

अध्याय 2

मानव जनन

- 2.1 पुरुष जनन तंत्र
- 2.2 स्त्री जनन तंत्र
- 2.3 युग्मकजनन
- 2.4 आर्तव चक्र
- 2.5 निषेचन एवं अंतर्रोपण
- 2.6 सगर्भता एवं भ्रुण परिवर्धन
- 2.7 प्रसव एवं दुग्धस्रवण

जैसािक आप जानते हैं मानव लैंगिक रूप से जनन करने वाला और सजीवप्रजक या जरायुज प्राणी है। मानवों में जनन घटना के अंतर्गत युग्मकों की रचना (युग्मकजनन) अर्थात् पुरुष में शुक्राणुओं तथा स्त्री में अंडाणु का बनना, स्त्री जनन पथ में शुक्राणुओं का स्थानांतरण (वीर्यसेचन) और पुरुष तथा स्त्री के युग्मकों का संलयन (निषेचन) जिसके कारण युग्मनज (जाइगोट) का निर्माण होता है, शामिल हैं। इसके बाद कोरकपुटी (ब्लास्टोसिस्ट) की रचना तथा परिवर्धन और इसका गर्भाशय की दीवार से चिपक जाना (अंतर्रोपण), भ्रूणीय परिवर्धन (गर्भाविध) और शिशु के जन्म (प्रसव) की क्रियाएँ घटित होती हैं। आपने पढ़ा है कि ये जनन घटनाएँ यौवनारंभ के पश्चात् सम्पन्न होती हैं। पुरुष और स्त्री के बीच महत्त्वपूर्ण रूप से जनन घटनाएँ होती हैं; उदाहरण के लिए एक वृद्ध पुरुष में भी शुक्राणु बनना जारी रहता है, लेकिन स्त्रियों में अंडाणु की रचना 50 वर्ष की आयु के लगभग समाप्त हो जाती है। आइये, हम मानव में स्त्री और पुरुष के जनन तंत्रों की चर्चा करते हैं।

2.1 पुरुष जनन तंत्र

पुरुष जनन तंत्र शरीर के श्रोणि क्षेत्र (पेल्विस रीजन) में अवस्थित होता है (चित्र 2.1 अ)। इसके अंतर्गत एक जोड़ा **वृषण, सहायक** निलकाओं के साथ-साथ एक जोड़ी ग्रंथियाँ तथा बाह्य जननेंद्रिय शामिल होते हैं।

शरीर में वृषण उदर गुहा के बाहर एक थैली/धानी में स्थित होते हैं जिसे वृषणकोष (स्क्रोटम) कहते हैं। वृषणकोष वृषणों के तापमान को (शरीर के तापमान से 2-2.5 डिग्री सेंटीग्रेड) कम रखने में सहायक होता है जो शुक्राणुजनन के लिए आवश्यक है। वयस्कों में प्रत्येक वृषण अंडाकार होता है, जिसकी लम्बाई लगभग 4 से 5 सेमी. और चौड़ाई लगभग 2 से 3 सेमी. होती है। वृषण सघन आवरण से ढका रहता है। प्रत्येक वृषण में लगभग 250 कक्ष होते हैं जिन्हें वृषण पालिका (टेस्टिकुलर लोब्युल्स) कहते हैं (चित्र 2.1 ब)।

प्रत्येक वृषण पालिका के अंदर एक से लेकर तीन अति कुंडलित शुक्रजनक निलकाएँ (सेमिनिफेरस ट्यूबुल्स) होती हैं जिनमें शुक्राणु पैदा किए जाते हैं। प्रत्येक शुक्रजनक निलका का भीतरी भाग दो प्रकार की कोशिकाओं से स्तरित होती हैं, जिन्हें नर जर्म कोशिकाएँ (शुक्राणुजन / स्पर्मेटोगोनिया) और सर्टोली कोशिकाएँ कहते हैं (चित्र 2.2)। नर जर्म कोशिकाएँ अर्धसूत्री विभाजन (या अर्धसूत्रण) के फलस्वरूप शुक्राणुओं का निर्माण करती हैं जबिक सर्टोली कोशिकाएँ जर्म कोशिकाओं को पोषण प्रदान करती हैं। शुक्रजनक निलकाओं के बाहरी क्षेत्र को

अंतराली अवकाश (इंटरस्टीशियल स्पेस) कहा जाता है। इसमें छोटी-छोटी रुधिर वाहिकाएँ और अंतराली कोशिकाएँ (इंटरस्टीशियल सेल्स) या लीडिंग कोशिकाएँ (इंटरस्टीशियल सेल्स) होती हैं (चित्र 2.2)। लीडिंग कोशिकाएँ पुंजन (एंड्रोजन) नामक वृषण हार्मोन संश्लेषित व स्रवित करती हैं। यहाँ पर कुछ अन्य कोशिकाएँ भी होती हैं जो प्रतिरक्षात्मक कार्य करने में सक्षम होती हैं।

पुरुष लिंग सहायक निलकाओं के अंतर्गत वृषण जालिकाएँ (रेटे टेस्टिस), शुक्र वाहिकाएँ (वास इफेरेंशिया), अधिवृषण (ऐपिडिडिमिस) तथा शुक्रवाहक (वास डेफेरेंस)

चित्र 2.1 (अ) पुरुष जनन तंत्र को दर्शाने वाला श्रोणि क्षेत्र का आरेखीय काट

चित्र 2.1 (ब) पुरुष जनन तंत्र का आरेखीय दृश्य (आंतरिक संरचनाओं को दर्शाने के लिए वृषण का अनुदेर्ध्य काट

चित्र 2.2 शुक्रजनक निलकाओं के आरेखीय काट का एक दृश्य

होते हैं, (चित्र 2.1 ब)। वृषण की शुक्रजनक निलकाएँ वृषण निलकाओं के माध्यम से शुक्रवाहिकाओं में खुलती हैं। यह शुक्रवाहिका वृषण से चलकर अधिवृषण में खुलती हैं, जो प्रत्येक वृषण के पश्च सतह पर स्थित होती है। यह अधिवृषण शुक्रवाहक की ओर बढ़ते हुए उदर की ओर ऊपर जाती हैं और मूत्राशय के ऊपर की ओर लूप बनाती है। इसमें शुक्राशय से एक वाहिनी आती है और मूत्र मार्ग में स्खलनीय वाहिनी के रूप में खुलती है (चित्र 2.1 अ)। ये निलकाएँ वृषण से प्राप्त शुक्राणुओं का भंडारण तथा मूत्र मार्ग से इनका बाहर स्थानांतरण करती हैं। मूत्रमार्ग मूत्राशय से निकल कर पुरुष के शिश्न (पेनिस) के माध्यम से गुजरता हुआ बाहर की ओर एक छिद्र के रूप में खुलता है जिसे मूत्राशय मुख (यूरेथ्रल मीऐटस) कहते हैं।

शिश्न, पुरुष की बाहरी जननेन्द्रिय है (चित्र 2.1 अ, ब)। यह विशेष प्रकार के ऊतकों का बना होता है जो शिश्न के उद्घर्षण या उठान (इरेक्शन) में सहायता प्रदान कर वीर्यसेचन (इंसेमिनेशन) को सुगम बनाता है। शिश्न का अंतिम वर्धित भाग शिश्न मुंड (ग्लांस पेनिस) कहलाता है जो एक ढीली त्वचा से ढका होता है, जिसे अग्रच्छद (फोरस्किन) कहते हैं।

