Risk

S&DS 265 / 565 Introductory Machine Learning ·Bias squared

Stochastic Gradient Descent and Bias-Variance Tradeoffs

September 26

Variance

Yale

Goings on

- Assignment 2 is out; due next Thursday
- Quiz 2 this Thursday
- Midterm: October 17 (in class)

Readings

			examples		classification	
4	Sept 19, 21	Stochastic gradient descent	CO SGD examples	Tue: Classification (continued) Thu: Stochastic gradient descent	ISL Section 6.2.2 ISL Section 10.7.2	Assn 1 in CO Assn 2 out
5	Sept 26, 28	Bias and variance, cross-validation	CO Bias- variance tradeoff CO Covid trends (revisited) CO California housing	Tue: Bias and variance Thu: Cross-validation	ISL Section 2.2 ISL Section 5.1	Quiz 2
6	Oct 3, 5	Tree-based	Trees and forests Visualizing trees	Tue: Trees	ISL Sections 8.1, 8.2	Assn 2 in

A logistic regression model is built to predict if an individual will have greater than the median income (Y = 1) or less than the median income (Y = 0) from the number of months of education X they have received. The model takes the form

$$\mathbb{P}\left(Y \,=\, 1|\, X \,=\, x
ight) = rac{e^{x/6-24}}{1+e^{x/6-24}}$$

Outline for today

- Stochastic gradient descent (redux)
- Regularization
- Jupyter notebook example
- Bias-variance tradeoffs

SGD idea

- For each parameter β_j , see what happens to the loss if that parameter is increased a little bit.
- If the loss goes down (up), then increase (decrease) β_j proportionately
- Do this simultaneously for all of the parameters
- Rinse and repeat

Stochastic gradient descent

Initialize all parameters to zero: $\beta_j = 0, j = 1, ..., p$.

Read through the data one record at a time, and update the model.

- Read data item x
- 2 Make a prediction $\hat{y}(x)$
- Observe the true response/label y
- **4** Update the parameters β so \hat{y} is closer to y

7

Stochastic gradient descent

Suppose we are doing *linear regression*. We initialize all parameters to zero: $\beta_j = 0, j = 1, ..., p$.

We read through the data one record at a time, and update the model.

- Read data item x
- ② Make a prediction $\widehat{y}(x) = \sum_{j=1}^{p} \beta_j x_j$
- Observe the true response/label y
- **4** Update the parameters β so \hat{y} is closer to y

Change β_i by a little bit:

$$\beta_j \to \beta_j + \varepsilon$$

Change β_i by a little bit:

$$\beta_j \to \beta_j + \varepsilon$$

What happens to the squared error?

$$(y - \widehat{y})^2 \to (y - \widehat{y} - \varepsilon x_j)^2$$

$$\approx (y - \widehat{y})^2 + \underbrace{-2(y - \widehat{y})x_j}_{\text{derivative of loss}} \varepsilon$$

ć

Change β_i by a little bit:

$$\beta_j \to \beta_j + \varepsilon$$

What happens to the squared error?

$$(y - \widehat{y})^2 \to (y - \widehat{y} - \varepsilon x_j)^2$$

$$\approx (y - \widehat{y})^2 + \underbrace{-2(y - \widehat{y})x_j}_{\text{derivative of loss}} \varepsilon$$

Use adjustment

$$\beta_j \rightarrow \beta_j - \eta \cdot \text{derivative of loss}$$

$$= \beta_j + \eta \cdot 2(y - \widehat{y})x_j$$

ć

Change β_i by a little bit:

$$\beta_j \to \beta_j + \varepsilon$$

What happens to the squared error?

$$(y - \widehat{y})^2 \to (y - \widehat{y} - \varepsilon x_j)^2$$

$$\approx (y - \widehat{y})^2 + \underbrace{-2(y - \widehat{y})x_j}_{\text{derivative of loss}} \varepsilon$$

Use adjustment

$$\beta_j \rightarrow \beta_j - \eta \cdot \text{derivative of loss}$$

$$= \beta_j + \eta \cdot 2(y - \widehat{y})x_j$$

Squared error then decreases:

$$(y - \hat{y})^2 \approx (y - \hat{y})^2 - \eta \cdot \text{derivative of loss squared}$$

C

SGD for general loss

Suppose $L(y, \beta^T x)$ is the loss for an input (x, y), e.g., $(y - \beta^T x)^2$

SGD update, for a small step size $\eta > 0$:

$$\beta_{j} \longleftarrow \beta_{j} - \eta \frac{\partial L(y, \boldsymbol{\beta}^{T} \boldsymbol{x})}{\partial \beta_{j}}$$
$$\boldsymbol{\beta} \longleftarrow \boldsymbol{\beta} - \eta \nabla_{\boldsymbol{\beta}} L(y, \boldsymbol{\beta}^{T} \boldsymbol{x}) \quad \text{(vector notation)}$$

"Batch" gradient descent uses the entire training set in each step of gradient descent.

