5. EC2와 S3를 이용한 AI 개발 1강. CNN 기본 개념

학습목표

- CNN에 대해서 설명할 수 있다.
- CNN 핵심 요소의 종류와 역할에 대해 열거할 수 있다.

학습내용

- CNN이란?
- CNN의 구조

■ 세상을 잇(IT)다!

- 딥러닝 알고리즘
 - ✓ 인공신경망(ANN) vs 딥러닝(DL)
 - "기존 인공신경망의 한계를 뛰어넘은 인공신경망 '딥러닝'"
 - 딥러닝은 빅데이터(풍부한 학습데이터)와 컴퓨팅파워의 발달로 기존 신경 망의 한계를 극복

• 딥러닝의 종류

• CNN : 객체 인식

[출처] FreeMath(https://blog.naver.com/PostView.nhn?blogId=lghmms&logNo=222008848710)

• RNN : 이미지 캡션 자동 생성

[출처] TechHolic(http://www.techholic.co.kr/news/articleView.html?idxno=24969)

• GNN : 합성, 복원

[출처] kakaobrain(https://www.kakaobrain.com/blog/30)

1. CNN(Convolutional neural network) 이란?

- CNN은 합성곱 필터를 이용하여 신경망 동작을 수행
- 전반부(컨벌루션 레이어) : 컨볼루션 연산을 수행하여 특징 추출
- 후반부(뉴럴네트워크) : 특징을 이용하여 분류
- CNN = 컨벌루션 레이어 + 뉴럴네트워크

• 영상분류, 문자 인식 등 인식 문제에 높은 성능

- 컴퓨터가 특징을 인식해서 결과를 찾는 과정
 ✓ 1 단계: 가로, 동그라미, 세모, 부드러움
 처음에 가장 기초가 되는 특징을 확인

클라우드 기반의 AI 서비스 개발 05-1

✓ 2 단계 : 눈, 코, 귀, 특징 부위

- 특징들을 조합해서 보다 복잡한 특징이 존재하는지 살펴봄

✔ 3 단계 : 고양이 !

- 마지막으로 물체를 분류

2. CNN의 구조

- 합성곱(Convolution)
 - ✓ 특정(높이, 너비)을 갖는 필터(Filter, Kernel)를 일정 간격(Stride)으로 이동 해가며 입력 데이터에 적용

- 패딩(Padding)
 - ✓ 입력 데이터 주변에 특정값(if 0)을 채우는 것

	0	0	0	0	0	0									
	0	1	2	3	0	0		2	0	1		7	12	10	2
	0	0	1	2	3	0	*					4	15	16	10
	0	3	0	1	2	0		0	1	2		10	6	15	6
	0	2	3	0	1	0		1	0	2		8	10	4	3
	0	0	0	0	0	0									
•	Input data						•	Filter			Output data			ata	
	Raw size – 4x 4 After padding – 6x 6							3x 3			4 x 4				

- 스트라이드(Stride)
 - ✓ 필터의 윈도우가 이동하는 값

스트라이드: 2

	`	C	ı —		_									
	-													
1	2	3	0	1	2	3								
0	1	2	3	0	1	2		2	Λ	1		15	17	l'I
3	0	1	2	3	0	1			U	ı		13	17	
2	3	0	1	2	3	0	(*)	0	1	2	→			
1	2	3	0	1	2	3		1	0	2				
0	1	2	3	0	1	2		ı	U			4,04,04,04,04,04	504.04.04.04.04.05	
3	0	1	2	3	0	1								

- 폴링(Pooling)
 - ✓ 세로·가로 방향의 공간을 줄이는 연산

- 출력크기 계산
 - ✓ 출력 크기(OH, OW)는 정수로 나누어 떨어지는 값이어야 함

$$OH = rac{H + 2P - FH}{W + 2P - HW} + 1$$
 입력크기-(H,W) 필터크기-(FH, FW) 출력크기-(OH, OW) $OW = rac{W + 2P - FW}{S} + 1$ 스트라이드-s

생각해보기

- 출력의 크기를 계산해봅시다!!
 - ✓ 입력데이터(4.4), 패딩:1, 스트라이드:1 , 필터(3,3)

1	2	3	0	
0	1	2	3	2000
3	0	1	2	
2	3	0	1	

2	0	1
0	1	2
1	0	2

***************************************	0	0	0	0	0	0
	0	1	2	3	0	0
	0	0	1	2	3	0
- Contractor of the Contractor	0	3	0	1	2	0
	0	2	3	0	1	0
-	0	0	0	0	0	0

7 .	12 10	1 2
1	0	2
0	1	2
2	U	1

(0*0)+(1*1)+(2*2)+ (0*1)+(0*0)+(1*2)=7	
(0*2)+(0*0)+(0*1)+ (1*0)+(2*1)+(3*2)+ (0*1)+(1*0)+(2*2) = 12	2

7	12	10	2

$$(0*2)+(0*0)+(0*1)+$$

 $(2*0)+(3*1)+(0*2)+$
 $(1*1)+(2*0)+(3*2)=10$

(0*2)+(0*0)+(0*1)+ (3*0)+(0*1)+(0*2)+ (2*1)+(3*0)+(0*2) = 2

$$OH = \frac{H+2P-FH}{W+2P-HW} + 1$$

$$OW = \frac{W+2P-FW}{S} + 1$$

$$OH = \frac{4 + 2 \times 1 - 3}{1} + 1 = 4$$

$$OW = \frac{4 + 2 \times 1 - 3}{1} + 1 = 4$$

(4,4) 출력 데이터

평가하기

- 1. CNN의 핵심 요소와 기능으로 옳은 것은?
 - ① 패딩
 - ② 스트라이드
 - ③ 폴링
 - ④ 뉴럴네트워크

- 정답 : ④번

해설: CNN의 핵심요소로는 패딩, 스트라이드, 폴링, 합성곱이 있습니다.

2. CNN 핵심요소의 기능을 보고 빈칸에 알맞은 단어를 고르시오.

보기: 패딩, 폴링, 합성곱, 스트라이드

- ① 은 필터의 윈도우가 이동하는 값
- ② _____은 세로, 가로 방향의 공간을 줄이는것
- ③ _____은 입력데이터 주변에 특정 값을 채우는 것
- ④ └────은 필터를 일정간격으로 이동하며 입력데이터에 적용
- 정답 : ① 스트라이드, ② 폴링, ③ 패딩, ④ 합성곱

학습정리

- 1. CNN이란?
 - 합성곱 필터를 이용하여 신경망 동작을 수행
 - 컨벌루션 레이어 + 뉴럴네트워크 = CNN
 - 영상, 이미지, 문자 분류에 높은 성능
- 2. CNN의 구조
 - 합성곱 : 필터를 일정간격으로 이동하며 입력데이터에 적용
 - 패딩 : 입력데이터 주변에 특정 값을 채우는 것
 - 스트라이드 : 필터의 윈도우가 이동하는 값
 - 폴링 : 세로, 가로 방향의 공간을 줄이는 것

