CSCI 360 ♦ Introduction to Artificial Intelligence ♦ Mid-term Exam

Na	ame (print):					
St	udent	t ID:					
I hereby confirm that (a) I will neither give nor receive unauthorized aid on this exam, and (b) I will neither record nor publicize the content of this exam.							
Sig	gnatu	re:					
Pa	ırt I. S	Short Answer Questions (20 points)	Answer Questions (20 points) see the relations such as Player(x), Star(y) and HighlyPaid(z) to express the following two ess regarding the NBA players in first-order logic ($2*3=6$ points): see players are not stars. $3x P(x) \land \neg E(x)$ what "uniform-cost search" expands the node with the lowest path cost, and "best-first search" node that appears to be closest to the goal. Please explain, in a short sentence, when each ring statements is true ($3*2$ points = 6 points): addh-first search is a special case of uniform-cost search. sen the step cost is always 1 (or always a constant value) addh-first, depth-first, and uniform-cost searches are special cases of "best-first" search. sen the priority queue (defined based on the true cost to goal) happens to behave like a queue, k, or priority queue based on step cost corm-cost search is a special case of A* search. shen $h(n) = 0$ for all nodes in A* search at "unification" is needed to reason about first order logic. For each pair of sentences below, ey can be unified, and if the answer is yes, provide the corresponding unifier ($4*2=8$ points). B.B.B. $P(x,y,z)$				
1.			•				
	•	Some players are not stars.	<u>∃x</u>	$P(x) \land \neg E(x)$			
	•	Only stars are highly paid.	<u>∀x</u>	$H(x) \rightarrow E(x)$			
	pand	s the node that appears to be closes	t to th	e goal. Please explair	•		
	•	Breadth-first search is a special case of uniform-cost search.					
		when the step cost is always 1 (or always a constant value)					
	•	Breadth-first, depth-first, and unifo	rm-cos	st searches are specia	al cases of "best-first" search.		
		_when the priority queue (defined based on the true cost to goal) happens to behave like a queue, stack, or priority queue based on step cost					
	•	• Uniform-cost search is a special case of A* search.					
		when $h(n) = 0$ for all nodes in A^* .	search				
3. ex					•		
	•	P(A,B,B), P(x,y,z)					
		Can they be unified? YES		Unifier (if exists)	x / A, y / B, z / B		

• P(x,A,g(x)), P(f(y),y,z)

Can they be unified? YES Unifier (if exists) x/f(A), y/A, z/g(f(A))

• Knows(Father(y), y), Knows(x, x)

Can they be unified? _____ Unifier (if exists) _____

• Hates(A,B), Loves(x,x)

Can they be unified? _____ Unifier (if exists) _____

Part II. Graph Search (20 points)

In "Graph Search" algorithms, the visited nodes are recorded so they will not be visited again. Please run these algorithms on the state space graph below, where the initial state is S, the goal states are G1, G2 and G3, the step costs are edge labels, and the heuristic function is given in the right-hand-side table.

State	h(n)
S	5
A	7
В	3
C	4
D	6
E	5
F	6

For each algorithm below, please show (1) which of the three goal states (G1, G2, and G3) is reached first, and (2) what is the sequence of "expanded" nodes (the sequence until a goal state is reached).

(a) Hill Climbing (2+4 = 6 points):

Goal reached: <u>G2</u> Sequence of expanded nodes: <u>S, B, C, G2</u>

(b) Iterative Deepening (2 + 4 = 6 points):

Goal reached: ____G1____S, S A B D, S A G1______S

(c) A^* Search (2 + 6 = 8 points):

Goal reached: <u>G2</u>
Sequence of expanded nodes: S, A, B, D, C, G2

Note: use alphabetic order as tie-breaker (given equal cost in the priority queue, expand alphabetically).

Part IV. Adversarial Search (30 points)

In the game tree below, please first run the Minimax algorithm (without alpha-beta pruning) and compute the minimax values for all nodes.

- (1) Please compute the minimax values based on the utility values given at the bottom. (5 points)

 Top (9), left (9), right (4), left-left (9), left-mid (10), left-right (11)

 right-left (6), right-mid (4), right-right (13)
- (2) Assume that bottom nodes are visited in alphabetic order (from A, B, C, ... to J, K, L). Which of these nodes will be skipped by alpha-beta pruning? (10 points)

Below is another game tree generated by the Minimax search algorithm with alpha-beta pruning.

- (1) Please write down the minimax values computed by the algorithm. (5 points) Top (5), left (5), right (1)
- (2) Do any nodes get pruned? And if the answer is yes, which nodes? (5 points)
- (3) Is there an order to visit the nodes that achieves more pruning? If yes, which order? (5 points) NO

Part VI. First Order Logic (30 points)

- 1. Translate the formula to Conjunctive Normal Form (CNF). Hint: you need to remove (\mathcal{I}). (10 points)
 - $\forall x \exists y (P(x) \land A(y) \land D(F(x), y) \land R(x, y))$

$$\forall x (P(x) \land A(Q(x)) \land D(F(x), Q(x)) \land R(x, Q(x)))$$

- 2. Assume that all variables are natural numbers $(0, 1, 2, ..., \infty)$ and \geq means "greater than or equal to". Consider the following two sentences in first order logic:
 - (A) $\forall x \exists y (x \ge y)$
 - (B) $\exists y \ \forall x (x \ge y)$

Prove that (B) logically entails (A) using resolution.

Hint: transform (B) Λ (¬A) to CNF and then show the CNF formula is unsatisfiable using resolution.

(1) Transform $(\exists y \ \forall x (x \ge y)) \land (\neg \forall x \exists y (x \ge y))$ to CNF. (10 points)

Push negation inside: $(\exists x \forall y \neg (x \ge y))$ ---- 2 points

Get rid of existential quantifiers: ---- 4 points $\forall x (x \ge P)$ $\forall y \neg (Q \ge y)$ ----- 4 points

(2) Using "resolution" to prove the CNF formula is unsatisfiable. (10 points)

$$\forall x (x \ge P)$$
 $\forall y \neg (Q \ge y)$

They may be interpreted as two "unit" clauses (let GE denote \geq for ease of comprehension)

$$(\forall x \ GE(x,P)) \qquad (\forall y \neg GE(Q,y))$$

Find the unifier (x/Q, y/P) ---- 5 points

$$(GE(Q,P)) \qquad (\neg GE(Q,P))$$

$$() \qquad \qquad ---- 5 points$$

QED