

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Tutorium 4 – Datenbanksysteme

1. Wiederholung Relationale Algebra

Relationale Algebra

- Formale Anfragesprache (neben Bereichs- und Tupelkalkül)
- Wird in der Praxis durch SQL umgesetzt
- Formulierungen von Anfragen an eine Menge von Relationen
- Operationen auf Relationen liefern als Ergebnis auch eine Relation
 - -> Abgeschlossen

Notation

- R und S Relationen
- *t* Tupel aus einer Relation
- A und B Attribute
- F Formel
- A_i Zugriff auf Attribute durch den Namen

LNR	LNAME	STATUS	SITZ
L1	MEIER	20	WETTER BERLIN BERLIN WETTER MESCHEDE
L2	MULLER	10	
L3	SCHMIDT	50	
L4	SCHULZ	30	
L5	KRAUSE	40	

TNR	TNAME	FARBE	GEWICHT
T1	STECKER KABEL SCHALTER 8080 DISKETTE SCHRAUBE	ROT	15
T2		BLAU	27
T3		WEISS	05
T4		ROT	02
T5		BLAU	12
T6		ROT	03

Grundoperationen - Vereinigung

Vereinigung: $R \cup S = \{t \mid t \in R \text{ oder } t \in S\}$

RoteTeile		
TNr TName		
T1	Stecker	
T4	8080	
T6	Schraube	

BlaueTeile		
TNr	TName	
T2	Kabel	
T5	Diskette	

TNr	TName
T1	Stecker
T4	8080
T6	Schraube
T2	Kabel
T5	Diskette

Grundoperation - Differenz

Differenz: $R - S = \{t \mid t \in R \ und \ t \notin S\}$

AlleLieferanten		
LNr LName		
L1	Meier	
L2	Muller	
L3	Schmidt	
L4	Schulz	
L5	Krause	

	BerlinLieferanten		
LNr LName		LName	
	L2	Muller	
	L3	Schmidt	

LNr	LName
L1	Meier
L4	Schulz
L5	Krause

Grundoperationen – Kartesisches Produkt

Kartesisches Produkt:

$$R \times S = \{(a_1, ..., a_r, a_{r+1}, ... a_{r+s}) | (a_1, ..., a_r) \in R \text{ und } (a_{r+1}, ... a_{r+s}) \in S\}$$

Α	В
1	1
1	2

Α	В	С	D
1	1	3	3
1	1	3	4
1	2	3	3
1	2	3	4

Grundoperationen – Selektion

Teile

Selektion: $\sigma_F(R) = \{t \mid t \in R \land t \ erf \ddot{u}llt \ F\}$

	TNr	Gewicht
	T1	15
	T2	27
^σ Gewicht≤12(T3	05
	T4	02
	T5	12
	T6	03

Teile		
TNr	Gewicht	
T3	05	
T4	02	
T5	12	
T6	03	

Grundoperationen – Projektion

Projektion:
$$\Pi a_1, ..., a_m(R) = \{t[a_1, ..., a_m] | t \in R\}$$

$$\Pi_{TNr,Gewicht}($$

	Те	ile	
TNr	TName	Farbe	Gewicht
T1	Stecker	Rot	15
T2	Kabel	Blau	27

Teile	
TNr	Gewicht
T1	15
12	27

Weitere Operationen - Durchschnitt

Durchschnitt: $R \cap S = \{t \mid t \in R \ und \ t \in S\}$

TeilefürP1	
TNr	Tname
T1	Stecker
T4	8080
T6	Schraube

TNr	Tname
T1	Stecker
T4	8080

Weitere Operationen - Joins

$$R \underset{A \theta B}{\bowtie} S = \sigma_{A\theta B}(R \times S) \ (\theta \in \{=, < \leq, \geq, >, \neq\})$$

ProjekteTeile		
PNr	TNr	
P1	T3	
P2	T4	
P2	T6	
P3	T2	

$$TNr = TNr$$

	Teile	
	TNr	TName
	T1	Stecker
,	T2	Kabel
	T3	Schalter
	T4	8080
	T6	Schraube

PNr	TNr	TName
P1	Т3	Schalter
P2	T4	8080
P2	T2	Kabel
P3	T3	Schalter

Weitere Operationen - Quotient

Quotient:
$$R \div S = \{t \mid t \in \Pi_{R-S}(R) \land \{t\} \times S \subseteq R\}$$

TeileLieferanten		
LNr	TNr	
L1	T1	
L1	T2	
L1	T3	
L2	T1	
L2	T3	

Aufgabe 4.1 – Natural Join

Zu welcher Operation der relationalen Algebra ist der natürliche Verbund (natural join) identisch, **falls** beide beteiligten Relationen alle Attribute gemeinsam haben? Begründen sie ihre Wahl.

