Implementing and Understanding Data Structures in Java

GETTING STARTED

Dan Bunker

http://www.linkedin.com/in/bunkerdan

Data Structure Line Up

Linked List Stack Queue **Hash Table Binary Tree**

Data Structure

A method of organizing information so that the information can be stored and retrieved efficiently


```
String s = "a string";
char value[] = {'a', ' ', 's', 't', 'r', 'i', 'n', 'g'};
```


Data Structure Characteristics

Big O Notation

Common Big O Algorithms

Name	Big O Notation	Example	
Constant	O(1)	return true;	
Logarithmic	O(log <i>n</i>)	binary search	
Linear	O(<i>n</i>)	for or while loop	
Quadratic	O(<i>n</i> ^2)	loop within a loop	
Exponential	O(c^ <i>n</i>)	recursive calls over n and looping over c in the function	
Factorial	O(<i>n</i> !)	looping over n and recursive call in the loop to n-1	

Data Structure Performance

	Access	Search	Insert	Delete
Stack	O(<i>n</i>)	O(<i>n</i>)	O(1)	O(1)
Queue	O(<i>n</i>)	O(<i>n</i>)	O(1)	O(1)
Linked List	O(<i>n</i>)	O(<i>n</i>)	O(1)	O(1)
Hash Table	O(1)	O(1)	O(1)	O(1)
Binary Tree	O(log n)	O(log n)	O(log n)	O(log n)

Summary

What is a data structure?

Data structure characteristics

Big O notation

Performance