Señales y Sistemas

Problemas Tema 2: Sistemas Lineales e Invariantes en el Tiempo

Francisco Javier Mercader Martínez

1) Obtenga la convolución de las señales $x(t) = \prod \left(\frac{t - \frac{T}{2}}{T}\right)$ y $h(t) = t \prod \left(\frac{t - T}{2T}\right)$.

La convolución de las funciones x(t) y h(t) se define como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Dado que x(t) y h(t) son funciones de duración finita, la integral se reduce al intervalo donde ambas funciones se superponen.

Paso a paso:

• Intervalo de integración:

La convolución será no nula solo en el intervalo donde las funciones se superponen. Dado que x(t) está definido en [0,T] y h(t) en [0,2T], la convolución y(t) será no nula en el intervalo [0,3T].

• Evaluación de la integral:

Para cada t en [0,3T], evaluamos la integral:

$$y(t) = \int_0^T \prod \left(\frac{\tau - \frac{T}{2}}{T}\right) (t - \tau) \prod \left(\frac{t - \tau - T}{2T}\right) d\tau.$$

Simplificando las funciones rectangulares, la integral se reduce a:

$$y(t) = \int_{\max(0, t-2T)}^{\min(T, t)} (t - \tau) d\tau.$$

• Cálculo de la integral:

Evaluamos la integral en los intervalos donde las funciones se superponen:

• Para $0 \le t < T$, la integral es:

$$y(t) = \int_0^t (t - \tau) d\tau = \left[t\tau - \frac{\tau^2}{2} \right]_0^t = \frac{t^2}{2}$$

• Para $T \leq t < 2T$, la integral es:

$$y(t) = \int_0^T (t - \tau) d\tau = \left[t\tau - \frac{\tau^2}{2} \right]_0^T = tT - \frac{T^2}{2}$$

• Para $2T \le t < 3T$, la integral es:

$$y(t) = \int_{t-2T}^{T} (t-\tau) d\tau = \left[t\tau - \frac{\tau^2}{2} \right]_{t-2T}^{T} = \frac{(3T-t)^2}{2}$$

La convolución y(t) es:

$$y(t) = \begin{cases} \frac{t^2}{2}, & 0 \le t < T \\ tT - \frac{T^2}{2}, & T \le t < 2T \\ \frac{(2T - t)^2}{2}, & 2T \le t \le 3T \\ 0, & \text{en otro caso} \end{cases}$$

$$\textbf{2)} \ \ \text{Calcule} \ \left(\frac{t}{T_1}+1\right) \prod \left(\frac{t-\frac{T_1}{2}}{T_1}\right) * \prod \left(\frac{t-\frac{T_2}{2}}{T_2}\right), \ \text{con} \ T_2 > T_1.$$

Paso 1: Comprender las señales

• Primera señal:

$$x(t) = \left(\frac{t}{T_1} + 1\right) \prod \left(\frac{t - \frac{T_1}{2}}{T_1}\right)$$

- La función $\prod \left(\frac{t \frac{T_1}{2}}{T_1}\right)$ es una función rectangular centrada en $t = \frac{T_1}{2}$ con un ancho de T_1 . Esto significa que \prod es igual a 1 en el intervalo $[0, T_1]$ y 0 fuera de este intervalo.
- Por lo tanto, x(t) es una función lineal definida únicamente $[0, T_1]$, con:

$$x(t) = \frac{t}{T_1} + 1$$
, para $t \in [0, T_1]$.

• Segunda señal:

$$h(t) = \prod \left(\frac{t - \frac{T_2}{2}}{T_2} \right).$$

• Esta es una función rectangular centrada en $t = \frac{T_2}{2}$ con un ancho de T_2 . Es igual a 1 en el intervalo $[0, T_2]$ y 0 fuera de este intervalo.

$$h(t) = \prod \left(\frac{t - \frac{T_2}{2}}{T_2} \right)$$

• Convolución de las señales

La convolución de x(t) y h(t) se define como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau.$$

Dado que x(t) está definido en $[0, T_1]$ y h(t) en $[0, T_2]$, la convolución será no nula únicamente en el intervalo donde ambas funciones se superponen. Esto ocurre en el intervalo $[0, T_1 + T_2]$.

Intervalo de integración:

• Para cada $t \in [0, T_1 + T_2]$, la integral se reduce a:

$$y(t) = \int_{\max(0, t - T_2)}^{\min(T_1, t)} x(\tau) d\tau,$$

ya que $h(t-\tau)$ es no nula cuando $t-\tau \in [0,T_2]$, es decir, $\tau \in [t-T_2,t]$, y $x(\tau)$ es no nula solo cuando $\tau \in (0,T_1)$.

Paso 2: Evaluar la integral

En el interalo de integración, $x(\tau) = \frac{\tau}{T_1} + 1$. Sustituyendo esto en la integral:

$$y(t) = \int_{\max(0, t - T_2)}^{\min(T_1, t)} \left(\frac{\tau}{T_1} + 1\right) d\tau = \int_{\max(0, t - T_2)}^{\min(T_1, t)} \frac{\tau}{T_1} d\tau + \int_{\max(0, t - T_2)}^{\min(T_1, t)} 1 d\tau$$

$$= \frac{1}{T_1} \left(\frac{\min(T_1, t)^2}{2} - \frac{\max(0, t - T_2)^2}{2}\right) + \min(T_1, t) - \max(0, t - T_2)$$

$$\bullet \int_{\max(0,t-T_2)}^{\min(T_1,t)} \frac{\tau}{T_1} d\tau = \frac{1}{T_1} \int_{\max(0,t-T_2)}^{\min(T_1,t)} \tau d\tau = \frac{1}{T_1} \left[\frac{\tau^2}{2} \right]_{\max(0,t-T_2)}^{\min(T_1,t)} = \frac{1}{T_1} \left(\frac{\min(T_1,t)^2}{2} - \frac{\max(0,t-T_2)^2}{2} \right).$$

•
$$\int_{\max(0,t-T_2)}^{\min(T_1,t)} 1 d\tau = [\tau]_{\max(0,t-T_2)}^{\min(T_1,t)} = \min(T_1,t) - \max(0,t-T_2)$$

3) Calcule la convolución de $x(t) = e^{2t}u(-t)$ con h(t) = u(t-3).

La convolució se define como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Análisis de las señales

- $x(t) = e^{2t}u(-t)$ es una señal exponencial que existe solo para t < 0.
- h(t) = u(t-3) es un escalón unitario desplazado 3 unidades a la derecha.

3

Determinación de los límites de integración

Para que la integral no sea nula, necesitamos que:

- $\tau < 0$ (debido a $u(-\tau)$ en $x(\tau)$)
- $t-\tau > 3$ (debido a $u(t-\tau-3)$ en $h(t-\tau)$)

De $t - \tau > 3$, obtenemos: $\tau < t - 3$. Por tanto, los límites de itengración son:

- Límite inferior: $-\infty$
- Límite superior: min(0, t-3)

Cálculo de la convolución

$$y(t) = \int_{-\infty}^{\min(0, t-3)} e^{2\tau} (u - \tau) u(t - \tau - 3) d\tau$$

Debemos considerar dos casos:

Caso 1: t < 3

En este caso, t-3 < 0, por lo que min(0, t-3) = t-3

$$y(t) = \int_{-\infty}^{t-3} e^{2\tau} d\tau = \frac{1}{2} e^{2(t-3)} = \frac{1}{2} e^{2t-6}$$

Caso 2: $t \geq 3$

En este caso, $t-3 \ge 0$, por lo que $\min(0, t-3) = 0$

$$y(t) = \int_{-\infty}^{0} e^{2\tau} d\tau = \frac{1}{2}$$

La convolución es:

$$y(t) = \begin{cases} \frac{1}{2}e^{2t-6}, & t < 3\\ \frac{1}{2}, & t \ge 3 \end{cases}$$

4) Sea $x[n] = \delta[n] + 2\delta[n-1] - \delta[n-3]$ y $h[n] = 2\delta[n+1] + 2\delta[n-1]$

a) $y_1 = x[n] * h[n]$

La convolución se calcula como:

$$y_1 = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Sustituyendo x[k] y h[n-k], tenemos:

$$y_1[n] = x[0]h[n] + x[1]h[n-1] + x[3]h[n-3]$$

- $x[0] = 1 \longrightarrow h[n] = 2\delta[n+1] + 2\delta[n-1]$
- $x[1] = 2 \longrightarrow h[n-1] = 2\delta[n] + 2\delta[n-2]$
- $x[3] = -1 \longrightarrow h[n-3] = 2\delta[n-2] + 2\delta[n-4]$

