6.002x

CIRCUITS AND ELECTRONICS

Nonlinear Circuits

i =a.v

Reading Chap 4.1 - 4.3

Review

■ Discretize matter → Lumped circuit abstraction ←

```
m1 ► KVL, KCL, i-v ←
  m2 ► Composition rules
→m3 Node method
                             linear evreu
  m4 ► Superposition
  m5 ► Thévenin, Norton
                             linear subclets
as well
```

Review

- Discretize value → Digital abstraction ←
 - Subcircuits for given "switch" setting are linear! So, all 5 methods (m1 m5) can be applied

Today

- Nonlinear circuits and their analysis
 - Analytical method based on m1, m2, m3
 - Graphical method
 - Piecewise linear method not a focus and
 - Introduction to incremental analysis, small symbols

of circuit analyses

my4, mx

Non-Linear Elements

A square law two-terminal element

Non-Linear Elements Hypothetical nonlinear device (ExpoDweeb ©)

(Curiously, this funky device supplies power when v_D is negative!)

How do we analyze nonlinear circuits

Quick Aside: Note this Key Circuits Hack

Quick Aside: Note this Key Circuits Hack

Method 1: Analytical Method

Using the node method, (remember the node method applies for linear or nonlinear circuits)

$$\frac{\sqrt{D-V}}{R} + ij = 0 - 0$$
whenovors
$$ij \neq a + b \neq b$$

$$ij = a = 0$$

$$ij = a = 0$$

- thial and error]
- numerical techniques,

Solve by trial and error

E.g., for
$$V=IV$$
, $R=I$ Ohm, $a=I/4A$, $b-IV-I$ $i_D=ae^{bv_D}$ \bigcirc
 R + $ae^{bv_D} = 0$
 $V_1 = 1 - \frac{1}{4}$
 $V_2 = 1 - \frac{1}{4}$
 $V_3 = 1 - \frac{1}{4}$
 $V_4 = 1 - \frac{1}{4}$

Method 2: Graphical Method

Using the node method

2 unknowns, 2 equations

Can also solve by the graphical method

Method 2: Graphical Method

Notice: the solution satisfies equations (1)

imposed by device

Combine the two constraints

Combining the two constraints

See Sec 4.4 of the text for details and examples

Method 3: Incremental Analysis

(Actually, a disciplined way of using a circuit called small signal method)

Motivation: music over a light beam. Can we pull this off?

Method 3: Incremental Analysis

