Scribe Notes: Optimization Class

Arya Marda, Sai Khadloya

February 15, 2025

1 Convex Functions and Local Minima

A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be **convex** if for all $x, y \in \mathbb{R}^n$ and for any $\lambda \in [0, 1]$, we have:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{1}$$

One fundamental property of convex functions is that they always achieve a single local minimum, and that local minimum is also the global minimum. This means that gradient-based optimization techniques work effectively for convex functions, as there are no local minima traps.

1.1 Strictly Convex Function

A function f is **strictly convex** if for all $x, y \in \mathbb{R}^n$, $x \neq y$, and for any $\lambda \in (0, 1)$, we have:

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y). \tag{2}$$

Strict convexity ensures that there is a unique global minimum.

Example: The function $f(x) = e^x$ is strictly convex because its second derivative is always positive.

1.2 Strict Convexity Proofs

1.2.1 Strict Convexity of $f(x) = x^2$

To prove that $f(x) = x^2$ is strictly convex, we check the strict convexity condition:

$$f(\lambda x + (1 - \lambda)y) = (\lambda x + (1 - \lambda)y)^{2}$$
$$= \lambda^{2}x^{2} + 2\lambda(1 - \lambda)xy + (1 - \lambda)^{2}y^{2}.$$

Since $2\lambda(1-\lambda)xy$ is strictly less than $\lambda x^2 + (1-\lambda)y^2$ for $x \neq y$, we get:

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y). \tag{3}$$

Thus, $f(x) = x^2$ is strictly convex.

1.2.2 Strict Convexity of $f(x) = x^3$ for x > 0

We check the strict convexity condition:

$$f(\lambda x + (1 - \lambda)y) = (\lambda x + (1 - \lambda)y)^{3}$$

= $\lambda^{3}x^{3} + 3\lambda^{2}(1 - \lambda)x^{2}y + 3\lambda(1 - \lambda)^{2}xy^{2} + (1 - \lambda)^{3}y^{3}$.

For x, y > 0 and $x \neq y$, using the properties of the cubic function, we obtain:

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y). \tag{4}$$

Thus, $f(x) = x^3$ is strictly convex for x > 0.

1.2.3 Strict Convexity of f(x) = |x| for all x

For $x, y \in \mathbb{R}$ and $x \neq y$, we check the strict convexity condition:

$$f(\lambda x + (1 - \lambda)y) = |\lambda x + (1 - \lambda)y|.$$

Since |x| is piecewise linear, we analyze two cases:

- If x and y have the same sign, then |x| is linear, meaning the equality holds.
- If x and y have opposite signs, then |x| is strictly convex as:

$$|\lambda x + (1 - \lambda)y| < \lambda |x| + (1 - \lambda)|y|. \tag{5}$$

Thus, f(x) = |x| is strictly convex for all x.

1.3 Theorem: Local Minima of a Convex Function is also a Global Minima

Theorem: Any local minimum x^* of a convex minimization problem is also a global minimum.

Proof:

Let $f: S \to \mathbb{R}$ be a convex function defined over a convex set $S \subset \mathbb{R}^n$. Suppose $x^* \in S$ is a local minimum of f. This means that there exists some $\epsilon > 0$ such that:

$$f(x^*) \le f(x), \quad \forall x \in B[x^*, \epsilon] \cap S,$$
 (6)

where $B[x^*, \epsilon]$ is an open ball centered at x^* with radius ϵ . That is, within a small neighborhood around x^* , the function does not attain a smaller value than at x^* .

Now, we need to show that x^* is also a global minimum, i.e.,

$$f(x^*) \le f(x), \quad \forall x \in S.$$
 (7)

Consider any arbitrary $x \in S \setminus B[x^*, \epsilon]$. Define the point:

$$y = \lambda x^* + (1 - \lambda)x, \quad \text{for } \lambda \in (0, 1).$$
 (8)

Since S is convex, $y \in S$. By the convexity of f, we have:

$$f(y) \le \lambda f(x^*) + (1 - \lambda)f(x). \tag{9}$$

From the assumption that x^* is a local minimum, we know that for sufficiently small λ , the point y remains within $B[x^*, \epsilon] \cap S$, meaning:

$$f(x^*) \le f(y). \tag{10}$$

Combining the two inequalities, we obtain:

$$f(x^*) \le \lambda f(x^*) + (1 - \lambda)f(x). \tag{11}$$

Rearranging,

$$f(x^*) - \lambda f(x^*) \le (1 - \lambda)f(x). \tag{12}$$

Dividing by $(1 - \lambda)$ (which is positive for $\lambda \in (0, 1)$), we get:

$$f(x^*) \le f(x). \tag{13}$$

Thus, for all $x \in S$, we conclude that $f(x^*) \leq f(x)$, proving that x^* is a global minimum.

1.4 Theorem: Set of Global Minima is Convex

Theorem: Let $S \subseteq \mathbb{R}^n$ be a convex set and let $f: S \to \mathbb{R}$ be a convex function. Consider the set of all global minima:

$$C = \{x^* \in S \mid f(x^*) \le f(x) \text{ for all } x \in S\}.$$
 (14)

Then, C is a convex set.

Proof: To prove that C is convex, we must show that for any two points $x_1, x_2 \in C$, and for any $\lambda \in [0, 1]$, the point $x_{\lambda} = \lambda x_1 + (1 - \lambda)x_2$ also belongs to C.

