Package 'GWPR.light'

October 7, 2021

Type Package

```
Title Geographically Weighted Panel Regression (GWPR)
Version 0.1.0
Author Chao Li [aut, cre] (<a href="https://orcid.org/0000-0002-6854-">https://orcid.org/0000-0002-6854-</a>
      4456>), Shunsuke Managi [aut] (<a href="https://orcid.org/0000-0001-7883-1427">https://orcid.org/0000-0001-7883-1427</a>)
Maintainer Chao Li <chaoli@394@gmail.com>
Description
      This package are grounded in a branch of spatial statistics. Using geographically weights, the ge-
      ographically weighted panel regression is try to solve the residuals from panel regression cluster-
      ing spatially. To investigate whether the residuals cluster spatially, the Moran's I test is also im-
      proved. Furthermore, three local statistic tests are contained to help the users select model.
License AGPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports data.table,
      doParallel,
      dplyr,
      foreach,
      GWmodel,
      iterators,
      lmtest,
      methods,
      parallel,
      plm,
      sp,
      stats
Depends R (>= 2.10)
Suggests rmarkdown,
      knitr,
      rgeos,
      tmap
VignetteBuilder knitr
URL https://github.com/MichaelChaoLi-cpu/GWPR.light
BugReports https://github.com/MichaelChaoLi-cpu/GWPR.light/issues
```

R topics documented:

	GWPR.light-packag	ge	 																									2
	bw.GWPR																											
	California		 																									4
	GWPR		 																									
	GWPR.moran.test .		 																									•
	GWPR.pFtest																											
	GWPR.phtest		 																									10
	GWPR.plmtest		 																									1
	TransAirPolCalif .																											
Index																												1
GWPR	.light-package	A Pa	ge j	for	· G	eog	raj	ph	ice	ally	v V	We	igi	hte	ed.	Pa	ne	l I	Re	gre	ess	sic	on	(l	igi	ht	ve	r-

Description

This package are grounded in a branch of spatial statistics. Using geographically weights, the geographically weighted panel regression is try to solve the residuals from panel regression clustering spatially. To investigate whether the residuals cluster spatially, the Moran's I test is also improved. Furthermore, three local statistic tests are contained to help the users select model. This package includes the function for the optimal bandwidth selection in GWPR, the function for GWPR, the function for the local Hausman test, the function for the local F test for individual effects, the function for the local Lagrange Multiplier Breusch-Pagan test, and the function for panel Moran's I test. The functions have been optimized, which require the less memory in the calculation.

Details

Package: GWPR.light

Type: Package Version: 0.1.0

Date: 2021-10-02

License: AGPL (>= 3)

LazyLoad: yes

Author(s)

Chao Li <chaoli0394@gmail.com> [aut, cre] Shunsuke Managi <managi@doc.kyushu-u.ac.jp> [aut]

bw.GWPR 3

bw. GWPR Bandwidth selection for basic GWPR

Description

A function for automatic bandwidth selection to calibrate a GWPR model

Usage

Arguments

h.lower

The regression formula: $Y \sim X1 + + Xk$
data.frame for the Panel data
A vector for the indexes : (c("ID", "Time"))
Spatial*DataFrame on which is based the data, with the "ID" in the index
If TRUE, adaptive distance bandwidth is used, otherwise, fixed distance bandwidth.
The power of the Minkowski distance, default is 2, i.e. the Euclidean distance
TRUE or FALSE, if the dataset exceeds 40,000, we strongly recommend set it true
Set the ratio between upper boundary of potential bandwidth range and the forthest distance of SDF, if bigdata = T. (default value: 0.25)
The effects introduced in the model, one of "individual" (default) , "time", "twoways", or "nested"
Panel model transformation: (c("within", "random", "pooling"))
Method of estimation for the variance components in the random effects model, one of "swar" (default), "amemiya", "walhus", or "nerlove"
Score used to optimize the bandwidth, c("CV", "AIC")
bisquare: wgt = $(1-(vdist/bw)^2)^2$ if vdist < bw, wgt=0 otherwise (default); gaussian: wgt = $\exp(5*(vdist/bw)^2)$; exponential: wgt = $\exp(-vdist/bw)$; tricube: wgt = $(1-(vdist/bw)^3)^3$ if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist < bw, wgt=0 otherwise
If TRUE, great circle distances will be calculated
If TRUE, "cluster": multi-process technique with the parallel package would be used.
The number of the clusters that user wants to use
If TRUE, the range of bandwidth selection could be set by the user
The lower boundary of potential bandwidth range.

