

ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding

Presenter: Yibo Yang

Authors: Yibo Yang¹, Hongyang Li¹, Shan You², Fei Wang², Chen Qian², Zhouchen Lin¹

1: Peking University; 2: SenseTime

Introduction

A DAG (directed acyclic graph):

$$x_j = \sum_{i=1}^{j-1} \sum_{k=1}^{K} z_k^{(i,j)} o_k(x_i) = \mathbf{z}_j^T \mathbf{o}_j$$

where $z_k^{(i,j)} \in \{0,1\}$ indicates whether the connection is active, o_k is the k-th operation from $\mathcal{O} = \{o_1, o_2, ..., o_K\}$, $\mathbf{z}_i \in \{0,1\}^{(j-1)K}, \, \mathbf{o}_i \in \mathbb{R}^{(j-1)K}$ are vectors formed by $z_k^{(i,j)}$ and $o_k(x_i)$, respectively.

Continuous relaxation:

$$z_k^{(i,j)} = \frac{\exp\left(\alpha_k^{(i,j)}\right)}{\sum_k \exp\left(\alpha_k^{(i,j)}\right)}$$

where $\alpha_{k}^{(i,j)}$ is the trainable variables

A DAG

Introduction

• The objectives of current differentiable NAS (Liu et al., 2019):

$$Z^* = \operatorname*{argmin}_{Z} \mathcal{L}_{val} \big(\mathcal{N}(W^*, Z) \big),$$
 $W^* = \operatorname*{argmin}_{W} \mathcal{L}_{train} \big(\mathcal{N}(W, Z) \big)$
s.t. $\|\mathbf{z}_j\|_0 = s_j, 1 < j \le n$, (sparsity constraint, ignored during search)

where $Z = \{\mathbf{z}_j\}_{j=2}^n$, W is the weights of super-net \mathcal{N} , and s_j denotes the sparseness for node j.

Introduction

Introduction

- Problems:
 - 1) There is a poor correlation between the performances of the super-net in search and the target-net in evaluation.
 - 2) Besides, the dense super-net covering all candidate connections is inefficient to train due to its huge computational and memory cost.

Introduction

- Motivations:
 - 1) Architecture variables have a sparse structure so can be well-represented by a compact space
 - We can perform the gradient-based search in an equivalent network defined on a compressed search space where each point corresponds to a sparse solution in the original high-dimensional space, and recover the architecture by sparse coding.

Methods

• An equivalent network defined on a compressed space $\Omega(\mathbf{b}_i) = \mathbb{R}^{m_j}$:

$$N(W,Z): \to x_j = \mathbf{z}_j^T \mathbf{o}_j = \mathbf{z}_j^T (\mathbf{A}_j^T \mathbf{A}_j - \mathbf{E}_j) \mathbf{o}_j = (\mathbf{A}_j \mathbf{z}_j)^T (\mathbf{A}_j \mathbf{z}_j) - \mathbf{z}_j^T \mathbf{E}_j \mathbf{o}_j$$
$$= (\mathbf{b}_j^T \mathbf{A}_j - [\mathbf{z}_j(\mathbf{b}_j)]^T \mathbf{E}_j) \mathbf{o}_j : \to N(W,B)$$

where \mathbf{A}_j is the measurement matrix, \mathbf{E}_j is the residual matrix of \mathbf{A}_j such that $\mathbf{A}_i^T \mathbf{A}_i - \mathbf{E}_i = \mathbf{I}$.

• The optimal solution in $\Omega(\mathbf{z})$ can be searched by optimization in $\Omega(\mathbf{b})$:

Proposition 1. Assume that \mathbf{A} satisfies the RIP with its constant δ_{2s} and the exact s-sparse solution \mathbf{z}^* can be recovered by $\operatorname{argmin}_{\mathbf{z}} \frac{1}{2} \|\mathbf{A}\mathbf{z} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{z}\|_1$ and satisfies $\mathbf{A}\mathbf{z}^* = \mathbf{b}$. Then we have that \mathbf{z}^* is the optimal solution of the network $\mathcal{N}(W, \mathbf{z})$ if and only if $\mathbf{b}^* = \mathbf{A}\mathbf{z}^*$ is the optimal solution of the network $\mathcal{N}(W, \mathbf{b})$.

