Доверительные интервалы

Определение

```
\xi — генеральная совокупность с функцией распределения F_{\xi}(x,\theta) \theta\in\Theta\subset\mathbb{R} — неизвестный параметр распределения X_{[n]}=(X_1,\ldots,X_n) — выборка из генеральной совокупности \xi
```

Определение

 ξ — генеральная совокупность с функцией распределения $F_{\xi}(x,\theta)$ $\theta\in\Theta\subset\mathbb{R}$ — неизвестный параметр распределения $X_{[n]}=(X_1,\ldots,X_n)$ — выборка из генеральной совокупности ξ

Пусть для некоторого $\alpha \in (0,1)$ существуют статистики $S^-=S^-(X_{[n]},\alpha)$ и $S^+=S^+(X_{[n]},\alpha)$ такие, что

$$P\{S^{-} < \theta < S^{+}\} = 1 - \alpha,$$

тогда интервал

$$(S^-, S^+)$$

называется доверительным интервалом для параметра θ с уровнем доверия $(1-\alpha)$.

Зададим $\alpha \in (0,1)$.

Общая схема построения доверительных интервалов

Пусть

$$\hat{ heta} = \hat{ heta}_{ extbf{X}_{[n]}}$$
 — точечная оценка параметра $heta$ и

известна статистика $Y(\hat{ heta}, heta)$ такая, что

функция распределения $F_Y(x)$ случайной величины Y известна и не зависит от θ .

функция $Y(\hat{ heta}, heta)$ непрерывна и строго монотонна по heta.

Пусть для определенности, $Y(\hat{\theta}, \theta)$ строго возрастает по θ .

 $Y(\hat{ heta}, heta)$ непрерывна и строго возрастает по heta, тогда

существует обратная функция G(y) для $Y(\hat{ heta}, heta)$ и также строго возрастает.

 $Y(\hat{ heta}, heta)$ непрерывна и строго возрастает по heta, тогда

существует обратная функция G(y) для $Y(\hat{ heta}, heta)$ и также строго возрастает.

Пусть существуют $y_{\alpha/2}$ и $y_{1-\alpha/2}$: $F_Y(y_p)=p$, тогда

$$P\{y_{\alpha/2} < Y(\hat{\theta}, \theta) < y_{1-\alpha/2}\} = F(y_{1-\alpha/2}) - F(y_{\alpha/2})$$

 $Y(\hat{ heta}, heta)$ непрерывна и строго возрастает по heta, тогда

существует обратная функция G(y) для $Y(\hat{ heta}, heta)$ и также строго возрастает.

Пусть существуют $y_{\alpha/2}$ и $y_{1-\alpha/2}$: $F_Y(y_p)=p$, тогда

$$P\{y_{\alpha/2} < Y(\hat{\theta}, \theta) < y_{1-\alpha/2}\} = F(y_{1-\alpha/2}) - F(y_{\alpha/2})$$

$$P\{G(y_{\alpha/2}) < \theta < G(y_{1-\alpha/2})\}$$

Получаем доверительный интервал для θ

$$P\{G(y_{\alpha/2}) < \theta < G(y_{1-\alpha/2})\} = 1 - \alpha.$$

Пример построения доверительного интервала

Рассмотрим случайную величину рост мужчин. Построим 95%-й доверительный интервал для среднего роста мужчин.

Будем предполагать $\xi \sim \mathit{N}(a,\sigma)$, $\sigma = 7$, a

$X_{[20]}$:

```
158.51
174.83
        172.75
                          182.70
                                  175.53
161.66
        182.38
                 185.49
                         174.96
                                  172.73
180.90
        169.08
                 179.66
                         174.01
                                  166.57
168.18
        163.92
                 174.85
                          180.21
                                  176.37
```

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$Y = \frac{\bar{X} - a}{\sigma / \sqrt{n}}$$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$Y = \frac{\bar{X} - a}{\sigma / \sqrt{n}}$$

$$P\left\{u_{\alpha/2} < \frac{\bar{X} - a}{\sigma/\sqrt{n}} < u_{1-\alpha/2}\right\} = P\left\{\bar{X} - u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}} < a < \bar{X} - u_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right\}$$

 $X_{[20]}$:

$$P\left\{ar{X} - u_{1-lpha/2} rac{\sigma}{\sqrt{n}} < a < ar{X} - u_{lpha/2} rac{\sigma}{\sqrt{n}}
ight\} = 1 - lpha$$

$$\bar{X} = 173.76, \quad \sigma = 7, \quad n = 20$$

$$u_{0.975} = -u_{0.025} = 1.96$$

$$P{170.70 < a < 176.83} = 0.95$$

Точные доверительные интервалы для параметров нормальной генеральной совокупности

Пусть задана выборка $X_{[n]}$ из $\xi \sim N(a,\sigma)$, a, σ^2 неизвестны.

Точечные оценки:
$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i, \quad s^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

$$Y_1 = \frac{(n-1)s^2}{\sigma^2}$$

$$Y_2 = \frac{\bar{X} - a}{s/\sqrt{n}}$$

Точные доверительные интервалы с доверительной вероятностью $(1 - \alpha)$:

для математического ожидания а

$$P\left\{\bar{X}-rac{s}{\sqrt{n}}t_{1-lpha/2}< a<\bar{X}+rac{s}{\sqrt{n}}t_{1-lpha/2}
ight\}=1-lpha,$$

где $t_{1-lpha/2}$ — квантиль распределения T(n-1).

для дисперсии σ^2

$$P\left\{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}<\sigma^2<\frac{(n-1)s^2}{\chi^2_{\alpha/2}}\right\}=1-\alpha,$$

где $\chi^2_{1-\alpha/2}$, $\chi^2_{\alpha/2}$ — квантили распределения $\chi^2(n-1)$.

Точность интервального оценивания

Точностью интервального оценивания называют
$$\Delta = \frac{S^+ - S^-}{2}$$
.

Увеличение $(1-\alpha)$ влечет увеличение Δ , ухудшает точность.

Зависимость точности интервального оценивания от n

 $X_{[n]}$ из $\xi \sim N(176,7)$

Асимптотические доверительные интервалы

Пусть для некоторого
$$\alpha \in (0,1)$$
 существуют статистики $S^-=S^-(X_{[n]},\alpha)$ и $S^+=S^+(X_{[n]},\alpha)$ такие, что
$$\lim_{n\longrightarrow\infty} P\left\{S^-<\theta< S^+\right\}=1-\alpha,$$

тогда интервал (S^-,S^+) называется асимптотическим (приближенным) доверительным интервалом для параметра θ с уровнем доверия $(1-\alpha)$.

Предположим, что оценка $\hat{\theta} = \hat{\theta}(X_{[n]})$ является асимптотически нормальной:

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow[n \to \infty]{\mathsf{d}} \varsigma \sim N(0,\sigma),$$

где дисперсия $\sigma^2=\sigma^2(\theta)$ — коэффициент асимптотического рассеивания.

Предположим, что функция $\sigma^2(\theta)$ непрерывна на Θ и отлична от нуля для любого $\theta \in \Theta$.

Тогда справедливо следующее соотношение:

$$P\left\{u_{\frac{\alpha}{2}} < \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sigma(\hat{\theta})} < u_{1 - \frac{\alpha}{2}}\right\} \xrightarrow[n \to \infty]{} \Phi(u_{1 - \frac{\alpha}{2}}) - \Phi(u_{\frac{\alpha}{2}}) = 1 - \alpha$$

Тогда справедливо следующее соотношение:

$$P\left\{u_{\frac{\alpha}{2}} < \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sigma(\hat{\theta})} < u_{1 - \frac{\alpha}{2}}\right\} \xrightarrow[n \to \infty]{} \Phi(u_{1 - \frac{\alpha}{2}}) - \Phi(u_{\frac{\alpha}{2}}) = 1 - \alpha$$

Получаем асимптотический доверительный интервал с уровнем доверия $1-\alpha$:

$$P\left\{\hat{\theta}-u_{1-\frac{\alpha}{2}}\frac{\sigma(\hat{\theta})}{\sqrt{n}}<\theta<\hat{\theta}+u_{1-\frac{\alpha}{2}}\frac{\sigma(\hat{\theta})}{\sqrt{n}}\right\}\approx 1-\alpha.$$

Пример построения асимптотического ДИ

Рассмотрим схему Бернулли, в которой n испытаний.

Пример построения асимптотического ДИ

Рассмотрим схему Бернулли, в которой n испытаний.

Выборка $X_{[n]}=(a_1,\ldots,a_n)$ состоит из последовательности нулей и единиц.

Пусть m — число успехов.

Пример построения асимптотического ДИ

Рассмотрим схему Бернулли, в которой n испытаний.

Выборка $X_{[n]}=(a_1,\ldots,a_n)$ состоит из последовательности нулей и единиц.

Пусть m — число успехов.

Точечной оценкой параметра p будет $\hat{p} = \frac{m}{n}$

 \hat{p} асимптотически нормальна:

$$\sqrt{n}\left(\frac{m}{n}-p\right)=\frac{m-np}{\sqrt{n}}=\frac{\mathrm{d}}{n\to\infty}\,\zeta\sim N(0,\sqrt{p(1-p)}),$$

Тогда имеет место сходимость:

$$rac{\sqrt{n}(rac{m}{n}-p)}{\sqrt{rac{m}{n}(1-rac{m}{n})}}\stackrel{\mathsf{d}}{\longrightarrow \infty} \eta \sim extstyle N(0,1).$$

 \hat{p} асимптотически нормальна:

$$\sqrt{n}\left(\frac{m}{n}-p\right)=\frac{m-np}{\sqrt{n}}=\frac{d}{n\to\infty}\,\zeta\sim N(0,\sqrt{p(1-p)}),$$

Тогда имеет место сходимость:

$$rac{\sqrt{n}(rac{m}{n}-p)}{\sqrt{rac{m}{n}(1-rac{m}{n})}}\stackrel{ ext{d}}{\longrightarrow \infty} \eta \sim extstyle extstyle N(0,1).$$

Получаем асимптотический доверительный интервал с уровнем доверия $1-\alpha$ для p:

$$\left(\frac{m}{n}-u_{1-\frac{\alpha}{2}}\frac{\sqrt{\frac{m}{n}(1-\frac{m}{n})}}{\sqrt{n}}, \frac{m}{n}+u_{1-\frac{\alpha}{2}}\frac{\sqrt{\frac{m}{n}(1-\frac{m}{n})}}{\sqrt{n}}\right)$$