CRM analysis

Customer Relationship Management (CRM) analysis involves the systematic examination and interpretation of data related to interactions between a business and its customers. Through CRM analysis, companies evaluate customer behavior, preferences, and feedback to gain valuable insights into their needs and expectations.

Importing required Libraries

Quantity 541909 non-null int64
InvoiceDate 541909 non-null object
UnitPrice 541909 non-null float64

```
In [ ]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import binom, norm, ttest 1samp, ttest ind, ttest rel, chi2, chisquare, chi2 contingency, stats
from scipy.stats import f oneway, kruskal, levene, shapiro, pearsonr, spearmanr
from statsmodels.graphics.gofplots import qqplot
import statsmodels.api as sm
import warnings
warnings.filterwarnings("ignore")
In [ ]:
df = pd.read csv('/content/Ecom CRM analysis.csv',encoding='ISO-8859-1')
In [ ]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
                 Non-Null Count Dtype
    Column
                 _____
    InvoiceNo 541909 non-null object
 0
    StockCode 541909 non-null object
    Description 540455 non-null object
```

```
Customerid 406829 non-null Iloat64
     Country 541909 non-null object
dtypes: float64(2), int64(1), object(5)
memory usage: 33.1+ MB
Handling Null Values
In [ ]:
df.isna().sum()
Out[]:
               0
  InvoiceNo
 StockCode
               0
 Description
            1454
   Quantity
               0
InvoiceDate
  UnitPrice
               0
CustomerID 135080
   Country
dtype: int64
In [ ]:
df['InvoiceDate'] = pd.to datetime(df['InvoiceDate'])
df['Description'].fillna('Unknown',inplace=True)
df['CustomerID'].fillna('Unknown Customer',inplace=True)
df.isna().sum()
Out[]:
  InvoiceNo 0
```

StockCode 0

```
DescriptionθQuantity0InvoiceDate0UnitPrice0CustomerID0Country0
```

dtype: int64

In []:

df.head()

Out[]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

In []:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
# Column Non-Null Count Dtype
```

#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	541909 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	datetime64[nsl

```
5 UnitPrice 541909 non-null float64
6 CustomerID 541909 non-null object
7 Country 541909 non-null object
dtypes: datetime64[ns](1), float64(1), int64(1), object(5)
memory usage: 33.1+ MB
```

Creating Required new Features

```
In []:

df['is_return'] = df['Quantity'] < 0
df['is_free_item'] = df['UnitPrice'] == 0
df['is_canceled'] = df['InvoiceNo'].str.startswith('C')</pre>
```

In []:

df.head()

Out[]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	is_return	is_free_item	is_canceled
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	False	False	False
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	False	False	False
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom	False	False	False
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	False	False	False
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	False	False	False

```
In [ ]:
```

```
df_filtered = df[~df['is_return'] & ~df['is_free_item'] & ~df['is_canceled']]
df_filtered.describe(include='all')
```

InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerID Country is_return is_free_item is_ca	
--	--

count	Inv 5i240 8	Stock@dd@	Description	53010 6,000000	Invoi 530116	5301 06-00000 0	Custoffle H9	c5301106	is_returfi	is_free_ntenfi	is_cancele6
unique	19962	3922	4026	NaN	NaN	NaN	4339	38	1	1	1
top	573585	85123A	WHITE HANGING HEART T- LIGHT HOLDER	NaN	NaN	NaN	Unknown_Customer	United Kingdom	False	False	False
freq	1114	2265	2323	NaN	NaN	NaN	132222	485125	530106	530106	530106
mean	NaN	NaN	NaN	10.542001	2011-07-04 20:16:17.864539392	3.865875	NaN	NaN	NaN	NaN	NaN
min	NaN	NaN	NaN	1.000000	2010-12-01 08:26:00	-11062.060000	NaN	NaN	NaN	NaN	NaN
25%	NaN	NaN	NaN	1.000000	2011-03-28 12:22:00	1.250000	NaN	NaN	NaN	NaN	NaN
50%	NaN	NaN	NaN	3.000000	2011-07-20 12:58:00	2.080000	NaN	NaN	NaN	NaN	NaN
75%	NaN	NaN	NaN	10.000000	2011-10-19 12:39:00	4.130000	NaN	NaN	NaN	NaN	NaN
max	NaN	NaN	NaN	80995.000000	2011-12-09 12:50:00	13541.330000	NaN	NaN	NaN	NaN	NaN
std	NaN	NaN	NaN	155.523831	NaN	41.856120	NaN	NaN	NaN	NaN	NaN

In []:

```
df['Year'] = df['InvoiceDate'].dt.year
df['Month'] = df['InvoiceDate'].dt.month
df['DayOfWeek'] = df['InvoiceDate'].dt.dayofweek
df['Hour'] = df['InvoiceDate'].dt.hour
df['Revenue'] = df['Quantity']*df['UnitPrice']
```

In []:

df.info()

```
StockCode
                  541909 non-null object
     Description
                   541909 non-null object
    Quantity
                  541909 non-null int64
    InvoiceDate
                  541909 non-null datetime64[ns]
     UnitPrice
                  541909 non-null float64
                  541909 non-null object
    CustomerID
 7
    Country
                  541909 non-null object
    is return
                  541909 non-null bool
 8
    is free item 541909 non-null bool
    is canceled
                  541909 non-null bool
11 Year
                   541909 non-null int32
12
    Month
                   541909 non-null int32
    DayOfWeek
                  541909 non-null int32
13
14 Hour
                   541909 non-null int32
                  541909 non-null float64
15 Revenue
dtypes: bool(3), datetime64[ns](1), float64(2), int32(4), int64(1), object(5)
memory usage: 47.0+ MB
In [ ]:
df[['InvoiceNo','StockCode','CustomerID']].nunique()
Out[]:
             0
  InvoiceNo 25900
 StockCode
           4070
          4373
CustomerID
dtype: int64
In [ ]:
df['is return'].value counts()
Out[]:
        count
is_return
   False 531285
```

```
True
         49494
is_return
dtype: int64
In [ ]:
df['is_canceled'].value_counts()
Out[]:
            count
is_canceled
     False 532621
      True
             9288
dtype: int64
In [ ]:
df['is_free_item'].value_counts()
Out[]:
            count
is_free_item
      False 539394
             2515
      True
dtype: int64
Calculating customer lifetime value
In [ ]:
CLV = df.groupby('CustomerID')['Revenue'].sum().reset index()
CLV.columns = ['CustomerID', 'CLV']
```

```
CLV.sort values(by='CLV',ascending=False).head(10)
```

	CustomerID	CLV
4372	Unknown_Customer	1447682.12
1703	14646.0	279489.02
4233	18102.0	256438.49
3758	17450.0	187482.17
1895	14911.0	132572.62
55	12415.0	123725.45
1345	14156.0	113384.14
3801	17511.0	88125.38
3202	16684.0	65892.08
1005	13694.0	62653.10

In []:

```
Customer_frequency = df.groupby('CustomerID')['InvoiceNo'].nunique().reset_index()
Customer_frequency.columns = ['CustomerID','Frequency']
Customer_frequency.sort_values(by='Frequency',ascending=False).head(10)
```

	CustomerID	Frequency
4372	Unknown_Customer	3710
1895	14911.0	248
330	12748.0	224
4042	17841.0	169
1674	14606.0	128
568	13089.0	118
2192	15311.0	118
487	12971.0	89

1615	Custone Custone	Frequengy	
803	13408.0	81	

Correlation Analyses

```
In [ ]:
```

```
corr_matrix = df[['Quantity', 'UnitPrice', 'Revenue', 'Year', 'Month', 'DayOfWeek', 'Hour']].corr()
corr_matrix
```

Out[]:

	Quantity	UnitPrice	Revenue	Year	Month	DayOfWeek	Hour
Quantity	1.000000	-0.001235	0.886681	0.002001	-0.001116	-0.000904	-0.011268
UnitPrice	-0.001235	1.000000	-0.162029	-0.004586	-0.000497	-0.007310	0.001268
Revenue	0.886681	-0.162029	1.000000	0.000275	0.000141	-0.002458	-0.009120
Year	0.002001	-0.004586	0.000275	1.000000	-0.369595	-0.007034	-0.010921
Month	-0.001116	-0.000497	0.000141	-0.369595	1.000000	0.040045	0.025649
DayOfWeek	-0.000904	-0.007310	-0.002458	-0.007034	0.040045	1.000000	-0.033176
Hour	-0.011268	0.001268	-0.009120	-0.010921	0.025649	-0.033176	1.000000

In []:

```
monthly_sales = df.groupby('Month')['Revenue'].sum().reset_index()
sns.barplot(data=df,x='Month',y='Revenue')
```

