.623	-25.770	1.00	28.47	M
35	ATOM	8676	OH2	WAT	W	494	44.647	64.565	-35.193	1.00	43.57	W
	ATOM	8677		WAT			17.869	53.128	35.601	1.00	33.86	W
	ATOM	8678		WAT			83.555	70.250	-20.339	1.00	26.44	W
	ATOM	8679		WAT		497	43.886		-42.675	1.00	33.33	W
	ATOM	8680		WAT			22.649	62.755	16.163	1.00	30.46	W
40	ATOM	8681		WAT			45.787		-8.060	1.00	26.37	W
10	ATOM	8682		WAT			26.612	88.201	-4.086		36.66	W
	ATOM	8683		WAT			38.568		-22.285	1.00	35.38	W
	ATOM	8684		WAT			36.970	29.325	12.903		40.61	W
	ATOM	8685		WAT			20.373	65.690	27.143		29.98	W
45	ATOM	8686		WAT			6.788	59.476	2.793		39.82	W
10	ATOM	8687		WAT			61.162		-12.985		26.24	W
	ATOM	8688		WAT			28.083	49.302	38.517		29.75	W
	MOTA	8689		WAT			29.143		-25.689		30.45	W
	ATOM	8690		WAT			19.441	67.572			31.10	W
50	ATOM	8691		WAT			43.421	41.867			25.84	W
50	ATOM	8692		WAT			48.778		-22.650		24.48	W
	ATOM	8693		WAT			26.304	81.967	-3.669		59.92	W
		8694		WAT			35.823		-16.238		34.57	W
	ATOM ATOM	8694 8695		WAT			58.609		22.182		21.16	W
55							53.978	45.768	4.798		38.64	W
55	ATOM	8696	OH2	WAT	W	514	JJ.710	43.700	4.170	1.00	50.04	**

								1 00 06 50	
		MOTA	8697	OH2 WAT		46.492	80.496 -42.683	1.00 36.59	W
		ATOM	8698	OH2 WAT		71.760	84.670 -19.901	1.00 26.72	W
		MOTA	8699	OH2 WAT	W 517	61.084	67.579 -36.593	1.00 31.75	W
		ATOM	8700	OH2 WAT	W 518	38.336	31.513 16.723	1.00 46.16	W
	5	ATOM	8701	OH2 WAT	W 519	58.345	34.917 -12.173	1.00 32.99	W
		MOTA	8702	OH2 WAT	W 520	21.043	79.711 -23.638	1.00 26.06	W
		ATOM	8703	OH2 WAT	W 521	51.272	71.528 -20.158	1.00 20.05	W
		ATOM	8704	OH2 WAT	W 522	32.016	85.400 -8.674	1.00 29.42	W
		ATOM	8705	OH2 WAT		21.535	29.268 27.784	1.00 34.66	W
	10	ATOM	8706	OH2 WAT		21.912	87.705 -6.947	1.00 46.50	W
	-0	ATOM	8707	OH2 WAT		31.620	57.576 37.407	1.00 24.48	W
		ATOM	8708	OH2 WAT		17.389	81.606 -17.144	1.00 43.70	W
		ATOM	8709	OH2 WAT		51.987	59.263 6.165	1.00 56.07	W
		ATOM	8710	OH2 WAT		22.039	80.414 -35.965	1.00 28.87	W
	15	ATOM	8711	OH2 WAT		25.523	74.218 8.623	1.00 19.22	W
	10	ATOM	8712	OH2 WAT		21.682	80.087 5.339	1.00 34.53	W
		ATOM	8713	OH2 WAT		48.616	94.265 -37.235	1.00 43.59	W
			8714	OH2 WAT		39.857	38.874 -3.549	1.00 43.33	W
		ATOM				39.693	96.380 -28.089	1.00 31.20	W
	20	ATOM	8715	OH2 WAT			35.085 -15.806	1.00 33.87	W
Ę	20	ATOM	8716	OH2 WAT		36.699 34.981	45.880 33.336	1.00 33.87	W
ı,İ		MOTA	8717					1.00 17.38	W
m		ATOM	8718	OH2 WAT		55.752			W
1974 1974		ATOM	8719	OH2 WAT		69.964	62.216 -0.087	1.00 33.47	
i.	25	ATOM	8720	OH2 WAT		46.113	74.500 22.679	1.00 31.71	W
# 5,0	25	MOTA	8721	OH2 WAT		48.482	46.071 -23.200	1.00 33.97	W
110		ATOM	8722	OH2 WAT		60.421	92.222 -28.586	1.00 34.39	W
į, į		ATOM	8723	OH2 WAT		37.644	62.372 35.379	1.00 36.29	W
2 }		MOTA	8724	OH2 WAT		29.209	63.265 -37.460	1.00 56.13	W
	20	ATOM	8725	OH2 WAT		61.264	48.115 -31.707	1.00 49.40	W
S	30	MOTA	8726	OH2 WAT		61.974	83.566 -38.096	1.00 31.08	W
ių.		ATOM	8727	OH2 WAT		62.940	42.943 -20.920	1.00 27.15	W
į.		ATOM	8728	OH2 WAT		53.465	44.416 22.714	1.00 34.54	W
		ATOM	8729	OH2 WAT		30.815	34.793 -9.434	1.00 36.45	W
	25	ATOM	8730	OH2 WAT		29.471	31.641 21.751	1.00 34.56	W
1.2	35	MOTA	8731	OH2 WAT		78.607	69.017 -12.205	1.00 28.49	W
		MOTA	8732	OH2 WAT		31.429	69.250 -45.559	1.00 34.20	W
		ATOM	8733	OH2 WAT		73.435	82.540 -21.336	1.00 27.02	W
		MOTA	8734	OH2 WAT		47.327	71.323 -23.894	1.00 41.40	W
	40	ATOM	8735	OH2 WAT		20.476	37.997 12.047	1.00 29.83	W
	4 0	MOTA	8736	OH2 WAT		35.058	95.246 -32.227	1.00 34.09	W
		MOTA	8737	OH2 WAT		17.108	41.547 9.120	1.00 36.08	W
		MOTA	8738	OH2 WAT		20.640	80.355 -33.668	1.00 40.07	W
		MOTA	8739	OH2 WAT		49.088	92.026 -24.040	1.00 33.71	W
		ATOM	8740	OH2 WAT		43.763	44.871 19.288	1.00 34.59	W
	45	ATOM	8741	OH2 WAT		21.204	35.660 -5.134	1.00 32.08	W
		MOTA	8742	OH2 WAT	w 560	65.009	88.087 -24.210	1.00 29.80	W
		MOTA	8743	OH2 WAT		46.916	53.996 -21.422	1.00 33.60	W
		MOTA	8744	OH2 WAT		71.404	63.255 -27.114	1.00 40.61	M
		ATOM	8745	OH2 WAT		20.015	35.616 25.763	1.00 30.97	W
	50	MOTA	8746	OH2 WAT	V 564	59.355	87.240 -45.689	1.00 37.04	W
		MOTA	8747	OH2 WAT	₩ 565	51.864	34.258 -7.762	1.00 49.22	W
		MOTA	8748	OH2 WAT	v 566	56.208	79.437 -15.027	1.00 37.82	W
		MOTA	8749	OH2 WAT		28.902	70.034 -39.462	1.00 28.91	W
		ATOM	8750	OH2 WAT	v 568	45.154	83.397 -43.261	1.00 42.35	W
	55	MOTA	8751	OH2 WAT	N 569	29.727	81.729 -42.805	1.00 41.68	W

											21 61	
	ATOM	8752		WAT			28.533		-42.604		31.64	W
	ATOM	8753		WAT			19.677		-28.486		44.44	W
	ATOM	8754		WAT			37.852		-30.634		44.72	W
_	ATOM	8755		WAT			40.615		-31.597		42.55	M
5	ATOM	8756		WAT			21.022	41.654	35.102		36.46	W
	ATOM	8757		WAT			39.353	30.564	13.190		48.83	W
	MOTA	8758		WAT			62.189		-23.040		32.28	W
	ATOM	8759		WAT			31.076	68.489	14.056		15.60	W
40	ATOM	8760		WAT			28.012	67.450	33.693		40.99	W
10	MOTA	8761		TAW			14.920		-25.823		25.17	W
	ATOM	8762		WAT			29.779	72.346	12.292		14.98	W
	ATOM	8763		WAT			61.161		-38.580		45.25	W
	ATOM	8764		TAW			59.322	62.288	25.727		29.38	W
4-	MOTA	8765		WAT			51.208	79.524	-1.693		29.35	W
15	ATOM	8766		WAT			21.375	60.546	26.774		52.30	W
	ATOM	8767		WAT			59.422		-35.103		27.02	W
	ATOM	8768		WAT			24.246	60.834	35.994		32.50	W
	MOTA	8769		WAT			11.430	62.017	0.147		40.24	W
•	ATOM	8770		WAT			55.140		-19.320		24.62	W
20	ATOM	8771		WAT		589	16.965		-28.649		38.99	W
	MOTA	8772		WAT			40.708		-21.403		30.96	W
	MOTA	8773		WAT			28.184		-46.105		47.34	W
	MOTA	8774		WAT			40.001	35.508	11.320		23.27	W
	ATOM	8775		WAT			19.051		-11.861		31.12	W
25	MOTA	8776		WAT			64.968	80.063	-8.839		41.14	W
	MOTA	8777		WAT		595	72.984		-12.198		34.73	W
	MOTA	8778		WAT		596	12.889		-19.207		37.16	W
	MOTA	8779		WAT			57.083	75.724	-2.830		31.22	W
••	MOTA	8780		WAT			20.946	58.561	37.844		38.60	W
30	MOTA	8781		WAT			50.726	77.525	2.133		40.85	W
	MOTA	8782		WAT			28.394	45.572	40.705		44.08	W
	MOTA	8783		WAT		601	23.052	36.982	13.354		27.57	W
	MOTA	8784		WAT		602	33.276		-19.126		45.50	M
0.5	MOTA	8785		WAT		603	33.717		-15.061		49.24	W
35	MOTA	8786		WAT			29.452		-26.113		14.64	W
	ATOM	8787		TAW		605	37.094	33.825	5.788		36.96	W
	MOTA	8788		WAT			71.840		-18.101		33.45	W
	MOTA	8789		WAT			34.316		-44.856		35.57	W
40	MOTA	8790		WAT			64.261	77.372	0.343		41.73	W
40	ATOM	8791		TAW			35.766				61.84	W
	MOTA	8792		TAW			30.712	51.359			41.26	W
	MOTA	8793		WAT			54.267		-13.818		54.40	W
	ATOM	8794		TAW			21.028		46.901		38.62	W
4 -	ATOM	8795		WAT			14.508	50.708			32.56	W
45	MOTA	8796		WAT			25.322		-32.996		42.32	W
	MOTA	8797		WAT			73.153		-29.195		42.43	W
	ATOM	8798		WAT			55.707	38.604	0.984		44.24	W
	ATOM	8799		TAW			37.463	84.235	4.510		42.83	W
F0	MOTA	8800		WAT			45.682	55.261	10.267		45.85	W
50	ATOM	8801		WAT			67.043		-11.165		31.78	W
	ATOM	8802		WAT			40.544		-19.559		47.91	W
	ATOM	8803		TAW			43.777	56.722			27.63	W
	ATOM	8804		WAT			56.281		-30.462		48.83	W
	ATOM	8805		WAT			63.571	57.555			41.71	W
55	ATOM	8806	OH2	WAT	W	624	62.158	48.421	-20.935	1.00	38.60	W

	ATOM	8807		WAT			62.877		-22.146	1.00 60.99	W
	ATOM	8808		WAT			39.812	77.874	13.633	1.00 45.54	W
	ATOM	8809		WAT		627	26.711		-27.596	1.00 30.68	W
_	MOTA	8810		WAT			13.505	70.317	-9.667	1.00 32.85	W
5	ATOM	8811		WAT		629	60.642		-41.474	1.00 27.69	W
	MOTA	8812				630	39.181	43.469	26.620	1.00 39.36	W
	ATOM	8813		WAT			11.991	71.039	2.437	1.00 33.17	W
	ATOM	8814				632	36.447		-38.362	1.00 30.08	W
	MOTA	8815		WAT			75.969		-25.278	1.00 45.04	W
10	ATOM	8816		WAT			37.698	80.761	-0.575	1.00 24.24	W
	MOTA	8817		WAT		635	47.369	53.715	35.730	1.00 45.08	W
	MOTA	8818		WAT			48.732		-33.807	1.00 34.63	W
	ATOM	8819		WAT			63.265		-45.725	1.00 38.33	W
	ATOM	8820	OH2	WAT	W	638	60.032	71.956	0.252	1.00 44.76	W
15	MOTA	8821	OH2	WAT	W	639	40.988		-29.350	1.00 45.67	W
	ATOM	8822	OH2	WAT	W	640	55.258		-12.634	1.00 60.28	W
	MOTA	8823	OH2	WAT	W	641	75.283		-22.829	1.00 44.58	W
	MOTA	8824	OH2	TAW	W	642	63.431	52.143	-0.405	1.00 29.19	W
	MOTA	8825	OH2	WAT	W	643	37.172	36.738	19.246	1.00 53.77	W
20	MOTA	8826	OH2	WAT	W	644	57.876	36.061	-2.371	1.00 48.71	W
	MOTA	8827	OH2	WAT	W	645	23.212	48.887	-36.113	1.00 40.06	W
	MOTA	8828	OH2	WAT	W	646	18.060	71.467	-29.825	1.00 43.44	W
	MOTA	8829	OH2	WAT	W	647	30.795	40.421	38.172	1.00 47.17	W
	MOTA	8830	OH2	WAT	W	648	27.612	50.327	23.213	1.00 31.47	W
25	MOTA	8831	OH2	WAT	W	649	30.574	47.809	40.324	1.00 45.57	W
	ATOM	8832	OH2	WAT	W	650	59.939		-30.672	1.00 35.35	W
	MOTA	8833	OH2	WAT	W	651	44.795	40.676	13.160	1.00 33.50	W
	MOTA	8834	OH2	WAT	W	652	34.039	47.923	36.038	1.00 38.29	W
	MOTA	8835	OH2	WAT	W	653	27.160	82.334	3.179	1.00 31.70	W
30	MOTA	8836	OH2	WAT	W	654	58.512	92.375	-42.108	1.00 40.35	W
	ATOM	8837	OH2	WAT	W	655	49.129	52.314	-37.841	1.00 44.78	W
	ATOM	8838	OH2	WAT	W	656	53.318	71.106	-16.915	1.00 25.96	W
	MOTA	8839	OH2	WAT	W	657	57.576	62.821	-15.538	1.00 50.70	W
	ATOM	8840	OH2	WAT	W	658	28.417	44.432	-29.609	1.00 36.13	W
35	ATOM	8841	OH2	WAT	W	659	49.113	49.428	-38.284	1.00 45.00	W
	MOTA	8842	OH2	WAT	W	660	35.586	77.729	-43.101	1.00 33.39	W
	ATOM	8843	OH2	WAT	W	661	9.841	58.788	17.855	1.00 42.14	W
	MOTA	8844	OH2	WAT	W	662	61.026	45.578	-3.773	1.00 34.99	W
	ATOM	8845	OH2	WAT	W	663	65.493	78.967	-5.769	1.00 29.19	W
40	ATOM	8846	OH2	WAT	W	664	7.025	58.334	14.662	1.00 44.10	W
	ATOM	8847		WAT			49.654	50.855	32.514	1.00 30.08	W
	ATOM	8848	OH2	WAT	W	666	18.545	62.489	22.933	1.00 60.50	W
	ATOM	8849	OH2	WAT	W	667	30.379	34.204	21.118	1.00 44.65	W
	ATOM	8850	OH2	WAT	W	668	17.488	45.677	-14.303	1.00 32.55	W
45	ATOM	8851	OH2	WAT	W	669	28.754	55.348	39.968	1.00 33.20	W
	ATOM	8852	OH2	WAT	W	670	50.808	60.080	-8.922	1.00 11.10	W
	ATOM	8853	OH2	WAT	W	671	43.864	63.224	-28.667	1.00 10.75	W
	ATOM	8854	OH2	WAT	W	672	38.132	82.008	-31.368	1.00 15.05	W
	ATOM	8855		WAT			32.332	39.227	-4.953	1.00 11.43	W
50	ATOM	8856		WAT			60.350		-18.141	1.00 13.21	W
	ATOM	8857		WAT			63.171	58.710	-1.441	1.00 12.30	W
	ATOM	8858		WAT			60.719	61.106	-3.556	1.00 11.61	W
	ATOM	8859		WAT			46.645	74.659		1.00 13.33	W
	ATOM	8860		WAT			54.976	57.679	-0.489	1.00 13.83	W
55	ATOM	8861		WAT			30.171		-29.268	1.00 12.68	W
		2301					· -			_	

	ATOM	8862	OH2	WAT	W	680	9	58.910	56.848	-1.463		12.78	W
	MOTA	8863	OH2	WAT	W	681		58.707	52.780	-0.068		16.81	W
	ATOM	8864	OH2	WAT	W	682	(63.035	61.198	-4.943		15.69	W
	MOTA	8865		WAT			- 2	27.871	48.752	12.133		14.85	W
5	ATOM	8866	OH2	WAT	W	684	(66.593		-20.257		17.09	W
	ATOM	8867	OH2	WAT	W	685		19.823	46.911	-14.372		18.34	W
	MOTA	8868	OH2	WAT	W	686		38.651		-38.144		18.58	W
	ATOM	8869	OH2	WAT	W	687	:	33.756	60.443	23.244		16.84	W
	MOTA	8870	OH2	WAT	W	688		39.615	55.787	3.023		13.33	W
10	ATOM	8871	OH2	WAT	W	689		24.685	61.650	9.133		15.12	W
	ATOM	8872	OH2	WAT	W	690	-	16.852	57.351	13.005		17.76	W
	ATOM	8873	OH2	TAW	W	691	3	39.357	69.360	-35.452	1.00	16.14	W
	MOTA	8874	OH2	WAT	W	692	4	49.896	67.829	4.102	1.00	22.12	W
	ATOM	8875	OH2	WAT	W	693	2	27.767	53.520	20.006	1.00	16.13	W
15	MOTA	8876	OH2	WAT	W	694	2	29.589	83.211	2.374	1.00	17.47	W
	MOTA	8877	OH2	WAT	W	695	- 2	28.136	91.131	-25.283	1.00	18.51	W
	ATOM	8878	OH2	WAT	W	696	4	46.056	77.858	9.469	1.00	18.58	W
	MOTA	8879	OH2	WAT	W	697	-	12.598	49.461	17.773	1.00	23.12	W
	ATOM	8880	OH2	WAT	W	698	8	81.171	68.689	-11.423	1.00	23.28	W
20	ATOM	8881	OH2	WAT	W	699		41.447	44.917	-6.984	1.00	18.12	W
	ATOM	8882	OH2	WAT	W	700		45.659	67.938	-27.584	1.00	23.36	W
	MOTA	8883		WAT				14.273	50.690	24.204	1.00	20.19	W
	ATOM	8884		WAT				67.431	46.612	-1.390	1.00	27.25	W
	ATOM	8885		WAT				9.075	50.498	8.166	1.00	25.31	W
25	MOTA	8886		TAW		704	4	48.417	40.958	-1.139	1.00	23.15	W
	MOTA	8887		WAT		705		17.999	74.642	3.920	1.00	32.70	W
	ATOM	8888		WAT				44.829		-18.432	1.00	22.53	W
	ATOM	8889		WAT		707		83.508		-15.459	1.00	23.10	W
	ATOM	8890		WAT				48.839		-36.856	1.00	22.09	W
30	MOTA	8891		WAT				51.752		-38.057		23.90	W
	ATOM	8892		WAT				29.658	72.517	34.348		30.12	W
	ATOM	8893		WAT		711		37.525		-32.546		23.53	W
	ATOM	8894		WAT		712		57.377	49.104	21.315		21.68	W
	ATOM	8895		WAT				42.963		-31.428		23.43	W
35	ATOM	8896		WAT		714		31.988	34.471	-3.304		25.07	W
00	MOTA	8897		WAT				37.084		-33.588		24.72	W
	ATOM	8898		WAT				61.591	59.246	14.600		28.80	W
	ATOM	8899		WAT				40.198		-19.000		23.02	W
	ATOM	8900		WAT				47.473		-44.201		50.29	W
40	ATOM	8901		TAW				61.734				16.92	W
10	ATOM	8902		WAT				79.475		-11.448		40.12	W
	ATOM	8903		WAT				37.556		-18.478		21.63	W
	ATOM	8904		WAT				25.699	52.296			19.81	W
	ATOM	8905		WAT				69.562		-28.574		28.25	M
45	ATOM	8906		WAT				72.923		-10.029		26.74	W
40	ATOM	8907		WAT				42.712	56.570			32.14	W
	ATOM	8908		WAT				56.019		-36.093		21.69	W
	ATOM	8909		WAT				17.870	66.389			31.05	W
	ATOM	8910		WAT				11.744		-16.973		25.14	W
50				WAT				35.294		-17.918		29.79	W
50	ATOM	8911		WAT			•	9.739		-20.395		28.25	W
	ATOM	8912						9.739	48.520	-20.393		33.38	W
	ATOM	8913		WAT					57.118	31.023		26.07	W
	ATOM	8914		WAT				40.614		36.413		33.49	W
E =	ATOM	8915		WAT				39.777	53.158			26.70	W
55	MOTA	8916	OH2	WAT	W	134	•	49.845	47.366	28.829	1.00	20.70	VV

		MOTA	8917	OH2 WAT W 735	24.110	34.457 15.334	1.00 29.67	W
		MOTA	8918	OH2 WAT W 736	59.490	51.073 24.831	1.00 29.86	W
		MOTA	8919	OH2 WAT W 737	38.054	83.336 -1.120	1.00 28.89	W
	_	MOTA	8920	OH2 WAT W 738	13.039	51.650 -12.216	1.00 30.21	W
	5	ATOM	8921	OH2 WAT W 739	48.500	50.823 35.082	1.00 34.12	W
		MOTA	8922	OH2 WAT W 740	47.989	41.707 -5.554	1.00 31.61	W
		MOTA	8923	OH2 WAT W 741	22.205	40.959 -11.330	1.00 33.16	W
		MOTA	8924	OH2 WAT W 742	16.134	36.485 16.269	1.00 29.31	W
	4.0	MOTA	8925	OH2 WAT W 743	22.480	68.170 20.286	1.00 24.77	W
	10	MOTA	8926	OH2 WAT W 744	72.049	47.322 -17.960	1.00 29.07	W
		ATOM	8927	OH2 WAT W 745	40.857	85.387 -11.973	1.00 23.51	W
		MOTA	8928	OH2 WAT W 746	56.744	46.789 15.703	1.00 28.26	W
		ATOM	8929	OH2 WAT W 747	51.904	64.105 24.543	1.00 27.18	W
	1 -	MOTA	8930	OH2 WAT W 748	56.575	58.583 1.344	1.00 31.09	W
	15	ATOM	8931	OH2 WAT W 749	57.373	58.561 5.484	1.00 29.43	W
		ATOM	8932	OH2 WAT W 750	75.104	64.410 -16.417	1.00 31.68	W
		ATOM	8933	OH2 WAT W 751	14.670	70.784 -23.138	1.00 25.91	W
1,000		ATOM	8934	OH2 WAT W 752	12.911	52.355 -15.033	1.00 28.96	W
	20	ATOM	8935	OH2 WAT W 753	12.990	62.108 -25.006	1.00 33.01 1.00 32.61	W W
ŧ.I	20	ATOM	8936	OH2 WAT W 754	23.345	87.363 -32.635	1.00 32.61	W
ij		ATOM	8937	OH2 WAT W 755	66.469	81.830 -14.265	1.00 24.46	W
ijŤ		ATOM	8938	OH2 WAT W 756	47.252	61.569 -28.848 71.147 5.890	1.00 30.46	W
		ATOM	8939	OH2 WAT W 757	52.546	71.147 5.890 56.046 -33.215	1.00 33.40	W
	25	ATOM	8940	OH2 WAT W 758 OH2 WAT W 759	41.001 39.617	39.925 19.990	1.00 27.40	W
iŲ.	25	ATOM	8941	OH2 WAT W 760	44.781	55.360 36.095	1.00 31.20	W
(F)		ATOM	8942	OH2 WAT W 761	13.955	62.545 14.561	1.00 30.25	W
		ATOM	8943 8944	OH2 WAT W 762	39.940	39.555 -0.351	1.00 24.55	W
61 20 45		ATOM ATOM	8945	OH2 WAT W 763	32.665	69.642 22.088	1.00 26.34	W
	30	ATOM	8946	OH2 WAT W 764	42.575	43.594 -11.934	1.00 31.73	W
١Ú	50	ATOM	8947	OH2 WAT W 765	26.998	41.795 -27.476	1.00 34.79	W
114		ATOM	8948	OH2 WAT W 766	19.705	41.788 -5.040	1.00 30.18	W
į,.		ATOM	8949	OH2 WAT W 767	13.729	60.851 7.587	1.00 31.12	W
		ATOM	8950	OH2 WAT W 768	46.594	45.832 11.529	1.00 30.71	W
£ <u>1</u>	35	ATOM	8951	OH2 WAT W 769	43.004	68.714 -30.001	1.00 34.08	W
	00	ATOM	8952	OH2 WAT W 770	24.346	54.101 -8.362	1.00 40.20	W
		ATOM	8953	OH2 WAT W 771	47.715	70.196 -16.599	1.00 29.28	W
		ATOM	8954	OH2 WAT W 772	58.821	93.877 -27.444	1.00 33.88	W
		ATOM	8955	OH2 WAT W 773	31.148	79.112 -42.939	1.00 36.00	W
	40	ATOM	8956		22.053	42.741 -13.266	1.00 29.08	W
		ATOM	8957	OH2 WAT W 775	52.877	92.345 -23.218	1.00 28.25	W
		ATOM	8958	OH2 WAT W 776	60.172	51.088 20.144	1.00 37.24	W
		ATOM	8959	OH2 WAT W 777	60.950	56.059 1.983	1.00 32.34	W
		ATOM	8960	OH2 WAT W 778	19.502	58.697 -36.820	1.00 28.69	W
	45	ATOM	8961	OH2 WAT W 779	30.076	50.066 12.361	1.00 66.40	W
		ATOM	8962	OH2 WAT W 780	26.320	66.838 19.785	1.00 20.83	W
		MOTA	8963	OH2 WAT W 781	12.032	41.651 19.833	1.00 27.28	W
		MOTA	8964	OH2 WAT W 782	69.452	77.231 -34.140	1.00 32.70	W
		ATOM	8965	OH2 WAT W 783	16.602	43.039 -2.678	1.00 24.99	W
	50	ATOM	8966	OH2 WAT W 784	35.764	60.018 -37.747	1.00 36.97	W
		ATOM	8967	OH2 WAT W 785	33.876	66.348 -42.439	1.00 39.91	W
		MOTA	8968	OH2 WAT W 786	57.127	36.355 -14.326	1.00 37.67	W
		ATOM	8969	OH2 WAT W 787	37.130	37.609 2.903	1.00 39.84	W
		ATOM	8970	OH2 WAT W 788	51.220	66.924 8.375	1.00 31.06	W
	55	ATOM	8971	OH2 WAT W 789	10.804	51.718 21.423	1.00 33.84	W

							20 270	07.460	15 061	1 00	26.18	W
	ATOM	8972	OH2				30.270		-15.061		31.54	W
	MOTA	8973		WAT			41.988		-17.332		38.63	W
	MOTA	8974	OH2			792	48.606	76.258	8.357			W
_	MOTA	8975		WAT			29.552	75.900	10.796		22.83	
5	MOTA	8976		WAT			42.986		-37.052		36.49	W
	MOTA	8977		TAW			23.446	66.228	9.839		36.96	W
	MOTA	8978	OH2	WAT	W	796	64.807	79.091			32.76	W
	MOTA	8979	OH2	WAT	W	797	43.476	40.507	-22.892		31.16	W
	MOTA	8980	OH2	WAT	W	798	59.402	49.107	2.170		36.25	W
10	MOTA	8981	OH2	WAT	W	799	68.966	41.741	-17.222		33.61	W
	ATOM	8982	OH2	WAT	W	800	24.793	71.941	-39.851	1.00	21.86	W
	ATOM	8983		WAT			23.767	48.580	-24.246	1.00	34.92	W
	ATOM	8984		WAT			46.980	68.168	-24.735	1.00	26.18	W
	ATOM	8985		WAT			53.458	53.195	-29.972	1.00	28.69	W
15	ATOM	8986		WAT			24.862	34.453	35.634	1.00	36.72	W
10	ATOM	8987		WAT			13.428	52.674	25.889	1.00	33.75	W
	ATOM	8988		WAT			51.562	44.638	2.845		28.99	W
		8989		WAT			21.377	55.670			40.73	W
	ATOM			WAT			64.134	70.734			21.34	W
20	ATOM	8990					46.972		-23.163		38.24	W
20	ATOM	8991		TAW				53.174	-7.596		25.72	W
	ATOM	8992		TAW			8.000				30.13	M
	MOTA	8993		WAT			22.177		-42.182		44.49	W
	MOTA	8994		WAT			63.779		-30.505			W
0.5	MOTA	8995		TAW			18.366		-19.763		34.11	W
25	ATOM	8996		TAW			59.401	76.927			31.82	
	ATOM	8997		WAT			21.046		-12.381		30.70	M
	MOTA	8998		WAT			55.643	67.386	13.253		42.99	W
	ATOM	8999		WAT			19.135		-31.528		43.38	W
	MOTA	9000	OH2	WAT	W	818	67.337		-35.938		31.07	W
30	MOTA	9001		WAT			29.637	75.151	22.301		26.35	W
	ATOM	9002	OH2	WAT	W	820	32.750	84.350	0.358		22.00	W
	ATOM	9003	OH2	WAT	W	821	45.598	65.481	-28.648		31.79	W
	MOTA	9004	OH2	WAT	W	822	12.768	62.241	-2.419		31.35	W
	ATOM	9005	OH2	WAT	W	823	25.799	63.445	13.810		32.36	W
35	ATOM	9006	OH2	WAT	W	824	28.556	34.999	32.201		37.91	W
	ATOM	9007	OH2	WAT	W	825	36.020	68.674	23.466	1.00	35.59	W
	ATOM	9008		WAT			31.938	33.896	17.286	1.00	39.46	W
	ATOM	9009		WAT			41.647	84.318	-2.417	1.00	41.96	W
	ATOM	9010		WAT				100.332		1.00	43.82	W
40	ATOM		OH2				28.695	63.602	10.619	1.00	15.02	W
10	ATOM	9012		WAT			54.701		-44.566		41.37	W
	ATOM	9013				831	69.916		-10.485		30.03	W
		9013				832	36.974	79.509			47.01	W
	ATOM					833	12.230		-12.621		35.16	W
45	ATOM	9015					39.082				40.49	W
45	ATOM	9016		WAT				44.799			30.19	W
	ATOM	9017		WAT			27.965				37.36	W
	MOTA	9018				836	27.787		-22.542			
	MOTA	9019		WAT			72.305		-31.273		33.36	W
-	ATOM	9020		WAT			76.326		-11.653		33.77	W
50	ATOM	9021				839	21.477		-38.808		37.70	W
	MOTA	9022				840	23.074		-30.020		36.46	W
	ATOM	9023				841	20.982		31.644		41.44	W
	ATOM	9024	OH2	WAT	W	842	29.441		-28.737		51.18	W
	ATOM	9025	OH2	WAT	W	843	42.659		-27.313		40.92	W
55	MOTA	9026	OH2	WAT	W	844	55.868	51.887	27.288	1.00	31.92	W

							o		200	FO 303	10 (71	1 00	50.82	W
		MOTA	9027	OH2					328		-40.674			
		ATOM	9028	OH2					450	43.148	27.316		29.94	W
		MOTA	9029	OH2					202		-43.971		45.83	W
		MOTA	9030	OH2					623	54.625	17.516		32.61	W
	5	MOTA	9031	OH2					083	41.899	25.153		37.23	W
		MOTA	9032	OH2	TAW	W	850	27.	414	82.738	5.782		42.08	W
		MOTA	9033	OH2	TAW	W	851	38.	762	53.294	1.928		35.13	W
		ATOM	9034	OH2	WAT	W	852	11.	930	67.467	2.674	1.00	46.11	W
		ATOM	9035	OH2	WAT	W	853	4.	368	56.741	-6.545	1.00	31.50	W
	10	ATOM	9036	OH2	WAT	W	854	22.	233	77.054	8.620	1.00	23.51	W
		ATOM	9037	OH2				25.	877	88.243	-42.821	1.00	39.96	W
		ATOM	9038	OH2					521	62.691	-12.058	1.00	35.57	W
		ATOM	9039	OH2					573	72.271	-44.611	1.00	40.66	W
		ATOM	9040	OH2					290	40.005	26.383	1.00	42.44	W
	15	ATOM	9041	OH2					430		-38.011		37.56	W
	10	ATOM	9042	OH2					109		-24.295		41.47	W
		ATOM	9043	OH2					013	64.466			31.90	W
		ATOM	9044	OH2					076	38.608			27.89	W
2:25.		ATOM	9045	OH2					523		-41.037		41.58	W
	20	ATOM	9045	OH2					958	43.645	28.956		43.91	W
ųŢ	20	ATOM	9047	OH2					521	48.352	1.213		37.81	W
Ü			9047	OH2					482		-38.014		38.32	W
M		ATOM		OH2					983		-23.958		34.58	W
		ATOM	9049						691		-33.929		31.58	W
(Marie 1)	25	ATOM	9050	OH2						62.282			41.22	W
19	23	ATOM	9051	OH2					125				41.46	W
		MOTA	9052		TAW				789	29.802			43.26	W
191		MOTA	9053		TAW				363	36.418			26.30	W
2 !		ATOM	9054		TAW				591		-14.741		37.46	W
	20	ATOM	9055		TAW				334	50.435			19.58	W
1,5	30	MOTA	9056		TAW				581	64.849				W
IJ		ATOM	9057		TAW				012	60.259			32.70	
į.		MOTA	9058		WAT				497	72.590			37.71	M
		ATOM	9059		TAW				030		-26.288		33.47	W
		MOTA	9060		WAT				356	81.557			35.86	W
į.	35	ATOM	9061		WAT				561		-26.150		35.66	W
		MOTA	9062		TAW				811		-38.775		39.50	W
		MOTA	9063		WAT				852		-16.949		40.06	M
		ATOM	9064		WAT				845		-38.701		38.63	W
		MOTA	9065		WAT				344		-29.032		47.88	W
	40	MOTA	9066						348		27.039		38.54	W
		MOTA	9067		WAT			44.	363		-15.598		46.87	W
		ATOM	9068	OH2	WAT	W	886	63.	961		-40.514		35.09	W
		MOTA	9069		WAT				182	58.399			20.35	W
		ATOM	9070	OH2	TAW	W	888	14.	005	57.801			16.96	W
	45	ATOM	9071	OH2	WAT	W	889	24.	482	63.758			40.41	W
		MOTA	9072	OH2	WAT	W	890	28.	177	39.811		1.00	14.10	W
		ATOM	9073	OH2	WAT	W	891	28.	968	82.073	-35.705		23.63	W
		ATOM	9074	OH2	WAT	W	892	12.	332	55.927	-15.108		23.12	W
		ATOM	9075	OH2	WAT	W	893	81.	492	67.229	-13.707	1.00	21.97	W
	50	ATOM	9076		WAT				926	58.066	0.988	1.00	25.28	W
		ATOM	9077		WAT				226	68.465	6.744		21.20	W
		ATOM	9078		WAT				450	79.680	-28.527	1.00	24.55	W
		ATOM	9079		WAT				056	32.722		1.00	26.11	W
		ATOM	9080		WAT				819		24.596		29.62	W
	55	ATOM	9081		WAT						-19.150		27.36	W
									-	· -				

	ATOM	9082	ОН2	WAT	W	900	71.696	73.995	-29.144	1.00	33.51	W
	ATOM	9083	OH2				79.298	50.626	-8.882	1.00	32.39	W
	ATOM	9084	OH2				37.121	83.790	-3.946	1.00	25.44	W
	ATOM	9085	OH2				59.411	52.085	2.463	1.00	28.12	W
5	ATOM	9086	ОН2				19.832	84.479	-18.505	1.00	31.53	W
•	ATOM	9087	OH2				43.802	79.359	-21.515	1.00	30.31	W
	ATOM	9088	OH2				57.911	52.910	26.179	1.00	36.06	W
	ATOM	9089	OH2				16.938	57.510	-36.365	1.00	30.40	W
	ATOM	9090	OH2				46.724	42.921	9.610	1.00	32.35	W
10	ATOM	9091	OH2				27.272	72.059	33.936	1.00	39.20	W
	ATOM	9092	ОН2				7.389	54.456	-10.032	1.00	24.47	W
	ATOM	9093	OH2				24.568	52.451	43.481	1.00	47.08	W
	ATOM	9094	OH2				49.865	47.024	-30.511	1.00	33.76	W
	ATOM	9095	OH2				42.658	78.817	-29.502	1.00	35.03	W
15	ATOM	9096	OH2				27.537		-12.482	1.00	31.40	W
	ATOM	9097	OH2				56.678	90.189	-43.614	1.00	35.75	W
	ATOM	9098	OH2				14.006	44.947	26.811	1.00	37.06	W
	ATOM	9099	OH2				69.590	84.000	-36.011	1.00	33.87	W
	ATOM	9100	OH2				57.990		-25.101	1.00	32.28	W
20	ATOM	9101	OH2				64.754	70.419	-8.091	1.00	53.24	W
	ATOM	9102	OH2				46.084	39.866	-0.054	1.00	29.17	W
	MOTA	9103	OH2				37.055	37.381	24.919	1.00	36.57	W
	ATOM	9104	OH2				52.320	68.585	4.797	1.00	34.76	W
	ATOM	9105	OH2				17.923	51.020	38.034	1.00	35.67	W
25	ATOM	9106	OH2				15.320	77.244	-13.699	1.00	35.62	W
	ATOM	9107	OH2				20.069	39.376	-12.317	1.00	37.80	M
	ATOM	9108	OH2				49.621	45.620	30.973	1.00	30.61	W
	ATOM	9109	OH2				46.954	72.541	-17.610	1.00	31.84	W
	MOTA	9110	OH2	WAT	W	928	70.522	78.290	-25.994	1.00	38.39	W
30	ATOM	9111	OH2	TAW	W	929	58.551	52.895	4.627	1.00	29.74	W
	ATOM	9112	OH2	WAT	W	930	35.513	55.491	-34.759	1.00	41.24	W
	ATOM	9113	OH2	WAT	W	931	41.558	82.881	-28.845	1.00	40.90	W
	ATOM	9114	OH2	WAT	W	932	48.127	66.178	26.914	1.00	36.07	W
	ATOM	9115	OH2	WAT	W	933	27.690	67.682	11.659	1.00	24.50	W
35	MOTA	9116	OH2	WAT	W	934	39.804	82.006	-21.936		34.34	W
	ATOM	9117	OH2	TAW	W	935	22.224	65.770	32.279	1.00	31.60	W
	MOTA	9118	OH2	WAT	W	936	58.814	48.750	18.909	1.00	33.30	W
	ATOM	9119	OH2	WAT	W	937	31.849	80.994	7.175	1.00	45.53	W
	MOTA	9120	OH2	TAW	W	938	50.363		-24.802		36.04	W
40	ATOM	9121	OH2	WAT	W	939	62.526		0.451		35.47	W
	MOTA	9122	OH2	TAW	W	940			-35.151		39.71	W
	MOTA	9123	OH2	TAW	M	941			-15.567		39.15	W
	ATOM	9124	OH2	TAW	W	942	35.976		-29.929		35.78	W
	ATOM	9125	OH2	TAW	W	943	73.983		-11.072		35.65	W
45	ATOM	9126	OH2	WAT	W	944	41.088	81.781			41.37	W
	MOTA	9127	OH2	WAT	W	945	13.020	63.025			43.97	W
	ATOM	9128	OH2	TAW	W	946	56.714	76.086	0.096		33.32	W
	ATOM	9129	OH2	TAW	M	947	74.317	52.113			36.02	W
	ATOM	9130	OH2	TAW	W	948	22.014		-34.827		31.87	W
50	MOTA	9131	OH2	WAT	W	949	77.383	65.431	-15.067		27.69	W
	ATOM	9132	OH2	WAT	W	950	17.693	41.868			47.71	W
	ATOM	9133	OH2				10.258		-15.051		35.09	M
	MOTA	9134	OH2				45.905	79.926			35.52	M
	ATOM	9135	OH2	WAT	W	953	14.632	46.962			28.79	W
55	MOTA	9136	OH2	WAT	W	954	34.451	77.305	12.190	1.00	30.17	M

	ATOM	9137	OH2	WAT	W	955	47.521	40.270	5.969	1.00 3	34.52	W
	ATOM	9138	OH2	WAT	W	956	18.766	39.515	-2.957	1.00 3		W
	ATOM	9139	OH2	WAT	W	957	25.886		-38.846	1.00 3		W
	MOTA	9140	OH2	WAT	W	958	10.640		-20.969	1.00 4		W
5	ATOM	9141	OH2	WAT	W	959	8.881	56.896	16.376	1.00 4		W
	MOTA	9142	OH2	WAT	W	960	78.130	72.254		1.00 3		W
	ATOM	9143	OH2	WAT	W	961	23.884	82.876	-3.966	1.00 5		W
	ATOM	9144	OH2	WAT	W	962	44.483	40.961	7.504	1.00 4		W
	ATOM	9145		TAW		963	35.403	62.493	33.962	1.00 3		W
10	ATOM	9146	OH2	WAT	W	964	27.262		-31.713	1.00 3		M
	ATOM	9147		TAW		965	74.769		-20.732	1.00 3		M
	ATOM	9148	OH2	WAT	W	966	49.100	42.041	8.300	1.00 3		M
	ATOM	9149	OH2	WAT	W	967	44.902		-25.044	1.00 3		W
	MOTA	9150	OH2	WAT	W	968	52.476	49.145	25.620	1.00 3		W
15	MOTA	9151	OH2	WAT	W	969	9.649		-12.194	1.00 3		W
	MOTA	9152	OH2	WAT	W	970	58.733	51.116	14.538	1.00 4		W
	ATOM	9153	OH2	WAT	W	971	51.884	50.452	27.694	1.00 3		W
	MOTA	9154		WAT		972	25.020		-25.139	1.00 3		W
	ATOM	9155	OH2	WAT	W	973	7.521	58.222	0.201	1.00 3		W
20	MOTA	9156	OH2	WAT	W	974	11.524	58.491	19.987	1.00 3		W
	MOTA	9157	OH2	WAT	W	975	18.598		-37.781	1.00 2		W
	MOTA	9158		WAT			46.002		-31.315	1.00 3		W
	MOTA	9159		WAT		977	5.368	57.731	6.783	1.00 3		W
	MOTA	9160		TAW		978	13.342		-11.623	1.00 5		W
25	MOTA	9161		WAT		979	47.205		-17.119	1.00 3		W
	MOTA	9162		TAW		981	29.413	65.677	12.426	1.00 2		W
	MOTA	9163		TAW		982	28.559	69.915	12.822	1.00 3		W
	MOTA	9164	OH2	TAW			33.312	68.983	16.916	1.00 3		W
••	MOTA	9165	C1	NAG		1	58.321	45.027	12.880	1.00 4		С
30	ATOM	9166	C2	NAG		1	59.553	44.726	13.744	1.00 4		C
	ATOM	9167	N2	NAG		1	60.611	45.671	13.441	1.00 5		C
	ATOM	9168	C7	NAG		1	60.818	46.715	14.237	1.00 5		C C
	MOTA	9169	07	NAG		1	60.267	47.803	14.068	1.00 5		C
0.5	ATOM	9170	C8	NAG		1	61.782	46.528	15.397	1.00 5		C
35	ATOM	9171	C3	NAG		1	60.046	43.300	13.495	1.00 4		C
	MOTA	9172	03	NAG		1	61.101	42.997	14.395	1.00 5		C
	ATOM	9173	C4	NAG		1	58.905	42.304	13.689	1.00 5		C
	ATOM	9174	04	NAG		1	59.345	40.999	13.344	1.00		C
40	ATOM	9175	C5	NAG		1	57.716	42.702	12.810	1.00 4		C
40	ATOM		05	NAG		1	57.295			1.00 4		C
	ATOM	9177	C6	NAG		1	56.518	41.797	13.024 12.052	1.00		C
	MOTA	9178	06	NAG	C	1	55.511	42.038		1.00	9.68	C
	ATOM	9179	C1	SWA		1	31.064	66.873	6.079	1.00		
45	ATOM	9180	01	SWA		1	31.597	68.032	5.416 7.615	1.00		
45	ATOM	9181	C3	SWA		1	31.295	67.013		1.00		
	ATOM	9182	N4	SWA		1	30.738	65.836	8.320	1.00		
	ATOM	9183	C5	SWA		1	29.276	65.603	8.133		9.14	
	ATOM	9184	C6	SWA		1	28.973	65.471	6.610 5.827	1.00 1.00	9.14	
ΕO	ATOM	9185	C2	SWA		1	29.531	66.700	9.682	1.00		
50	ATOM	9186	C9	SWA		1	31.268	65.873		1.00		
	ATOM	9187	C8	SWA		1	32.681	66.486	9.558	1.00		
	ATOM	9188		SWA		1	33.681	65.511	9.836	1.00		
	ATOM	9189	C7	SWA		1	32.764	67.083	8.112			
	ATOM	9190		SWA		1	33.674	66.300		1.00		M
55	MOTA	9191	C1	MPD	M	1	14.797	61.266	10.322	1.00 4	23.09	М

	ATOM	9192	C2	MPD N	_	16.264	61.479	10.614	1.00 23.60	М
	ATOM	9193	02	MPD N	1 1	16.876	60.330	9.851	1.00 24.23	M
	ATOM	9194	CM	MPD N	1 1	17.075	62.611	10.000	1.00 24.36	M
_	ATOM	9195	C3	MPD N	1 1	16.492	61.271	12.125	1.00 23.19	M
5	ATOM	9196	C4	MPD N	1 1	17.813	60.945	12.649	1.00 23.12	М
	MOTA	9197	04	MPD N	1 1	17.580	59.936	13.627	1.00 22.00	M
	MOTA	9198	C5	MPD N	1 1	18.337	62.222	13.387	1.00 22.61	M
	MOTA	9199	ZN	ZN Z	2 1	34.561	64.335	8.062	1.00 15.34	Z
	END									

Table 3

Structural Results: Active Site

From initial analysis of the crystal structure, based on the location of residues known to be involved in catalysis, the active site of the enzyme is located within a region composed of the following residues:

GLY	60	VAL	61	TRP	62	LYS	63	GLN	64	GLY	65
ILE	68	VAL	83	PHE	84	VAL	85	VAL	86	PRO	87
HIS	88	SER	89	HIS	90	ASN	91	ASP	92	TRP	95
ILE	110	met	124	PHE	126	ILE	127	TRP	128	ala	129
GLU	130	VAL	161	MET	167	TRP	201	ALA	202	ILE	203
ASP	204	PRO	205	PHE	206	GLY	207	HIS	208	LEU	225
ILE	226	GLN	227	ARG	228	thr	229	TYR	231	LYS	234
LEU	243	HIS	262	MET	263	MET	264	PRO	265	PHE	266
TYR	267	SER	268	TYR	269	ASP	270	ILE	271	PRO	272
HIS	273	THR	274	CYS	275	GLY	276	PRO	277	ASP	278
PRO	279	LYS	280	val	281	CYS	282	CYS	283	GLN	284
PHE	285	ASP	286	PHE	287	LYS	288	ARG	289	met	290
phe	293	gly	294	leu	295	ser	296	CYS	297	PRO	298
TRP	299	lys	300	VAL	301	PRO	302	PRO	303	leu	317
LEU	318	GLN	321	trp	322	LYS	324	LYS	325	ala	326
LEU	328	tyr	329	LEU	334	LEU	335	ile	336	PRO	337
LEU	338	GLY	339	ASP	340	ASP	341	PHE	342	ARG	343
phe	344	lys	345	GLU	349	val	352	GLN	353	arg	354
TYR	357	LEU	360	PHE	361	PHE	376	GLY	377	LEU	379
TYR	407	ALA	408	ASP	409	ARG	410	trp	415	HIS	471
ASP	472	TYR	727	ASP	874	glu	875	ARG	876	GLY	877
LEU	878										

10

Residues in lower case are not identical in the human Golgi ManII sequence, though many of those are conservative substitutions. In this sphere of 15Å around the catalytic center, there are only 21 non-identities among 121 residues, indicating that the human active site will be essentially identical to that observed for the *Drosophila* structure.

15

The numbering system in this and the accompanying Figures corresponds to the protein expressed in the system described herein, not to full length ManII.

Table 4
Intermolecular Interactions at an Active Site of a Mannosidase II Swainsonine Complex.

No. of Atomic Interaction	Swainsonine Atomic Contact	Enzyme Atomic Contact	Distance Between Atomic Contacts	Atomic Interaction Property
1	O1	His 471 NE2	3.3	НВ
2	N	Asp 204 OD1	2.9	HB
3	O2	Asp 341 OD2	3.4	НВ
4	O2	His 90 NE2	3.1	НВ
5	O2	Asp 92 OD1	2.9	НВ
6	O8	Asp 472 OD1	2.53	НВ
7	Ring	Phe 206 ring	3.55	VW
8	O8	Tyr 727 OH	2.6	НВ
9	ring	Trp 95	3.7	VW

HB: hydrogen bond interaction

5 VW Van der Waals

[3

##;

#}

E#

į.

ļ.L

Table 5

Crystallographic Refinement Statistics for the Native Drosophila Gogli

```
5
    >>> input coordinates: dgm12_ann_lbi.pdb
    >>> molecular structure file: dgm12gen.mtf
     >>> parameter file 1 : CNS TOPPAR:protein rep.param
     >>> parameter file 2 : CNS TOPPAR:water rep.param
     >>> parameter file 3 : CNS TOPPAR:ion.param
    >>> parameter file 4 : trs.par
>>> parameter file 5 : mpdnew2.par
10
     >>> parameter file 6 : cis_peptide.param
     >>> parameter file 7 : CNS_TOPPAR:carbohydrate.param
     >>> reflection file= ../semetHiR.cv
    >>> spacegroup: P2(1)2(1)2(1)
15
    >>> cell dimensions: a= 68.865 b= 109.718 c= 138.599 alpha= 90 beta= 90
     gamma= 90
     >>> current wa= 0.311868 for target= mlf
     >>> ncs= none
    >>> initial B-factor correction applied to fobs :
20
          B11= 0.587 B22= -0.754 B33=
                                          0.167
     >>>
                              0.000 B23=
                 0.000 B13=
                                           0.000
          B12 =
     >>> B-factor correction applied to coordinate array B:
                                                             0.088
    >>> B-correction resolution: 6.0 - 1.4
    >>> bulk solvent: density level= 0.359928 \text{ e/A}^3, B-factor= 43.085 \text{ A}^2
25
     ______
30
    resolution range: 500.0 - 1.4 A
      R-values:
                                                     r = 0.2348 free r = 0.2361
      initial
      after B-factor and/or bulk solvent correction r= 0.1931 free_r= 0.2105
35
      Monitor for target "mlf" is R-value :
         working set= 0.1931 test set= 0.2105
                    luzzati coordinate error (5.0 - 1.4 A ):
                                                              0.16 A
     cross-validated luzzati coordinate error (5.0 - 1.4 A ):
                                                              0.18 A
                     sigmaa coordinate error (5.0 - 1.4 A ):
                                                              0.08 A
40
                                                              0.10 A
      cross-validated sigmaa coordinate error (5.0 - 1.4 A ):
     rmsd bonds= 0.004763 with 2 bond violations > 0.05
     rmsd angles= 1.32400 with 32 angle violations > 8.0
     rmsd dihedrals= 24.22585 with 4 angle violations > 60.0
45
     rmsd improper= 0.80790 with 38 angle violations >
     ======== B-factors
     ----------------------------------
50
     average B-factor= 15.7963
     minimum B-factor= 4.5681
     maximum B-factor= 57.2481
     B rmsd for bonded mainchain atoms= 0.660
```

```
B rmsd for bonded sidechain atoms= 1.229
        B rmsd for angle mainchain atoms= 1.131
        B rmsd for angle sidechain atoms= 1.777
                          0.22677665
        current rweight=
    5
        ======== diffraction data
        _____
        reflections with |Fobs|/sigma F < 0.0 rejected
        reflections with |Fobs| > 10000 * rms(Fobs) rejected
   10
        theoretical total number of refl. in resol. range:
                                                            206243 ( 100.0 % )
        number of unobserved reflections (no entry or |F|=0): 59797 ( 29.0 %)
                                                                      0.0 %)
                                                                 0 (
        number of reflections rejected:
                                                            146446 (
                                                                     71.0 %)
        total number of reflections used:
   15
        number of reflections in working set:
                                                            139067 (
                                                                    67.4 %)
                                                              7379 (
                                                                      3.6 %)
        number of reflections in test set:
        =====> completeness
20
         Test set (test = 1):
         #bin | resolution range | #refl |
                                            0.0521
               3.02 500.01
                                  1113
                                  1042
                                           0.0501
            2
               2.39
                       3.02
ij,
    25
              2.09
                       2.39
                                  1048
                                            0.0508
            3
N
               1.90
                       2.09
                                 1000
                                            0.0485
            4
1.76
                                   989
                                            0.0482
            5
                       1.90
                                   822
                                            0.0401
            6
                1.66
                       1.76
91
7
                                   584
                                            0.0285
                1.58
                       1.66
    30
            8
              1.51
                       1.58
                                   419
                                            0.0205
            9
                       1.51
                                   265
                                            0.0130
                1.45
                                            0.0048
                       1.45
                                   97
           10
                1.40
Working set:
    35
         #bin | resolution range | #refl |
                3.02 500.01
                                 20201
                                            0.9460
            1
                2.39
                       3.02
                                 19732
                                            0.9491
            2
                                            0.9447
              2.09
                       2.39
                                 19506
            3
    40
                                            0.9316
              1.90
                       2.09
                                 19199
            5
               1.76
                       1.90
                                 18521
                                            0.9019
            6
               1.66
                       1.76
                                 15253
                                            0.7434
            7
                1.58
                       1.66
                                 11380
                                            0.5551
            8
                       1.58
                                  8211
                                            0.4018
                1.51
    45
            9
                       1.51
                                  5065
                                            0.2477
                1.45
           10
                1.40
                        1.45
                                  1999
                                            0.0980
         ======== R-values
    50
         =====> R-values with |Fobs|/sigma cutoff= 0.0
         Test set (test = 1):
    55
```

0.9411

0.9319

3971

3941

1.87

1.84

21

22

55

1.90

1.87

		23	1.81	1.84	3946	0.9360
		24	1.79	1.81	3860	0.9480
		25	1.76	1.79	3792	0.9213
		26	1.74	1.76	3632	0.9184
	5	27	1.72	1.74	3458	0.9382
		28	1.70	1.72	3191	0.9414
		29	1.68	1.70	2994	0.9275
		30	1.66	1.68	2800	0.9268
		31	1.64	1.66	2678	0.9303
	10	32	1.62	1.64	2506	0.9388
		33	1.61	1.62	2366	0.9506
		34	1.59	1.61	2249	0.9402
		35	1.58	1.59	2165	0.9270
		36	1.56	1.58	2006	0.9365
	15	37	1.55	1.56	1874	0.9184
		38	1.53	1.55	1700	0.9072
		39	1.52	1.53	1595	0.9358
		40	1.51	1.52	1455	0.9398
		41	1.50	1.51	1336	0.9433
an an an an an an an an	20	42	1.48	1.50	1147	0.9541
, E		43	1.47	1.48	1077	0.9419
4:55		44	1.46	1.47	962	0.9331
∦1 22 5		45	1.45	1.46	808	0.9242
1. = 2		46	1.44	1.45	696	0.9038
14	25	47	1.43	1.44	570	0.9371
		48	1.42	1.43	408	0.9387
M		49	1.41	1.42	288	0.8914
E)		50	1.40	1.41	134	0.8194
	20					
Ę	30	=======	=====			-trans peptides
M			=====		========	
į. .i .		aia non	+: da.	00 01 d = 7	resid=406 r	оспато-ТИР
		CIS-pep	cide:		dihedral va	
1.4	35			Current	diffediat va	1de- 0.010
	33	aic-non	tido.	socid-N	resid=532 r	osname=PRO
		CI2-beb	crue.		dihedral va	
				Currenc	diffedial va	146- 0.455
	40	======	_====	-======		occupancies
		======				==
		no atom	s have	e zero o	ccupancy	

Crystallographic Refinement Statistics for the Drosophila Golgi Mannosidase II Associated with Swainsonine

```
5
        >>> input coordinates: swainsonine3 ann 1bi.pdb
        >>> molecular structure file: swainsoninegen3.mtf
   10
        >>> parameter file 1 : CNS TOPPAR:protein rep.param
        >>> parameter file 2 : CNS_TOPPAR:water_rep.param
        >>> parameter file 3 : CNS_TOPPAR:ion.param
        >>> parameter file 4 : swa.par
        >>> parameter file 5 : ../zntrmp/mpdnew2.par
   15
        >>> parameter file 6 : cis peptide.param
        >>> parameter file 7 : CNS TOPPAR:carbohydrate.param
        >>> reflection file= dgm2native rejmerge.cv
        >>> spacegroup: P2(1)2(1)2(1)
>>> cell dimensions: a= 68.902 b= 110.015 c= 138.472 alpha= 90 beta= 90
   20
        gamma= 90
        >>> current wa= 0.632464 for target= mlf
        >>> ncs= none
        >>> initial B-factor correction applied to fobs :
>>> B11= 0.551 B22= -0.116 B33= -0.435
ij
   25
      >>> B12= 0.000 B13= 0.000 B23= 0.000
m
        >>> B-factor correction applied to coordinate array B:
        >>> B-correction resolution: 6.0 - 1.87
ş:
>>> bulk solvent: density level= 0.354131 e/A^3, B-factor= 42.2797 A^2
   30
        ļ,±
        resolution range: 500.0 - 1.87 A
jak.
         R-values:
   35
         initial
                                                   r = 0.2078 free r = 0.2371
         after B-factor and/or bulk solvent correction r= 0.1810 free r= 0.2090
         Monitor for target "mlf" is R-value :
           working set= 0.1810 test set= 0.2090
   40
                      luzzati coordinate error (5.0 - 1.87 A ):
        cross-validated luzzati coordinate error (5.0 - 1.87 A ):
                                                            0.22 A
                       sigmaa coordinate error (5.0 - 1.87 A ):
                                                            0.12 A
        cross-validated sigmaa coordinate error (5.0 - 1.87 A ):
                                                            0.14 A
   45
        rmsd bonds= 0.005230 with 2 bond violations > 0.05
        rmsd angles= 1.31525 with 34 angle violations > 8.0
        rmsd dihedrals= 24.18605 with 4 angle violations > 60.0
        rmsd improper= 0.78741 with 34 angle violations > 3.0
   50
        ======= B-factors
        average B-factor= 19.441
```

```
minimum B-factor= 8.18268
        maximum B-factor= 64.5527
        B rmsd for bonded mainchain atoms= 0.699
        B rmsd for bonded sidechain atoms= 1.141
    5
        B rmsd for angle mainchain atoms= 1.167
        B rmsd for angle sidechain atoms= 1.747
        current rweight=
                           0.18691688
        ======= diffraction data
   10
        ______
        reflections with |Fobs|/sigma_F < 0.0 rejected
        reflections with |Fobs| > 10000 * rms(Fobs) rejected
        theoretical total number of refl. in resol. range:
                                                              87643 ( 100.0 % )
   15
        number of unobserved reflections (no entry or |F|=0):
                                                               2814 (
                                                                       3.2 % )
        number of reflections rejected:
                                                                  0 (
                                                                       0.0 %)
                                                              84829 (
                                                                      96.8 %)
        total number of reflections used:
        number of reflections in working set:
                                                              80543 (
                                                                      91.9 %)
        number of reflections in test set:
                                                               4286 (
                                                                      4.9 %)
20
        =====> completeness
         Test set (test = 1):
25
         #bin | resolution range | #refl |
Ŋ
                4.03
                     500.01
                                   452
                                            0.0493
            1
m
            2
                3.20
                        4.03
                                   488
                                            0.0550
            3
                2.79
                        3.20
                                   398
                                            0.0453
äŧ
                        2.79
                                   433
                                            0.0496
            4
                2.54
30
            5
                        2.54
                                   460
                                            0.0527
                2.36
ij
                        2.36
                                   433
                                            0.0497
            6
                2.22
NJ.
            7
                        2.22
                                   417
                                            0.0480
                2.11
į,d.
                2.01
                        2.11
                                   402
                                            0.0464
            9
                1.94
                        2.01
                                   406
                                            0.0470
į.
   35
           10
                1.87
                        1.94
                                   397
                                            0.0457
         Working set:
         #bin | resolution range | #refl |
   40
                4.03 500.01
                                            0.9298
            1
                                  8521
                                            0.9385
            2
                3.20
                        4.03
                                  8330
                                            0.9391
            3
                2.79
                        3.20
                                  8244
                        2.79
                                            0.9315
            4
                2.54
                                  8134
                2.36
                        2.54
                                  8056
                                            0.9234
            5
   45
                                            0.9215
            6
                2.22
                        2.36
                                  8022
            7
                2.11
                        2.22
                                  7985
                                            0.9196
            8
                2.01
                                  7940
                                            0.9158
                        2.11
            9
                1.94
                        2.01
                                  7835
                                            0.9077
                                  7476
           10
                1.87
                        1.94
                                            0.8615
   50
        ======== R-values
        ______
```

=====> R-values with |Fobs|/sigma cutoff= 0.0

```
Test set (test = 1):
          #bin | resolution range | #refl |
     5
                                               0.2028
                 4.03
                      500.01
                                      452
             1
                         4.03
                                      488
                                               0.1836
                 3.20
             2
                                      398
                 2.79
                         3.20
                                               0.2059
             3
                 2.54
                         2.79
                                      433
                                               0.2246
             4
                                      460
             5
                 2.36
                         2.54
                                               0.2203
    10
                         2.36
                                      433
                                               0.2125
             6
                 2.22
             7
                                      417
                                               0.2304
                 2.11
                         2.22
             8
                 2.01
                         2.11
                                      402
                                               0.2066
                                      406
             9
                 1.94
                         2.01
                                               0.2154
                                      397
            10
                 1.87
                         1.94
                                               0.2693
    15
          Working set:
          #bin | resolution range | #refl |
                 4.03
                       500.01
                                     8521
                                               0.1673
20
             2
                 3.20
                         4.03
                                     8330
                                               0.1704
             3
                 2.79
                         3.20
                                     8244
                                               0.1861
             4
                 2.54
                         2.79
                                     8134
                                               0.1857
             5
                 2.36
                         2.54
                                     8056
                                               0.1830
0.1827
             6
                 2.22
                         2.36
                                     8022
    25
             7
                         2.22
                                     7985
                                               0.1894
                 2.11
M
             8
                 2.01
                         2.11
                                     7940
                                               0.1826
Ħ
             9
                 1.94
                         2.01
                                     7835
                                               0.1920
            10
                         1.94
                                     7476
                                               0.2320
                 1.87
Ħŧ
30
         __________
N
į,Ł
         sigmaa calculated using cross-validated data (test set)
number of bins for sigmaa calculation= 50
    35
          #bin | resolution range | #refl |
                                               0.9682
             1
                 6.89 500.01
                                     1778
                                               0.9324
                 5.47
                         6.89
                                     1834
             3
                 4.78
                         5.47
                                     1793
                                               0.9330
    40
                                               0.9551
             4
                 4.34
                         4.78
                                     1797
             5
                                               0.9634
                 4.03
                         4.34
                                     1771
                                               0.9700
             6
                 3.79
                         4.03
                                     1778
             7
                 3.60
                         3.79
                                     1751
                                               0.9563
                                               0.9651
             8
                 3.44
                         3.60
                                     1749
    45
             9
                                     1775
                                               0.9515
                 3.31
                         3.44
            10
                         3.31
                                     1765
                                               0.9589
                 3.20
            11
                 3.10
                         3.20
                                     1714
                                               0.9433
                                               0.9571
            12
                 3.01
                         3.10
                                     1746
                                               0.9545
            13
                 2.93
                         3.01
                                     1737
    50
                                               0.9457
            14
                 2.86
                         2.93
                                     1721
            15
                 2.79
                         2.86
                                     1724
                                               0.9391
            16
                 2.73
                         2.79
                                     1727
                                               0.9327
                                               0.9429
            17
                 2.68
                         2.73
                                     1708
            18
                 2.63
                         2.68
                                     1726
                                               0.9267
    55
            19
                 2.58
                         2.63
                                     1737
                                               0.9416
```

	\sim
л	· / /~
4	/. 3

		20	2.54	2.58	1669	0.9385
		21	2.50	2.54	1705	0.9257
		22	2.46	2.50	1713	0.9444
		23	2.42	2.46	1721	0.9384
	5	24	2.39	2.42	1665	0.9456
		25	2.36	2.39	1712	0.9398
		26	2.33	2.36	1699	0.9427
		27	2.30	2.33	1675	0.9341
		28	2.27	2.30	1723	0.9324
	10	29	2.24	2.27	1653	0.9570
	10	30	2.22	2.24	1705	0.9355
		31	2.19	2.22	1711	0.9093
		32	2.17	2.19	1650	0.9188
		33	2.15	2.17	1659	0.9341
	15	34	2.13	2.15	1707	0.9520
	10	35	2.11	2.13	1675	0.9298
		36	2.09	2.11	1655	0.9446
		37	2.07	2.09	1691	0.9407
31755		38	2.05	2.07	1685	0.9234
	20	39	2.03	2.05	1631	0.9412
Ļ		40	2.01	2.03	1680	0.9613
i,I		41	2.00	2.01	1646	0.9423
(Ti		42	1.98	2.00	1669	0.9395
		43	1.97	1.98	1626	0.9240
111	25	44	1.95	1.97	1693	0.9373
		45	1.94	1.95	1607	0.9534
m		46	1.92	1.94	1634	0.9255
ā!		47	1.91	1.92	1652	0.9181
5		48	1.90	1.91	1616	0.9194
	30	49	1.88	1.90	1597	0.9026
Œ.		50	1.87	1.88	1374	0.8987
j,=1		======	=====	_======	====== non-t	trans peptides
1,000		======	======	=======	=======	
	35					
		cis-per	otide:		resid=406 res	
				current	dihedral valu	ue= 0.298
	40	cis-per	otide:		resid=532 residihedral valu	
	40			current	dinedral valu	1e= -0.154
		======		=======	=======================================	ccupancies
		======		=======		•
	45					

no atoms have zero occupancy

•

- Glycoside Hydrolase Classification

CAZy Family Glycoside Hydrolase Family 38

Known Activities α-mannosidase (EC 3.2.1.24) (EC 3.2.1.114).

Mechanism Retaining

Catalytic Asp

Catalytic Proton Donor Not known

3D Structure Status Not available

Relevant Links InterPro; PFAM

Statistics CAZy(48); GenBank/GenPept (108); Swissprot (31)

Protein	Organism	EC#	GenBank / GenPept	SwissProt	PDB /
α-mannosidase (MLJ15 11)	Arabidopsis thaliana	n.d.	AB026648 BAB01735.1 X98130 CAA66821.1 Y11767 CAA72432.1	P94078 Q96239	
ORF F2G14_70	Arabidopsis thaliana	n.d.	AL391146 CAC01814.1 T51440	Q9LFR0	
ORF K2A18.23	Arabidopsis thaliana	n.d.	AB011474 BAB10420.1		
ORF MAC12.5	Arabidopsis thaliana	n,d.	AB005230 BAB11126.1		
α-mannosidase	Aspergillus nidulans	n.d.	AF016850 AAB70514.1	013344	
tx-mannosidase (lysosomal)	Bos faurus	3.2.1.24	L31373 AAB67726 1 U97686 AAC48763 1 U97687 AAC48763 1 U97688 AAC48763 1 U97689 AAC48763 1 U97690 AAC48763 1 U97691 AAC48763 1 U97692 AAC48763 1 U97693 AAC48763 1	Q29451 O02848 O19138	
ORF F48C1.1	Caenorhabditis elegans	n.d.	U97015 AAB52345.1	001574	
ORF F55D10.1	Caenorhabditis elegans	n.d.	U40948 AAA81731.1	Q20829	
ORF F58H1.1	Caenorhabditis elegans	n.d.	Z75954 CAB00104.1	Q21010	
α-mannosidase	Canavalia ensiformis	3.2.1.24			· · · · · · · · · · · · · · · · · · ·
α-mannosidase	Dictyostelium discoideum	3.2.1.114	M82822 AAA33224.1	P34098	
α-mannosidase (α-Man-IIb)	Drosophila melanogaster	3.2.1.114	AE003710 AAF55228.1 AB018079 BAA75817.1		
α-mannosidase 2 (α-Man-II) (CG18474)	Drosophila melanogasler	3.2.1.114	AE003682 AAF54375.1 AE003682 AAF54376.1 AJ132715 CAA10755.1 X77652 CAA54732.1	Q24451	
ORF BcDNA GH02419	Drosophila melanogaster	n.d.	AF145601 AAD38576.1 AE003628 AAF52958.1		19 g89 qui bull 11
ORF CG5322	Drosophila melanogaster	n.d.	AE003628 AAF52957.1		
ORF CG9463	Drosophila melanogaster	n.d.	AE003622 AAF52708.1	en andresson of the Authorities of 188	vicione in the
ORF CG9465	Drosophila melanogaster	n.d. e.c.	AE003622 AAF52709.1		
ORF CG9466	Drosophila melanogaster	n.d.	AE003622 AAF52710.1		
ORF CG9468	Drosophila melanogaster	n.d.	AE003622 AAF52711.1		

ORF YbgB	Escherichia coli K12	n.d.	D90713 BAA35398.1	
ORF YbgG	Escherichia coli K12 / MG1655	n.d.	AE000176 AAC73826.1	P54746 P75753
α-mannosidase (lysosomal)	Felis catus	3.2.1.24	AF010191 AAB97672.1 AF010192 AAB97733.1	O46432
α-mannosidase	Homo saplens	3.2.1.114	U31520 AAC50302 1 D63998 BAA10017 1	Q16706 Q16767
α-mannosidase	Homo sapiens	n.d.	U37248 AAC00568.1	Q13358
cc-mannosidase (lysosomal)	Homo sapiens Homo sapiens	3.2.1.24	U05572 AAB03816 1 U60266 AAC34130 1 U60266 AAC34130 1 U68567 AAC50812 1 U60885 AAC51362 1 U60886 AAC51362 1 U60887 AAC51362 1 U60889 AAC51362 1 U60890 AAC51362 1 U60891 AAC51362 1 U60892 AAC51362 1 U60893 AAC51362 1 U60894 AAC51362 1 U60895 AAC51362 1 U60896 AAC51362 1 U60897 AAC51362 1 U60897 AAC51362 1	O00754 Q93094 Q16680 O15330
			U60899 AAC51362.1	
α-mannosidase (lysosomal)	Homo sapiens	3.2.1.24	U68382 AAC50811.1	Q93093
α-mannosidase 2	Homo sapiens	3.2.1.114	L28821 AAA92022 1 D55649 BAA09510 1	P49641 Q13754
α-mannosidase 6A8B	Homo sapiens	n.d.	AF044414 AAC00190.1	
ORF DKFZp434D175	Homo sapiens	n,d.	AL136876 CAB66810.1 T46931	
ORF KIAA0935	Homo sapiens	n.d.	AB023152 BAA76779.1	
α-mannosidase	Mus musculus	3.2.1.24	AB006458 BAA24266 1	O54782
α-mannosidase (lysosomal)	Mus musculus	3.2.1.24	U87240 AAC09470.1 U29947 AAC53369.1	O09159 Q64443
α-mannosidase (lysosomal)	Mus musculus		NM_010764 6754622 AF044174 AAC78560.1 AF044175 AAC78560.1 AF044176 AAC78560.1 AF044177 AAC78560.1 AF044178 AAC78560.1 AF044179 AAC78560.1 AF044180 AAC78560.1 AF044181 AAC78560.1 AF044182 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1	O55037
α-mannosidase 2	Mus musculus	- m. marinamenteleterrialia	X61172 CAA43480.1	P27046
α-mannosidase llx	Mus musculus	n.d.	AF107018 AAD20813.1	D000-
ORF Rv0648	Mycobacterium tuberculosis H37Rv	n.d.	Z92772 CAB07105.1	P96937
ORF PH0835	Pyrococcus horikoshii	,	AP000003 BAA29929.1	O58565
α-mannosidase 1	Rattus norvegicus	3.2.1.24	M57547 AAA41565.1	P21139

α-mannosidas	Saccharomyces cerevísiae	3.2.1.24	M27809 AAA34423.1 M29146 AAA34423.1 Z48618 CAA88536.1 Z72678 CAA96868.1	P22855
ORF SPAC513:05	Schizosaccharomyces pombe	n.d.	AL122032 CAB58728.1	
x-mannosidase II	Spodoptera frugiperda	n.d.	AF005034 AAB62719.1	O18497
ORF SCM11.03c	Streptomyces coelicolor A3(2)	n.d.	AL133278 CAB61914.1	
r-mannosidase	Sus scrofa	3.2.1.24	D28521 BAA05877.1	Q28949
ORF sir0323 (Ams1)	Synechocystis sp.	n.d.	D63999 BAA10023.1	Q55528
ORF TM1231	Thermotoga maritima	n.d.	AE001779 AAD36306.1	Q9X0V8
ORF TM1851	Thermotoga maritima	n.d.	AE001822 AAD36913.1	Q9X2G6
x-mannosidase 1	Zea mays	3.2.1	D30744 BAA06405.1	Q43249

Table 8

		ATOM	1	N	CYS A	31	44.192	36.201 -18.860	1.00	0.00		N
		ATOM	2	CA	CYS A	31	43.432	37.453 -18.569	1.00	0.00		0
	5	ATOM	3	С	CYS A	31	41.925	37.255 -18.672	1.00	0.00	(
		ATOM	4	0	CYS A	31	41.437	36.646 -19.622	1.00	0.00	(
		ATOM	5	CB	CYS A	31	43.821	38.563 -19.546	1.00	0.00	(
		ATOM	6	SG	CYS A	31	45.504	39.239 -19.408	1.00	0.00		S
		ATOM	7	N	GLN A	32	41.194	37.780 -17.693	1.00	0.00	1	
	10	ATOM	8	CA	GLN A	32	39.739	37.692 -17.702	1.00	0.00		0
		MOTA	9	С	GLN A	32	39.199	38.594 -18.800	1.00	0.00		С
		ATOM	10	0	GLN A	32	39.785	39.630 -19.113	1.00	0.00	(
		MOTA	11	CB	GLN A	32	39.146	38.164 -16.373	1.00	0.00	(
		MOTA	12	CG	GLN A	32	39.160	37.145 -15.258	1.00	0.00		С
	15	ATOM	13	CD	GLN A	32	38.246	37.549 -14.118	1.00	0.00	(
		MOTA	14	OE1	GLN A	32	37.027	37.630 -14.285	1.00	0.00		Э
		MOTA	15	NE2	GLN A	32	38.829	37.814 -12.955	1.00	0.00		N
		ATOM	16	N	ASP A	33	38.079	38.196 -19.384	1.00	0.00		N
		ATOM	17	CA	ASP A	33	37.449	38.989 -20.427	1.00	0.00	(
4:57%	20	ATOM	18	С	ASP A	33	36.549	39.962 -19.668	1.00	0.00		С
		MOTA	19	0	ASP A	33	35.610	39.545 -18.998	1.00	0.00		С
۱,II		ATOM	20	CB	ASP A	33	36.638	38.070 -21.344	1.00	0.00		С
ı, 🖺		MOTA	21	CG	ASP A	33	36.037	38.801 -22.524	1.00	0.00		С
M		MOTA	22	OD1	ASP A	33	35.788	38.143 -23.557	1.00	0.00		0
	25	ATOM	23	OD2	ASP A	33	35.802	40.024 -22.416	1.00	0.00		0
₹stadi est it		ATOM	24	N	VAL A	34	36.844	41.255 -19.757	1.00	0.00		N
Ŋ		MOTA	25	CA	VAL A	34	36.065	42.254 -19.031	1.00	0.00		С
		ATOM	26	С	VAL A	34	34.893	42.824 -19.820	1.00	0.00		С
i,Fi		MOTA	27	0	VAL A	34	34.211	43.735 -19.354	1.00	0.00		О
	30	MOTA	28	CB	VAL A	34	36.969	43.425 -18.568	1.00	0.00		С
51 41 31 0.		ATOM	29	CG1	VAL A	34	38.134	42.887 -17.755	1.00	0.00		С
		MOTA	30	CG2	VAL A	34	37.491	44.203 -19.774	1.00	0.00		С
ij		ATOM	31	N	VAL A	35	34.639	42.272 -21.001	1.00	0.00		N
		ATOM	32	CA	VAL A	35	33.557	42.772 -21.836	1.00	0.00		Ç
[=	35	ATOM	33	С	VAL A	35	32.381	41.825 -22.061	1.00	0.00		С
		ATOM	34	0	VAL A	35	31.224	42.211 -21.898	1.00	0.00		0
		ATOM	35	CB	VAL A	35	34.092	43.170 -23.236	1.00	0.00		С
		ATOM	36	CG1	VAL A	35	32.946	43.675 -24.118	1.00	0.00		С
	_	ATOM	37	CG2	VAL A	35	35.181	44.222 -23.098	1.00	0.00		С
	4 0	MOTA	38	N	GLN A	36	32.688	40.584 -22.417	1.00	0.00		N
		MOTA	39	CA	GLN A	36	31.668	39.594 -22.768	1.00	0.00		С
		MOTA	40	С	GLN A	36	31.067	38.670 -21.719	1.00	0.00		С
		MOTA	41	0	GLN A	36	30.128	37.936 -22.022	1.00	0.00		0
		ATOM	42	CB	GLN A	36	32.208	38.745 -23.915	1.00	0.00		C
	45	MOTA	43	CG	GLN A	36	32.967	39.567 -24.944	1.00	0.00		C
		ATOM	44	CD	GLN A	36	33.436	38.744 -26.118	1.00	0.00		С
		ATOM	45	OE1	GLN A	36	32.665	38.450 -27.029	1.00	0.00		0
		ATOM	46	NE2	GLN A	36	34.705	38.357 -26.100	1.00	0.00		N
		MOTA	47	N	ASP A	37	31.592	38.681 -20.501	1.00	0.00		N
	50	MOTA	48	CA	ASP A	37	31.055	37.814 -19.457	1.00	0.00		C
		MOTA	49	С	ASP A	37	30.419	38.615 -18.328	1.00	0.00		c
		MOTA	50	0	ASP A	37	31.123	39.192 -17.501	1.00	0.00		0
		MOTA	51	CB	ASP A	37	32.155	36.919 -18.869	1.00	0.00		C
		ATOM	52	CG	ASP A	37	32.746	35.967 -19.890	1.00	0.00		C
	55	ATOM	53	OD1	ASP A	37	31.969	35.306 -20.608	1.00	0.00		0
		ATOM	54	OD2	ASP A	37	33.989	35.872 -19.964	1.00	0.00		0
		ATOM	55	N	VAL A	38	29.091	38.641 -18.294	1.00	0.00		N
		ATOM	56	CA	VAL A	38	28.365	39.359 -17.252	1.00	0.00		C
		ATOM	57	С	VAL A	38	28.525	38.640 -15.914	1.00	0.00		С
	60	ATOM	58	0	VAL A	38	28.035	37.522 -15.734	1.00	0.00	•	0

	» mon	5.0	CD	מ זמנו	20	26.863	39.454 -17.582	1.00	0.00	С
	MOTA MOTA	59 60	CB	VAL A	38 38	26.125	40.198 -16.470	1.00	0.00	Č
		61		VAL A	38	26.672	40.164 -18.920	1.00	0.00	č
	ATOM	62	N N	PRO A	39	29.218	39.272 -14.957	1.00	0.00	N
5	ATOM	63	CA	PRO A	39	29.417	38.652 -13.645	1.00	0.00	Ċ
3	ATOM		C	PRO A	39	28.110	38.256 -12.969	1.00	0.00	Č
	ATOM	64 65	0	PRO A	39	27.101	38.954 -13.076	1.00	0.00	Ö
	ATOM	65 66		PRO A	39	30.157	39.735 -12.863	1.00	0.00	Č
	ATOM	66	CB	PRO A	39	30.157	40.428 -13.925	1.00	0.00	Č
10	MOTA	67 69	CG	PRO A	39	29.934	40.558 -15.041	1.00	0.00	Č
10	ATOM	68	CD	ASN A	40	28.126	37.122 -12.278	1.00	0.00	N
	ATOM	69	N			26.943	36.673 -11.561	1.00	0.00	C
	ATOM	70	CA	ASN A	40	27.128	37.021 -10.091	1.00	0.00	c
	ATOM	71	C	ASN A	40		36.385 -9.390	1.00	0.00	0
15	ATOM	72	0	ASN A	40	27.913	35.164 -11.707	1.00	0.00	c
15	ATOM	73	CB	ASN A	40	26.752			0.00	c
	ATOM	74	CG	ASN A	40	25.582	34.652 -10.891	1.00	0.00	0
	ATOM	75		ASN A	40	24.465	35.162 -10.999	1.00		N
	ATOM	76		ASN A	40	25.830	33.640 -10.068	1.00	0.00	N
20	ATOM	77	N	VAL A	41	26.411	38.038 -9.627	1.00	0.00	C
20	ATOM	78	CA	VAL A	41	26.518	38.457 -8.233	1.00		c
	ATOM	79	С	VAL A	41	25.157	38.452 -7.549	1.00	0.00	0
	MOTA	80	0	VAL A	41	24.120	38.549 -8.204	1.00	0.00	c
	MOTA	81	CB	VAL A	41	27.131	39.869 -8.120	1.00	0.00	c
25	MOTA	82		VAL A	41	28.573	39.851 -8.604	1.00	0.00	c
25	MOTA	83		VAL A	41	26.313	40.855 -8.941	1.00	0.00	
	ATOM	84	N	ASP A	42	25.166	38.332 -6.228	1.00	0.00	N
	MOTA	85	CA	ASP A	42	23.928	38.315 -5.462	1.00	0.00	C C
	ATOM	86	С	ASP A	42	23.258	39.679 -5.488	1.00	0.00	0
20	MOTA	87	0	ASP A	42	22.032	39.782 -5.528	1.00	0.00	C
30	MOTA	88	CB	ASP A	42	24.210	37.904 -4.016	1.00	0.00	c
	MOTA	89	CG	ASP A	42	24.747	36.489 -3.909	1.00	0.00	
	MOTA	90		ASP A	42	24.078	35.565 -4.416	1.00	0.00	0
	ATOM	91		ASP A	42	25.830	36.300 -3.319	1.00	0.00	O N
2.5	MOTA	92	N	VAL A	43	24.072	40.729 -5.455	1.00	0.00	
35	MOTA	93	CA	VAL A	43	23.564	42.091 -5.480	1.00	0.00	C C
	MOTA	94	С	VAL A	43	24.314	42.921 -6.517	1.00	0.00	
	MOTA	95	0	VAL A	43	25.540	43.034 -6.466	1.00	0.00	0 C
	MOTA	96	СВ	VAL A	43	23.729	42.785 -4.111	1.00	0.00	c
40	MOTA	97		VAL A	43	23.136	44.192 -4.164	1.00	0.00	C
40	MOTA	98		VAL A	43	23.063	41.963 -3.017	1.00	0.00	N
	MOTA	99	N	GLN A	44	23.576	43.479 -7.468	1.00	0.00	C
	ATOM	100	CA	GLN A	44	24.170	44.328 -8.493	1.00	0.00	c
	ATOM	101	C	GLN A	44	23.410	45.642 -8.320	1.00	0.00	0
4 =	ATOM	102	0	GLN A	44	22.207	45.717 -8.577	1.00		
45	ATOM	103	CB	GLN A	44	23.956	43.723 -9.884	1.00	0.00	C C
	ATOM	104	CG	GLN A	44	25.020	44.138 -10.893	1.00	0.00	c
	ATOM	105	CD	GLN A	44	25.127	45.648 -11.011	1.00	0.00	
	MOTA	106		GLN A	44	24.143	46.324 -11.294	1.00	0.00	0
E0	ATOM	107		GLN A	44	26.325	46.181 -10.790	1.00	0.00	N
50	ATOM	108	N	MET A	45	24.115	46.675 -7.871	1.00	0.00	N
	ATOM	109	CA	MET A	45	23.483	47.954 -7.577	1.00	0.00	С
	MOTA	110	С	MET A	45	22.592	48.605 -8.632	1.00	0.00	С
	ATOM	111	0	MET A	45	21.596	49.236 -8.278	1.00	0.00	0
~-	MOTA	112	CB	MET A	45	24.535	48.947 -7.076	1.00	0.00	С
55	MOTA	113	CG	MET A	45	25.143	48.549 -5.728	1.00	0.00	С
	ATOM	114	SD	MET A	45	23.891	48.155 -4.467	1.00	0.00	S
	ATOM	115	CE	MET A	45	23.316	49.800 -4.038	1.00	0.00	C
	ATOM	116	N	LEU A	46	22.927	48.467 -9.910	1.00	0.00	N
	ATOM	117	CA	LEU A	46	22.087	49.063 -10.949	1.00	0.00	С
60	ATOM	118	С	LEU A	46	20.770	48.286 -11.009	1.00	0.00	С
	ATOM	119	0	LEU A	46	19.689	48.870 -11.150	1.00	0.00	0

	ATOM	120	СВ	LEU A	46	22.781	49.009	-12.317	1.00	0.00	С
	MOTA	121	CG	LEU A	46	22.024	49.702	-13.459	1.00	0.00	C
	MOTA	122	CD1	LEU A	46	22.010	51.211	-13.228	1.00	0.00	С
	MOTA	123	CD2	LEU A	46	22.686	49.379	-14.791	1.00	0.00	С
5	ATOM	124	N	GLU A	47	20.868	46.963	-10.890	1.00	0.00	N
	ATOM	125	CA	GLU A	47	19.683	46.112	-10.925	1.00	0.00	С
	MOTA	126	С	GLU A	47	18.826	46.412	-9.702	1.00	0.00	С
	MOTA	127	0	GLU A	47	17.609	46.566	-9.807	1.00	0.00	0
	MOTA	128	CB	GLU A	47	20.086	44.632	-10.946	1.00	0.00	С
10	MOTA	129	CG	GLU A	47	18.929	43.665	-11.196	1.00	0.00	С
	MOTA	130	CD	GLU A	47	18.116	43.357	-9.952	1.00	0.00	С
	MOTA	131	OE1	GLU A	47	17.007	42.796	-10.093	1.00	0.00	0
	MOTA	132	OE2	GLU A	47	18.582	43.657	-8.832	1.00	0.00	0
	ATOM	133	N	LEU A	48	19.467	46.514	-8.542	1.00	0.00	N
15	MOTA	134	CA	LEU A	48	18.757	46.813	-7.302	1.00	0.00	С
	MOTA	135	С	LEU A	48	18.022	48.144	-7.416	1.00	0.00	С
	MOTA	136	0	LEU A	48	16.861	48.258	-7.026	1.00	0.00	0
	MOTA	137	СВ	LEU A	48	19.737	46.869	-6.125	1.00	0.00	С
	MOTA	138	CG	LEU A	48	19.124	47.144	-4.747	1.00	0.00	С
20	MOTA	139	CD1	LEU A	48	18.094	46.072	-4.423	1.00	0.00	С
	MOTA	140	CD2	LEU A	48	20.216	47.174	-3.688	1.00	0.00	С
	MOTA	141	N	TYR A	49	18.698	49.149	-7.962	1.00	0.00	N
	MOTA	142	CA	TYR A	49	18.097	50.470	-8.120	1.00	0.00	С
	MOTA	143	С	TYR A	49	16.855	50.421	-9.002	1.00	0.00	С
25	MOTA	144	0	TYR A	49	15.883	51.141	-8.771	1.00	0.00	0
	ATOM	145	CB	TYR A	49	19.126	51.449	-8.704	1.00	0.00	С
	ATOM	146	CG	TYR A	49	19.677	52.405	-7.670	1.00	0.00	С
	MOTA	147	CD1	TYR A	49	20.153	51.934	-6.444	1.00	0.00	C
	MOTA	148	CD2	TYR A	49	19.672	53.783	-7.892	1.00	0.00	С
30	MOTA	149	CE1	TYR A	49	20.602	52.812	-5.458	1.00	0.00	С
	MOTA	150	CE2	TYR A	49	20.119	54.671	-6.913	1.00	0.00	С
	MOTA	151	CZ	TYR A	49	20.578	54.180	-5.700	1.00	0.00	С
	ATOM	152	OH	TYR A	49	20.977	55.057	-4.717	1.00	0.00	0
	MOTA	153	N	ASP A	50	16.888	49.553	-10.005	1.00	0.00	N
35	MOTA	154	CA	ASP A	50	15.768		-10.925	1.00	0.00	С
	MOTA	155	С	ASP A	50	14.532		-10.192	1.00	0.00	С
	MOTA	156	0	ASP A	50	13.409		-10.465	1.00	0.00	0
	MOTA	157	CB	ASP A	50	16.158		-12.058	1.00	0.00	С
40	MOTA	158	CG	ASP A	50	15.327		-13.311	1.00	0.00	C
40	MOTA	159		ASP A	50	15.409		-14.212	1.00	0.00	0
	MOTA	160	OD2	ASP A	50	14.609		-13.403	1.00	0.00	0
	MOTA	161	N	ARG A	51	14.749	47.951	-9.256	1.00	0.00	N
	MOTA	162	CA	ARG A	51	13.660	47.333	-8.495	1.00	0.00	C
4-	MOTA	163	С	ARG A	51	13.163	48.089	-7.262	1.00	0.00	C
45	MOTA	164	0	ARG A	51	11.986	48.002	-6.920	1.00	0.00	0
	MOTA	165	CB	ARG A	51	14.057	45.914	-8.062	1.00	0.00	C
	MOTA	166	CG	ARG A	51	14.171	44.923	-9.198	1.00	0.00	C
	MOTA	167	CD	ARG A	51	14.347	43.487	-8.698	1.00	0.00	C
50	MOTA	168	NE	ARG A	51	15.636	43.257	-8.047	1.00	0.00	N
50	MOTA	169	CZ	ARG A	51	15.881	43.459	-6.756	1.00	0.00	C
	MOTA	170		ARG A	51	14.923	43.899	-5.951	1.00	0.00	N
	MOTA	171		ARG A	51	17.092	43.219	-6.269	1.00	0.00	N
	MOTA	172	N	MET A	52	14.050	48.818	-6.592	1.00	0.00	И
	ATOM	173	CA	MET A	52	13.680	49.560	-5.385	1.00	0.00	C
55	MOTA	174	С	MET A	52	12.640	50.646	-5.618	1.00	0.00	С
	MOTA	175	0	MET A	52	12.600	51.260	-6.684	1.00	0.00	0
	MOTA	176	СВ	MET A	52	14.923	50.187	-4.754	1.00	0.00	C
	MOTA	177	CG	MET A	52	15.887	49.188	-4.155	1.00	0.00	С
(0	MOTA	178	SD	MET A	52	17.401	50.006	-3.610	1.00	0.00	S
60	ATOM	179	CE	MET A	52	16.765	51.029	-2.290	1.00	0.00	C
	ATOM	180	N	SER A	53	11.811	50.891	-4.605	1.00	0.00	N

	ATOM	181	CA	SER A	53	10.762	51.903	-4.696	1.00	0.00	С
	ATOM	182	C	SER A	53	11.154	53.233	-4.054	1.00	0.00	С
	ATOM	183	Ö	SER A	53	10.522	54.260	-4.301	1.00	0.00	0
	ATOM	184	СВ	SER A	53	9.476	51.380	-4.049	1.00	0.00	С
5	ATOM	185	OG	SER A	53	8.986	50.248	-4.749	1.00	0.00	0
	ATOM	186	N	PHE A	54	12.189	53.202	-3.220	1.00	0.00	N
	ATOM	187	CA	PHE A	54	12.689	54.396	-2.542	1.00	0.00	С
	ATOM	188	C	PHE A	54	11.648	55.183	-1.749	1.00	0.00	С
	ATOM	189	Ö	PHE A	54	11.735	56.409	-1.656	1.00	0.00	0
10	ATOM	190	CB	PHE A	54	13.356	55.342	-3.549	1.00	0.00	С
10	ATOM	191	CG	PHE A	54	14.604	54.786	-4.178	1.00	0.00	С
	ATOM	192		PHE A	54	14.528	53.915	-5.262	1.00	0.00	С
	ATOM	193		PHE A	54	15.855	55.131	-3.681	1.00	0.00	С
	ATOM	194		PHE A	54	15.682	53.394	-5.843	1.00	0.00	С
15	ATOM	195		PHE A	54	17.019	54.617	-4.250	1.00	0.00	C
10	ATOM	196	CZ	PHE A	54	16.935	53.746	-5.334	1.00	0.00	С
	ATOM	197	N	LYS A	55	10.668	54.498	-1.170	1.00	0.00	N
	ATOM	198	CA	LYS A	55	9.657	55.203	-0.390	1.00	0.00	С
	ATOM	199	C	LYS A	55	10.267	55.646	0.934	1.00	0.00	С
20	ATOM	200	ō	LYS A	55	10.922	54.863	1.617	1.00	0.00	0
_0	ATOM	201	СВ	LYS A	55	8.442	54.305	-0.139	1.00	0.00	C
	ATOM	202	CG	LYS A	55	7.755	53.841	-1.410	1.00	0.00	С
	ATOM	203	CD	LYS A	55	7.334	55.014	-2.285	1.00	0.00	С
	ATOM	204	CE	LYS A	55	6.694	54.526	-3.578	1.00	0.00	С
25	MOTA	205	NZ	LYS A	55	6.200	55.652	-4.420	1.00	0.00	N
	ATOM	206	N	ASP A	56	10.048	56.907	1.286	1.00	0.00	N
	ATOM	207	CA	ASP A	56	10.584	57.476	2.515	1.00	0.00	С
	ATOM	208	С	ASP A	56	9.524	57.491	3.618	1.00	0.00	С
	ATOM	209	0	ASP A	56	8.964	58.535	3.942	1.00	0.00	0
30	ATOM	210	CB	ASP A	56	11.093	58.895	2.224	1.00	0.00	С
	ATOM	211	CG	ASP A	56	11.696	59.569	3.438	1.00	0.00	С
	ATOM	212		ASP A	56	12.224	58.863	4.320	1.00	0.00	0
	ATOM	213	OD2	ASP A	56	11.654	60.815	3.502	1.00	0.00	0
	ATOM	214	N	ILE A	57	9.250	56.327	4.198	1.00	0.00	N
35	ATOM	215	CA	ILE A	57	8.247	56.245	5.252	1.00	0.00	С
	ATOM	216	С	ILE A	57	8.873	56.247	6.640	1.00	0.00	С
	ATOM	217	0	ILE A	57	10.031	55.868	6.814	1.00	0.00	0
	ATOM	218	CB	ILE A	57	7.371	54.976	5.110	1.00	0.00	С
	MOTA	219	CG1	ILE A	57	8.178	53.733	5.479	1.00	0.00	С
40	ATOM	220	CG2	ILE A	57	6.855	54.854	3.679	1.00	0.00	C
	ATOM	221	CD1	ILE A	57	7.348	52.469	5.538	1.00	0.00	С
	ATOM	222	N	ASP A	58	8.091	56.683	7.622	1.00	0.00	N
	ATOM	223	CA	ASP A	58	8.527	56.744	9.013	1.00	0.00	C
	MOTA	224	С	ASP A	58	8.552	55.333	9.595	1.00	0.00	C
45	ATOM	225	0	ASP A	58	7.504	54.718	9.787	1.00	0.00	0
	ATOM	226	CB	ASP A	58	7.562	57.627	9.809	1.00	0.00	C
	MOTA	227	CG	ASP A	58	7.981	57.808	11.257	1.00	0.00	C
	ATOM	228	OD1	ASP A	58	7.386	58.671	11.938	1.00	0.00	0
	MOTA	229	OD2	ASP A	58	8.892	57.094	11.723	1.00	0.00	0
50	MOTA	230	N	GLY A	59	9.749	54.825	9.876	1.00	0.00	N
	MOTA	231	CA	GLY A	59	9.871	53.482	10.418	1.00	0.00	C
	ATOM	232	С	GLY A	59	9.835	53.393	11.933	1.00	0.00	C
	MOTA	233	0	GLY A	59	10.035	52.318	12.497	1.00	0.00	0
	ATOM	234	N	GLY A	60	9.576	54.516	12.595	1.00	0.00	N
55	MOTA	235	CA	GLY A	60	9.527	54.525	14.048	1.00	0.00	C
	ATOM	236	С	GLY A	60	10.794	55.129	14.623	1.00	0.00	C
	MOTA	237	0	GLY A	60	11.352	56.059	14.041	1.00	0.00	0
	MOTA	238	N	VAL A	61	11.261	54.611	15.756	1.00	0.00	N
	MOTA	239	CA	VAL A	61	12.481	55.143	16.353	1.00	0.00	C
60	MOTA	240	С	VAL A	61	13.608	55.074	15.323	1.00	0.00	C
	MOTA	241	0	VAL A	61	14.432	55.985	15.240	1.00	0.00	0

						10.061	54 206	17 657	1 00	0 00	_
	ATOM	242	CB	VAL A		12.861	54.396	17.657	1.00	0.00	C
	ATOM	243		VAL A		11.816	54.694	18.731	1.00	0.00	C
	ATOM	244		VAL A		12.957	52.900	17.413	1.00	0.00	C
_	ATOM	245	N	TRP A		13.652	53.995	14.545	1.00	0.00	N
5	ATOM	246	CA	TRP A		14.643	53.904	13.477	1.00	0.00	C
	ATOM	247	С	TRP A		13.855	54.516	12.326	1.00	0.00	C
	MOTA	248	0	TRP A	62	13.198	53.816	11.552	1.00	0.00	0
	ATOM	249	CB	TRP A	62	15.022	52.450	13.165	1.00	0.00	С
	MOTA	250	CG	TRP A	62	15.979	52.328	11.998	1.00	0.00	C
10	ATOM	251	CD1	TRP A	62	16.663	53.346	11.388	1.00	0.00	C
	ATOM	252	CD2	TRP A	62	16.332	51.131	11.290	1.00	0.00	С
	ATOM	253	NE1	TRP A	62	17.412	52.859	10.343	1.00	0.00	N
	MOTA	254	CE2	TRP A	62	17.230	51.503	10.260	1.00	0.00	С
	MOTA	255	CE3	TRP A	62	15.978	49.781	11.423	1.00	0.00	С
15	ATOM	256	CZ2	TRP A	62	17.776	50.573	9.368	1.00	0.00	С
	MOTA	257	CZ3	TRP A	62	16.520	48.855	10.537	1.00	0.00	С
	MOTA	258		TRP A		17.412	49.257	9.520	1.00	0.00	C
	MOTA	259	N	LYS A	63	13.909	55.841	12.245	1.00	0.00	N
	MOTA	260	CA	LYS A	63	13.164	56.598	11.245	1.00	0.00	С
20	ATOM	261	С	LYS A		13.183	56.106	9.802	1.00	0.00	С
	ATOM	262	0	LYS A		12.177	56.219	9.094	1.00	0.00	0
	ATOM	263	СВ	LYS A		13.595	58.067	11.290	1.00	0.00	С
	ATOM	264	CG	LYS A		13.127	58.819	12.543	1.00	0.00	С
	ATOM	265	CD	LYS A		11.605	58.967	12.572	1.00	0.00	С
25	MOTA	266	CE	LYS A		11.120	59.794	13.759	1.00	0.00	С
	ATOM	267	NZ	LYS A		11.458	59.205	15.096	1.00	0.00	N
	ATOM	268	N	GLN A		14.305	55.556	9.358	1.00	0.00	N
	ATOM	269	CA	GLN A		14.401	55.101	7.976	1.00	0.00	С
	ATOM	270	C	GLN A		14.460	53.584	7.816	1.00	0.00	С
30	ATOM	271	0	GLN F		14.836	53.071	6.758	1.00	0.00	0
00	ATOM	272	СВ	GLN A		15.612	55.766	7.320	1.00	0.00	С
	ATOM	273	CG	GLN A		15.512	57.283	7.347	1.00	0.00	С
	ATOM	274	CD	GLN F		16.853	57.968	7.160	1.00	0.00	С
	ATOM	275		GLN F		17.819	57.669	7.868	1.00	0.00	0
35	ATOM	276		GLN F		16.917	58.896	6.210	1.00	0.00	N
00	ATOM	277	N	GLY F		14.071	52.878	8.873	1.00	0.00	N
	ATOM	278	CA	GLY F		14.060	51.428	8.843	1.00	0.00	C
	ATOM	279	C	GLY F		12.713	50.880	9.283	1.00	0.00	C
	MOTA	280	0	GLY F		11.680	51.204	8.692	1.00	0.00	0
40	ATOM	281	N	TRP F		12.723	50.053	10.323	1.00	0.00	N
40	ATOM	282	CA	TRP F		11.497	49.453	10.849	1.00	0.00	C
	ATOM	283	C	TRP F		11.768	49.023	12.285	1.00	0.00	Č
	ATOM	284	0	TRP A		12.907	49.101	12.745	1.00	0.00	0
	ATOM		СВ	TRP F		11.104	48.234	10.005	1.00	0.00	C
45		285 286		TRP F		12.026	47.046	10.174	1.00	0.00	C
43	ATOM		CG CD1			11.895	46.027	11.075	1.00	0.00	Č
	ATOM	287					46.775	9.437	1.00	0.00	Č
	ATOM	288		TRP A		13.225	45.137	10.944	1.00	0.00	N
	ATOM	289		TRP A		12.934	45.571	9.947	1.00	0.00	C
50	ATOM	290		TRP A		13.767				0.00	C
50	ATOM	291		TRP A		13.896	47.432	8.395	1.00	0.00	c
	MOTA	292		TRP F		14.950	45.009	9.450	1.00	0.00	c
	MOTA	293		TRP A		15.073	46.874	7.901		0.00	c
	MOTA	294		TRP F		15.588	45.672	8.431	1.00		
	ATOM	295	N	ASN A		10.732	48.581	12.996	1.00	0.00	N
55	ATOM	296	CA	ASN A		10.908	48.128	14.375	1.00	0.00	С
	ATOM	297	С	ASN A		11.532	46.739	14.363	1.00	0.00	C
	ATOM	298	0	ASN A		10.861	45.746	14.070	1.00	0.00	0
	ATOM	299	CB	ASN A		9.568	48.080	15.120	1.00	0.00	С
	ATOM	300	CG	ASN A		8.998	49.458	15.390	1.00	0.00	C
60	ATOM	301		ASN A		9.736	50.406	15.663	1.00	0.00	0
	ATOM	302	ND2	ASN A	4 67	7.676	49.572	15.337	1.00	0.00	N

repetation of the second of th

	ATOM	303	N	ILE A	68	12.818	46.669	14.684	1.00	0.00	N
	ATOM	304	CA	ILE A	68	13.524	45.397	14.683	1.00	0.00	С
	ATOM	305	C	ILE A	68	13.074	44.490	15.822	1.00	0.00	С
	ATOM	306	Ö	ILE A	68	12.961	44.922	16.968	1.00	0.00	0
5			СВ	ILE A	68	15.046	45.608	14.799	1.00	0.00	Ċ
3	MOTA	307			68	15.540	46.496	13.651	1.00	0.00	Č
	ATOM	308		ILE A						0.00	c
	MOTA	309		ILE A	68	15.757	44.265	14.772	1.00		C
	ATOM	310		ILE A	68	16.994	46.917	13.781	1.00	0.00	
4.0	MOTA	311	N	LYS A	69	12.820	43.229	15.489	1.00	0.00	N
10	ATOM	312	CA	LYS A	69	12.402	42.239	16.474	1.00	0.00	С
	ATOM	313	С	LYS A	69	13.403	41.090	16.443	1.00	0.00	С
	ATOM	314	0	LYS A	69	13.979	40.791	15.399	1.00	0.00	0
	MOTA	315	CB	LYS A	69	10.993	41.725	16.151	1.00	0.00	С
	ATOM	316	CG	LYS A	69	9.909	42.788	16.298	1.00	0.00	С
15	ATOM	317	CD	LYS A	69	8.531	42.278	15.885	1.00	0.00	С
~~	ATOM	318	CE	LYS A	69	8.478	41.927	14.402	1.00	0.00	С
	ATOM	319	NZ	LYS A	69	7.079	41.678	13.933	1.00	0.00	N
		320		TYR A	70	13.622	40.458	17.590	1.00	0.00	N
	ATOM		N		70	14.556	39.344	17.658	1.00	0.00	C
20	ATOM	321	CA	TYR A			38.289	18.641	1.00	0.00	Č
40	MOTA	322	С	TYR A	70	14.071				0.00	ō
	ATOM	323	0	TYR A	70	13.309	38.584	19.563	1.00		
	MOTA	324	CB	TYR A	70	15.952	39.840	18.063	1.00	0.00	С
	MOTA	325	CG	TYR A	70	16.034	40.442	19.449	1.00	0.00	C
~-	ATOM	326	CD1	TYR A	70	16.268	39.643	20.569	1.00	0.00	C
25	MOTA	327	CD2	TYR A	70	15.859	41.810	19.645	1.00	0.00	С
	ATOM	328	CE1	TYR A	70	16.326	40.194	21.846	1.00	0.00	С
	ATOM	329	CE2	TYR A	70	15.912	42.369	20.914	1.00	0.00	С
	MOTA	330	CZ	TYR A	70	16.145	41.558	22.010	1.00	0.00	С
	MOTA	331	ОН	TYR A	70	16.181	42.115	23.268	1.00	0.00	0
30	ATOM	332	N	ASP A	71	14.507	37.055	18.423	1.00	0.00	N
	ATOM	333	CA	ASP A	71	14.141	35.949	19.293	1.00	0.00	С
	ATOM	334	C	ASP A	71	15.173	35.882	20.413	1.00	0.00	C
	ATOM	335	Ö	ASP A	71	16.334	35.555	20.179	1.00	0.00	0
	ATOM	336	СВ	ASP A	71	14.124	34.644	18.494	1.00	0.00	C
35	ATOM	337	CG	ASP A	71	13.869	33.427	19.361	1.00	0.00	C
33					71	13.391	33.590	20.503	1.00	0.00	ō
	ATOM	338		ASP A				18.890	1.00	0.00	ő
	MOTA	339		ASP A	71	14.142	32.303			0.00	N
	ATOM	340	N	PRO A	72	14.762	36.203	21.649	1.00		C
40	MOTA	341	CA	PRO A	72	15.688	36.172	22.785	1.00	0.00	
4 0	MOTA	342	С	PRO A	72	16.436	34.852	22.951	1.00	0.00	C
	MOTA	343	0	PRO A	72	17.546	34.824	23.486	1.00	0.00	0
	MOTA	344	CB	PRO A	72	14.786	36.499	23.978	1.00	0.00	С
	MOTA	345	CG	PRO A	72	13.441	36.007	23.541	1.00	0.00	С
	MOTA	346	CD	PRO A	72	13.386	36.462	22.103	1.00	0.00	С
45	ATOM	347	N	LEU A	73	15.840	33.764	22.475	1.00	0.00	N
	MOTA	348	CA	LEU A	73	16.466	32.453	22.591	1.00	0.00	С
	ATOM	349	С	LEU A	73	17.534	32.200	21.533	1.00	0.00	C
	ATOM	350	0	LEU A	73	18.181	31.155	21.537	1.00	0.00	0
	ATOM	351	СВ	LEU A	73	15.405	31.353	22.523	1.00	0.00	С
50	ATOM	352	CG	LEU A	73	14.411	31.339	23.687	1.00	0.00	С
00	ATOM	353		LEU A	73	13.407	30.215	23.488	1.00	0.00	C
						15.163	31.163	25.001	1.00	0.00	C
	ATOM	354		LEU A	73				1.00	0.00	N
	ATOM	355	N	LYS A	74	17.724	33.156	20.630			
	MOTA	356	CA	LYS A	74	18.726	33.006	19.581	1.00	0.00	C
55	ATOM	357	С	LYS A	74	20.113	32.816	20.190	1.00	0.00	C
	MOTA	358	0	LYS A	74	20.911	32.012	19.710	1.00	0.00	0
	MOTA	359	CB	LYS A	74	18.726	34.233	18.670	1.00	0.00	С
	ATOM	360	CG	LYS A	74	19.676	34.126	17.489	1.00	0.00	С
	ATOM	361	CD	LYS A	74	19.504	35.299	16.540	1.00	0.00	С
60	MOTA	362	CE	LYS A	74	20.369	35.138	15.303	1.00	0.00	С
	ATOM	363	NZ	LYS A	74	20.181	36.267	14.350	1.00	0.00	N
				-							

	ATOM	364	N	TYR	A 7	5	20.395	33.562	21.250	1.00	0.00	N
	MOTA	365	CA	TYR A	A 75	5	21.683	33.466	21.919	1.00	0.00	С
	MOTA	366	С	TYR .	A 7	5	21.537	32.733	23.247	1.00	0.00	С
	MOTA	367	0	TYR A	A 75	5	20.536	32.892	23.944	1.00	0.00	0
5	ATOM	368	CB	TYR	A 7	5	22.270	34.865	22.138	1.00	0.00	С
	ATOM	369	CG	TYR A	A 75	5	22.564	35.588	20.841	1.00	0.00	С
	MOTA	370	CD1	TYR I	A 75	5	21.688	36.549	20.333	1.00	0.00	С
	MOTA	371	CD2	TYR	A 75	5	23.689	35.261	20.087	1.00	0.00	C
	MOTA	372	CE1	TYR Z	A 75	5	21.926	37.164	19.100	1.00	0.00	C
10	MOTA	373		TYR			23.934	35.865	18.856	1.00	0.00	C
	ATOM	374	CZ	TYR			23.049	36.812	18.368	1.00	0.00	С
	ATOM	375	ОН	TYR			23.288	37.383	17.137	1.00	0.00	0
	MOTA	376	N	ASN I			22.532	31.916	23.579	1.00	0.00	N
	ATOM	377	CA	ASN .			22.523	31.153	24.822	1.00	0.00	С
15	ATOM	378	С	ASN			23.951	30.797	25.225	1.00	0.00	С
	ATOM	379	0	ASN			24.907	31.191	24.560	1.00	0.00	0
	ATOM	380	СВ	ASN			21.699	29.873	24.662	1.00	0.00	C
	ATOM	381	CG	ASN			22.393	28.837	23.806	1.00	0.00	С
	ATOM	382		ASN			22.669	29.070	22.633	1.00	0.00	0
20	ATOM	383		ASN			22.681	27.680	24.393	1.00	0.00	N
	ATOM	384	N	ALA			24.086	30.042	26.312	1.00	0.00	N
	ATOM	385	CA	ALA			25.396	29.645	26.818	1.00	0.00	С
	ATOM	386	C	ALA			26.311	29.029	25.761	1.00	0.00	С
	ATOM	387	Ö	ALA			27.532	29.175	25.830	1.00	0.00	0
25	ATOM	388	СВ	ALA			25.226	28.673	27.981	1.00	0.00	С
	ATOM	389	N	HIS			25.725	28.348	24.784	1.00	0.00	N
	ATOM	390	CA	HIS			26.512	27.701	23.738	1.00	0.00	С
	ATOM	391	C	HIS			26.693	28.573	22.501	1.00	0.00	С
	ATOM	392	Ö	HIS			27.455	28.229	21.597	1.00	0.00	0
30	ATOM	393	СВ	HIS			25.854	26.376	23.343	1.00	0.00	C
	ATOM	394	CG	HIS			25.590	25.467	24.502	1.00	0.00	· C
	ATOM	395		HIS .			26.591	25.016	25.336	1.00	0.00	N
	ATOM	396		HIS .			24.438	24.936	24.974	1.00	0.00	С
	ATOM	397		HIS			26.066	24.246	26.273	1.00	0.00	С
35	ATOM	398		HIS			24.761	24.181	26.076	1.00	0.00	N
00	ATOM	399	N	HIS			25.996	29.703	22.468	1.00	0.00	N
	ATOM	400	CA	HIS			26.075	30.618	21.336	1.00	0.00	С
	ATOM	401	C	HIS			25.850	32.051	21.821	1.00	0.00	С
	ATOM	402	Ö	HIS			24.728	32.551	21.816	1.00	0.00	0
40	ATOM	403	СВ	HIS .			25.024	30.222	20.293	1.00	0.00	С
	ATOM	404	CG	HIS			25.102	31.005	19.020	1.00	0.00	С
	ATOM	405		HIS			24.295	32.092	18.763	1.00	0.00	N
	ATOM	406		HIS			25.902	30.865	17.937	1.00	0.00	С
	ATOM	407		HIS			24.595	32.588	17.575	1.00	0.00	С
45	ATOM	408		HIS			25.567	31.862	17.054	1.00	0.00	N
	ATOM	409	N	LYS			26.932	32.699	22.244	1.00	0.00	N
	ATOM	410	CA	LYS			26.869	34.063	22.758	1.00	0.00	С
	ATOM	411	С	LYS			27.123	35.126	21.695	1.00	0.00	С
	ATOM	412	Ö	LYS .			27.749	34.859	20.667	1.00	0.00	0
50	ATOM	413	СВ	LYS			27.900	34.256	23.872	1.00	0.00	С
00	ATOM	414	CG	LYS			27.779	33.296	25.048	1.00	0.00	С
	ATOM	415	CD	LYS			28.847	33.614	26.085	1.00	0.00	С
	ATOM	416	CE	LYS			28.795	32.656	27.266	1.00	0.00	С
	ATOM	417	NZ	LYS			29.862	32.967	28.268	1.00	0.00	N
55	ATOM	418	N	LEU .			26.633	36.334	21.963	1.00	0.00	N
00	ATOM	419	CA	LEU			26.823	37.470	21.069	1.00	0.00	C
	ATOM	420	C	LEU			28.096	38.173	21.528	1.00	0.00	Č
	ATOM	421	0	LEU .			28.169	38.662	22.656	1.00	0.00	o
	ATOM	421	CB	LEU			25.637	38.439	21.167	1.00	0.00	c
60	ATOM	423	CG	LEU			25.716	39.700	20.296	1.00	0.00	c
00	ATOM	423		LEU .			25.677	39.308	18.820	1.00	0.00	c
	M I ON	724	CDI	טבט .	. 0	-	23.011	37.300	10.020	1.00	5.00	Ū

	ATOM	425	CD2	LEU A	81	24.561	40.635	20.625	1.00	0.00	С
	ATOM	426	N	LYS A	82	29.104	38.193	20.663	1.00	0.00	N
	ATOM	427	CA	LYS A	82	30.376	38.840	20.973	1.00	0.00	С
	ATOM	428	С	LYS A		30.281	40.287	20.512	1.00	0.00	С
5	ATOM	429	0	LYS A		30.109	40.553	19.323	1.00	0.00	0
•	ATOM	430	СВ	LYS A		31.519	38.128	20.243	1.00	0.00	С
	ATOM	431	CG	LYS A		31.750	36.697	20.717	1.00	0.00	С
	ATOM	432	CD	LYS A		32.635	35.903	19.758	1.00	0.00	С
						34.048	36.457	19.683	1.00	0.00	Ċ
10	ATOM	433	CE	LYS A			35.692	18.703	1.00	0.00	N
10	MOTA	434	NZ	LYS A		34.871			1.00	0.00	N
	ATOM	435	N	VAL A		30.395	41.220	21.453			C
	ATOM	436	CA	VAL A		30.291	42.634	21.125	1.00	0.00	
	MOTA	437	С	VAL A		31.620	43.372	21.232	1.00	0.00	С
	ATOM	438	0	VAL A		32.304	43.299	22.253	1.00	0.00	0
15	MOTA	439	CB	VAL A	83	29.261	43.342	22.046	1.00	0.00	C
	ATOM	440	CG1	VAL A	83	29.131	44.810	21.662	1.00	0.00	С
	MOTA	441	CG2	VAL A	83	27.903	42.651	21.941	1.00	0.00	С
	ATOM	442	N	PHE A	84	31.978	44.084	20.168	1.00	0.00	N
	ATOM	443	CA	PHE A		33.208	44.868	20.147	1.00	0.00	C
20	ATOM	444	С	PHE A		32.880	46.356	20.069	1.00	0.00	С
	ATOM	445	0	PHE A		32.350	46.823	19.062	1.00	0.00	0
	ATOM	446	СВ	PHE A		34.082	44.492	18.946	1.00	0.00	С
	ATOM	447	CG	PHE A		34.769	43.166	19.083	1.00	0.00	С
		448		PHE A		34.331	42.061	18.361	1.00	0.00	C
25	ATOM					35.862	43.023	19.934	1.00	0.00	C
23	ATOM	449		PHE A		34.976	40.826	18.482	1.00	0.00	Č
	ATOM	450		PHE A			41.798	20.063	1.00	0.00	č
	ATOM	451		PHE A		36.515				0.00	c
	MOTA	452	CZ	PHE A		36.072	40.697	19.337	1.00	0.00	N
20	MOTA	453	N	VAL A		33.185	47.084	21.141	1.00		C
30	MOTA	454	CA	VAL A		32.958	48.527	21.204	1.00	0.00	
	MOTA	455	С	VAL A		34.271	49.163	20.770	1.00	0.00	C
	MOTA	456	0	VAL A		35.285	49.045	21.458	1.00	0.00	0
	MOTA	457	CB	VAL A		32.601	48.977	22.639	1.00	0.00	С
	ATOM	458	CG1	VAL A	. 85	32.411	50.495	22.688	1.00	0.00	C
35	ATOM	459	CG2	VAL A	. 85	31.325	48.272	23.086	1.00	0.00	С
	MOTA	460	N	VAL A	. 86	34.242	49.839	19.627	1.00	0.00	N
	ATOM	461	CA	VAL A	. 86	35.442	50.443	19.064	1.00	0.00	С
	ATOM	462	С	VAL A	. 86	35.510	51.968	19.176	1.00	0.00	С
	MOTA	463	0	VAL A	. 86	34.875	52.686	18.403	1.00	0.00	0
40	MOTA	464	CB	VAL A	86	35.577	50.032	17.576	1.00	0.00	С
	ATOM	465		VAL A		36.906	50.518	17.007	1.00	0.00	С
	ATOM	466		VAL A		35.451	48.512	17.445	1.00	0.00	С
	ATOM	467	N	PRO A		36.296		20.139	1.00	0.00	N
	ATOM	468	CA	PRO A		36.451	53.923	20.348	1.00	0.00	С
45	ATOM	469	C	PRO A		37.147		19.148	1.00	0.00	С
40		470		PRO A		38.123		18.626	1.00	0.00	0
	ATOM		O			37.309		21.613	1.00	0.00	Ċ
	ATOM	471	CB	PRO A				22.318	1.00	0.00	c
	ATOM	472	CG	PRO A		37.009			1.00	0.00	c
EΩ	MOTA	473	CD	PRO A		37.018		21.177			N
50	MOTA	474	N	HIS A		36.649		18.715	1.00	0.00	
	ATOM	475	CA	HIS A		37.237		17.576	1.00	0.00	С
	ATOM	476	С	HIS A		37.019		17.662	1.00	0.00	C
	MOTA	477	0	HIS A	88	36.206		18.452	1.00	0.00	0
	ATOM	478	CB	HIS A	88	36.662		16.258	1.00	0.00	С
55	ATOM	479	CG	HIS A	88	35.211	56.184	16.053	1.00	0.00	С
	ATOM	480		HIS A		34.774		15.390	1.00	0.00	N
	ATOM	481		HIS A		34.097		16.430	1.00	0.00	С
	ATOM	482		HIS A		33.454		15.367	1.00	0.00	С
	ATOM	483		HIS A		33.018		15.990	1.00	0.00	N
60	ATOM	484	N	SER A		37.757		16.841	1.00	0.00	N
00	ATOM	485	CA	SER A		37.676		16.827	1.00	0.00	С
	M I OP	407	CA	JUN P	. 09	37.070	55.115	10.02,		_ ,	

IOSEDE DOMENT

												_
		ATOM	486	С	SER A	89	37.857	60.572	15.387	1.00	0.00	С
		ATOM	487	0	SER A	89	38.933	60.414	14.809	1.00	0.00	0
		ATOM	488	СВ	SER A	89	38.779	60.694	17.724	1.00	0.00	С
							38.743	62.109	17.760	1.00	0.00	0
	_	MOTA	489	OG	SER A	89						N
	5	MOTA	490	N	HIS A	90	36.797	61.123	14.809	1.00	0.00	
		MOTA	491	CA	HIS A	90	36.839	61.587	13.428	1.00	0.00	С
		ATOM	492	С	HIS A	90	37.494	62.965	13.354	1.00	0.00	С
		ATOM	493	0	HIS A	90	36.918	63.966	13.794	1.00	0.00	0
		ATOM	494	СВ	HIS A	90	35.419	61.634	12.856	1.00	0.00	С
	10				HIS A	90	35.370	61.921	11.390	1.00	0.00	С
	10	MOTA	495	CG						1.00	0.00	N
		ATOM	496		HIS A	90	35.986	61.118	10.455			
		ATOM	497	CD2	HIS A	90	34.794	62.931	10.698	1.00	0.00	C
		ATOM	498	CE1	HIS A	90	35.793	61.621	9.250	1.00	0.00	С
		ATOM	499	NE2	HIS A	90	35.072	62.721	9.370	1.00	0.00	N
	15	ATOM	500	N	ASN A	91	38.705	63.003	12.802	1.00	0.00	N
	10	ATOM	501	CA	ASN A	91	39.467	64.242	12.675	1.00	0.00	С
							39.630	64.672	11.223	1.00	0.00	С
		ATOM	502	С	ASN A	91				1.00	0.00	Ö
		ATOM	503	0	ASN A	91	40.326	64.019	10.446			
		ATOM	504	СВ	ASN A	91	40.857	64.082	13.300	1.00	0.00	C
	20	ATOM	505	CG	ASN A	91	40.812	63.944	14.807	1.00	0.00	С
21299		ATOM	506	OD1	ASN A	91	40.207	63.013	15.344	1.00	0.00	0
IJ		ATOM	507		ASN A	91	41.456	64.872	15.500	1.00	0.00	N
, 17		ATOM	508	N	ASP A	92	38.996	65.784	10.871	1.00	0.00	N
				CA	ASP A	92	39.064	66.310	9.515	1.00	0.00	С
اليارة	25	MOTA	509							1.00	0.00	C
m	25	MOTA	510	С	ASP A	92	40.293	67.170	9.280			Ö
		ATOM	511	0	ASP A	92	40.522	68.138	10.002	1.00	0.00	
¶y edi astra		MOTA	512	CB	ASP A	92	37.828	67.157	9.224	1.00	0.00	C
W		ATOM	513	CG	ASP A	92	36.556	66.379	9.378	1.00	0.00	C
n.		ATOM	514	OD1	ASP A	92	36.330	65.473	8.556	1.00	0.00	0
ijħ	30	ATOM	515		ASP A	92	35.799	66.665	10.327	1.00	0.00	0
1,9 1	00	ATOM	516	N	PRO A	93	41.114	66.812	8.281	1.00	0.00	N
£}					PRO A	93	42.311	67.605	7.983	1.00	0.00	С
		ATOM	517	CA					7.288	1.00	0.00	Č
		MOTA	518	С	PRO A	93	41.825	68.880				ő
A	~=	MOTA	519	0	PRO A	93	42.162	69.148	6.133	1.00	0.00	
141	35	ATOM	520	CB	PRO A	93	43.104	66.699	7.043	1.00	0.00	C
1,4		MOTA	521	CG	PRO A	93	42.681	65.313	7.468	1.00	0.00	С
		MOTA	522	CD	PRO A	93	41.191	65.492	7.633	1.00	0.00	С
		ATOM	523	N	GLY A	94	41.007	69.642	8.008	1.00	0.00	N
<u> </u>		ATOM	524	CA	GLY A	94	40.447	70.870	7.480	1.00	0.00	С
51	40		525	C	GLY A	94	38.966	70.728	7.157	1.00	0.00	Ç
	40	ATOM						69.702	6.631	1.00	0.00	Ó
		MOTA	526	0	GLY A	94	38.529					N
		ATOM	527	N	TRP A	95	38.193	71.753	7.507	1.00	0.00	
		MOTA	528	CA	TRP A	95	36.757	71.810	7.233	1.00	0.00	C
		MOTA	529	С	TRP A	95	36.243	73.193	7.623	1.00	0.00	С
	45	ATOM	530	0	TRP A	95	36.126	74.071	6.771	1.00	0.00	0
		MOTA	531	CB	TRP A	95	35.966	70.740	7.997	1.00	0.00	C
		ATOM	532	CG	TRP A	95	34.484	70.809	7.673	1.00	0.00	С
					TRP A	95	33.929	71.139	6.467	1.00	0.00	С
		ATOM	533					70.522	8.552	1.00	0.00	C
	Ε0	MOTA	534		TRP A	95	33.383					N
	50	MOTA	535		TRP A	95	32.557	71.076	6.539	1.00	0.00	
		ATOM	536	CE2	TRP A	95	32.195	70.699	7.805	1.00	0.00	C
		ATOM	537	CE3	TRP A	95	33.285	70.129	9.896	1.00	0.00	С
		ATOM	538	CZ2	TRP A	95	30.922	70.497	8.356	1.00	0.00	C
		ATOM	539		TRP A	95	32.015	69.927	10.445	1.00	0.00	С
	55	ATOM	540		TRP A	95	30.854	70.112	9.674	1.00	0.00	С
	55									1.00	0.00	N
		ATOM	541	N	ILE A	96	35.929	73.385	8.903		0.00	C
		MOTA	542	CA	ILE A	96	35.467	74.693	9.363	1.00		
		MOTA	543	С	ILE A	96	36.650	75.452	9.955	1.00	0.00	C
		ATOM	544	0	ILE A	96	36.557	76.638	10.273	1.00	0.00	0
	60	ATOM	545	CB	ILE A	96	34.325	74.584	10.396	1.00	0.00	С
		ATOM	546		ILE A	96	34.748	73.707	11.571	1.00	0.00	С
		711011	540	001		, ,	2			-		

