Amplifikacijski spektar

Helena Latečki, GF-104

Geofizički odsjek, PMF, Horvatovac 95, 10 000 Zagreb

15. lipnja 2018.

Sažetak

Promijenom parametara H_1 , β_1 , β_2 , ρ_1 i ρ_2 promotreno je kako se za model sloja nad poluprostorom mijenja oblik amplifikacijskog spektra $AMP(\omega)$. Uočeno je kako veće vrijednosti β_2 i ρ_2 povećavaju amplitudu, dok veće vrijednosti β_1 i ρ_1 smanjuju amplitudu amplifikacijskog spektra. Promijenom debljine sloja H_1 ne dolazi do promijene amplitude parametra $AMP(\omega)$. Jedino parametri H_1 i β_1 utječu na učestalost pojavljivanja osnovnog oblika amplifikacijskog spektra. Povećanjem H_1 osnovni oblik se sužava, dok se povećanjem parametra β_1 osnovni oblik amplifikacijskog spektra proširuje.

I. Uvod

Pomaci površine u_1 za model sredstva (Slika 1) koji se sastoji od N vodoravnih, elastičnih homogenih slojeva nad poluprostorom (N+1), mogu se prikazati kao:

$$u_1 = \frac{2a_{N+1}}{\sqrt{x_{N+1}^2 + y_{N+1}^2}} e^{i(\omega t - \arctan\frac{y_{N+1}}{x_{N+1}})}.$$
 (1)

Ovaj izraz vrijedi uz pretpostavku da je gibanje površine uzrokovano trajnom harmonijskom pobudom, tj. nailaskom SH-vala amplitude a_{N+1} i ω kutne brzine iz poluprostora. Koeficijenti x_{N+1} i y_{N+1} daju rekurzivnu vezu između amplituda valova koji putuju prema gore - od poluprostora (N+1) do slobodne površine.

Slika 1. Model sredstva koji se sastoji od N vodoravnih, elastičnih homogenih slojeva nad poluprostorom (N+1). Debljine slojeva označene su s H_i , a amplitude valova koji putuju prema površini s a_i , j=1,2,3...

U slučaju kada nad poluprostorom nema niti jednog sloja, tj. uz pretpostavku da se iznad poluprostora nalazi beskonačno tanak sloj debljine $H_1 \to 0$ i gustoće $\rho_1 = 0$, vrijedi:

$$x_2 = 1,$$

 $y_2 = 0,$

pa se pomaci na slobodnoj površini mogu zapisati kao:

$$u_1 = 2a_2 e^{i\omega t}. (2)$$

Dakle, površina oscilira dvostrukom amplitudom a_2 upadnog vala iz poluprostora kao rezultat konstruktivne interferencije upadnog vala i reflektiranog vala od slobodne površine. Iz omjera izraza (1) i (2) za slučaj kada $a_{N+1} = a_2$, definira se tzv. amplifikacijski spektar:

$$AMP(\omega) = \frac{1}{\sqrt{x_{N+1}^2 + y_{N+1}^2}}. (3)$$

Amplifikacijski spektar $AMP(\omega)$ pokazuje koliko će puta više oscilirati slobodna površina slojevitog poluprostora od amplitude, pri frekvenciji ω , kojom bi oscilirala da ne postoji niti jedan sloj iznad poluprostora. Za koeficijente x_{j+1} i y_{j+1} može se pokazati da vrijedi rekurzivna relacija:

$$x_{j+1} = x_j \cos S_j - y_j \sin S_j,$$

$$y_{j+1} = \alpha_j (y_j \cos S_j + x_j \sin S_j),$$

za j = 1, 2, 3... pri čemu je:

$$S_{j} = k_{j} \cdot H_{j} \longleftarrow k_{j} = \frac{\omega}{\beta_{j}}$$
$$\alpha_{j} = \frac{\rho_{j-1}\beta_{j-1}}{\rho_{j}\beta_{j}}.$$

 β_i predstavlja brzinu vala, a α_i tzv. relativnu seizmičku impedanciju.

