

Statement of Verification

BREG EN EPD No.: 000323 Issue 02

This is to verify that the

Environmental Product Declaration provided by:

Kingspan Insulation Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

Therma TR24 and TT44

Company Address

Torvale Industrial Estate Pembridge Leominster Herfordshire HR6 9I A

Signed for BRE Global Ltd

Emma Baker
Operator

07 April 2022

Date of this Issue

05 January 2021

04 January 2026

Date of First Issue

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit $\underline{www.greenbooklive.com/terms}.$

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

Environmental Product Declaration

EPD Number: 000323

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013							
Commissioner of LCA study	LCA consultant/Tool							
Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA	BRE LINA Tool v2.07							
Declared Unit	Applicability/Coverage							
1m² of insulation at a thickness that gives an R-value of 2.667m².K/W (72mm)	Product Specific.							
EPD Type	Background database							
Cradle to Gate with options	Ecoinvent 3.2							
Demonstra	ation of Verification							
CEN standard EN 15	5804 serves as the core PCR ^a							
Independent verification of the declara ☐ Internal	ation and data according to EN ISO 14025:2010 ⊠ External							
	(Where appropriate ^b)Third party verifier: Nigel Jones							
a: Product category rules								

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Produc		Const	nuotion.		Use stage						End-of-life				Benefits and loads beyond						
	Produc		Const	ruction	Rel	ated to	the bui	lding fa	bric		ted to uilding	to		E110-01-1110		End-oi-life		Ena-oi-ille		End-of-life		the system boundary
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D						
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential						
$\overline{\mathbf{A}}$	\square	$\overline{\mathbf{A}}$	\square	$\overline{\mathbf{A}}$									$\overline{\mathbf{A}}$	\square	\square							

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Kingspan Insulation Ltd Pembridge Herefordshire HR6 9LA

Kingspan Insulation Ltd Sherburn in Elmet Leeds LS25 6NF Kingspan Insulation Bree Industrial Estate, Castleblayney Co. Monaghan A75 X966

Kingspan Insulation Ltd Harvey Rd Burnt Mills Industrial Estate Basildon SS13 1QJ

Construction Product

Product Description

Kingspan Therma TR24 and TT44 consist of a high performance rigid thermoset fibre free PIR insulation core faced on both sides with a bitumen coated glass tissue finished with a thermofusible polypropylene fleece. Product information is available on Kingspan.com

Technical Information

Property	Value, Unit
Thermal Conductivity - EN 13166:2012+A2:2016	0.027 W/m·K (< 80 mm) 0.025 W/m·K (80 - 119 mm) 0.024 W/m·K (≥ 120 mm)
Compressive strength at 10% compression	150 kPa
Board Size at range of thicknesses	1.2 x 0.6 m 1.2 x 1.2 m

Main Product Contents

Material/Chemical Input	%
Rigid thermoset fibre free PIR insulation core	58%
Glass tissue facer	42%

^{*}Average percentages applicable for 1m² of insulation at thickness that gives an R-value of 2.667m²K/W

Manufacturing Process

Kingspan Therma is made through a manufacturing process in which a foam forms an insulating core between two facing elements. At the start of the process a mix of chemicals is added directly to the bottom layer of facing and then expands to meet the top layer of facing. As it dries, the foam becomes tacky and adheres itself to the facing, top and bottom. Once it has reached the necessary thickness the foam is cooked under pressure. The insulation boards are then cut into the necessary sizes, packaged and sent to the loading bay for collection.

Process flow diagram

Construction Installation

The product will be installed in a variety of building roof applications using standard construction techniques.

Use Information

The product will be left alone after installation, and there are no known associated environmental impacts.

End of Life

The insulation will be removed for disposal when the building reaches the end of its life.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1m² of insulation at a thickness that gives an R-value of 2.667m².K/W (72mm)

System boundary

Cradle to gate with options: Modules A1-3, A4, A5, C2, C3 and C4.

The following processes are included in the A1-A3 production stage: Manufacture of preliminary products (resin, blowing agent, additives). Transportation of raw materials and preliminary products to the manufacturing site. Manufacturing process on the production site including, energy, disposal of residual materials, water consumption and VOC emissions to air.

The following process is included within the A4 construction stage: Transportation of the product to the construction site.

The following processes are included in the A5 construction stage: installation wastage rate, material wastes produced by installation.

The following processes are included in the C2, C3 and C4 End of life scenarios: Transportation of waste from the construction site to the waste processing plant, waste processing operations for recovery, waste sent to landfill.

