Assignment C

1. The influence of different color space and W_{rs} for self-regression model.

Figure 1: Marked Gray Image

1) Different color space

Figure 2: YIQ

Figure 3: Luv

Figure 4: YC_rC_b

Figure 5: Lab

Figure 6: RGB

Figure 7: XYZ

Analysis:

YIQ: Generally good, but don't natural.

Luv: More sharpener than YIQ near the mark.

 YC_rC_b :More light and bright than the first two, but more natural.

Lab: More bleak than YC_rC_b .

RGB: Obviously didn't do well in even coloring.

XYZ: Too light.

2) YIQ with different W_{rs}

Figure 8: W_{rs} in algorithm

Figure 9: W_{rs} taking an average

Figure 10: W_{rs} taking random number

Analysis:

Different W_{rs} will have a great influence on colorization. If we take an average for W_{rs} , the result is more bad than the origin one, so does random numbers.

2. The same color as different environment lead to different visual effects

Figure 1 The same apple in different background

Figure 2 The same gray stripe show different brightnes

Figure 3 The same skirt show different color

Figure 4 The same moon show different brightnss

Figure 5 Block A and B are of the same color

Figure 6 Two gray eyes look different

3. Deduction of matrix A

Self-regression model:

$$J(U) = \sum_{r} \left[U(r) - \sum_{s \in N(r)} W_{rs} U(s) \right]^{2}$$

Form which, for any pixel r, $\sum_{s \in N(r)} W_{rs} = 1$, $W_{rs} \ge 0$.

To optimize the process of colorization, we have to let $\frac{\partial J(U)}{\partial U(r)}=0$.

For any pixel k in an image,

a) When k is in the center of a pixel-neighborhood

$$J_{k1}(U) = \left[U(k) - \sum_{s \in N(k)} W_{ks} U(s)\right]^2$$

After derivation, it is:

$$\frac{\partial J_{k1}(U)}{\partial U(k)} = 2U(k) - 2\sum_{s \in N(k)} W_{ks} U(s)$$

b) When k is the neighborhood of pixel r

$$J_{k2}(U) = \sum_{r \in N(k)} \left[U(r) - \sum_{\substack{s \in N(r) \\ s \neq k}} W_{rs} U(s) - W_{rk} U(k) \right]^{2}$$

The derivation process is as follows:

$$\frac{\partial J_{k2}(U)}{\partial U(k)} = \sum_{r \in N(k)} \left[-2W_{rk} \left(U(r) - \sum_{\substack{s \in N(r) \\ s \neq k}} W_{rs} U(s) \right) + 2W_{rk}^2 U(k) \right]$$

$$= 2 \sum_{r \in N(k)} \left[W_{rk} \left(-U(r) + \sum_{\substack{s \in N(r) \\ s \neq k}} W_{rs} U(s) \right) \right]$$

So the expression becomes:

$$\frac{\partial J(U)}{\partial U(k)} = \frac{\partial J_{k1}(U)}{\partial U(k)} + \frac{\partial J_{k2}(U)}{\partial U(k)} = 0$$

Does not contain an item, so it equals to the linear system AU= 0.

And from which we can get A.