StuDocu.com

MIS171 - Summary Business Analytics

Business Analytics (Deakin University)

	Word	Definition	Notes
Week 1 (To	pic 1) - Chapter ONE (Role of Business Analytics in real world context)	
Business Analytics	Business Analytics	Process of transforming data into actions through analysis and insights in the context of organisational decision making and problem solving	
		Using data, IT, statistical analysis, quantitative methods, and mathematical or computer-based models to help managers gain an improved insight about their business operations and make better fact-based decisions	
		 Report using historical info Gives info to enable future predictions End goal: add value through insight + turn data into info Makes distinction b/w relevant + irrelevant knowledge 	
	Purpose of BA	 ID-ing valuable data re business' strategy + objectives Internal value = revenue growth 	
	Importance of BA	 aids decision making decisions made using analysis are better than those made through gut instinct use of analytics = profitability and revenue 	
	Adds value by its:	 Business relevancy Actionable insight Performance + value measurement 	
	BA helps understand:	 What will happen Why happened Best course of action 	
	BA applications	 mgmt. of customer relos financial + marketing activities supply chain mgmt. HR planning Pricing deicisons 	
Scope of BA	Descriptive analysis	 want to know about the past Most commonly used + most well understood type of analytics Use data to understand past and present performance to make important decisions Summarizes data into meaningful charts and reports Focuses on: descriptive measures data visualisation probably distributions / sample + estimation statistical inference 	
Scope of	Predictive	want to know abc This document is available free of charge on SIIIDOCII COM	

ВА	analysis	 Analyses past performance in an effort to predict the future by examining historical data, detecting patterns or relationships in data Techniques include: regression forecasting 	
Scope of	Prescriptive	making decisions / optimisation	
BA	analysis	Uses optimization to identify the best alternative to minimize or maximise some objective	
		Addresses questions such as:	
		How much should we produce to maximize profit?	
		What is the best way of shipping goods from our factory to minimize costs?	
		Techniques include:	
		• optimisation	
		• simulation	
	BA	Business Analytics	
	V	BA = making info have contextual relevancy + delivering real value	
	analytics	Insight that is actionable to create value	
		Analytics	
		A = finding interesting things in Irg amounts of data	
		Focuses on creation of insight	
		Simply answers question without necessary return	
		80% accuracy with actionable insight better than 98% accuracy without actionable insight	
	Examples of	Reporting: summary of historical data	
	analytics	Trending: ID-ing patters	
		Segmentation: ID-ing similarities in data	
		Predictive modelling: using historical data to predict future events	
	Mgmt.	Process which org achieves goals through use of resources	
		(ppl, money, materials + info = input, achieving goals = output)	
	Role of manager	Interpersonal role: figurehead, leader, liaison	
		Informational role: monitor, disseminator, analyser, spokesperson	
	D	Decisional role: entrepreneur, disturbance handler, resource allocator, negotiator	
	Decision	Choice b/w alternatives made by individual/group	
	Nature of	operational control = executing specific tasks efficiently + effectively	
	decisions	• mgmt. control = acquiring + using resources efficiently	
		strategic planning =long term goals + policies for growth + resource allocation	
	Difficulties in	Number of alternatives	

	decision making	Time pressures	
		Conduct analysis	
		May be necessary to access info/consult with expert	
		= therefore computerised analysis streamlines decision making	
	Process of	1. Intelligence: What is the problem?	
	decision process	2. Design: what are my options?	
		3. Choice: pick an option + decide how to implement	
		(if choice doesn't work/achieve goal = start process again)	
Type of	Structured	Std problems	
Decision	decisions	routine + repetitive problems w std solutions	
		eg. Order entry, accounts receivable	
Type of	Unstructured	Complex problems	
Decision	decisions	no cut-dry solution	
		eg. Planning new service offering, hiring executive	
Type of	Semi-structured	Combination of std solution procedures + individual judgement	
Decision	decisions	eg. Evaluating employees, setting marketing budgets	
Business	Business	decision support applications + technologies + processes	
Intelligenc	Intelligence		
е			
	BI applications	provide users with view of what has happened	
	Data mining	process of searching for valuable info in Irg database, warehousing or mart	
		helps explain why it is happening + predicts what will happen in future	
		predicts tends + behaviours	
		identifies prev. unknown patterns	
		able to provide predictive info	
		eg. For targeted marketing, forecasting bankruptcy/defaults	
		eg. can use prev. promotional info to identify ppl most likely to response to similar offers	
	Drill down	ability to go into more detail	
	Models	simplified representations or abstracts of reality	
Decision	Decision support	combines models + data to analyse semi-structured + unstructured problems	
support	system (DSS)	enables ppl access to data to manipulate data + conduct appropriate analyses	
system		enhances learning + contribute to all levels of decision making	
Type of	Sensitivity	study of the impact one or more parts of decision has on other parts	
DSS	analysis	examines impact of input variable changes on output variables	
		enables system to adapt to changing conditions + varying requirements of diff situations	
		provide better understanding of model + problem model describes	

Type of DSS	What-if analysis	attempts to predict impact of changes based on assumptions (input data) on proposed solution	
Type of DSS	Goal-seeking analysis	 find the value of inputs necessary to achieve desired level of output finding out what is needed to achieve certain goal 	
	Dashboards	 evolved from executive info systems = designed for info needs of execs provides access to timely info + direct access to mgmt. reports enable managers to examine reports + drill down into detailed info 	
	Data visualisation technologies	presenting data in the form of graphs or tables to enable users to more easily process and understand data	
	Geographic Info Systems (GIS)	system for capturing, integrating, manipulating + displaying data using digitised maps	
	Geo-coding	 identifying geographical location of every digital record enables users to generate info for planning, problem solving + decision making graphical format makes it easy for managers to visualise data 	
	Reality mining	able to extract info from usage patterns of mobile phones + other wireless devices	
	Real-time BI	 use of data as and when it happens better ways to communication and make decisions that affect customers 	
	Corp performance mgmt. (CPM)	 monitoring + managing performance in accord with KPIs BI allows ppl to view info + insights re co. KPIs 	
Big Data	Big Data	massive amounts of data / data sets	
	Volume	amount of data produce	
	Variety	different forms EG. msgs, updates + images posted to social media, readings sensors, GPS signals etc	
	Velocity	how fast data is produced + how fast data needs to be processed to meet demand	
	Data	facts + figures collected	
	Information	from analysing data	
	Data matrix	dataset that is stored digitally in spreadsheet or similar	
Dataset	Dataset	data collected in particular study	
	Entities	people, places or things which we store + maintain info	
	variable / attribute	characteristic of interest of entity	

	_ A	В	C D	E	F	G	Н	
	1 Sales T	ransactions: Ju	y 14					
	2 2 Curt ID	Region Pa	yment Transaction Co	de Source	A	Product	Time Of Day	
	3 Cust ID		yment Transaction Co ypal 93816545	Web	Amount \$20.19		22:19	1
		02 West Cr		Web	\$17.85		13:27	
		03 North Cr		Web	\$23.98		14:27	
			ypal 70560957	Email	\$23.51		15:38	
		05 South Cr		Web	\$15.33		15:21	Records
		06 West Pa 07 East Cr	ypal 20978903 edit 80103311	Email Web	\$17.30 \$177.72		13:11 21:59	
		08 West Cr		Web	\$21.76		4:04	
			ypal 40128225	Web	\$15.92		19:35	
	13 100		ypal 49073721	Web	\$23.39	DVD	13:26	J
Record	Entit		Variables			ecord ,	observation	on
Data deluge	prevalend	ce of:						
	'	natic data d	ollection					
	• electi	onic instru	mentation					
	• online	e transactio	n processing					
	• growi	ng recogni	ion of untapped v	alue				
			ving development					

	oic 2) - Chapter TWC		
Statistics	Statistics	study of variation in data relates to collection, analysis, interpretation & presentation of data statistical methods: summarise collection of data draw inferences about entire population make predictions or forecasts	
statistical studies	experimental studies	the variables of interest are first identified \rightarrow one or more factors are controlled so data can be obtained re how it affects variables	
	observational studies	no attempt is made to control or influence variables	
	Descriptive statistics	tabular, graphical + numerical methods used to summarise data	
	inference	process of using data to obtain from a sample to make estimates + test claims re characteristics of	
	statistics	uses sample data to reach conclusions re population from which sample drawn Process of → Inference Statistics 1. Population consists of all employees at Conrobar. Average productivity is unknown 4. The sample average is used to estimate the population average 3. The sample data provide a sample average productivity of 98.9%	
Population	Population	Entire collection of objects (called units or subjects) of interest	
	Census	Collection of data on population	
	Sample	 Subset of units in population Representative of whole population Sometimes this is only way to get info (eg. crash data on cars) 	
Types of data	Exploratory data analysis (EDA)	 first step precursor to more formal + extensive analysis numerical, tabular + graphical summaries are produced to summarise + highlight key aspects or special 	

		features of data	
		 analysis sufficient for purpose of study 	
	Parameter	descriptive measure of population	
	Parameter	denoted by Greek letters	
		μ = population mean	
		σ^2 = population variance	
	6	σ = population std deviation	
	Statistic	descriptive measure of <u>sample</u>	
		denoted by Roman letters	
		$\overline{x} = \text{sample mean}$	
		s ² = sample variance	
		s = sample standard deviation	
	Parameter v	• estimate value of parameter is desirable but impossible/not feasible b/c of time + \$\$ required for	Research – don't quite
	Statistic	consensus	understand
		• instead use representative sample of pop + corresponding sample statistic to estimate parameter	
		EG. F&P wants to determine avg. no. of loads its 8kg washing machine can wash before repairs.	
		Population = <u>all</u> 8kg washing machines	
		Parameter = population mean = avg no. of washers per machine before repair	
		Population mean = no. of washes for type of machine estimated from sample mean	
		Statistician takes representative sample of machines, conducts trials + records no. of washes before repair	
		for each machine then computes sample avg. no. of washes before repair.	
types of	Qualitative data	descriptive data	
lata	aka Categorical	subclass: nominal + ordinal	
	data	Labels or names used to identify attributes of each entity	
		Can be recorded in either numeric or nonnumeric formats	
		EG. 'Yes or no', 'male or female' answers	
		Usually counted or expressed as a portion or a percentage	
	Quantitative data	data that is expressed as number	
	aka Numerical	subclass: discrete + continuous	
	data	Take numbers as their observed responses	
		Numerical data can be converted to categorical data.	
		EG Salary can be converted into low/medium/high.	
		Cannot convert categorical data back to numerical data	
	Discrete	measuring how many (whole numbers + not able to be fraction)	
	Continuous	measuring how much (decimal/fraction)	
		1	

