Real Analysis Qualifying Exam Spring 1994

Throughout (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- **1.** Suppose $\mu(X) < \infty$ and that $f_n \to f$ in measure. Prove that there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $f_{n_k} \to f$ a.e.
- **2.** Let g be a bounded function which has the property that for every measurable set E, $\lim_{n\to\infty} \int_E g(nx)dx = 0$. Show that for every $f \in L^1(X, \mathcal{M}, \mu)$, $\lim_{n\to\infty} \int_X f(x)g(nx)dx = 0$.
- **3.** Suppose $f \in L^1(\mu), g \in L^p(\mu), 1 \le p \le \infty$. Prove that $||f * g||_p \le ||f||_1 ||g||_p$.
- 4. Show that any orthonormal set in a separable Hilbert space is at most countable.
- **5.** (a) Construct a closed set $K \subseteq [0,1]$ such that $|K| > \frac{1}{2}$ and K contains no rational.
 - (b) Can you construct such a K so that $|K \cap I| \leq \frac{9}{10}|I|$ for every interval $I \subseteq [0,1]$?
- **6.** Suppose $T: B \to C$ is a bounded linear tranformation between the Banach spaces B and C. Note that T induces a map $T^*: C^* \to B^*$ given by $T^*(f) = f \circ T$. Hence, this induces a map $T^{**}: B^{**} \to C^{**}$. Consider also the natural embedding $i_B: B \hookrightarrow B^{**}$ given by $b \to \widehat{b}$ where $\widehat{b}(S) = S(b)$ for $S \in B^*$. Prove that " $T^{**}|_B = T$ ", that is, show that $T^{**} \circ i_B = i_c \circ T$ where i_c is the natural embedding $i_c: C \hookrightarrow C^{**}$.
- 7. Suppose $\{f_n\}$ is a sequence of functions which has $f_n \to f$ a.e. and $||f_n||_1 \to ||f||_1 < \infty$. Prove that $f_n \to f$ in L^1 .
- 8. Let D be the unit disk in the complex plane. Assume the following facts from complex analysis:
 - 1. Given any continuous function f on ∂D , there exists a unique harmonic function u on D, continuous on \overline{D} , such that $u|_{\partial D} = f$.
 - 2. The sum of any two harmonic functions is harmonic, as is the multiplication of harmonic function by a constant.
 - 3. If u is assoiciated to f as in 1, then

$$\sup_{z \in D} |u(z)| \le \sup_{z \in \partial D} |f(z)|.$$

4. If f is real valued, so is u. If $f \equiv 1$ then $u \equiv 1$.

Fix $z_0 \in D$. Prove that there exists a positive measure w_{z_0} on ∂D such that

$$u(z_0) = \int_{\partial D} f(z) dw_{z_0}(z)$$

if f and u are related as in 1.

Remark: w_{z_0} is called harmonic measure. You don't even have to know the defintion of harmonic function to solve this problem.

9. Let $\{a_n\} \in \ell^2$. Prove that

$$\exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| \sum_{n=1}^{\infty} a_n e^{in\theta} \right| d\theta \right) \le \left(\sum_{n=1}^{\infty} |a_n|^2 \right)^{\frac{1}{2}}$$

10. Suppose $f_n(x)$ is a sequence of functions on the interval [0,1] which satisfy the distribution estimate:

$$|\{x \in [0,1] \parallel f_n(x)| > \lambda\}| \le e^{-\lambda/n}.$$

Prove that $\lim_{n\to\infty}\sup\frac{|f_n(x)|}{n\log n}\leq 1$ a.e.