

金属钠

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

把 $MgCl_2$ 、 $AlCl_3$ 和 NaOH 三种固体组成的混合物溶于足量水后有 1.16g 白色沉淀,在所得的浊液中逐滴加入 1mol/L 的盐酸,加入盐酸的体积与生成沉淀的质量关系如右图所示。

试回答:

(1) A 点的沉淀物的化学式为_____, B 点的沉淀物的化学式为

- (2) 求原混合物中 MgCl₂、AlCl₃和 NaOH 的质量各为多少克?
- (3) 求 x 点加入盐酸的体积为多少毫升?

学习目标	1、熟练掌握金属钠的物理性质、化学性质。 2、掌握碱金属的递变规律,以及一些性质上的特例。
&	
重难点	1、金属钠的化学性质。
	2、碱金属的递变规律。

一、金属钠

1 . 原子结构示意图
Na (1) $\begin{pmatrix} 1 \\ 2 \\ 8 \end{pmatrix}$
钠的化学性质很活泼,所以它在自然界里不能以态存在,只能以态存在。
2. 物理性质
钠单质很软,可以用小刀切割。切开外皮后,可以看到钠具有色的金属光泽,
很快就会被失去光泽。钠是热和电的良导体,钾钠合金(液态)是原子堆导热
剂。钠比水的密度, 比煤油密度, 钠的熔点是 97.81℃,沸点是 882.9℃。
3. 化学性质 钠原子的最外层只有 1 个电子,很容易失去。因此,钠的化学性质非常活泼,在与
其他物质发生氧化还原反应时,作剂,都是由 0 价升为价。金属性强。其离
子氧化性弱。
(1) 钠与氧气反应
① 常温下,表面逐渐变暗,失去金属光泽,生成色固体
方程式:
② 加热或点燃下,剧烈燃烧,产生黄色火焰,生成色固体
方程式:
(2) 钠能跟卤素、硫、磷、氢等非金属直接发生反应,生成相应的化合物(以下反应常
温下均反应),如
① 2Na+Cl ₂ →(放出大量热,生成大量烟)
② $2Na+S \rightarrow \underline{\hspace{1cm}} 2Na+Br_2 \rightarrow \underline{\hspace{1cm}}$

EYTELL EDUCATION	成长为梦想
(3)钠与水反应	
观察到的现象及由现象得出的结论有:	
①钠浮在水面上	
②钠熔成一个闪亮的小球	
③钠在水面上四处游动	
④发出嘶嘶的响声	
⑤事先滴有酚酞试液的水变红	
反应方程式:	
(4) 钠与酸溶液反应	
钠与酸溶液的反应涉及到钠的量,如果钠少量,只能与酸反应,	如钠与盐酸的反应
如果钠过量,则优先与反应,然后再与酸溶液中的	反应
(5) 钠与盐反应	
①与盐溶液反应	
钠与硫酸铜溶液:	
	_
钠与氯化铵溶液:	
	_
钠与氯化铁溶液:	
②与熔融盐反应钠与 TiCl4:	
【注意】①钠投入盐溶液中先与水反应生成碱,再考虑碱与盐的反应。	
②钠从盐溶液中置换出金属(填"能"或"不能"),但每	ㅠatvuu +b
中置换出较不活泼的金属。	N
下且 茨山 权小伯 奴 的亚 病 。	
4. 金属钠的制备	
电解熔融的氯化钠:	

5. 金属钠的取用

取(镊子)、吸(滤纸)、放(玻璃片)、切、返(剩余钠返回原试剂瓶)

6. 金属钠的用途

①工业上用钠作强还原剂,用于冶炼金属,如 Ti;

②Na-K 合金(液态)用作原子(或快中子)反应堆的;

③在电光源上,用钠制____;

④制过氧化钠。

【答案】游离 化合 银白 氧化 小 大

白色 $4Na+O_2\rightarrow 2Na_2O$ 淡黄色 $2Na+O_2$ ^{点燃} Na_2O_2

①金属钠的密度比水小 ②反应放热,金属钠的熔点小 ③产生气体推动钠球游动

④反应剧烈 ⑤反应生成了强碱 NaOH 2Na+2H₂O→2NaOH+H₂个 酸 水

 $2Na+2H_2O \rightarrow 2NaOH+H_2\uparrow$, $2NaOH+CuSO_4 \rightarrow Cu(OH)_2 \downarrow +2H_2O$