Week 3 (Top	ic 3) - Chapter THRE	EE (Exploring Data - Data Visualisation)					
Purpose of Data Visualisatio n	Analysis	purpose = insight - discovery, decision making + explanation able to comprehend huge amounts of data important info from millions of data immediately visible and more comprehendible provides insight into pattersn + relos not readily visible enables problems with data to become apparent					
Categorical	Frequency table	gives frequency, proportion or % of value in each category / class					
Data	,	Type of device 2012 Shipments (in millions) 2012 Market Share Smart Phone 722.4 60.1% Tablet 128.3 10.7% Portable PC 202 16.8% Desktop PC 148.4 12.4% Total 1201.1 100%					
Categorical Data	Bar chart / Column chart	each category represented by a bar - the length indicates frequency, proportion or % of value in each category **use if comparing categories is most important					
Categorical Data	Pie graph	circle used to represent total - is divided into "slices", each representing category (used to observe proportion / market share) Market Share 2012 Market Share 2012					
		**use if observing portion of whole that lies in each category is most important					

Categorical Data	Pareto chart	**used to display causes of problems in products + proce		least)	45 - 40 - 20 - 20 - 20 - 20 - 20 - 20 - 20	Short in Defective Bearing coll plug seized	
Numerical Data		Common tabular + graphical techniques for organising + previewing include: • arrays • frequency table / summary table • pie chart • bar chart • dot plots useful tool to summarise: • small dataset (<20 observations) • numrical data that is discrete + repeats frequently					
Numerical Data	Arrays	putting data into ascending order					
Numerical	Frequency	summary table of data arranged into classes					
Data	distribution	• rules:	Weekly Sales	Count	Percentage	Cum. Percentage	
		- use 5 - 15 calsses	0 kg < 200 kg	3	5.8%	5.8%	
		 class width = range/no. of classes 	200 kg to < 400 kg	10	19.2%	25%	
		 centre = mid point (used for graphing) 	400 kg < 600 kg	16	30.8%	55.8%	
		• no. of observations in each class = frequency of class	600 kg < 800 kg	16	30.8%	86.6%	
		allows quick visual interpretation of data	800 kg < 1000 kg	6	11.5%	98.1%	
		allows first look at shape of data	1000 kg < 1200 kg	1	1.9%	100%	
			Total		100%		
		**use for large datasets + non-repeating values to summ	arise data				
	relative freq distribution	Equation: $\frac{frequency \in each cla s s}{total no. of value}$					
	% distribution	Equation: $each relative frequency \times 100$					
	cumulative % distribution	% of values that are less than certain value					

Numerical Data	Histogram	Graphical representation of frequency, relative frequency, % distribution tables • Allows for a representation of the shape of the data set (skewness)
		Chocolates 20 15 20 10 200 400 600 800 1000 1200 More Weekty Sales (kg)
Numerical Data	Frequency polygon	**use for large datasets + non-repeating values to summarise data • graph constructed by plotting dot for frquency at class mid points + connecting the dots • graph constructed by plotting dot for frquency at class mid points + connecting the dots • provided by plotting dot for frquency at class mid points + connecting the dots
Numerical Data	Ogive	cumulative frequency polygon plotted by graphing dot at each class endpoint for cumulative frequncy value + connecting dots of the polygon of
Numerical Data	Stem + leaf plots	 another way to display continuous data major advantage is original data preserved displays info similar to histogram plot numbers constructed by separating each no. into 2 groups = stem + leaf leftmost digits are stems rightmost are leaves

		Stem Leaf
Purpose of Data Visualisatio n	Communication	 tell story or show pattern that has already been discovered in data focuses on the msg - clear + easy to understand focus is on design of visualisation = should be honest, unambiguous + effective presentation of data
	Tufte's Principles of graphical display	 Graphical displays should: show the data tell the truth (avoid distorting what the data has to say) focus on the content (help the viewer think about the information rather than design) encourage the eye to compare the data make large data sets coherent revel data at several levels of detail Closely integrate statistical and verbal descriptions

• •		UR (Numerical Summaries - Exploring Relationships)	
Summary	summary	Single figure which attempts to sumarise particular feature of set of data	
measures	measures	• if measures are computed for data from population = parameters	
		 if meausres are computed for data from sample = statistics sample statisitcs is a point estimator of population parameter 	
What	Measure of		
looking for	Central	Are averages:	
in summary	tendency	mean: common average (arithmetic mean)	
measures?	centacitoy	median: middle value	
	Madian	mode: most common value	
	Median	middle value of data set arranged in ascending order	
		• is a measure of location – often reported for annual income + property value data	
		if data set has any extreme values, median is preferred measure of central tendency	
		extreme values can inflate the mean making it less typical	
	Mode	value that occurs with greatest frequency	
		greatest frequency can occur at 2+ different values	
		if data has exactly 2 modes = data is bimodal	
		• if data has 2+ modes = multimodal	
AA41	D.4	if data has 1 mode = nominal	
What	Measure of	Averages are measures of location – indicating middle or centre of data set	
looking for in summary	Location	More specific measures of location can be found from ascending array: min, max, quartiles, percentiles	
measures?			
measures.	Percentiles	Tell us location of certain percentages of data	
	T Cr cerrenes	EG. Top 10%, smallest 1% etc	
		Ed. 10p 1070, smallest 170 etc	
		Process	
		Process:	
		Organise data in ascending array	
		2. Calculate percentile location: $i = \frac{P}{100}(n)$	
		- If i is a whole number, percentile is average of values at the i and (next to i) positions	
		- If i is the whole number, the percentile value is found by rounding i up to the whole no. + reporting value at this position	

	Quartiles	• Specific percentiles that are commonly used: - 1 st quartile: 25 th percentile - 2 nd quartile: 50 th percentile = median - 3 rd quartile: 75 th percentile - 3 rd q
	Minimum	Lowest value
	Maximum	Highest value
What looking for in summary measures?	Measure of Variability	 Describes the spread or dispersion of data set Distance measures: range, interquartile range Average variability: Standard deviation, and variance Relative variability: coefficient of variation
Distance measure	Range	 Range of data set is difference b/w largest & smallest values Ignores all data points except 2 extreme ends of data set Very sensitive to smallest & largest data values
Distance measure	Inter Quartile Range (IQR)	
Average variation	Variation	Variation is expressed in squared units
	Coefficient of Variation	 Indicates how large the std dev is in relation to the mean Calculated as std dev mean Expressed at % Relative measure of variation **Useful for comparing variability b/w data sets in different magnitudes or diff units
	Std Dev	estimate of average deviation of value away from mean • Maintains original unit → preferred • Popular measure of risk (esp. financial analysis)

What looking for in summary measures?	Measure of Shape	Distribution of data where shape is symmetrical (bell curve) Mean Median Mode (a) Symmetrical distribution (no skewness) Distribution of data where shape is skewed / asymmetric (lacks symmetry) Higher negative value = negatively skewed Higher positive value = positively skewed Median Mode
	Kurtosis	Peakness of distribution:
Relative location	Z scores	Relative measure of distance is an observation from the mean (re std dev) • If z score is +3 or -3 = outlier
		For example: - A dataset is normally distributed with a mean of 60 and standard deviation of 5. Determine the z score for a value of 70
		$Z = \frac{X - \mu}{\sigma}$ $Z = \frac{70-60}{5} = 2.0$ - a Z score of 2 means that 70 is 2 standard deviations above/the mean
Relative location	Chebyshev's theorem	 Applies to <u>all</u> distributions: At least 75% of the data values must be within Z=2 Standard deviations of the mean At least 89% of the data values must be within Z=3 Standard deviations of the mean At least 94% of the data values must be within Z=4 Standard deviations of the mean

	Number of Standard Deviations	Distance from the Mean	Minimum Proportion of Values Falling Within Distance	
	K = 2	μ ± 2 σ	$1-1/2^2 = 0.75$	
	K = 3	μ ± 3 σ	1-1/3 ² = 0.89	
	K = 4	μ ± 4 σ	1-1/4² = 0.94	
ocation	- Approx 95% of the d	ical / bell shaped: ata values lie within Z= ata values lie within Z=:	1 Standard deviations of the m 2 Standard deviations of the m 2=3 Standard deviations of the	ean

What looking for in summary measures?	Outliers	 Data values that fall so far from average they are considered unusual Extreme extreme values Tend to be separated from rest of data Detecting outliers is important = need to be investigated more May indicate: Incorrectly recorded data value Data value that was incorrectly included in data set Potential problem Potential opportunity Detecting Outliers Graphically Displaying data graphically = good way to spot potential outliers Calculation rules are not the "be all and end all" of outlier detection Various graphs can be used. Dot plots and box plots are often useful 	
Outliers	Empirical rule	 For symmetrical bell-shaped data Further than 3 std dev from mean = potential outlier Any data with z-score 3+ or -3 = potential outlier 	
Outliers	Tukey's 1.5 Step rule	 For non-bell shaped distributions Works by calculating limits (fences) by determining quartiles + IQR Lower fence = 1.5(IQR) below Q1 Upper fence = 1.5(IQR) above Q3 Value outside fences = potential outlier 	
	EXAMPLE: Tukey's rule	 Variable: Number of Daily iPhone Sales for 12 months for a Telco Company. Summary Measures: Min 13; Q1 24; Q3 46; Max 97 (Positively Skewed Distribution) Potential Outliers? Lower fence: Q1-1.5(IQR) = 24-1.5 (22) = 24-33 = -9 Upper fence: Q3+1.5(IQR) = 46+1.5(22)= 46 + 33 = 79 ∴ at least one potential outlier as 97 sales does not fall within the limits. 	

