Assignment-12

Pooja H AI20MTECH14003

Abstract—This document, explains the concept of subspaces.

Download all latex-tikz codes from

https://github.com/poojah15/ EE5609_AI20MTECH14003/tree/master/ Assignment 12

1 Problem Statement

Let W_1 and W_2 be subspaces of a vector space V such that the set-theoretic union of W_1 and W_2 is also a subspace. Prove that one of the spaces W_i is contained in the other.

2 Solution

To prove that $\mathbf{W}_1 \subseteq \mathbf{W}_2$ or $\mathbf{W}_2 \subseteq \mathbf{W}_1$, we assume that $\mathbf{W}_1 \not\subseteq \mathbf{W}_2$, then we need to show that $\mathbf{W}_2 \subseteq \mathbf{W}_1$. i.e., the generators of \mathbf{W}_2 are in \mathbf{W}_1 . Consider a vector, $\mathbf{w}_1 \in \mathbf{W}_1$ that is not in \mathbf{W}_2 and a vector $\mathbf{w}_2 \in \mathbf{W}_2$. Since $\mathbf{W}_1 \cup \mathbf{W}_2$ is a subspace, it is closed under addition and $\mathbf{w}_1 + \mathbf{w}_2$ must be in it. i.e.,

$$\mathbf{w}_1 + \mathbf{w}_2 \in \mathbf{W}_1 \cup \mathbf{W}_2 \tag{2.0.1}$$

$$\implies$$
 $\mathbf{w}_1 + \mathbf{w}_2 \in \mathbf{W}_1 \quad or$ (2.0.2)

$$\mathbf{w}_1 + \mathbf{w}_2 \in \mathbf{W}_2 \tag{2.0.3}$$

But, $\mathbf{w}_1 + \mathbf{w}_2 \notin \mathbf{W}_2$ because for some vector $-\mathbf{w}_2 \in \mathbf{W}_2$,

$$(\mathbf{w}_1 + \mathbf{w}_2) - \mathbf{w}_2 = \mathbf{w}_1 \notin \mathbf{W}_2$$
 (2.0.4)

Hence it must be that, $\mathbf{w}_1 + \mathbf{w}_2 \in \mathbf{W}_1$ in which case, as \mathbf{W}_1 is a subspace, for some vector $-\mathbf{w}_1 \in \mathbf{W}_1$,

$$(\mathbf{w}_1 + \mathbf{w}_2) - \mathbf{w}_1 = w_2 \in \mathbf{W}_1$$
 (2.0.5)

Thus, we have shown that every vector \mathbf{w}_2 in \mathbf{W}_2 is also in \mathbf{W}_1 . Hence, $\mathbf{W}_2 \subseteq \mathbf{W}_1$

1