ANALYSIS OF CIRCUITS

**** Solutions 2016 ****

Information for Candidates:

Numerical answers must be given as fully evaluated decimal values and not as unevaluated arithmetic expressions.

Notation

The following notation is used in this paper:

- 1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the root-mean-square (or RMS) phasor voltage by $\widetilde{X} = \frac{X}{\sqrt{2}}$. The complex conjugate of X is X^* .
- Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the complex impedance or phasor value.
- 3. Times are given in seconds unless otherwise stated.
- 4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and logarithmic axes for frequency and magnitude.
- 5. The real and imaginary parts of a complex number, X, are written $\Re(X)$ and $\Im(X)$ respectively.

Key: B=bookwork, U=unseen example

1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.

[4]

[U] KCL at node X gives

$$\frac{X-18}{4} + \frac{X}{3} + \frac{X-Y}{2} = 0$$

$$\Rightarrow 3X - 54 + 4X + 6X - 6Y = 0$$

$$\Rightarrow 13X - 6Y = 54$$

KCL at node Y gives

$$\frac{Y-X}{2} + \frac{Y}{1} - 3 = 0$$

$$\Rightarrow -X + 3Y = 6$$

Solving these simultaneous equations gives

$$X = 6, Y = 4.$$

Figure 1.1

Figure 1.2

b) Use the principle of superposition to find the voltage X in Figure 1.2. [4]

[U] If we short circuit the 18 V source, the 2Ω and 4Ω resistors are inparallel and are equivalent to a $\frac{2\times 4}{2+4}=\frac{8}{6}=1.333\,\Omega$ resistor. The circuit is now a potential divider and the voltage at X is given by $X_1=\frac{1.333}{4+1.333}\times -4=\frac{1.333}{5.333}\times -4=-1\,\mathrm{V}$.

If we now short circuit the 4V voltage source, the two 4Ω resistors are in parallel and equal 2Ω . The voltage at X is then $X_2 = \frac{2}{2+2} \times 18 = \frac{1}{2} \times 18 = 9$ V.

By superposition, the total voltage is therefore $X = X_1 + X_2 = -1 + 9 = 8 \text{ V}$.

c) Draw the Thévenin equivalent circuit of the two-terminal network in Figure 1.3 and find the values of its components. [4]

[U] We can find the Thévenin resistance by short-circuiting the voltage source and open-circuiting the current source. This leaves two resistors in parallel with an equivalent resistance of $R_{Thev} = \frac{2 \times 3}{2+3} = 1.2 \,\mathrm{k}\Omega$.

We can find the open circuit voltage by nodal analysis or by superposition.

- (i) Using nodal analysis (and grounding node B): $\frac{A-5}{2} + \frac{A}{3} 3 = 0$ from which $V_{Thev} = A = \frac{33}{5} = 6.6 \text{ V}$.
- (ii) By superposition: $V_{5V} = \frac{3}{3+2} \times 5 = 3V$ and $V_{3m} = \frac{2\times3}{2+3} \times 3 = 3.6V$ from which $V_{Thev} = 3 + 3.6 = 6.6V$.

Either way, we get the diagram on the left below. Alternatively we can ground node B and append a current source, I, as shown in the rightmost diagram below. Now doing KCL at node A gives $\frac{A-5}{2} + \frac{A}{3} - 3 - I = 0$ from which A = 6.6 + 1.2I which gives V_{Thev} and R_{Thev} directly.

Figure 1.3

Figure 1.4

- d) Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for Z in terms of X and Y. [4]
 - [U] There is no current flowing through the $12k\Omega$ resistor, so $V_+ = X$. The circuit has negative feedback and so we also have $V_- = X$. Now, doing KCL at V_- gives

$$\frac{X-Y}{20} + \frac{X-Z}{30} = 0$$

$$\Rightarrow 5X - 3Y - 2Z = 0$$

$$\Rightarrow Z = 2.5X - 1.5Y$$

e) The diode in the circuit of Figure 1.5 has a forward voltage of 0.7 V when conducting but is otherwise ideal. Determine the output voltage, Y, when (i) X = 1 V,

[U]If the diode is not conducting, then the circuit is a potential divider and X = 0.75Y and the voltage across the diode is 0.25X. Thus, the diode will be off when $0.25X < 0.7 \Rightarrow X < 2.8$. If the diode is conducting, then Y = X - 0.7.

