LXR Agonist Compound A Activates the Expression of SSG

Oxysterol and LXR Agonists Activate the Expression of Cholesterol Transporters, ABC1 and ABC8

LXR agonist: C_{pd} B, CFXR agonist: C_{pd} E, F

Induction of ABC1 in Liver, Intestine and Kidney of C57BL/6 Mice by LXRa Agonist God A

FIGURE 3

How Does LXR Regulate Cholesterol Absorption? -A Working Model -

FIGURE 6

225 TCGGCACAGCTTAGGNGTCCTACATGTGTCCACACACCGTGTCGGGACCTTGGTGGAAACATCATGCCAGCAAAGTGGGGAAATCCTCAAAAGATGTCCTCCTTGTACATCCAGAATTATGTGCAT R H S L G V L H V S Y S V S N R V G P W W N I K S C Q Q K W D R Q I L K D V S L Y I E S G Q I M C I>

525 GAGCGACGTTTTTCTCAGCACCTCTCTGCGCAGAGCATGCTGGCCCTCTGCCGCAGCTTCTACAACAAGAAGGTAGAGCAGTCATGACAGAGCTGAGCCTGAGCCTGAGCCAGTGGCGGCGAAAT S D F Y N K K V E A V M T E L S L S H V A D Q M

825

CAATAACTGTGACCCTGTACCTGAACATTCCAATCCTTTGATTTTTACATGACATCACATCAGTGCGAGAAGAGAGAAATAGAAAGGTACAAGGAGATGCTGGAATGTGAAGAAATCTGACAT N N C G Y P C P E H S N P F D F Y M D L T S V D T Q S R E R E I E T Y K R V Q M L E C A F K E S D D

GGOAGUGATTATGCGFTCAGAAATCTGATTATAGGGCTCTTCCTCATTATTTTATACTTCTCCGGGTCCAAACAACAGGGCGCTGGTGGAGGACGGGTGGTGGGGGTGCTTGTGGGTGCCACCCCATAGACGGG A V I M R L V Q N L I M G L F L I F Y L L R V Q N N T L K G A V Q D R V G L L Y Q L V G A T P Y T G>

TGTGTGTTATTGGACTTGTGGACTTGTAAAGTTGCGAATTTGGATATTTTCGGCTCTTTTGGCCCTCACTTAATTGGAGAATTTCTAACACTTGTGAAAACCCTAATATTGTCAACAGTATAGT V C Y W T L G L Y P E V A R F G Y F S A A L L A P H L I G E F L T L V L L G I V Q N P N I V N S I V>

CTICACITGRGANGCAACCCTATGCTAAATCACCGGAAGTGCGGCAACGAGGGGCCCAGTTCATCGAGAAACCTGCCAGGTGCATCACCGGCAACTTCTTATGGGTTTATCCCAGCTCT F 1 C G G S N T S M L N H P M C A I I Q G V Q F I E K T C P G A T S R F T A N F L I L Y G F I P A L:

GENCANCCIAGGAANTATITAAAGNAGGACIAGGAATIAGCAGAATAAGATTAAGAAGAGAAAAGGGITAANGGGCAGGCAGGCCCACTGIGGAAGAACIACTGICITICAACCATCAGGAITICCÁNCIAGCAC VILGIVIFKVRDYLISSA

2550 CCINGIGICIGACCCTIGIGICIATCCGGAGCCCCCAAGGGGAAACGAGCCCTCGGCTATICCAGCTIGIGGGGCAATGIGGTGGTTGGACTGACTGATCAATAATAATAATAATAATAAAAACCTAC

AGGACATT

TS TCAGGTGGAGCAGGCAGGCCACTCCCCAACTGAAGCCACTCTGGGGAGGTCCGGCAAAATTTGCCCAGCTTTGCTCCCTGTTGGCCAAGGTCTCTCATCTTTGACCCCGGAGGGTCCATGTTGACCCCCGGAGGGTCCATGTT N G D L S S L T P G G S N G L>

