Appendix A

Summary of Useful Formulas

Chapter 2

- dof = (sum of freedoms of bodies) (number of independent configuration constraints)
- Grübler's formula is an expression of the previous formula for mechanisms with N links (including ground) and J joints, where joint i has f_i degrees of freedom and m=3 for planar mechanisms or m=6 for spatial mechanisms:

$$dof = m(N - 1 - J) + \sum_{i=1}^{J} f_i.$$

• Pfaffian velocity constraints take the form $A(\theta)\dot{\theta} = 0$.

Rotations	Rigid-Body Motions
$R \in SO(3): 3 \times 3 \text{ matrices}$	$T \in SE(3)$: 4×4 matrices
$R^{\rm T}R=I, \det R=1$	$T = \left[egin{array}{cc} R & p \ 0 & 1 \end{array} ight],$
	where $R \in SO(3), p \in \mathbb{R}^3$
$R^{-1} = R^{\mathrm{T}}$	$T^{-1} = \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{array} \right]$
change of coordinate frame: $R_{ab}R_{bc} = R_{ac}, \ R_{ab}p_b = p_a$	change of coordinate frame: $T_{ab}T_{bc} = T_{ac}, \ T_{ab}p_b = p_a$
rotating a frame {b}:	displacing a frame {b}:
$R = \mathrm{Rot}(\hat{\omega}, \theta)$	$T = \left[egin{array}{cc} \operatorname{Rot}(\hat{\omega}, heta) & p \ 0 & 1 \end{array} ight]$
$R_{sb'}=RR_{sb}$: rotate $ heta$ about $\hat{\omega}_s=\hat{\omega}$ $R_{sb''}=R_{sb}R$: rotate $ heta$ about $\hat{\omega}_b=\hat{\omega}$	$T_{sb'} = TT_{sb}$: rotate θ about $\hat{\omega}_s = \hat{\omega}$ (moves {b} origin), translate p in {s} $T_{sb''} = T_{sb}T$: translate p in {b}, rotate θ about $\hat{\omega}$ in new body frame
unit rotation axis is $\hat{\omega} \in \mathbb{R}^3$, where $\ \hat{\omega}\ = 1$	"unit" screw axis is $S = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$, where either (i) $\ \omega\ = 1$ or (ii) $\omega = 0$ and $\ v\ = 1$
	for a screw axis $\{q, \hat{s}, h\}$ with finite h , $\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$
angular velocity is $\omega = \hat{\omega}\dot{\theta}$	twist is $\mathcal{V}=\mathcal{S}\dot{ heta}$
for any 3-vector, e.g., $\omega \in \mathbb{R}^3$,	for $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$,
$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3)$ identities, $\omega, x \in \mathbb{R}^3, R \in SO(3)$: $[\omega] = -[\omega]^{\mathrm{T}}, [\omega]x = -[x]\omega,$	$[\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3)$ (the pair (ω, v) can be a twist \mathcal{V} or a "unit" screw axis \mathcal{S} ,
$[\omega] = [\omega], [\omega]x - [x]\omega,$ $[\omega][x] = ([x][\omega])^{\mathrm{T}}, R[\omega]R^{\mathrm{T}} = [R\omega]$	depending on the context)

continued...

Rotations (cont.)	Rigid-Body Motions (cont.)
$RR^{-1} = [\omega_s], R^{-1}\dot{R} = [\omega_b]$	$\dot{T}T^{-1} = [\mathcal{V}_s], \ T^{-1}\dot{T} = [\mathcal{V}_b]$
	$[\mathrm{Ad}_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ identities: $[\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T^{-1}}],$ $[\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}] = [\mathrm{Ad}_{T_1T_2}]$
change of coordinate frame:	change of coordinate frame:
$\hat{\omega}_a = R_{ab}\hat{\omega}_b, \ \omega_a = R_{ab}\omega_b$	$\mathcal{S}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{S}_b, \ \mathcal{V}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{V}_b$
exp coords for $R \in SO(3)$: $\hat{\omega}\theta \in \mathbb{R}^3$	exp coords for $T \in SE(3)$: $S\theta \in \mathbb{R}^6$
$\exp: [\hat{\omega}] \theta \in so(3) \to R \in SO(3)$	$\exp: [\mathcal{S}]\theta \in se(3) \to T \in SE(3)$
$R = \operatorname{Rot}(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} =$	$T = e^{[\mathcal{S}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & * \\ 0 & 1 \end{bmatrix}$
$I + \sin \theta [\hat{\omega}] + (1 - \cos \theta) [\hat{\omega}]^2$	where $* =$
	$(I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v$
$\log: R \in SO(3) \to [\hat{\omega}]\theta \in so(3)$	$\log: T \in SE(3) \to [\mathcal{S}]\theta \in se(3)$
algorithm in Section 3.2.3.3	algorithm in Section 3.3.3.2
moment change of coord frame:	wrench change of coord frame:
$m_a = R_{ab} m_b$	$\mathcal{F}_a = (m_a, f_a) = [\mathrm{Ad}_{T_{ba}}]^{\mathrm{T}} \mathcal{F}_b$

