Chapter1. Sets and Logic

- 1.1 Sets
- 1.2 Propositions
- 1.3 Conditional Propositions and Logical Equivalence
- 1.4 Arguments and Rules of Inference
- 1.5 Quantifiers
- 1.6 Nested Quantifier

- Sets: a collection of distinct unordered objects called element or member
 Regardless of the order of the elements, they may have duplicate elements
- Notations for sets

By listing all of its elements

$$A = \{1,2,3,4\}, \qquad A = \{1,3,4,2\}, \qquad A = \{1,2,2,3,4\}$$

Set builder notation: by presenting conditions that can be

members of a set

- □ 수의 집합
 - Z는 정수 집합(정수를 뜻하는 독일어Zahlen에서 유래)
 - **Q**는 유리수 집합(몫을 뜻하는 Quotient)
 - **R**는 실수 집합(Real)
 - \mathbf{Q}^+ 는 양의 유리수 집합, \mathbf{R}^- 는 음의 실수 집합 \mathbf{Z}^{nonneg} 는 음이 아닌 nonnegative 정수 집합

- \square **기수** $\operatorname{cardinality}$ 는 X가 유한집합일 때 원소의 개수. |X|로 표시
 - Ex1.1.1) 집합 $A = \{1,2,3,4\}$ 대해서 |A| = 4
- □ x가 집합 X의 원소이면 $x \in X$ 로 쓴다. 아니면, $x \notin X$ 로 쓴다.
- □ 원소를 갖지 않은 집합을 공집합^{empty(null, void)set}이라 하고,
 ∅로 표시 즉, ∅ = {}이다.
- □ 두 집합 X와 Y가 동일한 원소를 가질 때, X와 Y는 동등 equivalent 하고, X = Y로 표시. 다음조건이 성립하면 X = Y이다.
 - 모든 x에 대해서 $x \in X$ 이면 $x \in Y$ 이다.
 - 모든 x에 대해서 $x \in Y$ 이면 $x \in X$ 이다.
- □ X와 Y가 집합이고, X의 모든 원소가 Y의 원소일 때, $X \subseteq Y$ 의 부분집합 subset이라 하고 $X \subseteq Y$ 로 표시한다.
- □ 만약 $X \subseteq Y$ 이고, $X \neq Y$ 면 **진부분집합**proper subset이라 하고, $X \subset Y$ 로 표시한다.

- □ 집합 X의 모든 부분집합의 집합은 X의 **멱집합**power set이라 하고, $\mathcal{P}(X)$ 로 표시한다
 - **Ex** 1.1.14) $A = \{a, b, c\}$ 라면 $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ $|A| = 30|고, |\mathcal{P}(A)| = 2^3 = 80| 다$
- □ 합집합union

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$$

□ 교집합intersection

$$X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$$

□ **차집합**difference or 상대적 여집합 relative complement

$$X - Y = \{x \mid x \in X \text{ and } x \notin Y\}$$

■ $A = \{1,3,5\}, B = \{4,5,6\}$ 이면, $A - B = \{1,3\}, B - A = \{4,6\}$

- □ 원소가 집합인 집합을 집합들의 모임 collection of sets 또는 집합족 family of sets이라고 부른다.
 - $S = \{\{1, 2\}, \{1, 3\}, \{1, 7, 10\}\}$
- $\square X \cap Y = \emptyset$ 일 때 서로소disjoint라고 부른다.
 - {1,4,5}와 {2,6}은 서로소이다.
- □ 집합들의 모임인 S에서 S내의 모든 서로 다른 두 집합 X와 Y가 서로소이면 S는 쌍으로 소pairwise disjoint라 한다.
 - Ex 1.1.7) $S = \{\{1,4,5\},\{2,6\},\{3\},\{7,8\}\} \vdash$ pairwise disjoint
- □ 때때로 집합들은 어떤 집합 U의 부분집합으로 다루어진다. 이집합 U를 전체집합 $universal\ set$ 이라 한다. U는 분명하게 제시되거나 문맥으로 추론될 수 있어야 한다.
- □ 전체집합 U와 U의 부분집합 X가 주어졌을 때, U X = X의 여집합 complement 이라 하고 X로 표시한다.

- □ 벤다이어그램^{Venn Diagram}은 집합을 그림으로 보여준다.
 - 사각형은 전체집합을 나타낸다.
 - 부분집합은 원으로 표현한다.
 - 원의 내부는 원소를 나타낸다.
- \Box 다음 그림에는 전체집합 U안에 2개의 집합 A와 B가 있다.
 - 영역 1은 $(A \cup B)$, 즉, A 또는 B에 속하지 않는 원소
 - 영역 2은 *A* − *B*, 즉, *A*에 속하지만 *B*에 속하지 않는 원소
 - 영역 3은 A ∩ B
 - 영역 4은 B A