Sumando todas las contribuciones:

$$y_1[n] = 2\delta[n+1] + 2\delta[n-1] + 4\delta[n] + 4\delta[n-2] - 2\delta[n-2] - 2\delta[n-4] = 2\delta[n+1] + 4\delta[n] + 2\delta[n-1] + 2\delta[n-2] - 2\delta[n-4] = 2\delta[n+1] + 2\delta[n-2] + 2\delta[n-2] - 2\delta[n-2] - 2\delta[n-2] + 2\delta[n-2] +$$

b) $y_2[n] = x[n+2] * h[n]$

Señal desplazada:

$$x[n+2]=\delta[n+2]+2\delta[n+1]-\delta[n-1]$$

La convolución se calcula como:

$$y_2[n] = \sum_{k=-\infty}^{\infty} x[k+2]h[n-k]$$

Sustituyendo x[k+2] y x[n-k], tenemos:

$$y_2[n] = x[-2]h[n+2] + x[-1]h[n+1] + x[1]h[n-1]$$

- $x[-2] = 1 \longrightarrow h[n+2] = 2\delta[n+3] + 2\delta[n+1]$
- $x[-1] = 2 \longrightarrow h[n+1] = 2\delta[n+2] + 2\delta[n]$
- $x[1] = -1 \longrightarrow h[n-1] = 2\delta[n] + 2\delta[n-2]$

Sumando todas las contribuciones:

$$y_2[n] = 2\delta[n+3] + 2\delta[n+1] + 4\delta[n+2] + 4\delta[n] - 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 4\delta[n+2] + 2\delta[n+1] + 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 2\delta[n+1] + 2\delta[n+1] + 2\delta[n+2] + 2$$

c) $y_3[n] = x[n] * h[n+2]$

Señal desplazada:

$$h[n+2] = 2\delta[n+3] + 2\delta[n+1]$$

La convolución se calcula como:

$$y_3[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k+2]$$

Sustituyendo x[k] y h[n-k+2], tenemos:

$$y_3[n] = x[0]h[n+2] + x[1]h[n+1] + x[3]h[n-1]$$

- $x[0] = 1 \longrightarrow h[n+2] = 2\delta[n+3] + 2\delta[n+1]$
- $x[1] = 2 \longrightarrow h[n+1] = 2\delta[n+2] + 2\delta[n]$
- $x[3] = -1 \longrightarrow h[n-1] = 2\delta[n] + 2\delta[n-2]$

Sumando todas las contribuciones:

$$y_3[n] = 2\delta[n+3] + 2\delta[n+1] + 4\delta[n+2] + 4\delta[n] - 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 4\delta[n+2] + 2\delta[n+1] + 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 2\delta[n+1] + 2\delta[n+1] + 2\delta[n+2] + 2$$

5) Un sistema lineal S relaciona su entrada x[n] y su salida y[n] como

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

donde g[n] = u[n] - u[n-4].

a) Determine y[n] cuando $x[n] = \delta[n-1]$

La relación entre la entrada y la salida está dada por:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

Sustituyendo $x[n] = \delta[n-1]$, sabemos que $\delta[n-1]$ es no nula cuando n=1. Por lo tanto, la suma se reduce a:

$$y[n] = g[n - 2(1)] = g[n - 2]$$

Dado que g[n] = u[n] - u[n-4], tenemos:

$$g[n-2] = u[n-2] - u[n-6]$$

Por lo tanto:

$$y[n] = u[n-2] - u[n-6]$$

Esto significa que y[n] es un pulso rectangular que comienza en n=2 y termina en n=5 (ya que u[n-6]) se activa en n=6.

b) Determine y[n] cuando $x[n] = \delta[n-2]$

De nuevo, la relación es:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

Sustituyendo $x[n] = \delta[n-2]$, sabemos que $\delta[n-2]$ es no nula solo cuando n=2. Por lo tanto, la suma se reduce a:

$$y[n] = g[n - 2(2)] = g[n - 4]$$

Dado que g[n] = u[n] - u[n-4], tenemos:

$$g[n-4] = u[n-4] - u[n-8]$$

Esto significa que y[n] es un pulso rectangular que comienza en n=4 y termina en n=7 (ya que u[n-8] se activa en n=8)

c) ξ Es S un sistema LTI?

Para determinar si el sitema es lineal e invariante en el tiempo, evaluamos cada propiedad:

• Linealidad:

Un sistema es lineal si satisface el principio de superposición, es decir, si para dos entradas $x_1[n]$ y $x_2[n]$ con salidas $y_1[n]$ y $y_2[n]$, respectivamente, se cumple que:

$$S\{ax_1[n] + bx_2[n]\} = ay_1[n] + by_2[n]$$

En este caso, la salida está dada por una suma ponderada de x[k] y g[n-2k], lo cual es una operación lineal. Por lo tanto, el sistema es **lineal**.

• Invanrianza en el tiempo:

Un sistema es invariante en el tiempo si un desplazamiento en la entrada produce el mismo desplazamiento en la salida. Es decir, si para una entrada x[n] con salida y[n], al desplazar la entrada $x[n-n_0]$, la salida se desplaza de manera idéntica $y[n-n_0]$.

En este caso, la salida depende de g[n-2k], que introduce un factor de escalamiento en el índice k. Esto significa que el sistema **no es invariante en el tiempo**, ya que el desplazamiento de la entrada no se traduce

directamente en un desplazamiento de la salida.

d) Determine y[n] cuando x[n] = u[n]

De nuevo, la relación es:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

Sustituyendo x[n] = u[n], sabemos que u[n] es no nula para $k \ge 0$. Por lo tanto, la suma se reduce a:

$$y[n] = \sum_{k=0}^{\infty} g[n - 2k]$$

Dado que g[n] = u[n] - u[n-4], tenemos:

$$g[n-2k] = u[n-2k] - u[n-2k-4]$$

Sustituyendo esto en la suma:

$$y[n] = \sum_{k=0}^{\infty} (u[n-2k] - u[n-2k-4])$$

La suma se puede interpretar como una superposición de pulsos rectangulares desplazados. Cada término u[n-2k]-u[n-2k-4] es un pulso rectangular de longitud 4, comenzando en n=2k y terminando en n=2k+3.

Por lo tanto, y[n] es una secuencia de pulsos rectangulares de longitud 4, comenzando en n = 0 y repitiéndose cada 2 unidades de tiempo.

6) Determine y esboce la convolución de las siguientes señales:

$$x(t) = \begin{cases} t+1, & 0 \le t \le 1 \\ 2-t, & 1 < t \le 2 \\ 0, & \text{otro valor} \end{cases}$$
 $h(t) = \delta(t+2) + 2\delta(t+1)$

La convolución de dos señales x(t) y h(t) está definida como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} h(\tau)h(t - \tau)d\tau$$

En este caso:

• x(t) es una función triangular definida por tramos:

$$x(t) = \begin{cases} t+1, & 0 \le t \le 1\\ 2-t, & 1 < t \le 2\\ 0, & \text{en otro case} \end{cases}$$

• h(t) es una combinación de deltas desplazadas:

$$h(t) = \delta(t+2) + 2\delta(t+1)$$

Dado que h(t) está compuesto por deltas, la convolución se simplifica porque las deltas actúan como "muestradoras"

de x(t). Específicamente, la convolución se convierte en:

$$y(t) = x(t) * h(t) = x(t+2) + 2x(t+1)$$

Paso 1: Determinar x(t+2)

Para obtener x(t+2), desplazamos x(t) dos unidades hacia la izquierda. Esto significa que el soporte de x(t+2) (el intervalo donde es cero) será:

$$-2 \le t \le -1$$

En este intervalo, la forma de x(t+2) es:

• Para $-2 \le t \le -1, x(t+2) = t+2+1 = t+3.$

Por lo tanto:

$$x(t+2) = \begin{cases} t+3, & -2 \le t \le -1\\ 0, & \text{en otro caso} \end{cases}$$

Paso 2: Determinar 2x(t+1)

Para obtener 2x(t+1), desplazamos x(t) una unidad hacia la izquierda y multiplicamos por 2. Esto significa que el soporte de 2x(t+1) será:

$$-1 \le t \le 1$$

En este intervalo, la forma de x(t+1) es:

- Para -1 < t < 0, x(t+1) = t+1+1 = t+2
- Para $0 < t \le 1, x(t+1) = 2 (t-1) = 1 t$

Multiplicando por 2, obtenemos:

$$2x(t+1) = \begin{cases} 2(t+2) = 2t+4, & -1 \le t \le 0\\ 2(1-t) = 2-2t, & 0 < t \le 1\\ 0, & \text{en otro caso} \end{cases}$$

Paso 3: Sumar x(t+2) y 2x(t+1)

Ahora sumamos las dos contribuciones x(t+2) y 2x(t+1). El soporte total de y(t) será la unión de los soportes de x(t+2) y 2x(t+1), es decir:

$$-2 \le t \le 1$$

Dividimos el cálculo en intervalos:

- Para $-2 \le t < -1$:
 - x(t+2) = t+3
 - 2x(t+1) = 0 (porque t+1 < -1)
 - y(t) = t + 3
- Para $-1 \le t < 0$:
 - x(t+2) = t+3
 - 2x(t+1) = 2t+4
 - y(t) = (t+3) + (2t+4) = 3t+7
- Para $0 \le t \le 1$:

- x(t+2) = 0 (porque t+2 > 2)
- 2x(t+1) = 2 2t
- y(t) = 0 + (2 2t) = 2 2t

La salida y(t) es:

$$y(t) = \begin{cases} t+3, & -2 \le t < -1\\ 3t+7, & -1 \le t < 0\\ 2-2t, & 0 \le t < 1\\ 0, & \text{en otro caso} \end{cases}$$

7) Sean

$$x(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & \text{otro valor} \end{cases} \quad h(t) = x\left(\frac{t}{\alpha}\right), \text{ donde } 0 < \alpha \le 1$$

a) Determine y esboce y(t) = x(t) * h(t).

