Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	
1.2 Описание выходных данных	
2 МЕТОД РЕШЕНИЯ	
3 ОПИСАНИЕ АЛГОРИТМОВ	
3.1 Алгоритм конструктора класса Triangle	
3.2 Алгоритм метода perimetr класса Triangle	
3.3 Алгоритм функции main	8
3.4 Алгоритм метода scuare класса Triangle	<u>C</u>
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	
5 КОД ПРОГРАММЫ	12
5.1 Файл main.cpp	12
5.2 Файл Triangle.cpp	
5.3 Файл Triangle.h	
6 ТЕСТИРОВАНИЕ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект ABC класса Triangle;
- функция main для основная функция;
- Объект стандартного ввода cin;
- Объект стандартного вывода cout.

Класс Triangle:

- свойства/поля:
 - о поле Сторона:
 - наименование a;
 - тип целое;
 - модификатор доступа private;
 - о поле Строна:
 - наименование b;
 - тип целое;
 - модификатор доступа private;
 - о поле строна:
 - наименование с;
 - тип целое;
 - модификатор доступа private;
- функционал:
 - о метод Triangle конструктор;
 - o метод perimetr —;
 - о метод scuare .

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Triangle

Функционал: Параметрический конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Triangle

N₂	Предикат	Действия	No
			перехода
1		Создание объекта	Ø

3.2 Алгоритм метода perimetr класса Triangle

Функционал: Вычисление периметра.

Параметры: нет.

Возвращаемое значение: целое, периметр.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода perimetr класса Triangle

No	Предикат	Действия	N₂
			перехода
1		Создание объекта	Ø

3.3 Алгоритм функции main

Функционал: основная функция.

Параметры: нет.

Возвращаемое значение: Целое, код успеха.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

No	Предикат	Действия	
			перехода
1		Объявление трех целочисленных переменных а, b, с	2
2		Ввод переменных a, b, c	3
3		Объявление переменной obj типа Triangle от переменых a, b, c	4
4		Ввод периметра и площади	Ø

3.4 Алгоритм метода scuare класса Triangle

Функционал: Вычисление площади.

Параметры: нет.

Возвращаемое значение: Действительное, площадь.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода scuare класса Triangle

N₂	Предикат	Действия	N₂
			перехода
1		Созданеи объекта	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Triangle.h"

using namespace std;

int main()
{
   int a, b, c;
   cin >> a >> b >> c;
   Triangle ABC(a, b, c);
   cout << "P = " << ABC.perimetr() << endl;
   cout << "S = " << ABC.square();
}</pre>
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
#include <cmath>
Triangle::Triangle(int a, int b, int c)
{
    this->a = a;
    this->b = b;
    this->c = c;
}
long long int Triangle::perimetr()
{
    return (a + c + b);
}
```

```
long double Triangle::square()
{
   long double p = (a+b+c)/2.0;
   return sqrt(p*(p-a)*(p-b)*(p-c));
}
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

```
#ifndef __TRIANGLE__H
#define __TRIANGLE__H
#include <iostream>
using namespace std;
class Triangle
{
   int a, b, c;
public:
   Triangle(int, int, int);
   long long int perimetr();
   long double square();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
111	P = 3 S = 0.433013	P = 3 S = 0.433013

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).