

1

SEQUENCE LISTING

<110> FRANZOSO, GUIDO
DESMAELE, ENRICO
ZAZZERONI, FRANCESCA
PAPA, SALVATORE

<120> METHODS AND COMPOSITIONS FOR MODULATING APOPTOSIS

<130> 21459-94575

<140> 10/626,905
<141> 2003-07-25

<150> PCT/US02/31548
<151> 2002-10-02

<150> 10/263,330
<151> 2002-10-02

<150> 60/328,811
<151> 2001-10-12

<150> 60/326,492
<151> 2001-10-02

<160> 53

<170> PatentIn Ver. 3.2

<210> 1
<211> 1121
<212> DNA
<213> Homo sapiens

<400> 1
ctagctctgt gggaaaggttt tgggctctct ggctcgatttt ttgcatttc tccctgggg 60
ctggcgtggaa gcccatacca ctgtggatta taattgcacat atgacgctgg aagagctcg 120
ggcgtgcgac aacgcggcgc agaagatgca gacgggtgacc gccgcgggtgg aggagctttt 180
ggtgtggccct cagcgccagg atcgccctcac agtgggggtg tacgagtcgg ccaagttgat 240
gaatgtggac ccagacagcg tggtcctctg cctcttgccc attgacgaggaggaggagga 300
tgacatcgcc ctgcaaatcc acttcacgct catccagtc ttctgtgtg acaacgacat 360
caacatcggt cgggtgtcgg gcaatgcgcg cctggcgcag ctctggag accggccga 420
gaccgcaggc accaccgagg cccgagacact ccactgtctt cccttcctac agaaccctca 480
cacggacgcc tggaaagagcc acggcttgggt ggaggtggcc agctactgcg aagaaagccg 540
gggcaacaac cagtgggtcc cctacatctc tcttcaggaa cgctgaggcc ctccccagca 600
gcagaatctg ttgagttgtc gccaacaaac aaaaaatatacataaaatattt gaacccccc 660
cccccccaagca caacccccc aaaaacaaccc aaccacgcg gaccatcggttggcagggtcg 720
tggagactga agagaaagag agagaggaga agggagtgag gggccgcgtgc cgccctcccc 780
atcacggagg gtccagactg tccactcggtt ggtggagtga gactgactgc aagccccacc 840
ctcccttgaga ctggagctga gcgtctgcat acgagagact tggttggaaac ttggttggc 900
cttgcgtgc aacccatc gaccacactt tggttggacttgg gagctggggc tgaagttgtc 960
ctgttaccat gaaactcccac tttgcgaatt aataagagac aatctatattt gttacttgca 1020
cttgcgttattc gaaccactga gagcgagatg ggaagcatag atatctatataat ttttatttct 1080
actatgaggg ccttgtaata aatttctaaa gcctcaaaaaa a 1121

<210> 2

<211> 161

<212> PRT

<213> Homo sapiens

<400> 2

Met	Thr	Leu	Glu	Glu	Leu	Val	Ala	Cys	Asp	Asn	Ala	Ala	Gln	Lys	Met
1															15

Gln	Thr	Val	Thr	Ala	Ala	Val	Glu	Glu	Leu	Leu	Val	Ala	Ala	Gln	Arg
															30
20							25								

Gln	Asp	Arg	Leu	Thr	Val	Gly	Val	Tyr	Glu	Ser	Ala	Lys	Leu	Met	Asn
															45
35							40								

Val	Asp	Pro	Asp	Ser	Val	Val	Leu	Cys	Leu	Leu	Ala	Ile	Asp	Glu	Glu
															60
50							55								

Glu	Glu	Asp	Asp	Ile	Ala	Leu	Gln	Ile	His	Phe	Thr	Leu	Ile	Gln	Ser
															80
65							70								

Phe	Cys	Cys	Asp	Asn	Asp	Ile	Asn	Ile	Val	Arg	Val	Ser	Gly	Asn	Ala
															95
85									90						

Arg	Leu	Ala	Gln	Leu	Leu	Gly	Glu	Pro	Ala	Glu	Thr	Gln	Gly	Thr	Thr
															110
100							105								

Glu	Ala	Arg	Asp	Leu	His	Cys	Leu	Pro	Phe	Leu	Gln	Asn	Pro	His	Thr
															125
115							120								

Asp	Ala	Trp	Lys	Ser	His	Gly	Leu	Val	Glu	Val	Ala	Ser	Tyr	Cys	Glu
															140
130							135								

Glu	Ser	Arg	Gly	Asn	Asn	Gln	Trp	Val	Pro	Tyr	Ile	Ser	Leu	Gln	Glu
															160
145							150								

