

上帝之手

机器学习

作者: leekarry

组织:果壳

时间: May 7, 2019

版本: 0.1

目 录

1	分型		1
1	初等	分析	2
	1.1	实数	2
	1.2	复数	2
	1.3	在振荡上的应用	2
	1.4	对等式的运算	2
	1.5	对不等式的运算	2
2	序列	的极限	3
	2.1	基本思想	3
	2.2	实数的希尔伯特 (Hilbert) 公理	3
	2.3	实数序列	3
	2.4	序列收敛准则	3
3	函数	的极限	4
	3.1	一个实变量的函数	4
	3.2	度量空间和点集	4
	3.3	多变量函数	4
4	一个	实变函数的微分法	5
	4.1	导数	5
	4.2	链式法则	5
	4.3	递增函数和递减函数	5
	4.4	反函数	5
	4.5	泰勒定理和函数的局部行为	5
	4.6	复值函数	5
5	多元	实变函数的导数	6
	5.1	偏导数	6
	5.2	弗雷歇导数	6
	5.3	链式法则	6
	5.4	对微分算子的变换的应用	6
	5.5	对函数相关性的应用	6
	5.6	隐函数定理	6

目 录 —2/61—

	5.7	逆映射	6
	5.8	n 阶变分与泰勒定理	6
	5.9	在误差估计上的应用	6
	5.10	弗雷歇微分	6
6	单字	变函数的积分	7
	6.1	基本思想	7
	6.2	积分的存在性	7
	6.3	微积分基本定理	7
	6.4	分部积分法	7
	6.5	代换	7
	6.6	无界区间上的积分	7
	6.7	无界函数的积分 · · · · · · · · · · · · · · · · · · ·	7
	6.8	柯西主值	7
	6.9	对弧长的应用	7
		物理角度的标准推理	7
7	多实	变量函数的积分	8
	7.1	基本思想	8
	7.2	积分的存在性	8
	7.3	积分计算	8
	7.4	卡瓦列里原理(累次积分)	8
	7.5	代换	8
	7.6	微积分基本定理(高斯-斯托克斯定理)	8
	7.7	黎曼曲面测度	8
	7.8	分部积分	8
	7.9	曲线坐标	8
	7.10	应用到质心和惯性中点	8
	7.11	依赖于参数的积分	8
8	向量	代数	9
	8.1	向量的线性组合	9
	8.2	坐标系	9
	8.3	向量的乘法	9
	0.0	TIERIANIA	
9	向量	7	10
	9.1		10
	9.2	Prise ridde i wyese	10
	9.3		10
	9.4	哈密顿算子的运算	10

∞∞∞∞

目 录 -3/61-

	9.5	功、势能和积分曲线 10
	9.6	对力学的守恒律的应用 10
	9.7	流、守恒律与高斯积分定理 10
	9.8	环量、闭积分曲线与斯托克斯积分定理 10
	9.9	根据源与涡确定向量场(向量分析的主要定理)
	9.10	对电磁学中麦克斯韦方程的应用
	9.11	经典向量分析与嘉当微分学的关系 16
10	无穷	级数
	10.1	收敛准则
	10.2	无穷级数的运算 1
	10.3	幂级数 1
	10.4	傅里叶级数
	10.5	发散级数求和 1
	10.6	无穷乘积
11	积分	变换 12
		立。 拉普拉斯变换 12
		傅里叶变换
		Z 变换
12	堂舎	分方程 13
		引导性的例子 13
		基本概念
		微分方程的分类
		初等解法
		应用
		线性微分方程组和传播子
		稳定性
		边值问题和格林函数 1 <u>1</u>
		一般理论
13	偏徼	分方程 14
-		数学物理中的一阶方程
		二阶数学物理方程
		特征的作用
		关于唯一性的一般原理
		一般的存在性结果

