進捗報告

1 今週やったこと

● GA の実装と実験

2 実験

2.1 問題

DARTS の初期値依存性やグラフの収束不安定のため GA を使用する. 個体をアーキテクチャ α とし, w を 共有することで, 学習速度を維持しつつ, 学習の安定を 図る.

評価の問題

- 通常:与えられたパラメータ (個体) でモデルを学 習し性能を評価する
- 今回:wを共有するので呼ぶごとに評価が変化する

GA の流れ α , w の学習はアーキテクチャ探索として分離して、評価では α , w に変化を与えずテストデータのロスを用いる.

- 1. 初期化
- 2. (アーキテクチャ探索)
- 3. 選択
- 4. 交叉・突然変異
- 5. 評価・世代交代

 α の個体表現 α は行列であるため、交叉をどうするかが難しい。初期段階の方法として、行列を 2 次元配列にして 2 点交叉をした。何が適しているかを調査する必要がある。

2.2 実験設定

表 1,2 にモデルと GA の設定を示した. 前回までの設定ではショートカットを持たない状態で学習を始めるが, GA の場合多様性がなくなるため各層に 1 本ずつ持たせる設定で学習した.

表 1: モデルの設定

base model	VGG19
Optim(w)	SGD(lr=0.001, momentum=0.9)
$\operatorname{Optim}(\alpha)$	Adam(lr=0.003, β =(0.5, 0.999))
Loss	Cross Entropy Loss
dataset	cifar10
pretrain	true
batch size	64
train size	2500
valid size	2500

表 2: GA の設定

個体数	10
世代数	10
選択	トーナメント
サイズ	3
交叉	2 点交叉
交叉率	0.5
変異	ガウス分布
変異率	0.2
(遺伝子座ごと)	0.1

2.3 結果

図 1, 2 に GA の結果の精度とロスを示した. ただしこの結果は α から作成したモデルの性能ではないため、本来の値とは異なる. 図では精度は世代ごとに向上するが、2 世代から損失は悪化した. モデルが出力する確信度が平均的な α に最適化された結果、逆にすべての α との差が損失に大きな誤差を与えたと思われる.

今回の設定の場合、1世代にかかる時間は3分であった。データをすべて使う場合、1個体あたり3分となり、20 個体の場合 1 世代に1 時間かかる.

図 1: 世代ごとの精度 (平均と標準偏差)

図 2: 世代ごとのロス (平均と標準偏差)

3 今後の予定

まず GA はメモリの問題もなく動いた. しかし交叉 や突然変異などは適した手法が分からないため, GA を調査して設定を見直したい. うまくいけば来週サーバーで長時間動かす.

4 ソースコード

github の notebook リポジトリ参照.