

### 概述:

该XC6206P系列是一款高精度,低功耗,高电压,正电压调整器的芯片,并采用 CMOS 工艺和激光微调技术。在输出电流的情况下,输入输出压也差很小。XC6206P系列芯片包括一个电流限制电路,一个驱动器三极管,一个高精度参考电压源和一个误差校正电路。 XC6206P系列可使用低ESR 陶瓷电容.该电流限制器的返回电路可为电流限制器和输出引脚提供短路保护。通过激光微调技术,可设定芯片的输出电压的范围是 1.2V 至 5.0V,间隔为 0.1V。



## 特点:

- 高精度输出电压: ±2%
- 输出电压: 1.2V~5.0V(步长 0.1V)
- 最大工作电压: 6V
- 极低的静态偏置电流 (Typ. =8.0 µ A)
- 带载能力强: 当 Vin=4.3V 且 Vout=3.3V 时 Tout=300mA
- 极低的输入输出电压差: 0.2V at 90mA and 0.40V at 200mA
- 输入稳定性好
- 低的温度调整系数
- 可以作为调整器和参考电压来使用

# 应用:

- 电池供电系统
- 无绳电话设备
- 无线控制系统
- 便携/手掌式计算机
- 便携式消费类设备
- 便携式仪器
- 电子设备
- 汽车电子设备
- 电压基准源

#### 典型性能特征:





## 功能块框图



## 极限参数

| 参数       | 符 号  | 极限值                | 单位 |
|----------|------|--------------------|----|
| Vin 脚电压  | VIN  | 6.5                | V  |
| Vout 脚电流 | lout | 250                | mA |
| Vout 脚电压 | Vout | Vss-0.3 ~ Vout+0.3 | V  |
| 允许最大功耗   | Pd   | 250                | mW |
| 工作温度     | TOpr | -40~ +85           | °C |
| 存贮温度     | Tstg | -40~ +125          | °C |

# 推荐工作条

| 参数     | 符 号 | 极限值        | 单位 |
|--------|-----|------------|----|
| 输入电压   | VIN | 6.5        | V  |
| 工作结温范围 | TJ  | -40 ~ +125 | °C |



#### 主要参数及工作特性:

### (Vin=Vout+1V,Cin=Cout=1u,Ta=250 ℃ 除特别指定)

| 特性             | 符号             | 测试条件                                                      | 最小值    | 典型值     | 最大值    | 单位                   |
|----------------|----------------|-----------------------------------------------------------|--------|---------|--------|----------------------|
| 松山市厅           | VOUT(E)        | IOUT=10mA,                                                | X 0.98 | VOUT(T) | X 1.02 | V                    |
| 输出电压<br>       | (Note 2)       | VIN=Vout+1V                                               |        | E-1     |        | \ \ \                |
| 输入电压           | VIN            |                                                           | 1.8    |         | 6      | V                    |
| 最大输出电流         | IOUT (max)     | VIN=Vout+1V                                               | E-2    |         |        | mA                   |
| A # # # #      | ΔVOUT          | Vout>1.8V, 1mA≤IOUT≤100mA                                 |        |         | E 2    | m\/                  |
| 负载特性           | ΔνΟΟΊ          | Vout<1.8V, 1mA≤IOUT≤50mA                                  |        |         | E-3    | mV                   |
|                | Vdif1          | IOUT =30mA                                                |        | E       | -4     | mV                   |
| 漏失电压           | )/4:£0         | Vout>1.8V,IOUT =100mA                                     |        | E-5     |        | \/                   |
|                | Vdif2          | Vout<1.8V,IOUT =60mA                                      |        |         |        | mV                   |
| 电源电流           | IDD            | VIN=VCE                                                   |        | 1       | 3      | μΑ                   |
|                | ΔVOUT          | $VOUT(T)$ <4.5 $V:VOUT(T)$ +1.0 $V \le VIN$<br>$\le 6.0V$ |        |         |        |                      |
| 电源电压调整率        | Δ<br>VIN•VOUT  | = 0.0 V<br>VOUT(T)>4.5V:5.5V ≦VIN ≦6.0V<br>IOUT=30mA      |        | 0.05    | 0.25   | %/V                  |
| 松山中区沿南县红       | ΔVOUT          | IOUT=30mA                                                 |        | .100    |        | ppm/                 |
| 输出电压温度特征       | ∆<br>Vonr•VOUT | -40 °C ≦ Topr ≦ 85 °C                                     |        | +100    |        | $^{\circ}\mathbb{C}$ |
| <b>信</b> 敗 由 法 | Ishort         | Vin=Vout(T)+1.5V                                          |        | E-6     |        | mA                   |
| 短路电流           | ISHOIT         | Vout=Vss                                                  |        | ⊏-0     |        | IIIA                 |
| 过流保护电流         | llimt          |                                                           |        | 250     |        | mA                   |

