Language Model A language model is a distribution over Σ^* , where Σ is a non-empty alphabet.

Globally Normalized Model

ned as $p(x) = e^{-\hat{p}(x)} / \sum_{v \in \Sigma^*} e^{-\hat{p}(y)}$.

Locally Normalized Language Model

1 Foundations

corresponding LNLM is $p_{LN}(y) = p_{SM}(EOS | y) \prod_{t=1}^{|y|} p_{SM}(y_t | y_{< t}).$ **Characterizing Tightness**

For an energy fct $\hat{p}: \Sigma^* \to \mathbb{R}$, a GNM is defi-

Given the cond. probabilities $p(y \mid y_{< t})$, the

$p_{\rm EOS}(t) = \frac{\sum_{\omega \in \Sigma^{t-1}} p_{LN}(\omega) p_{LN}({\rm EOS} \mid \omega)}{\sum_{\omega \in \Sigma^{t-1}} p_{LN}(\omega)}.$ Then, p_{LN} is **tight** iff $p_{\rm EOS}(t) = 1$ for some $t \ge 1$ or $\sum_{t=1}^{\infty} p_{EOS}(t) = \infty$. In particular,

$$t \ge 1$$
 or $\sum_{t=1}^{t} p_{EOS}(t) = \infty$. In particular, if $p_{LN}(EOS \mid y) \ge f(t)$ for all $y \in \Sigma^t$ and $\sum_{t=1}^{\infty} f(t) = \infty$, then p_{LN} is tight. **Softmax**
$$softmax(x)_i = \frac{\exp(\frac{x_i}{\tau})}{\sum_{j=1}^n \exp(\frac{x_j}{\tau})}$$

As
$$\tau \to \infty$$
, becomes uniform and as $\tau \to 0$, becomes spiked. We have
$$\operatorname{softmax}(x) = \operatorname*{argmax}_{p \in \Delta^{n-1}} p^{\top} x - \tau \sum_{i=1}^{n} p_{i} \log p_{i}.$$

Representation-based Language Model An embedding matrix E and an ecoding

fct. enc:
$$\Sigma^* \to \mathbb{R}^d$$
 define a LNLM as
$$p(y_t \mid y_{< t}) = \operatorname{softmax} \left(\operatorname{Eenc}(y_{< t}) \right)_{y_t}.$$

Tightness of Softmax RBLMs

If $sz(t) \leq \log t$ for all $t \geq N$ for some N, then the induced model is **tight**. Here, $s = \max_{y \in \Sigma} ||e(y) - e(EOS)||_2$ and z(t) = $\max_{\omega \in \Sigma^t} \|\text{enc}(\omega)\|_2$. In particular, if enc is bounded, then the model is tight.

2 Finite State LMs

Finite State Automaton A FSA is a tuple $A = (Q, \Sigma, \delta, I, F)$, where

Q is a finite set of states, Σ is an alphabet, $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ are the transitions, and $I, F \subseteq Q$ are the sets of initial/final states.

al/final weights. **Probabilistic FSA** A WFSA is probabilistic if λ, ρ and the weights are non-negative, $\sum_{q \in O} \lambda(q) = 1$ and for all $q \in Q$ we have $\rho(q) + \sum_{\substack{q \to q' \\ q \to q'}} w = 1.$

A WFSA is a tuple $A = (Q, \Sigma, \delta, \lambda, \rho)$, where

 $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times \mathbb{R} \times Q$ are the weighted transitions and $\lambda, \rho: Q \to \mathbb{R}$ are the initi-

Path Weights

The weight of a path
$$\pi = q_1 \stackrel{a_1/w_1}{\longrightarrow} q_2 \cdot \cdot q_N$$
 in a WFSA $\mathcal A$ is

$w(\pi) = \lambda(q_1) \prod_{i=1}^{N} w_i \rho(q_N).$

Weighted FSA

WFSA Allsum The allsum of a WFSA A is

$$Z(\mathcal{A}) = \sum_{y \in \Sigma^*} \mathcal{A}(y) = \sum_{y \in \Sigma^*} \sum_{\pi \in \Pi(A,y)} w(\pi).$$
 We have

