Basic Valuation Theory

Chen Qi'ao

March 2, 2023

1 Absolute Values

1.1 Absolute Values - Completions

Let *K* be a field. An **absolute value** on *K* is a map

$$| \ | : K \to \mathbb{R}$$

satisfying the following axioms for all $x, y \in K$

- 1. |x| > 0 for all $x \neq 0$, and |0| = 0
- 2. |xy| = |x||y|
- 3. $|x+y| \le |x| + |y|$

The absolute value sending all $x \neq 0$ to 1 is called the **trivial** absolute value on K

Observation: $|1|^2 = |1^2| = |1|$, |1| = 1 = |-1|, |x| = |-x| for all $x \in K$, $|x^{-1}| = |x|^{-1}$ for $x \neq 0$.

Proposition 1.1. The set $\{|n\cdot 1|\mid n\in\mathbb{Z}\}$ is bounded iff $|\mid$ satisfies the "ultrametric" inequality

$$|x+y| \le \max\{|x|, |y|\} \tag{1}$$

for all $x, y \in K$

Proof. \Leftarrow : Easy, bounded by 1 ⇒: let $|n \cdot 1| \le C$, then

$$|x+y|^n = |(x+y)^n| \le \sum_{\nu} \left| \binom{n}{\nu} x^{\nu} y^{n-\nu} \right| \le (n+1)C \max(|x|,|y|)^n$$

If an absolute value satisfies (1), it is called **non-archimedean**; otherwise it is called **archimedean**. Clearly, if char $K \neq 0$, K cannot carry any archimedean absolute value.

Example 1.1. Let

$$|x|_0 = \begin{cases} x & x \ge 0 \\ -x & x \le 0 \end{cases}$$

for all $x \in \mathbb{R}$; we call $|\ |_0$ the **usual** absolute value on \mathbb{R} . This is an archimedean absolute value.

Example 1.2. For every prime p, the p-adic absolute value $|\ |_p$ on $\mathbb Q$ is defined by $|0|_p = 0$ and

$$\left| p^{\nu} \frac{m}{n} \right|_{p} = \frac{1}{e^{\nu}}$$

where $\nu \in \mathbb{Z}$, and $n, m \in \mathbb{Z} \setminus \{0\}$ are not divisible by p. In this case

$$\{\left|n\cdot1\right|_{n}\mid n\in\mathbb{Z}\}=\{e^{-\nu}\mid\nu\in\mathbb{N}\}$$

is bounded in \mathbb{R} .

Example 1.3. Let F be a field and let $F[[T]] = \{\sum_{i=0}^{\infty} a_i T^i \mid a_i \in F\}$, which is called the **formal power series over** F. We can define the absolute value $|\cdot|$ as

$$|f| = e^{-m}$$

when $f = \sum_{i=m}^{\infty} a_i T^i$ where $a_m \neq 0$.

Example 1.4. We define for every irreducible polynomial $p \in k[X]$, k a field, the following absolute value $|\ |_p$ on the rational function field K = k(X): Let $|0|_p = 0$ and

$$\left| p^{\nu} \frac{f}{g} \right|_{p} = \frac{1}{e^{\nu}}$$

where $\nu \in \mathbb{Z}$ and $f, g \in k[X] \setminus \{0\}$ are not divisible by p. Hence the set $\{|n \cdot 1|_p \mid n \in \mathbb{Z}\}$ is bounded in \mathbb{R} .

Proposition 1.2. *If* A *is a domain,* K *is the fraction field of* A *and* | | *is an absolute value, then we can uniquely extend* | | *to* K

Proof. For any $a, b \in A$ and $b \neq 0$,

$$|a| = \left| b \cdot \frac{a}{b} \right| = |b| \left| \frac{a}{b} \right|$$

An absolute value $|\ |$ on K defines a metric by taking |x-y| as distance, for $x,y\in K$. In particular, $|\ |$ induces a topology on K by taking basic open balls $B_{\epsilon}(a)=\{x:|x-a|<\epsilon\}$.

Since a non-trivial absolute value | | defines a metric on K, we may consider the completion of K w.r.t. | |. Fix a | |.

