Artificial Intelligent and Its Application

Laboratory 3: Scikit-learn

Dr Patrick Chan

School of Computer Science and Engineering
South China University of Technology

1

Outline

- A brief introduction to Scikit-learn (sklearn)
- Data Pre-processing
- Training
- Evaluation
- Dataset Generation
- Unsupervised learning

What is Scikit-learn?

- A power library for machine learning
- User-friendly APIs
- Based on NumPy and SciPy, run fast

Why Scikit-learn?

- Contains a lot of ML algorithms
 - □ Decision tree, SVM, k-NN, MLP, etc
- Consistent APIs
 - □ Same standard interface for all algorithms
- Data processing
 - ☐ For example: scaling, sampling
- Integrate open source datasets
 - ☐ For example: mnist, iris

Install Scikit-learn

- Use Anaconda to install Scikit-learn
 - □conda install -c anaconda scikitlearn

Right click

5

Install Scikit-learn

- Use Anaconda to install Scikit-learn
 - □conda install -c anaconda scikitlearn

scikit-learn will be downloaded and installed

Install Scikit-learn

- Check if scikit-learn is installed
 - ☐ Try to import **sklearn**

```
import sklearn
sklearn

<module 'sklearn' from 'C:\\Users\\xhote-packages\\sklearn\\_init_.py'>
```

7

Simple Example

```
Data Preparation

Data Prepara
```


Type of Functions

- 1. Dataset Preparation
- 2. Data Preprocessing
- 3. Classifier
- 4. Training/Prediction
- 5. Evaluation
- 6. Plotting
- 7. Unsupervised Learning

Course Introduction 9

DATASET PREPARATION

Dataset Format

- Dataset used in Scikit-learn should be in numpy array format
- Depend on the file type, different functions in libraries can be used to load the dataset into the memory
- Data stored in other format should be converted to numpy

Dataset Preparation

Load Data from a file

Example:

Dataset in npy (numpy format)

dataset = numpy.load(filename)

Dataset in csv (pandas should be used)

- df = pandas.read csv(filename)

Load build-in Data

Scikit-learn contains some well-known datasets in a library called datasets

■ from sklearn import datasets

E.g. mnist dataset

- datasets.load digits()
 - ☐ Both data and labels are **numpy array**

Dataset Preparation

Load build-in Data

Other well-known datasets

- datasets.load iris()
- datasets.load boston()
- datasets.load_wine()
- datasets.load breast cancer()
- datasets.load_diabetes()

Reference:

https://scikit-learn.org/stable/datasets/index.html

Generation

Generate data randomly

- make_classification([samNum, featNum, claNum])
 - ☐ samNum: sample #
 - ☐ featNum: **feature** #
 - □ claNum: class #
 - □ return: numpy arrays: data and labels

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification

15

Dataset Preparation

Generation

Generate data followed Normal distribution

- - □ mean: array, mean of each dimenion
 - □ cov: matrix, the covariance matrix
 - ☐ samNum: sample #
 - ☐ featNum: **feature** #
 - □ claNum: class #
 - □ return: numpy arrays: data and labels

Dataset Preparation

Generation

More functions for generating data

- make_biclusters(shape, clusterNum)
- make circles([samNum])

Reference:

https://scikit-learn.org/stable/modules/classes.html #samples-generator

17

DATA PREPROCESSING

Scaling

Value Scaling

- from sklearn.preprocessing import MinMaxScaler
- Transform the value and the label

Data Preprocessing

Scaling

- MinMaxScaler([FectRange, copy])
 - □ Normalize the features values into a range
 - ☐ FectRange: tuple, normalized range
 - □ copy: bool, True: the old data will be copied
- StandardScalar()
 - $\Box x = (x u) / s$, where u, s are mean and standard deviation
- Normalizer()
 - □ Normalize samples individually to unit norm

Scaling

An example

Data Preprocessing

Scaling

Label Encoding

- LabelEncoder()
 - □ Encode labels with value between 0 and c-1,c is the class number

Reference:

https://scikit-learn.org/stable/modules/classes.html# module-sklearn.preprocessing

