

## Elektronika

Auditorne vježbe 2

#### Zadatak 1.

 Izračunati širinu zabranjenog pojasa silicija na sljedećim temperaturama:

a) 
$$T=200 \text{ K}$$

b) 
$$T=350 \text{ K}$$

c) 
$$T=400 \text{ K}$$

#### Rješenje:

a) 
$$E_G = 1.147 \text{ eV}$$

b) 
$$E_G = 1.111 \text{ eV}$$

c) 
$$E_G = 1.097 \text{ eV}$$



Širina zabranjenog pojasa se smanjuje s povećanjem temperature!!!

# Čisti (intrinsični) silicij

- Bez primjesa (nečistoća).
- Broj slobodnih elektrona = broj razbijenih kovalentnih veza.
- Razbijena kovalentna veza = slobodno mjesto za drugi elektron -> šupljina.
- Gustoća šupljina *p* [cm<sup>-3</sup>].
- U intrinsičnom poluvodiču:

$$n = p = n_i$$

#### Zadatak 2.

 Izračunati intrinsičnu gustoću u silicijskom poluvodiču na temperaturama:

a) 
$$T = 100 \text{ K}$$

b) 
$$T = 200 \text{ K}$$

c) 
$$T = 350 \text{ K}$$

d) 
$$T = 400 \text{ K}$$

#### ✓ Rješenje:

a) 
$$n_i = 2,23 \cdot 10^{-11} \text{ cm}^{-3}$$

b) 
$$n_i = 4.61 \cdot 10^4 \text{ cm}^{-3}$$

c) 
$$n_i = 3.05 \cdot 10^{11} \text{ cm}^{-3}$$

d) 
$$n_i = 4.58 \cdot 10^{12} \text{ cm}^{-3}$$

Intrinsična gustoća se značajno povećava s porastom temperature!!!



## Onečišćeni (ekstrinsični) poluvodič

- Poluvodič s primjesama (namjerno unesene)
- Gustoća primjesa određuje električna svojstva (vodljivost)
- primjesa = nečistoća = dopant
- unošenje nečistoća = dopiranje

## Dopiranje

U sportu → strogo zabranjeno

OI Seoul, 1988:

100 m:

Ben Johnson 9,79 s





U elektronici → pożeljno!



## Tipovi ekstrinsičnih poluvodiča

- Prevladavaju elektroni n-tip
- Prevladavaju šupljine p-tip
- Primjese se unose posebnim tehnološkim postupcima

Uređaj za ionsku implantaciju i nanošenje poluvodičkih filmova



- Primjese: 5-valentni atomi:
  - FOSFOR (P)
  - ARSEN (As)
  - ANTIMON (Sb)
- Imaju 5 valentnih elektrona:
  - 4 u kovalentnoj vezi (čvrsto vezani)
  - 1 vezan uz jezgru (puno slabije vezan)

|   |                      |                    |                      |                   |                   | 2                |
|---|----------------------|--------------------|----------------------|-------------------|-------------------|------------------|
|   |                      |                    |                      |                   |                   | He               |
|   |                      |                    |                      |                   |                   | Helium<br>4.003  |
|   | 5                    | 6                  | 7                    | 8                 | 9                 | 10               |
|   | В                    | C                  | N                    | O                 | F                 | Ne               |
|   | Boron                | Carbon             | Nitrogen             | Oxygen            | Fluorine          | Neon             |
|   | 10.811               | 12.0107            | 14.00674             | 15.9994           | 18.9984032        | 20.1797          |
|   | Al                   | Si                 | <b>P</b>             | S                 | Cl                |                  |
|   | All                  | Silicon            | Phosphorus           | Sulfur            | Chlorine          | Ar<br>Argon      |
|   | 26.981538            | 28.0855            | 30.973761            | 32.066            | 35.4527           | 39.948           |
|   | 31                   | 32                 | 33                   | 34                | 35                | 36               |
|   | Ga                   | Ge                 | As                   | Se                | Br                | Kr               |
|   | Gallium<br>69.723    | Germanium<br>72.61 | Arsenic<br>74.92160  | Selenium<br>78.96 | Bromine<br>79.904 | Krypton<br>83.80 |
| _ | 49                   | 50                 | 51                   | 52                | 53                | 54               |
|   | In                   | Sn                 | Sb                   | Te                | I                 | Xe               |
|   | Indium               | Tin                | Antimony             | Tellurium         | ■<br>Iodine       | Xenon            |
|   | 114.818              | 118.710            | 121.760              | 127.60            | 126.90447         | 131.29           |
|   | 81                   | 82                 | 83                   | 84                | 85                | 86               |
|   | Tl                   | Pb                 | Bi                   | Po                | At                | Rn               |
|   | Thallium<br>204.3833 | Lead<br>207.2      | Bismuth<br>208.98038 | Polonium<br>(209) | Astatine<br>(210) | Radon<br>(222)   |
| _ | 113                  | 114                | 200.70030            | (209)             | (210)             | (222)            |
|   |                      |                    |                      |                   |                   |                  |



