

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta035

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- a) Să se calculeze în mulțimea numerelor complexe numărul $(1+2i)^2 (1-2i)^2$. (4p)
- **b)** Să se calculeze $\cos^2 \frac{\pi}{12} + \sin^2 \frac{\pi}{12}$. (4p)
- c) Să se determine $a \ge 0$ dacă vectorul $\vec{v} = 4\vec{i} + a\vec{j}$ are modulul egal cu 8. (4p)
- d) Să se calculeze lungimea înălțimii din B a triunghiului ABC de laturi AB=6, BC=8, (4p)CA = 10.
- e) Să se determine ecuația planului ce trece prin punctul A(2,1,3) si este paralel cu planul (2p)x - y + z = 2.
- f) Să se scrie ecuația tangentei la cercul $x^2 + y^2 = 2$ în punctul T(1, 1). (2p)

SUBIECTUL II (30p)

1.

- a) Să se determine numărul soluțiilor întregi ale inecuației $x^2 5x + 2 \le 0$. (3p)
- **b)** Să se calculeze $\hat{1} \cdot \hat{2} + \hat{3} \cdot \hat{4} + \hat{5} \cdot \hat{6}$ în inelul \mathbf{Z}_7 . (3p)
- Să se arate că numărul $\log_2 8 + \log_3 \sqrt{27}$ este rațional. (3p)
- d) Să se determine câte numere de 3 cifre distincte se pot forma cu cifre din mulțimea (3p)
- e) Să se calculeze probabilitatea ca un element al inelului Z, să fie soluție a ecuației (3p)
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = xe^{-x}$.
- a) Să se calculeze $\lim_{x \to a} f(x)$.
- **b)** Să se calculeze f'(x), $x \in \mathbf{R}$. (3p)
- (3p)c) Să se arate că $e^x \ge ex$, $\forall x \in \mathbf{R}$.
- (3p)**d)** Să se determine numărul punctelor de inflexiune ale funcției f.
- e) Să se calculeze $\int f(x) dx$.

SUBIECTUL III (20p)

și mulțimea $S = \{ A \in M_3(\mathbb{C}) \mid AX = XA, \forall X \in M_3(\mathbb{C}) \}$

- (4p) | a) Să se arate că $I_3 \in S$
- (4p) | b) Să se arate că $rang(E_i) = 1$, $\forall i \in \{1,2,3\}$.
- (4p) c) Să se arate că dacă $A \in M_3(\mathbb{C})$ și $AE_i = E_i A_i$, $\forall i \in \{1,2,3\}$, atunci există $a \in \mathbb{C}$, astfel încât $A = aI_3$.
- (2p) d) Să se arate că $S = \{aI_3 \mid a \in \mathbb{C}\}$
- (2p) e) Să se arate că $(S, +, \cdot)$ este inel, unde operațiile "+" și " sunt cele uzuale.
- (2p) f) Să se arate că funcția $f: \mathbb{C} \to \mathbb{S}$, $f(a) = aI_3$ este bijectivă.
- (2p) g) Să se arate că nicio funcție $g: M_3(\mathbf{R}) \to M_3(\mathbf{C})$, care verifică $g(A \cdot B) = g(A) \cdot g(B)$ $\forall A, B \in M_3(\mathbf{R})$ nu este bijectivă.

SUBIECTUL IV (20p)

Se consideră funcțiile $f_n:[0,\infty)\to \mathbf{R}$, definite prin $f_0(x)=x-\sin x$ și

$$f_{n+1}(x) = \int_{0}^{x} f_n(t)dt$$
, $\forall n \in \mathbf{N}$.

- (4p) a) Să se verifice că $f_1(x) = \cos x + \frac{x^2}{2} 1$, $\forall x \in [0, \infty)$.
- (4p) b) Să se arate că funcția f_1 este convexă pe R.
- (4p)c) Utilizând metoda inducției matematice, să se arate că:

$$f_{2n-1}(x) = (-1)^{n-1} \left(\cos x - 1 + \frac{x^2}{2!} - \frac{x^4}{4!} + \dots + (-1)^{n-1} \frac{x^{2n}}{(2n)!} \right), \ \forall n \in \mathbf{N}^*, \ \forall x \in [0, \infty).$$

- (2p) d) Să se arate că $f_n(x) > 0, \forall n \in \mathbb{N}, \forall x \in (0, \infty)$.
- (2p)

(2p) Sa se diate ca.
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{x^{4n}}{(4n)!} - \frac{x^{4n+2}}{(4n+2)!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{x^{4n}}{(4n)!}, \ \forall n \in \mathbb{N}^*, \ \forall \ x \in (0, \infty).$$
(2p) Să se arate că: $\lim_{n \to \infty} \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} \right) = \cos x, \ \forall x \in \mathbb{R}.$

- g) Să se arate că cos1∉ Q.