CS 511, Fall 2024, Lecture Slides 02

Natural Deduction and Examples of Natural Deduction in Propositional Logic

Assaf Kfoury

2 September 2024

Natural Deduction:

A Particular Proof System for Propositional Logic

► Reading: [LCS, Section 1.2]

Remark: It is somewhat unconventional to present a proof system for a formal logic, such as *propositional logic* in [LCS, Section 1.2], before presenting its syntax in [LCS, Section 1.3].

Reading: [EML.Appendix, pp 13-16]

from **informal/common** reasoning to **formal** reasoning:

- ► IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- ► THEREFORE there were taxis

from **informal/common** reasoning to **formal** reasoning:

- ► IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- ▶ John is **NOT** late for the meeting
- the train did arrive late
- ► THEREFORE there were taxis

again symbolically:

$$\blacktriangleright (P \land \neg Q) \rightarrow R$$

- $\neg R$
- \triangleright P
- $\vdash Q$

more succintly:

$$P \wedge \neg Q \rightarrow R, \neg R, P \vdash Q$$

Formal Proof of the Judgment * * *

a judgment (also called a sequent) is an expression of the form:

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

where:

- 1. $\varphi_1, \ldots, \varphi_n, \psi$ are well-formed formulas (also called wff's)
- 2. the symbol "⊢" is pronounced turnstile
- 3. the wff's $\varphi_1, \dots, \varphi_n$ to the left of " \vdash " are called the **premises** (also called **antecedents** or **hypotheses**)
- 4. the wff ψ to the right of " \vdash " is called the **conclusion** (also called **succedent**)

- a judgment is said to be valid (also deducible or derivable) if there is a formal proof for it
- a formal proof (also called deduction or derivation) is a sequence of wff's which starts with the premises of the judgment and finishes with the conclusion of the judgment:
 - $egin{array}{ll} arphi_1 & {
 m premise} \\ arphi_2 & {
 m premise} \\ drawnowsigh \\ arphi_n & {
 m premise} \\ drawnowsigh \\ arphi_{n} \\ arphi_{n}$

where every wff in the deduction is obtained from the wff's preceding it using a proof rule

$$\qquad \frac{\varphi \quad \psi}{\varphi \wedge \psi} \qquad \wedge \mathsf{I}$$

$$ightharpoonup \frac{\varphi \wedge \psi}{\varphi} \wedge \mathsf{E}_1$$

$$-\frac{\varphi \wedge \psi}{\psi}$$
 $\wedge \mathsf{E}_2$

$$\frac{\varphi}{\neg \neg \varphi}$$
 $\neg \neg |$

$$-\frac{\neg \varphi}{\varphi}$$
 $\neg \neg \mathsf{E}$

(cannot be used in intuitionistic logic)

$$\qquad \qquad \frac{\varphi \qquad \varphi \rightarrow \psi}{\psi} \qquad \rightarrow \mathsf{E} \qquad \text{(or MP for Modus Ponens)}$$

$$\qquad \qquad \frac{\varphi \to \psi \qquad \neg \psi}{\neg \varphi} \qquad \text{MT} \qquad \text{(for Modus Tollens)}$$

$$\qquad \qquad \frac{\varphi \qquad \varphi \rightarrow \psi}{\psi} \qquad \rightarrow \mathsf{E} \qquad \text{(or MP for Modus Ponens)}$$

$$\qquad \qquad \frac{\varphi \to \psi \qquad \neg \psi}{} \qquad \text{MT} \qquad \text{(for Modus Tollens)}$$

$$\frac{\begin{bmatrix} \varphi \\ \vdots \\ \psi \end{bmatrix}}{\varphi \to \psi} \longrightarrow \mathbf{I}$$

open a box when you *introduce* an assumption (wff φ in rule \to I) close the box when you *discharge* the assumption you must close every box and discharge every assumption in order to complete a formal proof

Proof Rules Associated with Only One "¬" and with "⊥"

So far, we have an **elimination** rule and an **introduction** rule for double negation " \neg ", namely $\neg \neg E$ and $\neg \neg I$, but not for single negation " \neg ". We now compensate for this lack:

$$ightharpoonup rac{arphi}{|} \neg \mathsf{E} \quad (\ \mathsf{or} \ \mathsf{LNC} \ \mathsf{for} \ \mathsf{Law} \ \mathsf{of} \ \mathsf{Non-Contradiction})$$

where "\perp " (a single symbol) stands for "contradiction"

Proof Rules Associated with Only One "¬" and with "⊥"

