Моделирование инжекции заряда в промежуток с неподвижной жидкостью

Пек Борис

Параметры модели

```
Модуль электростатики: -\nabla \cdot d\varepsilon_0 \varepsilon_r \nabla V = d\rho
```

d = 1 толщина [м]

 ε_0 = 1 диэлектрическая проницаемость

 ρ = c^* 1e5 объемная плотность заряда [Кл/м³]

(здесь c — концентрация, которая рассчитывается во втором уравнении)

Уравнение Нернста-Планка без электронейтральности:

$$\delta_{ts} \frac{\partial c}{\partial t} + \nabla \cdot \left(-D\nabla c - zu_m F c \nabla V \right) = R - \mathbf{u} \cdot \nabla c$$

c – концентрация [моль/м³]

u – вектор скорости [м/с]

F – число Фарадея [Кл/моль]

 δ_{ts} = 1 временной масштабирующий коэффициент

D = 7e-4 коэффициент диффузии (изотропный) [м²/c]

R = 0 скорость реакции [моль/(м³ c)]

 u_m = 3e-9 подвижность [с моль/кг]

z = 1 заряд частиц (относительно заряда электрона)

u=0, v=0 компоненты вектора u [м/с]

V = V потенциал [В] (рассчитывается в первом уравнении)

Размеры геометрии

Длина – 1см, ширина – 1мм

2

Расчетная сетка

300 разбиений в продольном направлении и 2 – в поперечном

Граничные условия

1: (электрод – источник частиц с положительным зарядом)

Электрический потенциал: V_0 = 10e3 [B]

Поток: N_0 = 1e-12 [моль/м² c]

 $-\mathbf{n} \cdot \mathbf{N} = N_0$ $\mathbf{N} = -D\nabla c - zu_m F c \nabla V + c\mathbf{u}$

2: (электрод – источник гибели заряда, полное поглощение)

Заземление: V = 0

Изоляция

Концентрация: $c_0 = 0$

3 и 4: (стенки области, на поле и заряд не влияют)

Естественное ГУ на электрическое поле $\boldsymbol{n} \cdot \boldsymbol{D} = 0$

 $\mathbf{n} \cdot \mathbf{N} = 0$ $\mathbf{N} = -D\nabla c - zu_m Fc \nabla V + c\mathbf{u}$

Параметры решателя

Вывести в моменты времени: 0:5e-7:4e-5

Максимальный шаг по времени: 5е-7

Относительное отклонение: 0.0001

Абсолютное отклонение: с 1e-19 V 0.001

Распределение объемной плотности заряда

Концентрация положительных частиц

Заряд, инжектируемый в промежуток, очень мал ($\sim 10^{-10}$ Кл/м³) и его влияние на внешнее поле (1 В/м) незначительно. Диффузионная ширина фронта ~ 1 мм Скорость фронта ≈ 240 м/с

(без учета рекомбинации: $\alpha = 0$)

Добавлено еще одно уравнение Нернста-Планка без электронейтральности:

$$\delta_{ts} = 1$$
 временной масштабирующий коэффициент $D = 7\text{e-4}$ коэффициент диффузии (изотропный) [м²/с] $R = 0$ скорость реакции [моль/(м³ с)] $u_m = 3\text{e-9}$ подвижность [с моль/кг] $z = -1$ заряд частиц (относительно заряда электрона) $u = 0, v = 0$ компоненты вектора $u = 0, v = 0$ потенциал [В] (рассчитывается в первом уравнении)

Граничные условия для этого уравнения:

Изменения в модуле электростатики: Объемная плотность заряда: ρ = c*1e5-c2*1e5

Изменения в параметрах решателя: Абсолютное отклонение: с 1e-19 c2 1e-19 V 0.001

(без учета рекомбинации: $\alpha = 0$)

Распределение объемной плотности заряда

(без учета рекомбинации: $\alpha = 0$)

Концентрация положительных частиц

Concentration, c [mol/m3] 2.5e-65e-6 7.5e-6 3.5 1e-5 1.25e-5 Concentration, c [mol/m³] 1.5e-5 1.75e-5 2e-5 2.25e-5 2.5e-5 2.75e-5 1.5 3.25e-5 3.5e-5 3.75e-5 4e-5 0.5 0.002 0.008 0.003 0.006 0.007 Arc-length

Концентрация отрицательных частиц

(с учетом рекомбинации: $\alpha = 1e20$)

Изменение в обоих модулях уравнением Нернста-Планка без электронейтральности:

Скорость реакции: R = -1e20*c*c2 [моль/(м³ c)]

(с учетом рекомбинации: $\alpha = 1e20$)

Распределение объемной плотности заряда

Заряд, инжектируемый в промежуток, очень мал (~10⁻¹⁰ Кл/м³) и его влияние на внешнее поле (1 В/м) незначительно. Ширина области рекомбинации ~ 8 мм.

(с учетом рекомбинации: $\alpha = 1e20$)

Концентрация положительных частиц

Концентрация отрицательных частиц

(с учетом рекомбинации: $\alpha = 1e21$)

Изменение в обоих модулях уравнением Нернста-Планка без электронейтральности:

Скорость реакции: R = -1e21*c*c2 [моль/(м³ c)]

(с учетом рекомбинации: $\alpha = 1e21$)

Распределение объемной плотности заряда

Заряд, инжектируемый в промежуток, очень мал (~10⁻¹⁰ Кл/м³) и его влияние на внешнее поле (1 В/м) незначительно. Ширина области рекомбинации ~ 0.8 мм.

(с учетом рекомбинации: $\alpha = 1e21$)

Концентрация положительных частиц

Concentration, c [mol/m3] 3.5 ×10⁻¹⁵ 2.5e-65e-6 7.5e-6 1e-5 1.25e-5 Concentration, c [mol/m³] 1.5e-5 1.75e-5 2e-5 2.25e-5 2.5e-5 2.75e-5 3.25e-5 3.5e-5 3.75e-5 0.5 4e-5 0.001 0.002 0.003 0.004 0.006 0.007 800.0 0.009 Arc-length

Концентрация отрицательных частиц

Выводы:

- Ширина фронта зависит от коэффициента диффузии.
- В однородном поле скорость распространения заряда в межэлектродном промежутке постоянна, если объемная плотность заряда не вносит существенных возмущений в электрическое поле. Она зависит от поля и коэффициента инжекции заряда с электрода.
- Толщина области рекомбинации обратнопропорционально зависит от коэффициента рекомбинации.
- В моделях без рекомбинации или с малым коэффициентом рекомбинации накопление заряда в области отсутствует из-за граничного условия полной гибели на противоэлектроде.
- В моделях с большим коэффициентом рекомбинации накопление заряда в области отсутствует из-за полной рекомбинации зарядов в межэлектродном промежутке.
- Если коэффициент рекомбинации мал, то используемое граничное условие полной гибели заряда является некорректным, т.к. из-за него вблизи этой границы возникает большой градиент концентрации.