A sequence $(x_n)_{n\in\mathbb{N}}$ of elements of k is called a **Cauchy sequence** if for every $\epsilon>0$ there exists $N\in\mathbb{N}$ s.t. for all n,m>N we have

$$|x_n - x_m| < \epsilon$$

We say a sequence $(x_n)_{n\in\mathbb{N}}$ converges to $x\in K$ and write $\lim_{n\to\infty}x_n=x$ if for every $\epsilon>0$ there is an $N\in\mathbb{N}$ s.t. for all n>N we have

$$|x_n - x| < \epsilon$$

K is **complete** if every Cauchy sequence from K converges to some element of K.

The next theorem will show that every field K with a non-trivial absolute value can be densely embedded into a field complete with respect to an ab-solute value extending the given one on K.

Theorem 1.3. There exists a field \hat{K} , complete under an absolute value $|\hat{\ }|$, and an embedding $\iota: K \to \hat{K}$, s.t. $|x| = |\iota \hat{x}|$ for all $x \in K$. The image $\iota(K)$ is dense in \hat{K} . If (\hat{K}', ι') is another such pair, then there exists a unique continuous isomorphism $\varphi: \hat{K} \to \hat{K}'$ preserving the absolute value and making the diagram

Such a pair is called a **completion** of the valued field K, $| \ |$

Proof. Sketch of completion:

Let $\mathcal C$ be the set of all Cauchy sequences $(x_n)_{n\in\mathbb N}$ of elements of K. $\mathcal C$ is a ring with componentwise addition and multiplication. $\mathcal N=\{(x_n)_{n\in\mathbb N}\mid \lim_{n\to\infty}x_n=0\}$ is an ideal of $\mathcal C$.

Each $(a_n)_{n\in\mathbb{N}}\in\mathcal{C}\setminus\mathcal{N}$ has a positive lower bound, and therefore there is $M\in\mathbb{N}$ and $\eta>0$ s.t. $|a_n|>\eta$ for every n>M.

Setting $c_n=1$ for every $n=1,\ldots,M$ and $c_n=a_n^{-1}$ for every n>M. Then $(c_n)_{n\in\mathbb{N}}$ is a Cauchy sequence, and $(a_n)_{n\in\mathbb{N}}(c_n)_{n\in\mathbb{N}}-(1)_{n\in\mathbb{N}}\in\mathcal{N}.$ Thus the ideal $\mathcal N$ is a maximal ideal of $\mathcal C$, and the quotient ring $\hat K$ is a field.

The map $\iota:K\to \hat K$ defined by $\iota(x)=(x_n)_{n\in\mathbb N}+\mathcal N$, where $x_n=x$ for every n, embeds K in $\hat K$.

For $(a_n)_{n\in\mathbb{N}}\in\mathcal{C}$ the sequence $(|a_n|)_{n\in\mathbb{N}}$ is a Cauchy sequence of real numbers, since $\left|\left|a_p\right|-\left|a_q\right|\right|_0\leq\left|a_p-a_q\right|$ for all p,q. Moreover, for every sequence $(a_n)_{n\in\mathbb{N}}\in\mathcal{N}$ the sequence of real numbers $(|a_n|)_{n\in\mathbb{N}}$ has limit 0. Consequently for $\xi=(a_n)_{n\in\mathbb{N}}+\mathcal{N}$ the value

$$\left|\hat{\xi}\right| = \lim_{n \to \infty} |a_n|$$

does not depend on the representative $(b_n)_{n\in\mathbb{N}}$ of ξ .And it's an absolute value of \hat{K} that induces $|\ |$ on K.

Definition 1.4. Let \mathbb{Q}_p be the completion of \mathbb{Q} w.r.t. the p-adic absolute value $|\ |_{p'}$ called p-adic numbers. The ring of p-adic integers is $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$

Fact 1.5. 1. \mathbb{Z}_p is the completion of \mathbb{Z} w.r.t. the p-adic absolute value.

- 2. $\mathbb{Q}_p = \mathbb{Z}_p[1/p]$.
- 3. Every $x \in \mathbb{Z}_p$ can be written in the form

$$x=b_0+b_1p+b_2p^2+\cdots+b_np^n+\ldots$$

where $0 \le b_i \le p-1$, and this representation is unique.