Theorem 1.1.21) U를 전체 집합이라 하고, A, B, C를 U의 부분 집합이라고 하면,

a) 결합법칙Associative laws

$$(A \cup B) \cup C = A \cup (B \cup C) \qquad (A \cap B) \cap C = A \cap (B \cap C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

b) 교환법칙Commutative laws

$$A \cup B = B \cup A$$

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

c) 분배법칙Distributive laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

d) 항등법칙Identity laws

$$A \cap U = A$$

$$A \cup \emptyset = A$$

e) 여집합법칙Complement laws

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

f) 멱등법칙Idempotent laws

$$A \cup A = A$$

$$A \cup A = A$$
 $A \cap A = A$

g) 경계법칙^{Bound laws}

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

h) 흡수법칙Absorption laws

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

i) 대합법칙Involution law

$$\overline{\overline{A}} = A$$

j) 0/1법칙^{0/1 laws}

$$\overline{\varnothing} = U$$

$$\overline{U}=\varnothing$$

k) 드모르간 법칙De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

□ 임의의 집합족 S의 합집합은 S내의 적어도 하나의 집합 X에 속하는 원소 x들로 구성된 집합으로 정의한다.

$$\cup S = \{x \mid$$
어떤 $X \in S$ 에 대해서 $x \in X\}$

 \square 임의의 집합족 S의 교집합은 S내의 모든 집합 X에 속하는 원소 x들로 구성된 집합으로 정의한다.

$$\cap S = \{x \mid 모든 X \in S$$
에 대해서 $x \in X\}$

 $\square S = \{A_1, A_2, ..., A_n\}$ 이라면

$$\cup \mathcal{S} = \bigcup_{i=1}^{n} A_i, \qquad \cap \mathcal{S} = \bigcap_{i=1}^{n} A_i$$

 $\square S = \{A_1, A_2, ...\}$ 이라면

$$\cup \, \mathcal{S} = \bigcup_{i=1}^{\infty} A_i \,, \qquad \cap \, \mathcal{S} = \bigcap_{i=1}^{\infty} A_i$$

- □ 집합 X의 **분할**은 X를 서로 겹치지 않는 부분집합으로 나눈다.
- □ 집합 X의 부분집합 중에서 공집합이 아닌 것들의 모임인 S를 X의 모든 원소들이 정확히 S의 하나의 원소에만 속할 때 집합 X의 분할partition이라고 부른다.
- □ A collection S of nonempty subsets of X is said to be a **partition** of the set X if every element in X belongs to *exactly* one member of S.
- \square S가 X의 분할이면 S는 쌍으로 소이며 $\bigcup S = X$ 이다.
- □ Ex 1.1.25 분할

$$X = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

의 각 원소들은

$$S = \{\{1, 4, 5\}, \{2, 6\}, \{3\}, \{7, 8\}\}$$

의 정확히 하나의 원소에만 속하므로 $S \subset X$ 의 분할이다

- An **ordered pair** of elements, written (a, b), is considered <u>자표</u> distinct from the ordered pair (b, a) unless a=b. To put it another way, (a, b) = (c, d) precisely when a = c and b = d.
- □ If *X* and *Y* are sets, Cartesian product of *X* and *Y* is $X \times Y = \{(x, y) | x \in X, y \in Y\}$

Ex 1.1.26)

If
$$X = \{1, 2, 3\}$$
 and $Y = \{a, b\}$, then
$$X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$$

$$Y \times X = \{(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)\}$$

$$X \times X = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

$$Y \times Y = \{(a, a), (a, b), (b, a), (b, b)\}.$$

 \Box the previous 예제, $|X \times Y| = |X| \cdot |Y|$. The reason is that there are 3 ways to choose an element of X, there are 2 ways to choose an element of Y, and $3 \cdot 2 = 6$

□ The preceding argument holds for arbitrary finite sets X and Y; it is always true that $|X \times Y| = |X| \cdot |Y|$.

□ An ordered **n-tuple**, written $(a_1, a_2, ..., a_n)$, takes order into account; that is,

$$(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$$

precisely when

$$a_1 = b_1$$
, $a_2 = b_2$, ..., $a_n = b_n$.

- □ The Cartesian product of sets $X_1, X_2, ..., X_n$ is defined to be the set of all n-tuples $(x_1, x_2, ..., x_n)$, where $x_i \in X_i$ for i = 1, ..., n; it is denoted $X_1 \times X_2 \times \cdots \times X_n$.
 - Ex 1.1.28)

If
$$X = \{1, 2\}$$
, $Y = \{a, b\}$, and $Z = \{\alpha, \beta\}$, then
$$X \times Y \times Z = \{(1, a, \alpha), (1, a, \beta), (1, b, \alpha), (1, b, \beta), (2, a, \alpha), (2, a, \beta), (2, b, \alpha), (2, b, \beta)\}.$$

1.2 proposition 명제

- □ A 평서문(서술문)declarative sentence that is either true or false, but not both, is called a **proposition**.
- □ Propositions are the basic building blocks of any theory of logic.
- \square We will use *variables*, such as p, q, r, to represent propositions.
- □ We will also use the notation

$$p: 1 + 1 = 3$$

to define p to be the proposition 1 + 1 = 3.

1.2 proposition 명제 (논리연산)

Let p and q be propositions. The **conjunction**논리곱 of p and q, denoted $p \land q$, is the proposition

p and q

 \Box The **disjunction**논리합 of p and q, denote $p \lor q$, is the proposition

p or q

 \square The **negation**부정 of p, denoted $\neg p$, is the proposition

not p

 \Box The **exclusive-or** 배타적 합, denoted p exor q, is true if p or q, but not both, is true, and false otherwise.

