OOD-ENS: Cross-Validated Out-of-Distribution Ensemble Detector

A The relationship of $p(p_z)$ and p_z .

Before providing the relationship of $p(p_z)$ and p_z , we introduce Eq. (7) in the submitted paper as follows.

$$p(p_z) = \int_{0.5}^1 Be((m_e - 1)p_z, (m_e - 1)(1 - p_z))dx.$$

where $m_e = \frac{K}{1 + (K - 1)\rho}$ and $\rho = Corr(\hat{g}_k, \hat{g}_{k'})$ with $k, k' = 1, \dots, K$ and $k \neq k'$.

According to the above formula, we calculate the values of $p(p_z)$ for different p_z , K, and ρ under the condition of $0 \le \rho < 1$ and $3 \le K \le n - 1$, and plot the variance of $p(p_z)$ along with an increases K. The results are shown in Figure 1.

Fig. 1. The relationship of $p(p_z)$ and p_z .

From the Figure, it is clear that $p(p_z) > p_z$, and $p(p_z)$ is an increasing function with regard to K when $p_z > 0.5$. On contrary, when $p_z < 0.5$, $p(p_z) < p_z$, and $p(p_z)$ is an decreasing function with regard to K. For example, $p(p_z)$ is larger than 0.9 in the left-top subfigure when $p_z = 0.9$, and $p(p_z)$ is smaller than 0.45 in the left-bottom subfigure when $p_z = 0.45$. Therefore, the relationship of $p(p_z)$ and p_z is as follows.

- When $p_z > 0.5$, $p(p_z) > p_z$ and $p(p_z)$ is increasing with an increasing K.
- When $p_z < 0.5$, $p(p_z) < p_z$ and $p(p_z)$ is decreasing with an increasing K.

B The proof of Lemma 1.

Lemma 3.1 For the confusion matrix \mathcal{H}_{γ} of an OOD-ENS algorithm, when $0 \le \rho < 1$ and $3 \le K \le n - 1$, the expectations of TP_{γ} and TN_{γ} monotonically

increase with an increasing K; the expectations of FP_{γ} and FN_{γ} monotonically decrease.

Proof. For the confusion matrix \mathcal{H}_{γ} of an OOD-ENS algorithm, the expectations of TP_{γ} , FP_{γ} , FN_{γ} and TN_{γ} are defined as follows.

$$\mathbb{E}(\text{TP}_{\gamma}) = \mathbb{E}\Big(\sum_{j=1}^{n'} \mathbf{1} \big(p(\hat{g}_{oe} = 1) \ge \gamma, g_j = 1 \big) \Big)$$

$$= \sum_{j=1}^{n'} P\big(p(\hat{g}_{oe} = 1) \ge \gamma, g_j = 1 \big)$$

$$= \sum_{j=1}^{n'} P(g_j = 1) \cdot P\big(p(\hat{g}_{oe} = 1) \ge \gamma | g_j = 1 \big)$$

$$\mathbb{E}(\text{FP}_{\gamma}) = \sum_{j=1}^{n'} P(g_j = 0) \cdot P\big(p(\hat{g}_{oe} = 1) \ge \gamma | g_j = 0 \big)$$

$$\mathbb{E}(\text{FN}_{\gamma}) = \sum_{j=1}^{n'} P(g_j = 1) \cdot P\big(p(\hat{g}_{oe} = 0) \ge \gamma | g_j = 1 \big)$$

$$\mathbb{E}(\text{TN}_{\gamma}) = \sum_{j=1}^{n'} P(g_j = 0) \cdot P\big(p(\hat{g}_{oe} = 0) \ge \gamma | g_j = 0 \big),$$

where \hat{g}_{oe} denotes the majority-voting prediction and g_j denotes a gold label. Without loss of generality, we assume that an algorithm is at least a weak learning algorithm, which indicates $p_z > 0.5$ for the records of $g_j = 1$, and $p_z < 0.5$ for the records of $g_j = 0$, where $p_z = P(\hat{g}_k = 1)$.

According to the Appendix A, when $0 \le \rho < 1$ and $3 \le K \le n-1$, the following analyses can be obtained.

- For TP_{\gamma} and TN_{\gamma}, we have $P(p(\hat{g}_{oe} = 1) \ge \gamma | g_j = 1)$ and $P(p(\hat{g}_{oe} = 0) \ge \gamma | g_j = 0)$ is an increasing function with regard to K.
- For FP_{γ} and FN_{γ}, we have $P(p(\hat{g}_{oe} = 1) \ge \gamma | g_j = 0)$ and $P(p(\hat{g}_{oe} = 0) \ge \gamma | g_j = 1)$ is a decreasing function with regard to K.

On this basis, the confusion matrix \mathcal{H}_{γ} has the optimal properties that the expectations of TP_{γ} and TN_{γ} monotonically increase with an increasing K; the expectations of FP_{γ} and FN_{γ} monotonically decrease.

C The proof of Theorem 1

Theorem 3.2 Under the condition of $0 \le \rho < 1$ and $3 \le K \le n-1$, the expectation of the evaluation measure ACC of an OOD-ENS algorithm increases with an increasing K and owns an upper bound when K equals to n-1, while those of estimators α and β decrease and own an lower bound.

Proof. The expectations of the evaluation measure ACC, the Type I error α and the type II error β of an OOD-ENS algorithm are defined as follows.

$$\begin{split} \mathbb{E}(\text{ACC}) &= \mathbb{E}\bigg(\frac{\text{TP}_{\gamma} + \text{TN}_{\gamma}}{n'}\bigg) = \frac{\mathbb{E}(\text{TP}_{\gamma}) + \mathbb{E}(\text{TN}_{\gamma})}{n'}, \\ \mathbb{E}(\alpha) &= \mathbb{E}\bigg(\frac{\text{FP}_{\gamma}}{\text{FP}_{\gamma} + \text{TN}_{\gamma}}\bigg) = \frac{\mathbb{E}(\text{FP}_{\gamma})}{\sum_{j} \mathbf{1}(g_{j} = 0)}, \\ \mathbb{E}(\beta) &= \mathbb{E}\bigg(\frac{\text{FN}_{\gamma}}{\text{FN}_{\gamma} + \text{TP}_{\gamma}}\bigg) = \frac{\mathbb{E}(\text{FN}_{\gamma})}{\sum_{j} \mathbf{1}(g_{j} = 1)}, \end{split}$$

where $n'=\mathrm{TP}_{\gamma}+\mathrm{FP}_{\gamma}+\mathrm{FN}_{\gamma}+\mathrm{TN}_{\gamma}$ is a constant and $\mathbf{1}(\cdot)$ is an indicator function.

Under the condition of $0 \le \rho < 1$ and $3 \le K \le n-1$, according to the Lemma 1, the expectations of ACC increases with an increasing K and owns an upper bound when K equals to n-1, while those of estimators α and β decrease and own an lower bound.