Cloud Computing

개념 및 정의

시장동향 및 전망

IT 서비스 면에서의 클라우드 컴퓨팅 서비스

클라우드 컴퓨팅 핵심기술

클라우드 컴퓨팅의 개념

- 사용자가 필요한 작업을
 (구름속으로) 제시하면 (구름속)
 어디에선가 이에 필요한
 컴퓨팅 자원이 할당돼 작업을
 실행할 수 있다는 뜻으로
 "Cloud Computing"이라고 함
- 가정용PC, 오피스PC, 개인용
 노트북, 스마트폰 등 각종
 단말의 사용자 환경을 하나로
 통합/연동
- 기업 역시 서버 한대 없이도기본적인 단말만 있으면 각종업무 처리가 가능해짐

클라우드 컴퓨팅 정의(1/3)

- 클라우드 컴퓨팅(Cloud Computing)은 네트워크, 서버, 스토리지, 서비스 및 애플리케이션 등 IT 자원을 구매하여 소유하지 않고 필요 시 인터넷을 통해 서비스 형태로 이용(On-demand)하는 컴퓨팅 방식
 - 클라우드 컴퓨팅은 IT자원을 보유/관리하는 대신 저렴한 비용으로 간단하게 빌려서 사용하는 차세대 인터넷 서비스
 - 기존의 인터넷 기반 컴퓨팅에 비하여 클라우드 컴퓨팅은 비즈니스 모델이
 단순하고 활용 가능성이 높아 IT 업계의 많은 개념적 변화를 야기
 - 클라우드 컴퓨팅이 활성화되면 각종 IT 자원은 보유 개념에서 사용 개념으로,
 - WWW(World Wide Web) 시대에서 WWC(World Wide Computer) 시대로 이동

클라우드 컴퓨팅 정의(2/3)

인터넷 기술을 팔용하여 다수의 고객들에게 높은 수준의 확장성을 가진 자원들을 서비스로 제공하는 컴퓨팅의 한 형태

Gartner.

표준화된 IT 기반 기능들이 IP를 통해 제공되며, 항상 접근이 허용되고, 수요변화에 따라 가변적이며, 사용량이나 광고에 기반한 과금 모형을 제공하며, 웹 혹은 프로그램적인 인터페이스를 제공하는 컴퓨팅

FORRESTER

웹기반 애플리케이션을 활용해 대용량 DB를 인터넷 가상공간에서 분산 처리하고, 이 데이터를 데스크톱 PC, 휴대전화, 노트북 PC, PDA 등 다양한 단말기에서 물러오거나 가공할 수 있게 하는 환경

사용자 중심, 업무 중심의 수백 또는 수천 대의 컴퓨터를 연결하여 단일 컴퓨터로는 불가능한 풍부한 컴퓨팅 자원을 팔용할 수 있도록 하는 기술

Google • •

인터넷에 기반한개발과컴퓨터기술의활용을 말하는 것으로 인터넷을 통해서 동적으로 규모화 가능한 가상적 자원들이 제공되는 컴퓨팅

< 다양한 클라우드 컴퓨팅의 정의들 >

클라우드 컴퓨팅 정의(3/3)

- 클라우드 컴퓨팅은 인터넷 기반(cloud)의 컴퓨팅(computing)기술
 - 인터넷 상의 유틸리티 데이터 서버에 프로그램을 두고 그때 그때 컴퓨터나 휴대폰 등에 불러와서 사용하는 웹에 기반한 소프트웨어 서비스

클라우드 컴퓨팅 구성요소

- 1) 서비스 개발업체(Service Developer 또는 Vendor): 이동 단말.서버.스토리지.네트워크와 같은 HW 장비를 납품하는 업체와 SaaS 서비스를 위한 응용 SW를 제공하는 업체, 클라우드 컴퓨팅 솔루션을 제공하는 솔루션 업체들이 포함
- 2) 서비스 제공업체(Service Provider 또는 Platform Provider): 개발업체로 부터 시스템.응용 서비스.솔루션 등 컴퓨팅 자원 및 서비스 제공 플랫폼을 제공받아 개인.기업을 대상으로 인터넷 기반의 서비스를 제공하고 사용한 시간 용량에 따른 과금 수익 모델을 가지는 클라우드 서비스 운영의 주체
- 3) 서비스 고객(Service Consumer 또는 User) : 개인 또는 기업 사용자로서 서비스 제공업체의 인터넷 서비스를 통해 컴퓨팅 자원을 할당받아 사용하고 이에 대한 비용을 지불하는 주체

클라우드 컴퓨팅 기초 모델(1/4)

■ 클라우드 컴퓨팅은 5대 주요 특징.4개 배치 모델.3개 서비스 모델 등소위 5-4-3 모델에 기초

클라우드 컴퓨팅 기초 모델(2/4)

■ 5-4-3 모델

1) 5대 주요 특징

5개의 특징	내 용
주문형셀프서비스	필요할 때 온라인으로 즉시 사용
광 대역망 액세스	네트워크를 통한 서비스 자원 액세스
(Ubiquitous Network Access)	네트워크를 중인 시마드 사원 국제드
자원 공동관리	다즈 이대 디데(multi tanant madal)은 통하 많의 하다
(Resource Pooling)	다중 임대 모델(multi-tenant model)을 통한 자원 할당
빠른 요구 탄력성	비즈니스 사하에 띠르 되어야 타려져 비오
(Rapid Elasticity)	비즈니스 상황에 따른 자원의 탄력적 사용
도수제	기미 기도 기 이상 마크 미 이 지 브
(Measured Service)	서비스를 사용한 만큼 비용 지불

