Rachunek Prawdopodobieństwa I

Data ostatniej aktualizacji: 25 czerwca 2024

1 Krótki Wstęp

Uważny czytelnik zauważy też że poniższe notatki przypominają niezwykłe dydaktyczne prace dr Arkadiusza Męcla, które również gorąco polecam.

Link do omówienia pewniaków na egzamin znajduje się tutaj

2 Aksjomatyka Rachunku Prawdopodobienstwa ´

Definicja 1: Przestrzeń Propabilistyczna

Przestrzenią Propabilistyczną nazywamy trójkę (Ω, \mathcal{F}, P) , gdzie:

- Ω zbiór (nazywany zbiorem zdarzeń elementarnych),
- \mathcal{F} σ -ciało podzbiorów Ω ,
- P nieujemna miara na \mathcal{F} taka, że $P(\Omega)=1$.

Miarę P nazywamy prawdopodobieństwem lub miarą probabilistyczną.

Definicja 2: σ -ciało zbiorów

 \mathcal{F} jest σ -CIAŁEM PODZBIORÓW Ω jeżeli:

- $\Omega \in \mathcal{F}$,
- $A \in \mathcal{F} \Rightarrow A^C := \Omega \backslash A \in \mathcal{F}$,
- $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Definicja 3: Aksjomaty prawdopodobieństwa (Kołmogorowa)

- $\forall_{A \in \mathcal{F}} P(A) \geqslant 0$,
- $P(\Omega) = 1$,
- $A_1, A_2, \dots \in \mathcal{F}$ oraz $A_i \cap A_j = \emptyset$, dla $i \neq j \Rightarrow P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$.

Definicja 4

Przyjmujemy następującą terminologię:

• Zbiór Ω to zbiór zdarzeń elementarnych (podstawowych możliwych wyników eksperymentu, oznaczanych $\omega \in \Omega$),

- Elementy \mathcal{F} to zdarzenia,
- Dla $A \in \mathcal{F}$, elementy A to zdarzenia sprzyjające A,
- Zdarzenie A^C to zdarzenie przeciwne,
- Zdarzenie Ø to zdarzenie niemożliwe,
- Zdarzenie Ω to zdarzenie pewne.

Twierdzenie 1: Własności prawdopodobieństwa

Poniżej zakładamy, że wszystkie rozważane zbiory należą do \mathcal{F} .

- 1. $P(\emptyset) = 0$,
- 2. $P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$ o ile $A_i \cap A_j = \emptyset$ dla $i \neq j$,
- $3. \ 0 \leqslant P(A) \leqslant 1,$
- 4. $A \subseteq B \Rightarrow P(A) \leqslant P(B)$,
- 5. $P(A^C) = 1 P(A)$,
- 6. $P\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} P(A_i) \text{ dla } n < \infty.$

Twierdzenie 2: Twierdzenie o Ciągłości

Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną oraz $A_i \in \mathcal{F}$ dla $i = 1, 2, \dots$

- 1. Jeżeli $A_1 \subseteq A_2 \subseteq \ldots$ (mówimy, że A_i są wstępujące, ozn. $A_i \uparrow A$) oraz $A = \bigcup_{i=1}^{\infty} A_i$, to $\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n)$.
- 2. Jeżeli $A_1 \supseteq A_2 \supseteq \dots$ (mówimy, że A_i są zstępujące, ozn. $A_i \downarrow A$) oraz $A = \bigcap_{i=1}^{\infty} A_i$, to $\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n)$.

Definicja 5: Prawdopodobieństwo warunkowe

Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną, zaś $B \in \mathcal{F}$ zdarzeniem takim, że $\mathbb{P}(B) > 0$. Prawdopodobieństwem warunkowym pod warunkiem B nazywamy funkcję $\mathbb{P}(\cdot|B): \mathcal{F} \to [0,1]$ określoną dla $A \in \mathcal{F}$ wzorem

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Twierdzenie 3

Jeśli zdarzenia A_1, \ldots, A_n spełniają $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$, to

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 \cap A_2) \cdots \mathbb{P}(A_n | A_1 \cap \ldots \cap A_{n-1}).$$

Twierdzenie 4

Jeżeli $\{H_i\}_{i\in I}$ jest przeliczalnym rozbiciem Ω takim, że dla każdego $i\in I$ mamy $P(H_i)>0$, to dla dowolnego $A\in\mathcal{F}$ zachodzi:

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(H_i) \cdot \mathbb{P}(A|H_i).$$

Definicja 6: Zdarzenia niezależne

Zdarzenia A i B nazwiemy Niezależnymi, jeśli $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definicja 7: Niezależne σ -ciała

σ-ciała \mathcal{G}_1 i $\mathcal{G}_2 \subseteq \mathcal{F}$ nazwiemy NIEZALEŻNYMI, jeśli dla każdego $A \in \mathcal{G}_1$ i $B \in \mathcal{G}_2$ zachodzi $\forall A \in \mathcal{G}_1 \forall B \in \mathcal{G}_2 \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definicja 8: π -układ

Rodzinę \mathcal{A} podzbiorów Ω nazwiemy π -UKŁADEM (lub rodziną multiplikatywną), jeżeli dla każdych $A, B \in \mathcal{A}$ zachodzi $A \cap B \in \mathcal{A}$.

