2. Cálculo de Predicados clássico 2.1. Sintaxe do Cálculo de Predicados clássico

Observação 123: Ao contrário do Cálculo Proposicional, no Cálculo de Predicados existem duas classes sintáticas: a classe dos termos e a classe das fórmulas. Os termos serão usados para denotar objetos do domínio de discurso em questão (por exemplo, números naturais, conjuntos, etc.) e as fórmulas corresponderão a afirmações relativas aos objetos (por exemplo, "dois é um número par" ou "o conjunto vazio é subconjunto de qualquer conjunto").

O Cálculo de Predicados será parametrizado por um **tipo de linguagem**, que fixará quais os símbolos que poderão ser usados para construir termos (que designaremos por **símbolos de função**) ou para denotar relações elementares entre os objetos (que designaremos por **símbolos de relação**). Este conjunto de símbolos dependerá, naturalmente, do problema em estudo.

Por exemplo, se estivermos a considerar a Aritmética (a teoria dos números naturais), entre outros, será útil ter símbolos que denotem o número O, a operação de adição e a relação de igualdade. Já no caso de estarmos a considerar teoria de conjuntos, será útil, por exemplo, ter símbolos para denotar o conjunto vazio, as operações de reunião de conjuntos e de conjunto potência, e as relações de pertença, inclusão e igualdade de conjuntos.

Definição 124: Um tipo de linguagem é um terno $(\mathcal{F}, \mathcal{R}, \mathcal{N})$ t. q.:

- a) \mathcal{F} e \mathcal{R} são conjuntos disjuntos;
- **b)** \mathcal{N} é uma função de $\mathcal{F} \cup \mathcal{R}$ em \mathbb{N}_0 .

Os elementos de $\mathcal F$ são chamados símbolos de função e os elementos de $\mathcal R$ são chamados símbolos de relação ou símbolos de predicado.

A função \mathcal{N} é chamada **função aridade**, chamando-se ao número natural $n = \mathcal{N}(s)$ (para cada $s \in \mathcal{F} \cup \mathcal{R}$) a **aridade** de s e dizendo-se que s é um **símbolo** n-**ário**. Intuitivamente, a aridade de um símbolo corresponde ao seu número de argumentos.

Os símbolos de função de aridade O são chamados **constantes**. Neste estudo, assumiremos que os símbolos de relação nunca têm aridade O.

Os símbolos de aridade 1 dir-se-ão também **símbolos unários**, os de aridade 2 **binários**, etc.

Exemplo 125: O terno $ARIT = (\{0, s, +, \times\}, \{=, <\}, \mathcal{N})$, onde $\mathcal{N}(0) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(+) = 2$, $\mathcal{N}(\times) = 2$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(<) = 2$, é um tipo de linguagem. Chamaremos a ARIT o tipo de linguagem para a Aritmética.

Notação 126: Habitualmente, usaremos a letra L (possivelmente indexada) para denotar tipos de linguagens.

Caso nada seja dito em contrário, durante este capítulo L denotará um tipo de linguagem $(\mathcal{F}, \mathcal{R}, \mathcal{N})$, cujo conjunto de constantes será denotado por \mathcal{C} .

Definição 127: O alfabeto A_L induzido pelo tipo de linguagem L é o conjunto formado pelos seguintes símbolos:

- **a)** \bot , \land , \lor , \neg , \rightarrow e \leftrightarrow (os conetivos proposicionais);
- b) ∃ e ∀, chamados quantificador existencial e quantificador universal, respetivamente;
- c) $x_0, x_1, ..., x_n, ...$, chamados *variáveis* (de primeira ordem), formando um conjunto numerável, denotado por \mathcal{V} ;
- d) "(", ")" e ",", chamados símbolos auxiliares;
- **e)** os símbolos de função e os símbolos de relação de *L* (que se assume serem distintos de todos os símbolos anteriores).