 $2Na+2H_2O \rightarrow 2NaOH+H_2\uparrow$, $2NaOH+2NH_4CI \rightarrow 2NaCI+2NH_3\uparrow +2H_2O$

 $2Na+2H_2O \rightarrow 2NaOH+H_2 \uparrow$, $3NaOH+FeCl_3 \rightarrow Fe(OH)_3 \downarrow +3NaCl$

4Na+TiCl₄ 4NaCl+Ti 不能 熔融

2NaCl(熔融) ^{通 电} 2Na+Cl₂ ↑ 导热剂 钠光灯,因为黄光透雾能力强

二、碱金属

名称	和符号	锂(Li)	钠(Na)	钾 (K)	铷(Rb)	铯 (Cs)	
	原子序数						
	原子结构简 图				2,8,8,18,1	2,8,8,18,18,1	
结构	主要化合价						
	相同点	最外层电子数相同,都是 1 个电子					
	不同点	杉	核电荷数不同,原子核外电子层数不同,依次增多				
	颜色和状态	银白色固体(铯略带金色)					
物理性质	密度	0.534g/cm ³	0.97g/cm ³	0.86g/cm ³	1.523g/cm ³	1.879g/cm ³	
	熔沸点	随着核电荷数的增大,单质的熔沸点依次。					
	与氧气反应				复杂的	氧化物	
	与卤素反应	2M+X₂→2MX(M、X₂表示碱金属、Cl₂等)					
	与硫反应	2M+S→M₂S					
化学性质	与水反应	2M+2H ₂ O→MOH+H ₂ ↑ 反应剧烈程度:					
	与酸反应	2M+2H ⁺ →2M ⁺ +H ₂ ↑ (若碱金属有剩余,再与水反应)					
	跟盐溶液反 应	如与 CuSO₄溶液反应: 2Na+2H₂O→2NaOH+H₂ CuSO₄+2NaOH→Cu(OH)₂↓+Na₂SO₄					
制	法	2N	MCI 熔融 2M+C	l₂↑ (K: Na+KC	I 熔融 K个+NaC	1)	

【答案】3 11 19 37 55 减小 Li_2O Na_2O (常温) Na_2O_2 (点燃) K_2O (氧化钾) K_2O_2 (过氧化钾) KO_2 (超氧化钾)

Li<Na<K<Rb<Cs

总结:

1. 对于碱金属元素,随着核电荷数的逐渐增大,电子层数依次增多,原子半径依次增大,失电子能力依次增强,活泼程度增强。

- 2. 对于碱金属单质,随着核电荷数的逐渐增大,还原性依次增强,密度趋向增大,熔沸点依次降低(原因,可与卤素对比),硬度趋向减小
 - 3. 对于碱金属化合物,随着核电荷数的逐渐增大,氢氧化物都是强碱,且碱性逐渐增强。
 - 4. 碱金属的性质规律与特例:
 - ①通常合金多呈固态,而钠钾合金却是液态。
 - ②碱金属单质在空气或氧气中燃烧时,生成过氧化物甚至比过氧化物更复杂的氧化物,而 Li 只生成 Li₂O。
 - ③碱金属单质密度一般随核电荷数增大而递增,但 K 的密度比 Na 小。
 - ④碱金属单质一般跟水剧烈反应,但 Li 跟水反应缓慢 (LiOH 溶解度小)。
 - ⑤碱金属单质因其活动性强,多保存在煤油中,而 Li 却因密度比煤油更小,只能保存在液体石蜡中。
 - ⑥碱金属的盐一般都易溶于水,但 Li₂CO₃ 却微溶。
 - ⑦一般说,酸式盐较正盐溶解度大,但 NaHCO3 却比 Na2CO3溶解度小。
 - ⑧试剂瓶中的药品取出后,一般不能放回原瓶,但 IA 金属 Na、K 等除外。
 - ⑨一般活泼金属能从盐中置换出不活泼金属,但对 IA 非常活泼的金属 $Na \setminus K$ 等除外。如: $2Na+CuSO_4+2H_2O \rightarrow Cu(OH)_2 \downarrow + H_2 \uparrow + Na_2SO_4$ 。
 - ⑩Fr 是放射性元素,所以在自然界中不存在。

