DAILY ASSESSMENT REPORT

Date:	25 May 2020	Name:	Gagan M K
Course:	DIGITAL SIGNAL PROCESSING	USN:	4AL17EC032
Topic:	 Introduction to Fourier Series & Fourier Transform, Fourier Series – Part 1, Fourier Series – Part 2, Inner Product in Hilbert Transform, Complex Fourier Series, Fourier Series using Matlab.(Use Octave to execute the code) Fourier Series using python(Experience implementation using Python), Fourier Series and Gibbs Phenomena Using Matlab Alvas-education-foundation/Gagan-	Semester & Section:	6 th sem & 'A' sec
Repository:	Git		

Report – Report can be typed or hand written for up to two pages.

Introduction to Fourier Series & Fourier Transform:

1. Fourier series part1 & part2:

Fourier Series
$$\langle f(x), g(x) \rangle = \int_{a}^{b} f(x) \, \overline{g}(x) \, dx$$

• The Fourier Series is a specialized tool that allows for any periodic signal (subject to certain conditions) to be decomposed into an infinite sum of everlasting sinusoids.

2. Fourier transform:

Digital Signal Processing/Discrete Fourier Transform. As the name implies, the
Discrete Fourier Transform (DFT) is purely discrete: discrete-time data sets are converted
into a discrete-frequency representation. This is in contrast to the DTFT that uses discrete
time, but converts to continuous frequency.

$$f(x) = \frac{A_o}{a} + \sum_{k=1}^{\infty} \left(A_k \cos\left(\frac{a\pi k x}{L}\right) + B_k \sin\left(\frac{a\pi k x}{L}\right) \right)$$

• Where f(x) is any function defined which contains a constant and frequently increasing elements in it.

Where:

$$A_{k} = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{2\pi k}{L}x\right) dx$$

And

3. Inner Product in Hilbert Transform

- The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space.
- It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions.
- A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured.

• when n goes to infinity and delta x goes to 0, we recover the expression.

4. Complex Fourier Series:

$$f(x) = \sum_{k=-\infty}^{\infty} C_k e^{ikx} = \sum_{k=-\infty}^{\infty} (\alpha_{k+i}\beta_{k}) (\cos(kx) + i\sin(kx))$$

- Where f(x) is a complex function which can be further expanded using Euler's formula as shown in above equation.
- When f(x) is complex and these are used to approximate functions.

5. Fourier Series using Matlab:

 Here we learnt that Fourier series can be done using Matlab software as shown in the below picture.

6. Fourier Series using python:

7. Fourier Series and Gibbs Phenomena Using Matlab:

- The DC component of the signal is equal to the first Fourier series coefficient and is simply the average value of the signal over one period.
- This effect is known as Gibbs phenomenon and it manifests itself in the form of ripples of increasing frequency and closer to the transitions of the square signal.

Date:	25 May 2020	Name:	Gagan M K
Course:	The Python Mega Course	USN:	4AL17EC032
Topic:	 Fixing Programming Errors Application 3: Build a Website Blocker 	Semester & Section:	6 th sem & 'A' sec

Report – Report can be typed or hand written for up to two pages.

Fixing Programming Errors:

- Invalid syntax: For example, we need to put proper parenthesis, indentations. "^"
 indicates where the error is occurring.
- Handling exceptions: occurs between the try and except keywords has been executed.
- Runtime error: Every other error which is not an invalid syntax error is a Runtime error.
- For example: divide by zero, type error, identifier error, trackback error.
- After this section, we learnt on how to ask proper questions on errors.
- To solve the runtime errors, we can copy paste the error onto the google or if the logic behind the error is known, it can be solved easily by ourselves.

Application 3: Building a website blocker:

- Python website blocker is to block some certain websites which can distract the user during the specified amount of time.
- Every system has host file whether it is Mac, Windows or Linux.
- Host file in Mac and Linux: /etc/hosts
- Using python file handling manipulation, we will write the hostname in hosts.txt and remove the lines after our working hours.
- Windows user need to create a duplicate of OS's host file. Now provide the path of the duplicate file in hosts_path mentioned in the script.
- After the scheduling process on different operating systems, there are certain set of steps to be followed on desktop to make the website blocker work.
- After the settings are completed the system has to get restarted. Finally, the website blocker works.