Since $x_1, x_2 \in C$, we have:

$$f(x_1) \le f(x)$$
 and $f(x_2) \le f(x)$, $\forall x \in S$. (15)

By the convexity of f, we obtain:

$$f(x_{\lambda}) \le \lambda f(x_1) + (1 - \lambda)f(x_2). \tag{16}$$

Since both x_1 and x_2 are global minima, we know that $f(x_1) = f(x_2) = f^*$ for some constant f^* . Substituting this, we get:

$$f(x_{\lambda}) \le \lambda f^* + (1 - \lambda)f^* = f^*. \tag{17}$$

Thus, $f(x_{\lambda}) \leq f(x)$ for all $x \in S$, which implies that $x_{\lambda} \in C$. Therefore, C is a convex set.

2 Epigraph of a Function

Definition: The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as the set:

$$epi(f) = \{(x, y) \in \mathbb{R}^{n+1} \mid y \ge f(x)\}.$$
 (18)

It consists of all points lying on or above the graph of f.

Figure 1: Epigraph

2.1 Observations on Convexity using Epigraph

A function f is convex if and only if its epigraph is a convex set. This characterization provides an alternative way to study convexity geometrically.

Example 1: Consider $f(x) = x^2$. The epigraph of f consists of all points (x, y) where $y \ge x^2$. The set of points above the parabola $y = x^2$ is convex, thus confirming that $f(x) = x^2$ is convex.

Example 2: Consider f(x) = |x|. The epigraph of f consists of points (x,y) where $y \ge |x|$. This region forms a convex set, reinforcing that f(x) = |x| is convex.

2.2 Theorem: A Function is Convex if and only if its Epigraph is Convex

Theorem: A function $f: S \to \mathbb{R}$ is convex if and only if its epigraph is a convex set.

Proof: (Forward Direction: If f is convex, then epi(f) is convex.) Consider two points $(x_1, y_1), (x_2, y_2) \in epi(f)$. By definition of the epigraph, we have:

$$y_1 \ge f(x_1), \quad y_2 \ge f(x_2).$$
 (19)

For any $\lambda \in [0,1]$, define the convex combination:

$$x_{\lambda} = \lambda x_1 + (1 - \lambda)x_2, \quad y_{\lambda} = \lambda y_1 + (1 - \lambda)y_2.$$
 (20)

Using the convexity of f, we get:

$$f(x_{\lambda}) \le \lambda f(x_1) + (1 - \lambda)f(x_2). \tag{21}$$

Since $y_1 \ge f(x_1)$ and $y_2 \ge f(x_2)$, we obtain:

$$f(x_{\lambda}) \le \lambda y_1 + (1 - \lambda)y_2 = y_{\lambda}. \tag{22}$$

Thus, $(x_{\lambda}, y_{\lambda}) \in \text{epi}(f)$, proving that epi(f) is convex.

(Reverse Direction: If epi(f) is convex, then f is convex.)

Suppose that epi(f) is a convex set. This means that for any two points $(x_1, y_1), (x_2, y_2) \in epi(f)$, the convex combination:

$$(x_{\lambda}, y_{\lambda}) = (\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2)$$
 (23)

remains in epi(f), implying:

$$y_{\lambda} \ge f(x_{\lambda}). \tag{24}$$

Choosing $y_1 = f(x_1)$ and $y_2 = f(x_2)$, we get:

$$\lambda f(x_1) + (1 - \lambda)f(x_2) \ge f(x_\lambda). \tag{25}$$

This confirms the convexity of f.

3 Level Set

Definition: The level set of a function $f: \mathbb{R}^n \to \mathbb{R}$ corresponding to a scalar $c \in \mathbb{R}$ is defined as:

$$L_c = \{ x \in \mathbb{R}^n \mid f(x) \le c \}. \tag{26}$$

The level set consists of all points where the function value does not exceed a given threshold.

3.1 Example of a Level Set

Consider the function $f(x,y) = x^2 + y^2$. The level set L_c for a given c is:

$$x^2 + y^2 \le c. (27)$$

This represents a closed disk of radius \sqrt{c} centered at the origin, which is a convex set.

3.2 Theorem: Convexity of Level Sets of a Convex Function

Theorem: Let $S \subset \mathbb{R}^n$ be a convex set, and let $f: S \to \mathbb{R}$ be a convex function. Then, any level set $L_c = \{x \in S \mid f(x) \leq c\}$ is a convex set.

Proof: Consider any two points $x_1, x_2 \in L_c$, meaning that:

$$f(x_1) \le c, \quad f(x_2) \le c. \tag{28}$$

For any $\lambda \in [0, 1]$, consider the convex combination:

$$x_{\lambda} = \lambda x_1 + (1 - \lambda)x_2. \tag{29}$$

Using the convexity of f, we have:

$$f(x_{\lambda}) \le \lambda f(x_1) + (1 - \lambda)f(x_2). \tag{30}$$

Since $f(x_1) \leq c$ and $f(x_2) \leq c$, it follows that:

$$\lambda f(x_1) + (1 - \lambda)f(x_2) \le \lambda c + (1 - \lambda)c = c. \tag{31}$$

Thus, $f(x_{\lambda}) \leq c$, which implies that $x_{\lambda} \in L_c$.

Since x_{λ} remains in L_c for any convex combination of x_1 and x_2 , the level set L_c is convex.