Sistemas Lineares (SLs)

Álgebra Linear Computacional - Fabricio Murai

Aula anterior

- Fundamentos teóricos do PCA
 - Matriz de covariância
 - Mudança de base
 - Maximização da variância (minimização do ruído)
 - Relação entre SVD e PCA

Aula de hoje

- Existência e unicidade de soluções
- Perspectiva geométrica de SLs
- Perspectiva vetorial de SLs
- Exemplos de matrizes escalonadas
 - Matriz quadrada: posto, autovalores e determinante
- Solução de sistemas triangulares

Este sistema linear possui solução?

Resposta: Sim, pois <u>é possível</u> obter um <u>sistema equivalente</u> do tipo Ux=d, onde U é triangular superior, cuja <u>solução é única</u>.

Teorema fundamental

Para qualquer SL de equações Ax=b, vale uma de 3 possibilidades:

- É inconsistente (não possui solução)
- É consistente:
 - Possui uma única solução
 - Possui infinitas soluções

Objetivo de aprendizagem: entender a intuição geométrica de por que não existem sistemas com número finito (maior que 1) de soluções.

Perspectiva: interseção de hiperplanos

Sistema com 3 equações 3 variáveis:

$$\begin{vmatrix} 1 & -3 & 2 & | & x_1 & | & 22 & | & & & & & & & \\ -2 & 8 & 1 & | & x_2 & = & -12 & | & & & & & & \\ -20 & 5 & 3 & | & x_3 & | & -65 & | & & & & & & & \\ -100 & & & & & & & & & & & & \\ \hline \end{bmatrix}$$

$$x=[5,1,10]^{ op}$$

Fonte: CAMPOS, filho. Algoritmos Numéricos. 3a. edição.

Perspectiva: SL como combinação linear

Encontrar a solução x para $A_{mxn}x_{nx1} = b_{mx1}$ equivale a encontrar a combinação linear das colunas de A que satisfazem:

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\ldots+x_n\mathbf{a}_n=\mathbf{b}_n$$

Pergunta: Quando existe solução?

Resposta: Quando b está no espaço S de colunas de A

$$S = \{x_1\mathbf{a}_1 + \ldots + x_n\mathbf{a}_n | x_1, \ldots, x_n \in \mathbb{R}\}$$

Objetivo de aprendizagem: entender a relação entre o espaço de colunas de A e a solução de Ax=b.

Quiz: posto e

Exemplos de matrizes escalonadas existência

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

- \bullet Mx = b gorda; posto de linha completo; infinitas soluções p/ qualquer b (2 vars livres)
- \bullet Nx = b magra; posto de coluna completo; inconsistente p/ alguns b e solução única p/ outros
- \bullet Px = b quadrada; posto incompleto; inconsistente p/ alguns b e infinitas p/ outros

Objetivo de aprendizagem: entender a relação entre o posto de linha e a existência de solução e a relação entre posto de coluna e unicidade da solução.

Caso particular: matriz quadrada

Fatos importantes sobre matriz quadrada A_{nxn} :

- Posto é igual ao número de autovalores não-nulos
- Produto dos autovalores é igual ao determinante

$$\det(\mathbf{A}) = \prod_i \lambda_i$$

Soma dos autovalores é igual ao traço(A)

$$\operatorname{traço}(\mathbf{A}) = \sum_i \lambda_i$$

Objetivo de aprendizagem: conhecer as relações entre determinante, traço, posto e autovalores de uma matriz quadrada.

Perguntas sobre matrizes quadradas

Qual a relação entre posto e determinante?

$$posto(A) = n \iff det(\mathbf{A}) \neq 0$$

Para todo b, Ax=b tem solução única. Qual posto(A)?
 Qual a solução x?

$$\mathbf{posto}(\mathbf{A}) = n$$
 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Determinante pela expansão de Laplace

Cofator i,j da matriz B: $C_{ij} = (-1)^{i+j} M_{ij}$, onde Mij é o menor i,j de B (determinante da matriz (n-1)x(n-1) que resulta ao deletar a linha i e coluna j)

Teorema. O determinante |B| da matriz B_{nxn} é dado por

$$|B| = b_{i1}C_{i1} + b_{i2}C_{i2} + \dots + b_{in}C_{in}$$

 $= b_{1j}C_{1j} + b_{2j}C_{2j} + \dots + b_{nj}C_{nj}$
 $= \sum_{i'=1}^{n} b_{ij'}C_{ij'} = \sum_{i'=1}^{n} b_{i'j}C_{i'j}$

Objetivo de aprendizagem: conhecer a expansão de Laplace e a complexidade computacional do cálculo do determinante através dela.

Determinante pela expansão de Laplace

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

Usando a Linha 1:

$$|B| = 1 \cdot egin{bmatrix} 5 & 6 \ 8 & 9 \end{bmatrix} - 2 \cdot egin{bmatrix} 4 & 6 \ 7 & 9 \end{bmatrix} + 3 \cdot egin{bmatrix} 4 & 5 \ 7 & 8 \end{bmatrix}$$

Usando a Coluna 2:

$$|B| = -2 \cdot egin{vmatrix} 4 & 6 \ 7 & 9 \end{bmatrix} + 5 \cdot egin{vmatrix} 1 & 3 \ 7 & 9 \end{bmatrix} - 8 \cdot egin{vmatrix} 1 & 3 \ 4 & 6 \end{bmatrix}$$

COLA

$$|B| = b_{i1}C_{i1} + b_{i2}C_{i2} + \dots + b_{in}C_{in}$$

 $= b_{1j}C_{1j} + b_{2j}C_{2j} + \dots + b_{nj}C_{nj}$
 $= \sum_{j'=1}^{n} b_{ij'}C_{ij'} = \sum_{i'=1}^{n} b_{i'j}C_{i'j}$

O que podemos dizer sobre o posto de B?

Sistemas triangulares

Lx=c é dito sistema triangular inferior quando L é triangular inferior.

