

DATA SHEET

SURFACE MOUNT MULTILAYER
CERAMIC CAPACITORS

General purpose & High capacitance Class 2, X5R

4 V TO 50 V 100 pF to 100 μF

RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes X5R series chip capacitors with leadfree terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies

DVD players

Mobile phones

Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP CTC & **12NC**

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC xxxx x x X5R x BB xxx (4) (I) (2) (3)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

4 = 4 V

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

PHYCOMP BRAND ordering codes

GLOBAL PART NUMBER (preferred), PHYCOMP CTC (for North America) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

12NC CODE

PHYCOMP CTC CODE (FOR NORTH AMERICA)

● Example: 06032B225M5B20D

0603	2B	225	М	5	В	2	0	D
Size code	Temp. Char.	Capacitance in pF	Tolerance	Voltage	Termination	Packing	Marking	Range identifier
0201 0402 0603 0805 1206 1210 1812	2B = X5R	101 = 100 pF; the third digit signifies the multiplying factor: $0 = \times 1$ $1 = \times 10$ $2 = \times 100$ $3 = \times 1,000$ $4 = \times 10,000$ $5 = \times 100,000$ $6 = \times 1,000,000$ $7 = \times 10,000,000$	M = ±20%	4 = 4 V 5 = 6.3 V 6 = 10 V 7 = 16 V 8 = 25 V 9 = 50 V		2 = 180 mm 7" Paper/PE 3 = 330 mm 13" Paper/PE B = 180 mm 7" Blister F = 330 mm 13" Blister P = Bulk case	0 = no marking	D = Class 2 MLCC

4 19

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig.I.

DIMENSION

Table I For outlines see fig. 2

TVDE	l (mm)	\A/ (mama)	T (MM)	L_2 / L_3	(mm)	L ₄ (mm)
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03 ⁽¹⁾	0.3 ±0.03 ^(I)		0.10	0.20	0.20
	0.6 ±0.05 ⁽²⁾	0.3 ±0.05 ⁽²⁾	_	0.10	0.20	0.20
	1.0 ±0.05 ⁽¹⁾	0.5 ±0.05 ^(I)				
0402	1.0 ±0.15 ⁽²⁾	0.5 ±0.15 ⁽²⁾		0.20	0.30	0.40
	1.0 ±0.20 ⁽³⁾	0.5 ±0.20 ⁽³⁾	_			
	1.6 ±0.10 ⁽¹⁾	0.8 ±0.10 ⁽¹⁾				
0603	1.6 ±0.15 ⁽²⁾	0.8 ±0.15 ⁽²⁾		0.20	0.60	0.40
	1.6 ±0.20 ⁽³⁾	0.8 ±0.20 ⁽³⁾				
0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾	Refer to table 2 to 4	0.25	0.75	0.55
	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾	table 2 to 4	0.23	0.73	0.55
	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾				
1206	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 (2)		0.25	0.75	1.40
	3.2 ±0.30 ⁽³⁾	1.6 ±0.30 ⁽³⁾	_			
1210	3.2 ±0.20 ^(I)	2.5 ±0.20 ^(I)		0.25	0.75	1 40
1210	3.2 ±0.40 ⁽²⁾	2.5 ±0.30 ⁽²⁾		0.25	0.75	1.40
1812	4.5 ±0.20 ⁽¹⁾	3.2 ±0.20 ^(I)	-	0.25	0.75	2.20
1012	4.5 ±0.40 ⁽²⁾	3.2 ±0.40 ⁽²⁾		0.25	0.75	2.20

OUTLINES

- 1. Dimensions for size 0201, C < 1 μ F; 0402, C < 4.7 μ F; 0603, C < 4.7 μ F; $0805 \text{ to } 1812, C \leq 100 \text{nF}$
- (16V); 0603, 10µF (6.3V) ≥C ≥ 4.7µF, C ≥2.2µF (25V); 0805 to 1812, C > 100 nF
- 3. Dimensions for size 0402, $C \ge 10 \mu F$; 0603, $C \ge 10 \mu F$ ($\ge 10 V$), $C = 22 \mu F (6.3 V)$; 1206, $C \ge 22\mu F$ (25V), $C \ge 100\mu F$

