CSE - 4508

Name : Abdullah

: 200041126

Lab Group : 1B

Submitted on: 24th August, 2023

Submitted to : MD. SHIHAB SHAHRIAR SIR

Task 1

In step 1, we need to make 2 separate tablespaces and generate tables in them. Later, we'll shift a table from one tablespace to the other.

Initially, we must initiate a login using the SYS user credentials.

```
conn sys as sysdba;
```

Next, we'll generate 2 tablespaces using the command provided below.

```
CREATE TABLESPACE myspace DATAFILE 'myspace_data.dbf' SIZE 100M; CREATE TABLESPACE myspace2 DATAFILE 'myspace2_data.dbf' SIZE 100M;
```

Now we will create user in the created tablespace.

```
-- Creating users
CREATE USER myuser IDENTIFIED BY mypass;
GRANT ALL PRIVILEGE TO myuser;

-- Assigning tablespace to user
ALTER USER myuser DEFAULT TABLESPACE myspace;
```

Now we will create 4 tables and give them some random attributes.

```
-- Creating tables
CREATE TABLE T1 (
       vall INT PRIMARY KEY,
       val2 FLOAT,
       val3 VARCHAR2(15)
);
CREATE TABLE T2 (
       vall INT PRIMARY KEY,
       val2 FLOAT,
       val3 VARCHAR2(15)
);
CREATE TABLE T3 (
       val1 INT PRIMARY KEY,
       val2 FLOAT,
       val3 VARCHAR2(15)
);
CREATE TABLE T4 (
       vall INT PRIMARY KEY,
       val2 FLOAT,
       val3 VARCHAR2(15)
);
```

```
-- Moving table T4 to myspace2 tablespace ALTER TABLE T4 MOVE TABLESPACE myspace2;
```

```
TABLE_NAME TABLESPACE_NAME

!----
(T4 MYSPACE2
```

As we can see, we have successfully moved T4 to another created tablespace.

Task 2

For task 2, our objective is to establish a table using SQL. We'll then input data into this table. Following that, we'll execute SQL commands on the table to verify its functionality.

At first we'll create an Employee table

Now, we will insert 12 data in the table

```
INSERT INTO Employee VALUES (1, 'John', '01234567890');
INSERT INTO Employee VALUES (2, 'Jane', '02345678990');
INSERT INTO Employee VALUES (3, 'Marchal', '03456789090');
INSERT INTO Employee VALUES (4, 'Chris', '04567890190');
INSERT INTO Employee VALUES (5, 'Aaron', '05678901290');
INSERT INTO Employee VALUES (6, 'Michael', '067890123490');
INSERT INTO Employee VALUES (7, 'Jennifer', '07890123490');
INSERT INTO Employee VALUES (8, 'Sophia', '08901234509');
INSERT INTO Employee VALUES (9, 'Hilfiger', '09012345690');
INSERT INTO Employee VALUES (10, 'Tommy', '01023456790');
INSERT INTO Employee VALUES (11, 'Kenway', '01034567890');
INSERT INTO Employee VALUES (12, 'Darth', '02045678990');
```

This is our table -

```
ID NAME
                                PHONE
        1 John
                                01234567890
        2 Jane
                                02345678990
        3 Marchal
                                03456789090
        4 Chris
                                04567890190
        5 Aaron
                                05678901290
        6 Michael
                                06789012390
        7 Jennifer
                                07890123490
                                08901234590
        8 Sophia
        9 Hilfiger
                                09012345690
       10 Tommy
                                10023456790
                                11034567890
       11 Kenway
       12 Darth
12 rows selected.
```

Our next step involves crafting a query statement to retrieve employees whose phone numbers conclude with '990'. To accomplish this, we'll utilize the LIKE operator.

```
-- Using query
SELECT * FROM Employee WHERE Phone LIKE '%990';
```

Result of the query is given below-

ID	NAME	PHONE
2	Jane	02345678990
12	Darth	12045678990

As you can see, we've successfully sorted out the numbers ending with '990'

Task 3

In task 3, we have to create 2 tables and test join operations among them.

At first we'll create 2 tables and insert data in the tables.

```
-- Creating tables with primary key and foreign key
CREATE TABLE Customers (
    CustomerID NUMBER,
    CustomerName VARCHAR2(50),
    CONSTRAINT cus_pk PRIMARY KEY (CustomerID)
CREATE TABLE Orders (
    OrderID NUMBER,
    CustomerID NUMBER,
    OrderAmount NUMBER,
    CONSTRAINT ord pk PRIMARY KEY (OrderID),
    CONSTRAINT ord_cus_fk FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)
);
-- Inserting data
INSERT INTO Customers VALUES (1, 'John');
INSERT INTO Customers VALUES (2, 'Jane');
INSERT INTO Customers VALUES (3, 'Alice');
INSERT INTO Customers VALUES (4, 'Robert');
INSERT INTO Orders VALUES (101, 1, 100);
INSERT INTO Orders VALUES (102, 1, 150);
INSERT INTO Orders VALUES (103, 2, 200);
INSERT INTO Orders VALUES (104, 3, null);
INSERT INTO Orders VALUES (105, null, 300);
```

First table:

```
CUSTOMERID CUSTOMERNAME

1 John
2 Jane
3 Alice
4 Robert
```

Second table:

ORDERID	CUSTOMERID	ORDERAMOUNT	
101	1	100	
102	1	150	
103	2	200	
104	3		
105		300	

Left outer join:

```
-- Left Outer join
SELECT *
FROM Customers c
LEFT JOIN Orders o ON c.CustomerID = o.CustomerID;
```

CUSTOMERID	CUSTOMERNAME	ORDERID	CUSTOMERID	ORDERAMOUNT
1 2	John Jane Alice	101 102 103 104	1 1 2 3	100 150 200
4	Robert			

Right outer join:

```
-- Right Outer join

SELECT *

FROM Customers c

RIGHT JOIN Orders o ON c.CustomerID = o.CustomerID;
```

CUSTOMERID	CUSTOMERNAME	ORDERID	CUSTOMERID	ORDERAMOUNT
1	John	102	1	150
1	John	101	1	100
2	Jane	103	2	200
3	Alice	104	3	
		105		300

Natural join:

```
-- Natural join
SELECT *
FROM Customers c
NATURAL JOIN Orders o;
```

CUSTOMERID	CUSTOMERNAME	ORDERID	ORDERAMOUNT	
1	John	101	100	
_	John	102	150	
2	Jane	103	200	
3	Alice	104		