1. 设 $R[x]_4$ 表示所有次数小于或等于 4 的实系数 多项式组成的线性空间,求多项式

$$p(x) = 1 + 2x^3$$

在基底 $1,(x-1),(x-1)^2,(x-1)^3$ 下的坐标。

解:
$$p(x) = p(1) + p'(1)(x-1) + \frac{p''(1)}{2!}(x-1)^2 + \frac{p'''(1)}{3!}(x-1)^3$$
.

所以所求坐标为 (3,6,6,2).

2. 设 ϕ 是n 维线性空间V的一个线性变换,对某个 $\xi \in V$ 有 $\phi^{k-1}(\xi) \neq 0$, $\phi^k(\xi) = 0$. 试证:

$$\xi, \phi(\xi), \phi^{2}(\xi), \dots, \phi^{k-1}(\xi)$$

线性无关。

证:假设存在常数 $l_0, l_1, \cdots, l_{k-1}$ 使得

$$l_0\xi + l_1\phi(\xi) + l_2\phi^2(\xi) + \dots + l_{k-1}\phi^{k-1}(\xi) = 0.$$

两边同时作线性变换 ϕ^{k-1} (即作 k-1 次变换 ϕ),

$$l_0 \phi^{k-1} \xi + l_1 \phi^k(\xi) + l_2 \phi^{k+1}(\xi) + \dots + l_{k-1} \phi^{2k-2}(\xi) = 0.$$

$$\phi^{k}(\xi) = 0 \longrightarrow l_{1}\phi^{k}(\xi) + l_{2}\phi^{k+1}(\xi) + \dots + l_{k-1}\phi^{2k-2}(\xi) = 0.$$

$$\therefore l_0 \phi^{k-1} \xi = 0.$$

$$\therefore \quad \phi^{k-1}(\xi) \neq 0, \quad \longrightarrow \quad l_0 = 0.$$

$$\therefore l_1 \phi(\xi) + l_2 \phi^2(\xi) + \dots + l_{k-1} \phi^{k-1}(\xi) = 0.$$

两边同时作线性变换 ϕ^{k-2} , 可得 $l_1 = 0$. 以此类推, 可得 $l_2 = \cdots = l_{k-1} = 0$. 由线性无关的定义,可知

$$\xi, \phi(\xi), \phi^{2}(\xi), \dots, \phi^{k-1}(\xi)$$

线性无关。

3. 试证:

$$\operatorname{tr}(AB)^k = \operatorname{tr}(BA)^k, \quad A \in C^{m \times n}, B \in C^{n \times m}, k = 1, 2, \dots$$

证:

$$\operatorname{tr}(AB) = \sum_{i=1}^{m} \left(\sum_{k=1}^{n} a_{ik} b_{ki} \right) = \sum_{j=1}^{n} \left(\sum_{l=1}^{m} b_{jl} a_{lj} \right) = \operatorname{tr}(BA)$$

$$\operatorname{tr}(AB)^k = \operatorname{tr}((ABAB\cdots A)B)$$

$$=\operatorname{tr}(\boldsymbol{B}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}\boldsymbol{B}\cdots\boldsymbol{A}))=\operatorname{tr}(\boldsymbol{B}\boldsymbol{A})^k$$

4. 试证: $\operatorname{tr}(A^k) = \sum_{i=1}^n \lambda_i^k$, λ_i 是 A 的特征值, k 是一正整数。

证:设 λ_i , i=1,2,...,n 是 A 的特征值, x 是相应的特征向量, $Ax=\lambda_i x$.则

$$A^2x = A \cdot Ax = A(\lambda_i x) = \lambda_i Ax = \lambda_i^2 x$$
.

同理可得, $A^3x = A \cdot A^2x = A(\lambda_i^2 x) = \lambda_i^2 x$. 从而归纳可得 $A^k x = \lambda_i^k x$, i = 1, 2, ..., n. 所以

$$\lambda_i^k, i=1,2,\ldots,n$$

是 A^k 的 n 个特征值,从而 $\operatorname{tr}(A^k) = \sum_{i=1}^n \lambda_i^k$.

5. 设 $A^2 = A$, 试证: A 的特征值只能是 0 或 1。

证:设 λ 是 A 的特征值,x 是相应的特征向量,则 $Ax = \lambda x$. $A^2x = A \cdot Ax = A(\lambda x) = \lambda Ax = \lambda^2 x$. 因为 $A^2 = A$, 所以 $\lambda^2 x = A^2 x = Ax = \lambda x$. 从而

$$(\lambda^2 - \lambda)x = \mathbf{0},$$

因为x 是特征向量, $x \neq 0$, 所以 $(\lambda^2 - \lambda) = 0$, 即 A 的特征值只能是 0 或 1。