(i) when X = 1 V, the diode is off and Y = 0.25X = 0.25 V. (ii) when X = 5 V, the diode is conducting and Y = X - 0.7 = 4.3 V. (iii) when X = -5 V, the diode is off and Y = 0.25X = -1.25 V.

Figure 1.5

f) i) The diagram of Figure 1.6 shows an AC source with r.m.s. voltage $\widetilde{V} = 230 \,\mathrm{V}$ driving a load with impedance $50 + 25 \,j\,\Omega$ through a line with impedance $2\,\Omega$. Determine the complex powers, given by $S = \widetilde{V} \times \widetilde{I}^*$, absorbed both by the load and by the 2Ω resistor. [4]

[U] The current phasor is $\tilde{I} = \frac{\tilde{V}}{52+25j} = 3.593 - 1.727j$. The complex power absorbed by an impedance is $S = \tilde{V} \times \tilde{I}^* = \left|\tilde{I}\right|^2 Z = 15.891Z$. So the power absorbed by the resistor is $S_R = 15.891 \times 2 = 31.781$ W. The power absorbed by the load is $S_L = 15.891 \times (50+25j) = 794.5 + 397.3j$ VA.

ii) A capacitor with impedance -200j is now connected across the load, as indicated in Figure 1.7. Determine the complex powers absorbed both by the load and by the 2Ω resistor. [4]

[U] The combined load+capacitor impedance is now $Z_{LC} = \frac{-200j(50+25j)}{50+25j-200j} = 60.38 + 11.32 j \Omega$. So the voltage across the load+capacitor is $\frac{Z_{LC}}{2+Z_{LC}} \times \tilde{V} = \frac{(60.38+11.32j)230}{62.38+11.32j} = 222.86 + 129.57 j$. The source current is now $\frac{V}{2+Z_{LC}} = \frac{230}{62.38+11.32j} = 3.570 - 0.648 j$.

So the power absorbed by the resistor is $S_R = |3.570 - 0.648j|^2 \times 2 = 13.162 \times 2 = 26.32 \, \text{W}$, a decrease of 17%. The power absorbed by the load is $S_L = \frac{|V_L|^2}{Z_L^2} = \frac{|222.86 + 129.57j|^2}{50 - 25j} = \frac{49669}{50 - 25j} = 794.7 + 397.3j \, \text{VA}$ which is almost exactly the same as before.

Figure 1.6

Figure 1.7

Determine the gain, $\frac{Y}{X}$, for the block diagram shown in Figure 1.8. The rectangular blocks are drawn with inputs at the left and outputs at the right and have gains of F, G and H respectively. The open circle represents an adder/subtractor; its three inputs have the signs indicated on the diagram and its output is V. [4]

[U] We can write down the following equations from the block diagram:

$$V = X - Y - FHV$$

$$Y = FGV$$

We need to eliminate V from these equations:

$$V = \frac{Y}{FG}$$

$$\Rightarrow \frac{1}{FG}Y = X - Y - \frac{H}{G}Y$$

$$\Rightarrow \left(\frac{1}{FG} + 1 + \frac{H}{G}\right)Y = X$$

$$\frac{1 + FG + FH}{FG}Y = X$$

$$\frac{Y}{X} = \frac{FG}{1 + F(G + H)}$$

Figure 1.8

Figure 1.9

h) The input voltage in Figure 1.9 is given by

$$x(t) = \begin{cases} 0 & t < 0 \\ 8 & t \ge 0. \end{cases}$$

Determine the time constant of the circuit.

[2]

[U] The time constant is given by $\tau = R_{Thev}C$ where R_{Thev} is the Thévenin resistance across the terminals of the capacitor. If we short circuit the source, x(t), we find $R_{Thev} = \frac{3R \times R}{3R + R} = 0.75R$ so the time constant is $\tau = 0.75RC$.

An alternative method is to calculate the transfor function of the circuit as

$$\frac{Y}{X} = \frac{R}{R + \frac{1}{j\omega C + \frac{1}{3R}}} = \frac{R}{R + \frac{3R}{j\omega 3RC + 1}} = \frac{1}{j\omega 3RC + 1 + 3} = \frac{1}{j\omega 3RC + 4}$$

from which the time constant is the reciprocal of the denominator corner frequency and therefore equals $\tau = 0.75RC$.

ii) Determine an expression for
$$y(t)$$
 for $t > 0$. [5]

[U] Since the DC gain of the circuit is 0.25 (obtained by treating the capacitor as an open circuit), the steady state output for $t \ge 0$ is $y_{SS}(t) = 0.25x(t) = 2$.

At time t = 0, the capacitor voltage, y - x, cannot change instantaneously. Therefore, y(0+) - x(0+) = y(0-) - x(0-) = 0 and hence y(0+) = x(0+) = 8. The transient amplitude is therefore $y(0+) - y_{SS}(0+) = 8 - 2 = 6$. The complete output is therefore $y(t) = 2 + 6e^{-\frac{t}{t}}$.

The frequency response of a circuit is given by

$$H(j\omega) = \frac{aj\omega}{(j\omega)^2 + 2\zeta\omega_0j\omega + \omega_0^2}$$

where a, ζ and ω_0 are real numbers.

a) i) By dividing the numerator and denominator of $H(j\omega)$ by $j\omega$ and then multiplying the resultant expression by its complex conjugate, show that $|H(j\omega)|^2 = \frac{a^2}{4\zeta^2\omega_0^2 + \left(\omega - \frac{\omega_0^2}{\omega}\right)^2}$. [3]

[U] Dividing numerator and denominator by jw gives

$$H(j\omega) = \frac{a}{2\zeta\omega_0 + j\omega + \frac{\omega_0^2}{j\omega}}$$
$$= \frac{a}{2\zeta\omega_0 + j\left(\omega - \frac{\omega_0^2}{\omega}\right)}.$$

To multiply by its complex conjugate we take the sum of the real and imaginary parts in both numerator and denominator to obtain

$$|H(j\omega)|^2 = \frac{a^2}{4\zeta^2\omega_0^2 + \left(\omega - \frac{\omega_0^2}{\omega}\right)^2}.$$

ii) Explain why the maximum value of $|H(j\omega)|^2$ occurs when the quantity $\left(\omega - \frac{\omega_0^2}{\omega}\right)$ equals zero. Hence show that the maximum occurs at $\omega = \omega_0$ and determine $|H(j\omega_0)|^2$. [2]

[U] The denominator of $|H(j\omega)|^2$ is the sum of two squares of which only one involves ω . Therefore the denominator in minimized (and $|H(j\omega)|^2$ is maximized) when this term is zero:

$$\left(\omega - \frac{\omega_0^2}{\omega}\right)^2 = 0 \quad \Rightarrow \quad \omega = \frac{\omega_0^2}{\omega} \quad \Rightarrow \quad \omega = \pm \omega_0.$$

Substituting this into the expression for $|H(j\omega)|^2$ gives

$$\max\left\{\left|H(j\omega)\right|^2\right\} = \frac{a^2}{4\zeta^2\omega_0^2}.$$

Find expressions for the two positive values of ω for which $|H(j\omega)|^2 = \frac{a^2}{8\zeta^2\omega_0^2}$ and determine a simplified expression for the difference between them. [4]

