

Lösungen zu den Übungsaufgaben aus Kapitel 22

- (1) Zeigen Sie, dass
 - (a) die Parameter α_i im Modell essentiell τ -äquivalenter Variablen genau den Erwartungswerten der beobachteten Variablen Y_i entsprechen, wenn der gemeinsame Faktor η wie folgt normiert wird:

$$E(\eta) = 0$$

- (b) die Erwartungswerte der beobachteten Variablen Y_i gleich dem Erwartungswert von η sind, falls $\alpha_i = 0$ gesetzt wird.
- (a) Nach Gleichung F 22.15 gilt: $\alpha_i = E(Y_i) E(\eta)$. Wählt man die Normierung $E(\eta) = 0$, folgt: $\alpha_i = E(Y_i) 0 = E(Y_i)$.
- (b) Nach Gleichung F 22.15 gilt: $\alpha_i = E(Y_i) E(\eta)$. Setzt man $\alpha_i = 0$, folgt: $0 = E(Y_i) E(\eta)$ und somit $E(Y_i) = E(\eta)$.
- (2) Zeigen Sie, dass im Modell essentiell τ -äquivalenter Variablen die Kovarianzen der beobachteten Variablen gleich der Varianz von η sein müssen.

Im Modell essentiell τ -äquivalenter Variablen lässt sich eine beobachtete Variable Y_i nach Gleichung F 22.18 wie folgt zerlegen: $Y_i = \alpha_i + \eta + \varepsilon_i$. Für die Kovarianz zweier Variablen Y_i und Y_j , $i \neq j$, gilt nach den Rechenregeln (3) und (4) für Kovarianzen (s. Abschnitt 15.4.1) sowie der Tatsache, dass die Variable η mit allen Fehlervariablen unkorreliert ist und der Annahme der Unkorreliertheit der Fehlervariablen:

$$Cov(Y_{i}, Y_{j}) = Cov(\alpha_{i} + \eta + \varepsilon_{i}, \alpha_{j} + \eta + \varepsilon_{j}) = Cov(\eta + \varepsilon_{i}, \eta + \varepsilon_{j})$$

$$= Cov(\eta, \eta) + Cov(\eta, \varepsilon_{j}) + Cov(\varepsilon_{i}, \eta) + Cov(\varepsilon_{i}, \varepsilon_{j})$$

$$= Cov(\eta, \eta) = Var(\eta)$$

(3) Zeigen Sie, dass im Modell essentiell τ -paralleler Variablen die Reliabilität einer Variablen Y_i gleich der Korrelation dieser Variablen mit einer Variablen $Y_i(i \neq j)$ ist.

Für die Korrelation zweier Variablen Y_i und Y_j gilt nach Gleichung F 15.32:

$$Kor(Y_i, Y_j) = \frac{Cov(Y_i, Y_j)}{\sqrt{Var(Y_i) \cdot Var(Y_j)}}$$

Da das Modell essentiell τ -paralleler Variablen ein Spezialfall des Modells essentiell τ -äquivalenter Variablen ist, gilt: $Cov(\eta, \eta) = Var(\eta)$. Aufgrund der Gleichheit der Fehlervarianzen gilt darüber hinaus: $Var(Y_i) = Var(\eta) + Var(\varepsilon_i) = Var(\eta) + Var(\varepsilon_j) = Var(Y_j)$. Daher ergibt sich für die Korrelation der beiden Variablen Y_i und Y_i :

$$Kor(Y_{i}, Y_{j}) = \frac{Cov(Y_{i}, Y_{j})}{\sqrt{Var(Y_{i}) \cdot Var(Y_{j})}} = \frac{Var(\eta)}{\sqrt{Var(Y_{i}) \cdot Var(Y_{j})}} = \frac{Var(\eta)}{\sqrt{Var(Y_{i}) \cdot Var(Y_{i})}} = \frac{Var(\eta)}{Var(Y_{i})} = \frac{Var(\eta)}{Var(Y_{i})} = Rel(Y_{i})$$

(4) Zeigen Sie, dass die Gleichung F 22.34

$$au_i = \lambda_{ij} \cdot au_j + \alpha_{ij}$$
 aus der Gleichung F 22.31 $au_i = \lambda_i \cdot au + \alpha_i$ folgt.

