# (19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-192929

(P2003-192929A)

(43)公開日 平成15年7月9日(2003.7.9)

100 28 c 16%

| (51) Int.Cl.7 | 識別記号                         | FI                      | テーマコード(参考)           |
|---------------|------------------------------|-------------------------|----------------------|
| C08L 101/16   | ZBP                          | C 0 8 L 101/16          | ZBP 4J002            |
| C 0 8 K 3/20  |                              | C 0 8 K 3/20            |                      |
| 3/32          |                              | 3/32                    |                      |
| 3/36          |                              | 3/36                    |                      |
| 5/29          |                              | 5/29                    |                      |
|               | 審査請求                         | 未請求 請求項の数14 〇           | L (全 15 頁) 最終頁に続く    |
| (21)出顧番号      | 特願2002-76763( P2002-76763)   | (71)出願人 000002185 ソニー株式 | 会社                   |
| (22)出願日       | 平成14年3月19日(2002.3.19)        | 東京都品川 (72)発明者 山田 心一     | 区北品川6丁目7番35号<br>郎    |
| (31)優先権主張番号   | 特願2001-316361 (P2001-316361) | 東京都品川                   | 区北品川6丁目7番35号 ソニ      |
| (32)優先日       | 平成13年10月15日(2001.10.15)      | 一株式会社                   | 内                    |
| (33)優先権主張国    | 日本(JP)                       | (72)発明者 藤平 裕子           | •                    |
|               |                              | 東京都品川<br>一株式会社          | 区北品川6丁目7番35号 ソニ<br>内 |
|               |                              | (74)代理人 100077012       |                      |
|               |                              | 弁理士 岩                   | 谷 龍                  |
|               |                              |                         |                      |

## (54) 【発明の名称】 生分解性を有する難燃性複合組成物およびその製造方法

## (57)【要約】

【課 題】 本発明は、廃棄時の自然環境への悪影響 が少なく、生分解性と難燃性と機械的強度を有する組成 物を提供することを目的とする。

【解決手段】 一または複数種の生分解性を有する有機 高分子化合物と、難燃系添加剤と、前記生分解性を有す る有機高分子化合物の加水分解抑制剤とを含有すること を特徴とする組成物。

最終頁に続く

【特許請求の範囲】

【請求項1】 一または複数種の生分解性を有する有機 高分子化合物と、難燃系添加剤と、前記生分解性を有す る有機高分子化合物の加水分解抑制剤とを含有すること を特徴とする組成物。

【請求項2】 生分解性を有する有機高分子化合物が、 多糖類、脂肪族ボリエステル、ポリアミノ酸、ポリビニ ルアルコールもしくはボリアルキレングリコール、また は前記化合物の少なくともいずれか一つを含む共重合体 であることを特徴とする請求項1記載の組成物。

【請求項3】 脂肪族ポリエステルが、ポリ乳酸、ポリカプロラクトン、ポリヒドキシ酪酸、ポリヒドロキシ吉草酸、ポリエチレンスクシネート、ポリブチレンスクシネート、ポリブチレンアジベート、ポリリンゴ酸もしくは微生物合成ホリエステル、または前記化合物の少なくともいずれか一つを含む共重合体であることを特徴とする請求項1記載の組成物。

【請求項4】 難燃系添加剤が、水酸化物系化合物、リン系化合物およびシリカ系化合物から選ばれる少なくとも1種の化合物であることを特徴とする請求項1記載の組成物。

【請求項5】 難燃系添加剤が水酸化物系化合物であり、その添加量が組成物全体に対して5重量%から50 重量%であることを特徴とする請求項4記載の組成物。

【請求項6】 難燃系添加剤がリン系化合物であり、その添加量が組成物全体に対して2重量%から40重量% であることを特徴とする請求項4記載の組成物。

【請求項7】 難燃系添加剤がシリカ系化合物であり、 その添加量が組成物全体に対して5重量%から30重量 %であることを特徴とする請求項4記載の組成物。

【請求項8】 加水分解抑制剤が、カルボジイミド化合物、イソシアネート化合物およびオキソゾリン化合物から選ばれる少なくとも1種の化合物であることを特徴とする請求項1記載の組成物。

【請求項9】 加水分解制御剤の添加量が、組成物全体に対して0.5 重点%から8重量%であることを特徴とする請求項8記載の組成物。

【請求項10】 温度80℃、相対湿度80%の恒温恒湿条件下で48時間エージングしても、生分解性を有する有機高分子の分子量の低下が20%以内であることを特徴とする請求項1記載の組成物。

【請求項11】 一または複数種の生分解性を有する有機高分子化合物と、難燃系添加物と、前記生分解性を有する有機高分子化合物の加水分解抑制剤とを複合することを特徴とする請求項1記載の組成物の製造方法。

【請求項12】 一または複数種の生分解性を有する有機高分子化合物と、難燃系添加剤と、前記生分解性を有する有機高分子化合物の加水分解抑制剤とを含有する組成物からなる成形品。

【請求項13】 電気製品の筐体であることを特徴とす 50

る請求項12記載の成形品。

【請求項14】 一または複数種の生分解性を有する有機高分子化合物と、難燃系添加剤と、前配生分解性を有する有機高分子化合物の加水分解抑制剤とを含有する組成物からなる部品を構成要素とする電気製品。

2

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、難燃性が付与され、且つ自然環境に廃棄された場合に生分解することで環境に対する悪影響を軽減できる組成物に関する。

[0002]

【従来の技術】近年、各種の合成樹脂材料が開発、提供され、種々の産業分野における使用量は年々増加し、多種多様の合成樹脂が年間1000万トン近く生産されるようになった。その結果として、合成樹脂廃棄物の量も増大し、その処理が大きな社会問題となっている。廃棄された樹脂をそのまま焼却処理することは、有害ガスが発生したり、大きな燃焼熱により焼却炉の損傷を起こしたりすることがあり、環境へ大きな負荷を与えることとなっている。

【0003】従来知られている廃棄樹脂の処理方法とし ては、例えば熱分解や化学分解により廃棄樹脂を低分子 化したものを焼却したり、埋め立てたりする方法があ る。しかし、焼却処理は二酸化炭素の排出を伴うため に、地球温暖化を招くおそれがある。また、焼却樹脂中 に硫黄、窒素またはハロゲンなどが含有されている場合 には、焼却処理することは有害排出ガスによる大気汚染 の一因になる。一方、樹脂を埋め立てる場合、現在、用 いられているほとんどの樹脂は、長期間分解されずにそ のままの状態で残存するため、土壌汚染の原因になる そこで、このような問題に対し、近年、生分解性樹脂が 開発され、実用化されつつある。生分解性樹脂は、微生 物などにより生化学的に二酸化炭素および水などに分解 されるので、自然環境へ廃棄された場合においても容易 に分解して低分子量化し、環境に対して無害な化合物に 変化する。そのため、生分解性樹脂を使用することによ って、廃棄に伴う地球環境に対する悪影響を低減させる ことができる。このような理由から、生分解性樹脂が着 目され、今までに日用雑貨品、衛生用品または遊戯用品 などを主とした使い捨て製品に対して実用化が進められ ている。

【0004】上記のように、従来の生分解性樹脂は、自然環境への安全性は確保されるが、樹脂を実際に使用する際の安全性の一つとして要求の高まっている難燃性については、既存の生分解性樹脂は十分なものではない。とくに電気製品については、筐体などを生分解性樹脂で形成し、回収後の処理を容易にしたいという要望はあるものの、電気製品の筐体として使用するためには、日本工業規格(JIS)やUL(Under-writer Laboratory)規格に定められている難燃規格を満たす必要があ

り、既存の生分解性樹脂では前記難燃規格に対応できていない。また、生分解性樹脂を例えば電気製品、電子機器等の筐体などの実用品に応用する場合は、上記難燃性と共に保存特性(恒温恒湿条件での耐久性)が要求される。例えば、小形のオーディオ商品では、30℃、相対湿度80%の条件で3~7年は強度などの物性が維持されることが必要である。

【0005】従来、生分解性樹脂に対し実用的な成形品に適した物性を持たせるため、さまざまな検討が行われている。例えば、生分解性ポリマーの代表例である脂肪族ポリエステル樹脂に対し、無機フィラーの添加、結晶核剤の添加による結晶化速度の向上、ガラス転移点が低いゴム的な性質を示す生分解性樹脂とのブレンド等、またはこのようなプラスチックを用いた成形物に関して、既にいくつかの特許出願がなされている(特開平3-290461号公報、特開平4-325526号公報等)。しかし、これらの成形物は、特に、フィルムや包装材料として用いられており、難燃性または機械的強度などの物性については、十分なものではない。

