Rendu temps réel des cheveux et de la fourrure

Gestion de projet informatique / Initiation à la recherche

Contexte

- Le rendu des cheveux est étudié depuis longtemps car c'est un problème complexe de rendu
- On estime à environ +100.000 le nombre de cheveux chez l'Homme
- Il y a des interactions entre les cheveux (frictions, collisions)
- Les cheveux sont très fins et ont besoin de self-shadow (chaque cheveu est partiellement transmitif)

Contexte

A ce jour, deux solutions commerciales existent, utilisées dans les jeux à partir de cette année, Nvidia HairWorks dans The Witcher 3 et AMD PureHair(TressFX) dans Rise

of the Tomb Raider

Objectifs

Au départ, le but du projet était d'implémenter la solution de Nvidia HairWorks et essayer de l'améliorer ...

Objectifs

... sauf que cela s'est transformé en tentative d'implémentation du whitepaper Nvidia.

La pipeline

Simulation

- Position based dynamics
- Un cheveu est un set de particules qui répondent à des contraintes sur lesquelles ont applique une stratégie Follow The Leader [http://matthias-mueller-fischer.ch/publications/FTLHairFur.pdf]

Création de

la géométrie

l0 : contraintes de stretching

x : particules

d : correction de vélocité

Création de la géométrie

- Usage intensif de la tesselation
- Chaque cheveu est tesséllé pour créer plusieurs cheveux

Création de la géométrie

- OpenGL isolines tesselation
- System de PATCH et de Level de tesselation

Rendu

• Kajiya-Kay lighting model [Kajiya & Kay. "Rendering fur with Three Dimensional Textures." Computer Graphics (Proceedings of ACM SIGGRAPH 89), 1989.]

[Practical Real-Time Hair Rendering and Shading, Scheuermann, SIGGRAPH 2004]

Rendu

Les ombrages sont uniquement basé sur une lumière directionelle avec shadow mapping, mais il y a beaucoup, beaucoup mieux à faire!

Ce qu'il reste à faire

Simulation Création de la géométrie Rendu

- Interaction Hair/Hair(Density field)
- Simulation par fluide (Translating Eulerian Grids)
- Tout passer en GPU

- Interpolation de multiple cheveux
- Réduire le nombres de particules et interpoler en utilisant les B-Spline
- Utiliser un des modèles plus fidèle que Kajiya-Kay
- Hair self-shadowing / transparency avec Deep opacity maps, Occupancy maps

Erreurs commises

3 erreurs majeures :

- Essayer de reverse engineer du code DirectX de démo Nvidia, qui utilise des sdkmesh (format directX)
- Partir de mon code existant en deferred shading
- Penser que de la compréhension rapide des différentes techniques aménerait à un codage rapide

Conclusion

Questions?