Table des matières

Ι	Processus de Markov à temps discret	2
1	Définitions 1.1 Formalisme matriciel	2 2
2	Processus de Markov (sous entendu homogène) en temps discret (T=ℕ) 2.1 Diagramme de la chaîne de Markov	4 4
Π	Etudes des séjours dans une classe	10
1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	10 10 11 12
2	Chaînes régulières 2.1 Conséquences	12 16 16
Π	I Processus de Markov à temps continu	19
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 19 20 22 23 24 25
	2.1 Loi de probabilité invariante	26
I	V Processus d'entrée-sortie	30
1	Cadre général 1.1 Hypothèses et paramètres, générateur infinitésimal 1.2 Classification, recherche de lois de probabilité invariante	30 30 31
2	Processus de Poisson 2.1 Hypothèse des processus de Poisson	31 32
3	Répartition poissonnienne	34

Première partie

Processus de Markov à temps discret

1 Définitions

🔩 Définition: Processus

Un processus est un phénomène aléatoire qui se déroule au cours du temps.

Si on a un processus, son état à la date t est donné par une variable aléatoire notée par exemple X_t $X_t(\omega) = 1$ 'état du processus à la date t si le hasard est $\omega \in \Omega$.

L'ensemble des temps peut être :

— discret : $\{0, ..., n\}$ ou \mathbb{N}

Ce ne sont pas forcément des dates, mais par exemple des numéros d'épreuves.

— continu : [0,T] ou \mathbb{R}^+

Dans ce cours, les processus auront leurs états dans un ensemble fini ou parfois dénombrable E, appelé l'espace d'états. Ainsi, on note :

$$X = (X_t)_{t \in T}$$

♣ Définition: Propriété de Markov

On dit qu'un processus décrit par $X=(X_t)_{t\in T}$ a la propriété de Markov si :

$$\forall 0 \le t_0 < ... < t_n < t, \ \mathcal{L}(X_t | X_{t_n}, ..., X_{t_0}) = \mathcal{L}(X_t | X_{t_n})$$

🛂 Définition: Homogène

On dit que le processus a la propriété de Markov homogène s'il a la propriété de Markov et, $\forall s < t$:

$$\mathcal{L}(X_t|X_s = x) = \mathcal{L}(X_{t-s}|X_0 = x)$$

1.1 Formalisme matriciel

E est ici considéré comme fini (ou dénombrable), $E=\{i,j,...,k,...\}$

🔩 Définition: Différents vecteurs

— Une mesure de probabilité μ sur E va être représenté par un vecteur ligne, et qu'on notera μ :

$$\mu = (\mu_j)_{j \in E}$$
 où $\mu_j = \mu(\{j\})$

— Une fonction $f:E\to\mathbb{R}$ (ou \mathbb{C}) sera représenté par un vecteur colonne qui sera noté f :

$$f = (f^i)_{i \in E}$$
 où $f^i = f(i)$

2

♣ Définition: Matrices stochastiques

L'ensemble des lois $\mathcal{L}(X_t|X_0=i)$, $i\in E$ qu'on note $\mathcal{L}(X_t|X_0)$ sera une matrice carrée, notée Π_t , appelée matrice stochastique.

— la ligne i correspondant à la mesure de probabilité

$$\mathcal{L}(X_t, X_0 = i) = (P_j^i(t))_{j \in E} = (\mathbb{P}(X_t = j | X_0 = i))_{j \in E}$$

— la colonne j représente la fonction :

$$i \in E \mapsto P_j^i(t) = \mathbb{P}(X_t = j | X_0 = i)$$

 Π_t est une matrice à termes positifs dont la somme de chaque ligne vaut 1.

$\blacksquare Exemple$:

$$\mathbb{E}(f(X_t)|X_0 = i) = \sum_j f(j)\mathbb{P}(X_t = j|X_0 = i)$$

$$= \sum_j P_j^i(t)f^j$$

$$= (\Pi_t f)^i$$

Si $\mu_0 = \mathcal{L}(X_0), \ \mu_{0i} = \mathbb{P}(X_0 = j)$

$$\mathbb{E}_{\mu_0}[f(X_t)] = \sum_{i} \mathbb{E}(f(X_t)|X_0 = i]\mathbb{P}(X_0 = i)$$
$$= \sum_{i} \mu_{0i}(\Pi_t f)^i$$
$$= \mu_0 \Pi_t f$$

et alors si $\mu_t = \mathcal{L}(X_t)$, on a $\mu_t = \mu_0 \Pi_t$ (formule de probabilité totale, μ_0 représentant la loi de X_0)

$$\mathbb{P}(X_t = j) = \sum_{i} \mathbb{P}(X_t = j | X_0 = i) \mathbb{P}(X_0 = i)$$

$$= \sum_{i} \mu_{0,i} P_j^i(t)$$

$$= (\mu_0 \Pi_t)_j$$

Dans la suite du cours, nous considérerons que nos processus ont toujours la propriété de Markov homogène.

⇔ Théorème: Relations de Kolmogorov

$$\forall s, t \ge 0, \Pi_t \Pi_s = \Pi_s \Pi_t = \Pi_{s+t}$$
$$\Pi_0 = I$$

Démonstration:

$$\begin{split} \forall i,j, \ \mathbb{P}[X_{t+S} = j | X_0 = i] &= \sum_{k \in E} \mathbb{P}(X_{t+s} = j | X_s = k, X_0 = i) \mathbb{P}(X_s = k | X_0 = i) \\ &= \sum_{k \in E} \mathbb{P}(X_{t+s} = j | X_s = k) \mathbb{P}(X_s = k | X_0 = i) \text{ Par la propriété de Markov} \\ &= \sum_{k \in E} \mathbb{P}(X_t = j | X_0 = k) \mathbb{P}(X_j = k | X_0 = i) \text{ propriété homogène} \\ P_j^i(t+s) &= \sum_{k \in E} P_k^i(s) P_j^k(t) \\ &(\Pi_{t+s})_j^i = (\Pi_s \Pi_t)_j^i \end{split}$$

Donc $\Pi_{t+s} = \Pi_s \Pi_t = \Pi_{s+t} = \Pi_t \Pi_s$.

$$(\Pi_0)_i^i = \mathbb{P}(X_0 = i | X_0 = j) = \delta_{ij} \Rightarrow \Pi_0 = I$$

2 Processus de Markov (sous entendu homogène) en temps discret (T=N)

D'après la relation de Kolmogorov :

$$\Pi_n = (\Pi_1)^n = \Pi^n$$

On note Π_1 par Π la matrice de transition de la chaîne de Markov.

On note $P_j^i = \mathbb{P}(X_1 = j | X_0 = i)$ Ainsi :

$$\Pi = [P_j^i]_{i,j \in E}$$

La ligne i de $\Pi_n = \Pi^n = \mathcal{L}(X_n|X_0 = i)$ Si $\mu_0 = \mathcal{L}(X_0)$, alors $\mathcal{L}(X_n) = \mu_0 \Pi^n$

$$\mathcal{L}(X_0) = (\mathbb{P}(X_0 = j))_{j \in E}$$

$$\mathcal{L}(X_n) = (\mathbb{P}(X_n = j))_{j \in E} = \left(\sum_{i=1}^n \mathbb{P}(X_n = j | X_0 = i)\mathbb{P}(X_0 = i)\right)_{j \in E} = \mu_0 \Pi^n$$

2.1 Diagramme de la chaîne de Markov

C'est un graph orienté dont tous les sommets sont les éléments i de E, et les arêtes (orientées) sont définies ainsi :

 \hat{i} \hat{j} si et seulement si $p_j^i > 0$ ($\mathbb{P}(X_1 = j | X_0 = i) > 0$), ie si et seulement si on peut passer de i à j en une étape.

2.2 Classification des états

♣ Définition: Conduire, communiquer et classe d'équivalence

i peut conduire à j si et seulement si i=j ou s'il existe un chemin allant de i à j (qu'on note $i \leadsto j$), ie :

$$\exists n \geq 0; \ p_i^i(n) > 0 \ (\mathbb{P}[X_n = j | X_0 = i] > 0)$$

Cette relation est un préordre.

- réflexive
- transitive

A l'aide de ce préordre, on construit une relation d'équivalence.

"i et j communiquent" (noté $i \leftrightarrow j)$ si et seulement si $i \leadsto j$ et $j \leadsto i.$

- Réflexive
- Symétrique
- Transitive

L'espace d'état est alors partitionné en classes d'équivalence.

Exemple:

Le préordre induit une relation d'ordre sur les classes : $C \leadsto D \Leftrightarrow \exists i \in C; \ \exists j \in D; \ i \leadsto j.$ Ceci ne dépend pas des i et j choisis.

Si $C \leadsto D$ et $D \leadsto C$ alors C = D

♣ Définition: Transitoire, finale, ergodique

- Une classe est dite transitive si et seulement si elle peut conduire à une autre classe. Ses éléments sont dits transitoires.
 - Tr = Ensemble des états transitoires.
- Si une classe n'est pas transitoire, on dit qu'elle est finale (elle ne peut conduire qu'à elle-même). Ses éléments sont dits ergodiques.
 - Erg=ensemble des états ergodiques.
- Si la classe finale n'est composée que d'un élément, on dit qu'il est absorbant ($\Leftrightarrow p_i^i=1$) On le note Δ

Exemple:

⇒ Théorème:

Si E est fini, il existe toujours des classes finales, et toute classe transitoire peut conduire à au moins une classe finale (évident)

Remarque : Si E est infini, c'est faux. Prendre par exemple $E = \mathbb{N}$, où chaque $n \in \mathbb{N}$ forme une classe $\{n\}$, elles sont toutes transitoires.

