CHÉMIA

ÚVOD

Vzdelávací štandard bližšie špecifikuje a rozvíja ciele Štátneho vzdelávacieho programu s dôrazom na rozvoj prírodovednej gramotnosti. Vytvára priestor, ktorý umožňuje žiakom manipulovať s konkrétnymi predmetmi, pozorovať javy, merať, vykonávať experimenty, vzájomne diskutovať, riešiť otvorené úlohy, praktické a teoretické problémy. Žiacke objavovanie, bádanie, skúmanie sú základnými prístupmi, ktoré umožňujú nielen osvojiť si nové vedomosti, ale aj základy spôsobilostí vedeckej práce a vytvárajú pozitívne postoje k vedeckému spôsobu poznávania sveta.

Vzdelávací štandard pozostáva z charakteristiky predmetu a základných učebných cieľov, ktoré sa konkretizujú vo výkonovom štandarde. Je to ucelený systém výkonov, ktoré sú vyjadrené kognitívne odstupňovanými konkretizovanými cieľmi – učebnými požiadavkami. Tieto základné požiadavky môžu učitelia ešte viac špecifikovať, konkretizovať a rozvíjať v podobe ďalších blízkych učebných cieľov, učebných úloh, otázok, či testových položiek.

K vymedzeným výkonom sa priraďuje obsahový štandard, v ktorom sa zdôrazňujú pojmy ako kľúčový prvok vnútornej štruktúry učebného obsahu. Učivo je v ňom štruktúrované podľa jednotlivých tematických celkov. Je to základ vymedzeného učebného obsahu. To však nevylučuje možnosť učiteľov tvorivo modifikovať stanovený učebný obsah v rámci školského vzdelávacieho programu.

Vzhľadom na charakter a ciele predmetu sa organizácia výučby prispôsobí počtu žiakov v triede. Tým sa garantujú vonkajšie podmienky na adekvátnu realizáciu výučby a splnenie výkonového a obsahového štandardu.

CHARAKTERISTKA PREDMETU

Vyučovací predmet chémia v 1. – 4. ročníku má bádateľský a činnostný charakter. Žiaci vlastnou činnosťou objavujú vlastnosti látok, zákonitosti ich správania a vzájomného pôsobenia. Obsah vychádza zo situácií, javov a činností, ktoré majú chemickú podstatu, sú blízke žiakovi a sú dôležité v živote každého človeka. Tvoria ho nielen chemické poznatky, ale aj činnosti, ktoré vyúsťujú do zvládnutia viacerých prvkov vedeckej činnosti, z ktorých najdôležitejší je experiment.

V 5. – 8. ročníku východiskom pre rozvoj porozumenia žiakov medzi vlastnosťami anorganických a organických látok a ich premenami sú všeobecne platné, teoretické poznatky o vzťahoch medzi štruktúrou a vlastnosťami látok a poznatky o zákonitostiach chemických reakcií. Žiaci sa učia aplikovať metódy vedeckého poznávania, z ktorých najdôležitejší je experiment. Upevňujú si dôležité spôsobilosti, predovšetkým spôsobilosť objektívne a spoľahlivo pozorovať a opísať pozorované. Merajú, zaznamenávajú, triedia, analyzujú a interpretujú získané údaje, vytvárajú, overujú predpoklady a tvoria závery v procese experimentálnej činnosti vo forme úloh rôznej kognitívnej náročnosti.

CIELE PREDMETU

Žiaci

- sa zoznámia, prehĺbia a rozšíria základné poznatky o látkach dôležitých pre život,
- porozumejú chemickým javom a procesom prebiehajúcim v prírode aj technickej praxi,
- používajú správnu odbornú terminológiu a symboliku na opísanie chemických javov a procesov,
- triedia a usporiadajú pojmy podľa logických súvislostí,
- plánujú a realizujú pozorovania, merania a experimenty (ďalej len praktické činnosti) pri skúmaní chemických javov,
- používajú správne postupy a techniky pri praktických činnostiach, spracúvajú a vyhodnocujú získané údaje zo súvislých aj nesúvislých textov,
- prezentujú a obhajujú svoje postupy a tvrdenia logickou argumentáciou založenou na dôkazoch,
- získajú manuálne zručnosti, intelektové a sociálne spôsobilosti pri realizácii praktických činností,
- si osvojujú a uplatňujú zásady bezpečnej práce s látkami,
- analyzujú problémy, aplikujú poznatky, formulujú a overujú hypotézy,
- prezentujú vhodným spôsobom odborné poznatky a informácie,
- spájajú poznatky nadobudnuté štúdiom chémie a iných vedných odborov a riešia nastolené problémy,
- diferencujú informácie o použití rôznych látok v priemysle, poľnohospodárstve a v živote, z odborného chemického hľadiska, z hľadiska významu pre človeka, vplyvu na životné prostredie a ľudské zdravie.

VZDELÁVACÍ ŠTANDARD

1. - 4. ROČNÍK GYMNÁZIA

Látky a ich vlastnosti

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ získať návyky systematického pozorovania vlastností látok,	pozorovanie vlastností látok: skupenstvo, farba, zápach, rozpustnosť,
 ✓ určiť spoločné a rozdielne vlastnosti látok, 	horľavosť na modelovej skupine látok (cukor, kuchynská soľ, piesok,
✓ rozlíšiť základné piktogramy označujúce nebezpečné látky,	modrá skalica, sklo, parafín, plast, voda, etanol – lieh, ocot)
✓ roztriediť príklady látok na zmesi a chemicky čisté látky,	príklady chemicky čistých látok a zmesí
 ✓ uviesť príklady rovnorodých a rôznorodých zmesí, 	rovnorodé a rôznorodé zmesi
✓ rozlíšiť pojmy roztok, rozpustená látka, rozpúšťadlo,	roztoky: rozpúšťadlo, rozpustená látka
✓ vypočítať hmotnostný zlomok zložky v roztoku; hmotnosť	vodný roztok, nasýtený roztok
rozpustenej látky, rozpúšťadla a roztoku,	plynné a kvapalné roztoky, tuhé roztoky (zliatiny)
✓ pripraviť roztoky daného zloženia podľa daného návodu,	hmotnostný zlomok zložky v roztoku
✓ pripraviť (jednoducho, bez výpočtu) nasýtený roztok,	základné laboratórne pomôcky a zariadenia
✓ dodržiavať zásady správneho a bezpečného zaobchádzania	spôsoby oddeľovania zložiek zmesí: odparovanie, usadzovanie,
s laboratórnymi pomôckami,	kryštalizácia, filtrácia, destilácia
✓ realizovať postupy na oddeľovanie zložiek zmesí podľa návodu	voda ako chemicky čistá látka (destilovaná voda)
(usadzovaním, odparovaním, filtráciou, kryštalizáciou),	voda ako zmes látok (minerálna, pitná, úžitková, odpadová)
✓ vysvetliť rozdiely medzi rôznymi druhmi vôd,	úprava pitnej vody
✓ uviesť príklady rôznych druhov vôd,	čistenie odpadových vôd

✓	posúdiť význam vody pre život z hľadiska príčin a dôsledkov ich
	znečistenia,

 ✓ vysvetliť rozdiel medzi čistením odpadových vôd a úpravou pitnej vody,

- ✓ skúmať vlastnosti rôznych druhov vôd,
- ✓ modelovať jednoduchými pokusmi postupy čistenia vôd,
- ✓ vymenovať základné zložky vzduchu,
- ✓ chápať význam vzduchu pre život.

vzduch ako zmes látok

zdroje znečistenia vzduchu: prach, výfukové plyny, splodiny horenia a priemyselné splodiny

