This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCI

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Būro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5: (11) Internationale Veröffentlichungsnummer: **WO 90/05805 A2** (43) Internationales D21C 5/02 31. Mai 1990 (31.05.90) Veröffentlichungsdatum:

(21) Internationales Aktenzeichen:

PCT/EP89/01363

(22) Internationales Anmeldedatum:

14. November 1989 (14.11.89)

(30) Prioritätsdaten:

P 38 39 479.0

23. November 1988 (23.11.88) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HEN-KEL KÖMMANDITGESELLSCHAFT AUF ÁKTIEN [DE/DE]; Henkelstraße 67, D-4000 Düsseldorf 1 (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FISCHER, Herbert [DE/ DE]; Am Nettchesfeld 14, D-4000 Düsseldorf 13 (DE). HORNFECK, Klaus [DE/DE]; August-Burberq-Straße 34, D-4020 Mettmann (DE). SCHIEFERSTEIN, Ludwig [DE/DE]; Am Hang 15, D-4030 Ratingen 1 (DE).

(81) Bestimmungsstaaten: AT (europäisches Patent), BE (europäisches Patent), CH (europäisches Patent), DE (europäisches Patent), DK, FI, FR (europäisches Patent), DB (europäisches Patent), JP, LU (europäisches Patent), NL (europäisches Patent), SE (europäisch ropäisches Patent), SU, US.

Veröffentlicht '

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: DE-INKING OF OLD PAPERS

(54) Bezeichnung: DEINKEN VON ALTPAPIEREN

(57) Abstract

Process for de-inking old papers in the presence of at least partly water-soluble polymers and/or copolymers with mean molecular weights between 2000 and 500 000 obtained by polymerization or by copolymerization of monomers containing amino groups with unsaturated acid derivatives.

(57) Zusammenfassung

Es wird ein Verfahren zum Deinken von Altpapieren in Gegenwart von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000, hergestellt durch Polymerisation oder Copolymerisation von aminogruppenhaltigen ungesättigten Säurederivat-Monomeren, beschrieben.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	MIL	Mali
ΑU	Australien .	FI	Finnland	MR	Mauritanien
BB	Barbados	FR	Frankreich	MW	Mahwi
BE	Belgien	GA	Cabon	NL	Niederlande .
. BF	Burkina Fasso	GB	Vereinigtes Königreich	NO	Norwegen
BG	Bulgarien	HU	Unicara	RO	Rumänien
·BJ	Benin	ï	Italien	SD	Sudan
BR	Brasilien	JР	Japan	SE	Schweden
- CA	Kanada	KP	Demokratische Volksrepublik Korea	`SN	Senegal
CF	Zentrale Afrikanische Republik	KR	Republik Korea	, SN	Soviet Union
CG	Kongo	U	Liechtenstein	-10	Tirched
CH	Schweiz	· ik	Sri Lanka	TG	Togo
CM	Kamerun	ill ill	Luxemburg	US	
DE			_	us	Vereinigte Staaten von Amerika
	Deutschland, Bundesrepublik	MC	Monaco		
DK	Dänemark	MG	Madagaskar .		

"Deinken von Altpapieren"

Die Erfindung betrifft ein Verfahren zum Deinken von Altpapieren sowie die Verwendung von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000, hergestellt durch Polymerisation oder Copolymerisation von aminogruppenhaltigen ungesättigten Säurederivat-Monomeren, zum Deinken von Altpapieren.

Zur Herstellung von beispielsweise Zeitungsdruck- und Hygienepapieren werden heute in großen Mengen Altpapiere eingesetzt. Für diese Papiersorten bedeuten Helligkeit und Farbe bestimmte Qualitätsmerkmale. Um diese zu erreichen, müssen die Druckfarben aus den bedruckten Altpapieren entfernt werden. Üblicherweise geschieht dies mittels Deinking-Verfahren, die im wesentlichen in 2 Teilschritten ablaufen:

- 1. Aufschlagen der Altpapiere, d. h. Zerfasern in Wasser bei gleichzeitigem Einwirken der für die Ablösung der Druckfarbenteilchen benötigten Chemikalien und
- 2. Ausscheidung der abgelösten Druckfarbenteilchen aus der Faserstoffsuspension.

