VAID Specification Codebook

Analytical Task Specification

Figure is from Munzner T. Visualization analysis and design[M]. CRC press, 2014. Page 46 & Page 56

1. ACTION

The definitions of actions are quoted from *Brehmer M, Munzner T. A multi-level typology of abstract visualization tasks[J]. IEEE transactions on visualization and computer graphics, 2013, 19(12): 2376-2385.*

Consume

- Present refers to "the use of visualization for the succinct communication of information, for telling a story with data, guiding an audience through a series of cognitive operations".
- **Discover** is "about the generation and verification of hypotheses, associated with modes of scientific inquiry".
- **Enjoy** refers to "casual encounters with visualization".

Produce

Definition: We use "produce in reference to tasks in which the intent is to generate new artifacts, including transformed or derived data, annotations, recorded visualization interactions, or screenshots of static visualizations".

Search

	Target known	Target unknown
Location known	·.·· Lookup	• . Browse
Location unknown	⟨`@.> Locate	₹ © • > Explore

Lookup: target known, location known
 Browse: target unknown, location known
 Locate: target known, location unknown
 Explore: target unknown, location unknown

Query

- **Identify:** "returns characteristics or reference for a target"
- Compare: "returns characteristics or reference for two or multiple targets"
- Summarize: "returns characteristics or reference for a whole set of targets"

1.2 TARGET

Tabular Data

Values, extremum, ranges, distributions, anomalies, clusters, correlation, similarities, orders The taxonomy is based on *Amar R, Eagan J, Stasko J. Low-level components of analytic activity in information visualization*[*C*] *IEEE Symposium on Information Visualization, 2005. INFOVIS 2005. IEEE, 2005: 111-117.*

Graph Data

Graphs, nodes, links/paths, topology/structures, group/clusters

The taxonomy is based on Lee B, Plaisant C, Parr C S, et al. Task taxonomy for graph visualization[C] Proceedings of the AVI workshop on BEyond time and errors: novel evaluation methods for information visualization. 2006: 1-5.

Data & Visualization Specification

We specify the visualization configuration in Visual Analytics designs by referring to declarative programming grammars, such as Vega, Vega-lite, Echarts, which are proven to be efficient to specify the visual encodings and compositions.

Specifically, Echarts supports generation of graph-related data:

- Sankey: Node + Link
- Tree/treemap:
 - o data that is organized in a hierarchical structure, {name, children:[{name, children}], collapse:boolen}.
 - Layout: radial,
- Graph:
 - Node + Link

Our primary goal is to specify the visual mapping from data to visual channels/layouts.

1. Specify the visual mapping between "field", "type", and "encoding"

```
Original

{
    "mark": "rect",
    "encoding": {
        "Y": {
            "field": "flow_1",
            "type": "nominal"
        },
        "x": {
            "field": "flow_2",
            "type": "nominal"
        },
        "color": {
            "field": "flow_coverage",
            "type": "quantitative"
        }
    }
}
```

- About "field": using the name in the paper, and check if the two fields are the same column (double encoding).
- About "aggregate": bin, mean, count, sum, min, max, median
- 2. Specify the composition type of the visualization

Aggregate Types

- Count
- Sum
- Min/max
- Average (mean)
- Median
- Variance
- Stdev
- q1, q3, ci0, ci1

Composition Types

Facet

1. Grid layout

Example:


```
M111M3
411 | M10
M111M2
M11|M0
 "facet": {
   "column": {
    "field": "class (Ck)",
     "type": "nominal"
   "row": {
    "field": "model_pair (Mi, Mj)",
    "type": "nominal"
  }
},
"spec": {
"mark": "point",
"ancoding": {
    "x": {
      "field": "Mi_prediction_score",
      "type": "quantitative"
      "aggregate": "Mj_prediction_score",
      "type": "quantitative"
    },
"color": {
    "field": "ground_truth_is_Ck_or_not",
    " "nominal"
   }
```