La convolución de x(t) y h(t) está definida como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Dado que $\boldsymbol{x}(t)$ es una función rectangular definida como:

$$x(t) = \begin{cases} 1, & 0 \le t \le 1\\ 0, & \text{en otro caso} \end{cases}$$

y que $h(t) = x\left(\frac{t}{\alpha}\right)$, podemos escribir h(t) como:

$$h(t) = \begin{cases} 1, & 0 \le \frac{t}{\alpha} \le 1 & \longrightarrow 0 \le t \le \alpha \\ 0, & \text{en otro caso} \end{cases}$$

Por lo tanto:

$$h(t) = \begin{cases} 1, & 0 \le t \le \alpha \\ 0, & \text{en otro caso} \end{cases}$$

Ambas señales son rectángulos, y la convolución de dos rectángulos es un triángulo. El soporte de y(t) será la suma de los soporte de x(t) y h(t), es decir:

Soporte de
$$y(t)$$
: $[0, 1 + \alpha]$

Cálculo de y(t):

La convolución se calcula como:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Dado que $x(\tau)$ y $h(t-\tau)$, son no nula en los intervalos [0,1] y $[t-\alpha,t]$, respectivamente, la integral se reduce al intervalo donde ambos se solapan. Esto depende del valor de t:

• Para $0 \le t \le \alpha$:

En este caso, el solapamiento ocurre en [0, t]. Por lo tanto:

$$y(t) = \int_0^t 1 \cdot 1 d\tau = [\tau]_0^t = t$$

• Para $\alpha \leq t \leq 1$:

En este caso, el sola pamiento ocurre en $[t-\alpha,t]$. Por lo tanto:

$$y(t) = \int_{t-\alpha}^{t} 1 \cdot 1 d\tau = [\tau]_{t-\alpha}^{t} = t - (t - \alpha) = \alpha$$

• Para $1 < t \le 1 + \alpha$:

En este caso, el solapamiento ocurre en $[t-\alpha,1]$. Por lo tanto:

$$y(t) = \int_{t-\alpha}^{1} 1 \cdot 1 d\tau = [\tau]_{t-\alpha}^{1} = 1 - (t - \alpha) = 1 + \alpha - t$$

• Para $t > 1 + \alpha$:

No hay solapamiento, por lo que:

$$y(t) = 0$$

La salida y(t) es:

$$y(t) = \begin{cases} t, & 0 \le t \le \alpha \\ \alpha, & \alpha < t \le 1 \\ 1 + \alpha - t, & 1 < t \le 1 + \alpha \\ 0, & \text{en otro caso} \end{cases}$$

Esto corresponde a un triángulo con base en $[0, 1 + \alpha]$, que crece linealmente en $[0, \alpha]$, se mantiene constante en $[\alpha, 1]$, y decrece linealmente en $[1, 1 + \alpha]$.

b) Si $\frac{dy(t)}{dt}$ contiene sólo tres discontinuidades, ¿cuál es el valor de α ?

La derivada de y(t) seá:

• Para $0 \le t \le \alpha$, y(t) = t, por lo que:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = 1$$

• Para $\alpha < t \le 1, y(t) = \alpha$, por lo que:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = 0$$

• Para $1 < t \le 1 + \alpha, y(t) = 1 + \alpha - t$, por lo que:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -1$$

• Para $t > 1 + \alpha, y(t) = 0$, por lo que:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = 0$$

Las discontinuidades en $\frac{\mathrm{d}y(t)}{\mathrm{d}t}$ ocurren en los puntos donde y(t) cambia de pendiente. Estos puntos son:

- En $t = \alpha$, donde la pendiente cambia de 1 a 0.
- En t = 1, donde la pendiente cambia de 0 a -1.
- En $t = 1 + \alpha$, donde la pendiente cambia de -1 a 0.

Para que haya solo tres discontinuidades, los puntos α y $1 + \alpha$ deben coincidir, es decir:

$$\alpha = 1 + \alpha \longrightarrow \alpha = 1.$$

8) Sean

$$x(t) = u(t-3) - u(t-5)$$
 $h(t) = e^{-3t}u(t)$

a) Calcule y(t) = x(t) * h(t)

Planteamiento

La convolución de x(t) y h(t) está definida como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Dado que:

- x(t) = u(t-3) u(t-5), es un pulso rectangular definido en el intervalo [3,5].
- $h(t) = e^{-3t}u(t)$, es una función exponencial decreciente que comienza en t = 0

El soporte de x(t) es [3,5], y el soporte de h(t) es $[0,\infty)$. Por lo tanto, el soporte de y(t) será:

Soporte de
$$y(t)$$
: $[3, 5 + \infty) = [3, \infty)$.

Cálculo de y(t)

La convolución se evalúa en diferentes intervalos dependiendo del valor de t. Para $t \geq 3$, el solapamiento entre $x(\tau)$ y $h(t-\tau)$ ocurre en el intervalo [3,5]. Por lo tanto, la integral se reduce a:

$$y(t) = \int_{3}^{5} h(t-\tau)d\tau = \int_{3}^{5} e^{-3(t-\tau)}u(t-\tau)d\tau.$$

El término $u(t-\tau)$ asegura que $t-\tau \geq 0$, es decir, $\tau \leq t$. Esto implica que el interalo de integración es:

$$\tau \in [3, \min(5, t)]$$

Por lo tanto, el resultado depende de t:

• Para $3 \le t < 5$:

En este caso, min(5, t) = t, y la integral se evalúa en [3, t]:

$$y(t) = \int_3^t e^{-2(t-\tau)} d\tau.$$

Hacemos el cambio de variable $x=t-\tau$, lo que implica que $dx=d\tau$. Los límites cambia de $\tau=3$ a $\tau=t$, lo que da x=t-3 a x=0. La integral se convierte en:

$$y(t) = \int_{t-3}^{0} e^{-3x} (-dx) = \int_{0}^{t-3} e^{-3x} dx = \left[\frac{e^{-3x}}{-3x} \right]_{0}^{t-3} = \frac{1}{3} \left(1 - e^{-3(t-3)} \right).$$

• Para $t \geq 5$:

En este caso, min(5, t) = 5, y la integral se evalúa en [3, 5]:

$$y(t) = \int_3^5 e^{-3(t-\tau)} d\tau.$$

Usando el mismo cambio de variable $x=t-\tau$, con límites $\tau=3$ a $\tau=5$, obtenemos x=t-3 a x=t-5. La integral se convierte en:

$$y(t) = \int_{t-5}^{t-3} e^{-3x} dx = \left[\frac{e^{-3x}}{-3} \right]_{t-5}^{t-3} = \frac{1}{3} \left(e^{-3(t-5)} - e^{-3(t-3)} \right).$$

Resultado final para y(t)

$$y(t) = \begin{cases} \frac{1}{3}(1 - e^{-3(t-3)}), & 3 \le t < 5\\ \frac{1}{3}\left(e^{-3(t-5)} - e^{-3(t-3)}\right) & t \ge 5 \end{cases}$$

b) Calcule
$$g(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t} * h(t)$$

Derivada de x(t)

La derivada de x(t) es:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \delta(t-3) - \delta(t-5).$$

Por lo tanto, la convolución g(t) es:

$$g(t) = (\delta(t-3) - \delta(t-5)) * h(t).$$

Usando la propiedad de desplazamiento de la convolución, sabemos que:

$$\delta(t - t_0) * h(t) = h(t - t_0).$$

Por lo tanto:

$$g(t) = h(t-3) - h(t-5).$$

Sustituyendo $h(t) = e^{-2t}u(t)$, tenemos:

$$h(t-3) = e^{-3(t-3)}u(t-3), \quad h(t-5) = e^{-3(t-5)}u(t-5)$$

Por lo tanto:

$$g(t) = e^{-3(t-3)}u(t-3) - e^{-3(t-5)}u(t-5).$$

c) Establece una relación entre g(t) e y(t)

Sabemos que x(t) está relacionado con su derivada por:

$$x(t) = \int_{-\infty}^{t} \frac{\mathrm{d}x(\tau)}{\mathrm{d}\tau} \mathrm{d}\tau.$$

