UCS310: DATABASE MANAGEMENT SYSTEM

L T P Cr 3 0 2 4

Course Objectives: To become familiar with different types of data structures and their applications and learn different types of algorithmic techniques and strategies.

Introduction: Data, data processing requirement, desirable characteristics of an ideal data processing system, traditional file-based system, its drawback, concept of data dependency, Definition of database, database management system, 3-schema architecture, database terminology, benefits of DBMS.

Relational Database: Relational data model: Introduction to relational database theory: definition of relation, keys, relational model integrity rules.

Database Analysis: Conceptual data modeling using E-R data model -entities, attributes, relationships, generalization, specialization, specifying constraints, Conversion of ER Models to Tables, Practical problems based on E-R data model.

Relational Database Design: Normalization- 1NF, 2NF, 3NF, BCNF, 4NF and 5NF. Concept of De-normalization and practical problems based on these forms.

Transaction Management and Concurrency control: Concept of Transaction, States of Transaction and its properties, Need of Concurrency control, concept of Lock, Two phase locking protocol.

Recovery Management: Need of Recovery Management, Concept of Stable Storage, Log Based Recovery Mechanism, Checkpoint.

Database Implementation: Introduction to SQL, DDL aspect of SQL, DML aspect of SQL – update, insert, delete & various form of SELECT- simple, using special operators, aggregate functions, group by clause, sub query, joins, co-related sub query, union clause, exist operator. PL/SQL - cursor, stored function, stored procedure, triggers, error handling, and package.

Laboratory work: Students will perform SQL commands to demonstrate the usage of DDL and DML, joining of tables, grouping of data and will implement PL/SQL constructs. They will also implement one project.

Project: It will contain database designing & implementation, should be given to group of 2-4 students. While doing projects emphasis should be more on back-end programming like use of SQL, concept of stored procedure, function, triggers, cursors, package etc. Project should have continuous evaluation and should be spread over different components.

Course learning outcomes (CLOs):

On completion of this course, the students will be able to:

- 1. Analyze the Information Systems as socio-technical systems, its need and advantages as compared to traditional file-based systems.
- 2. Analyze and design database using E-R data model by identifying entities, attributes and relationships.
- 3. Apply and create Relational Database Design process with Normalization and De-normalization of data.
- 4. Comprehend the concepts of transaction management, concurrence control and recovery management.
- 5. Demonstrate use of SQL and PL/SQL to implementation database applications.

Text Books:

- 1. .Silverschatz A., Korth F. H. and Sudarshan S., Database System Concepts, Tata McGraw Hill (2010) 6thed.
- 2. Elmasri R. and Navathe B. S., Fundamentals of Database Systems, Pearson (2016) 7thed.

Reference Books:

- 1. Bayross I., SQL, PL/SQL the Programming Language of Oracle, BPB Publications (2009) 4thed.
- 2. HofferJ., Venkataraman, R. and Topi, H., Modern Database Management, Pearson (2016) 12thed.

Evaluation Scheme:

S.No.	Evaluation Elements	Weightage
		(%)
1	MST	25
2	EST	45
3	Sessionals (Assignments/Projects/ Tutorials/Quizzes/Lab	30
	Evaluations)	