Київський національний університет імені Тараса Шевченка Міністерство освіти і науки України Київський національний університет імені Тараса Шевченка Міністерство освіти і науки України

Кваліфікаційна наукова праця на правах рукопису

ОЛІХ ОЛЕГ ЯРОСЛАВОВИЧ

УДК 534.29, 537.312.5/.6/.9

ДИСЕРТАЦІЯ

АКУСТО-ІНДУКОВАНІ ЕФЕКТИ В ОПРОМІНЕНИХ ТА НЕОПРОМІНЕНИХ НАПІВПРОВІДНИКОВИХ СТРУКТУРАХ

Спеціальність 104— «Фізика та астрономія» 10— Природничі науки

Подається на здобуття наукового ступеня доктора фізико-математичних наук

Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело

_______О.Я. Оліх

Науковий консультант Іванов Іван Іванович доктор фізико-математичних наук, професор

КІДАТОНА

Оліх О. Я. Акусто-індуковані ефекти в опромінених та неопромінених напівпровідникових структурах. - Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 104 «Фізика та астрономія» (10 – Природничі науки). - Київський національний університет імені Тараса Шевченка, Київ, 2018.

Зміст анотації

Ключові слова: ультразвук, гамма-опромінення, кремній, бар'єрні структури, акусто-дефектна взаємодія, перенесення заряду, оборотні акусто-індуковані зміни.

Список публікацій здобувача

ABSTRACT

Olikh O. Ya. Акусто-індуковані ефекти в опромінених та неопромінених напівпровідникових структурах. - Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 104 «Фізика та астрономія» (10 — Природничі науки). - Taras Shevchenko National University of Kyiv, Kyiv, 2018.

Зміст анотації

Ключові слова: ultrasound, gamma-rays, silicon, barrier structures, acousto-defect interaction, charge transport, reversible acoustically-induced change.

Список публікацій здобувача

Зміст

			Стр
Перелі	к умові	них скорочень та позначень	7
Вступ			11
Розділ	1. Аку	сто-індуковані ефекти у мікроелектронних структурах	
	та м	иатеріалах	13
1.1	Залиш	ікові акусто-індуковані ефекти	13
1.2	Динам	иічні акусто-індуковані ефекти	13
Розділ 2	2. Oco	бливості використання активного ультразвуку	14
2.1	Метод	цика вивчення ультразвукового впливу	14
2.2	Оцінк	а параметрів акустичного впливу	18
Розділ :	3. Дин	амічні акустоіндуковані ефекти в опромінених та	
	нео	промінених кремнієвих структурах з р-п переходом	20
3.1	Кремн	нієві сонячні елементи та режими їх радіаційного опромінення	20
3.2	Акуст	о-керована деградація кристалічних кремнієвих сонячних	
	елеме	нтів	22
	3.2.1	Особливості визначення параметрів КСЕ	24
	3.2.2	АІ вплив на фотоелектричне перетворення в КСЕ	29
	3.2.3	Особливості акустичного керування рекомбінацією в КСЕ.	32
	3.2.4	Модель акусто-активного комплексного дефекту	40
	3.2.5	Чисельний розрахунок залежностей напруги холостого	
		ходу та фактора форми	40
3.3	Особл	пивості акусто-дефектної взаємодії в опромінених	
	кремн	ієвих структурах з р-п переходом	40
	3.3.1	Акусто-індуковані зміни шунтуючого опору	
Вис	новки д	до розділу З	40

			Стр.
Розділ	4. Виз	начення параметрів структур метал-напівпровідник	41
4.1	Загалн	ьні підходи до визначення параметрів діодів Шотки	41
4.2	Контр	ольні вольт-амперні характеристики	43
	4.2.1	Ідеальні синтезовані ВАХ	43
	4.2.2	Синтезовані ВАХ з випадковими похибками	44
	4.2.3	Експериментальні ВАХ	45
4.3	Крите	рії точності методів	46
4.4	Метод	ци визначення параметрів ДШ	46
	4.4.1	Аналітичні методи	46
	4.4.2	Чисельні методи	56
	4.4.3	Еволюційні алгоритми	58
4.5	Порів	няння ефективності методів визначення параметрів	
	структ	гур МН	63
	4.5.1	Точність визначення параметрів на основі ідеальних ВАХ .	63
	4.5.2	Швидкодія методів визначення параметрів ДШ	73
	4.5.3	Вплив випадкових похибок на точність визначення	
		параметрів структур МН	75
	4.5.4	Визначення параметрів реальних структур МН	78
Вис	новки д	до розділу 4	82
Розділ	5. Ефе	екти впливу гамма-опромінення та ультразвукового	
	нав	антаження на кремнієві структури метал-напівпровідник	85
5.1	Струк	тури метал-напівпровідник на основі кремнію	85
Вис	новки Д	до розділу 5	86
Розділ	6. Oco	бливості динамічних акустоіндукованих змін	
	кре	мнієвих діодів Шотки в широкому температурному	
	інте	ервалі	87
Вис	новки Д	до розділу 6	87
Розділ	7. Впл	ив мікрохвильових та ультразвукових обробок на	
	вла	стивості структур на основі арсеніду галію	88

	Стр.
Висновки до розділу 7	. 88
Розділ 8. Оформление различных элементов	. 89
8.1 Форматирование текста	. 89
8.2 Ссылки	. 89
Список використаних джерел	. 90

Перелік умовних скорочень та позначень

CDLR	coupled defect level recombination, рекомбінація у системі спарених
	рівнів дефектів
DE	differential evolution, метод диференційної еволюції
NIEL	non-ionizing energy losses, енергетичні втрати, не пов'язані з іонізаці-
MABC	ϵ ю modified artificial bee colony, метод модифікованої штучної бджолиної
	сім'ї
	particle swarm optimization, метод оптимізації зграї частинок
RT	running time, час, необхідний для визначення параметрів
TLBO	teaching learning based optimization, метод оптимізованого викладання
АДВ	та навчання акусто-дефектна взаємодія
AI	акусто-індукований
AX	акустична хвиля
АЧХ	амплітудно-частотна характеристика
BAX	вольт-амперна характеристика
ВБШ	висота бар'єру Шотки
ВФХ	вольт-фарадна характеристика
ГР	глибокий рівень
ДШ	діод Шотки
EA	еволюційний алгоритм
КНО	квазі-нейтральна область
КСЕ	кремнієвий сонячний елемент
MH	метал-напівпровідник
ОПЗ	область просторового заряду
ППЗ	поперечний переріз захоплення
РД	радіаційний дефект
ТЛ	точковий дефект

УЗ ультразвук

УЗН ультразвукове навантаження

УЗО ультразвукова обробка

ШРХ теорія Шоклі-Ріда-Хола

 α коефіцієнт поглинання світла

 β коефіцієнт квантового виходу

 β_1 , β_2 коефіцієнти Варшні

 ΔP абсолютна AI зміна параметра P

 ε діелектрична проникність матеріалу

 ε_0 діелектрична стала

 ε_P відносна AI зміна параметра P

 $\xi_{\rm US}$ амплітуда деформації ґратки при поширенні УЗ

 λ довжина хвилі падаючого світла

 ho_{LNO} густина ніобату літію

 ρ_{Si} густина кремнію

 σ_n поперечний переріз захоплення електронів дефектом

 σ_p поперечний переріз захоплення дірок дефектом

 au_g ефективний час життя носіїв заряду в ОПЗ

 au_n ефективний час життя електронів

 $v_{\mathtt{LNO}}$ швидкість звуку в ніобаті літію

 $v_{\mathrm{th},n}$ теплова швидкість електронів

 $\upsilon_{ ext{th},p}$ теплова швидкість дірок

 $v_{\mathtt{Si}}$ швидкість звуку в кремнії

 Φ_b ВБШ при нульовому зміщенні

 Ψ флюєнс опромінення

A площа зразка

 A_{LNO} площа п'єзоперетворювача

 A^* ефективна стала Річардсона

 a_B радіус Бора

c швидкість світла

D доза опромінення

 D_d displacement damage dose, ефективна доза, пов'язана з дефектоутворенням

 E_a ширина забороненої зони

- E_i положення рівня Фермі у власному напівпровіднику
- E_t положення енергетичного рівня, зв'язаного з дефектом
- *FF* фактор форми освітленої ВАХ СЕ
 - f_r резонансна частота п'єзоперетворювача
- $f_{\rm US}$ частота УЗ
 - *h* стала Планка
 - I струм
 - I_s струм насичення
 - J густина струму
- J_{ph} густина фотогенерованого струму
- J_s густина струму короткого замикання
- k стала Больцмана
- L_n довжина дифузії електронів
- N_c ефективна густина станів біля дна зони провідності
- N_v ефективна густина станів біля вершини валентної зони
- n_i концентрація власних носіїв заряду
- n концентрація електронів
- $n_{\rm id}$ фактор неідеальності
- n_n концентрація основних носіїв у електронному напівпровіднику
- n_p концентрація неосновних носіїв у дірковому напівпровіднику
 - q елементарний заряд
 - p концентрація дірок
- p_n концентрація неосновних носіїв у електронному напівпровіднику
- p_p концентрація основних носіїв у дірковому напівпровіднику
- R темп рекомбінації
- R_s послідовний опір
- R_{sh} шунтуючий опір
 - T абсолютна температура
- $u_{\rm US}$ амплітуда зміщень атомів при поширенні УЗ
 - V напруга
- V_d падіння напруги в околі бар'ру
- V_{oc} напруга холостого ходу

 V_R зворотна напруга

 $V_{
m RF}$ амплітуда високочастотної напруги, прикладеної до п'єзоперетворювача

 W_{ph} інтенсивність освітлення

 $W_{\mathtt{US}}$ інтенсивність акустичної хвилі

Вступ

обґрунтування вибору теми дослідження (висвітлюється зв'язок теми дисертації із сучасними дослідженнями у відповідній галузі знань шляхом критичного аналізу з визначенням сутності наукової проблеми або завдання);

мета і завдання дослідження відповідно до предмета та об'єкта дослідження;

методи дослідження (перераховуються використані наукові методи дослідження та змістовно відзначається, що саме досліджувалось кожним методом; обґрунтовується вибір методів, що забезпечують достовірність отриманих результатів та висновків);

наукова новизна отриманих результатів (аргументовано, коротко та чітко представляються основні наукові положення, які виносяться на захист, із зазначенням відмінності одержаних результатів від відомих раніше);

особистий внесок здобувача (якщо у дисертації використано ідеї або розробки, що належать співавторам, разом з якими здобувачем опубліковано наукові праці, обов'язково зазначається конкретний особистий внесок здобувача в такі праці або розробки; здобувач має також додати посилання на дисертації співавторів, у яких було використано результати спільних робіт);

апробація матеріалів дисертації (зазначаються назви конференції, конгресу, симпозіуму, семінару, школи, місце та дата проведення);

Структура та обсяг дисертації. Дисертація складається із вступу, п'яти розділів, висновків та списку використаних джерел. Загальних обсяг дисертації складає ??ТотРадев сторінки з 24 рисунками та 8 таблицями. Список використаних джерел містить 1 найменувань.

За наявності у вступі можуть також вказуватися:

зв'язок роботи з науковими програмами, планами, темами, грантами - вказується, в рамках яких програм, тематичних планів, наукових тематик і грантів, зокрема галузевих, державних та/або міжнародних, виконувалося дисертаційне дослідження, із зазначенням номерів державної реєстрації науково-дослідних робіт і найменуванням організації, де виконувалася робота; практичне значення отриманих результатів - надаються відомості про використання результатів досліджень або рекомендації щодо їх практичного використання.

[1-55]

Розділ 1. Акусто-індуковані ефекти у мікроелектронних структурах та матеріалах

- 1.1 Залишкові акусто-індуковані ефекти
- 1.2 Динамічні акусто-індуковані ефекти

Розділ 2. Особливості використання активного ультразвуку

Значна частина представлених у дисертаційній роботі результатів пов'язана з дослідженням ефектів, які відбуваються в напівпровідникових структурах внаслідок поширення в них акустичних хвиль (АХ) мегагерцевого діапазону. У зв'язку з тим, що використання ультразвуку (УЗ), на жаль, ще не є стандартним способом впливу на напівпровідникові кристали, у цьому розділі представлено узагальнена інформація щодо відповідних експериментальних методик.

Зокрема, представлені описи процедур ультразвукової обробки (УЗО) та ультразвукового навантаження (УЗН). Відмінності у використанні цих термінів пов'язані з оборотністю АІ процесів. Так, в першому випадку (УЗО), внаслідок поширення пружних хвиль відбуваються незворотні (залишкові) зміни властивостей напівпровідникових структур. Тоді як в другому випадку (УЗН), ефекти є оборотніми (динамічними), зміни електрофізичних параметрів спостерігаються лише за умов поширення АХ; після припинення дії УЗ параметри поступово повертаються до своїх вихідних (до початку УЗН) значень.

2.1 Методика вивчення ультразвукового впливу

Для збудження УЗ у досліджуваних структурах використовувалися п'є-зоелектричні перетворювачі, виготовлені з пластин ніобату літію (LiNbO $_3$) з металізацією обох граней шляхом вакуумного напилення алюмінію. Для збудження повздовжніх та поперечних акустичних хвиль використовувалися пластини зі зрізом $(Y+36^\circ)$ та , відповідно.

З літератури [56–59] відомо, що АХ з частотою, що знаходиться в діапазоні $1 \div 30$ МГц, здатні впливати на стан дефектів у кремнії. Саме такий частотний діапазон був використаний у представлених дослідженнях. В експериментах проводилось збудження УЗ з частотою $f_{\rm US}$, яка знаходилась поблизу першої або третьої гармоніки товщинного резонансу пластинки. Безпосереднє значення $f_{\rm US}$,

при якому введення пружних коливань у зразок відбувається найбільш ефективно, визначалось стандартним методом за максимальною амплітудою коливань краплі води (або вакуумного масла), розміщеної на поверхні перетворювача, при прикладанні до його граней змінної напруги.

Попередні дослідження різних авторів [57–60] показали, що використання УЗ з інтенсивністю $W_{\rm US} \geq 1~{\rm BT/cm^2}$ спричинює необоротні (залишкові) зміни властивостей кремнієвих структур, які пов'язані з відпалом радіаційних дефектів, формуванням нових дефектів або переміщенням вже існуючих, на відстані, що значно перевищують міжатомну відстань. Так як метою частини роботи було дослідження саме оборотних АІ ефектів, то УЗН проводилось при $W_{\rm US} \leq 0.5~{\rm BT/cm^2}$. Детальніше процедура оцінки $W_{\rm US}$ та інших параметрів УЗ впливу наведена у розділі 2.2.

Для того, щоб під час УЗН позбавитися впливу п'єзоелектричного поля, яке супроводжує механічні коливання пластини LiNbO₃, як на параметри напівпровідникових структур, так і на процес вимірювання електрофізичних параметрів, перетворювач екранувався. Як наслідок, можна стверджувати, що виявлені під час УЗН ефекти визначаються лише знакозмінною деформацією.

Схеми навантаження зразка, які використовувалися в роботі, наведено на Рис. 2.1. Наявність чи відсутність діелектричного прошарку визначалась особливостями вимірювання ВАХ. Використання буфера дозволяло найефективніше мінімізувати вплив п'єзоперетворювача на процеси у напівпровіднику: металевий буфер виконував роль як електричного, так і температурного екрану. Тип схеми УЗН, яка використовувалася в тих чи інших дослідах, зазначено на початку відповідного розділу.

Структури, в яких проводилися дослідження ефектів УЗН, містили енергетичний бар'єр, пов'язаний з наявністю контакту МН або р-п переходу і розміщений поблизу однієї з поверхонь зразка. Введення УЗ відбувалось з боку грані, протилежної до місця розташування бар'єру. Тобто, напрям поширення АХ перпендикулярний площині бар'єру і співпадає з напрямом струму, який виникає під час прикладення до структури електричної напруги (або при освітленні, якщо об'єктом дослідження є сонячний елемент). При цьому, при використанні повздовжніх хвиль вимушені зміщення атомів відбуваються у тому

Рис. 2.1 — Використані схеми УЗН. 1 — екран (алюмінієва фольга, товщина 0,012 мм); 2 — п'єзоелектричний перетворювач (LiNbO $_3$); 3 — діелектричний прошарок (слюда, товщина 0,03 мм); 4 — контакти для вимірювання ВАХ; 5 — контакти для збудження УЗ; 6 — буфер (циліндр Al з високим ступенем паралельності граней, довжина 2 см)

самому напрямі, тоді як для поперечних хвиль коливання частинок спрямовані перпендикулярно до електричного струму у площині бар'єру.

Для створення акустичного контакту при різних УЗН використовувалися вакуумне масло, клей БФ6, піцеїн. Зауважимо, що у випадку низькотемпературного (при $T < 230~{\rm K}$) УЗН процес збудження АХ був утруднений через те, що рідкі акустичні склейки на кшталт вакуумного масла кристалізувалися і переставали виконувати свою функцію. В той же час, контакт створений при кімнатній температурі за допомогою жорсткої склейки (піцеїн або БФ6), руйнувався при охолодженні внаслідок різниці коефіцієнтів теплового розширення. В роботі проведення низькотемпературних УЗН при використанні повздовжніх хвиль здійснювалось за допомогою свіжого (до 5 год після нанесення) контакту з клею БФ6, який ще не висох. Наявність акустичного контакту контролювалася за виглядом залежності повного опору перетворювача від частоти (АЧХ, амплітудно—частотної характеристики). Зокрема, при використанні схеми, зображеної на Рис. 2.1,в, за наявності акустичного контакту на АЧХ з'являвся ряд максимумів, пов'язаних з відбиванням хвиль від граней буфера.

Раніше показано [56,61,62], що характерний час зміни властивостей кремнієвих структур під дією УЗ не перевищує $2 \cdot 10^3$ с. Для того, щоб дочекатися закінчення всіх перехідних АІ процесів, використовувалася наступна експериментально процедура. УЗН починалась при кімнатній температурі. Після цього зразки перебували не менше 60 хв за умов поширення в них пружних коливань і лише після цього, не припиняючи дії УЗ, починалось вимірювання електрофізичних параметрів та/або процеси нагріву або охолодження.

Відомо, що під час навантаження п'єзоперетворювач нагрівається. Температура кремнієвих структур контролювалася диференційною термопарою мідь—константан. В роботі проводилось порівняння значень параметрів, отриманих за однакових температур в умовах УЗН зразків та без нього. Це дозволяло виокремити АІ зміни характеристик напівпровідникових структур, від змін, пов'язаних з їх розігрівом під час УЗН. Для оцінки величини впливу УЗ на певний параметр P (яким могла бути напруга холостого ходу, фактор неідеальності, величина зворотного струму тощо), використовувалися його абсолютні

$$\Delta P = P_{in} - P_{\text{IIS}} \tag{2.1}$$

чи відносні зміни

$$\varepsilon_P = \frac{P_{in} - P_{\text{US}}}{P_{in}},\tag{2.2}$$

де нижні індекси «US» та $\ll in$ » вказують на те, що відповідне значення параметра було отримане при однаковій температурі за умов УЗН та без нього, відповідно.

Таким чином, основними параметрами УЗН ϵ f_{US} , тип збуджених хвиль, W_{US} та температура зразка під час поширення АХ. Параметри УЗН, які використовувалася в тих чи інших дослідах, зазначено на початку відповідного розділу.

При УЗО процеси впливу АХ та вимірювання параметрів були розділені в часу і тому нагальної необхідності екранування п'єзоелектричних полів не було. Як наслідок, експериментальна схема простіша, п'єзоперетворювач безпосередньо акустично контактував з досліджуваною структурою.

2.2 Оцінка параметрів акустичного впливу

Для оцінки інтенсивності АХ введеної, наприклад, у кремнієву структуру використовувалася формула плоского п'єзоперетворювача [63]:

$$W_{\rm US} = 4K_{\rm LN0}^2 C_{\rm LN0} f_r \frac{\rho_{\rm LN0} \, \upsilon_{\rm LN0}}{\rho_{\rm Si} \, \upsilon_{\rm Si}} \frac{V_{\rm RF}^2}{A_{\rm LN0} M_0},\tag{2.3}$$

де K_{LNO} — коефіцієнт електромеханічного зв'язку, C_{LNO} та A_{LNO} — статична ємність закріпленого перетворювача та його площа, відповідно; для використаних в роботі перетворювачів ємність складала $(1 \div 3) \cdot 10^{-10}$ Ф залежно від площі та товщини; f_r — резонансна частота; ρ_{LNO} та ρ_{Si} — густина LiNbO3 та кремнію, відповідно; υ_{LNO} та υ_{Si} — швидкості поширення звуку в ніобаті літію та Si, відповідно; V_{RF} — амплітуда високочастотної напруги, прикладеної до перетворювача, а коефіцієнт M_0 розраховується за допомогою співвідношення

$$M_{0} = \frac{\left[\cos\left(\pi\frac{f_{\text{US}}}{f_{r}}\right)\right]^{2} + \left[\frac{\rho_{\text{LNO}}\,v_{\text{LNO}}}{\rho_{\text{Si}}\,v_{\text{Si}}}\sin\left(\pi\frac{f_{\text{US}}}{f_{r}}\right)\right]^{2}}{\left[\sin\left(\frac{\pi}{2}\frac{f_{\text{US}}}{f_{r}}\right)\right]^{4}}.$$
(2.4)

Табл. 1 — Деякі параметри ніобату літію та кремнію при кімнатній температурі [63, 64].

	imperitor, or it						
$K^2_{\mathtt{LNO}}$	зріз $(Y+36^\circ)$	0,24					
	зріз	0,46					
$v_{\mathtt{LNO}},$	повздовжні хвилі	7340					
м/с	поперечні хвилі	4560					
$v_{\mathtt{Si}},$	повздовжні хвилі	8430					
м/с	поперечні хвилі	5840					
$ ho_{ exttt{LNO}}, ext{k} ext{K} extstyle / ext{M}^3$		4700					
$ ho_{\mathtt{Si}},$ K	Γ/M^3	2328					

При цьому при поширенні АХ має місце відносна деформація

$$\xi_{\text{US}} = \sqrt{\frac{2W_{\text{US}}}{\rho_{\text{Si}} v_{\text{Si}}^3}},\tag{2.5}$$

а амплітуда зміщень атомів

$$u_{\rm US} = \sqrt{\frac{W_{\rm US}}{2\,\pi^2\,f_{\rm US}^2\,\rho_{\rm Si}\,v_{\rm Si}}}.$$
 (2.6)

Значення резонансної частоти перетворювачів визначалось за допомогою приладу для дослідження АЧХ X1–38. Параметри, які використовувалися при розрахунках, наведено в Таблиці 1.

Під час проведенні УЗН за схемами, наведеними на Рис. 2.1,а та Рис. 2.1,б дослідження проводились у достатньо вузькому температурному діапазоні $290 \div 340$ К. При цьому вважалось, що параметри п'зоелектричного перетворювача змінюються мало, сталість величини $V_{\rm RF}$ забезпечує незмінність $W_{\rm US}$ для всього діапазону температур, і для оцінки параметрів ультразвукового навантаження використовувалися формули (2.3-2.6). Вплив металевого екрануючого шару та діелектричного слюдяного прошарку на інтенсивність звуку, введеного в зразок, вважався знехтувано малим, так як їх товщина значно менша ніж половина довжини АХ. В той же час, подібні спрощення не є виправданими у випадку, коли коли використовується схема УЗН, показана на Рис. 2.1,в і вимірювання проводяться в широкому температурному діапазоні.

Розділ 3. Динамічні акустоіндуковані ефекти в опромінених та неопромінених кремнієвих структурах з p-n переходом

3.1 Кремнієві сонячні елементи та режими їх радіаційного опромінення

Сонячні елементи, які досліджувалися в роботі, були створені на основі пластин кремнію діаметром близько 100 мм (радіус дорівнював 2 дюйми). Пластини були вирізані зі злитків, вирощених за методом Чохральського, мали товщину 300 мкм і були орієнтовані в напрямі <111>. Легування здійснювалось шляхом додавання у розплав атомів бору (кремній марки КДБ10). У дослідженому температурному діапазоні концентрація основних носіїв заряду складала величину $p_p = 1.4 \cdot 10^{15} \, \mathrm{cm}^{-3}$.

Для створення n^+ емітера проводилась імплантація іонів фосфору, після закінчення якої було проведено активізуючий відпал. Як наслідок, був створений шар з електронною провідністю товщиною близько 0,5 мкм з концентрацією вільних носіїв заряду $10^{19}~{\rm cm}^{-3}$.

