

Matriks

Definisi, Jenis dan Operasi Matriks

Ilham Rais Arvianto, M.Pd

Pendahuluan

Pada periode April 2013, STMIK Akakom Yogyakarta mewisuda 209 wisudawan. Berikut ini data wisudawan pada periode tersebut.

Jurusan	Banyak Wisudawan	
	Laki-laki	Perempuan
TI	34	8
SI	34	6
MI	51	12
KA	51	13

Definisi Matriks

Definisi Matriks

Matriks adalah kumpulan bilangan yang disajikan secara teratur dalam baris dan kolom yang membentuk suatu persegi panjang, serta termuat di antara sepasang tanda kurung.

Notasi Matriks

- Nama Matriks menggunakan huruf besar (capital).
- Elemen Matriks dapat berupa huruf kecil maupun angka.
- Pengurung elemen matriks menggunakan **kurung biasa** atau **kurung siku**.

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 7 & 6 \end{pmatrix} \qquad A = \begin{bmatrix} -1 & 3 & 2 \\ 5 & 7 & 6 \end{bmatrix}$$

• Ordo Matriks atau ukuran matriks merupakan banyaknya baris (garis horizontal) dan banyaknya kolom (garis vertikal) yang terdapat dalam matriks tersebut.

Notasi Matriks

Ordo Matriks

Contoh Matriks

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\ E = (4)$$

$$B = \begin{pmatrix} 2 & 1 & 0 & -3 \end{pmatrix}$$

Latihan

- Tentukan ordo dari tiap matriks di atas!
- Tentukan elemen a_{12} , b_{22} , c_{31} , d_{23} dan e_{12} !

Jenis Matriks

- 1. Matriks Baris
- 2. Matriks Kolom
- 3. Matriks Persegi
- 4. Matriks Nol
- 5. Matriks Segitiga

- 6. Matriks Diagonal
- 7. Matriks Skalar
- 8. Matriks Identitas
- 9. Matriks Simetri
- 10. Matriks EBT

1. Matriks Baris

Matriks Baris adalah matriks yang hanya mempunyai satu baris.

$$C = \begin{pmatrix} 1 & 2 & -1 & 4 \end{pmatrix}$$

2. Matriks Kolom

Matriks Kolom adalah matriks yang hanya mempunyai satu kolom.

$$D = \begin{pmatrix} 2 \\ 3 \\ 0 \\ -2 \end{pmatrix}$$

3. Matriks Persegi

Matriks Persegi adalah matriks yang memiliki banyak baris dan banyak kolom sama.

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

4. Matriks Nol

Matriks Nol adalah matriks yang seluruh elemennya bernilai 0 (nol). Biasa ditulis dengan O.

$$O_{2\times 3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

5. Matriks Segitiga

Matriks Segitiga adalah suatu matriks persegi yang elemen-elemen di bawah atau di atas diagonal utama semuanya 0 (nol).

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 10 \end{pmatrix}$$

Matriks segitiga atas

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 10 \end{pmatrix}$$

Matriks segitiga bawah

6. Matriks Diagonal

Matriks Diagonal adalah suatu matriks persegi yang semua elemennya adalah 0 (nol), kecuali elemenelemen pada diagonal utama.

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

7. Matriks Skalar

Matriks Skalar adalah matriks diagonal yang elemen-elemen pada diagonal utama semuanya sama.

$$H = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

8. Matriks Identitas

Matriks Identitas atau Matriks Satuan adalah matriks diagonal yang elemen-elemen pada diagonal utama semuanya 1 (satu). Biasa ditulis dengan I.

$$I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

9. Matriks Simetri

Matriks Simetri adalah suatu matriks bujur sangkar yang elemen pada baris ke-i kolom ke-j sama dengan unsur pada baris ke-j kolom ke-i, sehingga $a_{ij} = a_{ji}$.

$$G = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 3 & 4 & 6 & 9 \\ 2 & 6 & 7 & 8 \\ 5 & 9 & 8 & 2 \end{pmatrix}$$

