Pushdown Automata PDAs

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

The States

$$\begin{array}{cccc}
 & a, & b \to c \\
\hline
 & q_1
\end{array}$$

$$\underbrace{q_1} \xrightarrow{a, \lambda \to c} \underbrace{q_2}$$

stack

$$\underbrace{q_1} \xrightarrow{a, \lambda \to \lambda} \underbrace{q_2}$$

stack

A Possible Transition

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

No transition is allowed to be followed When the stack is empty

Empty stack

A Good Transition

Non-Determinism

These are allowed transitions in a Non-deterministic PDA (NPDA)

NPDA: Non-Deterministic PDA

Execution Example: Time 0

Input

current
$$a, \lambda \rightarrow a$$
 $b, a \rightarrow \lambda$ state $b, a \rightarrow \lambda$ $b, a \rightarrow \lambda$ $\lambda, \lambda \rightarrow \lambda$ $b, a \rightarrow \lambda$ $\lambda, \$$

Input

$$a, \lambda \rightarrow a \qquad b, a \rightarrow \lambda$$

$$q_{0} \qquad \lambda, \lambda \rightarrow \lambda \qquad q_{1} \qquad b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$ \qquad q_{3}$$

Input

Input

Input

Input

$$a, \lambda \rightarrow a \qquad b, a \rightarrow \lambda$$

$$q_1 \qquad b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$ \qquad q_3$$

Input

Time 7

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

The input string aaabbb is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA M

$$L(M) = \{ww^R\}$$

Execution Example:

Time 0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

 $\lambda, \lambda \rightarrow \lambda$

$$a, a \to \lambda$$

$$b, b \to \lambda$$

$$\uparrow \qquad \qquad \lambda, \$ \to \$$$

Input

Stack

 λ , \$ \rightarrow \$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$
 q_2

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$(a, a \rightarrow \lambda)$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

Rejection Example:

Time 0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

 $b, b \rightarrow \lambda$

 $a, a \rightarrow \lambda$

$$\lambda, \lambda \to \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

$$(a, \lambda \rightarrow a)$$

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

Input

$$a, \lambda \rightarrow a$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

Guess the middle of string

Stack

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$
 $b, \lambda \rightarrow \lambda$
 $\lambda, \lambda \rightarrow \lambda$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$
 q_2

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

nother computation on same string:

Input

$$(a, \lambda \rightarrow a)$$

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

$$\overline{q_2}$$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

$$(q_2)$$

Input

No final state is reached

 $a, a \rightarrow \lambda$

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

A string is rejected if there is NO computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

In other words, a string is rejected if in every computation with this string:

The input cannot be consumed OR

The input is consumed and the last state is not a final state

OR

The stack head moves below the bottom of the stack

Another NPDA example

NPDA M

$$L(M) = \{a^n b^m : n \ge m-1\}$$

Another NPDA example

NPDA M

$$L(M) = \{a^n b^m : n \ge m-1\}$$

$$a, \lambda \rightarrow a$$
 $b, a \rightarrow \lambda$
 $b, \$ \rightarrow \lambda$
 q_0

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, a \rightarrow \lambda$$

$$b, \$ \rightarrow \lambda$$

Stack

Input

Input

Rejection example: Time O

Input

Input

Input

Input

$$b, a \rightarrow \lambda$$

$$b, \$ \rightarrow \lambda$$

Stack

Halt and Reject

Pushing Strings

Example:

Another NPDA example

NPDA M

$$L(M) = \{w: n_a = n_b\}$$

Another NPDA example

NPDA M

$$L(M) = \{w: n_a = n_b\}$$

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

$$q_1$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

current state

$$\lambda, \$ \rightarrow \$$$

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$a, 0 \rightarrow 00$$
 $(b, 1 \rightarrow 11)$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

$$a, \$ \rightarrow 0\$$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

$$a, \$ \rightarrow 0\$$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Stack

Time 8

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

Stack

Formalities for NPDAs

$$\underbrace{q_1}^{a, b \to w} \underbrace{q_2}$$

Transition function:

$$\delta(q_1, \underline{a}, \underline{b}) = \{(q_2, \underline{w})\}$$

Transition function:

$$\delta(q_1,a,b) = \{(q_2,w), (q_3,w)\}$$

Formal Definition

Non-Deterministic Pushdown Automaton NPDA

Instantaneous Description

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4: Input
$$\begin{array}{c|c}
a & a \\
\hline
a, \lambda \rightarrow a
\end{array}$$

Example:

 \boldsymbol{a}

 \boldsymbol{a}

 \boldsymbol{a}

Instantaneous Description

Example:

$$(q_2,bb,aa\$)$$

We write:

$$(q_1,bbb,aaa\$) \succeq (q_2,bb,aa\$)$$
Time 4
Time 5

A computation:

$$(q_{0}, aaabbb, \$) \succ (q_{1}, aaabbb, \$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda, \$) \succ (q_{3}, \lambda, \$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Formal Definition

Language L(M) of NPDA M

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
 Initial state Final state

Example:

$$(q_0, aaabbb,\$) \succeq (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

NPDA M:

$$(q_0, a^n b^n, \$) \succ (q_3, \lambda, \$)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a^n b^n \in L(M)$$

NPDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M:

