$S = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} + \frac{1}{3} r_{2} \left(4 \partial_{\beta} \mathcal{A}_{\alpha i \theta} - 2 \partial_{\beta} \mathcal{A}_{\alpha \theta i} + 2 \partial_{\beta} \mathcal{A}_{i \theta \alpha} - \partial_{i} \mathcal{A}_{\alpha \beta \theta} + \partial_{\theta} \mathcal{A}_{\alpha \beta i} - 2 \partial_{\theta} \mathcal{A}_{\alpha i \beta} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta i} - \frac{1}{2}$ $r_{3} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \partial^{i} \mathcal{A}_{\alpha \alpha}^{\alpha\beta} + \partial_{i} \mathcal{A}_{\beta \theta}^{\ \theta} \partial^{i} \mathcal{A}_{\alpha \alpha}^{\alpha\beta} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} - 2 \partial^{i} \mathcal{A}_{\alpha \alpha}^{\alpha\beta} \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} + 8 \partial_{\beta} \mathcal{A}_{i \theta \alpha} \partial^{\theta} \mathcal{A}^{\alpha\beta i} \right) +$ $r_{5} \left(\partial_{i} \mathcal{A}_{\theta \kappa}^{\ \kappa} \partial^{\theta} \mathcal{A}_{\alpha \alpha}^{\alpha i} - \partial_{\theta} \mathcal{A}_{i \kappa}^{\ \kappa} \partial^{\theta} \mathcal{A}_{\alpha \alpha}^{\alpha i} - \left(\partial_{\alpha} \mathcal{A}^{\alpha i \theta} - 2 \partial^{\theta} \mathcal{A}_{\alpha \alpha}^{\alpha i} \right) \left(\partial_{\kappa} \mathcal{A}_{i \theta}^{\ \kappa} - \partial_{\kappa} \mathcal{A}_{\theta i}^{\ \kappa} \right) \right) \left[t, x, y, z \right] dz dy dx dt$ $\mathbf{Wave operator}$ $\mathbf{0}_{i}^{\ast} \mathcal{A}_{i}^{\parallel} \mathbf{0}_{i}^{\ast} f^{\parallel} \mathbf{0}_{i}^{\ast} f^{\perp} \mathbf{0}_{i}^{\ast} \mathcal{A}_{i}^{\parallel}$ $\mathbf{0}_{i}^{\ast} \mathbf{0}_{i}^{\parallel} \mathbf{0}_{i}^{\ast} f^{\perp} \mathbf{0}_{i}^{\ast} \mathcal{A}_{i}^{\parallel}$

 ${\stackrel{\mathrm{O}^{+}}{\cdot}}f^{\parallel}$ †

 $^{0^+}\tau^{\perp}$ †

 ${}^{0^{-}}\sigma^{\parallel}$ †

0 0

PSALTer results panel

 $2^{+}\mathcal{A}\|_{\alpha\beta}$ $2^{+}f\|_{\alpha\beta}$ $2^{-}\mathcal{A}\|_{\alpha\beta\chi}$

0

0

0

5

28

 ${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$

0

0

 $\begin{bmatrix} 1^{+}\mathcal{A}^{\parallel}_{\alpha\beta} & 1^{+}\mathcal{A}^{\perp}_{\alpha\beta} & 1^{+}f^{\parallel}_{\alpha\beta} \end{bmatrix}$

 $\cdot^{1^+}\sigma^{\parallel} \uparrow^{\alpha\beta}$

 $^{1^{+}}\sigma^{\perp}$ $^{+}$

 $\mathbf{1}^{+}_{\bullet}\tau^{\parallel}\uparrow^{\alpha\beta}$

 1 σ^{\parallel} $^{\alpha}$

 $^{1}\cdot\sigma^{\perp}\uparrow^{\alpha}$

 $\cdot^{1^{-}}\tau^{\parallel}$ \uparrow^{α}

 $^{1^{+}}\sigma^{\parallel}_{\alpha\beta}$

 $k^2 \left(2 r_1 + r_1 \right)$

0

 $^{1^{+}}_{\bullet}\sigma^{\perp}_{\alpha\beta}$ $^{1^{+}}_{\bullet}\tau^{\parallel}_{\alpha\beta}$

