IN THE CLAIMS:

1. (Currently amended) A method of inhibiting checkpoint kinase 1 in a cell comprising a step
of contacting the cell with an a therapeutically effective amount of a compound of formula

$$W \xrightarrow{X^1} X^2 Z$$

wherein X^1 is null, -O-, -S-, -CH₂-, or -N(\mathbb{R}^1)-;

 X^2 is -O-, -S-, or -N(R^1)-;

Y is O or S; or =Y-represents two hydrogen atoms attached to a common carbon atom;

W is selected from the group consisting of heteroaryl, aryl, heterocycloalkyl, cycloalkyl, and C_{1-3} alkyl substituted with a heteroaryl or aryl group

Z is selected from the group consisting of hydro, aryl, and heteroaryl

wherein said aryl groups of W and Z are <u>is</u> optionally substituted with one to four substituents represented by R², said heteroaryl groups of <u>and W and Z are is</u> optionally substituted with one to <u>four three</u> substituents represented by R⁵, and said heterocycloalkyl and cycloalkyl groups of W are optionally substituted with one to two substituents represented by R⁶;

 R^1 is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl;

 $\rm R^2$ is selected from the group consisting of halo, optionally substituted $\rm C_{1-6}alkyl,\, C_{2-6}alkenyl,\, OCF_3,\, NO_2,\, CN,\, NC,\, N(R^3)_2,\, OR^3,\, CO_2R^3,\, C(O)\,N(R^3)_2,\, C(O)\,R^3,\, N(R^1)\,COR^3,\, N(R^1)\,C(O)\,OR^3,\, N(R^3)\,C(O)\,OR^3,\, N(R^3)\,C(O)\,C_{1-3}alk-yleneC(O)\,R^3,\, N(R^3)\,C(O)\,C_{1-3}alkyleneC(O)\,OR^3,\, N(R^3)\,C(O)\,-C_{1-3}alkyleneOR^3,\, N(R^3)\,C(O)\,C_{1-3}alkyleneNHC(O)\,OR^3,\, N(R^3)\,-C(O)\,C_{1-3}alkyleneSO_2NR^3,\, C_{1-3}alkyleneOR^3,\, and\, SR^3;$

 R^3 is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, aryl, heteroaryl, SO_2R^4 , C_{1-6} alkyl substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^4)_2$, and SO_2R^4 , C_{1-3} alkylenearyl, C_{1-3} alkyleneheteroaryl, C_{1-3} alkylene C_{3-8} heterocycloalkyl, C_{1-3} alkylene- SO_2 aryl, optionally substituted C_{1-3} alkyleneN(R^4)₂, OCF₃, C_{1-3} alkyleneN(R^4)₃⁺, C_{3-8} heterocycloalkyl, and $CH(C_{1-3}$ alkyleneN(R^4)₂)₂, or two R^3 groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^4 is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} alkyl, enearyl, and SO_2C_{1-6} alkyl, or two R^4 groups are taken

together to form an optionally substituted 3- to 6-membered ring;

 R^5 is selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , halo, N_3 , CN, C_{1-3} alkyleneN(R^3)₂, $C(O)R^3$, and

$$C_{1-3}$$
alkylene $-N$

 R^6 —is selected from the group consisting of halo and C_{1-6} alkyl;

and or pharmaceutically acceptable salts, or prodrugs, or solvates thereof.