Arg

<210> 3

<211> 1305

<212> DNA

<213> Mus musculus

<400> 3

ggtctgcgtt	catctctgtc	ttcttgatt	aatttcgagg	gggattttgc	aatcttcttt	60
ttacccctac	tttttcttg	ggaagggaa	tcccaccgcc	tccggaaggc	ctccgacact	120
tctgggtcgca	cgggaagggt	tttttgctc	ttgggttcgt	atctggactt	gtactttgt	180
cttggggatc	ttccgtgggg	gtccgctgt	gagtgtact	gcatcatgac	ccttggaaagag	240
ctgggtggcga	gcgacaacgc	ggttcagaag	atgcaggcgg	tgactgccgc	ggtggagcag	300
ctgctgggtgg	ccgcgcagcg	tcaggatcgc	cteaccgtgg	gggtgtacga	ggccggccaaa	360
ctgatgaatg	tggaccccgaa	cagcgtggtc	ttgtgcctcc	tggccataga	cgaagaagag	420
gaggatgata	tcgctctgca	gattcacttc	accctgatcc	agtcgttctg	ctgcgacaat	480
gacattgaca	tcgtccgggt	atcaggcgt	cagaggctgg	cgcagctcct	ggggggagccg	540
gcggagacat	tgggcacaac	cgaagcccga	gacctgcact	gcctccttgt	cacgaactgt	600
catacagatt	cctggaaaag	ccaaggcttg	gtggaggtgg	ccagttactg	tgaagagagc	660
agaggcaata	accaatgggt	cccctatatac	tctcttagagg	aacgctgaga	cccaactccaa	720
acatctaaag	caactgtcga	gttgctgtcc	cctaaaaaaa	gttaaaaaaa	tacatatttg	780

acagccccct catccccca agcaccatccaaatccct caaaggctac cctaccgtg ataccttctg 840
 ggaggggcgg agtcaccgag actgagatga ggagagggc acgtgcgccc gcccgcctc 900
 tgggctgtgg agcaggagc agcaccacag gtggtcgccc aggtcgaaag gagggcacct 960
 caggcaagag gagactgaga cttagagcc aaggcctggc agtcctgcag ccagcctctg 1020
 ctcgcagccg cagacggctc ggacaccgcc gcaggggtgg ggtgaggcgt ccccccacccct 1080
 gcgggacagt gaactgtgca taagtcaagc gagggcgcacg accctcgccg cgggacccgg 1140
 gactcgagcc cgggacttcg cagctacagc acatctattt ttaatattgt gctgagcaag 1200
 acagatcgct tgcatatttt taaaaatttc tactacagag acattccaat aaactcgat 1260
 agcctaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1305

<210> 4
 <211> 160
 <212> PRT
 <213> Mus musculus

<400> 4
 Met Thr Leu Glu Glu Leu Val Ala Ser Asp Asn Ala Val Gln Lys Met
 1 5 10 15
 Gln Ala Val Thr Ala Ala Val Glu Gln Leu Leu Val Ala Ala Gln Arg
 20 25 30
 Gln Asp Arg Leu Thr Val Gly Val Tyr Glu Ala Ala Lys Leu Met Asn
 35 40 45
 Val Asp Pro Asp Ser Val Val Leu Cys Leu Leu Ala Ile Asp Glu Glu
 50 55 60
 Glu Glu Asp Asp Ile Ala Leu Gln Ile His Phe Thr Leu Ile Gln Ser
 65 70 75 80
 Phe Cys Cys Asp Asn Asp Ile Asp Ile Val Arg Val Ser Gly Met Gln
 85 90 95
 Arg Leu Ala Gln Leu Leu Gly Glu Pro Ala Glu Thr Leu Gly Thr Thr
 100 105 110
 Glu Ala Arg Asp Leu His Cys Leu Leu Val Thr Asn Cys His Thr Asp
 115 120 125
 Ser Trp Lys Ser Gln Gly Leu Val Glu Val Ala Ser Tyr Cys Glu Glu
 130 135 140
 Ser Arg Gly Asn Asn Gln Trp Val Pro Tyr Ile Ser Leu Glu Glu Arg
 145 150 155 160

<210> 5
 <211> 1355
 <212> DNA
 <213> Homo sapiens

<400> 5
 cagtggctgg taggcagtgg ctgggaggca gcggcccaat tagtgtcggt cgccccgtgg 60
 cgaggcgagg tccggggagc gagcgagcaa gcaaggcggg aggggtggcc ggagctcggt 120
 cggctggcac aggaggagga gccccggcgg gcgagggcgg gccggagagc gccaggccct 180
 gagctgcggg agcggcgccct gtgagtgagt gcagaaagca ggccggcccg cgctagccgt 240

ggcaggagca gcccgcacgc cgcgctctct ccctggcga cctgcagttt gcaatatgac 300
 tttggagaa ttctcggtcg gagagcagaa gaccgaaagg atggataagg tggggatgc 360
 cctggagaa gtgctcagca aagcccttag tcagcgcacg atcactgtcg gggtgtacga 420
 agcggccaag ctgctcaacg tcgaccggtaaacgtggtg ttgtgcctgc tgccggcgg 480
 cgaggacac gacagagatg tggctctgca gatccacttc accctgatcc aggcgtttt 540
 ctgcgagaac gacatcaaca tcctgcccgt cagcaacccg ggccggctgg cggagctcct 600
 gctttggag accgacgctg gccccggc gagegagggc gccgagcgc ccccgac 660
 gcactgcgtg ctggtaacgatccacatgg aaggatctg ccttaagtca 720
 acttatttgt tttggccggg aaagtgccta catggatcaa tgggttccag tgattatct 780
 ccctgaacgg tggatggatc tgaatgaaaa taactgaacc aaattgcact gaagtttt 840
 aaatacctt gtagttactc aagcagttac tccctacact gatgcaagga ttacagaaac 900
 tggatgcggaa gggctgagtg agttcaacta catgttctgg gggccggag atagatgact 960
 ttgcagatgg aaagaggtga aaatgaagaa ggaagctgtg ttgaaacaga aaaataagtc 1020
 aaaaggaaca aaaattacaa agaaccatgc aggaaggaaa actatgtatt aatttagaat 1080
 ggttggatc cattaaaata aaccaaatat gttaaagttt aagtgtcag ccatagttt 1140
 ggtattttgc gtttatatgc cctcaagtaa aagaaaagcc gaaagggtta atcatatttt 1200
 aaaaccatat ttatgtat ttgtatgaga tattaaattc tcaaagttt attataaatt 1260
 ctactaaatgatc atgaaaatgtt attatgcta taaattttt gaaacacaat 1320
 acctacaata aactggatg aataattgca tcatt 1355