पुरुष लिंग की सहायक ग्रंथियों (चित्र 2.1 अ, ब) के अंतर्गत एक जोड़ा शुक्राशय, एक पुरस्थ (प्रोस्टेट) ग्रंथि तथा एक जोड़ा बल्बोयूरेथ्नल ग्रंथियाँ शामिल होती हैं। इन ग्रंथियों का स्नाव शुक्रीय (सेमिनल) प्लाज्मा का निर्माण करता है जो फ़ुक्टोज (फल शर्करा), कैल्सियम तथा कुछ प्रकिण्व (एंजाइम्स) से भरपूर होता है। बल्वोयूरेथ्नल ग्रंथियों का स्नाव मैथुन के दौरान शिश्न में स्नेहन (लूब्रिकेशन) प्रदान करने में भी सहायक होता है।

चित्र 2.3 (अ) स्त्री श्रोणि प्रदेश का जनन तंत्र दर्शाने वाला आरेखीय काट

2.2 स्त्री जनन तंत्र

स्त्री जनन तंत्र के अन्तर्गत एक जोड़ा अंडाशय (ओवरी) के साथ-साथ एक जोड़ा अंडवाहिनी (ओविडक्ट), एक गर्भाशय (यूटेरस), एक गर्भाशय ग्रीवा (सर्विक्स) तथा एक योनि (वेजाइना) और बाह्य जननेन्द्रिय (एक्सटर्नल जेनिटेलिया) (चित्र 2.3 अ) शामिल होते हैं जो श्रोणि क्षेत्र में होते हैं। जनन तंत्र के ये सभी अंग एक जोड़ा स्तन ग्रांथियों (मैमरी ग्लैंड्स) के साथ संरचनात्मक तथा क्रियात्मक रूप में संयोजित होते हैं;

चित्र 2.3 (ब) स्त्री जनन तंत्र का आरेखीय-काट दृश्य

जिसके फलस्वरूप अंडोत्सर्ग, (ओव्यूलेशन), निषेचन (फर्टिलाइजेशन), सगर्भता (प्रेगनेन्सी), शिशुजन्म तथा शिशु की देखभाल की प्रक्रियाओं में सहायता मिलती है।

अंडाशय स्त्री के प्राथमिक लैंगिक अंग हैं जो स्त्री युग्मक (अंडाणु/ओवम) और कई स्टेरॉयड हॉर्मोन (अंडाशयी हार्मोन) उत्पन्न करते हैं। उदर के निचले भाग के दोनों ओर एक-एक अंडाशय स्थित होता है (चित्र 2.3 ब)। प्रत्येक अंडाशय की लम्बाई 2 से 4 से.मी. के लगभग होती है और यह श्रोणि भित्ति तथा गर्भाशय से स्नायुओं (लिगामेंट्स) द्वारा जुड़ा होता है। प्रत्येक अंडाशय एक पतली उपकला (एपिथिलियम) से ढका होता है जो कि अंडाशय पीठिका (ओवेरियन स्ट्रोमा) से जुड़ा होता है। यह पीठिका दो क्षेत्रों-एक परिधीय वल्कुट (पेरिफेरल कॉर्टेक्स) और एक आंतरिक मध्यांश (मेडुला) में विभक्त होता है।

अंडवाहिनियाँ (डिम्बवाहिनी निलका/फेलोपियन निलका), गर्भाशय तथा योनि मिलकर स्त्री सहायक निलकाएँ बनाती हैं। प्रत्येक डिम्बवाहिनी निल लगभग 10-12 से.मी. लम्बी होती है, जो प्रत्येक अंडाशय की परिधि से चलकर गर्भाशय तक जाती है (चित्र 2.3 ब)। अंडाशय के ठीक पास डिंबवाहिनी का हिस्सा कीप के आकार का होता है, जिसे कीपक (इंफन्डीबुलम) कहा जाता है। इस कीपक के किनारे अंगुलि सदृश्य प्रक्षेप (प्रोजेक्शन) होते हैं, जिसे झालर (फिंब्री) कहते हैं। अंडोत्सर्ग के दौरान अंडाशय से उत्सर्जित अंडाणु को संग्रह करने में ये झालर सहायक होते हैं। कीपक आगे चलकर अंडवाहिनी के एक चौड़े भाग में खुलता है, जिसे तुंबिका (एंपुला) कहते हैं। अंडवाहिनी का अंतिम भाग संकीण पथ (इस्थमस) में एक संकरी अवकाशिका (ल्यूमेन) होती है, जो गर्भाशय को जोड़ती है।

गर्भाशय केवल एक होता है और इसे बच्चादानी (वुम्ब) भी कहते हैं। गर्भाशय का आकार उल्टी रखी गई नाशपाती जैसा होता है। यह श्रोणि भित्ति से स्नायुओं द्वारा जुड़ा होता है। गर्भाशय एक पतली ग्रीवा द्वारा योनि में खुलता है। ग्रीवा की गुहा को ग्रीवा नाल (सर्वाइकल कैनाल) कहते हैं (चित्र 2.3 ब), जो योनि के साथ मिलकर जन्म-नाल (बर्थ कैनाल) की रचना करती है। गर्भाशय की भित्ति, ऊतकों की तीन परत वाली होती है। बाहरी पतली झिल्लीमय स्तर को परिगर्भाशय (पेरिमैट्रियम), मध्य मोटी चिकनी पेशीय स्तर को गर्भाशय पेशी स्तर (मायोमैट्रियम) और आंतरिक ग्रंथिल स्तर को गर्भाशय अंतःस्तर (एंडोमैट्रियम) कहते हैं, जो गर्भाशय गुहा को स्तरित करती हैं। आर्तव चक्र (मेन्सट्रुअल साइकिल) के दौरान गर्भाशय के अंतः स्तर में चक्रीय परिवर्तन होते हैं, जबिक गर्भाशय पेशीस्तर में प्रसव के समय काफी तेज संकृचन होते हैं।

स्त्री के बाह्य जननेंद्रिय के अन्तर्गत जघन शैल (मौंस प्यूबिस), वृहद भगोष्ठ (लेबिया मैजोरा), लघु भगोष्ठ (लेबिया माइनोरा), योनिच्छद (हाइमेन) और भगशेफ (क्लाइटोरिस) आदि होते हैं (चित्र 2.3 अ)। जघन शैल वसामय ऊतकों से बनी एक गद्दी सी होती है जो त्वचा और जघन-बालों से ढँकी होती है। वृहद भगोष्ठ ऊतकों का माँसल वलन (फोल्ड) है, जो जघन शैल से नीचे तक फैले होते हैं और योनिद्वार को घेरे रहते हैं। लघु भगोष्ठ ऊतकों का एक जोड़ा वलन होता है और यह वृहद भगोष्ठ के नीचे स्थित होता है। योनि का द्वार प्राय: एक पतली झिल्ली, जिसे योनिच्छद

