PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-341351

(43) Date of publication of application: 11.12.2001

(51)Int.CI.

G02B 26/10 HO4N 1/113

(21)Application number: 2000-167886

(71)Applicant : RICOH CO LTD

(22)Date of filing:

05.06.2000

(72)Inventor: EMA HIDETOSHI

(54) IMAGING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an imaging apparatus in which an integrated circuit for controlling a semiconductor laser simultaneously with generation of an image writing clock is formed within one chip. SOLUTION: A Clock for transferring image data is converted into data corresponding to a modulation pulse train through an LUT 17 based on image data and loaded to a Shift-Register 15 in response to a Load signal. On the other hand, a PLL for multiplying the Clock by 8 comprises a Phase-detector 11, a Loop-filter 12, a VCO 13 and a 1/8 14. The PLL generates a VCLK having a frequency equal to 8 times that of the Clock and the Shift-Register 15 outputs modulation data according to the VCLK. Since the imaging apparatus is arranged to convert the image data through the LUT, it is applicable to a case where the laser scanning optical system is changed by simply altering the content of the LUT.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-341351 (P2001-341351A)

(43)公開日 平成13年12月11日(2001.12.11)

(51) Int.Cl. ⁷		識別記号	F I	· 5	デーマコート*(参考)					
B41J	2/44	•	G 0 2 B	26/10	Α	2 C 3 6 2				
G 0 2 B	26/10				Z	2H045				
			B41J	3/00	M	5 C O 7 2				
H 0 4 N	1/113	•	H 0 4 N	1/04	1 0 4 A					

審査請求 未請求 請求項の数13 OL (全 17 頁)

(21)出願番号	特顧2000-167886(P2000-167886)
(21)出願番号	特願2000-167886(P2000-167886)

(22) 出願日 平成12年6月5日(2000.6.5)

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 江間 秀利

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

Fターム(参考) 2C362 AA03 BA33 BB32 BB33 BB34

BB37 BB38 BB39 DA08

2H045 AA01 BA02 CA88 CB42

50072 AA03 BA01 BA11 BA20 HA02

HA13 HB02 HB08 HB13 UA11

UA16 UA20 XA01

(54) 【発明の名称】 画像形成装置

(57)【要約】

【課題】 画像書き込みクロックを生成すると同時に半 導体レーザの制御する集積回路が1チップ内で構成され る画像形成装置を提供することを目的とする。

【解決手段】 Clock は画像データを転送するためのクロックであり、画像データに基づいてLUT17にて変調パルス列に対応するデータに変換し、Load信号に応じてSift-Register 15にロードされる。他方、Clockを8倍するPLLはPhase-Detecter12、Loop-Filter 12、VCO13および1/814で構成され、CLockの8倍の周波数のVCLKを生成し、Shift-Register15はVCLKに従い変調データを出力する。画像データをLUTにより変換する構成をとることにより、LUTの内容を変更するだけでレーザ走査光学系が変化した場合にも、適用できる構成になっている。

【特許請求の範囲】

【請求項1】 半導体レーザと、

該半導体レーザが出力する光で回転感光体を走査する走 査手段と、

前記半導体レーザが出力する走査光を所定の位置で検出する走査光検出手段と、

該走査光検出手段が検出した走査光に基づいて前記回転 感光体を走査して静電潜像を形成する画像形成装置であって、

髙周波クロック生成手段と、

該高周波クロック生成手段から出力されたクロックを分周し、前記走査光検出手段の出力に同期した画像クロックを出力する画像クロック出力手段と、

該画像クロックの位相を変化させる画像クロック位相変 化手段と、

を有することを特徴とする画像形成装置。

【請求項2】 前記高周波クロック生成手段は、

入力される信号に応じて出力するクロックの発振周波数 を制御する電圧制御発振手段と、

該電圧制御発振手段が発振したクロックを分周する分周 手段と

該分周手段が出力したクロックの周波数と基準となるクロックの周波数との位相を比較し、該比較の結果に応じた信号を出力する位相比較手段と、

該位相比較手段が出力した信号は前記電圧制御発振手段 に入力される形態で構成されていることを特徴とする請 求項1記載の画像形成装置。

【請求項3】 前記画像クロックに基づいて画像データを入力する画像データ入力手段と、

前記髙周波クロック生成手段から出力されたクロックと 前記画像データに基づいて変調パターンを生成する変調 パターン生成手段と、

該変調パターン生成手段によって生成された変調パターンに基づいて前記半導体レーザの出力を制御する半導体レーザ制御手段と、

をさらに有することを特徴とする請求項1記載の画像形成装置。

【請求項4】 前記画像クロック出力手段と、

前記画像クロック位相変化手段と、

前記髙周波クロック生成手段と、

前記画像データ入力手段と、

前記変調パターン生成手段と、

を1チップの集積回路によって構成したことを特徴とする請求項1記載の画像形成装置。

【請求項5】 前記分周手段による分周比をデータロードする形で設定する分周比設定手段をさらに有することを特徴とする請求項4記載の画像形成装置。

【請求項6】 前記電圧制御発振部から発振されるパルスの位相を反転させたり、正転させたりするパルス反転手段をさらに有することを特徴とする請求項4記載の画 50

像形成装置。

【請求項7】 前記分周回路の動作を停止させたり、再開させたりする分周動作停止再開手段をさらに有することを特徴とする請求項4記載の画像形成装置。

【請求項8】 前記画素クロックの位相を遅らせるタイミングで前記半導体レーザを消灯する半導体レーザ消灯 手段をさらに有することを特徴とする請求項6記載の画像形成装置。