클라우드 컴퓨팅 기초 모델(3/4)

■ 5-4-3 모델

2) 4개의 배치 모델

4개의 배치 모델	내 용
공공 클라우드 (Public Cloud)	클라우드 서비스 이용 대상을 제한하지 않는 방식으로 누구나 네트워크에 접속해 신용카드 등의 결제만으로 서비스에 접근 할 수 있고 사용한 만큼 지불하는(Pay-as-you-go) 구조를 갖는 공중 인프라
사설 클라우드 (Private Cloud)	보안 기능이 강화된 방화벽 내에서만 배타적으로 이용이 가능한 서비스로 주로 대기업에서 데이터 소유권을 확보하고 프라이버시를 보장받고자 할 때 구축되는 방식인데, 해당 업체에서 IT 자산 투자를 기존 방식과 같이 해야 하는 것이 단점이지만 전체 인프라에 대한 완전한 통제권 확보가 장점
커뮤니티 클라우드 (Community Cloud)	커뮤니티 클라우드는 특별한 보안 요구나 공통 미션 같은 관심사를 공유한 조직의 그룹에 의해 제어되고 이용
하이브리드 클라우드 (Hybrid Cloud)	하이브리드 클라우드는 상호운용 가능한 공공사설 클라우드의 조합으로 구성되며, 일반적으로 사용자는 비즈니스에 중요하고 보안이 필요한 서비스 와 데이터는 사설 클라우드의 통제 하에 두고 덜 중요한 정보나 처리는 공공 클라우드를 이용

클라우드 컴퓨팅 기초 모델(4/4)

■ 5-4-3 모델

3) 3가지 서비스 모델

3개의 모델	내 용
SaaS (Software as a Service)	클라우드 컴퓨팅 서비스 사업자가 인터넷을 통해 SW를 제공하고, 사용자 가 원격 접속해서 이메일.ERP.CRM 등 다양한 애플리케이션을 활용하는 클라우드 컴퓨팅 최상위 계층에 해당 하는 모델
PaaS (Platform as a Service)	컴파일 언어.웹 프로그램.제작 툴. DB 인터 페이스.과금 모듈.사용자 관리 모듈 등 사용자가 SW를 개발할 수 있는 토대를 제공해 주는 서비스 모델
IaaS (Infrastructure as a Service)	메모리.CPU 등 논리적으로 가상화된 컴퓨팅 자원이나 이미지.동영상 등의 자료를 저장할 수 있는 스토리지 자원 등 서버 인프라를 인터넷을 통해 제공 하는 서비스

클라우드 컴퓨팅의 진화

- 네크워크 상의 IT 자원을 묶어 활용하는 그리드 컴퓨팅에서 유틸리티 컴퓨팅을 거쳐 클라우드 컴퓨팅으로 진화
- 클라우드 컴퓨팅은 이전의 유사 컴퓨팅 개념들을 포괄하며 진화한 형태로 기술은 그리드컴퓨팅, 과금은 유틸리티 컴퓨팅을 혼합한 개념
 - ※ 그리드 컴퓨팅: PC나 서버, PDA 등 모든 컴퓨팅 기기를 하나의 네트워크로 연결해 정보 처리 능력을 수퍼 컴퓨터 혹은 그 이상의 수준으로 극대화시키려는 컴퓨팅 방식
 - ※ 유틸리티 컴퓨팅: 웹 호스팅 서비스처럼 컴퓨팅 자원들의 일부분을 원하는 만큼 빌려주고 그에 대한 과금을 함으로써 필요 이상의 자원을 구매하지 않아도 되는 것이 장점

◆ 네트워크상에존재하는 컴퓨터들의 자원을 가상화로 통합시켜 동시에 이용하는 환경 ◆ 대용략컴퓨팅 자원을

그리드 컴퓨팅

◆ 대용량컴퓨팅자원을 필요로하는서비스에 지원

유틸리티 컴퓨팅

- ◆ 컴퓨터 자원과인프라를 외부에서제 공받고 사용량에 따라 요금을 부과하는 주문형서비스
- ◆ 전기,수도처럼필요할 때마다연결해사용하고 요금을 과금
- < IT 서비스의 진화 >

클라우드 컴퓨팅

- ◆ 언제 어디서나![지원을 서비스형태로제공
- ◆ SW뿐만아니라모든Ⅱ 자원을서비스형태로 제공
- ◆ 기술은그리드컴퓨팅, 과금은유틸리티컴퓨팅 적용

클라우드 컴퓨팅 시장동향(1/2)

■ 세계 클라우드컴퓨팅 시장(응용/서비스, 플랫폼, 인프라) ; 연평균 34.0% 성장률예측

구분	2009	2010	2011	2012	2013	2014	CAGR	단위 : 억약
클라우드 응용 서비스	442	631	902	1,288	1,546	2,072	36%	
클라우드 플랫폼	60	86	123	176	211	283	36%	
클라우드 인프라	153	219	312	446	535	763	38%	
클라우드컴퓨팅 시스템	141	160	187	223	271	316	18%	
총계	796	1,096	1,524	2,133	2,563	3,434	34%	

