MTH5105 Differential and Integral Analysis 2009-2010

Midterm Test

Problem 1: (a) State the formula for the Taylor polynomial $T_{n,a}$ of degree n of a function f at a, and state the Lagrange form of the remainder term R_n . [10 marks]

Let $f(x) = 1/\sqrt{1+x}$.

- (b) Determine the Taylor polynomials $T_{2,0}$ and $T_{3,0}$ of degree 2 and 3, respectively, for f at a=0. [15 marks]
- (c) Using the Lagrange form of the remainder term, or otherwise, show that

$$T_{3.0}(x) < f(x) < T_{2.0}(x)$$
 for all $x > 0$.

[10 marks]

- Problem 2: (a) Give the definition of $f: \mathbb{R} \to \mathbb{R}$ being differentiable at a point $a \in \mathbb{R}$. [10 marks]
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ satisfy
 - (i) f(x) = f(x y)f(y) for all $x, y \in \mathbb{R}$, and
 - (ii) f(x) 1 = xg(x) with $\lim_{x \to 0} g(x) = 1$.

Show that f is differentiable and that f'(a) = f(a) for all $a \in \mathbb{R}$. [20 marks]

Problem 3: (a) State Rolle's Theorem. (b) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable with [15 marks]

$$f(0) = f(1) = f(2) = 0$$
.

Show that there exists a $c \in (0, 2)$ such that f''(c) = 0. [20 marks]