Московский государственный университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Системного Программирования

КУРСОВАЯ РАБОТА СТУДЕНТА 341 ГРУППЫ

Реализация алгоритмов частичного обучения на Apache Spark

Выполнил: студент 3 курса 341 группы Кемаев Юрий Юрьевич

Научный руководитель: Астраханцев Никита Александрович

Содержание

В	веден	ние	3	
1	Пос	становка задачи	6	
2	Обз	вор существующих решений	7	
	2.1	Алгоритмы частичного обучения	7	
		2.1.1 Expectation Maximization (EM)	7	
		2.1.2 Self-Training	8	
		2.1.3 Co-training	8	
		2.1.4 Multi-view Learning	8	
		2.1.5 Cluster and Label Approach	9	
		2.1.6 Transductive support vector machine (T-SVM)	10	
		2.1.7 Semi-Supervised Trees	10	
		2.1.8 Gradient Boosting with Priors and Manifold regularization	11	
		2.1.9 SemiBoost	12	
	2.2	Анализ существующих алгоритмов	13	
	2.3	Фреймворк <i>Apache Spark</i>	15	
	2.4	Анализ Apache Spark MLlib	16	
	2.5	Структура классов модуля spark.ml	17	
	2.6	Обзор метрик оценки качества для тестирования	21	
	2.7	Вывод	21	
3	Исс	ледование и построение решения задачи	22	
	3.1	Выбор алгоритмов	22	
	3.2	ООП анализ и декомпозиция	22	
	3.3	Особенности реализации	24	
	3.4	Наборы данных для тестирования	25	
	3.5	Выбор метрик и методики анализа	26	
	3.6	Параметры алгоритмов	27	
	3.7	Результаты работы	28	
	3.8	Вывод	31	
4	Опи	исание практической части	33	
	4.1	UML диаграммы классов	33	
	4.2	Настраиваемые параметры алгоритмов	33	
	4.3	Оценка сложности и потребление памяти	34	
	4.4	Вывод	35	
За	клю	чение	36	
Список литературы 3				

Аннотация

Последние годы особую популярность набирает фреймворк для распределенной обработки данных ApacheSpark, используемый в задачах анализа данных. В частности, быстро развивается библиотека машинного обучения MLLib. В данной работе будут проанализированы распространенные алгоритмы частичного обучения и реализованы некоторые из них, отсутствующие в MLLib, а именно: Semisupervised Expectation Maximization, Self-Training, Co-Training.

Введение

Данная работа выполнена в контексте задач машинного обучения и быстрой обработки данных. В связи с чем автор намеренно опускает большую часть технических деталей устройства используемых в работе инструментов, оставляя лишь информацию, необходимую для понимания предметной области и осознания концепций, на которых основана данная курсовая работа.

Ключевые понятия данной работы — *частичное обучение*. Главное его свойство, обеспечивающее преимущество в современных условиях анализа данных, — способность тренировать достаточно эффективные модели алгоритмов классификации и регрессии на малых выборках *размеченных* данных при условии, что в момент обучения доступны все *неразмеченные* данные.

Задачи машинного обучения¹

Машинное обучение (*Machine Learning*) — обширный подраздел искусственного интеллекта, математическая дисциплина, использующая разделы математической статистики, численных методов оптимизации, теории вероятностей, дискретного анализа, и извлекающая знания из данных².

В последние годы данная область стремительно развивается, и в настоящее время задачи машинного обучения возникают в таких областях, как: банковское дело, медицина, распознавание образов, текста, речи и др.

Традиционно задачи машинного обучения делятся на **2 типа**: **обучение без учителя** (*unsupervised*) и **обучение с учителем** (*supervised*). Также выделяют еще один тип задач, называемый задачами **частичного обучения** (*semi-supervised learning*), которому и посвящена данная работа.

Обучение без учителя

Пусть $\mathbf{X} = \{x_1, \dots, x_n\}$ - множество из n точек, где $x_i \in \mathcal{X} \ \forall i \in \overline{1..n}$. Предполагается, что все точки независимы и распределены по одному закону на множестве \mathcal{X} .

Цель задачи обучения без учителя — обнаружить скрытую структуру данных ${f X}.$

Обучение с учителем

Дано множество **X**, элементами которого являются пары (x_i, y_i) , где $x_i \in \mathcal{X}, y_i \in \mathcal{Y} \ \forall i \in \overline{1..n}$. Предполагается, что все точки независимы и распределены по одному закону на множестве $\mathcal{X} \times \mathcal{Y}$.

Элементы $y_i \in \mathcal{Y}$ называются **метками** (labels) точек $x_i \in \mathcal{X}$. Множество размеченных точек **X** называется **тренировочным**, а неразмеченных - **тестирующим**.

¹Подробное описание в работе O. Chapelle и B. Schlkopf "Semi-Supervised Learning" [5]

²en.wikipedia.org/wiki/Machine learning

Цель задачи обучения с учителем — найти наилучшее по некоторому критерию отображение $\mathcal{X} \to \mathcal{Y}$.

Если ${\cal Y}$ - конечное множество, то дана **задача классификации**.

Напротив, если \mathcal{Y} - континуальное множество, то дана **задача регрессии**.

Трансдуктивное и индуктивное обучение

Существуют **2** принципиально разных **метода** машинного обучения: **индуктивное** и **трансдуктивное**.

Индуктивное обучение характеризуется тем, что на *тренировочной* выборке обучается модель машинного обучения, способная работать с любыми данными из исходного пространства. Таким образом, данный подход можно описать как "переход от частного к общему".

Понятие **трансдуктивное обучение** введено V. Vapnik в работе "Statistical Learning Theory" [8].

В отличие от индуктивного обучения, этот подход можно охарактеризовать как "рассуждения о частных случаях (тестовых данных) на основании частных случаев (тренировочных данных)". В рамках данного подхода на выходе имеется модель машинного обучения, способная предсказывать лишь те данные, которые были использованы в ходе её обучения (тренировочные и тестовые выборки).

Частичное обучение

Данный тип обучения включает в себя черты как обучения с учителем, так и без учителя.

Задачи данного типа обычно характеризуются тем, что на входе имеются размеченная тестирующая ${\bf L}$ и тренировочная ${\bf U}$ выборки, причём $|{\bf L}| \ll |{\bf U}|$.

Важно отметить, что данный тип задач чаще всего встречается на практике, так как обычно:

- 1. Для хороших моделей требуется большой объем размеченных данных
- 2. Разметка данных требует вложений ресурсов (людских, денежных, временных)
- 3. Размеченные данных мало, а неразмеченных очень много

Частичное обучение отчасти решает эти проблемы, так как для него требуется сравнительно небольшое количество размеченных данных (в исследовании Zhu X. [9] утверждается, что в некоторых случаях достаточно 1-й размеченной точки от каждого класса) для обучения модели и по качеству моделей сравнимо с традиционными типами обучения. Разумеется, времени на такое обучение требуется больше.

