

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA PARA CURSO DE LICENCIATURA EM ENGENHARIA INFORMÁTICA

Regente: Félix Tomo

Assistentes: Bartolomeu Ubisse; Belarmino Matsinhe; Esménio Macassa; Fernando Mucomole;

Graça Massimbe & Valdemiro Sultane

2022-AP # 02-Cinemática de um ponto material & Dinâmica de uma partícula.

PARTE-I: Cinemática de um ponto material

- 1. Um automóvel e um camião partem do repouso no mesmo instante. Inicialmente o automóvel está a uma certa distância atrás do camião. O camião tem uma aceleração de $2m/s^2$ e o automóvel uma aceleração de $3m/s^2$. O automóvel ultrapassa o camião depois deste ter percorrido 75m. Determinar:
 - (a) Quanto tempo o automóvel gasta para ultrapassar o camião?
 - (b) Qual é a distância inicial entre o automóvel e o camião?
 - (c) Qual é a velocidade de cada um no momento de ultrapassagem?
- 2. Um ponto move-se no plano XY de tal modo que $v_x = 4t^3 + 4t$ e $v_y = 4t$. Se para t = 0 s tem-se x = 1 m e y = 2 m, determine a equação cartesiana da trajectória.
- 3. Um vaso de flores cai do parapeito¹ de um apartamento e leva 2.0 s para atravessar 2.0 **m** da janela do apartamento seguinte. Determine a altura acima do topo da janela de onde caiu o vaso (Despreze a resistência do ar).
- 4. Uma pequena bola rola horizontalmente até a borda de uma mesa de 1.20 m de altura e cai no chão. A bola chega ao chão a uma distância horizontal de 1.52 m da borda da mesa. (a) Por quanto tempo a bola fica no ar? (b) Qual é a velocidade da bola no instante em que chega à borda da mesa ?
- 5. Um comboio passa por uma estação a 100km/h. Uma bola rola ao longo do piso do comboio com velocidade de $50\,\mathrm{km/h}$ no sentido (I) do movimento do comboio, (II) no sentido oposto

¹Parede de apoio que se eleva mais ou menos à altura do peito

ao movimento do comboio, (III) perpendicular ao movimento do comboio. Determine, para cada caso, a velocidade da bola relativa a um observador, em pé, sobre a plataforma da estação.

- 6. Um motorista dirigindo a 60km/h, sob uma tempestada, observa que a chuva deixa nas janelas laterais marcas inclinadas de 60^o com a vertical. Ao parar o carro, nota que a chuva cai verticalmente. Calcular a velocidade da chuva relativa ao carro:
 - (a) Quando este está parado;
 - (b) Quando está se movendo a 60km/h.
- 7. As coordenadas de um corpo são $x(t) = t^2$ e $y(t) = (t-1)^2$.
 - (a) Obter a equação cartesiana da trajectória;
 - (b) Fazer o gráfico da trajectória;
 - (c) Achar a_n e a_τ para um instante qualquer;
 - (d) Achar a_n e a_τ para t = 1s.
- 8. Um corpo inicialmente em repouso ($\theta = 0$ e $\omega = 0$ para t = 0) é acelerado numa trajectória circular de raio igual a 1,3m segundo a equação $\alpha(t) = 120t^2 48t + 16$. Determinar:
 - (a) A posição ângular e a velocidade ângular do corpo como funções do tempo;
 - (b) As componentes tangencial e centripeta da sua aceleração, para t = 1s.

PARTE-I: Dinâmica de uma partícula

- 1. Uma partícula de massa igual a 10 g, move-se no plano XOY, segundo a equação: $\frac{(x-2)^2}{9} + \frac{(y-3)^2}{9} = 1$. Achar a sua velocidade, a aceleração, a força exercida pela superfície como função do tempo e no instante $t = \pi$ s.
- 2. Um ponto material move-se no plano XOY, sob acção de uma força constante cujas componentes são $F_x = 6$ N e $F_y = -7$ N, quando t = 0 m, x = 0 m, y = 0 m, $v_x = -2$ m/s e $v_y = 0$ m/s. Calcule a posição e a velocidade do ponto no instante t = 2 s (considere a massa da partícula igual a 16 kg).
- 3. Dois blocos (Fig.1) de massas $m_1 = 8.0 \text{ kg e } m_2 = 2.0 \text{ kg estão encostados um ao outro e podem deslizar sem atrito sobre um superfície horizontal.$

