

2-dimensional profile (in black) is *linearly* approximated by a sequence of joined lines (in red). Blue patches represent the error due to approximation.

Figure.1: A Linearization Procedure

A Rectangle

Stage 1 Decomposition

Stage 2 Decomposition

Stage 3 Decomposition

Stage 4 Decomposition

Stage 5 Decomposition

Stage 6 Decomposition

At each stage of decomposition, the number of right-angled tiles multiply by 2 and their size shrink by $\frac{1}{2}$

Figure.2: Six Stages of Peano-Cezaro Binary Decomposition of a Rectangular Domain

At each stage of decomposition the number of triangular tiles multiply by 4 and their size shrink by $\frac{1}{4}$

Figure.3: Two Stages of Sierpinski Quaternary Decomposition of an Equilateral Triangle

At each stage of Hex-nary Decomposition the number of triangular tiles multiply by 6

Figure.5: Two Stages of Hex-nary Decomposition

Figure.6: Circumscribing projected domain $\mathcal{D}(X, Y)$ with a rectangular hull

Image is in (x, y) plane. Triangular *perforated* tiles in (x, y) plane are projected into (Energy, x, y) space represented by *thickened* triangles. The vertices of thickened triangles touch the 2-dimensional image profile in (Energy, x, y) space not shown in the diagram. Thickened triangles model image profile.

Figure.7: Stage 2 and Stage 3, 3-dimensional tessellation of a hypothetical image profile in (Energy, x, y) space based on Peano-Cezaro decomposition scheme

1: An Edge

2: A Strip

3: A Wedge

4: A Cross

Figure. 8: Samples of canonical primitive image patterns

1: Edges

2: Wedges

3: Strips

4: Crosses

Figure.9: Samples of parametric primitive patterns

At each stage of decomposition, the number of right-angled tiles multiplies by 2 and their size shrink by $\frac{1}{2}$. Solid arrows represent the order of tile sweep at current stage. Broken arrows represent order of tile sweep at preceding stage. A binary code sequence represents the inheritance relation of a tile to its ancestor tiles.

Figure.10: Four Stages of Peano-Cezaro Binary Decomposition of a Rectangular

Figure.11: Stage 1 of 3D Tessellation Procedure

$E_{11}, E_{12}, E_{13}, E_{14}, E_{21}, E_{31}, E_{32}, E_{33}$ and E_{34} represent energies at tile vertices. Broken lines represent the axis of decomposition.
 Bit values inside a tile represent a code sequence

Figure.12: Binary tree representation of Peano-Cezaro

A: Even level tiles

B: Odd level tiles

Figure.13: Eight types of tiles divided into two

X is code sequence of tile before decomposition. **X0** and **X1** are code sequences of *children* tiles after decomposition.

Figure.14: Decomposition grammar for all eight types of tiles with bit assignments

Figure.15:A cluster of side and vertex adjacent tiles

Figure.16: Fragment of a binary decomposition tree

T1, T2, T3 and T4 stand for *modeled* terminal tiles in Filter 2. **N1** and **N2** stand for to-be-modeled non-terminal tiles in Filter 2. In state (I), non-terminal tile **N1**, being surrounded by more terminal tiles than non-terminal tile **N2**, has higher chance of being accurately modeled; hence, it has precedence over **N2**. In state (II), **N2** is the only non-terminal tile left to be modeled. State (III) is the final

Figure.17: Tile state transition in Filter 2 processing

█ : Stands for an image site with known energy value

?: Stands for an image site with unknown energy value to be estimated using learning units

Two 9x9 size right-angled triangular structures

F: Stands for an image site with unknown energy value but whose primary features are extracted and used as input to the learning unit corresponding to tile structure

Two 5x5 size right-angled triangular structures

Figure.18: Four tile structures with right-angled side sizes 9 and 5

Application of classifier to energy values at the boundary sites of the tile in the diagram gives rise to partition of the set of energy values into three homologous sub-sets

Partition (79, 85, 93) is delimited by contour 1

Partition (131, 134, 137, 140) is delimited by contour 2

Partition (177, 180, 181, 182, 186) is delimited by contour 3

Figure.19: Partition of energy values using a classifier

A learning unit is composed of a classifier, a numeric decision tree and a neural network

Figure.20: A Learning Unit

: Stands for a site with known energy value

: Stands for a blank site with unknown energy value

A 3x2 size tile structure with one blank site. The *raw* energy value at the blank site is stored in Residual_Row

Figure.21: A minuscule tile structure with one blank site

Figure 22: Duality of content and context

Figure 23: UC codec road map

Figure 24: decomposition of image profile in 3D

Figure 25: Binary quadratic

Figure 26: A learning

Figure 27: Primitive patterns

T1, T2, T3 and T4 are *terminal* tiles
 N1 and N2 are *non-terminal* tiles

Figure 28: State transition in Filter2

Figure 29: Clustering boundary intensities

Figure 30: UC's Current and Expected Performances

Figure 31: Pillars

Figure 32: Town

Figure 33: City Park

Figure 34: Waterfall

a: 2D quadrilateral quaternary decomposition

b: 2D triangular (Sierpinsky) quaternary decomposition

Figure 35: Subdivision rules for triangular / quadrilateral meshes

Figure 36: Three stages of decomposition

Figure 37: Eight tile types

Figure 38: Tree representation of triangular decomposition

Figure 39: Standard unit-cube tetrahedral cover

Figure 40: Decomposition of a tetrahedron by recursive bisection

Figure 41: Overview of the mesh extraction procedure

a. Fine mesh at the smallest scale

b: Intermediate mesh

c: Coarsest mesh

Figure 42: Meshing at three different scales

Figure 43: Decomposition of image profile in 3D

Figure 44: A learning unit

T1, T2, T3 and T4 are *terminal* tiles
 N1 and N2 are *non-terminal* tiles

Figure 45: State transition in Filter2