1. (12 pts) Find the derivative. Do not simplify.

(a)
$$f(x) = \cos(7x)$$

$$f'(x) = -7 \sin(ax)$$

(b)
$$f(x) = \sqrt{x^3 + 5x}$$

$$f(x) = \frac{1}{a\sqrt{x^2+5x}} \cdot 3x^2+5$$

$$f'(x) = \frac{3x^2+5}{2\sqrt{x^3+5x}}$$

2. (12 pts) Find the derivative. Do not simplify.

(a)
$$f(x) = e^{-(x+1)^2}$$

$$f'(x) = e^{-(x+i)^2} \cdot (a(x+i)(i)$$

 $f'(x) = -a(x+i)e^{-(x+i)^2}$

$$t(x) = -2(x+1) \cdot e^{-(x+1)^2}$$
 $t(x) = -2(x+1)$
 $t(x) = -(x+1)^2$
 $t(x) = -(x+1)^2$

(b)
$$f(x) = \arctan(1 - 2x^2)$$

$$f'(x) = \frac{1}{1 + (1 - 2x^2)^2} \cdot \left(\frac{4x}{1 + (1 - 2x^2)^2} \right)$$

$$f'(x) = \frac{-4x}{1+(1-2x^2)^2}$$

$$\frac{d}{dx} \left(\operatorname{arcton} x \right) = \frac{1}{1 + x^2} dx$$

3. (10 pts) Find $\frac{dy}{dx}$ by implicit differentiation. $\sec y = 3xy^2$

secytany
$$\cdot y' = 3y^2 + 3x^2y \cdot y'$$

$$y' (secytany - 3x^2y) = 3y^2$$

$$y' = \frac{3y^2}{secytany - 3x^2y}$$

4. (10 pts) Use logarithmic differentiation or an equivalent method to find $\frac{dy}{dx}$.

$$v = (4 + x^2)^{\tan x}$$

$$\frac{y'}{y} = \sec^2 x \cdot \ln(4+x^2) + \tan x \cdot \frac{1}{4+x^2} \cdot 2x$$

5. (8 pts) If $y = \arcsin(3x-1)$, find the differential dy then evaluate at $x = \frac{1}{3}$ and dx = 0.12.

$$dy = \frac{3}{\sqrt{1-3(3)-1}^2}(0.12)$$

$$dy = \frac{3}{\sqrt{1-(1-1)^2}}(0.12)$$

$$dy = \frac{3}{1}(0.12)$$
6. (16 pts) Find the limit.

(a)
$$\lim_{x \to 3} \frac{\sin(x-3)}{x^2 - 4x + 3}$$
 $\frac{\sin(3-3)}{3^2 - 4(3) + 3} = \frac{0}{0}$

$$\frac{\text{cum}}{x \to 3} = \frac{\text{cus}(3-3)}{2(3)-4} = \frac{1}{6-4} = \frac{1}{a}$$

(b) $\lim_{x \to \infty} \frac{\ln(x^2)}{x}$ $\frac{\infty}{\infty}$

7. (10 pts) A 30 foot long ladder is leaning against the wall of a house. The base of the ladder is pulled away from the wall at 2 feet per minute. How fast is the top of the ladder moving down the wall when the base of the ladder is 5 feet from the wall?

Label the figure with the variables used in your solution.

Give your result rounded to 2 decimal places in proper units.

$x^{2}+y^{2}=c^{2}$ $5^{2}+y^{2}=30^{2}$ $35+y^{2}=900$ $y^{2}=875$ $y=5\sqrt{3}6$	
2x·dx + ay·dy=0	x=6 4
$x \cdot \frac{dx}{dt} = -y \cdot \frac{dy}{dt}$	$\frac{dx}{dt} = 2 ft/min$
$5 \cdot 2 = -5185 \frac{dy}{dz}$	
$\frac{2}{100} = \frac{dy}{dE}$	100/100
$\frac{dy}{dt} = -0.34 \text{ AH/min}$	

8. (12 pts) Sketch the graph of a function that satisfies the given conditions.

The domain of $f: (-4, \infty)$,

for official use only

$$f(-3) = 0$$

$$f(2) = 0$$

f(2) = 0 f(0) = -3 is the absolute minimum

$$\lim_{x \to -4^+} f(x) = \infty, \qquad \lim_{x \to \infty} f(x) = 3,$$

$$\lim_{x\to\infty}f(x)=3\,,$$

$$f'(x) < 0$$
 on $(-4,0)$ $f'(x) > 0$ on $(0,\infty)$

$$f'(x) > 0$$
 on $(0, \infty)$

$$f''(x) > 0$$
 on $(-4,2)$

$$f''(x) > 0$$
 on $(-4,2)$ $f''(x) < 0$ on $(2,\infty)$

9. (10 pts) A closed cylindrical juice can is to have a volume of $2,000\pi$ cubic centimeters. Find the dimensions, r and h, that will minimize the surface area of the can (and hence the cost of the metal to manufacture the can).

$$V = \pi r^2 h$$
$$S = 2\pi r^2 + 2\pi r h$$

$$V = 2000 \text{ Tr cm}^3$$

$$2000 = 7 r^{2} h$$

$$h = \frac{2000}{r^{2}}$$

$$\frac{dS}{dt} = 4\pi r - \frac{4000\pi}{r^2}$$

$$\frac{dS}{dt} = 0 = \frac{4\pi r^3 - 400\pi r}{r^2}$$

$$4\pi r^3 - 4000\pi = 0$$
 $4\pi r^3 = 4000\pi$
 $r^3 = 4000\pi$

$$h = \frac{2000}{10^2}$$
 $h = \frac{2000}{10^2}$
 $h = 20$