

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTIONS	ÉPREUVE ÉCRITE				
CHIMIE	B et C	Durée de l'épreuve :	3h			
CHIIVIL	Det C	Date de l'épreuve :	17.09.2018			

question de cours (QC): 20P application non-numérique (ANN): 21P application numérique (AN): 19P

1. Analyse d'un ester (20 points)

Une des molécules qui interviennent dans le goût des pommes est l'ester E. L'hydrolyse de cet ester donne deux composés :

- un composé A à odeur caractéristique de vinaigre
- un composé B à chaîne carbonée saturée ramifiée, chiral, avec un seul groupement fonctionnel. En milieu aqueux acide, le composé B réagit en 2 étapes avec une solution de dichromate de potassium.
- a. Etablissez l'équation de l'oxydation complète de B (utilisez la formule générale pour B) à partir des systèmes rédox ! (QC5)
- b. 20mL d'une solution de B de concentration massique 14g/L sont titrés avec une solution de dichromate de potassium de concentration 0,11mol/L. L'oxydation complète nécessite 19,3mL de cette solution de dichromate de potassium. Déterminez la formule semi-développée du composé B, et nommez-le! (AN4 + ANN2)
- c. Dressez les formules spatiales des 2 énantiomères de B et indiquez leur configuration en nomenclature CIP ! (ANN2)
- d. Dressez l'équation globale de la formation de l'ester E en utilisant les formules semidéveloppées ou en bâtonnet ! (ANN2)
- e. Détaillez le mécanisme de la formation de l'ester (en utilisant les formules générales) ! (QC5)

2. Titrage d'un acide (14 points)

Soit l'acide carboxylique D. 20mL d'une solution à concentration inconnue de D sont titrés par une solution de KOH 0,15M. Le graphique ci-dessous représente l'évolution du pH en fonction du volume de KOH 0,15M ajouté.

- a. Calculez la concentration de D dans la solution initiale ! (AN2)
- b. Dégagez le pK_a du couple acide/base en question à partir du diagramme et expliquez comment vous avez procédé! (ANN2)
- c. Calculez le pH de la solution initiale de D! (AN2)
- d. Calculez le pH au point d'équivalence ! (AN3)
- e. Parmi la liste ci-dessous, choisissez un indicateur qui permet la détermination correcte du point d'équivalence, et motivez votre réponse! (ANN1)

nom	domaine de virage
méthylorange	3,1 - 4,4
rouge de phénol	6,4 - 8,2
bleu de thymol	8,0 - 9,6
jaune d'alizarine	10,0 - 12,1

f. Quel volume de solution KOH 0,15M faut-il ajouter à 20mL de la solution initiale pour avoir une solution de pH 5,4 ? (AN4)

3. Le goût des pommes (12 points)

D'autres molécules qui interviennent dans le goût des pommes sont l'hexan-1-ol et l'hex-2-én-1-ol, ainsi que l'hexanal et l'hex-2-énal.

- a. Situez la température d'ébullition des aldéhydes et cétones parmi celles des hydrocarbures et des alcools de masse moléculaire similaires, et expliquez ! (QC3)
- b. Un aldéhyde comme l'hexanal peut être mis en évidence par la liqueur de Fehling. Etablissez les équations correspondantes à cette réaction, en utilisant la formule générale pour l'aldéhyde! (QC3)
- c. Représentez les isomères de configuration de l'hex-2-énal, et désignez-les selon la nomenclature en vigueur ! (ANN2)
- d. Quel est le lien d'isomérie entre l'hex-2-én-1-ol et l'hexanal ? Expliquez ! (ANN1)
- e. Au contact avec un milieu aqueux acide (comme dans les fruits), l'hex-2-énal se transforme entre autre en 2-hydroxyhexanal. Indiquez l'équation globale de cette réaction! (ANN1)
- f. Représentez l'énantiomère S du 2-hydroxyhexanal en projection de Fischer, et désignez-le selon la nomenclature en vigueur ! (ANN2)

4. Le cuminaldéhyde (14 points)

Le para-isopropylbenzaldéhyde (cuminaldéhyde) est un constituant de l'huile des graines de cumin. Il est synthétisé à partir du benzène en 2 étapes :

- étape 1 : alkylation du benzène en présence du catalyseur chlorure d'aluminium, il en résulte de l'isopropylbenzène (ou cumène)
- étape 2 : substitution d'un atome H du cycle aromatique de l'isopropylbenzène par –CHO (formylation)
- a. Indiquez l'équation globale de l'alkylation du benzène ! (ANN2)
- b. Détaillez le mécanisme de l'alkylation! (QC4)
- c. Est-ce qu'on pourrait également produire le para-isopropylbenzaldéhyde par alkylation du benzaldéhyde ? Motivez votre réponse par un raisonnement basé sur la mésomérie, sachant que le groupement carbonyle exerce un effet mésomère accepteur de doublet ! (ANN4)
- d. Sachant que le rendement de l'étape 1 est de 78%, et celui de l'étape 2 de 62%, déterminez le volume de benzène (liquide de masse volumique 0,88g/cm³) nécessaire pour synthétiser 250g de para-isopropylbenzaldéhyde ! (AN4)

TABLEAU PERIODIQUE DES ELEMENTS

	group	es princip	aux												groupes	principau	IX	
	I	II	7										III	IV	l V	VI	VII	VIII
	1,0		_												•	•	•	4,0
1	Н																	He
	1																	2
	6,9	9,0	7										10,8	12,0	14,0	16,0	19,0	20,2
2	Li	Ве											В	С	N	0	F	Ne
	3	4											5	6	7	8	9	10
	23,0	24,3				ç	groupes s	econdair	es				27,0	28,1	31,0	32,1	35,5	39,9
3	Na	Mg											Al	Si	P	S	CI	Ar
	11	12	III	IV	V	VI	VII		VIII		I	II	13	14	15	16	17	18
	39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	(223)	226,0	227,0	(261)	(262)	(266)	(264)	(269)	(268)	(281)	(272)	(285)	(278)	(289)	(288)	(293)	(293)	(294)
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		·				·												
				140.4	1440.0	14440	1/4.45\	1450.4	1450.0	1457.0	1450.0	1400 5	14040	1407.0	1400.0	1470.0	1475.0	7
	lanthanides		140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0		
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
			58	59	60	61	62	63	64	65	66	67	68	69	70	71		
			232,0	231,0	238,0	237,0	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(256)		
	actinides		es	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103		