MÉTODOS NUMÉRICOS 3006907 NOTAS DE CLASE - SEMANA 07 INTERPOLACIÓN DE TRAZADORES CÚBICOS

Una forma de eliminar las oscilaciones al aumentar el número de puntos al interpolar una nube de puntos o al tomar muchos nodos para aproximar una función en un intervalo, es usar la interpolación fragmentaria o aproximación fragmentaria.

Consideremos n+1 puntos distintos $\{(x_i, y_i)\}_{i=0}^n$ donde $x_0 < \cdots < x_n$. La interpolación fragmentaria consiste en encontrar una función S definida en $[x_0, x_n]$ que en cada subintervalo $[x_i, x_{i+1}]$ tiene una forma particular.

\star Interpolación lineal a trozos

El interpolante lineal a trozos S se construye por medio de las rectas $S_j(x)$ que pasan por los puntos (x_j, y_j) y (x_{j+1}, y_{j+1}) , $j = 0, \ldots, n-1$.

Ejemplo Hallar el interpolante lineal a trozos para los valores de la tabla

x_j	1	3	5	9
y_j	2	4	3	8

<u>Solución</u>: Calculamos la pendiente de la recta que pasa por los puntos (x_j, y_j) y (x_{j+1}, y_{j+1}) , j = 0, 1, 2, encontramos las ecuaciones de las rectas con la ecuación punto-pendiente y obtenemos el interpolante lineal a trozos.

$$S(x) = \begin{cases} x+1, & x \in [1,3], \\ \frac{1}{2}(11-x), & x \in (3,5], \\ \frac{1}{4}(5x-13), & x \in (5,9]. \end{cases}$$

El interpolante lineal a trozos es una curva continua en $[x_0, x_n]$ y no diferenciable en los nodos interiores $\{x_i\}_{i=1}^{n-1}$, por lo tanto, buscamos un interpolante polinomial fragmentario que en los nodos interiores sea diferenciable.

* Interpolación cúbica o Spline cúbico

La interpolación fragmentaria más común es la que utiliza polinomios cúbicos y recibe el nombre de interpolación de spline cúbicos y en este caso podemos pedir que $S \in C^2[x_0, x_n]$.

Definición. Dada una función f definida en [a,b] y un conjunto de n+1 nodos $a=x_0 < \cdots < x_n = b$, un interpolante de spline cúbico S para f es una función a trozos definida en $[x_0,x_n]$ por

$$S(x) = \begin{cases} S_0(x), & x \in [x_0, x_1], \\ S_1(x), & x \in [x_1, x_2], \\ \vdots & & \\ S_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$$

que cumple las siguientes condiciones:

a. S_j es un polinomio de grado menor o igual a 3 definido en el intervalo $[x_j, x_{j+1}]$ para $j = 0, \ldots, n-1$

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$
.

b. S es interpolante: $S(x_i) = f(x_i)$ para j = 0, ..., n.

c. S es <u>continuo</u>: $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ para j = 0, ..., n-2.

d. S' es <u>continua</u>: $S'_{i+1}(x_{j+1}) = S'_{i}(x_{j+1})$ para j = 0, ..., n-2.

e. S'' es <u>continua</u>: $S''_{i+1}(x_{j+1}) = S''_{i}(x_{j+1})$ para j = 0, ..., n-2.

Observaciones Notemos que de las condiciones:

- a. los polinomios S_j son todos de grado menor o igual a 3, cada uno tiene 4 (incógnitas) coeficientes y generan un conjunto de 4n coeficientes,
- b. S es una función interpolante de la tabla, lo cual proporciona n+1 ecuaciones, por los n+1 nodos,
- c. la continuidad de S aporta n-1 ecuaciones al sistema de ecuaciones, ya que S es continua en cada tramo por ser polinomica, así que la continuidad recae sobre los n-1 nodos interiores,
- d. la continuidad de S' aporta también n-1 ecuaciones al sistema de ecuaciones y
- e. la continuidad de S'' aporta las últimas n-1 ecuaciones al sistema de ecuaciones.