Premeny látok

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ uviesť príklady prakticky dôležitých chemických reakcií,	pozorovanie chemických dejov (chemická reakcia, reaktant, produkt)
✓ rozlíšiť reaktanty a produkty v chemických reakciách,	zákon zachovania hmotnosti
✓ uskutočniť podľa návodu jednoduché pokusy na chemické	chemické zlučovanie, chemický rozklad
zlučovanie a chemický rozklad,	tepelné zmeny pri chemických reakciách (exotermické a endotermické
✓ vymenovať príklady exotermických a endotermických reakcií	reakcie)
známych zo života,	zápalná teplota
✓ uskutočniť pokusy na meranie tepelných zmien pri chemických	horl'avina
reakciách,	požiar
✓ zaznamenať výsledky pokusov do tabuliek a interpretovať ich,	hasenie látok
✓ zdôvodniť zásady hasenia látok na modelových príkladoch zo	rýchlosť chemických reakcií

	života,	príklady pomalých a rýchlych reakcií
✓	dodržiavať zásady bezpečnej práce s horľavinami,	faktory ovplyvňujúce rýchlosť chemických reakcií
✓	navrhnúť s pomocou učiteľ a modelový pokus na hasenie,	
✓	rozlíšiť pomalé a rýchle reakcie,	
✓	uskutočniť a vyhodnotiť experimenty o vplyve rôznych faktorov	
	na rýchlosť chemickej reakcie.	

Zloženie látok

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ rozlíšiť pojmy chemický prvok a chemická zlúčenina,	makroskopický pohľad na chemicky čisté látky (chemický
✓ rozlíšiť pojmy atóm, molekula a ión,	prvok, chemická zlúčenina)
✓ vysvetliť pozorované zmeny sprevádzajúce rozpúšťanie látok na	mikroskopický pohľad na látky: časticový model látky (atóm, ión,
základe poznania ich časticového zloženia,	molekula)
✓ pozorovať vlastnosti látok.	stavba atómu a jeho model (elektrónový obal, jadro atómu, protón,
	neutrón, elektrón)
	symbolické vyjadrenie zloženia látok (značky a vzorce)
	pozorovanie vlastností iónových, kovalentných a kovových látok (lesk,
	tvrdosť, kujnosť, elektrická a tepelná vodivosť, magnetizmus)
	chemické väzby v niektorých látkach (kovalentná a iónová väzba)

Významné chemické prvky a zlúčeniny

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ orientovať sa v periodickej tabuľke prvkov (ďalej len PTP),	opis periodickej tabuľky prvkov (ďalej len PTP)
✓ vyvodiť možné vlastnosti prvkov a ich zlúčenín podľa ich	vlastnosti látok a ich súvislosti s PTP
umiestnenia v PTP,	vodík, kyslík (ozón)
✓ uplatniť základné pravidlá názvoslovia halogenidov a oxidov	železo
s využitím PTP,	alkalické kovy (sodík, draslík)
✓ porovnať vlastnosti vybraných oxidov, hydroxidov, kyselín a solí,	halogény (fluór, chlór. bróm, jód)
✓ posúdiť vplyv vybraných oxidov, hydroxidov, kyselín a solí na	vzácne plyny
životné prostredie,	oxidy (oxid uhoľnatý, oxid uhličitý, oxid siričitý, oxid sírový, oxid
✓ uviesť príklady použitia vybraných oxidov, hydroxidov, kyselín	vápenatý, oxid kremičitý, oxidy dusíka)
a solí,	kyseliny (kyselina chlorovodíková, kyselina dusičná, kyselina uhličitá,
✓ vysvetliť vznik skleníkového efektu a kyslých dažďov a ich vplyv	kyselina sírová)
na životné prostredie,	hydroxidy (hydroxid sodný, hydroxid draselný, hydroxid vápenatý)
✓ orientovať sa v stupnici pH,	soli (chlorid sodný, chlorid draselný, síran vápenatý, síran meďnatý,
✓ určiť pomocou indikátora pH roztoku,	uhličitan sodný, uhličitan vápenatý, hydrogenuhličitan sodný)
✓ uviesť príklady využitia neutralizácie,	pozorovanie kyslých a zásaditých vlastností látok (indikátor, kyselina,
✓ overiť prakticky priebeh, prejavy a výsledky neutralizačných	zásada, neutralizácia, pH stupnica)
a oxidačno-redukčných reakcií.	pozorovanie oxidačných a redukčných vlastností látok (oxidačno-
	redukčné reakcie)

