

Passive elements in electric circuits

Passive element: The element cannot generate energy

$$P = u \cdot i = u \cdot y$$

P > 0The element absorbs energy

P < 0The element generates energy

Passive

$$\Leftrightarrow \qquad P \ge 0$$

$$\updownarrow$$

 $u \cdot i \ge 0$

Generalized definition

The system is passive if

$$u^T y \ge 0$$

Passivity for memoryless functions Passive/Lossless

0

0

Passivity definition

Definition: Passive/Lossless

The memoryless system y = h(t, u) is

• Passive if $u^T y \ge 0$

i.e. $h \in \text{sector } [0, \infty]$

• Lossless if $u^T y = 0$

Example

Ideal transformer

$$y = \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$
 $u = \begin{bmatrix} v_1 \\ i_2 \end{bmatrix}$ $y = Su$ $S = \begin{bmatrix} 0 & -N \\ N & 0 \end{bmatrix}$

Analyse the passivity properties of the ideal transformer

Passivity for dynamical systems Dynamical systems We consider dynamical systems $\sum \begin{array}{c} \dot{x} = f(x,u) \\ y = h(x,u) \\ y = h(x,u) \\ h : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n \quad \text{locally Lipschitz} \\ h : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p \quad \text{continuous} \\ f(0,0) = 0 \text{ and } h(0,0) = 0 \\ \end{array}$

$$C\dot{x}_2 = x_1 - h_3(x_2)$$

$$y = x_1 + h_1(u)$$

Passivity for dynamical systems Motivating example

Passive circuit

0

Passive electric circuits

Passive circuits cannot generate electric energy i.e.

change of stored energy \leq energy supplied

$$V(x(t)) - V(x(0)) \leq \int_0^t u(s)y(s)ds$$

Generalized definition

The system is passive iff

$$u(t)y(t) \ge \dot{V}(x(t), u(t)) \quad \forall \ t \ge 0$$

Passivity for dynamical systems Definitions

Passivity definitions for dynamical systems

0

Definition

The dynamical system is

passive if

 $\exists C^1$ positive semidefinite function $V(x): \mathbb{R}^n \to \mathbb{R}$ (Storage function) such that

$$u^T y \ge \dot{V} = \frac{\partial V}{\partial x} f(x, u) \qquad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^p$$

Moreover, it is

lossless if

$$u^T y = \dot{V}$$

Passivity for dynamical systems Definitions

Example

Example: Electric circuit

Given the electric circuit

The energy stored in the RLC network is

$$V(x) = \frac{1}{2}Lx_1^2 + \frac{1}{2}Cx_2^2$$

= input voltage u Choose

output = current $y = x_1 + h_1(u)$

Analyse the passivity properties of the RLC network

Passivity for dynamical systems Definitions

Input strictly passive

0

0

Definition continued

Input strictly passive if

$$u^T y \ge \dot{V} + u^T \varphi(u), \quad u^T \varphi(u) > 0 \quad \forall u \ne 0$$

Output strictly passive if

$$u^T y \ge \dot{V} + y^T \rho(y), \quad y^T \rho(y) > 0 \quad \forall y \ne 0$$

(State) Strictly passive if

$$u^T y \ge \dot{V} + \psi(x), \quad \psi(x)$$
 positive definite function

Lyapunov and \mathscr{L}_2 stability of passive systems Relations between Passivity properties and (Lyapunov) stability

Relations between Passivity properties and (Lyapunov) stability

0

Dynamical systems

$$\sum$$

$$\dot{x} = f(x, u)$$

$$y = h(x, u)$$

 $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ locally Lipschitz

 $h: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p$ continuous

$$f(0,0) = 0$$
 and $h(0,0) = 0$

Lemma 6.6 (Lyapunov stable (0-stable))

If Σ is passive with a *positive definite* storage function V(x), then

the origin of
$$\dot{x} = f(x,0)$$
 is stable

Relations between Passivity properties and \mathcal{L}_2 stability

0

Lemma 6.5 (Finite-gain \mathcal{L}_2 stable)

If Σ is output strictly passive with $\rho(y) = \delta y$, $\delta > 0$ then

 Σ is finite-gain \mathcal{L}_2 stable with \mathcal{L}_2 -gain $\gamma \leq \frac{1}{\delta}$

Lyapunov and \mathscr{L}_2 stability of passive systems Relations between Passivity properties and Asymptotic stability

Asymptotic stability of passive systems

Definition: Zero-state observability

 Σ is zero-state observable iff

no solution of $\dot{x} = f(x,0)$ can stay identically in

 $S = \{x \in \mathbb{R}^n | h(x,0) = 0\}$ other than the trivial solution x(t) = 0.

Lemma 6.7 (Asymptotically stable (0-AS))

The origin of $\dot{x} = f(x,0)$ is asymptotically stable if Σ is either

state strictly passive

or

 output strictly passive zero-state observable

If furthermore V(x) is radially unbounded, then the origin is globally asymptotically stable

Lecture 10: Passivity

Lyapunov and \mathscr{L}_2 stability of passive systems Relations between Passivity properties and Asymptotic stability

Example: Adaptive control system

0

Adaptive control system

$$\dot{e} = -e + \theta \omega(t)$$

$$\dot{\theta} = -e\omega(t)$$

Subsystem Σ_1

$$\dot{x}_1 = -x_1 + u_1$$

$$y_1 = ?$$

- Investigate the passivity properties of subsystem Σ_1
- What can thus be concluded about the stability properties of subsystem Σ_1

0

Adaptive control system, cont.

$$\dot{e} = -e + \theta \omega(t)$$

$$\dot{\theta} = -e \omega(t)$$

Subsystem Σ_2

 $y_2 = ?$

$$\dot{x}_2 = -u_2 \omega(t)$$

- Investigate the passivity properties of subsystem Σ_2
- What can thus be concluded about the stability properties of subsystem Σ_2

<ロト < @ ト < き > < き > り < で

22

Lecture 10: Passivi

Passivity theorems
Lyapunov stability of feedback connection

Lyapunov stability of feedback connection u_1 v_2 v_3 v_4 v_4 v

Theorem 6.1: Lyapunov stability of feedback connection

 H_1 passive and H_2 passive $\Rightarrow \Sigma$ passive (with $V = V_1 + V_2$)

24

Lecture 10: Passivity

