AVALIAÇÕES QUALITATIVAS DO RIO JI-PARANÁ NA ESTAÇÃO SECA, NO ESTADO DE RONDÔNIA

Edilene da Silva PEREIRA (1), Raíssa Fonseca FERREIRA (2), Lorena Lorrayne MARINHO (1), Harossandro ARARUNA (1), Maria Elessandra Rodrigues ARAÚJO (2), Andreza Pereira MENDONÇA(2)

- (1) Universidade Federal de Rondônia UNIR *Campus* Ji-Paraná, R. Rio Amazonas, n° 351, B. Jardim dos Migrantes, município de Ji-Paraná / RO, email: dicajp@gmail.com, arosandro_araruna@gmail.com, lorena.lorrayne@hotmail.com
- (2) Instituto Federal de Rondônia *Campus* Ji-Paraná, R. Rio Amazonas, n° 151, B. Jardim dos Migrantes, município de Ji-Paraná / RO, email: raissinhafonseca@hotmail.com, elessandra.cg@gmail.com, mendonca.andreza@gmail.com,

RESUMO

A contaminação dos recursos hídricos vem ocorrendo ao longo dos anos por diversas causas, dentre elas o lançamento indiscriminado de águas residuárias, devido principalmente a ausência de infraestruturas de saneamento básico. Uma série de doenças pode ser associada à água, podendo ser verificada pela poluição fecal, devido à presença de microrganismos enteropatogênicos. Dada a importância do monitoramento da água em seu uso múltiplo, o presente trabalho teve por objetivo quantificar as bactérias do grupo Coliformes fecal e Total em Unidades Formadoras de Colônias (UFC's), verificar a temperatura, pH, condutividade e Sólidos Totais Dissolvidos (STD) as margens do rio Ji-Paraná, no município de Ji-Paraná, Rondônia comparando esses valores com os padrões de qualidade estabelecidos na Resolução Conama n° 357, de 17 de março de 2005. Os padrões microbiológicos segundo a legislação determinam como limite máximo 4000 UFC de Coliforme Fecal em até 80% das analises, porém o resultado observado para o curso d'água em estudo, extrapolou esse valor, indicando contaminação fecal, tornando o recurso impróprio para uso em diversos fins.

Palavras-chave: Recursos hídricos, coliforme fecal, águas residuárias.

INTRODUÇÃO

A contaminação dos recursos hídricos vem ocorrendo ao longo dos anos por diversas causas, dentre elas: desenvolvimento industrial, crescimento demográfico ou ainda pela ocupação do solo de forma intensa e desorganizada. Neste contexto, o estado de Rondônia compreende déficits quanto à coleta, tratamento e disposição adequada de esgoto, devido ao processo histórico de ocupação, que foi agravado nas décadas de 70 e 80 com a ocupação desordenada, decorrentes de incentivos governamentais, tal como do Instituto Nacional de Colonização e Reforma Agrária – INCRA (MATIAS, 2003). Esta, entre outras situações, resultou no comprometimento da infraestrutura urbana e rural, e que atualmente se reflete nos municípios do Estado, com precariedade de saneamento básico, a exemplo do município de Ji-Paraná.

O município de Ji-Paraná possui cerca de 111.010 habitantes (IBGE, 2009), sendo a segunda cidade mais populosa do estado de Rondônia. Este não possui nenhum esgotamento sanitário, lançando suas águas residuárias em sistemas rústicos e impróprios, que terminam sendo lançadas nos corpos hídricos existentes.

Dado à ausência de estruturas capazes de dar suporte à coleta, tratamento e disposição final adequada às águas residuárias geradas, estas acabam sendo lançadas indiscriminadamente nos corpos d'água, ocasionando degradação dos recursos hídricos disponíveis para uso variados, acentuando o risco de doenças de transmissão hídrica.

Uma série de doenças pode ser associada à água em decorrência de sua contaminação por excretas humanas ou de outros animais. Dessa maneira, considera-se contaminada a água que contenha bactérias indicadoras da poluição fecal, devido a presença de microrganismos enteropatogênicos (OKANO, 2006). As populações microbianas variam em número e em diversidade, de acordo com a fonte hídrica, com os nutrientes presentes a água e, ainda, conforme as condições geográficas, biológicas e climáticas.

A Resolução Conama n° 357, de 17 de março de 2005 (BRASIL, 2005), estabelece para as águas de classe 3 em uso múltiplos, não exceder o limite de 4000 Unidades Formadoras de Colônias (UFC's) de Coliformes Termotolerantes de 100 mililitros, amostrados em 80% de pelo menos seis amostras num período anual. Estabelece ainda que a *Escherichia coli* (*E. Coli*) pode ser determinada em substituição aos Coliformes Termotolerantes. Segundo esta resolução, estes microrganismos são utilizados para a avaliação da qualidade de água.

