C. 1900 Section (SE)

Erik CKS (<u>fredericks@oaks_____)</u> Fall 2019

CIS641 Search-Based Software Engineering (SBSE)

Erik Fredericks (frederer@gvsu.edu)

Overview

SBSE

Search algorithms

Applications to SE and CPS (and ISE ha ha ha HAAA)

This is a tesseract -- a 4D representation of an object

Why am I showing you this?

Relate it to SE

Dimension = point of optimization

Consider a KAOS model and RELAX operators

1 dimension might be if a goal is RELAXed

Another dimension might be which RELAX operator to apply

(A) AutoRELAX solution encoding

"No free lunch"

What are "search" problems for SE?

Think about all the software engineering artifacts we've talked about so far...

SBSE

Search-based software engineering

Application of search-based techniques to software engineering problems

Examples:

- Automatically generating optimal test suites
 - Test case inputs
 - Ordering of test cases
 - o Etc.
- Detecting incomplete requirements with symbolic analysis
- Optimizing self-adaptive system reconfigurations

What generally comprises a search heuristic

Representation

- How solutions are encoded
- Could be a binary number, vector (bounded or unbounded), a tree, etc.
 - A data structure that represents your configuration

Fitness function

- How solutions are evaluated
- This is generally the hardest part of any search algorithm

Interestingly...

Search algorithms in general are ridiculously easy to program

 Most involve a for loop with some data structure manipulation / update functions

As was mentioned, simply understanding your search space is the hardest part

- Encoding valid solutions
- Calculating fitness / goodness / cost

Motivating Example

Traveling salesman problem (TSP)

- Minimize distance traveled between all cities
- Each city visited once
- Final city is start city

May be symmetric (bi-directional paths) or asymmetric (uni-directional paths)

NP-complete problem (NP and NP-hard)

- Easy to verify solution
- No easy way to figure out the 'correct' solution
- No guarantee for optimum in polynomial time

Great for testing out optimization algorithms

Motivating Example

Traveling salesman problem (TSP)

- Minimize distance traveled between all
- Each city visited once
- Final city is start city

May be symmetric (bi-directional paths) or a

NP-complete problem (NP and NP-hard)

- Easy to verify solution
- No easy way to figure out the 'correct' solution

Great for testing out optimization algorithms

Motivating Example

Traveling salesman problem (TSP)

- Minimize distance traveled between all
- Each city visited once
- Final city is start city

May be symmetric (bi-directional paths) or as

Solved in 2004

15,112 Cities in Germany Solved in 2001

NP-complete problem (NP and NP-hard)

- Easy to verify solution
- No easy way to figure out the 'correct' solution

Great for testing out optimization algorithms

Types of Search Algorithms

Hill climber

Simulated annealing

Particle swarm optimization

Ant colony optimization

Evolutionary computation

Full disclosure

There are many variants to each of these algorithms

- People tend to 'like' using algorithms they're comfortable with
- May extend them to different domains

E.g., I like genetic algorithms so I'm going to use them everywhere

- Even when it doesn't make sense
- Favorite tool is a hammer --- so I'm going to use it to fasten screws...

or a bolt...

"Simplest" optimization algorithm -- widely used as an initial attempt when solving a problem

- 1) Start with (random) solution to problem
- 2) Incrementally change *single* element
- 3) Check result
- 4) Repeat until no improvement found

- 1) Start with (random) solution to problem
- 2) Incrementally change *single* element
- 3) Check result (objective function)
- 4) Repeat until no improvement found

global optima

Basically a greedy algorithm

Optimal for:

- Simple problems
- Problems where you don't care about "best"
 - o Only valid!
- Convex problem space (why???)

Suboptimal for:

Problems with multiple local optima

Optimal for:

- Simple problems
- Problems where you don't care about "best"
 - Only valid!
- Convex problem space (why???)
 - ONLY FINDS LOCAL OPTIMA

Suboptimal for:

Problems with multiple local optima

https://www.youtube.com/watch?v=kOFBnKDGtJM

Optimizing hill climbing

Random-restart hill climbing

- Restart with a new random solution
- Hopefully you're in a better place

Hill Climbing and TSP

Solution = path between cities (this will be reflected in pretty much all algorithms)

Initialization

Return tour of correct length with randomly ordered cities

Objective function

- Minimize the traveled distance WHILE ensuring that constraints are not violated
 - No city visited twice, start and end in same city, etc.

Hill Climbing and TSP

Example (% SO: https://stackoverflow.com/questions/14971181/hill-climbing-search-algorithm-applied-to-travelling-salesman)

Cities A-G

- Randomly assign first solution as ABCDEFGA
 - Pick neighbors for **first** iteration
 - ACBDEFGA, ADCBEFGA, AECDBFGA, AFCDEBGA, AGCDEFBA
 - Compare fitnesses and keep the best only
 - Pick neighbors for second iteration
 - **..**
 - Go until you haven't made any notable progress OR you're out of iterations

What kinds of problems in OOSAD could you optimize?

Tabu Search

Another optimization algorithm

- Focus on avoidance of local optima
- Draws from metal annealing
 - Heating above recrystallization temperature
 - Cooling to acceptable level
 - Improves ductility (deform under stress) / reduce hardness

Uses a cost function

How well the given solution performs

Factors in temperature (heating then cooling solutions)

- Generate random solution c_{old}
 - a) Can seed if you want
- 2) Calculate cost
 - a) How "well" it performed
 - b) Your fitness function
- 3) Generate random neighbor c_{new}
 - a) Should only have **one** parameter changed to make it a 'neighbor'
 - b) Calculate how well neighbor performed
- 4) Compare solutions (this is for minimization → see next slide)
 - a) if $(c_{old} > c_{new})$: move to new solution
 - b) else: move to new solution (maybe?)
- 5) Repeat 2-4 until acceptable solution found / # of generations reached

Temperature: 25.0

4) Compare cost

- Depends on your metric
- If you're minimizing something, cost should be smaller
 - E.g., traveling salesman problem → reduce number of steps
- If you're maximizing something, cost should be larger
 - E.g., aggregate requirements satisfaction

Minimizing:

- a) if $(c_{old} > c_{new})$: move to new solution
- b) else: move to new solution (maybe?)

Why maybe? Why keep the "worse" solution?

How does heat factor in?

Temperature → relates to iteration you are at (similar to a GA's generation)

Intent is to go above the current solution and cool down to it

A random solution is to be 'annealed'

For each iteration, lower temperature slightly (depends on your value, decrement or decrease by a small decimal point)

Accepting a worse solution is an acceptance probability

```
if e'<e # e' and e are the calculated cost exp(-(e'-e)/T) else # (also called energy)
```


https://www.researchgate. net/publication/2982090 81/figure/fig7/AS:3416329 11200275@145846304165 5/Flowchart-of-simulatedannealing-algorithm.png

Generally

- Temperature starts at 1.0
- Decreased at end of each iteration by multiplying by a
 - **a** is typically between 0.8 to 0.99

Distance: 43,499 miles Temperature: 1,316 Iterations: 0

SA and TSP

SA and TSP

- 1) Pick random initial tour
- 2) Pick random neighbor of existing tour
 - a) Choose two cities at random, and reverse tour between (possibility)
- 3) Compare tours based on cost function
 - a) Better? accept
 - b) Worse?
 - i) Calculate probability of accepting inferior tour
 - ii) Factors in length and temperature of annealing process
 - (1) Higher temperature → more likely to accept worse tour
- 4) Go back to (2) and repeat, lowering temperature

SA vs. HC

SA not a guarantee!

But does pretty good...

Web demo:
http://toddwschneider.com/post
s/traveling-salesman-with-simul
ated-annealing-r-and-shiny/

USA State Capitals Traveling Salesman Results Simulated Annealing vs Naive

Particle Swarm Optimization (PSO)

Another "inspired by" algorithm

Flocking patterns of birds // Schooling patterns of fish

And

Another iterative technique

Group of solutions adjust closer to member whose objective function is "the best"

Tightening pattern

Birdfriends

Each particle comprises:

- Solution representation (encoding)
- Velocity (distance from target) // Target → current optima
 - How fast a bird needs to catch up to the target
 - The further away, the larger the velocity
 - Bird example

- → how far away we are from food
- Pattern recognition → how different you are from the actual value
- Record of 'personal best' → pBest

PSC

Particles may live in neighborhoods

Avoid local optima

Common topologies →

- A. Only compare self to next-best
- B. Compare only to left/right
- C. Compare to all
- D. Compare to local

How many particles?

- YMMV
- 10-20 is usually acceptable (http://www.swarmintelligence.org/tutorials.php)
 however may be domain-dependent

Addendum:

- Velocity may have a max cap
 - o i.e., particles can't move faster than X
 - o If velocity between source and target is too high, velocity will be capped
 - Birds can't move faster than speed of sound
 - Unless if it is an unladen swallow

PSO and TSP

Define equations for velocity and position of particles

- velocity (V) incorporates inertia and influence of other particles
- position (X) incorporates velocity and current position
- Create population of particles with positions drawn from random distribution
 a) Can be uniform, Gaussian, etc.
- 2) Update velocities according to V
- 3) Move particles according to X
- 4) If position is better than prior, update

Here, position is the goodness of the solution (minimizing length, etc.) No good visuals, sorry!

Ant Colony Optimization (ACO)

Inspired by...

ACO

Why ants?

- Searching for food
- Basic rules
 - Pheromone trails → Stigmergy (act of laying down trail)
 - Communicate to other ants that food has been discovered
 - Ants find trails and decide to follow (or not)
 - Strength of pheromone a consideration
 - Evaporate over time (generally a few minutes)

ACO Pheromone Trail

- Left image → path discovered first, so ants start following it
- Right image → shorter route discovered, ants start following that
 - Less strong than other trail, but that will fluctuate over time

ACO Pheromone Trail

- Right image → shorter route discovered, ants start following that
 - Less strong than other trail, but that will fluctuate over time

ACO

Optimization considerations:

- Limited memory available
- Sense environment around "ant"
 - Not simply by pheromone
- May have a local search algorithm
 - Hybridized algorithm

ACO and TSP

- 1) *m* ants generated and each are placed at random cities
- 2) Each ant constructs a valid tour
 - a) At city *i*, ant chooses unvisited city *j* probabilistically (based on pheromone strength) and length of path
 - i) Prefer cities that are closer with high pheromone strength
 - ii) Each ant has limited memory (tabu list)
 - (1) Partial tour stored → quarantees valid solution
- 3) Pheromones updated after all tours constructed
 - a) Lower strengths by constant
 - b) Ants spread pheromones on paths taken
- 4) Repeat until...?

https://www.youtube.com/watch?v=eVKAlufSrHs

Break

http://evolve-a-robot.github.io/

