Zweite Kenntnisüberprüfung

im Vorkurs Mathematik 2020, RWTH Aachen University

Bitte kreuzen Sie an:

Haben Sie einen Leistungskurs Mathematik belegt?

□ ja

□ nein

Lösen Sie die folgenden Aufgaben:

A 1: Bestimmen Sie alle Primfaktoren von 195.

A 2: Berechnen Sie $\left(\frac{1}{9} + \frac{2}{10}\right)$: $\frac{8}{45}$ in vollständig gekürzter Form.

A 3: Seien $a,b \in \mathbb{R}$ mit $a \neq 0, \pm b$. Vereinfachen Sie $\frac{a(a+b)^2 - 4a^2b}{a^3 - ab^2}$ so weit wie möglich.

A 4: Seien $r, s \in \mathbb{Q}$ und $x, y \in \mathbb{R}$, x, y > 0. Vereinfachen Sie $\frac{x^{2r-1}}{y^{1-s}} : \frac{x^{r-s}}{y^{3s}}$ so weit wie möglich.

A 5: Bestimmen Sie alle Lösungen der Gleichung $x^3 + 5x^2 - 6x = 0$.

A 6: Bestimmen Sie alle Lösungen der Gleichung |x+1| = 2x - 1.

A 7: Bestimmen Sie alle Lösungen der Ungleichung $x^2 - x \le x - 1$.

A 8: Seien A und B Aussagen. Ergänzen Sie die Wahrheitstafel:

$\mid A$	В	$\neg A$	$B \vee (\neg A)$	$(B \vee (\neg A)) \wedge B$
F	F			
F	W			
W	F			
W	W			

A 9: Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und $x_0 \in \mathbb{R}$. Sei A = f hat in x_0 ein lokales Extremum." sowie B = "Es gilt $f'(x_0) = 0$.". Welche der folgenden Aussagen sind immer (für jedes solche f) wahr?

$$\Box A \Longrightarrow B \qquad \Box B \Longrightarrow A \qquad \Box A \Longleftrightarrow B$$

$$\Box B \Longrightarrow A$$

$$\Box A \iff B$$

A 10: Kreuzen Sie alle wahren Aussagen über die Funktion $f: \mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$ an.

$$\Box$$
 f ist injektiv

$$\Box$$
 f ist surjektiv \Box f ist bijektiv

$$\Box f$$
 ist bijektiv

- A 11: Seien $A = \{1, 2\}, B = \{2, 3\}$ und $C = \{3, 4\}$. Bestimmen Sie $\mathfrak{P}((A \cup B) \setminus C)$.
- A 12: Geben Sie den maximalen Definitionsbereich $D\subseteq\mathbb{R}$ einer durch die Abbildungsvorschrift $f(x)=\sqrt{(x-2)(x+4)}$ definierten Funktion f an.
- A 13: Bestimmen Sie die Ableitung der Funktion $f: D \setminus \{-4,2\} \to \mathbb{R}, x \mapsto \sqrt{(x-2)(x+4)}$ (wobei D der maximale Definitionsbereich aus der letzten Aufgabe sei).
- A 14: Kreuzen Sie alle wahren Aussagen über die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} -x^2 & \text{, } x < 0 \\ x^2 & \text{, } x \geqslant 0 \end{cases}$ an.
 - \Box f ist stetig \Box f ist streng monoton steigend \Box f ist streng monoton fallend
- A 15: Bestimmen Sie $\sin\left(\frac{\pi}{2}\right)$.
- A 16: Bestimmen Sie alle Lösungen der Gleichung $5\log_{r}9 = 10$.
- A 17: Bestimmen Sie die Ableitung von $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \mapsto \frac{e^x + 1}{1 + x}$.
- A 18: Bestimmen Sie f'(1) für $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \ln(x^2 + 1)$.
- A 19: Bestimmen Sie eine Stammfunktion von $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x \cos(x)$.
- A 20: Bestimmen Sie eine Stammfunktion von $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{e^x}{1+e^x}$.
- A 21: Geben Sie die Matrix $A=(a_{ij})\in\mathbb{R}^{2 imes 3}$ mit Einträgen $a_{ij}:=\sum_{k=1}^i\ j\cdot k$ explizit an.
- A 22: Bestimmen Sie die Lösungsmenge des nebenstehenden Gleichungssystems.

$$x - 2y = 8$$

$$x + y + 10z = 9$$

$$x + 5z = 7$$

A 23: Für welche reellen Zahlen *a* hat das nebenstehende lineare Gleichungssystem genau eine Lösung?

$$\begin{aligned}
x + ay &= 1 \\
ax + y &= a^2
\end{aligned}$$