PRÁCTICA 4: Polarización de Transistores.

Adjunte todos los cálculos teóricos utilizados para la realización de esta práctica.

1. Polarización de Base

- a) En el circuito de la Fig. 1 donde $V_{BB}=V_{CC}=10\ v$ se quiere mantener al transistor en saturación fuerte con una intensidad de saturación en colector de 15 mA ($I_{csat}=15$ mA), ¿qué valores deberían tomar R_B y R_C para ello?. El transistor utilizado es el BC107 (se adjuntan sus especificaciones técnicas en el Apéndice).
- b) En base a los resultados teóricos obtenidos en el apartado 1.a) seleccione unos valores determinados para R_B y R_C y a continuación implemente el circuito de la Fig. 1. Compare los resultados obtenidos experimentalmente con los teóricos.

	Valores Teóricos	Valores Experimentales
$V_{BB}=V_{CC}$	10 v	
R _B		
R _C		
I _b		
Ic		
le		
V_{CE}		
β_{dcsat}		

c) Utilizando el mismo circuito implementado en 1.b) coloque al transistor en corte (V_{BB} =0 v). Compare los resultados obtenidos experimentalmente con los teóricos.

	Valores Teóricos	Valores Experimentales
V_{BB}	0 v	
V_{CC}	10 v	
l _b		
Ic		
le		
V_{CE}		

2. Polarización de Emisor (por División de Tensión)

a) En el circuito de la Fig. 2 V_{CC} =10 v se quiere situar al transistor en su zona activa en el punto medio de su recta de carga (I_{c} =15 mA), ¿calcule y seleccione unos valores para R_1 , R_2 , R_C y R_E para que ello ocurra?. El transistor utilizado es el BC107 (se adjuntan sus especificaciones técnicas en el Apéndice).

b) En base a los resultados teóricos obtenidos en el apartado 2.a) implemente el circuito de la Fig. 2. Compare los resultados obtenidos experimentalmente con los teóricos.

	Valores Teóricos	Valores Experimentales
V_{CC}	10 v	
R_1		
R_2		
R_{C}		
R_{E}		
l _b		
Ic		
l _e		
V_{B}		
VE		
V _C		
V _{CE}		

Apéndice

Especificaciones del transistor BC107

Observar la localización del emisor con respecto al resalte como referencia para identificar las patitas del transistor.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	ŲNIT
V _{CBO}	collector-base voltage	open emitter			
	BC107		-	50	V
	BC108; BC109		_	30	V
V _{CEO}	collector-emitter voltage	open base			
	BC107		-	45	V
	BC108; BC109		-	20	V
I _{CM}	peak collector current		-	200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	-	300	mW
h _{FE}	DC current gain	I _C = 2 mA; V _{CE} = 5 V			
	BC107		110	450	
	BC108		110	800	
	BC109		200	800	
f _T	transition frequency	I _C = 10 mA; V _{CE} = 5 V; f = 100 MHz	100	-	MHz

 h_{FE} equivale a la β_{dc} o ganancia del transistor de la que tanto se ha hablado. De esta tabla nos interesan sobre todo los valores máximo y mínimo que pueden monstrar la gama de transistores BC107.