Differentiation

Limit existence: $\lim_{x \to c} f(x) = \lim_{x \to c} f(x)$

Continuity: Applicable to endpoints, (1) f(c) exists, (2) $\lim_{x\to c} f(x)$ exists, and (3) $\lim_{x\to c} f(x) = f(c)$

Rational functions:

$$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{\overbrace{Ax^{\alpha}}^{\text{leading term}}}{\underbrace{Bx^{\beta}}_{\text{leading term}}} + \cdots = \begin{cases} 0, \alpha < \beta \\ \frac{A}{B}, \alpha = \beta \\ \infty / - \infty, \alpha > \beta \end{cases}$$

Common limits: If $\lim g(x) = 0$, then

- $\lim_{n\to\infty} \frac{\ln n}{n} = 0$
- $\lim_{n\to\infty} x^{\frac{1}{n}} = 1(x>0)$
- $\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x(\text{any } \mathbf{x})$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- $\lim_{n\to\infty} x^n = 0(|x| < 1)$
- $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ (any x)
- $\bullet \lim_{x \to c} \frac{\sin g(x)}{g(x)} = 1$
- $\bullet \lim_{x \to c} \frac{1 \cos g(x)}{g(x)} = 0$
- $\bullet \lim_{x \to c} \frac{\tan g(x)}{g(x)} = 1$
- $\bullet \lim_{x \to \infty} \frac{1}{x^n} = \lim_{x \to -\infty} \frac{1}{x^n} = 0$

Derivative of inverse function: Let f be bijective and differentiable on an open interval I

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

Parametric equations:

$$x = f(t)$$
 and $y = g(t), \therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

Common differentiation identities

Function	Derivative	Function	Derivative
x^n	nx^{n-1}	$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos x$	$-\sin x$	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\sin x$	$\cos x$	$\tan^{-1} x$	$\frac{1}{1+x^2}$
$\tan x$	$\sec^2 x$	$\sec^{-1} x$	$\frac{1}{ x \sqrt{x^2-1}}, x > 1$
$\sec x$	$\sec x \tan x$	$\csc^{-1} x$	$-\frac{1}{ x \sqrt{x^2-1}}, x > 1$
$\csc x$	$-\csc x \cot x$	$\cot^{-1} x$	$-\frac{1}{1+x^2}$
$\cot x$	$-\csc^2 x$	$\ln x$	$\frac{1}{x}$
e^x	e^x		

Evaluating $\csc^{-1} x, \sec^{-1} x, \cot^{-1} x$: $\sin^{-1} \frac{1}{x}, \cos^{-1} \frac{1}{x}, \tan^{-1} \frac{1}{x}$ **Point of inflection:** f''(c) = 0 if (c, f(c)) is a point of inflection and

Maximum and minimum values:

- **Maximum:** $f(x) \leq f(c) \forall x \in D$ (global) or $f(x) \leq f(c \forall x)$ in open
- Minimum: $f(x) \ge f(c) \forall x \in D$ (global) or $f(x) \ge f(c \forall x)$ in open

Critical point: of f is a) not an endpoint, and b) either f'(c) = 0 or f'(c) does not exist

First derivative test: Let f be differentiable on an open interval containing a critical point c except possibly at c and f is continuous at c. If f' goes from...

- $-ve \rightarrow +ve \Rightarrow \text{minimum at } f(c)$
- $+ve \rightarrow -ve \Rightarrow \text{maximum at } f(c)$
- Unchanged \Rightarrow no extreme

Second derivative test: Let f be a twice differentiable function defined in an open interval containing c. If f'(c) = 0 and f''(c) is...