■ 국내 클라우드컴퓨팅 시장(응용/서비스, 플랫폼, 인프라); 연평균30% 성장률 예측

구분	2009	2010	2011	2012	2013	2014	CAGR
클라우드 응용 서비스	4,069	5,802	7,873	9,812	11,789	15,385	30%
클라우드 플랫폼	556	793	1,076	1,341	1,611	2,102	30%
클라우드 인프라	1,409	2,009	2,726	3,397	4,082	5,402	31%
클라우드컴퓨팅 시스템	705	1,006	1,365	1,700	2,043	2,591	30%
총계	6,739	9,610	13,040	16,250	19,525	25,480	30%

단위 : 억\$

출처 : 2009년 범정부범정부 클라우드 컴퓨팅 활성화 종합계획 참조 (KEIT(2009), IDC(2009), IBM(2009), Gartner(2009))

클라우드 컴퓨팅 시장동향(2/2)

- 2014년 세계 클라우드 서비스 시장, 1,488억 달러 규모 형성
 - 지역별 클라우드 서비스 시장을 살펴보면, 북미지역이 60%의 시장 점유율을 기록 중이며,
 '14년까지 50% 수준을 유지할 전망
 - 산업분야별로는 금융과 제조 분야가 가장 큰 초기 시장을 형성하였고, 당분간 시장 점유율 구도에는 큰 변화가 없을 듯
 - 클라우드 컴퓨팅 시장은 독자적인 서비스와 솔루션을 제공하며 HW 관리 능력과 SW 기술력을 보유한 해외 기업 및 글로벌 벤더 기업을 중심으로 전개

< 클라우드 서비스 시장 전망 >

< 분야별 시장 점유율(2009) >

자료 : Gatner 2010 (정보통신산업진흥원 재구성)

클라우드 컴퓨팅의 확산

Beginning Cloud

Easy Fast Low Cost

단위부서 업무 or 일정부분업무 SFA/ CRM/ Service Center

Social Mobile Open

twitter

전사업무 고객과의 소통 완벽한 Mobile

클라우드 컴퓨팅 전망

< 클라우드 컴퓨팅 관련 각계 주요 전망 >

IT서비스 면에서의 클라우드 컴퓨팅 서비스

Cloud Computing = Revolution of Computer System Architecture

IT 패러다임은 비즈니스 요구에 대한 최선의 대응임

■ IT 패러다임의 변화

출처 : 삼성 SDS(IT서비스 입장에서 바라본 클라우드 컴퓨팅)

IT 패러다임은 비즈니스 요구에 대한 최선의 대응임

■ 비즈니스와 IT 서비스의 상관관계

비즈니스가 생각하는 IT인프라	비즈니스를 위한 IT인프라의 대응			
 IT 의존도는 점점 높아진다. IT 비용은 급증한다. IT에 문제가 생기면 비지니스가 큰 타격을 받는다 IT는 경쟁력의 핵심요소이면서 동시에 경쟁력 저하의 요인이 될수도 있다! 		(자동화) (표준화)	IT자원의 사용 운영자동화로 안정성을 높이 표준화된 범용 사용하자. 공개된 기술을	원가절감과 자. 의 장비를
1 - M-1.	Cloud Computing			uting

출처: 삼성 SDS(IT서비스 입장에서 바라본 클라우드 컴퓨팅)

Client/Server 대 Cloud Computing

구분	메인프레임 → Client/Server 중앙집중화(불리) < 분산처리(유리)	Client/Server → Cloud Computing 중앙집중화(유리) > 분산처리(불리)
비용	- 메인프레임의 TCO 너무 높음 : UNIX로 전환	- 가격 對 성능이 좋은 장비 등장 (x86)
기업환경 변화	 기업 확장에 따라 사업장 분산 확대 PC의 급속한 발전 및 EUC 필요성 대두 IT 의존도가 점차 높아지면서 IT인력에만 의존해서는 생산성 한계 봉착 	- 모바일 환경의 급속한 도래 • 극도의 분산은 분산컴퓨팅을 불가하게 함
기술	- 통신 병목 - 아키텍처 한계 · 비유) 대형 주택 1채에 여러 가구 몰아 넣기	- 인터넷 발달로 장비와 데이터를 모아도 문제 없음 - 아키텍처 혁신으로 중앙집중화의 문제점 해결 • 비유) 표준화된 대규모 아파트 단지로 구성
중앙집중식	- 문제점 부각 ・기계 1대에 너무 많은 업무 집약 ・증설 및 유지보수 어려움	- 가치 재발견 • 관리 용이성 = 비용절감 = 기업자산 보안 = 산출물 공유
프로세스 혁신	- 현장 중심의 BPR/PI	- IT자산관리, 통합구매, 표준화, Smart office
성공사례	- 그룹웨어(Mail System)	- SBC(단말기 혁신) 및 R&D 업무 혁신
핵심업무	- 상당 기간 메인프레임에서 운영	- 상당 기간 UNIX에서 작동

클라우드컴퓨팅 = 네트워크와 중앙집중식 컴퓨팅의 결합으로 새로운 가치를 창출하는 접근법

클라우드컴퓨팅 vs. 클라우드서비스

- 클라우드 컴퓨팅 : 클라우드 인프라 공급자 가 제공하는 서비스
- 클라우드 서비스 : 인터넷/모바일 기반의 컨텐츠 서비스 (= 클라우드 인프라 소비자)
 - 모바일 클라우드, 퍼스널 클라우드, 웹하드, ...

