Branch: CSE/IT

Batch: English

Discrete Mathematics Graph Theory

DPP-09

[NAT]

1. If G is a bipartite graph with 6 vertices and 9 edges then the chromatic number of $\overline{G} = \underline{\hspace{1cm}}$.

[MSQ]

2. Consider the graph shown below.

Which of the following option is correct?

- (a) Dominating set = $\{e, b\}$ and Domination no = 2
- (b) Dominating set = $\{a, c,d,f\}$ and Domination no = 4
- (c) Dominating set = $\{b, f\}$ and Domination no = 2
- (d) None of these

[NAT]

3. For the graph shown below.

Assume x is the chromatic number of the graph and y is the domination number then find x + y?

[MCQ]

4. Which of the following is/are a independent set for the graph shown below?

- (a) $\{V_1, V_8, V_2\}$
- (b) $\{V_1, V_8\}$
- (c) $\{V_2, V_4, V_5, V_8\}$
- (d) $\{V_1, V_3, V_6, V_7\}$

[MCQ]

5. Consider the given graph G.

Which of the following option is correct?

 S_1 : The chromatic number for the given graph is 3.

 S_2 : The independence number of the graph is 4.

- (a) S_1 only
- (b) S_2 only
- (c) S₁ and S₂ both
- (d) Neither S_1 nor S_2

[NAT]

6. For the graph shown below, the chromatic number is

Answer Key

- (3) 1.
- (a, c) 2.
- 3. 6
- 4. (b, c, d)

- 5. (c) 6. (4)

Hints and solutions

1. (3)

In the problem we have a bipartite graph with 6 vertices and 9 edges

So.

The complement of the bipartite graph will have complete graph with 3 vertices within partition 1 and partition 2.

Hence, the chromatic number of \overline{G} is 3

2. (a, c)

- I. Dominating Set: The set of vertices from which the whole graph can be covered in the single move.
- **II. Domination No:** The smallest/minimal dominating set.

Option a and c: correct

The vertex sets {e, b} and {b, f} covers the complete graph and it is also the minimal dominating set with Domination number is 2.

Option b: Incorrect

As the vertex set $\{a, c, d, f\}$ is the dominating set but it is not the minimal dominating set.

Hence, the domination number 4 is incorrect

3. (6)

I. Chromatic number: The above graph have complete graph (K_4) so, the ' $K_G \le 1 + \Delta(G)$ ' and due to complete graph ' K_4 ', we need at least '4' color for K_4 .

Hence, the chromatic number is 4 so, x = 4.

II. Domination Number: To find the minimal dominating set, always start with maximum degree vertex.

.. Dominating set =
$$\{V_1, V_6\}$$

Hence, the domination No. is 2 so, $y = 2$
.. $x + y = 4 + 2 = 6$

4. (b, c, d)

Independent Set: The set of vertices which are not adjecent to each other.

Option a : Incorrect

As vertex V_1 is adject to vertex V_2 .

Hence, given vertex set is not independent set.

Option b, c, d : Correct

All the vertices of option b, c, d are adjecent to none within the set.

Hence, b, c, d are the independent set of given graph.

5. (c)

Statement S_1 : True

Hence, the chromatic number of the graph is 3.

Statement S_2 : True

All the red (R) colored vertices could be the maximal independent set.

Independent Set : $\{V_1, V_4, V_7, V_8\}$

Hence, the independence number of the graph is 4

6. (4)

The graph contains complete graph of 3 vertices (K_3) so, the chromatic number will be at least 3. Hence, the chromatic number is 4.

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4