Algorithms and Probability

Week 12

Lange Pfade

Gegeben: (G, B), G ein Graph und $B \in \mathbb{N}_0$.

Problem: gibt es einen Pfad der Länge B in G?

Zur Erinnerung:

Ein Pfad der Länge ℓ in einem Graph G=(V,E) ist eine Folge von paarweise verschiedenen Knoten

$$\langle v_0, v_1, \dots, v_{\ell} \rangle$$
, mit $\{v_{i-1}, v_i\} \in E$ für $i = 1, \dots \ell$.

Es liegen $\ell+1$ Knoten auf einem Pfad der Länge ℓ .

Lange Pfade

Für beliebige $B \in \mathbb{N}_0$ vermutlich sehr schwer (vgl. $B = n - 1 \Rightarrow$ Hamiltonpfad).

Was passiert wenn B klein ist?

Konkret:

$$B = O(\log n)$$
.

Colorful-Path Probelm

Gegeben: (G, γ) , G = (V, E) ein Graph und $\gamma : V \to [k]$ eine Färbung (muss nicht gültig sein; d.h. ist erlaubt)

Problem: gibt es einen bunten Pfad der Länge k-1 in G?

Definition: Ein Pfad heisst **bunt**, falls alle seine Knoten verschiedene Farben haben.

Graph G = (V, E) mit Färbung $\gamma : V \rightarrow [4]$.

Ein bunter Pfad der Länge 3.

Definition: Ein Pfad heisst **bunt**, falls alle seine Knoten verschiedene Farben haben.

Idee:

 $P_i(v)$ = "Menge aller in v endender bunten Pfaden der Länge i".

Wir brauchen:

Rekursion um von $P_i(v)$ zu $P_{i+1}(v)$ zu kommen.

Die **Lösung** (bunter Pfad der Länge k-1, falls existent) ist in $\bigcup_{v \in V} P_{k-1}(v)$.

Idee:

 $P_i(v)$ = "Menge aller in v endender bunten Pfaden der Länge i".

Wir definieren:

$$P_i(v) := \{S \in {[k] \choose i+1} \mid \exists \text{ in } v \text{ endender mit genau } S \text{ gefärbter bunter Pfad} \}.$$

Ein bunter Pfad kann eine verschiedene Farben-Abfolge haben. Bei k Farben gibt es genau $\binom{k}{i+1}$

Möglichkeiten um aus k Farben i+1 auszuwählen. Dieser Gedanke motiviert auch die Notation.

$$P_i(v) := \{S \in {[k] \choose i+1} \mid \exists \text{ in } v \text{ endender mit genau } S \text{ gefärbter bunter Pfad} \}.$$

Wie kommen wir nun zu unserer Rekursion?

Was ist $P_0(v)$?

Ein in v endender bunter Pfad (Länge 0) $\Rightarrow P_0(v) = \{\{\gamma(v)\}\}.$

Was ist $P_1(v)$?

Ein bunter Pfad der Länge 1 zu v besteht aus einem $\gamma(v)$ -freien bunten Pfad der Länge 0 zu einem Nachbarn x von v plus dem Schritt zu v.

$$P_1(v) = \{ \{ \gamma(x), \gamma(v) \} \mid x \in N(v), \gamma(x) \neq \gamma(v) \}.$$

$$P_0(v) = \{ \mathbf{3} \}$$

$$P_1(v) = \{ \{ \gamma(x), 3 \} \mid x \in N(v), \gamma(x) \neq \gamma(v) \} = \{ \{ 3, 4 \}, \{ 3, 2 \}, \{ 3, 4 \} \}$$

$$P_i(v) := \{S \in {[k] \choose i+1} \mid \exists \text{ in } v \text{ endender mit genau } S \text{ gefärbter bunter Pfad} \}.$$

Die vorherigen Überlegungen motivieren folgende Rekursion:

$$P_i(v) = \bigcup_{x \in N(v)} \{R \cup \{\gamma(v)\} \mid R \in P_{i-1}(x) \text{ und } \gamma(v) \notin R\}.$$

Ein bunter Pfad der Länge i zu v besteht aus einem $\gamma(v)$ -freien bunten Pfad der Länge i-1 zu einem Nachbarn x von v plus dem Schritt zu v.

