Datenbanken 2 Indexstrukturen

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at FB Computerwissenschaften Universität Salzburg

WS 2018/19

Version 9. Oktober 2018

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

Literatur und Quellen

Lektüre zum Thema "Indexstrukturen":

- Kapitel 7 aus Kemper und Eickler: Datenbanksysteme: Eine Einführung.
 Oldenbourg Verlag, 2013.
- Chapter 11 in Silberschatz, Korth, and Sudarashan: Database System Concepts. McGraw Hill, 2011.

Danksagung Die Vorlage zu diesen Folien wurde entwickelt von:

- Michael Böhlen, Universität Zürich, Schweiz
- Johann Gamper, Freie Universität Bozen, Italien

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

Grundlagen/1

- Index beschleunigt Zugriff, z.B.:
 - Autorenkatalog in Bibliothek
 - Index in einem Buch
- Index-Datei besteht aus Datensätzen: den Index-Einträgen
- Index-Eintrag hat die Form (Suchschlüssel, Pointer)
 - Suchschlüssel: Attribut(liste) nach der Daten gesucht werden
 - Pointer: Pointer auf einen Datensatz (TID)
- Suchschlüssel darf mehrfach vorkommen (im Gegensatz zu Schlüsseln von Relationen)
- Index-Datei meist viel kleiner als die indizierte Daten-Datei

Grundlagen/2

- Merkmale des Index sind:
 - Zugriffszeit
 - Zeit für Einfügen
 - Zeit für Löschen
 - Speicherbedarf
 - effizient unterstützte Zugriffsarten
- Wichtigste Zugriffsarten sind:
 - Punktanfragen: z.B. Person mit SVN=1983-3920
 - Mehrpunktanfragen: z.B. Personen, die 1980 geboren wurden
 - Bereichsanfragen: z.B. Personen die mehr als 100.000 EUR verdienen

Grundlagen/3

Indextypen werden nach folgenden Kriterien unterschieden:

- Ordnung der Daten- und Index-Datei:
 - Primärindex
 - Clustered Index
 - Sekundärindex
- Art der Index-Einträgen:
 - sparse Index
 - dense Index

Nicht alle Kombinationen üblich/möglich:

- Primärindex ist oft sparse
- Sekundärindex ist immer dense

Primärindex/1

• Primärindex:

- Datensätze in der Daten-Datei sind nach Suchschlüssel sortiert
- Suchschlüssel ist eindeutig, d.h., Suche nach 1 Schlüssel ergibt (höchstens) 1 Tupel

Primärindex/2

- Index-Datei:
 - sequentiell geordnet nach Suchschlüssel
- Daten-Datei:
 - sequentiell geordnet nach Suchschlüssel
 - jeder Suchschlüssel kommt nur 1 mal vor
- Effiziente Zugriffsarten:
 - Punkt- und Bereichsanfragen
 - nicht-sequentieller Zugriff (random access)
 - sequentieller Zugriff nach Suchschlüssel sortiert (sequential access)

Clustered Index

- Index-Datei:
 - sequentiell geordnet nach Suchschlüssel
- Daten-Datei:
 - sequentiell geordnet nach Suchschlüssel
 - Suchschlüssel kann mehrfach vorkommen
- Effiziente Zugriffsarten:
 - Punkt-, Mehrpunkt-, und Bereichsanfragen
 - nicht-sequentieller Zugriff (random access)
 - sequentieller Zugriff nach Suchschlüssel sortiert (sequential access)

Sekundärindex/1

- Primär- vs. Sekundärindex:
 - nur 1 Primärindex (bzw. Clustered Index) möglich
 - beliebig viele Sekundärindizes
 - Sekundärindex für schnellen Zugriff auf alle Felder, die nicht Suchschlüssel des Primärindex sind
- Beispiel: Konten mit Primärindex auf Kontonummer
 - Finde alle Konten einer bestimmten Filiale.
 - Finde alle Konten mit 1000 bis 1500 EUR Guthaben.
- Ohne Index können diese Anfragen nur durch sequentielles Lesen aller Knoten beantwortet werden – sehr langsam
- Sekundärindex für schnellen Zugriff erforderlich

Sekundärindex/2

- Index-Datei:
 - sequentiell nach Suchschlüssel geordnet
- Daten-Datei:
 - Suchschlüssel kann mehrfach vorkommen
 - nicht nach Suchschlüssel geordnet

Sekundärindex/3

- Effiziente Zugriffsarten:
 - sehr schnell für Punktanfragen
 - Mehrpunkt- und Bereichsanfragen: gut wenn nur kleiner Teil der Tabelle zurückgeliefert wird (wenige %)
 - besonders für nicht-sequentiellen Zugriff (random access) geeignet

Duplikate/1

Umgang mit mehrfachen Suchschlüsseln:

- (a) Doppelte Indexeinträge:
 - ein Indexeintrag für jeden Datensatz
 - \rightarrow schwierig zu handhaben, z.B. in B^+ -Baum Index
- (b) Buckets:
 - nur einen Indexeintrag pro Suchschlüssel
 - Index-Eintrag zeigt auf ein Bucket
 - Bucket zeigt auf alle Datensätze zum entsprechenden Suchschlüssel
 - → zusätzlicher Block (Bucket) muss gelesen werden

Duplikate/2

Umgang mit mehrfachen Suchschlüsseln:

- (c) Suchschlüssel eindeutig machen:
 - Einfügen: TID wird an Suchschlüssel angehängt (sodass dieser eindeutig wird)
 - Löschen: Suchschlüssel und TID werden benötigt (ergibt genau 1 Index-Eintrag)
 - Suche: nur Suchschlüssel wird benötigt (ergibt mehrere Index-Einträge)
 - → wird in der Praxis verwendet

Sparse Index/1

- Sparse Index
 - ein Index-Eintrag für mehrere Datensätze
 - kleiner Index: weniger Index-Einträge als Datensätze
 - nur möglich wenn Datensätze nach Suchschlüssel geordnet sind (d.h. Primärindex oder Clustered Index)

Sparse Index/2

- Oft enthält ein sparse Index einen Eintrag pro Block.
- Der Suchschlüssel, der im Index für eine Block gespeichert wird, ist der kleinste Schlüssel in diesem Block.