目 录 -4/61-

14	复变函数	15
	14.1 基本思想	17
	14.2 复数列	17
	14.3 微分	17
	14.4 积分	17
	14.5 微分式的语言	17
	14.6 函数的表示	17
	14.7 留数计算与积分计算	17
	14.8 映射度	17
	14.9 在代数基本定理上的应用	17
	14.10双全纯映射和黎曼映射定理	17
	14.11共形映射的例子	17
	14.12对调和函数的应用	17
	14.13在静电学和静磁学上的应用	17
	14.14解析自延拓与恒等原理	17
	14.15在欧拉伽马函数上的应用	17
	14.16椭圆函数和椭圆积分	17
	14.17模形式与 P 函数的反演问题	17
	14.18椭圆积分	17
	14.19奇异微分方程	17
	14.20在高斯超几何微分问题上的应用	17
	14.21在贝塞尔微分方程上的应用	17
	14.22多复变函数	17
II	代数学	18
	San forte FD Mr	40
15	初等代数	19
	15.1 组合学	19
	15.2 行列式	19
	15.3 矩阵	19
	15.4 线性方程组	19
	15.5 多项式的计算	19
	15.6 代数学基本定理 (根据高斯的观点)	19
	15.7 部分分式分解	19
16	矩阵	20
	16.1 矩阵的谱	20
	16.2 矩阵的正规形式	20
	16.3 矩阵函数	20

目 录 -5/61-

17	线性代数	21
	17.1 基本思想	21
	17.2 线性空间	21
	17.3 线性算子	21
	17.4 线性空间的计算	21
	17.5 对偶性	21
18	多线性代数	22
	18.1 代数	22
	18.2 多线性型的计算	
	18.3 泛积	22
	18.4 李代数	22
	18.5 超代数	22
19	代数结构	23
	19.1 群	23
	19.2 环	23
	19.3 域	23
20	伽罗瓦理论和代数方程	24
	20.1 三个著名古代问题	24
	20.2 伽罗瓦理论的主要定理	24
	20.3 广义代数学基本定理	24
	20.4 域扩张的分类	24
	20.5 根式可解方程的主定理	24
	20.6 尺规作图	24
21	数论	25
	21.1 基本思想	25
	21.2 欧几里德算法	25
	21.3 素数分布	25
	21.4 加性分解	25
	21.5 用有理数及连分数逼近无理数	25
	21.6 超越数	25
	21.7 对数 π 的应用	25
	21.7 对 知 n 的应用	25 25
	21.8 高期问宗式	25 25
	21.10数论中局部-整体基本原理	25
	21.11理想和因子理论	25
	21.12对二次数域的应用	25

∞∞∞

目	录	-6/61-

	21.13	3解析类数公式	25
	21.14	4一般数域的希尔伯特类域论	25
Ш	几	何学	26
22	由克	莱因的埃尔兰根纲领所概括的几何学的基本思想	27
23	初等	几何学	28
	23.1	平面三角学	28
	23.2	对大地测量学的应用	28
	23.3	球面几何学	28
	23.4	对于海上和空中旅行的应用	28
	23.5	几何的希尔伯特公理	28
	23.6	欧几里德平行公理	28
	23.7	非欧椭圆几何学	28
	23.8	非欧双曲几何学	28
24	向量	代数在解析几何学中的应用	29
	24.1	平面中的直线	29
	24.2	空间中的直线和平面	29
		体积	29
25	脉氏	几何学(运动的几何学)	30
		欧几里德运动群	30
		圆锥截线	
		二次曲面	
	23.3	— 八 山 山 · · · · · · · · · · · · · · · · ·	50
26		几何学	31
		基本思想	31
		射影映射	31
		n 维实射影空间	31
		n 维复射影空间	31
	26.5	平面几何学的分类	31
27	微分	几何学	32
	27.1	平面曲线	32
	27.2	空间曲线	32
	27.3	高斯的曲线局部理论	32
	27.4	高斯的曲线整体理论	32

目 录 __7/61__

28	平面	曲线的例子	33
	28.1	包络线和焦散线	33
	28.2	渐屈线	33
	28.3	渐伸线	33
	28.4	惠更斯的曳物线和悬链线	33
	28.5	伯努利双纽线和卡西尼卵形线	33
	28.6	利萨如图形	33
	28.7	螺线	33
	28.8	射线曲线 (蚌线)	33
	28.9	旋轮线	33
29	伴数	几何学	34
	,.		34
			34
		对积分计算的应用	34
			34
		曲线的亏格	34
		丢番图几何	34
		解析集和魏尔斯特拉斯预备定理	34
			34
			34
30		物理的几何	35
			35
		D. 1.4 . 18.14 E. 1. 18.2 . E. 1	35
			35
			35
		· • • • • · · · · · · · · · · · · · · ·	35
		旋量几何和费米子	35
			35
	30.8	辛几何	35
IV	数	学基础	36
31	数学	的语言	37
	31.1	真命题和假命题	37
	31.2	蕴涵	37
	31.3	重言律和逻辑定律	37

