Chapter 9 Elliptic Curve Cryptosystems

Elliptic Curve Cryptography (ECC) is the newest member of the three families of established public-key algorithms of practical relevance introduced in Sect. 6.2.3. However, ECC has been around since the mid-1980s.

ECC provides the same level of security as RSA or discrete logarithm systems with considerably shorter operands (approximately 160–256 bit vs. 1024–3072 bit). ECC is based on the generalized discrete logarithm problem, and thus DL-protocols such as the Diffie–Hellman key exchange can also be realized using elliptic curves. In many cases, ECC has performance advantages (fewer computations) and bandwidth advantages (shorter signatures and keys) over RSA and Discrete Logarithm (DL) schemes. However, RSA operations which involve short public keys as introduced in Sect. 7.5.1 are still much faster than ECC operations.

The mathematics of elliptic curves are considerably more involved than those of RSA and DL schemes. Some topics, e.g., counting points on elliptic curves, go far beyond the scope of this book. Thus, the focus of this chapter is to explain the basics of ECC in a clear fashion without too much mathematical overhead, so that the reader gains an understanding of the most important functions of cryptosystems based on elliptic curves.

In this chapter, you will learn:

- The basic pros and cons of ECC vs. RSA and DL schemes.
- What an elliptic curve is and how to compute with it.
- How to build a DL problem with an elliptic curve.
- Protocols that can be realized with elliptic curves.
- Current security estimations of cryptosystems based on elliptic curves.

9.1 How to Compute with Elliptic Curves

We start by giving a short introduction to the mathematical concept of elliptic curves, independent of their cryptographic applications. ECC is based on the generalized discrete logarithm problem. Hence, what we try to do first is to find a cyclic group on which we can build our cryptosystem. Of course, the mere existence of a cyclic group is not sufficient. The DL problem in this group must also be computationally hard, which means that it must have good one-way properties.

We start by considering certain polynomials (e.g., functions with sums of exponents of x and y), and we plot them over the real numbers.

Example 9.1. Let's look at the polynomial equation $x^2 + y^2 = r^2$ over the real numbers \mathbb{R} . If we plot all the pairs (x, y) which fulfill this equation in a coordinate sys-

Fig. 9.1 Plot of all points (x, y) which fulfill the equation $x^2 + y^2 = r^2$ over \mathbb{R}

tem, we obtain a circle as shown in Fig. 9.1.

We now look at other polynomial equations over the real numbers.

Example 9.2. A slight generalization of the circle equation is to introduce coefficients to the two terms x^2 and y^2 , i.e., we look at the set of solutions to the equation $a \cdot x^2 + b \cdot y^2 = c$ over the real numbers. It turns out that we obtain an ellipse, as

Fig. 9.2 Plot of all points (x, y) which fulfill the equation $a \cdot x^2 + b \cdot y^2 = c$ over \mathbb{R}

shown in Figure 9.2.

9.1.1 Definition of Elliptic Curves

From the two examples above, we conclude that we can form certain types of curves from polynomial equations. By "curves", we mean the set of points (x, y) which are

solutions of the equations. For example, the point (x = r, y = 0) fulfills the equation of a circle and is, thus, in the set. The point (x = r/2, y = r/2) is not a solution to the polynomial $x^2 + y^2 = r^2$ and is, thus, not a set member. An *elliptic curve* is a special type of polynomial equation. For cryptographic use, we need to consider the curve not over the real numbers but over a finite field. The most popular choice is prime fields GF(p) (cf. Sect. 4.2), where all arithmetic is performed modulo a prime p.

Definition 9.1.1 Elliptic Curve

The elliptic curve over \mathbb{Z}_p , p > 3, is the set of all pairs $(x,y) \in \mathbb{Z}_p$ which fulfill

$$y^2 \equiv x^3 + a \cdot x + b \bmod p \tag{9.1}$$

together with an imaginary point of infinity O, where

$$a,b \in \mathbb{Z}_p$$

and the condition $4 \cdot a^3 + 27 \cdot b^2 \neq 0 \mod p$.

The definition of elliptic curve requires that the curve is nonsingular. Geometrically speaking, this means that the plot has no self-intersections or vertices, which is achieved if the discriminant of the curve $-16(4a^3 + 27b^2)$ is nonzero.

For cryptographic use we are interested in studying the curve over a prime field as in the definition. However, if we plot such an elliptic curve over \mathbb{Z}_p , we do not get anything remotely resembling a curve. However, nothing prevents us from taking an elliptic curve equation and plotting it over the set of real numbers.

Example 9.3. In Figure 9.3 the elliptic curve $y^2 = x^3 - 3x + 3$ is shown over the real numbers.

Fig. 9.3 $y^2 = x^3 - 3x + 3$ over \mathbb{R}

<