Math 381 - Fall 2022

Jay Newby

University of Alberta

Week 9

Last Time

- Projection matrices
- 2 A little linear algebra review
- 3 Overview of least squares problem
- 4 Least squares solution theorem
- 6 Full-rank least squares problem: normal equations

Today

- ① Strategies for solving the full-rank least squares problem (m > n)
 - 1 LU decomposition (Cholesky decomposition)
 - QR decomposition
 - **3** SVD decomposition

Daily linear algebra

2-norm invariance to orthogonal (unitary) multiplication

Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Then, we have that $\|Qx\|_2 = \|x\|_2$ and $\|QA\|_2 = \|A\|_2$, for any $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$.

Review from last time

Least squares solution theorem

The length of residual r = b - Ax is minimized if x is a solution to Ax = Pb, where P is an *orthogonal* projection onto R(A) so that $r = (I - P)b \in R(A)^{\perp}$.

Full rank least squares problems with Cholesky decomposition

Normal equations

For a full rank matrix $A \in \mathbb{R}^{m \times n}$ (with m > n) and $b \in \mathbb{R}^n$, the least squares solution to Ax = b is the solution to

$$A^T A x = A^T b$$
.

Full rank least squares problems with Cholesky decomposition

Cholesky decomposition

Let $M \in \mathbb{R}^{n \times n}$ be symmetric and nonsingular. There is an upper triangular matrix R such that

$$M = R^T R$$
.

Backward Stable

Full rank least squares problems with Cholesky decomposition

① Compute matrix-matrix product

$$M = A^T A$$
 $O(m \Lambda^2)$

2 Compute Cholesky factorization

$$M = R^T R$$

6 Forward substitution

$$R^T y = A^T b$$
 $O(N^2)$

4 Backward substitution

$$Rx = y$$
 (N^2)

Backward stable, but can be less accurate than other methods for certain problems (next week)

Full rank least squares problems with QR decomposition

QR decomposition

Let $A \in \mathbb{R}^{m \times n}$ be a full rank matrix (with m > n). There exists an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and an upper triangular matrix $R \in \mathbb{R}^{m \times n}$ such that

Backward Stable

Full rank least squares problems with QR decomposition

Least squares solution using QR

Let $A = QR = \hat{Q}\hat{R}$ be the QR and reduced QR factorization of A, respectively. Since Q is orthogonal and the columns of \hat{Q} span R(A), an orthogonal projection matrix for R(A) is given by $P = \hat{Q}\hat{Q}^T$. Hence, the unique solution to

$$Ax = \hat{Q}\hat{Q}^T b$$
,

is the unique solution to the least squares problem.

Full rank least squares problems with QR

decomposition

$$\begin{array}{c|c} & \hat{\mathcal{O}}^{\mathsf{T}} \\ \hline & \mathcal{Q}_{\mathfrak{o}}^{\mathsf{T}} \end{array}$$

$$\hat{\beta}_{x} = \hat{\alpha}^{T}b \Rightarrow x = \hat{\beta}^{T}\hat{\alpha}^{T}b$$

Fredholm

Fredholm

Alterative

$$0 \cdot x = a^{T}b \Rightarrow x = a^{T}a^{T}b$$

Fredholm

Alterative

 $0 \cdot x = a^{T}b \Rightarrow x = a^{T}a^{T}b$

General least squares problems with SVD decomposition

Singular value decomposition (SVD)

Let $A \in \mathbb{R}^{m \times n}$ be a full rank matrix (with m > n). There exists orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ such that $A = U \Sigma V^T$.

Backward Stable

General least squares problems with SVD decomposition

Least squares solution using SVD

Let $A = U\Sigma V^T = \hat{U}\hat{\Sigma}V^T$ be the SVD and reduced SVD of the matrix A, respectively. Since U is orthogonal and the columns of \hat{U} span R(A), an orthogonal projection matrix for R(A) is given by $P = \hat{U}\hat{U}^T$. Hence, the unique solution to

$$Ax = \hat{U}\hat{U}^T b$$

is the unique solution to the least squares problem.

Pseudoinverse matrices for the full rank least squares problem

Normal Equations: $A^+ = (A^T A)^{-1} A^T$

QR: $A^{+} = \hat{R}^{-1} \hat{Q}^{T}$

SVD: $A^+ = V\hat{\Sigma}^{-1}\hat{U}^T$