<210> 6
 <211> 165
 <212> PRT
 <213> Mus musculus

<400> 6
 Met Thr Leu Glu Glu Phe Ser Ala Gly Glu Gln Lys Thr Glu Arg Met
 1 5 10 15

Asp	Lys	Val	Gly	Asp	Ala	Leu	Glu	Glu	Val	Leu	Ser	Lys	Ala	Leu	Ser
		20							25						30

Gln	Arg	Thr	Ile	Thr	Val	Gly	Val	Tyr	Glu	Ala	Ala	Lys	Leu	Leu	Asn
		35						40							45

Val	Asp	Pro	Asp	Asn	Val	Val	Leu	Cys	Leu	Leu	Ala	Ala	Asp	Glu	Asp
						50		55						60	

Asp	Asp	Arg	Asp	Val	Ala	Leu	Gln	Ile	His	Phe	Thr	Leu	Ile	Gln	Ala
					65		70			75				80	

Phe	Cys	Cys	Glu	Asn	Asp	Ile	Asn	Ile	Leu	Arg	Val	Ser	Asn	Pro	Gly
					85				90					95	

Arg	Leu	Ala	Glu	Leu	Leu	Leu	Glu	Thr	Asp	Ala	Gly	Pro	Ala	Ala	
					100			105					110		

Ser	Glu	Gly	Ala	Glu	Gln	Pro	Pro	Asp	Leu	His	Cys	Val	Leu	Val	Thr
					115			120					125		

Asn	Pro	His	Ser	Ser	Gln	Trp	Lys	Asp	Pro	Ala	Leu	Ser	Gln	Leu	Ile
					130		135						140		

Cys	Phe	Cys	Arg	Glu	Ser	Arg	Tyr	Met	Asp	Gln	Trp	Val	Pro	Val	Ile
					145		150						155		160

Asn Leu Pro Glu Arg
165

<210> 7
<211> 1224
<212> DNA
<213> Mus musculus

<400> 7
cagtggcccc gaggcagcag tgcagagttc cccagcgagg ctaggcgagc agccggccgg 60
ccggagcgga gaagggaggg tgggagcgag cgagagccg gcccgcgc 120
caggagcagc ccgcgcgcgg agggaggac tcgcacttgc aatatgactt tggaggaatt 180
ctcggtctca gacgagaaga ccgaaaggat ggacacggtg ggcgatccc tggaggaagt 240
gctcagaag gctcgagtc agcgcaccat tacggtcggc gtgtacgagg ctgccaagct 300
gctcaacgta gacccgata acgtggact gtgcctgctg gctgctgacg aagacgacga 360
ccgggatgtg gctctgcaga tccatttcac cctcatccgt gcttcgtct gcgagaacga 420
catcaacatc ctgcgggtca gcaacccggg tcggctagct gagctgctgc tactggagaa 480
cgacgcgggc ccggcggaga gcggggggcgc cgccgacacc ccggacactgc actgtgtgct 540
ggtgacgaaac ccacattcat cacaatggaa ggatcctgcc ttaagtcaac ttatgggaaa 600
ttgcccggaa agtcgctaca tggatcagt ggtgcccgtg attaatctcc cggAACGGTG 660
atggcatccg aatggaaata actgaaccaa attgcactga agttttgaaa tacctttgt 720
gttactcaag cagtcactcc ccacgctgtat gcaaggatta cagaaactga tgtcaagggg 780
ccgagttcaa ctgcacgagg gtcagagat gacccgtcag agggagagag aggtgagcct 840
gaagaagaa gctgcgagaa aagagaaatc caaggcaaaa gggacaaaaa ctacaaagca 900
ctgcaagaaa gaaaactgct aattttaggat ggcagggtta ctttcaata agccaaatat 960
tgcttttgtt aaactttaaa tgtatagcaa tagtttggtt atttttttt tttttttttt 1020
ttgggtctta tgccctcaaa taaaaggaaa gtaaaagagg attaatcata ttttcaagcc 1080
acagttaaa tgtatttga tgagatgtt aatttcaga agtttttatta taaatcttac 1140
taagttattnn tatgtgtga aaggttattnn atgataaaatg ttttgaagca cattatctaa 1200
aataaaactgg tatgaaataa ttgt 1224

