Практическое задание №1

Установка необходимых пакетов:

```
In [ ]:
!pip install -q tqdm
pip install --upgrade --no-cache-dir gdown
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/publi
c/simple/
Requirement already satisfied: gdown in /usr/local/lib/python3.7/dist-packages (4.4.0)
Collecting gdown
  Downloading gdown-4.5.4-py3-none-any.whl (14 kB)
Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.7/dist-packages (
from gdown) (4.6.3)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from gdown)
(1.15.0)
Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from gdown
(4.64.1)
Requirement already satisfied: requests[socks] in /usr/local/lib/python3.7/dist-packages
(from gdown) (2.23.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from q
down) (3.8.0)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-package
s (from requests[socks]->gdown) (3.0.4)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packag
es (from requests[socks]->gdown) (2022.9.24)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (fr
om requests[socks]->gdown) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/
python3.7/dist-packages (from requests[socks]->gdown) (1.24.3)
Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.7/dist-pa
ckages (from requests[socks]->gdown) (1.7.1)
Installing collected packages: gdown
  Attempting uninstall: gdown
    Found existing installation: gdown 4.4.0
    Uninstalling gdown-4.4.0:
      Successfully uninstalled gdown-4.4.0
Successfully installed gdown-4.5.4
```

Монтирование Вашего Google Drive к текущему окружению:

```
In [ ]:
```

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
```

Mounted at /content/drive

Константы, которые пригодятся в коде далее, и ссылки (gdrive идентификаторы) на предоставляемые наборы данных:

```
In [ ]:
```

```
EVALUATE_ONLY = True
TEST_ON_LARGE_DATASET = True
TISSUE_CLASSES = ('ADI', 'BACK', 'DEB', 'LYM', 'MUC', 'MUS', 'NORM', 'STR', 'TUM')
DATASETS_LINKS = {
    'train': '1XtQzVQ5XbrfxpLHJuL0XBGJ5U7CS-cLi',
    'train_small': '1qd45xXfDwdZjktLFwQb-et-mAaFeCzOR',
    'train_tiny': '1I-2ZOuXLd4QwhZQQltp817Kn3J0Xgbui',
    'test': '1RfPou3pFKpuHDJZ-D9XDFzgvwpUBFlDr',
    'test_small': '1wbRsog0n7uGlHIPGLhyN-PMeT2kdQ21I',
    'test_tiny': '1viiB0s041CNsAK4itvX8PnYthJ-MDnQc'
```

}

Импорт необходимых зависимостей:

```
In [ ]:
```

```
from pathlib import Path
import numpy as np
from typing import List
from tqdm.notebook import tqdm
from time import sleep
from PIL import Image
import IPython.display
from sklearn.metrics import balanced_accuracy_score
import gdown
import tensorflow as tf
import matplotlib.pyplot as plt
```

Класс Dataset

Предназначен для работы с наборами данных, обеспечивает чтение изображений и соответствующих меток, а также формирование пакетов (батчей).

```
In [ ]:
```

```
class Dataset:
   def init__(self, name):
        self.name = name
       self.is loaded = False
       url = f"https://drive.google.com/uc?export=download&confirm=pbef&id={DATASETS LIN
KS[name]}"
       output = f'{name}.npz'
       gdown.download(url, output, quiet=False)
       print(f'Loading dataset {self.name} from npz.')
       np obj = np.load(f'{name}.npz')
        self.images = np obj['data']
       self.labels = np obj['labels']
        self.n files = self.images.shape[0]
        self.is loaded = True
       print(f'Done. Dataset {name} consists of {self.n files} images.')
   def image(self, i):
        # read i-th image in dataset and return it as numpy array
       if self.is loaded:
            return self.images[i, :, :, :]
   def images seq(self, n=None):
        # sequential access to images inside dataset (is needed for testing)
       for i in range(self.n files if not n else n):
           yield self.image(i)
   def random image with label(self):
        # get random image with label from dataset
        i = np.random.randint(self.n files)
       return self.image(i), self.labels[i]
   def random batch with labels(self, n, seed=1):
       np.random.seed(seed)
        # create random batch of images with labels (is needed for training)
       indices = np.random.choice(self.n files, n)
        imgs = []
        for i in indices:
            img = self.image(i)
            imgs.append(self.image(i))
       logits = np.array([self.labels[i] for i in indices])
        return np.stack(imgs), logits
```

```
def image_with_label(self, i: int):
    # return i-th image with label from dataset
    return self.image(i), self.labels[i]
```

Пример использвания класса Dataset

Загрузим обучающий набор данных, получим произвольное изображение с меткой. После чего визуализируем изображение, выведем метку. В будущем, этот кусок кода можно закомментировать или убрать.

