WHAT IS CLAIMED IS:

1	1. A nucleic acid encoding a MCOLN1 polypeptide, wherein a mutation of a			
2	MCOLN1 gene encoding the MCOLN1 polypeptide results in a defect in expression of a			
3	functional MCOLN1, wherein the nucleic acid shares at least about 95% sequence identity with			
4	corresponding sequence from SEQ ID NO: 1 or SEQ ID No: 2.			
1	2. The nucleic acid of claim 1, wherein the mutation is selected from the			
2	group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene, a			
3	nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.			
:				
1	3. The nucleic acid of claim 1, wherein the mutation is selected from the			
2	group consisting of:			
3	(a) an A to G substitution at position 5534 (SEQ ID NO:1);			
4	(b) a deletion from nucleotide 511 to nucleotide 6944 (SEQ ID NO:1);			
5	(c) an insertion of T between nucleotide numbers 1334 and 1335 (SEQ ID NO:2)			
6	(d) a deletion of CTT 1346-1348 (SEQ ID NO:2);			
7	(e) an A to G substitution a position 9107 (SEQ ID NO:1);			
8	(f) a G to T substitution at position 1461 (SEQ ID NO:2);			
9	(g) a C to T substitution at position 429 (SEQ ID NO:2);			
10	(h) a G to T substitution at position 1209 (SEQ ID NO:2);			
11	(i) a CC deletion at 598-599 (SEQ ID NO:2); and			
12	(j) a C to T substitution at position 639 (SEQ ID NO:2).			
1	4. The nucleic acid of claim 1, wherein the defect in expression of a			
2	functional MCOLN1 results in development of mucolipidosis IV.			

1	5. The nucleic acid of claim 1, which encodes a MCOLN1 polypeptide			
2	having an amino acid sequence at least about 95% identical to SEQ ID NO:3.			
1	6. The nucleic acid of claim 5, wherein the polypeptide has an amino acid			
2	sequence as depicted in SEQ ID NO:3.			
1	7. The nucleic acid of claim 6 which has a nucleotide sequence as depicted i			
2	SEQ ID NO:1 or SEQ ID NO:2.			
1	8. A MCOLN1 polypeptde which has an amino acid sequence at least about			
2	95% identical to SEQ ID NO: 3.			
1	9. MCOLN1 polypeptide of claim 8, wherein the polypeptide has the amino			
2	acid sequence of SEQ ID NO:3 comprising a mutation selected from the group consisting of			
3	deletion of residue 408, deletion of residues 454 to 469; a Val to Leu substitution at residue 446			
4	an Arg to X[?] substitution at residue 102; an Asp to Thr substitution at residue 362; and an Arg			
5	to X[?] substitution at residue 172.			
1	10. The MCOLN1 polypeptide of claim 8 which has an amino acid sequence			
2	as depicted in SEQ ID NO:3.			
1	11. An antibody that binds specifically to the MCOLN1 polypeptide of claim			
2	8.			
1	12. A method for detecting a genetic mutation associated with a mucolipidosi			
2	in a mammal, which method comprises detecting a mutation in a gene for MCOLN1, wherein the			
3	gene for MCOLN1 has a sequence at least 95% identical to SEQ ID NO:1.			