Betrachten Sie einen Graph G = (V, E) mit |V| = n Knoten und eine k-(Knoten)-Färbung $c: V \to [k]$, wobei $k = \lceil \log n \rceil$.

Welche der folgenden Definitionen kann benutzt werden, um mittels DP in polynomieller Zeit (in n) zu entscheiden, ob G einen bunten Pfad mit k Knoten enthält?

 $C_i(v) := \{ \text{ Farbfolgen c} \in [k]^i \text{ so dass } \exists \text{ ein Pfad mit } i \text{ Knoten beginnend bei } v \text{ mit Farben } c_1, c_2, \dots \}$

 $A_i(v) := \{S \in {[k] \choose i} : \exists \text{ ein Pfad mit } i \text{ Knoten und Endknoten } v, \text{ der alle Farben von } S \text{ genau einmal verwendet} \}$

 $B_i(v) := \{ \text{alle bunten Pfade mit } i \text{ Knoten und } v \text{ als Endknoten} \}$

$$P_i(v) := \{S \in {[k] \choose i+1} \mid \exists \text{ in } v \text{ endender mit genau } S \text{ gefärbter bunter Pfad} \}.$$

$$P_i(v) = \bigcup_{x \in N(v)} \{R \cup \{\gamma(v)\} \mid R \in P_{i-1}(x) \text{ und } \gamma(v) \notin R\}.$$

Bunt(G, i)

G ein γ -gefärbter Graph

```
1: for all v \in V do
```

2:
$$P_i(v) \leftarrow \emptyset$$

3: for all
$$x \in N(v)$$
 do

4: for all
$$R \in P_{i-1}(x)$$
 mit $\gamma(v) \notin R$ do

5:
$$P_i(v) \leftarrow P_i(v) \cup \{R \cup \{\gamma(v)\}\}$$

Ein bunter Pfad der Länge i zu v besteht aus einem $\gamma(v)$ -freien bunten Pfad der Länge i-1 zu einem Nachbarn x von v plus dem Schritt zu v.

$$P_i(v) := \{S \in {[k] \choose i+1} \mid \exists \text{ in } v \text{ endender mit genau } S \text{ gefärbter bunter Pfad} \}.$$

$$P_i(v) = \bigcup_{x \in N(v)} \{R \cup \{\gamma(v)\} \mid R \in P_{i-1}(x) \text{ und } \gamma(v) \notin R\}.$$

Regenbogen (G, γ)

G Graph, γ k-Färbung

- 1: **for all** $v \in V$ **do** $P_0(v) \leftarrow \{\{\gamma(v)\}\}$
- 2: **for** i = 1..k 1 **do** Bunt(G, i)
- 3: return $\bigcup_{v \in V} P_{k-1}(v) \neq \emptyset$

Bunt(G, i)

G ein γ -gefärbter Graph

- 1: for all $v \in V$ do
- 2: $P_i(v) \leftarrow \emptyset$
- 3: for all $x \in N(v)$ do
- 4: for all $R \in P_{i-1}(x)$ mit $\gamma(v) \notin R$ do
- 5: $P_i(v) \leftarrow P_i(v) \cup \{R \cup \{\gamma(v)\}\}$