En total hay 4n-2 ecuaciones y 4n incógnitas, lo que deja dos grados de libertad, esto es, nos faltan dos condiciones **extra** para tener un sistema cuadrado. Se acostumbra establecer las dos ecuaciones faltantes a partir de restricciones en los extremos del intervalo.

Definición (cont). S cumple una de las siguientes condiciones de frontera:

- *Naturales*: $S''(x_0) = S''(x_n) = 0$.
- Sujetas: $S'(x_0) = f'(x_0)$ y $S'(x_n) = f'(x_n)$.
- Curvatura dada en los extremos: $S''(x_0) = f''(x_0)$ y $S''(x_n) = f''(x_n)$.
- Terminación Parabólica: S" es constante en los intervalos extremos
- Extrapolada: S" se extrapola en los intervalos extremos

Ejemplo Halle los valores de a, b, c y d para que la función siguiente sea un spline cúbico sujeta para una función f en [1,3] que cumple la condición f'(1) = f'(3)

$$S(x) = \begin{cases} 3(x-1) + 2(x-1)^2 - (x-1)^3, & 1 \le x < 2, \\ a + b(x-2) + c(x-2)^2 + d(x-2)^3, & 2 \le x \le 3. \end{cases}$$

Solución: Verifiquemos que S cumple las condiciones (a. hasta la e.) de la definición de spline

a. Si denotamos

$$S_0(x) := 3(x-1) + 2(x-1)^2 - (x-1)^3$$
 y $S_1(x) := a + b(x-2) + c(x-2)^2 + d(x-2)^3$

 S_0 y S_1 son polinomios de grado menor o igual a 3.

b. No hay función f conocida, así que solo podemos decir que S debe interpolar la tabla

x_j	1	2	3
$y_j = f(x_j)$	0	a	a+b+c+d

c. Continuidad de S: se debe cumplir que $S_0(2) = S_1(2)$

$$3 + 2 - 1 = a \quad \to \quad \boxed{a = 4}$$

d. Continuidad de S': se debe cumplir que $S'_0(2) = S'_1(2)$

$$S'_0(x) := 3 + 4(x - 1) - 3(x - 1)^2 S'_1(x) := b + 2c(x - 2) + 3d(x - 2)^2$$
 \Rightarrow $S'_0(2) = 3 + 4 - 3 S'_1(2) = b$ \Rightarrow $b = 4$

e. Continuidad de $S^{\prime\prime}$: se debe cumplir que $S_0^{\prime\prime}(2)=S_1^{\prime\prime}(2)$

$$\left. \begin{array}{l} S_0''(x) := 4 - 6(x - 1) \\ S_1''(x) := 2c + 6d(x - 2) \end{array} \right\} \quad \Rightarrow \quad \left. \begin{array}{l} S_0''(2) = 4 - 6 \\ S_1''(2) = 2c \end{array} \right\} \quad \Rightarrow \quad \left[c = -1 \right]$$

f. Spline cúbico sujeto: esto es S'(1)=f'(1) y S'(3)=f'(3), nos dicen que f'(1)=f'(3), así

$$S'(1) = S'(3) \Leftrightarrow S'_0(1) = S'_1(3) \Leftrightarrow 3 = 4 + 2(-1) + 3d \Leftrightarrow \boxed{d = \frac{1}{3}}$$

Construcción del spline cúbico

Queremos construir de una manera eficaz el spline cúbico para la función f en los nodos $\{x_j\}_{j=0}^n$

$$S(x) = \begin{cases} S_0(x) := a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3, & x \in [x_0, x_1], \\ S_1(x) := a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3, & x \in [x_1, x_2], \\ \vdots & & & \\ S_j(x) := a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3, & x \in [x_j, x_{j+1}] \\ S_{j+1}(x) := a_{j+1} + b_{j+1}(x - x_{j+1}) + c_{j+1}(x - x_{j+1})^2 + d_{j+1}(x - x_{j+1})^3, & x \in [x_{j+1}, x_{j+2}] \\ \vdots & & \vdots \\ S_{n-1}(x) := a_{n-1} + b_{n-1}(x - x_{n-1}) + c_{n-1}(x - x_{n-1})^2 + d_{n-1}(x - x_{n-1})^3, & x \in [x_{n-1}, x_n]. \end{cases}$$