В основе алгоритмов частичного обучения лежат следующие предлоложения:

- 1. Размеченные данные состоятельны по доступным признакам
- 2. Размеченные данные несмещены относительно неразмеченных

3. Имеется хотя бы один представитель каждого класса в размеченных данных

Если хотя бы одно из перечисленных предположений не выполняется, результат работы алгоритмов будет непредсказуемым (см. исследование $Zhu\ X.\ [5]$).

В последующих разделах работы будут рассмотрены некоторые классы алгоритмов частичного обучения и их характерные представители.

Фреймворк Apache Spark

В последние годы в связи с многократным увеличением объема требующих обработки данных¹ получил широкое распространение подход, основанный на распределенной обработке данных.

В частности, в настоящее время широко используются фреймворки, работающие в рамках модели *MapReduce*. Эта модель позволяет пользователям писать распределенные приложения не задумываясь о технических деталях, таких как устранение сбоев или распределение нагрузки.

Основной недостаток данной модели, описанный в статье $Zaharia\ M.\ u\ \partial p.\ [4],$ – отсутствие поддержки распределенной памяти. В применении к задачам анализа данных это становится критическим фактором, по причине которого MapReduce не используется в указанной области.

Среди задач анализа данных можно выделить 2 основных семейства:

• Итеративные задачи

Бо́льшая часть алгоритмов машинного обучения применяют операции к одними и теми же данными много раз с целью оптимизиции нужных параметров и характеристик. *МарReduce* на каждой итерации требует новой загрузки данных с диска, что критически увеличивает время работы алгоритма.

• Задачи, требующие интерактивный анализ данных

В ходе такого анализа происходят многочисленные запросы чтения к хранимым данным. Модель *МарReduce* в этом случае требует для каждого запроса полную загрузку данных с дисков, что также неприемлемо с точки зрения быстродействия.

Фреймворк *Apache Spark* решает проблемы повторной загрузки даных с диска и позволяет решать описанные выше задачи эффективным образом. Как именно — описано в соответствующем разделе данной работы.

 $^{^1}The\ rapid\ growth\ of\ Global\ Data\ \ assets 1.csc.com/insights/downloads/CSC_Infographic_Big_Data.pdf$

1 Постановка задачи

Цель данной работы — **реализация некоторых алгоритмов частичного обучения на** *Apache Spark*.

Этапы работы:

- 1. Анализ существующих алгоритмов частичного обучения с целью выявления наиболее эффективных и применимых на практике в задачах классификации
- 2. Выбор и реализация нескольких алгоритмов для задач бинарной классификации на $Apache\ Spark$ с использованием MLlib
- 3. Выбор метрик качества и сравнительный анализ работы реализованных алгоритмов

2 Обзор существующих решений

В данной главе рассмотрены наиболее распространенные алгоритмы частичного обучения, подробно описаны их достоинства и недостатки.

Также освещены основные концепции и принципы работы фреймворка для распределенной обработки данных *Apache Spark*. В частности, подробно рассмотрена его библиотека для машинного обучения *MLLib*.

Дополнительно описаны метрики для измерения качества работы алгоритмов частичного обучения, реализованные в MLLib.

2.1 Алгоритмы частичного обучения

2.1.1 Expectation Maximization (EM)

EM, согласно работе *O. Chapelle* и *B. Schlkopf "Semi-Supervised Learning"* [5], является первым алгоритмом частичного обучения.

ЕМ строит модель исходя из следующих предположений:

- 1. Совместная вероятность для модели $p(x,y) = p(y) \cdot p(x|y)$, где p(x|y) распределение смеси (например, гауссиан)
- 2. Смесь должна быть **распознаваемой** (*identifiable*), что подразумевает, что за конечное число наблюдений этой смеси возможно полностью восстановить её параметры

При истинности этих предположений гарантируется, что качество будет выше традиционного $supervised\ EM$.

Основная идея — обнаружить значения скрытых параметров базовых распределений смеси в соответствии с принципом максимального правдоподобия.

ЕМ алгоритм относится к классу генеративных моделей

```
Алгоритм 1: ЕМ
```

```
Вход: L, U, Classifier;
Выход: Model;
Model := TrainModel(L); {Построить модель по размеченным данным} повторять
P := \text{ оценки } Model \text{ метки классов для каждого } x_i \in U; {E-шаг} Model := \text{TrainModel}(L \cup (U, P)); {M-шаг} пока не сойдется
```

2.1.2 Self-Training

Self-training — один из самых ранних и часто используемых в задачах частичного обучения алгоритм.

Основная идея — обучаться, предсказывать и затем переобучаться, используя свои собственные наиболее надежные предсказания.

Self-training относится к wrapper-алгоритмам

```
Вход: L, U, Classifier;
Выход: L', U';

L' := L; {инициализация}
U' := U;

повторять

обучить Classifier на данных L'
P := предсказания Classifier на U';
N_L := извлечь из D пары, у которых Classifier > threshold
Cuil E = U' \cup N_L;
```

2.1.3 Co-training

Co-training был впервые описан в работе $Blum\ A$. и $Mitchell\ T$. "Combining labeled and unlabeled data with co-training" [2].

Этот алгоритм дополнительно основан на предположениях, что:

- 1. Признаки точек можно разделить на 2 условно независимых по классам множества
- 2. Каждое из этих множеств достаточно хорошо представляет исходные точки

Основная идея — разбить данные на 2 независимых репрезентативных множества, каждому из них поставить в соответсвие определенный алгоритм, далее алгоритмы поочередно обучают друг друга.

Основная цель — добиться статистической независимости между ответами алгоритмов и размечать точки с наибольшей уверенностью предсказания.

Co-training относится к wrapper-алгоритмам

2.1.4 Multi-view Learning

Multi-view Learning естественным образом обобщает Co-training.

Основная идея — та же, что и у *Co-training*, но теперь используются N>2 алгоритмов. Большое количество независимых алгоритмов должны соглашаться на неразмеченной точке, чтобы она была добавлена в обучающую выборку.

```
Алгоритм 3: Co-training

Вход: L, U, Classifier_1, Classifier_2;

Выход: L', U';

разделить L \cup U по признакам точек на 2 множества L_1 \cup U_1 и L_2 \cup U_2;

повторять

обучить Classifier_i на данных L_i для i=1,2;

P_i := предсказания Classifier_i на U_i для i=1,2;

NL_i := извлечь из P_i пары, у которых confidence > threshold для i=1,2;

L_1 := L_1 \cup NL_2;

L_2 := L_2 \cup NL_1;

U_1 := U_1 \setminus NL_2;

U_2 := U_2 \setminus NL_1;

пока |U_1| + |U_2| > 0 и |NL_1| + |NL_2| > 0
```

2.1.5 Cluster and Label Approach

Cluster and Label Approach — естественная комбинация обучения с учителем и без.

