Devoir à la maison n° 1

À rendre le 12 septembre

Dans tout ce problème, on pourra au besoin utiliser sans preuve l'encadrement

$$2,7 < e < 2,8$$
.

Première partie.

Soit λ l'application de \mathbb{R} dans \mathbb{R} définie par

$$\lambda: x \mapsto -x^2 e^{-x}$$
.

- 1) Étudier λ .
- 2) Construire la courbe Γ représentant λ dans un plan muni d'un repère orthonormé.
- 3) L'étude des variations de λ fait apparaître trois intervalles D_1 , D_2 et D_3 sur lesquels λ est monotone, avec

$$\forall x_1 \in D_1, \ \forall x_2 \in D_2, \ \forall x_3 \in D_3, \ x_1 \leqslant x_2 \leqslant x_3.$$

Pour chaque $1 \leq i \leq 3$, on note $D'_i = \lambda(D_i)$ et λ_i la restriction de λ à D_i (au départ) et D'_i (à l'arrivée).

Pour chaque $1 \le i \le 3$, montrer que λ_i est bijective et étudier sa bijection réciproque $\mu_i = \lambda_i^{-1}$.

Deuxième partie.

Soit $\alpha \in \mathbb{R}$, on définit l'application f_{α} de \mathbb{R} dans \mathbb{R} par

$$f_{\alpha}: x \mapsto x^2 + \alpha e^x$$
.

On note C_{α} sa courbe représentative dans un plan muni d'un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$.

4) Démontrer que par tout point du plan il passe une et une seule courbe C_{α} .

- 5) Démontrer que ceux des nombres $\mu_1(\alpha)$, $\mu_2(\alpha)$ et $\mu_3(\alpha)$ qui existent pour une valeur donnée de α sont les abscisses des points communs à C_{α} et à la droite $(O\overrightarrow{\imath})$.
- 6) Soit $J = [-4e^{-2}, 0]$.
 - a) Montrer que $\mu_1(\alpha)$, $\mu_2(\alpha)$ et $\mu_3(\alpha)$ existent simultanément si et seulement si $\alpha \in J$.
 - b) Étudier les variations de f_{α} lorsque $\alpha \in J$ et esquisser C_{α} . Indication: on pourra dresser le tableau de variations de f'_{α} .
- 7) On pose pour tout $\alpha \in J$:

$$I(\alpha) = \int_{\mu_1(\alpha)}^{\mu_3(\alpha)} f_{\alpha}(x) dx.$$

a) Vérifier que pour tout $x \in \mathbb{R}$:

$$f'_{\alpha}(x) - f_{\alpha}(x) = 2x - x^2$$
.

- b) En déduire une expression de $I(\alpha)$ dépendant uniquement de $\mu_1(\alpha)$ et $\mu_3(\alpha)$.
- c) En déduire que, pour tout $\alpha \in J$,

$$I(\alpha) > \frac{1}{3}\mu_3^3(\alpha) - \mu_3^2(\alpha).$$

Quel est le signe de $I(\alpha)$ si $\mu_3(\alpha) = 3$?

- d) Donner une interprétation géométrique de $I(\alpha)$. Quel est le signe de $I(-4e^{-2})$?
- e) En utilisant cette interprétation, établir que I est une application strictement croissante.
- f) Combient d'éléments contient l'ensemble

$$\{ \alpha \in J \mid I(\alpha) = 0 \}$$
?

— FIN —