Kuwait UniversityCollege of Engineering and Petroleum

ME417 CONTROL OF MECHANICAL SYSTEMS

PART I: INTRODUCTION TO FEEDBACK CONTROL

LECTURE 3: LAPLACE TRANSFER FUNCTION

Summer 2020

Ali AlSaibie

Lecture Plan

- Objectives:
 - Review The Laplace Transform
 - Review The Inverse Laplace Transform and Partial Fraction Expansion
 - Introduce Transfer Functions of Mechanical Systems
- Reading:
 - *Nise: 2.1-2.3, 2.5.-2.6*
- Practice Problems

The Laplace Transform Function

• The Laplace Transform is defined as

$$\mathcal{L}[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

Where $s = \sigma + j\omega$

• The Inverse Laplace Transform is defined as

$$\mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{st}ds = f(t)u(t)$$

Where u(t) is the unit step function:

$$u(t) = 1$$
 $t > 0$
 $u(t) = 0$ $t < 0$

Laplace Transform Table – Table 2.1

ltem no.	f(t)	F(s)	
1.	$\delta(t)$	1	
2.	u(t)	$\frac{1}{s}$	
3.	tu(t)	$\frac{1}{s^2}$	
4.	$t^2u(t)$	$\frac{1}{s^n+1}$	
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$	
6.	$sin\omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$	
7.	cosωt u(t)	$\frac{s}{s^2 + \omega^2}$	

Laplace Transform Theorems – Table 2.2

Item no.	Theorem	Name		
1.	$\mathcal{L}[f(t)] = F(s) = \int_{0_{-}}^{\infty} f(t)e^{-st}dt$	Definition		
2.	$\mathcal{L}[kf(t)] = kF(s)$	Linearity Theorem		
3.	$\mathcal{L}[f_1(t) + f_2(t)] = F_1(s) + F_2(s)$	Linearity Theorem		
4.	$\mathcal{L}[e^{-at}f(t)] = F(s+a)$	Frequency Shift Theorem		
5.	$\mathcal{L}[f(t-T)] = e^{-sT}F(s)$	Time Shift Theorem		
6.	$\mathcal{L}[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling Theorem		

Laplace Transform Theorems – Table 2.2

ltem no.	Theorem	Name	
7.	$\mathcal{L}\left[\frac{df}{dt}\right] = sF(s) - f(0_{-})$	Differentiation Theorem	
8.	$\mathcal{L}\left[\frac{d^2f}{dt^2}\right] = s^2F(s) - sf''(0) - f'(0)$	Differentiation Theorem	
9.	$\mathcal{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{k-1}(0)$	Differentiation Theorem	
10.	$\mathcal{L}\left[\int_{0-}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s}$	Integration Theorem	
11.	$f(\infty) = \lim_{s \to 0} sF(s)$	Final Value Theorem	
12.	$f(0+) = \lim_{s \to \infty} sF(s)$	Initial Value Theorem	

Partial Fraction Expansion – Inverse Laplace Transform

 To find the inverse Laplace of a complicated function, we can convert to a sum of multiple terms, using partial fraction expansion

$$F(s) = \frac{N(s)}{D(s)} = \frac{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}$$

$$F(s) = \frac{N(s)}{(s+p_n)(s+p_{n-1})\dots(s+p_1)} = \frac{K_n}{(s+p_n)} + \frac{K_{n-1}}{(s+p_{n-1})} + \dots + \frac{K_1}{(s+p_1)}$$

$$\mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\frac{K_n}{(s+p_n)}\right] + \mathcal{L}^{-1}\left[\frac{K_{n-1}}{(s+p_{n-1})}\right] + \dots + \mathcal{L}^{-1}\left[\frac{K_1}{(s+p_1)}\right]$$

PFE – Case 1: D(s) Has real and distinct Roots

$$F(s) = \frac{N(s)}{D(s)} = \frac{2}{(s+1)(s+2)} = \frac{K_1}{s+1} + \frac{K_2}{s+2}$$

To find K_1 , we multiply the above equation by (s + 1)

$$\frac{2}{(s+2)} = K_1 + \frac{(s+1)K_2}{(s+2)}$$

Letting s = -1, eliminates the right term and gives $K_1 = 2$.

Repeat the process to get $K_2 = -2$

PFE – Case 2: D(s) Has real and repeated roots

$$F(s) = \frac{N(s)}{D(s)} = \frac{2}{(s+1)(s+2)^2} = \frac{K_1}{s+1} + \frac{K_2}{(s+2)^2} + \frac{K_3}{s+2}$$

To get K_1 , multiply by (s + 1) and set s = -1. To get K_2 , multiply by $(s + 2)^2$ and set s = -2

$$\frac{2}{(s+1)} = (s+2)^2 \frac{K_1}{(s+1)} + K_2 + (s+2)K_3$$

To get K_3 , first differentiate the above and set s = -2

$$\frac{-2}{(s+1)^2} = \frac{(s+2)s}{(s+1)^2} K_1 + K_3$$

Gives $K_3 = -2$

PFE – Case 3: D(s) Has complex or imaginary roots

$$F(s) = \frac{N(s)}{D(s)} = \frac{3}{s(s^2 + 2s + 5)} = \frac{K_1}{s} + \frac{K_2 s + K_3}{s^2 + 2s + 5}$$

