

Universidade Federal de Pernambuco

Centro de Informática Eletromagnetismo

Relatório do Projeto 2 - Método das Diferenças Finitas

Aluno: Arnaldo Rafael Morais Andrade Data: 14/11/2017

1. Objetivos

Resolver o problema do labirinto indicado pelo aluno de EC, seguindo seu método proposto para percorrer o caminho. Aplicação da fórmula de laplace ou poisson através de um método numérico computacional, através de uma zona de solução e regiões com valores fixos.

2. Metodologia

- Discretize a região, com N segmentos em cada lado (N Δ = 12 m). Faça N >= 8, múltiplo de 4, para que as bordas das paredes do labirinto coincidam com os nós fixos da malha. Determine o potencial na região usando o método iterativo ou método da matriz de banda. Plote o potencial (gráfico tridimensional) para diferentes valores de N. Observe a Convergência do método.
 - a. O método das diferenças finitas é definido por uma equação diferencial parcial, pela delimitação de um domínio, o quadrado de lado 12m e as condições de contorno, no caso a entrada e saída e paredes.
 - b. Através de aproximações para a equação de Poisson, obtém-se a equação 1.
 Que pode ser vista com a equação dos 5 nós, onde o potencial de um nó depende diretamente dos potenciais de seus nós vizinhos.

$$V_0 = \frac{1}{4} (V_1 + V_2 + V_3 + V_4) \tag{1}$$

c. Para a abordagem em questão, foi utilizado o método da matriz de banda, em que resolve a relação acima da seguinte forma:

$$[A][V] = [B] \tag{2}$$

$$A = \begin{bmatrix} A_{ii} & A_{ij} & \dots & A_{in} \\ A_{ij} & A_{ii} & \dots & \dots \\ \dots & \dots & A_{ii} & \dots \\ A_{nj} & \dots & \dots & A_{nn} \end{bmatrix} \begin{cases} (-4), & \text{if } i = j \\ A[i][j] = 1, & \text{if } ij \text{ are connected} \\ 0, & \text{else} \end{cases}$$
(3)

$$B = \begin{bmatrix} B_1 \\ B_2 \\ \dots \\ B_n \end{bmatrix}, Nx1 \tag{4}$$

$$V = \begin{bmatrix} V_1 \\ V_2 \\ \dots \\ V_n \end{bmatrix}, Nx1 \tag{5}$$

d. Em que [A] é a matriz esparsa, de tamanho igual ao número de nós desconhecidos, [V] é o vetor de potenciais dos nós desconhecidos e [B] é o vetor de potenciais dos nós fixos. Para encontrar o vetor de potenciais desconhecidos é necessário fazer a operação de inversão, então temos:

$$[V] = [A]^{-1}[B] (6)$$

- e. O gráfico do sistema são as coordenadas dos nós desconhecidos, pelo seu referente potencial. Pode ser conferido na seção Resultados, assim como a convergência.
- 2. Determine o caminho da entrada até a saída, usando o critério sugerido pelo seu colega (para um valor de N). Mostre os valores do potencial ao longo desse caminho.
 - a. Com o potencial associado às coordenadas (nós), ir pelo nó com maior potencial até chegar ao potencial. Entretanto, com isso não é suficiente.
 - b. Estratégia, começar com o nó de maior valor. (entrada), daí, seguir para o nó vizinho de menor potencial, marcando com uma visita. Quando retornar para um nó já visitado é hora de seguir para o nó de maior potencial, até chegar a saída.
 - c. O caminho destacado, bem como os resultados da estratégia podem ser conferidos na Tabela 1, na seção resultados.

3. Resultados

Para uma melhor percepção do labirinto, foi plotado apenas os nós livres e não as paredes, bem como a escolha de gráfico *Scatter (Pontos)*, que pode ser verificado nas figuras 1, 2 3 e 4. A escolha do N's foram múltiplos de 8 para que na entrada e saída apareçam números ímpares de nós, ou seja, sempre haverá um valor máximo de potencial livre. Para valores muito maiores que 64, o custo computacional se torna muito elevado.

Figura 1 - Potencial de Nós Livres para N = 8

Tabela 1 - Caminho da Entrada até a Saída dos Nós Livres (Volts)

0	0	0	0	0	0	0	0	100
0	0.00993	0.03701	0.13812	0.51548	1.92379	7.17968	26.7949	100
0	0.00269	0	0	0	0	0	0	100
0	0.00084	0	0	0	0	0	0	0
0	0.00066	0	0	0	0	0	0	0
0	0.00180	0.00654	0.02435	0.09086	0.33908	0	0	0
0	0	0	0	0	1.26546	0	0	0
0	0.07044	0.28178	1.05666	3.94485	4.72275	3.68069	0.92017	0
0	0	0	0	10	10	10	0	0

Figura 2 - Potencial de Nós Livres para N = 16

Figura 3 - Potencial de Nós Livres para N = 32

Figura 4 - Potencial de Nós Livres para N = 64

Tabela 2 - Distribuição de Potencial para diferentes valores de N

N	Nós Livres	Máx Potencial Registrado (Volts)
8	31	26.79491925
16	189	53.17868081
32	889	75.13155865
64	3825	87.50318161

4. Conclusões

Através dos gráficos e tabelas, mostrados, é possível perceber a convergência do maior valor de potencial registrado, entre os nós livres. Ele encontra-se próximo à saída e tem seu valor tendendo a 100 *Volts*.

A solução proposta pelo aluno, de seguir o nó de maior potencial, não é suficiente para chegar ao fim do labirinto. Pelos experimentos, o potencial é decrescente até determinada região de um possível caminho, após isso, o potencial torna-se crescente. O que implica que a solução proposta não é determinante.