Dense Index/1

- Dense Index:
 - Index-Eintrag (bzw. Pointer in Bucket) für jeden Datensatz in der Daten-Datei
 - dense Index kann groß werden (aber normalerweise kleiner als Daten)
 - Handhabung einfacher, da ein Pointer pro Datensatz
- Sekundärindex ist immer dense

Gegenüberstellung von Index-Typen

- Alle Index-Typen machen Punkt-Anfragen erheblich schneller.
- Index erzeugt Kosten bei Updates: Index muss auch aktualisiert werden.
- Dense/Sparse und Primär/Sekundär:
 - Primärindex kann dense oder sparse sein
 - Sekundärindex ist immer dense
- Sortiert lesen (=sequentielles Lesen nach Suchschlüssel-Ordnung):
 - mit Primärindex schnell
 - mit Sekundärindex teuer, da sich aufeinander folgende Datensätze auf unterschiedlichen Blocks befinden (können)
- Dense vs. Sparse:
 - sparse Index braucht weniger Platz
 - sparse Index hat geringere Kosten beim Aktualisieren
 - dense Index erlaubt bestimmte Anfragen zu beantworten, ohne dass Datensätze gelesen werden müssen ("covering index")

Mehrstufiger Index/1

- Großer Index wird teuer:
 - Index passt nicht mehr in Hauptspeicher und mehrere Block-Lese-Operationen werden erforderlich
 - binäre Suche: $\lfloor log_2(B) \rfloor + 1$ Block-Lese-Operationen (Index mit B Blocks)
 - eventuelle Overflow Blocks müssen sequentiell gelesen werden
- Lösung: Mehrstufiger Index
 - Index wird selbst wieder indiziert
 - dabei wird der Index als sequentielle Daten-Datei behandelt

Mehrstufiger Index/2

- Mehrstufiger Index:
 - Innerer Index: Index auf Daten-Datei
 - Außerer Index: Index auf Index-Datei
- Falls äußerer Index zu groß wird, kann eine weitere Index-Ebene eingefügt werden.

 Diese Art von (ein- oder mehrstufigem) Index wird auch als ISAM (Index Sequential Access Method) oder index-sequentielle Datei bezeichnet.

Mehrstufiger Index/3

- Index Suche
 - beginne beim Root-Knoten
 - finde alle passenden Einträge und verfolge die entsprechenden Pointer
 - wiederhole bis Pointer auf Datensatz zeigt (Blatt-Ebene)
- Index Update: Löschen und Einfügen
 - Indizes aller Ebenen müssen nachgeführt werden
 - Update startet beim innersten Index
 - Erweiterungen der Algorithmen für einstufige Indizes

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

B^+ -Baum/1

 B^+ -Baum: Alternative zu index-sequentiellen Dateien:

- Vorteile von B⁺-Bäumen:
 - Anzahl der Ebenen wird automatisch angepasst
 - reorganisiert sich selbst nach Einfüge- oder Lösch-Operationen durch kleine lokale Änderungen
 - reorganisieren des gesamten Indexes ist nie erforderlich
- Nachteile von B⁺-Bäumen:
 - evtl. Zusatzaufwand bei Einfügen und Löschen
 - etwas höherer Speicherbedarf
 - komplexer zu implementieren
- Vorteile wiegen Nachteile in den meisten Anwendungen bei weitem auf, deshalb sind B^+ -Bäume die meist-verbreitete Index-Struktur

B^+ -Baum/2

 B^+ -Baum

- Knoten mit Grad m: enthält bis zu m-1 Suchschlüssel und m Pointer
 - Knotengrad m > 2 entspricht der maximalen Anzahl der Pointer
 - Suchschlüssel im Knoten sind sortiert
 - Knoten (außer Wurzel) sind mindestens halb voll
- Wurzelknoten
 - als Blattknoten: 0 bis m-1 Suchschlüssel
 - als Nicht-Blattknoten: mindestens 2 Kinder
- Innerer Knoten: $\lceil m/2 \rceil$ bis m Kinder (=Anzahl Pointer)
- Blattknoten: $\lceil (m-1)/2 \rceil$ bis m-1 Suchschlüssel bzw. Daten-Pointer
- balancierter Baum: alle Pfade von der Wurzel zu den Blättern sind gleich lang (maximal $\lceil log_{\lceil m/2 \rceil}(L) \rceil$ Kanten für L Blattknoten)

Terminologie und Notation

- Ein Paar (P_i, K_i) ist ein Eintrag
- $L[i] = (P_i, K_i)$ bezeichnet den *i*-ten Eintrag von Knoten *L*
- Daten-Pointer: Pointer zu Datensätzen sind nur in den Blättern gespeichert
- Verbindung zwischen Blättern: der letzte Pointer im Blatt, P_m , zeigt auf das nächste Blatt

Anmerkung: Es gibt viele Varianten des B^+ -Baumes, die sich leicht unterscheiden. Auch in Lehrbüchern werden unterschiedliche Varianten vorgestellt. Für diese Lehrveranstaltung gilt der B^+ -Baum, wie er hier präsentiert wird.

