Лабораторная работа 17

Задания для самстоятельного выполнения

Извекова Мария Петровна

Содержание

Цель работы	5
Задание	6
Выполнение лабораторной работы	7
Постановка задачи 1	8
Моделирование работы вычислительного центра	8
Постановка задачи 2	11
Модель работы аэропорта	11
Постановка задачи 3	15
Моделирование работы морского порта	15
Первый вариант модели	15
Второй вариант модели	19
Выводы	24
Библиография	25

Список иллюстраций

1	Построение модели 1	9
2	Отчет модели 1	10
3	Отчет модели 1	10
1	Построение модели 2	12
2	Отчет модели 2	13
3	Отчет модели 2	14
1	Построение модели а первый вариант	16
2	Отчет модели а первый вариант	17
3	Построение модели а второй вариант	18
4	Отчет модели а второй вариант	19
5	Построение модели б второй вариант	20
6	Отчет модели б второй вариант	21
7	Построение модели б второй вариант	22
8	Отчет модели б второй вариант	23

Список таблиц

Цель работы

Построить 3 модели в gpss и проанализировать их

Задание

Построить модели: 1. Моделирование работы вычислительного центра 2. Модель работы аэропорта 3. Моделирование работы морского порта

Выполнение лабораторной работы

Постановка задачи 1

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A поступают через 20 ± 5 мин, класса B — через 20 ± 10 мин, класса C — через 28 ± 5 мин и требуют для выполнения: класс A — 20 ± 5 мин, класс B — 21 ± 3 мин, класс C — 28 ± 5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче. Смоделировать работу ЭВМ за 80 ч. Определить её загрузку.

Моделирование работы вычислительного центра

Построим модель (рис. [-@fig:001]).

```
_____
ram STORAGE 2
; моделирование заданий класса А
GENERATE 20,5
QUEUE class
ENTER ram, 1
DEPART class
ADVANCE 20,5
LEAVE ram, 1
TERMINATE 0
; моделирование заданий класса В
GENERATE 20,10
QUEUE class
ENTER ram, 1
DEPART class
ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
; моделирование заданий класса С
GENERATE 28,5
QUEUE class
ENTER ram, 2
DEPART class
ADVANCE 28,5
LEAVE ram, 2
TERMINATE 0
; таймер
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 1: Построение модели 1

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий

обрабатывает задания класса С, используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [-@fig:002] - [-@fig:003]).

	START TIME 0.000	END TIME 4800.000			RAGES 1
	NAME		VALUE		
	CLASS	10	0001.000		
	RAM		0000.000		
LABEL	LOC	BLOCK TYPE	FNTRY COUNT	CURRENT COUNT	DETRY
	1	GENERATE	240	0	0
	2	OUEUE	240	4	0
	3	ENTER	236	0	0
	4	DEPART	236	0	0
	5	ADVANCE	236	1	0
	6	LEAVE	235	0	0
	7	TERMINATE	235	0	0
	8	GENERATE	236	0	0
	9	QUEUE	236	5	0
	10	ENTER	231	0	0
	11	DEPART	231	0	0
	12	ADVANCE	231	1	0
	13	LEAVE	230	0	0
	14	TERMINATE	230	0	0
	15	GENERATE	172	0	0
	16	QUEUE	172	172	0
	17	ENTER	0	0	0
	18	DEPART	0	0	0
	19	ADVANCE	0	0	0
	20	LEAVE	0	0	0
	21	TERMINATE	0	0	0
	22	GENERATE	1	0	0
	23	TERMINATE	1	0	0

Рис. 2: Отчет модели 1

QUEUE CLASS		MAX CONT. 183 181	ENTRY E 648	NTRY(0) 4	AVE.CONT 92.354	684.105	
STORAGE RAM		CAP. REM. 2 0	MIN. MA		IES AVL. 67 1		IL. RETRY DELAY 994 0 181
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE
650	0	4803.512	650	0	1		
636	0	4805.704	636	5	6		
651	0	4807.869	651	0	15		
637	0	4810.369	637	12	13		
652	0	4813.506	652	0	8		
653	0	9600.000	653	0	22		

Рис. 3: Отчет модели 1

Из отчета увидим, что загруженность системы равна 99,4%.

Постановка задачи 2

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно-посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине. Требуется: — выполнить моделирование работы аэропорта в течение суток; — подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром; — определить коэффициент загрузки взлетно-посадочной полосы

Модель работы аэропорта

Построим модель (рис. [-@fig:004]).

Рис. 1: Построение модели 2

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась — переход в блок обработки, если нет — самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах — 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [-@fig:005] - [-@fig:006]).

	START TI	IME 000			BLOCKS 26			RAGES 0
	NAME ARRIVAL GOAWAY LANDING RESERVE RUNWAY TAKEOFF WAIT			UNS 100 100	VALUE 002.000 14.000 4.000 8PECIFIED 001.000 000.000			
LABEL		1	GENERA?	ΓE	NTRY COUN	T CURRENT	0	0
		2	ASSIGN		146		0	0
			QUEUE		146		0	0
LANDING		4	GATE		184		0	0
		5	SEIZE		146		0	0
		6	DEPART		146		0	0
		7	ADVANC		146		0	0
		8	RELEASI	_	146		0	0
WAIT		10	TERMINA TEST	AIL	146 38		0	0
WAII		11	ADVANCE	_	38		0	0
		12	ASSIGN	_	38		0	0
		13	TRANSF		38		0	0
GOAWAY		14	SEIZE	LK.	0		0	0
OUAWAI		15	DEPART		0		0	0
		16	RELEASI		0		0	0
		17	TERMIN		0		0	0
		18	GENERA'		142		0	0
		19	OUEUE	-	142		0	0
		20	SEIZE		142		0	0
		21	DEPART		142		0	0
		22	ADVANCE		142		0	0
		23	RELEASI		142		0	0
		24	TERMINA	ATE	142		0	0
		25	GENERA'	ΓE	1		0	0
1		26	TERMINA	ATE	1		0	0

Рис. 2: Отчет модели 2

FACILITY RUNWAY	ENTRIES UTI 288 0.		TIME AVAIL	. OWNER PEND 0 0	INTER RETRY 0 0	DELAY 0
QUEUE	MAX CONT.	ENTRY ENT	RY(0) AVE.C	ONT. AVE.TIME	AVE.(-0)	RETRY
TAKEOFF	1 0	142	114 0.0	17 0.173	0.880	0
ARRIVAL	2 0	146	114 0.1	32 1.301	5.937	0
FEC XN PRI	BDT	ASSEM C	URRENT NEX	T PARAMETER	VALUE	
290 2	1440.749	290	0 18			
291 1	1445.367	291	0 1			
292 0	2880.000	292	0 25			

Рис. 3: Отчет модели 2

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

Постановка задачи 3

Морские суда прибывают в порт каждые [а \pm δ] часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту [b \pm ϵ] часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. Исходные данные: 1) а = 20 ч, δ = 5 ч, b = 10 ч, ϵ = 3 ч, N = 10, M = 3; 2) а = 30 ч, δ = 10 ч, b = 8 ч, ϵ = 4 ч, N = 6, M = 2.

Моделирование работы морского порта

Первый вариант модели