Pode ser resolvido pelo método das substituições sucessivas.

$$x_1 = \frac{c_1}{l_{11}}$$
 $x_2 = \frac{c_2 - l_{21}x_1}{l_{22}}$
 $\dots = \dots$
 $x_i = \frac{c_i - l_{i1}x_1 - l_{i2}x_2 - \dots l_{i,i-1}x_{i-1}}{l_{ii}}$

Objetivo de aprendizagem: aprender a identificar e resolver sistemas triangulares.

Método das substituições sucessivas

Entrada: matriz triangular inferior L_{nxn} , vetor c_{nx1}

Saída: vetor solução x_{nx1}

```
Para i=1 até n:
    Soma = 0
    Para j=1 até i-1:
        Soma += L[i,j]*x[j]
    x[i] = (c[i] - soma)/L[i,i]
Retorna x
```

Objetivo de aprendizagem: aprender a implementar o método das substituições sucessivas e sua complexidade.

Método das substituições sucessivas

Entrada: matriz triangular inferior L_{nxn} , vetor c_{nx1}

Saída: vetor solução x_{nx1}

```
Para i=1 até n:

soma = 0

Para j=1 até i-1:

soma += L[i,j]*x[j]

x[i] = (c[i]-Soma)/L[j,j]

Retorna x
```

Quantas adições, multiplicações e divisões?

Sistemas triangulares

Ux=d é dito sistema triangular superior quando U é triangular superior.

Pode ser resolvido pelo método das substituições retroativas.

$$x_{n} = \frac{d_{n}}{u_{nn}}$$

$$x_{n-1} = \frac{d_{n-1} - u_{n-1,n}x_{n}}{u_{nn}}$$

$$\ldots = \ldots$$

$$x_i = \frac{d_i - u_{i,i+1} x_{i+1} - u_{i,i+2} x_{i+2} - \dots u_{i,n} x_{i,n}}{u_{ii}}$$

Quando Ax=b possui solução?

Relação entre posto de A_{mxn} e posto da matriz aumentada A|b

- posto(A) = posto(A|b): consistente (possui solução)
 - posto(A) = n: solução única
 - posto(A) < n: infinitas soluções
- posto (A) < posto(A|b): inconsistente (não possui solução)

Aula anterior

- Existência e unicidade de soluções
- Perspectiva geométrica de SLs
- Perspectiva vetorial de SLs
- Exemplos de matrizes escalonadas
 - Matriz quadrada: posto, autovalores e determinante
- Solução de sistemas triangulares

Aula de hoje

- Como transformar Ax=b em Ux=d?
 - Operações L-elementares
- Implementação da Eliminação de Gauss
 - Cálculo do número de operações
- Quando a Eliminação falha
 - Pivotação parcial

Como transformar Ax=b em Ux=d?

Operações L-elementares

Usadas para transformar Ax=b em um sistema equivalente Bx=c (mesma solução):

Quanto vale det(B) após Eliminação de Gauss?

- Trocar linhas i e j det(B) = -det(A)
- Multiplicar uma linha por $c \neq 0$ det(B) = c det(A)
- Adicionar s vezes linha i à linha j det(B) = det(A)

Eliminação de Gauss

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ -15 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ -36 \end{bmatrix}.$$

Dispositivo Prático (CAMPOS, filho 2018).

L	Multiplicador		\boldsymbol{A}		b	Operações
1		1	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{31} = 4/1 = 4$	4	-6	5	29	
4		0	2	3	7	$2L_1 + L_2$
5	$m_{32} = 6/2 = 3$	0	6	-3	-15	$-4L_1 + L_3$
6		0	0	<u>-12</u>	-36	$-3L_4 + L_5$

Qual o determinante?

Objetivo de aprendizagem: reconhecer os multiplicadores envolvidos na Eliminação de Gauss; calcular o determinante de uma matriz usando escalonamento.

L	Multiplicador	pivô A		b	Operações
1		1 -3	2	11	
2		-2 8	-1	-15	
3		4 -6	5	29	
4	2,0				
5		803		80.00	
6	0.50				

L	Multiplicador		A		b	Operações
1		1 .	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5	29	
4						
5	0-071-93-V. 5-7	125025		12.50	5(1)37	
6						

L	Multiplicador		A		b	Operações
1		1	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5	29	
4						$2L_1 + L_2$
5	0-01-05-0-1	12:015		785	51000	34/04/
6	99					

L	Multiplicador		A		b	Operações
1		1	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5	29	
4		0	2	3	7	$2L_1 + L_2$
5	3-23-1-3-2-2	1202		10.50	5(3)31	
6						

L	Multiplicador		A		b	Operações
1		1	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5	29	
4		0	2	3	7	$2L_1 + L_2$
5	3-23-1-3-2-2	0	6	-3	-15	$ -4L_1+L_3 $
6	92					

L	Multiplicador		A		b	Operações
1		1	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5	29	
4		0	2	3	7	$2L_1 + L_2$
5	$m_{32} = 6/2 = 3$	0	6	-3	-15	$-4L_1 + L_3$
6	92					

L	Multiplicador		A		b	Operações
1		1	-3	2	11	
2	$m_{21} = (-2)/1 = -2$	-2	8	-1	-15	
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5	29	
4	310	0	2	3	7	$2L_1 + L_2$
5	$m_{32} = 6/2 = 3$	0	6	-3	-15	$ -4L_1+L_3 $
6		0	0	<u>-12</u>	-36	$-3L_4 + L_5$

Eliminação de Gauss: Implementação v I

```
Entrada: A<sub>nxn</sub>, b<sub>nx1</sub>
                          U = A.copy()
Saída: U<sub>nxn</sub>, d<sub>nx1</sub>
                             d = b.copy()
                              Para j=l até n-l:
                                  Para i=j+l até n:
                                       M = U[i,j]/U[j,j]
                                       Para k=j até n:
                                            U[i,k] = -M*U[j,k] + U[i,k]
                                       d[i] = -M*d[i]+d[i]
                              Retorna U,d
```

Objetivo de aprendizagem: aprender a implementar a Eliminação de Gauss.

Eliminação de Gauss: Implementação v I

Entrada: A_{nxn} , b_{nx1}

Saída: U_{nxn}, d_{nx1}

Como reduzir o número de divisões?

Posso pular k=j?

```
U=A.copy()
d=b.copy()
Para j=l até n-l:
   R = I/U[i,i]
   Para i=j+l até n:
       m = U[i,j]*r
       for k=j+l até n:
           U[i,k] = U[i,k]-m*U[j,k]
       d[i] = d[i] - m*d[j]
```

retorna triu(U), d
Objetivo de aprendizagem: reconhecer as diferenças nos custos de diferentes operações algébricas e oportunidades para otimização.

Eliminação de Gauss: Implementação v2

Entrada: A_{nxn} , b_{nx1}

Saída: U_{nxn} , d_{nx1}

Como reduzir o tempo de execução?

```
U=A.copy()
d=b.copy()
Para j=l até n-l:
    r = I/U[i,i]
    Para i=j+l até n:
        m = U[i,j]*r
        U[i,j+1:] = U[i,j+1:]-m*U[j,j+1:]
        d[i] = d[i] - m * d[i]
retorna triu(U), d
```

Eliminação de Gauss: Implementação v3

```
Entrada: A<sub>nxn</sub>, b<sub>nx1</sub>
                           U=A.copy()
Saída: U_{nxn}, d_{nx1}
                            d=b.copy()
                            Para j=l até n-l:
                                 r = I/U[i,i]
                                 Para i=j+l até n:
                                     m = U[i,j]*r
                                     U[i,j+1:n] = U[i,j+1:n]-m*U[j,j+1:n]
                                     d[i] = d[i] - m*d[j]
                            retorna triu(U), d
```

Complexidade da Eliminação de Gauss

Quantas divisões, adições (+ ou -) e multiplicações no cálculo de U?

Divisões: n-l

Adições:

$$\sum_{a=1}^{n-1} a^2 = \frac{(n-1)n(2n-1)}{6}$$
$$= \frac{n^3}{2} - \frac{n^2}{2} + \frac{n}{6}$$

Objetivo de aprendizagem: calcular o custo computacional da Eliminação de Gauss.

$$j=n-1$$
 $i=n$ $i=n$ I^2 vezes

Complexidade da Eliminação de Gauss

Quantas divisões, adições (+ ou -) e multiplicações no cálculo de U?

Divisões: n-l

Adições:
$$\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$$

j=I ______ i=2 ... i=n

(n-I) vezes

Multiplicações:

$$\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6} + \frac{n(n-1)}{2} =$$

$$\frac{n^3}{3} - \frac{n}{3}$$

(n-2) vezes

l vez

Quando a eliminação falha ou tem erro grande?

- Quando o pivô é zero, eliminação falha.
- Quando pivô é relativamente pequeno, temos m > 1, o que pode aumentar muito o erro de arredondamento.

Teórico: res
$$\leftarrow a_{21} - m \cdot a_{11}$$

arredondamento: $rd(x) = x - \hat{x}$

Real:
$$\widehat{\text{res}} \leftarrow \hat{a}_{21} - \hat{m} \cdot \hat{a}_{11}$$

$$rd(ext{res}) \leftarrow rd(a_{21}) - m \cdot a_{11} + \hat{m} \cdot \hat{a}_{11}$$

Erro de Como m e \hat{m} são aproximadamente iguais,

$$rd(ext{res}) \leftarrow rd(a_{21}) - \hat{m} \cdot rd(a_{11})$$

$$|rd(ext{res})| \leftarrow |rd(a_{21}) - \hat{m} \cdot rd(a_{11})|$$

Quanto maior m, maior o erro de arredondamento.

Fonte:https://ocw.mit.edu/courses/chemical-engineering/10-34-numerical-methods-applied-to-chemical-engineering-fall-2005/lecture-notes/lecturenotes123.pdf

Quando a eliminação falha ou tem erro grande?

Solução

Trocar linha de modo a tornar o pivô não-nulo.

Mas existem várias opções. Qual é a melhor?

O melhor é escolher como pivô elemento da coluna de maior valor absoluto (técnica chamada **pivotação parcial**).

Eliminação de Gauss com pivotação parcial

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

L	Multiplicador		A		b	Operações
1	$m_{11} = 1/4 = 0.25$	1	-3	2	11	
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1	-15	
3		4	-6	5	29	
4	$m_{12} = (-1,5)/5 = -0,3$	0	-1,5	0,75	3,75	$-0.25L_3 + L_1$
5		0	<u>5</u>	1,5	-0,5	$0.5L_3 + L_2$
6		0	0	1,2	3,6	$0.3L_5 + L_4$

Aula anterior

- Como transformar Ax=b em Ux=d?
 - Operações L-elementares
- Implementação da Eliminação de Gauss
 - Cálculo do número de operações
- Quando a Eliminação de Gauss falha
 - Solução: pivotação parcial

Aula de hoje

- Fatoração LU
 - Resolvendo Ax=b usando fatoração A=LU
 - Como obter fatores LU
 - Implementando LU
 - Instabilidade numérica de A=LU
- Fatoração PA=LU
 - Como obter P
 - Resolvendo Ax=b usando PA=LU
 - Implementando PA=LU

E se eu mudar o vetor b para b'? Qual o custo para resolver o novo sistema?

Fatoração LU (ou Decomposição LU)

É a decomposição $A_{nxn} = L_{nxn}U_{nxn}$ onde L é triangular inferior e U é triangular superior.

Fatoração LU

Pode ser usada para resolver sistemas Ax=b

Como?

Ax=b LUx=b y

Qual o custo para resolver Ax=b assim?

Sistema tri. #1 Sistema tri. #2

Ly=b Ux=y

Encontra y Encontra x

Objetivo de aprendizagem: entender como resolver sistema Ax=b a partir da fatoração LU e qual o custo da solução.

Como obter os fatores L e U?

Usando a própria eliminação de Gauss:

Zerar a coluna I equivale a pré-multiplicar A por matriz tri inf L_1 . Quem é L_1 ?

Zerar a coluna 2 equivale a pré-multiplicar L_1A por matriz tri inf L_2 . Quem é L_2 ?

• • •

Como obter os fatores L e U?

$$U=L_{n-1}\cdots L_2L_1A$$
 $(L_{n-1}\cdots L_2L_1)^{-1}U=A$
 $L_1^{-1}\cdots L_{n-1}^{-1}U=A$

Dois golpes de sorte:

- L_i-1 é obtida trocando-se o sinal da coluna não-nula de L_i abaixo da diagonal
- O produto L_i-l e L_j-l é obtido preenchendo-se as colunas i e j abaixo da matriz identidade com colunas dessas matrizes

Fatoração LU a partir da Eliminação de Gauss

\boldsymbol{L}	Multiplicador		A	
1		1	-3	2
2	$m_{21} = (-2)/1 = -2$	-2	8	-1
3	$m_{21} = (-2)/1 = -2$ $m_{31} = 4/1 = 4$	4	-6	5
4		0	2	3
5	$m_{32} = 6/2 = 3$	0	6	-3
6		0	0	<u>-12</u>

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix}.$$

Α

L

U

Exemplo da resolução de Ax=b usando LU

Sistema triangular inferior Ly=b

 \bullet Substituições sucessivas Ly = b

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix},$$

$$y_1 = 11,$$

$$-2y_1 + y_2 = -15, \ y_2 = -15 + 2(11) \rightsquigarrow y_2 = 7 \text{ e}$$

$$4y_1 + 3y_2 + y_3 = 29, \ y_3 = 29 - 4(11) - 3(7) \rightsquigarrow y_3 = -36.$$

• Vetor intermediário: $y = \begin{bmatrix} 11 & 7 & -36 \end{bmatrix}^T$.

Exemplo da resolução de Ax=b usando LU

Sistema triangular superior Ux=y

• Substituições retroativas

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ -36 \end{bmatrix},$$

$$-12x_3 = -36, \ x_3 = \frac{-36}{-12} \rightsquigarrow x_3 = 3,$$

$$2x_2 + 3x_3 = 7, \ x_2 = \frac{7 - 3(3)}{2} \rightsquigarrow x_2 = -1 \text{ e}$$

$$x_1 - 3x_2 + 2x_3 = 11, \ x_1 = \frac{11 + 3(-1) - 2(3)}{1} \rightsquigarrow x_1 = 2.$$

• Vetor solução: $x = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$.

Eliminação de Gauss: Implementação v3

Entrada: A_{nxn} , b_{nx1}

Saída: U_{nxn} , d_{nx1}

Que mudanças devemos fazer?

```
U=A.copy()
d=b.copy()
Para j=l até n-l:
    r = I/U[i,i]
    Para i=j+l até n:
        m = U[i,j]*r
        U[i,j+1:n] = U[i,j+1:n]-m*U[j,j+1:n]
        d[i] = d[i] - m * d[i]
retorna triu(U), d
```

Implementando LU

```
Entrada: A<sub>nxn</sub>
```

Saída: U_n

Uma diferença importante: não precisamos da coluna b

```
U=A.copy()
L=np.eye(n) # matriz identidade de ordem n
Para j=1 até n-1:
   r = I/U[j,j]
   Para i=j+l até n:
       L[i,j] = U[i,j]*r
       U[i,j+1:n] = U[i,j+1:n]-L[i,j]*U[j,j+1:n]
retorna L, triu(U)
```

LU tem mesmo problema que Eliminação

Como LU é essencialmente Eliminação de Gauss, pivôs pequenos também são problemáticos. Ex:

$$A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 1 \end{bmatrix}, \qquad L = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix}, \qquad U = \begin{bmatrix} 10^{-20} & 1 \\ 0 & 1 - 10^{20} \end{bmatrix}.$$

Suponha $\varepsilon_{\text{machine}} = 10^{-16}$. Nesse caso, $1-10^{20}$ não será representado de forma exata:

$$\tilde{L} = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix}, \qquad \tilde{U} = \begin{bmatrix} 10^{-20} & 1 \\ 0 & -10^{20} \end{bmatrix}. \qquad \tilde{L}\tilde{U} = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{array}{c} \text{Por que isso} \\ \text{\'e ruim?} \end{array}$$

LU tem mesmo problema que Eliminação

$$A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 1 \end{bmatrix}$$
.

$$\tilde{L}\tilde{U} = \begin{bmatrix} 10^{-20} & 1\\ 1 & 0 \end{bmatrix}$$

Suponha $b=(1,0)^T$.

Qual a solução correta para Ax=b? $\tilde{x} = (-1,1)^{T}$

Qual a solução obtida? $x \approx (0,1)^{T}$

Como resolver o problema?

Fatoração PA=LU

- Para resolver a instabilidade numérica da fatoração LU, podemos usar a pivotação parcial (permuta de linhas).
- É como permutar as linhas de A antes de fazer a fatoração:

L	m		Α		Operações	\underline{p}
1	$m_{11} = 1/4 = 0.25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3	2000000	4	-6	5		3
4	$m_{12} = (-1,5)/5 = -0,3$	0	-1,5	0,75	$-0,25L_3+L_1$	1
5		0	<u>5</u>	1,5	$0.5L_3 + L_2$	2
6	2	0	0	1,2	$0.3L_5 + L_4$	1

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad A = \begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix}$$

$$PA = \begin{bmatrix} 4 & -6 & 5 \\ -2 & 8 & -1 \\ 1 & -3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