#### [0006]

【発明が解決しようとする課題】そこで、本発明は、廃棄時の自然環境への悪影響が少なく、生分解性と難燃性と機械的強度を有する組成物を提供することを目的とする。

## [0007]

【課題を解決するための手段】本発明者らは、上記の課題は、生分解性樹脂に対して、難燃系添加剤と生分解性樹脂の加水分解抑制剤を加えることで解決することができることを知見した。難燃系添加剤としてはハロゲン系の難燃化剤が挙げられるが、ハロゲン系の難燃化剤を樹脂に含めると、かかる樹脂の焼却処理時にハロゲンガスが発生し、かかるハロゲンガスを人体に無害なものにするには複雑な処理を必要とするから、好適な例とはいえない。

【0008】そこで、発明者等は、環境に配慮された難燃系添加剤として、①水酸化物系化合物、②リン酸アンモニウム系化合物、③シリカ系化合物に着目した。①水酸化物系化合物は、樹脂が燃焼する際に発生する熱をこれらの材料が吸熱して分解すると同時に水を生じ、吸熱作用と水の発生により難燃性を発現するものである。②リン酸アンモニウム系化合物は、燃焼時に分解してポリメタリン酸を生成し、その脱水作用の結果、新しく生成する炭素被膜の形成による酸素遮断によって難燃効果を発揮する。③シリカ系化合物は、樹脂に対する無機フィラーの効果により、樹脂に難燃性を与える。生分解性樹脂と上記①~③の難燃系添加剤とを配合させることで樹脂の難燃化は実現する。

【0009】さらに、本発明者らは、生分解性樹脂と上記(1)~(3)の難燃系添加剤とを含有する前記複合樹脂の機

械的強度の向上について検討した結果、該複合樹脂にさらに生分解性樹脂の加水分解抑制剤を加えることにより、前記複合樹脂中の生分解性樹脂の加水分解速度が遅延され、そのゆえに、前記複合樹脂の機械的強度が今までよりも長期間保持されるという知見を得た。以上のように、本発明者らは、生分解性樹脂、難燃系添加剤、加水分解抑制剤の三元系にすることで、新規であって、生分解性、難燃性、機械的強度を兼ね備えた理想的な樹脂を創製するに至った。

【0010】すなわち、本発明は、(1) 一または複数種の生分解性を有する有機高分子化合物と、難燃系添加剤と、前記生分解性を有する有機高分子化合物の加水分解抑制剤とを含有することを特徴とする組成物、

(2) 生分解性を有する有機高分子化合物が、多糖類、脂肪族ポリエステル、ポリアミノ酸、ポリビニルアルコールもしくはポリアルキレングリコール、または前記化合物の少なくともいずれか一つを含む共重合体であることを特徴とする前記(1)記載の組成物、(3)脂肪族ポリエステルが、ポリ乳酸、ボリカプロラクトン、ポリヒドキシ酪酸、ポリヒドロキシ吉草酸、ホリエチレンスクシネート、ポリブチレンスクシネート、ポリブチレンスクシネート、ポリブチレンスクシネート、ポリブチレンスクシネート、ポリブチレンスクシネート、ポリアジペート、ポリリンゴ酸もしくは微生物合成ポリエステル、または前記化合物の少なくともいずれか一つを含む共重合体であることを特徴とする前記(1)記載の組成物、に関する。

【0011】また、本発明は、(4) 難燃系添加剤が、水酸化物系化合物、リン系化合物およびシリカ系化合物から選ばれる少なくとも1種の化合物であることを特徴とする前記(1)記載の組成物、(5) 難燃系添加剤が水酸化物系化合物であり、その添加量が組成物全体に対して5重量%から50重量%であることを特徴とする前記(4)記載の組成物、(6) 難燃系添加剤がリン系化合物であり、その添加量が組成物全体に対して2重量%から40重量%であることを特徴とする前記(4)記載の組成物、(7) 難燃系添加剤がシリカ系化合物であり、その添加量が組成物全体に対して5重量%から30重量%であることを特徴とする前記(4)記載の組成物、に関する。

【0012】また、本発明は、(8) 加水分解抑制剤が、カルボジイミド化合物、イソシアネート化合物およびオキソゾリン化合物から選ばれる少なくとも1種の化合物であることを特徴とする前記(1)記載の組成物、(9) 加水分解制御剤の添加量が、組成物全体に対して0.5重量%から8重量%であることを特徴とする前記(8)記載の組成物、(10) 温度80℃、相対湿度80%の恒温恒湿条件下で48時間エージングしても、生分解性を有する有機高分子の分子量の低下が20%以内であることを特徴とする前記(1)記載の組成物、(11) 温度80℃、相対湿度80%の恒温恒湿条件下で48時間エージングしても、生分解性を有する

有機高分子の分子量の低下が20%以内であることを特徴とする前記(8)記載の組成物、に関する。

【0013】また、本発明は、(12) 一または複数種の生分解性を有する有機高分子化合物と、難燃系添加物と、前記生分解性を有する有機高分子化合物の加水分解抑制剤とを複合することを特徴とする前記(1)記載の組成物の製造方法、(13) 一または複数種の生分解性を有する有機高分子化合物と、難燃系添加剤と、前記生分解性を有する有機高分子化合物の加水分解抑制剤とを含有する組成物からなる成形品、(14) 電気製品の筐体であることを特徴とする前記(13)記載の成形品、(15) 一または複数種の生分解性を有する有機高分子化合物の加水分解抑制剤とを含有する組成物からなる部品を構成要素とする電気製品、に関する。

#### [0014]

【発明の実施の形態】次に本発明の組成物について、そ の構成成分と製造方法について以下に述べる。本発明で 用いる生分解性を有する有機高分子化合物(以下、「生 20 分解性高分子化合物」という)としては、使用後は自然 界において微生物が関与して低分子化合物、最終的に水 と二酸化炭素に分解する化合物(生分解性プラスチック 研究会、ISO/TC-207/SC3) であれば、特 に制限はない。生分解性高分子化合物としては、生分解 性樹脂が好ましい。生分解性樹脂としては、具体的に は、生分解性を有する、例えば、多糖類、ベプチド、脂 肪族ポリエステル、ポリアミノ酸、ポリビニルアルコー ル、ボリアミドもしくはボリアルキレングリコール等の いずれか、または前記化合物の少なくともいずれかの一 つを含む共重合体などが挙げられる。中でも、脂肪族ポ リエステルが混合性や量産性に優れていることから、本 発明で用いる生分解性高分子化合物として好ましい。前 記脂肪族ポリエステルとしては、ポリーLー乳酸(PL LA)、L-乳酸とD-乳酸とのランダム共重合体等の ボリ乳酸、またはそれらの誘導体がより好ましい。もち ろんその他のポリエステルに分類される、例えばポリカ プロラクトン、ポリヒドキシ酪酸、ポリヒドロキシ吉草 酸、ポリエチレンスクシネート、ポリブチレンスクシネ ート、ホリブチレンアジヘート、ポリリンゴ酸、ポリグ リコール酸、ホリコハク酸エステル、ポリシュウ酸エス テル、ホリジグリコール酸ブチレン、ポリジオキサノ ン、微生物合成ホリエステルなども使用可能である。こ こで、微生物合成ポリエステルとしては、3-ヒドロキ シブチレート (3 H B) 、3 - ヒドロキシバリレート (3HV)、またはその共重合体などが挙げられる。 【0015】また、上記多糖類としては、セルロース、

【0015】また、上記多糖類としては、セルロース、 デンプン、キトサン、デキストランもしくはそれら誘導 体のいずれか、またはそれら一つを含む共重合体を挙げ ることができる 上記へフチドとしては、コラーゲン、 カゼイン、フィブリン、ゼラチン等が挙げられる。上記ポリアミドとしては、例えばナイロン4、ナイロン2/ナイロン6共重合体等が挙げられる。

【0016】さらに、低分子量では生分解性があるが、高分子量では生分解性の低い有機高分子化合物であっても、上記に例示した生分解性高分子化合物とのグラフト共重合などにより生分解性が得られるようになるものであれば、本発明においてこれを用いることができる。そのような高分子量では生分解性の低い有機高分子化合物として、具体的には、例えば、ボリエチレン、ボリアクリル酸誘導体、ポリプロピレン、ポリウレタンなどが挙げられる。また、これらの樹脂の分子量や末端基については、機械的な強度が得られれば、特に制限はない。

【0017】本発明で用いられる生分解性高分子化合物は、公知の方法に従って製造することができる。例えば、生分解性ポリエステルは、①ラクチド法、②多価アルコールと多塩基酸との重縮合、または③分子内に水酸基とカルボキシル基とを有するヒドロキシカルボン酸の分子間重縮合などの方法により製造することができる。

