

→ filtre liniare (continuare)

filtre de mediere temporală (netezire):

B. medierea ponderată optimală într-o fereastră temporală (continuare):

$$R_{gg}(m) = E\{g(n,k) \cdot g(n,k-m)\}\$$

= funcția de autocorelație temporală a lui g() cu g().

$$R_{fg}(m) = E\{f(n,k) \cdot g(n,k-m)\}$$
 = funcția de intercorelație temporală a lui $f()$ cu $g()$.

> cu cât fereastra este mai mare cu atât filtrarea este mai puternică (puterea zgomotului ≥) ⇒ înceţoşarea obiectelor în mişcare;

> se mediază de fapt pixeli diferiți dar care se află în aceeași poziție spațială la momentul k;

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre liniare (continuare)

filtre de mediere temporală (netezire):

C. medierea ponderată, cu compensarea mișcării:

$$\hat{f}((x,y),k) = \sum_{l=-K}^{K} h(l) \cdot g(x - d_x(x,y;k,l), y - d_y(x,y;k,l), k - l)$$

unde $\{d_x(x,y;k,l);d_y(x,y;k,l)\}$ reprezintă vectorul de mișcare al pixelului de coordonate (x,y) între cadrele la momentul k și l.

> avantaj: voi media acelaşi pixel pe măsură ce se deplasează în timp de la un cadru la altul;

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre liniare (continuare)

filtre de mediere temporală (netezire):

C. medierea ponderată cu compensarea mişcării (continuare):

> cu cât crește dimensiunea ferestrei temporale, crește și potențialul reducerii zgmotului dar și probabilitatea apariției artefactelor datorate estimării incorecte a mișcării pentru distanțe temporale mari,

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre liniare (continuare)

filtre de mediere temporală (netezire):

D. medierea ponderată cu aproximarea compensării mișcării:

> nu dispunem de informația de mișcare iar aceasta nu poate fi estimată deoarece secvența este foarte afectată de zgomot:

D.1. detectăm schimbările de la o imagine la alta și localizarea lor temporală:

→ h() va fi adaptat spaţial (ex. mediere minimă pt. schimbări ¬),

D.2. pentru fiecare coordonată spațială, filtrăm după M potențiale directii de miscare alese "a priori":

→ folosind un anumit criteriu alegem unul dintre rezultatele partiale,

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre liniare (continuare)

filtre de mediere temporală (netezire):

D.2. medierea ponderată cu aproximarea compensării mişcării

$$\hat{f}_{i,j}((x,y),k) = \frac{1}{3} [g(x-i,y-j,k-1) + g(x,y,k) + g(x+i,y+j,k+1)]$$

unde i și i definesc directiile posibile iar filtrarea se face ca:

$$\hat{f}(n,k) = median\{\hat{f}_{-1,-1}(n,k), \hat{f}_{1,-1}(n,k), \hat{f}_{-1,1}(n,k), \hat{f}_{1,1}(n,k), \hat{f}_{1,1}(n,k), \hat{f}_{0,0}(n,k), g(n,k)\}$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre liniare (continuare)

filtre de mediere temporală (netezire):

D.2. medierea ponderată cu aproximarea compensării mişcării

→ filtre liniare

filtre de mediere temporală (netezire):

E. medierea ponderată spațio-temporal:

$$\hat{f}(n,k) = \sum_{(m,l)\in\mathcal{S}} h(m,l) \cdot g(n-m,k-l)$$

unde S reprezintă un suport spațio-temporal (fereastră 3D), *m* sunt coordonatele spațiale iar *l* deplasarea temporală,

S={(-1,0,0), (0,-1,0), (0,1,0), (1,0,0), (0,0,1), (0,0,-1)}

→ coeficienți egali sau pot fi optimizați → filtru Wiener 3D;

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre liniare

filtre de mediere temporală (netezire):

E. medierea ponderată spațio-temporal (continuare):

$$\hat{f}(n,k) = \sum_{(m,l)\in\mathcal{S}} h(m,l) \cdot g(n-m,k-l)$$

> limitări optimizare Wiener: nu dispunem de funcțiile de autocorelație iar ipoteza de staționaritate în sens larg nu este adevărată datorită mişcării obiectelor sau a efectelor vizuale;

→ coeficienti adaptivi:

$$h(m,l;n,k) = \frac{c}{1 + \max\{\alpha, [g(n,k) - g(n-m,k-l)]^2\}}$$

unde h(m,l;n,k) ponderează intensitatea pixelului de coordonate n-m la momentul temporal k-l și contribuie la $\hat{f}(n,k)$,

