IN THE CLAIMS:

All pending claims and their present status are produced below.

1	1. (Previously Presented) A computer-implemented	ed method for the real-time
2	tracking of goods in a supply chain, including:	
3	affixing a tag to each good to be tracked and/or to each	conveyance used to store or
4	carry the goods;	
5	marking the location of one of the goods at a data appli	ance and storing information
6	on said location at a site server coupled to said	data appliance;
7	uploading said information to a data center, said data ce	enter coupled to said site server;
8	compensating for missing information by using a previ	ous tag read and a current tag
9	read and	•
10	charging users of said supply chain a fee dependent on	the number of tracked goods to
11	access said data center and view reports compil	ed using said location
12	information regarding each tracked good.	
1	2. (Original) The method of claim 1, further inclu	nding aggregating one or more
, 2	of said goods into a conveyance at a data point and wherein sa	id marking includes indicating
3	an aggregation event occurred at said data point.	
1	3. (Original) The method of claim 2, wherein said	d marking further includes
2	performing aggregation-by-inference, wherein an aggregation	event occurring at said location
3	for a conveyance automatically indicates that said conveyance	has been completely filled with
4	items.	•
1	4. (Original) The method of claim 2, further inclu	ading performing de-
2	aggregation-by-inference at a second data point, wherein a de-	aggregation event indicating
3	that all items have been removed from said conveyance is general	erated.
	(Original) The method of claim 1 wherein soil	d tag affixed to said one of the
1	,	
2		marking merudes scanning said
3	tag affixed to said one of the goods using an RFID reader.	

- (Original) The method of claim 1, wherein said one of the goods is stored in 1 6. one of said conveyances, and said marking includes scanning said tag affixed to said one of 2 said conveyances using a reader. 3
- 7. (Original) The method of claim 1, wherein said marking includes scanning a 1 2 tag using a tag reader.
- (Previously Presented) The method of claim 7, wherein said tag reader is 1 8. coupled to a data appliance. 2
- 9. (Previously Presented) The method of claim 7, wherein said tag reader is part 1 2 of a data appliance.
- 10. (Original) The method of claim 1, wherein said marking includes tracking said 1 one of the goods using global positioning satellite (GPS) technology. 2
- (Original) The method of claim 1, wherein said storing utilizes the Universal 11. 1 Data Appliance Protocol (UDAP) to communicate said location information from said data 2 appliance to said site server. 3
- (Previously Presented) The method of claim 1, further including accessing 12. 1 said data center and viewing said reports. 2
- (Original) The method of claim 1, further including aggregating a good into a 13. 1 conveyance when said good is loaded into said conveyance and de-aggregating said good 2 from said conveyance when said good is unloaded from said conveyance. 3
 - 14. (Cancelled)

1

1

3

4

1

- 15. (Previously Presented) The method of claim 1, wherein said compensating includes detecting that a missing tag read occurred by learning that a tag read was made on 2 said good at a first location and at a third location, but not at a second location, wherein said good could not arrive at said third location without first passing through said second location.
- (Original) The method of claim 1, further including filtering out any 16. duplicative tag reads. 2

17. (Previously Presented) A computer-implemented method for the real-time
tracking of goods in a supply chain, including:
affixing a tag to each good to be tracked and/or to each conveyance used to store or
carry the goods;
marking the location of one of the goods at a data appliance and storing information
on said location at a site server coupled to said data appliance;
uploading said location information to a data center, said data center coupled to said
site server;
compensating for missing information by using a previous tag read and a current tag

- read and
 charging users of said supply chain a fee per transaction to access said data center and
 view information regarding each tracked good, each transaction including a
 single tag read.
- 18. (Original) The method of claim 17, further including aggregating one or more of said goods into a conveyance at a data point and wherein said marking includes indicating an aggregation event occurred at said data point.
- 19. (Original) The method of claim 18, wherein said marking further includes performing aggregation-by-inference, wherein an aggregation event occurring at said location for a conveyance automatically indicates that said conveyance has been completely filled with items.
- 20. (Original) The method of claim 18, further including de-aggregation-by-inference at a second data point, wherein a de-aggregation event indicating that all items have been removed from said conveyance is generated.
- 1 21. (Original) The method of claim 17, wherein said tag affixed to said one of the 2 goods is a Radio Frequency Identification (RFID) tag and said marking includes scanning said 3 tag affixed to said one of the goods using an RFID reader.
- 1 22. (Original) The method of claim 17, wherein said one of the goods is stored in 2 one of said conveyances, and said marking includes scanning said tag affixed to said one of 3 said conveyances using a reader.

