

An overview of classifier algorithms

Alex Beauchamp - Otman Ezzayat Maid - Joan Gómez Català - Matija Jakovac - Álvaro Monclús Muñoz

Delivery date: 26th of May 2025

Format of presentation

- 1. Description of the original data
- 2. Preprocessing
- 3. Evaluation criteria of data mining models
- 4. Execution of different machine learning methods
 - a. Naive Bayes
 - b. K-NN
 - c. Decision Trees
 - d. Support Vector Machines
 - e. Meta-Learning Algorithms
- 5. Comparison and conclusions

1.Description of the original data

Presentation of dataset

- Origin: Kaggle.com
- Balanced diabetes results
 - Sourced from a survey named "Behavioral Risk Factor Surveillance System"
- 70,692 records
- Key variables:
 - o Diabetes or Pre-diabetic vs Non-diabetic
 - High Blood Pressure
 - High BMI
 - Heart Conditions
 - o Age
 - o etc.

Description of metadata P1

Description of metadata P2

Primary objectives

- Classify if person has diabetes
- Compute 5 different methods
 - Comparison
- Reliability of results

2. Preprocessing

Preprocessing steps

- Randomly select 2000 samples
 - o 1000 each type
- Shortening names
 - simplicity
- Uni-variate descriptive
- Outlier detection and substitution

Uni-variate descriptive

- Outliers?
 - o BMI over 70

Outliers treatment

- Bi-variate analysis
- Linear regression
 - two correlated variables
- Outlier detection
 - normal distribution
- Outlier substitution
 - predicted value

Remaining steps

- No missing values
- No text categorical variables
 - o one-hot encoding not needed
- No unnecessary variables
- Normalization not needed
 - mostly boolean and qualitative variables

3. Evaluation criteria of data mining models

Splitting procedure

- Only once for all, right at the start
- Random_state=42 for repeatability
- Stratified sets of data (stratify=y)
- 70/30 split

Evaluation methods

- Mainly accuracy and f1-score
 - General indication of quality

	precision	recall	f1-score	support
0.0 1.0	0.70 0.73	0.75 0.68	0.72 0.70	1000 1000
accuracy			0.71	2000

- Focus on recall could have been good
 - Health issue
 - Not quite as dangerous as others

This example comes from Naive Bayes

Cross validation sets

- Each algorithm decides
 - Still using same test / train split
- Generally 10, varies to 5 and 20
- Depends on needs of algorithm

4. Execution of different machine learning methods

a. Naive Bayes - Methodology& Results

Decision Threshold Tuning

- Only hyperparameter used:
 Decision Threshold (default: 0.5).
- If probability ≥ threshold →
 classified as positive (diabetes).
- 20-Fold Cross val to identify best threshold, then averaged

Performance Comparison

Default:

- 72% accuracy
- 72% average f1-score

Threshold found:

- 73% accuracy
- 72.5% average f1-score

a. Naive Bayes - Limitations& Discussion

Independence Assumption

- Naive Bayes assumes feature independence
- Health indicators, like BMI or blood pressure, are often correlated
- Weakens the results as the hypothesis is not respected

Dataset Size Consideration

- Dataset: 1000 samples per class (balanced).
- Continuous features:
 - Estimating Gaussian distributions for each feature/class combo
 - o 1000 sample may be too few

b. K-NN

Impact of Normalization on CV Accuracy Scaled 0.72 Mean CV Accuracy 0.70 0.66 0.64 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

Álvaro Monclús Muñoz

b. K-NN

Álvaro Monclús Muñoz


```
Metric=euclidean, weight=uniform, CV acc=0.7371
Metric=euclidean, weight=distance, CV acc=0.7407
Metric=manhattan, weight=uniform, CV acc=0.7314
Metric=manhattan, weight=distance, CV acc=0.7293
Metric=chebyshev, weight=uniform, CV acc=0.6686
Metric=chebyshev, weight=distance, CV acc=0.6736
```

c. Decision Trees

- DecisionTreeClasifier
 - hyperparameters
 - criterion: "entropy"
 - min_samples_split
 - min_impurity_decrease
- Initial results
 - o big depth >10
 - large number of nodes >50
 - not interpretable
 - low accuracy 67%

c. Decision Trees

- Grid search
 - min_samples_split
 - \blacksquare 2 to 20, step = 4
 - min_impurity_decrease
 - \bullet 0 to 0.05, step = 200