Exemplo 128: A sequência de 8 símbolos $\exists x_0 \neg (x_0 = 0)$ é uma palavra sobre o alfabeto \mathcal{A}_{ARIT} , mas a sequência de 8 símbolos $\exists x_0 \neg (x_0 = 1)$ não é uma palavra sobre \mathcal{A}_{ARIT} (1 não é uma das letras do alfabeto \mathcal{A}_{ARIT}).

Definição 129: O conjunto \mathcal{T}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) para todo $x \in \mathcal{V}$, $x \in \mathcal{T}_L$;
- **b)** para toda a constante c de L, $c \in \mathcal{T}_L$;
- c) para todo o símbolo de função f de L, de aridade $n \ge 1$, $t_1 \in \mathcal{T}_L$ e ... e $t_n \in \mathcal{T}_L \Longrightarrow f(t_1,...,t_n) \in \mathcal{T}_L$, para todo $t_1,...,t_n \in (\mathcal{A}_L)^*$.

Aos elementos de \mathcal{T}_L chamaremos termos de tipo L ou L-termos ou, abreviadamente, termos .

Exemplo 130: O conjunto \mathcal{T}_{ARIT} é o subconjunto de $(\mathcal{A}_{ARIT})^*$ definido indutivamente pelas seguintes regras:

- **a)** para todo $x \in \mathcal{V}$, $x \in \mathcal{T}_{ARIT}$;
- **b)** $O \in \mathcal{T}_{ARIT}$;
- c) para todo $t_1 \in (\mathcal{A}_{ARIT})^*$, $t_1 \in \mathcal{T}_{ARIT} \Rightarrow s(t_1) \in \mathcal{T}_{ARIT}$;
- **d)** para todos $t_1, t_2 \in (\mathcal{A}_{ARIT})^*$, $t_1 \in \mathcal{T}_{ARIT} = t_2 \in \mathcal{T}_{ARIT} \Rightarrow +(t_1, t_2) \in \mathcal{T}_{ARIT}$;
- e) para todos $t_1, t_2 \in (\mathcal{A}_{ARIT})^*$, $t_1 \in \mathcal{T}_{ARIT}$ e $t_2 \in \mathcal{T}_{ARIT} \Rightarrow \times (t_1, t_2) \in \mathcal{T}_{ARIT}$.

Exemplo 131:

1. As seguintes seis palavras sobre \mathcal{A}_{ARIT} são termos:

$$x_1, x_2, 0, s(0), \times(x_1,x_2), +(\times(x_1,x_2),s(0)).$$

2. As palavras sobre A_{ARIT} = (0,x₁) e < (0,x₁) (ambas de comprimento 6) não são ARIT-termos. Apesar de = e < serem símbolos de aridade 2 e de O e x₁ serem dois ARIT-termos, = e < são símbolos de relação e não símbolos de função, como exigido na condição c) da definição anterior. Estas duas palavras são exemplos do que adiante designaremos por fórmulas atómicas.</p>

Exemplo 132: Seja L_0 o tipo de linguagem $(\{c,f_1,f_2\},\{R_1,R_2\},\mathcal{N})$, onde $\mathcal{N}(c)=0$, $\mathcal{N}(f_1)=1$, $\mathcal{N}(f_2)=2$, $\mathcal{N}(R_1)=1$ e $\mathcal{N}(R_2)=2$. As seguintes quatro palavras sobre \mathcal{A}_{L_0} são termos de tipo L_0 :

$$c, x_1, f_2(c,x_1), f_1(f_2(c,x_1)).$$

Notação 133: Quando f é um símbolo de função binário e $t_1, t_2 \in \mathcal{T}_L$, utilizamos frequentemente a notação $t_1 f t_2$, possivelmente entre parênteses, para representar o termo $f(t_1, t_2)$. Por exemplo,

$$(x_1 \times x_2) + s(0)$$

representará o termo de tipo ARIT

$$+(\times(x_1,x_2),s(0)).$$

Teorema 134 (Indução Estrutural em \mathcal{T}_L): Seja P(t) uma propriedade relativa a termos t. Se:

- **a)** para todo $x \in \mathcal{V}$, P(x);
- **b)** para todo $c \in C$, P(c);
- c) para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todos $t_1, ..., t_n \in \mathcal{T}_L$, $(P(t_1) \in ... \in P(t_n)) \Longrightarrow P(f(t_1, ..., t_n));$

então para todo $t \in \mathcal{T}_L$, P(t).

