Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса triangle	9
3.2 Алгоритм метода Р класса triangle	9
3.3 Алгоритм метода S класса triangle	10
3.4 Алгоритм функции main	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	12
5.1 Файл main.cpp	12
5.2 Файл triangle.cpp	12
5.3 Файл triangle.h	13
6 ТЕСТИРОВАНИЕ	14
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект triangle класса triangle предназначен для объект класса "треугольник";
- функция main для основная функция программы;
- функция sqrt для функция для извлечения квадратного корня из числа, описанная в библиотеке <cmath>;
- сіп объект стандартного потока ввода с клавиатуры;
- cout объект стандартного потока вывода на экран.

Класс triangle:

- свойства/поля:
 - о поле первая сторона треугольника:
 - наименование а;
 - тип int;
 - модификатор доступа private;
 - о поле вторая сторона треугольника:
 - наименование b;
 - тип int;
 - модификатор доступа private;
 - о поле третья сторона треугольника:
 - наименование c;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод triangle параметризированный конструктор;
 - о метод Р вычисляет периметр объекта;

о метод S — вычисляет площадь объекта.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса triangle

Функционал: параметризированный конструктор.

Параметры: int a, int b, int c.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса triangle

N₂	Предикат	Действия	No
			перехода
1		присваивание полю объекта а значение параметра а	2
2		присваивание полю объекта b значение параметра b	3
3		присваивание полю объекта с значение параметра с	Ø

3.2 Алгоритм метода Р класса triangle

Функционал: вычисляет периметр объекта.

Параметры: нет.

Возвращаемое значение: double.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода Р класса triangle

No	Предикат	Действия	N₂
			перехода
1		возвращает значение суммы полей объекта a, b и с	Ø

3.3 Алгоритм метода S класса triangle

Функционал: вычисляет площадь объекта.

Параметры: нет.

Возвращаемое значение: double.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода S класса triangle

N₂	Предикат	Действия	
			перехода
1		инициализация переменной р значением результата метода Р данного	2
		объекта	
2		возврат значения результата функции sqrt от произведения p, p-a, p-b	Ø
		и р-с	

3.4 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ощибки.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

N₂	Предикат	Действия		
			перехода	
1		создание переменных a, b и с типа int		
2		вод значений переменных a, b и c c клавиатуры		
3		создание объекта triangle класса triangle с помощью	4	
		параметризированного конструктора с аргументами а, b и с		
4		вывод на экран "P = " и результата метода P() объекта triangle		
5		вывод на экран "\nS = " и результата метода S() объекта triangle		
6		возврат значения 0	Ø	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-1.

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "triangle.h"

int main()
{
   int a, b, c;
   std::cin >> a >> b >> c;
   triangle triangle(a, b, c);
   std::cout << "P = " << triangle.P();
   std::cout << "\nS = " << triangle.S();
   return(0);
}</pre>
```

5.2 Файл triangle.cpp

Листинг 2 – triangle.cpp

```
#include "triangle.h"
#include <cmath>

triangle::triangle(int a, int b, int c)
{
    this -> a = a;
    this -> b = b;
    this -> c = c;
}
double triangle::P()
{
    return a + b + c;
}
double triangle::S()
{
```

```
double p = P()/2;
  return sqrt(p * (p - a) * (p - b) * (p - c));
}
```

5.3 Файл triangle.h

Листинг 3 – triangle.h

```
#ifndef __TRIANGLE__H
#define __TRIANGLE__H

class triangle
{
  private:
    int a, b, c;
  public:
    triangle(int a, int b, int c);
    double P();
    double S();
};

#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
3 4 5	P = 12 S = 6	P = 12 S = 6
5 8 10	P = 23 S = 19.81	P = 23 S = 19.81
23 40 21	P = 84 S = 183.074	P = 84 S = 183.074
78 123 63	P = 264 S = 2103.92	P = 264 S = 2103.92

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).