A *E. Coli*, a principal representante do grupo Coliformes termotolerantes, seguida pelos Coliformes fecais é encontrada em esgoto, afluentes tratados, águas naturais e solos sujeitos a contaminação recente e sua origem é exclusivamente fecal de animal de sangue quente (OKANO et. Al., 2006). Sua presença em águas de regiões de clima quente não pode ser ignorada, pois não pode ser excluída, possibilitando a presença de microrganismos patogênicos.

Outro indicador é detecção de bactérias do grupo Coliformes totais, o qual pertencem os gêneros *Citrobacter*, *Enterobacter*, *Klebsiella* e ainda a *E. Coli*. Tais bacterias além de serem encontradas em fezes, também ocorrem no meio ambiente, em águas com altos teores de matéria orgânica.

Diante do exposto, faz-se necessário o monitoramento contínuo dos corpos hídricos do Estado, a fim de atestar a qualidade da água disponível para o abastecimento público, industrial, agropecuário, recreativo e transporte. Portanto, o trabalho teve como objetivo comparar os padrões de qualidade da água as margens do rio Ji-Paraná com a legislação ambiental vigente.

MATERIAL E MÉTODOS

Descrição e coleta de amostras da área em estudo

O município de Ji-Paraná, situado na porção centro-leste do estado de Rondônia, na região Norte do Brasil, na Amazônia Ocidental, encontra-se entre os paralelos 8°22' e 11°11' de latitude sul e os meridianos 61°30' e 62°22' de longitude oeste, com distância aproximada 374 km de Porto Velho, capital do estado, com acesso rodoviário através da BR-364.

Segundo classificação de Köppen, o clima da região é caracterizado como CWa (tropical-quente e úmido), com sua temperatura média anual oscilando em torno de 25°C. A precipitação pluviométrica anual é de 2.250 mm, com umidade relativa do ar média de 85% (ZANELLA et al, 2008).

O nome do município Ji-Paraná é de origem indígena, cujo significado é *rio-machado*, bem como é denominado o rio que divide a cidade em dois distritos, um à margem direita e o outro a esquerda. O rio Ji-Paraná atravessa o Estado de Rondônia de sudeste a noroeste. Sua bacia de drenagem é de meso-escala, localizada entre os paralelos 8°02'32" e 12°59'50" de latitude sul e os meridianos 60°04'56" e 63°16'30" de longitude oeste, englobando uma área de aproximadamente 75.400 km² (LEITE, 2004).

Foram realizadas coletas de água em seis pontos com três repetições a margem esquerda do rio Ji-Paraná, municipio de Ji-Paraná na estação seca (Figura 1). No trecho em que foram realizadas as coletas, notou-se a chegada de canalização com lançamento direto no curso d'água de um suposto esgoto, bem como de um igarapé proveniente do perímetro urbano.

A área de estudo, segundo Krusche *et al.* (2005), situa-se em uma das regiões com maiores taxas de desmatamento na Amazônia, apresentando alto grau de alteração do uso do solo. Inserida no

trecho médio do rio, a montante recebe o aporte dos afluentes Pimenta Bueno, Comemoração, Rolim de Moura e Urupá, e a jusante, dos rios Jaru, Machadinho e Preto (LEITE, 2004).

Figura 2. Pontos amostrais inseridos num trecho do Rio Ji-Paraná. Fonte: Google Earth, 2005.

As coletas de água ocorreram a cerca de 20 metros de distância das margens do rio, com lamina d'água corrente. Utilizou-se frascos de borossilicato de 300 mL esterilizados, conforme metodologia descrita no *Standard Methods for the Examination of Water and Wastewater* (APHA, 1995).

Após a coleta, as amostras foram transportados em caixa térmica até o laboratório de microbiologia do Departamento de Engenharia Ambiental da Universidade Federal de Rondônia – UNIR, Campus de Ji-Paraná, onde foram armazenadas sob refrigeração até o momento das análises. Foram realizadas as seguintes análises físico-quimicas:

Análises físico-químicas

Alguns parâmetros foram medidos *in situ*, como pH e temperatura com o auxílio do equipamento portátil pHmetro Quimis Q400H. Outros parâmetros como Sólidos Totais Dissolvidos (STD) e Condutividade foram determinados em laboratório com o equipamento portátil Condutivimetro Ecosense, modelo 300.

Análises microbiológicas

As análises microbiológicas foram realizadas pelo método de membranas filtrantes de acordo com *Standard of Methods for the Examination of Water and Wasterwater* (APHA, 1995).