	ATOM	547	CG2	ILE	Α	96	33.073	74.039	9.716	1.00	0.00	С
	ATOM	548		ILE		96	33.731	73.670	12.689	1.00	0.00	C
	ATOM	549	N	GLN		97	37.763	74.739	10.096	1.00	0.00	N
	ATOM	550	CA	GLN		97	39.023	75.290	10.575	1.00	0.00	C
5	ATOM	551	C	GLN		97	40.065	74.682	9.640	1.00	0.00	C
_	ATOM	552	0	GLN		97	39.793	73.680	8.981	1.00	0.00	0
	ATOM	553	СВ	GLN		97	39.322	74.857	12.016	1.00	0.00	С
	ATOM	554	CG	GLN		97	38.430	75.493	13.081	1.00	0.00	С
	ATOM	555	CD	GLN		97	38.920	75.205	14.494	1.00	0.00	С
10	ATOM	556		GLN		97	40.053	75.539	14.853	1.00	0.00	0
10	ATOM	557		GLN		97	38.069	74.580	15.303	1.00	0.00	N
	ATOM	558	N	THR		98	41.245	75.280	9.566	1.00	0.00	N
	ATOM	559	CA	THR		98	42.290	74.739	8.707	1.00	0.00	С
		560	C	THR		98	42.238	73.549	9.407	1.00	0.00	C
15	ATOM		0			98	42.706	73.310	10.597	1.00	0.00	Ō
15	ATOM	561		THR		98	43.398	75.760	8.450	1.00	0.00	c
	ATOM	562	CB	THR			44.036	76.068	9.692	1.00	0.00	ō
	ATOM	563		THR		98 98	44.036	77.039	7.834	1.00	0.00	Č
	ATOM	564		THR				72.809	8.666	1.00	0.00	N
20	ATOM	565	N	PHE		99	43.753		9.223	1.00	0.00	C
20	MOTA	566	CA	PHE		99	44.461	71.664		1.00	0.00	C
	ATOM	567	С	PHE		99	45.209	72.088	10.488			0
	MOTA	568	0	PHE		99	45.049	71.481	11.543	1.00	0.00	C
	MOTA	569	CB	PHE		99	45.471	71.119	8.208	1.00	0.00	
0 E	MOTA	570	CG	PHE		99	46.348	70.015	8.749	1.00	0.00	C
25	MOTA	571		PHE		99	45.937	68.685	8.690	1.00	0.00	С
	ATOM	572		PHE		99	47.589	70.307	9.315	1.00	0.00	С
	ATOM	573		PHE		99	46.748	67.659	9.185	1.00	0.00	С
	ATOM	574		PHE		99	48.408	69.290	9.813	1.00	0.00	С
20	ATOM	575	CZ	PHE		99	47.985	67.962	9.746	1.00	0.00	C
30	ATOM	576	N	GLU			46.028	73.131	10.372	1.00	0.00	N
	MOTA	577	CA	GLU			46.820	73.615	11.504	1.00	0.00	C
	MOTA	578	С	GLU			45.975	74.134	12.667	1.00	0.00	C
	MOTA	579	0	GLU	Α	100	46.332	73.937	13.829	1.00	0.00	0
	ATOM	580	CB	GLU	Α	100	47.789	74.707	11.037	1.00	0.00	C
35	ATOM	581	CG	GLU	Α	100	48.843	75.111	12.066	1.00	0.00	C
	ATOM	582	CD	GLU	Α	100	49.755	73.964	12.474	1.00	0.00	С
	ATOM	583	OE1	GLU	Α	100	49.930	73.016	11.674	1.00	0.00	0
	ATOM	584	OE2	GLU	Α	100	50.313	74.020	13.593	1.00	0.00	0
	ATOM	585	N	GLU	Α	101	44.862	74.798	12.364	1.00	0.00	N
40	MOTA	586	CA	GLU	Α	101	43.990	75.314	13.419	1.00	0.00	С
	ATOM	587	С	GLU	Α	101	43.417	74.144	14.223	1.00	0.00	C
	ATOM	588	0	GLU			43.409	74.170	15.455	1.00	0.00	0
	ATOM	589	CB	GLU	Α	101	42.850	76.149	12.821	1.00	0.00	С
	ATOM	590	CG	GLU			43.310	77.447	12.156	1.00	0.00	C
45	ATOM	591	CD	GLU	Α	101	42.156	78.271	11.599	1.00	0.00	С
	ATOM	592		GLU			41.224	77.680	11.016	1.00	0.00	0
	ATOM	593		GLU			42.191	79.513	11.735	1.00	0.00	0
	ATOM	594	N	TYR			42.932	73.120	13.525	1.00	0.00	N
	ATOM	595	CA	TYR			42.386	71.947	14.205	1.00	0.00	С
50	ATOM	596	C	TYR			43.482	71.246	14.999	1.00	0.00	С
00	ATOM	597	0	TYR			43.257	70.790	16.122	1.00	0.00	0
	ATOM	598	СВ	TYR			41.821	70.935	13.209	1.00	0.00	С
	ATOM	599	CG	TYR			40.409	71.175	12.734	1.00	0.00	С
	ATOM	600		TYR			39.355	71.348	13.637	1.00	0.00	C
55		601		TYR			40.110	71.130	11.373	1.00	0.00	C
55	ATOM							71.459	13.185	1.00	0.00	C
	MOTA	602		TYR			38.033 38.810	71.439	10.917	1.00	0.00	c
	ATOM	603		TYR				71.239	11.821	1.00	0.00	C
	ATOM	604	CZ	TYR			37.775	71.401	11.335	1.00	0.00	0
60	ATOM	605	OH	TYR			36.493	71.491	14.403	1.00	0.00	N N
60	ATOM	606	N	TYR			44.664	70.470	15.080	1.00	0.00	C
	ATOM	607	CA	TYR	А	103	45.764	70.470	13.000	1.00	0.00	C

	ΔΤΩΜ	608	C	TYR	Δ	103		46 086	71 147	16.405	1.00	0.00		С
														O
														c
_														C
5	MOTA	612												С
	ATOM	613	CD2	TYR	Α	103		49.262	70.565	15.392	1.00	0.00		С
	ATOM	614	CE1	TYR	Α	103		49.233	67.830	15.861	1.00	0.00		С
		615	CE2	TYR	А	103		50.305	69.972	16.098	1.00	0.00		C
												0.00		С
10														0
10														N
	ATOM													С
	MOTA	620	С	GLN	Α	104		45.438			1.00			С
	ATOM	621	0	GLN	Α	104		45.705	73.155	19.806	1.00			0
15	ATOM	622	CB	GLN	Α	104		46.906	74.675	17.190	1.00	0.00		С
	ATOM		CG	GLN	Α	104		48.224	74.829	16.440	1.00	0.00		С
											1.00	0.00		С
														0
														N
20														N
20														C
			С											С
	MOTA	630	0	HIS	Α	105		42.010						0
	ATOM	631	CB	HIS	Α	105		41.935	74.279	18.426	1.00	0.00		С
25	ATOM	632	CG	HIS	Α	105		42.367	75.595	17.856	1.00	0.00		С
			ND1	HIS	А	105			76.421	17.162	1.00	0.00		N
												0.00		С
														С
														N
30														N
50														C
														C
														0
0=														С
35														С
	ATOM	643	OD1	ASP	Α	106			70.682					0
	MOTA	644	OD2	ASP	Α	106		39.539	71.654	17.705	1.00			0
	ATOM	645	N	THR	Α	107		43.188	68.252	17.749	1.00	0.00		N
	ATOM	646	CA	THR	Α	107		43.928	67.027	17.469	1.00	0.00		С
40	ATOM	647	С	THR	Α	107		45.179	66.710	18.286	1.00	0.00		С
									65.565	18.702	1.00	0.00		0
														С
														0
														Č
45														N
43														
														С
	ATOM		С											С
	MOTA	655	0	LYS	Α	108		47.585	66.176					0
	ATOM	656	CB	LYS	Α	108		48.247	68.537	19.273	1.00	0.00		С
50	ATOM		CG	LYS	Α	108		47.856	69.754	20.088	1.00	0.00		С
			CD					48.942	70.826	19.973	1.00	0.00		С
														С
														N
														N
EE														
22														C
	MOTA		С											С
	ATOM	664	0					44.871						0
	ATOM	665	CB	HIS	Α	109		44.352	68.236	23.055	1.00	0.00		С
	MOTA	666	CG	HIS	Α	109		44.923	69.617	23.085	1.00	0.00		С
60	ATOM		ND1					45.939	69.982	23.944	1.00	0.00		N
									70.711	22.335	1.00	0.00		С
	•		_											
	5 10 15 20 25 30 35 40 45 50 55	10	ATOM 609 ATOM 610 ATOM 611 ATOM 6113 ATOM 613 ATOM 614 ATOM 615 ATOM 616 ATOM 616 ATOM 616 ATOM 617 ATOM 618 ATOM 620 ATOM 621 ATOM 622 ATOM 622 ATOM 622 ATOM 623 ATOM 626 ATOM 627 ATOM 628 ATOM 628 ATOM 631 ATOM 631 ATOM 631 ATOM 633 ATOM 633 ATOM 634 ATOM 635 ATOM 636 ATOM 640 ATOM 640 ATOM 641 ATOM 641 ATOM 642 ATOM 642 ATOM 643 ATOM 644 ATOM 645 ATOM 645 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 655 ATOM 665 ATOM 666	ATOM 609 O ATOM 610 CB ATOM 611 CG ATOM 612 CD1 ATOM 613 CD2 ATOM 614 CE1 ATOM 615 CE2 ATOM 616 CZ ATOM 616 CZ ATOM 617 OH ATOM 618 N ATOM 620 C ATOM 621 O ATOM 622 CB ATOM 622 CB ATOM 624 CD ATOM 625 OE1 ATOM 626 NE2 ATOM 627 N ATOM 630 C ATOM 630 C ATOM 631 CB ATOM 632 CG ATOM 631 CB ATOM 632 CG ATOM 631 CB ATOM 632 CG ATOM 631 CB ATOM 632 CG ATOM 634 CD2 ATOM 635 CE1 ATOM 636 NE2 ATOM 637 N ATOM 638 CA ATOM 639 C ATOM 639 C ATOM 639 C ATOM 639 C ATOM 640 O ATOM 641 CB ATOM 642 CG ATOM 643 OD1 ATOM 644 OD2 ATOM 645 N ATOM 645 N ATOM 646 CA ATOM 647 C ATOM 647 C ATOM 648 O ATOM 649 CB ATOM 650 OG1 ATOM 650 CG ATOM 650 CG ATOM 650 CG ATOM 650 CB ATOM 660 NZ ATOM 660 NZ ATOM 660 CG ATOM 660 CG ATOM 660 CG ATOM 660 CG ATOM 660 CG ATOM 660 CG ATOM 660 CG ATOM 660 CG ATOM 660 CG	ATOM 610 CB TYR ATOM 611 CG TYR ATOM 612 CD1 TYR ATOM 613 CD2 TYR ATOM 613 CD2 TYR ATOM 615 CE2 TYR ATOM 615 CE2 TYR ATOM 616 CZ TYR ATOM 617 OH TYR ATOM 618 N GLN ATOM 619 CA GLN ATOM 620 C GLN ATOM 621 O GLN ATOM 621 CG GLN ATOM 622 CB GLN ATOM 622 CB GLN ATOM 624 CD GLN ATOM 625 OE1 GLN ATOM 626 NE2 GLN ATOM 627 N HIS ATOM 628 CA HIS ATOM 630 O HIS ATOM 630 C HIS ATOM 631 CB HIS ATOM 632 CG HIS ATOM 632 CG HIS ATOM 633 ND1 HIS ATOM 634 CD2 HIS ATOM 635 CE1 HIS ATOM 636 NE2 HIS ATOM 637 N ASP ATOM 638 CA ASP ATOM 639 C ASP ATOM 639 C ASP ATOM 630 CD ASP ATOM 640 CD ASP ATOM 630 CD ASP ATOM 630 CD HIS ATOM 631 CB HIS ATOM 634 CD2 HIS ATOM 635 CE1 HIS ATOM 636 NE2 HIS ATOM 637 N ASP ATOM 638 CA ASP ATOM 639 C ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 641 CB ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 641 CB ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 641 CB ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 640 CD ASP ATOM 641 CB ASP ATOM 642 CD ASP ATOM 644 CD CS CD CS ATOM 655 CD LYS ATOM 650 CD LYS ATOM 650 CD LYS ATOM 650 CD LYS ATOM 650 CD LYS ATOM 650 CD LYS ATOM 661 N HIS ATOM 660 CD LYS ATOM 660 CD HIS ATOM 661 N HIS ATOM 661 CD HIS ATOM 662 CD HIS ATOM 664 CD HIS ATOM 665 CB HIS ATOM 666 CG HIS ATOM 666 CG HIS ATOM 666 CG HIS ATOM 666 CG HIS ATOM 666 CG HIS ATOM 666 CG HIS ATOM 666 CG HIS ATOM 666 CG HIS	ATOM 610 CB TYR A ATOM 611 CG TYR A ATOM 611 CG TYR A ATOM 612 CD1 TYR A ATOM 613 CD2 TYR A ATOM 615 CE2 TYR A ATOM 615 CE2 TYR A ATOM 616 CZ TYR A ATOM 616 CZ TYR A ATOM 616 CZ TYR A ATOM 616 CZ TYR A ATOM 617 OH TYR A ATOM 618 N GLN A ATOM 620 C GLN A ATOM 621 O GLN A ATOM 622 CB GLN A ATOM 622 CB GLN A ATOM 622 CB GLN A ATOM 624 CD GLN A ATOM 625 OE1 GLN A ATOM 626 NE2 GLN A ATOM 626 NE2 GLN A ATOM 627 N HIS A ATOM 630 O HIS A ATOM 630 C HIS A ATOM 631 CB HIS A ATOM 631 CB HIS A ATOM 632 CG HIS A ATOM 634 CD2 HIS A ATOM 635 CE1 HIS A ATOM 636 NE2 HIS A ATOM 636 NE2 HIS A ATOM 637 N ASP A ATOM 637 N ASP A ATOM 639 C ASP A ATOM 639 C ASP A ATOM 640 O ASP A ATOM 641 CB ASP A ATOM 641 CB ASP A ATOM 642 CG ASP A ATOM 640 O ASP A ATOM 641 CB ASP A ATOM 641 CB ASP A ATOM 642 CG ASP A ATOM 644 OD2 ASP A ATOM 646 CA THR A ATOM 646 CA THR A ATOM 647 C THR A ATOM 646 CD THR A ATOM 646 CD THR A ATOM 647 C THR A ATOM 646 CD THR A ATOM 647 C THR A ATOM 647 C THR A ATOM 646 CD THR A ATOM 650 OG1 THR A ATOM 651 CG2 THR A ATOM 651 CG2 THR A ATOM 650 CG THR A ATOM 660 NZ LYS A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG THR A ATOM 660 CG T	ATOM 610 CB TYR A 103 ATOM 611 CG TYR A 103 ATOM 611 CG TYR A 103 ATOM 612 CD1 TYR A 103 ATOM 613 CD2 TYR A 103 ATOM 614 CE1 TYR A 103 ATOM 615 CE2 TYR A 103 ATOM 616 CZ TYR A 103 ATOM 616 CZ TYR A 103 ATOM 617 OH TYR A 103 ATOM 618 N GLN A 104 ATOM 620 C GLN A 104 ATOM 621 O GLN A 104 ATOM 621 CD GLN A 104 ATOM 622 CB GLN A 104 ATOM 623 CG GLN A 104 ATOM 624 CD GLN A 104 ATOM 625 OE1 GLN A 104 ATOM 626 NE2 GLN A 105 ATOM 630 O HIS A 105 ATOM 631 CB HIS A 105 ATOM 632 CG HIS A 105 ATOM 632 CG HIS A 105 ATOM 633 ND1 HIS A 105 ATOM 634 CD2 HIS A 105 ATOM 636 NE2 HIS A 105 ATOM 637 N ASP A 106 ATOM 638 CA ASP A 106 ATOM 639 C ASP A 106 ATOM 640 O ASP A 106 ATOM 641 CB ASP A 106 ATOM 642 CG ASP A 106 ATOM 644 CD2 ASP A 106 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 647 C THR A 107 ATOM 648 O THR A 107 ATOM 649 CB THR A 107 ATOM 640 CB THR A 107 ATOM 640 CB THR A 107 ATOM 640 CB THR A 107 ATOM 640 CB THR A 107 ATOM 650 CG HIS A 108 ATOM 661 CB THR A 107 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 646 CB THR A 107 ATOM 666 CB HIS A 108 ATOM 650 CG LYS A 108 ATOM 651 CG2 THR A 107 ATOM 666 CB LYS A 108 ATOM 656 CB LYS A 108 ATOM 657 CG LYS A 108 ATOM 666 CB HIS A 109	ATOM 610 CB TYR A 103 ATOM 611 CG TYR A 103 ATOM 611 CG TYR A 103 ATOM 612 CD1 TYR A 103 ATOM 613 CD2 TYR A 103 ATOM 615 CE2 TYR A 103 ATOM 616 CZ TYR A 103 ATOM 616 CZ TYR A 103 ATOM 616 CZ TYR A 103 ATOM 617 OH TYR A 103 ATOM 618 N GLN A 104 ATOM 619 CA GLN A 104 ATOM 620 C GLN A 104 ATOM 621 O GLN A 104 ATOM 622 CB GLN A 104 ATOM 623 CG GLN A 104 ATOM 624 CD GLN A 104 ATOM 625 OE1 GLN A 104 ATOM 625 OE1 GLN A 104 ATOM 626 NE2 GLN A 104 ATOM 627 N HIS A 105 ATOM 630 O HIS A 105 ATOM 631 CB HIS A 105 ATOM 632 CG HIS A 105 ATOM 632 CG HIS A 105 ATOM 633 ND1 HIS A 105 ATOM 634 CD2 HIS A 105 ATOM 636 NE2 HIS A 105 ATOM 637 N ASP A 106 ATOM 639 C ASP A 106 ATOM 640 O ASP A 106 ATOM 641 CB ASP A 106 ATOM 641 CB ASP A 106 ATOM 642 CG ASP A 106 ATOM 644 OD2 ASP A 106 ATOM 645 N THR A 107 ATOM 646 CA THR A 107 ATOM 646 CA THR A 107 ATOM 647 C THR A 107 ATOM 648 O THR A 107 ATOM 649 CB THR A 107 ATOM 650 OG1 THR A 107 ATOM 651 CG2 THR A 107 ATOM 650 CG LYS A 108 ATOM 651 CG2 THR A 107 ATOM 650 CG1 THR A 107 ATOM 660 CG LYS A 108 ATOM 650 CG LYS A 108 ATOM 660 NZ LYS A 108 ATOM 660 NZ LYS A 108 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109 ATOM 660 CG HIS A 109	ATOM 610 CB TYR A 103 46.216 ATOM 610 CB TYR A 103 47.024 ATOM 611 CG TYR A 103 48.194 ATOM 612 CD1 TYR A 103 48.194 ATOM 613 CD2 TYR A 103 49.262 ATOM 615 CE2 TYR A 103 50.305 ATOM 616 CZ TYR A 103 50.305 ATOM 616 CZ TYR A 103 50.305 ATOM 617 OH TYR A 103 50.305 ATOM 618 N GLN A 104 46.212 ATOM 619 CA GLN A 104 46.544 ATOM 620 C GLN A 104 45.705 ATOM 622 CB GLN A 104 45.705 ATOM 624 CD GLN A 104 49.459 ATOM 625 OE1 GLN A 104 49.459 ATOM 626 NE2 GLN A 104 49.459 ATOM 627 N HIS A 105 42.492 ATOM 630 O HIS A 105 42.3067 ATOM 631 CB HIS A 105 42.366 ATOM 632 CG HIS A 105 42.367 ATOM 634 CD2 HIS A 105 42.367 ATOM 635 CE1 HIS A 105 42.161 ATOM 636 NE2 HIS A 105 42.367 ATOM 637 N ASP A 106 42.549 ATOM 638 CA ASP A 106 42.549 ATOM 639 C ASP A 106 42.549 ATOM 641 CB ASP A 106 42.549 ATOM 641 CB ASP A 106 42.786 ATOM 641 CB ASP A 106 42.786 ATOM 641 CB ASP A 106 43.052 ATOM 641 CB ASP A 106 39.644 ATOM 640 O ASP A 106 39.539 ATOM 641 CB ASP A 106 39.539 ATOM 641 CB ASP A 106 42.786 ATOM 640 O ASP A 106 42.786 ATOM 641 CB ASP A 106 42.786 ATOM 642 CG ASP A 106 39.539 ATOM 643 CD ASP A 106 39.539 ATOM 644 OD2 ASP A 106 39.539 ATOM 645 N THR A 107 43.198 ATOM 646 CA THR A 107 43.198 ATOM 647 C THR A 107 43.198 ATOM 658 CD LYS A 108 46.088 ATOM 664 OD ASP A 106 39.539 ATOM 664 CD LYS A 108 46.887 ATOM 665 CB LYS A 108 47.255 ATOM 666 CG HIS A 109 44.871 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 666 CD LYS A 108 48.942 ATOM 667 CD LYS A 108 48.942 ATOM 668 CD LYS A 108 48.942 ATOM 669 CD LYS A 108 48.943 ATOM 660 NZ LYS A 108 48.943 ATOM 660 CD LYS A 108 48.943 ATOM 660 CD LYS A 108 48.943 ATOM 660 CD LYS A 108 48.943 ATOM 660 CD LYS A 108 48.943 ATOM 660 CD LYS A 108 48.943 ATOM 660 CD LYS A 108 48.943 ATOM 660 CD LYS A 108 44.993 ATOM 660 CD LYS A 108 44.993 ATOM 660 CD LYS A 108 44.993	ATOM 610 CB TYR A 103 46.216 70.488 ATOM 611 CB TYR A 103 48.190 69.808 ATOM 612 CD1 TYR A 103 48.190 69.808 ATOM 613 CD2 TYR A 103 49.262 70.565 ATOM 614 CD1 TYR A 103 49.262 70.565 ATOM 615 CD2 TYR A 103 49.233 67.830 ATOM 615 CD2 TYR A 103 50.305 69.972 ATOM 616 CZ TYR A 103 50.305 69.972 ATOM 617 OH TYR A 103 50.305 69.972 ATOM 618 N GLN A 104 46.212 72.468 ATOM 618 N GLN A 104 46.544 73.231 ATOM 619 CA GLN A 104 46.544 73.231 ATOM 620 C GLN A 104 45.705 73.155 ATOM 621 O GLN A 104 45.705 73.155 ATOM 622 CB GLN A 104 45.906 74.675 ATOM 624 CD GLN A 104 45.907 74.290 ATOM 625 OEL GLN A 104 49.459 74.399 ATOM 626 NEZ GLN A 104 49.459 74.399 ATOM 627 N HIS A 105 42.017 73.387 ATOM 628 CA HIS A 105 42.017 73.387 ATOM 629 C HIS A 105 42.017 72.792 ATOM 630 O HIS A 105 42.017 72.793 ATOM 631 CB HIS A 105 42.017 72.793 ATOM 632 CG HIS A 105 42.017 72.793 ATOM 634 CD2 HIS A 105 42.017 72.793 ATOM 635 CEL HIS A 105 42.017 77.503 ATOM 636 CR HIS A 105 42.017 77.503 ATOM 637 N ASP A 106 42.549 77.503 ATOM 638 CA ASP A 106 42.549 77.503 ATOM 638 CA ASP A 106 42.549 77.503 ATOM 639 C ASP A 106 42.549 77.503 ATOM 630 O HIS A 105 42.010 77.003 ATOM 637 N ASP A 106 42.549 77.503 ATOM 638 CA ASP A 106 42.549 77.503 ATOM 638 CA ASP A 106 42.549 77.503 ATOM 639 C ASP A 106 42.549 77.155 ATOM 641 CB ASP A 106 43.052 67.887 ATOM 642 CG ASP A 106 43.052 67.887 ATOM 643 ODL ASP A 106 43.052 67.887 ATOM 646 CR THR A 107 43.188 68.252 ATOM 641 CB ASP A 106 39.539 70.6682 ATOM 642 CG THR A 107 43.188 68.252 ATOM 643 ODL ASP A 106 39.539 70.6682 ATOM 646 CR THR A 107 43.188 68.252 ATOM 650 CG THR A 107 43.188 68.252 ATOM 651 CG2 THR A 107 43.188 68.252 ATOM 664 CR THR A 107 43.188 68.252 ATOM 665 CB THR A 107 43.188 68.252 ATOM 666 CB THR A 107 43.188 66.570 ATOM 667 CG LYS A 108 46.887 66.969 ATOM 666 CB LYS A 108 48.927 70.826 ATOM 667 CG LYS A 108 48.927 70.826 ATOM 668 CR LYS A 108 48.927 70.826 ATOM 666 CB LYS A 108 48.927 70.826 ATOM 666 CB LYS A 108 48.927 70.826 ATOM 666 CB LYS A 108 48.927 70.826 ATOM 666 CB LYS A 108 44.923	ATOM 609 O TYR A 103	ATOM	ATOM	NTOM 600 C TYR 103 46,216 70,488 17,434 1,000 0,00

												_
	ATOM	669		HIS A		46.2	268	71.243	23.721	1.00	0.00	С
	ATOM	670	NE2	HIS A	109	45.5	502	71.707	22.749	1.00	0.00	N
	ATOM	671	N	ILE A	110	43.9	966	65.496	21.513	1.00	0.00	N
	ATOM	672	CA	ILE A		43.3		64.198	21.382	1.00	0.00	С
5												c
3	MOTA	673	С	ILE A		44.3		63.099	21.355	1.00	0.00	
	ATOM	674	0	ILE A	110	44.2	257	62.084	22.040	1.00	0.00	0
	ATOM	675	ĊB	ILE A	110	42.4	192	64.123	20.078	1.00	0.00	С
	ATOM	676		ILE A		41.3		65.086	20.167	1.00	0.00	С
												Č
40	ATOM	677	CG2			42.0		62.688	19.826	1.00	0.00	
10	ATOM	678	CD1	ILE A	110	40.5	511	65.224	18.870	1.00	0.00	С
	ATOM	679	N	LEU A	111	45.4	122	63.305	20.562	1.00	0.00	N
	ATOM	680	CA	LEU A		46.4		62.313	20.456	1.00	0.00	С
									21.708		0.00	c
	MOTA	681	С	LEU A		47.3		62.244		1.00		
	MOTA	682	0	LEU A	111	47.7	183	61.163	22.105	1.00	0.00	0
15	ATOM	683	CB	LEU A	111	47.3	348	62.597	19.222	1.00	0.00	С
	MOTA	684	CG	LEU A		46.6		62.277	17.911	1.00	0.00	С
								62.742	16.715	1.00	0.00	c
	MOTA	685		LEU A		47.4						
	ATOM	686	CD2	LEU A	111	46.3	352	60.774	17.845	1.00	0.00	С
	ATOM	687	N	SER A	112	47.5	573	63.390	22.337	1.00	0.00	N
20	ATOM	688	CA	SER A	112	48.3	881	63.412	23.549	1.00	0.00	C
						47.6		62.672	24.679	1.00	0.00	c
	ATOM	689	С	SER A								
	ATOM	690	0	SER A	112	48.2	272	61.870	25.395	1.00	0.00	0
	MOTA	691	CB	SER A	112	48.6	570	64.853	23.971	1.00	0.00	С
	ATOM	692	OG	SER A		49.5	509	64.872	25.113	1.00	0.00	0
25	ATOM	693	N	ASN A		46.3		62.933	24.838	1.00	0.00	N
20												
	ATOM	694	CA	ASN A		45.6		62.265	25.891	1.00	0.00	C
	MOTA	695	С	ASN A	113	45.3	330	60.802	25.556	1.00	0.00	С
	MOTA	696	0	ASN A	113	45.1	L43	59.982	26.457	1.00	0.00	0
	ATOM	697	СВ	ASN A		44.3		63.052	26.209	1.00	0.00	С
30									26.833		0.00	C
30	MOTA	698	CG	ASN A		44.6		64.403		1.00		
	ATOM	699	OD1	ASN A	113	45.6		64.541	27.538	1.00	0.00	0
	ATOM	700	ND2	ASN A	113	43.8	329	65.397	26.582	1.00	0.00	N
	ATOM	701	N	ALA A	114	45.3	310	60.467	24.268	1.00	0.00	N
	MOTA	702	CA	ALA A		45.0		59.080	23.866	1.00	0.00	С
2 =												
35	MOTA	703	С	ALA A		46.2		58.269	24.305	1.00	0.00	C
	MOTA	704	0	ALA A	114	46.1	L60	57.174	24.853	1.00	0.00	0
	ATOM	705	CB	ALA A	114	44.9	903	58.978	22.349	1.00	0.00	C
	ATOM	706	N	LEU A		47.4		58.814	24.064	1.00	0.00	N
								58.143	24.445		0.00	C
40	ATOM	707	CA	LEU A		48.7				1.00		
40	ATOM	708	С	LEU A	115	48.7	144	57.892	25.953	1.00	0.00	С
	ATOM	709	0	LEU A	115	49.0)29	56.782	26.408	1.00	0.00	0
	MOTA	710	CB	LEU A		49.9	942	58.995	24.046	1.00	0.00	C
		711	CG	LEU A		51.3		58.485	24.481	1.00	0.00	C
	ATOM											
4	MOTA	712		LEU A		51.5		57.075	23.953	1.00	0.00	С
45	ATOM	713	CD2	LEU A	115	52.4	108	59.419	23.978	1.00	0.00	C
	ATOM	714	N	ARG A	116	48.4	121	58.925	26.721	1.00	0.00	N
	ATOM	715	CA	ARG A		48.4		58.813	28.173	1.00	0.00	С
												c
	ATOM	716	С	ARG A		47.3		57.811	28.677	1.00	0.00	
	MOTA	717	0	ARG A	116	47.7	704	56.900	29.442	1.00	0.00	0
50	ATOM	718	CB	ARG A	116	48.1	152	60.185	28.797	1.00	0.00	C
	MOTA	719	CG	ARG A		49.2		61.180	28.533	1.00	0.00	C
											0.00	C
	ATOM	720	CD	ARG A		48.9		62.575	29.033	1.00		
	ATOM	721	NE	ARG A	116	50.0)33	63.508	28.802	1.00	0.00	N
	ATOM	722	CZ	ARG A	116	49.9	984	64.808	29.075	1.00	0.00	C
55	ATOM	723		ARG A		48.8		65.338	29.590	1.00	0.00	N
55												
	ATOM	724		ARG A		51.0		65.579	28.838	1.00	0.00	N
	ATOM	725	N	HIS A	117	46.1	138	57.971	28.236	1.00	0.00	N
	ATOM	726	CA	HIS A	117	45.0	70	57.085	28.670	1.00	0.00	C
	ATOM	727	C	HIS A		45.2		55.628	28.265	1.00	0.00	С
60			ō			44.8		54.745	29.059	1.00	0.00	ō
00	ATOM	728		HIS A								
	ATOM	729	CB	HIS A	TT/	43.7	126	57.651	28.230	1.00	0.00	С

	ATOM	730	CG	HIS	A 117	43.233	58.737	29.130	1.00	0.00	С
	MOTA	731	ND1	HIS.		42.625	58.474	30.339	1.00	0.00	N
	ATOM	732	CD2	HIS .	A 117	43.355	60.083	29.054	1.00	0.00	С
	MOTA	733	CE1	HIS .	A 117	42.399	59.612	30.973	1.00	0.00	С
5	ATOM	734	NE2	HIS .	A 117	42.834	60.604	30.216	1.00	0.00	N
	ATOM	735	N	LEU .	A 118	45.662	55.366	27.044	1.00	0.00	N
	MOTA	736	CA	LEU .	A 118	45.839	53.986	26.606	1.00	0.00	С
	ATOM	737	С		A 118	47.012	53.379	27.368	1.00	0.00	С
	ATOM	738	0		A 118	46.987	52.208	27.747	1.00	0.00	0
10	ATOM	739	СВ		A 118	46.099	53.924	25.095	1.00	0.00	С
	ATOM	740	CG		A 118	44.915	54.378	24.230	1.00	0.00	С
	ATOM	741		LEU		45.301	54.355	22.759	1.00	0.00	С
	ATOM	742		LEU		43.722	53.470	24.484	1.00	0.00	С
	ATOM	743	N		A 119	48.047	54.180	27.589	1.00	0.00	N
15	ATOM	744	CA		A 119	49.210	53.707	28.321	1.00	0.00	C
10	ATOM	745	C		A 119	48.791	53.245	29.717	1.00	0.00	c
	ATOM	746	Ö		A 119	49.170	52.160	30.159	1.00	0.00	ō
	ATOM	747	СВ		A 119	50.257	54.826	28.422	1.00	0.00	c
	ATOM	748	CG		A 119	51.418	54.493	29.307	1.00	0.00	c
20	ATOM	749		HIS		51.416	54.745	30.662	1.00	0.00	N N
20	ATOM	750		HIS		52.603	53.897	29.036	1.00	0.00	C
	ATOM	751		HIS		52.551	54.319	31.189	1.00	0.00	c
							53.799	30.224	1.00	0.00	N
	ATOM	752 753	NE2	HIS		53.289 47.984		30.224	1.00	0.00	N
25	ATOM	754			A 120	47.527	54.060 53.762	31.750	1.00	0.00	C
25	ATOM	755	CA		A 120		52.775	31.730	1.00	0.00	c
	ATOM		С		A 120 A 120	46.370				0.00	0
	MOTA	756	0			46.126	52.274 55.057	32.993	1.00		c
	ATOM	757	CB		A 120	47.147 48.324		32.469 32.653	1.00	0.00	C
30	ATOM	758 759	CG	ASP A	A 120	49.475	55.989	32.673	1.00	0.00	0
30	ATOM						55.505				0
	MOTA	760		ASP A		48.094	57.207	32.793	1.00	0.00	N
	ATOM	761	N G P		A 121	45.656	52.501	30.807	1.00	0.00	C
	ATOM	762	CA	ASN A		44.523	51.574 50.515	30.849 29.758	1.00	0.00	c
35	ATOM	763	С	ASN A		44.681	50.630	28.674		0.00	0
33	ATOM	764	O		A 121	44.105			1.00	0.00	c
	ATOM	765	CB		A 121	43.210	52.343	30.661	1.00	0.00	c
	ATOM	766	CG	ASN A		43.007	53.423	31.719	1.00		0
	ATOM	767		ASN A		43.448	54.567	31.558	1.00	0.00	
40	ATOM	768		ASN A		42.348	53.059	32.813	1.00	0.00	N
40	ATOM	769	N		A 122	45.454	49.452	30.046	1.00	0.00	N C
	ATOM	770	CA		122	45.732	48.346	29.122	1.00	0.00	c
	ATOM	771	С		A 122	44.580	47.753	28.311	1.00	0.00	
	ATOM	772	0		122	44.798	47.303	27.184	1.00		0
15	ATOM	773	CB		122	46.426	47.311	30.017	1.00	0.00	С
45	ATOM	774	CG		122	45.937	47.647	31.399	1.00	0.00	C
	ATOM	775	CD		122	45.974	49.145	31.389	1.00	0.00	C
	ATOM	776	N		123	43.366	47.753	28.858	1.00	0.00	N
	ATOM	777	CA		123	42.224	47.192	28.135	1.00	0.00	C
ΕO	ATOM	778	С		123	41.503	48.170	27.215	1.00	0.00	C
50	ATOM	779	0	GLU A		40.678	47.759	26.398	1.00	0.00	0
	ATOM	780	СВ		123	41.204	46.591	29.105	1.00	0.00	C
	ATOM	781	CG		1 123	41.476	45.145	29.477	1.00	0.00	C
	ATOM	782	CD	GLU A		42.676	44.989	30.375	1.00	0.00	C
	MOTA	783		GLU A		42.678	45.605	31.463	1.00	0.00	0
55	ATOM	784	OE2	GLU A		43.613	44.249	29.999	1.00	0.00	0
	MOTA	785	N	MET A		41.798	49.458	27.352	1.00	0.00	N
	ATOM	786	CA	MET A		41.165	50.464	26.506	1.00	0.00	С
	ATOM	787	С	MET A		41.742	50.354	25.092	1.00	0.00	С
	ATOM	788	0	MET A	124	42.918	50.024	24.919	1.00	0.00	0
60	MOTA	789	СВ	MET A		41.418	51.864	27.068	1.00	0.00	С
	ATOM	790	CG	MET A	124	40.644	52.963	26.354	1.00	0.00	С

	MOTA	791	SD	MET	A 1	24	38.864	52.639	26.329	1.00	0.00	S
	MOTA	792	CE	MET	A 1	24	38.255	54.154	25.577	1.00	0.00	С
	ATOM	793	N	LYS .	A 1	25	40.908	50.624	24.090	1.00	0.00	N
_	ATOM	794	CA	LYS .	A 1	25	41.322	50.546	22.691	1.00	0.00	С
5	MOTA	795	С	LYS	A 1	25	40.980	51.842	21.954	1.00	0.00	С
	ATOM	796	0	LYS			40.178	52.646	22.434	1.00	0.00	0
	MOTA	797	CB	LYS	A 1	25	40.623	49.360	22.018	1.00	0.00	С
	ATOM	798	CG	LYS	A 1	25	40.950	48.006	22.643	1.00	0.00	С
	ATOM	799	CD	LYS	A 1	25	42.347	47.539	22.267	1.00	0.00	С
10	ATOM	800	CE	LYS	A 1	25	42.747	46.273	23.022	1.00	0.00	С
	MOTA	801	NZ	LYS			41.818	45.136	22.781	1.00	0.00	N
	ATOM	802	N	PHE	A 1	26	41.569	52.039	20.778	1.00	0.00	N
	ATOM	803	CA	PHE .			41.324	53.264	20.016	1.00	0.00	С
	MOTA	804	С	PHE			41.824	53.081	18.582	1.00	0.00	С
15	MOTA	805	0	PHE	A 1	26	42.900	52.529	18.366	1.00	0.00	0
	ATOM	806	CB	PHE			42.077	54.418	20.698	1.00	0.00	С
	ATOM	807	CG	PHE			41.706	55.797	20.203	1.00	0.00	С
	MOTA	808		PHE			40.384	56.230	20.214	1.00	0.00	С
•	ATOM	809		PHE			42.699	56.689	19.802	1.00	0.00	C
20	ATOM	810		PHE			40.054	57.536	19.838	1.00	0.00	С
	ATOM	811		PHE			42.384	57.997	19.423	1.00	0.00	С
	MOTA	812	CZ	PHE			41.057	58.422	19.442	1.00	0.00	С
	ATOM	813	N	ILE			41.042	53.526	17.602	1.00	0.00	N
0.5	ATOM	814	CA	ILE			41.471	53.418	16.210	1.00	0.00	C
25	ATOM	815	С	ILE			41.733	54.811	15.640	1.00	0.00	C
	MOTA	816	0	ILE			41.067	55.782	16.021	1.00	0.00	0
	ATOM	817	СВ	ILE			40.427	52.687	15.338	1.00	0.00	C
	ATOM	818		ILE			39.089	53.433	15.363	1.00	0.00	С
20	MOTA	819	CG2				40.258	51.260	15.840	1.00	0.00	C
30	MOTA	820		ILE			38.066	52.870	14.392	1.00	0.00	C N
	MOTA	821	N	TRP			42.713	54.910	14.745	1.00	0.00	С
	MOTA	822	CA	TRP			43.061	56.193	14.135	1.00	0.00	С
	MOTA	823	C	TRP			43.178	56.076	12.617	1.00		0
35	ATOM	824	0	TRP			43.820	55.161	12.105	$1.00 \\ 1.00$	0.00	c
33	ATOM	825	CB	TRP			44.372	56.719	14.716 14.356	1.00	0.00	C
	MOTA	826	CG	TRP			44.611	58.146	13.309	1.00	0.00	С
	ATOM	827		TRP			45.351	58.621 59.290	15.006	1.00	0.00	С
	ATOM	828 829		TRP TRP			44.053 45.287	59.995	13.269	1.00	0.00	N
40	ATOM ATOM	830		TRP			44.495	60.431	14.300	1.00	0.00	C
10	ATOM	831		TRP			43.216	59.464	16.120	1.00	0.00	c
	ATOM	832		TRP			44.130	61.731	14.670	1.00	0.00	Č
	ATOM	833		TRP			42.852	60.758	16.486	1.00	0.00	С
	ATOM	834		TRP			43.311	61.873	15.761	1.00	0.00	Ċ
4 5	ATOM	835	N	ALA			42.582	57.027	11.900	1.00	0.00	N
10	ATOM	836	CA	ALA			42.587	56.974	10.439	1.00	0.00	С
	ATOM	837	C	ALA			43.438	57.984	9.672	1.00	0.00	С
	ATOM	838	0	ALA			44.069	57.625	8.681	1.00	0.00	0
	ATOM	839	СВ	ALA			41.150	57.054	9.933	1.00	0.00	С
50	ATOM	840	N	GLU			43.454	59.234	10.123	1.00	0.00	N
	ATOM	841	CA	GLU			44.180	60.299	9.427	1.00	0.00	С
	ATOM	842	C	GLU			45.665	60.421	9.757	1.00	0.00	С
	ATOM	843	0	GLU			46.045	61.041	10.752	1.00	0.00	0
	ATOM	844	CB	GLU			43.492	61.641	9.688	1.00	0.00	С
55	ATOM	845	CG	GLU			42.001	61.660	9.373	1.00	0.00	С
	ATOM	846	CD	GLU			41.151	61.055	10.480	1.00	0.00	С
	ATOM	847		GLU			41.701	60.758	11.563	1.00	0.00	0
	ATOM	848		GLU			39.930	60.888	10.269	1.00	0.00	0
	ATOM	849	N	ILE			46.509	59.870	8.890	1.00	0.00	N
60	ATOM	850	CA	ILE			47.945	59.908	9.128	1.00	0.00	С
	ATOM	851	С	ILE			48.564	61.304	9.007	1.00	0.00	С

		ATOM	852	0	ILE A	131	49.593	61.574	9.632	1.00	0.00	0
							48.676	58.906	8.207	1.00	0.00	Ċ
		MOTA	853	CB	ILE A							Č
		MOTA	854		ILE A		48.061	57.512	8.393	1.00	0.00	
	_	ATOM	855		ILE A		50.161	58.851	8.553	1.00	0.00	C
	5	MOTA	856	CD1	ILE A	131	47.933	57.084	9.857	1.00	0.00	С
		ATOM	857	N	SER A	132	47.946	62.191	8.227	1.00	0.00	N
		MOTA	858	CA	SER A		48.462	63.553	8.088	1.00	0.00	С
			859	C	SER A		48.604	64.160	9.488	1.00	0.00	C
		ATOM									0.00	Ö
	10	ATOM	860	0	SER A			64.771	9.813	1.00		
	10	ATOM	861	CB	SER A		47.516	64.416	7.234	1.00	0.00	C
		ATOM	862	OG	SER A	132	46.188	64.403	7.740	1.00	0.00	0
		ATOM	863	N	TYR A	133	47.575	63.980	10.312	1.00	0.00	N
		ATOM	864	CA	TYR A	133	47.588	64.482	11.684	1.00	0.00	С
		ATOM	865	C	TYR A		48.554	63.692	12.565	1.00	0.00	С
	15	ATOM	866	Õ	TYR A		49.316	64.278	13.339	1.00	0.00	0
	15							64.396	12.305	1.00	0.00	C
		ATOM	867	CB	TYR A		46.192					
		ATOM	868	CG	TYR A		45.288	65.570	12.003	1.00	0.00	C
		MOTA	869	CD1	TYR A	133	44.019	65.372	11.460	1.00	0.00	С
		ATOM	870	CD2	TYR A	133	45.695	66.877	12.281	1.00	0.00	С
	20	MOTA	871	CE1	TYR A	133	43.172	66.447	11.200	1.00	0.00	С
25		ATOM	872	CE2			44.858	67.959	12.027	1.00	0.00	С
1		ATOM	873	CZ	TYR A		43.600	67.738	11.488	1.00	0.00	С
ŧ	7		874	OH	TYR A		42.769	68.808	11.250	1.00	0.00	0
. ''	isaži ema.	ATOM									0.00	Ŋ
Ť.	ا م	MOTA	875	N	PHE A		48.526	62.366	12.452	1.00		
4	25	MOTA	876	CA	PHE A		49.397	61.541	13.284	1.00	0.00	C
ġ'		ATOM	877	С	PHE A	134	50.876	61.830	13.058	1.00	0.00	С
71	: :: :::::	MOTA	878	0	PHE A	134	51.655	61.898	14.012	1.00	0.00	0
9		ATOM	879	CB	PHE A	134	49.143	60.050	13.054	1.00	0.00	С
il il		ATOM	880	CG	PHE A		49.662	59.182	14.167	1.00	0.00	С
	30	ATOM	881		PHE A		48.923	59.015	15.335	1.00	0.00	С
Ą,	## OO				PHE A		50.920	58.594	14.082	1.00	0.00	C
81		ATOM	882								0.00	c
. 4		ATOM	883		PHE A		49.431	58.279	16.406	1.00		
7.5		ATOM	884		PHE A		51.438	57.859	15.145	1.00	0.00	C
ŧ,		MOTA	885	CZ	PHE A	134	50.691	57.701	16.312	1.00	0.00	С
in the second	■ 35	MOTA	886	N	ALA A	135	51.264	61.991	11.796	1.00	0.00	N
į.	 	ATOM	887	CA	ALA A	135	52.656	62.270	11.469	1.00	0.00	С
		ATOM	888	С	ALA A		53.070	63.619	12.060	1.00	0.00	С
i i	7	ATOM	889	Ō	ALA A		54.171	63.759	12.598	1.00	0.00	0
į.		ATOM	890	CB	ALA A		52.845	62.265	9.957	1.00	0.00	С
	40				ARG A		52.181	64.602	11.958	1.00	0.00	N
	40	ATOM	891	N						1.00	0.00	C
		ATOM	892	CA	ARG A		52.417	65.945	12.489			
		MOTA	893	С	ARG A		52.660	65.867	13.998	1.00	0.00	С
		ATOM	894	0	ARG A	136	53.548	66.527	14.540	1.00	0.00	0
		MOTA	895	CB	ARG A	136	51.195	66.829	12.213	1.00	0.00	C
	45	ATOM	896	CG	ARG A	136	51.232	68.221	12.856	1.00	0.00	С
		ATOM	897	CD	ARG A	136	51.964	69.245	11.990	1.00	0.00	С
		MOTA	898	NE	ARG A		51.880	70.593	12.559	1.00	0.00	N
		ATOM	899	CZ	ARG A		52.508	70.966	13.668	1.00	0.00	С
							53.269	70.095	14.318	1.00	0.00	N
	EΩ	ATOM	900		ARG A							N
	50	ATOM	901		ARG A		52.367	72.198	14.139	1.00	0.00	
		MOTA	902	N	PHE A		51.858	65.044	14.665	1.00	0.00	N
		MOTA	903	CA	PHE A	137	51.946	64.856	16.109	1.00	0.00	C
		ATOM	904	С	PHE A	137	53.217	64.115	16.520	1.00	0.00	С
		ATOM	905	0	PHE A	137	54.007	64.599	17.336	1.00	0.00	0
	55	ATOM	906	СВ	PHE A		50.729	64.065	16.587	1.00	0.00	С
	00						50.707	63.817	18.063	1.00	0.00	C
		ATOM	907	CG	PHE A				18.948	1.00	0.00	C
		ATOM	908		PHE A		50.395	64.844				
		MOTA	909		PHE A		50.998	62.555	18.572	1.00	0.00	C
		MOTA	910		PHE A		50.369	64.619	20.319	1.00	0.00	C
	60	ATOM	911	CE2	PHE A	137	50.975	62.319	19.947	1.00	0.00	С
		ATOM	912	CZ	PHE A		50.659	63.356	20.819	1.00	0.00	С

	ATOM	913	N	TYR A	138	53.	.400	62.933	15.943	1.00	0.00	N
	ATOM	914	CA	TYR A	138	54.	.546	62.088	16.241	1.00	0.00	C
	ATOM	915	C	TYR A		55	.897	62.793	16.136	1.00	0.00	C
				TYR A			.738	62.665	17.028	1.00	0.00	0
_	MOTA	916	0								0.00	Ċ
5	MOTA	917	CB	TYR A			.549	60.871	15.320	1.00		
	ATOM	918	CG	TYR A	138	55	.576	59.832	15.706	1.00	0.00	С
	ATOM	919	CD1	TYR A	138	55	.322	58.928	16.734	1.00	0.00	С
	ATOM	920		TYR A			.800	59.752	15.043	1.00	0.00	С
									17.091	1.00	0.00	С
40	ATOM	921		TYR A			.261	57.964				
10	ATOM	922	CE2	TYR A	138	57.	.748	58.789	15.395	1.00	0.00	C
	ATOM	923	CZ	TYR A	138	57.	.468	57.900	16.416	1.00	0.00	С
	ATOM	924	ОН	TYR A		58	.383	56.930	16.757	1.00	0.00	0
		925		HIS A			.117	63.523	15.047	1.00	0.00	N
	ATOM		N						14.871	1.00	0.00	C
4 -	ATOM	926	CA	HIS A			.392	64.214				
15	MOTA	927	С	HIS A	139		.629	65.306	15.911	1.00	0.00	C
	MOTA	928	0	HIS A	139	58	.763	65.734	16.119	1.00	0.00	0
	MOTA	929	СВ	HIS A	139	57	.493	64.795	13.460	1.00	0.00	С
	ATOM	930	CG	HIS A			.671	63.756	12.395	1.00	0.00	С
							.778	62.935	12.335	1.00	0.00	N
20	MOTA	931		HIS A								C
20	MOTA	932		HIS A			.880	63.398	11.355	1.00	0.00	
	MOTA	933	CE1	HIS A	139	58	.661	62.118	11.302	1.00	0.00	C
	ATOM	934	NE2	HIS A	139	57	.519	62.378	10.691	1.00	0.00	N
	ATOM	935	N	ASP A			.560	65.751	16.563	1.00	0.00	N
							.663	66.780	17.594	1.00	0.00	С
OF.	MOTA	936	CA	ASP A							0.00	Ċ
25	MOTA	937	С	ASP A			.880	66.170	18.983	1.00		
	ATOM	938	0	ASP A	140	57	.237	66.873	19.929	1.00	0.00	0
	ATOM	939	CB	ASP A	140	55	.403	67.649	17.596	1.00	0.00	С
	ATOM	940	CG	ASP A		55	.510	68.833	16.652	1.00	0.00	С
		941		ASP A			.361	68.794	15.739	1.00	0.00	0
20	ATOM									1.00	0.00	Ō
30	MOTA	942		ASP A			.738	69.802	16.819			
	MOTA	943	N	LEU A	141	56	.672	64.861	19.097	1.00	0.00	N
	MOTA	944	CA	LEU A	141	56	.847	64.160	20.368	1.00	0.00	С
	ATOM	945	С	LEU A		58	.305	63.962	20.751	1.00	0.00	С
	ATOM	946	Ö	LEU A			.176	63.851	19.892	1.00	0.00	0
25								62.779	20.321	1.00	0.00	C
35	MOTA	947	CB	LEU A			.188					
	MOTA	948	CG	LEU A	141	54	.670	62.624	20.382	1.00	0.00	C
	ATOM	949	CD1	LEU A	141	54	.324	61.135	20.287	1.00	0.00	С
	MOTA	950	CD2	LEU A	141	54	.132	63.209	21.679	1.00	0.00	С
	ATOM	951	N	GLY A			.563	63.916	22.054	1.00	0.00	N
40				GLY A			.913	63.685	22.528	1.00	0.00	С
40	ATOM	952	CA								0.00	Č
	ATOM	953	С	GLY A			.196	62.205	22.351	1.00		
	ATOM	954	0	GLY A	142	59	.265	61.411	22.206	1.00	0.00	0
	ATOM	955	N	GLU A	143	61	.469	61.825	22.370	1.00	0.00	N
	ATOM	956	CA	GLU A	143	61	.856	60.431	22.188	1.00	0.00	С
45	ATOM	957	C	GLU A			.169	59.473	23.159	1.00	0.00	С
40								58.387	22.767	1.00	0.00	0
	MOTA	958	0	GLU A			.744					
	ATOM	959	CB	GLU A	143		.375	60.289	22.308	1.00	0.00	С
	MOTA	960	CG	GLU A	143	63	.914	58.936	21.867	1.00	0.00	С
	MOTA	961	CD	GLU A	143	63	.519	58.582	20.441	1.00	0.00	С
50	ATOM	962		GLU A			.713	59.422	19.537	1.00	0.00	0
50								57.460	20.224	1.00	0.00	0
	ATOM	963		GLU A			.017					
	ATOM	964	N	ASN A	144		.059	59.871	24.421	1.00	0.00	N
	ATOM	965	CA	ASN A	144	60	.416	59.027	25.423	1.00	0.00	С
	ATOM	966	С	ASN A		58	.972	58.723	25.026	1.00	0.00	С
55	ATOM	967	ŏ	ASN A			.536	57.572	25.082	1.00	0.00	0
							.456	59.711	26.797	1.00	0.00	C
	MOTA	968	CB	ASN A								c
	MOTA	969	CG	ASN A			.678	58.946	27.859	1.00	0.00	
	ATOM	970	OD1	ASN A	144	58	.443	58.917	27.845	1.00	0.00	0
	ATOM	971	ND2	ASN A	144	60	.399	58.319	28.786	1.00	0.00	N
60	ATOM	972	N	LYS A			.240	59.755	24.614	1.00	0.00	N
	ATOM	973	CA	LYS A			.847	59.590	24.210	1.00	0.00	С
	AIOM	213	U.A.	א ניים	J	50						

	ATOM	974	С	LYS A	14	56.698	58.798	22.912	1.00	0.00	С
	ATOM	975	0	LYS A	14	55.735	58.046	22.752	1.00	0.00	0
	ATOM	976	СВ	LYS A	14	56.168	60.958	24.078	1.00	0.00	С
_	ATOM	977	CG	LYS A	14.	55.887	61.635	25.417	1.00	0.00	С
5	ATOM	978	CD	LYS A	14:	54.925	60.800	26.252	1.00	0.00	С
	ATOM	979	CE	LYS A	14	54.648	61.430	27.613	1.00	0.00	С
	ATOM	980	NZ	LYS A	1 14	55.860	61.462	28.478	1.00	0.00	N
	ATOM	981	N	LYS A	14	57.640	58.966	21.986	1.00	0.00	N
	ATOM	982	CA	LYS Z	14	57.589	58.225	20.728	1.00	0.00	С
10	ATOM	983	С	LYS A	14	57.650	56.734	21.036	1.00	0.00	С
	ATOM	984	0	LYS A	14	56.967	55.935	20.401	1.00	0.00	0
	ATOM	985	CB	LYS A			58.602	19.810	1.00	0.00	С
	ATOM	986	CG	LYS A			59.956	19.127	1.00	0.00	С
	ATOM	987	CD	LYS Z	14	59.760	60.201	18.141	1.00	0.00	С
15	ATOM	988	CE	LYS A			61.542	17.439	1.00	0.00	С
	ATOM	989	NZ	LYS A			61.808	16.502	1.00	0.00	N
	ATOM	990	N	LEU Z			56.369	22.019	1.00	0.00	N
	ATOM	991	CA	LEU Z			54.976	22.423	1.00	0.00	C
	ATOM	992	С	LEU A			54.452	23.064	1.00	0.00	С
20	ATOM	993	0	LEU Z			53.328	22.792	1.00	0.00	0
	ATOM	994	СВ	LEU A			54.828	23.394	1.00	0.00	С
	ATOM	995	CG	LEU A			55.065	22.765	1.00	0.00	С
	ATOM	996		LEU Z			54.955	23.819	1.00	0.00	С
	ATOM	997		LEU A			54.043	21.659	1.00	0.00	С
25	ATOM	998	N	GLN A			55.258	23.917	1.00	0.00	N
	ATOM	999	CA	GLN A			54.838	24.541	1.00	0.00	С
	ATOM	1000	C	GLN A			54.655	23.461	1.00	0.00	С
	ATOM	1001	Ō	GLN A			53.734	23.525	1.00	0.00	0
	ATOM	1002	СВ	GLN A			55.874	25.552	1.00	0.00	С
30	ATOM	1003	CG	GLN A			55.857	26.884	1.00	0.00	С
	ATOM	1004	CD	GLN A			56.743	27.922	1.00	0.00	С
	ATOM	1005		GLN A			56.768	29.086	1.00	0.00	0
	ATOM	1006		GLN A			57.477	27.505	1.00	0.00	N
	ATOM	1007	N	MET A			55.537	22.468	1.00	0.00	N
35	ATOM	1008	CA	MET A			55.467	21.385	1.00	0.00	C
-	ATOM	1009	C	MET A			54.196	20.565	1.00	0.00	С
	ATOM	1010	Ö	MET A			53.508	20.232	1.00	0.00	0
	ATOM	1011	СВ	MET A			56.697	20.481	1.00	0.00	С
	ATOM	1012	CG	MET A			56.747	19.352	1.00	0.00	С
40	ATOM	1013	SD	MET A			56.818	19.930	1.00	0.00	S
	ATOM	1014	CE	MET A			58.585	20.073	1.00	0.00	С
	ATOM	1015	N	LYS A			53.879	20.244	1.00	0.00	N
	ATOM	1016	CA	LYS			52.682	19.462	1.00	0.00	С
	ATOM	1017	С	LYS A			51.429	20.215	1.00	0.00	С
45	ATOM	1018	Ō	LYS			50.450	19.606	1.00	0.00	0
	ATOM	1019	СВ	LYS A			52.601	19.104	1.00	0.00	С
	ATOM	1020	CG	LYS A			53.724	18.190	1.00	0.00	С
	ATOM	1021	CD	LYS Z			53.714	17.990	1.00	0.00	С
	ATOM	1022	CE	LYS			52.493	17.214	1.00	0.00	С
50	ATOM	1023	NZ	LYS			52.537	16.948	1.00	0.00	N
• •	ATOM	1024	N	SER A			51.464	21.542	1.00	0.00	N
	ATOM	1025	CA	SER A			50.305	22.346	1.00	0.00	С
	ATOM	1026	С	SER A			50.036	22.373	1.00	0.00	С
	ATOM	1027	Ö	SER A			48.883	22.271	1.00	0.00	0
55	ATOM	1028	СВ	SER A			50.454	23.778	1.00	0.00	C
55	ATOM	1020	OG	SER A			51.437	24.486	1.00	0.00	Ö
	ATOM	1029	N	ILE A			51.437	22.505	1.00	0.00	N
	ATOM	1030	CA	ILE A			50.854	22.528	1.00	0.00	C
	ATOM	1031	CA	ILE A			50.469	21.147	1.00	0.00	Č
60	ATOM	1032	0	ILE A			49.948	21.026	1.00	0.00	Ö
50	ATOM	1033	СВ	ILE A			52.074	23.075	1.00	0.00	c
	AION	1024	CD	IND I	. 10	. 43.344	J2.0/4	23.073	1.00	0.00	Ç

	ATOM	1035	CG1	ILE A	152	50.245	53.334	22.274	1.00	0.00	С
	ATOM	1036	CG2	ILE A	152	50.249	52.274	24.549	1.00	0.00	С
	ATOM	1037	CD1	ILE A	152	49.359	54.507	22.645	1.00	0.00	С
	ATOM	1038	N	VAL A	153	50.965	50.723	20.106	1.00	0.00	N
5	ATOM	1039	CA	VAL A	153	50.562	50.343	18.753	1.00	0.00	С
	ATOM	1040	С	VAL A	153	50.959	48.881	18.580	1.00	0.00	С
	ATOM	1041	0	VAL A		50.178	48.057	18.103	1.00	0.00	0
	ATOM	1042	СВ	VAL A	153	51.280	51.195	17.682	1.00	0.00	С
	ATOM	1043		VAL A		51.068	50.590	16.295	1.00	0.00	С
10	ATOM	1044		VAL A		50.746	52.618	17.715	1.00	0.00	С
	ATOM	1045	N	LYS A		52.181	48.564	18.998	1.00	0.00	N
	ATOM	1046	CA	LYS A		52.692	47.203	18.897	1.00	0.00	С
	ATOM	1047	C	LYS A		51.832	46.218	19.692	1.00	0.00	С
	ATOM	1048	Ö	LYS A		51.604	45.088	19.244	1.00	0.00	0
15	ATOM	1049	СВ	LYS A		54.141	47.153	19.395	1.00	0.00	C
10	ATOM	1050	CG	LYS A		54.883	45.879	19.009	1.00	0.00	C
	ATOM	1050	CD	LYS A		56.371	45.971	19.327	1.00	0.00	c
	ATOM	1051	CE	LYS A		56.650	45.772	20.811	1.00	0.00	Ċ
		1052				55.949	46.755	21.689	1.00	0.00	N
20	ATOM		NZ	LYS A		51.344	46.643	20.857	1.00	0.00	N
20	MOTA	1054	N	ASN A			45.773	21.697	1.00	0.00	C
	ATOM	1055	CA	ASN A		50.524		21.097		0.00	c
	ATOM	1056	С	ASN A		49.050	45.705		1.00	0.00	0
	ATOM	1057	0	ASN A		48.269	44.985	21.908	1.00		c
25	MOTA	1058	CB	ASN A		50.637	46.177	23.178	1.00	0.00	c
25	ATOM	1059	CG	ASN A		49.837	47.427	23.519	1.00	0.00	
	ATOM	1060		ASN A		49.102	47.957	22.688	1.00	0.00	0
	MOTA	1061		ASN A		49.973	47.898	24.757	1.00	0.00	N
	MOTA	1062	N	GLY A		48.665	46.467	20.272	1.00	0.00	N
20	MOTA	1063	CA	GLY A		47.291	46.417	19.798	1.00	0.00	С
30	MOTA	1064	С	GLY A		46.253	47.362	20.380	1.00	0.00	С
	MOTA	1065	0	GLY A		45.080	47.277	20.006	1.00	0.00	0
	MOTA	1066	N	GLN A		46.652	48.259	21.279	1.00	0.00	N
	ATOM	1067	CA	GLN A		45.695	49.195	21.872	1.00	0.00	С
0.5	ATOM	1068	С	GLN A		45.308	50.318	20.916	1.00	0.00	C
35	MOTA	1069	0	GLN A		44.143	50.692	20.829	1.00	0.00	0
	MOTA	1070	CB	GLN A		46.254	49.811	23.147	1.00	0.00	C
	MOTA	1071	CG	GLN A		46.313	48.867	24.328	1.00	0.00	C
	MOTA	1072	CD	GLN A	157	46.577	49.619	25.611	1.00	0.00	С
	MOTA	1073		GLN A		45.676	50.244	26.173	1.00	0.00	0
40	MOTA	1074	NE2	GLN A	157	47.818	49.589	26.065	1.00	0.00	N
	MOTA	1075	N	LEU A	158	46.299	50.884	20.236	1.00	0.00	N
	MOTA	1076	CA	LEU A	158	46.047	51.938	19.266	1.00	0.00	C
	MOTA	1077	С	LEU A	158	46.230	51.277	17.909	1.00	0.00	С
	MOTA	1078	0	LEU A	158	47.308	50.772	17.598	1.00	0.00	0
45	MOTA	1079	CB	LEU A	158	47.042	53.093	19.440	1.00	0.00	С
	ATOM	1080	CG	LEU A	158	46.941	54.281	18.471	1.00	0.00	С
	ATOM	1081	CD1	LEU A	158	47.444	53.885	17.092	1.00	0.00	C
	MOTA	1082		LEU A		45.508	54.766	18.392	1.00	0.00	С
	MOTA	1083	N	GLU A	159	45.171	51.274	17.107	1.00	0.00	N
50	ATOM	1084	CA	GLU A		45.230	50.638	15.801	1.00	0.00	С
	ATOM	1085	С	GLU A		44.890	51.595	14.670	1.00	0.00	C
	ATOM	1086	0	GLU A		43.912	52.336	14.739	1.00	0.00	0
	ATOM	1087	СВ	GLU A		44.277	49.442	15.771	1.00	0.00	С
	ATOM	1088	CG	GLU A		44.210	48.721	14.434	1.00	0.00	С
55	ATOM	1089	CD	GLU A		43.268	47.534	14.476	1.00	0.00	С
	ATOM	1090		GLU A		43.603	46.536	15.148	1.00	0.00	Ō
	ATOM	1090		GLU A		42.191	47.604	13.844	1.00	0.00	ō
	ATOM	1091	N N	PHE A		45.709	51.577	13.629	1.00	0.00	N
	MOTA	1092	CA	PHE A		45.466	52.437	12.488	1.00	0.00	C
60		1093	CA	PHE A		44.548	51.735	11.509	1.00	0.00	C
00	ATOM					44.727	50.552	11.202	1.00	0.00	ō
	ATOM	1095	0	PHE A	100	44.161	50.552	11.202	1.00	0.00	V

