Kernel Embedding for Particle Gibbs-Based Optimal Control

L. Hochschwarzer

Intermediate Report Master's Thesis

Supervisor: R. Lefringhausen

Chair of Information-oriented Control

Technical University of Munich

Motivation

...

Related Works

Particle Markov Chain [Lefringhausen+ 2024], [Andrieu+ 2010]

Kernel Embeddings: [Nemmour+ 2022]

Problem Statement - System

Given: Dataset $\mathbb{D} = \{ oldsymbol{u}_t, oldsymbol{y}_t \}_{t=-T:-1}$ from unknown system

$$egin{aligned} oldsymbol{x}_{t+1} &= oldsymbol{f}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{v}_{t}, & oldsymbol{v}_{t} \sim oldsymbol{\mathcal{V}}, \ oldsymbol{y}_{t} &= oldsymbol{g}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{w}_{t}, & oldsymbol{w}_{t} \sim oldsymbol{\mathcal{V}}, \end{aligned}$$

Assumptions

■ Known system structure

$$egin{aligned} oldsymbol{x}_{t+1} &= oldsymbol{f}_{oldsymbol{ heta}}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{v}_{t}, & oldsymbol{v}_{t} \sim oldsymbol{\mathcal{V}}_{oldsymbol{ heta}}, \ oldsymbol{y}_{t} &= oldsymbol{g}_{oldsymbol{ heta}}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{v}_{t}, & oldsymbol{w}_{t} \sim oldsymbol{\mathcal{V}}_{oldsymbol{ heta}}, \end{aligned}$$

■ Known priors $p(\theta)$ and $p(x_{-T})$

Problem Statement - Optimal Control Problem

Goal: Solve optimal control problem (OCP)

Stochastic OCP

$$\min_{oldsymbol{u}_{0:H}}\overline{J_H}$$

subject to:

$$P_0\left[J_H \le \overline{J_H}\right] \ge 1 - \alpha,$$

$$P_0[h_i(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H}) \le 0] \ge 1 - \alpha, \ \forall i = 1, ..., n_c$$

Idea: Reformulate stochastic OCP to deterministic OCP

Scenario Generation

Goal: Generate scenarios $oldsymbol{\delta}^{[1:N]}$ using the observations $\mathbb D$

Algorithm: Scenario Generation

For n = 1, ..., N:

- 1. Sample $\{\boldsymbol{\theta}, \boldsymbol{x}_{-T:-1}\}^{[n]}$ from $p(\boldsymbol{\theta}, \boldsymbol{x}_{-T:-1} \mid \mathbb{D})$ using PMCMC [Lefringhausen+ 2024].

 2. Sample $\boldsymbol{v}_t^{[n]}$ from $\boldsymbol{\mathcal{V}}_{\boldsymbol{\theta}^{[n]}}$ and $\boldsymbol{w}_t^{[n]}$ from $\boldsymbol{\mathcal{W}}_{\boldsymbol{\theta}^{[n]}}$ for t=-1,...,H3. Set $\boldsymbol{x}_0^{[n]} = \boldsymbol{f}_{\boldsymbol{\theta}^{[n]}} \left(\boldsymbol{x}_{-1}^{[n]}, \boldsymbol{u}_{-1}\right) + \boldsymbol{v}_{-1}^{[n]}$ Output: Scenarios $\boldsymbol{\delta}^{[1:N]} = \{\boldsymbol{\theta}, \boldsymbol{x}_0, \boldsymbol{v}_{0:H}, \boldsymbol{w}_{0:H}\}^{[1:N]}$

Maximum Mean Discrepancy (MMD) ambiguity sets

Goal: Reformulate chance-constraint problem with scenarios $oldsymbol{\delta}^{[1:N]}$

Expanded Chance-Constraints

$$\inf_{P \in \mathcal{P}} P[h(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H}) \leq 0] \geq 1 - \alpha.$$

 ${\mathcal P}$ is constructed with the samples ${m \delta}^{[1:N]}$ as

MMD ambiguity set

$$\mathcal{P} = \{P : \mathsf{MMD}(P, P_N) \le \varepsilon\}.$$

Constraint Reformulation

Goal: Reformulate chance-constraint problem with scenarios $oldsymbol{\delta}^{[1:N]}$

Feasible Region of chance constraint

$$Z_i := \left\{ oldsymbol{u}_{0:H} \in \mathcal{U}^{H+1} : \inf_{P \in \mathcal{P}} P\left[\tilde{h}_i(oldsymbol{u}_{0:H}, oldsymbol{\delta}) \leq 0
ight] \geq 1 - lpha
ight\}$$

 \Downarrow

Reformulated Feasible Region [Nemmour+ 2022]

$$Z_{i} := \left\{ \boldsymbol{u}_{0:H} \in \mathcal{U}^{H+1} : \begin{array}{l} g_{0} + \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{K}\boldsymbol{\gamma})_{n} + \varepsilon \sqrt{\boldsymbol{\gamma}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{\gamma}} \leq t\alpha \\ [\tilde{h}_{i}(\boldsymbol{u}_{0:H}, \boldsymbol{\delta}^{[n]}) + t]_{+} \leq g_{0} + (\boldsymbol{K}\boldsymbol{\gamma})_{n}, \ n = 0, ..., N \\ g_{0} \in \mathbb{R}, \boldsymbol{\gamma} \in \mathbb{R}^{N}, t \in \mathbb{R} \end{array} \right\}$$