B^+ -Baum Knotenstruktur/1

$$P_1 \mid K_1 \mid P_2 \mid K_2 \mid P_3 \mid \dots \mid P_{m-1} \mid K_{m-1} \mid P_m \mid$$

Blatt-Knoten:

- K_1, \ldots, K_{m-1} sind Suchschlüssel
- $P_1, ..., P_{m-1}$ sind Daten-Pointer
- Such schlüssel sind sortiert: $K_1 < K_2 < K_3 < \ldots < K_{m-1}$
- Daten-Pointer P_i , $1 \le i \le m-1$, zeigt auf
 - \bullet einen Datensatz mit Suchschlüssel K_i , oder
 - ullet auf ein Bucket mit Pointern zu Datensätzen mit Suchschlüssel K_i
- \bullet P_m zeigt auf das nächste Blatt in Suchschlüssel-Ordnung

B^+ -Baum Knotenstruktur/2

Innere Knoten:

- Stellen einen mehrstufigen sparse Index auf die Blattknoten dar
- Suchschlüssel im Knoten sind eindeutig
- \bullet $P_1, ..., P_m$ sind Pointer zu Kind-Knoten, d.h., zu Teilbäumen
- Alle Suchschlüssel k im Teilbaum von P_i haben folgende Eigenschaften:
 - i = 1: $k < K_1$
 - 1 < i < m: $K_{i-1} \le k < K_i$
 - i = m: $k \ge K_{m-1}$

Beispiel: B^+ -Baum/1

- Index auf Konto-Relation mit Suchschlüssel Filiale
- B^+ -Baum mit Knotengrad m = 5:
 - Wurzel: mindestens 2 Pointer zu Kind-Knoten
 - Innere Knoten: $\lceil m/2 \rceil = 3$ bis m = 5 Pointer zu Kind-Knoten
 - Blätter: $\lceil (m-1)/2 \rceil = 2$ bis m-1=4 Suchschlüssel

Beispiel: B^+ -Baum/2

- B^+ -Baum für Konto-Relation (Knotengrad m=3)
 - Wurzel: mindestens 2 Pointer zu Kind-Knoten
 - Innere Knoten: $\lceil m/2 \rceil = 2$ bis m = 3 Pointer zu Kind-Knoten
 - Blätter: $\lceil (m-1)/2 \rceil = 1$ bis m-1=2 Suchschlüssel

Suche im B^+ -Baum/1

- Algorithmus: Suche alle Datensätze mit Suchschlüssel k (Annahme: dense B^+ -Baum Index):
 - 1. $C \leftarrow Wurzelknoten$
 - 2. **while** C keine Blattknoten **do** suche im Knoten C nach dem größten Schlüssel $K_i \leq k$ **if** ein Schlüssel $K_i \leq k$ existiert **then** $C \leftarrow$ Knoten auf den P_{i+1} zeigt **else** $C \leftarrow$ Knoten auf den P_1 zeigt
 - 3. **if** es gibt einen Schlüssel K_i in C sodass $K_i = k$ **then** folge Pointer P_i zum gesuchten Datensatz (oder Bucket) **else** kein Datensatz mit Suchschlüssel k existiert

Suche im B^+ -Baum/2

- Beispiel: Finde alle Datensätze mit Suchschlüssel k = Mianus
 - Beginne mit dem Wurzelknoten
 - Kein Schlüssel $K_i \leq Mianus$ existiert, also folge P_1
 - $K_1 = Mianus$ ist der größte Suchschlüssel $K_i \leq Mianus$, also folge P_2
 - ullet Suchschlüssel *Mianus* existiert, also folge dem ersten Datensatz-Pointer P_1 um zum Datensatz zu gelangen

Suche im B^+ -Baum/3

- Suche durchläuft Pfad von Wurzel bis Blatt:
 - Länge des Pfads höchstens $\lceil log_{\lceil m/2 \rceil}(L) \rceil$ für L Blattknoten $\Rightarrow \lceil log_{\lceil m/2 \rceil}(L) \rceil + 1$ Blocks¹ müssen gelesen werden
 - sind die Blattknoten nur minimal voll ($\lceil (m-1)/2 \rceil$), ergibt sich die maximale Anzahl der Blattknoten: $L = \left\lceil \frac{K}{\lceil (m-1)/2 \rceil} \right\rceil$
 - Wurzelknoten bleibt im Hauptspeicher, oft auch dessen Kinder, dadurch werden 1–2 Block-Zugriffe pro Suche gespart
- Suche effizienter als in sequentiellem Index:
 - bis zu $\lfloor log_2(B) \rfloor + 1$ Blocks¹ lesen im einstufigen sequentiellen Index (binäre Suche, Index mit B Blocks, $B = \lceil K/(m-1) \rceil$)

¹nur Index Blocks werden gezählt, Datenzugriff hier nicht berücksichtigt

Integrierte Übung 2.1

Es soll ein Index mit 10^6 verschiedenen Suchschlüsseln erstellt werden. Ein Knoten kann maximal 200 Schlüssel mit den entsprechenden Pointern speichern. Es soll nach einem bestimmten Suchschlüssel k gesucht werden.

- a) Wie viele Block-Zugriffe erfordert ein B^+ -Baum Index maximal, wenn kein Block im Hauptspeicher ist?
- b) Wie viele Block-Zugriffe erfordert ein einstufiger, sequentieller Index mit binärer Suche?

