2022-05-18 Approximate integration

There are times when we want to find a definite integral but cannot use an antiderwatve.

or we don't even know the integrand

eg given
$$f(z)$$
 at $zc = 0,1,5,7,10$

given +(2) at lishows up often in sciences)

Recall:
$$\int_{a}^{b} f(x)dx = \lim_{n\to\infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$
where $x_{i}^{*} \in [x_{i-1}, x_{i}]$

If we choose zi* = xi to be the right endpoint, $\int_{0}^{\infty} f(x) dx \approx R_{n} = \sum_{i=1}^{n} f(x_{i}) \Delta x$

If we choose
$$x_i^* = x_{i-1}$$
 to be the left endpoint,
$$\int_0^b f(x) dx \approx L_n = \sum_{i=1}^n f(x_{i-i}) \Delta x$$

If we choose
$$x_i^* = \frac{x_{i-1} + x_i}{2}$$
 to be the midpoint, $(or \overline{x_i})$

$$\int_{a}^{b} f(x) dx \approx M_{\eta} = \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_{i}}{2}\right) \Delta x$$

Also, we can approximate by taking the overage of In and Rn: this gives Trapezoidal Rule

$$\int_a^b f(x) dx \approx T_n = \sum_{i=1}^n \frac{f(x_{i-i}) + f(x_i)}{2} \Delta x$$

Try using these rules to appoximate $\int_{1}^{2} x^{2}dx$ n = 4,8,16,32

$$E_{L} = \int_{a}^{b} f(x) dx - L_{n}$$

$$E_{R} = \int_{a}^{b} f(x) dx - R_{n}$$

$$E_{R} = \int_{a}^{b} f(x) dx - M_{n}$$

$$E_{R} = \int_{a}^{b} f(x) dx - T_{n}$$

n	L _n	R _n	M _n	T _n
4	1.96875	2.71875	2.32813	2.34375
8	2.14844	2.52344	2.33203	2.33594
16	2.24023	2.42773	2.33301	2.33398
32	2.28662	2.38037	2.33325	2.33350

n	E _L	E _R	E _M	E _T
4	0.36458333	-0.3854167	0.005203333	-0.0104167
8	0.18489333	-0.1901067	0.001303333	-0.0026067
16	0.09310333	-0.0943967	0.000323333	-0.0006467
32	0.04671333	-0.0470367	0.000083333	-0.0001667

Obs: 1) Better approximation as n increases.

- 2) EL and ER are opposede in sign
- 3) El, En appear to decrease by a factor of 2 when n doubles.
- 4) Midpant and Trapezoid rules are much better than left/right sums,
- 5) Em, Et are opposite in sign
- 6) Em, Et appear to decrease by a factor of 4 when n doubles.

Error bounds

$$|E_{\mu}| \leq \frac{K_2(b-a)^3}{24n^2}$$

$$|E_{\tau}| \leq \frac{K_2(b-a)^3}{12n^2}$$

Simpson's Rule

2 moturations:

1)
$$E_L = -E_R$$
 usually $\frac{1}{2}$ try $\frac{1}{2}$ (thus is T_n , which is much better)

$$E_n = -E_T$$
 usually $\frac{2M_n + T_n}{3} = S_{2n}$

2) Left, Right, and Midpoint Rules are on attempt at using a constant to approx. I on each subinterval (i.e. deg O poly)

Trap. Rule is an appose using a linear function live. deg 1 poly - using 2 points to interpolate)

Simpson's Rule is an approx using a quadratic (i.e. deg 2 poly - using 3 points to interpolate)

$$S_n = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_{n-2}) + 4f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$

$$|E_5| \leq \frac{K_4 (b-a)^5}{180 n^4}$$
, $|f^{(4)}(x)| \leq K_4 \text{ on } [a,b]$.

We can go further: Newton-Cotos formulas

4-pt: Simpson's 3/8 Rule

5-pt: Boole's Rule