1 Терминология

Двусвязный (вершинно двусвязный) граф - такой граф, для которого для любых двух различных вершин e и e' есть цикл, содержащий e и e' (Другими словами - два различных маршрута).

Пара $\{u,v\}$ графа G называется парой разделения, если существуют подграфы G'_1 и G'_2 , что:

- 1. $V(G) = V(G'_1) \cup V(G'_2), V(G'_1) \cap V(G'_2) = \{u, v\}$
- 2. $E(G) = E(G'_1) \cup E(G'_2), E(G'_1) \cap E(G'_2) = \emptyset, |E(G'_1)| \ge 2, |E(G'_2)| \ge 2$
- 3. Для некоторых $e_1 \in E(G_1')$ и $e_2 \in E(G_2')$ есть цикл, содержащий e_1, e_2

 G'_1, G'_2 называются графами разделения относительно пары разделения $\{u, v\}$. $G_i = G'_i \cup \{u, v\}$ - разделенные графы, а их общее ребро - виртуальное. Двусвязный граф называется трисвязным, если в нем нет ребра разделения.

Разбиение графа G на трисвязные компоненты:

- 1. Разделить граф G на двусвязные компоненты $D = \{G_1, G_2, \dots, G_k\}$
- 2. Для каждой компоненты G_i , если она не трисвязна, разделить ее на подграфы G_{i1} и G_{i2} относительно пары разделения.
- 3. Ели все G_i трисвязны закончить. Иначе повторить (2)

Будем обозначать #(G) количеством трисвязных компонент G.

2 Теория

Лемма 2.1. Для трисвязного графа H, граф G включает в себя подграф гомеоморфный $H \Leftrightarrow \exists$ трисвязная компонента графа, которая имеет подграф, гомоморфный H

Доказательство. Докажем лемму по индукции на #(G), то есть на количестве трёхсвязных компонент G. Случай, когда граф G является трисвязным - тривиален. Тогда предположим, что G не трисвязен. Заметим, что если H - трисвязен, то в графе G есть двусвязная компонента, которая содержит подграф, гомеоморфный H. Тогда предположим, что G двусвязный. Пусть (u,v) - любая пара разделения G. Пусть G_1' и G_2' - графы разделения G относительно (u,v). Пусть G_1 И G_2 - разделенные графики G, соответствующие G_1' и G_2' . Тогда нам нужно доказать только (1), так как G_1 и G_2 имеют меньше трехсвязных компонент, чем G.

- (1) В графе G есть подграф гомеоморфный $H \Leftrightarrow G_1$ или G_2 имеют подграф гомеоморфный H. Для этого докажем следующие утверждения:
- (2) Если в G есть подграф гомеоморфный G' и G' содержит подграф гомеоморфный G'', то G содержит подграф, гомеоморфный G''.
 - (3) G содержит подграфы, гомеоморфные G_1, G_2
- (4) Если G содержит подграф, гомеоморфный H, то G_1 или G_2 содержит подграф, гомеоморфный H.
- (2) тривиально по определению. (3) в свою очередь почти очевидно, так как каждый из графов разделения имеет путь, соединяющий вершины u и v. (4) Доказывается так: предположим, что G имеет подграф F, гомеоморфный H и G_1 , G_2 не содержат подграф, гомеоморфный H. Тогда F разделен на два графа разделения F_1' и F_2' относительно (u,v), которые являются подграфами G_1' и G_2' , соответственно. Тогда, H так же разделен на подграфы H_1' и H_2' , которым гомоморфны F_1' и F_2' . Если $|E(H_1')| = 1$, то F_1' это путь и, соответственно, G_2 имеет подграф гомеоморфный H противоречие. Тогда, $E(H_1') \geq 2$. Аналогично, $E(H_2') \geq 2$. Однако, это предполагает что H не трисвязен противоречие. Соответственно, у нас доказано (1) и лемма по индукции

Лемма 2.2. Граф G содержит подграф, гомеоморфный $K_{3,3} \Leftrightarrow \exists$ трисвязная компонента G, содержащая подграф, гомеоморфный $K_{3,3}$

Доказательство. Следует из 2.1.

Лемма 2.3 (Теорема Понтрягина-Куратовского). Граф G непланарный тогда u только тогда, когда он содержит подграф, гомеоморфный K_5 или $K_{3,3}$

Доказательство. Доказывалось на лекциях

Лемма 2.4. трисвязный граф G c шестью или более вершинами является непланарным $\Leftrightarrow \exists \ nod rpa \phi \ в \ G$ гомеоморфный $K_{3,3}$.

