COMP20230: Data Structures & Algorithms Lecture 5: Recursion

Dr Andrew Hines

Office: E3.13 Science East School of Computer Science University College Dublin

Factorial: 5!

5! 5x4x3x2x1

Books

Data Structures and Algorithms in Python

Authors: Goodrich, Tamassia and Goldwasser

Some examples:

Recursion

Last Week

- Running time and theoretical analysis
- Big- \mathcal{O} notation, Big- Ω (omega) and Big- Θ (theta)

This week: Recursion

Today

- Recursion
- Base case
- Call stack

Tomorrow

- Recursive and Iterative Functions
- Tail Recursion
- Complexity of recursive functions

Take home message

Recursion is a method to divide a problem in similar sub-problems. Simplify repetition using a function calling itself

Recursion

Today

- Recursion
- Base case
- Call stack

Take home message

Recursion is a method to divide a problem in similar sub-problems. Simplify repetition using a function calling itself

Definition

Recursion is

A way of decomposing problems into smaller, simpler sub-tasks that are similar to the original.

- Thus, each sub-task can be solved by applying a similar technique.
- The whole problem is solved by combining the solutions to the smaller problems.
- Requires a base case (a case simple enough to solve without recursion).
- Requires a stop condition to end the recursion.

Recursion Example

Factorial

$$n! = 1 \times 2 \times ... \times (n-1) \times n$$

or:

$$n! = n \times (n-1)!, \qquad 1! = 1$$

Algorithm factorial(n)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Factorial Example

```
factorial(3)
        if 3=1 then
                 return 1
        else
                 return 3 * factorial(2)
        endif
                   factorial(2)
                           if 2=1 then
                                    return 1
                           else
                                    return 2 * factorial(1)
                           endif
                                        factorial(1)
                                                 if 1=1 then
                                                         return 1
                                                 endif
```

Factorial Example

Stopping Case/Base Case

As a recursive function calls itself it is crucial to have a base case/stopping case — or the process will never stop!

Basic principle

- First test the stopping condition
- Then raise the recursive call if the stopping condition is not met

Algorithm *factorial*(*n*)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then # this is my stopping condition
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Example: No Base Case

Without a base case?

What happens is bad!

Algorithm factorial(n)

Input: n, a natural number

Output: the nth factorial number

1: **return** n * factorial(n-1)

2: endif

Example: No Base Case

Without a base case?

Will it ever stop?

```
factorial(3)
       return 3 * factorial(2)
            factorial(2)
                   return 2 * factorial(1)
                   factorial(1)
                           return 1 * factorial(0)
                           factorial(0)
                                  return 0 * factorial(-1)
                                                           12
```

Recursion Limit: Will it ever stop?

Python has a backstop!

Exceeding this value will raise a exception RecursionError.

Examine size with

>>> import sys

>>> sys.getrecursionlimit()

1000

Python Recursion Limit: http://docs.python.org/3/library/sys.html#sys.setrecursionlimit lmage Source: https://www.irishtimes.com/news/politics/ still-don-t-know-what-the-brexit-backstor-is-we-explain-it-through-cricket-1.3778683

Call Stack

The call stack

Is a stack data structure

It stores information about the active subroutines of a computer program

We will look at stacks in detail in a few weeks time. For now, treat it as a stack of pancakes/pringles (you can only add or remove items from the top)

- The basic idea behind recursion is that every call has a unique context (own memory address, own values for parameters and variables)
- The call stack contains all this information and in the context of recursive function, this keeps track of the recursive calls

Call to factorial(3)

So we put factorial(3) on the call stack

Algorithm *factorial*(*n*)

Input: n, a natural number

Output: the n^{th} factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Call to factorial(3)

So we put factorial(3) on the call stack

Algorithm factorial(n)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Check if n=1

n! = 1: Return is n*factorial(n-1),
including factorial(2) call.

Remember

Call to factorial(3) has not yet returned so it is still on the call stack

Algorithm factorial(n)

Input: n, a natural number **Output:** the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Laii Stack

Check if n=1

n! = 1: Return is n*factorial(n-1),
including factorial(2) call.

Remember

Call to factorial(3) has not yet returned so it is still on the call stack

Algorithm factorial(n)

Input: n, a natural number **Output:** the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Check if n=1

n! = 1: Return is n*factorial(n-1), including factorial(1) call.

Remember

Neither factorial(2) or factorial(3) has returned at this point

Algorithm factorial(n)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Check again if n=1

n! = 1: Return is n*factorial(n-1), including factorial(1) call.

Note

Neither factorial(2) or factorial(3) has returned at this point

Algorithm *factorial*(*n*)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Call Stack

Check if n=1

n = 1: So return 1

Not a recursive call in return

So factorial(1) returns 1 We take it off the call stack

Algorithm *factorial*(*n*)

Input: n, a natural number **Output:** the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Top of stack: factorial(2)

So we return to where we were in factorial (2).

return 2*factorial(1)

We know this is 2*1 so factorial(2) returns 2.

And remove it from the stack.

Algorithm *factorial*(*n*)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Top of stack: factorial(3)

So we return to where we were in factorial (3).

return 3*factorial(2)

We now know this is 3*2 so factorial(3) returns 6. And remove it from the stack.

Algorithm factorial(n)

Input: n, a natural number **Output:** the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

Call stack is empty

We know now that factorial(3) is 6.

Algorithm factorial(n)

Input: n, a natural number

Output: the nth factorial number

- 1: if n = 1 then
- 2: **return** 1
- 3: else
- 4: **return** n * factorial(n-1)
- 5: endif

- It is difficult to predict the number of calls – and the system needs to do dynamic allocation
- Which can be a problem: the famous stack overflow problem being always around the corner in case there are too many calls
- A stack overflow occurs when the call stack reaches the stack bound, i.e. no more room on the stack for another call to be allocated

<pre>factorial(2)</pre>
factorial(3)
factorial(4)
factorial(5)
factorial(6)
factorial(7)
factorial(8)
factorial(9)

Call Stack

Drawing a recursion trace: factorial example

Note: You may spot that this goes to 0, not 1 as in our example. The value of 0! is 1, according to the convention for an empty product. See https://en.wikipedia.org/wiki/Empty_product for more details. So technically for correctness we should use n==0 as the base case.

Conclusion

Recursion can make for efficient and elegant code

A method to divide a problem in similar sub-problems. Simplify repetition using a function calling itself.

Beware of stack overflows (or in Python RecursionError exceptions — set up your base case!

Housekeeping

$\mathsf{Tutorial}$

Recursive functions worksheet.

Esri will be walking through some solutions to last week's lab and tutorial.

Tomorrow

- Why/when using recursion
- Tail recursion
- Turning a recursive algorithm into an iterative one
- Complexity analysis of recursive functions