Data sources, quality and allocation

This EPD covers all Kingspan Therma TR24, TT44 Insulation Baseboard is manufactured at the Pembridge, Castleblayney, Basildon and Selby sites, representing 100% of production of these products in 2018 over all Kingspan production sites included in this EPD, and 3.0% of the total site output at the Pembridge site (722.13 tonnes), 3.1% at the Castleblayney site (417.73 tonnes), 0.4% at the Basildon site (269.95 tonnes) and 0.3% at the Selby site (38.65 tonnes).

A profile for the PIR foam was created separately as this covered a range of PIR products. The profile included all the impacts from the manufacture of the product, including all the data for the following sections: 'ancillary materials', 'packaging', 'fuel/energy', 'water', 'emissions to air, water and soil', 'production waste, 'other waste' and 'water discharged'. Allocation of these factors to the products was achieved by using a proportion of the total PIR foam output. The foam profile was then used as an input for this (and other) end product profiles.

Secondary data has been drawn from the BRE LINA database v2.0.62 and the background LCI datasets are based on Ecoinvent v3.2.

Cut-off criteria

No inputs or outputs have been excluded. All raw materials, packaging materials, associated transport to the manufacturing site, and from the manufacturing site to the building site, process energy, water use, direct production waste, installations waste and emissions are included.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts													
			GWP	ODP	AP	EP	POCP	ADPE	ADPF				
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO₄)³- equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.				
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG				
Troduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	7.27e+0	2.89e-7	3.81e-2	8.01e-3	9.13e-3	5.69e-5	1.64e+2				
Construction process stage	Transport	A4	1.10e-1	2.09e-8	3.76e-4	9.90e-5	7.77e-5	1.84e-7	1.71e+0				
	Construction	A5	1.48e-1	6.20e-9	7.70e-4	1.62e-4	1.84e-4	1.14e-6	3.31e+0				
	Use	B1	MND	MND	MND	MND	MND	MND	MND				
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND				
	Repair	В3	MND	MND	MND	MND	MND	MND	MND				
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND				
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND				
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND				
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND				
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND	MND				
End of life	Transport	C2	1.10e-1	2.09e-8	3.76e-4	9.90e-5	7.77e-5	1.84e-7	1.71e+0				
Life of file	Waste processing	C3	1.77e-8	1.15e-15	9.59e-11	2.20e-11	5.46e-12	2.14e-14	2.72e-7				
	Disposal	C4	2.17e-3	5.72e-10	1.52e-5	5.00e-6	2.53e-6	3.08e-9	5.34e-2				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND				

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water; EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters	describing r	esour	ce use, pri	mary ener	gy			
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
r roddol slago	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	1.44e+1	1.56e-2	1.45e+1	8.79e+1	8.51e+1	1.73e+2
Construction	Transport	A4	2.59e-2	6.45e-8	2.59e-2	1.70e-2	0.00e+0	1.70e-2
process stage	Construction	A5	2.89e-1	3.12e-4	2.90e-1	3.49e+0	0.00e+0	3.49e+0
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND
End of life	Transport	C2	2.59e-2	6.45e-8	2.59e-2	1.70e+0	0.00e+0	1.70e+0
LING OF INC	Waste processing	СЗ	2.35e-8	4.25e-14	2.35e-8	3.63e-7	0.00e+0	3.63e-7
	Disposal	C4	1.63e-3	4.46e-9	1.63e-3	5.37e-2	0.00e+0	5.37e-2
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
	Raw material supply	A1	AGG	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG	AGG				
Troduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	0.00e+0	0.00e+0	0.00e+0	1.98e-1				
Construction	Transport	A4	0.00e+0	0.00e+0	0.00e+0	3.97e-4				
orocess stage	Construction	A5	0.00e+0	0.00e+0	0.00e+0	3.97e-3				
	Use	B1	MND	MND	MND	MND				
	Maintenance	B2	MND	MND	MND	MND				
	Repair	В3	MND	MND	MND	MND				
Jse stage	Replacement	B4	MND	MND	MND	MND				
	Refurbishment	B5	MND	MND	MND	MND				
	Operational energy use	B6	MND	MND	MND	MND				
	Operational water use	B7	MND	MND	MND	MND				
	Deconstruction, demolition	C1	MND	MND	MND	MND				
	Transport	C2	0.00e+0	0.00e+0	0.00e+0	3.97e-4				
End of life	Waste processing	СЗ	0.00e+0	0.00e+0	0.00e+0	7.26e-11				
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	6.01e-5				
Potential penefits and coads beyond the system coundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND				

