STAT 5010 Tutorial 1*

Sept. 2022

Definitions

- 1. For X, $\{X_n\}$ random variables, F, $\{F_n\}$ the corresponding distribution functions,
 - $X_n \xrightarrow{a.s.} X$: $\mathbf{P}(\lim_{n\to\infty} X_n = X) = 1$
 - $X_n \xrightarrow{L^r} X$: $\lim_{n \to \infty} \mathbf{E} |X_n X|^r = 0$
 - $X_n \xrightarrow{p} X$: $\forall \delta > 0$, $\lim_{n \to \infty} \mathbf{P}(|X_n X| > \delta) = 0$
 - $F_n \xrightarrow{w} F$: $\forall x$ continuity point of F, $\lim_{n\to\infty} F_n(x) = F(x)$
 - $X_n \xrightarrow{d} X \colon F_n \xrightarrow{w} F$
- 2. Let X_1, X_2, \ldots be random vectors and Y_1, Y_2, \ldots be random variables defined on a common probability space.
 - $X_n = O_p(Y_n)$ if and only if, $\forall \epsilon > 0$, $\exists C_{\epsilon} > 0$ such that $\sup_n \mathbf{P}(||X_n|| \ge C_{\epsilon}|Y_n|) < \epsilon$.
 - $X_n = o_p(Y_n)$ if and only if $X_n/Y_n \stackrel{p}{\to} 0$

Propositions and Theorems

1. Chebyshev's Inequality: $\forall t > 0$, $\mathbf{P}(|X - EX| \ge t) \le \frac{Var(X)}{t^2}$

Proof.
$$t^2 \mathbf{P}(|X - EX| \ge t) = t^2 \mathbf{P}(|X - EX|^2 \ge t^2) = t^2 \mathbf{E}[I_{|X - EX|^2 > t^2}] \le E[|X - EX|^2] = Var(X)$$

2. $X_n \xrightarrow{a.s.} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{k \to \infty} \mathbf{P}(\bigcup_{n=k}^{\infty} \{||X_n - X|| > \epsilon\}) = 0$

Proof.
$$\mathbf{P}(\lim_{n\to\infty} X_n = X) = \mathbf{P}(\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < \frac{1}{k}\}) = \lim_{k\to\infty} \mathbf{P}(\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < \frac{1}{k}\}) = 1.$$

Note that $A_k \triangleq \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < \frac{1}{k}\}$ are nonincreasing in k. The equations above hold if and only if $\mathbf{P}(A_k) = 1$ for all k, which is equivalent to the statement in the right hand side.

3. $X_n \xrightarrow{L^r} X \Rightarrow X_n \xrightarrow{p} X$

Proof. Similar to the proof of Chebyshev's Inequality.

4. $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p} X$

Proof. The result follows directly from the proposition 2 above.

5. $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$

Proof. Let x be a continuity point of F, $\epsilon > 0$ given,

$$F(x - \epsilon) = \mathbf{P}(X \in (-\infty, x - \epsilon])$$

$$\leq \mathbf{P}(X \in (-\infty, x - \epsilon], X_n \notin (-\infty, x]) + \mathbf{P}(X_n \in (-\infty, x])$$

$$\leq F_n(x) + \mathbf{P}(|X_n - X| > \epsilon)$$

Letting $n \to \infty$, we obtain that $F(x - \epsilon) \le \liminf_n F_n(x)$.

Similarly, we have $F(x+\epsilon) \geq \limsup_n F_n(x)$. Since ϵ is arbitrary and F is continuous at x,

$$F(x) = \lim_{n \to \infty} F_n(x)$$

^{*}Dept. of Stat., CUHK. TA: YX

6. The corresponding converses of propositions 3-5 are all incorrect.

Proof. Construction of counter examples.

- 7. $X_n \xrightarrow{p} c \Leftrightarrow X_n \xrightarrow{d} c$, here c is a constant.
- 8. Slutsky's Theorem: For random variables X_n , Y_n on a probability space, $X_n \xrightarrow{d} c$, $Y_n \xrightarrow{d} Y$, where c is a fixed real number. Then $X_n + Y_n \xrightarrow{d} c + Y$.

Question 1

1. If random variables $X_n = O_p(1)$, $Y_n = o_p(1)$, prove that $X_n Y_n = o_p(1)$.

Solution:

Proof. $\forall \epsilon, \delta > 0$, by definition, one can find M s.t. $\sup_n \mathbf{P}(|X_n| > M) < \frac{\epsilon}{2}$ and $N_0 \in \mathbf{N}^+$ s.t. $\mathbf{P}(|Y_n| > \frac{\delta}{M}) < \frac{\epsilon}{2}$ holds for all $n > N_0$. Then, for all $n > N_0$,

$$\mathbf{P}(|X_n Y_n| > \delta) = \mathbf{P}(|X_n| > M, |X_n Y_n| > \delta) + \mathbf{P}(|X_n| \le M, |X_n Y_n| > \delta)$$

$$\le \mathbf{P}(|X_n| > M) + \mathbf{P}(|Y_n| > \frac{\delta}{M})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, $X_n Y_n = o_p(1)$.

Question 2

1. $X_1, X_2, \ldots, X_n, \ldots$ are a series of i.i.d. random variables following Uniform[0, 1] and defined on the same probability space. Give the asymptotic distribution of $n(1 - X_{(n)})$.

Solution: For $\forall t > 0$ fixed, n > t eventually,

$$\mathbf{P}(n(1 - X_{(n)}) \le t) = \mathbf{P}(X_{(n)} \ge 1 - \frac{t}{n}) = 1 - \mathbf{P}(X_{(n)} \le 1 - \frac{t}{n})$$
$$= 1 - (1 - \frac{t}{n})^n \xrightarrow{n \to \infty} 1 - e^{-t}.$$

Therefore, $n(1 - X_{(n)})$ is asymptotically distributed as exp(1).

2. Is it possible to have a random variable Y s.t. $n(1-X_{(n)}) \xrightarrow{a.s.} Y$?

Solution: NO! For simplicity, use notation: $P_n \triangleq \max_{1 \leq i \leq n} X_i$, $Q_n \triangleq \max_{1 \leq i \leq 2n} X_i$. Suppose there exists such Y, we naturally have $n(1 - X_{(n)}) \stackrel{p}{\to} Y$ and $Y \sim exp(1)$. Hence,

$$2n(1-P_n) \xrightarrow{p} 2Y$$
, $2n(1-Q_n) \xrightarrow{p} Y$.

Thus, take difference and we get

$$2n(P_n - Q_n) \xrightarrow{p} Y$$
.

Note that $\mathbf{P}(P_n=Q_n)\geq \frac{1}{2}$, we have $\mathbf{P}(Y=0)\geq \frac{1}{2}$ and we have contradiction here given that $Y\sim exp(1)$.