

네트워크 기술

쉽게 배우는 데이터 통신과 컴퓨터 네트워크

- □ 네트워크를 분류하는 간단한 기준 : 호스트간의 연결 거리(크기)
- □LAN(Local Area Network) => 5장에서 다시 자세히…
 - 소규모 지역에 위치한 호스트로 구성된 네트워크
 - 비교적 호스트 간격이 짧아 브로드캐스트 방식을 사용해서 데이터 전송
 - 전송지연이 짧고 전송 오류가 낮음
 - 토폴로지(topology) : 버스(bus)형, 링(ring)형, 성(star)형, 트리(tree)형 등
 - 버스형(Bus): 가장 많이 사용
 - 공유 버스에 호스트들을 연결 [그림 3-7]
 - 브로드캐스팅 방식 :이더넷(Ethernet)이 대표적
 - 둘 이상의 호스트에서 동시에 데이터 전송 시 충돌 (collision)문제 해결 필요
 - 현재 100Mbps 까지 지원

[그림 3-7] 버스형

호스트

- 링형
 - 호스트의 연결이 순환 구조를 형성 [그림 3-8] 일방향/양방향
 - 전송 데이터는 링을 한 바퀴 순환하여 송신자에게 되돌아 옴
 - 데이터를 전송하기 위해서는 토큰(Token)이라는 제어 프레임이 필요
 - 호스트 상의 충돌 문제는 해결

[그림 3-8] 링형

■ MAN(Metropolitan Area Network)

- LAN 보다 규모가 크고 여러 건물이나 한 도시에서의 네트워크를 구성
- MAN 국제 표준 : DQDB(Distributed Queue Dual Bus)
 - 전송 방향이 다른 2개의 버스로 모든 호스트를 연결하는 구조
 - 그림의 점선과 같은 연결 구조도 가능

그림 3-9 DQDB 구조에서의 호스트 연결

■ WAN(Wide Area Network)

- 국가 규모 이상의 넓은 지역에 위치한 호스트로 구성된 네트워크 [그림 3-10]
- 점 대 점으로 연결된 WAN 환경은 전송과 더불어 교환 기능이 반드시 필요
- 연결의 수가 증가할수록 전송 매체의 비용이 많이 소요
- 각 호스트를 스타형, 트리형 등 다양하게 구성할 수 있음

Gigabit Ethernet

Gigabit Ethernet technology is applied beyond the enterprise LAN to MAN and WAN-based networks.

- 인터네트워킹 : 둘 이상의 서로 다른 네트워크를 연결하는 기능
- 라우터: 네트워크를 연결하는 장비이며, 일반적으로 계층 3 기능을 수행
- 게이트웨이: 일반적인 용어
 - 리피터: 계층 1 기능을 지원, 신호 증폭
 - 브리지: 계층 1, 2 기능을 지원, 불필요한 트래픽 발생을 억제
 - 라우터: 계층 1, 2, 3 기능을 지원, 경로 배정 기능을 수행 [그림 3-11]

[그림 3-11] 게이트웨이의 역할

□IP 인터네트워킹

- 인터넷에서 네트워크를 연결하는 방식
- 패킷 중계 기능은 IP 프로토콜이 수행 [그림 3-15]
- 라우터 장비에 의한 중계

[그림 3-15] IP 인터네트워킹의 구조

□IP 인터네트워킹

• 라우터 : 양쪽 MAC 계층이 다르면 패킷의 헤드 변환 기능이 필요 [그림 3-16]

: 특정 패킷이 너무 커서 MAC 계층에서 처리하지 못하면 패킷 분할과 병합 과정도 수행

[그림 3-16] IP 인터네트워킹에서의 헤더 변환

- 1) 고정 경로 배정(Fixed Routing)
 - 송수신 호스트 사이에 영구 불변의 고정 경로를 배정
 - 장점: 송수신사이의 트래픽을 미리 측정하고 고정 경로를 배정하면 간단하고 효율적인 라우팅이 가능
 - 단점: 트래픽 변화에 따른 동적 경로 배정이 불가능