(Currently amended) The method of claim

 X^1 and X^2 are -N(H)-;

Y is O or S;

W is heteroaryl containing at least two heteroatoms selected from the group consisting of N, O, and S, said ring is optionally substituted with from one to four three substituents selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , and halo;

Z is selected from the group consisting of

$$\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$$

wherein Q is selected from the group consisting of hydro, OR^3 , SR^3 , and $N(R^3)_2$;

J is selected from the group consisting of CR^{20} , NR^{20} , 0, and S;

K is selected from the group consisting of CR²¹, NR²¹, O, and S;

L is selected from the group consisting of CR^{22} , NR^{22} , 0, and S;

M is selected from the group consisting of CR^{23} , NR^{23} , O, and S;

wherein:

 R^{20} , R^{21} , and R_{22} are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF₃, NO₂, CN, NC, N(R^{25})₂, OR²⁵, CO₂ R^{25} , C(O)N(R^{25})₂,

 $C(0) R^{25}, \ N(R^{24}) COR^{25}, \ N(R^{24}) C(0) OR^{25}, \ N(R^{25}) C(0) OR^{25}, \\ N(R^{25}) C(0) C_{1-3} alkylene C(0) R^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene - \\ C(0) OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene - \\ C(0) OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene OR^{25}, \ CF_3, \\ C_{1-3} alkylene N(R^{25}) SO_2 aryl, \ C_{1-3} alkylene N(R^{25}) SO_2 heteroaryl, \\ C_{1-3} alkylene OC_{1-3} alkylene aryl, \ C_{1-3} alkylene N(R^{25}) C_{1-3} alkylene (R^{25}) C_{1-3} alkylene (R^{25}) C_{1-3} alkylene (R^{25}) C(0) C_{1-3} alkylene (R^{25}) C(0) C_{1-3} alkylene OR^{25}, \ C_{1-3} alkylene N(R^{25}) C(0) aryl, \ C_{1-3} alkylene N(R^{25}) - \\ C(0) C_{1-3} alkylene N(R^{25})_2, \ C_{1-3} alkylene N(R^{25}) C(0) heteroaryl, \\ C_{1-3} alkylene OR^{25}, \ and \ SR^{25};$

 R^{23} is selected from the group consisting of null, hydro, optionally substituted $C_{1\text{-}6}$ alkyl, and halo;

 R^{24} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl;

 R^{25} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, heterocycle, aryl, heteroaryl, SO_2R^{26} , and C_{1-6} alkyl substituted with halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{26})_2$, or SO_2R^{26} ; and

 R^{26} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, and SO_2C_{1-6} alkyl, or two R^4 groups are taken together to form an optionally substituted 3- to 6-membered ring.

3. (Currently amended) The method of claim 2 wherein W is selected-from the group consisting of pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl, optionally substituted with from one to four three substituents selected from the group consisting of optionally substituted C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , and halo.

- 4. (Cancelled)
- 5. (Currently amended) The method of claim 2 wherein

J is selected from the group consisting of CR^{20} and NR^{20} , wherein R^{20} is null, selected from the group consisting of hydro, optionally substituted C_{1-6} alkyl, and halo;

K is selected from the group consisting of CR^{21} and NR^{21} ;

L is selected from the group consisting of CR^{22} and NR^{22} ; and

one of R^{21} and R^{22} is hydro and the other is a substituent selected from the group consisting of CO_2R^{25} , $C(O)N(R^{25})_2$, $C(O)R^{25}$, $N(R^{24})COR^{25}$, $N(R^{24})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkyleneC($O)R^{25}$, $N(R^{25})-C(O)C_{1-3}$ alkyleneC($O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneOR²⁵, $N(R^{25})C(O)C_{1-3}$ alkyleneNHC($O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkyleneSO₂NR²⁵, CF_3 , C_{1-3} alkyleneN($C^{25})C(O)C_{1-3}$ alkyleneA($C^{25})C_{1-3}$ alkyleneOC₁₋₃alkyleneOC₁₋₃alkyleneA($C^{25})C_{1-3}$ alkyleneN($C^{25})C$

- 6. (Cancelled)
- 7. (Cancelled)

8. (Currently amended) A method of sensitizing cells in an individual undergoing a chemotherapeutic or radiotherapeutic treatment for a medical condition, comprising administering a therapeutically effective amount of a compound of formula (I) in combination with a therapeutically effective amount of a chemotherapeutic agent, a radiotherapeutic agent, or a mixture thereof to the individual, said compound of formula (I) having a structure

$$W \xrightarrow{X^1} X^2 Z$$

wherein X^1 is null, -O-, -S-, -CH₂-, or - N(\mathbb{R}^1)-;

$$X^2$$
 is -O-, -S-, or -N(R^1)-;