Основная идея — кластеризовать все данные, затем обучить модель на каждом кластере и разметить с помощью неё оставшиеся в кластере точки.

Необходимые условия:

 $L' := L_1 \cup L_2;$ $U' := U_2 \cap U_1;$

- 1. Кластера согласуются с истинными разделяющими поверхностями
- 2. В каждом кластере есть хотя бы одна размеченная точка

При невыполнении этих условий качество модели будет низким.

Cluster and Label Approach относится к wrapper-алгоритмам

Алгоритм 4: CLA

```
Вход: L, U, Clusterizator, Classifier;
Выход: L';
L' := \varnothing;
кластеризовать L \cup U по K кластерам, используя Clusterizator;
для каждого кластера k \in K
L' := L' \cup \text{метки из } k;
обучить Classifier на размеченных данных из k;
NL := \text{метки}, полученные с помощью Classifier, для оставшихся данных;
L' := L' \cup NL;
end для
```

2.1.6 Transductive support vector machine (T-SVM)

 $\mathbf{T} extbf{-}\mathbf{SVM}$ — модифицированный для работы с неразмеченными данными традиционный SVM.

Основная идея — построить линейную разделяющую границу с максимальным отступом (margin) в преобразованном по некоторому ядру исходном пространстве, используя как размеченные, так и неразмеченные точки.

Это можно интерпретировать в том смысле, что к функция штрафа оригинального SVM добавляется новое слагаемое, штрафующее за малый отступ от неразмеченных данных:

$$J(w) = \underbrace{\sum_{i=1}^{N} (1 - m_i)_{+} + \frac{1}{2C} ||w||^{2}}_{original} + \underbrace{\lambda \sum_{i=N+1}^{N+U} (1 - |m_i|)_{+}}_{semi-supervised}$$

Рис. 1: Традиционный SVM (с презентации В. Рис. 2: Semi-supervised SVM (с презентации В. Гулина, Техносфера)

TSVM относится к алгоритмам, избегающим регионов с высокой плотностью (Avoiding Changes in Dense Regions)

Псевдокод оригинального SVM можно найти в работе V. Vapnik "Statistical Learning Theory" [8]

2.1.7 Semi-Supervised Trees

Алгоритм **Semi-Supervised Trees** является модификацией *Decision Trees*. Отличие заключается в том, что она используюет информацию о неразмеченных данных. Описанный ниже алгоритм был впервые рассмотрен в работе A. Criminisi u dp. "Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning" [1].

Основная идея — приближать распределение исходных данных смесью гауссиан с помощью леса решающих деревьев, гарантирующих локально минимальную энтропию. Использование деревьев означает, что итоговая модель, в отличие от *TSVM*, будет **нелинейной**.

Энтропия *d*-мерного нормального распределения

$$\mathbf{H}(\mathbf{X}) = \frac{1}{2} \ln (2\pi e)^d |\Sigma(X)|$$

В данной модели решающих деревьев используется следующий information gain:

$$\begin{split} \mathbf{I} &= I^S + \alpha I^U, \\ I^S &= H(X_L) - \frac{|X_L^L|}{|X_L|} H(X_L^L) - \frac{|X_L^R|}{|X_L|} H(X_L^R) \\ I^U &= \ln |\Sigma(X)| - \frac{|X_{L \cup U}^L|}{|X_{L \cup U}|} \ln |\Sigma(X_{L \cup U}^L)| - \frac{|X_{L \cup U}^R|}{|X_{L \cup U}|} \ln |\Sigma(X_{L \cup U}^R)| \end{split}$$

Соответственно, вероятность принадлежности точки x классу y определяется как

$$p(y|x) = \frac{1}{T} \sum_{t=1}^{T} p_t(y|x)$$

Aлгоритм Semi-Supervised Trees относится к моделям, основанным на плотностях распределения данных

Псевдокод оригинала построения дерева можно найти на $Wikipedia^1$, а леса из деревьев в статье $Breiman\ L.\ "Random\ forests"$ [3]

2.1.8 Gradient Boosting with Priors and Manifold regularization

Данный алгоритм описан в статье $Saffari\ A$. "Multi-Class Semi-Supervised and $Online\ Boosting$ " [7] и является расширением градиентного бустинга.

Дополнительно к функционалу штрафа добавляются 2 регуляризатора:

- 1. **Prior** из предположения, что распределение размеченных данных по выделенным кластерам должно совпадать с распределение всех данных по тем же кластерам
- 2. **Manifold** из предположения, что данные лежат на некотором многообразии меньшей размерности, включенном в Евклидово пространство

Таким образом, функционал ошибки принимает вид

$$L(h) = \sum_{i=1}^{N_{L}} L(y_{i}, h(x_{i})) + \lambda J_{prior}(p, q) + (1 - \lambda) \sum_{i=1}^{N_{L}} \sum_{j=1}^{N_{U}} s(x_{i}, x_{j}) J_{manifold}(x_{i}, x_{j}, h),$$

где p(y|x) и q(y|x) — соответственно априорное и апостериорное распределение классов по кластерам.

 $^{^{1}}$ en. wikipedia.org/wiki/C4.5_algorithm

²en.wikipedia.org/wiki/Gradient boosting

Псевдокод можно найти на Wikipedia²

2.1.9 SemiBoost

SemiBoost — модификация **AdaBoost**, использующая информацию о неразмеченных данных. Подробно описан в статье P. Mallapragada $u \ \partial p$. "Semiboost: Boosting for semi-supervised learning"[6]

Основная идея — провести серию последовательных итераций, на каждой из которых добавить в размеченные данные точки с наибольшей уверенностью предсказания и обучить на новых данных новую модель, после чего добавить её к ансамблю.

Предполагается, что:

- 1. Неразмеченные точки, похожие по некоторой мере $S(x_i, x_j)$ друг на друга, должны иметь одну метку класса
- 2. Точки, похожие по S на размеченные, должны иметь такую же метку класса Таким образом, функционал штрафа принимает вид:

$$L(h(x)) = L_{\mathbf{L}}(y, H(x)) + \lambda L_{\mathbf{U}}(H(x)),$$

$$L_{\mathbf{L}}(y, S) = \sum_{i=1}^{N_{\mathbf{L}}} \sum_{j=1}^{N_{\mathbf{U}}} S_{ij} e^{-2y_i^l y_j^u}, \ L_{\mathbf{U}}(y_u, S) = \sum_{i=1}^{N_{\mathbf{U}}} \sum_{j=1}^{N_{\mathbf{U}}} S_{ij} \cosh(y_i^u - y_j^u)$$

SemiBoost относится к алгоритмам типа "ансамбль"

```
Алгоритм 5: SemiBoost
  \mathbf{B}ход: L, U, WeakLearner, T;
  Выход: ансамбль H:
       вычислить матрицу похожести S между каждой парой из L \cup U:
       H := 0:
       для t=1,\ldots,T
           NL := \emptyset
           для x_i \in U {вычислить априорные вероятности с учетом дополнительного
               p_i = \sum_{j=1}^{N_{\mathbf{L}}} S_{ij} e^{-2H_i} \mathbf{I}(y_j = 1) + \frac{\lambda}{2} \sum_{j=1}^{N_{\mathbf{U}}} S_{ij} e^{H_j - H_i} ;
q_i = \sum_{j=1}^{N_{\mathbf{L}}} S_{ij} e^{2H_i} \mathbf{I}(y_j = -1) + \frac{\lambda}{2} \sum_{j=1}^{N_{\mathbf{U}}} S_{ij} e^{H_i - H_j} ;
если |p_i - q_i| > threshold то
                    NL := NL \cup (x_i, y_i)
                end если
           end для
           обучить WeakLearner на NL;
          \epsilon_t = \frac{\sum_i^{N_{\mathbf{U}}} p_i \mathbf{I}(h_i = -1) + \sum_i^{N_{\mathbf{U}}} q_i \mathbf{I}(h_i = 1)}{\sum_i (p_i + q_i)};
\alpha_t = \frac{1}{4} \ln \frac{1 - \epsilon_t}{\epsilon_t};
           H(x) \stackrel{\iota}{:=} H(x) + \alpha_t h_t(x);
      end для
```

2.2 Анализ существующих алгоритмов

Expectation Maximization (EM)

- + Можно использовать с любой вероятностной моделью
- Сильно зависит от начальных размеченных данных (локальность)
- Если исходные предположения не выполняются, работает плохо

Чтобы избежать неудачную инициалицию, применяют *активное обучение* для выбора информативных начальных данных.

Self-Training

- + Можно использовать с любым алгоритмом обучения с учителем
- + Простота алгоритма и неплохие результаты на практике ($Zhu\ X.\ [9],\ ctp.\ 11$)
- Ошибки в размеченных данных будут многократно усилены
- Неустойчив к выбросам в данных
- Сложно анализировать в общем смысле

Чтобы избежать усиления ошибок, применяется следующий подход: на каждой итерации помимо добавления новых точек с высокой уверенностью предсказания нужно исключить из тренировочных данных точки с низкой уверенностью предсказания.

Co-Training

- + Можно использовать с любыми алгоритмами обучения с учителем (причём чем сильнее они различаются, тем лучше в итоге)
- + При выполнении предположений отличные результаты на практике ($Zhu\ X.\ [9],$ стр. 12-13)
- Слишком сильные предположения для исходных данных
- Нетривиальный поиск требуемого разбиения множества признаков

Multi-view Learning

- + При выполнении предположений работает лучше Co-Training
- Ещё более нетривиальный поиск требуемого разбиения множества признаков , чем у *Co-Training*

Cluster and Label Approach

- + Хорошо работает в случае ярко выраженных кластеров
- Данные не всегда хорошо кластеризуются

Transduction support vector machine (T-SVM)

- + Оптимальная разделяющая поверхность
- Решение неустойчиво, елси нет зазора между классами
- Требуется настройка дополнительного параметра λ
- Работает долго, без модификаций неприменим на практике

Semi-Supervised Trees

- + Нелинейные границы разделяемых областей
- + Устойчивость к переобучению
- + Хорошая интерпретация
- Большие временные затраты (из-за матрицы ковариаций при подсчете энтропии)

Gradient Boosting wth Priors and Manifold regularization

- + Качество выше, чем у WeakLearner
- + Устойчивость к переобучению
- Подбор параметра λ (иногда имеет смысл делать $\lambda = \lambda(step)$)

SemiBoost

- + Качество заметно выше, чем у WeakLearner
- + Неявно используются Prior- и Cluster регуляризаторы
- Локальность (свойство AdaBoost)

2.3 Фреймворк Apache Spark

Фреймворк Apache Spark предназначен для организации распределенных вычислений на нескольких рабочих станциях и отличается от других инструментов этого семейства тем, что решает проблемы повторной загрузки даных с диска. В частности, эта особенность позволяет решать итеративные задачи и проводить анализ данных наиболее эффективным на данный момент образом.

В этом фреймворке данные структуированы в resilient distributed dataset (RDD) — устойчивые к отказам и доступные только для чтения неизменяемые коллекции объектов, распределенные в памяти множества машин.

Ключевая особенность RDD в том, что он не требует репликации данных. Для восстановления сбоев используется несколько иной механизм. А именно, для каждого RDD хранится lineage — граф операций, в результате которых было получено текущее состояние коллекции — и при потере данных происходит определение операций, требующих восстановления состояния, и их выполнение. Для обеспечения эффективности данного подхода в RDD допускаются только coarse-grained трансформации, в которых каждая операция производится над всеми элементами коллекции. Соответственно, их противоположность, fine-grained операции, подразумевающие работу над частью коллекции, не поддерживаются. Авторы данной концепции хранения данных Coarse-grained Coarse

Все операции с *RDD* делятся на **трансформации** и **действия**.

Трансформация (transformation) — это операция над данными из файловой системы или *RDD*, результатом действия которой является новый *RDD*. *RDD* могут быть порождены только операциями этого типа.

Примеры трансформаций: map, filter, join.

Действие (action) — операция над RDD, возвращающая некоторое вычисленное значение либо сохраняющее коллекцию на диск.

Примеры действий: count, collect, save.

Необходимо отметить, что трансформации вычисляются лениво (*lazily*). Тем самым, данные не будут вычислены и загружены в память до тех пор, пока они не потребуются для каких-нибудь действий.

Программист имеет возможность указать, какие RDD будут использованы в будущем с помощью команды persist, и $Apache\ Spark$ по возможности будет держать их в оперативной памяти.

Авторы концепции *RDD* помимо описанных выше также указывают следующие ее отличительные особенности:

- В случае сбоя восстановливается лишь необходимая часть RDD, при том это делается в параллельном режиме на нескольких узлах. Тем самым откаты всей системы к какому-либо целостному состоянию не требуются.
- Вследствие того, что *RDD* является *immutable*, система оптимизирует работу медленных узлов (*stragglers*), запуская копии затратных процессов (*tasks*) на более быстрых узлах. Данный механизм не требует специальной синхронизации и обеспечивает сбалансированность нагрузки.
- Планировщик *Apache Spark* при планировании ресурсоемких операций над *RDD* распределяет их по узлам с учетом размещения (*locality*) данных, что в некоторых случаях позволяет уменьшить накладные расходы на операции чтения/записи.

