Contents

1	\mathbf{Pre}	liminaries	5
	1.1	Notation	5
	1.2	Matrix Operations	6
	1.3	Basic matrix decomposition	8
	1.4	Determinants	10
	1.5	Sparse matrices	11
	1.0	1.5.1 Storage schemes	11
		1.0.1 Storage schemes	11
2	Iter	rative methods for linear systems of equations	15
	2.1	Why not use the direct methods?	15
	2.2	Linear iterative methods	17
		2.2.1 Definition	17
		2.2.2 Jacobi method	20
		2.2.3 Gauss-Seidel method	21
		2.2.4 Convergence of Jacobi and Gauss-Seidel methods	22
		2.2.5 Stationary Richardson method	24
	2.3	Stopping Criteria	27
	2.4	Preconditioning techniques	29
		2.4.1 Preconditioned Richardson method	30
	2.5	Gradient method	31
	2.6	Conjugate Gradient method	32
	2.7	Krylov-space	35
		2.7.1 BiConjugate Gradient (BiCG) and BiCGSTAB method .	37
		2.7.2 Generalized Minimum Residual (GMRES) method	39
	~ .		
3		ving large scale eigenvalue problems	41
	3.1	Eigenvalue problems	41
	3.2	Power method	43
		3.2.1 Deflation method	45
	3.3	Inverse power method	46
		3.3.1 Inverse power method with shift	47
	3.4	QR Factorization	48
		3.4.1 Schur decomposition applied to QR algorithm	51
		3.4.2 Hessenberg applied to QR algorithm	54
	3.5	Lanczos method	56
4	N	merical methods for overdetermined linear systems and ${ m SVD}$	50
4		Overdetermined systems and Least Squares	
	4.2	Singular Value Decomposition (SVD)	61
	4.2	Singular value Decomposition (SVD)	01
5	Mu	ltigrid methods	64
	5.1	Idea of MG methods	64
	5.2	How it works	65
		5.2.1 Coarse Grids	66
		5.2.2 Correction	69
		5.2.3 Interpolation Operator	70
		5.2.4 Restriction Operator	74
		5 2 5 Two-Grid Scheme	76

	5.2.6 V-Cycle Scheme	
6	Domain Decomposition Methods 6.1 Introduction	86 86
In	87	

6 Domain Decomposition Methods

6.1 Introduction

Domain Decomposition Methods (DDM) are numerical techniques used to solve large-scale computational problems by breaking them into smaller, more manageable subproblems. These methods are essential in scientific computing, engineering simulations, and various other fields that require solving extensive linear systems or partial differential equations (PDEs).

? What Are Domain Decomposition Methods?

DDM involves dividing a large **computational domain into smaller subdomains**. These subdomains are then **solved independently**, often **in parallel**, and their **solutions are combined to form the overall solution to the original problem**. This approach is particularly useful for problems that are too large to be solved as a single system due to computational limitations.

▲ Importance of Domain Decomposition Methods

- 1. Parallelism: By solving subdomains in parallel, DDM significantly reduces the computation time, making it **feasible to tackle massive problems** that would otherwise be intractable.
- Scalability: These methods can handle extremely large problems, ensuring that computational resources are used efficiently, and allowing for the solution of problems on supercomputers or distributed computing systems.
- 3. **Modularity**: Breaking down a complex problem into smaller subproblems makes it **easier to manage**, **understand**, and **solve**. This modularity also facilitates debugging and improving algorithms.
- 4. Flexibility: DDM can be applied to various types of problems across different disciplines, including fluid dynamics, structural mechanics, and electromagnetic simulations. This versatility makes them a powerful tool in the computational scientist's toolkit.
- 5. **Improved Convergence**: With appropriate preconditioners and iterative methods, DDM can enhance the convergence rates of solving systems, leading to **faster and more accurate solutions**.