Função Quadrática

Definição

Chama-se função quadrática, ou função polinomial do 2° grau, qualquer função f de IR em IR dada por uma lei da forma $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$, onde a, b e c são números reais e a $\neq 0$.

Vejamos alguns exemplos de função quadráticas:

1.
$$f(x) = 3x^2 - 4x + 1$$
, onde $a = 3$, $b = -4$ e $c = 1$

2.
$$f(x) = x^2 - 1$$
, onde $a = 1$, $b = 0$ e $c = -1$

3.
$$f(x) = 2x^2 + 3x + 5$$
, onde $a = 2$, $b = 3$ e $c = 5$

4.
$$f(x) = -x^2 + 8x$$
, onde $a = -1$, $b = 8$ e $c = 0$

5.
$$f(x) = -4x^2$$
, onde $a = -4$, $b = 0$ e $c = 0$

Gráfico

O gráfico de uma função polinomial do 2° grau, $y = ax^2 + bx + c$, com a $\neq 0$, é uma curva chamada **parábola**. Exemplo:

Vamos construir o gráfico da função $y = x^2 + x$:

Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos.

	Y N
X	y
-3	6
-2	2
-1	0
$-\frac{1}{2}$	$-\frac{1}{4}$
0	0
1	2
2	6

Observação:

Ao construir o gráfico de uma função quadrática $y = ax^2 + bx + c$, notaremos sempre que:

• se a > 0, a parábola tem a concavidade voltada para cima;

• se a < 0, a parábola tem a concavidade voltada para baixo;

Zero e Equação do 2º Grau

Chama-se zeros ou raízes da função polinomial do 2° grau $f(x) = ax^2 + bx + c$, $a \ne 0$, os números reais x tais que f(x) = 0.

Então as raízes da função $f(x) = ax^2 + bx + c$ são as soluções da equação do 2° grau $ax^2 + bx + c = 0$, as quais são dadas pela chamada fórmula de Bhaskara:

$$x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Temos:

$$f(x) = 0$$
 \Rightarrow $ax^2 + bx + c = 0$ \Rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

Observação

A quantidade de raízes reais de uma função quadrática depende do valor obtido para o radicando $\triangle = b^2 - 4 \cdot a \cdot c$, chamado discriminante, a saber:

- quando é positivo, há duas raízes reais e distintas;
- quando é zero, há só uma raiz real (para ser mais preciso, há duas raízes iguais);
- quando △ é negativo, não há raiz real.

FUNÇÃO QUADRÁTICA: DEFINIÇÃO E GRÁFICO

INTRODUÇÃO

Uma função é dita quadrática ou do 2º grau quando é do tipo:

$$f: R \rightarrow R$$

$$f(x) = ax^2 + bx + c.$$

Observe que o valor de "a" não pode ser zero, caso contrário, não seria uma função quadrática e sim afim. Essa restrição é apenas para o valor de "a", pois b e c podem ser iguais a zero perfeitamente, pois mesmo assim a função continuará sendo quadrática.

EXEMPLOS DE FUNÇÕES QUADRÁTICAS

$$f(x) = 8x^2 - 4x + 1$$
, onde $a = 8$, $b = -4$ e $c = 1$

$$f(x) = x^2 - 11$$
, onde $a = 1$, $b = 0$ e $c = -11$

$$f(x) = 2x^2 + 32x + 5$$
, onde $a = 2$, $b = 32$ e $c = 5$

$$f(x) = -x^2 + 0.8x$$
, onde $a = -1$, $b = 0.8$ e $c = 0$

$$f(x) = -3.4x^2$$
, onde $a = -3.4$, $b = 0$ e $c = 0$

$$f(x) = 2.34x^2 + 3.2x + 0.05$$
, onde $a = 2.34$, $b = 3.2$ e $c = 0.05$

$$f(x) = x^2 + x + 1$$
, onde $a = 1$, $b = 1$ e $c = 1$

GRÁFICO

O gráfico de uma função quadrática é uma curva denominada parábola. Veja a figura abaixo:

O COEFICIENTE "a"

Quando queremos construir um gráfico de uma função quadrática, uma das primeiras informações que temos que observar é o coeficiente a. Veja:

- Se o coeficiente a>0, a concavidade da parábola é para cima.
- Se o coeficiente a<0, a concavidade da parábola é para baixo.

O COEFICIENTE "c"

A letra c também nos dá uma informação muito importante. Com ela sabemos onde a parábola corta o eixo y. Veja:

EXEMPLO DA CONSTRUÇÃO DO GRÁFICO

Seja a função $f(x) = x^2 + 2x - 3$. Com o que aprendemos até agora, sabemos que:

- Como f é uma função quadrática, o gráfico é uma parábola.
- Como a>0 (a=1), a concavidade é para cima.
- Como b = -3, a parábola corta o eixo y no ponto (0, -3).

Construindo o gráfico com essas informações, temos:

