Descrizione della scheda ALISRT (SRT LNA Bias Board)

21/11/2006

PANNELLO

La scheda si utilizza per alimentare gli LNA (Low Noise Amplifier) di un Feed, essa è divisa in 2 sezioni una per la polarizzazione Left e l'altra per la polarizzazione Right, ogni sezione può alimentare fino a 5 stadi. Sul pannello la sezione Left è quella superiore mentre la Sezione Right è quella inferiore.

Mediante gli switches a pannello SW1 (sezione Left) e SW2 (sezione Right), si può commutare su tre posizioni: una di inattività dei Fets di lavoro, una di alimentazione dei Fets di lavoro ed infine una di selezione remota tra le due funzioni descritte.

A sua volta la posizione di inattività dei Fets di lavoro ha due opzioni configurabili: una in cui si alimentano dei Fets che sono sulla scheda detti di prova (funzionalità utile per fare le tarature preliminari), l'altra in cui si toglie la tensione di Drain (VD) sia ai Fets di lavoro che di prova (funzionalità di spegnimento utile dopo le tarature preliminari per spegnere e verificare il funzionamento degli stadi degli LNA). È importante, dopo le tarature preliminari, che si configuri la scheda nella seconda opzione (mediante gli appositi ponticelli), perché solo in quel modo i parametri letti sono quelli reali dei Fets di lavoro sia in fase di attività che di spegnimento, inoltre se si crede di essere in modalità remota ed invece si è in modalità locale (cioè SW1 e/o SW2 non sono in posizione remota) ci si accorge di questa incongruenza, perché non si ha riscontro tra la modalità comandata ed i valori dei parametri dei Fets letti oltre al valore delle Vref (3.3 V a Fets alimentati e 0 V a Fets spenti).

SW1 (sezione Left)

Posizione Sx (*)	Posizione Centrale	Posiz. Dx
Fets di prova / off (**)	Fets di lavoro	Selezione remota:
		Fets di prova / off (**)
		o Fets di lavoro

- (*) La commutazione locale su Fets di prova /off è disabilitabile togliendo il ponticello PR7, in pratica togliendo il ponticello la Posizione Sx di SW1 farà la stessa funzione della Posizione Centrale. Questo evita, dopo le fasi preliminari, una errata operazione locale che forzerebbe lo spegnimento.
- (**) La funzione ha due opzioni Fets di prova (ponticello PR5 in posizione 1-2) oppure Fets off (ponticello PR5 in posizione 2-3)

Il led verde a Sx (LD1 bottom) è acceso quando sono selezionati i Fets di lavoro della sezione Left Il led verde a Dx (LD1 top) si accende ad ogni operazione di lettura remota dei valori di tensione e corrente della sezione left

SW2 (sezione Right)

Posizione Sx (*)	Posizione Centrale	Posiz. Dx
Fets di prova / off (**)	Fets di lavoro	Selezione remota:
		Fets di prova / off (**)
		o Fets di lavoro

- (*) La commutazione locale su Fets di prova /off è disabilitabile togliendo il ponticello PR8, in pratica togliendo il ponticello la Posizione Sx di SW2 farà la stessa funzione della Posizione Centrale. Questo evita, dopo le fasi preliminari, una errata operazione locale che forzerebbe lo spegnimento.
- (**) La funzione ha due opzioni Fets di prova (ponticello PR6 in posizione 1-2) oppure Fets off (ponticello PR6 in posizione 2-3)

Il led verde a Sx (LD2 bottom) è acceso quando sono selezionati i Fets di lavoro della sezione Left Il led verde a Dx (LD2 top) si accende ad ogni operazione di lettura remota dei valori di tensione e corrente della sezione left

Sul pannello ci sono infine due connettori uno per la sezione Left (J2) e l'altro per la sezione Right (J3) per monitorare mediante un tester i valori impostati VD [V], ID [100 mV/mA] e VG [V]:

J2 (Test Points sezione Left)

PIN	SEGNALE	STADIO		
1	VD			
2	ID	L1		
3	VG			
4	VD			
5	ID	L2		
6	VG			
7	VD			
8	ID	L3		
9	VG			
10	VD			
11	ID	L4		
12	VG			
13	VD			
14	ID	L5		
15	VG			
16	GND			

J3 (Test Points sezione Right)

