Take-home exam: Grundlagen der Elektronik WS 20/21

Bearbeitungszeit: 2 Std.

Bemerkung: Bei Berechnungen ist grundsätzlich auch der Rechenweg nachvollziehbar anzugeben.

Konstanten: Raumtemperatur $T_0 = 300$ K; Elementarladung $q = 1,6\cdot10^{-19}$ As; Boltzmann-Konstante $k = 1,38\cdot10^{-23}$ J/K = $8,6\cdot10^{-5}$ eV/K; Vakuum-Dielektrizitätskonstante $\epsilon_0 = 8,85\cdot10^{-12}$ As/(Vm).

$$N = N_0 \left(\frac{T}{T_0}\right)^{3/2}; \quad n_i^2 = np = N_L N_V \exp\left(-\frac{W_G}{kT}\right); \quad n + N_A^- = p + N_D^+$$

$$N_A^- = N_A \left(\frac{p_1}{p + p_1}\right); \quad p_c = N_c \left(\frac{T}{T_0}\right)^{3/2} \exp\left(-\frac{W_A - W_V}{kT}\right); \quad T_0 = 300 \text{ K}.$$

1) Ein Halbleiter ist homogen mit Akzeptoren der Konzentration N_A dotiert $(N_D = 0)$ und die effektiven Zustandsdichten der freien Ladungsträger (p, n) sind gleich groß, also $N_V = N_L = N$ mit $N_0 = 8 \cdot 10^{18}$ cm⁻³. Werte der Löcherkonzentration $p(T_0/T)$ sind in <u>Abb. 1</u> dargestellt.

a) Geben Sie die Temperaturbereiche an (in Werten von T_0/T), in denen die Akzeptoren vollständig $(N_A^- = N_A)$ oder unvollständig $(N_A^- << N_A)$ ionisiert sind, bzw. der Halbleiter eigenleitend ist $(p = n_i)$.

- b) Geben Sie im Bereich der Eigenleitung die Abhängigkeit der Löcherkonzentration $p(T_0/T)$ explizit an. Bestimmen Sie aus dem Bandabstand $W_G = 0.5$ eV Werte von p für $T_0/T = 0.46$ und $T_0/T = 0.96$.
- c) Ermitteln Sie nun p für den Bereich $T_0/T > 1,5$. Nutzen Sie hierfür die oben gegebene Elektroneutralitätsgleichung. Vereinfachen Sie diese mit Hilfe der gegebenen Annahmen sowie einer größenordnungsmäßigen Abschätzung der Elektronenkonzentration n im Vergleich mit p. Berechnen Sie hierfür beispielhaft n für $T_0/T = 1,5$.
- d) Nutzen Sie die oben angegebene Gleichung für N_A , um für den Bereich $T_0/T > 1,5$ aus c) eine quadratische Gleichung für p aufzustellen und lösen Sie diese anschließend (Formel).
- e) Im Bereich mittlerer Temperaturen gilt $4N_{\rm A} \ll p_{\rm c}$. Vereinfachen Sie mit dieser Annahme die Lösung für p aus d) (Hinweis: $[1+\delta]^{0.5} \approx 1+0.5\delta$ mit $\delta \ll 1$). Bestimmen Sie hiermit aus Abb. 1, links im Bereich $1.5 < T_0/T < 6$ den Zahlenwert von p.
- f) Im Bereich niedriger Temperaturen gilt $2(N_{\rm A})^{1/2} \gg (p_{\rm c})^{1/2}$. Vereinfachen Sie mit dieser Annahme die Lösung für p aus d) und geben Sie $p(T_0/T)$ explizit in Abhängigkeit von der Akzeptor-Ionisierungsenergie $W_{\rm A}$ $W_{\rm V}$ an. Bestimmen Sie aus <u>Abb. 1, links</u> im Bereich 15 $< T_0/T < 30$ den Zahlenwert von $W_{\rm A}$ $W_{\rm V}$.

2) Abb. 2 zeigt eine ideale Metall-Oxid-p-Halbleiter (MOS)-Struktur mit am Gate anliegender Spannung $U_{\rm g}$. Gehen Sie, wie bei 300 K üblich, davon aus, dass Metalldie Dotierstoffe vollständig ionisiert sind (d. h.: N_A^- = $N_{\rm A} = 5 \cdot 10^{17} \, \rm cm^{-3}$) und die beweglichen Ladungsträger in der Sperrschicht $(0 \le x \le w)$ keine Rolle spielen. Für den Kapazitätsbelag der HfO₂-Oxidschicht $C_{\rm ox} = \varepsilon_{\rm ox} \varepsilon_{\rm o}/d$ und der Sperrschicht $C_{\rm S} = \varepsilon_{\rm S} \varepsilon_{\rm o}/w$ mit den relativen Dielektrizitätskonstanten $\varepsilon_{\rm s}$ und $\varepsilon_{\rm ox}$ sowie den Dicken d und w sind folgende Daten gegeben: d = 8 nm; $\varepsilon_{ox} = 22$; $\varepsilon_{s} = 11,7$; $n_{i} = 10^{10}$ cm⁻³.