- < 0, f(c) is a local maximum
- > 0, f(c) is a local minimum
- $\bullet = 0$ is inconclusive

L'Hôpital's Rule:

If $\lim_{x\to c} \frac{f(x)}{g(x)}$ is $\frac{\infty}{\infty}$ or $\frac{0}{0}$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

$\mathbf{2}$ Integrals

Partial fractions

Only possible if deg(P(x)) < deg(Q(x)). If $deg(P(x)) \ge deg(Q(x))$, then perform polynomial division first.

$$ax + b \longrightarrow \frac{A}{ax + b}$$

$$(ax + b)^k \longrightarrow \frac{A_1}{ax + b} + \frac{A_2}{(ax + b)^2} + \dots + \frac{A_k}{(ax + b)^k}$$

$$ax^2 + bx + c \longrightarrow \frac{Ax + B}{ax^2 + bx + c}$$

$$(ax^2 + bx + c)^k \longrightarrow \frac{A_1x + B}{ax^2 + bx + c} + \dots + \frac{A_kx + B}{(ax^2 + bx + c)^k}$$

Integration by substitution

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Integration by parts:

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

Priority of functions:

Differentiation	Integration
Logarithmic	Exponential
Inverse trigonometric	Trigonometric
Algebraic (polynomials)	
Trigonometric	

Riemann sums: Approximating the area under function f from a to bby dividing each section into rectangles of width $\frac{1}{n}$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \left\{ \sum_{k=1}^{n} \left(\frac{b-a}{n} \right) f\left(a + k \left(\frac{b-a}{n} \right) \right) \right\}$$

Fundamental Theorem of Calculus:

$$\frac{d}{dx} \int_{a}^{g(x)} f(t)dt = f(g(x))g'(x)$$

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where F(x) is the antiderivative of f(x)

Type 1 Improper Integral: If limit does not exist, improper integral diverges, else it converges

If f(x) is continuous on given range,

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

Type 2 Improper Integrals

1. $\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx \text{ if } f(x) \text{ is continuous on } (a, b] \text{ and dis-}$

- 2. $\int_a^b f(x)dx = \lim_{c \to b^-} \int_a^c f(x)dx \text{ if } f(x) \text{ is continuous on } [a,b) \text{ and discontinuous at } b$
- 3. $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \text{ if } f(x) \text{ is discontinuous at } c$ with a < c < b

Common integration identities:

Function	Antiderivative	
$\int (ax+b)^n dx$	$\frac{(ax+b)^{n+1}}{(n+1)a} + C, (n \neq 1)$	
$\int \frac{1}{ax+b} dx$	$\frac{1}{a}\ln ax+b + C$	
$\int e^{ax+b} dx$	$\frac{1}{2}e^{ax+b} + C$	
$\int \sin(ax+b)dx$	$-\frac{1}{a}\cos(ax+b)+C$	
$\int \cos(ax+b)dx$	$\frac{1}{a}\sin(ax+b) + C$	
$\int \tan(ax+b)dx$	$\frac{1}{2} \ln \sec(ax+b) + C$	
$\int \sec(ax+b)dx$	$\frac{1}{a}\ln \sec(ax+b) + \tan(ax+b) + C$	
$\int \csc(ax+b)dx$	$\begin{vmatrix} a \\ -\frac{1}{a} \ln \csc(ax+b) + \cot(ax+b) + C \end{vmatrix}$	
$\int \cot(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) + C$	
$\int \sec^2(ax+b)dx$	$\frac{1}{2}\tan(ax+b)+C$	
$\int \csc^2(ax+b)dx$	$\begin{vmatrix} a \\ -\frac{1}{a}\cot(ax+b) + C \end{vmatrix}$	
$\int \sec(ax+b)\tan(ax+b)dx$	$\frac{1}{a}\sec(ax+b)+C$	
$\int \csc(ax+b)\cot(ax+b)dx$	$-\frac{1}{c}\csc(ax+b)+C$	
$\int \frac{1}{a^2 + (x+b)^2} dx$	$\frac{1}{a}\tan^{-1}(\frac{x+b}{a}) + C$	
$\int \frac{d^2 + (x+b)^2}{\sqrt{a^2 - (x+b)^2}} dx$	$\sin^{-1}(\frac{x+b}{a}) + C$	
$\int \sqrt{a^2 - (x+b)^2} \int \frac{-1}{\sqrt{a^2 - (x+b)^2}} dx$	$\cos^{-1}(\frac{x+b}{}) + C$	
0 1	$\frac{1}{2a} \ln \left \frac{x+b+a}{x+b-a} \right + C$	
$\int \frac{1}{a^2 - (x+b)^2} dx$	$\begin{bmatrix} 2a & [x+b-a] \end{bmatrix}$	
$\int \frac{1}{(x+b)^2 - a^2} dx$	$\frac{1}{2a} \ln \left \frac{x+b-a}{x+b+a} \right + C$	
$\int \frac{1}{\sqrt{(x+b)^2 \pm a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 \pm a^2}\right + C$	
$\int_{C} \sqrt{a^2 - x^2} dx$	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}(\frac{x}{a}) + C$	
$\int \sqrt{x^2 - a^2} dx$	$\frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\ln\left x + \sqrt{x^2 - a^2}\right + C$	