Приведенные выше характеристики делают Apache Spark привлекательным инструментом для анализа данных.

2.4 Анализ Apache Spark MLlib

MLlib — библиотека Spark для машинного обучения.

Данная библиотека была создана для того, чтобы сделать машинное обучение простым и масштабируемым. Она включает в себя распространенные алгоритмы обучения, решающие задачи классификации, регрессии, кластеризации, коллаборативной фильтрации, понижения размерности и другие.

Библиотека *MLlib* состоит из **2**-х модулей:

1. spark.mllib¹

Содержит API для работы с RDD

2. $spark.ml^2$

Содержит высокоуровневый API для работы с $DataFrame^3$ и создания ML-конвейеров 4 .

В данной работе используется spark.ml по следующим причинам:

- 1. Разработчики рекомендуют работать именно с этим модулем, ссылаясь на его гибкость и большой спектр предоставляемых инструментов
- 2. *spark.ml* активно развивается (появился сильно позже *spark.mllib* и включает в себя почти все его возможности)

²Подробная информация spark.apache.org/docs/latest/ml-guide

¹Подробная информация spark.apache.org/docs/latest/mllib-guide

³Подробная информация spark.apache.org/docs/latest/sql-programming-guide#dataframes

⁴Подробная информация spark.apache.org/docs/latest/ml-guide.html#pipeline

 $^{^5}$ Подробнее о концепции transformer-estimator будет рассказано в следующем разделе

- 3. Алгоритмы частичного обучения хорошо соответствуют концепции $transformer-estimator^5$, которая лежит в основе spark.ml
- 4. Более простая интеграция по сравнению с spark.mllib

Обзор spark.ml

Основные концепции, на которые опирается модуль *spark.ml*:

- **Transformer**: Алгоритм, преобразующий по некоторому правилу один *Dataframe* в другой.
- Estimator: Алгоритм, получающий на вход Dataframe и конструирующий на его основе Transformer
- Pipeline: Структура, связывающая в один поток несколько Transformer и Estimator

Пусть имеется задача классификации документов. Для демонстрации работы Pipeline одно из её возможных решений представлено на схеме:

Рис. 3: Схема работы Pipeline (с ресурса databricks.com)

Шаги работы алгоритма:

- 1. входное множество документов, представленное датафреймом ds0, токенизируется с помощью tokenizer, который является Transformer
- 2. результат токенизации ds1 поступает на вход $Transformer\ hashing TF$, который извлекает из него признаки TF-IDF
- 3. полученные признаки подаются на вход $Estimator\ lr$, который тренирует модель логистической регрессии lr.model, представляющую из себя Transformer
- 4. на выходе получается модель *Pipeline*, которая является *Transformer* и может применяться для предсказания классов, преобразования исходных данных и получения той или иной статистики по ним.

2.5 Структура классов модуля spark.ml

Будет рассмотрена часть модуля, затронутая в рамках данной курсовой, а именно: отвечающая за задачи классификации.

Рис. 4: Диаграмма классов spark.ml

Диаграмму по иерархии можно разбить на 5 блоков:

- 1. базовые интерфейсы конвейера
- 2. интерфейсы машинного обучения
- 3. интерфейсы классификаторов
- 4. интерфейсы для вероятностных классификаторов
- 5. реализация

Далее приводится краткий обзор классов каждого блока.

Блок 1 : базовые интерфейсы конвейера

В этом блоке определены основные интерфейсы spark.ml

- **PipelineStage** этап конвейера, должен поддерживать метод для трансформации схемы данных во внутреннее представление. Каждый *PipelineStage* это либо *Transformer*, либо *Estimator*.
- Estimator этап конвейера, создающий *Transformer* на основе переданных в него данных.
- **Transformer** этап конвейера, преобразующий полученные входные данные в выходные по некоторому правилу.
- Model шаблон с параметром "М Тип Модели"для Transformer. Добавляет в Transformer ссылку на породившего его Estimator.
- **Pipeline** конвейер. Создает модель конвейера на основе установленных параметров и определенных пользователем этапов. Этапы хранятся в классе *stages*.
- PipelineModel модель конвейера

Bce Transformers идут в паре с их порождающими Estimators.

Блок 2: интерфейсы машинного обучения

В этом блоке определены интерфейсы для классов, реализующих алгоритмы машинного обучения (МО).

- PredictorParams трейт для работы с параметрами классов МО.
- **Predictor** шаблонный интерфейс базового класса-estimator для генерации моделей-transformers MO.
- PredictionModel шаблонный интерфейс модели-transformer'a MO

Данные интерфейсы содержат абстрактные методы (copy, train,predict), которые необхожимо реализовать в конкретных классах MO.

Блок 3: интерфейсы классификаторов

- ClassifierParams трейт для работы с параметрами классификаторов.
- Classifier шаблонный интерфейс базового класса-estimator, реализующего алгоритм классификации, для генерации моделей-transformers. Представляет из себя обертку над *Predictor*, расширенную параметрами классификации.
- ClassificationMode интерфейс модели-transformer'a MO

В Classification Model добавляется абстрактный метод predict Raw(), с помощью которого реализуются все оставшиеся абстрактные методы базового класса.

Блок 4: интерфейсы для вероятностных классификаторов

- ProbabilisticClassifierParams трейт для работы с параметрами классификатора.
- ProbabilisticClassifier шаблонный интерфейс базового класса-estimator для генерации моделей-transformers. Добавляет setter'ы для дополнительных параметров (граница принятия и т.п.)
- ProbabilisticClassifierModel интерфейс вероятностного классификатора. Добавляет методы ддля работы с вероятностями предсказаний. Все они используют абстрактные методы predictRaw() и raw2probabilitiesInPlace().

Блок 5 : реализация. Пример.

Пример реализации решающих деревьев.

Как видно из диаграммы, решающие деревья используют реализацию из spark.mllib.

Также можно видеть, что все классы объявлены как final.

2.6 Обзор метрик оценки качества для тестирования

Обозначения:

- TP (TruePositive) количество верно отнесенных к классу 1 точек
- \bullet FP (FalsePositive) количество неверно отнесенных к классу 1 точек
- TN (TrueNegative) количество верно отнесенных к классу -1 точек
- FN (FalseNegative) количество неверно отнесенных к классу -1 точек

В библиотеке *MLlib* реализованы следующие метрики для оценки результатов работы алгоритмов:

1. Точность (precision) — доля верно размеченных точек из отнесенных к классу 1

$$precision = \frac{TP}{TP + FP}$$

2. Полнота (recall) — доля верно отнесенных к классу 1 точек из всех точек класса 1

$$recall = \frac{TP}{TP + FN}$$

3. F-мера (f-measure) — среднее гармоническое полноты и точности

$$fmeasure = 2 * \frac{precision \cdot recall}{precision + recall}$$

4. AUC (AreaUnderCurve) — площадь под ROC-кривой 1

$$AUC = \int_0^1 \frac{TP}{TP + FP} d(\frac{TP}{P})$$

2.7 Вывод

Существует большое количество алгоритмов частичного обучения, каждый из которых опирается на те или иные предположения о природе данных. При выполнении этих предположений утверждается, что качество работы будет выше по сравнению с обучением с учителем.