• Denotamos por h_j la longitud de cada subintervalo $[x_j, x_{j+1}], j = 0, ..., n-1$ y las dos primeras derivadas de cada S_j estan dadas por

• De la condición de interpolación

$$a_j = S_j(x_j) = f(x_j)$$
 $j = 0, \dots, n-1, \mathbf{n}, \Rightarrow \boxed{a_j = f(x_j)}$ $j = 0, \dots, n-1, \mathbf{n}$

donde a_n aunque no es incógnita, la asociamos al valor de la función f en x_n .

• De la continuidad de $S: S_j(x_{j+1}) = S_{j+1}(x_{j+1})$ para $j = 0, \dots, n-2$, así

$$a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 = a_{j+1}, \quad j = 0, \dots, n-2, n-1,$$
 (1)

donde la igualdad es válida para n-1 gracias al valor de a_n ya definido.

• De la continuidad de S': $S'_j(x_{j+1}) = S'_{j+1}(x_{j+1})$ para $j = 0, \ldots, n-2$, así

$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2, \quad j = 0, \dots, n-1, n-1$$
 (2)

donde b_n aunque no es incógnita, está asociado al valor de $S'(x_n)$.

• De la continuidad de S'': $S''_j(x_{j+1}) = S''_{j+1}(x_{j+1})$ para $j = 0, \ldots, n-2$, así

$$2c_{j+1} = 2c_j + 6d_j h_j, \quad j = 0, \dots, n-2, n-1,$$
(3)

donde c_n aunque no es incógnita, está definida por $c_n := \frac{1}{2}S''(x_n)$.

Despejamos d_i de (3)

$$d_{j} = \frac{c_{j+1} - c_{j}}{3h_{j}} \qquad j = 0, \dots, n-1,$$

y reemplazando el valor de d_j en (1) y (2)

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + \frac{c_{j+1} - c_j}{3h_j} h_j^3 \quad \Rightarrow \quad a_{j+1} = a_j + b_j h_j + \frac{c_{j+1} + 2c_j}{3} h_j^2$$
 (4)

$$b_{j+1} = b_j + 2c_j h_j + 3\frac{c_{j+1} - c_j}{3h_i} h_j^2 \quad \Rightarrow \quad b_{j+1} = b_j + (c_{j+1} + c_j)h_j$$
 (5)

encontramos una expresión para b_j de (4)

$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1})$$

y reemplazando en (5), pero con un subíndice menos, es decir, reemplazamos en la expresión $b_j = b_{j-1} + h_{j-1}(c_j + c_{j-1})$ y obtenemos el sistema

$$h_{j-1}c_{j-1} + 2c_j(h_{j-1} + h_j) + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1}) \qquad j = 1, \dots, n-1.$$

Del procedimiento anterior, reducimos el sistema de 4n incógnitas al sistemas en las incógnitas c_0, \ldots, c_n ya que los valores de los h_j y a_j son conocidos. Pero, tenemos un sistema con n+1 incógnitas y n-1 ecuaciones, las dos ecuaciones faltantes se obtienen de las condiciones de frontera. Una vez se introducen las condiciones de frontera, resolvemos el sistema, recuperamos los valores de d_j y b_j , $j=0,\ldots,n-1$, construimos los S_j , $j=0,\ldots,n-1$, y por ende el spline cúbico S.

