CS460: Intro to Database Systems

Class 7: Decomposition & Schema Normalization

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

Review: Database Design

Requirements Analysis

user needs; what must database do?

Conceptual Design

high level description (often done w/ ER model)

Logical Design

translate ER into DBMS data model

Schema Refinement

consistency, normalization

Physical Design

indexes, disk layout

Why schema refinement

what is a bad schema?

a schema with redundancy!

why?

redundant storage & insert/update/delete anomalies

how to fix it?

normalize the schema by decomposing

normal forms: BCNF, 3NF, ...

SSN	Name	Salary	Telephone
987-00-8761	John	65K	857-555-1234
987-00-8761	John	65K	857-555-8800
123-00-9876	Anna	80K	617-555-9876
787-00-4321	John	25K	617-555-3761

 $SSN \rightarrow Name$, Salary

SSN	Name	Salary	Telephone
987-00-8761	John	65K	857-555-1234
987-00-8761	John	65K	857-555-8800
123-00-9876	Anna	80K	617-555-9876
787-00-4321	John	25K	617-555-3761

 $SSN \rightarrow Name$, Salary

SSN	Name	Salary
987-00-8761	John	65K
123-00-9876	Anna	80K
787-00-4321	John	25K

SSN	Telephone
987-00-8761	857-555-1234
987-00-8761	857-555-8800
123-00-9876	617-555-9876
787-00-4321	617-555-3761

name	category	color	price	department
iPhone	smartphone	black	600	phones
Lenovo Yoga	laptop	grey	800	computers
unifi	networking	white	150	computers
unifi	cables	white	10	stationary
OnePlus	smartphone	silver	450	phones

name, category → price, color

category → department

name	category	color	price	department
iPhone	smartphone	black	600	phones
Lenovo Yoga	laptop	grey	800	computers
unifi	networking	white	150	computers
unifi	cables	white	10	stationary
OnePlus	smartphone	silver	450	phones

name, category → price, color ✓

category → department

name	category	color	price
iPhone	smartphone	black	600
Lenovo Yoga	laptop	grey	800
unifi	networking	white	150
unifi	cables	white	10
OnePlus	smartphone	silver	450

category	department
laptop	computers
networking	computers
cables	stationary
smartphone	phones

Reminder: Reasoning for FDs

Assume a relation R with attributes A, B, C

```
(1) reflexivity e.g., AB \rightarrow B

(2) augmentation e.g., if A \rightarrow B then AC \rightarrow BC

(3) transitivity e.g., if A \rightarrow B and B \rightarrow C then A \rightarrow C

(4) union e.g., if A \rightarrow B and A \rightarrow C then A \rightarrow BC

(5) decomposition e.g., if A \rightarrow BC then A \rightarrow B and A \rightarrow C
```

FD closure of F, F^+ : is the set of all FDs that are implied by F attr. closure of X: the set of all attributes that are determined by X minimal cover: subset S of F^+ such that $S^+=F^+$

"chopping the relation into pieces using FDs"

DECOMPOSITION

Decomposition

Formally

we decompose
$$R(A_1, ..., A_n)$$
 by creating: $R_1(B_1, ..., B_m)$ $R_2(C_1, ..., C_k)$ where $\{B_1, ..., B_m\} \cup \{C_1, ..., C_k\} = \{A_1, ..., A_n\}$

the instance of R_1 is the <u>projection</u> of R onto B_1 , ..., B_m the instance of R_2 is the <u>projection</u> of R onto C_1 , ..., C_k

"Good" Decomposition

- (1) minimize redundancy
- (2) avoid information loss (lossless-join)
- (3) preserve FDs (dependency preserving)
 - (4) ensure good query performance

Information Loss

SSN	Name	Salary	Telephone
987-00-8761	John	65K	857-555-1234
987-00-8761	John	65K	857-555-8800
123-00-9876	Anna	80K	617-555-9876
787-00-4321	John	25K	617-555-3761

 SSN
 Name
 Salary

 987-00-8761
 John
 65K

 123-00-9876
 Anna
 80K

 787-00-4321
 John
 25K

Decompose into: R₁(SSN, Name, Salary) R₂(Name, Telephone)

Name	Telephone	
John	857-555-1234	
John	857-555-8800	
Anna	617-555-9876	
John	617-555-3761	

can we reconstruct R?