Фреймворк *Apache Spark* позволяет эффективно реализовать алгоритмы частичного обучения, которые в полной мере удовлетворяют интерфейсу активно развивающейся библиотеки *MLLib*.

Также в данной библиотеке имеются реализации метрик для оценки качества работы алгоритмов машинного обучения.

Исходя из этого можно сделать вывод, что выбранный инструментарий является достаточным для достижения поставленных целей.

 $^{^{1}}$ Подробная информация en.wikipedia.org/wiki/Receiver_operating_characteristic

3 Исследование и построение решения задачи

В данной главе описан процесс исследования и его результаты на каждом этапе.

В частности, приводится обоснование выбора алгоритмов для реализации в рам-ках данной работы.

Далее на основе выбора представлен объектно-ориентированный анализ алгоритмов и определена структура соответствующих классов.

Далее описаны возможности фреймворка *Apache Spark*, использованные для оптимизации работы алгоритмов.

На следующем этапе приведено описание природы и свойств данных, которые использовались для тестирования и анализа реализованных алгоритмов.

В последней части описаны результаты тестирования, использованные параметры и проведен анализ выбранных алгоритмов на основе выполненной работы.

3.1 Выбор алгоритмов

Для реализации на *Apache Spark* после проведения анализа были выбраны следующие алгоритмы:

- 1. Self-Training
- 2. Co-Training
- 3. ЕМ-алгоритм

Данные алгоритмы были выбраны по причине простоты, универсальности, схожих принципов работы (каждый из них *wrapper*) и широкой распространенности в среде data scientist'ов.

3.2 ООП анализ и декомпозиция

В ходе анализа было автором принято решение разделить логику работы выбранных алгоритмов частичного обучения на следующие составляющие:

Управление и работа с данными

Причина: алгоритму необходим доступ к размеченным и неразмеченным данным в процессе обучения и проведение специальных операций над ними.

Пример: извлечение признаков по индексам в CoTraining

Pemeнue: определить ответственный за работу с данными класс SSVData

Управление базовыми классификаторами

Причина: необходимость управления работой базовых классификаторов.

Проблема: необходимые методы классификаторов объявлены как *protected*, а сами классификаторы — как *final*-классы. Единственный способ доступа — через конвейер, поскольку классификаторы являются наследниками *PipelineStage* (см. приведенную выше диаграмму классов)

Решение: осуществлять управление посредством класса-обертки над конвейером **PipelineForSSVLearning**

Проблема: выбор эффективного способа хранения данных.

Решение: хранить данные в **DataFrame**, поскольку это – входной формат конвейера. Также часто проводятся операции исключения/пересечения нескольких датафреймов и если бы данные хранились в **RDD**, необходимы были бы дополнительные преобразования к датафреймам, что является дополнительным накладным расходом ресурсов.

Основная логика

Проблема: необходимо дать пользователю возможность передать классификатору *неразмеченные* данные для обучения, поскольку по основному потоку конвейера передаются только *размеченные*.

Решение: определить ответственный за хранение и доступ из внешнего кода к данным трейт **SSVClassifier**, который подмешивается в основной класс алгоритма.

Проблема: необходима поддержка всех видов базовых классификаторов с учетом их инкапсуляции и статической типизации языка *Scala*.

Решение: определить классы алгоритмов частичного обучения шаблонными и использовать механизм границ типов Scala

Проблема: необходима поддержка интерфейса классификаторов *spark.ml* для возможности использования алгоритмов в конвейере.

Решение: сделать основные классы наследниками от Serializable и ProbabilisticClassifier.

Проблема: необходимо дать пользователю возможность передать классификатору *неразмеченные* данные для обучения, поскольку по основному потоку конвейера передаются только размеченные.

Решение: определить ответственный за хранение и доступ из внешнего кода к данным трейт SSVClassifier

3.3 Особенности реализации

В ходе написания кода автор столкнулся с некоторыми особенностями разработки под *Apache Spark*. Далее будут две наиболее важные из них.

Большие временные затраты на чтение/запись данных

Это проявилось в том, что время итерации алгоритмов росло почти экпоненциально. Как оказалось, проблема была в следующем: операции с Dataframe и RDD (например, join, except) по умолчанию каждый раз удваивают число разбиений данных на диске (partitions), что приводит к вдвое большим затратам на операции чтения¹.

Также проблема была связана с тем, что *Spark* по умолчанию не кэширует данные в оперативной памяти (в целях экономии памяти). Кэширование позволяет проводить операции с данными в разы быстрее, но требует больше оперативной памяти по сравнению с хранением на жестком диске².

Так как выбранные датасеты целиком помещаются в оперативную память, было принято решение кэшировать их каждый раз, если они используются от 2 и более раз. В частности, неразмеченные и размеченные данные в ходе обучения классификаторов кэшируются.

Дополнительно фиксируется число разбиений этих данных на дисках. Эмпирическим путём установлено, что наибольший выигрыш в эффективности получается при количестве разбиений, равном 4-м.

Организация доступа к данным

В Spark нет возможности обращаться к записям Dataframe или RDD по индексу. Для этого необходимо преобразовывать их в массивы, что весьма затратно по времени. Поэтому было принято решение отказаться от индексации и использовать вместо такие операции, как filter и map, создавая и работая с новыми коллекциями (вместо извлечения нужных полей по индексу происходит фильтрация и отбрасывыние неподходящих).

Важно, что в некоторых случаях *Spark* перераспределяет данные по диску (*shuffling*), что приводит к накладным расходам³. Принятое на предыдущем шаге решение отказаться от индексации позволяет частично обойти эту проблему (так как работа по индексам с распределенными данными вызывала бы их *reshuffling*, перераспределение).

Кэширование данных использует механизм сериализации. В официальной документации указано, что наиболее эффективным сериализатором является KryoSerializer 4, который и используется в данной работе.

¹Подробнее stackoverflow.com/questions/31659404

 $^{^2}$ Подробнее sujee.net/2015/01/22/understanding-spark-caching

 $^{^3}$ Подробнее blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1/

⁴Подробнее spark.apache.org/docs/latest/tuning

3.4 Наборы данных для тестирования

За основу были взяты 4 набора данных, использованных в работе O. Chapelle и B. Schlkopf "Semi-Supervised Learning" [5] и 1 набор из стороннего источника⁴. Описания наборов:

1. Digit1

Данные являются сгенерированными изображениями цифры "1" размером 16x16. Классы 1 и -1 отвечают за наклон цифры — влево либо вправо соответственно. Далее был добавлен гауссов шум.

