Chapter 9-Graphs

"One graph is worth a thousand logs." Michal Aharon, Gilad Barash, Ira Cohen and Eli Mordechai.

-

Introduction

(1707–1783)

Multigraph Model

Introduction

Web Graph Google PageRank

- > G<-make_graph(e,v)
- > page.rank(G)

\$vector

[1] 0.1064619 0.1922395 0.2532244 0.1782088 0.2698655

\$value

[1] 1

\$options
NULL

A network with 5 websites and links

Objectives

- ▶ 9.1- Graphs and Graph Models
- 9.2- Graph Terminology and Special Types of Graphs
- 9.3- Representing Graphs and Graph Isomorphism
- ▶ 9.4- Connectivity
- ▶ 9.5- Euler and Hamilton Paths
- ▶ 9.6- Shortest Path Problems

Graphs

Graphs = (vertices, edges)

$$\rightarrow$$
 G = (\vee , E)

Computer network

Simple graphs

Simple graph

Non-simple graph with multi-edges

Non-simple graph with loops

Types of graphs

A **directed** graph (digraph)

Graphs and Graph Models....

TABLE 1 Graph Terminology.					
Туре	Edges	Multiple Edges Allowed?	Loops Allowed?		
Simple graph	Undirected	No	No		
Multigraph	Undirected	Yes	No		
Pseudograph	Undirected	Yes	Yes		
Simple directed graph	Directed	No	No		
Directed multigraph	Directed	Yes	Yes		
Mixed graph	Directed and undirected	Yes	Yes		

Graphs and Graph Models....

Niche Overlap Graph in Ecology (sinh thái học) – Đồ thị lấn tổ

Acquaintanceship Graph Đồ thị cho mô hình quan hệ giữa người

Graphs and Graph Models....

Graph models - Social networks

Basic Terminology

If an edge {u, v} exists, then u and v are called adjacent

verte x	adjacency list
a	a, c
b	С
С	a, b
d	

The edge {u, v} is called incident with u and v

edge	incident vertices
{a, a}	a
{a, c}	a, c
{c, b}	c, b

Basic Terminology

The **degree** of a vertex **v**:

= the number of edges *incident* with v, except that a loop at a vertex contributes twice.

Notation: deg(v)

vertex	degree	
a	3	
b	I	b is called pendant
С	2	
d	0	d is called isolated
Σ_{deg}	_{gree} = 6	

Remark:
$$\sum_{\text{degree}} = 2|$$
 Edges |

THE HANDSHAKING THEOREM (for undirected graphs)

THE HANDSHAKING THEOREM:

(one edge = two degrees)

$$\Sigma_{v \in V} deg(v) = 2|E|$$
 always EVEN

"the sum of the degrees is twice the number of edges".

THE HANDSHAKING THEOREM - Examples

Ex2. How many edges does a graph have if its degree sequence is 5, 5, 4, 3, 2, 1, 0?

Draw a such graph.

$$\sum_{v} deg(v) = 5 + 5 + 4 + 3 + 2 + 1 + 0$$

$$= 20 = 2.|E| \rightarrow |E| = 10.$$

Directed graphs -Basic Terminology

Vertex	In-degree deg	Out-degree deg ⁺
a	2	I
b	0	2
С	I	0
d	1	I

$$\sum_{\text{deg-}} = \sum_{\text{deg+}} = 4 \text{ directed edges}$$

Special simple graphs

Complete graphs K_n $(n \ge 1)$

Cycles C_n

Cycles C_n $(n \ge 3)$

Wheels W_n

Cycles C_n C_5 C₆ **Wheels** W_n (n \geq 3) W_5 W₆ W₈

n-cubes Q_n

n-dimensional hypercube

Graph	V = number of vertices	E = number of edges
Q_{n}	2 ⁿ	n.2 ⁿ⁻¹

n-cube Q_n

 \triangleright Construct \mathbb{Q}_4 from two copies of \mathbb{Q}_3

23

Bipartite graphs

- \blacktriangleright A simple graph G = (\lor , E) is called **bipartite** if:
 - \vee = \vee 1 \cup \vee 2, \vee 1 \cap \vee 2 = \varnothing
 - no edge connects two vertices in VI
 - no edge connects two vertices in V2
- ▶ We call the pair (VI,V2) a bipartition of V.

