

Machine Learning

Susana Medina Gordillo

susana.medina@correounivalle.edu.co

Flujo de trabajo en Machine Learning

Flujo de trabajo en Machine Learning

Recolección de datos

Limpieza y preprocesa miento de datos

Selección del modelo Entrenamien to del modelo

Evaluación y validación

Implementa ción y monitoreo

Preprocesamiento de Datos

Preprocesamiento de Datos: Introducción

- Limpieza de datos y manejo de datos faltantes
- Normalización y estandarización

¿Por qué es crucial el preprocesamiento?

La calidad de los datos es fundamental para el éxito de cualquier modelo de Machine Learning.

Los datos del mundo real suelen ser "sucios": incompletos, inconsistentes, ruidosos y en formatos no ideales.

El preprocesamiento transforma los datos brutos en un **formato limpio** y adecuado para el modelado.

Limpieza de datos

Limpieza de Datos

- Es una **tarea** básica de la Ciencia de Datos.
- Es fundamental preparar los datos ANTES del análisis.
- > Algunas tareas de la limpieza de datos:
 - > Encontrar / Remover duplicados
 - Encontrar / Remover datos incompletos
 - Encontrar / Remover datos anómalos (outliers)
 - Modificar y validar datos
 - > Rectificar registros dudosos

Limpieza de Datos

Manejo de valores faltantes:

- Eliminación de filas o columnas con muchos valores faltantes.
- Imputación: rellenar los valores faltantes con la media, mediana, moda u otros métodos más sofisticados.

Eliminación de duplicados:

• Identificar y eliminar registros duplicados para evitar sesgos en el modelo.

Corrección de errores:

• Identificar y corregir valores incorrectos o inconsistentes (ej., errores de tipeo, formatos incorrectos).

Manejo de valores atípicos (outliers):

• Identificar y tratar valores extremos que pueden distorsionar el modelo.

Y si nos saltamos la limpieza de datos?

Normalización y estandarización

Normalización y Estandarización: ¿Por qué son necesarias?

✓ Muchos algoritmos de *Machine Learning* son **sensibles** a la escala de las variables.

✓ La normalización y estandarización aseguran que todas las variables tengan un rango similar, lo que mejora el rendimiento del modelo.

Normalización y Estandarización: Técnicas

- ✓ Normalización (Min-Max Scaling): Escala los valores entre 0 y 1.
- ✓ **Estandarización** (*Z-Score*): Transforma los valores para que tengan:
 - ✓ Media = 0
 - ✓ Desviación estándar = 1

Análisis Exploratorio de Datos (EDA)

- Visualización de datos con Matplotlib y Seaborn.
- Detección de patrones y relaciones en los datos.

Visualización de Datos: librerías python

Matplotlib: Librería básica para crear gráficos estáticos, interactivos y de animación en Python.

Seaborn: Construida sobre Matplotlib, proporciona una interfaz de alto nivel para crear gráficos estadísticos informativos y atractivos.

Visualización de Datos: tipos de gráficos

- ➤ Histogramas
- ➤ Diagramas de dispersión
- ➤ Gráficos de barras
- ➤ Boxplots /
 Diagramas de cajas

Detección de Patrones y Relaciones

¿Qué buscamos?

- ➤ Tendencias: ¿Los datos aumentan, disminuyen o se mantienen constantes con el tiempo?
- Correlaciones: ¿Existe una relación entre dos o más variables?
- ➤ Patrones: ¿Hay grupos o clusters en los datos?

Detección de Patrones y Relaciones: Correlación (heatmap)

Correlation Heatmap

Overall Quality -	1	0.53	0.56	0.5	0.48	0.6	0.58	0.57	0.43	-0.52	-0.57	-0.65	0.8
Total Squarefeet -		1			0.67	0.33		0.27	0.44	-0.42	-0.32	-0.34	0.72
Garage Area -	0.56	0.52	1	0.59						-0.4	-0.37	-0.44	0.65
Has 3car Garage -			0.59	1		0.33		0.35	0.41	-0.3	-0.34	-0.39	0.62
1st FI Squarefeet -		0.67		0.39	1	0.32	0.24	0.21		-0.37	-0.29	-0.32	0.62
Year Built -	0.6	0.33		0.33	0.32	1	0.63	0.67	0.32	-0.51	-0.48	-0.59	0.57
Year Remodelled -	0.58				0.24	0.63	1	0.61	0.2	-0.48	-0.59	-0.59	0.55
Concr. Foundation -	0.57	0.27		0.35	0.21	0.67	0.61	1	0.21	-0.5	-0.55	-0.63	0.53
Masonry Vnr Area -	0.43	0.44		0.41		0.32	0.2	0.21	1	-0.23	-0.23	-0.27	0.5
1 Full Bath -	-0.52	-0.42	-0.4	-0.3	-0.37	-0.51	-0.48	-0.5	-0.23	1	0.43	0.5	-0.52
Kitchen Quality -	-0.57	-0.32	-0.37	-0.34	-0.29	-0.48	-0.59	-0.55	-0.23	0.43	1	0.69	-0.54
External Quality -	-0.65	-0.34	-0.44	-0.39	-0.32	-0.59	-0.59	-0.63	-0.27		0.69	1	-0.6
Sale Price -	0.8	0.72	0.65	0.62	0.62	0.57	0.55	0.53	0.5	-0.52	-0.54	-0.6	1
	Overall Quality -	Total Squarefeet -	Garage Area -	Has 3car Garage -	1st Fl Squarefeet -	Year Built -	Year Remodelled -	Concr. Foundation –	Masonry Vnr Area –	1 Full Bath -	Kitchen Quality -	External Quality -	Sale Price -

Detección de Patrones y Relaciones

¿Cómo lo hacemos?

- ➤ Visualización de datos
- > Estadísticas descriptivas
- Análisis de componentes principales (**PCA**)

Conclusiones...

El preprocesamiento de datos es una **etapa esencial** en cualquier proyecto de Machine Learning.

La limpieza de datos, el manejo de valores faltantes, la normalización, la estandarización y el EDA son **técnicas fundamentales** que mejoran la calidad de los datos y el **rendimiento** del modelo.

Ejercicio práctico

colab.research.google.com

Ejercicio práctico: Google Colaboratory (Colabs)

- Página oficial: https://colab.google/
- Abrir Colab (incluye tutorial): https://colab.research.google.com/
- Guía para EDA: https://colab.research.google.com/github/Tanu-N-Prabhu/Python/blob/master/Exploratory_data_Analysis.ipynb
- Video, Introducción a Google Colab: <u>https://www.youtube.com/watch?v=9g61bnipcSs</u>

Referencias

- o "Data Cleaning: Understanding the Essentials". Consultado: el 11 de febrero de 2025. [En línea]. Disponible en: https://www.datacamp.com/tutorial/tutorial-data-cleaning-tutorial
- o "Python Seaborn Tutorial For Beginners: Start Visualizing Data". Consultado: el 10 de febrero de 2025. [En línea]. Disponible en: https://www.datacamp.com/tutorial/seaborn-python-tutorial
- "Python Boxplots: A Comprehensive Guide for Beginners". Consultado: el 6 de febrero de 2025.
 [En línea]. Disponible en: https://www.datacamp.com/tutorial/python-boxplots
- o Información e ideas presentadas basadas en el conocimiento general de modelos de lenguaje de IA. Gemini 2.9 Flash. Consultado: el 10 de febrero de 2025. [En línea].
- Imagen "Poop data" de Dr. Christian Krug. Perfil de <u>LinkedIn</u>. Publicación de Eduardo Ordax: https://www.linkedin.com/feed/update/urn:li:activity:7275487825238634496/
- Imágenes de seaborn plots:
 - o https://seaborn.pydata.org/examples/many-pairwise-correlations.html
 - https://seaborn.pydata.org/examples/scatterplot_matrix.html
 - o https://cmdlinetips.com/2018/03/pca-example-in-python-with-scikit-learn/

Machine Learning

Susana Medina Gordillo

susana.medina@correounivalle.edu.co