EPITA

Mathématiques

Contrôle de mi-semestre S3

Novembre 2022

Durée : 3 heures

Nom:
Prénom:
Classe:
NOTE:
Le barème est sur 40 points. La note se ramenée à une note sur 20 par une simple division par 2.
Consignes:
 — Documents et calculatrices interdits. — Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée. — Ne pas écrire au crayon de papier.

Exercice 1 (6 points)

1.	Déterminer la nature de la série de terme général $u_n = \frac{\sin\left(\frac{1}{n}\right)}{n^2}$. Justifier proprement.
2.	Déterminer la nature de la série de terme général $u_n = \frac{n^2 e^{-\sqrt{n}}}{2^{2n}}$. Justifier proprement.
3.	Déterminer la nature de la série de terme général $u_n = (-1)^n \frac{n}{e^n}$. Justifier proprement.

Exercice 2 (6 points)

Soit $a \in \mathbb{R}$ tel que a > 0. Considérons la suite (u_n) définie pour tout $n \ge 2$ par : $u_n = \frac{(-1)^n}{\sqrt{n^a + (-1)^n}}$.

Le but de l'exercice est d'étudier la nature de $\sum u_n$.

1.	Déterminer $c \in \mathbb{R}$ tel que $u_n = \frac{(-1)^n}{n^{a/2}} + \frac{c}{n^{3a/2}} + o\left(\frac{1}{n^{3a/2}}\right)$.
	······································
2.	À l'aide du résultat de la question précédente, discuter la nature de $\sum u_n$ en fonction de la valeur de a .

Exercice 3 (8 points)

On se donne pour but d'étudier le comportement de la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par : $u_n = \frac{\mathbb{Z}^n}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$ Pour cela, on utilise la suite auxiliaire (v_n) définie par : $v_n = \ln(u_n) - \frac{1}{2}\ln(n)$. 1. Soit $n \in \mathbb{N}^*$. Calculer $\frac{u_{n+1}}{u_n}$ 2. En déduire que $v_{n+1} - v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{2n} \right)$. 3. Déterminer $a \in \mathbb{R}$ tel que $v_{n+1} - v_n \sim \frac{a}{n^2}$. 4. Montrer que (v_n) converge. On note ℓ sa limite.

5	5. Déduire des questions précédentes qu'il existe $k \in \mathbb{R}$ tel que $u_n \sim k \sqrt{n}$. Exprimer k en fonction de ℓ .
Ex	ercice 4 : critère spécial des séries alternées (5 points)
Soit	(u_n) une suite réelle de signe alterné.
1	l. Énoncer le critère spécial des séries alternées.
	2. Démontrer ce théorème. N.B.: on ne démontrera que la convergence de la série $\sum u_n$. Il n'est pas demandé de démontrer la majoration du reste de la série.

	$5: ext{probabilit\'es (5 points)}$ et X_3 trois variables aléatoires indépendantes, prenant leurs valeurs dans $\{1,3\}$, telles que pour tout $i \in \llbracket 1,3 \rrbracket$,
	$P(X_i=1) = \frac{1}{3}$ et $P(X_i=3) = \frac{2}{3}$
1 () 11	
1. Quelles	s sont les fonctions génératrices G_{X_i} de ces trois variables?
2. Soit la	variable aléatoire $Y = X_1 + X_2 + X_3$. Calculer sa fonction génératrice G_Y et en déduire la loi de Y .

3.	Déterminer l'espérance et la variance de Y .
T-)	
Exe	${ m ccice}\; 6: { m s\'eries}\; { m enti\`eres}\; (10\; { m points})$
On se	propose de trouver une fonction f qui satisfait aux conditions suivantes (C) : $\begin{cases} f'' + xf' + f = 0 \\ f(0) = 1 \text{ et } f'(0) = 0 \end{cases}$
	ela, on suppose qu'il existe une série entière $\sum a_n x^n$, admettant un rayon de convergence $R > 0$, telle que :
I Oui v	a_i on suppose quantities and sentermined f , $a_{n,k}$, admicional unitary on the convergence $f_i > 0$, which que.
	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$
N.B.: ne ch métho	
N.B.: ne ch métho	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{et} f \text{ solution de } (C) \text{ sur }]-R, R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants.
N.B.: ne ch métho	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
N.B.: ne ch métho	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car ces les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
N.B.: ne ch métho	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
N.B.: ne ch métho	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car ces les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$,
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car ces les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ?
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et f solution de (C) sur $]-R,R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car ces les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$,
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{ et } f \text{ solution de } (C) \text{ sur }] - R, R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n \text{ et } f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{ et } f \text{ solution de } (C) \text{ sur }] - R, R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car certes ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n \text{ et } f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \qquad \text{et} \qquad f \text{ solution de } (C) \text{ sur }] - R, R[$ I'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or exchera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car celles ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n \qquad \text{et} \qquad f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \qquad \text{et} \qquad f \text{ solution de } (C) \text{ sur }] - R, R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or crehera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n \qquad \text{et} \qquad f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \qquad \text{et} \qquad f \text{ solution de } (C) \text{ sur }] - R, R[$ I'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or crehera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n \qquad \text{et} \qquad f''(x) = \sum_{n=0}^{+\infty} c_n x^n$
N.B.: ne ch métho 1.	$f(x) = \sum_{n=0}^{+\infty} a_n x^n \qquad \text{et} \qquad f \text{ solution de } (C) \text{ sur }] - R, R[$ l'équation différentielle $f'' + xf' + f = 1$ est une équation linéaire du second ordre à coefficients non constants. Or crehera donc pas à utiliser les méthodes étudiées au S2 sur les équations différentielles du second ordre, car cer les ne fonctionnent que pour des équations à coefficients constants. Exprimer $f(0)$ et $f'(0)$ en fonction de la suite (a_n) . Qu'en déduit-on pour les valeurs de a_0 et a_1 ? Définir en fonction de (a_n) deux suites (b_n) et (c_n) telles que pour tout $x \in]-R, R[$, $xf'(x) = \sum_{n=0}^{+\infty} b_n x^n \qquad \text{et} \qquad f''(x) = \sum_{n=0}^{+\infty} c_n x^n$

3.	En reportant ces expressions de $xf'(x)$ et de $f''(x)$ dans l'équation $f''(x) + xf'(x) + f(x) = 0$, mettre cette dernière équation sous la forme
	$\forall m \in \mathbb{N}$ P

 $\forall x \in]-R, R[, \quad \sum_{n=0} d_n x^n = 0$ où les coefficients (d_n) sont exprimés en fonction de la suite (a_n) 4. En remarquant que la condition $\sum_{n=0}^{+\infty} d_n x^n = 0$ implique que tous les coefficients d_n sont nuls, montrer que $a_2=-rac{1}{2}, \qquad a_3=0 \qquad \text{et plus généralement}: \qquad orall \in \mathbb{N}, \, a_{n+2}=-rac{a_n}{n+2}$ 5. Que vaut a_n quand n est impair? 6. Déterminer la valeur de a_n quand n est pair. <u>Indication</u>: on posera n=2k $(k \in \mathbb{N})$, puis on exprimera a_{2k} d'abord en fonction de $a_{2(k-1)}$, puis en fonction de $a_{2(k-2)}$, etc. jusqu'à une expression de a_{2k} en fonction de a_0 .

7.	En déduire $f(x)$, qu'on exprimera d'abord sous la forme d'une série entière, puis à l'aide des fonctions usuelles.
8.	(Bonus) Vérifier que l'expression trouvée à la question précédente est solution de (C) sur $\mathbb R$ tout entier.