Emerging methods for Early detection of forest fires

S.NO:	TITLE OF THE PAPER	DETAILS OF THE PAPER	OBJECTIVES	METHODOLOGY USED	TAKE AWAY
1.	Early Forest Fire Detection Systems Using Optical Remote Sensing	Published on 2020	Large-scale forest fires are one of the most harmful natural hazards affecting climate change and life around the world. Thus, to minimize their impacts on people and nature	This paper presents an overview of the optical remote sensing technologies used in early fire warning systems and provides an extensive survey on both flame and smoke detection algorithms employed by each technology.	We use optical remote sensing systems for early fire detection, organized into three subsections for Terrestrial, Aerial and Satellite systems respectively.
2.	A Review of the Applications of Remote Sensing in Fire Ecology	published on 2019	Wildfire plays an important role in ecosystem dynamics and global processes. This paper provides a broad review of the applications of remote sensing techniques in fire ecology	SFM is a newer methodology which incorporates the use of photogrammetric techniques to construct 3-D 'point clouds' from a series of overlapping images. Although UAS-based research is an emerging technology, the data have been used for monitoring post-fire vegetation recovery, fire severity and fire detection	vegetation recovery monitoring shows potential for increasing accuracy

	T		T		
3.	Early Detection	Published on	Forest fires are	The video input is captured	From this journal,
	of Forest Fire	2022.	increased due to	from the camera, and the other	we use maximum
	Using Mixed		deforestation and global	inputs such as wind speed,	take-off weights
	Learning		warming. Many trees	wind directions, and IR image	(MTOW) assess the
	Techniques and		and animals in the	sensing are calculated using	UAV payload
	-		forest are affected by	the sensors mounted on the	capacity at different
	UAV		forest fires .To propose	UAV for navigation. These	heights above the
			deep learning	images are provided as input	ground. The battery
			techniques to predict	to the deep learning models,	used on the UAV
			forest fires, which	and it checks for the existence	reserves the UAV in
			would be cost-effective.	of the fire.	GPS-enabled
					environments for
					107 minutes of
					duration, whereas
					on the GPS-disabled
					environment,
					maximum flight
					time is 87 minutes.
4.	Early Detection of	Published on	Once the fire	The drone is a highly mobile	Fire detection
	Forest Fire Based	2019 IEEE	happening in forest is	inspection tool. An unmanned	method, this
	on Unmaned		not found in time, it	aerial vehicle is equipped with	method uses optical
	Aerial Vehicle		can cause a huge loss.	optical and infrared composite	and infrared data to
	Platform		Accurate real-time	loads. It can be inspected	conduct fire
			monitoring of forest	according to a fixed route. It	discrimination,
			fires is not only an	can also check the area of	which enhances the
			important part of forest	interest to meet the needs of	robustness of the
			fire prevention, but	forest fire detection.	discrimination
			also an important		results. Besides, we
			means to effectively		use the frame
			control the spread of		difference method
			forest fires and reduce		in the smoke
			economic losses.		detection method
					proposed in this
					paper. This method
					is only effective
					when the drone is
					hovering.

5.	Automatic	Published 2018	To avoid the huge	Based on the slow spread of	From this
	Early Forest fire	IEEE	damage of forest	smoke, firstly a time delay	journal, we use
	Detection based		caused by fires.	parameter improves	Gaussian mixture
	Gaussian			Gaussian mixture model for	model. Because it
	Mixture Model.			extracting candidate smoke	can reconstruct
	TVIIIICOTO TVIO GOTI			regions. Then, two motion	background with
				features of smoke, the rate	the advantages of
				of area change and motion	small storage
				style are used to select	space, adaptive
				smoke regions from the	learning and
				candidate regions.	good noise
					toleration.

Reference:

- 1.Chen, Thou-Ho, et al. "The smoke detection for early fire-alarming system base on video processing." Intelligent Information Hiding and Multimedia Signal Processing, 2006. IIH-MSP'06. International Conference on. IEEE, 2006.
- 2. Noda, S., and K. Ueda. "Fire detection in tunnels using an image processing method." Vehicle Navigation and Information Systems Conference, 1994. Proceedings., 1994. IEEE, 1994.
- 3. Bosch, I.; Serrano, A.; Vergara, L. Multisensor network system for wildfire detection using infrared image processing. Sci. World J. 2013
- 4. Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; p. LA-1-55