Поверхня пластини була пасивована шляхом нанесення плівки Al_2O_3 . Крім того, на фронтальну поверхню був нанесений антивідбиваючий шар діоксиду титану (TiO_2) з використанням методу APCVD (atmospheric pressure chemical vapour deposition). З використанням методу трафаретного друку (screen printing) було створено омічні алюмінієві електроди (суцільний на задній поверхні та металева сітка на передній). Нарешті, був проведений швидкий відпал отриманих структур при температурі 800° C тривалістю декілька хвилин. Структура досліджених кремнієвих сонячних елементів (КСЕ) зображена на Рис. 3.1,а. Зауважимо, що цей рисунок наведено без збереження масштабних співвідношень між окремими частинами.

Для досліджень використовувалися зразки площею $1,5 \div 2,1$ ста вирізані з різних (переважно центральних) областей пластини. Для позначення зразків надалі використовується запис на кшталт SSCx, де x — номер зразка. Місце розташування зразків на вихідній пластині показано на Рис. 3.1,6.

Рис. 3.1 — Структура кремнієвих сонячних елементів (a) та місце розташування зразків (б).

Частина зразків, використаних для досліджень, була опромінена або реакторними нейтронами, або гамма–квантами 60 Со. Флюєнс Ψ нейтронного опромінення складав $4\cdot 10^{11}$ см $^{-2}$, для позначення нейтронно опромінених зразків використовується префікс «п» (наприклад «nSC4»). Доза D опромінення гамма-квантами дорівнювала 10^6 або 10^7 рад, для позначення відповідних зразків використовуються префікси «g6» та «g7», відповідно.

Значення доз та флюєнсів наведено в Таблиці 2. Для визначення кореляцій між D та Ψ для нейтронного та $\gamma-^{60}$ Со опромінення використовувалися дані робіт [65,67]. У цій таблиці також наведено дані щодо величини NIEL (non-ionizing energy losses, енергетичні втрати, не пов'язані з іонізацією) при поширенні нейтронів та гамма-квантів 60 Со в кристалах кремнію. NIEL характеризує втрати енергії налітаючої частинки на одиницю довжини шляху, пов'язані зі зміщенням атомів ґратки [66,68], тобто, фактично, процеси радіаційного дефектоутворення. Зокрема, вважається що радіаційне ушкодження кристалів характеризується такою величиною, як $D_d = \Psi \cdot \text{NIEL}$ (displacement damage dose) [66]. Величини D_d для досліджених структур також розміщені у Таблиці 2. З наведених даних видно, що як при використанні нейтронів, так і γ -квантів очікуване пошкодження

Табл. 2 — Параметри опромінених кремнієвих сонячних елементів.

1 4 6 7 1									
Description	Тип	D,	$\Psi,$	NIEL,	D_d ,				
Зразок	опромінення	рад	cm^{-2}	MeB см 2 /г	МеВ/г				
nSC4	нейтрони	$4,5 \cdot 10^3$	4·10 ¹¹	$2,04 \cdot 10^{-3}$	8,2·10 ⁸				
g6SC8	g6SC8 γ - 60 Co		$1,6\cdot10^{15}$	1,07·10 ⁻⁷ [65]	$(1.7 \div 2.1) \cdot 10^8$				
g7SC12	γ - 60 Co	1.10^{7}	$1,6\cdot 10^{16}$	$1,31\cdot10^{-7}$ [66]	$(1.7 \div 2.1) \cdot 10^9$				

1 40011.	озг. 5 параметри ультразвукових навантажень кес.								
$f_{ t US},$	Тип	$W_{\mathtt{US}},$	$\xi_{ t US},$	$u_{\mathtt{US}},$	T,	Позначення	Зразок		
МГц	хвиль	$Bт/cм^2$	10^{-6}	НМ	K	УЗН			
8,0	повздовжні	0,18	1,3	0,3	302÷333	U–Ls	SC11, SC17		
4,2	поперечні	0,19	2,9	0,63	300÷340	U-Ts1	SC17, g7SC12		
4,2	поперечні	0,22	3,1	0,67	295÷335	U–Ts2	SC11		
4,2	поперечні	0,24	3,2	0,70	300÷340	U-Ts3	nSC4		
4,2	поперечні	0,37	4,0	0,87	308÷340	U-Tb1	g7SC12		
4,2	поперечні	0,38	4,1	0,89	308÷340	U-Tb2	g6SC8		
4,2	поперечні	0,40	4,2	0,91	310÷340	U-Tb3	SC11, SC17		
							nSC4		

Табл. 3 — Параметри ультразвукових навантажень КСЕ.

кристалічної структури є близьким. Проте, як відомо, опромінення різного типу викликає появу різних за структурою дефектів. Зокрема, γ -промені викликають появу, переважно, А-центрів [69–71], тоді як нейтрони призводять до появи вакансійних кластерів [72, 73], областей розупорядкування [74] та комплексів C_iO_i [71, 75]. Більш детально це питання розглянуте у розділі 3.3.

Відомо [76], що після радіаційного опромінення, особливо нейтронного, [71,72] у кристалах кремнію відбуваються довготривалі перехідні процеси, пов'язані з утворенням вторинних радіаційних дефектів (РД). Для того, щоб уникнути впливу подібних процесів зразки після опромінення перед початком досліджень, результати який наведено далі, зберігались протягом п'яти років при кімнатній температурі.

Параметри УЗ навантажень КСЕ, їх позначення та зразки, до яких вони застосовувалися, наведено в Таблиці 3.

3.2 Акусто-керована деградація кристалічних кремнієвих сонячних елементів

На сьогодні КСЕ продовжують відігравати домінуючу роль у галузі фотовольтаїки, займаючи приблизно три чверті відповідного ринку. Основними причинами ϵ достатньо високий рівень коефіцієнта корисної дії, доступність та

нетоксичність сировини, низька ціна та високий рівень розвитку технологічних процесів, необхідних для їх виготовлення [77]. Першочерговою задачею виробників КСЕ (як і інших напівпровідникових пристроїв) є можливість керування їх властивостями, що, насамперед, пов'язане з розумінням причинно—наслідкових зв'язків процесів, які відбуваються під час фотогенерації та руху носіїв заряду. Наприклад, виявлено, що зменшення ефективності роботи КСЕ може відбуватися внаслідок

- а) інтенсивного освітлення процес, який у випадку СЕ на основі кристалічного кремнію носить назву LID (light–induced degradation) [78–81], тоді як для мікрокристалічного Si широко використовується абревіатура CID (carrier-induced degradation) [82, 83];
- б) прикладання високої (декілька сотень вольт і більше) напруги PID (potential-induced degradation) [84–86];
- в) радіаційного опромінення RID (radiation–induced degradation) [87,88]. Причинами деградації є зміни у дефектній підсистемі кристалів. Це може бути перебудова комплексів бор–кисень або комплексів, які містять мідь (для випадку LID), декорування дефектів пакування позитивно зарядженими іонами, переважно, натрію, що спричинює зменшення шунтуючого опору (PID) або утворення радіаційних рекомбінаційних центрів (RID). Відпал деградованих КСЕ при підвищених температурах нерідко дозволяє повністю (або частково) відновити ефективність.

В той же час, УЗ також здатний ефективно взаємодіяти з дефектами в кремнії. Наприклад, було експериментально показано що УЗ викликає трансформацію домішкових та радіаційних дефектів [56,89–91], модифікацію спектру [92] та густини [93] поверхневих станів, зміну дифузійної довжини електронів [62,94] та впливає на проходження струму у бар'єрних структурах [57,58,95]. Детальніше ці ефекти описані в розділі 1. Тобто, цілком очікуваним є те, що внаслідок поширення АХ в КСЕ може виникати ефект акусто–індукованої деградації (USID, ultrasound–induced degradation). При використанні УЗ не надто високої інтенсивності, параметри матеріалу після припинення поширення АХ повертаються до вихідних значень [62, 89, 94] навіть без застосування відпалу. Тому очікується, що USID має бути оборотною при кімнатних температурах на

Рис. 3.2 — Темнові ВАХ, виміряні при температурах 301 К (криві 1 та 2, кола) та 341 К (криві 2 та 4, трикутники) за умов УЗН (U–Тb3, криві 2, 4, заповнені точки) та для ненавантаженого зразка (криві 1 та 3, порожні точки) На вставці наведено частину ВАХ при освітлені в діапазоні прямих зміщень від 0 до V_{oc} . Точки відображають результати вимірів, лінії отримані шляхом апроксимації за формулами (3.1) та (3.2).

відміну від деградацій інших типів. Представлені у даному параграфі результати отримані в результаті експериментального дослідження AI змін фото–електричних параметрів КСЕ.

3.2.1 Особливості визначення параметрів КСЕ

Для визначення параметрів КСЕ проводилось вимірювання прямих ділянок ВАХ зразків у темряві та при освітленні. Вимірювання проводились в температурному інтервалі 290–340 К як за умов УЗН, так і без нього. Як приклад, декілька отриманих кривих наведено на Рис. 3.2.

Густина струму короткого замикання J_{sc} , напруга холостого ходу V_{oc} та фактор форми FF визначалися з ВАХ, отриманих при освітленні, традиційним способом за перетином експериментальної кривої з координатними осями та по розташуванню максимуму потужності.

В рамках моделі подвійного діоду залежність густини струму J від прикладеної напруги V для ${\bf n}^+$ –р сонячного елементу має описуватися наступним виразом [96, 97]:

$$J(V,T) = -J_{ph} + \frac{qn_id}{2\tau_g} \left\{ \exp\left[\frac{q(V - JR_s)}{n_{id}kT}\right] - 1 \right\} + \frac{qn_i^2}{p_p} \sqrt{\frac{\mu_n kT}{\tau_n}} \left\{ \exp\left[\frac{q(V - JR_s)}{kT}\right] - 1 \right\} + \frac{V - JR_s}{R_{sh}}, \quad (3.1)$$

де T — абсолютна температура, J_{ph} — густина фотогенерованого струму, q — елементарний заряд, n_i — концентрація власних носіїв заряду, τ_g — ефективний час життя носіїв заряду в області просторового заряду (ОПЗ), d — товщина ОПЗ:

$$d(V,T) = \sqrt{\frac{2\varepsilon\varepsilon_0(p_p + n_n)}{qp_p n_n} \left[\frac{E_g}{q} - \frac{kT}{q} \ln\left(\frac{N_v N_c}{p_p n_n}\right) - \frac{2kT}{q} - V \right]},$$
 (3.2)

 ε_0 — діелектрична стала, ε — діелектрична проникність матеріалу (для Si ε = 11,7), p_p та n_n — концентрація основних носіїв заряду в p— та n—області, відповідно; E_g — ширина забороненої зони напівпровідника, N_c та N_v — ефективна густина станів поблизу дна зони провідності та вершини валентної зони, відповідно; $n_{\rm id}$ — фактор неідеальності R_s та R_{sh} — послідовний та шунтуючий опори, відповідно; μ_n та τ_n — рухливість та час життя електронів (неосновних носіїв) в базі діоду. Рівняння ВАХ, яке моделює поведінку сонячного елементу за допомогою еквівалентної електричної схеми, містить ряд параметрів, що безпосередньо стосуються фізичних процесів, які відбуваються у пристрої. Зокрема вважається, що $J_{0base} = (qn_i^2/n_n)\sqrt{\mu_n kT/\tau_n}$ пов'язане з процесами рекомбінації у квазі—нейтральній області (КНО), тоді як $J_{0SCR} = (qdn_i/2\tau_g)$ описує загальну рекомбінацію в ОПЗ.

Формули (3.1)–(3.2) були використані для апроксимації експериментальних даних, причому невідомими величинами вважалися τ_g , τ_n , $n_{\rm id}$, R_{sh} , R_s та J_{ph} (остання лише для ВАХ при освітленні). При цьому вважалося, що $n_i(T)=1.64$.

 $10^{15}\,T^{1,706}\exp(-E_g/2kT)$ см $^{-3}$ [98], $N_c(T)=2,86\cdot 10^{19}(T/300)^{1,58}$ см $^{-3}$, $N_v(T)=3,10\cdot 10^{19}(T/300)^{1,85}$ см $^{-3}$ [99], а температурні залежності забороненої зони та рухливості електронів описуються формулами Varshni та Caughey–Thomas, відповідно:

$$E_g(T) = E_g(0) - \frac{\beta_1 T^2}{(T + \beta_2)}, \qquad (3.3)$$

де $E_g(0)=1{,}169$ eB, $\beta_1=7{,}021\cdot 10^{-4}$ eB/K², $\beta_2=1108$ K [100,101] та

$$\mu_n(T) = \mu_{min} + \frac{\mu_0}{1 + (p_p/N_{ref})^{\zeta}}.$$
(3.4)

де $\mu_{min}=92\cdot (T/300)^{-0.57}$ см²/(В·с), $\mu_0=1268\cdot (T/300)^{-2.33}$ см²/(В·с), $N_{ref}=1.3\cdot 10^{17}\cdot (T/300)^{2.4}$ см³, $\zeta=0.91\cdot (T/300)^{-0.146}$ [100, с. 505, Table A8.2]. Апроксимація проводилась з використанням методу диференційної еволюції [102–104], який більш детально описано в параграфі 4.4.3. Приклади результуючих апроксимуючих кривих наведено на Рис. 3.2. Видно, що вони досить добре апроксимують експериментальні дані.

Відомо [97], що $J_{sc} \approx J_{ph}R_{sh}/(R_{sh}+R_s)$. Для всіх досліджених зразків величина R_s приблизно дорівнювала 2 Ом·см², тоді як значення R_{sh} суттєво залежала від температури та конкретного зразка, проте для розглянутого температурного інтервалу не було меншим 4 кОм·см². Отже, очікується, що в нашому випадку має бути $J_{sc} \approx J_{ph}$. І дійсно, подібне співвідношення спостерігається між величиною J_{ph} , отриманою шляхом багатопараметричної апроксимації повної залежності густини струму від напруги, та значенням J_{sc} , яке відображає ординату перетину ВАХ з віссю струмів.

Для освітлення КСЕ використовувалося монохроматичне (довжина хвилі $\lambda=900$ нм) світло з низькою інтенсивністю. Відомо, що освітлення з інтенсивністю W_{ph} більше 5 Вт/см² викликає дисоціацію пар залізо-бор [105], а при $W_{ph}>0.01$ suns (1 sun= 1000 Вт/м²) в кремнії р-типу утворення дефектів можуть утворюватись дефекти [106]. Ці процеси впливають на час життя носіїв заряду, а так як метою роботи було дослідження АІ ефектів, то з метою запобігання будь-яких світло-індукованих деградаційних процесів було використане освітлення з інтенсивністю $W_{ph}=(8\pm4)$ Вт/м². Монохроматичність світла дозволила спростити аналіз причин АІ змін струму короткого замикання. А саме, для використаної довжини хвилі фотогенерований струм пов'язаний,

переважно, з утворенням електронно–діркових пар в p–області. У випадку, якщо база СКЕ перевищує у декілька разів довжину дифузії неосновних носіїв $L_n = \sqrt{\mu_n k T \tau_n/q}$, то для J_{sc} справедливий вираз [101, 107]:

$$J_{sc} = \frac{W_{ph}(1-M)q\beta\lambda}{hc} \frac{\alpha L_n}{1+\alpha L_n},$$
(3.5)

де α — коефіцієнт поглинання світла, M — коефіцієнт відбивання, β — коефіцієнт квантового виходу.

Формулу (3.5) було використано для апроксимації експериментальної залежності $J_{sc}(T)$, при чому L_n розглядалась як невідомий параметр. Під час розрахунків вважалося, що β та M не змінюються, а температурна залежність α описується виразом [101, 108]

$$\alpha(\lambda, T) = \sum_{\substack{i=1,2\\j=1,2}} C_i A_j \left\{ \frac{[hc/\lambda - E_{gj}(T) + E_{pi}]^2}{\exp(E_{pi}/kT) - 1} + \frac{[hc/\lambda - E_{gj}(T) - E_{pi}]^2}{1 - \exp(-E_{pi}/kT)} \right\} + A_d \left[hc/\lambda - E_{gd}(T) \right]^{1/2},$$
(3.6)

де h — стала Планка, c — швидкість світла, $E_{p1}=1,827\cdot 10^{-2}$ еВ, $E_{p2}=5,773\cdot 10^{-2}$ еВ — частоти Дебая поперечних оптичних та акустичних фононів, відповідно; константи $C_1=5,5,~C_2=4,0,~A_1=3,231\cdot 10^2~{\rm cm}^{-1}{\rm eB}^{-2},$ $A_2=7,237\cdot 10^3~{\rm cm}^{-1}{\rm eB}^{-2},~A_d=1,052\cdot 10^6~{\rm cm}^{-1}{\rm eB}^{-2};$ температурна залежність $E_{g1},~E_{g2}$ та E_{gd} описується виразом 3.3), причому $E_{g1}(0)=1,169~{\rm eB},$ $E_{g2}(0)=2,5~{\rm eB}$ та $E_{gd}(0)=3,2~{\rm eB}.$ Крім того, припускалося що $L_n\sim T^{0.5}.$ Основою для цього були результати, отримані при апроксимації окремих ВАХ (детальніше див. параграф 3.2.3).

Таким чином, визначення L_n та τ_n проводилось як в результаті аналізу окремої ВАХ, так і з апроксимації температурної залежності J_{sc} . Надалі, щоб відрізнити величини, отримані другим шляхом, використовується верхній індекс «ph»: L_n^{ph} , τ_n^{ph} , $\varepsilon_{\tau n}^{ph}$ тощо.

Ще раз підкреслимо, що всі АІ ефекти, описані у цьому розділі ϵ оборотними. Тобто, величини J_{sc} , V_{oc} , FF та інших параметрів повертаються до своїх вихідних значень після припинення УЗН та витримки зразків при кімнатній температурі протягом доби. Оборотність АІ ефектів ілюстру ϵ Рис. 3.3. Часовий інтервал між початком УЗН та вимірами, результати яких представлені

Рис. 3.3 — Значення часу життя в ОПЗ (а, ліва вісь, незаповнені точки) та КНО (а, права вісь, заповнені точки), фактору неідеальності (б, ліва вісь, незаповнені точки) та шунтуючого опору (б, права вісь, заповнені точки), отримані до, під час та після УЗН при температурі 330 К. Представлені дані для зразків SC11 (кола) та g7SC12 (трикутники).

з позначкою «під час УЗН» перевищує 60 хв, проміжок часу між закінченням УЗН та вимірами «після УЗН» — близько 24 год. На рисунку представлені дані лише для двох зразків, але ці результати є типовими і для інших. Оборотність ефектів, зокрема, свідчить про те, що УЗ не спричинює ні дифузію дефектів, ні зміну їх концентрації.

Зауважимо, що величини параметрів (τ_g , τ_n , $n_{\rm id}$, R_{sh} та R_s) отримані з ВАХ, які виміряні у темряві та при освітленні за однакової температури та в ідентичних умовах УЗН, практично співпадають.

Відомо, що дефекти розподіляються по площі напівпровідникових пластин нерівномірно (див., наприклад, [109, 110]), а отже, нерівномірним ε і розподіл фізичних параметрів. В нашому випадку також спостерігався розкид величин визначених параметрів зразків, вирізаних з різних частин вихідної пластини (див. Рис. 3.1,б). Проте характер АІ змін цих параметрів для всіх зразків був подібний. Тому з усього набору досліджених структур (5 зразків) надалі в цьому параграфі представлено типові результати переважно лише для двох (SC11 та SC17), вихідні параметри яких відрізнялися найбільше.

3.2.2 АІ вплив на фотоелектричне перетворення в КСЕ

Отримані температурні залежності густини струму короткого замикання, напруги холостого ходу та фактору форми наведено на Рис. 3.4. Значення параметрів при температурі 320 К представлені в Таблиці 4. Необхідно зауважити, що не тільки J_{sc} та V_{oc} , але й коефіцієнт корисної дії, FF та час життя неосновних носіїв заряду зменшуються за умов низько-інтенсивного освітлення [111–113]. А отже, дані на Рис. 3.4 та в Таблиці 4 не є еквівалентними тим, що можуть бути отримані за стандартних умов (STC, standard test condition, інтенсивність освітлення 1000 Вт/м², температура 25°C, спектр AM1.5G). Проте вони ілюструють АІ ефекти.

Так, Рис. 3.4 показує, що має місце акусто–керована деградація як струму короткого замикання, так і напруги холостого ходу та фактора форми. Відносні АІ зміни параметрів наведено в Таблиці 5. Зауважимо, величина АІ змін слабко

Рис. 3.4 — Температурна залежність густини струму короткого замикання (а), напруги холостого ходу (б) та фактору форми (в) для структур SC17 (квадрати) and SC11 (кола). Криві 1 та 5 (незаповнені точки) отримані без УЗН, решта — під час УЗН: U–L (криві 2 та 6), U–Ts1 (3), U–Ts2 (7) та U–Tb3 (4 та 8). Точки відповідають експериментально отриманим результатам, лінії — результати апроксимації згідно з формулою (3.5).

Табл. 4 — Визначені параметри КСЕ (T = 320 K).

		SC	C17		SC11				
Параметр		У	3H		УЗН				
		U–L	U–Ts1	U–Tb3	_	U–L	U–Ts2	U-Tb3	
$J_{sc},0.01{ m A/m^2}$	191±2	191±2	184±2	171±2	198±2	198±2	189±2	181±2	
V_{oc} , мВ	256±4	250±4	243±4	233±4	164±4	159±4	157±4	141±4	
$FF, 10^{-3}$	475±2	468±2	463±2	458±2	372±2	366±2	366±2	353±2	
L_n^{ph} , MKM	99±5	92±5	67±4	55±3	125±6	124±6	103±5	98±5	
L_n , MKM	93±5	82±4	47±3	34±2	106±5	99±5	80±4	69±4	
$\tau_n^{ph}, 10^{-7} \text{ c}^*$	31±3	26±3	14±2	9±1	49±5	48±5	33±4	30±3	
$\tau_n, 10^{-7} \text{ c}$	26±3	21±3	7±2	3.5±0.7	35±3	31±3	20±3	15±2	
$ au_g, 10^{-9} \text{ c}$	70±4	66±3	57±3	48±2	35±2	31±2	30±2	29±2	
$E_{\tau g}$, меВ	242±7	237±5	234±5	234±5	246±6	234±5	241±5	243±5	
$n_{\rm id}, \pm 0.01$	2.59	2.60	2.61	2.63	2.51	2.52	2.54	2.54	
T_{id} , K	226±8	215±10	243±15	233±15	327±10	319±15	308±20	358±25	
$K_{\rm US},{ m M}^{-2}{ m c}^{-1}$		$(3.3\pm0.5)\times10^{24}$				$(5.0\pm0.2)\times10^{23}$			
R_{sh} , кОм \cdot см 2	$> 10^{12}$	$> 10^{12}$	$> 10^{12}$	$> 10^{12}$	12±1	13±1	10±1	8±1	

залежить від температури у розглянутому температурному діапазоні практично для всіх параметрів, які розглядались в роботі.

Значення інтенсивності АХ під час УЗН U–L, U–Ts1 та U–Ts2 близькі (див. Таблицю 3). Проте наведені дані свідчать, що J_{sc} та V_{oc} більше змінюються під час U–Ts1 та U–Ts2, тобто при використанні поперечних хвиль. В той же час, U–L та U–Ts відрізняються значеннями $f_{\rm US}$ та $u_{\rm US}$ ($\xi_{\rm US}$). Проте раніше [15, 24] було показано, що збільшенні частоти УЗН ефективність впливу ультразвуку на кремнієві структури зростає. Отже, ефективність УЗ дії на КСЕ визначається насамперед зміщенням атомів (деформацією ґратки), а не інтенсивністю АХ (загальною енергією коливань, енергією яку отримує кристал під час УЗН). З цієї точки зору поперечні АХ є більш ефективним інструментом впливу, ніж повздовжні, так як за однакових енергетичних затрат дозволяють досягти більшого ефекту.

Рівняння (3.5) показує, J_{sc} суттєво залежить від довжини дифузії неосновних носіїв. Визначені шляхом апроксимації експериментальних залежностей значення L_n^{ph} та розраховані на їх основі величини τ_n^{ph} , а також їх зміни в умовах УЗН наведено в Таблицях 4 та 5. Лінії Рис. 3.4,а відображають результати

		SC17		SC11			
Параметр		У3Н		УЗН			
	U–L	U–L U–Ts1		U–L	U-Ts2	U-Tb3	
ε_{Jsc} , %	0±1	4±1	10±1	0±1	5±1	9±1	
ε_{Voc} , %	2±2	5±2	9±2	3±2	4±2	14±2	
ε_{FF} , %	2±1	3±1	4±1	2±1	2±1	5±1	
ε_{Ln}^{ph} , %	7±7	32±7	44±7	1±7	18±7	22±7	
ε_{Ln} , %	12±6	49±6	63±6	6±6	25±6	35±6	
$\varepsilon_{\tau n}^{ph}$, %	16±15	55±15	70±15	2±15	33±15	39±15	
$\varepsilon_{\tau n}$, %	19±12	73±12	87±12	11±12	43±12	57±12	
$\varepsilon_{\tau g}$, %	6±5	19±5	31±5	9±5	14±5	17±5	
$\Delta n_{\rm id}$,	1±1	2±1	4±1	1±1	3±1	3±1	

Табл. 5 — Акусто-індуковані зміни параметрів КСЕ.

