MAT 5030 Chapter 6: Regression and correlation

Kazuhiko Shinki

Wayne State University

Reference

Our Chapters 6 & 11 are roughly equivalent to Chapters 2 & 3 of our second textbook: *Julian J. Faraway, "Practical Regression and Anova using R"*.

Independent and Dependent Variables:

When we assume that a variable y depends on a variable x,

- x is called an independent variable (or predictor).
- y is called an dependent variable (or response).

Examples:

- x: total calories intake of a mouse, y: weight of the mouse.
- x: interest rate this year, y: inflation rate next year.
- x: horse power of a car, y: maximum speed of the car.

Note:

We use lower cases x and y, because we reserve capital letters for matrix representation later in this chapter.

Simple linear regression:

Suppose data (x_i, y_i) $(i = 1, \dots, n)$ are given.

Simple (=univariate) linear regression assumes the relationship:

$$y_i = a + bx_i + \epsilon_i \tag{1}$$

where ϵ_i is an **error** (or **residual**) and **a** and **b** are **parameters** to be estimated.

Our objective is to estimate \boldsymbol{a} and \boldsymbol{b} . ϵ_i will be obtained after getting \boldsymbol{a} and \boldsymbol{b} .

Probabilistic Interpretation:

- **a**, **b**: constants (unobserved)
- x: deterministic, i.e., constants (observed)
- ϵ : random variable (unobserved)
- y: random variable (observed)

Additional assumptions such as ϵ_t is independent and identically distributed (IID) with a distribution $N(0, \sigma^2)$ (where σ is an unknown parameter) are often imposed.

Least square method:

In simple linear regression, we determine \boldsymbol{a} and \boldsymbol{b} to minimize the sum of squared errors (residuals):

$$SS_{Res} = \sum_{i=1}^{n} \epsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - (a + bx_{i}))^{2}$$

6 / 58

Shinki (Wayne State U) Math 5030 Chapter 6

Theorem 1:

The following pair of \hat{a} and \hat{b} minimizes SS_{Res} .

$$\hat{b} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 (2)

$$\hat{a} = \bar{y} - \hat{b}\bar{x} \tag{3}$$

 \hat{a} and \hat{b} are called **estimates** for a and b. Estimates depend on x and y, so are random variables.

Example: 3 bedroom condo price in Detroit

We want to explain the condo price y (thousand dollars) by square footage x by a linear model: $y = a + bx + \epsilon$.

Sample Code:

```
> Data <- read.table("Condo.csv", sep=",", header=T)</pre>
> attach(Data)
> str(Data)
'data.frame': 48 obs. of 2 variables:
$ Price: num 790 709.9 149.9 209.9 89.7 ...
$ Sqft : int 2625 2290 2500 1827 1380 1380 1470 1276 1487 2000 ...
> LM1 <- lm(Price ~ Sqft) # Price = a + b*Sqft + epsilon
> LM1
Call:
lm(formula = Price ~ Sqft)
Coefficients:
(Intercept)
                 Saft
 -265.0250 0.2473
```

The output says: $y = -265.0250 + 0.2473x + \epsilon$.

(Sample code for the figure:)

```
plot(Sqft, Price) # scatter plot for (x,y)
abline(LM1) # add regression line: y = a + bx
```

Matrix representation:

For programming and notational purposes, it is more convenient to use a matrix representation of the theorem above.

Let

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \beta = \begin{bmatrix} a \\ b \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}.$$

Then (1) turns to $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and the above theorem becomes:

$$\hat{\beta} = (X'X)^{-1}X'Y \tag{4}$$

(X') is the transpose of X).