Bipartite graphs

- How to check?
- Ex.
- Let **color** the vertices using
 2 different colors
- Two adjacent vertices must have different colors (e.g., red and black)

→ bipartite
VI = {a, e, f}
V2 = {b, c, d}

Example

Ex. Is the graph G bipartite?

$\mathbf{K}_{\mathbf{m},\mathbf{n}}$ - Complete bipartite graphs

Isomorphism

Isomorphism

GI = (VI, EI), G2 = (V2, E2)

GI and G2 are called **isomorphic** if

- function $f: VI \rightarrow V2$
 - One-to-one
 - o Onto
 - o a, b are adjacent in VI \Leftrightarrow f(a), f(b) are adjacent in V2

function $f = \{(a, m); (b, p); (d, n); (c, q)\}$

Two graphs are called isomorphic

Isomorphic?

Isomorphic?

G and H are **NOT** isomorphic (in H: deg(e) = I, no vertex in G has degree I)

Representing graphs

Adjacency matrix

```
Vertex I vertex 2 ... vertex n

Vertex I

Vertex 2

...

Vertex n
```

▶ Incidence matrix

```
Vertex I
Vertex 2
...
Vertex n
```

Adjacency matrices

	a	b	С	d
a	0	0	I	0
b	0	0	I	2
С	ı	I	0	ı
d	0	2	I	0

Adjacency matrix.

A =
$$[a_{ij}]$$
,
where a_{ij} = the *number of edges*
that are associated to $\{v_i, v_i\}$

In 2010 the **Web graph** was estimated to have at least 55 billion vertices and one trillion edges.

→ More than 40 TB of computer memory would have been needed to represent its adjacency matrix.

Incidence matrices

Vertices = { a, b, c, d, e, f } Edges = { e_1 , e_2 , e_3 , e_4 , e_5 , e_6 }

edges

	e _I	e ₂	e ₃	e ₄	e ₅	e ₆
a	- 1		0	0	0	0
b	-1	0	0	0	0	-1
C	0		0	0	0	0
d	0	0	-1	-1	0	0
е	0	0	-1	0	-1	0
f	0	0	0	-1	-1	0
g	0	0	0	0	0	0

Incidence matrices

If the edge e_j is incident with the vertex v_i the (v_i, e_j) -entry = I

Else

the
$$(v_i, e_i)$$
-entry = 0

37

A path of length n

- A path of length n from u to v: A sequence of n consecutive edges
- <u>Ex.</u>

a, e, f, c, d is a path of length 4.

Circuits

- A circuit is a path of length greater than zero that starts and ends at the same vertex.
- Ex.

c, b, e, a, d, c is circuit.

Simple paths/circuits

- A path/circuit is simple if it does not contain the same edge more than once.
- <u>Ex.</u>

b, e, a, b, f, c
is a simple path.
c, b, e, a, d, e, b, f, c
is NOT a simple circuit.

Connectedness in Undirected Graphs

- Connected = there is a path between every pair of distinct vertices of the graph.
- Not connected = disconnected.

G is connected

A disconnected with3 connected components

Connectedness in Directed Graphs

Strongly connected

VS

weakly connected

G: strongly connected

→ weakly connected

H: weakly connected

underlying undirected graph of H

connected

Cut vertex, cut edge

Cut vertex (articulation point): It's removal will produce disconnected subgraph from original connected graph.

Cut edge (bridge): It's removal will produce subgraphs which are more connected components (thành phần liên thông) than in the original graph

