	Name: Model Answers			- 1 -			Roll No:		
0	1	2	3	4	5	6	7	Total	Indian Institute of Technology Mandi
									IC150: Quiz 1 12 th April 2013, 8:00-8:50 a.m.
	Answe	r all que	stions.	No calc	ulators o	or cellpl	hones.		Maximum marks: 25
	0) Wł	nen you a	are PM,	what wi	ill be yo	ur highe	st priori	ty (select on	e)? [½]
	a)	Ban T20	0 match	es on we	eekdays				
		Double				ıs			
		Double							
		Double		•	faculty				
	e)	Other (s	specify):						
	1) Fill	in the bl	anks:						$[7\frac{1}{2}]$
	a)	Expand	the acro	onym FI	LOPS <u>I</u>	Floating	point or	oerations per	second
	b)	add a:	x, bx	is a stat	ement ir	an	ass	embly	language,
									high level_ language.
	c)	The diff	ference o	engine v	vas desig	gned by	<u>C</u> l	narles Babba	gein 1882.
	d)	The firs	t electro	nic com	iputer w	as name	ed <u>EN</u>	IAC	
	e)	Two pro	ogramm	ing para	digms a	re <u>In</u>	nperativ	e /OOPS/Ob	ject-oriented/ Logic/ func-
		tional/ p	rocedur	al_ and	l	_	_		·
	f)	If a C fi	unction 1	needs to	return 2	or mor	e results	, it must use	call-by-Reference
	g)	The val	ue of the	e C expr	ression 7	7%−4 is	3	=	<u>.</u>
	h)	The val	ue of the	e C expr	ression 5	6 && 6	* (3	-13/4) is_	0/false .
	i)	The val	ue of the	e C expr	ression (2)?3:	4 is <u>3</u>	<u>.</u>	
	j)	The ran	ge of va	lues tha	t can be	stored i	n a 24-b	it unsigned i	nteger isto
			2 ²⁴ -1	_(give y	our ansv	ver using	g 2 ⁿ nota	ation).	
	k)	A Beow	ulf clus	ter cons	ists of m	nany	W	orkstations o	or PCs as client
		nodes.							
	2) Con	sider the	e follow	ing C fi	unction 1	that atte	mpts to	calculate the	e area of a rectangle given
	its	length ar	nd heigh	t (both	floating	point).	What ch	anges will y	ou make to ensure that the
	out	put valu	e is corr	ect and	accurate	?			[2]

Name: Model Answers - 2 - Roll No:

```
#include <stdio.h>
float RectArea(float len, float ht)
{
  float a;
  a = len * ht;
  return(a);
}
```

3) Answer briefly:

[3]

(a) Give the value in base 2 of the C expression 0123 + 0xef

```
001010011 \\ 11101111 \\ 101000010
```

(b) Assuming 32-bit integers and the declarations below, how many bytes of memory are occupied by the array A?

```
#define MAX_SIZE 20
#define NUM_YR 30
int A[NUM_YR*5][MAX_SIZE];
30 ×5×20×4 = 12,000 bytes
```

(c) What is a *sentinel*?

It is a special data value that indicates the end of a loop.

4) Hand-simulate the following code. In the table below, write the values of each variable after each iteration of the for loop, **before** the printf() is executed. [3]

```
int i, f, n = 10;
for(i = 0; i < 9; i++)
{
   f = n%2;
   if (f == 0) n = n/2;
   else n = 3*n+1;
   printf("%d ", n);
}</pre>
```

Iteration no.	Value of i	Value of f	Value of n
1	0	0	5
2	1	1	16
3	2	0	8
4	3	0	4
5	4	0	2
6	5	0	1
7	6	1	4
8	7	0	2
9	8	0	1

5) Do the following conversions (the subscript indicates the base; show your working). [3] (a) (111001)₂ to decimal

(b) (1011111100010101)₂ to hexadecimal

By inspection of groups of 4 bits: bf15

(c) $(8027)_{10}$ to base 12 (duodecimal)

$$8027 = 478b_{12}$$

7) Design an algorithm to compute the average CGPA of all students in an Institute. The B-element vector \mathbb{N} contains the number of students in each of B branches, where N_k is the number of students in branch k, $1 \le k \le B$. The CGPAs are stored in the 2-dimensional matrix \mathbb{C} . The data for all students in branch k is stored in the row C_k , where $C_{k,i}$ contains the CGPA for the ith student in branch k, $1 \le i \le N_k$.

Draw a neat flow-chart for your algorithm. Assume that the data is already available in N and C, and store the result in the variable *avg*. Do **NOT** write C code. [4]

```
1. sum \leftarrow 0, ns \leftarrow 0

2. For each branch k in 1 .. B do

2.1 ns \leftarrow ns + N_k

2.2 For each student i in 1 .. N_k do

2.3 sum \leftarrow C_{k,i} + sum

3 avg \leftarrow sum/ns
```