🛂 Définition: Forme canonique de la matrice de transition

On regroupe les états par classe, en mettant d'abord les classes finales. Par exemple, si on considère C_1 et $C_2 \in \text{Erg et } C_3, \ C_4$ et $C_5 \in \text{Tr}$:

$$\begin{array}{c|ccccc} & C_1 & C_2 & C_3 & C_4 & C_5 \\ C_1 & A_1 & 0 & |0 & 0 & 0 \\ C_2 & C_3 & 0 & 0 & 0 \\ C_3 & - & |- & - & - \\ C_4 & C_5 & | & Q \\ \end{array} \right) = \Pi$$

$$\Pi^{n} = \begin{pmatrix}
A_{1}^{n} & 0 & |0 & 0 & 0 \\
0 & A_{2}^{n} & |0 & 0 & 0 \\
- & - & |- & - & - \\
& R_{n} & | & Q^{n}
\end{pmatrix}$$

Q s'appelle la matrice de passage des transitoires aux transitoires. R la matrice de passage des transitoires aux ergodiques.

⇔ Théorème:

Si E est fini, alors presque sûrement le processus finira dans une des classes finales.

Démonstration:

On suppose $X_0 = i$.

Si i est ergodique, X_n reste dans la classe finale de i.

Si i est transitoire :

$$\mathbb{P}(X_n \in Tr | X_0 = i) = \sum_{j \in Tr} \mathbb{P}(X_n = j | X_0 = i) = p_n(i) = \sum_j Q_{ji}^n$$

Il est clair que $X_{n+1} \in Tr \Rightarrow X_n \in Tr$, donc $p_{n+1}(i) \leq p_n(i)$. Donc $(p_n(i))_n$ est une suite décroissante. E étant fini, $\exists n$; $\mathbb{P}(X_n \in Tr | X_0 = i) < 1$ (car $\exists j \in Erg$ tel que $in \to j$).

 $\forall i$, soit n_i tel que $p_{n_i}(i) < 1$. Alors $p_n(i) < 1 \ \forall n \geq n_i$.

Soit $N = \max_{i \in Tr} n_i < +\infty$ (Tr fini)

$$\forall i \in Tr, \forall n \geq N, p_N(i) < 1$$

Soit $p^* = \max_{i \in Tr} p_N(i) < 1$.

 $\forall i, p_n(i)$ décroit, et $p_n(i) > 0$, donc $p_n(i)$ converge vers l_i . Montrons que $l_i = 0$, en considérant la sous-suite $(p_{kN}(i))_k$ qui converge vers l_i .

$$p_{kN}(i) = \mathbb{P}(X_{kN} \in Tr | X_0 = i)$$

$$= \sum_{h \in Tr} \mathbb{P}(X_{kN} \in Tr | X_{(k-1)N} = h, X_0 = 1) \mathbb{P}(X_{(k-1)N} = h | X_0 = i)$$

$$= \sum_{h \in Tr} \mathbb{P}(X_n \in Tr | X_0 = h) \mathbb{P}(X_{(k-1)N} = h | X_0 = i)$$

$$\leq \sum_{k \in Tr} p^* \mathbb{P}(X_{(k-1)N} = h | X_0 = i)$$

$$\leq p^* p_{(k-1)N}(i)$$

$$p_{kN}(i) \leq (p^*)^k \xrightarrow[n \to +\infty]{} 0$$

Donc $l_i = 0$.

De plus, $(X_n \in Tr)_n \to \cap_n (X_n \in Tr)$, donc, par propriété des mesures finies due à la σ -additivité :

$$\mathbb{P}(\cap_n (X_n \in Tr) | X_0 = i) = 0$$

Donc:

$$\mathbb{P}(\bigcup_n (X_n \in Tr) | X_0 = i) = 1$$

 $\forall i$ point de départ, $\exists n$ presque sûrement, $X_n \in Erg$.

Remarque : Le théorème précédent équivaut à dire que :

$$Q^n \to 0$$

car:

$$\mathbb{P}(X_n \in Tr | X_0 = i) = \sum_{j} Q_{ji}^n \to 0$$

Ceci permettra de calculer :

- le temps moyen passé dans Tr
- la probabilité de finir dans telle ou telle classe finale

Soit une chaîne de Markov de matrice de transition Π écrite sous forme canonique :

$$\Pi = \begin{pmatrix} A & 0 \\ R & Q \end{pmatrix}$$

$$R = [p_j^i]_{i \in Tr, \ j \in Erg} \ Q = [p_j^i]_{i,j \in Tr}$$

⇔ Lemme:

I-Q est inversible.

Démonstration:

$$(I - Q)(I + Q + \dots + Q^n) = I - Q^{n+1} \xrightarrow[n \to +\infty]{} I$$

$$\Rightarrow \det(I - Q) \det\left(\sum_{i=0}^n Q^k\right) \xrightarrow[n \to +\infty]{} \det(I) = 1$$

Dont $det(I-Q) \neq 0$ donc I-Q inversible. En multipliant par $(I-Q)^{-1}$ à gauche :

$$I + Q + \dots + Q^n = (I - Q)^{-1}(I - Q^{n-1}) = (I - Q)^{-1} - (I - Q)^{-1}Q^{n+1} \xrightarrow[n \to +\infty]{} (I - Q)^{-1}$$

Donc la série des Q^k converge et :

$$\sum_{k=0}^{\infty} Q^k = (I - Q)^{-1}$$

⇔ Théorème.

Soit $N = (I - Q)^{-1} = [N_j^i]_{i,j \in Tr}$. Alors N_j^i =le nombre moyen de fois où le processus est passé par j sachant qu'il est parti de i.

Démonstration:

Soient $i \in Tr$ et $j \in Tr$. Soit Y_j le nombre de fois où le processus par par j.

$$Y_j = \sum_{n=0}^{\infty} 1_{\{j\}}(X_n)$$

Calculons $\mathbb{E}(Y_j|X_0=i)$:

$$\mathbb{E}(Y_j|X_0 = i) = \mathbb{E}\left(\sum_{n=0}^{\infty} 1_{\{j\}}(X_n)|X_0 = i\right)$$

$$= \sum_{n=0}^{\infty} \mathbb{E}(1_{\{j\}}(X_n)|X_0 = i) \text{ (Corollaire de Bepo-Levi)}$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(X_n = j|X_0 = i)$$

$$= \sum_{n=0}^{\infty} p_j^i(n)$$

$$= \sum_{n=0}^{\infty} [\Pi_n]_j^i$$

$$= \sum_{n=0}^{\infty} [Q^n]_j^i$$

Donc:

$$(\mathbb{E}(Y_j|X_0=i)) = \sum_{n=0}^{\infty} Q^n = (I-Q)^{-1}$$

⇔ Corollaire:

Le nombre moyen de fois où le processus passe par les états transitoires, sachant qu'il est parti de i transitoire, vaut $N^i = \sum_{j \in Tr} N^i_j$.

Soit
$$B = NR$$
 $(B = [B_j^i]_i \in Tr, j \in Erg)$

Soit B=NR $(B=[B^i_j]_i\in Tr,\ j\in Erg)$ alors B^i_j est la probabilité que le premier état ergodique j sachant que le processus est parti de i, transitoire.

Démonstration:

Soi B_i^i la probabilité que le premier état ergodique atteint soit j sachant qu'on est parti de i. Pour que le premier état ergodique atteint soit j, deux possibilités :

- On va de i à j en 1 coup : probabilité p_i^i
- On va de i à j en au moins deux coups :
- au premier coup, on va à $k \in Tr$, probabilité p_k^i
- partant de k, le premier état ergodique atteint est j : probabilité B_j^k .

Donc $\forall i \in Tr, \forall j \in Erg$:

$$B^{i}_{j} = p^{i}_{j} + \sum_{k \in Tr} p^{i}_{k} B^{k}_{j} = [R]^{i}_{j} + [QB]^{i}_{j}$$

Donc:

$$B = R + QB$$

$$\Rightarrow (I - Q)B = R$$

$$\Rightarrow B = (I - Q)^{-1}R = NR$$

≫ Corollaire:

- Si j est absorbant, $B_j^i=\mathbb{P}(\text{finir en }j|X_0=i)$ Si C est une classe finale : $B_C^i=\mathbb{P}(\text{finit en }j|X_0=i)$

$$B_C^i = \mathbb{P}(\text{finir en } C|X_0 = i) = \sum_{j \in C} B_j^i$$

Deuxième partie

Etudes des séjours dans une classe

Période de classe 1

Définition

Soit C une classe d'équivalence pour $i \leftrightarrow j$.

$$C = cl\{i\} = cl\{j\}, \ \forall i, j \in C$$

 $\forall i, j \in C$, il existe un chemin (orienté) allant de i à j. On appelera :

$$N_{ij} = \{n > 0; \text{ il existe un chemin all ant de } i \text{ à } j \text{ de longueur } n\}$$

= $\{n > 0; p_j^i(n) > 0\}$

 $i,j,k\in C$ Si $a\in N_{ij}$ et $b\in N_{jk}$ alors $a+b\in N_{ik}$, ie $N_{ij}+N_{jk}\subset N_{ik}$.

⇒ Théorème:

Soit $d_i = PGCD(N_{ii})$ pour $i \in C$.

$$\forall i, j \in C, d_i = d_i$$

Démonstration:

Soient $a \in N_{jj}$, $b \in N_{ji}$ et $c \in N_{ij}$.

$$a+b+c=c+a+b\in N_{ii}$$

Or, $b + c = c + b \in N_{ii}$, donc:

$$a+b+c \equiv 0[d_i]$$
 et $b+c \equiv 0[d_i] \Rightarrow a \equiv 0[d_i] \ \forall a \in N_{jj}$

donc $d_j \equiv 0[d_i]$ et de même, $d_i \equiv 0[d_j]$, donc $d_i = d_j$.

❖ Définition: Période d'une classe

Notons d cet entier commun à tous les $i \in C$. d est appelé la période de la classe C.

