C4 Problems

For the circuit in Fig. 4.3, find v_o when $i_s = 30$ and $i_s = 45$ A.

Answer: 40 V, 60 V.

Practice Problem 4.1

Figure 4.3 For Practice Prob. 4.1.

Figure 4.5 For Practice Prob. 4.2.

Assume that $V_o = 1$ V and use linearity to calculate the actual value of V_o in the circuit of Fig. 4.5.

Answer: 16 V.

Using the superposition theorem, find v_o in the circuit of Fig. 4.8.

Figure 4.8

For Practice Prob. 4.3.

Answer: 7.4 V.

Find I in the circuit of Fig. 4.14 using the superposition principle.

Figure 4.14
For Practice Prob. 4.5.

Answer: 375 mA.

Find i_o in the circuit of Fig. 4.19 using source transformation.

Figure 4.19

For Practice Prob. 4.6.

Answer: 1.78 A.

Figure 4.30 For Practice Prob. 4.8.

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit of Fig. 4.30. Then find I.

Answer:
$$V_{\rm Th}=6~{\rm V},~R_{\rm Th}=3~\Omega,I=1.5~{\rm A}.$$

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: $V_{\rm Th}=0~{\rm V}, R_{\rm Th}=-7.5~\Omega.$

Practice Problem 4.10

Figure 4.36 For Practice Prob. 4.10.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at terminals a-b.

Answer: $R_N = 1 \Omega$, $I_N = 10 A$.

Figure 4.45

For Practice Prob. 4.12.

Figure 4.52 For Practice Prob. 4.13.

Determine the value of R_L that will draw the maximum power from the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 4.222Ω , 2.901 W.

The measured open-circuit voltage across a certain amplifier is 9 V. The voltage drops to 8 V when a $20-\Omega$ loudspeaker is connected to the amplifier. Calculate the voltage when a $10-\Omega$ loudspeaker is used instead.

Answer: 7.2 V.

Practice Problem 4.16