【請求項9】 半導体レーザと、

該半導体レーザが出力する光で回転感光体を走査する走 査手段と、

前記半導体レーザが出力する走査光を所定の位置で検出 する走査光検出手段と、

該走査光検出手段が検出した走査光に基づいて前記回転 感光体を走査して静電潜像を形成する画像形成装置であって

高周波クロック生成手段と、

前記高周波クロック生成手段からクロックを分周し、前 記走査光検出手段が検出するタイミングに同期した画像 クロックを出力する画像クロック出力手段と、

前記画像クロックに基づいて画像データを入力する画像 データ入力手段と、

前記高周波クロック生成手段から出力されたクロックと 前記画像データ入力手段が入力する画像データとに基づいて、前記半導体レーザの出力を変調する半導体レーザ 変調手段と、

前記画像データ入力手段が画像データを取り込むタイミングと、前記画像クロックの位相とを、同時に変更する 位相変更手段と、

を有することを特徴とする画像形成装置。

【請求項10】 電源投入時の最初の同期信号と同期信号検出データの消灯データタイミングとから検出して、前記位相変更手段が変更するように設定されていることを特徴とする請求項9記載の画像形成装置。

【請求項11】 各走査タイミング毎に前記位相変更手 段が変更するように設定されていることを特徴とする請 求項9記載の画像形成装置。

【請求項12】 ページの最初のラインでのみ前記位相変更手段が変更するように設定されていることを特徴とする請求項9記載の画像形成装置。

【請求項13】 前記画像クロックの出力の際の位相を変更して、前記画像データ入力手段がデータを取り込むタイミングと前記変調パターン生成手段が変調パターンを生成するタイミングとを変更しないことを特徴とする請求項9記載の画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レーザコピー、レーザプリンタ及びデジタル複写機等の半導体レーザを光 書き込み装置として使用する画像形成装置に関する。

5

[0002]

【従来の技術】近年、半導体レーザは、小型で駆動電流 により高速変調を直接行えることから、上述されたよう な画像形成装置等において光書き込み装置の光源として 広く利用されている。

【0003】しかし、半導体レーザの駆動電流と光出力との関係は、温度により著しく変化するので、半導体レーザの光強度を所望の値に設定しようとする場合に問題となる。

【0004】この問題を解決して半導体レーザの利点を活かすために、APC(Auto PowerContorol)方式の1つとして、半導体レーザの光出力を受光素子によりモニタし、受光素子に発生する半導体レーザの光出力に比例する受光電流に比例する信号と、発光レベル指令信号とが等しくなるように、常時、半導体レーザの順方向電流を制御する光・電気負帰還ループにより半導体レーザの順方向電流を所望の値に制御する方式が知られている。

【0005】上記された方式に関する技術としては、特開平05-075199号公報、特開平05-235446号公報、特開平09-321376号公報、特開平11-167081号公報および特開平05-207234号公報等に示される技術が提案されている。

【0006】特開平05-75199号公報では、半導体レーザの光出力をモニターする受光素子の受光電流と発光指令電流とを常時比較することにより半導体レーザを制御する光電気負帰還ループを構成し、かつ発光指令電流に比例した電流を半導体レーザに光電気負帰還ループの出力電流に加算して流すことにより高速に半導体レーザを変調することによって、半導体レーザの温度特性、ドウループ特性を抑制しつつ、高速に変調する半導体レーザ制御装置が提案されている。

【0007】特開平05-235446号公報では、電源投入時におけるサージ電流や、回路不安定状態での過大電流による半導体レーザの劣化を防止するための半導体レーザ保護回路が従来より簡易な構成で組み込まれる半導体レーザ制御装置が提案されている。

【0008】特開平09-321376号公報では、光・電気負帰還ループによる制御量を少なくする電流加算方式と、1ドット内でのパルス幅強度混合変調方式とが適用される画像形成装置において適用される半導体レーザ制御装置が、より小型で省電力化され、さらに集積度が高くなるように実現された技術が提案されている。

【0009】以下、半導体レーザを光源として使用した 画像形成装置において、静電潜像が形成される際の動作 について図23に基づいて説明する。図23において、 半導体レーザユニット5から出力されたレーザ光はポリ ゴンミラー1が回転することにより、スキャンされ走査 レンズ2を介して感光体3を露光し静電潜像を形成す る。 4

【0010】また、画像処理ユニット8により生成された画像データと位相同期回路6により位相が設定された画像クロックとに従い、半導体レーザユニット5は半導体レーザの発光時間をコントロールする。このようにすることにより、感光体3に形成される静電潜像の位置等をコントロールする。また、位相同期回路6はクロック生成回路9により生成されたクロックを、フォトディテクタ4により検出された半導体レーザの光に同期した位相に設定する。

[0011]

【発明が解決しようとする課題】上記されたようにレーザ駆動回路7、位相同期回路6およびクロック生成回路9は、レーザ走査光学系を用いた画像形成装置では、感光体3に形成される静電潜像の位置精度、間隔精度を保つ上で必要不可欠なものである。このため、画像クロックと同一の周波数をもつクロックを画像形成装置内のいくつもの回路で必要となってしまい、画像形成装置のEMI(Electro Magnetic Inference)の問題を引き起こすという問題点があった。

【0012】さらに部品点数が多くなるためコスト上昇にもなり、印字速度の上昇に従い、画像データ転送クロックを画像形成装置の全システムにて完全に同一タイミングで動作させることも非常に困難となり、画像データの転送を遅いクロックで並列化して転送しなければならなくなるという問題点もあった。