चित्र 2.4 स्तन ग्रंथि का आरेखीय-काट दृश्य

कहते हैं, से आंशिक रूप से ढका होता है। भगशेफ एक छोटी सी अंगुलि जैसी संरचना होती है जो मूत्र द्वार के ऊपर दो वृहद भगोष्ठ के ऊपरी मिलन बिन्दु के पास स्थित होती है। योनिच्छद प्राय: पहले मैथुन (संभोग) के दौरान फट जाता है। हालाँकि यह आवरण कभी-कभी तेज धक्के या अचानक गिरने से भी फट सकता है। इसके अलावा योनि टैम्पॉन को घुसेड़ने या फिर घोड़े पर चढ़ने या साइकिल चलाने, आदि खेल कूद की सिक्रिय भागीदारी से भी फट सकता है। कुछ औरतों का योनिच्छद संभोग के बाद भी बना रहता है। इसलिए योनिच्छद के होने अथवा न होने की बात को किसी स्त्री के कौमार्य (वर्जिनिटी) या यौन अनुभवों का वास्तिवक सूचक नहीं माना जाना चाहिए।

कार्यशील स्तन ग्रंथि सभी मादा स्तनधारियों का अभिलक्षण है। स्तन ग्रंथियाँ (स्तन) युग्म संरचना हैं जिनमें ग्रंथिल ऊतक और विभिन्न मात्रा में वसा होते हैं। प्रत्येक स्तन का ग्रंथिल ऊतक 15-20 स्तन पालियों (मैमरी लोब्स) में विभक्त होता है। इसमें कोशिकाओं के गुच्छ होते हैं जिन्हें कूपिका कहते हैं (चित्र 2.4)। कूपिकाओं की कोशिकाओं से दुग्ध म्रवित होता है और जो कूपिकाओं की गुहाओं (अवकाशिकाओं) में एकत्र होता है। कूपिकाएँ स्तन निलकाओं में खुलती हैं। प्रत्येक पालि की निलकाएँ मिलकर स्तनवाहिनी (मैमरी डक्ट्स) का निर्माण करती हैं। कई स्तन वाहिनियाँ मिलकर एक वृहद स्तन तुंबिका बनाती है जो दुग्ध वाहिनी (लैक्टिफरेस डक्ट) से जुड़ी होती हैं जिससे की दूध स्तन से बाहर निकलता है।

2.3 युग्मकजनन

प्राथमिक लैंगिक अंग — पुरुषों में वृषण और स्त्रियों में अंडाशय युग्मकजनन (गैमीटोजेनेसिस) विधि द्वारा क्रमश: नर युग्मक यानी शुक्राणु और मादा युग्मक यानी अंडाणु उत्पन्न करते

हैं। वृषण में, अपिरपक्व नर जर्म कोशिकाएँ (शुक्राणुजन/स्पर्मेटोगोनिया-बहुवचन; एकवचन-स्पर्मेटोगोनियम) शुक्रजनन (स्पर्मेटोजेनेसिस) द्वारा शुक्राणु उत्पन्न करती हैं जो कि किशोरावस्था के समय शुरू होती है। शुक्रजनक निलकाओं (सेमिनिफेरस ट्यूब्यूल्स) की भीतरी भित्ति में उपिथित शुक्राणुजन समसूत्री विभाजन (माइटोटिक डिविजन) द्वारा संख्या में वृद्धि करते हैं। प्रत्येक शुक्राणुजन द्विगुणित होता है और उसमें 46 गुणसूत्र (क्रोमोसोम) होते हैं। कुछ शुक्राणुजनों में समय-समय पर अर्धसूत्री विभाजन या अर्धसूत्रण (मिओटिक डिविजन) होता है जिनको प्राथमिक शुक्राणु कोशिकाएँ (प्राइमरी स्पर्मेटोसाइट्स) कहते हैं। एक प्राथमिक शुक्राणु कोशिका प्रथम अर्धसूत्री विभाजन (न्यूनकारी विभाजन) को पूरा करते हुए दो समान अगुणित कोशिकाओं की रचना करते हैं, जिन्हें द्वितीयक शुक्राणु कोशिकाएँ (सेकेंडरी स्पर्मेटोसाइट्स) कहते हैं। इस प्रकार उत्पन्न प्रत्येक कोशिका में 23 गुणसूत्र होते हैं। द्वितीयक शुक्राणु कोशिकाएँ, दूसरे अर्धसूत्री विभाजन से गुजरते हुए चार बराबर अगुणित शुक्राणुप्रसू (स्पर्मेटिड्स) पैदा करते हैं (चित्र 2.5)। शुक्राणुप्रसुओं में गुणसूत्रों की संख्या कितनी होनी चाहिए? शुक्राणुप्रसू रूपांतरित होकर शुक्राणु (स्पर्मेटोजोआ/स्पर्म) बनाते हैं और इस प्रक्रिया को शुक्राणुजनन (स्पर्मिओजेनेसिस) कहा जाता है। शुक्राणुजनन के पश्चात् शुक्राणु शीर्ष सर्टोली कोशिकाओं में अंत:स्थापित

(इंबेडेड) हो जाता है और अंत में जिस प्रक्रिया द्वारा शुक्राणु, शुक्रजनक निलकाओं से मोचित (रिलीज) होते हैं, उस प्रक्रिया को (वीर्यसेचन) स्पर्मिएशन कहते हैं।

शुक्रजनन प्रक्रिया किशोरावस्था / यौवनारंभ से होने लगती है क्योंकि इस दौरान गोनैडोट्रॉपिन रिलीजिंग हार्मोन (जीएनआरएच) के स्रवण में काफी वृद्धि हो जाती है। आपको याद होगा कि यह एक अधश्चेतक (हाइपोथैलिमक) हॉर्मोन है। गोनैडोट्रॉपिन रिलीजिंग हार्मोन के स्तर में वृद्धि के कारण यह अग्र पीयूष ग्रंथि (एंटिरियर पिट्यूटरी ग्लैंड) पर कार्य करता है तथा दो गोनैडोट्रॉपिन हॉर्मोन-पीत पिंडकर (ल्यूटिनाइजिंग हार्मोन/एल एच) और पुटकोद्दीपक हॉर्मोन (फॉलिकल स्टिमुलेटिंग हॉर्मोन / एफ एस एच) के स्रवण को उद्दीपित करता है। एल एच लीडिंग कोशिकाओं पर कार्य करता है और पुंजनों (एंड्रोजेन्स) के संश्लेषण

और म्रवण को उद्दीपित करता है। इसके बदले में पुंजन शुक्राणुजनन की प्रक्रिया को उद्दीपित करता है। एफ एस एच सर्टोली कोशिकाओं पर कार्य करता है और कुछ घटकों के म्रवण को उद्दीपित करता है, जो शुक्राणुजनन की प्रक्रिया में सहायता करते हैं। आइए! हम एक शुक्राणु की संरचना की जाँच करें। यह एक सूक्ष्मदर्शीय संरचना है जो एक शीर्ष (हेड), ग्रीवा (नेक), एक मध्य खंड (मिड्ल पीस) और एक पूँछ