【0018】本発明における難燃系添加物においては、使用できる化合物に特に制限はない。前記難燃系添加物としては、例えば、各種のホウ酸系難燃化合物、リン系難燃化合物、無機系難燃化合物、チッソ系難燃化合物、ハロゲン系難燃化合物、有機系難燃化合物、コロイド系難燃化合物等が挙げられる。以下に示す難燃系添加物は、一種あるいは二種以上用いても構わない。

【0019】ホウ酸系難燃化合物としては、例えば、ホ ウ酸亜鉛水和物、メタホウ酸バリウム、ほう砂などのホ ウ酸を含有する化合物等が挙げられる。リン系難燃化合 物としては、例えば、リン酸アンモニウム、ポリリン酸 アンモニウム、リン酸メラミン、赤燐、リン酸エステ ル、トリス(クロロエチル)ホスフェート、トリス(モ ノクロロプロビル) ホスフェート、トリス (ジクロロフ ロヒル) ホスフェート、トリアリルフォスフェート、ト リス (3-ヒドロキシプロビル) ホスフェート、トリス (トリブロモフェニル) ホスフェート、トリスーβーク ロロプロピルホスフェート、トリス(ジブロモフェニ ル) ホスフェート、トリス (トリブロモネオベンチル) ホスフェート、テトラキス (2-クロロエチル) エチレ ン・ジフォスフェート、ジメチルフォスフェート、トリ ス(2-クロロエチル)オルトリン酸エステル、芳香族 縮合リン酸エステル、含ハロゲン縮合有機リン酸エステ ル、エチレン・ビス・トリス (2-シアノエチル) ホス フォニウム・ブロミド、ポリリン酸アンモニウム、βー クロロエチルアッシドフォスフェート、ブチルピロフォ スフェート、ブチルアッシドフォスフェート、ブトキシ エチルアッシドフォスフェート、2-エチルヘキシルア ッシドフォスフェート、メラミンリン酸塩、含ハロゲン フォスホネート、またはフェニル・フォスフォン酸等の

リンを含有する化合物が挙げられる。

【0020】無機系難燃化合物としては、例えば、硫酸 亜鉛、硫酸水素カリウム、硫酸アルミニウム、硫酸アンチモン、硫酸エステル、硫酸カリウム、硫酸コバルト、硫酸水素ナトリウム、硫酸鉄、硫酸銅、硫酸ナトリウム、硫酸ニッケル、硫酸バリウム、硫酸マグネシウムなどの硫酸金属化合物、硫酸アンモニウムなどのアンモン系難燃化合物、フェロセンなどの酸化鉄系燃焼触媒、硝酸銅などの硝酸金属化合物、酸化チタンなどのチタンを含有する化合物、スルファミン酸グアニジンなどのグアニジン系化合物、その他、ジルコニウム系化合物、モリブデン系化合物、その他、ジルコニウム系化合物、モリブデン系化合物、場系化合物、炭酸カリウムなどの炭酸塩化合物、水酸化アルミニウムもしくは水酸化マグネシウム等の水酸化金属およびそれらの変性物が挙げられる。

【0021】チッソ系難燃化合物としては、例えば、ト リアジン環を有するシアヌレート化合物等が挙げられ る。ハロゲン系難燃化合物としては、例えば、塩素化パ ラフィン、パークロロシクロベンタデカン、ヘキサブロ モベンゼン、デカブロモジフェニルオキシド、ビス (ト リブロモフェノキシ) エタン、エチレンビス・ジブロモ ノルボルナンジカルボキシイミド、エチレンビス・テト ラブロモフタルイミド、ジブロモエチル・ジブロモシク ロヘキサン、ジブロモネオペンチルグリコール、2, 4. 6-トリブロモフェノール、トリブロモフェニルア リルエーテル、テトラブロモ・ビスフェノールA誘導 体、テトラブロモ・ビスフェノールS誘導体、テトラデ カブロモ・ジフェノキシベンゼン、トリスー(2,3-ジブロモプロビル)ーイソシアヌレート、2,2ービス (4-ヒドロキシー3, 5-ジブロモフェニル) プロパ ン、2、2ービス(4ーヒドロキシエトキシー3、5ー ジブロモフェニル)プロパン、ポリ(ペンタブロモベン ジルアクリレート)、トリブロモスチレン、トリブロモ フェニルマレイニド、トリブロモネオペンチル・アルコ ール、テトラブロモジヘンタエリスリトール、ペンタブ ロモベンジルアクリレート、ベンタブロモフェノール、 ヘンタブロモトルエン、ペンタブロモジフェニルオキシ ド、ヘキサブロモシクロドデカン、ヘキサブロモジフェ ニルエーテル、オクタブロモフェノールエーテル、オク タジブロモジフェニルエーテル、オクタブロモジフェニ ルオキシド、ジブロモネオペンチルグリコールテトラカ ルボナート、ビス (トリブロモフェニル) フマルアミ ド、N-メチルヘキサブロモジフェニルアミン、臭化ス チレン、またはジアリルクロレンデート等のハロゲンを 含有する難燃化合物が挙げられる。

【0022】有機系難燃化合物としては、例えば、無水 クロレンド酸、無水フタル酸、ビスフェノールAを含有 する化合物;グリシジルエーテルなどのグリシジル化合 物;ジエチレングリコール、ペンタエリスリトールなど の多価アルコール;変性カルバミド;シリコーンオイ ル、二酸化ケイ素、低融点ガラス、オルガノシロキサン 50 等のシリカ系化合物が挙げられる。コロイド系難燃化合物としては、例えば、従来から使用されている難燃性を持つ水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、アルミン酸カルシウム、2水和石膏、ホウ酸亜鉛、メタホウ酸バリウム、ホウ砂、カオリンクレーなどの水和物、硝酸ナトリウムなどの硝酸化合物、モリブデン化合物、ジルコニウム化合物、アンチモン化合物、ドーソナイト、またはプロゴバイト等

の難燃性化合物のコロイド等が挙げられる。

【0023】本発明における難燃系添加物は、なかでも、例えば焼却処分の際に有毒ガスが発生するなど、廃棄の際に環境に負荷を与えないものが好ましい。そのような環境配慮の観点からは、本発明における難燃系添加物としては、①例えば、水酸化アルミニウム、水酸化マグネシウムもしくは水酸化カルシウムなどの水酸化物系化合物、②上述したようなリン系化合物、特にリン酸アンモニウムもしくはポリリン酸アンモニウムなどのリン酸アンモニウム系化合物、③例えば、二酸化ケイ素、低融点ガラスもしくはオルガノシロキサン等のシリカ系化合物を使用することが望ましい。

【0024】本発明における難燃系添加物の添加量は、本発明にかかる組成物の機械的な強度が確保できる範囲で任意に定めることが可能である。具体的な添加量としては、難燃系添加物が $A1(OH)_3$ 、 $Mg(OH)_2$ 、 $Ca(OH)_2$ などの水酸化物系化合物の場合は、約 $5\sim50$ 重量%程度である。難燃系添加物が $(NH_4)_3$   $(P_nO_{3n+1})^{(n+2)}$  (n は自然数)などの(ポリ)リン酸アンモニウム系化合物の場合は、約 $2\sim40$ 重量%程度である。難燃系添加物が $SiO_2$ やガラスなどのシリカ系化合物の場合は、約 $5\sim30$ 重量%程度である。

【0025】本発明で用いる加水分解抑制剤は、生分解

性高分子化合物の加水分解を抑制する添加剤であれば、 特に限定されない。なかでも、本発明にかかる組成物 を、温度80℃、相対湿度80%の恒温恒湿条件下で4 8時間エージングしても、生分解性を有する有機高分子 の分子量の低下が約20%以内であることが好ましい。 【0026】前記加水分解抑制剤としては、例えば、生 分解性高分子化合物中の活性水素と反応性を有する化合 物が挙げられる。前記化合物を加えることで、生分解性 高分子化合物中の活性水素量が低減し、活性水素が触媒 的に生分解性高分子鎖を加水分解することを防ぐことが できる。ここで、活性水素とは、酸素、窒素等と水素と の結合(N-H結合やO-H結合)における水素のこと であり、かかる水素は炭素と水素の結合(C-H結合) における水素に比べて反応性が高い。より具体的には、 生分解性高分子化合物中の例えばカルボキシル基:-C OOH、水酸基:-OH、アミノ基:-NH2、または アミド結合:-NHCO-等における水素が挙げられ

