Programowanie

Egzamin zasadniczy — rozwiązania

14 czerwca 2002

Zadanie 1.

```
\{X = n \land n \ge 0\}
\{1 = h(n - X) \land X \ge 0\}
S = 1;
\{S = h(n - X) \land X \ge 0\}
while (X>0) (
    \{S = h(n - X) \land X \ge 0 \land X > 0\}
    \{S = h(n - X) \land X > 0\}
    T = S;
    \{T = h(n - X) \land X > 0\}
    \{1 = 1 \land T = h(n - X) \land X > 0\}
    S = 1;
    \{\mathtt{S}=1 \land \mathtt{T}=h(n-\mathtt{X}) \land \mathtt{X}>0\}
    \{S = 2^{h(n-X)-T} \land X > 0\}
    while (T!=0) (
         \{S = 2^{h(n-X)-T} \land X > 0 \land T \neq 0\}
         \{2 * S = 2^{h(n-X)-(T-1)} \land X > 0\}
         S = 2 * S;
         \{S = 2^{h(n-X)-(T-1)} \land X > 0\}
         T = T - 1;
         \{S = 2^{h(n-X)-T} \land X > 0\}
    )
    \{S = 2^{h(n-X)-T} \land X > 0 \land \neg T \neq 0\}
    \{S = 2^{h(n-X)} \land X > 0\}
    \{S = h(n - (X - 1)) \land X - 1 \ge 0\}
    X = X - 1;
    \{S = h(n - X) \land X \ge 0\}
)
\{S = h(n - X) \land X > 0 \land \neg X > 0\}
\{S = h(n - X) \land X = 0\}
\{S = h(n)\}
```

Zadanie 2. Szukaną gramatyką jest $G = \langle \Sigma, \{S, W, A, T, E\}, S, P \rangle$, gdzie

$$P = \{S \rightarrow WAT, W \rightarrow WD, W \rightarrow E, DA \rightarrow AAD, DT \rightarrow T, EA \rightarrow aE, ET \rightarrow \epsilon\}$$

"Działanie" gramatyki G jest następujace: z S wyprowadzamy słowo WAT. Z symbolu W wyprowadzamy słowo ED^n . Każdy symbol D przesuwa się na prawo i "przeskakując" przez symbole A podwaja ich ilość. Po dojściu do końca słowa, tj. napotkaniu symbolu T, symbol D "znika". Przesuwając w ten sposób symbole D generujemy słowo $EA^{2^n}T$. Na koniec symbol E przesuwa się w

prawo, zamieniając każdy symbol A na symbol terminalny a. Po dojściu do końca słowa, tj. napotkaniu symbolu T, symbol E znika wraz z nim i wyprowadzenie słowa a^{2^n} jest zakończone.

Aby generować słowa postaci a^{n^2} możemy nieco zmodyfikować powyższą gramatykę. Zauważmy, że $(i+1)^2=i^2+(2i+1)$. Rozważmy słowa w_i zbudowane z symboli A i a w których liczba symboli a wynosi i^2 , symboli A zaś 2i+1. Dla i=0 jest tylko jedno takie słowo $w_i=A$. Aby z w_i otrzymać w_{i+1} , należy dodać 2i+1 symboli a, tj. tyle, ile jest symboli A w słowie w_i oraz dwa symbole A. Podobnie jak w poprzedniej gramatyce może do tego służyć specjalny symbol D, który przesuwa się na prawo i "przeskakuje" przez symbole a i A, przy czym mijając każdy symbol A dodaje jeden symbol a. Po dotarciu do końca słowa dodaje dwa symbole A i "znika". Na koniec na prawo przesuwa się symbol E usuwając wszystkie symbole nieterminalne ze słowa. Mamy więc wyprowadzenie $S \Rightarrow WAT \stackrel{*}{\Rightarrow} ED^nAT \stackrel{*}{\Rightarrow} Ew_nT \stackrel{*}{\Rightarrow} a^{n^2}$, a szukaną gramatyką jest $G = \langle \Sigma, \{S, W, A, T, E\}, S, P \rangle$, gdzie

$$P = \{S \to WAT, W \to WD, W \to E, DA \to aAD, DT \to AAT, EA \to E, Ea \to aE, ET \to \epsilon\}$$