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

(Proof of (4):)

Let

$$I(\beta) := SS_{Res} = (Y - X\beta)'(Y - X\beta).$$

 $\frac{\partial I}{\partial \beta}$ has to be zero to minimize $I(\beta)$.

$$\frac{\partial I}{\partial \beta}(\hat{\beta}) = 2X'(Y - X\hat{\beta}) = 0$$

$$\Leftrightarrow \hat{\beta} = (X'X)^{-1}X'Y. \quad \blacksquare$$

Sample Code: 3 bedroom condo price

The estimated error $\hat{\epsilon}_i$ (scalar) and $\hat{\epsilon}$ (vector) are defined by:

$$\hat{\epsilon}_i = x_i \hat{\beta} - y_i,$$

or in a matrix form,

$$\hat{\epsilon} = X\hat{\beta} - Y.$$

Variability of $\hat{\beta}$:

 $\hat{\beta}$ is estimated by the data (in other words, $\hat{\beta}$ is random since it is a function of a random variable Y), so it has some variability. To be concrete,

$$\hat{\beta} = (X'X)^{-1}X'Y = (X'X)^{-1}X'(X\beta + \epsilon) = \beta + (X'X)^{-1}X'\epsilon \quad (5)$$

and ϵ causes some randomness.

Theorem 2:

Suppose ϵ_i 's $(i=1,\cdots,n)$ are independent, $E[\epsilon_i]=0$ and $E[\epsilon_i^2]=\sigma^2$. Then,

$$\operatorname{Var}(\hat{\beta}) = (X'X)^{-1}\sigma^2.$$

Note:

• $Var(\hat{\beta})$ is a 2 by 2 covariance matrix:

$$\operatorname{Var}(\hat{\beta}) = \begin{bmatrix} \operatorname{Var}(\hat{a}) & \operatorname{Cov}(\hat{a}, \hat{b}) \\ \operatorname{Cov}(\hat{a}, \hat{b}) & \operatorname{Var}(\hat{b}) \end{bmatrix}$$

ullet Since σ^2 is not observed, we substitute it by $\mathit{MSE} := rac{1}{n-2} \sum \hat{\epsilon}_i^2$.

◆ロト ◆団ト ◆巨ト ◆巨ト = りへ○

(Proof of the Theorem 2:)

In general, for a random vector e with E[e] = 0, the variance matrix Var(e) = E[ee']. Hence, by (5),

$$\operatorname{Var}\hat{\beta} = \operatorname{Var}((X'X)^{-1}X'\epsilon) = E\left[(X'X)^{-1}X'\epsilon((X'X)^{-1}X'\epsilon)'\right]$$

$$= E\left[(X'X)^{-1}X'\epsilon\epsilon'X((X'X)^{-1})\right]$$

$$= (X'X)^{-1}X'E\left[\epsilon\epsilon'\right]X((X'X)^{-1})$$
(6)

Since ϵ_i 's are independent, $E[\epsilon_i\epsilon_j]=0$ if $i\neq j$ and $E[\epsilon_i\epsilon_j]=\sigma^2$ if i=j. Hence, $E[\epsilon\epsilon']=\sigma^2I_n$ where I_n is a n by n identity matrix. Therefore,

(6) =
$$(X'X)^{-1}X'\sigma^2I_2X((X'X)^{-1})$$

= $\sigma^2(X'X)^{-1}$.

◆ロ → ◆部 → ◆意 → を ● か へ ○ の へ ○

Theorem 3:

Suppose $\epsilon_i \sim \textit{N}(0, \sigma^2)$ are IID, then

$$T_{\hat{a}} := \frac{\hat{a} - a}{SE(\hat{a})} \sim t(n-2), \quad T_{\hat{b}} := \frac{\hat{b} - b}{SE(\hat{b})} \sim t(n-2).$$
 (7)

where $SE(\hat{a})$ is the square root of $Var(\hat{a})$ (same for \hat{b}), and $Var(\hat{a})$ is the (1,1) entry of $Var(\hat{\beta})$.

We can test $H_0: a = 0$ (or in general $H_0: a = a_0$ for any constant a_0) with this theorem (same for \hat{b}).