Y is O or S; or =Y represents two hydrogen atoms attached to a common carbon atom;

W is selected from the group consisting of heteroaryl, aryl, heterocycloalkyl, cycloalkyl, and C_{1-3} alkyl substituted with a heteroaryl or aryl group

Z is selected from the group consisting of hydro, aryl, and heteroaryl

wherein said aryl groups of W and Z are <u>is</u> optionally substituted with one to four substituents represented by R², said heteroaryl groups of <u>and W and Z is</u> are optionally substituted with one to <u>four three</u> substituents represented by R⁵, and said heterocycloalkyl and cycloalkyl groups of W are optionally substituted with one to two substituents represented by R⁶;

 R^1 is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl;

 R^2 is selected from the group consisting of halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkyl, $C_$

 R^3 is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, aryl, heteroaryl, SO_2R^4 , C_{1-6} alkyl substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^4)_2$, and SO_2R^4 , C_{1-3} alkylenearyl, C_{1-3} alkyleneheteroaryl, C_{1-3} alkylene C_{3-8} heterocycloalkyl, C_{1-3} alkylene- SO_2 aryl, optionally substituted C_{1-3} alkylene $N(R^4)_2$, OCF^3 , C_{1-3} alkylene $N(R^4)_3$, C_{3-8} heterocycloalkyl, and $CH(C_{1-3}$ alkylene $N(R^4)_2$), or two R^3 groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^4 is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} alkyl, ylenearyl, and SO_2C_{1-6} alkyl, or two R^4 groups are taken together to form an optionally substituted 3- to 6-membered ring;

 R^5 is selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , halo, N^3 , CN, C_{1-3} alkylene $N(R^3)_2$, $C(O)R^3$, and

$$C_{1-3}$$
alkylene $-N$

 R^6 is selected from the group consisting of halo and C_{1-6} alkyl;

 $\frac{\text{and}}{\text{or}}$ pharmaceutically acceptable salts, $\underline{\text{or}}$ prodrugs, or solvates thereof.

9. (Currently amended) The method of claim 8 further comprising administering one or more a therapeutically effective amount of at least one of a cytokine, lymphokine, growth factor, or other hematopoietic factor.

10. (Currently amended) The method of claim 8 wherein:

 X^1 and X^2 are -N(H)-;

Y is O or S;

W is heteroaryl containing at least two heteroatoms selected from the group consisting of N, O, and S, said ring is optionally substituted with from one to four three substituents selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , and halo;

Z is selected from the group consisting of:

$$\begin{array}{c|c} & & & & \\ & \downarrow & \\ & \downarrow \\ & M \\ \downarrow L \\ & K \end{array} \qquad \text{and} \qquad \begin{array}{c} & & \\ & \downarrow \\ & L \\ & K \end{array}$$

wherein Q is selected from the group consisting of hydro, OR^3 , SR^3 , and $N(R^3)_2$;

J is selected from the group consisting of CR^{20} , NR^{20} , O, and S;

K is selected from the group consisting of CR^{21} , NR^{21} , O, and S;

L is selected from the group consisting of CR^{22} , NR^{22} , 0, and S;

M is selected from the group consisting of CR^{23} , NR^{23} , O, and S;

wherein:

 R^{20} , R^{21} , and R^{22} are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF₃, NO₂, CN, NC, N(R^{25})₂, OR²⁵, CO₂R²⁵, C(O)N(R^{25})₂,

