String Matching

Jie Wang

University of Massachusetts Lowell Department of Computer Science

Problem Description

Input: A pattern P[1..m] and text T[1..n] over the same alphabet Σ . **Output**: All **shifts** s such that P[i] = T[s+i], where i = 1, 2, ..., m.

Four Algorithms

Algorithm	Preprocessing time	Matching time
Naive	0	O((n-m+1)m)
Rabin-Karp	$\Theta(m)$	O((n-m+1)m)
Finite automaton	$O(m \Sigma)$	$\Theta(n)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$

Overlapping-Suffix Lemma

Lemma 32.1 Suppose that x and y are both suffices of z. If $|x| \le |y|$, then x is a suffix of y. Otherwise, y is a suffix of x. Moreover, x = y iff |x| = |y|.

Proof.

The Naive Algorithm

Brute force

```
NAIVE-STRING-MATCHER(T, P)

1  n = T.length

2  m = P.length

3  \mathbf{for} \ s = 0 \ \mathbf{to} \ n - m

4  \mathbf{if} \ P[1 \dots m] == T[s+1 \dots s+m]

5  print "Pattern occurs with shift" s
```

• Runtime: $\Theta((n-m+1)m)$.

The Rabin-Karp Algorithm

- Perform well in practice, but the worst-case complexity is still O(n-m+1)m.
- The average-case complexity is better.
- Idea: Let $d = |\Sigma|$. Represent each symbol as a digit in the radix-d notation with the set of digits $\{0, 1, \dots, d-1\}$.
- Each string can be represented as a number. Let p denote the number representing $P[1..m] = P[1]P[2] \cdots P[m]$, where

$$p = P[1]d^{m-1} + P[2]d^{m-2} + \cdots + P[m-1]d + P[m],$$

and t_s the number representing T[s+1..s+m].

• Check for s = 1, 2, ..., n - m if $t_s = p$.

Runtime of Rabin-Karp

Computing p can be done in $\Theta(m)$ time using the Horner's rule:

$$p = P[m] + d(P[m-1] + d(P[m-2] + \cdots + d(P[2] + dP[1]) \cdots)).$$

Computing all t_s can be done in $\Theta(n-m+1)$ time, for we can compute t_{s+1} from t_s in $\Theta(1)$ time as follows:

$$t_{s} = d^{m-1}T[s+1] + d^{m-2}T[s+2] + \dots + dT[m+s-1] + T[m+s],$$

$$t_{s+1} = d^{m-1}T[s+2] + d^{m-2}T[s+3] + \dots + dT[m+s] + T[m+s+1]$$

$$= d(d^{m-2}T[s+2] + \dots + dT[m+s-1] + T[m+s]) + T[m+s+1]$$

$$= d(d^{m-1}T[s+1] + d^{m-2}T[s+2] + \dots + dT[m+s-1] + T[m+s]$$

$$- d^{m-1}T[s+1]) + T[m+s+1]$$

$$= d(t_{s} - d^{m-1}T[s+1]) + T[m+s+1].$$

Problem: Values too Large

- Unfortunately, the values of p and t_s may be too large to work with conveniently.
- Solution: Compute p and t_s modulo a suitable modulus q.
- Choose q such that dq just fits within one computer word.
- Then

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \bmod q,$$

where $h \equiv d^{m-1} \pmod{q}$.

- However, $t_s \equiv p \pmod{q}$ does not imply $t_s = p$. But $t_s \not\equiv p \pmod{q}$ implies $t_s \not\equiv p$.
- Use the test $t_s \equiv p \pmod{q}$ to rule out invalid shifts s, then check further if $t_s = p$.
- Worst-case runtime: $\Theta((n-m+1)m)$.

Expected Runtime

- Assume that there are v valid shifts.
- The probability that $p \mod q = t_s \mod q$ but s is invalid is 1/q. (This result is nontrivial)
- Expected runtime: O(n) + O(m(v + n/q)).
- Become linear when v = O(1) and $q \ge m$.

Pseudocode

```
RABIN-KARP-MATCHER (T, P, d, q)
   n = T.length
  m = P.length
  h = d^{m-1} \bmod q
4 p = 0
   t_0 = 0
6 for i = 1 to m
                                // preprocessing
        p = (dp + P[i]) \mod q
8
       t_0 = (dt_0 + T[i]) \bmod q
9
    for s = 0 to n - m
                                // matching
10
        if p == t_s
11
            if P[1..m] == T[s+1..s+m]
                print "Pattern occurs with shift" s
12
13
        if s < n - m
            t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
14
```

String-Matching Automata

- Let $\sigma(x) = \max\{k \mid P[1..k] \text{ is a suffix of } x\}.$
 - $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x.
 - If x is a suffix of y, then $\sigma(x) \leq \sigma(y)$.
- Given a pattern P[1..m], construct a string-matching automaton as follows:
 - Finite set of states: $Q = \{0, 1, \dots, m-1\}$, where 0 is the initial state q_0 and m the final state.
 - ullet The transition function δ is defined by

$$\delta(q, a) = \sigma(P[1..q]a),$$

where P[1..0] is the empty string ϵ .