Diferença: não precisamos da coluna **b**

L	m	9	A		Operações	p
1	SUBSTRUCT SPORTERING	1	-3	2		1
2		-2	8	-1		2
3		4	-6	5	8	3
4				200		
5				_		
6		24				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

L	m		A		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2		-2	8	-1		2
3		4	-6	5		3
4				1.000		
5						
6		91				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\overline{L}	m		A		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2	$m_{11} = 1/4 = 0.25$ $m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3	00000000 00000 00000000000000000000000	4	-6	5		3
4				10000		
5						
6		150				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m		\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2	$m_{11} = 1/4 = 0.25$ $m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3		4	-6	5		3
4				1000		1
5				_		2
6		-				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m	8	A		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	-6	5		3
4				1000	$-0.25L_3 + L_1$	1
5				_		2
6		01				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m	9	\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3	100 Anni 100	4	-6	5		3
4					$-0.25L_3 + L_1$	1
5					$-0.25L_3 + L_1$ $0.5L_3 + L_2$	2
6						

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m	9	\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3	The North Control of the State	4	-6	5		3
4		0	-1,5	0,75	$-0,25L_3+L_1$	1
5				•	$0.5L_3 + L_2$	2
6		01				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m	9	\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0,25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3	The tree to the second	4	-6	5		3
4		0	-1,5	0,75	$-0.25L_3 + L_1$	1
5		0	<u>5</u>	1,5	$0.5L_3 + L_2$	2
6		01				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m		\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0.25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3		4	-6	5		3
4	$m_{12} = (-1,5)/5 = -0,3$	0	-1,5	0,75	$-0,25L_3+L_1$	1
5		0	<u>5</u>	1,5	$0.5L_3 + L_2$	2
6		31				

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m		\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0.25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3		4	-6	5		3
4	$m_{12} = (-1,5)/5 = -0,3$	0	-1,5	0,75	$-0,25L_3+L_1$	1
5		0	<u>5</u>	1,5	$0.5L_3 + L_2$	2
6		9			$0.3L_5 + L_4$	1

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

\boldsymbol{L}	m	8	\boldsymbol{A}		Operações	p
1	$m_{11} = 1/4 = 0.25$	1	-3	2		1
2	$m_{21} = (-2)/4 = -0.5$	-2	8	-1		2
3		4	-6	5		3
4	$m_{12} = (-1,5)/5 = -0,3$	0	-1,5	0,75	$-0,25L_3+L_1$	1
5		0	<u>5</u>	1,5	$0.5L_3 + L_2$	2
6		0	0	1,2	$0.3L_5 + L_4$	1

Outro exemplo

$$\begin{bmatrix} 4 & -1 & 0 & -1 \\ 1 & -2 & 1 & 0 \\ 0 & 4 & -4 & 1 \\ 5 & 0 & 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -3 \\ 4 \end{bmatrix}.$$

Outro exemplo

L	m	A Oper	rações p
1	$m_{11} = 4/5 = 0.8$	4 -1 0 -1	1
0.000.000	$m_{21} = 1/5 = 0.2$	1 -2 1 0	2
3	$m_{31} = 0/5 = 0$	0 4 -4 1	3
4		<u>5</u> 0 5 −1	4

Outro exemplo

L	m			Α		Operações	p
1	$m_{11} = 4/5 = 0.8$	4	-1	0	-1		1
2	$m_{21} = 1/5 = 0.2$	1	-2	1	0		2
3	$m_{31} = 0/5 = 0$	0	4	-4	1		3
4		<u>5</u>	0	5	-1		4
5	$m_{12} = (-1)/4 = -0.25$	0	-1	-4	-0, 2	$-0.8L_4 + L_1$	1
6	$m_{22} = (-2)/4 = -0.5$	0	-2	0	0,2	$-0.2L_4 + L_2$	2
7		0	4	-4	1	$0L_4 + L_3$	3
8		0	0	-5	0,05	$0.25L_7 + L_5$	1
9	$m_{23} = (-2)/(-5) = 0.4$	0	0	-2	0,7	$0.5L_7 + L_6$	2
10		0	0	0	0,68	$-0.4L_8 + L_9$	2

Resolvendo Ax=b usando PA=LU

Pode ser usada para resolver sistemas Ax=b

Como?

Qual o custo para resolver Ax=b assim?

Sistema tri. #1 Sistema tri. #2

Ly=Pb Ux=y

Encontra y Encontra x

Objetivo de aprendizagem: entender como resolver sistema Ax=b a partir da fatoração PA=LU e qual o custo da solução.

Aula anterior

- Fatoração LU
 - Resolvendo Ax=b usando fatoração A=LU
 - Como obter fatores LU
 - Implementando LU
 - Instabilidade numérica de A=LU
- Fatoração PA=LU
 - Como obter P
 - Resolvendo Ax=b usando PA=LU
 - Implementando PA=LU

Quiz: condições necessárias à LU

Aula de hoje

- Estabilidade numérica
- Uso da decomposição
 - Cálculo do determinante
 - Refinamento de solução
 - Cálculo da inversa
- Decomposição de Cholesky
 - Matrizes definidas positivas

Algoritmo preciso

Desejamos resolver problema f usando algoritmo \tilde{f} .

Algoritmo \tilde{f} pode ser visto como uma sequência de operações que transforma entrada A em saída $\tilde{f}(A)$.

Um bom algoritmo deve produzir erro relativo pequeno, ou seja,

$$rac{|f(A)- ilde{f}\,(A)|}{|f(A)|}=\mathcal{O}(\epsilon_{machine})$$

Neste caso, dizemos que o algoritmo \tilde{f} é **preciso**.

Fonte: https://www.ime.unicamp.br/~valle/Teaching/2015/MS211/Aula2.pdf

Estabilidade

Porém, a noção de algoritmo preciso pode ser um pouco ambiciosa em muitos contextos pois inevitavelmente cometeremos erros de arredondamento em ponto flutuante.

No lugar da precisão, requeremos que o algoritmo seja estável.