 $C(0) R^{25}, \ N(R^{24}) COR^{25}, \ N(R^{24}) C(0) OR^{25}, \ N(R^{25}) C(0) OR^{25}, \\ N(R^{25}) C(0) C_{1-3} alkylene C(0) R^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene - \\ C(0) OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene - \\ C(0) OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene OR^{25}, \ N(R^{25}) C(0) C_{1-3} alkylene OC_{2-3} al$

 $$\rm R^{23}$$ is selected from the group consisting of null, hydro, optionally substituted $C_{\rm 1-6}al\,kyl\,$, and halo;

 $$R^{24}$$ is selected from the group consisting of hydro, $C_{1\text{-}6}alkyl,\ C_{2\text{-}6}alkenyl,\ C_{2\text{-}6}alkynyl,\ and\ aryl;$

 R^{25} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, heterocycle, aryl, heteroaryl, SO_2R^{26} , and C_{1-6} alkyl substituted with halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{26})_2$, or SO_2R^{26} ; and

 R^{26} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, and SO_2C_{1-6} alkyl, or two R^4 groups are taken together to form an optionally substituted 3- to 6-membered ring.

11. (Currently amended) The method of claim 10 wherein W is selected from the group consisting of pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl, optionally substituted with from one to—four three substituents selected from the group consisting of optionally substituted C_{1-6} alkyl, aryl, $N(R^3)_2$, OR^3 , C_{1-3} alkylenearyl, C_{1-3} alkyleneheteroaryl, C_{1-3} alkylene- C_{3-8} heterocycloalkyl, C_{1-3} alkyleneSO₂aryl, optionally substituted C_{1-3} alkyleneN(R^4)₂, OCF^3 , C_{1-3} alkyleneN(R^4)₃, C_{3-8} heterocycloalkyl, $CH(C_{1-3}$ alkyleneN(R^4)₂)₂, and halo.

12. (Currently amended) The method of claim 10 wherein

J is selected from the group consisting of CR^{20} and NR^{20} , wherein R^{20} is null, selected from the group consisting of hydro, optionally substituted C_{1-6} alkyl, and halo;

K is selected from the group consisting of CR^{21} and NR^{21} ;

L is selected from the group consisting of CR^{22} and NR^{22} ; and

one of R^{21} and R^{22} is hydro and the other is a substituent selected from the group consisting of CO_2R^{25} , $C(O)N(R^{25})_2$, $C(O)R^{25}$, $N(R^{24})COR^{25}$, $N(R^{24})C(O)OR^{25}$, $N(R^{25})C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkylene $C(O)R^{25}$, $N(R^{25})C(O)-C_{1-3}$ alkylene $C(O)OR^{25}$, $N(R^{25})C(O)-C_{1-3}$ alkylene $C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkylene $C(O)OR^{25}$, $N(R^{25})C(O)C_{1-3}$ alkylene $C(O)OR^{25}$, C_{1-3} alkylene $C(O)OR^{25$

13. (Cancelled)

14. (Original) The method of claim 8 wherein the chemotherapeutic agent is selected from the
group consisting of an alkylating agent, an antimetabolite, a hormone or antagonist thereof, a radioisotope,
an antibody, and mixtures thereof.

- 15. (Original) The method of claim 8 wherein the radiotherapeutic agent is selected from the group consisting of gamma-radiation, X-ray radiation, ultraviolet light, visible light, infrared radiation, and microwave radiation.
- 16. (Original) The method of claim 8 wherein the condition is a cancer selected from the group
 consisting of a colorectal cancer, a head and neck
 cancer, a pancreatic cancer, a breast cancer, a gastric
 cancer, a bladder cancer, a vulvar cancer, a leukemia,
 a lymphoma, a melanoma, a renal cell carcinoma, an
 ovarian cancer, a brain tumor, an osteosarcoma, and a
 lung carcinoma.