PIN	SEGNALE	STADIO
1	VD	
2	ID	R1
3	VG	
4	VD	
5	ID	R2
6	VG	
7	VD	
8	ID	R3
9	VG	
10	VD	
11	ID	R4

12	VG	
13	VD	
14	ID	R5
15	VG	
16	GND	

SEGNALI DI CONTROLLO

011/0	_	-	, ,,,,			•			0.0		
/EN_R	Abilita	zione	dell'uscita	analogio	ca del 1	multi	plexer	della s	ezione F	Right: attivo ba	asso
/EN_L	Abilita	zione	dell'uscita	analogio	ca del 1	multi	plexer	della s	ezione L	Left: attivo bas	SO
A0-A3	Indiriz	zi dei	multiplexe	r di entra	ambe I	e sez	ioni pei	r la let	tura rem	ota dei valori	

ON/OFF_L Comando on/off-prova della sezione Left: alto=on, basso off-prova ON/OFF_R Comando on/off-prova della sezione Right: alto=on, basso off-prova

VG_Ln Test Points V Gate sezione Left stadio n
VD_Ln Test Points V Drain sezione Left stadio n
VG_Rn Test Points V Gate sezione Right stadio n
VD_Rn Test Points V Drain sezione Right stadio n

LED/SH L Linea doppia funzione sezione Left:

- alimentazione led su LNA se il ponticello PR3 sé in posizione 1-2

- secondo collegamento di schermo per cavo verso gli LNA sezione Left se il ponticello PR3 é in posizione 2-3 si utilizza solo se mediante flat cable si va su due percorsi diversi)

LED/SH_R Linea doppia funzione sezione Right:

- alimentazione led su LNA se il ponticello PR4 sé in posizione 1-2

- secondo collegamento di schermo per cavo verso gli LNA sezione Left se il ponticello PR4 é in posizione 2-3 si utilizza solo se mediante flat cable si va su due percorsi diversi)

SH_L Collegamento di schermo per cavo verso gli LNA della sezione Left SH_R Collegamento di schermo per cavo verso gli LNA della sezione Right

MON_HI_L Uscita analogica del multiplexer per il monitoring di corrente e tensione dei Fets della sezione Left, è un segnale riferito a GND ma è preferibile utilizzare un sistema di acquisizione differenziale, se necessario è possibile ridurre il numero di canali analogici collegando assieme fino a 4 uscite ed abilitandone una per volta mediante /EN_L, se per errore si abilitassero più uscite assieme c'è comunque una resistenza da 100 ohm di protezione che limita la corrente all'uscita del multiplexer. E' preferibile utilizzare comunque ingressi differenziali diversi tra i gruppi di uscite Left e Right, è bene avere questa precauzione per ottenere un maggior isolamento tra le sezioni. Il range massimo in assoluto dei segnali e di +/- 5V, la scala è la stessa riportata nella descrizione dei connettori a pannello.

MON_HI_R Uscita analogica del multiplexer per il monitoring di corrente e tensione dei Fets della sezione Right, è un segnale riferito a GND ma è preferibile utilizzare un sistema di acquisizione differenziale, se necessario è possibile ridurre il numero di canali analogici collegando assieme fino a 4 uscite ed abilitandone una per volta mediante /EN_R, se per errore si abilitassero più uscite assieme c'è comunque una resistenza da 100 ohm di protezione che limita la corrente all'uscita del multiplexer. E' preferibile utilizzare comunque ingressi differenziali diversi tra i gruppi di uscite Left e Right, è bene avere questa precauzione per ottenere un maggior isolamento tra le sezioni. Il range massimo in assoluto dei segnali e di +/- 5V, la scala è la stessa riportata nella descrizione dei connettori a pannello.

REGOLAZIONI

Sulla scheda sono state definite con un riquadro serigrafico i 10 canali (L1-L5 per la sezione Left ed R1-R5 per quella Right) ogni canale ha due trimmer multigiri (11 giri) denominati VD ed ID essi servono per regolare rispettivamente la tensione la corrente di Drain, i valori crescono ruotando il trimmer in senso orario e viceversa (CW = +). In base alla caratteristica dei Fets si possono regolare tensioni VD fino a circa 2.8V e correnti ID fino a 33mA (equivale ad una lettura di 3.3V). Le protezioni sulle tesioni di Gate e di Drain sono state fatte mediante uno o più diodi Led in serie essi limitano la VG tra -1.9V e +1.9V e la VD tra 0 e +3.8V intervenendo con una buona velocità, le sovratensioni dovute a tarature o a guasti fanno accendere dei led che si trovano sulla scheda.

