

Inteligență Artificială

Universitatea Politehnica Bucuresti Anul universitar 2021-2022

Adina Magda Florea

Curs nr. 5 si 6

Reprezentarea cunostintelor incerte

- Teoria probabilitatilor
- Retele Bayesiene
- Inferente exacte si aproximative in retele Bayesiene

1. Teoria probabilitatilor

1.1 Cunostinte incerte

```
\forall p \ simpt(p, Dur\_d) \rightarrow factor(p, carie)
\forall p \ simpt(p, Dur\_d) \rightarrow factor(p, carie) \lor factor(p, infl\_ging) \lor \dots
```

- LP
- dificultate (« lene »)
- ignoranta teoretica
- ignoranta practica
- Teoria probabilitatilor → un grad numeric de incredere sau plauzibilitate a afirmatiilor in [0,1]
- Gradul de adevar (fuzzy logic) ≠ gradul de incredere

1.2 Definitii TP

- Probabilitatea unui eveniment incert A este masura gradului de incredere sau plauzibilitatea produceri unui eveniment
- Camp de probabilitate, S
- Probabilitate neconditionata (apriori) inaintea obtinerii de probe pt o ipoteza / eveniment
- Probabilitate conditionata (aposteriori) dupa obtinerea de probe

Exemple

```
P(Carie) = 0.1

P(Vreme = Soare) = 0.7

P(Vreme = Ploaie) = 0.2 P(Vreme = Nor) = 0.1

Vreme - variabila aleatoare
```

Distributie de probabilitate

Definitii TP - cont

Probabilitate conditionata (aposteriori) - P(A|B)
P(Carie | Dur_d) = 0.8

Masura probabilitatii producerii unui eveniment A este o functie $P:S \rightarrow R$ care satisface axiomele:

- $0 \le P(A) \le 1$
- $P(S) = 1 \quad (sau P(adev) = 1 si P(fals) = 0)$
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

$$P(A \lor \sim A) = P(A) + P(\sim A) - P(fals) = P(adev)$$

$$\Rightarrow P(\sim A) = 1 - P(A)$$

Definitii TP - cont

Evenimente mutual exclusive

Moneda – cap/pajura – mutual exclusive

Zar - 1, 2, 3 – mutual exclusive

Evenimente exhaustive

Moneda – cap/pajura – mutual exhaustive

Zar - 1, 2, 3, 4, 5, 6 - mutual exhaustive

Definitii TP - cont

A si B mutual exclusive →

$$P(A \vee B) = P(A) + P(B)$$

$$P(e_1 \vee e_2 \vee e_3 \vee \dots e_n) =$$

$$P(e_1) + P(e_2) + P(e_3) + ... + P(e_n)$$

e(a) – multimea de evenimente atomice mutual exclusive si exhaustive in care apare **a**

$$P(a) = \sum_{e_i \in e(a)} P(e_i)$$

1.3 Regula produsului

Probabilitatea conditionata de producere a evenimentului A in conditiile producerii evenimentului B

$$P(A|B) = P(A \land B) / P(B)$$

$$P(A \wedge B) = P(A|B) * P(B)$$

1.4 Teorema lui Bayes

$$P(A|B) = P(A \land B) / P(B) - regula produsului$$

$$P(A|B) = P(A \wedge B) / P(B)$$

$$P(B|A) = P(A \wedge B) / P(A)$$

$$P(B|A) = P(A|B) *P(B)/P(A)$$

APosteriori = **Plauzibilitate** x **APriori** / **Evidenta**

Teorema lui Bayes

$$P(B|A) = P(A|B) *P(B)/P(A)$$

 Daca B si ~B sunt mutual exclusive si exhaustive, probabilitatea de producere a lui A in conditiile producerii lui B se poate scrie

$$\mathbf{P}(\mathbf{A}) = \mathbf{P}(\mathbf{A} \wedge \mathbf{B}) + \mathbf{P}(\mathbf{A} \wedge \sim \mathbf{B}) = \mathbf{P}(\mathbf{A}|\mathbf{B}) * \mathbf{P}(\mathbf{B}) + \mathbf{P}(\mathbf{A}|\sim \mathbf{B}) * \mathbf{P}(\sim \mathbf{B})$$

$$P(B|A) = P(A | B) * P(B) / [P(A|B)*P(B) + P(A| \sim B)*P(\sim B)]$$

Teorema lui Bayes

Generalizarea la mai multe ipoteze

B - h, A - e

$$P(h|e) = P(e \mid h) * P(h) / [P(e|h)*P(h) + P(e| \sim h)*P(\sim h)]$$

Daca h_i mutual exclusive si exhaustive, i=1,k

$$P(h_{i}|e) = \frac{P(e|h_{i}) \cdot P(h_{i})}{\sum_{j=1}^{k} P(e|h_{j}) \cdot P(h_{j})}, i = 1, k$$

Teorema lui Bayes

Generalizarea la mai multe ipoteze si probe

```
h_i – evenimente / ipoteze probabile (i=1,k);

e_1, \dots, e_n – probe (evenimente)

P(h_i)

P(h_i \mid e_1, \dots, e_n)

P(e_1, \dots, e_n \mid h_i)
```

$$P(h_i|e_1,e_2,...,e_n) = \frac{P(e_1,e_2,...,e_n|h_i) \cdot P(h_i)}{\sum_{j=1}^{k} P(e_1,e_2,...,e_n|h_j) \cdot P(h_j)}, i = 1,k$$

Teorema lui Bayes - cont

$$P(h_i|e_1,e_2,...,e_n) = \frac{P(e_1,e_2,...,e_n|h_i) \cdot P(h_i)}{\sum_{j=1}^{k} P(e_1,e_2,...,e_n|h_j) \cdot P(h_j)}, i = 1,k$$

Daca e_1, \ldots, e_n sunt ipoteze independente atunci

$$P(e|h_j) = P(e_1, e_2, ..., e_n|h_j) = P(e_1|h_j) \cdot P(e_2|h_j) \cdot ... \cdot P(e_n|h_j), \ j = 1, k$$

PROSPECTOR – sistem expert pentru consultari privind exploatari miniere si evaluarea resurselor

Distributie de probabilitate

P(Carie, Dur_d)

	Dur_d	~Dur_d
Carie	0.04	0.06
~Carie	0.01	0.89

$$P(Carie) = 0.04 + 0.06 = 0.1$$

$$P(Carie \lor Dur_d) = 0.04 + 0.01 + 0.06 = 0.11$$

$$P(Carie|Dur_d) = P(Carie \land Dur_d) / P(Dur_d) = 0.04 / 0.05$$

	Dur_d		~Dur_d	
	Evid	~Evid	Evid	~Evid
Carie	0.108	0.012	0.072	0.008
~Carie	0.016	0.064	0.144	0.576

Distributie de probabilitate

P(Carie, Dur_d, Evid)

$$P(Carie) = 0.108 + 0.012 + 0.72 + 0.008 = 0.2$$

 $P(Carie \lor Dur_d) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016$
 $+ 0.064 = 0.28$

P(Carie, Dur_d, Vreme) – o tabela cu 2 x 2 x 3 = 12 intrari Distributie de probablitate completa

	Dur_d		~Dur_d	
	Evid	~Evid	Evid	~Evid
Carie	0.108	0.012	0.072	0.008
~Carie	0.016	0.064	0.144	0.576

$$P(Carie \mid Dur_d) = P(Carie \land Dur_d) / P(Dur_d)$$

 $P(\sim Carie \mid Dur_d) = P(\sim Carie \land Dur_d) / P(Dur_d)$
 $\alpha = 1 / P(Dur_d) - constanta de normalizare a distributiei$

P(Carie | Dur_d) = α P(Carie
$$\land$$
 Dur_d) = α [P(Carie \land Dur_d \land Evid) + P(Carie \land Dur_d \land ~Evid)] = α [<0.108, 0.016> + <0.012, 0.064>] = α <0.12, 0.08> = <0.6, 0.4>

<u>Chiar daca nu cunoastem α </u>, adica P(Dur_d), putem calcula $\underline{\alpha}$ $\alpha = 1/(0.12+0.08) = 1/0.2$

Generalizare – procedura generala de inferenta bazata pe DPC Interogare asupra lui X

X – variabila de interogat (Carie)

E – lista de variabile probe (Dur_d)

e – lista valorilor observate pt aceste variabile E

Y – lista variabilelor neobservate (restul) (Evid)

P(Carie | Dur_d) =
$$\alpha$$
 [P(Carie \wedge Dur_d \wedge Evid) + P(Carie \wedge Dur_d \wedge ~Evid)]