Einfügen in B^+ -Baum/1

- Datensatz mit Suchschlüssel *k* einfügen:
 - 1. füge Datensatz in Daten-Datei ein (ergibt Pointer)
 - 2. finde Blattknoten für Suchschlüssel k
 - 3. **falls** im Blatt noch Platz ist **dann**:
 - füge (Pointer, Suchschlüssel)-Paar so in Blatt ein, dass Ordnung der Suchschlüssel erhalten bleibt
 - 4. **sonst** (Blatt ist voll) teile Blatt-Knoten:
 - a) sortiere alle Suchschlüssel (einschließlich k)
 - b) die Hälfte der Suchschlüssel bleiben im alten Knoten
 - c) die andere Hälfte der Suchschlüssel kommt in einen neuen Knoten
 - d) füge den kleinsten Eintrag des neuen Knotens in den Eltern-Knoten des geteilten Knotens ein
 - e) falls Eltern-Knoten voll ist dann: teile den Knoten und propagiere Teilung nach oben, sofern nötig

Einfügen in B^+ -Baum/2

Aufteilvorgang:

- falls nach einer Teilung der neue Schlüssel im Elternknoten nicht Platz hat wird auch dieser geteilt
- im schlimmsten Fall wird der Wurzelknoten geteilt und der B^+ -Baum wird um eine Ebene tiefer

Algorithmus: Einfügen in B^+ -Baum/1

 \rightarrow Knoten L, Suchschlüssel k, Pointer p (zu Datensatz oder Knoten)

Algorithm 1: B+TreeInsert(L, k, p)

if L has less than m-1 key values then $\lfloor \operatorname{insert}(k, p) \operatorname{into} L \rfloor$

else

```
T \leftarrow L \cup (k, p);
create new node L';
L'.p_m \leftarrow L.p_m;
L \leftarrow \emptyset;
L.p_m \leftarrow L';
copy T.p_1 through T.k_{\lceil m/2 \rceil} into L;
copy T.p_{\lceil m/2 \rceil + 1} through T.k_m into L';
k' \leftarrow T.k_{\lceil m/2 \rceil + 1};
B+TreeInsertInParent(L, k', L');
```

```
// Knoten teilen
// temporärer Speicher
```

Algorithmus: Einfügen in B^+ -Baum/2

```
Algorithm 2: B+TreeInsertInParent(L, k, L')
if I is root then
   create new root with children L, L' and value k;
   return:
P \leftarrow \mathsf{parent}(L);
if P has less than m pointers then
 | insert(k, L') into P;
else
                                                                         // Knoten teilen
  T \leftarrow P \cup (k, L');
   erase all entries from P;
   create new node P';
   copy T.p_1 through T.p_{\lceil m/2 \rceil} into P;
   copy T.p_{\lceil m/2 \rceil+1} through T.p_{m+1} into P';
   k' \leftarrow T.k_{\lceil m/2 \rceil};
   B+TreeInsertInParent(P, k', P');
```

Blatt teilen/1

Kopiere L nach T und füge (k, p) ein:

- 1. Anhängen und sortieren (z.B.: $k_1 < k < k_2$) $T \quad p_1 \quad k_1 \quad p \quad k \quad p_2 \quad \bar{k}_2 \quad p_3$
- 2. Teilen $(k' = T.k_{\lceil m/2 \rceil + 1} = T.k_3)$

3. (k', L') in Elternknoten von L einfügen

Blatt teilen/2

$$k' = T.k_{\lceil m/2 \rceil + 1}$$

• m gerade, z.B.: m=4

• m ungerade, z.B.: m=5

Innere Knoten teilen/1

$$P \qquad p_1 \quad k_1 \quad p_2 \quad k_2 \quad p_3$$

Kopiere P nach T und füge (k, p) ein:

- 1. Anhängen und sortieren (z.B.: $k_1 < k < k_2$) p_1 k_1 p_2 k p k_2 p_3
- 2. Teilen $(k' = T.k_{\lceil m/2 \rceil} = T.k_2)$

 B^+ -Baum

$$p \mid k_2 \mid p_3 \mid$$

Innere Knoten teilen/2

3. (k', L') in Elternknoten von L einfügen

Innere Knoten teilen/3

$$k' = T.k_{\lceil m/2 \rceil}$$

• m gerade, z.B.: m=4

• m ungerade, z.B.: m=5

Beispiel: Einfügen in B^+ -Baum/1

• B⁺-Baum vor Einfügen von *Clearview*

• B⁺-Baum nach Einfügen von *Clearview*

Beispiel: Einfügen in B^+ -Baum/2

• B⁺-Baum vor Einfügen von *Greenwich*

• B⁺-Baum nach Einfügen von *Greenwich*

Löschen von B^+ -Baum/1

Datensatz mit Suchschlüssel k löschen:

- 1. finde Blattknoten mit Suchschlüssel k
- 2. lösche k von Knoten
- 3. **falls** Knoten durch Löschen von k zu wenige Einträge hat:
 - a. Einträge im Knoten und einem Geschwisterknoten passen in 1 Knoten dann:
 - vereinige die beiden Knoten in einen einzigen Knoten (den linken, falls er existiert; ansonsten den rechten) und lösche den anderen Knoten
 - lösche den Eintrag im Elternknoten der zwischen den beiden Knoten ist und wende Löschen rekursiv an
 - b. Einträge im Knoten und einem Geschwisterknoten passen *nicht* in 1 Knoten **dann**:
 - verteile die Einträge zwischen den beiden Knoten sodass beide die minimale Anzahl von Einträgen haben
 - aktualisiere den entsprechenden Suchschlüssel im Eltern-Knoten

Löschen von B^+ -Baum/2

• Vereinigung:

- Vereinigung zweier Knoten propagiert im Baum nach oben bis ein Knoten mit mehr als $\lceil m/2 \rceil$ Kindern gefunden wird
- falls die Wurzel nach dem Löschen nur mehr ein Kind hat, wird sie gelöscht und der Kind-Knoten wird zur neuen Wurzel