$\clubsuit Exemple:$

Ici, on revient au même point en 2 ou 3 coups. On peut faire ça avec n'importe quel point, comme on l'a vu avec le théorème précédent. d = PGCD(2,3) = 1

1.2 Caractérisation

⇔ Théorème:

 $\forall i \in C, N_{ii} = \{kd, k \in \mathbb{N} \setminus A_i\}, A_i \text{ fini.}$

Démonstration:

Quitte à diviser tous les éléments de N_{ii} par d, on peut supposer que $PGCD(N_{ii}) = 1$ (pour simplifier). N_{ii} est un semi-groupe pour +:

$$a, b \in N_{ii} \Rightarrow a + b \in N_{ii}$$

 $N_{ii} \subset \mathbb{N}^*$

Donc $N_{ii} = \mathbb{N} \setminus A_i$, A_i ensemble fini, ie $\exists k_i$ tel que $\forall n \geq k_i$, $n \in N_{ii}$. (rien compris)

 $N_{ii} \subset \mathbb{Z}$ et $PGCD(N_{ii}) = 1$, ce qui signifie que le module sur \mathbb{Z} engendré par N_{ii} est celui engendré par 1 qui est \mathbb{Z} .

(Après quelques recherches, il ne s'agirait pas d'un module mais plutôt d'un idéal)o

$$(N_{ii}) = \left\{ \sum_{k=1}^{r} \alpha_k n_k, \ \alpha_k \in \mathbb{Z}, n_k \in N_{ii} \right\}$$

 $1 \in (N_{ii})$

 \Rightarrow Identité de Bézout, i.e. $\exists n_1,...,n_r \in N_{ii}, a_1,...,a_r \in \mathbb{Z}$ tels que $a_1n_1+...+a_rn_r=1$. On peut sopposer que $a_1,...,a_p>0$ et $a_{p+1},...,a_r\leq 0$.

$$a_1 n_1 + \dots + a_p n_p = n \in N_{ii}$$

$$m = -(a_{p+1}n_{p+1} + \dots + a_r n_r) \in N_{ii} \cup \{0\}$$

 N_{ii} étant un semi-groupe pour +:

$$\exists n \in N_{ii}, m \in N_{ii} \cup \{0\}; \ n - m = 1$$

Si $m \neq 0$:

Soit $k_i = m^2$. Si $k \ge m^2$

$$k = m\alpha + \beta, \ \alpha \ge m, \ 0 \le \beta < m$$

$$k = m\alpha + \beta(n - m)$$
$$= \beta n + \underbrace{(\alpha - \beta)}_{>0} m$$

Si
$$\beta = 0$$
, $k = \alpha m \in N_{ii}$
Si $\beta > 0$, $\beta n \in N_{ii}$ et $(\alpha - \beta)n \in N_{ii}$, donc $k \in N_{ii}$ ie

$$N_{ii} = \{ \mathbb{N} \setminus \{0, ..., m^2\} \}$$

$$\forall i,j \in C, \exists r_{i,j}, \ 0 \leq r_{i,j} < d \ {
m et}$$

$$N_{ij} = \{kd + r_{ij}, \ k \in \mathbb{N} \setminus A_{ij}\}$$

Démonstration:

Montrons d'abord que deux éléments $a, b \in N_{ij}$ ont même reste dans la division par d.

Soient $a, b \in N_{ij}, c \in N_{ji}$.

a+c et $b+c\in N_{ii}$ donc $a+c\equiv 0$ [d_i] et $c+b\equiv 0$ [d_i], donc $a+c-(b+c)=a-b\equiv 0$ [d_i]. Donc a et b ont même reste dans la division par d.

Notons r_{ij} ce reste commun à tous les éléments de N_{ij} . Tout élément a de N_{ij} s'écrit $a = kd + r_{ij}$.

Soit k_i tel que $\forall l \geq k_i, ld \in N_{jj}$

Soit $a_0 = k_0 d + r_{ij}$, alors $\forall k \geq k_i$, $a_0 + ld \in N_{ij}$

$$\forall l \ge k_i, (k_0 + l)d + r_{ij} \in N_{ij}$$

Relation d'équivalence dans la classe C et sous-classes périodiques

Si $i, j \in C$, on dit que $i \sim j$ si et seulement s'il existe un chemin de longueur multiple de la période d joignant .

Cela se traduit par $i \sim j \Leftrightarrow r_{ij} = 0$

Cette relation est évidemment (hum) réflexive et transitive.

Pour la symétrie : si $r_{ij} = 0$, soient $a \in N_{ji}$ et $b \in N_{ij}$. $a + b \in N_{jj}$ donc $a + b \equiv 0[d]$.

Or $b \equiv 0[d]$ car $r_{ij} = 0$ donc $a \equiv 0[d] : r_{ji} = 0$.

Donc C se partitionne en classes d'équivalences pour \sim . On les appelle les sous-classes cycliques.

Si d est la période de C alors C possède exactement d sous-classes cycliques.

Celles-ci sont atteintes successivement toujours dans le même ordre tant que l'état du processus reste dans C.

Chaînes régulières

On dit que la chaîne de Markov est régulière si et seulement si :

- 1. Elle ne possède qu'une seule classe
- 2. Elle est apériodique (d=1)

⇒ Théorème:

Les trois points suivants sont équivalents.

- 1. La classe est régulière
- 2. $\exists n_0, \ \forall n \geq n_0, \ \forall i, j \in E, \ \mathbb{P}(X_n = j | X_0 = i) > 0$ 3. $\exists n_0, \ \forall i, j \in E, \mathbb{P}(X_{n_0} = j | X_0 = i) > 0$

Démonstration:

Il est clair que $2 \Rightarrow 3$.

 $3\Rightarrow 1$ car $\forall i,j\in N_{ij}=\mathbb{N}\backslash$ ens. fini. Donc $i\leadsto j$ et $r_{ij}=0$

$$\forall i, j \in N_{ij} \supset \{n > 0, \ n \ge n_i\}$$

 $(r_{ij} = 0 \text{ et } N_{ij} \neq \emptyset)$

Soit $n_0 = \max_{i \in E}(n_i) < +\infty$ (car E fini).

 $\forall i,j \in E, \exists n_0; \ \forall n \geq n_0, n \in N_{ij}, \text{ ie } \mathbb{P}(X_n^{'}=i|X_0=i) > 0.$

Soit $A=(a^i_j)_{i,j}$ une matrice "stochastique". Soit $a^*=\min_{i,j}a^i_j>0$ Soit $X_0=(x^i_0)_i$ un vecteur colonne. On pose $X_n=AX_{n-1}=A^nX_0$. Soit $M_n=\max_i x^i_n$ et $m_n=\min_i x^i_n$. On a m_n croissante, M_n décroissante et $(M_n-m_n)\leq (1-2a^*)(M_0-m_0)$.

Démonstration:

$$x_{n+1}^{i} = \sum_{j} a_{j}^{i} x_{n}^{j} \ge \underbrace{\sum_{j} a_{j}^{i}}_{-1} m_{n} = m_{n}$$

Donc $m_{n+1} \ge m_n$, donc m_n est croissante.

De même, M_n est décroissante.

A présent, soit j_0 tel que $x_n^{j_0} = m_n$.

$$x_{n}n + 1^{i} = a_{j_{0}}^{i}m_{n} + \sum_{j \neq j_{0}} a_{j}^{i}x_{n}^{j}$$

$$\leq a_{j_{0}}^{i}m_{n} + \underbrace{\left(\sum_{j \neq j_{0}} a_{j}^{i}\right)}_{=1-a_{j_{0}}^{i}} M_{n}$$

$$\leq M_{n} - a_{j_{0}}^{i}(M_{n} - m_{n})$$

Donc

$$M_{n+1} \le M_n - a^*(M_n - m_n) \tag{1}$$

En appliquant le résultat à $-X_n$ et à $-X_{n+1}$:

$$-m_{n+1} \le -m_n - a^*(-m_n - (-M_n))$$

- $m_{n+1} \le -m_n - a^*(M_n - m_n)$ (2)

$$(1) + (2): M_{n+1} - m_{n+1} \le M_n - m_n - 2a^*(M_n - m_n)$$

$$M_{n+1} - m_{n+1} \le (1 - 2a^*)(M_n - m_n)$$

Par récurrence, on obtient le résultat.

→ Théorème: fondamental

On considère une chaîne de Markov régulière et E fini.

Dans ce cas, il existe une et une seule loi de probabilité invariante sur E. Notons la μ . Celle-ci vérifie :

- 1. $\forall i \in E, \, \mu_i > 0$ 2. $\forall \mathcal{L}(X_0), \mathcal{L}(X_n) \to \mu$ exponentiellement vite 3. μ est l'unique solution de l'équation :

$$\begin{cases} \nu\Pi &= \nu\\ \sum_{i \in E} \nu_i &= 1 \end{cases}$$

Démonstration:

Considérons la colonne j de $\Pi^n: C_j^n$. Que devient-elle lorsque $n \to +\infty$?

$$C_j^0 = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \text{ jième ligne } \qquad C_j^n = \Pi^n C_j^0$$

$$= \Pi C_j^{n-1}$$

Soit $M_j^n = \max_i (C_j^n)_i$ et $m_j^n = \min_i (C_j^n)_i$. On a M_j^n décroissante, m_j^n croissante et $m_j^n \leq M_j^n$.

Comme $M_i^n \ge m_i^0$, M_i^n converge. De même, m_i^n converge également.

Montrons que $M_j^n - m_j^n \to l_j = 0$. Soit n_0 tel que $A = \Pi^{n_0}$ soit à termes positifs (cela signifie que la chaîne est régulière, d'après le premier théorème de cette section).