Der 2. Verfahrensschritt kann durch Auswaschen oder Flotation erfolgen (Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Band 17, Seiten 570 – 571 (1979)). Bei der Flotation, bei der die unterschiedliche Benetzbarkeit von Druckfarben und Papierfasern ausgenutzt wird, wird Luft durch die Faserstoffsuspensionen gedrückt oder gesaugt. Dabei verbinden sich kleine Luftbläschen mit den Druckfarbenteilchen und bilden an der Wasseroberfläche einen Schaum, der mit Stoffängern entfernt wird.

Üblicherweise wird das Deinken von Altpapieren bei alkalischen pH-Werten in Gegenwart von Alkalihydroxiden, Alkalisilikaten, oxidativ wirkenden Bleichmitteln und oberflächenaktiven Substanzen bei Temperaturen zwischen 30 und 50 °C durchgeführt. Als oberflächenaktive Substanzen, die das Ablösen und Trennen der Druckfarben bewirken, werden häufig Seifen und/oder Fettalkoholpolyglykolether eingesetzt (Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Band 17, Seiten 571-572 (1979)).

Aus der europäischen Patentschrift EP 172 684 sind Copolymere von Acrylamid und Dimethyldiallylammoniumchlorid, deren Molekulargewichte vorzugsweise zwischen 2 000 000 und 10 000 000 liegen, bekannt, die zum Deinken von Cellulosematerial eingesetzt werden können. Die auf diese Weise behandelten Papiere besitzen jedoch sehr schlechte Weißgrade.

Die klassischen Druckfarbensysteme, beispielsweise auf Basis Nitrocellulose, Maleinatharze und/oder Schellack, die Ester und/oder Ketone, beispielsweise Ethylacetat und/oder Methylethylketon, oder Alkohole als Lösungsmittel enthalten, werden in den letzten Jahren aus Umweltschutzgründen in zunehmendem Maße durch wasserverdünnbare Druckfarben ersetzt. Ein weiterer Grund für die zunehmende Verwendung wasserverdünnbarer Druckfarben liegt in

der Unbrennbarkeit von Wasser, wodurch in den Druckereien die bei Verwendung lösungsmittelhaltiger Druckfarben notwendige Installation aufwendiger Schutzeinrichtungen überflüssig wird. Die meisten wasserverdünnbaren Druckfarben enthalten als Bindemittel anionische Polymere, beispielsweise carboxylgruppenhaltige Polymere, durch deren Neutralisation mit Basen die Druckfarben wasserverdünnbar werden. Wasserverdünnbare Druckfarben haben jedoch den entscheidenden Nachteil, daß sie mit den üblichen in der Deinking-Flotte enthaltenen Tensiden – wenn überhaupt – nur völlig unzureichend entfernt werden können (Wochenblatt für Papierfabrikation 13, 537-538 (1988)). Das hat zur Folge, daß bis heute die in immer größeren Mengen anfallenden Altpapiere, die mit wasserverdünnbaren Druckfarben bedruckt wurden, nicht wiederverwertet werden und somit auch nicht als Altpapierrohstoff für Zeitungsdruck- und Hygienepapiere zur Verfügung stehen.

Die Aufgabe der Erfindung bestand somit in der Entwicklung eines Deinking-Verfahrens, mit dem es möglich ist, Altpapiere zu deinken. Insbesondere sollte mit einem solchen Deinking-Verfahren die Möglichkeit gegeben sein, Altpapiere, die mit wasserverdünnbaren Druckfarben bedruckte Altpapierbestandteile enthalten, zu deinken.

Überraschenderweise wurde gefunden, daß Druckfarben und insbesondere wasserverdünnbare Druckfarben in Wasch-Deinking- oder Flotation-Deinking-Verfahren in Gegenwart von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000, hergestellt durch Polymerisation oder Copolymerisation von aminogruppenhaltigen, ungesättigten Säurederivat-Monomeren, entfernt werden können.