Area between curves:

Regardless of whether $f(x) \ge g(x)$ or vice versa

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

If lower bound by x-axis, then g(x) is a constant function of 0

Note: split into smaller integrals if necessary

Volume of solid of revolution: Assuming revolution about x-axis or y-axis only

Disk method:

$$V = \pi \int_{a}^{b} [f(x)]^{2} dx - \pi \int_{a}^{b} [g(x)]^{2} dx$$

where f(x) and g(x) is the radius of the outer and inner disk and $f(x) \ge g(x)$ (applicable for functions of y)

Cylindrical shell method:

$$V = 2\pi \int_{a}^{b} x \left| f(x) - g(x) \right| dx$$

where x is the radius of the shell, f(x) - g(x) is the height of the shell, and $f(x) \ge g(x)$ (applicable for functions of y)

Arc length of curve:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

applicable to x = f(y) as well

3 Sequences and series

$$\sum_{n=1}^{\infty} a_n$$

(Infinite) series is convergent is the sequence of partial sums S_n is convergent, otherwise, it is divergent

Types of series:

1. Geometric series

$$\sum_{n=1}^{\infty} ar^{n-1}, (a \neq 0)$$

Convergent to $\frac{a}{1-r}$ when |r| < 1, otherwise, divergent

2. Harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

is always divergent

3. p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is convergent iff p > 1

4. Alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$$

 b_n is positive and used in alternating series test

5. Power series

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$$

centered at a. Is the representation of the final function after converging, e.g. $\sum_{n=0}^{\infty} x^n$ is the power series representation of the function $\frac{1}{1-x}$ about x=0

- (a) Converges at x = a only
- (b) Converges for all x
- (c) Converges if |x-a| < R (radius of convergence) and diverges if |x-a| > R (|x-a| = R needs to be checked separately)
- 6. Taylor and Maclaurin series (if f has a power series representation at x=a, then it can be represented as a Taylor series of f at x=a

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

If a = 0, then it is a Maclaurin series of f

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

compute $f^{(n)}(a)$ first and then solve for a given a before finding the rest of the Taylor series

Radius of convergence: Given a power series and $\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=L$ or

 $\lim_{n \to \infty} \sqrt[n]{|c_n|} = L, \text{ then } R = \frac{1}{L}$ If R > 0, then

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

$$f'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}, |x-a| < R$$

$$\int f(x)dx = \sum_{n=1}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}, |x-a| < R$$

Tests

1. Test for divergence: If $\lim_{n\to\infty} a_n$ does not exist or not equals 0, then the series $\sum_{n=0}^{\infty} a_n$ is divergent