• The product of exponentials formula for an open-chain manipulator is

space frame:
$$T = e^{[S_1]\theta_1} \dots e^{[S_n]\theta_n} M$$
,
body frame: $T = Me^{[B_1]\theta_1} \dots e^{[B_n]\theta_n}$

where M is the frame of the end-effector in the space frame when the manipulator is at its home position, S_i is the spatial twist when joint i rotates (or translates) at unit speed while all other joints are at their zero position, and B_i is the body twist of the end-effector frame when joint i moves at unit speed and all other joints are at their zero position.

Chapter 5

• For a manipulator end-effector configuration written in coordinates x, the forward kinematics is $x = f(\theta)$, and the differential kinematics is given by $\dot{x} = \frac{\partial f}{\partial \theta} \dot{\theta} = J(\theta) \dot{\theta}$, where $J(\theta)$ is the manipulator Jacobian.

• Written using twists, the relation is $\mathcal{V}_* = J_*(\theta)\dot{\theta}$, where * is either s (space Jacobian) or b (body Jacobian). The columns J_{si} , $i = 2 \dots n$, of the space Jacobian are

$$J_{si}(\theta) = [\operatorname{Ad}_{e^{[S_1]\theta_1} \dots e^{[S_{i-1}]\theta_{i-1}}}] S_i,$$

with $J_{s1} = S_1$, and the columns J_{bi} , $i = 1 \dots n - 1$, of the body Jacobian are

$$J_{bi}(\theta) = [\operatorname{Ad}_{e^{-[\mathcal{B}_n]\theta_n} \dots e^{-[\mathcal{B}_{i+1}]\theta_{i+1}}}] \mathcal{B}_i,$$

with $J_{bn} = \mathcal{B}_n$. The spatial twist caused by joint i is only altered by the configurations of joints inboard from joint i (between the joint and the space frame), while the body twist caused by joint i is only altered by the configurations of joints outboard from joint i (between the joint and the body frame).

The two Jacobians are related by

$$J_b(\theta) = [\mathrm{Ad}_{T_{bs}(\theta)}] J_s(\theta), \quad J_s(\theta) = [\mathrm{Ad}_{T_{sb}(\theta)}] J_b(\theta).$$

• Generalized forces at the joints τ are related to wrenches expressed in the space or end-effector body frame by

$$\tau = J_*^{\mathrm{T}}(\theta) \mathcal{F}_*,$$

where * is s (space frame) or b (body frame).

• The manipulability ellipsoid is defined by

$$\mathcal{V}^{\mathrm{T}}(JJ^{\mathrm{T}})^{-1}\mathcal{V} = 1.$$

where \mathcal{V} may be a set of task-space coordinate velocities \dot{q} , a spatial or body twist, or the angular or linear components of a twist, and J is the appropriate Jacobian satisfying $\mathcal{V} = J(\theta)\dot{\theta}$. The principal axes of the manipulability ellipsoid are aligned with the eigenvectors of JJ^{T} , and the semi-axis lengths are the square roots of the corresponding eigenvalues.

• The force ellipsoid is defined by

$$\mathcal{F}^{\mathrm{T}}JJ^{\mathrm{T}}\mathcal{F} = 1,$$

where J is a Jacobian (possibly in terms of a minimum set of task-space coordinates or in terms of the spatial or body wrench) and \mathcal{F} is an end-effector force or wrench satisfying $\tau = J^{\mathrm{T}}\mathcal{F}$. The principal axes of the manipulability ellipsoid are aligned with the eigenvectors of $(JJ^{\mathrm{T}})^{-1}$, and the semi-axis lengths are the square roots of the corresponding eigenvalues.