	Box + Whisker Plot	• Five specific values are used: 1. Min value 2. 1^{st} quartile 3. 2^{nd} quartile / median 4. 3^{rd} quartile 5. Max value • Inner fences - $IQR Q_1 - Q_3$ - Lower inner fence = $Q1 - 1.5IQR$ - Upper inner fence = $Q3 + 1.5IQR$ • Outer fence - Lower outer fence = $Q1 - 3IQR$ - Upper outer fence = $Q3 + 3.0IQR$	
What summary measure to use	Symmetrical distribution	Use: • Mean • Std dev	
	Skewed distribution	Use: • Median (mean = too distorted) • IQR	
Process: Relationship b/w 2 variables	Relationship b/ w TWO variables	 Classify data (numerical / categorical) Decide which variable is dependent variable & independent / explanatory variable Select technique Look for differences 	
	Techniques to use	 Numerical Dependent & Categorical Independent Comparative summary measures Multiple box plots Categorical Dependent & Categorical Dependent Cross tabulations (contingency tables) Numerical Dependent & Numerical Independent Scatter diagrams Categorical Dependent & Numerical Independent Numerical data can be converted to categorical data – cross tabulation 	
	Comparative summary measures	 Substantial differences = relationship No or small differences = no relationship 	
	Multiple Box	Useful way of displaying single numerical variable using 5 no. summary	

Dista	a. Nices were then 4 her elet in single work
Plots	Places more than 1 box plot in single graph
	Enables us to quickly compare features + patterns across subgroups
	0 10 15 20 25 30 35 40
	— Male:Hours Hours
	Female:Hours
	a Bianlana annula af 2 acts anniad anniadh anniadh annia 4 tabla
Cross	Displays results of 2 categorical variables together in 1 table
tabulations	Depend on type of cross tabulation, cells may contain:
	- Absolute frequencies
	- Relative frequencies
	Can be misleading if sample size of categories not similar
	Must calculate %
	% chosen to analyse should be where independent variable is located:
	- If located in row = row % to compare
	- If column = column % to compare
	If % across row / column similar = no relationship b/w 2 categorical variables
	If % across rows dissimilar to columns = relationship b/w 2 categorical variables
Relative	% of overall total
frequencies	% of row total
constructed in	
ways:	
Scatter diagra	m • Graphical presentation of relo b/w 2 numerical variables
Scatter diagra	Independent variable shown on horizontal axis (x)
	Dependent variable shown on vertical axis (y) Pattern of platter that the state of the late of t
	Pattern of plotted points suggest overall relo b/w variables
	Trend line = approximation of relationship

	Linear relationship	 closer points are to trend line = stronger relo measure direction + strength of relo = correlation coefficient (r) measure absolute strength of relo = coefficient of determination (r²) A negative linear relationship No apparent relationship	
		A positive linear relationship A non-linear relationship	
	Causality	 Independent (explanatory) variable does not have causal effect on dependent variable Cannot be demonstrated by data analysis techniques alone – must be through experiments where environment is controlled 	
SUMMARY		 More spread out the data: the larger the range + IQR + SD The more concentrated or similar the data: the smaller the range+ IQR + SD If the value are the same: the range + IQR + SD will be zero No measure of variation can ever be negative 	

Week 5 (Topic	5) - Chapter FIVE	(Discrete Probability Distributions)					
	Probability & Probability distributions	 Enable us to develop models that take into account uncertainty Decision maker has evidence to base outcome on 					
	Probability distributions	distribution of all possible values of random varaibela nd correpson	ding probabilities				
	Uncertainty & risk	 A key aspect of solving business problems is dealing with uncer EG. Not knowing how much stock to produce Problem solving also involves risk, which depends on the position of the p	on of the business/decision maker				
	Probability properties & rules	-EG. Interest rates have less effect on businesses that sell essential • Event X $0 \le P(X) \le 1$ • Probabilities of all e vents must = 1 $\Sigma P(X) = 1$	items to those that sen luxury items				
Assigning probabilities	Classical method (priori classical probability)	Occurs with games of chance or where all outcomes are known + probabilities are fixed $\frac{no.of\ ways\ events\ canoccur}{total\ no.of\ possible\ outcomes} \qquad \bullet \text{Example: Rolling a die.}$ $\bullet \text{P(rolling a 4)} = 1/6$					
			an odd number) = 3/6 more than 4) = 2/6				
Assigning probabilities	Relative frequency method (empirical classical probability)	 Observed (histroical) data past surveys or observations can provide insight to what may occur in the future it is done thorugh a probability distribution Formula: P(exactly 2) = P(x = 2) = 0.45 (see table →) 	Number of insurance claims per day Num of Number Probability Claims of Days P(X) 0 4 0.10 = 4/40 1 6 0.15 = 5/40 2 18 0.45 = 18/40 3 10 0.25 = 10/40 4 2 0.05 = 2/40 40 1.00 = 40/40 P(Exactly 2) = P(X = 2) = 0.45 P(3 or more in a day) = P(X ≥ 3) = 0.25+0.05 = 0.30				
Assigning probabilities	Subjective method	Use this method if there is no method of obtaining probabilities from distributions	m past experience or mathematical				
	(guess)	EG. Economic conditions + company's circumstances change rapidly → may be inappropriate to assign probabilities based on historical data					

		 may have to adjust probabilities if past figures are no longer suitable in current conditions EG. production manager 'feels' that typically 1 of 500 produced as manufacturing fault Estimate probabilities using data, experience + intuition available This subjective probability value express our degree of belief of what will occur
Probability rules + properties	Complement of an event A	All outcomes are not part of event A
Probability rules + properties	Joint event (AND)	Involves 2+ characteristics occurrung sumultaneously
Probability rules + properties	Mutually exclusive events	Events that cannot occur together
Probability rules + properties	Collectively exhaustive events	Set of events such that one of the events must occur
Probability rules + properties	General addition rule (OR)	P(A or B) = P(A) + P(B) - P(A and B)
Probability rules + properties	Conditional probabilities	$P(A \mid B) = \frac{P(A \land B)}{P(B)}$
	If probability of event A is not changed by the existence of event B	then A and B are independent $P(A \mid B) = P(A)$
	Cross-tabs (contingency tables)	sample space for joint events classified by 2 characteristics Summarise past data Can be used to provide variety of probability estimates EXAMPLE: CONROBAR GENDER V PRODUCTIVITY Prod 2 100 Prod 2 100 Prod 3

	Discrete random variable	Mean tells us what we expect will happen on aSD tells us the expected dev around this avera					
Expected values	Expected value of X (mean):	formula: $E(x) = \mu = \sum XP(x)$	Number of insurance claim X P(X) P(X).> 0 0.10 0.00 1 0.15 0.15 2 0.45 0.90 3 0.25 0.75 4 0.05 0.20 1.00 2.00 Expected number of claims				
Expected	Expected	tells us the expected variation around the avg	umber of insurance cla	ims per day			
values	variation of X (std dev):	$SD(x) = \sigma = \sqrt{\left(\sum \mathcal{L}(X - \mu)^2 P(X)\right) \mathcal{L}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
		Th	ne SD of claims is $\sqrt{1} = 1$	L claim			
Pay off tables	EXAMPLE: Pay off table	Makes 10c per egg sold on 1st round market Otherwise loses 15 c per egg sold on 2nd round Demand					
		1. Expected Profitability values = (Probability x P	ΤΟΠΤ) Supply 11'000 eggs 10	11 12	13 14		
	1	eggs 10 11 12 13 14	Profit 850		1100 110		

Supply										
12'000 eggs	10		11		12		13		14	
Profit	700		950		1200		1200	<u> </u>	120	0
Probability	0.2		0.2		0.3		0.2		0.1	
Profitability	x									
Probability	140		190		360		240		120)
Supply 14'000										
eggs	10	11		12		13		14		
Profit	400	650)	900		1150		1400		
Probability	0.2	0.2		0.3		0.2		0.1		
Profitability x Probability	80	130)	270		230		140		

Supply 13'000 eggs	10	11	12	13	14
Profit	550	800	1050	1300	1300
Probability	0.2	0.2	0.3	0.2	0.1
Profitability x Probability		160	315	260	130

Expected Profit:	
10	\$1,000
11	\$1,050
12	\$1,050
13	\$975
14	\$850

- -The manager of the Waverly store is not correct in saying that ordering the maximum possible quantity will return a higher profit.
- -This is because the stores who ordered 11000 and 12000 eggs experienced the highest profit at \$1050. Whereas the store who ordered the most eggs (14000) experienced the lowest profit of \$850.