서비스 ^{컨텐츠, 애플리케이션}

> **인프라** 서버, 스토리지, SW Platform Network

* SW Platform : DBMS, WAS, File System 등

B2C * 인프라 측면에서 B2B, B2C 동일 B2B

출처 : 삼성 SDS(IT서비스 입장에서 바라본 클라우드 컴퓨팅)

" IT인프라 혁신을 통한 고객가치 창출 "

		서비스라인 세부 서비스		해외 사례
		SBC Cloud (단말기 사용 방식의 혁신)	■ Smart Desk (업무용, R&D용) ■ RBS(Remote Biz. Support) ■ Mobile ■ CAD	IBM Smart Biz. Desktop Cloud 씨티은행, 미쓰비시은행
표 준 플 랫폼	준 플	R&D Cloud (R&D 부문의 IT환경 혁신) - IDE(Integrated Dev. Environment) Environment) - HPC		<u>IBM RC2</u> (Research Compute Cloud)
		WEB Cloud (IT자원 공급 방식의 혁신)	CS(Compute Service)SS(Storage Service)MSS(Managed Storage Service)	Amazon Web Services (EC2, S3)
	맞 춤 형	ETS Cloud (기업업무용 시스템 혁신)	■ 공유형 개발테스트 환경 ■ CRM ■ 협력사 공유형 클라우드 인프라	DISA, MS Azure, JP Morgan

출처 : 삼성 SDS(IT서비스 입장에서 바라본 클라우드 컴퓨팅)

클라우드 서비스의 종류와 특징

구분	특징	서비스
SaaS (Software as a Service)	■ S/W나 애플리케이션을 서비스 형태로 제공 ■ 기존 S/W처럼 라이선스를 구매해 단말에 직접 설치하는 것이 아니라 웹을 통해 임대' 하는 방식	Google Apps, Apple MobileMe, Nokia Files on Ovi, MS Dynamic CRM Online 등
PaaS (Platform as a Service)	■ 애플리케이션 제작에 필요한 개발 환경, SDK 등 플랫폼 자체를 서비스 형태로 제공 ■ 개발사 입장에서는 비싼 장비와 개발 툴을 자체 구매하지 않고도 손쉽게 애플리케이션 개발이 가능함	Google App Engine, Windows Azure, force.com, Facebook F8, Bungee Labs 등
IaaS (Infrastructure as a Service)	 서버, 스토리지(storage), CPU, 메모리 등 각종 컴퓨팅 기반 요소를 서비스 형태로 제공 자체 인프라에 투자하기 어려운 중소 업체가 주요 고객 	Amazon EC2 & S3, GoGrid Joyent, AT&T 등

출처: 한국콘텐츠진흥원 (클라우드컴퓨팅 기술동향)

클라우드 서비스별 주요 제품

대분류	중분류	주요 제품
	응용 SW 서비스	GoogleApps, Salesforce.com Apps, Apple MobileMe, Nokia OVI, IBM Bluehouse
SaaS	웹 기반 서비스	HP Snapfish, MS Office Live, HP Magcloud
	응용 SW 컴포넌트 서비스	Amazon FPS(Flexible Payments Service) API, Google MAP API, Google Calendar APIs, Yahoo! Maps API
	엔터프라이즈 플랫폼 서비스	GigaSpaces, Oracle SaaS platform
PaaS	호스티드 플랫폼 서비스	Google AppEngine, Salesforce Force.com, MS Azure, Sun Caroline, Cloudera
	데이터베이스 클라우드 서비스	Amazon SimpleDB, Google Base, MS SDS
	미들웨어 클라우드 서비스	Amazon SQS(Simple Queue Service)
laaS	스토리지 클라우드 서비스	Amazon S3(Simple Storage Service), EMC Mozy/Atmos, Rackspace CloudFiles
	컴퓨터 클라우드 서비스	Amazon EC2(Elastic Compute Cloud), Saw is Cloud Compute

자료: ETRI, 2009

소프트웨어 서비스(Saas, Software as a Service) 핵심 기술

- 단일 SaaS 인터페이스 동일한 서비스에 대한 동일한 규격의 사용자 인터페이스
- 어플리케이션 페더레이션 어플리케이션 간의 통신기법에 대한 고려
- 위치정보 기술 글로벌 환경에서의 이동성을 적용하여 유연하게 작동되게 하는 환경
- QoS 및 SLA 사용자 인터페이스에서의 QoS는 하위 플랫폼 서비스 기능을 일컬음.
- 보안 프레임 워크 서비스의 무결성을 보장하고 사용자의 신뢰를 얻기위한 통합 프레임 워크 기반 보안 정책이 필요

소프트웨어 서비스(Saas, Software as a Service) 특징

기존 소프트웨어 라이선스를 구매하여 개별 단말에 설치해야 하는 패키지 방식에서 벗어나, 웹 상에서 제공되는 소프트웨어를 필요한 만큼 대여하여 이용하는 서비스