Laufzeit

```
G Graph, \gamma k-Färbung
Regenbogen(G, \gamma)
                                                                                   O(n)
 1: for all v \in V do P_0(v) \leftarrow \{\{\gamma(v)\}\}
 2: for i = 1..k - 1 do Bunt(G, i)
                                                                                    ???
 3: return \bigcup_{v \in V} P_{k-1}(v) \neq \emptyset
                                                                                   O(n)
                                                          G ein \gamma-gefärbter Graph
 Bunt(G, i)
   1: for all v \in V do
          P_i(v) \leftarrow \emptyset
           for all x \in N(v) do
                for all R \in P_{i-1}(x) mit \gamma(v) \notin R do
                    P_i(v) \leftarrow P_i(v) \cup \{R \cup \{\gamma(v)\}\}
```

Laufzeit

$Regenbogen(G,\gamma)$	${\it G}$ Graph, γ ${\it k}$ -Färbung
1: for all $v \in V$ do $P_0(v) \leftarrow \{\{\gamma(v)\}\}$	O(n)
2: for $i = 1k - 1$ do Bunt(G, i)	???
3: return $\bigcup_{v \in V} P_{k-1}(v) \neq \emptyset$	O(n)

Bunt(G, i)

G ein γ -gefärbter Graph

```
1: for all v \in V do
```

2:
$$P_i(v) \leftarrow \emptyset$$

3: for all
$$x \in N(v)$$
 do

4: for all
$$R \in P_{i-1}(x)$$
 mit $\gamma(v) \notin R$ do

5:
$$P_i(v) \leftarrow P_i(v) \cup \{R \cup \{\gamma(v)\}\}$$

$$|P_{i-1}(x)| \sum_{v \in V} \deg(v)$$

Bunt(G, i)

G ein γ -gefärbter Graph

Laufzeit

- 1: for all $v \in V$ do
- 2: $P_i(v) \leftarrow \emptyset$
- 3: for all $x \in N(v)$ do

4: for all
$$R \in P_{i-1}(x)$$
 mit $\gamma(v) \notin R$ do

5:
$$P_i(v) \leftarrow P_i(v) \cup \{R \cup \{\gamma(v)\}\}$$

$$|P_{i-1}(x)| \sum_{v \in V} \deg(v)$$

Wir haben also
$$O\left(\sum_{v \in V} \deg(v) \cdot |P_{i-1}(v)| \cdot i\right)$$
 pro $\operatorname{Bunt}(G, i)$ Runde.

Nach dem Handshake Lemma und weil $P_{i-1}(v)\subseteq \binom{[k]}{i}$ und daher $|P_{i-1}(v)|\le \binom{k}{i}$ bekommen wir pro $\mathrm{Bunt}(G,i)$ Runde:

$$O\left(\sum_{v \in V} \deg(v) \cdot |P_{i-1}(v)| \cdot i\right) = O\left(m \cdot {k \choose i} \cdot i\right).$$

Laufzeit

```
Regenbogen(G, \gamma) G Graph, \gamma k-Färbung

1: for all v \in V do P_0(v) \leftarrow \{\{\gamma(v)\}\}

2: for i = 1..k - 1 do Bunt(G, i)

3: return \bigcup_{v \in V} P_{k-1}(v) \neq \emptyset

O(n)

O(m \cdot \binom{k}{i} \cdot i)
```

Bunt(G, i)

G ein γ -gefärbter Graph

- 1: for all $v \in V$ do
- 2: $P_i(v) \leftarrow \emptyset$
- 3: for all $x \in N(v)$ do
- 4: for all $R \in P_{i-1}(x)$ mit $\gamma(v) \notin R$ do
- 5: $P_i(v) \leftarrow P_i(v) \cup \{R \cup \{\gamma(v)\}\}$

Regenbogen(G, γ)

G Graph, γ k-Färbung

Laufzeit

1: **for all**
$$v \in V$$
 do $P_0(v) \leftarrow \{\{\gamma(v)\}\}$

2: **for**
$$i = 1..k - 1$$
 do Bunt(G, i)

