Análise Matemática II (LEGI, MIEM)

FCTUC

Frequência (1h30m) - 28/5/2010

Observação: A resolução completa de cada exercício inclui a justificação do raciocínio e a apresentação dos cálculos efectuados.

- 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = 2 (x-1)^2 (y-1)^2$.
 - (a) Determine, caso existam, os máximos e mínimos locais e os pontos sela de f.
 - (b) Seja $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Utilizando o método dos multiplicadores de Lagrange, determine os extremos absolutos de $f_{|D|}$ (onde $f_{|D|}$ denota a restrição de f ao conjunto D).
- 2. Averigúe a natureza das séries numéricas $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} (a_n a_{n+1})$, onde $a_n = \frac{1}{2} \frac{n^2}{e^n}$.
- 3. Determine a natureza da série numérica $\sum_{n=2}^{\infty} \frac{n^3}{2n^5-3}.$
- 4. Considere a função $f: \mathbb{R}^+ \to \mathbb{R}$ definida por $f(x) = \sqrt{x}$.
 - (a) Estabeleça a fórmula de Taylor de ordem 1 de f no ponto a = 16.
 - (b) Usando a alínea (a), calcule um valor aproximado A para $\sqrt{17}$ e estime o erro $|\sqrt{17} A|$.
- 5. Seja $f: I \to \mathbb{R}$ a função soma da série de potências $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)5^n}.$
 - (a) Determine o intervalo de convergência da série.
 - (b) Indique o domínio da função derivada f' e ache uma expressão analítica para f'(x).
 - (c) Calcule f(1) com um erro inferior a 0,01.
- 6. Seja $f: \mathbb{R} \to \mathbb{R}$ a função periódica de período π definida no intervalo $[0, \pi[$ por $f(x) = \cos x$.
 - (a) Verifique se a série de Fourier de f é uma série de senos. (Sugestão: Esboce o gráfico de f).
 - (b) Determine a soma da série de Fourier de f nos pontos x=0 e $x=\frac{\pi}{2}$.

Fórmula

A série de Fourier de uma função f periódica de período 2L é $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L})),$ onde $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$ e $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$, para $n \ge 0$.