CCF YOCSEF

Shanghai

Big Data Beyond Hadoop Real-Time Analytical Processing (RTAP) Using Spark and Shark

Jason Dai

Engineering Director & Principal Engineer Intel Software and Services Group

Agenda

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

Big Data beyond Hadoop

Big Dta today

• The is in the room

Big Data beyond Hadoop

- Real-time analytical processing (RTAP)
 - Discover and explore data iteratively and interactively for real-time insights
- Advanced machine leaning and data mining (MLDM)
 - Graph-parallel predictive analytics (non-SQL)
- Distributed in-memory analytics
 - Exploit available main memory in the entire cluster for >100x speedup

RTAP: Real-Time Analytical Processing

Real-Time Analytical Processing (RTAP)

- Data ingested & processed in a streaming fashion
- Real-time data queried and presented in an online fashion
- Real-time and history data combined and mined interactively
- Predominantly RAM-based processing

Advanced, Graph-Parallel MLDM

Advanced machine learning and data mining (MLDM)

- Information retrieval (e.g., page rank)
- Recommendation engine (e.g., ALS)
- Social network analysis (e.g., clustering)
- Natural language processing (e.g., NER)
- ...

Graph parallel computations

- A sparse graph G(V, E)
- A vertex program P runs on each vertex in parallel & repeatedly
- Vertices interact along edges

Advanced, Graph-Parallel MLDM

Data-Parallel MapReduce

- Independent data
- Single-pass
- (Bulk) synchronous

MLDM Graph-Parallel Pregel/GraphLab

- (Sparse) data dependence
- Iterative
- Dynamically prioritized

10x~100x speedup

- Exploit graph structure to reduce computation & communications
- Efficient graph partition to balance computation/storage, and minimize network transfer

Distributed In-Memory Analytics

Memory is king

• 64GB/node mainstream, 192GB not uncommon, fast cheap NVRAM on the horizon

Hadoop inherently disk-based architecture

- Full table scan in Hive from RAM only ~40% speedup
- Read all the main-memory DB literatures ©

Distributed in-memory analytics

- Efficient compute integrated with columnar compression
- Reliable RAM-oriented storage layer across the cluster
- Holistic allocation of memory in the cluster
 - Inputs, intermediate results, temporary data, computation state, etc.

Agenda

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

Project Overview

Research & open source projects initiated by AMPLab in UC Berkeley

- Leveraging existing SW stacks (e.g., HDFS, Hive, etc.)
- Moving beyond Hadoop w/ BDAS
 - In-memory, real-time data analysis (Spark, Shark, Tachyon, etc.)
 - Advanced, graph-parallel machine leaning (GraphX, MLBase, etc.)
- · Intel China collaborating with AMPLab on joint open source development
- Active communities and early adopters evolving
 - Spark Apache incubator proposal @ https://wiki.apache.org/incubator/SparkProposal

https://amplab.cs.berkeley.edu/

http://shark.cs.berkelev.edu/

http://spark-project.org/

What is Spark?

A distributed, <u>in-memory</u>, <u>real-time</u> data processing framework

- A general, efficient, Dryad-like engine
 - A superset of MapReduce, compatible with Hadoop's storage APIs, but up to 40x faster than Hadoop
 - Avoid launching multiple chained MR jobs or storing intermediate results on HDFS

What is Spark?

A distributed, <u>in-memory</u>, <u>real-time</u> data processing framework

- Extremely low latency
 - Optimized for tasks as short as 100s of milliseconds
 - Speed of MPP and/or in-memory databases (i.e., interactive queries), but with finergrained fault recovery
- Efficient in-memory, real-time computing
 - Allow working set to be cached in memory, with graceful degradation under low memory
 - Efficient support for real-time and/or iterative data analysis
 - Interactive, streaming, iterative, graph-parallel, etc.

What is Shark?

A Hive-compatible data warehouse on Spark

- Compatible with existing Hive data, metastores, and queries (HiveQL, UDFs, etc.)
 - Shark/Spark specific optimizations (hash- and memory-based shuffle, data copartitioning, etc.)
 - Up to 40x faster than Hive, and support interactive queries
- Allow table to be cached in memory for online & iterative mining
- Integration with Spark to combine SQL and machine learning algorithms

Use Cases

Ad-hoc & interactive queries

- Allow close-to sub-second latency
 - E.g., similar to Dremel & Implala (but with fine-grained fault-tolerance)

In-memory, real-time analysis

- Load data (reliably) in distributed memory for online analysis
 - E.g., similar to PowerDrill