1.2 proposition 명제 (진리표truth table)

- The truth values of propositions can be described by truth tables.
- \Box *T* denoting true and *F* denoting false, and for each such combination lists the truth value of *P*.
- □ A truth table for a proposition P made up of n propositions has $r = 2^n$ rows.
- □ Truth tables for *and*, *or*, *exclusive or*, *not*

p	q	$p \wedge q$	p	q	$p \vee q$	p	q	p exor q	p	$\neg p$
T	T	Т	T	T	T	T	T	F	T	F
T	F	F	T	F	T	T	F	T	F	T
F	T	F	F	T	T	F	T	T		_
F	F	F	F	F	F	F	F	F		

1.2 proposition 명제 (연산자 우선 순위 Operator precedence)

- \square \neg , \land , \lor , \rightarrow
- \square Assuming that p is true, q is false, and r is true, find the truth value of each proposition.
 - $p \land q \rightarrow r$ We first evaluate $p \land q$ because \rightarrow is evaluated last. Since p is true and q is false, $p \land q$ is false. Therefore, $p \land q \rightarrow r$ is true.
 - $p \lor q \rightarrow \neg r$ We first evaluate $\neg r$. Since r is true, $\neg r$ is false. We next evaluate $p \lor q$. Since p is true and q is false, $p \lor q$ is true. Therefore, $p \lor q \rightarrow \neg r$ is false.
 - $p \land (q \rightarrow r)$ Since q is false, $q \rightarrow r$ is true. Since p is true, $p \land (q \rightarrow r)$ is true.
 - $\neg p \lor q \land r$ We first evaluate $\neg p$, which is false. We next evaluate $q \land r$, which is false. Finally, we evaluate $\neg p \lor q \land r$, which is false.

1.3 조건 명제와 논리적 동치

- \square If p and q are propositions, the proposition if p then q is called a **conditional proposition**조건 명제 and is denoted $p \to q$
- ullet The p is called the **hypothesis** ^{가설} or **antecedent**전제, The q is called the **conclusion**결론 or **consequent**결과.
- □ Definition 1.3.3

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

■ *p*: 오늘 비가 온다, *q*: 오늘 우산을 가지고 간다. 오늘 비가 온다면 우산을 가지고 간다

1.3 조건 명제와 논리적 동치

Motivation for defining $p \rightarrow q$ to be true when p is false

□ Most people would agree that the proposition For all real numbers x, if x > 0, then $x^2 > 0$. is true.

p	q	$p \to q$
T	T	T
T	F	F
F	T	T
F	\boldsymbol{F}	T

□ In case
$$x = -2$$

 $x^2 = 4$

In order for the proposition to be true in this case, we must define $p \rightarrow q$ to be true when p is false and q is true.

In case x = 0 $x^2 = 0$ In order for the proposition to be true in this case, we must

define $p \rightarrow q$ to be true when both p and q are false.

1.3 조건 명제와 논리적 동치(필요조건Necessary condition)

□ 필요조건은 특정 결과가 이루어지기 위한 필요조건으로,
 그 조건이 이루어 지지 않으면 결과는 생기지 않는다.
 조건이 이루어 지면 결과를 보장하지는 않는다.
 즉 결과가 이루어 졌다는 것으로 필요조건이 달성되었다는 것이다.

 시카고 컵스가 우승하기위한 필요조건은 우완 구원투수와 계약하는 것이다

동치 구성은

'시카고 컵스가 우승을 한다면 <mark>우완구원투수와 계약을 한 것이다</mark>' 결론이 필요조건을 표현한다

하지만 또 다른 명제

'우완구원투수와 계약을 한다면 시카고 컵스가 우승을 할 것이다' 필요조건이 이루어지면 결과를 보장하지 않으므로 우완 구원투수와 계약은 우승을 보장 할 수 없다. 하지만 필요조건이 이루어지지 않으면 결과를 보장하지 않으므로 우완 구원투수와 계약을 안한다면 우승하지 못한다는 것을 보장한다.

1.3 조건 명제와 논리적 동치(충분조건sufficient condition)

□ 충분조건은 특정 결과를 보장하기에 충분한 조건으로, 그 조건이 이루어 지지 않더라도 결과는 이루어 질 수도, 이루어 지지 않을 수도 있다.

조건이 이루어 지면 결과를 보장한다.