Lossless Decomposition

the decomposition is *lossless-join* if for any initial instance R, R = R'

Lossless Criterion

given:

- a relation R(A)
- a set F of FDs
- a decomposition of R into R₁(A₁) and R₂(A₂)

the decomposition is *lossless-join* if and only if at least one of the following FDs is in F^+ (closure of F):

$$(1) A_1 \cap A_2 \rightarrow A_1$$

$$(2) A_1 \cap A_2 \rightarrow A_2$$

Example

$$A \rightarrow A \quad A \rightarrow B \quad A \rightarrow C$$

Relation **R**(A, B, C, D)

 $FDA \rightarrow BC$

 $A \rightarrow ABC$

 $A \rightarrow BC \quad A \rightarrow AB \quad A \rightarrow AC$

what is the F⁺?

lossy

decomposition into $R_1(A, B, C)$ and $R_2(D)$

 $A_1 \cap A_2$ empty set

lossless-join

decomposition into $R_1(A, B, C)$ and $R_2(A, D)$

$$A_1 \cap A_2 = A$$
 and $A_1 = A,B,C$
 $A \rightarrow ABC$ is in F^+

Dependency Preserving

given \mathbf{R} and a set of FDs F, we decompose \mathbf{R} into \mathbf{R}_1 and \mathbf{R}_2 . Suppose:

```
R_1 has a set of FDs F_1

R_2 has a set of FDs F_2

F_1 and F_2 are computed from F_2
```

it is <u>dependency preserving</u> if by enforcing F_1 over R_1 and F_2 over R_2 , we can enforce F over R

(Good) Example

Person (SSN, name, age, canDrink)

SSN → name, age

age → canDrink

what is a **dependency preserving** decomposition?

$$R_1$$
(SSN, name, age) and R_2 (age, canDrink)
 $SSN \rightarrow name$, age age $\rightarrow canDrink$

Is it also lossless-join?

Yes! $A_1 \cap A_2$ = age and A_2 = age, canDrink age → age, canDrink is in F⁺

(Bad) Example

$$A \rightarrow B$$

$$BC \rightarrow A$$

not dependency preserving

$$R_1(A, B)$$
 and $R_2(A, C)$
 $A \rightarrow B$ no FDs!

the table violates $BC \rightarrow A$

Normal Forms

How "good" is a schema design? follows normal forms

Normal Forms

How "good" is a schema design? follows normal forms

Boyce-Codd Normal Form (BCNF)

```
given a relation \mathbf{R}(A_1,...,A_n),
a set of FDs F, and X \subseteq \{A_1,...,A_n\}
\mathbf{R} is in BCNF if \forall X \rightarrow A one of the two holds:
```

- $A \in X$ (that is, it is a trivial FD)
- X is a <u>superkey</u>

in other words: \forall non-trivial FD $X \rightarrow A$, X is a superkey in R

BCNF - Example

SSN	Name	Salary	Telephone
987-00-8761	John	65K	857-555-1234
987-00-8761	John	65K	857-555-8800
123-00-9876	Anna	80K	617-555-9876
787-00-4321	John	25K	617-555-3761

SSN → Name, Salary

key: {SSN, Telephone}

FD is not trivial!

so, is SSN a superkey?

no! it is **not** in **BCNF**

BCNF - Example 2

SSN	Name	Salary
987-00-8761	John	65K
123-00-9876	Anna	80K
787-00-4321	John	25K

SSN → Name, Salary key: {SSN}

> FD is not trivial! so, is SSN a superkey? 🏋 yes! it is in **BCNF**

BCNF - Example 3

SSN	Telephone
987-00-8761	857-555-1234
987-00-8761	857-555-8800
123-00-9876	617-555-9876
787-00-4321	617-555-3761

key: {SSN, Telephone} the relation is in **BCNF**

why?

no FDs

Is it possible a binary relation to <u>not</u> be in **BCNF**?

Binary Relations always BCNF

R (A,B)

excluding all trivial FDs, there are three cases:

(1) R has no FD

- (2) **R** has one FD, either $A \rightarrow B$ or $B \rightarrow A$, or,
 - (3) **R** has two FDs, $A \rightarrow B$ and $B \rightarrow A$

(1) trivially in BCNF

(2) in either LHS is the key (hence, superkey)

(3) both, A and B candidate keys

BCNF Decomposition Algorithm

(1) find a FD that violates BCNF:

$$A_1, ..., A_n \rightarrow B_1, ..., B_m$$

(2) decompose R to R_1 and R_2

$$R_1(A_1, ..., A_n, B_1, ..., B_m)$$

 $R_2(A_1, ..., A_n, all other attributes of R)$

(3) repeat until no BCNF violations are left (in new tables as well)

Our favorite example!

