Permit Number 90163

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates		
Polit No. (1)		Name (3)	lbs/hour	TPY (4)	
1	TDU Dryer (32 MMBtu/hr)	PM ₁₀	0.24	1.04	
		PM _{2.5}	0.24	1.04	
		SO ₂	0.02	0.08	
		NO _x	3.14	13.74	
		СО	2.64	11.54	
		VOC	0.17	0.76	
		НАР	0.06	0.32	
7	TDU Steam Boiler (8 MMBtu/hr Natural Gas fired)	PM ₁₀	0.06	0.26	
		PM _{2.5}	0.06	0.26	
		SO ₂	0.01	0.02	
		NO _x	0.78	3.44	
		СО	0.66	2.89	
		VOC	0.04	0.19	
		HAP	0.01	0.06	
8A	TDU Conveyor	PM ₁₀	0.02	0.03	
		PM _{2.5}	0.01	0.01	
8B	TDU Transfer Points (Desorbed Solids Bin)	РМ	0.15	0.29	
	DIII)	PM _{2.5}	0.02	0.04	
BH/Venturi	TDU Baghouse/Venturi Scrubber	PM ₁₀	0.09	0.38	
Project Number: 180					

		PM _{2.5}	0.09	0.38
		VOC	0.20	0.37
		H ₂ SO ₄	0.01	0.01
		NH ₃	0.01	0.03
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.03
		HAP	0.20	0.37 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
СТ	TDU Cooling Tower	PM	0.62	2.72
		PM ₁₀	0.62	2.72
		PM _{2.5}	0.62	2.72
BOX-1	TDU Centrifuge Cake Rolloff	voc	4.23	1.76
		HAP	4.23	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH₃	0.15	0.06
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BOX-1B	TDU Centrifuge Cake Rolloff	voc	4.23	1.76
		HAP	4.23	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	

		NH ₃	0.15	0.06
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BOX-2	TDU Gas Treatment Cake Box	VOC	0.13	0.42
		HAP	0.13	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H₃PO₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
SHAKER	TDU Shaker Box	VOC	0.17	0.14
		HAP	0.17	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BIN-FUG	Feed Bin Fugitives (5)	VOC	10.18	18.64
		HAP	10.18	0.45 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.18	0.35

		HNO ₃	0.01	0.03
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.02
CARBFLT1	Carbon Canister Set 1	VOC	0.01	0.01
		HAP	0.01	0.013 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
CARBFLT2	Carbon Canister Set 2	VOC	0.01	0.01
		HAP	0.01	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
CARBFLT3	Carbon Canister Set 3	voc	0.15	0.01
		HAP	0.15	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01

		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
FUG-TDU	TDU Piping Fugitives (5)	VOC	0.16	0.18
		HAP	0.03	0.02 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.024	0.10
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.04
PROD-LOAD	TDU Product Loading	VOC	0.36	0.01
		HAP	0.36	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.05	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.02	0.01
FUG-2	CKD Pile	PM	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
BH5	Stabilization Building 2 Bins Dust Collector	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
ВН6	Stabilization Building 2 Bins Dust Collector	PM ₁₀	0.01	0.01
	Collector	PM _{2.5}	0.01	0.01

FUG-1	Stabilization Building 2 Process Fugitives (5)	PM ₁₀	0.02	0.02
	. ag.aros (o)	PM _{2.5}	0.01	0.01
		VOC	15.08	(6)
		HAP	15.08	(7) (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.42	
	NH ₃	0.36	2.90	
		HNO ₃	0.12	1.11
		H ₃ PO ₄	0.03	0.42
		H ₂ O ₂	0.02	0.15
BH1	Stabilization Building 2 Pans Baghouse	PM ₁₀	0.03	0.04
		PM _{2.5}	0.01	0.01
		VOC	135.76	(6)
		HAP	135.76	(7) (8)
		H ₂ S	0.01	
		HF	0.11	
		HCI	3.77	
		NH ₃	3.25	2.61
		HNO ₃	1.09	1.00
		H ₃ PO ₄	0.24	0.38
		H ₂ O ₂	0.16	0.13
ВН2	Stabilization Building 3 Pans Baghouse	PM ₁₀	0.02	0.02
		PM _{2.5}	0.01	0.01
		VOC	122.74	(6)
		HAP	122.74	(7) (8)
		H ₂ S	0.01	
		HF	0.02	