- a) Skizzieren Sie das vereinfachte Kapazitäts-Ersatzschaltbild der MOS-Struktur. Ermitteln Sie den Gesamtkapazitätsbelag der Struktur C bezogen auf C_{ox} in Abhängigkeit von der Sperrschichtausdehnung w. Skizzieren Sie für niedrige (durchgezogen) und hohe (gestrichelt) Frequenzen den Verlauf von C/C_{ox} in Abhängigkeit von U_{g} . Markieren Sie die Bereiche der Anreicherung, Verarmung und Inversion sowie den Flachbandfall $(C/C_{ox})_{FB}$.
- b) Skizzieren Sie (nach Übertragen der Vorlage unten auf Ihr eigenes Papier) die Verläufe der Raumladung $\rho(x)$, der elektrischen Feldstärke E(x) und der Bandkantenenergien $W_{\rm I}(x)$ und $W_{\rm v}(x)$ für den Fall des Einsetzens
 - (1) der schwachen Inversion mit der Bandaufwölbung $W_s = W_i W_F$ und
 - (2) der starken Inversion mit $W_s = 2(W_i W_F)$.
 - $(W_{\rm F}:$ Fermienergie im Halbleiter, $W_{\rm i}:$ Eigenleitungsniveau). Markieren Sie $W_{\rm s}$, $W_{\rm i}$, $W_{\rm L}$ und $W_{\rm V}$ sowie die Fermienergie im Metall $W_{\rm F,M}$.
- c) Bestimmen Sie W_s in Abhängigkeit von N_A und n_i (Formel) unter Annahme der Boltzmann-Näherung für die Löcherkonzentration p mit:

$$p = N_{\rm V} \exp \left(\frac{W_{\rm V} - W_{\rm F}}{kT} \right)$$

d) Bei starker Inversion (2) gilt für die maximale Ausdehnung der Sperrschicht $w = w_{\text{max}}$ mit:

$$w_{\text{max}} = \sqrt{\frac{2 \varepsilon_{\text{S}} \varepsilon_0 W_{\text{s}}}{q^2 N_{\text{A}}}}$$

und für die Ausdehnung im Flachbandfall (FB) $w = L_D$ mit:

$$L_{\rm D} = \sqrt{\frac{\varepsilon_{\rm S} \varepsilon_0 k T}{q^2 N_{\rm A}}}$$

Bestimmen Sie für die MOS-Struktur in <u>Abb. 2</u> w_{max} und L_{D} und hieraus die minimale Kapazität $(C/C_{\text{ox}})_{\text{min}}$ bzw. die Flachbandkapazität $(C/C_{\text{ox}})_{\text{FB}}$. Geben Sie jeweils Formeln und Zahlenwerte an.

3) Analysieren Sie die Schaltung in <u>Abb. 3a</u>. Der Transistor ist durch das Kennlinienfeld in <u>Abb. 3b</u> charakterisiert. Im Arbeitspunkt sind folgende Betriebsparameter gegeben: $U_{\rm B}=-12~{\rm V},$ $U_{\rm ce}=-5~{\rm V},~U_{\rm be}=-0.7~{\rm V},~V_5=-2~{\rm V},~I_{\rm b}=-2.5~{\rm \mu A},~I_{\rm q}=9\times I_{\rm b},~R_4=0.7~{\rm k}\Omega,~R_{\rm G}=4~{\rm k}\Omega,~R_{\rm L}=22~{\rm k}\Omega.$

Abb. 3

- a) Welcher Transistortyp liegt vor? Zeichnen Sie das Gleichstromersatzschaltbild. Ermitteln Sie den Arbeitspunkt (U_{ce} , I_c) und die Widerstände R_1 , R_2 , R_3 und R_5 . Wie groß ist I_c für Kollektor-Emitter-Kurzschluss ($U_{ce} = 0$)?
- b) Führen Sie eine Wechselstromanalyse durch. Zeichnen Sie hierzu die Ersatzschaltung unter Verwendung des vereinfachten Kleinsignal-Ersatzschaltbildes für den Transistor (Abb. 3c) mit den Parametern $g_{\rm m}=20~{\rm mS}$ und $r_{\rm be}=5~{\rm k}\Omega$. Die Kondensatoren C_1 , C_2 und C_3 sind im betrachteten Frequenzbereich kurzgeschlossen.
- c) Bestimmen Sie aus b) mit Hilfe der in a) ermittelten Werte den Eingangswiderstand $R_e = u_1/i_1$ (Hinweis: Ermitteln Sie zunächst u_1/u_{be}), die Stromverstärkung $v_i = i_2/i_1$, die Leerlaufspannungsverstärkung $v_{uL} = u_2/u_1$ ($i_2 = 0$) und die Spannungsverstärkung $v_u = u_2/u_G$ ($i_2 \neq 0$) der Schaltung formel- und zahlenmäßig. Nutzen Sie bei der Herleitung der Formeln sich entsprechend der genannten Zahlenwerte ergebende, sinnvolle Näherungen.