Gegenstand der Erfindung ist dementsprechend ein Verfahren zum Deinken von Altpapieren, welches dadurch gekennzeichnet ist, daß Altpapiere in Gegenwart von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000, hergestellt durch Polymerisation von

A. aminogruppenhaltigen Monomeren der allgemeinen Formel I

$$R^{1}$$
 - CH = CR^{2} - C - Z - $(C_{n}H_{2n})$ - N

in der R^1 und R^2 jeweils Wasserstoff oder Methyl, R^3 und R^4 jeweils Wasserstoff oder einen C_{1-4} -Alkylrest oder einen Piperazin-, Piperidin- oder Morpholinrest bedeuten, R^5 einen geradoder verzweigtkettigen Alkylrest mit 1 bis 22 C-Atomen darstellt, mit der Maßgabe, daß das Gegenion zur Ammoniumfunktion ein Halogen-, Sulfat-, Phosphat-, Borat- oder organisches Säureanion ist, oder R^5 ein Elektronenpaar darstellt, Z 0 oder NH bedeutet und n eine Zahl zwischen 2 und 5 ist,

oder durch Copolymerisation von A. mit

B1. monomeren, ungesättigten Säuren der allgemeinen Formel II

$$R^5$$
 - CH = CR^6 - C - OH

in der ${\sf R}^{\sf 5}$ und ${\sf R}^{\sf 6}$ jeweils ein Wasserstoffatom oder eine Methylgruppe bedeuten, und/oder

B2. monomeren, ungesättigten Carbonsäureestern der allgemeinen Formel III

$$0$$

 $R^7 - CH = CR^8 - C - 0 - (C_m H_{2m} O)_{\frac{1}{D}} - R^{\frac{C}{D}}$

in der die Reste R^7 und R^8 jeweils ein Wasserstoffatom oder eine Methylgruppe und R^9 eine gerad- oder verzweigtkettige Alkylgruppe mit 1 bis 22 C-Atomen bedeuten und m Zahlen zwischen 2 und 4 darstellt und p eine Zahl zwischen 0 und 18 ist, mit der Maßgabe, daß im Falle p=0 der Gehalt ungesättigter Carbonsäureester im Copolymer 30 Gew.-% nicht übersteigt und/oder

- B3. Acrylamiden und/oder Methacrylamiden, die an den Amidstickstoffatomen durch gerad- und/oder verzweigtkettige Alkylreste mit 1 bis 22 C-Atomen substituiert sein können, und/oder
- B4. N-Vinylpyrrolidon,

aufgeschlagen werden und anschließend die Druckfarbenteilchen in an sich bekannter Weise durch Flotation oder Auswaschen aus den Faserstoffsuspensionen entfernt werden.

Weiterer Erfindungsgegenstand ist die Verwendung dieser Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000 zum Deinken von bedruckten Altpapieren.

Vorzugsweise kommen mindestens teilweise wasserlösliche Polymere und/oder Copolymere mit Zahlenmitteln der Molekulargewichte zwischen 5 000 und 200 000, besonders bevorzugt solche mit Zahlenmitteln der Molekulargewichte zwischen 10 000 und 100 000 zum Einsatz.

"Mindestens teilweise wasserlöslich" bedeutet, daß die Polymere und/oder Copolymere beim Anwendungs-pH-Wert zu mehr als 0,01 Gew.-% in Wasser klar oder trübe löslich sind.

Als aminogruppenhaltige Monomere der allgemeinen Formel I eignen sich insbesondere solche, in denen die Reste Rl Wasserstoff, R2 Wasserstoff oder Methyl, R3 und R4 jeweils Methyl oder Ethyl, R5 ein Elektronenpaar oder R⁵ eine C₁₋₄-Alkylgruppe mit der Maßgabe, daß das Gegenion zur Ammoniumfunktion ein Halogenanion ist, und Z O oder NH bedeuten und n eine Zahl zwischen 2 und 5 ist, beispielsweise Dimethylaminoethylmethacrylat, Dimethylaminoethylacrylat. Dimethylaminopropylmethacrylamid, Dimethylaminoneopentylacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat und/oder Methacrylamidopropyltrimethylammoniumchlorid. Als monomere, ungesättigte Säuren der allgemeinen Formel II werden vorzugsweise Acrylsäure und/oder Methacrylsäure eingesetzt. Monomere, ungesättigte Carbonsäureester der allgemeinen Formel III, in denen der Rest R⁹ vorzugsweise eine gerad- oder verzweigtkettige Alkylgruppe mit 1 bis 8 C-Atomen bedeutet, sind beispielsweise Ethylacrylat, Methylmethacrylat, Butylacrylat, Butylmethacrylat, Octylund/oder Butyl · 3 Mol Ethylenoxid-acrylat. Copolymerisation mit aminogruppenhaltigen Monomeren der allgemeinen eignen sich ferner Acrylamid, Methacrylamid, Ethylacrylamid und/oder tert.-Butylacrylamid.

