Jakub Zbrzezny Nr indeksu: 286689

Projekt 1 - dyfraktometria rentgenowska

Nr zestawu: 4

12 stycznia 2021

Celem naszego zadania jest dla **Platyny o strukturze fcc** i wartości **stałej sieciowej** dzielonej przez A° , równej 3,92, obliczenie położenia maksimów dyfrakcyjnych w zakresie kątów $20^{\circ} \leq 2\theta \leq 90^{\circ}$ dla źródka $\lambda = 1,4767A^{\circ}$. Dodatkowo mamy uwzględnić wpływ czynnika struktury na występowanie maksimum dyfrakcyjnego.

Jak wiemy, w strukturze fcc mamy 4 różne położenia atomów w komórce elementarnej:

$$A_1 = (0, 0, 0), \ A_2 = (\frac{1}{2}, \frac{1}{2}, 0), \ A_3 = (\frac{1}{2}, 0, \frac{1}{2}), \ A_4 = (0, \frac{1}{2}, \frac{1}{2}).$$

Dla wskaźników Millera płaszczyzny h, k, l, najpierw obliczymy odległość d_{hkl} między sąsiednimi płaszczyznami (hkl).

Mamy sieć kubiczną, a zatem odległość d_{hkl} jest równa:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}},$$

gdzie a jest stałą sieciową naszego pierwiastka, dzieloną przez A° .

Następnie obliczymy kąt 2θ między falą padającą i odbitą. Skorzystamy z prawa Wulfa-Braggów. Wzmocnienie dyfrakcyjne nastąpi, jeżeli spełniony będzie warunek:

$$n\lambda = 2 d_{hkl} \sin \theta$$
,

gdzie n jest rządem ugięcia fali, a λ jest długością fali padającej. Przyjmujemy, że n=1.

Potem wyznaczymy czynnik struktury zdefiniowany następująco:

$$F_{hkl} = \sum_{j=1}^{4} f_j \exp[2\pi i (hx_j + ky_j + lz_j)].$$

Sumę liczymy po wszystkich atomach w komórce elementarnej. Współczynnik f_j jest czynnikiem atomowym i określa zdolność j-tego atomu w komórce elementarnej (o współrzędnych x_j , y_j , z_j) do rozpraszania promieniowania

rentgenowskiego. Przyjmujemy, że $f_1 = f_2 = f_3 = f_4 = 1$. Dyfrakcja nastąpi, gdy czynnik F_{hkl} jest niezerowy.

Zatem sprawdzimy, dla jakich współczynników h, k, l, czynnik F_{hkl} wynosi 0.

Zauważmy, że, gdy $2(hx_j + ky_j + lz_j)$ jest parzyste, to $\exp[2\pi i(hx_j + ky_j + lz_j)] = 1$, ponieważ $\exp(2\pi i) = 1$. Natomiast, gdy $2(hx_j + ky_j + lz_j)$ jest nieparzyste, to $\exp[2\pi i(hx_j + ky_j + lz_j)] = -1$, gdyż $\exp(\pi i) = -1$.

Stąd $F_{hkl} = 0$, jeżeli dla dokładnie dwóch j, $2(hx_j + ky_j + lz_j)$ jest parzyste oraz dla innych dwóch j, $2(hx_j + ky_j + lz_j)$ jest nieparzyste.

 A_2,A_3,A_4 są wszystkimi permutacjami 3-elementowego zbioru z dwóch liczb o wartości: $\frac{1}{2}$ i jednej liczby równej 0.

Mamy 4 następujące przypadki:

1.
$$h = 2k_1 + 1, k = 2k_2 + 1, l = 2k_3$$

$$2(hx_1 + ky_1 + lz_1) = 0$$
 - liczba parzysta

$$2(hx_2 + ky_2 + lz_2) = 2(k_1 + k_2) + 2$$
 - liczba parzysta

$$2(hx_3+ky_3+lz_3)=2(k_1+k_3)+1$$
- liczba nieparzysta

$$2(hx_4 + ky_4 + lz_4) = 2(k_2 + k_3) + 1$$
 - liczba nieparzysta

2.
$$h = 2k_1, k = 2k_2, l = 2k_3 + 1$$

$$2(hx_1 + ky_1 + lz_1) = 0$$
 - liczba parzysta

$$2(hx_2+ky_2+lz_2)=2(k_1+k_2)$$
- liczba parzysta

$$2(hx_3 + ky_3 + lz_3) = 2(k_1 + k_3) + 1$$
 - liczba nieparzysta

$$2(hx_4 + ky_4 + lz_4) = 2(k_2 + k_3) + 1$$
 - liczba nieparzysta

3.
$$h = 2k_1, k = 2k_2, l = 2k_3$$

$$2(hx_1 + ky_1 + lz_1) = 0$$
 - liczba parzysta

$$2(hx_2 + ky_2 + lz_2) = 2(k_1 + k_2)$$
 - liczba parzysta

$$2(hx_3 + ky_3 + lz_3) = 2(k_1 + k_3)$$
 - liczba parzysta

$$2(hx_4 + ky_4 + lz_4) = 2(k_2 + k_3)$$
 - liczba parzysta

4.
$$h = 2k_1 + 1, k = 2k_2 + 1, l = 2k_3 + 1$$

$$2(hx_1 + ky_1 + lz_1) = 0$$
 - liczba parzysta

$$2(hx_2 + ky_2 + lz_2) = 2(k_1 + k_2) + 2$$
 - liczba parzysta

$$2(hx_3+ky_3+lz_3)=2(k_1+k_3)+2$$
- liczba parzysta

$$2(hx_4 + ky_4 + lz_4) = 2(k_2 + k_3) + 2$$
 - liczba parzysta

Zatem, czynnik F_{hkl} będzie niezerowy, gdy wszystkie współczynniki h, k, l

są parzyste lub wszystkie h, k, l są nieparzyste.

Wyniki zapiszemy dla h, k, l, dla których czynnik F_{hkl} jest niezerowy. Obliczenia zostały przeprowadzone w programie Excel.

h	k	l	d_{hkl}	2θ	F_{hkl}
0	0	2	1,96	44,26	4
0	2	0	1,96	44,26	4
0	2	2	1,39	64,38	4
1	1	1	2,26	38,08	4
1	1	3	1,18	77,32	4
1	3	1	1,18	77,32	4
1	3	3	0,90	110,37	4
2	0	0	1,96	44,26	4
2	0	2	1,39	64,38	4
2	2	0	1,39	64,38	4
2	2	2	1,13	81,46	4
3	1	1	1,18	77,32	4
3	1	3	0,90	110,37	4
3	3	1	0,90	110,37	4
3	3	3	0,75	156,32	4

Następnie wybieramy wartości tylko dla kątów 20° $\leqslant 2\theta \leqslant 90^\circ.$ Wpisujemy do pliku tekstowego.

Zatem dyfraktogramem odpowiadającym naszemu pierwiastkowi, jest ${f dy-fraktogram\ nr\ 5}$.

Na następnej stronie został zamieszczony wykres dyfraktogramu (zaznaczone punkty na wykresie są maksimami dyfrakcyjnymi, które wpisaliśmy do naszego pliku tekstowego). Wykres został wykonany w programie R za pomocą funkcji ggplot z pakietu ggplot2.