 $Z(A) = \vec{\lambda} \sum_{j=0}^{\infty} T^{d} \vec{\rho} = \vec{\lambda} (I - T)^{-1} \vec{\rho}$

where
$$T$$
 is the transition matrix of A . **Tightness of PFSA**

A state $q \in Q$ is accessible if there exists a non-zero weighted path from an initial state to q. It is co-accessible if there exists a non-zero weighted path from q to a final A PWFSA is **tight** if and only if all accessible states are co-accessible. 3 Pushdown LMs

Context Free Grammar

 $\alpha \in (\Sigma \cup \mathcal{N})^*$.

is an alphabet of terminals, \mathcal{N} is a set of rules of the form $X \to \alpha$ where $X \in \mathcal{N}$ and on.

weight function $\mathcal{W}: \mathcal{P} \to \mathbb{R}$. **Probabilistic CFG** A WCFG is probabilistic if W is non-

negative and for all $X \in \mathcal{N}$ we have $\sum_{X \to \alpha \in \mathcal{P}} \mathcal{W}(X \to \alpha) = 1.$ **WCFG Allsum**

A WCFG is a CFG with an associated

Weighted CFG

 $Z(\mathcal{G}) = \sum_{d \in \mathcal{D}_{\mathcal{C}}} w(d)$ $=\sum_{d\in\mathcal{D}_{\mathcal{G}}}\prod_{(X\to\alpha)\in d}\mathcal{W}(X\to\alpha),$

The allsum of a WCFG \mathcal{G} is

$$\frac{1}{d \in \mathcal{D}_{\mathcal{G}}(X \to \alpha) \in d}$$
where $\mathcal{D}_{\mathcal{G}}$ is the set of all possible derivations in \mathcal{G} .

Tightness of PCFG For a PCFG \mathcal{G} with $|\mathcal{N}| = N$ we define for each $X_n \in \mathcal{N}$ its production generating fct. encode which states can be transitioned to using y_t . It is possible to reduce the hidden $g_n((s_i)_{i=1}^N) = \sum_{X_{\cdot\cdot\cdot}\to\alpha} \mathcal{W}(X_n \to \alpha) s_1^{r_1(\alpha)} \cdots s_N^{r_N(\alpha)}$

where $r_i(\alpha)$ is the number of times X_i

appears in α . Then we set $E \in \mathbb{R}^{N \times N}$ to

have entries
$$E_{nm} = \frac{\partial}{\partial s_m} g_n(s_1,...,s_N) \Big|_{s_1,...,s_N=1}$$
.
Then \mathcal{G} is **tight** if $\lambda < 1$ and non-tight if $\lambda > 1$, where $\lambda = \max\{|\lambda'| \mid \lambda' \in \sigma(E)\}$.

Pushdown Automaton

A language is context-free if and only if it is recognized by some PDA.

Multi-Stack PDA

Any (probabilistic) 2-stack PDA is Turing complete. Hence, the tightness of a probabilistic 2-stack PDA is undecidable. 4 RNNs RNN

RNN-LM uses $\operatorname{enc}(y_{< t+1}) = h_t$. **Elman RNN** A CFG is a tuple $\mathcal{G} = (\Sigma, \mathcal{N}, S, \mathcal{P})$, where Σ An Elman RNN is an RNN with $f(h_{t-1}, y_t) = \sigma(Uh_{t-1} + Ve'(y_t) + b)$, whenon-terminals with $\mathcal{N} \cap \Sigma = \emptyset$, $S \in \mathcal{N}$ is the re $U \in \mathbb{R}^{d \times d}$, $V \in \mathbb{R}^{d \times R}$ and $b \in \mathbb{R}^d$ and start symbol and \mathcal{P} is a set of production $e': \Sigma \to \mathbb{R}^R$ is an input embedding functi-

A RNN is given by an initial state $h_0 \in \mathbb{R}^d$

and a dynamics map $h_t = f(h_{t-1}, y_t)$. An

Tightness of RNN-LMs

induced LM is **tight**.

