Duke 2022 MIC Course

Course faculty and staff

Faculty

- Georgia Marie Beasley, MD, MHS
- Cliburn Chan, PhD
- Raluca Gordan, PhD
- Josh Granek, PhD
- Janice McCarthy, PhD
- Smita Nair, PhD
- Kouros Owzar, PhD
- Greg Palmer, PhD
- Pixu Shi, PhD
- Jichun Xie, PhD

Teaching Assistants

- · Marissa Lee, PhD
- · Xiaodi Qin, MB
- Tyler Schappe, MS

Course Evaluation

• Jennifer Hill, Ed.D.

Experimental Work

- Ken Young
- Keith Laemont

Administration

- Tasha Allison
- Tim Durning
- James Thomas

What biological knowledge will you gain?

- Background knowledge of cancer immunology
- Background knowledge of the microbiome and its role in cancer
- Principles of common assays in cancer immunotherapy research
- Role of high-throughput sequencing in modern cancer immunology research
- How to read a research paper in cancer immunotherapy

What bioinformatics skills will you learn?

- Pre-process sequencing reads from single-cell sequencing RNA (scRNA) assays (raw reads to cell level gene counts)
- Quality control/assessment of scRNA data
- Clustering and cell type inference
- Differential expression analysis (gene and pathway level)
- Pseudo-time trajectory and cell differentiation analysis
- Interpret the results within a proper statistical framework

What computing skills will you learn?

- RStudio notebooks to facilitate literate programming
- Use of computing containers
- git and gitlab for source code management
- UNIX command line
- Idiomatic modern R and "tidy data" to manipulate and visualize data
- R/Bioconductor genomics packages to analyze data

Beyond the mechanics of data analysis

- Computational biology concepts and algorithms
- Statistics: Concepts, limitations, abuse
- Reproducible analysis
- Working in a virtual and containerized computing through Open OnDemand

Containerized computing (toy example)

Data analysis task

Task: Summarize the mean expression levels for genes 1 and 2 by mutation status (WT vs MT)

A messy approach (messy programming)

```
# Subset data set
                                         # Mean expression of gene 1 in WT
x0 <- mydat[mydat$geno == "WT",]</pre>
                                         mean(x0$gene1)
x1 <- mydat[mydat$geno == "MT",]</pre>
                                          0.6713333
                                         # Mean expression of gene 1 in MT
                                         mean(x1$gene1)
                                          4.586667
                                         # Mean expression of gene 2 in WT
Find the error!
                                         mean(x0$gene2)
                                          0.7553333
                                         # Mean expression of gene 2 in MT
                                         mean(x1$gene1)
                                          4.586667
```

The tidyverse approach (tidy programming)

```
mydat %>%
    dplyr::group by(geno) %>%
    dplyr::summarize at(vars(gene1, gene2), mean)
# A tibble: 2 \times 3
geno gene1 gene2
<chr> <dbl> <dbl>
1 MT 4.59 4.77
2 WT 0.671 0.755
```

Basic illustration

Customized illustration

What do these results tell me (other than P-value column)?

```
Idents(pbmc) <- "seurat_clusters"
cluster2.markers <- FindMarkers(pbmc, ident.1 = 2, ident.2 = NULL, min.pct = 0.25)
head(cluster2.markers)</pre>
```

COVID-19 Pandemic: impact

- The program was designed to be held in-person on the Duke campus
- The program was designed to teach integrative genomics from data generated from a prospective experiment
- The impact of the pandemic:
 - Transition to a remote teaching model (through zoom)
 - Use of public data rather than course experiment data

Course experiment: Design

Course Experiment: Assays

	Stool	Tumor	Spleen	Tail
Bulk RNA-Seq		×		
scRNA-Seq		×		
Microbiome	"			
Whole Exome		**		•
TCR/BCR-Seq		×		

Table 5: Usage for Assays.

Week	Stool	Tumor	Spleen		
1*					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12		17			
* first	collection	n before	antibiotic		
administration					

Table 6: Sample collection schedule.

2022 Course Data Set

> Cell Rep. 2021 May 11;35(6):109118. doi: 10.1016/j.celrep.2021.109118.

Resident memory T cells in tumor-distant tissues fortify against metastasis formation

Laura S Christian ¹, Liuyang Wang ², Bryan Lim ¹, Dachuan Deng ³, Haiyang Wu ³, Xiao-Fan Wang ⁴, Qi-Jing Li ⁵

Affiliations + expand

PMID: 33979626 PMCID: PMC8204287 DOI: 10.1016/j.celrep.2021.109118

Free PMC article

Abstract

As a critical machinery for rapid pathogen removal, resident memory T cells (T_{RM}s) are locally generated after the initial encounter. However, their development accompanying tumorigenesis remains elusive. Using a murine breast cancer model, we show that T_{RM}s develop in the tumor, the contralateral mammary mucosa, and the pre-metastatic lung. Single-cell RNA sequencing of T_{RM}s reveals two phenotypically distinct populations representing their active versus quiescent phases. These T_{RM}s in different tissue compartments share the same TCR clonotypes and transcriptomes with a subset of intratumoral effector/effector memory T cells (T_{Eff/EM}s), indicating their developmental ontogeny. Furthermore, CXCL16 is highly produced by tumor cells and CXCR6⁻ T_{Eff/EM}s are the major subset preferentially egressing the tumor to form distant T_{RM}s. Functionally, releasing CXCR6 retention in the primary tumor amplifies tumor-derived T_{RM}s in the lung and leads to superior protection against metastases. This immunologic fortification suggests a potential strategy to prevent metastasis in clinical oncology.

Keywords: TCR-β repertoire sequencing; breast cancer; metastasis; ontogeny; resident memory T cells; single-cell RNA sequencing; tumor immunology.

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

2022 Course Schedule

- Two-week course
 - 06/06/2022-06/17/2022 (Mon-Fri)
 - Morning sessions: 0900-1015; 1030-1145
 - Afternoon sessions:1315-1430; 1445-1600
 - Lunch 1145-1315
 - Optional office hours (1600-1700)
- Week 1 (preparatory material and methods)
- Week 2 (bioinformatics, statistics and computing specific to analysis single-cell RNA-Seq data; data analysis and presentation)

Week 1 (Preparatory)

- Introduction to computing environment
- Introduction to the UNIX environment
- Introduction to R environment and programming
- Elements of statistical inference
- High-throughput sequencing background
- Primers on microbiome and cancer immunology
- Journal article (Christian et al; 2021) review
- https://gitlab.oit.duke.edu/mic-course/2022-mic/-/blob/main/admin/week1 schedule.md

Week 2 (Assay Specific)

- Computational biology and bioinformatics for sequencing data
- Pre-processing of single-cell sequencing data (demultiplexing, alignment, mapping; raw reads to cell level gene counts)
- Quality control and assessment
- Clustering and cell type inference
- Differential expression analysis
- Pseudo-time trajectory and cell type differentiation
- Data Analysis/Presentations (Friday; will ask for volunteers)
- https://gitlab.oit.duke.edu/mic-course/2022-mic/-/blob/main/admin/week2_schedule.md

Future years

- Year 3: 16S and shotgun metagenomics sequencing
- Year 4: Paired tumor/germline whole-exome DNA-Seq
- Year 5: TCR single-cell sequencing

Plan for today

- Questions
- Quick Introduction (all)
- Introduction to the course computing environment (Janice McCarthy)
- Lecture on reproducible analysis
- Introduction to UNIX

Questions

- In Zoom
 - Use chat feature
 - Unmute yourself
- By email
 - miccourse@duke.edu
- TA Office hours
 - Times will be posted on gitlab page

Be sure to regularly check your email for announcements

Acknowledgements

- Funding:
 - Training Program in Bioinformatics at the Intersection of Cancer Immunology and Microbiome
 - National Cancer Institute (NCI)
 - Education Projects (R25)
 - 1R25CA244070
- Administrative:
 - Office of Cancer Research Career Development, Duke Cancer Institute
 - Duke Department of Biostatistics and Bioinformatics
- Computing resources:
 - Duke Center for Human System Immunology (CHSI)
- Data resource:
 - Liuyang Wang, PhD
 - Qi-Jing Li, PhD

Welcome