Differential and Integral Calculus

Aakash Jog

2014-15

Contents

1	Lecturer Information	2
2	Required Reading	2
3	Additional Reading	2
т	Cognopos and Corios	3
Ι	Sequences and Series	3
1	Sequences	3
	1.1 Limit of a Sequence	5

1 Lecturer Information

Dr. Yakov Yakubov

Office: Schreiber 233

Telephone: +972 3-640-5357 E-mail: yakubov@post.tau.ac.il

2 Required Reading

Protter and Morrey: A first Course in Real Analysis, UTM Series, Springer-Verlag, 1991

3 Additional Reading

Thomas and Finney, Calculus and Analytic Geometry, 9th edition, Addison-Wesley, 1996

Part I

Sequences and Series

1 Sequences

Definition 1 (Sequence). A sequence of real numbers is a set of numbers which are written in some order. There are infinitely many terms in a sequence. It is denoted by $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}$.

Example 1. $1, \frac{1}{2}, \frac{1}{3}, \dots$ is called the harmonic sequence.

$$a_n = \frac{1}{n}$$

Example 2. $1, -\frac{1}{2}, \frac{1}{3}, \dots$ is called the alternating harmonic sequence.

$$a_n = (-1)^{n+1} \frac{1}{n}$$

Example 3. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$

$$a_n = \frac{n}{n+1}$$

Example 4. $\frac{2}{3}, \frac{3}{9}, \frac{4}{27}, \dots$

$$a_n = \frac{n+1}{3^n}$$

Example 5. The Fibonacci sequence is given by

$$f_n = \begin{cases} 1 & ; & n = 1, 2 \\ f_{n-1} + f_{n-2} & ; & n \ge 3 \end{cases}$$

Example 6. A geometric sequence is given by

$$a_n = a_1 q^{n-1}$$

where q is called the common ratio.

Example 7. A geometric sequence is given by

$$a_n = a_1 + d(n-1)$$

where d is called the common difference.

Definition 2 (Equal sequences). Two sequences $\{a_n\}$ and $\{b_n\}$ are said to be equal if $a_n = b_n$, $\forall n \in \mathbb{N}$.

Definition 3 (Sequences bounded from above). $\{a_n\}$ is said to be bounded from above if $\exists M \in \mathbb{R}$, s.t. $a_n \leq M$, $\forall n \in \mathbb{N}$. Each such M is called an upper bound of $\{a_n\}$.

Definition 4 (Sequences bounded from below). $\{a_n\}$ is said to be bounded from below if $\exists m \in \mathbb{R}$, s.t. $a_n \geq M$, $\forall n \in \mathbb{N}$. Each such M is called an lower bound of $\{a_n\}$.

Definition 5. $\{a_n\}$ is said to be bounded if it is bounded from below and bounded from above.

Example 8. The sequence $a_n = n^2 + 2$ is not bounded from above but is bounded from below, by all $m \le 3$.

Example 9. $\left\{\frac{2n-1}{3n}\right\}$ is bounded.

$$m = 0 \le \frac{2n-1}{3n} \le \frac{2n}{3n} = \frac{2}{3} = M$$

Definition 6 (Monotonic increasing sequence). A sequence $\{a_n\}$ is called monotonic increasing if $\exists n_0 \in \mathbb{N}$, s.t. $a_n \leq a_{n+1}, \forall n \geq n_0$.

Definition 7 (Monotonic decreasing sequence). A sequence $\{a_n\}$ is called monotonic decreasing if $\exists n_0 \in \mathbb{N}$, s.t. $a_n \geq a_{n+1}$, $\forall n \geq n_0$.

Definition 8 (Strongly increasing sequence). A sequence $\{a_n\}$ is called monotonic increasing if $\exists n_0 \in \mathbb{N}$, s.t. $a_n < a_{n+1}, \forall n \geq n_0$.

Definition 9 (Strongly decreasing sequence). A sequence $\{a_n\}$ is called monotonic decreasing if $\exists n_0 \in \mathbb{N}$, s.t. $a_n > a_{n+1}$, $\forall n \geq n_0$.

Example 10. The sequence $\left\{\frac{n^2}{2^n}\right\}$ is strongly decreasing. However, this is not evident by observing the first few terms. $\frac{1}{2}, 1, \frac{9}{8}, 1, \frac{25}{32}, \dots$

$$a_n > a_{n+1}$$

$$\iff \frac{n^2}{2^n} > \frac{(n+1)^2}{2^{n+1}}$$

$$\iff 2n^2 > (n+1)^2$$

$$\iff \sqrt{2}n > n+1$$

$$\iff n(\sqrt{2}-1) > 1$$

$$\iff n > \frac{1}{\sqrt{2}-1}$$

$$\iff n > 3$$

Exercise 1.

Is $a_n = (-1)^n$ monotonic?

Solution 1.

The sequence $-1, 1, -1, 1, \ldots$ is not monotonic.

1.1 Limit of a Sequence

Definition 10. Let $\{a_n\}$ be a given sequence. A number L is said to be the limit of the sequence if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, s.t. $|a_n - L| < \varepsilon$, $\forall n \geq n_0$. That is, there are infinitely many terms inside the interval and a finite number of terms outside it.

Example 11. The sequence $\{\frac{1}{n}\}$ tends to 0, i.e. for any open interval $(-\varepsilon, \varepsilon)$, there are finite number of terms of the sequence outside the interval, and therefore there are infinitely many terms inside the interval.

Exercise 2.

Prove

$$\lim_{n \to \infty} \frac{n+2}{2n-1} = \frac{1}{2}$$

Exercise 3.

Prove that 2 is not a limit of $\left\{\frac{3n+1}{n}\right\}$.

Theorem 1. If a sequence $\{a_n\}$ has a limit L then the limit is unique.

Proof. If possible let there exist two limits L_1 and L_2 . Therefore, $\forall \varepsilon > 0$, there exist a finite number of terms in the interval $(L_1 - \varepsilon, L_1 + \varepsilon)$. Therefore, there exist a finite number of terms in the interval $(L_2 - \varepsilon, L_2 + \varepsilon)$. This contradicts the definition of a limit. Therefore, the limit is unique.

Theorem 2. If a sequence $\{a_n\}$ has limit L, then the sequence is bounded.

Theorem 3. Let

$$\lim_{n \to \infty} a_n = a$$
$$\lim_{n \to \infty} b_n = b$$

and let c be a constant. Then,

$$\lim c = c$$

$$\lim(ca_n) = c \lim a_n$$

$$\lim(a_n \pm b_n) = \lim a_n \pm \lim b_n$$

$$\lim(a_n b_n) = \lim a_n \lim b_n$$

$$\lim(\frac{a_n}{b_n}) = \frac{\lim a_n}{\lim b_n} \quad (\text{ if } \lim b \neq 0)$$

Theorem 4. Let $\{b_n\}$ be bounded and let $\lim a_n = 0$. Then,

$$\lim(a_n b_n) = 0$$

Theorem 5 (Sandwich Theorem). Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be three sequences. If

$$\lim a_n = \lim b_n = L$$
and $\exists n_0 \in \mathbb{N}, \ s.t. \ \forall n \ge n_0, \ a_n \le b_n \le c_n. \ Then,$

$$\lim b_n = L$$

Exercise 4.

Calculate
$$\lim_{n\to\infty} \sqrt[n]{2^n + 3^n}$$

Solution 4.

$$\sqrt[n]{3^n} \le \sqrt[n]{2^n + 3^n} \le \sqrt[n]{3^n + 3^n} = \sqrt[3]{2 \cdot 3^n}$$

$$\therefore 3 \le \sqrt[n]{2^n + 3^n} \le 3\sqrt[n]{2}$$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \sqrt[n]{2^n+3^n} = 3$.

Theorem 6. Any monotonically increasing sequence which is bounded from above converges. Similarly, any monotonically decreasing sequence which is bounded from below converges.

Exercise 5.

Prove that there exists a limit for
$$a_n = \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}_{n \text{ times}}$$
 and find it.

Solution 5.

$$a_1 = \sqrt{2} < \sqrt{2 + \sqrt{2}} = a_2$$

If possible, let

$$a_{n-1} < a_n$$

$$\therefore \sqrt{2 + a_{n-1}} < \sqrt{2 + a_n}$$

$$\therefore a_n < a_{n+1}$$

Hence, by induction, $\{a_n\}$ is monotonically increasing.

$$a_1 = \sqrt{2} \le 2$$

If possible, let

$$a_n \le 2 : \sqrt{2+a_n}$$

$$\le \sqrt{2+2}$$

$$\therefore a_{n+1} \le 2$$

Hence, by induction, $\{a_n\}$ is bounded from above by 2. Therefore, by , $\{a_n\}$ converges.