

Content

- · Image formation
 - Human vision
 - Image formation
- · Acquisition and digitization: Digital camera
 - Imaging sensor
 - 2D signal and sampling
- · Color:
 - Primary color, additive/ subtractive color, color spaces
- Digital image representation and formats

Image formation

Image formation studies the forward process of producing images and videos.

- Image formation encompasses the radiometric and geometric processes by which 2D images of 3D objects are formed. To produce a real image, the nature of the visual sensors (i.e. CCD and CMOS cameras), should be studied.
- Imaging process is a mapping of an object to an image plane.
- <u>With digital images</u>, the image formation process also includes analog to digital conversion, <u>sampling</u>
- Human color vision (Perception): In the case of computer vision the light incident on the sensor comprises the image. In the case of visual perception, the human eye has a color dependent response to light which is the spectral sensitivity of human vision.

The Eye

- The human eye is a camera
 - Iris colored annulus with radial muscles
 - Pupil the hole (aperture) whose size is controlled by the iris
- What's the sensor?

Slide by Steve Seitz

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Rod / Cone sensitivity

SCHOOL OF INFORMATION AND COMMUNICATI

Physiology of Color Vision

© Stephen E. Palmer, 2002

Tetrachromatism

- Most birds, and many other animals, have cones for ultraviolet light.
- Some humans seem to have four cones (12% of females).

James Hays

Image formation

Adapted from S. Seitz

Photometric image formation

- · Modeling the image formation process: 3D geometric features in the world are projected into 2D features in an image.
- · A simplified model of photometric image formation is illustrated.
- The scene is illuminated by a single source
- The scene reflects radiation towards the camera.
- The camera senses it via CCD/ CMOS

Acquisition and digitization: Digital camera

Digital camera: Image sensing and processing pipeline

Adapted from S. Seitz

Digital camera

- Image acquisition:
 - Optical system, aperture (capture), shutter
 - Imaging sensor: CCD/ CMOS sensor camera consists of a array of photodiodes. Each cell in the is light-sensitive diode that converts photons to electrons.
 - 2D sensed signal of image, video
- · Digitization (ADC): Sampling and Quantization
 - Sampling the 2D sensed signal create the samples or pixels
 - Quantizing the sample values as the integer values of pixels
- · Processing (DSP- Digital Signal Processing): - Cameras perform a variety of digital signal processing
 - operations to *enhance* the image before *compressing* and *storing* the pixel values in standard format file.

Sensor array: an example

Real scene -> digital Image

Digitization = Sampling (lấy mẫu) + Quantization (Lượng tử hóa)

Sampling and quantization

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

Sampling and quantization

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

Digital image

Spatial resolution (sampling)

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Gray-level resolution (Quantization)

Color spaces

- · Color spaces; different types of color modes
- · Color represented by vector of components
 - Red, Green, Blue (RGB)
 - Hue, Saturation, Value (HSV)
 - Luminance, chrominance (YUV, LUV)
 - XYZ
- · Color convert: RGB YUV

Y = 0.299R + 0.587G + 0.114B

U = 0.493 (B - Y); V = 0.877 (R - Y)

Color coordinate system

Color: Additive/Subtractive primary color

- Primary color: Red, Green, Blue (RGB)
- · Additive colors:
 - Combination of RGB can be mixed to produce Cyan, Magenta, Yellow (CMY) &White.

combination

of RGB

- Additive color reproduction system:
 - · Combination of RGB to reproduce a colored light.
- Subtractive colors CMY can be mixed to produce RBG & black
 - Subtractive color reproduction system: A white light sequentially passes through cyan, magenta, yellow filters to reproduce a colored light.

Color spaces: RGB Default color space 0,1,0 R = 1 (G=0,B=0) R=0,G=0) R=1 (R=0,G=0) B=1 (R=0,G=0) SCHOOL OF REGIMATION AND COMMUNICATION INCRINCIONS Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

Nonlinear color spaces: HSV

- · Perceptually meaningful dimensions:
 - Hue, Saturation (chroma)
 - Value (Intensity)

HSV (Hue - Saturation- Value)

- The Hue-Saturation-Value (HSV) color space is use for segmentation and recognition
 - Non-linear conversion
 - Visual representation of colors
- · We identify for a pixel:
 - The pixel intensity (value)
 - The pixel color (hue + saturation)
- · RGB does not have this seperation

HSV (Hue - Saturation- Value)

- Hue (H) is coded as an angle between 0 and 360
- · Saturation (S) is coded as a radius between 0 and 1

-S = 0: gray

-S = 1: pure color

 Value (V) = MAX (Red, Green, Blue)

HSV (Hue - Saturation- Value)

- · If we know the color of the object we are looking for, can model it using a hue interval
- Take care, because it is an angle (periodic value)
 - Hue < 60° means nothing
 - Is 350° smaller or bigger than 60°?
 - Define an interval: 350° < Hue < 60° (for example)
- This interval is valid if <u>Saturation > threshold</u> (otherwise gray level)
- · This is independant of Value , which is more sensible to light conditions

Lab color space

- The Lab system (sometimes L*a*b*) is based on a study from human vision
 - independant from all technologies
 - presenting colors as seen by the human eyes
- · Colors are defined using 3 values
 - L is the luminance, going from 0% (black) to 100% (white)
 - a* represents an axis going from green (negative value, -127) to red (positive value, +127)
 - b* represents an axis going from blue (negative value, -127) to yellow (positive value, +127)

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY —

Lab color space

Color space vs. illumination conditions

collected 10 images of the cube under varying illumination conditions

separately cropped every color to get 6 datasets for the 6 different colors

Compute the density plot. Check the distribution of a particular color say, blue or yellow in different color spaces. The density plot or the 2D Histogram gives an idea about the variations in values for a given color

Color space vs. illumination conditions

Color space vs. illumination conditions

Color space vs. illumination conditions

Color space vs. illumination conditions

Color space vs illumination conditions

- · Different illumination:
 - RGB space: the variation in the value of channels is very hight
 - HSV: compact in H. Only H contains information about the absolute color → a choix
 - YCrCb, LAB: compact in CrCb and in AB
 - · Higher level of compactness is in LAB
 - Convert to other color spaces (OpenCV):
 - cvtColor(bgr, ycb, COLOR_BGR2YCrCb);
 - cvtColor(bgr, hsv, COLOR_BGR2HSV);
 - cvtColor(bgr, lab, COLOR_BGR2Lab);

Digital image format

- Parameters for digital image formats:
 - Digital image resolution: (height x width) in pixels
 - Quantization (bits per pixel):

Gray level image: 8 bits/ pixel RGB color image: 24 bits/ pixel Binary image: 1 bit/ pixel

- Digital Image Storage: file stored in two parts: Header; Data
- Common image file formats:
 - GIF (Graphic Interchange Format) -
 - PNG (Portable Network Graphics)
 - JPEG (Joint Photographic Experts Group)
 - TIFF (Tagged Image File Format)
 - PGM (Portable Gray Map)
- FITS (Flexible Image Transport System)

Digital video format

- · Parameters for digital video formats
 - Digital image resolution (height x width) in pixels
 - Quantization (bits per pixel)
 - Frame rate (frames per second)
- · Standard video file formats
 - AVI, M-JPEG,
 - H26X (ITU_T:H.261, H.263, H.263, H264)
 - MPEG-1, MPEG-2, MPEG-4 Part 10 / H264 AVC,mp4...