-Probability provides (and data) provides evidence for a decision maker to justify the chosen outcome

Another Example:

Q4 The Colchester Garden Centre purchases and sells Christmas trees during the holiday season. It purchases the trees for \$10 each and sells them for \$20 each. Any trees not sold by Christmas day are sold for \$2 each to a company that makes wood chips. Suppose that the probabilities of the demand for the different number of trees are as follows:

Demand (Number of Trees)	Probability
100	0.20
200	0.50
500	0.20
1000	0.10

Following are payoffs for purchasing 100, 200, 500 or 1000 trees.

a) Complete the missing payoffs;

	Probability	Purchase 100	Purchase 200	Purchase 500	Purchase 1000
Demand 100	0.2	1000	200	-2200	-6200
Demand 200	0.5	1000	2000	-400	-4400
Demand 500	0.2	1000	2000	5000	1000
Demand 1000	0.1	1000	2000	5000	10000

b) Calculate the expected values and suggest how many trees to purchase.

Expected Value

Purchase 200: \$1000

Purchase 500: \$860 Purchase 1000: -\$2240

Downloaded by Xia Jianfeng (jackxia5@gmail.com)

	Mathematical	Important source of probabilities
	probability	Probabilities can be derived <u>w/o</u> need for data
	distributions	Each distribution has own unique + important characteristics & properties
Type of	Binominal	4 types of properties:
mathematic	distribution	1. Fixed no. of identical trials/observations (n)
al	properties	EG. 15 tosses of a coin; 10 light bulbs taken from a warehouse
probability distribution		2. Each trial has only two possible outcomes
distribution		called 'success' and 'failure'
		 probability of success is p, probability of failure is q = 1-
		EG. head/tail in each toss of a coin; defective/not defective
		light bulb
		3. Constant probability for each trial
		EG. Probability of a tail is the same each time we toss the coin
		4. observations are independent
		means 1 outcome does not affect another outcome
		to ensure independence - observations are randomly sampled
Binominal	Applications	sampling with replacement
distribution		• sampling w/o replacement -n < 5% N
properties		
how to	Mean	$\mu = E(x) = np$
calculate binominal		
distributions		n = no. of people in sample
:		p = probability
Binominal	Variance &	$\sigma^2 = np(1-p)$
distribution	Std Dev	$\sigma = \sqrt{\frac{1}{np(1-p)}}$
characteristi		
cs		n = no. of people in sample
		p = probability
Binominal	Compute	$P(x) = \frac{n!}{x!(n-x)!} p^x \cdot q^{n-x} \text{for} o \le x \le n$
formula	probabilities	
		Whore
		Where: • n = sample size
		a n - probability
		This designant is explicitly free of sharps on

		• $P(x)$ = probability of x succes	ss give	า <i>ท</i> ar	nd p								
Binominal	Compute	Demonstration Problem 5.4	Demonstration Problem 5.4										
table	probabilities			-									
		find binominal probabilty for:	x	.1	.2	.3	(4)	robabilit .5	.6	.7	.8	.9	n = 20
		- n=20 - p=0.4	1	.122	.012	.001	.000	.000	.000	.000	.000	.000	1211-0101
		- x=10	3	.285 .190 .090	.137 .205 .218	.028 .072 .130	.003 .012 .035	.000 .001 .005	.000	.000	.000	.000 .000	p = 0.40
			5	.032	.175	.179	.075	.015	.001	.000	.000	.000	p = 0.40 P(X = 10) =
			7 8	.002	.055 .022	.164	.166 .180	.074 .120	.015	.001	.000	.000	P(X = 10) =
			10	.000	.007 .002 .000	.065 .031 .012	.071	.160 .176 .160	.071 .117 .160	.012 .031 .065	.000	.000	0.117
			12	.000	.000	.004	.035	.120	.180	.114	.007 .022 .055	.000	
			14 15	.000	.000	.000	.005	.037 .015	.124 .075	.192 .179	.109 .175	.009	
			16 17	.000	.000	.000	.000	.005	.035	.130 .072	.218	.090	
			18 19 20	.000 .000	.000	.000	.000	.000	.000	.028 .007 .001	.058 .012	.285 .270 .122	
						.000	.000	.000	1000	.001	.012		
Binominal distribution	EXAMPLE: binominal distribution	A components manufacturer sa each shift to monitor quality. Or found that that the number of all products made.	ver an	exten	ded p	erio	they	have	9				
		Explain why the Binomial distrib	oution	is app	ropri	ate in	this o	case.					
		n= 20 number of trials (produc	cts)										
		Two possible outcomes for each	ch trial	(defe	ctive	/not	defect	tive)					
		P(defective) = 0.10; P(not defe	ctive)	= 0.90)								
		Products independent (randor	nly sel	ected)								
		What would be the expected num	her of o	defect	ives ir	n each	shift						
		$E(X) = n \times p = 20 \times 0.10 = 2 \text{ produ}$											
		In a particular shift, five (5) defect	ives we	re fou	ınd. Fi	ind th	e						
		probability of this occurring (or wo						er.					
		Want $P(X \ge 5) = 1 - P(X < 5)$	-										
		= 1 - 0.957											
		= 0.043											
		Small chance (4.3%) to get five or	more d	efecti	ve pro	ducts							
		There may be a problem with this											

how to	Poisson	4 essential properties:
recognise	distribution	1. You wish to count no. of occurrences over an interval:
Poisson	properties	- Each occurrence is independent of other occurrences
distributions		- No. of occurrences in each interval can range from 0 to ∞
		- Average (expected) no. of occurrences in interval is λ (lambda)
		EG.
		 seeing how many pixel burnouts there are in TV surface area
		No. of telephone calls per minute at a small
		business
		No. of customer arrivals at a bank in an hour
		 No. of paint spots per new vehicle
		No. of units of product demanded per week
		2. probability that an event occurs in 1 area of opportunity = same for all areas of opportunity
		EG. Pixel burnout probability for TV screen is same for middle of screen, top + bottom
		3. no. of events that occur in 1 area of opportunity independent of no. of events that occur in other areas of opp
		EG. 1 computer crash will not affect another computer crash
		4. probability that 2+ events occur in an area of opportunity approaches zero as the area of opportunity becomes smaller
		EG. when you focus whole TV there is greater probability of pixel burnout - if focus only on bottom of TV = less likely to get burnout
		To less likely to get burnout
Calculate	Poisson	Mean: $\mu = \dot{\iota}$
poisson	distribution	Variable + Std Dev: $\sigma^2 = \lambda$
distributions	characteristics	$\sigma = \sqrt{\square}$
		Where λ = expected no. of occurrences in the interval
Poisson formula	Calculate probabilities	$P(x) = \Box^x \frac{e^{-c}}{x!} i$ For $x = 0, 1, 2, 3,$
		Where:
		λ = long – run average E = 2.718282 (base of natural logarithms)
		L - 2.7 10202 (base of flatural logarithms)

Poisson distribution	EXAMPLE: Poisson distribution	The number of times a company's HR system "crashes" is, on average, 3.3 per month.	
	distribution	Explain why the Poisson distribution would apply in this case.	
		Interested in number of times a crash occurs over an interval (one month period).	
		Assume that a crash in a one month interval has no effect on any other crash during any one month interval (independent).	
		Number of crashes in a month has no upper limit.	
		Expected number of crashes (lambda) per month is known.	
		Calculate the probability that the system does not crash in a given month.	
		Want $P(X = 0) = 0.0369$	
		What is the probability it does crash three or more times in a given month.	
		Want $P(X \ge 3) = P(X=3) + P(X=5) +$	
		=1-P(X<3)	
		= 1 - 0.3594 = 0.6406	
	Probability & decision making	 Probabilities can be used to measure IvI of uncertainty involved Use of probabilities in decision making does not necessarily mean we get a desired outcome Common mistake is to associate good (poor) decisions with good (poor) outcomes May be the case that a persons a sound decision (w high probability) but due to uncertainty of situation = unlucky + diff outcome subsequently occurred 	
Normal	characteristics	• bell shaped	
distributions	of normal	symmetrical	
	distributions	mean, median + mode are equal	
		 location is determined by mean spread is determined by std dev 	
		 depends on 2 parameters: Mean + std dev 	
Normal	calculate	probability measured by area under curve:	
distributions	normal distribution	P (a ≤ X ≤ b)	

-Need to transform X units into Z units:

$$Z = \frac{X - \mu}{\sigma}$$

The Z distribution has mean = 0 and standard deviation = 1

EXAMPLE: normal distribution

If X is distributed normally with mean of 100 and standard deviation of 50, then:

$$Z = \frac{X - \mu}{\sigma} = \frac{200 - 100}{50} = 2.0$$

This says that X = 200 is two standard deviations above the mean of 100

GENERAL PROCEDURE FOR FINDING PROBABILITIES

To find P(a < X < b) when X is distributed normally:

- Draw the normal curve for the problem in terms of X
- 2. Translate X-values to Z-values
- Use the Standardised Normal Table or software to find the area

FINDING THE X VALUE FOR A KNOWN PROBABILITY

Steps to find the X value for a known probability:

- Draw the normal curve for the problem showing the known probability
- 2. Find the Z value for the known probability
- 3. Convert to X units using the formula

finding probabilities	Weekly demand for a particular brand of a perishable product is assumed to be approximately normal, with a mean of 150 and a standard deviation of 8. Management orders the product at the beginning of the week and throws out leftover stock at the end of the week. What would you recommend as the minimum and maximum order quantities for this product? Explain. Minimum = $\mu - 3\sigma = 150 - 3 \times 8 = 126$ Maximum = $\mu + 3\sigma = 150 + 3 \times 8 = 174$
EXAMPLE: finding X value for known probability	What should the ordering policy be if they want to ensure that they run out of stock ('stockout') in only about 5% of weeks? Want $P(X > ?) = 0.05$ $Z = 1.645 \text{ (from table)}$ $Z = (X-\mu)/\sigma = (X-150)/8 = 1.645$ $\therefore X-150 = 8 \times 1.645 = 13.16$ $\therefore X = 13.16 + 150 = 163.16$ Company should order at least 164 products per week