चित्र 2.5 शुक्रजनक निलकाओं (वर्धित) के आरेखीय काट का एक दृश्य

(टेल) की बनी होती है (चित्र 2.6)। एक प्लाज्मा झिल्ली शुक्राणु की पूरी काया (बॉडी) को आवृत्त किए रहती है। शुक्राण के शीर्ष में एक दीर्घीकृत (इलांगेटेड) अगुणित केंद्रक (हेप्लॉयड न्यूक्लियस) होता है तथा इसका अग्रभाग एक टोपीनमा संरचना से आवत होता है जिसे अग्रपिंडक (एक्रोसोम) कहते हैं। यह अग्रपिंडक उन प्रकिण्वों (एंजाइम्स) से भरा होता है, जो अंडाण के निषेचन में मदद करते हैं। श्क्राणु के मध्य खंड में असंख्य सुत्रकणिकाएँ (माइटोकॉन्डिया) होती हैं, जो पूँछ को गति प्रदान करने के लिए ऊर्जा उत्पन्न करती हैं जिसके कारण शुक्राण को निषेचन करने के लिए आवश्यक गतिशीलता प्रदान करना सुगम बनाता है। मैथून क्रिया के दौरान पुरुष 20 से 30 करोड शुक्राण स्खलित करता है सामान्य उर्वरता (अबंधता) से लगभग 60 प्रतिशत शुक्राणु निश्चित रूप से सामान्य आकार और आकृति वाले होने चाहिए। इनमें से कम से कम 40 प्रतिशत आवश्यक रूप से सामान्य जनन क्षमता के लिए तीव्र गतिशीलता प्रदर्शित करते हैं।

शुक्रजनक नलिकाओं से मोचित (रिलीज्ड) शुक्राणु सहायक नलिकाओं द्वारा वाहित (टांसपोर्टेड) होते हैं। शक्राणओं की परिपक्वता एवं गतिशीलता के लिए अधिवृषण, शुक्रवाहक, शुक्राशय तथा पुरस्थ ग्रंथियों का स्रवण भी आवश्यक है। शुक्राणुओं के साथ-साथ शुक्राण प्लाज्मा मिलकर **वीर्य** (सीमेन) बनाते हैं। पुरुष की सहायक नलिकाओं और ग्रंथियों के कार्य को वृषण हार्मोन (ऐंड्रोजेंस) बनाये रखता है।

एक परिपक्व मादा युग्मक के निर्माण की प्रक्रिया को अंडजनन (ऊजेनेसिस) कहते हैं, जोकि पुरुष के शुक्राणुजनन से स्पष्ट रूप से भिन्न है। अंडजनन

झिल्ली) अग्रपिंडक केंद्रकयुक्त गुणसूत्री पदार्थ ग्रीवा मध्य खंड सुत्रकणिका (माइटोकॉन्डिया) (तैरने के लिए ऊर्ज़ा का स्रोत) पच्छ (पुँछ) चित्र 2.6 शुक्राणु की संरचना

जीव द्रव्यकला (प्लाज्मा

चित्र 2.7 अंडाशय के आरेखीय काट का एक दृश्य

की शुरूआत भ्रणीय परिवर्धन चरण के दौरान होती है जब कई मिलियन मातु युग्मक कोशिकाएँ यानि अंडजननी (ऊगोनिया) प्रत्येक भ्रूणीय अंडाशय के अंदर विनिर्मित होती हैं। जन्म के बाद अंडजननी का निर्माण और उसकी वृद्धि नहीं होती है। इन कोशिकाओं में विभाजन शुरू हो जाता है और अर्धसूत्री विभाजन के पूर्वावस्था-1 (प्रोफेज-1) में प्रविष्ट होती हैं और इस अवस्था में स्थायी तौर पर अवरूद्ध रहती हैं। इन्हें प्राथमिक अंडक (प्राइमरी ऊसाइटस) कहते हैं। उसके बाद प्रत्येक प्राथमिक अंडक कणिकामय कोशिकाओं (ग्रेनुलोसा सेल्स) की परत से आवृत्त होती है और इन्हें प्राथमिक पुटक

चित्र 2.8 शुक्रजनन एवं अंडजनन का आरेखीय निरूपण

(प्राइमरी फॉलिकिल) कहा जाता है (चित्र 2.7)। एक प्रक्रिया द्वारा इन पुटकों की भारी मात्रा में जन्म से यौवनारम्भ तक हास होता रहता है; इसलिए यौवनारम्भ के समय प्रत्येक अंडाशय में केवल 60 हजार से 80 हजार प्राथमिक पुटक ही शेष बचते हैं। यह प्राथमिक पुटक कणिकामय कोशिकाओं के और अधिक परतों से आवृत्त हो जाते हैं तथा एक और नए प्रावरक (थिकल) स्तर से घर जाते हैं जिसे द्वितीयक पुटक कहते हैं।

यह द्वितीयक पूटक जल्द ही एक तृतीय पूटक में परिवर्तित हो जाता है। जिसकी तरल से भरी गृहा को गृहवर (एंट्रम) कहा जाता है, यह इसका एक विशिष्ट लक्षण है। प्रावरक स्तर (थीका लेयर) अंतर प्रावरक (थीका इंटरना) और बाहय प्रावरक (थीका एक्सटरना) में गठित होता है। इस समय आपका ध्यान इस ओर खींचना महत्त्वपर्ण होगा कि ततीय पटक के भीतर प्राथमिक अंडक के आकार में वृद्धि होती है और इसका पहला अर्धसुत्री विभाजन पुरा होता है। यह एक असमान विभाजन है, जिसके फलस्वरूप वृहत अगुणित द्वितीयक अंडक तथा एक लघु प्रथम ध्रुवीय पिंड की रचना होती है (चित्र 2.8 ब)। द्वितीयक अंडक, प्राथमिक अंडक के पोषक से भरपर कोशिका प्रद्रव्य (साइटोप्लाज्म) की मात्रा को संचित रखती है। क्या आप इसके किसी लाभ के बारे में सोच सकते हैं? क्या पहले अर्धसूत्री विभाजन से उत्पन्न प्रथम ध्रुवीय पिंड में और अधिक विभाजन होता है या इसमें हास हो जाता है? वर्तमान में हम इसके बारे में सुनिश्चित रूप से बहुत कुछ नहीं कह सकते हैं। तृतीय पुटक आगे चलकर परिपक्व पटक या ग्राफी पटक (ग्रैफियन फॉलिकिल) में परिवर्तित हो जाता है (चित्र 2.7) द्वितीयक अंडक अपने चारों ओर एक नई झिल्ली का निर्माण करता है जिसे पारदर्शी अंडावरण (जोना पेल्युसिडा) कहते हैं। अब ग्राफी पुटक फटकर द्वितीयक अंडक (अंडाण्) को अंडाशय से मोचित करता है, इस प्रक्रिया को अंडोत्सर्ग (ओव्लेशन) कहा जाता है। क्या आप शुक्रजनन और अंडजनन के बीच प्रमुख अंतरों को पहचान सकते हैं? यहाँ पर शुक्रजनन और अंडजनन के बारे में नीचे एक आरेखीय प्रस्तुति दी गई है (चित्र 2.8 अ. ब)।

चित्र 2.9 आर्तव चक्र के दौरान विभिन्न घटनाओं का आरेखीय निरूपण

2.4 आर्तव चक्र

मादा प्राइमेटों (यानी बंदर, किप एवं मनुष्य आदि) में होने वाले जनन चक्र को आर्तव चक्र (मेन्सट्रुअल साइकिल) या सामान्य जनों की भाषा में मासिक धर्म या माहवारी कहते हैं। प्रथम ऋतुस्राव/रजोधर्म (मेन्सट्रुएशन) की शुरूआत यौवनारंभ पर शुरू होती है, जिसे रजोदर्शन (मेनार्के) कहते हैं। स्त्रियों में यह आर्तव चक्र प्राय: 28/29 दिनों की अविध के बाद दोहराया जाता है, इसीलिए एक रजोधर्म से दूसरे रजोधर्म के बीच घटना चक्र को आर्तव चक्र (मेन्सट्रुअल साइकिल) कहा जाता है। प्रत्येक आर्तव चक्र के मध्य में एक अंडाणु उत्सर्जित किया जाता है या अंडोत्सर्ग होता है। आर्तव चक्र की प्रमुख घटनाओं को चित्र 2.9 में दर्शाया गया है। आर्तव चक्र की शुरूआत आर्तव प्रावस्था से होती है जबिक रक्तस्राव होने लगता है। यह रक्तस्राव 3–5 दिनों तक जारी रहता है। गर्भाशय से इस रक्तस्राव का कारण गर्भाशय की अंत:स्तर परत और उसकी रक्त वाहिनियों के नष्ट