CAPACITANCE RANGE & THICKNESS FOR X5R

Table	2 Sizes from Last 2-digit	n 0201 to 0201	0402					0402					
	of 12NC	4 V	6.3 V	10 V	16 V	25 V	50 V	4 V	6.3 V	10 V	16 V	25 V	50 V
100 pF	09									•			
150 pF	12												
220 pF	14												
330 pF	16						0.3±0.03						
470 pF	18												
680 _P F	21												
1.0 nF	23					0.3±0.03							
1.5 nF	25												
2.2 nF	27												
3.3 nF	29		0.3±0.03	0.3±0.03	0.3±0.03								
4.7 nF	32												
6.8 nF	34												
I0 nF	36												
I5 nF	39												
22 nF	41												
33 nF	43												
47 nF	45												
68 nF	47										0.5±0.05	0.5±0.05	0.5±0.05
100 nF	49					0.3±0.05							
150 nF	52								0.5+0.05	0.5±0.05			
220 nF	54	0.3±0.03	0.3±0.03	0.3±0.03					0.5±0.05	0.5±0.05			
330 nF	56												
470 nF	58	0.3±0.03	0.3±0.03								0.5±0.05	0.5±0.05	0.5±0.05
680 nF	61												
1.0 μF	63	0.3±0.05	0.3±0.05								0.5±0.05	0.5±0.05	
2.2 µF	67										0.5±0.15		
4.7 µF	72							0.5±0.15	0.5±0.15	0.5±0.15			
10 μF	76							0.5±0.20	0.5±0.20				

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

CAPACITANCE RANGE & THICKNESS FOR X5R

—Table		om 0603 to	0805								
CAP.	Last 2- digit of	0603					0805				
	12NC	6.3 V	10 V	16 V	25 V	50V	6.3 V	10 V	16 V	25 V	50V
I0 nF	36										
15 nF	38										
22 nF	41										
33 nF	43										
47nF	45										
68 nF	47										
100 nF	49										
150 nF	52										
220 nF	54										
330 nF	56										
470 nF	58			00.01	0.8±0.1	0.8±0.1					
680 nF	61	0.8±0.1	0.8±0.1	0.8±0.1					0.85±0.1	1.25±0.2	1.25.0.2
Ι.0 μF	63						0.85±0.1	0.85±0.1	1.25±0.2		1.25±0.2
2.2 µF	67						1.25±0.2	1.25±0.2		0.85±0.1 1.25±0.2	
4.7 µF	72			0.8±0.15	0.8±0.15						
Ι0 μF	76	0.8±0.15		0.8±0.2	0.8±0.20				1.25±0.2	1.25±0.2	
22 µF	81	0.8±0.2	0.8±0.2					1.25±0.2			
47 µF	85						1.25±0.2				
Ι00 μF	89										

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

Surface Mount Multilayer Ceramic Capacitors | General Purpose & High Cap. | X5R | 4 V to 50 V

Į.	4 Sizes from		1812				1210					1013
CAP.	Last 2-digit of	1206	10.1	14.14	25.4	F0\ /	1210	10.1	1434	25.4	F0) /	1812
	12NC	6.3 V	10 V	16 V	25 V	50V	6.3 V	10 V	16 V	25 V	50V	6.3 V
I0 nF	36											
I5 nF	38											
22 nF	41											
33 nF	43											
47nF	45											
68 nF	47											
100 nF	49											
150 nF	52											
220 nF	54											
330 nF	56											
470 nF	58											
680 nF	61											
1.0 μF	63						1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	
2.2 µF	67	1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1	1.6±0.2					1.9±0.2	
4.7 µF	72						1.9±0.2	1.9±0.2	1.9±0.2	1.9±0.2		
ΙΟ μ F	76			1.6±0.2	1.6±0.2	1.6±0.3					2.5±0.2	
22 µF	81	1.6±0.2	1.6±0.2		1.6±0.3					2.5±0.3		
47 µF	85						2.5±0.2	2.5±0.2	2.5±0.2			2.5±0.2
100 μF	89	1.6±0.3					2.5±0.3	2.5±0.3	2.5±0.3			3.2±0.3