Week o (Topic		(Continuous Probability Distribution)	
	Continuous distributions	 assoicated with random variables that take values at any point over given interval uniform + exponential distributions are important beause normal distributionis most widely encountered continuous distribution 	
	continuous probability distributions	 no longer talk of probability of random variable being equal to specific value talk about probability of random variable having value within given range area under probability curve b/w 2 given values = the probability that random variable lies b/w the 2 values 	
	characteristics of normal distribution	 Bell-shaped Symmetrical distribution Continuous distribution Mean = median = mode (all equal) Location (centre) is determined by the mean (μ) Spread is determined by the standard deviation (σ) Area under the curve is equal to 1 Changing μ shifts the distribution left or right. Changing σ increases or decreases the spread. Changing σ increases or decreases the spread. Mean = Median = Mode	
finding normal probabilities	Normal probability	8. measured by area 9. under the curve	
	Standardised normal distribution	10. any normal distribution (with any mean + std dev combination) can be transformed into standardised normal distribution (Z) 11. need to transer X units into Z units	

		Formula:
		$Z = \frac{X - \mu}{\sigma}$
		* standardised normal (z) distribution has mean = 0 std dev = 1
Standardise d normal distribution	EXAMPLE: stdardised normal distribution	2. If X is distributed normally with mean of 100 and std dev of 50, z-score for X = 150 is: $z = \frac{X - \mu}{\sigma} = \frac{150 - 100}{50} = 1.0$ 3. Z-score = no. of std dev particular value (X) is away from mean This says that X = 150 is 1 std dev above mean of 100
	Comparing X & Z	disribution is the same scale has changed express problem in standardised units (Z)
Dragodyna	Find D/ox V sh	Find D(a < Y < h) when Y is distributed normally.
Procedure for finding	Find P(a< X <b)< b=""> when X is</b)<>	Find P(a< X <b)< b=""> when X is distributed normally: 1. draw normal curve for problem in terms of X</b)<>
probabilities	distributed	2. translate X-values to Z-values
	normally	3. Use standardised Normal Table or software to find the area (probability)
	Table look up of std normal probability	P(0 ≤ Z ≤ 1) = 0.3413
Finding X for	Finding X for	Steps to find X value for known probability:
known	known	draw the normal curve for probalm showing area of interest
probability	probability	2. find probability (area) among values in body of table
(Reverse	(Reverse	3. determine value of Z (in left tail Z must have (neg) -sign, right tail Z has (pos) +sign)

Questions)	Question)	4. calculate $X = Z\sigma + \mu$	
Rules	Reading the table	 Calculate X = Zσ + μ If exact probability is not in bdoy of table - find closest probability + determine Z value to 2 decimal places DO NOT interpolate except when value is exactly HALF way EG. 0.45 is exactly halfway between 0.4495 (for Z=-1.64) & 0.4505 (for Z=-1.65) hence use Z= -1.645 	
	EXAMPLE	 Weekly demand for a particular brand of perishable product =normal Mean = 150 Std Dev = 8. Management orders the product at the beginning of the week and throws out leftover stock at the end of the week. What would you recommend as the min + max order quantities for this product? Explain. Min: μ-3 σ 150-3 × 8 126 Max: μ+3σ 150+3 × 8 174 The ordering policy has been to order 160 units of the brand. What is the probability that some product be thrown out at the end of the week? P(Wastage) = P(Demand < 160) z = X-μ/σ 160-150/8 10/8 11.25 P(z<1.25) = 0.8944 (from table) = there is almost 90% chance that there will be at least some wastage 	
		Oh Deer ee	

	What should ordeirng policy be if they want to ensure that they run out of stock in only 5% of week? Want: $P(X>?)=0.05$ $Z=1.645$ ($itable$) $Z=\frac{X-\mu}{\sigma}$ $itagle \frac{X-150}{8}$ $itagle itagle itag itagle itagle itagle itagle itagle itagle itagle itagle itagle $	
Summary	 normal distribution most important distribution in statistics due to wide application in solving many practical & business related problems probabilities of continuous random variables - calculated as areas under curve & b/w specified values of random variable normal distribution with mean μ & std devσ can be transformed to std normal distribution involving z-scores use z-scores allow probabilities to calculate from stdised normal distribution table 	

Week 7 (Topic 7) - Chapter SEVEN (Sampling & Sampling Distributions)		
5 key	5 key words in	1. Population
words in	Statistics	2. Census
Statistics		3. Sample
		4. Error
		5. Probability
		**Population is the "goal" – our purpose – even though we spend most of the time working with the
	T	sample.
	Types of Samples	Samples
	used	
		Non-Random Samples Random Samples
		Non-Random Samples Random Samples
		Simple Stratified
		Self-selection Random
		Convenience Judgment Systematic Cluster
	Non-Random	Tobubility of purficular element of population effecting sumple is unknown
	(Non-Probability)	some individuals / items in population have greater chance of selection than others
	Sampling	= statistically valid statements or inferences <u>cannot</u> be made about precision of estimates
	Advantages of	sampling costs are lower + implementation is easier
	non-random	sometimes there is no alternative (random sample cannot be taken)
	sampling:	However this means:
		 inferential statisical tehcniques <u>cannot</u> be applied
		 no statistical statement should be made re precision of result
	Self-selection	people are invited to submmit questionnaire
		EG. online
	Convenience	elements included in sample are chose b/c of accessibility or willingness
		EG. students are interviewed as they enter library
	Judgment	knowledgeable person selects sampling units that he/she feels are most representiative of population
		quality of result dependent on judgement of person selecting sample
		person may be well-qualified - judgement may be highly regarded = does not give results statisitical
		validity
	random	each element of population has known (non-zero) chance of hong included in sample chosen

		should be used where possible	
		• inferential statistics requires random samples.	
	NB: assume all	interential statistics requires random samples.	
	samples are		
	random for this		
	unit		
	simple random	evey individual/item from sampling fram (list of eligible elements from population) has equal chance of	
	sampling	being selected	
		every sample of fixed size has same chance of selection as every other sample of that size	
		most elementary random sampling technique	
		samples normally obtained from computer random number generators	
	Systematic	decide on sample size	
	sampling	• divid frame of N individuals into groups of K individuals: k = N/n	
		Randomly select 1 individual from 1st group	
		select every k th individual thereafter	
		some situations it is more convenient/faster than simple random sample	
	stratified	divid population in 2+ subgroups ("strata") according to common characteristics	
	sampling	EG. gender, age groups, states etc	
		simple random sample is selcted from each sub group ("stratum") with sample sizes proportional to	
		strata sizes	
		samples frome ach stratum are combined into one	
	cluster sampling	population is divided into several "clusters" each rep of population	
		• simple random sample of clusters is selected - all items in cluster can be used or items can be chosen	
		from cluster using another poabbility sampling techniques	
		clusters are often based on geographical groupings where cost of accessing individual households can	
		be reduced	
		EG. postcodes, electorates, city blocks	
survey	non- sampling	range of errors either for census or sample include:	
errors	error	• response + non-response bias	
		• interview bias	
		• self-selection bias	
		measurement error	
		coverage error	
		• processing error (typos)	
	sampling error	almost certain to involve error	
		a (relatively small) sample is unlikely to have exactly same features as population which it was drawn	
		• RECALL:	
		- parameter is numerical characteristic of pop	
		- statistic is numberical characterisitic of sample	

point estimation	from sample, value of relevant sample statistic could be used as point estimates of equivalent pop parameters	
	$\dot{\chi}$ = point estimator of population mean (μ)	
	$s = \text{point estimator of population std dev } (\sigma)$	
	• \hat{p} = point estimator of population proporiton (p)	
sampling error	diff b/w sample statistic estimate + corresponding population parameter	
	• sampling errors are:	
	$i \acute{x} - \mu \lor i = \text{sample } \mathbf{mean}$	
	$is S - \mu \lor is = \text{sample std dev}$	
	$i \hat{p} - p \lor i = \text{sample proportion}$	
	 manage error using probability 	
Manage estimate		
sample error	occur	
	statistical theory based on concept known as sampling distribution of sample stat show relatively small	
	samples (at great savings of time + money) can provide remarkably high degrees of accuracy in	
	estimating features of population	
sampling	distribution of all possible values of statistic for given size sample selected from population	
distribution		
Central limit	As the sampling distribution of \$\overline{X}\$ becomes almost	
theorem	yets large to the control of the con	
	 if population distribution is normal = sample distribution of \(\hat{x} \) will be normal regardless of size of n if populatio distribution is not normal = sample distribution of \(\hat{x} \) will be normal or approximately normal when \(n \) is sufficiently large enough (30+) 	
	in both cases:	
	$\mu \dot{x} = \mu$	
	Normal Population Distribution	
EXAMPLE:	Normal Sampling Distribution This document is available free of charge on Students.	