Os ensaios microbiológicos consiste na filtração de um volume de água conhecido (100 ml) com auxílio de uma bomba a vácuo e kitassato, por uma membrana estéril de Acetato de Celulose de 0,45 µm e diâmetro de 0,47 mm, que retém os microrganismos presentes na água.

Após a filtração, as membranas foram colocadas em meio de cultura seletivo *Chromocult Coliform Agar*, previamente vertido em placas de Petri, para posteriormente serem incubadas em estufa por aproximadamente 24 horas a uma temperatura de aproximada de 35°C, a fim de possibilitar a leitura das unidades formadoras de colônias – UFCs, tanto de coliformes fecais, por meio do microrganismo indicador *Escherichia coli*, como para coliformes totais, logo após o período de incubação.

Para contagem das UFC's, utilizou-se o equipamento Contador de Colônias Phoenix CP 602.

Foram contadas como *E. coli* as colônias de coloração azulada e, contabilizou-se como coliformes totais as UFC's com cores variando entre o rosado e o vinho somadas às de cores azuis (*E. coli*); ressaltando-se que a quantidade de microrganismos observada em cada placa só é representativo se esta compreender entre 30 e 300 UFC's.

Os dados obtidos foram comparados com Resolução CONAMA 357, de 17 de março de 2005 (BRASIL, 2005), a fim de verificar se a água atende ao uso a qual é destinada.

RESULTADOS E DISCUSSÃO

O pH nos pontos amostrados do rio apresentaram valores entre 6,38 a 7,31 (Tabela 1), sendo considerada adequado de acordo com Resolução Conama nº 357, de 17 de março de 2005 (BRASIL, 2005).

A temperatura foi quantificada por ser um parâmetro importante, pois, o mesmo influi em algumas propriedades da água (densidade, viscosidade, oxigênio dissolvido), tendo reflexos sobre a vida aquática, sendo que esta variável pode ser alterada em função de fontes naturais (energia solar) e fontes antropogênicas. Por não apresentar dados com flutuações significativas para o período estudado, com valores entre 26,6 °C a 27,5 °C, não se pode pressupor que haja fatores provenientes de ações humanas que modifiquem a temperatura do local analisado. Essas temperaturas altas e constantes são características dos rios de regiões tropicais, onde a variação sazonal é pouco acentuada em relação à variação diária (ESTEVES, 1998 apud FURTADO, 2005).

O valor do pH depende da origem e características naturais da água, podendo ser alterado pela introdução de resíduos. A Resolução Conama nº 357, de 17 de março de 2005 (BRASIL, 2005) estabelece que o pH de águas doces se enquadra como impróprias, quando alcançarem valores menores que 6 ou maiores que 9.

Os valores de UFCs de *Escherichia coli* variaram de 03 x 10⁻³ a 29 x 10⁻³ e Coliformes Totais variaram de 24 x 10⁻³ a 42 x 10⁻³ (Tabela 1), indicando contaminação de origem fecal inviabilizando a utilização do recurso conforme exposto na legislação vigente.

Os valores elevados de *E. coli*, no ponto 5 (Tabela 1), deve-se possivelmente a diversos fatores, tais como: livre acesso de animais no entorno do rio, despejo de efluentes domésticos, visto que existe residências próximas às margens. A bactéria *Escherichia coli* é abundante em fezes humanas e de animais, sendo encontrada somente em esgotos, efluentes, águas naturais e solos que tenham recebido contaminação fecal recente. Tais bactérias também são encontradas em águas com elevados teores de material orgânico, vegetação em processo de decomposição e no próprio material inconsolidável (LIBÂNIO, 2005; BRASIL, 2000).

Tabela 1. Valores médios de UFC's obtidos em amostras de água do rio Ji-Paraná, município de Ji-Paraná - Rondônia.

Ponto	Coordenada Geográfica	Escherichia coli UFC/100 mL* 10 ⁻³	Coliformes Totais UFC/100 mL 10 ⁻³	pН	T (°C)**	Condut. (uS)***	STD (mg/L)***
1	S 10°52'29,7" W 61°56'20,5"	06	42	7,23	27,0	28,0	18,2
2	S 10°52'25,1" W 61°56'17,9"	03	34	7,28	27,4	28,6	18,6
3	S 10°52'12,6" W61°56'9,8	14	24	7,31	27,5	26,2	17,0
4	S 10°52'02,2" W 61°56'4,5"	07	25	7,30	27,5	30,2	19,6
5	S 10°51'57,4" W 61°56'2,0"	29	40	6,58	26,6	64,1	41,7
6	S 10°51'51,4" W 61°55'56,7"	04	26	7,12	27,4	29,1	18,9

UFC/100 mL* – Unidade Formadora de Colônia por cem mililitros.