Insumarea se face peste toate combinatiile de valori ale variab. neobservate Y

$$\mathbf{P}(\mathbf{X} \mid \mathbf{e}) = \alpha \mathbf{P}(\mathbf{X}, \mathbf{e}) = \alpha \Sigma_{\mathbf{Y}=\mathbf{y}} \mathbf{P}(\mathbf{X}, \mathbf{e}, \mathbf{Y})$$

$$\mathbf{P}(\mathbf{X} \mid \mathbf{e}) = \alpha \mathbf{P}(\mathbf{X}, \mathbf{e}) = \alpha \Sigma_{\mathbf{Y}=\mathbf{y}} \mathbf{P}(\mathbf{X}, \mathbf{e}, \mathbf{Y})$$

Avand DPC ecuatia poate da raspuns la interogari cu variabile discrete

Complex computational

n var Bool – tabela O(2ⁿ)

- timp $O(2^n)$

1.6 Independenta conditionala

 Evenimentele X1 si X2 sunt independente conditional fiind dat un eveniment Y daca

Stiind ca Y apare, aparitia lui X1 nu influenteaza aparitia lui X2 si aparitia lui X2 nu influenteaza aparitia lui X1

altfel spus

- X1 si X2 sunt independente conditional fiind dat un eveniment Y daca, pentru orice valoare a lui Y:
- o distributia de probabilitate a lui X1 este aceeasi pentru orice valoare ar lua X2
- o distributia de probabilitate a lui X2 este aceeasi pentru orice valoare ar lua X1

$$P(X1,X2|Y) = P(X1|Y)*P(X2|Y)$$

Independenta conditionala

P(cauza | efect) = P(efect | cauza) * P(cauza) / P(efect) $P(y | x_1,...,x_n) = P(x_1,...,x_n | y) * P(y) / P(x_1,...,x_n)$ $P(y | x_1,...,x_n) = \alpha * P(x_1,...,x_n | y) * P(y)$

Daca $x_1,...,x_n$ sunt independente conditional fiind dat y atunci $P(x_1,...x_n | y) = \prod_i P(x_i | y)$

$$\mathbf{P}(\text{Cauza} \mid \text{Efect}_1, \text{Efect}_2, ...) =$$

$$\alpha \mathbf{P}(\text{Cauza}) * \Pi_i \mathbf{P}(\text{Efect}_i | \text{Cauza})$$

1.7 Model Bayesian naiv

$$\mathbf{P}(Cauza_y \mid Efect_1, Efect_2, ...) = \alpha \mathbf{P}(Cauza_y) * \Pi_i \mathbf{P}(Efect_i \mid Cauza_y)$$

Ipoteza de independenta conditionala / naiva

$$Cauza_MAP = argmax_y \mathbf{P}(Cauza_y) * \Pi_i \mathbf{P}(Efect_i|Cauza_y)$$

Model Bayesian naiv

Model Bayesian naiv

Vector de caracteristici $x_1,...,x_n$ si o serie de clase C_k

$$\mathbf{P}(\mathbf{C}_{k} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots) = \alpha \ \mathbf{P}(\mathbf{C}_{k}) * \Pi_{i} \mathbf{P}(\mathbf{x}_{i} | \mathbf{C}_{k})$$

$$C_MAP = argmax_k P(C_k) * \Pi_i P(x_i|C_k)$$

Model Bayesian naiv

MAP – Maximum a Posteriori

1.8 Modele grafice probabiliste

- Fiecare nod reprezinta o variabila aleatoare si fiecare legatura reprezinta o relatie probabilistica
 - Retele Bayesiene modele grafice orientate permit reprezentare compacta a DP si punerea in evidenta a independentei conditionale
 - Modele Markov lanturi Markov stari si tranzitii probabilistice

2 Retele Bayesiene

- Reprezinta dependente intre variabile aleatoare
- Specifica distributiei de probabilitate
- Simplifica calculele
- Au asociata o reprezentare grafica convenabila
- DAG care reprezinta relatiile cauzale intre variabile
- Pe baza structurii retelei se pot realiza diverse tipuri de inferente
- Calcule complexe in general dar se pot simplifica pentru structuri particulare

2.1 Structura retelelor Bayesiene

O RB este un DAG in care:

- Nodurile reprezinta variabilele aleatoare
- Legaturile orientate $X \rightarrow Y$: X are o influenta directa asupra lui Y, X=Parinte(Y)
- Fiecare nod are asociata o tabela de probabilitati conditionate care cuantifica efectul parintilor asupra nodului
 - \blacksquare P(X_i | Parinti(X_i))

