Grafuri

SD 2019/2020

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Grafuri

- ightharpoonup G = (V, E)
 - V multime de vârfuri
 - E mulțime de muchii; o muchie = o pereche neordonată de vârfuri distincte

$$V = \{0, 1, 2, 3\}$$

$$E = \{\{0, 1\}, \{0, 2\}, \{1, 2\}, \{2, 3\}\}\}$$

$$u = \{0, 1\} = \{1, 0\}$$

0,1 - extremitățile lui *u u* este incidentă în 0 și 1
0 și 1 sunt adiacente (vecine)

3 / 52

FII, UAIC Curs 7 SD 2019/2020

Grafuri

- ▶ Mers de la u la v (walk): $u = i_0, \{i_0, i_1\}, i_1, \dots, \{i_{k-1}, i_k\}, i_k = v$ 3, $\{3,2\}, 2, \{2,0\}, 0, \{0,1\}, 1, \{1,3\}, 3, \{3,2\}, 2$
- ▶ parcurs (trail): mers în care oricare două muchii sunt distincte
- circuit = parcurs închis în care oricare două muchii intermediare sunt distincte
- drum (path): mers în care oricare două vârfuri sunt distincte
- ▶ ciclu (*cycle*): drum închis $i_0 = i_k$

Subgraf indus

- ightharpoonup G = (V, E) graf, W submulțime a lui V
- ▶ Subgraf indus de W: G'(W, E'), unde $E' = \{\{i, j\} | \{i, j\} \in E \text{ si } i \in W, j \in W\}$

Grafuri - Conexitate

Orice graf poate fi exprimat ca fiind reuniunea disjunctă de subgrafuri induse, conexe și maximale (componente conexe).

- ▶ i R j dacă și numai dacă există drum de la i la j
- R este relație de echivalență
- V_1, \cdots, V_p clasele de echivalență
- ▶ G_1, \dots, G_p componente conexe, $G_i = (V_i, E_i)$ subgraful indus de V_i
- ▶ graf conex = graf cu o singură componentă conexă

FII, UAIC Curs 7 SD 2019/2020 6 / 52

Tipul de date abstract Graf

- obiecte:
 - grafuri $G = (V, E), V = \{0, 1, \dots, n-1\}$
- operaţii:
 - ▶ grafVid()
 - ▶ intrare: nimic
 - ieşire: graful vid (\emptyset, \emptyset)
 - esteGrafVid()
 - ▶ intrare: G = (V, E),
 - ieșire: true daca $G = (\emptyset, \emptyset)$, false în caz contrar
 - ▶ insereazaMuchie()
 - ▶ intrare: $G = (V, E), i, j \in V$
 - ieșire: $G = (V, E \cup \{i, j\})$
 - insereazaVarf()
 - ▶ intrare: $G = (V, E), V = \{0, 1, \dots, n-1\}$
 - ieșire: $G = (V', E), V' = \{0, 1, \dots, n-1, n\}$

Tipul de date abstract Graf

- eliminaMuchie()
 - ▶ intrare: $G = (V, E), i, j \in V$
 - ieșire: $G = (V, E \{i, j\})$
- ► eliminaVarf()
 - intrare: $G = (V, E), V = \{0, 1, \dots, n-1\}, k$
 - ieşire: $G = (V', E'), V' = \{0, 1, \dots, n-2\}$

$$\{i',j'\} \in E' \Leftrightarrow (\exists \{i,j\} \in E) \ i \neq k, j \neq k,$$

$$i' = if \ (i < k) \ then \ i \ else \ i - 1,$$

$$i' = if \ (j < k) \ then \ j \ else \ j - 1$$

FII, UAIC Curs 7

SD 2019/2020

8 / 52

Tipul de date abstract Graf

- ► listaDeAdiacenta()
 - ▶ intrare: $G = (V, E), i \in V$
 - ▶ ieșire: lista vârfurilor adiacente cu i
- ▶ listaVarfurilorAccesibile()
 - ▶ intrare: $G = (V, E), i \in V$
 - ▶ ieșire: lista vârfurilor accesibile din i

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Digraf (graf orientat)

