

Introdução a Engenharia de Software

Prof. Guilherme Lacerda

guilhermeslacerda@gmail.com

Roteiro

- Por que precisamos planejar?
- Problemas e desafios

- Complexidade em Desenvolvimento de Software
- Conceitos de Engenharia

"A questão não é **SE** a qualidade técnica é importante, mas **COMO** a qualidade técnica será alcançada"

Jim Highsmith

Agile Project Management: creating innovative products, Addison-Wesley Professional (2004)

Por que precisamos planejar?

Revisando Conceitos

Processo

Projeto

Produto e Serviço Operação

Processo Produto

Qualidade

...e quando o software ficar pronto...

É fundamental entender a natureza do software

Leis de Lehman

Lei	Descrição	
Mudança contínua	Um programa usado em um ambiente do mundo real deve necessariamente mudar, ou se torna progressivamente menos útil nesse ambiente.	
Aumento da complexidade	Como um programa em evolução muda, sua estrutura tende a tornar-se mais complexa. Recursos extras devem ser dedicados a preservar e simplicar a estrutura.	
Evolução de programa de grande porte	A evolução de programa é um processo de autorregulação. Atributos de sistema como tamanho, tempo entre <i>releases</i> e número de erros relatados são aproximadamente invariáveis para cada <i>release</i> do sistema.	
Estabilidade organizacional	Ao longo da vida de um programa, sua taxa de desenvolvimento é aproximadamente constante e independente dos recursos destinados ao desenvolvimento do sistema.	
Conservação da familiaridade	Durante a vigência de um sistema, a mudança incremental em cada <i>release</i> é aproximadamente constante.	
Crescimento contínuo	A funcionalidade oferecida pelos sistemas tem de aumentar continuamente para manter a satisfação do usuário.	
Declínio de qualidade	A qualidade dos sistemas cairá, a menos que eles sejam modificados para refletir mudanças em seu ambiente operacional.	
Sistema de <i>feedback</i>	Os processos de evolução incorporam sistemas de <i>feedback</i> multiagentes, <i>multiloop</i> , e você deve tratá-los como sistemas de <i>feedback</i> para alcançar significativa melhoria do produto.	

O desenvolvimento de software...

Falta de Comunicação

Como o cliente explicou

Como o consultor de negócio descreveu

Como o líder de projeto entendeu

Como o analista modelou

programou

"beta testers"

Falta de Comunicação

Resultado dos testes de "stress"

Como o software foi instalado pela equipe de operação

Riscos

documentado

suportado

entregue

Falta de Comunicação

Resultado da utilização do software

Como os "patches" foram aplicados

Como foi a campanha de marketing

O que o cliente realmente queria

Software

"Uma **gestão ruim** pode aumentar os custos de desenvolvimento de software mais do que qualquer outro fator"

Barry Boehm
Sofftware Engineering Economics, Prentice Hall (1981)

Cone da Incerteza

Table 5.1. Software Maintenance Categories			
	Correction	Enhancement	
Proactive	Preventive	Perfective	
Reactive	Corrective	Adaptive	

SWEBoK v3.0, IEEE Computer Society (2014)

Desenvolvimento + Manutenção = Evolução!

Problemas e Desafios

Falhas em Projetos: Therac 25

Therac-25

- Aparelho de Radioterapia
- de 1985 a 1987 se envolveu em 6 acidentes, causando mortes por radiação
- Software adaptado da versão anterior
- Falha por falta de testes integrados

Falhas em Projetos: Denver International Airport

Denver International Airport

- Custo US\$: 4,9 Bi 100 mil passageiros/dia, 1.200 voos
- Erro no sistema automático de bagagens interligando 3 terminais
- Atrasos de mais de 16 meses
- US\$ 560 mi acima do orçamento

Falhas em Projetos: Ariane 5

Ariane 5

- Projeto Espacial da Agência Europeia
- 10 anos de projeto US\$ 8 Bi
- Garantia a supremacia europeia no espaço
- Explosão 40 seg. após decolagem
- Carga de transporte avaliada em US\$ 500 mi
- Ocorreu um overflow, desligando os servidores
- Conversão de ponto flutuante para inteiro (casting)

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster

Falhas em Projetos: Bug do Milênio

Bug do Milênio (Y2K)

MINUANO

Geral

BUG 2000

Bagé se prepara para o bug do milênio

Imagine a seguinte si- em festejar a tão esperada ligar o computador. Aré contuação: é 31 de dezembro de virada de ano, o réveillon do segue ligá-lo, mas quem ga custo dos reparos para evi-1999, sexta-feira, e vocé aca- ano 2000. Segunda-feira, re- rante que a máquina vai fun- tar os transformos do bug es- como as instituições públiba de encerrar o expedien- cuperado dos abusos etilicos cionar direito. É o bug do tão sendo calculados entre cas e privadas estão se prevai para casa, ja pensando retorna ao trabalho e tenta

informática decidiram grafar podem chegar até um as datas com apenas dois trilhão contando com as digitos reservados para o eventuais indentzações ano. Por exemplo, sete de judiciais. So os Estados agosto de 1999, no compu- Unidos estão gestando tador, fica 07/08/99.

2000), os computadores po- do reveillon. dem entender 1900. Essa simples confusão no calen- federal destinou RS 1,5 bidário das "inteligências ar- lhão para reprogramar ostificiats" pode causar um computadores tupiniquins. estrago enorme e prejuízos. No entanto, o prazo finalirreparáveis, ocasionando para adaptação foi prorrogaum descontrole total nos sis- do até o final de setembro, de energia, operações finan- dos e certificados. ceiras e até mesmo acionar Em Bagé, mesmo com bombas nucleares.

Para economizar espa- dólares. Os 600 bilhões são nio.

tadores, os pieneiros em mas nos programas. O gasto cerca de 80 bilhões de dó-Por isso, so ler co (de lares para prevenir a pane

No Brasil, o governo temas de telecomunicações, uma vez que 15% dos sistetráfego aéreo, transmissão mas ainda não foram testa-

as dificuldade de acesso à 600 bilhões a um trilhão de parando para o bug do mila-

Santo de casa milagreiro Quem disse que santo luções. "A melhor saída se- afirma que não vende o pro-

Silva de Lacerda, 20 anos, Guilherme. técnico em processamento Segundo o estudante, justifica. de dados, aluno do sexto se- o ponto-chave do bug está mestre de Informática e funna quantidade de digitos uma ressalva: "Cada caso é cionário do setor de Plane- que se pode usar na hora de um caso, não dá para genejamento da Urcamp, além de escrever a data. O sistema ralizar". Segundo ele, cada auxiliar do núcleo de pesqui- desenvolvido por Guilherme empresa deve atacar seus sa e extensão do CCEI, des-converte a data com dois al-pontos-chaves, "aquilo que de setembro de 1998, se degarismos no ano para outro não pode parar". O estudan-

Pois um estudante bageense gramas, mas é muito traba- proceder. "Estou sobrecarredesenvolveu um programa lhoso, então eu optei por argado de serviço, por isso eu que previne os infortunios do mazenar as datas utilizando indico todos os passos a sebug do milênio. Guilherme outros calendários*, resume rem seguidos e a própria

era movido apenas pela cu- e não 1900. "O sistema con- mulações. riosidade. Lendo revistas siste em fórmulas matemáespecializadas, livros e artiticas que convertem as damésticos, Guilherme sugere

institucional - que é irnune ao veu um programa demons- clique na hora (exibindo no trativo, o Y2K, que está à canto inferior esquerdo da A partir do ano passa- disposição na internet área de trabalho). No MSdo, em conversas com pro- (h t t p : / / DOS, deve ser usado o cofessores e colegas, Guilher- attila.urcamp.tche.br/ mando dateme começou a procurar so- ~guilherm). No entanto, ele

de casa não faz milagres. na reescrever todos os programa, apenas ensina como pessoa efetua a conversão".

dica a estudar o fenómeno calendário, fazendo com que te indica que seja feito um o computador entenda o 00 planejamento antecipado e, No início, Guilherme como referente ao ano 2000 depois, efetuadas várias si-

gos sobre a previsível pane tas. Por exemplo, eu posso que sejam feitos alguns tesdos computadores na virada fazer com que a data dd/mm/ tes. Conforme a sugestão do do ano, Guilherme verificou 99 seja interpretado pelo estudante, o usuário deve que o bug não era tão assus- computador com quatro di- alterar a data do sistema, de tador assim. "Claro que o gitos, ou até mesmo trans- preferência numa sexta-feibug é um problema, mas não formar em outro sistema de ra, "porque é necessário que e tudo o que falam", afirma. contagem, com o dia, o ano o computador fique ocioso Em 1996, Guilherme e o co- e o século, assim: dia yy, ano por, no mínimo, uns dois lega Fabrizio Mello já haviam xx, do século 21", explica. dias". Para alterar a data, o Com base nos seus es- usuário deve acessar, no para a Urcamp - de avaliação tudos, Guilherme desenvol- Windows, de um duplo

No local da data, o usu-

GUILHERME LACERDA: o estudente e funcidesenvolveu um programa que exita as efeitos do bug-

convocar o auxílio de algum Guilherme.

