A Better Informal Proof of Deadlock Freedom

Theorem The 2-process 1-bit algorithm satisfies *DeadlockFree*

DEFINE $T0 \stackrel{\triangle}{=} Trying(0)$ $T1 \triangleq Trying(1)$ $Success \triangleq InCS(0) \vee InCS(1)$

1 $\langle 1 \rangle 1$. It suffices to assume $(T0 \vee T1) \wedge \Box \neg Success$ is true at some time t_1 and obtain a contradiction.

PROOF: By definition of deadlock freedom.

2 $\langle 1 \rangle 2$. Case: There is a time $t_2 \geq t_1$ at which T0 is true.

2.1 $\langle 2 \rangle 1$. $\Box (pc[0] = \text{``e2''})$ is true at some time $t_3 \geq t_2$. PROOF: Process 0 is never at e3 or e4, and $\Box \neg Success$ (from the step $\langle 1 \rangle 1$

assumption) implies that $\Box \neg InCS(0)$ is true at time t_2 . Therefore, T0 true at time t_2 , the code, and fairness imply that process 0 eventually reaches e2 at some time $t_3 \geq t_2$ and stays there forever.

PROOF: By $\Box \neg Success$ (from the step $\langle 1 \rangle 1$ assumption), process 1 never

Proof: Since x[1] equals false when process 1 is at ncs, the case as-

2.2 $\langle 2 \rangle 2$. $\Box \neg x[1]$ is true at some time $t_4 \geq t_3$. $\langle 3 \rangle 1$. ($\Box (pc[1] = \text{``ncs"}) \vee \Box T1$) is true at some time $t_5 \geq t_3$. 2.2.1

> reaches cs. The code and fairness therefore imply that process 1 must eventually either reach and remain forever at ncs, or T1 must become

true and remain true forever.

 $\langle 3 \rangle 2$. Case: $\Box(pc[1] = \text{``ncs''})$ is true at time t_5 .

sumption implies that $\Box \neg x[1]$ is true at time t_5 . This proves $\langle 2 \rangle 2$ for t_4 equal to t_5 .

 $\langle 3 \rangle 3$. Case: $\Box T1$ is true at time t_5 .

PROOF: Since x[0] is true when process 0 is at e^{2} , $\langle 2 \rangle 1$ and $t_{5} \geq t_{3}$ implies $\Box x[0]$ is true at time t_5 . Thus, $\Box T1$ (the case assumption), $\Box \neg InCS(1)$ (by the step $\langle 1 \rangle 1$ assumption $\Box \neg Success$), the code, and fairness imply that process 1 must at some time $t_4 \geq t_5$ reach and remain forever at e4 with x[1] equal to FALSE, proving $\langle 2 \rangle 2$.

 $\langle 3 \rangle 4$. Q.E.D. PROOF: By $\langle 3 \rangle 1 - \langle 3 \rangle 3$.

2.3 $\langle 2 \rangle 3$. Q.E.D.

2.2.2

2.2.3

2.2.4

PROOF: $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ imply that (pc[0] = ``e2'') and $\Box \neg x[1]$ are true at time t_4 . The code and fairness then imply that process 0 reaches cs at some time $t_6 \geq t_4$. Since $t_4 \geq t_1$ by $\langle 2 \rangle 2$, $\langle 2 \rangle 1$, and the $\langle 1 \rangle 2$ case assumption, this

- contradicts the assumption $\Box \neg Success$ of step $\langle 1 \rangle 1$.
- 3 $\langle 1 \rangle$ 3. Case: T1 is true at time t_1 .
- 3.1 $\langle 2 \rangle 1$. $\Box T1$ is true time t_1 .
 - PROOF: By the step $\langle 1 \rangle 1$ assumption, $\Box \neg InCS(1)$ (which is implied by $\Box \neg Success$) is true at time t_1 . From the code and the step $\langle 1 \rangle 3$ case assumption, this implies that $\Box T1$ is true at time t_1 .
- 3.2 $\langle 2 \rangle 2$. Either $\Box \neg T0$ is true a time t_1 , or T0 is true at some time $t_2 \geq t_1$. PROOF: Obviously, $\Box \neg T0$ is false at time t_1 iff T0 is true at some time $t_2 \geq t_1$.
- 3.3 $\langle 2 \rangle$ 3. CASE: $\Box \neg T0$ is true at time t_1 3.3.1 $\langle 3 \rangle$ 1. There is some $t_3 \geq t_1$ such that $\Box \neg x[0]$ is true at time t_3 . PROOF: By the code and fairness, $\neg T0$ true at time t_1 implies that pro
 - cess 0 is at ncs at some time $t_3 \ge t_1$. The code and $\neg T0$ true at all times $t \ge t_1$ and the code imply that process 0 is at ncs with $\neg x[0]$ true for all $t \ge t_3$.

at some time $t_4 \ge t_3$. Step $\langle 3 \rangle 2$ implies $\Box \neg x[0]$ is true at time t_4 , which by fairness implies that process 1 reaches its critical section at some time $t_5 > t_4$. Since $t_5 \ge t_1$, this contradicts the assumption from step $\langle 1 \rangle 1$

- 3.3.2 $\langle 3 \rangle 2$. $\Box (T_1 \land \neg x[0])$ is true at time t_3 PROOF: By $\langle 3 \rangle 1$ and $\langle 2 \rangle 1$.
- 3.3.3 $\langle 3 \rangle$ 3. Q.E.D. PROOF: Step $\langle 3 \rangle$ 2, the code, and fairness imply that process 1 reaches e2
- that $\Box \neg Success$ is true at time t_1 . 3.4 $\langle 2 \rangle$ 4. CASE: T0 is true at time $t_2 \geq t_1$
- PROOF: By $\langle 1 \rangle 2$.

 3.5 $\langle 2 \rangle 5$. Q.E.D.
- PROOF: By $\langle 2 \rangle 2$, $\langle 2 \rangle 3$, and $\langle 2 \rangle 4$.
- 4 $\langle 1 \rangle 4$. Q.E.D.
 - PROOF: By the step $\langle 1 \rangle 1$ assumption, $\langle 1 \rangle 2$ (letting t_2 equal t_1), and $\langle 1 \rangle 3$.

CLOSE