The upper boundary of potential bandwidth range.

4 California

Value

The optimal bandwidth

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

References

Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons, 2003.

Examples

```
## Not run:
data(TransAirPolCalif)
data(California)
formula.GWPR <- pm25 ~ co2_mean + Developed_Open_Space_perc + Developed_Low_Intensity_perc +
   Developed_Medium_Intensity_perc + Developed_High_Intensity_perc +
   Open_Water_perc + Woody_Wetlands_perc + Emergent_Herbaceous_Wetlands_perc +
   Deciduous_Forest_perc + Evergreen_Forest_perc + Mixed_Forest_perc +
   Shrub_perc + Grassland_perc + Pasture_perc + Cultivated_Crops_perc +
   pop_density + summer_tmmx + winter_tmmx + summer_rmax + winter_rmax
bw.CV.F <- bw.GWPR(formula = formula.GWPR, data = TransAirPolCalif, index = c("GEOID", "year"),
                SDF = California, adaptive = F, p = 2, bigdata = F, effect = "individual",
                   model = "within", approach = "CV", kernel = "bisquare", longlat = F)
bw.CV.F
bw.AIC.F <- bw.GWPR(formula = formula.GWPR, data = TransAirPolCalif, index = c("GEOID", "year"),</pre>
                    SDF = California,
                    adaptive = F, p = 2, bigdata = F, effect = "individual",
                   model = "within", approach = "AIC", kernel = "bisquare", longlat = F,
                    doParallel = T, cluster.number = 4)
bw.AIC.F
## End(Not run)
```

California

California (SpatialPolygonsDataFrame)

Description

The counties' boundary in California

Usage

```
data(California)
```

Format

```
A sp::SpatialPolygonsDataFrame with 'GEOID":
```

GEOID a numeric vector, fips IDs of the counties

GWPR 5

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

Examples

```
## Not run:
data(California)
plot(California)
## End(Not run)
```

GWPR

Geographically Weighted Panel Regression Model

Description

This function implements GWPR

Usage

Arguments

formula	The regression formula: : $Y \sim X1 + + Xk$
data	A data.frame for the Panel data
index	A vector for the indexes : (c("ID", "Time"))
SDF	Spatial*DataFrame on which is based the data, with the "ID" in the index
bw	The optimal bandwidth, either adaptive or fixed distance
adaptive	If TRUE, adaptive distance bandwidth is used, otherwise, fixed distance bandwidth.
р	The power of the Minkowski distance, default is 2, i.e. the Euclidean distance
effect	The effects introduced in the model, one of "individual" (default) , "time", "twoways", or "nested"
model	Panel model transformation: (c("within", "random", "pooling"))
random.method	Method of estimation for the variance components in the random effects model, one of "swar" (default), "amemiya", "walhus", or "nerlove"
kernel	bisquare: wgt = $(1-(vdist/bw)^2)^2$ if vdist < bw, wgt=0 otherwise (default); gaussian: wgt = $\exp(5*(vdist/bw)^2)$; exponential: wgt = $\exp(-vdist/bw)$; tricube: wgt = $(1-(vdist/bw)^3)^3$ if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist < bw, wgt=0 otherwise
longlat	If TRUE, great circle distances will be calculated

6 GWPR

Value

A list of result:

GW.arguments a list class object including the model fitting parameters for generating the report file

R2 global r2

index the index used in the result, Note: in order to avoid mistakes, we forced a rename of the individuals'ID as id.

plm.result an object of class inheriting from plm, see plm

raw.data the data.frame used in the regression

GWPR.residuals the data.frame includes Y, Y hat, and residuals from GWPR

SDF a Spatial*DataFrame (either Points or Polygons, see sp) integrated with fit.points,GWPR coefficient estimates,coefficient standard errors and t-values in its data slot.

