BIOS 779

Spring, 2023

Homework 5

Ibrahim

- 1. Derive all of the full conditional distributions for β , σ^2 , and γ for the variable subset selection method of George and McCulloch (1993) given on pages 544-551 of the notes.
- 2. Consider a general regression model, and let $p(y_i|\theta, x_i)$ denote the sampling density of y_i for case i and x_i is the $p \times 1$ vector of covariates for subject i. Assume that the observations y_i (given theta) are independent for i = 1, ..., n. Let $p(\theta|y, X)$ denote the posterior density of θ from this model, where θ is $p \times 1$, X is $n \times p$, and y is $n \times 1$. Show that

$$CPO_i = \left\{ E_{\theta|y,X} \left(\frac{1}{p(y_i|\theta, x_i)} \right) \right\}^{-1}.$$

3. We consider data on n=136 patients from a liver cancer clinical trial. Here, we are primarily interested in the patient's status as he/she enters the trial. In particular, we are interested in how the number of cancerous liver nodes (y) when entering the trial is predicted by six other baseline characteristics: body mass index (x_1) , (defined as weight in kilograms divided by the square of height in meters), age in years (x_2) , time since diagnosis of the disease in weeks (x_3) , two biochemical markers (each classified as normal=1 or abnormal=0): Alpha fetoprotein (x_4) , and Anti Hepatitis B antigen (x_5) , and associated jaundice (yes=1, no=0) (x_6) . Let x_{ij} = the j^{th} covariate measurement on the i^{th} subject, $i = 1, \ldots, n, j = 1, 2, 3, 4, 5, 6$. In all of the computations below, standardize all covariates by

$$z_{ij} = (x_{ij} - \bar{x}_j)/sd_j$$
 for $j = 1, \dots, 6$, and $i = 1, \dots, n$, where $sd_j = \left(\frac{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}{n-1}\right)^{1/2}$.

We consider a Poisson regression model (with a canonical link) for the data, with an intercept and the covariates $(z_1, z_2, z_3, z_4, z_5, z_6)$, and thus our regression coefficient vector is $\beta = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6)$.

- (a) Write out the likelihood function of β for this model.
- (b) Compute the maximum likelihood estimate of β and the standard errors of the estimates. Note: You can do this in R.
- (c) Consider the conjugate prior for β with $a_0 = 1$ and $y_0 = (1, ..., 1)$. Use Stan to obtain samples from the posterior distribution of β . Attach all of the Stan code for doing all computations. Using your posterior samples from Stan, compute

- i) the posterior mean and covariance matrix of β .
- ii) the 2.5%, 50%, and 97.5% posterior percentiles of $(\beta_0, \beta_1, \dots, \beta_6)$.
- iii) Use Stan to plot the marginal posterior distributions of β .
- iv) Use Stan to assess convergence diagnostics.
- (d) Repeat part (c) using a uniform improper prior for β . Run both Stan and the Bayes procedure in SAS GENMOD to summarize the results.
- (e) Consider a normal prior $\beta \sim N(0, (X'X)^{-1})$. Repeat part (c) using SAS GENMOD, and compare your answers in parts (c), (d), and (e).
- (f) Using the prior in c), use the Bayesian central limit theorem to derive the asymptotic posterior distribution of β .
- (g) Carry out a variable subset selection procedure of these data using R or SAS. Specifically, identify the top 10 models based on both AIC and BIC. For each of these models, compute the DIC, the L measure, and $B = \sum_{i=1}^{n} \log(CPO_i)$. For DIC, the L measure, and the B statistic, assume a uniform improper prior for β .