Zlúčeniny uhlíka

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ rozlíšiť anorganické a organické látky,	pozorovanie vlastností organických látok: správanie sa pri zahrievaní,
✓ realizovať jednoduché pokusy na rozlíšenie a identifikáciu	rozpustnosť vo vode a v organických rozpúšťadlách, horľavosť,
anorganických a organických látok,	zloženie organických látok (najdôležitejšie prvky organických
 ✓ rozlíšiť najjednoduchšie uhľovodíky, 	zlúčenín)
✓ vymenovať prírodné zdroje uhľovodíkov, spôsob ich vzniku,	stavba organických látok (štvorväzbovosť atómu uhlíka, uhlíkový
získavania, spracovania a využitia,	reťazec, otvorený a uzavretý reťazec, jednoduchá, dvojitá a trojitá
✓ vymenovať alternatívne zdroje energie a ich využívanie	väzba)
v súčasnosti,	vlastnosti a použitie najjednoduchších organických látok: nasýtené
✓ rozlíšiť uhľovodíky a deriváty uhľovodíkov,	a nenasýtené uhľovodíky
✓ uviesť vlastnosti a použitie derivátov,	alkány (metán, etán, propán, bután)
✓ zdôvodniť negatívny vplyv a dôsledky pôsobenia metanolu,	alkény (etén)
etanolu a acetónu na ľudský organizmus,	alkíny (etín)
✓ uviesť zdroje a význam prírodných látok,	prírodné zdroje uhľovodíkov
✓ vymenovať reaktanty a produkty fotosyntézy,	uhľovodíky ako palivo
✓ charakterizovať význam plastov, syntetických vláken, čistiacich	deriváty uhľovodíkov (kyselina octová, metanol, etanol, acetón)
a pracích prostriedkov,	vlastnosti a použitie prírodných látok (sacharidy, tuky, bielkoviny)
✓ zrealizovať podľa vlastného návrhu pokusy na demonštrovanie	vlastnosti a použitie polymérov, polymerizácia (polyetylén), plasty,
pracích účinkov mydla, ✓ uplatniť v praxi poznatky o látkach nebezpečných pre človeka a	syntetické vlákna

Chémia – gymnázium s osemročným vzdelávacím programom

životné prostredie.	čistiace a pracie prostriedky
	vplyv látok na chemické procesy v živých organizmoch (vitamíny, liečivá, jedy, drogy)

5. - 8. ROČNÍK GYMNÁZIA

Bezpečnosť práce

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ použiť správnu techniku pri práci s laboratórnymi váhami,	bezpečnosť práce v chemickom laboratóriu
odmerným valcom a pipetou.	základné laboratórne pomôcky a práca s nimi: skúmavka, kadička,
	destilačná banka, odmerná banka, Petriho miska, filtračný lievik,
	hodinové sklíčko, striekačka, oddeľovací lievik, odmerný valec,
	pipeta, chladič, stojan, držiak, svorka, filtračný kruh, chemické kliešte,
	laboratórna lyžička, teplomer, filtračný papier, trojnožka, kovová
	sieťka (s keramickou vložkou), kahan, byreta, kryštalizačná miska

Sústavy látok, pozorovanie a experiment

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
 ✓ rozlíšiť chemicky čisté látky a zmesi, 	látka
✓ rozlíšiť rovnorodé a rôznorodé zmesi pomocou ich	chemicky čistá látka
charakteristických znakov a skupenstva,	prvok
✓ navrhnúť a uskutočniť vhodný spôsob oddelenia zložiek zmesi:	zlúčenina
destilácia, filtrácia, usadzovanie, kryštalizácia, odparovanie,	homogénna a heterogénna zmes, emulzia, suspenzia, pena, aerosól
✓ vyriešiť úlohy na výpočet hmotnostného zlomku, a koncentrácie	otvorená a uzavretá sústava
látkového množstva zložky,	roztok, rozpúšťadlo, rozpustená látka