- \triangleright D = (V, A)
 - ► V mulţime de vârfuri
 - ► A mulțime de arce; un arc = o pereche ordonată de vârfuri distincte

$$V = \{0, 1, 2, 3\}$$

$$A = \{(0, 1), (2, 0), (1, 2), (3, 2)\}$$

$$a = (0, 1) \neq (1, 0)$$

$$0 \qquad \qquad 1$$

0 – sursa lui *a* 1 – destinația lui *a*

FII, UAIC

Digraf

- mers (walk): i_0 , (i_0 , i_1), i_1 , \cdots , (i_{k-1} , i_k), i_k 3, (3,2), 2, (2,0), 0, (0,1), 1, (1,2), 2, (2,0), 0
- ▶ parcurs (trail): mers în care oricare două arce sunt distincte
- circuit = parcurs închis în care oricare două arce intermediare sunt distincte
- drum (path): mers în care oricare două vârfuri sunt distincte
- ightharpoonup ciclu (*cycle*): drum închis $i_0 = i_k$

Digraf - Conexitate

- ▶ *i R j* dacă și numai dacă există drum de la *i* la *j* și drum de la *j* la *i*
- ▶ R este relație de echivalență
- V_1, \cdots, V_p clasele de echivalență
- ▶ G_1, \dots, G_p componente tare conexe, $G_i = (V_i, A_i)$ subdigraful indus de V_i
- ▶ digraf tare conex = digraf cu o singură componentă tare conexă
- ► digraf conex

$$V1 = \{0, 1, 2\}$$

 $A1 = \{(0, 1), (1, 2), (2, 0)\}$

$$V2 = \{3\}$$
$$A2 = \emptyset$$

Tipul de date abstract **Digraf**

- obiecte: digrafuri D = (V, A)
- operaţii:
 - ▶ digrafVid()
 - ▶ intrare: nimic
 - ieșire: digraful vid (\emptyset, \emptyset)
 - esteDigrafVid()
 - ▶ intrare: D = (V, A),
 - ieșire: true dacă $D = (\emptyset, \emptyset)$, false în caz contrar
 - ▶ insereazaArc()
 - ▶ intrare: $D = (V, A), i, j \in V$
 - ieșire: $D = (V, A \cup (i, j))$
 - ▶ insereazaVarf()
 - intrare: $D = (V, A), V = \{0, 1, \dots, n-1\}$
 - ieșire: $D = (V', A), V' = \{0, 1, \dots, n-1, n\}$

Tipul de date abstract **Digraf**

- eliminaArc()
 - ▶ intrare: $D = (V, A), i, j \in V$
 - ieşire: D = (V, A-(i, j))
- eliminaVarf()
 - ▶ intrare: $D = (V, A), V = \{0, 1, \dots, n-1\}, k$
 - iesire: $D = (V', A'), V' = \{0, 1, \dots, n-2\}$

$$\{i',j'\} \in A' \Leftrightarrow (\exists \{i,j\} \in A) \ i \neq k, j \neq k,$$

$$i' = if \ (i < k) \ then \ i \ else \ i - 1,$$

$$i' = if \ (j < k) \ then \ j \ else \ j - 1$$

15 / 52

Tipul de date abstract **Digraf**

- ▶ listaDeAdiacentaExterioara()
 - ▶ intrare: $D = (V, A), i \in V$
 - ▶ ieşire: lista vârfurilor destinatare ale arcelor care pleacă din i
- ▶ listaDeAdiacentaInterioara()
 - ▶ intrare: $D = (V, A), i \in V$
 - ▶ ieșire: lista vârfurilor sursă ale arcelor care sosesc în i
- ► listaVarfurilorAccesibile()
 - ▶ intrare: $D = (V, A), i \in V$
 - ▶ ieșire: lista vârfurilor accesibile din i

Reprezentarea grafurilor ca digrafuri

$$G = (V, E) \implies D(G) = (V, A)$$

 $\{i, j\} \in E \implies (i, j), (j, i) \in A$

- ► topologia este păstrată
 - ▶ lista de adiacență a lui i în G = lista de adiacență exterioară (=interioară) a lui i în D

17 / 52

FII, UAIC Curs 7 SD 2019/2020

Continut

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Algoritmi de parcurgere (DFS, BFS)

FII, UAIC Curs 7

Implementarea cu matrici de adiacență a digrafurilor

- reprezentarea digrafurilor
 - n numărul de vârfuri
 - m numărul de arce (opțional)
 - ▶ o matrice $(a[i,j]| 1 \le i, j \le n)$ $a[i,j] = if (i,j) \in A \text{ then } 1 \text{ else } 0$
 - ightharpoonup dacă digraful reprezintă un graf, atunci a[i,j] este simetrică
 - ▶ lista de adiacență exterioară a lui $i \subseteq linia i$
 - ▶ lista de adiacență interioară a lui $i \subseteq coloana$ i

