A. Kapanowski

Fizyka - ćwiczenia nr 3

17 marca 2025

Zadanie 1.

Dla pewnego ciała poruszającego się ruchem prostoliniowym zależność położenia pod czasu dana jest wzorem

$$x(t) = 5 + 2t + t^2. (1)$$

Obliczyć prędkość chwilową v(t), przyspieszenie chwilowe a(t), przemieszczenie w czasie od $t_0 = 0$ do $t_1 = 2$, a także prędkość średnią i średnie przyspieszenie w tym interwale czasowym.

Zadanie 2.

Samochód pokonuje trasę między dwoma miastami w dwóch etapach. W pierwszym etapie prędkość samochodu wynosi $v_1=40km/h$, w drugim $v_2=60km/h$. Znaleźć średnią prędkość samochodu, jeżeli (a) dwa etapy miały jednakową drogę, (b) dwa etapy miały jednakowy czas przebycia.

Zadanie 3.

W rzucie pionowym wyznaczyć:

- a) czas wznoszenia się t_1 ,
- b) wysokość maksymalnego wzniesienia $y_1 = y_{max}$,
- c) czas powrotu do punktu wyjścia t_2 .

Zadanie 4.

Korzystając ze wzorów z poprzedniego zadania obliczyć t_1 , y_{max} i t_2 , wiedząc, że $v_0 = 10m/s$. Przybliżamy $g \approx 10m/s^2$.

Zadanie 5

Dane są wektory: $\vec{a}=4\hat{i}+3\hat{j}+2\hat{k},\ \vec{b}=2\hat{i}-2\hat{j}+\hat{k}$ i $\vec{c}=3\hat{i}+\hat{j}-3\hat{k}$. Obliczyć następujące wielkości:

- a) sume i różnice $\vec{a} + 2\vec{b}$, $3\vec{a} \vec{c}$,
- b) długości $|\vec{a}|$, $|\vec{b}|$, $|\vec{c}|$,
- c) iloczyny skalarne $\vec{a} \cdot \vec{b}$, $\vec{b} \cdot \vec{c}$, $\vec{a} \cdot \vec{c}$,
- d) iloczyny wektorowe $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$,
- e) iloczyn mieszany $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

Zadanie 6.

Satelita obiega Ziemię po orbicie kołowej na wysokości 640 km nad powierzchnią Ziemi. Okres obiegu wynosi 98 min, promień Ziemi $R_z=6370km$. Wyznacz:

- a) wartość prędkości,
- b) wartość przyspieszenia dośrodkowego tego satelity.

Zadanie 7.

Ziemia wykonuje ruch po okręgu wokół Słońca. Znaleźć okres T, prędkość styczną, przyspieszenie dośrodkowe. Jednostka astronomiczna wynosi w przybliżeniu $1AU=1.5\times 10^8 km$.