II. Ovisnost amplifikacijskog spektra o parametrima u slučaju modela sloja nad poluprostorom

Pretpostavljen je sljedeći model sloja nad poluprostorom:

- 1. svojstva sloja: $\beta_1 = 400 \text{ m/s}, \rho_1 = 2.59 \text{ g/cm}^3$,
- 2. svojstva poluprostora: $\beta_2 = 800 \text{ m/s}$, $\rho_2 = 3.00 \text{ g/cm}^3$.

Za zadani problem vrijedi:

$$x_2 = \cos S_1,$$

$$y_2 = \alpha_1 \sin S_1,$$

$$S_1 = k_1 H_1, \longleftarrow k_1 = \frac{\omega}{\beta_1}$$

$$\alpha_1 = \frac{\rho_1 \beta_1}{\rho_2 \beta_2},$$

pa se amplifikacijski spektar može zapisati kao:

$$AMP(\omega) = \frac{1}{\sqrt{x_2^2 + y_2^2}}.$$

Pri razmatranju ovisnosti $AMP(\omega)$ o različitim parametrima sloja i poluprostora za zadani model (Slika 2) korišten je programski jezik *Python*.

(1)
$$H_1 \uparrow a_1$$
 $\rho_1 = 2.59 \text{ g/cm}^3, \ \beta_1 = 400 \text{ m/s}$
(2) $\rho_2 = 3.00 \text{ g/cm}^3, \ \beta_2 = 800 \text{ m/s}$

Slika 2. Model sredstva koji se sastoji od jednog sloja nad poluprostorom. Debljina sloja označena je s H_1 . β_1 i β_2 predstavljaju redom brzine upadnih valova u sloju i poluprostoru. ρ_1 i ρ_2 predstavljaju redom gustoću sloja i gustoću poluprostora.

Ovisnost $AMP(\omega)$ o debljini sloja iznad poluprostora H_1

Kako bi se promotrila ovisnost $AMP(\omega)$ o debljini sloja iznad poluprostora, za vrijednost od H_1 uzeto je 5, 10, 20, 50 i 100 m dok su svi ostali parametri konstantni. Dobivene vrijednosti $AMP(\omega)$ u ovisnosti o frekvenciji f = 0.1 - 50 Hz nalaze se u Dodatku 1.

Promijenom debljine sloja iznad poluprostora ne dolazi do promijene amplitude $AMP(\omega)$. Međutim, povećanjem vrijednosti H_1 , oblik amplifikacijskog spektra se sužava, pa se unutar istog intervala frekvencija $f \in [0.1, 50]Hz$ može uočiti sve više i više maksimuma i minimuma. Točnije, za dvostruko povećanje debljine sloja, moguće je uočiti dvostruko više maksimuma. Dakle, promijenom parametra H_1 utječe se na učestalost pojavljivanja osnovnog oblika amplifikacijskog spektra.

Ovisnost $AMP(\omega)$ o brzini valova u sloju iznad poluprostora β_1

Kako bi se promotrila ovisnost $AMP(\omega)$ o brzini valova u sloju iznad poluprostora, za vrijednost od β_1 uzeto je 200, 300, 400, 500 i 600 m/s dok su svi ostali parametri konstantni (za debljinu sloja iznad poluprostora uzeto je $H_1=20$ m). Dobivene vrijednosti $AMP(\omega)$ u ovisnosti o frekvenciji f=0.1-50 Hz nalaze se u Dodatku 2.

Povećanjem brzine valova u sloju iznad poluprostora dolazi do smanjenja amplitude $AMP(\omega)$. Nadalje, povećanjem vrijednosti β_1 , širina osnovnog oblika amplifikacijskog spektra se povećava, pa se unutar istog intervala frekvencija $f \in [0.1, 50]Hz$ može uočiti sve manje i manje maksimuma i minimuma. Dakle, promijenom parametra β_1 utječe se i na amplitudu i na učestalost pojavljivanja osnovnog oblika amplifikacijskog spektra.