आर्तव चक्र के दौरान स्वच्छता आर्तव चक्र के दौरान स्वच्छता बनाए रखना अति आवश्यक है। प्रतिदिन स्नान करें व स्वयं को साफ रखें। हमेशा साफ सैनिटरी नेपकीन अथवा घर पर तैयार किए गए कपडे के पैड इत्यादि का उपयोग करें। आवश्यकतानसार हर चार से पांच घंटे में नेपकीन अथवा घर पर तैयार किए गए कपडे के पैड को बदलें। उपयोग किए हुए नेपकीन अथवा घर पर तैयार किए गए कपडे के पैड को कागज के लिफाफे में लपेटकर उचित कचरा पात्र में डालें व शौचालय, शैचालय की जल निकास नली अथवा इधर न फेंकें। साबुन से हाथ धोएँ।

होना है जो एक तरल का रूप धारण करता है और योनि से बाहर निकलता है। रजोधर्म तभी आता है जब मोचित अंडाणु निषेचित नहीं हुआ हो। रजोधर्म की अनुपस्थिति गर्भ धारण का संकेत है। यद्यपि इसके अन्य कारण जैसे— तनाव, निर्बल स्वास्थ्य आदि भी हो सकते हैं। आर्तव प्रावस्था के बाद पृटकीय प्रावस्था आती है। इस प्रावस्था के दौरान गर्भाशय के भीतर के प्राथमिक पुटक में वृद्धि होती है और यह एक पूर्ण ग्राफी पुटक बन जाता है तथा इसके साथ-साथ गर्भाशय में प्रचरोद्भवन (प्रोलिफरेशन) के द्वारा गर्भाशय अंत:स्तर पुन: पैदा हो जाता है। अंडाशय और गर्भाशय के ये परिवर्तन पीयुष ग्रंथि तथा अंडाशयी हॉर्मोन की मात्रा के स्तर में बदलावों से प्रेरित होते हैं (चित्र 2.9)। पुटक प्रावस्था के दौरान गोनैडोटॉपिन (एल एच एवं एफ एस एच) का स्रवण धीरे-धीरे बढता है। यह स्नाव पुटक परिवर्धन के साथ-साथ वर्धमान पुटक द्वारा ऐस्ट्रोजन के स्रवण को उद्दीपित करता है। एल एच तथा एफ एस एच दोनों ही आर्तव चक्र के मध्य (लगभग 14वें दिन) अपनी उच्चतम स्तर को प्राप्त करते हैं। मध्य चक्र के दौरान एल एच का तीव्र स्रवण जब अधिकतम स्तर पर होता है. तो इसे एल एच सर्ज कहा जाता है। यह ग्राफी पुटक को फटने के लिए प्रेरित करता है, जिसके कारण अंडाणु मोचित हो जाता है यानी अंडोत्सर्ग (ओवुलेशन) होता है। अंडोत्सर्ग के पश्चात् पीत प्रावस्था होती है, जिसके दौरान ग्राफी पुटक का शेष बचा हुआ भाग पीत पिंड (कार्पस ल्युटियम) का रूप धारण कर लेता है (चित्र 2.9)। यह पीत पिंड भारी मात्रा में प्रोजेस्टॉन स्रवित करता है, जो कि गर्भाशय अंत:स्तर को बनाए रखने के लिए आवश्यक है। इस प्रकार गर्भाशय अंत:स्तर निषेचित अंडाण् के अंतर्रोपण (इम्प्लांटेशन) तथा सगर्भता की अन्य घटनाओं के लिए आवश्यक है। संगर्भता के दौरान आर्तव चक्र की सभी घटनाएँ बंद हो जाती हैं इसीलिए इस समय रजोधर्म नहीं होता है। जब निषेचन नहीं होता है, तो पीत पिंड में ह्रास होता है और यह अंत:स्तर का विखंडन करता है, जिससे कि फिर से रजोधर्म का नया चक्र शुरू हो जाता है यानी माहवारी पुन: होती है। स्त्री में यह आर्तव चक्र 50 वर्ष की आयु के लगभग बंद हो जाता है इस स्थिति को रजोनिवृत्ति (मीनोपॉज) कहा जाता है। इस प्रकार रजोदर्शन से लेकर रजोनिवृत्ति की अवस्था में चक्रीय रजोधर्म सामान्य जनन अवधि का सूचक है।

2.5 निषेचन एवं अंतर्रोपण

स्त्री एवं पुरुष के संभोग (मैथुन) के दौरान शिश्न द्वारा शुक्र (वीर्य) स्त्री की योनि में छोड़ा जाता है यानी वीर्यसेचन होता है। गितशील शुक्राणु तेजी से तैरते हुए गर्भाशय ग्रीवा से होकर गर्भाशय में प्रवेश करते हैं और अंतत: अंडवाहिनी नली के तुंबिका (एंपुला) क्षेत्र तक पहुँचते हैं (चित्र 2.11 ब)। इसी बीच अंडाशय द्वारा मोचित अंडाणु भी तुंबिका क्षेत्र तक पहुँच जाता है, जहाँ निषेचन की क्रिया संपन्न होती है। निषेचन तभी हो सकता है यदि अंडाणु तथा शुक्राणु दोनों एक ही समय में तुंबिका क्षेत्र पर पहुँच जाएँ। यही कारण है जिससे कि सभी संभोग क्रियाएँ निषेचन व सगर्भता की स्थिति में नहीं पहुँच पाती हैं।

शुक्राण के साथ एक अंडाण के संलयन की प्रक्रिया को निषेचन (फर्टिलाइजेशन) कहते हैं। निषेचन के दौरान एक शुक्राण अंडाण के पारदर्शी *अंडावरण (जोना* पेल्यसिडा) स्तर के संपर्क में आता है (चित्र 2.10) और अतिरिक्त शुक्राणुओं के प्रवेश को रोकने हेतु उसके उक्त स्तर में बदलाव प्रेरित करता है। इस प्रकार यह सुनिश्चित हो जाता है कि एक अंडाण को केवल एक ही शुक्राणु निषेचित कर सकता अग्रपिंडक का स्रवण शुक्राण की पारदर्शी अंडावरण के माध्यम से अंडाण के कोशिका द्रव्य (साइटोप्लाज्म) तथा प्लाज्मा भित्ति में प्रवेश करने में मदद करता है। यह द्वितीय अंडक के अर्धसत्री विभाजन को प्रेरित करता है। दूसरा अध [']सत्री विभाजन भी असमान होता है और इसके फलस्वरूप द्वितीय ध्रवीय पिंड

चित्र 2.10 कुछ शुक्राणुओं द्वारा घिरा हुआ अंडाणु

(सेकेंडरी पोलर बॉडी) की रचना होती है और एक अगुणित अंडाणु (डिंबाणु प्रसू या ऊओटिड) बनता है। शीघ्र ही शुक्राणु का अंडाणु के अगुणित केंद्रक के साथ संलयन (प्युजन) होता है, जिससे कि द्विगुणित **युग्मनज** (जाइगोट) की रचना होती है। एक युग्मनज में कितने गुणसूत्र होंगे?