Soit $p^* = \min_{i,j}(p_i^i(n_0)) > 0$. On a:

$$M_j^{kn_0} - m_j^{kn_0} \le (1 - 2p^*)^k \underbrace{(M_j^0 - m_j^0)}_{-1} \xrightarrow[k \to +\infty]{} 0$$

Donc la sous-suite $(M_j^{kn_0}-m_j^{kn_0})_k$ de $(M_j^n-m_j^n)_n)$ converge vers 0. Or, la suite est convergente vers l_j , donc

Donc M_i^n et m_i^n ont même limitE. Notons la μ_j .

$$C_j^n = (p_j^i(n))_i \to \begin{pmatrix} \mu_j \\ \vdots \\ \mu_j \end{pmatrix}$$

$$\Pi^{n} \to \begin{pmatrix} \mu_{1} & \cdots & \mu_{n} \\ \vdots & \ddots & \vdots \\ \mu_{1} & \cdots & \mu_{n} \end{pmatrix}$$

$$\mu_{j} \geq m_{j}^{n_{0}} \geq p^{*} > 0$$

$$\forall j, \ \mu_{j} > 0$$

$$m_{j}^{n} \leq \mu_{j} \leq M_{j}^{n}$$

$$|\mu_{j} - p_{j}^{i}(n)| \leq M_{j}^{n} - m_{j}^{n}$$

$$\leq M_{j}^{kn_{0}+r} - m_{j}^{kn_{0}+r}$$

$$\leq (1 - 2p^{*})^{k} (M_{j}^{r} - m_{j}^{r})$$

$$\leq \left((1 - 2p^{*})^{\frac{1}{n_{0}}} \right)^{kn_{0}} (1 - 2p^{*})^{\frac{r}{n}} \underbrace{\max_{r < n_{0}, j} \frac{M_{j}^{r} - m_{j}^{r}}{(1 - 2p^{*})^{\frac{r}{n_{0}}}}}_{=a}$$

$$\leq a \left[(1 - 2p^{*})^{\frac{1}{n_{0}}} \right]^{n}$$

Si $b = (1 - 2p^*)^{\frac{1}{n_0}}, 0 \le b < 1$

$$\forall j, \ |\mu_j - p_i^i(n)| \le ab^n$$

On a donc une convergence exponentielle de $\mathbb{P}(X_n=j|X_0=i)$ vers μ_j

Soit ν^0 loi de X_0 .

$$\mathbb{P}(X_n = j) = \sum_{i} \mathbb{P}(X_n = j | X_0 = i) \mathbb{P}(X_0 = i)$$
$$= \sum_{i} \nu_i^0 p_j^i(n)$$

Comme $\sum_i \nu_i^0 = 1$:

$$|\mathbb{P}(X_n = j) - \mu_j| = \left| \sum_i \nu_i^0(p_j^i(n) - \mu_j) \right|$$

$$\leq \sum_i \nu_i^0(p_j^i(n) - \mu_j)$$

$$\leq \sum_i \nu_i^0 a b^n$$

$$\leq a b^n$$

 $\forall \mathcal{L}(X_0), \, \mathcal{L}(X_n) \to \mu$ exponentiellement vite, ie

$$|\mathbb{P}(X_n = j) - \mu_j| \le ab^n$$

 μ est une loi de probabilité :

$$1 = \sum_{j \in E} \mathbb{P}(X_n = j | X_0 = i) \to \sum_{j \in E} \mu_j = 1$$

Donc $\forall j, \ \mu_j \geq p^* > 0 \text{ et } \sum_i \mu_j = 1.$

Soit ν un vecteur ligne.

$$\nu\Pi^n \to \nu \begin{pmatrix} \mu_1 & \cdots & \mu_n \\ \vdots & \ddots & \vdots \\ \mu_1 & \cdots & \mu_n \end{pmatrix} = \left(\sum_i \mu_i \nu_1 & \cdots & \sum_i \nu_i \mu_n\right) = \left(\sum_i \nu_i\right) \mu$$

$$\forall \nu, \ \nu \Pi^n \to \left(\sum_i \nu_i\right) \mu$$

Donc $\mu\Pi^n \to \mu$, donc $(\mu\Pi^n)\Pi \to \mu\Pi$, donc

$$\mu\Pi = \mu$$

 μ est donc une loi e probabilité invariante. C'est la seule loi de probabilité invariante : Si ν est une loi de probabilité invariante, alors $\nu\Pi = \nu$. Donc $\forall n \ \nu\Pi^n = \nu$. Or, $\nu\Pi^n \to \mu$ donc $\nu = \mu$

 μ vérifie $\mu\Pi=\mu,\,\sum_i\mu_i=1.$ Soit ν solution de $\nu\Pi=\nu,\,\sum_i\nu_i=1.$ Aors :

$$\nu\Pi^n = \nu \to \left(\sum_i \nu_i\right)\mu = \mu$$

Donc $\mu = \nu$.

2.1 Conséquences

1. Supposons que sur E, il n'y ait qu'une seule classe finale et que celle-ci soit apérioique (d=1). Que devient $\mathcal{L}(X_n)$ lorsque $n \to +\infty$?

 $\mathcal{L}(X_n) \to \mu_C$, où $\mu_C(j) = 0 \ \forall j \in Tr$.

 $\mu_{C_{|C}} =$ loi de probabilité invariante de la chaîne quand elle début dans C.

Sur C, X_n est une chaîne régulière.

 $\mu = \mu_{C_{|C|}}$ vérifie $\mu A = \mu$, $\sum_i \mu_i = 1$, dont elle est l'unique solution.

⇒ Théorème: ergodique (admis)

Supposons que la chaîne n'ait qu'une seule classe finale C et que celle-ci est apériodique. Soit μ la mesure invariante sur C décrite précédemment. Alors :

$$\forall f: E \to \mathbb{R}, \ \frac{1}{n} \sum_{k=0}^{n-1} f(X_k) \xrightarrow{p.s.} \int_C f d\mu = \sum_{j \in C} f(j) \mu(j)$$

2.2 Etude d'une classe finale périodique

Soit d la période d'une classe C, finale. Elle possède d sous-classes cycliques, parcourues successivement, toujours dans le même ordre. Numérotons les de A à d de façon qu'on les parcourt ainsi :

 Π s'écrit alors :

$$\Pi = \begin{pmatrix}
0 & A_1 & 0 & \cdots & 0 \\
0 & 0 & A_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{d-1} \\
A_d & 0 & 0 & \cdots & 0
\end{pmatrix}$$

$$\Pi^d = \begin{pmatrix}
B_1 & 0 & \cdots & 0 \\
0 & B_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_1
\end{pmatrix}$$

Avec:

$$B_1 = A_1 \cdots A_d$$

$$B_2 = A_2 \cdots A_d A_1$$

$$\vdots$$

$$B_k = A_k \cdots A_d A_1 \cdots A_{k-1}$$

$$\vdots$$

$$B_d = A_d A_1 \cdots A_{d-1}$$

Si on considère C_k , B_k est la matrice de transition sur C_k . C'est une chaîne de Markov régulière. Elle admet une unique loi de probabilité invariante μ_k concentrée sur C_k .

$$\begin{cases} \mu_k B_k &= \mu_k \\ \sum_{i \in C_k} \mu_k(i) &= 1 \end{cases}$$

⇔ Théorème:

Il existe une unique mesure de probabilité invariante sur C. Notons la μ . On a :

$$\mu = \frac{1}{d} \left(\mu_1, ..., \mu_d \right)$$

 μ_k : vecteur ligne indéxée par C_k .

Démonstration:

Montrons que $\mu = \frac{1}{d}(\mu_1, ..., \mu_d)$ est une mesure de probabilité invariante.

$$\mu\Pi = \frac{1}{d}(\mu_d A_d, \mu_1 A_1, ..., \mu_{d-1} A_{d-1})$$

 $\mu_k A_k$ est une mesure de probabilité sur C_{k+1} .

$$\mu_k A_k B_{k+1} = \mu_k A_k A_{k+1} ... A_d A_1 ... A_k$$
$$= \mu_k B_k A_k$$
$$= \mu_k A_k$$

Donc $\mu_k A_k = \mu_{k+1}$ par unicité de la loi de probabilité invariante concentrée sur C_{k+1} . Donc $\mu\Pi = \mu$. μ est donc une loi de probabilité invariante.

Prouvons à présent son unicité. Soit ν une mesure de probabilité invariante.

$$\nu = (\nu_1, ..., \nu_k, ..., \nu_d), \nu_k = (\nu_i)_{i \in C_k}$$

$$\sum_{i \in C_k} \nu_k(i) = \nu(C_k)$$

On a $\nu\Pi = \nu$ donc $\nu\Pi^d = \nu$. donc $\forall k, \nu_k B_k = \nu_k$. Donc :

$$\frac{\nu_k}{\nu(C_k)} = \mu_k \text{ (par unicité)}$$

Donc $\nu_k = \nu(C_k)\mu_k$.

Il reste à montrer que $\forall k,\, \nu(C_k)=\frac{1}{d},$ ie

 $\forall k, l, \nu(C_k) = \nu(C_l)$

car

$$\sum_{k=1}^{d} \nu(C_k) = 1$$

On a $\nu\Pi = \nu$, donc : :

$$\begin{array}{rcl} \nu_{d}A_{d} & = & \nu_{1} \\ \nu_{1}A_{1} & = & \nu_{2} \\ & \vdots \\ & \nu_{k}A_{k} & = & \nu_{k+1} \\ & (\nu_{k}A_{k})_{j} = \sum_{i \in C_{k}} \nu_{k}(i)a_{j}^{i} \\ & \sum_{j \in C_{k+1}} (\nu_{k}A_{k})_{j} = \sum_{i \in C_{k}} \nu_{k}(i) \sum_{j \in C_{k+1}} a_{j}^{i} = \sum_{i \in C_{k}} \nu_{k}(i) = \nu(C_{k}) \end{array}$$

Or, $\nu_k A_k = \nu_{k+1}$ et $\sum_{i \in C_{k+1}} \nu_{k+1}(i) = \nu(C_{k+1})$, donc

$$\forall k, \nu(C_k) = \nu(C_{k+1})$$

Ils sont donc tous égaux à $\frac{1}{d}$.