(Original) The method of claim 8 where-17. in the condition is a cancer selected from the group consisting of myxoid and round cell carcinoma, a locally advanced tumor, metastatic cancer, Ewing's sarcoma, a cancer metastase, a lymphatic metastase, squamous cell carcinoma, esophageal squamous cell carcinoma, oral carcinoma, multiple myeloma, acute lymphocytic leukemia, acute nonlymphocytic leukemia, chronic lymphocytic leukemia, chronic myelocytic leukemia, hairy cell leukemia, effusion lymphomas (body cavity based lymphomas), thymic lymphoma lung cancer, small cell carcinoma, cutaneous T cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cancer of the adrenal cortex, ACTH-producing tumors, nonsmall cell cancers, breast cancer, small cell carcinoma, ductal carcinoma, stomach cancer, colon cancer, colorectal cancer, polyps associated with colorectal neoplasia, pancreatic cancer, liver cancer, bladder cancer, primary superficial bladder tumors, invasive transitional cell carcinoma of the bladder, muscleinvasive bladder cancer, prostate cancer, ovarian carcinoma, primary peritoneal epithelial neoplasms, cervical carcinoma, uterine endometrial cancers, vaginal cancer, cancer of the vulva, uterine cancer and solid tumors in the ovarian follicle, testicular cancer, penile cancer, renal cell carcinoma, intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, osteomas and osteosarcomas, malignant melanoma, tumor progression of human skin keratinocytes, squamous cell cancer, thyroid cancer, retinoblastoma, neuroblastoma, peritoneal effusion, malignant pleural effusion, mesothelioma, Wilms's tumors, gall bladder cancer, trophoblastic neoplasms, hemangiopericytoma, and Kaposi's sarcoma.

18. (Original) The method of claim 8 wherein the treatment is administered for an inflammatory condition selected from the group consisting of rheumatoid arthritis, psoriasis, vitiligo, Wegener's granulomatosis, and systemic lupus erythematosus.

19. (Currently amended) A compound having a formula

$$W \xrightarrow{X^1} X^2 Z$$

wherein Y' is O or S;

W' is selected from the group consisting of

N

N N

N

N N

, and

1

optionally substituted with from one to <u>four three</u> substituents selected from the group consisting of C_{1-6} alkyl, aryl, $N(R^7)_2$, OR^7 , N_3 , CN, $C(O)R^7$, C_{1-3} alkylene $N(R^{12})_2$,

$$C_{1-3}$$
alkylene $-N$

and halo;

Z' is selected from the group consisting of:

į

wherein:

Q' is selected from the group consisting of $\frac{hydro}{}$, OR^7 , SR^7 , and $N(R^7)_2$, with the proviso that Q' is $\frac{hydro}{}$ only when at least one of J', K', L', and M' is $\frac{N}{}$, $\frac{O}{}$ or $\frac{S}{}$;

J' is selected from the group consisting of CR^8 , NR^8 , O, and S;

K' is selected from the group consisting of CR9, NR9, O, and S;

L' is selected from the group consisting of CR^{10} , O, and S;

M' is selected from the group consisting of CR¹¹, NR¹¹, O, and S, with the proviso that Z is different from a pyridone;

wherein:

 R^7 , independently, is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, aryl, heteroaryl, SO_2R^{12} , C_{1-6} alkyl substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{12})_2$, and SO_2R^{12} , C_{1-3} alkylenearyl, C_{1-3} alk-yleneheteroaryl, C_{1-3} alkylene C_{3-8} heterocycloalkyl, C_{1-3} alkylene SO_2 aryl, optionally substituted C_{1-3} alkylene $N(R^{12})_2$, OCF₃, C_{1-3} alkylene $N(R^{12})_3$, C_{3-8} heterocycloalkyl, and $CH(C_{1-3}$ alkylene $N(R^{12})_2$), or two R^7 groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^8 , R^9 , and R^{10} are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF₃, NO₂, CN, NC, N(R^7)₂, OR⁷, CO₂ R^7 , C(O)N(R^7)₂, C(O)R⁷, N(R^{13}) - COR⁷, N(R^{13})C(O)OR⁷, N(R^7)C(O)OR⁷, N(R^7)C(O)C₁₋₃alkylene-