∞∞∞∞

目 录 —8/61—

32	证明的方法	38
32	32.1 间接证明	38
	32.2 归纳法证明	38
	32.3 唯一性证明	38
	32.4 存在性证明	38
	32.5 计算机时代证明的必要性	38
	32.6 不正确的证明	38
33	朴素集合论	39
	33.1 基本概念	39
	33.2 集合的运算	39
	33.3 映射	39
	33.4 集合的等势	39
		39
	33.5 关系	
	33.6 集系	39
34	数理逻辑	40
	34.1 命题逻辑	40
	34.2 谓词逻辑	40
	34.3 集合论的公理	40
	34.4 康托尔的无穷结构	40
35	公理方法及其与手掌认识论之关系的历史	41
	35.1 公理方法及其与手掌认识论之关系的历史	41
V	变分法与最优化	42
36	单变量函数的变分法	43
30	36.1 欧拉-伯努利方程	43
	36.2 应用	43
	36.3 哈密顿方程	43
	36.4 应用	43
	36.5 局部极小值的充分条件	43
	36.6 带约束问题和拉格朗日乘子	43
	36.7 应用	43
	36.8 自然边界条件	43
37	多变量函数的变分法	44
	37.1 欧拉-拉格朗日方程	44
	37.2 应用	44

目 录 -9/61-

	37.3	带约束的问题和拉格朗日乘子	44
38	控制	·白顯	45
20			45
			45
		庞特里亚金极大值原理	45
		应用	45
39	经曲	非线性最优化	46
0,		局部极小化问题	46
		全局极小化问题和凸性	46
		对于高斯最小二乘法的应用	46
		对于伪逆的应用	46
		带约束的问题和拉格朗日乘子	46
		对熵的应用	46
		次微分	46
		对偶理论和鞍点	46
40		最优化	47
	40.1	基本思想	47
	40.2	一般线性最优化问题	47
	40.3	最优化问题的标准形式和最小试验	47
	40.4	单形法	47
	40.5	最小试验	47
	40.6	标准形式的获得	47
	40.7	线性最优化中的对偶性	47
	40.8	单形法的修改	47
41	线性	最优化的应用	48
	41.1	容量利用问题	48
	41.2	混合问题	48
	41.3	资源或产品的分配问题	48
	41.4	设计问题和轮班计划	48
	41.5	线性运输问题	48
VI	随	机演算——机会的数学	49
42	基本	的随机性	50
	42.1	古典概型	50
	42.2	伯努利大数定律	50

目 录 —10/61—

	42.3	棣莫弗极限定理	50
	42.4	高斯正态分布	50
	42.5	相关系数	50
	42.6	在经典统计物理学中的应用	50
43	科尔	莫戈罗夫的概率论公理化基础	51
	43.1	事件与概率的计算	51
	43.2	随机变量	51
	43.3	随机向量	51
	43.4	极限定理	51
	43.5	应用于独立重复试验的伯努利模型	51
44	数理	统计	52
	44.1	基本思想	52
	44.2	重要的估计量	52
	44.3	正态分布测量值的研究	52
	44.4	经验分布函数	52
	44.5	参数估计的最大似然方法	52
	44.6	多元分析	52
45	随机	过程	53
	45.1	时间序列	53
	45.2	马尔可夫链与随机矩阵	53
	45.3	泊松过程	53
	45.4	布朗运动与扩散	53
	45.5	关于一般随机过程的科尔莫夫主定理	53
VI	I ij	· 上算数学与科学计算	54
46	粉估	计算和误差分析	55
70		算法的概念	
		在计算机上表示数	
		误差来源,发现误差,条件和稳定性	
	40.3	庆左术师, 文巩庆左, 余件相信定性	32
47	线性		56
		线性方程组-直接法	56
		线性方程组的迭代法	
	47.3	特征值问题	56
	47 4	拟合和最小二乘法	56

目 录 —11/61—

48	3 插值,数值微分和积分	57
	48.1 插值多项式	57
	48.2 数值微分	57
	48.3 数值积分	57
49)非线性问题	58
	49.1 非线性问题	58
	49.2 非线性方程组	58
	49.3 确定多项式零点	58
50)数值逼近	59
	50.1 二次平均逼近	59
	50.2 一致逼近	59
	50.3 近似一致逼近	59
51	常微分方程	60
	51.1 初值问题	60
	51.2 边值问题	60
52	。 6. 偏微分方程与科学计算	61
	52.1 基本思想	61
	52.2 离散方法概述	61
	52.3 椭圆型微分方程	61
	52.4 抛物微分方程	61
	52.5 双曲微分方程	61
	52.6 自适应离散方法	61
	52.7 方程组的迭代解	61
	52.8 边界元方法	61
	52.9 调和分析	61
	52.10反问题	61

