4.3 PDE HW 3

Question 44

Find a solution of

$$\begin{cases} u_t = u_{xx} \\ u(x,0) = x^2 \end{cases}$$

Proof. Clearly $u = x^2 + 2t$ suffices.

Question 45

Consider the ODE

$$\begin{cases} u'' + u' = f \\ u'(0) = u(0) = \frac{1}{2}(u'(l) + u(l)) \end{cases}$$

where f is given.

- (a) Is the solution unique?
- (b) Does a solution necessarily exist, or is there a condition that f must satisfy for existence?

Proof. The solution space of linear homogeneous ODE u'' + u' = 0 is spanned by e^{-x} and constant. If we add in the initial condition u'(0) = u(0), then the solution space become the subspace spanned by $e^{-x} - 2$. One can check that if $u \in \text{span}(e^{-x} - 2)$, then

$$u(0) = \frac{1}{2}(u'(l) + u(l))$$
 for all $l \in \mathbb{R}$

We now know the solution of the original ODE is not unique, since any solution added by $e^{-x} - 2$ is again a solution.

Integrating both side on [0, l], we see that given the boundary conditions, f must satisfy

$$\int_0^l f(x)dx = \int_0^l u'' + u'dx$$
$$= u(l) + u'(l) - u(0) - u'(0) = 0$$

Question 46

Find the regions in the xy plane where the equation

$$(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy} = 0$$

is elliptic, hyperbolic, or parabolic. Sketch them.

Proof. The discriminant is exactly

$$(xy)^{2} - (1+x)(-y^{2}) = x^{2}y^{2} + xy^{2} + y^{2}$$
$$= y^{2}(x^{2} + x + 1)$$
$$= y^{2}[(x + \frac{1}{2})^{2} + \frac{3}{4}]$$

It then follows that the equation is parabolic if and only if y=0, and hyperbolic if and only if $y\neq 0$.

49