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other enviro	nmental info	rmatic	on describing waste cate	egories		
			HWD	NHWD	RWD	
			kg	kg	kg	
	Raw material supply	A1	AGG	AGG	AGG	
Draduat atoma	Transport	A2	AGG	AGG	AGG	
Product stage	Manufacturing	А3	AGG	AGG	AGG	
	Total (of product stage)	A1-3	1.98e-1	3.51e-1	1.37e-4	
Construction	Transport	A4	6.42e-4	1.46e-1	1.18e-5	
process stage	Construction	A5	3.98e-3	9.93e-3	2.98e-6	
	Use	B1	MND	MND	MND	
	Maintenance	B2	MND	MND	MND	
	Repair	В3	MND	MND	MND	
Use stage	Replacement	B4	MND	MND	MND	
	Refurbishment	B5	MND	MND	MND	
	Operational energy use	B6	MND	MND	MND	
	Operational water use	B7	MND	MND	MND	
	Deconstructio n, demolition	C1	MND	MND	MND	
Final of life	Transport	C2	6.42e-4	1.46e-1	1.18e-5	
End of life	Waste processing	СЗ	4.14e-11	4.41e-10	2.00e-12	
	Disposal	C4	4.02e-5	2.10e-1	3.30e-7	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other enviro	nmental inforn	nation	describing outpu	ıt flows – at end d	of life	
			CRU	MFR	MER	EE
			kg	kg	kg	MJ per energy carrier
	Raw material supply	A1	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG
Froduct stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	0.00e+0	5.19e-2	2.70e-2	0.00e+0
Construction process stage	Transport	A4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
	Construction	A5	0.00e+0	1.04e-3	4.65e-2	0.00e+0
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND
	Operational water use	В7	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND
End of life	Transport	C2	0.00e+0	0.00e+0	0.00e+0	0.00e+0
End of life	Waste processing	СЗ	0.00e+0	0.00e+0	2.09e+0	0.00e+0
	Disposal	C4	0.00e+0	0.00e+0	0.00e+0	0.00e+0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and addi	tional technical information								
Scenario	Parameter	Units	Results						
	Description of scenario								
A4 – Transport to the building site	Fuel type / Vehicle type	Litre of fuel type per distance or vehicle type	Lorry >32 metric tons						
	Distance:	km	523						
	Capacity utilisation (incl. empty returns)	%	86						
	Bulk density of transported products	kg/m³	32						
	Description of scenario								
A5 – Installation in the building	Installation wastage rate	% of product	2						
	Installation waste sent to landfill	kg	0.046						
	Description of scenario								
	Transport type	Vehicle type	Lorry >32 metric tons						
C2, C3, C4 –	Distance	km	523						
End of life	Crushing and compacting of waste into briquettes	MJ	1.06E-07						
	Waste for energy recovery	kg	2.09						
	Waste to landfill	kg	0.21						

Annex - Conversion factors to 1m² of insulation at the stated thickness

To convert the EPD results please use the following calculation methodology:

Environmental indicator life cycle result x Conversion factor

E.g. The calculation for GWP of A1-3 for 1m2 insulation with a thickness of 30mm would be as follows: $7.27 \times 0.409 = 2.97 \text{ kg CO2}$ eq.

