Zadání semestrálního projektu ITO 2014/15

Vypracujte protokol, který bude obsahovat postup výpočtu, výsledky, Vaše jméno a login. V závěru protokolu uveď te přehlednou tabulku s čísly úloh, Vašimi variantami zadání a výsledky (za chybějící tabulku bude BODOVÁ SRÁŽKA!!!).

Tento protokol se odevzdává ve formátu PDF a zdrojový soubor v TEXu (zabalený v zipu, pojmenovaný podle loginu, např. xnovak00.zip). Odevzdání zdrojového programu v TEXu není povinné, ale bude garantovi předmětu sloužit při případném rozhodování o korekci výsledného hodnocení.

Veškeré výpočty provádějte v obecném tvaru a číselné hodnoty dosaď te až do výsledných vzorců. Z vypracovaného projektu musí být zřejmý obecný postup výpočtu. Výsledky uvádějte na 4 platná desetinná místa. Dbejte na správný převod jednotek úhlů (radiány na stupně - pozor na kvadrant u komplexního čísla!!!).

Za protokol je možné získat max. 15 bodů v závislosti na věcné správnosti postupu výpočtu a estetických kvalitách protokolu (12 bodů za správné řešení a 3 body za zpracování). Protokol odevzdejte do 21. 12. 2014 prostřednictvím IS FIT (maximální velikost souboru je nastavena na 2MB). Projekty odevzdané po tomto termínu nebudou hodnoceny.

Důležité upozornění: Projekty do předmětu ITO má plně v kompetenci pouze a jedině dr. Václav Šátek (satek@fit.vutbr.cz). Neobtěžujte svými dotazy doc. Kunovského a doc. Růžičku.

 $\fbox{1}$ (2 body) Stanovte napětí U_{R7} a proud $I_{R7}.$ Použijte metodu postupného zjednodušování obvodu.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	350	650	410	130	360	750	310	190
В	95	650	730	340	330	410	830	340	220
С	100	450	810	190	220	220	720	260	180
D	105	420	980	330	280	310	710	240	200
Е	115	485	660	100	340	575	815	255	225
F	125	510	500	550	250	300	800	330	250
G	130	380	420	330	440	450	650	410	275
Н	135	680	600	260	310	575	870	355	265

 $\fbox{\fill}{2}$ (1 bod) Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu Theveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
A	50	525	620	210	530	130	150
В	100	310	610	220	570	200	170
С	200	220	630	240	450	230	200
D	150	200	660	200	550	330	230
Е	250	335	625	245	600	180	210
F	130	350	600	195	650	280	250
G	180	315	615	180	460	300	270
Н	220	360	580	205	560	350	300

 $\fbox{\fint{3}}$ (2 body) Stanovte napětí U_{R5} a proud $I_{R5}.$ Použijte metodu uzlových napětí ($U_A,\,U_B,\,U_C).$

sk.	U_1 [V]	U_2 [V]	<i>I</i> [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
A	120	90	0.7	530	490	650	390	320	120
В	150	70	0.8	490	450	610	340	340	150
С	110	85	0.75	440	310	560	200	300	180
D	115	60	0.9	500	380	480	370	285	125
Е	135	55	0.65	520	420	520	420	215	200
F	145	75	0.85	480	440	530	360	255	190
G	160	105	0.45	460	410	535	330	290	210
Н	130	95	0.50	470	390	580	280	205	250

$\boxed{\mathbf{4}} \ (\mathbf{2} \ \mathbf{body})$

Pro napájecí napětí platí: $u = U \cdot \sin(2\pi ft)$.

Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu zjednodušování obvodu.

Pozn: Pomocný "směr šipky napájecího zdroje platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$ "

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	L_1 [mH]	L_2 [mH]	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
A	45	140	210	340	470	400	210	150	70
В	35	160	220	270	480	420	440	170	85
С	55	180	175	410	450	370	110	185	80
D	50	190	180	220	420	270	120	205	90
Е	60	200	215	320	400	260	230	215	65
F	75	165	150	380	430	320	310	235	95
G	45	145	165	430	500	450	315	255	50
Н	65	150	130	350	490	480	215	270	60

$\boxed{\mathbf{5}}$ (3 body)

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_1} = U_{C_1} \cdot \sin(2\pi f t + \varphi_{C_1})$ určete $|U_{C_1}|$ a φ_{C_1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné "směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$ "

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
A	35	55	125	140	180	120	100	200	105	70
В	25	40	115	150	130	100	85	220	95	80
С	35	45	105	130	220	220	70	230	85	75
D	45	50	135	155	200	180	90	210	75	85
Ε	50	30	145	135	150	130	60	100	65	90
F	20	35	120	100	170	170	80	150	90	65
G	55	50	130	125	155	140	60	160	80	60
Н	65	60	100	105	145	160	75	155	70	95

6 (2 body)

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
A	20	40	10	9
В	17	10	20	8
С	15	15	35	7
D	14	25	30	6
Е	12	30	45	5
F	9	35	15	4
G	7	45	25	3
Н	5	50	40	2

