i ael S $\,$ rapp

Ferienkurs Theoretische Mechanik 2009 Lagrange Formalismus

alt er ei i

1	Motivation			2
2	Generalisierte Koordinaten und Koordinatensysteme	2		
3	Langrange-Gleichungen 2.Art		3	
4	Lagrange-Gleichungen 1. Art		5	
5	Erhaltungsgr ößen . li e riate			5
	2			

ei piel

etra te ir ei reie eil e al 0 i ei er ime i i t ie agra ge u ti glei er i eti e ergie.

$$\frac{1}{2}$$
 9

gilt $\underline{\mathcal{L}}$ 0

er Au ru $\stackrel{\mathcal{L}}{\longrightarrow}$ it al ei e r altu g gr e. ie it gera e er mpul e eil e . Wir abe mit ga allgemei e mpul er altu g at be t atigt.

.2 et er e rem

ber raltuggr e lati ebe all lge eru ame taler Sat rmuliere erei ige me a i e etra tuge eutli erei a e a

Noether-Theorem: u e er ra rmati ie ie agra ge u ti i t er a ert ti uierli e Smmetrie ge rt ei e r altu g gr e u umge e rt.

um ei piel lgt ie Energieerhaltngau aria er agra ge u ti u ter $eitlicher\ Translation$ au aria u ter räumlicher Translation lgt Impulserhaltung u au aria u ter raumlichen Drehungen lgt Drehimpulserhaltung

Wir lle u a et er e rem ua titati a gebe . au betra te ir ie allgemei e ra rmati er ge erali ierte r i ate ie er eit.

2

mit e beliebige u ti e u u ei em i ite imal lei e arameter ullet. leibt u ie agra ge u ti i e eue r i ate i aria t gilt al ullet e e ullet abe ir lge e r altu g gr e

е

i e *ichtige* lgeru g e et ert e rem i t ie lge e Au age

ei piel

egebe ei ie erum ei reie eil e mit er agra ge u ti u er ra rmati $\frac{}{2}$

a auli ge pr $\,$ e ariiert ie ra r
mati ie r $\,$ r i ate. abei gilt u $\,$ 0 i er
 tati be .

u aue ir b ie agra ge u ti i er eue ri ate i aria t bleibt.

$$e = \frac{1}{2}e^2 = \frac{1}{2}e^2$$