				A1 – A	3				
Indicator	Unit	30mm	50mm	80mm	100mm	120mm	130mm	140mm	150mm
GWP	kg CO2 eq.	0.409	0.681	1.089	1.360	1.637	1.774	1.912	2.036
ODP	kg CFC 11 eq.	0.433	0.723	1.156	1.446	1.737	1.879	2.024	2.170
AP	kg SO2 eq.	0.415	0.693	1.108	1.386	1.661	1.801	1.940	2.079
EP	kg (PO4)3- eq.	0.428	0.715	1.144	1.423	1.710	1.860	1.998	2.147
POCP	kg C2H4 eq.	0.394	0.658	1.053	1.314	1.577	1.709	1.840	1.972
ADPE	kg Sb eq.	0.459	0.764	1.223	1.527	1.828	1.986	2.144	2.285
ADPF	MJ eq.	0.404	0.671	1.079	1.348	1.616	1.750	1.884	2.018
PERE	MJ	0.395	0.659	1.056	1.319	1.583	1.715	1.840	1.972
PERM	MJ	0.379	0.633	1.013	1.263	1.519	1.647	1.769	1.897
PERT	MJ	0.392	0.655	1.048	1.310	1.572	1.703	1.834	1.966
PENRE	MJ	0.404	0.671	1.075	1.347	1.613	1.751	1.884	2.017
PENRM	MJ	0.404	0.671	1.075	1.347	1.613	1.751	1.884	2.017
PENRT	MJ	0.404	0.671	1.075	1.347	1.613	1.751	1.884	2.017
SM	kg	0.397	0.662	1.061	1.323	1.591	1.722	1.854	1.990
RSF	MJ	0.397	0.662	1.061	1.323	1.591	1.722	1.854	1.990
NRSF	MJ	0.397	0.662	1.061	1.323	1.591	1.722	1.854	1.990
FW	m3	0.397	0.662	1.061	1.323	1.591	1.722	1.854	1.990
HWD	kg	0.399	0.667	1.066	1.328	1.596	1.727	1.864	1.995
NHWD	kg	0.425	0.707	1.131	1.416	1.698	1.840	1.980	2.123
RWD	kg	0.436	0.728	1.161	1.453	1.745	1.891	2.036	2.182
CRU	kg	0.381	0.633	1.015	1.267	1.519	1.648	1.774	1.900
MFR	kg	0.380	0.632	1.012	1.264	1.516	1.644	1.771	1.896
MER	kg	0.381	0.633	1.015	1.267	1.519	1.648	1.774	1.900
EE	MJ	0.381	0.633	1.015	1.267	1.519	1.648	1.774	1.900

				Module A4					
Indicator	Unit	30mm	50mm	80mm	100mm	120mm	130mm	140mm	150mm
GWP	kg CO2 eq.	0.415	0.693	1.109	1.382	1.664	1.800	1.936	2.082
ODP	kg CFC 11 eq.	0.416	0.694	1.110	1.388	1.665	1.804	1.943	2.081
AP	kg SO2 eq.	0.418	0.697	1.114	1.391	1.670	1.809	1.949	2.088
EP	kg (PO4)3- eq.	0.417	0.696	1.111	1.394	1.667	1.808	1.949	2.091
POCP	kg C2H4 eq.	0.417	0.696	1.113	1.390	1.673	1.815	1.943	2.085
ADPE	kg Sb eq.	0.417	0.696	1.114	1.391	1.668	1.804	1.946	2.087

Module A4										
ADPF	MJ eq.	0.417	0.696	1.111	1.392	1.667	1.807	1.947	2.088	
PERE	MJ	0.417	0.695	1.112	1.390	1.668	1.807	1.946	2.085	
PERM	MJ	0.417	0.696	1.113	1.391	1.674	1.814	1.953	2.093	
PERT	MJ	0.417	0.695	1.112	1.390	1.668	1.807	1.946	2.085	
PENRE	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088	
PENRM	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088	
PENRT	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088	
SM	kg	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
RSF	MJ	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
NRSF	MJ	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
FW	m3	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
HWD	kg	0.417	0.696	1.114	1.391	1.667	1.807	1.947	2.087	
NHWD	kg	0.417	0.692	1.110	1.390	1.664	1.808	1.945	2.082	
RWD	kg	0.419	0.698	1.119	1.398	1.678	1.814	1.958	2.093	
CRU	kg	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
MFR	kg	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
MER	kg	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	
EE	MJ	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088	

