Elementi Di Teoria Degli Insiemi

APPUNTI DEL CORSO DI ELEMENTI DI TEORIA DEGLI INSIEMI TENUTO DAL PROF. MARCELLO MAMINO

Diego Monaco d.monaco2@studenti.unipi.it Università di Pisa

Anno Accademico 2022-23

Indice

1	Prologo nel XIX secolo					
	1.1	Digressione: insiemi numerabili	6			
	1.2	Tornando agli insiemi di unicità	7			
	1.3	Giochi di parole				
	1.4	Scopi del corso	(
2		guaggio della teoria degli insiemi 1				
	2.1	Le regole di inferenza	(
3	l pri	mi assiomi 1	1			
	3.1	Assiomi dell'insieme vuoto e di estensionalità	1			
	3.2	Assioma di separazione				
	3.3	Classi e classi proprie				
	3.4	Assioma del paio e coppia di Kuratowski				
	3.5	Assioma dell'unione e operazioni booleane				
	3.6	Assioma delle parti e prodotto cartesiano				
	3.7	Relazioni di equivalenza e di ordine, funzioni	7			
4	Assi	oma dell'infinito e numeri naturali 1	8			
	4.1	Gli assiomi di Peano	8			
	4.2	L'ordine di omega	Ć			
	4.3	Induzione forte e principio del minimo	(
	4.4	Ricorsione numerabile	:1			
5	Card	linalità 2	2			
	5.1	Teorema di Cantor-Berstein	2			
	5.2	Teorema di Cantor	٠			
	5.3	Operazioni fra cardinalità	4			
6	Cardinalità finite					
	6.1	Principio dei cassetti	-			
	6.2	Operazioni fra le cardinalità finite	(
7	La c	cardinalità numerabile 2	7			
	7.1	Insiemi numerabili in pratica	7			
	7.2	Prodotto di numerabili è numerabile	3			
	7.3	Numeri interi e razionali	Q			
	7.4	Ordini densi numerabili	(
	7.5	Il grafo random]			
8	l nu	meri reali e la cardinalità del continuo 3	2			
	8.1	Caratterizzazione dei reali come ordine	2			
	8.2	La cardinalità del continuo è 2 alla alef-zero	٠			
	8.3	Operazioni che coinvolgono la cardinalità del continuo	14			
	8.4	Sottrarre un numerabile dal continuo				
9	Stat	o del corso	(
10	Lbu	oni ordinamenti 3	7			
		Operazioni fra buoni ordinamenti				

Università di Pisa	(Anno Accademico 2022-23)
--------------------	---------------------------

	10.2 Gli ordinali di Von Neumann 10.3 Assioma del rimpiazzamento 10.4 Induzione e ricorsione transfinita 10.5 Operazioni fra gli ordinali	38 39 40 41
11	Aritmetica ordinale e forma normale di Cantor	42
	11.1 Sottrazione e divisione euclidea	42
	11.2 La forma normale di Cantor	43
	11.3 Punti fissi e epsilon-numbers	44
	11.4 Operazioni in forma normale di Cantor	45
12	Gli alef	46
	12.1 Teorema di Hartogs	46
	12.2 Somme e prodotti di alef	47
13	L'assioma della scelta	48
	13.1 Buon ordinamento implica AC	48
	13.2 AC implica buon ordinamento (idea)	49
	13.3 Zorn implica buon ordinamento	50
	13.4 AC implica Zorn	51
	13.5 Conseguenze immediate di AC	52
	13.6 Esempi di applicazione di AC	53
	13.7 Basi di spazi vettoriali	54
	13.8 Invariante di Dehn	55
	13.9 Insieme di Vitali	56
	13.10Teorema di Cantor-Bendixson	57
	13.11Teorema di Tarski sulla scelta	58
14	Aritmetica cardinale	59
	14.1 Somme e prodotti infiniti	59
	14.2 Teorema di König	60
	14.3 Cofinalità	61
	14.4 Formula di Hausdorff	62
15	Gerarchia di Von Neumann	63
	15.1 Formule relativizzate ad una classe	63
	15.3 Principio di epsilon-induzione	65

Premessa

Ringraziamenti

Quest'opera è stata rilasciata con licenza Creative Commons Attribuzione - Condividi allo stesso modo 4.0 Internazionale. Per leggere una copia della licenza visita il sito web https://creativecommons.org/licenses/by-nc/4.0/deed.it.

