Dérivation:

nombre dérivé, fonction dérivée.

I. Le nombre dérivé.

1. Définition.

Définition: Soit f une fonction définie sur un intervalle contenant a.

La fonction f est dérivable en a si $\frac{f(a+h)-f(a)}{h}$ tend vers un réel l quand h tend vers 0. Il est alors appelé nombre dérivé de f en a et noté f'(a).

Notation:

Pour traduire que $\frac{f(a+h)-f(a)}{h}$ tend vers f'(a) quand h tend vers 0, on note

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Exemple: La distance parcourue par un point mobile M à l'instant t ($t \ge 0$) est $d(t) = t^2$ où t est exprimée en seconde et d(t) en mètre.

Nous allons calculer d'(3).

$$\frac{d(3+h)-d(3)}{h} = \frac{(3+h)^2-3^2}{h} = \frac{9+6h+h^2-9}{h} = \frac{6h+h^2}{h} = 6+h.$$

$$\lim_{h\to 0} \frac{d(3+h)-d(3)}{h} = \lim_{h\to 0} 6+h = 6.$$

$$\lim_{h \to 0} \frac{d(3+h) - d(3)}{h} = \lim_{h \to 0} 6 + h = 6$$

Donc
$$d'(3)=6$$
.

d'(3) représente la vitesse instantanée du point mobile à la troisième seconde.

2. Tangente à une courbe.

Soit \mathcal{C} la courbe représentative de f dans un repère (O, \vec{i}, \vec{j}) et les points A et M de \mathcal{T} d'abscisses respectives a et a+h.

$$\frac{f(a+h)-f(a)}{h}$$
 représente alors le coefficient directeur de la droite (AM).

Dire que $\frac{f(a+h)-f(a)}{h}$ tend vers f'(a) quand h tend vers 0 signifie que le coefficient directeur de la droite (AM) tend vers f'(a).

Autrement dit, quand M tend vers A sur la courbe, les droites (AM) tendent vers une position limite: celle de la droite T_A passant par A et de coefficient directeur f'(a).

Définition: Soit f une fonction dérivable en a et \mathcal{T} sa courbe représentative. La droite passant par A(a; f(a)) et de coefficient directeur f'(a) est appelée la tangente à la courbe \mathcal{T} au point A.

Déterminons une équation de la tangente à \mathcal{C} au point A(a; f(a)).

Notons T_A la tangente à \mathcal{T} au point d'abscisse A(a; f(a)).

 T_A étant une droite, elle a une équation du type y = mx + p.

D'après la définition, on sait que m = f'(a).

On sait que A appartient à T_A , on a donc:

 $f(a) = f'(a) \times a + p$. Par conséquent, p = f(a) - f'(a)a.

Par suite, on a $y=f'(a)x+f(a)-f'(a)\times a$.

Donc T_A a pour équation y = f'(a)(x-a) + f(a).

Exemple: Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2$.

Déterminons l'équation de la tangente à la courbe représentative de f au point d'abscisse 3. Nous avons déterminé à l'exemple vu dans le I.1 que f'(3) = 6.

On a de plus f(3) = 9.

D'où la tangente a pour équation: y=6(x-3)+9=6x-18+9=6x-9.

d'où la tangente a pour équation: y=6x-9.

II. Fonction dérivée.

a. Définition.

Définition: Soit D un intervalle de Rou une réunion d'intervalles. On dit qu'une fonction f est dérivable sur D si elle est dérivable en tout réel a de D.

Dans ce cas, la fonction qui à tout a de D associe le nombre dérivé f'(a) de f en a est appelé fonction dérivée de f.

On la note:
$$f' : D \to \mathbb{R}$$

 $a \mapsto f'(a)$

b. dérivées des fonctions usuelles.

• Fonctions constantes.

Soit f la fonction définie sur \mathbb{R} par f(x) = k, où k est un réel. f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = 0.

Justification: Pour tout a appartenant à \mathbb{R} et pour tout h non nul,

$$\frac{f(a+h)-f(a)}{h} = \frac{k-k}{h} = 0.$$
donc $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} 0 = 0.$

Par suite, pour tout a appartenant à \mathbb{R} f'(a)=0.

• Fonction affines.

Soit f la fonction définie sur \mathbb{R} par f(x) = mx + p. f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = m.

Justification: Pour tout a appartenant à \mathbb{R} et pour tout h non nul,

$$\frac{f(a+h)-f(a)}{h} = \frac{m(a+h)-ma}{h} = \frac{mh}{h} = m.$$

donc
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} m = m$$
.