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

THICKNESS CLASSES AND PACKING QUANTITY

_	_			_
	Г~	h	_	_
_	11	1)		

YAGEO Phicomp

SIZE	THICKNESS	TAPE WIDTH —	Ø180 MM		Ø330 MM	/ 13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
_	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
_	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1200	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
_	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
_	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	I2 mm		3,000			
	1.25 ±0.2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
1000	1.5 ±0.1 mm	I2 mm		2,000			
	1.6 ±0.2 mm	I2 mm		2,000			
	2.0 ±0.2 mm	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	I2 mm		1,000			
	1.25 ±0.2 mm	I2 mm		1,000			
1812	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

ELECTRICAL CHARACTERISTICS

YAGEO Phicomp

X5R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

Temperature: 15 °C to 35 °C
Relative humidity: 25% to 75%
Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 6						
DESCRIPTION						VALUE
Capacitance range						10 nF to 100 μF
Capacitance tolerance						±10% and ±20%
Dissipation factor (D.F.)						
	6.3 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	1210 ≥ 22 μF		≤ 7%
			0201 ≥ 12 nF;	0402 ≥ 330 nF;	0603 ≥ 2.2 μF;	≤ 10%
			$0805 \ge 1 \mu F;$	1206 ≥ 22 μF;	1210 ≥ 47 μF	
			1206 ≥ 100 μF			≤ 15%
	10 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	0805 ≥ I μF;	1206 ≥ 6.8 μF	≤ 7%
			0201 ≥ 12 nF;	0402 ≥ 330 nF;	0603 ≥ I μF;	≤ 10%
			$0805 \ge 2.2 \ \mu F;$	1206 ≥ 10 µF;	1210 ≥ 10 μF	
	16 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	0603 ≥ 680 nF;	0805 ≥ I µF	≤ 7%
			0201≥100 nF;	0402 ≥ 330 nF;	0603 ≥ 2.2 μF;	≤ 10%
			$0805 \ge 4.7 \ \mu F;$	1206 ≥ 10 µF;	1210 ≥ 10 µF	
	25 V					≤ 3.5%
		Exception:	0402 ≥ 27 nF;	0603 ≥ 220 nF;	0805 ≥ 2.2 μF;	≤ 5%
			$1206 \ge 4.7 \mu F$;	1210 ≥ 10 µF		
			0402 ≥ 180 nF			≤ 7%
			0402 ≥ 470 nF;	0603 ≥ 2.2uF;	0805 ≥ 4.7 μF;	≤ 10%
			1206 ≥ 10 µF;	1210 ≥ 22µF		
	50V					≤ 3.5%
		Exception:	0402 ≥ 27nF;			≤ 5%
			0402 ≥ 180nF;			≤ 7%
			0402=470nF;	0603 ≥ 220nF;	0805 ≥ 470nF;	≤ 10%
			1206 ≥1uF;	1210 ≥ 1uF		

(temperature characteristic/coefficient):

Operating temperature range:

-55 °C to +85 °C

DESCRIPTION VALUE $R_{ins} \ge 10 \ G\Omega$ or $R_{ins} \times C_r \ge 500 \ (100/50)$ seconds whichever is Insulation resistance after I minute at U_r (DC) Rins \times Cr \ge 100(50) seconds: $0201 \ge 100 nF$, $0402 \ge 1 uF$, $0603 \ge 1 uF$, $0805 \ge 10 uF$, $1206 \ge 10 uF$ 10uF, $1210 \ge 10uF$, $1812 \ge 47uF$ Maximum capacitance change as a function of temperature ±15%

Surface Mount Multilayer Ceramic Capacitors | General Purpose & High Cap. | X5R | 4 V to 50 V