【0027】前記生分解性高分子化合物中の活性水素と

8

反応性を有する化合物としては、カルボジイミド化合 物、イソシアネート化合物、オキソゾリン系化合物が適 用可能である。特にカルボジイミド化合物が生分解性高 分子化合物と溶融混練でき、少量の添加で加水分解性を より効果的に抑制できるために好ましい。前記カルボジ イミド化合物は分子中に一個以上のカルボジイミド基を 有する化合物であり、ホリカルボジイミド化合物をも含 む。前記カルボジイミド化合物の製造方法としては、触 媒として、例えば、O, O-ジメチル-O- (3-メチ ルー4-ニトロフェニル) ホスホロチオエート、O, O ージメチルーOー (3ーメチルー4ー (メチルチオ) フ ェニル) ホスホロチオエート、O, O-ジエチル-O-2-イソプロビルー6-メチルビリミジンー4-イルホ スホロチオエート等の有機リン系化合物、または、例え ばロジウム錯体、チタン錯体、タングステン錯体、バラ ジウム錯体等などの有機金属化合物を用い、各種ポリマ ーイソシアネートを約70℃以上の温度で、無溶媒また は不活性溶媒(たとえば、ヘキサン、ベンゼン、ジオキ サン、クロロホルム等)中で脱炭酸重縮合させることに より製造するという方法を挙げることができる。

【0028】このカルボジイミド化合物に含まれるモノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソフロヒルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、ジフェニルカルボジイミド、ナフチルカルボジイミドなどを例示することができ、これらの中でも、特に工業的に入手が容易であるジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドが好ましい。

【0029】上記生分解性高分子化合物中の活性水素と 反応性を有する化合物であるイソシアネート化合物とし ては、例えば2、4-トリレンジイソシアネート、2, 6-トリレンジイソシアネート、m-フェニレンジイソ シアネート、p-フェニレンジイソシアネート、4, 4'-ジフェニルメタンジイソシアネート、2,4'-ジフェニルメタンジイソシアネート、2,2'ージフェ ニルメタンジイソシアネート、3、3'ージメチルー 4, 4'ービフェニレンジイソシアネート、3, 3'ー ジメトキシー4、4'ービフェニレンジイソシアネー ト、3, 3'ージクロロー4, 4'ービフェニレンジイ ソシアネート、1,5-ナフタレンジイソシアネート、 1、5-テトラヒドロナフタレンジイソシアネート、テ トラメチレンジイソシアネート、1,6-ヘキサメチレ ンジイソシアネート、ドデカメチレンジイソシアネー ト、トリメチルヘキサメチレンジイソシアネート、1, 3-シクロヘキシレンジイソシアネート、1,4-シク ロヘキシレンジイソシアネート、キシリレンジイソシア ネート、テトラメチルキシリレンジイソシアネート、水 素添加キシリレンジイソシアネート、リジンジイソシア ネート、イソホロンジイソシアネート、4,4'ージシ クロヘキシルメタンジイソシアネートまたは3,3'ー ジメチルー4,4'ージシクロヘキシルメタンジイソシ アネート等が挙げられる。

【0030】上記イソシアネート化合物は、公知の方法で容易に製造することができ、また市販品を適宜使用することができる。市販のポリイソシアナート化合物としては、コロネート(日本ポリウレタン製;水添ジフェニルメタンジイソシアネート)またはミリオネート(日本ポリウレタン製)等の芳香族イソシアネートアダクト体が適用可能である。なかでも、本発明にかかる組成物を溶融混練で製造する場合は、液状より固形物、例えばイソシアネート基をマスク剤(多価脂肪族アルコール、芳香族ポリオール等)でブロックしたポリイソシアネート化合物の使用が好ましい。

【0031】上記生分解性高分子化合物中の活性水素と 反応性を有する化合物であるオキサゾリン系化合物とし ては、例えば、2,2'-0-フェニレンビス(2-オ キサゾリン)、2,2'-m-フェニレンビス(2-オ キサゾリン)、2,2'-p-フェニレンビス(2-オ キサゾリン)、2,2'-p-フェニレンビス(4-メ チルー2-オキサゾリン)、2,2'-m-フェニレン ビス(4-メチルー2-オキサゾリン)、2,2'-p -フェニレンビス(4,4'-ジメチル-2-オキサゾ リン)、2,2'-m-フェニレンビス(4,4'-ジ メチルー2-オキサゾリン)、2,2'-エチレンビス (2-オキサゾリン)、2,2'-テトラメチレンビス (2-オキサゾリン)、2,2'-ヘキサメチレンビス (2-オキサゾリン)、2,2'-オクタメチレンビス (2-オキサゾリン)、2,2'-エチレンビス(4-メチルー2-オキサゾリン)、または2,2'ージフェ ニレンビス (2-オキサゾリン) 等が挙げられる。

【0032】本発明で用いる加水分解抑制剤の種類または添加量により、生分解速度、ひいては本発明にかかる組成物の機械的強度を調整することができるので、目的とする製品に応じ、配合する加水分解抑制剤の種類および配合量を決定すればよい。具体的には、加水分解抑制剤の添加量は、約0.5~8重量%の範囲が望ましいとくに、加水分解抑制剤がカルボジイミド化合物、イソシアネート化合物またはオキソゾリン化合物である場合、その添加量は上記範囲が好ましい。また、前記加水分解抑制剤は、上記化合物を単独で使用してもよいし、二種以上を併用して使用してもかまわない。

【0033】本発明にかかる組成物の製造方法は特に限定されず、公知の方法を用いてよい。前記製造方法としては、生分解性高分子化合物に、上述した難燃系添加剤および加水分解抑制剤を溶融混練することにより製造する方法が好適な例として挙げられる。前記溶融混練による製造方法としては、生分解性高分子化合物を溶融する前または溶融する時、難燃系添加剤および加水分解抑制剤を添加し、混合することにより行われる。このとき、

難燃系添加剤および加水分解抑制剤は同時に添加してもよいし、個別に添加してもよい。また、個別に添加する場合は、いずれを先に添加してもよい。また、生分解性高分子化合物を溶融後、難燃系添加剤または加水分解抑制剤のいずれかを添加し、混合したのち、得られた組成物を再び溶融し、加水分解抑制剤または難燃系添加剤のいずれか残りの成分を添加し、混合するという方法も挙げられる。

【0034】本発明にかかる組成物は、本発明の目的を 損なわない限りにおいて、公知の他の添加剤が含有され ていてもよい。前記公知の他の添加剤としては、補強 材、無機または有機フィラー、酸化防止剤、熱安定剤、 紫外線吸収剤等の他、滑剤、ワックス類、着色剤、結晶 化促進剤、デンプンのような分解性を有する有機物等が 挙げられる。これらは、単独で用いても、複数の組み合 わせて用いてもかまわない。

【0035】前記補強材としては、例えばガラスマイク ロビーズ、炭素繊維、チョーク、例えばノボキュライト (novoculite)のような石英、アスベスト、長石、雲母、 タルク、ウォラストナイトのようなケイ酸塩、カオリン 等が挙げられる。また、無機フィラーとしては例えば炭 素、二酸化珪素の他、アルミナ、シリカ、マグネシア、 またはフェライト等の金属酸化微粒子、例えばタルク、 マイカ、カオリン、ゼオライト等の珪酸塩類、硫酸バリ ウム、炭酸カルシウム、またはフラーレン等の微粒子等 が、また、有機フィラーとしては例えば、エポキシ樹 脂、メラミン樹脂、尿素樹脂、アクリル樹脂、フェノー ル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエステ ル樹脂、またはテフロン(登録商標)樹脂が挙げられ る。中でも、炭素、二酸化珪素が本発明の組成物中に含 まれていることが好ましい。上記フィラーは1種または 2種以上を混合して使用してもかまわない。

