MECÁNICA COMPUTACIONAL – INGENIERÍA EN INFORMÁTICA

PRIMER PARCIAL - MÉTODO DE ELEMENTOS FINITOS

17 de octubre de 2014

Dr. Norberto Marcelo Nigro – Msc. Gerardo Franck – Ing. Diego Sklar

Ejercicio 1

Resolver la ecuación del calor: $k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + Q = 0$ bajo las condiciones de contorno mostradas a continuación:

Lado 1-5 y 3-4:
$$q = 0 [W/m^2]$$

Lado 4-5:
$$q = 20 [W/m^2]$$

Lado 2-3:
$$q = -20 [W/m^2]$$

Coordenadas

Nodo	Χ	Υ
1	0.0	0.0
2	1.0	0.0
3	1.0	1.0
4	0.5	1.3
5	0.0	1.0

- a) Dada la malla mostrada en la Figura 1, calcular y dejar expresado:
 - Matrices y vectores elementales
 - Matriz y vector global del sistema
 - Temperatura y flujo de calor en el punto (0.5; 0.5)
- b) Dada la malla mostrada en la Figura 2, calcular y dejar expresado:
 - Matrices y vectores elementales
 - Matriz y vector global del sistema
 - Temperatura y flujo de calor en el punto (0.5; 0.5)

Figura 1

Figura 2

Ejercicio 2

Se ha resuelto por elementos finitos un problema de tensión plana utilizando funciones de forma lineales, donde se obtuvieron los siguientes resultados:

Nodo	Х	У	u (mm)	v (mm)
1	0.0	0.0	0.0	0.0
2	1.0	0.0	0.7189	0.66431
3	2.0	0.0	-0.05839	0.0
4	2.0	0.5	0.55891	1.7722
5	1.25	0.5	0.40925	0.89222
6	0.0	0.5	0.0	0.0
7	0.0	1.0	0.0	0.0
8	1.0	1.0	-0.13365	0.45779
9	2.0	1.0	0.17009	3.9252
			•	•

Figura 3

Dada la malla mostrada en la Figura 3, calcular en los puntos (0.75; 0.75) y (1.5; 0.75) los desplazamientos, las deformaciones y las tensiones. ¿Cuál será la magnitud de la tensión y la deformación en cualquier punto cercano al (0.75; 0.75)? Justifique.

Ejercicio 3

Resolver por el Método de Residuos Ponderados la siguiente ecuación diferencial:

$$\frac{d}{dx}\left(\kappa \frac{d\varphi}{dx}\right) + Q = 0 \qquad \forall x \in [0,1]$$

$$\varphi(x=0)=1;$$
 $\frac{d\varphi}{dx}(x=1)=1$

usando como aproximante $\varphi \approx \hat{\varphi} = \psi(x) + \sum_m a_m \, N_m(x)$, con N_m funciones trigonométricas. Considerar $\kappa = 1$ y Q = -10. Use una ponderación por colocación puntual utilizando 3 funciones base y grafique la solución. Defina una función $\psi(x)$ de forma tal que satisfaga ambas condiciones de contorno.

SOLUCION EXAMEN 1

Ejercicio 1 – Figura 1

Elemento e₁

Matriz de rigidez:

0.3	-0.64
1.0	-1.3
-1.3	1.94
	1.0

Elemento e₂

Matriz de rigidez:

	•	
0.7462	-0.5538	-0.1923
-0.5538	0.7462	-0.1923
-0.1923	-0.1923	0.3846
0.1323	0.1323	0.5040

Vector de cargas:

Vector de cargas:

2	1.6667
2:	1.6667
2:	1.6667
2:	2.0007

Temperat	ura

T ₁	100.0
T ₂	100.0
T ₃	153.9501
T ₄	181.7922
T ₅	162.1104

Elemento e₃

Matriz de rigidez:

0.34	-0.64	0.3
-0.64	1.94	-1.3
0.3	-1.3	1.0

Vector de cargas:

-1.667	
-1.667	
8.333	

Matriz global

1.0862	-0.5538	0.0	0.1077	-0.64
-0.5538	1.0862	-0.64	0.1077	0.0
0.0	-0.64	1.94	-1.3	0.0
0.1077	0.1077	-1.3	2.3846	-1.3
-0.64	0.0	0.0	-1.3	1.94

Vector de cargas:

30.0
20.0
-1.6667
44.1643
14.1643

Temperatura y flujo de calor en (0.5; 0.5)

$$N_1(x, y) = 1 - x - 0.3846y$$

$$N_2(x, y) = x - 0.3846y$$

$$N_3(x, y) = 0.7692y$$

 $T(0.5,0.5) = N_1(0.5,0.5)T_1 + N_2(0.5,0.5)T_2 + N_3(0.5,0.5)T_4$

T(0.5,0.5) = 0.3077 * 100 + 0.3077 * 100 + 0.3846 * 181.7922 =**131.4585**

$$q_x = -k\left(\frac{\partial N_1}{\partial x}T_1 + \frac{\partial N_2}{\partial x}T_2 + \frac{\partial N_3}{\partial x}T_4\right) = -1(-1*100 + 1*100 + 0*181.7922) = \mathbf{0}$$

$$q_y = -k\left(\frac{\partial N_1}{\partial y}T_1 + \frac{\partial N_2}{\partial y}T_2 + \frac{\partial N_3}{\partial y}T_4\right) = -1(-0.3846*100 - 0.3846*100 + 0.7692*181.7922) = -\mathbf{62.9171}$$

Elemento e₁

Matriz de rigidez:

1.0	-0.5	-0.5
-0.5	0.5	0.0
-0.5	0.0	0.5

Vector de cargas:

16.667	
16.667	
16.667	

Elemento e₂

Matriz de rigidez:

0.5	-0.5	0
-0.5	1.0	-0.5
0	-0.5	0.5

Vector de cargas:

6.667	ı
6.667	
16.667	l

Temperatura

T ₁	100.0
T ₂	100.0
T ₃	157.6348
T ₄	173.1605
T ₅	175.6890

Elemento e₃

Matriz de rigidez:

0.5667	-0.8333	0.2667
-0.8333	1.6667	-0.8333
0.2667	-0.8333	0.5667

Vector de cargas:

5.0	
10.8310	
10.8310	

Matriz global

1.0 -0.5 0.0 0.0 -0.5 -0.5 1.0 -0.5 0.0 0.0 0.0 -0.5 1.5667 -0.833 -0.233 0.0 0.0 -0.833 1.667 -0.833 -0.5 0.0 -0.233 -0.833 1.5667

Vector de cargas:

16.667
23.333
11.667
10.8310
44.1643

Temperatura y flujo de calor en (0.5; 0.5)

$$N_1(x, y) = 1 - x - y$$

$$N_2(x, y) = x$$

$$N_3(x,y) = y$$

$$T(0.5,0.5) = N_1(0.5,0.5)T_1 + N_2(0.5,0.5)T_2 + N_3(0.5,0.5)T_5$$

$$T(0.5,0.5) = 0 * 100 + 0.5 * 100 + 0.5 * 175.6890 =$$
137.8445

$$q_x = -k\left(\frac{\partial N_1}{\partial x}T_1 + \frac{\partial N_2}{\partial x}T_2 + \frac{\partial N_3}{\partial x}T_4\right) = -1(-1*100 + 1*100 + 0*181.7922) = \mathbf{0}$$

$$q_y = -k\left(\frac{\partial N_1}{\partial y}T_1 + \frac{\partial N_2}{\partial y}T_2 + \frac{\partial N_3}{\partial y}T_4\right) = -1(-0.3846*100 - 0.3846*100 + 0.7692*181.7922) = -62.9171$$

Corroboración elemento e_2 : (misma temperatura en el nodo, distinto flujo por discontinuidad)

$$N_1(x, y) = 1 - y$$

$$N_2(x, y) = -1 + x + y$$

$$N_3(x,y) = 1 - x$$

$$T(0.5,0.5) = N_1(0.5,0.5)T_2 + N_2(0.5,0.5)T_3 + N_3(0.5,0.5)T_5$$

$$T(0.5,0.5) = 0.5 * 100 + 0 * 157.6348 + 0.5 * 175.6890 = 137.8445$$

$$q_x = -k\left(\frac{\partial N_1}{\partial x}T_2 + \frac{\partial N_2}{\partial x}T_3 + \frac{\partial N_3}{\partial x}T_5\right) = -1(0*100 + 1*157.6348 - 1*175.6890) = \mathbf{18.0542}$$

$$q_y = -k \left(\frac{\partial N_1}{\partial y} T_2 + \frac{\partial N_2}{\partial y} T_3 + \frac{\partial N_3}{\partial y} T_5 \right) = -1(-1*100 + 1*157.6348 + 0*181.7922) = -57.6348$$

