Probabilistic Numerics, and Conclusion

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 19, 2018

Classical Numerics

• An example problem: Imagine calculating the following definite integral

$$\int_0^1 \exp\left(-\frac{(x-0.35)^2}{2(0.1)^2}\right) + \frac{\sin(10x)}{3} \,\mathrm{d}x$$

- Suppose we don't know how to compute it. One option is numerical integration (quadrature)
- A classic approach to numerical integration: Trapezoid rule

• Question: How many points to use? What's our uncertainty in $Z = \int_0^1 f(x) dx$? Where to measure f(x) next to improve our estimate of Z? Calls for a probabilistic approach!

A Probabilistic Approach

- Let's treat our quantity of interest $Z = \int_0^1 f(x) dx$ as a <u>random variable</u>
- We can now assume a prior on Z and infer its posterior given some "observations"
- It is often easier to put a prior on f (even though f is "known") instead of on Z

$$p(f) = \mathcal{GP}(f|\mu, k)$$

• Reason: The integration operator is a <u>linear functional</u> and GPs are closed under linear functionals $L: f \mapsto L[f]$ (just like Gaussians under lin. trans.). Thus for Z = L[f], the prior will be another GP

$$p(L[f]) = \mathcal{GP}(L[f]|L[\mu], L^{2}[k])$$

where $L^2[k] = L[L[k]]$ (for a similar result, recall linear transformation of Gaussian r.v.'s)

- ullet A functional L[f] takes as input a function f and returns a scalar
- A functional L[.] is a linear functional if it satisfies the linearity property, i.e.,

$$L[af + g] = aL[f] + L[g]$$

Examples of Linear Functionals

• Pointwise Evaluations: Values of f at any point x

$$L_{x}[f] = f(x)$$

• Definite Integrals: Definite integrals over arbitrary functions p(x) (note: p(x) can be a constant)

$$I_p[f] = \int_{\mathcal{X}} f(x)p(x)dx$$

Partial Derivatives: Partial derivative of f at any point x

$$D_{x,i}[f] = \frac{\partial f(z)}{\partial z_i} \Big|_{z=x}$$

A Probabilistic Approach (Contd.)

- We saw that a Gaussian Process is closed under linear functionals
 - If $p(f) = \mathcal{GP}(f|\mu, k)$ and we have a linear functional evaluation $\ell = L[f]$ of f, then the prior

$$p(\ell) = \mathcal{N}(\ell|L[\mu], L^{2}[k])$$

- Some examples of this property
 - Example 1: For the point-evaluation functional $L_x[f] = f(x)$, we will have the prior

$$p(f(x)) = \mathcal{N}(f(x)|L_x[\mu], L_x^2[k]) = \mathcal{N}(f(x)|\mu(x), k(x, x)),$$

• Example 2: For the integration functional $L[f] = \int f(x)p(x)dx$, we will have the prior

$$p\left(\int f(x)p(x)dx\right) = \mathcal{N}\left(\int f(x)p(x)dx\Big|\int \mu(x)p(x)dx, \int \int k(x,x')p(x)p(x')dxdx'\right)$$

• Example 2 (computing definite integrals) is what we will look at today

Bayesian Quadrature for Definite Integrals

As we saw, the integral has a GP prior (Gaussian in the finite case)

$$p\left(\int f(x)p(x)dx\right) = \mathcal{N}\left(\int f(x)p(x)dx\Big|\int \mu(x)p(x)dx, \int \int k(x,x')p(x)p(x')dxdx'\right)$$

- Suppose we are interested in the definite integral $Z = \int_0^1 f(x) dx$ (i.e., p(x) = 1, $\forall x$)
- The prior on this definite integral will be the following Gaussian

$$p\left(\int_0^1 f(x)dx\right) = \mathcal{N}\left(Z\Big|\int_0^1 \mu(x)dx, \int_0^1 \int_0^1 k(x,x')dxdx'\right)$$

- Given observations \mathbf{y} s.t. $y_n = f(\mathbf{x}_n) + \epsilon_n$, we can estimate the posterior $p(\int_0^1 f(\mathbf{x}) d\mathbf{x} | \mathbf{y})$
 - If $\epsilon_n = 0$ (or if it is zero-mean Gaussian noise), the posterior $p(\int_0^1 f(x)dx|y)$ will also be Gaussian

