Area Coverage with Heterogeneous Sensors in the presence of Jammers in a Wireless Sensor Network environment

6

By

Major Jaydeep Bodwadkar Roll No: 14CS60D01 Supervisor

Dr. Arobinda Gupta Professor Department of Computer Science & Engineering

Purview

- Introduction
- Applications
- Motivation
- Broad Objective
- Certain Definitions
- Problem Statement
- Approach to Solve the problem
- Experimental Setup
- Results obtained
- Future aim
- References

Introduction

- · What are Wireless Sensor Networks (WSN)
- Deployment options
- Applications
 - Agriculture
 - * Environmental Monitoring
 - Military Applications
- Threat by Jammers
 - * Attacks on the network
 - * Attacks on the sensor

Coverage in WSNs

- Point Coverage
- Sweep Coverage
- Path Coverage
- Breach Coverage
- Barrier Coverage
- Area Coverage

Motivation

- · Reconnaissance & Surveillance
- Long border with enemy
 - Large patches inhospitable
 - Can't cover every inch of land manually
- Increase in cross-border activity
- Easier to transport troops to affected areas than placing them there ab-initio
- Enemy will interfere with our WSN
 - Jam the network
 - ❖ Jam the sensor
 - Inject false information
 - * Deceive the sensor

Broad Objective

- Create a Surveillance Grid using WSN
 - * Use of heterogeneous sensors like Radar, Camera, Audio sensors, etc.
 - * All sensors types might have different ranges
 - * Obviate the effect of enemy jammers
 - * Minimize the number of sensors used

Definitions

- Area of Interest
 - * The area under surveillance
 - * Depicted by $A = \{(x_0^A, y_0^A), (x_0^A, y_1^A), (x_1^A, y_1^A), (x_1^A, y_0^A)\}$
- Set of heterogeneous sensors
 - $S = \{S_0, S_1, S_2, ..., S_n\} \quad n \ge 1$
 - ❖ Info with each sensor type S_i ∈ S
 - > Range of operation R_i^S which determines the Area of Influence A_i^S of the sensor
 - > Set of feasible locations $L_i^S = \{(x, y) | x_0^A \le x \le x_1^A, y_0^A \le y \le y_1^A \}$
 - \succ Cost C_i^s

- $\forall s \in S_i$ following tuple is associated
 - (s.type, s.range, s.location, s.cost)

where,

$$s.type \in S$$

$$s.range = R_{s.type}^{S}$$

 $s.location \in L_{s.type}^{S}$ (the current location of the sensor)

$$s.cost = C_{s.type}^{S}$$

- Set of jammers $J = \{J_0, J_1, ..., J_m\}$ $m \ge 1$
 - $\forall J_i \in J$ following holds:
 - > have a circular area of influence
 - Range of operation R_i^J which determines the area of influence of the jammer A_i^J
 - Fixed location $L_i^{j} = (x_i, y_i)$
 - \triangleright Cost of operation C_k^J

• $\forall S_j \in S$ in presence of a jammer J_k has a probability of sensing P_{jk} defines as follows:

$$P_{jk} = \begin{cases} 0 & \text{if } S_j \text{ can be jammed by } J_k \\ 1 & \text{if } S_j \text{ cannot be jammed by } J_k \end{cases} \quad 0 \le i \le m, \qquad 0 \le j \le n$$

Assumptions

- · Position of the enemy Jammers remain static.
- Area of Interest *A* is a rectangle.
- Infinite number of sensors of each type are available
- Feasible locations for the sensors is within the Area of Interest.

- Find a minimum cardinality set $R = \{r_i\}$ $1 \le i \le q$ where,
 - * r_i is a sensor such that r_i . $type \in S$
 - * r_i . $location \in L_{r_i.type}^S$ is the location of the sensor fixed by the algorithm.
 - * For every point $p \in A$ following should hold:
 - > If p is in the Area of Influence of a jammer $J_k \in J$ then p is in the Area of Influence of some sensor r_i with $t = r_i$. type such that $P_{tk} = 1$
 - > If p is out of the Area of Influence of all jammers then p is in the Area of Influence of some sensor r_i

Literature Survey

Œ

Development Approach

- Related computational geometry problems
 - Art gallery problem
 - Circle packing problem
- Problems in direct application
 - Art gallery problem
 - ➤ Assumes the cameras have ∞ range
 - > Heterogeneous sensors not considered
 - Circle packing problem
 - > Assumes all circles have the same radius when covering a rectangle
 - > Variation with different radii circles leaves gaps between circles

Development Approach

63

• Phase 1

- Ignore the use of jammers
- * Assume all sensors have same cost
- ❖ ∞ sensors of each type are available
- Find the minimum cardinality set of sensors which covers the rectangular region

• Phase 2

- Jammers to be considered
- Sensors types will incur different costs
- * Fixed number of each type of sensors are available
- Find the minimum cardinality set of sensors which covers the rectangular region

Problem Subdivision

- Problem can be subdivided into:
 - Identify if a rectangular region is covered by a set of heterogeneous sensors
 - * Find subsets of sensors which cover the region
 - Find the minimum cardinality subset

Definitions

63

- Perimeter-covered
 - * Consider any two sensors s_i and s_j . A point on the perimeter of s_i is perimeter-covered by s_j if this point is within the sensing range of s_i .

•

- k-Perimeter covered
 - * Consider any sensor s_i . We say that s_i is k-perimeter covered if all points on the perimeter of s_i are perimeter covered by at least k sensors other than s_i itself. Similarly, a segment of s_i 's perimeter is k-perimeter covered if all points on the segment are perimeter covered by at least k sensors other than s_i itself.

Definitions

- Perimeter Coverage Level (PCL)
 - * PCL of a sensor *A* is the number of the sensors in the same set that cover any point on *A*'s perimeter of the sensing area.

Region Coverage

- Huang and Tseng in their paper titled "The Coverage Problem in a Wireless Sensor Network" prove the following:
 - Suppose that no two sensors are located in the same location. The whole network area A is k-covered iff each sensor in the network is k-perimeter-covered
- Above result used in determining if a rectangular region is covered or not

Boundary Conditions

