48.

CORPUS CHRISTI COLLEGE SEQUERE DOMINUM

ATPHY 2018

Gravity Investigation

5.0%

Part (2) quiz

Student name: Soun
1. How many metres are there in one light year? [3 marks]
$ Ly = 60 \times 60 \times 24 \times 365.25 \times (3 \times 10^{8})$ $= 9.47 \times 10^{15} \text{ m}.$
= 9.47 × 1015 m.
2. How close is Ross128b to our solar system? [1 mark]
11 LIGHT YEARS AWAY
IT LIGHT TEARS AWAY
3. Briefly explain how Ross128b was discovered. [2 marks]
· ESO'S HIGH ACCURACY RADIAL VEWCIM
PLANET STARCHER (HARPS).
· EXAMINATION OF MANY YEARS OF
HARPS DATA.
4. Why is Ross128b of much great interest to astronomers? [2 marks]
· EARTH - LIKE PLANET
· INSIDE HABITABLE ZONE (POSSIBLY).

On 22 February 2017, astronomers announced that the planetary system of this star is composed of seven temperate terrestrial planets, of which five (b, c, e, f and g) are similar in size to Earth, and two (d and h) are intermediate in size between Mars and Earth. Three of the planets (e, f and g) orbit within the habitable zone.

5. What planetary system is this statement referring to?	[2 marks]
THE SEVEN PLANETS THAT OR	BIT
AROUND THE STAR TRAPPIST-	-11
6. What is meant by the term, 'habitable zone'?	[2 marks]
THE RANGE OF ORBITS AROUND THAT CAN SUPPORT LIQUID WATE	A SMR
THAT CAN SUPPORT LIQUID WATE	R.
7 10/15 24 4 11 2 2 5 24 2 2 2 1 2 1 2 2 2	
7. What type of stars do these planets orbit?	[2 marks]
	•
	•
TRAPPIST - L IS AN ULTRA COURED DWARF STAR.	•
	٥١
TRAPPIST - 1 IS AN ULTRA CON RED DWARF STAR. 8. What telescope will take the place of the Hubble Space Telescope	ope and [2 marks]
RED DWARF STAR. 8. What telescope will take the place of the Hubble Space Telescowhere will it be positioned?	ope and [2 marks]
RED DWARF STAR. 8. What telescope will take the place of the Hubble Space Telescowhere will it be positioned? TING JAMES WEBB TELESCOPE	ope and [2 marks]

Johannes Kepler brought the power of mathematics to bear on the observations of the solar system by his mentor Tycho Brahe. By 1619 Kepler had stated three laws:

- i. Planets follow plane elliptical paths with the sun at one focus.
- A radial line between the sun and a planet will sweep out equal areas of the ellipse in equal times.
- iii. The square of the period of a planet varies directly as the cube of the radius (the semi major axis). The constant $k=r^3/T^2$ is the same for all planets.
- **9.** Show, by using the principles of horizontal motion and Newton's universal law of gravity, that the ratio r^3/T^2 is a constant for all planets. [5 marks]

$$\frac{m_2 4\pi^2 R}{T^2} = \frac{G_{\text{rm}, \text{m}_2}}{r^{23}} \quad (m_2 \text{ canceus})$$

$$\frac{r^3}{T^2} = \frac{G_{\text{rm}_1}}{4\pi^2} = c_{\text{smst}}.$$

10. Using data you collected during your research, calculate the mass of the exoplanet Ross128b. **[5 marks]**

$$M = \frac{4\pi^{2}r^{3}}{47^{2}} (EQU REARRANGES).$$

$$= \frac{4(9.86)(7.42\times10^{9})^{3}}{(6.67\times10^{-11})(858360)^{2}}$$

$$= \frac{1.61\times10^{31}}{48.8} = \frac{3.30\times10^{-29}}{3}$$

Planet	Neptune	Jupiter	Earth	Mercury
Mass (m)	17.23	317.893	1	0.0558
Radius (r)	4496.6	778.3	149.6	57.9
Period (T)	60189	4332.589	365.256	87.969

Where:

Mass = $(5.976 \times 10^{24} \text{ kg})$ [mass of the earth],

Radius = $(1x10^6 \text{ km})$ [orbital radius around the sun], and

Period = (23h 56m 04.098s) [sidereal day]

11. Calculate the gravitational force between Earth and mercury when they are only a distance apart equal to the difference between their solar orbits.

EARTH ORBIT = (149.6)(1×109) = 1.496 × 1011 m.

MERC ORBIT = (57.9)(1×109) = 5.79 × 1010 m.

ORBIT DIFF = 9.17 × 1000 m.

MERC MASS = (0.0558)(5.976×1024)=3.34×1024Kg.

 $F = \frac{Gmem_m}{f^2} = \frac{(6.67 \times 10^{-11})(5.976 \times 10^{14})(3.34 \times 10^{23})}{(9.17 \times 10^{10})^2}$

12. Calculate the radius of Earth which will correspond with a gravitational force of 9.801N acting on a mass of 1.00kg on the surface. Give your answer to the nearest kilometre. [4 marks]

 $r^2 = \frac{(6.67 \times 10^{-11})(5.976 \times 10^{24})(1)}{9.801}$

r2 = 4.07 x 1013 m.

-- (= 6377 Km.

13. Astrophysicists searching the cosmos for possible 'earth-like' planets have discovered a new exoplanet. Each night they take observational data and track the orbiting planet moving from position 1 to position 2 in 14 days. The central star diameter has been measured at 1.39x106km.

a) Calculate the mass of the star.

[7 marks]

FROM PICTURE: DIA OF STAK = 13mm = 1.39 × 109 m. (FM CENTRE) RAD OF DRIST 266 MM = 7.06×109 M.

T 2 28 PAYS = 2.42 x 10 SECS.

m= 4 12 13 = 4 (9.86) (7.06 x 109) 3 (6.67 x 10") (2.42 x 106) 5

b) Find the gravitational field strength at the star's surface.

[4 marks]

 $g = \frac{Gm}{r^2} = \frac{(6.67 \times 10^{-11})(3.55 \times 10^{28})}{(1.39 \times 10^9)^2}$ 1.23 NKg-1.