1	13. The method according to claim 12, wherein the mutation is selected from			
2	the group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene,			
3	nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.			
1	14. The method according to claim 13, wherein the mutation is selected from			
2	the group consisting of:			
3	(a) an A to G substitution at position 5534 (SEQ ID NO:1);			
4	(b) a deletion from nucleotide 511 to nucleotide 6944 (SEQ ID NO:1);			
5	(c) an insertion of T between nucleotide numbers 1334 and 1335 (SEQ ID NO:2			
6	(d) a deletion of CTT 1346-1348 (SEQ ID NO:2);			
7	(e) an A to G substitution a position 9107 (SEQ ID NO:1);			
8	(f) a G to T substitution at position 1461 (SEQ ID NO:2);			
9	(g) a C to T substitution at position 429 (SEQ ID NO:2);			
10	(h) a G to T substitution at position 1209 (SEQ ID NO:2);			
H	(i) a CC deletion at 598-599 (SEQ ID NO:2); and			
12	(j) a C to T substitution at position 639 (SEQ ID NO:2).			
1	15. The method according to claim 12, wherein the mucolipidosis is			
2	mucolipidosis IV.			
1	16. A method for diagnosing a mucolipidosis, which method comprises			
2	detecting a mutation in a gene for MCOLN1 that results in a defect in expression of a functional			
3	MCOLN1, wherein the gene for MCOLN1 has a sequence at least 95% identical to SEQ ID			
4	NO:1.			
1	17. The method according to claim 16, wherein the mutation is selected from			
2	the group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene, a			
3	nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.			

1	18. The method according to claim 17, wherein the mutation is selected from				
2	the group consisting of:				
3	(a) an A to G substitution at position 5534 (SEQ ID NO:1);				
4	(b) a deletion from nucleotide 511 to nucleotide 6944 (SEQ ID NO:1);				
5	(c) an insertion of T between nucleotide numbers 1334 and 1335 (SEQ ID NO:2				
6	(d) a deletion of CTT 1346-1348 (SEQ ID NO:2);				
7	(e) an A to G substitution a position 9107 (SEQ ID NO:1);				
8	(f) a G to T substitution at position 1461 (SEQ ID NO:2);				
9	(g) a C to T substitution at position 429 (SEQ ID NO:2);				
10	(h) a G to T substitution at position 1209 (SEQ ID NO:2);				
11	(i) a CC deletion at 598-599 (SEQ ID NO:2); and				
12	(j) a C to T substitution at position 639 (SEQ ID NO:2).				
1	19. The method according to claim 16, wherein the mucolipidosis is MLIV.				
1	26. A method for predicting the likelihood of developing MLIV comprising				
2	detecting a mutation in a gene for MCOLN1 that results in a defect in expression of a functional				
3	MCOLN1, and determining that there is a likelihood of developing MLIV if the mutation is				
4	present, wherein the gene for MCOLN4 has a sequence at least 95% identical to SEQ ID NO:1.				
1	21. The method according to claim 20, wherein the mutation is selected from				
2	the group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene, a				
3	nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.				
1	22. The method according to claim 21, wherein the mutation is selected from				
2	the group consisting of:				
3	(a) an A to G substitution at position 5534 (SEQ ID NO:1);				
4	(b) a deletion from nucleotide 511 to nucleotide 6944 (SEQ ID NO:1);				
•	(a) a determine manufacture of the fibrilly,				

5	(c) an insertion of T between nucleotide numbers 1334 and 1335 (SEQ ID NO:2				
6	(d) a deletion of CTT 1346-1348 (SEQ ID NO:2);				
7	(e) an A to G substitution a position 9107 (SEQ ID NO:1);				
8	(f) a G to T substitution at position 1461 (SEQ ID NO:2);				
9	(g) a C to T substitution at position 429 (SEQ ID NO:2);				
10	(h) a G to T substitution at position 1209 (SEQ ID NO:2);				
11	(i) a CC deletion at 598-599 (SEQ ID NO:2); and				
12	(j) a C to T substitution at position 639 (SEQ ID NO:2).				
1	23. A kit for detecting a genetic mutation in a gene for MCOLN1 that results				
2	in a defect in expression of a functional MCOLN1, comprising an oligonucleotide that				
3	specifically hybridizes to or adjacent to a site of a mutation of the gene for MCOLN1 that results				
4	in a defect in expression of a functional MCOLN1, wherein the gene for MCOLN1 has a				
5	sequence at least 95% identical to SEQ ID NO:1.				
- 1	24. The kit according to claim 23, wherein the oligonucleotide is a labeled				
2	probe having a sequence corresponding to the sequence of the gene encoding MCOLN1 at the				
3	site of the mutation, whereby hybridization of the probe is indicative of the presence of the				
4	mutation.				
1	25. The kit according to claim 23, wherein the oligonucleotide hybridizes to a				
2	first site adjacent to the site of the mutation, further comprising a second oligonucleotide that				
3	specifically hybridizes to a second site adjacent to the site of the mutation, wherein the second				
4	site is on the opposite strand relative to the first site, and oriented relative to the first site such				
5	that both sites flank opposite sides of the site of the mutation, whereby the first and second				
6	oligonucleotides serve as primers for PCR amplification of the site of the mutation.				