Par suite, pour tout a appartenant à \mathbb{R} , f'(a)=m.

Conséquence: La dérivée de $f: x \mapsto x$ sur Rest la fonction f' définie sur Repar f'(x)=1.

• Fonctions puissances.

Soit *n* un nombre entier supérieur ou égal à 2.

Soit f la fonction définie sur \mathbb{R} par $f(x)=x^n$

f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = nx^{n-1}$.

Cette propriété sera admise.

Exemples:

- soit f définie sur \mathbb{R} par $f(x)=x^2$, f'(x)=2x.
- soit f définie sur \mathbb{R} par $f(x)=x^3$, $f'(x)=3x^2$.

• Fonction inverse.

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$

f est dérivable sur \mathbb{R}^* et pour tout réel x non nul, $f'(x) = -\frac{1}{x^2}$.

Justification: Pour tout a appartenant à \mathbb{R}^* , h appartenant à \mathbb{R}^* avec $a+h\neq 0$,

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-(a+h)}{a(a+h)}}{\frac{a(a+h)}{h}} = \frac{-h}{h(a+h)a} = \frac{-1}{a(a+h)}.$$

$$\lim_{h \to 0} a + h = a \text{ d'où } \lim_{h \to 0} \frac{-1}{a(a+h)} = \frac{-1}{a^2}.$$

Par conséquent, $f'(a) = \frac{-1}{a^2}$.

• Fonction racine carrée

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

f est dérivable sur $]0; +\infty[$ et pour tout réel x > 0, $f'(x) = \frac{1}{2\sqrt{x}}$.

Justification: Pour a un réel positif ou nul, h un réel non nul tel que $a+h \ge 0$.

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h} = \frac{(\sqrt{a+h}-\sqrt{a})(\sqrt{a+h}+\sqrt{a})}{h(\sqrt{a+h}+\sqrt{a})} = \frac{a+h-a}{h(\sqrt{a+h}+\sqrt{a})} = \frac{1}{\sqrt{a+h}+\sqrt{a}}$$

Or
$$\lim_{h\to 0} \sqrt{a+h} = \sqrt{a}$$
, d'où $\lim_{h\to 0} \frac{1}{\sqrt{a+h} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$.

Par suite,
$$f'(a) = \frac{1}{2\sqrt{a}}$$
 avec $a \neq 0$.

Attention, la fonction racine carrée est définie sur R mais pas sa dérivée.

III. Opérations sur les fonctions dérivables.

Soit D un intervalle ou une réunion d'intervalles.

a. somme de fonctions.

Propriété: Soit u et v deux fonctions dérivables sur D. Alors u+v est dérivable sur D et (u+v)' = u'+v'.

Preuve: Soit a appartenant à D, $h \neq 0$, $\frac{(u+v)(a+h)-(u+v)(a)}{h} = \frac{u(a+h)-u(a)}{h} + \frac{v(a+h)-v(a)}{h}.$ Or, $\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$ et $\lim_{h\to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$. Donc, pour tout a appartenant à D, (u+v)'(a) = u'(a)+v'(a).

Exemple: donner les dérivées des fonctions f et g suivantes: $f(x)=x^3-5x+1$ et $g(x)=x^2+\sqrt{x}$. b. Produit de fonctions.

Propriété: soit u et v deux fonctions dérivables sur D. Alors u+v est dérivable sur D et (uv)'=u'v+uv'. En particulier, si λ est un réel, $(\lambda v)' = \lambda v'$.

Preuve: Soit a appartenant à D, $h \neq 0$.

$$\frac{uv(a+h)-uv(a)}{h} = \frac{u(a+h)v(a+h)-u(a)v(a)}{h}$$

$$= \frac{u(a+h)v(a+h)-u(a)v(a+h)+u(a)v(a+h)-u(a)v(a)}{h}$$

$$= \frac{u(a+h)-u(a)}{h}v(a+h)+\frac{v(a+h)-v(a)}{h}u(a).$$

Or
$$\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$$
 et $\lim_{h\to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$.
On admettra de plus que $\lim_{h\to 0} v(a+h) = v(a)$.

On obtient donc (uv)'(a) = u'(a)v(a) + u(a)v'(a) pour tout a appartenant à D. Soit en particulier, $(\lambda u(a))' = \lambda u'(a) + 0 \times u(a) = \lambda u'(a)$.