Построим модель для первого варианта (рис. [-@fig:007]).

Рис. 1: Построение модели а первый вариант

После запуска симуляции получаем отчёт (рис. [-@fig:008]).

GPSS	World Simulation Re	eport - Untitled	d Model 1.13.1	
	суббота, мая 31, 2	025 12:13:22		
START T	ד תוד דאו די	IME BLOCKS FAC	TITTES STORAG	FS
0.	000 4320.	000 9	0 1	.20
NAME		WATHE		
ARRIVE		VALUE 10001.000		
PRICHAL		10001.000		
I INTOINE		20000.000		
LABEL	LOC BLOCK TYPE	ENTRY COUNT C	CURRENT COUNT RE	TRY
	1 GENERATE		0	
	2 QUEUE		0	
	3 ENTER	215	0	0
	4 DEPART	215	-	0
	5 ADVANCE	215		0
	6 LEAVE		0	
	7 TERMINATE		0	-
	8 GENERATE		0	
	9 TERMINATE	180	0	0
OUTUE	MAX CONT. ENTRY EN	TRY(O) AVE CONT	AVE TIME AVE	(-0) RETRY
	1 0 215			
		220 0.000	0.000	
	CAP. REM. MIN. MAX			
PRICHAL	10 7 0 3	645 1	1.485 0.148	0 0
PEC VN DDT	DDT ROOM	CHARGNE NEVE F	anameren	TIE .
	BDT ASSEM (AKAMETEK VAL	UE
395 0	4324.260 395	0 1		
396 0 397 0	4335.233 396 4344.000 397	0 1		
""	.0.1000			

Рис. 2: Отчет модели а первый вариант

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. [-@fig:009]), получаем оптимальный результат, что видно на отчете (рис. [-@fig:010]).

Untitled Model 1; порт а

prichal STORAGE 3

GENERATE 20,5

QUEUE arrive

ENTER prichal,3

DEPART arrive

ADVANCE 10,3

LEAVE prichal,3

TERMINATE 0

GENERATE 24

TERMINATE 1

Рис. 3: Построение модели а второй вариант

START 180

	S World Simulation Report - Untitled Model 1.14.1
	суббота, мая 31, 2025 12:16:34
START 1	TIME END TIME BLOCKS FACILITIES STORAGES
0	.000 4320.000 9 0 1
NAMI	E VALUE 10001.000
ARRIVE PRICHAL	
PRICHAL	10000.000
LABEL	LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
	1 GENERATE 215 0 0
	2 QUEUE 215 0 0
	4 DEPART 215 0 0
	5 ADVANCE 215 1 0
	6 LEAVE 214 0 0
	7 TERMINATE 214 0 0 8 GENERATE 180 0 0
	8 GENERATE 180 0 0 9 TERMINATE 180 0 0
	9 TERMINATE 180 0 0
OUFUE	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
ARRIVE	1 0 215 215 0.000 0.000 0.000 0
	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
PRICHAL	3 0 0 3 645 1 1.485 0.495 0 0
EEC VN DDI	BDT ASSEM CURRENT NEXT PARAMETER VALUE
396 0	4324.260 395 5 6 4335.233 396 0 1
396 0 397 0	4335.233 396 0 1 4344.000 397 0 8

Рис. 4: Отчет модели а второй вариант

Второй вариант модели

Построим модель для второго варианта (рис. [-@fig:011]).

Рис. 5: Построение модели б второй вариант

	GPSS	World	d Sim	ulation	n Repor	t - Unti	itled l	Model 1	.17.1		
		субб	ота, 1	мая 31,	, 2025	12:21:00	0				
	START T	IME 000				BLOCKS 9			STOR:		
	NAME ARRIVE PRICHAL				100						
LABEL		1 2 3 4 5 6 7 8	GENI QUEV ENTI DEPA ADVA LEAV TERI GENI	ERATE UE ER ART ANCE VE MINATE		NTRY COU 143 143 143 143 143 142 142 180 180		0 0 0 0 1 0		0 0 0 0 0	
QUEUE ARRIVE						0) AVE.0					
322 324	PRI 0 0 0	4325 4336	.892 .699	322 324	5	6 1		RAMETER	V	ALUE	

Рис. 6: Отчет модели б второй вариант

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [-@fig:013]), получаем оптимальный результат, что видно из отчета (рис. [-@fig:014]).

Рис. 7: Построение модели б второй вариант

	GPSS	Worl	d Sim	ulatio	n Repoi	rt – U	ntitle	ed Model	1.18	3.1	
		субб	ora,	мая 31	, 2025	12:23	:07				
	START T										
	0.	000		43	20.000	9		0		1	
	NAME					VALUE					
	ARRIVE				100	001.00	0				
	PRICHAL				100	00.00	0				
LABEL								CURRENT		IT RETRY	
										0	
		2	QUE			14	-		0	0	
		3	ENT			14			0	0	
									0		
		5	ADV.	ANCE		14	3		1	0	
		6	LEA	VE		14	2		0	0	
		7	TER	MINATE		14	2		0	0	
		8	GEN.	ERATE		18	0		0	0	
		9	TER	MINATE		18	0		0	0	
OHEHE		W2.V	CONT	ENTRY	ENTEN	(0) 311	E COM	. NIE T	TME	NUE (O)	DETE
ARRIVE										0.000	
ARRIVE		1	U	143	14.	•	0.000	0.	000	0.000	U
STORAGE		CAP.	REM.	MIN.	MAX. I	ENTRIE	S AVL	. AVE.C	. UTI	L. RETRY	DELAY
PRICHAL		2	0	0	2	286	1	0.524	0.2	62 0	0
	PRI							PARAMET	ER	VALUE	
	0										
324	0						1				
325					(8				

Рис. 8: Отчет модели б второй вариант

Выводы

В результате была реализована с помощью gpss и проанализированы:

- 1. Моделирование работы вычислительного центра
- 2. Модель работы аэропорта
- 3. Моделирование работы морского порта

Библиография

- 1. Королькова А. В., Кулябов Д. С. Модели обработки заказов
- 2. Королькова А. В., Кулябов Д. С. Имитационное моделирование в GPSS