Math 76 Exercises - 5.4 Comparison Tests

Determine, if possible, whether each of the following series converges or diverges. If you cannot apply any comparison tests, explain why not.

1.
$$\sum_{n=1}^{\infty} \frac{3}{1+n^2}$$
 Let $a_n = \frac{3}{1+n^2}$ and let $b_n = \frac{3}{n^2}$.

Since $0 \le a_n \le b_n$ for all $n \ge 1$ and $\sum b_n$ converges, the series $\sum a_n$ converges by the (direct) comparison test.

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2} + n^{4/5}}$$
. Let $a_n = \frac{1}{n^{3/2} + n^{4/5}}$ and $b_n = \frac{1}{n^{3/2}}$. We have $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n^{3/2} + n^{4/5}} \cdot \frac{n^{3/2}}{1} = \lim_{n \to \infty} \frac{n^{3/2}}{n^{3/2}} = 1$, which is finite and positive, so $\sum a_n$ and $\sum b_n$ are comparable. Since $\sum b_n$ is a p-series with $p = \frac{3}{2} > 1$, $\sum b_n$ converges. Thus $\sum a_n$ converges by the Limit $\sum a_n = \frac{7n-15}{n(n-3)} = \sum_{n=1}^{\infty} \frac{7n-15}{n(n-3)} = \sum_{$

Let
$$a_n = \frac{7n-15}{n^2-3n}$$
 and $b_n = \frac{1}{n}$. (Pominant terms of a_n are $7n$ and n^2 ; $\frac{n}{n^2} = \frac{1}{n}$)

We have $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{7n-15}{n^2-3n} \cdot \frac{n}{1} = 7$, which is finite and positive, so the series are comparable. Since $\sum b_n$ diverges, so does $\sum a_n$, by the L.C.T.

So $\sum_{n=4}^{\infty} \frac{7n-15}{n(n-3)}$ diverges.

4.
$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$$
 is not positive for all n ; thus the Comparison Tests do not apply.

5.
$$\sum_{n=2}^{\infty} \frac{4^n}{5^n - n^2 + 2}$$
 Let $a_n = \frac{4^n}{5^n - n^2 + 2}$, $b_n = \frac{4^n}{5^n} = \left(\frac{4}{5}\right)^n$.

We have $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{4^n}{5^n - n^2 + 2} \cdot \frac{5^n}{4^n} = \lim_{n \to \infty} \frac{5^n}{5^n} = 1$, so the series are comparable. Since \mathbb{Z} by is a geometric series with $|r| = \frac{4}{5} < 1$, \mathbb{Z} by converges. Therefore

6.
$$\sum_{n=0}^{\infty} \frac{4n-7}{\sqrt[3]{5n^{11}-n+8}}$$
 Let $a_n = \frac{4n-7}{\sqrt[3]{5n^{11}-n+8}}$. If we cross out the

non-dominant terms of an we get $\frac{4n}{\sqrt[3]{5n!}}$. So let $b_n = \frac{n}{\sqrt[3]{n!}}$. We have $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{4n-7}{\sqrt[3]{5n!}-n+8} = \lim_{n\to\infty} \frac{4n}{\sqrt[3]{5n!}} = \frac{4}{\sqrt[3]{5n!}}$ which is finite and positive, so the series are comparable

which is finite and positive, so the series are comparable $\sum_{n=1}^{\infty} \frac{14}{3^n - 2^n}$ $\sum_{n=1}^{\infty} \frac{14}{3^n - 2^n}$

Let $a_n = \frac{14}{3^n - 2^n}$, and let $b_n = \frac{1}{3^n}$. We have

 $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{14}{3^n - 2^n} \cdot \frac{3^n}{1} = 14$, which is finite and

positive, so Ian and Ibn are comparable.

 $\sum b_n = \sum \left(\frac{1}{3}\right)^n$ is a convergent geometric series,

so Zan converges by L.C.T.

8.
$$\sum_{n=3}^{\infty} n \ln n - 7$$
 let $a_n = \frac{2}{n \ln n - 7}$, $b_n = \frac{2}{n \ln n}$.

By in-class exercises 8.4 # 2, $\sum b_n$ diverges.

Since $0 \le b_n \le a_n$ for all n with $n \ln n > 7$, $\sum a_n$ diverges by the (direct) comparison test.

9.
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{3n^2 - 1}$$
 let $a_n = \frac{\sin(\frac{1}{2}n)}{3n^2 - 1}$ and let $b_n = \frac{1}{3n^2 - 1}$. Note that $\sum b_n$ converges by comparison (L.C.T.) with $\sum \frac{1}{n^2}$, and $0 \le a_n \le b_n$ for all n , so $\sum a_n$ converges by (direct) comparison test.

10.
$$\sum_{n=2}^{\infty} \frac{\sqrt{n^2 - 8}}{\sqrt[3]{n} + \sqrt[5]{7}} \quad \text{Let } a_n = \frac{\sqrt{n^2 - 8}}{\sqrt[3]{n} + \sqrt[5]{7}}. \quad \text{If we cross out the}$$

$$non-dominant terms of an we get \frac{\sqrt{n^2}}{\sqrt[3]{n}} = \frac{n}{n^{\frac{1}{3}}} = n^{\frac{1}{3}},$$
which does not approach 0. In other words,
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n^{\frac{1}{3}} = \infty.$$
Therefore $\sum a_n \frac{1}{n^{\frac{1}{3}}} = a_$