

Course > Module... > Assign... > Assign...

<

Assignment # 2

Problem # 1: Consider the function $f(x) = e^x + e^-$ in the following, the interpolating polynomial, $p_4(x)$ is computed by using Taylor expansion. To do so, do the following tasks:

>

- 1. [2 Marks] Using Taylor expansion of $e^{\pm x}$, write f(x) as an infinite series.
- 2. [2 Marks] Find the values of a_0, a_1, \dots, a_4 if the function is interpolated by degree four polynomial $p_4(x)$
- 3. [2 Marks] Compute: $f\left(0.1\right)$ and $p_{4}\left(0.1\right)$ up to seven significant figures.
- 4. [2 Marks] Find the percent error for interpolating f(x) by $p_4(x)$

Problem # 2: Consider the same function $f(x) = e^x + e^{-x}$ gain. Now, we are going to find the interpolating polynomial by using Vandermonde matrix method:

- 1. [2 Marks] Construct the Vandermonde matrix V if $f\left(x\right)$ passes through the nodes $-1,\ 0$ and 1.
- 2. [2 Marks] Compute: $\det(V)$
- 3. [2 Marks] Find the inverse matrix V^{-1} . Note that you may use any advanced calculator, enline resources and/or mathematical software to find the inverse, but show 2/3 steps or explanation or formula that indicates that you understand what you are doing.

4. [2 Marks] The coefficients a_0, a_1, a_2 of the interpolating polynomial $p_2(x)$ can be computed by using the equation below:

$$egin{pmatrix} a_0 \ a_1 \ a_2 \end{pmatrix} = V^{-1} egin{pmatrix} f\left(x_0
ight) \ f\left(x_1
ight) \ f\left(x_2
ight) \end{pmatrix} \, ,$$

where the symbols have their usual meanings. Using V^{-1} and the function values at the nodal points, find the values of a_0, a_1, a_2 up to five decimal places.

- 5. [2 Marks] Write down the expression for $p_2\left(x\right)$ Also compute $p_2\left(0.1\right)$ and $f\left(0.1\right)$ up to five decimal places.
- 6. [2 Marks] Find the percent error of interpolating f(0.1)by $p_2(0.1)$.

Submission of the Assignment # 2:

- Solve all the problems above.
- Prepare a title page including Your Name, Your ID#, Theory Section #.
- Prepare a single .pdf or .jpg file containing the tile page and the solution pages.
- To submit your assignment solution, visit the <u>Submission Link (Click here)</u>. This will take you to a Google Form link.
- Fill up the Google Form link with correct information and upload the file there. You are done.

Previous
Next >

© All Rights Reserved

About Us

BracU Home

USIS

Course Catalog

Copyright - 2020