

OpenStack计算管理

前言

- Nova作为OpenStack的核心项目,提供大规模可扩展、按需弹性和自助服务的计算资源,是整个OpenStack中最核心的项目。
- 本章节分为两个部分: 理论和实验
 - 理论部分主要讲解Nova作用、架构、工作原理和流程。
 - 实验部分重点锻炼学员Nova日常运维操作,帮助学员理论联系实际,真正掌握Nova。

- 学完本课程后,您将能够:
 - 。描述Nova作用
 - **.** 描述Nova架构
 - □ 描述Nova典型操作和流程
 - 。具备Nova日常运维能力

自录

1. OpenStack计算服务Nova简介

- 2. Nova架构
- 3. Nova组件详细讲解
- 4. Nova典型操作
- 5. Nova典型工作流程
- 6. OpenStack动手实验: Nova操作

OpenStack计算服务是什么?

NOVA

计算服务 首次出现在OpenStack的 "Austin" 版本中。

简介

Nova提供大规模、可扩展、按需自助服务的计算资源。 Nova支持管理裸机,虚拟机和容器。

依赖的OpenStack服务

Keystone Neutron

Glance

OpenStack最初几个版本中,计算、存储、网络都由Nova实现,后面逐步拆分出存储和网络。目前Nova专注提供计算服务,依赖Keystone的认证服务,Neutron的网络服务,Glance的镜像服务。

Nova在OpenStack中的位置和作用

- 1. OpenStack计算服务Nova简介
- 2. Nova架构
- 3. Nova组件详细讲解
- 4. Nova典型操作
- 5. Nova典型工作流程
- 6. OpenStack动手实验: Nova操作

Nova架构图

API Layer

Conduct and Scheduler Layer

Hypervisor Layer

Virtual Infrastructure

Nova资源池管理架构

Region、Availability Zone、Host Aggregate

自 | |

- 1. OpenStack计算服务Nova简介
- 2. Nova架构
- 3. Nova组件详细讲解
- 4. Nova典型操作
- 5. Nova典型工作流程
- 6. OpenStack动手实验: Nova操作

Nova组件 - API

- Nova API功能
 - 。对外提供REST接口,接收和处理请求。
 - 。对传入参数进行合法性校验和约束限制。

- 。对请求的资源进行配额的校验和预留。
- 。资源的创建,更新,删除查询等。
- 。虚拟机生命周期管理的入口。

Nova组件 - Conductor

Nova-Conductor功能

- 。数据库操作,解耦其他组件(Nova-Compute)数据库访问。
- 。Nova复杂流程控制,如创建,冷迁移,热迁移,虚拟机规格调整,虚拟机重建。
- 。其他组件的依赖,如nova-compute需要nova-conductor启动成功后才能启动。
- 。其他组件的心跳定时写入。

Nova组件 - Scheduler

- Nova-Scheduler功能
 - 筛选和确定将虚拟机实例分 配到哪一台物理机。
 - 。分配过程主要分为两步,过 滤和权重:
 - 通过过滤器选择满足条件的 计算节点;
 - 通过权重选择最优的节点。

主机过滤和权重后,按 优先级排序 (Host 5是 最优选择)

Nova组件 - Compute

- 。Nova-Compute框架
 - Manager
 - Driver
- 。对接不同的虚拟化平台
 - KVM
 - VMware
 - Xen
 - LXC
 - QEMU
 - **....**

- 列出Nova服务
 - openstack compute service list

```
osbash@controller:~$ openstack compute service list
                                                               Updated At
Binary
                                                       State
                    Host
                                 Zone
                                             Status
nova-conductor
                    controller
                                 internal |
                                             enabled
                                                       up
                                                               2019-07-05T03:52:49.000000
nova-scheduler
                    controller
                                 internal
                                             enabled
                                                               2019-07-05T03:52:43.000000
                                                       up
                                             enabled
 nova-compute
                    compute1
                                 nova
                                                               2019-07-05T03:52:46.000000
                                                       up
```


- 1. OpenStack计算服务Nova简介
- 2. Nova架构
- 3. Nova组件详细讲解
- 4. Nova典型操作
- 5. Nova典型工作流程
- 6. OpenStack动手实验: Nova操作

Nova典型操作

分组	说明
虚拟机生命周期管理	虚拟机创建、删除、启动、关机、重启、重建、规格更改、暂停、解除暂停、挂起、继续、 迁移、在线迁移、锁定、解锁、疏散、拯救、解拯救、搁置、删除搁置、 恢复搁置、备份、 虚拟机导出镜像、列表、详细信息、信息查询更改和密码修改
卷和快照管理操作	本质上是对Cinder API的封装。卷创建、删除、列表、详细信息查询。快照创建、删除、列表、详细信息查询
虚拟机卷操作	虚拟机挂卷、虚拟机卸卷、虚拟机挂卷列表、虚拟机挂卷详细信息查询
虚拟网络操作	本质上是对Neutron API的封装。虚拟网络创建、删除、列表、详细信息查询
虚拟机虚拟网卡操作	虚拟机挂载网卡、虚拟机卸载网卡、虚拟机网卡列表
虚拟机镜像的操作	本质上是对Glance API的封装,支持镜像的创建、删除、列表、详细信息查询
其他资源其他操作	Flavor,主机组,keypairs,quota等

