TD n°4 Algorithmes Algorithmes et recherches heuristiques

Introduction à l'intelligence artificielle et à la robotique D. Pellier

Exercice. 1 Tracer les nœuds visités par A^* appliqué au problème du voyage en roumanie avec l'heuristique de la distance directe entre Lugoj et Bucharest. Pour chaque nœud vous donnerez les valeurs de f, g et h.

Straight-line distance to Bucharest (km)								
Arad Bucharest Craiova Dobreta Eforie Fagaras Giurgiu Hissova lasi Luhoj Mehadia Neamt Oradea Pitesti Rimnicu Vilcea Sibiu Timisoara Urziceni	366 0 160 242 161 176 77 151 226 244 241 234 380 10 193 253 329 80							
Vaslui Zerind	199 374							

Exercice. 2 Considérer la carte suivante. Le but est de trouver le chemin le plus court de A vers I. Le coût de chaque connexion est indiqué. Deux heuristiques h_1 et h_2 sont données comme suit :

Nœud	A	В	С	D	E	F	G	Н	I
h_1	10	5	5	10	10	3	3	3	0
h_2	10	2	8	11	9	6	3	4	0

- 1. Est-ce que h_1 et h_2 sont admissibles? Justifier.
- 2. Est-ce que h_1 domine h_2 ou bien h_2 domine h_1 ? Justifier.
- 3. Est ce que $h_3 = max(h_1, h_2)$ est admissible?
- 4. Appliquer la recherche gloutonne en utilisant h_2 . Donner la suite des nœuds développés.
- 5. Appliquer la recherche A^* en utilisant h_1 . Donner la suite des nœuds développés.
- 6. Appliquer la recherche A^* en utilisant h_2 . Donner la suite des nœuds développés.
- 7. Appliquer la recherche A^* en utilisant h_3 . Donner la suite des nœuds développés.
- 8. Montrer que pour deux heuristiques admissible h_1 et h_2 , h_3 est admissible?
- 9. Si vous avez le choix entre trois heuristiques admissibles h_1 , h_2 et $h_3 = max(h_1, h_2)$ laquelle choisissez vous?

Exercice. 3 Considérez l'espace de recherche suivant (D est le début et F l'état que l'on veut atteindre) :

Pour chaque nœud est indiquée la valeur de l'heuristique h. On veut récupérer le coput de chaque acr entre deux nœuds. Pour cela nous disposons d'une trace de l'algorithme A^* . Pour chaque pas de l'algorithme est indiquée la liste des nœuds encore à traiter avec la valeur f = g + h. Si un nœud peut apparaître deux fois avec deux valeurs de f différentes, on conserve seulement celui avec la meilleur (la plus petite) valeur de f.

```
[(D, f = 1)]

[(B, f = 7), (A, f = 8)]

[(A, f = 8), (C, f = 10)]

[(C, f = 10)]

[(E, f = 12), (F, f = 15)]

[(F, f = 14)]
```

- 1. Utiliser cette trace et votre connaissance du fonctionnement de A^* pour calculer les coûts de tous les arcs. Détaillez votre démarche.
- 2. Est-ce que h est admissible?

Exercice. 4 Reprenez le taquin de la semaine et implémentez la résolution du jeux en utilisant A* avec les heuristiques vues en cours.