An embedded discrepancy operator to improve epidemic compartmental models prediction

Rebecca E. Morrison¹ **Americo Cunha Jr**²

 1 University of Colorado Boulder 2 Rio de Janeiro State University – UERJ

CILAMCE-PANACM 2021 November 9-12, 2021

Zika virus (ZIKV)

- Member of Flaviviridae virus family
- First isolated in 1947 at Uganda, Africa
- Mainly spread by Aedes mosquitoes
- W.H.O declared it a public health emergency of international concern
- More than 140,000 confirmed cases in Brazil since 2015
- International consensus that ZIKV is a cause of:
 - Guillain–Barré syndrome
 - Microcephaly

Zika virus

Aedes aegypti

Global outbreak of Zika virus

World Map of Areas with Risk of Zika

Zika virus outbreak in Brazil

New cases in Brazil by epidemiological week of 2016

Research objectives

- Develop an epidemic model to describe the recent outbreak of Zika virus in Brazil
- Verify (qualitatively and quantitatively) the epidemic model capacity of prediction
- Calibrate this epidemic model with real data to obtain reliable predictions
- Construct an enriched model capable of compensate epistemic uncertainties of the epidemic model

SEIR-SEI model for Zika virus dynamics

Associated dynamical system

$$\frac{dS_h}{dt} = -\beta_h S_h I_v$$

$$\frac{dE_h}{dt} = \beta_h S_h I_v - \alpha_h E_h$$

$$\frac{dI_h}{dt} = \alpha_h E_h - \gamma I_h$$

$$\frac{dR_h}{dt} = \gamma I_h$$

$$\frac{\mathrm{d}\,S_{v}}{\mathrm{d}\,t} = \delta - \beta_{v}\,S_{v}\,\frac{I_{h}}{N} - \delta\,S_{v}$$

$$\frac{\mathrm{d} E_{v}}{\mathrm{d} t} = \beta_{v} S_{v} \frac{I_{h}}{N} - (\delta + \alpha_{v}) E_{v}$$

$$\frac{\mathsf{d}\,I_{\mathsf{v}}}{\mathsf{d}\,t} = \alpha_{\mathsf{v}}\,\mathsf{E}_{\mathsf{v}} - \delta\,\mathsf{I}_{\mathsf{v}}$$

$$\frac{\mathsf{d}\,C}{\mathsf{d}\,t}=\alpha_h\,E_h$$

+ initial conditions

S - Population of susceptible

E - Population of exposed I - Population of infected

R - Population of recovered

N - Population of humans

C - Infected humans cumulative

 α - Incubation ratio

 δ - Vector lifespan ratio

 β - Transmition rate

 γ - Recovery rate

h - Human-related

v - Vector-related

Model parameters and outbreak data

• open scientific literature

Brazilian health system

parameter	value	unit
$egin{array}{cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	1/5.9 1/9.1 1/7.9 1/11 1/11.3	days ⁻¹ days ⁻¹ days ⁻¹ days ⁻¹
$eta_{m v}$	1/8.6	$days^{-1}$
N	206×10^6	people

Quantities of interest (QoI)

Qol 1: cumulative number of infectious

$$C_t = \int_{\tau=0}^t \alpha_h \, E_h(\tau) \, d\tau$$

Qol 2: new infectious cases

$$\mathcal{N}_w = C_w - C_{w-1}, \quad (w = 2, 3, \dots, 52)$$

 $\mathcal{N}_1 = C_1$

Time series for Qol's

cumulative number of infectious

new infectious cases

Time series for Qol's

Calibration of the model

Forward and inverse problem

Calibrated model response

cumulative number of infectious

new infectious cases

Calibrated model response

How to improve an epidemic model ?

Baseline model:

$$\frac{\mathsf{d}\mathbf{x}}{\mathsf{d}t} = \mathcal{L}(\mathbf{x}, \boldsymbol{\theta})$$

Enriched model:

$$rac{\mathsf{d} oldsymbol{x}}{\mathsf{d} t} = \mathcal{L}(oldsymbol{x}, oldsymbol{ heta}) + \underbrace{\Delta\left(oldsymbol{x}, rac{\mathsf{d} oldsymbol{x}}{\mathsf{d} t}, \phi
ight)}_{oldsymbol{\mathsf{discrepancy operator}}}$$

Discrepancy operator:

$$\Delta\left(\mathbf{x}, \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}, \phi\right) = \kappa^{\mathsf{T}}\mathbf{x} + \lambda^{\mathsf{T}} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}$$

$$\phi = (\kappa, \lambda)$$
 identified via Bayesian inference

Enriched model response

Uncertainty quantification with the enriched model

Under-reporting effects

Under-reported data is a reality in epidemics !

Can the confidence band compensate underreported data?

Synthetic experiments:

- 90% of actual occurrences are reported
- 50% of actual occurrences are reported

10% of under-reporting

50% of under-reporting

Concluding remarks

Contributions:

- Development of an epidemic model to describe Brazilian outbreak of Zika virus
- Calibration of this model with real epidemic data
- An discrepancy operator-based enriched model for Zika

Future directions:

- Biological interpretation for the discrepancy operator terms
- Data-driven identification of enriched epidemiological models

Acknowledgments

Discussion:

Prof. Davi Santos (ITA)

Institutional support:

Financial support:

Thank you for your attention!

americo.cunha@uerj.br

www.americocunha.org

R. E. Morrison and A. Cunha Jr, Embedded model discrepancy: A case study of Zika modeling, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30: 051103, 2020.

E. Dantas, M. Tosin and A. Cunha Jr, *Calibration of a SEIR–SEI epidemic model to describe Zika virus outbreak in Brazil*, **Applied Mathematics and Computation**, 338: 249-259, 2018.