SOLDERING RECOMMENDATION

Table 7					
SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance (I)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing	Within specified tolerance
			f = 1 KHz for C \leq 10 μF , rated voltage > 6.3 V, measuring at voltage 1 V_{rms} at 20 °C	
			f = 1 KHz, for C \leq 10 μF , rated voltage \leq 6.3 V, measuring at voltage 0.5 V_{rms} at 20 $^{\circ}C$	
			f = 120 Hz for C > 10 μF_{r} measuring at voltage 0.5 V_{rms} at 20 $^{\circ}C$	
Dissipation Factor (D.F.) (1)		4.5.2	At 20 °C, 24 hrs after annealing	In accordance with specification
			f = 1 KHz for C \leq 10 μ F, rated voltage > 6.3 V, measuring at voltage 1 V _{rms} at 20 °C	
			f = 1 KHz, for C \leq 10 μF , rated voltage \leq 6.3 V, measuring at voltage 0.5 V_{rms} at 20 $^{\circ}C$	
			f = 120 Hz for C > 10 μF , measuring at voltage 0.5 V_{rms} at 20 $^{\circ} C$	
Insulation Resistance		4.5.3	At U_r (DC) for 1 minute	In accordance with specification

NOTE

 $I.\ The\ figure\ indicates\ typical\ inspection.\ Please\ refer\ to\ individual\ specifications.$

	4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. Step Temperature(°C)	<pre><general purpose="" series=""> Class1:</general></pre>
		Temperature(O)	
		a 25±2	Y5V: ∆ C/C: 22~-82%
		b Lower temperature±3°C	<high capacitance="" series=""></high>
		c 25±2	Class2: $X7R/X5R$: Δ C/C: $\pm 15\%$
			Y5V: ∆ C/C: 22~-82%
		e 25±2	
		(I) Class I	
		Temperature Coefficient shall be calculated from the formula as below	
		Temp, Coefficient = $\frac{\text{C2-C1}}{\text{C1x}\Delta\text{T}} \times 10^6 \text{ [ppm/°C]}$	
		C1: Capacitance at step c	
		C2: Capacitance at 125°C	
		ΔT: 100°C(=125°C-25°C)	
		(2) Class II	
		Capacitance Change shall be calculated from the formula as below	
		$\Delta C = \frac{C2 - C1}{C1} \times 100\%$	
		C1: Capacitance at step c	
		C2: Capacitance at step b or d	
	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: IN
IEC 60384- 21/22	4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
	-	Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm	<general purpose="" series=""> ΔC/C Class2: X5R: ±10%</general>
			<high capacitance="" series=""> ΔC/C Class2: X5R: ±10%</high>
		EC 60384- 4.8	e 25±2 (I) Class I Temperature Coefficient shall be calculated from the formula as below Temp, Coefficient = $\frac{C2 - C1}{C1x\Delta T} \times 10^6$ [ppm/°C] C1: Capacitance at step c C2: Capacitance at 125°C ΔΤ: 100°C(=125°C-25°C) (2) Class II Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - C1}{C1} \times 100\%$ C1: Capacitance at step c C2: Capacitance at step b or d 4.7 A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate EC 60384- 4.8 Mounting in accordance with IEC 60384-22 paragraph 4.3 Conditions: bending I mm at a rate of I mm/s, radius jig

Surface Mount Multilayer Ceramic Capacitors | General Purpose & High Cap. | X5R | 4 V to 50 V

TEST	TEST METH	OD	PROCEDURE	REQUIREMENTS
Resistance to Soldering Heat		4.9	Precondition: 150 +0/–10 °C for I hour, then keep for 24 ± I hours at room temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for I	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			minute Preheating: for size > 1206: 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	<general purpose="" series=""> ΔC/C Class2: X5R: ±10% <high capacitance="" series=""> ΔC/C Class2: X5R: ±10%</high></general>
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds. I. Temperature: 235±5°C / Dipping time: 2 ±0.5 s 2. Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm	The solder should cover over 95% of the critical area of each termination
Rapid Change of	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for 24 ±1 hours	No visual damage
Temperature	21122		at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	<general purpose="" series=""> ΔC/C Class2: X5R: ±15% <high capacitance="" series=""></high></general>
			Recovery time 24 ±2 hours	ΔC/C Class2: X5R: ±15% D.F. meet initial specified value R _{ins} meet initial specified value