Bayesian Quadrature: An Example

- Suppose $f(x) = \exp[-\sin^2(3x) x^2]$ and suppose we want to compute $Z = \int_{-3}^3 f(x) dx$
- Assume the following zero mean GP prior on f, i.e.,

$$p(f) = \mathcal{GP}(f|0,k)$$

with k(x, x') = c(1 + b - 1/3|x - x'|) for some c, b > 0

• Since GP is closed under linear functionals, the prior on $Z = \int_{-3}^{3} f(x) dx$ is a univariate Gaussian

$$p(Z) = \mathcal{N}\left[Z\Big|0, \int_{-3}^{3} \int_{-3}^{3} k(x, x') dx dx' = c(1 + b/3)\right]$$

• Given observations **y** s.t. $y_n = f(\mathbf{x}_n) + \epsilon_n$, the posterior of Z will be

$$p(Z|\mathbf{y}) = \mathcal{N}\left[Z\Big|\int_{-3}^{3} k(\mathbf{x}, \mathbf{X})\mathbf{K}^{-1}\mathbf{y}d\mathbf{x}, \int_{-3}^{3} \int_{-3}^{3} k(\mathbf{x}, \mathbf{x}') - k(\mathbf{x}, \mathbf{X})\mathbf{K}^{-1}k(\mathbf{X}, \mathbf{x}')d\mathbf{x}d\mathbf{x}'\right]$$

where **K** is the kernel matrix over the $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ and $k(\mathbf{x}, \mathbf{X}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_N)]$

Bayesian Quadrature

• An illustration of the Bayesian Quadrature approach:

Bayesian Quadrature: Benefits and Limitations

- Some of the benefits include
 - We can model the structure of f using the covariance function k
 - Thus Bayesian quadrature is also called "model based integration"
 - Tends to require far fewer samples than standard Monte-Carlo integral
 - Can design active sampling scheme to get most informative points (w.r.t. the precision of the integral being evaluated): Sequential Bayesian Quadrature
 - Naturally get the variance in our estimate of the integral
- Some of the limitations include
 - Works well usually in low-dimensions and if f is smooth
 - Usually worth it only when f(x) is expensive to compute

Function Approximation using Functionals

- Let's consider another (standard) problem: Function approximation (i.e., regression)
- Assume a function $f: \mathcal{X} \to \mathbb{R}$ with a GP prior

$$p(f) = \mathcal{GP}(f|\mu, k)$$

- We know how to infer f using data of the form $(x_n,y_n)_{n=1}^N$, assuming $y_n=f(x_n)+\epsilon_n$
- The Twist: What if the training data to learn f is given in form of <u>linear functionals</u> of f? E.g.,
 - Values of definite integrals of f over some ranges, e.g., $\int_{a_1}^{b_1} f(x) dx, \dots, \int_{a_N}^{b_N} f(x) dx$

• Values of f's partial derivatives at some points

Function Approximation using Functionals

- Given a functional observation $\ell = L[f]$, how can we infer f, given a $\mathcal{GP}(f|\mu,K)$ prior on f?
- Suppose f = f(X) where $X = \{x_i\}$ denotes a set of arbitrary inputs
- ullet The joint distribution of ℓ and $m{f}$ will be

$$p\left(\begin{bmatrix} \ell \\ \mathbf{f} \end{bmatrix} \mid \mathbf{X}\right) = \mathcal{N}\left(\begin{bmatrix} \ell \\ \mathbf{f} \end{bmatrix}; \begin{bmatrix} L[\mu] \\ \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} L^{2}[K] & ? \\ ? & \mathbf{K} \end{bmatrix}\right)$$
$$\boldsymbol{\mu} = \mu(\mathbf{X}) \qquad \mathbf{K} = K(\mathbf{X}, \mathbf{X})$$

where the "?" denotes the covariances of ℓ and $f = \{f(x_i)\}$, and are given by

$$cov(\ell, f_i) = cov(L[f], L_{\mathbf{x}_i}[f]) = L[L_{\mathbf{x}_i}[cov(f, f)]] = L[L_{\mathbf{x}_i}[K]] = L[K(\cdot, \mathbf{x}_i)]$$

.. which follows from the linearity of covariance

Function Approximation using Functionals

We will therefore have

$$p\left(\begin{bmatrix} \ell \\ \mathbf{f} \end{bmatrix} \mid \mathbf{X}\right) = \mathcal{N}\left(\begin{bmatrix} \ell \\ \mathbf{f} \end{bmatrix}; \begin{bmatrix} L[\mu] \\ \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} L^2[K] & L[K(\cdot, \mathbf{X})] \\ L[K(\mathbf{X}, \cdot)] & \mathbf{K} \end{bmatrix}\right)$$