[U] We have

$$|H(j\omega)|^{2} = \frac{a^{2}}{4\zeta^{2}\omega_{0}^{2} + \left(\omega - \frac{\omega_{0}^{2}}{\omega}\right)^{2}} = \frac{a^{2}}{8\zeta^{2}\omega_{0}^{2}}$$

$$\Rightarrow \left(\omega - \frac{\omega_{0}^{2}}{\omega}\right)^{2} = 4\zeta^{2}\omega_{0}^{2}$$

$$\omega - \frac{\omega_{0}^{2}}{\omega} = \pm 2\zeta\omega_{0}$$

$$\omega^{2} \pm 2\zeta\omega_{0}\omega - \omega_{0}^{2} = 0$$

$$\omega = \frac{\pm 2\zeta\omega_{0} \pm \sqrt{4\zeta^{2}\omega_{0}^{2} + 4\omega_{0}^{2}}}{2}$$

$$= \pm \zeta\omega_{0} \pm \sqrt{\zeta^{2}\omega_{0}^{2} + \omega_{0}^{2}}.$$

Since the square-root term is larger in magnitude than the first term, the two positive roots will be when the square root term is positive:

$$\omega_{1,2}=\pm\zeta\,\omega_0+\sqrt{\zeta^2\omega_0^2+\omega_0^2}=\left(\pm\zeta+\sqrt{\zeta^2+1}\right)\omega_0$$

Thus the difference between these two roots will be $\omega_2 - \omega_1 = 2\zeta \omega_0$ (since the square root term cancels out in the subtraction). At these values of ω , the response has fallen 3dB from its peak.

- b) Suppose now that $a = 5000 \,\mathrm{s}^{-1}$, $\zeta = 0.1$ and $\omega_0 = 5000 \,\mathrm{rad/s}$.
 - i) Determine the low and high frequency asymptotes of $H(j\omega)$. [2]

[U] The LF asymptote is found by taking the terms with the lowest power of $j\omega$ in numerator and denomiator and is

$$H_{\rm L}(j\omega) = ja\omega_0^{-2}\omega = j2 \times 10^{-4}\omega$$

. Similarly, the HF asymptote is

$$H_{\rm H}(j\omega) = -ja\omega^{-1} = -j5000\omega^{-1}$$

Draw a dimensioned sketch showing the high and low frequency asymptotes as well as the true magnitude response, $|H(j\omega)|$. Indicate on your graph in dB the peak value of $|H(j\omega)|$ and the value of the asymptotes at their point of intersection.

[U] The magnitude asymptotes cross when $a\omega_0^{-2}\omega=a\omega^{-1}$ \Rightarrow $\omega=\omega_0=5000$. At this point, their value is $a\omega_0^{-1}=1=0\,\mathrm{dB}$. From

part ii), the peak magnitude gain is $\sqrt{\frac{a^2}{4\zeta^2\omega_0^2}} = \frac{a}{2\zeta\omega_0} = 5 = 14\,\mathrm{dB}$ at $\omega = 5000$. We also know from part iii) that the 3 dB bandwidth is $2\zeta\omega_0 = 1000\,\mathrm{rad/s}$. Thus we can draw the graph as shown.

iii) Draw a dimensioned sketch of the straight-line approximation to the phase response, $\angle H(j\omega)$. You may assume without proof that the gradient of the approximation at ω_0 is equal to $-0.5\pi\zeta^{-1}$ radians per decade where "decade" means a factor of 10 in frequency. [4]

[U] From part i), the LF and HF phase shifts are $\pm \frac{\pi}{2}$ and $\pm \frac{\pi}{2}$. Also, at $\omega = \omega_0$, the outer terms of the quadratic cancel and the phase shift is 0. At ω_0 , the gradient is $-0.5\pi\zeta^{-1}$, so the central line of the approximation will hit $\pm \frac{\pi}{2}$ at $\omega = \omega_0 \pm \zeta$ decades. $\zeta = 0.1$ decades is a factor of $10^{0.1} = 1.259$. So the sloping segement goes between $\omega = [3972, 6295]$

Show that the frequency response, $\frac{Y(j\omega)}{X(j\omega)}$ of the circuit shown in Figure 2.1 is given by

$$\frac{Y(j\omega)}{X(j\omega)} = \frac{-j\omega R_2 C}{(j\omega)^2 R_1 R_2 C^2 + 2j\omega R_1 C + 1}.$$