2. Mirrored layout

```
20 21 20
"layer": [
   "facet": {
    "layout": "mirrored",
    "row": {
  "field": "team",
      "type": "nominal"
   },
"color": {
  "field": "team",
  "ne": "nomina
      "type": "nominal"
    }
 "x": {
       "field": "time",
        "type": "temporal"
       "field": "combat_result",
"type": "quantitative"
     },
"width": {
  "field": "duration",
  "he": "quantitativ
        "type": "quantitative"
   "mark": "point",
   "remark": "attacking towers",
   "encoding": {
    "x": {
      "field": "time",
```

```
"type": "temporal"
},
"color": {
    "field": "team",
    "type": "nominal"
}
},

"mark": "others",
    "remark": "occupying light towers",
    "encoding": {
    "x": {
        "field": "time",
        "type": "temporal"
        },
        "stroke": {
        "field": "team",
        "type": "nominal"
        }
}
```

3. List layout


```
"facet": {
    "field": "date",
    "columns": 2,
    "type": "temporal"
    } },
    "spec": {
    }
}
```

Concat

Vega-lite: vconcat, hconcat. However, there might be multiple concatenation directions, such as crossing. Therefore, we have a concat + layout specification

1. Vertical/horizontal

```
Prediction score:
 concat: {
  layout: 'vertical'
 },
 spec: [
   mark: 'bar',
   encoding: {
     x: {
      aggregate: 'count',
      type: 'quantitative'
     color: {
      field: confusion_type',
      type: 'nominal'
   mark: 'point',
```

```
encoding: {
    x: {
        field: 'dr_1',
        type: 'quantitative'
    },
    y: {
        field: 'dr_2',
        type: 'quantitative'
    },
    color: {
        field: 'prediction_score',
        type: 'quantitative'
    }
    }
}
```

2. Crossing

```
| Concat": {
| "concat": {
| "layout": "crossing
| "},
| "spec": [
| {
| "mark": "geoshape",
| "position": 1,
| "encoding": {}
| },
| {
| "mark": "line",
| "position": 2,
| "encoding": {}
| },
| {
| "mark": "line",
| "position": 3,
| "encoding": {}
| }
| }
```

}

Layer

Specification:

layer: []

1. Plain layout

```
{
| "layer": [
.
            "mark": "point",
"encoding": {
    "x": {
        "field": "dimension_1",
        "type": "quantitative"
            },
"y": {
    "field": "dimension_2",
    "type": "quantitative"
```

2. Circular layout with content inside

a. ring/donut

mark: "bar", layout: "circular"

```
(b)
"layer": [
   "mark": "geoshape"
   "mark": "point",
   "encoding": {
    "x": {
     "field": "geo_x",
      "type": "quantitative"
     "field": "geo_y",
"type": "quantitative"
   "mark": "bar",
   "layout": "circular",
   "encoding": {
    "x": {
     "field": "hour",
      "type": "nominal"
      "field": "flow magnitude",
      "type": "quantitative",
      "aggregate": "sum"
    },
```

```
"color": {
  "field": "flow_magnitude",
  "type": "quantitative",
  "aggregate": "mean"
 },
"ring": {
  "field": "focus interval",
  "type": "quantitative"
"mark": "graph",
"encoding": {
 "node_x": {
  "field": "OD_x",
  "type": "quantitative"
},
"node_y": {
  "field": "OD_y",
  "type": "quantitative"
},
"link": {
  "field": "OD_path",
  "type": "relation"
 "link color": {
  "field": "time",
  "type": "temporal"
```

