

En aquestes figures, J_{S1} llisca sobre el sòlid S_2 (està indicat amb "llisca"). Vol dir que J_{S1} té moviment relatiu a S_2 .

En un contacte puntual amb lliscament, l'única incògnita d'enllaç és la normal que S₂ aplica sobre S₁, en la direcció normal al pla tangent a S₂ en el punt J (figura esquerra). El contacte es mantindrà sempre i quan N > 0. Per això, sovint calculem N als exercicis, i després analitzem si N es mantindrà positiva durant el moviment, o si, per exemple, pot passar a ser zero per causa d'alguna velocitat de rotació que supera un valor crític.

Si, a més, la superficie d'S₂ és rugosa (figura dreta), hi haurà una força de fricció F_{fricc} de S₂ sobre S₁ que s'oposarà al moviment de J_{S1} respecte S₂. F_{fricc}, però, **no és d'enllaç!** És **formulable**, i la formularem d'acord amb alguna llei de fregament, ja sigui de frec sec o viscós (tal i com s'indica a baix a la dreta). L'enunciat d'un problema deixarà clar quin tipus de frec assumim. Per exemple, quan en una figura posem una μ al punt de contacte, voldrà dir que el model és de frec sec.

Sovint considerem que els coeficients de frec sec estàtic (μ_e) i dinàmic (μ_d) són iguals ($\mu_e = \mu_d = \mu$) però podrien ser diferents en algun cas. L'enunciat ho deixarà clar.

Ara estem suposant que J_{S1} no llisca sobre S₂. Vol dir que J_{S1} no té moviment relatiu a S₂. Què impedeix que hi hagi aquest moviment relatiu? Les rugositats de S₂!

Si S₂ és rugosa en totes les direccions (cas esquerre):

Pel que fa a forces d'enllaç: hi haurà la component normal N que ja teníem abans, i dues components T₁ i T₂ addicionals, en dues direccions ortogonals del pla tangent a S₂. T₁ i T₂ són les que impedeixen el moviment relatiu en les direccions del pla tangent. Són forces que prenen el valor que calgui per garantir l'enllaç.

Pel que fa a forces de fricció: no n'hi ha! "Fricció" vol dir "fregament amb lliscament" i estem assumint que J **no llisca** (ho indica el dibuix). Ara bé, caldrà assegurar que el mòdul de la força tangencial resultant és inferior a μ_eN per a que realment no es produeixi el lliscament (condició d'enllaç de baix a l'esquerra). Per això, sovint es demana de calcular T₁ i T₂ i comprovar si es verifica aquesta condició d'enllaç.

Si S₂ és rugosa en una sola direcció (cas dret):

Pel que fa a forces d'enllaç: hi haurà la component normal N, i una component tangencial T en la direcció en la que hi ha rugositats. Aquesta direcció ha de quedar clara a l'enunciat. Una manera d'especificar-la és dir que el coeficient de frec estàtic **en aquesta direcció** és diferent de zero (µ_{e (direcció rugosa)} ≠ 0), mentre que en la direcció ortogonal és nul.

Pel que fa a forces de fricció: com abans, tampoc n'hi ha, perquè estem suposant que J no llisca. Pot semblar ilògic que J no llisqui en la direcció "no rugosa", però sovint aquest lliscament està impedit pel disseny del sistema (hi ha altres enllaços que impedeixen aquest lliscament).