Module A5										
Indicator	Unit	30mm	50mm	80mm	100mm	120mm	130mm	140mm	150mm	
GWP	kg CO2 eq.	0.409	0.682	1.088	1.365	1.635	1.770	1.905	2.041	
ODP	kg CFC 11 eq.	0.431	0.720	1.152	1.439	1.722	1.864	2.006	2.164	
AP	kg SO2 eq.	0.415	0.692	1.107	1.384	1.656	1.798	1.940	2.083	
EP	kg (PO4)3- eq.	0.429	0.718	1.147	1.429	1.718	1.859	2.000	2.147	
POCP	kg C2H4 eq.	0.394	0.659	1.049	1.314	1.578	1.708	1.838	1.973	
ADPE	kg Sb eq.	0.459	0.766	1.228	1.526	1.833	1.991	2.140	2.298	
ADPF	MJ eq.	0.404	0.675	1.078	1.349	1.617	1.753	1.889	2.024	
PERE	MJ	0.393	0.655	1.048	1.310	1.576	1.707	1.838	1.969	
PERM	MJ	0.378	0.635	1.013	1.266	1.519	1.644	1.772	1.897	
PERT	MJ	0.393	0.659	1.052	1.314	1.576	1.707	1.838	1.969	
PENRE	MJ	0.406	0.674	1.080	1.349	1.617	1.754	1.889	2.023	
PENRM	MJ	0.406	0.674	1.080	1.349	1.617	1.754	1.889	2.023	
PENRT	MJ	0.406	0.674	1.080	1.349	1.617	1.754	1.889	2.023	
SM	kg	0.397	0.663	1.060	1.327	1.590	1.724	1.857	1.990	
RSF	MJ	0.397	0.663	1.060	1.327	1.590	1.724	1.857	1.990	
NRSF	MJ	0.397	0.663	1.060	1.327	1.590	1.724	1.857	1.990	
FW	m3	0.397	0.663	1.060	1.327	1.590	1.724	1.857	1.990	
HWD	kg	0.398	0.664	1.063	1.328	1.594	1.727	1.860	1.992	
NHWD	kg	0.418	0.698	1.116	1.395	1.673	1.821	1.839	2.089	
RWD	kg	0.431	0.722	1.154	1.444	1.732	1.876	2.016	2.163	

				Module A5					
CRU	kg	0.379	0.632	1.011	1.264	1.518	1.643	1.771	1.904
MFR	kg	0.379	0.632	1.010	1.260	1.510	1.644	1.769	1.894
MER	kg	0.379	0.632	1.011	1.264	1.518	1.643	1.771	1.904
EE	MJ	0.379	0.632	1.011	1.264	1.518	1.643	1.771	1.904

				Module C2					
Indicator	Unit	30mm	50mm	80mm	100mm	120mm	130mm	140mm	150mm
GWP	kg CO2 eq.	0.415	0.693	1.109	1.382	1.664	1.800	1.936	2.082
ODP	kg CFC 11 eq.	0.416	0.694	1.110	1.388	1.665	1.804	1.943	2.081
AP	kg SO2 eq.	0.418	0.697	1.114	1.391	1.670	1.809	1.949	2.088
EP	kg (PO4)3- eq.	0.417	0.696	1.111	1.394	1.667	1.808	1.949	2.091
POCP	kg C2H4 eq.	0.417	0.696	1.113	1.390	1.673	1.815	1.943	2.085
ADPE	kg Sb eq.	0.417	0.696	1.114	1.391	1.668	1.804	1.946	2.087
ADPF	MJ eq.	0.417	0.696	1.111	1.392	1.667	1.807	1.947	2.088
PERE	MJ	0.417	0.695	1.112	1.390	1.668	1.807	1.946	2.085
PERM	MJ	0.417	0.696	1.113	1.391	1.674	1.814	1.953	2.093
PERT	MJ	0.417	0.695	1.112	1.390	1.668	1.807	1.946	2.085
PENRE	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
PENRM	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
PENRT	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
SM	kg	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
RSF	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
NRSF	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
FW	m3	0.418	0.695	1.113	1.393	1.670	1.809	1.950	2.088
HWD	kg	0.417	0.696	1.114	1.391	1.667	1.807	1.947	2.087
NHWD	kg	0.417	0.692	1.110	1.390	1.664	1.808	1.945	2.082
RWD	kg	0.419	0.698	1.119	1.398	1.678	1.814	1.958	2.093
CRU	kg	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
MFR	kg	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
MER	kg	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088
EE	MJ	0.417	0.694	1.112	1.388	1.671	1.806	1.947	2.088

Module C3									
Indicator	Unit	30mm	50mm	80mm	100mm	120mm	130mm	140mm	150mm
GWP	kg CO2 eq.	0.408	0.684	1.096	1.356	1.633	1.774	1.774	2.045
ODP	kg CFC 11 eq.	0.407	0.678	1.087	1.357	1.626	1.765	1.765	2.043
AP	kg SO2 eq.	0.409	0.681	1.095	1.356	1.637	1.773	1.773	2.044
EP	kg (PO4)3- eq.	0.409	0.682	1.095	1.359	1.632	1.773	1.773	2.045
POCP	kg C2H4 eq.	0.408	0.681	1.095	1.359	1.632	1.773	1.773	2.051
ADPE	kg Sb eq.	0.407	0.678	1.093	1.355	1.631	1.771	1.771	2.042
ADPF	MJ eq.	0.408	0.684	1.096	1.360	1.636	1.776	1.776	2.051