【0036】前記酸化防止剤としては、例えばフェノー ル系、アミン系、リン系、イオウ系、ヒドロキノン系、 またはキノリン系酸化防止剤等が挙げられる。フェノー ル系酸化防止剤としては、ヒンダードフェノール類、例 えば、2、6-ジーt-ブチルーp-クレゾール、1、 3, 5-トリメチルー2, 4, 6-トリス (3, 5-ジ - t - ブチル - 4 - ヒドロキシベンジル) ベンゼン、 2, 2'-メチレンビス(4-メチル-6-t-ブチル フェノール)、4,4'ーメチレンビス(2,6-ジー t-ブチルフェノール)、4,4'-ブチリデンビス (3-メチル-6-t-ブチルフェノール)、1,6-ヘキサンジオールービス [3-(3,5-ジーtーブチ ルー4-ヒドロキシフェニル)プロピオネート] 等のC 2-10 アルキレンジオールービス [3-(3,5-ジー分 岐C3-6 アルキルー4-ヒドロキシフェニル) プロピオ ネート]、例えばトリエチレングリコールービス[3-(3-t-ブチルー5-メチルー4-ヒドロキシフェニ ル)フロヒオネート] 等のジまたはトリオキシC2-4 ア ルキレンジオールービス「3-(3,5-ジー分岐C3-6 アルキルー4ーヒドロキシフェニル) プロヒオネー ト]、例えばグリセリントリス[3-(3,5-ジーt -ブチル-4-ヒドロキシフェニル)プロヒオネート] 等のC<sub>3-8</sub> アルカントリオールービス[3-(3,5-ジー分岐C3-6 アルキルー4ーヒドロキシフェニル)フ ロピオネート]、例えばペンタエリスリトールテトラキ ス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル) プロピオネート] 等のC4-8 アルカンテトラオ ールテトラキス [3-(3,5-ジー分岐C3-6 アルキ ルー4-ヒドロキシフェニル) プロピオネート]、例え ばn-オクタデシル-3-(4', 5'-ジ-t-ブチ ルフェノール) プロピオネート、n-オクタデシル-3 - (4'-ヒドロキシ-3', 5'-ジ-t-ブチルフ ェノール)プロピオネート、ステアリルー2-(3,5 -ジーt-ブチル-4-ヒドロキシフェノール)プロビ オネート、ジステアリルー3, 5-ジーt-ブチルー4 -ヒドロキシベンジルホスホネート、2-t-ブチルー 6-(3-t-ブチル-5-メチル-2-ヒドロキシベ ンジル) - 4 - メチルフェニルアクリレート、N、N' ーヘキサメチレンビス (3, 5-ジーt-ブチルー4-ヒドロキシーヒドロシンナミド)、3,9ービス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチル フェニル)プロピオニルオキシ]-1,1-ジメチルエ 5] ウンデカン、4、4、-チオビス(3-メチル-6 t-ブチルフェノール)、または1、1、3-トリス (2-メチル-4-ヒドロキシ-5-t-ブチルフェノ ール)ブタン等が挙げられる。

【0037】アミン系酸化防止剤としては、例えば、フェニルー1 ーナフチルアミン、フェニルー2 ーナフチルアミン、N, N' ージフェニルー1, 4 ーフェニレンジアミン、またはNーフェニルーN' ーシクロヘキシルー1, 4 ーフェニレンジアミン等が挙げられる。

【0038】リン系酸化防止剤としては、例えば、トリ イソデシルホスファイト、トリフェニルホスファイト、 トリスノニルフェニルホスファイト、ジフェニルイソデ シルホスファイト、フェニルジイソデシルホスファイ ト、2, 2-メチレンビス(4, 6-ジーt-ブチルフ ェニル) オクチルホスファイト、4,4'ーブチリデン ビス (3-メチル-6-t-ブチルフェニル) ジトリデ シルホスファイト、トリス(2,4-ジーtーブチルフ ェニル) ホスファイト、トリス (2-t-ブチルー4-メチルフェニル) ホスファイト、トリス(2, 4-ジー t-アミルフェニル) ホスファイト、トリス (2-t-ブチルフェニル) ホスファイト、ビス (2-t-ブチル フェニル)フェニルホスファイト、トリス[2-(1, 1-ジメチルプロピル) -フェニル] ホスファイト、ト リス[2,4-(1,1-ジメチルフロビル)-フェニ ル] ホスファイト、トリス (2-シクロヘキシルフェニ

ル) ホスファイト、トリス (2-t-ブチルー4-フェ ニルフェニル) ホスファイト等のホスファイト化合物; トリエチルホスフィン、トリプロピルホスフィン、トリ ブチルホスフィン、トリシクロヘキシルホスフィン、ジ フェニルビニルホスフィン、アリルジフェニルホスフィ ン、トリフェニルホスフィン、メチルフェニルーpーア ニシルホスフィン、p-アニシルジフェニルホスフィ ン、pートリルジフェニルホスフィン、ジーpーアニシ ルフェニルホスフィン、ジ-p-トリルフェニルホスフ ィン、トリーmーアミノフェニルホスフィン、トリー 2, 4-ジメチルフェニルホスフィン、トリー2, 4, 6-トリメチルフェニルホスフィン、トリーoートリル ホスフィン、トリーmートリルホスフィン、トリーp-トリルホスフィン、トリーoーアニシルホスフィン、ト リーp-アニシルホスフィン、または1, 4-ビス(ジ フェニルホスフィノ) ブタン等のホスフィン化合物等が 挙げられる。

【0039】ヒドロキノン系酸化防止剤としては、例えば、2, 5-ジ-t-ブチルヒドロキノン等が挙げられ、キノリン系酸化防止剤としては、例えば、<math>6-x+1、キシー2, 2, 4-トリメチルー<math>1,  $2-ジヒドロキノリン等が挙げられ、イオウ系酸化防止剤としては、例えば、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等が挙げられる。中でも、好ましい酸化防止剤としては、フェノール系酸化防止剤(特に、ヒンダードフェノール類)、例えば、ポリオールーポリ[(分岐<math>C_{3-6}$  アルキル基およびヒドロキシ基置換フェニル)プロピオネート]等が挙げられる。また、上記の酸化防止剤は単独でまたは二種以上使用してもかまわない。

【0040】前記熱安定剤としては、例えばポリアミ ド、ボリーβーアラニン共重合体、ポリアクリルアミ ド、ポリウレタン、メラミン、シアノグアニジン、メラ ミンーホルムアルデヒド縮合体等の塩基性窒素含有化合 物等の窒素含有化合物;有機カルボン酸金属塩(ステア リン酸カルシウム、12-ヒドロキシステアリン酸カル シウム等)、金属酸化物(酸化マグネシウム、酸化カル シウム、酸化アルミニウム等)、金属水酸化物(水酸化 マグネシウム、水酸化カルシウム、水酸化アルミニウム 等)、金属炭酸塩等のアルカリまたはアルカリ土類金属 含有化合物;ゼオライト;またはハイドロタルサイト等 が挙げられる。特に、アルカリまたはアルカリ土類金属 含有化合物(特にマグネシウム化合物やカルシウム化合 物等のアルカリ土類金属含有化合物)、ゼオライト、ま たはハイドロタルサイト等が好ましい。また、上記の熱 安定剤は単独でまたは二種以上使用してもかまわない。 【0041】上記紫外線吸収剤としては、従来公知のべ

【0041】上記紫外線吸収剤としては、従来公知のペンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、サリチレート系またはシュウ酸アニリド系等が挙げられる。例えば、 [2-ヒドロキシー4-(メタ

クリロイルオキシエトキシ) ベンゾフェノン] -メタク リル酸メチル共重合体、 [2-ヒドロキシー4-(メタ クリロイルオキメトキシ)ベンゾフェノン]ーメタクリ ル酸メチル共重合体、 [2ーヒドロキシー4ー(メタク リロイルオキシオクトキシ)ベンゾフェノン]ーメタク リル酸メチル共重合体、 [2-ヒドロキシー4-(メタ クリロイルオキシドデシロキシ) ベンゾフェノン] -メ タクリル酸メチル共重合体、 [2-ヒドロキシー4-(メタクリロイルオキシベンジロキシ) ベンゾフェノ ン]ーメタクリル酸メチル共重合体、[2,2'ージヒ ドロキシー4ー (メタクリロイルオキシエトキシ) ベン ゾフェノン]ーメタクリル酸メチル共重合体、[2, 2'ージヒドロキシー4ー(メタクリロイルオキシメト キシ) ベンゾフェノン] -メタクリル酸メチル共重合 体、または「2,2'ージヒドロキシー4ー(メタクリ ロイルオキシオクトキシベンゾフェノン)ーメタクリル 酸メチル共重合体等が挙げられる。また、上記の紫外線 吸収剤は単独でまたは二種以上使用してもかまわない。

【0042】前記滑剤としては、例えば、流動パラフィ ン等の石油系潤滑油;ハロゲン化炭化水素、ジエステル 油、シリコン油、フッ素シリコン等の合成潤滑油;各種 変性シリコン油(エポキシ変性、アミノ変性、アルキル 変性、ポリエーテル変性等);ポリオキシアルキレング リコール等の有機化合物とシリコンとの共重合体等のシ リコン系潤滑性物質;シリコン共重合体;フルオロアル キル化合物等の各種フッ素系界面活性剤;トリフルオロ 塩化メチレン低重合物等のフッ素系潤滑物質;ハラフィ ンワックス、ポリエチレンワックス等のワックス類: 高 級脂肪族アルコール、高級脂肪族アミド、高級脂肪酸エ ステル、高級脂肪酸塩、または二硫化モリブデン等が挙 げられる。これらの中でも、特に、シリコン共重合体 (樹脂にシリコンをブロックやグラフトにより重合させ たもの)の使用が好ましい。シリコン共重合体として は、アクリル系樹脂、ポリスチレン系樹脂、ポリニトリ ル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、 エホキシ系樹脂、ポリブチラール系樹脂、メラミン系樹 脂、塩化ビニル系樹脂、ポリウレタン系樹脂またはボリ ビニルエーテル系樹脂等に、シリコンをブロックまたは グラフト重合させたものであればよく、シリコングラフ ト共重合体を用いるのが好ましい。これらの潤滑物質 は、1種でもよく、2種以上を組み合わせて使用しても よい、

