18.100B - Problem Set 10

Rishad Rahman

- 7. (a) $cm_c \leq \int_0^c f(x)dx \leq cM_c$ where m_c and M_c is the inf and sup on [0,c]. This means $cm_c \leq \int_0^1 f(x)dx \int_c^1 f(x)dx \leq cM_c \ \forall c$. Taking $c \to 0$ gives $\int_0^1 f(x)dx \lim_{c \to 0} \int_c^1 f(x)dx = 0$
 - (b) $f(x) = (-1)^{\lfloor \frac{1}{x} \rfloor + 1} \lfloor \frac{1}{x} \rfloor$ for $x \in (0,1]$. It is not difficult to see that if $\frac{1}{n+1} \leq c < \frac{1}{n}$ then $\int_{c}^{1} f(x) dx = \frac{1}{n} c + \sum_{k=1}^{n} (-1)^{k+1} k \left(\frac{1}{k} \frac{1}{k+1} \right)$, by partitioning [c,1] with the integer reciprocals in the interval. Note as $c \to 0$, $n \to \infty$ so $\lim_{c \to 0} \int_{c}^{1} f(x) dx = \sum_{k=1}^{\infty} (-1)^{k+1} k \left(\frac{1}{k} \frac{1}{k+1} \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k+1}$ which converges by the alternating series test but does not converge absolutely, which is what happens when we integrate |f|, since then it would be a p-series with p = 1.
- 8. Suppose $\sum_{n=1}^{\infty} f(n)$ converges. Partition [1,b] with $x_n=n$ and so that $x_k=\lfloor b \rfloor$. Note $M_n=f(n)$ since f is monotonically decreasing. Then $\int_1^b f(x)dx \leq M_n \Delta x_n = (b-k)f(k) + \sum_{n=1}^{k-1} f(n) \leq \sum_{n=1}^k f(n)$ and since $f \geq 0$, the integral increases as b increases. Since this is bounded and increasing, the limit must exist so $\int_1^{\infty} f(x)dx$ converges. The other direction is analogous, we jut have to use $m_n = f(n+1)$ instead and reverse the inequality signs to get $\int_1^{\infty} f(x)dx \geq \sum_{n=2}^{\infty} f(n)$ and by the same argument we can conclude that the series converges.
- 9. Suppose f,g are differentiable and $f',g' \in \mathcal{R}$, then $\int_0^\infty f(x)g'(x)dx = \lim_{b \to \infty} f(b)g(b) f(0)g(0) \int_0^b f'(x)g(x)dx$. Since the function from integration by parts is continuous, we are allowed to take limits provided that they converge using the defintion from the previous problem. Letting $f(x) = \frac{1}{1+x}$ and $g'(x) = \cos x$ we get $\int_0^\infty \frac{\cos x}{1+x} dx = \lim_{b \to \infty} \frac{\sin b}{1+b} 0 \int_0^\infty \frac{-\sin x}{(1+x)^2} dx = \int_0^\infty \frac{\sin x}{(1+x)^2} dx$. The second series absolutely converges by the integral test after using the fact $|\sin x| \le 1$. The first one does not converge absolutely since it it will be greater than a multiple of the harmonic series, using $x = 2\pi N$ as partitions.

10. (a) By weighted AM-GM $\frac{qu^p+pv^q}{p+q} \geq \sqrt[p+q]{(uv)^{pq}}$ but p+q=pq so this leads to $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$.

(b)
$$\int_a^b fg d\alpha \le \int_a^b \frac{f^p}{p} + \frac{g^q}{q} d\alpha = \frac{1}{p} + \frac{1}{q} = 1.$$