Figura 1:

- (a) Aplicando ao bloco m_1 uma força F de intensidade 20 N, quais são as intensidades das forças que actuam entre os blocos m_1 e m_2 ?
- (b) Quais são as intensidades das forças entre os blocos se sobre m_2 é aplicada uma força F = -20 N, em conjugação com a força que actua sobre m_1 ?

- 4. Um automóvel cuja massa é 1000 kg sobe uma avenida com 20^o de inclinação. Determine a força F que o motor deve exercer para que o carro se mova:
 - (a) Com MRU;
 - (b) Com aceleração $a = 0.2m/s^2$;
 - (c) Determine também, para cada caso, a força que a pista exerce no automóvel.
- 5. Um estudante do primeiro ano da Faculdade de Engenharia pretende determinar os coeficientes de atrito (estático e cinético) entre uma prancha e uma caixa. Para tal, o estudante coloca a caixa sobre a prancha e gradualmente levanta a prancha. Quando o ângulo de inclinação da prancha em relação à horizontal atinge 28°, a caixa começa a deslizar e percorre 150cm ao longo da prancha durante 3.0S. Determine os coeficientes de atrito que serão obtidos pelo estudantes nessas condições.
- 6. Três corpos de massas $m_1 = 4$ kg, $m_2 = 3$ kg e $m_3 = 5$ kg, (veja a Fig.2). Os corpos m_1 e m_2 são da mesma substância. O atrito cinético entre as suas superfícies e a mesa é $\mu_c = 0,10$. Determine a aceleração com que se movem os corpos e a reacção do corpo m_2 sobre m_1 . (use g = 10 N/kg).

Figura 2:

7. Três blocos de massas m_1 , m_2 e m_3 são associados como se ilustra na Fig.3. Desprezando-se o atrito entre as superfícies em contacto, determine a aceleração com que se move o bloco de massa m_1 .

Figura 3:

8. No pêndulo cônico representado na Fig.4, a velocidade angular constante tem o valor de 4,0 rad/s. O comprimento do pêndulo é de 1,16 m. Determine o módulo da força de tensão na corda e o ângulo que ela faz com a vertical, para uma bola de massa igual a 12 g.

Figura 4:

9. Para medir o coeficiente de atrito estático entre um bloco e um disco, fez-se rodar o disco (Fig.5) com uma aceleração angular $\alpha = 5rad/s^2$ constante. O disco parte do repouso em t = 0.0s e no instante t = 0.82s o bloco começa a derrapar sobre o disco. Determine o valor do coeficiente de atrito estático.

Figura 5:

- 10. Um corpo é projectado verticalmente para cima em um campo gravitacional constante com uma velocidade inicial v_o . Mostre que se existir uma força retardadora proporcional ao quadrado da velocidade instantânea, a velocidade do corpo ao retornar à posição inicial será $\frac{v_o v_t}{\sqrt{v_o^2 + v_t^2}}, \text{ onde } v_t \text{ é a velocidade terminal.}$
- 11. Os vectores posição e velocidade de um corpo com 2 kg de massa são dados respectivamente, por $\vec{r} = 5t\vec{i} + (10/3)t^3\vec{j}$ (m) e $\vec{v} = 5\vec{i} + 10t^2\vec{j}$ (m/s). Determine o momento de força (torque) em relação à origem do referencial no instante t = 1,0 s.
- 12. O vector de posição de um corpo com 3 kg é dado em metros, por $\vec{r} = (3t^2 6t)\vec{i} 4t^3\vec{j} + (3t + 2)\vec{k}$. Determine:
 - (a) A força que actua na partícula;
 - (b) O momento da força relativo a origem;
 - (c) A quantidade de movimento;
 - (d) Verifique que $\vec{F} = d\vec{P}/dt$.