第I部分I

分析学

第1章 初等分析

- 1.1 实数
- 1.2 复数
- 1.3 在振荡上的应用
- 1.4 对等式的运算
- 1.5 对不等式的运算

第2章 序列的极限

- 2.1 基本思想
- 2.2 实数的希尔伯特 (Hilbert) 公理
- 2.3 实数序列
- 2.4 序列收敛准则

第3章 函数的极限

- 3.1 一个实变量的函数
- 3.2 度量空间和点集
- 3.3 多变量函数

第4章 一个实变函数的微分法

- 4.1 导数
- 4.2 链式法则
- 4.3 递增函数和递减函数
- 4.4 反函数
- 4.5 泰勒定理和函数的局部行为
- 4.6 复值函数

第5章 多元实变函数的导数

- 5.1 偏导数
- 5.2 弗雷歇导数
- 5.3 链式法则
- 5.4 对微分算子的变换的应用
- 5.5 对函数相关性的应用
- 5.6 隐函数定理
- 5.7 逆映射
- 5.8 n 阶变分与泰勒定理
- 5.9 在误差估计上的应用
- 5.10 弗雷歇微分

第6章 单实变函数的积分

- 6.1 基本思想
- 6.2 积分的存在性
- 6.3 微积分基本定理
- 6.4 分部积分法
- 6.5 代换
- 6.6 无界区间上的积分
- 6.7 无界函数的积分
- 6.8 柯西主值
- 6.9 对弧长的应用
- 6.10 物理角度的标准推理

第7章 多实变量函数的积分

- 7.1 基本思想
- 7.2 积分的存在性
- 7.3 积分计算
- 7.4 卡瓦列里原理(累次积分)
- 7.5 代换
- 7.6 微积分基本定理(高斯-斯托克斯定理)
- 7.7 黎曼曲面测度
- 7.8 分部积分
- 7.9 曲线坐标
- 7.10 应用到质心和惯性中点
- 7.11 依赖于参数的积分

第8章 向量代数

- 8.1 向量的线性组合
- 8.2 坐标系
- 8.3 向量的乘法

第9章 向量分析与物理学领域

- 9.1 速度和加速度
- 9.2 梯度、散度和旋度
- 9.3 在形变上的应用
- 9.4 哈密顿算子的运算
- 9.5 功、势能和积分曲线
- 9.6 对力学的守恒律的应用
- 9.7 流、守恒律与高斯积分定理
- 9.8 环量、闭积分曲线与斯托克斯积分定理
- 9.9 根据源与涡确定向量场(向量分析的主要定理)
- 9.10 对电磁学中麦克斯韦方程的应用
- 9.11 经典向量分析与嘉当微分学的关系

第10章 无穷级数

- 10.1 收敛准则
- 10.2 无穷级数的运算
- 10.3 幂级数
- 10.4 傅里叶级数
- 10.5 发散级数求和
- 10.6 无穷乘积

第11章 积分变换

- 11.1 拉普拉斯变换
- 11.2 傅里叶变换
- 11.3 Z 变换

第12章 常微分方程

- 12.1 引导性的例子
- 12.2 基本概念
- 12.3 微分方程的分类
- 12.4 初等解法
- 12.5 应用
- 12.6 线性微分方程组和传播子
- 12.7 稳定性
- 12.8 边值问题和格林函数
- 12.9 一般理论

第13章 偏微分方程

- 13.1 数学物理中的一阶方程
- 13.2 二阶数学物理方程
- 13.3 特征的作用
- 13.4 关于唯一性的一般原理
- 13.5 一般的存在性结果

第14章 复变函数

14.1 基本思想 -17/61-

- 14.1 基本思想
- 14.2 复数列
- 14.3 微分
- 14.4 积分
- 14.5 微分式的语言
- 14.6 函数的表示
- 14.7 留数计算与积分计算
- 14.8 映射度
- 14.9 在代数基本定理上的应用
- 14.10 双全纯映射和黎曼映射定理
- 14.11 共形映射的例子
- 14.12 对调和函数的应用
- 14.13 在静电学和静磁学上的应用
- 14.14 解析自延拓与恒等原理
- 14.15 在欧拉伽马函数上的应用
- 14.16 椭圆函数和椭圆积分
- 14.17 模形式与 P 函数的反演问题
- 14.18 椭圆积分
- 14.19 奇异微分方程
- 14.20 在高斯超几何微分问题上的应用
- 14.21 在贝塞尔微分方程上的应用
- 14.22 多复变函数

