СТРУКТУРНИ МОДЕЛИ НА НАДЕЖДНОСТ НА ПРОИЗВОДСТВЕНИТЕ И ОПЕРАЦИОННИТЕ СИСТЕМИ

- 1. Надеждност на производствени и операционни системи с последователно свързани структурни елементи.
 - 2. Надеждност на производствени и операционни системи с паралелно свързани структурни елементи.
 - 3. Надеждност на производствени и операционни системи със "смесено" свързани структурни елементи

Основни положения

Анализирането на надеждността на ПОМ, налага основно вниманието да бъде съсредоточено към функционалните взаимовръзки между отделните "технически елементи" и съответно тяхната последователност, както и към тяхното влияние, което оказват върху системата като цяло [5].

Основни положения

Съчетаване на структурните елементи в ПОС [5]:

- ✓ Последователно съчетаване;
- ✓ Паралелно съчетаване;
- ✓ "Смесено съчетаване".

Надеждност на производствени и операционни системи **с** последователно свързани структурни **елементи**

При последователно свързани технически елементи, отказът на един елемент води до отказ на цялата система.

Например, повечето машинни задвижвания, трансмисии и др. се подчиняват на този принцип. В този случай ако някоя предавка, лагер, съединител или др. в задвижването на машината се повреди, тогава цялото задвижване спира да функционира.

Надеждност на производствени и операционни системи с *последователно свързани* структурни елементи

Вероятността за безотказна работа, при последователно съчетаване на отделните елементи се определя по следната зависимост:

$$P(t) = P_1.P_2...P_n = \prod_{i=1}^{n} P_i$$

Надеждност на производствени и операционни системи **с последователно свързани структурни елементи**

Пример [5]:

Нека да допуснем, че дадена система се състои от три последователно свързани елемента: А, В и С. Вероятността за безотказна работа на тези елементи е както следва:

$$P_A = 0.75$$
 $P_B = 0.91$ $P_c = 0.88$

Следователно надеждността на системата е:

$$P(t)=0,75.0,91.0,88=0,60$$

Надеждност на производствени и операционни системи с паралелно свързани структурни елементи

За да се увеличи надеждността на сложни системи, може да се използват дублиращи технически елементи.

По този начин, ако в един от елементите настъпи отказ, останалите ще изпълняват функциите си и системата ще продължи работата си [5].

Надеждност на производствени и операционни системи **с паралелно свързани структурни елементи**

Надеждност на производствени и операционни системи с паралелно свързани структурни елементи

Вероятността за безотказна работа, при паралелно съчетаване на отделните елементи се определя по следната зависимост:

$$P(t) = 1 - \prod_{i=1}^{m} (1 - P_i)$$

Надеждност на производствени и операционни системи **с паралелно свързани структурни елементи**

Пример [5]:

Нека да допуснем, че дадена система се състои от три паралелно свързани елемента: А, В и С. Вероятността за безотказна работа на тези елементи е както следва:

$$P_A = 0.75$$
 $P_B = 0.80$ $P_C = 0.79$

Следователно надеждността на системата е:

$$P(t)=1-[(1-0.75).(1-0.80).(1-0.79)]=0.99$$

Надеждност на производствени и операционни системи със смесено свързани структурни елементи [5]:

- ✓ Паралелно-последователните структури;
- ✓ Последователно-паралелните структури.

Надеждност на производствени и операционни системи със **смесено свързани структурни елементи**

Паралелно-последователните структури

характеризират се с това, че дадена система може да съдържа m подсистеми (A_1 , A_2 , A_m), свързани паралелно, като всяка подсистема съдържа n "технически елемента", свързани последователно [5].