Die Polymerisation oder Copolymerisation der aminogruppenhaltigen Monomeren der allgemeinen Formel I wird nach an sich bekannten Polymerisationsverfahren in wäßrigen Medien, die gewünschtenfalls mit Wasser mischbare Lösungsmittel, wie Alkohole – z. B. Isopropanol – enthalten, durchgeführt (Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Band 19, Seite 3-4, Verlag Chemie Weinheim, 1980). Als Starter wird eine radikalbildende Substanz,

Ammoniumperoxidsulfat, Kaliumoder beispielsweise Azobis(cyanpentansäure), tert.-Butylhydroperoxid, Azobis(isobutyronitril) Azobis(2-amidinopropandihydrochlorid), in geringen Mengen zugegeben. Die Polymerisation oder Copolymerisation der aminogruppenhaltigen Monomeren der allgemeinen Formel I kann beispielsweise in der Weise erfolgen, daß aminogruppenhaltige Monomere der allgemeinen Formel I und gegebenenfalls Monomere der Gruppen B1, B2, B3 und/oder B4 gleichzeitig in Wasser, das den Starter enthält, getropft werden. Die Polymerisationstemperatur kann in einem weiten Bereich schwanken. In Abhängigkeit von dem eingesetzten Starter können Temperaturen zwischen 60 und 100 °C optimal sein. Es werden wäßrige Polymeren- und/oder Copolymerenlösungen mit Polymergehalten beispielsweise zwischen 10 und 60 Gewichtsprozent erhalten.

In Gegenwart der o. g. Polymeren und/oder Copolymeren lassen sich die unterschiedlichsten Druckfarben, insbesondere wasserverdünnbare Druckfarben, beispielsweise Zeitungsrotationsfarben, Buchdruckfarben, Offsetdruckfarben, Illustrationstiefdruckfarben, Flexo- und Verpackungstiefdruckfarben aus bedruckten Altpapieren, beispielsweise Zeitungen, Illustrierten, Computerpapieren, Zeitschriften, Broschüren, Formularen, Telefonbüchern und/oder Katalogen entfernen. Die erhaltenen deinkten Altpapiere zeichnen sich durch sehr hohe Weißgrade aus.

Die zu deinkenden Altpapiere werden in einem Stofflöser in einer wässrigen Lösung, die typischerweise 0,5 bis 1,0 Gew.-% 100%iges Wasserstoffperoxid, 0,5 bis 2,5 Gew.-% 100%iges NaOH, 2,0 bis 4,0 Gew.-% Wasserglas, 35 Gew.-%ig (37 - 40 °Bé) und 0,01 bis 1 Gew-% Aktivsubstanz Polymere und/oder Copolymere - alle Gew.-%-Angaben beziehen sich auf lufttrockenes Altpapier- - enthält, bei Temperaturen zwischen 20 und 60 °C aufgeschlagen. Um gute

Deinking-Ergebnisse zu bekommen, werden pro 100 g lufttrockenem Altpapier 0,01 bis 1 g Aktivsubstanz erfindungsgemäße Polymere und/oder Copolymere eingesetzt. Nach einer Verweilzeit zwischen 60 und 120 Minuten bei Temperaturen zwischen 20 und 60 °C werden die Faserstoffsuspensionen in Wasser eingerührt, so daß 0,6 bis 1,6 Gew.-%ige Stoffsuspensionen erhalten werden. Anschließend wird vorzugsweise in an sich bekannter Weise, beispielsweise in einer Denver-Flotationszelle, flotiert.

<u>Beispiele</u>

Herstellung von Polydimethylaminoethylmethacrylat (Polymer I)

In einem Reaktor mit Rührer, 2 Zulaufgefäßen, Heizung, Kühlung, Rückflußkühlung sowie Temperaturmessung wurden 170 mg 2,2'-Azobis(2-amidinopropandihydrochlorid) und 36,8 g Wasser vorgelegt. In das eine Zulaufgefäß (Zulaufgefäß 1) wurden 42 g Dimethylaminoethylmethacrylat gegeben, in das andere eine Lösung aus 330 mg 2,2'-Azobis(2-amidinopropandihydrochlorid) und 4 g Wasser. Nach Erwärmen der Vorlagelösung im Reaktor unter Rühren auf 75 °C wurden beide Zulauflösungen innerhalb von 90 Minuten parallel zugegeben. Nach beendetem Zulauf wurde die Mischung 60 Minuten bei 80 °C gerührt, danach wurde auf etwa 45 °C abgekühlt und mit 16,7 g einer

Kenndaten der erhaltenen klaren, 50 Gew.-%igen wäßrigen Lösung: Brookfield-Viskosität (gemessen mit Spindel 5 bei 20 Umdrehungen pro Minute, Temperatur = 25 °C): 18 000 mPas

Herstellung des Copolymers aus 78 Gew.-% Dimethylaminoethylmethacrylat, 7 Gew.-% Methacrylsäure und 15 Gew.-% Ethylacrylat (Copolymer I)

Die Herstellung des Copolymer I erfolgte analog der Herstellung von Polymer I, wobei 53,5 g statt 36,8 g Wasser vorgelegt wurden und in das Zulaufgefäß 1 eine Mischung aus 39 g Dimethylaminoethylmethacrylat, 7,5 g Ethylacrylat und 3,5 g Methacrylsäure gegeben wurde.

Auf den Neutralisationsschritt wurde verzichtet.

50 Gew.-%igen Ameisensäure neutralisiert.

Kenndaten der erhaltenen opaken 50 Gew.-%igen wäßrigen Lösung: Brookfield-Viskosität (gemessen mit Spindel 5 bei 20 Umdrehungen pro Minute, Temperatur = 25 °C): 33000 mPas Herstellung des Copolymers aus 73 Gew.-% Dimethylaminoethylmethacrylat, 11 Gew.-% Acrylsäure und 16 Gew.-% Methylmethacrylat (Copolymer II)

32,0 g Acrylsäure

106,7 g 30 Gew.-%ige Schwefelsäure und

976,0 g Wasser

sowie

217,6 g Dimethylaminoethylmethacrylat

46,2 g Methylmethacrylat

1,1 g Azobis(isobuttersäurenitril) und

263,0 g Isopropanol

wurden getrennt vorgemischt, dann in ein Reaktionsgefäß mit Rührer, Heizung und Rückflußkühlung gegeben, auf 65 °C erhitzt und anschließend 30 Minuten bei dieser Temperatur, eine Stunde bei 70 °C und eine Stunde bei 80 °C gerührt.

Kenndaten der erhaltenen klaren 20 Gew.-%igen wäßrig-isopropanolischen Lösung:

spezifische Viskosität einer 1 Gew.-%igen Polymerlösung in 1 n NaNO3-Lösung: 1,28

Herstellung des Copolymers aus 70 Gew.-% Dimethylaminomethylmethacrylat und 30 Gew.-% Acrylamid (Copolymer III)

In einem Reaktionsgefäß mit Rührer, 2 Zulaufgefäßen, Heizung, Kühlung, Rückflußkühlung sowie Temperaturmessung wurden 527 g Wasser und 1,6 g Azobis(cyanpentansäure) vorgelegt.

In das eine Zulaufgefäß wurden 140 g Dimethylaminoethylmethacrylat, 60 g Acrylamid und 147,4 g 30 Gew.-*ige Schwefelsäure, in das andere 1,6 g Azobis(cyanpentansäure) und 40 g Wasser gegeben.

Nach Erwärmen der Vorlagelösung auf 75 °C wurden beide Zulauflösungen innerhalb von 90 Minuten parallel zugegeben. Nach beendetem Zulauf wurde die Mischung 60 Minuten bei 85 °C gerührt. Es resultierte eine klare, 27 Gew.-%ige Polymerlösung mit einer Brookfield-Viskosität von 740 mPas (messen bei 25 °C und 20 Umdrehungen pro Minute mit Spindel 2).