<210> 8
<211> 165
<212> PRT
<213> Mus musculus

<400> 8
Met Thr Leu Glu Glu Phe Ser Ala Ala Glu Gln Lys Thr Glu Arg Met
1 5 10 15

Asp Thr Val Gly Asp Ala Leu Glu Glu Val Leu Ser Lys Ala Arg Ser
20 25 30

Gln Arg Thr Ile Thr Val Gly Val Tyr Glu Ala Ala Lys Leu Leu Asn
35 40 45

Val Asp Pro Asp Asn Val Val Leu Cys Leu Leu Ala Ala Asp Glu Asp
50 55 60

Asp Asp Arg Asp Val Ala Leu Gln Ile His Phe Thr Leu Ile Arg Ala
65 70 75 80

Phe Cys Cys Glu Asn Asp Ile Asn Ile Leu Arg Val Ser Asn Pro Gly
85 90 95

Arg Leu Ala Glu Leu Leu Leu Glu Asn Asp Ala Gly Pro Ala Glu
 100 105 110

Ser Gly Gly Ala Ala Gln Thr Pro Asp Leu His Cys Val Leu Val Thr
 115 120 125

Asn Pro His Ser Ser Gln Trp Lys Asp Pro Ala Leu Ser Gln Leu Ile
 130 135 140

Cys Phe Cys Arg Glu Ser Arg Tyr Met Asp Gln Trp Val Pro Val Ile
 145 150 155 160

Asn Leu Pro Glu Arg
 165

<210> 9
<211> 1078
<212> DNA
<213> Homo sapiens

<400> 9
cactcgctgg tggtgggtgc gccgtgctga gctctggctg tcagtgtgtt cggccgcgtc 60
ccctccgcgc tctccgcttg tggataacta gctgctggtt gatcgacta tgactctgga 120
agaagtcgcgc ggcaggaca cagttccgga aagcacagcc aggatgcagg gtgccggaa 180
agcgctgcat gagttgtgc tgcggcgca gcgtcagggc tgcctactg cccgcgtcta 240
cgagtcagcc aaagtcttga acgtggaccc cgacaatgtg accttctgtg tgctggctgc 300
gggtgaggag gacgaggaggcg acatcgcgct gcatgatccat tttacgctga tccaggctt 360
ctgtcgag aacgacatcg acatagtgcg cgtggcgat gtgcaggcgc tgccggctat 420
cgtggcgccc ggcaggaggagg cgggtgcgcg cggcgacctg cactgcattcc tcatttcgaa 480
cccccaacgag gacgccttga aggatcccgc cttggagaag ctcagctgt ttgcgagga 540
gagccgcagc gttaacgact gggtgcccag catcacccctc cccgagtgac agcccgccgg 600
ggaccttggt ctgatcgacg tggtaacgccc ccggggcgcc tagagcgcgg ctggctctgt 660
ggagggggccc tccgagggtg cccgagtgcg gcgtggagac tggcaggcgg gggggcgccc 720
tggagagcga ggaggcgccg cttcccgagg agggggcccg tggcggcagg gccaggctgg 780
tccgagctga ggactcttca agtgtcttga gcgctgttc gcccaggaaag gcctaggcta 840
ggacgttggc ctcaggccca ggaaggacag actggccggg caggcgtgac tcagcagcct 900
gchgctcgca ggaaggagcg gccccttga cttgttacag tttcaggagc gtgaaggact 960
taaccgactg ccgtgcttt ttcaaaacgg atccgggcaa tgcttcgttt tctaaaggat 1020
gctgctgtt aagctttgaa tttacaata aacttttga aaaaaaaaaaaaaaaa 1078

<210> 10
<211> 159
<212> PRT
<213> Homo sapiens

<400> 10
Met Thr Leu Glu Glu Val Arg Gly Gln Asp Thr Val Pro Glu Ser Thr
 1 5 10 15

