

Course Overview

CS4246/CS5446
Al Planning and Decision Making

Sem 1, AY2021-22

Al: Building A Rational Agent

Overview

Sem 1, AY2021-22

Al Planning and Decision Making

An intelligent agent needs to:

The Actor's View of Planning:

How to plan to act effectively in the real world? How to act to plan effectively in the real world?

- make rational decisions
 - What does rational mean?
 - What are the decision objectives and guiding values?
- plan a sequence of actions to achieve some objective
 - How to learn to take actions optimally when there is uncertainty? change?
 - How to scale it up to large problems?
- act appropriately when there are other agents around
 - How to act when the other agents are also "thinking" and optimizing for themselves?
 - How to function and behave in a responsible manner in a human society?

Course Objectives

- What is this course about?
 - To introduce foundational concepts and practical implications of Al planning and decision making
 - To survey state-of-the-art advancements in theory and application of AI planning and decision making technologies
- What will you learn from this course?
 - Understand the main concepts, capabilities, and limitations of Al planning and decision technologies
 - Apply the technologies in different applications
 - *Develop new technologies and applications

Responsible Al

Week	Topics	Week	Topics	Notes
1	Introduction & Classical Planning	7	Reinforcement Learning	
2	Real world planning and acting	8	Mid-Term Test	
3	Rational Decision Making	9	Real World Reinforcement Learning	
4	Judgmental Decision Making Responsible Techniques and Guidelines	10	Partially Observable Markov Decision Process	
5	Decision Networks	11	Game Theory	
6	Markov Decision Process	12	Multi-agent Decision Making	
R		13	State-of-the-art Applications and Future Trends Project Presentations	

Overview Sem 1, AY2021-22 5

Required Background for Enrollment

Discrete Structures

Logic, Proofs, Functions, Relations, Recursion, Induction, Combinatorics, Graph Theory

Probability and Statistics

• Basic probability theory, random variables, Bayes' Theorem, probability models, information theory, experiment design, hypothesis testing, statistical inference

Artificial Intelligence

Knowledge Representation, Reasoning, Learning, Search

Linear Algebra and Calculus

 Matrices, basic matrix operations, eigenvalues and eigenvectors, derivatives, maximization and minimization

Teaching team

Name	Role	Contact
Abhinit Kumar Ambastha	Teaching Assistant	abhinit@u.nus.edu
Ma Haozhe	Tutor	haozhe.ma@u.nus.edu
Muhammad Rizki Aulia Rahman Maulana	Tutor	rizki@u.nus.edu
Leong Tze Yun	Lecturer	leongty@comp.nus.edu.sg
Long Xiao	Tutor	xiao.long@u.nus.edu
Evangelos Sigalis	Tutor	esigalas@u.nus.edu

Note: Please ask technical and course organization questions through the **FORUM** on **LumiNUS**!

Course Logistics

Classes (weekly)

• Fri 1830 – 2030	Online	Lecture
• TBA	Online	Tutorial

Grading policy

•	Homew	ork, participation, and quizzes	50%
•	Test	(Friday, 8 October during Lecture hours)	25%
•	Project	(presentation in week 13; report due 22 November)	25%

No final exam for this module!

Course Logistics

Core Contents

- Main components are the same for CS4246 and CS5446
- Common online lectures
- May include additional topics for CS5446 in Homework and Test
- Discussions on LumiNUS Forum.

Tutorials and Assignments

- Attempt tutorial questions before class; presentations and discussions in class
- Team Assignments: Written questions + Programming Prerequisite: Python

Project

- Self-defined topic in teams of 2-3
- 1 page proposal due after Recess Week

Honour Code

- NUS Code of Student Conduct:
 - (A) Academic, Professional and Personal Integrity
 - (B) Respect for People
 - (C) Respect for and Compliance with the Law and with Campus Policies and Regulations
 - (D) Responsibility towards Maintaining the Campus as a Place Conducive for Learning and Living
- This module will teach you how to apply and develop powerful Responsible AI technologies for the betterment of humankind
- If you are unable or unwilling to respect and abide by the Honour code, please DO NOT take this module!

Course Resources

• LumiNUS

- Course syllabus
- Announcements
- Lecture notes
- Handouts
- Assignments
- Discussion Forum
- Zoom sessions
- Multimedia

Information on and web-links to other relevant materials will be made available throughout the course

Reference Books

Main reference book:

• (RN) Russell, S. and P. Norvig, Artificial intelligence: A modern approach. 4th ed. 2021: Pearson. [Kindle Edition] (Alternate: 3rd ed.)

[Table of contents for 4th ed.: http://aima.cs.berkeley.edu/contents.html]

• Reference books:

(GNT) Ghallab, M., Nau, D. and Traverso, P. Automated Planning and Acting. Cambridge University Press, Cambridge, 2016.

[Book website: http://projects.laas.fr/planning/]

[e-Book for personal use: http://projects.laas.fr/planning/book.pdf]

(SB) Sutton, R. S. and A. G. Barto. Reinforcement Learning: An introduction. 2nd ed. MIT Press, 2018, 2020

[Book website: http://incompleteideas.net/book/the-book.html]

[e-Book for personal use: http://incompleteideas.net/book/RLbook2020.pdf]

Additional Resources

- You will also find good tutorials, tools, publications at:
 - Conference in Uncertainty in Artificial Intelligence (UAI)
 - www.auai.org
 - American Association for Artificial Intelligence Conference (AAAI)
 - www.aaai.org
 - International Joint Conference on Artificial Intelligence (IJCAI)
 - www.ijcai.org
 - Neural Information Processing Systems Conference (NeurIPS)
 - www.nips.cc
 - International Conference on Automated Planning and Scheduling (ICAPS)
 - www.icaps-conference.org
 - International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
 - www.aamas-conference.org