Algoritmo regressivamente estável: um algoritmo \tilde{f} usado para resolver um problema f é dito regressivamente estável ($backward\ stable$) se

$$f(ilde{A}) = ilde{f}(A)$$

para algum $ilde{A}$ com

$$rac{|A-A|}{|A|}=\mathcal{O}(\epsilon_{machine})$$

Estabilidade vs. estabilidade retroativa

Seja f(x) a resposta de um problema x. Um algoritmo \hat{f} retorna a solução aproximada $\hat{f}(x)$ para um problema x. Ele é denominado:

• **Estável**: quando retorna a resposta quase "exata" para um problema y quase igual a x.

$$rac{\|\hat{f}(x) - f(y)\|}{\|f(y)\|} = \mathcal{O}(arepsilon_{machine}) \qquad \qquad rac{\|y - x\|}{\|y\|} = \mathcal{O}(arepsilon_{machine})$$

• Regressivamente estável: quando retorna a resposta "exata" para um problema y quase igual a x

$$\hat{f}\left(x
ight) = f(y)$$
 $rac{\|y-x\|}{\|y\|} = \mathcal{O}(arepsilon_{machine})$

Estabilidade vs. estabilidade retroativa

Embora para o nosso problema "x" (decomposição de A), o PA=LU tenha retornado uma solução exata para uma matriz $\tilde{A}\approx A$, é possível escolher outros "x" onde isso não acontece.

Um algoritmo só é considerado regressivamente estável se ele satisfaz a condição para qualquer problema x.

Estabilidade de PA=LU

O erro da fatoração PA=LU, é descrito por

$$\hat{L}\hat{U}=\hat{P}A+\delta A,\quad rac{\delta A}{A}=\mathcal{O}(
hoarepsilon_{machine})$$

onde

$$ho = rac{\max_{i,j} |u_{ij}|}{\max_{i,j} |a_{ij}|}$$

é um fator de crescimento.

Portanto, PA=LU não é backward stable na teoria, mas na prática,

In fifty years of computing, no matrix problems that excite an explosive instability are known to have arisen under natural circumstances." [Trefethen]

Cálculo do determinante

Quiz: cálculo do determinante

Usando propriedades dos determinantes:

$$PA = LU$$
 $det(P)det(A) = det(L)det(U)$
 $det(A) = det(U)/det(P)$
 $det(A) = (-1)^t \prod_i u_{ii}$

onde t é o número de trocas de linhas necessárias para transformar P na matriz identidade. **Número de inversões** e t possuem mesma paridade.

Refinamento de solução

Devido a erros de arredondamento, a solução $x^{(0)}$ obtida para Ax=b pode não ser exata. Podemos verificar calculando o resíduo

$$r^{(0)} = b - Ax^{(0)}$$

Assuma que exista um vetor $c^{(0)}$ tal que $x^{(1)} = x^{(0)} + c^{(0)}$ é uma solução refinada. Como obter $c^{(0)}$?

Refinamento de solução

$$Ax^{(1)}=b$$

$$A(x^{(0)}+c^{(0)})=b$$

$$Ax^{(0)}+Ac^{(0)}=b$$

$$Ac^{(0)}=b-Ax^{(0)}$$

$$Ac^{(0)}=r^{(0)}$$

Podemos reutilizar uma decomposição de A para encontrar $c^{(0)}$ com custo $O(n^2)$. A nova solução aproximada é $x^{(1)}=x^{(0)}+c^{(0)}$.

Refinamento de solução usando PA=LU

- I. Faça a decomposição PA=LU
- 2. Encontre x resolvendo $LUx^{(0)}=Pb$
- 3. Para i=0,1,...
 - a. Calcule o resíduo $r^{(i)}=b-Ax^{(i)}$
 - b. Encontre c⁽ⁱ⁾ resolvendo LUc⁽ⁱ⁾=Pr⁽ⁱ⁾
 - c. Faça $x^{(i+1)} = x^{(i)} + c^{(i)}$
 - d. Se $|c^{(i)}| < TOL$; então retorne $x^{(i+1)}$

Exemplo

Resolver o sistema abaixo e refinar a solução até que $\|c\|_{\infty} < 10^{-3}$

$$\begin{bmatrix} 2 & 3 & -1 \\ -3 & 5 & 6 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ 19 \\ 11 \end{bmatrix}.$$

Decomposição PA=LU

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -0,67 & 1 & 0 \\ -0,33 & 0,42 & 1 \end{bmatrix}, \ U = \begin{bmatrix} -3 & 5 & 6 \\ 0 & 6,33 & 3 \\ 0 & 0 & 2,74 \end{bmatrix} \ e \ P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Exemplo

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -0,67 & 1 & 0 \\ -0,33 & 0,42 & 1 \end{bmatrix}, \ U = \begin{bmatrix} -3 & 5 & 6 \\ 0 & 6,33 & 3 \\ 0 & 0 & 2,74 \end{bmatrix} \ \mathbf{e} \ P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$Ax^{0} = b \longrightarrow LUx^{0} = Pb,$$

$$Lt = Pb \leadsto t = \begin{bmatrix} 19\\8,73\\13,6034 \end{bmatrix} e Ux^{0} = t \leadsto x^{0} = \begin{bmatrix} 1,9731\\-0,9738\\4,9647 \end{bmatrix}.$$

$$r^0 = b - Ax^0 = \begin{bmatrix} -0,0601 \\ 0 \\ 0,0712 \end{bmatrix}, \quad LUc^0 = Pr^0 \leadsto c^0 = \begin{bmatrix} 0,0268 \\ -0,0262 \\ 0,0352 \end{bmatrix}, \qquad x^1 = x^0 + c^0 = \begin{bmatrix} 0,0268 \\ -0,0262 \\ 0,0352 \end{bmatrix},$$