 K_1 is found by multiplying by S, setting S = 0, giving $K_1 = \frac{3}{5}$

To find K_2 , K_3 , multiply by the least common denominator $s(s^2 + 2s + 5)$, and simplify

$$3 = \left(K_2 + \frac{3}{5}\right)s^2 + \left(K_3 + \frac{6}{5}\right)s + 3$$

Solve for
$$\left(K_2 + \frac{3}{5}\right) = 0$$
, $\left(K_3 + \frac{6}{5}\right) = 0$, gives $K_2 = -\frac{3}{5}$ and $K_3 = -\frac{6}{5}$

$$F(s) = \frac{3}{5s} - \frac{3(s+2)}{5(s^2+2s+5)}$$

The Transfer Function

- When modeling a dynamic system, we get a differential equation.
- For linear time-invariant, single-input single-output systems:

$$\frac{d^m c(t)}{dt^n} + d_{n-1} \frac{d^{m-1} c(t)}{dt^{n-1}} + \dots + d_0 c(t) = b_m \frac{b^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} c(t)}{dt^{m-1}} + \dots + b_0 r(t)$$

Where r(t) is the input and c(t) is the output

• Taking the Laplace transfer of both sides

$$a_n s^n C(s) + a_{n-1} s^{n-1} C(s) + \dots + a_0 C(s) + initial condition terms involving $c(t) = b_m s^m R(s) + b_{m-1} s^{m-1} R(s) + \dots + b_0 R(s) + initial condition terms involving $r(t)$$$$

The Transfer Function

Assuming zero initial conditions gives

$$\frac{C(s)}{R(s)} = G(s) = \frac{(b_m s^m + b_{m-1} s^{m-1} + \dots + b_0)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)}$$

The transfer function is thus defined as:

The algebraic relationship between the output to the input of a linear, time-invariant, single-input single-output system, in the Laplace domain assuming zero initial conditions.

Test Waveforms

 TABLE 1.1
 Test waveforms used in control systems

Input	Function	Description	Sketch	Use
Impulse	$\delta(t)$	$\delta(t) = \infty \text{ for } 0 - < t < 0 +$ $= 0 \text{ elsewhere}$ t^{0+}	f(t)	Transient response Modeling
		$\int_{0-}^{0+} \delta(t)dt = 1$	$\delta(t)$ t	
Step	u(t)	u(t) = 1 for t > 0 $= 0 for t < 0$	f(t)	Transient response Steady-state error
Ramp	tu(t)	$tu(t) = t \text{ for } t \ge 0$ = 0 elsewhere	f(t)	Steady-state error
Parabola	$\frac{1}{2}t^2u(t)$	$\frac{1}{2}t^2u(t) = \frac{1}{2}t^2 \text{ for } t \ge 0$	f(t)	Steady-state error
	2' "(1)	$\frac{1}{2}t u(t) = \frac{1}{2}t \text{ for } t \ge 0$ $= 0 \text{ elsewhere}$		
Sinusoid	sin ωt		f(t)	Transient response Modeling Steady-state error
			- t	

Given the following differential equation, find the time response equation to a step input

Example 1

d^2c	$12\frac{dc}{}$ +	260 -	_ dr	⊦ 3 <i>r</i>
dt^2	$\frac{12}{dt}$	300 -	$-\frac{\overline{dt}}{dt}$	r 31

Find the transfer function corresponding to the following differential equation, then perform a partial fraction expansion and retrieve the time response to a unit step input.

Example 2

Find the ramp response for a system whose transfer function is $G(s) = \frac{s+1}{(s+3)^2}$

Using the Laplace transform pairs of Table 2.1 and the Laplace transform theorems of Table 2.2, derive the Laplace transforms for the following time functions: [Section: 2.2]

Practice Problem 1

- a. $e^{-at}sin\omega t u(t)$
- b. $e^{-at}cis\omega t u(t)$
- c. $t^3 u(t)$

Find the expression for the transfer function of the systems given by the following differential equations

Practice Problem 2

	d^3y	$= d^2y$	7^{dy}	d^3x	2^{d^2x}	2^{dx}
d.	dt^3	$\frac{1}{dt^2}$	$\frac{dt}{dt}$	$y - \frac{1}{dt^3} +$	$\frac{2}{dt^2}$	$\frac{3}{dt} + 7x$

Find the time function corresponding to the following Laplace transforms. Hint: You can verify your partial fraction expansion using MATLAB's residue() function.

Practice Problem

a.
$$G(s) = \frac{1}{s(s+2)^2}$$

b.
$$G(s) = \frac{2(s^2+s+1)}{s(s+1)^2}$$

c.
$$G(s) = \frac{(s^2-1)}{(s^2+1)^2}$$

a.
$$G(s) = \frac{1}{s(s+2)^2}$$

b. $G(s) = \frac{2(s^2+s+1)}{s(s+1)^2}$
c. $G(s) = \frac{(s^2-1)}{(s^2+1)^2}$
d. $G(s) = \frac{7}{s^2(s+11)(s+12)}$
e. $G(s) = \frac{1}{s(s+2)^2}$

$$e. \quad G(s) = \frac{1}{s(s+2)^2}$$