IRemarque:

- Pour cette loi invariante μ , chaque classe C_k a même probabilité $\mu(C_k) = \frac{1}{d}$
- Pour trouver μ , 2 méthodes :
- μ solution de $\mu\Pi = \mu$ et $\sum_{i \in C} \mu_i = 1$ On calcule $\Pi^d = diag(B_1, ..., B_d)$ et on résout $\mu_k B_k = \mu_k$, $\sum_{i \in C_k} \mu_k(i) = 1$. Puis $\mu = \frac{1}{d}(\mu_1, ..., \mu_d)$. Dans la démonstration, au lieu de supposer ν probabilité invariante, on aurait pu supposer

$$\begin{cases} \nu \text{ solution de } \nu \Pi = \nu \\ \sum \nu_i = 1 \end{cases}$$

Le reste est inchangé.

→ Théorème: ergodique

Supposons que la chaîne ne possède qu'une seule classe finale C. Soit μ_C la mesure invariante associée à cette classe. $\forall f: E \to \mathbb{R} \text{ (E fini)}:$

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow{p.s.} \int_{C} f d\mu_{C} = \sum_{i \in C} f(i) \mu_{C}(i)$$

Troisième partie

Processus de Markov à temps continu

1 Générateur infinitésimal

1.1 Générateur et équations backward - forward

 X_t : l'état du système à t. On admettra que Π_t est dérivable en 0, ie

 $\forall i, j, \ p_j^i(t)$ dérivale en t=0

♣ Définition:

On notera $A=\Pi_0'=[(p_j^i)'(0)]$. On appelle A le générateur infinitésimal de la chaîne. On notera $a_j^i=(p_j^i)'(0),\ A=[a_j^i]$ et $a_i=-a_i^i$.

Remarque:

- A n'est pas une matrice à termes positifs (elle n'est pas stochastique)
- L'analogue en temps discret est

$$\frac{\Pi_1 - \Pi_0}{1 - 0} = \Pi - I$$

IPropriété: des a

 $\forall i \neq j, \, a_i^i \geq 0, \, a_i^i \leq 0, \, \text{et}$

$$\sum_{j} a_{j}^{i} = 0$$

$$\Rightarrow a_{i} = \sum_{j \neq i} a_{j}^{i}$$

Démonstration:

$$i \neq j, \ \frac{p_j^i(t) - p_j^i(0)}{t} = p_j^i(t) \ge 0 \to a_j^i \ge 0$$

 $\forall t, \ \sum_i p_j^i(t) = 1 \Rightarrow \sum_i (p_j^i)'(0) = 0 = \sum_i a_j^i$

donc $a_i = -a_i^i = \sum_{j \neq i} a_j^i$.

⇔ Théorème: Backward et Forward

 Π_t est dérivable pour tout t et on a :

$$\Pi_t' = \Pi_t A \tag{forward}$$

$$\Pi_t' = A\Pi_t$$
 (backward)

et comme $\Pi_0 = I$, on a $\Pi_t = e^{tA}$ (donc la connaissance de A entraine la connaissance des $p_j^i(t)$, $\forall i, j, t$, et inversement).

Démonstration:

$$\frac{1}{h}(\Pi_{t+h} - \Pi_t) = \frac{1}{h}(\Pi_t \Pi_h - \Pi_t I) = \Pi_t \left(\frac{\Pi_h - \Pi_0}{h}\right) \xrightarrow[h \to 0]{} \Pi_t A$$

Donc Π_t dérivable en t et $\Pi_t' = \Pi_t A$. De même :

$$\frac{1}{h}(\Pi_{t+h} - \Pi_t) = \left(\frac{\Pi_h - \Pi_0}{h}\right) \Pi_t \xrightarrow[h \to 0]{} A\Pi_t$$

 e^{tA} est inversible.

$$(e^{tA})' = Ae^{tA} = e^{tA}A$$

donc solution de Backwar et Forward, avec $\Pi_0 = I$, donc par unicité des solutions, $e^{tA} = \Pi_t$.

Backward : $(p_j^i)'(t) = \sum_k a_k^i p_j^k(t)$: c'est le point d'arrivée qui est fixe pour p_j^k Forward : $(p_j^i)'(t) = \sum_k p_k^i(t) a_j^k$: c'est le point de départ qui est fixe dans les p_k^i .

1.2 Significations probabilistes des coefficients a_i^i du générateur infinitésimal

♣ Définition:

 $i \in E$ est absorbant si

$$\forall t, \ p_i^i(t) = 1$$

⇔ Théorème:

i est absorbant si et seulement si :

$$\forall j, a_j^i = 0 \Leftrightarrow a_i = 0$$

Démonstration:

Si i est absorbant, alors $p_i^i(t) = 1 \ \forall t$.

Donc $(p_i^i)'(0) = 0 = -a_i$. Or:

$$a_i = 0 \Leftrightarrow \sum_{i \neq j} a_j^i = 0 \text{ et } a_j^i \ge 0$$

 $\Leftrightarrow \forall j, a_j^i = 0$

Réciproquement, si $a_i = 0, \forall j, a_j^i = 0.$

$$(p_i^i)'(t) = \sum_i a_k^i p_i^k = 0$$

Donc $p_i^i(t) = cste = p_i^i(0) = 1 \ \forall t.$

♣ Définition: Instants de transitions

On dit qu'il y a transition s'il y a changement d'état.

$$\begin{array}{rcl} T_1 & = & \inf\{t>0, \ X_t \neq X_0\} \\ T_2 & = & \inf\{t>0, \ X_t \neq X_{T_1}\} \\ & \vdots \\ T_n & = & \inf\{t>0, \ X_t \neq X_{T_{n-1}}\} \\ & \vdots \\ \end{array}$$

Les T_i sont appelés instants de transition. (On pose $T_0 = 0$)

I Propriété: admise

$$\forall i, \mathbb{P}(T_n \le h | X_0 = i) = o(h)$$

⇒ Théorème: fondamental

- Si i non abosrbant, alors : 1. $\mathcal{L}(T_1|X_0=i)=\mathcal{E}(a_i)$ 2. $\forall j \neq i, \ \mathbb{P}(X_{T_1}=j|X_0=i)=\frac{a_j^i}{a_i}=\hat{p}_j^i$
- et X_{T_1} sont indépendants sachant que $X_0 = i$.

Démonstration:

i non absorbant.

On va modifir la chaîne de la façon suivante : on rend tous les états $i \neq j$ absorbants. On ne touche pas à la façon d'être en i ni d'en ressortir.

On note X_t^* la nouvelle chaîne, et Π_t^* et A^* les matrices correspondantes. $(a^*)_{i}^{k} = 0, \ \forall k \neq i, \ \forall j \text{ car ils sont absorbants.}$

Prouvons que $(a^*)^i_j=a^i_j\ \forall j.$ On a, si on part de i $X_t(\omega)=X^*_t(\omega)\ \forall t\leq T_2(\omega).$

$$\mathbb{P}(X_t = j | X_0 = i) = \underbrace{\mathbb{P}(X_t = j, t < T_2 | X_0 = i)}_{(1)} + \underbrace{\mathbb{P}(X_t = j, t \ge T_2 | X_0 = i)}_{(2)}$$

$$\begin{array}{l} (1) = \mathbb{P}(X_t^* = j | X_0 = i) \\ 0 \leq (2) \leq \mathbb{P}(T_2 \leq t | X_0 = i) = o(t) \\ \mathrm{Donc} \ p_j^i(t) = (p^*)_j^i(t) + o(t), \ \mathrm{donc} : \end{array}$$

$$a_j^i = (p_j^i)'(0) = (p_j^{*i})'(0) = (a_j^{*i})_j^i, \ \forall j \neq i$$

$$a_i = a_i^* = \sum_{j \neq i} a_j^i$$

Ainsi:

$$(p^*)_i^i(t) = \mathbb{P}(X_t^* = i | X_0^* = i) = \mathbb{P}(T_1 > t | X_0 = i)$$

$$\begin{cases} (p^*_i^i)'(t) &= \sum_k p^*_k^i(t) a_i^k = -a_i p^*_i^i(t) \\ p^*_i^i(0) &= 1 \end{cases}$$

$$\Rightarrow p^*_i^i(t) = \mathbb{P}(T_1 > t | X_0 = i) = e^{-a_1 t}$$

ie $\mathcal{L}(T|X_0=i)=\mathcal{E}(a_i)$.

 $j \neq i$.

$$(p^{*i}_{j})'(t) = \sum_{k} p^{*i}_{k}(t) a^{k}_{j}$$

 $= p^{*i}_{i}(t) a^{i}_{j}$
 $= a^{i}_{j} e^{-a_{i}t}$

 $p^{*i}_{j}(0) = 0$ Donc:

$$p^{*i}_{j}(t) = \int_{0}^{t} a_{j}^{i} e^{-a_{i}t} dt$$
$$= \frac{a_{j}^{i}}{a_{i}} (1 - e^{-a_{i}t})$$

Or,

$$p_{i}^{*j}(t) = \mathbb{P}(X_{t}^{*} = j | X_{0} = i)$$

$$\leq \mathbb{P}(T_{1} \leq t, X_{T} = j | X_{0} = i)$$

$$\leq \frac{a_{j}^{i}}{a_{i}} (1 - e^{-a_{i}t})$$

Si on prend $t \to +\infty$:

$$\mathbb{P}(X_{t_1} = j | X_0 = i) = \frac{a_j^i}{a_i}$$

$$\mathbb{P}(T_1 \le t, X_{T_1} = j | X_0 = i) = \mathbb{P}(T_1 \le t | X_0 = i) \mathbb{P}(X_{T_1} = j | X_0 = i)$$

d'où l'indépendance de X_{T_1} et T_1 sachant $X_0=i$.

