Simulaciones Teorema Central del Límite

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Section 1

Simulaciones Teorema Central del Límite

Vamos a realizar unas simulaciones para comprobar el Teorema Central del Límite.

Vamos a realizar unas simulaciones para comprobar el Teorema Central del Límite.

En general, vamos a hacer lo siguiente:

• Consideraremos una variable X de distribución conocida de media μ y desviación estándar σ .

- Consideraremos una variable X de distribución conocida de media μ y desviación estándar σ .
- Consideraremos una muestra aleatoria simple de X de tamaño
 N:

$$X_1,\ldots,X_N$$
.

- Consideraremos una variable X de distribución conocida de media μ y desviación estándar σ.
- Consideraremos una muestra aleatoria simple de X de tamaño
 N:

$$X_1,\ldots,X_N$$
.

• Consideramos la variable aleatoria media $\overline{X} = \frac{X_1 + \dots + X_N}{N}$ y calcularemos la media de los valores de cada muestra.

- Consideraremos una variable X de distribución conocida de media μ y desviación estándar σ.
- Consideraremos una muestra aleatoria simple de X de tamaño
 N:

$$X_1,\ldots,X_N$$
.

- Consideramos la variable aleatoria media $\overline{X} = \frac{X_1 + \dots + X_N}{N}$ y calcularemos la media de los valores de cada muestra.
- Repetiremos los dos pasos anteriores R veces.

- Consideraremos una variable X de distribución conocida de media μ y desviación estándar σ.
- Consideraremos una muestra aleatoria simple de X de tamaño
 N:

$$X_1,\ldots,X_N$$
.

- Consideramos la variable aleatoria media $\overline{X} = \frac{X_1 + \dots + X_N}{N}$ y calcularemos la media de los valores de cada muestra.
- Repetiremos los dos pasos anteriores R veces.
- Mostraremos el histograma resultante junto con la densidad de la distribución normal correspondiente $N\left(\mu,\frac{\sigma}{\sqrt{N}}\right)$

Distribución binomial B(n, p)

En el caso en que
$$X = B(n, p)$$
, $\mu = n \cdot p$ y $\sigma = \sqrt{n \cdot p \cdot (1 - p)}$.

Distribución binomial B(n, p)

En el caso en que
$$X = B(n, p)$$
, $\mu = n \cdot p$ y $\sigma = \sqrt{n \cdot p \cdot (1 - p)}$.

Mostramos el gráfico para p=0.5, n=25, N=100 y R=1000 en adelante.

Distribución binomial B(n, p)

En el caso en que
$$X = B(n, p)$$
, $\mu = n \cdot p$ y $\sigma = \sqrt{n \cdot p \cdot (1 - p)}$.

Mostramos el gráfico para p=0.5, n=25, N=100 y R=1000 en adelante.

La distribución normal correspondiente será

$$N\left(\mu = n \cdot p = 25 \cdot 0.5 = 12.5, \sigma_{\overline{X}} = \frac{\sqrt{n \cdot p \cdot (1-p)}}{\sqrt{N}} = \frac{\sqrt{25 \cdot 0.5 \cdot 0.5}}{\sqrt{100}} = 0.25\right)$$

Distribución de Poison $Pois(\lambda)$

En el caso en que
$$X = Pois(\lambda)$$
, $\mu = \lambda$ y $\sigma = \sqrt{\lambda}$.

Distribución de Poison $Pois(\lambda)$

En el caso en que $X = Pois(\lambda)$, $\mu = \lambda$ y $\sigma = \sqrt{\lambda}$.

Mostramos el gráfico para $\lambda=25,\ N=100$ y R=1000 en adelante.

Distribución de Poison $Pois(\lambda)$

En el caso en que $X = Pois(\lambda)$, $\mu = \lambda$ y $\sigma = \sqrt{\lambda}$.

Mostramos el gráfico para $\lambda=25,\ N=100$ y R=1000 en adelante.

La distribución normal correspondiente será

$$N\left(\mu=\lambda=25, \sigma_{\overline{X}}=\frac{\sqrt{\lambda}}{\sqrt{100}}=\frac{\sqrt{25}}{\sqrt{100}}=0.5\right)$$

Distribución Uniforme U(a, b)

En el caso en que
$$X = U(a, b)$$
, $\mu = \frac{a+b}{2}$ y $\sigma = \frac{b-a}{\sqrt{12}}$.

Distribución Uniforme U(a, b)

En el caso en que
$$X = U(a, b)$$
, $\mu = \frac{a+b}{2}$ y $\sigma = \frac{b-a}{\sqrt{12}}$.

Mostramos el gráfico para a=0, b=10, N=100 y R=1000 en adelante.

Distribución Uniforme U(a, b)

En el caso en que
$$X = U(a, b)$$
, $\mu = \frac{a+b}{2}$ y $\sigma = \frac{b-a}{\sqrt{12}}$.

Mostramos el gráfico para a=0, b=10, N=100 y R=1000 en adelante.

La distribución normal correspondiente será

$$N\left(\mu = \frac{a+b}{2} = \frac{0+10}{2} = 5, \sigma_{\overline{X}} = \frac{\frac{b-a}{\sqrt{12}}}{\sqrt{N}} = \frac{10-0}{\sqrt{1200}} = 0.2886751\right)$$