Training and Test Set

Split dataset into training and test set

- train_test_split(data, label[,
 test size])
 - □data: numpy array, all data
 - □label: all corresponding labels
 - ☐ test size: float, proportion of the test set
 - return: numpy arrays: training set, test set, training labels and test labels

Course Introduction 23

Data Preprocessing

Training and Test Set

Example

Feature Selection

- VarianceThreshold([threshold])
 - □ Remove feature with low variance
 - □ threshold: float, remove the features with variance not larger than threshold

2 features' variance are both 0, will be removed

25

Data Preprocessing

Feature Selection

Select k features with highest scores

- selectKBest([score func, k]):
 - □ score func: a function, to calculate the scores

Select % features with highest scores

- selectPercentile([score_func,
 percentile])
 - □ score func: a function, to calculate the scores
- Reference:

https://scikit-learn.org/stable/modules/feature selection.html

- Given a dataset with 4 samples
 - [[1, 2, 5, 6, 3], [1, 3, 8, 5, 5], [2, 5, 2, 6, 4], [1, 6, 1, 5, 4]]
 - □ Remove the features whose variance is <= 0.3
 - □ Select the best 2 feature by Chi-squared stats

Data Preprocessing

Resampling

Resampling for imbalance problem

- conda install -c conda-forge imbalanced-learn
 - ☐ Same as installing sklearn

Oversampling

- from imblearn.over_sampling import RandomOverSampler
- RandomOverSampler([sam_strategy, random state])
 - ☐ sam strategy: specify how to resample the dataset
 - ☐ random state: control randomization of algorithm

Reference:

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.RandomOverSampler.html

Course Introduction 29

Data Preprocessing

Oversampling

```
from collections import Counter
X, y = make_classification(n_samples=5000, n_features=2, n_informative=2,
                          n redundant=0, n repeated=0, n classes=3,
                           n_clusters_per_class=1,
                          weights=[0.01, 0.05, 0.94],
                           class_sep=0.8, random_state=0)
sorted(Counter(y).items())
                                        Before sampling:
                                        Class0
                                                       64 samples
[(0, 64), (1, 262), (2, 4674)]
                                        Class1
                                                       262 samples
                                        Class2
                                                       4674 samples
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X, y)
sorted(Counter(y_resampled).items())
                                        After sampling:
[(0, 4674), (1, 4674), (2, 4674)]
                                        Each class
                                                     4674 samples
```


Undersampling

- from imblearn.under_sampling import RandomUnderSampler
- RandomUnderSampler([sam_strategy, random state])
 - □ sam strategy: specify how to resample the dataset
 - ☐ random state: control randomization of algorithm

Reference:

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html

Course Introduction 31

Data Preprocessing

Undersampling

```
from collections import Counter
X, y = make_classification(n_samples=5000, n_features=2, n_informative=2,
                           n redundant=0, n repeated=0, n classes=3,
                           n clusters per class=1,
                           weights=[0.01, 0.05, 0.94],
                           class_sep=0.8, random_state=0)
sorted(Counter(v).items())
                                      Before sampling:
                                      Class0
                                                      64 samples
[(0, 64), (1, 262), (2, 4674)]
                                      Class1
                                                      262 samples
                                                      4674 samples
                                      Class2
from imblearn.under_sampling import RandomUnderSampler
rus = RandomUnderSampler(random_state=0)
X resampled, y resampled = rus.fit resample(X, y)
sorted(Counter(y_resampled).items())
                                     After sampling:
[(0, 64), (1, 64), (2, 64)]
                                     Each class
                                                       64 samples
```


Resampling

Other resampling technique

- Over sampling
 - □ SMOTE ()
 - □ ADASYN ()
 - □ Reference:
 https://imbalanced-learn.org/en/stable/over_sampling.html
- Under sampling
 - ☐ ClusterCentroids()
 - ☐ EditedNearestNeighbours()
 - □ Reference:
 https://imbalanced-learn.org/en/stable/under_sampling.html