Finite-State Function Φ

 Φ is a function from a string to a state:

$$\Phi(\epsilon) = q_0,$$
 $\Phi(wa) = \delta(\Phi(w), a) \text{ for } w \in \Sigma^*, a \in \Sigma.$

 Maintain the following invariant in the automaton while reading the text T:

$$\Phi(T[1..i]) = \sigma(T[1..i]).$$

That is, maintain the state number to be the length of the longest prefix of P that is also a suffix of T[1..i].

Suffix-function Recursion Lemma

Lemma 32.3 If $q = \sigma(T[1..i])$, then $\sigma(T[1..i]a) = \sigma(P[1..q]a)$. **Proof**.

- We cannot have $\sigma(T[1..i]a) > q+1$, for this would imply that $\sigma(T[1..i]) > q$, contradicting to the assumption.
- If P[1..q+1] is a suffix of T[1..i]a, then $\sigma(T[1..i]a) = q+1$.
- Since $q = \sigma(T[1..i])$, P[1..q] is a prefix of T[1..i]. Since $\sigma(T[1..i]a) \le q+1$, we have $\sigma(T[1..i]a) = \sigma(P[1..q]a)$.

Correctness

Theorem 32.4 $\Phi(T[1..i]) = \sigma(T[1..i])$, for i = 0, 1, ..., n. **Proof**. Induction on i.

- Basis: Since $T[1..0] = \epsilon$, $\Phi(T[1..0] = 0 = \sigma(T[1..0])$.
- Inductive hypothesis: Assume that $\Phi(T[1..i]) = \sigma(T[1..i])$.
- Induction step: Show that $\Phi(T[1..i+1]) = \sigma(T[1..i+1])$. Let $\Phi(T[1..i]) = q$. By induction hypothesis, $\sigma(T[1..i]) = q$, and hence $\sigma(T[1..i]a) = \sigma(P[1..q]a)$ for any $a \in \Sigma$. Let a = T[i+1]. We have

$$\begin{split} \Phi(T[1..i+1]) &= \Phi(T[1..i]a) & \text{(by the definition of } a) \\ &= \delta(\Phi(T[1..i]), a) & \text{(by definition of } \Phi) \\ &= \delta(q, a) & \text{(by the definition of } q) \\ &= \sigma(P[1..q]a) & \text{(by the definition of } \delta) \\ &= \sigma(T[1..i]a) & = \sigma(T[1..i+1]) & \text{(by the definition of } T[1..i+1]) \end{split}$$

Example: P = ababaca

input				
state	а	b	C	P
0	1	0	0	a
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	a
5	1	4	6	С
6	7	0	0	a
7	1	2	0	

```
i - 1 2 3 4 5 6 7 8 9 10 11 T[i] - a b a b a b a c a b a state \phi(T_i) 0 1 2 3 4 5 4 5 6 7 2 3
```

Pseudo Code

```
FINITE-AUTOMATON-MATCHER (T, \delta, m)

1  n = T.length

2  q = 0

3  for i = 1 to n

4  q = \delta(q, T[i])

5  if q = m

6  print "Pattern occurs with shift" i - m
```

- Preprocessing time (constructing a string-matching automaton): $\Theta(m\Sigma)$.
- Runtime: $\Theta(n)$.

The Knuth-Morris-Pratt Algorithm

- An efficient implementation of string-matching automata.
- Let $\pi(q) = \max\{k \mid k < q \text{ and } P[1..k] \text{ is a suffix of } P[1..q] \}$.
- P[1..k] is a suffix of P[1..q] if P[1..k] = P[q k + 1..q]. (In another word, $\pi(q)$ is the longest prefix of P that is a proper suffix of P[1..q].)

KMP Matcher

```
KMP-MATCHER(T, P)
    n = T.length
   m = P.length
    \pi = \text{Compute-Prefix-Function}(P)
    q = 0
                                             // number of characters matched
    for i = 1 to n
                                             // scan the text from left to right
 6
         while q > 0 and P[q + 1] \neq T[i]
             q = \pi[q]
                                             // next character does not match
        if P[q + 1] == T[i]
8
 9
             q = q + 1
                                             // next character matches
10
        if q == m
                                             // is all of P matched?
11
             print "Pattern occurs with shift" i - m
```

// look for the next match

 $q = \pi[q]$

12

Prefix Function π

```
COMPUTE-PREFIX-FUNCTION (P)
   m = P.length
 2 let \pi[1..m] be a new array
3 \quad \pi[1] = 0
 4 k = 0
    for q = 2 to m
 6
        while k > 0 and P[k+1] \neq P[q]
            k = \pi[k]
 8
        if P[k+1] == P[q]
 9
            k = k + 1
10
        \pi[q] = k
11
    return \pi
```

A KMP Example

Time Complexity

- Computing the prefix function: $\Theta(m)$. Within the **for** loop, count the the number of changes to k. Since $\pi[k] < k$ and k is incremented m-1 times, k can be decreased at most m-1 times.
- KMP Matcher: $\Theta(n)$ ($\Theta(n+m)$ including the computation of π). Within the **for** loop, count the number of changes to q. Since q is incremented $\Theta(n)$ times and $\pi[q] < q$, q can be decreased at most $\Theta(n)$ times.