# Capítulo 6

# Introdução a Teoria dos Números

### Plano de Curso

- Números Primos e Relativamente Primos
- Aritmética Modular
- Teorema de Euler e Fermat
- Teste da Primalidade
- Algoritmo de Euclides gcd
- Teorema Chinês do Resto
- Logaritmos Discretos

### **Divisores**

Diz-se que  $\mathbf{b} \neq \mathbf{0}$  divide  $\mathbf{a}$  se  $\mathbf{a} = \mathbf{mb}$ , onde  $\mathbf{a}$ ,  $\mathbf{b}$  e  $\mathbf{m}$  são inteiros

#### Relações que se mantém:

- Se a|1, então  $a = \pm 1$
- Se  $\mathbf{a}|\mathbf{b}$  e  $\mathbf{b}|\mathbf{a}$ , então  $\mathbf{a} = \pm \mathbf{b}$
- Qualquer **b≠0** divide **0**
- Se **b**|**g** e **b**|**h**, então **b**|(**mg+nh**) para arbitrários **m** e **n**

### Números Primos

Qualquer inteiro **p>1** é um número primo <u>se e somente se</u> seus únicos divisores são ±1 e ±**p** 

Qualquer inteiro **a** > **1** pode ser fatorado, de forma única, como:

$$\mathbf{a} = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$$

Onde:  $p_1 > p_2 > \dots p_t$  são números primos  $\alpha_i > 0$ 



24200=2<sup>3</sup>3<sup>0</sup>5<sup>2</sup>7<sup>0</sup>11<sup>2</sup>

# Representação dos Números Primos

$$12 = \{a_2=2, a_3=1\}$$
  
 $18 = \{a_2=1, a_3=2\}$ 

Multiplicação = Soma dos correspondentes expoentes

$$k = mn \rightarrow k_p = m_p + n_p$$
 para todo p

$$k = 12x18 = 216$$
 $k_2 = 2+1=3$ ;  $k_3 = 1+2 = 3$ 
 $216 = 2^3x3^3$ 

$$a|b \to a_p \le b_p$$
 para todo  $p$ 

$$a = 12$$
;  $b = 36$ ;  $12|36$ ;  $12 = 2^2 \times 3$ ;  $36 = 2^2 \times 3^2$   
 $a_2 = 2 = b_2$   
 $a_3 = 1 \le 2 = b_3$ 

### Números Relativamente Primos

c = mdc(a,b) = Maior Divisor Comum de a e b
 c é um divisor de a e de b
 Qualquer divisor de a e b é um divisor de c

Maior Divisor Comum de a e b
mdc(a,b)=max[k, tal que k|a e k|b
Qualquer divisor de c

$$mdc(a,b) = mdc(a,-b) = mdc(-a,b) = mdc(-a,-b)$$

$$mdc(60,24) = mdc(60,-24) = 12$$

$$mdc(a,0) = |a|$$

$$300 = 2^{2} \times 3^{1} \times 5^{2}$$

$$18 = 2^{1} \times 3^{2}$$

$$\gcd(18,300) = 2^{1} \times 3^{1} \times 5^{0} = 6$$

 $\mathbf{k} = \mathbf{mdc}(\mathbf{a}, \mathbf{b}) \rightarrow \mathbf{k}_{\mathbf{p}} = \min(\mathbf{a}_{\mathbf{p}}, \mathbf{b}_{\mathbf{p}})$  para todo  $\mathbf{p}$ 

$$mdc(a,b) = 1$$

8 e 15 são relativamente primos 8 = 1 x 2 x 4 15 = 1 x 3 x 5

### Aritmética Modular

Dois inteiros  $\mathbf{a}$  e  $\mathbf{b}$  são congruentes módulo  $\mathbf{n}$  se  $(\mathbf{a} \mod \mathbf{n}) = (\mathbf{b} \mod \mathbf{n})$  ou  $\mathbf{a} \equiv \mathbf{b} \mod \mathbf{n}$ 