1.3 Chaîne discrète de transition associée

$$\hat{X}_n = X_{T_n}.$$

Elle a pour matrice de transition

$$\hat{\Pi}_1 = \hat{\Pi} = (\hat{p}_i^i)$$

où si i est absorbant :

$$\hat{p}_i^i = 1, \hat{p}_j^i = 0, \ \forall j \neq i$$

Si i n'est pas absorbant :

$$\hat{p}_j^i = \frac{a_j^i}{a_i}, \ j \neq i, \ \hat{p}_i^i = 0$$

On représnte le diagramme de la chaîne initiale par celui de la chaîne discrète associée.

$$j \neq i, \ i \rightarrow j \text{ si } \hat{p}^i_j > 0 \text{ ie } a^i_j > 0$$

Il n'y a pas de boucles (sauf pour les états absorbants, mais ceux-ci sont indiqués par Δ). Ceci donne la classification habitulle des états : Erg, Tr, etc.

$$A = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 & C_5 \\ C_1 & A_1 & 0 & |0 & 0 & 0 \\ C_2 & 0 & A_2 & |0 & 0 & 0 \\ \hline - & - & |- & - & - \\ C_4 & C_5 & & | & \chi \end{pmatrix}$$

$$\hat{\Pi} = \begin{pmatrix} C_1 & C_2 & C_3 & C_4 & C_5 \\ C_1 & \hat{\Pi}_1 & 0 & | 0 & 0 & 0 \\ 0 & \hat{\Pi}_2 & | 0 & 0 & 0 \\ - & - & | - & - & - \\ C_5 & & & | & \hat{Q} \end{pmatrix}$$

$$t^n A^n = \begin{pmatrix} t^n A^n & 0 & \\ & \ddots & & 0 \\ 0 & & t^n A^n_k & \\ & & \rho_n & & t^n \chi^n \end{pmatrix}$$

$$e^{tA} = \sum_{n>0} \frac{t^n A^n}{n!} = \prod_t$$

$$\Pi_t = egin{pmatrix} e^{tA_1} & 0 & & & & \\ & \ddots & & & 0 & \\ 0 & & e^{tA_k} & & & \\ & R_t & & & e^{t\chi} \end{pmatrix}$$

⇒ Théorème:

$$Q = e^{t\chi} \xrightarrow[t \to +\infty]{} 0$$

Démonstration:

On prend i transitoire.

$$\mathbb{P}(X_t \in Tr | X_0 = i) = \sum_{j \in Tr} \mathbb{P}(X_t = j | X_0 = i)$$

C'est décroissant en t.

Or on sait que, par exemple, $Q_n = (Q_1)^n \to 0$ (en considérant la chaîne discrète X_n).

Donc $\mathbb{P}(X_t \in Tr|X_0 = i) \to 0$. Donc

$$Q_t = e^{t\chi} \xrightarrow[t \to +\infty]{} 0$$

Temps moyen passé dans les états transitoires

Soit s_j^i le temps moyen passé par j sachant qu'on est parti de i, i et j transitoire, et $D = [d_j^i]_{i,j \in Tr}$.

⇒ Théorème:

 χ est inversible et $D = -\chi^{-1}$.

Démonstration:

Soit D_j le temps passé en j.

$$D_{j} = \int_{0}^{+\infty} \mathbb{1}_{\{X_{t}=j\}} dt$$

$$d_{i}^{j} = \mathbb{E}(D_{j}|X_{0} = i)$$

$$= \mathbb{E}(\int_{0}^{+\infty} \mathbb{1}_{\{X_{t}=j\}} dt | X_{0} = i)$$

$$= \int_{0}^{+\infty} \mathbb{E}(\mathbb{1}_{\{X_{t}=j\}} | X_{0} = i) dt \text{ (Fubini)}$$

$$= \int_{0}^{+\infty} i(X_{t} = j | X_{0} = i) dt$$

$$= \int_{0}^{+\infty} p_{j}^{i}(t) dt$$

$$D = \int_{0}^{+\infty} e^{t\chi} dt$$

$$\chi D = \int_{0}^{+\infty} \chi e^{t\chi} dt$$

$$= [e^{t\chi}]_{0}^{+\infty}$$

$$= -I$$

Donc χ est inversible et $-\chi^{-1} = D$.

⇔ Théorème:

$$\forall i, j \in Tr, \ d_j^i = \hat{N}_j^i \times \frac{1}{a_j}$$

où
$$\hat{N} = (I - \hat{O})^{-1}$$

 \hat{N}^i_j : nombre de fois où l'on est passé par j sachant que l'on est parti de i. $\frac{1}{a_j}$: le temps moyen passé en j à chaque séjour (espérance de la loi exponentielle).

1.5 Probabilité de finir dans une classe finale donnée

i Soit b_j^i la probabilité que le premier état ergodique atteint soit j
 sachant que $X_0=i$, et $B=[b_j^i]_{i,j}$ $(i\in Tr, j\in Erg)$.

On sait déjà que (considérant la chaîne associée \hat{X}_n) :

$$B = NR$$

donc

$$\begin{array}{rcl} b^i_j & = & \displaystyle \sum_{k \in Tr} \hat{N}^i_k p^k_j \\ \\ & = & \displaystyle \sum_{k \in Tr} \hat{N}^i_k \frac{a^k_j}{a_k} \\ \\ & = & \displaystyle \sum_{k \in Tr} d^i_k a^k_j \\ \\ & = & \displaystyle (D\rho)^i_j \end{array}$$

⇔ Théorème:

$$B = \hat{N}\hat{R} = D\rho = -\chi^{-1}\rho$$

⇔ Théorème:

Soit C une classe finale. La probabilité de finir en C sachant $X_0=i$ est :

$$b_C^i = \sum_{j \in C} b_j^i$$

1.6 Classification de la chaîne

$$i \to j \Rightarrow \hat{p}_j^i > 0 \Leftrightarrow \frac{a_j^i}{a_i} > 0 \Leftrightarrow a_j^i > 0$$

i peut conduire à j s'il existe un chemin orienté allant de i) j :

$$\exists n; \ \mathbb{P}(X_{T_n} = j | X_0 = i) > 0$$

⇔ Théorème:

Soient $i,j\in E$. On a équivalence entre les trois points suivants : 1. $i\leadsto j$ 2. $\exists t>0;\ p^i_j(t)>0$

Démonstration:

Il est évident que $3 \Rightarrow 2 \Rightarrow 1$. Prouvons que $1 \Rightarrow 3$.

Supposons d'abord que $i \rightarrow j \ (a^i_j > 0).$ Montrons que $\forall t > 0, \, p^i_j(t) > 0.$

$$(p_i^i)'(t) = \sum_k p_k^i(t)a_i^k$$

$$= p_i^i(t)a_i^i + \sum_{k \neq i} p_k^i(t)a_i^k$$

$$R_i(t) \ge 0$$

$$\begin{cases} (p_i^i)'(t) &= -a_i p_i^i(t) + R_i(t) \\ p_i^i(0) &= 1 \end{cases}$$

$$\Rightarrow p_i^i(t) = \underbrace{e^{-a_i t}}_{>0} + \underbrace{\int_0^t e^{-a_i(t-s)} R_i(s) ds}_{>0}$$

Donc $\forall i, \ \forall t \geq 0, p_i^i(t) > 0.$

Maintenant, $\forall j \neq i$,

$$(p_{j}^{i})'(t) = \sum_{k} p_{k}^{i}(t)a_{j}^{k}$$

$$= p_{j}^{i}(t)a_{j}^{j} + \underbrace{a_{i}^{j}p_{i}^{i}(t)}_{>0} + \underbrace{\sum_{k \neq i,j} p_{k}^{i}(t)a_{j}^{k}}_{R_{i}(t) \geq 0}$$

$$\begin{cases} (p_{i}^{j})'(t) = -a_{j}p_{j}^{i}(t) + R_{i}(t) \\ p_{i}^{i}(0) = 1 \end{cases}$$

$$\Rightarrow p_{i}^{j}(t) = \int_{0}^{t} e^{-a_{i}(t-s)} \underbrace{R_{i}(s)}_{>0} ds$$

Donc $\forall i, \ \forall t \geq 0, p_i^i(t) > 0.$

Si $i \leadsto j$ en n transitions :

$$i_0 \rightarrow \dots \rightarrow i_{n-1} \rightarrow i_n = i$$

un tel chemin permet d'aller de i à j.

$$\begin{array}{ll} p_j^i(t) &=& \mathbb{P}(X_t=j|X_0=i)\\ &\geq & \mathbb{P}(X_t=i_n,X_{\frac{(n-1)t}{n}}=i_{n-1},...,X_{\frac{t}{n}}=i_1|X=i_0=i)\\ &\geq & \mathbb{P}(X_t=i_n|X_{\frac{(n-1)t}{n}}=i_{n-1})\times...\times\mathbb{P}(X_{\frac{t}{n}}=i_1|X=i_0=i) \text{ d'après la propriété de Markov homogène}\\ &\geq & \mathbb{P}(X_{\frac{t}{n}}=i_n|X_0=i_{n-1})\times...\times\mathbb{P}(X_{\frac{t}{n}}=i_1|X=i_0=i)\\ &> & 0 \end{array}$$

D'où $p_j^i(t) > 0$

Donc $i \leadsto j \Leftrightarrow \forall t > 0, \ p_j^i(t) > 0$ (car encore vrai si i absorbant ou si i=j).

Remarque : Il n'y a donc pas de phénomène cycliques en temps continu.

