Rigid Analytic Geometry

David Wiedemann

Table des matières

List of Theorems

1	Theorem	4
1	Definition	4
2	Definition	4
4	Proposition	•

Lecture 1: Covering sieves

Wed 05 Apr

Theorem 1

Every sieve τ containing a covering sieve τ' of X is itself covering. The intersection of two covering sieves is covering.

Proof

If $(v: V \to X)$ is a morphism in τ' then $v^*\tau = v\tau'^*$. Let τ, τ' be covering sieves of X and $v: V \to X \in \tau$, then $v^*(\tau \cap \tau') = v^*\tau'$. This covers V by GTTrans, by GTLoc, $\tau \cap \tau'$ covers X.

Remark

We are mostly interested in the case where the category C is the poset of open subsets of a topological space.

Then a sieve in V is just a set of open subsets of V such that $V \in \tau$, $W \subset V$, W open implies $W \in \tau$.

The pullback along the (unique if it exists) morphism $V \to U$ are just the open subsets of V.

We write $\tau/=V$ if τ is a sieve overver which covers V.

If several grothendieck topologies must be distinguished, I will write $\tau/=\pi V$

Definition 1

We will write $[V_i|i\in I]$ for the sieve generated by the family V_i of open subsets of V. We have $[V_i]=\{V\in O_X|\exists i\in I \text{ st }V\subset V_i\}=\bigcap_{\tau\text{ sieve in }X\text{ containing }V_i}\tau$.

A sieve is finitely generated if it can be written as $[V_i]$ for finitely many V_i

Remark

More generally, we consider Grothendieck topologies on B, a topology base for X, considered as posets.

Definition 2

Let $[\Omega_i]_B$ be the B-sieve generated by the Ω_i , ie.

 $\{\theta \in B | \theta \subset \Omega_i \text{ for at least one } i \in I\}$

The subscript B will always be used when $B \subseteq O_X$.

Proposition 4

Let X be a topological space and B a topology base for X.

Then we have a bijection between

— Grothendieck topologices T_B on B

— Grothendieck topologies T on O_X st. $[B_V]$ covers V. If T_B is given, T is defined by $\tau/=_T V, \tau\cap B_\Omega/=_{T_B}\Omega$ for all $\Omega\in B_V$. When T is given, T_B is defined by

$$au/=_{T_B}\Omega$$
 iff $[au]/=_T\Omega$