

DATA SOURCE & & INFORMATION

- https://www.kaggle.com/mirichoi0218/insurance
- Data of patients of Health insurance company at USA
- Content:
 - · age: age of primary beneficiary
 - sex: insurance contractor gender, female, male
 - bmi: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9
 - children: Number of children covered by health insurance / Number of dependents
 - · smoker: Smoking
 - region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.
 - charges: Individual medical costs billed by health insurance

OBJECTIVES

Build a Machine Learning Model to:

- To analyse the individual medical cost billed by Health Insurance
- To identify the individual with the risk of having higher medical cost
- To identify the factors that influence the increasing of medical cost
- To predict the medical cost

PROCESS WORKFLOWS

EDA AND DATA PREPARATION

- Import the required libraries
- Load data to Jupiter notebook

Importing required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
%matplotlib inline

df = pd.read_csv("insurance.csv")
df.head(10)

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
6	46	female	33.440	1	no	southeast	8240.58960
7	37	female	27.740	3	no	northwest	7281.50560
8	37	male	29.830	2	no	northeast	6406.41070
9	60	female	25.840	0	no	northwest	28923.13692

EDA AND data PREPARATION

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
              Non-Null Count Dtype
    Column
                             int64
              1338 non-null
 0
    age
                             object
 1
              1338 non-null
    sex
 2
    bmi
              1338 non-null
                             float64
    children 1338 non-null
                             int64
    smoker
              1338 non-null
                            object
    region 1338 non-null object
    charges 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

EDA AND DATA PREPARATION

. Data Cleaning and Data Description

M	<pre>df.isnull().sum()</pre>				
]:	age	0			
	sex	0			
	bmi	0			
	children	0			
	smoker	0			
	region	0			
	charges	0			
	dtype: int64				

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

Distribution by bmi

L1 Linda, 3/5/2021

- Smoker has double medical cost than non smoker
- Medical cost increases with age

 Family with more children have less medical cost

• Family with more children is mostly non smoker

CORRELATIONS MATRIX

DATA PREPROCESSING

```
from sklearn.model_selection import train_test_split
from sklearn.import linear_model
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score,mean_squared_error
```

Train Test split

```
x = df.drop(['charges','region'], axis = 1)
y = df.charges

x_train,x_test,y_train,y_test = train_test_split(x,y, random_s)
```

```
#sex
le = LabelEncoder()
le.fit(df.sex.drop_duplicates())
df.sex = le.transform(df.sex)
# smoker or not
le.fit(df.smoker.drop_duplicates())
df.smoker = le.transform(df.smoker)
#region
le.fit(df.region.drop_duplicates())
df.region = le.transform(df.region)
```

DATA
MODELLING
AND
EVALUATION

Multiple Linear Regression

Polynomial Regression

Decision Tree Regression Random Forest Regressor

TRAINING AND TESTING THE MODEL

```
# Import the linear regression algorithm
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
# Train the model
regressor.fit(X_train, Y_train)
```

|: LinearRegression()

Step 5: Testing the model

compare_at

	Desired Output (Actuals)	Predicted Output
1070	39871.70430	33030.636888
1071	13974.45555	14896.133844
1072	1909.52745	3461.428562
1073	12096.65120	12822.839227
1074	13204.28565	9924.698121
	662	322
1333	10600.54830	12207.480928
1334	2205.98080	3633.988075
1335	1629.83350	4186.901346
1336	2007.94500	1090.696620
1337	29141.36030	37007.147704

OCO ratte to O saltimana

EVALUATE THE MODEL

```
# The coefficients
 print('Coefficients: \n', regressor.coef , regressor.intercept # Evaluate the model's training score and test score
                                                               print("Regression model's training score = {:.2f}".format(regr
                                                               print("Regression model's test score
                                                                                                      = {:.2f}".format(regr
 # The mean squared error
 print('Mean squared error: %.2f' % mean squared error(Y test,
                                                               Regression model's training score = 0.75
 # The coefficient of determination: 1 is perfect prediction
                                                               Regression model's test score
                                                                                                = 0.76
 print('Coefficient of determination: %.2f' % r2 score(Y test,
 # Two alternate string formatting methods
 # print('Coefficient of determination: {:.2f}'.format(r2 score
 # print(f'Coefficient of determination: {r2_score(y_test, y_p)}
                                                                own pred = regressor.predict(X test.iloc[[0]])
                                                                print("My target value is =", str(own pred[0]))
                                                                print("My observed value is =", str(Y test.iloc[0]))
 Coefficients:
      259.49028582
                                      439.16764319
                                                      126.9011
                      339.18895532
                                                                My target value is = 33030.63688844903
 6943
                                                                My observed value is = 39871.7043
     -126.90116943 -11826.71661859 11826.71661859
                                                     709.22039
 03
     237.55301427 -410.06788835
                                    -536.70551623] -873.153464
 6129967
 Mean squared error: 37175951.41
 Coefficient of determination: 0.76
```

MODEL EVALUATIONS

Linear regression ¶

```
N l reg = linear model.LinearRegression()
   l reg.fit(x train,y train)
   y train pred = l reg.predict(x train)
   y test pred = l reg.predict(x test)
   1 reg.score(x test,y test)
```

191]: 0.7584847182677396

Decision Tree Regressor

```
: ► dt regressor = DecisionTreeRegressor(random state=0)
      cross val score(dt regressor, x train, y train, cv=10).mean()
```

293]: 0.6794472643971593

Polynomial Regression

```
M degree=2
   polyreg=make pipeline(PolynomialFeatures(degree),LinearRegress
   polyreg.fit(x train,y train)
   v train pred = polyreg.predict(x train)
   y test pred = polyreg.predict(x test)
   polyreg.score(x test,y test)
```

292]: 0.8016813635485952

Random Forest Regressor

```
1]: N Rf = RandomForestRegressor(n_estimators = 100,
                                      criterion = 'mse',
                                      random state = 1,
                                      n jobs = -1)
       Rf.fit(x train,y train)
       Rf train pred = Rf.predict(x train)
       Rf test pred = Rf.predict(x_test)
       r2 score(y test, Rf test pred)
```

[294]: 0.8580683271274047

FUTURE OPPORTUNITIES

- More data to use with another model evaluation
- Remove the outlier
- Other variables to analyse such as alcohol consumption, high blood pressure, work environment and stress

CONCLUSIONS

- Smoker is unhealthy and has higher risk to get serious disease
- Polynomial Regression and Random Forest Regressor has higher score prediction result
- Obesity has impact to have bad health and increase the medical cost
- Encourage to have healthy live styles by daily exercises, healthy diet, work life balance and happy life
- Higher medical insurance premium charges according to the age, healthy diet, and healthy life style