# Intrinsični poluvodič











5. valentni elektron



- Naboji u poluvodiču n-tipa:
  - Slobodni elektroni
  - Slobodne šupljine
  - Lokalizirani donori
- Ravnotežno stanje:
  - Gustoća elektrona n<sub>0</sub>
  - Gustoća šupljina  $p_0$

$$n_0 > p_0$$

- Gustoća donora N<sub>D</sub>
- Elektroni su većinski nosioci naboja
- Šupljine su manjinski nosioci naboja

- Primjese: 3-valentni atomi:
  - BOR (B)
  - ALUMINIJ (AI)
  - GALIJ (Ga)
- Imaju 3 valentna elektrona:
  - 3 u kovalentnoj vezi (čvrsto vezani)
  - 1 nedostaje uz jezgru (slobodno mjesto za elektron - šupljina)

|                                                                |                                                         |                                                               |                                                      |                                                            | 2                                            |
|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|
|                                                                |                                                         |                                                               |                                                      |                                                            | He                                           |
|                                                                |                                                         |                                                               |                                                      |                                                            | Helium<br>4.003                              |
| 5                                                              | 6                                                       | 7                                                             | 8                                                    | 9                                                          | 10                                           |
| В                                                              | C                                                       | N                                                             | O                                                    | F                                                          | Ne                                           |
| Boron<br>10.811                                                | Carbon<br>12.0107                                       | Nitrogen<br>14.00674                                          | Oxygen<br>15.9994                                    | Fluorine<br>18.9984032                                     | Neon<br>20.1797                              |
| 13                                                             | 14                                                      | 15                                                            | 16                                                   | 17                                                         | 18                                           |
| Al                                                             | Si                                                      | P                                                             | S                                                    | Cl                                                         | Ar                                           |
| Aluminum<br>26.981538                                          | Silicon<br>28.0855                                      | Phosphorus<br>30.973761                                       | Sulfur<br>32.066                                     | Chlorine<br>35.4527                                        | Argon<br>39.948                              |
| 31                                                             | 32                                                      | 33                                                            | 34                                                   | 35                                                         | 36                                           |
|                                                                |                                                         |                                                               |                                                      |                                                            |                                              |
| Ga                                                             | Ge                                                      | As                                                            | Se                                                   | Br                                                         | Kr                                           |
| Gallium<br>69.723                                              | Ge<br>Germanium<br>72.61                                | As<br>Arsenic<br>74.92160                                     | Se<br>Selenium<br>78.96                              | Br<br>Bromine<br>79.904                                    | Kr<br>Krypton<br>83.80                       |
| Gallium                                                        | Germanium                                               | Arsenic                                                       | Selenium                                             | Bromine                                                    | Krypton                                      |
| Gallium<br>69.723                                              | Germanium<br>72.61                                      | Arsenic<br>74.92160                                           | Selenium<br>78.96                                    | Bromine<br>79.904                                          | Krypton<br>83.80                             |
| Gallium<br>69.723<br>49                                        | Germanium<br>72.61<br>50                                | Arsenic<br>74.92160<br>51                                     | Selenium<br>78.96<br>52                              | Bromine<br>79.904<br>53                                    | Krypton<br>83.80<br>54                       |
| Gallium<br>69.723<br>49<br>In                                  | Germanium 72.61 50 Sn Tin                               | Arsenic<br>74.92160<br>51<br><b>Sb</b><br>Antimony            | Selenium 78.96 52 Te Tellurium                       | Bromine<br>79.904<br>53<br>I<br>Iodine                     | Krypton<br>83.80<br>54<br><b>Xe</b><br>Xenon |
| Gallium<br>69.723<br>49<br><b>In</b><br>Indium<br>114.818      | Germanium<br>72.61<br>50<br><b>Sn</b><br>Tin<br>118.710 | Arsenic<br>74.92160<br>51<br><b>Sb</b><br>Antimony<br>121.760 | Selenium 78.96 52 <b>Te</b> Tellurium 127.60         | Bromine<br>79.904<br>53<br><b>I</b><br>Iodine<br>126.90447 | 83.80<br>54<br><b>Xe</b><br>Xenon<br>131.29  |
| Gallium 69.723 49 In Indium 114.818 81 Tl Thallium             | Germanium 72.61 50 Sn Tin 118.710 82 Pb Lead            | Arsenic 74.92160  51  Sb Antimony 121.760  83  Bi Bismuth     | Selenium 78.96 52 Te Tellurium 127.60 84 Po Polonium | 53<br>I<br>Iodine<br>126.90447<br>85<br>At<br>Astatine     | Xe Xenon 131.29 86 Rn Radon                  |
| Gallium<br>69.723<br>49<br>In<br>Indium<br>114.818<br>81<br>Tl | Germanium 72.61 50 Sn Tin 118.710 82 Pb                 | Arsenic 74.92160  51  Sb Antimony 121.760  83  Bi             | 52 <b>Te</b> Tellurium 127.60 84 <b>Po</b>           | 53<br>I<br>Iodine<br>126.90447<br>85<br>At                 | 54<br>Xe<br>Xenon<br>131.29<br>86<br>Rn      |





- Naboji u poluvodiču p-tipa:
  - Slobodni elektroni
  - Slobodne šupljine
  - Lokalizirani akceptori
- Ravnotežno stanje:
  - Gustoća elektrona n<sub>0</sub>
  - Gustoća šupljina  $p_0$

$$p_0 > n_0$$

- Gustoća donora  $N_A$
- Šupljine su većinski nosioci naboja
- Elektroni su manjinski nosioci naboja

## Osnovni zakoni u poluvodičima

1) Zakon električne neutralnosti:

$$n_0 + N_A = p_0 + N_D$$

2) Zakon termodinamičke ravnoteže:

$$\left| n_0 \cdot p_0 = n_i^2 \right|$$

#### Zadatak 3.

 Izračunati relativnu promjenu intrinsične gustoće u silicijskom poluvodiču ako se temperatura s 300 K povisi za 10%.

#### ☑ Rješenje:

#### Proračun:

$$T_1$$
=300 K  $\rightarrow n_{i1}$  = 8,68·10<sup>9</sup> cm<sup>-3</sup>  
 $T_2$ =330 K  $\rightarrow n_{i2}$  = 8,3·10<sup>10</sup> cm<sup>-3</sup>

$$\frac{\Delta n_i}{n_{i1}} = \frac{n_{i2} - n_{i1}}{n_{i1}} = 856\%$$

#### Zadatak 4.

- Silicijskom poluvodiču dodane su akceptorske primjese gustoće N<sub>A</sub>=10<sup>14</sup> cm<sup>-3</sup>. Odrediti gustoće slobodnih nosilaca naboja na temperaturama:
  - a) 0°C
  - b) 27°C
  - c) 175°C

#### ☑ Rješenje:

Primjese=akceptori → p-tip poluvodiča! → prevladavaju šupljine!

Primijeniti osnovne zakone o poluvodičima!