$$x^1 = x^0 + c^0 = \begin{bmatrix} 1,9999 \\ -1,0000 \\ 4,9999 \end{bmatrix},$$

$$r^1 \ = \ b - Ax^1 \ = \ \left[\begin{array}{c} 0{,}0001 \\ 0 \\ 0{,}0002 \end{array} \right] \!, \quad LUc^1 = Pr^1 \leadsto c^1 = \left[\begin{array}{c} 0{,}0001 \\ 0{,}0000 \\ 0{,}0001 \end{array} \right] \!,$$

$$x^2 = x^1 + c^1 = \begin{bmatrix} 2,0000 \\ -1,0000 \\ 5,0000 \end{bmatrix}.$$

Refinamento interrompido: $||c^1||_{\infty} = 0,0001 < 10^{-3}$

Calcular a inversa de uma matriz A equivale a resolver n sistemas

$$Ax_1 = e_1, Ax_2 = e_2, ..., Ax_n = e_n$$

A inversa A^{-1} é a concatenação dos vetores coluna $x_1, x_2, ..., x_n$.

Calcular a inversa de uma matriz A equivale a resolver n sistemas

$$Ax_1 = e_1, Ax_2 = e_2, ..., Ax_n = e_n$$

A inversa A^{-1} é a concatenação dos vetores coluna $x_1, x_2, ..., x_n$.

$$A \qquad \qquad = \qquad e_1 \qquad \qquad I$$

Calcular a inversa de uma matriz A equivale a resolver n sistemas

$$Ax_1 = e_1, Ax_2 = e_2, ..., Ax_n = e_n$$

A inversa A^{-1} é a concatenação dos vetores coluna $x_1, x_2, ..., x_n$.

$$A \qquad x_1 \quad x_2 \quad -1 \qquad = \quad e_1 \quad e_2 \quad$$

Calcular a inversa de uma matriz A equivale a resolver n sistemas

$$Ax_1 = e_1, Ax_2 = e_2, ..., Ax_n = e_n$$

A inversa A^{-1} é a concatenação dos vetores coluna $x_1, x_2, ..., x_n$.

Qual o custo usando LU?

Decomposição de Cholesky

- Matrizes simétricas definidas positivas podem ser decompostas em fatores triangulares 2x mais rápido que matrizes gerais
- O algoritmo padrão para isso é a fatoração de Cholesky
 A=LL^T,

que fatora A em uma triangular inferior L e uma triangular superior L^T. Ela opera do lado esquerdo e direito da matriz simultaneamente, preservando e explorando a simetria.

Matrizes simétricas

A é uma matriz simétrica se possui mesmas entradas abaixo e acima da diagonal, i.e., $a_{ii}=a_{ii}$, logo, $A=A^{T}$.

Matrizes simétricas podem ser classificadas segundo o sinal da forma quadrática $\phi(v)=v^TAv$, onde v é um vetor não-nulo arbitrário ou, equivalentemente, segundo seus autovalores:

Forma quadrática	Nome de A	Autovalores de A
$v^T A v > 0$	definida positiva	$\lambda_i > 0$
$v^T A v \ge 0$	semidefinida positiva	$\lambda_i \ge 0$
$v^T A v < 0$	definida negativa	$\lambda_i < 0$
$v^T A v \le 0$	semidefinida negativa	$\lambda_i \leq 0$

Matrizes simétricas definidas positivas

Seja A uma matriz simétrica definida positiva. As seguintes afirmações são verdadeiras e equivalentes:

- Para todo vetor v não-nulo, $v^TAv > 0$.
- Os autovalores $\lambda_1, ..., \lambda_n$ de A são positivos.

Teorema (Cholesky). Se A for uma matriz simétrica definida positiva, então existe uma única matriz triangular inferior L com elementos da diagonal positivos tal que A=LL^T.

Cálculo do fator

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} & l_{41} \\ 0 & l_{22} & l_{32} & l_{42} \\ 0 & 0 & l_{33} & l_{43} \\ 0 & 0 & 0 & l_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Elemento l₄₄

$$l_{41}^2 + l_{42}^2 + l_{43}^2 + l_{44}^2 = a_{44} \rightarrow l_{44} = \sqrt{a_{44} - (l_{41}^2 + l_{42}^2 + l_{43}^2)} \\ \leadsto l_{44} = \sqrt{a_{44} - \sum_{k=1}^3 l_{4k}^2}.$$

Elemento qualquer da diagonal de L

$$l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2}, \ j = 1, 2, \dots, n.$$

Cálculo do fator

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} & l_{41} \\ 0 & l_{22} & l_{32} & l_{42} \\ 0 & 0 & l_{33} & l_{43} \\ 0 & 0 & 0 & l_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Elemento
$$l_{43}$$

$$l_{41}l_{31} + l_{42}l_{32} + l_{43}l_{33} = a_{43} \rightarrow l_{43} = \frac{a_{43} - (l_{41}l_{31} + l_{42}l_{32})}{l_{33}} \rightsquigarrow l_{43} = \frac{a_{43} - \sum_{k=1}^{2} l_{4k}l_{3k}}{l_{33}}.$$

Elemento qualquer abaixo da diagonal principal

$$a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}$$
 $l_{ij} = \frac{1}{l_{jj}}, \ j = 1, 2, \dots, n-1 \ \text{e} \ i = j+1, j+2, \dots, n.$

