

NEW BACILLUS SP. BACILLUS CARBOPHILUS

Publication number: JP8066179 (A)
Publication date: 1996-03-12
Inventor(s): MATSUHASHI MICHIO; FUJITA TAKASHI +
Applicant(s): FUJISAWA PHARMACEUTICAL CO; HIGETA SHOYU KK; MATSUHASHI MICHIO +
Classification:
- International: C12N1/20; C12R1/07; C12N1/20; (IPC1-7): C12N1/20; C12N1/20; C12R1/07
- European:
Application number: JP19940230749 19940830
Priority number(s): JP19940230749 19940830

Abstract of JP 8066179 (A)

PURPOSE: To provide *Bacillus carbophilus* capable of being used as a sensor detecting a sound wave relating to cell growth of microorganisms, plants and animals. CONSTITUTION: This new *Bacillus* sp. *Bacillus carbophilus* has the following mycological characteristics; the *Bacillus* sp. is aerobic and gram-positive rod, forms ellipsoidal spores and sporangia without swelling, has 38.0+0.2mol% of (G+C) content and is not DNA-homologous with *Bacillus megaterium*, *Bacillus flexus*, *Bacillus simplex* and *Bacillus lentus* and highly requiring π electrons.

.....
Data supplied from the *espacenet* database ---- Worldwide

(19)日本国特許庁 (J P)

(22) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-66179

(43)公開日 平成8年(1996)3月12日

(51)Int.Cl.⁶

識別記号

府内整理番号

F I

技術表示箇所

C 12 N 1/20

A 8828-4B

// (C 12 N 1/20

C 12 R 1:07)

審査請求 未請求 請求項の数1 FD (全 6 頁)

(21)出願番号

特願平6-230749

(71)出願人 000005245

藤沢薬品工業株式会社

大阪府大阪市中央区道修町3丁目4番7号

(22)出願日 平成6年(1994)8月30日

(71)出願人 000112060

ヒゲタ醤油株式会社

東京都中央区日本橋小網町2番3号

特許法第30条第1項適用申請有り 平成6年3月5日、
社団法人日本農芸化学会発行の「日本農芸化学会誌08巻
3号」に発表

(71)出願人 594159892

松機 通生

東京都世田谷区上北沢3-23-21

(72)発明者 松機 通生

東京都世田谷区上北沢3-23-21

(72)発明者 藤田 隆

土浦市永澤1125-10

(74)代理人 弁理士 ▲吉▼川 俊雄

(54)【発明の名称】 新菌種バチルス・カーボフィラス

(57)【要約】

【構成】 好気性、グラム陽性桿菌で、橢円の胞子を形成し、胞子嚢は膨らまず、G + C含有量が38.0 ± 0.2モル%で、バチルス・メガテリウム、バチルス・フレキサス、バチルス・シンプレックスおよびバチルス・レンタスとのDNA相同期性がなく、且つ電子高密度要求性の菌学的特徴を有する新菌種バチルス・カーボフィラス。

【効果】 本バチルス・カーボフィラスが有する電子高密度要求性で、細胞の発する音波信号を効率よく検出できるという性質は、細菌、植物、動物の細胞増殖に關与する音波信号を検出するセンサーとして利用できる。

【特許請求の範囲】

【請求項1】 好気性、グラム陽性桿菌で、梢円の胞子を形成し、胞子嚢は膨らまず、G+C含量が38.0±0.2モル%で、バチルス・メガテリウム、バチルス・フレキサス、バチルス・シンプレックスおよびバチルス・レンタスとのDNA相同性がなく、且つ π 電子高度要求性の菌学的特徴を有する新菌種バチルス・カーボフィラス。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 この発明は、新規な微生物バチルス・カーボフィラスに関するものである。

【0002】

【従来の技術および発明が解決しようとする課題】 カーボングラファイト（石墨）や活性炭は高度に二重結合が共役した構造のために、多量で活発な π 電子を保有している。これらは可視光線を吸収しやすく、従って黒くて温かい性質をもっている。こうした炭素物質は植物、細菌の培養に利用され、好成績を上げているが、その効果はそれらが持つ吸着作用により有害物質が除去されているものと考えられてきた。しかし事実は、これがカーボン物質による直接の細胞増殖作用及びそれによって生じた菌糞から発せられる音波信号の二つによることがわかつた。

この発明者らは、たとえば高塩濃度等の致死的条件での生育のために、 π 電子の豊富な炭素物質を要求し、且つ同種あるいは別種の細菌がだすある種の音波信号を効率よく検出する菌を見出した。

【0003】

【課題を解決するための手段】 この発明は、新菌種バチルス・カーボフィラス (*Bacillus carbophilus*) に関するものであって、次のような菌学的特徴を有する。すなわち、該菌は好気性、グラム陽性桿菌であって、梢円の胞子を形成し、胞子嚢は膨らまず、G+C含量が38.0±0.2モル%で、バチルス・メガテリウム (*Bacillus megaterium*)、バチルス・フレキサス (*Bacillus flexus*)、バチルス・シンプレックス (*Bacillus simplex*) およびバチルス・レンタス (*Bacillus lentus*) とのDNA相同性がなく、且つ π 電子高度要求性の菌学的特徴を有する。

【0004】 この発明者等が、静岡県沼津市の空気中より新たに分離した菌株 [カスミ (Kasumi) 6, 1, 2, 3, 4 および 7 株] はそれぞれ次のような菌学的性質を有する。

【0005】 (A) 形態的性質

形態的性質	6	1	2	3	4	7
細胞の大きさ (μ m)						
幅	0.5~0.9	0.5~0.9	0.5~0.9	0.5~0.9	0.5~0.9	0.5~0.9
長さ	3.0~5.0	3.0~5.0	3.0~5.0	3.0~5.0	3.0~5.0	3.0~5.0
細胞の形	桿菌	桿菌	桿菌	桿菌	桿菌	桿菌
細胞の多形性	無	無	無	無	無	無
運動性	有	有	有	有	有	有
鞭毛の形	周鞭毛	周鞭毛	周鞭毛	周鞭毛	周鞭毛	周鞭毛
胞子						
形	梢円	梢円	梢円	梢円	梢円	梢円
形成部位	中央~末端	中央~末端	中央~末端	中央~末端	中央~末端	中央~末端
胞子嚢の膨らみ	陰性	陰性	陰性	陰性	陰性	陰性
グラム染色性	陰性	陽性	陰性	陽性	陽性	陽性

【0006】 (B) 生理学的性質

生理学的性質	6	1	2	3	4	7
酸素に対する態度	好気性	好気性	好気性	好気性	好気性	好気性
生育温度 (°C)	17 - 44	17 - 44	17 - 44	17 - 44	17 - 44	17 - 44
生育至適温度 (°C)	30	30	30	30	30	30
pH6.8 での生育	陽性	陽性	陽性	陽性	陽性	陽性
pH5.6 での生育	陽性	陽性	陽性	陽性	陽性	陽性
硝酸塩の還元	陰性	陰性	陰性	陰性	陰性	陰性
V-P 反応	陰性	陰性	陰性	陰性	陰性	陰性
V-P 培地の pH	6.7 - 7.0	6.7 - 7.0	6.7 - 7.0	6.7 - 7.0	6.7 - 7.0	6.7 - 7.0
インドールの生成	陰性	陰性	陰性	陰性	陰性	陰性
核酸水素の生成	陰性	陰性	陰性	陰性	陰性	陰性
澱粉の分解	陽性	陽性	陽性	陽性	陽性	陽性
カゼインの分解	陽性	陽性	陽性	陽性	陽性	陽性
ゼラチンの分解	陽性	陽性	陽性	陽性	陽性	陽性
DNA の分解	陰性	陽性	陰性	陰性	陰性	陽性
Tween60 の分解	陽性	陽性	陽性	陽性	陽性	陽性
リジンデカルボキシラーゼ	陰性	陰性	陰性	陰性	陰性	陰性
アルギニンジハイドロラーゼ	陰性	陰性	陰性	陰性	陰性	陰性
オルニチンデカルボキシラーゼ	陰性	陰性	陰性	陰性	陰性	陰性
カタラーゼ	陽性	陽性	陽性	陽性	陽性	陽性
オキシダーゼ	陽性	陽性	陽性	陽性	陽性	陽性
ウレアーゼ	陰性	陰性	陰性	陰性	陰性	陰性

【0007】(C) 生理学的性質

生物学的性質	6	1	2	3	4	7
NaCl の耐性						
2 %	陽性	陽性	陽性	陽性	陽性	陽性
5 %	陽性	陽性	陽性	陽性	陽性	陽性
7 %	陽性	陽性	陽性	陽性	陽性	陽性
10 %	陰性	陰性	陰性	陰性	陰性	陰性
クエン酸の利用	陰性	陰性	陰性	陰性	陰性	陰性
色素の生成						
Trypticase - soy agar	赤茶	赤茶	赤茶	赤茶	赤茶	赤茶
Nutrient agar	赤茶	赤茶	赤茶	赤茶	赤茶	赤茶
糖の生成						
D - Glucose	陰性	陰性	陰性	陰性	陰性	陰性
L - Arabinose	陰性	陰性	陰性	陰性	陰性	陰性
D - Xylose	陰性	陰性	陰性	陰性	陰性	陰性
D - Mannose	陰性	陰性	陰性	陰性	陰性	陰性
D - Fructose	陰性	陰性	陰性	陰性	陰性	陰性
D - Galactose	陰性	陰性	陰性	陰性	陰性	陰性
Maltose	陰性	陰性	陰性	陰性	陰性	陰性
Sucrose	陰性	陰性	陰性	陰性	陰性	陰性
Lactose	陰性	陰性	陰性	陰性	陰性	陰性
Trehalose	陰性	陰性	陰性	陰性	陰性	陰性
Glycerol	陰性	陰性	陰性	陰性	陰性	陰性
D - Mannitol	陰性	陰性	陰性	陰性	陰性	陰性
D - Cellobiose	陰性	陰性	陰性	陰性	陰性	陰性
D - Ribose	陰性	陰性	陰性	陰性	陰性	陰性
Salicin	陰性	陰性	陰性	陰性	陰性	陰性
D - Sorbose	陰性	陰性	陰性	陰性	陰性	陰性
Melibiose	陰性	陰性	陰性	陰性	陰性	陰性
L - Rhamnose	陰性	陰性	陰性	陰性	陰性	陰性

生物学的性質	6	1	2	3	4	7
糖の生成						
Raffinose	陰性	陰性	陰性	陰性	陰性	陰性
Inositol	陰性	陰性	陰性	陰性	陰性	陰性
Erythritol	陰性	陰性	陰性	陰性	陰性	陰性
Adonitol	陰性	陰性	陰性	陰性	陰性	陰性
Starch	陰性	陰性	陰性	陰性	陰性	陰性
ガスの生成						
D - Glucose	陰性	陰性	陰性	陰性	陰性	陰性
L - Arabinose	陰性	陰性	陰性	陰性	陰性	陰性
D - Xylose	陰性	陰性	陰性	陰性	陰性	陰性
D - Mannitol	陰性	陰性	陰性	陰性	陰性	陰性

【0008】(D) G + C含量及びDNA相同性

Strain	G + Count, (mol %)	% Reassociation with DNA from:			
		3	1	4	7
3	38.0	(100)	100	100	100
1	38.0	80	(100)	100	88
2	38.0	100	84	100	100
4	37.8	76	83	(100)	75
6	37.9	59	89	100	76
7	38.1	73	99	100	(100)

【0009】上記の結果より、6株は同一種と考えられる。これらは、好気性（嫌気下での生育不能）のグラム陽性桿菌で、精円の胞子を形成し、胞子のうは膨らまない。このような性質を有し、G+C含量が、38.0±0.2 mol%の*Bacillus*属細菌は*B. meg*

aterium, *B. flexus*, *B. simplex*, *B. lentus*がある。そこでこれらの基準株とのDNA相同意の値を求めた。

【0010】

Strain	G + Count, (mol %)	% Reassociation with DNA from:	
		3	1
3	38.0	(100)	100
1	38.0	80	(100)
<i>B.megaterium</i> JCM 2508 ^T	39.8	10	6
<i>B.flexus</i> DSM 1320 ^T	37.8	10	8
<i>B.simplex</i> DSM 1321 ^T	38.1	7	2
<i>B.lentus</i> JCM 2511 ^T	36.9	0	NT

【Type strain (基準株)
上記の結果より、これらの菌株は既知の*Bacillus*属細菌とは異なる新種であると考えられた。

【0011】そこでこの新種をバチルス・カーボフィラス (*Bacillus carbophilus*)と命名した。この種に属する1菌株である*Bacillus carbophilus* Kasumi 6は工業技術院生命工学技術研究所にFERMP-14455として寄託されている。〔受託日（平成6年8月1日）〕

バチルス・カーボフィラスの菌株の培養は一般の微生物の培養法がそのまま適用される。すなわち、資化性の炭素源および窒素源を含有する栄養培地中で、好気性（たとえば振盪培養、液内培養など）条件下に生育させて生産される。培地は、合成のものでも、半合成のものでも、天然のものでもよい。

【0012】好ましい炭素源としては、グルコース、マンノース、グリセリン、糖蜜、デンプン、デンプン加水分解などが、好ましい窒素源としては、肉エキス、カゼイン加水分解物、ペプトン、グルテン粉、コーンミール、綿実粉、大豆粉、コーンスチーブリカー、乾燥酵母、リン酸、アンモニウム、硫酸アンモニウム、尿素などが挙げられる。リン酸塩、塩化物、その他の金属塩類などの無機塩類、たとえばリン酸水素二ナトリウム、リン酸二水素カリウム、炭酸カルシウム、硫酸第一鉄、硫

