$\mathcal{P}\mathbf{1}$

P1.a
$$\forall x \in \mathbb{R}, (x^2 < 73 \Rightarrow 0 < 1)$$

Since 0 is always less than 1, we are done by trivial proof.

$$\mathcal{P}1.\mathbf{b} \ \forall x \in \mathbb{Z}, \left(-x^2 > 0 \Rightarrow x = 5\right)$$

Multiplying both sides of the inequality and flipping the direction of the sign yields $x^2 < 0$. This is never true for any real x, so we are done by vacuous proof.

\mathcal{P}^{2}

$$\mathcal{P}$$
2.a $x \equiv 1 \pmod{2} \Rightarrow 7x - 5 \equiv 0 \pmod{2}$

Since x is odd, it can be written as x=2k+1 for some $k \in \mathbb{Z}$. Substituting,

$$7x - 5 = 7(2k + 1) - 5$$
$$= 14k + 2$$
$$= 2(7k + 1)$$

A number is even if it can be written in the form 2k' for some $k' \in \mathbb{Z}$. This is true for 7x - 5 if x is odd and k' = 7k + 1.

$$\mathcal{P}$$
2.b $a, c \equiv 1 \pmod{2} \Rightarrow ab + bc \equiv 0 \pmod{2}$

We can factor the expression into (a+c)b. Since a and c are odd, we can write them as a=2k+1, b=2k'+1 for $k,k'\in\mathbb{Z}$. Substituting and simplifying, we get b(2k+2k'+2)=2b(k+k'+1). Defining k'':=b(k+k'+1), we see that the entire expression can be written as 2k'', proving the quantity to be even.

$$\mathcal{P}$$
2.c $\exists x, y \in \mathbb{Z} : \forall k \in \mathbb{Z}, 2k+1 = x^2 - y^2$

We prove this for an arbitrary odd number k. Since k is odd, we can write k=2x+1 for some $x\in\mathbb{Z}$. Fix y such that y=x+1. We have

$$y^{2} - x^{2} = (y - x)(y + x)$$

= $(2x + 1)$
- k

P3

$$\mathcal{P}$$
3.a $x \equiv 1 \pmod{2} \iff x^3 \equiv 1 \pmod{2}$

We first prove that if x is odd then x^3 is odd. If x is odd then we can write it as 2k+1 for some $k \in \mathbb{Z}$. We have

$$x^{3} = (2k+1)^{3}$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 1$$

We see that $x^3 = 2k' + 1$ for $k' = 4k^3 + 6k^2 + 3k$, making it even.

We then prove that if x^3 is odd then x is odd. Seeing this to be cumbersome, we prove the contrapositive: if x is even then x^3 is even. If x is even, then x=2n for some $n \in \mathbb{Z}$. Then $x^3=8n^3=2\left(4n^3\right)$. We see that x^3 can be written in the form of 2n', where $n=4n^3$, making it even. Using the contrapositive statement, which we have proven to be true, we can then see that if x^3 is odd then x is also odd.

Putting these two arguments together, we see that x is odd if and only if x^3 is odd.

$$\mathcal{P}3.\mathbf{b} \ 4 \mid x^2 \Rightarrow x \equiv 1 \pmod{2}$$

We prove the contrapositive: if x is even then 4 divides x^2 . If x is even it can be written as x=2k for some $k' \in \mathbb{Z}$. Then $x^2=4k'^2$. Since x^2 can be written as $x^2=4k$ for $k=k'^2$, 4 divides x^2 .

 $\mathcal{P}4$

74.a No Largest Integer

We proceed by contradiction. Suppose that there is an $x \in \mathbb{Z}$ that is the largest integer. However, the integers are closed under addition, so there exists a y = x + 1 for all x. Moreover, y > x, so x isn't the largest integer, forming a contradiction.

P4.b No Smallest Positive Rational

We proceed by contradiction. Suppose $x \in \mathbb{Q}$ is the smallest rational number. Since x is rational, it can be written as $\frac{p}{q}$ for $p,q \in \mathbb{Z}$. Conside the rational number $y:=\frac{x}{2}=\frac{p}{2q}$. Clearly y < x, forming a contradiction.

P4.c Product of Two Irrationals is Irrational

We proceed by contradiction. Assume that the product of two irrational numbers is irrational. Consider the irrational numbers $x:=\pi$ and $y:=\frac{1}{\pi}$. Their product xy is 1, which is a rational number, forming a contradiction.

P4.d Sum of Rational and Irrational is Irrational

We proceed by contradiction. Assume that the sum of a rational number and an irrational number is rational. Choose $x \in \mathbb{R} \setminus \mathbb{Q}, y \in \mathbb{Q}$. Define $z := x + y \in \mathbb{Q}$. Since y and z are rational, we can write them as $x = \frac{p_x}{q_x}, z = \frac{p_z}{q_z}$

for some $p_x, q_x, p_z, q_z \in \mathbb{Z}$. We have

$$z = x + y$$

$$x = z - y$$

$$= \frac{p_z}{q_z} - \frac{p_x}{q_x}$$

$$= \frac{p_z q_x - p_x q_z}{q_z q_x}$$

$$= \frac{p'}{q'}$$

This implies that x is a rational number, since it can be written in the form of $\frac{p'}{q'}$, where $p', q' \in \mathbb{Z}$. This is a contradiction, so the sum must then be irrational.

P5

Note: we define the absolute value |x| as follows:

$$|x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases}$$

$\mathcal{P}_{5.a}$ Triangle Inequality

Using the definition of absolute value (defined above), we have

$$-|x| \le x \le |x|$$
$$-|y| \le y \le |y|$$

Adding these inequalities up, we have

$$-(|x| + |y|) \le x + y \le (|x| + |y|)$$
$$|x + y| \le |x| + |y|$$

75.b Reverse Triangle Inequality

We use the substitution and then use the triangle inequality.

$$\begin{aligned} ||x| - |y|| &= ||x - y + y| - |y|| \\ &\leq ||x - y| + |y| - |y|| \\ &= ||x - y|| \\ &= |x - y| \end{aligned}$$