33

CLASSIFIER DEFINITION

Classifier

- Bayes Classifier
- Decision tree
- SVM
- K-NN
- MLP
- Random forest
- Ensemble

Classifier

Bayes Classifier

- from sklearn import GaussianNB
- cls = GaussianNB([priors, var smoothing])
 - □ priors: Prior probabilities of the classes. If specified the priors are not adjusted according to the data.
 - □ var_smoothing: Portion of the largest variance of all features that is added to variances for calculation stability
- Reference:

https://scikit-learn.org/stable/modules/classes.html# module-sklearn.naive_bayes

Decision Tree

- from sklearn import tree
- cls = tree.DecisionTreeClassifier
 ([max depth])
 - □ max_depth: maximum depth of the tree, no limitation by default
 - ☐ Supports multi-label classification

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Classifier

SVM

- from sklearn.svm import SVC
- cls = SVC([kernel, gamma])
 - □ kernel: str, specify the kernel type
 - □ gamma: kernel coefficient for "rbf", "poly" and "sigmoid"
 - ☐ Supports multi-label classification

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Classifier

K-NN

- from sklearn.neighbors import KNeighborsClassifier
- cls = KNeighborsClassifier
 ([n neighbors])
 - □ n_neighbors: Number of neighbors to use for kneighbors queries, 5 by default

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Classifier

MLP

- from sklearn.neural_network import
 MLPClassifier
- cls = MLPClassifier([activation, ..])
 - □ activation: str, activation function for the hidden layer, "relu" by default
 - □ hidden_layer_sizes: tuple, the ith number represents the number of neurons in the ith hidden layer
 - □ batch_size: int, decide how many samples are used for one update, min(200, n_samples) by default

MLP

- □ solver: str, the solver for weight optimization, "adam" by default
- □ alpha: float, L2 penalty (regularization term) parameter, 0.0001 by default
- □ learning_rate_init: float, initial learning rate, 0.001 by default, only used when solver="sgd"
- learning_rate: str, learning rate schedule, "constant"
 by default, only used when solver="sgd"
- □ max_iter: int, maximum number of iterations, 200 by default

Classifier

MLP

- □ shuffle: bool, set True to shuffle samples in each iteration, True by default
- momentum: float, between 0 to 1, momentum for gradient update, 0.9 by default, only used when solver="sgd"

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Ensemble: Random Forest

- from sklearn.ensemble import RandomForestClassifier
- cls = RandomForestClassifier
 ([n estimators])
 - ☐ n estimators: int, n decision trees, 10 by default
 - ☐ Supports multi-label classification

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

43

Classifier

Ensemble: Voting

- from sklearn.ensemble import
 VotingClassifier
- voting = VotingClassifier
 (estimators[, voting])
 - ☐ estimators: list, contains tuples as (str, estimator)
 - □ voting: 'hard', majority voting; if 'soft', argmax of the sums of the predicted probabilities

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. VotingClassifier.html#sklearn.ensemble.VotingClassifier

Ensemble: Bagging

- from sklearn.ensemble import
 BaggingClassifier
- bagging = BaggingClassifier
 ([base_estimator, n_estimators,
 max samples, max features])
 - □ base_estimator: the base estimator to fit on random subset of the dataset, decision tree by default
 - □ n_estimators: int, n estimators in the ensemble, 10 by default
 - max_samples: int or float, specify how many samples are drawn from the whole dataset

Classifier

Ensemble: Bagging

- max_features: int or float, specify how many features are drawn from all features
- Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Ensemble: Boosting

- from sklearn.ensemble import GradientBoostingClassifier
- boosting= GradientBoostingClassifier
 ([n estimators])
 - □ n_estimators: int, the number of boosting stages to perform, 10 by default
 - ☐ Supports multi-label classification

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Classifier

Load/Save Classifier

Load a trained classifier by pickle

- import pickle as pkl
- f = open(filepath, "rb")
- classifier = pkl.load(f)
- f.close()
 - A trained classifier will be loaded from disk according to the given filepath

Load/Save Classifier

Save a trained classifier by pickle

- import pickle as pkl
- f = open(filepath, "wb")
- pkl.dump(classifier, f)
- f.close()
 - ☐ The trained classifier will be saved to the given filepath