第 II 部分 II

代数学

第15章 初等代数

- 15.1 组合学
- 15.2 行列式
- 15.3 矩阵
- 15.4 线性方程组
- 15.5 多项式的计算
- 15.6 代数学基本定理(根据高斯的观点)
- 15.7 部分分式分解

第16章 矩阵

- 16.1 矩阵的谱
- 16.2 矩阵的正规形式
- 16.3 矩阵函数

第17章 线性代数

- 17.1 基本思想
- 17.2 线性空间
- 17.3 线性算子
- 17.4 线性空间的计算
- 17.5 对偶性

第 18 章 多线性代数

- 18.1 代数
- 18.2 多线性型的计算
- 18.3 泛积
- 18.4 李代数
- 18.5 超代数

第19章 代数结构

- 19.1 群
- 19.2 环
- 19.3 域

第20章 伽罗瓦理论和代数方程

- 20.1 三个著名古代问题
- 20.2 伽罗瓦理论的主要定理
- 20.3 广义代数学基本定理
- 20.4 域扩张的分类
- 20.5 根式可解方程的主定理
- 20.6 尺规作图

第21章 数论

- 21.1 基本思想
- 21.2 欧几里德算法
- 21.3 素数分布
- 21.4 加性分解
- 21.5 用有理数及连分数逼近无理数
- 21.6 超越数
- 21.7 对数 π 的应用
- 21.8 高斯同余式
- 21.9 闵可夫斯基数的几何
- 21.10 数论中局部-整体基本原理
- 21.11 理想和因子理论
- 21.12 对二次数域的应用
- 21.13 解析类数公式
- 21.14 一般数域的希尔伯特类域论

第 III 部分 III 几何学

第 22 章 由克莱因的埃尔兰根纲领所概括的几何学的 基本思想

第23章 初等几何学

- 23.1 平面三角学
- 23.2 对大地测量学的应用
- 23.3 球面几何学
- 23.4 对于海上和空中旅行的应用
- 23.5 几何的希尔伯特公理
- 23.6 欧几里德平行公理
- 23.7 非欧椭圆几何学
- 23.8 非欧双曲几何学

第 24 章 向量代数在解析几何学中的应用

- 24.1 平面中的直线
- 24.2 空间中的直线和平面
- 24.3 体积

第25章 欧氏几何学(运动的几何学)

- 25.1 欧几里德运动群
- 25.2 圆锥截线
- 25.3 二次曲面

第 26 章 射影几何学

- 26.1 基本思想
- 26.2 射影映射
- 26.3 n 维实射影空间
- 26.4 n 维复射影空间
- 26.5 平面几何学的分类

第27章 微分几何学

- 27.1 平面曲线
- 27.2 空间曲线
- 27.3 高斯的曲线局部理论
- 27.4 高斯的曲线整体理论

第28章 平面曲线的例子

- 28.1 包络线和焦散线
- 28.2 渐屈线
- 28.3 渐伸线
- 28.4 惠更斯的曳物线和悬链线
- 28.5 伯努利双纽线和卡西尼卵形线
- 28.6 利萨如图形
- 28.7 螺线
- 28.8 射线曲线 (蚌线)
- 28.9 旋轮线

第29章 代数几何学

- 29.1 基本思想
- 29.2 平面曲线的例子
- 29.3 对积分计算的应用
- 29.4 平面代数曲线的射影复形式
- 29.5 曲线的亏格
- 29.6 丢番图几何
- 29.7 解析集和魏尔斯特拉斯预备定理
- 29.8 奇点分解
- 29.9 现代代数几何的代数代

第30章 现代物理的几何

- 30.1 基本思想
- 30.2 酉几何、希尔伯特空间和基本粒子
- 30.3 伪酉几何
- 30.4 闵可夫斯基几何
- 30.5 对狭义相对论的应用
- 30.6 旋量几何和费米子
- 30.7 近复结构
- 30.8 辛几何

第 IV 部分 IV

数学基础

第31章 数学的语言

- 31.1 真命题和假命题
- 31.2 蕴涵
- 31.3 重言律和逻辑定律

第32章 证明的方法

- 32.1 间接证明
- 32.2 归纳法证明
- 32.3 唯一性证明
- 32.4 存在性证明
- 32.5 计算机时代证明的必要性
- 32.6 不正确的证明