Jordan RNN

(in particular if f is bounded, e.g. if f uses a bounded activation function), then the

A Jordan RNN is an RNN with

 $f(h_{t-1}, y_t) = \sigma(U\sigma'(Eh_{t-1}) + Ve'(y_{t-1}) + b).$

If the LM uses the softmax and $s||h_t|| \le \log t$

valent to deterministic PFSAs. The argu-

Expressiveness of RNNs Heaviside Elman RNNs (over \mathbb{R}) are equi-

ment generalizes to any activation function with finite image, in particular any actireachable from h_{t-1} and $V \in \mathbb{R}^{|\Sigma||Q| \times |\Sigma|}$ to

vation implemented on a computer. Minsky's construction encodes any dPFSA using $U \in \mathbb{R}^{|\Sigma||Q| \times |\Sigma||Q|}$ to encode which states are

state dimensionality to $\Omega(|\Sigma|\sqrt{|Q|})$.

values $V \in \mathbb{R}^{t \times d}$, soft attention is

Saturated Sigmoid Elmann RNNs are Turing complete (because they can encode two-stack PDAs). It is thus undecidable whether an RNN-LM is tight.

5 Transformers **Soft Attention** Given queries $Q \in \mathbb{R}^{n \times d}$, keys $K \in \mathbb{R}^{t \times d}$ and

softmax $\left(\frac{QK^{\top}}{\sqrt{d}}\right)V$.

Kernelized attention is O(rtd) and O(rl +rd + ld) with feature map dimension r.

Multi-head Attention

Given a context $C \in \mathbb{R}^{t \times d}$ and a query

 $x \in \mathbb{R}^d$, we set $MHA(x) = Concat(head_1, ..., head_N)W_0$

Time/Space compl.: $O(t^2d)$, $O(t^2+ld)$

 $head_i = Att(xW_a^{(i)}, CW_{\iota}^{(i)}, CW_{\upsilon}^{(i)}),$

where $W_q^{(i)}, W_k^{(i)}, W_v^{(i)} \in \mathbb{R}^{d \times d_h}, W_o \in \mathbb{R}^{d \times d}$ and usually $d_h = d/N$.

Transformer Layer

A transformer layer (without layer-norm) is a function $T: \mathbb{R}^{T \times d} \to \mathbb{R}^{T \times d}$ that maps $X = (x_1, ..., x_T)$ to $(z_1, ..., z_T)$, where

$$a_t = \text{Att}(q(x_t), K(\mathbf{X}_t), V(\mathbf{X}_t)) + x_t$$

$$z_t = \text{FFN}(a_t) + a_t.$$

Transformer

A transformer is a rep.-based LM with $\operatorname{enc}(y_{< t+1}) = h_t$, where

$$\mathbf{X}_1 = (e'(y_0), ..., e'(y_t))$$

$$\mathbf{X}_{l+1} = T_l(\mathbf{X}_l)$$

$$h_t = F(x_t^L)$$

for some $F: \mathbb{R}^d \to \mathbb{R}^d$, $e': \Sigma \to \mathbb{R}^d$ and transformer layers $T_1, ..., T_L$.

Tightness of Transformers

Any transformer using soft attention is tight (because its layers are continuous and the set of possible inputs to the first layer is compact, making enc bounded).

Expressiveness of Transformers

Let p_{LN} be an n-gram language model. Then, there exists a transformer T with $L(p_{LN}) = L(T)$.

6 Sampling

Ancestral Sampling

1. Locally normalize. 2. Sample $y_t \sim p(\cdot \mid y_{< t})$, stop when $y_t =$

May not halt \rightarrow set max string length.

Sampling Adaptors

To calibrate p we can postprocess probabilities by a function $\alpha: \Delta^{|\Sigma|-1} \to \Delta^{|\Sigma|-1}$.

Top-K Sampling

Set $p(y_t \mid y_{< t}) = 0$ for all but the K most probable tokens, and renormalize.

Nuclues Sampling

Only take top p% of probability mass.

7 Transfer Learning

ELMo

Assume we have a forward and a backward LM using L LSTM layers. The ELMo repre-

sentation for a token y_t is

$$\gamma^{\text{task}} \sum_{l=0}^{L} s_l^{\text{task}} h_{tl}^{LM},$$

where $s_l^{\text{task}} \ge 0$, $h_{tl}^{LM} = (\overrightarrow{h}_{tl}^{LM}, \overleftarrow{h}_{tl}^{LM})$, $\overrightarrow{h}_{tl}^{LM}$ and h_{tl}^{LM} are the hidden states of the LM layers. **BERT**

BERT is an encoder transformer pretrained using masked language modelling and next sentence prediction.

