Grafika v Matlabu

- 1. Narišite grafe naslednjih funkcij:
 - (a) $f(x) = \sin(x)e^{\sqrt{x}}, x \in [1,3],$
 - (b) $g(t) = [\cos(t), \sin(t)], t \in [0, 2\pi],$
 - (c) $h(t) = [\cos(t), \sin(t), t], t \in [0, 10\pi],$
 - (d) $k(x,y) = \frac{x^2+y^2}{1+x+y}$, $x \in [0,1]$, $y \in [0,1]$.
- 2. Podana je elipsa v centralni legi (s srediscem v (0,0)) s polosema a in b. Sestavite funkcijo cvet(a,b,n), ki nariše na isto sliko n rotacij elipse tako, da je vsaka naslednja zarotirana glede na prejšnjo za kot $\frac{2\pi}{n}$.

Rezultat:

- 3. V kartezičnih koordinatah (x,y,z) narišite parametrično ploskev f, podano v polarnih koordinatah, $z=f(r,\varphi)=r\varphi$ za $r\in[1,2]$ in $\varphi\in[0,10\pi]$.
- 4. Naj bo $\frac{\sin(x^2-y^4)}{x^2-y^4}$ definirana na $[0,1] \times [0,2]$ za tiste x, y, kjer je imenovalec neničeln.

- (a) Narišite preslikavo na mreži, z razmikom 0.01 v *x* in *y* smeri. (Uporabite ndgrid in surf.);
- (b) Razširite def. območje na celotno pravokotno domeno (zamenjajte nedoločene vrednosti z 1);
- (c) Poiščite in označite največje in najmanjše vrednosti funkcije. Pri najmanjših jih poiščite znotraj tolerance 10^{-5} .
- (d) Mapišite funkcijo, ki določi normalo tangente v izbrani točki (ali izbranih točkah) preko danih parcialnih odvodov funkcije in vektorskega produkta, in narišite normalo v nekaj točkah. (Parcialne odvode lahko izračunate z orodjem za simoblično računanje, glejte syms.)
- 5. Sestavite funkcijo tangenta(f,df,interval,st_tock), ki izriše animacijo drsenja tangente po grafu funkcije. Pri tem sta f in df dana funkcija in njen odvod, interval in st_tock pa interval in število točk pri risanju.