3: return
$$\bigcup_{v \in V} P_{k-1}(v) \neq \emptyset$$

$$O(n)$$

$$O\left(m \cdot {k \choose i} \cdot i\right)$$

$$\sum_{i=1}^{k-1} m \cdot \binom{k}{i} \cdot i \le \sum_{i=1}^{k} m \cdot \binom{k}{i} \cdot i \le O(2^k \cdot k \cdot m).$$

Where we used that:

$$\sum_{i=0}^{k} \binom{k}{i} = 2^k.$$

Regenbogen(G, γ)

G Graph, γ k-Färbung

Laufzeit

1: **for all**
$$v \in V$$
 do $P_0(v) \leftarrow \{\{\gamma(v)\}\}$

2: **for**
$$i = 1..k - 1$$
 do Bunt(G, i)

3: return
$$\bigcup_{v \in V} P_{k-1}(v) \neq \emptyset$$

$$O(n)$$

$$O\left(m \cdot {k \choose i} \cdot i\right)$$

Since we have $O(2^k \cdot k \cdot m)$, for $k \le O(\log n)$ we have a polynomial algorithm.

Colorful-Path und Lange Pfade

Lange Pfade: (G, B), G ein Graph und $B \in \mathbb{N}_0$.

Für k = B + 1, färbe G **zufällig** mit k Farben, und suche einen bunten Pfad mit k Knoten.

Bei zufälliger Färbung, was ist die Erfolgswahrscheinlichkeit?

Möglichkeiten einen Pfad der Länge k mit k Farben zu Färben?

 k^k .

Möglichkeiten einen Pfad der Länge k mit k Farben zu färben, so dass dieser bunt ist?

k!

Colorful-Path und Lange Pfade

Bei zufälliger Färbung, was ist die Erfolgswahrscheinlichkeit?

Taylor series for e^k .

$$p_{\mathsf{Erfolg}} := \Pr[\exists \mathsf{bunter} \mathsf{Pfad} \mathsf{der} \mathsf{Länge} \, k - 1] \ge \Pr[P \mathsf{ist} \mathsf{bunt}] = \frac{k!}{k^k} \ge e^{-k}.$$

L au

 k^k

Möglichkeiten einen Pfad der Länge k mit k Farben zu Färben?

Möglichkeiten einen Pfad der Länge k mit k Farben zu färben, so dass dieser bunt ist?

k!.

Ein Versuch:

Laufzeit $O(2^k km)$. $p_{\text{Erfolg}} \ge e^{-k}$.

$\lceil \lambda e^k \rceil$ Versuche:

- ▶ Laufzeit $O(\lambda(2e)^k km)$.
- W'keit, dass der Algorithmus den Pfad nicht findet ist

$$\leq \left(1 - e^{-k}\right)^{\lceil \lambda e^k \rceil} \leq \left(e^{-e^{-k}}\right)^{\lceil \lambda e^k \rceil} \leq e^{-\lambda}.$$

Netzwerk

Ein Netzwerk ist ein Tupel N = (V, A, c, s, t), wobei gilt:

- (V, A) ist ein gerichteter Graph (ohne Schleifen),
- $\gt{s} \in V$, die Quelle,
- $t \in V \setminus \{s\}$, die Senke, und
- $ightharpoonup c: A
 ightharpoonup \mathbb{R}_0^+$, die Kapazitätsfunktion.

Netzwerk

Quelle (source)

Senke (sink)

Kapazität

Fluss

Sei N = (V, A, c, s, t) ein Netzwerk. Ein Fluss in N ist eine Funktion $f : A \to \mathbb{R}$ mit den Bedingungen

- ► Zulässigkeit: $0 \le f(e) \le c(e)$ für alle $e \in A$.
- ► Flusserhaltung: Für alle $v \in V \setminus \{s, t\}$ gilt

$$\sum_{u\in V:\,(u,v)\in A}f(u,v)=\sum_{u\in V:\,(v,u)\in A}f(v,u).$$

Der Wert eines Flusses f ist definiert als

$$val(f) := netoutflow(s) := \sum_{u \in V: (s,u) \in A} f(s,u) - \sum_{u \in V: (u,s) \in A} f(u,s).$$

Netzwerk N = (V, A, c, s, t).

