Symmetric Key Cryptography

- Block ciphers (DES)
 - Substituition cipher
 - Transposition cipher
 - Product cipher
 - Feistel cipher
- Stream cipher = block cipher with (RC4)

$$|block| = 1$$

Substitution ciphers

simple

a b c d e f g h i j k l m n o p q r s t u v w x y z d e f g h i j k l m n o p q r s t u v w x y z a b c

M= thisc ipher iscert tainl ynots ecure C= wklvf lskhu lvfhu wdlqo bqrwv hfxuh

Shift ciphers

Es. shift cipher

```
|A|=s, m_i \in A with 0 \le i \le s-1 then Ci=e(mi)=mi+k \mod s m_i=d(Ci)=Ci-k \mod s
```

```
CAESAR cipher s=26, k=3

m= BrunoCrispo

c= EuxqrFulsr
```

Polyalphabetic substitutions

|A |=s, period t, keys ki, 0≤ki≤t-1 k keys consisting of permutations

Vigenere ciphers

VIGENERE cipher t=3

$$k_0 = 1, k_1 = 2, k_2 = 3$$

m= THI SCI PHE RIS NOT SEC URE
c = UJL TEL OJH SKV OOW TGF WTH

Language statistics

Figure 7.5: Frequency of single characters in English text.

Polygram ciphers

Playfair

M	O	N	A	R
C	Н	Y	В	D
Е	F	G	I/J	K
L	P	Q	S	T
U	V	W	X	Z

M= ea hs ar mu C= IM BP RM CM

Language statistics

Figure 7.6: Frequency of 15 common digrams in English text.

Statistical cryptanalysis

 Unicity distance (UD): minimum amount of ciphertext to recover a key given unlimited computational power

carried information lg26 = 4.7bit/char entropy=1.5 redundancy=D=4.7-1.5=3.2 Es. simple sub.

 $UD=H(K)/D=Ig(26!)/D=88.4/3.2\approx28$

H(k) entropy of the key space

Transposition ciphers

M= attack postponed until two am

```
      Key:
      4 3 1 2 5 6 7

      Plaintext:
      a t t a c k p

      o s t p o n e

      d u n t i l t

      w o a m x y z
```

Cipher: ttnaaptmtsuoaodwcoixknlypetz

Exercises

M=?

C=ftqcguowndaizrajvgybahqdftqxmlkpas

M=?

C=uzqsovuohxmopvgpozpevsgzwszopfpesx udbmetsxaizvuephzhmdzshzowsfpappdtsv pquzwymxuzuhsxepyepopdzszufpo

English trigram: the, and, tha, ent, ion

Product ciphers

- Substitution \rightarrow confusion $K \leftrightarrow C$
- Permutation \rightarrow diffusion $M \leftrightarrow C$

a b c d e f g h i j k l m n o p q r s t u v w x y z d e f g h i j k l m n o p q r s t u v w x y z a b c b q f d z i j m l k n y v h x c w u p e r o t a g s

SP-Networks

Figure 7.7: Substitution-permutation (SP) network.

Feistel ciphers

$$\Psi^{-1}(f1,f2,f3) = \Psi(f3,f2,f1)$$

DES: Data Encryption Standard

DES Permutations

Initial Pe	ermutation	(IP)
------------	------------	------

58	50	42	34	26	18	10	2
						12	
						14	
						16	
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
00		17	20	21	23	15	7

Final Permutation (IP⁻¹)

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES per-round keys

Figure 3-5. Round i for generating K_i

			C_0				D_0
57	49	41	33	25	17	9	63 55 47 39 31 23 15
1	58	50	42	34	26	18	7 62 54 46 38 30 22
10	2	59	51	43	35	27	14 6 61 53 45 37 29
19	11	3	60	52	44	36	21 13 5 28 20 12 4

DES round

 $L_i = R_{i-1}, R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$

DES round

Modes of Operation

- Electronic Codebook ECB
- Cipher-block Chaining CBC
- Cipher feedback CFB
- Output feedback OFB
 - Counter mode

ECB

a) Electronic Codebook (ECB)

(i) encipherment

(ii) decipherment

CBC

b) Cipher-block Chaining (CBC)

John 1000 smith 500 scott 1000 XHGD YRTY UTKY POL GTRY YRTY

John 1000 smith 1000 scott 500 UYGB XZPL AWSI JQTY ERWK EDW

John 1000 smith \$%& (*))_ t!@4
UYGB XZPL AWSQ EDW ERWK JQTY

CFB

c) Cipher feedback (CFB), r-bit characters/r-bit feedback

part to be built to take the left to

OFB

d) Output feedback (OFB), r-bit characters/n-bit feedback

MAC: Message Authentication Code

• DES CBC

Figure 4-11. Cipher Block Chaining Residue

Integrity with SK

$$\begin{array}{c|c}
 & M, CBC-residue[e,M] \\
\hline
 & A \\
\hline
 &$$

MAC=message authentication code

Multiple encryption

Stream ciphers

block cipher

stream cipher

Stream ciphers

One time pad (OTP)
 Perfect secrecy but no integrity

K infinite and never reused key stream

$$\mathsf{m} \; o \; \mathsf{\oplus} \; \mathsf{d}$$

入つ4

short uns16;

char uns8;

typedef unsigned typedef unsigned

```
/* 258 octets of state information */
                                                              /* initialize for encryption / decryption
                                                                                                                                                                                                                                                                                                                                    = state[k += key[j] + t], state[k]
                                                                                                                                                                                                                                                                                                                = (j + 1) % length)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  /* return next pseudo-random octet
                                                                                                                                                                                                                                                                                                                < 256; i++, j
                                                                                                                                                                                                                                                                                                                                     state[i], state[i]
static uns8 state[256], x, y;
                                                                                                                                                                                                                                                                                                               0; 1
                                                              rc4init (key, length)
                                                                                                                                                                                                                                                                                                                   11
                                                                                                                                                                                                                                                    for (i = 256)
                                                                                                                                                                                                                                                                                                                for (i = 0, j
                                                                                                      uns16 length;
                                                                                                                                                                                                                                                                        state[i]
                                                                                 uns8 *key;
                                                                                                                                                                                                                                                                                                                                        11
                                                                                                                                                                                                              ×
                                                                                                                                               int i;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            t;
                                                                                                                                                                                      uns8
                                                                                                                                                                                                             ms8
                                                                                                                                                                    8sun
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8sun
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   rc4step
                                          void
                                                                                                                                                                                                                                                                                                                                                                                                                                                              uns8
```

= state[x], state[x]

t = state[y += state[++x]], state[y]

+ state[y]]);

return (state[state[x]