Mecanismos Criptográficos Esquemas

Notas para a UC de "Segurança Informática" Inverno de 10/11

Pedro Félix (<u>pedrofelix em cc.isel.ipl.pt</u>)

José Simão (<u>jsimao em cc.isel.ipl.pt</u>)

Instituto Superior de Engenharia de Lisboa

Sumário

- Hierarquia de mecanismos criptográficos
- Funcionalidade de esquemas criptográficos
 - Esquemas simétricos e assimétricos de cifra
 - Esquemas MAC e esquemas de assinatura digital
 - Funções de hash
- Arquitectura interna dos esquemas assimétricos

Classificação dos mecanismos criptográficos

- Primitivas operações matemáticas, usadas como blocos construtores na realização de esquemas; a sua caracterização depende dos problemas matemáticos que sustentam a sua utilização criptográfica
 - ex: DES, RSA
- Esquemas combinação de primitivas e métodos adicionais para a realização de tarefas criptográficas como a cifra e a assinatura digital
 - ex: DES-CBC-PKCS5Padding; RSA-OAEP-MGF1-SHA1
- Protocolos sequências de operações, a realizar por duas ou mais entidades, envolvendo esquemas e primitivas, com o propósito de dotar uma aplicação com características seguras
 - ex: TLS com TLS_RSA_WITH_DES_CBC_SHA

Esquema de cifra simétrica

- Esquema de cifra simétrica algoritmos (G,E,D)
 - G função (probabilística) de geração de chaves
 - $G: \rightarrow Keys$
 - E função (probabilística) de cifra

E: **Keys**
$$\rightarrow$$
 {0,1}* \rightarrow {0,1}*

- D função (determinística) de decifra
 - **D**: **Keys** \rightarrow {0,1}* \rightarrow {0,1}*

- Propriedade da correcção
 - \forall m ∈ {0,1}*, \forall k ∈ **Keys**: D(k)(E(k)(m)) = m
 - Keys é o conjunto de chaves geradas por G
- Propriedades de segurança
 - É computacionalmente infazível obter m a partir de c, sem o conhecimento de k
- Esquema simétrico
 - utilização da mesma chave k nas funções E e D
- Mensagem m e criptograma c são sequências de bytes com dimensão variável ({0,1}*)
- Não garante integridade
- Exemplos:
 - DES-CBC-PKCS5Padding

Esquemas MAC

- Esquema MAC (Message Authentication Codes) algoritmos
 (G,T,V)
 - G função (probabilística) de geração de chaves
 G: → Keys
 - T função (probabilística) de geração de marcas
 - T: Keys $\rightarrow \{0,1\}^* \rightarrow Tags$
 - V função (determinística) de verificação de marcas
 - **V**: **Keys** \rightarrow (**Tags** \times {0,1}*) \rightarrow {true, false}

Esquemas MAC: verificação

- Esquema usual para o algoritmo de verificação
 - Algoritmo **T** é determinístico
 - Algoritmo V usa T
 - V(k)(t, m): T(k)(m) = t

- Propriedade da correcção
 - \forall m ∈ {0,1}*, \forall k ∈ Keys: V(k)(T(k)(m),m) = true
- Propriedades de segurança
 - Sem o conhecimento de k, é computacionalmente infazível
 - falsificação selectiva dado m, encontrar t tal que V(k)(t, m) = true
 - falsificação existencial encontrar o par (m, t) tal que V(k)(t,m) = true
- Esquema simétrico
 - utilização da mesma chave k nos algoritmos T e V
- Mensagem m é uma sequência de bytes de dimensão variável
- Marca t (tag) tem tipicamente dimensão fixa
 - 128, 160, 256 *bits*
- Códigos detectores e correctores de erros não servem para esquemas de MAC
- Exemplos:
 - HMAC-SHA1

Esquemas Assimétricos

- Esquemas simétricos
 - A mesma chave é utilizada na cifra e na decifra
 - A mesma chave é utilizada na geração da marca e na verificação da marca
- A cifra é uma operação pública?
- A verificação é uma operação pública?
- Esquemas assimétricos
 - Esquemas de cifra qual a operação privada?
 - "Todos podem cifrar, apenas o receptor autorizado pode decifrar"
 - Esquemas MAC qual a operação privada?
 - "Todos podem verificar, apenas o emissor autorizado pode assinar (gerar a marca)"
- Utilização
 - Transporte de chaves simétricas
 - Assinatura digital

Esquema de cifra assimétrica

- Esquema de cifra assimétrica algoritmos (G,E,D)
 - G função (probabilística) de geração de pares de chaves
 - G: → KeyPairs , onde KeyPairs ⊆ PublicKeys × PrivateKeys
 - E função (probabilística) de cifra
 - E: PublicKeys →PlainTexts → CipherTexts
 - D função (determinística) de decifra
 - D: PrivateKeys →CipherTexts → PlainTexts

