PC237 Optics

Summary part I

- > Nature of Light (chapter 1)
- > Geometrical Optics (chapter 2)
- > Optical Instrumentation (chapter 3)

Nature of Light

- Light behaves like waves in its propagation and in the phenomena of interference and diffraction; however, it exhibits particle-like behavior when exchanging energy with matter, as in the Compton and photoelectric effects
- > Photon energy:

$$E = hv$$
 h: Planck constant (6.626x10⁻³⁴ J-s)

- Figure Energy unit eV: $1eV = 1.6 \times 10^{-19} J$
- > Relations between wavelength, frequency, and speed:

In air:
$$c = \lambda v$$
 or $\lambda = c/v$

In media: $v = c/n$, $\lambda = \frac{v}{v} = \frac{c}{nv} = \frac{\lambda_o}{n}$

Geometrical Optics

Law of reflection: $\theta_i = \theta_r$

Law of refraction (Snell's Law): $n_i \cdot \sin \theta_i = n_t \cdot \sin \theta_t$

- Wavefront: The surfaces joining all points of equal phase are known as wavefronts.
- ➤ Huygens's Principle : every point on a propagating wavefront serves as the source of spherical secondary wavelets, such that the wavefront at some later time is the envelope of these wavelets.
- Principle of Least Time: The actual path between two points taken by a beam of light is the one that is traversed in the least time
- Re-state Fermat's Principle : t = OPL/cLight, in going from point S to P, traverses the route having the smallest OPL
- > Prove Snell's law

Geometrical Optics

> Total Internal Reflection:

$$\boxed{n_1 > n_2} \quad \left(\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)\right)$$

<u>Critical angle:</u> is the incident angle when refraction angle is equal to 90°

Refraction through Plane Surfaces:

Paraxial rays: $\sin \theta \cong \tan \theta \cong \theta$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$s' = \left(\frac{n_2}{n_1}\right)s$$

Geometrical Optics

- > O and I are conjugate points any pair of object-image points
 - by the principle of reversibility can be interchanged

Reflection at a spherical surface

> Mirror equation:

$$\boxed{\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}}$$

Convex mirror: f <Concave mirror: f > 0

Lateral magnification:

$$m = \frac{h_i}{h_o} = -\frac{s'}{s}$$

Sign convention O is to the left of V S s'I is to the left of V R C is to the right of V F is to the left of V

Geometrical Optics

- 2. Refraction at a spherical surface:
 - Refraction equation:

$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R}$$

Special case: plane refracting surface $R \rightarrow \infty$

0	

s': apparent depth

Lateral magnification:

$$m = \frac{h_i}{h_o} = -\frac{n_1 s'}{n_2 s}$$

Sign convention			
S	+	O is to the left of V	
s'	+	I is to the <u>right</u> of V	
R	+	C is to the right of V	

-	• •		
I Descr	The	images	۰
DUSCI	10c	magos	٠.

- Type: Virtual or real
- Orientation: erect or inverted
- Relative size

Meanings associated with the sign			
Quantity	Sign		
	+	-	
S	real object	virtual object	
s'	real image	virtual image	
m	erect image	inverted image	

Geometrical Optics

- 3. Thin Lenses:
 - Thin-lens equation: $\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$
 - ightharpoonup Lateral magnification: $m = \frac{h_i}{h_o} = -\frac{s'}{s}$

Lens	maker s	equation:	
1 =	$\left(\begin{array}{c}n_2\end{array}\right)$	$1)\left(\frac{1}{1}\right)$	1
$\int_{0}^{\infty} f$	n_1	R_1	R_2

			Meanings associated with the sign		
Sign convention		Quantity	Sign		
S	+	O is to the left of V	,	+	-
s'	+	I is to the <u>right</u> of V	S	real object	virtual object
$R_{1,2}$	+	C is to the right of V	s,	real image	virtual image
	_		m	erect image	inverted image

- > Rules for ray tracing:
- Ray 1 parallel to central axis will pass through the <u>right</u> focal point of a <u>converging</u> lens (or the <u>left</u> focal point of the <u>diverging</u> lens)
- Ray 2 passing through the <u>left</u> focal point of a <u>converging</u> lens (or the <u>right</u> focal point of the <u>diverging</u> lens) will emerge from lens parallel to central axis
- Ray 3 is the undeviated ray through center of lens (Ray 3 is also called central ray)

Geometrical Optics

- Newtonian Equation for Thin Lens: $xx' = f^2$
- > Lateral magnification: $m = \frac{h_i}{h} = -\frac{s'}{s} = -\frac{x'}{f} = -\frac{f}{x}$

3.1 Stops, Pupils, and Windows:

- Apertures are used to control *Image Brightness* and limit *Field of view*.
- ➤ Apertures for controlling <u>Image Brightness</u>: Aperture stops and Pupils
 - o <u>Aperture stop</u> AS: The <u>real</u> element in an optical system that limits the size of the cone of rays accepted by the system from an axial object point
 - o $\underline{Entrance\ pupil}$ (E_nP): The image of the $\underline{aperture\ stop}$ formed by the optical elements (if any) that precede it
 - o Exit pupil (E_xP): The image of the aperture stop formed by the optical elements (if any) that *follow* it
- \triangleright Chief Ray: The chief is a meridional ray that start at the <u>edge</u> of the object, and passes through the <u>center</u> of E_nP , AS, and E_xP
- ➤ Apertures for Limiting Field of view : Field stops and Windows
 - o *Field stop FS:* The *real* element that limits the angular field of view formed by an optical system
 - o $Entrance\ Window\ (E_nW)$: The image of the field stop formed by the optical elements that precede it
 - o $\underline{Exit\ Window}\ (E_xW)$: The image of the $\underline{field\ stop}$ formed by the optical elements that \underline{follow} it