Sample code: 3 bedroom condo price

```
> summary(LM1)
Call:
lm(formula = Price ~ Sqft)
Residuals:
   Min 1Q Median 3Q
                                Max
-467.49 -78.24 -8.05 62.47 604.99
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -265.0250 85.2354 -3.109 0.00321 **
Sqft
        0.2473 0.0399 6.198 1.46e-07 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 205.8 on 46 degrees of freedom
Multiple R-squared: 0.4551, Adjusted R-squared: 0.4432
F-statistic: 38.41 on 1 and 46 DF, p-value: 1.461e-07
```

The above result shows:

$$SE(\hat{a}) = \sqrt{\mathrm{Var}(\hat{a})} = 85.2354$$
, $SE(\hat{b}) = 0.0399$, and $\hat{a}/SE(\hat{a})$ and $\hat{b}/SE(\hat{b})$ follow t - distribution with $df = 46$.

 \hat{a} and \hat{b} are significantly different from zero with p-values 0.00321 and 1.46×10^{-7} .

Coefficients of Determination:

The 'lm' function output " $R^2 = 0.4551$ " and "adjusted $R^2 = 0.4432$ ". These values are calculated as:

$$R^2 = 1 - \frac{SS_{Err}}{SS_{Tot}}$$

 $adj.R^2 = 1 - \frac{SS_{Err}/(n-2)}{SS_{Tot}/(n-1)}$

where

$$SS_{Err} := (Y - X\hat{\beta})'(Y - X\hat{\beta}) = \sum (y_i - x_i\hat{\beta})^2$$

 $SS_{Tot} := (Y - \bar{Y})'(Y - \bar{Y}) = \sum (y_i - \bar{y})^2.$

and $\bar{\mathbf{Y}}$ is an n by 1 vector whose components are all $\bar{\mathbf{y}}$.

Meaning of R^2 :

 SS_{Err} is the sum of squared errors (ϵ_i^2) , and SS_{Tot} is the sum of squared errors when we do not use x. Hence, R^2 represents how much variation of y (in terms of deviation square) is explained by x.

When we have p predictors $x^{(1)}, x^{(2)}, \dots, x^{(p)}$, the adjusted R^2 is defined by

$$adj.R^2 = 1 - \frac{SS_{Err}/(n-p-1)}{SS_{Tot}/(n-1)}$$

It adjusts a higher \mathbb{R}^2 when we predict a small number of observations with many predictors. To compare two linear regression models with different numbers of predictors, the adjusted \mathbb{R}^2 should be used.

Fitted values:

The 'fitted', 'fitted.values' and '[5]' return fitted values: $\hat{Y} = X\hat{\beta}$. This is useful if you want to use fitted values for some purposes (e.g., fair market value for condo).

Sample code:

```
> LM1$fitted.values

1 2 3 4 5 6
384.08044 301.24222 353.17066 186.75239 76.21901 76.21901
.....

43 44 45 46 47 48
658.80658 105.89240 450.10373 476.80979 595.00879 840.30882
```

- > LM1[5] # same as LM1\$fitted.values
- > fitted(LM1) # same as LM1\$fitted.values

Residuals:

The 'resid', 'residuals' and '[2]' return residuals: $\hat{\epsilon} = y - x\hat{\beta}$. This is useful to check the IID assumption on ϵ . If it has some patterns, the simple linear regression may not be appropriate and we may have to develop another model.

Sample code:

```
> LM1$residuals
405.91956 408.65778 -203.27066
                                  23.14761
                                            13.45099
                                                        13.45099
                             45
                                        46
       43
                  44
                                                   47
                                                              48
 106.19342
            69.10760 -358.10373 -426.80979
                                            604.99121
                                                       259.69118
> resid(LM1) # same as LM1$residuals
> LM1[2]
          # same as LM1$residuals
```

The following residual plot suggests:

- A larger square footage makes its residual larger (in absolute value).
- 2 The observations around 3000 sqft have a negative bias.

Possible remedies for the above phenomenon:

- Transform both variables (e.g., by log) before regression.
- Look into the observations with around 3000 sqft, and search for other variables negatively affecting these properties.

Q-Q plot for residuals:

The normal Q-Q plot for residuals indicates that the residuals have heavier tails than normal. This is partially due to (1) in the previous slide.

Exercise 1:

Let $(x_i, y_i) = (0,0), (0.5,0.25), (1,1), (1.5,2.25), (2,4), (2.5,6.25), (3,9)$. Regress y on x, make a scatter plot with the regression line, and make a residual plot. Do you see any problems with the residual plot?

Prediction by a regression line:

Suppose we obtained $\hat{\beta}$ based on $(x_1, y_1), \dots, (x_n, y_n)$. When we get a new observation x_0 , our best estimate for y_0 is:

$$\hat{y_0} = \frac{x_0'}{\hat{\beta}} \quad (= \hat{a} + \hat{b}x_0)$$

where we use the notation $x_0 := (1, x_0)'$ (2 by 1 column vector). x_0 denotes this red x_0 hereafter.

Confidence interval for y_0 :

 $\hat{m{y_0}}$ has variability since $\hat{m{eta}}$ is an estimated quantity (i.e., a random variable).

Theorem 4:

$$\operatorname{Var}(\hat{y_0}) = \operatorname{Var}(x_0'\hat{\beta}) = (x_0'(X'X)^{-1}x_0)\sigma^2.$$

Using this variance, the (1 - lpha) confidence interval for Ey0 (0 < lpha < 1) is:

$$\hat{y_0} \pm t_{1-\alpha/2} \sqrt{x_0' (X'X)^{-1} x_0 S}.$$
 (8)

where $S^2:=\frac{SS_{Err}}{n-2}$ is an estimated σ^2 and the degrees of freedom for $t_{1-\alpha/2}$ is (n-2). Ey_0 is within the interval (8) with probability $(1-\alpha)$.

Prediction interval for y_0 :

We often want to know the variability of $y_0 = x_0'\beta + \epsilon_0$, not $E[y_0]$. Given $(x_1, y_1), \dots, (x_n, y_n), x_0$, it is obtained by the following.

Theorem 5:

$$\operatorname{Var}(x_0'\hat{\beta}+\epsilon_0)=(\mathbf{1}+x_0'\left(X'X\right)^{-1}x_0)\sigma^2.$$

Note:

An additional '1' appears because of ϵ_0 . $x_0'\hat{\beta}$ and ϵ_0 are independent.

Then the **prediction interval** for y_0 is given by:

$$\hat{y}_0 \pm t_{1-\alpha/2} \sqrt{1 + x_0' (X'X)^{-1} x_0 S}.$$
 (9)

 y_0 is within (9) with $1 - \alpha$ probability.

Note 2:

The proof of Theorems 4 and 5 are similar to Theorem 2.

Which one should we use, confidence interval or prediction interval?

The prediction interval shows the variability of y_0 in usual sense.

The confidence interval is for the expectation of y_0 . If we have many new observations whose x values are x_0 , the sample mean of their y value is likely in the confidence interval.

Confidence bands and prediction bands:

Confidence intervals for all possible x_0 is a band. It is called a **confidence** band . A confidence band is the band for the regression line.

Prediction intervals for all possible x_0 is a band. It is called a **prediction** band . A prediction band is the band for observations.

Both bands get wider as x gets farther away from \bar{x} .

Sample Code:

```
Ylim \leftarrow c(-200, 2000)
Xlim <- range(Sqft)</pre>
CI <- predict(LM1, int="c")
PI <- predict(LM1, int="p")
CI <- CI[order(Sqft),] # CI sorted by Sqft
PI <- PI[order(Sqft),] # PI sorted by Sqft
jpeg("Condo-CIPI") # output a jpeg file
plot(Sqft, Price, xlim=Xlim, ylim=Ylim)
matlines(sort(Sqft), CI, xlim=Xlim, ylim=Ylim, col=c(1,2,2))
# line plot for data frame of CI
matlines(sort(Sqft), PI, xlim=Xlim, ylim=Ylim, col=c(1,3,3))
legend(1000, 2000, c("C.I.", "P.I."), lty=1, col=2:3)
dev.off() # jpeg() ended
```

Exercise 2:

Using "iris" data,

- regress "Sepal.Length" on "Sepal.Width" for the first 50 observations (i.e., setosa species) by simple linear regression.
- 2 create a scatter plot with the regression line, confidence and prediction bands.

Exercise 3:

Calculate the confidence and prediction bands for the regression in Exercise 2 by using the formulae (8) and (9). Compare the results to Exercise 2 (they should be the same).

(Pearson's) Correlation coefficient *r*:

The (Pearson's population) correlation coefficient r between two variables x and y quantifies the strength of linear relationship between x and y.

$$r := \frac{\operatorname{Cov}(x,y)}{\sqrt{\operatorname{Var}(x)}\sqrt{\operatorname{Var}(y)}} = \frac{E\left[(x-Ex)(y-Ey)\right]}{\sqrt{E\left[(x-Ex)^2\right]}\sqrt{E\left[(y-Ey)^2\right]}}$$

Correlation coefficient for sample:

For **n** observations $(x_1, y_1), \dots, (x_n, y_n)$, the best estimate for \hat{r} is:

$$\hat{\mathbf{r}} = \frac{\mathbf{s}_{xy}}{\mathbf{s}_x \mathbf{s}_y} \tag{10}$$

where

$$s_{xy} := \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

 s_x := the sample standard deviation of x_i 's

$$= \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{1}{n-1} \left(\sum x_i^2 - \frac{(\sum x_i)^2}{n} \right)}$$

 $s_y :=$ the sample standard deviation of y_i 's

 s_{xy} is called the **sample covariance** of x and y.

◆ロト ◆部ト ◆意ト ◆意ト 章 めるぐ

(11)

38 / 58

Other expressions:

$$\hat{r} = \frac{\frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{n-1}}{\sqrt{\frac{\sum (x_{i} - \bar{x})^{2}}{n-1}} \sqrt{\frac{\sum (y_{i} - \bar{y})^{2}}{n-1}}} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2}} \sqrt{\sum (y_{i} - \bar{y})^{2}}} (12)$$

$$xy = \frac{\sum x_{i}y_{i} - \frac{(\sum x_{i})(\sum y_{i})}{n}}{n-1}$$
(13)

Graphical Examples:

Source: Wikipedia.

Properties of r (and \hat{r}):

- r is always between -1 and 1.
- If r = 1, x_i and y_i have 'perfect' positive linear relationship. I.e., all (x_i, y_i) 's are on a straight line with a positive slope.

► E.g.,
$$(x_1, y_1) = (1, 2), (x_2, y_2) = (-3, -6)$$
 and $(x_3, y_3) = (2, 4)$.

- If r > 0, x_i and y_i have positive linear relationship.
- If r = 0, there is no linear relationship.
 - There may be some non-linear relationship.
- If r < 0, x_i and y_i have negative linear relationship.
- If r = -1, x_i and y_i have 'perfect' negative linear relationship. I.e., all (x_i, y_i) 's are on a straight line with a negative slope.
 - ► E.g., $(x_1, y_1) = (1, -2), (x_2, y_2) = (-3, 6)$ and $(x_3, y_3) = (2, -4)$.

The signs of $(x_i - \bar{x})(y_i - \bar{y})$:

By (12), the sum of $(x_i - \bar{x})(y_i - \bar{y})$ (over all i's) determines the sign of r. One can see that positive $(x_i - \bar{x})(y_i - \bar{y})$'s correspond to a positive relationship.

Example:

$$(x_i, y_i)$$
's are $(1, 20), (3, 8), (6, 10), (8, 0)$ and $(2, 12)$ $(n = 5)$.