### 通知:

\*1: VOUT (T)=额定输出电压

\*2: VOUT (E)=有效输出电压 (Ie. 当输出电压是 "VOUT(T)+1. OV" i 时提供的 VIN 引脚和 IOUT 的值维持一致时.)

\* 3 : VOUT={ VIN 1- VOUT1 }

\* 4 : VOUT1 = 当输入 IOUT {VOUT (T) +1. OV} 充足稳定时, A 的电压等于 98%输出电压。

\*5: VIN = 输入电压(当VOUT显示逐渐降低时)。

\* 6 : 除非另有说明, 否则VIN = VOUT (T) + 1.0V

\* 7 : 当 VOUT >1.5V, 精度为±2%.

当 VOUT)<1.5V, 精度最小: VOUT =30mV , 最大: VOUT +30mV

±1% 精度(最小: VOUT x 0.99 , 最大: VOUT x 1.01) 设置在 VOUT >2.0V



# 电特性图:

| S        | E-1   |       | E-2   | E-3     | E-              | 4            | E-5         |     | E-6         |       |                |
|----------|-------|-------|-------|---------|-----------------|--------------|-------------|-----|-------------|-------|----------------|
| 参数       | 有     | 俞出电压  |       |         |                 |              |             |     |             |       |                |
| 设置<br>电压 | 2%    | 精度    | 1%精   | 度       | 最大输出电流          | 负荷规例         | 漏失电         | 压 1 | 漏失电         | 玉2    | 短路电流           |
| Vout(t)  | Vout  | E)(V) | Vout  | (E) (V) | loutmax<br>(mA) | Vout<br>(mV) | Vdit<br>(m) | 11. | Vdif<br>(mV |       | Ishort<br>(mA) |
| Sa.      | 最小    | 最大.   | 最小.   | 最大      | 最小              | 最大           | 典型值         | 最大. | 典型值         | 最大.   | TYP.           |
| 1.2      | 1.170 | 1.230 |       |         |                 |              | 460         | 760 | 700         | 960   |                |
| 1.3      | 1.270 | 1.330 |       |         | 60              | 40           | 400         | 650 | 5.500<br>-  | 5.55  | 180            |
| 1.4      | 1.370 | 1.430 |       |         | V. 1541         |              | 350         | 590 | 580         | 860   |                |
| 1.5      | 1.470 | 1.530 | 不提供   |         |                 | 72           | 300         | 510 | 000         | 000   | 0.000          |
| 1.6      | 1.568 | 1.632 |       |         | Î               | 45           | 250         | 450 | 450         | 810   | 155            |
| 1.7      | 1.666 | 1.734 |       |         | 80              | 45           | 200         | 410 |             | 32.73 |                |
| 1.8      | 1.764 | 1.836 |       |         |                 |              | 150         | 390 |             | 200   |                |
| 1.9      | 1.862 | 1.938 |       |         |                 | 9            | _           |     |             | 780   | 420            |
| 2.0      | 1.960 | 2.040 | 1.980 | 2.020   | - 3             | (2)          | -86         |     |             |       | 130            |
| 2.1      | 2.058 | 2.042 | 2.079 | 2.121   | 400             | 50           |             |     |             |       |                |
| 2.2      | 2.156 | 2.244 | 2.178 | 2.222   | 120             | 50           |             |     | 350         |       |                |
| 2.3      | 2.254 | 2.346 | 2.277 | 2.323   |                 |              | 100         | 370 | 000         | 2     |                |
| 2.4      | 2.352 | 2.448 | 2.376 | 2.424   |                 | 3            |             |     |             | 710   |                |
| 2.5      | 2.450 | 2.550 | 2.475 | 2.525   |                 | 8            |             |     |             |       |                |
| 2.6      | 2.548 | 2.652 | 2.574 | 2.626   | 450             |              |             |     |             |       |                |
| 2.7      | 2.646 | 2.754 | 2.673 | 2.727   | 150             | 55           |             |     |             |       |                |
| 2.8      | 2.744 | 2.856 | 2.772 | 2.828   |                 |              |             |     |             |       |                |
| 2.9      | 2.842 | 2.958 | 2.871 | 2.929   |                 | 3            |             | 3   |             |       |                |
| 3.0      | 2.940 | 3.060 | 2.970 | 3.030   |                 |              |             |     |             |       |                |
| 3.1      | 3.038 | 3.162 | 3.069 | 3.131   |                 | 20           |             |     |             |       |                |
| 3.2      | 3.136 | 3.264 | 3.168 | 3.232   |                 | 60           |             |     |             |       |                |
| 3.3      | 3.234 | 3.366 | 3.267 | 3.333   | 200             |              | 75          | 050 | 050         | 000   | 2500000        |
| 3.4      | 3.332 | 3.468 | 3.366 | 3.434   | 200             | 3            | 75          | 350 | 250         | 680   | 100            |
| 3.5      | 3.430 | 3.570 | 3.465 | 3.535   | ě               |              | -56         |     |             |       |                |
| 3.6      | 3.528 | 3.672 | 3.564 | 3.636   |                 |              |             |     |             |       |                |
| 3.7      | 3.626 | 3.774 | 3.663 | 3.737   |                 | 65           |             |     |             |       |                |
| 3.8      | 3.724 | 3.876 | 3.762 | 3.838   |                 |              |             |     |             |       |                |
| 3.9      | 3.822 | 3.978 | 3.861 | 3.939   |                 | 25           |             |     |             |       |                |
| 4.0      | 3.920 | 4.080 | 3.960 | 4.040   |                 |              |             |     |             |       |                |
| 4.1      | 4.018 | 4.182 | 4.059 | 4.141   |                 | 70           |             |     |             |       |                |
| 4.2      | 4.116 | 4.284 | 4.158 | 4.242   |                 | 70           |             |     |             |       |                |
| 4.3      | 4.214 | 4.386 | 4.257 | 4.343   |                 |              | 60          | 200 | 200         | 620   |                |
| 4.4      | 4.312 | 4.488 | 4.356 | 4.444   | 250             | 25           | 60          | 320 | 200         | 630   |                |
| 4.5      | 4.410 | 4.590 | 4.455 | 4.545   |                 |              |             |     |             |       |                |
| 4.6      | 4.508 | 4.692 | 4.554 | 4.646   |                 | 75           |             |     |             |       |                |
| 4.7      | 4.606 | 4.794 | 4.653 | 4.747   |                 | 75           |             |     |             |       |                |
| 4.8      | 4.704 | 4.896 | 4.752 | 4.848   |                 |              |             |     |             |       |                |
| 4.9      | 4.802 | 4.998 | 4.851 | 4.949   |                 | 25           |             |     |             |       |                |
| 5.0      | 4.900 | 5.100 | 4.950 | 5.050   |                 | 80           | 50          | 290 | 175         | 600   |                |







