STROKE PREDICTION PROJECT

CA2 ADVANCE PYTHON PROGRAMMING(CSC 580)

UNIQUE ID:E7321004

PROJECT PROPOSAL:

Heart Disease and Strokes have rapidly increased globally even at juvenile ages. Stroke prediction is a complex t ask requiring huge amount of Data pre-processing. In this proposed model heart stroke prdiction dataset has taken from kaggle. The model predicts the chances of a person will have stroke based on the symptoms. It classifies the person's risk level by implementing various machine learning algorithms. In this project we have used logistic Regression to predict the model accuracy.

```
In [4]: import pandas as pd import numpy as np from matplotlib import pyplot as plt
```

```
In [5]: | s=pd.read_csv("healthcare_stroke_dataset.csv")
```

In [6]: s

Out[6]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural	174.12	24.0	never smoked	1
					***	•••						
5105	18234	Female	0.08	1	0	Yes	Private	Urban	83.75	NaN	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rural	82.99	30.6	never smoked	0
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	0

5110 rows × 12 columns

NARRATIVE (PROBLEM STATEMENT)

The Following python code employs Logistic Regression Classifier by using the scikit-learn library APIs.In this project we utilize the healthcare_stroke Dataset which exist in kaggle. The Dataset is Divided into Training and test Dataset and then classified by using the logistic Regression classifier. The Classification Accuracy, precision, recall, F1 Scoreare Calculated. The Classification report and Confusion matrix are also given in the model.

Dataset Description

The dataset has been taken from the Kaggle website. It has 5110 rows and 12 columns. The features or attributes include id, gender, age, hypertension, heart disease, ever married, work type, residence type, average glucose level, body mass index (BMI), smoking status. The label or the outcome is stroke. Excluding the ID, all the other features have been used for training the model. The independent attributes are stored in the X variable while the dependent attribute which the stroke attribute is stored in the y variable of the dataset.

```
In [7]: | s.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5110 entries, 0 to 5109
        Data columns (total 12 columns):
             Column
                                Non-Null Count Dtype
             id
                                5110 non-null
                                                int64
             gender
                                5110 non-null object
                                5110 non-null
                                               float64
             age
         3
             hypertension
                                5110 non-null
                                               int64
             heart_disease
                                5110 non-null
                                               int64
             ever_married
                                5110 non-null
                                                object
         6
             work type
                                5110 non-null
                                               object
             Residence_type
                                5110 non-null
                                               object
             avg_glucose_level 5110 non-null
                                                float64
             bmi
                                4909 non-null
                                                float64
             smoking status
         10
                                5110 non-null
                                                object
         11 stroke
                                5110 non-null
                                                int64
        dtypes: float64(3), int64(4), object(5)
        memory usage: 479.2+ KB
```

In [8]: s.describe()

Out[8]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000	5110.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	0.048728
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067	0.215320
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	0.000000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000	0.000000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000	0.000000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000	0.000000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	1.000000

In [9]: s.head()

Out[9]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural	174.12	24.0	never smoked	1

In [10]: | s["bmi"].isnull().sum()

Out[10]: 201

Data Pre-processing

The dataset obtained contains 201 null values in the BMI attribute which needs to be removed. The cleaned pre-processed data.

```
In [11]: import seaborn as sns
sns.heatmap(s.isnull(),yticklabels=False,cmap='viridis') #To Determine the Null values
```

Out[11]: <AxesSubplot:>


```
In [13]: s['bmi'].mean()
```

Out[13]: 28.893236911794673

```
In [14]: p=s.fillna(s['bmi'].mean())
p
```

Out[14]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	S.
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.600000	formerly smoked	
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural	202.21	28.893237	never smoked	
2	31112	Male	0.08	0	1	Yes	Private	Rural	105.92	32.500000	never smoked	
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.400000	smokes	
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural	174.12	24.000000	never smoked	
		•••		•••	•••							
5105	18234	Female	0.08	1	0	Yes	Private	Urban	83.75	28.893237	never smoked	
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urban	125.20	40.000000	never smoked	
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rural	82.99	30.600000	never smoked	
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.600000	formerly smoked	
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.200000	Unknown	