- Obtained hyperparameters
 - min_samples_split 2
 - o min_impurity_decrease 0.005025

• <u>Improved results</u>

- smaller depth 4
- o smaller number of nodes 21
- interpretable
- larger accuracy 72%

True Positive

- GenHlth $\leq 2.5 \rightarrow$ (value: 2.0)
- Age $> 7.5 \rightarrow \text{(value: 9.0)}$
- BMI > 26.31 → (value: 33.0)
- GenHlth > $1.5 \rightarrow$ (value: 2.0)

- BMI common rule
- Purity of leaves
 - o ideally 100%
- Errors
 - impure leaves (50%/50%)

- Tested 3 kernels: Linear, Polynomial, RBF
- Balanced dataset, standardized preprocessing
- Two-step model selection for polynomial & RBF:
 - Step 1: Wide scan with 10-fold CV, log-spaced C, max_iter=100000
 - Step 2: Zoom in on best C zone, remove iteration cap
- Dataset row reduction & scaling to speed training

Linear Kernel

Parameters

- Used LinearSVC() for faster training
- Full C grid: logspace(-3, 11, 15)

- Best C = $0.1 \rightarrow 74.9\%$ CV accuracy, 75.2% test accuracy
- Precision (class 1): ~73%, 76% average f1-score
- 846 support vectors (~60% of training set)

Polynomial Kernel

Parameters

Used two-step training with 10-fold CV

Results Quadratic

Best C $\approx 1.64 \rightarrow 73.6\%$ CV, 73% test accuracy

851 supports (754 slack)

Results Cubic

Best C \approx 0.72 \rightarrow 73.6% CV, 73.5% test accuracy

932 supports (764 slack)

RBF Kernel

Parameters

- Two-step grid search on C and gamma
- Step 1: $C \in [0.1, 10^6]$, gamma $\in [10^{-6}, 10]$, with iteration cap
- Step 2: narrowed region, no iteration cap

- Best C $\approx 3.7 \times 10^5$, gamma = 10^{-6}
- 75.6% CV accuracy, 75.7% test accuracy
- Highest accuracy, highest complexity

Majority Voting

Parameters

- Hard voting with Naive Bayes,
 tuned K-NN and a Decision Tree
- 50-fold CV
- Unweighted voting

- Train CV Accuracy: 0.715 [Naive Bayes]
- Best Params fo Knn: {'n_neighbors': 21, 'weights': 'uniform'} Accuracy: 0.743
- Train CV Accuracy: 0.731 [Knn (3)]
- Train CV Accuracy: 0.660 [Dec. Tree]
- Train CV Accuracy: 0.729 [Majority Voting]

Bagging

Parameters

- Base estimator: Decision Tree
- Max features: 0.35
- 10-fold CV

- Accuracy: 0.629 [n° estimators: 1]
- Accuracy: 0.721 [n° estimators: 50]
- Accuracy: 0.720 [n° estimators: 100]
- Accuracy: 0.732 [n° estimators: 200]

Random Forest

Parameters

• 10-fold CV

- Accuracy: 0.644 [n° estimators (trees): 1]
- Accuracy: 0.726 [n° estimators (trees): 50]
- Accuracy: 0.728 [n° estimators (trees): 100]
- Accuracy: 0.741 [n° estimators (trees): 200]

<u>AdaBoost</u>

Parameters

• ????

- Accuracy: 0.668 [n° estimators: 1]
- Accuracy: 0.734 [n° estimators: 50]
- Accuracy: 0.733 [n° estimators: 100]
- Accuracy: 0.736 [n° estimators: 200]

5. Comparison and conclusions

Final conclusions

Method	CV Accuracy	95% CI	
Naive Bayes (threshold tuned)	73%	68% - 78%	
K-NN (k=16, top 5 features)	75%	70.3% - 80.1%	
Decision trees (depth 4, pruned)	72%	66.9% - 77.1%	
Linear SVM (C = 0.1)	74.9%	70.3% - 80.1%	
Polynomial kernels	73.6%	68.3% - 78.9%	
RBF SVM (C ≈ 3.7×10 ⁵ , γ = 1×10 ⁶)	75.7%	70.8% - 80.6%	
Majority Voting	72.9%	67.9% - 77.9%	
Bagging (200 trees)	73.2%	68.2% - 78.2%	
Random forest (200 trees)	74.1%	69.1% - 79.1%	
AdaBoost (200 estimators)	73.6%	68.6% - 78.6%	

Questions