【0043】上記ワックス類としては、例えば、ホリフロピレンワックス、ポリエチレンワックス等のオレフィン系ワックスやパラフィンワックス、フィッシャートロプッシュワックス、ミクロクリスタリンワックス、モンタンワックス、脂肪酸アミド系ワックス、高級脂肪酸エステル系ワックス、カルナウバワックス、ライスワックス等が挙げられる。これらのワックス類は単独で用いら

れてもよく、2種以上を組み合わせて併用されてもよ い

【0044】前記着色剤としては、無機顔料、有機顔料または染料等が挙げられる。無機顔料としては、例えばクロム系顔料、カドミウム系顔料、鉄系顔料、コバルト系顔料、群青、または紺青等が挙げられる。また、有機顔料や染料の具体的な例としては、例えばカーボンブラック;例えばフタロシアニン銅料;例えばカーボンブラック;例えばキナクリドンマゼンタ、キナクリドンレッドのようなキナクリドン顔料;例えばハンザイエロー、パーマネントレッド、ナフトールレッドのようなアゾ顔料;例えばスピリットブラックSB、ニグロシンベース、オイルブラックBWのようなニグロシン染料、オイルブルー、またはアルカリブルー等が挙げられる。また、上記の着色剤は単独でまたは二種以上使用してもかまわない。

【0045】前記結晶化促進剤としては、例えば、p-t-ブチル安息香酸ナトリウム、モンタン酸ナトリウム、モンタン酸カルシウム、パルミチン酸ナトリウム、ステアリン酸カルシウム等の有機酸塩類;例えば炭酸カルシウム、珪酸カルシウム、硅酸マグネシウム、硫酸カルシウム、硫酸バリウム、タルク等の無機塩類;例えば酸化亜鉛、酸化マグネシウム、酸化チタン等の金属酸化物等が挙げられる。これらの結晶化促進剤は、1種で用いてもよく、2種以上を組み合わせて用いてもよい。

【0046】本発明にかかる組成物に対し、公知の処理を行ってもよい。たとえば、本発明にかかる組成物中の生分解性高分子化合物の加水分解を抑制するために、本発明にかかる組成物に対し、活性エネルギー線を照射させてもよい。前記活性エネルギー線源としては、例えば電磁波、電子線または粒子線およびこれらの組み合わせが挙げられる。電磁波としては、紫外線(UV)、エックス線等が挙げられ、粒子線としては、陽子、中性子等の素粒子の線が挙げられる。中でも特に、電子加速器の使用による電子線照射が好ましい。

【0047】上記した活性エネルギー線は、公知の装置を用いて照射することができる。例えば、前記公知の装置として、UV照射装置、電子加速器等が挙げられる。照射線量および照射強度としては、本発明にかかる組成物において、効果的に生分解性高分子化合物の加水分解 40

を遅延する範囲であれば、とくに限定されない。例えば、電子線の場合、加速電圧が、約100~5000k V程度が好ましく、照射線量としては、約1kGy程度 以上であることが好ましい。

【0048】本発明にかかる組成物は、種々の用途に応用可能である。例えば、本発明にかかる組成物を用いて、例えばラジオ、マイク、TV、キーボード、携帯型音楽再生機、パソコン等の電気製品の筐体などの成形物が得られる。また、前記成形物は、電気製品の筐体だけでなく、梱包材などの他の用途にも使用できる。前記成形物の成形方法としては、例えば、フィルム成形、押出成形または射出成形等が挙げられ、中でも特に射出成形が好ましい。より具体的には、押出成形は、常法に従い、例えば単軸押出機、多軸押出機、タンデム押出機等の公知の押出成形機を用いて行うことができる。また、射出成形機、多層射出成形機、二頭式射出成形機等の公知の射出成形機にて行うことができる。

## [0049]

【実施例】以下に、本発明の実施例を比較例と比較しな がら詳細に述べるが、本発明はこれに限定されないこと は言うまでもない。

### [実施例1~8、比較例1]

(試料の調整)生分解性樹脂(A)としては、ポリ乳酸に属するレイシア(H100J、三井化学株式会社製)を用い、各種難燃系添加剤(B)と加水分解抑制剤(C)については試薬をそのまま用いた。A、B、Cの混合には溶融混練法を用いた。混練条件としては、混練機としてミニマックスーミックスルーダ(東洋精機株式会社製)を使用し、ノズル温度を $170\sim175$ ℃、トルクを $4\sim6$ kg、滞留時間を3秒以内とした。かかる混練により、生分解性樹脂(A)に各種難燃系添加剤(B)と加水分解抑制剤

(C) の添加を施した。得られた樹脂複合体は粉砕した 後に、170℃で300kg/cm² のプレスをし、厚さ1.0mmの板 材に成型した後、12.7mm×127mmに切り出し、試験片と した。

【0050】以下に実施例と比較例のために作製した試料の組成一覧(組成;重量部)を示す。

## 【表 1 】

|            | 生分解性樹脂  | 難燃系添加剤                            | 加水分解抑制剤  |
|------------|---------|-----------------------------------|----------|
| 実施例        | ポリ乳酸    | A 1 (OH) <sub>3</sub>             | ジシクロヘキシル |
| 1          | ; 8 3   | ; 15                              | カルポジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | Al(OH) <sub>3</sub>               | ジシクロヘキシル |
| 2          | ; 68    | ; 30                              | カルボジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | Mg(OH) <sub>2</sub>               | ジシクロヘキシル |
| 3          | ; 8 3   | ; 15                              | カルポジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | Mg(OH) <sub>2</sub>               | ジシクロヘキシル |
| 4          | ; 68    | ; 3 0                             | カルポジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | $(NH_4)_3 (P_n O_{3n+1})^{(n+2)}$ | ジシクロヘキシル |
| 5          | ; 8 8   | ; 10                              | カルポジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | $(NH_4)_3 (P_n O_{3n+1})^{(n+2)}$ | ジシクロヘキシル |
| 6          | ; 78    | ; 20                              | カルポジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | SiO2                              | ジシクロヘキシル |
| 7          | ; 78    | ; 2 0                             | カルポジイミド  |
|            |         |                                   | ; 2      |
| 実施例        | ポリ乳酸    | 低融点ガラス                            | ジシクロヘキシル |
| 8          | ; 78    | ; 2 0                             | カルボジイミド  |
|            |         |                                   | ; 2      |
| 比較例        | ポリ乳酸    | _                                 | _        |
| 1          | ; 100   |                                   |          |
| <b>基</b> 由 | いけ敷粉を患す |                                   |          |

表中、nは整数を表す。

【0051】(燃焼試験)燃焼試験は上記試験片を用い て、UL-94HBに準じて行った。その方法を以下に述べ る。各試料はその一端から25.4mmと102mmの二箇所で、 試料を横切って線を引いた。そして25.4mmの線から遠い 方の端で試料を保持し、その縦軸は水平にし、横軸は45 度傾斜させた。金網は試料の下に水平に保持し、試料の 下端と金網の間隔は9.5mmとし、試料の支持されていな い端と金網の縁は同じ線上にあるようにした。バーナー を試料から離れた位置におき、点火し、青い炎の高さが 40 25mmになるように調整した。炎はまずガスの供給とバー ナーの空気口を調節して、高さが25mmの先の黄色く青い 炎が出るようにし、その後空気の量を増していき、先の 黄色が消えるようにした。炎の高さを再度、測定し、25 mmにあわせた。炎は試料を保持しない端の下端にあて た。その時、バーナー管の中心軸は、水平に対して約45 度傾斜させ、試料の縦軸の下縁と同じ垂直面にあるもの とした。試料の前端が約6mmの深さまで、バーナーの位 置を動かさずに30秒間炎をあてて、炎を試料から遠ざけ た。もし炎が30秒間あてないうちに、試料が25.4mmの標

識線まで燃えるときは、炎が25.4mmの標識線に達したと きに、接炎を中止することとした。炎を遠ざけた後も試 料が燃え続けた時は、保持していない端から25.4mmの標 識線から、保持していない102mmの標識線まで試料が燃 える時間を計り、その燃焼速度を算出した。

【0052】以下に、実施例と比較例で得られた試験片 に対する燃焼試験の結果を示す。

#### 【表2】

|      | 燃焼速度          |
|------|---------------|
| 実施例1 | 102mmの標線手前で消火 |
| 実施例2 | 102mmの標線手前で消火 |
| 実施例3 | 102mmの標線手前で消火 |
| 実施例4 | 102mmの標線手前で消火 |
| 実施例5 | 102mmの標線手前で消火 |
| 実施例6 | 102mmの標線手前で消火 |
| 実施例7 | 57.4 (mm/分)   |
| 実施例8 | 102mmの標線手前で消火 |
| 比較例1 | 81.2 (mm/分)   |
| 参考   | 76.2 (mm/分)   |