2. USPS

Данные представляют собой 150 картинок для каждой из 10 цифр из открытого набора данных USPS. Цифры "2" и "5" отнесены к классу 1, остальные к -1.

3. **g241c**

Данные получены из иножества изотропных гауссиан с единичной дисперсией. Классы точек 1 и -1 различаются центрами скоплений порождающих гауссиан. Центры гауссиан находятся на расстоянии 2.5 друг от друга ($||\mu_1 - \mu_2|| = 2.5$)

4. **g241d**

Данные получены из 2-х изотропных гауссиан с единичной дисперсией, затем стандартизованы по каждому измерению. Центры гауссиан находятся на расстоянии 2.5 друг от друга ($||\mu_1 - \mu_2|| = 2.5$)

5. mailSpam

Данные представляют собой информацию из спам-фильтра за определенный промежуток времени. Точки из класса 1— не спам, из -1— спам.

Данные предоставлены компанией Mail.ru на одном из соревнований по машинному обучению. Смысл признаков скрыт, о распределении точек ничего не известно.

	кол-во точек	кол-во признаков	баланс	cluster a.	manifold a.
Digit1	1500	241	✓	×	✓
USPS	1500	241	×	✓	✓
g241c	1500	241	✓	✓	×
g241d	1500	241	×	×	×
mailSpam	17417	102	?	?	?

Таблица 1: Свойства датасетов

⁴Материалы с дисциплины "Алгоритмы обработки больших объемов данных" курса "Техносфера" (sphere.mail.ru)

3.5 Выбор метрик и методики анализа

Для всестороннего анализа работы алгоритмов было принято решение использовать все доступные метрики и дополнительно такую характеристику, как время работы в секундах.

Имеется 5 степеней свободы для анализа результатов:

- 1. 5 датасетов
- 2. 5 алгоритмов с настраиваемыми параметрами
- 3. 5 метрик
- 4. процент доступных данных
- 5. базовые классификаторы

Были приняты следующие решения:

• Наряду с реализованными протестировать алгоритм обучения с учителем Random Forest¹

Цель — сравнить реализованные алгоритмы частичного обучения и с алгоритмом обучения с учителем

• Подобрать и фиксировать наилучшие параметры алгоритмов для 1-го набора данных

Полный анализ получился бы очень обширным, поэтому параметры алгоритмов фиксированы. Разумеется, на практике необходимо подбирать параметры для каждого датасета.

• Обеспечить одинаковые условия работы алгоритмов и возможность их кроссвалидации

Для этого был определен класс **SSVTester**, о котором будет написано ниже.

• Проанализировать зависимость качества работы от количества размеченных точек по сравнению с базовым классификатором на использованных при обучении неразмеченных точках и резервных (неиспользованных).

Для этого для каждого датасета перебирается процент размеченных точек на множестве $\{0.005, 0.0075, 0.01, 0.015, 0.025, 0.05, 0.1, 0.15, 0.2, 0.4\}$, берётся 10 случайных разбиений на размеченную, неразмеченную и резервную выборки, затем вычисляются средние значения метрики F1 и доверительные интервалы на результатах классификации неразмеченный и резервной выборок. По полученным сериям строятся графики.

Данная процедура позволяет определить, насколько лучше алгоритмы частичного обучения справляются с задачей классификации видимых ранее и новых данных при малом количестве размеченных точек, чем алгоритмы обучения с учителем.

 $^{^{1}}$ Подробно ознакомиться с принципом работы можно в статье $Breiman\ L.\ "Random\ forests"\ [3]$

• Определить зависимость качества алгоритмов от максимального количества совершаемых итераций

Данный параметр перебирается на отрезке [3, 10] с шагом 1 при 3% размеченных данных на первых 4-х датасетах.

• Определить зависимость качества SelfTraining и CoTraining от границы принятия данных (уверенности классификации)

Данный параметр перебирается на отрезке [0.60, 1.0] с шагом 0.1 при 3% размеченных данных на первых 4-х датасетах.

• Сравнить время работы алгоритмов

Для этого вычисляется время работы в среднем по каждому алгоритму и датасету.

• Получить среднюю оценку качества по метрикам *AUC* и *F1-measure* для каждого датасета

Для этого составляется таблица для каждого датасета и алгоритма с лучшими результатами по указанным метрикам. метрике.

3.6 Параметры алгоритмов

В ходе экспериментов использовались следующие параметры алгоритмов. Количество деревьев **RandomForest**: 128.

	базовая м.	тах. итераций	гр. принятия
Self-Training	RF	3	0.95
Co-Training	RF	3	0.90
EM	RF	10	_

Таблица 2: Параметры алгоритмов

Разделение по признакам в алгоритме **Co-Training** случайное, на 2 равномощных множества.

Окрестность сходимости ЕМ: 3%

Параметры были подобраны эмпирически.

3.7 Результаты работы

Рис. 5: Зависимость AUC и F1-measure от кол-ва разм. данных

Рис. 6: Зависимость AUC и F1-measure от кол-ва разм. данных

Рис. 7: Зависимость AUC и F1-measure от порога принятия

Рис. 8: Зависимость AUC и F1-measure от макс. кол-ва итераций

	Random Forest	Self-Training	Co-Training	EM
DIGIT1	0.760 ± 0.052	0.763 ± 0.050	0.766 ± 0.052	0.726 ± 0.068
g241c	0.580 ± 0.047	0.583 ± 0.047	0.581 ± 0.048	0.412 ± 0.060
g241d	0.567 ± 0.045	0.570 ± 0.045	0.574 ± 0.043	0.405 ± 0.057
USPS	0.783 ± 0.020	0.778 ± 0.024	0.767 ± 0.019	0.776 ± 0.024
mailSpam	0.899 ± 0.010	0.890 ± 0.021	0.820 ± 0.032	0.908 ± 0.012

Таблица 3: Средняя мера F1 по датасетам

	Random Forest	Self-Training	Co-Training	\mathbf{EM}
DIGIT1	12.29	46.45	117.34	140.17
g241c	11.65	27.12	53.49	131.23
g241d	12.49	28.79	56.30	145.91
USPS	17.57	101.12	214.51	136.41
mailSpam	12.61	68.08	134.34	137.28

Таблица 4: Среднее время обучения по датасетам

3.8 Вывод

Из результатов проведенного исследования можно сделать следующие выводы:

- Результат очень сильно зависит от начальных размеченных данных.
 - Если данные репрезентативны, то результат алгоритмов частичного обучения будет лучше результата базовой модели, иначе сильно хуже.
- Ошибка классификации многократно множится при неправильном выборе границы принятия.
 - На графиках можно наблюдать, как при "проседании" базовой модели сильно падают модели частичного обучения.
- *EM*-алгоритм работает непредсказуемо на некоторых данных (по предположению автора, "бросается" от одного экстремума оценки правдободобия к другому)