```
<Axes: xlabel='Month', ylabel='Revenue'>
```



```
In [ ]:
```

```
df_x = df.copy()
df_x.set_index('InvoiceDate', inplace=True)
Monthly_Sales = df_x['Revenue'].resample('M').sum()

plt.figure(figsize=(6,4))
#Monthly_Sales.plot()
sns.lineplot(data=Monthly_Sales)
plt.title('Monthly Sales Over Time')
plt.ylabel('Total Sales')
plt.show()
```


In []:

```
hourly_sales = df.groupby('Hour')['Revenue'].sum()

plt.figure(figsize=(6,4))
sns.barplot(data=hourly_sales)
plt.title('Total Sales by Hour of Day')
plt.ylabel('Total Sales')
plt.show()
```



```
Weekly_Sales = df.groupby('DayOfWeek')['Revenue'].sum()
plt.figure(figsize=(6,4))
sns.barplot(data=Weekly_Sales)
plt.title('Total Sales by Day Of Week')
plt.ylabel('Total Sales')
plt.show()
```


In []:

```
customer_revenue = df.groupby('CustomerID')['Revenue'].sum().reset_index()
plt.figure(figsize=(3,4))
sns.histplot(customer_revenue['Revenue'], bins=10,kde=True)
plt.title('Customer_Lifetime Value Distribution')
plt.show()
```

Customer Lifetime Value Distribution

50000 -

In []:

df.groupby('Description')['Revenue'].sum().reset_index().sort_values(by='Revenue',ascending= False)
Out[]:

	Description	Revenue
1098	DOTCOM POSTAGE	206245.480
2915	REGENCY CAKESTAND 3 TIER	164762.190
3919	WHITE HANGING HEART T-LIGHT HOLDER	99668.470
2471	PARTY BUNTING	98302.980
1866	JUMBO BAG RED RETROSPOT	92356.030
615	Bank Charges	-7175.639
934	CRUK Commission	-7933.430
281	Adjust bad debt	-11062.060
2246	Manual	-68671.640
171	AMAZON FEE	-221520.500

Calculating RFM metrics

```
In [ ]:
```

```
reference_date = df['InvoiceDate'].max() + pd.DateOffset(days=1)
rfm = df.groupby('CustomerID').agg({
        'InvoiceDate': lambda x: (reference_date - x.max()).days, # Recency
        'InvoiceNo': 'count', # Frequency
        'Revenue': 'sum' # Monetary
}).reset_index()
rfm.columns = ['CustomerID', 'Recency', 'Frequency', 'Monetary']
rfm
```

Out[]:

	CustomerID	Recency	Frequency	Monetary
0	12346.0	326	2	0.00
1	12347.0	2	182	4310.00
2	12348.0	75	31	1797.24
3	12349.0	19	73	1757.55
4	12350.0	310	17	334.40
4368	18281.0	181	7	80.82
4369	18282.0	8	13	176.60
4370	18283.0	4	756	2094.88
4371	18287.0	43	70	1837.28
4372	Unknown_Customer	1	135080	1447682.12

4373 rows × 4 columns

```
In [ ]:
```

```
rfm['R Score'] = pd.qcut(rfm['Recency'], 3, labels=[3, 2, 1])
```

```
rfm['F Score'] = pd.qcut(rfm['Frequency'], 3, labels=[3, 2, 1])
rfm['M Score'] = pd.qcut(rfm['Monetary'], 3, labels=[3, 2, 1])
rfm['rfm score'] = rfm['R Score'].astype(str)+rfm['F Score'].astype(str)+rfm['M Score'].astype(str)
def segment customer(row):
    if row['rfm score'] == '331':
        return 'Best Customers'
    elif row['rfm score'] == '321':
        return 'Loyal Customers'
    elif row['rfm score'].startswith('3'):
        return 'Promising Customers'
    elif row['rfm score'].startswith('2'):
        return 'At Risk Customers'
    else:
       return 'Lost Customers'
rfm['Segment'] = rfm.apply(segment customer, axis=1)
rfm
```

	CustomerID	Recency	Frequency	Monetary	R_Score	F_Score	M_Score	rfm_score	Segment
0	12346.0	326	2	0.00	1	3	3	133	Lost Customers
1	12347.0	2	182	4310.00	3	1	1	311	Promising Customers
2	12348.0	75	31	1797.24	2	2	1	221	At Risk Customers
3	12349.0	19	73	1757.55	3	2	1	321	Loyal Customers
4	12350.0	310	17	334.40	1	3	3	133	Lost Customers
•••						•••			
4368	18281.0	181	7	80.82	1	3	3	133	Lost Customers
4369	18282.0	8	13	176.60	3	3	3	333	Promising Customers
4370	18283.0	4	756	2094.88	3	1	1	311	Promising Customers
4371	18287.0	43	70	1837.28	2	2	1	221	At Risk Customers
4372	Unknown_Customer	1	135080	1447682.12	3	1	1	311	Promising Customers

4373 rows × 9 columns