Por la propiedad de la convolución, esto implica que:

$$y(t) = (x(t) * h(t)) = \int_{-\infty}^{t} g(\tau) d\tau.$$

En otras palabras, y(t) es la integral acumulativa de g(t):

$$y(t) = \int_{-\infty}^{t} g(\tau) d\tau.$$

9) Calcule la convolución de los siguientes pares de señales:

a)
$$x[n] = \alpha^n u[n], \quad h[n] = \beta^n u[n], \quad \alpha \neq \beta$$

Ambas señales están definidas para $n \geq 0$ debido a la presencia de u[n]. La convolución es:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=0}^{n} \alpha^{k} \beta^{n-k}$$

Factorizamos los términos comunes:

$$y[n] = \beta^n \sum_{k=0}^n \left(\frac{\alpha}{\beta}\right)^k$$

La suma es una serie geométrica finita, cuya fórmula es:

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}, \quad \text{si } r \neq 1$$

Aquí, $r = \frac{\alpha}{\beta}$. Sustituyendo:

$$y[n] = \beta^n \frac{1 - \left(\frac{\alpha}{\beta}\right)^{n+1}}{1 - \frac{\alpha}{\beta}} = \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha}, \quad \alpha \neq \beta$$

b) $x[n] = h[n] = \alpha^n u[n]$

En este caso, ambas señales son iguales. La convolución es:

$$y[n] = \sum_{k=0}^{n} \alpha^k \alpha^{n-k} = \sum_{k=0}^{n} \alpha^n = \alpha^n \sum_{k=0}^{n} 1 = \alpha^n (n+1)$$

c)
$$x[n] = \left(-\frac{1}{2}\right)^n u[n-4], \quad h[n] = 4^n u[2-n]$$

Primero, analizamos los soportes de la señales:

- $x[n] = \left(-\frac{1}{2}\right)^n u[n-4]$ está definida para $n \ge 4$.
- $h[n] = 4^n u[2-n]$ está definida para $n \leq 2$.

Por lo tanto, no hay traslape entre las señales, ya que x[k] y h[n-k] no son simultáneamente no nulas para ningún n. Esto implica que:

$$y[n] = 0, \quad \forall n.$$

d)
$$x[n] = 2^n u[-n], \quad h[n] = u[n]$$

Primero, analizamos los soportes de las señales:

- $x[n] = 2^n u[-n]$ está definida para $n \le 0$.
- h[n] = u[n] está definida para $n \ge 0$.

La convolución es:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Debido a los soportes de x[k] y h[n-k], la suma solo es no nula cuando $k \le 0$ y $n-k \ge 0$, es decir, $k \le 0$ y $k \ge n$. Esto implica que $n \le k \le 0$. Por lo tanto, la suma se reduce a:

$$y[n] = \sum_{k=n}^{0} 2^k$$

Esta es una serie geométrica finita con razón r=2, y su suma es:

$$\sum_{k=n}^{0} 2^k = \frac{2^{0+1} - 2^n}{1 - 2} = 2 \cdot (1 - 2^n)$$

Por lo tanto:

$$y[n] = \begin{cases} 2(1-2^n), & n \le 0\\ 0, & n > 0 \end{cases}$$

10) ¿Cuál/es de las siguientes respuestas al impulso corresponden a sistemas LTI estables?

a)
$$h(t) = e^{-(1-2j)t}u(t)$$

Primeros, descomponemos el exponente complejo:

$$e^{-(1-2j)t} = e^{-t}e^{2jt}$$

Aquí, e^{-t} es una exponencial decreciente (para $t \ge 0$), y e^{2jt} es una oscilación compleja de magnitud unitaria. Por lo tanto:

$$|h(t)| = |e^{-t}e^{2jt}| = |e^{-t}| = e^{-t}, \quad t \ge 0.$$

La integral de |h(t)| es:

$$\int_{-\infty}^{\infty} |h(t)| dt = \int_{0}^{\infty} e^{-t} dt = [-e^{-t}]_{0}^{\infty} = (0 - (-1)) = 1.$$

Por lo tanto, el sistema es estable.

b) $h(t) = e^{-t} \cos(2t) u(t)$

La función $\cos(2t)$ es una oscilación de magnitud unitaria, y e^{-t} es una exponencial decreciente (para $t \ge 0$). Por lo tanto:

$$|h(t)| = |e^{-t}\cos(2t)| \le e^{-t}, \quad t \ge 0.$$

La integral de |h(t)| está acotada por la integral de e^{-t} , que ya sabemos que converge:

$$\int_{-\infty}^{\infty} |h(t)| \, \mathrm{d}t = \int_{0}^{\infty} |e^{-t} \cos(2t)| \, \mathrm{d}t \le \int_{0}^{\infty} e^{-t} \, \mathrm{d}t = 1$$

Por lo tanto, esta integral también converge, y el sistema es **estable**.

11) ¿Cuál/es de las siguientes respuestas al impulso corresponden a sistemas LTI estables?

- a) $h[n] = n \cos\left(\frac{\pi}{4}\right)$
- **b)** $h[n] = 3^n u[-n+10]$
- 12) Para las siguientes respuestas al impulso de sistemas LTI, determine si cada sistema es causal y/o estable, justificando la respuesta.

$$\mathbf{a)} \ h[n] = \left(\frac{1}{5}\right)^n u[n]$$

- Causalidad: El término u[n] asegura que h[n] = 0 para n < 0. Por lo tanto, el sistema es causal.
- Escalabilidad: Para $n \ge 0, |h[n]| = \left(\frac{1}{5}\right)^n$. La suma de esta serie geométrica es:

$$\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n = \frac{1}{1 - \frac{1}{5}} = \frac{5}{4} < \infty$$

Por lo tanto, el sistema es estable

- **b)** $h[n] = 0.8^n u[n+2]$
 - Causalidad: El término u[n+2] implica que $h[n] \neq 0$ para $n \geq -2$. Como $h[n] \neq 0$ para n < 0, el sistema no es causal.
 - Estabilidad: Para $n \ge -2$, $|h[n]| = 0.8^n$. Cambiando el índice de la suma (m = n + 2), tenemos:

$$\sum_{n=-2}^{\infty} 0.8^n = 0.8^{-2} \sum_{m=0}^{\infty} 0.8^m = \frac{1}{0.8^2} \cdot \frac{1}{1 - 0.8} = \frac{1}{0.64} \cdot 5 = 7.8125 < \infty$$

Por lo tanto, el sistema es estable.

- $\mathbf{c)} \ h[n] = \left(\frac{1}{2}\right)^n u[-n]$
 - Causalidad: El término u[-n] implica que $h[n] \neq 0$ solo para $n \leq 0$. Esto significa que el sistema depende de valores futuros de la entrada, por lo que no es causal.
 - Estabilidad: Para $n \le 0, |h[n]| = \left(\frac{1}{2}\right)^n = 2^{-n}$. Cambiando el índice (m = -n), tenemos:

$$\sum_{n=-\infty}^{0} 2^{-n} = \sum_{m=0}^{\infty} 2^{m}$$

Esta serie geométrica diverge, por lo que el sistema no es estable.

- **d)** $h[n] = 5^n u[3-n]$
 - Causalidad: El término u[3-n] implica que $h[n] \neq 0$ solo para $n \leq 3$. Esto significa que el sistema depende de valores futuros de la entrada, por lo que no es causal.
 - Estabilidad: Para $n \leq 3$, $|h[n]| = 5^n$. Esta serie incluye términos crecientes (por ejemplo, 5^3), por lo que no es absolutamente sumable. El sistema no es estable.
- **e)** $h[n] = \left(-\frac{1}{2}\right)^n u[n] + 1.01^n u[n-1]$
 - Causalidad: Ambos términos incluyen u[n] o u[n-1], lo que asegura que h[n] = 0 para n < 0. Por lo tanto, el sistema es causal.
 - Estabilidad: EL primer término $\left(-\frac{1}{2}\right)^n u[n]$ es absolutamente sumable, ya que:

$$\sum_{n=0}^{\infty} \left| \left(-\frac{1}{2} \right)^n \right| = \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n = 2$$

Sin embargo, el segundo término $1.01^n u[n-1]$ crece exponencialmente y no es absolutamente sumable. Por lo tanto, el sistema no es estable.

- **f)** $h[n] = \left(-\frac{1}{2}\right)^n u[n] + 1.01^n u[1-n]$
 - Causalidad: El primer término $\left(-\frac{1}{2}\right)^n u[n]$ es causal, pero el segundo término $1.01^n u[1-n]$ implica que $h[n] \neq 0$ para n > 1. Por lo tanto, el sistema no es causal.

• Estabilidad: El primer término es aboslutamente sumable, pero el segundo término $1.01^n u[1-n]$ no lo es, ya que incluye términos crecientes. Por lo tanto, el sistema no es estable.

g)
$$h[n] = n \left(\frac{1}{3}\right)^n u[n-1]$$

- Causalidad: El término u[n-1] asegura que h[n]=0 para n<1. Por lo tanto el sistema es causal.
- Para $n \ge 1$, $|h[n]| = n\left(\frac{1}{3}\right)^n$ decrece exponencialmente, el factor n hace que la serie no sea absolutamente sumable. Por ejemplo, usando el criterio de comparación, la serie diverge. Por lo tanto, el sistema no es estable.
- 13) Considere un sistema LTI que se encuentra incialmente en reposo y cuya entrada x(t) y salida y(t) se relacionan por la ecuación diferencial

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 4y(t) = x(t)$$

a) Obtenga la respuesta al impulso del sistema.