PARAMETRI	MODO	SENSO	VALORI	SCALA TESTS
Fets	REGOLAZ.	REGOLAZ.	REGOLABILI	POINT
VD	Trimmer	CW = +	0 ↔ 3.3 V	1 V/V
ID	Trimmer	CW = +	0 ↔ 33 mA	100 mV/mA
VG (*)	Automatica		-2.2 ↔ +1.85 V	1 V/V

(*) VG è il valore della tensione comandata per raggiungere il valore di corrente ID impostato ed è uguale al valore della tensione di Gate quando tutto funziona correttamente, invece è diverso (per effetto della caduta di tensione sulla resistenza in serie da 10 Kohm) se l'anello di retroazione è interrotto (ad esempio Fet spento o guasto), infatti la VG non riesce a controllare il Fet e si porta a fondo scala prossimo ai 5 V (negativi o positivi) i circuiti di protezione dalle sovratensioni sul Gate (presenti sia sulla scheda che sugli LNA) salvaguardano il Fet.

Quindi un valore di VG letto superiore a quello nominale indica un malfunzionamento del Fet.

Se si utilizzano cavi lunghi tra le schede e gli LNA, si possono innescare delle forti oscillazioni che sono facilmente smorzabili mettendo delle capacità di 1nF-100nF tra il Gate e GND vicino agli LNA.

ALIMENTAZIONI

Le alimentazioni delle sezioni Left (+5V_L, -5V_L) e Right (+5V_R, -5V_R) sono state mantenute distinte per avere un migliore isolamento, se fosse richiesto di utilizzare le stesse alimentazioni per entrambe le sezioni, è possibile collegarle assieme con i ponticelli PR1 e PR2. Anche l'alimentazione dei dispositivi logici (+5V_TTL) è stata mantenuta separata, se fosse necessario si può collegare (sul connettore di back plane) ad una o ad entrambe le tensioni analogiche. Le correnti di consumo di una singola scheda sono le seguenti:

$$I (+5V_L) = I (+5V_R) = 9 \text{ mA}$$
 @ ID = 0mA, VD = 2.5V per tutti i Fets

$$I (+5V_L) = I (+5V_R) = 160 \text{ mA}$$
 @ ID = 30mA, VD = 2.5V per tutti i Fets

$$I (-5V_L) = I (-5V_R) = 5 \text{ mA}$$

$$I (+5V_TTL) = 40 \text{ mA}$$

Per 8 schede (cioè 8 feeds) si pensa di usare 2 alimentatori (uno per ogni polarizzazione) AC/DC lineari duali V1 = V2 = 5 VDC, I1 = I2 = 1,4A @ Ta = 50°C modello Schroff PSM205

Tutti gli ingressi TTL sono sono tenuti alti con un pull-up di 1 Khom

Spegnimento

ON/OFF_L	IO08B
Sezione Left Off	0
Sezione Left On	1

ON/OFF_R	IO09B
Sezione Right Off	0
Sezione Right On	1

Acquisizione dati

CANALI ANALOGICI DI SCHEDA LEFT

СН	SEGNALE	STADIO		
1	VD			
2	ID	L1		
3	VG			
4	VD			
5	ID	L2		
6	VG			
7	VD			
8	ID	L3		
9	VG			
10	VD			
11	ID	L4		
12	VG			
13	VD			
14	ID	L5		
15	VG			
16	VREF 3.3V	L1-5		

CANALI ANALOGICI DI SCHEDA RIGHT

PIN	SEGNALE	STADIO	
1	VD		
3	ID	R1	
3	VG		
4	VD		
5	ID	R2	
6	VG		
7	VD		
8	ID	R3	
9	VG		
10	VD		
11	ID	R4	
12	VG		
13	VD		
14	ID	R5	
15	VG		
16	VREF 3.3V	R1-5	

