

TALLER DE TRANSFORMADA DE LAPLACE - CIRCUITOS ELÉCTRICOS II (27134)

Este taller tiene como propósito introducir al análisis de la transformada de Laplace a través de problemas de dificultad media.

I) Para el circuito de la **iError! No se encuentra el origen de la referencia.**. El interruptor h a permanecido cerrado durante mucho tiempo y se abre en t=0 [s]. Halle $v_o(t)$ para todo t. Realice una gráfica de $v_c(t)$ y $v_o(t)$ para $-2 \cdot \tau \le t \le 10 \cdot \tau$ [s], τ es el valor de la constante de tiempo del circuito.

2) Considere el circuito presentado en la Figura. El interruptor ha permanecido durante mucho tiempo en la posición (I) y conmuta hasta la posición (2) en t = 0 [s]. Halle $v_{\mathcal{C}}(t)$, $i_{\mathcal{L}}(t)$ e $i_{\mathcal{R}}(t)$ para todo t. Realice una gráfica de $v_{\mathcal{C}}(t)$, $i_{\mathcal{L}}(t)$ e $i_{\mathcal{R}}(t)$ para $-20 \le t \le 100$ [ms].

3) El sistema de conmutación de una estación espacial usa pulsos cortos para controlar a un autómata que opera en el espacio. En la **iError! No se encuentra el origen de la r eferencia.** se muestra el modelo del circuito transmisor. Determine la tensión de salida $v_c(t)$ para t > 0. Suponga condiciones de estado estable antes de cerrar el interruptor.

4) Considere el circuito de la Figura. Suponiendo *i*(0)=0, obtenga la expresión de *i*(*t*) para *t* > 0.

CONSTRUIMOS FUTURO

5) Considere el circuito de la Figura. Figura. Obtenga la expresión para vc(t) para t > 0.

6) Considere el circuito de la Figura

Los interruptores han estado en la posición (0) durante mucho tiempo y conmutan simultánea e instantáneamente a la posición (1).

- a. Determine $i_c(t)$ luego de que los interruptores pasan de la posición (0) a la posición (1) simultáneamente.
- **b.** Determine $i_L(t)$ luego de que los interruptores pasan de la posición (0) a la posición (1) simultáneamente.
- **c.** Grafique utilizando los mismos ejes, esto es, en el mismo gráfico, $i_c(t)$ e $i_l(t)$ luego del accionamiento de los interruptores.

7) Los interruptores **S1** y **S2** del circuito de la Figura han permanecido cerrados por mucho tiempo. En el instante t = 0 se abre **S1** permaneciendo en dicha posición a partir de entonces y, en el instante t = 0,01 s se abre **S2** permaneciendo definitivamente en esa posición. Obténgase la expresión para i(t) para t > 0.

8) En el circuito de la Figura, el interruptor lleva mucho tiempo cerrado. Se produce una maniobra de apertura en t = 0, y permanece en esta posición definitivamente. Determínese el valor de i(t) y v(t) para después de la maniobra.

- 9) En la Figura se presenta un circuito disparador de láser. Para disparar el láser se requiere que: $60 \text{ [mA]} \leq |i(t)| \leq 180 \text{ [mA]}$ para $0 \leq t \leq 200 \text{ [µs]}$.
 - Determine un valor apropiado para R_1 y R_2 .
 - Grafique i(t).

Nota: El interruptor ha permanecido durante mucho tiempo en la posición (I) y en t = 0 [s] conmuta instantáneamente a la posición (2).

10) Considere el Circuito de la Figura. Halle una expresión para $i_x(t)$ y grafique $i_x(t)$ para todo t.

II) Considere el circuito de la figura. Halle una expresión para $i_L(t)$ para todo t si:

$$i_s(t) = 8 \cdot u(-t-1) + 12 \cdot \cos(2t) \cdot u(t-1)$$
 [A]

12) El esquema de figura representa un circuito para t > 0. Si $v_R(0^-) = 0.5$ [V] e $i_L(0^-) = -1$ [A], Halle una expresión para $v_R(t)$ para todo t.

16) Considere el circuito de la figura. Halle una expresión para $i_x(t)$ para todo t si:

$$i_s(t) = 1 \cdot u(-t) + 0.5 \cdot u(t)$$
 [A]

$$v_s(t) = 2 \cdot \cos(3t) \cdot u(t)$$
 [V]

17) Hallar la expresión de la corriente II(t) para $t \ge 0$ [s] si:

$$V_f(t) = 30 \cos{(2t + 45^0)} \ u(-t) \ [V]$$

18) Determinar el valor de C, para que $V_{sal}(t)=(16-12~e^{-0.6~t})~\mathrm{u(t)}~[V]$ para $\mathrm{t}\geq0~[\mathrm{s}].$

19) En el circuito de la figura el interruptor de la izquierda se cierra en t=0 [s] y luego se cierra el interruptor de la derecha en el instante t=3 [μ s]. Hallar la expresión de Vc(t) para todo t.

20) Calcular Vo(t) para $t \ge 0$ [s].

21) Calcular la(t) para $t \ge 0$ [s].

