Datenstrukturen und effiziente Algorithmen

Markus Vieth David

David Klopp

Christian Stricker

5. Januar 2016

Inhaltsverzeichnis

1	Vor	lesung	sung				
	1.1	Minim	al aufspannende Bäume MST	1			
		1.1.1	Greedy-Algorithmen zur Lösung des MST-Problems:	1			
		1.1.2	Schnitt-Lemma:	2			
		113	Beweis für das Schnitt-Lemma	2			

1 Vorlesung

1.1 Minimal aufspannende Bäume MST

Eingabe

$$G = (V, E)$$
 E ungerichtet $(u, v) \in E \Rightarrow (v, u) \in E$ mögliche Notation $\{u, v\}$

 $w: E \to \mathbb{R}$

Gesucht

Baum
$$T \subseteq E$$

 $G_T = (V, T)$ zusammenhängend (zykelfrei)

$$w(T) = \sum_{e \in T} w(e) \text{minimal}$$

Frage
$$|T| = ?$$

Antwort |T| = |V| - 1

1.1.1 Greedy-Algorithmen zur Lösung des MST-Problems:

Starte mit $T=\emptyset$, nehme sukzessive Kanten zu T hinzu, so dass nach |V|-1 Schritten der gesuchte MST entstanden ist. Dabei benötigen wir ein Kriterium, das sicherstellt, dass gewählte Kanten zur Gesamtlösung dazugehören.

(b) Beispiel für einen Spannbaum

1.1.2 Schnitt-Lemma:

Betrachte eine Aufteilung (Schnitt) der Knotenmenge V in V und $\overline{S} = V \setminus S$ und Kanten $(u, v) \in E \cap S \times \overline{S}$ Sei $e \in E \cap S \times S$ mit $w(e) \leq w(e') \ \forall \ e' \in E \cap S \times S$ dann gibt es einen MST mit $e \in MST$

1.1.3 Beweis für das Schnitt-Lemma

Sei e eine "sichere" Kante aus dem Schnitt-Lemma. o.B.d.A. $u \in S$ und $v \in \overline{S}$.

Es gibt eine Zykel in $T \cup \{e\}$ und darin eine Kante $e' \in S \times \overline{S}$ mit $w(e') \ge w(e)$.

Ersetze $T' = T \cup \{e\} \setminus \{e'\}$ $w(T') \le w(T) \Rightarrow w(T') = w(T)$ weil T ein MST.

q.e.d.

Abbildungsverzeichnis

1.2	2
-----	---