SEQUENCE LISTINGS

<110>	INJE UNIVERSITY	
<120>	CANCER CELL TARGETING GENE DELIVERY METHOD	
<130>	PCA31275/1JU	
<160>	11	
<170>	Kopatentin 1.71	
<210> <211> <212> <213>	1 36 DNA Artificial Sequence	
<220> <223>	Env F primer	
<400> cgcggatc	1 cg aattccatac ctggtgttgc tgacta	36
<210> <211> <212> <213> <220>	2 47 DNA Artificial Sequence	
<223>	597LN primer	
<400> agctggad	2 ect ggetgecace accteegeta tittggteec attitae	47
<210> <211> <212> <213>	3 49 DNA Artificial Sequence	

<400>

6

2

<220> <223> LC597 primer <400> 3 49 caaccccgcc gcaggtggag gaggcagtga atggactcaa aaatttcaa <210> 4 35 <211> <212> DNA <213> Artificial Sequence <220> <223> Spike R2 primer <400> 4 35 tgctctagaa ttcttaaagg ttaccttcgt tctct <210> 5 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> LnkNScFv primer 5 <400> 36 ggaggtggtg gcagccaggt ccagctagtg cagtct <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ScFvLnkC primer

actgcctc	actgcctcct ccacctgcgg cggggttgaa gtccca 3												
<210> <211> <212> <213>	7 2058 DNA SEATO type of GaLV Env glycoprotein												
<220> <221> <222>	sig_peptide (1)(126)												
<220> <221> <222> <223>	misc_feature (127)(1467) surface subunit region												
<220> <221> <222> <223>	misc_feature (1468)(2025 transmembrain												
<400> atggtatt	7 gc tgcctgggtc	catgcttctc	acctcaaacc	tgcaccacct	teggeaceag	60							
atgagtcc	tg ggagctggaa	aagactgatc	atcctcttaa	gctgcgtatt	cggcggcggc	120							
gggacgag	tc tgcaaaataa	gaacccccac	cagcccatga	ccctcacttg	gcaggtactg	180							
tcccaaac	tg gagacgttgt	ctgggataca	aaggcagtcc	agccccttg	gacttggtgg	240							
cccacact	ta aacctgatgt	atgtgccttg	geggetagte	ttgagtcctg	ggatatcccg	300							
ggaaccga	tg tctcgtcctc	taaacgagtc	agacctccgg	actcagacta	tactgccgct	360							
tataagca	aa tcacctgggg	agccataggg	tgcagctacc	ctcgggctag	gactagaatg	420							
gcaagcto	ta ccttctacgt	atgtccccgg	gatggccgga	ccctttcaga	agctagaagg	480							
tgcggggg	gc tagaatccct	atactgtaaa	gaatgggatt	gtgagaccac	ggggaccggt	540							
tattggct	at ctaaatcctc	aaaagacctc	ataactgtaa	aatgggacca	aaatagcgaa	600							