- Propriedade da correcção
 - \forall m ∈ M, \forall (k_e,k_d) ∈ **KeyPairs**: D(k_d)(E(k_e)(m)) = m
- Propriedades de segurança
 - É computacionalmente infazível obter m a partir de c, sem o conhecimento de k_d
- Esquema assimétrico
 - utilização de chaves diferentes para os algoritmos E e D
- O espaço de mensagens, denotado por PlainTexts, é definido por todas as sequências de bits com dimensão menor do que o limite definido pelo esquema
 - Os esquemas de cifra assimétrica são utilizados para cifrar chaves
- O espaço de criptogramas, denotado por CipherTexts, é definido como um sub-conjunto das sequências de bits com dimensão menor do que o limite definido pelo esquema
- Não garante integridade

Notas (2)

- Custo computacional significativamente maior do que os esquemas simétricos (maior do que duas ordens de grandeza)
- Limitações na dimensão da informação cifrada
 - Note-se que a entrada de E é PlainTexts e não {0,1}*
- Utilização em esquemas híbridos
 - Esquema assimétrico usado para cifrar uma chave simétrica transporte de chaves
 - Esquema simétrico usado para cifrar a informação

Esquema de assinatura digital

- Esquema de assinatura digital algoritmos (G,S,V)
 - G função (probabilística) de geração de pares de chaves
 - G: → KeyPairs , onde KeyPairs ⊆ PublicKeys × PrivateKeys
 - S função (probabilística) de assinatura
 - S: PrivateKeys $\rightarrow \{0,1\}^* \rightarrow$ Signatures
 - V função (determinística) de verificação
 - V: **PublicKeys** \rightarrow (**Signatures** \times {0,1}*) \rightarrow {true,false}

- Propriedade da correcção
 - \forall m ∈ {0,1}*, \forall ∈ (k_s,k_v) ∈ **KeyPairs**: $V(k_v)(S(k_s)(m),m)$ = true
- Propriedades de segurança
 - Sem o conhecimento de k_s é computacionalmente infazível
 - falsificação selectiva dado m, encontrar s tal que V(k_v)(s, m) = true
 - falsificação existencial encontrar o par (m,s) tal que V(k_v)(s,m) = true
 note-se que k_v é conhecido
- Assinatura s (pertencente ao conjunto Signatures) tem tipicamente dimensão fixa
 - Ex.: 160, 1024, 2048 bits
- Custo computacional significativamente maior do que os esquemas simétricos

Notas (2)

- Assimétrico
 - utilização de chaves diferentes para os algoritmos S e V
- Mensagem m é uma sequência de bytes de dimensão variável
- assinar ≠ decifrar; verificar ≠ cifrar

Funções de hash

- Função de hash criptográfica
 - H: $\{0,1\}^* \rightarrow \{0,1\}^n$, onde **n** é a dimensão do hash
 - Entrada:
 - Sequências binárias de dimensão finita
 - Saída:
 - Sequência binária de dimensão fixa (n)
 - n é a dimensão do hash

- Propriedades de segurança
 - É computacionalmente fácil obter H(x) dado x
 - É computacionalmente difícil, dado x, obter x'≠x tal que H(x') = H(x)
 - É computacionalmente difícil obter (x, x'), com x'≠x, tal que H(x) = H(x')
- O hash de m serve como representante ("impressão digital") de m
- Exemplos de dimensões: MD5 (n=128) e SHA-1 (n=160)
- Baseiam-se em operações booleanas e aritméticas sobre palavras de pequena dimensão (16, 32, 64 bit)

Exemplo de utilização: integridade

- Exemplo: Distribuição de software
 - 1. Produtor calcula o *hash* da distribuição (ex. sources.tar.gz)
 - 2. Cliente obtêm, de forma autenticada, o *hash* da distribuição
 - 3. Cliente obtêm a distribuição (ex. através dum *mirror* não autenticado)
 - 4. Cliente compara o hash da distribuição recebida com o hash obtido em 2

Funções de hash com chave

- É usual designar-se um esquema de MAC, com algoritmo **T** determinístico, como *função de hash com chave* (*Keyed Hash Function*)
- Em alguns contextos, as funções de hash são designadas por Manipulation Detection Codes (MDC)

Cifra assimétrica: arquitectura interna

Cifra assimétrica

- A arquitectura típica dos algoritmos de cifra e decifra dos esquemas de cifra assimétrica é constituída por:
 - Primitiva de cifra assimétrica ex. RSA
 - Método de formatação ou padding ex. PKCS#1 v1.5, OAEP
- A mesma primitiva pode ser usada com vários tipos de formatação
- A função da formatação é
 - Adequar a entrada do algoritmo (PlainTexts) à entrada da primitiva
 - Evitar casos especiais
 - Introduzir informação aleatória
- As chaves são usadas apenas pela primitiva
 - Exemplo: chaves da primitiva RSA podem ser usada nos esquemas RSA+PKCS#1 v1.5 ou RSA+OAEP

Assinatura digital: arquitectura interna

Assinatura digital

- A arquitectura típica dos algoritmos de assinatura e verificação dos esquemas de assinatura digital é constituída por:
 - Primitiva de assinatura/verificação assimétrica ex. RSA
 - Método de formatação ou padding ex. PKCS#1 v1.5, PSS
 - Função de hash
- A mesma primitiva pode ser usada com vários tipos de formatação e funções de hash
- As chaves são usadas apenas pela primitiva
 - Exemplo: chaves da primitiva RSA podem ser usada nos esquemas RSA+PKCS#1 v1.5 ou RSA+PSS