Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра физики

Лабораторная работа №2м.3 Отчёт

«ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЁРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ»

Выполнил: студент группы 121701 Липский Ростислав Владимирович

Проверил:

Родин Сергей Васильевич

1. Цель работы

- 1) Изучение динамики вращательного движения тел.
- 2) Определение моментов инерции тела относительно различных осей методом крутильных колебаний.
- 3) Измерить модуль сдвига проволоки.

2. Средства измерения

- 1) Линейка (погрешность 0,5 мм)
- 2) Штангенциркуль (погрешность 0,1 мм)
- 3) Секундомер (погрешность 0,001 с)

3. Теоретическое введение

1) Моментом инерции м. т. относительно некоторой оси называется величина, равная произведению массы этой точки на квадрат расстояния от неё до оси. Момент инерции тела — величина аддитивная.

$$I = mr^2$$

2) Теорема Штейнера

Если известен момент инерции тела относительно его центра масс, то вычислить момент инерции тела относительно любой другой оси можно по формуле:

$$I = I_0 + ma$$

 Γ де a — расстояние между параллельными осями, I_0 — момент инерции тела относительно центра масс.

- 3) Кручение вид деформации, при котором происходит взаимный поворот поперечных сечений проволоки под действием внешних сил с отличным от нуля моментом сил относительно его оси.
- 4) Модуль сдвига коэффициент, прямо пропорциональный тангенциальному напряжению и обратно пропорциональный углу поворота. Коэффициент зависит только от свойств материала. Он равен такому тангенциальному напряжению, при котором предел упругих деформаций не будет превзойдён, а угол сдвига окажется равным 45°.

Установка:

- 1) рамка
- 2) подвес
- 3) тело

Рисунок 1. Установка

4. Формулы

$$I_{T} = \frac{mD^{2}(t_{PT}^{2} - t_{P}^{2})}{8(t_{P\Im}^{2} - t_{P}^{2})}$$
$$G = \frac{16\pi lmD^{2}n^{2}}{d^{4}(t_{P\Im}^{2} - t_{P}^{2})}$$
$$\Delta I = \varepsilon I$$

$$\varepsilon = \left| \frac{1}{\overline{m}} \right| \Delta m + \left| \frac{2}{\overline{D}} \right| \Delta D + \left| \frac{2t_{\mathrm{T}}}{\overline{t_{\mathrm{PT}}^2 - t_{\mathrm{P}}^2}} \right| \Delta t_{\mathrm{T}} + \left| \frac{-2t_{\mathrm{P}}}{\overline{t_{\mathrm{PT}}^2 - t_{\mathrm{P}}^2}} + \frac{2t_{\mathrm{p}}}{\overline{t_{\mathrm{P}9}^2 - t_{\mathrm{P}}^2}} \right| \Delta t_{\mathrm{P}} + \left| \frac{-2t_{\mathrm{P9}}}{\overline{t_{\mathrm{P9}}^2 - t_{\mathrm{P}}^2}} \right| \Delta t_{\mathrm{P9}}$$

5. Таблицы

Таблица №1

	m, кг	Δm, кг	D, м	ΔD, M	$egin{array}{c} t_{ m P} \; , \ { m c} \end{array}$	$\begin{bmatrix} \Delta t_{ m P} \; , \ { m c} \end{bmatrix}$	t _{РЭ,} ,	$\Delta t_{ m P3,}, \ c$	$t_{ m PT,}, \ c$	$egin{array}{c} \Delta & & & \\ t_{ ext{PT,}}, & & & \\ c & & & \end{array}$	I_T , к $\Gamma \cdot \text{M}^2$	ΔI_T , к $\Gamma \cdot M^2$	ε, %
1													
2													
3													
Cp.													
1													
2													
3		1											
Cp.													

$$I_{T1} =$$

Таблица №2

	l, м	Δl, M	m, кг	Δm, кг	D, м	ΔD, _M	d, м	Δd, M	t _{РЭ} , с	$\Delta t_{ m P3}$,	$egin{array}{c} t_{ m P} \; , \ { m c} \end{array}$	$\Delta t_{ m P}$, c	G, Па	ΔG, Πa	n	ε
1																
2												,				
3												•				
Cp.																

6. Вывод

В ходе лабораторной работы мы изучили динамику вращательного движения тел. Определили момент инерции тела относительно различных осей методом крутильных колебаний. Измерили модуль сдвига проволоки.