La ecuación diferencial que describe el sistema es:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 4y(t) = x(t).$$

Para encontrar la **respuesta al impulso** h(t), consideramos la entrada $x(t) = \delta(t)$. En este caso, la ecuación difernecial se convierte en:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 4h(t) = \delta(t).$$

Resolviendo la ecuación diferencial

• Ecuación homogénea: Primero resolvemos la ecuación homogénea asociada (x(t) = 0):

$$\frac{\mathrm{d}}{\mathrm{d}t}h_h(t) + 4h_h(t) = 0.$$

La solución general de esta ecuación es:

$$h_h(t) = Ce^{-4t},$$

donde C es una constante que se determinará con las condiciones iniciales.

• Solución particular: Dado que la entrada es un impulso $\delta(t)$, la solución particular se encuentra considerando la propiedad de causalidad del sistema LTI. La respuesta al impulso h(t) debe ser cero para t < 0. Además, integramos ambos lados de la ecuación diferencial en un intervalo infinitesimal alrededor de t = 0 para determinar la discontinuidad en h(t):

$$\int_{-\epsilon}^{\epsilon} \left(\frac{\mathrm{d}}{\mathrm{d}t} h(t) + 4h(t) \right) \, \mathrm{d}t = \int_{-\epsilon}^{\epsilon} \delta(t) \, \mathrm{d}t.$$

El primer término se evalúa como:

$$\int_{-\epsilon}^{\epsilon} \frac{\mathrm{d}}{\mathrm{d}t} h(t) \, \mathrm{d}t = h(\epsilon) - h(-\epsilon).$$

Para un sistema causal, h(t) = 0 para t < 0, por lo que $h(-\epsilon) = 0$. Esto implica:

$$h(\epsilon) - 0 + \int_{-\epsilon}^{\epsilon} 4h(t) dt = 1.$$

En el límite $\epsilon \to 0$, el término $\int_{-\epsilon}^{\epsilon} 4h(t) dt$ desaparece, y obtenemos:

$$h(0^+) = 1.$$

• Solución completa: La solución completa es:

$$h(t) = \begin{cases} e^{-4t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Por lo tanto, la respuesta al impulso del sistema es:

$$h(t) = e^{-4t}u(t),$$

donde u(t) es la función escalón unitario.

b) Si $x(t) = e^{(-1+3j)t}u(t)$, calcule y(t)

La salida de un sistema LTI se obitnee mediante la convolución de la entrada x(t) con la respuesta al impulso h(t):

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau.$$

Sustituyendo $x(t) = e^{(-1+3j)t}u(t)$ y $h(t) = e^{-4t}u(t)$, tenemos:

$$y(t) = \int_{-\infty}^{\infty} e^{(-1+3j)\tau} u(\tau) e^{-4(t-\tau)} u(t-\tau) d\tau.$$

Debido a las funciones escalón $u(\tau)$ y $u(t-\tau)$, los límites de integración se restringen a $0 \le \tau \le t$. Por lo tanto:

$$y(t) = \int_0^t e^{(-1+4j)\tau} e^{-4(t-\tau)} d\tau.$$

Simplificamos el exponente:

$$e^{(-1+3j)\tau}e^{-4(t-\tau)} = e^{-4t}e^{(3j-1+4)\tau} = e^{-4t}e^{(3j+3)\tau}.$$

Entonces:

$$y(t) = e^{-4t} \int_0^t e^{(3j+3)\tau} d\tau.$$

Resolvemos la integral:

$$\int_0^t e^{(3j+3)\tau} d\tau = \frac{1}{3j+3} \left[e^{(3j+3)\tau} \right]_0^t = \frac{1}{3j+3} \left(e^{(3j+3)t} - 1 \right).$$

Por lo tanto:

$$y(t) = e^{-4t} \cdot \frac{1}{3i+3} \left(e^{(3j+3)t} - 1 \right) = \frac{1}{3i+3} \left(e^{(-1+3j)t} - e^{-4t} \right).$$

14) Considere un sistema LTI que se encuentra inicialmente en reposo y cuya entrada x(t) y salida y(t) se relacionan por la ecuación diferencial

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 3y(t) = 2x(t)$$

a) Si $x(t) = \cos(2t)u(t)$, calcule y(t).

La ecuación diferencia que describe el sistema es:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 3y(t) = 2x(t).$$

Dado que $x(t) = \cos(2t)u(t)$, la entrada es causal, y el sistema está inicialmente en resposo. Resolveremos esta ecuación diferencial para y(t).

Paso 1: Representación de la entrada

La entrada $x(t) = \cos(2t)u(t)$ puede escribirse en términos de exponenciales complejas usando la identidad de Euler:

$$\cos(2t) = \frac{e^{j2t} + e^{-j2t}}{2}.$$

Por lo tanto:

$$x(t) = \frac{1}{2} (e^{j2t} + e^{-j2t}) u(t).$$

Paso 2: Solución de la ecuación diferencial

La solución general de la ecuación difernecial tiene dos componentes:

$$y(t) = y_h(t) + y_p(t),$$

donde $y_h(t)$ es la solución de la ecuación homogénea asociada (x(t) = 0) y $y_p(t)$ es una solución particular.

a) Solución homogénea

La ecuación homogénea es:

$$\frac{\mathrm{d}}{\mathrm{d}t}y_h(t) + 3y_h(t).$$

Resolviendo, obtenemos:

$$y(t) = Ce^{-3t},$$

donde C es una constante que se determinará con las condiciones iniciales.

b) Solución particular

Para encontrar $y_p(t)$, asumimos una solución de la forma:

$$y_p(t) = Ae^{j2t} + Be^{-j2t}.$$

Sustituyendo $y_p(t)$ en la ecuación diferencial:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(Ae^{j2t} + Be^{-j2t} \right) + 3 \left(Ae^{j2t} + Be^{-j2t} \right) = 2x(t).$$

Calculamos la derivada:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(Ae^{j2t} + Be^{-j2t} \right) = j2Ae^{j2t} - j2Be^{-j2t}.$$

Sustituyendo:

$$(j2A+3A)e^{j2t}+(-j2B+3B)e^{-j2t}=2\cdot\frac{1}{2}\left(e^{j2t}+e^{-j2t}\right).$$

Agrupando términos:

$$((j2+3)A)e^{j2t} + ((-j2+3)B)e^{-j2t} = e^{j2t} + e^{-j2t}.$$

Igualando coeficientes de e^{j2t} y e^{-j2t} :

- Para $e^{j2t}: (j2+3)A = 1.$
- Para $e^{-j2t}: (-j2+3)B = 1.$

Resolviendo para A y B:

$$A = \frac{1}{2j+3}, \quad B = \frac{1}{-2j+3}.$$

Simplificamos A y B multiplicando numerador y denominador por el conjugado del denominador:

$$A = \frac{1}{2j+3} \cdot \frac{-2j+3}{-2j+3} = \frac{-2j+3}{(2j+3)(-2j+3)} = \frac{-2j+3}{13}$$
$$B = \frac{1}{-2j+3} \cdot \frac{2j+3}{2j+3} = \frac{2j+3}{(2j+3)(-2j+3)} = \frac{2j+3}{13}$$

Por lo tanto, la solución particular es:

$$y_p(t) = \frac{-2j+3}{13}e^{j2t} + \frac{2j+3}{13}e^{-j2t}.$$

Usando la identidad de Euler para regresar a términos reales:

$$y_p(t) = \frac{3}{13}\cos(2t) + \frac{2}{13}\sin(2t).$$

c) Solución completa

La solución completa es:

$$y(t) = y_h(t) + y_p(t) = Ce^{-3t} + \frac{3}{13}\cos(2t) + \frac{2}{13}\sin(2t).$$

Dado que el sistema está inicialmente en reposo (y(0) = 0), sustituimos t = 0 para determinar C:

$$y(0) = C + \frac{3}{13}\cos(0) + \frac{2}{13}\sin(0) = 0.$$
$$C + \frac{3}{13} = 0 \longrightarrow C = -\frac{3}{13}.$$

Por lo tanto, la solución final es:

$$y(t) = -\frac{3}{13}e^{-3t} + \frac{3}{13}\cos(2t) + \frac{2}{13}\sin(2t).$$

b) Obtenga la respuesta al impulso del sistema.

