Nutrient Demand, Risk and Climate change: Evidence from historical rice yield trials in India

Dr. Sandip K. Agarwal & Dr. Ali Saeb

Indian Institute of Science Education and Research, Bhopal (IISERB)

Research Objectives

- Model the stochastic production function for the rice conditional on input and weather.
- Estimate the average yields of rice and risk through the moments of the rice yield distribution.
- Identify the marginal effects of nutrient and climate change on the rice yield distribution.
- Simulate the demand for nutrients and insurance under scenarios of climate change, consistent with economic rationales of profit maximization and utility maximization.

Data

- Rice yield data is sourced from the Indian Institute of Soil Science (IISS), Bhopal, which is part of Long Term Fertilizer Experiments (LTFE)
- Rice yield for 6 stations Barrackpore (BKP), Bhubaneshwar (BBS), Jagtial (JGT), Pantnagar (PNT), Pattambi (PTT) and Raipur (RPR).
- Yield data is for the period between 1973-2016.
- Weather data daily rainfall, minimum and maximum, temperatures; Primarily used the Indian Meteorological Department (IMD) data, and partly the National Oceanic and Atmospheric Administration (NOAA).

Data – Daily Avg. Min. & Max. Temperature

Data – Daily Avg. Rainfall

City

BKP

Methodology

- OLS regression and Beta Regression
- OLS regression: $log(Y_i) = \sum_{k=1}^{K} \beta_k X_k$
- Beta regression: $g(\mu_i) = \mathbf{x_i}\beta$, $h(\varphi_i) = \mathbf{w_i}\delta$

$$\mu = \frac{exp(\mathbf{X}\beta)}{1 + exp(\mathbf{X}\beta)}, \qquad \varphi = exp(\mathbf{Z}\delta)$$

- Beta density: $f(y, \omega, \nu) = \frac{\Gamma(\omega + \nu)}{\Gamma(\omega)\Gamma(\nu)} \cdot y^{\omega - 1} \cdot (1 - y)^{\nu - 1}$.

$$\varphi = \omega + \nu, \qquad \omega = \mu \varphi, \qquad \nu = (1 - \mu)\varphi, \qquad V(y) \equiv \sigma^2 = \frac{\mu(1 - \mu)}{(\varphi + 1)}$$

$$E[y] \equiv \mu = \frac{\omega}{\omega + \nu}, \qquad V(y) \equiv \sigma^2 = \frac{\omega \nu}{(\omega + \nu)^2 (\omega + \nu + 1)}$$

Methodology

- Dependent variable: log(Yield) & Normalized Yield
- Independent variables: Nutrients, Weather, Station Fixed Effects
- Nutrients: N, P & K treatment levels with (with their quadratic term)
- Weather variables organized yearly as 3 growth stages: vegetative (Jun. Aug.), reproductive (Sep.) and ripening stage (Oct.)
- Weather variables are averages of rainfall, min. and max. temperatures along with their standard deviation, skewness, and percentiles to account for weather distribution.

Results – Moments of Yield density

BKP BBS

JGT PNT

PTT RPR

- N increases the yield and the yield variability
- Yield skewness falls (i.e. becomes more negative)

Results – Yield density

Results – Marginal Productivity of Nitrogen

- Marginal Producitivity of Nitrogen (MPN) as consistent with economic rationale of profit maximization is used to find N demand: MPN = Price of nitrogen.

Results

- Rice yields are most sentisitve to rising temperatures during the vegetative and the reproductive stages.
- Rainfall during the ripening stage adversely affects the yield, and can be severe, if increase in average rainfall is contributed by lower percentiles of rainfall distribution.

Ongoing:

- Effect of weather changes on the yield distribution and the productivity of the nutrients.
- Simulating the changes in the demand for nutrient and insurance as a result of weather changes

References

- Agarwal, S. K. (2017). Subjective beliefs and decision making under uncertainty in the field.
- Babcock, B. A., & Hennessy, D. A. (1996). Input demand under yield and revenue insurance. *American journal of agricultural economics*, 78(2), 416-427.
- Barnwal, P., & Kotani, K. (2013). Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India. *Ecological Economics*, 87, 95-109.
- Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. *Nature climate change*, *I*(1), 42-45.
- Luo, Q. (2011). Temperature thresholds and crop production: a review. *Climatic Change*, 109(3-4), 583-598.
- Pattanayak, A., & Kumar, K. K. (2014). Weather sensitivity of rice yield: evidence from India. *Climate Change Economics*, 5(04), 1450011.
- Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences, 106(37), 15594-15598.
- Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. *Proceedings of the National Academy of Sciences*, 107(33), 14562-14567.

