Rajat jindal Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

- Let f(x) be a function such that $f(x-1) + f(x+1) = \sqrt{3}$ 13. $f(x)\forall x \in R. \text{ If } f(5) = 100, \text{ then } \sum_{r=0}^{49} f(5 + 12r)$
- Let $f: (-1,1) \to \mathbb{R}$ be such that $f(\cos 4\theta) = \frac{2}{2-\sec^2 \theta}$ for $\theta \in (0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2})$. Then the value(s) of 3. $f\left(\frac{1}{3}\right)$ is (are)-[JEE 2012]
 - (A) $1 \sqrt{\frac{3}{2}}$ (B) $1 + \sqrt{\frac{3}{2}}$ (C) $1 \sqrt{\frac{2}{3}}$ (D) $1 + \sqrt{\frac{2}{3}}$
- 9. Let a function f defined from $R \rightarrow R$ as

$$f(x) = \begin{cases} x + p^2, & \text{for } x \le 2\\ px + 5, & \text{for } x > 2 \end{cases}$$

If the function is surjective, then find the sum of all possible integral values of p in [-100,100].

- Let A = $\{\lambda \in \mathbb{R} : [x + 3] + [x + 4] \le \}$, B = $\{x \in \mathbb{R} : 3^x \left[\sum_{r=1}^{\infty} \frac{2}{10r} \right] < 3^{-3x} \}$, where [t] Denote greatest 41. integer function. Then [JEE - Main 2023]
 - (A) A ⊂ B, A ≠ B
- (B) $A \cap B = \phi$ (C) A = B
- (D) B ⊂ C, A ≠ B
- Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying 1. (fogogof)(x) = (gogof)(x), where (fog)(x) = f(g(x)), is-[JEE 2011]
 - (A) $\pm \sqrt{n\pi}$, n ∈ {0,1,2,

- (B) $\pm \sqrt{n\pi}$, $n \in \{1, 2, ...\}$
- (C) $\frac{\pi}{2}$ + 2n π , n \in {..., -2, -1,0,1,2, (D) 2n π , n \in {..., -2, -1,0,1,2,

Atomic Structure:

- Three energy levels P, Q, R of a certain atom are such that $E_P \le E_O \le E_R$. If λ_1 , λ_2 and λ_3 are the 25. wave length of radiation corresponding to transition $R \to Q$; $Q \to P$ and $R \to P$ respectively. The correct relationship between λ_1 , λ_2 and λ_3 is

 - (A) $\lambda_1 + \lambda_2 = \lambda_3$ (B) $\frac{1}{\lambda_1} = \frac{1}{\lambda_2} + \frac{1}{\lambda_3}$ (C) $\lambda_3 = \sqrt{\lambda_1 \lambda_2}$ (D) $\frac{2}{\lambda_2} = \frac{1}{\lambda_3} + \frac{1}{\lambda_3}$

- In a H-like sample electrons make transition from 5th excited state to 2nd excited state 7.
 - (A) 10 different spectral lines will be emitted
 - (B) 6 different spectral lines will be emitted
 - (C) Number of lines belonging to Balmer series will be 4
 - (D) Number of lines belonging to Paschen series will be 3
- The value of $(n_2 + n_1)$ and $(n_2^2 n_1^2)$ for He^+ ion in atomic spectrum are 4 and 8 respectively. 32. The wavelength of emitted photon when electron jump from n2 to n1 is
 - (A) $\frac{32}{9}$ R_H
- (B) $\frac{32}{9}$ R_H
- (C) $\frac{9}{32R_H}$ (D) $\frac{32}{9R_H}$
- Uncertainty in the position of an electron (mass = 9.1×10^{-31} Kg) moving with a velocity 300 12. ms^{-1} , accurate upto 0.001%, will be :- (h = 6.63 × 10⁻³⁴ Js) [AIEEE-2006]
 - (1) 5.76×10^{-2} m
- (2) 1.92 × 10⁻² m
- (3) 3.84×10^{-2} m (4) 19.2×10^{-2} m
- Choose the correct statement among the following 14.
 - (A) Radial distribution function (Ψ²·4πr²dr) give probability at a particular distance along one chosen direction
 - (B) Ψ² (r) give probability density at a particular distance over a spherical surface
 - (C) For 's' orbitals Ψ(r)Ψ(θ)Ψ(φ) = Ψ(x, y, z) is independent of θ and φ
 - (D) '2p' orbital with quantum numbers. n = 2, ℓ = 1, m = 0, also shows angular dependence