마리아가 프랑스를 방문하기위한 충분조건은 에펠탑에 가는 것이다
 에펠탑에 가지 않고 리옹에 가더라도 결과 프랑스를 방문 할 수 다

가설은 충분조건을 표현하여 '마리아가 에펠탑에 가면, 프랑스를 방문한 것이다' 동치 구성이 된다

하지만 또 다른 명제 '마리아가 프랑스를 방문하면, 에펠탑에 간다 '는 충분조건을 만족하지 않더라도 결과가 이루어 질 수 있기 때문에 에펠탑을 가지 않더라도 프랑스를 방문 할 수 있어 동치가 아니다

1.3 조건 명제와 논리적 동치(역명제 converse)

- □ We call the proposition $q \rightarrow p$ the **converse** of the proposition $p \rightarrow q$.
- Ex1.3.7) 다음 명제와 그 역명제를 기호와 말로 표현하라.
 제리가 장학금을 받는다면, 대학에 진학할 것이다.
 또한 제리가 장학금을 받지 못하고 복권에 당첨되어 대학에 진학한다고 가정하고, 본래 명제와 그 역명제의 진리값을 구하라.
- sol) p: 제리는 장학금을 받는다.
 q: 제리는 대학에 진학한다.
 원래 명제는 p → q의 기호로 로 나타낼 수 있고,
 가설 p가 거짓이므로 조건 명제는 참이다.
 - 역명제는 제리가 대학에 진학하면, 장학금을 받는다. 역명제는 $q \rightarrow p$ 의 기호로 나타낼 수 있다. 가설 q가 참이고 결론 p는 거짓이므로, 역명제는 거짓이 된다.

1.3 조건 명제와 논리적 동치(Biconditional Proposition)

□ If p and q are propositions, the proposition p if and only if q is called a **biconditional proposition**, $p \leftrightarrow q$

The true table

p	q	$p \leftrightarrow q$
T	T	Т
T	F	F
F	T	F
F	F	T

if and if only = iff 필요충분조건

□ In mathematical definitions, "if" means "if and only if." e.g., the definition of set equality: If sets *X* and *Y* have the same elements, then *X* and *Y* are equal.

The meaning of this definition is that sets *X* and *Y* have the same elements if and only if *X* and *Y* are equal.

1.3 조건 명제와 논리적 동치(logically equivalent)

Definition 1.3.10) Suppose that the propositions P and Q are made up of the propositions $p_1, ..., p_n$. We say that P and Q are *logically equivalent* and write $P \equiv Q$, provided that, given any truth values of $p_1, ..., p_n$, either P and Q are both true, or P and Q are both false.

Ex 1.3.11) Verify De Morgan's Law: $\neg(p \lor q) \equiv \neg p \land \neg q$ By writing the truth tables for $P = \neg(p \lor q)$ and $Q = \neg p \land \neg q$, we can verify that, given any truth values of p and q, either P and Q are both true or P and Q are both false:

q	$\neg (p \lor q)$	$\neg p \wedge \neg q$
T	F	F
F	F	F
T	F	F
F	T	T
	T F T	T F F T F

De Morgan's Law for logic $\neg (p \lor q) \equiv \neg p \land \neg q$ $\neg (p \land q) \equiv \neg p \lor \neg q$

Thus *P* and *Q* are logically equivalent.

1.3 조건 명제와 논리적 동치(logically equivalent)

$$\neg(p \to q) \equiv (p \land \neg q)$$

□ Ex 1.3.13) Show that the negation of $p \rightarrow q$ is logically equivalent to $p \land \neg q$.

sol) By writing the truth tables for $P = \neg (p \rightarrow q)$ and $Q = p \land \neg q$, we can verify that, given any truth values of p and q, either P and Q are both true or P and Q are both false:

p	q	$\neg (p \to q)$	$p \wedge \neg q$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	F	F

Thus *P* and *Q* are logically equivalent.

1.3 조건 명제와 논리적 동치(logically equivalent)

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

□ In words,

p if and only if q is logically equivalent to if p then q and if q then p.

□ Ex 1.3.15) The truth table shows that

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p).$$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	Т	T	T	T

1.3 조건 명제와 논리적 동치(대우contrapositive)

- □ Definition 1.3.16 The **contrapositive** of the conditional proposition $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$.
- □ 정리 1.3.18

$$p \to q \equiv \neg q \to \neg p$$

The truth table shows that $p \to q$ and $\neg q \to \neg p$ are logically equivalent.

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

1.4 논법argument과 추론규칙rule of inference

□ Definition 1.4.1) An **argument** is a sequence of propositions written

or

$$p_1, p_2, \dots, p_n/: q$$

The argument is valid 유효 provided that if p_1 and p_2 and \cdots and p_n are all true, then q must also be true; otherwise, the argument is invalid 무효 (or fallacy으로),.

 \square The symbol \therefore is read "therefore." The propositions p_1, p_2, \ldots, p_n are called the hypotheses 가설 (or premises 전제), and the proposition q is called the conclusion q?

1.4 논법과 추론규칙(유효한 논법valid argument)

- In a valid argument, we sometimes say that the conclusion follow from the hypotheses.
- Use are not saying that the conclusion is true; we are only saying that if you grant 인정하다 the hypotheses, you must also grant the conclusion.

 An argument is valid because of its form, not because of its content.
- □ 추론 규칙은 논리학에서 논리식으로부터 다른 논리식을 이끄는 규칙을 말한다

1.4 논법과 추론규칙(긍정식 논법Modus ponens rule)

Ex 1.4.2 Is the argument valid?

$$p \to q$$

$$p$$

$$\therefore q$$

Sol 1) We construct a truth table for all the propositions involved:

p	q	$p \rightarrow q$	p	\overline{q}
T	T	T	T	T
T	F	F	T	F
F	T	T	F	T
F	F	T	F	F

We observe that whenever the hypotheses $p \rightarrow q$ and p are true, the conclusion q is also true; therefore, the argument is valid.