Normal population	
EXAMPLE: Not normal population	Smaller Limple Utt Smaller Limple Utt Smaller Limple Utt
	Security and the includes generally agor more) We will be a security agor more)
Distribution of sample means from various sample sizes	
Z-formula for	$ullet$ z-score is used to calculate probabilities from sampling distribution of \acute{x}

sampling	$ullet$ z-formula for the sampling distribution of \acute{x}	
distribution of \acute{x}	$Z = \frac{\dot{X} - \mu \dot{X}}{\sigma \dot{x}}$ $\dot{c} \frac{\dot{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	
	$L - \frac{1}{\sigma \dot{x}}$	
	$\mid \; , \; \acute{X} - \mu \;$	
	$\frac{\sigma}{\sigma}$	
	\sqrt{n}	
	Where:	
	\dot{X} = sample mean	
	μ = population mean	
	σ = population std dev	
	n = sample size	
Std error of	measure of variability in the mean from sample to sample given by std error of the sample mean (std	
sample mean	dev of all possible sample mean).	
	 NB: std error of sample mean <u>decreases</u> as the sample size n <u>increases</u> Std error = avg error expected to make in using sample mean as point esitmate of population mean 	
	Formula: $\sigma \acute{x} = \frac{\sigma}{\sqrt{n}}$	
EXAMPLE	 A population has mean μ = 8 	
	• Std Dev $\sigma = 3$	
	A random sample of size n = 36 is selected.	
	What is the probability that the sample mean is between 7.8 and 8.2?	
	Even if the population is not normally distributed, the central limit theorem can be used as n > 30	
	• sampling distribution of \hat{X} = approximately normal	
	• mean $\mu \acute{x} = 8$	
	• std dev:	
	$\sigma \dot{x}$	
	, σ	
	$i \frac{\sigma}{\sqrt{n}}$	
	$\frac{1}{\sqrt{36}}$	
	¿០.5(std error)	
	This decomposition will be for a fallow on StuDocul Com	

Sampling distribution of \hat{p}	• is the probability distribution of all possible values of the sample proportion \hat{p} for given sample size (n)	
	sample proportion: $\hat{p} = \frac{x}{n}$ where: $x = \text{no. of items in sample with characteristics}$ $n = \text{no. of items in sample}$	
	sample distribution: • approx. normal = $np > 5$ & $np > 5$ • p = population proportion & $q = 1 - p$ • std dev of distribution = $\sqrt{\frac{pq}{n}}$	
Std error of sample proportion (\hat{p})	• measure of variability in proportion from sample to sample given by std error of sample proportion $\sigma \hat{p} = \sqrt{\frac{pq}{n}}$	
	 NB: std error of sample proportion decreases as sample size (n) increases Std error is the avg error we expect to make using sample proportion as point estimate of population proportion 	
Z-formular for sampling distribution of \hat{p}	• When $np > 5$ & $nq > 5$ $z = \frac{\hat{p} - p}{SE \hat{p}}$ $\frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$	
	Where: \hat{p} = sample proportion n = sample size p = population proportion $q = 1 - p$	
EXAMPLE	• If true proportion of voter who support Proposition A is p = 0.4 What is possibility that sample size of 200 yields sample proportion b/w 0.40 & 0.45? If $p = 0.4$ & $n = 200$ what is: $P(0.40 \le \hat{p} \le 0.45)$?	

Find $\sigma \hat{p}$: $\sigma \hat{p} = \sqrt{\frac{pq}{n}} = \sqrt{\frac{0.4(1-0.4)}{200}} = 0.03464$	
Convert to standardised normal: $P(0.40 \le \hat{p} \le 0.45) = P\left(\frac{0.40 - 0.40}{0.03464} \le Z \le \frac{0.45 - 0.40}{0.03464}\right) = P(0 \le Z \le 1.44)$	
Use standardised normal table: $P(0 \le Z \le 1.44) = 0.4251$	

Week 8 (Topic	Week 8 (Topic 8) - Chapter EIGHT (Confidence Intervals)			
sampling distributions	EXAMPLE male v female productivity	$\begin{array}{lll} \bullet & \text{sample mean for productivity:} \\ & - & \text{males:} & \dot{\chi}_M \!=\! 99.9\% \\ & - & \text{females:} & \dot{\chi}_F \!=\! 97.5\% \\ \bullet & \text{are 26 males & 22 females enough to draw conclusions re all 3,000 employees at Conrobar?} \\ \bullet & \text{what is mean (avg) productivity:} \\ & - & \text{for } \underline{\text{all males?}} & \mu_M \!=\! ? \\ & - & \text{for } \underline{\text{all females?}} & \mu_F \!=\! ? \end{array}$		
	Point estimation	 		
	Why don't use point estimate	 Should not use value of x by itself as estimate of μ as: Almost certain to be wrong, and We won't know how wrong. Point estimator does not provide info re how close estimate is to population parameter We would have no confidence in using it – instead we use confience interval 		
	Margin of error	• Interval estimate is constructed by subtracting + adding margin of error (ME) to point estimate: $Sample\ statistic \pm ME$		
	Interval estimate	• Interval estimate of population mean is:		
		Example of 95% interval estimate $\frac{\mu}{\overline{X_i}}$ $\frac{\overline{X_i}}{\overline{X_i}}$ $\frac{\overline{X_i}}{\overline{X_i}}$		

Confidence interval of μ (σ known ἰ	Use z (stdarised normal) distribution General form of our confidence interval would be: use the z (stdised normal) distribution general form of confidence interval would be: Stdised normal Stdised normal
	 Most commonly used confidence intervals + corresponding z values: 90% of values within ±1.645 std error of μ 95% of values within ±1.96 std error of μ 98% of values within ±2.33 std error of μ 99% of values within ±2.575std error of μ if you construct a 95% confidence interval, 95% is called confidence coefficient other intervals can be used (eg. 96%)
EXAMPLE: no. of defects	 calculate 95% confidence interval estimate for mean no. of defects per shift across <u>all</u> shifts assume population & std dev is known: -
	comparing intervals to 95% CI, can see that there is trade-off b/w confidence & margin of error **higher the confidence = less precise (or wider) the interval is

T-	T Distribution Properties	$t = \frac{\acute{x} - \mu \acute{x}}{s \acute{x}} \qquad z = \frac{\acute{x} - \mu_{\acute{x}}}{\sigma_{\acute{x}}}$ • Shape of distribution similar to normal distribution <u>but</u> varies re sample size • T-scores are bigger than equivalent z-scores	
distribution		 Family of distributions T-score depends on degree of freedom (d.f.) Bell shaped like normal distribution – but flatter + wider T-distribute provides more conservative confidence interval estimate, since intervals (slightly) wider for given sample size NB: T-distribution should be used if σ is unknown T → Z as n increases 	
	Confidence interval for μ (σ unknown ¿	Use T-distribution General form of confidence interval would be: use t-distribution general form of our confidence interval would be: """""""""""""""""""""""""""""""""""	
	EXAMPLE:	 Assume population std dev (σ) is unknwon (more realistic) 	

	No. of Defects	 Use value of sample std dev (s) (9.77) as point estimate of σ Use T-distribution instead of normal distribution Calculate 95% confidence interval estimate for true mean no. of defects per shift
Conrobar Productivity	EXAMPLE: Confidence Interval	 95% confidence intervals for the mean productivity per group (male/female) as follows: All males: Sample mean: x´ = 99.981% 95% confidence interval: 98.376% to 101.585% All females: Sample mean: x´ = 97.53% 95% confidence interval: 95.499% to 99.574% Males: 95% confidence interval: 98.376% to 101.585% All males could be achieving 100% on average Females: 95% confidence interval: 95.499% to 99.574% All females not achieving 100% on avg. At 95% confidence, we cannot conclude males are doing better on avg than females 98% or 99% confidence intervals are wider: same conclusions except females could now be achieving 100% avg 90% confidence intervals are narrower: different conclusions

Categorical variables (assume ME either side of sample proportion)	Confidence interval for p	general form of interval is: $z \text{ indicates how wide}$ the confidence interval is in terms of the number of standard errors. Eg. 1.96 std. errors wide. The z value ties back to the level of confidence. P \(\frac{pq}{n} \)
	EXAMPLE: Shifts with defects	What is true proportion of shifts which defects occurred (use 95% confidence) • Of sample of 40 shifts – defects founds across 33 shifts: $\hat{p} = \frac{33}{40} = 0.825$ • Sample size lrg enough for sampling distribution of \hat{p} to be approximated by normal distribution
		• 95% confidence = 1.96 std errors (z) • 95% confidence interval: $\hat{p} \pm z \sqrt{\frac{\hat{p}\hat{q}}{n}} = 0.825 \pm 1.96 \sqrt{\frac{0.825 \times 0.175}{40}}$ $= 0.825 \pm 1.96 \times 0.06$ $= 0.825 \pm 0.118$ $= 0.707 \text{ to } 0.943$ • 95% confident true proportion of shifts where there are defects somewhere in range: 70.7% to 94.3%
	Different sample sizes	• Logic tells us the bigger the sample = more accurate • If n is larger \therefore SE must be smaller: $SE = \frac{S}{\sqrt{n}}$ • Sample distribution would be narrower • Confidence interval \therefore be narrower

Calculating sample size (n)	• Before taking sample to estimate μ or p – first esitmate what size sample required • To do this, specify: - Margin of error (ME) - Degree of confidence required (eg. 95%) - Obtain estiate of σ and p/q $n = \frac{z^2 \sigma^2}{ME^2}$ For numerical data For categorical data	
EXAMPLE: No. of defects	• If we know mean no. of defects per shift (3 defects) + 95% confidence Use $\sigma = 10$ $n = \frac{z^2 \sigma^2}{ME^2} = \frac{1.96^2 10^2}{3^2} = 42.7$ • N = 43: is min sample size needed for specifications	NB: always round up
EXAMPLE: Shifts with defects	• if want to know true proportion of shifts in which defects occur to within 5% & 95% confidence • use previous study's $\hat{p} = 0.825$ to approx. p $n = \frac{z^2 pq}{ME^2} = \frac{1.96^2 (0.825)(0.175)}{0.05^2} = 221.84$ NB: $n = 222$ is min sample size needed for our specifications	NB: always round up
Calculating sample size	 if no idea re likely value of p then use p = 50% in sample size calculation if some idea re likely value of p then: pilot study similar / previous study use that in calculation of n 	
EXAMPLE: Newspaper polls	• election poll is estimate with 95% confience, proportion of voters who will vote for labor party within 3% accuracy • use $p = 0.5$ (no better estimate of p is available) $n = \frac{z^2 pq}{ME^2} = \frac{1.96^2(0.5)(0.5)}{0.03^2} = 1067.1$ NB: $n = 1068$ is min sample size needed for specifications	