```
In [ ]:
```

```
d_train_tiny = Dataset('train_tiny')
img, lbl = d_train_tiny.random_image_with_label()
print()
print(f'Got numpy array of shape {img.shape}, and label with code {lbl}.')
print(f'Label code corresponds to {TISSUE_CLASSES[lbl]} class.')

pil_img = Image.fromarray(img)
IPython.display.display(pil_img)

Downloading...
From: https://drive.google.com/uc?export=download&confirm=pbef&id=1I-2ZOuXLd4QwhZQQltp817
Kn3J0Xgbui
To: /content/train_tiny.npz
100%| 105M/105M [00:00<00:00, 134MB/s]</pre>
```

Loading dataset train_tiny from npz. Done. Dataset train_tiny consists of 900 images.

Got numpy array of shape (224, 224, 3), and label with code 7. Label code corresponds to STR class.

Класс Metrics

Реализует метрики точности, используемые для оценивания модели:

- **1.** точность,
- 2. сбалансированную точность.

In []:

```
class Metrics:
    @staticmethod
    def accuracy(gt: List[int], pred: List[int]):
        assert len(gt) == len(pred), 'gt and prediction should be of equal length'
        return sum(int(i[0] == i[1]) for i in zip(gt, pred)) / len(gt)

    @staticmethod
    def accuracy_balanced(gt: List[int], pred: List[int]):
```

```
return balanced_accuracy_score(gt, pred)

@staticmethod
def print_all(gt: List[int], pred: List[int], info: str):
    print(f'metrics for {info}:')
    print('\t accuracy {:.4f}:'.format(Metrics.accuracy(gt, pred)))
    print('\t balanced accuracy {:.4f}:'.format(Metrics.accuracy_balanced(gt, pred))
)
```

Класс Model

Класс, хранящий в себе всю информацию о модели.

Вам необходимо реализовать методы **save**, **load** для сохранения и заргрузки модели. Особенно актуально это будет во время тестирования на дополнительных наборах данных.

Пожалуйста, убедитесь, что сохранение и загрузка модели работает корректно. Для этого обучите модель, протестируйте, сохраните ее в файл, перезапустите среду выполнения, загрузите обученную модель из файла, вновь протестируйте ее на тестовой выборке и убедитесь в том, что получаемые метрики совпадают с полученными для тестовой выбрки ранее.

Также, Вы можете реализовать дополнительные функции, такие как:

- 1. валидацию модели на части обучающей выборки;
- 2. использование кроссвалидации;
- 3. автоматическое сохранение модели при обучении;
- 4. загрузку модели с какой-то конкретной итерации обучения (если используется итеративное обучение);
- 5. вывод различных показателей в процессе обучения (например, значение функции потерь на каждой эпохе);
- 6. построение графиков, визуализирующих процесс обучения (например, график зависимости функции потерь от номера эпохи обучения);
- **7.** автоматическое тестирование на тестовом наборе/наборах данных после каждой эпохи обучения (при использовании итеративного обучения);
- 8. автоматический выбор гиперпараметров модели во время обучения;
- 9. сохранение и визуализацию результатов тестирования;
- Использование аугментации и других способов синтетического расширения набора данных (дополнительным плюсом будет обоснование необходимости и обоснование выбора конкретных типов аугментации)
- 11. и т.д.

Полный список опций и дополнений приведен в презентации с описанием задания.

При реализации дополнительных функций допускается добавление параметров в существующие методы и добавление новых методов в класс модели.

```
In [ ]:
```

```
from tensorflow.keras.layers import Input, Conv2D, Activation, MaxPool2D, Flatten, Dense
, Rescaling, RandomFlip, RandomRotation, Dropout, BatchNormalization
from sklearn import svm
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import pickle
```

```
In [ ]:
```

```
class Model:

def __init__(self):
    self.model = tf.keras.Sequential()
    self.model.add(Input(shape=(224, 224, 3)))
    self.model.add(Rescaling(1./255))
    #LBL1 - аугментация
```

```
self.model.add(RandomFlip("horizontal and vertical"))
        self.model.add(RandomRotation(0.3))
       self.model.add(Conv2D(96, (7, 7), padding='same', strides=2, kernel initializer=
tf.keras.initializers.RandomNormal(stddev=0.01)))
       self.model.add(BatchNormalization())
       self.model.add(Activation('relu'))
        self.model.add(MaxPool2D(pool size=(3,3), strides=2))
        self.model.add(Conv2D(256, (5, 5), strides=2, padding='same', kernel initializer
=tf.keras.initializers.RandomNormal(stddev=0.01)))
       self.model.add(BatchNormalization())
        self.model.add(Activation('relu'))
        self.model.add(MaxPool2D(pool size=(3,3), strides=2))
        self.model.add(Conv2D(384, (3, 3), padding='same', kernel initializer=tf.keras.i
nitializers.RandomNormal(stddev=0.01)))
        self.model.add(BatchNormalization())
        self.model.add(Activation('relu'))
        self.model.add(Conv2D(384, (3, 3), padding='same', kernel initializer=tf.keras.i
nitializers.RandomNormal(stddev=0.01)))
        self.model.add(BatchNormalization())
        self.model.add(Activation('relu'))
       self.model.add(Conv2D(256, (3, 3), padding='same', kernel_initializer=tf.keras.i
nitializers.RandomNormal(stddev=0.01)))
       self.model.add(BatchNormalization())
        self.model.add(Activation('relu'))
       self.model.add(MaxPool2D(pool size=(3,3), strides=2))
        self.model.add(Flatten())
       self.model.add(Dense(4096, activation='relu', kernel initializer=tf.keras.initia
lizers.RandomNormal(stddev=0.01)))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(4096, activation='relu', kernel initializer=tf.keras.initia
lizers.RandomNormal(stddev=0.01)))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(9, kernel initializer=tf.keras.initializers.RandomNormal(st
ddev=0.01)))
       self.model.add(Activation('softmax'))
       params = [{
            'C':[0.1, 1, 10, 100],
            'gamma':[0.01, 0.1, 1, 5],
            'kernel':['rbf']
       },
        {
            'C':[0.1, 1, 10, 100],
            'kernel':['linear']
        } ]
       self.classifier = RandomizedSearchCV(svm.SVC(), params, n iter=10, cv=4, n jobs=
2, verbose=2)
        self.epochs = 80
        self.history = None
    def save(self, name: str):
        # example demonstrating saving the model to PROJECT DIR folder on gdrive with nam
e 'name'
       filename = f'/content/drive/MyDrive/{name}.h5'
        self.model.save weights(filename, save format='h5')
        f = open(f'/content/drive/MyDrive/{name}1', 'wb')
       pickle.dump([self.classifier, self.history], f)
       f.close()
    def load(self, name: str):
        # example demonstrating loading the model with name 'name' from gdrive using link
       name to id dict = {
            'best cnn': ['1XKw ta c8iRrib2MQXNDghE9UcDvVYd9', '1YKr3DQo7M--tjrFBVaxf3kvT
-LzQ9iCy'],
            'best cnn 1':['1MSkILgZiBiSpsuxv5xaCoKINtDghraW4','15wGPXh7VMO5GP BUpsYgd7nD
XQKHbhyu']
       output = f'{name}.h5'
```