Regeln:

- 1. Zulässigkeit: $0 \le f(e) \le c(e)$ für alle $e \in A$.
- 2. Flusserhaltung: in v fliesst gleich viel raus wie rein für alle $v \in V \setminus \{s, t\}$

Flusswert/Netoutflow:

$$val(f) = \sum_{u \in V: (s,u) \in A} f(s,u) - \sum_{u \in V: (u,s) \in A} f(u,s)$$

Lemma

Der Nettozufluss der Senke t gleicht dem Wert des Flusses, d.h.

$$\operatorname{netinflow}(t) := \sum_{u \in V: (u,t) \in A} f(u,t) - \sum_{u \in V: (t,u) \in A} f(t,u) = \operatorname{val}(f).$$

Nettozufluss

- val(f) = netoutflow(s) = 3 + 5 1 = 7.
- netinflow(t) = 1 + 7 1 = 7.

Wir sehen: netinflow(t) = val(f).

• Wir wissen nun was ein **Netwerk** und ein **Fluss** eines Netzwerkes ist.

Ziel

- Wir wollen nun einen maximalen Fluss effizient finden. Aber wie?
- Idee: betrachte Schnitte.

Fluss f mit Wert 3 + 5 - 1 = 7.

Ein s-t-Schnitt für ein Netzwerk (V, A, c, s, t) ist eine Partition (S, T) von V mit $s \in S$ und $t \in T$. Die Kapazität eines s-t-Schnitts (S, T) ist durch

$$cap(S, T) := \sum_{(u,w)\in(S\times T)\cap A} c(u,w)$$

definiert.

(Partition
$$(S, T)$$
: $S \cup T = V$ und $S \cap T = \emptyset$)

Wir ignorieren die Kanten von *T* nach *S*!

Schnitt

Schnitt

Quelle (source)

Senke (sink)

Kapazität

Was ist also cap(
$$S, T$$
) = $\sum_{(u,w) \in (S \times T) \cap A} c(u,w)$?

Schnitt

Quelle (source)

Senke (sink)

Kapazität

$$cap(S,T) = \sum_{u,w \in (S \times T) \cap A} c(u,w) = 2 + 2 + 6 = 10.$$

Die Kante von b nach s geht zwar über den Schnitt, aber von T nach S und wird deswegen **nicht mitgezählt**!

Schnitte

Lemma

Ist f ein Fluss und (S, T) ein s-t-Schnitt in einem Netzwerk (V, A, c, s, t), so gilt

$$val(f) \leq cap(S, T)$$
.

Ein Fluss kann nie grösser sein als die Kapazität eines s-t-Schnitts.

Finden wir zu einem Fluss f einen s-t-Schnitt (S, T) mit cap(S, T) = val(f), so ist f ein maximaler Fluss.

Der Schnitt (S, T) is ein einfacher Beweis (ein einfaches Zertifikat) für die Maximalität von f.

Zwischenergebnisse

• Schnitte ermöglichen eine Abschätzung des Flusswertes nach oben, da

$$val(f) \leq cap(S, T)$$
.

• Finden wir also einen Fluss f sodass val(f) = cap(S, T), dann ist f maximal.

Verbleibende Fragen:

- Gibt es immer einen maximalen Fluss?
- Gibt es immer einen minimalen Schnitt sodass val(f) = cap(S, T)?
- Wie bestimmen wir Flüsse/Schnitte effizient?

Maxflow-Mincut Theorem

```
Satz ("Maxflow-Mincut Theorem")

Jedes Netzwerk N = (V, A, c, s, t) erfüllt
```

 $\max_{f \ Fluss} val(f) = \min_{(S,T) \ s-t-Schnitt} cap(S,T)$

Algorithmus-Idee

- 1. Wir starten mit einem Fluss mit Wert 0.
- 2. Wir erhöhen den Flusswert nach und nach.

Fragen:

- Wie erhöhen wir den Flusswert?
- Wie lange erhöhen wir?

Flusswerterhöhung

Flusswerterhöhung

Senke (sink)

Kapazität

Flusswerterhöhung

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.

Netzwerk N = (V, A, c, s, t).

Wir definieren
$$\delta := \min_{e \in P} c(e) - f(e)$$
.

Senke (sink)

Kapazität

Flusswerterhöhung

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.

Netzwerk N = (V, A, c, s, t).

Wir definieren
$$\delta := \min_{e \in P} c(e) - f(e)$$
.

Hier: $\delta = 2 - 1 = 1$.

Erhöhe entlang P um $\delta = 1$.

- 1. Flusseigenschaft wurde nicht verletzt.
- 2. Flusswert wurde um δ erhöht. Wir haben einen Fluss mit Wert 4+5-1=8.

Senke (sink)

Kapazität

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.

Netzwerk N = (V, A, c, s, t).

Man sieht schnell: es gibt keinen solchen Pfad P mehr.

Aber ist f maximal?

Nein! Warum?

Flusserhöhung

Fluss mit Wert 4 + 5 - 1 = 8.

41

Lokale Veränderungen des Flusses, die die Flusserhaltung erhalten:

augmentierender Pfad (ungerichteter Pfad!)

Erinnerung: augmentieren bedeutet so viel wie steigern, verstärken, erweitern.

Hier wird unser Flusswert gesteigert, denn wir haben 3-mal $+\delta$ und nur 2-mal $-\delta$, also insgesamt $+\delta$.

Für e = (u, v), sei $e^{opp} := (v, u)$ (entgegen gerichtete Kante).

Sei N = (V, A, c, s, t) ein Netzwerk ohne entgegen gerichtete Kanten¹ und sei f ein Fluss in N. Das Restnetzwerk $N_f := (V, A_f, r_f, s, t)$ ist wie folgt definiert:

1. Ist $e \in A$ mit f(e) < c(e), dann ist e eine Kante in A_f , mit

$$r_f(e) := c(e) - f(e).$$

2. Ist $e \in A$ mit f(e) > 0, dann ist e^{opp} in A_f , mit

$$r_f(e^{\text{opp}}) = f(e).$$

3. A_f enthält nur Kanten wie in (1) und (2).

 $r_f(e)$, $e \in A_f$, nennen wir die Restkapazität der Kante e.

Restkapazität = "Spielraum"

Restnetzwerk

Netzwerk

Restnetzwerk Restkapazität

Restnetzwerk

- 1. Ist $e \in A$ mit $f(e) \subset c(e)$, dann ist e eine Kante in A_f , mit $r_f(e) := c(e) f(e)$.
- 2. Ist $e \in A$ mit f(e) > 0, dann ist e^{opp} in A_f , mit $r_f(e^{opp}) = f(e)$.

Wegen strikt kleiner/grösser, gibt es in den beiden unteren Fällen nur jeweils eine Kante!

Netzwerk N = (V, A, c, s, t).

Fluss f mit Wert 3 + 5 - 1 = 7.

- 1. Ist $e \in A$ mit f(e) < c(e), dann ist e eine Kante in A_f , mit $r_f(e) := c(e) f(e)$.
- 2. Ist $e \in A$ mit f(e) > 0, dann ist e^{opp} in A_f , mit $r_f(e^{opp}) = f(e)$.

Restnetzwerk $N_f = (V, A_f, r_f, s, t)$.

Senke (sink)

Kapazität

Augmentierende Pfade

Wir betrachten einen gerichteten s-t-Pfad in N_f :

Bestimme die kleinste Restkapazität $\varepsilon := \min_i \varepsilon_i$

Augmentiere f entlang des Pfades um ε .

Der blaue Pfad ist ein gerichteter Pfad im Restnetzwerk N_f . Die drunterliegenden Kanten, sind die Kanten des Netzwerkes.

- 1. Zeigt die blaue Kante in die selbe Richtung zeigt, dann gehen wir entlang der Restkapazität, können also noch erhöhen.
- 2. Zeigt die blaue Kante in die entgegengesetzte Richtung, dann gehen wir entlang des Flusses und reduzieren.

47

Fluss f mit Wert 7.

Resultat

```
Satz
Sei N ein Netzwerk (ohne entgegegen gerichtete Kanten).

Ein Fluss f ist maximaler Fluss

es im Restnetzwerk N_f keinen gerichteten s-t-Pfad gibt.

Für jeden maximalen Fluss f gibt es einen s-t-Schnitt (S,T) mit val(f) = cap(S,T).
```

Zusammenfassung

Ford-Fulkerson

Gegeben: Ein Netzwerk N = (V, A, c, s, t).

Gesucht: Ein maximaler Fluss f.

Ford-Fulkerson(V, A, c, s, t) 1: $f \leftarrow \mathbf{0}$ 2: while $\exists s - t$ -Pfad P in N_f do \Rightarrow augmentiere den Fluce entland P

3: Augmentiere den Fluss entlang P

4: **return** *f* ▷ maximaler Fluss

Sei n := |V| und m := |A| für Netzwerk N = (V, A, c, s, t).

- Angenommen $c: A \to \mathbb{N}_0$ und $U := \max_{e \in A} c(e)$. Dann gilt $val(f) \le cap(\{s\}, V \setminus \{s\}) \le (n-1)U$ und es gibt höchstens (n-1)U Augmentierungsschritte.
- Ein Augmentierungsschritt Suche s-t-Pfad in N_f , Augmentieren, Aktualisierung von N_f benötigt O(m) Zeit.

Satz (Ford-Fulkerson mit ganzzahligen Kapazitäten)

Sei N = (V, A, c, s, t) ein Netzwerk mit $c : A \to \mathbb{N}_0^{\leq U}$, $U \in \mathbb{N}$, ohne entgegen gerichtete Kanten.² Dann gibt es einen ganzzahligen maximalen Fluss. Er kann in Zeit O(mnU) berechnet werden.

- 1. Das Restnetzwerk wird nicht in jedem Schritt neu konstruiert, sondern schrittweise entlang des gewählten augmentierenden Pfades verändert.
- 2. In jedem Schritt erhöhen wir in diesem Fall den Wert des Flusses um einen ganzzahligen Wert (≥ 1). Und das gerade weil die Kapazitäten ganzzahlig sind! Bei irrationalen Kapazitäten terminiert der Algorithmus nicht immer.

Laufzeit

Zusammenfassung

Der **Ford-Fulkerson Algorithmus** zeigt, dass es unter den gegebenen Umständen (Ganzzahligkeit, keine entgegen gerichtete Kanten) einen maximalen Fluss gibt.

Ergebnis

Satz ("Maxflow-Mincut Theorem", ganzzahlig)

Jedes Netzwerk ohne entgegen gerichtete Kanten mit ganzzahligen Kapazitäten erfüllt

 $\max_{f \ Fluss} val(f) = \min_{(S,T) \ s-t-Schnitt} cap(S,T)$.

Empfehlungen

- Beweis Lemma 3.6.
- Beweis Lemma 3.8.
- Beweis Satz 3.11.

Aufgabe 4 - Restnetzwerk

Sei N ein Netzwerk ohne entgegengesetzte Kanten und sei f ein Fluss in G. Unten abgebildet sehen Sie das Restnetzwerk R_f .

This template was given.

(a) Ist f maximal? Geben Sie eine kurze Begründung für Ihre Antwort.

(1 Punkte)

(b) Rekonstruieren sie N und f.

(4 Punkte)

AlgoWahr FS21.

cont'd on iPad, please see notes.