tggactcaaa aatttcaaca gtgtcaccag accggctggt gtaaccccct taaaatagat 660 720 ttcacagaca aaggaaaatt atccaaggac tggataacgg gaaaaacctg gggattaaga 780 ttctatgtgt ctggacatcc aggcgtacag ttcaccattc gcttaaaaat caccaacatg 840 ccagctgtgg cagtaggtcc tgacctcgtc cttgtggaac aaggacctcc tagaacgtcc 900 ctcgctctcc cacctcctct tcccccaagg gaagcgccac cgccatctct ccccgactct 960 aactocacag coctggogac tagtgcacaa actcccacgg tgagaaaaac aattgttacc ctaaacactc cgcctcccac cacaggcgac agactttttg atcttgtgca gggggccttc 1020 ctaaccttaa atgctaccaa cccaggggcc actgagtctt gctggctttg tttggccatg 1080 1140 ggccccctt attatgaagc aatagcctca tcaggagagg tcgcctactc caccgacctt 1200 gaccggtgcc gctgggggac ccaaggaaag ctcaccctca ctgaggtctc aggacacggg ttgtgcatag gaaaggtgcc ctttacccat cagcatctct gcaatcagac cctatccatc 1260 aattoctoog gagaccatca gtatotgoto cootocaaco atagotggtg ggottgcago 1320 actggcctca ccccttgcct ctccacctca gtttttaatc agactagaga tttctgtatc 1380 1440 caggiccage tgattecteg catetattae tateetgaag aagtitigit acaggeetat 1500 gacaattoto accocaggao taaaagagag gotgtotoac ttaccotago tgitttactg gggttgggaa tcacggcggg aataggtact ggttcaactg ccttaattaa aggacctata 1560 1620 gacctccagc aaggcctgac aagcctccag atcgccatag atgctgacct ccgggccctc caagactcag tcagcaagtt agaggactca ctgacttccc tgtccgaggt agtgctccaa 1680 1740 aataggagag gccttgactt gctgtttcta aaagaaggtg gcctctgtgc ggccctaaag 1800 gaagagtgct gtttttacat agaccactca ggtgcagtac gggactccat gaaaaaaactc aaagaaaaac tggataaaag acagttagag cgccagaaaa gccaaaactg gtatgaagga 1860 1920 tggttcaata actoccottg gttcactacc ctgctatcaa ccatcgctgg gcccctatta

PCT/KR2004/000545 WØ 2005/047338

5

ctcctccttc	tgttgctcat	cctcgggcca	tgcatcatca	ataagttagt	tcaattcatc	1980
aatgatagga	taagtgcagt	taaaattotg	gtccttagac	aaaaatatca	ggccctagag	2040
aacgaaggta	acctttaa					2058

<210> <211> 786 <212> DNA <213> Tag-72pS1 <220> <221> misc_feature <222> (346)..(390) (Gly4Ser)3 linker <223> <220> <221> misc_feature

8

<222> (739)..(777) <223> PreS1 Tag

<400> caggtccagc tagtgcagtc tggggctgaa gtgaagaagc ctggggcttc agtgaaggtg 60 120 tcctgcaagg cttctggcta caccttcact gaccatgcaa ttcactgggt gcgccaggcc cctggacaac gccttgagtg gatgggatat ttttctcctg gcaacgatga ttttaaatac 180 tcccagaagt tccagggacg cgtgacaatc actgcagaca aatccgcgag cacagcctac 240 300 atggagetga geageetgag atetgaggae aeggeggtet attactgtge aagategttg aacatggcat actggggcca agggactctg gtcactgtct cttcaggtgg aggcggttca 360 ggcggaggtg gctctggcgg tggcggatcg gacattgtga tgacccagtc tccagactcc 420 480 ctggctgtgt ctctgggcga gagggccacc atcaactgca agtccagcca gagtgtttta tacagcagca acaataagaa ctacttagct tggtaccagc agaaaccagg acagcctcct 540

augotgo	ca titactgggc atctacccgg gaato	ecgggg tecetgaceg atteagtgge	600										
agcgggto	ctg ggacagattt cactctcacc atcag	pcagcc tgcaggctga agatgtggca	660										
gtttatta	act gtcagcaata ttattcctat ccgt	gacgt teggecaagg gaccaaggtg	720										
gaaatcaa	aag cggccgcagg agccaacgca aacaa	atccag attgggactt caaccccgcc	780										
gcatag			786										
<210>	9												
<211>	13												
<212>	212> PRT												
<213>													
<400>	<400> 9												
Gly Ala	Asn Ala Asn Asn Pro Asp Trp As	sp Phe Asn Pro											
Gly Ala Asn Ala Asn Asn Pro Asp Trp Asp Phe Asn Pro 1 5 10													
	3 ·	10											
	3												
<210>	10												
<210> <211>													
	10												
<211>	10 2871												
<211> <212>	10 2871 DNA												
<211> <212> <213>	10 2871 DNA	•											
<211> <212> <213> <220>	10 2871 DNA Artificial Sequence	•											
<211> <212> <213> <220>	10 2871 DNA Artificial Sequence	•											
<211> <212> <213> <220> <223> <400>	10 2871 DNA Artificial Sequence ScFv-GaLV Env GP chimeric per	otide (FvGEL199) DNA	60										

atggtattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag 60
atgagtcctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc 120
gggacgagtc tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg 180
tcccaaactg gagacgttgt ctgggataca aaggcagtcc agcccccttg gacttggtgg 240
cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg 300
ggaaccgatg tctcgtcctc taaacgagtc agacctccgg actcagacta tactgccgct 360
tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg 420

gcaagctcta	ccttctacgt	atgtccccgg	gatggccgga	ccctttcaga	agctagaagg	480
tgcggggggc	tagaatccct	atactgtaaa	gaatgggatt	gtgagaccac	ggggaccggt	540
tattggctat	ctaaatcctc	aaaagacctc	ataactgtaa	aatgggacca	aaatagcgga	600
ggtggtggca	gccaggtcca	gctagtgcag	tctggggctg	aagt gaagaa	gcctggggct	660
tcagtgaagg	tgtcctgcaa	ggcttctggc	tacaccttca	ctgaccatgc	aattcactgg	720
gtgcgccagg	ccctggaca	acgccttgag	tggatgggat	atttttctcc	tggcaacgat	780
gattttaaat	actoccagaa	gttccaggga	cgcgtgacaa	tcactgcaga	caaatccgcg	840
agcacagcct	acatggagct	gagcagcctg	agatctgagg	acacggcggt	ctattactgt	900
gcaagatcgt	tgaacatggc	atactggggc	caagggactc	tggtcactgt	ctcttcaggt	960
ggaggcggtt	caggcggagg	tggctctggc	ggtggcggat	cggacattgt	gatgacccag	. 1020
tctccagact	ccctggctgt	gtctctgggc	gagagggcca	ccatcaactg	caagtccagc	1080
cagagtgttt	tatacagcag	caacaataag	aactacttag	cttggtacca	gcagaaacca	1140
ggacagcctc	ctaagctgct	catttactgg	gcatctaccc	gggaatccgg	ggtccctgac	1200
cgattcagtg	gcagcgggtc	tgggacagat	ttcactctca	ccatcagcag	cctgcaggct	1260
gaagatgtgg	cagtttatta	ctgtcagcaa	tattattcct	atccgttgac	gttcggccaa	1320
gggaccaagg	tggaaatcaa	ageggeegea	ggagccaacg	caaacaatcc	agattgggac	1380
ttcaaccccg	ccgcaggtgg	aggaggcagt	gaatggactc	aaaaatttca	acagtgtcac	1440
cagaccggct	ggtgtaaccc	ccttaaaata	gatttcacag	acaaaggaaa	attatccaag	1500
gactggataa	cgggaaaaac	ctggggatta	agattctatg	tgtctggaca	tccaggcgta	1560
cagttcacca	ttcgcttaaa	aatcaccaac	atgccagctg	tggcagtagg	tcctgacctc	1620
gtccttgtgg	aacaaggacc	tcctagaacg	tecetegete	toccacctcc	tcttccccca	1680
agggaagcgc	caccgccatc	tctccccgac	tctaactcca	cagccctggc	gactagtgca	1740

