

Einführungsveranstaltung Terrestrische Lokomotion (Test-Modul 6.x)

Kinematische und kinetische Analysen der terrestrischen Lokomotion

2D vs. 3D

verantwortlicher Dozent: Prof. Dr. A.B. Kesel

Betreuer: M. Sc. Nils Owsianowski

Art: seminaristischer Unterricht / Praktikum

Umfang: 4+2 SWS (6 credit points)

Programmablauf

Sicherheitseinweisung mit Florian

Aufteilung der Präsentationsthemen

Theorie:

- Anthropometrie und Anatomie
- · Muskelaufbau und seine Leistungsgrenzen
- · Fortbewegungsbezogene Parameter

Einführung in das Messsystem:

- Messaufbau
- · Waagenkalibrierung
- · Datenerhebung
- · Synchronisation der Daten

Präsentationsthemen

Studienleistung:

Präsentation aus der Theorie der terrestrischen Lokomotion

Themenbeispiele:

- Extremitätenlose Lokomotion (Schlangen, Anneliden)
- Hexapode Lokomotion (Insecta)
- Deca-/octopode Lokomotion (Crustacea)
- Quadrupede Lokomotion (Reptilia oder Mammalia)
- Bipede Lokomotion (Aves oder Homo sapiens)
- Neuronale Lokomotionskontrolle (CPG, CNS)
- Gangarten der quadrupeden Lokomotion
- Mathematische Modelle
- Lokomotion unter Extrembedingungen (Berge, Sand, Bäume ...)

Bestimmung von:

• Segmentlängen bzw. Körperproportionen

Entweder:

 Direktes Messen der Segmentlängen

Oder:

 Abschätzung aus der Körpergröße

Winter (2009)

SILVIN

Bestimmung von:

- Körpersegmentgewichten
- Segmentschwerpunkten

Körperschwerpunkt:

$$w_1 x_1 + w_2 x_2 = S x_3$$
$$x_2 = \frac{S x_3 - w_1 x_1}{w_2}$$

Segmentgewicht:

$$W_4(x_4 - x_5) = (S^1 - S)x_3$$
$$w_4 = \frac{(S^1 - S)x_3}{(x_4 - x_5)}$$

Winter (2009)

Bestimmung von:

• Trägheitsradien Quick release technique

$$M = F * y1$$
$$a = y2 * \alpha$$

$$I = \frac{M}{\alpha} = \frac{F * y1 * y2}{a}$$

Bestimmung von:

• Trägheitsradien

Berechnung des Massenträgheitsmoments

Berechnung des Trägheitsradius

Begriff des Trägheitsradius				
Trägheitsradius i	$i = \sqrt{\frac{J_Z}{m}}$	$egin{array}{c} i \ J_Z \ m \end{array}$	Radius Massenträgheitsmoment Masse	m kg·m ² kg