		Зависимость от предположений
Clust.	Manif.	Вывод
√	√	 Наравне с базовой моделью Сильно зависит от инициализации — ошибка многократно множится, из-за чего лучше брать максимальную границу принятия и небольшое число итераций
×	✓	 Незначительно превосходит базовую модель Границу принятия не следует делать слишком высокой (поскольку точки на меньшей размерности имеют примерно одинаковые уверенности, а цель — взять их верхний слой) Функция качества от количества итераций имеет единственный экстремум (после которого начинается переобучение)
✓	×	• <i>EM</i> работает плохо, остальные несильно уступают базовой моделью • Границу принятия следует брать небольшой (поскольку все соседние от размеченной точки находятся в одном кластере, в них классификатор примерно одинаково уверен, в остальных же точках — заметно меньше)
×	×	 EM работает плохо, остальные несильно превосходят базовой моделью Проблема усиления ошибки не так явно выражена, поскольку природа даннь

4 Описание практической части

В данной главе приведено описание реализации, а именно: диаграммы классов и настраиваемые параметры.

Также выведены оценки сложности и потребляемой памяти.

4.1 UML диаграммы классов

Классы реализованных алгоритмов имеют схожий вид и интерфейс: все они являются шаблонными, реализуют ProbabilisticClassifier, используют PipelineForSSVLearning и включают в себя трейт SSVClassifier.

Рис. 9: Диаграмма классов semi-supervised learning

4.2 Настраиваемые параметры алгоритмов

Tecrep SSVTester:

- folds количество разбиений данных
- labeledPart доля размеченных данных ((0;1])
- Данные, с которыми предстоит работать
 Передаются в формате DataFrame в метод setData(...), далее преобразовываются во внутренний формат.

Self-Training u Co-Training:

- baseClassifier базовая(-ые) модель(-ли)
- finalClassifier итоговая модель (для Co-Training, в Self-Training базовая модель является и итоговой)
- countIterations максимальное число итераций
- thresholdTrust граница принятия (достаточная уверенность классификатора, чтобы принять точку в размеченный набор)
- verbose вывод отладочных данных (True или False)

EM:

- baseClassifier базовая (она же и итоговая) модель
- countIterations максимальное число итераций
- minResidualPercent окрестность сходимости (отношение различно классифицированых точек к общему числу точек на последовательных итерациях)
- verbose вывод отладочных данных (True или False)

4.3 Оценка сложности и потребление памяти

Пусть L и U — количество размеченных и неразмеченных точек соответственно, k — максимальное количество итераций.

Каждый из алгоритмов совершает максимум k итераций, на каждой из которых происходит обучение базового классификатора (или 2-х в случае Co-Training) и предсказание неразмеченных данных, а также выделение новых точек (для Self-Training и Co-Training, за линейное от U время) либо подсчет невязки с предыдущей итерацией для определения сходимости (для EM, за линейное от U + L время).

Важно заметить, что оценки являются оптимальными.

Память тратится на то, чтобы хранить проиндексированные размеченные и неразмеченные данных (либо еще и исходные для Co-Training). Итого расход линеен по U+L.

Алгоритм	Время	Память
Self-Training	$O(k \cdot (T_{base\ learner}^{train} + T_{base\ learner}^{fit} + U))$	O(U+L)
Co-Training	$O(k \cdot (T_{base\ learner}^{train} + T_{base\ learner}^{fit} + U))$	O(U+L)
EM	$O(k \cdot (T_{base\ learner}^{train} + T_{base\ learner}^{fit} + U + L))$	O(U+L)

Таблица 5: Оценки алгоритмов

Ссылки на код

В работе была использована версия Apache Spark 1.6.1

Код выложен в открытый репозиторий на https://github.com/hbq1/SSL_last.

4.4 Вывод

Описанная реализация полностью удовлетворяет интерфейсу библиотеки MLLib, а также по максимуму использует её возможности.

Реализация поддерживает настройку всех возможных параметров алгоритмов, что позволяет пользователю адаптировать алгоритм для решения конкретной задачи.

Оценки скорости и потребляемой памяти являются оптимальными.

Заключение

В рамках курсовой работы были получены следующие результаты:

- 1. Проведен анализ существующих алгоритмов частичного обучения
 - Составлен подробный обзор
- 2. Написана реализация алгоритмов Self-Training, Co-Training, EM для случая бинарной классификации
 - Составлен обзор фреймворка Apache Spark
 - Подробно рассмотрена структура *MLlib*
 - Спроектирована полностью удовлетворяющая интерфейсу *MLlib* структура классов выбранных алгоримов
- 3. Получены и проанализированы результаты работы реализованных алгоритмов на 5-ти наборах данных
 - Реализован универсальный тестер для задач бинарной классификации
 - Проведен сравнительный анализ с базовыми алгоритмами
 - Проведены тесты на зависимость качества от задаваемых параметров

Список литературы

- [1] A. Criminisi J. Shotton E. K. Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning.: Tech. Rep. MSR-TR-2011-114: Microsoft Research, 2011.—Oct.
- [2] Blum A., Mitchell T. Combining labeled and unlabeled data with co-training // Proceedings of the Eleventh Annual Conference on Computational Learning Theory. COLT' 98. New York, NY, USA: ACM, 1998. Pp. 92–100. http://doi.acm.org/10.1145/279943.279962.
- [3] Breiman L. Random forests // Machine Learning.— 2001.— Vol. 45, no. 1.— Pp. 5-32. http://www.cs.colorado.edu/~grudic/teaching/CSCI5622_2004/RandomForests_ML_Journal.pdf.
- [4] M. Zaharia M. Chowdhury T. D. A. D. J. M. M. M. M. J. F. S. S. I. S. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing // Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12).— San Jose, CA: USENIX, 2012.—Pp. 15-28. https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia.
- [5] O. Chapelle B. Schlkopf A. Z. Semi-Supervised Learning. 1st edition. The MIT Press, 2010.
- [6] P. Mallapragada R. Jin A. K. J. Y. L. Semiboost: Boosting for semi-supervised learning // IEEE Trans. Pattern Anal. Mach. Intell. 2009. Vol. 31, no. 11. Pp. 2000-2014. http://dx.doi.org/10.1109/TPAMI.2008.235.
- [7] Saffari A. Multi-Class Semi-Supervised and Online Boosting: Ph.D. thesis / Graz University of Technology, Faculty of Computer Science. 2010.
- [8] Vapnik V. N. Statistical Learning Theory. Wiley-Interscience, 1998.
- [9] Zhu X. Semi-supervised learning literature survey: Tech. Rep. 1530: Computer Sciences, University of Wisconsin-Madison, 2005.