Algorithmus: Löschen im B^+ -Baum

Algorithm 3: B+TreeDelete(L, k, p)

```
delete(k, p) from L
if L is root and has only one remaining child then
 I make the child the new root and delete L
else if L has too few values/pointers then
    L' \leftarrow previous sibling of L [next, if there is no previous];
   k' \leftarrow \text{value between } L \text{ and } L' \text{ in parent}(L);
   if entries in L and L' can fit in a single node then
                                                                                           // vereinigen
       if L is a predecessor of L' then swap L with L';
       if L is not a leaf then L' \leftarrow L' \cup k' and all (k_i, p_i) from L;
       else L' \leftarrow L' \cup \text{ all } (k_i, p_i) \text{ from L};
       B+TreeDelete(parent(L), k', L);
   else
                                                                                           // verteilen
       if L' is a predecessor of L then
           if L is a nonleaf node then
               remove the last (k, p) of L';
              insert the former last p of L' and k' as the first pointer and value in L;
           else move the last (p, k) of L' as the first pointer and value to L;
           replace k' in parent(L) by the former last k of L';
       else symmetric to the then case (switch first ↔ last,...);
```

Löschen aus Blatt/1

(k, p) wird aus L gelöscht:

1. Vereinigen (m = 4) Vorher:

Löschen aus Blatt/2

(k, p) wird aus L gelöscht:

2. Verteilen (m = 4) Vorher:

Löschen aus innerem Knoten/1

(k, p) wird aus L gelöscht:

1. Vereinigen (m = 4) Vorher:

Löschen aus innerem Knoten/2

(k, p) wird aus L gelöscht:

2. Verteilen (m = 4)Vorher:

 B^+ -Baum

• Vor Löschen von *Downtown*:

Nach Löschen von Downtown:

- Nach Löschen des Blattes mit Downtown hat der Elternknoten noch genug Pointer.
- Somit propagiert Löschen nicht weiter nach oben.

Vor Löschen von Perryridge:

Nach Löschen von Perryridge:

- Blatt mit Perryridge hat durch Löschen zu wenig Einträge und wird mit dem (rechten) Nachbarknoten vereinigt.
- Dadurch hat der Elternknoten zu wenig Pointer und wird mit seinem (linken) Nachbarknoten vereinigt (und ein Eintrag wird vom gemeinsamen Elternknoten gelöscht).
- Die Wurzel hat jetzt nur noch 1 Kind und wird gelöscht.

Vor Löschen von Perryridge:

Nach Löschen von Perryridge:

- Elternknoten von Blatt mit *Perryridge* hat durch Löschen zu wenig Einträge und erhält einen Pointer vom linken Nachbarn (Verteilung von Einträgen).
- Schlüssel im Elternknoten des Elternknotens (Wurzel in diesem Fall) ändert sich ebenfalls.

Vor Löschen von Redwood:

Nach Löschen von Redwood:

- Knoten von Blatt mit Redwood hat durch Löschen zu wenig Einträge und erhält einen Eintrag vom linken Nachbarn (Verteilung von Einträgen).
- Schlüssel im Elternknoten (Wurzel in diesem Fall) ändert sich ebenfalls.

Zusammenfassung B^+ -Baum

- Knoten mit Pointern verknüpft:
 - logisch nahe Knoten müssen nicht physisch nahe gespeichert sein
 - erlaubt mehr Flexibilität
 - erhöht die Anzahl der nicht-sequentiellen Zugriffe
- B⁺-Bäume sind flach:
 - maximale Tiefe $\lceil log_{\lceil m/2 \rceil}(L) \rceil$ für L Blattknoten
 - m ist groß in der Praxis (z.B. m = 200)
- Suchschlüssel als "Wegweiser":
 - einige Suchschlüssel kommen als Wegweiser in einem oder mehreren inneren Knoten vor
 - zu einem Wegweiser gibt es nicht immer einen Suchschlüssel in einem Blattknoten (z.B. weil der entsprechende Datensatz gelöscht wurde)
- Einfügen und Löschen sind effizient:
 - nur O(log(K)) viele Knoten müssen geändert werden
 - Index degeneriert nicht, d.h. Index muss nie von Grund auf rekonstruiert werden

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

Statisches Hashing

- Nachteile von ISAM und B⁺-Baum Indizes:
 - B⁺-Baum: Suche muss Indexstruktur durchlaufen
 - ISAM: binäre Suche in großen Dateien
 - das erfordert zusätzliche Zugriffe auf Plattenblöcke
- Hashing:
 - erlaubt es auf Daten direkt und ohne Indexstrukturen zuzugreifen
 - kann auch zum Bauen eines Index verwendet werden

Hash Datei Organisation

- Statisches Hashing ist eine Form der Dateiorganisation:
 - Datensätze werden in Buckets gespeichert
 - Zugriff erfolgt über eine Hashfunktion
 - Eigenschaften: konstante Zugriffszeit, kein Index erforderlich
- Bucket: Speichereinheit die ein oder mehrere Datensätze enthält
 - ein Block oder mehrere benachbarte Blocks auf der Platte
 - alle Datensätze mit bestimmtem Suchschlüssel sind im selben Bucket
 - Datensätze im Bucket können verschiedene Suchschlüssel haben
- Hash Funktion h: bildet Menge der Suchschlüssel K auf Menge der Bucket Adressen B ab
 - wird in konstanter Zeit (in der Anzahl der Datensätze) berechnet
 - mehrere Suchschlüssel können auf dasselbe Bucket abbilden
- Suchen eines Datensatzes mit Suchschlüssel:
 - verwende Hash Funktion um Bucket Adresse aufgrund des Suchschlüssels zu bestimmen
 - durchsuche Bucket nach Datensätzen mit Suchschlüssel