【0013】また、複数の光源からの光により記録することにより高速、高密度化を図る方法が採用されつつある。このような場合、光源として複数個の半導体レーザを使用する場合と、LD(LASER Diode)ーArrayを使用する場合がある。しかしながら、LDーArrayに対しては、受光素子がすべての半導体レーザに共通であるため、特開平09-321376号公報、特開平05-075199号公報、あるいは特開平09-321376号公報に記載される手法が使用できず結果的にLDーArrayを使用する場合、コストの面で高くなってしまうという問題点もあった。

【0014】また、特開平05-075199号公報、特開平05-235446号公報および特開平09-321376号公報等に記載されている発明によると、半導体レーザの温度特性・ドウループ特性などの影響を除去するためには、常時制御が必要とされるが、その際のオフセット光が生じてしまう。オフセット光を防ぐためには、電流設定回路等が必要とされ回路規模が大きくなるという問題点もあった。

【0015】さらに半導体レーザのビームプロファイルは通常ガウス分布に近似され、ガウス分布に従い感光体3において静電潜像が形成される。このため、静電潜像は2値的ではなく、アナログ的分布をした箇所が解像度の増大に従い発生する。現像バイアスの変動等の外部変動要因の影響を受け易くなり、画像濃度変動を引き起こ

し易くなるという問題点もあった。

【0016】また、特開平11-167081号公報に記載されているような、ダイレクトシンセサイザーを用いて周波数刻みが保管されたLUT (Look Up Table)のデータを変更することによって、高速に周波数変更することが可能であるが、周波数可変刻みと出力周波数変更速度とは、次に接続されるPLL (Phase Locked Loop)の制御速度および低域通過フィルタと密接に関連し、全体設計上の制約になる。また、周波数刻みはマスタークロック周波数とLUTのビット数に依存し、細かな設定を行う為には、回路規模を増大させるか、マスタークロックを高速にする必要が生じ、1チップ化を実現するためには困難さが伴うという問題点もあった。

【0017】さらに特開平05-207234号公報に記載されているようなPLLに位相誤差を付加する方法では、位相誤差の付加信号を非常に安定にしなければ画素クロックの周波数誤差が発生してしまう。これは、デジタル回路とアナログ回路を一体化して1チップ化を図るときに大きな制約となるという問題点もあった。

【0018】本発明は、上記問題点に鑑みてなされたものであり、半導体レーザを光源として使用する画像形成装置において、画像書き込みクロックの生成と半導体レーザの制御とを行い、1チップに収められる集積回路が組み込まれる画像形成装置を提供することを目的とする。

[0019]

【課題を解決するための手段】かかる目的を達成するため、請求項1記載の発明は、半導体レーザと、半導体レーザが出力する光で回転感光体を走査する走査手段と、半導体レーザが出力する走査光を所定の位置で検出する走査光検出手段と、走査光検出手段が検出した走査光に基づいて回転感光体を走査して静電潜像を形成する画像形成装置であって、高周波クロック生成手段と、高周波クロック生成手段から出力されたクロックを分周し、走査光検出手段の出力に同期した画像クロックを出力する画像クロック出力手段と、画像クロックの位相を変化させる画像クロック位相変化手段と、を有することを特徴とする。

【0020】請求項2記載の発明において、請求項1記載の発明において、高周波クロック生成手段は、入力される信号に応じて出力するクロックの発振周波数を制御する電圧制御発振手段と、電圧制御発振手段が発振したクロックを分周する分周手段と、分周手段が出力したクロックの周波数と基準となるクロックの周波数との位相を比較し、比較の結果に応じた信号を出力する位相比較手段と、位相比較手段が出力した信号は電圧制御発振手段に入力される形態で構成されていることを特徴とする。

【0021】請求項3記載の発明は、請求項1記載の発明において、画像クロックに基づいて画像データを入力

6

する画像データ入力手段と、高周波クロック生成手段から出力されたクロックと画像データに基づいて変調パターンを生成する変調パターン生成手段と、変調パターン生成手段によって生成された変調パターンに基づいて前記半導体レーザの出力を制御する半導体レーザ制御手段と、をさらに有することを特徴とする。

【0022】請求項4記載の発明は、請求項1記載の発明において、画像クロック出力手段と、画像クロック位相変化手段と、高周波クロック生成手段と、画像データ入力手段と、変調パターン生成手段と、を1チップの集積回路によって構成したことを特徴とする。

【0023】請求項5記載の発明は、請求項4記載の発明において、分周手段による分周比をデータロードする形で設定する分周比設定手段をさらに有することを特徴とする。

【0024】請求項6記載の発明は、請求項4記載の発明において、電圧制御発振部から発振されるパルスの位相を反転させたり、正転させたりするパルス反転手段をさらに有することを特徴とする。

【0025】請求項7記載の発明は、請求項4記載の発明において、分周回路の動作を停止させたり、再開させたりする分周動作停止再開手段をさらに有することを特徴とする。

【0026】請求項8記載の発明は、請求項6記載の発明において、画素クロックの位相を遅らせるタイミングで半導体レーザを消灯する半導体レーザ消灯手段をさらに有することを特徴とする。