管脚描述

| 管脚号 | 管脚名称 | 功能   |
|-----|------|------|
| 1   | VSS  | 接地引脚 |
| 2   | VOUT | 输出电压 |
| 3   | VIN  | 输入电压 |

# 典型应用电路图





## **Package Dimensions:**



| Complete | Dimensions | In Millimeters | Dimension  | ns In Inches<br>Max. |  |
|----------|------------|----------------|------------|----------------------|--|
| Symbol   | Min.       | Max.           | Min.       |                      |  |
| Α        | 0.900      | 1.150          | 0.035      | 0.045                |  |
| A1       | 0.000      | 0.100          | 0.000      | 0.004                |  |
| A2       | 0.900      | 1.050          | 0.035      | 0.041                |  |
| b        | 0.300      | 0.500          | 0.012      | 0.020                |  |
| С        | 0.080      | 0.150          | 0.003      | 0.006                |  |
| D        | 2.800      | 3.000          | 0.110      | 0.118                |  |
| E        | 1.200      | 1.400          | 0.047      | 0.055                |  |
| E1       | 2.250      | 2.550          | 0.089 0.10 |                      |  |
| е        | 0.950      | TYP.           | 0.037 TYP. |                      |  |
| e1       | 1.800      | 2.000          | 0.071      | 0.079                |  |
| L        | 0.550 REF. |                | 0.022 REF. |                      |  |
| L1       | 0.300      | 0.500          | 0.012      | 0.020                |  |
| θ        | 0°         | 8°             | 0° 8°      |                      |  |