Methods

• Formulate differentiable NAS as sparse coding:

$$\mathbf{z}_{j} = \underset{\mathbf{z}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{A}_{j}\mathbf{z} - \mathbf{b}_{j}\|_{2}^{2} + \lambda \|\mathbf{z}\|_{1}, \quad 1 < j \le n,$$

$$(9)$$

$$\begin{cases} B^* = \underset{B}{\operatorname{argmin}} \mathcal{L}_{val}(\mathcal{N}(W^*, B)), \\ W^* = \underset{W}{\operatorname{argmin}} \mathcal{L}_{train}(\mathcal{N}(W, B)), \end{cases}$$
(10)

where $B = \{\mathbf{b}_j\}_{j=2}^n$ is the trainable architecture variables in the network N(W, B).

• Sparsity:

$$x = \mathbf{z}^T \mathbf{o} = \mathbf{z}_{(\mathcal{S})}^T \mathbf{o}_{(\mathcal{S})} = \mathbf{z}_{(\mathcal{S})}^T \left(\mathbf{A}_{(\mathcal{S})}^T \mathbf{A}_{(\mathcal{S})} - \mathbf{E}_{(\mathcal{S},\mathcal{S})} \right) \mathbf{o}_{(\mathcal{S})} = \left(\mathbf{b}^T \mathbf{A}_{(\mathcal{S})} - \mathbf{z}_{(\mathcal{S})}^T \mathbf{E}_{(\mathcal{S},\mathcal{S})} \right) \mathbf{o}_{(\mathcal{S})}, \quad (11)$$

where $\mathbf{z}_{(S)}$ denote the elements of \mathbf{z} indexed by S, $\mathbf{A}_{(S)}$ denotes the columns of \mathbf{A} indexed by S, $\mathbf{E}_{(S)}$ denotes the rows and columns of \mathbf{E} indexed by S.

Methods

Two-stage ISTA-NAS

Algorithm 1 Two-stage ISTA-NAS (for search only)

Input: Initialize the network weights W of the whole super-net $\mathcal{N}(W, B)$ and architecture variables $\mathbf{b}_j \in \mathbb{R}^{m_j}$ for each intermediate node $1 < j \le n$. Sample $\mathbf{A}_j \in \mathbb{R}^{m_j \times (j-1)K}, \forall 1 < j \le n$.

- 1: while not converged do
- 2: Recover z by solving Eq. (9) with ISTA. Keep the top-s strongest magnitudes and set other dimensions as zeros. The support set $S(z) = \{i | z(i) \neq 0\}$;
- 3: Derive a sub-graph $\mathcal{N}(W_{(\mathcal{S})}, B)$ of the super-net by only propagating the dimensions in \mathcal{S} ;
- 4: Update network weights $W_{(S)}$ by descending $\nabla_{W_{(S)}} \mathcal{L}_{train}(\mathcal{N}(W_{(S)}, B))$;
- 5: Update architecture variables b by descending $\nabla_{\mathbf{b}} \mathcal{L}_{val}(\mathcal{N}(W_{(\mathcal{S})}, B))$;
- 6: end while

Output: Produce a sparse architecture for evaluation according to the final S(z).

Methods

One-stage ISTA-NAS

```
Algorithm 2 One-stage ISTA-NAS (for both search and evaluation)
```

```
Input: Initialize \mathcal{N}(W,B) with depth, width, and batch size in the target-net setting. \gamma and \beta of BN
     layers in all candidate operations are frozen and initialized as 1 and 0. search\_flag := True.
 1: while not converged do
       if search_flag then
           Perform the Line 2 and Line 3 of Algorithm 1; \mathbf{z}^{new} := \mathbf{z};
 3:
 4:
       end if
       if search\_flag and \|\mathbf{z}^{new} - \mathbf{z}^{old}\| \le \epsilon then
          \gamma.requires grad := True; \beta.requires grad := True; search flag := False;
       end if
        Update network weights W_{(S)} by descending \nabla_{W_{(S)}} \mathcal{L}_{train}(\mathcal{N}(W_{(S)}, B));
       if search_flaq then
 9:
           Update architecture variables b by descending \nabla_{\mathbf{b}} \mathcal{L}_{train}(\mathcal{N}(W_{(S)}, B)); \mathbf{z}^{old} := \mathbf{z}^{new};
10:
       end if
11:
12: end while
13: Update the parameters of BN layers by Eq. (12);
Output: Produce a sparse architecture and its optimized parameters.
```

$$\hat{\gamma} = \left(\mathbf{b}^T \mathbf{A}_{(\mathcal{S})} - \mathbf{z}_{(\mathcal{S})}^T \mathbf{E}_{(\mathcal{S},\mathcal{S})}\right) \circ \gamma; \quad \hat{\beta} = \left(\mathbf{b}^T \mathbf{A}_{(\mathcal{S})} - \mathbf{z}_{(\mathcal{S})}^T \mathbf{E}_{(\mathcal{S},\mathcal{S})}\right) \circ \beta;$$
(12)

where γ and β are weight and bias of BN layers and are viewed as vectors in \mathbb{R}^s formed by s active connections to the same node, ° is the element-wise multiplication, and $\hat{\gamma}$, $\hat{\beta}$ are updated parameters that keep the trained network accuracy unchanged.

