

Applied Generalized Linear Models (FS 20) ANOVA and ANCOVA (practical)

Viviana Amati

Course structure - schedule

Date	Topic	Assignment	
18.02	Introduction to the course	Ass. 1 released on 25.02 due to 19.03	
25.02	Introduction to R and review of the linear regression mode		
03.03	The general linear model: ANOVA and ANCOVA		
10.03	Practical: ANOVA and ANCOVA		
17.03	Binary outcomes: logistic regression and probit models	Ass. 2	
24.03	Practical: logistic regression and probit models	released on 17.03	
31.03	Nominal outcomes: multinomial logistic regression	due to 23.04	
07.04	Practical: multinomial logistic regression		
21.04	Ordinal outcomes: ordered logistic regression and probit models	Ass. 3	
28.04	Practical: ordered logistic regression and probit models	released on 21.04	
05.05	Count outcomes: Poisson and negative binomial models	due to 21.05	
12.05	Practical: Poisson and negative binomial models	dae to 21.00	
19.05	Survival models (lecture+practical)		
26.05	Exam		

Recap: ANOVA

Term used in two different contexts:

▶ LRMs: the partition of the SST into the SSReg and SSR

$$\underbrace{\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}}_{\text{Total sample variability}} = \underbrace{\sum_{i=1}^{n}(\hat{y}_{i}-\overline{y})^{2}}_{\text{Explained variability}} + \underbrace{\sum_{i=1}^{n}\hat{e}_{i}^{2}}_{\text{CSReg}}$$
Total sample variability (SSReg) (SSRef),

- ▶ Design of experiments: statistical methods for testing and fitting linear models in which the explanatory variables are categorical
 - categorical variables are referred to as factors and their categories as levels
 - experiments aim to test whether one (or more factors) have an effect on an outcome variable

Recap: One-way ANOVA

$$Y_{ij} = \mu + \alpha_j + \varepsilon_{ij} \quad ,$$

with

- $\triangleright \mu$: the population mean of Y
- $\triangleright \alpha_j$: effect on the dependent variable in the j-th group
- $\triangleright \varepsilon_{ij}$: error term
 - independent and normally distributed
 - $-E[\varepsilon_{ij}] = 0$ and $Var[\varepsilon_{ij}] = \sigma^2$

Implication:

$$Y_{ij} \sim N(\mu + \alpha_i, \sigma^2)$$

Recap: One-way ANOVA inference

▶ The least square estimates for μ and α_j are given by:

$$\hat{\mu} = \frac{1}{M} \sum_{j=1}^{M} \overline{y}_{j} = \overline{y} .$$

$$\hat{\alpha}_{j} = \overline{y}_{j} - \overline{y}.$$

and the fitted values are the group means

$$\hat{y}_{ij} = \hat{\mu} + \hat{\alpha}_j = \overline{y}_i + \overline{y}_j - \overline{y}_i = \overline{y}_j$$

▶ We would like to test:

$$H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_{M-1} = 0$$
 ($H_1:$ at least one α_j differs)

Recap: One-way ANOVA table

	Sum of squares (SS)	df	Mean Square (MS)	F-test
Factor	$\sum_{j=1}^{M} n_j (\overline{y}_j - \overline{y})^2$	M-1	$\frac{\mathrm{SSReg}}{M-1}$	$\frac{\mathrm{MSReg}}{\mathrm{MSR}}$
Residuals	$\sum_{j=1}^{M} \sum_{i=1}^{n_j} (y_{ij} - \overline{y}_j)^2$	N-M	$\frac{\text{SSR}}{N-M}$	
Total	$\sum_{j=1}^{M} \sum_{i=1}^{n_j} (y_{ij} - \overline{y})^2$	N-1		

One-way ANOVA: example

Material:

► The folder anova.zip contains the data and the script to illustrate ANOVA and ANCOVA

▶ The description of the data is in the script as well as in the lecture notes

▶ The commented output is in the lecture notes (upload tomorrow)

ETH zürich

ANCOVA

LRMs with both qualitative and quantitative explanatory variables

$$Y_{ij} = \mu + \alpha_j + \beta(x_{ij} - \overline{x}) + \varepsilon_{ij}$$
,

with

- \triangleright Y_{ij} : *i*-th value on Y taken under the *j*-th level
- $\triangleright \mu$: overall (population) mean
- $\triangleright \alpha_j$: effect of the j-th level
- \triangleright x_{ij} : quantitative explanatory variable corresponding to y_{ij}
- $ightharpoonup \overline{x}$: mean of x_{ij}
- \triangleright β : coefficient describing the dependence of Y on X
- $\triangleright \varepsilon_{ij}$: error term
 - independent and normally distributed
 - $-E[\varepsilon_{ij}] = 0$ and $Var[\varepsilon_{ij}] = \sigma^2$