1	26. The kit according to claim 23, wherein the mutation is selected from the		
2	group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene, a		
3	nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.		
1	27. The kit according to claim 26, wherein the mutation is selected from the		
2	group consisting of:		
3	(a) an A to G substitution at position 5534 (SEQ ID NO:1);		
4	(b) a deletion from nucleotide 511 to nucleotide 6944 (SEQ ID NO:1);		
5	(c) an insertion of T between nucleotide numbers 1334 and 1335 (SEQ ID NO:2);		
6	(d) a deletion of CTT 1346-1348 (SEQ ID NO:2);		
7	(e) an A to G substitution a position 9107 (SEQ ID NO:1);		
8	(f) a G to T substitution at position 1461 (SEQ ID NO:2);		
9	(g) a C to T substitution at position 429 (SEQ ID NO:2);		
: 10	(h) a G to T substitution at position 1209 (SEQ ID NO:2);		
11	(i) a CC deletion at 598-599 (SEQ ID NO:2); and		
12	(j) a C to T substitution at position 639 (SEQ ID NO:2).		
5- 5- -			
1	28. A kit for detecting a genetic mutation in a gene for MCOLN1 that results		
² 2	in a defect in expression of a functional MCOLN1 polypeptide, comprising the antibody of claim		
3	11 and a detector of antibody binding.		
1	29. A method of treating a mucolipidosis or ion channel defect in a subject		
2	suffering from mucolipidosis or ion channel defect, which method comprises administering an		
3	amount of a vector that expresses a nucleic acid encoding functional MCOLN1 effective to		
4	express a functional level of MCOLN1 into cells of the subject, wherein at least the functional		
5	MCOLN1 has an amino acid sequence that is at least about 95% identical to SEQ ID NO:3.		
1	30. The method according to claim 29 wherein the MCOLN1 has an amino		
2	acid sequence as depicted in SEQ ID NO:3.		
2	acid sequence as depicted in SEQ ID NO.5.		

1	31.	The method according to claim 29, wherein the mucolipidosis results from		
2	a mutation in a gene for MCOLN1 that results in a defect in expression of MCOLN1.			
1	32.	The method according to claim 29, wherein the mucolipidosis is MLIV.		
1	33.	An expression vector comprising a gene encoding functional human		
2	MCOLN1 operatively	y associated with a promoter, wherein the functional MCOLN1 has an		
3	amino acid sequence that is at least about 95% identical to SEQ ID NO:3.			
1 2	34. an amino acid sequen	The expression vector of claim 33, wherein the functional MCOLN1 has ace as depicted in SEQ ID NO:3.		
1	35.	A pharmaceutical composition comprising the expression vector of claim		
2	33 and a pharmaceuti	cally acceptable carrier or excipient.		
1	36.	A method of screening for a candidate compound that modulates activity		
2	of MCOLN1, which i	method comprises detecting binding of MCOLN1 with a compound and		
3	isolating the compound, wherein the functional MCOLN1 has an amino acid sequence that is at			
4	least about 95% identical to SEQ ID NO:3.			
1	37.	The method according to claim 36, wherein the MCOLN1 is a mutant		
2	form of MCOLN1.			
1	38.	The method according to claim 36, wherein the functional MCOLN1 has		
2	an amino acid sequence as depicted in SEQ ID NO:3.			
3	4			