

Presenting:

The Times They Are A Changin': A Structured Decision Making (SDM) Approach to Managing Coastal Flood Risks from Sea-Level Rise In Vancouver, British Columbia

by Christian Beaudrie, Tamsin Lyle, Graham Long, Tamsin Mills

DAAG Conference 2018

DAAG is the annual conference of the SDP.

To find out more about SDP or to become a member, visit

www.decisionprofessionals.com

The Times They Are A Changin'

A Structured Decision Making (SDM) Approach to Managing Coastal Flood Risks from Sea-Level Rise In Vancouver, British Columbia

Society of Decision Professionals – DAAG 2018
Vancouver, BC April 13, 2018

Christian Beaudrie, M.Eng., Ph.D.
Compass Resource Management Ltd.
Vancouver, BC

Tamsin Lyle, M.Eng., M.R.M., P.Eng.

Charlene Menezes, M.Eng., P.Geo.

Glen Shkurhan, P.Eng

Tamsin Mills, M.Sc., RPP

A Coastline In Peril

Adaptation Planning for a Changing Environment

Phase 1

Understanding flood hazards (mapping)

Phase 2

- Evaluating vulnerabilities and consequences
- Identifying suitable adaptation options
- Analyzing trade-offs
- Identifying preferred options

Phase 3

 Developing an adaptive SLR planning framework to guide actions and timing

Complexity on Many Levels

Understanding Risks

- Uncertain nature of climate change
- Unknown timescales
- Intangibility of impacts (environment, society, economy)
- Changing neighbourhoods

Engaging Affected Communities

- What do people care about?
- Changing communities, tolerances, preferences
- Communicating risks, informing decisions

Risk and Uncertainty

Communicating risk is a challenge in the best of circumstances

- Probability flood intensity vs return period
- Cumulative impacts small frequent events
- Cognitive biases affect understanding and decisions

Sea level rise adds a dimension of complexity: non-stationary risk

- Increasing risk over time what's safe today is not tomorrow
- Uncertainty SLR estimates, freeboard

Core Questions for Adaptation Planning

What's valued that should be protected?

How should they be protected?

When?

Understanding Through Engagement

Develop a clear understanding of the *values*, *perspectives*, and *preferences* of affected communities

"Wisdom of the Crowd" – required knowledge is diverse and found in different places

Engage a diversity of 'internal' stakeholders and 'external' communities of interest to inform decisions

Phase 2: Coastal Flood Risk Assessment & Adaptation Options

A Structured Decision Making (SDM) Approach

Image: Compass Resource Management (used with permission)

1) Decision Context: Geographic Scope

1) Decision Context: Flood Scenarios

	TODAY (0 m SLR)	2060 (0.6m SLR)	2100 (1m SLR)
King tides	*		*
1-in-15 year events			
1-in-500 year events	*		*

Each scenario considered the effects of sea level rise (SLR), high tide, storm surge and wind set-up, wave set-up, wave effect, and 0.6 m freeboard.

^{*} indicates scenarios considered in the workshops

2) Define Objectives and Measures

Images: Compass, Ebbwater Consulting (used with permission)

2) Define Objectives and Measures

Flood Protection (Per Event)

Objectives and Evaluation Criteria

Scale

PEOPLE					
People displaced temporarily	# of people displaced from flood events				
"at risk" people impacted	Social Vulnerability Index (SVI) weighted displacement				
Park and recreational amenity value	Value-weighted area affected per event				
Loss of critical services	# of pieces of infrastructure impacted				
ENVIRONMENT					
Risk of contaminant release	# of sites with potential contaminants				
Environmental benefits	-2 to +2 (constructed scale)				
ECONOMY					
Damage to infrastructure	Value-weighted km of roads impacted				
Damage to buildings	\$M				
Business disruption	# of employees working in impacted businesses				
Loss of inventory	\$M				
Emergency response costs	Estimated cost per event				

Image: Compass Resource Management (used with permission)

2) Define Objectives and Measures

Implications of the Flood-Management Action (or Inaction)

Objectives and Evaluation Criteria

Scale

PEOPLE		
People displaced permanently	# of people displaced permanently (by SLR or flood-	
	management action)	
Aesthetics	-2 to +2 (constructed scale)	
IMPLEMENTATION		
Capital costs	\$M	
Maintenance costs	\$M	
Adaptability	1 to 4 (constructed scale)	
Ease of implementation	1 to 5 (constructed scale)	

3) Develop Alternatives

e.g. a dike
Images: Ebbwater Consulting (used with permission)

complemented with property-level-protecton

improved with habitat enhancement and a bike path

Vancouver's False Creek and Flats

Alt A - False Creek Sea Barrier

Alt B - False Creek Seawall

Alt C - False Creek Partial Dike

4) Estimate Consequences & Evaluate Trade-offs

	Scale	Dir	BASELINE	PROTECT Sea Barrier	PROTECT Raised Seawall	PROTECT Partial Dike	ADAPT Multiple Tools
PEOPLE							1000
People Displaced - Flood Events	# of people displaced	L					
People Displaced - Permanently	# of people displaced	L					
at risk' people impacted		L					
Park and Recreational Amenity Value	Value-weighted area affected per	L					
Loss of critical services	# of pieces of infrastructure impacted	L					
Aesthetics		н					
ENVIRONMENT							
Risk of Contaminant Release	# of sites w/ potential contaminants	L					
Environmental Benefits	-2 to 2	н					
ECONOMY							
Damage to Infrastructure	Value-weighted km of roads	L					
Damage to buildings		L					
Business disruption	# employees in impacted businesses	L					
Loss of inventory	\$M	L					
Emergency response costs	\$M	L					
IMPLEMENTATION							
Capital Costs	\$M	L					
Maintenance costs	\$M	L					
Adaptability	1 to 4	Н					
Ease Of Implementation	1 to 5	Н					

Consequence Table for False Creek Adaptation Alternatives

Image: Compass Resource Management (used with permission)

Phase 3: SLR Adaptation Framework

Planning timeline, thresholds, and triggers for action

Risk Thresholds and Triggers

Flood Extent & Key Assets

POI Curves

Conclusions

- An SDM approach can aid in decision structuring, understanding what matters, developing good alternatives, evaluating trade-offs
- Understanding of diverse perspectives though 'Internal' engagement with City planners and engineers, and 'External' engagement with communities of interest
- 'Internal' group very similar to 'external' group diverse cultures, interests and motivations, values and perspectives
- Multiple methods to grapple with challenges of communicating probabilistic risk and uncertainty

Acknowledgements

- Special thanks to Tamsin Lyle Ebbwater Consulting
- City of Vancouver, NR-Canada

Come gather 'round people where ever you roam

And admit that the waters around you have grown

And accept it that soon you'll be drenched to the bone

If your time to you is worth savin'

Then you better start swimmin' or you'll sink like a stone,

For the times they are a' changin'!

- Bob Dylan