Dem.: Consequência imediata do Teorema 7.

Observação 135: A definição indutiva do conjunto dos termos é determinista e tem associado um *princípio de recursão estrutural*, que serve para definir funções cujo domínio é o conjunto dos termos. Este princípio é usado nas três definições que se seguem.

Definição 136: O conjunto VAR(t) das *variáveis* que ocorrem num L-termo t é definido por recursão estrutural em \mathcal{T}_L do seguinte modo:

- a) $VAR(x) = \{x\}$, para todo $x \in \mathcal{V}$;
- **b)** $VAR(c) = \emptyset$, para todo $c \in \mathcal{C}$;
- c) $VAR(f(t_1,...,t_n)) = \bigcup_{i=1}^n VAR(t_i),$ para todo $f \in \mathcal{F}$ de aridade $n \ge 1$ e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 137: O conjunto das variáveis que ocorrem no termo de tipo $ARIT x_2 + s(x_1)$ é:

$$VAR(x_2 + s(x_1)) = VAR(x_2) \cup VAR(s(x_1)) = \{x_2\} \cup VAR(x_1) = \{x_2, x_1\}.$$

Definição 138: O conjunto subt(t), dos subtermos de um termo t, é definido por recursão estrutural em \mathcal{T}_L do seguinte modo:

- a) $subt(x) = \{x\}$, para todo $x \in \mathcal{V}$;
- **b)** $subt(c) = \{c\}$, para todo $c \in C$;
- c) $subt(f(t_1,...,t_n)) = \{f(t_1,...,t_n)\} \cup \bigcup_{i=1}^n subt(t_i), \text{ para todo } f \in \mathcal{F} \text{ de}$ aridade $n \geq 1$ e para todos $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 139: O conjunto dos subtermos do termo de tipo *ARIT* $(x_2 + s(x_1)) \times O$ é:

$$\{x_2, x_1, s(x_1), x_2 + s(x_1), 0, (x_2 + s(x_1)) \times 0\}.$$

Definição 140: A substituição de uma variável x por um L-termo t num L-termo t' é notada por t'[t/x] e é definida por recursão estrutural em \mathcal{T}_L do seguinte modo:

a)
$$y[t/x] = \begin{cases} t, & \text{se } y = x \\ y, & \text{se } y \neq x \end{cases}$$
, para todo $y \in \mathcal{V}$;

- **b)** c[t/x] = c, para todo $c \in C$;
- c) $f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x])$, para todo $f \in \mathcal{F}$ de aridade $n \ge 1$ e para todos $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 141:

1. O termo de tipo ARIT que resulta da substituição da variável x_1 pelo termo s(0) no termo $x_2 + s(x_1)$ é:

$$(x_2 + s(x_1))[s(O)/x_1]$$
= $x_2[s(O)/x_1] + s(x_1)[s(O)/x_1]$
= $x_2 + s(x_1[s(O)/x_1])$
= $x_2 + s(s(O))$

2. $(x_2 + s(x_1))[s(0)/x_0] = x_2 + s(x_1)$ (observe que $x_0 \notin VAR(x_2 + s(x_1))$).

Proposição 142: Sejam x uma variável e t_1 e t_2 termos. Se $x \notin VAR(t_1)$, então $t_1[t_2/x] = t_1$.

Dem.: Por indução estrutural em t_1 . (Exercício.)

Definição 143: Uma palavra sobre o alfabeto induzido por L da forma $R(t_1,...,t_n)$, onde R é um símbolo de relação n-ário e $t_1,...,t_n$ são L-termos, é chamada uma fórmula atómica de tipo L ou L-fórmula atómica ou, abreviadamente, uma fórmula atómica. O conjunto das L-fórmulas atómicas é notado por At_L .

