Solving Quadratic Equations using D:

General Form [y=ax2+bx+c]

Calculate $5 = b^2 - 4ac$

Casel: If D<0, no real roots

factorized form: X (no factorized form)

Case 2: If 050, 2 real roots 2, and X2

 $\chi_1 = \frac{-b - \sqrt{\Delta}}{2\alpha}$ $\chi_2 = \frac{-b + \sqrt{\Delta}}{2\alpha}$

Factorized form: $y = a(x - x_1)(x - x_2)$

Case 3: If b=0, 1 double root x_0

 $\chi_{\circ} = \frac{-b}{2a}$

factorized form: $y = \alpha (x - x_0)^2$

Example: factorize $y = 2x^2 - 3x + 1$ $\begin{pmatrix} a = 2 \\ b = -3 \\ c = 1 \end{pmatrix}$

 $\Delta = b^2 - 4ac = (-3)^2 - 4(2)(1) = 9 - 8 = 1 > 0 \Rightarrow 2 \text{ roots}$

 $\chi_1 = \frac{-b - \sqrt{5}}{2a} = \frac{3 - \sqrt{1}}{2(2)} = \frac{2}{4} = \frac{1}{2}$

 $\chi_2 = \frac{-b + \sqrt{b}}{2a} = \frac{3 + \sqrt{1}}{2(2)} = \frac{4}{4} = 1$

Factorized form: $y = a(x-x_1)(x-x_2)$ = $a(x-\frac{1}{2})(x-1)$

Special cases: for ax2 + bx + c = 0

$$(1) \quad a+b+c=0$$

$$\implies x_1=1 \quad x_2=\frac{c}{a}$$

$$2x + 3x - 4 = 0$$

$$0 = 1, b = 3, c = -4$$

$$0 + b + c = 0$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 2$$

$$1 = 2$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 =$$

(2)
$$a-b+c=0$$

$$[x_1=-1], [x_2=-\frac{c}{a}]$$

$$ex: x^2-3x-4=0$$
 $a=1, b=-3, c=-4$

$$a=1, b=-3, c=-4$$
 $a-b+c=0$
 $x_1=-1$
 $x_2=-\frac{4}{a}=\frac{4}{1}$