1 Постановка дифференциальной задачи уравнения равновесия

Для решения общей задачи по определению напряжений и деформаций в деформируемом теле необходимо использовать следующие уравнения равновесия:

$$\frac{\partial \sigma_{ji}}{\partial x_j} = 0 \tag{1}$$

с силовыми граничными условиями

$$r = r_1 \qquad \sigma_{ji} n_j = -\sigma_{rr} = p_1 \tag{2}$$

$$r = r_2 \qquad \sigma_{ji} n_j = \sigma_{rr} = p_2 \tag{3}$$

После дискретизации задачи с помощью МКЭ, перейдём от задачи (1) к системе линейных уравнений

$$\mathbf{K}\mathbf{u} = \mathbf{f}, \qquad u \in \Omega \tag{4}$$

где ${\bf K}$ - матрица жёсткости, ${\bf u}$ - вектор перемещений, ${\bf f}$ - вектор правой части, $\Omega = [r_1, r_2].$

1.1 Метод декомпозиции области в дифференциальной постановке

Разбиваем область Ω на N пересекающихся подобластей: $\Omega = \bigcup_{i=1}^N \Omega_i$.

Решаем задачу 4 в Ω_i . Обозначим начальное линейное приближение как u^0 .

Считаем, что u^n известно. Переход $u^n \to u^{n+1}$ можно записать засчёт следующего итерационного процесса:

$$\frac{\partial \sigma_{ji}}{\partial x_j} = 0 \qquad x \in \Omega_1$$

$$\sigma_{rr} = p_1 \qquad x \in \partial \Omega_1 \cap \partial \Omega$$

$$u^{n + \frac{1}{N}} = u^n \qquad x \in \partial \Omega_1 \cap \Omega_2$$

$$\frac{\partial \sigma_{ji}}{\partial x_j} = 0 \qquad x \in \Omega_k \quad k = 2, \dots, N - 1$$

$$u^{n + \frac{k}{N}} = u^{n + \frac{k-1}{N}} \qquad x \in \partial \Omega_k \cap \Omega_{k-1}$$

$$u^{n + \frac{1}{N}} = u^n \qquad x \in \partial \Omega_k \cap \Omega_{k+1}$$

$$\frac{\partial \sigma_{ji}}{\partial x_j} = 0 \qquad x \in \Omega_N$$

$$u^{n + \frac{k}{N}} = u^{n + \frac{k-1}{N}} \qquad x \in \partial \Omega_N \cap \Omega_{N-1}$$

$$\sigma_{rr} = p_N \qquad x \in \partial \Omega_N \cap \partial \Omega$$

Для внешних подобластей Ω_1 и Ω_N решается задача, для которой с одной стороны стоит условие Неймана, с другой стороны - условие Дирихле. Для всех внутренних подобластей $\Omega_2 - \Omega_{N-1}$ с двух сторон стоят условия Дирихле.

От исходной дифференциальной постановки (1) можно перейти к слабой постановке задачи и, применяя метод Бубнова - Галёркина, получаем, что на каждой і-ой итерации в Ω_j нужно решить следующую систему линенйных уравнений:

$$K_{\Omega_j} u_j^i = f_j^i \qquad j = 1, \dots, N \tag{5}$$

2 Результаты решения задачи для упругой трубы. Одномерный случай.

Рассмотрим случай, когда внутреннее давление $p_a=20~\mathrm{M}\Pi \mathrm{a}$, внешнее давление $p_b=0~\mathrm{M}\Pi \mathrm{a}$. Тогда аналитическое радиальное перемещение считается по формуле :

$$u = \frac{(1-2\nu)(1+\nu)}{E} \frac{p_a a^2}{b^2 - a^2} r + \frac{1+\nu}{E} \frac{a^2 b^2}{r} \frac{p_a}{b^2 - a^2}.$$
 (6)

Вычисление аналитического радиального напряжения производится по формуле:

$$\sigma_{rr} = \frac{p_a a^2}{b^2 - a^2} - \frac{a^2 b^2}{r^2} \frac{p_a}{b^2 - a^2} \tag{7}$$

Вычисление аналитического окружного напряжения производится по формуле:

$$\sigma_{\varphi\varphi} = \frac{p_a a^2}{b^2 - a^2} + \frac{a^2 b^2}{r^2} \frac{p_a}{b^2 - a^2} \tag{8}$$

Для решения поставленной задачи примем, что материал цилиндра имеет следующие параметры: модуль Юнга E-70000 МПА и коэффициент Пуассона $\nu=0.34$. Внутренний радиус цилиндра a-10 мм, внешний радиус цилиндра b-20 мм.

Расчёт относительной погрешности произведён по формуле для нормы, являющейся конечномерным аналогам следующих пространства L_2 :

$$\sqrt{\sum_{i=1}^{n} \frac{(u_i^{an} - u_i^{me})^2}{(u_i^{an})^2} \frac{s_i}{\sum s_i}}$$
 (9)

где u^{an} - аналитическое решение, u^{me} - численное решение, s_i - полусумма двух шагов $\frac{h_i+h_{i+1}}{2}, \sum s_i$ - сумма всех шагов на всём отрезке.

Коэффициент относительного захлёста (Overlapping coefficient) - 0.40. Критерии останова - 10^{-5} , 10^{-6} .

Критерий				
останова ε Кол-во подобластей	10^{-3}	10^{-4}	10^{-5}	10^{-6}
2	59	92	124	157
4	205	387	576	765
10	609	1691	3062	4473

Проведена серия расчётов на сетке N=100. Результаты расчётов представлены ниже.

Рис. 1: Зависимость радиальных напряжений от радиуса

Рис. 2: Зависимость окружных напряжений от радиуса

Таблица 1: Относительная радиальная погрешность , пространство L_2 , критерий останова - 1e-5

Сетка Кол-во подобластей	50	100	200
1	2.72×10^{-2}	1.36×10^{-2}	6.82×10^{-3}
2	2.72×10^{-2}	1.36×10^{-2}	6.81×10^{-3}
4	2.71×10^{-2}	1.35×10^{-2}	6.76×10^{-3}
10	2.66×10^{-2}	1.31×10^{-2}	6.19×10^{-3}

Таблица 2: Относительная окружная погрешность, пространство L_2 , критерий останова - 1e-5

Сетка Кол-во подобластей	50	100	200
1		5.69×10^{-3}	
2	1.15×10^{-2}	5.78×10^{-3}	
4	1.25×10^{-2}	6.34×10^{-3}	3.49×10^{-3}
10	1.63×10^{-2}	1.06×10^{-2}	7.89×10^{-3}

Таблица 3: Относительная радиальная погрешность, пространство L_2 , критерий останова - 1e-6

Сетка			
Кол-во	50	100	200
подобластей			
1	2.72×10^{-2}	1.36×10^{-2}	6.82×10^{-3}
2	_	1.36×10^{-2}	
4	2.72×10^{-2}	1.36×10^{-2}	6.81×10^{-3}
10	1.72×10^{-2}	1.35×10^{-2}	6.81×10^{-3}

Таблица 4: Относительная окружная погрешность, пространство L_2 , критерий останова - 1e-6

Сетка Кол-во подобластей	50	100	200
1	1.14×10^{-2}	5.69×10^{-3}	2.83×10^{-3}
2	1.14×10^{-2}	5.71×10^{-3}	2.84×10^{-3}
4	1.15×10^{-2}	5.75×10^{-3}	2.91×10^{-3}
10	1.19×10^{-2}	6.18×10^{-3}	3.08×10^{-3}