SEMAINE DU 14/03 AU 18/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(K[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de K[X] Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine si et seulement si il est divisible par X−a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré n admet au plus n racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Définition et décomposition en facteurs irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$. Factorisation de X^n-1 dans $\mathbb{C}[X]$.

2 Méthodes à maîtriser

- ▶ Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- ▶ Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- ▶ Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- ► Caractériser la multiplicité d'une racine via les dérivées successives.
- \blacktriangleright Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$.
- ▶ Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir des racines à partir d'une racine donnée.

3 Questions de cours

- ▶ Soient $x_0, ..., x_n \in \mathbb{K}$ distincts deux à deux. Montrer que pour tout $(y_0, ..., y_n) \in \mathbb{K}^{n+1}$, il existe un unique polynôme $P \in \mathbb{K}_n[X]$ tel que $P(x_i) = y_i$ pour tout $i \in [0, n]$.
- ▶ Démontrer la formule de Taylor pour les polynômes.
- ▶ Soit $P \in \mathbb{K}[X]$. Montrer que $\alpha \in \mathbb{K}$ est une racine de P de multiplicité au moins n si et seulement si $P^{(k)}(\alpha) = 0$ pour tout $k \in [0, n-1]$.
- ▶ Soit $P \in \mathbb{K}[X]$ tel que P(X + 1) = P(X). Montrer que P est constant.
- ▶ Soit $(m,n) \in (\mathbb{N}^*)^2$. Montrer que $\mathbb{U}_m \cap \mathbb{U}_n = \mathbb{U}_{m \wedge n}$. En déduire que $(X^m 1) \wedge (X^n 1) = X^{m \wedge n} 1$.