TD 4 : FONCTIONS Γ , FONCTIONS HARMONIQUE

Exercise 1. Fonction Γ .

On rappelle que la fonction Γ d'Euler est définie par

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.$$

Montrer que Γ est bien définie et holomorphe sur le demi-plan Re(z>0). Montrer que, sur ce demi-plan,

$$\Gamma(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{1}{z+n} + \int_1^{\infty} t^{z-1} e^{-t} dt.$$

En déduire que Γ se prolonge en fonction holomorphe sur $\mathbb{C} \setminus \mathbb{Z}^-$.

Exercice 2. Fonctions harmoniques.

- 1. Soient $u, v : \Omega \to \mathbb{R}$ deux fonctions harmoniques non constantes, où Ω est un ouvert connexe.
 - (a) Montrer que u^2 ne peut jamais être harmonique. Pour quelles fonctions holomorphes $f: \Omega \to \mathbb{C}$ a-t-on que $|f|^2$ est harmonique?
 - (b) Montrer que uv est harmonique si et seulement s'il existe une constante $C \in \mathbb{R}^*$ telle que u + iCv est holomorphe.
- 2. Soit $f:\Omega\to\mathbb{C}$ une fonction holomorphe qui ne s'annule pas. Montrer que $\ln |f|$ est une fonction harmonique sur Ω , en calculant son Laplacien. Trouver aussi une preuve plus rapide.
- 3. Montrer qu'une fonction continue $u:\Omega\to\mathbb{R}$ est harmonique si et seulement si elle satisfait la propriété de la moyenne sur les disques :

$$u(a) = \frac{1}{\pi r^2} \int_{\overline{D}(a,r)} u \, dx dy$$

pour tout $\overline{D}(a,r) \subset \Omega$.

- 4. Soit $u: \Omega \to \mathbb{R}$ une fonction harmonique.
 - (a) Soit $a \in \Omega$ tel que u(a) = 0. Montrer que pour tout disque $\overline{D}(a,r) \subset \Omega$, on a $\sup_{\partial D} u \geq 0$ et $\inf_{\partial D} u \leq 0$.
 - (b) Montrer que u n'a aucun zéro isolé.

- 5. Soit u une fonction harmonique positive dans D.
 - (a) Montrer que pour 0 < r < 1 et |h| = 1, on a $|u(rh) u(0)| \le \frac{2r}{1-r}u(0)$. En déduire que

$$|\nabla u(a)| \le 2u(0).$$

- (b) Redémontrer cette inégalité en dérivant la formule de Poisson.
- (c) Montrer que pour tout $a \in D$, on a

$$|\nabla u(a)| \le \frac{2}{1 - |a|^2} u(a).$$

- 6. Soit $U \in \mathbb{C}$ un ouvert connexe, et pour tout $n \in \mathbb{N}$, soit $f_n : U \to \mathbb{C}$ une fonction holomorphe. On suppose que la suite $u_n = \text{Re}(f_n)$ converge uniformément sur tout compact de U, et que $\{f_n(z_0)\}$ converge pour un certain $z_0 \in U$. Montrer qu'alors f_n converge uniformément sur tout compact de U.
- 7. (formule de Poisson dans le demi-plan supérieur)
 - (a) Montrer que l'homographie $\Phi(w)=i\frac{1+w}{1-w}$ envoie le disque unité D sur le demi-plan supérieur $U=\{z\in\mathbb{C}: \mathrm{Im} z>0\}$ et ∂D sur $\mathbb{R}\cup\{\infty\}$.
 - (b) Calculer l'image par Φ de la mesure de Lebesgue sur ∂D , ainsi que $P_D(\Phi^{-1}(z), \Phi^{-1}(t)), (z, t) \in U \times \mathbb{R}$ (P_D est le noyau de Poisson du disque unité).
 - (c) Soit $f:\overline{U}\to\mathbb{R}$ une fonction harmonique dans U, continue sur \overline{U} , admettant une limite en ∞ . Montrer que pour $z=x+iy\in U$ on peut écrire

$$f(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{y}{y^2 + (x-t)^2} f(t) dt.$$

Exercice 3. Automorphisme du disque.

(Automorphismes du disque unité) On note D le disque unité (ouvert) de $\mathbb C$. Pour tout $a\in D$ on note

$$\phi_a(z) = \frac{z - a}{1 - \bar{a}z}.$$

Montrer que ϕ_a est un automorphisme de D (une bijection holomorphe de D dans D dont l'inverse est aussi holomorphe). Pour tout réel t, on note $r_t: z \mapsto e^{it}z$. Montrer que tous les automorphismes de D sont de la forme $r_t \circ \phi_a$.

Exercice 4. lemme de Schwarz-Pick.

Soit $f: D \to D$ une fonction holomorphe et $z_1, z_2 \in D$. Montrer que

$$\left| \frac{f(z_1) - f(z_2)}{1 - f(z_1)\overline{f(z_2)}} \right| \le \left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right|$$

et

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}.$$