Assignment template

Group 45: Daniel Engbert, Rik Timmer, Koen van der Pool

11 February 2023

Exercise 1: Birthweights

```
data = read.table("birthweight.txt", header=T)
par(mfrow=c(1,2))
x = data$birthweight
# checking normality
hist(x, freq=F)
qqnorm(x)
```



```
shapiro.test(x)
```

##

Shapiro-Wilk normality test

```
##
## data: x
## W = 0.99595, p-value = 0.8995
res = t.test(x, conf.level=0.96)
res
##
    One Sample t-test
##
##
## data:
## t = 57.269, df = 187, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 96 percent confidence interval:
## 2808.084 3018.501
## sample estimates:
## mean of x
  2913.293
sd(x)
## [1] 697.5002
tval = qt(0.98, length(x))
m = 50
n = (tval * sd(x) / m) ** 2
## [1] 832.3197
\#sprintf("96\% confidence interval: [\%.4f, \%.4f]", res$conf.int[1], res$conf.int[2])
a)
```

The birthweight data appears to be normal based on a normal-appearing histogram, the straight line in the qqplot, and the shapiro-wilk normality test (having \$p=0.8995 > 0.05\$).

$$m = \frac{t * s}{\sqrt{n}} \to n = (\frac{t * s}{m})^2$$

The equation above, gives the sample size, n, needed for the confidence interval to have a width of 100 (meaning m=50), where t is the t-score for the quantile 0.02 (such that both tails of the distribution have total area 0.04). Our calculations compute n = 832.32, which rounded indicates the min sample size is n = 833 (for a 96% CI).

```
B = 10000
Tstar = numeric(B)

for (i in 1:B){
    # sample with replacement, for a new sample of same length(x)
    Xstar = sample(x, replace=TRUE)
    Tstar[i] = mean(Xstar)
```

```
Tstar02 = quantile(Tstar, 0.02)
Tstar04 = quantile(Tstar, 0.98)
Tstar02
## 2%
## 2808.209
Tstar04
## 98%
## 3016.634
```

Our bootstrap CI of 96% is [2810.32, 3014.50] which is approximately consistent with the CI calculated previously (as expected).

b)

Use wilcoxon sign test?

```
t.test(x, mu=2800, alt="g")[[4]]
```

```
## [1] 2829.202 Inf
## attr(,"conf.level")
## [1] 0.95
```

The output of the confidence interval here denotes that we can say with 95% confidence that the true mean is between 2829.2015472, ∞

c)

Exercise 2: Cholesterol

##		${\tt Before}$	After8weeks
##	1	6.42	5.75
##	2	6.76	6.13
##	3	6.56	5.71
##	4	4.80	4.15
##	5	8.43	7.67
##	6	7.49	7.05
##	7	8.05	7.10
##	8	5.05	4.67
##	9	5.77	5.33
##	10	3.91	3.66
##	11	6.77	5.96
##	12	6.44	5.64
##	13	6.17	5.51
##	14	7.67	6.96
##	15	7.34	6.82
##	16	6.85	6.29
##	17	5.13	4.45