なお、表中参考とは、UL-94HBの規格値を示す。

【0053】上表より、比較例1に比べて、実施例1~8の試料は、生分解性を有する組成物の難燃化が実現されている。そして、実施例1~8の試料の燃焼速度は、 UL-94HBの規格を十分に満たすものである。

【0054】 [実施例9~11、比較例2]以下に実施例と比較例のために作製した試料の組成一覧(組成;重量部)を示す。なお、試料の調整は上記と同一の方法で行った。

【表3】

|     | 生分解性樹脂 | 難燃系添加剤 | 加水分解制御剤   |
|-----|--------|--------|-----------|
| 実施例 | ポリ乳酸   | タルク    | ジシクロヘキシル  |
| 9   | ; 9 3  | ; 5    | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | タルク    | ジシクロヘキシル  |
| 1 0 | ; 8 3  | ; 15   | カルボジイミド;2 |
| 実施例 | ポリ乳酸   | タルク    | ジシクロヘキシル  |
| 1 1 | ; 68   | ; 3 0  | カルポジイミド;2 |
| 比較例 | ポリ乳酸   | _      | ジシクロヘキシル  |
| 2   | ; 98   |        | カルポジイミド;2 |

10

【0055】(燃焼試験~水平)水平燃焼試験は上記試 験片を用いて、UL-94HBに準じて行った。その方法を以 下に述べる。各試験片はその一端から25.4mmと102mmの 二箇所で、試験片を横切って線を引いた。そして25.4mm の線から遠い方の端で試験片を保持し、その縦軸は水平 にし、横軸は45度傾斜させた。金網は試験片の下に水平 に保持し、試験片の下端と金網の間隔は9.5mmとし、試 験片の支持されていない端と金網の縁は同じ線上にある ようにした バーナーを試験片から離れた位置におき、 点火し、青い炎の高さが25mmになるように調整した。炎 はまずガスの供給とバーナーの空気口を調節して、高さ が25mmの先の黄色く青い炎が出るようにし、その後空気 の量を増していき、先の黄色が消えるようにした。炎の 高さを再度、測定し、25mmにあわせた。炎は試験片を保 持しない端の下端にあてた。その時、バーナー管の中心 軸は、水平に対して約45度傾斜させ、試験片の縦軸の下 緑と同じ垂直面にあるものとした。試験片の前端が約6m mの深さまで、バーナーの位置を動かさずに30秒間炎を あてて、炎を試験片から遠ざけた。もし炎が30秒間あて ないうちに、試験片が25.4mmの標識線まで燃えるとき は、炎が25.4mmの標識線に達したときに、接炎を中止す ることとした。炎を遠ざけた後も試験片が燃え続けた時 は、保持していない端から25.4mmの標識線から、保持し ていない102mmの標識線まで試験片が燃える時間を計

り、その燃焼速度を算出した。そして、94HB認定材料、 すなわち94HBと認定される材料は、(a) 102mm手前で 燃焼停止、および(b) 76.2mm/分以下という2つの条 件に適合しなければならない。

【0056】 (燃焼試験~垂直) 垂直燃焼試験は上記試 験片を用いて、UL-94VO~2に準じて行った。その方法を 以下に述べる。各試験片を上端から6.4mmのところで縦 軸を垂直にして、リング・スタンドのクランプで保持 し、試験片の下端から9.5mmのところにバーナーの先端 が、305mmのところに乾燥した外科用脱脂綿の水平層が あるようにする。水平層を作るためには、親指と人差し 指で綿のかたまりから約12.7mmX25.4mmほどの小片をち ぎり取り、指で薄く広げて50.8mm2で、自然の厚さが6.4 mmになるようにする。バーナーを試験片から離れた位置 におき、点火し、高さ19mmの青い炎が出るように調節す る。炎はガスの供給量とバーナーの空気口を調節して、 まず高さ19mmの先の黄色い青い炎が出るようにし、その 後、空気の量を調整してゆき、先の黄色い炎がなくなる ようにする。炎の高さをもう一度測り、必要に応じて調 節する。

【0057】試験炎を試験片の下端の中心にあて、10秒間そのまま継続して炎をあてる。そして炎を少なくとも152mm離して、試験片が炎を出して燃える時間を記録する。試験片の炎が消えると、直ちに試験炎を再び試験片

の下端に当てる。そして10秒後に再び炎を離して、有炎および無炎の燃焼時間を記録する。目視による有炎と無炎を識別するのが難しいときは、外科用綿をその疑問箇所に接触させる。綿が着火すれば有炎である。各接炎中に、試験片から融解または有炎物質が滴下するときは、その接炎中にバーナーを45度の角度まで傾斜させ、さらにまた試験片の12.7mmの面のいずれか一方からごく少し遠ざけて、バーナー管の中に材料が滴下するのを避けてもよい。もし試験片が融解したりもしくは試験片から有炎物質が滴下したり、試験中に燃え続けるときは、バー 10ナーを手持ちにして、接炎中は試験片の下端とバーナー管の先端との間に9.5mmの間隔を保持しなければならない。全ての融解材料の滴下は無視できるものとし、試験片の中央に接炎しなければならない。

【0058】そして、94V-2認定材料、すなわち94V-2と認定される材料は下記の条件に適合しなければならない。

- (a) 全ての試作は、毎回炎を当てた後、30秒以上炎を 出して燃焼しないこと。
- (b) 各組5枚の試料に合計10回の接炎を行い、炎を出 20 して燃焼する時間の合計が250秒を超えないこと。
- (c) すべての試料は、有炎または無炎の燃焼が支持クランフまで達しないこと。
- (d) 試料が物質を滴下し、305mm下にある乾燥した外科用脱脂綿を着火することは許される。

(e)全ての試料は第二回目に炎を遠ざけた後、60秒以上無炎の燃焼を続けないこと。

【0059】以下に、実施例9~11と比較例2で得られた試験片に対する上記燃焼試験の結果を示す。

【表4】

|       | 水平燃焼試験         | 垂直燃焼試験     |
|-------|----------------|------------|
| 実施例9  | 102mm の標線手前で消火 | UL94-V2; 〇 |
| 実施例10 | 102mm の標線手前で消火 | UL94-V2; 🔾 |
| 実施例11 | 102mm の標線手前で消火 | UL94-V2; 🔾 |
| 比較例2  | 93.5mm/分       | UL94-V2; × |

表中、「UL94-V2;○」は、94V-2認定材料であることを 示し、「UL94-V2;×」は、94V-2認定材料でないことを 示す。

【0060】上表より、比較例2に比べて、実施例9~11の試料は、生分解性を有する組成物の難燃化が実現されている。そして、実施例9~11の試料の燃焼速度は、UL-94HBの規格を十分に満たすものである。そしてUL-94V2も十分に満たすものである。

【0061】 [実施例12~15、比較例3] 以下に実施例と比較例のために作製した試料の組成一覧(組成; 重量部)を示す。なお、試料の調整は上記と同一の方法で行った。

【表5】

|     | 生分解性樹脂 | 難燃系添加剤  | 加水分解制御剤   |
|-----|--------|---------|-----------|
| 実施例 | ポリ乳酸   | ポリリン酸アン | ジシクロヘキシル  |
| 1 2 | ; 9 6  | モニウム;2  | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | ポリリン酸アン | ジシクロヘキシル  |
| 1 3 | ; 9 3  | モニウム;5  | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | ポリリン酸アン | ジシクロヘキシル  |
| 14  | ; 78   | モニウム;20 | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | ポリリン酸アン | ジシクロヘキシル  |
| 1 5 | ; 58   | モニウム;40 | カルポジイミド;2 |
| 比較例 | ポリ乳酸   | _       | ジシクロヘキシル  |
| 3   | ; 98   |         | カルボジイミド;2 |

【0062】以下に、実施例12~15と比較例3で得 40 に示す。 られた試験片に対して、上記と全く同じ方法で、水平燃 【表6】 焼試験および垂直燃焼試験を行った。その結果を下記表

|       | 水平燃焼試験         | 垂直燃焼試験     |
|-------|----------------|------------|
| 実施例12 | 102㎜ の標線手前で消火  | UL94-V2; ○ |
| 実施例13 | 102mm の標線手前で消火 | UL94-V2; ○ |
| 実施例14 | 102mm の標線手前で消火 | UL94-V2; ○ |
| 実施例15 | 102mm の標線手前で消火 | UL94-V2; ○ |
| 比較例3  | 93.5mm/分       | UL94-V2; × |

表中、「UL94-V2; 〇」は、94V-2認定材料であることを 示し、「UL94-V2; ×」は、94V-2認定材料でないことを 示す。

【0063】上表より、比較例3に比べて、実施例12~15の試料は、生分解性を有する組成物の難燃化が実現されている。そして、実施例12~15の試料の燃焼速度は、UL-94HBの規格を十分に満たすものであ

る。そしてUL-94V2も十分に満たすものである。 【0064】 [実施例16~23、比較例4] 以下に実施例と比較例のために作製した試料の組成一覧(組成;重量部)を示す。なお、試料の調整は上記と同一の方法で行った。

【表7】

|     | 生分解性樹脂 | 難燃系添加剤    | 加水分解制御剤   |
|-----|--------|-----------|-----------|
| 実施例 | ポリ乳酸   | 水酸化アルミニウム | ジシクロヘキシル  |
| 1 6 | ; 9 3  | ; 5       | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化アルミニウム | ジシクロヘキシル  |
| 1 7 | ; 8 8  | ; 10      | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化アルミニウム | ジシクロヘキシル  |
| 1 8 | ; 78   | ; 20      | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化アルミニウム | ジシクロヘキシル  |
| 1 9 | ; 68   | ; 3 0     | カルポジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化アルミニウム | ジシクロヘキシル  |
| 2 0 | ; 48   | ; 5 0     | カルボジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化マグネシウム | ジシクロヘキシル  |
| 2 1 | ; 9 3  | ; 5       | カルボジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化マグネシウム | ジシクロヘキシル  |
| 2 2 | ; 73   | ; 2 5     | カルボジイミド;2 |
| 実施例 | ポリ乳酸   | 水酸化マグネシウム | ジシクロヘキシル  |
| 2 3 | ; 48   | ; 5 0     | カルポジイミド;2 |
| 比較例 | ポリ乳酸   |           | ジシクロヘキシル  |
| 4   | ; 98   |           | カルポジイミド;2 |

30

【0065】以下に、実施例16~23と比較例4で得られた試験片に対して、上記と全く同じ方法で、水平燃

に示す。 【表8】

焼試験および垂直燃焼試験を行った。その結果を下記表

水平燃焼試験 垂直燃焼試験 実施例 16 102mm の標線手前で消火 UL94-V2; ○ 実施例 17 102mm の標線手前で消火 UL94-V2; O 実施例 18 102mm の標線手前で消火 UL94-V2; O 実施例 19 102mm の標線手前で消火 UL94-V2 ; O 実施例 20 102mm の標線手前で消火 UL94-V2; ○ 実施例 21 102mm の標線手前で消火 UL94-V2; O 実施例 22 102mm の標線手前で消火 UL94-V2; O 102mm の標線手前で消火 実施例 23 UL94-V2; ○ 比較例4 93.5mm/分 UL94-V2; ×

表中、「UL94-V2;○」は、94V-2認定材料であることを 示し、「UL94-V2;×」は、94V-2認定材料でないことを 示す。

【0066】上表より、比較例4に比べて、実施例16 50 る。そしてUL-94V2も十分に満たすものである。

 $\sim 2$ 3の試料は、生分解性を有する組成物の難燃化が実現されている。そして、実施例 $16\sim 2$ 3の試料の燃焼速度は、UL-94 HBの規格を十分に満たすものであ

【0067】 [実施例24~29、比較例5] 以下に実

で行った。

施例と比較例のために作製した試料の組成一覧(組成;

【表9】

重量部)を示す。なお、試料の調整は上記と同一の方法

|     | 生分解性樹脂  | 難燃系添加剤    | 加水分解制御剤      |
|-----|---------|-----------|--------------|
| 実施例 | ポリ乳酸    | 水酸化アルミニウム | ジシクロヘキシル     |
| 2 4 | ; 94.5  | ; 5       | カルボジイミド; 0.5 |
| 実施例 | ポリ乳酸    | 水酸化アルミニウム | ジシクロヘキシル     |
| 2 5 | ; 72    | ; 25      | カルポジイミド;3    |
| 実施例 | ポリ乳酸    | 水酸化アルミニウム | ジシクロヘキシル     |
| 2 6 | ; 42    | ; 5 0     | カルポジイミド;8    |
| 実施例 | ポリ乳酸    | ポリリン酸アンモニ | ジシクロヘキシル     |
| 2 7 | ; 97. 5 | ウム;2      | カルポジイミド; 0.5 |
| 実施例 | ポリ乳酸    | ポリリン酸アンモニ | ジシクロヘキシル     |
| 2 8 | ; 8 2   | ウム ; 15   | カルポジイミド;3    |
| 実施例 | ポリ乳酸    | ポリリン酸アンモニ | ジシクロヘキシル     |
| 2 9 | ; 5 2   | ウム;40     | カルポジイミド;8    |
| 比較例 | ポリ乳酸    |           |              |
| 5   | ; 100   |           |              |

【0068】以下に、実施例24~29と比較例5で得 られた試験片に対して、水平燃焼試験、垂直燃焼試験お よび恒温恒湿試験を行った。水平燃焼試験および垂直燃 焼試験は、上記と全く同じ方法で行った。恒温恒湿試験 は、下記方法で行った。その結果を下記表に示す。

(恒温恒湿試験) 恒温恒湿槽を80℃、相対湿度80% に設定し、その中に試験片を入れた。48時間経過後の 測定を行った。

[0069]

【表10】

| 福米を「記衣にかり。 |             | [秋10]    |          |
|------------|-------------|----------|----------|
|            | 水平燃焼試験      | 垂直燃焼     | 恒温恒湿試験   |
|            |             | 試験       | (分子量低下率) |
| 実施例        | 102㎜の標線手前   | UL94-V2; | 2 %      |
| 2 4        | で消火         | 0        |          |
| 実施例        | 102mm の標線手前 | UL94-V2; | 5 %      |
| 2 5        | で消火         | 0        |          |
| 実施例        | 102㎜ の標線手前  | UL94-V2; | 1 1 %    |
| 2 6        | で消火         | 0        |          |
| 実施例        | 102㎜の標線手前   | UL94-V2; | 3 %      |
| 2 7        | で消火         | 0        |          |
| 実施例        | 102mm の標線手前 | UL94-V2; | 9 %      |
| 2 8        | で消火         | 0        |          |
| 実施例        | 102mm の標線手前 | UL94-V2; | 17%      |
| 2 9        | で消火         | 0        |          |
| 比較例        | 93.5mm/分    | UL94-V2; | 70%      |
| 5          |             | ×        |          |

表中、「UL94-V2;〇」は、94V-2認定材料であることを 示し、「UL94-V2;×」は、94V-2認定材料でないことを 示す。

~29の試料は、生分解性を有する組成物の難燃化が実 現されている。そして、実施例24~29の試料の燃焼 速度は、UL-94HBの規格を十分に満たすものであ

【0070】上表より、比較例5に比べて、実施例24 50 る。そしてUL-94V2も十分に満たすものである。

そして、実施例24~29の試料においては、分子量の

[0071]

【発明の効果】生分解性樹脂などの生分解性高分子化合物を含有する素材に対して、難燃系添加剤と、前記生分解性高分子化合物の加水分解抑制剤を添加することで、 生分解性、難燃性、機械的強度を兼ね備えた組成物を実 現できる。すなわち、本発明の組成物は、高い難燃性を 有しつつも、廃棄時には生体や地球環境に対して、安全 な成分、例えば、アルミナと水と二酸化炭素などに分解 し、周辺環境や人体へ害を与えることはない。また、本 発明にかかる組成物を電気製品の管体や梱包材に使用す ることで、既存のそれと比較して十分な環境配慮が実現 する。

フロントページの続き

(51) Int.C1.7

識別記号

C 0 8 K 5/32

5/353

低下も低減され、保存性も確保された。

5/49

(72) 発明者 森 浩之

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72) 発明者 野口 勉

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

FΙ

テーマコード(参考)

C 0 8 K 5/32

5/353

5/49

Fターム(参考) 4J002 AB001 AB011 AB041 AB051

ADO01 AD011 AD021 AD031

BB021 BB111 BE021 BG001

CF031 CF181 CF191 CH021

CKOO1 CLO11 CPO32 DA056

DB006 DE076 DE086 DE136

DE146 DE186 DE226 DF036

DG036 DG046 DG056 DH046

DHO56 DJ016 DJ036 DK006

DL006 EB026 EB046 EB096

EB136 EC036 EC046 EC056

ED036 ED076 EF106 EH046

EH076 EH136 EJ056 EL026

EL136 EN066 EP016 ER007

ET016 EU026 EU186 EU196

EU217 EV266 EW026 EW046

EW056 EW126 EW176 FD010

FD050 FD060 FD070 FD090

FD132 FD136 FD170 FD200

FD207 GQ00

28