

criteria for existence of antidervatives

Canonical name CriteriaForExistenceOfAntidervatives

Date of creation 2013-03-22 19:14:00

Last modified on 2013-03-22 19:14:00

Owner scineram (4030)

Last modified by scineram (4030)

Numerical id 9

Author scineram (4030)

Entry type Theorem Classification msc 46G05 Let X be a normed space, Y a Banach space, $U \subset X$ a connected open set, $f: U \to L(X;Y)$ a continuous function, where L(X;Y) is the space of continuous linear operators. In this article a path is a curve that has bounded variation. The following theorems give necessary and sufficient conditions for f to have an antiderivatives.

Theorem 1. The following conditions are equivalent:

- 1. f has an antiderivative on U,
- 2. for any γ closed path in $U \int_{\gamma} f = 0$,
- 3. for any γ , δ paths in U that have the same starting and endpoints $\int_{\gamma} f = \int_{\delta} f$.

The next theorem states criteria for the existence of local antiderivatives.

Theorem 2. The following conditions are equivalent:

- 1. f has an antiderivative locally,
- 2. for γ , δ homotopic closed paths in $U \int_{\gamma} f = \int_{\delta} f$,
- 3. if γ is a triangular path such that its convex hull is in U, then $\int_{\gamma} f = 0$.

With the stronger assumption that f is differenciable we can obtain a more easily applicable condition. We introduce the canonical isometric isomorphism

$$\pi_{1,1} : L(X; L(X; Y)) \to L_2(X; Y), \quad u \mapsto ((x_1, x_2) \mapsto u(x_1)(x_2))$$

where $L_2(X;Y)$ is the space of bilinear operators from X to Y. If F is an antiderivative of f, then $\pi_{1,1}(Df(x)) = D^2F(x)$ and by Clairaut's theorem the second derivative is symmetric. The following theorems assert that the reverse is also true.

Theorem 3. If f is differentiable, then it has an antiderivative locally if and only if $\pi_{1,1}(Df(x))$ is symmetric for all $x \in U$.

Combining these three theorems immediately gives the following.

Corollary 1. If U is simply connected and f is differentiable, then it has an antiderivative on U if and only if $\pi_{1,1}(Df(x))$ is symmetric for all $x \in U$.