Ala Arg Met Gln Gly Ala Gly Lys Ala Leu His Glu Leu Leu Leu Ser
 20 25 30

Ala Gln Arg Gln Gly Cys Leu Thr Ala Gly Val Tyr Glu Ser Ala Lys
 35 40 45

Val Leu Asn Val Asp Pro Asp Asn Val Thr Phe Cys Val Leu Ala Ala
 50 55 60

Gly Glu Glu Asp Glu Gly Asp Ile Ala Leu Gln Ile His Phe Thr Leu
 65 70 75 80

Ile Gln Ala Phe Cys Cys Glu Asn Asp Ile Asp Ile Val Arg Val Gly
 85 90 95

Asp Val Gln Arg Leu Ala Ala Ile Val Gly Ala Gly Glu Ala Gly
 100 105 110

Ala Pro Gly Asp Leu His Cys Ile Leu Ile Ser Asn Pro Asn Glu Asp
 115 120 125

Ala Trp Lys Asp Pro Ala Leu Glu Lys Leu Ser Leu Phe Cys Glu Glu
 130 135 140

Ser Arg Ser Val Asn Asp Trp Val Pro Ser Ile Thr Leu Pro Glu
 145 150 155

<210> 11

<211> 1084

<212> DNA

<213> Mus musculus

<400> 11

cggcacgagc ggcgcattcgga ctctggaaat ctttacctgc gctcgggttc cctccgcact 60
 cttttggata acttgctgtt cgtggatcgc acaaatgactc tggagaagt ccgtggccag 120
 gatacaggta cggaaaagcac agccaggatg cagggcgccg ggaaagactt gcacgaactt 180
 ctgctgtcgg cgacacggcca gggctgtctg accgctggcg tctacgagtc cgcacaaatgc 240
 ctgaatgtgg accctgtacaa tgtgacacctt tgctgtctgg ctgcccgtatga agaagatgag 300
 ggccgacatag cgctgcagat ccatttcacg ttgattcagg ctgttctgt tgagaacgac 360
 attgatatacg tgcgcgtggg agacgtgcag aggctggcg cgatcgtggg cggccgacgaa 420
 gagggggggc cgccgggaga cctgcattgc atccctcattt cgaatcttaa tgaggacaca 480
 tggaaaggacc ctgccttggaa gaagctcagt ttgttctgcg aggagagccg cagcttcaac 540
 gactgggtgc ccagcatcac ccttccccag tgacagcctg gcaggggaccc tggtctgatc 600
 gacttgggtga cactctagcg cgctgctggc tctggagtgcc ccctccggagg ggcgcgtcgagt 660
 ggcgcgtggag actggcaggc gatgttgcct ggagagcggag gagcgcggcc tcccaagaag 720
 ggggtctggc ggcagcgggg acaccttggt ccgagcccag gactctgcca gtgtccggag 780
 aggctgttag cacaggaagg ccttaggcgag gacgttggcc ccaggggccgg gaagaaccga 840
 ccagcgagggc aggtgtgact cagcaaggcag ccttccagtg aaaggagggg aaagaaaaggc 900
 aggcgaccgc ctggacttgg tacagcggca ggagcggcca ctgcaggagc gagctggact 960
 tagccgactg cactgcttt tcaaaaaacg gatccccggc aatgcttca ttttctaaag 1020
 gacgctatcg tggaaagcttt gaatatcaca ataaacttat tgaaacaaaa aaaaaaaaaa 1080
 aaaa 1084

<210> 12

<211> 159

<212> PRT

<213> Mus musculus

<400> 12

Met Thr Leu Glu Glu Val Arg Gly Gln Asp Thr Val Pro Glu Ser Thr
 1 5 10 15

Ala Arg Met Gln Gly Ala Gly Lys Ala Leu His Glu Leu Leu Leu Ser
 20 25 30

Ala His Gly Gln Gly Cys Leu Thr Ala Gly Val Tyr Glu Ser Ala Lys
 35 40 45

Val Leu Asn Val Asp Pro Asp Asn Val Thr Phe Cys Val Leu Ala Ala
 50 55 60

Asp Glu Glu Asp Glu Gly Asp Ile Ala Leu Gln Ile His Phe Thr Leu
 65 70 75 80

Ile Gln Ala Phe Cys Cys Glu Asn Asp Ile Asp Ile Val Arg Val Gly
 85 90 95

Asp Val Gln Arg Leu Ala Ala Ile Val Gly Ala Asp Glu Glu Gly Gly
 100 105 110

Ala Pro Gly Asp Leu His Cys Ile Leu Ile Ser Asn Pro Asn Glu Asp
 115 120 125

Thr Trp Lys Asp Pro Ala Leu Glu Lys Leu Ser Leu Phe Cys Glu Glu
 130 135 140

Ser Arg Ser Phe Asn Asp Trp Val Pro Ser Ile Thr Leu Pro Glu
 145 150 155

<210> 13
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 13
 ctagaggaac gcggaagtgg tggaagtgg gga

33

<210> 14
 <211> 40
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 14
 gtacaaggaa agtgggtggaa gtgtggaatg actttggagg

40

<210> 15
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 15
attgcgtggc caggatacag tt 22

<210> 16
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 16
ggataacgcg tcaccgtctt caaacttacc aaacgttta 39

<210> 17
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 17
ggatggatat ccgaaattaa tccaaagaaga cagagatgaa c 41

<210> 18
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 18
ggataacgcg ttagagctct ctggcttttc tagctgtc 38

<210> 19
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 19
ggatggatat ccgaaattaa tccaaagaaga cagagatgaa c 41

<210> 20
<211> 36
<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 20
ggataacgcg taaagcgcatttccaggcggccacg 36

<210> 21
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 21
ggatggatat ccgaaattaa tccaaagaaga cagagatgaa c 41

<210> 22
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 22
ggataacgcg tcaccgtcct caaacttacc aaacgttta 39

<210> 23
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 23
ggatggatat ccaagaggca aaaaaacctt cccgtgcga 39

<210> 24
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 24
ggataacgcg ttagagctct ctggcttttc tagctgtc 38

11

<210> 25
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 25
ggatggatat ccaagaggca aaaaaacctt cccgtgcga

39

<210> 26
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 26
tagggactct cc

12

<210> 27
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 27
aatattctct cc

12

<210> 28
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 28
ggggattcca

10

<210> 29
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 29
atcgattcca

10

<210> 30
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 30
ggaaaaccccg 10

<210> 31
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 31
ggaaaatattg 10

<210> 32
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 32
gatctctagg gactctccgg ggacagcgag gggattccag acc 43

