

19	
1)	Veff (91)2 +2 l(1+1) -Ke2 2m 92 91
	4m 92 4
	first terms - Time is a fine of the
	first term! It is the centripetal potential related to
	912
	Second terms it is the Combombic Potential, related to
	91
	when 170 (in not Sontatu), Centrapetal potential in
· Agile	dominant, i.e.
7.71	electrone of P,d,f or bitale are for from nucleup them electronp in S-orbitals [120]
77.5 T	nucleup then electronp in S-orbitals (120
	Marint .

```
1
     #name : Gaurav
 2
     #rollno : 2020PHY1122
 3
 4
     import numpy as np
 5
     import matplotlib.pyplot as plt
 6
     import pandas as pd
 7
     from scipy.linalg import eigh
 8
     from scipy.special import assoc_laguerre as al
 9
10
11
     def V(r):
12
         return -2/r
13
14
     def V_eff(l, r):
15
         return l*(l+1)/(r**2) + V(r)
16
17
     def fin diff(X,l):
18
         #h = (b-a)/(n-1) #n is number of grid points
19
         n = len(X)
20
         K,V = np.zeros((n,n)),np.zeros((n,n))
21
         h = X[1] - X[0]
22
         #X = np.linspace(a,b,n)
23
24
         v = V_eff(l, X)
25
26
         K[0,0] = -2; K[0,1] = 1
27
         K[n-1,n-1] = -2;K[n-1,n-2] = 1
28
29
         for i in range(n):
30
             V[i,i] = v[i]
31
         for i in range(1,n-1):
```

```
31
           for i in range(1,n-1):
32
                K[i,i]=-2
33
                K[i,i-1]=1
34
                K[i,i+1]=1
35
36
           H = (-1*K)/(h**2) + V
37
           U = eigh(H)[1]
38
39
           e = eigh(H)[0]
40
41
           return [e,U]
42
      def MySimp(x,y): #x here is the array of independent variable and y for dependent variable
  # calculating step size
  h = abs((x[-1] - x[0]) / len(x))
43
44
45
46
           simpint = y[0] + y[-1]
47
48
49
           for i in range(1,len(x)):
50
51
                if i%2 == 0:
52
                    simpint = simpint + 2 * y[i]
53
                else:
54
                    simpint = simpint + 4 * y[i]
55
           \mbox{\# multiply h/2 with the obtained integration to get Simpson integration} simpint =simpint * h/3
56
57
58
59
           return simpint
60
61
      def normalize(wavefx,wavefy,int_method = MySimp): #this function returns list including normalisation constant and
62
                                                        #normalised eigen function
           I = int\_method(wavefx, wavefy**2)
A = (I)**(-1/2)
63
64
65
           return [A,A*wavefy]
66
```

```
def plots(x,y1,y2,title,color = None): #num defines if there would be only one plot or more
      for i in range(len(y1)):
            plt.plot(x, y2[i], label='analytical l = '+ str(i),c = color[i][0])
plt.scatter(x, y1[i],s=5, label='computed l = '+ str(i),c=color[i][1])
      plt.grid()
      plt.xlabel('x')
      plt.ylabel('u**2')
      plt.xlim(0,10)
      plt.title(title)
      plt.legend()
      plt.show()
 \begin{array}{ll} \textbf{def} & \textbf{analytical\_sol}(x,n,l): \\ & \textbf{anal} = & \textbf{np.exp}(-x/n)*(2*x/n)**l*al(2*x/n,n-l-1 \ ,2*l+1) \end{array} 
      norm_anal = normalize(x, anal)[1]
      return norm_anal
#PROGRAMMING
#part a_i
r = np.linspace(10**(-14), 150, 1000)
for i in range(1, 4): # l= 1,2,3
    plt.plot(r, V_eff(i, r),label = 'V_eff for l='+str(i))
plt.plot(r, V(r),label = "V(r)",c = 'y')
plt.title("plot of potential vs x")
plt.xlabel("r")
plt.ylabel("v(r)")
plt.grid()
plt.legend()
plt.show()
```

```
10,11,12 = 0,1,2
  sol = fin\_diff(r,l0) \\ print("for l = 0") \\ print("THE FIRST 10 EIGEN VALUES COMPUTED USING FINITE DIFFERENCE METHOD FOR L = 0 ARE : ") 
anal_e = []
for i in range(1,11):
    anal_e.append(-1*(i)**-2)
print(pd.DataFrame({'COMPUTED e':sol[0][1:11], 'ANALYTICAL e':anal_e}))
for i in range(1,5):
    u = sol[1][:, i]
    norm_u = normalize(r, u)[1] #normalised wave using normalise function
    anal = analytical_sol(r, i, l0)
    sign = [1, -1, 1, -1]
    plt.scatter(r,norm_u,s=5,label = 'computed',c = 'r')
    plt.plot(r,sign[i-1]*anal,label = 'analytical')
plt.xlabel('X')
 plt.xlim(0,50)
plt.ylabel('U')
    plt.title("PLOT FOR U VS X FOR N = "+str(i))
    plt.grid();plt.legend()
plt.show()
print('')
print("for l = 1")
sol_1 = fin_diff(r[1:],1)
print("THE FIRST 10 EIGEN VALUES COMPUTED USING FINITE DIFFERENCE METHOD FOR L = 1 ARE : ")
```

```
for l = 0
THE FIRST 10 EIGEN VALUES COMPUTED USING FINITE DIFFERENCE METHOD FOR L = 0 ARE :
   COMPUTED e ANALYTICAL e
0
    -0.994426
                  -1.000000
1
    -0.249649
                  -0.250000
2
    -0.111042
                  -0.111111
3
                  -0.062500
    -0.062478
4
    -0.039991
                  -0.040000
5
    -0.027773
                  -0.027778
6
    -0.020404
                  -0.020408
7
    -0.015488
                  -0.015625
8
    -0.010963
                  -0.012346
```

-0.005321

-0.010000

```
for l = 1
THE FIRST 10 EIGEN VALUES COMPUTED USING FINITE DIFFERENCE METHOD FOR L=1 ARE :
   COMPUTED e ANALYTICAL e
0
    -0.250118
                  -0.250000
1
    -0.111165
                  -0.111111
2
    -0.062528
                  -0.062500
3
    -0.040016
                  -0.040000
4
    -0.027788
                  -0.027778
5
    -0.020413
                  -0.020408
6
    -0.015508
                  -0.015625
7
    -0.011049
                  -0.012346
```

9

-0.005507

0.001283

-0.010000

-0.008264

```
for l = 2
THE FIRST 10 EIGEN VALUES COMPUTED USING FINITE DIFFERENCE METHOD FOR L = 2 ARE :
   COMPUTED e ANALYTICAL e
0
    -0.111116
                  -0.111111
1
    -0.062504
                  -0.062500
2
                   -0.040000
    -0.040003
3
    -0.027780
                  -0.027778
4
    -0.020409
                  -0.020408
5
                  -0.015625
    -0.015528
6
                  -0.012346
    -0.011193
7
                  -0.010000
    -0.005842
8
    0.000735
                  -0.008264
```

0.008438

-0.006944

