All orders forward differences can be written in a tabular form This difference table is called forward difference table or diagonal difference table.

7	77	AY	12 D	437	sty.
20 21 22 23 24	30 31 32 33	Δ90 Δ91 Δ92 Δ93	Δ291 Δ291	300	14 yo

Backward differences

The first order backward difference of f(a) is defined as Vf(n) = f(n-h) V = backward diff. operator

Thus $\nabla f(x_1) = f(x_1) - f(x_0)$

16- AD1 = D1-20

Similarly Vb2 = 32-31

7 m = n-m-1

The 2nd order differences are

Ty2 = 7(7/2)= 7(1/2-71)= 72-271+20 7273 = 33-272+51

In general, Tky;=>=>-kc,>;-1+-kc2>i-2-- Ukyi-k

table shows how the backward differences of allordurs on be formed. The backward difference table is sometimes called purisontal difference table.

2	y	Vy-	$\nabla^2 y$	V32	V47
20	96				
21	701	VYI			
2	72	∇y_2	V2 92		
23	73	V53	V233	$\nabla^3 \mathfrak{p}_3$	
34	PA	754	V274	$\nabla^3 \Im_4$	7474
					0

It is clear that $\nabla \left[f(n+h)\right] = \Delta f(n)$, $\nabla^2 \left[f(n+2h)\right] = \Delta^2 f(n)$ and $\nabla^n \left[f(n+nh)\right] = \Delta^n f(n)$

Also $\Delta^{2} f(n) = constant \text{ if } n = n$ $= 0 \quad \text{if } n > n$

Newton's forward difference interpolation formula

Let y=f(a) be a f^n whose explicit form is unknown. But the values of y at the equispaced points n_0, n_1, \dots, n_n i.e. n_0, n_1, \dots, n_n are known. Since n_0, n_1, \dots, n_n are equispaced, hence $n_i = n_0 + ih$, $i = 0, 1, \dots, n$ where h is the spacing equispaced, hence $n_i = n_0 + ih$, $i = 0, 1, \dots, n$ where h is the spacing lt is required to construct a polynomial p(n) of degree less than or equal to n satisfying the conditions $n_i = p(n_i)$, $i = 0, 1, \dots - (1)$. Since p(n) is a polynomial of degree at most n, so p(n) can be taken in the following form

Q(N) = a0 + ay (n-20)+ a2(2-20)(2-24)-...+ an(2-20)(2-24)-(2-24))

where a_0, a_1 an are constants whose realues are to be determined, using (1).

To determine the values of ais, substituting nani, i 20,1,2,- -n

When nano

Q(20) = a0 = 20

For n=2,, p(n) = a0 + ay (2,-no)

on, 7, = yo +a, h

3 a, = 3,-30 = 430

For n=n2, p(n2)= ao+a, (n2-n1)+a2(n2-n0)(n2-n1)

>> 72 2 70+ 31-30. 2h+ 92 (2h)h

 $\Rightarrow a_2 = \frac{y_2 - 2y_1 + y_0}{2! h^2} > \frac{4^2 y_0}{2! h^2}$

In this way, $a_3 = \frac{3y_0}{3! h^3} - \cdots$ $a_{n-2} = \frac{4^n y_0}{n! h^n}$

Using these values,

P(N = 70 + (n-no) 100 + (n-no) (n-n) 100 + --.

+ (2-20)(2-24) -- (22/20) 1/4/20 -(3)

Introducing the cond? n=20+ih, i=0,1, -. n for equispaced

pts, and a new variable u as nanotuh

· 2-2 2(u-1)h

So (3) becomes
$$P(n) = 90 + (uh) \frac{4}{h} + uh(u-1)h \frac{4}{2!h^2} + \cdots + uh(u-1)h \frac{4}{2!h^2} + \cdots + uh(u-1)h \frac{4}{h^2} + \cdots$$

where un noto

This is known as Newton's forward difference interpolation formula.

It the following table gives the value of e^2 for certain equidistant values of a. Find the value of e^2 when n=0.612 using Newton's forward difference interpolation formula.

7; 0.61 0.62 0.63 0.64 0.65 7; 1.840431 1.858928 1.877610 1.896481 1.915541

Sd! The forward difference table is

2	y	Ay	42 y	43 y	19
20 0.61	1.840431	0.018497			
21 0.62		0.018682	0.000185	0-20-0-1	
120.63	1.877610		0.000189	0-000004	00 0004
		0.018871	0.000183	00	
24 0.65	0.915541	0.019060	0 000 (8)		

Here $70^{20^{\circ}61}$, $72^{\circ}612$, $12^{20^{\circ}01}$, $12^{20^{\circ}01}$, $12^{20^{\circ}01}$, $12^{20^{\circ}01}$ 12^{20

Error in Newton's forward formula

The error in any polynomial interpolation formula is $E(n) = (n-n_0)(n-n_1) - \dots (n-n_n) \frac{f^{(n+1)}(3)}{(n+1)!}$ $= u(u-1)(u-2) - \dots (u-n) e^{n+1} \frac{f^{(n+1)}(3)}{(n+1)!} \left[\frac{g^{(n+1)}(3)}{(n+1)!} \right]$

where & lies between min [no, m, - n, m] and man { no, m, - m, m}

Newton's forward formula is used to compute the approximate value of f(r) when the argument n is near the beginning of the table. But this formula is not appropriate to compute f(n) when n is at the end of the table. In this situation Newton's backward formula is appropriate.

Newton's backward difference interpolation formula Suppose, a set of values 70,7,, -- In of the ft. 42ft) is given at 20,7,, ---, an i.e. y = f(2) i=0,1,-- n. Let us consider the folynomial p(a) in the following form f(n) ~ (2)-a0+a, (2-nn)+a2(2-nn)(2-2n-1)+---+an(n-2n)(n-2n-1)-- (2-21) -(1) The constants as are to be determined using the conditions 7; 20(ni) [20,1,-- n -(2) Substituting 222, 2n-1, -. , 21 in (1), we obtain P(2n12ao or 9027n q (m-1) = ao +a1(2n-1-2n) on, yn-1 = bn +a1(-k) => a1= 2n + 21 Q (m-2) = a0 + a1 (m-2-m) + a2 (m-2-m) (m-2-m) = 9n + 9n-9n-1 (-2h) + a2 (-2h) (-h)

932 Toon -- 9n2 Thyn N/ L/2

When the realnes of ails are substituted in (1), then the polynomial d(v) peromes d(v) = 2 + (v-v) 1 + (v-v) (v-v-1) 1/2/2 + - - · + (n-ny)(n-n-i) - · (n-ni) \frac{\tau \gamma_n}{\text{n!} \text{ h!} \text{ h. i}} - (3) We introduce a new variable as $v = \frac{n-n_0}{L}$. Also for equificied points ni=no+ih. Then n-n-1= (en+uh) - (no+ n-ih) = nh + bh - n - ih = (b + i)h = (b + i9(2)=3n+ wh Th + wh(v+1) h Th +---+ wh(w+1) h (v+2) h --- (v+n-1) h 7 3n =カトセマカトナロ(いけ) マカトナロ(いけ)(いけ) マカルナーー + 10(0+1)(0+2) -- (0+n-1) Thyn This formula is known as Newton's backward difference interpolation formula.

Ex From the following table of values of a and f(2) determine the value of f(0.29) using Newton's backward interpolation formula.

9: 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139