Notação 144: Quando R é um símbolo de relação binário e $t_1, t_2 \in \mathcal{T}_L$, utilizamos a notação t_1Rt_2 , possivelmente entre parênteses, para representar o fórmula atómica $R(t_1, t_2)$. Por exemplo, a notação $x_0 < s(0)$ representará a fórmula atómica de tipo $ARIT < (x_0, s(0))$.

Exemplo 145:

1. As três palavras sobre \mathcal{A}_{ARIT} que se seguem são fórmulas atómicas de tipo ARIT:

$$=(0,x_1), <(0,x_1), =(+(0,x_1),\times(s(0),x_1)).$$

Usando as notações anteriormente referidas, podem ser representadas do seguinte modo:

$$0 = x_1, 0 < x_1, 0 + x_1 = s(0) \times x_1.$$

2. Já a palavra sobre $\mathcal{A}_{ARIT} \times (0, x_1)$ não é uma fórmula atómica de tipo ARIT (note-se que \times é um símbolo de função e não um símbolo de relação; de facto, esta palavra é um termo de tipo ARIT).

Definição 146: O conjunto \mathcal{F}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) $\varphi \in \mathcal{F}_L$, para todo $\varphi \in At_L$;
- **b)** $\perp \in \mathcal{F}_L$;
- c) $\varphi \in \mathcal{F}_L \Longrightarrow (\neg \varphi) \in \mathcal{F}_L$, para todo $\varphi \in (\mathcal{A}_L)^*$;
- **d)** $\varphi \in \mathcal{F}_L \text{ e } \psi \in \mathcal{F}_L \Longrightarrow (\varphi \square \psi) \in \mathcal{F}_L, \text{ para todo } \square \in \{\land, \lor, \rightarrow, \leftrightarrow\} \text{ e para todos } \varphi, \psi \in (\mathcal{A}_L)^*;$
- e) $\varphi \in \mathcal{F}_L \Longrightarrow (Qx \varphi) \in \mathcal{F}_L$, para todo $Q \in \{\exists, \forall\}$, para todo $x \in \mathcal{V}$ e para todo $\varphi \in (\mathcal{A}_L)^*$.

Aos elementos de \mathcal{F}_L chamaremos fórmulas de tipo L ou L-fórmulas ou, abreviadamente, fórmulas.

Exemplo 147: As seguintes palavras sobre \mathcal{A}_{ARIT} são fórmulas (fazendo uso das simplificações anteriormente mencionadas na representação de fórmulas atómicas e termos):

$$(x_{0} < s(0)),$$

$$(\neg(x_{0} < s(0))),$$

$$x_{0} = x_{1},$$

$$((\neg(x_{0} < s(0))) \rightarrow x_{0} = x_{1}),$$

$$(\exists x_{1}((\neg(x_{0} < s(0))) \rightarrow x_{0} = x_{1})),$$

$$(\forall x_{0}(\exists x_{1}((\neg(x_{0} < s(0))) \rightarrow x_{0} = x_{1}))).$$

Exemplo 148: Recordemos o tipo de linguagem L_0 do Exemplo 132: $L_0 = (\{c, f_1, f_2\}, \{R_1, R_2\}, \mathcal{N})$, onde $\mathcal{N}(c) = 0$, $\mathcal{N}(f_1) = 1$, $\mathcal{N}(f_2) = 2$, $\mathcal{N}(R_1) = 1$ e $\mathcal{N}(R_2) = 2$.

