Monaco: Quantify Uncertainty and Sensitivities in Your Computational Models with a Monte Carlo Library

Acknowledgements

Thank you to Capella Space for sponsoring this talk

Mechanistic vs Empirical Models

- Deterministic
- Debuggable & Auditable
- Encodes Human Knowledge
- No Need for Training Data
- Easy to Implement → Used Everywhere

"Too Perfect"

- Real world is noisy and messy!
- How sensitive are these predictions?
- What's the range of outcomes?

Crucial for effective & responsible use of models in decision-making

Best Point Estimate

Here be dragons!

Variable 2

Variable 1

Variable 1

Variable 2

Varying Inputs One-At-A-Time

• Covered volume (convex hull) = $\frac{1}{2}$

Here still be dragons!

- As # of variables increase, volume = $\frac{1}{k!}$
- Doesn't scale!

Variable 1

Variable 2

Random Points
"Monte Carlo" approach

- Covered volume \rightarrow 1 as $n \rightarrow \infty$ for any dimension hypercube
- Good coverage inside that volume
- Full exploration of the input space

Uncertainty & Sensitivity Analysis

"What is the range of possible outcomes?"

Uncertainty Analysis

- Histograms
- Spaghetti Plots
- Confidence Intervals

"Which parameters most affect these outcomes?"

Sensitivity Analysis

- Scatter Plots
- Sensitivity Indices
- Regressions

What this looks like in practice

NASA: Ares I Flight Simulations

FiveThirtyEight: Election Forecasting

FogBugz: Evidence-Based Scheduling

Workflow

Forward Uncertainty Propagation

Model & Parameter Validation

monaco – Input Distributions

Pass in any of scipy.stats' probability distributions

• Or, define a custom one

Input ranges come from:

- Observed / experimental data
- Physical limits
- Spec sheets
- Best guesses

monaco — Simulation Structure

3 User-Defined Functions

Preprocess

Grabs input values from each case, structures it into format run expects

Run

Wraps or directly implements your model

Postprocess

Grabs raw outputs from run function and extracts output values for each case

monaco – Analyzing Results

Plotting!

- monaco.plot() on one or more Vars will automatically choose best plot type to show
- Histograms, empirical CDFs, 2D/3D scatter plots, 2D/3D spaghetti plots

Variable Statistics

- Calculate mean, percentiles, etc, or any custom statistic
- Bootstrapped to specified confidence levels

Sensitivity Indices

- Measures contribution to output variance from variance of inputs
- Includes first-order as well as nonlinear interaction effects

Live Demo: Dice Roll

github.com/scottshambaugh/monaco-scipy2022/blob/main/dice_roll.ipynb

Live Demo: Baseball

github.com/scottshambaugh/monaco-scipy2022/blob/main/baseball.ipynb

Parallel Processing

Run workflow serially or in parallel with dask.distributed

How Many Cases to Run?

 Order statistics determine cases needed to rigorously reach confidence level for variable statistics

File I/O

- Save and load Sim and Case objects to file to avoid repeating expensive computations
- Import and export variables to .csv or .json to trade out any part of the workflow with external tooling

Quasi Monte-Carlo Sampling

Fills space more efficiently than pure random sampling

Model & Parameter Validation

Very important, but genuinely difficult

- A rigorous treatment requires:
 - Lots of test data
 - Moving to a full probabilistic programming framework
- A more typical treatment looks like:
 - Subject matter expert validates model behavior (corners of input space often reveal bugs!)
 - Input parameters are anchored and defined conservatively
 - A small family of test data is compared to expected results
 - Can formalize with hypothesis testing or probabilistic scoring measures
- Outside monaco's scope

Recommended Tools

Basic

Advanced

Guesstimate

Web-based tool for simple models

Guesstimate

How Long It Takes To Get Ready for Preschool

Updated Jun 11, 2016

Number of Melidowns	Number of Verlable heres to Bring	Minutes to Select Clothing and Dress	Breakfest Prep. Time	Minutes to Brush Teeth
1	2 mining at a land	19 73 8 34	6 1.91/10	6.5 meng per
Minutes per Melidown B 27 to 15	Minutes to Find a Variable Hern 7 22 to 12	Minutes to Find and Don Shoes and/or Jacket 12	Lunch Prep Time 10 54 to 10	Minutes to Brush/Style Hair 8 14 to 13
Total Melidosen Time B	Total Variable flam Search Time 14		Breakfast Consumption Time 13	
				Minutes to Find and Pack Baggs) 5.5
Minutes Distracted		Total Prop Time 120		Minuted to Get in Get

Monaco

Single-Shot
Uncertainty & Sensitivity
Analysis

monaco

UQpy

More Advanced
Uncertainty & Sensitivity
Analysis

Stan, PyMC

Probabilistic Programming

Miscellanea

Links

- Project repo: github.com/scottshambaugh/monaco
- Lots of examples: github.com/scottshambaugh/monaco/tree/main/examples
- API Documentation: monaco.readthedocs.io
- Conference paper: conference.scipy.org/proceedings/scipy2022/pdfs/scott_shambaugh.pdf
- These slides and notebooks: github.com/scottshambaugh/monaco-scipy2022
- Video of conference talk: <u>youtube.com/watch?v=yB539OIol_s</u>

Recommended Reading:

- "Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis"
- "The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support"
- "Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices"

Short-Term Roadmap – currently alpha software

- Single variable and pairwise regressions: linear, polynomial, custom, with confidence intervals
- Sensitivity Indices: confidence intervals and scale-dependent effects
- Dask: link task graph and confirm working on remote server
- Pairwise variable statistics

pip install monaco

Thank You

Questions?

Image Sources

- https://www.capellaspace.com/
- https://www.youtube.com/watch?v=IHZwWFHWa-w
- https://www.cantorsparadise.com/maxwells-equations-7484212839b1
- http://www.cs.cornell.edu/courses/cs4670/2016sp/lectures/lec41_recowrapup_web.pdf
- https://en.wikipedia.org/wiki/File:Reggio calabria museo nazionale mosaico da kaulon.jpg
- https://en.wikipedia.org/wiki/Dragon#/media/File:M%C3%BCnster_wawelski.jpg
- https://commons.wikimedia.org/wiki/File:Psalter_World_Map,_c.1265_dragons.jpg
- https://commons.wikimedia.org/wiki/File:20000 squid holding sailor.jpg
- https://ntrs.nasa.gov/citations/20100038453
- https://projects.fivethirtyeight.com/2020-election-forecast/
- https://www.joelonsoftware.com/2007/10/26/evidence-based-scheduling/
- https://distributed.dask.org/en/stable/
- https://www.getguesstimate.com/models
- https://uqpyproject.readthedocs.io/en/latest/#
- https://mc-stan.org/
- https://www.pymc.io/welcome.html