```
In [ ]:
```

nlt figure/figgize=// 5))

```
sns.countplot(data=rfm, x='Segment', hue='Segment')
plt.title('Customer Segments Distribution')
plt.xticks(rotation=45)
plt.ylabel('Number of Customers')
plt.show()
```


In []: df1 = df.copy() df1 = df1.sort_values(by=['CustomerID', 'InvoiceDate'])

```
df1['DaysSinceLastPurchase'] = df1.groupby('CustomerID')['InvoiceDate'].diff().dt.days
avg_days_between_purchases = df1.groupby('CustomerID')['DaysSinceLastPurchase'].mean().reset_index()
avg_days_between_purchases.columns = ['CustomerID', 'AvgDaysBetweenPurchases']
avg_days_between_purchases
```

	CustomerID	AvgDaysBetweenPurchases
0	12346.0	0.000000
1	12347.0	2.000000
2	12348.0	9.400000
3	12349.0	0.000000
4	12350.0	0.000000
4368	18281.0	0.000000
4369	18282.0	9.833333
4370	18283.0	0.433113
4371	18287.0	2.275362
4372	Unknown_Customer	0.000763

4373 rows × 2 columns

In []:

```
customer_preferred_day = df1.groupby('CustomerID')['DayOfWeek'].agg(lambda x: x.mode()[0]).reset_index()
customer_preferred_day.columns = ['CustomerID','Preferred_shopping_Day']
customer_preferred_day
```

	CustomerID	Preferred_shopping_Day
0	12346.0	1
1	12347.0	1
2	12348.0	3
3	12349.0	0

4	CustomerID 12350.0	Preferred_shopping_Day
	•••	
4368	18281.0	6
4369	18282.0	4
4370	18283.0	3
4371	18287.0	2
4372	Unknown_Customer	1

4373 rows × 2 columns

In []:

```
customer_preferred_hour = df1.groupby('CustomerID')['Hour'].agg(lambda x: x.mode()[0]).reset_index()
customer_preferred_hour.columns = ['CustomerID','Preferred_shopping_Hour']
customer_preferred_hour
```

Out[]:

	CustomerID	Preferred_shopping_Hour
0	12346.0	10
1	12347.0	14
2	12348.0	19
3	12349.0	9
4	12350.0	16
4368	18281.0	10
4369	18282.0	13
4370	18283.0	14
4371	18287.0	10
4372	Unknown_Customer	15

4373 rows × 2 columns

```
In []:

rfm = pd.merge(rfm, avg_days_between_purchases, on='CustomerID', how='left')
rfm = pd.merge(rfm, customer_preferred_day, on='CustomerID', how='left')
rfm = pd.merge(rfm, customer_preferred_hour, on='CustomerID', how='left')
rfm.head()
```

	CustomerID	Recency	Frequency	Monetary	R_Score	F_Score	M_Score	rfm_score	Segment	AvgDaysBetweenPurchases	Preferred_shopping_Day	Preferred_
0	12346.0	326	2	0.00	1	3	3	133	Lost Customers	0.0	1	
1	12347.0	2	182	4310.00	3	1	1	311	Promising Customers	2.0	1	
2	12348.0	75	31	1797.24	2	2	1	221	At Risk Customers	9.4	3	
3	12349.0	19	73	1757.55	3	2	1	321	Loyal Customers	0.0	0	
4	12350.0	310	17	334.40	1	3	3	133	Lost Customers	0.0	2	
41											1	

Relation between average days between purchases and monetary value

In []:

```
rfm_clean = rfm.copy()
rfm_clean['AvgDaysBetweenPurchases_x'].fillna(rfm['AvgDaysBetweenPurchases_x'].median(), inplace=True)
rfm_clean['Monetary'].fillna(rfm['Monetary'].median(), inplace=True)
Ho = 'There is no significant relationship between average days between purchases and monetary value'
Ha = 'There is significant relationship between average days between purchases and monetary value'
alpha = 0.05
statistic, pvalue = stats.pearsonr(rfm_clean['AvgDaysBetweenPurchases_x'],rfm_clean['Monetary'])
if pvalue < alpha:
    print(pvalue)
    print('Reject Null Hypotheses')
    print(Ha)
else:
    print(pvalue)
    print('Fail to Reject Null Hypotheses')</pre>
```

