INTERACTIVE COMPUTER MODELING OF COMBUSTION CHEMISTRY and COALESCENCE-DISPERSION MODELING OF TURBULENT COMBUSTION

> David T. Pratt University of Washington

The goals of this research project are as follows:

- 1. Develop an interactive computer code for simulation of a high-intensity turbulent combustor as a "single point" inhomogeneous stirred reactor [1]. This will be developed from an existing batch processing computer code CDPSR [2].
- 2. Use the interactive CDPSR code as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appopriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jetstirred reactor.
- 3. Incorporate the coalescence-dispersion model for finite rate mixing into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate.
- 4. Further increase the speed and reliability of the batch kinetas integrator code CREKID [3] by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance [4].

REFERENCES

- 1. Pratt, D. T.: Mixing and Chemical Reaction in Continuous Combustion, in Progress. Progress in Energy and Combustion Science, vol. 1, N. A. Chigier, Ed., Pergamon Press, 1976.
- 2. Pratt, D. T.: Coalescence/Dispersion Modeling of High Intensity Combustion, AIAA J. Energy, 3, 3, 177180, 1979.
- 3. Pratt, D. T.: CREKID: A Computer Code for Transient, Gas-phase Combustion Kinetics, Paper No. WSCI 8321, Western States Section/The Combustion Institute, 1983.
- 4. Pratt, D. T.: Exponential-Fitted Methods for Integrating Stiff Systems of Ordinary Differential Equations: Applications to Homogeneous Gas-Phase Chemical Kinetics, paper presented at the 1984 JANNAF Propulsion Meeting, New Orleans, LA., February 1984.

251

PAGE 250 INTENTIONALLE BLANK

PRECEDING PAGE BLANK NOT FILMED

Figure 1. Jet-milred reactor with optical access [22. Details:
(a) mircenia reactor wall; (b) reactant feed tube; (c) agringloaded window holder; (d) exhaust ports; and (e) machine window

Figure 2. Heasured and (homogeneous PSR) predicted (CH), and uncorrected thermocouple temperature for combustion of CH/air at $\tilde{a}/V = 19$ by/au a/sec. (2) Groupes are values predicted from CDJER code with HT = 20.

Figure 3. Heasured (O) normalized by D-OH equilibrium, and (homogeneous PSR) predicted (O) for combustion of CH/air at $\delta/V \approx 19$ kg/cu m/s. Crosses are predicted values from CDJSR code with NT = 20.

(+)

ORIGINAL PAGE OF POOR QUALITY

ORIGINAL PAGE 19 OF POOR QUALITY

*** MARK2I ***
MARK2I 15 AN INTERACTIVE VERSION OF THE MARK-II COMBUSTOR MODEL. THIS IS A FRELIMINARY DESIGN TOOL, A MEANS OF GAINING INTUITIVE INSIGHT INTO EFFECTS OF CHANGES IN FUEL-AIR MIXING OR PARTITIONING ON TURN-DOWN RATIO, COMBUSTION EFFICIENCY AND FOLLUTANT FORMATION RATES. AN INITIAL DATA SET IS TAKEN FROM DATA FILE "MARK2.DAT" BUT CAN BE ALTERED INTERACTIVELY, AND USED IN CONSECUTIVE RUNS.

MARK-II REPRESENTS A SIMPLE BRAGG COMPUSTOR CONSISTING OF A MAXIMUM OF 9 FLOW ELEMENTS WITH THE ADDITION OF A SINGLE RECYCLE ELEMENT. FLOW ELEMENT TYPES MAY INCLUDE:

- 1) NON-REACTING MIXERS ("MIX"), IN WHICH THE CHEMICAL REACTIONS ARE

ASSUMED TO HAVE STOPPED DURING THE MIXING PROCESS;

2) PERFECTLY STIRRED REACTORS ("PSR"), WITHIN WHICH INTENSE SELF- OR BACK-MIXING IS ASSUMED TO OCCUR, SO THAT THERE ARE NO AXIAL GRADIENTS;

3) PLUG FLOW REACTORS ("PFR").

THE USER MAY DEFINE THE MODEL AS HAVING UP TO 9 ELEMENTS IN SERIES WITH AIR AND FUEL INLET JETS AT EACH ELEMENT. THE RECYCLE ELEMENT MAY BE OF ANY OF THE THREE FLOW TYPES. AND MUST RECYCLE FROM A HIGHER MAY BE OF ANY OF THE THREE FLOW TYPES, AND MUST RECYCLE FROM A HIGHER NUMBERED ELEMENT TO A LOWER. COOLING BOUNDARY LAYER EFFECTS AND CHEMICAL REACTIONS WITHIN THE BOUNDARY LAYER ARE NOT CONSIDERED.

--- PLEASE WAIT A MOMENT WHILE INITIALIZATION IS COMPLETED.

--- INITIALIZED -- PRESS / RETURN; TO BEGIN --

OCTIONS (0-7) 7

##≭ INPUT DA FLGW	AREA	LENGTH	FLOW	INLET ATE	INLET FUEL
ELEMENT >	(SQ.IN)	(INCHES)	TYPE	(1.2M/S)	(LBM/S)
1	1.46005+02	4.0000E-01	FSR	1.3450E +00	9.7200E-02
2	1.4600E102	1.0000E-01	HIX	6.9300E-01	1.0-30000
7	1.4600E+02	1.5000E+00	PSR	0.00005-01	0.00002-01
Ā	1.45002+00	2.0000E-01	HIX	7.9500E-01	0.0000E-01
RECYCLE	1.46005+0?	1.00002+00	hIX	FIECYCLE 20	1.00% OF 3 3
NE STEEL	••••			OUTFLOW TO	# 2 INFLOW
AIR TEMP =	2.1000E+02 F	COMPUSTO	R PRESSURE	: 2.7100E±00	ArM
FUEL TEAR =	8.0000E+01 F	LOWER HEA	TING VALUE	= 1.8500Z‡04	STUZER
STITET AN OF	TION BY NUMBER	:			
	THIS DATA SET		CHARGE PIDEL	HAL COMPUSTOR	PRESSURE
	IN TEMPERATURE		CHANGE RECY	CLE ELEMENT ST	ATUS
	UEL TEMPERATUR		DIY-MOF FLOW	CLEBERTS STAT	าบร
	OWER HEATING V		CON	EMATTE MODEL L	520HT

MARK-II MODEL SCHEMATIC LAYOUT

12718 **** * 1 5 * 2 * \$ 3 X #PSR#==>#HIX#==> ***** 1 ***** ***** ! #### ***** #KCY# 1<-(-<************** 31488

PRESS KETUKN TO CONTINUE