5110 rows × 12 columns

4

```
In [15]: p.isnull().sum()
Out[15]: id
                              0
                              0
         gender
         age
                              0
         hypertension
                              0
                              0
         heart disease
         ever married
                              0
         work_type
                              0
         Residence type
         avg glucose level
                              0
         bmi
         smoking status
                              0
         stroke
         dtype: int64
In [16]: p.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5110 entries, 0 to 5109
         Data columns (total 12 columns):
              Column
                                 Non-Null Count Dtype
              -----
              id
                                 5110 non-null
                                                 int64
              gender
                                 5110 non-null object
          1
                                 5110 non-null float64
          2
              age
                                                int64
```

hypertension 5110 non-null heart_disease 5110 non-null int64 ever_married 5110 non-null object work_type 5110 non-null object Residence type 5110 non-null object avg glucose level 5110 non-null float64 bmi float64 5110 non-null smoking_status 5110 non-null object 10 11 stroke int64 5110 non-null dtypes: float64(3), int64(4), object(5) memory usage: 479.2+ KB

```
In [17]: sns.heatmap(p.isnull(),yticklabels=False,cmap='viridis')
Out[17]: <AxesSubplot:>
```


Data Visualization

Data visualization helps to interpret the data easily through visual graphs or maps. Heatmaps are used to obtain the correlation between the attributes. Histogram plots are used to count the frequencies of smokers and non-smokers, number of females or males, the different work types of the people. Box plots have been used to indicate the relationship between two attributes and find out the outliers. All these plots give important insights about the data which can later be used for the modelling. It also shows which features are more important in making the most accurate prediction.

In [18]: a=p.corr()

Out[18]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
id	1.000000	0.003538	0.003550	-0.001296	0.001092	0.002999	0.006388
age	0.003538	1.000000	0.276398	0.263796	0.238171	0.325942	0.245257
hypertension	0.003550	0.276398	1.000000	0.108306	0.174474	0.160189	0.127904
heart_disease	-0.001296	0.263796	0.108306	1.000000	0.161857	0.038899	0.134914
avg_glucose_level	0.001092	0.238171	0.174474	0.161857	1.000000	0.168751	0.131945
bmi	0.002999	0.325942	0.160189	0.038899	0.168751	1.000000	0.038947
stroke	0.006388	0.245257	0.127904	0.134914	0.131945	0.038947	1.000000

HEAT MAP

In [19]: sns.heatmap(a,annot=True)

Out[19]: <AxesSubplot:>

HISTOGRAM

```
In [20]: plt.hist(p.gender,color="orange")
    plt.ylim(0,3500)
    plt.xlabel("GENDER")
    plt.title("HISTOGRAM OF GENDER")

#From the plot we analyze that Female count is more than the Male count.
```

Out[20]: Text(0.5, 1.0, 'HISTOGRAM OF GENDER')


```
In [22]: plt.hist(p.smoking_status,color="green" )
    plt.xlabel("SMOKING STATUS")
    plt.title("HISTOGRAM USING SMOKING STATUS")

#From the analysis we determine that the 'never smoked' count is more comparing to 'smokes' and 'formerly smoked'
```

Out[22]: Text(0.5, 1.0, 'HISTOGRAM USING SMOKING STATUS')


```
In [23]: plt.hist(p.work_type,color="red" )
    plt.xlabel("WORKING TYPE")
    plt.title("HISTOGRAM USING WORKING TYPE")

#From the plot we analyze that private company employees are more than the government and self-Employees.
```

Out[23]: Text(0.5, 1.0, 'HISTOGRAM USING WORKING TYPE')

SCATTER PLOT

```
In [24]: plt.scatter(p.bmi,p.age,marker="^",color="red",s=100,edgecolor="blue")
    plt.xlabel("AGE")
    plt.ylabel("BMI")
    plt.title("SCATTER PLOT OF AGE AND BMI")

#From the plot between BMI and age the BMI lies more between the age of 20 to 50.
```

Out[24]: Text(0.5, 1.0, 'SCATTER PLOT OF AGE AND BMI')

BOX PLOT

In [49]: sns.boxplot(x="Residence_type",y="age",data=p)
From the plot we can analyze that for both rural and urban types the median of age lies between 40 to 60.

