

# Metropolis Monte Carlo Simulation for the 2D Ising Model

**Marta Casado Carrasquer** 

## **Table of Contents**



Theory and Methods

Results and Discussion



## Section 1 Theory and Methods

## The Ising Model



**Definition:** The Ising model describes a system of spins  $s_i = \pm 1$  arranged on a lattice, interacting with their nearest neighbours. **Hamiltonian:** 

$$H = -J \sum_{\langle i,j \rangle} s_i s_j \tag{1}$$

where J is the interaction strength, and  $\langle i, j \rangle$  denotes nearest neighbours.



Figure 1: 2D lattice illustration of the Ising Model.

## **Monte Carlo Algorithm**



#### Initialization:

• Initialize a  $N \times N$  lattice with spins having a +1 or -1 orientation.

#### Calculations:

 Compute total energy using nearest-neighbour summation with periodic boundary conditions (PBCs) as well as total magnetization.

#### **Metropolis Step:**

- Choose a random spin and compute the change in energy  $\Delta E$ .
- Acceptance probability given by:

$$P_{acc} = \min(1, e^{-\Delta E/T}) \tag{2}$$

- Apply Metropolis acceptance criterion:
  - If  $\Delta E < 0$  or if rand  $< e^{-\Delta E/T}$ : flip the spin add  $\Delta E$  to the total energy add  $\Delta M$  to the total magnetization
- Repeat process for a sufficient number of steps.

## **Phase Transition**



#### Ordered phase:

- Below  $T_c$ , system exhibits spontaneous magnetization (ferromagnetic phase).
- $\bullet$   $M \neq 0$ .

#### **Disordered phase:**

- Above T<sub>c</sub>, same amount, on average, of "up" and "down" spins(paramagnetic phase).
- M = 0.

**Significance:** At  $T_c$ , the system undergoes a second-order phase transition characterized by divergent magnetic susceptibility.



## Section 2 Results and Discussion

## **Spin Configuration Evolution**



#### $100 \times 100$ spin system at T = 1:



Figure 2: Initial random configuration



Figure 3: Configuration at equilibrium

## **Spin Configuration Evolution**



#### $50 \times 50$ spin system at T = 1:



Figure 4: Initial random configuration



Figure 5: Configuration at equilibrium

## **Spin Configuration Evolution**



#### $10 \times 10$ spin system at T = 1:



Figure 6: Initial random configura-



Figure 7: Configuration at equilibrium

## **Average Energy Per Spin**



#### **Equation for Energy:**

$$\langle E \rangle = \frac{1}{K} \sum_{i=1}^{K} E_i, \quad \frac{\langle E \rangle}{N^2}$$
 (3)



Figure 8: Comparison of the observable between the three systems.

## **Average Magnetization Per Spin**



#### **Equation for Average Absolute Magnetization:**

$$\langle |M| \rangle = \frac{1}{K} \sum_{i=1}^{K} M_i, \quad \frac{\langle |M| \rangle}{N^2}$$
 (4)



Figure 9: Comparison of the observable between the three systems.

## **Magnetic Susceptibility Per Spin**



#### **Equation for Magnetic Susceptibility:**

$$\chi = \frac{\langle M^2 \rangle - \langle |M| \rangle^2}{T} \tag{5}$$



Figure 10: Comparison of the observable between the three systems.

## **Conclusion**



- The results given by the measured observables align with theory.
- The configuration of the systems after equilibrium at a given temperature aligns with theory.

### Thank you for your attention!