ário colocará 31/12/99. Dois profissional especializado. dias depois, o computador "Em computadores 486 DX deve ser ligado novamente. 2 e anteriores, há ocorren-Se continuar funcionando, cias de problemas internos não há problemas à vista. na BIOS, então este tesse Caso contrário, é preciso não vai funcionar", previne

ONDE CONSEGUIR Auxilio

Há vénos sites na Internet onde você pode conseguir informações e até mesmo programas para evitar maiores. dance nos seus arquivos. Anote e como atras que arros na

- www.microsoft.com/v2x
- www.microsoft.com/year2000 " WWW.Dati com
- www.symantec.com
- www.compaq.com/year2000/year2000/ga.html
- www.hp.com/year2000/anproducts.html www.ibm.com/bm/year2000/pcs/
- www.tautec.com.bi projeto2000

Falhas em Projetos: F35

- Início do projeto: 2001
- DoD
- Concorrência entre Boeing e Lockheed Martin
- 24 milhões de linhas de código
- Cerca de 1 trilhão de dólares

ď

Falhas em Projetos: Airbus-A350

"Reset a cada 149 horas"

https://gizmodo-uol-com-br.cdn.ampproject.org/c/s/gizmodo.uol.com.br/reiniciar-aviao-airbus-solucao-bug/amp/

Por que mais de 80% de projetos

de software fracassam?

Freqüência de Utilização de Funcionalidades Sistemas Comerciais Típicos (EUA)

Fonte: Standish Group

Complexidade

Complexidade

Essencial **X**Acidental

Crise do Software

- Crise ou aflição crônica?
 - "Crise: Ponto decisivo no curso de algo"
 - "Aflição Crônica: algo que causa sofrimento, que dura longo tempo ou retorna

frequentemente"

- Ilusão: Desenvolver software é "soft"
 - Economicamente "soft"
 - Operacionalmente "soft"
 - Intelectualmente "soft"
- Realidade: Desenvolver software é "hard"
 - Atender a requisitos
 - Satisfazer o usuário
 - Respeitar cronograma e orçamento
 - Produzir com qualidade
 - Dificuldade em mantê-lo

Desenvolvimento de Software

- Desenvolvimento = 30% do esforço
 - Iniciado com a identificação das necessidades do produto
 - Finalizado com o produto implantado e concluído (entregue para operação/produção)
- Manutenção = 70% do esforço
 - Todas as atividades após a entrega
 - Aumento da capacidade do produto (60%)
 - Adaptação do produto a novos ambientes (20%)
 - Correção de erros (20%)

Desenvolvimento de Software

- Manutenção é cara e inevitável
 - Sistemas legados
 - Necessidades de ajustes
 - Mudança nos requisitos
- Como diminuir estes problemas?
 - Melhoria na qualidade do produto produzido
 - Melhoria do processo de produção

Mudança cultural no desenvolvimento de Software

Desenvolvimento de Software

- Computadores mais baratos
- Software = Atividade intelectual
 - Mão de obra qualificada (\$\$)
 - Baseada em experiência
 - Baixos níveis de reutilização e automação
- Usuários mais exigentes
- Softwares mais complexos
 - Extinção do "Processamento de Dados"
 - Sistemas distribuídos, Web, SOA, Mobile, Embarcados
 - Processos tradicionais já não servem

Conceitos

- Engenharia = Uso de princípios científicos para uma atividade de projeto e construção
- Engenharia de Software (várias definições)
 - "Aplicação prática do conhecimento científico para projeto, construção de programas computacionais e a documentação necessária à sua operação e manutenção". (Barry Boehm, 1976)
 - "O estabelecimento e uso de sólidos princípios de engenharia para que se possa obter economicamente um software que seja confiável e que funcione eficientemente em máquinas reais". (Fritz Bauer, 1969)

- O que é engenharia de software?
 - Engenharia dedicada a todos os aspectos de produção de software
 - Da especificação até a manutenção do sistema que já está em uso
- ... da engenharia
 - Teorias e métodos para resolver problemas tendo em mente restrições organizacionais e financeiras
- para todos os aspectos de produção de software
 - não somente processos técnicos de desenvolvimento, mas:
 - gerenciamento de projetos
 - desenvolvimento de ferramentas e métodos para a ajudar na produção de software
 - Relacionamento com usuários/clientes

- Qual a diferença entre engenharia de software e ciência da computação?
 - CC está relacionada a teoria e fundamentos
 - ES está relacionada com a prática de desenvolvimento e entrega de software útil

- Qual a diferença entre engenharia de software e engenharia de sistemas?
 - **Engenharia de sistemas** está relacionada a todos os aspectos de desenvolvimento de sistemas baseados em computadores, incluindo
 - hardware,
 - software e
 - engenharia de processo.
 - Engenharia de software é parte deste processo

Linguagens **Ferramentas** Desenvolver Técnicas Métodos Usar Metodologias Engenharia Processos de Software = Reusar Modelos Artefatos Integrar Conceitos Princípios Equipes

Núcleo da Engenharia de Software

Princípios

Declarações gerais e abstratas que descrevem propriedades

Métodos

Linhas gerais que regulam previamente algumas ações

Técnicas

Maneiras ou habilidades especiais de executar algo

Metodologias

Conjunto de Métodos e/ou Técnicas para a solução de problemas

Ferramentas

Mecanismos de apoio à aplicação de métodos, técnicas e metodologias

Núcleo da Engenharia de Software

Atividade de Desenvolvimento de Software

Atividade de Desenvolvimento de Software