Beispiel: Hash Datei Organisation

- Beispiel: Organisation der Konto-Relation als Hash Datei mit Filialname als Suchschlüssel.
- 10 Buckets
- Numerischer Code des i-ten Zeichens im 26-Buchstaben-Alphabet wird als i angenommen, z.B., code(B)=2.
- Hash Funktion h
 - Summe der Codes aller Zeichen modulo 10:
 - $h(Perryridge) = 125 \mod 10 = 5$
 - $h(\text{Round Hill}) = 113 \mod 10 = 3$ (code('')=0)
 - $h(Brighton) = 93 \mod 10 = 3$

bucket 0		

bucket 1			

bucket 2			

bucket 3				
A-217	Brighton	750		
A-305	Round Hill	350		

Ł	bucket 4			
	A-222	Redwood	700	
L				

bucket 5				
A-102	Perryridge	400		
A-201	Perryrdige	900		
A-218	Perryridge	700		

bucket 6				

bucket 7				
A-215	Mianus	700		

bucket 8				
A-101	Downtown	500		
A-110	Downtown	600		

bucket 9				

Hash Funktionen/1

- Die Worst Case Hash Funktion bildet alle Suchschlüssel auf das gleiche Bucket ab.
 - Zugriffszeit wird linear in der Anzahl der Suchschlüssel.
- Die Ideale Hash Funktion hat folgende Eigenschaften:
 - Die Verteilung ist uniform (gleichverteilt), d.h. jedes Bucket ist der gleichen Anzahl von Suchschlüsseln aus der Menge aller Suchschlüssel zugewiesen.
 - Die Verteilung ist random (zufällig), d.h. im Mittel erhält jedes Bucket gleich viele Suchschlüssel unabhängig von der Verteilung der Suchschlüssel.

Hash Funktionen/2

- Beispiel: 26 Buckets und eine Hash Funktion welche Filialnamen die mit dem *i*-ten Buchstaben beginnen dem Bucket *i* zuordnet.
 - keine Gleichverteilung, da es für bestimmte Anfangsbuchstaben erwartungsgemäß mehr Suchschlüssel gibt, z.B. erwarten wir mehr Filialen die mit B beginnen als mit Q.
- Beispiel: Hash Funktion die Kontostand nach gleich breiten Intervallen aufteilt: $1 10000 \rightarrow 0$, $10001 20000 \rightarrow 1$, usw.
 - uniform, da es für jedes Bucket gleich viele mögliche Werte von Kontostand gibt
 - nicht random, da Kontostände in bestimmten Intervallen häufiger sind, aber jedem Intervall 1 Bucket zugeordnet ist
- Typsiche Hash Funktion: Berechnung auf interner Binärdarstellung des Suchschlüssels, z.B. für String s mit n Zeichen, b Buckets:
 - $(s[0] + s[1] + ... + s[n-1]) \mod b$, oder
 - $(31^{n-1}s[0] + 31^{n-2}s[1] + \ldots + s[n-1]) \mod b$

Bucket Overflow/1

- Bucket Overflow: Wenn in einem Bucket nicht genug Platz für alle zugehörigen Datensätze ist, entsteht ein Bucket Overflow. Das kann aus zwei Gründen geschehen:
 - zu wenig Buckets
 - Skew: ungleichmäßige Verteilung der Hashwerte
- Zu wenig Buckets: die Anzahl n_B der Buckets muss größer gewählt werden als die Anzahl der Datensätze n geteilt durch die Anzahl der Datensätze pro Bucket f: $n_B > n/f$
- Skew: Ein Bucket ist überfüllt obwohl andere Buckets noch Platz haben. Zwei Gründe:
 - viele Datensätze haben gleichen Suchschlüssel (ungleichmäßige Verteiltung der Suchschlüssel)
 - Hash Funktion erzeugt ungleichmäßige Verteiltung
- Obwohl die Wahrscheinlichkeit für Overflows reduziert werden kann, können Overflows nicht gänzlich vermieden werden.
 - Overflows müssen behandelt werden
 - Behandlung durch Overflow Chaining

Bucket Overflow/2

- Overflow Chaining (closed addressing)
 - falls ein Datensatz in Bucket b eingefügt wird und b schon voll ist, wird ein Overflow Bucket b' erzeugt, in das der Datensatz gespeichert wird
 - die Overflow Buckets für Bucket b werden in einer Liste verkettet
 - für einen Suchschlüssel in Bucket b müssen auch alle Overflow Buckets von b durchsucht werden

Bucket Overflow/3

- Open Addressing: Die Menge der Buckets ist fix und es gibt keine Overflow Buckets.
 - überzählige Datensätze werden in ein anderes (bereits vorhandenes) Bucket gegeben, z.B. das nächste das noch Platz hat (linear probing)
 - wird z.B. für Symboltabellen in Compilern verwendet, hat aber wenig Bedeutung in Datenbanken, da Löschen schwieriger ist

Hash Index

- Hash Index: organisiert (Suchschlüssel, Pointer) Paare als Hash Datei
 - Pointer zeigt auf Datensatz
 - Suchschlüssel kann mehrfach vorkommen
- Beispiel: Index auf Konto-Relation
 - Hash Funktion h: Quersumme der Kontonummer modulo 7
 - Beachte: Konto-Relation ist nach Filialnamen geordnet

- Hash Index ist immer Sekundärindex:
 - ist deshalb immer "dense"
 - Primär- bzw. Clustered Hash Index entspricht einer Hash Datei Organisation (zusätzliche Index-Ebene überflüssig)

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

Probleme mit Statischem Hashing

- Richtige Anzahl von Buckets ist kritisch für Performance:
 - zu wenig Buckets: Overflows reduzieren Performance
 - zu viele Buckets: Speicherplatz wird verschwendet (leere oder unterbesetzte Buckets)
- Datenbank wächst oder schrumpft mit der Zeit:
 - großzügige Schätzung: Performance leidet zu Beginn
 - knappe Schätzung: Performance leidet später
- Reorganisation des Index als einziger Ausweg:
 - Index mit neuer Hash Funktion neu aufbauen
 - sehr teuer, während der Reorganisation darf niemand auf die Daten schreiben
- Alternative: Anzahl der Buckets dynamisch anpassen

Dynamisches Hashing

 Dynamisches Hashing (dynamic hashing): Hash Funktion wird dynamisch angepasst.