 10^{-2}

 ε_{Rsh} , %

апроксимації. Отримані результати показують, що УЗ впливає на час життя неосновних носіїв і саме цим можна пояснити виявлені зміни струму короткого замикання в ультразвуковому полі.

 -8 ± 10

 17 ± 10

 33 ± 10

На жаль, аналітичних виразів для V_{oc} та FF у випадку моделі подвійного діоду у літературі не запропоновано. В той же час аналіз виразів на кшталт

$$J_{sc} = \frac{qn_{i}d}{2\tau_{g}} \left(e^{\frac{qV_{oc}}{n_{id}kT}} - 1 \right) + \frac{qn_{i}^{2}}{p_{p}} \sqrt{\frac{\mu_{n}kT}{\tau_{n}}} \left(e^{\frac{qV_{oc}}{kT}} - 1 \right) + \frac{V_{oc}}{R_{sh}}, (3.7)$$

$$J_{sc} \left(2 + \frac{R_{s}}{R_{sh}} \right) = \frac{qn_{i}d}{2\tau_{g}} \left(e^{-\frac{qJ_{sc}R_{s}}{n_{id}kT}} - 1 \right) + \frac{qn_{i}^{2}}{p_{p}} \sqrt{\frac{\mu_{n}kT}{\tau_{n}}} \left(e^{-\frac{qJ_{sc}R_{s}}{kT}} - 1 \right)$$
 (3.8)

з одного боку дещо утруднений, проте з іншого показує напруга холостого ходу та фактор форми залежать від τ_n , $n_{\rm id}$, τ_g , та R_{sh} . У наступному параграфі розглянуто вплив УЗ на ці параметри. Причини змін V_{oc} та FF обговорені в параграфі 3.2.5.

3.2.3 Особливості акустичного керування рекомбінацією в КСЕ

Традиційно, під час аналізу процесів, які відбуваються у структурах з p-n-переходом окремо розглядаються рекомбінацію в ОПЗ та в КНО. Параметрами, які ВАХ, які пов'язані з процесами в області просторового заряду є $n_{\rm id}$ та $J_{0SCR}=(qdn_i/2\tau_g)$. Під час аналізу отриманих результатів вважалося, що УЗ з невисокою інтенсивністю, використаний в роботі, не викликає зміни параметрів напівпровідника, які визначаються основною ґраткою (тобто $E_g,\ N_c,\ N_v$ тощо). Тому замість розгляду величини J_{0SCR} як цілого, основна увага була приділена τ_g . Отримані температурні залежності часу життя носіїв в ОПЗ та фактору неідеальності наведені на Рис. З.5,а та Рис. З.5,б, відповідно. Виявлено, що експериментальна температурна залежність τ_g цілком задовільно описується виразом

$$\tau_g(T) = \tau_{g0} \exp\left(-\frac{E_{\tau g}}{kT}\right) . \tag{3.9}$$

Як показано на Рис. 3.5,6, фактор неідеальності зменшується зі зростанням температури, а залежність $n_{\rm id}$ від 1/T близька до лінійної. Таким чином, залежність $n_{\rm id}(T)$ може бути описана наступним чином

$$n_{\rm id}(T) = n_{\rm id,\infty} + T_{\rm id}/T. \tag{3.10}$$

Величини $T_{\rm id}$ та $E_{\tau g}$, обчислені для зразків в умовах УЗН та без нього, наведено в Таблиці 4.

Як видно з наведених на Рис. 3.5 та в Таблиці 4 даних

- а) УЗН призводить збільшення nid та зменшення τ_g ; величини АІ змін показано в Таблиці 5;
- б) τ_g та $n{
 m id}$ змінюються більш ефективно при використанні поперечних АХ;
- в) $\varepsilon_{\tau g}$ та Δn_{id} збільшуються при використанні УЗ з більшими значеннями W_{US} ;
- г) УЗН не впливає на $E_{\tau g}$ та $T_{\rm id}$; $E_{\tau g}=0.24\pm0.01$ еВ для всіх досліджених зразків, тоді як характерна температура фактору неідеальності залежить від місця розташування зразка на пластині: $T_{\rm id}=330\pm30$ К для SC11 та $T_{\rm id}=230\pm20$ К для SC17.

Рис. 3.5 — Температурні залежності часу життя носіїв в ОПЗ (а) та фактору неідеальності (б) для зразків SC17 (криві 1–4, квадрати) та SC11 (5–8, кола). Криві 1 та 5 (незаповнені точки) отримані без УЗН, решта — під час УЗН: U–L (криві 2 та 6), U–Ts1 (3), U–Ts2 (7) та U–Tb3 (4 та 8). Точки — експеримент, лінії — результат апроксимації з використанням виразу (3.9) і $E_{\tau g}=0.24$ eV (а) та формули (3.10) і $T_{\rm id}=330$ або 230 K (б).

Для проведення аналізу отриманих результатів важливо визначити механізм рекомбінації в ОПЗ досліджених зразків. При цьому необхідно звернути увагу, насамперед, на велике значення $n_{\rm id}$ та малі значення τ_q .

Відповідно до класичної теорії Шоклі–Ріда–Хола (ШРХ), фактор неідеальності має бути не більшим ніж 2, а температурна залежність τ_g має описуватися виразом [114, 115]:

$$\tau_g \simeq 2 \, \tau_n \sqrt{\frac{\sigma_n}{\sigma_p}} \cosh\left(\frac{E_t - E_i}{kT}\right)$$
(3.11)

де σ_n та σ_p — поперечні перерізи захоплення (ППЗ) електронів та дірок, відповідно, рекомбінаційним центром; E_t — положення енергетичного рівня, зв'язаного з цим центром, E_i — положення рівня Фермі у власному напівпровіднику. В нашому випадку значення $n_{\rm id}$ більші ніж 2, а τ_g експоненційно зростає з підвищенням температури. Тобто теорія ШРХ не є застосовною.

В літературі для пояснення великих значень фактору неідеальності, які нерідко зустрічаються на практиці, запропоновано декілька моделей. Наприклад,

згідно з [116], неоднорідність фронтального металізованого контакту може викликати появу значних величин $n_{\rm id}$. Проте це модель передбачає, що фактор неідеальності має залежати від інтенсивності освітлення, тоді як в нашому випадку змін $n_{\rm id}$ для різних значень W_{ph} не спостерігалося. Веіет та Voss [117] пояснюють великі можливі значення $n_{\rm id}$ ефектами насичення (пов'язаними з наявністю декількох рекомбінаційних центрів) в рамках моделі ШРХ. Проте це теорія не здатна пояснити величини J_{0SCR} , які в нашому випадку значно перевищують очікувані, згідно з теорією ШРХ, значення для кремнію. Крім того, значні величини фактору неідеальності також пов'язуються з тунелюванням за участю глибоких рівнів (ГР) [118, 119]. Проте при такому підході $n_{\rm id}$ не має залежати від температури.

В той же час, всі експериментально спостережені особливості рекомбінації в ОПЗ можуть бути пояснені в рамках моделі рекомбінації у системі спарених рівнів дефектів (CDLR, coupled defect level recombination). Цей механізм передбачає швидкі переходи носіїв заряду безпосередньо між рівнями, які належать різним дефектам, розташованим поблизу один одного. Це явище спочатку було виявлене експериментально [120, 121], а потім використане для пояснення процесів, які відбуваються у напівпровідникових діодах [122–124]. На початкових етапах розвитку моделі вважалося [122], що щонайменше один з рівнів має бути мілким. Надалі було запропоновано, що такі процеси можуть проходити і за участю дефектів, рівні яких не розташовані близько до границь дозволених зон; проте темп рекомбінації буде максимальним, якщо дефект акцепторного типу утворює пару з дефектом донорного типу [123]. Надалі, для скорочення замість термінів «дефект акцепторного типу» та «дефект донорного типу» будемо використовувати «акцептор» та «донор», не маючи на увазі, що завдяки цим дефектом суттєво змінюється провідність кристалу. Зауважимо, що в цьому випадку мова не йде про утворення стійкої конфігурації на кшталт комплексного точкового дефекту (ТД), між компонентами якого виникає високоїнтенсивний зв'язок. У запропонованій парі (acceptor-like defect is coupled with donor-like defect) складові взаємодіють між собою лише внаслідок того, що електрон з рівня однієї (наприклад, донора) може переходити на рівень іншої (наприклад, акцептора).

Відповідно до CDLR, у спрощеному випадку, коли відсутні переходи між рівнем донора $E_t^{\rm D}$ та валентною зоною і між рівнем акцептора $E_t^{\rm A}$ та зоною провідності, темп рекомбінації R може бути описаний наступним виразом [122]:

$$R = \frac{R_{12} - \sqrt{R_{12}^2 - 4\tau_n^{\mathsf{D}}\tau_p^{\mathsf{A}}(np - n_i^2)(1 - \epsilon)}}{2\tau_n^{\mathsf{D}}\tau_p^{\mathsf{A}}(1 - \epsilon)}, \qquad (3.12)$$

$$R_{12} = \frac{(n+n_{D})(p+p_{A})}{R_{DA}} + \tau_{n}^{D}(p+p_{D}) + \tau_{p}^{A}(n+n_{A}), \qquad (3.13)$$

$$\tau_n^{\rm D} = (N_{\rm D} \, \sigma_n^{\rm D} \, v_{{\rm th},n})^{-1}, \ \tau_p^{\rm A} = (N_{\rm A} \, \sigma_p^{\rm A} \, v_{{\rm th},p})^{-1},$$
 (3.14)

де $R_{\rm DA}$ — так званий параметр зв'язку, $N_{\rm D}$ та $N_{\rm A}$ — густини донорів та акцепторів, відповідно; $\sigma_n^{\rm D}$ та $\sigma_p^{\rm A}$ — ППЗ електронів донором та дірок акцептором, відповідно; $v_{\rm th,n}$ та $v_{\rm th,p}$ — теплові швидкості електронів та дірок, відповідно; $n_{\rm D,A}$, $p_{\rm D,A}$ та ϵ залежать від $E_t^{\rm D}$, $E_t^{\rm A}$ та факторів виродження рівнів.

Відповідно до [123], ППЗ для дефекту в парі відрізняється від значення, характерного для ізольованого дефекту, і залежить від відстані r між донором та акцептором

$$\sigma_{n,p}^{\mathsf{D},\mathsf{A}}(r) = C_{n,p}^{\mathsf{D},\mathsf{A}} r^2, \tag{3.15}$$

де $C_n^{\rm D}$ та $C_p^{\rm A}$ — певні константи. Величина $R_{\rm DA}$ також залежить від r та пропорційна інтегралу перекриття хвильових функцій дефектів. Зокрема, якщо і донор, і акцептор характеризується водне—подібними хвильовими функціями і однаковим радіусом Бора a_B , то [123]

$$R_{\rm DA}(r) \sim N_{\rm D} N_{\rm A} \left[1 + \frac{r}{a_B} + \frac{1}{3} \left(\frac{r}{a_B} \right)^2 \right] e^{-r/a_0}$$
 (3.16)

На жаль, вираз, який би дозволяв аналітично описати взаємозв'язок між параметрами ВАХ (наприклад, $n_{\rm id}$ та τ_g) і характеристиками дефектів, які беруть участь У CDLR, відсутній. Однак, показано [122,124] що $n_{\rm id}$ збільшується зі зменшенням $R_{\rm DA}$. Так як $\tau_g \sim R^{-1}$, то видається цілком очікуваним, що $n_{\rm D,A}$, $p_{\rm D,A}$ та ϵ забезпечують термоактиваційний характер часу життя носіїв в ОПЗ. На нашу думку, величина $E_{\tau g}$ насамперед визначається енергетичними рівнями зв'язаних дефектів, тобто залежить від їх типу та конфігурації. В той же час, значення $T_{\rm id}$ залежить також і від $N_{\rm D}$ та $N_{\rm A}$. Таким чином, отримані результати свідчать, що

- а) у рекомбінаційних процесах як в SC11, так і в SC17 приймають участь однакові дефекти, так як значення $E_{\tau q}$ співпадає;
- б) концентрація рекомбінаційно–активних дефектів у зразках різна, про що свідчать неоднакові значення $T_{\rm id},\, au_{g,in}$ та $n_{{\rm id},in};$
- в) УЗН не призводить до змін енергетичних рівнів та концентрацій дефектів, так як $E_{\tau g}$ та $T_{\rm id}$ в умовах поширення АХ не міняються.

Величина $J_{0base}=(qn_i^2/n_n)\sqrt{\mu_nkT/\tau_n}$ відображає процеси, що відбуваються в КНО сонячного елементу. Під час аналізу вважалося, що n_n та μ_n не залежать від УЗН. Підставами для цього бути а) експериментально виявлена незалежність послідовного опору від УЗН; б) загальновідомий факт, що для дослідженого температурного діапазону рухливість визначається насамперед розсіянням на атомах гратки. У зв'язку з цим основна увага була приділена τ_n , температурна поведінка якого показана на Рис. З.б. Як і очікувалось відповідно до літературних даних, час життя неосновних носіїв збільшується з підвищенням температури. Визначені шляхом апроксимації експериментальних залежностей значення τ_n та розраховані на їх основі величини L_n , а також їх зміни в умовах УЗН наведено в Таблицях 4 та 5. Наведені результати показують, що УЗН призводить до зменшення τ_n , причому ефект достатньо значний: при поширення АХ значення часу життя може зменшуватись до 20 % вихідної значення.

Отримані таким чином величини $L_{n,in}$ цілком співрозмірні зі значеннями $L_{n,in}^{ph}$, отримані на основі аналізу залежностей $J_{sc}(T)$. Невеликі кількісні відмінності між ε_{Ln}^{ph} та ε_{Ln} , на нашу думку, пов'язані з певною АІ зміною температурної залежності довжини дифузії (див. Рис.3.6), яка не враховувалася під час апроксимації температурної залежності струму короткого замикання.

Час життя неосновних носіїв в загальному випадку описується наступним чином [125]:

$$\tau_n^{-1} = \tau_{\text{bb}}^{-1} + \tau_{\text{CE Auger}}^{-1} + \tau_{\text{SRH}}^{-1}, \tag{3.17}$$

де $au_{\rm bb}$ — час життя, пов'язаний з випромінювальною міжзонною рекомбінацією

$$\tau_{\rm bb}^{-1} = B(p_p + n_p + \Delta n),$$
(3.18)

B — коефіцієнт міжзонної рекомбінації, $B=1\cdot 10^{-14}~{\rm cm}^3{\rm c}^{-1}$ [125,126], Δn — концентрація нерівноважних електронів, $au_{\rm CE\,Auger}$ визначається Оже–рекомбінацією,

Рис. 3.6 — Температурні залежності часу життя неосновних носіїв в КНО для зразків SC17 (криві 1–4, квадрати) та SC11 (5–8, кола). Криві 1 та 5 (незаповнені точки) отримані без УЗН, решта — під час УЗН: U–L (криві 2 та 6), U–Ts1 (3), U–Ts2 (7) та U–Tb3 (4 та 8).

підсиленою внаслідок кулонівської взаємодії [127]

$$\tau_{\text{CE Auger}} = \frac{\Delta n}{np\left(1.8 \cdot 10^{-24} n_p^{0.65} + 6 \cdot 10^{-25} p_p^{0.65} + 3 \cdot 10 - 27 \Delta n^{0.8}\right)},$$
 (3.19)

n та p — концентрації електронів та дірок, відповідно; $au_{\rm SRH}$ — час рекомбінації ШРХ. В наших дослідах Δn не перевищувала $8\cdot 10^{13}~{\rm cm}^{-3}$. Як наслідок, розрахунки показали, що $au_{\rm bb}^{-1} \le 14~{\rm c}^{-1}$, $au_{\rm CE\,Auger}^{-1} \le 6~{\rm c}^{-1}$. А отже, міжзонною рекомбінацією та рекомбінацією Оже можна знехтувати, $au_n = au_{\rm SRH}$.

За умови низького рівня інжекції якщо в кристалі присутні декілька рекомбінаційних центрів au_{SRH} описується виразом

$$\tau_n^{-1} = \sum_{i}^{M_d} \tau_{n,i}^{-1} = \sum_{i}^{M_d} N_{d,i} \, \sigma_{n,i} \, \upsilon_{\text{th},n} \,, \tag{3.20}$$

де M_d — загальна кількість типів центрів, $\tau_{n,i}$ описує час життя при рекомбінації лише за участю дефектів i–го типу, які характеризуються концентрацією $N_{d,i}$ та ППЗ електронів $\sigma_{n,i}$.

Рис. 3.7 — Залежність оберненого часу життя в ОПЗ від інтенсивності введеного звуку (а) та від квадрату амплітуди АІ зміщень атомів для SC17 (квадрати, праві осі обох графіків) та SCR11 (кола, ліві осі) при 320 К. Заповнення точок залежить від УЗН і співпадає з наведеним на Рис. 3.6. Прямі - лінійна апроксимація (для а - лише даних, отриманих при використанні поперечних хвиль.

На Рис. 3.7 наведено залежність оберненого часу життя в ОПЗ від параметрів УЗН, причому в одному випадку таким параметром вибрана W_{US} , а в другому $-u_{US}^2$. Видно, що τ_n^{-1} лінійно зростає з підвищенням інтенсивності введеного УЗ, тобто АІ зміни часу життя можна записати у вигляді

$$\tau_n^{-1} = \tau_{n,in}^{-1} + K_{\text{US}}^* W_{\text{US}}, \qquad (3.21)$$

або

$$\tau_{n,\text{US}}^{-1} = \tau_{n,in}^{-1} + K_{\text{US}} u_{\text{US}}^2, \qquad (3.22)$$

де $K_{\rm US}^*$ та $K_{\rm US}$ характеризують акусто—дефектну взаємодію (АДВ) і залежать від властивостей дефекту та характеристик кристалу. Проте використання другого виразу є більш доцільним, так як $K_{\rm US}^*$ залежить також і від типу збуджених хвиль, тоді як $K_{\rm US}$ визначається лише АДВ. Іншими словами, саме зміщення атомів (а не інтенсивність АХ) є основним фактором впливу УЗН на рекомбінацію носіїв заряду. Зауважимо, що вирази (3.21) та (3.22) за формую схожі з добре відомою формулою Messenger—Spratt [101], яка описує зміни часу життя внаслідок радіаційного опромінення, причому роль флюєнса відіграє $u_{\rm US}^2$ ($W_{\rm US}$).

Визначені величини $K_{\rm US}$ наведено в Таблиці 4.

Рис. 3.8 — Температурні залежності шунтуючого опору SC11, отримані за умов УЗН та без нього (порожні кола).

На Рис. 3.8 показана температурна залежність шунтуючого опору зразка SC11. Зауважимо, що для SC17 $R_{sh} > 10^{15}$ Ом·см² незалежно від температури та УЗН і шунтуючий опір не впливав на BAX. З усього дослідженого набору зразків лише цей мав подібну особливість. З рисунка видно, що УЗН з використанням поперечних хвиль викликає зменшення R_{sh} , тоді як повздовжні хвилі практично не впливають на величину шунтуючого опору. Розраховані величини як R_{sh} , так і його AI змін наведені в Таблицях 4 та 5. Детальний розгляд можливих причин виникнення R_{sh} та впливу на нього УЗН наведено у параграфі 3.3.1.

- 3.2.4 Модель акусто-активного комплексного дефекту
- 3.2.5 Чисельний розрахунок залежностей напруги холостого ходу та фактора форми
- 3.3 Особливості акусто-дефектної взаємодії в опромінених кремнієвих структурах з p-n переходом
 - 3.3.1 Акусто-індуковані зміни шунтуючого опору

Висновки до розділу 3

1. Проведено

Основні результати даного розділу представлені в роботах [23, 53].

Розділ 4. Визначення параметрів структур метал-напівпровідник

4.1 Загальні підходи до визначення параметрів діодів Шотки

Напівпровідникові бар'єрні структури, як вже зазначалося раніше, надзвичайно широко застосовуються у техніці. Параметри подібних структур є найбільш суттєвим фактором для можливості практичного використання, а їх визначення відіграє надзвичайну важливу роль під час розробки, проектування та виготовлення пристроїв. Одним з найпроширеніших шляхів визначення параметрів полягає у вимірюванні вольт–амперних характеристик (ВАХ). В цьому випадку взаємозв'язок між струмом та напругою описується за допомогою певних фізичних моделей, в результаті чого з'являється можливість вичленити параметри, спираючись на результати експериментальних вимірювань. Наприклад, пряма гілка ВАХ ДШ згідно з моделлю термоемісії має описуватися [128] наступними виразами

$$I = I_s \left\{ \exp\left[\frac{q(V - IR_s)}{n_{\rm id}kT}\right] - 1 \right\}, \tag{4.1}$$

$$I_s = AA^* T^2 \exp\left(-\frac{q\Phi_b}{kT}\right), \qquad (4.2)$$

де I_s — струм насичення, R_s — послідовний опір, $n_{\rm id}$ — фактор неідеальності, A — площа діоду, A^* — ефективна стала Річардсона, Φ_b — висота бар'єру Шотки (ВБШ) при нульовому зміщенні. Φ_b (або I_s), $n_{\rm id}$ та R_s є найбільш фундаментальними параметрами даної моделі та повинні бути максимально точно визначені з експериментальних ВАХ.

В літературі запропоновано декілька методів визначення параметрів ДШ. Найпростіший стандартний метод вимагає наявності лінійної області на залежності $\ln(I)$ від V [128, 129]. В цьому випадку два параметри, $n_{\rm id}$ та Φ_b , можуть бути визначені за кутом нахилу та перетином залежності з віссю струмів, відповідно. На жаль, подібний підхід перестає бути дієздатним у випадку, коли структура характеризується значним послідовним опором. Зокрема,

рівняння (4.1) перетворюється у трансцендентне, що суттєво ускладнює математичні аспекти визначення параметрів. З одного боку, існує цілий набір аналітичних методів екстраполяції параметрів ДШ. Вони базуються на безпосередніх алгебраїчних наближеннях і використовують різноманітні допоміжні функції [130–138], процедури диференцювання [139] або інтегрування [140–142] ВАХ, вимірювання ВАХ при декількох температурах [143] або з використанням додаткового зовнішнього опору [144].

З іншого боку, визначення параметрів є багатовимірною задачею чисельної оптимізації і тому для її вирішення запропоновані різноманітні чисельні методи [145–148]. Зазвичай, вони використовують метод найшвидшого градієнтного спуску для мінімізації різниці між виміряними та апроксимуючими значеннями. При цьому деякі автори [149,150] шукають розв'язок рівняння (4.1) використовуючи W-функцію Ламберта [151]. Зазвичай, чисельні методи характеризуються більш високим рівнем достовірності визначення параметрів, проте нерідко вимагають відносно довгого часу для розрахунку. Крім того, спостерігається тенденція збіжності у локальний екстремум замість глобального.

Нарешті, порівняно нещодавно було запропоновано використовувати еволюційні алгоритми (ЕА) для визначення параметрів напівпровідникових пристроїв [103, 152–158]. ЕА це стохастичний метод, який виявляє дуже високу ефективність при оптимізації дійсних цільових функцій багатьох змінних. На відміну від чисельних методів, ЕА може бути застосований до нелінійних функцій без необхідності розрахунку похідних, а також слабко залежить від початкових наближень значень параметрів. ЕА вважаються [154] найбільш багатообіцяючими методами розрахунку параметрів.

У літературі наявні роботи [146, 159, 160], в яких проводиться порівняння та огляд шляхів визначення параметрів ДШ, проте вони переважно зосереджені на розгляді лише декількох метод і фактично не беруть до уваги еволюційні алгоритми. Задача, яка вирішувалась під час досліджень, описаних у даному розділі, полягала у порівнянні ефективності (точності визначення параметрів та швидкості роботи) різних методів визначення параметрів МН–структур з ВАХ. Крім того, розглянуте питання впливу величини окремих параметрів на точність

визначення всього набору. Було розглянуто підгрупу методів, які дозволяють визначити ВБШ, фактор неідеальності та послідовний опір використовуючи лише одну ВАХ. Зокрема, увага сфокусована на 10 аналітичних методах, 2 чисельних методах та 4 еволюційних алгоритмах (диференційної еволюції (DE, differential evolution), оптимізації зграї частинок (PSO, particle swarm optimization), модифікованої штучної бджолиної сім'ї (MABC, modified artificial bee colony) та оптимізованого викладання та навчання (TLBO, teaching learning based optimization)).

4.2 Контрольні вольт-амперні характеристики

Досліджені методи були застосовані до наборів ВАХ, отриманих як експериментально, так і синтезованих штучно. В останньому випадку використовувалися як ідеальні характеристики, так і криві з певним рівнем шуму, який віддзеркалював можливість наявності випадкових похибок вимірювань у реальних умовах.