FII, UAIC Curs 7 SD 2019/2020 19 / 52

	0	1	2	3	
0	0	1	0	0	
1	0	0	1	0	
2	1	0	0	0	
3	0	1	1	0	

- operaţii
 - ▶ digrafVid $n \leftarrow 0$; $m \leftarrow 0$
 - ► insereazaVarf: O(n)
 - ▶ insereazaArc: *O*(1)
 - ▶ eliminaArc: *O*(1)

► eliminaVarf()

```
Procedure eliminaVarf(a, n, k)
begin
    for i \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
            if (i > k) then
                a[i-1,j] \leftarrow a[i,j]
            if (i > k) then
                a[i, j-1] \leftarrow a[i, j]
    n \leftarrow n - 1
end
timp de execuție: O(n^2)
```

FII, UAIC Curs 7 SD 2019/2020 22 / 52

- ► listaVarfurilorAccesibile()
 - ▶ Dacă i = j atunci j este accesibil din iDacă $i \neq j$ atunci există drum $i \rightsquigarrow j$ dacă există arc $i \rightarrow j$ sau există k: $\exists i \leadsto k, k \leadsto j$

FII, UAIC Curs 7 SD 2019/2020 23 / 52

Lista vârfurilor accesibile

```
Procedure inchReflTranz(a, n, b) // (Warshall, 1962)
begin
    for i \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
             b[i,i] \leftarrow a[i,i]
             if (i = j) then
                 b[i,j] \leftarrow 1
    for k \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
             if (b[i, k] = 1) then
                 for i \leftarrow 0 to n-1 do
                     if (b[k, j] = 1) then
                          b[i,j] \leftarrow 1
```

end

timp de executie: $O(n^3)$

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Implementarea cu liste de adiacență

reprezentarea digrafurilor cu liste de adiacență exterioară

- un tablou a[0..n-1] de liste înlănțuite (pointeri)
- ▶ a[i] este lista de adiacență exterioară corespunzătoare lui i

Implementarea cu liste de adiacență

operaţii

- ▶ digrafVid
- ▶ insereazaVarf: *O*(1)
- ▶ insereazaArc: *O*(1)
- eliminaVarf: O(n+m)
- ▶ eliminaArc: O(m)

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Digrafuri: explorare sistematică

- se gestionează două mulțimi
 - ightharpoonup S = mulţimea vârfurilor vizitate deja
 - $ightharpoonup SB \subseteq S$ submulțimea vârfurilor pentru care există șanse să găsim vecini nevizitați încă
- ▶ lista de adiacență (exterioară) a lui *i* este divizată în două:

Digrafuri: explorare sistematică

- pasul curent
 - ▶ citeşte un vârf *i* din *SB*
 - extrage un j din lista de "așteptare" a lui i (dacă este nevidă)
 - ▶ dacă j nu este în S, atunci îl adaugă la S și la SB
 - ▶ dacă lista de "așteptare" a lui i este vidă, atunci elimină i din SB
- iniţial
 - $S = SB = \{i_0\}$
 - ▶ lista de "așteptare a lui i" = lista de adiacenta a lui i
- ▶ terminare $SB = \emptyset$

Digrafuri: explorare sistematică

```
Procedure explorare(a, n, i0)
begin
     for i \leftarrow 0 to n-1 do
          p[i] \leftarrow a[i]
     SB \leftarrow (i0)
     viziteaza(i0); S \leftarrow (i0)
     while (SB \neq \emptyset) do
          i \leftarrow citeste(SB)
          if (p[i] = NULL) then
               SB \leftarrow SB - \{i\}
          else
              i \leftarrow p[i] \rightarrow varf
               p[i] \leftarrow p[i] \rightarrow succ
               if (i \notin S) then
                    SB \leftarrow SB \cup \{i\}
                    viziteaza(j)
                    S \leftarrow S \cup \{i\}
```

Explorare sistematică: complexitate

Teorema

În ipoteza că operațiile peste S și SB precum și viziteaza() se realizează în O(1), complexitatea timp, în cazul cel mai nefavorabil, a algoritmului explorare este O(n+m).