枝繁叶茂

知识点 1: 金属钠的化学性质

【例1】把小块金属	钠投入饱和石灰水中	, 不会出现的现象是	()
①溶液中出现白	1色浑浊物 ②不	有金属钙被还原出来		
③反应过程中易	易发生爆炸 ④银	内熔成小球在液面上迅	速游动	
A. ①③	В. 23	C. ②		D. ①②
【难度】★				
【答案】				
变式1:金属钠与下	列溶液反应时,既有	了白色沉淀析出又有气	体逸出的是	()
A. BaCl ₂ 溶液		B. K ₂ SO ₄ 消	容液	
C. FeCl ₃ 溶液		D. Ca(HCC	03)2溶液	
【难度】★★				
【答案】D				
变式 2: (双选)将	子金属钠分别投入下列]物质的溶液中,有气	体放出,且沟	容液质量减轻的是
()				
A. HCl	B. K ₂ SO ₄	C. CuCl ₂	D. /	饱和 NaOH 溶液
【难度】★★				
【答案】CD				
【方法提炼】				

1、金属钠与可溶性盐溶液反应解题思路

2、金属钠与溶液反应现象分析思维模板

(1)共性:因为钠在上述反应中均属于剧烈的置换反应,故有共同的现象产生:①浮:钠浮在液面上;②熔:钠熔化成光亮的小球;③游:在液面上不停地游动直至反应完;④响:反应中不停地发出"嘶嘶嘶"的响声。

(2)差异性:与酸及能形成弱碱的金属盐溶液反应时,由于溶液中H-浓度较大,反应比钠与水剧烈,最后钠可能在液面上发生燃烧;与盐溶液反应时,还可能会生成沉淀(如生成难溶碱)、气体(NH₃)等。

知识点 2: 碱金属元素性质规律的应用

【例2】下列叙述正确的是()

- A. 碱金属性质相似均为银白色金属
- B. 随原子序数的增大碱金属的密度依次增大
- C. 钠可保存在煤油中而锂不能
- D. 碳酸氢盐的溶解度大于其正盐的溶解度

【难度】★★

【答案】C

【解析】碱金属中铯为略带金色光泽的金属,故 A 项不正确;钾的密度为 0.86 g·cm⁻³,比钠的密度(0.97 g·cm⁻³)小,B 项不正确;锂的密度为 0.534 g·cm⁻³,比煤油的密度小,可浮于煤油上,所以锂要用密度更小的石蜡密封保存;碳酸氢盐一般比其正盐易溶,但 NaHCO₃例外,D 项不正确。

变式1: 有关碱金属的叙述正确的是()

- A. 随核电荷数的增加,碱金属单质的熔点逐渐降低,密度逐渐增大
- B. 碱金属单质的金属性很强,均易与氯气、氧气、氮气等发生反应
- C. 碳酸铯加热时不能分解为二氧化碳和氧化铯
- D. 无水硫酸铯的化学式为 Cs₂SO₄, 它不易溶于水

【难度】★★

【答案】C

【解析】钾的密度小于钠的密度,这是碱金属单质密度依次增大的一个例外。碱金属中除锂外,均不与氮气直接反应。Cs 与 Na 同为碱金属元素,性质相似。由 Na₂SO₄易溶于水,可得出 Cs_2SO_4 也易溶于水;由 Na₂CO₃加热不分解,可得出 Cs_2CO_3 加热也不分解。

变式 2: 金属活动性顺序表中 K 在 Na 的前面, K 与 Na 在性质上具有很大的相似性。下面是根据 Na 的性质对 K 的性质的预测, 其中不正确的是 ()

- A. K 在空气中可以被空气中的氧气氧化
- B. K可以与乙醇发生反应生成氢气
- C. K与水的反应不如钠与水的反应剧烈
- D. K 也可放在煤油中保存