[U] KCL at the -ve opamp input (which is a virtual ground) gives

$$j\omega C(0-V) + \frac{0-Y}{R_2} = 0$$

$$\Rightarrow V = \frac{-Y}{j\omega R_2 C}.$$

KCL at V gives

$$\frac{V-X}{R_1} + j\omega C(V-Y) + j\omega C(V-0) = 0$$
$$V(1+2j\omega R_1 C) - X - j\omega R_1 CY = 0.$$

Substituting from the first equation gives

$$\frac{-Y}{j\omega R_2 C} (1+2j\omega R_1 C) - X - j\omega R_1 CY = 0.$$

$$\left(1+2j\omega R_1 C + (j\omega)^2 R_1 R_2 C^2\right) Y = -j\omega R_2 CX$$

$$\Rightarrow \frac{Y(j\omega)}{X(j\omega)} = \frac{-j\omega R_2 C}{(j\omega)^2 R_1 R_2 C^2 + 2j\omega R_1 C + 1}.$$

Determine simplified expressions for a, ζ and ω_0 so that the expression given in part c)i) equals that given above for $H(j\omega)$. [3]

[U] We can rewrite the equation as

$$\frac{Y(j\omega)}{X(j\omega)} = \frac{-(R_1C)^{-1}j\omega}{(j\omega)^2 + 2(R_2C)^{-1}j\omega + (R_1R_2C^2)^{-1}}.$$

Matching coefficients gives

$$a = -(R_1 C)^{-1}$$

$$\omega_0 = (R_1 R_2 C^2)^{-0.5} = \frac{1}{C \sqrt{R_1 R_2}}$$

$$\zeta = \frac{1}{R_2 C \omega_0} = \frac{C \sqrt{R_1 R_2}}{R_2 C} = \sqrt{\frac{R_1}{R_2}}.$$

iii) Given that $C = 10 \, \text{nF}$, determine the values of R_1 and R_2 so that $\omega_0 = 5000 \, \text{rad/s}$ and $\zeta = 0.1$. [2]

[U] From part ii),

$$\zeta = \frac{1}{R_2 C \omega_0}$$
 \Rightarrow $R_2 = \frac{1}{\zeta C \omega_0} = 200 \,\mathrm{k}\Omega.$

Now we can write

$$\zeta = \sqrt{\frac{R_1}{R_2}} \quad \Rightarrow \quad R_1 = R_2 \zeta^2 = 0.012 = 2 \,\mathrm{k}\Omega.$$

Figure 2.1

3. Figure 3.1 shows a shows a transmission line of length L = 10 m whose characteristic impedance is $Z_0 = 120 \Omega$ and whose propagation velocity is $u = 2 \times 10^8$ m/s. Distance along the line is denoted by x and the two points x = 0 and x = L are marked in the figure.

At a point x on the line, the line voltage and current are given by $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t))$ where $f_x(t) = f_0(t - u^{-1}x)$ and $g_x(t) = g_0(t + u^{-1}x)$ are the forward and backward waves respectively.

Figure 3.1

a) i) At the position x = L, the backward wave is given by $g_L(t) = \rho_L f_L(t)$ where $\rho_L = 0.75$ is the reflection coefficient at x = L.

Show that
$$g_0(t) = \rho_L f_0(t - 2u^{-1}L)$$
. [3]

[B] We substitute the given expressions, $f_x(t) = f_0(t - u^{-1}x)$ and $g_x(t) = g_0(t + u^{-1}x)$ into $g_L(t) = \rho_L f_L(t)$ to obtain

$$g_L(t) = \rho_L f_L(t)$$

$$g_0(t + u^{-1}L) = \rho_L f_0(t - u^{-1}L)$$

$$g_0(t') = \rho_L f_0(t' - 2u^{-1}L)$$

where in the final line we make the substitution $t' = t + u^{-1}L$.

