Etap II - Zadanie 1

Michał Kozłowski

13 Marca 2022

1 Interpretacja i uproszczenie problemu

Problem opisany w zadaniu 1 sprowadza się do znalezienia "najtańszej" trasy dla robota pomiędzy punktami A i B i podania kosztu jej przebycia.

Schemat dróg w hangarze można przedstawić za pomocą grafów ważonych (weighted graphs), gdzie skrzyżowania będą wierzchołkami , a połączenia pomiędzy skrzyżowaniami - krawędziami.

Waga krawędzi - Koszt energetyczny drogi/połączenia będzie miał wartość $E_c = l * G_c$, gdzie l to długość połączenia, a G_c jest kosztem energetycznym grupy połączeń (określanych trzema kolorami) do których należy to połączenie.

Wynikiem działania programu będzie suma E_c połączeń przez które będzie poruszał się Robot.

Do znalezienia trasy dla której suma wartości E_c połączeń będzie najniższa został zastosowany Algorytm Dijkstry ze względu na nie kierunkowe połączenia oraz ich nieujemne wagi.

2 Inne możliwości

Dla zadanego hangaru istnieje możliwość skrócenia ciągów połączeń tego samego koloru, na długości których nie wychodzą połączenia innych kolorów do jednego połączenia. Np. 3 zółte połączenia wychodzące na prawo od punktu końcowego $\tt B$ można skrócić do jednego połączenia o długości 12.3m