Evaluation of solar irradiance azimuthal dependence over Thessaloniki

Natsis Athanasios

Laboratory of Atmospheric Physics

2021-01-27

1/25

Intro

Question

Is there an asymmetry on the measured irradiance around South-North direction over Thessaloniki?

2/25

Broadband Instruments

CHP-1

- Beam irradiance (DNI)
- Tracking the sun
- 200nm 4000nm

CM-21

- Global irradiance (GLB)
- Viewing the "whole" sky
- 335nm 2200nm

Data for this work

Variables

- Data span: 2016 2019
- CHP-1: Beam irradiance (DNI) $(Watt/m^2)$
- CM-21: Diffuse irradiance (DHI) (Watt/m²)

 $\mathsf{DHI} = \mathsf{GHI} - \mathsf{DNI} \cdot coz(z)$

Main data process steps

- Initial measurements
 - Manual inspection
 - * Quality control checks and filtering
 - An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, C. N. Long, Y. Shi, 2008
 - "Clear sky" identification Identification of periods of clear sky irradiance in time series of GHI measurements, Matthew J. Reno. Clifford W. Hansen. 2016

Measurements

From voltage to watt...

Quality control, Physical limits

Comparison test 3. 2018

Quality control, erroneous data

Clear sky id

Analysis

Key concepts

- Bin data by:
 - Azimuth angle
 - Zenith/Elevation angle
 - Month
- Compute the average irradiance in each bin
 - The whole 4 year period
 - The same month of all years
- We present the difference of averages for symmetric sky location around North-South axis

9 / 25

Results

Difference of averages no constrains

Results

Difference of averages with high statistical significance (p<0.05) and relative difference of the sample size < 30%

January Difference of averages no constrains

February Difference of averages no constrains

March Difference of averages no constrains

April Difference of averages no constrains

May Difference of averages no constrains

June Difference of averages no constrains

July Difference of averages no constrains

August Difference of averages no constrains

September Difference of averages no constrains

October Difference of averages no constrains

November Difference of averages no constrains

December Difference of averages no constrains

Conclusions

West part of the sky greater values of mean irradiance

- Valid for Diffuse, Direct and Global component
- For the 4-vear period

The balance can change during the year

- Using only sza when analyzing this data may hide some information
- Representation issues exist when generalizing

Diffuse and Direct irradiance bias shows a complementary distribution

- It's a calculation artifact?
- Which mechanisms attenuate these results?

Thank you!

natsisthanasis@gmail.com

25 / 25