Iterative, graph-parallel analysis (esp. machine learning)

- Cache intermediate results in memory for iterative machine learning
- Graph-parallel computing (e.g., Pregrel and GraphLab models) on Spark

Use Cases

Stream processing

- Spark streaming
 - Run streaming computation as a series of very small, deterministic batch jobs
 - As frequent as ~1/2 second
 - Better fault tolerance, straggler handling & state consistency
 - Potentially combine batch, interactive & streaming workloads

Agenda

Big Data beyond Hadoop

Introduction to Spark and Shark

Case study: real-time analytical processing (RTAP)

RTAP Architecture

on building the RTAP framework using Spark & Shark

RTAP Use Cases

Online dashboard

• Pages/Ads/Videos/Items — time base aggregations — break-down by categories/demography

Top 10 Viewe	d Category	/vehicle/car	View Count
Name		View in last 30s	
Sports		500002	Spor Jeep
Jeep		430045	Fam
			30s Minute Hour

Interactive BI

- Combined with history & dimension data when necessary
 - E.g., top 100 viewed videos under each category in the last month

RTAP Framework using Spark & Shark

Real-Time Data Stream Processing

Logs streamed into Spark Streaming through Kafka in real-time

Raw click stream

0.6.38.68 - - BAF42487E0C7076CE576FAAB0E1852EC [14/Dec/2012 8:21:16 -0] "GET ?video=8745 HTTP/1.1" 101 1345 http://www.foo.com/bar/?ivideo=8745 "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)"

Incoming logs processed by Spark Streaming in small batches (e.g., 5 seconds)

- Compute multiple aggregations over logs received in the last window
- Join logs and history tables when necessary
- Compute page view in the last minute
 - E.g., www.foo.com/bar/?video=8745, www.foo.com/bar, www.foo.com, etc.
- Compute category view count in the last minute
 - E.g., join logs and the video table (assuming video 8745) belongs to /vehicle/car/sports) for /vehicle, /vehicle/car, /vehicle/car/sports, etc.

Plan to add the Streaming support directly in Shark

Real-Time Data Store and Query Engine

Currently output as cached RDD by Spark Streaming

Storage

- Require Spark Streaming embedded in the Shark server JVM
- Plan to move to Tachyon for better sharing and fault tolerance

Both real-time aggregations and history data queried through Shark

- History data loaded into memory for iterative mining
- Working on query optimizations & standard SQl-92 support

Online and Interactive Queries

Online analysis

- A lightweight UI frontending Shark for online dashboard
- Mostly time-based lightweight queries (filtering, ordering, TopN, aggregations, etc.) with sub-second latency

Interactive query / BI

- Ad-hoc, (more) complex SQL queries (with <5 seconds latency)
- Heavily denormalized to eliminate join as much as possible

Summary

BDAS: one stack to rule them all!

Intel China collaborating with UC Berkeley & web sites

Active communities and early adopters evolving (e.g., Spark Apache incubator proposal)

3 Call to action

Work with us on next-gen Big Data beyond Hadoop using Spark/Shark

2013英特尔®软件学院课程概览

2013英特尔®软件学院课程图

英特尔[®] 平台 并行程序设计 移动互联设备与 嵌入式系统

数据中心与云计算

英特尔® 平台技术

管理与软技能

高级 — 基于英特尔* 集成众核架构的编程和优化

基于超极本™ 和平板的 Windows* 8 应用开发 英特尔[®] Apache Hadoop^{*} 软件发行版的安装,运营 和管理

英特尔[®] 可视化 计算应用开发和调优 软件质量控制

软件产品测试

高级 - 针对多核微架构的优化

基于英特尔[®] 平台的 Android^{*} 应用开发 Hadoop* 软件发行版的大数据应用开发

基于英特尔® Apache

针对英特尔[®] 核芯显 卡优化3D游戏客户端 性能 软件项目管理基础

中级 一 使用工具进行并行程序优化设计

HTML5 移动应用开发

基于英特尔®平台的企业云计算架构设计

英特尔[®] 功耗 优化策略和工具 建立战略合作伙伴

基于英特尔®平台的分布式存储架构设计与调优

应用调试

销售基础

高性能计算-集群搭建和

基丁

演讲与沟通技巧

初级 — 并行编程基础

基于英特尔® 凌动™ 平台的嵌入式开发应用

基于英特尔® 平台的 感知计算应用开发

问题解决技巧

英特尔计划于9月举办大数据师资研讨活动,有兴趣参与的老师请联系: hai.shen@intel.com

