Math 68. Algebraic Combinatorics.

Problem Set 3. Due on Thursday, 11/8/2007.

1. Prove that

$$\frac{1}{1-z} = \prod_{j>0} (1+z^{2^j}).$$

- 2. A (0,1)-necklace of length n and weight i is a circular arrangement of i 1's and n-i 0's. For instance, the (0,1)-necklaces of length 6 and weight 3 are (writing a circular arrangement linearly) 000111, 001011, 010011, and 010101. (Cyclic shifts of a linear word represent the same necklace, e.g., 000111 is the same as 110001.) Let N_n denote the set of all (0,1)-necklaces of length n. Define a partial order on N_n by letting $u \leq v$ if we can obtain v from u by changing some 0's to 1's. It's easy to see (you may assume it) that N_n is graded of rank n, with the rank of a necklace being its weight. Show that N_n is rank-symmetric, rank-unimodal, and Sperner.
- 3. Let q be a prime power, and let V be an n-dimensional vector space over \mathbb{F}_q . Let $B_n(q)$ denote the poset of all subspaces of V, ordered by inclusion. It's easy to see that $B_n(q)$ is graded of rank n, the rank of a subspace of V being its dimension.
 - (a) Show that the number of elements of $B_n(q)$ of rank k is given by the q-binomial coefficient

$$\left[\begin{array}{c} n \\ k \end{array}\right] = \frac{(q^n - 1)(q^{n-1} - 1)\dots(q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1)\dots(q - 1)}.$$

(One way to do this is to count in two ways the number of k-tuples (v_1, \ldots, v_k) of linearly independent elements from \mathbb{F}_q^n : (1) first choose v_1 , then v_2 , etc., and (2) first choose the subspace W spanned by v_1, \ldots, v_k , and then choose v_1, v_2 , etc.)

- (b) Show that $B_n(q)$ is rank-symmetric. (You can use (a) if you want.)
- (c) Show that every element $x \in B_n(q)_k$ covers $[k] = 1 + q + \cdots + q^{k-1}$ elements and is covered by $[n-k] = 1 + q + \cdots + q^{n-k-1}$ elements.
- (d) Define operators $U_i: \mathbb{R}B_n(q)_i \to \mathbb{R}B_n(q)_{i+1}$ and $D_i: \mathbb{R}B_n(q)_i \to \mathbb{R}B_n(q)_{i-1}$ by

$$U_i(x) = \sum_{\substack{y \in B_n(q)_{i+1} \\ y > x}} y,$$
 $D_i(x) = \sum_{\substack{z \in B_n(q)_{i-1} \\ z < x}} z.$

Show that $D_{i+1}U_i - U_{i-1}D_i = ([n-i] - [i])I_i$.

- (e) Deduce that $B_n(q)$ is rank-unimodal and Sperner.
- (f) ** Let $0 \le i < n/2$. Find an explicit order-matching $\mu : B_n(q)_i \to B_n(q)_{i+1}$.
- 4. Let M(n) be the set of all subsets of [n], with the ordering $A \leq B$ if the elements of A are $a_1 > a_2 > \cdots > a_j$ and the elements of B are $b_1 > b_2 > \cdots > b_k$, where $j \leq k$ and $a_i \leq b_i$ for $1 \leq i \leq j$. (The empty set \emptyset is the bottom element of M(n).)

- (a) Draw the Hasse diagrams (with vertices labeled by the subsets they represent) of M(1), M(2), M(3), and M(4).
- (b) Show that M(n) is graded of rank $\binom{n+1}{2}$. What is rank $(\{a_1,\ldots,a_k\})$?
- (c) Define the rank-generating function of a graded poset P to be

$$F(P,q) := \sum_{x \in P} q^{\operatorname{rank}(x)}.$$

Show that the rank-generating function of M(n) is given by

$$F(M(n),q) = (1+q)(1+q^2)\cdots(1+q^n).$$

- (d) * Show that M(n) is rank-symmetric, rank-unimodal, and Sperner.
- 5. (a) Find an explicit injection $\mu: L(m,n)_i \to L(m,n)_{i+1}$ for $0 \le i < \frac{1}{2}mn$.
 - (b) ** Find μ as in (a) such that μ is also an order-matching.
 - (c) ** We say that a graded rank-symmetric poset P of rank n has a symmetric chain decomposition if we can write P as a disjoint union of saturated chains C, such that each C starts at some P_i and ends at P_{n-i} . Show that L(m,n) has a symmetric chain decomposition.