Zadanie 3. Jeśli pewne słowo zawiera przynajmniej jeden symbol a i przynajmniej jeden symbol m, to albo zawiera podciąg ma, albo am, tj. jest postaci umav lub uamv i redukuje się do uv. Nie jest więc w postaci normalnej. Z drugiej strony każde słowo złożone wyłacznie z symboli m lub a nie zawiera ani podciągu am, ani ma, jest więc w postaci normalnej. Niech

$$\overline{n} = \begin{cases} m^n & \text{gdy } n > 0 \\ \epsilon & \text{gdy } n = 0 \\ a^{-n} & \text{gdy } n < 0 \end{cases}$$

Zbiorem słów w postaci normalnej jest więc NF = $\{\overline{n} \mid n \in \mathbb{Z}\}$.

Lemat 1: jeżeli $u \to v$, to |u| = |v| + 2. Istotnie, anihilacja pary am i ma zmniejsza długość słowa o dwa.

Wniosek: Nie istnieje nieskończony ciąg redukcji $u_0 \to u_1 \to u_2 \to \dots$ i każde słowo posiada postać normalną.

Niech

$$bilans(\epsilon) = 0$$

 $bilans(um) = bilans(u) + 1$
 $bilans(ua) = bilans(u) - 1$

Łatwo pokazać, że dla dowolnych słów u i v zachodzi bilans(uv) = bilans(u) + bilans(v) (dowód przez indukcje względem u).

Lemat 2: jeżeli $u \stackrel{*}{\to} v$, to bilans(u) = bilans(v). Istotnie, jeśli $u \stackrel{*}{\to} v$, to istnieją słowa $u_0 = u, u_1, \ldots, u_n = v$, takie, że $u_i \to u_{i+1}$, dla $i = 0, \ldots, n-1$. Wystarczy więc pokazać, że jeśli $u \to v$, to bilans(u) = bilans(v), a teza wyniknie przez indukcję względem n. Jeśli $u \to v$, to istnieją słowa x i y, takie, że v = xy i u = xamy lub u = xmay. W pierwszym przypadku ponieważ bilans(am) = 0, to bilans(v) = bilans(xy) = bilans(xy) = bilans(xy) + bilans(y) = bilans(xy) + bilans(y) = bilans(xy) = bilans(xy) = bilans(xy) = bilans(xy) = bilans(xy) = 0. To kończy dowód lematu.

Wniosek: Każde słowo posiada dokładnie jedną postać normalną. Istotnie, jeśli v_1 i v_2 są postaciami normalnymi słowa u, to na mocy lematu 2, skoro $u \stackrel{*}{\to} v_1$ i $u \stackrel{*}{\to} v_2$, to bilans $(u) = \text{bilans}(v_1) = \text{bilans}(v_2)$. Ale skoro $v_1, v_2 \in \text{NF}$, to v_1 i v_2 są ciągami wyłacznie symboli m lub a, mają więc równy bilans tylko wtedy, gdy są równe, więc $v_1 = v_2 = \overline{\text{bilans}(u)}$. Zatem jedyną postacią normalną słowa u jest słowo $\overline{\text{bilans}(u)}$.

Własność Church-Rossera jest również konsekwencją lematu 2: jeśli $u \stackrel{*}{\to} v$ i $u \stackrel{*}{\to} w$, to bilans(u) = bilans(u). Niech $z = \overline{\text{bilans}(u)}$. Oczywiście $v \stackrel{*}{\to} z$ i $w \stackrel{*}{\to} z$.

Z własności Churcha-Rossera wynika, że $u \sim v$ wtedy i tylko wtedy, gdy istnieje słowo w, takie, że $u \stackrel{*}{\to} w$ i $v \stackrel{*}{\to} w$. Istotnie, $u \sim v$, jeśli istnieje ciąg słów $u_0 = v, u_1, \ldots, u_n = v$, takich, że $u_i \to u_{i+1}$ lub $u_{i+1} \to u_i$ dla $i = 0, \ldots, n-1$. Jest to równoważne stwierdzeniu, że istnieją ciągi $u_0 = u, \ldots, u_n = v$ oraz v_1, \ldots, v_n , takie, że $u_i \stackrel{*}{\to} v_{i+1}$ oraz $u_{i+1} \stackrel{*}{\to} v_{i+1}$, dla $i = 0, \ldots, n-1$. Przez indukcję względem n pokazujemy, że oznacza to, iż istnieje słowo w, takie, że $u \stackrel{*}{\to} w$ i $v \stackrel{*}{\to} w$.