- The law of cosines states that $c^2 = a^2 + b^2 2ab\cos\gamma$, where a, b, and c are the lengths of the sides of a triangle and γ is the interior angle opposite side c. This formula is often useful to solve inverse kinematics problems.
- Numerical methods are used to solve the inverse kinematics for systems for which closed-form solutions do not exist. A Newton–Raphson method using the Jacobian pseudoinverse $J^{\dagger}(\theta)$ is outlined below.
 - (a) **Initialization**: Given T_{sd} and an initial guess $\theta^0 \in \mathbb{R}^n$. Set i = 0.
 - (b) Set $[\mathcal{V}_b] = \log (T_{sb}^{-1}(\theta^i)T_{sd})$. While $\|\omega_b\| > \epsilon_\omega$ or $\|v_b\| > \epsilon_v$ for small $\epsilon_\omega, \epsilon_v$:
 - Set $\theta^{i+1} = \theta^i + J_b^{\dagger}(\theta^i)\mathcal{V}_b$.
 - Increment i.

If J is square and full rank, then $J^{\dagger} = J^{-1}$. If $J \in \mathbb{R}^{m \times n}$ is full rank (rank m for n > m or rank n for n < m), that is, the robot is not at a singularity, the pseudoinverse can be calculated as follows:

$$\begin{split} J^\dagger &= J^{\rm T} (JJ^{\rm T})^{-1} &\quad \text{if } n > m \text{ (called a right inverse since } JJ^\dagger = I) \\ J^\dagger &= (J^{\rm T}J)^{-1}J^{\rm T} &\quad \text{if } n < m \text{ (called a left inverse since } J^\dagger J = I). \end{split}$$

Chapter 8

- The Lagrangian is the kinetic minus the potential energy, $\mathcal{L}(\theta, \dot{\theta}) = \mathcal{K}(\theta, \dot{\theta}) \mathcal{P}(\theta)$.
- The Euler-Lagrange equations are

$$\tau = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} - \frac{\partial \mathcal{L}}{\partial \theta}.$$

• The equations of motion of a robot can be written in the following equivalent forms:

$$\begin{split} \tau &= M(\theta)\ddot{\theta} + h(\theta,\dot{\theta}) \\ &= M(\theta)\ddot{\theta} + c(\theta,\dot{\theta}) + g(\theta) \\ &= M(\theta)\ddot{\theta} + \dot{\theta}^{\mathrm{T}}\Gamma(\theta)\dot{\theta} + g(\theta) \\ &= M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta), \end{split}$$

where $M(\theta)$ is the $n \times n$ symmetric positive-definite mass matrix, $h(\theta, \dot{\theta})$ is the sum of generalized forces due to gravity and quadratic velocity terms, $c(\theta, \dot{\theta})$ are quadratic velocity forces, $g(\theta)$ are gravitational forces, $\Gamma(\theta)$ is an $n \times n \times n$ matrix of Christoffel symbols of the first kind obtained from partial derivatives of $M(\theta)$ with respect to θ , and $C(\theta, \dot{\theta})$ is the $n \times n$ Coriolis matrix whose (i, j)th entry is given by

$$c_{ij}(\theta, \dot{\theta}) = \sum_{k=1}^{n} \Gamma_{ijk}(\theta) \dot{\theta}_{k}.$$

If the end-effector of the robot is applying a wrench \mathcal{F}_{tip} to the environment, the term $J^{\text{T}}(\theta)\mathcal{F}_{\text{tip}}$ should be added to the right-hand side of the robot's dynamic equations.

• The symmetric positive-definite rotational inertia matrix of a rigid body is

$$\mathcal{I}_b = \left[egin{array}{ccc} \mathcal{I}_{xx} & \mathcal{I}_{xy} & \mathcal{I}_{xz} \ \mathcal{I}_{xy} & \mathcal{I}_{yy} & \mathcal{I}_{yz} \ \mathcal{I}_{xz} & \mathcal{I}_{uz} & \mathcal{I}_{zz} \ \end{array}
ight],$$

where

$$\begin{split} \mathcal{I}_{xx} &= \int_{\mathcal{B}} (y^2 + z^2) \rho(x,y,z) dV, & \mathcal{I}_{yy} &= \int_{\mathcal{B}} (x^2 + z^2) \rho(x,y,z) dV, \\ \mathcal{I}_{zz} &= \int_{\mathcal{B}} (x^2 + y^2) \rho(x,y,z) dV, & \mathcal{I}_{xy} &= -\int_{\mathcal{B}} xy \rho(x,y,z) dV, \\ \mathcal{I}_{xz} &= -\int_{\mathcal{B}} xz \rho(x,y,z) dV, & \mathcal{I}_{yz} &= -\int_{\mathcal{B}} yz \rho(x,y,z) dV, \end{split}$$

 $\mathcal B$ is the body, dV is a differential volume element, and $\rho(x,y,z)$ is the density function.