As seguintes quatro palavras sobre A_{L_0} são fórmulas:

$$R_1(x_1),$$

$$R_2(x_1, f_2(c, x_1)),$$

$$(R_1(x_1) \to R_2(x_1, f_2(c, x_1))),$$

$$(\forall x_1(R_1(x_1) \to R_2(x_1, f_2(c, x_1)))).$$

Notação 149: Os parênteses extremos e os parênteses à volta de negações ou de quantificadores são geralmente omitidos. Por exemplo, a fórmula

$$(\forall x_0(\exists x_1((\neg(x_0 < s(0))) \rightarrow x_0 = x_1)))$$

pode ser abreviada por

$$\forall x_0 \exists x_1 (\neg (x_0 < s(0)) \rightarrow x_0 = x_1).$$

П

Teorema 150 (Indução Estrutural em *L*-Fórmulas): Seja $P(\varphi)$ uma propriedade relativa a fórmulas φ . Se:

- a) $P(\psi)$, para todo $\psi \in At_L$;
- b) $P(\perp)$;
- c) $P(\psi) \Rightarrow P(\neg \psi)$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $P(\psi_1) \in P(\psi_2) \Rightarrow P(\psi_1 \square \psi_2)$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todos $\psi_1, \psi_2 \in \mathcal{F}_L$;
- e) $P(\psi) \Rightarrow P(Qx\psi)$, para todo $Q \in \{\exists, \forall\}$, para todo $x \in \mathcal{V}$ e para todo $\psi \in \mathcal{F}_L$;

então $P(\varphi)$, para todo $\varphi \in \mathcal{F}_L$.

Dem.: Consequência imediata do Teorema 7.

Observação 151: A definição indutiva do conjunto \mathcal{F}_L é determinista e tem associado um *princípio de recursão estrutural*, que serve para definir funções cujo domínio é \mathcal{F}_L . Este princípio é usado na definição seguinte.

Definição 152: O conjunto das *subfórmulas* de uma *L*-fórmula φ é notado por $subf(\varphi)$ e é definido, por recursão estrutural, do seguinte modo:

- a) $subf(\psi) = \{\psi\}$, para todo $\psi \in At_L$;
- **b)** $subf(\bot) = \{\bot\};$
- c) $subf(\neg \psi) = subf(\psi) \cup \{\neg \psi\}$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $subf(\psi_1 \square \psi_2) = subf(\psi_1) \cup subf(\psi_2) \cup \{\psi_1 \square \psi_2\}$, para todos $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L;$
- e) $subf(Qx \psi) = subf(\psi) \cup \{Qx \psi\}$, para todos $Q \in \{\exists, \forall\}$, $x \in \mathcal{V}$, $\psi \in \mathcal{F}_L$.

Definição 153: Seja φ uma fórmula e seja $Qx \psi$ uma subfórmula de φ , onde $Q \in \{\exists, \forall\}, x \in \mathcal{V}$ e $\psi \in \mathcal{F}_L$. O *alcance* desta ocorrência do quantificador Qx em φ é esta ocorrência da fórmula ψ .

Exemplo 154: Na ARIT-fórmula

$$\forall x_0 (\exists x_1 (x_0 = s(x_1)) \rightarrow (\neg (x_0 = 0) \land \exists x_1 (x_1 < x_0))) :$$

1. o alcance da única ocorrência de $\forall x_0$ é

$$\exists x_1(x_0 = s(x_1)) \rightarrow (\neg(x_0 = 0) \land \exists x_1(x_1 < x_0));$$

- 2. o alcance da primeira ocorrência do quantificador $\exists x_1 \in x_0 = s(x_1)$;
- 3. o alcance da segunda ocorrência do quantificador $\exists x_1 \in x_1 < x_0$.

Definição 155: Numa fórmula φ , uma ocorrência (em subfórmulas atómicas de φ) de uma variável x diz-se *livre* quando x não está no alcance de nenhuma ocorrência de um quantificador Qx (com $Q \in \{\exists, \forall\}$); caso contrário, essa ocorrência de x diz-se ligada. Escrevemos $LIV(\varphi)$ para denotar o conjunto das variáveis que têm ocorrências livres em φ e $LIG(\varphi)$ para denotar o conjunto das variáveis que têm ocorrências ligadas em φ .

Exemplo 156: Seja φ a fórmula

$$\exists x_1(\neg(\underbrace{x_0}_{(a)} < s(0)) \rightarrow \forall x_0(\underbrace{x_0}_{(b)} = \underbrace{x_1}_{(a)})).$$

A ocorrência (a) de x_0 é livre, enquanto que a ocorrência (b) de x_0 é ligada. A ocorrência (a) de x_1 é ligada. Assim, $LIV(\varphi) = \{x_0\}$ e $LIG(\varphi) = \{x_0, x_1\}$.

Observação 157: Note-se que $LIV(\varphi) \cap LIG(\varphi)$ não é necessariamente o conjunto vazio (veja-se o exemplo anterior).

Definição 158: A operação de substituição das ocorrências livres de uma variável x por um L-termo t numa L-fórmula φ é notada por $\varphi[t/x]$ e é definida por recursão estrutural em L-fórmulas do seguinte modo:

- a) $R(t_1,...,t_n)[t/x] = R(t_1[t/x],...,t_n[t/x])$, para todo $R \in \mathcal{R}$ de aridade n e para todos $t_1,...,t_n \in \mathcal{T}_L$;
- **b)** $\perp [t/x] = \perp;$
- **c)** $(\neg \psi)[t/x] = \neg \psi[t/x]$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $(\psi_1 \Box \psi_2)[t/x] = \psi_1[t/x] \Box \psi_2[t/x],$ para todos $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L;$

e)
$$(Qy\psi)[t/x] = \begin{cases} Qy\psi \text{ se } y = x \\ &\text{, para todos } Q \in \{\exists, \forall\}, \\ Qy\psi[t/x] \text{ se } y \neq x \end{cases}$$

Exemplo 159:

1.
$$(x_0 < s(x_1))[O/x_0]$$

= $x_0[O/x_0] < s(x_1)[O/x_0]$ (def. anterior **a**))
= $O < s(x_1)$ (subst. em termos)

2.
$$(\exists x_0(x_0 < s(x_1)))[0/x_0]$$

= $\exists x_0(x_0 < s(x_1))$ (def. anterior **e**), 1.° caso)

3. $(\exists x_0(x_0 < s(x_1)))[0/x_1]$ = $\exists x_0(x_0 < s(x_1))[0/x_1]$ (def. anterior **e**), 2.° caso)
= $\exists x_0(x_0 < s(0))$ (def. anterior **a**) e subst. em termos)

4.
$$(\exists x_0(x_0 < s(x_1)) \land (0 < x_0))[0/x_0]$$

= $\exists x_0(x_0 < s(x_1)) \land 0 < 0$ (porquê?)

Exemplo 160: Seja φ a fórmula de tipo *ARIT* $\exists x_1(x_0 < x_1)$. Temos

$$\varphi[s(x_1)/x_0] = \exists x_1(s(x_1) < x_1).$$

Observe que em φ a ocorrência livre de x_0 "não é afetada" pela quantificação $\exists x_1$. Com a substituição, no lugar de uma ocorrência livre de uma variável, temos o termo $s(x_1)$, que "é afetado" pela quantificação $\exists x_1$. Na definição seguinte, identificaremos as condições que evitam este fenómeno indesejado de *captura de variáveis* em substituições.

Definição 161: Uma variável x diz-se substituível (sem captura de variáveis) por um termo t numa fórmula φ quando não existe em φ uma ocorrência livre de x no alcance de algum quantificador sobre uma variável de t.

Observação 162: Uma variável x não é substituível por um termo t numa fórmula φ se existe pelo menos uma ocorrência livre de x em φ no alcance de algum quantificador Qy onde $y \in VAR(t)$.

Observação 163: Se x é uma variável que não tem ocorrências livres numa formula φ ou t é um termo onde não ocorrem variáveis, x é substituível por t em φ .

Exemplo 164: Seja $\varphi = \forall x_1(x_1 < x_2) \lor \neg (x_1 < x_2)$. Então:

- a) x_0 é substituível por $x_1 + s(x_2)$ em φ , pois x_0 não tem ocorrências livres na fórmula;
- b) x_1 é substituível por $x_1 + s(x_2)$ em φ , pois a única ocorrência livre de x_1 não está no alcance de qualquer quantificador;
- c) x_2 não é substituível por $x_1 + s(x_2)$ em φ , pois x_2 tem uma ocorrência livre no alcance do quantificador $\forall x_1$ e $x_1 \in VAR(x_1 + s(x_2))$;
- d) x_2 é substituível por $x_0 + s(x_2)$ em φ , pois, embora exista uma ocorrência livre de x_2 no alcance do quantificador $\forall x_1$, $x_1 \notin VAR(x_0 + s(x_2))$.

