\mathbf{Index}

A	
Abelian Groups	vol.1:p.24
Adjoint Operators	vol.1: pp.43 - 44,87,103
rajome operators	vol.3: pp.134 - 135
Adjugate Matrix	vol.2: pp.120 - 121
Affine Spaces	vol.1: p.93
Algebraic Lyapunov Equation	vol.4: pp.80 - 82
Asymptotically Stable	vol.2: p.76
Asymptotically Stable	vol.3: pp.82 - 84
	vol.4: pp.7, 61-62, 67-69, 75
Attracting Fixed Point	vol.2: p.76
Attifacting Pixed Point	vol.3: pp.83 - 84
Attractiveness	vol.3 : p.83
Attractiveness	vol.4: p.61
Autonomous Systems	vol.1: p.7
Autonomous systems B	00i.1 . p.1
Basin Boundary	vol.2: p.89
Basin of Attraction	vol.2: p.89
Basis	vol.2: ps.05 vol.2: pp.125 - 127
Bendixson's Theorem	vol.4: pp.25 - 29
Bifurcation	vol.1: pp.11 - 12, 63 - 64
Bharoanon	vol.4: pp.12 - 13
Bifurcation (Fold)	vol.4: pp.12 - 13, 57
Bifurcation (Transcritical)	vol.4: pp.12 - 15
Bifurcation Diagram	vol.4: pp.12, 15-17
Body Velocity	vol.1: pp.12, 10 11
C C	· Pioc
Carrying Capacity	vol.4:p.9
Causal Systems	vol.2: p.152
	vol.3: pp.3 - 4
Cayley Hamilton Theorem	vol.2: pp.139 - 140
0.00,-00	vol.3: pp.121 - 122
Center Manifold Theory	vol.4: pp.39 - 45
Centers (Equilibrium Point)	vol.4: pp.22, 26
Centroid of Area	vol.1: pp.4-6
Characteristic Equation	vol.2: pp.77, 138 - 139
1	vol.3:p.37
	vol.4:p.34
Class K (Comparison Functions)	vol.4:pp.93-96
Class K L (Comparison Functions)	vol.4: pp.93 - 96
Class K_{∞} (Comparison Functions)	vol.4: pp.93 - 96
Column Space	vol.2: pp.133 - 134
Comparison Function	vol.4: pp.93 - 96
Complex Conjugate Transpose	vol.3: pp.40 - 44
Condition Number (Of a Matrix)	vol.3: pp.61 - 62
(· · · · · · · · · · · · · · · · · · ·

Connection Vector Field	vol.1: pp.118 - 119
Conservative System	vol.2: pp.89 - 91, 103
Conservative Vector Fields	vol.1: pp.145 - 146
Conserved Quantity	vol.2 : p.90
Constraint, Holonomic	vol.1: pp.76 - 77
Constraint, Nonholonomic	vol.1: pp.110 - 117, 135 - 136
Continuity w.r.t. Initial Conditions	vol.4: pp.53-55
Continuity w.r.t. Parameters	vol.4: pp.54 - 55
Continuously Differentiable	vol.4: pp.48 - 52
Contour	vol.2: pp.91 - 92
Controllability	vol.3:p.132
Controllability Gramian	vol.3:p.135
	vol.4:p.80
Convolution	vol.3: pp.2-4
Convolution (Discrete)	vol.3:pp.14,17
Coordinate Transformation Matrix	vol.2: pp.128 - 129
	vol.4: pp.18, 20-41
Coordinate Vector	vol.2: pp.126 - 127
Corange	vol.2:pp.51-54
Corank	vol.2:pp.51-54
Cotangent Bundle	vol.1:p.126
Cotangent Space	vol.1:p.126
Cotangent Vector	vol.1: pp.127 - 130
Cramer's Rule	vol.2:p.121
Cross Product	vol.1:pp.1-2
Curl (Vector)	vol.1:p.145
Curvature (Constraint)	vol.1: pp.144 - 145
D	
Dead Zone Nonlinearity	vol.2:p.151
Deficient Matrix	vol.2: pp.140 - 141
Degenerate Matrix	vol.2: p.139
Degrees of Freedom	vol.1:p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal Coordinate Form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
	vol.3:p.46
	vol.4:p.79
Diffeomorphic	vol.1: p.20
Differentiable	vol.4: pp.51 - 52
Differential Algebraic Equations	vol.2: pp.41 - 44,47 - 48
Differential Algebraic Equations, Differentiation Index	vol.2: pp.47-48
Differential Algebraic Equations, Model Consistency	vol.2:p.44
Differential Algebraic Equations, Regularity	vol.2:p.45
Differential Algebraic Equations, Solution	vol.2:p.44
Dimension (Of a Vector Space)	vol.2: pp.125 - 126
Direct Product of Two Sets	vol.1: p.20