Classifier

■ Reference:

https://scikit-learn.org/stable/supervised_learning.html #supervised-learning

- Given dataset in "lab2_Trylt.csv"
 - □ Train a Bayes classifier on the dataset, calculate the test accuracy (Split the dataset into training set and test set)
 - □ Evaluate its performance in terms of F1score, average precision, ROC-curve and AUC

51

Try It

- Given dataset in "lab2_Trylt.csv"
 - □ Train a decision tree classifier on the dataset, calculate the test accuracy
 - ☐ Change the depth of the decision tree, calculate the test accuracy

- Given dataset in "lab2_Trylt.csv"
 - □ Train a SVM classifier on the dataset, calculate the test accuracy
 - ☐ Use different kernels for the SVM, and compare the test accuracies

53

Try It!

- Given dataset in "lab2_Trylt.csv"
 - ☐ Train **k-NN** classifiers on the dataset where k from 1 to 5
 - ☐ Find out the corresponding value of k when the test accuracy is the highest

- Given dataset in "lab2_Trylt.csv"
 - ☐ Train a MLP with the following structures on the dataset and calculate test accuracy
 - 2 hidden layers (3 neurons in each hidden layer)
 - 2 hidden layers (6 neurons in each hidden layer)
 - □ Try other parameters in MLP to see if better performance can be achieved

Try It!

- Given dataset in "lab2_Trylt.csv"
 - □ Train random forest classifiers on the dataset where the number of trees from 1 to 10
 - ☐ Find out the corresponding value of n when the test accuracy is the highest

- Given dataset in "lab2_Trylt.csv"
 - Use n SVMs as a base classifier for Bagging on the dataset and calculate test accuracy, n = 2, 4, ...,10
 - □ Try other classifiers (DT, knn)

57

CLASSIFIER TRAINING/PREDICTION

Training

- After the classifier is defined, the training can start
- classifier.fit(data, label)
 - □ data and label must be numpy array or list
 - □ classifier will be updated and returned by calling fit()
- train_set and train_label are numpy
 arrays in this example

Training/Prediction

Prediction

Label Prediction

- classifier.predict(data)
 - data: numpy array or list, contains data of each samples
 - return: 1-D numpy array: labels of each sample

Probability Prediction

- classifier.predict proba(data)
 - data: numpy array or list, contains data of each samples
 - □ return: 2-D numpy array: element[i, j] is the probability of sample i belonging to class j

Training/Prediction

Prediction

```
pred = cls.predict(test_set)
        pred
        array([0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1,
               1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
               0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,
               0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1],
              dtype=int64)
        pred_proba = cls.predict_proba(test_set)
        pred_proba
        array([0.58395574, 0.41604426]
                [0. 08836755, 0. 91163245]
                0.94146387,
                            0.05853613]
Probability of
                                           Probability of
being class 0
                                          being class 1
               [0. 27435561,
                            0.72564439]
                0. 23595516,
                            0.76404484]
                            0.89747868]
                0. 10252132,
```

61

EVALUATION

Evaluation

- Accuracy
- F1-score
- Average precision
- ROC
- AUC
- Confusion matrix

Evaluation

Accuracy

- from sklearn.metrics import accuracy_score
- accuracy_score(true_labels,
 predicted labels)

F1-score

- from sklearn.metrics import f1_score
- f1_score(true_labels,
 predicted labels)

Evaluation

Precision

- from sklearn.metrics import average precision score
- average_precision_score(true_labels, predicted labels)

Confusion matrix

- from sklearn.metrics import confusion matrix
- confusion_matrix(true_labels, predicted_labels)

Evaluation

ROC curve

thresholds: [2 1 0]

- from sklearn.metrics import roc_curve
- roc_curve(true_labels,
 predicted labels)

Evaluation

AUC

- from sklearn.metrics import roc auc score
- roc_auc_score(true_labels,
 predicted labels)

```
from sklearn.metrics import roc_auc_score
auc = roc_auc_score(test_label, pred)
auc
0.71111111111111111
```


