

PHYSICS Chapter 08

3st SECONDARY

MOVIMIENTO
RECTILÍNEO
UNIFORME (MRU)

@ SACO OLIVEROS

HELICOMOTIVACI

Encontrando movimiento rectilíneo Uniforme en la Naturaleza

HELICOTEORÍ

1. VELOCIDAD Y RAPIDEZ

<u>VELOCIDAD</u> (\vec{V}) :Es la cantidad física vectorial que mide la rapidez del cambio de posición del móvil.

Su unidad en el SI es m/s

Del ejemplo: El auto tiene una velocidad de 8 m/s horizontal

hacia la derecha. $\vec{V} = +8\hat{\imath} \text{ m/s}$

RAPIDEZ (V): Es el módulo de la velocidad.

Del ejemplo: la rapidez es V = 8 m/s

HELICOTEORÍ

¿Qué es el M.R.U.?

Es un movimiento con trayectoria RECTILÍNEA.

Es UNIFORME porque hay recorridos iguales en intervalos de tiempos iguales.

(RAPIDEZ CONSTANTE)

Si simultáneamente el movimiento es rectilíneo y uniforme, entonces La VELOCIDAD ES CONSTANTE.

Cálculo del módulo de la velocidad (V) en el MRU

También llamado

d: distancia (en m)

$$V = \frac{d}{t}$$
 (m/s)

HELICOTEORÍ

Tiempo de encuentro (t_E)

$$t_E = \frac{d}{V_A + V_B}$$

Tiempo de alcance (t_A)

$$t_A = \frac{d}{V_1 - V_2}$$

Los tiempos para ambos

Un auto se mueve con una rapidez de 36 km/h durante 5s. Determine la distancia que recorre si realiza un MRU.

Resolución:

Convertimos de km/h - m/s:

$$V(\frac{km}{h}) = V.\left(\frac{5}{18}\right) m/s$$

$$36\frac{\mathrm{km}}{\mathrm{h}} \cdot \left(\frac{\mathrm{5}}{\mathrm{18}}\right) = 10 \mathrm{ m/s}$$

En el M.R.U. Para el auto:

$$d = v.t$$

$$d = 10\frac{m}{s}.5 s$$

$$d = 50 m$$

El móvil que se muestra realiza un MRU. Determine el tiempo t_2 .

Resolución:

En el MRU:

La rapidez es constante

Entonces:

$$v_{AB} = v_{BC}$$

Para el móvil:

$$v_{AB} = v_{BC}$$

$$\rightarrow \frac{d_{AB}}{t_{AB}} = \frac{d_{BC}}{t_{BC}}$$

Reemplazando:

$$\frac{12m}{3s} = \frac{48m}{t_2}$$

$$t_2 = \frac{(48)(3s)}{12}$$

$$t_2 = 12s$$

En el instante mostrado, el muchacho inicia un MRU con una rapidez de 5 m/s. Al cabo de un minuto, ¿qué distancia lo separa del poste?

Para el muchacho:

$$d = v.t$$

$$d + 250m = \frac{5m}{s}.60s$$

$$d + 250m = 300s$$

$$d = 50m$$

Resolución:

Del tiempo:

Convertimos de:

minutos a segundos

4

HELICOPRÁCTIC

¿Qué distancia estarán separados los móviles con MRU, luego de 5 s, a partir del instante mostrado?

Resolución:

Para el auto de

2 m/s:

$$d = v.t$$

$$d_1 = \frac{2m}{s}.5s$$
$$d_1 = 10m$$

Para el auto de 8 m/s:

$$d = v.t$$

$$d_2 = \frac{8m}{s}.5s$$
$$d_2 = 40m$$

Del gráfico decimos que:

$$d_1 + d_x + d_2 = 100m$$

Reemplazando:

$$10m + d_{\chi} + 40m = 100m$$

$$d_x = 50m$$

Los autos mostrados realizan MRU; determine cuál será la separación de los autos luego de 10 s a partir del instante mostrados

Resolución:

Para el auto de

3 m/s:

$$d = v.t$$

$$d_1 = \frac{3m}{s} . 10s$$
$$d_1 = 30m$$

Para el auto de

6 m/s:

$$d = v.t$$

$$d_2 = \frac{6m}{s}.10s$$
$$d_2 = 60m$$

Del gráfico decimos que:

$$\mathbf{d_1} + 40m + \mathbf{d_2} = d_x$$

Reemplazando:

$$30m + 40m + 60m = d_x$$
$$\therefore d_x = 130m$$

Determine el tiempo en que se encontrarán los móviles mostrados, si ambos realizan MRU.

Resolución:

"Los tiempos para ambos móviles son iguales, porque partieron simultáneamente"

Del MRU:

$$\to t_E = \frac{d}{v_1 + v_2}$$

Reemplazando:

$$t_E = \frac{90m}{12m/s + 6m/s}$$

Por lo tanto:

$$\therefore t_E = 5s$$

7

HELICOPRÁCTIC

Determine el tiempo de alcance entre los móviles mostrados si realizan MRU.

Resolución:

"Los tiempos para ambos móviles son iguales, porque partieron simultáneamente"

<u>Del MRU</u>, si: $v_1 > v_2$

$$\to t_A = \frac{d}{v_1 - v_2};$$

Reemplazando:

$$t_A = \frac{60m}{13m/s - 7m/s}$$

Por lo tanto:

$$\therefore t_A = 10s$$

El conductor del auto ha cometido una infracción por lo cual el policía de tránsito va a su alcance para informarle; determine luego de cuántos segundos desde el instante mostrado lo alcanza, si ambos realizan MRU.

100 m

Del MRU, si: $v_1 > v_2$

Resolución:

Convertimos de km/h - m/s

$$72\frac{\mathrm{km}}{\mathrm{h}} \cdot \left(\frac{5}{18}\right) = 20 \; \mathrm{m/s}$$

Reemplazando:

 $\rightarrow t_A = \frac{d}{v_1 - v_2}$

$$t_A = \frac{100m}{20m/s - 15m/s}$$

Por lo tanto:

$$\therefore t_A = 20s$$