TABLE 4.1 Anthropometric Data

Segment	Definition	Segment Weight/Total Body Weight	Center of Mass/ Segment Length		Radius of Gyration/ Segment Length			
			Proximal	Distal	C of G	Proximal	Distal	Density
Hand	Wrist axis/knuckle II middle finger	0.006 M	0.506	0.494 P	0.297	0.587	0.577 M	1.16
Forearm	Elbow axis/ulnar styloid	0.016 M	0.430	0.570 P	0.303	0.526	0.647 M	1.13
Upper arm	Glenohumeral axis/elbow axis	0.028 M	0.436	0.564 P	0.322	0.542	0.645 M	1.07
Forearm and hand	Elbow axis/ulnar styloid	0.022 M	0.682	0.318 P	0.468	0.827	0.565 P	1.14
Total arm	Glenohumeral joint/ulnar styloid	0.050 M	0.530	0.470 P	0.368	0.645	0.596 P	1.11
Foot	Lateral malleolus/head metatarsal II	0.0145 M	0.50	0.50 P	0.475	0.690	0.690 P	1.10
Leg	Femoral condyles/medial malleolus	0.0465 M	0.433	0.567 P	0.302	0.528	0.643 M	1.09
Thigh	Greater trochanter/femoral condyles	0.100 M	0.433	0.567 P	0.323	0.540	0.653 M	1.05
Foot and leg	Femoral condyles/medial malleolus	0.061 M	0.606	0.394 P	0.416	0.735	0.572 P	1.09
Total leg	Greater trochanter/medial malleolus	0.161 M	0.447	0.553 P	0.326	0.560	0.650 P	1.06
Head and neck	C7-T1 and 1st rib/ear canal	0.081 M	1.000	-PC	0.495	0.116	— PC	1.11
Shoulder mass	Sternoclavicular joint/glenohumeral axis	_	0.712	0.288			_	1.04
Thorax	C7-T1/T12-L1 and diaphragm*	0.216 PC	0.82	0.18				0.92
Abdomen	T12-L1/L4-L5*	0.139 LC	0.44	0.56				_
Pelvis	L4-L5/greater trochanter*	0.142 LC	0.105	0.895		_		
Thorax and abdomen	C7-T1/L4-L5*	0.355 LC	0.63	0.37			_	_
Abdomen and pelvis	T12-L1/greater trochanter*	0.281 PC	0.27	0.73		2010		1.01
Trunk	Greater trochanter/glenohumeral joint*	0.497 M	0.50	0.50	-	_		1.03
Trunk head neck	Greater trochanter/glenohumeral joint*	0.578 MC	0.66	0.34 P	0.503	0.830	0.607 M	
Head, arms, and trunk (HAT)	Greater trochanter/glenohumeral joint*	0.678 MC	0.626	0.374 PC	0.496	0.798	0.621 PC	_
HAT	Greater trochanter/mid rib	0.678	1.142		0.903	1.456	_	_

Winter (2009)

Einführung in den Messaufbau

6-Komponeten Waage

- · Kräfte x-, y- und z-Richtung
- · Plus 3 Momente

Waagenkalibrierung

Ausgabe in [V] auf 8 Kanälen:

1: x1 + x2

2: x3 + x4

3: y1 + y4

4: y2 + y3

5: z1

6: z2

7: z3

8: z4

3-Punkt bzw. 4-Punkt Kalibrierung

• 3 Raumrichtungen x, y und z

 Belastung in 3 bzw. 4 Stufen, um eine lineare Korrelation zwischen Belastungskraft und Ausgabedaten in Volt zu bestimmen Berechnung Kräfte &

Momente:

Fx = K1 + K2

Fy = K3 + K4

Fz = K5 + K6 + K7 + K8

Mx = b(K5+K6-K7-K8)

My = a(-K5+K6+K7-K8)

Mz = b(-K1+K2)+a-(K3-K4)

a = 30mm

b = 57,5mm

Datenerhebung

Datenaufnahme:

- Videoaufnahme mit 50 Hz
- Bodenreaktionskräfte
 - Kistler Kraftmessplatte
 - Datenrate 100 Hz
 - Daten werden mit DasyLab aufgenommen

Synchronisation

Bei der Datensynchronisation findet ein Abgleich des Videomaterials und der Bodenreaktionskräfte statt.

Datenaufnahme, Berechnung und Filterung

Datenaufnahme:

- Messen der Bodenreaktionskräfte
- Digitalisieren des Videomaterials
- Pro Student eine charakteristische Aufnahme

Datenberechnung:

- Berechnung von linearen Geschwindigkeiten und Beschleunigungen
- Berechnung von
 Winkelgeschwindigkeiten und
 Winkelbeschleunigungen

Datenfilterung:

- Anwendung und Berechnung von einem Gleitenden Mittelwert

Datenaufnahme, Berechnung und Filterung

Kinetischen Berechnungen

Auf der Grundlage von David A. Winter werden:

- Kräfte & Momente in den Gelenken berechnet
- Berechnung mittels inverser Dynamik

Literatur

Winter D. A. (2009): biomechanics and Motor Control of Human Movement, 4th printing, John Wiley & Sons Inc., New Jersey, ISBN: 978-0-470-39818-0

Biewener A. A. (2003): Animal Locomotion, Oxford University Press, ISBN: 0-19-850022-X

Alexander, R. McN. (2006): Principles of Animal Locomotion, 2nd printing, Princeton University Press: ISBN 0-691-12634-8

Gray, Sir J. (1968): Animal Locomotion, Weidenfeld & Nicolson