Thank You!

Table 1: Yield Regression

	Dependent variable: OIS regression Reta regression			uma pai co
	OLS regression		Beta regression	
	$\frac{log(Y)}{(1)}$	$\frac{Yield)}{(2)}$	$\frac{Normaliz}{(3)}$	$\frac{\text{red Yield}}{(4)}$
Nutrients	· /	· · · · · · · · · · · · · · · · · · ·	· /	. ,
N	0.0081***	0.0081***	0.0124***	0.0135***
N^2	(0.0013) $-0.00003***$	(0.0013) $-0.00003***$	(0.0021) $-0.00004***$	(0.0023) $-0.0001***$
1 V -	-0.00003	(0.00003)	-0.00004 (0.00001)	-0.0001 (0.00001)
P	0.0044***	0.0043***	0.0122**	0.0146**
K	(0.0016) $0.0020***$	(0.0016) $0.0020***$	(0.0058) $0.0082***$	(0.0063) $0.0075****$
Λ	(0.0020	(0.0020	(0.0082)	(0.0075)
K^2			-0.0001**	-0.0001*
Vegetative			(0.00004)	(0.0001)
$T_{min}:AVG$	-0.0841***	-0.1497	-0.0253	-0.1509***
- 111111	(0.0314)	(0.1113)	(0.0920)	(0.0549)
$T_{max}:AVG$	0.0236 (0.0316)	-0.1105 (0.0884)	0.0754 (0.0466)	-0.0578
Rain:AVG	0.0203***	0.0120	0.0517^*	(0.0877) $0.0350**$
	(0.0077)	(0.0101)	(0.0312)	(0.0162)
$Days(T_{max} > crit.)$		-0.0075 (0.0065)		-0.0083 (0.0077)
$T_{min}:SD$		(0.000)	-0.0916	(0.0077)
			(0.0813)	
$T_{max}:SD$	0.1041^{***} (0.0321)		0.1902*** (0.0620)	
Rain:SD	-0.0140^{***}		-0.0267^{***}	
	(0.0017)		(0.0094)	
$T_{min}:SK$			-0.0373^{***} (0.0129)	
$T_{max}: SK$	0.0854*		0.1916**	
- max · · · ·	(0.0517)		(0.0964)	
Rain: SK	0.0502^{***} (0.0111)		$0.0766* \\ (0.0417)$	
$T_{min}:75^{th}$	(0.0111)	0.1076	(0.0417)	
		(0.1124)		
$T_{max}:5^{th}$		0.0499 (0.0363)		
$T_{max}:75^{th}$		0.0473		0.0718
		(0.0329)		(0.0447)
$T_{max}:95^{th}$		0.0688^{***} (0.0078)		0.1029^{***} (0.0120)
$Rain:5^{th}$		0.4161***		0.7189***
		(0.0800)		(0.1122)
$Rain: 25^{th}$		-0.1430^{**} (0.0616)		-0.1601^* (0.0852)
$Rain:75^{th}$		(0.0010)		0.0332) 0.0117
		1		(0.0089)
$Rain: 95^{th}$		$\frac{1}{0.0032}$ (0.0025)		-0.0102** (0.0049)
Reproductive		(0.00-0)		(0100 = 0)
$T_{min}:AVG$	-0.0802**	-0.1522***	-0.1083***	-0.4412^{***}
T AVC	(0.0312)	(0.0142)	(0.0344)	(0.1241)
$T_{max}:AVG$	0.0580 (0.0577)	-0.0807 (0.0638)	0.1920^* (0.1000)	0.3469^{***} (0.0635)
Rain: AVG	0.0104*	-0.0057	0.0363*	-0.0501***
David (T	(0.0058)	(0.0046)	(0.0202)	(0.0175)
$Days(T_{max} > crit.)$	-0.0100 (0.0111)		-0.0148 (0.0147)	-0.0168 (0.0174)
$T_{min}:SD$	0.0686***		0.1717**	. /
T CD	(0.0234)		(0.0715)	
$T_{max}:SD$	-0.0747 (0.0635)		-0.0870 (0.1326)	
Rain:SD	-0.0052		-0.0201	
T CT	(0.0057)		(0.0130)	
$T_{min}: SK$	0.0313 (0.0292)		0.0491 (0.0603)	
$T_{min}:5^{th}$, ,	0.0186**	` '	0.0570
T orth		(0.0092)		(0.0520)
$T_{min}:95^{th}$		0.0694*** (0.0154)		0.2255^{***} (0.0566)