• En el caso de tener condición de frontera natural, se debe cumplir que $S''(x_0) = 0$ y $S''(x_n) = 0$, que en términos de las incógnitas se traducen en $c_0 = 0$ y $c_n = 0$ (ya que $S''(x_j) = 2c_j$, j = 0, ..., n) y el sistema de ecuaciones a resolver es $\mathbf{A}\mathbf{c} = \mathbf{b}$ con $\mathbf{A}_{(n-1)\times(n-1)}$

$$\begin{bmatrix} 2(h_0+h_1) & h_1 \\ h_1 & 2(h_1+h_2) & h_2 \\ \vdots \\ h_{n-3} & 2(h_{n-3}+h_{n-2}) & h_{n-2} \\ h_{n-2} & 2(h_{n-2}+h_{n-1}) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-2} \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} \frac{3}{h_1}(a_2-a_1) - \frac{3}{h_0}(a_1-a_0) \\ \frac{3}{h_2}(a_3-a_2) - \frac{3}{h_1}(a_2-a_1) \\ \vdots \\ \frac{3}{h_{n-2}}(a_{n-1}-a_{n-2}) - \frac{3}{h_{n-2}}(a_{n-2}-a_{n-3}) \\ \frac{3}{h_{n-2}}(a_n-a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1}-a_{n-2}) \end{bmatrix}$$

Notemos que la matriz A es e.d.d. y por ende invertible, lo cual garantiza el spline cúbico natural existe y es único.

♣ En el caso de tener condición de frontera con curvatura conocida, se debe cumplir que $S''(x_0) = f''(x_0)$ y $S''(x_n) = f''(x_n)$, que en términos de las incógnitas se traduce en $c_0 = \frac{1}{2}f''(x_0)$ y $c_n = \frac{1}{2}f''(x_n)$ y el sistema de ecuaciones a resolver es $\mathbf{Ac} = \tilde{\mathbf{b}}$ con la misma matriz $\mathbf{A}_{(n-1)\times(n-1)}$, el vector de incógnitas \mathbf{c} y el vector $\tilde{\mathbf{b}}$ es el resultado de modificar la primera y última componente de \mathbf{b}

$$\widetilde{\boldsymbol{b}} = \begin{bmatrix} \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) - \frac{1}{2}f''(x_0)h_0 \\ \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ \vdots \\ \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) - \frac{3}{h_{n-3}}(a_{n-2} - a_{n-3}) \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) - \frac{1}{2}f''(x_n)h_{n-1} \end{bmatrix}$$

que se obtiene de la relación $h_{j-1}c_{j-1} + 2c_j(h_{j-1} + h_j) + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})$ con j = 1

$$h_0c_0 + 2c_1(h_0 + h_1) + h_1c_2 = \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)$$

$$\frac{1}{2}f''(x_0)h_0 + 2c_1(h_0 + h_1) + h_1c_2 = \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)$$

y con j = n - 1

$$h_{n-2}c_{n-2} + 2c_{n-1}(h_{n-2} + h_{n-1}) + h_{n-1}c_n = \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2})$$

$$\updownarrow$$

$$h_{n-2}c_{n-2} + 2c_{n-1}(h_{n-2} + h_{n-1}) + \frac{1}{2}f''(x_n)h_{n-1} = \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}).$$

La matriz A es la misma e.d.d. garantizando que el spline cúbico con curvatura conocida existe y es único.

▶ En el caso de tener condición de frontera con terminación parabólica, se debe cumplir que S" sea constante en los intervalos extremos, esto es, en los intervalos $[x_0, x_1]$ y $[x_{n-1}, x_n]$. Dado que $S_j''(x) = 2c_j + 6d_j(x - x_j)$ en $(x_j, x_{j+1}]$, la condición se traduce en que los polinomios S_0'' y S_{n-1}'' sean constantes y esto se cumple siempre que $d_0=0$ y $d_{n-1}=0$

$$0 = d_0 = \frac{c_1 - c_0}{3h_0} \qquad \Rightarrow \qquad c_0 = c_1,$$

$$0 = d_{n-1} = \frac{c_n - c_{n-1}}{3h_{n-1}} \qquad \Rightarrow \qquad c_n = c_{n-1}.$$

Así el sistema de ecuaciones a resolver es $\widetilde{\boldsymbol{A}}\boldsymbol{c} = \boldsymbol{b}$ con la matriz $\widetilde{\boldsymbol{A}}_{(n-1)\times(n-1)}$ dada por

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 3h_0 + 2h_1 & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ & \ddots & \ddots & \\ & & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ & & & h_{n-2} & 2h_{n-2} + 3h_{n-1} \end{bmatrix}$$

el vector de incógnitas c y el vector b dados antes. La matriz \tilde{A} es matriz e.d.d. garantizando que el spline cúbico con terminación parabólica existe y es único.