Stochastic gradient descent computes a quick approximation to this gradient, using only a single or a small "mini-batch" of data points

Batch vs. stochastic gradient descent

- The average derivative over a mini-batch can be thought of as a noisy version of the average derivative over the entire data set
- (Which can in turn be thought of as a sample estimate of a population)
- The stochastic gradient is computed more cheaply, and updating the parameters makes progress more quickly

Batch vs. stochastic gradient descent

https://wikidocs.net/3413

SGD Update:

$$\beta_j \longleftarrow \beta_j + \eta(y - p(x))x_j$$

$$\beta_j x_j \longleftarrow \beta_j x_j + \eta (y - p(x)) x_j^2$$

$$p(x) = \frac{1}{1 + \exp(-\beta^T x)}$$

Case checking:

• Suppose y = 1 and probability p(x) is high?

SGD Update:

$$\beta_j \longleftarrow \beta_j + \eta(y - p(x))x_j$$

$$\beta_j x_j \longleftarrow \beta_j x_j + \eta (y - p(x)) x_j^2$$

$$p(x) = \frac{1}{1 + \exp(-\beta^T x)}$$

- Suppose y = 1 and probability p(x) is high? *small change*
- Suppose y = 1 and probability p(x) is small?

SGD Update:

$$\beta_j \longleftarrow \beta_j + \eta(y - p(x))x_j$$

$$\beta_j x_j \longleftarrow \beta_j x_j + \eta (y - p(x)) x_j^2$$

$$p(x) = \frac{1}{1 + \exp(-\beta^T x)}$$

- Suppose y = 1 and probability p(x) is high? *small change*
- Suppose y = 1 and probability p(x) is small? big change \uparrow
- Suppose y = 0 and probability p(x) is small?

SGD Update:

$$\beta_j \longleftarrow \beta_j + \eta(y - p(x))x_j$$

$$\beta_j x_j \longleftarrow \beta_j x_j + \eta (y - p(x)) x_j^2$$

$$p(x) = \frac{1}{1 + \exp(-\beta^T x)}$$

- Suppose y = 1 and probability p(x) is high? *small change*
- Suppose y = 1 and probability p(x) is small? big change \uparrow
- Suppose y = 0 and probability p(x) is small? *small change*
- Suppose y = 0 and probability p(x) is big?

SGD Update:

$$\beta_j \longleftarrow \beta_j + \eta(y - p(x))x_j$$

$$\beta_j x_j \longleftarrow \beta_j x_j + \eta (y - p(x)) x_j^2$$

$$p(x) = \frac{1}{1 + \exp(-\beta^T x)}$$

- Suppose y = 1 and probability p(x) is high? *small change*
- Suppose y = 1 and probability p(x) is small? big change \uparrow
- Suppose y = 0 and probability p(x) is small? *small change*
- Suppose y = 0 and probability p(x) is big? big change \downarrow

SGD: choice of learning rate

Often the learning rate η_t is adjusted experimentally to get good convergence properties for a particular problem

We require that η_t decreases as t—the number of steps so far—increases

SGD: Regularization

A "ridge" penalty $\frac{1}{2}\lambda\sum_{j=1}^d \beta_j^2$ is easily handled.

Gradient changes by an additive term $2\lambda\beta_j$. Update becomes

$$\beta_j \leftarrow \beta_j + \eta \{ (y - p(x))x_j - \lambda \beta_j \}$$

$$= (1 - \eta \lambda)\beta_j + \eta (y - p(x))x_j$$

Check that this "does the right thing" whether β_j wants to be large positive or negative.

• The penalty shrinks β_j toward zero

Recall from demo

Each bar indicates an estimated parameter $\hat{\beta}_{j}$. The estimates from SGD are very similar to those obtained using the package.