酸マグネシウム、硫酸銅、硫酸亜鉛、塩化マンガン、塩化マグネシウムなどを添加してもよい。発酵中、発泡が著しい場合には、植物油、たとえば大豆油、あまに油など、高級アルコール、たとえばオクタデカノールなどの消泡剤を適量添加してもよい。培養は、30℃前後で30～100時間行うのが好ましい。上記の条件は、使用する微生物の特徴に従って、最適条件の組合せを選択することとなる。

【0013】

【発明の効果】*Bacillus carbophilus*が有するπ電子高度要求性で、細胞の発する音波信号を効率よく検出できるという性質は、細菌、植物、動物の細胞増殖に関与する音波信号を検出するセンサーとして利用できる。たとえば、動物培養細胞、植物プロトプラストの単一細胞からの増殖には困難が伴うと言われているが、ある種の音波信号によるきっかけがこれを容易にすることが考えられる。そしてそれに必要な波長域の音波を検出する手段として*Bacillus carbophilus*を利用し、その音波域を規定し、それを発するジェネレーターを作り、培養しにくい細胞を増殖させることが考えられる。

【0014】又、より実用的な面では、酒づくり又は植物の栽培に音楽を聞かせることにより、良い結果が得ら

れるという報告があるが、これらが科学的に確かめられた場合、酒をつくるための微生物細胞もしくは栽培する植物の細胞に働きかける音波域を検出する手段として用いるなど、さらにはガン細胞などの動物細胞の増殖制御に関わる幅広い産業と医療の分野への応用が考えられる。

【0015】実施例1

Bacillus carbophilus Kasumi 6のスラントより、*Tryptosoye-Broth* 培地(日本製薬)100ml(500ml容三角フラスコ)に、一白金耳接種後、30℃、48時間、ロータリーシェーカー(250rpm)にて培養したところ、吸光度OD 600nmで3.0まで生育し、3,000rpm、10分間の遠心分離により、当該菌の菌体を得ることができた。

【0016】実施例2

Bacto Antibiotic Medium 3(商品名)(Difco社; BAM3と略)又はそれを水で2倍に希釈した培地(BAM3/2と略)に寒天(和光純薬)1.5%になるように加えて、培地として使用する。尚、BAM3/2の場合にはKC1を1%になるように加えて使用した(BAM3/2+KC1と略)。BAM3又はBAM3/2+KC1培地に寒天を加えて、120℃20分滅菌後、直径9cmのプラスチックシャーレに15~20ccを分注し、固化させた。*Bacillus carbophilus Kasumi* 6をこのような培地に塗抹して、44℃で培養しても生育することはできなかったが、これにカーボングラファイト(東洋カーボン)又は活性炭を適量ふりかけて培養することにより、生育がみられた。アルミナ粉末、ガラス粉末を同様に使用してもこの効果は見られなかつた。尚、当該の菌株はBAM3又はBAM3/2+

KC1の寒天シャーレ培地上にカーボングラファイト粉末を適量ふりかけて培養することにより分離されてきた菌株である。

【0017】実施例3

BAM3又はBAM3/2寒天培地をシグナル発生菌側に使用し、シグナル受容菌側にはBAM3/2+KC1寒天培地を使用し、直径9cmのプラスチック・シャーレ2枚を背中合わせに(ふた同士を重ねるようにして)重ねる。下側(シグナル発生菌側)のシャーレの寒天培地上に*Bacillus subtilis Marburg* 188(シグナル発生菌)を塗抹し、上側(シグナル受容菌側)のシャーレの寒天培地上には*Bacillus carbophilus Kasumi* 6を塗抹する。対照として下側(シグナル発生菌側)に菌を塗抹しないものを設定した。

【0018】結果は下側のプレートに菌がよく生育した時のみ上側のプレートに*Bacillus carbophilus Kasumi* 6の生育がみられた。一方、対照として下側のプレートに菌を塗抹しなかつたものでは上側のプレートに菌の発育は見られなかつた。これらのこととはカーボングラファイトの作用により致死条件からでも生育できるようになった菌株や、通常の条件下で活発に生育している菌株から発せられる信号により、その近傍にいる同じく致死条件下に生育できなかつた菌株を生育可能にかえたことを意味する。この信号は空気プラスチックを通過でき、さらにガラス、厚さ0.5mmの鉄板を通過できることから、熱伝達、電磁波ではなくて音波である。

【0019】実施例4

シグナル発生菌として*Bacillus subtilis* ATCC 6633を使用して、実施例3と同様に試験を行った結果、実施例3と同様の結果を得た。