FEE 地检板说明

地面检测设备(简称地检设备)的功能:在卫星载荷整体联调前,需要对 FEE 进行独立调试和测试,与 FEE 和部分探测器单元组成小系统进行联调。因此需要建立一个地面测试系统,能够模拟载荷数管(PDHU)及触发判选单元的功能,并且与 FEE 组成一个完整的读出系统,对各电子学模块的各项功能和性能指标进行测试。

地检设备包括两部分: FEE 地检模块和地检读出控制软件。

FEE 地检模块的主要功能包括:接收相应的 FFE 的击中信息,产生触发;接收各个 FEE 的科学数据,打包后发送至地检软件进行处理;接收地检软件的遥控命令或 FEE 中 VA、TA 芯片的配置信息,并转发至相应的 FEE;接收 FEE 的遥测数据,打包后发送至地检软件进行处理。图 11.1 为地检模块的功能框图,地检模块与 FEE 连接的接口种类一致,其中图中标识为 FEE 的接口中包含科学数据信号(Clk,Data)、触发信号(nTrg)和遥控(命令)/遥测(状态)信号(Cmd-Status),图中标识为 FEE Hit 的接口中包含部分参与触发的 FEE 发送的击中信息(Hit)。 FEE 与载荷数管接口中的所有信号线均为热备份,相应的地检模块也采用热备份模式,方便检测 FEE,同时预留了地检模块互连接口,以备需要同时使用多个地检模块时进行互连。科学数据通过 USB 接口传输至地检软件,遥测遥控的数据传输则利用 UART 串行数据传输协议传输至地检软件,两者相互独立。

地检读出控制软件基于 LabWindows 编写,它的主要功能是对地检模块进行控制和数据采集、在线分析以及存储实验数据。地检软具有良好的人机交互界面,能够实时显示各种工作状态信息。图 x 为地面检测测试系统结构。

图 11.1 地检模块功能框图

接口说明:

电源: 供电范围 5~20V, 插座中间两针为电源输入, 两边两针为地。

FEE 数传接口: FEE 中的信号包括 CLK_A, CLK_B, Data_A, Data_B, nTrg_A, nTrg_B, Cmd-Status_A, Cmd_Status_B,其中后缀 A 表示主份,后缀 B 表示备份。

击中信号接口:产生击中信号的每个 FEE 有四路击中信号,分别是 2 路 Dynode 5 和 2 路 Dynode 8 击中信号,采用备份后共有 8 路信号。

与Subdaq的接口:该接口预留了三对输入输出接口与其他地检subdaq连接,剩下一对与软件所在主机通过 UART 协议进行通信。

上面三种接口(FEE,HIT,Subdaq)均采用 34IDC 针接插件,具体连线如图 X 所示,SGND 表示机壳地,GND 表示地。

软件和 subdag 的命令包括 USB 和串口, USB 的命令列表如下:

Item	命令	D15: D12	D11: D8	D7: D4	D3: D0	备注
1	开始采集		0x0	0x1		
2	结束采集	0x0			0x2	
	清空 USB	0х0с			0x1	不停止采集,
	FIFO					但读空 USB
						FIFO 的数据
	重置 USB		0x0c		0x2	与 0xc1 对应,
	FIFO					重新开始往
						FIFO 写数
	Subdaq 触发		0x00d		0x1	触发使能
	使能					
	Subdaq 触发		0x00d		0x0	触发禁止
	禁止					
3	软重启		0x0		0xf	FPGA 逻辑复位

4		0)	(0	0x1	N	N=0x0: 0x9 时
	通道使能			(data 通道)		对应的通道
						enable,N=0xF
						时全部通道
						enable
		0>	(0	0x09	N	N=0x0: 0x9 时
				(遥测通		对应的通道
				道(返回数		enable, N=0xF
				据))		时全部通道
						enable
5		0>	(0	0x2(data 通	N	N=0x0: 0x9 时
				道)		对应的通道
						disable, N=0xF
						时全部通道
						disable
		0>	(0	0x0A(遥测	N	N=0x0: 0x9 时
				通道(返回		对应的通道
				数据))		disable, N=0xF
						时全部通道
						disable
6		0>	(0	0x3	N	N=0x0: 0x9 时
						对应的通道选
						择主份,N=0xF
	主备选择					时全部通道选
						择主份
7		0>	(0	0x4	N	N=0x0: 0x9 时
						对应的通道选
						择备份,N=0xF
						时全部通道选
			T-			择备份
9	CaliInterval	0x1		N		内触发产生间
						隔,单位为 ms
10	FEEID 设定	0x2	M N			M: 0x0:0x9 时
						设置对应通道
						的 FEEID,
						N 为该 FEEID 的
						值

注意: FEE 的数传接口可以和地检板上的任意接口连接,但需要设置相应的 FEEID。击中信号由于不带 FEEID,按照固定的接法一一对应。

Item	命令	D15: D8	D7: D4	D3: D0	备注
	触发模式选择	0x0	0x5	0x8	内触发
			5	0x4	外触发(低电平有效)
			5	2	外触发(高电平有效)
			5	1	随机内触发
			5	0xF	自触发(与)
			5	0xE	自触发(或)

Item	命令	D15: D12	D11: D8	D7: D4	D3: D0	备注
11	读空 USB	0	0	C1		
	FIFO					
12	重启 USB	0	0	C2		
	FIFO					
	J18 观察	0	0	(default)		Trigger output
	J18 观察	0	0	B1		nHit_Dy5_A[1]
	J18 观察	0	0	B2		nHit_Dy5_B[1]
	J18 观察	0	0	В3		nHit_Dy8_A[1]
	J18 观察	0	0	B4		nHit_Dy8_B[1]
	J18 观察	0	0	B5		nHit_Dy5_A[2]
	J18 观察	0	0	B6		nHit_Dy5_B[2]
	J18 观察	0	0	В7		nHit_Dy8_A[2]
	J18 观察	0	0	B8		nHit_Dy8_B[2]
	J18 观察	0	0	В9		nhit5_a
	J18 观察	0	0	ВА		nhit5_b
	J18 观察	0	0	ВВ		nhit8_a
	J18 观察	0	0	ВС		nhit8_b

Item	命令	D15: D12	D11: D8	D7: D4	D3: D0	备注
		3	0	E	N(0~7)	nhit5_a=nHit_Dy5_A[N]
						nhit5_b=nHit_Dy5_B[N]
						nhit8_a=nHit_Dy8_A[N]
						nhit8_b=nHit_Dy8_B[N]

Eg : 若要在 J18 观察 nHit_Dy8_B[3],则 USB 输入命令: 30E3, 00BC

与触发时 HIT 通道选择(共 32 个 hit 通道, 4 个 HIT 插座)

Item	命令	D15: D12	D11: D8	D7: D4	D3: D0	备注
	Hit 选通	8	1	{Hit_Dy8_B[1],		相应 bit=1,选通
				Hit_Dy8_A[1]		
				Hit_Dy5_B[1]		
				Hit_Dy5_A[1]],	
				Hit_Dy8_B[0]	,	
				Hit_Dy8_A[0]	<u>,</u>	
				Hit_Dy5_B[0]	,	
				Hit_Dy5_A[0]]}	
				& [D7:D0]		
	Hit 选通	8	2	{Hit_Dy8_B[3	3],	相应 bit=1,选通
				Hit_Dy8_A[3]	ļ,	
				Hit_Dy5_B[3]	,	
				Hit_Dy5_A[3]],	
				Hit_Dy8_B[2]	,	
				Hit_Dy8_A[2]	ļ,	
				Hit_Dy5_B[2]	,	
				Hit_Dy5_A[2] }		
				& [D7:D0]		
	Hit 选通	8	3	{Hit_Dy8_B[5		相应 bit=1,选通
				Hit_Dy8_A[5]],	
				Hit_Dy5_B[5]	,	
				Hit_Dy5_A[5]		
				Hit_Dy8_B[4]	,	
				Hit_Dy8_A[4]		
				Hit_Dy5_B[4]		
				Hit_Dy5_A[4]]}	
				& [D7:D0]		
	Hit 选通	8	4	{Hit_Dy8_B[7		相应 bit=1,选通
				Hit_Dy8_A[7]		
				Hit_Dy5_B[7]		
				Hit_Dy5_A[7]		
				Hit_Dy8_B[6]		
				Hit_Dy8_A[6]		
				Hit_Dy5_B[6]		
				Hit_Dy5_A[6]]}	
第25年 25年				& [D7:D0]		

配置说明:

Eg:若要求 trigger = Hit_Dy8_A[1] && Hit_Dy8_A[0] && Hit_Dy8_A[2] && Hit_Dy8_A[3];

则命令需要为: 8144, 8244, 8300, 8400 DY5_A = T5A, DY5_B=B5A, DY8_A = T8A, DY8_B=B8A 注意 2: 为了一个 subdag 板可以支持 8 个 FEE-A, subdag 板不做主备,仅主通道。

串口部分:

串口部分接收软件发送的遥控指令,然后转发给相应的 FEE,采用透明方式,地检板本身不响应遥控指令。返回的遥测和应答数据包通过串口发送至软件,地检板不做电流检测。

工作过程如下图所示,需要注意 USB 和串口的某些设置有一定的先后顺序要求 (具体有: 1, FEEID 需要先设置好,遥控指令才能正常往 FEE 发送; 2, 遥控指令中需要将 FEE 的触发使能打开,科学数据才能产生,否则取不到数)。