۵ د

CCAAGTAAACAGAGGCTCCCTGGAGGGGGCTCCTGCCACCCCGGAGGCTCACAGCCTCCATGCCTCCTACAGCGTCAGCGGTGAGGCCCTGGTGGGAAATCACATCTTGCCGGCAGCAGTGGAC Q V N R G S Q S S L E G A P A T A P E P H S L G I L H A S Y S V S H R V R P W W D I T S C R Q Q W T>

GAAGAAGCTGGAGCCCGTCATGCCAAGCCATGTGGCACTGATTGGCACTAATTGGCAACTACAGGGGAATTTCCAGGGGTGAGCGGGGGTCTCCATGGAGCCAGCTGCTCCAGGATCCTAAGGTCATGGT K k v e a v m a e l s l s h v a d r l i g n y s l g g i s i g e r r v s i a a v l l o d p k v m l>

825 F D E P T T G L D C M T A N Q I V V L L V E L A R R N R I V V L T I H Q P R S E L F Q L F D K I A IS

CCTGAGCTTOGAGAGCTGATTTTCTGTGGCGAAAATGCTTGAATGACTGGCGGTTACCCTTGTCCTGAACATTCAAAGCCTTTTGACTTCTATATGGACCTGACGTCAAGTGGATACCAAAGCAAGGAACGGGA

TGCAACATCIAGAITCACAATGAACTITCCGATTITGIATTCAGCICTIGICAITCATGGAATIAGAGAATAAGGGAATCATCATIAGCAGGTAGTGAAAGCCATGGCTGGGAAAATGGAAGTGAAGCCGT A T S R F T M N F L I L Y S F I P A L V I L G I V V F K I R D H L I S R X> 2175 2250 2250

ttgcticttacaacittgcaggacatgtgsttattttggaaattfgtgactgaggggacccaagaatgtaaataatattcataaacctatggg

Alignment of Human and Mouse SSG Protein Sequences

hSSG.pro	MGDLSSLTPG GSMGLQVNRG SQSSLEGAPA TAPEP-HSLG ILHASYSVSH	49
mSSG.pro	MGELPFLSPE GARGPHINRG SLSSLEQGSV TGTEARHSLG VLHVSYSVSN	50
hSSG.pro	RVRPWWDITS CRQQWTRQIL KDVSLYVESG QIMCILGSSG SGKTTLLDAM	99
mSSG.pro	RVGPWWNIKS CQQKWDRQIL KDVSLYIESG QIMCILGSSG SGKTTLLDAI	100
hSSG.pro	SGRIGRAGTF LGEVYVNGRA LRREQFQDCF SYVLQSDTLL SSLTVRETLH	149
mSSG.pro	SGRIRRTGTL EGEVFVNGCE LRRDQFQDCF SYVLQSDVFL SSLTVRETLR	150
hSSG.pro	YTALLAIRRG NPGSFQKKVE AVMAELSLSH VADRLIGNYS LGGISTGERR	199
mSSG.pro	YTAMLALCRS SADFYNKKVE AVMTELSLSH VADQMIGSYN FGGISSGERR	200
hSSG.pro	ŔVŚŢĄĄQĿĹQ DĘĶVMĿĘĎĖĖ ŢŢĠĿĎĊMŢĄŲ QĬVVĿĹVĖĿĄ RŖŊŖĬŲVĿŢĬ	249
mSSG.pro	ŖŲŚŢĄĄQĿĹQ DĘĶŲMMĿĎĘĘ ŢŢĠĿĎĊMŢĄŲ QĮVĿĿĹĄĖĻĄ ŖŖĎŔĮŲĬVŢĬ	250
hSSG.pro	HOPRSELFOL FORTATLSFG ELIFCGTPAE MLDFFNDCGY PCPEHSNPFD	299
mSSG.pro	HOPRSELFOH FORTATLTYG ELVECGTPEE MLGFFNNCGY PCPEHSNPFD	300
hSSG.pro mSSG.pro	FYMOLITSVOT OSKERETETS KRYOMLECAF KESDIYHKIL ENTERARYIK	349 350
hSSG.pro	TLPMVPFKTK DSPGVFSKLG VLLRRVTRNL VRNKLAVITR LLQNLIMGLF	399
mSSG.pro	TLPMVPFKTK DPPGMFGKLG VLLRRVTRNL MRNKQAVIMR LVQNLIMGLF	400
hSSG.pro	LLEFVLRYRS NVLKGALODR VGLLYOFVGA TPYTGMLNAV NLFEVLRAVS	449
mSSG.pro	LIFYLLRVON NTLKGAVODR VGLLYOLVGA TPYTGMLNAV NLFEMLRAVS	450
hSSG.pro	DOESODGLYO KWOMMAYAL HVLPFSVVAT MIFSSVCYWI LGLHPEVARF	499
mSSG.pro	DOESODGLYH KWOMLLAYVI HVLPFSVIAT VIFSSVCYWI LGLYPEVARF	500
hSSG.pro	GYESAALLAP HLIGEFLILV LLGIYONPNI VNSVVALLSI AGVLVGSGFL	549
mSSG.pro	GYFSAALLAP HLIGEFLILV LLGIVONPNI VNSIVALLSI SGLEIGSGFI	550
hSSG.pro	KNIOEMBIEL KIISALILOK ACCETTAANE LAGTNEICGG SNISMTNHEM	599
mSSG.pro	KNIOEMBIEL KIISALILOK ACCETTAANE LAGTNEICGG SNISMTNHEM	600
hSSG.pro	CAFTOGIOFI EKTCPGATSR FTMNFLILYS FIPALVILGT VVFKIRDHLI	649
mSSG.pro	CALTOGVOFI EKTCPGATSR FTANFLILYG FIPALVILGT VIFKVRDYLI	650
hSSG.pro	ŜŔ	651
mSSG.pro	ŜŖ	652