4. Every $x \in \mathbb{Q}_p$ can be written in the form

$$x = \sum_{n \ge -n_0} b_n p^n$$

where $0 \le b_n \le p-1$ and $|x|_p = e^{n_0}$. This representation is unique.

1.2 Archimedean Complete Fields

Let K be a field complete w.r.t. an archimedean absolute value | |. Since the set $\{|n\cdot 1| \mid n\in \mathbb{Z}\}$ is not bounded, char K=0. Thus K contains the field \mathbb{Q} of rationals.

 $| \ |$ restricted to $\mathbb Q$ induces the same topology as the usual absolute value of $\mathbb Q$. Thus the complete field K contains the completion of $\mathbb Q$ w.r.t. the ordinary absolute value, i.e., K contains $\mathbb R$ as a closed subfield.

Then K must be equal to $\mathbb R$ or to $\mathbb C$. Consequently, every field K admitting an archimedean absolute value may be considered as a subfield of $\mathbb C$ or even $\mathbb R$ with the absolute value dependent on the induced one from $\mathbb C$ (or from $\mathbb R$)

1.3 Non-Archimedean Complete Fields

Assume $| \ |$ is a non-trivial, non-archimedean absolute value on the field K, we can define an "additive" presentation of the absolute value $| \ |$:

$$v(x) := -\ln|x|$$

In the case of the *p*-adic absolute value $| \cdot |_q$ on \mathbb{Q} , we obtain

$$v_p(p^\nu \frac{m}{n}) = \nu$$

 v_p is called the *p*-adic valuation on \mathbb{Q} .

Using the additive notion, the axioms of a non-archimedean absolute value

$$v: K \to \mathbb{R} \cup \{\infty\}$$

now reads for all $x, y \in K$

- 1. $v(x) \in \mathbb{R}$ for $x \neq 0$, $v(0) = \infty$
- 2. v(xy) = v(x) + v(y)
- 3. $v(x + y) \ge \min\{v(x), v(y)\}$

First we note that only the additive structure of \mathbb{R} together with the ordering on \mathbb{R} is used, we will generalize this later. Secondly, ∞ is a symbol that satisfies, for all $\gamma \in \mathbb{R}$, the following axiom:

$$\infty = \infty + \infty = \gamma + \infty = \infty + \gamma$$

By an **ordered abelian group** we mean an abelian group $(\Gamma, +, 0)$ together with a binary relation \leq on Γ , where \leq is a linear order on Γ and for any $\gamma, \delta, \lambda \in \Gamma$,

$$\gamma < \delta \Rightarrow \gamma + \lambda < \delta + \lambda$$

Let Γ be an ordered abelian group, and ∞ a symbol satisfying for all $\gamma \in \Gamma$,

$$\infty = \infty + \infty = \gamma + \infty = \infty + \gamma.$$

We then define a **valuation** v on a field K to be a surjective map

$$v: K \twoheadrightarrow \Gamma \cup \{\infty\}$$

satisfying the following axioms: for all $x, y \in K$,

1.
$$v(x) = \infty \Rightarrow x = 0$$

2.
$$v(xy) = v(x) + v(y)$$

3.
$$v(x+y) \ge \min\{v(x), v(y)\}$$

If $\Gamma = \{0\}$, we call v the **trivial valuation**; for all $x, y \in K$:

$$\begin{split} v(1) = 0, & v(x^{-1}) = -v(x), & (-x) = v(x), \\ v(x) < v(y) \Rightarrow v(x+y) = v(x) \end{split}$$

Definition 1.6. Let $v: K^{\times} \to \Gamma$ be a valuation on a field. We set

1.
$$\mathcal{O}_v := \{x \in K : v(x) \ge 0\}$$

2.
$$\mathfrak{m}_v := \{x \in K : v(x) > 0\}$$

3.
$$\mathbf{k}_v := \mathcal{O}_v/\mathfrak{m}_v$$
.

