FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice (1) nebo definice 1 na straně 1). Rovněž si vyzkoušíme používání odkazů \refa \pageref.

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. tento postup byl probírán na přednášce. Dále je použito odřádkování se zadanou relativní velikostí 0.4em a 0.3em.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu včetně sazby definic a vět s využitím balíku amsthm.Rovněž použijeme poznámku pod čarou s použitím příkazu \footnote. Někdy je vhodné použít konstrukci \${}\$, která říká, že matematický text nemá být zalomen.

Definice 1. Turingův stroj *(TS) je definován jako šestice tvaru* $M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)$, *kde:*

- Q je konečná množina vnítřních (řídicích) stavů,
- Σ je konečná množina symbolů nazývaná vstupní abeceda , $\Delta \notin \Sigma$,
- Γ je konečná množina symbolů, $\Sigma \subset \Gamma, \Delta \in \Gamma$, nazývaná pásková abeceda,
- $\delta: (Q \setminus \{q_F\}) \times \Gamma \to Q \times (\Gamma \cup \{L, R\}), kde\ L, R \notin \Gamma$, je parciální přechodová funkce,
- q_0 je počáteční stav, $q_0 \in Q$ a
- q_F je koncový stav, $q_F \in Q$.

Symbol Δ značí tzv. *blank* (prázdny symbol), který se vyskytuje na místech pásky, která nebyla ještě použita (může ale být na pásku zapsán i později).

Konfigurace pásky se skladá z nekonečného řetězce, který reprezentuje obsah pásky a pozice hlavy na tomto řetězci. Jedná se o prvek množiny $\{\gamma\Delta^\omega|\gamma\in\Gamma^*\}\times\mathbb{N}.^1$ Konfiguraci pásky obvykle zapisujeme jako $\Delta xyz\underline{z}x\Delta...$ (podtržení značí pozici hlavy). Konfigurace stroje je pak dána stavem řízení a konfigurací pásky. Formálně se jedná o prvek množiny $Q\times\{\gamma\Delta^\omega|\gamma\in\Gamma^*\}\times\mathbb{N}.$

1.1 Podsekce obsahujíci větu a odkaz

Definice 2. Řetězec w nad abecedou Σ je přijat TS M jestliže M je při aktivaci z počateční konfigurace pásky $\underline{\Delta}w\Delta...$ a počatečního stavu q_0 zastaví přechodem do koncového stavu q_F , tj. $(q_0, \Delta w\Delta^{\omega}, 0)\vdash^M_* (q_F, \gamma, n)$ pro nějaké $\gamma \in \Gamma^*$ a $n \in \mathbb{N}$.

Množinu $L(M) = \{w|wje\ přijat\ TS\ M\} \subseteq \Sigma^*$ nazýváme jazyk přijímaný TS M.

Nyní si vyskoušíme sazbu vět a důkazů opět s použitím balíku amsthm.

Věta 1. Třída jazyků, které jsou příjímány TS, odpovídá rekurzivně vyčíslitelným jazykům.

Důkaz. Důkaz. V důkaze vyjdeme z Definice 1 2. □

2 Rovnice a odkazy

Složitější matematické formulace sázíme mimo plynulý text.Lze umístit několil výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$\sqrt[i]{x_i^3}$$
 kde x_i je i -té sudé číslo $y_i^{2_i^y}
eq y_i^{y_i^{y_i}}$

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$x = \left\{ \left(\left[a + b \right] * c \right)^d \oplus 1 \right\}$$

$$y = \lim_{x \to \infty} \frac{\sin^2 x + \cos^2 x}{\frac{1}{\log_{10} x}}$$
(1)

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n \to \infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako $\sum_{i=1}^n 2^i$ či $\bigcup_{A \in B} A$. V případě vzorců $\lim_{x \to \infty} f(n)$ a $\sum_{i=1}^n 2^i$ jsme si vynutili méně úspornou sazbu příkazem \limits.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} g(x) dx \qquad (2)$$

$$\overline{\overline{A \vee B}} \Leftrightarrow \overline{\overline{A} \wedge \overline{B}}$$
 (3)

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky(\left,\right).

¹Pro livolnou abecedu Σ a Σ^{ω} množina všech *nekonečných* řetězců nad Σ , tj. nekonečných posloupností symbolů ze Σ .Pro připomenutí: Σ^* je množina všech *konečných* řetězců nad Σ .

$$\begin{pmatrix} a+b & \widehat{\xi+\omega} & \widehat{\pi} \\ \overrightarrow{a} & AC & \beta \end{pmatrix} = 1 \Longleftrightarrow \mathbb{Q} = \mathbb{R}$$

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} t & u \\ v & w \end{vmatrix} = tw - uv$$

Prostředí array lze úspešně využít i jinde.

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{pro } 0 \le k \le n \\ 0 & \text{pro } k < 0 \text{ nebo } k > n \end{cases}$$

4 Závěrem

V případě, že budete potřebovat vyjádřit matematickou konstrukci nebo symbol a nebude se Vám dařit jej nalézt v samotném \LaTeX u, doporučuji prostudovat možnosti balíku maker $\end{alignedat}$ S- \LaTeX X.