 Erweiterbares Hashing (extendible hashing): Eine Form des dynamischen Hashing.

Erweiterbares Hashing

- Hash Funktion h berechnet Hash Wert für sehr viele Buckets:
 - eine b-Bit Integer Zahl
 - typisch b=32, also \sim 4 Milliarden (mögliche) Buckets
- Hash-Prefix:
 - nur die *i* höchstwertigen Bits (MSB) des Hash-Wertes werden verwendet
 - $0 \le i \le b$ ist die *globale Tiefe*
 - i wächst oder schrumpft mit Datenmenge, anfangs i = 0
- Verzeichnis: (directory, bucket address table)
 - Hauptspeicherstruktur: Array mit 2ⁱ Einträgen
 - Hash-Prefix indiziert einen Eintrag im Verzeichnis
 - jeder Eintrag verweist auf ein Bucket
 - mehrere aufeinanderfolgende Einträge im Verzeichnis können auf dasselbe Bucket zeigen

Erweiterbares Hashing

- Buckets:
 - Anzahl der Buckets $\leq 2^i$
 - jedes Bucket j hat eine lokale Tiefe ij
 - falls mehrere Verzeichnis-Pointer auf dasselbe Bucket j zeigen, haben die ensprechenden Hash Werte dasselbe i_i Prefix.
- Beispiel: i = 2, $i_1 = 1$, $i_2 = i_3 = 2$,

bucket address table

Erweiterbares Hashing: Suche

- Suche: finde Bucket für Suchschlüssel K
 - 1. berechne Hash Wert h(K) = X
 - 2. verwende die i höchstwertigen Bits (Hash Prefix) von X als Adresse ins Verzeichnis
 - 3. folge dem Pointer zum entsprechenden Bucket

Erweiterbares Hashing: Einfügen

- Einfügen: füge Datensatz mit Suchschlüssel K ein
 - 1. verwende Suche um richtiges Bucket j zu finden
 - 2. **If** genug freier Platz in Bucket *j* **then**
 - füge Datensatz in Bucket j ein
 - 3. else
 - teile Bucket und versuche erneut

Erweiterbares Hashing: Bucket teilen

- Bucket j teilen um Suchschlüssel K einzufügen
 - If $i > i_j$ (mehrere Pointer zu Bucket j) then
 - ullet lege neues Bucket z an und setze i_z und i_j auf das alte i_j+1
 - aktualisiere die Pointer die auf j zeigen (die Hälfte zeigt nun auf z)
 - lösche alle Datensätze von Bucket j und füge sie neu ein (sie verteilen sich auf Buckets j und z)
 - versuche *K* erneut einzufügen

Else if $i = i_i$ (nur 1 Pointer zu Bucket j) then

- erhöhe i und verdopple die Größe des Verzeichnisses
- ersetze jeden alten Eintrag durch zwei neue Einträge die auf dasselbe Bucket zeigen
- versuche K erneut einzufügen
- Overflow Buckets müssen nur erzeugt werden, wenn das Bucket voll ist und die Hashwerte aller Suchschlüssel im Bucket identisch sind (d.h., teilen würde nichts nützen)

Integrierte Ubung 2.2

Betrachten Sie die folgende Hashfunktion:

Schlüssel	Hashwert
Brighton	0010
Downtown	1010
Mianus	1100
Perryridge	1111
Redwood	0011

Nehmen Sie Buckets der Größe 2 an und erweiterbares Hashing mit einem anfangs leeren Verzeichnis. Zeigen Sie die Hashtabelle nach folgenden Operationen:

- füge 1 Brighton und 2 Downtown Datensätze ein
- füge 1 Mianus Datensatz ein
- füge 1 Redwood Datensatz ein
- füge 3 Perryridge Datensätze ein

Erweiterbares Hashing: Löschen

- Löschen eines Suchschlüssels K
 - 1. suche Bucket *j* für Suchschlüssel *K*
 - 2. entferne alle Datensätze mit Suchschlüssel K
 - 3. Bucket j kann mit Nachbarbucket(s) verschmelzen falls
 - alle Suchschlüssel in einem Bucket Platz finden
 - \bullet die Buckets dieselbe lokale Tiefe i_i haben
 - ullet die i_j-1 Prefixe der entsprechenden Hash-Werte identisch ist
 - 4. Verzeichnis kann verkleinert werden, wenn $i_j < i$ für alle Buckets j

Integrierte Übung 2.3

Betrachten Sie die folgende Hashfunktion:

Schlüssel	Hashwert
Brighton	0010
Downtown	1010
Mianus	1100
Perryridge	1111
Redwood	0011

Gehen Sie vom Ergebnis der vorigen Übung aus und führen Sie folgende Operationen durch:

- 1 Brighton und 1 Downtown löschen
- 1 Redwood löschen
- 2 Perryridge löschen

Erweiterbares Hashing: Pro und Kontra

- Vorteile von erweiterbarem Hashing
 - bleibt effizient auch wenn Datei wächst
 - Overhead für Verzeichnis ist normalerweise klein im Vergleich zu den Einsparungen an Buckets
 - keine Buckets für zukünftiges Wachstum müssen reserviert werden
- Nachteile von erweiterbarem Hashing
 - zusätzliche Ebene der Indirektion macht sich bemerkbar, wenn Verzeichnis zu groß für den Hauptspeicher wird
 - Verzeichnis vergrößern oder verkleinern ist relativ teuer

B⁺-Baum vs. Hash Index

- Hash Index degeneriert wenn es sehr viele identische (Hashwerte für)
 Suchschlüssel gibt Overflows!
- Im Average Case für Punktanfragen in *n* Datensätzen:
 - Hash index: O(1) (sehr gut)
 - B^+ -Baum: $O(\log n)$
- Worst Case für Punktanfragen in *n* Datensätzen:
 - Hash index: O(n) (sehr schlecht)
 - B^+ -Baum: $O(\log n)$
- Anfragetypen:
 - Punktanfragen: Hash und B^+ -Baum
 - Mehrpunktanfragen: Hash und B^+ -Baum
 - Bereichsanfragen: Hash Index nicht brauchbar