हमें यह बात ध्यान में रखनी चाहिए कि इसी चरण में शिशु के लिंग का निर्धारण यानी लड़का या लड़की का होना निश्चित हो जाता है। आइए! देखें यह कैसे होता है? जैसा कि आप जानते हैं कि स्त्री में गुणसूत्र का स्वरूप XX है तथा पुरुष में XY होता है। इसलिए स्त्री द्वारा उत्पादित सभी अगुणित युग्मकों (अंडाणु) में X लिंग गुणसूत्र होते हैं जबिक पुरुष युग्मकों (शुक्राणुओं) में लिंग गुणसूत्र या तो X या Y लिंग गुणसूत्र होते हैं। इसलिए 50 प्रतिशत शुक्राणु में X लिंग गुणसूत्र होते हैं और दूसरे 50 प्रतिशत शुक्राणु में Y लिंग गुणसूत्र होते हैं। इसलिए पुरूष एवं स्त्री युग्मकों के संलयन के पश्चात् युग्मनज में या तो XX या XY लिंग गुणसूत्र की संभावना होगी। यह इस बात पर निर्भर करेगा कि X या Y लिंग गुणसूत्र वाले शुक्राणुओं में से कौन अंडाणु का निषेचन करता है। जिस युग्मनज में XX गुणसूत्र होंगे वह एक मादा शिशु (लड़की) के रूप में जबिक XY गुणसूत्र वाला युग्मनज नर शिशु (लड़का) के रूप में विकसित होगा। आप गुणसूत्र प्रतिमानों के बारे में और अधिक विस्तार से जानकारी अध्याय 4 में सीख सकेंगे। इसी कारण कहा जाता है कि वैज्ञानिक रूप से यह कहना सत्य है कि एक शिशु के लिंग का निर्धारण उसके पिता द्वारा होता है न कि माता के द्वारा।

समसूत्री विभाजन (विदलन / क्लीवेज) की शुरूआत तब हो जाती है जबिक युग्मनज अंडवाहिनी के संकीर्ण पथ (इस्थमस) से गर्भाशय की ओर बढ़ता है

चित्र 2.11 अंडाणु का अभिगमन, निषेचन एवं डिम्बवाहिनी नली से होकर वर्धनशील भ्रूण का गुजरना

(चित्र 2.11) और तब यह 2, 4, 8, 16 संतित कोशिकाओं, जिसे कोरकखंड (ब्लास्टोमीयर्स) कहते हैं, की रचना करता है। 8 से 16 कोरकखंडों वाले भ्रूण को तूतक (मोरूला) कहते हैं (चित्र 2.11 E)। यह तूतक लगातार विभाजित होता रहता है और जैसे-जैसे यह गर्भाशय की ओर बढ़ता है, यह कोरकपुटी (ब्लास्टोसिस्ट) के रूप में पिरवर्तित हो जाता है (चित्र 2.11 F)। एक कोरकपुटी में कोरकखंड बाहरी परत में व्यवस्थित होते हैं जिसे पोषकोरक (ट्रोफोब्लास्ट) कहते हैं। कोशिकाओं के भीतरी समूह, जो पोषकोरक से जुड़े होते हैं, उन्हें अंतर कोशिका समूह (इनर सेलमास) कहते हैं। अब पोषकोरक स्तर गर्भाशय अंत:स्तर से संलग्न हो जाता है और अन्तर कोशिका समूह भ्रूण के रूप में अलग-अलग या विभेदित हो जाता है। संलग्न होने के बाद गर्भाशयी कोशिकाएँ तेजी से विभक्त होती हैं और कोरकपुटी को आवृत्त कर लेती हैं। इसके परिणामस्वरूप कोरकपुटी गर्भाशय-अंत: स्तर में अन्त:स्थापित (इंबेडेड) हो जाती है (चित्र 2.11 G, H)। इसे ही अंतर्रोपण (इम्प्लांटेशन) कहते हैं और बाद में यह सगर्भता का रूप धारण कर लेती है।

2.6 सगर्भता तथा भ्रूणीय परिवर्धन

भ्रूण के अंतर्रोपण के पश्चात् पोषकोरक पर अंगुली-जैसी संरचनाएँ उभरती हैं, जिन्हें जरायु अंकुरक (कोरिऑनिक विलाई) कहते हैं। ये जरायु अंकुरक गर्भाशयी ऊतक और

मातृ रक्त से आच्छादित होते हैं। जरायु अंकुरक और गर्भाशयी ऊतक एक दूसरे के साथ अंतरांगुलियुक्त (इंटरडिजिटेटेड) हो जाते हैं तथा संयुक्त रूप से परिवर्धनशील भ्रूण (गर्भ) और मातृ शरीर के साथ एक संरचनात्मक एवं क्रियात्मक इकाई को गठित करते हैं, जिन्हें अपरा (प्लैसेंटा) कहा जाता है (चित्र 2.12)।

अपरा, भ्रूण को ऑक्सीजन तथा पोषण की आपूर्ति एवं कार्बन डाइऑक्साइड तथा भ्रूण द्वारा उत्पन्न उत्सर्जी (एक्सक्रीटरी) अविशष्ट पदार्थों को बाहर निकालने का कार्य करता है। यह अपरा एक नाभि रज्जु (अम्बिलिकल कॉर्ड) द्वारा भ्रूण से जुड़ा होता है, जो भ्रूण तक सभी आवश्यक पदार्थों को अंदर लाने तथा बाहर ले जाने के कार्य में मदद करता है। अपरा, अंत:स्रावी

चित्र 2.12 गर्भाशय में अपरा दर्शाता हुआ मानव भ्रूण

ऊतकों का भी कार्य करता है और अनेकों हॉर्मोन जैसे कि मानव जरायु गोनैडोट्रॉपिन (ह्यूमन कोरिऑनिक गोनैडोट्रॉपिन एच सी जी), मानव अपरा लेक्टोजन (ह्यूमन प्लेसेंटल लेक्टोजन -एच पी एल), ऐस्ट्रोजन, प्रोजेस्टोजन, आदि उत्पादित करता है। सगर्भता के उत्तरार्ध की अविध में अंडाशय द्वारा रिलेक्सिन नामक एक हॉर्मोन भी स्रवित किया जाता है। हमें यह याद रखना चाहिए कि एच सी जी, एच पी एल और रिलेक्सिन स्त्री में केवल सगर्भता की स्थिति में ही उत्पादित होते हैं। इसके अलावा दूसरे हॉर्मोनों, जैसे ऐस्ट्रोजन, प्रोजेस्टोजन, कॉर्टिसॉल, प्रोलेक्टिन, थाइरॉक्सिन, आदि की भी मात्रा सगर्भता के दौरान माता के रक्त में कई गुणा बढ़ जाती है। इन हॉर्मोनों के उत्पादन में बढ़ोत्तरी होना भी भ्रूण वृद्धि, माता की उपापचयी क्रियाओं में परिवर्तनों तथा सगर्भता को बनाए रखने के लिए आवश्यक होता है।