Week 9 (Top		(Hypothesis Testing)	
	EXAMPLE: Conrobar	 Sample of 48 employees showed: Mean productivity = 98.9% Mean days absent = 2.4 days Do these mean ALL employees, on average, are not meeting the 100% standard for productivity and the 1.5 days target for days absent? Need to allow for sampling error Confidence intervals (last lecture) provide one approach Hypothesis tests provide another 	
2 key inferential tools	Confidence interval estimation	use if no idea re value of population parameter being investigated	
2 key inferential tools	Hypothesis test	Use if some idea re value of population parameter being investigated or if some hypothesised value against can compare sample results	
2 hypotheses	Null Hypothesis (H_0)	assumed population parameter is correct	
	Alternative hypothesis (H_1)	assumed population parameter is incorrect	
	EXAMPLE: Conrobar	 Days Absent – number of days employees are absent from work on sick/family leave Conrobar management claim that the averageabsenteeism rate is excessively high at over 2 days per employee. Set the null and alternative hypothesis NB: Remember that the analogy is: null = innocent alternative = guilty 	
	EXAMPLE: null hypothesis	 Assume employees are <u>not</u> taking excessive leave until evidence demonstrates the contrary assume the avg employee absenteeism rate is <2 days Thus the null hypothesis can be written: H₀: μ≤2 NB: null hypothesis must always contain an equal sign 	

	EXAMPLE: alternative hypothesis	 statistical evidence is required to contradict the assumption contained in the null hypothesis Management's suspicion or contention is that employees overall have a mean that is > 2 days. the alternative hypothesis is: H₀: μ ≤ 2 Is this consistent with Ho? Is this sufficiently different from Ho? Reject Ho in favour of H₁ Hypothesis test procedure enables us to choose which outcome
Step 1: Setting up hypotheses	when are hypothesis tests used?	 in situations where we have: prior knowledge prior experience a standard a claim in these situations we have: some idea of value of population parameter being investigated, or some hypothesised value against which we can compare sample results
Setting up (H_0) and (H_1) prior knowledge	EXAMPLE: assume prior knowledge is still current: set as H_0	Detailed survey in 2004 showed avg km travelled yearly per car was 14,500km - has there been any changes in 2015? • take random sample of cars • want to know whether the mean is diff (has increase/decreased) $H_0: \mu = 14,500$ no change: avg still 14,500km in 2015 $H_1: \mu \neq 14,500$ change: avg not 14500km in 2015
Setting up (H_0) and (H_1) prior experience	EXAMPLE: assume prior knowledge is still reliable: set as \boldsymbol{H}_0	Past experience has shown no more than 3% of components from particular supplier are defective - new batch has arrived, test random sample of components from batch • could proportion (p >3%?) $H_0: \mu \le 3$ \$ new batch has no more than 3% defective $H_1: \mu > 3$ \$ new batch has more than 3% defective
Setting up (EXAMPLE:	Wish to test whet' This document is available free of charge on Shippoclicom

H_{0}) and (H_{1}) standard	normally set H_0 equal to std	• take random sample of 48 • we would write 2 hypotheses as: H_0 : $\mu \ge 100\%$ employees on avg are meeting 100% std
		H_1 : μ < 100% employees on avg are failing to meet 100% std
Setting up (H_0) and (H_1) claim		 Who is making claim and the seriousness of claim determines whether we: treat claim as null hypothesis (accept claim is true) until have evidence to contrary, or treat claim as alternative hypothesis (claim is false)
Setting up (H_0) and (H_1) claim	EXAMPLE:	Newspaper claims at least 40% of readers will see particular type of ad in its paper. Association of National Ads wants to check claim. • adopt conservative approach + assume claim is true • test claim with random sample of readers $H_0: \mu \ge 40\%$ at least 40% of readers ad $H_1: \mu < 40\%$ fewer than 40% see ad
	Common mistakes	 equality part of hypotheses always appears in null hypothesis H; p>100 H. p≤100 H. p≤100 hypotheses are statements re population parameters not sample statistics H; x=100 H. x≠100
Step 2: Type of test	different types of tests	$ullet$ a hypothesis test re value of population mean (μ) or proportion (p) must take one of 3 forms:
Type of test	numerical data	$H_0: \mu \geq A \qquad H_0: \mu \leq A \qquad H_0: \mu = A$ $H_1: \mu < A \qquad H_1: \mu \geq A \qquad H_1: \mu \neq A$
Type of test	categorical data	$H_0: p \ge A$ $H_0: p \le A$ $H_0: p = A$

 $H_1: p < A$ $H_1: p > A$ $H_1: p \neq A$

Type of test	one-tail test	sometimes, alternative hypoth	eseis focuses on particular H_0 : $\mu \ge 3$ H_1 : $\mu \ge 3$ H_1 : $\mu \ge 8\%$ H_1 : $\mu \ge 8\%$	This is a lower-ta alternative hypot the lower tail below This is an upper- alternative hypot	hesis is focused on ow the mean of 3 tail test since the hesis is focused on ove the proportion	
Type of test	two-tail test	H_0 : $\mu = 25$ H_1 : $\mu \neq 25$ alternative either $\sqrt{2}$	two-tail test since the hypothesis is foculues below the meas above 25	ne used on		
Step 3: Level of significant & critical region	errors in hypothesis tests	• correct outcomes: $ - H_0 \text{ is true and we do not} $ $ \textbf{reject } H_0 $ $ - H_0 \text{ is false and we reject} $ $ H_0 $	Conclusion	Population H ₀ True	Condition H ₀ False	
		• incorrect outcomes (errors): - Type I Error: reject H_0 when in fact H_0 is true.	Not Reject H ₀	Correct Decision	Type II Error	
		- Type II Error: not reject H_0 when in fact H_0 is false	Reject H ₀	Type I Error	Correct Decision	
	Type I error = more serious	 try to set up H₀ and H₁to con This is also a conservative appr Only conclude the alternative 	roach to decision making	; evidence.		

	1		
		\therefore to set up H_0 and H_1 need to think about:	
		- Which error is the more serious (Type I)	
		- The risk willing to run of making this error	
	Level of	this is what hypothesis testing risk is referred to	
	significance (α)	specify maximum risk willing to accept in making Type I error	
		• normally set at 5%, 10%, 2% or 1%	
		• level of significance is max risk willing to accept in making Type I error (rejecting H_0 when shouldn't)	
critical rejection region	critical rejection region	• consider if reject H_0 $H_0: p > 100$ $H_1: p \le 100$ Somption Figure 100 Figure 10	
critical		Need to decide:	
rejection		- direction of test; and	
region		- specify($lpha$)	
		Can next determine the critical (rejection) region = area in sampling distribution where we will reject	
		H_{0} .	
		• critical value(s) = border(s) of the critical region	
	level of significance & critical (rejection) region	H ₀ : $\mu = 3$ H ₁ : $\mu \le 3$ H ₂ : $\mu \le 3$ H ₃ : $\mu \ge 3$ H ₄ : $\mu \ge 3$ H ₄ : $\mu \ge 3$ H ₅ : $\mu \ge 3$ H ₇ : $\mu \ge 3$ H ₈ : $\mu \le 3$ H ₉ : $\mu \ge 3$ H ₁ : $\mu \le 3$ H ₂ : $\mu \le 3$ H ₃ : $\mu \le 3$ H ₄ : $\mu \le 3$ H ₅ : $\mu \le 3$ H ₇ : $\mu \le 3$ H ₈ : $\mu \le 3$ H ₉ : $\mu \ge 3$ H ₁ : $\mu \le 3$ H ₂ : $\mu \le 3$ H ₃ : $\mu \le 3$ H ₄ : $\mu \le 3$	
		This degument is available free of charge on Stuff Com	

	critical value (CV)	can be determined in terms of Z or t-values	
	, ,	EG. suppose α = 5% (2-tail test) using Z	
		(a = 0.002) (a = 40.052)	
		Shand relied (22 - 1.50) (0 22 + 1.50)	
Step 4:	Decision rule	• if sample result falls beyond critical value = reject H_0 in favour of H_1	
Decision	Decision rate	 if calculate Z statistic from sample which is: 	
rule		Z>+1.96 or Z<-1.96	
		\therefore would reject H_0	
Step 5:	analyse sample	collect random sample	
analyse	, ,	calculate sample statistic	
sample		$\dot{\chi}$, s for hypothesis tests re means	
		\hat{p} for hypothesis tests re proportions	
		calculate Z or t-statistic as appropriate	
Step 6:	Conclusions	compare calculated test statistic (from step 5) to decision rule (from step 4)	
conclusion		make decision:	
		reject \boldsymbol{H}_0	
		do not reject \boldsymbol{H}_1	
		write conclusion re terms of problem solved	
	EXAMPLE:	Past experience show that no more than 3% of components from particular supplier are defective.	
	Defectives	New batch arrives - does this new batch of components have no more than 3% defective? If it has more, we	
		will send it back to the supplier.	
		1. Take a random sample of components from batch to determine proportion of defective components.	
		2. Then perform a hypothesis test to see if the population proportion in the batch could be greater than	
		3%.	
		Step 1: step up \boldsymbol{H}_0 and \boldsymbol{H}_1	

