Systèmes Dynamiques – TD numéro 5

Exercice 1. 1) Soient deux flots $(X_t)_{t\in\mathbb{R}}$ et $(Y_t)_{t\in\mathbb{R}}$ sur \mathbb{R}^d qui sont topologiquement conjugués: il existe h un homéomorphisme de \mathbb{R}^d tel que $h \circ X_t = Y_t \circ h$.

- a) Montrez que h transporte les points périodiques et les points fixes.
- b) Montrez que l'orbite de p par X_t est topologiquement fermée si et seulement si l'orbite de h(p) par Y_t est topologiquement fermée.
- c) Montrez que h transporte aussi les ensembles ω -limites.
- 2) Soient X et Y les champs de vecteurs linéaires dans \mathbb{R}^2 dont les matrices dans la base canonique sont

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad Y = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

- a) Déterminez les flots $(X_t)_{t\in\mathbb{R}}$ et $(Y_t)_{t\in\mathbb{R}}$ associés à X et Y.
- b) Montrez que, pour tout $p \neq 0$, il existe un unique temps $t \in \mathbb{R}$ tel que $X_t(p) \in S^1$, où S^1 est le cercle unité.
- c) Construisez une conjugaison entre X et Y.
- 3) Soient X et Y les champs de vecteurs linéaires dans \mathbb{R}^2 dont les matrices dans la base canonique sont

$$X = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Montrez que les flots $(X_t)_{t\in\mathbb{R}}$ et $(Y_t)_{t\in\mathbb{R}}$ associés à X et Y ne sont pas topologiquement conjugués. Montrez que X_1 et Y_1 ne sont pas non plus conjuguées.

Exercice 2. Soit $n \geq 1$. Nous notons $\mathcal{H}(\mathbb{R}^n)$ l'espace des isomorphismes hyperboliques de \mathbb{R}^n , $GL(\mathbb{R}^n)$ l'espace des isomorphismes linéaires de \mathbb{R}^n , et $\mathcal{L}(\mathbb{R}^n)$ l'espace des endomorphismes de \mathbb{R}^n . Montrez que $\mathcal{H}(\mathbb{R}^n)$ est une partie ouverte et dense de $GL(\mathbb{R}^n)$, puis que $\mathcal{H}(\mathbb{R}^n)$ est une partie ouverte et dense de $\mathcal{L}(\mathbb{R}^n)$.

Exercice 3. Soit $A \in \mathcal{H}(\mathbb{R}^n)$ un isomorphisme hyperbolique de \mathbb{R}^n . Montrez qu'il existe $\delta > 0$ tel que, si $B \in \mathcal{L}(\mathbb{R}^n)$ est un endomorphisme de \mathbb{R}^n vérifiant $||A - B|| < \delta$, alors les opérateurs A et B sont localement conjugués.

Exercice 4. Soit f un C^1 difféomorphisme de \mathbb{R}^n et soit p un point fixe hyperbolique de f. Soit $n \geq 1$. Montrez qu'il existe un voisinage ouvert V de p tel que, si q est un point périodique de f dans V, alors sa période est au moins n.

Exercice 5. Soit E un espace vectoriel réel de dimension finie et soit $A \in \mathcal{H}(E)$ un isomorphisme hyperbolique de E. Soit $E = E^s \oplus E^i$ la décomposition de E comme somme directe de l'espace stable et de l'espace instable de A et notons π_s , π_i les projecteurs naturellement associés. Rappelons que

$$E^s \, = \, \big\{ \, x \in E : \lim_{n \to +\infty} A^n x = 0 \, \big\} \, , \qquad E^i \, = \, \big\{ \, x \in E : \lim_{n \to +\infty} A^{-n} x = 0 \, \big\} \, .$$

Pour $\gamma > 0$, nous définissons les cônes

$$C_{\gamma}^{s} = \left\{ x \in E : ||\pi_{i}(x)|| \leq \gamma ||\pi_{s}(x)|| \right\}, \quad C_{\gamma}^{i} = \left\{ x \in E : ||\pi_{s}(x)|| \leq \gamma ||\pi_{i}(x)|| \right\}.$$

Nous définissons aussi

$$E_1^s \, = \, \left\{ \, x \in E : \sup_{n \geq 0} ||A^n x|| < +\infty \, \right\}, \qquad E_1^i \, = \, \left\{ \, x \in E : \sup_{n \geq 0} ||A^{-n} x|| < +\infty \, \right\},$$

$$E_2^s = \bigcup_{\gamma>0} \bigcap_{n\geq 0} A^{-n} (C_\gamma^s), \qquad E_2^i = \bigcup_{\gamma>0} \bigcap_{n\geq 0} A^n (C_\gamma^i).$$

Montrez que $E^s=E_1^s=E_2^s$ et que $E^i=E_1^i=E_2^i$

Exercice 6. Considérons la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \setminus \{0\}$$
 $\rho(x) = \exp\left(-\frac{1}{x^2}\right)$.

1) Montrez que ρ peut s'étendre en une fonction de classe C^{∞} sur \mathbb{R} , dont toutes les dérivées s'annulent en 0.

Posons $r^2 = x^2 + y^2$. Soit X le champ de vecteurs sur \mathbb{R}^2 défini par

$$X(x,y) = (y + \rho(r^2)x, -x + \rho(r^2)y).$$

- 2) Vérifiez que X est de classe C^{∞} et calculez sa différentielle à l'origine D_0X . Fixons un compact K de \mathbb{R} contenant 0.
- 3) Construisez une fonction ρ_K qui s'annule exactement sur K, qui est de classe C^{∞} sur \mathbb{R} , et dont toutes les dérivées s'annulent sur K.

Soit X_K le champ de vecteurs sur \mathbb{R}^2 défini par

$$X_K(x,y) = (y + \rho_K(r^2)x, -x + \rho_K(r^2)y),$$

4) Montrez que, pour tout $\varepsilon>0$ et r>0, il est possible de choisir K et ρ_K de sorte que

$$\forall (x,y) \in B(0,r) \qquad ||X_K(x,y) - (y,-x)|| < \varepsilon.$$

- 5) Montrez que, si $r^2 \in K$, le cercle de rayon r centré en O est une orbite de X_K .
- 6) Soient a < b tels que $a^2, b^2 \in K$, $]a^2, b^2[\cap K = \varnothing]$. Que peut—on dire des trajectoires des points (x, y) tels que $a^2 < x^2 + y^2 < b^2$?
- 7) Montrez que si K et K' sont deux compacts qui ne sont pas homéomorphes, alors les champs de vecteurs X_K et X'_K ne sont pas conjugués.

Exercice 7. Soit E un espace vectoriel de dimension finie et soit $A \in \mathcal{L}(E)$. Notons $\rho(A)$ le rayon spectral de A. Montrez que, pour tout $\varepsilon > 0$, il existe une norme $||\cdot||$ sur E telle que $|||A||| < \rho(A) + \varepsilon$.