Надеждност на производствени и операционни системи със смесено свързани структурни елементи

Паралелно-последователните структури [5]:

Надеждност на производствени и операционни системи със смесено свързани структурни елементи

Паралелно-последователните структури

за определяне на надеждността на *паралелно-последователни структури*, които се характеризират с m паралелно свързани подсистеми (A_1 , A_2 , A_m), всяка съдържа n "технически елемента", свързани последователно, е в сила равенството:

$$P(E) = 1 - \prod_{j=1}^{m} (1 - P_{Aj}) = 1 - \prod_{j=1}^{m} (1 - \prod_{i=1}^{n} P_{ij}) = R_e = 1 - \prod_{j=1}^{m} (1 - R_{Aj}) = 1 - \prod_{j=1}^{m} (1 - \prod_{i=1}^{n} R_{eij})$$

Надеждност на производствени и операционни системи със смесено свързани структурни елементи

Последователно-паралелните структури [5]

характеризират се с това, че дадена система може да съдържа n подсистеми (A_1, A_2, A_n) , свързани последователно, като всяка подсистема съдържа m "технически елемента", свързани паралелно

Надеждност на производствени и операционни системи със смесено свързани структурни елементи

Последователно-паралелните структури [5]

В този случай за вероятността за безотказна работа, респективно надеждността на системата, е в сила равенството:

$$P(E) = \prod_{i=1}^{n} P_{Aj} = \prod_{i=1}^{n} (1 - \prod_{i=1}^{m} (1 - P_{ij})) = R_{e} = \prod_{i=1}^{n} R_{Aj} = \prod_{i=1}^{n} (1 - \prod_{i=1}^{m} (1 - R_{ij}))$$

Надеждност на производствени и операционни системи със смесено свързани структурни елементи

Пример [5]:

Да се определи каква е вероятността **P(t)** за безотказна работа на система и съответно нейната надеждност, състояща се от 3 подсистеми, като са известни следните изходни данни:

Надеждност на производствени и операционни системи със смесено свързани структурни елементи

Пример:...

Надеждност на производствени и операционни системи **със смесено свързани структурн**и елементи

Решение:...

$$P(t) = P_1 \cdot P_2 \cdot P_3 \cdot [1 - (1 - P_4) \cdot (1 - P_5) \cdot (1 - P_6)] \cdot [1 - (1 - P_7 \cdot P_8) \cdot (1 - P_9)] =$$

$$= 0.98 \cdot 0.95 \cdot 0.97 \cdot [1 - (1 - 0.65) \cdot (1 - 0.68) \cdot (1 - 0.87)] \cdot [1 - (1 - 0.81 \cdot 0.75) \cdot (1 - 0.90)] = 0.85$$

т.е. вероятността на системата за безотказна работа е 0,85 (т.е. 85%)

Резервиране на надеждността на производствените и операционните системи

Резервирането на надеждността е свързано с повишаването на безотказността и нормалната работостособност на системата като цяло, посредством резервиране на нейните "технически елементи" или подсистеми [5].

В зависимост от режима на работа на системата резервирането може да бъде [5]:

- ✓ Горещо (натоварено);
- ✓ Облекчено;
- √ Студено.

Горещо (натоварено) резервиране

в режима на работа на основните "технически елементи" паралелно са включени резервни.

Облекчено резервиране

разновидност на горещото резервиране, като при него резервните елементи работят при облекчен режим (с по-ниска натовареност) от основните.

Студеното резервиране

резервните "технически елементи" се включват само след отказ на основните. Например "чрез заместване".

В зависимост от вида на резервиране могат да бъдат обособени [5]:

- **✓** Структурно;
- ✓ Информационно;
- ✓ Времево резервиране.

Структурното резервиране

състои се в използването на допълнителни "технически елементи", които се включват в работата на системата при определени условия, например при опасност от отказ в системата, или при наличие на отказ в системата или др.

Информационното резервиране

свързано е с повишаване надеждността на допълнителната информация, например отказ в информационната система при управление на производствените данни.

Времевото резервиране

свързано с приложението на резерв от време, например при отказ в системата тя да може да продължи да изпълнява функциите си до нейното възстановяване.

- В практиката най-широко приложение намира структурното резервиране, където се използват различни начини на включване на резервни "технически елементи" в системата;
- При този начин на резервиране са обособени две основни групи – активно и пасивно структурно резервиране в системата.

Структурното резервиране [5]

Активното резервиране

представлява паралелно свързани "технически елементи" в системата (например паралелни системи), при които отказ настъпва само, когато настъпи отказ във всички елементи.

Пасивно (Standby) резервиране (режим на готовност)

използват се допълнителни "технически елементи" (подсистеми), които се активират (с помощта на превключвател) само, когато в основните настъпи отказ .

Пасивно (Standby) резервиране (режим на готовност) [5]