	Stabilization Buildings Annual	voc		22.23
		H ₂ O ₂	0.03	0.02
		H ₃ PO ₄	0.03	0.05
		HNO ₃	0.13	0.19
		NH ₃	0.53	0.49
		HCI	0.47	
		HF	0.01	
		H ₂ S	0.01	(1)(3)
		HAP	27.28	(7) (8)
		VOC	27.28	(6)
	Fugitives (5)	PM _{2.5}	0.01	0.01
UG-3	Stabilization Building 3 Process	PM ₁₀	0.01	0.01
		H ₂ O ₂	0.14	0.11
		H ₃ PO ₄	0.13	0.21
		HNO ₃	0.60	0.84
	NH ₃	2.38	2.18	
		HCI	2.11	
		HF	0.18	
		H ₂ S	0.01	
		HAP	122.74	(7) (8)
		VOC	122.74	(6)
		PM _{2.5}	0.01	0.01
sH7	Stabilization Building 3 Pans Baghouse	PM ₁₀	0.02	0.02
		H ₂ O ₂	0.14	0.11
	H ₃ PO ₄	0.13	0.21	
		HNO ₃	0.60	0.84
		NH ₃	2.38	2.18
		HCI	2.11	

		НАР		4.28 (8)
ВН3	Stabilization Building 3 CKD Bin Baghouse	PM ₁₀	0.01	0.01
	Bagnouse	PM _{2.5}	0.01	0.01
ВН8	Stabilization Building 3 CKD Bin Baghouse	PM ₁₀	0.01	0.01
	Bagnouse	PM _{2.5}	0.01	0.01
BH4	Catalyst Building Baghouse Scrubber	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
		НАР	0.01	0.01
CAT-FUG1	Drum Loading Fugitives 1 (from Catalyst	PM ₁₀	0.01	0.01
	Building) (5)	PM _{2.5}	0.01	0.01
		НАР	0.01	0.01
CAT-FUG2	Drum Loading Fugitives 2 (from outside) (5)	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
		НАР	0.01	0.01
ТО	Thermal Oxidizer (15 MMBtu/hr)	PM ₁₀	0.12	0.51
		PM _{2.5}	0.12	0.51
		SO ₂	54.80	26.27
		NO _x	25.43	28.53
		СО	1.24	5.41
		VOC	6.10	1.56
		HAP	120.8	9.11 (8)
		H ₂ S	0.01	
		Total As (9)	10.70	
		HF	40.40	
		HCI	107.00	
		H ₂ SO ₄	0.01	0.03
		Total Bromine	98.60	98.64

		Total Iodine	44.30	14.77
		NH ₃	0.17	0.12
		HNO ₃	17.5	8.99
		H ₃ PO ₄	2.40	4.76
		H ₂ O ₂	0.06	0.11
Maintenance,	Startup, and Shutdown (MSS)	<u>'</u>		-
TANK-MSS	Tank Opening MSS	VOC	3.25	0.07
		НАР	0.13	0.004
EQUIP-MSS	Equipment Purging and Opening	VOC	17.36	0.04
		HAP	3.49	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
TPAINT-MSS	TDX Sitewide Painting	PM ₁₀	0.49	0.05
		PM _{2.5}	0.49	0.05
		VOC	16.65	1.66
		HAP	0.40	0.04
UPAINT-MSS	USET Sitewide Painting	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
		VOC	18.77	0.19
		НАР	0.80	0.01
TBLAST-MSS	TDX Sitewide Abrasive Blasting	PM ₁₀	0.17	0.01

		PM _{2.5}	0.03	0.01
UBLAST-MSS	USET Sitewide Abrasive Blasting	PM ₁₀	0.34	0.01
		PM _{2.5}	0.05	0.01
TO-SRTMSS	Thermal Oxidizer Startup	PM ₁₀	0.06	0.01
		PM _{2.5}	0.06	0.01
		SO ₂	0.01	0.01
		NO _x	0.45	0.01
		СО	3.09	0.06
		VOC	0.04	0.01
		HAP	0.01	0.01
TO-VNTMSS	Thermal Oxidizer MSS Venting	VOC	8.55	0.03
		HAP	8.21	0.03
		H ₂ S	0.01	
		NH ₃	0.18	0.01
		HNO ₃	5.49	0.01
		H ₃ PO ₄	0.22	0.01
		H ₂ O ₂	0.01	0.01
DWELL-MSS	Deepwell Maintenance	VOC	2.85	0.04
		HAP	2.85	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
FLTCHG-MSS	Baghouse Filter Changes	PM ₁₀	0.08	0.01
		PM _{2.5}	0.01	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

- hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of Federal Regulations Part 63, Subpart C

H₂S - hydrogen sulfide (delisted HAP)

As - arsenic (HAP)
H₂SO₄ - sulfuric acid
NH₃ - ammonia
HNO₃ - nitric acid

H₃PO₄ - phosphoric acid
 H₂O₂ - hydrogen peroxide
 HCl - hydrogen chloride (HAP)
 HF - hydrogen fluoride (HAP)

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) The annual VOC emissions from this source are included in the Stabilization Buildings Annual VOC Emission Cap of 22.23 tpy.
- (7) The annual H₂S, HF, and HCl emissions from this source are included in the Stabilization Buildings Annual HAP cap of 4.28 tpv.
- (8) Emission limit applies to the sum of total HAP emissions (including but not limited to HF and HCl) and H2S emissions.
- (9) Total Arsenic includes elemental arsenic and arsenic compounds.

Date: February 3, 2016