Gasto público e impuestos: el tamaño óptimo del Gobierno

 Efectos del gasto público y los impuestos necesarios para financiar dicho gasto.

Suponemos que no hay déficit, la restricción del gasto

$$G_t = r Y_t$$

En términos per cápita

(1)
$$g_t = r y_t$$

Suponemos que la función de producción

(2)
$$Y_t = AK_t^{\alpha}G^{1-\alpha}$$

Suponemos que para financiar el gasto de Gobierno grava la renta "ingreso"

Suponemos que ese impuesto es constante r

Con base en lo anterior, el ingreso disponible será:

(3)
$$Y^d = (1 - r) Y_t$$

(4)
$$Y^d = (1-r) A K_t^{\alpha} G^{1-\alpha}$$

(5) rY_t es lo que se apropia el Gobierno

(6)
$$g = \frac{G}{L}$$
 gasto público per cápita

Expresando (3) en términos per cápita:

(7)
$$y^d = (1-r) Ak^{\alpha} g^{1-\alpha}$$

Continuamos suponiendo que se ahorra y se invierte una fracción constante del ingreso disponible.

Sustituyendo (6) en la ecuación fundamental de Solow

(8)
$$\dot{k} = sy^d - (\delta + n)k_t$$

Sustituyendo (6) en (7)

(9)
$$\dot{k} = s(1-r) A k^{\alpha} g^{1-\alpha} - (\delta + n) k_t$$

Obtenemos la tasa de crecimiento del capital

$$\frac{\dot{k}}{k} = s(1-r) A \frac{k^{\alpha}}{k} g^{1-\alpha} - (\delta + n) \frac{k_{\epsilon}}{k_{\tau}}$$

(10)
$$\frac{k}{k} = s(1-r) A \frac{k^{\alpha}}{k} g^{1-\alpha} - (\delta + n)$$

La tasa de crecimiento depende positivamente del gasto público y negativamente de tipo impositivo "r"

Suponemos que no hay déficit público, por lo tanto, la restricción del Gobierno es

(11)
$$G = rY_t$$

(12)
$$g = ry_t$$
 En per cápita

Sustituyendo la función de producción (2) en términos per cápita $y_t = Ak^{\alpha}g^{1-\alpha}$ en la ecuación (12):

$$g = r(Ak^{\alpha}g^{1-\alpha})$$

$$\frac{g}{g^{1-\alpha}} = rAk^{\alpha}$$

$$g^{1+\alpha-1} = rAk^{\alpha}$$

$$g^{\alpha} = rAk^{\alpha}$$

$$g = (rAk^{\alpha})^{\frac{1}{\alpha}}$$

$$g = r^{\frac{1}{\alpha}}A^{\frac{1}{\alpha}}k$$
(13)

Sustituimos (13) en (10)

$$\frac{\dot{k}}{k} = s(1-r) A k^{\alpha-1} \left(r^{\frac{1}{\alpha}} A^{\frac{1}{\alpha}} k \right)^{1-\alpha} - (\delta + n)$$

$$\frac{\dot{k}}{k} = s(1-r) A k^{\alpha-1} r^{\frac{1-\alpha}{\alpha}} A^{\frac{1-\alpha}{\alpha}} k^{1-\alpha} - (\delta+n)$$

$$\frac{\dot{k}}{k} = s(1-r) A^{1+\frac{1-\alpha}{\alpha}} k^{\alpha-1+1-\alpha} r^{\frac{1-\alpha}{\alpha}} - (\delta+n)$$

$$\frac{\dot{k}}{k} = s(1-r) A^{\frac{\alpha+1-\alpha}{\alpha}} k^{\frac{\alpha}{\alpha}} r^{\frac{1-\alpha}{\alpha}} - (\delta+n)$$

(14)
$$\frac{\dot{k}}{k} = s(1-r) A^{\frac{1}{\alpha}} r^{\frac{1-\alpha}{\alpha}} - (\delta+n)$$

La tasa de crecimiento además de depender de factores como el progreso tecnológico, la tasa de ahorro, etc; también depende de la tasa impositiva.

Por ejemplo, r=0 (el Gobierno no recauda nada)

Si s=0; A=0. La tasa de crecimiento sería $-(\delta + n)$

Si r=1 (el Gobierno se apropia de todo el ingreso)

¿Cuál será la tasa impositiva adecuada?

Hay que recordar que y=g; producto y gasto per cápita son el mismo bien físico.

El Gobierno debe escoger la cantidad de gasto per cápita g de manera que el producto margina de g sea igual a 1, a fin de que éste sea eficiente.

Es decir, el Gobierno gastará hasta que eso mismo que invierte se refleje en la misma cantidad producida.

¿Cómo se calcula?

Si utilizamos la función de producción (2) en términos per cápita.

Derivamos respecto a g para obtener el producto marginal de g

$$y_t = Ak^{\alpha}g^{1-\alpha}$$

$$\frac{\partial y}{\partial g} = (1 - \alpha) Ak^{\alpha}g^{1-\alpha-1}$$

$$\frac{\partial y}{\partial g} = (1 - \alpha) Ak^{\alpha}g^{-\alpha}$$

Del procedimiento para llegar a la ecuación (13) recordamos que: $g^{\alpha} = rAk^{\alpha}$

Apuntes del Taller de Macroeconomía II Especialización Teoría Económica

$$\frac{\partial y}{\partial g} = (1 - \alpha) \frac{Ak^{\alpha}}{rAk^{\alpha}}$$

$$\frac{\partial y}{\partial g} = (1 - \alpha) \frac{1}{r}$$

Recordamos que g=ry; por lo que $r=\frac{g}{y}$

Igualando a 1 y sustituyendo g, tenemos que:

$$(1-\alpha)\,\frac{y}{g}=1$$

$$(1-\alpha) = \frac{1}{\frac{y}{g}}$$

$$(1-\alpha) = \frac{g}{y}$$

Reexpresando.

(14) $(1-\alpha) = r *$ Es la tasa impositiva que maximiza la tasa crecimiento

Conclusiones:

En general los impuestos disminuyen el ingreso disponible y por lo tanto el ahorro y la inversión.