C	caaactccca	cggtgagaaa	aacaattgtt	accctaaaca	ctccgcctcc	caccacaggc	1800
Ç	gacagacttt	ttgatcttgt	gcagggggcc	ttcctaacct	taaatgctac	caacccaggg	1860
Ç	gccactgagt	cttgctggct	ttgtttggcc	atgggccccc	cttattatga	agcaatagcc	1920
1	tcatcaggag	aggtcgccta	ctccaccgac	cttgaccggt	gccgctgggg	gacccaagga	1980
ć	agctcaccc	tcactgaggt	ctcaggacac	gggttgtgca	taggaaaggt	gccctttacc	2040
Ç	catcagcatc	totgcaatca	gaccetatee	atcaattcct	ccggagacca	tcagtatctg	2100
(ctcccctcca	accatagctg	gtgggcttgc	agcactggcc	tcacccttg	cctctccacc	2160
1	tcagtttta	atcagactag	agatttctgt	atccaggtcc	agctgattcc	tcgcatctat	2220
•	tactatcctg	aagaagttt	gttacaggcc	tatgacaatt	ctcaccccag	gactaaaaga	2280
(gaggctgtct	cacttaccct	agctgtttta	ctggggttgg	gaatcacggc	gggaataggt	2340
ä	actggttcaa	ctgccttaat	taaaggacct	atagacctcc	agcaaggcct	gacaagcctc	2400
(cagatogoca	tagatgctga	cctccgggcc	ctccaagact	cagtcagcaa	gttagaggac	2460
	tcactgactt	ccctgtccga	ggtagtgctc	caaaatagga	gaggcct tga	cttgctgttt	2520
(ctaaaagaag	gtggcctctg	tgcggcccta	aaggaagagt	gctgttttta	catagaccac	2580
	tcaggtgcag	tacgggactc	catgaaaaaa	ctcaaagaaa	aactggataa	aagacagtta	2640
9	gagcgccaga	aaagccaaaa	ctggtatgaa	ggatggttca	ataactcccc	ttggttcact	2700
i	accctgctat	caaccatcgc	tgggccccta	ttactcctcc	ttctgttgct	catcctcggg	2760
•	ccatgcatca	tcaataagtt	agttcaattc	atcaatgata	ggataagtgc	agttaaaatt	2820
4	ctggtcctta	gacaaaaata	tcaggcccta	gagaacgaag	gtaaccttta	a	2871

<210> 11

<211> 956

<212> PRT

<213> Artificial Sequence

<220>

<223> ScFv-GaLV Env GP chimeric ligand (FvGEL199)

<400> 11

- Met Val Leu Leu Pro Gly Ser Met Leu Leu Thr Ser Asn Leu His His 1 5 10 15
- Leu Arg His Gln Met Ser Pro Gly Ser Trp Lys Arg Leu IIe IIe Leu 20 25 30
- Leu Ser Cys Val Phe Gly Gly Gly Gly Thr Ser Leu Gln Asn Lys Asn 35 40 45
- Pro His Gln Pro Met Thr Leu Thr Trp Gln Val Leu Ser Gln Thr Gly 50 55 60
- Asp Val Val Trp Asp Thr Lys Ala Val Gln Pro Pro Trp Thr Trp Trp 65 70 75 80
- Pro Thr Leu Lys Pro Asp Val Cys Ala Leu Ala Ala Ser Leu Glu Ser 85 90 95
- Trp Asp IIe Pro Gly Thr Asp Val Ser Ser Ser Lys Arg Val Arg Pro 100 105 110
- Pro Asp Ser Asp Tyr Thr Ala Ala Tyr Lys Gln Ile Thr Trp Gly Ala 115 120 125
- lle Gly Cys Ser Tyr Pro Arg Ala Arg Thr Arg Met Ala Ser Ser Thr 130 135 140
- Phe Tyr Val Cys Pro Arg Asp Gly Arg Thr Leu Ser Glu Ala Arg Arg 145 150 155 160
- Cys Gly Gly Leu Glu Ser Leu Tyr Cys Lys Glu Trp Asp Cys Glu Thr 165 170 175
- Thr Gly Thr Gly Tyr Trp Leu Ser Lys Ser Ser Lys Asp Leu Ile Thr 180 185 190
- Val Lys Trp Asp Gin Asn Ser Gly Gly Gly Gly Ser Gin Val Gin Leu 195 200 205

