Tema 2: Estadística descriptiva bidimensional

1. Se lanzan dos dados varias veces, obteniendo los resultados presentados en la siguiente tabla, donde X designa el resultado del primer dado e Y el resultado del segundo:

X	1	2	2	3	5	4	1	3	3	4	1	2	5	4	3	4	4	5	3	1	6	5	4	6	
\overline{Y}	2	3	1	4	3	2	6	4	1	6	6	5	1	2	5	1	1	2	6	6	2	1	2	5	

- a) Construir la tabla de frecuencias.
- b) Calcular las puntuaciones medias para cada dado y ver cuales son más homogéneas.
- c) ¿Qué resultado del segundo dado es más frecuente cuando en el primero sale un 3?
- d) Calcular la puntuación máxima del 50% más bajo de puntuaciones obtenidas con el primer dado si con el segundo se ha obtenido un 2 o un 5.
- 2. Medidos los pesos, X (en Kg), y las alturas, Y (en cm), a un grupo de individuos, se han obtenido los siguientes resultados:

$X \backslash Y$	160	162	164	166	168	170
48	3	2	2	1	0	0
51	2	3	4	2	2	1
54	1	3	6	8	5	1
57	0	0	1	2	8	3
60	0	0	0	2	4	4

- a) Calcular el peso medio y la altura media y decir cuál es más representativo.
- b) ¿Cuál es el porcentaje de individuos con menos de 55 Kg y más de 165 cm?
- c) Entre los que miden más de 165 cm, ¿qué porcentaje pesa más de 52 Kg?
- d) ¿Cuál es la altura más frecuente de los individuos con peso entre 51 y 57 Kg?
- e) ¿Qué peso medio es más representativo, el de los individuos que miden 164 cm o el de los que miden 168 cm?
- 3. En una encuesta de familias sobre el número de individuos que la componen (X) y el número de personas activas en ellas (Y) se han obtenido los siguientes resultados:

$X \backslash Y$	1	2	3	4
1	7	0	0	0
2	10	2	0	0
3	11	5	1	0
4	10	6	6	0
5	8	6	4	2
6	1	2	3	1
7	1	0	0	1
8	0	0	1	1

Calcular la recta de regresión de Y sobre X, y decir si es adecuado suponer esta relación lineal para explicar el comportamiento de Y a partir de X.

4. Se realiza un estudio sobre la tensión de vapor de agua (Y, en ml de Hg) a distintas temperaturas $(X, \text{ en } {}^{o}C)$. Efectuadas 21 medidas, los resultados son:

$X \backslash Y$	(0.5, 1.5]	(1.5, 2.5]	(2.5, 5.5]
(1, 15]	4	2	0
(15, 25]	1	4	2
(25, 30]	0	3	5

Explicar el comportamiento de la tensión de vapor en términos de la temperatura mediante una función lineal. ¿Es adecuado asumir este tipo de relación?

5. Estudiar la dependencia o independencia de las variables en las siguientes distribuciones. Dar, en cada caso, las curvas de regresión y la covarianza de las dos variables.

$X \backslash Y$	1	2	3	4	5
10 20 30	2	4	6	10	8
20	1	2	3	5	4
30	3	6	9	15	12
40	4	8	12	10 5 15 20	16

$$\begin{array}{c|cccc} X \backslash Y & 1 & 2 & 3 \\ \hline -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{array}$$

6. Dada la siguiente distribución bidimensional:

$X \backslash Y$	1	2	3	4
10	1	3	0	0
12	0	1	4	3
14	2	0	0	2
16	4	0	0	0

- a) ¿Son estadísticamente independientes X e Y?
- b) Calcular y representar las curvas de regresión de X sobre Y y de Y sobre X.
- c) Cuantificar el grado en que cada variable es explicada por la otra mediante la correspondiente curva de regresión.

Distribución B

- d) ¿Están X e Y correladas linealmente? Dar las rectas de regresión.
- 7. Para cada una de las distribuciones:

$X \backslash Y$	10	15	20
1	0	2	0
2	1	0	0
3	0	0	3

$X \backslash Y$	10	15	20	25
1	0	3	0	1
2	0	0	1	0
3	2	0	0	0

Distribución C

- a) ¿Depende funcionalmente X de Y o Y de X?
- b) Calcular las curvas de regresión y comentar los resultados.

