CD: COMPILER DESIGN CD: UNIT-1 20/09/2022

20 SEPTEMBER 2022 / IT-3rd year, Vth semester FALL SEMESTER, YEAR (Vth, 3rd)
FALL SESSION (2022-23)
(CD)
MS. SHWETA TIWARI
Published: SEPTEMBER 20, 2022

PREPARED FOR

Engineering Students All Engineering College

CD: COMPILER DESIGN

TOPIC On: UNIT-1 LEXICAL ANALYZER, lastpos, firstpos, followpos, syntax tree method DFA

By SHWETA TIWARI

Under On: INTRODUCTION TO COMPILER

TOPIC On: UNIT-1 LEXICAL ANALYZER, lastpos, firstpos, followpos, syntax tree method DFA

Lexical Analyzer

- Conversion from regular expression to DFA

Converting Regular Expressions Directly to DFAs Explanation with examples

Converting Regular Expressions Directly to DFAs

- · We may convert a regular expression into a DFA
- · (without creating a NFA first).
- First we augment the given regular expression by concatenating it with a special symbol #.
 - r → (r)# augmented regular expression

Steps for Converting a RE Directly to a DFA

- Construct a syntax tree for (r)#
- > Traverse the tree to construct functions *nullable*, *firstpos*, *lastpos*, and *followpos*
- ➤ Computing followpos
- ➤ Converting a RE Directly to a DFA

☐ Function computed from the syntax tree

- nullable(n)
 - The subtree at node n generates languages including the empty string.
- firstpos(n)
 - The set of positions that can match the first symbol of a string generated by the subtree at node n.
- lastpos(n)
 - The set of positions that can match the last symbol of a string generated be the subtree at node n.
- followpos(i)
 - The set of positions that can follow position i in the tree.

☐ Rules to compute nullable, firstpos, lastpos

Node n	nullable(n)	firstpos(n)	lastpos(n)
A leaf labeled by ϵ	true	Ø	Ø
A leaf with position <i>i</i>	false	{ <i>i</i> }	{ <i>i</i> }
n C ₂	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	lastpos(c₁) ∪ lastpos(c₂)
n	$nullable(c_1)$ and $nullable(c_2)$	if $(nullable(c_1))$ then $firstpos(c_1) \cup firstpos(c_2)$ else $firstpos(c_1)$	if $(nullable(c_2))$ then $lastpos(c_1)$ $\cup lastpos(c_2)$ else $lastpos(c_2)$
n •	true	$firstpos(c_1)$	lastpos(c ₁)

☐ Rules to compute followpos

- 1. If n is **concatenation** node with left child c1 and right child c2 and *i* is a position in lastpos(c1), then all position in firstpos(c2) are in followpos(i)
- 2. If n is * node and *i* is position in lastpos(n), then all position in firstpos(n) are in followpos(i)

	Conversion	from	regular	expression	to	DFA	without	constructing	NFA
_	Conversion	пош	i cguiai	CAPI CSSIUII	w	DIA	mitmout	constitucting	TATEL

R.E: (a|b)*abb #

lue Conversion from regular expression to DFA without constructing NFA

R.E: (a|b)*abb #

Step 1: Construct Syntax Tree

Step 1: Construct Syntax Tree

☐ Conversion from regular expression to DFA without constructing NFA

R.E: (a|b)*abb#

Step 1: Construct Syntax Tree

R.E: (a|b)*abb#

Step 1: Construct Syntax Tree

Step 2: Nullable node

Step 3: Calculate firstpos

Step 3: Calculate firstpos

Firstpos —

A leaf with position $i = \{i\}$

☐ Conversion from regular expression to DFA without constructing NFA

Step 3: Calculate firstpos

 $\{1\}$ a

{2} b

A leaf with position $i = \{i\}$

Step 3: Calculate firstpos

Step 3: Calculate firstpos

Step 3: Calculate firstpos

Step 3: Calculate lastpos

Step 3: Calculate lastpos Lastpos A leaf with position $t = \{t\}$ $\{1,2,3\} \cdot \{3\} \cdot \{4\} \cdot \{5\} \cdot \{5\} \cdot \{6\} \cdot \{1,2\} \cdot$

☐ Conversion from regular expression to DFA without constructing NFA

else lastpos(c)

Step 4: Calculate followpos

Step 4: Calculate followpos

Step 4: Calculate followpos

Firstpos— Lastpos—	{1,2,3} • {6}
{1,2,3} • {4	(6) #(6)
{1,2,3} • {3} {4	b {4} 5
{1,2}(*) {1,2} {3} a {3} 3	•
{1,2} {1,2}	
${1}_{1}^{a}{1}$ ${2}_{2}^{b}{2}$	