Conséquence: toute fonction polynôme est dérivable sur R

Exemples: Donner les dérivées des fonctions f et g définies par:

$$f(x) = \frac{3}{x}$$
 et $g(x) = 3x^5 - 7x^2 + 3$.

c. Inverse d'une fonction.

Propriété: Soit v une fonction dérivable sur D, et tel que pour tout réel a de D, $v(a) \neq 0$. Alors la fonction $\frac{1}{v}$ est dérivable sur D et $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$.

Preuve: Soit a appartenant à D, h appartenant à Rtel que $v(a+h) \neq 0$.

$$\frac{\frac{1}{v(a+h)} - \frac{1}{v(a)}}{h} = \frac{v(a) - v(a+h)}{hv(a)v(a+h)} = \frac{v(a) - v(a+h)}{h} \cdot \frac{1}{v(a)v(a+h)}$$

Or
$$\lim_{h\to 0} \frac{v(a)-v(a+h)}{h} = -v'(a)$$
 et $\lim_{h\to 0} \frac{1}{v(a+h)v(a)} = \frac{1}{v^2(a)}$.

Par suite,
$$\lim_{h\to 0} \frac{\frac{1}{v(a+h)} - \frac{1}{v(a)}}{h} = -\frac{v'(a)}{v^2(a)}$$
.

Donc
$$\frac{1}{v}$$
 est dérivable sur D avec $\left(\frac{1}{v}(x)\right)' = -\frac{v'(x)}{v^2(x)}$.

Exemple: Soit la fonction f définie par $f(x) = \frac{1}{2x-5}$.

f est définie et dérivable sur \mathbb{R} $\left\{\frac{5}{2}\right\}$.

Notons u la fonction définie sur $\mathbb{R}\left\{\frac{5}{2}\right\}$, u(x)=2x-5.

On a u'(x) = 2.

Par suite, pour x appartenant à $\mathbb{R}\left\{\frac{5}{2}\right\}$, $f'(x) = -\frac{2}{(2x-5)^2}$.

d. Quotient de fonctions.

Propriété: Soit u et v deux fonctions dérivables sur D et telles que pour tout réel a de D, $v(a) \neq 0$. Alors, la fonction $\frac{u}{v}$ est dérivable sur D et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Preuve: On peut écrire $\frac{u}{v} = u \times \frac{1}{v}$.

En appliquant les deux propriétés précédentes, on obtient:

$$\left(\frac{u}{v}\right)' = \left(u \times \frac{1}{v}\right)' = u' \times \frac{1}{v} + u \times \left(\frac{1}{v}\right)' = u' \times \frac{1}{v} + u \times \frac{-v'}{v^2} = \frac{u'v - uv'}{v^2}.$$

Exemple: Soit la fonction f définie par $f(x) = \frac{4x}{x^2 - 1}$.

f est définie et dérivable sur $\mathbb{R}\{-1; 1\}$.

Notons u et v les fonctions définies sur $\mathbb{R}\{-1; 1\}$ par u(x)=4x et $v(x)=x^2-1$. On a u'(x)=4 et v'(x)=2x.

On a alors pour tout x appartenant à $\mathbb{R}\{-1; 1\}$,

$$f'(x) = \frac{4(x^2 - 1) - 4x \times 2x}{(x^2 - 1)^2} = \frac{4x^2 - 4 - 8x^2}{(x^2 - 1)^2} = \frac{-4x^2 - 4}{(x^2 - 1)^2}.$$

e. Dérivée de $x \rightarrow g(ax+b)$.

On admettra le théorème suivant :

Théorème : a et b désignent deux réels et g une fonction dérivable sur un intervalle I. Pour tout réel x tel que $ax+b \in I$, la fonction f : $x \mid -> g(ax+b)$ est dérivable en x et $f'(x)=a\times g(ax+b)$.

Exemple : Soit f la fonction définie sur \mathbb{R} par $f(x) = (-7x + 10)^{14}$.

f est dérivable sur \mathbb{R}

Soit g la fonction définie sur \mathbb{R} par $g(x)=x^{14}$, g est dérivable et pour tout $x \in \mathbb{R}$ $g'(x)=14x^{13}$.

Pour tout $x \in \mathbb{R}$, f(x) = g(-7x+10).

f est dérivable et pour tout $x \in \mathbb{R}$ $f'(x) = -7 \times 14(-7x + 10)^{13} = -98(-7x + 10)^{13}$.