COMPUTER ORGANIZATION (IS F242)

LECT 48: PIPELINING

Dynamic Multiple Issue

- Also known as "Superscalar" processors
 - Is an advanced pipelining technology that enables the processor to execute more than one instruction per clock cycle.
 - Instructions issue in-order & processor decides whether 0, 1 or more instructions can issue in the given clock cycle
 - Avoiding structural and data hazards
 - Avoids the need for compiler scheduling
 - Though it may still help
 - Compiled code will always run correctly independent of the issue rate or pipeline structure of the processor

Dynamic Pipeline Scheduling

- Allow the CPU to execute instructions out of order to avoid stalls
 - But commit result to registers in order
- Example

```
I w $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
sI ti $t5, $s4, 20
```

Can start sub while addu is waiting for lw

Dynamically Scheduled CPU

Commit Unit

 decides when it is safe to release the result of an operation to programmer visible registers and memory

Reservation station

 A buffer with in a functional unit that holds the operands and the operation

Reorder buffer

 holds results in a dynamically scheduled processor until it is safe to store the results to memory or a register

In order commit

 A commit in which the results of the pipelined execution are written to the programmer visible state in the same order that instructions are fetched

Out of order execution

 A situation in pipelined execution when an instruction blocked from executing does not cause the following instructions to wait

Register Renaming

- Reservation stations and reorder buffer effectively provide register renaming
- On instruction issue to reservation station
 - If operand is available in register file or reorder buffer
 - Copied to reservation station
 - No longer required in the register; can be overwritten
 - If operand is not yet available
 - It will be provided to the reservation station by a function unit
 - Register update may not be required

Speculation

- Predict branch and continue issuing
 - Don't commit until branch outcome determined
- Load speculation
 - Avoid load and cache miss delay
 - Predict the effective address
 - Predict loaded value
 - Load before completing outstanding stores
 - Bypass stored values to load unit
 - Don't commit load until speculation cleared

Power Efficiency

- Complexity of dynamic scheduling and speculations requires power
- Multiple simpler cores may be better

Microprocessor	Year	Clock Rate	Pipeline Stages	Issue width	Out-of-order/ Speculation	Cores	Power
i486	1989	25MHz	5	1	No	1	5W
Pentium	1993	66MHz	5	2	No	1	10W
Pentium Pro	1997	200MHz	10	3	Yes	1	29W
P4 Willamette	2001	2000MHz	22	3	Yes	1	75W
P4 Prescott	2004	3600MHz	31	3	Yes	1	103W
Core	2006	2930MHz	14	4	Yes	2	75W
UltraSparc III	2003	1950MHz	14	4	No	1	90W
UltraSparc T1	2005	1200MHz	6	1	No	8	70W

The Opteron X4 Microarchitecture

DRAM

Dynamic RAM

- Bits stored as charge in capacitors(30X 10^-15)
- 1 capacitor + 1 transistor per bit
 - Simpler construction, Smaller per bit, Less expensive
- Used mainly in Main memory
- Charges leak Need refresh circuits
 - □ Need refreshing even when powered (4 8 ms)
- Sensitive to disturbances
- Slower
- Density (25-50):1 to SRAM
- Address multiplexed

DRAM Organization

© 2003 Elsevier Science (USA). All rights reserved.

DRAM Operations

Write

Charge bitline HIGH or LOW and set wordline HIGH

Read

- Bit line is precharged to a voltage halfway between HIGH and LOW, and then the word line is set HIGH.
- Depending on the charge in the cap, the precharged bit line is pulled slightly higher or lower
- Sense amplifier detect change

SRAM Vs DRAM

	Transistors per bit	Relative access time	Persistent?	Sensitive?	Relative cost	Applications
SRAM	6	1X	Yes	No	100X	Cache memory
DRAM	1	10X	No	Yes	1X	Main memory, frame buffers

DRAM Access

Organization in detail

- A 16Mbit chip can be organized as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1, bit 2 of each word in chip 2 and so on.....
- A 16Mbit chip can be organized as a 2048 X 2048 X
 4 bit array
 - Reduces number of address pins
 - Multiplex row address and column address
 - 11 pins to address (2^11 = 2048)
 - Adding one more pin doubles range of values so X4 capacity

Typical 16M DRAM (4M X 4)

Packaging

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM

Conventional DRAM Architectures

16 Mb (16M×1) chip

One 4096×4096 array of data bits

16 Mb (1M×16) chip

16 1024×1024 arrays of data bits

- Interface is either the original asynchronous interface or one of the many recent minor modifications of it
- RAS: Row Address Strobe (Send row address when RAS asserted)
- CAS: Column Address Strobe (Send column address when CAS asserted)
- DRAM asynchronously controlled by processor

Memory cells

- D- Latch
 - Datain, Dataout, Select, R/W
- Address Space
- Addressability
- Organization
 - □ 1-D
 - □ 2-D
 - □ 2.5 D