Ovisnost $AMP(\omega)$ o brzini valova u poluprostoru β_2

Kako bi se promotrila ovisnost $AMP(\omega)$ o brzini valova u poluprostoru, za vrijednost od β_2 uzeto je 400, 600, 800, 1000 i 1200 m/s dok su svi ostali parametri konstantni (za debljinu sloja iznad poluprostora uzeto je $H_1 = 20$ m). Dobivene vrijednosti $AMP(\omega)$ u ovisnosti o frekvenciji f = 0.1 - 50 Hz nalaze se u Dodatku 3.

Povećanjem brzine valova u poluprostoru dolazi do povećanja amplitude $AMP(\omega)$. Međutim, povećanjem vrijednosti β_2 ne dolazi do promijene širine osnovnog oblika amplifikacijskog spektra. Dakle, promijenom parametra β_1 utječe se samo na amplitudu osnovnog oblika amplifikacijskog spektra.

Ovisnost $AMP(\omega)$ o gustoći sloja iznad poluprostora ρ_1

Kako bi se promotrila ovisnost $AMP(\omega)$ o gustoći sloja iznad poluprostora, za vrijednost od ρ_1 uzeto je 1.60, 2.10, 2.59, 3.10 i 3.60 g/cm³ dok su svi ostali parametri konstantni (za debljinu sloja iznad poluprostora uzeto je $H_1=20$ m). Dobivene vrijednosti $AMP(\omega)$ u ovisnosti o frekvenciji f=0.1-50 Hz nalaze se u Dodatku 4.

Povećanjem gustoće sloja iznad poluprostora dolazi do smanjenja amplitude $AMP(\omega)$. Međutim, povećanjem vrijednosti ρ_1 ne dolazi do promijene širine osnovnog oblika amplifikacijskog spektra. Dakle, promijenom parametra ρ_1 utječe se samo na amplitudu osnovnog oblika amplifikacijskog spektra.

Ovisnost $AMP(\omega)$ o gustoći poluprostora ρ_2

Kako bi se promotrila ovisnost $AMP(\omega)$ o gustoći poluprostora, za vrijednost od ρ_2 uzeto je 2.10, 2.60, 3.00, 3.60 i 4.10 g/cm³ dok su svi ostali parametri konstantni (za debljinu sloja iznad poluprostora uzeto je $H_1=20$ m). Dobivene vrijednosti $AMP(\omega)$ u ovisnosti o frekvenciji f=0.1-50 Hz nalaze se u Dodatku 5.

Povećanjem gustoće poluprostora dolazi do povećanja amplitude $AMP(\omega)$. Međutim, povećanjem vrijednosti ρ_2 ne dolazi do promijene širine osnovnog oblika amplifikacijskog spektra. Dakle, promijenom parametra ρ_2 utječe se samo na amplitudu osnovnog oblika amplifikacijskog spektra.

III. ZAKLJUČAK

Za model sloja nad poluprostorom promotreno je kako na oblik amplifikacijskog spektra $AMP(\omega)$ utječe promjena parametara H_1 , β_1 , β_2 , ρ_1 i ρ_2 . Povećanjem vrijednosti β_2 i ρ_2 dolazi do povećanja amplitude amplifikacijskog spektra. Povećanjem vrijednosti β_1 i ρ_1 dolazi do smanjenja amplitude amplifikacijskog spektra. Promijenom debljine sloja H_1 ne dolazi do promijene amplitude parametra $AMP(\omega)$. Nadalje, jedino parametri H_1 i β_1 utječu na učestalost pojavljivanja osnovnog oblika amplifikacijskog spektra: povećanjem H_1 osnovni oblik se sužava, pa je za isti inteval frekvencija moguće uočiti više maksimuma i minimuma; povećanjem parametra β_1 širina osnovnog oblika se povećava, pa je za isti interval frekvencija moguće uočiti manje maksimuma i minimuma.

IV. Dodatak 1

V. Dodatak 2

VI. Dodatak 3

VII. Dodatak 4

VIII. Dodatak 5

