

Classification using High Order Dissimilarities in Non-Euclidean Spaces

Helena Aidos¹, Ana Fred¹ and Robert P. W. Duin²

¹Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal ²Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, The Netherlands {haidos, afred}@lx.it.pt, r.duin@ieee.org

Introduction

- > Dissimilarity Increments is a high order dissimilarity exploring triplets of points.
- > We propose a novel classifier (MAP-**GMDID)** that combines a maximum a posteriori (MAP) approach using Gaussian Mixture Models (GMM) and the Dissimilarity Increments Distribution (DID).
- > In this work, objects are described using dissimilarities between pairs of objects.
- > We build several pseudo-Euclidean **feature spaces** based on the relations given by the dissimilarity matrix. We preserve only the largest eigenvalues.

Pseudo-Euclidean Spaces

> Pseudo-Euclidean Spaces:

80

r Rate (%) 09 00 09 00

Error 30

Error

- **PES**: p+q eigenvectors (p largest positive and q largest negative)
- **PPES:** *p* positive eigenvectors
- **NPES:** q negative eigenvectors
- CES: add 2|a| (|a| largest negative eigenvalue) to all eigenvalues
- > Dissimilarity Spaces: we compute pairwise Euclidean distances between data points of the previous spaces.

PES

CES

Dissimilarity Increments Distribution (DID)

- \triangleright (\mathbf{x}_i , \mathbf{x}_i , \mathbf{x}_k) triplet of nearest neighbors
 - x_i is the nearest neighbor of x_i
 - \mathbf{x}_{k} is the nearest neighbor of \mathbf{x}_{i} (different from \mathbf{x}_i)

> The dissimilarity increments between neighboring patterns is defined as

$$d_{inc}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) = |d(\mathbf{x}_i, \mathbf{x}_j) - d(\mathbf{x}_j, \mathbf{x}_k)|$$

The **DID** in a class is given by

$$p_{d_{inc}}(w;\lambda) = \frac{\pi\beta^2}{4\lambda^2} w \exp\left(-\frac{\pi\beta^2}{4\lambda^2} w^2\right) + \frac{\pi^2\beta^3}{8\sqrt{2}\lambda^3} \times \left(\frac{4\lambda^2}{\pi\beta^2} - w^2\right) \exp\left(-\frac{\pi\beta^2}{8\lambda^2} w^2\right) \operatorname{erfc}\left(\frac{\sqrt{\pi}\beta}{2\sqrt{2}\lambda} w\right)$$

- erfc(.) is the complementary error function
- $\beta = 2 \sqrt{2}$
- $\bullet \lambda = \mathbb{E}[w]$

MAP-GMDID

Error = 2.25%

- $> \{\mathbf{x}_i, c_i, inc_i\}_{i=1}^N$ is labeled dataset
 - \mathbf{x}_i is a feature vector in \mathbb{R}^d
 - c_i is the class label
 - *inc*_i is the set of increments yielded by all the triplets of points containing x;
- ➤ MAP rule:

$$\max_{c_j} p(c_j|\mathbf{x}_i, inc_i) = \max_{c_j} p(\mathbf{x}_i, inc_i|c_j) p(c_j)$$

➤ MAP-GMDID combines the GMM and DID assuming that \mathbf{x}_i and inc_i are conditionally independent:

$$p(\mathbf{x}_{i}, inc_{i}|c_{j}) = \left(\sum_{l=1}^{K} p(\mathbf{x}_{i}|g_{l})\right) p(inc_{i}|c_{j})$$

$$= \left(\sum_{l=1}^{K} \alpha_{l} p(\mathbf{x}_{i}|\Sigma_{l}, \mu_{l})\right) \left(\frac{\sum_{n=1}^{M} p(inc_{i}^{n}|\lambda_{l})}{M}\right)$$

$$\geqslant p(c_{j}) = |c_{j}|/N_{j}$$

Conclusions

- ➤ MAP-GMDID can be interpreted as a GMM with an operator that forces a class to have a common increment structure.
- > MAP-GMDID outperforms other classifiers, especially in NPES and PES.
- > CES and PPES have the lowest error rates for most of the classifiers.
- ➤ MAP-GMDID as similar performance in PES, PPES and CES.