SSN	Name	Salary	Telephone
987-00-8761	John	65K	857-555-1234
987-00-8761	John	65K	857-555-8800
123-00-9876	Anna	80K	617-555-9876
787-00-4321	John	25K	617-555-3761

SSN \rightarrow Name, Salary violates BCNF $A_1 = SSN$, $B_1 = Name$, $B_2 = Salary$

Split in two relations:

R₁(SSN, Name, Salary)

R₂(SSN, Telephone)

Our favorite example!

SSN	Name	Salary	Telephone
987-00-8761	John	65K	857-555-1234
987-00-8761	John	65K	857-555-8800
123-00-9876	Anna	80K	617-555-9876
787-00-4321	John	25K	617-555-3761

SSN	Name	Salary
987-00-8761	John	65K
123-00-9876	Anna	80K
787-00-4321	John	25K

SSN	Telephone
987-00-8761	857-555-1234
987-00-8761	857-555-8800
123-00-9876	617-555-9876
787-00-4321	617-555-3761

BCNF Decomposition Properties

removes [certain types of] redundancy

is **lossless-join**

is not always dependency preserving

BCNF – Lossless Join

Example

R (A, B, C) and FD: $A \rightarrow B$ superkey(s) of the relation? $\{A, C\}^+, \{A, B, C\}^+ = \{A, B, C\}$

 $A \rightarrow B \text{ violates BCNF (A is not a superkey)}$

so, the BCNF decomposition is: $\mathbf{R}_1(A, B)$ and $\mathbf{R}_2(A, C)$

we can reconstruct it!

BCNF – not dependency preserving

Example

R (A, B, C), FDs: $A \rightarrow B$ and $BC \rightarrow A$ superkey(s) of the relation? $\{A, C\}^+, \{B, C\}^+, \{A, B, C\}^+ = \{A, B, C\}$ $BC \rightarrow A$ is ok, but $A \rightarrow B$ violates BCNF

so, the BCNF decomposition is : $\mathbf{R_1}$ (A, B) and $\mathbf{R_2}$ (A, C) $A \rightarrow B$ is preserved in $\mathbf{R_1}$ BC \rightarrow A is not preserved!

BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price) author → gender booktitle → genre, price

candidate key(s)? {author, booktitle} is the only one

Is it in BCNF? ?

No, because LHS of both FD are not a superkey!

BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)

author → gender booktitle → genre, price

Splitting using: author → gender

AuthorInfo (author, gender)

FD author → gender (in BCNF!)

Book2 (author, booktitle, genre, price)

FD booktitle → genre, price is booktitle a superkey?

No! {booktitle, author} is. So not in BCNF!

BCNF Decomposition Examples

```
Books (author, gender, booktitle, genre, price) author → gender booktitle → genre, price
```

AuthorInfo (author, gender)
Further splitting with *booktitle* → *genre*, *price*

Book2 (author, booktitle, genre, price)

BookInfo (booktitle, genre, price)

FD booktitle → genre, price in BCNF!

is booktitle a superkey?

Yes!

BookAuthor (booktitle, author) binary is in BCNF!

what if not dependency preserving?

in some cases BCNF decomposition is not dependency preserving

how to address this?

relax the normalization requirements

Third Normal Form (3NF)

```
given a relation R (A_1,...,A_n),
a set of FDs F, and X \subseteq \{A_1,...,A_n\}
R is in 3NF if \forall X \rightarrow A one of the three holds:
```

- $A \in X$ (that is, it is a trivial FD)
- X is a <u>superkey</u>
- A is part of some candidate key for R

Third Normal Form (3NF)

Example

R (A, B, C), FDs $C \rightarrow A$ and $AB \rightarrow C$ is in 3NF but not in BCNF. Why?

superkeys? {A, B}, {B, C}, and {A, B, C}

candidate keys? {A, B} and {B, C}

Compromise: aim for BCNF but settle for 3NF lossless-join & dependency preserving possible

3NF Algorithm

(1) apply BCNF until all relations are in 3NF

(2) compute a minimal cover F' of F

(3) for each non-preserved FD $X \rightarrow A$ in F' add a new relation **R** (X, A)