10. Matriks Eselon Baris Tereduksi (EBT)

Syarat Matriks EBT

- 1.Untuk semua baris yang elemenelemennya tidak nol, maka bilangan pertama pada baris tersebut haruslah 1 (disebut **satu utama**).
- 2. Untuk sembarang dua baris yang berurutan, maka satu utama yang terletak pada baris yang lebih bawah harus terletak lebih ke kanan dari pada satu utama pada baris yang lebih atas.
- 3. Jika suatu baris semua elemennya adalah nol, maka baris tersebut diletakkan pada bagian bawah matriks.
- 4. Kolom yang memiliki satu utama harus memiliki elemen nol ditempat lainnya.

Contoh EBT

$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Contoh Bukan EBT

$$C = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Tentukan jenis dari matriksmatriks di atas! Jika memenuhi lebih dari satu, tuliskan semua.

Jenis Matriks

- 1. Matriks Baris
- 2. Matriks Kolom
- 3. Matriks Persegi
- 4. Matriks Nol
- 5. Matriks Segitiga
- 6. Matriks Diagonal
- 7. Matriks Skalar
- 8. Matriks Identitas
- 9. Matriks Simetri
- 10. Matriks EBT

Operasi Matriks

- 1. Penjumlahan dan Pengurangan Matriks
- 2. Perkalian Matriks dengan Matriks
- 3. Perkalian Matriks dengan Sekalar
- 4. Tranpose Matriks

1. Penjumlahan dan Pengurangan Matriks

- Operasi penjumlahan dan pengurangan matriks dapat dilakukan pada dua buah matriks yang memiliki ukuran (ordo) yang sama.
- Aturan penjumlahan/pengurangan matriks adalah dengan menjumlahkan/mengurangkan elemen-elemen yang seletak pada kedua matriks.
- Matriks yang memiliki ordo berbeda, tidak dapat dijumlahkan/dikurangkan.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 4 & -3 \end{pmatrix} \rightarrow C = A + B = \begin{pmatrix} 3 & 3 \\ 7 & 1 \end{pmatrix}$$

2. Perkalian Matriks dengan Matriks

Operasi perkalian matriks dengan matriks dapat dilakukan jika jumlah kolom matriks *A* sama dengan jumlah baris matriks *B*.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}, B = \begin{pmatrix} k & n \\ l & o \\ m & p \end{pmatrix}$$

$$C = A \cdot B = \begin{pmatrix} ak + bl + cm & an + bo + cp \\ dk + el + fm & dn + eo + fp \end{pmatrix}$$

3. Perkalian Matriks dengan Skalar

Suatu matriks dapat dikalikan dengan suatu skalar k dengan aturan tiap-tiap elemen pada matriks A dikalikan dengan k.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \rightarrow 3A = \begin{pmatrix} 3a & 3b & 3c \\ 3d & 3e & 3f \end{pmatrix}$$

4. Tranpose Matriks

Transpose matriks A (dinotasikan A^T) didefinisikan sebagai matriks yang barisbarisnya merupakan kolom dari A.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \rightarrow A^{T} = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$$

Sifat Operasi Matriks

■
$$A + B = B + A$$

■ $A + (B + C) = (A + B) + C$
■ $AB \neq BA$
■ $A(BC) = (AB) C$
■ $(A^T)^T = A$
■ $(AB)^T = B^TA^T$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
c. Hitung $AB + AC$
d. Hitung $A(B + C)$
e. Bandingkan hasil no. c dan no. d

$$C = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Soal

- a. Hitung B + C
- b. Hitung AB dan AC

Tentukanlah x, jika $A^t = B$.

a.
$$A = \begin{pmatrix} -2 & x-2 \\ 8 & -4 \end{pmatrix} dan B = \begin{pmatrix} -2 & 8 \\ \frac{1}{2} & -4 \end{pmatrix}$$

b.
$$A = \begin{pmatrix} 2 & p \\ 3 & 1 \end{pmatrix} dan B = \begin{pmatrix} x+p & 3 \\ 4 & 1 \end{pmatrix}$$

Terima Kasih