Ambient Intelligence

Vorlesung 10 – Artificial intelligence in Aml systems

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

This lecture is highly influenced by lectures presented by Jean-Claude Latombe and Joschka Boedecker

 Al is the reproduction of human reasoning and intelligent behavior by computational methods

 Al is the reproduction of human reasoning and intelligent behavior by computational methods

 Al is THE ATTEMPT TO REPRODUCE human reasoning and intelligent behavior by computational methods

- The attempt to make computers more "intelligent"
- The attempt to better understand human intelligence
- Four approaches:
 - Is it about thought thinking . . .
 - ... or acting?
 - Oriented towards a human model (with all its defects) . . .
 - ... or normative (how should a rational being think/act)?

Act like humans	Act rationally
Think like humans	Think rationally

- Example: Turing Test
- Take a task at which people are better at and build a computer system that does it automatically
- ... not much interesting for AI
- because let's face it, humans do not act the best :)

Act like humans	Act rationally
Think like humans	Think rationally

- Here, how the computer performs tasks does matter (The reasoning steps are important)
- What cognitive capabilities are necessary to produce intelligent performance?
 - Not important: Being able to solve problems correctly
 - Important: Being able to solve problems like a human would
 - Cognitive science and cognitive psychology
 - Also important for human-machine interaction

Act like humans	Act rationally
Think like humans	Think rationally

- Now, the goal is to build agents that always make the "best" decision given what is available (knowledge, time, resources)
- "Best" means maximizing the expected value of a utility function
 - Here, impact of self-consciousness, emotions, desires, love for music, fear of dying ...

Act like humans	Act rationally
Think like humans	Think rationally

- What are the laws of thought?
- How should we think?
 - The logical approach
 - Problems:
 - Presentation of problem descriptions using a formal notation
 - Computability

Act like humans	Act rationally
Think like humans	Think rationally

- Rational agents (or rational actors)
 - A rational agent acts so as to achieve its given goals, under the assumption that its impressions of the world and its convictions are correct
 - Rational thinking is a prerequisite for rational acting, although it is not a necessary condition
 - What to do when we must make a decision faced with insufficient information?

Can Machines Act/Think Intelligently?

- Yes, if intelligence is narrowly defined as information processing
 - My car can decide that a situation is dangerous and automatically breaks
- Maybe Yes, maybe No, if intelligence is not separated from the rest of "being human"
 - I know that the person pretending that he wants to jump in front of the car is a friend who usually do these stupid silly things...
 - Or even worse, I'm having a bad day and I'm not as focused as usual, so I do not notice the situation...

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

What AI we need in AmI?

- Mainly rational thinking and acting...
 - Its slightly cold and it's predicted to get colder tonight, let's start the fireplace before it gets colder

- Maybe sometimes act like humans... sometimes
 - You do not want your smart home system to tell you "I will keep you
 cold tonight because lately you've been acting different with me!"
 - But maybe you want your music system to change its mood sometimes and play some music that you do not commonly listen to

Motivation

- Ambient Intelligence
- An Aml system should adapt to changing circumstances
 - Change of environment
 - Change of users
 - Change of the system
- Adaptation of the system during runtime
 - Configuration or adaptation

Motivation – 1

Example - Mrs. Mayer's son has moved nearby and now comes over much more often.

- Configuration Mrs. Mayer adjusts the rules of the home so that it also supports her son.
- Adaptation the AmI environment learns from the context that another person is frequently in the vicinity and adapts to this.

Motivation – 2

- Example a new sensor for measuring air quality is installed in the environment.
 - Configuration the user teaches the system to find it and convert its data into rules
 - Adaptation the system finds the new sensor independently and searches for suitable rules

Ai in Aml

Context Awareness & Reasoning

From low-level context to situations

- Reasoning creates new context information from existing context
- Reasoning creates an understanding of the context

Context Awareness & Reasoning

Activities

- Higher-order context that has a reference to the user
- E.g. Mrs. Mayer is peeling potatoes

Activities of Daily Living (ADL)

- Activities of daily living
- Frequent reference to activities within the living environment

Context Awareness & Reasoning

- Situations are similar to activities but induce them with further information
 - Time of situation certain situations have different meanings at different times
 - Duration of the situation can have different length
 - Frequency of situation can occur with variable frequency
 - Sequences of situations can occur in certain sequences with other situations