□ Sol 2) Suppose that $p \rightarrow q$ and p are true. Then q must be true, for otherwise $p \rightarrow q$ would be false. Therefore, the argument is valid.

1.4 논법과 추론규칙(명제에 대한 추론규칙)

Rule of Inference	Name	Rule of Inference	Name
$\begin{array}{c} p \to q \\ \hline p \\ \hline \vdots q \end{array}$	긍정식 논법 Modus ponens	$\frac{p}{q}$ $\therefore p \wedge q$	논리곱 Conjunction
$ \begin{array}{c} p \to q \\ \hline \neg q \\ \hline \therefore \neg p \end{array} $	부정식 논법 Modus tollens	$p \to q$ $q \to r$ $\therefore p \to r$	가설적 삼단논법 Hypothetical syllogism
$\frac{p}{\therefore p \vee q}$	추가법 Addition	$ \frac{p \vee q}{\neg p} \\ \vdots q $	논리합 삼단논법 Disjunctive syllogism
$\frac{p \wedge q}{\therefore p}$	단순화 Simplification		

1.4 논법과 추론규칙(결론 확정의 오류)

□ Ex 1.4.4. Represent the argument
 If 2 = 3, then I ate my hat.
 I ate my hat.

$$\therefore 2 = 3$$

symbolically and determine whether the argument is valid.

Sol) If we let

p: 2 = 3, q: I at my hat, the argument may be written

$$\begin{array}{c} p \to q \\ \hline q \\ \vdots p \end{array}$$

Suppose that $p \rightarrow q$ and q are true. This is possible if p is false and q is true. In this case, p is not true; thus the argument is invalid.

1.4 논법과 추론규칙

 \square Ex 1.4.5. The bug is either in module 17 or in module 81.

The bug is a numerical error. Module 81 has no numerical error.

- ∴ The bug is in module 17.
- Sol) p: The bug is in module 17.

q: The bug is in module 81.

r: The bug is a numerical error.

the argument may be written

_

$$\begin{array}{c}
p \lor q \\
r \\
r \to \neg q \\
\hline
\vdots p
\end{array}$$

$$\begin{array}{ccc} p \to q & p \lor q \\ \hline p & \neg p \\ \hline \therefore q & & \vdots q \end{array}$$

- 1. $p \vee q$
- 2. r
- 3. $r \rightarrow \neg q$
- 4. $\neg q$ m.p.: 3, 2
- 5. *p* d.s.: 1, 4

From $r \to \neg q$ and r, we may use modus ponens 긍정식 논법

to conclude $\neg q$. From $p \lor q$ and $\neg q$, we may use the disjunctive syllogism논리합 삼단논법 to conclude p. Thus the conclusion p follows from the hypotheses and the argument is valid.

1.5 한정기호Quantifiers

- p: n is an odd integer $\frac{s}{2}$.

 The statement p is not a proposition, because whether p is true or false depends on the value of n.
 - p is true if n = 103 and false if n = 8.
- □ Definition 1.5.1 Let P(x) be a statement involving the variable x and let D be a set.

 - Ex 1.5.2 Let P(n) be the statement n is an odd integer.
 - Then P is a propositional function with domain of discourse \mathbf{Z}^+ since for each $n \in \mathbf{Z}^+$, P(n) is a proposition

1.5 한정기호(전칭한정된 문장universally quantified statement)

- □ The symbol ∀ means "for every" and is called a **universal** quantifier^{전칭} 한정기호.
- □ Definition 1.5.4

Let *P* be a propositional function with domain of discourse *D*. The statement

for every x, P(x)

is said to be a **universally quantified statement** 전칭 한정문장. It may be written

$$\forall x P(x)$$

It is true if P(x) is true for every x in D, it is false if P(x) is false for at least one x in D.

1.5 한정기호(전칭한정된 문장 universally quantified statement)

□ Ex 1.5.5 Consider the universally quantified statement $\forall x (x^2 \ge 0)$.

The domain of discourse is R.

The statement is true because, for every real number x, it is true that the square of x is positive or zero.

- \Box A value x in D that makes P(x) false is called a **counterexample**반례 to the statement.
- □ Ex 1.5.6 Determine whether the universally quantified statement

$$\forall x(x^2 - 1 > 0)$$

is true or false. The domain of discourse is R.

Sol) The statement is false since, if x = 1, the proposition $1^2 - 1 > 0$

is false. The value 1 is a *counterexample* to the statement

1.5 한정기호(전칭한정된 문장 universally quantified statement)

- Use call the variable x in the propositional function P(x) a **free variable**. (The idea is that x is "free" to roam 바회하다 over the domain of discourse.)
- □ We call the variable x in the universally quantified statement $\forall x \ P(x)$ a **bound variable**. (The idea is that x is "bound" by the quantifier \forall .)
- □ A propositional function does not have a truth value.
- □ Definition 1.5.4 assigns a truth value to the quantified statement $\forall x P(x)$.
- □ A statement with free (unquantified) variables is not a proposition, and a statement with no free variables (no unquantified variables) is a proposition.

1.5 한정기호 (전칭 한정된 문장의 증명)

- □ The symbol ∀ may be read "for every," "for all," or "for any."
- □ To prove that $\forall x P(x)$ is true, we must, in effect, examine every value of x in the domain of discourse and show that for every x, P(x) is true.
- One technique for proving that $\forall x \ P(x)$ is true is to let x denote an *arbitrary* element of the domain of discourse D. The argument then proceeds using the symbol x. Whatever is claimed about x must be true *no matter what value* x might have in D. The argument must conclude by proving that P(x) is true.
- □ Sometimes to specify the domain of discourse D, we write a universally quantified statement as for every x in D, P(x).

1.5 한정기호 (전칭한정된 문장의 증명)

□ Ex 1.5.8) Verify that the universally quantified statement for every real number x, if x > 1, then x + 1 > 1 is true.

Sol) Let x be any real number. Then $x \le 1$ or x > 1 is true. If $x \le 1$, the hypothesis x > 1 is false F T Tand the conditional proposition is true F T T

Now suppose that x > 1. Regardless of the specific value of x, x + 1 > x. Since x + 1 > x and x > 1, x + 1 > 1. So the conclusion is true. If x > 1, the hypothesis and conclusion are both true; hence the conditional proposition is true.

We have shown that for every real number x, the proposition is true. Therefore, the universally quantified statement for every real number x, if x > 1, then x + 1 > 1 is true.

1.5 한정기호(존재 한정된 문장existentially quantified statement)

□ The symbol ∃ means "there exists." and is called an existential quantifier존재 한정기호.

□ Definition 1.5.9

Let *P* be a propositional function with domain of discourse *D*. The statement

there exists x, P(x)

is said to be an **existentially quantified statement**. It may be written

$$\exists x P(x).$$

It is true if P(x) is true for at least one x in D, it is false if P(x) is false for every x in D.

1.5 한정기호 (존재 한정된 문장의 증명)

□ Ex 1.5.10 Consider the existentially quantified statement

$$\exists x \left(\frac{x}{x^2 + 1} = \frac{2}{5} \right).$$

The domain of discourse is R. The statement is true because it is possible to find at least one real number x for which the proposition

$$\frac{x}{x^2+1} = \frac{2}{5}$$

is true. e.g., if x = 2, we obtain the true proposition

$$\frac{2}{2^2+1}=\frac{2}{5}$$

1.5 한정기호 (존재 한정된 문장의 증명)

- \square Ex 1.5.11 Verify that $\exists x \in R\left(\frac{1}{x^2+1} > 1\right)$ is false.
- \square Sol) We show that $\frac{1}{x^2+1} > 1$ is false for every real number x. Now $\frac{1}{x^2+1} > 1$ is false precisely when $\frac{1}{x^2+1} \le 1$ (eq) is true. Thus, we must show that (eq) is true for every real number x. Let x be any real number. Since $0 \le x^2$, $1 \le x^2 + 1$. If we divide both sides of this last inequality by x^2+1 , we obtain (eq). Therefore, the statement (eq) is true for every real number x. Thus the statement $\frac{1}{x^2+1} > 1$ is false for every real number x. We have shown that the existentially quantified statement $\exists x \in R\left(\frac{1}{x^2+1} > 1\right)$ is false.

1.5 한정기호 (Pseudocode^{의사코드} for quantified statements)

□ Ex 1.5.7) Suppose that P is a propositional function whose domain of discourse is the set $\{d_1, ..., d_n\}$. The following pseudocode determines whether $\forall x P(x)$ is true or false:

```
for i = 1 to n
    if (¬P(d<sub>i</sub>))
        return false
return true
```

□ Ex 1.5.12) Suppose that P is a propositional function whose domain of discourse is the set $\{d_1, ..., d_n\}$. The following pseudocode determines whether $\exists x P(x)$ is true or false:

```
for i = 1 to n
    if (P(d<sub>i</sub>))
        return true
return false
```


1.5 한정기호 (Generalized De Morgan's Laws for Logic)

- □ Theorem 1.5.14) Generalized De Morgan's Laws for Logic If *P* is a propositional function with domain of discourse *D*, (a) $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$ (b) $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$
- \square Proof a) Suppose that the proposition $\neg(\forall x P(x))$ is true. Then the proposition $\forall x \ P(x)$ is false. By Definition 1.5.4, when P(x) is false for at least one $x \in D$, $\forall x \ P(x)$ is false. But P(x) is false for at least one $x \in D$, $\neg P(x)$ is true for at least one $x \in D$. By Definition 1.5.9, when $\neg P(x)$ is true for at least one $x \in D$, the proposition $\exists x \neg P(x)$ is true. Thus, if $\neg(\forall x P(x))$ is true, $\exists x \neg P(x)$ is true.
- \square Similarly, if the proposition $\neg(\forall x P(x))$ is false, the proposition $\exists x \neg P(x)$ is false.
- □ Therefore, the pair of propositions in part (a) always has the same truth values.

1.5 한정기호 (한정된 문장의 부정)

- Ex 1.5.17 Write the statement
 Some birds cannot fly,
 symbolically. Write its negation symbolically and in words.
- □ Sol) Let P(x) be the propositional function "x flies." The given statement can be written symbolically as $\exists x \neg P(x)$

The domain of discourse is the set of birds.