Position	followpos
5	6

$$\{1,2,3\}$$
 $c_1\{5\}$ $\{6\}$ $c_2\{6\}$

$$i = lastpos(c_1) = \{5\}$$

$$firstpos(c_2) = \{6\}$$

$$followpos(5) = \{6\}$$

Step 4: Calculate followpos

Position	followpos
5	6
4	5

$$\{1,2,3\}$$
 c_1 $\{4\}$ $\{5\}$ c_2 $\{5\}$

$$i = lastpos(c_1) = \{4\}$$

 $firstpos(c_2) = \{5\}$
 $followpos(4) = \{5\}$

Step 4: Calculate followpos

Position	followpos
5	6
4	5
3	4

$$i = lastpos(c_1) = \{3\}$$

 $firstpos(c_2) = \{4\}$
 $followpos(3) = \{4\}$

Step 4: Calculate followpos

Position	followpos
5	6
4	5
3	4
2	3
1	3,

$$i = lastpos(c_1) = \{1,2\}$$

 $firstpos(c_2) = \{3\}$
 $followpos(1) = \{3\}$
 $followpos(2) = \{3\}$

Step 4: Calculate followpos

Position	followpos
6	
5	6
4	5
3	4
2	1,2,3
1	1,2,3

$$\{1,2\}$$
 $\binom{*}{n}$ $\{1,2\}$

$$i = lastpos(n) = \{1,2\}$$

 $firstpos(n) = \{1,2\}$
 $followpos(1) = \{1,2\}$
 $followpos(2) = \{1,2\}$

☐ Constructing DFA

Position	followpos
6	
5	6
4	5
3	4
2	1,2,3
1	1,2,3

☐ Constructing DFA

Initial state =
$$firstpos$$
 of root = $\{1,2,3\}$ ----- A
State A

$$δ((A,a) = followpos(1) U followpos(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta((A,b) = followpos(2)$$

$$= (1,2,3) - \cdots A$$

Position	followpos
6	
5	6
4	5
3	4
2	1,2,3
1	1,2,3
	0

		0
States	a	b
A={1,2,3}	В	Α
B={1,2,3,4}	1	

☐ Constructing DFA

State B

$$δ((B,a) = followpos(1) U followpos(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$δ((B,b) = followpos(2) U followpos(4)$$

=(1,2,3) U (5) = {1,2,3,5} ----- C

Position	followpos
5	6
4	5
3	4
2	1,2,3
1	1,2,3

States	a	b
A={1,2,3}	В	Α
B={1,2,3,4}	В	С
C={1,2,3,5}		0

□ Constructing DFA

State B

$$δ$$
((B,a) = followpos(1) U followpos(3)
=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta($$
 (B,b) = followpos(2) U followpos(4)

=(1,2,3) U (5) = {1,2,3,5} ----- C

State C

$$\delta((C,a) = \text{followpos}(1) \cup \text{followpos}(3)$$

$$=(1,2,3) U (4) = \{1,2,3,4\}$$
 ----- B

$$δ((C,b) = followpos(2) U followpos(5)$$

=(1,2,3) U (6) = {1,2,3,6} ----- D

Position	followpos	
5	6	
4	5	
3	4	
2	1,2,3	
1	1,2,3	

States	а	b
A={1,2,3}	В	Α
B={1,2,3,4}	В	С
C={1,2,3,5}	В	D
D={1,2,3,6}		

☐ Constructing DFA

State D

$$\delta(D,a) = \text{followpos}(1) \text{ U followpos}(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta(D,b) = \text{followpos}(2)$$

=(1,2,3) ----- A

Position	followpos
6	
5	{6}
4	{5}
3	{4}
2	{1,2,3}
1	{1,2,3}

States	a	b
A={1,2,3}	В	Α
B={1,2,3,4}	В	С
C={1,2,3,5}	В	D
D={1,2,3,6}	В	Α

Transition Table for Di

☐ Constructing DFA

State D

$$\delta(D,a) = \text{followpos}(1) \text{ U followpos}(3)$$

=(1,2,3) U (4) = {1,2,3,4} ----- B

$$\delta(D,b) = \text{followpos}(2)$$

$$= (1,2,3) \cdot \cdots \cdot A$$

DFA for the R.E: (a|b)*abb

Position	followpos	
6		
5	{6}	
4	{5}	
3	{4}	
2	{1,2,3}	
1	{1,2,3}	

States	а	b
A={1,2,3}	В	Α
B={1,2,3,4}	В	С
C={1,2,3,5}	В	D
D={1,2,3,6}	В	Α

Transition Table

R.E: a*b*a(a | b)*b*a#
(Nov-2016) (7 marks)

19