- Using the above, we can easily get $p(f|\ell)$ using the Gaussian conditioning equations!
- The predictive posterior $p(f(x)|\ell)$ will be a Gaussian with following mean and variance

$$\mu_{f|\ell}(\mathbf{x}) = \mu(\mathbf{x}) + \frac{L[K(\cdot, \mathbf{X})]}{L^2[K]} (\ell - L[\mu]);$$

$$K_{f|\ell}(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}, \mathbf{x}') - \frac{L[K(\cdot, \mathbf{X})]L[K(\mathbf{X}, \cdot)]}{L^2[K]}$$

- Note: This easily extends to multiple functional observations ℓ_1, \ldots, ℓ_N
- For pointwise functionals $L_x[f] = f(x)$, $\ell_i = f(x_i)$ and it's equivalent to standard GP regression

Probabilistic Numerics: Some Comments

- A new and emerging area within Probabilistic/Bayesian ML
- Applications in not just problems like computing integrals but also for
 - Numerical linear algebra problems
 - Linear/non-linear optimization (efficient solutions of linear systems of equations)
 - ODE initial value problems
 - .. and many others..
- An overview: "Probabilistic Numerics and Uncertainty in Computations" by Hennig et al (2015)
- More information and reference material: http://probabilistic-numerics.org/

Probabilistic/Bayesian ML: The Key Takeaways

Capturing Uncertainty

• Uncertainty in the parameters learned (through the parameter's posterior distribution)

• Uncertainty in the predictions made (through the predictive posterior)

Ensemble-like Effect

• Averaging over the posterior is like using an ensemble of models

• Note: The above ensemble averages over all parameters of a single model. But, in principle, we can even make predictions by averaging over a set of different models (Bayesian model averaging)

$$p(\mathcal{D}^{(new)}|\mathcal{D}) = \sum_{m=1}^{M} p(\mathcal{D}^{(new)}|\mathcal{D}, m) p(m|\mathcal{D})$$

Generative Models

- Can model very complex data sets using generative models with latent variables
- For each observation x_n , we can associate (one or more) "local" latent variables z_n
- There is a set of "global" model parameters (shared by all the observations)

• The z to x mapping is problem-specific (linear/non-linear)

Generative Models

A variety of ML problems can be posed as generative models containing latent variables

"Modular" Construction of Complex Generative Models

• Simple generative models can be neatly combined to design more complex models

- Allows joint learning across multiple data sets (known as multitask learning or transfer learning)
- Enables different but related models to "share statistical strength"

"Modular" Construction of Complex Generative Models

- Another example: Can perform nonlinear classification using a mixture of linear classifiers
 - It is a simple yet powerful combination of two models one that performs clustering of the data and the other that learns a linear classifier within each cluster (both learned jointly)
- Actual example shown below: DP mixture of (probabilistic) SVMs (aka "Infinite SVM", Zhu et al)

$$p_0(z_i = k | \alpha, \mathbf{z}_{-i}) \propto \left\{ egin{array}{ll} n_{-i,k}, & ext{if } n_{-i,k} > 0 \\ \alpha, & ext{otherwise} \end{array}
ight.$$

$$\phi(y_i|\boldsymbol{x}_i,\boldsymbol{\eta},z_i=k)=\exp(-2c\cdot\max(0,1-y_i\boldsymbol{\eta}_k^{\top}\boldsymbol{x}_i))$$

"Hands-Free" ML

- Can learn the hyperparameters from data
 - Inferring the posterior distribution over hyperparameters
 - Inferring a point estimate of hyperparameters (Type-II MLE)
 - .. or Bayesian Optimization
- Can learn the right model complexity
 - ullet By comparing marginal likelihood $p(\mathcal{D}|m)$ of models, e.g., by computing Bayes Factors

$$\frac{p(\mathcal{D}|m)}{p(\mathcal{D}|m')}$$

• By constructing models having "adjustable" complexity: Nonparametric Bayesian models

Nonparametric Bayesian models

Nonparametric Bayesian Modeling: A principled way to learn model size

- Can be seen as an infinite limit of finite models
- The model size can grow with data (especially desirable for online settings)
- Also ideal for learning the architecture of deep learning models (# of layers and width of layer)

Some Things We Didn't Talk About

- Some other ML problems where Bayesian modeling is useful
 - (Bayesian) Reinforcement Learning
- Message-Passing algorithms for graphical models
- Theoretical results such as posterior concentration rates (roughly speaking, how quickly the posterior concentrates towards the true value of the parameter)
- Details of Probabilistic Programming (Stan, Edward, etc.)
- Philosophical debates on Bayesian vs non-Bayesian (aka Frequentist)
 - A recommended reading: "Why isn't everyone a Bayesian?" (Efron, 1986)

Thank You!

