Slides originally taken from http://research.microsoft.com/en-us/um/people/cmbishop/prml/ and modified by Pushpendre Rastogi for cs475-2017

GRAPHICAL MODELS

Approaches

But you can still optimize this function!!

The goal in Machine Learning is to minimize True Risk

- True Risk = The Expected Loss = $E_{p(x,y)}[l(y, f_{\theta}(x))]$ True Risk is a function that you can not observe.

Approach 1) ERM algo: To minimize (TR) you can minimize Empirical Risk (ER) by finding an optimal function from a family of functions.

- **If** data is **plentiful Then** minimization of ER \Rightarrow minimization of TR
- Uses data to fit a function

Approach 2) Probabilistic Approach: Use data to estimate $\hat{p}_{\theta}(x,y)$ that approximates p(x,y), then choose

$$f_{\theta}(x) = \arg\min_{\hat{y} \in \mathcal{Y}} E_{\hat{p}_{\theta}(y|x)} \left[l(y, \hat{y}) \right]$$

- Search for optimal $\hat{p}_{\theta}(y; x)$ or $\hat{p}_{\theta}(y, x)$ from some family of distributions
 - Graphical Models are a language for specifying a family of distributions.
 - Estimating $\hat{p}_{\theta}(x,y)$ requires Estimation Methods
 - Given $\hat{p}_{\theta}(x,y)$ we must perform inference to minimize Risk

Summary

- We can estimate the distribution of data from samples by searching in a family of distributions.
- Graphical Models are a high level language for specifying "families of distributions"
- Estimating the optimal parameters from a model family is *Parameter Estimation*.
- Using a distribution to make predictions/decisions is called *Inference*.

Bayesian Networks

 Definition: A BN is a Directed Acyclic Graph (DAG)

of Random Variables whose joint probability $p(a,b,c) \stackrel{\text{ractorizes}}{=} p(c|a,b) p(a,b) \stackrel{\text{to}}{=} p(c|a,b) p(b|a) p(a)$

 x_4

Bayesian Networks (Example)

$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

$$x_3$$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

Bayesian Networks (More Concrete Example)

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

Example: Naïve Bayes as a BN

 $p(x_1, x_2, x_3, x_4, y) = p(x_1 | y) p(x_2 | y) p(x_3 | y) p(x_4 | y) p(y)$

Example: Naïve Bayes as a BN

 $p(x_1, x_2, x_3, x_4, y) = p(x_1 | y) p(x_2 | y) p(x_3 | y) p(x_4 | y) p(y)$

Bayesian Curve Fitting (1)

Model Summary

x has no distribution.y is predicted value.t is the true value.w has a distribution.

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w}).$$

Know Your Jargon Generative vs Discriminative vs Bayesian

- Bayesian Model Puts a probability distribution on the parameters of the model. May or may not be generative.
- Generative Model A
 probabilistic model that is
 capable of generating the data
 that it is modelling.
- Discriminative Model A model that specifies the distribution of output variables as a function of the input variables. May or may not be Bayesian.

Bayesian but not Generative

<u>Naïve Bayes – Generative (but not necessarily</u> Bayesian)

Parameterized Conditional

Distributions

(Discriminative – May or May not be Bayesian)

If $x_1, ..., x_M$ are discrete K-state variables, $p(y = 1 \mid x_1, ..., x_M)$ in general has $O(K^M)$ parameters. OTOH, The linear parameterized form requires only M+1 parameters

$$p(y = 1 | x_1, \dots, x_M) = \sigma\left(w_0 + \sum_{i=1}^M w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x})$$

Regression) vs Generative (Naïve Bayes): How to

On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes, A. Y. Ng and M. I. Jordan, NIPS (2002) *tl;dr*

- 1. Big data Choose logistic regression
- 2. Small data NB can outperform logistic regression.

Semantics of Graphical Models – Algorithms for Graphical Models

Bayesian Networks – DAGs of RVs – are a language for specifying sets of probability distributions.

- What properties do these sets of distributions have? Conditional Independence, D-Separation, Markov Blanket
- What other specifications exist for specifying sets of probability distributions? MRF, Factor Graphs
 - Can BN specify all possible joint distributions? No
 - Is there some formalism that is more expressive? Yes
 How to convert a BN to this general form?

We saw how to do interence in a specific BN.

