Last time: ordered cauting
W/replacement 6/8 replacement.
o(dered h! (n-r)!
mordand
Ex. O Braile
o can be raised or not
O O (2 aptions)
The number of possible Braille letters!
can think of sampling from & raised, not vaised of we take 6 = r ordered sample (w/ repl-)
Theorem: Sampling Unordeed w/o replacement.

The num. of ways to draw r unordered samples from n w/o replacement is $\frac{n!}{r!(n-r)!} = \binom{n}{r} = \frac{n \cdot n \cdot choose r''}{r!(n-r)!}$ Binomial coefficient. $\frac{1}{3} \frac{1}{3} \frac{1}$ If order mattered: we should have $(n-r)! = \frac{n!}{n!}$ 2 (1,2) (1,3) (2,3) (2,3) (2,1) (3,1) (3,2) ordered Samples. In general: If I have an un orded sample

{a,b,c,...} of size r an ordered sample is a permutation of the unordered So I can make r! ordered samples from my mordered (# of ordered) = v! (# morderel) $\frac{n!}{(n-r)!} = r! \left(\text{# unordered} \right)$ So # unordered = $\frac{h'}{r'(n-r)!} = \binom{n}{r}$ I have 10 professors, hav many co-equal committees can I form w/ 4 members?

= 3.7.10

Ex. How many 5- card poker hands
are there in a deck of 52?

n=52

(52) $\approx 7.5 \text{ mil}$ $= \frac{52!}{5!(52-5)!}$

Ex. Jar w/ yellow, blue, orange, green marbles (1 of each)

Choose 3 dat random!

Samples

(all choices are equally

likely)

yellow and blue in my sample?

S = Sall samples of 3 from 4 3 w/o repl. and w/o ordering

$$E = \{ \{y, b, o\}, \} \}$$

$$|E| = 2$$

$$|S| = (3) = \frac{4!}{3!(4-3)!} = 4$$

$$|S| = 2/4 = 1/2.$$

Theorem: Unordered W/ Replacement.

The number of samples of size r that may be drawn from 12 w/o ordering mattering and w/ replacement is

(H orace)
D' = # Undrdered Bael
wrong
Et. (De) / ordered Samples: of size 2
(3) $(2,1)$ $(2,3)$ $(3,1)$ $((1,1))$ $(3,3)$
((1,2)((3,2)(1,3))(2,2)
extra MC replacente une allaw replacente
Unordered samples!
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Need a better argument:
Game of Partioning:
$\frac{\epsilon x}{n} = 5 \qquad r = 2$
Garre: lacus mana mana con Tour tition r
Gave how many ways can I partition r objects using n-1 walls
r=2 objects
r=2 objects n-1= 4 walls

 \mathcal{O} 01 Can use each configuration to create unordered sample ul repl. \$2,4} r=3 n=5# obj. = # of ways to
partition objects # Sample

want this cant flis p: how may ways can I walls? partion r objects Hirys I have: 000 0 -> in total I have r+n-1 things -> each partition I make is a certain permutation of them things # of waye to permite the r+n-l things is (r+n-1)!

Swap >objects are not distinct ad some for walls I can swap ony objects o w/ each other or ony walls weach other and get the Same partition (picture)

Ned to divide through by # of Such swaps tu get (r+n-1)! object swap I wall Swaps = # of distinct partitions I con make. 16 pascenges on a bus on a route w/5 hotels. Bus driver reords
how many passenges
get off at
each stop. Haw many possible records are there? Ex record # pressurers

hotel # pressurers

2 3
3 1
4 2
5 4 £2,2,2,3,4,4,5,5,5,5) unordued Sample (of size 10) from \$1,...,53

	w/ repl.	W/o repl.	
0		h',	
Sold			
00	n	(n-r)!	
			_
λ	(n+r-1)	\	
	(n+r-1)	$(N)_{\sim}$ N	
morland	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\binom{N}{r} = \frac{h'}{(n-r)!r'}$	
21,		- , ,	

Conditional Prol	sability		0			
	\circ	13	Political Aor B			
Ex.	501	238	739			
Women	782	123	965			
of wem Tot /	1283	36/	1644			
Q: If I randomly select a Student						
P(woman) = # women = 901 255%. # students (644						
Q: GIVEN the Strolut is in Buhofis the prob. they are a woman?						

 $P(A|B) = \frac{P(AB)}{P(B)}$ read as
"A given B"