Für zwei Variablen τ_i und τ_j folgt nach Gleichung F 22.31: $\tau_i = \lambda_i \cdot \eta + \alpha_i$ und $\tau_j = \lambda_j \cdot \eta + \alpha_j$. Löst man die zweite Gleichung nach η auf, erhält man: $\eta = (\tau_j - \alpha_j)/\lambda_j$. Setzt man diese Gleichung in Gleichung F 22.31 erhält man: $\tau_i = \lambda_i \cdot (\tau_j - \alpha_j)/\lambda_j + \alpha_i$. Durch Umformen erhält man $\tau_i = \lambda_i/\lambda_j \cdot \tau_j - (\lambda_i \cdot \alpha_j)/\lambda_j + \alpha_i$. Definiert man nun $\lambda_{ij} = \lambda_i/\lambda_j$ und $\alpha_{ij} = (\lambda_i \cdot \alpha_j)/\lambda_j + \alpha_i$, erhält man Gleichung F 22.34: $\tau_i = \lambda_{ij} \cdot \tau_j + \alpha_{ij}$.

(5) Zeigen Sie, dass aus Gleichung F 22.31 folgt:

$$Var(\tau_i) = \lambda_i^2 \cdot Var(\eta)$$

Nach den Rechenregel F 7.33 und F 7.34 für Varianzen folgt aus Gleichung F 22.31:

$$Var(\tau_i) = Var(\lambda_i \cdot \eta + \alpha_i) = Var(\lambda_i \cdot \eta) = \lambda_i^2 \cdot Var(\eta)$$

(6) Bestimmen Sie den Omega-Koeffizienten ω für das Anwendungsbeispiel zum Modell τ-kongenerischer Variablen.

Nach Gleichung F 22.46 erhält man als Schätzwert für ω :

$$\hat{\omega} = \frac{\left(\sum_{i=1}^{p} \hat{\lambda}_{i}\right)^{2}}{\left(\sum_{i=1}^{p} \hat{\lambda}_{i}\right)^{2} + \left(\sum_{i=1}^{p} \widehat{Var}(\varepsilon_{i})\right)}$$

Für die p=3 beobachteten Variablen des Anwendungsbeispiels ergaben sich für die standardisierte latente Variable η folgende Ladungsparameter (s. Abschnitt 22.2.6): $\hat{\lambda}_1=0,58, \hat{\lambda}_2=0,63, \hat{\lambda}_3=0,58$. Aus den berichteten Varianzen der beobachteten Variablen und der True-Score-Variablen lassen sich die Fehlervarianzen wie folgt schätzen:

$$\widehat{Var}(\varepsilon_1) = \widehat{Var}(Y_1) - \lambda_1^2 \cdot \widehat{Var}(\eta) = 0,47 - 0,58^2 \cdot 1 = 0,13$$

$$\widehat{Var}(\varepsilon_2) = \widehat{Var}(Y_2) - \lambda_2^2 \cdot \widehat{Var}(\eta) = 0,56 - 0,63^2 \cdot 1 = 0,16$$

$$\widehat{Var}(\varepsilon_3) = \widehat{Var}(Y_3) - \lambda_3^2 \cdot \widehat{Var}(\eta) = 0,49 - 0,58^2 \cdot 1 = 0,15$$

Setzt man die geschätzten Ladungsparameter und Fehlervarianzen in die Schätzgleichung von ω ein, erhält man:

$$\hat{\omega} = \frac{\left(\sum_{i=1}^{p} \hat{\lambda}_{i}\right)^{2}}{\left(\sum_{i=1}^{p} \hat{\lambda}_{i}\right)^{2} + \left(\sum_{i=1}^{p} \widehat{Var}(\varepsilon_{i})\right)} = \frac{\left(0,58 + 0,63 + 0,58\right)^{2}}{\left(0,58 + 0,63 + 0,58\right)^{2} + \left(0,13 + 0,16 + 0,15\right)} = \frac{3,20}{3,64} = 0,88$$