

planetmath.org

Math for the people, by the people.

failure of Hartogs' theorem in one dimension

 ${\bf Canonical\ name} \quad {\bf Failure Of Hartogs Theorem In One Dimension}$

Date of creation 2013-03-22 17:46:57 Last modified on 2013-03-22 17:46:57

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 4

Author jirka (4157) Entry type Example Classification msc 32H02 It is instructive to see an example where Hartogs' theorem fails in one dimension. Take $U = \mathbb{C}$ and let $K = \{0\}$. The function $\frac{1}{z}$ is holomorphic in $U \setminus K$, but cannot be extended to U.

To understand the example and failure of the theorem it is important to understand http://planetmath.org/ProofOfHartogsTheoremthe proof. In the proof, the way we construct an extension is that we start with a function holomorphic in $U\setminus K$, modify it in a neighbourhood of K to be zero, hence extending as a smooth function through K. Then we solve the http://planetmath.org/BarPartialOperator $\bar{\partial}$ operator inhomogeneous equation $\bar{\partial}\psi=g$ to "correct" our extension to be holomorphic. The key point is that g has compact support allowing us to solve the equation and find a ψ with compact support. This fails in dimension 1. While we always get a solution ψ , the solution can never have compact support. Hence, if we tried the proof with $\frac{1}{z}$, the new function we obtain in the proof does not agree with $\frac{1}{z}$ on any open set and hence is not an extension.