EXERCISE SHEET 4

WRITTEN SOLUTIONS OF EXERCISES 1.20, 2, 3.3 AND 4 TO BE PRESENTED ON 23/10

Exercise 1. Determine if the following limits exist, and if so, compute their value:

(1)
$$\lim_{x \to +\infty} \frac{x^2 + 1}{3x - 2}$$
;

(12)
$$\lim_{x \to -\infty} (1 + e^x \cos(x^2))$$

(12)
$$\lim_{x \to -\infty} (1 + e^x \cos(x^2));$$
 (23) $\lim_{x \to 3^-} -\frac{2x^7 e^{-x}}{x^3 - 27};$

(2)
$$\lim_{x \to +\infty} \frac{x^4 + 3x^3 + 7}{(x^2 + 2)(2 - x^2)}$$
; (13) $\lim_{x \to +\infty} (1 + e^x \cos(x^2))$; (24) $\lim_{x \to 3^+} -\frac{2x^7 e^{-x}}{x^3 - 27}$;

(13)
$$\lim_{x \to +\infty} (1 + e^x \cos(x^2));$$

(24)
$$\lim_{x \to 3^+} -\frac{2x^7 e^{-x}}{x^3 - 27}$$

(3)
$$\lim_{x \to -\infty} \frac{x^3 + x + 4}{x^2 - x + 5};$$

(14)
$$\lim_{x\to 2^+} \frac{x^2+1}{x-2}$$
;

(3)
$$\lim_{x \to -\infty} \frac{x^3 + x + 4}{x^2 - x + 5}$$
; (14) $\lim_{x \to 2^+} \frac{x^2 + 1}{x - 2}$; (25) $\lim_{x \to -1} \frac{x^4 - 2x^2 + 1}{(x - 1)(x + 1)}$; (4) $\lim_{x \to -\infty} \frac{-2x^2 + 1}{3x^2 - 6}$; (15) $\lim_{x \to 2^-} \frac{x^2 + 1}{x - 2}$; (26) $\lim_{x \to 1} \frac{x^4 - 2x^2 + 1}{(x - 1)(x + 1)}$; $\lim_{x \to 2^+} \frac{x^4 + 2x^2 + 1}{(x - 1)(x + 1)}$;

(4)
$$\lim_{x \to -\infty} \frac{-2x^2 + 1}{3x^2 - 6}$$

(15)
$$\lim_{x \to 2^{-}} \frac{x^2 + 1}{x - 2};$$

(26)
$$\lim_{x \to 1} \frac{x^4 - 2x^2 + 1}{(x - 1)(x + 1)}$$

(5)
$$\lim_{x \to -\infty} \frac{-2x^2 + 1}{3x^2 - 6}$$
; (16) $\lim_{x \to 2} \frac{x^2 + 1}{x - 2}$;

(16)
$$\lim_{x\to 2} \frac{x^2+1}{x-2}$$
;

(27)
$$\lim_{x \to 1^{-}} \frac{x^4 + 2x^2 + 1}{(x - 1)(x + 1)};$$

(6)
$$\lim_{x \to +\infty} \frac{2xe^x}{4x^2 - 6}$$
;

(17)
$$\lim_{x\to 2^+} \frac{x^2-4}{x-2}$$

(28)
$$\lim_{x \to 1^+} \frac{x^4 + 2x^2 + 1}{(x-1)(x+1)};$$

(7)
$$\lim_{x \to -\infty} \frac{2xe^x}{4x^2 - 6}$$

(18)
$$\lim_{x \to 2^{-}} \frac{x^2 - 4}{x - 2}$$

(29)
$$\lim_{x \to +\infty} \frac{x^4 + 2x^2 + 1}{(x-1)(x+1)};$$

(6)
$$\lim_{x \to -\infty} 3x^2 - 6$$
 (16) $\lim_{x \to 2} \frac{x}{x - 2}$;
(6) $\lim_{x \to +\infty} \frac{2xe^x}{4x^2 - 6}$; (17) $\lim_{x \to 2^+} \frac{x^2 - 4}{x - 2}$;
(7) $\lim_{x \to -\infty} \frac{2xe^x}{4x^2 - 6}$; (18) $\lim_{x \to 2^-} \frac{x^2 - 4}{x - 2}$;
(8) $\lim_{x \to +\infty} \frac{(x^2 + 3)(x^3 - 7)}{(x - 1)(x^3 + 9)}$; (19) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$;