Results

• Improved efficiency and consistency

	Bs.	Mem.	Search Cost
DARTS (1st order)	64	9.1 G	0.70 day
PC-DARTS	256	11.6 G	0.14 day
ISTA-NAS	64	1.9 G	0.15 day
ISTA-NAS	256	5.5 G	0.05 day
ISTA-NAS	512	10.5 G	0.03 day

	Kendall $ au$
DARTS (1st order)	-0.36
PC-DARTS	-0.21
Two-stage ISTA-NAS	0.43
One-stage ISTA-NAS	0.57

Results

• On CIFAR-10

Methods	Test Error	Params	Cost (GPU-day)		Search Method	
Wedlods	(%)	(M)	search eval.		Scarcii Wiction	
DenseNet-BC [22]	3.46	25.6	-	-	manual	
NASNet-A + cutout [61]	2.65	3.3	1800	3.2	RL	
ENAS + cutout [39]	2.89	4.6	0.5	3.2	RL	
AmoebaNet-B +cutout [40]	2.55 ± 0.05	2.8	3150	-	evolution	
NAONet-WS [31]	3.53	3.1	0.4	-	NAO	
DARTS (2nd order) + cutout [30]	2.76±0.09	3.3	4.0	2.3	gradient	
SNAS (moderate) + cutout [48]	2.85 ± 0.02	2.8	1.5	2.2	gradient	
P-DARTS+cutout [9]	2.50	3.4	0.3	2.9	gradient	
NASP + cutout [53]	2.83 ± 0.09	3.3	0.1	-	gradient	
PC-DARTS + cutout [49]	2.57±0.07	3.6	0.1	3.1	gradient	
Two-stage ISTA-NAS + cutout	2.54±0.05	3.32	0.05	2.0	gradient	
One-stage ISTA-NAS + cutout	2.36 ±0.06	3.37	2.3		gradient	

Table 3: Search results on CIFAR-10 and comparison with state-of-the-art methods. Cost is tested on a GTX 1080Ti GPU. The evaluation cost is calculated by us with their searched architectures in the same experimental settings. The cost of one-stage ISTA-NAS is the time spent in a single run.

On ImageNet

Methods	Test Err. (%)		Params	Flops	Cost (GPU-day)		Search Method
	top-1	top-5	(M)	(M)	search	eval.	Scarcii Mculou
Inception-v1 [43]	30.2	10.1	6.6	1448	-	-	manual
MobileNet [20]	29.4	10.5	4.2	569	-	-	manual
ShuffleNet $2 \times (v2)$ [32]	25.1	-	~5	591	-	-	manual
NASNet-A [61]	26.0	8.4	5.3	564	1800	-	RL
MnasNet-92 [44]	25.2	8.0	4.4	388	-	-	RL
AmoebaNet-C [40]	24.3	7.6	6.4	570	3150	-	evolution
DARTS (2nd order) [30]	26.7	8.7	4.7	574	4.0	3.6×8	gradient
SNAS [48]	27.3	9.2	4.3	522	1.5	3.3×8	gradient
P-DARTS [9]	24.4	7.4	4.9	557	0.3	3.6×8	gradient
ProxylessNAS (ImgNet) [5]	24.9	7.5	7.1	465	8.3	-	gradient
PC-DARTS (ImgNet) [49]	24.2	7.3	5.3	597	3.8	3.9×8	gradient
One-stage ISTA-NAS (C-10)	25.1	7.7	4.78	550	2.3	3.4×8	gradient
One-stage ISTA-NAS (ImgNet)	24.0	7.1	5.65	638	4.2×8		gradient

Table 4: Search results on ImageNet and comparison with state-of-the-art methods. Cost is tested on eight GTX 1080Ti GPUs. "ImgNet" denotes it is directly searched on ImageNet. Otherwise, it is searched on CIFAR-10 and then transfered to ImageNet for evaluation.

Thank You!

For any question, please contact ibo@pku.edu.cn

QR code for paper:

QR code for code:

