PRIMER PARCIAL DE MATEMÁTICA DISCRETA 2

Nombre	C.I	No. de prueba

Duración: 3 horas y media. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios y el procedimiento para llegar a la respuesta. Presentar únicamente la respuesta final carece de valor.

Ejercicio 1.

A. Sean $a, b \ y \ c \in \mathbb{Z}$ tales que $mcd(a, b) = 1, \ a \ | \ c \ y \ b \ | \ c$. Probar que $ab \ | \ c$.

Aclaración: si se utilizan lemas, teoremas o propiedades, éstos deberán ser enunciados, pero no es necesario demostrarlos.

B. Sean m_1 y m_2 dos enteros coprimos y $a_1, a_2 \in \mathbb{Z}$. Probar que si x_1 y x_2 son soluciones del sistema $\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}$ entonces $x_1 \equiv x_2 \pmod{m_1 m_2}$.

Aclaración: en esta parte B. se pide demostrar parte del Teorema Chino del Resto, y por lo tanto no serán válidas las respuestas que utilicen dicho teorema.

- C. Hallar el menor $x\in\mathbb{N}$ que verifica $\left\{\begin{array}{l} x\equiv 1\ (\mathrm{mod}\,5)\\ x\equiv 0\ (\mathrm{mod}\,8)\\ x\equiv 1\ (\mathrm{mod}\,9) \end{array}\right..$
- **D.** Investigar si los siguientes sistemas tienen solución, y en caso de que así sea, hallar todas las soluciones en \mathbb{Z} .

$$\begin{cases} x \equiv 16 \pmod{40} \\ x \equiv 1 \pmod{15} \\ x \equiv 10 \pmod{18} \end{cases}$$
 y
$$\begin{cases} x \equiv 16 \pmod{40} \\ x \equiv 6 \pmod{15} \\ x \equiv 10 \pmod{18} \end{cases}$$

Ejercicio 2. Las partes de este ejercicio son independientes.

- **A.** Probar que para todo $n \in \mathbb{N}$, $n \ge 1$, $mcd(2^n + 7^n, 2^n 7^n) = 1$.
- **B.** Hallar todos los $n \in \mathbb{N}$ tales que mcd(n, 1260) = 70 y n tiene 30 divisores positivos.
- C. Probar que para todo $n \in \mathbb{N}$, $n \ge 1$, 3^n divide a $64^{3^{n-1}} 1$.

Ejercicio 3.

A. Sean a, b, c enteros no nulos y la ecuación ax + by = c. Probar que si (x_0, y_0) y (x_1, y_1) son soluciones enteras de la ecuación, entonces existe $k \in \mathbb{Z}$ tal que

$$x_1 = x_0 + k \frac{b}{\text{mcd}(a, b)}$$
 y $y_1 = y_0 - k \frac{a}{\text{mcd}(a, b)}$.

Aclaración: en esta parte A. se pide demostrar parte del Teorema de soluciones de una ecuación diofántica, y por lo tanto no serán válidas las respuestas que utilizen dicho teorema. Si se utiliza otro teorema, lemas o propiedades, éstos deberán ser enunciados, pero no es necesario demostrarlos.

- **B.** Hallar todos los $c \in \mathbb{Z}$ que son inversos de 9 módulo 1190.
- C. Hallar el resto de dividir 3^{382} entre 1190.