**Remark:** As we noted, the hypothesis of Zorn's lemma implies that S is nonempty (since the empty set must be bounded). A partially ordered set such that every chain is bounded is sometimes called *inductive*.

We now give some applications of Zorn's lemma.

## C.2 Proof of the Existence of a Basis in a Vector Space

Using Zorn's lemma, we can prove that Theorem 3.7 holds for arbitrary vector spaces, and not just for finitely generated vector spaces, as promised in Chapter 3.

**Theorem C.2.** Given any family,  $S = (u_i)_{i \in I}$ , generating a vector space E and any linearly independent subfamily,  $L = (u_j)_{j \in J}$ , of S (where  $J \subseteq I$ ), there is a basis, B, of E such that  $L \subseteq B \subseteq S$ .

Proof. Consider the set  $\mathcal{L}$  of linearly independent families, B, such that  $L \subseteq B \subseteq S$ . Since  $L \in \mathcal{L}$ , this set is nonempty. We claim that  $\mathcal{L}$  is inductive. Consider any chain,  $(B_l)_{l \in \Lambda}$ , of linearly independent families  $B_l$  in  $\mathcal{L}$ , and look at  $B = \bigcup_{l \in \Lambda} B_l$ . The family B is of the form  $B = (v_h)_{h \in H}$ , for some index set H, and it must be linearly independent. Indeed, if this was not true, there would be some family  $(\lambda_h)_{h \in H}$  of scalars, of finite support, so that

$$\sum_{h \in H} \lambda_h v_h = 0,$$

where not all  $\lambda_h$  are zero. Since  $B = \bigcup_{l \in \Lambda} B_l$  and only finitely many  $\lambda_h$  are nonzero, there is a finite subset, F, of  $\Lambda$ , so that  $v_h \in B_{f_h}$  iff  $\lambda_h \neq 0$ . But  $(B_l)_{l \in \Lambda}$  is a chain, and if we let  $f = \max\{f_h \mid f_h \in F\}$ , then  $v_h \in B_f$ , for all  $v_h$  for which  $\lambda_h \neq 0$ . Thus,

$$\sum_{h \in H} \lambda_h v_h = 0$$

would be a nontrivial linear dependency among vectors from  $B_f$ , a contradiction. Therefore,  $B \in \mathcal{L}$ , and since B is obviously an upper bound for the  $B_l$ 's, we have proved that  $\mathcal{L}$  is inductive. By Zorn's lemma (Lemma C.1), the set  $\mathcal{L}$  has some maximal element, say  $B = (u_h)_{h \in H}$ . The rest of the proof is the same as in the proof of Theorem 3.7, but we repeat it for the reader's convenience. We claim that B generates E. Indeed, if B does not generate E, then there is some  $u_p \in S$  that is not a linear combination of vectors in B (since S generates E), with  $p \notin H$ . Then, by Lemma 3.6, the family  $B' = (u_h)_{h \in H \cup \{p\}}$  is linearly independent, and since  $L \subseteq B \subset B' \subseteq S$ , this contradicts the maximality of B. Thus, B is a basis of E such that  $L \subseteq B \subseteq S$ .

Another important application of Zorn's lemma is the existence of maximal ideals.