Collision resistance of Merkle Dangard

Co 487

Topic 2.1

Theorem If the compression function f is collision resistant,
then the hash function H is also collisionresistant.

Proof (sketch) Suppose H(m) = H(m') but $m \neq m'$. Suppose for simplicity |m|=|m'|. Let the blocks of m and m' be $M = M_0 M_1 \dots M_t$ $M' = M_0' M_1' \dots M_t'$ Since m +m', there exists index i = 20,..., t} s.t. m; +mi!

H(m) = H(m'), we have that $f(m_t, H_t) = f(m'_t, H'_t)$

If
$$(M_t, H_t) \neq (m'_t, H'_t)$$
, then we found a collision in $f \Rightarrow$ done!

If (mt, Ht) = (m't, H't), then recurse on Ht, H't.

In particular, if Ht= H't, then we have that

f(m+1, H+1) = f(m(1, H(1)).

 $f(m_{t-1}, H_{t-1}) = f(m_{t-1}, H_{t-1})$.

If $(m_{t-1}, H_{t-1}) \neq (m_{t-1}, H_{t-1})$, then we found a ullision in f \implies done!

Can o	onstruct	an Induc	tive argum	rent that,	if Hj=	= Hj',
			-, (1j-1)	rent that, , which is	ة الكاناك	n 3,4,
	ttj-1 = sumption.	Tj.i. di s.t	. m; +n	η _ι ΄.		
Thus o	we W:11	evertually	flud a	collision.		