K-NEAREST NEIGHBOURS

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

May 10, 2020

SELAYANG PANDANG

1 Instance-based Learning

2 Optimasi K-NN

3 Ekstensi k-NN

Bahan Bacaan

- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (Section 4.7 & 7.1)
- William (Markett Neighbours.) "Cerita Tentang Data. 31 Agustus 2015. https://tentangdata.wordpress.com/2015/08/31/klasifikasi-k-nearest-neighbours/

Instance-based Learning

Intuisi

- Terdapat dua variabel: x_1, x_2
- Dua kelas: biru dan jingga
- Apa kelas dari *instance* tanda silang?

Klasifikasi Nearest-Neighbour

- Cari yang paling mirip, lalu gunakan kelas yang sama!
- Voronoi tessellation: membagi region dengan titik yang memiliki jarak yang sama dari dua contoh data latih
- Batas klasifikasi: non-linear

PENCILAN

• Sensitif terhadap pencilan

PENCILAN

- Sensitif terhadap pencilan
- Tidak ada P(y|x)

PENCILAN

- Sensitif terhadap pencilan
- Tidak ada P(y|x)
- Tidak sensitif terhadap class prior

Perbaiki dengan menggunakan lebih dari satu tetangga (k-tetangga) terdekat!

Algoritma Klasifikasi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i : nilai atribut
 - y_i : label kelas
 - instance uji x
- Algoritma:
 - 1 Hitung jarak $D(x, x_i)$ untuk semua x_i
 - 2 Pilih k tetangga terdekat dengan labelnya
 - 3 $\hat{y} = \text{mayoritas dari label tetangga terdekat}$

Klasifikasi k-NN

GAMBAR: 7-NN pada data MNIST dengan data uji di paling kanan

Algoritma Regresi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i : nilai atribut
 - y_i : nilai numerik sebenarnya
 - instance uji x
- Algoritma:
 - 1 Hitung jarak $D(x, x_i)$ untuk semua x_i
 - ② Pilih k tetangga terdekat dengan labelnya
 - 3 $\hat{y} = f(x) = \frac{1}{k} \sum_{j=1}^{k} y_{ij}$ (nilai rata-rata)

REGRESI K-NN

Gambar: Interpolasi dengan {1,2,3}-NN

REGRESI K-NN

Gambar: Ekstrapolasi dengan $\{1,2,3\}$ -NN

OPTIMASI K-NN

Bagaimana cara memilih nilai k?

Memilih Nilai k

- Nilai yang besar $\rightarrow P(y)$
- Nilai yang kecil \rightarrow terlalu variatif, batas keputusan yang tidak stabil

Memilih Nilai k

- Nilai yang besar $\rightarrow P(y)$
- Nilai yang kecil \rightarrow terlalu variatif, batas keputusan yang tidak stabil
- Solusi: Gunakan data validasi!

BATAS KEPUTUSAN

GAMBAR: Pengaruh nilai k pada batas keputusan [DeWilde, 2012]

PENGUKURAN JARAK

Minkowski distance (p-norm):

$$d([x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n]) = \sqrt[r]{\sum_{i=1}^n |x_i - y_i|^r}$$

Isu

- Hasil seri:
 - 1 Gunakan jumlah k ganjil
 - 2 Acak, lemparan koin
 - 3 Prior probability
 - **4** 1-NN
- Missing values: harus diganti (impute)
- Rentan terhadap perbedaan rentang variabel

Perbedaan Rentang

GAMBAR: Perbedaan rentang variabel bisa mengacaukan klasifikasi k-NN [Wibisono, 2015]

K-NN VS PARZEN WINDOWS

GAMBAR: Perbedaan radius klasifikasi pada k-NN dan Parzen Windows

Pros & Cons

- Pros:
 - Tidak ada asumsi terhadap data, non-parametrik
 - Asymptotically correct
- Cons:
 - Harus mengganti nilai yang hilang
 - Sensitif terhadap kelas pencilan (data latih yang salah dilabeli)
 - Sensitif terhadap atribut yang irelevan
 - ullet Mahal secara komputasi O(nd)

EKSTENSI K-NN

MEMPERCEPAT K-NN

- Pelatihan: O(d), tetapi pengujian: O(nd)
- Mengurangi d: dimensionality reduction
- Mengurangi n: jangan bandingkan dengan **semua** data latih, i.e. cari $m \ll n$
 - 1 K-D trees
 - 2 Locality-sensitive hashing (LSH)
 - 3 Inverted lists

K-D Trees

Pilih dimensi secara acak, cari mediannya, pisahkan data, ulangi

GAMBAR: 3-NN dari semua data berbeda dengan 3-NN yang berada pada region yang sama

LOCALITY-SENSITIVE HASHING (LSH)

- Hyperplanes acak $h_1...h_k$ yang membagi ruang menjadi 2^k region
- Bandingkan x hanya dengan data latih dalam region yang sama: lakukan $dot\text{-}product \rightarrow hash\text{-}code$
- Ada kemungkinan tetangga dekat yang terlewat: ulangi lagi dengan $h_1...h_k$ yang berbeda

LOCALITY-SENSITIVE HASHING

GAMBAR: Menghasilkan hash-code dari hyperplanes [Li et al., 2017]

INVERTED LISTS

- \bullet Jika datanya berupa $\mathit{bag-of-words},$ matriksnya akan sparse
- Ide: buat daftar dokumen per atribut

INVERTED LISTS

```
D1: "send us your password" (s)

D2: "send us your review" (h) send \rightarrow \{1,2,5,6\}
D3: "review your password" (h) your \rightarrow \{1,2,3,5,6\}
D4: "review us" (s) review \rightarrow \{3,4\}
D5: "send your password" (s) account \rightarrow \{6\}
D6: "send us your account" (s) password \rightarrow \{1,3,5\}
Dokumen baru: "account review"
```

Salindia ini dibuat dengan sangat dipengaruhi oleh Lavrenko (2014)

Referensi

Burton DeWilde (26 Oktober 2012)

Classification of Hand-written Digits (3)

http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/

Okiriza Wibisono (16 September 2015)

kNN: Perhitungan Jarak, serta Batasan dan Keunggulan https://tentangdata.wordpress.com/2015/09/16/knn-perhitungan-jarak-serta-keunggulan-dan-batasan/

Haisheng Li et al. (2017)

Feature Matching of Multi-view 3D Models Based on Hash Binary Encoding

Neural Network World, 27, 95-105.

Terima kasih