Set Theory (D)

Prove:

Prove, using the Laws of Set Operations, for all sets $A:A\cap (\mathcal{U}\oplus A)=\emptyset$.

\mathbf{proof}

(Definition of \oplus)	$A\cap ((\mathcal{U}\cap A^c)\cup (\mathcal{U}^c\cap A))$	$A\cap (\mathcal{U}\oplus A)$ =
(Communitivity of \cap)	$A\cap ((A^c\cap \mathcal{U})\cup (\mathcal{U}^c\cap A))$	=
(Identity of \cap)	$A\cap (A^c\cup (\mathcal{U}^c\cap A))$	=
(Identity of \cap)	$A\cap (A^c\cup (\mathcal{U}^c\cap \mathcal{U}\cap A))$	=
(Communitivity of \cap)	$A\cap (A^c\cup (\mathcal{U}\cap \mathcal{U}^c\cap A))$	=
(Complement with \cap)	$A\cap (A^c\cup (\emptyset\cap A))$	=
(Communitivity of \cap)	$A\cap (A^c\cup (A\cap\emptyset))$	=
(Complement with \cap)	$A\cap (A^c\cup (A\cap A\cap A^c))$	=
(Idempotence of \cap)	$A\cap (A^c\cup (A\cap A^c))$	=
(Distributivity of cup over \cap)	$A\cap ((A^c\cup A)\cap (A^c\cup A^c))$	=
(Idempotence of \cup)	$A\cap ((A^c\cup A)\cap A^c)$	=
(Communitivity of \cup)	$A\cap ((A\cup A^c)\cap A^c)$	=
(Complement with \cup)	$A\cap (\mathcal{U}\cap A^c)$	=
(Assosiativity with \cap)	$(A\cap \mathcal{U})\cap A^c$	=
(Identity of \cap)	$A\cap A^c$	=
(Complement with \cap)	Ø	=