Доказательство. Поскольку обратное утверждение следует из леммы 2.3, будем рассматривать только прямое. Предположим, что G – непланарный и в нём есть подграф G', гомеоморфный к K_5 . Если $G' = K_5$, то для любой вершины v, принадлежащей G, но не принадлежащей G' существуют три вершиню непересекающихся пути к трем разным вершинам G', поскольку граф G – вершиню трисвязный. рис. 1 (а) Легко заметить, что в G есть подграф, гомеоморфный к K_{33} . рис. 1 (b) Теперь предположим, что $G' \neq K_5$. Пусть u и v это 2 вершины степени 4, принадлежащие G', такие, что в G' существует путь P(u,v) длины ≥ 2 , который не только соединяет u с v, но и не содержит других вершин степени 4. Поскольку G вершиню трисвязный, для некоторой

вершины w ($w \neq u, v$), принадлежащей пути P(u, v) и некоторой вершины x из G', не принадлежащей P(u, v) существует путь P(w, x) в G, такой, что любая не крайняя вершина пути P(w, x) не содержится в G'. По симметрии, будем рассматривать только случаи, показанные на рисунке рис. 2 (a). Таким образом, легко можно заметить, что в G есть подграф, гомеоморфный к $K_{3,3}$. рис. 2 (b)

Рис. 2: Подграф графа G гомеоморфный $K_{3,3}$

Лемма 2.5. Граф G не имеет подграфов, гомеоморфных к $K_{3,3}$ тогда и только тогда, когда каждая вершинно трисвязная компонента G это либо планарный граф, либо граф K_5 .

Доказательство. Следует из лемм 2.2 и 2.4

Лемма 2.6. Пусть D-разбиение графа G на вершинно трисвязные компоненты. Пусть $e_1, e_2, e_3, \ldots, e_r$ это множество всех виртуальных рёбер вершинно трисвязной компоненты G в D. Тогда существует множество

 $P_1, P_2, P_3, P_4, \dots P_r$ вершинно-различных путей в G, такое, что каждый путь P_i соединяет две крайних вершины e_i и не содержит ребер из G'.

Доказательство. По определению разделенного графа, каждое виртуальное ребро находится ровно в двух вершинно трисвязных компонентах разбиения D. Более того, у двух вершинно трисвязных компонент есть либо одно либо ноль общих рёбер. Пусть D' это множество $F_1, F_2, F_3, F_4, \ldots, F_h$ графов, полученных из множества вершинно трисвязных компонент D при помощи слияния всех виртуальных рёбер, за исключением $e_1, e_2, e_3, \ldots, e_r$. Тогда G' очевидно содержится в D' и у каждого графа F_j из D', в отличие от G', есть одно или ноль виртуальных рёбер. Таким образом, в общем случае выполняется $r \leq h-1$ и r=h-1 в случае, когда граф G вершинно 2-связный.

Без потери общности, можно предположить, что $F_h = G'$ и что для каждого e_j $(j=1,2,3,\ldots,r)$, граф F_j содержит e_j . По определению разделяющей пары, подграф $F_j - e_j$ графа F_j содержит путь P_j , соединяющий две крайние вершины e_j . Очевидно, что пути $P_1, P_2, P_3, P_4, \ldots, P_r$ это вершинно-различные пути в G, не содержащие рёбер из G'.

Из всего вышесказанного можем получить следующий алгоритм:

- 1. Выразить граф G в трисвязные компоненты $D = \{G_1, G_2, \dots, G_k\}$
- 2. Если в нем нет непланарного графа, отличного от K_5 , то вернуть ответ "Нет" (По лемме 2.5), иначе пусть G_i непланарный граф, отличный от K_5
- 3. Найти минимальный непланарный подграф G_i' в G_i (G_i' гомеоморфен K_5 или $K_{3,3}$ по лемме 2.3
- 4. Если G'_i гомеоморфен K_5 , тогда нужно найти подграф, гомеоморфный $K_{3,3}$ аналогично тому, как это делалось в лемме 2.4. В противном случае пусть $G' = G'_i$ (G' гомеоморфен K_5)
- 5. Для всех виртуальных вершин e_1, e_2, \ldots, e_q в E(G') нужно найти такие пути P_1, P_2, \ldots, P_q , такие что в них нет общих вершин, они соединяют ребра e и не содержат граней G'
- 6. Вернуть "граф H''', найденный из G' заменой каждого e_j на соответствующий путь P_j .

Каждый из шагов алгоритма (кроме 4.) работает за линейное время. Четвертый же пункт можно выполнить за $O(|V(G)|^2)$