§1 Prologo nel XIX secolo

La nascita della teoria degli insiemi è una storia complicata di cui so pochissimo. Però, persone che ne sanno molto più di me hanno sostenuto l'opinione che il problema seguente abbia avuto un ruolo. Come che sia, è almeno un'introduzione possibile.

Problema 1.1. Data una serie trigonometrica:

$$S(x) = c_0 + \sum_{i=1}^{+\infty} a_i \sin(ix) + b_i \cos(ix)$$

se, per ogni $x \in \mathbb{R}$, sappiamo che S(x) converge a 0, possiamo dire che i coefficienti c_0, a_i, b_i sono tutti 0?

Risolto positivamente da Georg Cantor nel 1870.

Definizione 1.2. Diciamo che $X \subseteq \mathbb{R}$ è un **insieme di unicità** se, per ogni serie trigonometrica:

$$S(x) = c_0 + \sum_{i=1}^{+\infty} a_i \sin(ix) + b_i \cos(ix)$$

vale la seguente implicazione:

S(x) converge a 0 per tutti gli $x \notin X \implies$ tutti i coefficienti c_0, a_i, b_i sono nulli

Esempio 1.3

Per il risultato di Cantor, ∅ è di unicità.

Problema 1.4. Quali sottoinsiemi di \mathbb{R} sono di unicità?

Fatto 1.5

 $X \subseteq \mathbb{R}$ è di unicità se (ma non solo se) ogni funzione continua $f : \mathbb{R} \longrightarrow \mathbb{R}$ che soddisfi le ipotesi seguenti è necessariamente lineare^a:

- per ogni intervallo aperto]a,b[con $]a,b[\cap X=\emptyset,$ $f_{|]a,b[}$ è lineare;
- per ogni $x \in \mathbb{R}$, se f ha derivate destre e sinistre in x, allora queste coincidono^b.

Esempio 1.6

 $X=\{\ldots,a_{-2},a_{-1},a_0,a_1,a_2,\ldots\}=\{a_i|i\in\mathbb{Z}\}$ con $\ldots< a_{-2}< a_{-1}< a_0< a_1< a_2<\ldots,$ $\lim_{i\to+\infty}a_i=+\infty,$ $\lim_{i\to-\infty}a_i=-\infty$ ha la proprietà data dal Fatto 1.5, quindi è di unicità.

 $^{^{}a}f(x) = \alpha x + \beta.$

 $^{^{}b}$ Ovvero f non ha punti angolosi.

NON Esempio 1.7

L'intervallo [0,1] o \mathbb{R} non hanno la proprietà espressa dall'Fatto 1.5.

NON Esempio buffo 1.8

Per l'insieme di Cantor non vale il Fatto 1.5.

Possiamo costruire l'insieme di Cantor a partire dall'intervallo $C_0 = [0, 1]$ nel seguente modo:

$$C_{0} = \begin{bmatrix} 0, & 1 \end{bmatrix}$$

$$C_{1} = \begin{bmatrix} 0, & \frac{1}{3} \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{1}{2}, \frac{1}{3} \end{bmatrix}$$

$$C_{3} = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix} \cup \begin{bmatrix} \frac{1}{2}, \frac{1$$

ovvero, preso l'intervallo [0,1] possiamo dividerlo in tre parti e rimuovere la parte centrale $\left(\frac{1}{3},\frac{2}{3}\right)$, chiamiamo gli intervalli rimanenti C_1 , possiamo iterare il procedimento sui due segmenti di C_1 ed ottenere C_2, C_3, \ldots , a questo punto definiamo l'insieme di Cantor C come:

$$C := \bigcap_{i \in \mathbb{N}} C_i$$

Esiste una funzione continua $f : \mathbb{R} \longrightarrow \mathbb{R}$ detta scala di Cantor (o scala del diavolo), tale che f'(x) = 0 per $x \notin C$ e non è derivabile in $x \in C$.

