Implémentation de l'algorithme de Dinic et d'Edmonds-Karp

TP Algorithmique, Complexité & Calculabilité (FMIN105)

William Dyce Thibaut Marmin Clément Sipieter

Université Montpellier 2

15 Décembre 2011

Présentation du sujet Conclusion

Implémentation Démonstration

Présentation du sujet Algorithmes

Conclusion

Démonstration

Implémentation

Algorithmes Edmonds-Karp

Algorithmes Dinic

Présentation du sujet

Conclusion

Implémentation

Diagramme de classes Génération de réseaux de transport aléatoires Choix techniques Fonctionnement général Démonstration

Diagramme de classes

Génération de réseaux de transport aléatoires

Stratégie de génération

- génération de n points
- génération d'un chemin de taille n

Choix techniques

- Choix du langage
- Choix d'implémentation
- Etc. . .

Choix techniques Structures de données

Fonctionnement général

Présentation du sujet

Conclusion

Implémentation

Démonstration

Tests & résultats
Méthode de tests
Résultats

Méthode de tests Série de tests

Complexité

• Edmonds-Karp : $O(nm^2)$

• Dinic : $O(n^2m)$

Tests effectués

• Nombre de sommets: 100, 200, 300, ... 1000

• Couverture du graphe : 10%, 20%, 30%, ... 100%

Méthode de tests Profiling

GNU gprof

Profiler, analyse du code en fonction du temps passé par chaque fonction à l'exécution.

- Compilation avec l'argument -pg
- Exécution du programme, génération du fichier gmon.out
- Exportation des statistiques en fichier texte

Tests & résultats Profiling

GNU gprof

Statistique fournies pour chaque fonction :

- % temps cpu total
- temps cpu
- temps cpu par appel (de manière cumulative ou non)

Résultats

Test 1

Résultats

Test 2

Résultats

Test 3

Présentation du sujet

Conclusion Conclusion

Implémentation

Démonstration

Conclusion

Présentation du suiet

Conclusion

Implémentation

Démonstration
Démonstration

Démonstration