Wniosek: $u \sim v$ wtedy i tylko wtedy, gdy bilans(u) = bilans(v). Istotnie, $u \sim v$ wtedy i tylko wtedy, gdy istnieje słowo w, takie, że $u \stackrel{*}{\to} w$ i $v \stackrel{*}{\to} w$. Jeżeli takie słowo istnieje, to bilans(u) = bilans(v). Z drugiej strony, jeśli bilans(u) = bilans(v), to u i v mają tę samą postać normalną $w = \overline{\text{bilans}(u)} = \overline{\text{bilans}(v)}$, zatem odpowiednie słowo w istnieje.

Niech $D = \mathbb{Z}$ i $\llbracket u \rrbracket = \text{bilans}(u)$, dla każdego $u \in \{m, a\}^*$. Na mocy ostatniego wniosku $\llbracket u \rrbracket = \llbracket v \rrbracket$ wtedy i tylko wtedy, gdy $u \sim v$.

Zadanie 4. Jeżeli dla pewnego podstawienia θ jest $t\theta = s\theta$, to dla każdego $\theta' \ge \theta$ jest $t\theta' = s\theta'$. Istotnie, skoro $\theta' \ge \theta$, to istnieje podstawienie ρ , takie, że $\theta' = \theta\rho$. Zatem $t\theta' = t(\theta\rho) = (t\theta)\rho = (s\theta)\rho = c(\theta\rho) = s\theta'$.

Rozważmy zadanie

$$\{s_i = s_i'\}_{i=1}^n \cup \{t_j \neq t_j'\}_{j=1}^m. \tag{1}$$

Jeżeli klasyczne zadanie unifikacji $\{s_i=s_i'\}_{i=1}^n$ nie ma rozwiązania, to całe zadanie również nie może mieć rozwiązania. W przeciwnym razie niech θ_0 będzie najogólniejszym unifikatorem układu $\{s_i=s_i'\}_{i=1}^n$. Każde rozwiązanie zadania (1) musi być unifikatorem $\{s_i=s_i'\}_{i=1}^n$, jeśli więc θ jest rozwiązaniem (1), to $\theta \geq \theta_0$. Jeśli $t_j\theta_0 \neq t_j'\theta_0$ dla $j=1,\ldots,m$, to θ_0 jest rozwiązaniem (1). W przeciwnym razie (1) nie posiada rozwiązania, bo skoro istnieje j, takie, że $t_j\theta_0=t_j'\theta_0$, to dla każdego $\theta \geq \theta_0$ zachodzi także $t_j\theta=t_j'\theta$ i θ nie jest rozwiązaniem (1).

Aby więc znaleźć rozwiązanie (1) można wykonać następujacy algorytm:

- 1. Znajdź najogólniejszy unifikator θ_0 układu $\{s_i = s_i'\}_{i=1}^n$. Jeżeli takowy nie istnieje, to zadanie (1) również nie posiada rozwiązania.
- 2. Sprawdź, czy $t_j\theta_0 \neq t_j'\theta_0$ dla $j=1,\ldots,m$. Jeżeli tak, zwróć θ_0 . W przeciwnym razie zadanie (1) nie posiada rozwiązania.

Wyznaczone w ten sposób podstawienie jest najogólniejsze w tym sensie, że dla każdego innego rozwiazania θ zadania (1) zachodzi $\theta \geq \theta_0$. Niestety nie każde podstawienie $\theta \geq \theta_0$ jest rozwiazaniem (1). Dla przykładu rozwiązaniem $\{x \neq y\}$ jest podstawienie identycznościowe []. Ponadto $[x/c, y/c] \geq []$, jednak [x/c, y/c] nie jest rozwiązaniem $\{x \neq y\}$.