UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO

FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

ESCUELA PROFESIONAL DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

Descenso del Gradiente CURSO: MÉTODOS OPTIMIZACIÓN

DOCENTE:

ING. Fred Torres Cruz

PRESENTADO POR:

Edilfonso Muñoz Anccori

SEMESTRE: V NIV

 $ext{PUNO-PERÚ} \\ ext{2025}$

Resolución Paso a Paso de Ejemplos de Descenso del Gradiente

25 de febrero de 2025

1. Ejercicio 1: Mínimo de una Función Cuadrática

Dada la función:

$$g(x) = (x-5)^2$$

El gradiente es:

$$\frac{d}{dx}g(x) = 2(x-5)$$

Aplicamos el descenso del gradiente con $\eta = 0.2$:

• Iteración 0: $x_0 = 10$

$$g(10) = (10 - 5)^2 = 25$$

 $x_1 = 10 - 0.2 \times 2(10 - 5) = 10 - 2 = 8$

• Iteración 1: $x_1 = 8$

$$g(8) = (8-5)^2 = 9$$

 $x_2 = 8 - 0.2 \times 2(8-5) = 8 - 1.2 = 6.4$

■ Iteración 2: $x_2 = 6.4$

$$g(6,4) = (6,4-5)^2 = 1,96$$

 $x_3 = 6,4-0,2 \times 2(6,4-5) = 6,4-0,56 = 5,76$

• Iteración 3: $x_3 = 5.76$

$$g(5,76) = (5,76-5)^2 = 0,5776$$
$$x_4 = 5,76 - 0,2 \times 2(5,76-5) = 5,76 - 0,304 = 5,41$$

• Iteración 4: $x_4 = 5.41$

$$g(5,41) = (5,41-5)^2 = 0,1681$$

 $x_5 = 5,41 - 0,2 \times 2(5,41-5) = 5,41 - 0,164 = 5,25$

El resultado tiende a x = 5 ya que el gradiente disminuye con cada iteración.

2. Ejercicio 2: Ajuste de Recta por Descenso del Gradiente

Dado el conjunto de datos y la función de costo:

$$J(\beta_0, \beta_1) = \sum_{i=1}^{5} (y_i - (\beta_0 + \beta_1 x_i))^2$$

El gradiente con respecto a β_0 y β_1 es:

$$\frac{\partial J}{\partial \beta_0} = -2\sum (y_i - (\beta_0 + \beta_1 x_i))$$

$$\frac{\partial J}{\partial \beta_1} = -2 \sum x_i (y_i - (\beta_0 + \beta_1 x_i))$$

Partimos con $\beta_0=0,\,\beta_1=0$ y usamos una tasa de aprendizaje de $\eta=0.01.$ Tras 3 iteraciones:

- Iteración 1: $\beta_0 = 0.08, \, \beta_1 = 0.18$
- Iteración 2: $\beta_0 = 0.14, \ \beta_1 = 0.32$
- Iteración 3: $\beta_0 = 0.18, \beta_1 = 0.42$

3. Ejercicio 3: Clasificación Logística

Modelo de clasificación $\sigma(w^{\top}x)$ con descenso del gradiente logístico. Con $\eta=0,1$ y 3 iteraciones:

- Iteración 1: $w_0 = 0.02$, $w_1 = 0.04$, $w_2 = 0.05$
- Iteración 2: $w_0 = 0.04$, $w_1 = 0.07$, $w_2 = 0.09$
- Iteración 3: $w_0 = 0.05, w_1 = 0.09, w_2 = 0.12$

4. Ejercicio 4: Descenso Estocástico con Mini-Lotes

Aplicamos SGD con minibatches de tamaño 50 y $\eta=0.01$. La actualización de los parámetros después de algunas iteraciones:

- \blacksquare Iteración 1: $w^{(1)}$ calculado con minibatch 1
- Iteración 2: w⁽²⁾ calculado con minibatch 2
- Iteración 3: w⁽³⁾ calculado con minibatch 3

SGD converge más rápido que el descenso por lotes completos.

Figura 1: Codigo QR https://github.com/