Condut (uS)*** - Condutividade

STD (g/L)**** – Sólidos Totais Dissolvidos em gramas por litro

Comparou-se os resultados das analises de água do rio Jipa com os padrões estabalecidos na Resolução Conama nº 357, de 17 de março de 2005 (Figura 2), e verificou-se que não houve enquadramento legal para uso do recurso nas classes de 1 a 3.

Figura 3. Comparação dos valores de E. coli com o limite máximo permitido para cada classe.

 $T(^{\circ}C)^{**}$ – Temperatura em graus Celsius

Estudo realizado por Leite (2004) no município de Ji-Paraná, em nove pontos no rio Ji-Paraná, apresentou média de condutividade de 35.8 ± 4.5 uS.cm⁻³ e pH 6.5 ± 0.6 , valores esses similares aos observados nos resultados das análises. O autor e Ballester et al (2003), relacionaram a alta condutividade das águas a fertilidade dos solos da bacia.

As concentrações de Sólidos Totais Dissolvidos (STD) encontrados nas amostras variaram entre 17 a 41,7 mg/L, enquadrando-se como classe 1 de águas, de acordo com a Resolução Conama n° 357, de 17 de março de 2005.

CONSIDERAÇÕES FINAIS

As águas do rio Ji-Paraná, não se enquadram nas classes de 1 a 3 da Resolução Conama nº 357, de 17 de março de 2005, devido aos altos valores de UFC excederem acima de 80% ao padrão exigido pela resolução.

Os valores de pH e STD enquadram-se nas classes 1 da mesma resolução, indicando possibilidade de uso múltiplos do recurso.

AGRADECIMENTOS

- PIBIC/CNPq pela bolsa de Iniciação Cientifica da primeira autora.
- Departamento de Engenharia Ambiental da Universidade Federal Rondônia UNIR Campus Ji-Paraná.

REFERÊNCIAS

APHA . **Standard Methods for the Examination of Water and Wastewater**. Washington: APHA,1995.

BALLESTER, M. V. R.; VICTORIA, D. D. C.; KRUSCHE, A. V.; COBURN, R.; MATRICARDI, e. A remote sensing/GIS-based physical template to understand the biogeochemistry of Ji-Paraná river basin (Western Amazonia). **Remote Sensing of Environment**, New York, v. 87, n. 4, 2003.

BRASIL, Decreto Lei n° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. **Diário Oficial da União**, Brasília, n. 53, p. 58-63, 25 mar. 2005, Seção 1.

FURTADO, C. M. Caracterização limnológica e avaliação da qualidade da água de um trecho urbano do Rio Acre, Rio Branco – AC, Brasil. Rio Branco: Programa de Pós-graduação em Ecologia e Manejo de Recursos Naturais/UFAC, 2005. Dissertação (Mestrado em Ecologia e Manejo de Recursos), Universidade Federal do Acre, 2005.

GRABOW, W. **Waterborne diseases**: update on water quality assessment and control. *Water S.A*, 1996.

KRUSCHE, A. V.; BALLESTER, M. V. R.; VICTORIA, R. L.; BERNARDES, M. C.; LEITE, N. K.; HANADA, L.; MARCONDES, R.; VICTORIA, D. C.; TOLEDO, M. A.; OMETTO, J. P. H. B.; MOREIRA, M. Z.; GOMES, B. M.; BOLSON, M. A.; NETO, S. G.; BONELLI, N.; DEEGAN, L; NEILL, C.; THOMAS, S.; AUFDENKAMPE, A.; RICHEY, J. E.. **Efeitos das mudanças do uso da terra na biogeoquímica dos corpos d'água da bacia do rio Ji-Paraná, Rondônia**. *Acta Amaz*. [online]. 2005, vol.35, n.2, pp. 197-205.

LEITE, N. K. **A biogeoquímica do rio Ji-Paraná, Rondônia.** São Paulo: Escola Superior de Agricultura Luiz de Queiroz, 2004. Dissertação (Mestrado Ecologia e Manejo de Recursos), Universidade de São Paulo, município de Piracicaba, 2004.

LIBÂNIO, M. Fundamentos de qualidade e tratamento de água. Campinas: Átomo, 2005.

MATIAS, F. **Síntese da Formação Histórica de Rondônia.** Porto Velho, Editora Municipalista, 2003.

ZANELLA, F.; LIMA, A. L. S.; SILVA JUNIOR, F. F.; MACIEL, S. P. A. Crescimento de alface hidropônica sob diferentes intervalos de irrigação. *Ciênc. agrotec.*[online]. 2008, vol.32, n.2, pp. 366-370.