32 / 52

Explorarea DFS (Depth First Search)

► SB este implementată ca stivă

$$SB \leftarrow (i0) \Leftrightarrow SB \leftarrow stivaVida()$$
 $push(SB, i0)$
 $i \leftarrow citeste(SB) \Leftrightarrow i \leftarrow top(SB)$
 $SB \leftarrow SB - \{i\} \Leftrightarrow pop(SB)$
 $SB \leftarrow SB \cup \{j\} \Leftrightarrow push(SB, j)$

FII, UAIC Curs 7 SD 2019/2020 33 / 52

Explorarea DFS: exemplu

Explorarea BFS (Breadth First Search)

► SB este implementată ca o coadă

$$SB \leftarrow (i0) \Leftrightarrow SB \leftarrow coadaVida();$$

 $insereaza(SB, i0)$
 $i \leftarrow citeste(SB) \Leftrightarrow citeste(SB, i)$
 $SB \leftarrow SB - \{i\} \Leftrightarrow elimina(SB)$
 $SB \leftarrow SB \cup \{j\} \Leftrightarrow insereaza(SB, j)$

FII, UAIC Curs 7

35 / 52

Explorarea BFS: exemplu

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Determinarea componentelor conexe (grafuri neorientate)

```
Function CompConexeDFS(D)
begin
    for i \leftarrow 0 to n-1 do
        culoare[i] \leftarrow 0
    k \leftarrow 0
    for i \leftarrow 0 to n-1 do
        if (culoare[i] = 0) then
            k \leftarrow k + 1
            DfsRecCompConexe(i, k)
    return k
end
```

FII, UAIC Curs 7

Determinarea componentelor conexe (grafuri neorientate)

```
Procedure DfsRecCompConexe(i, k)

begin

culoare[i] \leftarrow k

for (fiecare\ varf\ j\ in\ listaDeAdiac(i)) do

if (culoare[j] = 0) then

DfsRecCompConexe(j, k)

end
```

FII, UAIC Curs 7 SD 2019/2020 39 / 52

Componente tare conexe (digrafuri)

O componentă tare conexă este o mulțime maximală de vârfuri a.î. pentru fiecare $u, v: u \leadsto v, v \leadsto u$.

Componente tare conexe: exemplu

Determinarea componentelor tare conexe

FII, UAIC Curs 7 SD 2019/2020 42 / 52

Determinarea componentelor tare conexe

```
Procedure DfsRecCompTareConexe(i)
begin
    timp \leftarrow timp + 1
    culoare[i] \leftarrow 1
    for (fiecare vârf j in listaDeAdiac(i)) do
        if (culoare[i] = 0) then
            tata[i] \leftarrow i
            DfsRecCompTareConexe(i)
    timp \leftarrow timp + 1
    timpFinal[i] \leftarrow timp
end
```

Determinarea componentelor tare conexe

Notatie: $D^T = (V, A^T), (i, j) \in A \Leftrightarrow (j, i) \in A^T$

Procedure CompTareConexe(D) begin

- 1. DFSCompTareConexe(D)
- 2. calculează D^T
- 3. $DFSCompTareConexe(D^T)$ dar considerand in bucla for principal vârfurile în ordinea descrescătoare a timpilor finali de vizitare timpFinal[i]
- 4. returnează fiecare arbore calculat la pasul 3 ca fiind o componentă tare conexă separată

end

Curs 7

Determinarea componentelor tare conexe: complexitate

- ▶ DFSCompTareConexe(D): O(n + m)
- ightharpoonup calculează D^T : O(m)
- ▶ DFSCompTareConexe(D^T): O(n + m)
- ▶ Total: O(n+m)

FII, UAIC Curs 7 SD 2019/2020 45 / 52

▶ Algoritmică, probleme de drum, rețele de calculatoare (rutare), genomică (rețele de aliniere, asamblarea genomului), *multi-relational data mining*, cercetări operaționale (planificare), inteligență artificială (satisfacerea restricțiilor), etc.

Problema celor șapte poduri din Konigsberg (1736): identificarea unui drum, pornind dintr-o zonă a orașului pentru a traversa cele 7 poduri o singură dată?

Zonele: vârfuri, podurile: muchii

Este posibil să alegem un vârf, să parcurgem muchiile și să ne intoarcem în varful ales, acoperind toate muchiile o dată?

Probleme de planificare

- ▶ Digrafurile aciclice pot modela precedența între evenimente
- ▶ O sortare topologică a unui digraf D = (V, A) este o ordonare a vârfurilor sale astfel încât dacă $(i, j) \in A$, atunci i apare înaintea lui j.

