Тема: Интерполяция функций

 ${\bf 3}^0$. Достаточное условие интерполяции функции обобщенным полиномом. Переход к системе линейных уравнений с матрицей Грама. Пример дискретной ортогональной системы функций на отрезке с равномерной сеткой. ${\bf 4}^0$. Условие интерполяции функции алгебраическим полиномом. Интерполянт как линейная комбинация базисных полиномов Лагранжа. Интерполяционная формула Лагранжа, полином Лагранжа. Свойства лагранжевой интерполяции. ${\bf 5}^0$. Теорема о погрешности интерполяционной формулы Лагранжа в случае равномерной сетки узлов. ${\bf 7}^0$. Компактное представление интерполяционного полинома Лагранжа.

 3^0 . Пусть на отрезке [a,b] задана система из непрерывных функций

$$\varphi_0(x), \quad \varphi_1(x), \quad \varphi_2(x), \quad \dots, \quad \varphi_N(x).$$

Рассмотрим их линейную комбинацию

$$f_{N}(x) = \sum_{k=0}^{N} u_{k} \varphi_{k}(x).$$

Любую линейную комбинацию такого вида называют часто **обобщенным полиномом**.

Для того чтобы обобщенный полином $f_{N}(x)$ выступал в качестве интерполянта функции f(x), достаточно потребовать выполнения условий

$$f_{N}(x_{k}) = f(x_{k}), \quad k = 0, 1, 2, \dots, N.$$

Эти же условия записываются в виде следующей СЛАУ относительно неизвестных ве-

СОВ u_{k} , k = 0, 1, ..., N, интерполянта:

$$\begin{cases} u_0\varphi_0(x_0)+u_1\varphi_1(x_0)+\ldots+u_N\varphi_N(x_0)=f_0,\\ u_0\varphi_0(x_1)+u_1\varphi_1(x_1)+\ldots+u_N\varphi_N(x_1)=f_1,\\ u_0\varphi_0(x_2)+u_1\varphi_1(x_2)+\ldots+u_N\varphi_N(x_2)=f_2,\\ \ldots \\ u_0\varphi_0(x_N)+u_1\varphi_1(x_N)+\ldots+u_N\varphi_N(x_N)=f_N. \end{cases}$$

Матрица A этой системы линейных алгебраических уравнений размера $(N+1) \times (N+1)$ записывается в виде

$$A = \begin{pmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \varphi_2(x_0) & \cdots & \varphi_N(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_N(x_1) \\ \varphi_0(x_2) & \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_N(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(x_N) & \varphi_1(x_N) & \varphi_2(x_N) & \cdots & \varphi_N(x_N) \end{pmatrix}.$$

Если
$$\overrightarrow{u}_N = \uparrow(u_0,\ldots,u_N)$$
 и $\overrightarrow{f}_N = \uparrow(f_0,\ldots,f_N)$,

то система принимает следующий векторный вид:

$$A\overrightarrow{u}_{N} = \overrightarrow{f}_{N}.$$

Решение этой системы при любой правой части \overrightarrow{f}_N существует тогда и только тогда, когда $\det A \neq 0$.

Иногда вместо системы $A\overrightarrow{u}_N = \overrightarrow{f}_N$ удобнее решать сопряженную ей систему линейных

уравнений $C\overrightarrow{u}_N=A^*\overrightarrow{f}_N$. Здесь A^* — это транспонированная к матрице A и $C=A^*A$. При этом

$$C = \begin{pmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) & (\varphi_0, \varphi_2) & \cdots & (\varphi_0, \varphi_N) \\ (\varphi_1, \varphi_0) & (\varphi_1, \varphi_1) & (\varphi_1, \varphi_2) & \cdots & (\varphi_1, \varphi_N) \\ & & & & & \\ (\varphi_2, \varphi_0) & (\varphi_2, \varphi_1) & (\varphi_2, \varphi_2) & \cdots & (\varphi_2, \varphi_N) \\ & & & & & & \\ (\varphi_N, \varphi_0) & (\varphi_N, \varphi_1) & (\varphi_N, \varphi_2) & \cdots & (\varphi_N, \varphi_N) \end{pmatrix}.$$

Здесь (φ_k, φ_j) — это специальное скалярное произведение в пространстве сеточных функций, задаваемое равенством

$$(arphi_k, arphi_j) = \sum_{m=0}^N arphi_k(x_m) arphi_j(x_m).$$

Матрица $C = A^*A$ — это матрица Грама системы $(\varphi_0, \varphi_1, \dots, \varphi_N)$ в соответствующем скалярном произведении.