Optical Instrumentation

- o Aperture stop AS
- o Entrance pupil (E_nP)
- o $Exit pupil (E_xP)$
- \triangleright Chief Ray: The chief is a meridional ray that start at the <u>edge</u> of the object, and passes through the <u>center</u> of E_nP , AS, and E_xP

3.3 Prisms:

➤ The deviation angle is: $\delta = \theta_1 + \theta_2 - (\theta_1' + \theta_2') = \theta_1 + \theta_2 - A$

$$\delta = \theta_{1} + \sin^{-1}\left(\sqrt{n^{2} - \sin^{2}\theta_{1}}\sin A - \sin\theta_{1}\cos A\right) - A$$

- > Condition of Minimum deviations: The ray for which the deviation is a minimum traverses the prism symmetrically, that is, parallel to its base.
- \triangleright Applications: Determination of refractive index n of transparent material

$$n = \frac{\sin[(\delta_m + A)/2]}{\sin(A/2)}$$

 δ_m : Minimum angular deviation

Optical Instrumentation

> Empirical relation --- Cauchy Relation:

Empirical relation --- Cauchy
$$n_{\lambda} = A + \frac{B}{\lambda^{2}} + \frac{C}{\lambda^{4}} + \cdots$$
> Dispersion:
$$\frac{dn}{d\lambda} \approx -\frac{2B}{\lambda^{3}}$$

A, B, C ... are Cauchy constants

- > Resolving power: $\Re = \frac{\lambda}{(\Delta \lambda)_{\min}} = b \frac{dn}{d\lambda}$
- 3.4 The Camera:

$$s_1 = \frac{s_o f(f + Ad)}{f^2 + Ads_o}$$

$$s_2 = \frac{s_o f(f - Ad)}{f^2 - Ads_o}$$

depth of field =
$$\frac{2Ads_o(s_o - f)f^2}{f^4 - A^2d^2s_o^2}$$

3.5 Simple Magnifiers and Eyepieces:

- <u>Angular</u> magnification *M*: the ratio of the retinal image as seen through the instrument over the size of the retinal image as seen by the unaided eye at normal viewing distance.
 - 1. Image viewed at infinity:

$$M = \frac{25}{f}$$

(Object is moved to the focal point)

2. Image viewed at normal near point: s' = -25 cm

$$M = \frac{25}{f} + 1$$

 $M = \frac{25}{f} + 1$ (Object is just inside the focal point)

Eyepieces or Oculars: To reduce transverse chromatic aberration, two lens are most often used. The effective focal length f of the two thin lenses separated by a distance *L* is given:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{L}{f_1 f_2}$$

$$=(n-1)\left(\frac{1}{R_{11}}-\frac{1}{R_{12}}\right)=(n-1)K_1$$

$$\frac{1}{f_1} + \frac{1}{f_2} - \frac{L}{f_1 f_2}$$
 with

 $\left[\frac{1}{f_1} = (n-1) \left(\frac{1}{R_{11}} - \frac{1}{R_{12}} \right) = (n-1) K_1$ $\frac{1}{f_2} = (n-1) \left(\frac{1}{R_{21}} - \frac{1}{R_{22}} \right) = (n-1) K_2$

To correct transverse chromatic aberration:

$$\frac{d(1/f)}{dn} = 0$$

Optimum separation:
$$L = \frac{1}{2} (f_1 + f_2)$$

Optical Instrumentation

3.6 Microscopes:

- Compound Microscope: Objective + Eyepiece (it may provide high MP) Objective: form a real, inverted, magnified image \rightarrow Lateral Magnification - M_o Eyepiece: further magnify the intermediate image → Angular Magnification - M_e
- <u>The intermediate image</u> is at or just inside of the 1st focal point $f_{\rm e}$ of the eyepiece.
- The separation of the two lens: $d = f_o + L + f_e$
- Magnification:

$$M = M_o M_e = -\left(\frac{L}{f_o}\right) \left(\frac{25}{f_e}\right)$$

Unit: cm

or
$$M = \frac{25}{f_{eff}}$$

$$\frac{1}{f_{eff}} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

- d: Separation of the two lenses
- L: Distance between the 2nd focal point and the objective image

3.7 Telescopes:

- > Eyepiece is located so that 1st focus overlaps 2nd focus of Objective
- > Nearly parallel rays of light from a distant object are collected by a positive lens--Objective, formed a real inverted image in its focal plane
- ➤ Then the intermediate image, located at or near the focal point of eyepiece, serves as a real object for the Ocular
- > Angular magnification (when image is viewed at infinity):

Optical Instrumentation

- > Angular magnification:
- $M = \frac{\alpha'}{\alpha} = -\frac{f_o}{f_o}$