NI-LOM semestrální úloha

Michal Dvořák

3. února 2022

V této práci se věnujeme problému maximálního toku resp. minimálního řezu v síti. Cílem je porovnat různé formulace a strategie řešení tohoto problému pomocí lineárního programování.

1 Pojmy

Definice 1. Síť je uspořádaná pětice (V, E, s, t, c) přičemž (V, E) je orientovaný graf (se smyčkama) a $s, t \in V$ dva vyznačené vrcholy - zdroj a stok. $c: E \to \mathbb{R}^+$ je funkce přiřazující každé hraně e její kapacitu c(e).

Definice 2. Tok v síti (V, E, s, t, c) je funkce $f: E \to \mathbb{R}^+$ splňující:

1. $\forall e \in E : 0 \le f(e) \le c(e)$

2.
$$\forall v \in V \setminus \{s,t\}: \sum_{(u,v)\in E} f((u,v)) = \sum_{(v,w)\in E} f((v,w))$$

Velikost toku f je

$$w(f) = \sum_{(s,v)\in E} f((s,v)) - \sum_{(v,s)\in E} f((v,s))$$

Tok f je maximálni pokud pro každý tok f' je $w(f) \ge w(f')$.

Dá se ukázat, že každá síť skutečně má maximální tok i když jsou kapacity libovolná reálná čísla. My se však omezíme na kapacity racionální (resp. celočíselné). Problém nalezení maximálního toku řeší několik standardních algoritmů. Pro srovnání s formulacemi a řešeními pomocí LP použijeme Dinitzův algoritmus. Pro detailní popis Dinitzova algoritmu odkazujeme čtenáře na [1]. Teoretická doba běhu Dinitzova algoritmu pro graf s n vrcholy a m hranami je $O(n^2m)$.

Poznamenejme, že problém maximálního toku je úzce spjat s problémem minimálního řezu. Problém nalezení minimálního řezu v síti je nalezení množiny $A\subseteq V$ takové, že $s\in A, t\notin A$ a $\sum_{u\in A,v\notin A}c((u,v))$ je minimální. Na problém minimálního řezu se dá pohlížet jako na duál maximálního toku. I bez teorie lineárního programování se dá ukázat, že velikost minimálního řezu je rovna velikosti maximálního toku v každé síti.

2 Formulace pomocí lineárního programování

Problém maximálního toku lze přirozeně formulovat pomocí lineárního programu

$$\max \sum_{\substack{(s,v)\in E\\ \text{za podmínek}}} f((s,v)) - \sum_{\substack{(v,s)\in E\\ (u,v)\in E}} f((v,s))$$

$$\sum_{\substack{(u,v)\in E\\ 0\leq f(e)\leq c(e)}} f((v,w)) = 0 \quad \forall v\in V\setminus\{s,t\}$$

$$\forall e\in E$$

s proměnnými f((u, v)) pro každou hranu $(u, v) \in E$. Duál programu 1 je

min
$$\sum_{e \in E} y_e c(e)$$
 za podmínek
$$y_e \ge 1 \qquad e = (s,t) \in E$$

$$y_e \ge -1 \qquad e = (t,s) \in E$$

$$y_e + y_v \ge 1 \qquad \forall e = (s,v) \in E, v \notin \{s,t\}$$

$$-y_u + y_e \ge -1 \qquad \forall e = (u,s) \in E, u \notin \{s,t\}$$

$$y_v + y_e \ge 0 \qquad \forall e = (t,v) \in E, v \notin \{s,t\}$$

$$-y_u + y_e \ge 0 \qquad \forall e = (u,t) \in E, u \notin \{s,t\}$$

$$y_v - y_u + y_e \ge 0 \qquad \forall e = (u,v) \in E, u \notin \{s,t\}$$

$$y_v - y_u + y_e \ge 0 \qquad \forall e = (u,v) \in E, u \notin \{s,t\}$$
 za každou branu a y_v za každó vrchol $v \in V \setminus \{s,t\}$

s proměnnými y_e za každou hranu a y_v za každý vrchol $v \in V \setminus \{s, t\}$.

Tento duál by měl v jistém smyslu odpovídat relaxaci minimálního řezu. Na první pohled není zřejmé, jak z proměnných y nějaký řez sestavit. Podívejme se na jinou formulaci problému maximálního toku (resp. minimálního řezu). Označme \mathcal{P} množinu všech s-t cest v síti.

max
$$\sum_{p \in \mathcal{P}} x_p$$
 za podmínek
$$\sum_{p \in \mathcal{P}, e \in p} x_p \le c(e) \quad \forall e \in E$$

$$x_p \ge 0 \qquad \forall p \in \mathcal{P}$$
 (3)

s proměnnými x_p za každou s-t cestu. Problémem je, že s-t cest je obecně v grafu až exponencielně mnoho a tak program není možné v polynomiálním čase ani napsat. Podívejme se ale na duál.

min
$$\sum_{e \in E} y_e c_e$$
 za podmínek
$$\sum_{e \in p} y_e \ge 1 \quad \forall p \in \mathcal{P}$$

$$y_e \ge 0 \qquad \forall e \in E$$
 (4)

Ten má proměnnou y_e za každou hranu $e \in E$ ale podmínku za každou cestu $p \in \mathcal{P}$. Myšlenka bude přidávat tyto podmínky do řešiče postupně. Lze nahlédnout, že polynomiálně mnoho podmínek bude stačit pro nalezení optima, protože i Dinitzův algoritmus uvažuje jen polynomiálně mnoho cest z s do t protože pracuje v polynomiálním čase. Ohodnocení hran y_e můžeme interpretovat jako váhové ohodnocení hran a podmínky za každou cestu jsou splněny všechny pokud vzdálenost¹ s od t je alespoň 1. Na hledání nejkratší cesty z s do t lze použít například Dijkstrův algoritmus. Pro rozbor Dijkstrova algoritma opět odkazujeme do [1]. Je použita implementace s binární haldou. Teoretická doba běhu této varianty Dijkstrova algoritmu je $O((n+m)\log n)$.²

3 Experimenty

Experimenty lze nalézt v jupyter-notebooku ve složce visualization

4 Závěr

TODO

 $^{^1}$ vzdálenost d(u,v)mezi dvěma vrcholy $u,v\in V$ v (orientovaném) grafu je délka nejkratší (orientované) cesty z u do v (případně $+\infty$ pokud žádná (orientovaná) cesta neexistuje)

 $^{^2}$ Lze zlepšit na teoretických $O(m + n \log n)$ s Fibonacciho haldou, ale v praxi je to spíš pomalejší.

Reference

 $[1]\,$ Mares, M. $Pr \mathring{u}vodce\ labyrintem\ algoritm \mathring{u}.$ CZ. NIC, zspo, 2021.