	• $H_0: p \le 3\%$ = new batch has no more than 3% defective	
	• $H_1: p > 3\%$ = new batch has more than 3% defective	
	Step 2: decide on direction of test	
	upper tail test	
	Step 3: Decision on α (IvI of significance) • set α to be 5%	
	• critical value (CV) of Z will be +1.645	
	Step 4: decision rule (using critical values of Z or t) • if proportion of defecgives in sample result in Z static > $1.645 = \text{reject } H_0$	
	Step 5: sample (peform relevant calculations: Z or t-statistic)	
	• if test on random sample of 1000 components + 43 defective:	
	- n = 1000	
	$- \hat{p} = \frac{43}{1000} = 0.043 \text{ or } 4.3\%$	
	$\sqrt{na} \sqrt{0.03(0.97)}$	
	$\sigma \hat{p} = \sqrt{\frac{pq}{n}} = \sqrt{\frac{0.03(0.97)}{1000}} = 0.00539 \lor 0.539 \%$	
	• find test statistic (z statistic)	
	$z = \frac{\hat{p} - p}{\sigma \hat{p}} = \frac{0.043 - 0.03}{0.00539} = 2.41$	
	• test statistic = no. of std errors sample result from population parameter (assuming H_0 is true)	
	compare Z statistic to CV of Z	
	Stan C. conclusion (reject / not reject H. Languer question)	
	Step 6: conclusion (reject / not reject H_0 + answer question) • Z statistic of 2.41 exceeds CV of Z (1.645) = reject H_0	
	(means sample proportion (evidence) fell in rejection region)	
	conclude at 5% level of significance - new batch has more than 3% defective	
EVALADI F.	decision: send batch back Are all staff on any magning 100% and dustinity and an highest (100 % - 5%)	
EXAMPLE: Tests on	Are all staff on avg meeting 100% productivity std or better? (Use α = 5%)	
productivity at	Step 1: step up H_0 and H_1	
Conrobar	• $H_0: \mu \ge 100\%$ = staff meeting std	
	• H_1 : μ < 100 % = staff not meeting std	
	Step 2: decide on	
	This document is available free of charge on Studio CU.COM	

		lower tail test	
		Step 3: Decision on α (Ivl of significance)	
		• $\alpha = 5\%$	
		• CV for t = -1.678 (from table)	
		Step 4: decision rule (using critical values of Z or t)	
		• if sample results t static < 1.678 = reject H_0	
		Step 5: sample (peform relevant calculations: Z or t-statistic)	
		• n =48	
		• sample mean: $\dot{x} = 98.86$	
		• sample SD: s = 4.399	
		Std error:	
		$s \dot{x} = \frac{s}{\sqrt{n}} = \frac{4.399}{\sqrt{48}} = 0.635$	
		\sqrt{n} $\sqrt{48}$ -0.055	
		• t-statistic: $t \times = \frac{\dot{x} - \mu}{s \times \dot{x}} = \frac{98.86 - 100}{0.635} = 1.795$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Step 6: conclusion (reject / not reject H_0 + answer question)	
		• t-statistic of -1.795 less than CV of t (-1.678) = reject H_0	
		• sufficient evidence to conclude, at 5% lvl of significance, staff overal on avg not meeting productivity	
		std of 100%	
Different	P-value	the probability of getting test statistic more extreme than sample result, given null hypothesis ($H_{ m 0}$) is true	
approach		derived from (Z or t) test statistic	
to		gives area in tail (or 2 tail if 2-tail test) beyond where sample result falls	
hypothesis		• if p-value > α = do not reject H_0	
test		• if p-value < α = reject H_0	
		p-value <u>calculated by computer</u>	
	EXAMPLES:	Step 5	
	Defective	• p-value = 0.0080 or 0.8%	
		Step 6	
		• p-value of 0.008 (or 0.8%) = $< \alpha$ of 0.05 (or 5%) : reject H_0	
		 Decision: the new batch of components has >3% defective 	
	EXAMPLES:	Step 5	
	Conrobar	• p-value = 0.0395 or 3.95%	

	 Step 6 p-value of 3.95% = < α of 5% ∴ reject v Decision: staff overall, on avg, are not meeting productivity std of 100%. 	
Tests on	Step 6 : Conclusion at different α 's	
productivity at	• p-value = 0.0395 or 3.95%, tells us:	
Conrobar	- would reject H_0 at an $lpha$ of 10% (or < 3.95%)	
	- would not reject H_0 at an $lpha$ of 2% or 1% (or >3.95%)	

Week 10 (To	pic 10) - Chapter TE	N (Simple Linear Regression)
	Regression & Correlation	 relationships b/w variables enable us to explain nature of link b/w variables + how one variable affects the other build a model b/w variables for purpose of: explanation prediction control causality
Regression	Explanation	 regression helps explain / understand variation in dependent variable do this by: finding other independent variables that relate to dependent variable wish to know: direction of the relationship strength of the relationship
	Prediction	make use of explanatory (independent) variable to predict likely outcome of dependent variable EG. knowing no. of customers fast food restaurant has may enable management to forecast sales
	Control	if we have some control over value of independent variable, this enables some form of control over dependent variable EG. varying advert expenditure up/down to certain extent = able to control movement in sales
	Causality	it is important to note that while regression models may establish association b/w variables - they do not necessarily establish causality
Concepts in regression & Correlation	Scatter diagram	representation of possible relo b/w 2 variables • plots pairs of variables on scatter diagram to identify possible relationships • verticle (y) axis) always contains dependent variable • look for: - no relationships - linear relationships - non-linear relationships • possible patterns • prefect Positive Linear Direct Linear

		Regression Coefficients
		- We explain using the defectives example:
		$\hat{y} = 8.480 - 0.144 x$
		- regression coefficients $b_0 \& b_1$ can be interpreted in 3 ways:
		Geometrically (i.e. graphically)
		b_0 interpretation:
		on graph b_0 = where line cuts vertical axis
		EG. line cuts y axis at 8.48%
		Ed. Inte cats y axis at 6. 1070
		$b_{\scriptscriptstyle 10}$ interpretation:
		on graph b_1 = slope of line
		EG. slop = -0.144
		 Algebraically (i.e. in equation form)
		b_0 interpretation:
		b_0 is value of y when x = 0
		EG. y = 8.48 when x = 0 workers
		$b_{\scriptscriptstyle 1}$ interpretation:
		$b_{ ext{1}}$ is change in value of y when x changes by 1
		EG. if x increases by 1 = y deceases by 0.144%
		Practically (i.e. practical interpretation)
		$b_{\scriptscriptstyle 0}$ interpretation:
		b_0 not always useful interpretation as x = 0 may be outside range of x values used for regression
		equation
		EG. 8.48% of defects produced on avg when 0 workers = nonsensical
		$b_{\scriptscriptstyle 1}$ interpretation:
		$b_{ ext{1}}$ indicates impact on y from change in x
		EG. for each extra worker employed on a shift, on avg defectives decrease by 0.14%
Concepts	Regression	mathematical model of relationship
in		
regression		
&		
Correlation		
	Simple linear	• involves 1 independent variable
	regression	

	Multiple regression	involves 1+ independent variable to explain variation in dependent variable	
	Non-linear	before interpreting r, a scatter plot must be drawn	
	relationship	• r associated with regression models = poor indicators of actual strengths of each relo	
how does model fit data?	Residuals	• regression line does not perfectly fit data • there will be variations (errors) b/w line + actual data points: $y - \hat{y}$	
how does		• need to obtain measures of these residuals & how well line fits with data	
model fit data?		• measure variation around line = use std error of estimate (S_e)	
uatar		• for how well line fits data = use coefficient of determination (r^2)	
	Std error of	use to measure variation around line	
	estimates (S_e)	• defectives v employees: $S_e = 0.758$	
		• interpretation: estimate avg variation around regression line = 0.758%	
		• rough approx using empirical rule, could say max deviation from line be: $\pm(3\times0.758)$ or $\pm2.27\%$	
	Coefficient of	• how well line fits data: $0 \le r^2 \le 1$	
	determination (r^2	• measures proportion of variation in 1 variable (y) dependent, explained by or attributable to variation	
)	in 2nd variable (x) independent	
		provides absolute measure of strength of relo	
		• r ² close to 1 = strong relo	
		• r² close to 0 = weak / non-existent relo	
		normally expressed as %	
	coefficient	• Defective v employees: $r^2 = 0.6209$	
	determination (r^2	• interpretation:	
)	- approx 62% of variation in "defectives" explained by or attributed to variation in "no. of workers" in shift	

	 remaining 38% variation = result of other factors not included in model (eg. time of shift, worker's experience etc) 	
Use regression equation for estimation / prediction	 regression equation coefficient (b₀ and b₁) define nature of relationship b/w variations regression equation also used for estimation / prediction EG. if 50 workers in shift, estimated proportion of defectives would be: ŷ = b₀ + b₁x ŷ = b₀ + b₁x ŷ = 8.48 - 0.144 * (50) = 1.28% 	
Prediction	when we use regression model with value of x contained in range of x values from sample	
extrapolation	 when we use the model with value of x outside range should be used with caution as no guarantee same model holds outside original range of data 	
EXAMPLE:	Collected data over the last 10 years re annual expenditure on advertising & its total sales (all figures scaled for inflation). Develop a regression model and answer the following questions:	
	 How well does the model predict sales? Interpret b0 and b1. What would you estimate sales to be when \$1m is spent on advertising? 	