실전프로젝트 - 숲 가꾸기

쿠민은 산불로 황폐화 된 숲을 복원하기 위한 연구를 하고 있다. 그리고 최근 연구를 마친 새로운 종의 나무를 숲 복원에 사용하려고 한다. 상부 허가를 위해 숲 복원 가능성을 확인하기 위한 시뮬레이션 결과가 필요하다. 숲은 $n \times n$ 정사각 격자 형태로 간단하게 표현하며, 입력으로 새로운 종의 나무를 심는 위치와 숲의 지력을 수치화한 정보가 $n \times n$ 형태로 입력된다.

시뮬레이션 결과는 1년 단위로 계산되며, 그 규칙은 다음과 같다.

- 1. 각각의 나무는 본인이 속한 1 * 1 크기의 칸에 있는 지력을 흡수한다. 나무는 본인의 나이만큼 지력을 흡수하며, 같은 칸에 여러 개의 나무가 있는 경우 어린 나무부터 지력을 흡수한다. 지력을 흡수한 나무는 나이가 1 증가하며, 만약 양분이 부족하여 본인의 나이만큼 흡수하지 못한 경우 해당 나무는 즉시 죽는다.
- 2. 모든 나무가 지력을 흡수한 후 죽은 나무는 그 위치의 지력으로 변한다. 죽은 나무의 나이를 2로 나는 값만큼 지력으로 변하며, 편의를 위해 소숫점 아래는 버린다.
- 3. 이후 나무의 번식이 진행된다. 번식은 나이가 5의 배수인 나무만 진행되며, 인접한 8개의 칸에 나이가 1인 나무가 생긴다. 여기서 인접은 상하좌우와 대각선으로 인접한 8칸을 뜻하며, 격자 범위를 벗어난 곳에서는 번식할 수 없다.
- 4. 1~3까지 과정이 끝나면, 각 간에 k만큼 지력이 회복된다.

아래는 k=1일 때, 시뮬레이션 결과이다.

1-1

1-2		나무			지력					
					5	5	5	5	5	
	3				5	3	5	5	5	
			4		5	5	5	2	5	
				55	5	5	5	5	1	
					5	5	5	5	5	

1-4		나무			_			지력		
						6	6	6	6	6
	₩					6	4	6	6	6
			40	7		6	6	6	3	6
				55		6	6	6	6	2
						6	6	6	6	6

2-1		나무					지력		
					6	6	6	6	6
	4				6	1	6	6	6
			2	2	6	6	6	2	5
			2	*	6	6	6	5	2
			2	2	6	6	6	5	5

2-2		나무			지력					
					6	6	6	6	6	
	A				6	1	6	6	6	
			2	2	6	6	6	4	5	
			2		6	6	6	5	4	
			2	2	6	6	6	5	5	

나무			지력		
	6	6	6	6	6
	6	1	6	6	6
2 2	6	6	6	4	5
2	6	6	6	5	4
2 2	6	6	6	5	5

2-4		나무					지력		
					7	7	7	7	7
	4				7	2	7	7	7
			2	2	7	7	7	5	6
			N		7	7	7	6	5
			2	2	7	7	7	6	6

시뮬레이션 결과 2 사이클 후 숲에 남아있는 나무의 수는 6그루가 된다.

이때, 나무 정보, 지력 정보, 지력 회복 정보가 입력으로 주어질 때, p시간 후 남아있는 나무의 수를 출력 하는 프로그램을 작성하시오

입력

첫 번째 줄에는 테스트 케이스 개수를 나타내는 $t(2 \le t \le 10)$ 가 입력된다. 두 번째 줄부터는 각 테스트 케이스에 대한 입력이 주어진다.

각 테스트 케이스의 첫 번째 줄에는 총 격자의 크기 m과 나무의 수 c, 지력 회복 크기 k, 시뮬레이션 반복 횟수 $p(3 \le n \le 10, 1 \le m \le 100, 1 \le k \le 20, 1 \le p \le 500)$ 가 공백을 기준으로 순서대로 주어진다. 두 번째 줄부터 그다음 n개의 줄에는 지력에 대한 정보가 각 줄마다 n개씩 주어진다. 이때, 각 칸에 입력된 숫자는 지력의 크기를 나타낸다.

그다음 c개의 줄에는 격자 내 나무의 행과 열의 위치를 나타내는 두 정수 r, $c(0 \le r, c < n)$ 와 나무의 나이가 공백을 기준으로 순서대로 입력된다.

출력

출력의 첫 줄에 시뮬레이션 결과 남아있는 나무의 수를 출력한다.

입출력 예

입력	출력
2	6
5 3 1 2	165
5 5 5 5 5	
5 5 5 5 5	
5 5 5 5 5	
5 5 5 5 5	
5 5 5 5 5	
1 1 2	
2 3 3	
3 4 4	
4 2 12 430	
4 12 16 2	
5 12 7 5	
19 15 8 11	
12 2 5 10	
2 2 17	
3 1 2	