<210> 33
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 33
gatctgaatt cgctggaaac cccgcac 27

<210> 34
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 34

gatctgaatt ctacttactc tcaagac

27

<210> 36
<211> 10
<212> DNA
<213> Mus musculus

<400> 36
gggactctcc

10

<210> 37
<211> 16
<212> DNA
<213> Mus musculus

<400> 37
ctagggactc tccggg

16

<210> 38
<211> 10
<212> DNA
<213> Mus musculus

<400> 38
ggggattcca

10

<210> 39
<211> 16
<212> DNA
<213> Mus musculus

<400> 39
cgaggggatt ccagac

16

<210> 40
<211> 10
<212> DNA
<213> Mus musculus

<400> 40
ggaaaccccg

10

<210> 41
<211> 16
<212> DNA
<213> Mus musculus

<400> 41
gctggaaacc ccgcgc

16

<210> 42
<211> 4
<212> PRT
<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 42
Asp Val Ala Asp
  1

<210> 43
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 43
Asp Glu Val Asp
  1

<210> 44
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 44
Val Glu Ile Asp
  1

<210> 45
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 45
Ile Glu Thr Asp
  1

<210> 46
<211> 4
<212> PRT
<213> Artificial Sequence
```

<220>
 <223> Description of Artificial Sequence: Synthetic peptide

<400> 46
 Leu Glu His Asp
 1

<210> 47
 <211> 27
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 47
 cgccaccatg gagatggta acaccat

27

<210> 48
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 48
 gtacaagggt atggctatgt caatggagg tag

33

<210> 49
 <211> 1392
 <212> DNA
 <213> Homo sapiens

<400> 49
 aattcggcac gaggtgtttg tctgccggac tgacgggcgg ccgggcggcg cgcggcggcg 60
 gtggcggcg ggaagatggc ggcgtccccc ctgaaacaga agctgtcccc cctggaaagca 120
 aagctgaagc aggagaaccg ggaggcccg cgaggatcg acctaacctt ggatatcagc 180
 ccccaagccgc ccaggcccac cctgcagtc cccgtggcca acgatgggg cagccgctcg 240
 ccatacctcag agagctcccc gcagcacccc acggccccc cccggccccc ccacatgctg 300
 gggctcccgta caaccctgtt cacaccccgc agcatggaga gcattgagat tgaccacaag 360
 ctgcaggaga tcatgaagca gacgggtac ctgaccatcg ggggccagcg ctaccaggca 420
 gaaaatcaacg acctggagaa cttggccggat atggccagcg gcacactgcgg accggtgtgg 480
 aagatgcgtc tccggaaagac cggccacgtc attggcgta agcaaattcg cgcgtccggg 540
 aacaaggagg agaacaagcg catcctcatg gacctggatg tggtgctgaa gagccacgac 600
 tgccccctaca tcgtgcagtg ctttggacg ttcatccca acacggacgt cttcatcgcc 660
 atggagctca tgggcacctg cgctgagaag ctcaagaagc ggatgcagg ccccatcccc 720
 gagcgcattc tggcaagat gacagtggcg attgtgaagg cgctgtacta cctgaaggag 780
 aagcacgggt tcatccaccg cgacgtcaag ccctccaaca tcctgctgga cgagcggggc 840
 cagatcaagc tctgcgactt cggcatcagc ggcgcctgg tggactccaa agccaagacg 900
 cggagcggccg gctgtgcgc ctacatggca cccgagcgcgca ttgacccccc agacccacc 960
 aagccggact atgacatccg ggccgacgta tggagcctgg gcatctcggtt ggtggagctg 1020

gcaacaggac agttcccta caagaactgc aagacggact ttgaggtcct caccaaagt 1080
 ctacaggaag agcccccgct tctgcccga cacaatggct tctcgggga ctccagtc 1140
 ttcgtcaaag actgccttac taaagatcac aggaagagac caaagtataa taagctactt 1200
 gaacacagct tcataagcg ctacgagacg ctggaggtgg acgtggcgct ctgggtcaag 1260
 gatgtcatgg cgaagacctg agtcaccgcg gactaacggc gttccttgag ccagccccac 1320
 cttggccct tcttcaggtt agcttgctt ggccggcgcc caaccctct ggggggcccag 1380
 ggcattggcc cc 1392

<210> 50
 <211> 401
 <212> PRT
 <213> Homo sapiens

<400> 50
 Met Ala Ala Ser Ser Leu Glu Gln Lys Leu Ser Arg Leu Glu Ala Lys
 1 5 10 15