AI in AmI

Context Awareness & Reasoning

Situations properties

Eigenschaften	Erklärung
Generalizability	Level of abstraction, e.g. media consumption is more generic than watching TV
Composition	Situations can often be subdivided, e.g. cooking consists of several individual situations
Dependency	Situations can be interdependent, so that situation A can only take place after situation B has started
Opposition	Situations can be mutually exclusive
Time occurance sequence	Situations can be time dependent

Perceive, Decide, Act

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

Main types of artificial intelligence in Aml Overview

- Rule-based systems
 - Expert knowledge is directly introduced into the system
 - Logic-based rules
- Supervised Learning
 - Expert knowledge as the basis of machine learning
 - Classification based on given data
- Unsupervised Learning
 - System learns patterns without expert knowledge
 - E.g. cluster recognition

Main types of artificial intelligence in Aml Rule-based systems

- Foundation knowledge can be discretized
- Ontologies enable a structured representation of knowledge
- Spatial and temporal dependencies are often the basis in situation recognition

IF at_kitchen_on AND later no_movement_detected
 THEN assume the occupant has fainted

Main types of artificial intelligence in Aml Rule-based systems

- Example of a rule for "Person sleeps"
 - If bed_in_use AND light_is_off AND 10min_no_actions
 THEN person_is_sleeping

Fuzzy logic can help to act with non-precise context

Main types of artificial intelligence in Aml Supervised Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

- Tom M. Mitchell

- Knowledge is available in exemplary form
- With one part of the knowledge a system is trained (Training Set)
- With another part of the knowledge this is tested (Test Set)

Main types of artificial intelligence in Aml Supervised Learning

- Example: intelligent office chair with eight capacitive sensors
 - Determination of sitting position (healthy sitting)
 - Data is collected together with sitting position
 - 80% of the data is used as training data
 - 20% of the data is used as test data
 - Training of a Support Vector Machine ... for example

Main types of artificial intelligence in Aml Unsupervised Learning

- Large data set available
- No (or very fuzzy) assignment of knowledge
- System searches independently for possible patterns
- Example: System searches for clusters of frequent activities
 - Whenever person cooks dish x, windows are opened shortly afterwards
 - System builds new rule to control air quality

Main types of artificial intelligence in Aml Situational Awareness

Few precise sensors, few situations

Inaccurate sensors

More imprecise sensors, complex situations

Rule-based systems

Supervised Learning

Unsupervised Learning

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

Fuzzy Logic

- Mapping of fuzziness in data
- Moving away from fixed values

Boolean	Fuzzy
AND(x,y)	MIN(x,y)
OR(x,y)	MAX(x,y)
NOT(x)	1 – x

Fuzzy Logic

Fuzzy Logic

- Example Refrigerator
 - Sensors for inside temperature, outside temperature, control compressor
- ----→ keep in mind that temperature is not discreet
 - Rule 1: If T_inside = cold and T_outside = warm, then compressor = weak
 - Rule 2: If T_inside = lukewarm and T_outside = hot, then compressor = strong
 - ... Rule n

Ontology Reasoning

Knowledge is represented in the form of ontologies

Rules are based on this ontology

Mapping of expert knowledge

Forms of reasoning Ontology Reasoning

Example - person sleeps

(?user rdf:type socam:Person), (?user, socam:locatedIn, socam:Bedroom), (?user, socam:hasPosture, 'LIEDOWN'), (socam:Bedroom, socam:lightLevel, 'LOW'), (socam:Bedroom, socam:doorStatus, 'CLOSED') -> (?user socam:status 'SLEEPING')

Bayesian networks

	ı	GRASS WET	
SPRINKLER	RAIN	Т	F
F	F	0.0	1.0
F	Т	0.8	0.2
Т	F	0.9	0.1
Т	Т	0.99	0.01

Bayesian networks

- Directed Acyclic graph
- In the case of Aml
 - Nodes as context events
 - Links as causal connection

network

Bayesian networks

Example - Birthday party

Forms of reasoning Hidden Markov Modelle

Dynamic Bayesian Networks

Only a part of the states is observable

Probabilities of transitions are known (or learned)

Hidden Markov Modelle

Example - Activity detection

Kim E, Helal S, Cook D. Human Activity Recognition and Pattern Discovery. *IEEE pervasive computing / IEEE Computer Society [and] IEEE Communications Society*. 2010;9(1):48. doi:10.1109/MPRV.2010.7.