FII, UAIC Curs 7 SD 2019/2020 48 / 52

- Motorul de căutare Google: algoritmul PageRank pentru a determina cât de importantă este o anumită pagină
- ► Sistem informațional geografic (GIS): Google Maps, Bing Maps

► Rețele sociale

FII, UAIC Curs 7

DNA word design

- Proiectarea de coduri ADN care satisfac anumite restrictii combinatoriale; utilizare: in calculul biomolecular pentru a memora informatii sau pentru manipularea moleculelor
- \triangleright Determina cea mai mare multime S de cuvinte de lungime n peste alfbetul $\{A, C, G, T\}$ a.i.:
 - ► GC Content Constraint: fiecare cuvant are 50% simboluri din {C, G}
 - ▶ Hamming Distance Constraint: fiecare pereche de cuvinte $w_1 \neq w_2$ difera in cel putin d pozitii: $H(w_1, w_2) > d$
 - ▶ Reverse Complement Hamming Distance Constraint: $H(R(w_1), C(w_2)) \ge d$, unde R(w) inversul cuvantului w si C(w)complementul lui w ($C \leftrightarrow G$, $A \leftrightarrow T$)

Modelare

- pentru fiecare cuvant ADN asignam un varf v_i
- ▶ $E = E_{HD} \cup E_{RC}$ (E_{HD} perechi de cuvinte care au un conflict HD, E_{RC} perechi de cuvinte cu un conflict RC)
- solutie: o multime independenta maximala

Figura: Grafurile pentru cuvinte de dimensiune 2 si distanta Hamming d=2 (stanga) si d=3 (dreapta)

Solutie de 136 cuvinte pentru instanta n = 8, d = 4

AAACCACC	ACCAGTGT	ACCCAAGA	ACGTAGTG	ACTGACGT	AGGAAGCT
AGTCCTCT	AGTTGGCA	ATCCCGTT	ATGGGCTT	CAAACCTC	CAAGAGAC
CAAGCAGT	CACAGTTG	CACCAATC	CAGATGGT	CAGGATCT	CATCGTGT
CATGACTG	CATTCGCT	CCAGTCTT	CCCTGATT	CCGACTTT	CCTCAGTT
CGAAGGTT	CGACACAT	CGATTTGG	CGCACAAT	CGCCTTTT	CGCTAGTA
CGGTGTAT	CGTAAAGG	CGTGTGAT	CTATGCCT	CTCGTACT	CTGAAGAG
CTGCAAGT	CTTACCGT	CTTCCTAG	GAAAGCGT	GAACAGCT	GAACGTAG
GAAGGATC	GACATGAG	GACCTAGT	GACTGTCT	GAGAAGTC	GAGACACT
GAGTACAG	GATGCAAG	GATGTCCT	GCAATAGG	GCAGCTAT	GCCTAGAT
GCGATCAT	GCGGAATT	GCTCGAAT	GCTTATGG	GGAAATGC	GGACCATT
GGATAACG	GGCAACTT	GGGTTGTT	GGTATTCG	GGTTCCAT	GGTTTAGC
GTAACCAG	GTAGAGTG	GTATCGGT	GTCAGTAC	GTCCAAAG	GTCGATGT
GTGAGATG	GTGCTTCT	GTTAGGCT	GTTCTCTG	GTTGACAC	TAACACGC
TAAGCTCG	TACACAGC	TACCGCTT	TAGATCCG	TAGGAAGG	TAGGCGTT
TAGTGTGC	TATCGACG	TATGTGGC	TCAACGTG	TCACGTCT	TCAGACAG
TCATGCTC	TCCATGCT	TCCCATTG	TCCGTATC	TCCTCAAG	TCGAAGGA
TCGAGTAG	TCGCAAAC	TCGGTTGT	TCGTACCT	TCTACCAC	TCTCCTGA
TCTCTGAG	TCTGCACT	TGAACCCT	TGACCTAC	TGAGAGGT	TGATGGAG
TGCAGTCA	TGCGTTAG	TGCTACAC	TGCTCTGT	TGGAGAGT	TGGATGAC
TGGCTATG	TGGGATTC	TGTAGCTG	TGTCTCGT	TGTGACCA	TGTGGAAC
TGTTCGTC	TTAAGGGC	TTACCAGG	TTAGTCCC	TTCAACGG	TTCCTTGC
TTCGCCAT	TTCGGGTA	TTCTGACC	TTGACTCC	TTGCCCTA	TTGCGGAT
TTGTTGGG	TTTCAGCC	TTTGGTGG	TTTTCCCG		