Hypothesis testing

January 13, 2021

1 Simple hypothesis testing: unknown Gaussian mean

Draw a sample $\{x_1, \ldots, x_N\}$ of N independent measurements from a variable X following a normal distribution with unknown mean μ and known standard deviation $\sigma = 1$. Use this sample to choose between the two hypotheses $H_0: \mu = \mu_0 = 1$ and $H_1: \mu = \mu_1 = 1.5$. We will use the Neyman-Pearson test.

- 1. Write the test statistic.
- 2. Draw the test statistic distributions for H_0 and H_1 .
- 3. Determine the critical region of the Neyman-Pearson test and compute its power when N=25 and $\alpha=0.05$.
- 4. Draw the ROC curve: correspondance between power and size of the test.
- 5. What is the minimum required sample size to have a contamination smaller than 0.1?

Technical note: we'll use the relation, between the cdf of the Normal distribution,

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt,$$

and the error function,

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Here are a couple of small python functions relating Φ with erf, as well as their inverse functions Φ^{-1} and erf⁻¹:

```
import numpy as np
from scipy.special import erf, erfiny
```

def norm_Phi(x):
return
$$0.5 * (1 + erf(x/np.sqrt(2)))$$

$$\begin{array}{lll} \textbf{def} & \text{norm_Phi_inv}(x): \\ & \textbf{return} & \text{np.sqrt}(2) & * & \text{erfinv}(2*x - 1) \end{array}$$

2 Poisson process with unknown background: limits and p-values

We come back to the example: $\gamma\gamma \to \gamma\gamma$ from ATLAS (Nature Phys. 13 (2017) no. 9, 852-858).

- D = 13 observed events
- $B = 2.6 \pm 0.7$ background events (Poisson distributed, estimated from a control sample)

The unknowns are the expected background count b and the expected signal count s. The expected event count is d = b + s.

1. **p-value against the background-only hypothesis.** Using the profile log-likelihood ratio,

$$q(s) = -2 \ln \frac{\mathcal{L}(x|s, \hat{b}(s))}{\mathcal{L}(x|\hat{s}, \hat{b})}; \quad q(s, \hat{s} < 0) = 0.$$

Note: the actual p-value with the published numbers requires a very large number of toy experiments to be generated. In the interest of time, for this question only, we will assume $\mathbf{D} = \mathbf{8}$ and $\mathbf{s_0} = \mathbf{4.3}$, instead of D = 13 and $\mathbf{s_0} = 7.3$.

- (a) Using 10 000 toy experiments, compute the p-value for the observation in the data. What is the median expected significance, under the assumption that $s_0 = 4.3$?
- (b) What is the median expectation, according to the Asimov dataset? (Reminder: this means setting the observed D, Q and B to the expected values (Poisson means), even if they are not integers)
- (c) How does the p-value in data compare to the "naive" s/\sqrt{b} ?
- 2. **Hypothesis test inversion.** Keeping the same test statistic q(s) as before (also q(s) = 0 if $\hat{s} < 0$), draw the distribution of q(s) using 10 000 toys, drawn from the same s value, for $5 \le s \le 15$ (step size of 1). Then draw the observed p-value under the signal + background hypothesis¹, as a function of s. How can you read the Feldman-Cousins 68% C.L. interval from this plot? Compare to the 68% C.L. interval obtained last time from the profile likelihood interval $(\Delta(-2 \ln \mathcal{L}_p) = 1)$.
- 3. Figures of merit in a counting experiment
 - (a) We mentioned earlier the "naive" s/\sqrt{b} . Can you see where this comes from? Consider the p-value for the background-only hypothesis, in the large b limit.
 - (b) You may have heard also about $s/\sqrt{s+b}$, and it is useful to realise when which one should be used. Where does $s/\sqrt{s+b}$ come from? Consider the case of a measurement of \hat{s} and its "precision", again in the large sample limit.

¹also called CL_{s+b}