Adapters For $h \in MHA(C, x)$, FFN(x), we set

 $h \leftarrow h + f(hW_1 + b_1)W_2 + b_2$. $N_{\text{param}} = 2N(2dm + d + m)$

Replace weight matrices $W \in \mathbb{R}^{d \times r}$ with

 $W \leftarrow W + \frac{\beta}{b}AB$ where $A \in \mathbb{R}^{d \times b}$ and $B \in$ $\mathbb{R}^{b \times r}$ are random matrices and β is a constant in b.

 $N_{\text{param}} = NH(3b(d+r) + 2bd)$

Prefix Tuning

Prepending each layer with *l* embedding vectors results in $N_{\text{param}} = Nld$. 8 Parameter Efficient Fine-Tuning

BitFit Only optimize (a subset of) bias terms.

Diff Pruning

Learn (sparse) δ in $\theta_{\rm FT} = \theta_{\rm LM} + \delta$.

Adapters

Insert bottleneck MLPs after each sublayer (MHA and FFN).

9 Knowledge Enhancement

knn-lm

Store all embedded prefixes and their following words in a database. At inference time, retrieve the k nearest neighbors of a prefix and normalize the exponentiated distances to a probability distribution p_{ξ} over words. Then sample from a convex combination of p_{ξ} and the LM. Dynamic Gating: Set the weighting of distributions depending on the prefix.

10 RLHF

1. Collect a dataset of instructi- $\nabla_{\theta} L(f_{\theta}(x_i)) = x_i$. ons+answers and train a supervised

baseline model.

ferent answers given by the baseline model, score them manually and train a reward model.

2. Produce a dataset of comparisons of dif-

3. Use PPO to fine-tune a LM (the policy) using the reward model.

11 Distributed SGD **Communication Patterns**

Centralized, Asynchronous, Decentralized Logical Channels

Lossless, Sparsification, Quantization

C: $O(\frac{1}{\sqrt{nT}})$ CQ: $O(\frac{1}{\sqrt{nT}} + \frac{\epsilon}{\sqrt{T}})$

Convergence

A: $O(\frac{1}{\sqrt{nT}} + \frac{\tau}{\sqrt{T}})$ D: $O(\frac{1}{\sqrt{nT}} + \frac{\rho}{T^{1.5}})$

12 Data Quality

LOO, Uniform Weights, Shapley Value 13 Security Adversarial Examples

Importance Measures

Perturb example with noise δ to force misclassification:

> maximize $L(f_{\theta}(x+\delta), y)$ subject to $\|\delta\|_{\infty} \le 1\%$

Doesn't work for text as $x + \delta$ is highly unlikely to be a token embedding. We can instead solve $\operatorname{arg\,max}_{v}(E_{v}-x_{i})^{\top}\nabla_{x_{i}}L$ and replace x_i by v. 14 Privacy

Solve with projected Gradient Descent.

Data Secrecy

Central server sees all training data. Gold Standard Solutions: Secure multiparty computation, fully homomorphic encryption \rightarrow slow & expensive. Federated Learning. Clients send gradi-

ents. Can be attacked with optimization. Weight-trap attack: Server sends model s.t.

Data Memorization Can generate lots of text and filter text

where model is abnormally confident. 1. Filter memorized outputs. Problem: Exact matches are not enough.

2. Deduplicate training data. **Differential Privacy** An algorithm M is ε -differentially private

if for any "neighboring" databases D_1, D_2 that differ in a single element, and any output S we have:

$$P[M(D_1) \in S] \le \exp(\varepsilon)P[M(D_2) \in S].$$

Post-Processing: If M is ε -DP, then f(M)for any function f is also ε -DP. Composition: If M_1 is ε_1 -DP and M_2 is ε_2 -DP then $f(M_1, M_2)$ is $(\varepsilon_1 + \varepsilon_2)$ -DP.