67

Evaluation

■ Reference:

https://scikitlearn.org/stable/modules/classes.html#modulesklearn.metrics

PLOTTING

Course Introduction 69

Plot Decision Boundary

- How to plot a figure?
 - 1. Construct dense grid that fills the entire space
 - 2. Predict labels for all points in the grid
 - Use different colors to represent points with different labels

Example

Bayes classifier decision boundary

1. Construct the grid

71

Decision Boundary Plotting

Example

Bayes classifier decision boundary

2. Predict all values in the grid

```
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

h = 0.01
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

Z = bayes.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.show()
```


Example

Bayes classifier decision boundary

3. Colour and plot the grid

```
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = bayes.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
plt.show()
```

73

Decision Boundary Plotting

Example

Return values within a range with an interval

- np.range([start,]stop[, step])
 - □ start and stop decide the interval [start, stop)
 - □ step: spacing between values. If start is given, step must be given
- **e.g.** np.range(1,2,0.25) = [1,1.25,1.5,1.75]

Course Introduction 75

Decision Boundary Plotting

Return matrices from coordinate vectors

- np.meshgrid([x_1 , x_2 , .., x_n])
 - $\square \ x_i$: is 1-D array representing the coordinates of a grid, where i=1..n, n is the dimensionality of the coordinate
 - □ the returned matrices for n coordinate vectors are n-D matrices

```
e.g.
np.meshgrid(
    array([1,2]),
    array([1,2])
)
4 points:
(1,2), (2,2)
(1,1), (2,1)
```


Flatten arrays

- np.ravel(array[, order])
 array.ravel([order])
 - □ array will be flattened into 1-D array
 - order: decide how to index, default is to index the elements in row-major
- e.g.
 - □ np.ravel(array([[1,2], [3,4]]))
 array([1,2,3,4])

Course Introduction 77

Decision Boundary Plotting

Generate a coordinator of a sample

- \blacksquare np.c_(x1, x2)
 - $\square \times 1$ and $\times 2$ are the feature 1 and 2d
- e.g.

```
np.c_(array([1,2]), array([3,4]))
array([ [1,3], [2,4] ])

5
2 points:
(1,3), (2,4)
```


Plot contours

- plt.contourf([x, y,]z[, colors, cmap])
 - $\square \times$ and y are the coordinates of the values in z
 - □ z: the height values over which the contour is drawn
 - □ colors: the colors of the levels, i.e. the lines for contour and the areas for contour
 - □ cmap: a Colormap instance or registered colormap name, maps the level values to colors

Course Introduction 79

Decision Boundary Plotting

Plot points

- plt.scatter(x, y[, c, cmap])
 - $\square \times$ and y are the coordinates of the points
 - □ c: one color for all points or specify colors for each points
 - □ cmap: a Colormap instance or registered colormap
 name, only used if c is an array of floats

UNSUPERVISED LEARNING

Course Introduction 81

Sklearn: Unsupervised learning

- K-means
- PCA

Unsupervised Learning

Clustering: K-means

- from sklearn.cluster import KMeans
- max iter])
 Means([n_clusters,
 max iter])
 - ☐ n clusters: int, n clusters, 8 by default
 - max_iter: maximum number of iterations, 300 by
 default
- Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

83

Try It!

- Given dataset in "lab2_Try_data.csv", assume the data is unlabeled
 - ☐ Use **k-means** to split the data in to n clusters, where n from 2 to 5
 - ☐ Use different colors to plot different clusters, then observe how the value of n effects the results

Unsupervised Learning

Clustering: Others

- SpectralClustering()
- DBSCAN()
- MeanShift()

Reference:

https://scikit-learn.org/stable/modules/classes.html #module-sklearn.cluster

85

Unsupervised Learning

PCA

- from sklearn.decomposition import PCA
- pca = PCA([n_components])
 - □ n_components: int, float, string or None, keep n components

Reference:

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

- Given dataset in "lab2_Trylt.csv"
 - □ Apply **k-means** to split the samples in to 2 clusters
 - □ Use different colors to plot different labeled samples
 - □ Do this exercise again in the first principle component of PCA