### Continuous-time sinusoids

## Sinusoids





### Parameters:

 $\tilde{T}$  = period (in seconds)

f = frequency in Hertz (cycles per second)

 $\tilde{\omega}$  = frequency in radians per second

Note: '~' indicates continuous time parameters

$$\tilde{f} = \frac{1}{\tilde{T}}$$

$$\tilde{\omega} = 2\pi \tilde{f}$$

# We only need cosines

$$\sin(2\pi \tilde{f}t) = \cos\left(2\pi \tilde{f}t - \frac{\pi}{2}\right) \iff 0$$

A phase shift introduces

a delay of 
$$d = \frac{-\phi}{2\pi \tilde{f}} = \frac{-\phi \tilde{T}}{2\pi}$$

#### **Proof:**

$$\cos(2\pi \tilde{f}t + \phi) = \cos\left(2\pi \tilde{f}\left(t - \frac{-\phi}{2\pi \tilde{f}}\right)\right)$$
$$= \cos\left(2\pi \tilde{f}\left(t - d\right)\right)$$



# General Form

```
x(t) = A \cos(2\pi \tilde{f} t + \phi)
```

A = amplitude

**f** = frequency

 $\phi$  = phase