Α	В
1	1
1	2
2	3
4	6
3	5

Α	В
1	1
1	4
2	3
3	5
5	6

Aufgabe 4.1 – Natural Join

• Für zwei Relationen $R(A_1, ..., A_n, B_1, ..., B_m)$ und $S(B_1, ..., B_m, C_1, ..., C_o)$ ist das Ergebnis des natürlichen Verbundes:

$$R \bowtie S \stackrel{Def.}{=} \{ rs_{[C_1, \dots, C_o]} | r \in R \land s \in S \land r_{[B_1, \dots, B_m]} = s_{[B_1, \dots, B_m]} \}$$

- Wenn jetzt beide Relationen alle Attribute gemeinsam haben, so ist $[C_1, \dots C_o] = []$ leer. Damit gilt $rs_{[C_1, \dots, C_o]} = r$
- Außerdem gilt r = s, da $[B_1, ... B_m]$ die einzigen Attribute von R und S sind.
- Damit erhalten wir

$$R \bowtie S = \{r \mid r \in R \land s \in S \land r = s\} = \{r \mid r \in R \land s \in S\} = R \cap S$$

Aufgabe 4.3 – Kardinalitäten

Geben Sie zu jeder Grundoperation der relationalen Algebra die Kardinalität des Ergebnisses bezogen auf die Kardinalitäten der Grundmengen an. Dabei sollen obere Schranken der Ergebniskardinalität möglichst klein und untere Schranken möglichst groß sein. Markieren Sie die korrekte Ordnungsrelation und den korrekten Operand in den entsprechenden Boxen.

Bsp.:
$$|A \cup A| = |A|$$

Kardinalität steht hier für die Anzahl der Zeilen

-> Im Bsp.: A hat alle Zeilen gleich mit A, deswegen ist auch die Vereinigung gleich groß mit A

Linker und rechte Seite müssen sich möglichst wenig unterscheiden

Aufgabe 4.3 – Kardinalitäten

- a) $|A \cup B|$ $(<, \le, =, \ge, >)$ |A| $(+, -, *, \div)$ |B|
 - Wenn A und B komplett verschieden, dann gleich aber sonst können bei der Vereinigung Duplikate vorkommen, die dann entfernt werden
- b) $|A B| (<, \le, =, \ge, >) |A| (+, -, *, \div) |B|$
 - Wenn A und B komplett verschieden, dann ist |A B| = A und somit größer als |A| |B|
- c) $|A \times B| (<, \leq, =, \geq, >) |A| (+, -, *, \div) |B|$
 - Jede Kombination zwischen A und B -> Anzahl A mal Anzahl B

Aufgabe 4.3 – Kardinalitäten

d)
$$|\Pi_{X,Y,...}(A)| (<, \leq, =, \geq, >) |A|$$

• Wenn Spalten entfernt werden, können Duplikate entstehen, die dann rausfliegen

e)
$$|\sigma_F(A)|$$
 (<, \le , =, \ge , >) $|A|$

• Definition der Selektion: Wählen nur bestimmte Zeilen aus nach Formel F

Aufgabe 4.4 – Anfragen in relationaler Algebra

Gegeben seien die Relationen Kunde, Personal, Verkauf, Inventar und Auftragsposten als Datenmodell für eine Möbel-Verkauf-Datenbank:

```
Kunde (kund_nr, kund_name, adresse, ort, plz)
Personal (pers_nr, nachname, vorname, einsatz, vorgesetzt, gehalt)
Verkauf (auftr_nr, bestelldatum, pers_nr, kund_nr)
Inventar (art_nr, art_bez, lagerbest, lagerort, preis)
Auftragsposten (auftr_nr, art_nr, menge)
```

Formulieren Sie die folgenden Anfragen durch Ausdrücke über der relationalen Algebra.