अंतर्रोपण के तुरंत बाद अन्तर कोशिका समूह (भ्रूण) **बाह्यत्वचा** (एक्टोडर्म) नामक एक बाहरी स्तर और अंतस्त्वचा (एंडोडर्म) नामक एक भीतरी स्तर में विभेदित हो जाता है। इस बाह्य त्वचा और अंतस्त्वचा के बीच जल्द ही **मध्यजनस्तर** (मेजोडर्म) प्रकट होता है। ये तीनों ही स्तर वयस्कों में सभी ऊतकों (अंगों) का निर्माण करते हैं। यहाँ यह उल्लेख करना आवश्यक है कि इस अन्तर कोशिका समूह में कुछ निश्चित तरह की कोशिकाएँ, जिन्हें स्टेम कोशिकाएँ (स्टेम सेल्स) कहते हैं, समाहित रहती है, जिनमें यह क्षमता होती है कि वे सभी अंगों एवं ऊतकों को उत्पन्न कर सकती हैं।

सगर्भता के विभिन्न महीनों में भ्रूण परिवर्धन के प्रमुख लक्षण क्या होते हैं? मानव में सगर्भता की अविध 9 महीने की होती है। क्या आप जानते हैं कि कुत्ते, हाथियों, बिल्लियों में यह अविध कितने महीनों की होती है? पता करें। मानव में एक महीने की

सर्गभता के बाद भ्रूण का हृदय निर्मित होता है। एक बढ़ते हुए भ्रूण का पहला संकेत स्टेथोस्कोप से उसके हृदय की धड़कनों को ध्यानपूर्वक सुना जा सकता है। सगर्भता के दूसरे माह के अन्त तक भ्रूण के पाद और अंगुलियाँ विकसित होती हैं। 12वें सप्ताह (पहली तिमाही) के अन्त तक, लगभग सभी प्रमुख अंग-तंत्रों की रचना हो जाती है, उदाहरण के लिए पाद एवं बाह्य जनन अंग अच्छी तरह विकसित हो जाते हैं। गर्भावस्था के पाचवें माह के दौरान गर्भ की पहली गितशीलता और सिर पर बालों का उग आना सामान्यत: देखा जा सकता है। लगभग 24 वें सप्ताह के अन्त तक (दूसरी तिमाही के अंत में), पूरे शरीर पर कोमल बाल निकल आते हैं, आँखों की पलकें अलग-अलग हो जाती हैं और बरौनियाँ बन जाती हैं। गर्भावस्था के 9 वें माह के अन्त तक गर्भ पूर्ण रूप से विकसित हो जाता है और प्रसव के लिए तैयार हो जाता है।

2.7 प्रसव एवं दुग्धस्रवण

मानव में सगर्भता की औसत अवधि लगभग 9.5 माह होती है जिसे गर्भाविध (जेस्टेशन पीरियड) कहते हैं। सगर्भता के अंत में गर्भाशय के जोरदार संकुचनों के कारण गर्भ बाहर निकल आता है। गर्भ के बाहर निकलने की इस क्रिया को शिशु-जन्म या प्रसव (पारट्युरिशन) कहा जाता है। प्रसव एक जिटल तिंत्रअंत:सावी (न्यूरोइन्डोक्राइन) क्रियाविधि द्वारा प्रेरित होता है। प्रसव के लिए संकेत पूर्णविकसित गर्भ एवं अपरा से उत्पन्न होते हैं जो हल्के (माइल्ड) गर्भाशय संकुचनों को प्रेरित करते हैं जिन्हें गर्भ उत्क्षेपन प्रतिवर्त (फीटल इजेक्शन रेफलेक्स) कहते हैं। यह मातृ पीयूष ग्रंथि से ऑक्सीटोसिन के निकलने की क्रिया को सिक्रय बनाती है। ऑक्सीटोसिन गर्भाशय पेशी पर कार्य करता है और इसके कारण जोर-जोर से गर्भाशय संकुचन होने लगते हैं। गर्भाशय संकुचन ऑक्सीटोसिन के अधिक स्रवण को उद्दीपित करता है। गर्भाशय संकुचनों तथा ऑक्सीटोसिन स्राव के बीच लगातार उद्दीपक प्रतिवर्त के कारण यह संकुचन तीव्र से तीव्रतर होता जाता है। इससे शिशु, माँ के गर्भाशय से जनन नाल द्वारा बाहर आ जाता है यानी प्रसव सम्पन्न हो जाता है। शिशु के जन्म के तुरन्त बाद ही अपरा भी गर्भाशय से बाहर निकल जाता है। आप क्या सोचते हैं, डॉक्टर प्रसव को प्रेरित करने के लिए इंजेक्शन देता हैं?

स्त्री की स्तन ग्रंथियों में सगर्भता के दौरान कई प्रकार के बदलाव आते हैं और सगर्भता के अंत तक इनसे दूध उत्पन्न होने लगता है। इस प्रक्रिया को दुग्धस्रवण (लैक्टेशन) कहते हैं। यह माँ को अपने नवजात शिशु की आहार पूर्ति कराने में मदद देता है। दुग्धस्रवण के आरंभिक कुछ दिनों तक जो दूध निकलता है उसे प्रथम स्तन्य या खीस (कोलोस्ट्रम) कहते हैं, जिसमें कई प्रकार के प्रतिरक्षी (एंटीबॉडी) तत्व समाहित होते हैं जो नवजात शिशु में प्रतिरोधी क्षमता उत्पन्न करने के लिए परम आवश्यक होते हैं। एक स्वस्थ शिशु की वृद्धि एवं विकास के लिए प्रसव के बाद आरंभ के कुछ माह तक शिशु को स्तनपान कराने की सलाह डॉक्टर देते हैं।

सारांश

मानव लैंगिक रूप से जनन करने वाला एवं सजीवप्रजक या जरायुज (वीवीपेरस) है। इसके पुरुष जनन तंत्र में एक जोड़ा वृषण, नर लिंग सहायक निलकाएँ, सहायक ग्रंथियाँ और बाह्य जननेंद्रिय शामिल होते हैं। प्रत्येक वृषण में लगभग 250 कक्ष होते हैं और इन्हें वृषण पालिका कहते हैं। प्रत्येक वृषण पालिका में एक से लेकर तीन तक उच्च कुंडिलत शुक्रजनक निलकाएँ होती हैं। प्रत्येक शुक्रजनक निलका की भीतरी सतह शुक्राणुजनों और सर्टोली कोशिकाओं से स्तरित होती हैं। शुक्राणुजनों में अर्धसूत्री विभाजन के फलस्वरूप शुक्राणु का निर्माण होता है, जबिक सर्टोली कोशिकाएँ विभाजित होने वाली जर्म कोशिकाओं को पोषण प्रदान करती हैं। शुक्रजनक निलकाओं के बाहर लीडिंग कोशिकाएँ, वृषण हॉर्मोन (एंड्रोजेन) का संश्लेषण और स्रवण करती हैं। पुरुष के बाहरी जननेन्द्रिय को शिशन कहा जाता है।