	ATOM	1096	СВ	PHE	A	160	46.781	52.812	11.808	1.00	0.00	С
	ATOM	1097	CG	PHE			47.707	53.593	12.692	1.00	0.00	С
	ATOM	1098	CD1	PHE	Α	160	48.747	52.959	13.367	1.00	0.00	С
	ATOM	1099	CD2	PHE	Α	160	47.508	54.956	12.892	1.00	0.00	С
5	ATOM	1100	CE1	PHE	Α	160	49.574	53.671	14.231	1.00	0.00	С
-	ATOM	1101		PHE			48.331	55.677	13.757	1.00	0.00	С
	ATOM	1102	CZ	PHE			49.362	55.032	14.425	1.00	0.00	С
	ATOM	1103	N	VAL			43.543	52.468	11.048	1.00	0.00	N
	ATOM	1104	CA	VAL			42.591	51.942	10.087	1.00	0.00	С
10	ATOM	1105	C	VAL			42.805	52.718	8.791	1.00	0.00	C
10	MOTA	1105	Ö	VAL			42.882	53.952	8.800	1.00	0.00	ō
		1100	CB	VAL			41.138	52.085	10.605	1.00	0.00	C
	MOTA			VAL				51.127	11.776	1.00	0.00	c
	ATOM	1108					40.919		11.776	1.00	0.00	c
1 🗆	MOTA	1109		VAL			40.870	53.519				N
15	ATOM	1110	N	THR			42.914	51.976	7.690	1.00	0.00	
	MOTA	1111	CA	THR			43.179	52.519	6.358	1.00	0.00	C
	MOTA	1112	С	THR			44.641	52.973	6.314	1.00	0.00	C
	ATOM	1113	0	THR			45.451	52.417	5.572	1.00	0.00	0
••	ATOM	1114	CB	THR			42.268	53.717	5.993	1.00	0.00	С
20	MOTA	1115	OG1	THR	Α	162	40.894	53.310	6.017	1.00	0.00	0
	MOTA	1116	CG2	THR .	Α	162	42.598	54.212	4.583	1.00	0.00	С
	ATOM	1117	N	GLY	Α	163	44.978	53.978	7.113	1.00	0.00	N
	ATOM	1118	CA	GLY .	A	163	46.351	54.451	7.147	1.00	0.00	С
	ATOM	1119	С	GLY	A	163	46.721	55.412	6.034	1.00	0.00	С
25	ATOM	1120	0	GLY			47.895	55.562	5.705	1.00	0.00	0
	ATOM	1121	N	GLY .			45.718	56.053	5.446	1.00	0.00	N
	ATOM	1122	CA	GLY .			45.980	57.014	4.393	1.00	0.00	С
	ATOM	1123	С	GLY	A	164	46.271	58.380	4.989	1.00	0.00	С
	ATOM	1124	0	GLY			45.987	58.630	6.163	1.00	0.00	0
30	ATOM	1125	N	TRP			46.847	59.267	4.186	1.00	0.00	N
00	ATOM	1126	CA	TRP			47.158	60.612	4.656	1.00	0.00	С
	ATOM	1127	C	TRP			45.848	61.228	5.155	1.00	0.00	С
	ATOM	1128	Õ	TRP			45.825	61.957	6.150	1.00	0.00	0
	ATOM	1129	СВ	TRP			47.739	61.440	3.507	1.00	0.00	Ċ
35	ATOM	1130	CG	TRP			48.530	62.645	3.938	1.00	0.00	C
55	MOTA	1131		TRP			48.290	63.948	3.600	1.00	0.00	C
	ATOM	1131		TRP			49.717	62.654	4.745	1.00	0.00	c
		1132		TRP			49.253	64.766	4.145	1.00	0.00	N
	ATOM							64.000	4.851	1.00	0.00	C
40	ATOM	1134		TRP			50.141	61.657	5.385	1.00	0.00	C
40	ATOM	1135		TRP			50.464		5.575		0.00	c
	ATOM	1136		TRP			51.282	64.375		1.00		C
	MOTA	1137		TRP			51.602	62.033	6.107	1.00	0.00	C
	ATOM	1138		TRP			51.995	63.380	6.193	1.00	0.00	N
45	MOTA	1139	N	VAL			44.756	60.904	4.467	1.00		
45	MOTA	1140	CA	VAL			43.425	61.402	4.822	1.00	0.00	C
	MOTA	1141	С	VAL			42.395	60.293	4.591	1.00	0.00	С
	ATOM	1142	0	VAL .			42.755	59.158	4.290	1.00	0.00	0
	ATOM	1143	CB	VAL			43.015	62.614	3.930	1.00	0.00	С
=0	MOTA	1144		VAL			44.058	63.731	4.035	1.00	0.00	С
50	ATOM	1145	CG2	VAL			42.873	62.167	2.465	1.00	0.00	С
	MOTA	1146	N	MET	Α	167	41.122	60.635	4.773	1.00	0.00	N
	MOTA	1147	CA	MET	A	167	39.997	59.736	4.499	1.00	0.00	С
	MOTA	1148	С	MET	A	167	39.453	60.495	3.296	1.00	0.00	С
	ATOM	1149	0	MET	A	167	38.657	61.426	3.438	1.00	0.00	0
55	ATOM	1150	CB	MET	Α	167	38.981	59.749	5.641	1.00	0.00	С
•	ATOM	1151	CG	MET			37.730	58.923	5.362	1.00	0.00	С
	ATOM	1152	SD	MET			36.561	58.986	6.731	1.00	0.00	S
	ATOM	1153	CE	MET			37.551	58.164	8.032	1.00	0.00	С
	ATOM	1154	N	PRO			39.877	60.103	2.085	1.00	0.00	N
60	ATOM	1155	CA	PRO			39.448	60.779	0.862	1.00	0.00	С
00	ATOM	1156	C	PRO			38.006	60.758	0.399	1.00	0.00	C
	MION	1100	C		• •	-00	55.000		0.000			_

									1 00	0 00	^
	ATOM	1157	0	PRO A		37.234	59.849	0.701	1.00	0.00	0
	ATOM	1158	CB	PRO A		40.367	60.175	-0.193	1.00	0.00	C
	ATOM	1159	CG	PRO A		40.431	58.739	0.248	1.00	0.00	C
_	ATOM	1160	CD	PRO A	168	40.629	58.872	1.763	1.00	0.00	С
5	MOTA	1161	N	ASP A	169	37.672	61.800	-0.353	1.00	0.00	N
	MOTA	1162	CA	ASP A	169	36.378	61.911	-0.987	1.00	0.00	С
	ATOM	1163	С	ASP A	169	36.468	60.745	-1.965	1.00	0.00	С
	ATOM	1164	0	ASP A		37.569	60.379	-2.382	1.00	0.00	0
	ATOM	1165	CB	ASP A		36.285	63.228	-1.758	1.00	0.00	С
10	ATOM	1166	CG	ASP A		35.167	63.227	-2.780	1.00	0.00	С
10	ATOM	1167		ASP A		34.076	62.709	-2.465	1.00	0.00	0
	ATOM	1168		ASP A		35.374	63.756	-3.890	1.00	0.00	0
						35.336	60.152	-2.324	1.00	0.00	N
	ATOM	1169	N	GLU A			59.028	-3.250	1.00	0.00	C
1 🗆	ATOM	1170	CA	GLU A		35.367		-3.230 -4.566		0.00	C
15	ATOM	1171	С	GLU A		34.658	59.327		1.00		o
	ATOM	1172	0	GLU A		34.630	58.489	-5.467	1.00	0.00	
	ATOM	1173	CB	GLU A		34.768	57.782	-2.575	1.00	0.00	C
	MOTA	1174	CG	GLU A		35.635	57.268	-1.417	1.00	0.00	C
	ATOM	1175	CD	GLU A	170	35.037	56.070	-0.687	1.00	0.00	С
20	MOTA	1176	OE1	GLU A	170	34.240	55.330	-1.301	1.00	0.00	0
	ATOM	1177	OE2	GLU A	170	35.387	55.860	0.499	1.00	0.00	0
	ATOM	1178	N	ALA A	171	34.112	60.533	-4.687	1.00	0.00	N
	ATOM	1179	CA	ALA A	171	33.397	60.918	-5.901	1.00	0.00	С
	ATOM	1180	C	ALA A	171	34.233	61.694	-6.920	1.00	0.00	C
25	ATOM	1181	Ó	ALA A		34.279	61.342	-8.099	1.00	0.00	0
	ATOM	1182	СВ	ALA A		32.164	61.733	-5.533	1.00	0.00	С
	ATOM	1183	N	ASN A		34.888	62.752	-6.452	1.00	0.00	N
	ATOM	1184	CA	ASN A		35.685	63.629	-7.305	1.00	0.00	С
	ATOM	1185	C	ASN A		37.145	63.220	-7.465	1.00	0.00	С
30		1186		ASN A		37.143	63.594	-8.432	1.00	0.00	0
30	ATOM		0				65.045	-6.733	1.00	0.00	Č
	MOTA	1187	CB	ASN A		35.643		-6.613	1.00	0.00	C
	ATOM	1188	CG	ASN A		34.231	65.585			0.00	0
	MOTA	1189		ASN A		33.572	65.854	-7.617	1.00		N
25	MOTA	1190		ASN A		33.760	65.746	-5.379	1.00	0.00	
35	MOTA	1191	N	SER A		37.643	62.455	-6.508	1.00	0.00	N
	ATOM	1192	CA	SER A		39.040	62.031	-6.510	1.00	0.00	C
	MOTA	1193	С	SER A		39.432	61.111	-7.660	1.00	0.00	C
	ATOM	1194	0	SER A	173	38.671	60.220	-8.040	1.00	0.00	0
_	MOTA	1195	CB	SER A	173	39.349	61.327	-5.193	1.00	0.00	С
40	ATOM	1196	OG	SER A	173	40.734	61.020	-5.115	1.00	0.00	. 0
	ATOM	1197	N	HIS A	174	40.623	61.335	-8.215	1.00	0.00	N
	MOTA	1198	CA	HIS A	174	41.116	60.474	-9.282	1.00	0.00	С
	MOTA	1199	С	HIS A	174	41.786	59.293	-8.576	1.00	0.00	C
	ATOM	1200	0	HIS A		42.429	59.480	-7.545	1.00	0.00	0
45	ATOM	1201	СВ	HIS A		42.127	61.214	-10.152	1.00	0.00	С
10	ATOM	1202	CG	HIS A		42.377		-11.466	1.00	0.00	C
	ATOM	1203		HIS A		43.060		-11.576	1.00	0.00	N
	ATOM	1203		HIS A		41.972		-12.717	1.00	0.00	С
				HIS A		43.060		-12.840	1.00	0.00	С
50	ATOM	1205						-13.552	1.00	0.00	N
50	ATOM	1206		HIS A		42.406		-9.115	1.00	0.00	N
	MOTA	1207	N	TRP A		41.642	58.085			0.00	C
	MOTA	1208	CA	TRP A		42.230	56.920	-8.461	1.00		c
	MOTA	1209	С	TRP A		43.722	57.085	-8.224	1.00	0.00	
	ATOM	1210	0	TRP A		44.254	56.588	-7.233	1.00	0.00	0
55	MOTA	1211	CB	TRP A	175	41.964	55.628	-9.254	1.00	0.00	C
	ATOM	1212	CG	TRP A	175	42.795		-10.501	1.00	0.00	С
	ATOM	1213	CD1	TRP A	175	42.468	55.823	-11.774	1.00	0.00	C
	ATOM	1214	CD2	TRP A	175	44.088	54.834	-10.583	1.00	0.00	C
	ATOM	1215		TRP A		43.479	55.478	-12.646	1.00	0.00	N
60	ATOM	1216		TRP A		44.485		-11.939	1.00	0.00	С
	ATOM	1217		TRP A		44.951	54.258	-9.638	1.00	0.00	С
					-						

	ATOM	1218	CZ2	TRP A	175	45.71	54.348	-12.378	1.00	0.00	С
	ATOM	1219	CZ3	TRP A	175	46.170	53.739	-10.072	1.00	0.00	С
	ATOM	1220	CH2	TRP A	175	46.53	53.789	-11.434	1.00	0.00	С
	ATOM	1221	N	ARG A	176	44.399	57.787	-9.126	1.00	0.00	N
5	ATOM	1222	CA	ARG A	176	45.830	58.000	-8.974	1.00	0.00	С
	ATOM	1223	С	ARG A	176	46.145	58.754	-7.679	1.00	0.00	С
	ATOM	1224	0	ARG A	176	47.118	58.433	-6.987	1.00	0.00	0
	ATOM	1225	CB	ARG A	176	46.374	58.756	-10.191	1.00	0.00	С
	ATOM	1226	CG	ARG A	176	46.436	57.886	-11.445	1.00	0.00	С
10	ATOM	1227	CD	ARG A		46.40	58.704	-12.723	1.00	0.00	С
	ATOM	1228	NE	ARG A		47.504	59.663	-12.820	1.00	0.00	N
	ATOM	1229	CZ	ARG A		47.662	60.498	-13.845	1.00	0.00	С
	ATOM	1230		ARG A		46.79		-14.852	1.00	0.00	N
	ATOM	1231		ARG A		48.67	61.349	-13.861	1.00	0.00	N
15	ATOM	1232	N	ASN A		45.325		-7.341	1.00	0.00	N
	ATOM	1233	CA	ASN A		45.55		-6.116	1.00	0.00	C
	ATOM	1234	C	ASN A		45.07		-4.877	1.00	0.00	С
	ATOM	1235	ō	ASN A		45.58		-3.773	1.00	0.00	0
	ATOM	1236	СВ	ASN A		44.894		-6.200	1.00	0.00	С
20	ATOM	1237	CG	ASN A		45.56		-7.220	1.00	0.00	С
	ATOM	1238		ASN A		46.750		-7.515	1.00	0.00	0
	ATOM	1239		ASN A		44.82		-7.758	1.00	0.00	N
	ATOM	1240	N	VAL A		44.09		-5.055	1.00	0.00	N
	ATOM	1241	CA	VAL A		43.618		-3.935	1.00	0.00	С
25	ATOM	1242	C	VAL A		44.79		-3.558	1.00	0.00	С
	ATOM	1243	ŏ	VAL A		45.09		-2.378	1.00	0.00	0
	ATOM	1244	СВ	VAL A		42.40		-4.336	1.00	0.00	С
	ATOM	1245		VAL A		42.07		-3.215	1.00	0.00	С
	ATOM	1246		VAL A		41.199		-4.631	1.00	0.00	С
30	ATOM	1247	N	LEU A		45.47		-4.570	1.00	0.00	N
	ATOM	1248	CA	LEU P		46.62		-4.326	1.00	0.00	C
	ATOM	1249	C	LEU A		47.78		-3.739	1.00	0.00	С
	ATOM	1250	ō	LEU A		48.48		-2.839	1.00	0.00	0
	ATOM	1251	СВ	LEU A		47.098		-5.622	1.00	0.00	С
35	ATOM	1252	CG	LEU A		48.400		-5.498	1.00	0.00	С
•••	ATOM	1253		LEU A		48.23		-4.463	1.00	0.00	С
	ATOM	1254		LEU P		48.75		-6.860	1.00	0.00	С
	ATOM	1255	N	LEU F		47.980		-4.250	1.00	0.00	N
	ATOM	1256	CA	LEU A		49.060	58.635	-3.763	1.00	0.00	С
40	ATOM	1257	С	LEU P		48.92		-2.261	1.00	0.00	C
	ATOM	1258	0	LEU A		49.87	58.707	-1.499	1.00	0.00	0
	ATOM	1259	CB	LEU F		49.06	59.970	-4.521	1.00	0.00	С
	ATOM	1260	CG	LEU F		50.20	60.929	-4.169	1.00	0.00	С
	ATOM	1261	CD1	LEU F		51.51	60.375	-4.738	1.00	0.00	С
45	ATOM	1262		LEU P		49.92		-4.727	1.00	0.00	С
	ATOM	1263	N	GLN A		47.73	7 59.322	-1.825	1.00	0.00	N
	ATOM	1264	CA	GLN A		47.54			1.00	0.00	C
	ATOM	1265	С	GLN A		47.58			1.00	0.00	С
	ATOM	1266	0	GLN A		48.06		1.605	1.00	0.00	0
50	ATOM	1267	CB	GLN F		46.24	60.419		1.00	0.00	C
•	ATOM	1268	CG	GLN A		44.93		-0.425	1.00	0.00	С
	ATOM	1269	CD	GLN A		44.56			1.00	0.00	С
	ATOM	1270		GLN A		44.82		1.887	1.00	0.00	0
	ATOM	1271		GLN A		43.95			1.00	0.00	N
55	ATOM	1272	N	LEU F		47.10			1.00	0.00	N
	ATOM	1273	CA	LEU F		47.15		0.750	1.00	0.00	C
	ATOM	1274	C	LEU P		48.62		0.939	1.00	0.00	Ċ
	ATOM	1274	0	LEU F		49.05			1.00	0.00	0
	ATOM	1275	CB	LEU F		46.42		0.019	1.00	0.00	C
60	ATOM	1277	CG	LEU F		46.49			1.00	0.00	C
00	ATOM	1278		LEU F		45.75			1.00	0.00	c
	ATOR	1210	CDI	DEC F	. 102	33.75					_

					100	45 001	FO 427	0 261	1 00	0.00	С
	ATOM	1279		LEU A		45.891	52.437	-0.261	1.00	0.00	N
	ATOM	1280	N	THR A		49.389	55.735	-0.145	1.00		
	MOTA	1281	CA	THR A		50.810	55.408	-0.113	1.00	0.00	C
_	MOTA	1282	С	THR A		51.569	56.350	0.825	1.00	0.00	C
5	MOTA	1283	0	THR A		52.437	55.919	1.592	1.00	0.00	0
	MOTA	1284	CB	THR A		51.431	55.489	-1.539	1.00	0.00	C
	MOTA	1285	OG1	THR A	183	50.708	54.626	-2.430	1.00	0.00	0
	MOTA	1286	CG2	THR A	183	52.899	55.060	-1.513	1.00	0.00	C
	MOTA	1287	N	GLU A	184	51.238	57.636	0.775	1.00	0.00	N
10	ATOM	1288	CA	GLU A	184	51.916	58.611	1.625	1.00	0.00	С
	ATOM	1289	С	GLU A	184	51.715	58.250	3.100	1.00	0.00	С
	ATOM	1290	0	GLU A	184	52.663	58.257	3.888	1.00	0.00	0
	ATOM	1291	CB	GLU A		51.376	60.017	1.342	1.00	0.00	C
	ATOM	1292	CG	GLU A		52.229	61.165	1.883	1.00	0.00	C
15	ATOM	1293	CD	GLU A		53.624	61.226	1.269	1.00	0.00	С
10	ATOM	1294		GLU A		53.778	60.909	0.070	1.00	0.00	0
	ATOM	1295		GLU A		54.567	61.615	1.988	1.00	0.00	0
	ATOM	1296	N	GLY A		50.479	57.921	3.463	1.00	0.00	N
	ATOM	1297	CA	GLY A		50.182	57.560	4.840	1.00	0.00	С
20	ATOM	1298	C	GLY A		50.766	56.225	5.271	1.00	0.00	С
20	ATOM	1299	0	GLY A		51.350	56.112	6.356	1.00	0.00	0
	ATOM	1300		GLN A		50.623	55.204	4.432	1.00	0.00	N
		1300	N	GLN A		51.142	53.886	4.788	1.00	0.00	C
	MOTA		CA			52.666	53.803	4.781	1.00	0.00	c
25	ATOM	1302	С	GLN A			53.043	5.551	1.00	0.00	ō
23	MOTA	1303	0	GLN A		53.254	52.808	3.870	1.00	0.00	C
	ATOM	1304	CB	GLN A		50.559			1.00	0.00	c
	MOTA	1305	CG	GLN A		49.045	52.631	4.004 3.797	1.00	0.00	C
	MOTA	1306	CD	GLN A		48.614	51.190		1.00	0.00	0
20	MOTA	1307		GLN A		49.190	50.476	2.981			И
30	MOTA	1308		GLN A		47.592	50.758	4.531	1.00	0.00	N
	MOTA	1309	N	THR A		53.312	54.574	3.916	1.00		C
	ATOM	1310	CA	THR A		54.768	54.551	3.873	1.00	0.00	c
	ATOM	1311	С	THR A		55.289	55.132	5.188	1.00	0.00	0
25	MOTA	1312	0	THR A		56.255	54.629	5.765	1.00	0.00	
35	MOTA	1313	CB	THR A		55.297	55.355	2.673	1.00	0.00	С
	MOTA	1314				54.837	54.743	1.460	1.00	0.00	0
	MOTA	1315		THR A		56.827	55.373	2.664	1.00	0.00	C
	MOTA	1316	N	TRP A		54.631	56.179	5.675	1.00	0.00	N
40	ATOM	1317	CA	TRP A		 55.034	56.790	6.937	1.00	0.00	C
40	ATOM	1318	С	TRP A		54.838	55.761	8.052	1.00	0.00	С
	ATOM	1319	0	TRP A		55.727	55.551	8.875	1.00	0.00	0
	MOTA	1320	CB	TRP A		54.189	58.033	7.239	1.00	0.00	C
	ATOM	1321	CG	TRP A	188	54.655	58.785	8.461	1.00	0.00	C
	ATOM	1322	CD1	TRP A	188	55.574	59.798	8.503	1.00	0.00	C
45	MOTA	1323	CD2	TRP A	188	54.297	58.513	9.823	1.00	0.00	С
	MOTA	1324	NE1	TRP A	188	55.815	60.168	9.808	1.00	0.00	N
	MOTA	1325	CE2	TRP A	188	55.044	59.395	10.637	1.00	0.00	C
	ATOM	1326	CE3	TRP A	188	53.422	57.605	10.434	1.00	0.00	C
	ATOM	1327	CZ2	TRP A	188	54.942	59.394	12.032	1.00	0.00	C
50	ATOM	1328		TRP A		53.322	57.603	11.826	1.00	0.00	С
	MOTA	1329	CH2	TRP A	188	54.079	58.492	12.607	1.00	0.00	C
	ATOM	1330	N	LEU A	189	53.672	55.115	8.071	1.00	0.00	N
	ATOM	1331	CA	LEU A		53.375	54.113	9.094	1.00	0.00	С
	ATOM	1332	C	LEU A		54.375	52.962	9.114	1.00	0.00	С
55	ATOM	1333	ŏ	LEU A		54.793	52.515	10.185	1.00	0.00	0
	ATOM	1334	СВ	LEU A		51.965	53.542	8.901	1.00	0.00	С
	MOTA	1335	CG	LEU A		50.798	54.436	9.325	1.00	0.00	C
	ATOM	1336		LEU A		49.476	53.723	9.014	1.00	0.00	C
	ATOM	1337		LEU A		50.908	54.745	10.821	1.00	0.00	c
60	ATOM	1337	N N	LYS A		54.753	52.470	7.939	1.00	0.00	N
00	ATOM	1338	CA	LYS A		55.704	51.365	7.885	1.00	0.00	C
	A I OM	1333	CA	тгэ н	130	33.704	51.505	7.005	1.00	0.00	Ü

			_			57.047	r1 700	0.466	1 00	0 00	_
	MOTA	1340	С	LYS A		57.047	51.789	8.466	1.00	0.00	С
	ATOM	1341	0	LYS A		57.646	51.066	9.261	1.00	0.00	0
	ATOM	1342	CB	LYS A		55.913	50.883	6.446	1.00	0.00	C
_	MOTA	1343	CG	LYS A		56.747	49.601	6.350	1.00	0.00	C
5	MOTA	1344	CD	LYS A		56.968	49.178	4.906	1.00	0.00	С
	ATOM	1345	CE	LYS A		57.527	47.761	4.815	1.00	0.00	С
	ATOM	1346	NZ	LYS A		58.685	47.571	5.732	1.00	0.00	N
	MOTA	1347	N	GLN A	191	57.511	52.967	8.071	1.00	0.00	N
	MOTA	1348	CA	GLN A	191	58.791	53.471	8.542	1.00	0.00	С
10	MOTA	1349	С	GLN A	191	58.847	53.796	10.034	1.00	0.00	С
	MOTA	1350	0	GLN A	191	59.810	53.431	10.710	1.00	0.00	0
	MOTA	1351	CB	GLN A	191	59.196	54.715	7.741	1.00	0.00	С
	ATOM	1352	CG	GLN A		60.522	55.317	8.190	1.00	0.00	С
	ATOM	1353	CD	GLN A		60.941	56.526	7.371	1.00	0.00	С
15	ATOM	1354	OE1			61.982	57.132	7.635	1.00	0.00	0
	ATOM	1355		GLN A		60.135	56.883	6.373	1.00	0.00	N
	ATOM	1356	N	PHE A		57.826	54.471	10.556	1.00	0.00	N
	ATOM	1357	CA	PHE A		57.842	54.853	11.967	1.00	0.00	С
	ATOM	1358	C	PHE A		57.044	54.008	12.965	1.00	0.00	С
20	ATOM	1359	ŏ	PHE A		57.394	53.969	14.146	1.00	0.00	0
20	ATOM	1360	СВ	PHE A		57.422	56.319	12.110	1.00	0.00	C
	ATOM	1361	CG	PHE A		58.327	57.278	11.395	1.00	0.00	С
	ATOM	1362		PHE A		58.024	57.716	10.108	1.00	0.00	C
	MOTA	1363		PHE A		59.497	57.727	11.997	1.00	0.00	Ċ
25		1364		PHE A		58.870	58.587	9.432	1.00	0.00	C
23	ATOM	1364		PHE A		60.355	58.601	11.329	1.00	0.00	Č
	MOTA			PHE A		60.041	59.032	10.044	1.00	0.00	Ċ
	ATOM	1366	CZ	MET A		55.985	53.343	12.512	1.00	0.00	N
	MOTA	1367	N	MET A		55.165	52.521	13.410	1.00	0.00	C
30	MOTA	1368	CA			55.333	51.025	13.145	1.00	0.00	c
50	ATOM	1369	С	MET A		54.859	50.190	13.143	1.00	0.00	0
	ATOM	1370	0	MET A			52.880	13.274	1.00	0.00	c
	MOTA	1371	CB	MET A		53.679	54.222	13.274	1.00	0.00	c
	ATOM	1372	CG	MET A		53.268		15.631	1.00	0.00	S
25	ATOM	1373	SD	MET A		53.639	54.388 55.512	15.487	1.00	0.00	C
35	ATOM	1374	CE	MET A		54.987			1.00	0.00	N
	ATOM	1375	N	ASN A		55.997	50.698	12.041			C
	ATOM	1376	CA	ASN A		56.234	49.312	11.654	1.00	0.00	C
	ATOM	1377	С	ASN A		54.932	48.521	11.530	1.00		
40	ATOM	1378	0	ASN A		54.839	47.377	11.975	1.00	0.00	0 C
40	MOTA	1379	CB	ASN A		57.168	48.640	12.669	1.00	0.00	c
	ATOM	1380	CG	ASN A		57.626	47.263	12.223	1.00	0.00	
	MOTA	1381		ASN A		57.761	47.001	11.026	1.00	0.00	0
	MOTA	1382		ASN A		57.880	46.389	13.194	1.00	0.00	N
4 =	ATOM	1383	N	VAL A		53.920	49.140	10.932	1.00	0.00	N
45	ATOM	1384	CA	VAL A		52.633	48.478	10.741	1.00	0.00	C
	MOTA	1385	С	VAL A	195	52.002	48.928	9.428	1.00	0.00	C
	MOTA	1386	0	VAL A	195	52.223	50.052	8.979	1.00	0.00	0
	MOTA	1387	CB	VAL A	195	51.631	48.789	11.891	1.00	0.00	C
	MOTA	1388	CG1	VAL A	195	52.186	48.303	13.228	1.00	0.00	С
50	MOTA	1389	CG2	VAL A	195	51.334	50.282	11.941	1.00	0.00	C
	MOTA	1390	N	THR A	196	51.230	48.032	8.821	1.00	0.00	N
	MOTA	1391	CA	THR F	196	50.528	48.308	7.570	1.00	0.00	С
	MOTA	1392	С	THR A	196	49.094	47.815	7.740	1.00	0.00	С
	MOTA	1393	0	THR A	196	48.847	46.611	7.778	1.00	0.00	0
55	MOTA	1394	CB	THR A		51.159	47.554	6.373	1.00	0.00	С
_	ATOM	1395		THR A		52.518	47.973	6.195	1.00	0.00	0
	ATOM	1396		THR F		50.377	47.837	5.099	1.00	0.00	С
	ATOM	1397	N	PRO P		48.130	48.743	7.852	1.00	0.00	N
	ATOM	1398	CA	PRO F		46.722	48.371	8.020	1.00	0.00	С
60	ATOM	1399	C	PRO P		46.182	47.503	6.889	1.00	0.00	С
	ATOM	1400	Ö	PRO F		46.539	47.693	5.724	1.00	0.00	0
		• •	-								

	ATOM	1401	СВ	PRO A	197	46.013	49.722	8.078	1.00	0.00	С
	MOTA	1402	CG	PRO A	197	47.055	50.625	8.681	1.00	0.00	С
	MOTA	1403	CD	PRO A	197	48.302	50.203	7.946	1.00	0.00	С
	MOTA	1404	N	THR A	198	45.333	46.541	7.240	1.00	0.00	N
5	ATOM	1405	CA	THR A	198	44.717	45.674	6.244	1.00	0.00	С
•	ATOM	1406	С	THR A		43.206	45.838	6.323	1.00	0.00	С
	ATOM	1407	ō	THR A		42.465	45.141	5.634	1.00	0.00	0
	ATOM	1408	СВ	THR A		45.064	44.185	6.454	1.00	0.00	С
	ATOM	1409		THR A		44.607	43.763	7.741	1.00	0.00	0
10	ATOM	1410		THR A		46.567	43.964	6.330	1.00	0.00	Ċ
10		1410				42.760	46.761	7.175	1.00	0.00	N
	MOTA		N	ALA A			47.054	7.332	1.00	0.00	C
	ATOM	1412	CA	ALA A		41.337		7.090		0.00	c
	ATOM	1413	С	ALA A		41.113	48.551		1.00		
4 -	MOTA	1414	0	ALA A		41.811	49.389	7.665	1.00	0.00	0
15	MOTA	1415	CB	ALA A		40.862	46.664	8.738	1.00	0.00	C
	MOTA	1416	N	SER A		40.140	48.882	6.248	1.00	0.00	N
	ATOM	1417	CA	SER A		39.850	50.280	5.931	1.00	0.00	C
	MOTA	1418	С	SER A	200	38.615	50.799	6.658	1.00	0.00	С
	MOTA	1419	0	SER A	200	37.648	50.059	6.881	1.00	0.00	0
20	MOTA	1420	CB	SER A	200	39.676	50.458	4.421	1.00	0.00	С
	MOTA	1421	OG	SER A	200	39.526	51.827	4.088	1.00	0.00	0
	ATOM	1422	N	TRP A	201	38.658	52.083	7.003	1.00	0.00	N
	MOTA	1423	CA	TRP A		37.596	52.760	7.743	1.00	0.00	C
	ATOM	1424	С	TRP A		37.226	54.077	7.043	1.00	0.00	С
25	ATOM	1425	Ō	TRP A		37.994	55.036	7.063	1.00	0.00	0
	ATOM	1426	CB	TRP A		38.112	52.994	9.176	1.00	0.00	С
	ATOM	1427	CG	TRP A		37.299	53.854	10.114	1.00	0.00	С
	ATOM	1428		TRP A		37.455	55.195	10.339	1.00	0.00	С
	ATOM	1429		TRP A		36.311	53.406	11.051	1.00	0.00	С
30	MOTA	1430		TRP A		36.635	55.606	11.363	1.00	0.00	N
50						35.921	54.529	11.819	1.00	0.00	C
	ATOM	1431		TRP A			52.163	11.320	1.00	0.00	C
	ATOM	1432		TRP A		35.719	54.446	12.840	1.00	0.00	C
	ATOM	1433	CZ2			34.968		12.340	1.00	0.00	c
25	MOTA	1434		TRP A		34.769	52.080			0.00	C
35	MOTA	1435		TRP A		34.404	53.219	13.087	1.00		
	MOTA	1436	N	ALA A		36.055	54.104	6.410	1.00	0.00	N C
	MOTA	1437	CA	ALA A		35.580	55.290	5.691	1.00	0.00	
	MOTA	1438	С	ALA A		34.155	55.616	6.137	1.00	0.00	C
40	MOTA	1439	0	ALA A		33.186	55.168	5.527	1.00	0.00	0
4 0	ATOM	1440	CB	ALA A		35.619	55.034	4.185	1.00	0.00	С
	MOTA	1441	N	ILE A		34.042	56.420	7.190	1.00	0.00	N
	MOTA	1442	CA	ILE P		32.749	56.772	7.770	1.00	0.00	C
	MOTA	1443	С	ILE F	203	32.117	58.098	7.354	1.00	0.00	C
	MOTA	1444	0	ILE F	203	30.941	58.323	7.642	1.00	0.00	0
45	ATOM	1445	CB	ILE P	203	32.830	56.768	9.321	1.00	0.00	С
	ATOM	1446	CG1	ILE F	203	33.902	57.764	9.786	1.00	0.00	C
	MOTA	1447	CG2	ILE P	203	33.146	55.351	9.830	1.00	0.00	С
	ATOM	1448		ILE P		33.977	57.955	11.299	1.00	0.00	C
	ATOM	1449	N	ASP F		32.861	58.973	6.679	1.00	0.00	N
50	ATOM	1450	CA	ASP A		32.276	60.262	6.307	1.00	0.00	С
•	ATOM	1451	C	ASP A		32.157	60.645	4.827	1.00	0.00	C
	MOTA	1452	Ö	ASP A		31.416	61.575	4.503	1.00	0.00	0
	ATOM	1452	СВ	ASP A		32.981	61.400	7.056	1.00	0.00	С
							62.585	7.330	1.00	0.00	C
==	ATOM	1454	CG	ASP A		32.053		7.548	1.00	0.00	ő
55	ATOM	1455		ASP F		32.553	63.709				o
	ATOM	1456		ASP A		30.819	62.398	7.344	1.00	0.00	
	ATOM	1457	N	PRO F		32.882	59.965	3.911	1.00	0.00	N
	ATOM	1458	CA	PRO A		32.733	60.362	2.501	1.00	0.00	C
	ATOM	1459	С	PRO F		31.252	60.324	2.107	1.00	0.00	C
60	MOTA	1460	0	PRO F		30.514	59.447	2.552	1.00	0.00	0
	ATOM	1461	CB	PRO P	205	33.569	59.321	1.759	1.00	0.00	С

		ATOM	1462	CG	PRO	A 205	3,4	1.661	59.016	2.749	1.00	0.00	С
		ATOM	1463	CD		A 205		3.882	58.890	4.046	1.00	0.00	c
		ATOM	1464	N		A 206		0.826	61.265	1.266	1.00	0.00	N
	_	MOTA	1465	CA	PHE .	A 206	29	9.418	61.368	0.866	1.00	0.00	С
	5	ATOM	1466	С	PHE .	A 206	29	9.066	60.457	-0.311	1.00	0.00	С
		ATOM	1467	0	PHE	A 206	28	3.873	60.914	-1.438	1.00	0.00	0
		ATOM	1468	СВ		A 206		9.099	62.830	0.533	1.00	0.00	Ċ
		MOTA	1469	CG		A 206		9.935	63.822	1.306	1.00	0.00	C
		ATOM	1470	CD1	PHE	A 206	30	0.173	63.645	2.668	1.00	0.00	С
	10	ATOM	1471	CD2	PHE	A 206	30	0.494	64.931	0.669	1.00	0.00	С
		ATOM	1472	CE1	PHE	A 206		0.958	64.549	3.383	1.00	0.00	С
		ATOM	1473		PHE			1.280	65.844	1.377	1.00	0.00	c
		ATOM	1474	CZ		A 206		L.514	65.652	2.738	1.00	0.00	С
		ATOM	1475	N	GLY A	A 207	28	3.947	59.165	-0.023	1.00	0.00	N
	15	MOTA	1476	CA	GLY A	A 207	28	3.678	58.183	-1.058	1.00	0.00	С
		ATOM	1477	С	GLY	A 207	29	9.978	57.408	-1.190	1.00	0.00	C
		ATOM	1478	ō		A 207		1.035	57.938	-0.844	1.00	0.00	0
								9.920				0.00	N
		ATOM	1479	N		A 208	2:	9.920	56.173	-1.687	1.00		
	•	MOTA	1480	CA		A 208		.122	55.351	-1.806	1.00	0.00	С
	20	ATOM	1481	С	HIS A	A 208	31	.361	54.759	-3.187	1.00	0.00	С
arizzi.		MOTA	1482	0	HIS A	A 208	30	.419	54.418	-3.909	1.00	0.00	0
		MOTA	1483	CB	HIS	A 208	31	.070	54.238	-0.760	1.00	0.00	С
ıД		ATOM	1484	CG		A 208		.161	54.739	0.648	1.00	0.00	Ċ
¥1.00													
الموالية)E	ATOM	1485		HIS A			2.357	55.086	1.236	1.00	0.00	N
177	25	MOTA	1486		HIS A).203	54.976	1.575	1.00	0.00	С
		ATOM	1487	CE1	HIS A	A 208	32	2.133	55.513	2.466	1.00	0.00	С
الوجدية مراجع		ATOM	1488	NE2	HIS A	A 208	30	0.834	55.457	2.696	1.00	0.00	N
Ŋ		ATOM	1489	N		A 209		2.635	54.625	-3.537	1.00	0.00	N
m,		ATOM	1490	CA		A 209		3.036	54.106	-4.841	1.00	0.00	C
2/225	30												
ijħ.	30	ATOM	1491	С		A 209		3.793	52.783	-4.782	1.00	0.00	C
8:		MOTA	1492	0		A 209		1.595	52.560	-3.872	1.00	0.00	0
		MOTA	1493	CB	SER A	A 209	33	3.916	55.138	-5.551	1.00	0.00	С
100		ATOM	1494	OG	SER A	A 209	34	.484	54.592	-6.734	1.00	0.00	0
Ę		MOTA	1495	N	PRO A	A 210		3.552	51.893	-5.764	1.00	0.00	N
Ū	35	ATOM	1496	CA		A 210		1.224	50.593	-5.819	1.00	0.00	C
	00								50.764	-6.148	1.00	0.00	c
į.i.		ATOM	1497	C		A 210		.704					
		MOTA	1498	0		210		5.479	49.812	-6.074	1.00	0.00	0
		MOTA	1499	CB		A 210		3.451	49.847	-6.907	1.00	0.00	С
į,		MOTA	1500	CG	PRO A	1 210	33	3.031	50.950	-7.830	1.00	0.00	C
	40	ATOM	1501	CD	PRO A	210	32	2.565	52.014	-6.853	1.00	0.00	С
		ATOM	1502	N	THR A			5.103	51.978	~6.518	1.00	0.00	N
		ATOM	1503	CA	THR A			.513	52.217	-6.789	1.00	0.00	C
		ATOM	1504	C	THR A			3.309	51.961	-5.503	1.00	0.00	С
	4=	ATOM	1505	0	THR A			.481	51.583	-5.553	1.00	0.00	0
	45	MOTA	1506	CB	THR A	4 211	37	.768	53.668	-7.260	1.00	0.00	C
		ATOM	1507	OG1	THR A	A 211	37	.238	53.835	-8.580	1.00	0.00	0
		ATOM	1508		THR A			.265	53.974	-7.280	1.00	0.00	C
		ATOM	1509	N	MET A			.671	52.153	-4.351	1.00	0.00	N
	EΩ	MOTA	1510	CA	MET A			3.360	51.938	-3.078	1.00	0.00	C
	50	ATOM	1511	С	MET A			3.742	50.467	-2.866	1.00	0.00	С
		MOTA	1512	0	MET A	1 212	39	.913	50.154	-2.630	1.00	0.00	0
		ATOM	1513	CB	MET A	212	37	.514	52.452	-1.909	1.00	0.00	С
		ATOM	1514	CG	MET A			.203	53.944	-1.967	1.00	0.00	С
			1515						55.001	-2.244	1.00	0.00	S
	==	ATOM		SD	MET A			.661					
	55	ATOM	1516	CE	MET A			.452	54.939	-0.628	1.00	0.00	С
		ATOM	1517	N	PRO A	213	37	.769	49.541	-2.930	1.00	0.00	N
		ATOM	1518	CA	PRO A	213	38	.188	48.148	-2.733	1.00	0.00	C
		ATOM	1519	С		213	39	.170	47.704	-3.822	1.00	0.00	С
		ATOM	1520	Ö		213		.036	46.862	-3.583	1.00	0.00	Ō
	60	ATOM	1521		PRO A			5.862	47.371	-2.754	1.00	0.00	c
	OU			CB									
		MOTA	1522	CG	PRO A	1 213	35	.922	48.287	-3.530	1.00	0.00	С

											_
	ATOM	1523	CD	PRO A	213	36.302	49.649	-3.011	1.00	0.00	С
	ATOM	1524	N	TYR A	214	39.038	48.274	-5.018	1.00	0.00	N
	MOTA	1525	CA	TYR A	214	39.944	47.943	-6.117	1.00	0.00	С
	MOTA	1526	С	TYR A	214	41.390	48.211	-5.698	1.00	0.00	С
5	ATOM	1527	Ō	TYR A		42.257	47.337	-5.793	1.00	0.00	0
	ATOM	1528	СВ	TYR A		39.628	48.788	-7.346	1.00	0.00	С
									1.00	0.00	Č
	ATOM	1529	CG	TYR A		40.553	48.531	-8.517			
	MOTA	1530		TYR A		40.385	47.413	-9.335	1.00	0.00	C
	MOTA	1531	CD2	TYR A	214	41.579	49.422	-8.823	1.00	0.00	С
10	ATOM	1532	CE1	TYR A	214	41.215	47.197	-10.439	1.00	0.00	С
	ATOM	1533	CE2	TYR A	214	42.412	49.215	-9.918	1.00	0.00	С
	ATOM	1534	CZ	TYR A		42.224		-10.725	1.00	0.00	С
		1535	OH	TYR A		43.026	47.934	-11.834	1.00	0.00	0
	ATOM							-5.241	1.00	0.00	N
1 -	MOTA	1536	N	ILE A		41.640	49.435				
15	ATOM	1537	CA	ILE A		42.969	49.848	-4.804	1.00	0.00	C
	MOTA	1538	С	ILE A	215	43.399	49.135	-3.516	1.00	0.00	С
	ATOM	1539	0	ILE A	215	44.529	48.660	-3.403	1.00	0.00	0
	ATOM	1540	CB	ILE A	215	43.008	51.384	-4.567	1.00	0.00	С
	ATOM	1541	CG1	ILE A		42.745	52.118	-5.885	1.00	0.00	С
20	ATOM	1542		ILE A		44.352	51.797	-3.972	1.00	0.00	С
20				ILE A		42.721	53.637	-5.749	1.00	0.00	C
	ATOM	1543							1.00	0.00	N
	ATOM	1544	N	LEU A		42.494	49.062	-2.548			
	ATOM	1545	CA	LEU A		42.803	48.419	-1.273	1.00	0.00	C
	MOTA	1546	С	LEU A	216	43.141	46.932	-1.412	1.00	0.00	С
25	MOTA	1547	0	LEU A	216	44.108	46.452	-0.817	1.00	0.00	0
	ATOM	1548	CB	LEU A	216	41.630	48.594	-0.300	1.00	0.00	C
	ATOM	1549	CG	LEU A	216	41.247	50.039	0.061	1.00	0.00	С
	ATOM	1550		LEU A		39.929	50.049	0.827	1.00	0.00	С
		1551		LEU A		42.365	50.678	0.891	1.00	0.00	С
30	ATOM							-2.197	1.00	0.00	N
30	ATOM	1552	N	GLN A		42.347	46.207				C
	MOTA	1553	CA	GLN A		42.568	44.776	-2.388	1.00	0.00	
	MOTA	1554	С	GLN A		43.925	44.525	-3.051	1.00	0.00	С
	MOTA	1555	0	GLN A	217	44.556	43.490	-2.826	1.00	0.00	0
	MOTA	1556	CB	GLN A	217	41.418	44.191	-3.218	1.00	0.00	С
35	ATOM	1557	CG	GLN A	217	41.365	42.669	-3.307	1.00	0.00	С
	ATOM	1558	CD	GLN A		42.293	42.120	-4.364	1.00	0.00	С
	ATOM	1559		GLN A		42.498	42.747	-5.401	1.00	0.00	0
	ATOM	1560		GLN A		42.849	40.938	-4.115	1.00	0.00	N
						44.376	45.485	-3.856	1.00	0.00	N
40	ATOM	1561	N	LYS A						0.00	C
40	ATOM	1562	CA	LYS A		45.666	45.386	-4.537	1.00		
	MOTA	1563	С	LYS A		46.763	46.022	-3.681	1.00	0.00	С
	ATOM	1564	0	LYS A	218	47.906	46.170	-4.114	1.00	0.00	0
	MOTA	1565	CB	LYS A	218	45.598	46.082	-5.904	1.00	0.00	С
	MOTA	1566	CG	LYS A	218	44.800	45.307	-6.956	1.00	0.00	С
45	ATOM	1567	CD	LYS A	218	44.608	46.122	-8.238	1.00	0.00	C
	ATOM	1568	CE	LYS A		44.225	45.238	-9.419	1.00	0.00	С
	ATOM	1569	NZ	LYS A		43.094	44.308	-9.142	1.00	0.00	N
							46.396	-2.460	1.00	0.00	N
	ATOM	1570	N	SER A		46.401					C
-0	MOTA	1571	CA	SER A		47.343	47.014	-1.541	1.00	0.00	
50	MOTA	1572	С	SER A	219	47.419	46.231	-0.227	1.00	0.00	С
	ATOM	1573	0	SER A	219	47.749	46.782	0.827	1.00	0.00	0
	ATOM	1574	CB	SER A	219	46.934	48.469	-1.288	1.00	0.00	С
	MOTA	1575	OG	SER A		47.797	49.081	-0.345	1.00	0.00	0
	ATOM	1576	N	GLY A		47.102	44.940	-0.305	1.00	0.00	N
55				GLY A		47.173	44.079	0.865	1.00	0.00	С
55	ATOM	1577	CA								c
	ATOM	1578	С	GLY A		45.984	44.045	1.810	1.00	0.00	
	ATOM	1579	0	GLY A		45.997	43.291	2.784	1.00	0.00	0
	MOTA	1580	N	PHE A		44.948	44.831	1.539	1.00	0.00	N
	MOTA	1581	CA	PHE A	221	43.795	44.848	2.433	1.00	0.00	С
60	ATOM	1582	С	PHE A		42.940	43.596	2.363	1.00	0.00	С
	ATOM	1583	0	PHE A		42.891	42.918	1.340	1.00	0.00	0
					-						

	ATOM	1584	СВ	PHE			42.911	46.070	2.164	1.00	0.00		С
	ATOM	1585	CG	PHE			43.469	47.350	2.709	1.00	0.00		С
	ATOM	1586		PHE			44.587	47.941	2.127	1.00	0.00		С
_	MOTA	1587		PHE			42.883	47.961	3.813	1.00	0.00	(С
5	ATOM	1588		PHE			45.115	49.126	2.637	1.00	0.00		С
	ATOM	1589		PHE			43.404	49.150	4.334	1.00	0.00		С
	MOTA	1590	CZ	PHE			44.522	49.732	3.743	1.00	0.00		С
	MOTA	1591	N	LYS			42.262	43.305	3.468	1.00	0.00		N
40	ATOM	1592	CA	LYS			41.390	42.147	3.550	1.00	0.00		С
10	ATOM	1593	С	LYS			39.978	42.530	3.970	1.00	0.00		С
	ATOM	1594	0	LYS			39.048	41.741	3.810	1.00	0.00		0
	MOTA	1595	CB	LYS			41.974	41.124	4.525	1.00	0.00		С
	ATOM	1596	CG	LYS			43.170	40.390	3.943	1.00	0.00		С
1 F	ATOM	1597	CD	LYS			43.812	39.451	4.940	1.00	0.00		С
15	ATOM	1598	CE	LYS			44.810	38.535	4.239	1.00	0.00		С
	ATOM	1599	NZ	LYS			45.750	39.298	3.363	1.00	0.00		N
	MOTA	1600	N	ASN			39.819	43.746	4.493	1.00	0.00		N
	ATOM	1601	CA	ASN			38.511	44.222	4.940	1.00	0.00		C
20	MOTA	1602	C	ASN			38.347	45.738	4.828	1.00	0.00		С
20	MOTA	1603	0	ASN			39.322	46.483	4.892	1.00	0.00		0
	ATOM	1604	CB	ASN			38.270	43.832	6.404	1.00	0.00		C
	MOTA	1605	CG	ASN			38.360	42.340	6.640	1.00	0.00		C
	ATOM	1606		ASN			39.390	41.826	7.096	1.00	0.00		0
25	MOTA	1607		ASN			37.284	41.631	6.330	1.00	0.00		N
25	ATOM	1608	N	MET			37.104	46.186	4.670	1.00	0.00		N C
	ATOM	1609	CA	MET			36.807	47.614 47.896	4.599 5.141	1.00	0.00		C
	ATOM	1610	С	MET MET			35.408 34.522	47.035	5.108	1.00	0.00		0
	ATOM ATOM	1611 1612	O CB	MET			36.922	48.137	3.166	1.00	0.00		С
30	ATOM	1613	CG	MET			35.850	47.637	2.214	1.00	0.00		C
00	ATOM	1614	SD	MET			36.055	48.407	0.602	1.00	0.00		s
	ATOM	1615	CE	MET			35.417	50.048	0.921	1.00	0.00		C
	ATOM	1616	N	LEU			35.226	49.110	5.649	1.00	0.00		N
	ATOM	1617	CA	LEU			33.955	49.534	6.219	1.00	0.00		С
35	ATOM	1618	С	LEU			33.527	50.873	5.628	1.00	0.00		С
	ATOM	1619	O	LEU			34.351	51.769	5.456	1.00	0.00		0
	ATOM	1620	CB	LEU			34.096	49.651	7.739	1.00	0.00		С
	MOTA	1621	CG	LEU			32.938	50.271	8.531	1.00	0.00		С
	MOTA	1622	CD1	LEU	Α	225	32940	49.699	9.937	1.00	0.00	(С
4 0	ATOM	1623		LEU			33.064	51.808	8.553	1.00	0.00	(С
	MOTA	1624	N	ILE	A.	226	32.239	50.999	5.317	1.00	0.00		N
	MOTA	1625	CA	ILE	A.	226	31.697	52.231	4.749	1.00	0.00		С
	ATOM	1626	С	ILE	Α.	226	30.439	52.632	5.518	1.00	0.00	(С
	MOTA	1627	0	ILE	Α.	226	29.857	51.808	6.228	1.00	0.00	(0
45	MOTA	1628	CB	ILE			31.368	52.058	3.244	1.00	0.00		С
	MOTA	1629		ILE			30.308	50.972	3.049	1.00	0.00		С
	MOTA	1630		ILE			32.642	51.695	2.479	1.00	0.00		С
	MOTA	1631		ILE			29.889	50.776	1.595	1.00	0.00		С
EΩ	ATOM	1632	N	GLN			30.014	53.886	5.377	1.00	0.00		N
50	ATOM	1633	CA	GLN			28.848	54.367	6.115	1.00	0.00		C
	ATOM	1634	С	GLN			27.809	55.189	5.351	1.00	0.00		C
	ATOM	1635	0	GLN			26.613	54.893	5.409	1.00	0.00		0
	ATOM	1636	CB	GLN			29.332	55.171	7.330	1.00	0.00	(
EE	ATOM	1637	CG	GLN			28.377	56.258	7.841	1.00	0.00	(
55	ATOM	1638	CD	GLN			27.056	55.721	8.361	1.00	0.00		2
	ATOM	1639		GLN			26.954	54.563	8.765	1.00	0.00		O
	ATOM	1640		GLN			26.037	56.577	8.376	1.00	0.00		N
	ATOM	1641	N	ARG			28.249	56.227	4.646	1.00	0.00	N	
60	ATOM	1642	CA	ARG			27.298	57.072	3.944	1.00	0.00	(
UU	ATOM	1643	C	ARG			26.756	56.523	2.632	1.00	0.00	(0
	MOTA	1644	0	ARG	ra	440	27.318	56.746	1.560	1.00	0.00		,

	ATOM	1645	СВ	ARG A	228	27.887	58.472	3.731	1.00	0.00	С
	ATOM	1646	CG	ARG A	228	28.057	59.260	5.029	1.00	0.00	С
	ATOM	1647	CD	ARG A	228	28.403	60.729	4.778	1.00	0.00	С
	ATOM	1648	NE	ARG A	228	28.639	61.461	6.027	1.00	0.00	N
5	ATOM	1649	CZ	ARG A	228	27.683	61.924	6.831	1.00	0.00	С
	ATOM	1650	NH1	ARG A		26.401	61.743	6.526	1.00	0.00	N
	ATOM	1651	NH2	ARG A	228	28.007	62.560	7.953	1.00	0.00	N
	ATOM	1652	N	THR A		25.652	55.791	2.739	1.00	0.00	N
	ATOM	1653	CA	THR A		24.977	55.233	1.579	1.00	0.00	С
10	ATOM	1654	C	THR A		23.509	55.617	1.731	1.00	0.00	С
	ATOM	1655	ō	THR A		23.038	55.854	2.849	1.00	0.00	0
	ATOM	1656	СВ	THR A		25.130	53.688	1.504	1.00	0.00	С
	ATOM	1657		THR A		24.551	53.078	2.665	1.00	0.00	0
	ATOM	1658	CG2			26.609	53.310	1.419	1.00	0.00	С
15	MOTA	1659	N	HIS A		22.798	55.694	0.611	1.00	0.00	N
10	MOTA	1660	CA	HIS A		21.383	56.077	0.594	1.00	0.00	С
	ATOM	1661	C	HIS A		20.573	55.338	1.661	1.00	0.00	С
	ATOM	1662	ŏ	HIS A		20.679	54.120	1.797	1.00	0.00	0
	ATOM	1663	СВ	HIS A		20.804	55.798	-0.799	1.00	0.00	С
20	ATOM	1664	CG	HIS A		19.543	56.549	-1.099	1.00	0.00	С
	ATOM	1665		HIS A		18.378	56.370	-0.385	1.00	0.00	N
	ATOM	1666		HIS A		19.265	57.476	-2.047	1.00	0.00	C
	MOTA	1667		HIS A		17.436	57.155	-0.879	1.00	0.00	Ċ
	ATOM	1668		HIS A		17.948	57.837	-1.888	1.00	0.00	N
25	MOTA	1669	N	TYR A		19.756	56.074	2.415	1.00	0.00	N
20	ATOM	1670	CA	TYR A		18.958	55.448	3.466	1.00	0.00	С
	MOTA	1671	C	TYR A		18.081	54.310	2.940	1.00	0.00	С
	ATOM	1672	o	TYR A		17.788	53.361	3.666	1.00	0.00	0
	ATOM	1673	СВ	TYR A		18.105	56.497	4.200	1.00	0.00	C
30	ATOM	1674	CG	TYR A		17.122	57.265	3.336	1.00	0.00	Ċ
50	MOTA	1675		TYR A		15.842	56.767	3.085	1.00	0.00	С
	ATOM	1676		TYR A		17.473	58.497	2.777	1.00	0.00	C
	ATOM	1677		TYR A		14.935	57.477	2.301	1.00	0.00	С
	ATOM	1678		TYR A		16.574	59.214	1.992	1.00	0.00	Ċ
35	ATOM	1679	CZ	TYR A		15.308	58.698	1.758	1.00	0.00	Ċ
50	ATOM	1680	OH	TYR A		14.420	59.401	0.980	1.00	0.00	0
	ATOM	1681	N	SER A		17.673	54.395	1.679	1.00	0.00	N
	ATOM	1682	CA	SER A		16.846	53.345	1.089	1.00	0.00	C
	ATOM	1683	C.	SER A		17.649	52.069	0.857	1.00	0.00	С
40	ATOM	1684	Ö	SER A		17.119	50.964	0.970	1.00	0.00	0
10	ATOM	1685	СВ	SER A		16.238	53.821	-0.233	1.00	0.00	С
	ATOM	1686	OG	SER A		15.249	54.809	-0.007	1.00	0.00	0
	ATOM	1687	N	VAL A		18.930	52.227	0.533	1.00	0.00	N
	ATOM	1688	CA	VAL A		19.807		0.298	1.00	0.00	С
45	ATOM	1689	C	VAL A		20.094	50.365	1.618	1.00	0.00	С
10	ATOM	1690	Ö	VAL A		20.097	49.132	1.680	1.00	0.00	0
	ATOM	1691	СВ	VAL A		21.134	51.537	-0.354	1.00	0.00	С
	ATOM	1692		VAL A		22.119	50.375	-0.405	1.00	0.00	С
	ATOM	1693		VAL A		20.860	52.054	-1.763	1.00	0.00	С
50	ATOM	1694	N	LYS A		20.327	51.140	2.670	1.00	0.00	N
00	ATOM	1695	CA	LYS A		20.582	50.573	3.988	1.00	0.00	C
	ATOM	1696	C	LYS A		19.394	49.707	4.407	1.00	0.00	C
	ATOM	1697	Ö	LYS A		19.567	48.587	4.884	1.00	0.00	Ō
	ATOM	1698	СВ	LYS A		20.799	51.695	5.013	1.00	0.00	c
55	ATOM	1699	CG	LYS A		22.143	52.414	4.889	1.00	0.00	c
55	ATOM	1700	CD	LYS A		22.200	53.646	5.791	1.00	0.00	C
	ATOM	1700	CE	LYS A		23.575	54.324	5.751	1.00	0.00	c
	ATOM	1701	NZ	LYS A		24.576	53.708	6.681	1.00	0.00	N
	ATOM	1702	N N	LYS A		18.186		4.213	1.00	0.00	N
60	ATOM	1703	CA	LYS A		16.974	49.497	4.578	1.00	0.00	c. C
00	ATOM	1704	CA	LYS A		16.845		3.777	1.00	0.00	c
	A I ON	1100	_	nro A	2,55	10.043	10.200	3	2.00	2.00	Č

	ATOM	1706	0	LYS A	235	16.595	47.138	4.337	1.00	0.00	0
	ATOM	1707	СВ	LYS A		15.739		4.351	1.00	0.00	С
	MOTA	1708	CG	LYS A	235	14.445	49.774	4.890	1.00	0.00	С
	ATOM	1709	CD	LYS A	235	13.270	50.689	4.608	1.00	0.00	С
5	ATOM	1710	CE	LYS A	235	11.97	50.108	5.154	1.00	0.00	С
	MOTA	1711	NZ	LYS A	235	10.80	50.957	4.792	1.00	0.00	N
	MOTA	1712	N	GLU A		17.025	48.307	2.464	1.00	0.00	N
	ATOM	1713	CA	GLU A	236	16.926	47.149	1.580	1.00	0.00	С
	ATOM	1714	С	GLU A		17.94	46.058	1.928	1.00	0.00	С
10	ATOM	1715	Ō	GLU A		17.584		2.073	1.00	0.00	0
	ATOM	1716	СВ	GLU A		17.12		0.125	1.00	0.00	С
	ATOM	1717	CG	GLU A		16.922		-0.897	1.00	0.00	С
	ATOM	1718	CD	GLU A		15.468		-1.029	1.00	0.00	С
	MOTA	1719		GLU A		15.200		-1.840	1.00	0.00	0
15	ATOM	1720		GLU A		14.59		-0.332	1.00	0.00	0
10	ATOM	1721	N	LEU A		19.210			1.00	0.00	N
	ATOM	1722	CA	LEU A		20.23		2.387	1.00	0.00	С
	ATOM	1723	C	LEU A		20.06		3.800	1.00	0.00	С
	ATOM	1724	Ö	LEU A		20.318			1.00	0.00	0
20	ATOM	1725	СВ	LEU A		21.632			1.00	0.00	С
20	ATOM	1726	CG	LEU A		21.97		0.802	1.00	0.00	C
		1727		LEU A		23.35			1.00	0.00	Č
	ATOM			LEU A		21.91			1.00	0.00	C
	ATOM	1728		ALA A		19.630			1.00	0.00	N
25	ATOM	1729	N			19.428			1.00	0.00	C
25	MOTA	1730	CA	ALA A		18.37		6.150	1.00	0.00	č
	MOTA	1731	С	ALA A					1.00	0.00	ō
	ATOM	1732	0	ALA A		18.564 18.988			1.00	0.00	č
	MOTA	1733	CB	ALA A		17.28		5.420	1.00	0.00	N
30	ATOM	1734	N	GLN A				5.393	1.00	0.00	C
30	ATOM	1735	CA	GLN A		16.20			1.00	0.00	c
	ATOM	1736	С	GLN A		16.65			1.00	0.00	0
	ATOM	1737	0	GLN A		16.07				0.00	c
	MOTA	1738	CB	GLN A		15.03			1.00	0.00	c
25	ATOM	1739	CG	GLN A		14.45		5.069	1.00		c
35	ATOM	1740	CD	GLN A		13.27			1.00	0.00	0
	MOTA	1741		GLN A		13.34			1.00	0.00	N
	MOTA	1742		GLN A		12.18			1.00	0.00	N
	MOTA	1743	N	GLN A		17.67			1.00	0.00	C
40	MOTA	1744	CA	GLN A		18.18			1.00	0.00	C
40	MOTA	1745	С	GLN A		19.49			1.00	0.00	0
	MOTA	1746	0	GLN A		20.11			1.00	0.00	c
	MOTA	1747	CB	GLN A		18.41			1.00	0.00	
	MOTA	1748	CG	GLN A		17.19			1.00	0.00	C C
4=	MOTA	1749	CD	GLN A		16.05			1.00	0.00	
45	MOTA	1750		GLN A		14.90			1.00	0.00	0
	MOTA	1751		GLN A		16.38			1.00	0.00	N
	MOTA	1752	N	ARG A		19.89			1.00	0.00	N
	ATOM	1753	CA	ARG A		21.14			1.00	0.00	C
	MOTA	1754	С	ARG A		22.28			1.00	0.00	C
50	MOTA	1755	0	ARG A	241	23.09			1.00	0.00	0
	MOTA	1756	CB	ARG A	241	21.08			1.00	0.00	С
	MOTA	1757	CG	ARG A	241	20.05	1 39.539		1.00	0.00	C
	MOTA	1758	CD	ARG A	241	20.26	2 38.400	8.770	1.00	0.00	С
	ATOM	1759	NE	ARG A	241	20.25	4 37.096	8.113	1.00	0.00	N
55	MOTA	1760	CZ	ARG A	241	20.62	6 35.960	8.699	1.00	0.00	С
	ATOM	1761	NH1	ARG A	241	21.03	35.964	9.962	1.00	0.00	N
	ATOM	1762		ARG A		20.59	5 34.821	8.019	1.00	0.00	N
	ATOM	1763	N	GLN A		22.32		4.006	1.00	0.00	N
	ATOM	1764	CA	GLN A		23.35			1.00	0.00	С
60	ATOM	1765	C	GLN A		24.19			1.00	0.00	С
	ATOM	1766	Ö	GLN A		24.71			1.00	0.00	0
			-								

	ATOM	1767	СВ	GLN A	242	22.713	41.952	1.586	1.00	0.00	C
	ATOM	1768	CG	GLN A	242	21.904	40.708	1.238	1.00	0.00	C
	ATOM	1769	CD	GLN A	242	21.185	40.834	-0.093	1.00	0.00	С
	MOTA	1770	OE1	GLN A	242	20.633	41.885	-0.410	1.00	0.00	0
5	ATOM	1771	NE2	GLN A	242	21.179	39.756	-0.873	1.00	0.00	N
	MOTA	1772	N	LEU A	243	24.320	43.596	4.460	1.00	0.00	N
	MOTA	1773	CA	LEU A	243	25.106	44.779	4.810	1.00	0.00	С
	MOTA	1774	С	LEU A	243	26.598	44.454	4.787	1.00	0.00	С
	MOTA	1775	0	LEU A	243	27.441	45.351	4.712	1.00	0.00	0
10	MOTA	1776	СВ	LEU A	243	24.691	45.310	6.186	1.00	0.00	С
	ATOM	1777	CG	LEU A		23.302	45.958	6.224	1.00	0.00	С
	MOTA	1778	CD1	LEU A	243	22.897	46.244	7.667	1.00	0.00	С
	ATOM	1779	CD2	LEU A	243	23.319	47.251	5.397	1.00	0.00	С
	ATOM	1780	N	GLU A		26.918	43.167	4.875	1.00	0.00	N
15	ATOM	1781	CA	GLU A		28.302	42.720	4.788	1.00	0.00	С
	ATOM	1782	С	GLU A		28.326	41.894	3.521	1.00	0.00	С
	ATOM	1783	0	GLU A		27.502	40.995	3.340	1.00	0.00	0
	ATOM	1784	CB	GLU A		28.703	41.897	6.016	1.00	0.00	C
	ATOM	1785	CG	GLU A		28.890	42.775	7.251	1.00	0.00	C
20	ATOM	1786	CD	GLU A		29.325	42.005	8.476	1.00	0.00	C
	ATOM	1787		GLU A		28.809	40.891	8.697	1.00	0.00	0
	ATOM	1788		GLU A		30.175	42.526	9.227	1.00	0.00	0
	ATOM	1789	N	PHE A		29.259	42.214	2.631	1.00	0.00	N
	ATOM	1790	CA	PHE A		29.333	41.533	1.349	1.00	0.00	С
25	ATOM	1791	С	PHE A		30.734	41.530	0.758	1.00	0.00	С
	ATOM	1792	0	PHE A		31.611	42.272	1.198	1.00	0.00	0
	ATOM	1793	СВ	PHE A		28.368	42.225	0.377	1.00	0.00	С
	MOTA	1794	CG	PHE A		28.491	43.730	0.370	1.00	0.00	С
	ATOM	1795		PHE A	245	29.473	44.364	-0.388	1.00	0.00	С
30	ATOM	1796		PHE A		27.643	44.511	1.155	1.00	0.00	С
	ATOM	1797		PHE A		29.610	45.767	-0.363	1.00	0.00	С
	MOTA	1798		PHE A		27.770	45.907	1.190	1.00	0.00	С
	ATOM	1799	CZ	PHE A		28.755	46.534	0.429	1.00	0.00	С
	ATOM	1800	N	LEU A	246	30.936	40.676	-0.238	1.00	0.00	N
35	ATOM	1801	CA	LEU A	246	32.211	40.590	-0.931	1.00	0.00	С
	ATOM	1802	С	LEU A	246	32.062	41.504	-2.141	1.00	0.00	С
	ATOM	1803	0	LEU A	246	31.450	41.138	-3.144	1.00	0.00	0
	ATOM	1804	СВ	LEU A	246	32.481	39.143	-1.351	1.00	0.00	С
	ATOM	1805	CG	LEU A	246	32.796	38.222	-0.162	1.00	0.00	С
40	ATOM	1806	CD1	LEU A		32.737	36.755	-0.577	1.00	0.00	С
	ATOM	1807	CD2	LEU A	246	34.176	38.572	0.374	1.00	0.00	С
	ATOM	1808	N	TRP A	247	32.616	42.707	-2.022	1.00	0.00	N
	ATOM	1809	CA	TRP A	247	32.528	43.724	-3.065	1.00	0.00	С
	MOTA	1810	С	TRP A	247	33.547	43.514	-4.182	1.00	0.00	С
45	ATOM	1811	0	TRP A	247	34.751	43.703	-3.977	1.00	0.00	0
	ATOM	1812	CB	TRP A	247	32.732	45.107	-2.429	1.00	0.00	С
	ATOM	1813	CG	TRP A	247	32.228	46.274	-3.234	1.00	0.00	С
	ATOM	1814	CD1	TRP A	247	31.636	46.236	-4.465	1.00	0.00	C
	ATOM	1815	CD2	TRP A	247	32.233	47.651	-2.835	1.00	0.00	С
50	ATOM	1816	NE1	TRP A	247	31.266	47.507	-4.857	1.00	0.00	N
	ATOM	1817	CE2	TRP A	247	31.621	48.392	-3.874	1.00	0.00	С
	ATOM	1818	CE3	TRP A	247	32.694	48.331	-1.700	1.00	0.00	С
	MOTA	1819	CZ2	TRP A	247	31.458	49.782	-3.809	1.00	0.00	С
	MOTA	1820	CZ3	TRP A	247	32.533	49.713	-1.636	1.00	0.00	С
55	ATOM	1821		TRP A		31.919	50.422	-2.685	1.00	0.00	С
	ATOM	1822	N	ARG A	248	33.062	43.119	-5.358	1.00	0.00	N
	ATOM	1823	CA	ARG A		33.929	42.908	-6.511	1.00	0.00	С
	ATOM	1824	С	ARG A		33.619	43.976	-7.558	1.00	0.00	С
	ATOM	1825	0	ARG A		32.567	44.618	-7.509	1.00	0.00	0
60	ATOM	1826	СВ	ARG A		33.700	41.521	-7.126	1.00	0.00	С
-	ATOM	1827	CG	ARG A		32.350	41.366	-7.822	1.00	0.00	С

	MOTA	1828	CD	ARG A	248	32.291	40.067 -8.632	1.00	0.00	С
	MOTA	1829	NE	ARG A	248	32.307	38.880 -7.780	1.00	0.00	N
	ATOM	1830	CZ	ARG A	248	32.301	37.630 -8.242	1.00	0.00	С
	ATOM	1831		ARG A		32.283	37.400 -9.549	1.00	0.00	N
5	ATOM	1832		ARG A		32.302	36.607 -7.396	1.00	0.00	N
9								1.00	0.00	N
	ATOM	1833	N	GLN A		34.532				
	ATOM	1834	CA	GLN A		34.353	45.143 -9.562	1.00	0.00	C
	MOTA	1835	С	GLN A	249	33.258	44.690 -10.526	1.00	0.00	С
	ATOM	1836	0	GLN A	249	33.052	43.492 -10.729	1.00	0.00	0
10	ATOM	1837	СВ	GLN A	249	35.681	45.364 -10.297	1.00	0.00	С
	ATOM	1838	CG	GLN A		36.810	45.825 -9.372	1.00	0.00	С
	ATOM	1839	CD	GLN A		36.443	47.082 -8.593	1.00	0.00	C
								1.00	0.00	Ö
	MOTA	1840		GLN A		36.462				
4-	MOTA	1841	NE2	GLN A		36.103	48.144 -9.314	1.00	0.00	N
15	MOTA	1842	N	ILE A	250	32.554	45.649 -11.122	1.00	0.00	N
	ATOM	1843	CA	ILE A	250	31.456	45.322 -12.029	1.00	0.00	C
	MOTA	1844	С	ILE A	250	31.785	44.404 -13.208	1.00	0.00	С
	ATOM	1845	0	ILE A		30.900	43.716 -13.721	1.00	0.00	0
	ATOM	1846	СВ	ILE A		30.772	46.604 -12.577	1.00	0.00	С
20		1847		ILE A		31.792	47.486 -13.298	1.00	0.00	Ċ
20	ATOM									C
	ATOM	1848		ILE A		30.106	47.367 -11.436	1.00	0.00	
	MOTA	1849	CD1	ILE A		31.199	48.778 -13.850	1.00	0.00	С
	MOTA	1850	N	TRP A		33.047	44.373 -13.625	1.00	0.00	N
	ATOM	1851	CA	TRP A	251	33.457	43.541 -14.759	1.00	0.00	С
25	MOTA	1852	С	TRP A		34.122	42.228 -14.339	1.00	0.00	С
	ATOM	1853	0	TRP A		34.455	41.395 -15.187	1.00	0.00	0
	ATOM	1854	СВ	TRP A		34.445	44.316 -15.625	1.00	0.00	С
							44.505 -14.922	1.00	0.00	Ċ
	MOTA	1855	CG	TRP A		35.745				C
20	MOTA	1856		TRP A		36.736	43.576 -14.760	1.00	0.00	
30	MOTA	1857		TRP A		36.158	45.662 -14.196	1.00	0.00	C
	ATOM	1858	NE1	TRP A	251	37.736	44.082 -13.973	1.00	0.00	N
	ATOM	1859	CE2	TRP A	251	37.407	45.362 -13.610	1.00	0.00	C
	ATOM	1860	CE3	TRP A	251	35.590	46.921 -13.975	1.00	0.00	С
	ATOM	1861		TRP A		38.102	46.279 -12.821	1.00	0.00	С
35	ATOM	1862		TRP A		36.278	47.834 -13.191	1.00	0.00	С
50		1863		TRP A		37.523	47.506 -12.621	1.00	0.00	C
	ATOM								0.00	N
	MOTA	1864	N	ASP A		34.324	42.058 -13.037	1.00		
	ATOM	1865	CA	ASP A		34.992	40.880 -12.490	1.00	0.00	С
	MOTA	1866	С	ASP A	252	34.118	39.626 -12.430	1.00	0.00	С
40	MOTA	1867	0	ASP A	252	33.322	39.448 -11.513	1.00	0.00	0
	ATOM	1868	CB	ASP A	252	35.539	41.225 -11.098	1.00	0.00	C
	ATOM	1869	CG	ASP A	252	36.312	40.084 -10.471	1.00	0.00	С
	ATOM	1870		ASP A		36.635	39.111 -11.191	1.00	0.00	0
	ATOM	1871		ASP A		36.601	40.167 -9.258	1.00	0.00	0
45						34.287	38.750 -13.415	1.00	0.00	N
40	ATOM	1872	N	ASN A						C
	ATOM	1873	CA	ASN A		33.508	37.520 -13.489	1.00	0.00	
	ATOM	1874	С	ASN A		33.975	36.456 -12.495	1.00	0.00	С
	MOTA	1875	0	ASN A	253	33.158	35.745 -11.909	1.00	0.00	0
	ATOM	1876	CB	ASN A	253	33.579	36.958 -14.910	1.00	0.00	С
50	ATOM	1877	CG	ASN A	253	32.722	35.728 -15.091	1.00	0.00	С
	ATOM	1878		ASN A		33.196	34.695 -15.561	1.00	0.00	0
	ATOM	1879		ASN A		31.449	35.832 -14.726	1.00	0.00	N
							36.357 -12.299		0.00	N
	ATOM	1880	N	LYS A		35.286		1.00		
	MOTA	1881	CA	LYS A		35.851	35.358 -11.390	1.00	0.00	C
55	MOTA	1882	С	LYS A	254	35.733	35.750 -9.918	1.00	0.00	С
	ATOM	1883	0	LYS A	254	35.510	34.895 -9.056	1.00	0.00	0
	ATOM	1884	CB	LYS A		37.321	35.106 -11.747	1.00	0.00	С
	ATOM	1885	CG	LYS A		37.939	33.885 -11.071	1.00	0.00	С
	ATOM	1886	CD	LYS A		39.321	33.584 -11.647	1.00	0.00	c
60							32.308 -11.058	1.00	0.00	C
UU	MOTA	1887	CE	LYS A		39.916				Ŋ
	ATOM	1888	ΝZ	LYS A	234	40.119	32.400 -9.584	1.00	0.00	IA

COCCESS CONTRACT

	ATOM	1889	N	GLY A	255	35.891	37.039	-9.632	1.00	0.00	N
	ATOM	1890	CA	GLY A		35.788	37.509	-8.262	1.00	0.00	С
	ATOM	1891	C	GLY A		37.108	37.716	-7.535	1.00	0.00	C
	ATOM	1892	0	GLY A		37.122	37.866	-6.315	1.00	0.00	Ō
5						38.216	37.737	-8.270	1.00	0.00	N
J	MOTA	1893	N	ASP A					1.00	0.00	c.
	MOTA	1894	CA	ASP A		39.525	37.923	-7.647			
	MOTA	1895	С	ASP A		39.742	39.323	-7.075	1.00	0.00	C
	MOTA	1896	0	ASP A		40.667	39.537	-6.296	1.00	0.00	0
	ATOM	1897	CB	ASP A	256	40.648	37.616	-8.644	1.00	0.00	С
10	MOTA	1898	CG	ASP A	256	40.647	36.171	-9.100	1.00	0.00	С
	ATOM	1899	OD1	ASP A	256	40.503	35.273	-8.240	1.00	0.00	0
	MOTA	1900	OD2	ASP A	256	40.801	35.934	-10.317	1.00	0.00	0
	MOTA	1901	N	THR A	257	38.900	40.276	-7.460	1.00	0.00	N
	MOTA	1902	CA	THR A	257	39.037	41.641	-6.954	1.00	0.00	C
15	ATOM	1903	С	THR A		38.231	41.850	-5.672	1.00	0.00	С
	ATOM	1904	Ö	THR A		38.333	42.898	-5.027	1.00	0.00	0
	ATOM	1905	CB	THR A		38.545	42.670	-7.982	1.00	0.00	С
	ATOM	1906		THR A		37.141	42.487	-8.200	1.00	0.00	0
						39.290	42.506	-9.299	1.00	0.00	C
20	ATOM	1907		THR A		37.437	40.845	-5.311	1.00	0.00	N
20	ATOM	1908	N	ALA A						0.00	C
	MOTA	1909	CA	ALA A		36.579	40.907	-4.135	1.00		C
	MOTA	1910	С	ALA A		37.266	41.290	-2.828	1.00	0.00	
	ATOM	1911	0	ALA A		38.355	40.813	-2.519	1.00	0.00	0
	MOTA	1912	CB	ALA A		35.852	39.576	-3.956	1.00	0.00	С
25	ATOM	1913	N	LEU A		36.600	42.154	-2.066	1.00	0.00	N
	ATOM	1914	CA	LEU A	259	37.091	42.605	-0.767	1.00	0.00	С
	MOTA	1915	С	LEU A	259	35.900	42.632	0.187	1.00	0.00	C
	ATOM	1916	0	LEU A	259	34.874	43.245	-0.110	1.00	0.00	0
	ATOM	1917	CB	LEU A	259	37.700	44.009	-0.866	1.00	0.00	C
30	MOTA	1918	CG	LEU A		38.382	44.511	0.410	1.00	0.00	C
	ATOM	1919		LEU A		39.566	43.601	0.743	1.00	0.00	C
	ATOM	1920		LEU A		38.849	45.957	0.226	1.00	0.00	С
	ATOM	1921	N	PHE A		36.030	41.957	1.326	1.00	0.00	N
	ATOM	1922	CA	PHE A		34.948	41.921	2.304	1.00	0.00	C
35	ATOM	1923	C	PHE A		34.625	43.336	2.774	1.00	0.00	C
55		1924	0	PHE A		35.505	44.075	3.225	1.00	0.00	0
	ATOM					35.342	41.053	3.501	1.00	0.00	C
	ATOM	1925	CB	PHE A			40.879	4.503	1.00	0.00	C
	ATOM	1926	CG	PHE A		34.242			1.00	0.00	C
40	MOTA	1927		PHE A		33.245	39.925	4.304			c
40	MOTA	1928		PHE A		34.187	41.681	5.636	1.00	0.00	
	ATOM	1929		PHE A		32.211	39.775	5.220	1.00	0.00	С
	ATOM	1930		PHE A		33.158	41.542	6.560	1.00	0.00	C
	ATOM	1931	CZ	PHE A		32.166	40.588	6.353	1.00	0.00	C
	ATOM	1932	N	THR A	261	33.355	43.708	2.680	1.00	0.00	N
45	ATOM	1933	CA	THR A	261	32.931	45.046	3.062	1.00	0.00	С
	ATOM	1934	С	THR A	261	31.795	45.042	4.074	1.00	0.00	С
	ATOM	1935	0	THR A	261	30.841	44.277	3.952	1.00	0.00	0
	ATOM	1936	CB	THR A		32.463	45.837	1.824	1.00	0.00	C
	MOTA	1937		THR A		33.507	45.842	0.841	1.00	0.00	0
50	ATOM	1938		THR A		32.117	47.277	2.198	1.00	0.00	С
00	ATOM	1939	N	HIS A		31.908	45.919	5.066	1.00	0.00	N
	ATOM	1940	CA	HIS A		30.893	46.069	6.096	1.00	0.00	С
		1941	C	HIS A		30.269	47.450	5.946	1.00	0.00	C
	ATOM						48.462	6.059	1.00	0.00	Ö
55	ATOM	1942	0	HIS A		30.961			1.00	0.00	C
55	ATOM	1943	CB	HIS A		31.521	45.971	7.487			c
	MOTA	1944	CG	HIS A		30.584	46.329	8.600	1.00	0.00	
	ATOM	1945		HIS A		29.955	45.381	9.378	1.00	0.00	N
	ATOM	1946		HIS A		30.172	47.532	9.069	1.00	0.00	С
	ATOM	1947		HIS A		29.200	45.984	10.280	1.00	0.00	C
60	ATOM	1948	NE2	HIS A		29.314	47.289	10.115	1.00	0.00	N
	MOTA	1949	N	MET A	263	28.968	47.491	5.684	1.00	0.00	N

DOUGETHE FIRST

	ATOM	1950	CA	MET A	4 263	28.269	48.760	5.556	1.00	0.00	С
	ATOM	1951	С	MET A		27.521	48.991	6.863	1.00	0.00	С
	ATOM	1952	Ō	MET A		26.763	48.125	7.308	1.00	0.00	0
	ATOM	1953	CB	MET A		27.259	48.717	4.404	1.00	0.00	С
5	ATOM	1954	CG	MET A		26.485	50.025	4.205	1.00	0.00	С
9			SD	MET A		25.054	49.854	3.084	1.00	0.00	S
	ATOM	1955				25.878	49.605	1.504	1.00	0.00	c
	MOTA	1956	CE	MET A						0.00	N
	ATOM	. 1957	N	MET A		27.745	50.141	7.490	1.00		C
40	ATOM	1958	CA	MET A		27.043	50.451	8.728	1.00	0.00	
10	MOTA	1959	С	MET A		25.579	50.606	8.322	1.00	0.00	С
	MOTA	1960	0	MET A	A 264	25.280	51.049	7.213	1.00	0.00	0
	MOTA	1961	CB	MET A	A 264	27.635	51.710	9.364	1.00	0.00	С
	MOTA	1962	CG	MET A	A 264	29.037	51.446	9.918	1.00	0.00	С
	MOTA	1963	SD	MET A	A 264	29.959	52.912	10.446	1.00	0.00	S
15	MOTA	1964	CE	MET A	A 264	28.964	53.477	11.815	1.00	0.00	С
	MOTA	1965	N		A 265	24.646	50.244	9.214	1.00	0.00	N
	ATOM	1966	CA		A 265	23.211	50.315	8.928	1.00	0.00	С
	ATOM	1967	C		A 265	22.429	51.590	9.187	1.00	0.00	С
	ATOM	1968	Ö		A 265	21.340	51.770	8.634	1.00	0.00	0
20	ATOM	1969	СВ		A 265		49.172	9.767	1.00	0.00	С
20		1970	CG		A 265	23.451	49.352	11.044	1.00	0.00	Ċ
	MOTA				A 265		49.679	10.558	1.00	0.00	č
	ATOM	1971	CD					10.000	1.00	0.00	Ŋ
	ATOM	1972	N		A 266		52.480				C
٥٢	MOTA	1973	CA		A 266		53.668	10.362	1.00	0.00	C
25	MOTA	1974	С		A 266		55.022	9.747	1.00	0.00	
	MOTA	1975	0		A 266		55.139	8.937	1.00	0.00	0
	MOTA	1976	CB		A 266		53.722	11.892	1.00	0.00	C
	MOTA	1977	CG		A 266		52.446	12.521	1.00	0.00	C
	MOTA	1978	CD1	PHE A	A 266	22.244	51.906	13.661	1.00	0.00	С
30	ATOM	1979	CD2	PHE A	A 266	20.559	51.785	11.959	1.00	0.00	С
	MOTA	1980	CE1	PHE A	A 266	21.752	50.724	14.234	1.00	0.00	С
	ATOM	1981		PHE A			50.604	12.522	1.00	0.00	C
	ATOM	1982	CZ		A 266		50.072	13.660	1.00	0.00	С
	ATOM	1983	N		A 267		56.034	10.145	1.00	0.00	N
35	ATOM	1984	CA		A 267		57.410	9.659	1.00	0.00	С
00	ATOM	1985	C		A 267		58.117	9.865	1.00	0.00	С
	ATOM	1986	Ö		A 267	23.696	58.941	9.040	1.00	0.00	0
		1987	CB		A 267		58.229	10.301	1.00	0.00	C
	ATOM		CG		A 267		59.726	10.097	1.00	0.00	C
40	ATOM	1988			A 267		60.304	8.882	1.00	0.00	C
40	ATOM	1989	CD1				60.570	11.147	1.00	0.00	Č
	ATOM	1990		TYR				8.719	1.00	0.00	Č
	ATOM	1991		TYR			61.698				C
	MOTA	1992		TYR A			61.954	10.995	1.00	0.00	C
45	MOTA	1993	CZ		A 267		62.510	9.785	1.00	0.00	
45	MOTA	1994	ОН		A 267		63.879	9.651	1.00	0.00	0
	MOTA	1995	N	SER .	A 268		57.803	10.956	1.00	0.00	N
	MOTA	1996	CA	SER .	A 268	25.245	58.459	11.243	1.00	0.00	C
	MOTA	1997	С	SER .	A 268	26.227	57.552	11.973	1.00	0.00	C
	ATOM	1998	0	SER .	A 268	25.868	56.461	12.425	1.00	0.00	0
50	ATOM	1999	CB	SER .	A 268	24.977	59.717	12.077	1.00	0.00	С
	ATOM	2000	OG	SER .	A 268	26.170	60.276	12.592	1.00	0.00	0
	ATOM	2001	N		A 269		58.007	12.076	1.00	0.00	N
	ATOM	2002	CA		A 269		57.252	12.778	1.00	0.00	С
	ATOM	2002	C		A 269		57.740	14.221	1.00	0.00	С
55					A 269		57.228	14.978	1.00	0.00	0
55	ATOM	2004	O		A 269		57.386	12.069	1.00	0.00	Č
	ATOM	2005	CB				58.815	11.846	1.00	0.00	c
	ATOM	2006	CG		A 269			12.911	1.00	0.00	c
	ATOM	2007		TYR .			59.618				c
(0	ATOM	2008		TYR .			59.374	10.567	1.00	0.00	c
60	MOTA	2009		TYR			60.950	12.708	1.00	0.00	
	ATOM	2010	CE2	TYR	A 269	30.665	60.701	10.352	1.00	0.00	С

	ATOM	2011	CZ	TYR A	269	31.068	61.482	11.422	1.00	0.00	С
	ATOM	2012	OH	TYR A		31.402	62.800	11.205	1.00	0.00	0
	ATOM	2013	N	ASP A		27.817	58.731	14.605	1.00	0.00	N
	ATOM	2014	CA	ASP A		27.893	59.225	15.980	1.00	0.00	С
5	ATOM	2015	C	ASP A		27.310	58.186	16.933	1.00	0.00	С
•	ATOM	2016	ō	ASP A		26.658	57.236	16.501	1.00	0.00	0
	ATOM	2017	СВ	ASP A		27.196	60.591	16.144	1.00	0.00	Ċ
	ATOM	2018	CG	ASP A		25.702	60.554	15.860	1.00	0.00	Ċ
	ATOM	2019		ASP A		25.104	59.457	15.796	1.00	0.00	Ō
10	ATOM	2020		ASP A		25.120	61.655	15.721	1.00	0.00	Ō
10	ATOM	2021	N	ILE A		27.553	58.351	18.226	1.00	0.00	N
	ATOM	2021	CA	ILE A		27.080	57.366	19.187	1.00	0.00	c
	ATOM	2022	C	ILE A		25.567	57.124	19.164	1.00	0.00	c
	ATOM	2023	0	ILE A		25.124	55.979	19.239	1.00	0.00	Ö
15	ATOM	2024	CB	ILE A		27.585	57.718	20.606	1.00	0.00	c
15							57.658	20.612	1.00	0.00	c
	ATOM	2026		ILE A		29.119			1.00	0.00	c
	ATOM	2027		ILE A		27.045	56.718	21.628	1.00	0.00	C
	ATOM	2028		ILE A		29.776	58.225	21.863			N
20	ATOM	2029	N	PRO A		24.755	58.187	19.043	1.00	0.00	
20	ATOM	2030	CA	PRO A		23.306	57.961	19.013	1.00	0.00	C
	ATOM	2031	С	PRO A		22.861	57.025	17.881	1.00	0.00	С
	ATOM	2032	0	PRO A		21.816	56.387	17.979	1.00	0.00	0
	ATOM	2033	CB	PRO A		22.740	59.369	18.856	1.00	0.00	C
25	ATOM	2034	CG	PRO A		23.741	60.208	19.599	1.00	0.00	С
25	MOTA	2035	CD	PRO A		25.059	59.627	19.135	1.00	0.00	C
	MOTA	2036	N	HIS A		23.653	56.937	16.812	1.00	0.00	N
	MOTA	2037	CA	HIS A		23.301	56.075	15.682	1.00	0.00	C
	ATOM	2038	С	HIS A		24.229	54.880	15.459	1.00	0.00	C
•	ATOM	2039	0	HIS A		24.338	54.373	14.338	1.00	0.00	0
30	MOTA	2040	CB	HIS A		23.217	56.901	14.391	1.00	0.00	С
	ATOM	2041	CG	HIS A		22.162	57.964	14.428	1.00	0.00	С
	ATOM	2042	ND1	HIS A	273	22.362	59.193	15.019	1.00	0.00	N
	MOTA	2043	CD2	HIS A	273	20.879	57.962	13.993	1.00	0.00	С
	MOTA	2044	CE1	HIS A	273	21.249	59.901	14.949	1.00	0.00	С
35	ATOM	2045	NE2	HIS A	273	20.333	59.176	14.330	1.00	0.00	N
	ATOM	2046	N	THR A	274	24.887	54.419	16.520	1.00	0.00	N
	MOTA	2047	CA	THR A	274	25.783	53.276	16.394	1.00	0.00	С
	MOTA	2048	С	THR A	274	25.588	52.156	17.423	1.00	0.00	С
	ATOM	2049	0	THR A	2.74	26.159	51.078	17.268	1.00	0.00	0
40	MOTA	2050	CB	THR A	274	27.269	53.727	16.409	1.00	0.00	С
	ATOM	2051	OG1	THR A	274	27.480	54.679	17.456	1.00	0.00	0
	MOTA	2052	CG2	THR A	274	27.646	54.350	15.074	1.00	0.00	С
	MOTA	2053	N	CYS A		24.786	52.388	18.462	1.00	0.00	N
	ATOM	2054	CA	CYS A	275	24.564	51.344	19.468	1.00	0.00	С
45	ATOM	2055	С	CYS A		23.375	50.457	19.108	1.00	0.00	С
	ATOM	2056	0	CYS A		23.299	49.296	19.521	1.00	0.00	0
	ATOM	2057	СВ	CYS A		24.327	51.967	20.848	1.00	0.00	С
	ATOM	2058	SG	CYS A		22.589	52.094	21.403	1.00	0.00	S
	ATOM	2059	N	GLY A		22.450	51.016	18.338	1.00	0.00	N
50	ATOM	2060	CA	GLY A		21.260	50.288	17.941	1.00	0.00	С
00	ATOM	2061	C	GLY A		20.342	51.180	17.126	1.00	0.00	C
	ATOM	2062	o	GLY A		20.715	52.314	16.817	1.00	0.00	0
	ATOM	2063	N	PRO A		19.130	50.709	16.778	1.00	0.00	N
	ATOM	2063	CA	PRO A		18.130	51.438	15.988	1.00	0.00	C
55									1.00	0.00	c
55	ATOM	2065	С	PRO A		17.466	52.657	16.624 15.916	1.00	0.00	0
	ATOM	2066	O	PRO A		16.883	53.477			0.00	C
	ATOM	2067	CB	PRO A		17.103	50.356	15.662	1.00		
	ATOM	2068	CG	PRO A		17.124	49.525	16.904	1.00	0.00	C C
60	ATOM	2069	CD	PRO A		18.610	49.384	17.165	1.00	0.00	
60	ATOM	2070	N	ASP A		17.543	52.782	17.946	1.00	0.00	N C
	ATOM	2071	CA	ASP A	218	16.896	53.903	18.630	1.00	0.00	C

	MOTA	2072	С	ASP A	A 278	17.872	54.940	19.175	1.00	0.00	С
	MOTA	2073	0	ASP A	A 278	18.487	54.739	20.221	1.00	0.00	0
	ATOM	2074	CB	ASP A	A 278	16.027	53.383	19.781	1.00	0.00	С
_	ATOM	2075	CG	ASP A	A 278	15.096	54.448	20.335	1.00	0.00	С
5	MOTA	2076	OD1	ASP A	A 278	15.253	55.634	19.970	1.00	0.00	0
	ATOM	2077	OD2	ASP A	A 278	14.209	54.098	21.138	1.00	0.00	0
	ATOM	2078	N	PRO A	A 279	18.011	56.077	18.478	1.00	0.00	N
	MOTA	2079	CA	PRO A	A 279	18.927	57.132	18.925	1.00	0.00	С
	MOTA	2080	С	PRO A	A 279	18.575	57.727	20.289	1.00	0.00	C
10	ATOM	2081	0	PRO Z	A 279	19.450	58.222	20.997	1.00	0.00	0
	ATOM	2082	CB	PRO Z	A 279	18.851	58.159	17.792	1.00	0.00	C
	MOTA	2083	CG		A 279	17.461	57.974	17.260	1.00	0.00	С
	ATOM	2084	CD		A 279	17.323	56.470	17.235	1.00	0.00	С
	ATOM	2085	N	LYS		17.299	57.678	20.662	1.00	0.00	N
15	ATOM	2086	CA	LYS		16.886	58.217	21.954	1.00	0.00	C
	ATOM	2087	C	LYS		17.499	57.389	23.077	1.00	0.00	Ċ
	ATOM	2088	Ö	LYS		17.776	57.901	24.163	1.00	0.00	ō
	ATOM	2089	СВ	LYS A		15.361	58.211	22.084	1.00	0.00	c
	ATOM	2090	CG	LYS A		14.861	58.895	23.350	1.00	0.00	Č
20	ATOM	2091	CD	LYS A		13.348	58.830	23.464	1.00	0.00	c
20	ATOM	2092	CE	LYS A		12.876	57.405	23.700	1.00	0.00	c
	ATOM	2092	NZ	LYS A		13.443	56.828	24.961	1.00	0.00	N
	ATOM	2093	N	VAL A		17.708	56.104	22.813	1.00	0.00	N
	MOTA	2094	CA	VAL Z		18.306	55.217	23.804	1.00	0.00	C
25		2095	CA				55.282	23.699	1.00	0.00	c
23	MOTA			VAL		19.831					0
	MOTA	2097	0	VAL A		20.530	55.439	24.699	$1.00 \\ 1.00$	0.00	c
	ATOM	2098	CB	VAL A		17.850	53.751	23.594 24.555		0.00	
	MOTA	2099				18.589	52.829		1.00	0.00	C C
30	MOTA	2100		VAL A		16.341	53.636	23.801	1.00	0.00	
50	MOTA	2101	N	CYS		20.344	55.166	22.478	1.00	0.00	N
	ATOM	2102	CA	CYS		21.786	55.201	22.261	1.00	0.00	С
	ATOM	2103	С	CYS Z		22.430	56.486	22.768	1.00	0.00	С
	ATOM	2104	0	CYS A		23.555	56.468	23.277	1.00	0.00	0
25	ATOM	2105	CB	CYS A		22.100	55.031	20.775	1.00	0.00	C
35	ATOM	2106	SG	CYS A		21.727	53.385	20.093	1.00	0.00	S
	MOTA	2107	N	CYS A		21.721	57.603	22.638	1.00	0.00	N
	MOTA	2108	CA	CYS A		22.271	58.873	23.086	1.00	0.00	С
	MOTA	2109	С	CYS A		22.577	58.834	24.579	1.00	0.00	C
40	ATOM	2110	0	CYS A		23.485	59.515	25.055	1.00	0.00	0
40	MOTA	2111	CB	CYS A		21.307	60.025	22.785	1.00	0.00	C
	ATOM	2112	SG	CYS A		22.167	61.630	22.843	1.00	0.00	S
	ATOM	2113	N	GLN A		21.821	58.025	25.314	1.00	0.00	N
	ATOM	2114	CA	GLN A		22.015	57.904	26.752	1.00	0.00	С
4 -	ATOM	2115	С	GLN A		23.300	57.173	27.093		0.00	С
45	MOTA	2116	0	GLN A		23.679	57.080	28.261	1.00	0.00	0
	ATOM	2117	CB	GLN A		20.824	57.180	27.381	1.00	0.00	С
	MOTA	2118	CG	GLN A	284	19.513	57.927	27.217	1.00	0.00	С
	ATOM	2119	CD	GLN A	284	18.333	57.138	27.732	1.00	0.00	С
=-	MOTA	2120	OE1	GLN A	284	18.284	56.765	28.905	1.00	0.00	0
50	ATOM	2121	NE2	GLN A	A 284	17.372	56.876	26.855	1.00	0.00	N
	MOTA	2122	N	PHE A	285	23.978	56.657	26.074	1.00	0.00	N
	ATOM	2123	CA	PHE A	A 285	25.215	55.941	26.309	1.00	0.00	С
	ATOM	2124	С	PHE A	285	26.439	56.640	25.730	1.00	0.00	С
	ATOM	2125	0	PHE A	A 285	27.480	56.026	25.500	1.00	0.00	0
55	ATOM	2126	CB	PHE A		25.061	54.498	25.820	1.00	0.00	С
	ATOM	2127	CG	PHE A	285	24.076	53.709	26.645	1.00	0.00	С
	ATOM	2128		PHE A		24.474	53.103	27.833	1.00	0.00	С
	ATOM	2129		PHE A		22.732	53.652	26.285	1.00	0.00	C
	ATOM	2130		PHE A		23.549	52.454	28.657	1.00	0.00	C
60	ATOM	2131		PHE A		21.795	53.006	27.101	1.00	0.00	Č
	ATOM	2132	CZ	PHE A		22.208	52.407	28.291	1.00	0.00	Č
						22.200	55. 10 /				ŭ

TOUCH ME TOUT

	ATOM	2133	N	ASP A	28	26.283	57.942	25.498	1.00	0.00	N
	ATOM	2134	CA	ASP A			58.806	25.041	1.00	0.00	С
	ATOM	2135	C	ASP A			59.652	26.296	1.00	0.00	С
		2136	0	ASP A			60.688	26.462	1.00	0.00	0
5	MOTA	2137	СВ	ASP A			59.693	23.874	1.00	0.00	C
3	ATOM						60.605	23.391	1.00	0.00	Č
	ATOM	2138	CG	ASP A			60.686	24.079	1.00	0.00	ő
	ATOM	2139		ASP A						0.00	0
	ATOM	2140		ASP A			61.248	22.331	1.00		N
10	ATOM	2141	N	PHE A			59.194	27.191	1.00	0.00	
10	MOTA	2142	CA	PHE I			59.879	28.454	1.00	0.00	C
	MOTA	2143	С	PHE A			61.263	28.424	1.00	0.00	С
	MOTA	2144	0	PHE A			61.855	29.469	1.00	0.00	0
	ATOM	2145	CB	PHE A	A 28	7 29.331	58.946	29.419	1.00	0.00	С
	ATOM	2146	CG	PHE A	A 28	7 28.591	57.654	29.657	1.00	0.00	С
15	ATOM	2147	CD1	PHE I	A 28	7 28.815	56.544	28.847	1.00	0.00	C
	MOTA	2148	CD2	PHE .	A 28	7 27.605	57.575	30.638	1.00	0.00	С
	ATOM	2149		PHE .			55.379	29.007	1.00	0.00	C
	ATOM	2150		PHE .			56.414	30.805	1.00	0.00	С
	ATOM	2151	CZ	PHE			55.313	29.986	1.00	0.00	С
20	ATOM	2152	N	LYS			61.791	27.230	1.00	0.00	N
20	ATOM	2153	CA	LYS			63.133	27.133	1.00	0.00	С
	ATOM	2154	C	LYS			64.136	27.025	1.00	0.00	С
		2154	0	LYS			65.341	26.963	1.00	0.00	Ō
	MOTA			LYS .			63.262	25.901	1.00	0.00	c
25	MOTA	2156	CB				64.601	25.832	1.00	0.00	c
25	ATOM	2157	CG	LYS .				24.634	1.00	0.00	C
	ATOM	2158	CD	LYS .			64.698			0.00	c
	MOTA	2159	CE	LYS .			66.003	24.683	1.00	0.00	N
	MOTA	2160	NZ	LYS .			66.172	23.531	1.00		
20	MOTA	2161	N	ARG			63.638	27.022	1.00	0.00	N
30	MOTA	2162	CA	ARG			64.517	26.890	1.00	0.00	С
	ATOM	2163	С	ARG .			64.768	28.172	1.00	0.00	С
	MOTA	2164	0	ARG .			64.873	28.121	1.00	0.00	0
	MOTA	2165	CB	ARG .	A 28		63.968	25.828	1.00	0.00	C
	MOTA	2166	CG	ARG .	A 28	9 26.170	63.712	24.461	1.00	0.00	C
35	ATOM	2167	CD	ARG .	A 28	9 25.088	63.468	23.427	1.00	0.00	С
	ATOM	2168	NE	ARG .	A 28	9 25.617	63.061	22.127	1.00	0.00	N
	ATOM	2169	CZ	ARG .	A 28	9 25.139	63.493	20.965	1.00	0.00	С
	ATOM	2170	NH1	ARG .	A 28	9 24.128	64.355	20.942	1.00	0.00	N
	ATOM	2171	NH2	ARG	A 28	9 25.656	63.052	19.826	1.00	0.00	N
40	ATOM	2172	N	MET			64.885	29.313	1.00	0.00	N
	ATOM	2173	CA	MET			65.113	30.557	1.00	0.00	С
	ATOM	2174	C	MET			66.574	31.008	1.00	0.00	С
	ATOM	2175	Ō	MET		-	66.884	31.970	1.00	0.00	0
	ATOM	2176	СВ	MET			64.236	31.676	1.00	0.00	С
45	ATOM	2177	CG	MET			62.746	31.437	1.00	0.00	С
10	ATOM	2178	SD	MET			61.651	32.789	1.00	0.00	S
	ATOM	2179	CE	MET			61.429	32.430	1.00	0.00	С
							67.470	30.320	1.00	0.00	N
	ATOM	2180	N	GLY			68.878	30.684	1.00	0.00	C
50	ATOM	2181	CA	GLY			69.686		1.00	0.00	C
50	ATOM	2182	С	GLY				30.712		0.00	Ö
	ATOM	2183	0	GLY			70.676	29.987	1.00		N
	MOTA	2184	N	SER			69.274	31.551	1.00	0.00	
	MOTA	2185	CA	SER			69.981	31.693	1.00	0.00	C
	ATOM	2186	. C	SER			70.153	30.400	1.00	0.00	С
55	MOTA	2187	0	SER	A 29		71.023	30.324	1.00	0.00	0
	MOTA	2188	CB	SER			69.284	32.736	1.00	0.00	C
	ATOM	2189	OG	SER	A 29	2 30.964	67.989	32.302	1.00	0.00	0
	ATOM	2190	N	PHE			69.329	29.393	1.00	0.00	N
	ATOM	2191	CA	PHE			69.418	28.119	1.00	0.00	C
60	ATOM	2192	Ċ	PHE			70.273	27.093	1.00	0.00	C
	ATOM	2193	ō	PHE			70.428	25.957	1.00	0.00	0
					_						

COCOMBE COBIN

					_			60 000	07 505	1 00	0 00	_
	ATOM	2194	CB	PHE			31.178	68.023	27.525	1.00	0.00	C
	MOTA	2195	CG	PHE			32.115	67.171	28.329	1.00	0.00	C
	MOTA	2196		PHE			31.628	66.289	29.285	1.00	0.00	C
_	MOTA	2197		PHE			33.489	67.254	28.132	1.00	0.00	C
5	MOTA	2198		PHE			32.496	65.498	30.035	1.00	0.00	C
	MOTA	2199	CE2	PHE			34.369	66.470	28.875	1.00	0.00	C
	MOTA	2200	CZ	PHE	Α	293	33.871	65.589	29.829	1.00	0.00	С
	ATOM	2201	N	GLY	Α	294	29.064	70.823	27.492	1.00	0.00	N
	ATOM	2202	CA	GLY	Α	294	28.294	71.652	26.582	1.00	0.00	Ç
10	ATOM	2203	С	GLY	Α	294	27.536	70.859	25.532	1.00	0.00	С
	MOTA	2204	0	GLY			27.094	71.414	24.524	1.00	0.00	0
	ATOM	2205	N	LEU			27.387	69.558	25.762	1.00	0.00	N
	ATOM	2206	CA	LEU			26.670	68.692	24.833	1.00	0.00	С
	ATOM	2207	C	LEU			25.448	68.107	25.530	1.00	0.00	C
15	ATOM	2208	o	LEU			25.416	67.999	26.753	1.00	0.00	Ó
10		2209		LEU			27.577	67.554	24.351	1.00	0.00	C
	ATOM		CB					67.930	23.573	1.00	0.00	Č
	ATOM	2210	CG	LEU			28.842				0.00	c
	ATOM	2211		LEU			29.680	66.683	23.325	1.00		c
20	MOTA	2212		LEU			28.458	68.592	22.251	1.00	0.00	
20	ATOM	2213	N	SER			24.444	67.733	24.746	1.00	0.00	N
	MOTA	2214	CA	SER			23.226	67.152	25.297	1.00	0.00	C
	MOTA	2215	С	SER			22.563	66.263	24.257	1.00	0.00	С
	MOTA	2216	0	SER	Α	296	23.024	66.175	23.116	1.00	0.00	0
	MOTA	2217	CB	SER	А	296	22.255	68.256	25.729	1.00	0.00	С
25	MOTA	2218	OG	SER	Α	296	21.872	69.065	24.630	1.00	0.00	0
	ATOM	2219	N	CYS	Α	297	21.483	65.602	24.661	1.00	0.00	N
	ATOM	2220	CA	CYS	Α	297	20.739	64.719	23.775	1.00	0.00	С
	ATOM	2221	С	CYS	Α	297	19.468	65.391	23.266	1.00	0.00	С
	ATOM	2222	0	CYS			18.582	65.737	24.045	1.00	0.00	0
30	ATOM	2223	СВ	CYS			20.391	63.420	24.506	1.00	0.00	С
O	ATOM	2224	SG	CYS			21.829	62.331	24.719	1.00	0.00	S
	ATOM	2225	N	PRO			19.364	65.582	21.943	1.00	0.00	N
	MOTA	2226	CA	PRO			18.188	66.220	21.347	1.00	0.00	С
			C	PRO			16.889	65.440	21.539	1.00	0.00	Ċ
35	ATOM	2227		PRO			15.801	66.000	21.407	1.00	0.00	Ö
33	ATOM	2228	0				18.578	66.356	19.876	1.00	0.00	С
	MOTA	2229	CB	PRO				65.186	19.659	1.00	0.00	Ċ
	ATOM	2230	CG	PRO			19.481		20.903	1.00	0.00	C
	ATOM	2231	CD	PRO			20.337	65.201			0.00	N
40	MOTA	2232	N	TRP			17.005	64.152	21.853	1.00		C
40	MOTA	2233	CA	TRP			15.828	63.313	22.065	1.00	0.00	
	MOTA	2234	С	TRP			15.265	63.491	23.480	1.00	0.00	С
	ATOM	2235	0	TRP			14.368	62.761	23.903	1.00	0.00	0
	MOTA	2236	CB	TRP			16.174	61.842	21.775	1.00	0.00	С
	ATOM	2237	CG	TRP			16.534	61.619	20.324	1.00	0.00	С
45	MOTA	2238	CD1	TRP	Α	299	15.666	61.438	19.282	1.00	0.00	C
	ATOM	2239	CD2	TRP	Α	299	17.850	61.656	19.745	1.00	0.00	С
	ATOM	2240	NE1	TRP	Α	299	16.357	61.367	18.093	1.00	0.00	N
	ATOM	2241	CE2	TRP	Α	299	17.697	61.499	18.348	1.00	0.00	С
	ATOM	2242	CE3	TRP	Α	299	19.140	61.812	20.270	1.00	0.00	С
50	ATOM	2243		TRP			18.789	61.494	17.469	1.00	0.00	С
	ATOM	2244		TRP			20.226	61.806	19.396	1.00	0.00	С
	ATOM	2245		TRP			20.041	61.649	18.009	1.00	0.00	С
	ATOM	2246	N	LYS			15.815	64.468	24.202	1.00	0.00	N
		2247	CA	LYS			15.368	64.831	25.553	1.00	0.00	С
55	ATOM							63.912	26.730	1.00	0.00	Č
33	ATOM	2248	С	LYS			15.689	64.190		1.00	0.00	o
	ATOM	2249	0	LYS			15.274		27.853		0.00	С
	ATOM	2250	CB	LYS			13.861	65.089	25.539	1.00		C
	MOTA	2251	CG			300	13.424	66.125	24.526	1.00	0.00	
	MOTA	2252	CD	LYS			11.918	66.321	24.569	1.00	0.00	C
60	MOTA	2253	CE	LYS			11.460	67.272	23.479	1.00	0.00	C
	ATOM	2254	NZ	LYS	A	300	12.177	68.571	23.564	1.00	0.00	N

	ATOM ATOM	2255 2256	N CA	VAL A		16.403 16.765	62.820 61.917	26.490 27.575	1.00	0.00	И
	ATOM	2257	C	VAL A		18.287	61.901	27.673	1.00	0.00	С
	ATOM	2258	ō	VAL A		18.971	61.383	26.790	1.00	0.00	0
5	ATOM	2259	СВ	VAL A		16.247	60.485	27.325	1.00	0.00	С
_	ATOM	2260		VAL A		16.525	59.618	28.538	1.00	0.00	С
	ATOM	2261		VAL A		14.754	60.515	27.028	1.00	0.00	С
	ATOM	2262	N	PRO A		18.836	62.477	28.752	1.00	0.00	N
	ATOM	2263	CA	PRO A		20.281	62.546	28.976	1.00	0.00	С
10	ATOM	2264	C	PRO A		20.907	61.253	29.467	1.00	0.00	C
	ATOM	2265	0	PRO A		20.228	60.389	30.019	1.00	0.00	0
	ATOM	2266	CB	PRO A		20.403	63.653	30.010	1.00	0.00	С
	ATOM	2267	CG	PRO A		19.204	63.392	30.872	1.00	0.00	С
	ATOM	2268	CD	PRO A	302	18.109	63.148	29.848	1.00	0.00	С
15	MOTA	2269	N	PRO A		22.221	61.095	29.255	1.00	0.00	N
	ATOM	2270	CA	PRO A		22.857	59.866	29.729	1.00	0.00	С
	MOTA	2271	С	PRO A		22.971	59.963	31.247	1.00	0.00	С
	ATOM	2272	0	PRO A		23.018	61.064	31.803	1.00	0.00	0
	ATOM	2273	CB	PRO A	303	24.216	59.887	29.032	1.00	0.00	С
20	MOTA	2274	CG	PRO A		24.506	61.350	28.897	1.00	0.00	С
	MOTA	2275	CD	PRO A	303	23.167	61.932	28.494	1.00	0.00	С
	ATOM	2276	N	ARG A	304	22.993	58.819	31.918	1.00	0.00	N
	ATOM	2277	CA	ARG A	304	23.111	58.800	33.369	1.00	0.00	С
	MOTA	2278	С	ARG A	304	24.302	57.959	33.783	1.00	0.00	С
25	MOTA	2279	0	ARG A	304	24.507	56.862	33.266	1.00	0.00	0
	ATOM	2280	CB	ARG A	304	21.829	58.248	34.004	1.00	0.00	С
	MOTA	2281	CG	ARG A	304	20.698	59.268	34.084	1.00	0.00	С
	ATOM	2282	CD	ARG A	304	19.388	58.628	34.528	1.00	0.00	С
	ATOM	2283	NE	ARG A	304	18.807	57.784	33.486	1.00	0.00	N
30	MOTA	2284	CZ	ARG A	304	18.401	58.230	32.299	1.00	0.00	С
	MOTA	2285	NH1	ARG A	304	18.508	59.518	31.993	1.00	0.00	N
	MOTA	2286	NH2	ARG A	304	17.884	57.389	31.413	1.00	0.00	N
	MOTA	2287	N	THR A	305	25.093	58.485	34.712	1.00	0.00	N
	MOTA	2288	CA	THR A	305	26.268	57.780	35.198	1.00	0.00	С
35	ATOM	2289	С	THR A		25.862	56.384	35.646	1.00	0.00	C
	MOTA	2290	0	THR A		24.863	56.219	36.348	1.00	0.00	0
	ATOM	2291	CB	THR A		26.906	58.530	36.380	1.00	0.00	C
	ATOM	2292		THR A		27.329	59.828	35.942	1.00	0.00	0
40	MOTA	2293		THR A		28.099	57.766	36.924	1.00	0.00	C
40	ATOM	2294	N	ILE A		26.628	55.380	35.231	1.00	0.00	N
	ATOM	2295	CA	ILE A		26.331	54.001	35.599	1.00	0.00	С
	ATOM	2296	С	ILE A		26.739	53.742	37.046	1.00	0.00	С
	ATOM	2297	0	ILE A		27.808	54.168	37.487	1.00	0.00	0
4 =	MOTA	2298	СВ	ILE A		27.079	52.997	34.694	1.00	0.00	C
4 5	MOTA	2299		ILE A		26.813	53.315	33.219	1.00	0.00	C
	MOTA	2300		ILE A		26.639	51.569	35.023	1.00	0.00	С
	ATOM	2301		ILE A		25.349	53.255	32.815	1.00	0.00	C
	MOTA	2302	N	SER A		25.876	53.045	37.780	1.00	0.00	N
E0	MOTA	2303	CA	SER A		26.134	52.713	39.178	1.00	0.00	С
50	MOTA	2304	С	SER A		25.659	51.290	39.441	1.00	0.00	С
	MOTA	2305	0	SER A		24.931	50.720	38.634	1.00	0.00	0 C
	ATOM	2306	CB	SER A		25.379	53.673	40.097	1.00	0.00	
	MOTA	2307	OG	SER A		23.980	53.548	39.909	1.00	0.00	O N
	MOTA	2308	N	ASP A		26.073	50.718	40.568	1.00	0.00	N C
55	MOTA	2309	CA	ASP A		25.661	49.361	40.923	1.00	0.00	C
	ATOM	2310	С	ASP A		24.145	49.323	41.039	1.00	0.00	0
	ATOM	2311	O	ASP A		23.515	48.283	40.851	$1.00 \\ 1.00$	0.00	c
	MOTA	2312	CB	ASP A		26.287	48.953	42.259 42.152	1.00	0.00	C
60	ATOM	2313	CG	ASP A		27.775	48.703 49.134	42.152	1.00	0.00	0
OU	ATOM	2314		ASP A		28.380 28.345	49.134	43.076	1.00	0.00	0
	ATOM	2315	002	ASP A	200	20.343	30.003	33.070	1.00	2.50	Ü

	ATOM	2316	N	GLN .	A 309	23.574	50.483	41.336	1.00	0.00	N
	ATOM	2317	CA		A 309		50.646	41.508	1.00	0.00	С
	ATOM	2318	С	GLN .	A 309	21.326	50.648	40.213	1.00	0.00	С
	ATOM	2319	0		A 309	20.203	50.144	40.191	1.00	0.00	0
5	ATOM	2320	CB		A 309		51.932	42.309	1.00	0.00	С
	ATOM	2321	CG	GLN .	A 309		52.557	42.168	1.00	0.00	С
	ATOM	2322	CD	GLN .	A 309	20.372	53.806	43.027	1.00	0.00	С
	ATOM	2323		GLN .	A 309	19.547	54.680	42.743	1.00	0.00	0
	ATOM	2324		GLN		21.166	53.890	44.089	1.00	0.00	N
10	MOTA	2325	N		A 310	21.879	51.195	39.133	1.00	0.00	N
	ATOM	2326	CA		A 310	21.144	51.239	37.871	1.00	0.00	С
	ATOM	2327	С		A 310	21.748	50.415	36.736	1.00	0.00	С
	ATOM	2328	0		A 310	21.164	50.335	35.660	1.00	0.00	0
	ATOM	2329	СВ		A 310	20.994	52.687	37.387	1.00	0.00	С
15	ATOM	2330	CG		A 310	22.328	53.335	37.044	1.00	0.00	С
	ATOM	2331		ASN		23.268	52.663	36.620	1.00	0.00	0
	ATOM	2332		ASN		22.408	54.650	37.211	1.00	0.00	N
	ATOM	2333	N		A 311	22.906	49.806	36.972	1.00	0.00	N
	ATOM	2334	CA		A 311	23.582	49.028	35.931	1.00	0.00	С
20	ATOM	2335	С		A 311	22.748	47.908	35.302	1.00	0.00	С
	ATOM	2336	Ō		A 311	22.863	47.649	34.104	1.00	0.00	0
	ATOM	2337	СВ		A 311	24.913	48.433	36.453	1.00	0.00	С
	ATOM	2338		VAL		24.639	47.316	37.448	1.00	0.00	С
	ATOM	2339		VAL		25.756	47.933	35.278	1.00	0.00	С
25	ATOM	2340	N		A 312	21.910	47.244	36.095	1.00	0.00	N
	MOTA	2341	CA		A 312	21.083	46.167	35.557	1.00	0.00	С
	ATOM	2342	С		A 312	20.067	46.703	34.550	1.00	0.00	С
	ATOM	2343	0		A 312	19.868	46.114	33.486	1.00	0.00	0
	ATOM	2344	CB		A 312	20.363	45.429	36.693	1.00	0.00	С
30	ATOM	2345	N		A 313	19.431	47.823	34.887	1.00	0.00	N
	ATOM	2346	CA		A 313	18.433	48.439	34.015	1.00	0.00	С
	ATOM	2347	С		A 313	19.079	49.081	32.790	1.00	0.00	С
	MOTA	2348	0	ALA		18.541	49.017	31.682	1.00	0.00	0
	ATOM	2349	CB		A 313	17.641	49.484	34.787	1.00	0.00	С
35	ATOM	2350	N	ARG A		20.226	49.716	32.996	1.00	0.00	N
	ATOM	2351	CA	ARG	A 314	20.941	50.358	31.896	1.00	0.00	С
	ATOM	2352	С	ARG A	314	21.411	49.291	30.907	1.00	0.00	С
	ATOM	2353	0	ARG A	314	21.307	49.464	29.691	1.00	0.00	0
	ATOM	2354	CB	ARG I	A 314	22.147	51.130	32.435	1.00	0.00	С
40	ATOM	2355	CG	ARG I	314	21.805	52.288	33.365	1.00	0.00	С
	MOTA	2356	CD	ARG A	314	21.451	53.557	32.599	1.00	0.00	С
	MOTA	2357	NE	ARG A	A 314	20.085	53.557	32.090	1.00	0.00	N
	ATOM	2358	CZ	ARG A	314	19.594	54.486	31.276	1.00	0.00	С
	ATOM	2359	NH1	ARG A	314	20.361	55.489	30.871	1.00	0.00	N
45	ATOM	2360	NH2	ARG A	314	18.334	54.422	30.875	1.00	0.00	N
	ATOM	2361	N	SER A	315	21.919	48.184	31.439	1.00	0.00	N
	ATOM	2362	CA	SER A	315	22.404	47.081	30.611	1.00	0.00	C
	ATOM	2363	С	SER A	315	21.270	46.457	29.815	1.00	0.00	С
	ATOM	2364	0	SER A	315	21.425	46.141	28.636	1.00	0.00	0
50	ATOM	2365	CB	SER A	315	23.063	46.008	31.483	1.00	0.00	С
	ATOM	2366	OG	SER A	315	24.249	46.498	32.083	1.00	0.00	0
	ATOM	2367	N	ASP A	316	20.121	46.283	30.460	1.00	0.00	N
	MOTA	2368	CA	ASP A	316	18.974	45.692	29.788	1.00	0.00	С
	ATOM	2369	С	ASP A	316	18.605	46.540	28.573	1.00	0.00	С
55	ATOM	2370	0	ASP A	316	18.311	46.009	27.501	1.00	0.00	0
	MOTA	2371	CB	ASP A	316	17.793	45.593	30.758	1.00	0.00	С
	MOTA	2372	CG	ASP A	316	16.715	44.647	30.268	1.00	0.00	С
	MOTA	2373	OD1	ASP A	316	17.040	43.482	29.946	1.00	0.00	0
	MOTA	2374	OD2	ASP A	316	15.542	45.068	30.211	1.00	0.00	0
60	MOTA	2375	N	LEU A	317	18.633	47.861	28.738	1.00	0.00	N
	MOTA	2376	CA	LEU A	317	18.318	48.766	27.638	1.00	0.00	С