b. segments facet:{layout: circular}

```
{
| "layer": [
     "facet": {
  "layout": "circular",
  "sector": {
         "field": "topic",
         "type": "nominal"
    "concat": {
            "layout": 'vertical'
          },
           spec::[
          "mark": "text",
"encoding": {
            "text": "topic"
           "mark": "text",
           "encoding": {
  "text": "sub-topic"
           "mark": "line",
          "encoding": {
  "frequency": "noiseness"
```

```
"nested": {
 "parent": {
   .
"mark": "tree",
   "encoding": {
    "node": {
     "field": "topic",
     "type": "nominal"
    "link": {
     "field": "tree_hierarchy",
"type": "relation"
  }
 },
"child": {
   "child_type": "configured",
   "canvas": "node",
   "configuration": {
    "mark": "arc",
    "encoding": {
      "theta": {
       "aggregate": "count",
       "type": "quantitative"
      "color": {
    "field": "document-authors",
       "type": "nominal"
      },
      "size": {
       "field": "text_amount",
       "type": "quantitative"
```

```
C
nested: {
 parent: {
  mark: 'line',
  encoding: {
    x: {
     field: 'feature value',
     type: 'quantitative'
    },
    y: {
     field: 'feature',
     type: 'nominal'
    },
    color: {
     field: 'subset',
     type: 'nominal'
}
},
 child: {
  child type: 'configured',
  canvas: 'axis',
  configuration: {
    mark: 'area',
    encoding: {
     x: {
      field: 'feature_value',
      bin: true,
      type: 'quantitative',
      remark: 'square root scaling'
```

```
y: {
    aggregate: 'density',
    type: 'quantitative'
    }
}
}
```

3. Dual Axes

```
a
layer: [
   mark: 'line',
  encoding: {
    x: {
     field: 'step',
     type: 'nominal'
    },
    y: {
     field: 'accuracy',
     type: 'quantitative'
   mark: 'line',
  encoding: {
    x: {
     field: 'step',
     type: 'nominal'
    },
    y: {
     field: 'error',
     type: 'quantitative'
resolve: {
 scale: {
  y: 'independent'
```

```
}
```

Nested

```
Specification:

nested: {
    parent:{},
    child:{
        "canvas":"inner_circular_area/node",
        "child_type": "configured/exemplified",
    }
}
...
```

```
2 3 4 5 6 7 8 11
"nested": {
 "parent": {
  "mark": "sankey",
"encoding": {
    "node": {
     "field": "attribute_type",
     "type": "nominal"
    },
"link": {
     "field": "decision_path",
     "type": "relation"
 "child": {
   "canvas": "node",
  "configuration": {
    "mark": "bar",
    "encoding": {
```

```
"x": {
        "field": "attribute_value",
        "type": "quantitative"
        "aggregate": "count",
        "type": "quantitative"
                2017-02 2017-03 2017-04
                                                                   2017-06
2016-12
                                                                                2017-07
 nested: {
  parent: {
    mark: 'line',
    encoding: {
     x: {
      field: 'year_month',
      type: 'temporal'
     },
     y: {
      field: 'exchange',
      type: 'nominal'
     },
     color: {
      field: 'continent',
      type: 'nominal'
  },
  child: {
   canvas: 'axis',
   configuration: {
     mark: 'rect',
     encoding: {
      x: {
        field: 'year_month',
```

```
type: 'temporal'
},
xOffset: {
 field: 'day',
 type: 'temporal'
},
y: {
 field: 'exchange',
 type: 'nominal'
},
width: {
 field: 'client',
 aggeragate: 'count',
 type: 'quantitative'
},
color: {
 field: 'transaction_volume', type: 'quantitative'
```

Conditions (OR)

We introduce condition specifications to handle the situations that different visualizations are rendered by conditions.


```
field: 'feature name',
  type: 'categorical',
  sort: 'importance_score'
 },
 column: {
  field: 'rule',
  type: 'ordinal'
 }
},
spec: {
 condition_1: {
  test: 'feature type is continuous',
   value: {
    mark: 'area',
    encoding: {
     x: {
      field: 'feature value',
      type: 'quantitative',
       bin: true
     },
     y: {
       aggregate: 'count',
      type: 'quantitative'
 condition 2: {
  test: 'feature type is discrete',
  value: {
    mark: 'bar',
    encoding: {
     x: {
      field: 'feature value',
      type: 'quantitative',
      bin: true
     },
     y: {
       aggregate: 'count',
      type: 'quantitative'
 condition_3: {
  test: 'a clause is using feature j',
  value: {
    mark: 'rect',
    encoding: {
     x: {
```

```
field: 'start interval in the clause',
type: 'quantitative'
},
x2: {
field: 'end interval in the clause',
type: 'quantitative'
}
}
}
```



```
parent: {
    mark: 'graph',
    encoding: {
        node_left: {
            field: 'player',
            type: 'nominal'
        },
        node_right: {
            field: 'passing_pattern',
            type: 'nominal'
        },
        link: {
            field: 'player_involved_in_passing_pattern',
            type: 'relation'
        }
```

```
},
  child: {
    canvas: 'node',
    configuration: {
     condition_1: {
      test: 'node left',
      value: {
        mark: 'bar',
        encoding: {
         X: {
          field: 'total pass',
          type: 'quantitative'
         },
         y: {
          field: 'player',
          type: 'nominal'
         },
         color: {
          field: 'pass in passing pattern',
          type: 'nominal',
          remark: 'When hovering on a pattern, a dark bar (Fig. 4 (B)) is presented to show
the number of a player's passes in that passing pattern'
      }
     condition 2: {
      test: 'node right',
      value: {
        concat: {
         layout: 'vertical'
        },
        spec: [
           mark: 'bar',
           encoding: {
            x: {
             field: 'pass_in_passing_pattern',
             aggregate: 'count',
             type: 'quantitative'
           mark: 'surface',
           encoding: {
            X: {
             field: 'soccer_pitch_dim_1',
             type: 'quantitative'
```

```
},
y: {
    field: 'soccer_pitch_dim_1',
    type: 'quantitative'
},
surface: {
    field: 'start_or_end_position',
    aggregate: 'count',
    type: 'quantitative'
}
}
}
}
}
}
```

Visualization Types

(b) Bar chart (circular) "mark": "bar", "layout": "circular", "encoding": { "x": { "field": "hour", "type": "nominal" "field": "flow_magnitude", "type": "quantitative", "aggregate": "sum" },
"color": {
 "field": "flow_magnitude",
 "coe" "quantitative", "aggregate": "mean" }, "ring": { "field": "focus_interval",
"type": "quantitative"

```
"mark": "rect",
Heatmap
                                                               "encoding": {
                                                                 "y": {
                                                                  "field": "flow_1",
                                                                  "type": "nominal"
                                                                },
"x": {
                                                                  "field": "flow_2",
                                                                  "type": "nominal"
                                                                 "color": {
    "field": "flow_coverage",
    "type": "quantitative"
                                                              }
                                                            {
                                                                 "mark": "surface",
Surface graph
                                                                 "encoding": {
                                                                  "x": {
                                                                    "field": "dimension_1",
                                                                    "type": "quantitative"
                                                                  },
"y": {
                                                                    "field": "dimension_2",
                                                                    "type": "quantitative"
                                                                  },
"surface": {
                                                                    "field": "probability_density",
"type": "quantitative"
                                                                 }
```

Contour graph	A contour line of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. https://en.wikipedia.org/wiki/Contour_line	{ "mark": "contour", "encoding": { "x": { "field": "dimension_1", "type": "quantitative" }, "y": { "field": "dimension_2", "type": "quantitative" }, "contour": { "field": "value", "type": "quantitative" } } }
Scatter plot		<pre>{ "mark": "point", "encoding": { "x": { "field": "dimension_1", "type": "quantitative" }, "y": { "field": "dimension_2", "type": "quantitative" } } }</pre>
Scatter (circular)	In some cases, scatterplots are organized by radius and angle in a circular layout.	{ mark: 'point', layout: 'circular', encoding: { radius: { field: 'jacard index', type: 'quantitative' }, theta: { field: 'category', type: 'nominal' } } }