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre de mediere temporală (netezire):

E. medierea ponderată spatio-temporal (continuare):

→ coeficienți adaptivi (continuare):

$$h(m,l;n,k) = \frac{c}{1 + \max\{\alpha, [g(n,k) - g(n-m,k-l)]^2\}}$$

 \Rightarrow dacă $[g(n,k)-g(n-m,k-l)]^2 < \alpha$, \sim valoarea pixelului se modifică foarte puţin (regiuni omogene temporal) \Rightarrow pondere importantă; $1+\to 0$

→ altfel, ~ valoare pixelului se schimbă semnificativ (mişcare importantă, diferețe, ...), pondere mică = excludere;

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

[R.L. Lagendijk, J. Biemond, A. Rareş, M.J.T. Reinders, Video Enhancement and Restoration, 2009

> avantaj: necesită o fereastră de analiză mult mai mică, de doar câteva imagini (de regulă una singură),

> forma generală:

$$\hat{f}(n,k) = \hat{f}_b(n,k) + \alpha(n,k) \cdot [g(n,k) - \hat{f}_b(n,k)]$$

unde $\hat{f_b}(n,k)$ reprezintă predicția cadrului original la momentul k pe baza cadrelor filtrate anterior (~recurența), $\alpha(n,k)$ reprezintă termenul de actualizare a predicției raportată la cadrul g(), curent, n=(x,y) sunt coordonatele spațiale iar k indicele temporal.

 \rightarrow dacă $\alpha(n,k)=1 \Rightarrow \hat{f}(n,k)=g(n,k)$ (fără filtrare),

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

$$\hat{f}(n,k) = \hat{f}_b(n,k) + \alpha(n,k) \cdot [g(n,k) - \hat{f}_b(n,k)]$$

A. alegerea lui f_b():

→ din cadrul anterior:

$$\hat{f}_{b1}(n,k) = \hat{f}(n,k-1)$$

→ din cadrul anterior + compensarea mişcării:

$$\hat{f}_{h2}(n,k) = \hat{f}(n-d(n;k,k-1),k-1)$$

unde d(n;k,k-1) reprezintă vectorul de mişcare pentru pixelul de coordonate n între imaginile la k-1 şi k.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

$$\hat{f}(n,k) = \hat{f}_b(n,k) + \alpha(n,k) \cdot [g(n,k) - \hat{f}_b(n,k)]$$

B. alegerea lui $\alpha(n,k)$:

21

→ valoare globală, fixă (introduce artefacte în cazul mişcării = "comet-tails");

$$\Rightarrow \text{ adaptat:} \quad \alpha(n,k) = \begin{cases} 1 & |g(n,k) - \hat{f}_b(n,k)| > \varepsilon \\ \alpha & |g(n,k) - \hat{f}_b(n,k)| \le \varepsilon \end{cases}$$

> pentru zone cu mişcare (f_{b1}) sau pentru care estimarea mişcării este eronată (f_{b2}) = diferență importantă \Rightarrow OFF;

> altfel, pentru zone staționare = diferență mică \Rightarrow ponderare cu α ,

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

2:

filtre recursive temporal:

$$\hat{f}(n,k) = \hat{f}_b(n,k) + \alpha(n,k) \cdot [g(n,k) - \hat{f}_b(n,k)]$$

B. alegerea lui α(n,k) (continuare):

→ mai fină este adaptarea în sensul LLMMSE (Locally Linear Minimal Mean Squared Error):

> principiu: imaginea filtrată = combinație liniară a imaginii înregistrate (posibil degradată) și a imaginii mediate (mediere aritmetică în fiecare pixel pe o anumită vecinătate):

$$\hat{f} = \alpha \cdot g + (1 - \alpha) \cdot g$$

 $\hat{f} = \alpha \cdot \overline{g} + (1-\alpha) \cdot g \qquad \text{unde } \hat{f} \text{ este imaginea filtrată, g este imaginea inițială, } \overline{g} \text{ este imaginea}$ mediată α un coeficient de reglaj.

