Haute École d'Ingénierie et de Gestion du Canton de Vaud

Thème: Dérivation implicite

Série 11

Exercice 1

Calculer y' en supposant que l'équation définit implicitement une fonction dérivable f telle que y = f(x).

- a) $8x^2 + y^2 = 10$
- b) $x \ y = x + y$
- c) $\ln(x^2 + y) = x + y^2$
- d) $x^3y x\sin(x+y) = x^2e^{x-y}$

Exercice 2

La courbe Γ d'équation:

$$x^2 + xy + 0.5y^2 - 6x - 7 = 0$$

est une ellipse.

- a) Quelle est la pente de la tangente en un point A(x,y) de cette ellipse?
- b) En quels points cette tangente est-elle horizontale?
- c) En quels points est-elle verticale?
- d) En quels points est-elle à 45° par rapport au système de coordonées?

Exercice 3

Calculer la dérivée à l'origine de la fonction implicite y(x) définie par l'équation $y^3 - 7y + x = 0$. Même question pour la dérivée au point A(6,1)

Exercice 4

Soient la courbe Γ d'équation: $y^3 + xy^2 + x^3y + x = 0$ et $P(1; -1) \in \Gamma$. Déterminer l'équation de la tangente à Γ passant par P.

décembre 2017