Line chart	<pre>{ "mark": "line", "encoding": { "x": { "field": "epoch", "type": "quantitative" }, "y": { "field": "loss", "type": "quantitative" }, "color": { "field": "loss_type", "type": "nominal" } } }</pre>
PCP	<pre>{ "mark": "line", "encoding": { "x": { "field": "feature type", "type": "nominal" }, "y": { "aggregate": "feature value", "type": "quantitative" } } }</pre>
Matrix	<pre>{ "mark": "rect", "encoding": { "y": { "field": "flow_1", "type": "nominal" }, "x": { "field": "flow_2", "type": "nominal" }, "color": { "field": "flow_coverage", "type": "quantitative" } } }</pre>

Radar chart	{ "mark": "radar", "encoding": { "field": "metric_type", "type": "nominal" }, "radius": { "field": "metric_value", "type": "quantitative" }, "color": { "field": "method", "type": "nominal" } } }
Area chart	<pre>{ "mark": "area", "encoding": { "x": { "field": "epoch", "type": "quantitative" }, "y": { "aggregate": "sum", "field": "count" }, "color": { "field": "action/reward_type", "type": "nominal" } } }</pre>
Box plot	<pre>{ "mark": "boxplot", "encoding": { "y": { "field": "word", "type": "nominal" }, "x": { "field": "activation_distribution", "type": "quantitative" } }</pre>

Special cases of node--ICD10CM: F10-F19 V.1.2. Mental and behavio link diagrams Icicle graph -ATTRIBUTE. Gender - ICD10CM: N40-N51. XIV.2.1. Diseases of n ICD10CM: J40-J47. X.1.5. Chronic lower respi CD10CM: Z00-Z13. XXI.1. Persons enc - ICD10CM: F32. Major depressive disord ★ ICD10CM: Z12.3. Encounter for scree -ICD10CM: Z71. Persons encountering hea mark: 'icicle', encoding: { node: { field: 'shifts', type: 'node', color: { field: weighted distance, type: 'quantitative' }, link: { field: 'hierarchy', type: 'relation'

sunburst mark: 'sunburst', encoding: { node: { field: 'node', type: 'others', encoding: { color: { field: 'metric', type: 'quantitative', remark: 'Darker colors indicate stronger metrics' }, width: { field: 'count', type: 'quantitative', remark: 'The width of segments communicates the number of leaf nodes, with each leaf having equal weight, and all charts are sorted identically to support comparisons.' link: { field: 'global pattern hierarchy', type: 'relation'

Violin plot	A violin plot is a method of plotting numeric data. It is similar to a box plot, with the addition of a rotated kernel density plot on each side. https://en.wikipedia.org/wiki/Violin_plot	Observed Predicted Too 200 300 400 500 600 700 800 900 Universe 21 speed (WPM) { mark: 'boxplot', encoding: { yoffset: { field: 'observed/predicted', type: 'nominal' }, color: { field: 'observed/predicted', type: 'nominal' }, X: { field: 'speed', type: 'quantitative' } } }
Venn		<pre>{ mark: 'venn', encoding: { set: { field: 'element-to-group', type: 'relation' } } }</pre>

```
mark: 'tree',
Tree
                                                      encoding: {
                                                       node: {
                                                         field: 'shifts',
                                                        type: 'node',
                                                        encoding: {
                                                           color: {
                                                              field: 'weighted distance',
                                                              type: 'quantitative'
                                                        }
                                                       },
                                                       link: {
                                                        field: 'hierarchy',
                                                        type: 'relation'
                                                      mark: 'treemap',
Treemap
                                                      encoding: {
                                                       node: {
                                                         field: 'shifts',
                                                         type: 'node',
                                                        encoding: {
                                                           color: {
                                                              field: 'weighted distance',
                                                              type: 'quantitative'
                                                       link: {
                                                        field: 'hierarchy',
                                                        type: 'relation'
```

```
| Company to the content of the cont
```