✓ vyriešiť úlohy na výpočet látkového množstva,	nasýtený roztok
✓ pripraviť roztok daného zloženia,	rozpustnosť látky
✓ vypočítať molárnu hmotnosť zlúčeniny zo známych hodnôt	hmotnostný zlomok
molárnych hmotností atómov prvkov.	koncentrácia látkového množstva
	Avogadrova konštanta
	látkové množstvo
	relatívna atómová hmotnosť
	relatívna molekulová hmotnosť
	molárna hmotnosť

Štruktúra atómov a iónov, periodická sústava prvkov

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ znázorniť štruktúru atómu s vyznačením protónov, neutrónov	atóm
a elektrónov,	atómové jadro (protón, neutrón, nukleóny)
✓ určiť počet protónov, neutrónov, elektrónov v atóme prvku a v	elektrónový obal atómu (elektrón, elektrónová vrstva)
iónoch na základe hodnôt protónového, neutrónového	valenčná vrstva, valenčné elektróny
a nukleonóvého čísla,	protónové číslo
✓ určiť počet valenčných elektrónov na základe umiestnenia prvku	neutrónové číslo
v PTP,	nukleónové číslo
✓ napísať schému vzniku katiónu alebo aniónu z atómu,	izotopy
✓ rozlíšiť v skupine iónov katióny alebo anióny,	ión, anión, katión

✓	určiť	periódu	a	skupinu	daného	prvku	v periodickej	tabuľke
	prvko	v,						

- ✓ používať triviálne názvy skupín (alkalické kovy, halogény, vzácne plyny),
- ✓ určiť základné charakteristiky atómu prvku zo základných údajov v PTP (protónové číslo, elektronegativita, relatívna atómová hmotnosť),
- ✓ zaradiť prvok podľa umiestnenia v PTP do skupiny, kov, nekov, polokov,
- ✓ porovnať fyzikálne a chemické vlastnosti prvkov na základe ich umiestnenia v PTP,
- ✓ roztriediť skupinu prvkov na prvky s malou a veľkou hodnotou elektronegativity na základe ich umiestnenia v PTP.

periodický zákon, periodická sústava prvkov (PSP) periodická tabuľka prvkov (PTP), perióda, skupina

alkalické kovy

halogény

vzácne plyny

elektronegativita

kovy, nekovy, polokovy

Anorganické zlúčeniny a základy ich názvoslovia, chemická väzba

	Výkonový štandard	Obsahový štandard
Ž	iak vie/dokáže	
✓	použiť značky a slovenské názvy prvkov I. – IV. periódy	stechiometrický, molekulový, štruktúrny vzorec zlúčenín
	hlavných skupín a vybraných kovov (Fe, Cu, Zn, Ag, Au, Mn, Cr,	oxidačné číslo
	Co, Ni, Hg, Pt),	molekula
✓	použiť triviálne názvy a vzorce: voda, peroxid vodíka, amoniak,	väzbový elektrónový pár
	sulfán, amónny katión,	voľný elektrónový pár

- ✓ určiť oxidačné číslo atómov prvkov v chemických zlúčeninách napr.: H₂O, NaCl, SO₃, NaOH, HNO₃, H₂SO₄, CaCO₃, KMnO₄,
- ✓ použiť pravidlá tvorby vzorcov a názvov zlúčenín: oxidy, hydroxidy, halogenidy, bezkyslíkaté kyseliny (halogenovodíkové kyseliny), kyslíkaté kyseliny dusíka, síry, uhlíka, chlóru, fosforu, solí kyselín uvedených prvkov a hydrogensolí kyselín uhličitej a trihydrogénfosforečnej,
- ✓ vysvetliť podstatu kovalentnej väzby v molekule vodíka,
- ✓ vymenovať príklady molekúl, v ktorých sa nachádzajú jednoduché, dvojité alebo trojité väzby (H₂, O₂, N₂),
- ✓ určiť typ chemickej väzby na základe rozdielu hodnôt elektronegativít atómov viažucich sa atómov prvkov,
- ✓ vysvetliť podstatu iónovej väzby v chloride sodnom,
- ✓ zdôvodniť vodivosť kovov ako dôsledok kovovej väzby,
- ✓ zdôvodniť rozdiel v štruktúre diamantu a grafitu,
- ✓ vymenovať príklady kryštalických látok, napr. NaCl, K₂SO₄,
 CaCO₃, grafit, diamant, ľad, železo a pod.,
- ✓ vysvetliť rozdiel medzi kryštalickou a amorfnou látkou z hľadiska štruktúry a fyzikálnych vlastností.

chemická väzba

nepolárna a polárna kovalentná väzba),

iónová väzba

vodíková väzba

jednoduchá väzba

násobná väzba (dvojitá, trojitá)

kovová väzba

medzimolekulové sily

kryštál: iónový, kovový, molekulový

kryštalická látka

amorfná látka

Chemické reakcie, chemické rovnice

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ zapísať chemickú reakciu schémou alebo chemickou rovnicou,	fyzikálne a chemické zmeny
✓ vysvetliť kvalitatívno-kvantitatívny význam chemickej rovnice,	chemická reakcia
✓ zapísať rovnicu chemickej reakcie na základe jej slovného opisu,	reaktanty, produkty
✓ vypočítať stechiometrické koeficienty v zápise chemickej reakcie	chemická rovnica
na základe zákona zachovania hmotnosti,	zákon zachovania hmotnosti v chemických reakciách
✓ vypočítať hmotnosť reaktantu alebo produktu na základe	stechiometrický koeficient
chemickej rovnice, ak je daná hmotnosť tuhého produktu alebo	exotermická reakcia
reaktantu,	endotermická reakcia
✓ rozlíšiť endotermické a exotermické reakcie na základe	reakčné teplo
pozorovania,	1. termochemický zákon
✓ rozlíšiť endotermické a exotermické reakcie na základe ich	rýchlosť chemickej reakcie
zápisu,	faktory ovplyvňujúce rýchlosť chemických reakcií (koncentrácia
✓ určiť hodnotu reakčného tepla spätnej reakcie na základe hodnoty	reaktantov, teplota, katalyzátor, veľkosť povrchu tuhých látok)
reakčného tepla priamej reakcie s využitím 1. termochemického	vratná reakcia
zákona,	chemická rovnováha
✓ vymenovať príklady exotermickej a endotermickej reakcie zo	rovnovážna koncentrácia látok
života,	faktory ovplyvňujúce chemickú rovnováhu (koncentrácia, teplota, tlak)
✓ porovnať rýchlosť priebehu chemických reakcií na základe	Brönstedova kyselina

pozorovania,

- ✓ uviesť príklady chemických reakcii zo života, ktoré prebiehajú pomaly a ktoré rýchlo,
- ✓ vysvetliť podstatu vplyvu zmeny teploty, zmeny koncentrácie reaktantov a katalyzátora na rýchlosť chemickej reakcie,
- ✓ vymenovať príklady dejov zo života, v ktorých je rýchlosť chemickej reakcie ovplyvňovaná niektorým z uvedených faktorov,
- ✓ overiť vplyv faktorov na rýchlosť priebehu chemickej reakcie experimentom podľa vlastného návrhu,
- ✓ vysvetliť podstatu vplyvu pridania reaktantu alebo odobrania produktu, zmeny teploty a tlaku na rovnovážny stav sústavy,
- ✓ uviesť príklady silných a slabých kyselín a zásad,
- ✓ napísať chemickú rovnicu autoprotolýzy vody,
- ✓ rozlíšiť oxóniový katión a hydroxidový anión,
- ✓ použiť indikátory pH na určenie kyslosti alebo zásaditosti roztoku,
- ✓ klasifikovať roztoky na kyslé, neutrálne a zásadité podľa danej hodnoty pH,
- ✓ napísať chemickú rovnicu neutralizácie,
- ✓ vymenovať príklady praktického využitia neutralizácie,

