

## Shift-and-Add Multiplication ASM

- ▶ Note the concatenation notation
- ► From the ASM we can write out the RT description of the system in terms of:
  - ▶ System state
  - ▶ I nput signals
- ► The table on the following slide allows us to deduce the design of each register:

10th Lecture, Part II, M. Manzke, Page:



## Register Transfers

- ► From the ASM we can write out the RT description of the system in terms of:
  - ▶ System state
  - ▶ I nput signals
- ► By gathering together the RTs loading each register we may easily deduce the design of each register.

10th Lecture, Part II, M. Manzke, Page:



## Control and Sequencing

- ▶ Two distinct aspects in control unit design
  - ► Control of micro-operations
  - ▶ Sequencing
- ▶ We separate the two aspects by providing:
  - ► A state table
    - ▶Defines signals in terms of states and inputs
  - ► A simplified ASM chart
    - ▶ Represents only state transitions

10th Lecture, Part II, M. Manzke, Page:



| Block Diagram<br>Module | Microoperation                                                                     | Control<br>Signal Name          | Control<br>Expression                  |
|-------------------------|------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|
| Register A:             | $A \leftarrow 0$<br>$A \leftarrow A + B$<br>$C \ A\ Q \leftarrow \propto C \ A\ Q$ | Initialize<br>Load<br>Shift_dec | $IDLE \cdot G$ $MULO \cdot Q_1$ $MULI$ |
| Register B:             | $B \leftarrow IN$                                                                  | Load_B                          | LOADB                                  |
| Flip-Flop C:            | $C \leftarrow 0$<br>$C \leftarrow C_{out}$                                         | Clear_C<br>Load                 | IDLE-G+MUL                             |
| Register Q:             | $Q \leftarrow IN$<br>$C   A  Q \leftarrow \ll C   A  Q$                            | Load_Q<br>Shift_dec             | LOADQ<br>—                             |
| Counter P:              | $P \leftarrow n-1$<br>$P \leftarrow P-1$                                           | Initialize<br>Shift_dec         | =                                      |

10th Lecture, Part II, M. Manzke, Page: 4







