Answer all questions completely. Put a box around the final solution. Put your name on it. Show your work.

By hand:

1. Create a truth table for the following expressions:

a.
$$AB'C + A'B$$

Α	В	С	B'	AB'C	A'	A'B	Output
0	0	0	1	0	1	0	0
0	0	1	1	0	1	0	0
0	1	0	0	0	1	1	1
0	1	1	0	0	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	1	0	0	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

b.
$$(A + BC')(A' + C)$$

Α	В	С	C'	BC'	A+BC'	A'	A'+C	Output
0	0	0	1	0	0	1	1	0
0	0	1	0	0	0	1	1	0
0	1	0	1	1	1	1	1	1
0	1	1	0	0	0	1	1	0
1	0	0	1	0	1	0	0	0
1	0	1	0	0	1	0	1	1
1	1	0	1	1	1	0	0	0
1	1	1	0	0	1	0	1	1

Α	В	С	A+B	(A+B)'	Č	Output
0	0	0	0	1	1	1
0	0	1	0	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	0	0	0
1	1	0	1	0	1	0
1	1	1	1	0	0	0

2. Draw the logic circuit represented by the following expressions:

a.
$$A + B(C' + D(B' + AC))$$

Start at the inside most parentheses to create B'+AC

D

Now add the circuitry for the next parenthesis out to create C' + D(B' + AC)

Add the remaining logic to get the complete circuit

Starting from the inside of the expression, for C'+D:

 \boldsymbol{A}

Now creating the AND of the other pieces gives the final circuit

3. Convert the following expression to SOP form: A + B(C' + D(B' + AC))

Create the truth table for the expression

Α	В	С	D	AC	B'	B'+AC	D(B'+AC)	C'	C' + D(B' + AC)	B(C' + D(B' + AC))	Output
0	0	0	0	0	1	1	0	1	1	0	0
0	0	0	1	0	1	1	1	1	1	0	0
0	0	1	0	0	1	1	0	0	0	0	0
0	0	1	1	0	1	1	1	0	1	0	0
0	1	0	0	0	0	0	0	1	1	1	1
0	1	0	1	0	0	0	0	1	1	1	1
0	1	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	0	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1
1	0	1	0	1	1	1	0	0	0	0	1
1	0	1	1	1	1	1	1	0	1	0	1
1	1	0	0	0	0	0	0	1	1	1	1
1	1	0	1	0	0	0	0	1	1	1	1
1	1	1	0	1	0	1	0	0	0	0	1
1	1	1	1	1	0	1	1	0	1	1	1

Convert the truth table to a Karnaugh map

AB CL	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	1	1	1
10	1	1	1	1

Circle the groupings of 1's to create the SOP expression

AB CL	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	1	1	1
10	1	1	1	1

Writing the SOP expressions for the two circles gives the answer: A + BC'

4. For the following truth table, derive the standard SOP and standard POS expressions.

Α	В	C	D	Output
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

For standard SOP, we write the SOP expressions for each 1 in the truth table A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + ABCD' + ABCD' + ABCD'

For standard POS, we write the POS expressions for each 0 in the truth table (A+B'+C+D)(A+B'+C+D')(A+B'+C+D')(A'+B'+C+D')(A'+B+C'+D')(A'+B'+C+D')

5. Create a Karnaugh map for the following expression, then find the minimum SOP expression using the Karnaugh map: (A + B')(A + B + C')(B + C)

This POS expression gives all of the 0 locations in the Karnaugh map. You can convert directly or create a truth table like this one.

Α	В	С	B'	A+B'	Ù	A+B+C'	B+C	Output
0	0	0	1	1	1	1	0	0
0	0	1	1	1	0	0	1	0
0	1	0	0	0	1	1	1	0
0	1	1	0	0	0	1	1	0
1	0	0	1	1	1	1	0	0
1	0	1	1	1	0	1	1	1

1	1	0	0	1	1	1	1	1
1	1	1	0	1	0	1	1	1

Convert the truth table to a Karnaugh map

Circle the groupings of 1's to create the SOP expression

Writing the SOP expressions for the two circles gives the answer: $\ensuremath{\mathsf{AB}} + \ensuremath{\mathsf{AC}}$