Boolean Algebra

- Boolean algebra
 - Boolean operations
 - Laws and identities of Boolean algebra
 - Simplifying Boolean expressions
- Switching Algebra
 - Logic gates
 - Designing logic circuits

Slide 1

Boolean Algebra

- A **Boolean algebra** is a **set B** = {a, b, ...} and the **binary operators** + and , together with the **unary operator** •, that satisfies the following:
 - Axiom 1 Closure
 - ◆ a+b, a·b, a' ∈ B
 - Axiom 2 Commutative Law
 - ◆a+b = b+a
 - ◆ a·b = b·a
 - Axiom 3 Distributive Law
 - \bullet a·(b + c) = a·b + a·c
 - $a + (b \cdot c) = (a + b) \cdot (a + c)$

Slide 2

Boolean Algebra

- A Boolean algebra is a set B = {a, b, ...} and the binary operators + and · , together with the unary operator ', that satisfies the following:
 - Axiom 4 Identity Law
 - a+0 = a
 - $a \cdot 1 = a$ where 0 and 1 are distinct and unique
 - Axiom 5 Complementary Law
 - \bullet a+a' = 1 where a' is unique
 - ♦ a·a′ = 0

Slide 3

Boolean Algebra

- Boolean operations
 - Boolean complement (')
 - ♦ 0' = 1
 - ◆ 1' = 0
 - Boolean sum (+)
 - +0+0=0
 - 0+1=1
 - +1+0=1
 - 1+1=1
 - Boolean product (·)
 - $\bullet 0.0 = 0$
 - 0.1 = 0
 - ◆ 1.0 = 0
 - 1.1 = 1

Slide 4

Boolean Algebra

- Laws of Boolean Algebra
 - Theorem 1: Associative
 - \bullet a + (b + c) = (a + b) + c
 - \bullet a·(b·c) = (a·b)·c
 - Theorem 2: Idempotency
 - ◆ a+a = a
 - ♦ a·a = a
 - Theorem 3: **Dominance**
 - ♦a+1=1
 - $\bullet a \cdot 0 = 0$

Boolean Algebra

- Laws of Boolean Algebra
 - Theorem 4: **Double Complement**
 - (a')' = a
 - Theorem 5: **Absorption**
 - \bullet a + a·b = a
 - \bullet a·(a + b) = a
 - Theorem 6: **De Morgan's**
 - (a+b)' = a'⋅b'
 - $(a \cdot b)' = (a' + b')$

Slide 5

Slide 6

Boolean Algebra

Identities:

■ *Identity 3:*
$$ab(a + b) = ab$$

■ *Identity 4:*
$$(ab)'(a + b) = ab' + a'b$$

■ *Identity 6*:
$$(a + b)(b+c)(a+c) = ab + bc + ac$$

■ *Identity 7:*
$$(a + b)(a' + c) = ac + a'b$$

■ *Identity* 9:
$$(a + b)(b + c)(a' + c) = (a + b)(a' + c)$$

Boolean Algebra

• If an algebra A is a **Boolean algebra**, then we can summarize this as

$$A = (B = \{ a, b, ... \}; +, \cdot, '; 0, 1)$$

Examples:

- Set algebra: (P(U); ∪, ∩, '; Ø, U)
- Logic: **(B, ∨, ∧, ', False, True)** where B is a set of propositions.

Slide 8

Boolean Algebra

- The dual of a statement involving Boolean expressions is obtained by replacing:
 - 0 with 1
 - + with ·
 - 1 with 0
 - · with +

Examples:

What is the dual of each of the following?

$$(a + b)' = a'b'$$

(x+y)(x+1) = x + xy + y

Slide 9

Slide 11

Slide 7

Boolean Algebra

The Duality Principle

The dual of a theorem in Boolean algebra is also a theorem.

Hierarchy of Boolean Operators

(highest to lowest) ', · , +

Simplifying Boolean Expressions

- Reduce a Boolean expression into one that uses the minimal number of operations
- Apply axioms, theorems and identities
- Important step in designing logic circuits

Slide 10

Slide 12

Boolean Algebra

Simplifying Boolean Expressions Example:

Simplify the expression **ab** + **a'b** + **ab'**. *Solution:*

$$ab + a'b + ab'$$

$$= b + a$$

Boolean Algebra

Simplifying Boolean Expressions Example:

Simplify the expression **ab** + **a'c** + **bcd**. *Solution:*

$$ab + a'c + bcd$$

$$= ab + a'c$$

Boolean Algebra

Other examples/exercises:

- 1) [(a + b') + c(a + b')]
- **2)** a'b' + ab + a'b
- 3) (a + b)'(a' + b')
- **4)** ab + (b'd)' + (c + d')
- **5)** ab + (a + b)c' + b
- **6)** a + b (a' + b + c)'
- **7)** cd + ab + d + [ad(bc + ad)]

Switching Algebra

- A **switching function** is a *binary-valued* function of one or more binary-valued variables.
- Given $x_1, x_2, ..., x_n$ where $x_i = 0$ or 1 then the switching function S is defined as

S:
$$(\mathbf{x_1} \times \mathbf{x_2} \times ... \times \mathbf{x_n}) \rightarrow \{0,1\}$$

Example:

Define switching function f(x,y,z) = xy + (y'z)'. What is f(x,y,z) when x, y = 0 and z = 1? f(0.0.1)

Slide 14

Switching Algebra

Basic Gates

AND gate

Truth table:

Slide 13

OR gate

Truth table:

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	1

Switching Algebra

- Basic Gates (cont'd)
 - NOT gate

Truth table:

Slide 16

Switching Algebra

Other Gates

NAND (not AND) gate

Truth table:

a	b	a b
0	0	1
Ö	1	1
1	0	1
1	1	^

■ NOR (not OR) gate

Truth table:

•	raci readic i			
	a	b	a b	
	0	0	1	
	0	1	0	
	1	0	0	
	1	1	0	

Switching Algebra

Other Gates (cont'd)

■ XOR (Exclusive OR) gate

Truth table:

а	b	a⊕b		
0	0	0	a –	+
0	1	1	b -	
1	0	1	D	/ /
1	1	0		

Note: $\mathbf{a} \oplus \mathbf{b} = \mathbf{a}'\mathbf{b} + \mathbf{ab}'$

Slide 18

a⊕ b

Switching Algebra

Examples:

- Draw the combinational circuit for • f(a,b,c) = a + (bc)'

 $\bullet f(a,b) = a' + ab' + b$

Slide 19

Designing Logic Circuits

- CASE 1: Given: Switching function
- *Step 1*: Simplify the function.
- Step 2: Draw the corresponding logic diagram

Examples/Exercises:

Design logic circuits for the following switching f'ns.

- **1)** f(x,y) = x'y' + xy + x'y.
- **2)** f(x,y) = x' + y'.
- **3)** f(x,y,z) = (xy + z)'.
- **4)** f(a,b) = (a + b)'(a' + b').
- **5)** f(a,b,c) = ab + bc(b + c).
- **6)** f(a,b,c) = a + b(a + c) + ac.

Slide 20

Designing Logic Circuits

• Example:

Design a logic circuit for f(x,y) = x'y' + xy + x'y

Note that this switching function has the following corresponding logic diagram:

Slide 21

Designing Logic Circuits

Example:

Design a logic circuit for f(x,y) = x'y' + xy + x'y

Step 1: Simplify switching function x'y' + xy + x'y

$$= x' + y$$

Slide 22

Designing Logic Circuits

Example:

Design a logic circuit for f(x,y) = x'y' + xy + x'ySolution:

Step 2: Draw logic diagram Since x'y' + xy + x'y = x' + y

Designing Logic Circuits

- CASE 2: Given: general description of the switching function
 - Step 1:**Tabulate** the function for all possible input values based on the description of the function.
 - ◆ For each output =1, write a conjunct of all input variables x_i such that
 - if x_i = 0, use x_i'
 - if x_i = 1, use x_i
 - Step 2: Connect all the conjuncts obtained in the previous step as disjuncts.
 - *Step 3*: **Simplify** the expression if possible.
 - Step 4: **Draw** the corresponding logic diagram.

Slide 23

Slide 24

Designing Logic Circuits

• Example:

- Design a logic circuit for the majority function
 - ◆ Input: accepts three bits
 - ◆ Output: if majority of the input bits are equal to 1, then the function returns a 1.
- We may define the majority function M thus:

$$M(a,b,c)=$$

$$\begin{cases} 1 & if at least two of a,b,care 1 \\ 0 & otherwise \end{cases}$$

Slide 25

Designing Logic Circuits

• Example:

Design a logic circuit for the majority function

$$M(a,b,c)=$$

$$\begin{cases} 1 & \text{if at least two of } a,b,c \text{ are } 1 \\ 0 & \text{otherwise} \end{cases}$$

Step 1: Tabulate the function ..

Step .	∡ : rab	uiate	the function
a	b	C	M(a,b,c)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Slide 26

Designing Logic Circuits

• Example:

■ Design a logic circuit for the **majority function**

$$M(a,b,c) = \begin{cases} 1 & \text{if at least two of } a,b,c \text{ are } 1 \\ 0 & \text{otherwise} \end{cases}$$

Step 1: ... and write a conjunct whenever output = 1

a	b	C	M(a,b,c)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Slide 27

Designing Logic Circuits

• Example:

Design a logic circuit for the majority function

$$M(a,b,c) =$$

$$\begin{cases} 1 & \text{if at least two of } a,b,c \text{ are } 1 \\ 0 & \text{otherwise} \end{cases}$$

Step 2: Connect the conjuncts as disjuncts

step 2	. CO	HECL	ule conjuncts as disjun
a	b	С	M(a,b,c)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Slide 28

Designing Logic Circuits

Example:

Design a logic circuit for the majority function

$$M(a,b,c) = \begin{bmatrix} 1 & \text{if at least two of } a,b,c \text{ are } 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

Step 3: Simplify the expression ...

$$a'bc + ab'c + abc' + abc$$

$$= bc + a(b \oplus c)$$

Designing Logic Circuits

Example:

Design a logic circuit for the majority function

$$M(a,b,c) = \begin{bmatrix} 1 & \text{if at least two of } a,b,c \text{ are } 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

Step 4: Draw the corresponding logic diagram.

$$bc + a(b \oplus c)$$

Slide 29 Slide 30

UP NEXT on CMSC 56...

•Read up on ...

■ Matrix/Linear Algebra

- ◆ What is a **matrix**?
- What is a square matrix?What is a diagonal matrix?
- What is a scalar matrix?
- ◆ How do you ...
 - **add** one matrix to another?
 - multiply a matrix by another?get the transpose of a matrix

 - multiply a matrix by a scalar?

Slide 31