स्त्री जनन तंत्र के अंतर्गत एक जोड़ा अंडाशय, एक जोड़ा अंडवाहिनी, एक गर्भाशय, एक योनि, बाह्य जननेन्द्रिय और एक जोड़ा स्तन ग्रंथियाँ होती हैं। अंडाशय से मादा युग्मक (अंडाणु) तथा कुछ स्टेरॉयड हार्मोन (अंडाशयी हार्मोन) पैदा होते हैं। अंडाशयी पुटक अपने परिवर्धन के विभिन्न चरणों में पीठिका (स्ट्रोमा) में अन्त:स्थापित होते हैं। अंडवाहिनी, गर्भाशय और योनि, स्त्री की सहायक जनन निलकाएँ हैं। गर्भाशय की दीवार में तीन स्तर होते हैं जिन्हें परिगर्भाशय स्तर, गर्भाशय पेशीस्तर और गर्भाशय अंत:स्तर कहते हैं। स्त्री के बाह्य जननेंद्रिय के अंतर्गत जघन शैल, वृहद् भगोष्ठ, लघु भगोष्ठ, योनिच्छद और भगशेफ़ शामिल हैं। स्त्री की स्तन ग्रंथियाँ उसकी एक गौण लैंगिक अभिलक्षण हैं।

शुक्राणुजनन के कारण शुक्राणु का निर्माण होता है जो पुरुष लिंग की सहायक नलिकाओं द्वारा वाहित किए जाते हैं। एक सामान्य मानव शक्राण में एक शीर्ष, ग्रीवा, मध्यखंड और एक पुँछ होती है। एक परिपक्व स्त्री युग्मक के निर्माण की प्रक्रिया अंडजनन कहलाती है। मादा प्राइमेटों के जनन चक्र को आर्तव चक्र कहते हैं। आर्तव चक्र की शुरूआत स्त्री के लैंगिक रूप से परिपक्व होने (यौवनारंभ) पर ही होती है। प्रति आर्तव चक्र में अंडोत्सर्ग के दौरान केवल एक अंडाणु मोचित होता है। आर्तव चक्र के दौरान अंडाशय तथा गर्भाशय में चक्रीय परिवर्तन पीयूषग्रंथि तथा अंडाशयी हॉर्मोनों के स्तर में बदलाव से प्रेरित होता है। मैथून के अंत में शुक्राणु योनि से स्वयं संकीर्ण पथ तथा तुंबिका की ओर वाहित होते हैं। यहाँ शुक्राणु, अंडाणु का निषेचन करता है और उसके पश्चात् द्विगुणित युग्मनज की रचना होती है। शुक्राणु में मौजूद X या Y गुणसूत्र के कारण भ्रुण का लिंग निर्धारित होता है। युग्मनज में लगातार समसूत्री विभाजन होता है जिससे कि कोरकपुटी का निर्माण होता है। यह कोरकपुटी गर्भाशय की भित्त में अंतर्रोपित हो जाती है जिसके फलस्वरूप गर्भधारण होता है। नौ महीने तक गर्भधारण के पश्चात गर्भ पूर्णरूप से विकसित और प्रसव के लिए तैयार हो जाता है। शिश्-जन्म की प्रक्रिया को प्रसव कहा जाता है, जो एक जटिल तंत्रिअंत:स्रावी क्रियाविधि द्वारा प्रेरित होते हैं। जिसमें, कॉर्टिसॉल, एस्ट्रोजन और ऑक्सीटोसिन शामिल हैं, सगर्भता के दौरान स्तन ग्रंथियों में कई प्रकार के परिवर्तन होते हैं और शिश जन्म के बाद इससे दग्धम्रवण होता है। जन्म के बाद प्रारम्भ के कुछ महीनों तक माता द्वारा नवजात शिशु को दुग्धपान (स्तनपान) कराया जाता है।

अभ्यास

- 2. पुरुष जनन-तंत्र का एक नामांकित आरेख बनाएँ।
- 3. स्त्री जनन–तंत्र का एक नामांकित आरेख बनाएँ।
- 4. वृषण तथा अंडाशय के बारे में प्रत्येक के दो-दो प्रमुख कार्यों का वर्णन करें।
- 5. शुक्रजनक नलिका की संरचना का वर्णन करें।
- 6. शुक्राणुजनन क्या है? संक्षेप में शुक्राणुजनन की प्रक्रिया का वर्णन करें।
- 7. शुक्राणुजनन की प्रक्रिया के नियमन में शामिल हॉर्मोनों के नाम बताएँ?
- 8. शुक्राणुजनन एवं वीर्यसेचन (स्परमियेशन) की परिभाषा लिखें।
- शुक्राणु का एक नामांकित आरेख बनाएँ।
- 10. शुक्रीय प्रद्रव्य (सेमिनल प्लाज्मा) के प्रमुख संघटक क्या हैं?
- 11. पुरुष की सहायक नलिकाओं एवं ग्रंथियों के प्रमुख कार्य क्या हैं?
- 12. अंडजनन क्या है? अंडजनन की संक्षिप्त व्याख्या करें।
- 13. अंडाशय के अनुप्रस्थ काट (ट्रांसवर्स सेक्शन) का एक नामांकित आरेख बनाएँ।

Y

- 14. ग्राफी पुटक (ग्राफिएन फॉलिकिल) का एक नामांकित आरेख बनाएँ।
- 15. निम्नलिखित के कार्य बताएँ—
 - (क) पीत पिंड (कॉर्पस ल्युटियम)
 - (ख) गर्भाशय अंत:स्तर (इंडोमेट्यिम)
 - (ग) अग्रपिंडक (एक्रोसोम)
 - (घ) शुक्राणु पुच्छ (स्पर्म टेल)
 - (च) झालर (फिम्ब्री)
- 16. सही या गलत कथनों को पहचानें
 - (क) पुंजनों (एंड्रोजेन्स) का उत्पादन सर्टोली कोशिकाओं द्वारा होता है। (सही/गलत)
 - (ख) शुक्राणु को सर्ट्रोली कोशिकाओं से पोषण प्राप्त होता है। (सही/गलत)
 - (ग) लीडिंग कोशिकाएँ अंडाशय में पाई जाती हैं। (सही/गलत)
 - (घ) लीडिंग कोशिकाएँ पुंजनों (एंड्रोजेन्स) को संश्लेषित करती हैं। (सही/गलत)
 - (ङ) अंडजनन पीत पिंड (कॉपर्स ल्युटियम) में संपन्न होता है। (सही/गलत)
 - (च) सगर्भता (प्रेगनेंसी) के दौरान आर्तव चक्र (मेन्सट्रुअल साइकिल) बंद होता है। (सही/गलत)
 - (छ) योनिच्छद (हाइमेन) की उपस्थिति अथवा अनुपस्थिति कौमार्य (वर्जिनिटी) या यौन अनुभव का विश्वसनीय संकेत नहीं हैं। (सही/गलत)
- 17. आर्तव चक्र क्या हैं? आर्तव चक्र (मेन्सट्रुअल साइकिल) का कौन से हॉर्मोन नियमन करते हैं?
- 18. प्रसव (पारट्युरिशन) क्या हैं? प्रसव को प्रेरित करने में कौन से हार्मोन शामिल होते हैं?
- 19. हमारे समाज में लड़िकयाँ जन्म देने का दोष महिलाओं को दिया जाता है। बताएँ कि यह क्यों सही नहीं है?
- 20. एक माह में मानव अंडाशय से कितने अंडे मोचित होते हैं? यदि माता ने समरूप जुड़वाँ बच्चों को जन्म दिया हो तो आप क्या सोचते हैं कि कितने अंडे मोचित हुए होंगे? क्या आपका उत्तर बदलेगा यदि जन्मे हुए जुड़वाँ बच्चे, द्विअंडज यमज थे?
- 21. आप क्या सोचते हैं कि कुतिया, जिसने 6 बच्चों को जन्म दिया है, के अंडाशय से कितने अंडे मोचित हुए थे?