Approximation Algorithms Lecture 18

Contents

1	Rec	eap ————————————————————————————————————	1
2	Con	ntent	1 2
	2.1	Lower bounds on approximation guarantees	1
	2.2	An f-approximation for set cover	1
	2.3	Primal-dual algorithms	2
		Steiner forest problem	

1 Recap

Linear programs for approximating vertex cover and set cover.

2 Content

2.1 Lower bounds on approximation guarantees

Suppose we have a minimization problem, say vertex cover.

Let's say optimum vertex cover is **OPT**. Then we write an integer program, relax it to get a linear program, and solve it to get $\mathbf{OPT}_{LP} \leq \mathbf{OPT}$. Then we get a vertex cover by tweaking \mathbf{OPT}_{LP} (using a deterministic rounding in this case), and this is $\geq \mathbf{OPT}$. We then argue that the vertex cover so obtained is at most $2\mathbf{OPT}_{LP}$. We could say that this analysis is weak, but for that we need proof.

Let's look at the gap between \mathbf{OPT} and \mathbf{OPT}_{LP} . If this gap is close to 2, we can't do any better than $2\mathbf{OPT}_{LP}$ using a linear programming approach.

Consider a clique on n vertices (K_n) .

Then $\mathbf{OPT}_{VC} = n - 1$, since if we leave 2 vertices, the edge between those won't have been covered, and $\mathbf{OPT}_{LP} = \frac{n}{2}$, since we can assign $\frac{1}{2}$ to each vertex here.

In other words, this is a bad lower bound.

Note 1

Try to come up with a set cover instance whose optimum set cover is $O(\log n)$ times the optimal LP solution for the set cover relaxation.

2.2 An f-approximation for set cover

Let f be the maximum of sets any element belongs to.

Consider the same LP as before. If $x_i^* \geq \frac{1}{f}$, then pick set S_i in the set cover solution.

Claim 0.1

The sets picked form a set cover.

Proof. Suppose there is an element that is not covered. Then we have all sets covering it with weights $<\frac{1}{f}$, which is a contradiction.

Number of sets picked =
$$\left| \left\{ i \mid x_i^* \ge \frac{1}{f} \right\} \right|$$

 $\le f \sum_i x_i^*$
= $f \cdot \mathbf{OPT}_{LP}$
 $\le f \cdot \mathbf{OPT}$

2.3 Primal-dual algorithms

2.4 Steiner forest problem

The steiner tree problem says this: find a minimum cost connected subgraph which includes all terminals (T). The steiner forest problem says this: Given k pairs of terminals (s_i, t_i) , find a minimum cost subgraph in which each pair s_i, t_i is connected.