```
print(Ho)

0.40571214377229947
Fail to Reject Null Hypotheses
There is no significant relationship between average days between purchases and monetary value

<ipython-input-59-5e1f4d066506>:7: DeprecationWarning: Please import `pearsonr` from the `scipy.stats` namespace; the `scipy.stats.stats` namespace is deprecated and will be removed in SciPy 2.0.0.
    statistic, pvalue = stats.pearsonr(rfm_clean['AvgDaysBetweenPurchases_x'],rfm_clean['Monetary'])

In []:

rfm_clean[['Preferred_shopping_Day_x','Monetary']]
Out[]:
```

	Preferred_shopping_Day_x	Monetary
0	1	0.00
1	1	4310.00
2	3	1797.24
3	0	1757.55
4	2	334.40
4368	6	80.82
4369	4	176.60
4370	3	2094.88
4371	2	1837.28
4372	1	1447682.12

4373 rows × 2 columns

impact of preferred shopping day on spending

```
In []:
f_oneway(rfm['Monetary'], rfm['Preferred_shopping_Day_x'])
Out[]:
```

F_onewayResult(statistic=39.73862573702288, pvalue=3.043757623227029e-10)

In []:

Ho = 'There is no significant impact of preferred shopping day and amount spent'
Ha = 'There is a significant impact of preferred shopping day and amount spent'
alpha = 0.05
statistic , pvalue = f_oneway(rfm['Monetary'],rfm['Preferred_shopping_Day_x'])
if pvalue < alpha:
 print(pvalue)
 print('Reject Null Hypotheses')
 print(Ha)
else:
 print(pvalue)
 print('Fail to Reject Null Hypotheses')
 print('Fail to Reject Null Hypotheses')</pre>

3.043757623227029e-10
Reject Null Hypotheses
There is a significant impact of preferred shopping day and amount spent

Impact of peak shopping hours and amount spent

```
In [ ]:
```

```
Ho = 'There is no significant impact of preferred shopping hours and amount spent'
Ha = 'There is a significant impact of preferred shopping hours and amount spent'
alpha = 0.05
statistic , pvalue = f_oneway(rfm['Monetary'],rfm['Preferred_shopping_Hour_x'])
if pvalue < alpha:
    print(pvalue)
    print('Reject Null Hypotheses')
    print(Ha)
else:
    print(pvalue)
    print(pvalue)
    print('Fail to Reject Null Hypotheses')
    print(Ho)</pre>
```

3.6465264061610397e-10
Reject Null Hypotheses
There is a significant impact of preferred shopping hours and amount spent

Insights and Recommendations

Conclusions:

Preferred Shopping Hours Impact Spending:

- Customers tend to spend significantly more during specific hours of the day.
- This indicates that shopping behavior is influenced by the time of day, likely related to convenience, routine, or promotional activities.

Preferred Shopping Days Impact Spending:

- There is a significant difference in spending based on the day of the week.
- Certain days might see higher spending due to factors like promotions, paydays, or typical consumer behavior patterns (e.g., weekend shopping)

No Significant Relationship Between Average Days Between Purchases and Monetary Value:

- The frequency of purchases (as measured by the average days between purchases) does not have a significant impact on how much customers spend in total.
- This suggests that customers who buy more frequently do not necessarily spend more over time, and high-value customers may have diverse shopping frequencies.

Recommendations:

- Optimize Marketing Campaigns Around Peak Shopping Hours
- Leverage Day-Specific Promotions
- Personalize Marketing Based on Shopping Patterns
- Do Not Overemphasize Purchase Frequency in Customer Segmentation
- Experiment with Pricing Strategies on Low-Traffic Days and Hours Analyze Non-Significant Factors Further
- valuate Shipping Costs: Since shipping fees contribute significantly to overall revenue, consider offering free shipping for high-value orders to encourage larger purchases or offering tiered shipping discounts.
- Focus on Customer Retention: Using the RFM segmentation, target high-value and at-risk customers with personalized marketing efforts. For example, offering exclusive discounts to 'At-Risk' customers could help bring them back to the platform.
- Monitor Operational Costs: Finally, regularly monitor expenses such as bank charges and commissions to reduce unnecessary financial drains on the business."