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

→ LLMMSE (Locally Linear Minimal Mean Squared Error):

$$\hat{f} = \alpha \cdot g + (1 - \alpha) \cdot g$$

> în ipoteza de zgomot alb obținem:

g = f + w (f cadrul neperturbat ideal iar w zgomot alb)

$$\overline{w} = 0$$
, $\overline{f \cdot w} = \overline{f} \cdot \overline{w} = 0$

$$\Rightarrow \hat{f} = \alpha \cdot \overline{(f+w)} + (1-\alpha) \cdot (f+w)$$

Analiza și Prelucrarea Secventelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

→ LLMMSE (Locally Linear Minimal Mean Squared Error):

$$\hat{f} = \alpha \cdot \overline{(f+w)} + (1-\alpha) \cdot (f+w)$$

$$\hat{f} = \alpha \cdot \overline{f} + (1-\alpha) \cdot (f+w)$$

> eroarea obținută în urma filtrării este:

$$\varepsilon = f - \hat{f} = f - \alpha \cdot \overline{f} - (1 - \alpha) \cdot (f + w)$$
$$= \alpha \cdot (f - \overline{f}) - (1 - \alpha) \cdot w$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

→ LLMMSE (Locally Linear Minimal Mean Squared Error):

$$\overline{\varepsilon^2} = \left(\alpha \cdot (f - \overline{f}) - (1 - \alpha) \cdot w\right)^2$$

$$\overline{\varepsilon^2} = \alpha^2 \cdot \overline{(f - \overline{f})^2} + (1 - \alpha)^2 \cdot \overline{w^2}$$

$$-2 \cdot \alpha \cdot (1 - \alpha) \cdot \overline{(f - \overline{f}) \cdot w} = 0$$

$$\overline{\varepsilon^2} = \alpha^2 \cdot \sigma_f^2 + (1 - \alpha)^2 \cdot \sigma_w^2$$
 dispersii locale

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

→ LLMMSE (Locally Linear Minimal Mean Squared Error):

$$\overline{\varepsilon^2} = \alpha^2 \cdot \sigma_f^2 + (1 - \alpha)^2 \cdot \sigma_w^2$$

> minimizăm eroarea pătratică medie funcție de α, astfel:

$$\frac{\partial \overline{\varepsilon^2}}{\partial \alpha} = 0 \implies \frac{\partial \overline{\varepsilon^2}}{\partial \alpha} = 2 \cdot \alpha \cdot \sigma_f^2 - 2 \cdot (1 - \alpha) \cdot \sigma_w^2 = 0$$

$$\Rightarrow \alpha = \frac{\sigma_w^2}{\sigma_f^2 + \sigma_w^2}$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

→ LLMMSE (Locally Linear Minimal Mean Squared Error):

$$\alpha = \frac{\sigma_w^2}{\sigma_f^2 + \sigma_w^2}$$

> imaginea f nu este cunoscută, astfel exprimăm pe α funcție de g,

$$\left. \begin{array}{l} g = f + w \\ \sigma_g^2 = \sigma_f^2 + \sigma_w^2 \end{array} \right\} \quad \Rightarrow \quad \alpha = \frac{\sigma_w^2}{\sigma_g^2}$$

filtre recursive temporal:

→ LLMMSE (Locally Linear Minimal Mean Squared Error):

$$\hat{f}_{optimal} = \frac{\sigma_w^2}{\sigma_g^2} \cdot \overline{f} + (1 - \frac{\sigma_w^2}{\sigma_g^2}) \cdot g$$

B. alegerea lui α(n,k):

→ în acest sens alegem:

$$\alpha(n,k) = \max \left(1 - \frac{\sigma_w^2}{\sigma_{g(n,k)}^2}, 0\right) \quad \text{unde } \sigma_{g(n,k)}^2 \text{ este un estimat al dispersiei în vecinătatea lui } n \text{ la momentul } k$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

filtre recursive temporal:

B. alegerea lui
$$\alpha(n,k)$$
: $\alpha(n,k) = \max \left(1 - \frac{\sigma_w^2}{\sigma_{g(n,k)}^2}, 0\right)$

→ dacă varianța lui *g* este importantă = mişcare importantă, estimare mişcare incorectă, atunci OFF:

$$\alpha(n,k) = \max\left(1 - \frac{\sigma_w^2}{\to \infty}, 0\right) \approx 1$$

→ dacă varianța lui g este comparabilă cu cea a zgomotului = informația furnizată nu este utilă, atunci fără predicție:

$$\alpha(n,k) = \max(\rightarrow 0,0) \approx 0 \implies \hat{f}(n,k) = \hat{f}_b(n,k)$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

