Lab Class ML:V

Ankit Satpute, 120825; Hsueh Wei, 120820; Sagar Nagaraj Simha, 120797 (M.Sc. CS4DM) - Group 13

2a)

Training data

Α	В	A ^ ~B	
0	1	0	F
0	0	0	F
1	1	1	Т
1	0	0	F

y(xA, xB) = w0.x0 + w1.xA + w2.XB, where x0 = 1

Diagram of the training data and the chosen decision boundary in coordinate system

Perceptron:

Figure2

Let the decision boundary be the line with two points (0.5,1) and (1,0.5) as shown by the red line in Figure 1 above.

Equation of the decision boundary line is xA+xB = 1.5, where xA+xB>1.5 classifies as T and xA+xB<1.5 classifies as F.

$$-1.5+xA+xB = 0$$

The weight vectors are:

w0 = -1.5

w1 = 1

w2 = 1

Check with the training data,

1)
$$x = [1 \ 0 \ 1], c=0$$

 $y = max(sign(-1.5 + -1.5*0 + 1*1), 0) = 0$
2) $x = [1,0,0], c=0$
 $y = max(sign(-1.5 + -1.5*0 + 1*0), 0) = 0$
3) $x = [1,1,1], c=1$
 $y = max(sign(-1.5 + 1*1 + 1*1), 0) = 1$
4) $x = [1,1,0], c=0$
 $y = max(sign(-1.5 + 1*1 + 1*0), 0) = 0$

2b)

Batch gradient Descent, n (learning rate) = 0.1

Training data

x0	x1	x2	c(x)
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Initial weight vector, w = [-0.5, 0.5, 0.5]

1) Iteration 1:

Delta_w =
$$[0,0,0]$$

a) For $[x,c] = [(1,0,0), 0]$
error = 0 - max(sign(-0.5*1 + 0.5*0 +0.5*0)
= 0-0 = 0
Delta_w = $[0\ 0\ 0] + 0.1*0*[1\ 0\ 0]$
Delta_w = $[0\ 0\ 0]$
b) For $[x,c] = [(1,0,1), 0]$
error = 0 - max(sign(-0.5*1 + 0.5*0 +0.5*1)
= 0-0 = 0
Delta w = $[0\ 0\ 0] + 0.1*0*[1\ 0\ 1]$

Delta $w = [0 \ 0 \ -0.1]$

Check:

3) and 4) are misclassified by w=[-0.5 0.5 0.3] after 2 iterations

2c)

Truth table for XOR:

x1	x2	XOR	Class
0	0	0	В
1	0	1	А
0	1	1	Α
1	1	0	В

[From ML slides]

A single perceptron only divides the plane into a linearly separable boundaries. But the XOR data as shown in the diagram through the truth table cannot be separated by a single hyperplane and requires two hyperplanes. And hence, XOR which represents a 'non linearly separable sets' requires more than one perceptron.

2d)

$$A XOR B = A. (~B) + (~A).B$$

The neurons would learn the logic of AND, AND and OR respectively when fed with the training data for XOR

#References: ML lecture slides