EDAV Project 2: Regression with Principal Components

Aim: Visualize relationship between flood characteristics and number of people displaced

1. Visualize distribution of variables

• Severity:

• Affected area:

• Duration:

• Number displaced:

2. Center and scale

Except for severity, other variables appear skewed, so log-transform them and then center and s cale them.

3. Linear regression

Perform multiple linear regression with "displaced" as dependent variable and other three variables as independent variables.

This model seems to explain ~19% of number of people displaced.

1 . regress std_log_displaced severity std_log_affected std_log_duration

Source	SS	df MS		Numb	er of obs =	3034
				F(3, 3030) =	239.40
Model	581.158345	3 193.7194	48	Prob	> F =	0.0000
Residual	2451.84164 30	.8091886	58	R-sq	uared =	0.1916
-				Adj	R-squared =	0.1908
Total	3032.99998 30	.9999999	94	Root	MSĒ =	.89955
•						
std log displa~d	Coef.	Std. Err.	t	P> t	[95% Conf	<pre>. Interval]</pre>
	-÷					
severity	.1240879	.0421517	2.94	0.003	.0414392	.2067367
std log affected	.1801437	.0188169	9.57	0.000	.1432485	.217039
std log duration	.3070196	.0184443	16.65	0.000	.2708549	.3431842
_ cons	2192853	.0545864	-4.02	0.000	3263154	1122551

Check assumptions of linear regression:

• Assumption of normality of residuals appears satisfied.

• Assumption of homoscedasticity of residuals appears satisfied.

• No evidence of significant collinearity (VIF <10).

2 . vif

Variable	VIF	1/VIF
std_log_du~n std_log_af~d severity	1.30 1.29 1.06	0.766732 0.774600 0.945632
Mean VIF	1.22	

• Assumption of linearity appears satisfied.

Estimate principal components.

3 . pca severity std_log_affected std_log_duration

Principal components/correlation	Number of obs	=	4312
	Number of comp.	=	3
	Trace	=	3
Rotation: (unrotated = principal)	Rho	=	1.0000

Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1 Comp2	1.58649 .884599	.701889 .355685	0.5288 0.2949	0.5288 0.8237
Comp3	.528914	•	0.1763	1.0000

Principal components (eigenvectors)

Variable	Comp1	Comp2	Comp3	Unexplained
severity	0.4067	0.9125	0.0443	0
std_log_af~d	0.6412	-0.3196	0.6977	0
std_log_du~n	0.6508	-0.2554	-0.7150	0

Component 1 explains ~53% of variance, so compute score of that component (pc1) and regress on that alone.

As seen, model R2 is similar to earlier model with separate terms for "magnitude" and "duration " (R2 \sim 0.18 versus \sim 0.19).

4 . regress std_log_displaced pc1

Source	SS	df	MS	Number of obs = $F(1, 3032) = 6$	
	542.436732			Prob > F = 0 $R-squared = 0$.0000
Residual +	2490.56325		.821425874	R-squared = 0 Adj R-squared = 0	

Total	3032.99998	3033 .9999	999994		Root MSE	= .90633
std_log_di~d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pc1 _cons	.3320503 0640488	.0129215 .0166419	25.70 -3.85	0.000 0.000	.3067145 0966794	.3573861 0314183

Regression model with "pc1" appears to be equal to or superior R2 to regression models with "du ration" alone or "magnitude" alone.

5 . regress std_log_displaced severity

Source	ss	df		MS		Number of obs		3034
Model Residual	66.4655162 2966.53446	1 3032		655162 408464		F(1, 3032) Prob > F R-squared Adj R-squared	= =	67.93 0.0000 0.0219 0.0216
Total	3032.99998	3033	.999	999994		Root MSE	=	.98915
std_log_di~d	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
severity _cons	.3714916 4636299	.0450		8.24 -7.85	0.000	.283116 5794086		4598672 3478511

6 . regress std_log_displaced std_log_affected

-		_						
Source	ss	df	MS		Number			3034
Model Residual	333.563804 2699.43618		333.56380 .89031536		F(1, Prob > R-squa: Adj R-:	red	´ = =	374.66 0.0000 0.1100 0.1097
Total	3032.99998	3033	.99999999	4	Root M			.94357
std_log_displa	a~d Coe	f. St	d. Err.	t	P> t	[95%	Conf.	Interval]
std_log_affect co	ced .33624 ons 02895		173714 171955	19.36 -1.68	0.000 0.092	.3021 0626		.3703027 .0047615

7 . regress std_log_displaced std_log_duration

Source		SS	df	M	IS			umber		_	3034	
Model Residual		.448928 88.55105	1 3032	494.44			P	(1, rob > -squar	F	´ =	590.56 0.0000 0.1630	
 Total	303	32.99998	3033	.99999	99994			dj R-s oot MS	-		0.1627 .91502	
std_log_displa	 ı~d	Coef	. s	td. Err	 : •		P> t		[95%	Conf.	Inter	val]
std_log_durati co		.399227		0164281 0168168		4.30 3.78	0.00	-	.3670 .0965		.431 030	

Check assumptions of linear regression for model with principal component alone:

• Assumption of normality of residuals appears satisfied.

• Assumption of homoscedasticity of residuals appears satisfied.

• No evidence of significant collinearity (VIF <10).

8 . vif

Variable	VIF	1/VIF
pc1	1.00	1.000000
Mean VIF	1.00	

• Assumption of linearity appears satisfied.

5. Visually assess relationship between multiple flood characteristics and # displaced

Such a visualization would be difficult to perform with traditional linear regression in the pr esence of multiple independent variables.

6. Summary

Principal components analysis allowed dimension reduction to one dimension, thereby allowing di rect visualization.

Prediction using one principal component was equally predictive as regression limited to one tr aditional independent variable and additionally allowed direct visualization between predictor and outcome. However, the disad vantage of this approach is that the first principal component is more difficult to conceptually understand than a traditional p redictor such as severity.