La respuesta al impulso h(t) se obtiene resolviendo la ecuación diferencial con $x(t) = \delta(t)$. La ecuación se convierte en:

$$\frac{\mathrm{d}}{\mathrm{d}t}h(t) + 3h(t) = 2\delta(t).$$

Integrando ambos lados en un intervalo infinitesimal alrededor de t=0, obtenemos:

$$\int_{-\epsilon}^{\epsilon} \frac{\mathrm{d}}{\mathrm{d}t} h(t) \, \mathrm{d}t + \int_{-\epsilon}^{\epsilon} 3h(t) \, \mathrm{d}t = \int_{-\epsilon}^{\epsilon} 2\delta(t) \, \mathrm{d}t.$$

El primer término es $h(\epsilon) - h(-\epsilon)$, y dado que h(t) = 0 para t < 0, esto se reduce a $h(0^+) = 2$. Por lo tanto, la solución es:

$$h(t) = Ce^{-3t}u(t).$$

Usando $h(0^+) = 2$, tenemos C = 2. Por lo tanto:

$$h(t) = 2e^{-3t}u(t).$$

15) Obtenga la respuesta al impulso, así como las propiedades de memoria, causalidad, estabilidad, invarianza en el tiempo y linealidad de los siguientes sistemas:

a)
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

Respuesta al impulso

Para encontrar la respuesta al impulso h(t), sustituimos $x(t) = \delta(t)$:

$$y(t) = \int_{-\infty}^{t} \delta(\tau) d\tau.$$

La integral de la delta de Dirac es la función escalón unitario u(t). Por lo tanto:

$$h(t) = u(t).$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida en t depende de los valores pasado de la entrada $(x(\tau)$ para $\tau \leq t)$.
- Causalidad: El sistema es causal, ya que la salida en t depende únicamente de valores de la entrada para $\tau \leq t$.
- Estabilidad: El sistema no es estable. Por ejemplo, si x(t) = 1 (una entrada acotada), la salida es y(t) = t, que no está acotada.
- Invarianza en el tiempo: El sistema es invariante en el tiempo. Si desplazamos la entrada x(t) por t_0 , la salida también se desplaza por t_0 .
- Linealidad: El sistema es lineal, ya que satisface la superposición.

b)
$$y(t) = \int_{-\infty}^{t} 2x(\tau - 5) d\tau$$

Respuesta al impulso

Sustituyendo $x(t) = \delta(t)$:

$$y(t) = \int_{-\infty}^{t} 2\delta(\tau - 5) d\tau.$$

La delta de Dirac se activa en $\tau = 5$, y la integral es cero para t < 5 y 2 para $t \ge 5$. Por lo tanto:

$$h(t) = 2u(t-5).$$

Propiedades

• Memoria: El sistema tiene memoria, ya que la salida depende de valores pasados de la entrada.

23

- Causalidad: El sistema no es causal, ya que la salida en t depende de valores de la entrada en $\tau = t 5$, que puede ser un valor futuro si t < 5.
- Estabilidad: El sistema no es estable. Por ejemplo, si x(t) = 1, la salida crece sin límite.
- Invarianza en el tiempo: El sistema es invariante en el tiempo. UN desplazamiento en la entrada produce un desplazamiento equivalente en la salida.
- Linealidad: El sistema es lineal, ya que satisface la superposición.

c)
$$y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} 3x(\tau-2) d\tau$$

Respuesta al impulso

Sustituyendo $x(t) = \delta(t)$:

$$y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} 3\delta(\tau - 2) d\tau.$$

La delta de DIrac se activa en $\tau=2$, y la integral evalúa:

$$y(t) = 3e^{-(t-2)} \text{ para } t \ge 2.$$

Por lo tanto:

$$h(t) = 3e^{-(t-2)}u(t-2).$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida depende de valores pasados de la entrada.
- Causalidad: El sistema no es causal, ya que la salida en t depende de valores de la entrada $\tau = t 2$, que puede ser un valor futuro si t < 2.
- Estabilidad: El sistema es estable. La respuesta al impulso h(t) es absolutamente integrable, ya que:

$$\int_{-\infty}^{\infty} |h(t)| \, \mathrm{d}t = \int_{2}^{\infty} 3e^{-(t-2)} \, \mathrm{d}t = 3.$$

- Invarianza en el tiempo: El sistema no es invariante en el tiempo debido al término $e^{-(t-\tau)}$, que depende explícitamente de t.
- Linealidad: El sistema es lineal, ya que satisface la superposición.

d)
$$y(t) = \int_{t-2}^{t+2} e^{-(t+\tau)} x(\tau-2) d\tau$$

Respuesta al impulso

Sustituyendo $x(t) = \delta(t)$:

$$y(t) = \int_{t-3}^{t+2} e^{-(t+\tau)} \delta(\tau - 2) d\tau.$$

La delta de Dirac se activa en $\tau=2$, pero esto ocurre solo si $t-3\leq 2\leq t+2$, es decir, si $t\in[1,5]$, En este intervalo, la integral evalúa:

$$y(t) = e^{-(t+2)} \text{ para } t \in [1, 5].$$

Fuera de este intervalo (t < 1 o t > 5), la integral es cero. Por lo tanto:

$$h(t) = \begin{cases} e^{-(t+2)}, & 1 \le t \le 5\\ 0, & \text{en otro caso} \end{cases}$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida depende de valores pasados de la entrada.
- Causalidad: El sistema no es causal, ya que la salida en t depende de valores de la entrada en $\tau 2$, que puede ser un valor futuro.
- Estabilidad: El sistema es estable. La respuesta al impulso h(t) es absolutamente integrable, ya que está acotada en el intervalo [1, 5].
- Invarianza en el tiempo: El sistema no es invariante en el tiempo debido al término $e^{-(t+\tau)}$, que depende explícitamente de t.
- Linealidad: El sistema es lineal, ya que satisface la superposición.

$$y[n] = e^{j\frac{2\pi}{10}(n+2)}x[n-2].$$

Analice las propiedades de memoria, causalidad, estabilidad, invarianza en el tiempo y linealidad del sistema.

1) Memoria

Un sistema tiene memoria si la salida en un instante n depende de valores pasados o futuros de la entrada. Si la salida depende únicamente del valor actual de la entrada, el sistema es sin memoria.

En este caso, la salida y[n] depende de x[n-2], que es un valor pasado de la entrada (desplazados dos unidades en el tiempo). Por lo tanto, **el sistema tiene memoria.**

2) Causalidad

Un sistema es causal si la salida en un instante n depende únicamente de valores presentes o pasados de la entrada, es decir, no depende de valores futuros de la entrada.

Aquí, y[n] depende de x[n-2], que es un valor pasado de la entrada. No hay dependencia de valores futuros de x[n]. Por lo tanto, **el sistema es causal.**

3) Estabilidad

Un sistema es estable si para toda entrada acotada x[n], la salida y[n] también es acotada.

La salida está dada por:

$$y[n] = e^{j\frac{2\pi}{10}(n+2)}x[n-2].$$

El término $e^{j\frac{2\pi}{10}(n+2)}$ es una exponencial compleja de magnitud unitaria ($|e^{j\theta}|=1$ para cualquier θ). Por lo tanto, si x[n-2] es acotada, y[n] también será acotada. Esto implica que **el sistema es estable**.

4) Invarianza en el tiempo

Un sistema es invariante en el tiempo si un desplazamiento en la entrada produce un desplazamiento equivalente en la salida, sin cambiar la forma de la relación entrada-salida.

Supongamos que desplazamos la entrada x[n] por k unidades, es decir, consideramos una nueva entrada $x_k[n] = x[n-k]$. La salida correspondiente sería:

$$y_k[n] = e^{j\frac{2\pi}{10}(n+2)}x_k[n-2] = e^{j\frac{2\pi}{10}(n+2)}x[n-k-2].$$

Comparando con la salida original $y[n] = e^{j\frac{2\pi}{10}(n+2)}x[n-2]$, vemos que el desplazamiento en la entrada introduce un cambio en el argumento de x, pero no se traduce en un simple desplazamiento de la salida. Esto significa que el sistema no es invariante en el tiempo.

5) Linealidad

Un sistema es lineal si satisface el principio de superposición, es decir, si para dos entradas $x_1[n]$ y $x_2[n]$ y sus respectivas salidas $y_1[n]$ y $y_2[n]$, se cumple que:

$$a_1x_1[n] + a_2x_2[n] \longrightarrow a_1y_1[n] + a_2y_2[n].$$

En este caso, la relación entrada-salida es:

$$y[n] = e^{j\frac{2\pi}{10}(n+2)}x[n-2].$$

Si la entrada es una combinación lineal $x[n] = a_1x_1[n] + a_2x_2[n]$, la salida será:

$$y[n] = e^{j\frac{2\pi}{10}(n+2)}(a_1x_1[n-2] + a_2x_2[n-2]) = a_1e^{j\frac{2\pi}{10}(n+2)}x_1[n-2] + a_2e^{j\frac{2\pi}{10}(n+2)}x_2[n-2].$$

Esto corresponde a $a_1y_1[n] + a_2y_2[n]$, lo que demuestra que el sistema es lineal.

17) Considere la señal $x[n] = \bigwedge \left(\frac{n}{4}\right) + \prod \left(\frac{n-2}{5}\right)$. Obtenga y represente la parte par e impar de esta señal. Calcule la energía y potencia de x[n], indicando si se trata de una señal defindia en energía o en potencia.

1) Parte par e impar de la señal

La parte par $(x_e[n])$ y la parte impar $(x_o[n])$ de una señal x[n] se definen como:

$$x_e[n] = \frac{x[n] + x[-n]}{2}, \quad x_o = \frac{x[n] - x[-n]}{2}.$$

a) Cálculo de x[-n]

La señal invertida en el tiempo es:

$$x[-n] = \bigwedge \left(\frac{-n}{4}\right) + \prod \left(\frac{-n-2}{5}\right).$$

b) Parte par $(x_e[n])$

Sustituyendo en la fórmula de la parte par:

$$x_e[n] = \frac{\bigwedge \left(\frac{n}{4}\right) + \prod \left(\frac{n-2}{5}\right) + \bigwedge \left(\frac{-n}{4}\right) + \prod \left(\frac{-n-2}{5}\right)}{2}.$$

c) Parte impar $(x_o[n])$

Sustituyendo en la fórmula de la parte impar:

$$x_o[n] = \frac{\bigwedge \left(\frac{n}{4}\right) + \prod \left(\frac{n-2}{5}\right) - \bigwedge \left(\frac{-n}{4}\right) - \prod \left(\frac{-n-2}{5}\right)}{2}.$$

Para obtener las expresiones explícitas de $x_e[n]$ y $x_o[n]$, se necesita evaluar las propiedades de simetría de las funciones \bigwedge y \prod :

- La función triangular $\bigwedge(x)$ es **par**, es decir, $\bigwedge(-x) = \bigwedge(x)$.
- La función rectangular $\prod(x)$ es **par**, es decir, $\prod(-x) = \prod(x)$.

Por lo tanto:

•
$$\bigwedge \left(\frac{-n}{4}\right) = \bigwedge \left(\frac{n}{4}\right)$$
.

•
$$\prod \left(\frac{-n-2}{5}\right) = \prod \left(\frac{n+2}{5}\right)$$
.

Sustituyendo estas propiedades:

$$x_{e}[n] = \frac{\bigwedge(\frac{n}{4}) + \prod(\frac{n-2}{5}) + \bigwedge(\frac{n}{4}) + \prod(\frac{n+2}{5})}{2} = \bigwedge(\frac{n}{4}) + \frac{\prod(\frac{n-2}{5}) + \prod(\frac{n+2}{5})}{2}.$$
$$x_{o}[n] = \frac{\bigwedge(\frac{n}{4}) + \prod(\frac{n-2}{5}) - \bigwedge(\frac{n}{4}) - \prod(\frac{n+2}{5})}{2} = \frac{\prod(\frac{n-2}{5}) - \prod(\frac{n+2}{5})}{2}.$$

2) Cálculo de energía y potencia

La energía de una señal x[n] se define como:

$$E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2.$$

La potencia de una señal x[n] se define como:

$$P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2.$$

a) Naturaleza de la señal x[n]

La señal x[n] está compuesta por una función triangular \bigwedge y una función rectangular \prod , ambas de soporte finito. Esto significa que x[n] es no nula solo en el intervalo finito de n. Por lo tanto, la suma de $|x[n]|^2$ será finita, y la energía será finita. Además, dado que la señal no es periódica y tiene soporte finito, su potencia será cero.

b) Cálculo de la energía

Para calcular la energía, evaluamos:

$$E_x = \sum_{n=-\infty}^{\infty} \left| \bigwedge \left(\frac{n}{4} \right) + \prod \left(\frac{n-2}{5} \right) \right|^2.$$

Dado que $\bigwedge(x)$ y $\prod(x)$ tienen soporte finito, la suma se produce a un intervalo finitp de n. La energía se puede calcular explícitamente evaluando x[n] en los puntos donde no es cero.

c) Potencia

La potencia será:

$$P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2.$$

Dado que x[n] tiene soporte finito, la suma $\sum_{n=-N}^{N} |x[n]|^2$ no crece con N, y al dividir entre 2N+1, el resultado tiende a cero. Por lo tanto, la potencia es:

$$P_x = 0.$$

Por lo tanto, la señal está definida en energía.

18) Calcule la convolución de las señales

$$x_1[n] = (n-6) \prod \left(\frac{n-6}{13}\right)$$
 $x_2[n] = \prod \left(\frac{-n-3}{5}\right)$

Nota: la suma de una progresión aritmética $a_{n_i}, a_{n_i+1}, \ldots, a_{n_f},$ con $a_{n_i+1} = a_{n_i} + d, a_{n_i+2} = a_{n_i} + 2d, \ldots$ es

$$\sum_{k=n_i}^{n_f} a_k = \frac{(n_f - n_i + 1)(a_{n_i} + a_{n_f})}{2}.$$

1) Soporte de las señales

a) Soporte de $x_1[n]$

La función rectangular $\prod \left(\frac{n-6}{13}\right)$ es no nula solo cuando:

$$\left|\frac{n-6}{13}\right| \leq \frac{1}{2} \longrightarrow -\frac{13}{2} \leq n-6 \leq \frac{13}{2} \longrightarrow -\frac{1}{2} \leq n \leq \frac{25}{2}.$$

Dado que n es un número entero, el soporte de $x_1[n]$ es:

$$n \in \{0, 1, 2, \dots, 12\}.$$

b) Soporte de $x_2[n]$

La función rectangular $\prod \left(\frac{-n-3}{5}\right)$ es no nula solo cuando:

$$\left|\frac{-n-3}{5}\right| \leq \frac{1}{2} \longrightarrow -\frac{5}{2} \leq -n-3 \leq \frac{5}{2} \longrightarrow -\frac{1}{2} \leq -n \leq \frac{11}{2} \longrightarrow -\frac{11}{2} \leq n \leq \frac{1}{2}.$$

Dado que n es un número entero, el soporte de $x_2[n]$ es:

$$n \in \{-5, -4, -3, -2, -2, -1, 0\}.$$

2) Soporte de la convolución

El soporte de la convolución $y[n]=(x_1*x_2)[n]$ es la suma de los soportes de $x_1[n]$ y $x_2[n]$. Como el soporte de $x_1[n]$ es $\{0,1,\ldots,12\}$ y el soporte de $x_2[n]$ es $\{-5,-4,\ldots,0\}$, y[n] será no nula en $n\in\{-5,-4,\ldots,12\}$.

3) Expresión de la convolución

La convolución se calcula como:

$$y[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n-k].$$

Dado que $x_1[k]$ y $x_2[n-k]$ son no nulas solo en sus respectivos soportes, la suma se reduce a los valores de k donde ambos términos son no nulos. Esto ocurre cuando:

$$k \in \{0, 1, \dots, 12\}, \quad n - k \in \{-5, -4, \dots, 0\}.$$

Para que $n - k \in \{-5, -4, ..., 0\}$, se tiene:

$$-5 \le n - k \le 0 \longrightarrow n \le k + 5 \text{ y } k \le n.$$

Por lo tanto, los valores de k están restringidos por:

$$\max(0, n - 5) \le k \le \min(12, n).$$

La convolución se convierte en:

$$y[n] = \sum_{k=\max(0,n-5)}^{\min(12,n)} (k-6) \prod \left(\frac{k-6}{13}\right) \prod \left(\frac{-(n-k)-3}{5}\right).$$

4) Evaluación de los productos

a) Propiedades de $\prod (x)$

La función rectangular $\prod(x)$ es igual a 1 cuando $|x| \le \frac{1}{2}$ y 0 en otro caso. Por lo tanto:

•
$$\prod \left(\frac{k-6}{13}\right)$$
 si $k \in \{0,1,\ldots,12\}$, y 0 en otro caso.

