

WHAT IS CLAIMED IS:

1 1. An analog subscriber matching circuit for a full electronic exchange
2 comprising:
3 a first pair of transistors (Q1, Q2) supplying a line current to a subscriber
4 through a tip terminal and a ring terminal;

5 a second pair of transistors (Q3, Q4) having a Darlington structure and
6 connected to said first and second transistors (Q1, Q2) respectively, and limiting a
7 maximum current;

8 a first pair of current supervising resistors (R1, R2) connected to emitters of
9 said first pair of transistors (Q1, Q2) respectively, performing a current feedback
10 operation to limit said maximum current, and detecting in a voltage form a line
11 current flowing through telephone lines;

12 a first resistor (R3) connected between a collector of one of said first pair of
13 transistors (Q1) and a collector of one of said second transistor (Q3), preventing
14 one of said first pair of transistors (Q1) from being saturated;

15 a second resistor (R4) connected between a collector of the other one of said
16 second transistors (Q2) and a collector of the other one of said second pair of
17 transistors (Q4), preventing said transistor (Q2) from being saturated;

18 a group of bias resistors (R5, R6, R7) determining a threshold value of said
19 maximum current and maintaining said first pair of transistors (Q1, Q2) in an active
20 state;

21 a first pair of capacitors (C5, C6) superimposing a received AC audio signal

22 on a DC line current;

23 a pair of composite impedances (ZL1, ZL2) matching a line characteristic
24 impedance;

25 a third resistor (R11) converting said line current flowing through one of the
26 current supervising resistors (R1) into an input current for detecting an off-hook
27 state;

28 an operational amplifier (AMP3) inversion-amplifying a signal inputted
29 through said third resistor (R11); and

30 a fourth transistor (Q6) converting a level of a signal inversion-amplified by
31 said operational amplifier.

1 2. The analog subscriber matching circuit of claim 1, further comprising a
2 pair of amplifiers (AMP1, AMP2) connected to said composite impedances (ZL1,
3 ZL2), respectively, for receiving and amplifying the audio signal.

1 3. The analog subscriber matching circuit of claim 2, further comprising a
2 pair of protection elements (CR1, CR2) for protecting said amplifiers for amplifying
3 said audio signal from an over current through lines.

1 4. The analog subscriber matching circuit of claim 3, further comprising a
2 dummy load resistor (R8) connected between the collector of one of said first pair
3 of transistors (Q1) and the collector of the other one of said first pair of transistors
4 (Q2) for supplying a bias current to said first pair of transistors (Q1, Q2) to prevent

5 said first pair of transistors (Q1, Q2) from being saturated when no load exists on
6 said line.

1 5. The analog subscriber matching circuit of claim 4, further comprising a
2 pair of temperature compensating diodes (D1, D2) connected to opposite sides of
3 said bias resistor group (R5, R6), respectively, for preventing said first pair of
4 transistors (Q1, Q2) from being overheated due to a variation of the threshold value
5 of said maximum current caused by the heat generated from said first pair of
6 transistors (Q1, Q2) due to the line current.

1 6. The analog subscriber matching circuit of claim 5, further comprising a
2 plurality of bypass capacitors (C1, C2, C3) preventing a bad influence on call
3 communications due to the generation or induction of noise in said DC line current
4 supply.

1 7. The analog subscriber matching circuit of claim 6, further comprising a
2 fifth resistor (R13) determining an amplification factor of said signal inputted
3 through said third resistor (R11).

1 8. The analog subscriber matching circuit of claim 7, further comprising a
2 sixth resistor (R10) detecting a ring trip voltage if a telephone handset is hooked off
3 during supply of a call signal.

1 9. The analog subscriber matching circuit of claim 8, further comprising a
2 seventh resistor (R12) converting the voltage detected by said sixth resistor (R10)
3 into a ring trip current.

1 10. The analog subscriber matching circuit of claim 9, further comprising a
2 second capacitor (C7) allowing said operational amplifier (AMP3) to serve as a low-
3 pass filter so that an AC amplification factor is greatly lowered to remove AC ripple
4 components included in said ring trip current.

1 11. The analog subscriber matching circuit of claim 10, further comprising
2 a field effect transistor (FET1) allowing said operational amplifier (AMP3) to serve
3 as a low-pass filter in a ring current supply state.