Leu Lys Gln Glu Asn Arg Glu Ala Arg Arg Arg Ile Asp Leu Asn Leu
 20 25 30

Asp Ile Ser Pro Gln Arg Pro Arg Pro Thr Leu Gln Leu Pro Leu Ala
 35 40 45

Asn Asp Gly Gly Ser Arg Ser Pro Ser Ser Glu Ser Ser Pro Gln His
 50 55 60

Pro Thr Pro Pro Ala Arg Pro Arg His Met Leu Gly Leu Pro Ser Thr
 65 70 75 80

Leu Phe Thr Pro Arg Ser Met Glu Ser Ile Glu Ile Asp His Lys Leu
 85 90 95

Gln Glu Ile Met Lys Gln Thr Gly Tyr Leu Thr Ile Gly Gly Gln Arg
 100 105 110

Tyr Gln Ala Glu Ile Asn Asp Leu Glu Asn Leu Gly Glu Met Gly Ser
 115 120 125

Gly Thr Cys Gly Pro Val Trp Lys Met Arg Phe Arg Lys Thr Gly His
 130 135 140

Val Ile Ala Val Lys Gln Met Arg Arg Ser Gly Asn Lys Glu Glu Asn
 145 150 155 160

Lys Arg Ile Leu Met Asp Leu Asp Val Val Leu Lys Ser His Asp Cys
 165 170 175

Pro Tyr Ile Val Gln Cys Phe Gly Thr Phe Ile Thr Asn Thr Asp Val
 180 185 190

Phe Ile Ala Met Glu Leu Met Gly Thr Cys Ala Glu Lys Leu Lys Lys
 195 200 205

Arg Met Gln Gly Pro Ile Pro Glu Arg Ile Leu Gly Lys Met Thr Val
 210 215 220

Ala Ile Val Lys Ala Leu Tyr Tyr Leu Lys Glu Lys His Gly Val Ile
 225 230 235 240

 His Arg Asp Val Lys Pro Ser Asn Ile Leu Leu Asp Glu Arg Gly Gln
 245 250 255

 Ile Lys Leu Cys Asp Phe Gly Ile Ser Gly Arg Leu Val Asp Ser Lys
 260 265 270

 Ala Lys Thr Arg Ser Ala Gly Cys Ala Ala Tyr Met Ala Pro Glu Arg
 275 280 285

 Ile Asp Pro Pro Asp Pro Thr Lys Pro Asp Tyr Asp Ile Arg Ala Asp
 290 295 300

 Val Trp Ser Leu Gly Ile Ser Leu Val Glu Leu Ala Thr Gly Gln Phe
 305 310 315 320

 Pro Tyr Lys Asn Cys Lys Thr Asp Phe Glu Val Leu Thr Lys Val Leu
 325 330 335

 Gln Glu Glu Pro Pro Leu Leu Pro Gly His Met Gly Phe Ser Gly Asp
 340 345 350

 Phe Gln Ser Phe Val Lys Asp Cys Leu Thr Lys Asp His Arg Lys Arg
 355 360 365

 Pro Lys Tyr Asn Lys Leu Leu Glu His Ser Phe Ile Lys Arg Tyr Glu
 370 375 380

 Thr Leu Glu Val Asp Val Ala Ser Trp Phe Lys Asp Val Met Ala Lys
 385 390 395 400

Thr

<210> 51
 <211> 2313
 <212> DNA
 <213> Mus musculus

<400> 51
 ggttgtcaga ctcaacgcag tgagtctgta aaaggctcta acatgcagga gccttgacc 60
 tcgtggcaa ttccgcacga gggaggatcg acctcaactt ggatatcagc ccacagcggc 120
 ccaggccccac cctgcaactc ccactggcca acgatggggg cagccgctca ccatcctcag 180
 agagctcccc acaccccccac cccggccccc ccacatgctg gggctcccat 240
 caaccttttt cacaccgcgc agtatggaga gcatcgagat tgaccagaag ctgcaggaga 300
 tcatgaagca gacagggtac ctgactatcg ggggccagcg ttatcaggca gaaatcaatg 360
 acttggagaa cttgggttag atgggcagtg gtacacctgtgg tcaggtgtgg aagatgcgg 420
 tccggaagac agggcacatc attgctgtta agcaaatgcg ggcgtctggg aacaaggaag 480
 agaataagcg cattttgatg gacctggatg tagtactcaa gagccatgac tgcccttaca 540
 tcgttcagtg ctggcacc ttcatcacca acacagacgt ctttattgcc atggagctca 600
 tgggcatatg tgcagagaag ctgaagaaac gaatgcaggg ccccatatcca gagcgaatcc 660
 tgggcagat gactgtggcg attgtaaaag cactgtacta tctgaaggag aagcatggcg 720
 tcatccatcg cgatgtcaaa ccctccaaaca tcctgctaga tgagcggggc cagatcaagc 780
 tctgtgactt tggcatcagt ggccgccttg ttgactccaa agccaaaaca cggagtgctg 840
 gctgtgctgc ctatatggct cccgagcgcac tcgaccctcc agatcccacc aagcctgact 900
 atgacatccg agctgtatgttggagcctgg gcatctact ggtggagctg gcaacaggac 960

atgtcccccta	taagaactgc	aagacggact	tttagggtcct	caccaaagtc	ctacaggaag	1020	
agcccccact	cctgcctgg	cacatggct	tctcagggg	cttccagtca	tttgtcaag	1080	