	ATOM	2377	С	LEU A	317	19.362	48.680	26.531	1.00	0.00	С
	ATOM	2378	0	LEU A		19.024	48.567	25.353	1.00	0.00	0
	ATOM	2379	CB	LEU A		18.246	50.214	28.133	1.00	0.00	С
	ATOM	2380	CG	LEU A	317	16.879	50.764	28.537	1.00	0.00	С
5	ATOM	2381	CD1	LEU A		17.049	52.176	29.092	1.00	0.00	С
	ATOM	2382		LEU A		15.952	50.777	27.330	1.00	0.00	С
	ATOM	2383	N	LEU A		20.632	48.738	26.918	1.00	0.00	N
	ATOM	2384	CA	LEU A		21.725	48.693	25.952	1.00	0.00	С
	ATOM	2385	C	LEU A		21.791	47.364	25.212	1.00	0.00	С
10	ATOM	2386	Ö	LEU A		21.826	47.329	23.981	1.00	0.00	0
20	ATOM	2387	СВ	LEU A		23.061	48.957	26.653	1.00	0.00	С
	ATOM	2388	CG	LEU A		24.279	49.102	25.734	1.00	0.00	c
	ATOM	2389		LEU A		24.038	50.236	24.743	1.00	0.00	C
	ATOM	2390		LEU A		25.528	49.371	26.569	1.00	0.00	Č
15		2390	N N	VAL A		21.815	46.268	25.962	1.00	0.00	N
13	MOTA						44.950	25.349	1.00	0.00	C
	ATOM	2392	CA	VAL A		21.879	44.769	24.351	1.00	0.00	c
	ATOM	2393	C	VAL A		20.740		23.297	1.00	0.00	0
	ATOM	2394	0	VAL A		20.922	44.165			0.00	c
20	MOTA	2395	CB	VAL A		21.820	43.839	26.417	1.00		c
20	MOTA	2396		VAL A		21.629	42.483	25.755	1.00	0.00	
	MOTA	2397		VAL A		23.107	43.842	27.230	1.00	0.00	C
	MOTA	2398	N	ASP A		19.567	45.304	24.675	1.00	0.00	N
	MOTA	2399	CA	ASP A		18.420	45.187	23.779	1.00	0.00	C
05	MOTA	2400	С	ASP A		18.716	45.878	22.446	1.00	0.00	С
25	MOTA	2401	0	ASP A		18.350	45.378	21.382	1.00	0.00	0
	MOTA	2402	CB	ASP A		17.179	45.794	24.435	1.00	0.00	C
	ATOM	2403	CG	ASP A		15.976	45.789	23.522	1.00	0.00	C
	ATOM	2404		ASP A		15.527	46.886	23.133	1.00	0.00	0
	MOTA	2405	OD2	ASP A		15.481	44.692	23.191	1.00	0.00	0
30	MOTA	2406	N	GLN A	321	19.376	47.031	22.509	1.00	0.00	N
	MOTA	2407	CA	GLN A	321	19.741	47.761	21.298	1.00	0.00	С
	MOTA	2408	С	GLN A	321	20.740	46.935	20.501	1.00	0.00	С
	ATOM	2409	0	GLN A	321	20.630	46.816	19.279	1.00	0.00	0
	ATOM	2410	CB	GLN A	321	20.371	49.109	21.654	1.00	0.00	С
35	ATOM	2411	CG	GLN A	321	19.366	50.146	22.102	1.00	0.00	С
	MOTA	2412	CD	GLN A	321	18.323	50.413	21.040	1.00	0.00	С
	ATOM	2413	OE1	GLN A	321	18.645	50.834	19.926	1.00	0.00	0
	ATOM	2414	NE2	GLN A		17.062	50.164	21.375	1.00	0.00	N
	ATOM	2415	N	TRP A		21.718	46.368	21.203	1.00	0.00	N
40	ATOM	2416	CA	TRP A		22.738	45.544	20.568	1.00	0.00	С
	ATOM	2417	С	TRP A		22.133	44.351	19.837	1.00	0.00	С
	ATOM	2418	Ō	TRP A		22.476	44.081	18.685	1.00	0.00	0
	ATOM	2419	CB	TRP A		23.744	45.027	21.600	1.00	0.00	С
	ATOM	2420	CG	TRP A		24.688	46.060	22.143	1.00	0.00	С
45	ATOM	2421		TRP A		24.907	47.315	21.656	1.00	0.00	С
10	ATOM	2422		TRP A		25.583	45.898	23.249	1.00	0.00	Ċ
	ATOM	2423		TRP A		25.887	47.945	22.390	1.00	0.00	N
	ATOM	2424		TRP A		26.319	47.097	23.373	1.00	0.00	C
		2425		TRP A		25.837	44.853	24.148	1.00	0.00	Ċ
50	ATOM					27.292	47.281	24.140	1.00	0.00	c
30	ATOM	2426		TRP A					1.00	0.00	C
	MOTA	2427		TRP A		26.805	45.034	25.132	1.00	0.00	c
	ATOM	2428		TRP A		27.520	46.240	25.230		0.00	N
	ATOM	2429	N	LYS A		21.246	43.627	20.512	1.00		C
66	ATOM	2430	CA	LYS A		20.621	42.461	19.899	1.00	0.00	
55	MOTA	2431	С	LYS A		19.759	42.830	18.699	1.00	0.00	С
	ATOM	2432	0	LYS A		19.625	42.046	17.763	1.00	0.00	0
	MOTA	2433	CB	LYS A		19.817	41.680	20.943	1.00	0.00	С
	MOTA	2434	CG	LYS A		20.730	40.891	21.882	1.00	0.00	С
60	ATOM	2435	CD	LYS A		19.956	40.047	22.883	1.00	0.00	С
60	MOTA	2436	CE	LYS A		20.914	39.198	23.710	1.00	0.00	C
	ATOM	2437	NZ	LYS A	323	20.199	38.349	24.700	1.00	0.00	N

	ATOM	2438	N	LYS A	324	1	9.181	44.024	18.716	1.00	0.00	N
	ATOM	2439	CA	LYS A			8.376	44.457	17.581	1.00	0.00	C
	ATOM	2440	C	LYS A			9.313	44.754	16.415	1.00	0.00	C
	ATOM	2441	ō	LYS A			9.041	44.373	15.276	1.00	0.00	Ċ
5		2442	СВ	LYS A			7.551	45.693	17.945	1.00	0.00	C
3	MOTA							45.365	18.855	1.00	0.00	Ċ
	MOTA	2443	CG	LYS A			.6.374					C
	ATOM	2444	CD	LYS A			.5.586	46.600	19.267	1.00	0.00	
	ATOM	2445	CE	LYS A			4.390	46.201	20.135	1.00	0.00	C
40	MOTA	2446	ΝZ	LYS A			.3.676	47.386	20.693	1.00	0.00	N
10	ATOM	2447	N	LYS A	325		20.430	45.417	16.700	1.00	0.00	N
	ATOM	2448	CA	LYS A	325	2	21.392	45.728	15.646	1.00	0.00	C
	MOTA	2449	С	LYS A	325	2	21.941	44.418	15.076	1.00	0.00	C
	ATOM	2450	0	LYS A	325	2	22.101	44.276	13.863	1.00	0.00	C
	ATOM	2451	CB	LYS A	325	2	22.545	46.576	16.200	1.00	0.00	C
15	ATOM	2452	CG	LYS A		2	3.439	47.172	15.117	1.00	0.00	C
	ATOM	2453	CD	LYS A			4.583	47.999	15.701	1.00	0.00	C
	ATOM	2454	CE	LYS A			5.399	48.653	14.588	1.00	0.00	C
	ATOM	2455	NZ	LYS A			6.594	49.372	15.107	1.00	0.00	N
	ATOM	2456	N	ALA A			2.212	43.461	15.961	1.00	0.00	N
20		2457		ALA A			2.746	42.157	15.566	1.00	0.00	Ċ
20	MOTA		CA							1.00	0.00	C
	ATOM	2458	С	ALA A			21.847	41.398	14.587			
	MOTA	2459	0	ALA A			22.321	40.548	13.831	1.00	0.00	C
	ATOM	2460	CB	ALA A			2.993	41.302	16.805	1.00	0.00	C
05	ATOM	2461	N	GLU A			0.554	41.697	14.604	1.00	0.00	N
25	MOTA	2462	CA	GLU A			9.610	41.031	13.708	1.00	0.00	C
	MOTA	2463	С	GLU A	327	1	.9.823	41.409	12.248	1.00	0.00	С
	ATOM	2464	0	GLU A	327	1	.9.373	40.705	11.345	1.00	0.00	C
	ATOM	2465	CB	GLU A	327	1	8.173	41.375	14.099	1.00	0.00	C
	ATOM	2466	CG	GLU A	327	1	7.644	40.575	15.262	1.00	0.00	C
30	ATOM	2467	CD	GLU A	327	1	.7.587	39.091	14.952	1.00	0.00	C
	ATOM	2468	OE1	GLU A	327	1	6.900	38.710	13.981	1.00	0.00	C
	ATOM	2469		GLU A			8.231	38.310	15.676	1.00	0.00	C
	MOTA	2470	N	LEU A			0.510	42.523	12.020	1.00	0.00	N
	ATOM	2471	CA	LEU A			20.750	42.989	10.663	1.00	0.00	C
35	ATOM	2472	C C	LEU A			1.969	42.334	10.022	1.00	0.00	C
00	ATOM	2473	Ö	LEU A			2.225	42.539	8.836	1.00	0.00	C
	ATOM	2474	CB	LEU A			20.910	44.515	10.654	1.00	0.00	C
							9.804	45.321	11.345	1.00	0.00	C
	ATOM	2475	CG	LEU A								C
40	ATOM	2476		LEU A			20.034	46.810	11.114	1.00	0.00	C
40	ATOM	2477		LEU A			.8.436	44.902	10.813	1.00	0.00	
	ATOM	2478	N	TYR A			22.713	41.549	10.800	1.00	0.00	N
	ATOM	2479	CA	TYR A			3.906	40.872	10.291	1.00	0.00	C
	MOTA	2480	С	TYR A			23.843	39.349	10.449	1.00	0.00	C
4-	MOTA	2481	0	TYR A			22.952	38.823	11.121	1.00	0.00	C
45	MOTA	2482	CB	TYR A			25.163	41.451	10.956	1.00	0.00	C
	ATOM	2483	CG	TYR A	329	2	5.356	42.922	10.639	1.00	0.00	C
	ATOM	2484	CD1	TYR A	329	2	24.736	43.912	11.407	1.00	0.00	C
	MOTA	2485	CD2	TYR A	329	2	6.106	43.323	9.530	1.00	0.00	C
	ATOM	2486	CE1	TYR A	329	2	4.857	45.263	11.077	1.00	0.00	C
50	ATOM	2487	CE2	TYR A	329	2	6.231	44.670	9.192	1.00	0.00	C
	ATOM	2488	CZ	TYR A			5.604	45.634	9.969	1.00	0.00	C
	ATOM	2489	ОН	TYR A			5.717	46.965	9.634	1.00	0.00	C
	ATOM	2490	N	ARG A			4.795	38.648	9.837	1.00	0.00	N
							24.799	37.188	9.845	1.00	0.00	C
55	ATOM	2491	CA	ARG A								
55	ATOM	2492	С	ARG A			25.619	36.414	10.878	1.00	0.00	C
	ATOM	2493	0	ARG A			25.375	35.225	11.076	1.00	0.00	C
	ATOM	2494	CB	ARG A			25.169	36.689	8.442	1.00	0.00	C
	ATOM	2495	CG	ARG A			4.273	37.270	7.356	1.00	0.00	C
	ATOM	2496	CD	ARG A			4.492	36.623	5.994	1.00	0.00	C
60	MOTA	2497	NE	ARG A			3.565	37.189	5.020	1.00	0.00	N
	ATOM	2498	CZ	ARG A	330	2	3.295	36.657	3.831	1.00	0.00	C

	ATOM	2499	NH1	ARG A	330	23.88	5 35.530	3.450	1.00	0.00	N
	ATOM	2500		ARG A		22.42		3.024	1.00	0.00	N
	ATOM	2501	N	THR A		26.59		11.528	1.00	0.00	N
						27.38		12.520	1.00	0.00	Ċ
5	MOTA	2502	CA	THR A				13.937	1.00	0.00	c
3	MOTA	2503	C	THR A		27.00					0
	ATOM	2504	0	THR A		26.15		14.140	1.00	0.00	
	MOTA	2505	CB	THR A		28.90		12.352	1.00	0.00	C
	MOTA	2506	OG1	THR A	331	29.21		12.815	1.00	0.00	0
	MOTA	2507	CG2	THR A	331	29.31	8 36.440	10.887	1.00	0.00	. C
10	ATOM	2508	N	ASN A	332	27.65	1 36.099	14.914	1.00	0.00	N
	MOTA	2509	CA	ASN A	332	27.39	8 36.403	16.316	1.00	0.00	С
	ATOM	2510	С	ASN A		28.46		16.835	1.00	0.00	С
	ATOM	2511	Ō	ASN A		28.72		18.038	1.00	0.00	0
	ATOM	2512	СВ	ASN A		27.37		17.150	1.00	0.00	С
15	ATOM	2513	CG	ASN A		28.74		17.254	1.00	0.00	Ċ
15		2513		ASN A		29.52		16.302	1.00	0.00	Ō
	ATOM							18.417	1.00	0.00	N
	ATOM	2515		ASN A		29.03					N
	MOTA	2516	N	VAL A		29.07		15.909	1.00	0.00	
20	ATOM	2517	CA	VAL A		30.09		16.248	1.00	0.00	C
20	ATOM	2518	С	VAL A		29.52		15.850	1.00	0.00	C
	MOTA	2519	0	VAL A		29.20		14.684	1.00	0.00	0
	ATOM	2520	CB	VAL A	333	31.41	3 38.843	15.472	1.00	0.00	С
	MOTA	2521	CG1	VAL A	333	32.45	7 39.884	15.864	1.00	0.00	С
	ATOM	2522	CG2	VAL A	333	31.92	5 37.442	15.761	1.00	0.00	С
25	MOTA	2523	N	LEU A		29.40		16.817	1.00	0.00	N
	ATOM	2524	CA	LEU A		28.81		16.564	1.00	0.00	С
	ATOM	2525	С	LEU A		29.75		16.719	1.00	0.00	С
	ATOM	2526	Ö	LEU A		30.46		17.715	1.00	0.00	0
	MOTA	2527	СВ	LEU A		27.60		17.488	1.00	0.00	c
30						26.79		17.332	1.00	0.00	c
30	MOTA	2528	CG	LEU A						0.00	c
	ATOM	2529		LEU A		26.07		15.988	1.00		C
	ATOM	2530		LEU A		25.79		18.475	1.00	0.00	
	ATOM	2531	N	LEU A		29.74		15.730	1.00	0.00	N
25	MOTA	2532	CA	LEU A		30.58		15.755	1.00	0.00	С
35	MOTA	2533	С	LEU A		29.79		16.297	1.00	0.00	C
	ATOM	2534	0	LEU A	335	28.72		15.796	1.00	0.00	0
	ATOM	2535	CB	LEU A	335	31.08	1 46.287	14.346	1.00	0.00	С
	MOTA	2536	CG	LEU A	335	31.84	3 47.612	14.214	1.00	0.00	С
	ATOM	2537	CD1	LEU A	335	33.14	7 47.540	14.993	1.00	0.00	С
40	ATOM	2538	CD2	LEU A	335	32.11	3 47.903	12.747	1.00	0.00	С
	ATOM	2539	N	ILE A		30.34	3 47.797	17.318	1.00	0.00	N
	ATOM	2540	CA	ILE A		29.69		17.922	1.00	0.00	С
	ATOM	2541	С	ILE A		30.68		18.003	1.00	0.00	С
	ATOM	2542	Ö	ILE A		31.43		18.965	1.00	0.00	0
45	ATOM	2543	СВ	ILE A		29.18			1.00	0.00	С
40				ILE A		28.16			1.00	0.00	c
	ATOM	2544						19.965	1.00	0.00	c
	ATOM	2545		ILE A		28.53					c
	ATOM	2546		ILE A		26.85		18.628	1.00	0.00	
-0	MOTA	2547	N	PRO A		30.71		16.974	1.00	0.00	N
50	ATOM	2548	CA	PRO A		31.63			1.00	0.00	C
	ATOM	2549	С	PRO A		31.25			1.00	0.00	С
	ATOM	2550	0	PRO A	337	30.08	0 53.150	18.515	1.00	0.00	0
	ATOM	2551	CB	PRO A	337	31.40	4 52.807	15.672	1.00	0.00	С
	MOTA	2552	CG	PRO A	337	30.98	1 51.684	14.778	1.00	0.00	С
55	ATOM	2553	CD	PRO A		30.04		15.665	1.00	0.00	С
	ATOM	2554	N	LEU A		32.24		18.789	1.00	0.00	N
	ATOM	2555	CA	LEU A		31.99		19.893	1.00	0.00	C
		2556	CA			32.80			1.00	0.00	c
	ATOM			LEU A					1.00	0.00	0
60	ATOM	2557	0	LEU A		33.94					c
60	ATOM	2558	CB	LEU A		32.39			1.00	0.00	
	MOTA	2559	CG	LEU A	338	32.10	8 54.865	22.461	1.00	0.00	С

	ATOM	2560	CD1	LEU .	Α :	338	30.606	54.919	22.707	1.00	0.00	С
	ATOM	2561	CD2	LEU .	Α :	338	32.827	54.315	23.693	1.00	0.00	С
	ATOM	2562	N	GLY A	Α :	339	32.211	56.849	18.983	1.00	0.00	N
	MOTA	2563	CA	GLY A	Α :	339	32.924	58.091	18.731	1.00	0.00	С
5	MOTA	2564	С	GLY A	Α :	339	32.131	59.114	17.943	1.00	0.00	С
	ATOM	2565	0	GLY .	Α :	339	30.970	58.889	17.596	1.00	0.00	0
	ATOM	2566	N	ASP .			32.769	60.244	17.658	1.00	0.00	N
	ATOM	2567	CA	ASP .	Α :	340	32.141	61.329	16.919	1.00	0.00	С
	ATOM	2568	С	ASP .			33.265	62.270	16.472	1.00	0.00	С
10	ATOM	2569	0	ASP .			34.445	61.949	16.626	1.00	0.00	0
	ATOM	2570	СВ	ASP			31.165	62.076	17.831	1.00	0.00	С
	ATOM	2571	CG	ASP			30.043	62.759	17.068	1.00	0.00	С
	ATOM	2572		ASP			30.242	63.118	15.886	1.00	0.00	0
	ATOM	2573		ASP			28.961	62.952	17.664	1.00	0.00	0
15	ATOM	2574	N	ASP			32.902	63.432	15.938	1.00	0.00	N
10	ATOM	2575	CA	ASP .			33.896	64.396	15.468	1.00	0.00	С
	ATOM	2576	C	ASP .			34.810	64.907	16.574	1.00	0.00	C
	ATOM	2577	Ö	ASP .			34.343	65.379	17.612	1.00	0.00	0
	MOTA	2578	СВ	ASP .			33.211	65.593	14.803	1.00	0.00	C
20	ATOM	2579	CG	ASP .			32.537	65.230	13.494	1.00	0.00	C
20		2580		ASP .			32.491	64.027	13.165	1.00	0.00	Ō
	ATOM ATOM	2580		ASP .			32.053	66.150	12.799	1.00	0.00	Ö
				PHE .			36.113	64.813	16.330	1.00	0.00	Ŋ
	ATOM	2582	N	PHE .			37.128	65.274	17.264	1.00	0.00	C
25	MOTA	2583	CA				36.835	64.915	18.717	1.00	0.00	C
23	MOTA	2584	C	PHE .			36.833	65.748	19.619	1.00	0.00	Õ
	ATOM	2585	0	PHE .				66.788	17.125	1.00	0.00	Č
	MOTA	2586	CB	PHE .			37.314 37.850	67.213	15.781	1.00	0.00	Č
	ATOM	2587	CG	PHE .				67.554	14.743	1.00	0.00	C
20	ATOM	2588	CD1				36.986		15.549	1.00	0.00	C
30	ATOM	2589		PHE .			39.223	67.254			0.00	C
	ATOM	2590	CE1				37.478	67.932	13.492	1.00	0.00	C
	ATOM	2591		PHE			39.728	67.628	14.303	1.00	0.00	C
	ATOM	2592	CZ	PHE			38.853	67.969	13.272	1.00		N
25	ATOM	2593	N	ARG			36.432	63.667	18.936	1.00	0.00	C
35	MOTA	2594	CA	ARG			36.138	63.187	20.278	1.00	0.00	
	MOTA	2595	С	ARG			37.402	62.725	20.993	1.00	0.00	C
	MOTA	2596	0	ARG			38.473	62.616	20.389	1.00	0.00	0
	MOTA	2597	CB	ARG			35.131	62.033	20.226	1.00	0.00	C
40	MOTA	2598	CG	ARG			33.686	62.471	20.031	1.00	0.00	C
40	ATOM	2599	CD	ARG			33.263	63.432	21.143	1.00	0.00	C
	MOTA	2600	NE	ARG			31.836	63.740	21.103	1.00	0.00	N
	MOTA	2601	CZ	ARG			30.892	63.005	21.682	1.00	0.00	C
	MOTA	2602		ARG			31.213	61.907	22.356	1.00	0.00	N
	MOTA	2603	NH2	ARG			29.621	63.374	21.591	1.00	0.00	N
45	MOTA	2604	N	PHE			37.256	62.451	22.285	1.00	0.00	N
	ATOM	2605	CA	PHE			38.351	61.999	23.136	1.00	0.00	C
	MOTA	2606	С	PHE			39.486	63.003	23.223	1.00	0.00	C
	ATOM	2607	0	PHE			40.661	62.653	23.089	1.00	0.00	0
	MOTA	2608	CB	PHE	A	344	38.864	60.640	22.660	1.00	0.00	C
50	MOTA	2609	CG	PHE	Α	344	37.858	59.544	22.816	1.00	0.00	С
	MOTA	2610	CD1	PHE	A	344	37.086	59.128	21.737	1.00	0.00	С
	ATOM	2611	CD2	PHE	Α	344	37.633	58.968	24.064	1.00	0.00	С
	MOTA	2612	CE1	PHE	Α	344	36.103	58.158	21.896	1.00	0.00	С
	MOTA	2613	CE2	PHE	Α	344	36.650	57.996	24.234	1.00	0.00	С
55	MOTA	2614	CZ	PHE	Α	344	35.883	57.591	23.147	1.00	0.00	С
	ATOM	2615	N	LYS			39.111	64.253	23.475	1.00	0.00	N
	ATOM	2616	CA	LYS			40.055	65.352	23.591	1.00	0.00	С
	ATOM	2617	С	LYS			40.501	65.568	25.038	1.00	0.00	С
	ATOM	2618	ō	LYS			41.691	65.581	25.328	1.00	0.00	0
60	ATOM	2619	СВ	LYS			39.411	66.631	23.056	1.00	0.00	С
	ATOM	2620	CG	LYS			40.278	67.865	23.145	1.00	0.00	С

								4/2				
	MOTA	2621	CD	LYS	Α	345	39.504	69.083	22.658	1.00	0.00	С
	ATOM	2622	CE	LYS			40.313	70.355	22.801	1.00	0.00	С
	ATOM	2623	NZ	LYS			39.506	71.537	22.388	1.00	0.00	N
	ATOM	2624	N	GLN			39.540	65.728	25.941	1.00	0.00	N
5	ATOM	2625	CA	GLN	Α	346	39.839	65.965	27.350	1.00	0.00	С
	ATOM	2626	С			346	40.008	64.681	28.158	1.00	0.00	С
	ATOM	2627	0	GLN			39.352	63.676	27.889	1.00	0.00	0
	ATOM	2628	СВ	GLN			38.722	66.800	27.973	1.00	0.00	С
	MOTA	2629	CG	GLN			38.457	68.107	27.258	1.00	0.00	С
10	ATOM	2630	CD	GLN			37.101	68.683	27.604	1.00	0.00	С
	ATOM	2631		GLN			36.814	68.969	28.768	1.00	0.00	0
	ATOM	2632		GLN			36.252	68.850	26.593	1.00	0.00	N
	ATOM	2633	N	ASN			40.887	64.724	29.156	1.00	0.00	N
	ATOM	2634	CA	ASN			41.120	63.566	30.012	1.00	0.00	С
15	ATOM	2635	C	ASN			39.804	63.156	30.655	1.00	0.00	С
	MOTA	2636	ō	ASN			39.493	61.968	30.765	1.00	0.00	0
	MOTA	2637	CB	ASN			42.127	63.900	31.117	1.00	0.00	С
	ATOM	2638	CG	ASN			43.499	64.205	30.577	1.00	0.00	С
	ATOM	2639		ASN			44.098	63.384	29.882	1.00	0.00	0
20	ATOM	2640		ASN			44.014	65.391	30.893	1.00	0.00	N
	ATOM	2641	N	THR			39.036	64.153	31.079	1.00	0.00	N
	ATOM	2642	CA	THR			37.751	63.910	31.716	1.00	0.00	С
	ATOM	2643	С	THR			36.837	63.127	30.785	1.00	0.00	С
	ATOM	2644	ō	THR			36.042	62.300	31.237	1.00	0.00	0
25	MOTA	2645	СВ	THR			37.070	65.234	32.110	1.00	0.00	С
	ATOM	2646		THR			36.994	66.095	30.965	1.00	0.00	0
	ATOM	2647		THR			37.860	65.925	33.215	1.00	0.00	С
	ATOM	2648	N			349	36.957	63.383	29.484	1.00	0.00	N
	ATOM	2649	CA	GLU			36.141	62.675	28.504	1.00	0.00	С
30	ATOM	2650	C	GLU			36.553	61.209	28.426	1.00	0.00	С
	ATOM	2651	Ō	GLU			35.701	60.324	28.382	1.00	0.00	0
	ATOM	2652	СВ	GLU			36.266	63.308	27.113	1.00	0.00	С
	ATOM	2653	CG	GLU			35.466	62.548	26.054	1.00	0.00	С
	ATOM	2654	CD	GLU			35.592	63.132	24.659	1.00	0.00	С
35	ATOM	2655		GLU			35.039	62.523	23.718	1.00	0.00	0
	MOTA	2656		GLU			36.237	64.188	24.499	1.00	0.00	0
	ATOM	2657	N			350	37.859	60.950	28.396	1.00	0.00	N
	ATOM	2658	CA	TRP			38.334	59.575	28.339	1.00	0.00	С
	ATOM	2659	C	TRP			37.800	58.804	29.539	1.00	0.00	С
40	ATOM	2660	Ō			350	37.307	57.683	29.405	1.00	0.00	0
	ATOM	2661	CB	TRP			39.865	59.515	28.342	1.00	0.00	С
	ATOM	2662	CG	TRP			40.489	59.775	27.004	1.00	0.00	С
	ATOM	2663		TRP			40.855	60.987	26.485	1.00	0.00	С
	MOTA	2664		TRP			40.786	58.802	25.998	1.00	0.00	С
45	ATOM	2665		TRP			41.361	60.825	25.217	1.00	0.00	N
	ATOM	2666		TRP			41.329	59.495	24.892	1.00	0.00	С
	MOTA	2667		TRP			40.643	57.409	25.920	1.00	0.00	С
	ATOM	2668		TRP			41.729	58.842	23.722	1.00	0.00	С
	ATOM	2669		TRP			41.042	56.759	24.754	1.00	0.00	С
50	ATOM	2670		TRP			41.578	57.477	23.672	1.00	0.00	С
•	ATOM	2671	N	ASP			37.897	59.416	30.714	1.00	0.00	N
	ATOM	2672	CA	ASP			37.427	58.778	31.937	1.00	0.00	С
	ATOM	2673	С	ASP			35.936	58.483	31.935	1.00	0.00	С
	ATOM	2674	Ō	ASP			35.519	57.362	32.245	1.00	0.00	0
55	MOTA	2675	СВ	ASP			37.737	59.641	33.163	1.00	0.00	С
	ATOM	2676	CG	ASP			39.211	59.698	33.484	1.00	0.00	С
	ATOM	2677		ASP			39.917	58.694	33.255	1.00	0.00	0
	ATOM	2678		ASP			39.658	60.746	33.987	1.00	0.00	0
	ATOM	2679	N N			352	35.131	59.484	31.593	1.00	0.00	N
60	ATOM	2680	CA	VAL			33.688	59.306	31.613	1.00	0.00	С
50	ATOM	2681	C	VAL			33.197	58.234	30.637	1.00	0.00	Ċ
		_ 555	-		•				 ·		, -	

		0.500	_			20 220	F7 F00	20 020	1 00	0.00	0
	ATOM	2682 2683	O CB	VAL VAL			57.520 60.650	30.930 31.362	1.00	0.00	O C
	ATOM	2684		VAL			60.957	29.875	1.00	0.00	Č
	MOTA	2685		VAL			60.606	31.997	1.00	0.00	Č
5	MOTA	2686		GLN			58.106	29.484	1.00	0.00	N
,	ATOM		N CA	GLN			57.084	28.527	1.00	0.00	C
	ATOM	2687					55.709	28.960	1.00	0.00	c
	ATOM	2688	С	GLN				28.981	1.00	0.00	o
	ATOM	2689	0	GLN			54.735	27.114	1.00	0.00	C
10	ATOM	2690	CB	GLN			57.422	26.528	1.00	0.00	C
10	ATOM	2691	CG	GLN			58.725			0.00	C
	ATOM	2692	CD	GLN .			58.612	26.048	1.00		
	ATOM	2693		GLN .			57.942	26.669	1.00	0.00	0
	ATOM	2694		GLN			59.289	24.943	1.00	0.00	N
15	ATOM	2695	N	ARG .			55.631	29.320	1.00	0.00	N
15	ATOM	2696	CA	ARG			54.359	29.734	1.00	0.00	C
	ATOM	2697	С	ARG .			53.759	31.008	1.00	0.00	С
	ATOM	2698	0	ARG .			52.583	31.030	1.00	0.00	0
	ATOM	2699	CB	ARG .			54.501	29.922	1.00	0.00	С
20	MOTA	2700	CG	ARG			53.237	30.465	1.00	0.00	C
20	ATOM	2701	CD	ARG .			53.414	30.657	1.00	0.00	C
	ATOM	2702	NE	ARG		•	54.424	31.664	1.00	0.00	И
	MOTA	2703	CZ	ARG			54.280	32.972	1.00	0.00	С
	MOTA	2704		ARG			53.161	33.449	1.00	0.00	N
25	ATOM	2705		ARG			55.254	33.806	1.00	0.00	N
25	MOTA	2706	N	VAL			54.563	32.065	1.00	0.00	И
	ATOM	2707	CA	VAL			54.082	33.343	1.00	0.00	C
	MOTA	2708	С	VAL			53.555	33.256	1.00	0.00	C
	ATOM	2709	0	VAL			52.458	33.738	1.00	0.00	0
20	ATOM	2710	CB	VAL			55.187	34.423	1.00	0.00	С
30	ATOM	2711		VAL			54.705	35.705	1.00	0.00	C
	ATOM	2712		VAL .			55.549	34.709	1.00	0.00	C
	ATOM	2713	N	ASN			54.331	32.647	1.00	0.00	И
	ATOM	2714	CA	ASN .			53.901	32.525	1.00	0.00	C
25	ATOM	2715	С	ASN			52.631	31.696	1.00	0.00	С
35	MOTA	2716	0	ASN			51.746	32.042	1.00	0.00	0
	ATOM	2717	CB	ASN			55.033	31.953	1.00	0.00	C
	ATOM	2718	CG	ASN			56.094	32.990	1.00	0.00	C
	ATOM	2719		ASN			55.834	33.962	1.00	0.00	0
40	MOTA	2720		ASN .			57.290	32.803	1.00	0.00	N
40	ATOM	2721	N	TYR			52.522	30.613	1.00	0.00	N
	MOTA	2722	CA	TYR			51.317	29.797	1.00	0.00	C
	MOTA	2723	С	TYR			50.109	30.507	1.00	0.00	С
	ATOM	2724	0	TYR			48.980	30.318	1.00	0.00	0
45	MOTA	2725	CB	TYR			51.538	28.427	1.00	0.00	C
45	ATOM	2726	CG	TYR			52.056	27.413	1.00	0.00	C
	ATOM	2727	CD1				53.425	27.225	1.00	0.00	С
	ATOM	2728		TYR			51.172	26.701	1.00	0.00	C
	MOTA	2729		TYR			53.901	26.355	1.00	0.00	C
50	MOTA	2730	CE2				51.635	25.835	1.00	0.00	С
50	MOTA	2731	CZ	TYR .			52.999	25.666	1.00	0.00	C
	MOTA	2732	OH	TYR			53.452	24.820	1.00	0.00	0
	MOTA	2733	N	GLU			50.339	31.330	1.00	0.00	N
	ATOM	2734	CA	GLU			49.235	32.072	1.00	0.00	C
	MOTA	2735	С	GLU			48.654	33.037	1.00	0.00	C
55	ATOM	2736	0	GLU .			47.443	33.252	1.00	0.00	0
	MOTA	2737	CB	GLU	A 35		49.712	32.863	1.00	0.00	С
	ATOM	2738	CG	GLU			49.918	32.026	1.00	0.00	С
	ATOM	2739	CD	GLU			50.357	32.867	1.00	0.00	С
	ATOM	2740		GLU			50.416	34.108	1.00	0.00	0
60	MOTA	2741	OE2	GLU			50.640	32.293	1.00	0.00	0
	ATOM	2742	N	ARG	A 35	9 31.853	49.521	33.617	1.00	0.00	N

	ATOM	2743	CA	ARG A	359	30.816	49.068	34.545	1.00	0.00	С
	ATOM	2744	С	ARG A		29.770	48.240	33.816	1.00	0.00	С
	ATOM	2745	Ō	ARG A		29.298	47.222	34.331	1.00	0.00	0
	ATOM	2746	СВ	ARG A		30.145	50.263	35.222	1.00	0.00	С
5	ATOM	2747	CG	ARG A		31.033	50.954	36.227	1.00	0.00	С
J	ATOM	2748	CD	ARG A		30.421	52.258	36.699	1.00	0.00	Č
						31.337	52.979	37.576	1.00	0.00	N
	ATOM	2749	NE	ARG A			54.303	37.650	1.00	0.00	C
	MOTA	2750	CZ	ARG A		31.406					N
10	ATOM	2751		ARG A		30.608	55.050	36.895	1.00	0.00	
10	ATOM	2752		ARG A		32.278	54.880	38.471	1.00	0.00	N
	MOTA	2753	N	LEU A		29.412	48.679	32.613	1.00	0.00	N
	MOTA	2754	CA	LEU A	360	28.429	47.965	31.810	1.00	0.00	С
	MOTA	2755	С	LEU A	360	28.953	46.595	31.389	1.00	0.00	С
	ATOM	2756	0	LEU A	360	28.221	45.606	31.441	1.00	0.00	0
15	ATOM	2757	CB	LEU A	360	28.058	48.789	30.576	1.00	0.00	С
	ATOM	2758	CG	LEU A	360	27.224	50.045	30.849	1.00	0.00	C
	MOTA	2759	CD1	LEU A		27.168	50.914	29.600	1.00	0.00	C
	ATOM	2760		LEU A		25.818	49.640	31.287	1.00	0.00	С
	ATOM	2761	N	PHE A		30.217	46.537	30.975	1.00	0.00	N
20	ATOM	2762	CA	PHE A		30.830	45.276	30.559	1.00	0.00	С
20	ATOM	2763	C	PHE A		30.896	44.266	31.706	1.00	0.00	C
		2764	Ö	PHE A		30.557	43.094	31.530	1.00	0.00	ō
	ATOM			PHE A		32.252	45.513	30.035	1.00	0.00	Č
	ATOM	2765	CB					28.766	1.00	0.00	C
25	ATOM	2766	CG	PHE A		32.316	46.321				C
25	ATOM	2767		PHE A		33.510	46.923	28.376	1.00	0.00	C
	MOTA	2768		PHE A		31.191	46.482	27.963	1.00	0.00	C
	ATOM	2769		PHE A		33.584	47.674	27.206	1.00	0.00	С
	ATOM	2770		PHE A		31.253	47.232	26.787	1.00	0.00	С
20	ATOM	2771	CZ	PHE A		32.451	47.828	26.410	1.00	0.00	С
30	MOTA	2772	N	GLU A		31.346	44.712	32.876	1.00	0.00	N
	MOTA	2773	CA	GLU A	362	31.456	43.803	34.013	1.00	0.00	С
	MOTA	2774	С	GLU A	362	30.106	43.174	34.341	1.00	0.00	C
	ATOM	2775	0	GLU A	362	30.012	41.966	34.554	1.00	0.00	0
	MOTA	2776	CB	GLU A	362	31.991	44.526	35.252	1.00	0.00	C
35	ATOM	2777	CG	GLU A	362	32.334	43.567	36.393	1.00	0.00	C
	ATOM	2778	CD	GLU A		32.739	44.280	37.669	1.00	0.00	. C
	ATOM	2779	OE1	GLU A		33.486	45.274	37.581	1.00	0.00	0
	ATOM	2780		GLU A		32.321	43.836	38.761	1.00	0.00	0
	ATOM	2781	N	HIS A		29.062	43.994	34.375	1.00	0.00	N
40	ATOM	2782	CA	HIS A		27.731	43.489	34.679	1.00	0.00	С
10	ATOM	2783	C	HIS A		27.232	42.536	33.598	1.00	0.00	C
	ATOM	2784	0	HIS A		26.919	41.376	33.869	1.00	0.00	O
	ATOM	2785	СВ	HIS A		26.735	44.641	34.817	1.00	0.00	C
	ATOM	2786	CG	HIS A		25.354	44.197	35.187	1.00	0.00	c
45							43.680	36.428	1.00	0.00	N
43	ATOM	2787		HIS A		25.047			1.00	0.00	C
	ATOM	2788		HIS A		24.205	44.159	34.469			c
	ATOM	2789		HIS A		23.769	43.343	36.458	1.00	0.00	
	MOTA	2790		HIS A		23.236	43.624	35.283	1.00	0.00	N
F O	ATOM	2791	N	ILE A		27.159	43.037	32.371	1.00	0.00	N
50	ATOM	2792	CA	ILE A		26.677	42.245	31.250	1.00	0.00	C
	MOTA	2793	С	ILE A	364	27.396	40.910	31.084	1.00	0.00	С
	ATOM	2794	0	ILE A	364	26.751	39.871	30.935	1.00	0.00	0
	ATOM	2795	CB	ILE A	364	26.782	43.039	29.931	1.00	0.00	C
	ATOM	2796	CG1	ILE A	364	25.893	44.286	30.006	1.00	0.00	C
55	ATOM	2797	CG2	ILE A	364	26.360	42.157	28.753	1.00	0.00	C
	MOTA	2798		ILE A		26.022	45.206	28.813	1.00	0.00	C
	ATOM	2799	N	ASN A		28.724	40.929	31.119	1.00	0.00	N
	ATOM	2800	CA	ASN A		29.489	39.699	30.943	1.00	0.00	C
	ATOM	2801	C	ASN A		29.351	38.702	32.094	1.00	0.00	С
60	ATOM	2802	0	ASN A		29.660	37.523	31.929	1.00	0.00	Ō
	ATOM	2803	СВ	ASN A		30.968	40.020	30.714	1.00	0.00	C
	AION	2000	CD	11014 A	505	55.700	.0.020				ŭ

	ATOM	2804	CG	ASN A	365	3	1.189	40.887	29.488	1.00	0.00	С
	ATOM	2805		ASN A			0.295	41.042	28.658	1.00	0.00	0
	ATOM	2806		ASN A			2.385	41.452	29.366	1.00	0.00	N
	ATOM	2807	N	SER A			8.877	39.167	33.247	1.00	0.00	N
5	ATOM	2808	CA	SER A			8.710	38.292	34.407	1.00	0.00	С
Ū	ATOM	2809	C	SER A			7.261	37.837	34.581	1.00	0.00	С
	ATOM	2810	Ö	SER A			6.957	37.032	35.458	1.00	0.00	0
	ATOM	2811	СВ	SER A			9.187	39.001	35.682	1.00	0.00	c
	ATOM	2812	OG	SER A			8.375	40.123	35.976	1.00	0.00	O
10				GLN A			6.370	38.361	33.745	1.00	0.00	N
10	ATOM	2813	N	GLN A			4.956	37.997	33.786	1.00	0.00	C
	ATOM	2814	CA						32.642		0.00	c
	ATOM	2815	C	GLN A			4.661	37.028		1.00	0.00	0
	MOTA	2816	0	GLN A			4.324	37.443	31.532	1.00		
15	MOTA	2817	CB	GLN A			4.077	39.244	33.646	1.00	0.00	C
15	MOTA	2818	CG	GLN A			4.108	40.172	34.852	1.00	0.00	C
	MOTA	2819	CD	GLN A			3.519	39.525	36.092	1.00	0.00	C
	MOTA	2820		GLN A			2.338	39.171	36.121	1.00	0.00	0
	MOTA	2821	NE2	GLN A			4.342	39.362	37.122	1.00	0.00	N
••	MOTA	2822	N	ALA A			4.783	35.735	32.928	1.00	0.00	N
20	MOTA	2823	CA	ALA A	368		4.557	34.686	31.937	1.00	0.00	C
	MOTA	2824	С	ALA A			3.297	34.849	31.087	1.00	0.00	С
	MOTA	2825	0	ALA A	368	2	3.317	34.571	29.888	1.00	0.00	0
	MOTA	2826	CB	ALA A	368	2	4.538	33.323	32.629	1.00	0.00	C
	ATOM	2827	N	HIS A	369		2.204	35.296	31.699	1.00	0.00	N
25	MOTA	2828	CA	HIS A	369	2	0.946	35.458	30.973	1.00	0.00	С
	ATOM	2829	С	HIS A	369	2	1.064	36.370	29.748	1.00	0.00	С
	ATOM	2830	0	HIS A	369	2	0.220	36.328	28.852	1.00	0.00	0
	ATOM	2831	CB	HIS A	369	1	9.856	35.973	31.920	1.00	0.00	C
	MOTA	2832	CG	HIS A	369	2	0.040	37.396	32.344	1.00	0.00	С
30	MOTA	2833	ND1	HIS A	369	1	9.595	38.460	31.589	1.00	0.00	N
	ATOM	2834		HIS A		2	0.636	37.932	33.435	1.00	0.00	С
	ATOM	2835		HIS A		1	9.909	39.590	32.198	1.00	0.00	C
	ATOM	2836		HIS A		2	0.542	39.298	33.319	1.00	0.00	N
	ATOM	2837	N	PHE A	370	2	2.107	37.193	29.707	1.00	0.00	N
35	ATOM	2838	CA	PHE A		2	2.316	38.085	28.569	1.00	0.00	С
	ATOM	2839	С	PHE P			2.956	37.314	27.422	1.00	0.00	C
	ATOM	2840	0	PHE P			2.688	37.593	26.254	1.00	0.00	0
	ATOM	2841	СВ	PHE P			3.233	39.252	28.952	1.00	0.00	C
	ATOM	2842	CG		370.		2.535	40.372	29.675	1.00	0.00	C
40	ATOM	2843		PHE A			3.086	40.916	30.829	1.00	0.00	С
10	ATOM	2844		PHE P			1.345	40.903	29.188	1.00	0.00	С
	ATOM	2845		PHE P			2.463	41.975	31.490	1.00	0.00	С
	ATOM	2846		PHE P			0.713	41.964	29.842	1.00	0.00	С
	ATOM	2847	CZ	PHE P			1.277	42.499	30.995	1.00	0.00	С
45	ATOM	2848	N	ASN A			3.795	36.342	27.773	1.00	0.00	N
40	ATOM	2849	CA	ASN A			4.506	35.530	26.791	1.00	0.00	C
	ATOM	2850	C	ASN A			5.303	36.431	25.854	1.00	0.00	c
		2851	0	ASN A			5.325	36.231	24.637	1.00	0.00	Ö
	ATOM	2852	CB	ASN A			3.517	34.669	26.007	1.00	0.00	C
50	MOTA			ASN A			2.867	33.607	26.875	1.00	0.00	C
50	MOTA	2853	CG						27.405	1.00	0.00	o
	ATOM	2854		ASN A			3.544	32.725	27.403	1.00	0.00	N
	ATOM	2855		ASN A			1.552	33.692			0.00	N
	MOTA	2856	N	VAL A			5.961	37.421	26.451	1.00		C
	ATOM	2857	CA	VAL A			6.773	38.390	25.725	1.00	0.00	
55	ATOM	2858	С	VAL A			8.142	38.559	26.374	1.00	0.00	C
	ATOM	2859	0	VAL A			8.272	38.515	27.597	1.00	0.00	0
	ATOM	2860	CB	VAL A			6.092	39.785	25.702	1.00	0.00	C
	ATOM	2861		VAL A			7.064	40.845	25.161	1.00	0.00	C
60	ATOM	2862		VAL A			4.830	39.736	24.858	1.00	0.00	C
60	ATOM	2863	N	GLN A			9.157	38.748	25.539	1.00	0.00	N
	ATOM	2864	CA	GLN A	373	3	0.523	38.980	25.997	1.00	0.00	С

	ATOM	2865	С	GLN A	373	30.933	40.267	25.284	1.00	0.00	С
	ATOM	2866	0	GLN A		31.176	40.262	24.081	1.00	0.00	0
	MOTA	2867	СВ	GLN A	373	31.438	37.822	25.583	1.00	0.00	С
	MOTA	2868	CG	GLN A	373	32.919	38.014	25.925	1.00	0.00	С
5	ATOM	2869	CD	GLN A	373	33.155	38.334	27.398	1.00	0.00	С
	ATOM	2870	OE1	GLN A	373	32.519	37.757	28.281	1.00	0.00	0
	ATOM	2871	NE2	GLN A	373	34.082	39.248	27.665	1.00	0.00	N
	ATOM	2872	N	ALA A		30.985	41.369	26.025	1.00	0.00	N
	ATOM	2873	CA	ALA A		31.329	42.660	25.444	1.00	0.00	С
10	MOTA	2874	С	ALA A		32.665	43.201	25.939	1.00	0.00	С
	ATOM	2875	0	ALA A		33.048	42.987	27.087	1.00	0.00	0
	ATOM	2876	СВ	ALA A		30.221	43.668	25.747	1.00	0.00	С
	ATOM	2877	N	GLN A		33.369	43.917	25.068	1.00	0.00	N
	ATOM	2878	CA	GLN A		34.653	44.500	25.437	1.00	0.00	С
15	ATOM	2879	С	GLN A		35.084	45.552	24.429	1.00	0.00	С
	ATOM	2880	Õ	GLN A		34.526	45.641	23.336	1.00	0.00	0
	ATOM	2881	СВ	GLN A		35.739	43.421	25.506	1.00	0.00	С
	MOTA	2882	CG	GLN A		35.930	42.638	24.209	1.00	0.00	С
	ATOM	2883	CD	GLN A		35.048	41.409	24.145	1.00	0.00	С
20	ATOM	2884		GLN A		35.186	40.494	24.962	1.00	0.00	0
20	ATOM	2885		GLN A		34.131	41.379	23.180	1.00	0.00	N
	ATOM	2886	N	PHE A		36.070	46.359	24.810	1.00	0.00	. N
	ATOM	2887	CA	PHE A		36.600	47.362	23.900	1.00	0.00	C
	ATOM	2888	C	PHE A		37.395	46.571	22.874	1.00	0.00	C
25		2889	0	PHE A		38.023	45.567	23.212	1.00	0.00	Ō
23	ATOM ATOM	2890	СВ	PHE A		37.540	48.327	24.630	1.00	0.00	Ċ
		2891		PHE A		36.846	49.231	25.606	1.00	0.00	c
	ATOM		CG CD1	PHE A		37.245	49.273	26.936	1.00	0.00	Č
	MOTA	2892 2893		PHE A		35.797	50.049	25.194	1.00	0.00	Č
30	MOTA					36.611	50.114	27.846	1.00	0.00	c
30	MOTA	2894		PHE A			50.896	26.100	1.00	0.00	Ċ
	ATOM	2895		PHE A		35.156 35.567	50.926	27.429	1.00	0.00	c
	ATOM	2896	CZ	PHE A				21.622	1.00	0.00	N
	ATOM	2897	N	GLY A		37.366	47.011 46.309	20.598	1.00	0.00	C
35	ATOM	2898	CA	GLY A		38.115				0.00	c
33	ATOM	2899	С	GLY A		38.540	47.242	19.486 19.510	1.00	0.00	0
	ATOM	2900	0	GLY A		38.222	48.431		1.00	0.00	И
	ATOM	2901	N	THR A		39.277	46.706	18.521		0.00	C
	ATOM	2902	CA	THR A		39.716	47.493	17.380	1.00	0.00	C
40	ATOM	2903	С	THR A		38.965	46.972	16.164	1.00		0
40	MOTA	2904	0	THR A		38.287	45.940	16.235	1.00	0.00	C
	MOTA	2905	CB	THR A		41.229	47.347	17.123 16.731	1.00	0.00	0
	ATOM	2906		THR A		41.521	46.002		1.00	0.00	C
	ATOM	2907		THR A		42.017	47.693	18.379	1.00		N
4 =	MOTA	2908	N	LEU A		39.082	47.684	15.052	1.00	0.00	
45	ATOM	2909	CA	LEU A		38.408	47.287	13.825	1.00	0.00	C
	MOTA	2910	С	LEU A		38.898	45.923	13.337	1.00	0.00	С
	ATOM	2911	0	LEU A		38.102	45.072	12.931	1.00	0.00	0
	MOTA	2912	CB	LEU A		38.645	48.338	12.739	1.00	0.00	С
=0	ATOM	2913	CG	LEU A		37.862	48.125	11.447	1.00	0.00	C
50	MOTA	2914		LEU A		36.364	48.180	11.746	1.00	0.00	С
	MOTA	2915	CD2	LEU A		38.261	49.198	10.432	1.00	0.00	C
	MOTA	2916	N	GLN A		40.211	45.714	13.383	1.00	0.00	N
	MOTA	2917	CA	GLN A	380	40.783	44.449	12.936	1.00	0.00	С
	MOTA	2918	С	GLN A	380	40.287	43.287	13.794	1.00	0.00	C
55	MOTA	2919	0	GLN A		40.051	42.189	13.287	1.00	0.00	0
	MOTA	2920	CB	GLN A		42.311	44.512	12.982	1.00	0.00	C
	ATOM	2921	CG	GLN A	380	42.989	43.294	12.377	1.00	0.00	С
	ATOM	2922	CD	GLN A	380	42.587	43.071	10.931	1.00	0.00	C
	MOTA	2923	OE1	GLN A		42.667	43.983	10.104	1.00	0.00	0
60	MOTA	2924		GLN A		42.156	41.851	10.616	1.00	0.00	N
	ATOM	2925	N	GLU A		40.133	43.527	15.094	1.00	0.00	N

	ATOM	2926	CA	GLU	Α	381	39.659)	42.481	15.990	1.00	0.00	С
	ATOM	2927	С	GLU	Α	381	38.258	3	42.049	15.576	1.00	0.00	С
	ATOM	2928	0	GLU	Α	381	37.941		40.862	15.576	1.00	0.00	0
	ATOM	2929	CB	GLU	Α	381	39.653	}	42.969	17.444	1.00	0.00	С
5	ATOM	2930	CG	GLU	Α	381	41.045	5	43.317	17.967	1.00	0.00	С
-	MOTA	2931	CD	GLU			41.068		43.599	19.460	1.00	0.00	С
	ATOM	2932		GLU			40.251		44.411	19.931	1.00	0.00	0
	ATOM	2933		GLU			41.919		43.012	20.161	1.00	0.00	0
		2934		TYR			37.420		43.012	15.225	1.00	0.00	N
10	ATOM		N								1.00	0.00	C
10	MOTA	2935	CA	TYR			36.065		42.716	14.794			
	MOTA	2936	C	TYR			36.081		41.821	13.554	1.00	0.00	C
	ATOM	2937	0	TYR			35.454		40.762	13.530	1.00	0.00	0
	ATOM	2938	CB	TYR			35.300		43.999	14.464	1.00	0.00	С
4 -	ATOM	2939	CG	TYR			33.991		43.723	13.760	1.00	0.00	С
15	ATOM	2940	CD1	TYR	A	382	32.937	,	43.095	14.429	1.00	0.00	С
	ATOM	2941	CD2	TYR	Α	382	33.830)	44.020	12.405	1.00	0.00	С
	ATOM	2942	CE1	TYR	Α	382	31.754	1	42.762	13.764	1.00	0.00	С
	ATOM	2943	CE2				32.654		43.691	11.731	1.00	0.00	С
	ATOM	2944	CZ	TYR			31.622		43.058	12.418	1.00	0.00	С
20	ATOM	2945	OH	TYR			30.469		42.701	11.750	1.00	0.00	O
	ATOM	2946	N	PHE			36.791		42.257	12.519	1.00	0.00	N
		2947		PHE			36.859		41.488	11.282	1.00	0.00	c
	ATOM		CA				37.454			11.202		0.00	c
	ATOM	2948	С	PHE					40.088		1.00		
25	MOTA	2949	0	PHE			36.976		39.122	10.870	1.00	0.00	0
25	ATOM	2950	CB	PHE			37.648		42.269	10.220	1.00	0.00	С
	MOTA	2951	CG	PHE			36.872		43.407	9.599	1.00	0.00	С
	MOTA	2952	CD1	PHE	A	383	37.365		44.705	9.641	1.00	0.00	С
	ATOM	2953	CD2	PHE	Α	383	35.655	,	43.173	8.962	1.00	0.00	С
	ATOM	2954	CE1	PHE	Α	383	36.662		45.762	9.057	1.00	0.00	С
30	ATOM	2955	CE2	PHE	Α	383	34.938	}	44.218	8.372	1.00	0.00	С
	ATOM	2956	CZ	PHE			35.444		45.518	8.419	1.00	0.00	С
	ATOM	2957	N	ASP			38.490		39.968	12.297	1.00	0.00	N
	MOTA	2958	CA	ASP			39.094		38.655	12.535	1.00	0.00	С
	ATOM	2959	C	ASP			38.050		37.702	13.109	1.00	0.00	С
35	ATOM	2960	0	ASP			37.958		36.545	12.699	1.00	0.00	0
00	ATOM	2961	СВ	ASP			40.266		38.753	13.514	1.00	0.00	C
		2962		ASP			41.499		39.382	12.897	1.00	0.00	C
	ATOM		CG							11.652		0.00	0
	ATOM	2963		ASP			41.577		39.469		1.00		0
40	MOTA	2964		ASP			42.400		39.775	13.667	1.00	0.00	
40	ATOM	2965	N	ALA			37.261		38.198	14.057	1.00	0.00	И
	ATOM	2966	CA	ALA			36.223		37.391	14.691	1.00	0.00	С
	ATOM	2967	С	ALA			35.143		37.007	13.684	1.00	0.00	С
	MOTA	2968	0	ALA	Α	385	34.686	5	35.863	13.652	1.00	0.00	0
	ATOM	2969	CB	ALA	Α	385	35.605	•	38.155	15.862	1.00	0.00	С
45	MOTA	2970	N	VAL	Α	386	34.731		37.965	12.862	1.00	0.00	N
	ATOM	2971	CA	VAL	Α	386	33.715	,	37.695	11.851	1.00	0.00	С
	MOTA	2972	С	VAL			34.149)	36.546	10.939	1.00	0.00	С
	ATOM	2973		VAL			33.385		35.608	10.689	1.00	0.00	0
	ATOM	2974	СВ	VAL			33.447		38.938	10.982	1.00	0.00	С
50	ATOM	2975		VAL			32.555		38.564	9.794	1.00	0.00	Ċ
50	ATOM	2976		VAL			32.782		40.018	11.823	1.00	0.00	Ċ
									36.612	10.447	1.00	0.00	N
	ATOM	2977	N	HIS			35.379						
	ATOM	2978	CA	HIS			35.867		35.570	9.562	1.00	0.00	C
E E	MOTA	2979	С	HIS			36.092		34.244	10.280	1.00	0.00	С
55	MOTA	2980	0	HIS			36.062		33.181	9.657	1.00	0.00	0
	MOTA	2981	CB	HIS			37.125		36.055	8.843	1.00	0.00	С
	ATOM	2982	CG	HIS	Α	387	36.852		37.170	7.882	1.00	0.00	С
	ATOM	2983	ND1	HIS	A	387	36.009)	37.024	6.800	1.00	0.00	N
	MOTA	2984		HIS			37.263		38.461	7.867	1.00	0.00	С
60	MOTA	2985		HIS			35.912		38.177	6.162	1.00	0.00	С
	ATOM	2986		HIS			36.663		39.065	6.790	1.00	0.00	N

		ATOM	2987	N	GLN	А	388	36.304	34.303	11.590	1.00	0.00	N
		ATOM	2988	CA	GLN			36.474	33.083	12.367	1.00	0.00	С
		ATOM	2989	C	GLN			35.105	32.397	12.401	1.00	0.00	Ċ
					GLN			35.007	31.173	12.317	1.00	0.00	ō
	5	ATOM	2990	0						13.789	1.00	0.00	c
	3	MOTA	2991	CB	GLN			36.943	33.411				~
		MOTA	2992	CG	GLN			38.442	33.684	13.910	1.00	0.00	C
		ATOM	2993	CD	GLN			38.816	34.342	15.235	1.00	0.00	С
		MOTA	2994	OE1	GLN	Α	388	38.248	34.024	16.281	1.00	0.00	0
		ATOM	2995	NE2	GLN	Α	388	39.783	35.256	15.194	1.00	0.00	N
	10	ATOM	2996	N	ALA	Α	389	34.049	33.199	12.508	1.00	0.00	N
		ATOM	2997	CA	ALA	Α	389	32.686	32.674	12.536	1.00	0.00	С
		ATOM	2998	С	ALA	Α	389	32.342	32.106	11.163	1.00	0.00	С
		ATOM	2999	0	ALA			31.688	31.064	11.050	1.00	0.00	0
		MOTA	3000	CB	ALA			31.705	33.780	12.911	1.00	0.00	С
	15	ATOM	3001	N	GLU			32.792	32.803	10.125	1.00	0.00	N
	10	ATOM	3002	CA	GLU			32.565	32.398	8.743	1.00	0.00	С
			3002		GLU			33.197	31.033	8.487	1.00	0.00	c
		ATOM		С						7.910	1.00	0.00	0
		ATOM	3004	0	GLU			32.569	30.144				
	20	ATOM	3005	CB	GLU			33.168	33.445	7.798	1.00	0.00	C
	20	ATOM	3006	CG	GLU			33.255	33.036	6.331	1.00	0.00	С
		ATOM	3007	CD	GLU			33.859	34.133	5.464	1.00	0.00	С
		ATOM	3008		GLU			34.757	34.847	5.956	1.00	0.00	0
		ATOM	3009	OE2	GLU			33.447	34.275	4.292	1.00	0.00	0
, F		ATOM	3010	N	ARG	Α	391	34.443	30.876	8.921	1.00	0.00	N
anar Ar≅i	25	MOTA	3011	CA	ARG	Α	391	35.163	29.622	8.746	1.00	0.00	С
1,11		ATOM	3012	С	ARG	Α	391	34.519	28.504	9.560	1.00	0.00	С
Ü		ATOM	3013	0	ARG			34.611	27.330	9.200	1.00	0.00	0
N		ATOM	3014	CB	ARG			36.628	29.790	9.160	1.00	0.00	С
a 1667 848 B		ATOM	3015	CG	ARG			37.475	30.565	8.159	1.00	0.00	С
19j	30	ATOM	3016	CD	ARG			38.908	30.719	8.652	1.00	0.00	С
1,11	50		3017	NE	ARG			38.993	31.636	9.785	1.00	0.00	N
B}		ATOM						40.086	31.827	10.515	1.00	0.00	С
		ATOM	3018	CZ	ARG				31.162	10.238	1.00	0.00	N
		ATOM	3019		ARG			41.201					N
Ų V	25	ATOM	3020		ARG			40.066	32.688	11.524	1.00	0.00	
M	35	ATOM	3021	N	ALA			33.870	28.871	10.660	1.00	0.00	N
5 TECT F 1		MOTA	3022	CA	ALA			33.204	27.891	11.510	1.00	0.00	С
n paraga n paraga		ATOM	3023	С	ALA			31.932	27.419	10.814	1.00	0.00	С
		MOTA	3024	0	ALA	A	392	31.255	26.500	11.281	1.00	0.00	0
<u>. 1</u>		ATOM	3025	CB	ALA			32.870	28.508	12.863	1.00	0.00	С
ā.	40	ATOM	3026	N	GLY	А	393	31.612	28.064	9.695	1.00	0.00	N
		ATOM	3027	CA	GLY	Α	393	30.432	27.701	8.935	1.00	0.00	С
		ATOM	3028	С	GLY	Α	393	29.122	28.243	9.473	1.00	0.00	С
		ATOM	3029	0	GLY	Α	393	28.063	27.676	9.206	1.00	0.00	0
		MOTA	3030	N	GLN			29.170	29.338	10.225	1.00	0.00	N
	45	ATOM	3031	CA	GLN			27.937	29.897	10.760	1.00	0.00	С
		ATOM	3032	C	GLN			27.377	31.012	9.883	1.00	0.00	С
		ATOM	3033	Ö	GLN			26.321	31.566	10.180	1.00	0.00	0
		ATOM	3034	СВ	GLN			28.140	30.410	12.191	1.00	0.00	Ċ
								28.877		12.312	1.00	0.00	С
	50	ATOM	3035	CG	GLN				31.728	13.707	1.00	0.00	C
	50	ATOM	3036	CD	GLN			28.757	32.324			0.00	0
		ATOM	3037		GLN			29.229	31.746	14.689	1.00		
		MOTA	3038		GLN			28.114	33.483	13.799	1.00	0.00	N
		MOTA	3039	N	ALA			28.072	31.333	8.795	1.00	0.00	N
		ATOM	3040	CA	ALA	Α	395	27.606	32.383	7.898	1.00	0.00	С
	55	ATOM	3041	С	ALA	Α	395	28.251	32.344	6.517	1.00	0.00	С
		ATOM	3042	0	ALA	Α	395	29.421	31.995	6.369	1.00	0.00	0
		ATOM	3043	CB	ALA			27.840	33.750	8.538	1.00	0.00	С
		ATOM	3044	N	GLU			27.463	32.700	5.509	1.00	0.00	N
		ATOM	3045	CA	GLU			27.921	32.752	4.126	1.00	0.00	С
	60	ATOM	3046	C	GLU			27.614	34.180	3.696	1.00	0.00	С
	00	ATOM	3047	Ö	GLU			26.528	34.688	3.980	1.00	0.00	ō
		V I OIJ	JU4/	J	OHO	~	550	20.520	3000	3.500			_

	ATOM	3048	СВ	GLU A	396	27.135	31.766	3.256	1.00	0.00	С
	MOTA	3049	CG	GLU A	396	26.450	30.641	4.026	1.00	0.00	C
	MOTA	3050	CD	GLU A	396	25.095	31.053	4.591	1.00	0.00	С
	MOTA	3051	OE1	GLU A	396	25.037	32.008	5.400	1.00	0.00	0
5	MOTA	3052	OE2	GLU A	396	24.083	30.417	4.221	1.00	0.00	0
	MOTA	3053	N	PHE A	397	28.553	34.835	3.025	1.00	0.00	N
	ATOM	3054	CA	PHE A	397	28.321	36.215	2.620	1.00	0.00	C
	ATOM	3055	С	PHE A		27.997	36.401	1.147	1.00	0.00	С
	ATOM	3056	0	PHE A		28.569	35.744	0.281	1.00	0.00	0
10	ATOM	3057	СВ	PHE A		29.520	37.087	2.999	1.00	0.00	С
	ATOM	3058	CG	PHE A		29.773	37.145	4.477	1.00	0.00	С
	ATOM	3059		PHE A		30.811	36.417	5.047	1.00	0.00	C
		3060		PHE A		28.952	37.905	5.303	1.00	0.00	C
	MOTA			PHE A		31.030	36.444	6.429	1.00	0.00	C
15	MOTA	3061						6.682	1.00	0.00	C
15	MOTA	3062		PHE A		29.160	37.940		1.00	0.00	c
	MOTA	3063	CZ	PHE A		30.201	37.206	7.245			
	ATOM	3064	N	PRO A		27.070	37.322	0.849	1.00	0.00	N
	MOTA	3065	CA	PRO A		26.654	37.611	-0.522	1.00	0.00	C
00	MOTA	3066	С	PRO A		27.725	38.385	-1.291	1.00	0.00	C
20	MOTA	3067	0	PRO A		28.587	39.037	-0.692	1.00	0.00	0
	MOTA	3068	CB	PRO A	398	25.386	38.428	-0.318	1.00	0.00	С
	MOTA	3069	CG	PRO A	398	25.728	39.233	0.898	1.00	0.00	С
	MOTA	3070	CD	PRO A		26.358	38.190	1.806	1.00	0.00	С
	ATOM	3071	N	THR A	399	27.666	38.294	-2.616	1.00	0.00	N
25	ATOM	3072	CA	THR A	399	28.598	38.994	-3.490	1.00	0.00	С
	ATOM	3073	С	THR A	399	27.876	40.240	-3.990	1.00	0.00	С
	ATOM	3074	0	THR A		26.647	40.260	-4.077	1.00	0.00	0
	ATOM	3075	CB	THR A		29.000	38.127	-4.694	1.00	0.00	C
	ATOM	3076	OG1			27.821	37.692	-5.387	1.00	0.00	0
30	ATOM	3077	CG2			29.798	36.923	-4.231	1.00	0.00	С
00	ATOM	3078	N	LEU A		28.632	41.280	-4.318	1.00	0.00	N
	ATOM	3079	CA	LEU A		28.017	42.519	-4.779	1.00	0.00	C
	ATOM	3080	C	LEU A		28.941	43.319	-5.680	1.00	0.00	С
	ATOM	3081	Ö	LEU A		30.160	43.292	-5.511	1.00	0.00	0
35	ATOM	3082	СВ	LEU A		27.615	43.364	-3.560	1.00	0.00	C
55	ATOM	3083	CG	LEU A		26.959	44.742	-3.738	1.00	0.00	c
	ATOM	3084		LEU A		26.173	45.078	-2.487	1.00	0.00	c
		3085		LEU A		28.008	45.816	-4.013	1.00	0.00	c
	MOTA					28.354	44.003	-6.659	1.00	0.00	N
40	MOTA	3086	N C7	SER A			44.862	-7.562	1.00	0.00	C
40	ATOM	3087	CA	SER A		29.115		-7.742	1.00	0.00	c
	MOTA	3088	С	SER A		28.278	46.126		1.00	0.00	0
	MOTA	3089	0	SER A		27.057	46.092	-7.574	1.00	0.00	C
	MOTA	3090	CB	SER A		29.352	44.191	-8.922			0
4 ==	MOTA	3091	OG	SER A		28.184	44.208	-9.721	1.00	0.00	
45	MOTA	3092	N	GLY A		28.937	47.234	-8.073	1.00	0.00	N
	MOTA	3093	CA	GLY A		28.238	48.495	-8.259	1.00	0.00	C
	MOTA	3094	С	GLY A		28.819	49.577	-7.364	1.00	0.00	C
	MOTA	3095	0	GLY A	402	29.842	49.360	-6.715	1.00	0.00	0
	MOTA	3096	N	ASP A	403	28.178	50.741	-7.325	1.00	0.00	N
50	MOTA	3097	CA	ASP A	403	28.661	51.833	-6.489	1.00	0.00	С
	ATOM	3098	С	ASP A	403	27.554	52.332	-5.568	1.00	0.00	С
	ATOM	3099	0	ASP A	403	26.442	51.795	-5.567	1.00	0.00	0
	MOTA	3100	СВ	ASP A		29.179	52.983	-7.364	1.00	0.00	С
	ATOM	3101	CG	ASP A		28.065	53.735	-8.070	1.00	0.00	С
55	ATOM	3102		ASP A		26.966	53.170	-8.232	1.00	0.00	0
-	ATOM	3103		ASP A		28.294	54.893	-8.475	1.00	0.00	0
	ATOM	3103	N	PHE A		27.862	53.355	-4.780	1.00	0.00	N
	ATOM	3104	CA	PHE A		26.886	53.913	-3.863	1.00	0.00	C
	ATOM	3105	C	PHE A		26.735	55.422	-4.002	1.00	0.00	c
60		3100	0	PHE A		26.733	56.178	-3.046	1.00	0.00	0
UU	ATOM ATOM	3107	СВ	PHE A		27.234	53.526	-2.421	1.00	0.00	c
	A I OF	3100	CD	FILE A	707	21.234	33.320	761	1.00	0.00	J

	ATOM	3109	CG	PHE A	404	27.207	52.036	-2.182	1.00	0.00	С
	ATOM	3110		PHE A		28.380	51.288	-2.212	1.00	0.00	С
	ATOM	3111		PHE A		25.997	51.378	-1.976	1.00	0.00	С
	ATOM	3112		PHE A		28.350	49.899	-2.041	1.00	0.00	С
5	ATOM	3113		PHE A		25.953	49.990	-1.804	1.00	0.00	С
•	ATOM	3114	CZ	PHE A		27.130	49.249	-1.836	1.00	0.00	С
	ATOM	3115	N	PHE A		26.421	55.834	-5.228	1.00	0.00	N
	ATOM	3116	CA	PHE A		26.172	57.229	-5.575	1.00	0.00	C
	ATOM	3117	C	PHE A		24.818	57.168	-6.290	1.00	0.00	С
10	ATOM	3118	Ö	PHE A		24.541	56.185	-6.975	1.00	0.00	0
10	ATOM	3119	СВ	PHE A		27.236	57.749	-6.549	1.00	0.00	С
	ATOM	3120	CG	PHE A		28.613	57.857	-5.955	1.00	0.00	С
	ATOM	3121		PHE A		29.700	57.254	-6.584	1.00	0.00	C
	ATOM	3122		PHE A		28.834	58.583	-4.786	1.00	0.00	C
15		3123		PHE A		30.988	57.373	-6.055	1.00	0.00	Č
13	ATOM	3123		PHE A		30.121	58.707	-4.251	1.00	0.00	Č
	ATOM					31.196	58.101	-4.888	1.00	0.00	Č
	ATOM	3125	CZ	PHE A		23.973	58.189	-6.153	1.00	0.00	N
	ATOM	3126	N	THR A			59.380	-5.363	1.00	0.00	c
20	ATOM	3127	CA	THR A		24.252	59.282	-3.982	1.00	0.00	č
20	ATOM	3128	С	THR A		23.610	58.917	-3.834	1.00	0.00	ō
	ATOM	3129	0			22.440	60.643	-6.110	1.00	0.00	Č
	ATOM	3130	CB	THR A		23.746	60.928	-7.200	1.00	0.00	o
	ATOM	3131	OG1			24.634		-5.180	1.00	0.00	c
25	MOTA	3132		THR A		23.673	61.847			0.00	N
25	ATOM	3133	N	TYR A		24.405	59.608	-2.971	1.00	0.00	C
	ATOM	3134	CA	TYR A		23.987	59.564	-1.577	1.00		c
	MOTA	3135	C	TYR A		22.894	60.561	-1.209	1.00	0.00	0
	ATOM	3136	0	TYR A		22.834	61.669	-1.742	1.00	0.00	C
20	MOTA	3137	CB	TYR A		25.209	59.811	-0.696	1.00	0.00	C
30	MOTA	3138	CG	TYR A		24.941	59.975	0.786	1.00	0.00	c
	MOTA	3139		TYR A		24.453	58.918	1.554	1.00	0.00	c
	MOTA	3140		TYR A		25.277	61.163	1.437	1.00	0.00	
	MOTA	3141		TYR A		24.321	59.037	2.941	1.00	0.00	C C
0.5	ATOM	3142		TYR A		25.151	61.293	2.813	1.00	0.00	
35	MOTA	3143	CZ	TYR A		24.681	60.229	3.562	1.00	0.00	c
	ATOM	3144	OH	TYR A		24.630	60.348	4.932	1.00	0.00	0
	MOTA	3145	N	ALA A		22.032	60.137	-0.291	1.00	0.00	N
	MOTA	3146	CA	ALA A		20.950	60.958	0.239	1.00	0.00	C
40	MOTA	3147	С	ALA A		20.844	60.512	1.689	1.00	0.00	C
40	MOTA	3148	0	ALA A		20.689	59.319	1.956	1.00	0.00	0
	MOTA	3149	CB	ALA A		19.640	60.684	-0.502	1.00	0.00	C
	MOTA	3150	N	ASP A		20.959	61.449	2.626	1.00	0.00	N
	MOTA	3151	CA	ASP A		20.881	61.086	4.035	1.00	0.00	С
4 5-	MOTA	3152	С	ASP A		19.456	61.137	4.575	1.00	0.00	С
45	ATOM	3153	0	ASP A		19.160	60.548	5.613	1.00	0.00	0
	ATOM	3154	CB	ASP A		21.834	61.959	4.877	1.00	0.00	C
	MOTA	3155	CG	ASP A		21.513	63.444	4.808	1.00	0.00	С
	MOTA	3156		ASP A		20.928	63.893	3.802	1.00	0.00	0
	MOTA	3157	OD2	ASP A		21.875	64.169	5.765	1.00	0.00	0
50	ATOM	3158	N	ARG A	410	18.574	61.824	3.853	1.00	0.00	N
	MOTA	3159	CA	ARG A	410	17.167	61.928	4.238	1.00	0.00	С
	MOTA	3160	С	ARG A	410	16.320	62.561	3.137	1.00	0.00	C
	MOTA	3161	0	ARG A	410	16.824	63.319	2.306	1.00	0.00	0
	ATOM	3162	CB	ARG A	410	17.008	62.732	5.533	1.00	0.00	С
55	ATOM	3163	CG	ARG A	410	17.450	64.189	5.473	1.00	0.00	С
	ATOM	3164	CD	ARG A	410	17.319	64.801	6.863	1.00	0.00	С
	ATOM	3165	NE	ARG A		17.959	66.107	7.001	1.00	0.00	N
	ATOM	3166	CZ	ARG A	410	17.440	67.255	6.578	1.00	0.00	С
	ATOM	3167	NH1	ARG A		16.255	67.277	5.977	1.00	0.00	N
60	MOTA	3168		ARG A		18.108	68.386	6.768	1.00	0.00	N
	MOTA	3169	N	SER A	411	15.031	62.230	3.146	1.00	0.00	N

		ATOM	3170	CA	SER	Α	411	14.062	62.737	2.179	1.00	0.00	С
		ATOM	3171	С	SER			14.587	62.849	0.751	1.00	0.00	С
		ATOM	3172	ō	SER			15.017	61.855	0.160	1.00	0.00	0
		ATOM	3173	СВ	SER			13.512	64.094	2.645	1.00	0.00	С
	5	ATOM	3174	OG	SER			14.555	65.012	2.916	1.00	0.00	0
	J		3175	N	ASP			14.534	64.055	0.195	1.00	0.00	N
		ATOM							64.292	-1.166	1.00	0.00	C
		ATOM	3176	CA	ASP			15.000					С
		MOTA	3177	С	ASP			16.345	65.016	-1.175	1.00	0.00	
	10	ATOM	3178	0	ASP			16.756	65.551	-2.200	1.00	0.00	0
	10	ATOM	3179	CB	ASP			13.966	65.122	-1.941	1.00	0.00	С
		ATOM	3180	CG	ASP			13.832	66.548	-1.410	1.00	0.00	С
		MOTA	3181		ASP			14.316	66.826	-0.291	1.00	0.00	0
		MOTA	3182	OD2	ASP	Α	412	13.228	67.389	-2.114	1.00	0.00	0
		ATOM	3183	N	ASN	Α	413	17.022	65.027	-0.030	1.00	0.00	N
	15	ATOM	3184	CA	ASN	Α	413	18.316	65.699	0.088	1.00	0.00	С
		ATOM	3185	С	ASN	Α	413	19.452	64.858	-0.492	1.00	0.00	С
		ATOM	3186	0	ASN			20.149	64.160	0.248	1.00	0.00	0
		ATOM	3187	СВ	ASN			18.637	66.012	1.553	1.00	0.00	С
		ATOM	3188	CG	ASN			17.727	67.076	2.156	1.00	0.00	С
	20	ATOM	3189		ASN			17.963	67.536	3.272	1.00	0.00	0
	20	ATOM	3190		ASN			16.687	67.464	1.429	1.00	0.00	N
									64.928	-1.809	1.00	0.00	N
		ATOM	3191	N	TYR			19.631		-2.483	1.00	0.00	C
		ATOM	3192	CA	TYR			20.696	64.187				C
	25	ATOM	3193	С	TYR			21.940	65.067	-2.556	1.00	0.00	
	25	MOTA	3194	0	TYR			21.869	66.235	-2.942	1.00	0.00	0
		MOTA	3195	CB	TYR			20.264	63.763	-3.891	1.00	0.00	С
		ATOM	3196	CG	TYR			19.261	62.630	-3.900	1.00	0.00	С
		MOTA	3197	CD1				17.909	62.859	-3.628	1.00	0.00	С
		MOTA	3198	CD2	TYR	Α	414	19.668	61.319	-4.152	1.00	0.00	С
	30	ATOM	3199	CE1	TYR	Α	414	16.989	61.806	-3.609	1.00	0.00	С
		ATOM	3200	CE2	TYR	Α	414	18.760	60.262	-4.132	1.00	0.00	С
		ATOM	3201	CZ	TYR	Α	414	17.423	60.511	-3.861	1.00	0.00	С
		ATOM	3202	ОН	TYR	Α	414	16.528	59.462	-3.852	1.00	0.00	0
		ATOM	3203	N	TRP			23.078	64.488	-2.190	1.00	0.00	N
	35	ATOM	3204	CA	TRP			24.343	65.211	-2.153	1.00	0.00	С
		ATOM	3205	C	TRP			25.086	65.255	-3.482	1.00	0.00	С
		ATOM	3206	Ö	TRP			26.225	64.807	-3.568	1.00	0.00	0
		ATOM	3207	СВ	TRP			25.251	64.586	-1.092	1.00	0.00	C
		ATOM	3207	CG	TRP			24.680	64.608	0.294	1.00	0.00	Ċ
:	40		3200		TRP			23.384	64.351	0.658	1.00	0.00	C
	40	MOTA			TRP			25.394	64.860	1.507	1.00	0.00	C
		MOTA	3210		TRP				64.428	2.023	1.00	0.00	N
		ATOM	3211					23.251					C
		ATOM	3212		TRP			24.470	64.738	2.570	1.00	0.00	C
	4 =	ATOM	3213		TRP			26.729	65.175	1.802	1.00	0.00	
	45	ATOM	3214		TRP			24.837	64.920	3.907	1.00	0.00	C
		MOTA	3215		TRP			27.095	65.355	3.128	1.00	0.00	С
		MOTA	3216	CH2	TRP			26.150	65.226	4.167	1.00	0.00	С
		MOTA	3217	N	SER	Α	416	24.452	65.796	-4.516	1.00	0.00	N
		MOTA	3218	CA	SER	Α	416	25.100	65.881	-5.814	1.00	0.00	С
	50	MOTA	3219	С	SER	Α	416	25.676	67.274	-6.048	1.00	0.00	С
		ATOM	3220	0	SER	Α	416	26.310	67.528	-7.065	1.00	0.00	0
		ATOM	3221	СВ	SER	Α	416	24.115	65.510	-6.931	1.00	0.00	С
		ATOM	3222	OG	SER	Α	416	22.842	66.097	-6.719	1.00	0.00	0
		ATOM	3223	N	GLY			25.465	68.171	-5.089	1.00	0.00	N
	55	ATOM	3224	CA	GLY			25.979	69.524	-5.223	1.00	0.00	С
		ATOM	3225	C	GLY			27.495	69.591	-5.153	1.00	0.00	Ç
			3225		GLY			28.126	70.313	-5.928	1.00	0.00	Ö
		MOTA		0				28.126	68.821	-3.920	1.00	0.00	N
		ATOM	3227	N	TYR							0.00	C
	60	ATOM	3228	CA	TYR			29.534	68.815	-4.057	1.00		С
	60	ATOM	3229	С	TYR			30.308	68.208	-5.234	1.00	0.00	0
		ATOM	3230	0	TYR	Α	418	31.539	68.209	-5.250	1.00	0.00	U

	ATOM	3231	СВ	TYR A	418	29.894	68.109	-2.743	1.00	0.00	С
	ATOM	3232	CG	TYR A		30.042	66.601	-2.814	1.00	0.00	С
	ATOM	3233	CD1	TYR A	418	31.295	66.014	-2.998	1.00	0.00	С
	MOTA	3234	CD2	TYR A	418	28.941	65.760	-2.636	1.00	0.00	С
5	MOTA	3235	CE1	TYR A	418	31.452	64.622	-2.993	1.00	0.00	С
	ATOM	3236	CE2			29.087	64.363	-2.631	1.00	0.00	C
	ATOM	3237	CZ	TYR A		30.346	63.808	-2.807	1.00	0.00	С
	ATOM	3238	ОН	TYR A		30.509	62.440	-2.778	1.00	0.00	0
	ATOM	3239	N	TYR A		29.588	67.682	-6.218	1.00	0.00	N
10	ATOM	3240	CA	TYR A		30.247	67.143	-7.400	1.00	0.00	С
10	ATOM	3241	C	TYR A		30.767	68.352	-8.190	1.00	0.00	С
	ATOM	3242	0	TYR A		31.607	68.207	-9.082	1.00	0.00	0
	ATOM	3243	СВ	TYR A		29.255	66.377	-8.286	1.00	0.00	С
	ATOM	3243	CG	TYR A		28.627	65.145	-7.665	1.00	0.00	C
15	ATOM	3244		TYR A		27.472	64.589	-8.213	1.00	0.00	C
13	ATOM	3245		TYR A		29.197	64.518	-6.557	1.00	0.00	Ċ
				TYR A		26.900	63.439	-7.677	1.00	0.00	Č
	ATOM	3247 3248		TYR A		28.633	63.362	-6.012	1.00	0.00	Ċ
	MOTA					27.485	62.829	-6.580	1.00	0.00	Č
20	ATOM	3249	CZ	TYR A		26.927	61.678	-6.064	1.00	0.00	Ö
20	ATOM	3250	OH	TYR A		30.279	69.544	-7.840	1.00	0.00	N
	ATOM	3251	N	THR A				-8.546	1.00	0.00	c
	MOTA	3252	CA	THR A		30.661	70.770	-7.697		0.00	c
	ATOM	3253	C	THR A		31.221	71.919	-8.187	1.00	0.00	0
25	ATOM	3254	0	THR A		32.026	72.712		1.00	0.00	c
25	ATOM	3255	CB	THR A		29.455	71.310	-9.354	1.00	0.00	0
	ATOM	3256	OG1			28.971		-10.227	1.00		C
	MOTA	3257		THR A		29.854		-10.190	1.00	0.00	N
	MOTA	3258	N	SER A		30.800	72.008	-6.436	1.00	0.00	C
20	ATOM	3259	CA	SER A		31.242	73.076	-5.536	1.00		C
30	ATOM	3260	C	SER A		32.735	73.389	-5.606	1.00	0.00	0
	ATOM	3261	0	SER A		33.572	72.482	-5.614	1.00	0.00	C
	ATOM	3262	CB	SER A		30.857	72.735	-4.094	1.00	0.00	. 0
	ATOM	3263	OG	SER A		29.453	72.577	-3.981	1.00		N
25	MOTA	3264	N	ARG A		33.053	74.684	-5.635	1.00	0.00	C
35	ATOM	3265	CA	ARG A		34.435	75.157	-5.717	1.00	0.00	C
	MOTA	3266	С	ARG A		35.159	74.483	-6.885	1.00	0.00	
	ATOM	3267	0	ARG A		36.171	73.796	-6.706	1.00	0.00	0 C
	ATOM	3268	CB	ARG A		35.165	74.882	-4.399	1.00	0.00	c
40	ATOM	3269	CG	ARG A		34.962	75.955	-3.314	1.00	0.00	C
40	ATOM	3270	CD	ARG A		33.503	76.181	-2.910	1.00	0.00	
	ATOM	3271	NE	ARG A		33.428	77.149	-1.812	1.00	0.00	N C
	ATOM	3272	CZ	ARG A		33.509	76.833	-0.522	1.00	0.00	
	MOTA	3273		ARG A		33.643	75.570	-0.148	1.00	0.00	N
45	MOTA	3274		ARG A		33.518	77.790	0.400	1.00	0.00	N
45	MOTA	3275	N	PRO A		34.657	74.698	-8.111	1.00	0.00	N
	MOTA	3276	CA	PRO A		35.246	74.107	-9.316	1.00	0.00	C
	MOTA	3277	С	PRO A		36.676	74.537	-9.638	1.00	0.00	C
	MOTA	3278	0	PRO A		37.406		-10.309	1.00	0.00	0
	MOTA	3279	CB	PRO A		34.249		-10.409	1.00	0.00	C
50	ATOM	3280	CG	PRO A		33.751	75.827	-9.945	1.00	0.00	C
	MOTA	3281	CD	PRO A		33.540	75.596	-8.457	1.00	0.00	С
	MOTA	3282	N	TYR A	424	37.077	75.717	-9.175	1.00	0.00	N
	ATOM	3283	CA	TYR A	424	38.434	76.193	-9.433	1.00	0.00	С
_	ATOM	3284	С	TYR A		39.447	75.199	-8.863	1.00	0.00	С
55	ATOM	3285	0	TYR A	424	40.399	74.793	-9.536	1.00	0.00	0
	ATOM	3286	CB	TYR A		38.654	77.556	-8.770	1.00	0.00	С
	MOTA	3287	CG	TYR A		40.023	78.142	-9.032	1.00	0.00	C
	ATOM	3288		TYR A		40.264	78.904	-10.171	1.00	0.00	C
	ATOM	3289		TYR A		41.082	77.922	-8.146	1.00	0.00	С
60	ATOM	3290		TYR A		41.522	79.439	-10.425	1.00	0.00	С
	ATOM	3291		TYR A		42.351	78.452	-8.393	1.00	0.00	С

COSCIPE COST

	ATOM	3292	CZ	TYR A	424	42.561	79.212	-9.536	1.00	0.00	С
	ATOM	3293	ОН	TYR A		43.801	79.754	-9.797	1.00	0.00	0
	ATOM	3294	N	HIS A		39.223	74.798	-7.617	1.00	0.00	N
	ATOM	3295	CA	HIS A		40.121	73.876	-6.933	1.00	0.00	С
5	ATOM	3296	C	HIS A		39.983	72.441	-7.433	1.00	0.00	С
•	ATOM	3297	0	HIS A		40.940	71.665	-7.375	1.00	0.00	0
	ATOM	3298	ĊВ	HIS A		39.872	73.988	-5.432	1.00	0.00	С
	ATOM	3299	CG	HIS A		39.848	75.407	-4.958	1.00	0.00	С
	ATOM	3300		HIS A		40.997	76.127	-4.708	1.00	0.00	N
10	ATOM	3301		HIS A		38.821	76.281	-4.824	1.00	0.00	С
	ATOM	3302		HIS A		40.681	77.382	-4.446	1.00	0.00	С
	ATOM	3303		HIS A		39.367	77.503	-4.511	1.00	0.00	N
	ATOM	3304	N	LYS A		38.799	72.091	-7.925	1.00	0.00	N
	ATOM	3305	CA	LYS A		38.581	70.755	-8.480	1.00	0.00	С
15	ATOM	3306	C	LYS A		39.470	70.629	-9.719	1.00	0.00	С
10	ATOM	3307	Ö	LYS A		40.072	69.577	-9.968	1.00	0.00	0
	ATOM	3308	СВ	LYS A		37.107	70.563	-8.870	1.00	0.00	С
	ATOM	3309	CG	LYS A		36.195	70.152	-7.716	1.00	0.00	С
	ATOM	3310	CD	LYS A		34.725	70.105	-8.148	1.00	0.00	С
20	ATOM	3311	CE	LYS A		33.869	69.286	-7.178	1.00	0.00	С
	ATOM	3312	NZ	LYS A		33.884	69.803	-5.776	1.00	0.00	N
	ATOM	3313	N	ARG A		39.551		-10.494	1.00	0.00	N
	ATOM	3314	CA	ARG A		40.382		-11.694	1.00	0.00	С
	MOTA	3315	C	ARG A		41.850		-11.269	1.00	0.00	С
25	ATOM	3316	Ö	ARG A		42.695		-11.852	1.00	0.00	0
	ATOM	3317	СВ	ARG A		40.024		-12.555	1.00	0.00	С
	ATOM	3318	CG	ARG A		41.003		-13.676	1.00	0.00	С
	ATOM	3319	CD	ARG A		41.277		-14.624	1.00	0.00	С
	MOTA	3320	NE	ARG A		42.272		-15.617	1.00	0.00	N
30	ATOM	3321	CZ	ARG A		43.045		-16.298	1.00	0.00	С
	ATOM	3322	NH1			42.951		-16.110	1.00	0.00	N
	ATOM	3323		ARG A		43.936		-17.155	1.00	0.00	N
	ATOM	3324	N	MET A		42.145		-10.233	1.00	0.00	N
	ATOM	3325	CA	MET A		43.514	72.641	-9.739	1.00	0.00	С
35	ATOM	3326	С	MET A		44.018	71.255	-9.321	1.00	0.00	С
	ATOM	3327	0	MET A		45.196	70.928	-9.507	1.00	0.00	0
	ATOM	3328	CB	MET A		43.570	73.610	-8.555	1.00	0.00	С
	ATOM	3329	CG	MET A		44.976	73.929	-8.088	1.00	0.00	С
	ATOM	3330	SD	MET A		45.002	75.301	-6.918	1.00	0.00	S
40	ATOM	3331	CE	MET A		46.758	75.634	-6.852	1.00	0.00	С
	MOTA	3332	N	ASP A	429	43.117	70.438	-8.775	1.00	0.00	N
	ATOM	3333	CA	ASP A		43.473	69.085	-8.348	1.00	0.00	С
	MOTA	3334	С	ASP A	429	44.061	68.268	-9.492	1.00	0.00	С
	MOTA	3335	0	ASP A	429	45.083	67.600	-9.328	1.00	0.00	0
45	MOTA	3336	СВ	ASP A	429	42.247	68.356	-7.785	1.00	0.00	C
	ATOM	3337	CG	ASP A		42.531	66.893	-7.463	1.00	0.00	С
	MOTA	3338	OD1	ASP A	429	42.221	66.022	-8.309	1.00	0.00	0
	MOTA	3339	OD2	ASP A	429	43.071	66.617	-6.370	1.00	0.00	0
	ATOM	3340	N	ARG A	430	43.415	68.328	-10.653	1.00	0.00	N
50	MOTA	3341	CA	ARG A	430	43.874		-11.817	1.00	0.00	С
	MOTA	3342	С	ARG A	430	45.199	68.087	-12.368	1.00	0.00	С
	MOTA	3343	0	ARG A	430	46.017		-12.877	1.00	0.00	0
	MOTA	3344	CB	ARG A	430	42.803	67.606	-12.907	1.00	0.00	С
	MOTA	3345	CG	ARG A	430	41.512	66.914	-12.504	1.00	0.00	С
55	MOTA	3346	CD	ARG A	430	41.748	65.447	-12.150	1.00	0.00	С
	MOTA	3347	NE	ARG A	430	40.503	64.684	-12.126	1.00	0.00	N
	ATOM	3348	CZ	ARG A	430	39.819	64.378	-11.027	1.00	0.00	С
	ATOM	3349	NH1	ARG A		40.252	64.760	-9.832	1.00	0.00	N
_	ATOM	3350	NH2	ARG A	430	38.683	63.694	-11.126	1.00	0.00	N
60	ATOM	3351	N	VAL A	431	45.407		-12.278	1.00	0.00	N
	ATOM	3352	CA	VAL A	431	46.651	69.989	-12.748	1.00	0.00	С

	ATOM	3353	С	VAL A	A 43	1 47.789	69.514 -11.840	1.00	0.00	С
	ATOM	3354	Ö	VAL A			69.038 -12.315	1.00	0.00	0
	ATOM	3355	СВ	VAL A			71.536 -12.721	1.00	0.00	С
	ATOM	3356		VAL A			72.135 -13.040	1.00	0.00	С
5	ATOM	3357		VAL A			72.024 -13.735	1.00	0.00	С
	ATOM	3358	N	LEU A			69.630 -10.530	1.00	0.00	N
	ATOM	3359	CA	LEU A			69.205 -9.595	1.00	0.00	С
	ATOM	3360	С	LEU A	A 43	2 48.864	67.703 -9.699	1.00	0.00	С
	ATOM	3361	0	LEU A			67.234 -9.588	1.00	0.00	0
10	ATOM	3362	СВ	LEU Z			69.586 -8.160	1.00	0.00	С
	ATOM	3363	CG	LEU Z			69.259 -7.078	1.00	0.00	С
	ATOM	3364		LEU Z	A 43	2 50.658	69.838 -7.461	1.00	0.00	С
	ATOM	3365	CD2	LEU Z	4 43	2 48.823	69.839 -5.736	1.00	0.00	С
	ATOM	3366	N	MET A	A 43	3 47.792	66.946 -9.918	1.00	0.00	N
15	ATOM	3367	CA	MET A	A 43	3 47.919	65.497 -10.062	1.00	0.00	С
	ATOM	3368	С	MET A	A 43	3 48.970	65.194 -11.120	1.00	0.00	С
	ATOM	3369	0	MET A	A 43	3 49.852	64.351 -10.920	1.00	0.00	0
	ATOM	3370	CB	MET A	A 43	3 46.594	64.873 -10.502	1.00	0.00	С
	ATOM	3371	CG	MET A	4 43	3 46.728	63.412 -10.918	1.00	0.00	С
20	MOTA	3372	SD	MET A	A 43	3 45.192	62.708 -11.557	1.00	0.00	S
	ATOM	3373	CE	MET A	A 43	3 45.225	63.322 -13.248	1.00	0.00	C
	ATOM	3374	N	HIS A	A 43		65.886 -12.250	1.00	0.00	N
	ATOM	3375	CA	HIS A	4 43	49.806	65.680 -13.346	1.00	0.00	С
	MOTA	3376	С	HIS	A 43	4 51.207	66.194 -13.049	1.00	0.00	C
25	MOTA	3377	0	HIS			65.539 -13.386	1.00	0.00	0
	MOTA	3378	CB	HIS	A 43		66.333 -14.631	1.00	0.00	C
	ATOM	3379	CG	HIS			66.259 -15.755	1.00	0.00	C
	MOTA	3380		HIS			67.345 -16.167	1.00	0.00	N
••	ATOM	3381		HIS			65.205 -16.484	1.00	0.00	С
30	MOTA	3382		HIS .			66.961 -17.099	1.00	0.00	C
	MOTA	3383		HIS .			65.668 -17.310	1.00	0.00	N
	MOTA	3384	N	TYR .			67.372 -12.435	1.00	0.00	N
	MOTA	3385	CA	TYR .			67.943 -12.100	1.00	0.00	C
25	ATOM	3386	С	TYR .			67.019 -11.162	1.00	0.00	C
35	ATOM	3387	0	TYR .			66.871 -11.292	1.00	0.00	O C
	MOTA	3388	CB	TYR .			69.315 -11.435	1.00	0.00	C
	ATOM	3389	CG	TYR .			70.482 -12.393	1.00	0.00	C
	ATOM	3390	CD1				70.513 -13.384 71.587 -12.267	1.00	0.00	Č
40	ATOM	3391		TYR .			71.624 -14.226	1.00	0.00	Č
4 0	ATOM	3392		TYR .			72.697 -13.097	1.00	0.00	C
	ATOM	3393		TYR .			72.711 -14.072	1.00	0.00	C
	MOTA	3394 3395	CZ OH	TYR .			73.830 -14.866	1.00	0.00	Ō
	ATOM	3396	N	VAL .			66.400 -10.215	1.00	0.00	N
45	ATOM ATOM	3397	CA	VAL .			65.490 -9.282	1.00	0.00	C
40	ATOM	3398	C	VAL .			64.293 -10.038	1.00	0.00	С
	ATOM	3399	Ö	VAL			63.912 -9.841	1.00	0.00	0
	ATOM	3400	СВ	VAL			65.011 -8.173	1.00	0.00	С
	ATOM	3401		VAL			63.816 -7.437	1.00	0.00	С
50	ATOM	3402		VAL			66.149 -7.186	1.00	0.00	С
00	ATOM	3403	N	ARG			63.708 -10.916	1.00	0.00	N
	ATOM	3404	CA	ARG			62.566 -11.696	1.00	0.00	С
	ATOM	3405	C	ARG			62.934 -12.546	1.00	0.00	С
	ATOM	3406	ŏ	ARG			62.194 -12.594	1.00	0.00	0
55	ATOM	3407	СB	ARG			62.048 -12.606	1.00	0.00	С
00	ATOM	3408	CG	ARG			61.115 -13.703	1.00	0.00	С
	ATOM	3409	CD	ARG			60.539 -14.543	1.00	0.00	С
	ATOM	3410	NE	ARG			59.871 -15.741	1.00	0.00	N
	ATOM	3411	CZ	ARG			59.066 -16.513	1.00	0.00	С
60	ATOM	3412		ARG			58.819 -16.213	1.00	0.00	N
	ATOM	3413		ARG			58.518 -17.595	1.00	0.00	N

	ATOM	3414	N	ALA A	438	54.681	64.077 -13.221	1.00	0.00	N
	MOTA	3415	CA	ALA A	438	55.772	64.522 -14.086	1.00	0.00	С
	ATOM	3416	С	ALA A	438	57.053	64.806 -13.308	1.00	0.00	С
	ATOM	3417	0	ALA A	438	58.149	64.467 -13.760	1.00	0.00	0
5	ATOM	3418	СВ	ALA A		55.345	65.762 -14.878	1.00	0.00	С
•	ATOM	3419	N	ALA A		56.914	65.418 -12.136	1.00	0.00	N
	ATOM	3420	CA	ALA A		58.074	65.737 -11.311	1.00	0.00	С
		3421	C	ALA A		58.733	64.462 -10.786	1.00	0.00	C
	ATOM						64.318 -10.837	1.00	0.00	o
10	MOTA	3422	0	ALA A		59.954			0.00	c
10	MOTA	3423	CB	ALA A		57.660	66.644 -10.143	1.00		
	ATOM	3424	N	GLU A		57.925	63.538 -10.274	1.00	0.00	N
	ATOM	3425	CA	GLU A		58.468	62.282 -9.761	1.00	0.00	C
	MOTA	3426	С	GLU A		59.121	61.460 -10.875	1.00	0.00	С
	MOTA	3427	0	GLU A	440	60.177	60.855 -10.676	1.00	0.00	0
15	ATOM	3428	CB	GLU A	440	57.366	61.449 -9.094	1.00	0.00	С
	MOTA	3429	CG	GLU A	440	56.798	62.084 -7.836	1.00	0.00	С
	MOTA	3430	CD	GLU A	440	56.139	61.070 -6.918	1.00	0.00	С
	ATOM	3431		GLU A		55.013	60.619 -7.215	1.00	0.00	0
	ATOM	3432		GLU A		56.765	60.712 -5.903	1.00	0.00	0
20	ATOM	3433	N	MET A		58.497	61.433 -12.048	1.00	0.00	N
~~	ATOM	3434	CA	MET A		59.050	60.662 -13.160	1.00	0.00	С
		3435	C	MET A		60.327	61.279 -13.723	1.00	0.00	Č
	ATOM					61.326	60.583 -13.915	1.00	0.00	0
	ATOM	3436	0	MET A				1.00	0.00	C
25	ATOM	3437	CB	MET A		58.013	60.508 -14.275			
25	ATOM	3438	CG	MET A		58.521	59.759 -15.507	1.00	0.00	C
	ATOM	3439	SD	MET A		57.249	59.561 -16.783	1.00	0.00	S
	MOTA	3440	CE	MET A		56.178	58.340 -16.009	1.00	0.00	С
	MOTA	3441	N	LEU A		60.305	62.583 -13.984	1.00	0.00	N
	MOTA	3442	CA	LEU A	442	61.483	63.250 -14.531	1.00	0.00	С
30	MOTA	3443	С	LEU A	442	62.698	63.167 -13.620	1.00	0.00	С
	MOTA	3444	0	LEU A	442	63.827	63.032 -14.095	1.00	0.00	0
	ATOM	3445	CB	LEU A	442	61.173	64.718 -14.844	1.00	0.00	С
	ATOM	3446	CG	LEU A	442	60.550	64.989 -16.219	1.00	0.00	С
	ATOM	3447		LEU A		59.972	66.398 -16.256	1.00	0.00	С
35	ATOM	3448		LEU A		61.598	64.811 -17.305	1.00	0.00	С
•	ATOM	3449	N	SER A		62.477	63.228 -12.310	1.00	0.00	N
	ATOM	3450	CA	SER A		63.594	63.173 -11.377	1.00	0.00	С
	MOTA	3451	C	SER A		64.002	61.750 -10.998	1.00	0.00	C
		3452		SER A		65.058	61.546 -10.393	1.00	0.00	o
40	MOTA		0				63.971 -10.110	1.00	0.00	Č
40	MOTA	3453	CB	SER A		63.263			0.00	0
	MOTA	3454	OG	SER A		62.172	63.400 -9.410	1.00		
	ATOM	3455	N	ALA A		63.178	60.770 -11.364	1.00	0.00	N
	ATOM	3456	CA	ALA A		63.458	59.370 -11.041	1.00	0.00	C
4=	MOTA	3457	С	ALA A		64.616	58.781 -11.845	1.00	0.00	C
45	MOTA	3458	0	ALA A	444	65.262	57.832 -11.403	1.00	0.00	0
	MOTA	3459	CB	ALA A	444	62.203	58.522 -11.254	1.00	0.00	С
	MOTA	3460	N	TRP A	445	64.878	59.345 -13.020	1.00	0.00	N
	ATOM	3461	CA	TRP A	445	65.947	58.844 -13.881	1.00	0.00	С
	ATOM	3462	С	TRP A	445	67.332	58.915 - 13.252	1.00	0.00	С
50	ATOM	3463	0	TRP A		68.198	58.093 -13.560	1.00	0.00	0
	ATOM	3464	СВ	TRP A		65.943	59.593 -15.218	1.00	0.00	С
	ATOM	3465	CG	TRP A		64.664	59.428 -15.968	1.00	0.00	С
	ATOM	3466		TRP A		63.670	60.354 -16.109	1.00	0.00	С
		3467		TRP A		64.213	58.248 -16.644	1.00	0.00	Č
55	ATOM							1.00	0.00	N
55	MOTA	3468		TRP A		62.628	59.823 -16.829		0.00	C
	ATOM	3469		TRP A		62.934	58.532 -17.170	1.00		
	ATOM	3470		TRP A		64.766	56.976 -16.856	1.00	0.00	C
	MOTA	3471		TRP A		62.193	57.588 -17.898	1.00	0.00	C
	ATOM	3472		TRP A		64.030	56.036 -17.578	1.00	0.00	C
60	MOTA	3473	CH2	TRP A		62.755	56.351 -18.091	1.00	0.00	С
	MOTA	3474	N	HIS A	446	67.545	59.895 -12.379	1.00	0.00	N

	ATOM	3475	CA	HIS A	446	68.834	60.044	-11.714	1.00	0.00	С
	ATOM	3476	C	HIS A		68.713		-10.206	1.00	0.00	С
	ATOM	3477	0	HIS A		67.626	60.069	-9.640	1.00	0.00	ō
								-11.997	1.00	0.00	c
_	ATOM	3478	CB	HIS A		69.467					~
5	MOTA	3479	CG	HIS A		69.879		-13.418	1.00	0.00	С
	ATOM	3480	ND1	HIS A	446	69.050	62.200	-14.354	1.00	0.00	N
	ATOM	3481	CD2	HIS A	446	71.048	61.370	-14.053	1.00	0.00	С
	ATOM	3482	CE1	HIS A	446	69.691	62.297	-15.505	1.00	0.00	С
	ATOM	3483		HIS A		70.905		-15.350	1.00	0.00	N
10	ATOM	3484	N	SER A		69.856	59.712	-9.568	1.00	0.00	N
10							59.672	-8.122	1.00	0.00	C
	ATOM	3485	CA	SER A		69.944					
	MOTA	3486	С	SER A		70.427	61.099	-7.855	1.00	0.00	С
	ATOM	3487	0	SER A		71.319	61.587	-8.551	1.00	0.00	0
	ATOM	3488	CB	SER A	447	70.993	58.649	-7.680	1.00	0.00	С
15	ATOM	3489	OG	SER A	447	71.002	58.509	-6.273	1.00	0.00	0
	MOTA	3490	N	TRP A	448	69.834	61.784	-6.883	1.00	0.00	N
	ATOM	3491	CA	TRP A		70.231	63.161	-6.617	1.00	0.00	С
	ATOM	3492	C	TRP A		70.916	63.388	-5.281	1.00	0.00	Ċ
								-4.284	1.00	0.00	o
20	MOTA	3493	0	TRP A		70.587	62.751				
20	MOTA	3494	CB	TRP A		69.017	64.090	-6.706	1.00	0.00	C
	MOTA	3495	CG	TRP A		68.374	64.123	-8.059	1.00	0.00	С
	ATOM	3496	CD1	TRP A	448	67.544	63.184	-8.594	1.00	0.00	С
	MOTA	3497	CD2	TRP A	448	68.520	65.144	-9.052	1.00	0.00	С
	ATOM	3498		TRP A		67.163	63.554	-9.860	1.00	0.00	N
25	ATOM	3499		TRP A		67.747		-10.167	1.00	0.00	С
20		3500		TRP A		69.232	66.353	-9.108	1.00	0.00	Ċ
	ATOM								1.00	0.00	c
	ATOM	3501		TRP A		67.664		-11.327			
	MOTA	3502		TRP A		69.149		-10.262	1.00	0.00	С
	MOTA	3503	CH2	TRP A	448	68.369		-11.358	1.00	0.00	С
30	ATOM	3504	N	ASP A	449	71.873	64.312	-5.277	1.00	0.00	N
	ATOM	3505	CA	ASP A	449	72.598	64.661	-4.062	1.00	0.00	С
	ATOM	3506	С	ASP A	449	71.600	65.348	-3.135	1.00	0.00	С
	ATOM	3507	0	ASP A		70.718	66.072	-3.594	1.00	0.00	0
	ATOM	3508	СВ	ASP A		73.754	65.610	-4.393	1.00	0.00	С
35				ASP A		74.627	65.915	-3.187	1.00	0.00	C
33	ATOM	3509	CG								o
	MOTA	3510		ASP A		74.188	66.678	-2.297	1.00	0.00	
	MOTA	3511	OD2	ASP A		75.756	65.381	-3.128	1.00	0.00	0
	ATOM	3512	N	GLY A		71.737	65.113	-1.835	1.00	0.00	N
	ATOM	3513	CA	GLY A	450	70.828	65.713	-0.876	1.00	0.00	С
40	ATOM	3514	С	GLY A	450	70.704	67.221	-0.991	1.00	0.00	С
	ATOM	3515	0	GLY A	450	69.661	67.788	-0.664	1.00	0.00	0
	ATOM	3516	N	MET A		71.764	67.875	-1.454	1.00	0.00	N
	ATOM	3517	CA	MET A		71.752	69.327	-1.593	1.00	0.00	С
		3517	C	MET A		70.770	69.822	-2.650	1.00	0.00	C
45	ATOM							-2.647		0.00	Ö
45	ATOM	3519	0	MET A		70.391	70.992		1.00		
	MOTA	3520	CB	MET A		73.153	69.842	-1.937	1.00	0.00	С
	MOTA	3521	CG	MET A		74.196	69.602	-0.862	1.00	0.00	С
	ATOM	3522	SD	MET A	451	75.755	70.439	-1.246	1.00	0.00	S
	MOTA	3523	CE	MET A	451	76.604	69.173	-2.220	1.00	0.00	С
50	ATOM	3524	N	ALA A		70.367	68.937	-3.557	1.00	0.00	N
	ATOM	3525	CA	ALA A		69.436	69.308	-4.618	1.00	0.00	С
		3526		ALA A		68.020	69.480	-4.080	1.00	0.00	Ċ
	ATOM		C							0.00	0
	MOTA	3527	0	ALA A		67.151	70.027	-4.762	1.00		
	MOTA	3528	CB	ALA A		69.451	68.253	-5.719	1.00	0.00	С
55	ATOM	3529	N	ARG A	453	67.797	69.002	-2.859	1.00	0.00	N
	ATOM	3530	CA	ARG A	453	66.490	69.099	-2.211	1.00	0.00	С
	ATOM	3531	С	ARG A	453	65.363	68.513	-3.062	1.00	0.00	С
	ATOM	3532	Ō	ARG A		64.230	68.994	-3.023	1.00	0.00	0
	ATOM	3533	СВ	ARG A		66.186	70.564	-1.878	1.00	0.00	С
60		3534	CG	ARG A		67.256	71.230	-1.023	1.00	0.00	C
UU	MOTA								1.00	0.00	C
	ATOM	3535	CD	ARG A	453	66.948	72.701	-0.782	1.00	0.00	·

		MOTA	3536	NE	ARG	А	453	65.729	72.891	-0.001	1.00	0.00	1	N
		ATOM	3537	CZ	ARG			65.185	74.075	0.262	1.00	0.00		С
		ATOM	3538		ARG			65.752	75.186	-0.196	1.00	0.00		N
	_	ATOM	3539	NH2	ARG			64.074	74.150	0.985	1.00	0.00		N
	5	ATOM	3540	N	ILE	Α	454	65.674	67.471	-3.825	1.00	0.00	ı	N
		ATOM	3541	CA	ILE	Α	454	64.682	66.828	-4.679	1.00	0.00	(С
		ATOM	3542	С	ILE	Α	454	63.639	66.076	-3.851	1.00	0.00	(С
		ATOM	3543	ō	ILE			62.439	66.311	-3.999	1.00	0.00		Ō
										-5.665	1.00	0.00		c
	10	ATOM	3544	CB	ILE			65.351	65.845					
	10	ATOM	3545		ILE			66.318	66.606	-6.583	1.00	0.00		С
		ATOM	3546	CG2	ILE	Α	454	64.288	65.109	-6.477	1.00	0.00		С
		ATOM	3547	CD1	ILE	Α	454	65.670	67.696	-7.424	1.00	0.00	(С
		ATOM	3548	N	GLU	Α	455	64.095	65.176	-2.983	1.00	0.00	ì	N
		ATOM	3549	CA	GLU			63.178	64.407	-2.143	1.00	0.00		С
	15	ATOM	3550	C	GLU			62.324	65.346	-1.298	1.00	0.00		C
	15													
		ATOM	3551	0	GLU			61.130	65.114	-1.102	1.00	0.00		0
		MOTA	3552	CB	GLU			63.945	63.453	-1.215	1.00	0.00		С
		MOTA	3553	CG	GLU	Α	455	64.533	62.220	-1.890	1.00	0.00		С
		ATOM	3554	CD	GLU	Α	455	65.881	62.476	-2.542	1.00	0.00	(С
	20	MOTA	3555	OE1	GLU	Α	455	66.349	63.636	-2.525	1.00	0.00	(0
		ATOM	3556	OE2				66.472	61.509	-3.072	1.00	0.00		o
i:==					GLU			62.948	66.408	-0.799	1.00	0.00		N
And the training		ATOM	3557	N										
ŧŪ		ATOM	3558	CA	GLU			62.257	67.390	0.026	1.00	0.00		С
, 22		MOTA	3559	С	GLU	Α	456	61.070	68.007	-0.712	1.00	0.00		С
16 22	25	ATOM	3560	0	GLU	Α	456	59.938	67.988	-0.222	1.00	0.00	(0
1,3 1		ATOM	3561	CB	GLU	Α	456	63.227	68.499	0.435	1.00	0.00	(С
		ATOM	3562	CG	GLU			62.661	69.474	1.449	1.00	0.00		С
W.		ATOM	3563	CD	GLU			63.537	70.699	1.626	1.00	0.00		С
15			3564		GLU			64.769	70.575	1.481	1.00	0.00		0
firm firm	30	MOTA												
	30	MOTA	3565		GLU			62.995	71.785	1.922	1.00	0.00		0
		ATOM	3566	N	ARG	Α	457	61.333	68.560	-1.892	1.00	0.00		N
#1		ATOM	3567	CA	ARG	Α	457	60.282	69.192	-2.685	1.00	0.00	(С
		ATOM	3568	С	ARG	Α	457	59.187	68.212	-3.109	1.00	0.00	(С
Ü		ATOM	3569	0	ARG			58.004	68.555	-3.101	1.00	0.00	(0
9,5,2	35	ATOM	3570	СВ	ARG			60.895	69.875	-3.917	1.00	0.00		С
man min	00								71.336	-3.699	1.00	0.00		C
₽., <u>.</u>		ATOM	3571	CG	ARG			61.309						
31,000		MOTA	3572	CD	ARG			62.238	71.517	-2.498	1.00	0.00		С
		ATOM	3573	NE	ARG			62.497	72.929	-2.200	1.00	0.00		N
i.L		MOTA	3574	CZ	ARG	Α	457	63.347	73.705	-2.870	1.00	0.00	(С
<u> </u>	4 0	ATOM	3575	NH1	ARG	Α	457	64.041	73.217	-3.892	1.00	0.00	ì	N
		ATOM	3576	NH2	ARG	Α	457	63.504	74.977	-2.517	1.00	0.00	1	N
		ATOM	3577	N	LEU			59.573	66.992	-3.471	1.00	0.00		N
		ATOM	3578	CA	LEU			58.590	65.997	-3.888	1.00	0.00		С
				C					65.554	-2.730	1.00	0.00		c
	45	MOTA	3579		LEU			57.697						
	45	MOTA	3580	0	LEU			56.508	65.309	-2.921	1.00	0.00		0
		MOTA	3581	CB	LEU	Α	458	59.284	64.783	-4.509	1.00	0.00		С
		MOTA	3582	CG	LEU	Α	458	60.000	65.079	-5.836	1.00	0.00	(С
		ATOM	3583	CD1	LEU	Α	458	60.686	63.816	-6.345	1.00	0.00	(С
		ATOM	3584		LEU			58.986	65.597	-6.865	1.00	0.00		С
	50	ATOM	3585	N	GLU			58.263	65.452	-1.531	1.00	0.00		N
	00									-0.375	1.00	0.00		С
		ATOM	3586	CA	GLU			57.471	65.050					
		MOTA	3587	С	GLU			56.427	66.128	-0.094	1.00	0.00		С
		ATOM	3588	0	GLU	Α	459	55.260	65.827	0.163	1.00	0.00		0
		ATOM	3589	CB	GLU	Α	459	58.364	64.842	0.855	1.00	0.00	(С
	55	MOTA	3590	CG	GLU	Α	459	57.595	64.349	2.085	1.00	0.00	(С
		ATOM	3591	CD	GLU			58.499	63.761	3.158	1.00	0.00		_
								59.213		3.828	1.00	0.00		0
		ATOM	3592		GLU				64.532					
		MOTA	3593		GLU			58.500	62.522	3.323	1.00	0.00		0
		MOTA	3594	N	GLN			56.846	67.388	-0.153	1.00	0.00		N
	60	MOTA	3595	CA	GLN	Α	460	55.924	68.493	0.079	1.00	0.00		С
		ATOM	3596	С	GLN			54.787	68.432	-0.949	1.00	0.00	(С

	ATOM	3597	0	GLN	Λ.	460	53.612	68.514	-0.598	1.00	0.00	0
	ATOM	3598	СВ	GLN			56.660	69.829	-0.045	1.00	0.00	c
	ATOM	3599	CG	GLN			55.777	71.040	0.210	1.00	0.00	c
	ATOM	3600	CD	GLN			56.444	72.346	-0.167	1.00	0.00	c
5	ATOM	3601	OE1				55.924	73.423	0.127	1.00	0.00	ő
3	ATOM	3602	NE2				57.592	72.261	-0.830	1.00	0.00	N
		3603	NEZ N	ALA			55.141	68.279	-2.222	1.00	0.00	N
	MOTA	3604	CA	ALA			54.130	68.220	-3.273	1.00	0.00	C
	ATOM ATOM	3605	CA	ALA			53.140	67.071	-3.273	1.00	0.00	c
10		3606	0	ALA			51.929	67.271	-3.161	1.00	0.00	o
10	ATOM	3607	CB	ALA			54.802	68.103	-4.645	1.00	0.00	c
	ATOM							65.872	-2.800	1.00	0.00	N
	ATOM	3608	N	ARG ARG			53.653	64.709	-2.589	1.00	0.00	C
	MOTA	3609	CA				52.793 51.856	64.709	-1.402	1.00	0.00	c
15	ATOM	3610	C	ARG						1.00	0.00	0
13	ATOM	3611	0	ARG			50.674	64.585	-1.453	1.00	0.00	c
	ATOM	3612	CB	ARG			53.628	63.444 62.881	-2.332	1.00	0.00	c
	ATOM	3613	CG	ARG			54.381		-3.541		0.00	c
	ATOM	3614	CD	ARG			54.829	61.444	-3.251	1.00	0.00	N
20	ATOM	3615	NE	ARG			55.740	61.374 61.524	-2.109	1.00	0.00	C
20	ATOM	3616	CZ	ARG			57.059		-2.195			N
	ATOM	3617		ARG			57.631	61.746	-3.374	1.00	0.00	
	ATOM	3618		ARG			57.810	61.459	-1.102	1.00	0.00	N
	ATOM	3619	N	ARG			52.389	65.494	-0.327	1.00	0.00	N
25	ATOM	3620	CA	ARG			51.584	65.717	0.863	1.00	0.00	C
23	ATOM	3621	C	ARG			50.499	66.784	0.729	1.00		
	ATOM	3622	0	ARG			49.402	66.609	1.255	1.00	0.00	0
	ATOM	3623	CB	ARG			52.503	66.000	2.054	1.00	0.00	C
	ATOM	3624	CG	ARG			53.280	64.748	2.436	1.00	0.00	C C
20	ATOM	3625	CD	ARG			54.193	64.919	3.631	1.00	0.00	
30	ATOM	3626	NE	ARG			54.722	63.619	4.032	1.00	0.00	N C
	ATOM	3627	CZ	ARG			55.484	63.411	5.100	1.00	0.00	N
	ATOM	3628		ARG			55.817	64.426	5.885	1.00	0.00	
	ATOM	3629		ARG			55.900	62.184	5.388	1.00	0.00	N
35	ATOM	3630	N	GLU			50.780	67.879	0.025	1.00	0.00	N
33	ATOM	3631	CA	GLU			49.760	68.912	-0.139	1.00	0.00	C
	ATOM	3632	C	GLU			48.655	68.409	-1.067	1.00	0.00	С
	ATOM	3633	0	GLU			47.483	68.718	-0.861	1.00	0.00	0
	ATOM	3634	CB	GLU			50.368	70.203	-0.691	1.00	0.00	С
40	ATOM	3635	CG	GLU			51.515	70.747	0.153	1.00	0.00	C C
40	ATOM	3636	CD	GLU			51.087	71.173	1.552	1.00	0.00	0
	ATOM	3637	OE1				50.050	70.691	2.054	1.00	0.00	
	ATOM	3638		GLU			51.804	71.989	2.163 -2.092	1.00	0.00	O N
	ATOM	3639	N	LEU			49.022	67.644		1.00	0.00	N C
45	ATOM	3640	CA	LEU			48.016	67.098	-3.003	1.00	0.00	
45	ATOM	3641	C	LEU			47.212	66.032	-2.262	1.00	0.00	C
	ATOM	3642	0	LEU			45.991	65.956	-2.398	1.00	0.00	0
	MOTA	3643	CB	LEU			48.669	66.473	-4.244	1.00	0.00	c
	ATOM	3644	CG	LEU			47.699	65.779	-5.215	1.00	0.00	C
ΕO	ATOM	3645		LEU			46.661	66.785	-5.708	1.00	0.00	C
50	MOTA	3646		LEU			48.464	65.186	-6.393	1.00	0.00	C
	MOTA	3647	N	SER			47.902	65.214	-1.468	1.00	0.00	N
	MOTA	3648	CA	SER			47.234	64.157	-0.712	1.00	0.00	C
	MOTA	3649	С	SER			46.247	64.759	0.277	1.00	0.00	С
	ATOM	3650	0	SER			45.140	64.247	0.459	1.00	0.00	0
55	ATOM	3651	CB	SER			48.257	63.301	0.043	1.00	0.00	C
	ATOM	3652	OG	SER			49.052	62.542	-0.854	1.00	0.00	0
	MOTA	3653	N	LEU			46.653	65.852	0.914	1.00	0.00	N
	MOTA	3654	CA	LEU			45.791	66.512	1.883	1.00	0.00	C
(0	MOTA	3655	С	LEU			44.478	66.949	1.238	1.00	0.00	С
60	MOTA	3656	0	LEU			43.402	66.757	1.810	1.00	0.00	0
	ATOM	3657	CB	LEU	A	467	46.500	67.735	2.477	1.00	0.00	С

	ATOM	3658	CG	LEU A	46	45.768	68.414	3.635	1.00	0.00	С
	ATOM	3659		LEU Z			67.528	4.870	1.00	0.00	С
				LEU A			69.786	3.914	1.00	0.00	c
	MOTA	3660									
_	MOTA	3661	N	PHE A			67.521	0.040	1.00	0.00	N
5	ATOM	3662	CA	PHE A			68.009	-0.664	1.00	0.00	С
	ATOM	3663	С	PHE A	46	8 42.411	66.905	-1.057	1.00	0.00	С
	ATOM	3664	0	PHE A	A 46	8 41.270	67.190	-1.406	1.00	0.00	0
	ATOM	3665	СВ	PHE A			68.809	-1.908	1.00	0.00	С
			CG	PHE A			69.607	-2.511	1.00	0.00	c
10	ATOM	3666									
10	MOTA	3667		PHE A			70.518	-1.736	1.00	0.00	C
	MOTA	3668	CD2	PHE A	4 46	42.318	69.443	-3.847	1.00	0.00	С
	MOTA	3669	CE1	PHE A	46	40.901	71.254	-2.284	1.00	0.00	С
	MOTA	3670	CE2	PHE A	4 4 6	8 41.264	70.173	-4.402	1.00	0.00	С
	ATOM	3671	CZ	PHE A			71.081	-3.617	1.00	0.00	С
15	ATOM	3672	N	GLN A			65.648	-1.003	1.00	0.00	N
15											C
	ATOM	3673	CA	GLN A			64.540	-1.337	1.00	0.00	C
	MOTA	3674	С	GLN A			64.328	-0.229	1.00	0.00	C
	ATOM	3675	0	GLN A			63.544	-0.387	1.00	0.00	0
	ATOM	3676	CB	GLN A	4 46	9 42.753	63.248	-1.548	1.00	0.00	С
20	MOTA	3677	CG	GLN A	4 4 6	9 43.806	63.349	-2.645	1.00	0.00	С
	ATOM	3678	CD	GLN A			63.986	-3.912	1.00	0.00	С
	ATOM	3679		GLN A			64.987	-4.395	1.00	0.00	ō
	ATOM	3680		GLN A			63.414	-4.453	1.00	0.00	N
0-	MOTA	3681	N	HIS A			65.030	0.887	1.00	0.00	N
25	MOTA	3682	CA	HIS A	4 47	0 40.198	64.941	2.029	1.00	0.00	С
	ATOM	3683	С	HIS A	47	0 38.752	65.169	1.583	1.00	0.00	С
	MOTA	3684	0	HIS A	47		65.904	0.621	1.00	0.00	0
	ATOM	3685	CB	HIS A			65.988	3.087	1.00	0.00	С
	ATOM	3686	CG	HIS A			66.071	4.217	1.00	0.00	c
30											N
30	MOTA	3687		HIS A			67.270	4.715	1.00	0.00	
	MOTA	3688		HIS A			65.102	4.928	1.00	0.00	С
	ATOM	3689	CE1	HIS A	4 47	0 38.251	67.033	5.681	1.00	0.00	С
	ATOM	3690	NE2	HIS A	4 4 7	0 38.140	65.725	5.830	1.00	0.00	N
	ATOM	3691	N	HIS A	47	1 37.796	64.566	2.292	1.00	0.00	N
35	ATOM	3692	CA	HIS A			64.715	1.928	1.00	0.00	С
00	ATOM	3693	C	HIS A			66.104	2.151	1.00	0.00	Ċ
											0
	ATOM	3694	0	HIS A			66.274	2.017	1.00	0.00	
	MOTA	3695	CB	HIS A			63.626	2.600	1.00	0.00	C
4.0	MOTA	3696	CG	HIS A	4 47	1 35.692	63.533	4.084	1.00	0.00	С
4 0	ATOM	3697	ND1	HIS A	4 47	1 36.653	62.743	4.678	1.00	0.00	N
	MOTA	3698	CD2	HIS A	47	1 35.010	64.121	5.096	1.00	0.00	С
	ATOM	3699		HIS A			62.848	5.992	1.00	0.00	C
	ATOM	3700		HIS A			63.678	6.270	1.00	0.00	N
			N				67.085	2.505	1.00	0.00	N
45	ATOM	3701		ASP A							
45	MOTA	3702	CA	ASP A			68.473	2.654	1.00	0.00	C
	MOTA	3703	С	ASP A			69.343	1.835	1.00	0.00	С
	MOTA	3704	0	ASP A	4 4 7	2 37.035	70.574	1.867	1.00	0.00	0
	ATOM	3705	CB	ASP A	4 4 7	2 36.183	68.934	4.111	1.00	0.00	C
	MOTA	3706	CG	ASP A			68.320	4.922	1.00	0.00	С
50	ATOM	3707		ASP A			68.411	4.480	1.00	0.00	0
00							67.755	5.993	1.00	0.00	0
	ATOM	3708		ASP A							
	MOTA	3709	N	GLY A			68.685	1.104	1.00	0.00	N
	ATOM	3710	CA	GLY A	4 47	3 38.952	69.400	0.275	1.00	0.00	С
	MOTA	3711	С	GLY A	47	3 38.444	69.513	-1.147	1.00	0.00	С
55	ATOM	3712	0	GLY A	4 4 7	3 37.751	70.468	-1.490	1.00	0.00	0
•	ATOM	3713	N	ILE A			68.526	-1.971	1.00	0.00	N
	ATOM	3714	CA	ILE A			68.511	-3.370	1.00	0.00	C
										0.00	c
	ATOM	3715	С	ILE A			68.613	-3.530	1.00		
(0	ATOM	3716	0	ILE A			69.057	-4.566	1.00	0.00	0
60	MOTA	3717	CB	ILE A			67.230	-4.082	1.00	0.00	С
	MOTA	3718	CG1	ILE A	4 47	4 38.613	67.307	-5.584	1.00	0.00	С