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

References

Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons, 2003.

```
## Not run:
data(TransAirPolCalif)
data(California)
formula.GWPR <- pm25 ~ co2_mean + Developed_Open_Space_perc + Developed_Low_Intensity_perc +
   Developed_Medium_Intensity_perc + Developed_High_Intensity_perc +
   Open_Water_perc + Woody_Wetlands_perc + Emergent_Herbaceous_Wetlands_perc +
   Deciduous_Forest_perc + Evergreen_Forest_perc + Mixed_Forest_perc +
   Shrub_perc + Grassland_perc + Pasture_perc + Cultivated_Crops_perc +
   pop_density + summer_tmmx + winter_tmmx + summer_rmax + winter_rmax
bw.AIC.F <- bw.GWPR(formula = formula.GWPR, data = TransAirPolCalif, index = c("GEOID", "year"),</pre>
                    SDF = California,
                    adaptive = F, p = 2, bigdata = F, effect = "individual",
                   model = "within", approach = "AIC", kernel = "bisquare", longlat = F,
                    doParallel = T, cluster.number = 4)
result.F.AIC <- GWPR(bw = bw.AIC.F, formula = formula.GWPR, data = TransAirPolCalif,
                     index = c("GEOID", "year"),
                     SDF = California, adaptive = F, p = 2, effect = "individual",
                     model = "within",
                     kernel = "bisquare", longlat = F)
summary(result.F.AIC$SDF$Local_R2)
library(tmap)
tm_shape(result.F.AIC$SDF) +
tm_polygons(col = "Local_R2", pal = "Reds",auto.palette.mapping = F,
            style = 'cont')
## End(Not run)
```

GWPR.moran.test 7

GWPR.moran.test

Moran's I Test for Panel Regression

Description

Moran's I Test for Panel Regression

Usage

```
GWPR.moran.test(
  plm_model,
  SDF,
  bw,
  adaptive = F,
  p = 2,
  kernel = "bisquare",
  longlat = F,
  alternative = "greater")
```

Arguments

plm_model An object of class inheriting from "plm", see plm

SDF Spatial*DataFrame on which is based the data, with the "ID" in the index

bw The optimal bandwidth, either adaptive or fixed distance

adaptive If TRUE, adaptive distance bandwidth is used, otherwise, fixed distance band-

width.

p The power of the Minkowski distance, default is 2, i.e. the Euclidean distance

kernel bisquare: $wgt = (1-(vdist/bw)^2)^2$ if vdist < bw, wgt=0 otherwise (default);

gaussian: $wgt = exp(-.5*(vdist/bw)^2)$; exponential: wgt = exp(-vdist/bw); tricube: $wgt = (1-(vdist/bw)^3)^3$ if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist

< bw, wgt=0 otherwise

longlat If TRUE, great circle distances will be calculated

alternative A character string specifying the alternative hypothesis, must be one of greater

(default), less or two.sided.

Value

A list of result:

statistic the value of the standard deviate of Moran's I.

p.value the p-value of the test.

Estimated.I the value of the observed Moran's I.

Excepted.I the value of the expectation of Moran's I.

V2 the value of the variance of Moran's I.

alternative a character string describing the alternative hypothesis.

8 GWPR.pFtest

Note

: Current version of panel Moran's I test can only chech the balanced panel data.

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

References

Beenstock, M., Felsenstein, D., 2019. The econometric analysis of non-stationary spatial panel data. Springer.