- 1) 고정 경로 배정
 - 가정
 - R3, R7 선로: 고속 통신 지원
 - Net.2가 Net.4보다 덜 붐빔

[그림 3-17] 라우터로 네트워크를 구성한 예

(a) 라우터 R1의 정보

네트워크	라우터
Net.1	
Net.2	
Net.3	R4
Net.4	R3
Net.5	R6

(b) 라우터 R2의 정보

(10)	
네트워크	라우터
Net.1	
Net.2	R3
Net.3	R5
Net.4	
Net.5	R8

(c) 라우터 R3의 정보

네트워크	라우터
Net.1	R1
Net,2	
Net,3	R4
Net.4	
Net.5	R6

(d) 라우터 R4의 정보

네트워크	라우터
Net.1	R1
Net,2	
Net.3	
Net.4	R3
Net.5	R7

- 1) 고정 경로 배정
 - 가정
 - R3, R7 선로: 고속 통신 지원
 - Net.2가 Net.4보다 덜 붐빔

[그림 3-17] 라우터로 네트워크를 구성한 예

(e) 라우터 R5의 정보

네트워크	라우터
Net.1	R2
Net.2	R3
Net.3	
Net.4	
Net.5	R7

(f) 라우터 R6의 정보

.,	
네트워크	라우터
Net.1	R1
Net.2	
Net.3	R7
Net.4	R3
Net.5	

(g) 라우터 R7의 정보

네트워크	라우터
Net.1	R6
Net.2	R4
Net.3	
Net.4	R5
Net.5	

(h) 라우터 R8의 정보

네트워크	라우터
Net.1	R2
Net,2	R6
Net.3	R7
Net.4	
Net.5	

- 2) 적응 경로 배정(Adaptive Routing)
 - 인터넷 연결 상태가 변하면 이를 전달 경로 배정에 반영
 - 1) 특정 네트워크나 라우터가 비정상적으로 동작하는 경우
 - 2) 네트워크의 특정 위치에서 혼잡이 발생하는 경우
 - 단점: 경로 결정 과정에서 라우터의 부담이 증가
 - 라우터 사이의 시간적인 정보의 불일치성(Inconsistency) 문제가 항상 존재
 - → 라우터 사이의 빠른 정보 교환이 이루어져야 함

- 자율 시스템(Autonomous System)
 - 동일한 라우팅 특성(공통의 라우팅 프로토콜)으로 동작하는 논리적인 단일 구성체
 - 내부 라우팅 프로토콜(Interior Routing Protocol): 자율시스템 내부에서 사용
 - → RIP(Routing Information Protocol) 거리 벡터 기반
 - → OSPF(Open Shortest Path First) 링크 상태 기반
 - 외부 라우팅 프로토콜(Exterier Routing Protocol): 자율 시스템 간에 사용
 - → BGP(Border Gateway Protocol) 경로 벡터 기반

4절. 서비스 품질

- □QoS(Quality of Service) 개요
 - 전송 계층에서 필요한 서비스 정도를 매개 변수로 표시하여 전송함
 - 주요 QoS 매개 변수
 - 연결 설정 지연(Connection Establishment Delay) : 연결 설정까지의 소요시간
 - 연결 설정 실패 확률(Connection Establishment Failure Probability)
 : 연결이 실패할 확률
 - 전송률(Throughput): 임의 시간 구간 동안 초당 전송할 수 있는 바이트 수
 - 전송 지연(Transit Delay): 송신자에서 수신자까지의 데이터 전송 시간
 - 전송 오류율(Residual Error Rte) : 전송된 총 데이터 수와 오류 데이터 수의 비율
 - 우선 순위(Proirity) : 다른 연결보다 우선적으로 처리

□인터넷에서의 QoS

- IP 프로토콜에서는
 - 특정 패킷의 우선 순위 조절 기능이 없고 모든 패킷에 동일한 기준을 적용
 - 데이터 도착 순서나 100% 수신을 보장하는 않음
- 전송 데이터의 종류별 특징
 - 영상 정보: 대용량의 실시간 전송, 전송 오류에 관대
 - 컴퓨터 데이터: 실시간 전송 불필요, 전송 오류에 민감함