AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-10 (canceled)

Claim 11 (currently amended): A 1,3-dimethylbutylcarboxanilide of formula (I)

in which

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R³, -CONR⁴R⁵, or -CH₂NR⁶R⁷,

R² represents hydrogen, fluorine, methyl, or trifluoromethyl,

R³ represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

 R^4 and R^5 independently of one another each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represent C_1 - C_8 -haloalkyl, halo- C_8 - C_8

 C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^4 and R^5 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^8 ,

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁸,

R⁸ represents hydrogen or C₁-C₆-alkyl, and represents a radical of formula (A1)

$$\begin{array}{c}
\mathbb{R}^{9} \\
\mathbb{N} \\
\mathbb{R}^{10} \\
\mathbb{R}^{11}
\end{array}$$
(A1),

in which

R⁹ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

R¹⁰ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

 $R^{11} \quad \text{represents hydrogen, C_1-C_4-alkyl, hydroxyl-C_1-C_4-alkyl, C_2-C_6-alkenyl,} \\ C_3$-$C_6$-cycloalkyl, C_1-C_4-alkylthio-C_1-C_4-alkyl, or C_1-C_4-alkoxy-C_1-C_4-alkyl, and C_2-C_6-alkenyl,} \\ C_3$-$C_6$-cycloalkyl, C_1-C_4-alkylthio-C_1-C_4-alkyl, or C_1-C_4-alkoxy-C_1-C_4-alkyl,} \\ C_4$-alkyl, and C_1-C_4-alkyl, and C_2-C_6-alkenyl,} \\ C_5$-$C_6$-cycloalkyl, C_1-C_4-alkyl, and C_1-C_4-alkyl,} \\ C_7$-$C_8$-alkenyl,} \\ C_7$-C_8-alkyl,} \\ C_7$-alkyl,} \\ C_7$-alkyl,}$

CS8779 - 3 -

alkyl; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio- C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl having in each case 1 to 5 halogen atoms; or represents phenyl,

with the provisos proviso that

- (a) R⁹-does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R¹⁰-represents hydrogen, R¹¹-represents methyl, and R¹-and R² simultaneously represent hydrogen, and
- (b) R⁹ does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine or bromine if R¹⁰ represents hydrogen, trifluoromethyl, or methyl, R¹¹ represents methyl, trifluoromethyl, methoxymethyl or trifluoromethoxymethyl, and R¹ represents (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, or (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms.

Claim 12 (currently amended): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which

R¹ represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or halo- $(C_1$ - C_3 -alkoxy)-carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_1$ - C_6 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, $(C_1$ - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, or $(C_3$ - C_6 -cycloalkyl)carbonyl; represents $(C_1$ - C_4 -haloalkyl)carbonyl, $(C_1$ - C_4 -haloalkoxy)carbonyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, or $(C_3$ - C_6 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O) R^3 , -CON R^4 R^5 , or -CH $_2$ N R^6 R^7 ,

R² represents hydrogen, fluorine, methyl, or trifluoromethyl,

R³ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

 R^4 and R^5 independently of one another represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}$ alkyl, $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkoxy- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}$ cycloalkyl; or represent $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ haloalkyl, halo- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkoxy- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}$ halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^4 and R^5 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^8 ,

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-haloalkyl or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁸,

R⁸ represents hydrogen or C₁-C₄-alkyl, and represents a radical of formula (A1)

in which

R⁹ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, or cyclopropyl; represents C₁-C₂-haloalkyl or C₁-C₂-

CS8779 - 5 -

- haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms; or represents trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl, or aminocarbonylethyl,
- R¹⁰ represents hydrogen, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, or C₁-C₂-haloalkyl having 1 to 5 halogen atoms, and
- R¹¹ represents hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl,

with the provisos proviso that

- (a) R⁹-does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R¹⁰-represents hydrogen, R¹¹-represents methyl and R¹-and R² simultaneously represent hydrogen, and
- (b) R⁹ does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R¹⁰ represents hydrogen, trifluoromethyl, or methyl, R¹¹ represents methyl, trifluoromethyl, methoxymethyl, or trifluoromethoxymethyl, and R¹ represents (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, or (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₁-C₆-haloalkoxy)carbonyl, or (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms.

Claim 13 (withdrawn): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which R¹ represents formyl.

Claim 14 (withdrawn): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which R¹ represents -C(=O)C(=O)R³, where R³ is as defined in Claim 11.

Claims 15-16 (canceled)

Claim 17 (previously presented): A composition for controlling unwanted microorganisms comprising one or more 1,3-dimethylbutylcarboxanilides of formula (I) according to Claim 11 and one or more extenders and/or surfactants.

CS8779 - 6 -

Claim 18 (withdrawn): A method for controlling unwanted microorganisms comprising applying an effective amount of a 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 to the microorganisms and/or their habitat.

Claim 19 (canceled)

CS8779 - 7 -