【0027】請求項9記載の発明は、半導体レーザと、 半導体レーザが出力する光で回転感光体を走査する走査 手段と、半導体レーザが出力する走査光を所定の位置で 検出する走査光検出手段と、走査光検出手段が検出した 走査光に基づいて回転感光体を走査して静電潜像を形成 する画像形成装置であって、高周波クロック生成手段 と、高周波クロック生成手段からクロックを分周し、走 査光検出手段が検出するタイミングに同期した画像クロ ックを出力する画像クロック出力手段と、画像クロック に基づいて画像データを入力する画像データ入力手段 と、高周波クロック生成手段から出力されたクロックと 画像データ入力手段が入力する画像データとに基づい て、半導体レーザの出力を変調する半導体レーザ変調手 段と、画像データ入力手段が画像データを取り込むタイ ミングと、画像クロックの位相とを、同時に変更する位 相変更手段と、を有することを特徴とする。

【0028】請求項10記載の発明は、請求項9記載の 発明において、電源投入時の最初の同期信号と同期信号 検出データの消灯データタイミングとから検出して、位 相変更手段が変更するように設定されていることを特徴 とする。

【0029】請求項11記載の発明は、請求項9記載の 発明において、各走査タイミング毎に位相変更手段が変

更するように設定されていることを特徴とする。

【0030】請求項12記載の発明は、請求項9記載の 発明において、ページの最初のラインでのみ位相変更手 段が変更するように設定されていることを特徴とする。

【0031】請求項13記載の発明は、請求項9記載の 発明において、画像クロックの出力の際の位相を変更し て、画像データ入力手段がデータを取り込むタイミング と変調パターン生成手段が変調パターンを生成するタイ ミングとを変更しないことを特徴とする。

[0032]

【発明の実施の形態】以下、添付図面を参照した本発明に係る画像形成装置の実施例が詳細に説明する。図1から図22には、本発明に係る画像形成装置の実施例が示されている。なお、図23に示される画像形成装置の光書き込み系における感光体3に対する走査レンズ2やフォトディテクター4は本実施例においてもそのまま使用されるものとする。

【0033】以下には、図1には光変調パルスと露光エネルギーとの関係が示されている。図1において④がこれまでの光変調パルスの例である。半導体レーザ光をコリメートレンズにて並行光にした後、走査光学系を経て感光体面上で結像させる光学系においてビームプロファイルがガウス分布をしている場合の露光エネルギーが②に示されている。本実施例では、光パルスは③のようなパターンで、同一光学系にて露光され、①に示される露光エネルギー分布を示す。

【0034】図2では、図1において従来の変調光パルスの幅を狭くした場合が示されている。これに対応するように本実施例では光の変調パターンを変化させた場合に対応する露光エネルギー分布である。

【0035】以上の光の変調パターンを順次変化させた場合の従来例が図3であり、本実施例の変調パターンにより変化させた場合の露光エネルギーが分布が図4である。図4の光変調パターンは図4の光パターンに記されるように図1の③と図2の⑦のような左右対称な細い第1の光パルス列と中心にて光らせる第2のパルスの組み合わせである。

【0036】第1のパルスの間隔は露光エネルギー分布を補足する場合には狭くし、太くする場合には太くしかつこの場合には第2のパルスにより露光エネルギー分布の中心での低下を抑制するようにしている。以上の図から分かるように本実施例の光パルスにて露光することにより、約20%程度光ビーム径が細くなった場合に近い、急峻な露光エネルギーを得ることができる。

【0037】このようにすることにより、感光体表面電位分布がビーム径をより細くした場合と同じような表面電位分布が得られることになるので、粒状性(S/N比)がよい画像が得ることができる。また、本レーザビームの変調に対しては、走査光学系について説明してきたがレーザ光が照射される対象物が回転しているような

8

場合、(例えば光ディスク等) においても有効な方法となる。

【0038】図5は、上記光パルス列を生成するための変調データ生成に関する実施例である。以下図5に基づいて動作が説明されている。Clock は画像データを転送するクロックであり、画像データで基づいてLUT(Look Up Table)17にて変調パルス列に対応するデータに変換してLoad信号に応じてShift-Register15にロードされる。

【0039】他方Clock を8倍するPLL-LOOPはPhase-De tecter 11、Loop-Filter 12, VCO13および1/814で構成され、Clock の8倍の周波数のVCLKを生成し、Shift-Register 15はVCLKに従い変調データ (Modulation Data)を出力する。図2の⑦の光パルスは、図6に示されるようなデータにより生成され、図1の③の光パルスは図7に示されるようなデータにより生成される。

【0040】また、画像データをLUTにより変換する 構成をとることにより、LUTの内容を変更するだけで レーザ走査光学系が変化した場合にも同一回路にて図1 および図2に示される光パルスを自由に選択できるよう にしている。このような構成にすることにより、自由度 の高い光変調パルスが生成することができ、粒状性のよ い画像を得ることができる。

【0041】図8には図5に示されたPulse-Mojulation -Unit 101からのデータに応じて半導体レーザを制御・変調するための実施例が示されている。以下では図8に従って動作が説明されている。制御回路102により、光出力Poの場合LD(半導体レーザ)110の光を受光するPD(受光素子)111の出力電流により発生する電圧(REXT113を介して光起電流が電圧に変換される)が、XPD端子109にて検出され、VCONT電圧と比較・制御され、制御結果がXCH端子106に接続されているHold-Capaciter107によりホールドされる。