■ 장점

- 사용한 만큼만 요금을 지불하는 방식이라 이용자의 부담을 경감시키는 효과
- 번거로운 업데이트 다운로드 및 설치 불편 해소

■ 문제점

- 기존 패키지 소프트웨어와의 호환성 문제
 (특히 문서 작성 프로그램 등 워드, 아래아 한글 등 패키지 소프트웨어의 점유율이 높은 경우 이용자가 쉽게 클라우드 서비스로 전환하지 못함
- 3D 그래픽 작업용 소프트웨어와 같은 고용량, 고사양 제품의 경우 인터넷
 으로 제공되는 데 한계가 있음

출처 : 한국콘텐츠진흥원 (클라우드컴퓨팅 기술동향)

플랫폼 서비스 (PaaS, Platform as a Service) 핵심 기술

- 단일 PaaS 인터페이스 상위의 소프트웨어가 하위의 인프라 서비스를 활용할 수 있는 미들웨어 수준의 인터페이스가 필요
- 투명성 서비스간의 마이그레이션 이슈. 어플리케이션의 트랜잭션 관리 및 동시 실행과 같은 기술적 문제를 해결하기 위한 단순한 구조가 필수적.
- 단일 PaaS 관리 기술 서비스를 저장하기 위한 저장 기술(Repository), 검색하게 하는 기술(Registry), t서비스간의 조합 및 재배치 기술(Orchestration)

플랫폼 서비스 (PaaS, Platform as a Service)

프로그램 및 애플리케이션 개발 작업을 수행하는 데 필요한 개발 툴 등의 플랫폼 환경을 대여해주는 서비스. 주로 플랫폼 홀더가 자사의 플랫폼 생태계를 강화할 목적으로 무료 또는 저렴한 가격에 PaaS를 제공.

■ 장점

- 개발 툴 이용에 따른 라이선스 비용 등을 사용한만큼 지불함으로써 개발자부담 경감
- 클라우드 상에 구축된 협업 환경을 통해 원활한 작업 프로세스를 지원
- 개발자는 개발 비용을 절감하고 플랫폼 홀더는 더 많은 개발자의 참여로 풍부한 콘텐츠 확보가 가능해지는 윈윈(Win-Win) 효과 기대

■ 문제점

- 플랫폼 홀더간 이해관계 충돌로 서비스간 호환성 문제 발생
- 개발자 입장에서는 개별 플랫폼마다 별도의 개발 작업을 수행해야 하는
 불편을 겪음

인프라 서비스 (IaaS, Infrastructure as a Service) 핵심 기술

- SLA 프레임 워크 상위 수준에서 언급한 QoS 부분. 하위 인프라 서비스의 품질을 제어할 수 있는 기술들을 플랫폼 서비스 레벨에서는 고려를 해야함
- 보안 프레임워크 표준화를 통한 강력한 통합체제가 신뢰성을 확보하는 열쇠

인프라 서비스 (IaaS, Infrastructure as a Service)

컴퓨팅 자원의 기본이 되는 저장매체와 하드웨어 시스템, 서버 등의 인프라 기반을 클라우드 형태로 제공하는 서비스. 중앙 서버에서 데이터를 통합 관리하고 요청이 들어온 단말에 전송하는 방식.

■ 장점

- 인터넷을 통해 언제 어디서든 원하는 데이터에 접근
- 저장된 데이터는 동기화 절차를 거쳐 다양한 단말에서 동시 접근이 가능
- 개별 단말에 데이터를 저장하지 않기 때문에 단말기 파손이나 분실, 해킹에 따른 데이터 피해 우려 감소
- 직접 데이터 센터를 운영하기 힘든 중소 기업의 경우 클라우드 서버를 대여하는 방식으로 데이터 관리 비용을 절감할 수 있음

■ 문제점

- 클라우드 사업자의 데이터 센터에서 모든 데이터를 총괄하기 때문에, 데이터 센터에 이상이 발생할 경우 치명적인 손실이 우려
- 데이터 센터에 천재지변이 일어날 경우 고객의 모든 데이터가 한꺼번에 사라지는 재앙이 닥칠 수 있음
- 대부분의 IaaS 사업자는 최대한 위험이 덜한 센터 부지를 선정하고 복수의 데이터 센터를
 운영하는 등 만일의 사태에 대비하고 있음

국내 클라우드 컴퓨팅 기술 표준화 추진 현황

컴퓨팅 자원을 빌려 사용하는 클라우드 환경에서 상호운용성과 신뢰성에 기반한 클라우드 서비스를 실현하기 위해 기술 표준화에 대한 요구가 증가하고 있음

- 각 사업자마다 독자적인 기술 표준을 제공하고 있어 서비스간 호환성이 보장되지 않음
- 비표준 기반의 클라우드 서비스가 확산될 경우 일부 사업자에 의한 서비스 종속 및 독점 현상이 우려됨
- 애플, 구글, 마이크로소프트 등 외국계 IT 기업의 국내 클라우드 시장 잠식

구분	표준화 대상항목	구분	표준화 대상항목
	스마트 클라우드 표준		클라우드 보안 표준
클라우드 서비스 /응용	클라우드 SLA 표준		클라우드 서비스 플랫폼 API 표준
	클라우드 미터링 표준	클라우드 플랫폼	센서 클라우드 플랫폼 표준
	클라우드 상호운용성 표준		대규모 데이터 분산 병렬 처리
330F 330ME	클라우드 클라이언트 표준		클라우드 메타데이터 관리 표준
클라우드 클라이언트	모바일 클라우드 표준		입출력 장치 가상화 표준
	클라우드 스토리지 관리 표준	330F01#31	컴퓨팅 시스템 가상화 표준
클라우드 인프라	클라우드 시스템 관리 표준	클라우드 인프라	스토리지 가상화 표준
			클라우드 네트워크 자원 관리