```
gdown.download(f"https://drive.google.com/uc?export=download&confirm=pbef&id={nam
e_to_id_dict[name][0]}", output, quiet=False)
        self.model.load weights(output)
        output = f'{name}1'
        gdown.download(f"https://drive.google.com/uc?export=download&confirm=pbef&id={nam
e to id dict[name][1]}", output, quiet=False)
        f = open(output, 'rb')
        obj = pickle.load(f)
        self.classifier = obj[0]
        self.history = obj[1]
        f.close()
    def train(self, dataset: Dataset, only classifiers=False):
        print(f'training started')
        batch, batch1, batch pred, batch pred1 = train test split(dataset.images, datase
t.labels, random state=1147, test size=0.33)
        if not only classifiers:
            batch, batch pred = shuffle(batch, batch pred)
            batch pred new = np.zeros((batch.shape[0], len(TISSUE CLASSES)))
            for i in range(batch.shape[0]):
                batch_pred_new[i][batch_pred[i]] = 1
            def scheduler(epoch, lr):
                if epoch < 15:
                   return lr
                else:
                   return lr * tf.math.exp(-0.07)
            #LBL2 - переменный learning rate
            callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
            self.model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=0.01, mom
entum=0.9),
                            loss='categorical crossentropy',
                            metrics = 'accuracy')
            self.history = self.model.fit(batch, batch pred new, epochs=self.epochs, bat
ch size=32, callbacks=[callback])
            print(f'CNN is trained')
        batch1, batch_pred1 = shuffle(batch1, batch_pred1)
        new_batch = np.empty((batch1.shape[0], len(TISSUE CLASSES)))
        for i in range(batch1.shape[0]):
            new batch[i] = self.model(batch1[i].reshape((1, 224, 224, 3)), training=Fals
e)
        self.classifier.fit(new batch, batch pred1)
       print(f'training done')
    def train visualize(self):
        #LBL3 - визуализация обучения
        acc = self.history.history['accuracy']
        loss = self.history.history['loss']
        epochs range = np.arange(self.epochs)
        plt.plot(epochs range, acc, label='Train accuracy', color='b')
        plt.legend()
        plt.title('Accuracy on train')
        plt.grid()
       plt.show()
        plt.plot(epochs range, loss, label='Train loss', color='r')
        plt.legend()
        plt.title('Loss on train')
        plt.grid()
        plt.show()
    def test_on_dataset(self, dataset: Dataset, limit=None):
        # you can upgrade this code if you want to speed up testing using batches
        predictions = []
        n = dataset.n files if not limit else int(dataset.n files * limit)
        for img in tqdm(dataset.images seq(n), total=n):
            predictions.append(self.test on image(img))
        return predictions
```

```
def test_on_image(self, img: np.ndarray):
    img = img.reshape((1, 224, 224, 3))
    prediction = np.array(self.model(img, training=False))
    return self.classifier.predict(prediction)
```

Классификация изображений

In []:

Используя введенные выше классы можем перейти уже непосредственно к обучению модели классификации изображений. Пример общего пайплайна решения задачи приведен ниже. Вы можете его расширять и улучшать. В данном примере используются наборы данных 'train_small' и 'test'.

```
In [ ]:
d train = Dataset('train small')
d test = Dataset('test')
Downloading ...
From: https://drive.google.com/uc?export=download&confirm=pbef&id=1qd45xXfDwdZjktLFwQb-et
-mAaFeCzOR
To: /content/train small.npz
               | 841M/841M [00:04<00:00, 174MB/s]
Loading dataset train small from npz.
Done. Dataset train small consists of 7200 images.
Downloading..
From: https://drive.google.com/uc?export=download&confirm=pbef&id=1RfPou3pFKpuHDJZ-D9XDFz
gvwpUBFlDr
To: /content/test.npz
           | 525M/525M [00:02<00:00, 194MB/s]
100%|
Loading dataset test from npz.
Done. Dataset test consists of 4500 images.
In [ ]:
model = Model()
In [ ]:
if not EVALUATE ONLY:
   model.train(d train)
   model.save('best_cnn_1')
else:
    model.load('best cnn 1')
Downloading..
From: https://drive.google.com/uc?export=download&confirm=pbef&id=1MSkILgZiBiSpsuxv5xaCoK
INtDghraW4
To: /content/best cnn 1.h5
100%|
               | 233M/233M [00:03<00:00, 76.9MB/s]
Downloading ...
From: https://drive.google.com/uc?export=download&confirm=pbef&id=15wGPXh7VMO5GP BUpsYgd7
nDXQKHbhyu
To: /content/best cnn 11
               | 467M/467M [00:07<00:00, 59.2MB/s]
Визуализация обучения модели:
In [ ]:
```

```
In [ ]:
```

```
#LBL3 - визуализация обучения model.train_visualize()
```


Пример тестирования модели на части набора данных:

```
In [ ]:
```

```
# evaluating model on 20% of test dataset
pred_1 = model.test_on_dataset(d_test, limit=0.2)
Metrics.print_all(d_test.labels[:len(pred_1)], pred_1, '20% of test')
```

```
metrics for 20% of test:
  accuracy 0.9933:
  balanced accuracy 0.9938:
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1987: UserWarning: y_pred contains classes not in y_true warnings.warn("y_pred contains classes not in y_true")

Пример тестирования модели на полном наборе данных:

```
In [ ]:
```

```
# evaluating model on full test dataset (may take time)
if TEST_ON_LARGE_DATASET:
    pred_2 = model.test_on_dataset(d_test)
    Metrics.print_all(d_test.labels, pred_2, 'test')
```

```
metrics for test:
  accuracy 0.9731:
  balanced accuracy 0.9731:
```