【0042】また光出力が P_1 の場合には同様にして制御され、Hold-Capaciter 105にホールドされる。光出力は P_0 と P_1 との間の電圧に対して直線であることを仮定して(実際に、半導体レーザのI-L特性によりこの直線性は精度よく成立する)多段階に変調される。Modulation-Data をDnとした場合(VCLKの速度で変化するデータ)、半導体レーザ駆動電流In、Hold-Capaciter 1 とHold-Capaciter 2の電圧を各々 V_1 , V_2 とし、 $P_1=P_0$ / 2 とすると

 $ln = \{(V_0 - V_1) \times D_n + V_1\} / RE$ ここで $D_n = -1 \sim 1$ となるように制御回路102と変調信号発生回路103とで設定されている。

【0043】このようにして、Pulse-Modulation-Unit 101からの出力データに従い、半導体レーザの光パル スパターンを生成することができ、図1および図2に示 される露光エネルギー分布を生成することが比較的容易に可能となり、粒状性のよい画像を得ることができる。

【0044】図5は、画素クロックの8倍になる周波数 VCLKを画素クロックから生成する構成にて示されているが、通常画素クロックも基準クロックから生成される。レーザの発振波長により光学系の色収差による露光位置ずれが発生しやすくなるため、画素クロックを微調する画素クロック生成回路が要求される。しかし、このような回路を別途有すると、PLL回路のジッタが2重に蓄積され、コスト的にも割高となる。

【0045】これらの問題点を解決し、VCLKの生成と画素クロックの生成を実現した実施例が図9に示されている。以下では、図9に基づいて動作が説明されている。PLL-LOOPは位相周波数比較回路201、Loop-Filter202およびVCO203によって構成され、位相周波数比較回路201はProgrammable-Counter204によってN分周された基準クロックとVCLKとを比較し、Loop-Filter202は位相周波数比較回路201の結果をフィルターし、VCO203の発振周波数はLoop-Filter204の出力電圧に基づいて変化する。上記されたPLL-LOOPによってVCLKが生成される。

【0046】また、Programmable-Counter 204の分周 比Nは外部からの分周比設定により設定される。VCL Kと位相同期パルスとに基づいて、1/8分周回路20 6にデータ0'がロードされることにより位相同期パル スに同期した画素クロックがVCLKの1/8の周波数 で生成される。

【0047】また、同様のタイミングで予め設定された位相データをロードして画素クロックとの位相差を有する内部クロックを生成する1/8分周回路207を有している。1/8分周回路207は画素クロックが遅い場合、あるいは画像データを転送するまでの時間遅れが問題とならない場合は必要とはならない。

【0048】しかしながら、画素クロックの周波数が高い場合は、本出力に同期させた外部からの画像データを取り込む時、本画素クロック出力から画像データ入力までの遅延時間が問題となり、正しくデータを取り込むことができなくなる。このような場合には、本実施例のように予め設定された位相データに基づいて画像データ取り込みクロックの位相を、出力画素クロックに対し可変にしておくことで回避できる。

【0049】さらに本実施例では、Phase-Set 信号により1/8分周回路206および1/8分周回路207のカウント(分周)をEnable/Disable できるようになっている。これは、Phase-Set 信号に立ち上がりエッジをVCLKで捉えVCLKの1クロックサイクル分カウント(分周)動作を停止させるようになっている。このようにすることにより、画素クロックおよび内部クロックの位相を1/8クロック刻みで遅らせることができる。【0050】1/8クロックサイクルの位相遅れ最を1

10

走査期間中に決められた間隔(もしくは決められた間隔に近い)で実行することにより、1走査期間での画案クロックの周波数を等価的に微調できることになる。これはPLL-L00Pにて設定可能な周波数可変ステップをより細かく設定できることと等価である。

【0051】実際にPLL-LOOPの周波数可変ステップを細かく設定しようとすれば、Pragrammble-Counter 204の分周設定範囲を広くとると同時に、基準クロックを低くするか、VCLKを高くすることでも可能であるが、基準クロックを低くすることはVCLKの周波数変動が基準サイクルクロックでしか検出することができなくなり、VCO203の発振周波数安定化が大きな技術課題となってしまう。

【0052】VCLKを高くすることは、VCO203の発振周波数を高くしなければならず、これも技術課題となってしまう。本発明によれば、VCOを高くできればそれを上回るステップで周波数設定が可能となり、VCOを安定できればそれを上回るステップで周波数設定が可能となる。

【0053】また、Phase-Set 信号による位相遅れを生成する1/8クロックサイクルの間、半導体レーザを発光しないようにしておくことにより、露光エネルギー量の不連続性は解消される。また、Phase-Set 信号を半導体レーザが発光しない時に設定してもよい。さらに、走査ごとに少しずらした位置で設定してもよい。さらにこのようなタイミングで位相遅れ量を変化させることにより、出力画像に影響なく画素クロック位相を変更できる。

【0054】また、Phase-Set 信号を走査の開始タイミングのみ走査毎に一定刻み増加もしくは減少するように(例えば、 $1/8 \rightarrow 2/8 \rightarrow 3/8 \rightarrow 4/8 \rightarrow 5/8 \rightarrow 6/8 \rightarrow 7/8 \rightarrow 0$ のように)変化させることにより、1/8クロックサイクル毎に各画素の位置を制御することができる。このように画像出力のスクリーン角を微調することにより、高画質画像を得ることができる。

【0055】図10においては、N-Counter309を内部にも5N-カウント毎にCounter309を住成し、1/8画素クロック位相を遅らせるように構成した例である。本実施例の場合には1/8クロックの時間光パルスを出力しないようにしている。

