1

1 We claim:

1	1. In a magnetic disk drive having a head disk assembly (HDA) including a base
2	a rotating disk that carries position information in a plurality of servo wedges that
3	are distributed around the disk, a rotary actuator that pivots relative to the base
4	and carries a transducer that periodically reads the position information from the
5	servo wedges on the rotating disk, a VCM circuit that includes a voice coil motor
6	(VCM) that responds to a control effort signal that is periodically adjusted by a
7	servo control system such that the transducer tends to follow a track that is
8	defined by the position information during a track-following operation, a method
9	of adaptively reducing an effect of vibration during the track following operation
10	comprising the steps of:
11	mounting a sensor within the magnetic disk drive to produce a
12	sensor signal in response to a vibration that tends to cause
13	the rotary actuator to move off-track;
14	reading the position information from a presently active servo
15	wedge;
16	producing a position error signal based on a difference between an
17	indicated position signal and a target position signal;
18	calculating a nominal control effort signal based on the position
19	error signal;

1	reading the sensor signal to produce a sensor value associated
2	with the presently active servo wedge;
3	modifying the sensor value based on a sensor gain value to
4	produce a control effort adjustment signal;
5	adjusting the nominal control effort signal with the control effort
6	adjustment signal to produce an adjusted control effort
7	signal
8	outputting the adjusted control effort signal to the VCM circuit; and
9	altering the sensor gain value based on the position error signal
10	and the sensor value associated with the presently active
1	servo wedge for use during a next active servo wedge.
1	2. The method of Claim 1 wherein the step of altering the sensor
2	gain value based on the position error signal and the sensor value associated
3	with the presently active servo wedge for use in a next active servo wedge is
4	accomplished by setting an adaptive gain filter.
1	3. The method of Claim 2 wherein the adaptive gain filter has one
2	coefficient.
1	4. The method of Claim 2 wherein the adaptive gain filter has
	1. The medica of claim E who contain a daupare gain inter had

multiple coefficients.

2

1

1	5. The method of Claim 1 wherein the VCM circuit further includes
2	a DAC and wherein the step of outputting the adjusted control effort signal to the
3	VCM circuit comprises the sub steps of:
4	providing the adjusted control effort signal to the DAC; and
5	outputting an analog control effort signal that corresponds to the
6	adjusted control effort signal from the DAC to the VCM.
1	6. The method of Claim 1 wherein the step of modifying the sensor
2	value based on a sensor gain value to produce a control effort adjustment signal
3	is accomplished by multiplying the sensor value by the gain value.
1	7. The method of Claim 1 wherein the step of adjusting the
2	nominal control effort signal with the control effort adjustment signal to produce
3	an adjusted control effort signal is accomplished by adding the control effort
4	adjustment value to the nominal control effort value.
1	8. The method of Claim 1 wherein the vibration is a linear
2	vibration.
1	9. The method of Claim 1 wherein the rotary actuator exhibits an
2	effective imbalance that is affected by the linear vibrations.