Linear algebra

Mathematical Foundations

- Geometry (2D, 3D)
- Trigonometry
- Vector and affine spaces
 - Points, vectors, and coordinates
- Dot and cross products
- Linear transforms and matrices

3D Geometry

- To model, animate, and render 3D scenes, we must specify:
 - Location
 - Displacement from arbitrary locations
 - Orientation
- We'll look at two types of spaces:
 - Vector spaces
 - Affine spaces
- We will often be sloppy about the distinction

Vector Spaces

- Formed by a collection of "vectors"
- Two types of elements:
 - Scalars (real numbers): α , β , γ , δ , ...
 - Vectors (n-tuples): u, v, w, ...

Vector Spaces: A Familiar Example

- Vectors in a 2D plane is:
 - Vectors are "arrows" rooted at the origin
 - Scalar multiplication "streches" the arrow, changing its length () but not its direction
 - Addition uses the "trapezoid rule":

Vector Spaces: Another Familiar Example

- Ordered tripples:
 - $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$ and

Vector Spaces

- Supports two operations (which do not exit a given vector space):
 - Associative and commutative addition operation u + v, with:
 - Identity o v + o = v ("zero" vector)
 - Inverse $\mathbf{V} + (-\mathbf{V}) = \mathbf{o}$
 - Scalar multiplication:
 - Distributive rule: $\alpha(\mathbf{U} + \mathbf{V}) = \alpha\mathbf{U} + \alpha\mathbf{V}$

$$(\alpha + \beta)\mathbf{U} = \alpha\mathbf{U} + \beta\mathbf{U}$$

Vector Spaces

A linear combination of vectors results in a new vector:

$$\mathbf{V} = \alpha_1 \mathbf{V}_1 + \alpha_2 \mathbf{V}_2 + \dots + \alpha_n \mathbf{V}_n$$

Example

Linear Hull = Subspace

- Given a set of vectors the linear hull is the set of all the vectors that can be created out of linear combinations of those vectors.
- This is called a subspace

Subspaces

Basis

If the only set of scalars such that

$$\alpha_{_1}\mathbf{v}_{_1}+\alpha_{_2}\mathbf{v}_{_2}+\ldots+\alpha_{_n}\mathbf{v}_{_n}=\mathbf{o}$$
 is
$$\alpha_{_1}=\alpha_{_2}=\ldots=\alpha_{_3}=\mathbf{o}$$

then we say the vectors are linearly independent

- The dimension of a space is the greatest number of linearly independent vectors possible in a vector set
- For a vector space of dimension n, any set of n linearly independent vectors form a

Example

Coordinates

- Given a basis for a vector space:
 - Each vector in the space is a unique linear combination of the basis vectors
 - The coordinates of a vector are the scalars from this linear combination
 - Best-known example: Cartesian coordinates
 - Note that a given vector v will have different coordinates for different bases

Dot Product

The dot product or, more generally, inner product of two vectors is a scalar:

$$\mathbf{v}_{1} \cdot \mathbf{v}_{2} = \langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \mathbf{x}_{1} \mathbf{x}_{2} + \mathbf{y}_{1} \mathbf{y}_{2} + \mathbf{z}_{1} \mathbf{z}_{2}$$
 (in 3D)

- Useful for many purposes
 - Computing the length of a vector: |v| = sqrt(v v)
 - Normalizing a vector, making it unit-length
 - Computing the angle between two vectors:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

- Checking two vectors for *orthogonality*
- Projecting one vector onto another $|\mathbf{v}| \cos(\theta) = \mathbf{u} \cdot \mathbf{v} |\mathbf{u}|^{-1}$

Dot Product App – Back-face culling

Determining "front" vs. "back" facing triangles

Orthonormal Basis

Example

- A basis is called orthonormal iff
- Each basis vector b_i has the length one
 ||b_i|| = <b_i, b_i> = 1
- Basis vectors are pair wise orthogonal
 ⟨b_i, b_k⟩ = o for all i≠k

Orthonormal Basis

• Coordinates for this kind of basis are simple to calculate $\mathbf{B} = (\mathbf{b}_1 \dots \mathbf{b}_n)$

$$(v_1)_B = \langle v, b_1 \rangle$$

. .

$$(v_n)_B = \langle v, b_n \rangle$$

Another advantage we will see later (matrix)

Example

Cross Product

The cross product or vector product of two vectors is a vector:

$$\mathbf{v}_{1} \times \mathbf{v}_{2} = \begin{bmatrix} y_{1} z_{2} - y_{2} z_{1} \\ -(x_{1} z_{2} - x_{2} z_{1}) \\ x_{1} y_{2} - x_{2} y_{1} \end{bmatrix}^{A \times B}$$

- Is orthogonal to both
- Direction dictated by right-hand rule
- Handy for finding surface orientation
 - Lighting
 - Visibility

Matrices

By convention, matrix element M_{rc} is located at row r and column c:

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} & \cdots & \mathbf{M}_{1n} \\ \mathbf{M}_{21} & \mathbf{M}_{22} & \cdots & \mathbf{M}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{M}_{m1} & \mathbf{M}_{m2} & \cdots & \mathbf{M}_{mn} \end{bmatrix}$$

By (OpenGL) convention, vectors are columns:

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix}$$

Linear Transformations

- A linear transformation:
 - Maps one vector to another
 - Preserves linear combinations
- Thus behavior of linear transformation is completely determined by what it does to a basis
- Linear combination of basis vectors

Example

Matrices and Linear Transformations

• Matrix-vector multiplication applies a linear transformation to a vector:

$$\mathbf{M} \bullet \mathbf{v} = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} & \mathbf{M}_{13} \\ \mathbf{M}_{21} & \mathbf{M}_{22} & \mathbf{M}_{23} \\ \mathbf{M}_{31} & \mathbf{M}_{32} & \mathbf{M}_{33} \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ \mathbf{v}_z \end{bmatrix}$$

- Recall how to do matrix multiplication
- Matrix multiplication as a linear combination of basis vectors

Matrices and Bases

- Matrix multiplication as a linear combination of basis vectors
- $B = [b_1, b_2, b_3]$

$$\begin{bmatrix} \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ \mathbf{v}_z \end{bmatrix} = \mathbf{B} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ \mathbf{v}_z \end{bmatrix}$$

Vectors and Matrices

- Vector algebra operations can be expressed in this matrix form
 - Dot product:

$$\mathbf{a} \bullet \mathbf{b} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \alpha$$

- Cross product:
 - Note: use right-hand rule!

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} c_x \\ c_y \\ c_z \end{bmatrix} = \mathbf{c}$$

$$\mathbf{a} \bullet \mathbf{c} = \mathbf{0}$$

$$\mathbf{b} \bullet \mathbf{c} = \mathbf{0}$$

Matrix Transformations

- A sequence or composition of linear transformations corresponds to the product of the corresponding matrices
 - Note: the matrices to the *right* affect vector first
 - Note: order of matrices matters!
- The identity matrix I has no effect in multiplications
- Some (not all) matrices have an inverse $M^{-1}M = I$ (AB) $^{-1} = B^{-1}A^{-1}$
- Inverse of orthonormalmatrix
 M^T M = I

Vectors And Points

- We commonly use vectors to represent:
 - Direction (i.e., orientation)
 - Points in space (i.e., location)
 - Displacements from point to point
- But we want points and directions to behave differently
 - Ex: To translate something means to move it without changing its orientation
 - Translation of a point = different point
 - Translation of a direction = same direction

Affine Spaces

- To be more rigorous, we need an explicit notion of position
- Affine spaces add a third element to vector spaces:
 points (P, Q, R, ...)
- Points support these operations
 - Point-point subtraction: $Q P = \mathbf{v}$
 - Result is a vector pointing from P to Q
 - Vector-point addition: $P + \mathbf{v} = Q$
 - Result is a new point
 - P + o = P
 - Note that the addition of two points is not defined

Affine Spaces

- Points, like vectors, can be expressed in coordinates
 - The definition uses an affine combination
 - Net effect is same: expressing a point in terms of a basis
- Thus the common practice of representing points as vectors with coordinates
- Be careful to avoid nonsensical operations
 - Point + point
 - Scalar * point

Example (center point)

Affine Lines: An Aside

Parametric representation of a line with a direction vector d and a point P₁ on the line:

$$P(\alpha) = P_{origin} + \alpha d$$

- Restricting $0 \le \alpha$ produces a *ray*
- Setting **d** to P Q and restricting $o \ge \alpha \ge 1$ produces a line segment between P and Q