 $C(O)R^7$, $N(R^7)C(O)C_{1-3}$ alkylene $C(O)OR^7$, $N(R^7)C(O)C_{1-3}$ alkylene OR^7 , $N(R^7)C(O)C_{1-3}$ alkylene OR^7 , $N(R^7)C(O)C_{1-3}$ -alkylene OR^7 , OR^7 ,

 R^{11} is selected from the group consisting of null, hydro, optionally substituted C_{1-6} alkyl, and halo;

 R^{12} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} alkylenearyl, and SO_2C_{1-6} alkyl, or two R^{12} groups are taken together to form an optionally substituted 3- to 6-membered ring; and

. .

 R^{13} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl; provided that when Q' is hydro or OCH₃, at least one of R^8 , R^9 , and R^{10} is different from hydro,

. CH_3 , OCH_3 , and halo,

 $\frac{\text{and}}{\text{or}}$ pharmaceutically acceptable salts, $\underline{\text{or}}$ prodrugs, or solvates thereof.

20. (Cancelled)

21. (Currently amended) The compound of claim $\frac{20}{19}$ wherein W' is substituted with one to $\frac{19}{19}$ three substituents selected from the group consisting of methyl, CF₃, optionally substituted aryl, N₃, benzyl, C(0)R⁷, C₁₋₃alkyleneN(R¹²)₂, OR⁷, N(R⁷)₂, halo, and

$$C_{1-3}$$
alkylene $-N$

- 22. (Original) The compound of claim 19 wherein Q^{\prime} is OR^{7} .
- 23. (Original) The compound of claim 22 wherein Q' is OCH_3 .
- $24. \hspace{0.1in} \text{(Original)} \hspace{0.1in} The \hspace{0.1in} compound \hspace{0.1in} of \hspace{0.1in} claim \hspace{0.1in} 19$ wherein R^{13} is hydro.

- 25. (Currently amended) The compound of claim 19 wherein
- J' is selected from the group consisting of CR^8 and NR^8 , wherein R^8 is null, hydro, C_{1-6} alkyl, and halo;
- K' is selected from the group consisting of CR9 and NR9;
- L' is selected from the group consisting of CR^{10} and NR^{10} ; and

one of R^9 and R^{10} is hydro and the other is a substituent selected from the group consisting of CO_2R^7 , $C(O)N(R^7)_2$, $C(O)R^7$, $N(R^{13})COR^7$, $N(R^{13})C(O)OR^7$, $N(R^7)C(O)OR^7$, $N(R^7)C(O)C_{1-3}$ alkylene $C(O)R^7$, $N(R^7)C(O)-C_{1-3}$ alkylene $C(O)OR^7$, $N(R^7)C(O)C_{1-3}$ alkylene $C(O)OR^7$, $N(R^7)C(O)C_{1-3}$ alkylene $C(O)OR^7$, $N(R^7)C(O)C_{1-3}$ alkylene $C(O)OR^7$, C_{1-3} alkylene $C(O)OC_{1-3}$ alk

26. (Original) A method of inhibiting checkpoint kinase 1 (Chk1) in a cell comprising the step of contacting the cell with an effective amount of a compound of claim 19.

27. (Original) A method of sensitizing cells in an individual undergoing a chemotherapeutic or radiotherapeutic treatment for a medical condition, comprising administering a therapeutically effective amount of a compound of claim 19 in combination with a chemotherapeutic agent, a radiotherapeutic agent, or a mixture thereof to the individual.