Aufgabe 4.4.a – Bestimme die Artikelbezeichnung (art_bez) und den Lagerort für alle Artikel mit einem Preis von über 5000

Relation Inventar enthält art_bez, lagerort und preis

$$\Pi_{artbez, lagerort}(\sigma_{preis>5000}(Inventar))$$

Aufgabe 4.4.b – Bestimme die Vornamen aller Mitarbeiter*innen, die in München im Einsatz sind und mindestens ein Produkt seit dem 24.07.2022 verkauft haben

- Relation Personal enthält den Einsatzort und den Vornamen der Mitarbeiter*innen
- Relation Verkauf enthält das Bestelldatum und die pers_nr
- ⇒ Join zwischen **Personal** und **Verkauf** über die *pers_nr*

 $\Pi_{Vorname}(\sigma_{Einsatz='Muenchen' \land Bestelldatum \geq '24.07.2022'}(Verkauf \bowtie Personal))$

Aufgabe 4.4.c – Bestimme die Personalnummern der Vorgesetzten aller Mitarbeiter*innen, die etwas an Kund*innen aus dem Bezirk mit der PLZ ,74391' verkauft haben

- Relation Kunde enthält die PLZ der Kund*innen
- Relation Personal enthält die pers_nr aller Vorgesetzten der Mitarbeiter*innen
- Relation Verkauf modelliert die Verkäufe von Mitarbeiter*innen an Kund*innen
- Join zwischen allen Tabellen (Verkauf) in der "Mitte"

 $\Pi_{vorgesetzt}(\sigma_{plz='74391'}(Kunde \bowtie (Verkauf \bowtie Personal)))$

Aufgabe 4.4.d – Bestimme die Auftragsnummern aller Bestellungen, die "Betten Kaiser" aufgegeben hat und die von "Michael Roser" bearbeitet wurden

- Relation Kunde enthält die Namen der Kund*innen
- Relation Personal enthält die Namen der Mitarbeiter*innen
- Relation Verkauf modelliert die Verkäufe von Mitarbeiter*innen an Kund*innen
- Join zwischen allen Tabellen (Verkauf) in der "Mitte"

```
\Pi_{auftrnr}(\sigma_{kundname='BettenKaiser'\land vorname='Michael'\land nachname='Roser'}(Kunde\bowtie (Verkauf\bowtie Personal)))
```


Aufgabe 4.4.e – Bestimme das *Bestelldatum* und die *artnr* aller Aufträge, deren Produkte im gleichen Ort lagern in dem die Kund*innen ihren Sitz haben die von Mitarbeiter*innen mit einem Gehalt von unter 4500 verkauft wurden

- Wir brauche alle 5 Relationen Kunde, Verkauf, Personal, Auftragsposten und Inventar
- Natural Joins sind möglich

```
\Pi_{bestelldatum,artnr}(\sigma_{ort=lagerort \land gehalt < 4500}(Inventar \bowtie (Auftragsposten \bowtie (Kunde \bowtie (Verkauf \bowtie Personal)))))
```


Aufgabe 4.5 – Anfragen mit dem Quotient Operator

Gegeben seien die Relationen Lieferant L, Teil T und Projekt P als Datenmodell für eine Lieferanten-Teile-Projekte-Datenbank. Ferner existiert eine Relation LTP, die die Beziehungen der vorgenannten Relationen modelliert:

```
L (<u>lnr</u>, lname, status, sitz) T (<u>tnr</u>, tname, farbe, gewicht)
P (pnr, pname, ort) LTP (<u>lnr</u>, <u>tnr</u>, pnr, menge)
```

Außerdem sei Relation RT definiert durch: $RT = \pi_{tnr}(\sigma_{farbe='ROT'}(T))$.

Was berechnen die folgenden Ausdrücke?

TNR	TNAME	FARBE	GEWICHT
T1	STECKER KABEL SCHALTER 8080 DISKETTE SCHRAUBE	ROT	15
T2		BLAU	27
T3		WEISS	05
T4		ROT	02
T5		BLAU	12
T6		ROT	03

RT - RoteTeile
TNr
T1
T4
T6

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Aufgabe 4.5.a – Anfragen mit dem Quotient Operator

$$\Pi_{lnr,tnr}(LTP) \div RT$$

LNR	TNR
L1	T1
L1	T1
L1	T1
L1	T4
L1	Т6
L2	Т3
L2	T5

=> Nummern der Lieferant*innen die jedes rote Teil lieferen

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Aufgabe 4.5.b – Anfragen mit dem Quotient Operator

LNR	PNR	TNR
L1	P8	T1
L1	P1	T1
L1	P4	T1
L1	P1	T4
L1	P1	T6
L2	P1	Т3
L2	P2	Т3
L2	P3	Т3
L2	P4	Т3
L2	P5	Т3
L2	P6	Т3
L2	P7	Т3
L2	P8	Т3
L2	P2	Т5