	Direct Sum	vol.1: p.20
	Direct Sum of Two Sets	vol.1: p.125
	Directional Linearity	vol.1: p.106
	Distribution (Allowable Velocities)	vol.1: pp.112, 148-150
	Divergence	vol.4: pp.25 - 29
	Dot Product	vol.2: pp.134 - 135
		vol.3: p.41
E		1
_	Eigenspace	vol.2: p.140
	Eigenvalue	vol.2: pp.77, 138 - 145
	Ligenvalue	
	Tr.	vol.3: pp.36 - 45, 56 - 59
	Eigenvector	vol.2: pp.76 - 77, 138 - 145
		vol.3: pp.36 - 45
	Eigenvector (Left)	vol.3: pp.50 - 51
	Elementary Row Operators	vol.2: p.107
	Embedding	vol.1: p.96
	Equilibrium Point	vol.3: pp.1, 5-10, 79-84
		vol.4: pp.3-4
	Equivalent Vectors w.r.t. Functions	vol.1: pp.100 - 101
	Euler Lagrange Equation	vol.1: p.136
	Existence And Uniqueness Theorem	vol.1: pp.11, 13
	•	vol.2: p.82
		vol.4: pp.46 - 52,91
	Exponential Map	vol.1: pp.48 - 51, 103 - 104
	External Forces	vol.1: p.1
F		00t.1 . p.1
Г		7.4 0 10
	Finite Escape Time	vol.4: pp.9 - 10
	Focus Node	vol.4: pp.22, 33
	Fold Bifurcation	vol.4: pp.12 - 13,57
	Force Couple	vol.1: p.2
	Force Couple System	vol.1:p.3
	Forward Euler Integration	vol.2: p.148
	Forward Kinematics	vol.1: pp.78, 83 - 84
	Frequency Response	vol.3: pp.98, 105
	Frobenius Norm	vol.3: pp.62, 102 - 117
	Fundamental Vector Field (Infinitesimal Generators)	vol.1: pp.99 - 100
G	•	11
	Gait Generation	vol.1: p.124
	Gaussian Elimination	vol.2: p.104
	Generalized Coordinates	vol.1: p.78
	Geodesics Geodesics	-
	Geometric Series	vol.1: pp.44 - 46, 51, 96 - 99
		vol.4: p.92
	Globally Asymptotically Stable	vol.3: p.93
		vol.4: pp.62, 67
	Gradient Vector Field	vol.1: pp.129 - 130
	Gram Schmidt Orthogonality Procedure	vol.2: p.137
	Green's Theorem	vol.4: pp.25 - 27

	Group	vol.1: pp.21, 94 - 95
	Group Invariant Vectors	vol.1: p.100
	Group, Left/right Action	vol.1: pp.24 - 29, 33, 80, 96, 137
	Group, Symmetry	vol.1: pp.108 - 109, 137
H		100,101
11	H_{∞} Norm	vol.3: pp.108 - 119
	Hartman Grobman Theorem	vol.4: pp.23 - 24
	Hermitian Matrix	vol.3: p.107
	Heteroclinic Trajectory	vol.2 : p.94
	Holonomic Constraint	vol.1: pp.76 - 77
	Homeomorphic	vol.1 : p.19
	Tromcomorphic	vol.2 : p.88
		vol.4: p.23
	Homogeneity	vol.3 : p.1
	Homogeneous Equations	vol.2: p.105
	Hopf Bifurcation	vol.4: pp.35 - 38
	Huber Function	vol.4: p.71
	Hurwitz Matrix	vol.3: pp.94 - 96
		vol.4: pp.81 - 82
	Hyperbolic Equilibrium Point	vol.4: pp.22 - 24
	Hyperbolic Fixed Point	vol.2: pp.87 - 88
	Hysteresis	vol.1: pp.66, 70 - 71
	11,00010010	vol.2 : p.42
I		· F
	Idempotent	vol.2: p.37
	Image (Algebra)	vol.1: p.124
	Impulse Response	vol.3: pp.19 - 20, 29 - 30, 36
	Index Theory	vol.2: pp.98 - 101
		vol.4:p.35
	Induced Norm	vol.3: pp.103 - 104
	Infinity Norm	vol.3: pp.100 - 101
		vol.4: p.61
	Inner Product	vol.2: pp.134 - 135
		vol.3: p.41
	Internal Forces	vol.1:p.1
	Intersection (Spaces)	vol.2: pp.130 - 131
	Invariance	vol.1: p.139
	Invariant Manifold	vol.4: pp.42 - 45
	Invariant Set	vol.4: pp.74 - 77
	Isocline	vol.2: pp.74, 84
	Isomorphic	vol.1: p.22
J		
	Jacobi Liouville Formula	vol.3:p.27
	Jacobian	vol.1: pp.84 - 86
		vol.2:p.85
		vol.4: pp.56 - 58
	Jordan Blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78

