2018-10-02 Priority Queues

Tuesday, October 2, 2018 2:59 PM

- Unlike normal queues, items don't come out based on when they are inserted.
- It's possible for an item to never come out of a PQ
- The most important item always comes out first in a PQ
 - o [min queue; class default] The smallest thing comes out first
 - o [max queue] The biggest thing comes out first
- A priority queue is represented using a tree-like structure
- First PQ we will learn is called a binary heap
 - A binary heap is a binary tree with two rules:
 - The tree must be complete
 - (recursive) A node's parent is more "important" than the node

Example Min-Heap

Inserting an item into a binary min-heap

- 1. Insert the new item at the bottom of the tree such that completeness is maintained.
- 2. While the new value is more important than its parent, swap value with parent (recursive)

Example, add 4

Add 11 to this tree

4

Removing (dequeue) from a binary heap

- The item to remove is the root.
- Conceptually, we have a hole at the top of our tree.
- Replace with value in tree such that completeness is maintained
- Percolate value down until priority is reestablished

- Assume we have a list of tasks (array of integers). The number represents the time it takes to complete the task. Given a set of tasks, determine the least amount of time required to complete all tasks.

Alg for priority queue: For each item in list: a

For each item in list: add to PQ

Total = 0

While pq.size() > 1

V1 = pq.pop()

V2 = pq.pop()Pq.push(v1 + v2)

Total += v1+v2

Cout << total;

Algorithmic Efficiency

- PQs allows us to efficiently find the most important element
- Using a vector:
 - o Enqueue: O(N)
 - Dequeue: O(N)
 - o FindTop: O(1)
- Use AVL Tree
 - Enqueue: Log(N)
 - Dequeue: Log(N)
 - FindTop: Log(N)
- Binary Heap
 - Enqueue: Log(N)
 - Dequeue: Log(N)
 - FindTop: O(1)

Representing a Binary Heap using a vector

5	11	10	51	50	11	15	55	60
0	1	2	3	4	5	6	7	8

Left child: 2i + 1 Right child: 2i + 2 Parent: floor((i - 1) / 2)

Recap: Why use a vector instead of LL for binary heap

- Vector-based implementations allow for easy lookup of parent
- Vector-based implementations allow us to quickly find bottom-right most element for enqueue / dequeue
- Complete trees can be efficiently stored inside a vector
 - o 3 Units of memory per node in LL
 - o 1 unit of memory for vector

Binomial Heap

- Binomial heaps are comprised of a forest of trees
- Each tree in the forest has a unique size and shape
- Each size must be a power of two. And the shape is defined recursively.

Representing a heap of size 6

Adding an element to a heap

- Add a new single node into the tree
- If this violates the 1 tree for each size rule, merge the conflicting sizes
 - Repeat until all unique.

