

Statistics Ex 7.2 Q7

Answer:

Let the assume mean be A = 2.

No. of misprint per page (x_i) :	No. of pages (f_i) :		$f_i d_i$
	16. 96.9 20.000	$= x_i - 2$	4.
0	154	-2	-308
1	95	-1	-95
2	36	0	0
3	9	1	9
4	5	2	10
5	1	3	3
	$\sum_{i} f_{i} = 300$		$\sum_{i} f_{i}d_{i} = -381$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Now, we have $N=\sum f_i=300, \ \sum f_i d_i=-381 \, \mathrm{and} \ A=2$.

Putting the values in above formula, we have

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 2 + \frac{1}{300} \times (-381)$$

$$= 2 - \frac{381}{300}$$

$$= 2 - 1.27$$

$$= 0.73$$

Hence, the mean number of students absent per day is 0.73.

Statistics Ex 7.2 Q8

Answer:

Let the assume mean be A = 2.

No. of accedents (x_i):	No. of workers (f_i) :	$d_i = x_i - A$ $= x - 2$	$f_i d_i$
0	70	-x _i 2 -2	-140
1	52	-1	-52
2	34	0	0
3	3	1	3
4	1	2	2
	$\sum f_i = 160$		$\sum f_i d_i = -187$

We know that mean, $\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$

Now, we have $N = \sum f_i = 160$, $\sum f_i d_i = -187$ and A = 2.

Putting the values in the above formula, we get

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 2 + \frac{1}{160} \times (-187)$$

$$= 2 - \frac{187}{160}$$

$$= 2 - 1.168$$

$$= 0.83$$

Hence, the average number of accidents per worker is 0.83.

******* END *******