> M2. Filtrare spațio-temporală [Filtre statistice de ordine]

33

 $\hat{f}(n,k) = \sum_{k=0}^{|S|} h_{(r)}(n,k) \cdot g_{(r)}(n,k)$

 $f(n,k) = \sum_{r=1}^{n} n_{(r)}(n,k) \cdot g_{(r)}(n,k)$ unde $g_{(r)}(n,k)$ reprezintă intensitățile pixelilor ordonate (de rang r), n fiind

unde $g_{(r)}(n,k)$ reprezintă intensitățile pixelilor ordonate (de rang r), n fiinc coordonatele spațiale iar k indicele temporal; S reprezintă fereastra spațio-temporală aleasă în vecinătatea lui n (număr valori = |S|).

→ median temporal (poate fi aplicat şi cu compensarea mişcării):

$$\hat{f}(n,k) = median\{g(n,k-1), g(n,k), g(n,k+1)\}$$

eficient pentru zgomot de tip "shot noise" = zgomotul cauzat de variația numărului de fotoni recepționați la un anumit nivel de expunere (independent, distribuție Poisson).

43

45

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

- filtre statistice de ordine (continuare)
- → filtrul median multietaj MMF (continuare):

$$\hat{f}(n,k) = median \left(\frac{g(n,k), \max{\{\hat{f}_1(n,k),...,\hat{f}_9(n,k)\}},}{\min{\{\hat{f}_1(n,k),...,\hat{f}_9(n,k)\}}} \right)$$

- > cu toate că nu include estimarea mişcării, reduce artefactele de-a lungul contururilor obiectelor în mişcare datorită orientării filtrării.
- > se poate aplica şi de-a lungul traiectoriei de mişcare (se orientează ferestrele de-a lungul acesteia) .

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

> M2. Filtrare spaţio-temporală
[Filtre multirezoluţie]

Analiza şi Prelucrarea Secvenţelor de Imagini, Ş.I. Bogdan IONESCU 46

- > introducerea informației de mișcare:
 - → dacă aplicăm compensarea mişcării pentru cadrele în intervalul [k-K;k+K] (fereastră temporală) atunci (teoretic):

$$f(k) \approx f(k-1) \approx \dots f(k-K)$$

$$f(k) \approx f(k+1) \approx ... f(k+K)$$

- \rightarrow diferențele dintre g(k), g(k+1), ... sunt date doar de zgomot!
- → descompunerea piramidală a acestor imagini va fi de asemenea identică cu excepția zgomotului!
- → dacă reprezentăm temporal coeficienții unei benzi pentru o anumită scală ⇒ un semnal DC + zgomot,
- 2. descompunere temporala cu DWT (același principiu).

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului

→ filtre multirezoluție

> algoritm de filtrare:

49

- A. pornind de la cadrul curent $k \rightarrow$ compensarea mişcării (în fereastră),
- B. descompunere piramidală pentru fiecare cadru compensat,
- C. descompunere wavelet temporală pentru fiecare bandă și frecvență spațială (originea este coeficientul din cadrul k),

D. filtrare coeficienți ("core filtering"):

E. reconstrucție inversă: C-1 → B-1.

aliza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Filtrarea spațio-temporală a zgomotului iltre multirezoluție: exemplu cadru afectat de zgomot cadru filtrat Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU 51

Filtrarea spațio-temporală a zgomotului

exemple de filtre de reducere a zgomotului:

Denoiser name (short name)	Author	Version	Type of application
MSU Denoiser	MSU Video Group	1.6.2	VD
Alparysoft Denoise Filter	Alparysoft	1.0.744.050105	VD
2d cleaner	Jim Casaburi	0.9	VD
Denoiser by "tHE fISH"	"tHE fISH" (work based on Donald Graft code)	1.0	VD
Dynamic Noise Reduction (DNR)	Steven Don and Avery Lee	22.01.2002	VD
Noise Reduction Suite (NRS)	Antonio Foranna	1.4	VD
Smart Smoother	Klaus Post (work based on Donald Graft code)	2.11	VD
flaXen VHS Filter (VHS)	flaXen	1.0	VD
Video DeNoise	Alexander Tchirkov	2.0	VD (no job)
Neat Video	ABSoft	1.5	VD
Sapphire GrainRemove	GenArts	1.10	AAE
AAE internal grain remover	Adobe Inc.	6.5	AAE

VD = VirtualDub plug-in. AAE = Adobe After Effects plug-in,

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

52

50