Ejemplo Hallar el spline cúbico que interpola la nube de puntos

x_k	-3	-1	2	3	7
y_k	5	4	12	6	0

 \star Spline natural \star Spline tal que S''(-3) = -1 y S''(7) = 2 (curvatura conocida) \star Spline con terminación parabólica. Solución: Queremos hallar el spline cúbico de la forma

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0(x+3) + c_0(x+3)^2 + d_0(x+3)^3, & x \in [-3, -1], \\ S_1(x) = a_1 + b_1(x+1) + c_1(x+1)^2 + d_1(x+1)^3, & x \in [-1, 2], \\ S_2(x) = a_2 + b_2(x-2) + c_2(x-2)^2 + d_2(x-2)^3, & x \in [2, 3], \\ S_3(x) = a_3 + b_3(x-3) + c_3(x-3)^2 + d_3(x-3)^3, & x \in [3, 7]. \end{cases}$$

Vamos a construir el sistema de ecuaciones en las variables c_0 , c_1 , c_2 , c_3 y c_4 dado por la relación

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})$$
 $j = 1, 2, 3.$

esto es

$$j = 1 \rightarrow h_0c_0 + 2(h_0 + h_1)c_1 + h_1c_2 = \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)$$

$$j = 2 \rightarrow h_1c_1 + 2(h_1 + h_2)c_2 + h_2c_3 = \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1)$$

$$j = 3 \rightarrow h_2c_2 + 2(h_2 + h_3)c_3 + h_3c_4 = \frac{3}{h_3}(a_4 - a_3) - \frac{3}{h_2}(a_3 - a_2)$$

Tenemos

$$h_0 = x_1 - x_0 = -1 - (-3) = 2$$
 $a_0 = f(x_0) = y_0 = 5$
 $h_1 = x_2 - x_1 = 2 - (-1) = 3$ $a_1 = f(x_1) = y_1 = 4$
 $h_2 = x_3 - x_2 = 3 - 2 = 1$ $a_2 = f(x_2) = y_2 = 12$
 $h_3 = x_4 - x_3 = 7 - 3 = 4$ $a_3 = f(x_3) = y_3 = 6$
 $a_4 = f(x_4) = y_4 = 0$

así el sistema de ecuaciones esta dado por

$$2c_0 + 10c_1 + 3c_2 = \frac{19}{2}$$

$$3c_1 + 8c_2 + c_3 = -26$$

$$c_2 + 10c_3 + 4c_4 = \frac{27}{2}$$
(6)

Hasta acá el procedimiento es el mismo para cada una de las diferentes condiciones de frontera.

 \star Spline natural: debe cumplir que S''(-3) = 0 y S''(7) = 0, que se traduce en $c_0 = 0$ y $c_4 = 0$, así (6) se convierte en el sistema

$$\begin{cases}
 10c_1 + 3c_2 = \frac{19}{2} \\
 3c_1 + 8c_2 + c_3 = -26 \\
 c_2 + 10c_3 = \frac{27}{2}
 \end{cases}$$

$$\Rightarrow c_1 \approx 2.2443 \\
 c_2 \approx -4.3143 \\
 c_3 \approx 1.7814$$