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

Zugriffe über mehrere Suchschlüssel/1

• Wie kann Index verwendet werden, um folgende Anfrage zu beantworten?

select AccNr

from account

where BranchName = "Perryridge" and Balance = 1000

- Strategien mit mehreren Indizes (jeweils 1 Suchschlüssel):
 - a) BranchName = "Perryridge" mit Index auf BranchName auswerten; auf Ergebnis-Datensätzen Balance = 1000 testen.
 - b) Balance = 1000 mit Index auf Balance auswerten; auf Ergebnis-Datensätzen BranchName = "Perryridge" testen.
 - c) Verwende *BranchName* Index um Pointer zu Datensätzen mit *BranchName* = "*Perryridge*" zu erhalten; verwende *Balance* Index für Pointer zu Datensätzen mit *Balance* = 1000; berechne die Schnittmenge der beiden Pointer-Mengen.

Zugriffe über mehrere Suchschlüssel/2

- Nur die dritte Strategie nützt das Vorhandensein mehrerer Indizes.
- Auch diese Strategie kann eine schlechte Wahl sein:
 - es gibt viele Konten in der "Perryridge" Filiale
 - es gibt viele Konten mit Kontostand 1000
 - es gibt nur wenige Konten die beide Bedingungen erfüllen
- Effizientere Indexstrukturen müssen verwendet werden:
 - (traditionelle) Indizes auf kombinierten Schlüsseln
 - spezielle mehrdimensionale Indexstrukturen, z.B., Grid Files, Quad-Trees, Bitmap Indizes.

Zugriffe über mehrere Suchschlüssel/3

- Annahme: Geordneter Index mit kombiniertem Suchschlüssel (BranchName, Balance)
- Kombinierte Suchschlüssel haben eine Ordnung (BranchName ist das erstes Attribut, Balance ist das zweite Attribut)
 - Folgende Bedingung wird effizient behandelt (alle Attribute):
 where BranchName = "Perryridge" and Balance = 1000
 - Folgende Bedingung wird effizient behandelt (Prefix):
 where BranchName = "Perryridge"
 - Folgende Bedingung ist ineffizient (kein Prefix der Attribute): where Balance = 1000

Inhalt

- Indexstrukturen für Dateien
 - Grundlagen
 - \bullet B^+ -Baum
 - Statisches Hashing
 - Dynamisches Hashing
 - Mehrschlüssel Indizes
 - Indizes in SQL

Index Definition in SQL

- SQL-92 definiert keine Syntax für Indizes da diese nicht Teil des logischen Datenmodells sind.
- Jedoch alle Datenbanksysteme stellen Indizes zur Verfügung.
- Index erzeugen:

```
create index <IdxName> on <RelName> (<AttrList>)
z.B. create index BrNaldx on branch (branch-name)
```

- Create unique index erzwingt eindeutige Suchschlüssel und definiert indirekt ein Schlüsselattribut.
- Primärschlüssel (primary key) und Kandidatenschlüssel (unique) werden in SQL bei der Tabellendefinition spezifiziert.
- Index löschen:

```
drop index <index-name>
```

z.B. **drop index** BrNaldx

Beispiel: Indizes in PostgreSQL

• CREATE [UNIQUE] INDEX name ON table_name
"(" col [DESC] { "," col [DESC] } ")" [...]

- Beispiele:
 - CREATE INDEX Majldx ON Enroll (Major);
 - CREATE INDEX Majldx ON Enroll USING HASH (Major);
 - **CREATE INDEX** MajMinIdx **ON** Enroll (Major, Minor);

Indexes in Oracle

• B^+ -Baum Index in Oracle:

```
CREATE [UNIQUE] INDEX name ON table_name
"(" col [DESC] { "," col [DESC] } ")" [pctfree n] [...]
```

- Anmerkungen:
 - pct_free gibt an, wieviel Prozent der Knoten anfangs frei sein sollen.
 - UNIQUE sollte nicht verwendet werden, da es ein logisches Konzept ist.
 - Oracle erstellt einen B^+ -Baum Index für jede **unique** oder **primary key** definition bei der Erstellung der Tabelle.
- Beispiele:

```
CREATE TABLE BOOK (
ISBN INTEGER, Author VARCHAR2 (30), ...);
CREATE INDEX book_auth ON book(Author);
```

Hash-partitionierter Index in Oracle:

CREATE INDEX CustLNamelX ON customers (LName) GLOBAL PARTITION BY HASH (LName) PARTITIONS 4;

Anmerkungen zu Indizes in Datenbanksystemen

- Indizes werden automatisch nachgeführt wenn Tupel eingefügt, geändert oder gelöscht werden.
- Indizes verlangsamen deshalb Änderungsoperationen.
- Einen Index zu erzeugen kann lange dauern.
- Bulk Load: Es ist (viel) effizienter, zuerst die Daten in die Tabelle einzufügen und nachher alle Indizes zu erstellen als umgekehrt.

Zusammenfassung

- Index Typen:
 - Primary, Clustering und Sekundär
 - Dense oder Sparse
- \bullet B^+ -Baum:
 - universelle Indexstruktur, auch für Bereichsanfragen
 - Garantien zu Tiefe, Füllgrad und Effizienz
 - Einfügen und Löschen
- Hash Index:
 - statisches und erweiterbares Hashing
 - kein Index für Primärschlüssel nötig
 - gut für Prädikate mit "="
- Mehrschlüssel Indizes: schwieriger, da es keine totale Ordnung in mehreren Dimensionen gibt
- Indizes in SQL