#### **Exemplo:**

 $73 \equiv 4 \mod 23; \qquad 21 \equiv -9 \mod 10$ 

# Propriedades

- $a \equiv b \mod n$  se  $n \mid (a-b)$
- $(a \mod n) = (b \mod n) \text{ implica } a \equiv b \mod n$
- $a \equiv b \mod n$  implies  $b \equiv a \mod n$
- $a \equiv b \mod n$   $e b \equiv c \mod n$  implica  $a \equiv c \mod n$

```
23 \equiv 8 \mod 5 porque 23 - 8 = 15 = 5 \times 3

-11 \equiv 5 \mod 8 porque -11 - 5 = -16 = 8 \times (-2)

81 \equiv 0 \mod 27 porque 81 - 0 = 81 = 27 \times 3
```

# Exponenciação

```
11^7 \mod 13

11^2 = 121 \equiv 4 \mod 13

11^4 = 4^2 \equiv 3 \mod 13

11^7 = 11 \times 4 \times 3 \equiv 2 \mod 13
```

# Propriedades da Aritmética Modular

- $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- [(a mod n) x (b mod n)] mod n = (a x b) mod n

```
Exercício:
11 mod 8 = 3; 15 mod 8 = 7
```

# Propriedades da Aritmética Modular

#### Comutativa

- $(w + x) \bmod n = (x + w) \bmod n$
- $(w \times x) \mod n = (x \times w) \mod n$

#### Associativa

- $[(w + x) + y] \mod n = [w + (x + y)] \mod n$
- $[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$

#### Distributiva

$$- [w\times(x+y)] \mod n = [(w\times x) + (w\times y)] \mod n$$

#### Identidades

- $(0 + w) \mod n = w \mod n$
- $(1 \times w) \mod n = w \mod n$

#### Aditiva Inversa

$$- w \in Z_n$$
, existe z tal que  $w + z \equiv 0 \mod n$ 

$$Z_n = \{0,1, \dots (n-1)\}$$

### Peculiaridades

- Se  $(a+b) \equiv (a+c) \mod n$  então  $b \equiv c \mod n$ -  $(5+23) \equiv (5+7) \mod 8$ ;  $23 \equiv 7 \mod 8$
- Se  $(a \times b) \equiv (a \times c) \mod n$  então  $b \equiv c \mod n$ 
  - se a é relativamente primo a n
  - $-6 \times 3 = 18 \equiv 2 \mod 8 \text{ e } 6 \times 7 = 42 \equiv 2 \mod 8 \text{ mas}$  $3 \not\equiv 7 \mod 8$

Multiplicativa Inversa: Para cada  $w \in Z_p$ , existe z tal que  $w \times z \equiv 1 \mod p$ 

### Teorema de Fermat

Se p é primo e a inteiro positivo não divisível por p

$$a^{p-1} \equiv 1 \bmod p$$

$$a = 7, p = 19$$
 $7^2 = 49 \equiv 11 \mod 19$ 
 $7^4 \equiv 121 \equiv 7 \mod 19$ 
 $7^8 \equiv 49 \equiv 11 \mod 19$ 
 $7^{16} \equiv 121 \equiv 7 \mod 19$ 
 $a^{p-1} = 7^{18} = 7^{16} \times 7^2 \equiv 7 \times 11 \equiv 1 \mod 19$ 

Se p é primo e a um inteiro positivo

$$a^p \equiv a \mod p$$

$$p = 5$$
,  $a = 3$ ,  $3^5 = 243 \equiv 3 \mod 5$   
 $p = 5$ ,  $a = 10$ ,  $10^5 = 100000 \mod 5 \equiv 0 \mod 5$ 

## Função Totiente de Euler

**φ**(n) é

Número de Inteiros positivos menores que n e relativamente primos a n

Se p e q são primos então 
$$\phi(p) = p-1$$
 e  $\phi(q) = q-1$   
 $\phi(pq) = \phi(p)\phi(q) = (p-1)(q-1)$ 

$$\phi(21) = 12 = \phi(3)\phi(7) = 2 \times 6 = (3-1)(7-1)$$
  
onde os 12 inteiros são  $\{1,2,4,5,8,10,11,13,16,17,19,20\}$ 

### Teorema de Euler

$$a^{\phi(n)} \equiv 1 \mod n$$

Com a e n relativamente primos

$$a = 3; n = 10; \phi(10) = 4; 3^4 = 81 \equiv 1 \mod 10$$
  
 $a = 2; n = 11; \phi(11) = 10; 2^{10} = 1024 \equiv 1 \mod 11$ 

# Forma alternativa para o TeoremaEuler

 $a^{\phi(n)+1} \equiv a \mod n$