Examples

```
## Not run:
data(TransAirPolCalif)
data(California)
formula.GWPR <- pm25 ~ co2_mean + Developed_Open_Space_perc + Developed_Low_Intensity_perc +
   Developed_Medium_Intensity_perc + Developed_High_Intensity_perc +
   Open_Water_perc + Woody_Wetlands_perc + Emergent_Herbaceous_Wetlands_perc +
   Deciduous_Forest_perc + Evergreen_Forest_perc + Mixed_Forest_perc +
   Shrub_perc + Grassland_perc + Pasture_perc + Cultivated_Crops_perc +
   pop_density + summer_tmmx + winter_tmmx + summer_rmax + winter_rmax
pdata <- plm::pdata.frame(TransAirPolCalif, index = c("GEOID", "year"))</pre>
moran.plm.model <- plm::plm(formula = formula.GWPR, data = pdata, model = "within")</pre>
summary(moran.plm.model)
bw. AIC.F <- bw. GWPR (formula = formula. GWPR, data = TransAirPolCalif, index = c("GEOID", "year"), \\
                    SDF = California,
                    adaptive = F, p = 2, bigdata = F, effect = "individual",
                    model = "within", approach = "AIC", kernel = "bisquare", longlat = F,
                    doParallel = T, cluster.number = 4)
# moran's I test
GWPR.moran.test(moran.plm.model, SDF = California, bw = bw.AIC.F, kernel = "bisquare",
                 adaptive = F, p = 2, longlat=F, alternative = "greater")
## End(Not run)
```

GWPR.pFtest

Locally F Test based on GWPR

Description

This function perform F test in each regression based on different subsamples

Usage

GWPR.pFtest 9

Arguments

formula: $Y \sim X1 + ... + Xk$

data A data.frame for the Panel data.

index A vector for the indexes : (c("ID", "Time")).

SDF Spatial*DataFrame on which is based the data, with the "ID" in the index.

bw The optimal bandwidth, either adaptive or fixed distance.

adaptive If TRUE, adaptive distance bandwidth is used, otherwise, fixed distance band-

width.

p The power of the Minkowski distance, default is 2, i.e. the Euclidean distance

effect The effects introduced in the fixed effects model, one of "individual" (default),

"time", "twoways"

kernel bisquare: $wgt = (1-(vdist/bw)^2)^2$ if vdist < bw, wgt=0 otherwise (default);

gaussian: $wgt = exp(-.5*(vdist/bw)^2)$; exponential: wgt = exp(-vdist/bw); tricube: $wgt = (1-(vdist/bw)^3)^3$ if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist

< bw, wgt=0 otherwise

longlat If TRUE, great circle distances will be calculated

Value

A list of result:

GW.arguments a list class object including the model fitting parameters for generating the report file

SDF a Spatial*DataFrame (either Points or Polygons, see sp) integrated with fit.points, test value, p value, df1, df2

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

```
## Not run:
data(TransAirPolCalif)
data(California)
formula.GWPR <- pm25 ~ co2_mean + Developed_Open_Space_perc + Developed_Low_Intensity_perc +</pre>
   Developed_Medium_Intensity_perc + Developed_High_Intensity_perc +
   Open_Water_perc + Woody_Wetlands_perc + Emergent_Herbaceous_Wetlands_perc +
   Deciduous_Forest_perc + Evergreen_Forest_perc + Mixed_Forest_perc +
   Shrub_perc + Grassland_perc + Pasture_perc + Cultivated_Crops_perc +
   pop_density + summer_tmmx + winter_tmmx + summer_rmax + winter_rmax
bw.AIC.F <- bw.GWPR(formula = formula.GWPR, data = TransAirPolCalif,</pre>
                    index = c("GEOID", "year"), SDF = California,
                    adaptive = F, p = 2, bigdata = F, effect = "individual",
                    model = "within", approach = "AIC", kernel = "bisquare", longlat = F,
                    doParallel = T, cluster.number = 4)
GWPR.pFtest.resu.F <- GWPR.pFtest(formula = formula.GWPR, data = TransAirPolCalif,</pre>
                                   index = c("GEOID", "year"),
                                   SDF = California, bw = bw.AIC.F, adaptive = F, p = 2,
                                 effect = "individual", kernel = "bisquare", longlat = F)
```

10 GWPR.phtest

```
library(tmap)
tm_shape(GWPR.pFtest.resu.F$SDF) +
    tm_polygons(col = "p.value", breaks = c(0, 0.05, 1))
## End(Not run)
```

GWPR.phtest

Locally Hausman Test based on GWPR

Description

Locally Hausman Test based on GWPR

Usage

```
GWPR.phtest(
  formula,
  data,
  index,
  SDF,
  bw = NULL,
  adaptive = F,
  p = 2,
  effect = "individual",
  random.method = "swar",
  kernel = "bisquare",
  longlat = F
)
```

Arguments

formula	The regression formula: : Y	$\sim X1 + + Xk$
---------	-----------------------------	------------------

data A data.frame for the Panel data.

index A vector for the indexes : (c("ID", "Time")).