ii) At x = 0, show that $v_s(t) = v_0(t) + R_S i_0(t)$. Hence show that $f_0(t)$ can be written in the form $f_0(t) = \tau_0 v_s(t) + \rho_0 g_0(t)$ and determine the numerical values of τ_0 and ρ_0 . [6]

[U] Applying Kirchoff's Current law at the rightmost end of R_S gives $\frac{v_0-v_s}{R_S}+i_0=0$ from which $v_s=v_0+R_Si_0$. [2]

Substituting for v_0 and i_0 (and omitting the t argument) results in [2]

$$v_{s} = (f_{0} + g_{0}) + R_{S}Z_{0}^{-1} (f_{0} - g_{0})$$

$$= (1 + R_{S}Z_{0}^{-1}) f_{0} + (1 - R_{S}Z_{0}^{-1}) g_{0}$$

$$\Rightarrow f_{0} = \frac{1}{1 + R_{S}Z_{0}^{-1}} v_{s} - \frac{1 - R_{S}Z_{0}^{-1}}{1 + R_{S}Z_{0}^{-1}} g_{0}$$

$$= \frac{Z_{0}}{R_{S} + Z_{0}} v_{s} + \frac{R_{S} - Z_{0}}{R_{S} + Z_{0}} g_{0}$$

from which $\tau_0 = \frac{Z_0}{R_S + Z_0} = \frac{120}{192} = 0.625$ and $\rho_0 = \frac{R_S - Z_0}{R_S + Z_0} = \frac{-48}{192} = -0.25$.[2]

iii) By combining the results of parts i) and ii) show that

$$f_0(t) = \tau_0 v_s(t) + \rho_0 \rho_L f_0(t - 2u^{-1}L).$$

Hence prove, by using induction or otherwise, that

$$f_0(t) = \sum_{n=0}^{\infty} \tau_0 \rho_0^n \rho_L^n v_s \left(t - 2nu^{-1} L \right).$$
 [6]

[U] Substituting part i) into part ii) gives $f_0(t) = \tau_0 v_s(t) + \rho_0 \rho_L f_0(t - 2u^{-1}L)$ directly.

We now prove by induction that $f_0(t) = \rho_0^N \rho_L^N f_0(t - 2Nu^{-1}L) + \sum_{n=0}^{N-1} \tau_0 \rho_0^n \rho_L^n v_s(t - 2nu^{-1}L).$

When N = 1, this is true because the summation has only one term and it becomes the result in the first line.

We now assume it is true for $N = N_0$ and prove it for $N = N_0 + 1$ by substituting the result from the first line into the initial term:

$$f_{0}(t) = \rho_{0}^{N_{0}} \rho_{L}^{N_{0}} f_{0} \left(t - 2N_{0}u^{-1}L \right) + \sum_{n=0}^{N_{0}-1} \tau_{0} \rho_{0}^{n} \rho_{L}^{n} v_{s} \left(t - 2nu^{-1}L \right)$$

$$= \rho_{0}^{N_{0}} \rho_{L}^{N_{0}} \left(\tau_{0} v_{s} (t - 2N_{0}u^{-1}L) + \rho_{0} \rho_{L} f_{0} (t - 2N_{0}u^{-1}L - 2u^{-1}L) \right) +$$

$$\sum_{n=0}^{N_{0}-1} \tau_{0} \rho_{0}^{n} \rho_{L}^{n} v_{s} \left(t - 2nu^{-1}L \right)$$

$$= \rho_{0} \rho_{L} \rho_{0}^{N_{0}} \rho_{L}^{N_{0}} f_{0} (t - 2N_{0}u^{-1}L - 2u^{-1}L) + \tau_{0} \rho_{0}^{N_{0}} \rho_{L}^{N_{0}} v_{s} (t - 2N_{0}u^{-1}L) +$$

$$\sum_{n=0}^{N_{0}-1} \tau_{0} \rho_{0}^{n} \rho_{L}^{n} v_{s} \left(t - 2nu^{-1}L \right)$$

$$= \rho_{0}^{N_{0}+1} \rho_{L}^{N_{0}+1} f_{0} (t - 2(N_{0}+1)u^{-1}L) + \sum_{n=0}^{N_{0}} \tau_{0} \rho_{0}^{n} \rho_{L}^{n} v_{s} \left(t - 2nu^{-1}L \right)$$