□ By Theorem 1.5.14, part (b), the negation $\neg(\exists x \neg P(x))$ of the preceding proposition is equivalent to

$$\forall x \neg \neg P(x)$$

or, equivalently,

$$\forall x P(x)$$

In words, this last proposition can be stated as: Every bird can fly.

Rule of Inference	Name
$\frac{\forall x P(x)}{\therefore P(d) \text{ if } d \in D}$	전칭 예시화 Universal instantiation
$\frac{P(d) \text{ for every } d \in D}{\therefore \forall x P(x)}$	전칭 일반화 Universal generalization
$\exists x P(x)$ $\therefore P(d) \text{ for some } d \in D$	존재 예시화 Existential instantiation
$\frac{P(d) \text{ for some } d \in D}{\therefore \exists x P(x)}$	존재 일반화 Existential generalization

- □ Ex 1.5.21 Given that for every positive integer n, $n^2 \ge n$ is true, we may use <u>universal instantiation</u> to conclude that $54^2 \ge 54$ since 54 is a positive integer.
- □ Ex 1.5.22 Let P(x) denote the propositional function "x owns a laptop computer," where the domain of discourse is the set of students taking the discrete mathematics. Suppose that Taylor, who is taking the discrete mathematics, owns a laptop computer; in symbols, P(Taylor) is true. We may then use existential generalization to conclude that $\exists x \ P(x)$ is true.

 \square Ex 1.5.23 Show that the argument is valid.

For every real number x, if x is an integer, then x is a rational number 유리수.

 $\sqrt{2}$ is not rational. Therefore, $\sqrt{2}$ is not an integer.

Sol) Let P(x) denote "x is an integer", $Q(x) \text{ denote "<math>x$ is rational."} $\forall x \in \mathbf{R} (P(x) \to Q(x))$ $\neg Q(\sqrt{2})$ $\therefore \neg P(\sqrt{2})$ $p \neq p \to q$ T T T $T \neq F$ F T T

Since $\sqrt{2} \in \mathbf{R}$, we may use universal instantiation 전칭 예시화 to conclude $P(\sqrt{2}) \to Q(\sqrt{2})$.

Combining $P(\sqrt{2}) \to Q(\sqrt{2})$ and $\neg Q(\sqrt{2})$, we may use modus tollens to conclude $\neg P(\sqrt{2})$. Thus the argument is valid.

- Ex 1.5.24 We are given these hypotheses:
 Everyone loves either Microsoft or Apple.
 Lynn does not love Microsoft.
 Show that the conclusion, Lynn loves Apple, follows from the hypotheses.
- Sol) Let P(x) denote "x loves Microsoft," and let Q(x) denote "x loves Apple."
 The first hypothesis is ∀x(P(x) ∨ Q(x)).
 By universal instantiation, we have P(Lynn) ∨ Q(Lynn).
 The second hypothesis is ¬P(Lynn).
 The disjunctive syllogism rule of inference now gives Q(Lynn), which represents the proposition "Lynn loves Apple."
 We conclude that the conclusion follows from the hypotheses.

1.6 다중 한정 기호nested quantifiers

- Multiple quantifiers such as $\forall x \forall y$ are said to be *nested quantifiers*.
 - Ex 1.6.1 Restate $\forall m \exists n (m < n)$ in words. The domain of discourse is the set $\mathbf{Z} \times \mathbf{Z}$.
 - Sol) For every *m*, there exists *n* such that *m* < *n*.
 Less formally, this means that if you take any integer *m* whatsoever, there is an integer *n* greater than *m*.
 Another restatement is then: There is no greatest integer.
 - Ex 1.6.2 Write the assertion Everybody loves somebody, symbolically, letting L(x, y) be the statement "x loves y."
 - Sol) $\forall x \exists y \ L(x, y)$. In words, for every person x, there exists a person y such that x loves y.

1.6 다중 한정 기호 nested quantifiers $(\forall x \ \forall y \ P(x, y) \ 진리값)$

- □ $\forall x \forall y \ P(x, y)$ with domain of discourse $X \times Y$, is true if, for every $x \in X$ and for every $y \in Y$, P(x, y) is true. $\forall x \forall y \ P(x, y)$ is false if there is at least one $x \in X$ and at least one $y \in Y$ such that P(x, y) is false.
- □ Ex 1.6.3 Consider the statement

$$\forall x \forall y \big((x > 0) \land (y > 0) \rightarrow (x + y > 0) \big).$$

The domain of discourse is $\mathbf{R} \times \mathbf{R}$. This statement is true because, for every real number x and for every real number y, the conditional proposition

$$(x > 0) \land (y > 0) \rightarrow (x + y > 0)$$

is true. In words, for every real number x and for every real number y, if x and y are positive, their sum is positive.

1.6 다중 한정 기호^{nested} quantifiers $(\forall x \ \forall y \ P(x, y) \ 진리값)$

□ Ex 1.6.4 Consider the statement $\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (x + y \neq 0)).$

The domain of discourse is $\mathbf{R} \times \mathbf{R}$. This statement is false because if x = 1 and y = -1, the conditional proposition $(x > 0) \land (y < 0) \rightarrow (x + y \neq 0)$ is false. We say that the pair x = 1 and y = -1 is a counterexample.