Table: Calculation for \hat{r}

i	Χį	Уi	x_i^2	y_i^2	$x_i y_i$
1	1	20	1	400	20
2	3	8	9	64	24
3	6	10	36	100	60
4	8	0	64	0	0
5	2	12	4	144	24
sum (Σ)	20	50	114	708	128
mean	4	10	-	-	-

$$s_x^2 = \frac{114 - 20^2/5}{5 - 1} = 8.5, \quad s_y^2 = \frac{708 - 50^2/5}{5 - 1} = 52$$

$$s_{xy} = \frac{128 - 20 \times 50/5}{5 - 1} = -18, \quad \hat{r} = \frac{-18}{\sqrt{8.5}\sqrt{52}} \approx -0.856$$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ かへぐ

Exercise 4:

Recalculate the correlation coefficient \hat{r} above with R in two ways:

- 1 by "cor" function, and
- 2 by the expressions (12),

and make a scatter plot for (x_i, y_i) $(i = 1, \dots, 5)$.

Testing on r:

Using the following theorem, one can test $H_0: r = r_0$ (usually $r_0 = 0$) against $r \neq r_0$.

Theorem 6 (Fisher's transformation):

Suppose (x_i, y_i) $(i = 1, \dots, n)$ are IID bivariate normal (*1). When n is large, approximately

$$\frac{1}{2}\log\frac{1+\hat{r}}{1-\hat{r}} \sim N\left(\frac{1}{2}\log\frac{1+r_0}{1-r_0},\frac{1}{n-3}\right)$$

where **log** is natural logarithm.

(*1) ux + vy is normal for any constants u and v.

◆ロ > ◆回 > ◆ き > ◆き > き の Q (*)

Sample code: 3 bedroom condo price in Detroit

```
> cor(Sqft, Price)
[1] 0.6745883
> cor.test(Sqft, Price)
Pearson's product-moment correlation
data: Sqft and Price
t = 6.1979, df = 46, p-value = 1.461e-07
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4830398 0.8045179
sample estimates:
      cor
0.6745883
```

The r is significantly different from 0 since p-value < 0.05.

Exercise 5:

- Test r = 0 between "Sepal.Length" and "Sepal.Width" for the first 50 observations (i.e., setosa species) of the iris data by "cor.test".
- 2 Do the same test by Fisher transformation.

\hat{r} and regression line:

 \hat{r} and \hat{b} (in the regression line $y = \hat{a} + \hat{b}x$) have a correspondence: $\hat{b} = r \cdot \frac{S_y}{S_x}$.

In other words, $\hat{\boldsymbol{b}} = \hat{\boldsymbol{r}}$ if $\boldsymbol{S}_x = \boldsymbol{S}_y = \boldsymbol{1}$. If not, $\hat{\boldsymbol{b}}$ is " $\hat{\boldsymbol{r}}$ multiplied by the scale of \boldsymbol{y} (\boldsymbol{S}_y) and divided by the scale of \boldsymbol{x} (\boldsymbol{S}_x)".

Example: 3 bedroom condo price in Detroit

Definition:

When there are random variables X_1, \dots, X_n , $X_{(i)}$ $(i = 1, \dots, n)$ denotes the *i*-th smallest observation of all, and is called the *i*-th order statistic.

Example:

If
$$x_1 = 11.5$$
, $x_2 = 7.9$, $x_3 = 5.4$, $x_4 = 10.1$, then $x_{(1)} = 5.4$, $x_{(2)} = 7.9$, $x_{(3)} = 10.1$, $x_{(4)} = 11.5$.

Spearman's ρ :

Spearman's ρ is the Pearson's correlation coefficient for the order statistics, which are invariant by monotone transformation.

Properties of ρ is similar to r, for instance, $-1 \le \rho \le 1$, while there is no simple exact relationship between Pearson's r and Spearman's ρ .

Example:

Let (x_i, y_i) 's be (1, 20), (3, 8), (6, 10), (8, 0) and (2, 12) (n = 5), Rx_i (Ry_i) be the rank of x_i (y_i) , respectively).

Table: Calculation for $\hat{
ho}$

i	Xi	Уi	Rxi	Ryi	Rx_i^2	Ry_i^2	Rx_iRy_i
1	1	20	1	5	1	25	5
2	3	8	3	2	9	4	6
3	6	10	4	3	16	9	12
4	8	0	5	1	25	1	5
5	2	12	2	4	4	16	8
sum (Σ)	20	50	15	15	55	55	36
mean	4	10	3	3	-	-	-

$$\begin{split} s_{Rx}^2 &= \frac{55 - 15^2/5}{5 - 1} = 2.5, \quad s_{Ry}^2 = \frac{55 - 15^2/5}{5 - 1} = 2.5, \\ s_{RxRy} &= \frac{36 - 15 \times 15/5}{5 - 1} = -2.25, \quad \hat{\rho} = \frac{-2.25}{\sqrt{2.5}\sqrt{2.5}} \approx -0.9. \end{split}$$

ρ is invariant by monotone transformation:

```
> X <- c(1,3,6,8,2)
> Y <- c(20,8,10,0,12)
>
> cor(X,Y) # Pearson's r
[1] -0.8561727
> cor(X,Y, method="spearman") # Spearman's rho
[1] -0.9
> cor(sqrt(X),Y^0.4) # r for transformed X and Y
[1] -0.8268442
> cor(sqrt(X),Y^0.4,method="spearman") # rho for transformed X and Y
[1] -0.9
```

Testing:

Testing a hypothesis $H_0: \rho = \rho_0$ is done by simulating the distribution of $\hat{\rho}$ or relying on a similar asymptotic result as Pearson's correlation.

```
> cor.test(X, Y, method="spearman")
Spearman's rank correlation rho

data: X and Y
S = 38, p-value = 0.08333
alternative hypothesis: true rho is not equal to 0
sample estimates:
  rho
-0.9
```

 $H_0: \rho=0$ is not rejected with $\alpha=0.05$ since p-value >0.05. In general, it is difficult to reject H_0 when the sample size is very small.

Kendall's τ :

Kendall's au is a different version of correlation coefficient which is invariant by monotone transformation.

$$\tau := \frac{\# \left[(x_i - x_j)(y_i - y_j) > 0 \right] - \# \left[(x_i - x_j)(y_i - y_j) < 0 \right]}{n(n-1)/2}$$

where #[ullet] means the number of observations which satisfy ullet among all $1 \leq i < j \leq n$.

 $-1 \le \tau \le 1$ is always satisfied, similarly to r and ρ .

Example:

Let
$$(x_i, y_i)$$
's be $(1, 20), (2, 12), (3, 8), (6, 10), (8, 0)$ $(n = 5)$.

$$\# \left[(x_i - x_j)(y_i - y_j) > 0 \right] = 1 \quad (3,8) \text{ vs } (6,10) \text{ only}$$
 $\# \left[(x_i - x_j)(y_i - y_j) < 0 \right] = 9$
 $\frac{n(n-1)}{2} = 10$
 $\hat{\tau} = \frac{1-9}{10} = -0.8.$

Sample Code:

```
> cor(X,Y, method="kendall")
[1] -0.8
> cor(sqrt(X),Y, method="kendall") # invariant by monotone transform
[1] -0.8
```

Testing on τ :

Test on τ is done either by simulating the distribution of $\hat{\tau}$ under the null, or by using normal approximation of the distribution.

Exercise 6:

- Calculate Spearman's ρ and Kendall's τ between "Sepal.Length" and "Sepal.Width" for the first 50 observations (i.e., setosa species) of the iris data by 'cor' function.
- ② Recalculate Kendall's au from the definition for the same data.
- **3** Test $\rho = \mathbf{0}$ and $\tau = \mathbf{0}$ with "cor.test" function.