Compare API and DEV Simple Means

Mitch Toland 3/26/2020

Introduction

This report compares the means calculated by Ceres with the value store by Ceres and with the value calculated in the Domino development environment. The average of the values match the stored mean value.

Caution

The means being calculated are of the nonzero values only. This may not be what people want because some datasets have many zeros. Thus the reported means will be higher than those including the zero-values.

First the needed software must loaded.

```
library(jsonlite)
library(readxl)
```


smbsigsmmf

Next, filepathes are created and summary functions are defined. The input json files only have a stored mean value in subsites under local under means. The global arm of hte json-files have a slightly different structure. Therefore all of the comparisons are based on the local arm of hte json-files.

```
zdir <- "/repos/RCB4Cloud/Reference/Data/prod_out/p360/"</pre>
lstfls <- list.files("/repos/RCB4Cloud/Reference/Data/prod_out/p360/")</pre>
           <- c(which(substr(lstfls, 11, 12) == "S8"),
smFileId
                 which(substr(lstfls, 11, 12) == "S9"))
smbsFileId <-
                 which(substr(lstfls, 11, 12) == "SB")
SMsummaryFunc <- function(zi){</pre>
                      <- from JSON (paste 0 (zdir, lstfls[zi]))
  smi
  smigsmmf
                      <- (as.data.frame(do.call(cbind,
                                                  lapply(smi$modelOutputs$simpleMeans$means$global$factors
  smimosm_input_data <- smi$modelOutputs$simpleMeans$input$data[[1]][, 1:10]</pre>
  smilsmms <-
                            smi$modelOutputs$simpleMeans$means$local$subsites[[1]]
  smilsmmsm <- as.numeric(smi$modelOutputs$simpleMeans$means$local$subsites[[1]]$value)
  smilsmmsf <-
                            smi$modelOutputs$simpleMeans$means$local$subsites[[1]]$factors
  #smilsmmsa <-
                             smi\$modelOutputs\$simpleMeans\$means\$local\$subsites[[1]]\$answers
                             smi\$modelOutputs\$simple Means\$means\$local\$subsites \hbox{\tt [[1]]$} controls
  #smilsmmsc <-
  zms <- c(mean(</pre>
                             smilsmmsm
                                                       , na.rm=TRUE),
                             smimosm_input_data$value, na.rm=TRUE);
                                                     , na.rm=TRUE))
           mean(as.numeric(smilsmmsf[[1]]$value)
  return(list(means=zms, differences=diff(round(zms, 10))))
}
SMBSsummaryFunc <- function(zi){</pre>
                        <- from JSON (paste 0 (zdir, lstfls[zi]))
```

<- (as.data.frame(do.call(cbind, lapply(smbsi\$modelOutputs\$simpleMeans\$means\$glo</pre>

smbsimosm_input_data <- smbsi\$modelOutputs\$simpleMeans\$input\$data[[1]][, 1:10]</pre>

```
smbsi$modelOutputs$simpleMeans$means$local$subsites[[1]]
  smbsilsmms <-
  smbsilsmmsm <- as.numeric(smbsi$modelOutputs$simpleMeans$means$local$subsites[[1]]$value)
  smbsilsmmsf <-</pre>
                             smbsi$modelOutputs$simpleMeans$means$local$subsites[[1]]$factors
  #smbsilsmmsa <-
                              smbsi\$modelOutputs\$simpleMeans\$means\$local\$subsites[[1]]\$answers
                              smbsi\$modelOutputs\$simpleMeans\$means\$local\$subsites[[1]]\$controls
  #smbsilsmmsc <-
  zms <- c(mean(</pre>
                            smbsilsmmsm
                                                        , na.rm=TRUE),
           mean(
                            smbsimosm_input_data$value, na.rm=TRUE),
                                                        , na.rm=TRUE)))
           mean(as.numeric(smbsilsmmsf[[1]]$value
  return(list(means=zms, differences=diff(round(zms, 10))))
}
```


Next, run the summary functions on both the global and local json-files.

```
smm <- as.data.frame(do.call(rbind, lapply(smFileId, function(zi){SMsummaryFunc(zi)$means})))
names(smm) <- c("LocalMean", "InputDataMean", "FactorValueMean")
smd <- as.data.frame(do.call(rbind, lapply(smFileId, function(zi){SMsummaryFunc(zi)$differences})
names(smd) <- c("InputMean-LocalMean", "FactorMean_InputMean")
smbsm <- as.data.frame(do.call(rbind, lapply(smbsFileId, function(zi){SMBSsummaryFunc(zi)$means})
names(smbsm) <- c("LocalMean", "InputDataMean", "FactorValueMean")
smbsd <- as.data.frame(do.call(rbind, lapply(smbsFileId, function(zi){SMBSsummaryFunc(zi)$differ
names(smbsd) <- c("InputMean-LocalMean", "FactorMean_InputMean")</pre>
```


Finally, the three mean values along with their respective differences are presented for each input data file. The results for the global datasets is given first followed by the results for the local datasets.

 ${\tt smm}$

```
##
      LocalMean InputDataMean FactorValueMean
## 1
            NaN
                      49.55834
                                        49.55834
## 2
             NaN
                      22.16667
                                        22.16667
## 3
             NaN
                      26.85714
                                        26.85714
## 4
             NaN
                      21.55556
                                        21.55556
## 5
            NaN
                      26.37500
                                        26.37500
## 6
            NaN
                      55.53351
                                        55.53351
## 7
             NaN
                      30.33333
                                        30.33333
## 8
             NaN
                      49.01666
                                        49.01666
## 9
            NaN
                      38.76928
                                        38.76928
## 10
             NaN
                      42.81705
                                        42.81705
#smboth
           <- cbind(smm, smd)
#smboth
```


smd

##		InputMean-LocalMean	FactorMean_InputMean
##	1	NaN	0
##	2	NaN	0
##	3	NaN	0
##	4	NaN	0
##	5	NaN	0
##	6	NaN	0

```
## 7 NaN 0
## 8 NaN 0
## 9 NaN 0
## 10 NaN 0
#smboth <- cbind(smm, smd)
#smboth
```

$\& {\rm nbsp}$

smbsm

##		LocalMean	InputDataMean	FactorValueMean
##	1	54.26471	54.26471	54.26471
##	2	45.44444	45.44444	45.44444
##	3	43.22857	43.22857	43.22857
##	4	54.62500	54.62500	54.62500
##	5	52.96875	52.96875	52.96875
##	6	44.16667	44.16667	44.16667
##	7	41.41667	41.41667	41.41667
##	8	57.63636	57.63636	57.63636
##	9	40.88889	40.88889	40.88889
##	10	54.40625	54.40625	54.40625
##	11	44.00000	44.00000	44.00000
##	12	56.88889	56.88889	56.88889
##	13	41.25000	41.25000	41.25000
##	14	53.94444	53.94444	53.94444
##	15	43.97143	43.97143	43.97143
##	16	44.88889	44.88889	44.88889
##	17	56.86111	56.86111	56.86111
##	18	56.47222	56.47222	56.47222
##	19	42.30556	42.30556	42.30556

smbsd

##		InputMean-LocalMean	FactorMean_InputMean
##	1	0	0
##	2	0	0
##	3	0	0
##	4	0	0
##	5	0	0
##	6	0	0
##	7	0	0
##	8	0	0
##	9	0	0
##	10	0	0
##	11	0	0
##	12	0	0
##	13	0	0
##	14	0	0
##	15	0	0
##	16	0	0
##	17	0	0

 $\& {\rm nbsp}$

Conclusion

Overlooking the exclusion of zero values, the means appear to be calculated correctly.