【0056】このようにしても図1に示されるように露光エネルギー分布が不連続になることはない。というのは、半導体レーザのビーム径に対し充分短い時間のみ光を消しているためと、画案の区切りのタイミングであるためである。なお、N-Counter 309のカウント値Nの値はシリアルデータにより設定可能となっている。

【0057】このようにすることにより、PLL-LOOPにより設定できない刻みの周波数をシリアルデータにより設定できるようになるので、等価的に周波数刻みを細かく設定できるようになる。

【0058】図11には画素クロックに対して内部クロックの位相を位相データに応じて動作するタイミング図が示されている。上からVCLK、同期パルス、Load信号、画素クロック、画像データ、Reset 2信号となっている。また、図11の動作は位相検出Set 信号がLowのときのみ動作するようになっている。このようにすることにより、位相検出Set 信号がLowのときには常に同期パルスが有効となり内部クロックと画像データの位相関係がコントロールされるようになる。一方、位相検出Set 信号を電源投入の最初のタイミングのみLowとすることにより初期設定された位相差を維持することができる。

【0059】図12は図5の場合と対比して、LUTのBIT数を低減した場合の方法であり、1画素の中心を基準に左右独立なパルスを選択できるようになっている。VCLKを8分周するときの8位相のパルス(図13に示される)を選択する選択テーブルが設定されることにより、任意の位置にパルスを生成する生成方法が示されている。

【0060】このようにすることにより、図5の場合よりも選択可能なパルス列範囲は狭くなるがLUTの回路規模が小さくなり低コストにて図2および図4に示される光パルスを得る場合には有効な方法として実現できる。

【0061】図14においては、光出力強度のピーク値と半導体レーザのバイアス電流を制御した回路構成においてカソードがコモンとなっている半導体レーザに対し示した例である。Erro-Amp401により半導体レーザの光出力がPD(受光素子)410で検出され、検出された結果を電圧変換してReffrence Voltage と比較し制御値をHold-Capaciter 407に保持する制御を行っており、本実施例ではVCC-80mVの電圧となるようにRE端子411電圧を制御するようにError-Amp404の制御結果をHold-Capaciter 408にて保持されている

【0062】なおError-Amp 401の制御タイミングは 半導体レーザを発光させるアクティブな時一定時間遅れ て制御させている。また、Error-Amp 404は半導体レ ーザが消灯したときのバイアス電流が一定値となるよう に、LDON信号が非アクティブのとき一定時間遅れて 制御するようにしている。

【0063】このようにLDON信号から一定時間遅れて制御を開始するようにすることにより、半導体レーザの光出力から受光素子の受光電流、受光電流を電圧に変換、Error-Amp 401に信号の伝送における遅れ時間による誤差が発生しないようにしている。また、バイアス電流の制御タイミングにおいても同様である。

【0064】さらに、半導体レーザをバイポーラトランジスタのエミッタに接続することにより、バイポーラトランジスタのベース電圧にできるだけ遅れが発生しない

12

ように半導体レーザに伝える構成となっている。したがって、本実施例では半導体レーザの端子間電圧を所定電 圧にすることにより、所定の光出力を得る構成をとっている。このようにすることで、半導体レーザを高速に変 調することができる。

【0065】図15においてはアノードコモンの半導体レーザを使用した場合の実施例である。本実施例では、図14と比較して、半導体レーザをトランジスタのコレクタに接続している。このようにすることによりほぼ、カソードコモンの半導体レーザと同様な回路で実現できる。この結果アノードコモンとカソードコモンの半導体レーザを同一ICで使用可能にすることができる。

【0066】図16においては半導体レーザを制御するタイミングを生成するために、LDON信号がHighの時C1を急速充電しLDON信号がLow のときにはコンデンサーの容量を一定電流で放電させることにより、細いパルス列がきたときには制御しなくなるようにしている。このようにすることにより、単純な遅延回路+論理回路構成に比較し、狭いパルス列については制御値をホールドすることにより、制御精度が向上する。

【0067】図17は図14および図15のような半導体レーザの接続を実施した場合、受光素子の端子電圧がVCC/2以下の場合にはアノードコモンの半導体レーザが接続されており、そうでない場合はカソードコモンされている例である。半導体レーザの光を検出する受光素子の端子電圧がアノードコモンの場合にはGNDを基準に変化し、カソードコモンの場合にはVCCを基準に変化する性質が使用されている。

【0068】このようにすることにより、アノードコモン半導体レーザが接続されているか、カソードコモン半導体レーザが接続されているかが自動的に判別され、図14および図15に従った制御方向を変えることができ、アノードコモン半導体レーザとカソードコモン半導体レーザの両方に対し同一回路(IC)を使用することができる。

【0069】図18には以上に記載された事柄をまとめ 1チップICとして実現した場合の実施例が示されてい る。また、本実施例では画素クロック周波数は同一の周 波数で同期信号は2種類により独立に制御でき、半導体 レーザを制御変調する回路部は2チャンネル有してい る。

【0070】Voltage-Refarence 601は本IC全体の基準電源供給回路であり、そのほかの回路ブロックへ基準電源を供給する。Phase-Detecter 602、VCO603、Clock-Driver 604 および12BIT-Programmable-Counter 605によりPLL-Loopを構成し、Counter-Register 606に設定された12BITのデータのうち下位1BITがClock-Driver 604の出力クロックVCLKの位相を π 遅らせるように設定され、上位11BITが12BIT-Programmable-Counter 605の分周比を設定している。