Nova主要操作对象

名称	简介	说明
Server	虚拟机	Nova管理提供的云服务资源,Nova中最重要的数据对象
Server metadata	虚拟机元数据	通常用于为虚拟机附加必要描述信息,key/value格式
Flavor	虚拟机规格模板	用于定义虚拟机类型,如2个vCPU、4GB内存、40GB本地存储空 间的虚拟机。Flavor由系统管理员创建,供普通用户在创建虚拟机 时使用
Quota	资源配额	用于指定租户最多能够使用的逻辑资源上限
Hypervisor / node	节点	对于KVM、Xen等虚拟化技术,一个node即对应一个物理主机。 对于vCenter,一个node对应一个cluster
Host	主机	对于KVM、Xen等虚拟化技术,一个host即对应一个物理主机,同 时对应一个node。对于vCenter,一个host对应一套vCenter部署
Host aggregate	主机组	一个HA内包含若干host。一个HA内的物理主机通常具有相同的 CPU型号等物理资源特性

Nova主要操作对象

名称	简介	说明
Server group	虚拟机亲和性/反亲和组	同一个亲和性组的虚拟机,在创建时会被调度到相同的物理主机 上。同一个反亲和性组的虚拟机,在创建时会被调度到不同的物理 主机上
Service	Nova各个服务	管理nova相关服务的状态,包括nova-compute, nova- conductor, nova-scheduler, nova-novncproxy, nova- consoleauth, nova-console
BDM	Block device mapping	块存储设备,用于描述虚拟机拥有的存储设备信息
Image	镜像	包含操作系统的文件,用于创建虚拟机

虚拟机状态介绍

ID	Name	Status	Task State	Power State	Networks
bc9caedc-d415-48e2-936a-9a880f3d6bf1	lft_01	ACTIVE	-	Running	sriov3_net=129.1.223.0
7dd682c2-0605-4d2d-b3aa-907c2fa39e8e	vm_yqb	ACTIVE		Running	ovs_net=129.1.211.37
bdf7e69a-4dec-4754-8a13-4883e9001437	yy_1	ACTIVE		Running	ovs_net=129.1.211.38

• 虚拟机状态类型

- 。 vm_state: 数据库中记录的虚拟机状态。
- task_state: 当前虚拟机的任务状态,一般是中间 态或者None。
- power_state: 从hypervisor获取的虚拟机的真实 状态。
- 。 Status: 对外呈现的虚拟机状态

• 状态之间的关系

- 系统内部只记录vm_state和task_state,power_state
- 。 Status是由vm_state和task_state联合生成的

举例

- vm_state为active, task_state为rebooting,则status为REBOOT
- vm_state为building,则status为BUILD

虚拟机状态组合

vm_state	task_state	status
active	rebooting	REBOOT
	reboot_pending	REBOOT
	reboot_started	REBOOT
	rebooting_hard	HARD_REBOOT
	reboot_pending_hard	HARD_REBOOT
	reboot_started_hard	HARD_REBOOT
	rebuild_block_device_mapping	REBUILD
	rebuilding	REBUILD
	rebuild_spawning	REBUILD
	migrating	MIGRATING
	resize_prep	RESIZE
	resize_migrating	RESIZE
	resize_migrated	RESIZE
	resize_finish	RESIZE
	default	ACTIVE

vm_state	task_state	status
stopped	resize_prep	RESIZE
	resize_migrating	RESIZE
	resize_migrated	RESIZE
	resize_finish	RESIZE
	default	SHUTOFF

虚拟机状态变迁图

All states are allowed to transition to DELETED and ERROR.

source: openstack.org

自录

- 1. OpenStack计算服务Nova简介
- 2. Nova架构
- 3. Nova组件详细讲解
- 4. Nova典型操作
- 5. Nova典型工作流程
- 6. OpenStack动手实验: Nova操作

〕 讨论: Nova创建虚拟机流程

• 讨论一: Nova创建虚拟机有什么流程,和其他OpenStack服务是如何交互的?

Nova创建虚拟机流程

source: openstack.org

〕 讨论: Nova调度流程

• 讨论二: 发放实例时, Nova如何挑选合适的主机运行实例? 有哪些衡量因素?

Nova过滤调度器

〕)讨论:Nova热迁移流程

• 讨论三: Nova实例热迁移时,详细的流程是什么?各个Nova组件是如何配合的?

Live Migration原理

- 1. OpenStack计算服务Nova简介
- 2. Nova架构
- 3. Nova组件详细讲解
- 4. Nova典型操作
- 5. Nova典型工作流程
- 6. OpenStack动手实验: Nova操作

动手实验: Nova操作

- 命令help
- 主机组管理
- 规格管理
- 密钥对管理
- 计算实例管理

思考题

- 1. Nova由哪些组件构成,各组件的主要作用是什么?
- 2. 请描述下虚拟机创建流程。
- 3. 请描述下Nova是如何做Filter Scheduler的?

本章总结

- Nova定义和作用
- Nova架构
- Nova组件
- Nova典型操作
- Nova典型工作流程
- Nova日常操作

- OpenStack社区
 - https://www.openstack.org/