For all $x, y \in \mathcal{O}_v$ we have

$$v(x \pm y) \ge \min\{v(x), v(\pm y)\} \ge 0$$
$$v(xy) = v(x) + v(y) \ge 0$$

Hence $x\pm y, xy\in \mathcal{O}$. From $v(x^{-1})=-v(x)$, we deduce that x is a unit in \mathcal{O}_v iff v(x)=0 and for every $x\in K$, either x or x^{-1} or both lie in \mathcal{O}_v . A subring \mathcal{O} of K satisfying

$$x \in \mathcal{O}$$
 or $x^{-1} \in \mathcal{O}$

for all $x \in K^{\times}$ is called a **valuation ring** of K. Thus \mathcal{O}_v is a valuation ring. Moreover, \mathfrak{m}_v is an ideal of \mathcal{O}_v . Since \mathfrak{m}_v consists exactly of the non-units of \mathcal{O}_v , \mathfrak{m}_v is a maximal ideal, and in fact the only maximal ideal of \mathcal{O}_v . Thus \mathcal{O}_v is a local ring(ring with only one maximal ideal) and \mathbf{k}_v is a field, called the **residue class field** of v. The residue class of $a \in \mathcal{O}_v$ is denoted by \bar{a} . Note that v is trivial iff $\mathcal{O}_v = K$ iff $\mathbf{k}_v = K$. The group $v(K^{\times})$ will be called the **value group** of v.

Proposition 1.7. Let $\mathcal{O} \subseteq K$ be a valuation ring of K. Then there exists a valuation v on K s.t. $\mathcal{O} = \mathcal{O}_v$.

Proof. Denote by \mathcal{O}^{\times} the group of units of \mathcal{O} . The group $\Gamma = K^{\times}/\mathcal{O}^{\times}$ is an abelian group and we can define a binary relation on Γ by

$$x\mathcal{O}^{\times} \leq y\mathcal{O}^{\times} \Leftrightarrow \frac{y}{x} \in \mathcal{O}$$

We can check that Γ is an ordered abelian group. The valuation is defined by

$$v(x) = x\mathcal{O}^{\times} \in \Gamma$$

for $x \in K^{\times}$, and $v(0) = \infty$. If $v(x) \le v(y)$, then $y/x \in \mathcal{O}$. Therefore $(x+y)/x = 1 + y/x \in \mathcal{O}$ and $v(x+y) \ge v(x) = \min\{v(x), v(y)\}$. Now

$$\mathcal{O}_v = \{x \in K \mid v(x) \geq 0\} = \{x \in K \mid x \in \mathcal{O}\} = \mathcal{O}$$

Example 1.5. Consider $K = \mathbb{Q}$, $v = v_p$, then

$$\begin{split} \mathcal{O}_{v_p} &= \{\frac{a}{b} \mid a,b \in \mathbb{Z}, b \text{ is not divisible by } p\} \\ \mathfrak{m}_{v_p} &= \{\frac{pa}{b} \mid a,b \in \mathbb{Z}, b \text{ is not divisible by } p\} \end{split}$$

 \mathcal{O}_{v_p} is the localization $\mathbb{Z}_{(p)}=(\mathbb{Z}-(p))^{-1}\mathbb{Z})$ of the ring \mathbb{Z} at the prime ideal $(p)=p\mathbb{Z}$, and \mathfrak{m}_{v_p} is $p\mathbb{Z}_{(p)}$. Thus the residue class field \mathbf{k}_{v_p} is isomorphic to the finite field \mathbb{F}_p .

Example 1.6. Consider $K=F((T))=\{\sum_{n=m}^{\infty}a_nT^n\mid m\in\mathbb{Z}, a_n\in F\}$, field of formal Laurent series with valuation v(f)=m where $f=\sum_{n=m}^{\infty}a_nT^n$ and $a_m\neq 0$, then $\mathcal{O}_v=F[[T]]$, \mathfrak{m}_v is all series $\sum_{n=m}^{\infty}a_nT^n$ where m>0 and the residue field \mathbf{k}_v is F.

2 Hensel's Lemma

Definition 2.1. A local domain A with maximal ideal \mathfrak{m} is **henselian** if whenever $f(x) \in A[X]$ and there is $a \in A$ s.t. $f(a) \in \mathfrak{m}$ and $f'(a) \notin \mathfrak{m}$, then there is $\alpha \in A$ s.t. $f(\alpha) = 0$ and $\alpha - a \in \mathfrak{m}$.