As, $N_0 \to \infty$, the initial term tends to zero because $|\rho_0|$, $|\rho_L| < 1$ from which

$$f_0(t) = \sum_{n=0}^{\infty} \tau_0 \rho_0^n \rho_L^n v_s \left(t - 2nu^{-1} L \right).$$

b) If the source is a 30 ns pulse given by

$$v_s(t) = \begin{cases} 25.6 \,\mathrm{V} & \text{for } 0 \le t \le 30 \,\mathrm{ns} \\ 0 & \text{otherwise} \end{cases},$$

draw a dimensioned sketch of the waveform $v_x(t)$ on the line at the point x = 8 m for the time interval $0 \le t \le 150$ ns. Give the times of all discontinuities and the values of all horizontal portions of the waveform.

[U] The propagatin velocity is $u = 2 \times 10^8$ which equals 5 ns per metre. So the pulse arrives at x at $8 \times 5 = 40$ ns, reflects off the load and returns at $12 \times 5 = 60$ ns. Subsequent arrivals are at these times pulse multiples of the round trip time, $20 \times 5 = 100$ ns so only the transition at 140 ns lies within the

plotted range. The initial forward wave amplitude is $8 \times \tau_0 = 6.4$ and subsequent amplitudes are $5 \times \rho_L = 4.8$, $3.75 \times \rho_0 = -1.2$, $-0.9375 \times \rho_L = -0.9$.

putting all this together, we get transitions at $t = \{40, 60, 70, 90, 140\}$ of voltages $\delta v = \{16, 12, -16, -12, -3\}$. The voltage after each transition is therefore $v_x = \{16, 28, 12, 0, -3\}$.

- Now assume that all voltages and currents are sinusoidal with angular frequency ω . The uppercase letter, V_x , denotes the phasor corresponding to $v_x(t)$.
 - i) The waveform $f_0(t) = A\cos(\omega t + \theta)$ is represented by the phasor $F_0 = Ae^{j\theta}$. Show that $F_x = F_0e^{-jkx}$ where $k = u^{-1}\omega$. [3]

[B] We know that $f_x(t) = f_0(t - u^{-1}x) = f_0(t) = A\cos(\omega(t - u^{-1}x) + \theta) = A\cos(\omega t + \theta - \omega u^{-1}x)$. The corresponding phasor is therefore $F_x = Ae^{j(\theta - \omega u^{-1}x)} = Ae^{j\theta}e^{-j\omega u^{-1}x} = F_0e^{-jkx}$.

ii) By converting the first equation given in part a)iii) into phasor form, determine an expression for F_0 in terms of V_s . [3]

[U] Converting $f_0(t) = \tau_0 v_s(t) + \rho_0 \rho_L f_0(t - 2u^{-1}L)$ into phasor form gives

$$F_0 = \tau_0 V_S + \rho_0 \rho_L F_0 e^{-j2kL}$$

$$\Rightarrow F_0 \left(1 - \rho_0 \rho_L e^{-j2kL} \right) = \tau_0 V_S$$

$$\Rightarrow F_0 = \frac{\tau_0}{1 - \rho_0 \rho_L e^{-j2kL}} V_S$$

iii) Determine an expression for V_x in terms of V_s . [3]

[U] We know that

$$V_x = F_x + G_x$$

$$= F_0 e^{-jkx} + G_0 e^{jkx}$$

$$= F_0 e^{-jkx} + \rho_L F_0 e^{-j2kL} e^{jkx}$$

$$= F_0 \left(e^{-jkx} + \rho_L e^{-jk(2L-x)} \right)$$

$$= \frac{\tau_0 \left(e^{-jkx} + \rho_L e^{-jk(2L-x)} \right)}{1 - \rho_0 \rho_L e^{-j2kL}} V_S$$