GestSpoof: Gesture Based Spatio-Temporal Representation Learning For Robust Fingerprint Presentation Attack

Detection

Bhavin Jawade, Shreeram Subramanya, Atharv Dabhade, Srirangaraj Setlur, Venu Govindaraju {bjawade, sgudemar, atharvda, setlur, govind}@buffalo.edu

Download GestSpoof Dataset

buffalo.edu/cubs/research/datasets/gestspoofdataset.html

Motivation:

- Fingerprint spoof attacks are highly common and pose a significant threat to biometric security systems.
- Existing methods primarily focus on image classification, ignoring the potential benefits of temporal learning.
- The differences in the elastic properties of real versus fake fingerprints can be better detected through motion-induced gestures.
- Widely used datasets lack temporal information, prompting the creation of a new dataset to explore distortion-based spoof detection.

Gesture Based Spoof Detection:

Intentional motion amplifies elastic properties, highlighting differences in fingerprint distortion between real and spoof due to friction, with green and blue regions indicating relative displacement and red showing minutia position changes.

Different types of gestures incorporated in GestSpoof

(a) and (b) show existing fingerprint spoof detection using static image classification, while (c) and (d) show our proposed approach using **gesture-induced distortions** to amplify elastic differences.

GestSpoof Dataset:

Dataset	# Fingers	# Real	# Fake	Temporal	Gesture	Materials Used
LivDet 2009 [25]	254	5500	5500	Х	Х	Gelatine, Silicone and Play-Doh
LivDet 2011 [30]	200	3000	3000	Х	Х	Gelatine, Silgum, Ecoflex
LivDet 2013 [13]	225	8000	8000	Х	Х	Gelatine, Modasil, Ecoflex
LivDet 2015 [26]	100	4500	5948	Х	Х	Body Double, EcoFlex, Wood Glue
LivDet 2017 [27]	150	8099	9685	Х	X	Body Double, Liquid Ecoflex, Body Double
LivDet 2019 [28]	-	6029	6936	Х	Х	Gelatine, Wood Glue, Latex
LivDet 2021 [5]	66	10700	11740	Х	Х	GLS20, Body Double, Mix 1
PB Spoof-Kit [7]	-	1000	900	Х	Х	Crayola, Wood glue, 2D print
MSU-FPAD [7]	-	9000	10500	Х	X	2D Print-Matte Paper, 2D Print (Transparency)
ATVS-FFp [12]	68	816	816	Х	Х	Silicone, Play-Doh
Tsinghua [18]	60	300	470	✓	Х	Silicone
BSL [2]	90	900	400	✓	Х	Silicone, gelatin, latex, wood glue
T. Chugh et.al [8]	685	26650	32910	✓	X	Ecoflex, Crayola Model Magic, Dragon Skin
GestSpoof	184	920 (videos) 132466 (frames)	2760 (videos) 478194 (frames)	✓	✓	Body Double, EcoFlex, Gelatine

Comparison against existing datasets

Sample frames from GestSpoof dataset for different types of spoof materials

Property	Count
Number of Subjects	23
Number of Unique Fingers	184
Number of Videos Real	920
Number of Videos Fake	2760
Number of Spoof Materials	3
Number of Intentional Motions	5
Number of Frames	610660

The 18th IEEE International Conference on

Automatic Face and

Gesture Recognition

Summary of GestSpoof dataset statistics.

Spatial-Temporal Representation Learning:

Performance and Results:

Method	F1 Score	TAR@FAR=1%	APCER@BPCER=1%
Sta	tic Image B	ased Approaches (1	10 Frame)
	Hold ou	ıt spoof - Bodydoub	ole
ResNet 50 [14]	66.24%	49.93%	86.25%
ViT Base [10]	73.68%	42.99%	73.75%
	Hold	out spoof - Ecoflex	
ResNet 50 [14]	65.22%	50.21%	77.50%
ViT Base [10]	61.63%	46.88%	56.67%
	Hold	out spoof - Gelatin	
ResNet 50 [14]	64.88%	49.79%	88.75%
ViT Base [10]	67.94%	46.19%	70.83%
Sta	tic Image B	ased Approaches (1 Frame)
	Hold ou	ıt spoof - Bodydoub	ole
ResNet 50 [14]	71.93%	47.57%	90.83%
ViT Base [10]	73.19%	25.24%	96.67%
	Hold	out spoof - Ecoflex	3
ResNet 50 [14]	70.50%	46.88%	97.50%
ViT Base [10]	66.07%	43.34%	79.17%
	Hold	out spoof - Gelatin	
ResNet 50 [14]	71.18%	47.16%	86.67%
ViT Base [10]	73.17%	43.41%	86.67%
	Dynamic V	video Based Appro	aches
	Hold ou	ıt spoof - Bodydoub	ole
VideoModel	79.23%	54.29%	61.50%
	Hold	out spoof - Ecoflex	
VideoModel	74.67%	51.46%	71.23%
	Hold	out spoof - Gelatin	
VideoModel	78.85%	52.78%	67.11%

Hold out Performance - The performance of the models on unseen (unknown) spoof types, where the model is trained on two spoof types and evaluated on all three.

Ablation Study:

Ablation Setting		F1 Score	TAR@FAR	APCER@BPCER
Ridge	Min	Tri Score	IAKETAK	AICERWBICER
\checkmark		79.34%	49.76%	72.80%
√	✓	83.34%	50.83%	61.48%

Conclusion:

Proposed a novel fingerprint spoof detection approach using gesture-induced elastic distortions and released the first motion-based fingerprint spoof dataset "GestSpoof."

Presented baseline results for static image and dynamic video-based spoof detection, and introduced a **novel spatio-temporal** approach combining ridge and minutiae features.

Future works can use **GestSpoof** to benchmark new methods and that this gesture-augmented approach can be integrated into existing smartphones to enhance security without hardware changes.

Acknowledgement

This work was conducted at the Center for Unified Biometrics and Sensors (CUBS) at the University at Buffalo and was supported by the Center for Identification Technology Research (CITeR) and the National Science Foundation through grant #1822190.