8. De una muestra de 24 puestos de venta en un mercado se ha obtenido la siguiente información sobre el número de balanzas (X) y el número de dependientes (Y):

$X \backslash Y$	1			
1	1	2	0	0
2	1	2	3	1 6
3	0	1	3 2 2	6
4	0	0	2	3

- a) Determinar las rectas de regresión.
- b) ¿Es apropiado suponer que existe una relación lineal entre las variables?
- c) Predecir, a partir de los resultados, el número de balanzas que puede esperarse en un puesto con seis dependientes. ¿Es fiable esta predicción?
- 9. Se eligen 50 matrimonios al azar y se les pregunta la edad de ambos al contraer matrimonio. Los resultados se recogen en la siguiente tabla, en la que X denota la edad de la mujer e Y la del hombre:

$X \backslash Y$	(18, 21]	(21, 25]	(25, 30]	(30, 35]	(35, 40]
(18, 21]	3	2	3	0	0
(21, 24]	0	4	2	2	0
(24, 27]	0	7	10	6	1
(27, 30]	0	0	2	5	3

Estudiar la dependencia lineal entre ambas variables.

10. Calcular el coeficiente de correlación lineal de dos variables con rectas de regresión:

$$x + 4y = 1,$$
 $x + 5y = 2.$

11. En cierta distribución bidimensional, la recta de regresión de Y sobre X es y = 5x - 20, $\sum y_i^2 n_{.j} = 3240$, y la distribución marginal de X es:

Determinar la recta de regresión de X sobre Y, y la bondad de los ajustes lineales.

12. De las estadísticas de tiempos de vuelo y consumos de combustible de una compañía aérea, se han obtenido datos relativos a 24 trayectos distintos realizados por el avión DC-9. A partir de estos datos se han obtenido las siguientes medidas:

$$\sum_{i=1}^{24} x_i = 31,470; \qquad \sum_{i=1}^{24} x_i^2 = 51,075; \qquad \sum_{i=1}^{24} x_i^3 = 93,6; \qquad \sum_{i=1}^{24} x_i^4 = 182,977$$

$$\sum_{i=1}^{24} y_i = 219,719; \qquad \sum_{i=1}^{24} y_i^2 = 2396,504; \qquad \sum_{i=1}^{24} x_i y_i = 349,486; \qquad \sum_{i=1}^{24} x_i^2 y_i = 633,993,$$

donde la variable Y expresa el consumo de combustible, en miles de libras, correspondiente a un vuelo de duración X (el tiempo se expresa en horas, y se utilizan como unidades de orden inferior fracciones decimales de la hora).

- a) Ajustar un modelo del tipo Y = aX + b. ¿Qué consumo total se estimaría para un programa de vuelos compuesto de 100 vuelos de media hora, 200 de una hora y 100 de dos horas? ¿Es fiable esta estimación?
- b) Ajustar un modelo del tipo $Y = a + bX + cX^2$. ¿Qué consumo total se estimaría para el mismo programa de vuelos del apartado a)?
- c) ¿Cuál de los dos modelos se ajusta mejor? Razonar la respuesta.
- 13. La curva de Engel, que expresa el gasto en un determinado bien en función de la renta, adopta en ocasiones la forma de una hipérbola equilátera. Ajustar dicha curva a los siguientes datos, en los que X denota la renta en miles de euros e Y el gasto en euros. Cuantificar la bondad del ajuste:

$$\begin{array}{c|ccccc} X & 10 & 12.5 & 20 & 25 \\ \hline Y & 50 & 90 & 160 & 180 \\ \end{array}$$

14. Se dispone de la siguiente información referente al gasto en espectáculos (Y, en euros) y la renta disponible mensual (X, en cientos de euros) de 6 familias:

Explicar el comportamiento de Y por X mediante:

- a) Relación lineal.
- b) Hipérbola equilátera.
- c) Curva potencial.
- d) Curva exponencial.

¿Qué ajuste es más adecuado?