3NF algorithm example

```
Assume R (A, B, C, D)

A \rightarrow D

AB \rightarrow C

AD \rightarrow C

B \rightarrow C

D \rightarrow AB

superkeys?

{A} {D} {A, B} {A, D}, ...

not {B}
```

Step 1: find a BCNF decomposition R₁ (B, C) R₂ (A, B, D)

3NF algorithm example

Assume R (A, B, C, D)

```
A \rightarrow D
AB \rightarrow C can be expressed via: AB \rightarrow AC which gives AB \rightarrow A and AB \rightarrow C
AD \rightarrow C can be expressed via: D \rightarrow AB, which gives D \rightarrow A and D \rightarrow B & B \rightarrow C
B \rightarrow C
D \rightarrow AB which is simplified to D \rightarrow A and D \rightarrow B
```

Step 2: find a minimal cover

```
A \rightarrow D
B \rightarrow C
D \rightarrow A
D \rightarrow B
```

3NF algorithm example

Assume R (A, B, C, D)

- $A \rightarrow D$
- $AB \rightarrow C$
- $AD \rightarrow C$
- $B \rightarrow C$
- $D \rightarrow AB$

Step 3: add a new relation for not preserved FDs

- $A \rightarrow D$
- $B \rightarrow C$
- $D \rightarrow A$
- $D \rightarrow B$

- R_1 (B, C)
- R_2 (A, B, D)
- all FD are preserved!
 - both are in BCNF!

Is Normalization Always Good?

Example 1: suppose A and B are always used together, but normalization puts them in different tables (e.g., hours_worked and hourly_rate)

decomposition might produce unacceptable performance loss

Example 2: data warehouses huge historical DBs, rarely updated after creation joins expensive or impractical [we want "flat" tables, a.k.a, denormalized]

R (C, S, J, D, P, Q, V)

 $C \rightarrow SJDPQV$

 $JP \rightarrow C$

 $SD \rightarrow P$

 $J \rightarrow S$

Step 1:

 R_1 (S, D, P)

R₂ (C, S, J, D, Q, V)

```
R (C, S, J, D, P, Q, V)
C \rightarrow SJDPQV
JP \rightarrow C
SD \rightarrow P
Step 1b:
\mathbf{R_1} (S, D, P)
R<sub>2</sub> (C, S, J, D, Q, V)
\mathbf{R}_{2'}(\mathsf{J},\mathsf{S})
\mathbf{R_3} (C, J, D, Q, V)
```

```
superkeys of R<sub>2</sub> (C, S, J, D, Q, V)? ? {C}, ... not {J}
```

$$C \rightarrow SJDPQV$$

$$JP \rightarrow C$$

$$SD \rightarrow P$$

 $J \rightarrow S$

$$J \rightarrow S$$

Step 2: Minimal Cover

$$C \rightarrow J, C \rightarrow D, C \rightarrow Q, C \rightarrow V$$

$$JP \rightarrow C$$

$$SD \rightarrow P$$

$$\mathbf{R_{2'}}(\mathsf{J},\mathsf{S})$$

$$R_3$$
 (C, J, D, Q, V)

$$\mathbf{R}_{4}$$
 (J, P, C)

are they all preserved?

No!

Step 3: need to add R_4 (J, P, C)

$$C \rightarrow SJDPQV$$

$$JP \rightarrow C$$

$$SD \rightarrow P$$

 $J \rightarrow S$

$$J \rightarrow S$$

Step 2: Minimal Cover

$$C \rightarrow J$$
, $C \rightarrow D$, $C \rightarrow Q$, $C \rightarrow V$
 $JP \rightarrow C$
 $SD \rightarrow P$

$$\mathbf{R_1}$$
 (S, D, P) $\mathbf{R_2}$, (J, S)

$$R_3$$
 (C, J, D, Q, V)

$$\mathbf{R}_{4}$$
 (J, P, C)

are they all preserved?

No!

Step 3: need to add R₄ (J, P, C)

did we just introduce redundancy?

Lesson!

theory of normalization is a guide

cannot always give a "perfect" solution

redundancy alternatives query performance

Summary

fix bad schemas (redundancy) by decomposition

lossless-join

dependency preserving

Desired normal forms

BCNF: only superkey FDs

3NF: superkey FDs + dependencies to prime attributes in RHS

Next: SQL