• ∃ general algorithm for inference in arbitrary BN and Factor Graphs? Yes, It's called Belief Propagation

Summary

- There are 3 dominant languages for designing probability distributions over interdependent RVs.
 - Bayesian Networks
 - Markov Random Fields
 - Factor Graph (General, Contains the above.)
- Together these methods of specifying probability distributions are called *Probabilistic Graphical Models*
- Belief Propagation (BP) is a general algorithm for doing inference in instances of a useful subset of PGMs.
 - Inference means finding the probability of a event.
- To understand BP and PGMs we need to know about
 - Conditional Independence
 - D-Separation
 - Markov Blankets

Conditional Independence

• If a is independent of b given c, then

$$p(a|b,c) = p(a|c)$$

Equivalently
$$\begin{array}{ccc} p(a,b|c) & = & p(a|b,c)p(b|c) \\ & = & p(a|c)p(b|c) \end{array}$$

Notation (

$$a \perp \!\!\!\perp b \mid c$$

Conditional Independence: Example 1

Conditional Independence:

Fxample 2
Note: this is the opposite of $a \perp \!\!\! \perp b \mid \emptyset$ Example 1, with c observed.

$$p(a,b,c) = p(a)p(b)p(c|a,b)$$

 $p(a,b) = p(a)p(b)$

Conditional Independence: Example 2 Inferring whether a car is out of fuel

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

p(F=1) = 0.9

$$p(F=0) = 0.1$$

B = Battery (0=flat, 1=fully charged)

F = Fuel Tank (0=empty, 1=full)

and hence G = Fuel Gauge Reading(0=empty, 1=full)

"Am I out of fuel?"

$$p(F = 0|G = 0) = \frac{p(G = 0|F = 0)p(F = 0)}{p(G = 0)}$$

\$\sim 0.257\$

Probability of an empty tank increased by observing G = 0

"Am I out of fuel?"

$$p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0,1\}} p(G = 0|B = 0, F)p(F)}$$

$$\simeq 0.111$$

Probability of an empty tank reduced by observing B=0. This referred to as "explaining away".

More generally, in a directed PGM, a child or any other ancestor of a child can influence the computation of the probability of a random variable.

Conditional Independence: Example 3

$$p(a,b,c) = p(a)p(c|a)p(b|c)$$
$$p(a,b) = p(a)\sum_{c} p(c|a)p(b|c) = p(a)p(b|a)$$

D-separation (In Directed PGMs - aka

- Let A, B, and C be disjoint subsets of nodes in a directed graph.
- A path from A to B is blocked by C, if it passes through a (vertex, edge pair) combination blocked by C.
- A vertex, V, edge pair (e_1, e_2) is blocked by C, if, either
 - a) $V \in C \ \ \text{and} \ (e_{\text{1}} \,, \, e_{\text{2}})$ meet either head-to-tail, tail-to-head, or tail-to-tail at V, OR
 - b) (e_1, e_2) meet head-to-head at V and $(V \notin C \text{ and any descendant}(V) \notin C)$
- \square Homework: Prove that if C blocks $A \rightarrow B$ then C blocks $B \rightarrow A$

D-separation (In Directed PGMs - aka

- Let A, B, and C be disjoint subsets of nodes in a directed graph.
- A path from A to B is blocked by C, if it passes through a (vertex, edge pair) combination blocked by C.
- \bullet A vertex, V, edge pair $(e_{\text{1}} \ , \, e_{\text{2}})$ is blocked by C, if, either
 - a) $V \subseteq C \ \ \text{and} \ (e_{\text{1}} \,,\, e_{\text{2}})$ meet either head-to-tail, tail-to-head, or tail-to-tail at V, OR
 - $\begin{array}{l} b)\;(e_{\text{1}}\,,\,e_{\text{2}})\;\text{meet head-to-head at}\;V\\ \\ \text{and}\;\big(V\notin C\;\text{and any descendant}(V)\notin C\;\big) \end{array}$
- \square Homework: Prove that if C blocks $A \rightarrow B$ then C blocks $B \rightarrow A$
- If all paths from A to B are blocked, A is said to be d-separated from B by C. If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp\!\!\!\perp B \mid C$

The Markov Blanket of a random variable

Let X be the set of all random variables.

Markov Blanket of variable x_i is the smallest subset $S \subseteq \mathcal{X}$ such that $x_i \perp \!\!\! \perp (\mathcal{X} \setminus S) \mid S$

The Markov Blanket of a random variable in a directed graphical model

Let $\mathcal X$ be the set of all random variables in a directed PGM $\mathcal G$. Markov Blanket of x_i =

 $\label{eq:Brute Force Proof:} Factors \\ independent of X_i cancel between \\ numerator and denominator.$

Simpler Proof: x_i is D-separated from every other variable given its children, Parents, Co-Parents.

Markov Random Field

Definition: A MRF is an undirected graph of random variables whose joint probability factorizes according to the *maximal cliques* in the graph.

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$$

where $\psi_c(x_c)$ is the potential over clique C and Z is the normalization constant

$$Z = \sum_{x} \prod_{C} \psi_{C}(x_{C})$$

D-Separation and Markov Blanket in Markov Random Fields

- A path from A to B is blocked by C, if it passes through a vertex that lies in C
- A is D-Separated from B if all paths between A and B are blocked by C
- The Markov Blanket of variable x_i is simply its set of neighbors.

