A benchmarking exercise on estimating extreme environmental conditions: Methodology & baseline results

Andreas F. Haselsteiner^{1*}, Ryan G. Coe², Lance Manuel³, Phong T.T. Nguyen³, Nevin Martin², Aubrey Eckert-Gallup²

- ¹ University of Bremen, Bremen, Germany
- ² Sandia National Laboratories, New Mexico, USA
- ³ The University of Texas at Austin, Texas, USA
- * a.haselsteiner@uni-bremen.de

Motivation

We need to predict future extreme environmental conditions to design reliable marine structures.

Motivation

We need to predict future extreme environmental conditions to design reliable marine structures.

- Estimating long-term extremes is difficult
 - Complex physical processes
 - Extrapolation often necessary
 - Multivariate extreme values
- Many methods exist: how do they compare?

Environmental contour method

An environmental contour is a set of joint extremes of environmental conditions associated with a target return period.

- Roots of the method in the 1980s and 1990s
 - "Design curve" (Haver, 1985)
 - "Environmental contour" (Winterstein et al., 1993)
- Received much interest recently
 - Applied to vessels, wave energy converters, wind turbines
 - New statistical models for the environment proposed
 - New statistical definitions for the contour proposed

From observations to design conditions

contour derivation

Open comparison of contour methods

- Goal: Systematic comparison → benchmarking exercise
- Benchmark defines:
 - Datasets
 - Return periods
 - Method for uncertainty characterization (Gramstad et al., 2018)
- Differences between the contours from:
 - Statistical modelling of the environment
 - Contour construction (mainly due to different definitions)

Datasets: US east coast and North Sea

Buoy data: NDBC Main coast, Florida coast, Gulf of Mexico Hindcast data: coastDat-2 German coast, UK coast, Norwegian coast

Datasets and contours

- A-C: Sea states (H_s-T_z) , common variable combination)
- D-F: Wind-wave states (H_s - U_{10} , e.g. required in IEC 61400-3)
- Exercise 1: Calculate 12 prescribed contours
- Exercise 2: Characterize uncertainty for dataset D

Dataset	Data source	Site	Provided data	Retained data	Env. contour
Α	NDBC 44007	Off Maine coast	82,805 data p.*	92,515 data p.	1-yr H_s - T_z , 20-yr H_s - T_z
В	NDBC 41009	Off Florida coast	83,917 data p.*	91,403 data p.	1-yr H_s - T_z , 20-yr H_s - T_z
С	NDBC 42001	Gulf of Mexico	81,749 data p.*	93,571 data p.	1-yr H_s - T_z , 20-yr H_s - T_z
D	coastDat-2	Off German coast	25 years	25 years	1-yr <i>H_s-U₁₀,</i> 50-yr <i>H_s-U₁₀</i>
Е	coastDat-2	Off UK coast	25 years	25 years	1-yr <i>H_s-U₁₀,</i> 50-yr <i>H_s-U₁₀</i>
F	coastDat-2	Off Norwegian coast	25 years	25 years	1-yr <i>H_s-U₁₀,</i> 50-yr <i>H_s-U₁₀</i>

^{* 10} years

Datasets have different characteristics

Baseline results: A

- Sea state model recommended in DNVGL-RP-C205:2017
 - H_s : 3-p. Weibull distribution
 - T_z : Log-normal distribution with two dependence functions
- IFORM-contours (Winterstein *et al.*, 1993)
- Computed with viroconcom
 1.2.0 (Haselsteiner et al., 2019)

Baseline results: B & C

Baseline results: Uncertainty

- Draw a random sample of 1, 5 or 25 years from dataset D
- Derive a 50-yr contour from this subset
- Repeat the process 1000 times

Baseline results: Confidence intervals

- Define lines at angle $\theta \in [0, 360^\circ)$ to the abscissa and compute intersections with the contours
- Order the intersections by the distance to the dataset's mean
- Plot median contour, 2.5th percentile contour, 97.5th percentile contour

How to participate

- Indicate interest by email: ecbenchmark@gmail.com
- GitHub repository holds:
 - Datasets
 - Baseline results (and code to reproduce them)
 - Up-to-date information
 - https://github.com/ec-benchmark-organizers/ec-benchmark
- Submit results by March 31, 2020
- Participants can present results at OMAE 2020
- All results will be presented at OMAE 2021

Thank you for the attention.

Hi organizers, I am considering to participate. Best, John Tour

ecbenchmark@gmail.com

https://github.com/ec-benchmark-organizers/ec-benchmark