Asymptotic genealogies of non-neutral populations

Suzie Brown

University of Warwick, U.K. with Paul Jenkins, Adam Johansen & Jere Koskela

13 May 2021

Suzie Brown 13 May 2021 1/11

Interacting particle system

?

Suzie Brown 13 May 2021 2 / 11

Kingman's *n*-coalescent

- Continuous-time Markov chain on the space of partitions of $\{1, \ldots, n\}$
- ► Single pair mergers only
- ► Each pair merges independently at rate 1 (total merge rate $\binom{k}{2}$ while there are k distinct lineages)

Suzie Brown 13 May 2021 3 / 11

Scenario

- ► Fixed population size *N*
- ► Discrete generations
- ▶ Sample $n \le N$ individuals from the terminal generation
- ▶ Rescale to continuous time
- ▶ Let $N \to \infty$

Sufficient conditions, neutral models

Theorem (Kingman 1982)

- ► Individuals are exchangeable
- ▶ Offspring counts $\nu^{(1:N)}$ are i.i.d. across generations
- $ightharpoonup \sup_{N} \mathbb{E}[(\nu^{(1)})^k] < \infty \text{ for all } k \geq 3$

Then the rescaled genealogy of n individuals converges weakly to the n-coalescent as N $ightarrow \infty$.

Suzie Brown 13 May 2021

Sufficient conditions, neutral models

- ► Exchangeability = neutrality (genotype does not affect number of offspring)
- ▶ Since $\sum \nu^{(i)} = N$ and individuals are exchangeable, $\mathbb{E}[\nu^{(i)}] = 1$.
- ▶ Case $\sigma^2 = 0$ would mean no coalescences in the limit
- ▶ Conditions can be verified for e.g. Moran & Wright-Fisher models

Suzie Brown 13 May 2021

Necessary and sufficient conditions, neutral models

Theorem (Möhle Sagitov 2001, 2003)

- ► Individuals are exchangeable
- ▶ Offspring counts $\nu^{(1:N)}$ are i.i.d. across generations
- ightharpoonup $c_N > 0$ for all $N < \infty$
- $ightharpoonup c_N \longrightarrow 0$
- $ightharpoonup d_N/c_N \longrightarrow 0$

If and only if the rescaled genealogy of n individuals converges weakly to the n-coalescent as $N \to \infty$.

$$d_N := \frac{N\mathbb{E}[(\nu^{(1)})_3]}{(N)_3}, \qquad c_N := \frac{N\mathbb{E}[(\nu^{(1)})_2]}{(N)_2}$$

Suzie Brown 13 May 2021

Necessary and sufficient conditions, neutral models

- lacktriangle The condition $c_N>0$ plays the same role as Kingman's condition $\sigma^2>0$
- $lackbox{} c_N=rac{\mathsf{Var}[
 u^{(1)}]}{N-1}$, so $c_N o 0$ is less restrictive than Kingman's condition $\mathsf{Var}[
 u^{(1)}] o\sigma^2$
- ▶ Only requires control up to 3rd moment, cf. Kingman requires all moments finite

Suzie Brown 13 May 2021

Sufficient conditions, non-neutral models

Theorem (B Koskela Jenkins Johansen 2021)

- Given $v_t^{(1:N)}$, assignment of offspring to parents is uniform over all valid assignments
- ► Time scale is almost surely finite
- ▶ \exists deterministic sequence $b_N \rightarrow 0$ such that $\forall N, t$

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

Then the rescaled genealogy of n individuals converges weakly to the n-coalescent as $N \to \infty$.

Suzie Brown 13 May 2021

Sufficient conditions, non-neutral models

- ▶ Not exchangeable, so individual index kept explicit
- ▶ Not i.i.d. over time, so t kept explicit, and time scale is not constant!
- ▶ The finite time scale condition plays the same role as Kingman's $\sigma^2 > 0$
- lacktriangle The main condition is the non-exchangeable analogue of Möhle & Sagitov's $d_N/c_N o 0$

Suzie Brown 13 May 2021

In conclusion...

Suzie Brown 13 May 2021

References

- 1. JFC Kingman (1982) *The coalescent*. Stochastic Processes and Their Applications 13:235–248.
- 2. JFC Kingman (1982) On the genealogy of large populations. Journal of Applied Probability 19A:27–43.
- 3. M Möhle, S Sagitov (2001) A classification of coalescent processes for haploid exchangeable population models. The Annals of Probability 29(4):1547–1562.
- 4. M Möhle, S Sagitov (2003) Coalescent patterns in diploid exchangeable population models. Journal of Mathematical Biology 47(4):337–352.
- 5. S Brown, PA Jenkins, AM Johansen, J Koskela (2021) Simple conditions for convergence of sequential Monte Carlo genealogies with applications. Electronic Journal of Probability 26:1–22.

 Suzie Brown
 13 May 2021
 12 / 11