Definicja 9: λ -układ

Rodzinę $\mathcal G$ podzbiorów Ω nazwiemy λ -UKŁADEM, jeżeli

- 1. $\Omega \in \mathcal{G}$,
- 2. $\forall_{A,B\in\mathcal{G}}, A\subseteq B\Rightarrow B\setminus A\in\mathcal{G},$
- 3. $\forall_{A_1,A_2,\ldots\in\mathcal{G}}, A_n \nearrow A \Rightarrow A \in \mathcal{G}.$

Twierdzenie 5: Lemat o π - λ układach (o rodzinie multiplikatywnej)

Niech \mathcal{A} będzie π -układem podzbiorów Ω , zaś \mathcal{G} to λ -układ taki, że $\mathcal{A} \subseteq \mathcal{G}$. Wówczas $\sigma(\mathcal{A}) \subseteq \mathcal{G}$.

Twierdzenie 6

Niech Ω - dowolny zbiór, $\mathcal{A}\subset 2^\Omega$ będzie π -układem, $\mathcal{F}=\sigma(A),~\mathbb{P},\mathbb{Q}$ - miary probabilistyczne, t. że

$$\underset{A \in \mathcal{A}}{\forall} \mathbb{P}(A) = \mathbb{Q}(A)$$

to wtedy

$$\underset{B \in \mathcal{F}}{\forall} \mathbb{P}(B) = \mathbb{Q}(B)$$

Twierdzenie 7

Niech Ω_i , \mathcal{F}_i , \mathbb{P}_i , $i=1,\ldots,n$ będą przestrzeniami probabilistycznymi. Możemy zdefiniować:

$$\Omega = \Omega_1 \times \ldots \times \Omega_n,$$

$$\mathcal{F} = \mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n = \sigma(A_1 \times \ldots \times A_n | A_1 \in \mathcal{F}_1, \ldots, A_n \in \mathcal{F}_n).$$

Wówczas $\mathbb{P} = \mathbb{P}_1 \otimes \ldots \otimes \mathbb{P}_n$ jest jedyną taką miarą na \mathcal{F} , że zachodzi

$$\forall A_1 \in \mathcal{F}_1, \dots, A_n \in \mathcal{F}_n \quad \mathbb{P}(A_1 \times \dots \times A_n) = \mathbb{P}_1(A_1) \cdot \dots \cdot \mathbb{P}_n(A_n).$$

Twierdzenie 8

Niech $(A_i) \in \mathcal{F}$ niezależne π - układy, takie że

$$\bigvee_{A_i \in \mathcal{A}_i} \mathbb{P}(A_1 \cap \dots \cap A_n) = \prod_{i=1}^n \mathbb{P}(A_i)$$

Wtedy $\sigma(A_1), ..., \sigma(A_n)$ niezależne

Twierdzenie 9: Twierdzenie 0-1 (Twierdzenie Kołmogorowa)

Niech $G_1, G_2, \dots \sigma$ -ciała niezależne

 $G_R = \bigcap_{i=1}^{\infty} \sigma(G_i, G_{i+1}, \dots)$

Wtedy

 $\forall_{B \in G_R} \mathbb{P}(B) = 0 \text{ albo } \mathbb{P}(B) = 1$

Prostym wnioskiem z tego twierdzenia jest to, że jeśli A_i są niezależne, to $\mathbb{P}(\limsup A_n) \in \{0,1\}$

Twierdzenie 10: Lemat Borela-Cantellego

Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną, $A_1, A_2, \ldots \in \mathcal{F}$. Wówczas:

- 1. Jeśli $\sum\limits_{i=1}^{\infty}\mathbb{P}(A_i)<\infty$, to prawdopodobieństwo zajścia nieskończenie wielu spośród zdarzeń A_i wynosi 0.
- 2. Jeśli A_i są <u>niezależne</u> oraz $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = \infty$, to $\mathbb{P}(\limsup A_n) = 1$, to prawdopodobieństwo zajścia nieskończenie wielu spośród zdarzeń A_i wynosi 1.

Definicja 10: Przestrzeń stanów

Parę (E, \mathcal{B}) , gdzie E to zbiór, a B to σ -ciało jego podzbiorów, nazywamy przestrzenią stanów.

Definicja 11: Zmienna losowa

Zmienną losową o wartościach w przestrzeni stanów (E, \mathcal{B}) nazywamy dowolną funkcję mierzalną $X:(\Omega,\mathcal{F})\to (E,\mathcal{B}).$

Równoważnie:

 $X: \Omega \to \mathbb{R}$ jest zmienną losową wtedy i tylko wtedy, gdy dla każdego $a \in \mathbb{R} \{X \neq a\} = X^{-1}((-\infty, a]) \in \mathcal{F}.$

Twierdzenie 11

Jeżeli $\mathcal A$ to dowolna rodzina podzbiorów E, taka że $\sigma(\mathcal A)=\mathcal B$, to dla każdego $X:\Omega\to E$ zachodzi

$$X$$
 jest zmienną losową $\Leftrightarrow \bigvee_{A \in \mathcal{A}} X^{-1}(A) \in \mathcal{F}.$

Wynikają z tego nastepujące wnioski:

1. $X:\Omega\to\mathbb{R}$ jest zmienną losową wtedy i tylko wtedy, gdy dla każdego $a\in\mathbb{R}$ $\{X\neq a\}=X^{-1}((-\infty,a])\in\mathcal{F}.$

2. $X: \Omega \to \mathbb{R}^n$ jest wektorem losowym wtedy i tylko wtedy, gdy X_1, \ldots, X_n są rzeczywistymi zmiennymi losowymi.