Observação 165: Note-se que, mesmo quando uma variável x não é substituível por um termo t numa fórmula φ , a operação de substituição de x por t em φ encontra-se definida. Por exemplo, x_2 não é substituível por $x_1 + s(x_2)$ em

$$\varphi = \forall x_1(x_1 < x_2) \lor \neg (x_1 < x_2),$$

mas a ARIT-fórmula resultante da substituição de x_2 por $x_1+s(x_2)$ em φ encontra-se definida e é igual a

$$\forall x_1(x_1 < x_1 + s(x_2)) \lor \neg(x_1 < x_1 + s(x_2));$$

no entanto, ao efetuar esta substituição, acontece o fenómeno da captura de variáveis.

Proposição 166: Sejam φ uma fórmula, x uma variável e t um termo. Se $x \notin LIV(\varphi)$, então $\varphi[t/x] = \varphi$.

Dem.: Por indução estrutural em \mathcal{F}_L . A prova está organizada por casos, consoante a *forma* de φ .

a) Caso $\varphi = \bot$. Então, $\varphi[t/x] = \bot[t/x] \stackrel{\text{(1)}}{=} \bot = \varphi$.

Justificações

(1) Definição de substituição.

b) Caso $\varphi = R(t_1, ..., t_n)$, com $R \in \mathcal{R}$, n-ário, e $t_1, ..., t_n \in \mathcal{T}_L$. Então, $x \notin VAR(t_i)$, para todo $1 \le i \le n$, de outra forma teríamos $x \in LIV(\varphi)$, e contrariaríamos a hipótese. Assim, aplicando a Proposição 142, $t_i[t/x] = t_i$, para todo $1 \le i \le n$. Logo:

$$\varphi[t/x] = R(t_1,...,t_n)[t/x] \stackrel{\text{(1)}}{=} R(t_1[t/x],...,t_n[t/x]) \stackrel{\text{(2)}}{=} R(t_1,...,t_n) = \varphi.$$

Justificações

- Definição de substituição.
- (2) $t_i[t/x] = t_i$, para todo $1 \le i \le n$.

- c) Caso $\varphi = Qy \varphi_1$, com $Q \in \{\exists, \forall\}$, $y \in \mathcal{V}$ e $\varphi_1 \in \mathcal{F}_L$.
 - **c.1)** Caso x = y. Então:

$$\varphi[t/x] = (Qy \varphi_1)[t/x] \stackrel{\text{(1)}}{=} Qy \varphi_1 = \varphi.$$

Justificações

Definição de substituição.

c.2) Caso $x \neq y$. Então:

$$\varphi[t/x] = (Qy \varphi_1)[t/x] \stackrel{\text{(1)}}{=} Qy \varphi_1[t/x] \stackrel{\text{(2)}}{=} Qy \varphi_1 = \varphi.$$

Justificações

- (1) Definição de substituição.
- (2) Por hipótese, $x \notin LIV(\varphi)$. Como $LIV(\varphi_1) \subseteq LIV(\varphi) \cup \{y\}$ e $x \neq y$, segue-se que $x \notin LIV(\varphi_1)$. Logo, por H. I., $\varphi_1[t/x] = \varphi_1$.
- d) Os restantes casos são deixados como exercício.

Definição 167: Uma fórmula φ diz-se uma sentença, ou uma fórmula fechada, quando $LIV(\varphi) = \emptyset$.

Proposição 168: Seja φ uma sentença. Então, para toda a variável x e para todo o termo t,

- 1. x é substituível por t em φ ;
- $2. \ \varphi[t/x] = \varphi.$

Dem.: Exercício.