Algoritmo de Ordernação: QuickSort Análise

Allex Lima Paulo Moraes Renan Barroncas Daniel Bispo

Bacharelado em Engenharia da Computação Escola de Exatas Centro Universitário do Norte - UniNorte Laureate

Teoria dos Grafos e Computabilidade, 2016

Conceituação

Como funciona o QuickSort Formas de implementação

Análise Assintótica

Estudo assintótico Aplicações do algoritmo

Conceituação

Como funciona o QuickSort

Formas de implementação

Análise Assintótica

Estudo assintótico

Aplicações do algoritmo

Prazer, sou o Quicksort

- ▶ Baseado no paradigma da divisão e conquista;
- ► Segmenta o vetor principal A[b .. f] em dois arranjos:
 - ► A[b .. **p**-1]
 - ► A[**p**+1 .. f]
- ► Tais fragmentos são ordenados recursivamente;

Prazer, sou o Quicksort

- Baseado no paradigma da divisão e conquista;
- ► Segmenta o vetor principal A[b .. f] em dois arranjos:
 - ► A[b .. **p**-1]
 - ► A[**p**+1 .. f]
- ► Tais fragmentos são ordenados recursivamente;

Prazer, sou o Quicksort

- Baseado no paradigma da divisão e conquista;
- ► Segmenta o vetor principal A[b .. f] em dois arranjos:
 - ► A[b .. **p**-1]
 - ► A[**p**+1 .. f]
- ► Tais fragmentos são ordenados recursivamente;

A divisão do vetor

- Necessita de um elemento pivô (p);
- ▶ Busca um ponto de segmentação tal que
 - $\qquad \qquad \mathsf{A}[\mathsf{begin} \ .. \ \mathsf{p}\text{-}1] < \mathsf{A}[\mathsf{p}] < \mathsf{A}[\mathsf{p}\text{+}1 \ .. \ \mathsf{end}]$

A divisão do vetor

- Necessita de um elemento pivô (p);
- Busca um ponto de segmentação tal que
 - $\qquad \qquad \mathsf{A}[\mathsf{begin} \ .. \ \mathbf{p}\text{-}1] < \mathsf{A}[\mathbf{p}] < \mathsf{A}[\mathbf{p}\text{+}1 \ .. \ \mathsf{end}]$

Conceituação

Como funciona o QuickSort

Formas de implementação

Análise Assintótica

Estudo assintótico

Aplicações do algoritmo

Immplementação

Conceituação

Como funciona o QuickSort Formas de implementação

Análise Assintótica
Estudo assintótico
Aplicações do algoritmo

Análise do Algoritmo

► O algoritmo consome tempo proporcional a nlog(n) em média, e n^2 no pior caso;

	100	1.000	10.000
Ordem Crescente	0,000022	0,000311	0,008077
Ordem Decrescente	0,000017		0,023088
Ordem Pseudoaleatória		0,000281	0,008279

Table: Testes de execução - Dados expressos em segundos.

Análise do Algoritmo

▶ O algoritmo consome tempo proporcional a nlog(n) em média, e n^2 no pior caso;

	100	1.000	10.000
Ordem Crescente	0,000022	0,000311	0,008077
Ordem Decrescente	0,000017	0,000390	0,023088
Ordem Pseudoaleatória	0,000036	0,000281	0,008279

Table: Testes de execução - Dados expressos em segundos.

Conceituação

Como funciona o QuickSort Formas de implementação

Análise Assintótica

Estudo assintótico

Aplicações do algoritmo

Aplicações

- Banco de dados:
 - Chaves necessitam de ordenação;
 - Geralmente possuem altos números de registros, o que é recomendado para utilização do QuickSort;

Aplicações

- Banco de dados:
 - Chaves necessitam de ordenação;
 - Geralmente possuem altos números de registros, o que é recomendado para utilização do QuickSort;