reemplazamos en la relación para d_i y b_i , j = 0, 1, 2, 3

$$d_{j} = \frac{c_{j+1} - c_{j}}{3h_{j}} \Rightarrow \begin{cases} d_{0} = \frac{c_{1} - c_{0}}{3h_{0}} \approx \frac{2.2443}{6} \approx 0.374 \\ d_{1} = \frac{c_{2} - c_{1}}{3h_{1}} \approx \frac{-4.3143 - 2.2443}{9} \approx -0.7287 \\ d_{2} = \frac{c_{3} - c_{2}}{3h_{2}} \approx \frac{1.7814 - (-4.3143)}{2} \approx 2.0319 \\ d_{3} = \frac{c_{4} - c_{3}}{3h_{3}} \approx \frac{0 - 1.7814}{8} \approx -0.1485 \end{cases}$$

$$b_{j} = \frac{1}{h_{j}}(a_{j+1} - a_{j}) - \frac{h_{j}}{3}(2c_{j} + c_{j+1}) \Rightarrow \begin{cases} b_{0} = \frac{1}{h_{0}}(a_{1} - a_{0}) - \frac{h_{0}}{3}(2c_{0} + c_{1}) \approx \frac{1}{2}(4 - 5) - \frac{2}{3}(2.2443) \approx -1.9962 \\ b_{1} = \frac{1}{h_{1}}(a_{2} - a_{1}) - \frac{h_{1}}{3}(2c_{1} + c_{2}) \approx \frac{1}{3}(12 - 4) - \frac{3}{3}(2(2.2443) - 4.3143) \approx 2.4924 \\ b_{2} = \frac{1}{h_{2}}(a_{3} - a_{2}) - \frac{h_{2}}{3}(2c_{2} + c_{3}) \approx (6 - 12) - \frac{1}{3}(2(-4.3143) + 1.7814) \approx -3.7176 \\ b_{3} = \frac{1}{h_{3}}(a_{4} - a_{3}) - \frac{h_{3}}{3}(2c_{3} + c_{4}) \approx \frac{1}{4}(0 - 6) - \frac{4}{3}(2(1.7814)) \approx -6.2505 \end{cases}$$

por lo tanto, el spline cúbico natural para los puntos es

$$S(x) = \begin{cases} 5 - 1.9962(x+3) + 0.374(x+3)^3, & x \in [-3, -1], \\ 4 + 2.4924(x+1) + 2.2443(x+1)^2 - 0.7287(x+1)^3, & x \in [-1, 2], \\ 12 - 3.7176(x-2) - 4.3143(x-2)^2 + 2.0319(x-2)^3, & x \in [2, 3], \\ 6 - 6.2505(x-3) + 1.7814(x-3)^2 - 0.1485(x-3)^3, & x \in [3, 7]. \end{cases}$$

* Spline con curvatura conocida: debe cumplir que S''(-3) = -1 y S''(7) = 2, que se traduce en $2c_0 = -1$ y $2c_4 = 2$, así (6) se convierte en el sistema

$$\begin{cases}
 10c_1 + 3c_2 = \frac{19}{2} + 1 \\
 3c_1 + 8c_2 + c_3 = -26 \\
 c_2 + 10c_3 = \frac{27}{2} - 4
 \end{cases}$$

$$\begin{vmatrix}
 c_1 \approx 2.34 \\
 c_2 \approx -4.3 \\
 c_3 \approx 1.38
 \end{aligned}$$

procediendo como antes para obtener b_j y d_j , j=0,1,2,3, así el spline cúbico con curvatura conocida para los puntos es

$$S(x) = \begin{cases} 5 - 1.3933(x+3) - 0.5(x+3)^2 + 0.4733(x+3)^3, & x \in [-3, -1], \\ 4 + 2.2867(x+1) + 2.34(x+1)^2 - 0.7378(x+1)^3, & x \in [-1, 2], \\ 12 - 3.5933(x-2) - 4.3(x-2)^2 + 1.8933(x-2)^3, & x \in [2, 3] \\ 6 - 6.5133(x-3) + 1.38(x-3)^2 - 0.0317(x-3)^3, & x \in [3, 7]. \end{cases}$$