- (c) Note $\left| \int_a^b fg d\alpha \right| \leq \int_a^b |f| |g| d\alpha$. Suppose $c = \int_a^b |f|^p d\alpha$ and $d = \int_a^b |g|^q d\alpha$, then if $c, d \neq 0$ $1 = \int_a^b \frac{|f|^p}{c} d\alpha$ and $1 = \int_a^b \frac{|g|^q}{d} d\alpha$. So by (b), $\int_a^b \frac{|f||g|}{c^{\frac{1}{p}} d^{\frac{1}{p}}} d\alpha \leq 1$ and the result follows. If either c or d is 0 this forces either |f| or |g| to be 0 so the result is trivial.
- (d) Assume it doesn't hold for improper integrals. Then we would have LHS > RHS as we approach 0 or ∞ . But this would mean there would have to be a neighborhood of 0 or ∞ which this inequality holds and in that case we would have proper integrals and it would would break Holder's Inequality so it must be held for improper integrals as well.
- 13. (a) Setting $t = \sqrt{u} \to dt = \frac{1}{2\sqrt{u}}du$ gives $f(x) = \int_{x^2}^{(x+1)^2} \frac{\sin u}{2\sqrt{u}}du$. Then setting $g'(u) = \sin u$ and $f(u) = \frac{1}{2\sqrt{u}}$ and using integration by parts, we get $f(x) = -\frac{\cos[(x+1)^2]}{2(x+1)} + \frac{\cos(x^2)}{2x} \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}}du$. Since $\cos u \ge -1$, $f(x) < -\frac{\cos[(x+1)^2]}{2(x+1)} + \frac{\cos(x^2)}{2x} + \int_{x^2}^{(x+1)^2} \frac{1}{4u^{\frac{3}{2}}}du = -\frac{\cos[(x+1)^2]}{2(x+1)} + \frac{\cos(x^2)}{2x} \frac{1}{2(x+1)} + \frac{1}{2x}$. So $f(x) < \frac{1+\cos(x^2)}{2x} \frac{1+\cos((x+1)^2)}{2(x+1)} < \frac{1}{x}$ using $-1 \le \cos t \le 1$. If we used the fact that $\cos u \le 1$ we would have gotten $f(x) > \frac{-1+\cos(x^2)}{2x} \frac{-1+\cos((x+1)^2)}{2(x+1)} > -\frac{1}{x}$ so $|f(x)| < \frac{1}{x}$. Everything is strict since $\cos t$ is never 1 or -1 all the time.
 - (b) $r(x) = 2xf(x) \cos(x^2) + \cos[(x+1)^2] = -\frac{x\cos[(x+1)^2]}{x+1} + \cos(x^2) 2x \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}} du \cos(x^2) + \cos[(x+1)^2] = \frac{\cos[(x+1)^2]}{x+1} 2x \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{\frac{3}{2}}}.$ So $|r(x)| < \left|\frac{\cos[(x+1)^2]}{x+1}\right| + \left|-\frac{x}{(x+1)} + 1\right| < \frac{1}{x+1} + \frac{1}{x+1} = \frac{2}{x+1} < \frac{2}{x}.$
 - (c) Note $r(x) \to 0$ so we really just need to look at $\frac{\cos(x^2) \cos[(x+1)^2]}{2} = \sin\left(x^2 + x + \frac{1}{2}\right) \sin\left(x + \frac{1}{2}\right)$. Suppose $x = \sqrt{n\pi}$, $n \in \mathbb{N}$ then the expression turns into $\sin(n\pi + x + \frac{1}{2}) \sin(x + \frac{1}{2}) = (-1)^n \sin^2(x + \frac{1}{2})$. We want to show $\sqrt{n\pi} + \frac{1}{2}$ gets arbitrarily close to $\frac{\pi}{2} + 2\pi m$. Note n can be chosen such that $\sqrt{n\pi} + \frac{1}{2} \le \frac{\pi}{2} + 2\pi m < \sqrt{(n+1)\pi} + \frac{1}{2}$, since after doing operations on the inequality, we will get $n \le f(m) < n+1$. So $\left|\frac{\pi}{2} + 2\pi m \sqrt{n\pi} \frac{1}{2}\right| < \sqrt{(n+1)\pi} \sqrt{n\pi}$ which gets arbitrarily small when $n \to \infty$, which we could see after rationalizing. Therefore $\sin\left(x^2 + x + \frac{1}{2}\right) \sin\left(x + \frac{1}{2}\right)$ gets arbitrarily close to ± 1 and it is obvious it can't go beyond those bounds so the upper limit is 1 and lower limit is -1.
 - $\begin{aligned} &(\mathrm{d}) \quad \int_0^N \sin(t^2) dt = \int_0^1 \sin(t^2) dt + \int_1^N \sin(t^2) dt = \int_0^1 \sin(t^2) dt + \sum_{k=1}^{N-1} \int_k^{k+1} dt \sin(t^2) dt = \int_0^1 \sin(t^2) dt + \sum_{k=1}^{N-1} f(k-1) < \int_0^1 \sin(t^2) dt + \sum_{k=1}^{N-1} \frac{1}{2} \left(\frac{\cos(k^2) \cos[(k+1)^2]}{k} + \frac{2}{k^2} \right) < \int_0^1 \sin(t^2) dt + \frac{1}{2} \sum_{k=1}^{N-1} \frac{\cos(k^2)}{k} \frac{\cos[(k+1)^2]}{k+1} + \frac{2}{k^2} \end{aligned}$ Now taking $N \to \infty$, we see that the integral is bounded above since the first two parts of the series telescope to $\frac{\cos(N^2)}{N} \to 0$ and the third part is a p-series with p=2. We can show it is bounded below using $r(x) > \frac{-2}{x}$, hence the integral converges.