Reference Number: 6711 Stanford RH Panel: TNG4 Lowest LOD Reported: 6 Chromosome Value: 0

Results for HT

Submitted

SHGCNAME CHROM# LOD_SCORE DIST.(cRs)

1 SHGC-36672 2 7.52 35

2 SHGC-8189 2 6.53 44

3 SHGC-699 2 6.03 48

The number of markers searched was 32440.

in the GI Tract Expression Profile of St

Esophagus

Small Intestine

Stomach

Duodenum

Jejunum

Ileum

Rectum

Colon

Rectum

EICHEE IJ

is Predominantly Expressed the Liver and Small Intestine 365 2 Human

sitsot sumvat UDD/dS S. Intestine Prostate 78_d VIBNO C0/01 S. Muscle eju_{eob}ld bancreas BUN7 TING! Kidney Brain

is Selectively Expressed in the Liver and Small Intestine 256 Mouse

S. Intestine Lung Kidney Kidne Carried States shrivinus S. Musche Testis Skin

Mouse Multiple Tissue RT-PCR

cDNA Cloning and Genomic Organization of ՑՑկ

- The predicted human and mouse proteins share 80% identity and is 28% identical to Drosophila Brown
- Human ABCG5 contains 13 exons and spans at least 25kb of genomic DNA