4	-2	2 -
-2	10	-7
2	-7	30

	F	1			L		
i∖j	1	2	3	i∖j	1	2	3
1	4			1			
2	-2	10		2			
3	2	-7	30	3			

4	-2	2 -
-2	10	-7
2	-7	30

	F	1			L	
i∖j	1	2	3	i∖j	1	2 3
1	4			1	2	
2	-2	10		2		
3	2	-7	30	3		

4	-2	2 -
-2	10	-7
2	-7	30

	F	1			L		
i∖j	1	2	3	i∖j	1	2 3	3
1	4			1	2		
2	-2	10		2	-1		
3	2	-7	30	3			

4	-2	2 -
-2	10	-7
2	-7	30

	A	1			L		
i∖j	1	2	3	i∖j	1	2	3
1	4			1	2		
2	-2	10		2	-1		
3	2	-7	30	3	1		

Γ 4	-2	2 -
-2	10	-7
2	-7	30

	F	1			L		
i∖j	1	2	3	i∖j	1	2 3	
1	4			1	2		٦
2	-2	10		2	-1	3	
3	2	-7	30	3	1		

Γ 4	-2	2
-2	10	-7
2	-7	30

	F	1			L		
i∖j	1	2	3	i∖j	1	2	3
1	4			1	2		
2	-2	10		2	-1	3	
3	2	-7	30	3	1	-2	

4	-2	2 -
-2	10	-7
2	-7	30

	F	1			L		
i∖j	1	2	3	i∖j	1	2	3
1	4			1	2		
2	-2	10		2	-1	3	
3	2	-7	30	3	1	-2	5

Obtenha a decomposição de Cholesky da matriz

Γ	4	-2	2 -
l	-2	10	-7
	2	-7	30

	A	1		-:	L	li i	
i∖j	1	2	3	i∖j	1	2	3
1	4			1	2		
2	-2	10		2	-1	3	
3	2	-7	30	3	1	-2	5

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -2 & 5 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \\ 0 & 0 & 5 \end{bmatrix}$$

Quiz: dispositivo prático Cholesky

Implementação Fatoração de Cholesky v I

Entrada: A_{nxn} L=np.zeros(n)

Saída: L_{nxn} Para...

retorna L

Implementação Fatoração de Cholesky v I

```
Entrada: A_{n\times n} L=np.zeros(n)

Saída: L_{n\times n} Para j=1 até n:

L[j,j]=sqrt(A[j,j]-sum(L[j,1:j-1]^2))

Para i=j+1 até n:

L[i,j]=(A[i,j]-sum(L[i,1:j-1]*L[j,1:j-1]))/L[j,j]

retorna L
```

Como reduzir o número de divisões?

Implementação Fatoração de Cholesky v I

```
Entrada: A_{nxn} L=np.zeros(n)

Saída: L_{nxn} Para j=1 até n:

L[j,j]=sqrt(A[j,j]-sum(L[j,1:j-1]^2))
r = 1/L[j,j]
Para i=j+1 até n:

L[i,j] = (A[i,j]-sum(L[i,1:j-1]*L[j,1:j-1]))*r
retorna L
```

Qual o custo de Cholesky?

Custo da fatoração de Cholesky

Radiciações: n

Divisões: n

Multiplicações:

$$egin{aligned} \sum_{j=1}^n (j-1) + (n-j)j = \ rac{n^3}{6} + rac{n^2}{2} - rac{2n}{3} \end{aligned}$$

Adições:

$$rac{n^3}{6} + rac{n^2}{2} - rac{2n}{3} + n = \ rac{n^3}{6} + rac{n^2}{2} + rac{n}{3}$$

Resolução de sistema pela fatoração de Cholesky

Pode ser usada para resolver sistemas Ax=b

Como?

Qual o custo para resolver Ax=b assim?

Sistema tri. #1 Sistema tri. #2

Ly=b $L^Tx=y$

Encontra y Encontra x

Objetivo de aprendizagem: entender como resolver sistema Ax=b a partir da fatoração LU e qual o custo da solução.

Estabilidade da fatoração de Cholesky

Fatoração de Cholesky é sempre estável.

Teorema: Seja A uma matriz definida positiva e $A=LL^T$ sua fatoração de Cholesky. Para todos $\varepsilon_{\text{machine}}$ suficientemente pequenos, garante-se que o algoritmo executa até o final, gerando um fator \tilde{L} que satisfaz

$$ilde{L} ilde{L}^ op = A + \delta A, \quad rac{|\delta A|}{|A|} = \mathcal{O}(\epsilon_{machine})$$

Intuição: os elementos em L não podem ser muito grandes, pois $\|A\|_2 = \|L\|_2^2$

Condicionamento de matrizes

Alguns sistemas Ax=b são mais suscetíveis a erros de arredondamento (ou erros de medição) do que outros. Exemplo 1:

$$A = \begin{bmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{bmatrix}$$
 e $b = \begin{bmatrix} 1.99 \\ 1.97 \end{bmatrix}$.

- Solução exata: x=[I I]^T
- Vetor b'=[1,99 1,98]^T
- Solução exata de Ay=b' = [100 -99]^T

Condicionamento de matrizes

Alguns sistemas Ax=b são mais suscetíveis a erros de arredondamento (ou erros de medição) do que outros.

Exemplo 2:

$$A = \begin{bmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{bmatrix} \quad e \quad b = \begin{bmatrix} 1.99 \\ 1.97 \end{bmatrix}.$$

- Solução exata: x=[I I]^T
- Matriz A'= $\begin{bmatrix} 1 & 0.99 \\ 0.99 & 0.99 \end{bmatrix} \approx A$.
 - Solução exata de A'z=b = [2 -1/99]^T

O que é que a matriz A tem de especial?

Malcondicionamento não está ligado ao determinante

- det(A) ≈ 0 não indica necessariamente malcondicionamento
- Exemplo

$$A = \left[\begin{array}{cc} 0,001 & 0,001 \\ -0,001 & 0,001 \end{array} \right]$$

- $det(A) = 2 \times 10^{-6}$, e é muito bem condicionada
- Note que podemos multiplicar Ax=b por 10³ e obter um sistema equivalente. Na prática não existe diferença entre os dois sistemas.

Interpretação geométrica de malcondicionamento

Número de condição

- Escalar associado a matriz A
- Determina a relação entre perturbações em A (ou b) e perturbações em x
- Dado por

condição
$$(A) = \kappa(A) = ||A|| ||A^{-1}||.$$

- || . || é uma norma matricial qualquer
- Valor depende da norma, mas não difere muito conforme a escolha
- Matriz é malcondicionada se $\kappa(A) \gg 1$ (e.g. 10^6)