<u>Anwendungsbeispiele</u>

98 g lutro (= 90 g atro bei 8 % Feuchte) bedrucktes Altpapier (lutro = lufttrocken, atro = absolut trocken) aus 100 % Zeitungen, bedruckt mit wasserverdünnbaren Flexodruckfarben, wurde bei 3,5 Gew.-% Stoffdichte im Laborpulper mit wäßrigen Lösungen, bestehend aus

- 2 Gew.-% Natronwasserglas, 37 40 °Bé
- 1 Gew.-% Natriumhydroxid (100 %ig)
- 0,7 Gew.-% Wasserstoffperoxid (100 Gew.-%ig)
- 0,4 Gew.-% Tensid oder 0,2 Gew.-% erfindungsgemäßes Polymer oder Copolymer

bei 45 °C mittels Dispergierscheibe (3 000 Umdrehungen pro Minute) aufgeschlagen und nach 1 3/4 Stunde bei 45 °C auf 1 Gew.-% verdünnt, indem die Faserstoffsuspensionen in Wasser eingerührt wurden. Anschließend wurden die Faserstoffsuspensionen bei 45 °C in einer Denver-Flotationszelle bei 1 900 Umdrehungen pro Minute innerhalb von 15 Minuten flotiert.

Die Deinking-Ergebnisse des in Gegenwart unterschiedlicher Polymerer und Copolymerer sowie in Gegenwart von Tensiden erhaltenen deinkten Altpapiers sind in Tabelle 1 zusammengefaßt. Die Deinkbarkeitsmaßzahl (DEM) wurde aus den Reflexionsfaktoren R457nm (Weißgrad) der bedruckten (BS), deinkten (DS) und unbedruckten (US) Papierstoffe nach folgender Formel errechnet:

ERSATZBLATT

Weißgrad (DS) - Weißgrad (BS)

DEM (%) = ______ x 100

Weißgrad (US) - Weißgrad (BS)

(0 % bedeutet keine Druckfarbenentfernung, 100 % bedeutet quantitative Druckfarbenentfernung).

13

Tabelle	١ د
I UDC I I	

eingesetztes	R ₄₅₇ (BS)	R ₄₅₇ (DS)	DEM (%)	Aussehen des Kreislaufwassers
Polymer				
Polymer I	36,3	46,1	50	fast klar
Copolymer I	36,3	51,0	73	fast klar
Copolymer II	36,3	46,5	51 `	klar
Copolymer III	32,1	45,1	54	klar
zum Vergleich	····			
Fettsäure ¹)	36,3	35,6	0	schwarz
Ferrocry1R87672)	36,3	35,4	0	schwarz

¹⁾ Olinor^R 4010, Henkel KGaA

Copolymer aus 70 Gew.-% Dimethylaminoethylacrylat und 30 Gew.-% Acrylamid - Zahlenmittel des Molekulargewichtes: > 500 000; Hersteller: Henkel KGaA

<u>Patentansprüche</u>

- Verfahren zum Deinken von Altpapieren, dadurch gekennzeichnet, daß Altpapiere in Gegenwart von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000, hergestellt durch Polymerisation von
 - A. aminogruppenhaltigen Monomeren der allgemeinen Formel I

$$R^1 - CH = CR^2 - C - Z - (C_nH_{2n}) - N$$

in der R^1 und R^2 jeweils ein Wasserstoffatom oder eine Methylgruppe, R^3 und R^4 jeweils ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe oder einen Piperazin-, Piperidinoder Morpholin-Rest bedeuten, R^5 einen gerad- oder verzweigtkettigen Alkylrest mit 1 bis 22 C-Atomen mit der Maßgabe, daß das Gegenion zur Ammoniumfunktion ein Halogen-, Sulfat-, Phosphat-, Borat- oder organisches Säureanion ist, darstellt oder R^5 ein Elektronenpaar ist, Z 0 oder NH bedeutet und n eine Zahl zwischen 2 und 5 ist,

oder durch Copolymerisation von A. mit

B1. monomeren, ungesättigten Säuren der allgemeinen Formel II

$$R^5 - CH = CR^6 - C - OH$$

in der R^5 und R^6 jeweils ein Wasserstoffatom oder eine Methylgruppe bedeuten, und/oder

B2. monomeren, ungesättigten Carbonsäureestern der allgemeinen Formel III

$$R^7 - CH = CR^8 - C - 0 - (C_m H_{2m} O) - R^9$$

in der die Reste R⁷ und R⁸ jeweils ein Wasserstoffatom oder eine Methylgruppe und R⁹ eine gerad- oder verzweigtkettige Alkylgruppe mit 1 bis 22 C-Atomen bedeuten, m Zahlen zwischen 2 und 4 darstellt und p eine Zahl zwischen 0 und 18 ist, mit der Maßgabe, daß im Falle p = 0 der Gehalt ungesättigter Carbonsäureester im Copolymer 30 Gew.-% nicht übersteigt und/oder

- B3. Acrylamiden und/oder Methacrylamiden, die an den
 Amidstickstoffatomen durch gerad- und/oder verzweigtkettige Alkylreste mit 1 bis 22 C-Atomen substituiert
 sein können und/oder
- B4. N-Vinylpyrrolidon,

aufgeschlagen werden und anschließend die Druckfarbenteilchen in an sich bekannter Weise durch Flotation oder Auswaschen aus den Faserstoffsuspensionen entfernt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in der allgemeinen Formel I die Reste R 1 Wasserstoff, R 2 Wasserstoff oder Methyl, R 3 und R 4 jeweils Methyl oder Ethyl, R 5 ein Elektronenpaar oder R 5 eine C $_{1-4}$ -Alkylgruppe mit der Maßgabe, daß

das Gegenion ein Halogenanion ist, bedeuten und in der allgemeinen Formel III der Rest R⁹ eine gerad- oder verzweigtkettige Alkylgruppe mit 1 bis 8 C-Atomen bedeutet.

- 3. Verfahren nach einem oder beiden der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß Altpapiere in Gegenwart von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 5 000 und 200 000, vorzugsweise zwischen 10 000 und 100 000, aufgeschlagen werden.
- 4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Altpapiere, die Altpapierbestandteile
 aus mit wasserverdünnbaren Druckfarben bedruckten Papieren
 enthalten, aufgeschlagen werden.
- 5. Verwendung von mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren mit Zahlenmitteln der Molekulargewichte zwischen 2 000 und 500 000, hergestellt durch Polymerisation von
 - A. aminogruppenhaltigen Monomeren der allgemeinen Formel I

$$R^{1}$$
 - CH = CR^{2} - C - Z - $(C_{n}H_{2n})$ - N

in der R^1 und R^2 jeweils ein Wasserstoffatom oder eine Methylgruppe, R^3 und R^4 jeweils ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe oder einen Piperazin-, Piperidinoder Morpholin-Rest bedeuten, R^5 einen gerad- oder verzweigtkettigen Alkylrest mit 1 bis 22 C-Atomen mit der Maßgabe, daß das Gegenion zur Ammoniumfunktion ein Halogen-, Sulfat-, Phosphat-, Borat- oder organisches

Säureanion ist, darstellt oder R^5 ein Elektronenpaar ist, Z O oder NH bedeutet und n eine Zahl zwischen 2 und 5 ist,

oder durch Copolymerisation von A. mit

Bl. monomeren, ungesättigten Säuren der allgemeinen Formel II

$$R^5 - CH = CR^6 - C - OH$$

in der R^5 und R^6 jeweils ein Wasserstoffatom oder eine Methylgruppe bedeuten, und/oder

B2. monomeren, ungesättigten Carbonsäureestern der allgemeinen Formel III

$$R^7 - CH = CR^8 - C - 0 - (C_m H_{2m} O) - R^9$$

in der die Reste R^7 und R^8 jeweils ein Wasserstoffatom oder eine Methylgruppe und R^9 eine gerad- oder verzweigtkettige Alkylgruppe mit 1 bis 22 C-Atomen bedeuten, m Zahlen zwischen 2 und 4 darstellt und p eine Zahl zwischen 0 und 18 ist, mit der Maßgabe, daß im Falle p=0 der Gehalt ungesättigter Carbonsäureester im Copolymer 30 Gew.-% nicht übersteigt und/oder

B3. Acrylamiden und/oder Methacrylamiden, die an den

Amidstickstoffatomen durch gerad- und/oder verzweigtkettige Alkylreste mit 1 bis 22 C-Atomen substituiert sein können und/oder

B4. N-Vinylpyrrolidon,

zum Deinken von Altpapieren.

- 6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß mindestens teilweise wasserlösliche Polymere und/oder Copolymere mit Zahlenmitteln der Molekulargewichte zwischen 5 000 und 200 000, vorzugsweise zwischen 10 000 und 100 000, verwendet werden.
- 7. Verwendung nach einem oder beiden der Ansprüche 5 bis 6, dadurch gekennzeichnet, daß die mindestens teilweise wasserlöslichen Polymeren und/oder Copolymeren zum Deinken von Altpapieren, die Altpapierbestandteile aus mit wasserverdünnbaren Druckfarben bedruckten Papieren enthalten, verwendet werden.