Roll No.

Total Pages: 3

BT-2/M-20

32025

APPLIED MATHEMATICS-II Paper–AS-104 N Opt. (I)

Time: Three Hours] [Maximum Marks: 75

Note: Attempt *five* questions in all, selecting at least *one* question from each unit. All questions carry equal marks.

UNIT-I

- 1. (a) Solve $6x^5 41x^4 + 97x^3 97x^2 + 41x 6 = 0$.
 - (b) Solve the equation $x^3 + 6x + 20 = 0$, one root being 1 + 3i.
- **2.** (a) State and prove the relation between beta and gamma functions.
 - (b) Using Leibnitz Rule for differentiation, solve

$$\int_{0}^{\infty} e^{-x} \frac{\sin ax}{x} dx.$$

UNIT-II

- 3. (a) Find the Laplace transform of $e^{2+} \cos^2 t$.
 - (b) Find $L[t^2 \cdot \sin at]$.

- **4.** (a) Find the inverse transform of $\frac{s+2}{s^2-4s+13}$.
 - (b) Solve, using transform method

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-x}, \ y(0) = 1, \ y'(0) = 1.$$

UNIT-III

- **5.** (a) Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.
 - (b) If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in 15 minutes, find when the temperature will be 40°C.
- **6.** (a) Find the solution of DE,

$$\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x.$$

(b) Using method variation of parameters solve $\frac{d^2y}{dx^2} + y = \csc x.$

UNIT-IV

- 7. (a) Find the unit vector normal to the surface $xy^2z^3 = 4$ at the point (1, 2, 3).
 - (b) Give the Physical interpretation of divergence.

- **8.** (a) If $F = 3xy\hat{i} y^2\hat{j}$, evaluate $\int F \cdot dR$, where C is the curve in the *xy*-plane $y = 2x^2$ from (0, 0) to (1, 2).
 - (b) Evaluate $\int_{C} (x^2 + xy)dx + (x^2 + y^2)dy$, using Green's theorem, where C is the square formed by the lines $x = \pm 1, y = \pm 1$.