K	
K Step Observability Matrix	vol.3: pp.138 - 139
Kalman Rank Test	vol.3:p.136
Kernel	vol.1: pp.124-125
Kinematic Locomotion	vol.1: pp.105 - 107
L	
L1 Norm	vol.3: pp.100 - 101
	vol.4:p.61
L2 Induced Gain of a System	vol.3:p.108
L2 Norm	vol.3: pp.100 - 101
	vol.4:p.61
La Salle's Invariance Principle	vol.4: pp.74 - 77,85 - 87
Lagrangian	vol.2:p.45
Lagrangian Multipliers	vol.2:pp.45-46
	vol.3:p.126
Laplace Transform	vol.2:p.147
	vol.3: pp.29 - 33
Level Sets	vol.4:pp.66-69
Liapunov Fixed Point	vol.2:p.76
Lie Algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
Lie Bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie Groups	vol.1: pp.21, 96-99
Lifted Actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Limit Cycle	vol.3:p.82
	vol.4: pp.10 - 12, 33 - 38
Linear Combination	vol.2: p.124
Linear Equations	vol.2: p.104
Linear Independence	vol.2: pp.124 - 125
Linear Time Invariance	vol.2: p.152
T	vol.3: pp.8-9, 17
Linear Transformation	vol.2: pp.131 - 133
Linearity	vol.3: p.15
Linearity (Mapping)	vol.1: pp.106 - 107
Linearity (Systems)	vol.2: p.152
	vol.3: p.1
Linearization at a Fixed Point	vol.1: pp.10 - 11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
T: 19 G :: P ::	vol.4: pp.5 - 8, 23 - 24, 88
Lipschitz Continuous Function	vol.4: pp.49 - 55, 91
Local Connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 14
Locally Asymptotically Stable	vol.4: pp.61 - 62, 67 - 69
Locomotion	vol.1:p.104
Logistic Equation	vol.4: p.9
Lorenz Attractor	vol.4: p.12
Lotka Volterra Model of Competition	vol.2:p.88

	Lyapunov Functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
		vol.4: pp.65 - 87
	Lyapunov Stability	vol.4: pp.59 - 69
M		
	Manifolds	vol.1: pp.17 - 19,93
	Manifolds, Accessible	vol.1: pp.76 - 78
	Manifolds, C^k Differentiable	vol.1: p.20
	,	vol.4: pp.48 - 52
	Manifolds, Curvature	vol.1: p.93
	Manifolds, Stable	vol.2 : p.89
	Manifolds, Topology	vol.1: p.93
	Marginally Stable	vol.3: pp.53, 56
	Markov Parameters	vol.3: p.20
	Matrix Cofactor	vol.2: pp.111, 118 – 120
	Matrix Determinant	vol.2: pp.115 - 119
	Matrix Exponentiation	vol.3: pp.26 - 27, 36
	Matrix Inverse	vol.2: pp.110 - 115
	Matrix Minor	vol.2: p.111
	Matrix Operations	vol.2 : p.111
	Matthew Equation	vol.3 : p.27
	Memoryless Systems	vol.2: p.152
	Memory 1055 Systems	vol.3 : p.4
	Metzler Matrix	vol.4: p.31
	Minimum Energy Input	vol.3: pp.127 - 129,133 - 136
	Modal Contributions of Initial Conditions	vol.3: pp.41 - 45,51
	Modal Decomposition	vol.3: pp.35 – 45, 51
	Model Consistency	vol.2: p.44
	Model Uncertainty	vol.3: pp.109 – 115
	Modular Addition	vol.1: p.21
	Momentum	vol.1: pp.138 – 140
	Monotonic Function	vol.1: p.133 - 140
	Multiplicative Calculus	vol.1: pp.34 - 38,46 - 47
N	wintiplicative Calculus	voi.1: pp.34 - 38,40 - 41
	Negative Semidefinite Function	vol.4: pp.67, 74
	Negative Semidefinite Matrix	vol.3: p.93
	Neumann Series	vol.3 : p.33
	Neutrally Stable	vol.2: p.76
	Nilpotent Matrix	vol.3: p.35
	Node	vol.4: pp.21, 33
	Noether's Theorem	vol.1: pp.131 – 134
	Noncommutativity	vol.1: pp.131 – 134 vol.1: p.147
	Nonconservativity	
	Nonholonomic Constraint	vol.1: pp.145 - 147 vol.1: pp.110 - 117, 135 - 136
	Normal Matrix	vol.1: pp.110 - 111, 135 - 130 vol.3: pp.36 - 46
	Normai Matrix Nullcline	vol.2: p.84
	Nullity	vol.2 : p.84 vol.2 : p.134
	·	-
	Nullspace	vol.2: pp.132 - 134