Out[49]: <AxesSubplot:xlabel='Residence_type', ylabel='age'>

VIOLIN PLOT

In [47]: sns.violinplot(x="avg_glucose_level",y="work_type",data=p)
#From the plot we can analyze that for all the work types the avaerage Glucose level lies between 50 to 100.

Out[47]: <AxesSubplot:xlabel='avg_glucose_level', ylabel='work_type'>

Splitting into Training and Testing Data

The dataset is split into dependent and independent attributes using the train test split method of sklearn package in python. The dataset is split into 80% for training and 20% for testing. The independent features include all the input parameters like age, gender, work type, smoking status, etc while the dependent feature is stroke.

```
In [50]: p.columns
Out[50]: Index(['id', 'gender', 'age', 'hypertension', 'heart disease', 'ever married',
                'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',
                'smoking status', 'stroke'],
               dtype='object')
In [51]: p.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5110 entries, 0 to 5109
         Data columns (total 12 columns):
          # Column
                                 Non-Null Count Dtype
              id
                                 5110 non-null int64
                                 5110 non-null object
              gender
                                 5110 non-null
                                                float64
          2
              age
              hypertension
                                 5110 non-null
                                               int64
              heart disease
                                 5110 non-null
                                               int64
             ever married
                                 5110 non-null object
             work type
                                 5110 non-null object
              Residence type
                                 5110 non-null object
              avg_glucose_level 5110 non-null float64
              bmi
                                 5110 non-null
                                               float64
          10 smoking status
                                 5110 non-null object
          11 stroke
                                 5110 non-null
                                                int64
         dtypes: float64(3), int64(4), object(5)
         memory usage: 479.2+ KB
In [53]: | x=p[[ 'age', 'hypertension', 'heart_disease', 'avg_glucose_level', 'bmi' ]]
         y=p['stroke']
In [54]: from sklearn.model selection import train test split
In [55]: x_train,x_test,y_train,y_test=train_test=train_test_split(x,y,test_size=0.2,random_state=101)
In [56]: from sklearn.linear model import LogisticRegression
```

```
In [57]: log=LogisticRegression()
log
Out[57]: LogisticRegression()
```

Fitting the Model

```
In [58]: log.fit(x_train,y_train)
Out[58]: LogisticRegression()
In [59]: predict=log.predict(x_test)
    predict
Out[59]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [60]: from sklearn.metrics import confusion_matrix,accuracy_score
```

CONFUSION MATRIX

[TP TN]

[FP FN]

We are Getting the True Positive values are more, so our is Good.

```
In [65]: y_test
Out[65]: 5031
                 0
         4017
                 0
         744
                 0
         1799
                 0
         2314
                 0
         4795
                 0
         4641
                 0
         1320
                 0
         1098
                 0
         4634
                 0
         Name: stroke, Length: 1022, dtype: int64
In [66]: from sklearn.metrics import classification_report
```

In [67]: print(classification_report(y_test,predict))

	precision	recall	f1-score	support
0	0.95	1.00	0.97	968
1	0.00	0.00	0.00	54
accuracy			0.95	1022
macro avg	0.47	0.50	0.49	1022
weighted avg	0.90	0.95	0.92	1022

C:\Users\K N Nithyanand\BG\lib\site-packages\sklearn\metrics_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\K N Nithyanand\BG\lib\site-packages\sklearn\metrics_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\K N Nithyanand\BG\lib\site-packages\sklearn\metrics_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

FINAL RESULT OF THE MODEL

The results obtained after applying Logistic Regression. The metrics used to carry out performance analysis of the algorithm are Accuracy score, Precision (P), Recall (R) and F-measure. Precision metric provides the measure of positive analysis that is correct. Recall defines the measure of actual positives that are correct. F-measure tests accuracy

From the model we can Analyze that using logistic Regression Algorithm and most efficient model is obtained. Logistic Regression was found out to be the most effective one with an Accuracy 95%.

A we have got the ACCURACY as 95 %, The Model is Excellent.