Ejercicio 2

Punto (0.75; 0.75) asociado al elemento triangular (6 5 8)

$$N_{1}(x,y) = 1.2 - 0.8x - 0.4y$$

$$N_{2}(x,y) = 0.8 + 0.8x - 1.6y$$

$$N_{3}(x,y) = -1 + 2y$$

$$u(0.75,0.75) = N_{1}(0.75,0.75)u_{6} + N_{2}(0.75,0.75)u_{5} + N_{3}(0.75,0.75)u_{8} = 0.3 * 0.0 + 0.2 * 0.40925 - 0.5 * 0.13365 = 0.015$$

$$v(0.75,0.75) = N_{1}(0.75,0.75)v_{6} + N_{2}(0.75,0.75)v_{5} + N_{3}(0.75,0.75)v_{8} = 0.3 * 0.0 + 0.2 * 0.8922 + 0.5 * 0.45779 = 0.4073$$

$$\varepsilon_{x} = b_{1}u_{6} + b_{2}u_{5} + b_{3}u_{8} = -0.8 * 0.0 + 0.8 * 0.40925 + 0.0 * 0.13365 = 0.3274$$

$$\varepsilon_{y} = c_{1}v_{6} + c_{2}v_{5} + c_{3}v_{8} = -0.4 * 0.0 - 1.6 * 0.8922 + 2 * 0.4578 = -0.5120$$

$$\varepsilon_{xy} = c_{1}u_{6} + c_{2}u_{5} + c_{3}u_{8} + b_{1}v_{6} + b_{2}v_{5} + v_{3}b_{8} = -0.2083$$

$$\begin{bmatrix} \tau_{x} \\ \tau_{y} \\ \tau_{xy} \end{bmatrix} = \overline{D_{3x3}} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{xy} \end{bmatrix} = 1e8 \begin{bmatrix} 4.0110 \\ -9.5481 \\ -1.6826 \end{bmatrix}$$

Punto (1.5; 0.75) asociado al elemento cuadrangular (5 4 9 8)

$$N_1(x,y) = 5.333 - 2.666x - 5.333y + 2.666xy$$

$$N_2(x,y) = -3.333 + 2.666x + 3.333y - 2.666xy$$

$$N_3(x,y) = 1 - x - 2y + 2xy$$

$$N_4(x,y) = -2 + x + 4y - 2xy$$

$$u(1.5,0.75) = N_1(1.5,0.75)u_5 + N_2(1.5,0.75)u_4 + N_3(1.5,0.75)u_9 + N_4(1.5,0.75)u_8$$

$$u(0.5,0.75) = 0.333 * 0.4093 + 0.1667 * 0.5589 + 0.25 * 0.1701 - 0.25 * 0.1337 = \mathbf{0.2387}$$

$$v(1.5,0.75) = N_1(1.5,0.75)v_5 + N_2(1.5,0.75)v_4 + N_3(1.5,0.75)v_9 + N_4(1.5,0.75)v_8$$

$$v(0.5,0.75) = 0.333 * 0.8922 + 0.1667 * 1.7722 + 0.25 * 3.9252 + 0.25 * 0.4578 = \mathbf{1.6885}$$

$$\varepsilon_x = b_1 u_5 + b_2 u_4 + b_3 u_9 + b_4 u_8 + (d_1 u_5 + d_2 u_4 + d_3 u_9 + d_4 u_8)y|_{0.75} = \mathbf{0.2516}$$

$$\varepsilon_y = c_1 u_5 + c_2 u_4 + c_3 u_9 + c_4 u_8 + (d_1 v_5 + d_2 v_4 + d_3 v_9 + d_4 v_8)x|_{1.5} = \mathbf{2.0119}$$

$$\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \mathbf{1.4385}$$

$$\begin{bmatrix} \tau_x \\ \tau_y \\ \tau_{xy} \end{bmatrix} = \overline{D_{3x3}} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_{xy} \end{bmatrix} = \mathbf{1.4385}$$

-- Aproximada -- Exacta

Ejercicio 3

$$\widehat{\emptyset} = \psi + \sum_{m=1}^{3} a_m N_m; \qquad \psi = x + 1; \ N_m = \sin\left(\frac{(2*m-1)\pi x}{2}\right)$$

$$K_{lm} = -\left(\frac{(2*m-1)\pi}{2}\right)^2 \sin\left(\frac{(2*m-1)\pi x}{2}\right)\Big|_{x_l}$$

$$\begin{bmatrix} -0.9442 & -20.5162 & -56.9895 \\ -1.7447 & -15.7024 & 43.6179 \\ -2.2796 & 8.4981 & 23.6058 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix} \quad \Rightarrow \quad \underline{\alpha} = \begin{bmatrix} -5.2953 \\ -0.1461 \\ -0.0351 \end{bmatrix}$$

$$\widehat{\emptyset} = x + 1 - 5.2953 \sin\left(\frac{\pi x}{2}\right) - 0.1461 \sin\left(\frac{3\pi x}{2}\right) - 0.0351 \sin\left(\frac{5\pi x}{2}\right)$$