	ATOM	3719	CG2	ILE A	474	38.277	65.980	-3.457	1.00	0.00	С
	ATOM	3720		ILE A		39.204	66.157	-6.386	1.00	0.00	С
	ATOM	3721	N	THR A		36.118	68.214	-2.490	1.00	0.00	N
	ATOM	3722	CA	THR A		34.656	68.252	-2.480	1.00	0.00	C
5	ATOM	3723	C	THR A		34.109	69.681	-2.518	1.00	0.00	Ċ
9				THR A			69.898	-2.861	1.00	0.00	Ö
	ATOM	3724	0			32.942				0.00	C
	ATOM	3725	СВ	THR A		34.102	67.611	-1.205	1.00		
	ATOM	3726		THR A		34.637	68.306	-0.072	1.00	0.00	0
40	MOTA	3727	CG2	THR A		34.484	66.130	-1.124	1.00	0.00	С
10	ATOM	3728	N	GLY A	476	34.944	70.645	-2.144	1.00	0.00	N
	ATOM	3729	CA	GLY A	476	34.506	72.030	-2.124	1.00	0.00	С
	ATOM	3730	С	GLY A	476	33.510	72.287	-1.002	1.00	0.00	С
	MOTA	3731	0	GLY A	476	32.618	73.126	-1.136	1.00	0.00	0
	ATOM	3732	N	THR A	477	33.660	71.572	0.110	1.00	0.00	N
15	ATOM	3733	CA	THR A		32.750	71.731	1.237	1.00	0.00	C
	ATOM	3734	С	THR A		33.371	72.333	2.499	1.00	0.00	С
	ATOM	3735	ō	THR A		32.853	72.135	3.598	1.00	0.00	0
	ATOM	3736	СВ	THR A		32.088	70.375	1.613	1.00	0.00	Ċ
	ATOM	3737		THR A		33.102	69.404	1.907	1.00	0.00	Ō
20	ATOM	3738		THR A		31.224	69.871	0.461	1.00	0.00	č
20						34.469	73.075	2.351	1.00	0.00	N
	ATOM	3739	N	ALA A							C
	ATOM	3740	CA	ALA A		35.117	73.695	3.508	1.00	0.00	
	ATOM	3741	С	ALA A		34.800	75.188	3.586	1.00	0.00	C
25	MOTA	3742	0	ALA A		34.330	75.780	2.617	1.00	0.00	0
25	MOTA	3743	CB	ALA A		36.634	73.486	3.439	1.00	0.00	С
	MOTA	3744	N	LYS A	479	35.049	75.805	4.737	1.00	0.00	N
	MOTA	3745	CA	LYS A	479	34.783	77.235	4.858	1.00	0.00	С
	ATOM	3746	С	LYS A		35.761	77.985	3.960	1.00	0.00	С
	ATOM	3747	0	LYS A	479	36.826	77.471	3.621	1.00	0.00	0
30	ATOM	3748	CB	LYS A	479	34.923	77.698	6.314	1.00	0.00	С
	ATOM	3749	CG	LYS A	479	33.900	77.052	7.251	1.00	0.00	С
	ATOM	3750	CD	LYS A		33.934	77.645	8.658	1.00	0.00	С
	ATOM	3751	CE	LYS A		33.032	78.863	8.800	1.00	0.00	С
	ATOM	3752	ΝZ	LYS A		31.571	78.531	8.775	1.00	0.00	N
35	ATOM	3753	N	THR A		35.391	79.204	3.589	1.00	0.00	N
00	ATOM	3754	CA	THR A		36.199	80.040	2.712	1.00	0.00	C
	ATOM	3755	C	THR A		37.690	80.143	3.032	1.00	0.00	č
		3756	0	THR A		38.520	79.985	2.137	1.00	0.00	Ö
	ATOM					35.612		2.643	1.00	0.00	C
40	ATOM	3757	CB	THR A			81.464			0.00	0
40	MOTA	3758		THR A		34.266	81.390	2.164	1.00		
	ATOM	3759		THR A		36.433	82.353	1.701	1.00	0.00	C
	MOTA	3760	N	HIS A		38.042	80.400	4.290	1.00	0.00	N
	ATOM	3761	CA	HIS A		39.454	80.536	4.628	1.00	0.00	C
	ATOM	3762	С	HIS A			79.209		1.00	0.00	С
45	ATOM	3763	0	HIS A	481	41.431	79.192	4.444	1.00	0.00	0
	ATOM	3764	CB	HIS A	481	39.635	81.226	5.993	1.00	0.00	С
	ATOM	3765	CG	HIS A	481	39.481	80.320	7.176	1.00	0.00	С
	ATOM	3766	ND1	HIS A		38.258	79.860	7.614	1.00	0.00	N
	ATOM	3767		HIS A		40.402	79.806	8.025	1.00	0.00	С
50	ATOM	3768		HIS A		38.432	79.103	8.682	1.00	0.00	С
	ATOM	3769		HIS A		39.724	79.053	8.952	1.00	0.00	N
	ATOM	3770	N	VAL A		39.475	78.103	4.694	1.00	0.00	N
	ATOM	3771	CA	VAL A		40.090	76.774	4.640	1.00	0.00	C
		3772				40.382	76.450	3.172	1.00	0.00	c
55	ATOM		С	VAL A				2.840	1.00	0.00	o
33	ATOM	3773	0	VAL A		41.427	75.894				
	ATOM	3774	CB	VAL A		39.157	75.705	5.255	1.00	0.00	С
	ATOM	3775		VAL A		39.828	74.327	5.231	1.00	0.00	С
	ATOM	3776		VAL A		38.819	76.096	6.693	1.00	0.00	C
	MOTA	3777	N	VAL A		39.452	76.808	2.292	1.00	0.00	N
60	ATOM	3778	CA	VAL A	483	39.645	76.592	0.862	1.00	0.00	С
	ATOM	3779	С	VAL A	483	40.898	77.365	0.446	1.00	0.00	С

DOOKCEPL DOBICE

	ATOM	3780	0	VAL A		41.707	76.888	-0.353	1.00	0.00	0
	MOTA	3781	CB	VAL A		38.432	77.112	0.057	1.00	0.00	С
	ATOM	3782	CG1	VAL A	483	38.716	77.030	-1.437	1.00	0.00	С
	ATOM	3783	CG2	VAL A	483	37.191	76.285	0.411	1.00	0.00	С
5	ATOM	3784	N	VAL A	484	41.059	78.560	1.003	1.00	0.00	N
	ATOM	3785	CA	VAL A	484	42.224	79.379	0.698	1.00	0.00	С
	ATOM	3786	С	VAL A	484	43.495	78.670	1.147	1.00	0.00	С
	ATOM	3787	0	VAL A	484	44.498	78.678	0.434	1.00	0.00	0
	ATOM	3788	СВ	VAL A		42.131	80.759	1.377	1.00	0.00	С
10	ATOM	3789		VAL A		43.461	81.500	1.252	1.00	0.00	C
20	ATOM	3790		VAL A		41.018	81.568	0.730	1.00	0.00	Č
	ATOM	3791	N	ASP A		43.454	78.047	2.323	1.00	0.00	N
	MOTA	3792	CA	ASP A		44.621	77.326	2.822	1.00	0.00	c
	ATOM	3793	C			44.993	76.185	1.870	1.00	0.00	Č
15				ASP A						0.00	0
15	ATOM	3794	0	ASP A		46.166	75.996	1.541	1.00		C
	ATOM	3795	CB	ASP A		44.354	76.751	4.215	1.00	0.00	
	ATOM	3796	CG	ASP A		45.600	76.156	4.843	1.00	0.00	C
	ATOM	3797		ASP A		45.549	75.002	5.314	1.00	0.00	0
20	MOTA	3798		ASP A		46.640	76.850	4.866	1.00	0.00	0
20	MOTA	3799	N	TYR A		43.996	75.418	1.434	1.00	0.00	N
	ATOM	3800	CA	TYR A		44.251	74.307	0.515	1.00	0.00	С
	ATOM	3801	С	TYR A	486	44.872	74.832	-0.777	1.00	0.00	С
	ATOM	3802	0	TYR A	486	45.799	74.228	-1.314	1.00	0.00	0
	MOTA	3803	CB	TYR A	486	42.951	73.571	0.174	1.00	0.00	С
25	ATOM	3804	CG	TYR A	486	42.351	72.736	1.291	1.00	0.00	С
	ATOM	3805	CD1	TYR A	486	40.971	72.715	1.492	1.00	0.00	С
	ATOM	3806	CD2	TYR A	486	43.148	71.917	2.101	1.00	0.00	С
	ATOM	3807	CE1	TYR A	486	40.387	71.897	2.469	1.00	0.00	C
	ATOM	3808	CE2	TYR A	486	42.569	71.090	3.086	1.00	0.00	С
30	ATOM	3809	ÇZ	TYR A		41.186	71.090	3.257	1.00	0.00	С
	ATOM	3810	ОН	TYR A		40.590	70.278	4.200	1.00	0.00	0
	ATOM	3811	N	GLU A		44.357	75.958	-1.270	1.00	0.00	N
	ATOM	3812	CA	GLU A		44.865	76.552	-2.505	1.00	0.00	C
	ATOM	3813	C	GLU A		46.320	76.979	-2.341	1.00	0.00	C
35	ATOM	3814	Ö	GLU A		47.149	76.727	-3.213	1.00	0.00	ō
00	ATOM	3815	СВ	GLU A		44.030	77.772	-2.920	1.00	0.00	Ċ
	ATOM	3816	CG	GLU A		44.302	78.202	-4.361	1.00	0.00	Č
	ATOM	3817	CD	GLU A		43.595	79.487	-4.766	1.00	0.00	c
	ATOM	3818		GLU A		42.428	79.694	-4.372	1.00	0.00	Ö
40		3819		GLU A		44.210	80.286	-5.502	1.00	0.00	0
40	ATOM									0.00	N
	ATOM	3820	N	GLN A		46.622	77.636	-1.226	1.00		
	ATOM	3821	CA	GLN A		47.986	78.084	-0.957	1.00	0.00	C
	ATOM	3822	С	GLN A		48.929	76.888	-0.920	1.00	0.00	C
45	MOTA	3823	0	GLN A		50.028	76.937	-1.472		0.00	0
4 5	ATOM	3824	CB	GLN A		48.051	78.833	0.380	1.00	0.00	C
	ATOM	3825	CG	GLN A		47.360	80.189	0.363	1.00	0.00	C
	MOTA	3826	CD	GLN A		47.390	80.884	1.713	1.00	0.00	C
	MOTA	3827		GLN A		47.028	82.054	1.825	1.00	0.00	0
	ATOM	3828	NE2	GLN A	488	47.818	80.165	2.746	1.00	0.00	N
50	MOTA	3829	N	ARG A	489	48.497	75.822	-0.253	1.00	0.00	N
	ATOM	3830	CA	ARG A	489	49.295	74.606	-0.155	1.00	0.00	С
	ATOM	3831	С	ARG A	489	49.530	74.010	-1.540	1.00	0.00	С
	ATOM	3832	0	ARG A	489	50.643	73.593	-1.867	1.00	0.00	0
	ATOM	3833	CB	ARG A	489	48.591	73.574	0.735	1.00	0.00	С
55	ATOM	3834	CG	ARG A		48.625	73.891	2.233	1.00	0.00	С
	ATOM	3835	CD	ARG A		47.696	72.954	3.006	1.00	0.00	С
	ATOM	3836	NE	ARG A		47.770	73.139	4.455	1.00	0.00	N
	ATOM	3837	CZ	ARG A		48.680	72.571	5.244	1.00	0.00	C
	ATOM	3838		ARG A		49.606	71.771	4.730	1.00	0.00	N
60	ATOM	3839		ARG A		48.665	72.806	6.552	1.00	0.00	N
00	ATOM	3840	N	MET A		48.487	73.962	-2.363	1.00	0.00	N
	AION	2040	.,	וטנו א	3 70	10.10/	. 3 . 702	2.505	1.00	5.50	14

	ATOM	3841	CA	MET A	A 49(48.662	73.406	-3.699	1.00	0.00	С
	ATOM	3842	С	MET	4 490	49.544	74.308	-4.558	1.00	0.00	С
	ATOM	3843	0	MET A	A 490	50.285	73.827	-5.414	1.00	0.00	0
	ATOM	3844	CB	MET	4 490	47.305	73.159	-4.373	1.00	0.00	С
5	ATOM	3845	CG	MET A	A 490	46.539	71.993	-3.748	1.00	0.00	С
	ATOM	3846	SD	MET A	A 490	45.205	71.339	-4.786	1.00	0.00	S
	ATOM	3847	CE	MET A	490	43.887	72.488	-4.381	1.00	0.00	С
	ATOM	3848	N	GLN A	A 491	49.482	75.613	-4.319	1.00	0.00	N
	ATOM	3849	CA	GLN			76.543	-5.084	1.00	0.00	С
10	ATOM	3850	С	GLN A			76.263	-4.790	1.00	0.00	С
	ATOM	3851	0	GLN A			76.259	-5.694	1.00	0.00	0
	ATOM	3852	СВ	GLN A			77.985	-4.713	1.00	0.00	С
	MOTA	3853	CG	GLN A			79.023	-5.585	1.00	0.00	C
	ATOM	3854	CD	GLN			78.817	-7.062	1.00	0.00	C
15	ATOM	3855		GLN A			78.050	-7.741	1.00	0.00	Ō
10	ATOM	3856		GLN A			79.493	-7.564	1.00	0.00	N
	ATOM	3857	N	GLU A			76.020	-3.520	1.00	0.00	N
	ATOM	3858	CA	GLU A			75.728	-3.123	1.00	0.00	C
	ATOM	3859	C	GLU Z			74.393	-3.737	1.00	0.00	č
20	ATOM	3860	Ö	GLU A			74.223	-4.154	1.00	0.00	ō
20	ATOM	3861	CB	GLU A			75.674	-1.595	1.00	0.00	c
	ATOM	3862	CG	GLU Z			76.921	-0.916	1.00	0.00	Č
		3863	CD	GLU Z			76.826	0.599	1.00	0.00	Č
	ATOM			GLU Z			75.780	1.135	1.00	0.00	ō
25	ATOM	3864					77.810	1.259	1.00	0.00	0
20	MOTA	3865		GLU A				-3.798		0.00	N
	ATOM	3866	N	ALA A			73.448		1.00	0.00	C
	ATOM	3867	CA	ALA A			72.135 72.289	-4.376	1.00	0.00	C
	MOTA	3868	С	ALA A				-5.861	1.00		
30	ATOM	3869	0	ALA A			71.668	-6.365	1.00	0.00	0 C
30	ATOM	3870	CB	ALA A			71.212	-4.199	1.00	0.00	
	ATOM	3871	N	LEU A			73.115	-6.562	1.00	0.00	N C
	MOTA	3872	CA	LEU A			73.336	-7.986	1.00	0.00	C
	ATOM	3873	C	LEU A			73.900	-8.208	1.00	0.00	
35	ATOM	3874	0	LEU A			73.453	-9.098	1.00	0.00	0
33	ATOM	3875	CB	LEU A			74.287	-8.573	1.00	0.00	C
	ATOM	3876	CG	LEU A			73.683	-8.752	1.00	0.00	С
	MOTA	3877		LEU A			74.769	-9.145	1.00	0.00	С
	MOTA	3878		LEU A			72.601	-9.818	1.00	0.00	C
40	MOTA	3879	N	LYS A			74.872	-7.385	1.00	0.00	N
40	MOTA	3880	CA	LYS A			75.484	-7.487	1.00	0.00	С
	ATOM	3881	С	LYS A			74.450	-7.200	1.00	0.00	C
	MOTA	3882	0	LYS A			74.443	-7.850	1.00	0.00	0
	MOTA	3883	CB	LYS A			76.660	-6.510	1.00	0.00	C
45	MOTA	3884	CG	LYS A			77.803	-6.812			C
45	MOTA	3885	CD	LYS A			79.039	-5.960	1.00	0.00	C
	MOTA	3886	CE	LYS A			78.767	-4.477	1.00	0.00	C
	MOTA	3887	NZ	LYS A			79.976	-3.647	1.00	0.00	N
	MOTA	3888	N	ALA A			73.577	-6.228	1.00	0.00	N
-0	ATOM	3889	CA	ALA A			72.528	-5.881	1.00	0.00	С
50	ATOM	3890	С	ALA A	A 496		71.602	-7.084	1.00	0.00	C
	MOTA	3891	0	ALA A	4 496		71.220	-7.426	1.00	0.00	0
	ATOM	3892	CB	ALA A	A 496	57.410	71.732	-4.682	1.00	0.00	С
	MOTA	3893	N	CYS A	4 4 9 7	56.991	71.234	-7.719	1.00	0.00	N
	ATOM	3894	CA	CYS A	4 497	57.045	70.362	-8.886	1.00	0.00	С
55	ATOM	3895	С	CYS A	497	57.821	71.035	-10.011	1.00	0.00	C
	MOTA	3896	0	CYS A	4 497	58.659	70.405	-10.653	1.00	0.00	0
	ATOM	3897	CB	CYS A	497	55.628	70.003	-9.359	1.00	0.00	С
	MOTA	3898	SG	CYS A	A 497		68.818	-8.281	1.00	0.00	S
	ATOM	3899	N	GLN A			72.316	-10.248	1.00	0.00	N
60	ATOM	3900	CA	GLN A			73.039	-11.302	1.00	0.00	С
	ATOM	3901	С	GLN A				-11.055	1.00	0.00	С

! .

	ATOM	3902	0	GLN A	498	60.545	72.760 -11.971	1.00	0.00	0
	ATOM	3903	CB	GLN A	498	57.780	74.492 -11.385	1.00	0.00	С
	MOTA	3904	CG	GLN A	498	58.583	75.337 -12.367	1.00	0.00	С
	MOTA	3905	CD	GLN A	498	58.076	76.764 -12.475	1.00	0.00	С
5	MOTA	3906	OE1	GLN A	498	57.891	77.449 -11.464	1.00	0.00	0
	ATOM	3907	NE2	GLN A	498	57.859	77.225 -13.704	1.00	0.00	N
	ATOM	3908	N	MET A	499	60.178	73.292 -9.820	1.00	0.00	N
	ATOM	3909	CA	MET A		61.603	73.297 -9.484	1.00	0.00	С
	ATOM	3910	С	MET A		62.252	71.947 -9.800	1.00	0.00	С
10	ATOM	3911	0	MET A		63.304	71.887 -10.435	1.00	0.00	0
	ATOM	3912	СВ	MET A		61.793	73.633 -8.000	1.00	0.00	C
	ATOM	3913	CG	MET A		63.226	73.497 -7.485	1.00	0.00	Ċ
	MOTA	3914	SD	MET A		64.443	74.506 -8.376	1.00	0.00	S
	ATOM	3915	CE	MET A		64.087	76.121 -7.718	1.00	0.00	c
15	ATOM	3916	N	VAL A		61.623	70.865 -9.351	1.00	0.00	N
10	ATOM	3917	CA	VAL A		62.153	69.528 -9.595	1.00	0.00	C
							69.199 -11.085	1.00	0.00	c
	ATOM	3918	С	VAL A		62.167			0.00	0
	ATOM	3919	0	VAL A		63.152	68.682 -11.609	1.00		c
20	ATOM	3920	CB	VAL A		61.321	68.466 -8.837	1.00	0.00	
20	ATOM	3921		VAL A		61.744	67.065 -9.250		0.00	C
	ATOM	3922		VAL A		61.513	68.647 -7.332	1.00	0.00	C
	ATOM	3923	N	MET A		61.072	69.508 -11.767	1.00	0.00	N
	MOTA	3924	CA	MET A		60.975	69.229 -13.194	1.00	0.00	C
25	ATOM	3925	С	MET A		62.047	69.947 -14.007	1.00	0.00	C
25	MOTA	3926	0	MET A		62.746	69.318 -14.806	1.00	0.00	0
	MOTA	3927	CB	MET A		59.585	69.612 -13.705	1.00	0.00	С
	MOTA	3928	CG	MET A		58.475	68.709 -13.191	1.00	0.00	С
	MOTA	3929	SD	MET A		56.838	69.371 -13.539	1.00	0.00	S
• •	MOTA	3930	CE	MET A	501	56.676	68.974 -15.250	1.00	0.00	С
30	MOTA	3931	N	GLN A	502	62.186	71.256 -13.802	1.00	0.00	N
	MOTA	3932	CA	GLN A	502	63.171	72.028 -14.555	1.00	0.00	С
	MOTA	3933	С	GLN A	502	64.610	71.604 -14.253	1.00	0.00	C
	MOTA	3934	0	GLN A	502	65.447	71.561 -15.159	1.00	0.00	0
	MOTA	3935	CB	GLN A	502	62.967	73.530 -14.317	1.00	0.00	С
35	ATOM	3936	CG	GLN A	502	63.208	74.016 -12.900	1.00	0.00	C
	MOTA	3937	CD	GLN A	502	64.597	74.611 -12.726	1.00	0.00	С
	MOTA	3938	OE1	GLN A	502	65.348	74.753 -13.697	1.00	0.00	0
	ATOM	3939	NE2	GLN A	502	64.938	74.974 -11.494	1.00	0.00	N
	ATOM	3940	N	GLN A	503	64.905	71.287 -12.995	1.00	0.00	N
40	MOTA	3941	CA	GLN A		66.253	70.825 -12.650	1.00	0.00	С
	ATOM	3942	С	GLN A		66.510	69.504 -13.381	1.00	0.00	С
	ATOM	3943	0	GLN A	503	67.595	69.277 -13.914	1.00	0.00	0
	ATOM	3944	СВ	GLN A		66.389	70.594 -11.141	1.00	0.00	С
	ATOM	3945	CG	GLN A		66.593	71.853 -10.301	1.00	0.00	С
45	ATOM	3946	CD	GLN A		67.940	72.511 -10.549	1.00	0.00	С
	ATOM	3947		GLN A		68.935	71.833 -10.818	1.00	0.00	0
	ATOM	3948		GLN A		67.982	73.835 -10.442	1.00	0.00	N
	ATOM	3949	N	SER A		65.503	68.632 -13.398	1.00	0.00	N
	ATOM	3950	CA	SER A		65.625	67.338 -14.067	1.00	0.00	C
50	ATOM	3951	C	SER A		65.855	67.486 -15.567	1.00	0.00	c
50	ATOM	3952	Ö	SER A		66.715	66.812 -16.138	1.00	0.00	Ö
	ATOM	3953		SER A		64.369	66.490 -13.829	1.00	0.00	c
			CB							
	ATOM	3954	OG	SER A		64.235	66.150 -12.460	1.00	0.00	0
55	ATOM	3955	N	VAL A		65.087	68.361 -16.206	1.00	0.00	N
55	ATOM	3956	CA	VAL A		65.233	68.575 -17.643	1.00	0.00	С
	ATOM	3957	С	VAL A		66.647	69.040 -17.974	1.00	0.00	С
	MOTA	3958	0	VAL A		67.269	68.555 -18.921	1.00	0.00	0
	MOTA	3959	СВ	VAL A		64.224	69.623 -18.165	1.00	0.00	C
(0	ATOM	3960		VAL A		64.569	70.018 -19.605	1.00	0.00	C
60	MOTA	3961	CG2	VAL A		62.805	69.051 -18.105	1.00	0.00	С
	MOTA	3962	N	TYR A	506	67.160	69.977 -17.187	1.00	0.00	N

	ATOM	3963	CA	TYR A	506	68.501	70.490 -17.425	1.00	0.00	С
	ATOM	3964	C	TYR A		69.557	69.378 -17.364	1.00	0.00	С
	ATOM	3965	Ö	TYR A		70.458	69.313 -18.206	1.00	0.00	0
	ATOM	3966	СВ	TYR A		68.827	71.584 -16.407	1.00	0.00	С
5	ATOM	3967	CG	TYR A		70.168	72.230 -16.641	1.00	0.00	С
9	ATOM	3968		TYR A		70.475	72.804 -17.875	1.00	0.00	С
	ATOM	3969		TYR A		71.138	72.252 -15.641	1.00	0.00	C
	ATOM	3970	CE1	TYR A		71.717	73.382 -18.109	1.00	0.00	Ċ
	ATOM	3971	CE2			72.388	72.826 -15.868	1.00	0.00	Ċ
10	ATOM	3972	CZ	TYR A		72.667	73.387 -17.106	1.00	0.00	Ċ
10	ATOM	3973	OH	TYR A		73.900	73.948 -17.349	1.00	0.00	Ö
	ATOM	3974	N	ARG A		69.435	68.498 -16.378	1.00	0.00	N
		3975	CA	ARG A		70.383	67.397 -16.214	1.00	0.00	c
	MOTA MOTA	3976	C	ARG A		70.247	66.332 -17.310	1.00	0.00	Ċ
15	ATOM	3977	o	ARG A		71.241	65.774 -17.775	1.00	0.00	Ō
15		3978	CB	ARG A		70.196	66.750 -14.837	1.00	0.00	C
	ATOM	3979	CG	ARG A		71.242	65.699 -14.490	1.00	0.00	Ċ
	ATOM ATOM	3980	CD	ARG A		71.042	65.179 -13.074	1.00	0.00	č
	ATOM	3981	NE	ARG A		72.059	64.198 -12.700	1.00	0.00	N
20	ATOM	3982	CZ	ARG A		72.170	63.659 -11.489	1.00	0.00	C
20	ATOM	3983		ARG A		71.327	64.004 -10.524	1.00	0.00	N
	ATOM	3984		ARG A		73.124	62.772 -11.242	1.00	0.00	N
		3985	N	LEU A		69.016	66.061 -17.725	1.00	0.00	N
	ATOM	3986	CA	LEU A		68.760	65.056 -18.752	1.00	0.00	C
25	ATOM ATOM	3987	C	LEU A		69.143	65.484 -20.172	1.00	0.00	Ċ
23		3988	0	LEU A		69.398	64.634 -21.029	1.00	0.00	Ō
	ATOM	3989	CB	LEU A		67.277	64.664 -18.739	1.00	0.00	c
	ATOM ATOM	3990	CG	LEU A		66.779	63.779 -17.590	1.00	0.00	Č
	ATOM	3991		LEU A		65.251	63.830 -17.527	1.00	0.00	Ċ
30	ATOM	3992		LEU A		67.265	62.350 -17.791	1.00	0.00	Ċ
50	ATOM	3993	N	LEU A		69.186	66.788 -20.424	1.00	0.00	N
	ATOM	3994	CA	LEU A		69.493	67.277 -21.765	1.00	0.00	C
	ATOM	3995	C	LEU A		70.764	68.106 -21.916	1.00	0.00	Ċ
	ATOM	3996	0	LEU A		70.912	68.842 -22.897	1.00	0.00	0
35	ATOM	3997	СВ	LEU A		68.302	68.073 -22.304	1.00	0.00	C
55	ATOM	3998	CG	LEU A		67.026	67.270 -22.573	1.00	0.00	C
	ATOM	3999		LEU A		65.915	68.213 -23.013	1.00	0.00	C
	ATOM	4000		LEU A		67.292	66.218 -23.646	1.00	0.00	Ċ
	ATOM	4000	N	THR A		71.679	67.988 -20.960	1.00	0.00	N
40	ATOM	4002	CA	THR P		72.936	68.728 -21.017	1.00	0.00	С
10	ATOM	4003	C	THR A		74.098	67.740 -21.024	1.00	0.00	С
	ATOM	4003	0	THR A		74.104	66.782 -20.251	1.00	0.00	0
	ATOM	4005	СВ	THR A		73.082	69.672 -19.803	1.00	0.00	С
	ATOM	4006	OG1	THR F		71.994	70.604 -19.794	1.00	0.00	0
45	ATOM	4007		THR A		74.400	70.447 -19.870	1.00	0.00	С
10	ATOM	4008	N	LYS P		75.073	67.961 -21.902	1.00	0.00	N
	ATOM	4009	CA	LYS A		76.231	67.068 -21.971	1.00	0.00	С
	ATOM	4010	C	LYS P		76.783	66.906 -20.562	1.00	0.00	С
	ATOM	4011	0	LYS F		77.065	67.890 -19.875	1.00	0.00	0
50	ATOM	4012	СВ	LYS F		77.309	67.641 -22.900	1.00	0.00	C
50	ATOM	4013	CG	LYS F		78.522	66.738 -23.040	1.00	0.00	C
	ATOM	4014	CD	LYS F		79.568	67.314 -23.977	1.00	0.00	C
	ATOM	4015	CE	LYS F		80.772	66.384 -24.062	1.00	0.00	C
	ATOM	4016	NZ	LYS F		81.836	66.903 -24.963	1.00	0.00	N
55		4017	N Z	PRO F		76.940	65.653 -20.107	1.00	0.00	N
33	ATOM			PRO F		77.450	65.348 -18.768	1.00	0.00	C
	MOTA	4018	CA C	PRO P		78.682	66.121 -18.299	1.00	0.00	C
	ATOM ATOM	4019 4020	0	PRO P		78.699	66.639 -17.184	1.00	0.00	Ö
		4020		PRO P		77.698	63.843 -18.834	1.00	0.00	Č
60	MOTA	4021	CB CG	PRO P		76.615	63.379 -19.750	1.00	0.00	Č
00	ATOM ATOM	4022	CD	PRO F		76.668	64.412 -20.855	1.00	0.00	Č
	A t Ou	7023	CD	INO P		, 0.000	JIL 20.033			J

COCCES. COCA

	ATOM	4024	N	SER	A 5	513	79.709	66.198	-19.139	1.00	0.00	N
	ATOM	4025	CA	SER			80.935	66.896	-18.759	1.00	0.00	С
	ATOM	4026	С	SER	A 5	513	80.800	68.418	-18.706	1.00	0.00	С
	ATOM	4027	0	SER	A 5	513	81.724	69.111	-18.279	1.00	0.00	0
5	ATOM	4028	CB	SER			82.081	66.499	-19.701	1.00	0.00	С
	ATOM	4029	OG	SER	A 5	513	81.760	66.759	-21.056	1.00	0.00	0
	ATOM	4030	N	ILE	A 5	514	79.647	68.931	-19.131	1.00	0.00	N
	ATOM	4031	CA	ILE	A 5	514	79.380	70.369	-19.127	1.00	0.00	С
	ATOM	4032	С	ILE	A 5	514	78.389	70.727	-18.014	1.00	0.00	С
10	ATOM	4033	0	ILE	A 5	514	78.412	71.836	-17.481	1.00	0.00	0
	ATOM	4034	CB	ILE			78.790	70.831	-20.492	1.00	0.00	С
	ATOM	4035	CG1				79.849	70.697	-21.589	1.00	0.00	С
	MOTA	4036	CG2	ILE			78.302	72.276	-20.401	1.00	0.00	С
	MOTA	4037		ILE			79.354	71.076	-22.974	1.00	0.00	С
15	ATOM	4038	N	TYR			77.525	69.775	-17.671	1.00	0.00	N
	ATOM	4039	CA	TYR	A 5	515	76.511	69.962	-16.630	1.00	0.00	С
	ATOM	4040	С	TYR	A 5	15	77.099	70.524	-15.330	1.00	0.00	С
	MOTA	4041	0	TYR	A 5	15	77.925	69.883	-14.681	1.00	0.00	0
	ATOM	4042	CB	TYR	A 5	15	75.817	68.621	-16.373	1.00	0.00	С
20	MOTA	4043	CG	TYR	A 5	515	74.779	68.618	-15.276	1.00	0.00	С
	ATOM	4044	CD1	TYR	A 5	515	73.625	69.397	-15.369	1.00	0.00	С
	MOTA	4045	CD2	TYR	A 5	515	74.936	67.802	-14.157	1.00	0.00	С
	MOTA	4046	CE1	TYR	A 5	15	72.648	69.359	-14.368	1.00	0.00	С
	MOTA	4047	CE2	TYR	A 5	15	73.974	67.754	-13.157	1.00	0.00	С
25	MOTA	4048	CZ	TYR	A 5	15	72.832	68.533	-13.265	1.00	0.00	С
	ATOM	4049	OH	TYR	A 5	15	71.881	68.475	-12.270	1.00	0.00	0
	MOTA	4050	N	SER	A 5	16	76.665	71.728	-14.959	1.00	0.00	N
	MOTA	4051	CA	SER	A 5	16	77.141	72.404	-13.746	1.00	0.00	С
	MOTA	4052	С	SER	A 5	16	75.931	73.040	-13.062	1.00	0.00	С
30	MOTA	4053	0	SER	A 5	16	75.685	74.243	-13.188	1.00	0.00	0
	MOTA	4054	CB	SER	A 5	16	78.159	73.485	-14.121	1.00	0.00	С
	MOTA	4055	OG	SER	A 5	16	78.766	74.044	-12.969	1.00	0.00	0
	MOTA	4056	N	PRO			75.166		-12.310	1.00	0.00	N
0-	MOTA	4057	CA	PRO			73.967		-11.614	1.00	0.00	С
35	MOTA	4058	С	PRO			74.064		-10.365	1.00	0.00	С
	MOTA	4059	0	PRO			74.917	73.360	-9.503	1.00	0.00	0
	MOTA	4060	CB	PRO			73.229		-11.323	1.00	0.00	C
	MOTA	4061	CG	PRO			74.356		-10.991	1.00	0.00	С
40	MOTA	4062	CD	PRO			75.355		-12.102	1.00	0.00	С
40	MOTA	4063	N	ASP			73.153		-10.303	1.00	0.00	N
	MOTA	4064	CA	ASP			72.978	75.418	-9.164	1.00	0.00	С
	MOTA	4065	С	ASP			71.560	74.999	-8.789	1.00	0.00	С
	ATOM	4066	0	ASP			70.597	75.413	-9.434	1.00	0.00	0
45	ATOM	4067	CB	ASP			72.969	76.885	-9.586	1.00	0.00	С
45	ATOM	4068	CG	ASP			72.657	77.819	-8.426	1.00	0.00	C
	MOTA	4069		ASP			72.003	77.372	-7.457	1.00	0.00	0
	ATOM	4070		ASP			73.051	79.001	-8.487	1.00	0.00	0
	ATOM	4071	N	PHE			71.437	74.166	-7.764	1.00	0.00	N
50	ATOM	4072	CA	PHE			70.141	73.644	-7.352	1.00	0.00	C
50	ATOM	4073	C	PHE			69.077	74.654	-6.947	1.00	0.00	С
	ATOM	4074	0	PHE			67.931	74.279	-6.698	1.00	0.00	0
	ATOM	4075	CB	PHE .			70.341	72.608	-6.246	1.00	0.00	С
	ATOM	4076	CG	PHE .			71.207	71.448	-6.664	1.00	0.00	c
55	ATOM	4077		PHE			70.948	70.765	-7.851	1.00	0.00	C
33	ATOM	4078		PHE			72.287	71.049	-5.884	1.00	0.00	С
	ATOM	4079		PHE .			71.754	69.700	-8.257	1.00	0.00	C
	ATOM	4080		PHE .			73.098	69.987	-6.280	1.00	0.00	C C
	MOTA	4081	CZ	PHE .			72.832	69.311	-7.469 -6.902	1.00	0.00	
60	ATOM	4082	N	SER .			69.439	75.931 76.973	-6.902 -6.535	1.00	0.00	N C
00	ATOM ATOM	4083 4084	CA C	SER .			68.483 68.133	77.823	-7.754	1.00	0.00	C
	ATON	4004		JEK .)	20	00.133	11.023	1.134	1.00	0.00	C

	n m OM	4085	^	CED I	A 520	67.260	78.688 -7.691	1.00	0.00	0
	ATOM ATOM	4085	O CB		A 520	69.073	77.879 -5.453	1.00	0.00	Č
	ATOM	4087	OG	SER A		70.132	78.665 -5.978	1.00	0.00	Ö
	ATOM	4088	N	PHE A		68.822	77.565 -8.860	1.00	0.00	N
5	ATOM	4089	CA	PHE A		68.629	78.317 -10.095	1.00	0.00	c
9	ATOM	4090	C		521	67.500	77.774 -10.970	1.00	0.00	Ċ
	ATOM	4091	0	PHE A		67.237	76.574 -10.990	1.00	0.00	Ö
	ATOM	4092	СВ	PHE A		69.936	78.319 -10.895	1.00	0.00	Č
	ATOM	4093	CG	PHE A		69.952	79.299 -12.034	1.00	0.00	c
10	ATOM	4094		PHE A		70.084	80.664 -11.790	1.00	0.00	Ċ
10	ATOM	4095		PHE A		69.812	78.862 -13.348	1.00	0.00	Ċ
	ATOM	4095		PHE A		70.075	81.583 -12.842	1.00	0.00	c
	MOTA	4097		PHE A		69.801	79.768 -14.406	1.00	0.00	Č
	ATOM	4098	CZ	PHE A		69.932	81.133 -14.152	1.00	0.00	c
15	ATOM	4099	N	SER A		66.837	78.671 -11.697	1.00	0.00	N
10	ATOM	4100	CA		522	65.753	78.280 -12.590	1.00	0.00	c C
	ATOM	4101	C	SER A		66.264	78.252 -14.027	1.00	0.00	Ċ
	ATOM	4102	o	SER A		66.320	79.286 -14.692	1.00	0.00	Ö
	MOTA	4102	СВ	SER A		64.580	79.261 -12.477	1.00	0.00	c
20	ATOM	4104	OG		522	63.927	79.133 -11.224	1.00	0.00	Ö
20	ATOM	4105	N		523	66.645	77.070 -14.497	1.00	0.00	N
	ATOM	4106	CA	TYR A		67.149	76.919 -15.857	1.00	0.00	C
	ATOM	4107	C	TYR A		66.025	77.000 -16.868	1.00	0.00	c
	ATOM	4108	Ö	TYR A		66.228	77.440 -18.002	1.00	0.00	Ō
25	ATOM	4109	СВ	TYR A		67.885	75.586 -16.013	1.00	0.00	Č
	ATOM	4110	CG	TYR A		69.160	75.523 -15.211	1.00	0.00	c
	ATOM	4111		TYR A		69.188	74.932 -13.949	1.00	0.00	Ċ
	ATOM	4112		TYR A		70.335	76.106 -15.695	1.00	0.00	C
	ATOM	4113		TYR A		70.358	74.926 -13.187	1.00	0.00	С
30	ATOM	4114		TYR A		71.498	76.108 -14.945	1.00	0.00	С
	ATOM	4115	CZ		523	71.506	75.519 -13.693	1.00	0.00	С
	ATOM	4116	OH	TYR A		72.660	75.542 -12.944	1.00	0.00	0
	ATOM	4117	N	PHE A		64.840	76.559 -16.456	1.00	0.00	N
	ATOM	4118	CA	PHE A		63.665	76.603 -17.316	1.00	0.00	С
35	ATOM	4119	С	PHE A		62.464	77.104 -16.539	1.00	0.00	С
	ATOM	4120	0	PHE A		62.401	76.986 -15.315	1.00	0.00	0
	ATOM	4121	СВ	PHE A		63.293	75.221 -17.857	1.00	0.00	С
	ATOM	4122	CG	PHE A		64.335	74.593 -18.726	1.00	0.00	С
	ATOM	4123	CD1	PHE A		65.402	73.902 -18.165	1.00	0.00	С
4 0	MOTA	4124	CD2	PHE A	524	64.226	74.654 -20.114	1.00	0.00	С
	MOTA	4125	CE1	PHE A	524	66.348	73.276 -18.972	1.00	0.00	С
	ATOM	4126	CE2	PHE A	524	65.166	74.031 -20.931	1.00	0.00	С
	MOTA	4127	CZ	PHE A	524	66.230	73.338 -20.355	1.00	0.00	С
	ATOM	4128	N	THR A	525	61.509	77.656 -17.275	1.00	0.00	N
45	ATOM	4129	CA	THR A	525	60.265	78.139 -16.707	1.00	0.00	С
	MOTA	4130	С	THR A	525	59.180	77.306 -17.378	1.00	0.00	С
	MOTA	4131	0	THR A	x 525	59.191	77.145 -18.598	1.00	0.00	0
	ATOM	4132	CB	THR A	525	60.028	79.623 -17.042	1.00	0.00	С
	MOTA	4133	OG1	THR A	525	61.030	80.423 -16.402	1.00	0.00	0
50	ATOM	4134	CG2	THR A		58.659	80.065 -16.561	1.00	0.00	С
	MOTA	4135	N	LEU A	526	58.262	76.758 -16.590	1.00	0.00	N
	MOTA	4136	CA	LEU A	526	57.180	75.972 -17.164	1.00	0.00	С
	MOTA	4137	С	LEU A	526	56.183	76.911 -17.838	1.00	0.00	С
	MOTA	4138	0	LEU A	526	55.925	78.011 -17.348	1.00	0.00	0
55	ATOM	4139	CB	LEU A	526	56.452	75.170 -16.079	1.00	0.00	Ç
	ATOM	4140	CG	LEU A	526	57.008	73.807 -15.666	1.00	0.00	С
	MOTA	4141	CD1	LEU A	526	56.224	73.280 -14.470	1.00	0.00	С
	MOTA	4142	CD2	LEU A	526	56.907	72.838 -16.833	1.00	0.00	С
	MOTA	4143	N	ASP A	527	55.642	76.483 -18.973	1.00	0.00	N
60	ATOM	4144	CA	ASP A		54.646	77.274 -19.676	1.00	0.00	С
	MOTA	4145	С	ASP A	527	53.404	76.400 -19.756	1.00	0.00	С

	MOTA	4146	0			527	53.425	75.350 -20.	389	1.00	0.00	0
	MOTA	4147	CB			527	55.121	77.635 -21.		1.00	0.00	С
	ATOM	4148	CG			527	54.134	78.528 -21.	818	1.00	0.00	С
_	MOTA	4149	OD1	ASP	Α	527	53.867	79.646 -21.	324	1.00	0.00	0
5	ATOM	4150	OD2	ASP	Α	527	53.622	78.110 -22.	881	1.00	0.00	0
	ATOM	4151	N	ASP	Α	528	52.337	76.824 -19.	089	1.00	0.00	N
	MOTA	4152	CA	ASP	Α	528	51.084	76.075 -19.	076	1.00	0.00	С
	ATOM	4153	С	ASP	Α	528	50.010	76.962 -19.	688	1.00	0.00	С
	ATOM	4154	0	ASP	Α	528	49.667	78.007 -19.	139	1.00	0.00	0
10	ATOM	4155	CB	ASP	Α	528	50.704	75.713 -17.	637	1.00	0.00	С
	ATOM	4156	CG			528	49.666	74.605 -17.		1.00	0.00	С
	ATOM	4157		ASP			48.653	74.670 -18.3		1.00	0.00	Ō
	ATOM	4158		ASP			49.865	73.667 -16.		1.00	0.00	Ō
	ATOM	4159	N			529	49.474	76.548 -20.8		1.00	0.00	N
15	ATOM	4160	CA			529	48.465	77.358 -21.		1.00	0.00	C
	ATOM	4161	C			529	47.059	77.161 -20.		1.00	0.00	c
	ATOM	4162	Ö			529	46.154	77.916 -21.2		1.00	0.00	ő
	ATOM	4163	СВ			529	48.469	77.071 -22.5		1.00	0.00	č
	ATOM	4164	OG			529	47.890	75.810 -23.2		1.00	0.00	o
20	ATOM	4165	N			530	46.869	76.167 -20.0		1.00	0.00	N
	ATOM	4166	CA			530	45.536	75.925 -19.5		1.00	0.00	C
	ATOM	4167	C			530	45.351	76.074 -18.0		1.00	0.00	Ċ
	ATOM	4168	Ö			530	44.280	75.778 -17.5		1.00	0.00	0
	ATOM	4169	СВ			530	45.036	74.560 -20.0		1.00	0.00	c
25	ATOM	4170	CG			530	44.929	74.517 -21.5		1.00	0.00	c
20	ATOM	4171	CD			530	44.292	73.244 -22.0		1.00	0.00	c
	ATOM	4172	NE			530	45.038	72.051 -21.0		1.00	0.00	N
	ATOM	4173	CZ			530	44.816	70.843 -22.3		1.00	0.00	C
	ATOM	4174		ARG			43.869	70.678 -23.0		1.00	0.00	N
30	ATOM	4175		ARG			45.535	69.801 -21.		1.00	0.00	N
50	ATOM	4176	N			531	46.389	76.531 -17.3		1.00	0.00	N
	ATOM	4177	CA			531	46.277	76.764 -15.9		1.00	0.00	C
	ATOM	4178	C			531	47.246	77.837 -15.4			0.00	C
	ATOM	4179	Ö			531	48.444	77.753 -15.6		1.00	0.00	0
35	ATOM	4179										c
55	ATOM	4181	CB CG			531 531	46.519	75.493 -15.0 75.781 -13.0		1.00	0.00	C
	ATOM	4182		TRP			46.418	76.128 -12.		1.00	0.00	c
	ATOM	4183		TRP			45.215	75.860 -12.8		1.00	0.00	C
	ATOM			TRP						1.00		
40		4184					46.941	76.422 -11.5		1.00	0.00	N
40	ATOM	4185		TRP			45.580	76.265 -11.5		1.00	0.00	C
	ATOM	4186		TRP			43.864	75.631 -13.1		1.00	0.00	C
	ATOM	4187 4188		TRP TRP			44.638	76.446 -10.5 75.813 -12.1		1.00	0.00	C C
	ATOM						42.925			1.00	0.00	c
45	ATOM	4189					43.319					
40	ATOM	4190	N			532	46.738	78.857 -14.7 79.023 -14.3		1.00	0.00	N
	ATOM	4191	CA			532	45.325			1.00	0.00	C
	ATOM	4192	С			532	44.419	79.228 -15.5		1.00	0.00	C
	ATOM	4193	0			532	43.200	79.075 -15.4		1.00	0.00	0
50	ATOM	4194	CB			532	45.348	80.240 -13.4		1.00	0.00	C
50	ATOM	4195	CG			532	46.700	80.135 -12.7		1.00	0.00	C
	ATOM	4196	CD			532	47.576	79.816 -13.9		1.00	0.00	C
	ATOM	4197	N	GLY			45.022	79.572 -16.7		1.00	0.00	И
	ATOM	4198	CA	GLY			44.255	79.771 -17.9		1.00	0.00	C
55	ATOM	4199	C	GLY			44.067	81.220 -18.3		1.00	0.00	С
55	ATOM	4200	0	GLY			44.049	82.116 -17.4		1.00	0.00	0
	ATOM	4201	N	SER			43.933	81.449 -19.6		1.00	0.00	N
	ATOM	4202	CA	SER			43.734	82.792 -20.1		1.00	0.00	C
	ATOM	4203	С	SER			42.442	83.369 -19.5		1.00	0.00	C
60	ATOM	4204	0	SER			41.400	82.711 -19.5		1.00	0.00	0
60	ATOM	4205	CB	SER			43.655	82.744 -21.6		1.00	0.00	С
	ATOM	4206	OG	SER	A	534	43.324	84.013 -22.2	208	1.00	0.00	0

hide the second of the second

		nmos.	4007	11	CT 1/	626	40 514	04 505 10 000	1 00	0.00	17
		ATOM	4207	N	GLY P		42.514	84.595 -19.069	1.00	0.00	N
		ATOM	4208	CA	GLY A	535	41.337	85.223 -18.498	1.00	0.00	С
		ATOM	4209	С	GLY A	535	41.207	84.928 -17.014	1.00	0.00	С
		ATOM	4210	0	GLY A		40.351	85.491 -16.330	1.00	0.00	0
	5		4211		VAL A		42.056	84.035 -16.516	1.00	0.00	N
	9	MOTA		N							
		MOTA	4212	CA	VAL A		42.040	83.669 -15.105	1.00	0.00	С
		ATOM	4213	С	VAL A	536	43.218	84.336 -14.400	1.00	0.00	С
		ATOM	4214	0	VAL A	536	43.078	84.885 -13.307	1.00	0.00	0
		MOTA	4215	СВ	VAL A		42.147	82.134 -14.925	1.00	0.00	С
	10	ATOM	4216		VAL A		42.091	81.774 -13.448	1.00	0.00	Ċ
	10										
		MOTA	4217		VAL A		41.022	81.443 -15.682	1.00	0.00	C
		MOTA	4218	N	GLU A	. 537	44.378	84.292 -15.046	1.00	0.00	N
		ATOM	4219	CA	GLU A	537	45.590	84.883 -14.495	1.00	0.00	С
		MOTA	4220	С	GLU A	537	46.675	84.972 -15.565	1.00	0.00	С
	15	ATOM	4221	0	GLU A		47.086	83.956 -16.126	1.00	0.00	0
		MOTA	4222	CB	GLU A		46.083	84.040 -13.310	1.00	0.00	c
								84.290 -12.893	1.00	0.00	Č
		ATOM	4223	CG	GLU A		47.529				C
		MOTA	4224	CD	GLU A		47.936	83.485 -11.665	1.00	0.00	C
	••	MOTA	4225		GLU A		49.153	83.284 -11.457	1.00	0.00	0
	20	MOTA	4226	OE2	GLU A	537	47.042	83.058 -10.902	1.00	0.00	0
		ATOM	4227	N	ASP A	538	47.126	86.188 -15.863	1.00	0.00	N
1122		ATOM	4228	CA	ASP A		48.182	86.365 -16.855	1.00	0.00	С
. 7%		ATOM	4229	C	ASP A		49.474	85.975 -16.153	1.00	0.00	Ċ
ŧ,Q	25	ATOM	4230	0	ASP A		50.127	86.806 -15.521	1.00	0.00	0
191	25	MOTA	4231	CB	ASP A	538	48.247	87.822 -17.326	1.00	0.00	С
110 L		MOTA	4232	CG	ASP A	538	49.236	88.022 -18.463	1.00	0.00	С
الحابة		ATOM	4233	OD1	ASP A	538	49.147	87.282 -19.466	1.00	0.00	0
		MOTA	4234		ASP A		50.100	88.919 -18.357	1.00	0.00	0
Tang Ann I		ATOM	4235	N	SER A		49.832	84.700 -16.261	1.00	0.00	N
Ħ	30	ATOM	4236	CA	SER A		51.021	84.179 -15.598	1.00	0.00	Ċ
171	50										
		ATOM	4237	С	SER A		52.142	83.720 -16.521	1.00	0.00	С
E)		MOTA	4238	0	SER A		53.318	83.855 -16.183	1.00	0.00	0
		MOTA	4239	CB	SER A	539	50.626	83.013 -14.690	1.00	0.00	С
1		ATOM	4240	OG	SER A	539	50.051	81.962 -15.450	1.00	0.00	0
1600 160 9	35	ATOM	4241	N	ARG A		51.790	83.166 -17.676	1.00	0.00	N
i W		ATOM	4242	CA	ARG A		52.814	82.682 -18.591	1.00	0.00	С
j.		ATOM	4243	C	ARG A		53.684	83.795 -19.160	1.00	0.00	Ċ
								84.890 -19.469	1.00	0.00	Ö
		ATOM	4244	0	ARG A		53.211				
ļ4.	40	MOTA	4245	СВ	ARG A		52.184	81.839 -19.706	1.00	0.00	C
	4 0	MOTA	4246	CG	ARG A	540	50.945	82.418 -20.342	1.00	0.00	С
		MOTA	4247	CD	ARG A	540	50.190	81.336 -21.119	1.00	0.00	С
		MOTA	4248	NE	ARG A	540	51.054	80.613 -22.053	1.00	0.00	N
		MOTA	4249	ÇZ	ARG A	540	50.624	80.055 -23.181	1.00	0.00	С
		ATOM	4250		ARG A		49.342	80.137 -23.515	1.00	0.00	N
	45				ARG A			79.423 -23.978		0.00	N
	40	ATOM	4251				51.474		1.00		
		ATOM	4252	N	THR A		54.971	83.497 -19.280	1.00	0.00	N
		MOTA	4253	CA	THR A		55.945	84.453 -19.773	1.00	0.00	С
		ATOM	4254	С	THR A	541	55.965	84.548 -21.289	1.00	0.00	С
		MOTA	4255	0	THR A	541	55.590	83.610 -21.992	1.00	0.00	0
	50	ATOM	4256	CB	THR A	541	57.366	84.077 -19.317	1.00	0.00	С
	•	ATOM	4257		THR A		57.867	83.026 -20.151	1.00	0.00	0
								83.592 -17.874	1.00	0.00	Č
		ATOM	4258		THR A		57.356				
		ATOM	4259	N	THR A		56.405	85.699 -21.783	1.00	0.00	N
		ATOM	4260	CA	THR A	542	56.517	85.919 -23.213	1.00	0.00	С
	55	ATOM	4261	С	THR A	542	57.974	85.685 -23.579	1.00	0.00	С
		ATOM	4262	0	THR A	542	58.879	86.159 -22.889	1.00	0.00	0
		ATOM	4263	СВ	THR A		56.159	87.373 -23.610	1.00	0.00	С
		ATOM	4264		THR A		54.781	87.629 -23.322	1.00	0.00	Ö
										0.00	c
	40	ATOM	4265		THR A		56.411	87.593 -25.099	1.00		
	60	ATOM	4266	N	ILE A		58.204	84.924 -24.640	1.00	0.00	N
		ATOM	4267	CA	ILE A	543	59.564	84.693 -25.092	1.00	0.00	С

	ATOM	4268	С	ILE A	543	59.896	85.966 -25.866	1.00	0.00	С
	ATOM	4269	Ō	ILE A		59.314	86.226 -26.921	1.00	0.00	0
	ATOM	4270	СВ	ILE A	543	59.647	83.466 -26.017	1.00	0.00	С
	ATOM	4271	CG1	ILE A	543	59.334	82.200 -25.208	1.00	0.00	С
5	ATOM	4272		ILE A		61.031	83.380 -26.659	1.00	0.00	С
-	ATOM	4273		ILE A		59.377	80.920 -26.014	1.00	0.00	С
	ATOM	4274	N	ILE A		60.803	86.769 -25.318	1.00	0.00	N
	ATOM	4275	CA	ILE A		61.184	88.030 -25.937	1.00	0.00	С
	ATOM	4276	C	ILE A		62.405	87.881 -26.835	1.00	0.00	Ċ
10	ATOM	4277	Ö	ILE A		63.512	87.604 -26.371	1.00	0.00	Ō
10	ATOM	4278	СВ	ILE A		61.448	89.105 -24.857	1.00	0.00	Ċ
		4279				60.187	89.289 -24.007	1.00	0.00	Č
	ATOM			ILE A		61.833			0.00	c
	MOTA	4280		ILE A			90.427 -25.508	1.00		c
15	ATOM	4281		ILE A		60.306	90.354 -22.939	1.00	0.00	
15	MOTA	4282	N	LEU A		62.183	88.057 -28.132	1.00	0.00	N
	MOTA	4283	CA	LEU A		63.245	87.944 -29.121	1.00	0.00	C
	ATOM	4284	С	LEU A		63.407	89.277 -29.850	1.00	0.00	C
	MOTA	4285	0	LEU A		62.465	90.060 -29.937	1.00	0.00	0
••	MOTA	4286	CB	LEU A	545	62.902	86.840 -30.124	1.00	0.00	С
20	ATOM	4287	CG	LEU A		62.592	85.457 -29.537	1.00	0.00	С
	ATOM	4288	CD1	LEU A	545	62.141	84.522 -30.649	1.00	0.00	С
	ATOM	4289	CD2	LEU A	545	63.828	84.901 -28.829	1.00	0.00	C
	ATOM	4290	N	GLY A	546	64.604	89.530 -30.368	1.00	0.00	N
	MOTA	4291	CA	GLY A	546	64.852	90.770 -31.083	1.00	0.00	С
25	ATOM	4292	С	GLY A		66.276	90.850 -31.597	1.00	0.00	С
	MOTA	4293	0	GLY A		67.201	90.370 -30.949	1.00	0.00	0
	ATOM	4294	N	GLU A		66.454	91.465 -32.761	1.00	0.00	N
	ATOM	4295	CA	GLU A		67.777	91.600 -33.364	1.00	0.00	С
	ATOM	4296	С	GLU A		68.770	92.241 -32.401	1.00	0.00	С
30	ATOM	4297	Ō	GLU A		69.947	91.881 -32.373	1.00	0.00	0
-	ATOM	4298	СВ	GLU A		67.696	92.459 -34.628	1.00	0.00	С
	ATOM	4299	CG	GLU A		66.676	91.990 -35.651	1.00	0.00	С
	ATOM	4300	CD	GLU A		66.538	92.962 -36.812	1.00	0.00	С
	ATOM	4301		GLU A		67.527	93.141 -37.558	1.00	0.00	Ō
35	ATOM	4302		GLU A		65.444	93.551 -36.972	1.00	0.00	0
20	ATOM	4303	N	ASP A		68.287	93.193 -31.611	1.00	0.00	N
	ATOM	4303	CA	ASP A		69.140	93.901 -30.667	1.00	0.00	c C
	ATOM	4305	C	ASP A		69.165	93.319 -29.256	1.00	0.00	c
	ATOM	4305		ASP A		69.748	93.923 -28.353	1.00	0.00	Õ
40		4300	O	ASP A		68.720	95.372 -30.590	1.00	0.00	C
40	MOTA	4307	CB	ASP A		68.921	96.106 -31.900	1.00	0.00	c
	ATOM		CG OD1			70.067	96.147 -32.390	1.00	0.00	Ö
	ATOM	4309		ASP A			96.644 -32.439		0.00	0
	ATOM	4310		ASP A		67.933		1.00		N
45	ATOM	4311					92.153 -29.055			
45	ATOM	4312	CA	ILE A		68.541	91.570 -27.716	1.00	0.00	C
	MOTA	4313	C	ILE A		68.763	90.060 -27.658	1.00	0.00	C
	MOTA	4314	0	ILE A		69.592	89.583 -26.885	1.00	0.00	0
	ATOM	4315	CB	ILE A		67.213		1.00	0.00	С
Ε0	ATOM	4316		ILE A		67.234	91.348 -25.557	1.00	0.00	C
50	MOTA	4317		ILE A		66.027	91.351 -27.743	1.00	0.00	C
	MOTA	4318	CD1	ILE A		68.310	91.944 -24.678	1.00	0.00	С
	ATOM	4319	N	LEU A		68.034	89.310 -28.477	1.00	0.00	N
	MOTA	4320	CA	LEU A	550	68.152	87.853 -28.478	1.00	0.00	С
	ATOM	4321	С	LEU A	550	67.488	87.279 -29.724	1.00	0.00	С
55	ATOM	4322	0	LEU A	550	66.284	87.430 -29.923	1.00	0.00	0
	ATOM	4323	CB	LEU A	550	67.479	87.283 -27.226	1.00	0.00	С
	ATOM	4324	CG	LEU A		67.571	85.771 -27.006	1.00	0.00	С
	ATOM	4325		LEU A		69.021	85.384 -26.764	1.00	0.00	С
	ATOM	4326		LEU A		66.715	85.372 -25.817	1.00	0.00	С
60 .	ATOM	4327	N	PRO A		68.265	86.600 -30.578	1.00	0.00	N
- '	ATOM	4328	CA	PRO A		67.694	86.028 -31.799	1.00	0.00	С
						-				

	ATOM	4329	С	PRO A	551	66.889	84.732 -31.671	1.00	0.00	С
	MOTA	4330	0	PRO A		65.930	84.529 -32.415	1.00	0.00	0
	ATOM	4331	CB	PRO A	551	68.916	85.867 -32.700	1.00	0.00	С
_	MOTA	4332	CG	PRO A	551	70.002	85.563 -31.730	1.00	0.00	С
5	ATOM	4333	CD	PRO A	551	69.739	86.541 -30.606	1.00	0.00	С
	MOTA	4334	N	SER A	552	67.261	83.859 -30.740	1.00	0.00	N
	MOTA	4335	CA	SER A	552	66.543	82.594 -30.601	1.00	0.00	С
	ATOM	4336	С	SER A	552	66.366	82.135 -29.161	1.00	0.00	С
	ATOM	4337	0	SER A	552	66.993	82.659 -28.243	1.00	0.00	0
10	ATOM	4338	CB	SER A	552	67.258	81.496 -31.392	1.00	0.00	С
	ATOM	4339	OG	SER A	552	68.563	81.285 -30.886	1.00	0.00	0
	ATOM	4340	N	LYS A	553	65.508	81.135 -28.985	1.00	0.00	N
	MOTA	4341	CA	LYS A	553	65.204	80.589 -27.670	1.00	0.00	С
	ATOM	4342	С	LYS A	553	64.897	79.092 -27.735	1.00	0.00	С
15	ATOM	4343	0	LYS A	553	64.152	78.633 -28.602	1.00	0.00	0
	ATOM	4344	CB	LYS A	553	63.999	81.332 -27.078	1.00	0.00	С
	ATOM	4345	CG	LYS A	553	63.465	80.740 -25.773	1.00	0.00	С
	ATOM	4346	CD	LYS A	553	64.499	80.803 -24.656	1.00	0.00	С
	MOTA	4347	CE	LYS A	553	64.818	82.244 -24.264	1.00	0.00	С
20	ATOM	4348	NZ	LYS A	553	65.931	82.304 -23.268	1.00	0.00	N
	ATOM	4349	N	HIS A	554	65.477	78.334 -26.812	1.00	0.00	N
	ATOM	4350	CA	HIS A	554	65.238	76.898 -26.752	1.00	0.00	С
	MOTA	4351	С	HIS A	554	64.046	76.596 -25.857	1.00	0.00	С
	ATOM	4352	0	HIS A	554	63.878	77.220 -24.808	1.00	0.00	0
25	MOTA	4353	CB	HIS A	554	66.454	76.157 -26.186	1.00	0.00	С
	ATOM	4354	CG	HIS A	554	67.597	76.039 -27.143	1.00	0.00	С
	ATOM	4355	ND1	HIS A	554	68.249	74.847 -27.375	1.00	0.00	N
	ATOM	4356	CD2	HIS A	554	68.225	76.965 -27.904	1.00	0.00	С
	ATOM	4357	CE1	HIS A	554	69.230	75.045 -28.236	1.00	0.00	С
30	MOTA	4358	NE2	HIS A	554	69.238	76.321 -28.572	1.00	0.00	N
	ATOM	4359	N	VAL A	555	63.227	75.640 -26.286	1.00	0.00	N
	ATOM	4360	CA	VAL A	555	62.066	75.192 -25.530	1.00	0.00	C
	ATOM	4361	С	VAL A	555	62.113	73.669 -25.532	1.00	0.00	С
	ATOM	4362	0	VAL A	555	62.600	73.059 -26.490	1.00	0.00	0
35	ATOM	4363	CB	VAL A	555	60.729	75.651 -26.160	1.00	0.00	С
	MOTA	4364	CG1	VAL A	555	60.615	77.168 -26.092	1.00	0.00	С
	ATOM	4365	CG2	VAL A	555	60.620	75.156 -27.591	1.00	0.00	С
	MOTA	4366	N	VAL A	556	61.607	73.059 -24.466	1.00	0.00	N
	ATOM	4367	CA	VAL A	556	61.619	71.607 -24.344	1.00	0.00	С
4 0	MOTA	4368	С	VAL A	556	60.260	71.052 -23.925	1.00	0.00	С
	ATOM	4369	0	VAL A	556	59.629	71.579 -23.012	1.00	0.00	0
	MOTA	4370	CB	VAL A	556	62.662	71.155 -23.286	1.00	0.00	С
	ATOM	4371	CG1	VAL A	556	62.607	69.638 -23.106	1.00	0.00	С
	MOTA	4372	CG2	VAL A	556	64.059	71.595 -23.704	1.00	0.00	С
45	MOTA	4373	N	MET A	557	59.817	69.988 -24.591	1.00	0.00	N
	ATOM	4374	CA	MET A		58.551	69.343 -24.244	1.00	0.00	С
	ATOM	4375	С	MET A	557	58.803	67.991 -23.576	1.00	0.00	С
	MOTA	4376	0	MET A	557	59.709	67.253 -23.966	1.00	0.00	0
	ATOM	4377	CB	MET A	557	57.683	69.127 -25.492	1.00	0.00	С
50	ATOM	4378	CG	MET A	557	56.649	70.216 -25.760	1.00	0.00	С
	MOTA	4379	SD	MET A	557	57.362	71.859 -25.908	1.00	0.00	S
	ATOM	4380	CE	MET A	557	58.355	71.676 -27.418	1.00	0.00	С
	ATOM	4381	N	HIS A	558	58.002	67.675 -22.564	1.00	0.00	N
	ATOM	4382	CA	HIS A	558	58.114	66.397 -21.866	1.00	0.00	С
55	ATOM	4383	С	HIS A	558	56.828	65.609 -22.085	1.00	0.00	С
	ATOM	4384	0	HIS A		55.737	66.187 -22.082	1.00	0.00	0
	MOTA	4385	CB	HIS A	558	58.319	66.611 -20.364	1.00	0.00	С
	MOTA	4386	CG	HIS A		58.230	65.350 -19.558	1.00	0.00	С
	ATOM	4387	ND1	HIS A	558	57.261	65.146 -18.599	1.00	0.00	N
60	MOTA	4388	CD2	HIS A	558	58.990	64.229 -19.570	1.00	0.00	С
	MOTA	4389	CE1	HIS A	558	57.429	63.955 -18.054	1.00	0.00	С