IOI Training Camp 2013 – Online Test 1, 13–14 April, 2013

Sorted vectors

Vectors are sequences of M integers, where M is a fixed integer. For two vectors A and B, we define the ordering $A \leq B$ if for each coordinate i, at least one of three following conditions hold:

- 1. A[i] < B[i]
- 2. A[i] = -1
- 3. B[i] = -1

For example, if M = 3, $(1,2,3) \le (2,2,4)$, and $(1,-1,3) \le (1,0,-1)$. But it is not true that $(1,2,3) \le (1,-1,2).$

Given N vectors, numbered from 1 to N, find if they can be sorted according to the ordering <. If it is not possible to sort them, output NO. Otherwise, output YES and the lexicographically smallest sorted ordering of the N vectors.

Input format

- Line 1 contains two space-separated integers, N and M.
- The following N lines each contain M space-separated integers. Each line describes one vector.

Output format

If the vectors cannot be sorted, output NO in a single line. Otherwise, output two lines. The first line should contain YES. The second line should contain a permutation of $\{1, 2, \ldots, N\}$ as a spaceseparated list of integers in a single line, corresponding to the lexicographically smallest sorted ordering.

Test data

In all the subtasks N, M are positive integers. Coordinates are either -1, or are non-negative integers no greater than 10^9 .

Sample input 2

- Subtask 1 (50 marks) : $N \leq 300$ and $M \leq 300$.
- Subtask 2 (50 marks) : $N \cdot M \le 500,000$.

Sample input 1

3	3	2	3	
1	-1 -1	1	2	3
1	2 1	3	2	1

Sample output 1	Sample output 2			
YES	NO			
1 2 3				

Limits

2 -1 1

- Memory limit: 128 MB
- \bullet Time limit: 4s