MAS241 - Analysis I

Quiz 4 - May 23, 2019

S	tudent ID: Name:		
N	Correct answer - 5 points To answer - 2 points Wring answer - 0 points		
incre	In the questions 1-5, f is a real-valued function defined on $[a, b]$ and α is making on $[a, b] \subset \mathbb{R}$. In the questions 6-10, $\{f_n\}$ is a sequence of real-valued on $[0, 1]$.		
		Т	F
1.	In the Riemann integral, the upper integral and the lower integral are defined for every bounded function f . (True.)		
2.	If f is bounded, then $f \in \mathcal{R}(\alpha)$. (False.)		
3.	If f is monotonic, then $f \in \mathcal{R}(\alpha)$. (False.)		
4.	If f is bounded, $a < s < b$, and $\alpha(x) = I(x - s)$ where I the unit step function, then $\int_a^b f d\alpha = f(x)$. (False. The integral is not defined if f is not continuous at s .)		
5.	The function F defined by $F(x) = \int_a^x f(t)dt$ is differentiable if f is Riemann integrable.		
6.	(False. It is not differentiable if f is not continuous.) Suppose $ f_n(x) \leq M_n$ for all $x \in [0,1]$. Then, $\sum f_n$ converges uniformly if and only if $\sum M_n$ converges. (False. It is not a sufficient condition.)		
7.	If $f_n \to f$ uniformly, then f is continuous on $[0,1]$ (False.)		
8.	If a sequence of continuous functions converge to a continuous function, then the convergence is uniform. (False.)		
9.	The space $C([0,1])$ is a complete metric space with the supremum norm $\ \cdot\ $. (True.)		
10.	If $\{f_n\}$ is differentiable and $\{f'_n\}$ converges uniformly on $[0,1]$, then $\{f_n\}$ converges uniformly on $[0,1]$. (False. Consider $f_n \equiv n$.)		