§1.1 Digressione: insiemi numerabili

Definizione 1.9. Un insieme X è **numerabile** se è il supporto di una successione, $X = \{a_0, a_1, a_2, \ldots\} = \{a_i | i \in \mathbb{N}\}, \text{ con } a_i \neq a_j \text{ per ogni } i \neq j.$

§1.2 Tornando agli insiemi di unicità

§1.3 Giochi di parole

§1.4 Scopi del corso

§2 II linguaggio della teoria degli insiemi

§2.1 Le regole di inferenza

§3 I primi assiomi

Assioma 3.1 (Assioma dell'insieme vuoto)

Esiste un insieme vuoto.

$$\exists x, \forall y: y \not\in x$$

Assioma 3.2 (Assioma di estensionalità)

Un insieme è determinato dalla collezione dei suoi elementi. Due insiemi coincidono se e solo se hanno i medesimi elementi.

$$\forall a, \forall b : a = b \longleftrightarrow \forall x (x \in a \longleftrightarrow x \in b)$$

§3.1 Assiomi dell'insieme vuoto e di estensionalità

§3.2 Assioma di separazione

§3.3 Classi e classi proprie

§3.4 Assioma del paio e coppia di Kuratowski

§3.5 Assioma dell'unione e operazioni booleane

§3.6 Assioma delle parti e prodotto cartesiano

§3.7 Relazioni di equivalenza e di ordine, funzioni

§4 Assioma dell'infinito e numeri naturali

§4.1 Gli assiomi di Peano

§4.2 L'ordine di omega

§4.3 Induzione forte e principio del minimo

§4.4 Ricorsione numerabile

§5 Cardinalità

§5.1 Teorema di Cantor-Berstein

§5.2 Teorema di Cantor

§5.3 Operazioni fra cardinalità

§6 Cardinalità finite

§6.1 Principio dei cassetti

§6.2 Operazioni fra le cardinalità finite

§7 La cardinalità numerabile

§7.1 Insiemi numerabili in pratica

§7.2 Prodotto di numerabili è numerabile

§7.3 Numeri interi e razionali

§7.4 Ordini densi numerabili

§7.5 II grafo random

§8 I numeri reali e la cardinalità del continuo

§8.1 Caratterizzazione dei reali come ordine

§8.2 La cardinalità del continuo è 2 alla alef-zero

§8.3 Operazioni che coinvolgono la cardinalità del continuo

§8.4 Sottrarre un numerabile dal continuo

§9 Stato del corso

§10 I buoni ordinamenti

§10.1 Operazioni fra buoni ordinamenti

§10.2 Gli ordinali di Von Neumann

§10.3 Assioma del rimpiazzamento

§10.4 Induzione e ricorsione transfinita

§10.5 Operazioni fra gli ordinali

§11 Aritmetica ordinale e forma normale di Cantor

§11.1 Sottrazione e divisione euclidea

§11.2 La forma normale di Cantor

§11.3 Punti fissi e epsilon-numbers

§11.4 Operazioni in forma normale di Cantor

§12 Gli alef

§12.1 Teorema di Hartogs

§12.2 Somme e prodotti di alef

§13 L'assioma della scelta

§13.1 Buon ordinamento implica AC

§13.2 AC implica buon ordinamento (idea)

§13.3 Zorn implica buon ordinamento

§13.4 AC implica Zorn

§13.5 Conseguenze immediate di AC

§13.6 Esempi di applicazione di AC

§13.7 Basi di spazi vettoriali

§13.8 Invariante di Dehn

§13.9 Insieme di Vitali

§13.10 Teorema di Cantor-Bendixson

§13.11 Teorema di Tarski sulla scelta

§14 Aritmetica cardinale

§14.1 Somme e prodotti infiniti

§14.2 Teorema di König

§14.3 Cofinalità

§14.4 Formula di Hausdorff

§15 Gerarchia di Von Neumann

§15.1 Formule relativizzate ad una classe

§15.2 Assioma di buona fondazione

§15.3 Principio di epsilon-induzione