	(1)	(2)	(3)	(4)
$T_{max}:5^{th}$		0.0530 (0.0331)		
$T_{max}:75^{th}$, ,		-0.1986^{***} (0.0631)
$Rain:5^{th}$		0.2583*** (0.0610)		0.4360*** (0.0485)
$Rain: 25^{th}$		-0.0406 (0.0253)		
$Rain:75^{th}$				0.0150^{***} (0.0056)
$Rain:95^{th}$		0.0017 (0.0013)		0.0076^{***} (0.0028)
Ripening				
$T_{min}:AVG$	0.0654** (0.0257)	0.0195 (0.0157)	0.0880*** (0.0161)	0.2228** (0.1046)
$T_{max}:AVG$	(5.5_5.)	(3.3.23.7)	(3.2.2.7)	-0.4995^{***} (0.1327)
Rain: AVG	-0.0256** (0.0112)	-0.0656** (0.0259)	-0.0490 (0.0506)	-0.0353** (0.0173)
$T_{min}:SD$	0.0299 (0.0405)			
Rain:SD			0.0053 (0.0137)	
Rain: SK			0.0503 (0.0308)	
$T_{min}:25^{th}$				-0.0500 (0.0420)
$T_{min}:75^{th}$		-0.0339 (0.0240)		-0.1160** (0.0544)
$T_{min}:95^{th}$		0.0269** (0.0130)		
$T_{max}:5^{th}$, ,		0.0710^* (0.0389)
$T_{max}:25^{th}$				0.1362** (0.0688)
$T_{max}:95^{th}$				0.2620*** (0.0750)
$Rain:5^{th}$		-0.8283^{***} (0.1502)		-1.7752^{***} (0.1815)
$Rain: 25^{th}$		0.2683** (0.1255)		0.4474* (0.2399)
$Rain:75^{th}$, ,		-0.0200 (0.0171)
$Rain:95^{th}$		0.0082* (0.0043)		,
Intercept	7.3846*** (2.1243)	8.9882*** (1.9084)	-9.6665^{**} (4.1064)	-3.0100 (2.9376)
City(BBS/PTT)	-0.3705*** (0.0210)			-0.6237^{***} (0.0361)
City(BBS)		$ \begin{array}{c} 2 \\ -0.3540^{***} \\ (0.0146) \end{array} $	-0.5823^{***} (0.1183)	
City(PTT)		-0.1270 (0.1797)		
City(JGT/PNT)	0.2485*** (0.0308)		0.7884** (0.3507)	
City(JGT)		0.2992*** (0.0539)		0.5461*** (0.0834)
City(RPR)			0.5070 (0.4576)	
Observations	920	920	920	920
R^2 Adjusted R^2	$0.6858 \\ 0.6773$	$0.7298 \\ 0.7194$	0.6159	0.6760
Adjusted It AIC	254.8	136	-1589.6	-1761.7

Note: *p<0.1; **p<0.05; ***p<0.01

Yield Regressions (contd.)

Precision sub-model	(3)	(4)
N	-0.0023^{**} (0.0009)	-0.0019^* (0.0011)
Intercept	2.5818*** (0.0955)	2.7186*** (0.1215)
City(BBS/RPR)	1.4826*** (0.0360)	
City(BBS)		1.0787^{***} (0.0256)
City(RPR)		1.9004^{***} (0.0276)
City(JGT/PTT/PNT)		0.4308*** (0.0765)
City(JGT/PTT)	0.4328*** (0.0330)	
City(PNT)	0.2094*** (0.0180)	
Note:	*p<0.1; **p<0.05	; ***p<0.01