18 5.73 5.17

Exercise 3: Diet

```
data = read.table("diet.txt", header=T)
data
```

##		person	gender	age	height	preweight	diet	weight6weeks
##	1	1	0	22	159	58	1	54.2
##	2	2	0	46	192	60	1	54.0
##	3	3	0	55	170	64	1	63.3
##	4	4	0	33	171	64	1	61.1
##	5	5	0	50	170	65	1	62.2
##	6	6	0	50	201	66	1	64.0
##	7	7	0	37	174	67	1	65.0
##	8	8	0	28	176	69	1	60.5
##	9	9	0	28	165	70	1	68.1
##	10	10	0	45	165	70	1	66.9
##	11	11	0	60	173	72	1	70.5
##	12	12	0	48	156	72	1	69.0
##	13	13	0	41	163	72	1	68.4
##	14	14	0	37	167	82	1	81.1
##	15	15	1	39	168	71	1	71.6
##	16	16	1	31	158	72	1	70.9
##	17	17	1	40	173	74	1	69.5
##	18	18	1	50	160	78	1	73.9
##	19	19	1	43	162	80	1	71.0
##	20	20	1	25	165	80	1	77.6
##	21	21	1	52	177	83	1	79.1
	22	22	1	42	166	85	1	81.5
##	23	23	1	39	166	87	1	81.9
##	24	24	1	40	190	88	1	84.5
##	25	25	NA	41	171	60	2	60.0
##	26	26	NA	32	174	103	2	103.0
##	27	27	0	44	174	58	2	60.1
##	28	28	0	37	172	58	2	56.0
##	29	29	0	41	165	59	2	57.3
	30	30	0	43	171	61	2	56.7
	31	31	0	20	169	62	2	55.0
##	32	32	0	51	174	63	2	62.4
	33	33	0	31	163	63	2	60.3
	34	34	0	54	173	63	2	59.4
	35	35	0	50	166	65	2	62.0
	36	36	0	48	163	66	2	64.0
	37	37	0	16	165	68	2	63.8
	38	38	0	37	167	68	2	63.3
	39	39	0	30	161	76 	2	72.7
##	40	40	0	29	169	77	2	77.5

##	41	41	1	51	191	71	2	66.8
##	42	42	1	38	199	75	2	72.6
##	43	43	1	54	196	75	2	69.2
##	44	44	1	33	190	76	2	72.5
##	45	45	1	45	160	78	2	72.7
##	46	46	1	37	194	78	2	76.3
##	47	47	1	44	163	79	2	73.6
##	48	48	1	40	171	79	2	72.9
##	49	49	1	37	198	79	2	71.1
##	50	50	1	39	180	80	2	81.4
##	51	51	1	31	182	80	2	75.7
##	52	52	0	51	165	60	3	53.0
##	53	53	0	35	169	62	3	56.4
##	54	54	0	21	159	64	3	60.6
##	55	55	0	22	169	65	3	58.2
##	56	56	0	36	160	66	3	58.2
##	57	57	0	20	169	67	3	61.6
##	58	58	0	35	163	67	3	60.2
##	59	59	0	45	155	69	3	61.8
##	60	60	0	58	141	70	3	63.0
##	61	61	0	37	170	70	3	62.7
##	62	62	0	31	170	72	3	71.1
##	63	63	0	35	171	72	3	64.4
##	64	64	0	56	171	73	3	68.9
##	65	65	0	48	153	75	3	68.7
##	66	66	0	41	157	76	3	71.0
##	67	67	1	36	155	71	3	68.5
##	68	68	1	47	179	73	3	72.1
##	69	69	1	29	166	76	3	72.5
##	70	70	1	37	173	78	3	77.5
##	71	71	1	31	177	78	3	75.2
##	72	72	1	26	179	78	3	69.4
	73	73	1	40	179	79	3	74.5
	74	74	1	35	183	83	3	80.2
##	75	75	1	49	177	84	3	79.9
##	76	76	1	28	164	85	3	79.7
##	77	77	1	40	167	87	3	77.8
##	78	78	1	51	175	88	3	81.9

Exercise 4: Yield of Peas

```
library(MASS)
data = npk
data
```

```
## block N P K yield
## 1 1 0 1 1 49.5
## 2 1 1 1 0 62.8
```

```
## 3
          1 0 0 0 46.8
## 4
          1 1 0 1
                   57.0
## 5
          2 1 0 0
                   59.8
## 6
          2 1 1 1
                   58.5
          2 0 0 1
## 7
                   55.5
          2 0 1 0
                   56.0
## 8
## 9
          3 0 1 0
                   62.8
          3 1 1 1
                   55.8
## 10
## 11
          3 1 0 0
                   69.5
## 12
          3 0 0 1
                   55.0
## 13
          4 1 0 0
                   62.0
## 14
          4 1 1 1
                   48.8
          4 0 0 1
                   45.5
## 15
## 16
          4 0 1 0
                   44.2
## 17
          5 1 1 0
                   52.0
## 18
          5 0 0 0
                   51.5
## 19
          5 1 0 1
                   49.8
## 20
          5 0 1 1
                   48.8
## 21
          6 1 0 1
                   57.2
## 22
          6 1 1 0
                   59.0
## 23
          6 0 1 1
                   53.2
          6 0 0 0 56.0
## 24
```