Given two strings, how many edits are needed to turn one string into another?

SNOWY VS SUNNY

Need:

- Strings Snowy, Sunny
- Cost function character misalignment = +1

What are the costs of these two different alignments?

Need:

- Strings Snowy, Sunny
- Cost function character misalignment = +1

What are the costs of these two different alignments?

$$S - N O W Y$$
 - $S N O W - Y$
 $S U N N - Y$ $S U N - N Y$
 $cost = 3$ $cost = 5$

Edit distance = cheapest possible alignment.

Need:

- Strings Snowy, Sunny
- Cost function character misalignment = +1

What are the costs of these two different alignments?

$$S - N O W Y$$
 - $S N O W - Y$
 $S U N N - Y$ $S U N - N Y$
 $cost = 3$ $cost = 5$

Does a brute force solution sound like a good idea?

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

Dynamic Programming?

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_i]$?

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_i]$?

Specifically, how must the optimal alignments end? (three possibilities).

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$?

Optimal alignments end in one of three ways:

$$x_i$$
 - x_i - y_j - y_j

Cost: 1 1 0,1

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$?

Optimal alignments end in one of three ways:

$$x_i$$
 — x_i
— y_j Need to align $[x_1, ..., x_{i-1}]$
with $[y_1, ..., y_{j-1}]$:
 $E(i-1, j-1)$

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$?

Optimal alignments end in one of three ways:

$$x_i$$
 — x_i — y_j Need to align $[x_1, ..., x_i]$ with $[y_1, ..., y_{j-1}]$: $E(i, j-1)$

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$.

E(i,j) = optimal cost of aligning $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$?

Optimal alignments end in one of three ways:

$$x_i$$
 — x_i
— y_j Need to align $[x_1, ..., x_{i-1}]$
with $[y_1, ..., y_j]$: $E(i-1, j)$

$$E(i,j) = \min \left\{ \begin{array}{c} \mathbf{?} \end{array} \right.$$

$$E(i,j) = \min \left\{ \begin{array}{c} \\ \\ \end{array} \right.$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{where diff}(i,j) = \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{where diff}(i,j) = \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$$

Finding E(n, m) requires finding all the other E's, which can be represented in a 2d table with the strings along the axes.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,1) = \min \begin{cases} E(-1,1) + 1 \\ E(0,0) + 1 = ? \\ E(-1,0) + 1 \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,1) = \min \begin{cases} \frac{E(-1,1)+1}{E(0,0)+1} \\ \frac{E(-1,0)+1}{E(-1,0)+1} \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1				
1	S						
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,1) = \min \begin{cases} \frac{E(-1,1)+1}{E(0,0)+1} \\ \frac{E(-1,0)+1}{E(-1,0)+1} \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,1) = \min \begin{cases} E(0,1) + 1 \\ E(1,0) + 1 = ? \\ E(0,0) + 0 \end{cases}$$

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$
$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,1) = \min \begin{cases} E(0,1) + 1 \\ E(1,0) + 1 = ? \\ E(0,0) + 0 \end{cases}$$

Not calculated yet!

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

Need upper left hand corner filled out before we can progress.

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2			
1	S						
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(0,2) = \min \begin{cases} E(-1,2) + 1 \\ E(0,1) + 1 = 2 \\ E(-1,1) + 1 \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2			
1	S	1					
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,0) = \min \begin{cases} E(0,0) + 1 \\ E(1,-1) + 1 = 1 \\ E(0,-1) + 1 \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2			
1	S	1	0				
2	N						
3	O						
4	W						
5	Υ						

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

$$E(1,1) = \min \begin{cases} E(0,1) + 1 \\ E(1,0) + 1 = 0 \\ E(0,0) + 0 \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	N	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	O	3	2	2	2	2	3
4	W	4	3	ന	ന	3	3
5	Υ	5	4	4	4	4	3

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

Running Time?

	j	0	1	2	3	4	5
i			S	U	N	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1		1	2	3
3	O	3	2	2	2	2	3
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	3

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

$$\text{diff}(i,j) = \begin{cases} 0, & x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

Running Time?

Fill out $n \times m$ table with constant operations: O(nm)

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Y
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	ന	2	2	2	2	3
4	W	4	3	3	ന	თ	3
5	Υ	5	4	4	4	4	3

Edit distance = 3.

How can we recreate the actual alignments?

Backtracking.

Ask the question: "How did we get here?"

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	O	3	2	2	2	2	3
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	3

How did we get to E(5,5)?

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Y
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	ന
3	Ο	3	2	2	2	2	ന
4	W	4	3	3	3	3	ന
5	Υ	5	4	4	4	4	-3

How did we get to E(5,5)? From E(5,4)?

	j	0	1	2	3	4	5
i			S	U	Ν	N	Y
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	O	3	2	2	2	2	3
4	W	4	3	3	ന	3	ന
5	Υ	5	4	4	4	4	-3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3		2	2	2	3
4	W	4	3	3	ന	თ	%
5	Υ	5	4	4	4	4	个3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

From E(4,5)?

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3		2	2	2	3
4	W	4	3	3	ന	თ	%
5	Υ	5	4	4	4	4	个3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

From E(4,5)? – No. Need +1 to move that direction.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3	2	2	2	2	3
4	W	4	3	3	3	3	3
5	Υ	5	4	4	4	4	3

How did we get to E(5,5)? From E(5,4)? – No. Can never go down in cost.

From E(4,5)? – No. Need +1 to move that direction.

From E(4,4)?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	Ν	Ν	Υ
0		0	1	2	3	4	5
1	S	1	0	1	2	3	4
2	N	2	1	1	1	2	3
3	Ο	3	2	2	2	2	3
4	W	4	3	3	3	3	ധ
5	Υ	5	4	4	4	4	3

How did we get to E(5,5)? From E(5,4)? – No. Can never

From E(5,4)? – No. Can never go down in cost.

From E(4,5)? – No. Need +1 to move that direction.

From E(4,4)? – Yes. Match Y's.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Continuing the process yields all of the optimal solutions.

Diagonal move indicates ?

Vertical move indicates ?

Horizontal move indicates ?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

	j	0	1	2	3	4	5
i			S	U	N	N	Υ
0		0	1	2	ന	4	5
1	S	1	0<	-1	2	3	4
2	N	2	1	1	1	2	3
3	O	3	2	2	2	2	3
4	W	4	ന	ന	ന	3	3
5	Υ	5	4	4	4	4	3

Continuing the process yields all of the optimal solutions.

Diagonal move indicates match.

Vertical move indicates ?

Horizontal move indicates ?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Continuing the process yields all of the optimal solutions.

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates ?

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Continuing the process yields all of the optimal solutions.

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

$$E(i,j) = \min \begin{cases} E(i-1,j) + 1 \\ E(i,j-1) + 1 \\ E(i-1,j-1) + \text{diff}(i,j) \end{cases}$$

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

Alignment?

Diagonal move indicates match.

Vertical move indicates space inserted in *j*.

Horizontal move indicates space inserted in i.

Diagonal move indicates match.

Vertical move indicates space inserted in j.

Horizontal move indicates space inserted in i.

S N O W Y S U N N Y