• If \mathcal{I}_b is defined in a frame {b} at the center of mass then \mathcal{I}_q , the inertia in a frame {q} aligned with {b}, but displaced from the origin of {b} by $q \in \mathbb{R}^3$ in {b} coordinates, is

$$\mathcal{I}_q = \mathcal{I}_b + \mathfrak{m}(q^{\mathrm{T}}qI - qq^{\mathrm{T}})$$

by Steiner's theorem.

• The spatial inertia matrix \mathcal{G}_b expressed in a frame $\{b\}$ at the center of mass is defined as the 6×6 matrix

$$\mathcal{G}_b = \left[\begin{array}{cc} \mathcal{I}_b & 0 \\ 0 & \mathfrak{m}I \end{array} \right].$$

In a frame $\{a\}$ at a configuration T_{ba} relative to $\{b\}$, the spatial inertia matrix is

$$\mathcal{G}_a = [\mathrm{Ad}_{T_{ba}}]^{\mathrm{T}} \mathcal{G}_b[\mathrm{Ad}_{T_{ba}}].$$

• The Lie bracket of two twists V_1 and V_2 is

$$\mathrm{ad}_{\mathcal{V}_1}(\mathcal{V}_2) = [\mathrm{ad}_{\mathcal{V}_1}]\mathcal{V}_2,$$

where

$$[\mathrm{ad}_{\mathcal{V}}] = \left[\begin{array}{cc} [\omega] & 0 \\ [v] & [\omega] \end{array} \right] \in \mathbb{R}^{6 \times 6}.$$

• The twist-wrench formulation of the rigid-body dynamics of a single rigid body is

$$\mathcal{F}_b = \mathcal{G}_b \dot{\mathcal{V}}_b - [\mathrm{ad}_{\mathcal{V}_b}]^{\mathrm{T}} \mathcal{G}_b \mathcal{V}_b.$$

The equations have the same form if \mathcal{F} , \mathcal{V} , and \mathcal{G} are expressed in the same frame, regardless of the frame.

- The kinetic energy of a rigid body is $\frac{1}{2}\mathcal{V}_b^{\mathrm{T}}\mathcal{G}_b\mathcal{V}_b$, and the kinetic energy of an open-chain robot is $\frac{1}{2}\dot{\theta}^{\mathrm{T}}M(\theta)\dot{\theta}$.
- The forward-backward Newton-Euler inverse dynamics algorithm is the following:

Initialization: Attach a frame $\{0\}$ to the base, frames $\{1\}$ to $\{n\}$ to the centers of mass of links $\{1\}$ to $\{n\}$, and a frame $\{n+1\}$ at the end-effector, fixed in the frame $\{n\}$. Define $M_{i,i-1}$ to be the configuration of $\{i-1\}$ in $\{i\}$ when $\theta_i = 0$. Let \mathcal{A}_i be the screw axis of joint i expressed in $\{i\}$, and \mathcal{G}_i be the 6×6 spatial inertia matrix of link i. Define \mathcal{V}_0 to be the twist of the base frame $\{0\}$ expressed in base-frame coordinates. (This quantity is typically zero.) Let $\mathfrak{g} \in \mathbb{R}^3$ be the gravity vector expressed in base-frame- $\{0\}$ coordinates, and define $\dot{\mathcal{V}}_0 = (0, -\mathfrak{g})$. (Gravity is treated as an acceleration of the base in the opposite direction.) Define $\mathcal{F}_{n+1} = \mathcal{F}_{\text{tip}} = (m_{\text{tip}}, f_{\text{tip}})$ to be the wrench applied to the environment by the end-effector expressed in the end-effector frame $\{n+1\}$.

