TYPES OF FUNCTIONS

(3) POLYNOMIAL FUNCTION

A function $f: R \to R$ is said to be polynomial function if for each x in R,

$$y = f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
,

where n is a non-negative integer and a_0 , a_1 , a_2 ,... $a_n \in \mathbb{R}$

Domain = R and Range = R

Examples:

(i)
$$f(x) = 3x^2 + 4x + 5$$

(ii)
$$f(x) = x^3 - 2x^2 + \sqrt{3}x - 7$$

(iii)
$$f(x) = \frac{2}{3}x^2 + \pi x - \frac{\sqrt{3}}{4}$$

GRAPH OF A POLYNOMIAL FUNCTION

(1) Let us consider a polynomial function

$$f(x) = x^2$$

Let us obtain some points on a constant function

$$y = f(x) = x^2$$

x	-3	-2	-1	0	1	2	3	4
$y = x^2$	9	4	1	0	1	4	9	16

(2) Let us consider a polynomial function

$$f(x)=x^3$$

Let us obtain some points on a constant function

$$y = f(x) = x^3$$

х	-3	-2	-1	0	1	2	3	4
$y = x^3$	-27	-8	-1	0	1	8	27	64

(4) RATIONAL FUNCTION

A rational function f(x) is defined by

$$f(x) = \frac{p(x)}{q(x)}$$

where p(x) and q(x) are polynomial functions and $q(x) \neq 0$

Examples:

(i)
$$f(x) = \frac{3x^2 - 5x + 2}{x - 4}, x \neq 4$$

(ii)
$$f(x) = \frac{x^2 - 3x + 2}{4x^2 - x - 5}, x \neq -1$$

(iii)
$$f(x) = \frac{y^3 - 5y^2 + 2y + 7}{y^2 + y - 6}, x \neq 2$$

GRAPH OF A RATIONAL FUNCTION

Let us consider a rational function

$$f(x) = \frac{1}{x}, x \neq 0$$

Clearly, Domain = $R - \{0\}$

Let us obtain some points on a constant function

$$y = f(x) = \frac{1}{x}$$

Table-1

x	 -5	-4	-3	-2	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$	$-\frac{1}{5}$	
$y = \frac{1}{x}$	 $-\frac{1}{5}$	$-\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	-2	-3	-4	-5	

Table-2

x	 5	4	3	2	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	
$y = \frac{1}{x}$	 $\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	4	5	

NAKUL PANDIT

PGT (MATHS)

VALUE OF A FUNCTION

The value of the function f(x) obtained by putting x = a is called the value of the function at x = a and id denoted by f(a).

Examples:

$$f(x) = \frac{x^2 - 3x + 4}{x - 2}$$

The value of the function

at
$$x = 0$$
 is $f(0) = \frac{0^2 - 3.0 + 4}{0 - 2} = \frac{4}{-2} = -2$

at
$$x = 1$$
 is $f(1) = \frac{1^2 - 3.1 + 4}{1 - 2} = \frac{2}{-1} = -2$

at
$$x = -1$$
 is $f(-1) = \frac{(-1)^2 - 3 \cdot (-1) + 4}{(-1) - 2} = \frac{8}{-3}$

at
$$x = 2$$
 is $f(0) = \frac{2^2 - 3.2 + 4}{2 - 2} = \frac{2}{0}$ = Not real = ∞

Thus, it is clear that the function f(x) is well defined at x = 0, 1, -1 but it is not defined at x = 2

∴The domain of the given function is = $R - \{2\}$

Remarks: A function f(x) is said to be undefined at a point x = a if its value f(a) takes a value of the type

$$\frac{1}{0}$$
, $\frac{0}{0}$, 0^0 , 1^∞ , ∞^0 , ∞^∞ , $\frac{\infty}{\infty}$, $\sqrt{-ve}$ etc.

DOMAIN AND RANGE OF A FUNCTION

Let $f: A \to B$ be a function defined from set A to set B.

Let y be the image of x under the function f

i.e.
$$y = f(x)$$

Then, domain is the set of all those real values of x for which the value of the function f(x) is well defined.

i. e. Domain=
$$\{x: x \in A \text{ and } f(x) \in B\}$$

And the range is the set of all those values of y for which y = f(x)

i. e. Range=
$$\{y: y \in B \text{ and } y = f(x)\}$$