A **valued field** is a pair (K, \mathcal{O}) where K is a field and A is a valuation ring. A valued field is **henselian** if its valuation ring is henselian.

Remark. A ring is local iff all non-units form an ideal, therefore henselianity is a first-order property.

Theorem 2.2 (Hensel's Lemma). *Suppose K is a complete field with non-archimedean absolute value* | | *and valuation ring* $\mathcal{O} = \{x \in K : |x| \le 1\}$. *Then* \mathcal{O} *is henselian*

Proof. Suppose $a \in \mathcal{O}_v$, $|f(a)| = \epsilon < 1$ and |f'(a)| = 1. We think of a as our first approximation to a zero of f and use Newton's method to find a better approximation.

Let $\delta = \frac{-f(a)}{f'(a)}$. Note that $|\delta| = \left|\frac{f(a)}{f'(a)}\right| = \epsilon$. Consider the Taylor expansion

$$f(a+x)=f(a)+f^{\prime}(a)x+{
m terms}$$
 of degree at least 2 in x

Thus

$$f(a+\delta) = f(a) + f'(a) \frac{-f(a)}{f'(a)} + \text{terms of degree at least 2 in } \delta$$

Thus $|f(a+\delta)| \leq \epsilon^2$. Similarly

$$f'(a+\delta)=f'(a)+{
m terms}$$
 of degree at least 2 in δ

and
$$|f'(a + \delta)| = |f'(a)| = 1$$
.

Thus starting with an approximation where $|f(a)| = \epsilon < 1$ and |f'(a)| = 1, we get a better approximation b where $|f(b)| \le \epsilon^2$ and |f'(b)| = 1. We now iterate this procedure to build $a = a_0, a_1, a_2, \ldots$ where

$$a_{n+1} = a_n - \frac{a_n}{f'(a_n)}$$

It follows, by induction, that for all *n*:

- 1. $|a_{n+1} a_n| \le \epsilon^{2^{n+1}}$
- $2. |f(a_n)| \le \epsilon^{2^n}$
- 3. $|f'(a_n)| = 1$

Thus $(a_n)_{n\in\mathbb{N}}$ is a Cauchy sequence and converges to α , $|\alpha-a|\leq \epsilon$, and $f(\alpha)=\lim_{n\to\infty}f(a_n)=0$

Therefore we have henselian field $(\mathbb{Q}_p,\mathbb{Z}_p)$ and (F((T)),F[[T]]).

Fact 2.3 (Chevalley). For a field K, let $A \subseteq K$ be a subring and let $P \subseteq A$ be a prime ideal of A. Then there exists a valuation ring O of K s.t.

$$R \subseteq \mathcal{O}$$
 and $M \cap R = P$

where M is the maximal ideal of \mathcal{O} .

Lemma 2.4. Let K_2/K_1 be a field extension and let $\mathcal{O}_1 \subseteq K_1$ be a valuation ring. Then there is a valuation ring $\mathcal{O}_2 \subseteq K_2$ with $\mathcal{O}_2 \cap K_1 = \mathcal{O}_1$.

Proof. Since \mathcal{O}_1 is a subring of K_2 , according to Chevalley's Theorem there exists a valuation ring \mathcal{O}_2 of K_2 with $\mathcal{O}_1 \subseteq \mathcal{O}_2$ and $\mathfrak{m}_2 \cap \mathcal{O}_1 = \mathfrak{m}_1$ for maximal ideals. Since $\mathcal{O}_2 \cap K_1$ and \mathcal{O}_1 are valuation rings with the same maximal ideal they must coincide.

Fact 2.5. Let (K, \mathcal{O}) be a valued field. T.F.A.E.:

- 1. (K, \mathcal{O}) is henselian.
- 2. For any separable extension L/K there is a unique extension of \mathcal{O} to a valuation ring of L.
- 3. For any algebraic extension L/K there is a unique extension of $\mathcal O$ to a valuation ring of L.

3 Hahn Series

For each group Γ and field k, there is a field $K=k((t^{\Gamma}))$ with valuation v having Γ as the value group and k as the residue field.

