

21.
$$\int_0^x \ln(x-t)y(t) dt = f(x)$$
.

Solution:

$$y(x) = -\int_0^x f_{tt}''(t) dt \int_0^\infty \frac{(x-t)^z e^{-Cz}}{\Gamma(z+1)} dz - f_x'(0) \int_0^\infty \frac{x^z e^{-Cz}}{\Gamma(z+1)} dz,$$

where $C = \lim_{k \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{k+1} - \ln k\right) = 0.5772\dots$ is the Euler constant and $\Gamma(z)$ is the gamma function.

References

Krasnov, M. L., Kiselev, A. I., and Makarenko, G. I., Problems and Exercises in Integral Equations, Mir Publ., Moscow, 1971.

Butkovskii, A. G., Characteristics of Systems With Distributed Parameters [in Russian], Nauka, Moscow, 1979.

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ie/ie0121.pdf