2 Chaîne régulière

♦ Définition:

En temps continu, une chaîne est dite régulière si elle n'a qu'une seule classe (donc finale), ie $\forall i, j \in E, i \leadsto j$

⇔ Théorème:

La chaîne est régulière si et seulement si :

$$\forall t > 0, \ \forall i, j, \ p_j^i(t) > 0$$

2.1 Loi de probabilité invariante

$$\mu$$
 est invariante \Leftrightarrow $(\mathcal{L}(X_0) = \mu \Rightarrow \forall t > 0, \ \mathcal{L}(X_t) = \mu)$, ie $\forall t, \mu \Pi_t = \mu$

⇔ Théorème:

Soit μ une loi de probabilité sur E.

$$\mu$$
 est invariante $\Leftrightarrow \mu A = 0$

Démonstration:

$$\forall t, \ \mu\Pi_t = \mu \Rightarrow (\mu\Pi_t)' = \mu\Pi_t' = 0$$

En particulier, pour t = 0, $\mu A = 0$

Réciproquement, si $\mu A = 0$, alors $\mu \Pi'_t = (\mu \Pi_t)' = \mu A \Pi_t = 0$, ie

$$\forall t, \mu \Pi_t = \mu \Leftrightarrow \mu A = 0$$

Donc μ est une loi de probabilité invariante

$$\Leftrightarrow \left\{ \begin{array}{rcl} \mu A & = & 0 \\ \forall i, \mu_i & \geq & 0 \\ \sum_i \mu_i & = & 1 \end{array} \right.$$

→ Théorème: fondamental pour les chaînes régulières (E fini)

Si la chaîne est régulière, alors elle possède une et une seule loi de probabilité invariante. Notons la μ . Celle-ci vérifie :

- 1. $\forall i, \mu_i > 0$
- 2. $\forall \mathcal{L}(X_0), \mathcal{L}(X_t) \to \mu$ exponentiellement vite 3. μ est l'unique solution de $\begin{cases} \mu A &= 0 \\ \sum_i \mu_i &= 1 \end{cases}$

i Rappel : Lemme en temps discret

 Π matrice stochastique, $p^* = \inf_{i,j} p_j^i$.

X : vecteur colonne : $(X^i)_i$.

$$Y = \Pi X$$

$$\begin{split} M_1 &= \sup_i Y^i, \, M_0 = \sup_i X^i, \\ m_1 &= \inf Y^i, \, m_0 = \inf X^i. \text{ On a alors :} \end{split}$$

$$(M_1 - m_1) \le (1 - 2p^*)(M_0 - m_0)$$

Démonstration:

Considérons la colonne j de Π_t :

$$C_{t,j} = [p_j^i(t)]_i$$

j sera fixé, on omettra donc l'indice j pour $C_{t,j}$.

$$C_t = \Pi_t C_0, \ C_0 = [\delta_i^i]_i$$

$$C_{t+s} = \Pi_t \pi_s C_0 = \Pi_t C_s$$

 $M_t = \sup_i p_i^i(t), m_t = \inf_i p_i^i(t), p^*(t) = \inf_{i,j} p_j^i(t).$

 $\forall t>0, p^*(t)>0$ (car la chaîne est régulière)

Choisissons un $t_0 > 0$.

$$t = kt_0 + r, \ 0 \le r \le t_0$$

$$\Pi_{kt_0 + r} = \Pi_{kt_0} \Pi_r \Rightarrow C_{kt_0 + r} = \Pi_{t_0} C_{(k-1)t_0 + r}$$

$$M_{kt_0+r} - m_{kt_0+r} \leq (1 - 2p^*(t_0))(M_{(k-1)t_0+r} - m_{(k-1)t_0+r})
\leq (1 - 2p^*(t_0))^k \underbrace{(M_r - m_r)}_{\leq 1}
\leq \left[(1 - 2p^*(t_0))^{\frac{1}{t_0}} \right]^{kt_0}
\leq \left[(1 - 2p^*(t_0))^{\frac{1}{t_0}} \right]^{kt_0+r} \times \frac{1}{(1 - 2p^*(t_0))^{\frac{r}{t_0}}}$$

Soit:

$$a = \sup_{0 \le r < t_0} \frac{1}{(1 - 2p^*(t_0))^{\frac{r}{t_0}}}$$
$$e^{-b} = (1 - 2p^*(t_0))^{\frac{1}{t_0}}$$

On a:

$$M_t - m_t = ae^{-bt}$$

Cela valant pour toute colonne j (implicite depuis le début).

On a m_t croissante et M_t décroissante, avec $0 < m_t \le M_t$. Donc m_t et M_t convergent vers une même limite. Notons μ_j cette limite.

$$\forall t, \ \ ^{\circ} < m_t \le \mu_i \le M_t$$

donc $\forall j, \ \mu_j > 0$.

De plus, $0 < m_t \le p_i^i(t) \le M_t$

$$\Rightarrow \forall i, j, |\mu_i - p_i^i(t)| \leq M_{t,i} - m_{t,i} \leq ae^{-bt}$$

donc $p_j^i(t) \to \mu_j$ exponentiellement vite.

Soit $\mu_0 = (\mathbb{P}(X_0 = j))_j$ la loi initiale, alors $\mu_t = (\mathbb{P}(X_t = j))_j$.

$$\mathbb{P}(X_t = j) = \sum_{i} \mu_0(i) p_j^i(t)$$

$$|\mathbb{P}(X_t = j) - \mu_j| \leq \sum_i \mu_0(i)|p_j^i(t) - \mu_j|$$

$$\leq \sum_i \mu_0(i) ae^{-bt}$$

 $\forall \mathcal{L}(X_0), \, \mathcal{L}(X_t) \to \mu$ exponenitellement vite.

Montrons pour finir que μ est une loi de probabilité invariante.

$$\mu = (\mu_i)_i$$
 vecteur ligne

$$\forall j, \ \mu_j > 0.$$

$$1 = \sum_{j} p_{j}^{i}(t) \to \sum_{j} \mu_{j} \Rightarrow \sum_{j} \mu_{j} = 1$$
$$\mu \Pi_{t} \xrightarrow[t \to +\infty]{} \mu$$
$$\mu \Pi_{t+s} \to \mu$$
$$\mu \Pi_{t} \Pi_{s} \xrightarrow[t \to +\infty]{} \mu \Pi_{s}$$

Donc $\forall s, \, \mu \Pi_s = \mu.$

Soit
$$\nu$$
 tel que $\begin{array}{ccc} \nu A & = & 0 \\ \sum_i \nu_i & = & 1 \end{array}$.

$$(\nu \Pi_t)' = \nu A \Pi_t = 0$$

$$\nu \Pi_t = \nu \Pi_0 = \nu \ \forall t$$

$$(\nu \Pi_t)_j = \sum_i \nu_i p_j^i(t) \to \sum_i \nu_i \mu_j = \mu_j$$

donc:

$$\nu = \nu \Pi_t \to \mu$$

donc $\nu = \mu$.

Soit ν une loi de probabilité invariante. Alors $\nu A=0$ et $\sum_i \nu_i=1 \Rightarrow \nu=\mu$. μ est donc l'unique loi de probabilité invariante sur E.

Si E n'a qu'une classe finale qu'on notera X, et μ_C la loi de probabilité invariante associée à C, alors $\forall f: E \to \mathbb{C}$:

$$\frac{1}{T} \int_0^T f(X_s) fs \xrightarrow{p.s.} \int_C f d\mu_C = \sum_{j \in C} f(j) \mu_C(j)$$

Quatrième partie

Processus d'entrée-sortie

On considère un système dans lequel des "objets" rentrent, y restent un certain temps aléatoire et en repartent. X_t : le nombre d'objets présents à t dans le système.

1 Cadre général

1.1 Hypothèses et paramètres, générateur infinitésimal

On peut distinguer deux cas:

- Capacité limité : $X_t \leq N$: espace d'états fini
- Capacité illimité : $X_t \in \mathbb{N}$

S: instant d'arrivée du premier objet après t=0

T: instant de départ du premier objet après t=0

Si 0 < k < N (ou k > 0 si illimité) : S et T sont indépendantes sachant que $X_0 = k$.

$$\mathcal{L}(S|X_0 = k) = \mathcal{E}(\alpha_k)$$
 $\qquad \mathcal{L}(T|X_0 = k) = \mathcal{E}(\beta_k)$

Les α_k et les β_k sont les paramètres du modèle.

$$\mathbb{P}(S = T | X_0 = k) = 0$$

 $U = S \cap T$: instant de première transition.

$$\mathcal{L}(Y|X_0 = k) = \mathcal{E}(\alpha_k + \beta_k)$$

donc $a_k = -a_k^k = \alpha_k + \beta_k$.

$$\hat{p}_{k+1}^k = \mathbb{P}(S < T | X_0 = k) = \frac{\alpha_k}{\alpha_k + \beta_k} = \frac{a_{k+1}^k}{a_k}$$

donc $a_{k+1}^k = \alpha_k$ et de même, $a_{k-1}^k = \beta_k$

Si
$$k = 0$$
: $S = U$

$$\mathcal{L}(S|X_0=0) = \mathcal{E}(\alpha_0)$$

$$a_0 = \alpha_0$$

$$\hat{p}_1^0 = 1 \Rightarrow a_1^0 = \alpha_0$$

Si k = N (capacité limitée) : T = U

$$\mathcal{L}(T|X_0=0) = \mathcal{E}(\beta_N)$$

$$a_N = \beta_N$$

$$\hat{p}_{N-1}^N = 1 \Rightarrow a_{N-1}^N = \beta_N$$

$$A = \begin{pmatrix} -\alpha_0 & \alpha_0 & 0 & \cdots & \cdots & 0 \\ \beta_1 & -(\alpha_1 + \beta_1) & \alpha_1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \beta_N & -\beta_N \end{pmatrix}$$

1.2 Classification, recherche de lois de probabilité invariante

On constate que $\forall k, l, k \leadsto l$. On a donc une seule classe.

On a une chaîne régulière (en temps continu).

- Si capacité limitée : chaîne régulière, espace d'état fini
- Si capacité illimitée, on a une chaîne régulière dans un espace d'état inifini dénombrable.