Forms of reasoning Support Vector Machines

- Classification of objects or events
 - Subdivision so that class boundaries are as wide as possible.
 - H2 separates, but with narrow boundaries
 - H3 separates, with wide boundaries

 Higher dimensional data sets can be separated with hyperplanes

Forms of reasoning Support Vector Machines

- example Smart Couch
 - 8 sensors as input
 - 15 verschiedene Belegungen
 - You can use SVM or similar classifiers to classify between:
 - Empty/occupied
 - Setting/laying down
 - Person 1/ person 2
 - .
 - .

k-Means Clustering

- Unsupervised Learning Method
- Division of a state space into clusters
- Assignment of new elements according to proximity to cluster center

• is the person doing the same thing he/she does every morning?

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

The user in learning systems Forms of influence

User

Data source

Operator

Adaption

Forms of influence

- Data source
 - The user's activities are the most important basis of the system's decisions
 - As an expert, the user can configure the systems
- Operator of the learned rules
 - The operator triggers many rules
 - She/he can give feedback on their success
- Adaptation of learning
 - The user can influence learning processes

The user in learning systems Data sources

- Ground Truth
 - Data basis that is accepted as true
 - Frequently labeled data

User activities represent the "truth"

Learning systems can be trained with these

The user in learning systems Data sources

Smart Chair - Pose Recognition

User plays different poses

The assigned sensor values serve as a basis for pose recognition

Adaptation of threshold values

Data sources

- Profile of the user
 - E.g. age, gender
 - System behavior
 - Accessibility tools
 - Preferences
 - System controls multiple applications according to individual preferences
 - Resolution, language, standard programs, themes, templates

Operator of the learned rules

- Self-created rules
 - Custom configured rules are set
 - Can influence rule logic or parameters
- Framework for rules
 - Certain framework conditions for rules can be set by the operator
 - Scope of the learning system is limited
- Feedback
 - If rules are executed, the user is typically directly affected
 - System can ask for feedback

The user in learning systems Operator of the learned rules

Rule configuration by user

For example, voice assistants

Rules can be further used by the system

The user in learning systems Operator of the learned rules

- Examples general conditions
 - "Never disturb me after midnight".
 - Unless it is a fire alarm

Overriding settings that affect all other rules

Adaptation of learning

- Adjustment of control parameters
- Fuzzy sets
 - "cold", "mild", "warm".
 - Modification of the assigned value parameters and probabilities
- Parameter
 - Preferred room temperature: 21° instead of 20
- Profile
 - Person moves slower

Adaptation of learning

- Example 1 Preferred room temperature
 - Thermostat has been turned up x times in the past n weeks
 - Adjust ambient temperature when person is present

- Example 2 Person moves slower after a few years
 - Ambient lighting is activated longer (coming home scenarios)

Adaptation of learning

Adaptation of the control behavior

- Profile
 - Person is visually impaired after accident

- Modality
 - screen in the corridor

Adaptation of learning

- Example 1 Accident
 - Information about visual impairment added to profile
 - System redirects output to sound
 - System changes font sizes, contrast profiles ...

- Example 2 new hardware
 - New hardware logs in with its functionalities
 - Output can be redirected to new hardware

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

Trends in intelligent environments Deep Learning

- Very high performance for many problems in computer vision
 - Object recognition, speech recognition, super-resolution, denoise, deblur, face recognition, ...
- Challenges
 - Black box influence of parameters
 - System requirements

Trends in intelligent environments Deep Learning

- Applications in situation recognition
- Temporal sequences in sensor data are used
- Example sensors in smartphones

Trends in intelligent environments Hybrid Reasoning

- Rule-based systems get problems with high complexity
- Learning-based systems cannot represent user preference and rapid changes well

 Combination of several methods to mitigate disadvantages of individual ones

Trends in intelligent environments Hybrid Reasoning

Example - Parameter Learning

- Basic rules are preconfigured by experts
- Learning procedures train the parameters of the rules

Trends in intelligent environments Smart Speaker

- Assistance systems in the living environment
- Combination of speech recognition and rules

- Natural Language Processing
 - Code words offline (performance, privacy)
 - Transfer speech samples to server
 - Analysis and triggering of actions

Agenda

- What is AI?
- Artificial intelligence in Aml
- Types of Artificial Intelligence
- Forms of Reasoning
- The user in learning systems
- Trends in intelligent environments

This lecture is highly influenced by lectures presented by Jean-Claude Latombe and Joschka Boedecker

Ambient Intelligence

Vorlesung 10 – Artificial inteligence in AmO systems

