

Det: Access structure 1

let P be a finite set of "n" players $P_1 \cdots P_n$. An access structure Υ is a set of subsets of players (authorized subsets) that satisfies two conditions:

(a) if $A \in \Upsilon$ and $A \subseteq B \subseteq P$, then $B \in \Upsilon$ (b) if $A \in \Upsilon$ then |A| > 0

A secret story scheme must have the following [2] properties:

1. Correctness; if the players in an authorized subset combine their shores (shadow), then they recover the sceret.

2. Seerely: if the players is an unauthorized subset combine their shares, then they have no information about the value of the secret.

Lagrange interpolation method

Sharing poly evaluation $\rightarrow f(n) \rightarrow f(2)$ Sharing poly interpolation $\rightarrow f(n) \rightarrow f(n)$ (1)

(2)

let q' be a prime number. Let $x_1 ... x_t$ be distinct elements in the finite field \mathbb{Z}_q and let $f_1 ... f_t$ be arbitrary elements in \mathbb{Z}_q . Then, there is a unique poly from $f(x_1, f_1) \in \mathbb{Z}_q[x_1]$ of degree at most $f(x_1, f_1) = f(x_2) = f(x_1, f_1)$ for $1 \le f(x_2) = f(x_1, f_1)$

$$(n_2, f_2)$$

$$\vdots$$
 (n_+, f_+)

$$f(n) = \sum_{i=1}^{t} \left(\prod_{\substack{1 \le j \le t \\ i \neq j}} \frac{\alpha - \alpha_j}{\alpha_{i} - \alpha_{j}} * f_{\dot{e}} \right)$$

Lagrange Int method for bivariate polys

$$f(n,y) \in \mathbb{Z}_q[n,y]$$

$$f(n,y_i) = f(n) \quad f(n) \quad 1 \le i \le t$$

$$f(n,y) = \sum_{i=1}^{t} \left(\int_{1 \le j \le t} \frac{y - y_j}{y_i - y_j} \times f_i(n) \right)$$

$$j \neq i$$

TSS [1979]

1. The dealer D' selects a random polynomial fine Z [n] of degree at most t-1 such that its constant term is the sceret, i.e., f(0) = & = searct

2. He sends the share f(i) to Pi for 1 < i < n i.e., each player receives a point on this pay for (i, f(i)) secret value / share of Pi

Public Tidentity & the player

1. Any subset A . I at least "t" players can send shores fii) to a selected player Pj.

2. player Po recovers secret f(0) = x by LI in the absence of the dealer $f(0) = \sum_{i \in \Delta} \left(\prod_{j \in \Delta, i \neq j} \frac{1}{j - i} * \hat{f}(i) \right)$

Note:
$$\frac{4}{3}$$
 (mod 7) = $4 \times \overline{3}$ (mod 7) = $4 \times -2 = 6$
inverse of 3 (mod 7) is $-2 \rightarrow -2 + 3 = 1$

$$\frac{11}{14} \stackrel{31}{=} 11 \times 14 \stackrel{31}{=} 11 \times 20 \stackrel{31}{=} \boxed{3}$$
Thresse