Т6

 $\Pi_{lnr}(\Pi_{lnr,pnr,tnr}(LTP) \div RT)$

=> Alle Lieferant*inne, die an mind. Ein Projekt alle roten Teile liefern

Aufgabe 4.5.b – Anfragen mit dem Quotient Operator

$$\Pi_{lnr}(LTP \div RT) = \Pi_{lnr}(\Pi_{lnr,pnr,menge,tnr}(LTP) \div RT)$$

LNR	PNR	MENGE	TNR
L1	P8	1200	T1
L1	P1	200	T1
L1	P4	700	T1
L1	P1	300	T4
L1	P1	200	T6
L2	P1	400	Т3
L2	P2	200	Т3
L2	P3	200	Т3
L2	P4	500	Т3
L2	P5	600	Т3
L2	P6	400	Т3
L2	P7	800	Т3
L2	P8	300	Т3
L2	P2	100	T5

L3	P1	200	Т3
L3	P2	500	T4
L4	Р3	300	Т6
L4	P7	300	Т6
L5	P2	200	T2
L5	P4	100	T2
L5	P5	500	T5
L5	P7	100	T5
L5	P2	200	Т6
L5	P4	1000	T1
L5	P4	1200	Т3
L5	P4	800	T4
L5	P4	400	T5
L5	P4	500	Т6

=> Alle Lieferant*innen, die jedes Rote Teil in jeder Menge an mind. Ein Projekt liefern

Aufgabe 4.2 – Ableitung des Quotient-Operators

• Bilden Sie die relationale Operation "Quotient" durch die fünf relationalen Grundoperationen (Vereinigung, Differenz, Kartesisches Produkt, Selektion, Projektion) nach.

Definition Quotient formal:

$$R \div S = \{t \mid t \in \Pi_{R-S}(R) \land \{t\} \times S \subseteq R\}$$

$$= \{t \mid t \in \Pi_{R-S}(R) \land \forall s \in S : ts \in R\}$$

$$\stackrel{!}{=} \Pi_{R-S}(R) - \Pi_{R-S}((\Pi_{R-S}(R) \times S) - R)$$

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Aufgabe 4.2 - Beispiel

$\Pi_{R-S}(R)$
Name
Müller
Huber

S
Sprache
Basic
C++
Java

$\Pi_{R-S}(R) \times S$	
Name	Sprache
Müller	Basic
Müller	C++
Müller	Java
Huber	Basic
Huber	C++
Huber	Java

R	
Name	Sprache
Müller	Java
Müller	Basic
Müller	C++
Huber	C++
Huber	Java

$\Pi_{R-S}(R)$	$\times S - R$
Name	Sprach e
Huber	Basic

S	R	
Sprache	Name	Sprache
Basic	Müller	Java
C++	Müller	Basic
Java	Müller	C++
	Huber	C++
	Huber	Java

$\Pi_{R-S}(\Pi_{R-S}(R)\times S-R)$
Name
Huber

Aufgabe 4.2 - Beweis

1.
$$R \div S \subseteq \Pi_{R-S}(R) : trivial$$

2. Z.z.:
$$\forall t \in \Pi_{R-S}(R)$$
 gilt: $t \in \Pi_{R-S}((\Pi_{R-S}(R) \times S) - R) \Leftrightarrow t \notin R \div S$

Sei $t = (t_1, ..., t_i) \in \Pi_{R-S}(R)$, dann gilt:

$$t \in \Pi_{R-S} ((\Pi_{R-S}(R) \times S) - R)$$

$$\Leftrightarrow \exists x = (x_{i+1}, \dots, x_n) \in S \colon tx = (t_1, \dots, t_i, x_{i+1}, \dots, x_n) \in (\Pi_{R-S}(R) \times S) - R$$

$$\Leftrightarrow \exists x \in S : tx \in \Pi_{R-S}(R) \times S \wedge tx \notin R$$

Aufgabe 4.2 – Beweis Fortsetzung

$$\exists x \in S : t \in \Pi_{R-S}(R) \land tx \notin R$$

$$\Leftrightarrow \exists x \in S : t \in \Pi_{R-S}(R) \land tx \notin R$$

$$\Leftrightarrow \neg \forall \in S : t \notin \Pi_{R-S}(R) \lor tx \in R$$

$$\Leftrightarrow t \in \Pi_{R-S}(R) \lor \neg \forall x \in S : tx \in R$$

$$\overset{Def.}{\Leftrightarrow} t \notin R \div S$$