このようにして、CLKの周波数は $F-REF\times N/2$ (N:12BITデータ) となっている。

【0071】DETP1 およびDETP2 のそれぞれに同期して、Xreset、YresetおよびCLKの反転かを選択されたXCLK、YCLKを、XResetPulse-Generator 608 およびYResetPulse-Generator 611は出力する。XDriver-Driver609およびYDriver-Driver611はXCLK、YCLK、XresetおよびYresetに従い4分周され、XDEPT およびYdept に同期した画素クロックXPCLK およびYPCLK を出力する。

【0072】図22に示されたようなタイミングチャートに従い、XDPhase およびYDPhaseの立ち上がりエッジに従い、画素クロックを1/8位相遅延させることができるようになっている。この結果、ライン走査毎に画素クロック開始位置を1/8クロックサイクル毎に遅延制御することができる。

【0073】また1ラインの走査期間中、M回立ち上がりエッジを与えることにより、画素クロック周波数をFCLK×N/(N+M/8)に等価的に変更することができる。さらに図22のタイミングチャートに示されたようにALDMASK およびBLKMASK 信号を生成することにより、画素クロックを1/8クロックサイクル遅延させ、タイミングでは半導体レーザを強制的にOFFにするようにして、画像濃度が急激に変化しないようにしている。この場合、自動的に消灯させるようにしているが予め、画像データから1/8濃度減らしておけば、強制的に消灯させる必要はない。

【0074】このように画像データから予め1/8減らしておく場合には、MaskEN信号をHighにすることによりLDMASK信号を無効にする。図19にはあらかじめ決められた規則に従って光変調パルスを生成する構成にした場合の実施例が示されている。

【0075】図20においては、シリアルI/F801によりCode-Area-Program-Counter805にプログラムコードを書き込むことにより、画像データの有効書き込み期間、電子写真プロセス制御のための濃度パターン生成、孤立点ドットの検出およびそれに応じた画像データ変換処理を実施するユニットを構成して、上記記載事項を実現した実施例である。

【0076】なお、ALU804はClock-Generator 806の出力クロック(画素クロックの8倍)にて動作を実行している。またプログラムコードは各同期信号毎に所定のプログラムカウント値になるように制御されている。以上のように、転送されてきた画像データを出力する場合の処理を施すALU804は最終結果をLD-Controller807はこのデータに従い半導体レーザを変調する。なお、速度変換RAM802は転送されてくるクロックと書き込みクロックとの速度差を吸収するためのバッファメモリーとなっている。

【0077】図21においては、ALU904は演算結

14

果をShift-Register 9 1 0に1 画素分の光変調パターン に相当するデータパターンをClock-Generater 9 0 6 の 8 クロックサイクルに1回書き込み、Shift-ReGister 9 1 0はClock-Generator 9 0 6 で生成されるクロックに 従いLD-Controller 9 0 7変調データを受け渡す構成 として実現した例である。

[0078]

【発明の効果】以上の説明から明らかなように、請求項1記載の発明によれば、画像クロックの位相を変化させることできるので、走査光学系および半導体レーザの波長等による半導体レーザの走査速度を画像クロックの位相を微調整することにより調整することができ、高精度走査位置あわせを簡単な構成により実現することができる。

【0079】請求項2記載の発明によれば、請求項1記載の発明において、高周波クロック生成手段をPLLにより構成したので、半導体レーザが出力する光の走査速度の調整をPLLの出力周波数を調整することに粗調整を行い、位相変化手段により微調整を行うことができるので、走査速度の調整範囲を広く取ることができ、高精度な位置あわせを実現した画像形成装置を提供することができる。

【0080】請求項3記載の発明によれば、請求項1記載の発明において、高周波クロックを、画像クロックの生成と画像データに基づいた変調パターンの生成とに利用しているので、効率的に変調パターンが生成でき、また、変調パターンにより静電潜像をより急峻なパターンにすることができるので粒状性がよい画像形成装置を提供することができる。

【0081】請求項4記載の発明によれば、請求項1記載の発明において、画素クロックのN倍の周波数から画素クロックの位相が変化できるようになるので、画素クロックを等価的に微調できるようになり、半導体レーザの波長ばらつきが発生しても、画素の位置を正確に保つことができるようになる。

【0082】請求項5記載の発明によれば、請求項4記載の発明において、分周回路のデータロードタイミングでロードするデータを変更することできるようになるので、簡単に画素クロック周波数を微調できるようになり、半導体レーザの波長ばらつきが発生しても、画素の位置を正確に保つことができるようになる。

【0083】請求項6記載の発明によれば、請求項4記 載の発明において、電圧制御発振回路の出力位相を反 転、正転に切り替えるタイミング毎に画素クロックの位 相を変化させることができるので、簡単な構成で高画質 な画像を形成することができるようになる。

【0084】請求項7記載の発明によれば、請求項4記載の発明において、分周回路の動作を停止させたり、再開させたりする機能を設けたことにより、簡単の画素クロック周波数を微調できるようになり、高画質な画像を

形成することができるようになる。

【0085】請求項8記載の発明によれば、請求項6記載の発明において、画案クロックの位相を遅らせるタイミングで半導体レーザを消灯させるので、画案クロックの位相変化による画像濃度の変化をなくすことができ、高画質な画像を形成することができるようになる。

【0086】請求項9記載の発明によれば、出力画素クロックと内部クロックとの位相差を設定できるようになっているため、本集積回路に接続される画像データ転送回路ブロックとの画像データ転送遅延時間を適正にする 10ように設定できるので、1つの集積回路で高速な画素クロックを生成すると同時に半導体レーザを制御することができる