Brönstedova zásada

protolytická reakcia

konjugovaný pár

amfotérne látky

silná a slabá kyselina

silná a slabá zásada

autoprotolýza vody

pH, stupnica pH

kyslý, neutrálny a zásaditý roztok

neutralizácia

soľ

indikátor

redukcia

oxidácia

redoxné reakcie

čiastková reakcia

redukovadlo

oxidovadlo

korózia

elektrochemický rad napätia kovov

elektrolýza

- ✓ vymenovať rôzne spôsoby prípravy solí,
- ✓ dodržiavať zásady bezpečnosti práce s kyselinami a zásadami,
- ✓ určiť oxidačné čísla atómov prvkov v redoxných reakciách,
- ✓ vyznačiť v chemickej rovnici atómy prvkov, ktorých oxidačné čísla sa v priebehu chemickej reakcie zmenili,
- ✓ vysvetliť oxidáciu a redukciu látok na príklade,
- ✓ zapísať čiastkové reakcie oxidácie a redukcie,
- ✓ klasifikovať kovy na základe usporiadania prvkov v elektrochemickom rade napätia kovov Na, Mg, Al, Zn, Fe, Pb, H, Cu, Ag, Au na ušľachtilé a neušľachtilé,
- ✓ spracovať záznam o priebehu elektrolýzy roztoku a taveniny NaCl (nie však chemické rovnice dejov prebiehajúcich na elektródach),
- ✓ vysvetliť podstatu korózie kovov a spôsob ochrany kovov proti nej,
- ✓ vymenovať príklady redoxných reakcií prebiehajúcich v prírode,
- ✓ uskutočniť pokus s využitím poznatkov o elektrochemickom rade napätia kovov,
- ✓ použiť skrátený iónový zápis zrážacej reakcie,
- ✓ vymenovať príklady zrážacích reakcií a ich využitie v praxi,
- ✓ naplánovať, zrealizovať a spracovať záznam z experimentu o využití zrážacích reakcií.

zrážacia reakcia

zrazenina

málo rozpustná látka

iónový zápis chemickej reakcie

Prvky a ich anorganické zlúčeniny

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ zapísať chemickou rovnicou prípravu vodíka (reakciou kovu	vodík a jeho vlastnosti
s kyselinou, alkalického kovu s vodou),	traskavá zmes
✓ aplikovať poznatky o fyzikálnych vlastnostiach vody (teplota	voda, jej vlastnosti a význam pre život na zemi
topenia, teplota varu, hustota vody a l'adu, anomália vody) a	tvrdosť vody
poznatky o chemických vlastnostiach vody (polarita, tvorba	anomália vody
vodíkových mostíkov),	kovy a nekovy, ich vlastnosti, význam a použitie
✓ zapísať chemickou rovnicou odstraňovanie tvrdosti vody varom	alkalické kovy
a sódou,	biogénny prvok
✓ aplikovať vedomosti zo všeobecnej chémie pri určovaní	plameňové skúšky
základných fyzikálnych a chemických vlastností alkalických	vodný kameň
kovov a kovov alkalických zemín, napr. vodivosť, lesk, tvrdosť,	alotropická modifikácia
hustota, tvorba katiónov, oxidačné číslo, reaktivita,	inertná atmosféra
elektronegativita, redukčné účinky,	pasivácia kovov
✓ porovnať základné fyzikálne a chemické vlastnosti alkalických	liatina, zliatina
kovov, kovov alkalických zemín a spôsob ich uchovávania,	skleníkový efekt
✓ vymenovať prírodné zdroje sodíka, draslíka, horčíka, vápnika	globálne otepľovanie
(napr. morská a minerálna voda, kamenná soľ, sylvín, kalcit,	molekulový kyslík, ozón, ozónová diera
vápenec, magnezit, sadrovec),	spal'ovanie (dokonalé, nedokonalé)