■ Ex 1.6.5 Suppose that P is a propositional function with domain of discourse $\{d_1, ..., d_n\} \times \{d_1, ..., d_n\}$. The following pseudocode determines whether $\forall x \forall y \ P(x, y)$ is true or false for i = 1 to i =

return true

1.6 다중 한정 기호 $(\forall x \exists y P(x,y))$ 진리값)

- □ $\forall x \exists y \ P(x, y)$ with domain of discourse $X \times Y$, is true if, for every $x \in X$, there is at least one $y \in Y$ for which P(x, y) is true. $\forall x \exists y \ P(x, y)$ is false if there is at least one $x \in X$ such that P(x, y) is false for every $y \in Y$.
- □ Ex 1.6.6 Consider the statement $\forall x \exists y (x + y = 0)$. The domain of discourse is $\mathbf{R} \times \mathbf{R}$.

 This statement is true because for every real number x, there
 - This statement is true because, for every real number x, there is at least one y (namely y = -x) for which x + y = 0 is true.
- □ Ex 1.6.7 Consider the statement $\forall x \exists y (x > y)$. The domain of discourse is $\mathbf{Z}^+ \times \mathbf{Z}^+$.
 - This statement is false because there is at least one x, namely x = 1, such that x > y is false for every positive integer y.

1.6 다중 한정 기호 $(\forall x \exists y P(x,y))$ 진리값)

- □ Ex 1.6.8 Suppose that P is a propositional function with domain of discourse $\{d_1, ..., d_n\} \times \{d_1, ..., d_n\}$.
- □ The following pseudocode determines whether $\forall x \exists y \ P(x, y)$ is true or false

```
for i = 1 to n
   if (¬exists dj(i))
      return false
return true
exist dj(i) {
  for j = 1 to n
      if (P(d_i, d_i))
          return true
  return false
```


1.6 다중 한정 기호 $(\exists x \forall y P(x,y))$ 진리값)

- □ $\exists x \forall y \ P(x,y)$, with domain of discourse $X \times Y$, is true if there is at least one $x \in X$ such that P(x,y) is true for every $y \in Y$. $\exists x \forall y \ P(x,y)$ is false if, for every $x \in X$, there is at least one $y \in Y$ such that P(x,y) is false.
- □ Ex 1.6.9 Consider the statement $\exists x \forall y (x \leq y)$. The domain of discourse is $\mathbf{Z}^+ \times \mathbf{Z}^+$.
 - This statement is true because there is at least one positive integer x (namely x = 1) for which $x \le y$ is true for every positive integer y.
 - In words, there is a smallest positive integer (namely 1).
- □ Ex 1.6.10 Consider the statement $\exists x \forall y (x \geq y)$ with $\mathbf{Z}^+ \times \mathbf{Z}^+$. This statement is false because, for every positive integer x, there is at least one positive integer y, namely y = x + 1, such that $x \geq y$ is false.
 - In words, there is no greatest positive integer.

1.6 다중 한정 기호 $(\exists x \exists y P(x,y))$ 진리값

- □ $\exists x \exists y \ P(x, y)$, with domain of discourse $X \times Y$, is true if there is at least one $x \in X$ and at least one $y \in Y$ such that P(x, y) is true.
 - $\exists x \exists y \ P(x, y)$ is false if, for every $x \in X$ and for every $y \in Y$, P(x, y) is false.
- □ Ex 1.6.11 Consider $\exists x \exists y ((x > 1) \land (y > 1) \land (xy = 6))$. The domain of discourse is $\mathbf{Z}^+ \times \mathbf{Z}^+$. This statement is true because there is at least one integer x > 1 (namely x = 2) and at least one integer y > 1 (namely y = 3) such that xy = 6.
- □ Ex 1.6.12 Consider $\exists x \exists y ((x > 1) \land (y > 1) \land (xy = 7))$. The domain of discourse is $\mathbf{Z}^+ \times \mathbf{Z}^+$. This statement is false because for every positive integer x and for every positive integer y, $(x > 1) \land (y > 1) \land (xy = 7)$ is false.

1.6 다중 한정 기호 (드모르간 법칙)

 $\neg (\forall x \exists y \ P(x,y)) \equiv \exists x \neg (\exists y \ P(x,y)) \equiv \exists x \forall y \ \neg P(x,y).$

□ Ex 1.6.14

Write the negation of $\exists x \forall y (xy < 1)$, where the domain of discourse is $\mathbf{R} \times \mathbf{R}$. Determine the truth value of the given statement and its negation.

□ Sol) Using the generalized De Morgan's laws for logic, $\neg(\exists x \forall y (xy < 1)) \equiv \forall x \neg(\forall y (xy < 1)) \equiv \forall x \exists y \neg(xy < 1) \equiv \forall x \exists y (xy \ge 1).$

The given statement $\exists x \forall y (xy < 1)$ is true because there is at least one x (namely x = 0) such that xy < 1 for every y. Since the given statement is true, its negation is false.