28. (Currently amended) A compound having a structure

$$\begin{array}{c|c}
N & NH & NH \\
N & R^{28}
\end{array}$$

wherein $\ensuremath{\text{R}^{27}}$ and $\ensuremath{\text{R}^{28}}$ are

R ²⁷	R ²⁸
Н -	NH NH
Н	NH NH
H	NH NH
CH ₃	Н
Ħ	NH
H	NH N N
O NH N	H

R ²⁷	R ²⁸	
O NH NH	Н	

or

wherein ${\ensuremath{R}}^{29}$ is


```
(Currently amended)
                                                                                           A compound selected
                          29.
from the group consisting of:
N-(2-dimethylamino-1-phenyl-ethyl)-3-methoxy-4-[3-(5-
methyl-pyrazin-2-yl)-ureido]-benzamine;
N-(1-aza-bicyclo[2.2.2]oct-3-yl)-3-methoxy-4-[3-(5-3-yl)]
methyl-pyrazin-2-yl)-ureido]-benzamide;
N-(3-R-1-cyclohexylmethyl-pyrrolidin-3-yl)-3-methoxy-4-
[3-(5-methyl-pyrazin-2-yl)-ureido]-benzamide;
1-[2-(2-dimethylamino-ethoxy)-5-methyl-phenyl]-3-
pyrazin-2-yl-urea;
1-[2-(3-dimethylamino-propoxy)-5-methyl-phenyl]-3-(5-
methyl-pyrazin-2-yl)-urea;
1-(5-methyl-pyrazin-2-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(pyridin-3-yl)-3-[5-methyl-2-(py
ylmethoxy) -phenyl] -urea;
1-[2-(2-dimethylamino-1-dimethylaminomethyl-ethoxy)-5-
methyl-phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(2-S-1-methyl-pyrrolidin-2-ylmethoxy)-
phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-{5-methyl-2-[2-(1-methyl-pyrrolidin-2-yl)-ethoxy]-
phenyl}-3-(5-methyl-pyrazin-2-yl)-urea;
1-{5-methyl-2-(1-methyl-piperidin-4-yloxy)-phenyl]-3-
(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(3-(S)-1-methyl-piperidin-3-ylmethoxy)-
phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(3-(R)-1-methyl-piperidin-3-ylmethoxy)-
phenyl]-3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(1-methyl-piperidin-2-ylmethoxy)-phenyl]-
3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-methyl-2-(1-methyl-piperidin-3-yloxy)-phenyl]-3-
(5-methyl-pyrazin-2-yl)-urea;
```

```
1-[5-methyl-2-(1-methyl-piperidin-3-ylmethoxy)-phenyl]-
 3-quinoxalin-2-yl-urea;
1-[5-methyl-2-(piperidin-3-ylmethoxy)-phenyl]-3-(5-
 methyl-pyrazin-2-yl)-urea;
 1-[5-fluoro-2-(1-methyl-piperidin-3-ylmethoxy)-phenyl]-
 3-(5-methyl-pyrazin-2-yl)-urea;
1-[5-fluoro-2-(1-methyl-piperidin-4-yloxy)-phenyl]-3-
 (5-methyl-pyrazin-2-yl)-urea;
 1-[4-fluoro-2-(1-methyl-piperidin-4-yloxy)-phenyl]-3-
 (5-methyl-pyrazin-2-yl)-urea;
 1-(2-methoxy-4-methylaminomethyl-phenyl)-3-(5-methyl-
 pyrazin-2-yl)-urea;
 1-(4-{[(furan-3-ylmethyl)-amino]-methyl}-2-methoxy-
 phenyl)-3-(5-methyl-pyrazin-2-yl)-urea; and
 1-{2-methoxy-4-[(4-methoxy-benzylamino)-methyl]-
 phenyl}-3-(5-methyl-pyrazin-2-yl)-urea.
```

30. (Currently amended) A composition comprising a compound of formula (II) and a pharmaceutically acceptable carrier, said compound of formula (II) having a formula

wherein Y' is O or S;

W' is selected from the group consisting of

N N

7

7

NNN

, and

optionally substituted with from one to <u>four three</u> sub-wiss stituents selected from the group consisting of C_{1-6} alk-yl, aryl, $N(R^7)_2$, OR^7 , N_3 , CN, $C(O)R^7$, C_{1-3} alkylenearyl, C_{1-3} alkylene $N(R^{12})_2$,

$$C_{1-3}$$
alkylene $-N$

and halo;

