Floquet Three-level notes

Ning Sun (Dated: August 6, 2016)

PARAMETERS

- Energy levels scales
 - Total band width of the lowest two bands: $h \times 3.9(1)kHz$
 - Gap to the next higher band: $h \times 5.4(2)kHz$ [Esslinger 2014, Haldane model]
- Shaking parameters
 - Shaking frequency: "Using lattice shaking at a frequency near the ground-band to first-excited-band transition", $\omega=7.3kHz=5.5E_R/\hbar$
 - Shaking amplitude: b = 65nm ($\lambda_L = 1064nm$) $\Rightarrow \gamma \sim \omega b/\lambda_L = 5.5E_R \times 0.06 = 0.33E_R = 0.44kHz$ [Chen Ching 2013, Nat.Phys., Effective ferromagnetic]

RATE OF CONVERGENCE

 $\Delta_1 = 1, \Delta_2 = 10$

TABLE I: rate of convergence for the energy levels (truncation <i>n</i>)	[accuracy:10 ⁻⁴]

$\hbar\omega$	0.1	0.5	0.8	1	5	10	15	30	100
0.1	58	68	74	80	188	328	470	896	
0.5	14	17	19	20	44	74	105	192	595
1	8	10	11	12	25	41	57	102	306
5	3	4	5	5	9	12	16	27	80
10	3	3	4	4	7	9	11	16	40
15	3	3	3	3	5	7	9	13	29
30	3	3	3	4	5	6	7	9	18
100	3	3	3	3	4	4	5	6	10

Of the rate of convergence of truncation, two statements could be made:

- 1. The rate of convergence depends on γ/ω . Precisely, the truncation n of Floquet matrices depends linearly on γ/ω .
- 2. But n should be large at least than $(\Delta_1 + \Delta_2)/\omega$ to make the truncation series convergent.

Suppose the relation between n and γ/ω is linear dependence y = a + bx. Fit the data gives

TABLE II: Fitting $n = a + b(\gamma/\omega)$

ω	0.1	0.5	1	5	10	15	30	100
а	51.44	15.15	9.88	4.75	5.56	5.73	5.09	
b	2.81	2.91	2.97	3.76	3.45	3.50	3.87	

AVOIDED CROSSING

For several shaking frequency ω , we plot quasi-energy spectrum vs γ .

Based on the study of the pattern of quasi-energy spectrum vs γ , we make the following statement:

• Generally there should be some avoided crossing. When ω is large, large value of γ is needed to make it happen.

$\label{eq:objective} \mbox{middlemost quasiband} \\ \omega = \mbox{1.}$

-ω/2 L

 $\label{eq:objective_def} \begin{tabular}{ll} \begin{tabular}{ll}$

middlemost 3 quasibands

