Matematik A E2020 Uge 46, Forelæsning 1

Afsnit 11.2, 11.3(s.421-), 11.6-7, 12.8

Funktioner af flere variable:

Partielle afledede af første og anden orden, Hessematricen, tangentplan

I dag

- (Første-ordens) Partielle afledede for f(x,y)
 - Definition (11.2)
 - Udregning for konkrete funktioner (11.2)
 - "Hvad fortæller de os om f?" (11.2,3,7)
 - Generalisering til n variable (11.6)
 - Tangentplan (12.8)
- Anden-ordens partielle afledede
 - Definition og udregning for konkrete fkt (11.2)
 - Hessematricen og Young's sætning (11.6)
- En tidligere eksamensopgave
 - Vi kigger den igennem, men regner den ikke

Partielle afledede (11.2)

Betragt funktionen z = f(x, y) givet ved

$$f(x,y) = xy^2 + x^2$$
 for alle $(x,y) \in \mathbb{R}^2$

Hvordan ændrer funktionsværdien sig ved ændringer i x og y?

1) Hold y fast, og betragt ændring i x.

Altså betragter vi z = f(x, y) som en fkt kun af x: $g_y(x) = f(x, y)$

Differentialkvotienten for denne fkt er:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = f_1'(x,y) = g_y'(x) = y^2 + 2x$$
 "Den partielle afledede af f(x,y) mht x"

2) Hold x fast, og betragt ændring i y.

Altså betragter vi z = f(x, y) som en fkt kun af y: $k_x(y) = f(x, y)$

Differentialkvotienten for denne fkt er:

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} = f_2'(x,y) = k_x'(y) = x(2y) + 0 = 2xy \qquad \text{ "Den partielle afledede af f(x,y)3mht y"}$$

Øvelse

Bestem begge partielle afledede for funktionen

$$f(x,y) = (x+y)^2 - x^2y$$
 for alle $(x,y) \in \mathbb{R}^2$

pingo.coactum.de (185415): Stem på den partielle afledede mht y

$$f'_1(x,y) = 1 \cdot 2(x+y) - 2xy = 2(x+y) - 2xy$$

 $f'_2(x,y) = 1 \cdot 2(x+y) - x^2 = 2(x+y) - x^2$

Extra (til de hurtige): Prøv med $g(x,y) = \frac{xy^2}{x+y}$ (hvor er den defineret?)

$$g'_1(x,y) = \frac{y^2(x+y) - xy^2 \cdot 1}{(x+y)^2} = \frac{y^3}{(x+y)^2}$$

$$g_{2}^{1}(x,y) = \frac{x \cdot 2y(x+y) - xy^{2} \cdot 1}{(x+y)^{2}} = \frac{2x^{2}y + 2xy^{2} - xy^{2}}{(x+y)^{2}} = \frac{2x^{2}y + xy^{2}}{(x+y)^{2}}$$

Formel definition af partielle afledede (s. 414 øverst)

Lad f(x,y) være funktion defineret på $D \subseteq \mathbb{R}^2$.

Da defineres de partielle afledede mht hhv x og y ved:

$$f_1'(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = g_y'(x)$$

$$f_2'(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

(hvis disse grænseværdier eksisterer!)

5

NB: $f'_1(x,y)$ og $f'_2(x,y)$ er ligesom f(x,y) funktioner defineret på D (hvis grænseværdierne eksisterer for alle $(x,y) \in D$)

Definitionen er vigtig for grundlæggende forståelse(!), men typisk bruger vi den ikke til bestemmelse af partielle afl. for konkrete fkt, da vi allerede kan differentiere rigtig mange fkt af én variabel (jvf øvelsen fra før) Lad os prøve at bruge definitionen i et enkelt simpelt eksempel:

$$f(x,y) = xy^2$$

Udregning af $f_2'(x,y)$ vha definitionen:

$$f_2'(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

$$f(x,y+h) - f(x,y) = x(y+h)^{2} - xy^{2} = x(y^{2} + 2yh + h^{2}) - xy^{2}$$

$$= 2xyh + xh^{2}$$

$$\frac{f(x,y+h)-f(x,y)}{h} = 2xy + xh \xrightarrow{h\to o} 2xy + o$$

$$= 2xy$$

Økonomisk eksempel: Produktionsfunktion

$$F(L, K)$$
, hvor $L, K \ge 0$

(output som fkt af anvendt arbejdskraft (L) og kapital (K))

$$\frac{\partial F}{\partial L} = F_1'(L, K) \approx \frac{F(L+1, K) - F(L, K)}{1} = F(L+1, K) - F(L, K)$$

Stigningen i output, hvis virksomheden anvender en ekstra enhed arbejdskraft (approximativt!)

"Marginalproduktet af arbejdskraft"

$$\frac{\partial F}{\partial K} = F_2'(L,K): \text{Stigningen i output, hvis virksomheden anvender}$$
 en ekstra enhed kapital (approximativt!)

"Marginalproduktet af kapital"

Anden-ordens partielle afledede

Betragt de (første-ordens) partielle afledede af f(x,y):

$$\frac{\partial f}{\partial x} = f_1'(x, y)$$
 og $\frac{\partial f}{\partial y} = f_2'(x, y)$

De anden-ordens partielle afledede af f(x,y) er de (første-ordens) partielle afledede af $f'_1(x,y)$ og $f'_2(x,y)$ (s. 415):

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{11}''(x, y) \qquad \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{12}''(x, y)$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{21}''(x, y) \qquad \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{22}''(x, y)$$

(hvis disse afledede eksisterer!)