ORDINE DI LETTURA CANALI ANALOGICI

Scheda	Ch	Sezione	Ch	A0-A3	EN0-EN3	
	(L/R)		(Globali)	(Decimale)	(Decimale)	
				IO00A-	IO04A-	INPUT AN 24 BIT
				IO03A	IO07A	
0	1 – 16	Left	1-16	0 – 15	14	AD8
	1 – 16	Right	17 - 32	0 - 15	14	AD9
2	33 – 48	Left	65 - 80	0 - 15	14	AD10
	33 – 48	Right	81 – 96	0 – 15	14	AD11
4	65 - 80	Left	129 - 144	0 – 15	14	AD12
	65 - 80	Right	145 - 160	0 - 15	14	AD13
6	97 – 112	Left	193 - 208	0 - 15	14	AD14
	97 – 112	Right	209 - 224	0 - 15	14	AD15
1	17 - 32	Left	33 - 48	0 - 15	13	AD8
	17 – 32	Right	49 – 64	0 - 15	13	AD9
3	49 – 64	Left	97 – 112	0 - 15	13	AD10
	49 – 64	Right	113 - 128	0 - 15	13	AD11
5	81 – 96	Left	161 - 176	0 - 15	13	AD12
	81 – 96	Right	177 - 192	0 - 15	13	AD13
7	113 – 128	Left	225 - 240	0 - 15	13	AD14
	113 – 128	Right	241 - 256	0 – 15	13	AD15
8	129 – 144	Left	257 - 272	0 - 15	11	AD8
	129 – 144	Right	273 - 288	0 - 15	11	AD9
10	161 - 176	Left	321 - 336	0 - 15	11	AD10
	161 – 176	Right	337 - 352	0 - 15	11	AD11
12	194 - 208	Left	385 - 400	0 - 15	11	AD12
	194 - 208	Right	401 - 416	0 - 15	11	AD13
14	225 - 240	Left	449 – 464	0 - 15	11	AD14
	225 - 240	Right	465 - 480	0 - 15	11	AD15
9	145 - 160	Left	289 - 304	0 - 15	7	AD8
	145 - 160	Right	305 - 320	0 - 15	7	AD9
11	177 - 192	Left	353 - 368	0 - 15	7	AD10
	177 - 192	Right	369 - 384	0 - 15	7	AD11
13	209 – 224	Left	417 – 432	0 – 15	7	AD12
	209 – 224	Right	433 – 448	0 - 15	7	AD13
15	241 – 256	Left	481 – 496	0 – 15	7	AD14
	241 – 256	Right	497 - 512	0 - 15	7	AD15

ORDINE DI SCHEDA CANALI ANALOGICI

Scheda	Ch	Sezione	Ch	A0-A3	EN0-EN3	
	(L/R)		(Globali)	(Decimale)	(Decimale)	
				IO00A-	IO04A-	INPUT AN 24 BIT
				IO03A	IO07A	
0	1 – 16	Left	1-16	0 – 15	14	AD8
	1 – 16	Right	17 - 32	0 - 15	14	AD9
1	17 – 32	Left	33 - 48	0 - 15	13	AD8
	17 – 32	Right	49 – 64	0 – 15	13	AD9
2	33 – 48	Left	65 - 80	0 – 15	14	AD10
	33 – 48	Right	81 - 96	0 - 15	14	AD11
3	49 – 64	Left	97 – 112	0 - 15	13	AD10
	49 – 64	Right	113 - 128	0 - 15	13	AD11
4	65 - 80	Left	129 - 144	0 – 15	14	AD12
	65 - 80	Right	145 - 160	0 - 15	14	AD13
5	81 – 96	Left	161 - 176	0 - 15	13	AD12
	81 – 96	Right	177 - 192	0 - 15	13	AD13
6	97 – 112	Left	193 - 208	0 - 15	14	AD14
	97 – 112	Right	209 - 224	0 - 15	14	AD15
7	113 – 128	Left	225 - 240	0 - 15	13	AD14
	113 – 128	Right	241 - 256	0 – 15	13	AD15
8	129 – 144	Left	257 - 272	0 - 15	11	AD8
	129 – 144	Right	273 - 288	0 - 15	11	AD9
9	145 - 160	Left	289 - 304	0 - 15	7	AD8
	145 - 160	Right	305 - 320	0 - 15	7	AD9
10	161 – 176	Left	321 - 336	0 - 15	11	AD10
	161 – 176	Right	337 - 352	0 – 15	11	AD11
11	177 – 192	Left	353 - 368	0 - 15	7	AD10
	177 – 192	Right	369 - 384	0 - 15	7	AD11
12	194 – 208	Left	385 - 400	0 - 15	11	AD12
	194 – 208	Right	401 - 416	0 - 15	11	AD13
13	209 – 224	Left	417 - 432	0 - 15	7	AD12
	209 – 224	Right	433 - 448	0 - 15	7	AD13
14	225 - 240	Left	449 – 464	0 - 15	11	AD14
	225 - 240	Right	465 - 480	0 - 15	11	AD15
15	241 – 256	Left	481 - 496	0 - 15	7	AD14
	241 – 256	Right	497 – 512	0 – 15	7	AD15