클라우드 컴퓨팅 핵심기술

클라우드 컴퓨팅 핵심기술

Г						
	주요기술	개념 및 의미	요소기술			
	가상화기술	 가상 하드웨어 인프라를 구축해 물리적인 하드웨어의 한계를 넘어선 시스템 운영 한 대의 전산자원을 한 대처럼 운영하거나 그 반대로 운영하는 기술 	Resource Pool, Hypervisor, 가상 I/O, Partition Mobility 등			
	대규모 분산처리	▶ 대규모의 서버 환경(수천 노드 이상)에서대용량 데이터를 분산 처리하는 기술	분산처리기술			
	오픈 인터페이스	 인터넷을 통해 서비스를 이용하고 서비스간 정보 공유를 지원하는 인터페이스 기술 클라우드 기반 SaaS, PaaS에서 기존 서비스에 대한 확장 및 기능 변경에 적용 가능 	SOA, Open API, Web Service 등			
	서비스 프로비저닝	서비스 제공업체가 실시간으로 자원을 제공서비스 신청부터 자원 제공까지의 업무 자동화, 클라우드의 경제성과 유연성 증가	자원 제공 기술			
	자원 유틸리티	전산자원에 대한 사용량 수집을 통해 과금 체계를 정립하기 위한 기술	사용량 측정, 과금, 사용자 계정 관리 등			
	SLA (서비스 수준 관리)	외부 컴퓨팅 자원을 활용하는 클라우드 서비스의 특성 상 서비스 수준이라는 계량화된 형태의 품질 관리 기술 요구됨	서비스 수준 관리 시스템			
	보안 및 개인정보 관리	▶ 민감한 보안 정보를 외부 컴퓨팅 자원에 안전하게 보관하기 위한 기술	방화벽, 침입방지 기술, 접근권한 관리 기술 등			
	다중 공유 모델	하나의 정보자원 인스턴스를 여러 사용자 그룹이 완전히 분리된 형태로 사용하는 모델SaaS를 제공하는 데 필수 요소로 꼽힘	-			

Virtualization Technology(가상화 기술)(1/8)

가상화는 컴퓨터 리소스의 <mark>물리적인 특징을 추상화</mark>하며, 사용자에게는 <mark>논리적</mark> 리소스를 제공하며, 이를 통하여 다양한 기술적/관리적 이점들을 제공하는 기술.

Virtualization Technology(가상화 기술)(2/8)

■ 가상화의 주요 목적

가상화는 사용자와 물리 리소스간의 가상화 Layer 구현을 통하여, 컴퓨팅 리소스에 대한 접근 및 인프라관리를 간소화하는 것이 목적.

Virtualization Technology(가상화 기술)(3/8)

■ 가상화 기술분류

Virtualization Technology(가상화 기술)(4/8)

■ Hypervisor 가상화

Hypervisor는 물리적 서버 위에 존자하는 가상화 레이어로, 운영체제 구동을 위한 하드웨어 환경을 가상화로 제공함.(소프트웨어 기반 Partitioning)

- 프로세서나 메모리와 같은 다양한 컴퓨터 자원에 서로 다른 각종 운영체계의 접근 방법을 통제하는 얇은 계측의 소프트웨어
- 다수의 OS를 하나의 컴퓨터 시스템에서 가동할 수 있게 하는 소프트웨어로 중앙처리장치와 OS 사이에 일종의 중간웨어로 사용되며,하나의 컴퓨터에서 서로 다른 OS를 사용하는 가상 컴퓨터를 만들 수 있는 효과적인 가상화 엔진 Bare-Metal Hypervisor Hosted Hypervisor

Virtualization Technology(가상화 기술)(5/8)

■ 스토리지 가상화

스토리지 가상화는 이기종 스토리지 디바이스 구성을 논리적인 형태로 재구성하며, 가상볼륨을 통한 가용성확보, 재해복구(DR: DisasterRecovery). 데이터 마이그레이션 지원 그리고 애플리케이션 성능향상을 위한 작업량 분산기능을 포함함.

OIDIS 스토리지 관리 복잡도/부담 증가 SAN Fabric HITACHI Inspire the Next

기관(조직) 내 이기종 스토리지 공존으로 관리를 위한 기술적 복잡도 및 업무 부담 증가

- 스토리지 자원에 논리적인 Pool 개념을 도입해, 다수 이 기종 스토리지 자원 간의 물리적 경계를 극복
- 스토리지 관리 Point 감소 및 관리 업무 효율성/효과성 제고

Virtualization Technology(가상화 기술)(6/8)

■ 스토리지 가상화 주요 기술

구분	설명
Controller Virtualization	-스토리지 서브시스템 또는 컨트롤러를 파티션으로 나누어 여러 개의 논리적인 스토리지 컨트롤러를 구현/제공 하는 기술(서버 파티셔닝과 유사) -단일 물리 스토리지 장비를 하나 이상의 논리적 스토리지로 나누어 활용 -각 논리적 파티션 간의 자원(프로세서, 캐시 메모리, 어댑터, 디스크 드라이브 등) 사용은 엄격이 분리/운영
(Disk) Block Virtualization	●일반적으로 이해되고 있는 스토리지 가상화 방식으로, 다수의 이 기종 스토리지에 위치한 유휴 디스크 공간을 모아서 가상 디스크(볼륨) 생성 ●SAN Fabric 상에 위치한 "가상화 엔진"에 의해 각 서버에 가상 볼륨 할당 ●전용 Applicance(가장 일반적), Storage Array 그리고 지능형 SAN 스위치 방식이 있음
Tape Virtualization	 Tape Media/Drive/Library를 Disk에 Emulation하여, 논리적인 Tape 디바이스를 제공 (VTL:Virtual Tape Library) HSM[Hierarchical Storage Management] 또는 ILM[Information Lifecycle Management] 솔루션에서, 백업 성능 향상 및 효과성 확보를 위하여 활용
File System Virtualization	■SAN 또는 NAS 상에서 공통으로 사용 가능한 Virtual File System을 구성하여 제공 ■Host/Server의 운영 체제에 관계없는 데이터 공유와 정책 기반의 단일화된 관리 지원 ■NFS[Network File System] 및 CIFS[Common Internet File System] 기술 활용
File/Record Virtualization	-스토리지 내 저장 File/Record에 대한 Signature를 생성하여, File 또는 File System Block 단위의 단일 이미지 만을 저장 (Data De-duplication) - 다수의 백업 본이 존재하거나, 다수의 사용자가 동일한 File 또는 File System Block을 중복 저장하는 환경에 적용 시, 스토리지 저장 공간 절약 및 백업/업무 효율성의 향상 도모 - 내부 공통 스토리지 또는 원격지 DR[Disaster Recovery] 환경에 적용

Virtualization Technology(가상화 기술)(7/8)

■ 데이터 가상화

데이터 가상화는 조직(기관)이 보유한 대규모의 분산 데이터에 대한 물리적 또는 논리적통합으로,데이터 접근경로의 표준화를 통하여,데이터의 정보 또는 지식화를 지향함.

B유형 데이터베이스 클러스터링 CPU CPU CPU CPU 메모리 메모리 메모리 메모리 메모리 메모리 메모리

- 데이터가 저장되는 디스크를 다중 서버(파티션)들이 공유하며, 네트워크 상에서 데이터베이스 간의 동기화 (Synchronization) 수행
- SAN 환경에서 공유 파일 시스템 설치 또는 서버 내 디스크 관리 모듈 간 지속적 동기와 수행
- (子色 사례) Oracle 10g RAC

비공유형 데이터베이스 클러스터링

- 하나 이상의 물리적 서버로 구성되며, 각 서버들은 외장 디스크를 공유하지 않음 (완전 비공유형 구조)
- 각 서버(파티션)은 각자 고유한 프로세서, 메모리, 디스크 보유
- 선명적 확장성이 뛰어나며 디스크 I/O 병목 연상 우려 불식 (대 용량 Data Warehouse에 적합)
- (구연 사례) IBM DB2 DPF(Database Partitioning Feature)

Virtualization Technology(가상화 기술)(8/8)

■ 워크로드 가상화

워크로드 가상화는 이기종간 통합 및 연동이 어려운 물리적 하드웨어 관점의 가상화 기술에 대하여, 애플리케이션 관점에서 가상화의 효과를 획득하고자함

구분	Transaction 기상화	Task 가상화	Presentation 기상학
정의	- 가상 머신 기반 미들웨어를 활용한, 워크로드 로드 밸런싱 및 신규 인스턴 스 생성을 통제 기술	- 그리드 미들웨어를 활용하여 이 기종 서버 환경 제약을 극복하고, job 스케 즐러를 이용하여 워크로드를 분산 저 리 및 로드 밸런싱하는 솔루션	•워크로드와 데이터/소프트웨어 등 모 튼 업무 자원은 중앙 집중명으로 구성 아는 솔루션
매커니즘 & 특징	•애플리케이션 워크로드를 실시간 모니 터링/분석아여 동적으로 워크로드 분 배/조정 자동화 •다수의 서버를 자원 Pool로 관리	사용자의 작업 요청 → job 생성 → provisioning(자원 알당) → job 종료 및 사용자 통보 이기종 다중 서버 간 워크로드 가상화	•서버 기반으로 클라이언트에게 Application 수행 환경 제공 •C/S 환경 업무 처리 효과 확보
장점	 서버 가용성 강화 SLA 관리 자동화 → 사용자 만족도 양상 	•이기종 마드웨어 간 자원 가상화 호완 성 부족을 상위 레이어(Job/Task) 에서 일부(유사) 종족	•보안성 강화 •중앙집중적 관리(효율성/효과성 증대) •소프트웨어 버전/라이선스 관리 - 데이터 정합성 관리
단점	-워크로드 관리 자동화 정도가 미약한 경우, 추가 관리 부담 발생	- 그리드 미들웨어의 구현/구성/운영 복 잡도 증가	▪조직(기관)의 이해와 개인의 이해 충돌
구연 사례	-J2EE	●컴퓨팅 그리드 - MS WCCS[Windows Compute Cluster Server] - PBS Pro - IBM LoadLeveler - Globus Toolkit	•SBC [Server Based Computing] • Citrix Presentation Server

워크로드 가상화 개념도 및 특징

분산처리 기술(1/3)

- 하나의 대형 컴퓨터 시스템에서 수행하던 기능을 지역적으로 분산된 여러 대의 단말기에 분담 시킨 후, 네트워크를 통해 상호간에 교신 및 처리하는 방식.
- 연산 속도와 신뢰성을 향상시키고, 컴퓨터 자원을 보다 효율적으로 이용하고자 하는 방안

그림 29. 가상화 없는 시스템 과 하드웨어 가상화 시스템.