La loi de probabilité invariante existe et est unique dans le cas fini.

$$\mu \text{ doit v\'erifier } \begin{cases} \mu A &= 0 \\ \sum_i \mu_i &= 1 \end{cases}$$

$$\mu = (x_0....x_N)$$

$$-\alpha_0 x_0 + \beta_1 x_1 = 0$$

$$\alpha_0 x_0 - (\alpha_1 + \beta_1) x_1 + \beta_2 x_2 = 0$$

 $\alpha_1 x_1 - (\alpha_2 + \beta_2) x_2 + \beta_3 x_3 = 0$

 $x_1 = \frac{\alpha_0}{\beta_1} x_0$ $x_2 = \frac{\alpha_0 \alpha_1}{\beta_1 \beta_2} x_0$... $x_k = \frac{\alpha_0 \dots \alpha_{k-1}}{\beta_1 \dots \beta_k} x_0$

$$\begin{split} E &= \{0,...,N\} \text{ ou } E = \mathbb{N}.\\ \text{Soit } C &= 1 + \sum_{k \in E} \frac{\alpha_0...\alpha_{k-1}}{\beta_1...\beta_k}. \text{ On doit avoir } x_0C = 1. \end{split}$$

— Si E fini, alors $C < +\infty$ et $x_0 = \frac{1}{C}$.

$$x_k = \mu_k = \frac{1}{C} \frac{\alpha_0 ... \alpha_{k-1}}{\beta_1 ... \beta_k}$$

et $\mathcal{L}(X_0)$, $\mathcal{L}(X_t) \to \mu$ exponentiellement vite.

— Si $E = \mathbb{N}$,

- Si $C = +\infty$, il n'existe pas de loi de probabilité invariante. Par contre, il existe une unique mesure (σ-finie) invariante (à une constante multiplicative près) μ donnée par $\mu_k = \frac{\alpha_0, ..., \alpha_{k-1}}{\beta_1 \beta_k}$. On a ici un phénomène d'explosion.
- Si $C < +\infty$, alors il existe une et une seule loi de probabilité invariante μ donnée par $\mu_k = \frac{1}{C} \frac{\alpha_0 \dots \alpha_{k-1}}{\beta_1 \dots \beta_k}$. On montre qu'alors $\mathcal{L}(X_t) \to \mu$ et le théorème ergodique reste vrai dans ce cas.

2 Processus de Poisson

On considère une suite de phénomènes survenant à des instants aléatoires $T_0 = 0 < T_1 < \dots < T_n < \dots$ avec $T_n \xrightarrow[n \to +\infty]{} +\infty$

❖ Définition: Processus de comptage associé

 N_t : le nombre de phénomène survenus dans l'intervalle de temps]0,t] $(N_0=0)$ On suppose que N_t ne croit que par sauts de 1 (ie 2 phénomènes ne peuvent être simultanés).

Les lois de N_t et de T_k sont liées.

$$\mathbb{P} = (N_t \le k) = \mathbb{P}(T_k \ge t)$$

2.1 Hypothèse des processus de Poisson

On suppose que N_t (processus de comptage) :

- 1. est à accroissements indépendants : $N_t N_s \perp \!\!\! \perp (N_u, u \leq s)$ (ie le nombre d'évènements surevnus entre s et t est indépendant de ce qui s'est passé avant s)
- 2. est à avancement stationnaire : $\mathcal{L}(N_t N_s)$ ne dépend que de la durée t s.

$$\mathcal{L}(N_t - N_s) = \mathcal{L}(N_{t-s} - N_0) = \mathcal{L}(N_{t-s})$$

⇔ Théorème:

Sous les hypothèses précédentes, il existe $\lambda > 0$ tel que :

$$\forall t, \ \mathcal{L}(N_t) = \mathcal{P}(\lambda t)$$
 (Loi de Poisson de paramètre λt)

$$\forall k \in \mathbb{N}, \ \mathbb{P}(N_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

 $\mathbb{E}(N_t) = \lambda t$: nombre moyen d'évènements surevnus dans un intervalle de temps de longueur t

Démonstration:

Posons $p_k(t) = \mathbb{P}(N_t = k)$. • Calcul de $p_0(t)$:

$$\mathbb{P}(N_{t+h} = 0) = \mathbb{P}(N_{t+h} - N_t = 0, N_t = 0)$$

Par indépendance :

$$\mathbb{P}(N_{t+h} = 0) = \mathbb{P}(N_{t+h} - N_t = 0)\mathbb{P}(N_t = 0)$$

Donc $\forall s, t > 0$:

$$\begin{array}{cc} p_0(t+s) = p_0(t)p_0(s) \\ p_0(t) \text{ décroit} \end{array} \Leftrightarrow \exists \lambda > 0; p_0(t) = e^{-\lambda t}$$

• Calcul de $p_k(t)$, $k \ge 1$: On admettra que $\mathbb{P}(N_h \ge 2) = o(h)$ $p_k(t+h) = \mathbb{P}(N_{t+h} = k)$ (avec h petit).

$$\begin{aligned} p_k(t+h) &=& \mathbb{P}(N_t = k, N_{t+h} - N_t = 0) + \mathbb{P}(N_t = k-1, N_{t+h} - N_t = 1) + \sum_{k \le k-2} \mathbb{P}(N_t = j, N_{t+h} - N_t = k-j) \\ &=& \mathbb{P}(N_t = k) \mathbb{P}(N_{t+h} - N_t = 0) + \mathbb{P}(N_t = k-1) \mathbb{P}(N_{t+h} - N_t = 1) + o(h) \\ &=& p_0(h) p_k(t) + p_1(h) p_{k-1}(t) + o(h) \end{aligned}$$

Or,
$$p_0(h) + p_1(h) + \mathbb{P}(N_h \ge 2) = 1$$

 $e^{-\lambda h} + p_A(h) + o(h) = 1$
 $1 - \lambda h + o(h) + p_1(h) + o(h) = 1$

$$\Rightarrow \left\{ \begin{array}{lcl} p_1(h) & = & \lambda h + o(h) \\ p_0(h) & = & 1 - \lambda h + o(h) \end{array} \right.$$

$$p_k(t+h) = (1 - \lambda h)p_k(t) + \lambda h p_{k-1}(t) + o(h)$$

$$p_k(t+h) = (1 - \lambda h)p_k(t) + \lambda hp_{k-1}(t) + o(h)$$

$$\frac{1}{h}(p_k(t+h) - p_k(t)) = -\lambda p_k(t) + \lambda p_{k-1}(t) + o(1)$$

$$p_k'(t) = \lambda(-p_k(t) + p_{k-1}(t), \ k \ge 1$$
$$p_0(t) = e^{-\lambda t}$$

Variation de la constante : posons $p_k(t) = q_k(t)e^{-\lambda t}$

$$p'_{k} = q'_{k}e^{-\lambda t} - \lambda q_{k}e^{-\lambda t}$$

$$= q'_{k}e^{-\lambda t} - \lambda p_{k}$$

$$= -\lambda p_{k} + \lambda q_{k-1}e^{-\lambda t}$$

$$\Rightarrow \begin{cases} q'_k = \lambda q_{k-1}, \ q_k(0) = 0 \\ q_0 = 1 \end{cases}$$

$$q_1(t) = \lambda t \ q_k(t) = \int_0^t q_{k-1}(s) ds = \frac{(\lambda t)^k}{k!}$$

D'où
$$\mathbb{P}(N_t = k) = p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \mathcal{L}(N_t) = \mathcal{P}(\lambda t)$$

D'où $\mathbb{P}(N_t = k) = p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \mathcal{L}(N_t) = \mathcal{P}(\lambda t).$ Donc le nombre moyen d'évenements survenant pendant une durée t est $\mathbb{E}(N_t) = \lambda t$

 $\forall n, \mathcal{L}(T_n) = \gamma(\lambda, n)$: loi de la somme de n variables aléaoitres suivant une loi $\mathcal{E}(\lambda)$ indépendantes.

Densité :
$$f_n(t) = \frac{\lambda^n t^{n-1}}{(n-1)!} e^{-\lambda t}$$

$$\mathbb{E}(T_n) = \frac{n}{\lambda}$$

Démonstration:

$$\mathbb{P}(T_1 > t\mathbb{P}(N_t = 0) = e^{-\lambda t}$$

Donc $\gamma(\lambda, 1) = \mathcal{E}(\lambda)$.

$$\mathbb{P}(T_n > t) = \mathbb{P}(N_t < n)$$

$$= \sum_{k=0}^{n-1} \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= 1 - F_n(t)$$

En dérivant, on trouve $f_n = F'_n$

Soit $U_n=T_n-T_{n-1}$ $(T_0=0)$ la durée entre deux arrivées. Alors les $(U_n)_n$ sont indépendants et de même

Démonstration:

Pour simplifier, on ne le fait que pour U_1 et U_2 . $t_1 > 0$, $t_2 > 0$, $t_3 > 0$, $t_4 > 0$ (petits).

A reprendre.

3 Répartition poissonnienne

On considère un espace mesure (E, \mathcal{B}, μ) et une répartition aléatoire de points sur cet ensemble.

Hypothèses : Soit $A \in \mathcal{B}$

 $\overline{N_A}$: nombre de points dans A. On suppose:

- les accroissements indépendants : Si $A, B \in \mathcal{B}$ et $A \cap B = \emptyset$, alors $N_A \perp \!\!\!\perp N_B$.
- les accroissements stationnaires : la loi de N_A ne dépendant que de la mesure de A $\mu(A)$

Théorème

 $\exists \lambda > 0, \, \forall A \in \mathcal{B}, \, \mathrm{si} \, \, \mu(A) < \infty :$

$$\mathcal{L}(N_1) = \mathcal{P}(\lambda \mu(A))$$

Démonstration:

 $A_0 = \emptyset$. Considérons une famille $(A_r)_r$ de parties mesurables emboitées.

$$r < s \Rightarrow A_r \subset A_s$$

avec $\mu(A_r) = r$.

 N_r : nombre de points de A_r , $N_0 = 0$.

Si $r < s, N_s - N_r$ est le nombre de points de $A_s \backslash A_r$, indépendant de N_r .

La loi de $N_r - N_s$ dépendant de la mesure de $A_s \setminus A_r$, donc de r - s.

$$\Rightarrow \mathcal{L}(N_r) = \mathcal{P}(\lambda r)$$

Si A a pour mesure $\mu(A)$:

$$\mathcal{L}(N_A) = \mathcal{L}(N_{A_n}) = \mathcal{P}(\lambda r) = \mathcal{P}(\lambda \mu(A))$$