[Videre kan så defineres tredje-ordens afledede (8 stk), etc.]

Tilbage til vores første eksempel:

$$f(x,y) = xy^2 + x^2$$

$$f_1'(x,y) = y^2 + 2x$$

$$f_2'(x,y) = 2xy$$

Partielle afledede af anden orden:

$$f_{11}''(x,y) = 0 + 2 = 2$$

$$f_{12}''(x,y) = 2y + 0 = 2y$$

$$f_{21}''(x,y) = 2y$$

$$f_{22}''(x,y) = 2 \chi$$

Partielle afledede – geometrisk (11.3)

Figure 11.3.9 Partial derivatives

Partielle afl., n variable (11.6)

Definitionen af partielle afledede kan umiddelbart udvides til fkt af n variable $f(x_1, x_2, ..., x_n) = f(\mathbf{x})$

Den partielle afledede af f mht x_i fås ved at holde alle andre variable fast og differentiere mht x_i , dvs.

$$\frac{\partial f}{\partial x_i} = f_i'(x_1, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$

Definitionen af anden-ordens afledede udvides tilsvarende

Simpelt eksempel: $f(x, y, z) = x^2y - xz$

$$\frac{\partial f}{\partial x} = f_1'(x, y, z) = 2 \times y - 2$$

$$\frac{\partial^2 f}{\partial z \partial x} = f_{13}''(x, y, z) = 0 - (z - 1)$$

Hessematricen (s. 432)

Første række: De afledede af $f'_1(x, y)$

(the Hessian matrix)

For funktion f(x, y) af to variable:

$$f''(x,y) = H(x,y) = \begin{pmatrix} f''_{11}(x,y) & f''_{12}(x,y) \\ f''_{21}(x,y) & f''_{22}(x,y) \end{pmatrix}$$

Anden række: De afledede af $f_2'(x, y)$

For funktion $f(x_1, x_2, x_3)$ af tre variable:

$$f''(x_1, x_2, x_3) = \begin{pmatrix} f''_{11}(x_1, x_2, x_3) & f''_{12}(x_1, x_2, x_3) & f''_{13}(x_1, x_2, x_3) \\ f''_{21}(x_1, x_2, x_3) & f''_{22}(x_1, x_2, x_3) & f''_{23}(x_1, x_2, x_3) \\ f''_{31}(x_1, x_2, x_3) & f''_{32}(x_1, x_2, x_3) & f''_{33}(x_1, x_2, x_3) \end{pmatrix}$$

Tilsvarende udvides til fkt $f(x_1, \ldots, x_n)$ af n variable (se bogen!)

f(x,y) defineret på $D \subseteq \mathbb{R}^2$

f siges at være en C^1 -funktion på D, hvis de første-ordens partielle afledede eksisterer og er kontinuerte overalt på D

f siges at være en C^2 -funktion på D, hvis de anden-ordens partielle afledede eksisterer og er kontinuerte overalt på D

NB: En C^2 -funktion er også en C^1 -funktion

Young's sætning (simpel version for 2 var. af Thm 11.6.1, s. 433)

Lad f(x,y) være en C^2 -funktion. Da er

$$f_{12}''(x,y) = f_{21}''(x,y)$$
.

"De blandede anden-ordens partielle afl. er ens"

(Som vi også så i eksemplet på slide 9)

Tangentplan (12.8)

Ligning for tangentplan ((12.8.3), s. 476)

Ligningen for tangentplanen til grafen for f(x, y) i punktet $P = (x_0, y_0, f(x_0, y_0))$ er:

$$z - f(x_0, y_0) = f_1'(x_0, y_0)(x - x_0) + f_2'(x_0, y_0)(y - y_0)$$

Dvs: Tangentplanet består af alle de punkter (x, y, z) der opfylder denne ligning

For at finde ligning for tangentplan i punkt $(x_0, y_0, f(x_0, y_0))$ på grafen, skal man altså bestemme $f'_1(x_0, y_0)$ og $f'_2(x_0, y_0)$

Eksamen juni 2019, opgave 2

Opgave 2

Lad funktionen f være givet ved forskriften

$$f(x,y) = -x^2 + 2x + \frac{1}{3}y^3 - \frac{3}{2}y^2 + 2y + 4 \quad for \ alle \ (x,y) \in \mathbb{R}^2.$$

1) Find de partielle afledede

$$f_1'(x,y) \text{ og } f_2'(x,y)$$
.

- 2) Vis, at f har netop to kritiske punkter, og find disse.
 - 3) Bestem alle anden-ordens partielle afledede for f, og opstil Hessematricen f''(x, y).
- Undersøg for hvert af de to kritiske punkter, om det er et lokalt maksimumspunkt, et lokalt minimumspunkt eller et saddelpunkt.
- 5) Find en ligning for tangentplanen til grafen for f gennem punktet (2, 0, f(2,0)).
- 6) Find værdimængden for f.

Øvelse (kun hvis tid!)

 $f: \mathbb{R}^2 \to \mathbb{R}$ givet ved:

$$f(x,y) = x^2 + y^2$$

Find ligningen for tangentplanen til grafen i punktet (1, 1, f(1, 1))

$$z-f(1,1)=f'(1,1)(x-1)+f'(1,1)(y-1)$$

$$f(1,1) = 2$$

 $f'(x,y) = 2x$ $f'_{2}(x,y) = 2y$
 $f'_{1}(1,1) = 2$ $f'_{2}(1,1) = 2$

$$z-2=2(x-1)+2(y-1)$$
, dus