설계 제목	엘리베이터 운행의 효율적인 알고리즘 분석과 시뮬레이터 및 모니터링 프로그램 개발							
설계자	강재원, 김경민, 이경호							
기간	2020년 1월 8일 수요일 - 2020년 1월 12일 일요일 (2주차 결산)							
장소	온라인 회의							
논의 내용	해당 기간 중 팀원 간 논의한 내용을 정리한다. - 기본 엘리베이터 클래스와 메인 알고리즘 함수에 대한 이해 - 아두이노 보드 사이의 통신이해 - Git 사용법 숙지 - 엘리베티어의 층과 층사이 이동과정 프레임화 - 아두이노가 스위치의 인풋을 어떤 방식으로 받을지에 대한 논의 - 아두이노의 인풋을 어떻게 파싱할 것인지에 대한 논의 - 버튼 보드 구성 확정 - GUI 구현 모듈 확정 - 알고리즘 개략적인 진행방식에 대한 논의							
진행 내용	지난 주 이후 진행된 사항을 간단히 정리한다. - 아두이노 코드 및 회로도 설계완료 - 아두이노 보드들 및 PC사이의 통신 테스트이후 디버깅까지 완료 - 파이썬 코드 기본 틀 프로그래밍 (알고리즘 기본 포맷 설계) - 파이썬에서 인풋 받는 것까지 확인							
진행 계획	다음 주까지 진행할 사항을 간단히 정리한다. - 파이썬 코드의 버그 수정 및 코드 최적화 - 엘리베이터의 위치와 call 사이의 상호작용 코드 추가 - PCB 제작 주문 조사 - pygame모듈을 사용해 기본 GUI 제작 - 버튼 보드 외부 골격 모델							
데모 내용	해당 기간 중 진행한 내용을 바탕으로 데모가 가능한 사항을 정리한다 파이썬 기본코드에서 아두이노 스위치로 부터 인풋을 받을 때 lc/cc가 변화하는지 데모 - pygame을 통해 인풋에 따라 객체가 이동하는 GUI 구현하여 데모							

간트차트)

-	1주차	2주차	3주차	4주차	5주차	6주차	7주차	8주차	9주차
현장답사									
자료조사									
보드/펌웨어 조사									
PCB 설계									
펌웨어 코딩					F				
Button Board 모델링									
GUI 구현									
알고리즘 기본 포맷 설계									
대기시간 알고리즘									
전력효율 알고리즘									
Optimized 알고리즘									
최종 시현 및 보고서 작성									

: 진행계획 : 진행상황