Practical Considerations

Machine Learning and Computational Statistics (DSC6135)

Instructors: Weiwei Pan (Harvard), Javier Zazo (Harvard), Melanie F. Pradier (Harvard)

So far...

we have seen multiple approaches for regression and classification tasks in machine learning.

Regardless of which model you use, the machine learning pipeline is always the same (fit and then predict).

Example: Regression

```
In [ ]: # given some data...
    x_train, x_test, y_train, y_test = get_data()
    # customize your model
    my_model = LinearRegression()
    # train your model
    my_model.fit(x_train, y_train)
    # make predictions for new observations
    y_test = my_model.predict(x_test)
    # test your model
    my_model.score(x_test, y_test)
```

Example: Classification

```
In [ ]: # given some data...
    x_train, x_test, y_train, y_test = get_data()
    # customize your model
    my_model = LogisticRegression(solver='lbfgs')
    # train your model
    my_model.fit(x_train, y_train)
    # make predictions for new observations
    y_test = my_model.predict(x_test)
    # test your model
    my_model.score(x_test, y_test)
```


Some practical considerations

- 1. How to deal with other kinds of data?
- 2. How to improve quality of features?
- 3. How to inspect/understand your model?
- 4. How to evaluate your classifier?

1. How to deal with other kinds of data?

1.1. Categorical Data: "one-hot vector encoding"

Category	Numerical
Human	1
Human	1
Penguin	2
Octopus	3
Alien	4
Octopus	3
Alien	4
	Human Human Penguin Octopus Alien Octopus

Sample	Human	Penguin	Octopus	Alien
1	1	0	0	0
2	1	0	0	0
3	0	1	0	0
4	0	0	1	0
5	0	0	0	1
6	0	0	1	0
7	0	0	0	1

1.2. Text Data: "bag-of-words"

1.3. Image Data:

- Black and white: concatenation of numbers
- Colors: RGB representation ('red", green', 'blue')

1.3. Image Data:

2. How to improve quality of features?

We can:

- a) transform features
- b) select features

2.1 Feature Transformation

$$x_{\text{transformed}} = \phi(x)$$

Example: linear regression with polynomial features

2.1 Feature Transformation

$$x_{\text{transformed}} = \phi(x)$$

Example: logistic regression with polynomial features

2.1 Feature Transformation

• Feature rescaling

$$\phi(x_i) = \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)}$$

• Feature standardization

$$\phi(x_i) = \frac{x_i - \mu_i}{\sigma_i}$$

Question: what would happen if you standardize a feature with an outlier?

Feature scaling with outliers

sklearn.preprocessing.RobustScaler

class sklearn.preprocessing. RobustScaler (with_centering=True, with_scaling=True, quantile_range= (25.0, 75.0), copy=True) [source]

Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).

2.2. Feature Selection

- Based on data exploration (e.g., colinearity)
- Forward selection
- Backward selection
- L1 regularization

Extra challenge: what if my features have missing data?

	seq_id	hubway_id	status	duration	start_date	strt_statn	end_date	end_statn
count	1.579025e+06	1.579025e+06	1579025	1.579025e+06	1579025	1.579011e+06	1579025	1.578980e+06
unique	NaN	NaN	1	NaN	521432	NaN	515102	NaN
top	NaN	NaN	Closed	NaN	7/30/2013 17:18:00	NaN	10/19/2013 16:26:00	NaN
freq	NaN	NaN	1579025	NaN	25	NaN	27	NaN
mean	7.895130e+05	8.865317e+05	NaN	1.200280e+03	NaN	5.438039e+01	NaN	5.425603e+01
std	4.558254e+05	5.064783e+05	NaN	2.653539e+04	NaN	3.364295e+01	NaN	3.347219e+01
min	1.000000e+00	8.000000e+00	NaN	-6.900000e+03	NaN	3.000000e+00	NaN	3.000000e+00
25%	3.947570e+05	4.465250e+05	NaN	4.120000e+02	NaN	2.700000e+01	NaN	2.900000e+01
50%	7.895130e+05	8.950440e+05	NaN	6.600000e+02	NaN	4.800000e+01	NaN	4.800000e+01
75%	1.184269e+06	1.328083e+06	NaN	1.082000e+03	NaN	7.400000e+01	NaN	7.400000e+01
max	1.579025e+06	1.748022e+06	NaN	1.199446e+07	NaN	1.450000e+02	NaN	1.450000e+02

What people usually do...

- drop features with two many missing
- value imputation (example: 0-value, or mean-value)
- model-based imputation

Model-based inputation (example with k-nearest neighbors)

3. How to inspect your model?

- Check model assumptions
- Identify most predictive features
- Check model robustness

3.1. Check model assumptions $\epsilon = y - \hat{y}$

$$\varepsilon = y - \hat{y}$$

Regression Standardized Residual

3.1. Check model assumptions $\epsilon = y - \hat{y}$

$$\epsilon = y - \hat{y}$$

3.2. Identify most predictive features

Look at feature importances:

- For linear and logistic regression, these are the size of the coefficients
- For other models: monitor metric degradation when each feature is perturbed

3.3. Check model robustness

Sensitivity Analysis

- If the train set change, how much do the **parameters** vary?
 - confidence intervals
- If the train set change, how much do the **predictions** vary?
 - predictive intervals

Let's see it in practice!

How to evaluate your classifier?

Confusion Matrix: counting mistakes in binary predictions

The following table is called the **confusion matrix**.

TN: true negative FP: false positive FN: false negative TP: true positive

		Predicted label		
		Healthy (ypred=0)	Cancer (ypred=1)	
True label	Healthy (y=0)	TN	FP	
	Cancer (y=1)	FN	TP	

Confusion Matrix: counting mistakes in binary predictions

		Predi		
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN + FP)}$
		Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

- Sensitivity = Recall = "True positive rate (TPR)"
- Specificity = 1 False positive rate (FPR) = True Negative Rate (TNR)
- Precision = Positive Predictive Value (PPV)

Other evaluation metrics:

• Accuracy: fraction of correct predictions

Accuracy =
$$\frac{TP + TN}{TP + TN + FN + FP}$$

• **F1-score**: fraction of correct predictions F1-score $\frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Note: Accuracy useless if classes are unbalanced!

Emphasis: we should choose the metric based on the application

Let's see some case studies!

ROC Curve (across thresholds)

• Area under the Curve (AUROC or AUC or C statistic)

Precision-Recall Curve

recall (= TPR)

Libraries: https://scikit-learn.org/stable/modules/m

Some examples: metrics.precision_score, metrics.recall_score, metrics.average_precision_score, metrics.roc_auc_score

How to fix the problem of unbalanced classes?

- Upsampling
- Downsampling
- Reweighting (modify loss function)

Calibration

Question: Is the random forest classifier conservative or adventurous in its predictions?

Exercise: Thresholding to get Binary Decisions

Interactive Demo: https://research.google.com/bigpicture/attacking-discrimination-in-ml/)

Goals:

- What threshold maximizes accuracy?
- What threshold maximizes profit?