4.2.1 Ідеальні синтезовані ВАХ

Переважно, для оцінки спроможності визначення параметрів структур МН за допомогою аналітичних [130–132, 134–137, 139, 140] та чисельних [146, 147] методів, а також еволюційних алгоритмів [152,154,155] використовують структури на основі кремнію. Керуючись таким загальноприйнятим підходом, під час синтезу ВАХ вважалося, що використовуються кремнієвий ДШ. ВАХ були розраховані за допомогою рівняння (4.1), для розв'язку якого застосовувався метод дихотомії [161, с. 158]. При цьому використовувалися значення $A = 3,14 \cdot 10^{-6}$ м² та $A^* = 112$ А см $^{-2}$ К $^{-2}$ (випадок n–Si [100]). Напруга змінювалась з кроком 0,01 В, струм вар'ювався в діапазоні $10^{-9} \div 10^{-2}$ А.

Задача полягала у перевірці ефективності методів при різних значеннях параметрів і тому дані були синтезовані для діапазону температур від 130 до 330 К. В той же час, ми намагались синтезувати ВАХ, які близькі до характеристик реальних діодів. Тому температурні залежності Φ_b , $n_{\rm id}$ та R_s були обрані, спираючись на наступні міркування. Як передбачено теорією [128] та спостережено на експерименті [162,163], для випадку однорідного контакту Шотки ВБШ має зменшуватись з підвищенням температури, причому очікувана залежність подібна до температурної залежності ширини забороненої зони напівпровідника. Тому для апроксимації температурної залежності ВБШ використовувалося рівняння Варшні [164]

$$\Phi_b(T) = \Phi_b(0) - \frac{7.021 \cdot 10^{-4} T^2}{T + 1108},\tag{4.3}$$

причому вважалося, що ВБШ при нульовій температури $\Phi_b(0) = 0.75$ eB. Температурна залежність фактору неідеальності нерідко описується співвідношенням

$$n_{\rm id} = 1 + \frac{T_0}{T},$$
 (4.4)

де величина константи T_0 для випадку кремнію знаходиться в діапазоні $20 \div 50$ К [162,165–167]. Для синтезу ВАХ було використане значення $T_0 = 35$ К. Температурна залежність послідовного опору може бути описана виразом [129, 168, 169]

$$R_s = R_{s0} \exp\left(\frac{E_a}{kT}\right),\tag{4.5}$$

де E_a – енергія активації легуючої домішки. В роботі були використані значення $E_a=0.044$ eB (що відповідає домішковому атому фосфору) та $R_{s0}=0.25$ Ом.

Як наслідок, набір синтезованих для аналізу ВАХ складався з 21 кривої, які відповідали інтервалу температуз $130 \div 330$ К з кроком 10 К. При цьому Φ_b , $n_{\rm id}$ змінювались R_s від 0,740 до 0,697 eB, від 1,27 до 1,11 та від 12,6 to 1,2 Ом, відповідно.

4.2.2 Синтезовані ВАХ з випадковими похибками

Для того, щоб моделювати можливі випадкові похибки, які виникають під час вимірювань, та проаналізувати стійкість методів визначення параметрів до

їх наявності, були також синтезовані набори ВАХ, в яких значення напруги та струму вибиралися з певним рівнем шуму. В цьому випадку напруга V_i та струм I_i , які відповідали i—й точці ВАХ вибиралися випадковим чином використовуючи розподіл Гауса. Тобто, густина ймовірності очікування певної величини напруги описувалася виразом

$$f(V_i, \overline{V}_i, \sigma_V) = \frac{1}{\sigma_V \sqrt{2\pi}} \exp\left[-\frac{(V_i - \overline{V}_i)^2}{2\sigma_V^2}\right]. \tag{4.6}$$

При цьому середнє значення (сподівання) напруги \overline{V}_i змінювалося з кроком 0,01 В, середнє значення сили струму \overline{I}_i обчислювалося використовуючи рівняння (4.1) та \overline{V}_i . Стандартне відхилення (дисперсія) напруги σ_V вибиралася сталою для всього набору (21 криві) ВАХ. Стандартне відхилення сили струму σ_I залежало від величини сили струму $\sigma_I = \sigma_I^\varepsilon \cdot \overline{I}_i$, де постійна для набору ВАХ величина σ_I^ε — відносна дисперсія струму. Такий підхід відповідає достатньо поширеному на практиці випадку, коли відносні похибки вимірювання напруги та струму залишаються сталими для всієї ВАХ. Надалі для позначення синтезованих подібним чином ВАХ буде використовуватися термін "зашумлені синтезовані дані"(noisy synthetic data).

Різні набори синтезованих ВАХ відрізнялися значеннями σ_V та σ_I^{ε} . Фактично, для ідеальних синтезованих ВАХ $\sigma_V=0$ В and $\sigma_I^{\varepsilon}=0$.

4.2.3 Експериментальні ВАХ

Досліджені методи були застосовані також до експериментально виміряних ВАХ кремнієвих структур SSDA, описаних в параграфі 5.1. Параметри ДШ визначались на основі характеристик, отриманих в інтервалі температур 130 ÷ 330 К, який співпадав з діапазоном синтезованих ВАХ.

4.3 Критерії точності методів

У випадку, коли методи застосовувалися для аналізу синтезованих ВАХ, проводилося оцінювання точності визначення параметрів. Зокрема, для кількісної оцінки точності кожного з методів використовувалися наступні величини. Наприклад, оцінювання визначення фактору неідеальності з однієї ВАХ χ_n^q здійснювалося за допомогою виразу

$$\chi_n^q = \left(\frac{n_{\text{id},ext} - n_{\text{id},ac}}{n_{\text{id},ac}}\right)^2,\tag{4.7}$$

де $n_{id,ext}$ — значення, отримане в результаті застосування методу, $n_{id,ac}$ — точне значення, яке використовувалося під час синтезу ВАХ.

Точність визначення n_{id} на всьому наборі ВАХ ε_n обчислювалася наступним чином:

$$\varepsilon_n = \sqrt[2N_N]{\prod_{i=1}^{N_N} \chi_{n,i}^q},\tag{4.8}$$

де N_{IV} — загальна кількість ВАХ у наборі. Зауважимо, що ε_n — це квадратних корінь з середньо—геометричного значення χ_n^q . Для оцінювання точності визначення ВБШ та послідовного опору з однієї ВАХ використовувалися величини χ_{Φ}^q та χ_R^q , а для набору ВАХ — ε_{Φ} and ε_R , для розрахунку яких використовувалися вирази, аналогічні (4.7) та (4.8), відповідно.

4.4 Методи визначення параметрів ДШ

4.4.1 Аналітичні методи

Модифікований метод Норда [130, 131, 143, 170] базується на використанні допоміжної функції

$$F(V) = \frac{V}{\gamma_N} - \frac{kT}{q} \ln \left(\frac{I(V)}{AA^*T^2} \right), \tag{4.9}$$

де γ_N — довільна константа, яка має бути більша, ніж фактор неідеальності. При цьому величини ВБШ та послідовного опору визначаються за допомогою співвідношень

$$\Phi_b = F(V_{min}) + \frac{\gamma_N - n_{id}}{n_{id}} \left(\frac{V_{min}}{\gamma_N} - \frac{kT}{q} \right), \tag{4.10}$$

$$R_s = \frac{(\gamma_N - n_{\rm id})kT}{qI_{min}}, (4.11)$$

де $F(V_{min})$ та V_{min} — це координати точки мінімуму залежності F(V) від V; I_{min} — струм, який на ВАХ відповідає V_{min} .

Необхідно підкреслити, що згідно з цим методом, значення $n_{\rm id}$ має бути відомим. Як наслідок, при застосування метода Норда до синтезованих та експериментальних ВАХ, використовувалися величини $n_{{\rm id},ac}$ та значення, отримане з використанням методу МАВС, відповідно.

Крім того, для випадку $R_s < 5$ Ом, мінімум функції Норда F(V), побудованої на основі ВАХ в діапазоні струмів до 10^{-2} А, не спостерігався взагалі. Тому при застосуванні цього методу, так і методу Бохліна (описаного нижче), використовувалися набори ВАХ, синтезовані в більш широкому струмовому діапазоні, від 10^{-9} до 10^{-2} А.

Нарешті, проведені розрахунки показали, що точність методу Норда залежить від вибраної величини γ_N . Відповідні залежності наведено на Рис. 4.1. Зокрема показано, що похибка визначення Φ_b збільшується зі зростанням γ_N як для випадку ідеальних синтезованих ВАХ, так і при використанні зашумлених даних. В той же час, похибка визначення R_s а) зменшується зі зростанням γ_N при $\gamma_N < 2$ і залишається сталою при $\gamma_N > 2,5$ для зашумлених даних; б) немонотонно залежить від γ_N для ідеальних синтезованих ВАХ. Враховуючи виявлені суперечливі тенденції для мінімізації похибки методу Норда при отриманні наведених надалі даних використовувалося значення $\gamma_N = 1,8$.

Для позначення результатів, отриманих з використанням методу Норда, використовується мітка «Norde».

J. Werner [132] показав, що за умови коли падіння напруги в області бар'ру $V_d = (V - IR_s) \gg nkT/q$, то

$$\frac{(dI/dV)}{I} = \frac{q}{nkT} \left[1 - R_s \left(\frac{dI}{dV} \right) \right]. \tag{4.12}$$

Рис. 4.1 — Залежності точності визначення Φ_b (а) та R_s (б) від величини γ_N . при застосуванні метода Норда до набору ідеальних синтезованих ВАХ (суцільні лінії) та зашумлених даних (штрихові лінії).

Рівняння (4.12) показує, що графік залежності (dI/dV)/I від (dI/dV) має бути прямою лінією, причому її нахил та точка перетину з вертикальною віссю визначаються R_s and $n_{\rm id}$.

На жаль, даний метод дозволяє визначити лише два параметри ДШ. Для оцінки величини ВБШ була використана наступна процедура. Спираючись на визначене значення R_s , експериментальна або синтезована ВАХ корелювалася і проводилась побудова залежності $\ln I$ від V_d . Після цього проводилась апроксимація отриманої залежності лінійною функцією за методом найменших квадратів [161, с. 67] в діапазоні $V_d > 3kT/q$. Необхідно підкреслити, що під час апроксимації нахил кривої може розглядатися або як незалежна величина, яка обчислюється, або як відома величина, що визначається попередньо визначеним (під час апроксимації функції (eqWerner)) значенням $n_{\rm id}$. В роботі розглянуто обидва випадки. Якщо величини R_s and $n_{\rm id}$ визначались шляхом лінійної апроксимації функції (eqWerner), а Φ_b — як перетин залежності $\ln I = f(V_d)$ при відомому нахилі, то використовується позначення «Werner». Якщо ж лише R_s

визначається за допомогою функції Вернера (4.12), а Φ_b and $n_{\rm id}$ обчислюються потім із залежності $\ln I = f(V_d)$, то використовується позначення «Werner*». Подібний підхід до позначень отриманих результатів (із зірочкою та без неї належно від того, скільки незалежних величин використовується при апроксимації скорельованих відповідно до визначеного раніше значення послідовного опору ВАХ) використовуються і для інших методів, детальніше описаних нижче.

R. Cibils та R. Buitrago [137] запропонували використовувати допоміжну функцію у вигляді

$$F_a(V) = V - V_a \ln I, \tag{4.13}$$

де V_a практично довільне значення напруги, $V_a \ge 99,5I_sR_s + n_{\rm id}kT/q$. Якщо $I_{min,a}$ — це значення струму, яке відповідає напрузі V_{min} , при якій спостерігається мінімум функції $F_a(V)$, то залежність $I_{min,a}$ від V_a має бути [137] лінійною:

$$I_{min,a} = (V_a - n_{id}kT/q)/R_s$$
. (4.14)

В роботі при побудові сімейства допоміжних функцій згідно з виразом (4.13), використовувалися значення V_a в діапазоні від 0,035 В до максимального значення напруги для даної ВАХ. Крок зміни V_a дорівнював 1 мВ. Отримані результати позначені міткою «Cibils».

А. Катіпskі зі співавторами [140] запропонували два методи. Перший з них використовує допоміжну функцію, яка будується з використанням інтегрування ВАХ. Так, ордината та абсциса j—ої точки допоміжного графіку розраховуюся як

$$Y_j = \frac{1}{I_j - I_1} \int_{V_1}^{V_j} I \, dV \quad \text{and} \quad X_j = \frac{I_j + I_1}{2},$$
 (4.15)

де V_i та I_i — це координати i—ої точки ВАХ, $i \in (1, \ldots, N_p), j \in (2, \ldots, N_p)$. Згідно з цим методом очікується, що залежність Y від X має бути лінійною, причому

$$Y = n_{\rm id}kT/q + R_sX. (4.16)$$

Тобто, лінійна апроксимація допоміжної функції дозволяє визначити R_s та $n_{\rm id}$.

В роботі лінійна апроксимація здійснювалась за допомогою методу найменших квадратів. Чисельне інтегрування ВАХ здійснювалось за методом

трапецій [161, с. 98]. Отримані результаті позначені мітками «Kaminski I» та «Kaminski* I».

У другому методі, розглянутому в роботі [140], також використовується допоміжна функція Y від X, проте

$$Y_k = \frac{\ln(I_j/I_i)}{I_j - I_i}$$
 and $X_k = \frac{V_j - V_i}{I_j - I_i}$, (4.17)

 $i \in (1, \dots, N_p - 1), j \in (i + 1, \dots, N_p), k \in (1, \dots, N_p(N_p - 1)/2).$ Отримана таким чином залежність має бути прямолінійною:

$$Y = q(-R_s + X)/n_{id}kT.$$
 (4.18)

Отримані за допомогою даного підходу результати позначені мітками «Kaminski II» та «Kaminski* II».

У методі, запропонованому в роботі [136], використовуються дві функції Норда, побудовані з використанням двох різних значень γ_N :

$$F_1(V) = V/\gamma_1 - kT/q \cdot \ln(I/AA^*T^2),$$

$$F_2(V) = V/\gamma_2 - kT/q \cdot \ln(I/AA^*T^2).$$
 (4.19)

Передбачено, що параметри ДШ визначаються за допомогою співвідношень

$$n_{\text{id}} = \frac{1}{2} \left[\frac{\gamma_{1} I_{\min,2} - \gamma_{2} I_{\min,1}}{I_{\min,2} - I_{\min,1}} + \frac{V_{\min,1} - V_{\min,2} + (\gamma_{2} - \gamma_{1})kT/q}{F_{2}(V_{\min,2}) - F_{1}(V_{\min,1}) - V_{\min,2}/\gamma_{2} + V_{\min,1}/\gamma_{1}} \right],$$

$$Rs = \frac{kT}{2q} \left[\frac{\gamma_{1} - n_{\text{id}}}{I_{\min,1}} + \frac{\gamma_{2} - n_{\text{id}}}{I_{\min,2}} \right],$$

$$\Phi_{b} = \frac{1}{2} \left[F_{1}(V_{\min,1}) + \frac{(\gamma_{1} - n_{\text{id}})(qV_{\min,1} - \gamma_{1}kT)}{\gamma_{1}qn_{\text{id}}} + \frac{F_{2}(V_{\min,2}) + \frac{(\gamma_{2} - n_{\text{id}})(qV_{\min,2} - \gamma_{2}kT)}{\gamma_{2}qn_{\text{id}}} \right].$$

$$(4.22)$$

де $[F_1(V_{min,1}),V_{min,1}]$ та $[F_2(V_{min,2}),V_{min,2}]$ — це координати мінімумів функцій $F_1(V)$ від V та $F_2(V)$ від V, відповідно; $I_{min,1}$ та $I_{min,2}$ — значення струму, які відповідають на ВАХ значенням напруги $V_{min,1}$ та $V_{min,2}$, відповідно.

Проведені чисельні дослідження показали, що, як і в методі Норда, в цьому випадку точність визначення параметрів залежить від вибору величин γ_1 та

Рис. 4.2 — Залежності точностей визначення R_s (a), Φ_b (б) та $n_{\rm id}$ (в) від величини параметрів γ_1 та γ_2 при застосуванні метода Бохліна. Наведено результати, отримані для наборів ідеальних ($\sigma_V=0$ V, $\sigma_I^\varepsilon=0$) синтезованих ВАХ (область $\gamma_1>\gamma_2$) та зашумлених ($\sigma_V=0.3$ мВ, $\sigma_I^\varepsilon=1\%$) даних (область $\gamma_2>\gamma_1$).

 γ_2 . Отримані результати приведені на Рис. 4.2. Зокрема виявлено, що похибка екстрагування параметрів зростає при збільшенні модуля різниці параметрів $|\gamma_1-\gamma_2|$. З метою мінімізації помилок методу в подальшому наведені результати, отримані при використанні величин $\gamma_1=1,6$ та $\gamma_2=3,5$. Отримані результати позначені міткою «Bohlin».

В роботі [135] для визначення параметрів ДШ запропоновано використовувати масив функцій $\{F_L(I)\}$:

$$F_L(I) = V(I) - V_a \ln I,$$
 (4.23)

де V_a — це довільне значення напруги. Кожна з функцій $F_L(I)$ має бути апроксимована залежністю

$$y(I) = c_1 + c_2 I + c_3 \ln I (4.24)$$

та параметри c_1 , c_2 та c_3 мають бути визначені. Тоді очікується [135], що при V>3kT/q, залежність $I_a=-c_3/c_2$ від V_a має бути лінійною:

$$I_a(V_a) = (-n_{\rm id}kT/q + V_a)/R_s,$$
 (4.25)

що дозволяє визначити послідовний опір та фактор неідеальності. В свою чергу, Φ_b може бути розрахований [135] за допомогою виразу

$$\Phi_b = c_3/n_{\rm id} + kT/q \cdot \ln(AA^*T^2). \tag{4.26}$$

В роботі при застосуванні даного методу використовувалися значення V_a починаючи з 40 мВ з кроком 20 мВ; апроксимація $F_L(I)$ здійснювалась за методом найменших квадратів. Отримані дані позначені міткою «Lee».

В роботі Д. Громова та В. Пугачевича [134] розглянуто два можливі шляхи визначення параметрів ДШ. Згідно з першим з них, залежність напруги від струму може бути апроксимована виразом (4.24) причому

$$R_s = c_2, (4.27)$$

$$n_{\rm id} = (c_3 q)/(kT),$$
 (4.28)

$$\Phi_b = \left[c_1/c_3 + \ln \left(AA^*T^2 \right) \right] kT/q. \tag{4.29}$$

Другий шлях полягає у тому, що вираз (4.24) застосовується до апроксимації функції Норда з $\gamma_N=2$:

$$F(I) = V(I)/2 - kT/q \cdot \ln(I/AA^*T^2). \tag{4.30}$$

В цьому випадку [134]

$$R_s = 2c_2,$$
 (4.31)

$$n_{\rm id} = (2c_3q)/(kT) + 2,$$
 (4.32)

$$\Phi_b = \frac{2c_1}{n_{\rm id}} + \frac{(2 - n_{\rm id})kT}{n_{\rm id}q} \ln\left(AA^*T^2\right). \tag{4.33}$$

Застосування методів показало, що обидва підходи приводять до абсолютно однакових результатів. Більше того, визначені значення параметрів дуже близькі до даних, які отримані за однакових початкових умов при використанні методу, описаного в роботі [135] та згаданого трохи вище. Тобто ці методи не є незалежними.

З іншого боку, проведені оцінки показали, що точність визначення параметрів за допомогою цих методів залежить від діапазону вихідної ВАХ, який використовується для побудови допоміжної функції, яка потім апроксимується

Рис. 4.3 — Залежності точності визначення R_s (a), Φ_b (б) та $n_{\rm id}$ (в) при використанні методу Громова. Наведено результати, отримані при апроксимуванні залежністю (4.24) допоміжної функції, побудованої на основі ділянки ВАХ в діапазоні напруг від V_{lim} до максимально значення.

Горизонтальні лінії вказують похибки значень параметрів ДШ, які отримані при використанні адаптивної процедури (див. текст). Представлені результати, отримані при застосуванні методу до ідеальних синтезованих ВАХ (заповнені кружечки, суцільні лінії) та зашумлених даних з $\sigma_V=0.1$ мВ та $\sigma_I^\varepsilon=0.5\%$ (незаповлені квадрати, штрих–пунктирні лінії) та з $\sigma_V=0.5$ мВ та $\sigma_I^\varepsilon=1\%$ (напівзаповнені трикутники, пунктирні лінії)

залежністю (4.24). Так, на Рис. 4.3 наведено залежності похибок екстрагованих параметрів від початкового значення діапазону напруг, в якому проводилась апроксимація. Видно, що для ідеальних ВАХ точність підвищується при звуженні використаного діапазону. Водночас, для зашумлених даних спостерігається екстремальне значення точності при певних значеннях ширини діапазону. Причому ширина та положення діапазону, при якому точність визначення параметрів найбільша, залежить від рівня шуму.

У зв'язку з цим, для покращення ефективності роботи методів Громова та Лі, пропонується використовувати спеціальну адаптивну процедуру вибору діапазону побудови допоміжної функції. Вона полягає в тому, що параметрів визначаються для всіх можливих діапазонів, кількість яких залежить від кількості точок вихідної ВАХ. Після цього для кожного отриманого набору параметрів

обчислюється величина $\theta = \sum_{i=1}^{N_p} [1 - I_{calc}(V_i)/I_i]^2$, де $I_{calc}(V_i)$ розраховується з використанням виразів (4.1) та (4.2). Найкращим за точністю вважається той набір параметрів, для якого спостерігається мінімум величини θ .

Зрозуміло, що подібна адаптивна процедура збільшує час, необхідних для визначення параметрів ДШ через необхідність багатократного повторення застосування методу Громова (Лі) та додаткових розрахунків. Проте, з іншого боку, ця процедура може бути автоматизована, а також дозволяє підвищити точність — див. лінії на Рис. 4.3.

Нижче представлені результати застосування методу Громова з використанням запропонованої адаптивної процедури. Отримані дані позначені міткою «Gromov». Різниця між ними та позначеними міткою «Lee» визначає, фактично, доцільність запропонованої процедури.

В роботі [133] запропоновано визначати параметри ДШ шляхом побудови залежностей функцій H(V)

$$H(I) = V - \frac{n_{\rm id}kT}{q}\ln\left(\frac{I}{AA^*T^2}\right). \tag{4.34}$$

та $dV/d(\ln I)$ від сили струму. За умови $V_d>3kT/q$ ці залежності мають бути лінійними, причому

$$\frac{dV}{d\ln I} = R_s I + n_{\rm id} kT/q, \tag{4.35}$$

$$H(I) = n_{\rm id}\Phi_b + IR_s. \tag{4.36}$$

При застосуванні методу спочатку визначаються R_s та $n_{\rm id}$ на основі рівняння (4.35), а потім Φ_b , використовуючи вираз (4.36) та обчислене на попередньому кроці значення $n_{\rm id}$. Отримані результати позначені міткою «Chung».

Ще одним методом, де використовуються диференційні коефіцієнти ВАХ, є запропонований в роботі [139]. В цьому випадку все починається з обчислення функції $\alpha(V)$:

$$\alpha(V) = d(\ln I)/d(\ln V). \tag{4.37}$$

Рис. 4.4 - 3алежності функції (4.37) (а) та її похідної (б) від напруги. Наведено графіки для зашумлених даних ($\sigma_V=0.3$ мВ, $\sigma_I^{\varepsilon}=1\%$, криві 1 та 2), для експериментально виміряних ВАХ (криві 3 та 4) та для ідеальних синтезованих ВАХ (вставка, криві 5 та 6) до (1, 3, 5) та після (2, 4, 6) запропонованої обробки.

Визначення параметрів відбувається з використанням співвідношень

$$R_{s} = \frac{V_{max}}{\alpha_{max}^{2} I_{max}},$$

$$n_{id} = \frac{qV_{max}(\alpha_{max} - 1)}{\alpha_{max}^{2} kT},$$

$$(4.38)$$

$$n_{\rm id} = \frac{qV_{max}(\alpha_{max} - 1)}{\alpha_{max}^2 kT}, \tag{4.39}$$

$$\Phi_b = \frac{kT}{q} \left[\alpha_{max} + 1 - \ln \left(\frac{I_{max}}{AA^*T^2} \right) \right]. \tag{4.40}$$

де α_{max} та V_{max} це координати максимуму залежності α від V; I_{max} — сила струму, яка відповідає напрузі V_{max} .

Зауважимо, що однією з необхідних властивостей методу, які використовуються для обчислення параметрів пристроїв з набору ВАХ, отриманих за різних умов, є можливість його застосування в автоматичному режимі. В цьому випадку один з найпоширеніших варіантів пошуку екстремуму полягає у знаходженні нулів похідної. Як видно з виразів (4.37)–(4.40), для даного методу це означає необхідність проведення процедури чисельного знаходження другої похідної ВАХ.

Рис. 4.4(а) показує, що при використанні експериментальних ВАХ чи зашумлених даних чисельне диференціювання викликає появу багаточисленних локальних екстремумів на залежності функції α від V. Ці екстремуми заважають автоматичному виявленню точки максимуму через наявність багатьох нульових точок на залежності $d\alpha/dV$ від V — див. Рис. 4.4(б). З метою подолання цих труднощів, в роботі запропоновано проводити спеціальну 2-стадійну процедуру обробки даних. А саме, на першій стадії обробки до отриманої з ВАХ залежності α від V пропонується застосовувати 3-точковий медіанний фільтр, після чого, на другій стадії, проводити згладжування. І лише після цього, проводити визначення положення максимуму, знаходження величин α_{max} , V_{max} та I_{max} і розрахунок величин параметрів ДШ. Дані на Рис. 4.4 показують, що запропонована процедура обробки дійсно зменшує вплив побічних максимумів та дозволяє покращити точність методу. Згладжування здійснюється завдяки усередненню по трьом сусіднім точкам з ваговими коефіцієнтами, які визначаються розподілом Гауса з дисперсією, рівною 0,6.

Надалі наведено результати, позначені міткою «Mikhelashvili» та отримані з використанням зазначеної процедури обробки.

4.4.2 Чисельні методи

Надалі також наведені результати отримані при використанні стандартного методу найменших квадратів зі статистичними ваговими коефіцієнтами [161, с. 67]. В цьому випадку параметри визначались шляхом мінімізації квадратичної форми

$$S(I_s, n_{id}, R_s) = \sum_{i=1}^{N_p} I_i^{-1} \left[I_i - I_{calc}(V_i, I_s, n_{id}, R_s) \right]^2, \tag{4.41}$$

де I_{calc} — значення сили струму, отримане при інтерполяції. При мінімізації шукався розв'язок системи рівнянь, отриманих з умов $\partial S/\partial I_s=0$, $\partial S/\partial n_{\rm id}=0$ та $\partial S/\partial R_s=0$. Пошук розв'язку цієї системи нелінійних рівнянь проводився за допомогою методу покоординаткого градієнтного спуску [161, с. 231]. Як критерій зупинки ітераційного процесу було вибрано умову $|(S_j-S_{j+1})/S_j|<10^{-12}$, де S_j — це значення квадратичної форми на j—му кроці ітерації. Початкове наближення величини R_s обчислювалося шляхом визначення перетину з координатною віссю залежності (dV/dI)/I від 1/I, побудованої з використанням останніх п'яти точок ВАХ. Початкові наближення I_s та $n_{\rm id}$ отримувалися шляхом лінійної апроксимації залежності $\ln I$ від V_d , причому для визначення останньої величини використовувалися початкове наближення R_s .

Було розглянуто два варіанти методу найменших квадратів. В першому з них для обчислення I_{calc} використовувався вираз (4.1), тобто квадратична форма мала вигляд

$$S(I_s, n_{id}, R_s) = \sum_{i=1}^{N_p} I_i^{-1} \left[I_i - I_s \left\{ \exp\left[\frac{q(V_i - I_i R_s)}{n_{id} kT}\right] - 1 \right\} \right]^2.$$
 (4.42)

Отримані внаслідок мінімізації функції (4.42) результати позначені міткою «Ordinary LS».

В другому випадку при побудові квадратичної форми використовувалася W-функція Ламберта. За визначенням, функція W є розв'язком рівняння $z=W(z)\cdot\exp(W(z))$, її значення обчислюються за допомогою ряду [151]. Згідно з результатами, представленими в роботі [149], явний розв'язок трансцендентного рівняння (4.1) може бути виражений за допомогою основної гілки функції Ламберта, причому у випадку нехтування впливом шунтуючого опору він має вигляд

$$I(V) = \frac{n_{\rm id}kT}{qR_s}W\left\{\frac{qR_s}{n_{\rm id}kT}\exp\left[\frac{q(V+R_sI_s)}{n_{\rm id}kT}\right]\right\} + I_s. \tag{4.43}$$

Тобто, квадратична форма може бути записана у вигляді

$$S(I_{s}, n_{id}, R_{s}) = \sum_{i=1}^{N_{p}} I_{i}^{-1} \left[I_{i} - \frac{n_{id}kT}{qR_{s}} W \left\{ \frac{qR_{s}}{n_{id}kT} \exp \left[\frac{q(V_{i} + R_{s}I_{s})}{n_{id}kT} \right] \right\} - I_{s} \right]^{2},$$
(4.44)

Результати, отримані при мінімізації форми (4.44), позначені міткою «Lambert LS».

4.4.3 Еволюційні алгоритми

Еволюційні алгоритми — це клас обчислювальних оптимізаційних моделей, які при своїй побудові та реалізації імітують поведінку живої природи. При своїй роботі вони оперують наборами (популяціями) P можливих розв'зків \overrightarrow{X} : $P=\left\{\overrightarrow{X_k}\right\},\ k\in(1,\ldots,N_S),\ \text{де }N_S$ — це загальна кількість розв'язків у популяції. Кожен із розв'язків (претендентів на звання остаточного розв'язку) є вектором, що складається з дійсних чисел: $\overrightarrow{X_k}=\{x_{k,i}\},\ i\in(1,\ldots,N_D),\ \text{де }N_D$ дорівнює загальній кількості параметрів, які потрібно оптимізувати. В нашому випадку $N_D=3,\ \overrightarrow{X}=\{R_s\,,n_{\mathrm{id}},\ln I_s\}.$

Перед початком оптимізаційного процесу створюється початкова популяція. Зазвичай початкові значення параметрів вибираються випадковим чином з інтервалу $[\overrightarrow{X}^L, \overrightarrow{X}^H]$:

$$x_{k,i,0} = x_i^L + r_{[0,1]}(x_i^H - x_i^L), (4.45)$$

де $r_{[0,1]}$ — випадкове число, рівномірно розподілене на інтервалі [0,1], $\overrightarrow{X}^L = \left\{x_i^L\right\}$ та $\overrightarrow{X}^H = \left\{x_i^H\right\}$ — нижня та верхня границі простору, де шукаються розв'язки, відповідно. В даній роботі проводився пошук у просторі, границі якого задані наступним чином: $R_s \in [0,50]$ Ом, $n_{\mathrm{id}} \in [1,2]$, $I_s \in [10^{-26},10^{-2}]$ А.

На кожному кроці ітерації а) проводиться трансформація кожного з розв'язків: $\left\{\overrightarrow{X}_{k,j-1}\right\} \to \left\{\overrightarrow{X}_{k,j}\right\}$, $j \in (1,\dots,N_{it})$, N_{it} — максимальна кількість ітерацій; процедура трансформації залежить від конкретного алгоритму і описана далі; б) розраховується значення функції придатності (або цільової функції) $Fit(\overrightarrow{X}_{k,j})$ для кожного k—го розв'язку. Оптимальним для j—го ітераційного кроку розв'язком $\overrightarrow{X}_{j}^{opt}$ вважається той, для якого значення функції придатності мінімальне: $Fit(\overrightarrow{X}_{j}^{opt}) = min\left\{Fit(\overrightarrow{X}_{k,j}^{opt})\right\}$. Кінцевим результатом вважається $\overrightarrow{X}_{N_{it}}^{opt}$.

В даній роботі використовувалася цільова функція у вигляді суми квадратів відносних похибок апроксимації кожної з точок ВАХ

$$Fit = \sum_{i=1}^{N_p} \left\{ 1 - \frac{I_s}{I_i} \left[\exp\left(\frac{q(V_i - I_i R_s)}{nkT}\right) - 1 \right] \right\}^2.$$
 (4.46)

 N_{it} визначалося умовою збіжності розв'язку.

Метод диференційної еволюції імітує процеси природного відбору і використовує процеси диференційної мутації та випадкового схрещування. У термінології даного алгоритму кожен з розв'язків називається особою, а послідовність дій на j-му ітераційному кроці має наступний вигляд [103, 104]:

– Мутація. Для кожного вектору $\overrightarrow{X}_{k,j-1}$ генерується вектор мутації $\overrightarrow{M}_{k,j}$

$$\overrightarrow{M}_{k,j} = \overrightarrow{X}_{r_1,j-1} + F_{sc} \cdot \left(\overrightarrow{X}_{r_2,j-1} - \overrightarrow{X}_{r_3,j-1} \right), \tag{4.47}$$

де $r_1, r_2, r_3 \in (1, \dots, N_S)$ вибираються випадковим чином і мають відрізнятися від індексу k. $F_{sc} \in [0,2]$ — дійсна стала величина, що називається масштабним коефіцієнтом.

– Схрещування. Формується пробний вектор $\overrightarrow{U}_{k,j}$

$$u_{k,i,j} = \begin{cases} m_{k,i,j}, & \text{if } r_{[0,1]} \le CR & \text{or } i = r_4 \\ x_{k,i,j-1}, & \text{otherwise} \end{cases}$$
 (4.48)

причому випадкова величина $r_4 \in (1, \dots, N_D)$ забезпечує наявність в $\overrightarrow{U}_{k,j}$ хоча б одного елемента з $\overrightarrow{M}_{k,j}$; константа $CR \in [0,1]$ називається темп схрещування. Спираючись на результати, представлені в [154], в даній роботі в даній роботі були використана штрафна функція, яка запобігає виходу розв'язків за межі пошукового простору. А саме, будь–який параметр, значення якого перевищувала допустимі межі, замінювався випадковою величиною згідно з

$$u_{k,i,j} = \begin{cases} u_{k,i,j} - r_{[0,1]}(x_i^H - x_i^L), & \text{if } u_{k,i,j} > x_i^H \\ u_{k,i,j} + r_{[0,1]}(x_i^H - x_i^L), & \text{if } u_{k,i,j} < x_i^L. \end{cases}$$
(4.49)

– Відбір.

$$\overrightarrow{X}_{k,j} = \begin{cases} \overrightarrow{U}_{k,j}, & \text{if } Fit(\overrightarrow{U}_{k,j}) < Fit(\overrightarrow{X}_{k,j-1}) \\ \overrightarrow{X}_{k,j-1}, & \text{otherwise.} \end{cases}$$
(4.50)

Користуючись результатами, представленими в [103], були вибрані значення $F_{sc}=0.8,\ CR=0.3$ та $N_S=8N_D=24.$ Виявлено, що збіжність результатів досягається при $N_{it}=600.$ Отримані результати позначені міткою «DE».

Розвиток методу оптимізації зграї частинок пов'язаний зі спостереженням соціальної поведінки тварин на кшталт зграї птахів чи риб. У термінології алгоритму PSO розв'язки називаються частинками, які летять (чи плавають) і гіперпросторі параметрів. На j-му ітераційному кроці виконуються наступні дії [152]:

– Визначається найкраще положення $\overrightarrow{X}_{k,j}^{best}$ для кожної з частинок:

$$\overrightarrow{X}_{k,j}^{best} = \begin{cases} \overrightarrow{X}_{k,j-1}^{best}, & \text{if } Fit(\overrightarrow{X}_{k,j-1}^{i}) \ge Fit(\overrightarrow{X}_{k,j-1}^{best}) \\ \overrightarrow{X}_{k,j-1}^{i}, & \text{otherwise.} \end{cases}$$
(4.51)

– Визначається глобально найкраща позиція \overrightarrow{B}_{j} серед всіх частинок зграї:

$$\overrightarrow{B}_{j} = min\{Fit(\overrightarrow{X}_{1,j}^{best}), \dots, Fit(\overrightarrow{X}_{N_{S,j}}^{best})\}. \tag{4.52}$$

Вектор швидкості кожної частинки змінюється відповідно до наступного виразу

$$v_{k,i,j} = w_j v_{k,i,j-1} + l_1 r_{[0,1],1} \cdot (x_{k,i,j}^{best} - x_{k,i,j-1}) + l_2 r_{[0,1],2} \cdot (b_{i,j} - x_{k,i,j-1}),$$

$$(4.53)$$

де l_1 та l_2 називаються коефіцієнти навчання, w_j — інерційна маса. У даній роботі, використано підхід лінійного збільшення маси:

$$w_i = w_{max} - j(w_{max} - w_{min})/N_{it},$$
 (4.54)

де w_{max} та w_{min} — початкова та кінцева маси, відповідно. Після цього швидкість кожної з частинок оновлюється з використанням наступного виразу:

$$\upsilon_{k,i,j} = \begin{cases}
\upsilon_i^{max}, & \text{if } \upsilon_{k,i,j} > \upsilon_i^{max} \\
-\upsilon_i^{max}, & \text{if } \upsilon_{k,i,j} < -\upsilon_i^{max} \\
\upsilon_{k,i,j}, & \text{otherwise},
\end{cases}$$
(4.55)

де константа \overrightarrow{v}^{max} призначена стримувати надлишкові блукання частинок. Зазвичай [152] \overrightarrow{v}^{max} вибирається рівним максимально можливому відхиленню даної частинки в певному напрямі.

- Кожна частинка переміщується у нове положення:

$$\overrightarrow{X}_{k,j} = \overrightarrow{v}_{k,j} + \overrightarrow{X}_{k,j-1}, \tag{4.56}$$

Згідно з даними роботи [152], було використано наступні значення параметрів: $l_1=l_2=2,\ w_{max}=0.9,\ w_{min}=0.4$ та $N_S=15N_D=45.$ Крім того, при розрахунках вважалося, що початкові швидкості $\overrightarrow{v_k}_{,0}=0.$ Виявлено, що збіжність результатів досягається при $N_{it}=700.$ Отримані результати позначені міткою «PSO».

Алгоритм методу модифікованої штучної бджолиної сім'ї базується на поведінці рою медоносних бджіл, пов'язаній з пошуком їжі. Бджоли поділяються на три категорії: носії, спостерігачі та розвідники. Носії експлуатують свої джерела їжі та взаємодіють зі спостерігачами. Спостерігачі очікують у вулику та вирішують яке з джерел їжі експлуатувати. Розвідники проводять пошуки нових джерел їжі навколо вулика. Кількість носіїв та спостерігачів співпадає з кількістю розв'язків. Самі розв'язки описують розташування джерел їжі, а кількість нектару в джерелі визначається придатністю розв'язку. Коли джерело їжі повністю вичерпується, пов'язані з ним носії стають розвідниками. Дії, які передбачені під час j-ої ітерації наступні [156]:

– Створюється новий розв'язок $\overrightarrow{T}_{k,j}$ для кожного носія

$$\overrightarrow{T}_{k,j} = \overrightarrow{X}_{k,j-1} + r_{[-1,1]} (\overrightarrow{X}_{k,j-1} - \overrightarrow{X}_{r,j-1}), \tag{4.57}$$

де $r \in (1, ..., N_S)$ — це випадковим чином вибраний індекс, $r \neq k$.

- Застосовується жадібний процес відбору до носіїв:

$$\overrightarrow{X}_{k,j-1} = \begin{cases} \overrightarrow{T}_{k,j}, & \text{if } Fit(\overrightarrow{T}_{k,j}) < Fit(\overrightarrow{X}_{k,j-1}) \\ \overrightarrow{X}_{k,j-1}, & \text{otherwise.} \end{cases}$$
(4.58)

$$s_k = \begin{cases} 0, & \text{if } Fit(\overrightarrow{T}_{k,j}) < Fit(\overrightarrow{X}_{k,j-1}) \\ s_k + 1, & \text{otherwise.} \end{cases}$$
 (4.59)

Тут $\overrightarrow{S}=\{s_1,\ldots,s_{N_S}\}$ вектор, який містить інформацію щодо зручності всіх джерел їжі. Початкові значення $s_k=0$.

– Розраховується ймовірність p_k для кожного розв'язку:

$$p_k = \frac{(1 + Fit(\overrightarrow{X}_{k,j-1}))^{-1}}{\sum_{m=1}^{N_S} (1 + Fit(\overrightarrow{X}_{m,j-1}))^{-1}}.$$
 (4.60)

- Для кожного спостерігача
 - а) створюється новий розв'язок $\overrightarrow{T}_{k,j}$ з вибраного розв'язку $\overrightarrow{X}_{k,j-1}$ by using Eq. (4.57) if $r_{[0,1]} < p_k, \, k=1,\dots,N_S;$
 - б) застосовується механізм жадібного вибору див. рівняння (4.58) та (4.59).
- Визначають відкинуті розв'язки та, відповідно, розвідники, і якщо вони існують, розв'язки замінюються новими, створеними випадковим чином

$$x_{k,i,j} = \begin{cases} x_i^L + r_{[0,1]}(x_i^H - x_i^L) & \text{if } s_k > L_{imit} \\ x_{k,i,j-1}, & \text{otherwise.} \end{cases}$$
(4.61)

де L_{imit} — регулюючий параметр алгоритму, який визначає допустиме число поколінь, протягом яких кожне джерело їжі має бути відкинуте.

В розрахунках були використані значення $L_{imit}=36$ та $N_S=24$ [156]. Крім того вважалося, що найкращий розв'язок не може біти відкинуто. Виявлено, що збіжність результатів досягається при $N_{it}=250$. Отримані результати позначені міткою «МАВС».

Алгоритм оптимізованого викладання та навчання використовує концепцію навчального процесу в класі. Група учнів у класі розглядається як популяція розв'язків. Алгоритм імітує процес навчання, при якому учні спочатку отримують знання від учителя, а потім також і внаслідок спілкування між собою. Звичні дії на j-му кроці ітераційного процесу описуються наступним чином [155]:

– Етап учителя. Модифікація знань учня $\overrightarrow{T}_{k,j}$ здійснюється з використанням виразу

$$\overrightarrow{T}_{k,j} = \overrightarrow{X}_{k,j-1} + r_{[0,1]} \left(\overrightarrow{X}_{j-1}^{opt} - r_{(1,\dots,2)} \overrightarrow{X}_{j-1}^{mean} \right), \tag{4.62}$$

для кожної особи $\overrightarrow{X}_{k,j-1}^{\flat}$) в класі за виключенням вчителя $(\overrightarrow{X}_{j-1}^{opt})$. Тут

$$x_{i,j-1}^{mean} = \frac{1}{N_S} \sum_{k=1}^{N_S} x_{k,i,j-1}.$$
 (4.63)

Якщо виявляється, що $\overrightarrow{T}_{k,j}$ є кращим ніж $\overrightarrow{X}_{k,j-1}$, то він його замінює згідно з виразом (4.58).

– Етап учня. Для кожного з учнів генерується новий розв'язок $\overrightarrow{U}_{k,j}$, причому

$$\overrightarrow{U}_{k,j} = \overrightarrow{X}_{k,j-1} + r_{[0,1]} \left(\overrightarrow{X}_{k,j-1} - \overrightarrow{X}_{r,j-1} \right),$$

$$\text{if } Fit(\overrightarrow{X}_{k,j-1}) > Fit(\overrightarrow{X}_{r,j-1})$$

$$(4.64)$$

$$\overrightarrow{U}_{k,j} = \overrightarrow{X}_{k,j-1} - r_{[0,1]} \left(\overrightarrow{X}_{k,j-1} - \overrightarrow{X}_{r,j-1} \right), \qquad (4.65)$$

$$\text{if } Fit(\overrightarrow{X}_{k,j-1}) \le Fit(\overrightarrow{X}_{r,j-1}),$$

де $r \in (1, \dots, N_S)$ — індекс, вибраний випадковим чином, $r \neq k$. Після цього використовується вираз (4.50) для визначення $\overrightarrow{X_{k,j}}$.

В роботі використовувалася величина $N_S = 1000$. Розрахунки показали, що збіжність розв'язку спостерігається при $N_{it} = 900$. Отримані результати позначені міткою «TLBO».

4.5 Порівняння ефективності методів визначення параметрів структур МН

4.5.1 Точність визначення параметрів на основі ідеальних ВАХ

Точність визначення параметрів з окремої ВАХ залежно від температури, при якій її синтезовано, наведено на Рис. 4.5. Насамперед зауважимо, що наведені дані показують:

- а) при використанні всіх еволюційних алгоритмів для аналізу однакових ВАХ були отримані дуже близькі значення як послідовного опору, так і ВБШ та фактору неідеальності; це цілком очікуваних результат, пов'язаний з тим що у всіх випадках використовувалася ідентична цільова функція;
- б) використання адаптивної процедури в методі Gromov дає можливість суттєво знизити помилки визначення параметрів;
- в) використання функції Ламберта при чисельних обчисленнях дозволяє зменшити помилки визначення параметрів порівняно з випадком, коли в методі найменших квадратів використовується трансцендентна форма рівняння ВАХ;

Рис. 4.5 - 3алежності точності визначення послідовного опору (а — в), ВБШ (г — е) та фактору неідеальності (є — з) при використанні різних методів від температури. Результати отримані при використанні ідеальних синтезованих ВАХ.

- г) при застосуванні методів Werner, Cibils, та Kaminskii I шляхом лінійної апроксимації допоміжної функції доцільно визначати лише величину послідовного опору, тоді як Φ_b та $n_{\rm id}$ краще екстрагувати на наступному етапі, при лінійній апроксимацій BAX, скорегованої з врахуванням отриманого значення R_s ; іншими словами використання варіантів цих методів, позначених зірочками дозволяє підвищити точність визначення параметрів;
- д) найбільшу точність при аналізі ідеальних синтезованих ВАХ вдається досягти при використанні еволюційних алгоритмів, апроксимації за допомогою методу найменших квадратів з використанням функції Ламберта, Norde (при визначенні Φ_b), Ordinary LS (при визначенні R_s), методу Gromov, доповненого адаптивною процедурою, та методу Lee (за винятком випадків високих температур та великих значень I_s).

З іншого боку, наведені результати показують, що точність визначення параметрів змінюється для різних ВАХ з одного набору (залежить від температури, при якій ВАХ була синтезована). Фактично мова йде про те, що похибка визначення параметру з масиву $\{R_s\,,n_{\rm id}\,,I_s\}$ залежить як від його величини, так і від значення інших характеристик ДШ з цього набору. Для виявлення подібних залежностей всі методи були також застосовані до синтезованих даних, при створенні яких вважалося, що одна з величин з набору $(R_s,\Phi_b,I_s\,n_{\rm id})$ відрізняється за значенням від того, який очікується згідно з виразами (4.2–4.5). Деякі характерні результати наведені на Рис. 4.6.

Рис. 4.6,а показує що, похибки визначення послідовного опору при використанні методу Gromov

- а) зростають з підвищенням Φ_b ;
- б) зменшуються при збільшенні R_s та зменшенні I_s ;
- в) залишаються практично постійними при зміні $n_{\rm id}$.

Очевидно, що I_s та Φ_b пов'язані між собою співвідношенням (4.2). Проте, на нашу думку, саме величина струму насичення, а не ВБШ, є першочерговим фактором впливу на процес визначення R_s . На користь цього висновку свідчать криві 6 та 7 на Рис. 4.6,а. Так, крива 6 була отримана для набору ВАХ, які синтезовані використовуючи припущення що незалежними від температури є як

Рис. 4.6 — Температурні залежності точності визначення R_s (а) та Φ_b (б) при використанні методів Gromov (а) та Катількії І (б). Під час синтезу ВАХ використовувалися параметри, величини яких переважно визначались формулами (4.2–4.5), проте для побудови кривих 2 та 9 використовувалися ВАХ для яких значення R_s було в 3 рази більше, для кривих 3 та 10 величина $n_{\rm id}$ була в 1,2 рази більша, для кривих 4 та 11 величина I_s була в 100 разів менша, для кривої 5 значення Φ_b було зменшено на 0,1 еВ, для кривої 6 величини R_s та Φ_b залишалися незмінними та рівними 2 Ом та 0,7 еВ, відповідно, під час синтезу всього набору ВАХ (були незалежні від температури), для кривої 7 значення R_s та I_s були незмінні та рівні 2 Ом та 10^{-5} А, відповідно.

 R_s , так і Φ_b . Незважаючи на ці обмеження, χ_R^q зростає при збільшенні температури. На противагу, крива 7, отримана для незалежних від температури R_s та I_s , показує, що точність визначення послідовного опору залишається практично постійною для всього набору ВАХ. З іншого боку, Рис. 4.6,б показує, що при використанні методу Катіпskіі І зменшення струму насичення підвищує похибку визначення ВБШ. Загалом проведені дослідження показують, що величина I_s є основним, а величина Φ_b другорядним визначальними факторами для точності екстракції інших параметрів (не лише R_s) при використанні різних методів (не лише Gromov). З Рис. 4.6,б також видно, що похибка визначення Φ_b зменшується у випадку більших значень фактору неідеальності (криві 8 та 10). В той же час збільшення послідовного опору немонотонно впливає на точність екстракції ВБШ (криві 8 та 9 на Рис. 4.6,б): при низьких температурах (високих значеннях Φ_b) χ_Φ^q зростає, при високих T — навпаки, зменшується.

Узагальнюючи аналіз отриманих результатів, можна зробити висновок, що точність визначення кожного з параметрів як правило зростає зі збільшенням його величини. Проте, точність визначення $\chi^q_{x_i}$ даного параметру $(x_i \in \{R_s\,,n_{\mathrm{id}}\,,I_s\})$ залежить також і від абсолютних величин інших характеристик ДШ $(x_j,j\neq i)$, причому характер цих залежностей є функцією абсолютних значень кожного параметру з набору і змінюється при використанні різних методів $(\chi^q_{x_i} = f(x_i,x_j,\mathrm{метод})).$

Для того, щоб виявити основні тенденції цих залежностей були проведені додаткові дослідження. А саме, були синтезовані набори ВАХ, при побудові яких вважалося, що деякі параметри є незалежними від температури. В цьому випадку а) постійними у всьому температурному діапазоні вважалася два параметри $(R_s$ та I_s або $n_{\rm id}$ та I_s для різних наборів ВАХ); б) $n_{\rm id}$ (або R_s) розраховувалися відповідно до того, як описано раніше, в розділі 4.2.1. Було створено сукупність наборів ВАХ, для яких незалежні від температури величини R_s , $n_{\rm id}$ та I_s змінювались в діапазонах від 2 до 41 Ом, від 1 до 1,52 та від 10^{-10} до $5 \cdot 10^{-5}$ А, відповідно. Після цього кожен з методів було застосована до кожного з набору ВАХ, визначено величини параметрів, а також їх похибки. Найбільш типові результати наведено ни Рис. 4.7–4.9. Зокрема, Рис. 4.7,а підтверджує, що при

Рис. 4.7 — Точність визначення величини послідовного опору з набору ВАХ, який був синтезований при постійних значеннях R_s та I_s . Показані результати застосування методів Gromov (a), Lee (б), Kaminskii I (в), Cheung (г), MABC (д) та and Lambert LS (e).

Рис. 4.8 — Точність визначення величини висоти бар'єру Шотки опору з набору ВАХ, який був синтезований при постійних значеннях R_s та I_s (рисунки а, в та д) або постійних значеннях $n_{\rm id}$ та I_s (рисунки б, г, е). Показані результати застосування методів Kaminskii I (а, б), Cheung (в, г) та Bohlin (д, е).

Рис. 4.9 — Точність визначення величини фактору неідеальності з набору ВАХ, який був синтезований при постійних значеннях R_s та I_s (рисунки а, в та д) або постійних значеннях $n_{\rm id}$ та I_s (рисунки б, г, е). Показані результати застосування методів Ordinary LS (а, б), Gromov (в, г) та Kaminskii* I (д, е).

використанні методу Gromov збільшення R_s та I_s призводить до зменшення та збільшення помилки визначення послідовного опору, відповідно.

Отримані результати щодо факторів впливу узагальнено в Таблиці 6. В цій таблиці використано ряд символів для опису поведінки точності визначення параметрів при зміні величини фактору впливу. А саме. Якщо помилка визначення монотонно зростає або зменшується зі збільшенням впливаючого фактору, то використовувались символи « \downarrow » та « \uparrow », відповідно. Наприклад, саме ці символи характеризують кореляцію точності визначення R_s за допомогою методу Gromov та величини R_s та I_s .

Виявлено, може залежати від фактору впливу не лише монотонно. Наприклад, Рис. 4.6,6 та Рис. 4.8,а показують, що при використанні методу Катілskіі І похибка визначення Φ_b зростає з підвищенням послідовного опору при великих (> 10 Ом) значеннях R_s і зменшується при малих величинах R_s . Для позначення залежності з такою поведінкою в Таблиці 6 використовується символ « \vee ». Подібна залежність спостерігається при використанні метода Chueng для визначення R_s — див. Рис. 4.7,г. Проте в цьому випадку сама величина R_s порівняно слабко впливає на точність визначення послідовного опору. Схожі слабкі залежності позначаються в Таблиці 6 за допомогою верхнього індексу «w». Інші приклади слабких залежностей I_s та $n_{\rm id}$ можна побачити на Рис. 4.7,д та Рис. 4.9,г, відповідно.

Якщо графік залежності точності визначення параметру від величини фактору впливу має не мінімум, а максимум (див., наприклад, Рис. 4.8,е), то використовувався символ « \wedge ». Наявність на залежності екстремумів обох типів (див., наприклад, Рис. 4.8,в) позначено за допомогою символу «N».

Ще один тип залежності показаний на Рис. 4.7,в. При використанні методу Катількії І для визначення R_s помилки залишаються постійними в широкому діапазоні змін R_s та I_s і зростають лише для малих значень R_s . Подібні залежності між помилкою визначення та впливаючим фактором позначені символом « \leftarrow ». Символи « \rightarrow » або « \rightarrow » якщо помилки зростають або зменшуються, відповідно, лише при великих значеннях фактору впливу.

3 наведених даних, зокрема, видно, що фактори, які впливають на точність екстракції Φ_b та $n_{\rm id}$ подібні для більшості методів, які розглядалися в роботі.

Табл. $6 - \Phi$ актори впливу на точність визначення параметрів ДШ. $^{1)}$

Таол. 6 — Фактори впливу на точність визначення параметрів ДШ. ¹⁷			
Метод	Визначений параметр		
	R_s	Φ_b	n
Norde	$n_{\mathrm{id}}^w(\vee)$	$I_s(\downarrow)$	_
Werner	$R_s(\vee)$	$R_s(\downarrow), I_s^w(\downarrow), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), n_{\mathrm{id}}^w(\downarrow)$
Werner*	$R_s(\vee)$	$R_s(\vee), I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$	$R_s(\vee), I_s(\uparrow), n_{\mathrm{id}}^w(\uparrow)$
Cibils	$R_s(\vee), n_{\mathrm{id}}(\uparrow)$	$R_s(\uparrow), n_{\mathrm{id}}(\lor)$	$R_s(\uparrow), n_{\mathrm{id}}(\lor)$
Cibils*	$R_s(\vee), n_{\mathrm{id}}(\uparrow)$	$R_s(\vee), I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$	$R_s(\vee), I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$
Kaminskii I	$R_s(\leftharpoonup), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\vee), I_s(\downarrow), n_{\mathrm{id}}(\downarrow)$	$R_s(\vee), I_s^w(\downarrow), n_{\mathrm{id}}(\downarrow)$
Kaminskii* I	$R_s(\leftharpoonup), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$	$R_s(\uparrow), I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$
Kaminskii II	$R_s(\downarrow), I_s(\rightharpoonup), n_{\mathrm{id}}^w(\uparrow)$	$I_s(\rightharpoonup), n_{\mathrm{id}}^w(\uparrow)$	$I_s(ightharpoonup)$
Kaminskii* II	$R_s(\downarrow), I_s(\rightharpoonup), n_{\mathrm{id}}^w(\uparrow)$	$I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$	$I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$
Bohlin	$I_s(\neg)$	$I_s(\downarrow), n_{\mathrm{id}}(\wedge)$	$I_s(\neg), n_{\mathrm{id}}(\wedge)$
Lee	$R_s(\downarrow), I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$	$I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$	$I_s(\uparrow), n_{\mathrm{id}}(\uparrow)$
Gromov	$R_s(\downarrow), I_s(\uparrow)$	$R_s(\uparrow), I_s(\uparrow), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), I_s(\uparrow), n_{\mathrm{id}}^w(\downarrow)$
Cheung	$R_s^w(\vee)$	$R_s(N), I_s(\downarrow), n_{\mathrm{id}}(\downarrow)$	$R_s^w(N), I_s(\neg), n_{\mathrm{id}}(\downarrow)$
Mikhelashvili	$R_s(\uparrow), I_s(\downarrow), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), I_s(\land), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), I_s(\land), n_{\mathrm{id}}^w(\downarrow)$
Ordinary LS	$R_s(\downarrow)$	$R_s(\uparrow), I_s^w(\downarrow), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), n_{\mathrm{id}}^w(\downarrow)$
Lambert LS	$R_s(\downarrow)$	$I_s^w(\downarrow)$	$n_{\mathrm{id}}^w(\downarrow)$
EAs	$R_s(\downarrow), I_s^w(\uparrow)$	$R_s(\uparrow), I_s(\lor), n_{\mathrm{id}}^w(\downarrow)$	$R_s(\uparrow), I_s(\lor), n_{\mathrm{id}}^w(\downarrow)$

 $^{^1}$ Наявність R_s або I_s або $n_{\rm id}$ в клітинці означає вплив величини, відповідно, послідовного опору або струму насичення або фактору неідеальності на точність визначення параметру; верхній індекс та символ в дужках пов'язані з характером поведінки точності визначення параметру при збільшенні R_s або I_s або $n_{\rm id}$ — деталі див. у тексті.

Використання адаптивної процедури в методі Gromov призводить до того, що точність визначення Φ_b та $n_{\rm id}$ стає залежною від величини R_s , тоді як вплив величини фактору неідеальності послаблюється. Точність методів Werner*, Cibils* та Kaminskii* більш чутлива до величин параметрів ніж при використанні варіантів цих же методів без зірочок. Найбільш стійкими до величин параметрів є точності чисельних методів, особливо при використанні функції Ламберта (Lambert LS).

4.5.2 Швидкодія методів визначення параметрів ДШ

Ще одним, поряд з точністю, критерієм для характеризації різних методів визначення параметрів структур МН ϵ час, необхідний для визначення параметрів (RT, running time). Для оцінки RT були використані WinAPI функції QueryPerformanceCounter() та QueryPerformanceFrequency(). Розрахунки проводились на персональному комп'ютері з наступними характеристиками:

- процесор AMD A4-3400 2.7 GHz;
- 3072 MB RAM;
- операційна система Windows XP.

Очевидно, що точний час екстракції параметрів залежить від програмної реалізації, від завантаження процесору в даний момент часу тощо. Тим не менш, всі методи тестувалися за однакових умов, а отже вибраний підхід дозволяє порівняти тривалість роботи різних методів, а також оцінити порядок величини RT.

Отримані значення RT при застосуванні різноманітних методів до аналізу ідеальних синтезованих ВАХ наведено в Таблиці 7. Загалом, RT залежить від кількості точок у вихідній залежності; в таблиці наведено значення, отримані при застосування методів до ВАХ, сгенерованих для температур 130 К та 330 К. Очевидно, що

а) час роботи аналітичних методів при використанні сучасних комп'ютерів знехтувано малий;

Табл. 7 — Час визначення параметрів ДШ з однієї ВАХ.

Метод	Час роботи, с		
	максимальний	мінімальний	
Norde	$3.7 \cdot 10^{-5}$	$2.6 \cdot 10^{-5}$	
Werner 1)	$4.5 \cdot 10^{-5}$	$4.0 \cdot 10^{-5}$	
Cibils 1)	$5.3 \cdot 10^{-3}$	$1.9 \cdot 10^{-4}$	
Kaminskii I 1)	$8.0 \cdot 10^{-5}$	$4.5 \cdot 10^{-5}$	
Kaminskii II 1)	$2.6 \cdot 10^{-3}$	$3.0 \cdot 10^{-4}$	
Bohlin	$6.3 \cdot 10^{-5}$	$4.0 \cdot 10^{-5}$	
Lee	$3.6 \cdot 10^{-3}$	$1.8 \cdot 10^{-4}$	
Gromov	$2.2 \cdot 10^{-2}$	$2.2 \cdot 10^{-2}$	
Gromov 2)	$4.6 \cdot 10^{-5}$	$2.7 \cdot 10^{-5}$	
Cheung	$3.2 \cdot 10^{-5}$	$2.0 \cdot 10^{-5}$	
Mikhelashvili	$4.7 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	
Ordinary LS	460	1.8	
Lambert LS	540	7.6	
DE	0.73	0.36	
PSO	0.35	0.14	
MABC	0.20	$5.7 \cdot 10^{-2}$	
TLBO	19.2	5.4	

 $^{^1}$ Час корекції ВАХ та лінійної апроксимації дорівнює $1.8\cdot 10^{-5}$ с (максимальний) або $1.4\cdot 10^{-5}$ с (мінімальний).

- б) у випадку ВАХ з великою кількістю експериментальних точок RT чисельних методів може досягати значних величин;
- в) використання функції Ламберта призводить до збільшення часу роботи чисельних методів; однією з причин цього є необхідність використовувати числовий ряд для обчислення значення самої функції;
- г) використання адаптивної функції очікувано викликає збільшення необхідного часу на декілька порядків, проте абсолютне значення RT залишається досить малим;
- д) серед еволюційних алгоритмів найбільш швидким при визначенні параметрів ДШ ϵ MABC, тоді як найбільш повільним TLBO.

 $^{^{2}}$ Для випадку, коли адаптивна процедура не використовується.

Узагальнюючи результати, отримані при дослідженні застосування методів до ідеальних синтезованих ВАХ, зауважимо, що еволюційні алгоритми видаються найбільш придатними для визначення параметрів ДШ завдяки низькому рівню помилок, помірній чутливості точності до величини параметрів та допустимому часу роботи. Поряд з цим, іншими методами, яким також варто надавати перевагу ϵ аналітичний метод Gromov з використанням адаптивної процедури та числовий метод Lambert LS. Проте, точність визначення параметрів для першого з них суттєво зменшується при високих значеннях струму насичення (високих температурах). Щодо методу Lambert LS, то його основним недоліком ϵ значний час, потрібний для обчислень.

4.5.3 Вплив випадкових похибок на точність визначення параметрів структур МН

На Рис. 4.10 та Рис. 4.11 наведено результати застосування різноманітних методів до зашумлених даних. Цілком очікувано, помилки при екстракції параметрів збільшуються при підвищенні рівня шуму (рівня випадкових помилок вимірювань). Проте залежності правильності визначення параметрів з однієї ВАХ схожі до отриманих при аналізі ідеальних синтезованих ВАХ. Як наслідок, фактори впливу на точність також ідентичні, тобто дані Таблиці 6 цілком застосовні і в цьому випадку. Крім того, інші характерні особливості методів, виявлені раніше, проявляються і в цьому випадку. Наприклад, використання функції Ламберта дозволяє досягнути більшої точності чисельних методів при визначенні параметрів ДШ. Еволюційні алгоритми, методи Gromov та Lee характеризуються найменшими помилками. З іншого боку, різниця між результатами, отриманими за допомогою методів Gromov та Lee зменшується. Це свідчить про зниження переваги застосування запропонованої адаптивної процедури з підвищенням рівня випадкових похибок.

У випадку, коли методи Werner, Cibils, Kaminskii I або Kaminskii II застосовуються до зашумлених даних, визначення $n_{\rm id}$ шляхом апроксимації скорегованої ВАХ ϵ більш точним, ніж ц випадку, коли ця величина визначається

Рис. 4.10-3алежності точності визначення послідовного опору (a-в), ВБШ (r-e) та фактору неідеальності $(\varepsilon-3)$ при використанні різних методів від температури. Результати отримані при використанні наборів зашумлених даних.

$$\sigma_V=0,3$$
 мВ, $\sigma_I^{arepsilon}=1\%.$

Рис. 4.11 — Точність визначення R_s (a), Φ_b (б) та $n_{\rm id}$ (в) з наборів зашумлених даних. σ_V , мВ: 0 (1), 0,3 (2, 3), 2 (4). σ_I^{ε} , %: 0 (1), 0,5 (2), 1 (3, 4).

Рис. 4.12-3алежності точності визначення R_s (a), Φ_b (б) та $n_{\rm id}$ (в) при використанні методу Gromov від похибок вимірювання сили струму та напруги.

внаслідок апроксимації допоміжної функції. Крім того, точність цих методів наближається до найкращих результатів інших методів і стає порівняною з точністю чисельних методів, або й навіть переважає її — див. Рис. 4.10. Метод Norde дозволяє достатньо точно визначати висоту бар'єру Шотки, проте фактор неідеальності можна отримати лише застосовуючи інші методи.

Залежності точності визначення параметрів від рівня шуму (від рівня випадкових помилок) показані ни Рис. 4.12. Наведені графіки отримані при використанні методу Gromov, проте вони є цілком типовими і для інших методів також. Видно, що величини помилок при визначенні всіх параметрів практично лінійно залежать як від похибок вимірювання напруги, так і від відносних похибок сили струму. Крім того, помилки визначення Φ_b та $n_{\rm id}$, викликані неточністю вимірювання напруги та сили струму, значно більші, ніж помилки визначення послідовного опору за тих самих умов.

4.5.4 Визначення параметрів реальних структур МН

Температурні залежності параметрів, отриманих з експериментальних ВАХ наведені на Рис. 4.13. Зауважимо, що в цьому випадку при застосуванні метода Bohlin були використані значення $\gamma_1=1,6$ та $\gamma_2=1,8$ замість $\gamma_1=1,6$

та $\gamma_2=3.5$, для яких, як показано в розділі 4.4.1, очікується менше значення похибки. Це пов'язано з тим, що для діапазону сил струму, у якому були отримані експериментальні дані, відсутній мінімум функції Норда з $\gamma_N=3.5$.

Виявлена температурна залежність висоти бар'єру, які відрізняється від виразу (4.3), що використовувався при синтезі ВАХ, може бути пов'язана з неоднорідністю контакту МН [16, 171]. Зростання послідовного опору при високих температурах в літературі [172] пов'язується з тим, що за цих умов визначальним для R_s буде контактний опір, а не опір об'єму напівпровідника.

Зупинимось на отриманих температурних залежностях послідовного опору. Використання ЕА, методів Gromov та Lee дозволяє виявити немонотонну температурну залежність R_s , причому абсолютні значення опору, отримані за допомогою різних методів, дещо відрізняються. Взявши до уваги невелике значення послідовного опору (близько 1 Ом), а також виявлене раніше значне збільшення похибок методів Gromov та Lee при малих значеннях R_s та великих I_s (див. Рис. 4.5,а, 4.7,а, 4.7,б та 4.10,а), можна зробити висновок, що величини, отримані при застосуванні еволюційних алгоритмів, більш правильні. З фізичної точки зору, виявлена поступова зміна опору з температурою є цілком ймовірною. При застосуванні числових методів отримана залежність R_s від T також є досить гладкою, проте її поведінка відрізняється від результатів ЕА при низьких температурах (див. Рис. 4.13,б). З іншого боку, зашумленість температурних залежностей має свідчити про наявність помилок або під час вимірювань ВАХ, або під час визначення параметрів, а саме такі залежності виникають при застосуванні інших методів.

Подібні особливості характерні і для визначених залежностей ВБШ та фактора неідеальності. Розкид значень Φ_b суттєво менший ніж для $n_{\rm id}$, що корелює з меншою величиною похибки визначення ВБШ (див. Рис. 4.10-4.12). Найбільш погані результати отримані при використанні методів Bohlin, Mikhelashvili та Cheung.

Для оцінки розходжень виміряних та апроксимуючих ВАХ було використане середн ϵ значення відхилення сили струму Δ_I :

$$\Delta_{I} = \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} \left| \frac{I_{calc}(V_{i}) - I_{i}}{I_{i}} \right|. \tag{4.66}$$

Рис. 4.13 - 3алежності точності визначення послідовного опору (a - B), ВБШ (r - e) та фактору неідеальності $(\epsilon - 3)$ при використанні різних методів від температури. Результати отримані при використанні експериментальних ВАХ.

Рис. 4.14 — Середні значення відносного відхилення розрахованих значень сили струму від експериментальних даних.

При обчисленні Δ_I , значення $I_{calc}(V_i)$ розраховувалися з використанням виразів (4.1–4.2) та параметрів, визначених при використанні різних методів. Результати для трьох ВАХ, виміряних при різних температурах, наведені на Рис. 4.14. Як видно, в цьому випадку еволюційні алгоритми, методи Gromov та Lee також продемонстрували свої переваги.

Як було сказано раніше, і експериментальні ВАХ отримані для кремнієвих структур, і при синтезі даних вважалося, що ДШ створені з використанням саме цього напівпровідника. На мою думку, висновки щодо того, які методи ϵ найбільш достовірними та такими, що мають перевагу, залишаються справедливими і при дослідженні структур не на основі кремнію. Дійсно, для діодів з іншого матеріалу можуть спостерігатися зміни величин Φ_b , $n_{\rm id}$, R_s та їх співвідношень. Проте еволюційні алгоритми, методи Lee та Gromov з адаптивною процедурою довели свою перевагу для досить широкого діапазону значень параметрів. З іншого боку, зміна матеріалу може викликати модифікацію а) температурної залежності точності визначення параметрів; б) абсолютного значення похибки. Проте подібні зміни для конкретного напівпровідника можуть бути у першому наближені оцінені з використанням даних, наведених у Таблиці 6.

Проте необхідно підкреслити, що отримані результати будуть коректними для тих ДШ, для яких ВАХ описуються рівнянням (4.1). Так, наприклад, відхилення від цього закону характеристик реальних діодів може бути пов'язане з наявністю шунтуючого опору чи неоднорідністю бар'єру [22, 171]. Проте в подібних випадках застосування еволюційних алгоритмів може суттєво спростити процедуру визначення параметрів структур МН.

Висновки до розділу 4

- 1. Проведено тестування та порівняльне дослідження 16 методів визначення параметрів діодів Шотки з вольт–амперних характеристик. При цьому для аналізу були використані як експериментальні, так і синтезовані ВАХ.
- 2. Проведено чисельний аналіз залежності величин похибок визначення ВБШ та послідовного опору в методі Норда від величини параметра γ_N на масиві синтезованих ідеальних та зашумлених ВАХ. Виявлено, що похибка визначення висоти бар'ру зростає зі збільшенням параметру, тоді як залежність похибки оцінювання послідовного опору є немонотонною функцією γ_N . Показано, що найбільш оптимальним значенням є $\gamma_N = 1.8$.
- 3. Проведено чисельний аналіз залежності величин похибок визначення висоти бар'єру, фактору неідеальності та послідовного опору при використанні методу Бохліна від величин параметрів γ_1 та γ_2 . Виявлено, що похибка екстрагування параметрів зростає при збільшенні величини $|\gamma_1 \gamma_2|$. Запропоновані оптимальні (для температурного діапазону $130 \div 330$ K) величини $\gamma_1 = 1,6$ та $\gamma_2 = 3,5$.
- 4. Запропоновано адаптивну процедуру для вибору діапазону ВАХ, який використовується для побудови допоміжних функцій при застосуванні аналітичних методів визначення параметрів структур МН. Процедура

- базується на визначенні відхилення між апроксимуючою кривою та експериментальною. На прикладі аналітичного Gromov методу показано, що дана процедура дозволяє підвищити точність визначення параметрів, особливо у випадку низького рівня похибок вимірювання.
- 5. Запропоновано модифікацію методу Mikhelashvili, яка дозволяє застосовувати його в автоматичному режимі до набору ВАХ. Вона полягає у послідовному використанні медіанного фільтру та процедури згладжування функції $\alpha(V) = d(\ln I)/d(\ln V)$ перед знаходженням положення її максимуму. Показано доцільність застосування запропонованої процедури для підвищення точності методу.
- 6. Здійснена програмна реалізація еволюційних алгоритмів диференційної еволюції, оптимізації зграї частинок, модифікованої штучної бджолиної сім'ї і оптимізованого викладання та навчання при вирішенні задачі визначення параметрів структур МН. Запропоновано та показано ефективність застосування цільової функції у вигляді суми квадратів відносних похибок апроксимації кожної з точок ВАХ. Проведено визначення необхідної кількості поколінь для збіжності кожного з алгоритмів.
- 7. Показано, що серед еволюційних алгоритмів MABC, DE, PSO та TLBO перший є найбільш придатним завдяки мінімальному часу роботи.
- 8. Проаналізовано залежності точностей визначення послідовного опору, висоти бар'єру Шотки та фактора неідельності від величин параметрів та рівня випадкових помилок вимірювання ВАХ.
- 9. Показано, що використання функції Ламберта при чисельному визначенні параметрів ДШ дозволяє зменшити похибки визначення та вплив на них інших факторів; з іншого боку, час роботи алгоритму зростає.
- 10. Показано, що серед всіх досліджених методів, найбільш придатними є еволюційні алгоритми (особливо MABC), метод Gromov з адаптивною процедурою та метод Lee. Перший є найбільш коректним при малих (декілька Ом)значеннях послідовного опору або великих значеннях струму насичення (високих температурах).

Предсталені в даному розділі результати огляду, тестування та порівняльного аналізу методів визначення параметрів діодів Шотки будуть корисними для подальших дослідження та розробки МН пристроїв.

Розділ 5. Ефекти впливу гамма-опромінення та ультразвукового навантаження на кремнієві структури метал-напівпровідник

5.1 Структури метал-напівпровідник на основі кремнію

В дослідженнях використовувалися структури МН (діоди Шотки (ДШ)), виготовлені на основі епітаксійної структури n–n⁺–Si. Товщини епітаксійного шару та підкладки дорівнювали $0.2~\mu m$ та $250~\mu m$, відповідно. Епітаксійний шар був легований атомами фосфору, підкладка — сурмою. Для створення бар'єру на поверхню епітаксійного прошарку нанесено шар молібдену. З протилежного боку структури нанесено прошарок алюмінію, який забезпечував наявність омічного контакту. Схематичне зображення структур наведено на Рис. 5.1.

В дисертації представлені результати, отримані з використанням кремнієвих ДШ двох типів, які ідентичних за структурою, проте відрізняються концентраціями концентраціями носіїв заряду в епітаксійному шарі N_d та підкладці N_s , а також площею випрямляючого контакту A. Для контролю рівня легування були виконані вимірювання вольт-фарадних характеристик (ВФХ) досліджуваних структур при кімнатній температурі ($T=295~{\rm K}$). Параметри структур, а також їх позначення наведені в Таблиці 8.

Табл. 8 — Параметри структур $Mo/n-n^+$ —Si.

N_d , \mathbf{m}^{-3}	N_s , ${ m M}^{-3}$	A , \mathbf{M}^2	Позначення
$(1,1 \div 1,3) \cdot 10^{23}$	$4.2 \cdot 10^{23}$	$3{,}14\cdot10^{-6}$	SSDA
$7,25 \cdot 10^{21}$	$4.2 \cdot 10^{22}$	$49 \cdot 10^{-6}$	SSDB

Висновки до розділу 5

1. Проведено

Розділ 6. Особливості динамічних акустоіндукованих змін кремнієвих діодів Шотки в широкому температурному інтервалі

Висновки до розділу 6

1. Проведено

Розділ 7. Вплив мікрохвильових та ультразвукових обробок на властивості структур на основі арсеніду галію

Висновки до розділу 7

1. Проведено

Розділ 8. Оформление различных элементов

8.1 Форматирование текста

Мы можем сделать жирный текст и курсив.

8.2 Ссылки

Сошлёмся на библиографию. [1–55] Одна ссылка: [22, с. 54]. [105, 173, 174]

Список використаних джерел

- [1] Оліх, О.Я. Акустостимульовані динамічні ефекти в сонячних елементах на основі кремнію / О.Я. Оліх // Вісник Київського ун-ту, Сер.: Фізико-математичні науки. 2003. № 4. С. 408–414.
- [2] Olikh, O.Ya. Acoustoelectric transient spectroscopy of microwave treated GaAs-based structures / O.Ya. Olikh // Semiconductor Physics, Quantum Electronics & Optoelectronics. 2003. Vol. 6, no. 4. Pp. 450–453.
- [3] *Olikh, Ja. M.* Active ultrasound effects in the future usage in sensor electronics / Ja. M. Olikh, O.Ya. Olikh // Сенсорна електроніка і мікросистемні технології. 2004. Т. 1, № 1. С. 19–29.
- [4] *Конакова, Р.В.* Влияние микроволновой обработки на глубокие уровни монокристаллов GaAs и SiC / Р.В. Конакова, П.М. Литвин, О.Я. Олих // Петербургский журнал электроники. 2004. № 1. С. 20–24.
- [5] Конакова, Р.В. Влияние микроволновой обработки на уровень остаточной деформации и параметры глубоких уровней монокристаллах карбида кремния / Р.В. Конакова, П.М. Литвин, О.Я. Олих // Физика и химия обработки материалов. 2005. Note 2. С. 19-22.
- [6] Олих, О. Я. Акустостимулированные коррекции вольт–амперных характеристик арсенид–галлиевых структур с контактом Шоттки / О. Я. Олих, Т. Н. Пинчук // Письма в Журнал Технической Физики. 2006. Т. 32, $N \ge 12$. С. 22–27.
- [7] Olikh, O.Ya. The Dynamic Ultrasound Influence on Diffusion and Drift of the Charge Carriers in Silicon p–n Structures / O.Ya. Olikh, R. Burbelo, M. Hinders // Semiconductor Defect Engineering Materials, Synthetic, Structures and Devices II / Ed. by S. Ashok, P. Kiesel, J. Chevallier, T. Ogino. Vol. 994 of Materials Research Society Symposium Proceedings. Warrendale, PA: 2007. Pp. 269–274.

- [8] Оліх, О. Я. Робота кремнієвих сонячних елементів в умовах акустичного навантаження мегагерцового діапазону / О. Я. Оліх, Р. М. Бурбело, М. К. Хіндерс // Сенсорна електроніка і мікросистемні технології. 2007. Т. 4, № 3. С. 40–45.
- [9] Вплив ультразвуку на вольт–амперні характеристики гетероструктур GaAs/AlGaAs / В. В. Курилюк, А. М. Горб, О. О. Коротченков, О. Я. Оліх // Вісник Київського ун-ту, Сер.: Фізико-математичні науки. 2003. № 3. С. 298–300.
- [10] *Олих, О. Я.* Изменение активности рекомбинационных центров в кремниевых р–п–структурах в условиях акустического нагружения / О. Я. Олих // Физика и техника полупроводников. 2009. Т. 43, № 6. С. 774–779.
- [11] Ultrasonic assisted nanomanipulations with atomic force microscope / P. M. Lytvyn, O. Ya. Olikh, O. S. Lytvyn et al. // Semiconductor Physics, Quantum Electronics & Optoelectronics. 2010. Vol. 13, no. 1. Pp. 36–42.
- [12] Ultrasonically Recovered Performance of γ -Irradiated Metal-Silicon Structures / A.M. Gorb, O.A. Korotchenkov, O.Ya Olikh, A.O. Podolian // *IEEE Trans. Nucl. Sci.* 2010. June. Vol. 57, no. 3. Pp. 1632–1639.
- [13] *Оліх, О. Я.* Особливості впливу нейтронного опромінення на динамічну акустодефектну взаємодію у кремнієвих сонячних елементах / О. Я. Оліх // $V\Phi\mathcal{K}$. 2010. Т. 55, № 7. С. 770–776.
- [14] *Оліх, Я. М.* Інформаційний чинник акустичної дії на структуру дефектних комплексів у напівпровідниках / Я. М. Оліх, О. Я. Оліх // *Сенсорна еле-ктроніка і мікросистемні технології.* 2011. Т. 2(8), № 2. С. 5–12.
- [15] Олих, О. Я. Особенности динамических акустоиндуцированных изменений фотоэлектрических параметров кремниевых солнечных элементов / О. Я. Олих // Физика и техника полупроводников. 2011. Т. 45, № 6. С. 816–822.

- [16] Olikh, O. Ya. Non-Monotonic γ -Ray Influence on Mo/n-Si Schottky Barrier Structure Properties / O. Ya. Olikh // IEEE Trans. Nucl. Sci. 2013. Feb. Vol. 60, no. 1. Pp. 394–401.
- [17] *Оліх, О. Я.* Особливості перенесення заряду в структурах Мо/п–Si з бар'- єром Шотки / О. Я. Оліх // УФЖ. 2013. Т. 58, № 2. С. 126–134.
- [18] *Олих, О. Я.* Влияние ультразвукового нагружения на протекание тока в структурах Мо/ $n-n^+$ –Si с барьером Шоттки / О. Я. Олих // Физика и техника полупроводников. 2013. Т. 47, № 7. С. 979–984.
- [19] Оліх, О. Я. Особливості впливу ультразвуку на перенесення заряду в кремнієвих структурах з бар'єром Шотки залежно від дози γ-опромінення / О. Я. Оліх // Сенсорна електроніка і мікросистемні технології. 2013. Т. 10, № 1. С. 47–55.
- [20] Особливості дислокаційного поглинання ультразвуку в безсубблочних кристалах $Cd_{0,2}Hg_{0,8}Te$ / І. О. Лисюк, Я. М. Оліх, О. Я. Оліх, Г. В. Бекетов // $\mathcal{V}\Phi\mathcal{K}$. 2014. Т. 59, № 1. С. 50–57.
- [21] Olikh, Oleg. Reversible influence of ultrasound on γ -irradiated Mo/n-Si Schottky barrier structure / Oleg Olikh // Ultrasonics. 2015. Feb. Vol. 56. Pp. 545–550.
- [22] *Olikh, O. Ya.* Ultrasound influence on I–V–T characteristics of silicon Schottky barrier structure / O. Ya. Olikh, K. V. Voytenko, R. M. Burbelo // *J. Appl. Phys.* 2015. Jan. Vol. 117, no. 4. P. 044505.
- [23] *Olikh, O. Ya.* Review and test of methods for determination of the Schottky diode parameters / O. Ya. Olikh // *J. Appl. Phys.* 2015. Jul. Vol. 118, no. 2. P. 024502.
- [24] *Olikh, Oleg.* On the mechanism of ultrasonic loading effect in silicon–based Schottky diodes / Oleg Olikh, Katerina Voytenko // *Ultrasonics.* 2016. Mar. Vol. 66, no. 1. Pp. 1–3.

- [25] Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure / O. Ya. Olikh, K. V. Voytenko, R. M. Burbelo, Ja. M. Olikh // *Journal of Semiconductors*. 2016. Dec. Vol. 37, no. 12. P. 122002.
- [26] Acousto-defect interaction in irradiated and non-irradiated silicon n^+ -p structure / O. Ya. Olikh, A. M. Gorb, R. G. Chupryna, O. V. Pristay-Fenenkov // J. Appl. Phys. 2018. Mar. Vol. 123, no. 16. P. 161573.
- [27] *Оліх, О. Я.* Ефекти активного ультразвуку в напівпровідникових кристалах / О. Я. Оліх // 1–а Українська наукова конференція з фізики напівпровідників, Одеса, Україна. Т. 1. Одеса: 2002. С. 80.
- [28] Влияние СВЧ облучения на остаточный уровень внутренних механических напряжений и параметры глубоких уровней в эпитак-сиальных структурах GaAs / Р. В. Конакова, А. Б. Камалов, О. Я. Олих и др. // Труды III международной конференции «Радиационно-термические эффекты и процессы в неорганических материалах», Томск, Россия. Томск: 2002. С. 338–339.
- [29] *Оліх, О. Я.* Про роль теплових і деформаційних механізмів дії ультразвуку на роботу кремнієвих сонячних елементів / О. Я. Оліх // Міжнародна науково-технічна конференція «Сенсорна електроніка і мікросистемні технології СЕМСТ-1», Одеса, Україна. Тези доповідей. Одеса: 2004. С. 163.
- [30] *Olikh, O.* Investigation of microwave treated epitaxial GaAs structures by acoustoelectric method / O. Olikh // 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference. Montreal, Canada. Abstracts. Montreal: 2004. Pp. 230–231.
- [31] Олих, О. Я. Влияние СВЧ облучения на остаточный уровень внутренних механических напряжений и параметры глубоких уровней в эпитак-сиальных структурах GaAs / О. Я. Олих // Труды девятой международной научно-технической конференции «Актуальные проблемы твердотельной электроники и микроэлектроники», Дивноморское, Россия. Дивноморское: 2004. С. 278–279.

- [32] Influence of acoustic wave on forming and characteristics of silicon p-n junction / J. Olikh, A. Evtukh, B. Romanyuk, O. Olikh // 2005 IEEE International Ultrasonics Symposium and Short Courses. Rotterdam, Netherlands. Abstracts.

 Rotterdam: 2005.
 P. 542.
- [33] *Olikh, O.* Dynamic ultrasound effects in silicon solar sell / O. Olikh, R. Burbelo, Hinders M. // 2007 International Congress on Ultrasonics. Program and Book of Abstracts. Vienna, Austria. Vienna: 2007. P. 94.
- [34] *Olikh, O.* Influence of the ultrasound treatment on Au-TiB–n–n⁺–GaAs structure electrical properties / O. Olikh // 2007 International Congress on Ultrasonics. Program and Book of Abstracts. Vienna, Austria. Vienna: 2007. P. 94.
- [35] *Olikh, O.* Influence of acoustic wave on forming and characteristics of silicon p–n junction / O. Olikh, R. Burbelo, M. Hinders // MRS 2007 Spring Meeting, Symposium F: Semiconductor Defect Engineering Materials, Synthetic Structures, and Devices II. San Francisco, USA. San Francisco: 2007. P. 3.11.
- [36] *Оліх, О. Я.* Робота кремнієвих сонячних елементів в умовах акустичного навантаження мегагерцового діапазону / О. Я. Оліх // ІІІ Українська наукова конференція з фізики напівпровідників УНКФН–3, Одеса, Україна. Тези доповідей. Одеса: 2007. С. 322.
- [37] *Оліх, О. Я.* Вплив ультразвукової обробки на вольт–амперні характеристики опромінених кремнієвих структур / О. Я. Оліх, А. М. Горб // VI Міжнародна школа–конференція «Актуальні проблеми фізики напівпровідників», Дрогобич, Україна. Тези доповідей. Дрогобич: 2008. С. 114.
- [38] *Оліх, О. Я.* Акустичні збурення дефектної підсистеми кремнієвих р–n–структур / О. Я. Оліх // VI Міжнародна школа–конференція «Актуальні проблеми фізики напівпровідників», Дрогобич, Україна. Тези доповідей. Дрогобич: 2008. С. 174.

- [39] Акусто-стимульовані нано-маніпуляції частинками вибраних розмірів / П. М. Литвин, О. Я. Оліх, О. С. Литвин та ін. // XII Міжнародна конференція «Фізика і технологія тонких плівок та наносистем», Івано-Франківськ, Україна. Тези доповідей. Т. 1. Івано-Франківськ: 2009. С. 66-67.
- [40] *Оліх, О. Я.* Особливості механізму ультразвукового впливу на фото–електричний струм у нейтронно–опромінених Si–p–n–структурах / О. Я. Оліх // IV Українська наукова конференція з фізики напівпровідників, Запоріжжя, Україна. Тези доповідей. Т. 2. Запоріжжя: 2009. С. 59.
- [41] Оліх, Я. М. Про можливості практично-го застосування ультразвуку для керування характеристиками перетворювачів сонячної енергії / Я. М. Оліх,
 О. Я. Оліх // Четверта міжнародна науково-практична конференція «Матеріали електронної техніки та сучасні інформаційні технології», Кременчук, Україна. Тези доповідей. Кременчук: 2010. С. 147–148.
- [42] Оліх, О. Я. Немонотонний вплив γ -опромінення на електричні властивості кремнієвих структур з бар'єром Шотки / О. Я. Оліх, С. В. Онисюк // VII Міжнародна школа-конференція «Актуальні проблеми фізики напівпровідників», Дрогобич, Україна. Тези доповідей. Дрогобич: 2010. С. 171–172.
- [43] *Оліх, О. Я.* Особливості динамічного ультразвукового впливу на γ -опромінені кремнієві m-s-структури / О. Я. Оліх, С. В. Онисюк // Збірник тез V Української наукової конференції з фізики напівпровідників УНКФН–5, Ужгород, Україна. Ужгород: 2011. С. 339–340.
- [44] *Оліх, О. Я.* Вплив ультразвуку на термоемісійні процеси в Мо/n–n⁺–Si структурах / О. Я. Оліх // Матеріали Всеукраїнської наукової конференції «Актуальні проблеми теоретичної, експериментальної та прикладної фізики», Тернопіль, Україна. Тернопіль: 2012. С. 101–103.
- [45] *Olikh, O. Ya.* Reversible Alteration of Reverse Current in Mo/n–Si Structures Under Ultrasound Loading / O. Ya. Olikh, Ya. M. Olikh // Фізика і технологія

- тонких плівок та наносистем. Матеріали XIV Міжнародної конференції / Під ред. Д.М. Фреїка. Івано-Франківськ: Видавництво Прикарпатського національного університету імені Василя Стефаника, 2013. С. 322.
- [46] *Olikh, O. Ya.* Modification of reverse current in the Mo/n–Si structures under conditions of ultrasonic loading / O. Ya. Olikh, K. V. Voytenko // VIII International school–conference «Actual problems of semiconductor physics», Drohobych, Ukraine. Abstract book. Drohobych: 2013. Pp. 101–102.
- [47] *Olikh, Ya. M.* About acoustical–stimulated a self–organization defect structures in semiconductor during ion implantation / Ya. M. Olikh, O. Ya. Olikh // International research and practice conference «Nanotechnology and nanomaterials», Bukovel, Ukraine. Abstract book. Bukovel: 2013. P. 240.
- [48] *Оліх, О. Я.* Вплив γ–опромінення на механізм перенесення заряду в структурах Мо/n–Si / О. Я. Оліх // VI Українська наукова конференція з фізики напівпровідників УНКФН–6. Чернівці, Україна. Тези доповідей. Чернівці: 2013. С. 121–122.
- [49] *Olikh, Ya.* New approach to ultrasonic absorption in subgrain–free Cd_{0,2}Hg_{0,8}Te crystals / Ya. Olikh, I. Lysyuk, O. Olikh // 2014 IEEE International Ultrasonics Symposium. Chicago, Illinois, USA. Abstract book. Chicago: 2014. Pp. 439–440.
- [50] *Olikh, O.* Ultrasonically induced effects in Schottky barrier structure depending on a γ -irradiation / O. Olikh // 2014 IEEE International Ultrasonics Symposium. Chicago, Illinois, USA. Abstract book. Chicago: 2014. Pp. 645–646.
- [51] Оліх, О. Я. Характеризація γ-опромінених кремнієвих р-п-структур методом диференційних коефіцієнтів / О. Я. Оліх, О. В. Пристай // 6-та Міжнародна науково-технічна конференція «Сенсорна електроніка і мікросистемні технології», Одеса, Україна. Тези доповідей. Одеса: 2014. С. 193.

- [52] Olikh, O.Ya. Ultrasonic Loading Effects on Silicon–based Schottky Diodes /
 O.Ya Olikh, K. V. Voytenko // 2015 International Congress on Ultrasonics.
 Metz, France. Abstract book. Metz: 2015. P. 225.
- [53] *Оліх, О. Я.* Порівняння ефективності методів визначення параметрів діодів Шотки / О. Я. Оліх // Сучасні проблеми фізики конденсованого стану: Праці IV–ї міжнародної конференції. Київ, Україна. Київ: 2015. С. 32–34.
- [54] Ультразвукова модифікація стимульованого фононами тунелювання у кремнієвих діодах Шотки / О. Я. Оліх, К. В. Войтенко, Р. М. Бурбело, Я. М. Оліх // VII Українська наукова конференція з фізики напівпровідників УНКФН–7. Дніпро, Україна. Тези доповідей. Дніпро: 2016. С. 190–191.
- [55] Оліх, О. Я. Акусто-керована модифікація властивостей кремнієвих фото-електроперетворювачів / О. Я. Оліх // Перспективні напрямки сучасної електроніки, інформаційних і комп'ютерних систем. Тези доповідей на ІІ Всеукраїнській науково-практичній конференції МЕІСЅ-2017. Дніпро, Україна. Дніпро: 2017. С. 302–303.
- [56] Ostapenko, S. S. Ultrasound stimulated dissociation of Fe–B pairs in silicon / S. S. Ostapenko, R. E. Bell // J. Appl. Phys. 1995. May. Vol. 77, no. 10. Pp. 5458–5460.
- [57] Davletova, A. Open-circuit voltage decay transient in dislocation-engineered Si p—n junction / A. Davletova, S. Zh. Karazhanov // Journal of Physics D: Applied Physics. 2008. Aug. Vol. 41, no. 16. P. 165107.
- [58] *Davletova, A.* A study of electrical properties of dislocation engineered Si processed by ultrasound / A. Davletova, S. Zh. Karazhanov // *Journal of Physics and Chemistry of Solids.* 2009. June. Vol. 70, no. 6. Pp. 989–992.
- [59] Пашаев, И.Г. Исследования релаксации избыточного тока кремниевых диодов Шоттки / И.Г. Пашаев // Физика и техника полупроводников. 2014.
 Т. 48, № 10. С. 1426–1429.

- [60] Власов, С.И. Влияние ультразвуковой обработки на генрационніе характеристики границі раздела полупроводник—стекло / С.И. Власов, А.В. Овсянников, Б.Н. Заверюхин // Письма в Журнал Технической Физики. 2009. Т. 35, № 7. С. 41–45.
- [61] *Olikh, Ya.M.* In Situ Observation of the Relaxation of Conductivity in γ -Irradiated n-Type Silicon under the Action of Ultrasound Pulses / Ya.M. Olikh, M.D. Tymochko // *Tech. Phys. Lett.* 2011. Jan. Vol. 37, no. 1. Pp. 37–40.
- [62] Acoustically driven optical phenomena in bulk and low-dimensional semiconductors / I.V. Ostrovskii, O.A. Korotchenkov, O.Ya Olikh et al. // *J. Opt. A: Pure Appl. Opt.* 2001. July. Vol. 3, no. 4. Pp. S82–S86.
- [63] *Дьелисан*, Э. Упругие волны в твёрдых телах.Применение для обработки сигналов / Э. Дьелисан, Д. Руайе. М.: Наука, 1982. 424 с.
- [64] Акустические кристаллы / А.А. Блистанов, В.С. Бондаренко, Н.В. Переломова и др.; Под ред. М. П. Шаскольской. М.: Наука, 1982. 632 с.
- [65] Updated NIEL calculations for estimating the damage induced by particles and γ -rays in Si and GaAs / A. Akkerman, J. Barak, M.B. Chadwick et al. // *Radiat Phys Chem.* 2001. Oct. Vol. 62, no. 4. Pp. 301–310.
- [66] Nonionizing energy loss (NIEL) for heavy ions / S.R. Messenger, E.A. Burke,
 G.P. Summers et al. // *IEEE Trans. Nucl. Sci.* 1999. Dec. Vol. 46, no. 6.
 Pp. 1595–1602.
- [67] *Bräunig, D.* Atomic displacement and total ionizing dose damage in semiconductors / D. Bräunig, F. Wulf // *Radiat. Phys. Chem.* 1994. Jan–Feb. Vol. 43, no. 1–2. Pp. 105–107.
- [68] *Huhtinen, M.* Simulation of non–ionising energy loss and defect formation in silicon / M. Huhtinen // *Nucl. Instrum. Methods Phys. Res., Sect. A.* 2002. Sep. Vol. 491, no. 1–2. Pp. 194–215.

- [69] Jafari, H. Analytical modeling for gamma radiation damage on silicon photodiodes / H. Jafari, S.A.H. Feghhi // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. Apr. Vol. 816. Pp. 62–69.
- [70] 75 MeV boron ion irradiation studies on Si PIN photodiodes / Y.P. Prabhakara Rao, K.C. Praveen, Y. Rejeena Rani et al. // *Nucl. Instrum. Methods Phys. Res., Sect. B.* 2013. Dec. Vol. 316. Pp. 205–209.
- [71] Comparison of defects produced by fast neutrons and ⁶⁰Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy / M. Moll, H. Feick, E. Fretwurst et al. // *Nucl. Instrum. Methods Phys. Res., Sect. A.* 1997. Apr. Vol. 388, no. 3. Pp. 335–339.
- [72] *Srour, J.R.* Review of displacement damage effects in silicon devices / J.R. Srour, C.J. Marshall, P.W. Marshall // *IEEE Trans. Nucl. Sci.* 2003. Jun. Vol. 50, no. 3. Pp. 653–670.
- [73] A contribution to the identification of the E5 defect level as tri–vacancy (V3) / Alexandra Junkes, Ioana Pintilie, Eckhart Fretwurst, Doris Eckstein // *Physica* B. 2012. Aug. Vol. 407, no. 15. Pp. 3013–3015.
- [74] Positron probing of disordered regions in neutron–irradiated silicon / Nikolay Arutyunov, Nick Bennett, Neil Wight et al. // phys. stat. sol. (b). 2016. Nov. Vol. 253, no. 11. Pp. 2175–2179.
- [75] Londos, C. A. Di-interstitial defect in silicon revisited / C. A. Londos, G. Antonaras, A. Chroneos // J. Appl. Phys. 2013. Nov. Vol. 114, no. 19. P. 193513.
- [76] Таперо, К.И. Радиационные эффекты в кремниевых интегральных схемах космического применения / К.И. Таперо, В.Н. Улимов, А.М. Членов. М.: «БИНОМ. Лаборатория знаний», 2012. 304 с.
- [77] *Hu, Binxin*. Reflection–type single long-pulse solar simulator for high–ef-ficiency crystalline silicon photovoltaic modules / Binxin Hu, Buyin Li, Tiechen Zhao, Rixin Yang // *Rev. Sci. Instrum.* 2011. Jun. Vol. 82, no. 6. P. 065104.

- [78] Electronically stimulated degradation of silicon solar cells / J. Schmidt,
 K. Bothe, D. Macdonald et al. // Journal of Materials Research. 2006.
 Jan. Vol. 21, no. 1. Pp. 5–12.
- [79] *Lindroos, Jeanette*. Review of light-induced degradation in crystalline silicon solar cells / Jeanette Lindroos, Hele Savin // *Sol. Energy Mater. Sol. Cells.* 2016. Apr. Vol. 147. Pp. 115–126.
- [80] Degradation of Crystalline Silicon Due to Boron–Oxygen Defects / Tim Niewelt, Jonas Schöon, Wilhelm Warta et al. // *IEEE Journal of Photovoltaics*. 2017. Jan. Vol. 7, no. 1. Pp. 383 –398.
- [81] Modeling of light-induced degradation due to Cu precipitation in p-type silicon. II. Comparison of simulations and experiments / H. Vahlman, A. Haarahiltunen, W. Kwapil et al. // *J. Appl. Phys.* 2017. May. Vol. 121, no. 19. P. 195704.
- [82] Recombination parameters of lifetime–limiting carrier–induced defects in multicrystalline silicon for solar cells / Carlos Vargas, Yan Zhu, Gianluca Coletti et al. // *Appl. Phys. Lett.* 2017. Feb. Vol. 110, no. 9. P. 092106.
- [83] Acceleration and mitigation of carrier–induced degradation in p-type multi-crystalline silicon / D. N. R. Payne, C. E. Chan, B. J. Hallam et al. // *Phys. Status Solidi RRL*. 2016. Mar. Vol. 10, no. 3. Pp. 237–241.
- [84] Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells / Volker Naumann, Dominik Lausch, Angelika Hahnel et al. // Sol. Energy Mater. Sol. Cells. 2014. Jan. Vol. 120. Pp. 383–389.
- [85] *Hoffmann, Stephan*. Effect of humidity and temperature on the potential-induced degradation / Stephan Hoffmann, Michael Koehl // *Progress in Photovoltaics: Research and Applications*. 2012. Feb. Vol. 22, no. 2. Pp. 173–179.

- [86] Influence of surface structure of n-type single-crystalline Si solar cells on potential-induced deInfluence / Kohjiro Hara, Kinichi Ogawa, Yusuke Okabayashi et al. // Sol. Energy Mater. Sol. Cells. 2017. Jul. Vol. 166. Pp. 132–139.
- [87] A study on the variation of c–Si solar cell parameters under 8 MeV electron irradiation / Sathyanarayana Bhat, Asha Rao, Sheeja Krishnan et al. // Sol. Energy Mater. Sol. Cells. 2014. Jan. Vol. 120. Pp. 191–196.
- [88] *Karazhanov, S. Zh.* Mechanism for the anomalous degradation of silicon space solar cells / S. Zh. Karazhanov // *Applied Physics Letters.* 2000. May. Vol. 76, no. 19. Pp. 2689–2691.
- [89] *Korotchenkov, O.A.* Long-wavelength acoustic-mode-enhanced electron emission from Se and Te donors in silicon / O.A. Korotchenkov, H.G. Grimmliss // *Phys. Rev. B.* 1995. Nov. Vol. 52, no. 20. Pp. 14598–14606.
- [90] Effect of ultrasonic treatment on the defect structure of the Si-SiO₂ system / D. Kropman, V. Seeman, S. Dolgov, A. Medvids // phys. stat. sol. (c). 2016.
 Oct. Vol. 13, no. 10–12. Pp. 793–797.
- [91] Olikh, Ya. M. Reverse ultrasonic changes of electrical conductivity in CdTe:Cl crystals / Ya. M. Olikh, M.D. Tymochko // Superlattices Microstruct. 2016.
 Jul. Vol. 95. Pp. 78–82.
- [92] Acoustostimulated changes in the density of surface states and their energy spectrum in p-type silicon single crystals / N.N. Zaveryukhina, E.B. Zaveryukhina, S.I. Vlasov, B.N. Zaveryukhin // *Tech. Phys. Lett.* 2008. Mar. Vol. 34, no. 3. Pp. 241–243.
- [93] *Mirsagatov, Sh. A.* Ultrasonic Annealing of Surface States in the Heterojunction of a p-Si/n-CdS/n⁺-CdS Injection Photodiode / Sh. A. Mirsagatov, I. B. Sapaeva, Zh.T. Nazarov // *Inorganic Materials*. 2015. Dec. Vol. 51, no. 1. Pp. 1–4.

- [94] Ostapenko, S. Defect passivation using ultrasound treatment: fundamentals and application / S. Ostapenko // Applied Physics A: Materials Science & Processing. 1999. Aug. Vol. 69, no. 2. Pp. 225–232.
- [95] Characteristics of silicon p-n junction formed by ion implantation with in situ ultrasound treatment / V.P. Melnik, Y.M. Olikh, V.G. Popov et al. // *Materials Science & Engineering, B: Solid-State Materials for Advanced Technology.* 2005. Dec. Vol. 124–125. Pp. 327–330.
- [96] *Ishaque, Kashif.* Simple, fast and accurate two-diode model for photovoltaic modules / Kashif Ishaque, Zainal Salam, Hamed Taheri // *Sol. Energy Mater. Sol. Cells.* 2011. Feb. Vol. 95, no. 2. Pp. 586–594.
- [97] Bühler, Alexandre Jose. Method for photovoltaic parameter extraction according to a modified double-diode model / Alexandre Jose Bühler, Arno Krenzinger // Progress in Photovoltaics: Research and Applications. 2013. Aug. Vol. 21, no. 5. Pp. 884–893.
- [98] Sproul, A. B. Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K / A. B. Sproul, M. A. Green // J. Appl. Phys. 1993.
 Feb. Vol. 73, no. 3. Pp. 1214–1225.
- [99] *Green, Martin A.* Intrinsic concentration, effective densities of states, and effective mass in silicon / Martin A. Green // *J. Appl. Phys.* 1990. Mar. Vol. 67, no. 6. Pp. 2944–2954.
- [100] Schroder, D. K. Semiconductor Material and Device Characterization / D. K. Schroder. Third edition. New Jersey: John Wiley & Sons, 2006.
- [101] Solar Cells. Materials, Manufacture and Operation / Ed. by Augustin McEvoy, Tom Markvart, Luis Castaner. — Second edition. — Oxford: Academic Press, 2013.
- [102] Sun, Jianyong. DE/EDA: A new evolutionary algorithm for global optimization / Jianyong Sun, Qingfu Zhang, Edward P.K. Tsang // Inform. Sci. 2005.
 Feb. Vol. 169, no. 3–4. Pp. 249–262.

- [103] Wang, Kaier. Parameter determination of Schottky-barrier diode model using differential evolution / Kaier Wang, Meiying Ye // Solid-State Electron. 2009.
 Feb. Vol. 53, no. 2. Pp. 234–240.
- [104] Adaptive differential evolution algorithm with novel mutation strategies in multiple sub–populations / Laizhong Cui, Genghui Li, Qiuzhen Lin et al. // Computers & Operations Research. 2016. Mar. Vol. 67. Pp. 155–173.
- [105] Modeling of light-induced degradation due to Cu precipitation in p-type silicon. II. Comparison of simulations and experiments / H. Vahlman, A. Haarahiltunen, W. Kwapil et al. // *J. Appl. Phys.* 2017. May. Vol. 121, no. 19. P. 195704.
- [106] Implications of Accelerated Recombination–Active Defect Complex Formation for Mitigating Carrier–Induced Degradation in Silicon / Brett J. Hallam, Malcolm D. Abbott, Nitin Nampalli et al. // *IEEE Journal of Photovoltaics*. 2016. Jan. Vol. 6, no. 1. Pp. 92–99.
- [107] *Razeghi, M.* Semiconductor ultraviolet detectors / M. Razeghi, A. Rogalski // *J. Appl. Phys.* 1996. May. Vol. 79, no. 10. Pp. 7433–7473.
- [108] *Rajkanan, K.* Absorption coefficient of silicon for solar cell calculations / K. Rajkanan, R. Singh, J. Shewchun // *Solid-State Electron.* 1979. Sep. Vol. 22, no. 9. Pp. 793–795.
- [109] Effect of oxygen precipitation on the performance of Czochralski silicon solar cells / Lin Chen, Xuegong Yu, Peng Chen et al. // Sol. Energy Mater. Sol. Cells.
 2011. Nov. Vol. 95, no. 11. Pp. 3148–3151.
- [110] Identification of lifetime limiting defects by temperature— and injection-dependent photoluminescence imaging / Jonas Schön, Amanda Youssef, Sungeun Park et al. // *J. Appl. Phys.* 2016. Sep. Vol. 120, no. 10. P. 105703.
- [111] Evaluating Crystalline Silicon Solar Cells at Low Light Intensities Using Intensity—Dependent Analysis of I–V Parameters / Karola Rühle, Mattias K. Juhl,

- Malcolm D. Abbott, Martin Kasemann // *IEEE Journal of Photovoltaics*. 2015. May. Vol. 5, no. 3. Pp. 926–931.
- [112] Crystalline silicon cell performance at low light intensities / N.H. Reich,
 W.G.J.H.M. van Sark, E.A. Alsema et al. // Sol. Energy Mater. Sol. Cells.
 2009. Sep. Vol. 93, no. 9. Pp. 1471–1481.
- [113] The Influence of Parasitic Effects on Injection–Level–Dependent Lifetime Data / Florence W. Chen, Jeffrey E. Cotter, Malcolm D. Abbott et al. // *IEEE Trans. Electron Devices.* 2007. Nov. Vol. 54, no. 11. Pp. 2960–2968.
- [114] *Schroder, D.K.* The concept of generation and recombination lifetimes in semi-conductors / D.K. Schroder // *IEEE Trans. Electron Devices.* 1982. Aug. Vol. 29, no. 8. Pp. 1336–1338.
- [115] Analysis of n^+p silicon junctions with varying substrate doping concentrations made under ultraclean processing technology / Herzl Aharoni, Tadahiro Ohmi, Mauricio Massazumi Oka et al. // *J. Appl. Phys.* 1997. Feb. Vol. 81, no. 3. Pp. 1270–1288.
- [116] Explanation of High Solar Cell Diode Factors by Nonuniform Contact Resistance / A. S. H. van der Heide, A. Schonecker, J. H. Bultman, W. C. Sinke // *Progress in Photovoltaics: Research and Applications.* 2005. Jan. Vol. 13, no. 1. Pp. 3–16.
- [117] *Beier, Jutta*. Humps in dark I–V–curves Analysis and explanation / Jutta Beier, Bernhard Voss // Proceedings of the 23rd IEEE Photovoltaic Specialists Conference. 1993. May. Pp. 321–326. Louisville, KY, USA.
- [118] Experimental analysis and theoretical model for anomalously high ideality factors ($n \gg 2.0$) in AlGaN/GaN p-n junction diodes / Jay M. Shah, Y.-L. Li, Th. Gessmann, E. F. Schubert // J. Appl. Phys. 2003. Aug. Vol. 94, no. 4. Pp. 2627–2630.

- [119] Conduction processes in silicon solar cells / A. Kaminski, J. J. Marchand, H. E. Omari et al. // Proceedings of the 25th IEEE Photovoltaic Specialists Conference. 1996. May. Pp. 573–576. Washington, DC, USA.
- [120] Direct observation of intercenter charge transfer in dominant nonradiative recombination channels in silicon / W. M. Chen, B. Monemar, E. Janzén, J. L. Lindström // Phys. Rev. Lett. — 1991. — Sep. — Vol. 67, no. 14. — Pp. 1914–1917.
- [121] Observation of rapid direct charge transfer between deep defects in silicon / A. M. Frens, M. T. Bennebroek, A. Zakrzewski et al. // *Phys. Rev. Lett.* 1994. May. Vol. 72, no. 18. Pp. 2939–2942.
- [122] *Schenka, Andreas*. Coupled defect-level recombination: Theory and application to anomalous diode characteristics / Andreas Schenka, Ulrich Krumbein // *J. Appl. Phys.* 1995. Sep. Vol. 78, no. 5. Pp. 3185–3192.
- [123] Explanation of commonly observed shunt currents in c-Si solar cells by means of recombination statistics beyond the Shockley-Read-Hall approximation / Silke Steingrube, Otwin Breitenstein, Klaus Ramspeck et al. // *J. Appl. Phys.* 2011. July. Vol. 110, no. 1. P. 014515.
- [124] Influence of Defects on Solar Cell Characteristics / Otwin Breitenstein,
 Jan Bauer, Pietro P. Altermatt, Klaus Ramspeck // Solid State Phenomena.
 2010. Vol. 156–158. Pp. 1–10.
- [125] The effect of oxide precipitates on minority carrier lifetime in p-type silicon / J. D. Murphy, K. Bothe, M. Olmo et al. // J. Appl. Phys. 2011. Sep. Vol. 110, no. 5. P. 053713.
- [126] *Schlangenotto, H.* Temperature dependence of the radiative recombination coefficient in silicon / H. Schlangenotto, H. Maeder, W. Gerlach // phys. stat. sol. (a). 1974. Jan. Vol. 21, no. 1. Pp. 357–367.
- [127] *Kerr, Mark J.* General parameterization of Auger recombination in crystalline silicon / Mark J. Kerr, Andres Cuevas // *J. Appl. Phys.* 2002. Feb. Vol. 91, no. 4. Pp. 2473–2480.

- [128] *Rhoderick, E. H.* Metal Semiconductor Contacts / E. H. Rhoderick, R. H. Williams. Second edition. Oxford: Clarendon Press, 1988.
- [129] Sze, S. M. Semiconductor Devices: Physics and Technology / S. M. Sze. New York: Wiley, 1985.
- [130] *Norde, H.* A modified forward /-V plot for Schottky diodes with high series resistance / H. Norde // *J. Appl. Phys.* 1979. Jul. Vol. 50, no. 7. Pp. 5052–5053.
- [131] *Lien, C. D.* An improved forward I-V method for nonideal Schottky diodes with high series resistance / C. D. Lien, F.C.T. So, M.A. Nicolet // *IEEE Trans. Electron Devices.* 1984. Oct. Vol. ED-31, no. 10. Pp. 1502–1503.
- [132] *Werner, Jurgen H.* Schottky Barrier and pn-Junction I/V Plots–Small Signal Evaluation / Jurgen H. Werner // *Appl. Phys. A.* 1988. Nov. Vol. 47, no. 3. Pp. 291–300.
- [133] *Cheung, S.K.* Extraction of Schottky diode parameters from forward current-voltage characteristics / S.K. Cheung, N. W. Cheung // *Appl. Phys. Lett.* 1986. Jul. Vol. 49, no. 2. Pp. 85–87.
- [134] *Gromov, D.* Modified methods for the calculation of real Schottky-diode parameters / D. Gromov, V. Pugachevich // *Appl. Phys. A.* 1994. Sep. Vol. 59, no. 3. Pp. 331–333.
- [135] A systematic approach to the measurement of ideality factor, series resistance, and barrier height for Schottky diodes / T. C. Lee, S. Fung, C.D. Beling, H.L. Au // *J. Appl. Phys.* 1992. Nov. Vol. 72, no. 10. Pp. 4739–4742.
- [136] *Bohlin, K. E.* Generalized Norde plot including determination of the ideality factor / K. E. Bohlin // *J. Appl. Phys.* 1986. Aug. Vol. 60, no. 3. Pp. 1223–1224.
- [137] *Cibils, Roberto M.* Forward I-V plot for nonideal Schottky diodes with high series resistance / Roberto M. Cibils, Roman H. Buitrago // *J. Appl. Phys.* 1985. Jul. Vol. 58, no. 2. Pp. 1075–1077.

- [138] Schottky diode: Comments concerning the diode parameters determination from the forward I–V plot / J.-C. Manifacier, N. Brortryb, R. Ardebili, J.-P. Charles // J. Appl. Phys. 1988. Sep. Vol. 64, no. 5. Pp. 2502–2504.
- [139] On the extraction of linear and nonlinear physical parameters in nonideal diodes / V. Mikhelashvili, G. Eisenstein, V. Garber et al. // J. Appl. Phys. 1999. May. Vol. 85, no. 9. Pp. 6873–6883.
- [140] *Kaminski, A.* I-V methods to extract junction parameters with special emphasis on low series resistance / A. Kaminski, J.J. Marchand, A. Laugier // *Solid-State Electron.* 1999. Apr. Vol. 43, no. 4. Pp. 741–745.
- [141] A generalized model for a two-terminal device and its applications to parameter extraction / A.. Ortiz-Conde, F.J. Garsia Sanchez, J.J. Liou et al. // *Solid-State Electron.* 1995. Jan. Vol. 38, no. 1. Pp. 265–266.
- [142] *Durmus, Haziret*. Extraction of voltage-dependent series resistance from I–V characteristics of Schottky diodes / Haziret Durmus, Ulfet Atav // *Appl. Phys. Lett.* 2011. Aug. Vol. 99, no. 9. P. 093505.
- [143] *Sato, K.* Study of forward /-V plot for Schottky diodes with high series resistance / K. Sato, Y. Yasumura // *J. Appl. Phys.* 1985. Nov. Vol. 58, no. 9. Pp. 3655–3657.
- [144] *Lyakas, M.* Analysis of nonideal Schottky and p-n junction diodes Extraction of parameters from I--V plots / M. Lyakas, R. Zaharia, M. Eizenberg // *J. Appl. Phys.* 1995. Nov. Vol. 78, no. 9. Pp. 5481–5489.
- [145] Direct extraction of semiconductor device parameters using lateral optimization method / A.. Ortiz-Conde, Y. Ma, J. Thomson et al. // *Solid-State Electron*. 1999. Apr. Vol. 43, no. 4. Pp. 845–848.
- [146] Extraction of Schottky diode (and p-n junction) parameters from I-V characteristics / E.K. Evangelou, L. Papadimitriou, C.A. Dimitriades, G.E. Giakoumakis // Solid-State Electron. 1993. Nov. Vol. 36, no. 11. Pp. 1633–1635.

- [147] A self consistent approach to IV-measurements on rectifying metal–semiconductor contacts / D. Donoval, J. de Sousa Pires, P.A. Tove, R. Harman // *Solid-State Electron.* 1989. Nov. Vol. 32, no. 11. Pp. 961–964.
- [148] Extraction of Schottky diode parameters including parallel conductance using a vertical optimization method / A. Ferhat-Hamida, Z. Ouennoughi, A. Hoffmann, R. Weiss // *Solid-State Electron.* 2002. May. Vol. 46, no. 5. Pp. 615–619.
- [149] *Jung, W.* Schottky diode parameters extraction using Lambert W function / W. Jung, M. Guziewicz // *Materials Science and Engineering B.* 2009. Nov. Vol. 165, no. 1–2. Pp. 57–59.
- [150] Ortiz-Conde, Adelmo. Extraction of non-ideal junction model parameters from the explicit analytic solutions of its I-V characteristics / Adelmo Ortiz-Conde, Francisco J. Garsia Sanchez // Solid-State Electron. — 2005. — Mar. — Vol. 49, no. 3. — Pp. 465–472.
- [151] Дубинов, А. Е. W-функция Ламберта и ее применение в математических задачах физики / А. Е. Дубинов, И. Д. Дубинова, К. С. Сайков. Саров: Φ ГУП «РФЯЦ–ВНИИЭФ», 2006. 160 с.
- [152] Ye, Meiying. Parameter extraction of solar cells using particle swarm optimization / Meiying Ye, Xiaodong Wang, Yousheng Xu // J. Appl. Phys. 2009. May. Vol. 105, no. 9. P. 094502.
- [153] *Li, Yiming*. An automatic parameter extraction technique for advanced CMOS device modeling using genetic algorithm / Yiming Li // *Microelectron. Eng.* 2007. Feb. Vol. 84, no. 2. Pp. 260–272.
- [154] A critical evaluation of EA computational methods for Photovoltaic cell parameter extraction based on two diode model / Kashif Ishaque, Zainal Salam, Hamed Taheri, Amir Shamsudin // Solar Energy. 2011. Sep. Vol. 85, no. 9. Pp. 1768–1779.

- [155] *Patel, Sanjaykumar J.* Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm / Sanjaykumar J. Patel, Ashish K. Panchal, Vipul Kheraj // *Applied Energy.* 2014. Apr. Vol. 119. Pp. 384–393.
- [156] *Karaboga, Nurhan*. The parameter extraction of the thermally annealed Schottky barrier diode using the modified artificial bee colony / Nurhan Karaboga, Serdar Kockanat, Hulya Dogan // *Appl. Intell.* 2013. Apr. Vol. 38, no. 3. Pp. 279–288.
- [157] Wang, Kaier. Parameter estimation of Schottky-barrier diode model by particle swarm optimization / Kaier Wang, Meiying Ye // Int. J. Mod. Phys. C. 2009.
 May. Vol. 20, no. 5. Pp. 687–699.
- [158] *Sellai, A.* Extraction of illuminated solar cell and Schottky diode parameters using a genetic algorithm / A. Sellai, Z. Ouennoughi // *Int. J. Mod. Phys. C.* 2005. Jul. Vol. 16, no. 7. Pp. 1043–1050.
- [159] *Aubry, V.* Schottky diodes with high series resistance: Limitations of forward I–V methods / V. Aubry, F. Meyer // *J. Appl. Phys.* 1994. Dec. Vol. 76, no. 12. Pp. 7973–7984.
- [160] Determination of the Schottky barrier height in diodes based on Au–TiB₂–n–SiC 6H from the current–voltage and capacitance–voltage characteristics / Ya. Ya. Kudryk, V. V. Shynkarenko, V. S. Slipokurov et al. // Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. Vol. 17, no. 4. Pp. 398–402.
- [161] *Калиткин, Н. Н.* Численные методы / Н. Н. Калиткин. Санкт–Петербург: «БХВ–Петербург», 2011. 592 с.
- [162] *Aboelfotoh, M.O.* Electrical characteristics of W–Si(100) Schottky barrier junctions / M.O. Aboelfotoh // *J. Appl. Phys.* 1989. Jul. Vol. 66, no. 1. Pp. 262–272.
- [163] A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n–Si Schottky diodes / S. Zhua, R. L. Van Meirhaeghea, C. Detaverniera

- et al. // *Solid State Communications*. 1999. Oct. Vol. 112, no. 11. Pp. 611–615.
- [164] Temperature dependence of the indirect bandgap in ultrathin strained silicon on insulator layer / J. Munguia, J.-M. Bluet, O. Marty et al. // *Appl. Phys. Lett.* 2012. Mar. Vol. 100, no. 10. P. 102107.
- [165] Temperature dependence of the ideality factor of GaAs and Si Schottky diodes / T. C. Lee, T. P. Chen, H. L. Au et al. // phys. stat. sol. (a). 1995. Dec. Vol. 152, no. 2. Pp. 563–571.
- [166] Barrier characteristics of PtSi/p–Si Schottky diodes as determined from I–V–T measurements / P. G. McCafferty, A. Sellai, P. Dawson, H. Elabd // *Solid-State Electron*. 1996. Apr. Vol. 39, no. 4. Pp. 583–592.
- [167] Saxena, A.N. Forward current-voltage characteristics of Schottky barriers on n-type silicon / A.N. Saxena // Surf. Sci. 1969. Jan. Vol. 13, no. 1. Pp. 151–171.
- [168] Analysis of the temperature dependence of the forward voltage characteristics of GaInN light–emitting diodes / David S. Meyaard, Jaehee Cho, E. Fred Schubert et al. // *Appl. Phys. Lett.* 2013. Sep. Vol. 103, no. 12. P. 121103.
- [169] Temperature dependence and effect of series resistance on the electrical characteristics of a polycrystalline diamond metal-insulator-semiconductor diode / W. P. Kang, J. L. Davidson, Y. Gurbuz, D. V. Kerns // J. Appl. Phys. 1995. Jul. Vol. 78, no. 2. Pp. 1101–1107.
- [170] Effects of temperature on series resistance determination of electrodeposited Cr/n–Si/Au—Sb Schottky structures / O. Dermircioglu, S. Karatas, N. Yildirim, O.F. Bakkaloglu // *Microelectron. Eng.* 2011. Sep. Vol. 88, no. 9. Pp. 2997–3002.
- [171] *Tung, Raymond T.* Recent advances in Schottky barrier concept / Raymond T. Tung // *Mater. Sci. Eng., R.* 2001. Nov. Vol. 35, no. 1–3. Pp. 1–138.

- [172] *Dokme, Ilbilge*. On the intersecting behaviour of experimental forward bias current–voltage (I–V) characteristics of Al/SiO₂/p-Si (MIS) Schottky diodes at low temperatures / Ilbilge Dokme, Semsettin Altindal // *Semicond. Sci. Technol.* 2006. Aug. Vol. 21, no. 8. Pp. 1053–1058.
- [173] *Kittler, Martin*. Dislocations as Active Components in Novel Silicon Devices / Martin Kittler, Manfred Reiche // *Advanced Engineering Materials*. 2009. Apr. Vol. 11, no. 4. Pp. 249–258.
- [174] On the electronic properties of a single dislocation / Manfred Reiche, Martin Kittler, Wilfried Erfurth et al. // *J. Appl. Phys.* 2014. May. Vol. 115, no. 19. P. 194303.