§1 10-11

Lemma 1.1

Conjugacy is an equivalence relation. $x \sim y$ if $x = gyg^{-1}$ for some $g \in G$

Theorem 1.2

Any two k-cycles in S_n are conugate. Moreover, any conjugate of a k-cycle is a

Proof. $\alpha = (a_1 a_2 \dots a_k) \quad \beta = (b_1 b_2 \dots b_k)$ Let σ be a bijection with $\sigma(b_i) = a_i$ for $1 \le i \le k$ Then $\sigma\beta\sigma^{-1}=\alpha$. Claiming that β and α are conjugate to one another. If $x \notin \{a_1 \ldots a_k\}$, then $\sigma\alpha\sigma^{-1}(x)=x$

Example 1.3
$$\sigma \beta \sigma^{-1}(a_i) = \sigma \beta b_i = \sigma b_{i+1} = a_{i+1} = \alpha(a)$$

§1.1 A_4 is the group of rigid motions of a tetrahedron

Note 1.4. A_4 is the subgroup of even elements in S_4 .

identity: $[e] = \{()\}$ $[(12)(34)] = \{(12)(34), (13)(24), (14)(23)\}$ Clockwise rotations about a face: $[(123)] = \{(123), (134), (142), (243)\}$

Counter clockwise rotations about a face: $[(132)] = \{(132), (143), (124), (234)\}$

Note 1.5. A_4 has no 6 element subgroup even though 6 divides $|A_4|$

§2 Isomorphisms

Definition 2.1. (G,\cdot) and (H,\circ) are isomorphic if there exists a bijection $\phi:G\to H$ such that $\phi(a \cdot b) = \phi(a) \circ \phi(b)$ for all $a, b \in G$.

This would make ϕ an isomorphism.

G"equal sign with simon top" H

Note 2.2. Let $H \subset G$ be a subgroup. It is possible for $x \not\sim y$ in H while $x \sim y$ in G. This is a distinguishing between \sim_H and \sim_G .

Example 2.3

 $H = \langle (1 \ 2 \dots 17) \rangle$

H is cyclic and abelian.

It has 17 conjugacy classes.

All nontrivial elements of H are conjugate in S_{17} .

Note 2.4. In an abelian group, two elements are conjugate iff they are equal. If H is abelian, then $(x \sim y) \Leftrightarrow x = aya^{-1} = y$