

Faculty of Engineering and Information Sciences

MATH 142,	Quiz 1,	Winter 2021,	Duration: 90 minutes	
Name:		,	ID Number:	
Time Allowed: 1 hour	30 minutes			

Total Number of Pages (incl. this page): 7

EXAM UNAUTHORISED ITEMS

Total Number of Questions: 6

Students bringing these items to the examination room shall be required to leave the items at the front of the room or outside the examination room. The University does not guarantee the safe-keeping of students' personal items during examinations. Students concerned about the safety of their valuable items should make alternative arrangements for their care.

- 1. Bags, including carry bags, backpacks, shoulder bags and briefcases
- 2. Any form of electronic device including but not limited to mobile phones, smart watches, laptops, iPads, MP3 players, handheld computers and electronic dictionaries,
- 3. Calculator cases and covers
- 4. blank paper
- 5. Any written material

DIRECTIONS TO CANDIDATES

- 1. Total marks: 40
- 2. All questions are compulsory.
- 3. Answer all questions on the given exam paper sheets.
- 4. Write your name and Id number on the papers provided for rough work.

(6pts) Problem 1.

Find the area enclosed by the graphs of

$$f(x) = x^3 - 2x^2$$
 and $g(x) = 2x^2 - 3x$.

Solution

Method 1

$$A = \int_{a}^{b} |f(x) - g(x)| dx = \int_{a}^{b} |(x^{3} - 2x^{2}) - (2x^{2} - 3x)| dx$$
$$= \int_{a}^{b} |x^{3} - 4x^{2} + 3x| dx.$$

To find a and b, we solve the equation

$$x^{3} - 2x^{2} = 2x^{2} - 3x \Leftrightarrow$$

$$x^{3} - 4x^{2} + 3x = 0 \Rightarrow x = 1 \text{ or } x = 0 \text{ or } x = 3.$$

$$a = 0 \text{ and } b = 3.$$

$$A = \int_{0}^{3} |x(x - 1)(x - 3)| dx \qquad (2pts)$$

$$A = \int_0^1 x (x - 1) (x - 3) dx - \int_1^3 x (x - 1) (x - 3) dx$$
$$= \frac{5}{12} - \left(-\frac{8}{3}\right) = \frac{37}{12} = 3.0833 \qquad (2pts)$$

Method 2 (by graphing)

$$A = \int_0^1 [f(x) - g(x)] dx + \int_1^3 [g(x) - f(x)] dx$$
$$= \int_0^1 (x^3 - 4x^2 + 3x) dx + \int_1^3 (-x^3 + 4x^2 - 3x) dx$$
$$= \frac{5}{12} + \frac{8}{3} = \frac{37}{12}$$

(6pts) Problem 2

Find the arclength of the function

$$f(x) = \frac{x^6 + 8}{16x^2}$$

from x = 2 to x = 3.

Solution

$$f(x) = \frac{x^6 + 8}{16x^2} = \frac{x^6}{16x^2} + \frac{8}{16x^2}$$

$$= \frac{x^4}{16} + \frac{1}{2x^2}$$

$$L = \int_2^3 \sqrt{1 + (f'(x))^2} dx$$

$$f'(x) = \frac{1}{4}x^3 - \frac{1}{x^3}$$

$$(f'(x))^2 = \left(\frac{1}{4}x^3 - \frac{1}{x^3}\right)^2 = \frac{1}{x^6} + \frac{1}{16}x^6 - \frac{1}{2}$$

$$1 + (f'(x))^2 = 1 + \frac{1}{x^6} + \frac{1}{16}x^6 - \frac{1}{2}$$

$$= \frac{1}{x^6} + \frac{1}{16}x^6 + \frac{1}{2}$$

$$= \left(\frac{1}{4}x^3 + \frac{1}{x^3}\right)^2. \qquad (3pts)$$

$$L = \int_2^3 \sqrt{1 + (f'(x))^2} dx = \int_2^3 \sqrt{\left(\frac{1}{4}x^3 + \frac{1}{x^3}\right)^2} dx$$

 $= \int_{2}^{3} \left(\frac{1}{4} x^{3} + \frac{1}{x^{3}} \right) dx = \frac{595}{144} = 4.1319.$

(3pts)

(6pts) Problem 3

Sketch the region bounded by $y = \sqrt{x}$, y = 0, and x = 9, and use the disc method to find the volume of the solid generated by revolving the region about the line x = 9.

Solution

$$V = \int_0^3 \pi (9 - y^2)^2 dy$$
$$= \frac{648}{5} \pi = 407.15.$$
 (4pts)

$$: \frac{648}{5}\pi = 407.15$$

(6pts) Problem 4

Sketch the region bounded by $y = x^3$, y = 1, and x = 0, and use the shell method to find the volume of the solid generated by revolving the region about the line y = 1.

Solution

(8pts) Problem 5

Use trigonometric substitution to evaluate the integral

$$\int \frac{x^2 dx}{\sqrt{4 - x^2}}.$$

Solution

Put

$$x = 2\sin\theta, \quad dx = 2\cos\theta d\theta$$

$$\int \frac{x^2 dx}{\sqrt{4 - x^2}} = \int \frac{(4\sin^2 \theta) 2\cos \theta d\theta}{2\cos \theta}$$

$$= \int (4\sin^2 \theta) d\theta$$

$$= 4 \int \frac{1 - \cos 2\theta}{2} d\theta$$

$$= 2 \int (1 - \cos 2\theta) d\theta$$

$$= 2\theta - \sin 2\theta + C$$

$$= 2\theta - 2\sin \theta \cos \theta + C$$
 (3pts)

$$\sin \theta = \frac{x}{2}, \quad \cos \theta = \frac{\sqrt{4 - x^2}}{2}, \quad \theta = \sin^{-1}\left(\frac{x}{2}\right)$$

$$\int \frac{x^2 dx}{\sqrt{4 - x^2}} = 2\theta - 2\sin\theta\cos\theta + C$$

$$= 2\sin^{-1}\left(\frac{x}{2}\right) - 2\left(\frac{x}{2}\right)\left(\frac{\sqrt{4 - x^2}}{2}\right) + C$$

$$= 2\sin^{-1}\left(\frac{x}{2}\right) - \frac{x\sqrt{4 - x^2}}{2} + C \qquad (3pts)$$

(8pts) Problem 6

Use partial fraction decomposition to evaluate the integrals

$$\int \frac{(2x^2 + 3x + 3) \, dx}{(x+1)^3}$$

Solution

The partial fraction decomposition is given by

$$\frac{2x^2 + 3x + 3}{(x+1)^3} = \frac{A_1}{x+1} + \frac{A_2}{(x+1)^2} + \frac{A_3}{(x+1)^3}$$

After solving, you get

$$A_1 = 2, \quad A_2 = -1 \text{ and } A_3 = 2$$
 (4pts)

$$\int \frac{(2x^2 + 3x + 3) dx}{(x+1)^3} = \int \left(\frac{2}{x+1} - \frac{1}{(x+1)^2} + \frac{2}{(x+1)^3}\right) dx$$
$$= 2\ln|x+1| + \frac{1}{x+1} - \frac{1}{(x+1)^2} + C.$$
 (2pts)