Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	, \ \ \

[5252]-536

S.E. (E&TC/Electronics) (Second Semester) EXAMINATION, 2017 INTEGRATED CIRCUITS (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right side indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data if necessary.
- 1. (a) Justify, how constant current source is used in place of $R_{\rm E}$ to improve CMRR for differential amplifier. [6]
 - (b) Draw neat circuit diagram of three Op-amp Instrumentation amplifier and derive its output equation. [6]

Or

2. (a) An emitter biased Dual input balanced output differential amplifier has the following specifications:

$$\begin{split} V_{CC} &=~\pm~10~V,~R_{C1} =~R_{C2} =~3.7~k\Omega~and~R_{E} =~4.2~k\Omega,\\ \beta_{ac} &=~\beta_{dc} =~100~\&~V_{BE},~=~0.7~V.~Calculate~:~~[6] \end{split}$$

- (1) Voltage Gain (Ad)
- (2) Input Resistance (Ri)
- (3) Output Resistance (Ro).

(<i>b</i>)	Draw the circuit diagram of Practical differentiator along with
	frequency response and explain its operation. [6]
3. (a)	Explain with a neat circuit diagram working of inverting
	precession full wave rectifier with its waveform. [6]
(<i>b</i>)	With neat circuit diagram, explain voltage to current converter
	with grounded load. [6]
	Or
4. (a)	Draw and explain circuit of Sample and Hold circuit using
	Op-amp with its waveform. [6]
(<i>b</i>)	The output of 8-bit ADC with all 1's when $V_i = 5$ V, find
	its:
	(1) Resolution
	(2) Digital output code, If $V_i = 1.7 \text{ V}$. [6]
5. (a)	Define the term "Lock range", "Capture range" and "Free
	running frequency" and explain transfer characteristics of PLL. [7]
(<i>b</i>)	Design a first order low pass filter with higher cut-off frequency
(0)	
	of 1 kHz with pass gain '2'. Draw the designed circuit diagram.
	Assume C = 0.1 μ_f and R _f = 10 k Ω . [6]
	Or
6. (a)	With the help of neat circuit diagram explain the operation
	of Wien bridge oscillator. [6]
[5252]-530	2

Design a wide bandpass filter having $f_{\scriptscriptstyle L}$ = 400 Hz, $f_{\scriptscriptstyle H}$ = 2 kHz (*b*) and pass band 4. Also calculate the bandwidth. [7]

Assume : C' = 0.01 μf and C = 0.05 μf $R_1' = 10 \text{ k}\Omega$ and $R_1 = 10 \text{ k}\Omega$

Calculate output frequency f_0 , Lock range Δf_L , Capture range 7. (a) $^{\prime}\Delta f_{c}^{\prime}$ of a PLL, If $R_{_{
m T}}$ = 1 k Ω , $C_{_{
m T}}$ = 0.1 μf , filter capacitor C = 1 μ f and internal resistance = 3.6 k Ω . Assume \pm V = 10V.

[6]

- Design all pass filters with a phase shift of -135°. At a (*b*) frequency of 2 kHz at the output. Draw detailed designed circuit diagram. Assume $\Omega = 0.1 \, \mu f$ and $R_1 = 10 \, k\Omega$. [7]
- Write short notes on application of PLL: 8. (a) [6]
 - Frequency Multiplier (1)
 - FM Demodulator. (2)
 - Design a first order high pass filter with higher cut-off (*b*) frequency of 10 kHz with pass gain '1.5'. Draw the designed $R_1 = \frac{1}{2}$ circuit diagram. Assume $C = 0.01 \mu f$ and $R_1 = 10 k\Omega$. [7]