- 2. Integral Test: If a_n is a sequence of positive terms and f(n) is continuous, positive, decreasing function for all $n \ge 1$, then if $\int_{\mathbb{R}^n} f(x)dx$ is convergent, so is $\sum_{n=0}^{\infty} a_n$, otherwise, divergent
- 3. Comparison Test: Given $a_n \leq b_n \forall n$, then if $\sum_{n=0}^{\infty} b_n$ converges, so does $\sum_{n=1}^{\infty} a_n$. If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} b_n$
- 4. Ratio Test: $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$, then
- 5. Root Test: $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$, then
 - (a) $0 \le L < 1$: $\sum_{n=1}^{\infty} a_n$ is absolutely convergent $(\sum_{n=1}^{\infty} |a_n|)$
 - (b) L > 1: $\sum_{n=1}^{\infty} a_n$ is divergent
- 6. Alternative Series Test: If b_n is a sequence of positive numbers such that (1) b_n is decreasing (using derivative) and (2) $\lim_{n\to\infty} b_n =$ 0, then $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is convergent
- 7. Absolute Convergence: If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges (converse is not always true, i.e. converge conditionally)

Vectors

Distance between points $P_1(x_1,y_1,z_1)$ and $P_2(x_2,y_2,z_2)$: $|P_1P_2|$ $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

Equation of sphere: Center (h, k, l): $(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$ Vector from $A(x_1,y_1,z_1)$ to $B(x_2,y_2,z_2)$: $\overrightarrow{AB} = \vec{a} = \langle x_2 - x_1, y_2 - x_1 \rangle$

Length of $\vec{u} = \langle u_1, u_2, u_3 \rangle$: $||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Unit vector: $\vec{u} = \frac{\vec{a}}{||\vec{a}||}$

Dot product: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$

Angle between vectors: $\vec{a} \cdot \vec{b} = ||\vec{a}||||\vec{b}|| \cos \theta$

Orthogonal vectors: $\vec{a} \cdot \vec{b} = 0$

Vector projection of \vec{b} onto \vec{a} : $\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$ Shortest distance from point $P(x_0, y_0, z_0)$ to the plane ax+by+cz=d: $\frac{|ax_0+by_0+cz_0-d|}{\sqrt{a^2+b^2+c^2}}$ Cross product:

Cross product:

$$ec{a} imesec{b}=egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{array}$$

Remember the minus in the middle $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and \vec{b}

Angle between vectors using cross product: $||\vec{a} \times \vec{b}|| = ||\vec{a}|| ||\vec{b}|| \sin \theta$ Area of parallelogram forms by \vec{a} and \vec{b} : $||\vec{a} \times \vec{b}||$, area of triangle

Distance from point to line: $||\vec{a}||\sin\theta = \frac{||\vec{a} \times \vec{b}||}{||\vec{b}||}$ where \vec{b} is the pro-

Equation of line given point already on the line $(\vec{r}_0 = \langle x_0, y_0, z_0 \rangle)$ and parallel vector $(\vec{v} = \langle a, b, c \rangle)$: $\vec{r} = \vec{r_0} + t\vec{v}$. In parametric form: $\langle x_0 + v \rangle$

Skew lines: Non-parallel and non-intersecting lines (show non-parallel if both lines are not multiples of each other (using the parallel vector from the line) and show non-intersecting by equating the coordinates and showing inconsistency)

Equation of plane: $\vec{n} \cdot (\vec{r} - \vec{r_0}) = 0$ given that \vec{n} is orthogonal to the plane (using cross product of two chosen vectors) and \vec{r}_0 is the starting point used

Linear equation of plane: ax + by + cz + d = 0 where $d = -(ax_0 + by + cz + d)$

Non-parallel planes intersect at a line and the angle between these planes is the acute angle between their normal vectors.