Counting Paths Between Vertices

Shortest-path problems

Shortest-path problems

Dijkstra's algorithm

$$S = \{a, c, b, e, d, z\}$$

The shortest path from a to z: a, c, e, d, z

Dijkstra's Algorithm

ALGORITHM 1 Dijkstra's Algorithm. **procedure** Dijkstra(G: weighted connected simple graph, with all weights positive) $\{G \text{ has vertices } a = v_0, v_1, \ldots, v_n = z \text{ and weights } w(v_i, v_i)$ where $w(v_i, v_j) = \infty$ if $\{v_i, v_j\}$ is not an edge in $G\}$ for i := 1 to n $L(v_i) := \infty$ L(a) := 0 $S := \emptyset$ (the labels are now initialized so that the label of a is 0 and all other labels are ∞ , and S is the empty set while $z \notin S$ begin u := a vertex not in S with L(u) minimal $S := S \cup \{u\}$ for all vertices v not in S if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)this adds a vertex to S with minimal label and updates the labels of vertices not in S end $\{L(z) = \text{length of a shortest path from } a \text{ to } z\}$

O(n²) time complexity

Euler and Hamilton paths -introduction

Can one travel across all the bridges once and return to the starting point?

The Seven Bridges of Königsberg.

(1707–1783)

Euler circuit/path - definitions

 An Euler path/circuit in a graph G is a simple path/circuit containing every edge of G.

Euler circuit

Theorem.

A connected multigraph, ≥ 2 vertices,

has an *Euler circuit* ⇔ every vertex has **even degree**

How to construct an Euler circuit?

Euler path

Theorem.

A connected multigraph has

an Euler path but not an Euler circuit

it has exactly

two vertices of odd degree

Note that: an Euler circuit is also an Euler path

Hamilton Paths and Circuits

Hamilton circuit/path:

A simple circuit/path passes through every vertex exactly once.

No Hamilton circuit a,b,c,d,e is a Hamilton path

Example - A Hamilton circuit for Q₃

Hamilton Paths and Circuits

There are
NO known simple
necessary and sufficient criteria
for the existence of
Hamilton circuits

Hamilton circuits - sufficient conditions

Dirac's theorem.

G is a graph:

- simple
- n (\geq 3) vertices
- $\forall v_i, deg(v_i) \geq \frac{n}{2}$

G has a Hamilton circuit

Ore's theorem.

G is a graph:

- simple
- n (\geq 3) vertices
- \forall u, \forall v, non-adjacent $deg(u) + deg(v) \ge n$

G has a

Hamilton circuit

The Traveling Salesman Problem

FIGURE 5 The Graph Showing the Distances between Five Cities.

Salesman starts in one city (ex. Detroit). He wants to visit n cities exactly once and return to his starting point (Detroit). In which order should he visit theses cities to travel the minimum total distance?

The Traveling Salesman Problem

Route	Total Distance (miles)	
Detroit-Toledo-Grand Rapids-Saginaw-Kalamazoo-Detroit	610]
Detroit-Toledo-Grand Rapids-Kalamazoo-Saginaw-Detroit	516	
Detroit-Toledo-Kalamazoo-Saginaw-Grand Rapids-Detroit	588	
Detroit-Toledo-Kalamazoo-Grand Rapids-Saginaw-Detroit	458	
Detroit-Toledo-Saginaw-Kalamazoo-Grand Rapids-Detroit	540	
Detroit-Toledo-Saginaw-Grand Rapids-Kalamazoo-Detroit	504	
Detroit-Saginaw-Toledo-Grand Rapids-Kalamazoo-Detroit	598	
Detroit-Saginaw-Toledo-Kalamazoo-Grand Rapids-Detroit	576	l
Detroit-Saginaw-Kalamazoo-Toledo-Grand Rapids-Detroit	682	
Detroit-Saginaw-Grand Rapids-Toledo-Kalamazoo-Detroit	646 /	1
Detroit-Grand Rapids-Saginaw-Toledo-Kalamazoo-Detroit	670	
Detroit-Grand Rapids-Toledo-Saginaw-Kalamazoo-Detroit	728	

 $\frac{4!}{2} = 12$

Exhaustive search technique // vét cạn

$$[(n-1) (n-2) (n-2) ... 3.2.1]/2 = (n-1) !]/2 \rightarrow O((n-1)!)$$
 complexity

→ Approximation algorithm

Summary

- 9.1- Graphs and Graph Models
- 9.2- Graph Terminology and Special Types of Graphs
- 9.3- Representing Graphs and Graph Isomorphism
- ▶ 9.4- Connectivity
- 9.5- Euler and Hamilton Paths
- 9.6- Shortest Path Problems

THANKS