Structura retelelor Bayesiene - cont

	H	\mathbf{C}	$P(A \mid H, C)$	
Tabela de probabilitati conditionate			T	F
	T	T	0.95	0.05
	T	F	0.94	0.06
	F	T	0.29	0.71
	F	F	0.001	0.999

Structura retelelor Bayesiene

In general X (Cauza) \rightarrow Y (Efect)

- Stabilesc topologia
- Specifica distributia de probabilitati conditionate
- Combinarea topologiei si distributia de probabilitati conditionate este suficienta pentru a specifica (implicit) intreaga DPC
- DPC poate raspunde la interogari
- Si RB la fel, mai eficient

2.2 Semantica retelelor Bayesiene

- Reprezentare a distributiei de probabilitate
- Specificare a independentei conditionale constructia retelei

• Fiecare valoare din distributia de probabilitate poate fi calculata ca:

$$P(X_1=x_1 \land ... X_n=x_n) = P(x_1,...,x_n) =$$

$$\Pi_{i=1,n} P(x_i \mid parinti(x_i))$$

unde $parinti(x_i)$ reprezinat valorile specifice ale variabilelor $Parinti(X_i)$

2.3 Construirea retelei

Cum sa construim o retea a.i. RB/DPC sa fie o buna reprezentare?

Ecuatia $P(x_1,...,x_n) = \Pi_{i=1,n} P(x_i | parinti(x_i))$ implica anumite relatii de independenta conditionala care pot ghida construirea retelei

$$\begin{split} P(X_1 = & x_1 \land \dots X_n = x_n) = P(x_1, \dots, x_n) = \\ P(x_n \mid x_{n-1}, \dots, x_1) * P(x_{n-1}, \dots, x_1) = \dots = \\ P(x_n \mid x_{n-1}, \dots, x_1) * P(x_{n-1} \mid x_{n-2}, \dots, x_1) * \dots P(x_2 \mid x_1) * P(x_1) = \\ \Pi_{i=1,n} P(x_i \mid x_{i-1}, \dots, x_1) - \text{valabila in general} \end{split}$$

• DPC daca, pt fiecare variabila X_i din RB

$$P(X_i | X_{i-1},..., X_1) = P(x_i | Parinti(X_i))$$
 cu conditia ca
$$Parinti(X_i) \subseteq \{ X_{i-1},..., X_1 \}$$

Construirea retelei

Pt fiecare variabila X_i din RB

$$P(X_i | X_{i-1},..., X_1) = P(x_i | Parinti(X_i))$$
 cu conditia ca

$$Parinti(X_i) \subseteq \{ X_{i-1},..., X_1 \}$$

• O RB este o reprezentare corecta a domeniului cu conditia ca fiecare nod sa fie independent conditional de nondescendenti, fiind dati parintii lui

Construirea retelei

- Conditia poate fi satisfactuta prin etichetarea nodurilor intr-o ordine consitenta cu DAG
- Intuitiv, parintii unui nod X_i trebuie sa fie toate acele noduri
 - $X_{i-1},...,X_1$ care influenteaza direct X_i .

Construirea retelei - cont

- Alege o multime de variabile aleatoare relevante care descriu problema
- Alege o ordonare a acestor variabile
- cat timp mai sunt variabile repeta
 - (a) alege o variabila X_i si adauga un nod corespunzator lui X_i
 - (b) atribuie $Parinti(X_i) \leftarrow un$ set minim de noduri deja existente in retea a.i. proprietatea de independenta conditionala este satisfacuta
 - (c) defineste tabela de probabilitati conditionate pentru X_i

Deoarece fiecare nod este legat numai la noduri anterioare → DAG

2.4 Inferente probabilistice

$$P(A \wedge V \wedge B) = P(A) * P(V|A) * P(B|V)$$

$$P(A \wedge V \wedge B) = P(V) * P(A|V) * P(B|V)$$

$$P(A \wedge V \wedge B) = P(A) * P(B) * P(V|A,B)$$

Inferente probabilistice

$$P(M \land D \land A \land \sim H \land \sim C) =$$

 $P(M|A)* P(D|A)*P(A|\sim H \land \sim C)*P(\sim H) \land P(\sim C) =$
 $0.9* 0.7* 0.001* 0.999* 0.998 = 0.00062$

Inferente probabilistice

$$P(A|H) = P(A|H,C) *P(C|H) + P(A|H,\sim C)*P(\sim C|H)$$

= $P(A|H,C) *P(C) + P(A|H,\sim C)*P(\sim C)$
= $0.95 * 0.002 + 0.94 * 0.998 = 0.94002$