1. Homework 2 Solutions

Exercise 1.3.2

- (a) Consider $B=\{0\}$. inf $B=0=\sup B$.
- (b) Not possible, finite sets must contain their infimum and supremum.
- (c) Let $B = \{x : x \in \mathbb{Q} \text{ and } 0 < x \le 1\}.$

Exercise 1.3.6

- (a) Let $s = \sup A$ and $t = \sup B$. Then for any $a \in A$ and any $b \in B$ we know that $a \le s$ and $b \le t$. Then adding these two gives us that $a + b \le s + t$ for any a, b. Since every element of A + B is given by a pair of a, b, s + t is an upper bound.
- (b) Now let u be an arbitrary upper bound of A+B, and temporarily fix $a \in A$. Then for any $b \in B$, $a+b \le u$ by assumption on u, in particular this means $b \le u-a$ for any $b \in B$. This means u-a is an upper bound of B. The least upper bound t is less than or equal to u-a as desired. Note that, this holds for an arbitrary a.
- (c) Let $u = \sup(A + B)$, then by part (a) we know that s + t is an upper bound. So we only need to show that it is the least i.e $s + t \le u$. Now to do so: By part (b), we have $a \le u t$ for any $a \in A$, then u t is an upper bound of A meaning that $s \le u t$ i.e $s + t \le u$ which is what was to be shown.
- (d) Since s+t is an upper bound of A+B (part (a)), by Lemma 1.3.8, showing that $s+t-\epsilon$ is not an upper bound for any $\epsilon>0$ proves that s+t is the least upper bound. Again by Lemma 1.3.8 (in the opposite direction), for $\epsilon/2$ there exist $a\in A$ and $b\in B$ such that $s-\epsilon/2< a$ and $t-\epsilon/2< b$. Thus, $s-\epsilon/2+t-\epsilon/2< a+b$ that is $s+t-\epsilon< a+b$. This shows $s+t-\epsilon$ is not an upper bound of A+B for any $\epsilon>0$.

Exercise 1.3.11

- (a) True. Since $\sup B$ is an upper bound of B, it is greater than or equal to any element of B and thus A which makes it an upper bound of A. But $\sup A$ is the least upper bound.
- (b) True. Let $(\inf B + \sup A)/2 = c$. Then $c > \sup A$ meaning that $c > a \ \forall a \in A$. And $c < \inf B$ meaning that $c < b \ \forall b \in B$.
- (c) False. Consider A = (-1,0) and B = (0,1), c = 0. Then A has supremum 0 while B has infimum 0, so $\sup A \nleq \inf B$.

Exercise 1.4.8

- (a) Let $A = (-1,1) \cap \mathbb{Q}$ and let $B = (-1,1) \cap \mathbb{I}$ (set of irrationals). Then $A \cap B = \emptyset$ and $\sup A = \sup B = 1$ is contained neither in A nor in B.
- (b) Let $J_n = (-\frac{1}{n}, \frac{1}{n})$ then $\bigcap_{1}^{\infty} J_n = \{0\}$.
- (c) Consider the nested, unbounded, closed sets $L_n = [n, \infty)$, then $\bigcap_{1}^{\infty} L_n = \emptyset$.
- (d) Not possible. Considers the sets $J_n = \bigcap_{i=1}^n I_i$. It goes without saying that J_n 's are nonempty and nested. J_n 's are also bounded and closed, because every J_n is the intersection of finitely many bounded and closed sets. Also, since $\bigcap_{n=1}^{\infty} J_n = \bigcap_{n=1}^{\infty} \left(\bigcap_{i=1}^n I_n\right) = \bigcap_{n=1}^{\infty} I_n$, by the Nested Interval Property, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

1