

Forecasting Bitcoin Transactions

BROWN

Raghav Pemmireddy, Maximo Moyer, Grant Sterman, Jacob Good

Team Name: Save Brown Squash

Introduction

Paper:

Bitcoin Transaction Forecasting with Deep Network Representation Learning, Wenqi Wei et al. 2020

Description:

We tried to predict transactions between bitcoin accounts using supervised deep learning on structured (network) data.

Implementation:

- Random walk and skipgram models to form embedding representations of nodes in a transaction network
- A prediction neural net to determine likelihood of a transaction between pairs of nodes given embeddings
- Test predictions using F1 accuracy

<u>Usefulness:</u>

Predictions of transactions between accounts can assist in fraud detection or price prediction for unregulated currencies such as Bitcoin

Data

Dataset:

We used the same bitcoin blockchain dataset as the paper, consisting of 280 million transactions. Due to time and memory limitations we ran the model on the first 100k sender-receiver pairs.

# blocks	508,241
# accounts	297,816,881
# transactions	298,325,122
# sender-receiver pairs	2,536,261,805

Figure 1: From implemented paper

Architecture

Overview At Each Timestep:

- 1) PreProcess
 - Create 10 graphs, one for each timestep, defining each timestep a creation of 10k unique sender-receiver pairs.
- 2) Node2Vec
 - Create 10 random walks for each node in the graph, then decay of and append appropriate random walks from previous timestep.
 - Create pairs of nodes using skip grams with window size 1.
 - Train node embeddings using the skipgrams.
- Predict:
 -) For a given time t, take in graphs t and t+1, embedding matrix and the node ID to embedding ID dictionary from time t.
 - b) Find nodes which have transactions, concatenate node embedoin label 1 (indicating a transaction).
 - c) Negative sample transactions with label 0 to balance data.
 - Train the prediction model on transactions in graph t, using 3 dens layers, first 2 with relu, last with softmax activation.
 - Test our trained model on transactions in graph t+1.
- 4) Evaluatior
 -) Accuracy and F1 score

Results

- We were only able to get embeddings for 8/10 timesteps and train on 7/10 timesteps due to training time constraints
- •Mean Accuracy: .83
- •Mean F1: .79
- Outperformed paper implementation
- Decreasing accuracy observed at later timesteps, curious if this would continue with more data

Issues

Problems

- Training time of random walks was extremely slow
- We were not able to implement the static and transaction amounts graphs due to time constraints
- Prediction Test Data was small given that there was not much carry over in nodes transactions between given pairs from one timestep to the next

Solution Attempts for Problems

- Optimized code and vectorized operations wherever possible
- •Tried to work fast!
- We believe this also existed in the original paper, stheed negative sampling to double sample size

lete

Future Work/Lessons

NA-----

.and would be great to implement the transaction amount and static graphs to see how the three models

Data

- We would like to run our model on the last 100k sender receiver pairs to see if similarly effective when the character of the graph changes
- Train embeddings for more graphs at different timesteps so that overall there is more test data
- Run similar types of models on different kinds of financial data i.e. stocks, bonds, derivatives etc.
 Could likely use a static graph model as

Could likely use a static graph model a accounts remain consistent across time

Learned

- Preprocessing data can be a more complex task than the actual model
- Quantitative prediction models require sound qualitative understanding of the topic at hand (in our case, Blockchain).