SDF Spatial*DataFrame on which is based the data, with the "ID" in the index.

bw The optimal bandwidth, either adaptive or fixed distance.

adaptive If TRUE, adaptive distance bandwidth is used, otherwise, fixed distance band-

width.

p The power of the Minkowski distance, default is 2, i.e. the Euclidean distance

effect The effects introduced in the fixed effects model, one of "individual" (default),

"time", "twoways"

random.method Method of estimation for the variance components in the random effects model,

one of "swar" (default), "amemiya", "walhus", or "nerlove"

kernel bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise (default);

gaussian: $wgt = exp(-.5*(vdist/bw)^2)$; exponential: wgt = exp(-vdist/bw); tricube: $wgt = (1-(vdist/bw)^3)^3$ if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist

< bw, wgt=0 otherwise

longlat If TRUE, great circle distances will be calculated

GWPR.plmtest 11

Value

A list of result:

GW.arguments a list class object including the model fitting parameters for generating the report file

SDF a Spatial*DataFrame (either Points or Polygons, see sp) integrated with fit.points, test value, p value, df

Note

If the random method is "swar", to perform this test, bandwidth selection must guarantee that enough individuals in the subsamples. Using bw.GWPR function can avoid mistake.

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

Examples

```
## Not run:
data(TransAirPolCalif)
data(California)
formula.GWPR <- pm25 ~ co2_mean + Developed_Open_Space_perc + Developed_Low_Intensity_perc +
   Developed_Medium_Intensity_perc + Developed_High_Intensity_perc +
   Open_Water_perc + Woody_Wetlands_perc + Emergent_Herbaceous_Wetlands_perc +
   Deciduous_Forest_perc + Evergreen_Forest_perc + Mixed_Forest_perc +
   Shrub_perc + Grassland_perc + Pasture_perc + Cultivated_Crops_perc +
   pop_density + summer_tmmx + winter_tmmx + summer_rmax + winter_rmax
bw.AIC.F <- bw.GWPR(formula = formula.GWPR, data = TransAirPolCalif,</pre>
                    index = c("GEOID", "year"), SDF = California,
                    adaptive = F, p = 2, bigdata = F, effect = "individual",
                   model = "random", approach = "AIC", kernel = "bisquare", longlat = F,
                    doParallel = T, cluster.number = 4)
GWPR.phtest.resu.F <- GWPR.phtest(formula = formula.GWPR, data = TransAirPolCalif,</pre>
                                   index = c("GEOID", "year"),
                                   SDF = California, bw = bw.AIC.F, adaptive = F, p = 2,
                                 effect = "individual", kernel = "bisquare", longlat = F)
library(tmap)
tm_shape(GWPR.phtest.resu.F$SDF) +
     tm_polygons(col = "p.value", breaks = c(0, 0.05, 1))
## End(Not run)
```

 ${\tt GWPR.plmtest}$

Locally Breusch-Pagan Lagrange Multiplier Test Based on GWPR

Description

This function perform Breusch-Pagan Lagrange Multiplier test in each regression based on different subsamples

12 GWPR.plmtest

Usage

Arguments

formula: $Y \sim X1 + ... + Xk$

data A data.frame for the Panel data.

index A vector for the indexes : (c("ID", "Time")).

SDF Spatial*DataFrame on which is based the data, with the "ID" in the index.

bw The optimal bandwidth, either adaptive or fixed distance.

adaptive If TRUE, adaptive distance bandwidth is used, otherwise, fixed distance band-

width.

p The power of the Minkowski distance, default is 2, i.e. the Euclidean distance

kernel bisquare: $wgt = (1-(vdist/bw)^2)^2$ if vdist < bw, wgt=0 otherwise (default);

gaussian: $wgt = exp(-.5*(vdist/bw)^2)$; exponential: wgt = exp(-vdist/bw); tricube: $wgt = (1-(vdist/bw)^3)^3$ if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist

< bw, wgt=0 otherwise

longlat If TRUE, great circle distances will be calculated

Value

A list of result:

GW.arguments a list class object including the model fitting parameters for generating the report file

SDF a Spatial*DataFrame (either Points or Polygons, see sp) integrated with fit.points, test value, p value, df1, df2

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

```
## Not run:
data(TransAirPolCalif)
data(California)
formula.GWPR <- pm25 ~ co2_mean + Developed_Open_Space_perc + Developed_Low_Intensity_perc +
   Developed_Medium_Intensity_perc + Developed_High_Intensity_perc +
   Open_Water_perc + Woody_Wetlands_perc + Emergent_Herbaceous_Wetlands_perc +
   Deciduous_Forest_perc + Evergreen_Forest_perc + Mixed_Forest_perc +
   Shrub_perc + Grassland_perc + Pasture_perc + Cultivated_Crops_perc +
   pop_density + summer_tmmx + winter_tmmx + summer_rmax + winter_rmax
bw.AIC.F <- bw.GWPR(formula = formula.GWPR, data = TransAirPolCalif,</pre>
                    index = c("GEOID", "year"), SDF = California,
                    adaptive = F, p = 2, bigdata = F, effect = "individual",
                   model = "within", approach = "AIC", kernel = "bisquare", longlat = F,
                    doParallel = T, cluster.number = 4)
GWPR.plmtest.resu.F <- GWPR.plmtest(formula = formula.GWPR, data = TransAirPolCalif,
                                    index = c("GEOID", "year"),
```

TransAirPolCalif 13

TransAirPolCalif

Panel Dataset for Testing GWPR

Description

Panel dataset to estimate the relationship between county-level PM2.5 concentration and on-road transporation in California.

Usage

```
data(TransAirPolCalif)
```

Format

A data. frame with 23 variables, and 928 observations, which are:

GEOID a numeric vector, fips IDs of the counties

year a numeric vector, year

pm25 a numeric vector, annually average PM2.5 concentration in the counties

co2_mean a numeric vector, geographically average CO2 emission from on-road transportation in each year, million tons/km2

Developed_Open_Space_perc a numeric vector, percentage of developed open space of total area in each county

Developed_Low_Intensity_perc a numeric vector, percentage of low-intensity developed area of total area in each county

Developed_Medium_Intensity_perc a numeric vector, percentage of medium-intensity developed area of total area in each county

Developed_High_Intensity_perc a numeric vector, percentage of high-intensity develope area of total area in each county

Open_Water_perc a numeric vector, percentage of open water of total area in each county

Woody_Wetlands_perc a numeric vector, percentage of woody wetland of total area in each county

Emergent_Herbaceous_Wetlands_perc a numeric vector, percentage of emergent herbaceous wetland of total area in each county

Deciduous_Forest_perc a numeric vector, percentage of deciduous forest of total area in each county

Evergreen_Forest_perc a numeric vector, percentage of evergreen forest of total area in each county

Mixed_Forest_perc a numeric vector, percentage of mixed forest of total area in each county **Shrub_perc** a numeric vector, percentage of shrub of total area in each county

14 TransAirPolCalif

```
Grassland_perc a numeric vector, percentage of grassland of total area in each county
Pasture_perc a numeric vector, percentage of pasture of total area in each county
Cultivated_Crops_perc a numeric vector, percentage of cultivated crops of total area in each county
pop_density a numeric vector, average population density in each county
summer_tmmx a numeric vector, average temperature in summer
winter_tmmx a numeric vector, average temperature in winter
summer_rmax a numeric vector, average humidity in summer
winter_rmax a numeric vector, average humidity in winter
```

Author(s)

Chao Li <chaoli0394@gmail.com> Shunsuke Managi <managi.s@gmail.com>

```
## Not run:
data(TransAirPolCalif)
head(TransAirPolCalif)
## End(Not run)
```

Index

```
* datasets
        California, 4
        TransAirPolCalif, 13
* package
        GWPR.light-package, 2

bw.GWPR, 3

California, 4

GWPR, 5

GWPR.light (GWPR.light-package), 2

GWPR.light-package, 2

GWPR.moran.test, 7

GWPR.pFtest, 8

GWPR.phtest, 10

GWPR.plmtest, 11

TransAirPolCalif, 13
```