Robust Optimization

Robust Optimization Annkathrin Krämmer, Sabina Przioda, Christian Kreipl, Technische Universität München May 23, 2015

Robust Optimization

Annkathrin Krämmer, Sabina Przioda, Christian Kreipl, Johannes Milz

Technische Universität München

May 23, 2015

Contents

- Robust Optimization
- 2 Model of Car
- 3 Problem Formulation
- 4 Discretization
- 5 Visualization

05-23

Contents

Robust Optimization

Robust Optimization
Model of Car
Problem Formulation
Discretization
Visualization

Contents

Robust Optimization

Robust Optimization

-Robust Optimization

☐ Robust Optimization

Robust Optimization

test

test

Model of Car

Robust Optimization

Model of Car

Model of Car

Model of Car

• Bla

Das ist eine Bemerkung.

Problem Formulation - Constraints for Parameters

$$\min_{x \in \mathbb{R}^{n_x}, u \in \mathbb{R}^{n_u}} f_0(x, u)$$
 $s.t.f_i(x, u) \leq 0$ for $i = 1, ..., n_f$
 $g_i(x, u, p) = 0$ for $j = 1, ..., n_x$

with a uncertain parameter vector $p \in \mathbb{R}^{n_p}$.

$$\mathbb{P}_{box} = \{ p | p_l \le p \le p_u \}$$

 p_l : lower bound, p_u : upper bound

weather: $\{p \mid 0 \le p \le 1\}$

height profil: $\{p \mid 0 \le p \le 45\}$

 $\min_{x \in \mathbb{R}^{\infty}, u \in \mathbb{R}^{\infty}} f_0(x, u)$ $s.t.f_i(x, u) \le 0$ for $i = 1, ..., n_i$ $g_i(x, y, p) = 0$ for i = 1, ..., p. with a uncertain parameter vector $p \in \mathbb{R}^{n_p}$.

 $P_{box} = \{p | p_1 \le p \le p_n\}$ weather: $\{p | 0 \le p \le 1\}$ height profil: $\{\rho | 0 \le \rho \le 45\}$

Problem Formulation - Constraints for Parameters

«««< HEAD

Problem Formulation - Constraints for Parameters

 $\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^{nr}, u \in \mathbb{R}^{nr}} f_0(\mathbf{x}, u) \\ \text{s.t.} f_i(\mathbf{x}, u) &\leq 0 \text{for} i = 1, ..., n_f \\ g_i(\mathbf{x}, u, \rho) &= 0 \text{for} j = 1, ..., n_s \end{aligned}$

Problem Formulation - Worst Case Formulation

EXAMPLE?

$$\Phi_{i}(u) = \max_{x \in \mathbb{R}^{n_{x}}, p \in \mathbb{R}^{n_{p}}} f_{i}(x, u)$$

$$s.t.g(x, u, p) = 0$$

$$p \in \mathbb{P}_{box}$$

Robust counterpart

$$\min_{u \in \mathbb{R}^{n_u}} \Phi_0(u)$$

$$s.t.\Phi_i(u) \le 0 \forall i = 1, ..., n_f$$

⇒ bilevel structure!

Robust Optimization
Problem Formulation
Problem Formulation
Problem Formulation - Worst Case Formulation

Problem Formulation - Worst Case Formulation

⇒ bilevel structure!

Problem Formulation - Approximation Technique

Linearization

$$\begin{split} \tilde{\Phi}_i(u) &= \max_{(x-\bar{x}) \in \mathbb{R}^{n_x}, (p-\bar{p}) \in \mathbb{R}^{n_p}} f_i(\bar{x}, u) + \frac{\partial f_i}{\partial x}(\bar{x}, u)(x - \bar{x}) \\ s.t. \frac{\partial g}{\partial x}(\bar{x}, u, \bar{p})(x - \bar{x}) + \frac{\partial g}{\partial p}(\bar{x}, u, \bar{p})(p - \bar{p}) &= 0 \\ p - \bar{p}s.th.p \in \mathbb{P}_{box} \end{split}$$

$$egin{aligned} \min_{u \in \mathbb{R}^{n_u}, ar{x} \in \mathbb{R}^{n_x}} ilde{\Phi}_0(u) \ s.t. ilde{\Phi}_i(u) &\leq 0 orall i = 1,...,n_f \ g(ar{x},u,ar{p}) = 0 \end{aligned}$$

⇒ Standard Optimization Problem (SQP or else)

Robust Optimization

Problem Formulation - Approximation $(l, u) = \sum_{j=1, \dots, j=1, \dots$

Robust Optimization

Problem Formulation - Approximation Technique

====== »»»> origin/master

Discretization

Why?

Discretization

a Why?

Discretization

Why?infinte dimensional optimization problem

Discretization

- Why? infinte dimensional optimization problem
- How?

Visualization

Visualization