(19)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
;

(30)
$$\lim_{x \to 0} \frac{\tan(x)}{x}$$
;

(9)
$$\lim_{x \to -\infty} \frac{(x^2+3)(x^3-7)}{(x-1)(x^3+9)}$$

(20)
$$\lim_{x\to 4} \frac{x^4 + 3x^3 + 7}{(x-4)^2(2-x^2)};$$

(31)
$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right)$$

$$(9) \lim_{x \to -\infty} \frac{(x^2 + 3)(x^3 - 7)}{(x - 1)(x^3 + 9)}; \quad (20) \lim_{x \to 4} \frac{x^4 + 3x^3 + 7}{(x - 4)^2(2 - x^2)}; \quad (31) \lim_{x \to 0} x \sin\left(\frac{1}{x}\right);$$

$$(10) \lim_{x \to +\infty} \frac{(x^2 + 3)(x^3 - 7)}{(1 - x)(x^3 + 9)}; \quad (21) \lim_{x \to +\infty} -\frac{2x^7 e^{-x}}{x^3 - 27}; \quad (32) \lim_{x \to 0} \sqrt{x} \sin\left(\frac{1}{x}\right);$$

$$(11) \lim_{x \to +\infty} e^{-x} \sin x; \quad (22) \lim_{x \to -\infty} -\frac{2x^7 e^{-x}}{x^3 - 27}; \quad (33) \lim_{x \to +\infty} \frac{e^{e^x}}{e^x}.$$

(21)
$$\lim_{x \to +\infty} -\frac{2x^7 e^{-x}}{r^3 - 27}$$
;

(32)
$$\lim_{x \to 0} \sqrt{x} \sin\left(\frac{1}{x}\right);$$

$$(11) \lim_{x \to +\infty} e^{-x} \sin x;$$

(22)
$$\lim_{x \to -\infty} -\frac{2x^7 e^{-x}}{x^3 - 27};$$

(33)
$$\lim_{x \to +\infty} \frac{e^{e^x}}{e^x}.$$

Exercise 2. By using that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

and the properties of trigonometric functions, show that

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2} .$$

(Hint: multiply numerator and denominator by $1 + \cos(x)$.)

Then show that

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0.$$

1

Exercise 3. Find examples of functions $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ satisfying the following properties:

(1)
$$\lim_{x\to +\infty} f(x)=0, \qquad \lim_{x\to -\infty} f(x)=0 \quad \text{ and } \quad \lim_{x\to 1} f(x)=+\infty;$$

$$(2) \lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = -\infty, \quad \lim_{x \to 1^+} f(x) = +\infty \text{ and } \lim_{x \to 1^-} f(x) = -\infty;$$

(3)
$$\lim_{x\to +\infty} f(x) = -\infty$$
, $\lim_{x\to -\infty} f(x) = +\infty$ and $\lim_{x\to 1} f(x) = -\infty$;

$$(4) \lim_{x\to +\infty} f(x) = +\infty, \quad \lim_{x\to -\infty} f(x) = -\infty, \quad \lim_{x\to 1^+} f(x) = +\infty \text{ and } \lim_{x\to 1^-} f(x) = -\infty;$$

(5)
$$\lim_{x\to +\infty} f(x) = -\infty, \qquad \lim_{x\to -\infty} f(x) = +\infty \quad \text{ and } \quad \lim_{x\to 1} f(x) = 0;$$

(6)
$$\lim_{x \to +\infty} f(x) = +\infty$$
, $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to 1} f(x) = +\infty$;

$$(7) \lim_{x \to +\infty} f(x) = 0, \quad \lim_{x \to -\infty} f(x) = +\infty, \quad \lim_{x \to 1^+} f(x) = -\infty \text{ and } \lim_{x \to 1^-} f(x) = +\infty;$$

(8)
$$\lim_{x \to +\infty} f(x) = +\infty$$
, $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to 1} f(x) = 1$;

Exercise 4. Write the statement of the Sandwich Theorem for $x \to -\infty$.