第33章 朴素集合论

- 33.1 基本概念
- 33.2 集合的运算
- 33.3 映射
- 33.4 集合的等势
- 33.5 关系
- 33.6 集系

第34章 数理逻辑

- 34.1 命题逻辑
- 34.2 谓词逻辑
- 34.3 集合论的公理
- 34.4 康托尔的无穷结构

第 35 章 公理方法及其与手掌认识论之关系的历史

35.1 公理方法及其与手掌认识论之关系的历史

第V部分V 变分法与最优化

第 36 章 单变量函数的变分法

- 36.1 欧拉-伯努利方程
- 36.2 应用
- 36.3 哈密顿方程
- 36.4 应用
- 36.5 局部极小值的充分条件
- 36.6 带约束问题和拉格朗日乘子
- 36.7 应用
- 36.8 自然边界条件

第37章 多变量函数的变分法

- 37.1 欧拉-拉格朗日方程
- 37.2 应用
- 37.3 带约束的问题和拉格朗日乘子

第38章 控制问题

- 38.1 贝尔曼动态最优化
- 38.2 应用
- 38.3 庞特里亚金极大值原理
- 38.4 应用

第 39 章 经典非线性最优化

- 39.1 局部极小化问题
- 39.2 全局极小化问题和凸性
- 39.3 对于高斯最小二乘法的应用
- 39.4 对于伪逆的应用
- 39.5 带约束的问题和拉格朗日乘子
- 39.6 对熵的应用
- 39.7 次微分
- 39.8 对偶理论和鞍点

第40章 线性最优化

- 40.1 基本思想
- 40.2 一般线性最优化问题
- 40.3 最优化问题的标准形式和最小试验
- 40.4 单形法
- 40.5 最小试验
- 40.6 标准形式的获得
- 40.7 线性最优化中的对偶性
- 40.8 单形法的修改

第 41 章 线性最优化的应用

- 41.1 容量利用问题
- 41.2 混合问题
- 41.3 资源或产品的分配问题
- 41.4 设计问题和轮班计划
- 41.5 线性运输问题

第 VI 部分 VI 随机演算——机会的数学

第 42 章 基本的随机性

- 42.1 古典概型
- 42.2 伯努利大数定律
- 42.3 棣莫弗极限定理
- 42.4 高斯正态分布
- 42.5 相关系数
- 42.6 在经典统计物理学中的应用

第 43 章 科尔莫戈罗夫的概率论公理化基础

- 43.1 事件与概率的计算
- 43.2 随机变量
- 43.3 随机向量
- 43.4 极限定理
- 43.5 应用于独立重复试验的伯努利模型

第 44 章 数理统计

- 44.1 基本思想
- 44.2 重要的估计量
- 44.3 正态分布测量值的研究
- 44.4 经验分布函数
- 44.5 参数估计的最大似然方法
- 44.6 多元分析

第 45 章 随机过程

- 45.1 时间序列
- 45.2 马尔可夫链与随机矩阵
- 45.3 泊松过程
- 45.4 布朗运动与扩散
- 45.5 关于一般随机过程的科尔莫夫主定理

第 VII 部分 VII 计算数学与科学计算

第 46 章 数值计算和误差分析

- 46.1 算法的概念
- 46.2 在计算机上表示数
- 46.3 误差来源,发现误差,条件和稳定性

第47章 线性代数

- 47.1 线性方程组-直接法
- 47.2 线性方程组的迭代法
- 47.3 特征值问题
- 47.4 拟合和最小二乘法

第 48 章 插值,数值微分和积分

- 48.1 插值多项式
- 48.2 数值微分
- 48.3 数值积分

第49章 非线性问题

- 49.1 非线性问题
- 49.2 非线性方程组
- 49.3 确定多项式零点

第50章 数值逼近

- 50.1 二次平均逼近
- 50.2 一致逼近
- 50.3 近似一致逼近

第51章 常微分方程

- 51.1 初值问题
- 51.2 边值问题

第52章 偏微分方程与科学计算

- 52.1 基本思想
- 52.2 离散方法概述
- 52.3 椭圆型微分方程
- 52.4 抛物微分方程
- 52.5 双曲微分方程
- 52.6 自适应离散方法
- 52.7 方程组的迭代解
- 52.8 边界元方法
- 52.9 调和分析
- 52.10 反问题