Bias: How much are we off—on average?

Variance: How variable are we—on average?

Bias: $\theta - \mathbb{E}\widehat{\theta}$

Variance: $\mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2$

Examples of θ , $\widehat{\theta}$:

Estimating height, population, election outcome, ad click rate...

Bias: $\theta - \mathbb{E}\widehat{\theta}$

Variance: $\mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2$

Bias:
$$\theta - \mathbb{E}\widehat{\theta}$$

Variance:
$$\mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2$$

- $\widehat{\theta}$ is an estimate from a sample
- E is the expectation (average) with respect to the sample
- So $\mathbb{E}\widehat{\theta}$ is the average estimate
- We can only directly compute $\widehat{\theta}$ for the sample we have
- We don't know θ

In machine learning, bias and variance are two sides of a coin: As squared bias goes up, variance goes down (and vice-versa)

Bias-variance tradeoff

$$Risk = Bias^2 + Variance$$

Bias-variance tradeoff

$$\mathbb{E}(\theta - \widehat{\theta})^2 = \mathsf{Bias}(\widehat{\theta})^2 + \mathsf{Variance}(\widehat{\theta})$$

Bias-variance tradeoff

$$\mathbb{E}(\theta - \widehat{\theta})^2 = (\theta - \mathbb{E}\widehat{\theta})^2 + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2$$

$$\mathbb{E}(\theta - \widehat{\theta})^2 = \mathbb{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2$$

$$\begin{split} \mathbb{E}(\theta - \widehat{\theta})^2 &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2\mathbb{E}\left\{(\theta - \mathbb{E}\widehat{\theta})(\widehat{\theta} - \mathbb{E}\widehat{\theta})\right\} + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \end{split}$$

$$\begin{split} \mathbb{E}(\theta - \widehat{\theta})^2 &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2\mathbb{E}\left\{(\theta - \mathbb{E}\widehat{\theta})(\widehat{\theta} - \mathbb{E}\widehat{\theta})\right\} + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2(\theta - \mathbb{E}\widehat{\theta})\mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta}) + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \end{split}$$

$$\begin{split} \mathbb{E}(\theta - \widehat{\theta})^2 &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2\mathbb{E}\left\{(\theta - \mathbb{E}\widehat{\theta})(\widehat{\theta} - \mathbb{E}\widehat{\theta})\right\} + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2(\theta - \mathbb{E}\widehat{\theta})\mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta}) + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \end{split}$$

Proof:

$$\begin{split} \mathbb{E}(\theta - \widehat{\theta})^2 &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2\mathbb{E}\left\{(\theta - \mathbb{E}\widehat{\theta})(\widehat{\theta} - \mathbb{E}\widehat{\theta})\right\} + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2(\theta - \mathbb{E}\widehat{\theta})\mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta}) + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{B}\mathrm{ias}(\widehat{\theta})^2 + \mathrm{Variance}(\widehat{\theta}) \end{split}$$

23

If
$$Y = \theta + \text{noise}$$
, with $\mathbb{E}(\text{noise}) = 0$ and $Var(\text{noise}) = \sigma^2$,

$$Risk = \mathbb{E}[(Y - \widehat{\theta})^2] = Bias^2 + Variance + \sigma^2$$

Example: Regularization

Suppose that $\mathbb{E}(Y) = \theta$ and we estimate $\widehat{\theta}$ by minimizing $(Y - \theta)^2 + \lambda \theta^2$

Then $\hat{\theta} = \frac{Y}{1+\lambda}$. What are the squared bias and variance?

$$\mathsf{Bias}^2 = \theta^2 \left(\frac{\lambda}{1+\lambda}\right)^2$$

$$\mathsf{Variance} = \left(\frac{1}{1+\lambda}\right)^2 \mathsf{Variance}(Y)$$

Intuition

An informal description of the bias-variance tradeoff:

- As the fitted curve becomes more "wiggly" (complex) we're seeing higher variance
- Averaging over different datasets, the "wiggles" average out to give a good fit to the data — this is low bias
- But we can't do this averaging in practice, because we only have a single dataset

Recall: Covid example

What did we learn today?

- In SGD, a parameter is updated according to how much the loss changes when that parameter is changed by a little bit
- Mean squared error splits into squared bias plus variance
- As model complexity increases, squared bias decreases while variance increases