Twierdzenie 12

Jeżeli $X: \Omega \to \mathbb{R}^n$ to wektor losowy, zaś $\phi: \mathbb{R}^n \to \mathbb{R}^m$ to funkcja borelowska, to $\phi(X)$ jest wektorem losowym.

Definicja 12: Rozkład zmiennej losowej

Rozkład zmiennej losowej $X:\Omega\to(E,\mathcal{B})$ to miara probabilistyczna μ_X na (E,\mathcal{B}) dana wzorem

$$\mu_X(A) = P(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\}), \text{ dla } A \in \mathcal{B}$$

Definicja 13: Rozkład Dyskretny

Rozkład μ nazywamy dyskretnym jeżeli istnieje zbiór przeliczalny $S \subseteq \mathbb{R}^n$ taki, że $\mu(S) = 1$.

Definicja 14: Rozkłady Dyskretne - przykłady

1. Rozkład skupiony w punkcie (delta Diraca):

$$\delta_a(A) = \begin{cases} 1, & \text{jeśli } a \in A, \\ 0, & \text{jeśli } a \notin A. \end{cases}$$

Jest to rozkład zmiennej X takiej, że $\mathbb{P}(X = a) = 1$.

2. Rozkład Bernoulliego z parametrami $n \ge 0, p \in [0, 1]$:

$$\mu = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta_k.$$

Jest to rozkład zmiennej X takiej, że $\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \delta_k$ dla $k=0,1,\ldots$

3. Rozkład Poissona z parametrem $\lambda > 0$:

$$p_s = \frac{\lambda^s}{s!} e^{-\lambda}, \quad S = \{0, 1, 2, \dots\}.$$

Definicja 15: Rozkład ciągły i Gęstość rozkładu

Rozkład prawdopodobieństwa μ na \mathbb{R}^n nazwiemy CIĄGŁYM jeśli istnieje funkcja borelowska

 $f: \mathbb{R}^n \to \mathbb{R}$ taka, że

$$\bigvee_{A \in \mathcal{B}(\mathbb{R}^n)} \mu(A) = \int_A f(x) \, dx$$

Funkcję f nazywamy GĘSTOŚCIĄ. Jeżeli X jest wektorem losowym i μ_X jest rozkładem ciągłym o gęstościf, to mówimy też, że f jest gęstością X. Oznacza to, że

$$\mathbb{P}(X \in A) = \int_{A} f(x) \, dx$$

Czasami stosowane jest oznaczenie $f(x) = \frac{d\mu(x)}{dx}$.

Własności gęstości:

- 1. $\int_{\mathbb{R}^n} f(x) \, dx = 1$.
- 2. f=0 prawie wszędzie, tzn. $\lambda^n(\{x\in\mathbb{R}^n|f(x)<0\})=0.$
- 3. Funkcja f jest wyznaczona jednoznacznie z dokładnością do zbioru miary zero.

Definicja 16: Rozkłady Ciągłe - Przykłady

1. ROZKŁAD JEDNOSTAJNY na zbiorze $A\subseteq\mathbb{R}^n$. Załóżmy, że $A\in\mathcal{B}(\mathbb{R}^n)$ oraz $0<\lambda(A)<\infty$. Wówczas funkcja

$$g(x) = \frac{\mathbf{1}_A(x)}{\lambda(A)}$$

jest gestością prawdopodobieństwa.

2. Rozkład wykładniczy z parametrem $\lambda>0$ to rozkład o gęstości

$$g(x) = \lambda e^{-\lambda x} \cdot \mathbf{1}_{\mathbb{R}^+}(x).$$

Ten rozkład oznaczamy $\text{Exp}(\lambda)$.

3. Rozkład Gaussowski z parametrami $a,\,\sigma^2,$ oznaczany $N(a,\sigma^2)$ to rozkład o gęstości

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right).$$

Na \mathbb{R}^d , $a \in \mathbb{R}^d$, Q macierz $d \times d$ dodatnio określona, gęstość ma postać:

$$g(x) = \frac{1}{\left(\sqrt{2\pi}\right)^d \sqrt{\det Q}} \exp\left(-\frac{1}{2}\langle Q^{-1}(x-a), (x-a)\rangle\right), \quad x \in \mathbb{R}^d$$

4. Rozkład Gamma $\Gamma(r,\lambda), \ r>0, \ \lambda>0.$ Gęstość:

$$g(x) = \frac{1}{\Gamma(r)\lambda^r} x^{r-1} e^{-\lambda x} \mathbf{1}_{(0,\infty)}(x),$$

gdzie Γ oznacza funkcję Gamma Eulera: $\Gamma(r)=\int_0^\infty x^{r-1}e^{-x}dx.$

Twierdzenie 13

Jeżeli X_1, \ldots, X_n są zmiennymi losowymi, to następujące warunki są równoważne:

- 1. X_1, \ldots, X_n są niezależne,
- 2. $\mu(X_1,\ldots,X_n)=\mu_{X_1}\otimes\ldots\otimes\mu_{X_n}$
- 3. Dla każdego $t_1, \ldots, t_n \in \mathbb{R}$ zachodzi

$$F_{X_1,...,X_n}(t_1,...,t_n) = F_{X_1}(t_1) \cdot ... \cdot F_{X_n}(t_n)$$

W szczególności,

$$g(x) = \frac{\mathbf{1}_{(a,b)}(x)}{b-a}$$

zadaje rozkład jednostajny na odcinku (a, b)

Definicja 17: Dystrybuanta

Dystrybuantą wektora losowego $X=(X_1,\ldots,X_n)$ o wartościach w \mathbb{R}^n nazywamy funkcję $F_X:\mathbb{R}^n\to[0,1],$ daną wzorem

$$F_X(t_1,\ldots,t_n)=\mathbb{P}(X_1\leqslant t_1,X_2\leqslant t_2,\ldots,X_n\leqslant t_n).$$

W szczególności dystrybuantą zmiennej losowej X jest funkcja $F_X: \mathbb{R} \to [0,1]$ dana wzorem $F_X(t) = \mathbb{P}(X \leqslant t)$. Uwaga: W starszych podręcznikach czasami definiuje się $F_X(t) = \mathbb{P}(X < t)$.

Twierdzenie 14

Jeżeli X i Y to n-wymiarowe wektory losowe, to

$$F_X = F_Y \iff \mu_X = \mu_Y.$$

Uwaga: X i Y nie muszą być określone na tej samej przestrzeni probabilistycznej.

Twierdzenie 15: Własności dystrybuanty zmiennej losowej

Niech $X:\Omega\to\mathbb{R}$ będzie zmienną losową, zaś $F=F_X$ jej dystrybuantą. Wówczas:

- 1. Dla każdego $t \in \mathbb{R}$, $F(t) \in [0, 1]$,
- 2. F jest niemalejąca,
- 3. F jest prawostronnie ciągła: Dla każdego $t_0 \in \mathbb{R}$, $\lim_{t \to t_0^+} F(t) = F(t_0)$,
- 4. $\lim_{t \to \infty} F(t) = 1$ oraz $\lim_{t \to -\infty} F(t) = 0$.

Twierdzenie 16

Jeżeli F jest dystrybuantą zmiennej losowej $X,\,F'$ istnieje prawie wszędzie oraz

$$\int_{\mathbb{R}} F'(x) \, dx = 1,$$

to F' jest gęstością zmiennej losowej X.

Twierdzenie 17

Niech

 $X \in \mathbb{R}^d$ - wektor losowy o ciągłym rozkładzie z gęstością g $U, V \subset \mathbb{R}^d$ - zbiory otwarte w taki, że $\int_U g(x) \, dx = 1$ (czyli $\mathbb{P}(X \in U) = 1$) $\varphi: U \to V$ - dyfeomorfizm.

Wtedy rozkład zmiennej losowej $Y = \varphi(X)$ ma gęstość f, wyrażającą się wzorem:

$$f(y) = g(\varphi^{-1}(y)) |J_{\varphi^{-1}}(y)| \mathbf{1}_V(y),$$

gdzie $J_{\varphi^{-1}}$ to Jakobian przekształcenia $\varphi^{-1}.$

Definicja 18: Rozkłady Brzegowe

Jeśli $X=(X_1,\ldots,X_n)$ jest wektorem losowym o wartościach w \mathbb{R}^n o rozkładzie μ , to rozkłady zmiennych losowych X_1,X_2,\ldots,X_n , tj.

$$\mu_{X_i}(A) = \mu(\mathbb{R} \times \ldots \times \mathbb{R} \times A \times \mathbb{R} \times \ldots \times \mathbb{R})$$
 dla $A \in \mathcal{B}(\mathbb{R})$ na *i*-tym miejscu

nazywamy ROZKŁADAMI BRZEGOWYMI. Na odwrót, rozkład wektora X nazywamy rozkładem łącznym zmiennych X_1,\ldots,X_n .

Twierdzenie 18

Jeśli rozkład wektora losowego $X=(X_1,\ldots,X_n)$ ma gęstość g, to rozkłady brzegowe również mają gęstości wyrażone wzorami:

$$g_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} g(x_1, \dots, x_d) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

Definicja 19: Niezależne wektory losowe

Wektory losowe $X_1, \ldots, X_n : \Omega \to \mathbb{R}^m$ nazwiemy NIEZALEŻNYMI jeżeli σ -ciała $\sigma(X_1), \ldots, \sigma(X_n)$ są niezależne.

Twierdzenie 19

Niech X_1, \ldots, X_n będą zmiennymi o rozkładach dyskretnych skupionymi odpowiednio na zbiorach S_{X_1}, \ldots, S_{X_n} (tzn. $\mathbb{P}(X_i \in S_{X_i}) = 1$). Wówczas

$$\forall s_1,...,s_n \in S$$

$$X_1, \dots, X_n$$
 są niezależne $\iff \mathbb{P}(X_1 = s_1, \mathbb{P}(X_2 = s_2), \dots, X_n = s_n) = \prod_{k=1}^n \mathbb{P}(X_k = s_k)$

Twierdzenie 20

Niech X_1, \ldots, X_n będą zmiennymi losowymi o rozkładach ciągłych z gęstościami odpowiednio g_1, g_2, \ldots, g_n . Wtedy i tylko wtedy, gdy rozkład łączny ma gęstość g_X spełmniającą:

$$g_X(x_1,...,x_n) = g_1(x_1) \cdot \cdot g_n(x_n)$$

Mówimy tu o
niezależności
łącznej. Istnieją
zmienne losowe
parami
niezależne, które
nie są
niezależne
łącznie

Definicja 20: Wartość oczekiwana

Niech X będzie zmienną losową o wartościach rzeczywistych, określoną na pewnej przestrzeni probabilistycznej $\Omega, \mathcal{F}, \mathbb{P}$. Mówimy, że X ma wartość oczekiwaną jeżeli

$$\int_{\Omega} |X(\omega)| \, \mathbb{P}(d\omega) < \infty.$$

Wtedy wartością oczekiwaną (albo wartością średnią) zmiennej losowej X nazywamy liczbę

$$\mathbb{E}X := \int_{\Omega} X(\omega) \, \mathbb{P}(d\omega)$$

Własności:

- 1. Jeśli X i Y mają wartości oczekiwane, to dla dowolnych $\alpha, \beta \in \mathbb{R}$ wartość oczekiwana $\mathbb{E}(\alpha X + \beta Y)$ istnieje oraz $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}X + \beta \mathbb{E}Y$.
- 2. Jeśli $X \ge 0$ prawie na pewno, to $\mathbb{E}X \ge 0$.
- 3. Jeśli $\mathbb{E}|X|=0$, to X=0 prawie na pewno.
- 4. $|\mathbb{E}X| \leq \mathbb{E}|X|$.
- 5. Jeśli $0 \leqslant X \leqslant Y$ prawie na pewno i $\mathbb{E}Y$ istnieje, to istnieje również $\mathbb{E}X$ oraz $0 \leqslant \mathbb{E}X \leqslant \mathbb{E}Y$.
- 6. $\mathbb{E}|XY| \leqslant \sqrt{\mathbb{E}X^2\mathbb{E}Y^2}$.
- 7. Twierdzenie o zbieżności monotonicznej: Jeśli (X_n) jest ciągiem niemalejącym i $X_n \ge 0$ prawie na pewno, to $\mathbb{E}\lim_{n\to\infty} X_n = \lim_{n\to\infty} \mathbb{E} X_n$.
- 8. **Lemat Fatou**: Jeśli $X_n \ge 0$ prawie na pewno, to $\mathbb{E} \liminf_{n \to \infty} X_n \le \liminf_{n \to \infty} \mathbb{E} X_n$.
- 9. Twierdzenie Lebesgue'a o zbieżności zmajoryzowanej: Jeśli ciąg (X_n) jest taki, że $|X_n| \leq Y$ prawie na pewno, $\mathbb{E}Y < \infty$, oraz istnieje granica $X = \lim_{n \to \infty} X_n$ prawie na pewno, to X ma wartość oczekiwaną oraz $\mathbb{E}X = \lim_{n \to \infty} \mathbb{E}X_n$.
- 10. Niech X będzie zmienną losową o wartościach w przestrzeni mierzalnej (E, \mathcal{B}) i niech $\varphi : E \to \mathbb{R}$ będzie funkcją mierzalną z (E, \mathcal{B}) w $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Wtedy

$$\mathbb{E}\varphi(X) = \int_{E} \varphi(x) \, \mu(dx),$$

gdzie μ oznacza rozkład X. Przy czym prawa strona równości jest dobrze określona wtedy i tylko wtedy, gdy lewa strona jest dobrze określona.

11. X jest zmienną losową o wartościach w (E, \mathcal{B}) , a $\varphi : E \to \mathbb{R}$ mierzalna względem odpowiednich σ -ciał, to

$$\mathbb{E}\varphi(X) = \sum_{k=1}^{\infty} \varphi(x_k) p_k,$$

o ile szereg jest zbieżny bezwzględnie.

12. Jeśli X jest wektorem losowym w \mathbb{R}^d o rozkładzie ciągłym z gęstością g, a $\varphi: \mathbb{R}^d \to \mathbb{R}$ funkcją borelowską, to

$$\mathbb{E}\varphi(X) = \int_{\mathbb{R}^d} \varphi(x)g(x) \, dx,$$

o ile $\int_{\mathbb{R}^d} |\varphi(x)| g(x) dx < \infty$.

13. Jeśli $X \geqslant 0$ prawie na pewno, to dla każdego $p \geqslant 1$

$$\mathbb{E}X^p = \int_0^\infty pt^{p-1} \mathbb{P}(X > t) \, dt$$

14. Jeśli X jest zmienną losową o dystrybuancie $F, X \ge 0$ prawie na pewno, to

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t) dt = \int_0^\infty (1 - F(t)) dt$$

Definicja 21: Wariancja

Niech X będzie zmienną losową rzeczywistą, taką że $\mathbb{E} X$ istnieje. Wariancję X nazywamy wielkością

$$Var X = \mathbb{E}(X - \mathbb{E}X)^2,$$

o ile $\mathbb{E}(X - \mathbb{E}X)^2 < \infty$.

Własności:

1. Zmienna losowa X ma wariancję (skończoną), wtedy i tylko wtedy, gdy $\mathbb{E}X^2 < \infty$.

$$Var X = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

- 2. $Var(aX) = a^2 Var X, a \in \mathbb{R};$
- 3. $Var X \ge 0$;
- 4. $Var X = 0 \Leftrightarrow X = Const p.n.$;
- 5. $Var(X + a) = Var X, a \in \mathbb{R}$.
- 6. Jeśli zmienne losowe X_1, \ldots, X_n są niezależne o skończonej wariancji, to

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var} X_i.$$

Przykład 1: Zerówka 2023

Zadanie 1. Zmienne losowe X,Y są niezależne, o gęstości $g(x)=\frac{e^x}{e-1}\mathbf{1}_{[0,1]}(x)$

- a) Wyznaczyć gęstość zmiennej Z = X Y
- b) Wyznaczyć wartość oczekiwaną i wariancję zmiennej ${\cal Z}$

Przykład 2: Zerówka 2023

Zadanie 2. W n rozróżnialnych urnach rozmieszczono losowo k rozróżnialnych kul (wszystkie rozmieszczenia są tak samo prawdopodobne). Niech X oznacza liczbę pustych urn. Obliczyć wartosć oczekiwaną i wariancję zmiennej X

Definicja 22: (Kowariancja i korelacja)

Niech X i Y będą zmiennymi losowymi o skończonej wariancji.

a) Kowariancję X i Y nazywamy liczbą

$$Cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y.$$

b) Współczynnikiem korelacji zmiennych X i Y nazywamy

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var} X \operatorname{Var} Y}}.$$

jeśli żadna ze zmiennych X i Y nie jest stała (Var X>0 i Var Y>0). W przeciwnym wypadku kładziemy $\rho(X,Y)=0$.

Definicja 23: (Macierz kowariancji)

Jeśli $X=(X_1,\ldots,X_d)$ jest wektorem losowym o wartościach w \mathbb{R}^d , przy czym zmienne losowe X_i mają skończoną wariancję, to macierz

$$(\operatorname{Cov}(X_i, X_j))_{i,j=1}^d$$

nazywamy macierzą kowariancji wektora X.

Twierdzenie 21: Wielowymiarowy rozkład Gaussa

Zmienne losowe X_1, \ldots, X_d o łącznym rozkładzie Gaussa są niezależne wtedy i tylko wtedy, gdy są nieskorelowane.

Twierdzenie 22: Nierówności związane z wartością oczekiwaną

1. (Nierówność Höldera) Niech X, Y będą zmiennymi losowymi, $p, q \ge 1$, takimi że $\frac{1}{p} + \frac{1}{q} = 1$, wtedy

$$\mathbb{E}|XY| \le (\mathbb{E}|X|^p)^{\frac{1}{p}} (\mathbb{E}|Y|^q)^{\frac{1}{q}} = \|X\|_p \|Y\|_q.$$

2. (Nierówność Jensena) Niech X będzie zmienną losową, taką że $\mathbb{E}|X| < \infty$ i niech $\varphi : \mathbb{R} \to \mathbb{R}$ będzie funkcją wypukłą. Ponadto zakładamy, że $\mathbb{E}|\varphi(X)| < \infty$. Wtedy

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X).$$

3. (Nierówność Minkowskiego) Niech $p \ge 1$, wtedy

$$||X + Y||_p \le ||X||_p + ||Y||_p.$$

4. (Nierówność Markowa) Jeśli $X \ge 0$, $\varepsilon > 0$, to

$$\mathbb{P}(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}X}{\varepsilon}.$$

5. (Nierówność Czebyszewa) Jeśli X jest zmienną losową o skończonej wariancji, to dla każdego $\varepsilon>0$

$$\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{\operatorname{Var} X}{\varepsilon^2}.$$

Twierdzenie 23: Słabe prawo wielkich liczb

Niech X_1, X_2, \ldots będą nieskorelowanymi zmiennymi losowymi o tym samym rozkładzie o skończonej wariancji. Oznaczmy $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Wtedy dla każdego $\varepsilon > 0$ zachodzi

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - \mathbb{E}X_1 \right| > \varepsilon \right) = 0.$$

Definicja 24: Rodzaje zbieżności

Niech X, X_1, X_2, \ldots będą zmiennymi losowymi o wartościach w przestrzeni (E, ρ) , określonymi na tej samej przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$. Mówimy, że

1. ciąg X_n zbiega do X PRAWIE NA PEWNO przy $n \to \infty$ (piszemy: $X_n \xrightarrow{\text{p.n.}} X$), jeżeli

$$P\left(\left\{\omega\in\Omega: \lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1;$$

2. ciąg X_n zbiega do X WEDŁUG PRAWDOPODOBIEŃSTWA $(X_n \xrightarrow{P} X)$, jeżeli

$$\forall \varepsilon > 0 \lim_{n \to \infty} P(\rho(X_n, X) > \varepsilon) = 0;$$

3. niech $0 . Ciąg <math>X_n$ zbiega do X WEDŁUG p-TEGO MOMENTU, jeżeli

$$\lim_{n\to\infty} E\rho(X_n,X)^p = 0.$$

Stosowane w zasadzie, gdy (E, ρ) jest przestrzenią Banacha i wtedy mówimy, że X_n zbiega do X w L^p , jeżeli $E\|X_n\|^p < \infty$, $E\|X\|^p < \infty$, oraz $\lim_{n\to\infty} E\|X_n - X\|^p = 0$. Piszemy: $X_n \xrightarrow{L^p} X$.

Przy czym, jeżeli $p \ge 1$, to wystarczy zakładać, że $E||X_n||^p < \infty$. Jeżeli zachodzi $\lim_{n\to\infty} E||X_n-X||^p = 0$, to warunek $E||X||^p < \infty$ jest automatycznie spełniony.

Twierdzenie 24

Następujące warunki są równoważne:

- (i) $X_n \xrightarrow{\text{p.n.}} X$;
- (ii) $\forall \varepsilon > 0 \lim_{N \to \infty} P\left(\bigcap_{n=N}^{\infty} \{\rho(X_n, X) \leqslant \varepsilon\}\right) = 1;$
- (iii) $\forall \varepsilon > 0 \lim_{N \to \infty} P\left(\bigcup_{n=N}^{\infty} {\{\rho(X_n, X) > \varepsilon\}}\right) = 0.$

Twierdzenie 25: Riesza

Niech X, X_1, X_2, \ldots będą zmiennymi losowymi o wartościach w (E, ρ) . Jeżeli ciąg X_n zbiega według prawdopodobieństwa do X przy $n \to \infty$, to istnieje podciąg X_{n_k} taki, że X_{n_k} zbiega do X prawie na pewno, gdy $k \to \infty$.

Przykład 3: Zerówka 2023

Zadanie 3. Dwuwymiarowe wektory losowe $(X_1, Y_1), (X_2, Y_2), \dots$ są niezależne i mają rozkład jednostajny na kole (0,0) i promieniu 1 niech $n=1,2,\dots$ i $Z_n=\sqrt{X_n^2+Y_n^2}$. Zbadać zbierzność prawie na pewno ciągu

$$W_n = \frac{Z_1 + \dots + Z_n}{Z_1 Z_2 + Z_2 Z_3 + \dots + Z_{n-1} Z_n}$$

Twierdzenie 26

Ciąg $(X_n)_{n\in\mathbb{N}}$ zbiega w L^p $(p \ge 1)$ wtedy i tylko wtedy, gdy X_n zbiega według prawdopodobieństwa oraz rodzina $\{|X_n|^p\}_{n\in\mathbb{N}}$ jest jednostajnie całkowalna.

Twierdzenie 27

Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o wartościach w przestrzeni Banacha $F, \|\cdot\|$. Niech $S_n = \sum_{i=1}^n X_i$. Wówczas

 S_n zbiega prawie na pewno przy $n \to \infty \iff S_n$ zbiega wg. prawdopodobieństwa.

Twierdzenie 28: Nierówność Lévy'ego-Ottavianiego

Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o wartościach w przestrzeni Banacha $F, \|\cdot\|$. Niech $S_n = \sum_{i=1}^n X_i$. Wtedy dla każdego $j \in \mathbb{N}$ i t > 0 zachodzi

$$\mathbb{P}\left(\max_{k\leqslant j}\|S_k\|>3t\right)\leqslant 3\max_{k\leqslant j}P(\|S_k\|>t).$$

Twierdzenie 29: Kołmogorowa o 2 szeregach

Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o wartościach rzeczywistych, o skończonej wariancji takimi, że

$$\sum_{i=1}^{\infty} \operatorname{Var}(X_i) < \infty \text{ oraz } \sum_{i=1}^{\infty} \mathbb{E} X_i \text{ jest zbieżny,}$$

to szereg $\sum_{i=1}^{\infty} X_n$ zbiega prawie na pewno.

Twierdzenie 30: Kołmogorowa o 3 szeregach

Niech $X1, X2, \ldots$ będą niezależnymi zmiennymi losowymi o wartościach rzeczywistych.

1. Jeśli istnieje c > 0 takie, że szeregi

$$\sum_{n=1}^{\infty} \frac{\mathbb{E}|X_n|^c}{n}, \quad \sum_{n=1}^{\infty} \frac{Var(X_n)^c}{n}, \quad \sum_{n=1}^{\infty} \frac{\mathbb{P}(|X_n| > c)}{n}$$

są zbieżne, to szereg $\sum_{n=1}^{\infty} X_n$ jest zbieżny prawie na pewno.

2. Na odwrót: Jeśli szereg $\sum_{n=1}^{\infty} X_n$ zbiega prawie na pewno, to dla każdego c > 0 szeregi w powyższym wzorze są zbieżne.

Twierdzenie 31: Mocne prawo wielkich liczb

Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, takim samym jak zmienna losowa X, o skończonej wartości oczekiwanej $\mathbb{E}X$. Wówczas

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \xrightarrow{\text{p.n.}} \mathbb{E}X \quad \text{dla} \quad n \to \infty.$$

Twierdzenie 32: Centralne twierdzenie graniczne dla rozkładu Bernoulliego

Niech S_n będzie zmienną losową o rozkładzie Bernoulliego B(n,p), gdzie q=1-p. Wtedy dla każdego $t\in\mathbb{R}$ zachodzi

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - np}{\sqrt{npq}} \leqslant t\right) = \Phi(t),$$

gdzie Φ jest dystrybuantą rozkładu normalnego standardowego.

Alternatywnie:

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var}S_n}} \leqslant t\right) = \Phi(t),$$

Twierdzenie 33: Ogólne Centralne Twierdzenie Graniczne

Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o tym samym rozkładzie, mającym skończoną i niezerową wariancję, to

$$\lim_{n \to \infty} \left(\frac{\sum_{i=1}^{n} X_i - n \mathbb{E} X_1}{\sqrt{n \operatorname{Var} X_1}} \leqslant t \right) = \Phi(t).$$

Twierdzenie 34: Przybliżenie Poissona

Niech $S_n \sim B(n, p)$, oznaczmy $\lambda = np$. Wtedy dla każdego $B \in \mathcal{B}(\mathbb{R})$ zachodzi oszacowanie

$$\left| \mathbb{P}(S_n \in B) - \sum_{\substack{k \in B \\ k=0}}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} \right| \leqslant \frac{\lambda^2}{n}.$$

Przykład 4: Egzamin Poprawkowy 2023

Robin Hood i szeryf z Nottingham strzelają z łuku do odległego celu. Każdy z nich oddaje 900 strzałów. Prawdopodobieństwo, że Robin spudłuje wynosi 1/900, zaś prawdopodobieństwo, że spudłuje szeryf wynosi 1/10. Obliczyć w przybliżeniu

- a) prawdopodobieństwo, że Robin spudłuje więcej niż 2 razy
- a) prawdopodobieństwo, że szeryf odda więcej niż 820 celnych strzałów.

Definicja 25: Warunkowa wartość oczekiwana

Niech X będzie zmienną losową określoną na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , taką że $E|X| < \infty$, i niech \mathcal{G} będzie σ -ciałem, $\mathcal{G} \subset \mathcal{F}$. Warunkową wartością oczekiwaną X warunkowo względem \mathcal{G} nazywamy zmienną losową Y spełniającą warunki:

- 1. Y jest \mathcal{G} -mierzalna,
- 2. Dla każdego $A \in \mathcal{G}$, $E[Y\mathbf{1}_A] = E[X\mathbf{1}_A]$.

Taką zmienną losową Y oznaczamy przez $\mathbb{E}(X|\mathcal{G})$.

Własności gdy $\mathbb{E}X^2 < \infty$:

1. Dla dowolnych $\alpha, \beta \in \mathbb{R}, X, Y \in L^2(\Omega, \mathcal{F}, P)$

$$\mathbb{E}(\alpha X + \beta Y | \mathcal{G}) = \alpha \mathbb{E}(X | \mathcal{G}) + \beta \mathbb{E}(Y | \mathcal{G}) \quad P.n.$$

- 2. Jeśli $X \ge 0$ p.n., to $\mathbb{E}(X|\mathcal{G}) \ge 0$ p.n.
- 3. Jeśli $X_1 \geqslant X_2$, to $\mathbb{E}(X_1|\mathcal{G}) \geqslant \mathbb{E}(X_2|\mathcal{G})$ p.n.
- 4. $X_n \nearrow X$ p.n. to $\mathbb{E}(X_n|\mathcal{G}) \nearrow \mathbb{E}(X|\mathcal{G})$
- 5. Nierówność Jensena $\varphi : \mathbb{R} \to \mathbb{R}$ wypukła, $\mathbb{E}|\varphi(X)| \leq \infty$. Wtedy

$$\varphi(\mathbb{E}(X|\mathcal{G})) \leqslant \mathbb{E}(\varphi(X)|\mathcal{G})$$

- 6. Jeśli X jest G-mierzalne to (X|G) = X p.n.
- 7. Jeżeli $H \subset \mathcal{G}$, to $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|H) = \mathbb{E}(X|H)$ p.n.

8. Jeżeli wszystkie zbiory z σ -ciała $\mathcal G$ mają prawdopodobieństwo 0 lub 1 (np. $\mathcal G = \{\emptyset,\Omega\}$), to $\mathbb E(X|\mathcal G) = \mathbb E X$ p.n.

- 9. Jeżeli σ -ciała $\sigma(X)$ i \mathcal{G} są niezależne, to $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$ p.n.
- 10. Jeżeli Y jest zmienną losową \mathcal{G} -mierzalną oraz $\mathbb{E}|X|<\infty$ i $\mathbb{E}|XY|<\infty$, to $\mathbb{E}(XY|\mathcal{G})=Y\mathbb{E}(X|\mathcal{G})$ p.n.

Twierdzenie 35

Twierdzenie 6.12. Niech (X,Y) będzie wektorem losowym o wartościach w $\mathbb{R}^k \times \mathbb{R}^n$ i o rozkładzie ciągłym z gęstością g. Niech

$$f_{X|Y}(x|y) = \begin{cases} \frac{g(x,y)}{\int_{\mathbb{R}^k} g(x,y)dx} & \text{jeśli } \int_{\mathbb{R}^k} g(x,y)dx > 0\\ 0 & \text{w.p.p.} \end{cases}$$

Wtedy dla każdej borelowskiej funkcji $\psi: \mathbb{R}^k \to \mathbb{R}$, takiej że $\mathbb{E}|\psi(X)| < \infty$ zachodzi

$$\mathbb{E}(\psi(X)|Y=y) = \int_{\mathbb{R}^k} \psi(x) f_{X|Y}(x|y) dx$$

Równoważnie, używając innego zapisu:

$$\mathbb{E}(\psi(X)|Y) = \int_{\mathbb{R}^k} \psi(x) f_{X|Y}(x|Y) dx = \frac{\int_{\mathbb{R}^k} \psi(x) g(x,Y) dx}{\int_{\mathbb{R}^k} g(x,Y) dx} \quad \text{p.n.}$$