GIST 7128
ArcGIS 1: Introduction

Module 2 Topics

- Lecture
 - Map Scale
 - Map Projections & Coordinate Systems
 - Map Projections in ArcGIS
- Lab
 - · Chapter 5. Exploring Online Resources
 - Chapter 6. Working with Coordinate Systems and Projections
- Project
 - EastCity Part 1: Create New Map and Add Data (4%)
- Quiz: Compressed Course: end of day // Evening Course: next week
 - Lectures 1 & 2, Text chapters/labs 1-4 & 6
 - Short Answer, T/F, and Multiple Choice (5%)
 - Some practical questions using ArcMap and ArcCatalog

2

Map Scale

Scale represents the relationship (or ratio) between measurements on a map compared to the same measurements on the earth's surface.

Scale = Map Distance
Ground Distance

Scale can be expressed in three ways:

1. Statement Scale

- Map Distance = Ground Distance
- Any values and units on each side
 - ½ in = 1 mile
 - -1 in = 5 miles
 - -2 cm = 10 km

2. Scale Bar

- Graphical easy to use (with sheet of paper)
- Most useful when final map size is subject to change (e.g. hardcopy reproduction, computer screen, projection)
- Units can be metric and/or imperial
- The left end is often subdivided into sub-units in order to provide more precise measurement

3

3. Representative Fraction (RF)

- RF states the amount of reduction as a fraction or ratio
- $e.g. 1/100,000 \rightarrow 1:100,000$
- 1. Left side is always "1"
- 2. Unitless any unit can be applied to left and right sides
 - $e.g. 1:5,000 \rightarrow 1 cm = 5,000 cm \rightarrow 1 inch = 5,000 inch$
- Often used as map series designation (e.g. 1:50,000 NTS maps)
- 1:2,000 is a larger scale than 1:10,000
 - because 1/2,000 is larger than 1/10,000
- Remember with "map features appear larger at large scales"
- 1 cm = 1 km is the same as an RF of 1: _____
- RF of 1:25,000 is the same as 1 cm = _____ km

1:1,000,000

Large Scale

Small Scale

→ <u>large</u> fraction (*small* denominator)

Very Small Scale 1:10,000,000

- → map features appear <u>large</u>
- → map area is *small*

Small Scale

County/Region

Prov/State/Country

- → <u>small</u> fraction (*large* denominator)
- → map features appear small
- → map area is *large*

(

Example Projection Formulas

Forward formulas [edit]

Given a radius of sphere R, central meridian λ_0 and a point with polar coordinates (φ,λ) , x and y can be computed using the following formulas:

$$x = \frac{2}{\sqrt{4\pi + \pi^2}} R(\lambda - \lambda_0)(1 + \cos \theta) \approx 0.4222382 R(\lambda - \lambda_0)(1 + \cos \theta).$$

$$y = 2\sqrt{\frac{\pi}{4+\pi}}R\sin\theta \approx 1.3265004R\sin\theta.$$

where $\theta+\sin\theta\cos\theta+2\sin\theta=\left(2+\frac{\pi}{2}\right)\sin\varphi$. This equation can be solved numerically using Newton's method. [2] (phi, lambda) = (latitude, longitude)

Inverse formulas [edit]

(x,y) = (easting, northing)

$$\theta = \arcsin\left[y\frac{\sqrt{4+\pi}}{2\sqrt{\pi}R}\right] \approx \arcsin\left[\frac{y}{1.3265004R}\right]$$

$$\varphi = \arcsin\left[\frac{\theta + \sin\theta\cos\theta + 2\sin\theta}{2 + \frac{\pi}{2}}\right]$$

$$\lambda = \lambda_0 + x\frac{\sqrt{4\pi + \pi^2}}{2R(1 + \cos\theta)} \approx \lambda_0 + \frac{x}{0.4223332R(1 + \cos\theta)}$$

Projections and Coordinate Systems

- Map Projections
 - required to transform the earth's surface to a flat map
 - mathematical formula, but represented graphically
 - cause some distortion in area, shape, distance, &/or direction
 - preserve: Equal Area, Conformal, Equidistant, Azimuthal
- Coordinate System
 - reference framework to determine positions in 2D/3D space
 - Geographic CS non-projected, based on the spherical earth
 - Projected CS based on a plane (derived using a projection)
 - Variety of Coordinate Systems in both categories
 - Geographic depends on ellipsoid (estimated model of earth)
 - Projected depends on type of projection and parameters

13

Map Projections in ArcGIS

- Introduction to projections & coordinate systems
 - Text chapter 6, pages 154-163
- Every spatial dataset has a coordinate system
 - Geographic Coordinates stored as lat/long values
 - Also includes spheroid datum, dimensions, other specifications
 - Projected Coordinates stored as X/Y values
 - · Also includes projection specifications
 - · And Geographic CS on which it is based

17