In []:

```
from sklearn.metrics import ConfusionMatrixDisplay
```

Матрица ошибок:

In []:

```
#LBL4 - построение матрицы ошибок
ConfusionMatrixDisplay.from_predictions(np.array(pred_2).reshape(-1, 1), d_test.labels,
cmap=plt.cm.Blues)
plt.title('Confusion matrix')
plt.show()
```


Результат работы пайплайна обучения и тестирования выше тоже будет оцениваться. Поэтому не забудьте присылать на проверку ноутбук с выполнеными ячейками кода с демонстрациями метрик обучения, графиками и т.п. В этом пайплайне Вам необходимо продемонстрировать работу всех реализованных дополнений, улучшений и т.п.

Настоятельно рекомендуется после получения пайплайна с полными результатами обучения экспортировать ноутбук в **pdf** (файл -> печать) и прислать этот **pdf** вместе с самим ноутбуком.

Тестирование модели на других наборах данных

Ваша модель должна поддерживать тестирование на других наборах данных. Для удобства, Вам предоставляется набор данных **test_tiny**, который представляет собой малую часть **(2%** изображений**)** набора **test.** Ниже приведен фрагмент кода, который будет осуществлять тестирование для оценивания Вашей модели на дополнительных тестовых наборах данных.

Прежде чем отсылать задание на проверку, убедитесь в работоспособности фрагмента кода ниже.

In []:

```
final model = Model()
final model.load('best cnn 1')
d_test_tiny = Dataset('test tiny')
pred = final model.test on dataset(d test tiny)
Metrics.print_all(d_test_tiny.labels, pred, 'test-tiny')
Downloading ...
From: https://drive.google.com/uc?export=download&confirm=pbef&id=1MSkILgZiBiSpsuxv5xaCoK
INtDghraW4
To: /content/best cnn 1.h5
               | 233M/233M [00:01<00:00, 186MB/s]
100%|
Downloading ...
From: https://drive.google.com/uc?export=download&confirm=pbef&id=15wGPXh7VMO5GP BUpsYgd7
nDXQKHbhyu
To: /content/best cnn 11
               | 467M/467M [00:02<00:00, 176MB/s]
100%|
Downloading . . .
From: https://drive.google.com/uc?export=download&confirm=pbef&id=1viiB0s041CNsAK4itvX8Pn
YthJ-MDnQc
To: /content/test tiny.npz
```

```
Loading dataset test_tiny from npz.
Done. Dataset test_tiny consists of 90 images.

metrics for test-tiny:
   accuracy 0.9222:
   balanced accuracy 0.9222:
```

Отмонтировать Google Drive.

```
In [ ]:
drive.flush_and_unmount()
```

Дополнительные "полезности"

Ниже приведены примеры использования различных функций и библиотек, которые могут быть полезны при выполнении данного практического задания.

Измерение времени работы кода

Измерять время работы какой-либо функции можно легко и непринужденно при помощи функции **timeit** из соответствующего модуля:

```
In [ ]:
```

```
import timeit

def factorial(n):
    res = 1
    for i in range(1, n + 1):
        res *= i
    return res

def f():
    return factorial(n=1000)

n_runs = 128
print(f'Function f is caluclated {n_runs} times in {timeit.timeit(f, number=n_runs)}s.')
```

Scikit-learn

Для использования "классических" алгоритмов машинного обучения рекомендуется использовать библиотеку scikit-learn (https://scikit-learn.org/stable/). Пример классификации изображений цифр из набора данных MNIST при помощи классификатора SVM:

```
In [ ]:
```

```
# Standard scientific Python imports
import matplotlib.pyplot as plt

# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split

# The digits dataset
digits = datasets.load_digits()

# The data that we are interested in is made of 8x8 images of digits, let's
# have a look at the first 4 images, stored in the `images` attribute of the
# dataset. If we were working from image files, we could load them using
```

```
# matplotlib.pyplot.imread. Note that each image must have the same size. For these
# images, we know which digit they represent: it is given in the 'target' of
# the dataset.
, axes = plt.subplots(2, 4)
images and labels = list(zip(digits.images, digits.target))
for ax, (image, label) in zip(axes[0, :], images and labels[:4]):
   ax.set axis off()
   ax.imshow(image, cmap=plt.cm.gray r, interpolation='nearest')
   ax.set title('Training: %i' % label)
# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n samples = len(digits.images)
data = digits.images.reshape((n samples, -1))
# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)
# Split data into train and test subsets
X_train, X_test, y_train, y_test = train_test_split(
   data, digits.target, test size=0.5, shuffle=False)
# We learn the digits on the first half of the digits
classifier.fit(X train, y train)
# Now predict the value of the digit on the second half:
predicted = classifier.predict(X test)
images and predictions = list(zip(digits.images[n samples // 2:], predicted))
for ax, (image, prediction) in zip(axes[1, :], images and predictions[:4]):
   ax.set axis off()
   ax.imshow(image, cmap=plt.cm.gray r, interpolation='nearest')
   ax.set_title('Prediction: %i' % prediction)
print("Classification report for classifier %s:\n%s\n"
     % (classifier, metrics.classification report(y test, predicted)))
disp = metrics.plot_confusion_matrix(classifier, X_test, y_test)
disp.figure_.suptitle("Confusion Matrix")
print("Confusion matrix:\n%s" % disp.confusion_matrix)
plt.show()
```