【0087】請求項10記載の発明によれば、請求項9記載の発明において、集積回路に接続される画像データ転送回路プロックとの画像データ転送遅延時間を電源が投入されたときに再設定する機能を有しているので、1つの集積回路で高速な画素クロックを生成すると同時に半導体レーザを制御することができる。

【0088】請求項11記載の発明によれば、請求項9記載の発明において、集積回路に接続された画像データ転送回路プロックとの画像データ転送遅延時間を、各走査ライン毎に自動的に適正なものになるように設定することができるので、1つの集積回路で高速な画素クロックを生成すると同時に半導体レーザを制御することができる。

【0089】請求項12記載の発明によれば、請求項9記載の発明において、集積回路に接続される画像データ転送回路ブロックとの画像データ転送遅延時間を、1ページの最初に適正なものになるように設定することがで 30きるので、1つの集積回路で、高速な画素クロックを生成すると同時に半導体レーザを制御することができる。

【0090】請求項13記載の発明によれば、請求項9記載の発明において、集積回路に接続される画像データ転送回路ブロックとの画像データ転送遅延時間を適正なものになるように設定でき、かつ、送り出し画素クロックのみ位相を変更させるようにしているので、1つの集積回路で、高速な画素クロックを生成すると同時に半導体レーザを制御することができ、かつ、簡単に作成することができる。

【図面の簡単な説明】

【図1】本発明の光変調パルスと露光エネルギーの例が 示されている。

【図2】本発明の光変調パルスと露光エネルギーの例が 示されている。

【図3】光変調パルスを変化させた場合の露光エネルギーが示されている。

【図4】光変調パルスを変化させた場合の露光エネルギーが示されている。

【図5】光変調パルスを生成するための変調データを生 50

16

成するユニットの構成が示された図である。

【図6】図5に示される回路で生成された変調パルスの 一例である。

【図7】図5に示される回路で生成された変調パルスの 一例である。

【図8】図5に示されたユニットからのデータに基づいて半導体レーザを制御、変調するユニットの構成が示された図である。

【図9】VCLKと画素クロックを同時に実現した例である。

【図10】図9においてN-Counter がさらに設けられた 例である。

【図11】図10の動作のタイミング例が示された図である。

【図12】LUT (look-up-table) の構成例が示されている。

【図13】VCLKを8分周した際のパルス例が示されている

【図14】光強度のピーク値と半導体レーザのバイアス 電流を制御した回路構成においてカソードがコモンとなっている回路図が示されている。

【図15】光強度のピーク値と半導体レーザのバイアス 電流を制御した回路構成においてアノードがコモンとなっている回路図が示されている。

【図16】半導体レーザを制御するタイミングを生成する回路が示された回路図である。

【図17】半導体レーザを制御するタイミングを生成する回路が示された回路図である。

【図18】図5から図17において実施された例を1チップの集積回路として実現した例が示されている。

【図19】図18に示される回路において予め決められた規則に従って光変調パルスを生成する構成にした例である。

【図20】画像データ変換処理を実施するユニットのブロック図である。

【図21】画像データ変換処理を実施するユニットのブロック図である。

【図22】画素クロックを1/8位相遅延制御するタイミングチャートが示されている。

40 【図23】一般的な画像形成装置の光書き込み系を示す 模式図である。

【符号の説明】

- 601 基準電源供給回路
- 602 位相比較器
- 603 電圧制御発振回路
- 604 クロックドライバ
- 605 12ビットープログランブルカウンタ
- 606 カウンターレジスタ
- 607 ディテクトパルスセレクタ
- 608 Xリセットパルスジェネレータ

17
609 Xドライバードライバ
610 Yリセットパルスジェネレータ
611 Yドライバードライバ
612 パルスセレクトレジスタ
613 Xラッチ
614 XP1ーセレクタ
615 XP2ーセレクタ

【図2】

【図1】

【図4】

619

620

616 XLD-コントローラ

YP1-セレクタ

617 スタートアップ

LDーエラ

Yラッチ

621 YP2-セレクタ

622 YLD-コントローラ

光パターン

【図5】

【図6】

【図7】

【図11】

【図8】

【図9】

【図12】

D0,D1	PD2	PD1	PD0	DO,D1	QD2	QD1	QDO	DO,D1	RD2	RD1	RDO	出力パルス							\neg
1	0	0	0	2	0	0	0	3	0	0	0		Ι.						
1			1	1			1	l i			1							\neg	
i i	· ·	1	0			1	0			1	0				٠				
		$oxed{oxed}$	1				1	!!			1		L						
1	1	0			1	0	0		1	0	0	L	L	L					
1			_1				1				1		<u> </u>	L				_1	
1		1	0	li		1	0			1	0			L		Ш		_	_
			_1				1				1	L	L.			Ш		_1	
D2,D3	_	_		D2,D3							RD3	L	出力パルス						_
] 1	0	0	0	2	0	0	0	3	0	0	0	上	L	L		Ш	Ш	_	
			1	! !			1				1	上	L	<u></u>	Ŀ			_]	
1		1	0			1	0			1	0	┖	_	L		ப			
1			1				1	1			1	上	L	L		Ш			
1	1	0	0		1	0	0		1	0	0	┺	L	Щ	L				
			1				1				_ 1	┖	┖	L					
1		1	0			1	0			1	0	↓	辶	<u></u>			[
L			_ 1				1 .				1	_	<u>1</u>	L.	_			I	

【図10】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

