Measurement of $\sin(2\beta)$ in the decay $B_d^0 \longrightarrow J/\Psi K_s^0$

Johannes Mayer, Patrick Fahner

LHCb, Physikalisches Institut Heidelberg University

29/07/2013

Decay $B_d^0 \longrightarrow J/\Psi K_s^0$ and $B_d^0 - \bar{B}_d^0$ -Mixing

Time-dependent asymmetry

$$\mathcal{A}_{J/\Psi K_s^0}(t) = \frac{\Gamma(\bar{B}_d^0 \to J/\Psi K_s^0) - \Gamma(B_d^0 \to J/\Psi K_s^0)}{\Gamma(\bar{B}_d^0 \to J/\Psi K_s^0) + \Gamma(B_d^0 \to J/\Psi K_s^0)} \tag{1}$$

$=S_{J/\Psi K_s^0} \sin(\Delta m_d t) - C_{J/\Psi K_s^0} \cos(\Delta m_d t) \quad (2)$

sine - term

- interference between direct decay and decay after mixing
- $S_{J/\Psi K_s^0} = \sin(2\beta)$

cosine - term

- interference between decay amplitudes or CPV in mixing
- here: $C_{J/\Psi K_s^0} \approx 0$

Basis of our work

Basis: 2011 LHCb analysis (LHCb-ANA-2012-016)

- data collected 2011
- $\sqrt{s} = 7 \text{TeV}$
- 1.025fb^{-1}
- result: $S_{J/\Psi K_{\epsilon}^0} = 0.72 \pm 0.06 (\text{stat.}) \pm 0.04 (\text{syst.})$
- world average: $S_{J/\Psi K_s^0} = 0.679 \pm 0.020$

Our data:

- only 2012 data
- $\sqrt{s} = 8 \text{TeV}$
- $\approx 2 \mathrm{fb}^{-1}$
- separation into long and downstream tracks

LHCb-detector

Tracks

- Long Tracks: VELO + T Stations (Johannes)
- Downstream Tracks: TT + T Stations (Patrick)

Cuts

- in general took from 2011 analysis
- analysis on detached and biased trigger line
- New in 2012: Ghost probability. We choose ghost prob < 0.5 for π and μ tracks.

Fit strategy

- Unbinned Maximum Likelihood Fit
- sFit: Maximise modified likelihood function

$$\mathcal{L}_{W}(\vec{\lambda}) = \prod_{i=1}^{N} \mathcal{P}(\vec{x_e}; \vec{\lambda})^{W_s(y_e)}$$
 (3)

- sWeigths $W_s(y_e)$ calculated with sPlot-technique
- total decay time p.d.f.

$$\mathcal{P}_{\textit{meas}} = \underbrace{\epsilon(t)}_{=1, \text{ later more}} \mathcal{P}_{\textit{sig}}(t') \otimes \mathcal{R}(t - t')$$
 (4)

Mean dacay time resolution

- hardly any effect on $S_{J/\Psi K_c^0}$ expected
- Resolution model

$$\mathcal{R}(t) = \sum_{i=0}^{3} \frac{f_i}{2\pi\sigma_i} e^{-\frac{t^2}{2\sigma^2}}$$
 (5)

- Use prescaled trigger line
- apply all cuts except lifetime cut
- Perform sFit with reonstructed J/Ψ mass as discriminating variable
- fit only negative decay times (unphysical, explainable only with resolution effects)

Mean dacay time resolution

Long Tracks

Mean decay time resolution Fit results

Parameter		long tracks	downstream tracks
$\overline{\sigma_1}$	(ps)	0.117 ± 0.016	0.480 ± 0.070
σ_2	(ps)	0.061 ± 0.037	0.04396 ± 0.00094
σ_{3}	(ps)	0.037 ± 0.003	0.0932 ± 0.0034
f_1		0.054 ± 0.032	0.00329 ± 0.00099
f_2		0.294 ± 0.138	0.739±0.027

Mass fit

Parameterisation

Signal

$$\mathcal{P}_{m;S}(m; \vec{\lambda}_{m;S}) = f_{S,m} \mathcal{G}(m; m_{B_d^0}, \sigma_{m,1}) + (1 - f_{S,m}) \mathcal{G}(m; m_{B_d^0}, \sigma_{m,2})$$
(6)

Background

$$\mathcal{P}_{m;B}(m;\vec{\lambda}_{m;B}) = e^{-\alpha_m m} / \mathcal{N}_{m;B}$$
 (7)

Total mass p.d.f.

$$\mathcal{P}_{m}(m; \vec{\lambda}_{m}) = f_{sig}\mathcal{P}_{m;S}(m; \vec{\lambda}_{m;S}) + (1 - f_{sig})\mathcal{P}_{m;B}(m; \vec{\lambda}_{m;B}) \quad (8)$$

Mass fit

Long Tracks

Decay time fit

derivation of probability density function

$$\mathcal{P}^{true}(B_d^0/\overline{B_d^0}) \propto \underbrace{\left(1\mp\mu\right)}_{ ext{asymmetric production}} \underbrace{e^{-t/ au}\left[1\mp S_{J/\Psi K_s^0}\sin(\Delta m_d t)
ight]}_{ ext{theoretical decay time distribution}}$$
 (9)

Imperfect tagging:

$$\mathcal{P}^{meas}(B_d^0) \propto (1 - \omega_{B_d^0}) \mathcal{P}^{true}(B_d^0) + \omega_{\overline{B_d^0}} \mathcal{P}^{true}(\overline{B_d^0})$$
 (10)

$$\mathcal{P}^{meas}(\overline{B_d^0}) \propto (1 - \omega_{\overline{B_d^0}}) \mathcal{P}^{true}(\overline{B_d^0}) + \omega_{B_d^0} \mathcal{P}^{true}(B_d^0)$$
 (11)

Combination of all effects and defining

$$\Delta p_0 = \omega_{B_d^0} - \omega_{\overline{B_d^0}} \tag{12}$$

$$\omega_{B_d^0/\overline{B_d^0}} = \omega \pm \frac{\Delta p_0}{2} \tag{13}$$

leads to...

Decay time fit

probability density function used in fit

$$\mathcal{P}_{\text{meas}}(t,d,\omega) \propto e^{-t/\tau} \left\{ 1 - d\mu(1 - 2\omega) - d\Delta p_0 - \left[d(1 - 2\omega) - \mu(1 - d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right\}$$

$$(14)$$

- d: tagging decision
- $\blacksquare \ \mu = A_P = \frac{R_{\bar{B}_d^0} R_{B_d^0}}{R_{\bar{B}_d^0} + R_{B_d^0}} \text{ production asymmetry}$
- lacksquare ω : calibrated mistag probability

$$\omega(\eta^{OS}) = p_1(\eta^{OS} - \langle \eta^{OS} \rangle) + p_0 \tag{15}$$

 p_0, p_1 : calibration parameters η^{OS} : predicted mistag probability

- Δp_0 : tagging calibration asymmetry
- $lack \Delta m_d$: mixing frequency

Fit results

- floating parameters: $S_{J/\Psi K_s^0}$, τ , Δm_d
- constrained parameters: $\mu = -0.015 \pm 0.013$, $p_0 = 0.382 \pm 0.003$, $p_1 = 0.981 \pm 0.024$, $\Delta p_0 = 0.0045 \pm 0.0053$
- fixed parameters: $\langle \eta^{OS} \rangle = 0.382$, resolution parameters
- total events: ??? (long) // 12689 (downstream)
- signal events: ??? (long) // 8585 (downstream) [2011: 8600 total]

Fit results

Long Tracks

fit results

Note: Both results of $S_{J/\Psi K_s^0}$ are blinded with the same string.

Parameter	long	downstream
$S_{J/\Psi K_s^0}$ (blinded)	±	0.565 ± 0.069
$ au_{eff}$	\pm	1.516 ± 0.039
Δm_d	\pm	0.521 ± 0.039

- Fit Bias due to fit method sFit
- Tagging calibration
- Time acceptance
- Correlation mass ↔ decay time
- Time resolution

Generate Toy MC with

- ??? (long) resp. 13000 events (downstream)
- $S_{J/\Psi K_{\epsilon}^0} = 0.75$
- all other parameters derived from nominal fit
- lacksquare $S_{J/\Psi K_s^0}$, au, Δm_d floating

Fit Bias

Long Tracks

Fit Bias

Results of the toys:

Long Tracks

Downstream Tracks

$$\begin{split} &\mu_{\mathcal{S}_{J/\Psi \mathcal{K}_s^0}} = 0.7548 \pm 0.0005 \\ &\sigma_{\mathcal{S}_{J/\Psi \mathcal{K}_s^0}} = 0.0672 \pm 0.0003 \\ &\mu_{\mathrm{pull}} = 0.068 \pm 0.007 \\ &\sigma_{\mathrm{pull}} = 0.946 \pm 0.005 \end{split}$$

Multiply mean μ of pull distribution with statistical uncertainty of nominal fit.

Long Tracks

$$\delta S_{J/\Psi K_c^0}^{\text{Fit}} = xxx$$

Downstream Tracks

$$\delta S_{J/\Psi K_{\varepsilon}^0}^{\mathrm{Fit}} = 0.0047$$

Fit Bias - origins

- too small pull width: background
- major contribution to bias: statistics

Fit Bias depending on number of generated events

Tagging calibration

Vary Tagging calibration parameters $p_0, p_1 \pm$ their systematic uncertainties

- 1 in the nominal fit
- 2 in the generation of Toy MC, but fit with original values

Note: Systematic studies on used tagging calibration hasn't finished yet \longrightarrow no official value. We use largest differences in channels so far:

$$\delta p_0^{stat.} = 0.019, \qquad \delta p_1^{stat.} = 0.07$$

Tagging calibration

Choose highest difference from nominal fit / toy as estimate for the systematic uncertainty

- Long tracks:
- Downstream tracks: $\delta S_{J/\Psi K_s^0}^{\mathsf{TagCalib}} = 0.095$

Note: Estimates very large due to large $\delta p_0^{stat.}$, $\delta p_1^{stat.}$ compared to other calibrations (systematic studies of calibration need to be finished)

Time acceptance

Note: just a cross-check, no in-depth analysis

Determination of an acceptance function

- no separation between B_d^0 and $\overline{B_d^0}$ ⇒ simple exponential decay
- neglect lifetime cut (t > 0.3ps)
- contributions to acceptance:
 - turn-on-effect
 - decreasing acceptance for higher lifetimes due to VELO geometry

Time acceptance

Fit p.d.f

$$\mathcal{P}_{acc}(t) \propto \underbrace{e^{-t/ au}}_{ ext{exp. decay}} \cdot \underbrace{\frac{2}{\pi} \arctan[t \cdot \exp(at+b)]}_{ ext{turn-on-effect}} \cdot \underbrace{\frac{(1+eta t)}_{ ext{higher lifetimes}}}_{ ext{higher lifetimes}}$$

Note: au will be constrained to the PDG value $au=1,519\pm0,007\mathrm{ps}.$

Time acceptance

Long Tracks

Time acceptance

Time acceptance

Table : Fit results for exponential decay fit with acceptance function. au was constrained to the PDG value $au=1,519\pm0,007\mathrm{ps}$

parameter	long	long
$\overline{\tau}$	±	1.519 ± 0.007
a	\pm	52.8 ± 8.6
Ь	\pm	-9.2 ± 1.6
β	土	-0.0053±0.0089

Time acceptance

Toy MC Study

- generate with acceptance function
- use parameters mentioned above
- fit without acceptance function
- \blacksquare compare mean of $S_{J/\Psi K_s^0}$ distribution with cooresponding mean of fit bias toy

Assignment of systematic error due to neglect of any time acceptance:

Long Tracks

$$\delta S_{J/\Psi K_c^0}^{\mathrm{Acc}} = xxx$$

Downstream Tracks

$$\delta S_{J/\Psi K_s^0}^{\mathsf{Acc}} = 0.0013$$

Correlation mass \leftrightarrow decay time

Fit reconstructed B_d^0 -mass in different time bins. Subsequently, fix mass values to the values obtained in the 4 bins and fit the whole sample. Choose highest difference of $S_{J/\Psi K_c^0}$ as estimate.

Bin	time range of mass fit	long	down
1	$t \in [0.3, 0.7] \text{ps}$	\pm	0.559 ± 0.069
2	$t \in [0.7, 1.5] ext{ps}$	\pm	$0.567 {\pm} 0.068$
3	$t \in [1.5, 3] \text{ps}$	\pm	$0.566 {\pm} 0.069$
4	$t \in [3, 14] \mathrm{ps}$	\pm	$0.566 {\pm} 0.069$
weig	hted average	±	0.565 ± 0.034
nomi	nal fit	±	0.565 ± 0.069
$\delta S_{J/}^{ma}$	ΨK_s^0	XXX	???
	-		

Resolution

Vary σ_i of resolution $\pm 20\%$, fit with these parameters and compare $S_{J/\Psi K_z^0}$

	long	down
+20%	±	0.565 ± 0.069
-20%	\pm	$0.564 {\pm} 0.069$
nominal fit	±	0.565 ± 0.069
$\delta \mathcal{S}_{J/\Psi \mathcal{K}_s^0}^{ ext{resolution}}$	XXX	0.001

Summary

effect	long	downstream
fit method		0.0047
tagging calibration		0.0952
time acceptance		0.0013
$mass \leftrightarrow decay \; time$???
resolution		0.001
total		xxx

Conclusion

Long Tracks

$$S_{J/\Psi K_s^0} = xxx \pm xxx(\text{stat.}) \pm xxx(\text{syst.})$$

$$S_{J/\Psi K_s^0} = 0.565 \pm 0.069 ({
m stat.}) \pm xxx ({
m syst.})$$

Both results are blinded with the same string

Conclusion

Comparison with other results

	$S_{J/\Psi K_s^0}$
long tracks (blinded)	土
downstream tracks (blinded)	$0.565 {\pm} 0.069$
2011 analysis	0.72 ± 0.06
world average	0.679 ± 0.020
BaBar (most precise)	0.687 ± 0.028