Val	GIn 210	Ser	Gly	Ala	Glu	Va I 215	Lys	Lys	Pro	Gly	A1a 220	Ser	Val	Lys	Val
Ser 225	Cys	Lys	Ala	Ser	Gly 230	Tyr	Thr	Phe	Thr	Asp 235	His	Ala	lle	His	Trp 240
Val	Arg	GIn	Ala	Pro 245	Gly	GIn	Arg	Leu	Glu 250	Trp	Met	Gly	Tyr	Phe 255	Ser
Pro	Gly	Asn	Asp 260	Asp	Phe	Lys	Tyr	Ser 265	Gln	Lys	Phe	GIn	Gly 270	Arg	Val
Thr	lle	Thr 275	Ala	Asp	Lys	Ser	Ala 280	Ser	Thr	Ala	Tyr	Met 285	Glu	Leu	Ser
Ser	Leu 290	Arg	Ser	Glu	Asp	Thr 295	Ala	Val	Tyr	Tyr	Cys 300	Ala	Arg	Ser	Leu
Asp 305	Met	Ala	Tyr	Trp	Gly 310	GIn	Gly	Thr	Leu	Va I [*] 315	Thr	Val	Ser	Ser	Gly 320
Gly	Gly	Gly	Ser	Gly 325	Gly	Gly	Gly	Ser	Gly 330	Gly	Gly	Gly	Ser	Asp 335	He
Val	Met	Thr	GΙπ 340	Ser	Pro	Asp	Ser	Leu 345	Ala	Val	Ser	Leu	Gly 350	Glu	Arg
Ala	Thr	11e 355	Asn	Cys	Lys	Ser	Sег 360	GIn	Ser	Val	Leu	Tyr 365	Ser	Ser	Asn
Asn	Lys 370	Asn	Tyr	Leu	Ala	Trp 375	Туг	GIn	Gin	Lys	Pro 380	Gly	GIn	Pro	Pro
Lys 385	Leu	Leu	He	Tyr	Trp 390	Ala	Ser	Thr	Arg	Glu 395	Ser	Gly	Val	Pro	Asp 400
Arg	Phe	Ser	Gly	Ser 405	Gly	Ser	Gly	Thr	Asp 410	Phe	Thr	Leu	Thr	1 le 415	Ser
Ser	Lau	Gin	Δla	Glu	Aen	Val	Δla	Val	Tyr	Tvr	CVS	GIn	Gln	Tvr	Tvr

Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Ala

		435	,				440					445	· 5		
Ala	A1a 450		Ala	Asn	Ala	Asn 455		Pro	Asp	Trp	Asp 460		Asn	Pro	Ala
Ala 465		Gly	Gly	Gly	Ser 470		Trp	Thr	Gin	Lys 475		Gin	Gin	Cys	His 480
GIn	Thr	Gly	Trp	Cys 485		Pro	Leu	Lys	11e 490		Phe	Thr	Asp	Lys 495	
Lys	Leu	Ser	Lys 500		Trp	He	Thr	Gly 505		Thr	Trp	Gly	Leu 510	_	Phe
Tyr	Val	Ser 515		His	Pro	Gly	Va I 520	GIn	Phe	Thr	He	Arg 525	Leu	Lys	He
Thr	Asn 530	Met	Pro	Ala	Val	Ala 535	Val	Gļy	Pro	Asp	Leu 540	Val	Leu	Val	Glu
GI n 545	Gly	Pro	Pro	Arg	Thr 550	Ser	Leu	Ala	Leu	Pro 555	Pro	Pro	Leu	Pro	Pro 560
Arg	Glu	Ala	Pro	Pro 565	Pro	Ser	Leu	Pro	Asp 570	Ser	Asn	Ser	Thr	A1a 575	Leu
Ala	Thr	Ser	Ala 580	GIn	Thr	Pro	Thr	Va I 585	Arg	Lys	Thr	He	Va I 590	Thr	Leu
Asn	Thr	Pro 595	Pro	Pro	Thr	Thr	Gly 600	Asp	Arg	Leu	Phe	Asp 605	Leu	Val	Gln
Gly	Ala 610	Phe	Leu	Thr	Leu	Asn 615	Ala	Tḥr	Asn	Pro	Gly 620	Ala	Thr	Glu	Ser
Cys 625	Trp	Leu	Cys	Leu	Ala 630	Met	Gly	Pro	Pro	Tyr 635	Tyr	Glu	Ala	He	Ala 640
Ser	Ser	Gly	Glu	Va I 645	Ala	Tyr	Ser	Thr	Asp 650	Leu	Asp	Arg	Cys	Arg 655	Trp
Gly	Thr				Leu						Ser	-	His	Gly	Leu

