IIITDM KANCHEEPURAM

MAT1001: DIFFERENTIAL EQUATIONS ASSIGNMENT 2

April 11, 2024

Due Date: April 17, 2024 Marks: 8

Instructions:

- 1. It is a team assignment. Each team will consist of two consecutive students (as per the roll list of your class).
- 2. Identify your partner and work as a team. Each team needs to submit just one hand-written hard copy (not two) of the completed assignment.
- 1. It is clear that $\sin x$, $\cos x$ and $\sin x$, $\sin x \cos x$ are two distinct pairs of linearly independent solutions of y'' + y = 0. Thus, if y_1 and y_2 are linearly independent solutions of the homogeneous equation y'' + P(x)y' + Q(x)y = 0, then y_1 and y_2 are not uniquely determined by the equation.
 - (a) Show that

$$P(x) = -\frac{y_1 y_2'' - y_2 y_1''}{W(y_1, y_2)} \quad \text{and} \quad Q(x) = \frac{y_1' y_2'' - y_2' y_1''}{W(y_1, y_2)}$$

so that the differential equation is uniquely determined by any given pair of linearly independent solutions.

- (b) Use (a) to reconstruct the equation y'' + y = 0 from each of the two pairs of linearly independent solutions mentioned above.
- (c) Use (a) to reconstruct the equation y'' 4y' + 4y = 0 from the pair of linearly independent solutions e^{2x} and xe^{2x} .
- 2. If y_1 is a nonzero solution of y'' + P(x)y' + Q(x)y = 0 and $v = \int \frac{1}{y_1^2} e^{-\int P dx} dx$, then we know that $y_2 = vy_1$ is also a solution of the differential equation. Show that the formula for v can also be obtained by differentiating $v = \frac{y_2}{y_1}$ and using the Abel's formula $W(y_1, y_2) = ce^{-\int P dx}$ (which is the general solution of $\frac{dW}{dx} + PW = 0$).
- 3. Let m_1 and m_2 be any real numbers.
 - (a) If $m_1 \neq m_2$, prove that the differential equation $y'' (m_1 + m_2)y' + m_1m_2y = 0$ has $y = \frac{e^{m_1x} e^{m_2x}}{m_1 m_2}$ as a solution.

- (b) Think of m_2 as fixed and use l'Hospital's rule to find the limit of the solution in part (a) as $m_1 \to m_2$.
- (c) Verify that the limit in part (b) satisfies the differential equation obtained from the equation in part (a) by replacing m_1 by m_2 .
- 4. (a) Show that the method of variation of parameters applied to the equation y'' + y = f(x) leads to the particular solution $y_p(x) = \int_0^x f(t) \sin(x-t) dt$.
 - (b) Find a similar formula for a particular solution of the equation $y'' + k^2y = f(x)$, where k is a positive constant.
- 5. Prove that if a function f(x) is analytic at the origin (i.e., at x = 0) and $f(0) \neq 0$, then $\frac{1}{f(x)}$ is also analytic at the origin.
- 6. Prove that the function $(1+x)^p$, where p is any fixed real number, is analytic on the interval (-1,1).