Product specifical
Surface Mount Multilayer Ceramic Capacitors | General Purpose & High Cap. | X5R | 4 V to 50 V

YAGEO Phicomp

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
TEST Damp Heat with U _r Load	TEST METHOD 4.13	 PROCEDURE Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. I.0 U_r applied Recovery: Class 2: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met.	No visual damage after recovery $ < \text{General purpose series} > \\ \Delta C/C \\ \text{Class2:} \\ \text{X5R:} \pm 15\% \\ \text{D.F.} \\ \text{Class2:} \\ \text{X5R:} \leq 16\text{V:} \leq 7\% \\ & \geq 25\text{V:} \leq 5\% \\ \\ \text{R}_{\text{ins}} \\ \text{Class2:} \\ \text{X5R:} \geq 500 \text{ M}\Omega \text{ or } \\ \text{R}_{\text{ins}} \times C_r \geq 25\text{s} $
			whichever is less

Surface Mount Multilayer Ceramic Capacitors | General Purpose & High Cap. | XSR | 4 V to 50 V

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS		
Endurance	TEST METH IEC 60384- 21/22	4.14	1. Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: X5R: 85 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 x Ur for general product. Applied 1.5 x Ur for high cap. product. Applied 1.0 x Ur for high cap. product. 0201: 100nF/25V, 220nF/10V,/1uF/6.3V; 0402: 4.7uF/10V, 6.3V, 10uF/4V, 6.3V; 0603: 10uF/ 10V, 22uF/6.3V, 10V 1206: 10uF/ 50V 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met.	REQUIREMENTS No visual damage <general purpose="" series=""> $\Delta C/C$ Class2: X5R: $\pm 15\%$ D.F. Class2: X5R: $\leq 16V$: $\leq 7\%$ $\geq 25V$: $\leq 5\%$ R_{ins} Class2: X5R: $\geq 1,000 \text{ M}\Omega \text{ or R}_{ins} \times C_r \geq 50s$ whichever is less <high capacitance="" series=""> $\Delta C/C$ Class 2: X5R: $\pm 20\%$ D.F. Class 2: X5R: $2 \times 100\%$ Class 2: Rins $2 \times 100\%$ Whichever is less</high></general>	
Voltage Proof	oof		Specified stress voltage applied for 1 min Ur ≤ 50 V: series applied 2.5 Ur Charge/Discharge current less than 7.5mA	No breakdown or flashover	

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 19	Apr. 09, 2015	-	- Voltage updated
Version 18	Jul. 07, 2014	-	- Voltage updated
Version 17	Mar. 31, 2014	-	- Test condition updated
Version 16	Nov. 29, 2012	-	- Test condition updated
Version 15	Sep. 03, 2012	-	- Test condition updated
Version 14	May 16, 2012	-	- Product range updated
Version 13	May 02, 2012	-	- Product range updated
Version 12	Feb 10, 2012	-	- Product range updated
Version II	Oct 21, 2011	-	- Product range updated
Version 10	Jun 21, 2011	-	- Product range updated
Version 9	Mar 23, 2011	-	- Product range updated
Version 8	Jan 25, 2011	-	- Rated voltage of 0201 extend to 50V
Version 7	Jan 05, 2011	-	- Product range updated
Version 6	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated
Version 5	Apr 21, 2010	-	- The statement of "Halogen free" on the cover added
			- Dimension updated
Version 4	Jan 13, 2010	-	- Thickness updated
Version 3	Aug 17, 2009	-	- Dimension updated
Version 2	Jun 09, 2009	-	- Ordering code updated
Version I	May 15, 2009	-	- Product range updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X5R series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: UP- X5R_X7R_HighCaps_6.3-to-25V_II, UY-X5R_X7R_HighCaps_6.3-to- 25V_II
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NP0X5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen free compliant" added
			- Test method and procedure updated

