Chapter 4.2Inner Products

Vector Length and Unit Vectors

Definition (Inner Product)

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ with each pair of vectors \mathbf{u} and \mathbf{v} and satisfies the following axioms.

i.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

ii.
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

iii.
$$c\langle \mathbf{u}, \mathbf{v} \rangle = \langle c\mathbf{u}, \mathbf{v} \rangle$$

iv.
$$\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$$
 and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Remark:

A vector space with an inner product is called an **inner product space**.

Example 1: Euclidean inner product for Rⁿ

The dot product in \mathbb{R}^n satisfies the four axioms of an inner product by the properties of the dot product discussed in Chapter 4.1.

Example 2:

Show that the following function defines an inner product in R^2 , where $\mathbf{u} = (u_1, u_2)$, $\mathbf{v} = (v_1, v_2)$, and $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2 u_2 v_2$

Remark:

The function

$$\langle \mathbf{u}, \mathbf{v} \rangle = c_1 u_1 v_1 + c_2 u_2 v_2 + \dots + c_n u_n v_n$$

where $c_i > 0$ for all i = 1, 2, ..., n, is an inner product in \mathbb{R}^n . The positive scalar c_i 's are called **weights**. (*Proof is left as an exercise*)

Example 3:

Determine whether the function defined by $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 - 2 u_2 v_2 + u_3 v_3$ is an inner product on R^3 .

Example 4:

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ be matrices in the vector space M_{22} . Determine whether the function defined by $\langle A, B \rangle = a_{11}b_{11} + a_{21}b_{21} + a_{12}b_{12} + a_{22}b_{22}$

is an inner product on M_{22} .

Theorem: Properties of Inner Products

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in an inner product space V, and let c be any real number.

1.
$$\langle \mathbf{u}, \mathbf{0} \rangle = 0 = \langle \mathbf{0}, \mathbf{u} \rangle$$

2.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

3.
$$\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$$

Definitions: Length, Distance and Angle

Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V.

- 1. The **length** (or **norm**) of **u** is $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$.
- 2. The **distance** between **u** and **v** is $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$.
- 3. The **angle** between two nonzero vectors **u** and **v** is given by

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|},$$

where $0 \le \theta \le \pi$.

4. **u** and **v** are **orthogonal** when $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Remarks:

- 1. If $\|\mathbf{u}\|=1$, then \mathbf{u} is called a **unit vector**.
- 2. If v is any nonzero vector in an inner product space V, then the vector $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector called **the unit vector in the** direction of v.

Example:

Let $p = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and $q = b_0 + b_1x + b_2x^2 + \dots + b_nx^n$ be polynomials in the vector space P_n . Determine whether the function

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

is an inner product on P_n .

Example:

Using the inner product on P_n from the previous example, solve for the following

- 1. $\langle p, q \rangle$
- $2.\langle q,r\rangle$
- 3. ||q||
- 4. d(p,q) (the distance of p and q)

when
$$p(x) = 1 - 2x^2$$
, $q(x) = 4 - 2x + x^2$, and $r(x) = x + 2x^2$.

Theorem:

Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V.

- 1. Cauchy-Schwarz inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| ||\mathbf{v}||$
- 2. Triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$
- 3. Pythagorean Theorem: \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