0

0

0

0

0

0

0

0

0

0

0

 $\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$

 $3 \; \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \; \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{\quad \ \, \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \; \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{$

 $2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$

 $3\ \eta^{\beta\chi}\ \partial_\phi\partial^\phi\partial_\epsilon\partial^\alpha\sigma^{\delta}_{\ \delta}^{\ \epsilon} + 3\ \eta^{\alpha\chi}\ \partial_\phi\partial^\phi\partial_\epsilon\partial_\delta\sigma^{\delta\beta\epsilon} + 3\ \eta^{\beta\chi}\ \partial_\phi\partial^\phi\partial_\epsilon\partial^\epsilon\sigma^{\delta\alpha}_{\ \ \delta} =$

 $3 \ \eta^{\alpha\chi} \ \partial_\phi \partial^\phi \partial_\varepsilon \partial^\beta \sigma^\delta_{\ \delta}{}^\epsilon + 3 \ \eta^{\beta\chi} \ \partial_\phi \partial^\phi \partial_\varepsilon \partial_\delta \sigma^{\delta\alpha\epsilon} + 3 \ \eta^{\alpha\chi} \ \partial_\phi \partial^\phi \partial_\varepsilon \partial^\epsilon \sigma^{\delta\beta}_{\ \delta}$

 $2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta} = 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^$

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}{}_{\chi}$

 $4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} +$

 $3\ \partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\ \partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\quad \ \, \delta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} +$

Saturated propagator

		1- τ [⊥] † α	Θ	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$^{2^{+}_{\bullet}\tau^{\parallel}}{_{\alpha\beta}}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$		
									$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$-\frac{2}{3 k^2 r_{\cdot 3}}$	0	0		
									$^{2^{+}}_{\bullet}\tau^{\parallel}\uparrow^{lphaeta}$	0	0	0		
									$^{2^{-}}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$	0	0	0		
9	Source constraints													
	Spin-parity form	Covaria	nt form	า									Multiplicities	
	^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau$ (Δ +	\mathcal{K}) $\alpha\beta$ ==	Θ									1	
	^{Θ⁺} τ == Θ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1		
	^{0⁺} σ == 0											1		
	1- _t == 0											3		
	1- _t ^α == 0											3		
	1- _σ ^Δ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	== 0										3	
	$\frac{1^+}{1^+} \tau^{\parallel \alpha \beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau$ (Δ +	$(\mathcal{K})^{\beta\chi} + \partial_{\chi}$	$\chi \partial^{\beta} \tau (\Delta + 2)$	$(\kappa)^{\chi\alpha} + \partial$	$\chi^{\partial^X} \tau (\Delta + \mathcal{K})$	αβ ==						3	
		$\partial_{\chi}\partial^{\alpha}\tau$ (Δ	$(+\mathcal{K})^{\chi\beta}$ +	$\partial_{\chi}\partial^{\beta}\tau$ (Δ	+ K) ^{αχ} +	$\partial_{\chi}\partial^{\chi} \tau (\Delta + \mathcal{K})$	$(1)^{\beta\alpha}$							

 $\begin{bmatrix} 1^- \\ \bullet \end{bmatrix}_{\alpha} \qquad \begin{bmatrix} 1^- \\ \bullet \end{bmatrix}_{\alpha}$

0

0

0

0

0

0

Massive spectrum

Total expected gauge generators:

M----

(No particles)

 $1^+_{\bullet}\sigma^{\perp}$ == 0

 $2^{-}\sigma^{\parallel \alpha \beta \chi} = 0$

 $2^{+}_{\bullet \tau} \|^{\alpha \beta} = 0$

Massless spectrum

Unitarity conditions

 $\left(r_{3} < 0 \&\& \left(r_{5} < -\frac{r_{3}}{2} || r_{5} > -2 r_{3}\right)\right) || \left(r_{3} > 0 \&\& -2 r_{3} < r_{5} < -\frac{r_{3}}{2}\right)$