Module MA2341 (Frolov), Advanced Mechanics I Homework Sheet 9

Each set of homework questions is worth 100 marks

Problem 1. Let the rigid body G be a composition of two rigid bodies A and B, see the picture below. Express the inertia tensor $I_{ik}^{(A)}$ of the rigid body A defined with respect to its centre of mass O_A through the inertia tensors $I_{ik}^{(G)}$ and $I_{ik}^{(B)}$ of the rigid bodies G and B. Assume that the location of the centres of mass O_G , O_A , O_B , and the masses of A and B are known.

Problem 2. Let the rigid body G be a homogeneous solid cylinder of radius R and of height H. Let the rigid body A be obtained by cutting out from G a cylinder B of radius r whose axes of symmetry is parallel to the axes of G. The distance between the axis of G and the cylinder B is $a \leq R - r$.

- (a) Find the principal moments of inertia of the rigid body A.
- (b) Find the frequency of small oscillations of the rigid body A about a horizontal axis perpendicular to the line connecting the centres of mass of G and B and passing through the centre of
 - (i) the cylinder G, (ii) the cylinder B.

Problem 3. Consider the system in problem 4 of Par. 32 (Landau and Lifshitz page 103).

- (a) Find the Lagrangian and equations of motion of the system.
- (b) Determine the angular velocity of the rod AB the moment before it hits the ground if its initial angular velocity is $\sqrt{3g/l}$.

Bonus question (each bonus question is worth extra 25 marks)

A homogeneous cone of mass m, height h, and base radius r can roll without slipping on an inclined plane with its tip fixed at one point. The plane forms angle ϕ with the horizontal plane. Find the Lagrangian and equations of motion of this system, and the frequency of small oscillations.