Если система сеточных функций

$$\begin{cases} \left(\varphi_0(x_0), \varphi_0(x_1), \varphi_0(x_2), \dots, \varphi_0(x_N)\right), \\ \left(\varphi_1(x_0), \varphi_1(x_1), \varphi_1(x_2), \dots, \varphi_1(x_N)\right), \\ \vdots \\ \left(\varphi_N(x_0), \varphi_N(x_1), \varphi_N(x_2), \dots, \varphi_N(x_N)\right) \end{cases}$$

линейно независима, то соответствующая ей матрица Грама невырождена. Верно и обратное.

Переход к системе линейных уравнений с матрицей Грама особенно удобен в случае ортогональных сеточных функций, то есть таких, что выполняются равенства

$$(arphi_k,arphi_j)=0$$
 при $k
eq j.$

Если при этом $(\varphi_k,\varphi_k) \neq 0$, то матрица Грама становится диагональной с ненулевыми элементами на диагонали. При $(\varphi_k,\varphi_k)=1$, $k=0,1,2,\ldots,N$, имеем $\overrightarrow{u}_N=A^*\overrightarrow{f}_N$.

На отрезке [0,1] с равномерной сеткой узлов

$$x_j=rac{j}{N}, \quad j=0,1,2,\ldots,N$$

ортогональную систему образуют, например, сеточные функции

$$e^{i2\pi kx}j, \quad k=0,1,2,\ldots,N.$$

Убедитесь в этом в качестве упражнения.

 4^0 . Пусть $u_{k}(x)$ совпадает со степенной функцией x^k , $k=0,1,2,\ldots,N$. Тогда обобщенный

ПОЛИНОМ

$$\sum_{k=0}^{N} a_k u_k(x) = \sum_{k=0}^{N} a_k x^k$$

является обычным алгебраическим полиномом степени не выше N.

В этом случае система линейных уравнений для нахождения весов a_k , $k=0,1,\ldots,N$, при-

нимает следующий вид:

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_N x_0^N = f_0, \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_N x_1^N = f_1, \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_N x_2^N = f_2, \\ \dots \\ a_0 + a_1 x_N + a_2 x_N^2 + \dots + a_N x_N^N = f_N. \end{cases}$$

$$(L_f)$$

Определитель этой системы известен как определитель Вандермонда и вычисляется по формуле

$$\det A = \prod_{0 \le j < i \le N}^{N} (x_i - x_j).$$

Этот определитель отличен от нуля тогда и только тогда, когда среди узлов x_k нет совпадающих друг с другом.

Для равномерной сетки узлов решение системы для коэффициентов линейной комбинации существует и единственно. Однако в этом случае при больших значениях N матрица $A \equiv A_N$ системы плохо обусловлена.

Если $\overrightarrow{u}_N=\uparrow(a_0,a_1,a_2,\ldots,a_N)$ — это решение системы (L_f) , то соответствующий ему интерполянт $L_N(x)=\sum\limits_{k=0}^N a_k x^k$ допускает экви-

валентное задание в виде

$$L_N(x) = \sum_{k=0}^N f_k arphi_k^N(x).$$

Здесь функция $\varphi_k^N(x)$ — это базисный полином степени N, значения которого в узлах интерполяции задаются равенствами

$$arphi_{m{k}}^{m{N}}(x_{m{m}})=0$$
 ПРИ $m
eq k,$ $arphi_{m{k}}^{m{N}}(x_{m{k}})=1.$

Таким образом, лишь узел x_k интерполяции не является корнем полинома $arphi_k^N(x)$.

Следовательно, полином $arphi_{m{k}}^{m{N}}(x)$ имеет вид следующего произведения:

$$D_k(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_N).$$

Коэффициент D_k в этом представлении найдем из условия $arphi_k^N(x_k)=1.$

Подставляя сюда явное выражение полино- ма $arphi_k^N(x)$ в виде произведения мономов, по-

лучаем следующее представление множите-ля $D_{m{k}}$ через узлы интерполяции:

$$\frac{1}{(x_k-x_0)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_N)}.$$

Найденный полином $arphi_{m k}^{m N}(x)$, записанный в виде дробного отношения

$$\frac{(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_N)}{(x_k-x_0)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_N)},$$

называется базисным полиномом Лагранжа.

Числитель в записи этого полинома — это произведение разностей между x и всеми узлами, кроме k-го. А знаменатель — это произведение разностей между k-м узлом и всеми остальными узлами интерполяции.

Определение. Полином $L_N(x) = \sum\limits_{k=0}^N f_k \varphi_k^N(x)$ степени N называется интерполяционным полиномом Лагранжа для функции f(x).

Приближенное равенство $f(x) \approx L_{N}(x)$ — это

интерполяционная формула Лагранжа.

Заметим, что интерполяционный полином $L_{m N}(x)$ зависит не только от x, но и от узлов

$$\{x_0, x_1, x_2, \dots, x_N\},\$$

а также от значений f_k , $k=0,1,2,\ldots,N$, функции в этих узлах. Для того чтобы отразить

эту зависимость, иногда используют запись

$$L_{N}(x) \equiv L_{N}(x, \{x_{k}\}, \{f_{k}\}).$$

В частности, если функция f(x) — это полином $P_m(x)$ степени $m \leq N$, то соответствующий ей полином Лагранжа совпадает с f, то есть

$$L_{N}(x, \{x_{k}\}, \{f_{k}\}) = P_{m}(x).$$

Иными словами, интерполяционная формула Лагранжа с N+1 узлом интерполяции точна на любом полиноме вплоть до степени N.

 5^0 . Погрешность интерполяции полиномом Лагранжа произвольной непрерывной функции оценивается следующим образом.

Теорема. Пусть функция f(x) имеет на отрезке [a,b] все производные до порядка (N+1) включительно, причем производная $f^{(N+1)}(x)$

ограничена на [a,b]. Тогда погрешность интерполяции $R_{N}(x)\equiv f(x)\!-\!L_{N}(x)$ представима в следующем виде:

$$R_{N}(x) = rac{1}{(N+1)!} \prod_{i=0}^{N} (x - x_{j}) \cdot f^{(N+1)}(\xi).$$
 (E_{R})

Здесь ξ — это некоторая точка из [a,b].

 \mathcal{A} оказательство. Зафиксируем точку x из отрезка [a,b] и рассмотрим вспомогательную

функцию $\psi(t)$ другой переменной t также из [a,b]. Функцию $\psi(t)$ зададим как следующую разность:

$$f(t) - L_{N}(t) - R_{N}(x) \frac{(t - x_{0})(t - x_{1}) \dots (t - x_{N})}{(x - x_{0})(x - x_{1}) \dots (x - x_{N})}.$$

Функция $\psi(t)$ имеет все производные до порядка (N+1) включительно.

Кроме того на отрезке [a,b] у функции $\psi(t)$ имеется по крайней мере (N+2) нуля: это

узлы $t=x_k,\; k=0,1,\ldots,N$, а также точка t=x (в силу определения остаточного члена $R_N(x)\equiv f(x)-L_N(x)$).

Известно, что между любыми двумя нулями непрерывно дифференцируемой функции имеется хотя бы один нуль ее производной. Следовательно, на отрезке [a,b] есть как минимум (N+1) нуль функции $\psi'(t)$.

Далее, производная $\psi'(t)$ непрерывно дифференцируема на [a,b] и у нее есть (N+1) нуль на этом отрезке. Следовательно, производная $\psi''(t)$ имеет на [a,b] по меньшей мере N нулей. Применяя аналогичные рассуждения к последующим производным

$$\psi'''(t), \quad \psi^{(4)}(t), \quad \dots, \quad \psi^{(N)}(t),$$

получим в итоге, что у производной $\psi^{(N)}(t)$ имеется на [a,b] хотя бы один нуль. Пусть этот нуль совпадает с точкой $t=\xi$.

Это означает, что имеет место равенство

$$\psi^{ig(N+1ig)}(\xi)=0,$$
 где $\xi\in[a,b].$

Вычислим теперь (N+1)-ую производную от $\psi(t)$, пользуясь определением этой функции. Тогда получим

$$\psi^{(N+1)}(t) = f^{(N+1)}(t) -$$

$$-R_{N}(x)rac{d^{N+1}}{dt^{N+1}}\Big[rac{(t-x_{0})(t-x_{1})\dots(t-x_{N})}{(x-x_{0})(x-x_{1})\dots(x-x_{N})}\Big].$$

Таким образом, производная $\psi^{(N+1)}(t)$ представлена как разность

$$f^{(N+1)}(t) - R_N(x) \frac{d^{N+1}}{dt^{N+1}} \Big[\frac{(t-x_0)(t-x_1)\dots(t-x_N)}{(x-x_0)(x-x_1)\dots(x-x_N)} \Big].$$

Имеем далее

$$\frac{d^{N+1}}{dt^{N+1}} \Big[(t-x_0)(t-x_1)\dots(t-x_N) \Big] = (N+1)!.$$

Полагая в полученном представлении для производной $\psi^{(N+1)}(t)$ значение $t=\xi$, полу-

чаем следующее равенство:

$$0 = \psi^{(N+1)}(\xi) = f^{(N+1)}(\xi) - rac{(N+1)!}{(x-x_0)(x-x_1)(x-x_2)\dots(x-x_N)} R_N(x).$$

Выражая из этого равенства погрешность $R_{oldsymbol{N}}(x)$, получаем ее представление в виде

$$\frac{(x-x_0)(x-x_1)(x-x_2)\dots(x-x_N)}{(N+1)!}f^{(N+1)}(\xi).$$

Это и есть искомое представление остатка.

 6^{0} . Оценим погрешность интерполяционной формулы Лагранжа с равноотстоящими узлами.

Теорема. Погрешность интерполяции произвольной (N+1) раз непрерывно дифференцируемой функции f(x), $x \in [a,b]$, полиномом Лагранжа с равномерной сеткой узлов

$$x_{m{k}}=a+k au,$$
 где $k=0,1,2,\ldots,N;$ $au=rac{b-a}{N},$

допускает следующую оценку:

$$|f(x) - L_N(x)| \le \frac{\tau^{N+1}}{N+1} \max_{x \in [a,b]} |f^{(N+1)}(x)|. \quad (E_R')$$

 ${\cal L}$ оказательство. В силу теоремы об оценке погрешности интерполяционной формулы ${\cal L}$ Лагранжа с произвольными узлами имеем ${\cal L}$ для остатка ${\cal L}_N(x) \equiv f(x) - L_N(x)$ следую-

щее представление:

$$R_{m{N}}(x) = rac{1}{(N+1)!} \prod_{j=0}^{N} (x-x_j) \cdot f^{(N+1)}(\xi).$$
 $(E_{m{R}})$

Здесь ξ — некоторая точка из [a,b].

Для заданной точки x из промежутка [a,b) найдем узел x_k — ближайший к x узел слева. Полагая $\alpha=\{\frac{x-x_k}{\tau}\}$, где $\{\cdot\}$ обозначает

дробную часть числа, получаем представление

$$x=x_{\pmb k}+\alpha\cdot au, \quad 0\leq \alpha\leq 1; \quad k=0,1,\ldots,N-1.$$

Пусть далее a=0 и b=1. Тогда

$$x - x_m = k\tau + \alpha\tau - m\tau = (k + \alpha - m)\tau.$$

Следовательно,

$$\prod_{m=0}^{N} (x-x_m) = au^{N+1} \prod_{m=0}^{N} (k+lpha-m).$$

Допустимые значения k здесь — это числа $0,1,2,\ldots,N-1$. Учитывая это, получаем для любого $\alpha,\ 0\leq\alpha\leq 1$:

$$|\prod_{m=0}^{N}(k+lpha-m)|=$$

$$=(k+lpha)(k+lpha-1)\ldotslpha(1-lpha)(2-lpha)\ldots(N-k-lpha).$$

Индукцией по N доказывается, что для всех $k=0,1,\ldots,N-1$ справедливо неравенство

$$|\prod_{m=0}^{N}(k+lpha-m)|\leq N!.$$

Учитывая эту оценку и пользуясь представлением (E_R) остатка $R_N(x)$, получаем

$$|R_N(x)| \le \frac{ au^{N+1}}{N+1} |f^{(N+1)}(\xi)|,$$

где $\xi \in [a,b]$. Из этого неравенства следует требуемая оценка $(E_{R}{}')$.

 7^0 . В процессе вывода оценки погрешности $(E_{R}{}')$ рассматривался полином

$$\Pi_{N+1}(x) = \prod_{j=0}^{N} (x - x_j) =$$

$$=(x-x_0)(x-x_1)(x-x_2)\dots(x-x_N).$$

С использованием этого обозначения интерполяционный полином Лагранжа записывается более компактно:

$$L_{N}(x) = \sum_{j=0}^{N} rac{\Pi_{N+1}(x)}{(x-x_{j})\Pi_{N+1}{}'(x_{j})} f_{j}.$$

Тема: Интерполяция функций (продолжение)

 1^0 . Определение конечных разностей. Связь с производными функции. Конечные разности от полиномов. 2^0 . Определение разделенных разностей. Симметричность разделенной разности. Связь разделенных и конечных разностей функции в случае равномерной сетки узлов. 3^0 . Интерполяционный полином в форме Ньютона. Определение и свойства. 4^0 . Интерполяционный полином Ньютона для равноотстоящих узлов. Представление остаточного члена. 5^0 . Обусловленность задачи интерполяции. Постоянные Лебега, функции Лебега.

 1^0 . Пусть на числовой прямой заданы точки $x_k = x_0 + kh$, где k — целое; h > 0, причем в узлах x_k известны значения $f(x_k) = f_k$ непрерывной функции f = f(x).

Определение. Величина

$$\Delta f_{k} = f(x_{k} + h) - f(x_{k})$$

называется **конечной разностью первого порядка** функции f в точке x_{k} , взятой c ша-гом h.

Определение. Величина

$$\Delta^2 f_k = \Delta(\Delta f_k) = \Delta f_{k+1} - \Delta f_k =$$

$$= (f_{k+2} - f_{k+1}) - (f_{k+1} - f_k) = f_k - 2f_{k+1} + f_{k+2}$$

называется конечной разностью второго порядка функции f в точке $x_{m k}$.

Определение. Равенство

$$\Delta^n f_k = \Delta(\Delta^{n-1} f_k) = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_k,$$

где $n \geq 1$ и $\Delta^0 f_k = f_k$, определяет конечную разность порядка n функции f в точке x_k . Лемма (о связи конечных разностей и производных). Пусть функция f = f(x) принадлежит классу $C^{(n)}[x_k, x_{k+n}]$. Тогда найдется точка η из (x_k, x_{k+n}) такая, что

$$\Delta^n f_k = h^n f^{(n)}(\eta).$$

 \mathcal{L} оказательство. При n=1 искомая формула принимает вид $\Delta f_k = hf'(\eta)$. По определению

 $\Delta f_{m{k}} = f(x_{m{k}} + h) - f(x_{m{k}})$. Используя формулу конечных приращений Лагранжа, получаем

$$f(x_k + h) - f(x_k) = f'(\eta)h,$$

то есть искомую формулу.

При n=2, взяв arphi(x)=f(x+h)-f(x), получим

$$\Delta^2 f_{\boldsymbol{k}} = \varphi(x_{\boldsymbol{k}} + h) - \varphi(x_{\boldsymbol{k}}).$$

Функция $\varphi(x)$ имеет непрерывную производную первого порядка и по той же формуле конечных приращений получаем

$$\varphi(x_k + h) - \varphi(x_k) = \varphi'(\xi) \cdot h, \quad \xi \in (x_k, x_k + 2).$$

При этом

$$\varphi'(\xi) = f'(\xi + h) - f'(\xi) = f''(\eta) \cdot h,$$

где $\eta \in (\xi, \xi + h) \subset (x_k, x_{k+2}).$ Таким образом, имеем

$$\Delta^2 f_k = f''(\eta) \cdot h^2,$$

где $\eta \in (x_k, x_{k+2})$. Искомая формула доказана при n=2.

Для n>2 доказательство проводится аналогично. \square

Следствие. Конечная разность порядка n алгебраического полинома степени n тождественно постоянна, т.е. не зависит от k. **Следствие.** Конечная разность порядка > l алгебраического полинома степени l равна нулю: $\Delta^m(x^l)_k = 0$ для m > l и любого k.

Одно из практических применений леммы о связи конечных разностей и производных — это приближенная формула для оценки остатка интерполяционной формулы Лагранжа, при условии, что h — достаточно мало, а интерполяция происходит на отрезке (x_0, x_{n+1}) , где $x_{n+1} = x_0 + (n+1)h$. Такой

нестрогой оценкой пользуются, если в распоряжении имеются лишь табличные значения (n+1) раз дифференцируемой функции.

 2^0 . Пусть $x_0, x_1, x_2, \ldots, x_k, \ldots$ — произвольные попарно различные точки (узлы) на числовой прямой, $x_i \neq x_j$ при $i \neq j$. Отметим, что порядок расположения этих узлов на $\mathbb R$ может быть любым.

Определение. Разделенными разностями **ну**-**левого порядка** функции f называются числа $f(x_0)$, $f(x_1)$, $f(x_2)$, ..., $f(x_k)$,

Определение. Величина

$$f(x_0; x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

называется разделенной разностью **перво**го порядка функции f. В соответствии с определением имеем

$$f(x_0;x_1) = \frac{f(x_0)}{x_0 - x_1} + \frac{f(x_1)}{x_1 - x_0} = f(x_1;x_0),$$

то есть $f(x_0;x_1)$ — это **симметрическая** функция своих аргументов.

Определение. Разделенной разностью порядка $n,\ n>1$, называется отношение вида

$$\frac{f(x_1; x_2; x_3; \ldots; x_n) - f(x_0; x_1; x_2; \ldots; x_{n-1})}{x_n - x_0},$$

обозначаемое как $f(x_0; x_1; x_2; \ldots; x_n)$.

В отношении, определяющем разделенную разность порядка n функции f, стоят ее разделенные разности порядка (n-1).

Лемма. Разделенная разность $f(x_0; x_1; \dots; x_n)$ порядка n представима в виде следующей комбинации значений функции в узлах:

$$\sum_{i=0}^{n} \frac{f(x_i)}{(x_i - x_0) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}.$$
(F)

 \mathcal{L} оказательство. При n=1 формула (F) принимает вид

$$f(x_0; x_1) = \frac{f(x_0)}{x_0 - x_1} + \frac{f(x_1)}{x_1 - x_0},$$

то есть справедлива в силу определения.

При n=2 имеем из определения:

$$f(x_0;x_1;x_2) = \frac{1}{x_2 - x_0} \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{1}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1)}{x_1 - x_0} - \frac{f(x_1) - f(x_1)}{x_1 - x_0} \right) = \frac{f(x_1) - f(x_1)}{x_1 - x_0} \left(\frac{f(x_1) - f(x_1$$

$$= \frac{f(x_0)}{(x_0-x_1)(x_0-x_2)} + \frac{f(x_1)}{(x_1-x_0)(x_1-x_2)} + \frac{f(x_2)}{(x_2-x_0)(x_2-x_1)},$$

то есть искомая формула справедлива.

Для произвольного n>2 лемма доказывает-ся по индукции.

Таким образом, разделенная разность — это

симметрическая функция своих переменных.

Значения разделенной разности порядка n не зависит от того, как изначально были занумерованы узлы, по которым она строится.

Всего имеется (n+1)! различных вариантов нумерации узлов целыми числами от 0 до n. **Лемма** (связь разделенных и конечных разностей). Пусть $x_k = x_0 + kh$, $k = 0,1,2,\ldots$, то есть узлы расположены с постоянным шагом h. Тогда

$$f(x_0; x_1; x_2; \dots; x_n) = \frac{\Delta^n f_0}{n!h^n}.$$

Следствие. Пусть отрезок $[\alpha, \beta]$ содержит узлы $x_0, x_1, x_2, \ldots, x_n$. Тогда найдется такое число $\eta \in (\alpha, \beta)$, что

$$f(x_0; x_1; x_2; \dots; x_n) = \frac{f^{(n)}(\eta)}{n!}.$$

Следствие. Разделенная разность порядка n от алгебраического полинома степени n принимает постоянное значение, не зависящее от выбора узлов $x_0, x_1, x_2, \ldots, x_n$. Разделенные разности порядков > n от алгебраического полинома степени n равны нулю.

 3^0 . Пусть $x_0,\ x_1,\ x_2,\ \dots,\ x_n$ — произвольные попарно различные точки $(x_i
eq x_j$ при i
eq j) на числовой прямой. Рассматривая их

как узлы, построим разделенные разности $f(x_0), f(x_0; x_1), f(x_0; x_1; x_2), \ldots, f(x_0; x_1; x_2; \ldots; x_n).$ Определение. Полином $N_n(x)$ степени n, задаваемый равенством

$$N_n(x) = f(x_0) + (x - x_0)f(x_0; x_1) +$$

$$+ (x - x_0)(x - x_1)f(x_0; x_1; x_2) + \dots +$$

$$+ (x - x_0)(x - x_1)\dots(x - x_{n-1})f(x_0; x_1; \dots; x_n),$$

называется **полиномом Ньютона** с узлами $x_0, x_1, x_2, \ldots, x_n.$

Лемма. Полином Ньютона $N_n(x)$ удовлетворяет условиям

$$N_{n}(x_{i}) = f(x_{i}), \qquad i = 0, 1, 2, \dots, n.$$
 (N)

 \mathcal{L} оказательство. Проверим равенство (N) при n=2. Имеем $N_2(x)=f(x_0)+(x-x_0)f(x_0;x_1)+(x-x_0)(x-x_1)f(x_0;x_1;x_2)$. Полагая здесь $x=x_0$ получаем

$$N_2(x_0) = f(x_0).$$

Далее, при $x=x_1$, имеем, пользуясь определением разделенной разности $f(x_0;x_1)$:

$$egin{aligned} N_2(x_1) &= f(x_0) + (x_1 - x_0) f(x_0; x_1) = \ &= f(x_0) + (x_1 - x_0) \cdot rac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_1). \end{aligned}$$

Аналогично, при $x=x_2$, имеем

$$N_2(x_2) = f(x_0) + \frac{x_2 - x_0}{x_1 - x_0} \Big(f(x_1) - f(x_0) \Big) +$$

$$+rac{(x_2-x_0)}{x_0-x_1}rac{(x_2-x_1)}{x_0-x_2}f(x_0)+$$

$$+\frac{(x_2-x_0)(x_2-x_1)}{(x_1-x_0)(x_1-x_2)}f(x_1)+f(x_2).$$

Здесь мы снова воспользовались представлением (F) разделенной разности $f(x_0;x_1;x_2)$. Как несложно подсчитать, последнее равенство эквивалентно условию, что

$$N_2(x_2) = f(x_2).$$

Для степеней n>2 требуемые равенства доказываются по индукции. Таким образом, полином Ньютона $N_n(x)$ является интерполяционным, построенным постеме узлов $x_0,\ x_1,\ \ldots,\ x_n.$

Но такой полином единствен и, как установлено ранее, может быть задан как интерполяционный полином Лагранжа $L_n(x)$. Следовательно, эти два полинома совпадают:

$$N_n(x; x_0, x_1, \dots, x_n) \equiv L_n(x; x_0, x_1, \dots, x_n).$$

Явная зависимость от узловых значений функции $f(x_0)$, $f(x_1)$, ..., $f(x_n)$, присутствующая в компактной записи полинома Лагранжа $L_n(x)$, оказывается весьма полезной во многих практических задачах. Однако с увеличением степени n полинома приходится строить интерполяционный полином Лагранжа заново.

Интерполяционный полином Ньютона $N_n(x)$ выражается не через значения функции f,

а через ее разделенные разности. При увеличении n требуется только добавить к уже построенному полиному Ньютона некоторое количество дополнительных слагаемых. Это удобно на практике.

 4^0 . Отдельно рассмотрим случай равноотстоящих узлов. Пусть $x_k = x_0 + kh$, h > 0, $k=0,1,2,\ldots,n$. Тогда, учитывая связь разделенной разности с конечной разностью

$$f(x_0; x_1; x_2; \dots; x_n) = \frac{\Delta^n f_0}{n!h^n}$$

и полагая $q=\frac{x-x_0}{h}$, полином Ньютона можно записать в следующем виде:

$$egin{aligned} N_n(x) &= N_n(x_0 + qh) = \ &= f_0 + qrac{\Delta f_1}{1!} + q(q-1)rac{\Delta^2 f_2}{2!} + q(q-1)(q-2)rac{\Delta^3 f_3}{3!} + \ &+ \ldots + q(q-1)\ldots(q-n+1)rac{\Delta^n f_n}{n!}. \ (N') \end{aligned}$$

Полином от переменной q в правой части этого равенства называется интерполяционным полиномом Ньютона для интерполяции вперед.

Полином (N') удобно использовать для **ин- терполяции в начале** таблицы значений функции f и **для экстраполяции** левее точ-ки x_0 , то есть при q < 0.

Интерполяционный полином с узлами $x_0, x_{-1},$ $x_{-2}, \ldots, x_{-n},$ где $x_{-k} = x_0 - kh, \ k = 0, 1, 2, \ldots, n,$ имеет следующий вид

$$N_n(x) = N_n(x_0 + qh) =$$

$$= f_0 + q \frac{\Delta f_{-1}}{1!} + q(q+1) \frac{\Delta^2 f_{-2}}{2!} + q(q+1)(q+2) \frac{\Delta^3 f_{-3}}{3!} + \dots + q(q+1) \dots (q+n-1) \frac{\Delta^n f_{-n}}{n!}. (N'')$$

Полином, задаваемый равенством (N''), называется интерполяционным полиномом для интерполяции назад. Полином (N'') удобно использовать для **ин- терполяции в конце** таблицы значений функции f и **для экстраполяции** правее точки x_0 , то есть при q>0.

Пусть в таблице значений функции f с шагом h имеется достаточно много узлов с каждой стороны от заданной точки x. Тогда узлы $x_0, x_1, x_2, \ldots, x_n$ целесообразно выбрать

таким образом, чтобы x оказалась возможно ближе к середине минимального отрезка, содержащего все узлы интерполяции.

При этом наиболее естественно взять интерполяционный полином $N_n(x)$ в виде (N), где x_0 — ближайший к x узел. Затем за x_1 принять ближайший к x узел из расположенных с противоположной от x стороны, то есть если $x_0 < x$, то $x_1 > x$, и так далее.

Следующие узлы назначаются поочередно с разных сторон от x. При таком выборе узлов следующие друг за другом слагаемые в представлении (N) обычно убывают.

Для остаточного члена $R_n(x)$ полинома (N') справедливо представление

$$R_n(x_0+qh)=h^{n+1}q(q-1)\dots(q-n)\frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

Здесь $f^{(n+1)}$ — это производная по x порядка (n+1), а ξ — это некоторая точка из минимального отрезка, содержащего узлы x_0 , x_1, x_2, \ldots, x_n .

Аналогично, остаточный член $R_n(x)$ интерполяционного полинома (N'') допускает представление в виде

$$R_n(x_0+qh)=h^{n+1}q(q+1)\dots(q+n)\frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

Здесь $f^{(n+1)}$ — это производная по x порядка (n+1), а ξ — это некоторая точка из минимального отрезка, содержащего узлы x_0 , $x_{-1}, x_{-2}, \ldots, x_{-n}$.

5⁰. Значения интерполируемой функции, как правило, известны с некоторой погрешностью. При выполнении арифметических операций для отыскания значений интерполянта в нужной точке возникают ошибки округления.

В этой связи приходится выяснять, насколько интерполяционный полином чувствителен к возмущениям значений функции в узлах (ошибки начальных данных) и к ошибкам округления (устойчивость к вычислениям).

Приведем некоторые рассуждения, которые в какой-то мере позволяют ответить на этот вопрос об **обусловленности** задачи интерполяции.

Отображение, сопоставляющее значениям функции в сетке узлов интерполяционный полином, является линейным по отношению к значениям интерполируемой функции.

Для того чтобы учесть погрешность начальных данных, полином Лагранжа представим в следующем виде:

$$L_{oldsymbol{N}}(x) = \sum_{oldsymbol{n}=0}^{oldsymbol{N}} f_{oldsymbol{n}} arphi_{oldsymbol{n}}^{oldsymbol{N}}(x) + \sum_{oldsymbol{n}=0}^{oldsymbol{N}} (\delta f_{oldsymbol{n}}) arphi_{oldsymbol{n}}^{oldsymbol{N}}(x).$$

Здесь $\varphi_n^N(x)$, $n=0,1,2,\ldots,N$ — это базисные полиномы степени N, удовлетворяющие условиям

$$arphi_{m{n}}^{m{N}}(x_{m{m}})=0$$
 ПРИ $m
eq n,$ $arphi_{m{n}}^{m{N}}(x_{m{n}})=1.$

Слагаемое

$$\Delta_{m{N}}(x,\delta f) = \sum_{m{n}=0}^{m{N}} (\delta f_{m{n}}) arphi_{m{n}}^{m{N}}(x)$$

учитывает как влияние погрешностей в начальных данных, так и влияние округлений

в процессе вычислений. Справедлива оценка

$$\max_{a \le x \le b} |\Delta_{N}(x, \delta f)| \le \lambda_{N} \cdot \delta,$$

ГДе $\delta = \max_{oldsymbol{n}} |\delta f_{oldsymbol{n}}|$ И

$$\lambda_N = \max_{a \leq x \leq b} \sum_{n=0}^N |arphi_n^N(x)|.$$

Величина λ_N называется **постоянной Ле**- **бега** вычислительного процесса.

Если
$$L(x) = \sum\limits_{i=0}^{N} |arphi_i^N(x)|$$
, то $\lambda_N = \max\limits_{a \leq x \leq b} L(x).$

Функция L(x) зависит только от расположения узлов $x_0, x_1, x_2, \ldots, x_n$ на отрезке [a,b] и называется функцией Лебега этого расположения.

Отметим, что реальная погрешность при интерполяции, как правило, существенно мень-

ше, чем это гарантирует оценка

$$\max_{a \leq x \leq b} |\Delta_N(x, \delta f)| \leq \lambda_N \cdot \delta.$$

Тем не менее, улучшить эту оценку нельзя: она достижима.

Для оценки обусловленности интерполяции важны оценки роста последовательности λ_N , $N=1,2,3,\ldots$, при $N o \infty$.

В случае равномерной сетки имеет место эквивалентность $\lambda_N \sim 2^N$. В этом случае уже для небольших N задача интерполяции плохо обусловлена. Для сетки с набором узлов

$$x_m=rac{a+b}{2}+rac{b-a}{2}\cosrac{(2m-1)\pi}{n}, \hspace{0.5cm} m=1,2,\ldots,n,$$

справедлива эквивалентность $\lambda_N \sim \ln{(N)}$ при $N \to \infty$ (это чебышевское распределение узлов).