A radioactive source emits beta radiation and gamma radiation.	
<u> </u>	
(a) State two precautions that should be taken when using this source.	(2)
(b) The radiation emitted from a radioactive source can be investigated using the apparatus shown. The Geiger-Muller (GM) tube detects beta radiation and	
gamma radiation.	
GM tube \	
radioactive	
source	
The notemator displays the count note from all nodiction detected by the CM tyles	
The ratemeter displays the count rate from all radiation detected by the GM tube.	,
Explain why the background count rate should be measured.	(2)
(c) The corrected count rate C varies over time t according to the relationship	
$C = C_0^{} e^{-\lambda t}$	
where C_0 is the initial count rate and λ is the decay constant.	
Explain how a graph of $\ln C$ against t can be used to determine a value for λ .	
Explain now a graph of me against t can be used to determine a value for h.	(2)

(d) The source contained two radioactive isotopes, X and Y. The table below shows the corrected count rate as the isotopes decayed.

t/hours	C/s^{-1}	
0.00	633	
2.00	217	
4.00	167	
6.00	140	
8.00	126	
10.00	107	
12.00	98	

(i)	Plot a graph of $\ln C$ against t on the grid opposite.	Use the additional column in
	the table to record your processed data.	

(5)

(ii) Isotope X has a half-life of approximately 30 minutes.

Determine a value of λ , in hours⁻¹, for isotope Y.

(3)

$$\lambda = \dots hours^{-1}$$

(iii) Hence determine the half-life $t_{\frac{1}{2}}$ for isotope Y.

(2)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
|
 |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |

$$t_{1/2} = \dots$$