Human SSG nucleotide sequence—13 Exons

Exon 1 GTCAGGTGGAGCAGGCAGGCAGTCTGCCACGGGCTCCCCAACTGAAGCCACTCTGGGGA GGGTCCGGCCACCAGAAAATTTGCCCAGCTTTGCTGCCTGTTGGCCATGGGTGACCTCTC ATCTTTGACCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCT GGAGGGGGCTCCTGCCACCGCCCCGGAGCCTCACAGCCTGGGCATCCTCCATGCCTCCTA CAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGGGCAGATCATGTGCATCCT AGGAAGCTCAGGCTCCGGGAAAACCACGCTGCTGGACGCCATGTCCGGGAGGCTGGGGCG CGCGGGGACCTTCCTGGGGGAGGTGTATGTGAACGGCCGGGCGCTGCGCCGGGAGCAGTT GAAGAAGGTGC**A**ĞĞCCĞTCATGGCAGAGCTGAGTCTGAGCCATGTGGCAGACCGACTGAT CCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCAGCGGAAATGCTTGA TGACTGCGGTTACCCTTGTCCTGAACATTCAAACCCTTTTGACTTCTATATGĞACCTGAC GTCAGTGGATACCCAAAGCAAGGAACGGGAAATAGAAACCTCCAAGAGAGTCCAGATGAT AGAATCTGCCTACAAGAAATCAGCAATTTGTCATAAAACTTTGAAGAATATTGAAAGAAT GAAACACCTGAAAACGTTACCAATGGTTCCTTTCAAAACCAAAGATTCTCCTGGAGTTTT \mathbf{r} EXON \mathbf{q} CTCTAAACTGGGTGTTCTCCTGAGAĞĞĞĞTGACAAGAAACTTGGTGAGAAATAAGCTGGC AGTGATTACGCGTCTCCTTCAGAATCTGATCATGGGTTTGTTCCTCCTTTTTCTTCGTTCT GCGGGTCCGAAGCAATGTGCTAAAGGGTGCTATCCAGGACCGC GTTTGTGGGCGCCACCCCGTACACAGGCATGCTGAACGCTGTGAATCTG GCGAGCTGTCAGCGACCAGGAGAGTCAGGACGGCCTCTACCAGAAGTGGCAGATGATGCT GCAÇTQCACGTCCTCCCCTTCAGCGTTGTTGCCACCATGATTTTCAGCAGTGT CTTACATCCTGAGGTTGCCCGATTTGGATATTTTTCTGCTGC TCTCTTGGCCCCCCACTTAATTGGTGAATTTCTAACTCTTGTGCTACTTGGTATCGTCCA AAATCCAAATATAGTCAACAGTGTAGTGGCTCTGCTGTCCATTGCGGGGGTGCTTGTTGG
ATCTGGATTCCTCAGAAACATACAAGAAATGCCCATTCCTTTTAAAATCATCAGTTATTT TACATTCCAAAATATTGCAGTGAGATTCTTGTAGTCAATGAGTTCTACGGACTGAATTT ÄĞCTCAAATGTTTCTGTGACAACTAATCCAATGTGTGCCTTCACTCAAGG AATTCAATTCATTGAGAAAACCTGCCCAGGTGCAACATCTAGATTCACAATGAACTTTCT

	Exon number	exon size	5' splicing site	3' splicing site	Intron size	
ા	1 -			GCGTCAGgtaaggcag	~600bp	
	2	124	cctttaaagCCACCGC	AGCTCAGgtaagcttg	~6kb	
	3	137	gccccgcagGCTCCGG	CCTGCAGgtgggcgcg	79bp	
	4	103	ctcctgcagAGCGACA	AAGGTGGgtgcagccc	~4kb	
	5	129	tgcaggtggAGGCCGT	GATCCTAgtaagtggc	~2kb	
	6	140	tgctggcagAGGTCAT	TTTTCAGgtaagaggt	~2.5kb	
	7	130	tctggtcagCTCTTTG	TTCTATAgtaagtttt	~0.5kb	
	8	214	aacttttagTGGACCT	TCCTGAGgtaagaggc	100bp	
	9	206	tgttttcagGAGAGTG	AATCTGTgtaagtgcc	~1.7kb	
	10	139	catccccagTTCCCGT	GCTACTGgtgaggggtt	~1.9kb	
	11	186	cttttctagGACGCTG	TCCTCAGgtaagatat	~5.3kb	
	12	113	tttcttaagAAACATA	ACTTGTGgtaagtatt	~1.2kb	
	13		ccttgacagGCAGCTC			
	Total				~25.9kb	
Exonic sequences in capital letter						

FIGURE 14B (2 of 2)