▶ 특징

- **통신 기능**: 다수의 노드가 네트워크로 상호 연결되어 있으며, 각각의 프로세서간에 정보를 교환할 수 있음
 - 자원 공유: 다수의 노드가 네트워크를 통해 상호 연결되어 있으며, 한 노드에 있는 사용자는 다른 노드의 자원을 사용할 수 있음
 - 계산속도 증가: 특정 연산이 병행적으로 수행될 수 있는 다수의 부 연산 단위로 분할될 수 있으며, 병행 수행을 통해 여러 노드에 연산을 분담시킴

신뢰성 향상: 한 노드의 장애가 나머지 노드에 영향을 주지 않고 계속 동작할 수 있음

분산처리 기술(2/3)

■ 대규모 데이터 저장 관리 기술

인터넷 서비스용의 특화된 데이터 저장 관리 시스템이 필요

- 데이터 및 사용자 수 증가에 따른 확장성 제공
- 서비스 중단을 최소화하기 위한 고가용성 지원
- 인터넷 서비스 응용에서 요구하는
 기능 및 성능에 적합한 데이터
 관리 기능 제공

〈표 1〉 대규모 데이터 저장 관리 기술 비교

(표 1/ 네ㅠ포 데이디 시장 린디 기울 미굔					
분류	Bigtable(GFS)	Dynamo	PNUTS (YDOT, YDHT)		
수준	구조 데이터 분 산 저장 시스템	분산 저장 시스템	분산 데이터베이 스 관리 시스템		
8	온라인, 배치 인터넷 포털 서비스	e-commerce	온라인 인터넷 포털 서비스		
시스템 구조	Master/tablet server	Peer-to-peer	Tablet cont- roller/router/ storage unit		
모델	다차원 맵, 스키마 존재	(key-value) 집합, 구조 없음	단순한 릴레이션		
트랜 잭션	consistent	eventually consistent	Relaxed consistent		
분산 배치	정렬키 범위 기반 파티션	해시키 기반 파티션	키 기반 파티션 (정렬키, 해시키)		
복제	3 노드에 동기 복제(GFS 담당)	N 노드에 비동기 복제	데이터 센터간 비동기 복제		
DBL	없음	없음	SQL		

출처: 2009 제 24권 제 4호 한국전자통신연구원

분산처리 기술(3/3)

■ 대규모 데이터 처리 기술

데이터 가공, 분석을 수행하는 배치성의 데이터 처리 하는 기술.

- 인터넷 데이터의 규모가 지속적으로 증가함에 따라 처리 단축이 필요
- 독자적으로 병렬 분산 처리를 활용
 하여 개발해 오다가 이를 공통
 플랫폼으로 제공하기 시작

〈표 2〉 대규모 데이터 처리 기술 비교

분류	MapReduce	Sawzall, Pig	Hive
수준	분산 병렬 데이터 처리	데이터플로 언어 처리	데이터웨어 하우스
대상	파일 데이터베이스	파일	구조를 갖는 파일
데이터 모델	(key, value)로 구성된 Map	구조를 갖는 Bag, Map 등	영속적인 구조를 갖는 Bag
데이터 처리 기능	정렬, 키 기반 그룹핑	정렬, 그룹핑, 조인, 필터링	정렬, 그룹핑, 조인, 필터링
인터페이스	API	Data Flow Language	SQL

출처 : 2009 제 24권 제 4호 한국전자통신연구원

Service Level Agreement(서비스 수준 관리)

SLA는 클라우드 서비스 제공자와 클라우드 서비스 소비자 간의 서비스수준 관리

"고객에게 제공하는 클라우드 컴퓨팅 서비스의 수준을 정량적으로 측정하고, 서비스 성과를 평가 /보상하여 서비스를 주고받는 양 당사자 간의 서비스를 보증하기 위한 품질 상세 약정"

▶ 특정

- 정형화된 지표 : 클라우드 컴퓨팅 SLA는 인터넷/네트워크를 통해 제공되는 서비스로 확장성과 유연성을 갖는다. 이러한 서비스는 사용자와 합의하에 지표를 구성하는 것이 아니라 "가용성", "성능", "보안","서비스 제공성" 등 클라우드 컴퓨팅의 특징을 반영한 정형화된 지표 유형으로 구성되어야 한다.
- SLA등급 선택: 클라우드 컴퓨팅 SLA 등급수준은 사용자에 의해 선택되며 선택된 SLA 등급에 따라 서비스 품질과 SLA 평가 보상체계가 다르게 반영되어야 한다.
- SLA평가 보상 : 클라우드 컴퓨팅 SLA 평가 결과에 대한 보상 체계는 서비스 제공자의 모델에 따라 구성된다.