Lemma 3.1. Let $A, B \subseteq \Gamma$ be well-ordered (by the ordering of Γ). Then $A \cup B$ is well-ordered, the set $A + B := \{\alpha + \beta : \alpha \in A, \beta \in B\}$ is well-ordered, and for each $\gamma \in \Gamma$ there are only finitely many $(\alpha, \beta) \in A \times B$ s.t. $\alpha + \beta = \gamma$.

Proof. Suppose $(a_0,b_0),(a_1,b_1),...$ are distinct s.t. $a_i+b_i>a_j+b_j$ for i< j. Then we can find a strictly monotone subsequence of the a_i . Since A is well-ordered, the sequence cannot be decreasing. But then there is a strictly decreasing subsequence of b_i .

Lemma 3.2 (Neumann's Lemma). Let $A \subseteq \Gamma^{>0}$ be well-ordered. Then

$$[A] := \{\alpha_1 + \dots + \alpha_n : \alpha_1, \dots, \alpha_n \in A\}$$
 (allowing $n = 0$)

is also well-ordered, and for each $\gamma \in [A]$ there are only finitely many tuples $(n, \alpha_1, \ldots, \alpha_n)$ with $\alpha_1, \ldots, \alpha_n \in A$ s.t. $\gamma = \alpha_1 + \cdots + \alpha_n$

Define $K=k((t^\Gamma))$ to be the set of all formal series $f(t)=\sum_{\gamma\in\Gamma}a_\gamma t^\gamma$ with coefficients $a_\gamma\in k$, s.t. the support of f,

$$\operatorname{supp}(f):=\{\gamma\in\Gamma:a_\gamma\neq 0\}$$

is a well-ordered subset of Γ .By the first lemma, we can define binary operations of addition and multiplication on $k((t^{\Gamma}))$ as

$$\begin{split} \sum a_{\gamma}t^{\gamma} + \sum b_{\gamma}t^{\gamma} &= \sum (a_{\gamma} + b_{\gamma})t^{\gamma} \\ \left(\sum a_{\gamma}t^{\gamma}\right)\left(\sum b_{\gamma}t^{\gamma}\right) &= \sum_{\gamma} \left(\sum_{\alpha + \beta = \gamma} a_{\alpha}b_{\beta}\right)t^{\gamma} \end{split}$$

Define $v: K \setminus \{0\} \to \Gamma$ by

$$v(\sum a_{\gamma}t^{\gamma}):=\min\{\gamma:a_{\gamma}\neq 0\}$$

Then v is a valuation on K. If v(f)>0, then by the second lemma $\sum_{n=0}^{\infty}f^n$ makes sense as an element of K: for any $\gamma\in\Gamma$ there are only finitely many n s.t. the coefficients of t^{γ} in f^n is not zero. Then

$$(1-f)\sum_{n=0}^{\infty} f^n = 1$$

Now for any $g\in K\smallsetminus\{0\}$, $g=ct^\gamma(1-f)$, with $c\in k^\times$ and v(f)>0. Then $g^{-1}=c^{-1}t^{-\gamma}\sum_n f^n$.

For $f=\sum a_{\gamma}t^{\gamma}\in K$, call a_0 the constant term of f. The map sending sending f to its constant term sends \mathcal{O}_v onto k, and this is a ring homomorphism. Its kernel is \mathfrak{m}_v . Therefore $\mathcal{O}_v/\mathfrak{m}_v\cong k$.

We call *K* the **Hahn field**.

Definition 3.3. Let K be a valued field. We say that K is **spherically complete** if whenever (I, <) is a linear order and $(B_i : i \in I)$ is a family of open balls s.t. $B_i \supset B_j$ for all i < j, then $\bigcap_{i \in I} B_i \neq \emptyset$.

Definition 3.4. If (K, v) is a valuation field extending L as a subfield, then K is an **immediate extension** if v(K) = v(L) and $\mathbf{k}_K = \mathbf{k}_L$.

Fact 3.5. 1. Hahn field is henselian.

- 2. Hahn field is spherically complete.
- 3. Hahn field has no proper immediate extensions.