- 23. (Original) The method of claim 17, wherein said marking includes scanning a 1 tag using a tag reader. 2
- 24. (Previously Presented) The method of claim 23, wherein said tag reader is 1 coupled to said data appliance. 2
- 25. (Previously Presented) The method of claim 23, wherein said tag reader is part 2 of said data appliance.
- 26. (Original) The method of claim 17, wherein said marking includes tracking 1 said one of the goods using global positioning satellite (GPS) technology. 2
- 1 27. (Original) The method of claim 17, wherein said storing utilizes the Universal Data Appliance Protocol (UDAP) to communicate location information from said data 2 appliance to said site server. 3
- 28. (Previously Presented) The method of claim 17, further including said 1 accessing said data center and viewing reports. 2
- (Original) The method of claim 17, further including aggregating a good into a 29. 2 conveyance when said good is loaded into said conveyance and de-aggregating said good from said conveyance when said good is unloaded from said conveyance. 3
 - 30. (Canceled)

1

1

1

2

3

4

- (Previously Presented) The method of claim 17, wherein said compensating 31. includes detecting that a missing tag read occurred by learning that a tag read was made on said good at a first location and at a third location, but not at a second location, wherein said good could not arrive at said third location without first passing through said second location.
- (Original) The method of claim 29, further including filtering out any 32. 1 2 duplicative tag reads.
- (Previously Presented) A system for real-time tracking of goods in a supply 33. 1 2 chain, including:
- a data center comprising compensation logic; 3

4	one or more site servers coupled to said data center;	
5	one or more data appliances, each of said data appliances coupled to one of said site	
6	servers; and	
7 ·	one or more tags, each of said tags affixed to a good or conveyance in a way such tha	
8	they are readable by tag reader coupled to or part of said data appliances;	
9	wherein said compensation logic compensates for missing information by using a	
10	previous tag read and a current tag read, and users are charged a fee per good	
11	tracked to access said data center and view reports compiled using location	
12	information regarding each tracked good.	
1	34. (Previously Presented) The system of claim 33, wherein said tags and tag	
2	readers both utilize Radio Frequency Identification (RFID) technology.	
1	35. (Original) The system of claim 33, further including an Intransit Data	
2	Appliance (IDA) and an Enterprise Server, said Enterprise server coupled to said data center	
3	and said IDA coupled to said Enterprise Server to transmit data on the location of a good or	
4	conveyance using Global Positioning Satellite (GPS) technology.	
1	36. (Previously Presented) A system for real-time tracking of goods in a supply	
2	chain, including:	
3	a data center comprising compensation logic;	
4	one or more site servers coupled to said data center;	
5	one or more data appliances, each of said data appliances coupled to one of said site	
6	servers;	
7	one or more tags, each of said tags affixed to a good or conveyance in a way such that	
8	they are readable by tag reader coupled to or part of said data appliances,	
9	wherein said compensation logic compensates for missing information by using a	
10	previous tag read and a current tag read, and users are charged a fee per	
11	transaction to access said data center and view reports compiled using location	
12	information regarding each tracked good, each of said transactions including	
13	tag read.	
1	37. (Previously Presented) The system of claim 36, wherein said tags and tag	
2	readers both utilize Radio Frequency Identification (RFID) technology.	