* Spline con terminación parabólica: se debe cumplir que S'' es constante en los intervalos extremos, esto es, en los intervalos [-3,-1] y [3,7], esto es, que S''_0 es constante en [-3,-1] y S''_3 es constante en [3,7], que se traduce en que $c_0 = c_1$ y $c_4 = c_3$, así (6) se convierte en el sistema

$$\begin{vmatrix}
12c_1 + 3c_2 &= \frac{19}{2} \\
3c_1 + 8c_2 + c_3 &= -26 \\
c_2 + 14c_3 &= \frac{27}{2}
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
c_1 \approx 1.8134 \\
c_2 \approx -4.0871 \\
c_3 \approx 1.2562
\end{vmatrix}$$

procediendo como antes para obtener b_j y d_j , j = 0, 1, 2, 3, así el spline cúbico con terminación parabólica para los puntos es

$$S(x) = \begin{cases} 5 - 4.1269(x+3) + 1.8134(x+3)^2, & x \in [-3, -1], \\ 4 + 3.1269(x+1) + 1.8134(x+1)^2 - 0.6556(x+1)^3, & x \in [-1, 2], \\ 12 - 3.6940(x-2) - 4.0871(x-2)^2 + 1.7811(x-2)^3, & x \in [2, 3], \\ 6 - 6.5249(x-3) + 1.2562(x-3)^2, & x \in [3, 7]. \end{cases}$$

♣ En el caso de tener condición de frontera sujeta, se debe cumplir que $S'(x_0) = f'(x_0)$ y $S'(x_n) = f'(x_n)$, que en términos de las incógnitas se traducen en $b_0 = f'(x_0)$ y $b_n = f'(x_n)$, y por (5) $b_n = b_{n-1} + (c_n + c_{n-1})h_{n-1}$. Así, de la relación obtenida para los b_j se tiene

$$f'(x_0) = \frac{1}{h_0}(a_1 - a_0) - \frac{h_0}{3}(2c_0 + c_1) \quad \Rightarrow \quad h_0c_0 = \frac{3}{2h_0}(a_1 - a_0) - \frac{3}{2}f'(x_0) - \frac{1}{2}h_0c_1$$

$$f'(x_n) = \frac{a_n - a_{n-1}}{h_{n-1}} - \frac{h_{n-1}}{3}(2c_{n-1} + c_n) + (c_n + c_{n-1})h_{n-1} \quad \Rightarrow \quad h_{n-1}c_n = -\frac{3}{2h_{n-1}}(a_n - a_{n-1}) + \frac{3}{2}f'(x_n) - \frac{1}{2}h_{n-1}c_{n-1}$$

♣ En el caso de tener condición de frontera extrapolada, se debe cumplir que $S''(x_0)$ y $S''(x_n)$ se extrapola de los valores de $S''(x_1)$, $S''(x_2)$ y $S''(x_{n-2})$, $S''(x_{n-1})$, respectivamente. Dado que cada S_j es un polinomio de grado a lo más 3, S''_j son polinomios lineales, por lo tanto, al extrapolar (igualando pendientes) obtenemos

$$\frac{S''}{(x_1, S''(x_1))} \underbrace{\frac{S''(x_2) - S''(x_1)}{x_2 - x_1}} = \frac{S''(x_1) - S''(x_0)}{x_1 - x_0} \Rightarrow \frac{2c_2 - 2c_1}{h_1} = \frac{2c_1 - 2c_0}{h_0}$$

$$\frac{S''(x_{n-1}) - S''(x_{n-2})}{x_{n-1} - x_{n-2}} = \frac{S''(x_n) - S''(x_{n-1})}{x_n - x_{n-1}} \quad \Rightarrow \quad \frac{2c_{n-1} - 2c_{n-2}}{h_{n-2}} = \frac{2c_n - 2c_{n-1}}{h_{n-1}}$$

$$(x_{n-2}, S''(x_{n-2}))$$

$$(x_n, S''(x_n))$$

$$(x_{n-1}, S''(x_{n-1}))$$

Ejercicios Identificar los sistema de ecuaciones $\hat{A}c = \hat{b}$ y $\check{A}c = b$ necesarios para obtener el spline cúbico sujeto y extrapolado, respectivamente.