actgcctac	taaagatcac	aggaagagac	caaagtataa	taagctactt	gaacacagct	1140	
tcatcaagca	ctatgagata	ctcgagggtgg	atgtcgctc	ctggtttaag	gatgtcatgg	1200	
cgaagaccga	ttcccccaagg	actagtggag	tcctgagtca	gcaccatctg	cccttcttca	1260	
ggtagccctca	tggcagcg	cagccccgca	ggggccccgg	gccacggcca	ccgacccccc	1320	
ccccaacctg	gccaacccag	ctgcccata	ggggacctgg	ggac	ctggac	1380	
gactgaggac	agaaaagttag	gggttccat	ccagctctga	ctccctgcct	accagctgt	1440	
gacaaaagg	catgtgg	cctaattccct	cccaactctgg	ggtcagccag	cagtgtgagc	1500	
cccatccac	cccacagac	actgtgaacg	gaagacagca	ggccatgagc	agactcgcta	1560	
tttattcaat	cataacctct	gggctgggt	aaccccccagg	ggcagagaga	cggcacgagc	1620	
tcaaaccac	tctgagtat	gaactctca	gctctctgaa	ctctgac	ttt	atctccttgg	1680
ctcaactacc	aacagtgacc	acttggatct	ttaacagacc	tcagca	ttt	cagcacact	1740
ctgtgggag	ccttgactc	actatagtct	caaacaaca	aacaaca	acaataataa	1800	
caacaacaac	aacaacaaca	acaag	tctggtagc	ttact	ccat	cttccctcag	1860
ctcttgagta	tcgtttctg	gggggttcc	tcgagg	ttggacggat	tttccc	cagc	1920
atcgtttaact	gcacttacta	tgcactgaca	taatatgcac	cacat	ttt	ttt	1980
tacacattt	tctaaaatt	tgccacagct	gaaacaaagg	gtatattaa	ggtataacgt	2040	
caaagctgt	accaagctt	ctcactggc	tgtggggct	tcagccgtg	cttggaa	tttac	2100
tatcaactgg	aggaaactgt	tcaagtgttc	tgttttagacc	acactggaca	aaaaacagat	2160	
acctatgggg	tgaggttct	attctca	gggtttgtt	ttttttttt	ttt	ttt	2220
tttcagtgca	aatttagagac	agttcatgtt	ttcttgca	ttttttttt	ttt	ttt	2280
attctggctt	tgtttatctc	tgcgtccgaa	ttt	ttt	ttt	ttt	2313

<210> 52
<211> 346
<212> PRT
<213> *Mus musculus*

<400> 52

Met Leu Gly Leu Pro Ser Thr Leu Phe Thr Pro Arg Ser Met Glu Ser
1 5 10 15

Ile Glu Ile Asp Gln Lys Leu Gln Glu Ile Met Lys Gln Thr Gly Tyr
20 25 30

Leu Thr Ile Gly Gly Gln Arg Tyr Gln Ala Glu Ile Asn Asp Leu Glu
35 40 45

Asn Leu Gly Glu Met Gly Ser Gly Thr Cys Gly Gln Val Trp Lys Met
50 55 60

Arg Phe Arg Lys Thr Gly His Ile Ile Ala Val Lys Gln Met Arg Arg
65 70 75 80

Ser Gly Asn Lys Glu Glu Asn Lys Arg Ile Leu Met Asp Leu Asp Val
85 90 95

Val Leu Lys Ser His Asp Cys Pro Tyr Ile Val Gln Cys Phe Gly Thr
 100 105 110

Phe Ile Thr Asn Thr Asp Val Phe Ile Ala Met Glu Leu Met Gly Ile
115 120 125

Cys Ala Glu Lys Leu Lys Lys Arg Met Gln Gly Pro Ile Pro Glu Arg
130 135 140

Ile Leu Gly Lys Met Thr Val Ala Ile Val Lys Ala Leu Tyr Tyr Leu
 145 150 155 160

Lys Glu Lys His Gly Val Ile His Arg Asp Val Lys Pro Ser Asn Ile
 165 170 175

Leu Leu Asp Glu Arg Gly Gln Ile Lys Leu Cys Asp Phe Gly Ile Ser
 180 185 190

Gly Arg Leu Val Asp Ser Lys Ala Lys Thr Arg Ser Ala Gly Cys Ala
 195 200 205

Ala Tyr Met Ala Pro Glu Arg Ile Asp Pro Pro Asp Pro Thr Lys Pro
 210 215 220

Asp Tyr Asp Ile Arg Ala Asp Val Trp Ser Leu Gly Ile Ser Leu Val
 225 230 235 240

Glu Leu Ala Thr Gly Gln Phe Pro Tyr Lys Asn Cys Lys Thr Asp Phe
 245 250 255

Glu Val Leu Thr Lys Val Leu Gln Glu Glu Pro Pro Leu Leu Pro Gly
 260 265 270

His Met Gly Phe Ser Gly Asp Phe Gln Ser Phe Val Lys Asp Cys Leu
 275 280 285

Thr Lys Asp His Arg Lys Arg Pro Lys Tyr Asn Lys Leu Leu Glu His
 290 295 300

Ser Phe Ile Lys His Tyr Glu Ile Leu Glu Val Asp Val Ala Ser Trp
 305 310 315 320

Phe Lys Asp Val Met Ala Lys Thr Asp Ser Pro Arg Thr Ser Gly Val
 325 330 335

Leu Ser Gln His His Leu Pro Phe Phe Arg
 340 345

<210> 53

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
6X-His tag

<400> 53

His His His His His His

1

5