Functions of several variables

Derivative of vector-valued function $(\vec{r}(t) = \langle f(t), g(t), h(t) \rangle)$: $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$

Arc length in space given $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$: $\int_a^b ||\vec{r}'(t)||$

Cylinder: there exists a plane P such that all planes parallel to P intersect the surface in the same curve $(x^2 + y^2 = a^2)$ in 3-d is a cylinder

Quadric surface: graph of second-degree equation with three variables i.e. includes x^2, y^2, z^2

Elliptic paraboloid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$

Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Partial derivatives (with respect to a given variable): differentiate while keeping all other variables constant - $\frac{\partial f}{\partial x} = f_x$

Higher order partial derivatives: f_{xx} or f_{xy}

Clairaut's Theorem (used to check if f exists based on f_x and f_y):

 $f_{xy} = f_{yx}$

Equation of tangent plane with normal vector $\langle f_x(a,b), f_y(a,b), -1 \rangle$: $f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z-f(a,b)) = 0$

Chain rule: $\frac{\partial w}{\partial x} = \frac{\partial w}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial w}{\partial g} \frac{\partial g}{\partial y} + \cdots$ (draw tree diagram of relations and pick all branches that have intended variable)

Implicit differentiation (z is a function of x and y):

$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)}$$

Increments of Δz : $\Delta z \approx dz = f_x(a,b)dx + f_y(a,b)dy = f_x(a,b)\Delta x +$ $f_y(a,b)\Delta y$

Directional derivative in direction of unit vector (\vec{u}) : $D_u f(x,y,z) = \nabla f \cdot \vec{u}$ where ∇f is the gradient vector: $\langle f_x, f_y, f_z \rangle$ at

Tangent plane to level surface: $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle =$

Change in given direction: $D_u f(x, y, z) * ds$ (directional derivative times the increment)

Maximum rate of increase/decrease: in the direction of the gradient vector ∇f ($-\nabla f$ for decrease)

Second derivative test (on critical points $f_{xx} = f_{yy} = 0$): D = 0 $D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$

- 1. $D > 0, f_{xx}(a, b) > 0 \Rightarrow f(a, b)$ is local minimum
- 2. $D > 0, f_{xx}(a, b) < 0 \Rightarrow f(a, b)$ is local maximum
- 3. $D < 0 \Rightarrow f(a, b)$ is saddle point
- 4. $D=0 \Rightarrow$ is inconclusive

6 Double Integrals

Find the area under the graph $(R = \{(x,y) | c \le x \le d, a \le y \le b\})$ and integrate over it

$$\iint_{R} f(x,y)dA = \int_{c}^{d} \int_{a}^{b} f(x,y)dydx$$

order of integration does not matter (Fubini's Theorem)

$$\iint_R f(x,y) dA = \left(\int_a^b g(x) dx \right) \left(\int_c^d h(y) dy \right)$$

Type 1 region: $R = \{(x, y) | a \le x \le b, h(x) \le y \le g(x) \}$

$$\int_{a}^{b} \int_{h(x)}^{g(x)} f(x, y) dy dx$$

Type 2 region: $R = \{(x, y) | h(y) \le x \le g(y), c \le y \le d\}$

$$\int_{c}^{d} \int_{h(y)}^{g(y)} f(x, y) dx dy$$

$$\iint_D f(x,y)dA = \iint_{D_1} f(x,y)dA + \dots + \iint_{D_n} f(x,y)dA$$

Area of plane region:

$$\iint_D 1dA$$

Convert to polar coordinates (if region is circular): $r^2 = x^2 + y^2, x = r\cos\theta, y = r\sin\theta$ (r is the radius and θ is the quadrants occupied)

$$R = \{(r, \theta) | a \le r \le b, \alpha \le \theta \le \beta\}$$

$$\iint_{R} f(x,y)dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta)rdrd\theta$$

Surface areas

$$\iint_D dS = \iint_D \sqrt{f_x^2 + f_y^2 + 1} dA$$

7 Ordinary Differential Equations

Separable first order ODE:

$$\frac{dy}{dx} = f(x)g(y)$$

$$\int \frac{1}{g(y)} dy = \int f(x) dx + C$$

Proportional rate of change:

$$\frac{dy}{dx} = ky$$

Half-life formula: $y = Ae^{-kt}$

Reduction to separable form: substitute common variables with new variables, differentiate new variable and substitute back into original differential equation to solve