1	38.	(Original) The system of claim 36, further including an Intransit Data
2	Appliance (II	OA) and an Enterprise Server, said Enterprise server coupled to said data center
3	and said IDA	coupled to said Enterprise Server to transmit data on the location of a good or
4	conveyance u	sing Global Positioning Satellite (GPS) technology.
1	39.	(Previously Presented) A system for real-time tracking of goods in a supply
2	chain, includi	ng:
3	a colla	aboration center;
4	one or	more data centers comprising compensation logic, coupled to said collaboration
5		center;
6	one or	more site servers coupled to said data center;
7	one or	more data appliances, each of said data appliances coupled to one of said site
8		servers;
9	one or	more tags, each of said tags affixed to a good or conveyance in a way such that
0		they are readable by tag reader coupled to or part of said data appliances,
1	where	in said compensation logic compensates for missing information by using a
2		previous tag read and a current tag read, and users are charged a fee per good
3		tracked to access said data center and view location information regarding each
4		tracked good.
1	40.	(Previously Presented) The system of claim 39, wherein said tags and tag
2 ,	readers both u	ntilize Radio Frequency Identification (RFID) technology.
1	41.	(Original) The system of claim 39, further including an Intransit Data
2	Appliance (II	OA) and an Enterprise Server, said Enterprise server coupled to said data center
3	and said IDA	coupled to said Enterprise Server to transmit data on the location of a good or
4	conveyance u	sing Global Positioning Satellite (GPS) technology.
1	42.	(Previously Presented) A system for real-time tracking of goods in a supply
2	chain, includi	ng:
3	a colla	aboration center;
4	one or	more data centers comprising compensation logic, coupled to said collaboration
5		center;
6	one or	more site servers counted to said data center

7	one or more data appliances, each of said data appliances coupled to one of said site
8	servers;
9	one or more tags, each of said tags affixed to a good or conveyance in a way such that
10	they are readable by tag reader coupled to or part of said data appliances,
11.	wherein said compensation logic compensates for missing information by using a
12	previous tag read and a current tag read, and said users are charged a fee per
13	transaction to access said data center and view reports compiled using location
14	information regarding each tracked good, each of said transactions including a
15	tag read.
1	43. (Previously Presented) The system of claim 42, wherein said tags and tag
2	readers both utilize Radio Frequency Identification (RFID) technology.
1	44. (Original) The system of claim 42, further including an Intransit Data
2	Appliance (IDA) and an Enterprise Server, said Enterprise server coupled to said data center
3	and said IDA coupled to said Enterprise Server to transmit data on the location of a good or
4	conveyance using Global Positioning Satellite (GPS) technology.
1	45. (Previously Presented) A program storage device readable by a machine,
2	tangibly embodying a program of instructions executable by the machine to perform a method
3	for the real-time tracking of goods in a supply chain, the method including:
4	affixing a tag to each good to be tracked and/or to each conveyance used to store or
5	carry the goods;
6	marking the location of one of the goods at a data appliance and storing information
7	on said location at a site server coupled to said data appliance;
8	uploading said location information to a data center, said data center coupled to said
9	site server;
10	compensating for missing information by using a previous tag read and a current tag
11	read; and
12	charging users of said supply chain a fee dependent on the number of tracked goods to
13	access said data center and view reports compiled using location information
14	regarding each tracked good.

tang	gibly embodying a program of instructions executable by the machine to perform a method
for t	the real-time tracking of goods in a supply chain, the method including:
	affixing a tag to each good to be tracked and/or to each conveyance used to store or
	carry the goods;
	marking the location of one of the goods at a data appliance and storing information
	on said location at a site server coupled to said data appliance;
	uploading said information to a data center, said data center coupled to said site server;

(Previously Presented) A program storage device readable by a machine,

46.

4.

compensating for missing information by using a previous tag read and a current tag
read; and
charging users of said supply chain a fee per transaction to access said data center and

view information regarding each tracked good, each transaction including a single tag read.

- 47. (Previously Presented) The system of claim 33, wherein said site server is configured to aggregate one or more of said goods into a conveyance at a data point and indicate an aggregation event.
- 1 48. (Previously Presented) The system of claim 47, wherein said site server is 2 further configured to perform aggregation-by-inference, wherein an aggregation event 3 automatically indicates that said conveyance has been completely filled with items.
 - 49. (Previously Presented) The method of claim 1, wherein said compensating comprises compensating for missing information about a good by using aggregation information derived from a previous tag read with and a current tag read to create a missing tag read for the good.
 - 50. (Previously Presented) The method of claim 1, wherein said compensating comprises compensating for missing information about a second location by using location information from a previous tag read at a first location with location information from a current tag read at a third location to create a missing tag read for the good at the second location.

- 1 51. (Currently Amended) The method of claim 1, further comprising:
- 2 receiving the missing information subsequent to the compensating; and
- 3 repacing replacing the compensated information with the missing information.