Forward iterations: Given $\theta, \dot{\theta}, \ddot{\theta}$, for i = 1 to n do

$$\begin{split} T_{i,i-1} &= e^{-[\mathcal{A}_i]\theta_i} M_{i,i-1}, \\ \mathcal{V}_i &= \operatorname{Ad}_{T_{i,i-1}}(\mathcal{V}_{i-1}) + \mathcal{A}_i \dot{\theta}_i, \\ \dot{\mathcal{V}}_i &= \operatorname{Ad}_{T_{i,i-1}}(\dot{\mathcal{V}}_{i-1}) + \operatorname{ad}_{\mathcal{V}_i}(\mathcal{A}_i) \dot{\theta}_i + \mathcal{A}_i \ddot{\theta}_i. \end{split}$$

Backward iterations: For i = n to 1 do

$$\mathcal{F}_{i} = \operatorname{Ad}_{T_{i+1,i}}^{T}(\mathcal{F}_{i+1}) + \mathcal{G}_{i}\dot{\mathcal{V}}_{i} - \operatorname{ad}_{\mathcal{V}_{i}}^{T}(\mathcal{G}_{i}\mathcal{V}_{i}),
\tau_{i} = \mathcal{F}_{i}^{T}\mathcal{A}_{i}.$$

• Let $J_{ib}(\theta)$ to be the Jacobian relating $\dot{\theta}$ to the body twist V_i in link *i*'s center-of-mass frame $\{i\}$. Then the mass matrix $M(\theta)$ of the manipulator can be expressed as

$$M(\theta) = \sum_{i=1}^{n} J_{ib}^{\mathrm{T}}(\theta) \mathcal{G}_{i} J_{ib}(\theta).$$

• The robot's dynamics $M(\theta)\ddot{\theta} + h(\theta,\dot{\theta})$ can be expressed in the task space as

$$\mathcal{F} = \Lambda(\theta)\dot{\mathcal{V}} + \eta(\theta, \mathcal{V}),$$

where \mathcal{F} is the wrench applied to the end-effector, \mathcal{V} is the twist of the end-effector, and \mathcal{F} , \mathcal{V} , and the Jacobian $J(\theta)$ are all defined in the same frame. The task-space mass matrix $\Lambda(\theta)$ and gravity and quadratic velocity forces $\eta(\theta, \mathcal{V})$ are

$$\begin{split} & \Lambda(\theta) &= J^{-\mathrm{T}} M(\theta) J^{-1}, \\ & \eta(\theta, \mathcal{V}) &= J^{-\mathrm{T}} h(\theta, J^{-1} \mathcal{V}) - \Lambda(\theta) \dot{J} J^{-1} \mathcal{V}, \end{split}$$

where $J^{-T} = (J^{-1})^{T}$.

• Define two $n \times n$ projection matrices of rank n - k

$$\begin{array}{lcl} P(\theta) & = & I - A^{\mathrm{T}} (AM^{-1}A^{\mathrm{T}})^{-1}AM^{-1}, \\ P_{\ddot{\theta}}(\theta) & = & M^{-1}PM = I - M^{-1}A^{\mathrm{T}} (AM^{-1}A^{\mathrm{T}})^{-1}A \end{array}$$

corresponding to the k Pfaffian constraints acting on the robot, $A(\theta)\dot{\theta} = 0$, $A \in \mathbb{R}^{k \times n}$. Then the n + k constrained equations of motion

$$\begin{aligned} \tau &=& M(\theta) \ddot{\theta} + h(\theta, \dot{\theta}) + A^{\mathrm{T}}(\theta) \lambda, \\ A(\theta) \dot{\theta} &=& 0 \end{aligned}$$

can be reduced to the following equivalent forms by eliminating the Lagrange multipliers λ :

$$P\tau = P(M\ddot{\theta} + h),$$

$$P_{\ddot{\theta}}\ddot{\theta} = P_{\ddot{\theta}}M^{-1}(\tau - h).$$

The matrix P projects away joint force—torque components that act on the constraints without doing work on the robot, and the matrix $P_{\ddot{\theta}}$ projects away acceleration components that do not satisfy the constraints.

- A straight-line path in joint space is given by $\theta(s) = \theta_{\text{start}} + s(\theta_{\text{end}} \theta_{\text{start}})$ as s goes from 0 to 1.
- A constant-screw-axis motion of the end-effector from $X_{\text{start}} \in SE(3)$ to X_{end} is $X(s) = X_{\text{start}} \exp(\log(X_{\text{start}}^{-1}X_{\text{end}})s)$ as s goes from 0 to 1.
- The path-constrained dynamics of a robot can be written

$$m(s)\ddot{s} + c(s)\dot{s}^2 + g(s) = \tau \in \mathbb{R}^n$$

as s goes from 0 to 1.

Chapter 13

• The Lie bracket of two vector fields g_1 and g_2 is the vector field

$$[g_1, g_2] = \left(\frac{\partial g_2}{\partial q}g_1 - \frac{\partial g_1}{\partial q}g_2\right).$$