Linear first order ODE:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

create integrating factor $I(x) = e^{\int P(x)dx}$ and use for

$$\frac{d}{dx}(y \cdot I(x)) = Q(x) \cdot I(x)$$

Bernoulli Equation:

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$

find $u = y^{1-n}$ and substitute into original equation

$$\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)$$

solve new linear first order ODE

Standard Malthus's model:

$$N(t) = \hat{N}e^{kt}$$

Logistic Malthus' model:

$$N(t) = \frac{N_{\infty}}{1 + \left(\frac{N_{\infty}}{\hat{N}} - 1\right)e^{-Bt}}$$

where \hat{N} is the initial population and N_{∞} is the carrying capacity (max)

8 Basics

Solving quadratic inequalities

Find the roots, select x between roots, apply x to quadratic inequality to check if applicable. If applicable, include root in solution

Solving absolute inequalities

 $\begin{array}{l} \text{Applicable to} < and > \\ |f(x)| \leq g(x) \Leftrightarrow -g(x) \leq f(x) \leq g(x) \\ |f(x)| \geq g(x) \Leftrightarrow f(x) \leq -g(x) \vee f(x) \geq g(x) \end{array}$

Solving rational inequalities

Bring all terms with x to one side and solve accordingly

Change of base formulae

$$\log_a x = \frac{\ln x}{\ln a}, a > 0 \text{ and } a \neq 1$$

9 Appendix

Trigonometric identities:

- $\cos 2x = \cos^2 x \sin^2 x = 1 2\sin^2 x = 2\cos^2 x 1$
- $\sin 2x = 2\sin x \cos x$
- $\bullet \ \tan 2x = \frac{2\tan x}{1 \tan^2 x}$
- $cos(A \pm B) = cos(A)cos(B) \mp sin(A)sin(B)$
- $\sin(A \pm B) = \sin(A)\cos(B) \pm \cos(A)\sin(B)$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
- $\bullet \sec^2 x 1 = \tan^2 x$
- $\bullet \csc^2 x 1 = \cot^2 x$
- $\bullet \sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B))$
- $\cos A \sin B = \frac{1}{2}(\sin(A+B) \sin(A-B))$
- $\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B))$
- $\sin A \sin B = -\frac{1}{2}(\cos(A+B) \cos(A-B))$
- $\sqrt{a^2 (x+b)^2} \to x + b = a \sin \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
- $\sqrt{a^2 + (x+b)^2} \to x + b = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$
- $\sqrt{(x+b)^2 a^2} \to x + b = a \sec \theta, 0 \le \theta \le \frac{\pi}{2} \text{ or } \pi \le \theta < \frac{3\pi}{2}$

Common Maclaurin series:

- $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots$
- $(1+x)^n = 1+nx+\frac{n(n-1)}{2!}x^2+\cdots+\frac{n(n-1)\cdots n(n-r+1)}{r!}x^r+\cdots$
- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^r}{r!} + \dots$
- $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots + \frac{(-1)^r x^{2r+1}}{(2r+1)!} + \dots$
- $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots + \frac{(-1)^r x^{2r}}{(2r)!} + \dots$
- $\ln 1 + x = x \frac{x^2}{2} + \frac{x^3}{3} \dots + \frac{(-1)^{r+1}x^r}{r} + \dots$

Others

- $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- $a^3 b^3 = (a b)(a^2 + ab + b^2)$
- Ellipse: $x = a \cos t + x_0$; $y = b \sin t + y_0$
- Circle: $x = r \cos t + x_0$; $y = r \sin t + y_0$
- Hyperbola: $x = a \sec t + x_0; y = b \tan t + y_0$