Module C3										
PERE	MJ	0.409	0.681	1.098	1.362	1.634	1.779	1.779	2.051	
PERM	MJ	0.409	0.682	1.094	1.360	1.633	1.774	1.774	2.047	
PERT	MJ	0.409	0.681	1.098	1.362	1.634	1.779	1.779	2.051	
PENRE	MJ	0.408	0.680	1.094	1.358	1.631	1.774	1.774	2.047	
PENRM	MJ	0.408	0.680	1.094	1.358	1.631	1.774	1.774	2.047	
PENRT	MJ	0.408	0.680	1.094	1.358	1.631	1.774	1.774	2.047	
SM	kg	0.408	0.680	1.094	1.358	1.625	1.777	1.777	2.052	
RSF	MJ	0.408	0.680	1.094	1.358	1.625	1.777	1.777	2.052	
NRSF	MJ	0.408	0.680	1.094	1.358	1.625	1.777	1.777	2.052	
FW	m3	0.408	0.680	1.094	1.358	1.625	1.777	1.777	2.052	
HWD	kg	0.408	0.681	1.094	1.360	1.633	1.775	1.775	2.048	
NHWD	kg	0.408	0.680	1.095	1.358	1.633	1.773	1.773	2.048	
RWD	kg	0.409	0.680	1.095	1.360	1.630	1.775	1.775	2.045	
CRU	kg	0.410	0.684	1.091	1.364	1.636	1.775	1.775	2.048	
MFR	kg	0.410	0.684	1.091	1.364	1.636	1.775	1.775	2.048	
MER	kg	0.410	0.684	1.091	1.364	1.636	1.775	1.775	2.048	
EE	MJ	0.410	0.684	1.091	1.364	1.636	1.775	1.775	2.048	

Module C4									
Indicator	Unit	30mm	50mm	80mm	100mm	120mm	130mm	140mm	150mm
GWP	kg CO2 eq.	0.382	0.668	1.097	1.336	1.622	1.765	1.765	2.000
ODP	kg CFC 11 eq.	0.381	0.668	1.096	1.334	1.621	1.766	1.766	1.993
AP	kg SO2 eq.	0.381	0.664	1.099	1.336	1.618	1.763	1.763	2.000
EP	kg (PO4)3- eq.	0.380	0.666	1.094	1.332	1.618	1.760	1.760	1.998
POCP	kg C2H4 eq.	0.381	0.668	1.095	1.332	1.617	1.759	1.759	2.000
ADPE	kg Sb eq.	0.380	0.669	1.097	1.334	1.620	1.763	1.763	2.003
ADPF	MJ eq.	0.380	0.667	1.096	1.333	1.618	1.760	1.760	2.004
PERE	MJ	0.381	0.669	1.092	1.331	1.620	1.761	1.761	2.000
PERM	MJ	0.381	0.666	1.094	1.332	1.619	1.762	1.762	2.000
PERT	MJ	0.381	0.669	1.092	1.331	1.620	1.761	1.761	2.000
PENRE	MJ	0.380	0.667	1.095	1.333	1.618	1.762	1.762	1.993
PENRM	MJ	0.380	0.667	1.095	1.333	1.618	1.762	1.762	1.993
PENRT	MJ	0.380	0.667	1.095	1.333	1.618	1.762	1.762	1.993
SM	kg	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997
RSF	MJ	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997
NRSF	MJ	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997
FW	m3	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997
HWD	kg	0.381	0.667	1.095	1.333	1.617	1.761	1.761	1.998
NHWD	kg	0.382	0.667	1.095	1.338	1.624	1.767	1.767	2.005
RWD	kg	0.382	0.667	1.097	1.333	1.621	1.764	1.764	2.000
CRU	kg	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997

Module C4									
MFR	kg	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997
MER	kg	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997
EE	MJ	0.381	0.666	1.095	1.333	1.617	1.764	1.764	1.997

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Kingspan insulation technical information: www.kingspaninsulation.co.uk/dop

UK Statistics on Waste report that the recovery rate from non-hazardous construction and demolition waste is approx. 91% at of 2016 (from UK Statistics on Waste,

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784263/UK_Statistics_on_Waste_statistical_notice_March_2019_rev_FINAL.pdf

CEN. Thermal insulation products for building equipment and industrial installations - Factory made rigid polyurethane foam (PUR) and polyisocyanurate foam (PIR) products – Specification - EN 14308/PRA1. Brussels, CEN, 2018