WO 2005/047338 PCT/KR2004/000545

12

Cys	He	Gly 675	Lys	Val	Pro	Phe	Thr 680	His	GIn	His	Leu	Cys 685	Asn	Gln	Thr
Leu	Ser 690	lle	Asn	Ser	Ser	Gly 695	Asp	His	GIn	Туг	Leu 700	Leu	Pro	Ser	Asn
His 705	Ser	Trp	Trp	Ala	Cys 710	Ser	Thr	Gly	Leu	Thr 715	Pro	Cys	Leu	Ser	Thr 720
Ser	Val	Phe	Asn	GIn 725	Thr	Arg	Asp	Phe	Cys 730	lle	GIn	Val	Gln	Leu 735	lle
Pro	Arg	He	Tyr 740	Tyr	Tyr	Pro	Glu	Glu 745	Val	Leu	Leu	GIn	Ala 750	Tyr	Asp
Asn	Ser	His 755	Pro	Arg	Thr	Lys	Arg 760	Glu	Ala	Val	Ser	Leu 765	Thr	Leu	Ala
Val	Leu 770	Leu	Gly	Leu	Gly	11e 775	Thr	Ala	Gly	lle	Gly 780	Thr	Gly	Ser	Thr
Ala 785	Leu	He	Lys	Gly	Pro 790	He	Asp	Leu	GIn	Gln 795	Gly	Leu	Thr	Ser	Leu 800
GIn	He	Ala	He	Asp 805	Ala	Asp	Leu	Arg	A1a 810		GIn	Asp	Ser	Val 815	Ser
Lys	Leu	Glu	Asp 820	Ser	Leu	Thr	Ser	Leu 825	Ser	Glu	Val	Val	Leu 830	Gln	Asn
Arg	Arg	Gly 835	Leu	Asp	Leu	Leu	Phe 840	Leu	Lys	Glu	Gly	Gly 845		Cys	Ala
Ala	Leu 850		Glu	Glu	Cys	Cys 855	Phe	Tyr	He	Asp	His 860	Ser	Gly	Ala	Val
Arg 865		Ser	Met	Lys	Lys 870		Lys	Glu	Lys	Leu 875		Lys	Arg	GIn	Leu 880
Glu	Arg	Gln	Lys	Ser 885		Asn	Trp	Tyr	G1u 890		Trp	Phe	Asn	Asn 895	Ser
Pro	Trp	Phe	Thr 900		Leu	Leu	Ser	Thr 905		Ala	Gly	Pro	Leu 910		Leu

905

Leu Leu Leu Leu lle Leu Gly Pro Cys IIe IIe Asn Lys Leu Val 915 920 925

Gin Phe Ile Asn Asp Arg Ile Ser Ala Val Lys Ile Leu Val Leu Arg 930 935 940

Gln Lys Tyr Gln Ala Leu Glu Asn Glu Gly Asn Leul 945 950 955