【难度】★★

【答案】C

【解析】金属活动性顺序表中 K 在 Na 的前面, K 比 Na 活泼, 故 K 在空气中可以被氧气氧化, A 项正确; Na 与乙醇能够反应放出氢气, K 也能与乙醇反应放出氢气, B 项正确; K 与水的反应比 Na 与水的反应剧烈, C 项错误; Na、K 均可放在煤油中保存, D 项正确。

【方法提炼】

碱金属常从以下几个方面设问题:

- ①碱金属单质与水(或酸)反应的现象;②碱金属单质的保存(注意碱金属的密度);
- ③碱金属单质与氧气反应产物的判断; ④碱金属对应的氢氧化物碱性强弱的比较;
- ⑤碱金属的碳酸盐性质的比较; ⑥与最新的科学技术相关的碱金属的应用。

知识点 3: 金属钠与金属铁、铝相结合的题目

【例 3】用铝箔包住 0.1 mol 金属钠,用针扎出些小孔,放入水中,完全反应,用排水法收集产生的气体,则收集到的气体为(标准状况)()

A. H₂和 O₂的混合气

B. 1.12 升 H₂

C. 大于 1.12 升 H₂

D. 小于 1.12 升 H2

【难度】★★★

【答案】C

【变式 1】将 Na_2O_2 逐渐加入到含有 Al^{3+} 、 Mg^{2+} 、 NH_4 +的混合溶液中并加热,产生沉淀和气体的物质的量与加入 Na_2O_2 的物质的量的关系如图所示。则原溶液中 Al^{3+} 、 Mg^{2+} 、 NH_4 +的物质的量分别为 (

(己知 2Na₂O₂+2H₂O→4NaOH+O₂↑)

- A. 2mol, 3mol, 8mol
- B. 3mol, 2mol, 8mol
- C. 2mol, 3mol, 4mol
- D. 3mol, 2mol, 4mol

【答案】A

【变式 2】(双选)将 15.6gNa₂O₂和 5.4gAl 同时放入一定量的水中,充分反应后得到 200mL 溶液,再向该溶液中缓慢通入 $\frac{1}{2}$ HCl 气体 6.72L(标准状况),若忽略反应过程中溶液的体积变化,则下列判断正确的是()(已知 $\frac{2}{2}$)(已知 $\frac{2}{2}$)(已知 $\frac{2}{2}$)(记知 $\frac{2}{2}$))

- A. 反应过程中得到 6.72L (标准状况) 的气体
- B. 最终得到的溶液中 c(Na+)= c(Cl⁻)+ c(OH⁻)
- C. 最终得到 7.8g 沉淀
- D. 最终得到的溶液中 c(NaCl)=1.5mol/L

【难度】★★★

【答案】CD

瓜熟蒂落

- 1. 下列有关钠的叙述正确的是()
 - A. 2.3 g钠与 97.7 g水反应后溶液中溶质的质量分数等于 4%
 - B. 钠跟硫酸铜溶液反应生成的蓝色沉淀上有时出现暗斑, 这是因为析出了金属铜
 - C. 用碱石灰处理后的空气与钠反应来制取过氧化钠
 - D. 钠、钾是低熔点轻金属, 所以钠钾合金在常温时柔软似蜡

【难度】★★

【答案】C

- 2. 下列关于 Na 和 Na+的叙述中,错误的是()
 - A. 它们相差一个电子层
 - B. 它们的化学性质相似
 - C. 钠原子, 钠离子均为同一元素
 - D. 灼烧时,它们的焰色反应都呈黄色

【难度】★

【答案】B

- 3. 下列关于钠的叙述错误的是()
 - A. 钠易与非金属 S、Cl₂等反应
 - B. 钠在空气中燃烧生成 Na₂O
 - C. 钠燃烧时发出黄色的火焰
 - D. 钠的密度比水小,熔点低于 100 ℃

【难度】★

【答案】B

- 4. 下列关于金属 Na 的叙述中,说法正确的是 ()
 - A. Na 在空气中燃烧,发出黄色火焰
 - B. Na 在空气中燃烧,产物是 Na₂O
 - C. Na 是银白色金属, 硬度大, 熔点高
 - D. Na 在空气中最终的产物.NaOH

【难度】★

【答案】A

6.	金属钠露置在空气中,	在其表面不可能生成的	的物质是()		
	A. Na ₂ O	B. NaOH	C. Na ₂ CO ₃	D. NaCl	
	【难度】★				
	【答案】D				
7.	NaH 与水反应的化学	方程式为 NaH + H ₂ O →	NaOH + H ₂ ↑,在该反	(应中H ₂ O ()	
	A. 是氧化剂		B. 是还原剂		
	C. 既是氧化剂又是还	原剂	D. 既不是氧化	剂又不是还原剂	
	【难度】★★				
	【答案】A				
10.	将一块银白色金属钠放	女在空气中发生一系列效	武华:表面迅速变暗-	→"出汗"→变成白色固体	1(粉
	末),下列有关叙述不	正确的是()			
	A. 表面迅速变暗是因	为钠与空气中的氧气发	生反应生成了氧化钠		
	B. "出汗"是因为生成	的氢氧化钠吸收空气中	的水蒸气在表面形成	了溶液	
	C. 最后变成了碳酸钠	粉末			
	D. 该过程中所有的化	学反应均为氧化还原反	应		
	【难度】★★				
	【答案】D				
11.	将少量金属钠分别投入	下列物质的水溶液中,	有气体放出, 且溶液	页质量减轻的是()
	A. HCl	B. NaOH	C. K ₂ SO ₄	D. CuSO ₄	
	【难度】★★				
	【答案】D				
12.	在含有 1molFeSO4的溶	容液中投入一小块金属银	内, 反应完全后, 滤出	出沉淀并洗涤之, 然后在	空气
	中灼烧沉淀得到的固体	物质是()			
	A. Fe	B. FeO	C. Fe $(OH)_3$	D. Fe_2O_3	
	【难度】★★				
	【答案】D				
13.	查阅资料发现, 金属银	内不仅能够跟氧气和水质	反应,还能跟多种其他	也物质发生反应,其中包	」括与
	酒精在常温下反应, 要	要研究金属钠跟酒精的质	反应以及它与金属钠路	艮水反应的异同点,下列	J研究
	方法中用不着的是()			
	A. 实验法	B. 观察法	C. 分类法	D. 比较法	
	【难度】★★				
	【答案】C				

14.	下列能用于扑灭金属钠着火的是()		
	A. 干冰灭火剂	B. 黄沙	
	C. 干粉(含 NaHCO ₃)灭火剂	D. 泡沫灭火剂	
	【难度】★★		
	【答案】B		
15.	9.2g 金属钠投入到足量的重水中,则产生的	气体中含有()	
	A. 0.2mol 中子	B. 0.4mol 电子	
	C. 0.2mol 质子	D. 0.4mol 分子	
	【难度】★★		
	【答案】B		
16.	(双选)把一小块钠投入到硫酸铜溶液中,生	上成物有 ()	
	A. Cu B. Cu (OH) 2	C. H ₂ D. O ₂	
	【难度】★★		
	【答案】BC		
17.	同质量的钠进行下列实验,其中产生氢气最多	3的是()	
	A. 将钠投入足量水中		
	B. 将钠用铝箔包好,并刺些小孔,再加入足	量水中	
	C. 将钠投入足量稀硫酸中		
	D. 将钠投入足量稀盐酸中		
	【难度】★★		
	【答案】B		
18.	将钠、镁、铝各 0.3 mol 分别放入 100 ml 1 m	ol/L的盐酸中,同温同压下产	生的气体体积比是
	()		
	A. 1: 2: 3 B. 6: 3: 2	C. 3: 1: 1	D. 1: 1: 1
	【难度】★★		
	【答案】C		
19.	在右图支管中,一管装入2.3g金属钠,一管	装入 HgO,同时加热两部分, N	Ja 完全燃烧,若加
	热后容器里空气成分基本未变,则 HgO 质量	可能是()	
	HgO	Na	Est Activism
	A. 21.7 g B. 24 g	C. 43.4 g	D. 10.85 g
	【难度】★★		
	【答案】A		

- 20. 现有一块金属钠露置于空气中一段时间,为检验该固体是否部分变质为碳酸钠,先将固体样品溶解于水得到溶液,并采取下列措施,其中可以实现实验目的的是()
 - A. 测所得溶液的 pH
 - B. 取溶液少量,向其中滴入酚酞观察溶液是否变红
 - C. 取溶液少量, 向其中加入盐酸观察是否有气泡产生
 - D. 取溶液少量,向其中加入 CuSO4溶液,观察是否有沉淀产生

【难度】★★

【答案】C

- 21. 碱金属钫(Fr)具有放射性,它是碱金属元素中最重的元素,根据碱金属元素性质的递变规律预测 其性质,其中不正确的是 ()
 - A. 在碱金属元素中它具有最大的原子半径
 - B. 钫在空气中燃烧时,只生成化学式为Fr2O的氧化物
 - C. 它的氢氧化物的化学式为 FrOH, 这是一种极强的碱
 - D. 它能跟水反应生成相应的碱和氢气,由于反应剧烈而发生爆炸

【难度】★★

【答案】B

【解析】根据同主族元素性质的递变规律,从金属锂到金属钫随原子序数的递增,原子半径逐渐增大,元素的金属性逐渐增强,最高价氧化物对应的水化物的碱性逐渐增强,与水反应的剧烈程度逐渐增强,与氧气反应的产物越来越复杂,可以产生过氧化物、超氧化物甚至臭氧化物等。

- 22. 以下各项叙述中错误的是()
 - A. 原子半径由小到大的顺序是 Li<Na<K<Rb<Cs
 - B. 同一种碱金属元素的离子半径比原子半径小
 - C. 碱金属单质的密度比较为 Li<K<Na<Rb
 - D. 碱金属离子的氧化性比较为 Li+<Na+<K+<Rb+

【难度】★★

【答案】D

- 23. 以下对锂、钠、钾、铷、铯的叙述中不正确的是()
 - ①氢氧化物中碱性最强的是氢氧化铯
- ②单质熔点最高的是铯
- ③它们都是热和电的良导体
- ④它们的密度依次增大,且都比水密度小
- ⑤它们的还原性依次增强
- ⑥对应离子的氧化性依次增强

- A. (1)(3)
- B. (2)(5)
- C. (2)(4)(6)
- D. 135

【难度】★★

【答案】D

28.	在进行钠和水的反应实验中,有如下操作和实验现象,请根据钠的性质解释说明。				
	(1) 刚用小刀切开的金属钠断面呈色,在空气中放置几分钟后发生的变化为				
	0				
	(2) 切下来的金属钠块要用滤纸擦净后方可放入水中实验,这是因为。				
	(3)金属钠块必须用夹取,而不能用手拿取,理由是				
	(4)金属钠块投入水中后,钠很快熔成一个闪亮的小球并浮于水面上,这是因为_				
	(5)钠小球在水面上迅速游动,这是因为,反应容				
	器的上方弥漫着"白色物",它的主要成分是。				
	(6) 如果水中在未加钠之前已滴入酚酞试溶,反应后溶液由无色变为				
	色,理由是。				
	【难度】★				
	【答案】(1)银白 变暗 这是因为钠与氧气反应,在钠的表面生成了一薄层氧化物所致				
	(2) 用滤纸吸干钠块表面煤油, 防止钠与水反应放热, 引起煤油燃烧				
	(3) 镊子 手指表面有水份,能跟钠块反应生成强碱 NaOH 腐蚀皮肤				
	(4) 钠的密度比水小,与水反应,放热,使钠熔化形成银白色小球				
	(5) 钠与水反应放出氢气,推动钠球在水面上运动 钠与水反应放热使与钠球接触的水蒸发,				
	在容器上方凝聚而形成白雾。				
	(6) 钠与水反应生成 <u>NaOH</u> ,使酚酞变红				
31.	将 $2.3g$ 金属钠放入多少克水中,反应完全后,溶液中 $Na+5$ H_2O 分子的个数比为 $1:50$,最后溶				
	液中水的质量为多少?				
	【难度】★★				
	【答案】90g				
32.	一块表面已部分被氧化成氧化钠的钠块质量为 1.08g, 投入到 100g 水中, 完全反应后收集到				
	$0.02 \mathrm{gH}_2$ \circ				
	求: (1) 未被氧化的金属钠的质量是多少?				
	(2)被氧化的金属钠的质量是多少?				
	【难度】★★				
	【答案】0.46g 0.46g				