Z' is selected from the group consisting of:

wherein:

Q' is selected from the group consisting of $\frac{hydro}{}$, OR^7 , SR^7 , and $N(R^7)_2$, with the proviso that Q' is $\frac{hydro}{}$ only when at least one of J', K', L', and M' is $\frac{N}{}$, $\frac{O}{}$ or $\frac{S}{}$;

J' is selected from the group consisting of CR⁸, NR⁸, O, and S;

K' is selected from the group consisting of CR9, NR9, O, and S;

L' is selected from the group consisting of, - CR¹⁰, NR¹⁰, O, and S;

M' is selected from the group consisting of CR¹¹, NR¹¹, O, and S, with the proviso that Z is different ent from a pyridone;

wherein:

 R^7 , independently, is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, cycloalkyl, aryl, heteroaryl, SO_2R^{12} , C_{1-6} alkyl substituted with one or more of halo, hydroxy, aryl, heteroaryl, heterocycloalkyl, $N(R^{12})_2$, and SO_2R^{12} , C_{1-3} alkylenearyl, C_{1-3} alk-yleneheteroaryl, C_{1-3} alkylene C_{3-8} heterocycloalkyl, C_{1-3} alkylene SO_2 aryl, optionally substituted C_{1-3} alkylene $N(R^{12})_2$, OCF₃, C_{1-3} alkylene $N(R^{12})_3$, C_{3-8} heterocycloalkyl, and $CH(C_{1-3}$ alkylene $N(R^{12})_2$), or two R^7 groups are taken together to form an optionally substituted 3- to 6-membered aliphatic ring;

 R^8 , R^9 , and R^{10} are each independently selected from the group consisting of null, hydro, halo, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl, OCF_3 , NO_2 , CN, NC, $N(R^7)_2$, OR^7 , CO_2R^7 , $C(O)N(R^7)_2$, $C(O)R^7$, $N(R^{13})_ COR^7$, $N(R^{13})_C(O)OR^7$, $N(R^7)_C(O)OR^7$, $N(R^7)_C(O)C_{1-3}$ alkylene- $C(O)R^7$, $N(R^7)_C(O)C_{1-3}$ alkylene $C(O)OR^7$, $N(R^7)_C(O)C_{1-3}$ alkylene $C(O)OR^7$, $N(R^7)_C(O)C_{1-3}$ alkyleneOR $C(O)OR^7$, $N(R^7)_C(O)C_{1-3}$ alkyleneOR $C(O)OR^7$, $N(R^7)_C(O)C_{1-3}$ alkyleneSO C_2 NR C_3 , C_{1-3} alkyleneOR C_3 , and C_3 , wherein C_3 is as defined above;

 R^{11} is selected from the group consisting of null, hydro, optionally substituted C_{1-6} alkyl, and halo;

 R^{12} is selected from the group consisting of hydro, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, C_{1-3} alkylenearyl, and SO_2C_{1-6} alkyl, or two R^{12} groups are taken together to form an optionally substituted 3- to 6-membered ring; and

 R^{13} is selected from the group consisting of hydro, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and aryl; provided that when Q' is hydro or OCH₃, at least one of R^8 , R^9 , and R^{10} is different from hydro, CH_3 , OCH_3 , and halo,

 $\frac{\text{and}}{\text{or}}$ pharmaceutically acceptable salts, $\underline{\text{or}}$ prodrugs, or solvates thereof.

31. (Previously presented) A compound selected from the group consisting of

$$\begin{array}{c|c} & & & \\ & & & \\ N & & & \\ N & & & \\ \end{array}$$

$$\begin{array}{c|c} & & & \\ & & & \\ N & & & \\ N & & & \\ N & & & \\ \end{array}$$

, and

$$\begin{array}{c|c} & & & \\ & & & \\ N & & & \\ N & & & \\ N & & & \\ \end{array}$$