Scikit-image

Реализовывать различные операции для работы с изображениями можно как самостоятельно, работая с массивами **numpy**, так и используя специализированные библиотеки, например, **scikit-image** (https://scikit-image.org/). Ниже приведен пример использования **Canny edge detector**.

```
In [ ]:
```

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi

from skimage import feature

# Generate noisy image of a square
im = np.zeros((128, 128))
im[32:-32, 32:-32] = 1

im = ndi.rotate(im, 15, mode='constant')
im = ndi.gaussian_filter(im, 4)
im += 0.2 * np.random.random(im.shape)

# Compute the Canny filter for two values of sigma
edges1 = feature.canny(im)
edges2 = feature.canny(im, sigma=3)

# display results
```

Tensorflow 2

Для создания и обучения нейросетевых моделей можно использовать фреймворк глубокого обучения **Tensorflow 2.** Ниже приведен пример простейшей нейроной сети, использующейся для классификации изображений из набора данных **MNIST.**

```
In [ ]:
```

```
# Install TensorFlow
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_{train}, y_{train}), (x_{test}, y_{test}) = mnist.load data()
x train, x test = x train / 255.0, x test / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test, verbose=2)
```

Для эффективной работы с моделями глубокого обучения убедитесь в том, что в текущей среде **Google Colab** используется аппаратный ускоритель **GPU** или **TPU**. Для смены среды выберите "среда выполнения" -> "сменить среду выполнения".

Большое количество туториалов и примеров с кодом на **Tensorflow 2** можно найти на официальном сайте https://www.tensorflow.org/tutorials?hl=ru.

Также, Вам может понадобиться написать собственный генератор данных для **Tensorflow 2**. Скорее всего он будет достаточно простым, и его легко можно будет реализовать, используя официальную документацию **TensorFlow 2**. Но, на всякий случай (если не удлось сразу разобраться или хочется вникнуть в тему более глубоко), можете посмотреть следующий отличный туториал: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly.

Numba

В некоторых ситуациях, при ручных реализациях графовых алгоритмов, выполнение многократных вложенных циклов **for** в **python** можно существенно ускорить, используя **JIT**-компилятор **Numba** (https://numba.pydata.org/). Примеры использования **Numba** в **Google Colab** можно найти тут:

- 1. https://colab.research.google.com/github/cbernet/maldives/blob/master/numba/numba_cuda.ipynb
- 2. https://colab.research.google.com/github/evaneschneider/parallel-programming/blob/master/COMPASS gpu intro.ipynb

Пожалуйста, если Вы решили использовать **Numba** для решения этого практического задания, еще раз подумайте, нужно ли это Вам, и есть ли возможность реализовать требуемую функциональность иным способом. Используйте **Numba** только при реальной необходимости.

Работа с zip архивами в Google Drive

Запаковка и распаковка **zip** архивов может пригодиться при сохранении и загрузки Вашей модели. Ниже приведен фрагмент кода, иллюстрирующий помещение нескольких файлов в **zip** архив с последующим чтением файлов из него. Все действия с директориями, файлами и архивами должны осущетвляться с примонтированным **Google Drive**.

Создадим **2** изображения, поместим их в директорию **tmp** внутри **PROJECT_DIR**, запакуем директорию **tmp** в архив **tmp.zip**.

In []:

Распакуем архив **tmp.zip** в директорию **tmp2** в **PROJECT_DIR**. Теперь внутри директории **tmp2** содержится директория **tmp**, внутри которой находятся **2** изображения.

```
In [ ]:
```