So far, we have an **elimination** rule and an **introduction** rule for double negation " $\neg\neg$ ", namely $\neg\neg E$ and $\neg\neg I$, but not for single negation " \neg ". We now compensate for this lack:

$$ightharpoonup rac{arphi}{\Gamma} rac{\neg arphi}{\Gamma}
eg \mathsf{E} \quad (\text{ or LNC for Law of Non-Contradiction})$$

where "\(\percapsum\)" (a single symbol) stands for "contradiction"

$$\begin{array}{c} \varphi \\ \vdots \\ \bot \\ \neg \varphi \end{array} \neg \mathbf{I}$$

$$\perp \qquad \perp$$
 \perp \perp \perp \perp ("if you can prove \perp , you can prove every wff")

Two Derived Proof Rules

The two following rules are derived rules -

the first from rules \rightarrow I, \neg I, \rightarrow E, and $\neg\neg$ E (see [LCS, pp 24-25]); the second from rules \lor I, \neg I, \neg E, and $\neg\neg$ E (see [LCS, pp 25-26]):

Because ¬¬E is rejected in intuitionistic logic, so are PBC and LEM

(a summary of all proof rules and some derived rules in [LCS, p. 27])

formal proof of the judgment $P \vdash Q \rightarrow (P \land Q)$:

formal proof of the judgment $P \vdash Q \rightarrow (P \land Q)$:

1 P	premise
2 Q	assume
$_3$ $P \wedge Q$	\wedge I 1, 2
$A \longrightarrow (P \land Q)$	\rightarrow I

formal proof of the judgment $P \vdash Q \rightarrow (P \land Q)$:

1 P	premise
2 Q	assume
$_3$ $P \wedge Q$	∧I 1, 2
$_4$ $Q o (P \wedge Q)$	\rightarrow I

translated into LEAN 4:

```
example {p q : Prop} (h_p : p) : q \rightarrow (p \land q) := by intro h_q apply And.intro h_p h_q -- 'And.intro' is '\lambdaI' in LEAN 4
```

- reserved words are in blue
- tactics are in red

formal proof of the judgment $P \to (Q \to R) \vdash P \land Q \to R$

formal proof of the judgment $P o (Q o R) \vdash P \land Q o R$

$$_{\scriptscriptstyle 1}$$
 $P o (Q o R)$

2 <i>P</i> ∧ <i>Q</i>	
3 P	$\wedge E_1$ 2
4 Q	$\wedge E_2$ 2
$_{5}$ $Q ightarrow R$	ightarrowE $3,1$
6 R	→E 4,5

 $_7$ $P \wedge Q \rightarrow R$

formal proof of the judgment $P \to (Q \to R) \vdash P \land Q \to R$

$$_{\scriptscriptstyle 1}$$
 $P o (Q o R)$

$$_{7} P \wedge Q \rightarrow R \rightarrow \mathsf{I}$$

translated into LEAN 4:

```
example \{p \ q \ r : Prop\} (h : p \rightarrow (q \rightarrow r)) : p \land q \rightarrow r := by intro h_pq obtain \langle h_p, h_q \rangle := h_pq have h_qr : q \rightarrow r := by apply h h_p apply h_qr h_q
```

formal proof of the judgment $P \land Q \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

formal proof of the judgment $P \land Q \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

$$_1$$
 $P \wedge Q \rightarrow R$

2 P	
3 Q	
$_4$ $P \wedge Q$	∧I 2, 3
5 R	ightarrowE 4, 1
6 $Q o R$	ightarrowI

$$_{7}$$
 $P \rightarrow (Q \rightarrow R)$ \rightarrow

formal proof of the judgment $P \to (Q \to R) \vdash (P \to Q) \to (P \to R)$

formal proof of the judgment $P \to (Q \to R) \vdash (P \to Q) \to (P \to R)$

$$_1$$
 $P \rightarrow (Q \rightarrow R)$

$_{2}$ $P \rightarrow Q$	
3 P	
4 Q	\rightarrow E 3, 2
$_5$ $Q o R$	\rightarrow E 3, 1
6 R	→E 4, 5
$_7$ $P o R$	\rightarrow I

$$8 \quad (P \to Q) \to (P \to R) \qquad \qquad \to \mathsf{I}$$

Formal Proof of the Initial Judgment:

► Initial Judgment

- $_{1}$ $P \land \neg Q \rightarrow R$
- $_2$ $\neg R$
- $_3$ P
- $_4$ $\neg Q$
- $_5$ $P \wedge \neg Q$
- 6 R
- ₇ ⊥
- $8 \neg \neg Q$
- 9 Q

- premise
- premise
- premise
- assume
- $\land \textbf{I} \ 3, 4$
- \rightarrow E 1,5
- $\neg E 6, 2$
- ¬I 4–7
- ¬¬E 8

(THIS PAGE INTENTIONALLY LEFT BLANK)