•
$$\prod \left(\frac{-(n-k)-3}{5}\right) = 1 \text{ si } n-k \in \{-5, -4, \dots, 0\}, \text{ y } 0 \text{ en otro caso.}$$

Esto asegura que la suma realiza únicamente en el intervalo $k \in [\max(0, n-5), \min(12, n)].$

5) Suma de una progresión aritmética

Dentro del intervalo válido para k, el término k-6 forma una progresión aritmética con diferencia d=1. La

suma de una progresión aritmética $a_k = k - 6$ desde $k = k_{\min}$ hasta k_{\max} es:

$$\sum_{k=k}^{k_{\text{max}}} (k-6) = \frac{(k_{\text{max}} - k_{\text{min}} + 1)((k_{\text{min}}) - 6) + (k_{\text{max}} - 6)}{2}.$$

Aquí:

$$k_{\min} = \max(0, n - 5), \quad k_{\max} = \min(12, n).$$

19) Se pretende procesar la señal x(t) de la figura con un sistema LTI cuya respuesta al impulso es

$$h(t) = t \prod \left(\frac{2t-4}{8}\right) - 2\delta(t+12)$$

- a) Obtenga la salida del sistema y(t).
- b) Indique razonadamente si este sistema posee las propiedades de memoria, causalidad y estabilidad.
- c) Calcule la energía total y la potencia media de x(t), e indique si está definida en energía o en potencia.
- d) A partir del resultado del apartado (a), y utilizando únicamente propiedades de la convolución, obtenga la salida del sistema frente a la entrada

$$z(t) = 8 \bigwedge \left(\frac{t-4}{4}\right)$$

- **20)** Se pretende procesar la señal $x[n] = \sin\left(\frac{\pi}{4}n\right)u[n]$ con un sistema LTI cuya respuesta al impulso es $h[n] = \sin\left(\frac{\pi}{4}n\right)u[n+2]$.
 - a) Represente en detalle x[n] y h[n].
 - b) Indique razonadamente si este sistema definido por h[n] posee las propiedades de memoria, causalidad y estabilidad.
 - c) Calcule la señal de salida del sistema.
 - d) Calcule la energía total y la potencia media de x[n], e indique si está definida en energía o en potencia.
 - e) Indique si la señal $z[n] = x[n] + x^*[-n]$ es periódica y, en su caso, obtenga el valor de su periodo.
- **21)** Sean la señal de entrada x(t) y la respuesta al impulso h(t) de un sistema LTI las siguientes:

$$x(t) = \sin(3\pi t)$$
 $h(t) = \prod \left(\frac{t-2}{6}\right)$

- a) Razone si el sistema tiene memoria, si es causal y si es estable.
- b) Calcule analíticamente la señal de salida.
- c) Calcule la energía total y la potencia media de x(t), e indique si está definida en energía o en potencia.

- d) A partir del resultado del apartado (b), y aplicando únicamente propiedades de la convolución, obtenga la señal de salida producida por la entrada $z(t) = \cos(3\pi t)$.
- **22**) Sea

$$y(t) = e^{-t}u(t) * \sum_{k=-\infty}^{\infty} \delta(t - 3k).$$

Demuestre que $y(t) = Ae^{-t}$ para $0 \le t < 3$, y determine el valor de A.

- **23)** Sea un sistema discreto S_1 con respuesta al impulso $h[n] = \left(\frac{1}{5}\right)^n u[n]$.
 - a) Determine el número real A tal que $h[n] Ah[n-1] = \delta[n]$.
 - b) A partir del resultado del apartado anterior, determine la respuesta al impulso del sistema inverso de S_1 .
- 24) Sea la conexión en cascada de dos sistemas S_1 y S_2 LTI causal tal que: En S_1 la relación entre entrada x[n] y salida $w[n] = \frac{1}{2}w[n-1] + x[n]$. En S_2 la relación entre entrada w[n] y salida y[n] es $y[n] = \alpha y[n-1] + \beta[n]$.

Si la ecuación en diferencias que relaciona y[n] y x[n] es

$$y[n] = -\frac{1}{8}y[n-2] + \frac{3}{4}y[n-1] + x[n]$$

- a) Determine α y β .
- **b)** Obtenga la respuesta al impulso de la conexión en cascada de S_1 y S_2 .
- **25)** La salida de un sistema viene dada por y[n] = x[2+n] + x[2-n].
 - a) Indique razonadamente si el sistema cumple las propiedades de memoria, causalidad, estabilidad, invarianza en el tiempo y/o linealidad.
 - **b)** Considere la señal $x[n] = \bigwedge \left(\frac{n}{3}\right) + \bigwedge \left(\frac{n-6}{3}\right)$. Obtenga y represente la parte par x[n], indicando si se trata de una señal definida en energía o en potencia.
 - c) Realice la convolución discreta $x_1[n] * x_2[n]$, siendo

$$x_1[n] = \prod \left(\frac{n-6}{13}\right) + u[n-13]$$
$$x_2[n] = \bigwedge \left(\frac{n-3}{5}\right).$$

26) Se pretende filtrar la señal x(t) con un sistema LTI cuya respuesta al impulso es h(t).

$$x(t) = \left(1 + \bigwedge\left(\frac{t-4}{1}\right)\right) \prod\left(\frac{t-1.5}{5}\right)$$
$$h(t) = \frac{9}{2} \bigwedge\left(\frac{t-4}{3}\right) u(t-5) + 2\delta(t)$$

- a) Represente detalladamente las señales x(t) y h(t).
- **b)** Indique razonadamente si el sistema definido por h(t) cumple las propiedades de memoria, causalidad, estabilidad y/o invarianza.
- c) Calcule de forma analítica la convolución y(t) = x(t) * h(t). (Nota: puede hacer uso de las propiedades de la convolución).
- d) Calcule la energía y la potencia de x(t), indicando si se trata de una señal definida en energía o en potencia.

27) Considere un sistema LTI cuya señal de salida y(t) viene dada por

$$y(t) = \int_{1}^{\infty} 3e^{-(2+5j)\tau} x(t-\tau) d\tau.$$

- a) Obtenga la respuesta al impulso del sistema LTI.
- b) Indique razonadamente si el sistema posee las propiedades de memoria, causalidad y/o estabilidad.
- c) Calcule la señal de salida del sistema cuando la señal de entrada es un escalón unitario.
- d) Calcule la energía y potencia de la señal y(t), indicando si se trata de una señal definida en energía o en potencia.
- **28)** Se pretende filtrar la señal x[n] con un sistema LTI cuya respuesta al impulso es h[n]:

$$x[n] = (u[n+6] - u[n-7] + \delta[-n+7])u[-n+10]$$
$$h[n] = 0.4^{n-2}u[n-2]u[n]$$

- a) Represente detalladamente x[n] y h[n].
- **b)** Indique razonadamente si el sistema definido por h[n] cumple las propiedades de memoria, causalidad y/o estabilidad.
- c) Utilizando la definición, calcule la convolución y[n] = x[n] * h[n].
- d) Calcule la energía y la potencia de x[n], indicando si es una señal definida en energía o en potencia.
- 29) Considere el siguiente diagrama de bloques de un sistema causal (figura 2).

Figura 2

30) Considere el sistema descrito por la siguiente relación entre la entrada y la salida:

$$y[n] = \sum_{k=-\infty}^{n-1} x[k-1]$$

- a) Indique razonadamente si el anterior sistema cumple las propiedades de memoria, causalidad, estabilidad, invertibilidad, linealidad y/o invarianza temporal.
- b) ¿Se trata de un sistema LTI? En caso afirmativo, obtenga y represente su respuesta al impulso h[n].
- c) Utiliza la definición de convolución, obtenga la salida del sistema del enunciado, y[n], cuando a su entrada se tiene la señal x[n] = (n+1)u[n].
- d) Calcule la energía total y la potencia media de la señal x[n] del apartado anterior, indicando de qué tipo de señal se trata según estos valores.

31) Considere el sistema LTI discreto consistente en la conexión en serie de los subsistemas LTI descritos por

$$h_1[n] = n\delta[n-1]$$

$$h_2[n] = \left(\frac{1}{3}\right)^{n-1} u[n+1]$$

Obtenga la salida del sistema y[n] cuando la entrada es

$$x[n] = (-1)^n (u[2-n] - u[-n-1])$$

32) Represente el diagrama de bloques en forma canónica del sistema dado por la ecuación diferencial

$$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + 2\frac{\mathrm{d}y(t)}{\mathrm{d}t} - 8y(t) = x(t) - \frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

33) Dibuje el diagrama de bloques de los siguientes sistemas LTI causales descritos mediante sus ecuaciones en diferencias:

a)
$$y[n] = \frac{1}{3}y[n-1] + \frac{1}{2}x[n]$$

b)
$$y[n] = \frac{1}{3}y[n-1] + x[n-1]$$

34) Dibuje el diagrama de bloques de los siguientes sistemas LTI causales descritos mediante sus ecuaciones diferenciales:

a)
$$y(t) = -\frac{1}{2} \frac{dy(t)}{dt} + 4x(t)$$

$$\mathbf{b)} \ \frac{\mathrm{d}y(t)}{\mathrm{d}t} + 3y(t) = x(t)$$

35) Obtenga las formas directas I y II del sistema LTI causal cuya entrada x[n] y salida y[n] están relacionadas mediante la ecuación en diferencias

$$y[n] = -ay[n-1] + b_0x[n] + b_1x[n-1]$$

36) Obtenga las formas directas I y II del sistema LTI causal cuya entrada x(t) y salida y(t) están relacionadas mediante la ecuación diferencial

$$a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t) = b_0 x(t) + b_1 \frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

37) Obtenga que la ecuación diferencial del ejercicio anterior se puede escribir en forma de ecuación integral como

$$y(t) = A \int_{-\infty}^{t} y(\tau) d\tau + Bx(t) + C \int_{-\infty}^{t} x(\tau) d\tau$$

expresando las constantes A, B y C en términos de las constantes $a_0, a_1, b_0 y b_1$.

Obtenga las formas directas I y II del sistema LTI causal expresado según esta ecuación integral.