0	
Observability	vol.3: pp.136 - 139
.,	vol.4: pp.86 - 87
Observability Gramian	vol.4:p.80
Observer Based Controlle	-
One Form	vol.1: pp.125, 127-129
Optimal Frame	vol.1:p.83
Orthogonal Compliment	vol.2: pp.137 - 138
Orthogonal Set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal Basis	vol.2:p.136
Outer Product	vol.2:p.136
Output Feedback Design	vol.3:p.147
Overdetermined System	vol.2: pp.19, 41
P	000.2 i pp.10, 11
P Norm	vol.3: pp.100 - 102
1 1101111	vol.4: p.61
Parallel Linkage Mechanis	
Pbh Test	vol.3:p.136
Pendulum	vol.4: pp.7 - 8, 63 - 64, 72 - 77
Periodic Orbits	vol.4: pp.25 - 34
Pfaffian Constraint	vol.1: pp.111 - 117
Phase (Angle)	vol.2: p.61
Phase Coordinate Form	vol.3:p.6
Phase Drift	vol.2:p.68
Phase Lock	vol.2:p.67
Phase Portrait	vol.1: pp.7-9
	vol.2: pp.74, 83
	vol.3:p.35
	vol.4: pp.5, 17-19
Pitchfork Bifurcation	vol.4: pp.12, 15-17
Poincare Bendixson Crite	
Poles (Transfer Function)	**
,	vol.3: pp.58 - 59
Position Trajectory	vol.1:p.105
Positive Definite Function	
Positive Definite Matrix	vol.3:p.87
	vol.4: pp.78 - 79
Positive Invariant Set	vol.4: pp.21, 29 - 34, 69
Positive Semidefinite Mat	
Positive System	vol.4:p.31
Potentials	vol.1:p.17
Power Spectral Density	vol.3: pp.116-119
Predator/prey Model	vol.4: pp.30-31
Preimage (Algebra)	vol.1:p.124
Principally Kinematic Sys	
D: :1 M:	12 00

vol.3:p.88

Principle Minors

Principle of Least Action	vol.1: pp.131 - 133
Projection Operator	vol.2:p.37
Q	
Quadratic Programming	vol.3: pp.125 - 126
R	
Radially Unbounded	vol.3:p.89
	vol.4: pp.67-68
Range (Matrix)	vol.2: pp.132 - 133
Range of Entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reachability	vol.3: pp.120 - 126, 130, 132
Reachability Gramian	vol.3: pp.124 - 129, 133 - 135
Reaction Force	vol.1:p.4
Realization Theory	vol.2: p.149
Reconstruction Equation	vol.1: pp.114 - 123, 138
Region of Attraction	vol.4: pp.15, 92 - 93
Regular Control Problem	vol.2: p.45
Resolvent	vol.3: pp.17 - 18, 30, 36
Resonance	vol.3: p.50
Reversible System	vol.2: pp.92 - 95
Rigid Body	vol.1: p.23
Rigid Body, Left Lifted Action	vol.1: pp.38 - 41
Rigid Body, Right Lifted Action	vol.1: pp.41 - 43
Routh Hurwitz Criterion	vol.3: pp.77 - 80
	vol.4:pp.34,83
Row Echelon Form	vol.2:p.107
Row Space	vol.2: p.134
Runge Kutta Method	vol.2: p.83
Saddle Connection	vol.2: p.94
Saddle Node	vol.4: pp.19 - 21
Sector Bounded Nonlinearities	vol.4: p.72
Semidirect Product of Two Sets	vol.1: p.24
Sensitivity Function	vol.4: pp.55 - 58
Separatrix	vol.2: p.89
Shape Trajectory	vol.1: p.105
Shift Operator	vol.3: pp.1-2
Signal Norms	vol.3: pp.96 - 104
Similar Matrices	vol.2: p.142
Singular Matrix	vol.2: pp.41 - 42, 51, 110, 122
Singular Value Decomposition	vol.3: pp.104 - 110, 128 - 129
Singular Vectors	vol.3: p.106
Sink Node	vol.4:pp.19,21
Small Gain Theorem	vol.3: pp.109 - 114
Solution, Differential Algebraic Equations	vol.2: p.44
Source Node	vol.4: pp.19, 21
Span	vol.2: pp.124 - 125

Spatial Velocity	vol.1: pp.43, 85
Special Euclidean Group	vol.1 : p.23
Special Duchacan Group	vol.2: pp.1 - 2
Special Orthogonal Group, $so(N)$	vol.1: p.22
Special Orthogonal Group, 30(11)	vol.2: pp.1 - 2
Stability	vol.3: pp.80 - 84
Stability	vol.4: p.5
Stability Via Linearization	vol.4: p.88 - 90
Stabilizable Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2: p.76
Stable	vol.2: p.10 vol.3: pp.53 - 59, 91 - 94
	vol.4: p.5
State Estimator Controller	vol.4: p.3 vol.3: pp.144 - 147
State Feedback Controller	vol.3: pp.144 - 147 vol.3: pp.140 - 144
	vol.3: pp.140 - 144 vol.2: pp.147 - 150
State Space Model	vol.2: pp.147 - 150 vol.3: p.5
State Transition Matrix	vol.3: p.3 vol.3: pp.11 - 13
State Vector	vol.3 : pp.11 - 13 vol.2 : pp.147 - 149
State vector	vol.3: p.5
Strain Energy	vol.3 : p.5 vol.2 : pp.5 - 7
Structural Stability	vol.2 : pp.3 - 1
Subcritical Hopf Bifurcation	vol.2: p.30 vol.4: pp.37 - 38
Subcritical Pitchfork Bifurcation	vol.4 : pp.37 - 38 vol.4 : p.17
Subspace Subspace	vol.4 : p.17 vol.2 : pp.129 - 130
Sum (Spaces)	vol.2: pp.129 - 130 vol.2: pp.130 - 131
Supercritical Hopf Bifurcation	vol.4: pp.35 - 37
Supercritical Pitchfork Bifurcation	vol.4: pp.35 - 37 vol.4: pp.15 - 16
Superposition Superposition	vol.3: pp.13 10 $vol.3: pp.1, 13$
Supremum	vol.3 : p.98
Symmetric Matrix	vol.2 : p.144
Symmetric Matrix	vol.3: pp.86 - 96
	vol.4: p.78
Symmetry	vol.1: pp.108 - 109, 131
System Norms	vol.3: pp.99 - 120
T	001.9 . pp.00 120
Tangent Spaces	vol.1: pp.29 - 30
Taylor Series Expansion	vol.3: pp.7 - 8
Taylor Series Expansion	vol.4: pp.6, 39 - 40, 44 - 45
Tensor Product	vol.1: p.20
Time Invariance	vol.2: p.152
	vol.3: p.102 vol.3: pp.1-4
Time Reversal Symmetry	vol.2: pp.92 - 93
Toeplitx Matrix	vol.3: p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3: pp.60 - 61
Transcritical Bifurcation	vol.4: pp.12 - 15
Transfer Function	vol.2: pp.146 - 147,150
Transier Function	pp.140 - 141,100

	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated Robotic Mechanisms	vol.3: pp.59 - 77
Underactuated System	vol.1:p.104
Underdetermined System	vol.2:pp.19,41
Unitary Diagonal Coordinate Transformation	vol.3: pp.38 - 43, 50
	vol.4:p.79
Unstable	vol.2:p.76
V	
Van Der Pol Oscillator	vol.4:pp.11-12
Variance Amplication	vol.3:p.117
Variations of Constants Formula	vol.3:pp.24,54
Varignon's Theorem	vol.1:p.1
Vector Field	vol.1: pp.30 - 31
	vol.2:p.74
Vector Mapping	vol.2:p.127
Vector Space	vol.2: pp.122 - 123
Vertical Space	vol.1:p.125
Virtual Work	vol.3: pp.63 - 64
W	
White in Time Gaussian Processes	vol.3: pp.115 - 119
Work (Mechanical)	vol.1: p.145
Z	-
Z Transform	vol.3: pp.14 - 22
Zero Set	vol.1: pp.76, 110 - 111
Zeros (Transfer Function)	vol.2:p.147
·	