Problem Formulation

Goal: Reformulate chance-constraint problem with $oldsymbol{\delta}^{[1:N]}$

$$\begin{split} \min_{\boldsymbol{u}_{0:H},\overline{J_H}} \overline{J_H} \\ \text{subject to: } \forall n \in \mathbb{N}_{\leq N}, \ \forall t \in \mathbb{N}_{\leq H}^0 \\ \boldsymbol{x}_{t+1}^{[n]} &= \boldsymbol{f}_{\boldsymbol{\theta}^{[n]}} \left(\boldsymbol{x}_t^{[n]}, \boldsymbol{u}_t \right) + \boldsymbol{v}_t^{[n]} \\ \boldsymbol{y}_t &= \boldsymbol{g}_{\boldsymbol{\theta}^{[n]}} \left(\boldsymbol{x}_t^{[n]}, \boldsymbol{u}_t \right) + \boldsymbol{w}_t^{[n]} \\ J_H(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}^{[n]}, \boldsymbol{y}_{0:H}^{[n]}) \leq \overline{J_H} \\ \boldsymbol{u}_{0:H} \in Z_i, \forall i = 1, ..., n_c \end{split} \right\} \text{ Reformulated Chance Constraints} \end{split}$$

Introduction

Simulation Setup (1/2)

Unknown system:

Introduction

$$egin{aligned} oldsymbol{f}(oldsymbol{x},u) &= egin{bmatrix} 0.8x_1 - 0.5x_2 \ 0.4x_1 + 0.5x_2 + u \end{bmatrix} \ oldsymbol{v}_t &\sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{Q} = egin{bmatrix} 0.03 & -0.004 \ -0.004 & 0.01 \end{bmatrix}
ight). \end{aligned}$$

- Known measurement model $g(\boldsymbol{x},u) = x_1, \ w_t \sim \mathcal{N}(0,0.1)$
- lacktriangle Known initial state for measurements $m{x}_{\text{-}T} \sim \mathcal{N}([2,2]^{\mathsf{T}}, m{I}_2)$
- Cost function $J_H = \sum_{t=0}^H u_t^2$
- Input constraints $|u| \le 10$
- Output constraints $y_{10:20} \le (-10)$ and $10 \le y_{30:40}$

Simulation Setup (2/2)

Particle Marcov chain Monte Carlo [Andrieu+ 2017]:

■ Known system structure: $f(x, u) = A[x_1, x_2, u]^{\mathsf{T}} + v_t, v_t \sim \mathcal{N}(\mathbf{0}, Q)$

■ Model parameters: $oldsymbol{ heta} = \{oldsymbol{A}, oldsymbol{Q}\}$

■ Priors: $Q \sim \mathcal{IW}(100 I_2, 10)$

 $\boldsymbol{A} \sim \mathcal{MN}(\boldsymbol{0}, \boldsymbol{Q}, 10\boldsymbol{I}_2)$

Kernel Embedding:

■ Gaussian kernels $k(x, x') = \exp\left(-\frac{1}{2x^2}||x - x'||_2^2\right)$ for all 4 random varibles

■ Bandwidth σ set via the median heuristic [Garreau+ 2018] and scaled with factors $[1.5, 5, 5, 1]^{\mathsf{T}}$

Kernel Embedding

■ Ambiguity set radius ε set via bootstrap construction ($B=1000, \beta=0.95$) [Nemmour+ 2022].

Optimal Control with Constrained Outputs (1/2)

Number of scenarios used for optimization: N=200

Scenario Approach

Kernel Approach ($\alpha = 0.1$)

Optimal Control with Constrained Outputs (2/2)

Number of scenarios used for optimization: N=200

Kernel Approach ($\alpha = 0.3$)

Successrate of Solution

Particle Gibbs

N = 2000: Number of Scenarios used to test $u_{0:H}$

Successrate does **not** converge to $(1-\alpha)$ Potential explaination:

Guarantee constraint is applied to each output constraint seperately

Computation Time

Computation time increases faster for the kernel approach

But: Kernel approach comes with ad-

justable risk factor α

Summary

. . .

Future Plans

- Use Kernel Embeddings on non-linear systems
- Parameter tuning of σ
- Risk factor for all constraints at once instead of individually

Kernel Embedding

References

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, A flexible state-space model for learning nonlinear dynamical systems. In: Automatica 80 (2017), pp. 189-199.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72.3 (2010), pp. 269-342.

Damien Garreau, Wittawat Jitkrittum and Motonobu Kanagawa, Large Sample Analysis of the Median Heuristic.

Robert Lefringhausen, Supitsana Srithasan, Armin Lederer and Sandra Hirche.

Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States.

In: European Control Conference (2024).

In: arXiv:1707.07269 (2018).

Yassine Nemmour, Heiner Kremer, Bernhard Schoelkopf and Jia-Jie Zhu.

Maximum Mean Discrepancy Distributionally Robust Nonlinear Chance-Constrained Optimization with Finite-Sample Guarantee. In: arXiv preprint arXiv:2204.11564 (2022).

