

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 7-Circuite logice combinaționale -2021-

Agenda discutie

- Administrativ
 - Probleme?
 - Video interactive: MUX, DEC
- ☐ Circuite combinationale, clasificare
- ☐ Sumatoare: RCA
- ALU
- ☐ MUX, DEC

Circuite logice combinaționale

- Circuite de procesare
- Circuite de conversie
- Circuite de interconectare
- Componente universale

Clasificare componente digitale

- Componente combinaționale
 - Ușor de analizat, partiționat, verificat

Componente secvenţiale

Copyright @ 2004-2005 by Daniel D. Gajski

Sildes by Philip Pham, University of California, Irvine

Clasificare circuite combinaționale (I)

- Procesare
 - Operații aritmetice (Adunare, Scădere, Înmulțire, Împărțire)
 - Operații logice (ŞI, SAU-Exclusiv, Negare, etc.)
 - Comparare
 - Operații de manipulare la nivel de bit (shift-are, rotație, ...).

Clasificare circuite combinaționale (II)

- Conversie date
 - Codificatoare
 - Decodificatoare
- Interconnect-uri
 - Selecția sursei/destinației
 - Magistrale şi interfete magistrală
- □ Alte componente (blocuri din UC)
 - ROM
 - PLA

Cuvinte cheie design digital

- Încapsulare
 - Definirea unor componente/blocuri simple
- □ Iterare
 - Replicarea/Instanțierea componentelor în design
- Ierarhie
 - Realizarea unor blocuri mai mari din blocuri mai mici

Exemplu – Sumatorul cu propagare serială a transportului

Unitate sumator/scăzator C₂

Unitate Aritmetico-Logică (ALU)

- ☐ Realizează operațiile operațiile aritmetice și logice elementare:
 - Aritmetice: adunare, scădere, incrementare, decrementare
 - Logice:ŞI, SAU, Identitate, Negare
- □ Toate operațiile aritmetice se bazează pe sumator → blocul de bază este sumatorul
- ☐ Trebuie configurați corespunzător operanzii → bloc dedicat de extensie op.aritmetice

ALU

Bloc extensie aritmetică

M	S_1	S_0	Function Name	F	X	Y	c ₀
1	0	0	Decrement	A-1	A	all 1's	0
1	0	1	Add	A + B	A	В'	0
1	1	0	Subtract	A - B	A	B'	1
1	1	1	Increment	$A \pm 1$	A	all 0's	1

Functional Table

Logic Schematic

Bloc extensie operații logice

Arhitectură ALU

Decodificator

- circuite logice combinaţionale ce prezintă un anumit *n* intrări şi până la 2ⁿ ieşiri, care activează ieşirea (UNA SINGURĂ) corespunzătoare valoarii combinaţiei vectorului de intrare
- □ Pot avea intrări de activare, astfel încât ieşirea selectată nu pot fi activată decât dacă intrarile de activare sunt active.
- □ Pt. n intrări şi cu m ieşiri → decodificator nla-m.
- Uzual sunt folosite pt. activarea (EN) componentelor

Decodificatorul 1-la-2

Graphic Symbol

$$C_0 = EA'_0$$

$$C_1 = EA_0$$

Boolean Expression

Truth Table

Logic Schematic

Decodificatorul 2-la-4

$$C_0 = E_0 A'_1 A'_0$$

$$C_1 = E_0 A'_1 A_0$$

$$C_2 = E_0 A_1 A'_0$$

$$C_2 = E_0 A_1 A_0$$

Boolean Expression

Circuite integrate pe scară medie ce îndeplinesc funcția de decodificator

74LS138: decodificator 3-la-8

G1	G2	G3	A	В	C	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
0	X	X	X	X	Х	1	1	1	1	1	1	1	1
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

DEC 4-la-16

14LS42: Decodificator 4-la-10

A	В	C	В	1	2	3	4	5	6	7	8	9	10
0	0	0	0	1	1	1	1	1	1	1	1	1	1
0	0	0	1	0	1	1	1	1	1	1	1	1	1
0	0	1	0	1	0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1	0	1	1	1	1	1
0	1	1	0	1	1	1	1	1	0	1		1	1
0	1	1	1	1	1	1	1	1	1	0		1	1
1	0	0	0	1	1	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	1	1	1	0	1
1	0	1	0	1	1	1	1	1	1	1	1	1	0
1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

Sinteza funcțiilor logice folosind decodificatoare

Să se implementeze cu ajutorul unui decodificator 74LS138 funcția logică $f1(a,b,c) = \sum (1,3,5)$

Multiplexor(Selector)

- Multiplexorul este un circuit logic combinaţional ce conectează ieşirea acestuia la una din cele n intrări.
- Selecţia uneia din cele n intrări se face cu ajutorul a log₂ n intrări de selecţie.
- Poate fi privit ca un comutator digital.
- Este folosit pt.selecția unei singure surse de date din mai multe.

MUX 2-la-1

$$Y = S'D_0 + SD_1$$
Boolean Expression

MUX 2-la-1

MUX 4-la-1

74LS153: MUX 4-la-1

A	В	G1	G2	Y1	Y2
X	X	1	1	0	0
0	0	0	0	D0_1	D0_2
0	0	1	0	0	D0_2
0	0	0	1	D0_1	0
0	1	0	0	D1_1	D1_2
0	1	0	1	0	D1_2
0	1	1	0	D1_1	0
1	0	0	0	D2_1	D2_2
1	0	0	1	0	D2_2
1	0	1	0	D2_1	0
1	1	0	0	D3_1	D3_2
1	1	0	1	0	D3_2
1	1	1	0	D3_1	0

MUX 8-la-1

74LS151: MUX 8-la-1

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