- ✓ vysvetliť význam a vplyv iónov Na⁺, K⁺, Ca²⁺, Mg²⁺ na ľudský organizmus a ich zdroje,
- ✓ uviesť príklad použitia horčíka a zlúčenín NaCl, NaOH, KOH, Na₂CO₃, NaHCO₃, (NH₄)₂CO₃, CaO, Ca(OH)₂, CaCO₃ v praxi,
- ✓ zapísať chemickou rovnicou a vysvetliť chemickú podstatu neutralizácie žalúdočných kyselín, kyprenia cesta sódou bikarbónou, výroby páleného vápna a haseného vápna, tvrdnutia malty, vzniku krasových útvarov,
- ✓ určiť skupenstvá prvkov Al, C, Si, N, P, O, S, halogénov, vzácnych plynov,
- ✓ vymenovať zdroje Al, C, Si, N, P, O, S, halogénov a vzácnych plynov, (bauxit, diamant, grafit, uhličitany, organické látky, kremeň, hlinitokremičitany, íly, kaolín, vzduch, liadky, fosforečnany, ozón, oxidy, sulfán, sulfidy: (pyrit, sfarelit, galenit), sírany, halogenidy, ako formy výskytu v prírode),
- ✓ zdôvodniť biogénne vlastnosti prvkov C, Si, N, P, O, S, F, Cl, I, Fe.
- ✓ zaradiť prvky Cd, Hg, biely fosfor a zlúčeniny Hg, Cd, Be, Ba, Cr^{VI}, sulfán, kyanovodík a kyanidy, NO_x do skupiny toxických látok,
- ✓ aplikovať vedomosti o základných vlastnostiach hliníka (lesk,

dehydratačné účinky

priemyselne dôležité zlúčeniny kovov a nekovov: sóda, sóda bikarbóna, pálené vápno, hasené vápno, sadra, sklo, silikón, silikagél, salmiak, rajský plyn, lúčavka kráľovská, zinkova beloba, oceľ, amalgám, kamenná soľ, sylvín, kalcit, vápenec, magnezit, sadrovec, liadky, kremeň, pyrit, sfalerit, galenit

- vodivosť, kujnosť, mäkkosť, hustota, odolnosť voči korózii, redukovadlo) na možnosti jeho využitia,
- ✓ porovnať vlastnosti grafitu a diamantu, bieleho a červeného fosforu (skupenstvo, tvrdosť, elektrická vodivosť, teplota topenia, horľavosť),
- ✓ porovnať vlastnosti CO a CO₂, O₂ a O₃,
- ✓ vysvetliť príčiny vzniku ozónovej diery, prízemného ozónu, kyslých dažďov,
- ✓ zapísať chemickou rovnicou syntézu amoniaku z prvkov,
- ✓ vymenovať základné vlastnosti amoniaku (skupenstvo, zápach, hustota, žieravina, rozpustnosť a tvorba vodíkových väzieb, zásaditá reakcia s vodou, redukovadlo),
- ✓ aplikovať poznatky o vlastnostiach HNO₃ (silná kyselina, na svetle sa rozkladá, oxidačné účinky, súčasť lúčavky kráľovskej),
- ✓ klasifikovať oxidy podľa reakcie s vodou (SO₂, SO₃, CO₂, CaO),
- ✓ opísať základné vlastnosti síry (skupenstvo, tvrdosť, rozpustnosť, teplota varu a topenia, horľavosť),
- ✓ vymenovať vlastnosti sulfánu a SO₂ (skupenstvo, zápach, rozpustnosť vo vode, toxicita, protolytické a redoxné vlastnosti),
- ✓ zapísať chemickou rovnicou prípravu SO₂, SO₃, H₂SO₄,
- ✓ aplikovať poznatky o vlastnostiach H₂SO₄ (olejovitá kvapalina,

- silná kyselina, dehydratačné účinky),
- ✓ rozlíšiť amorfné a kryštalické formy uhlíka a síry a ich využitie,
- ✓ porovnať oxidačné účinky, elektronegativitu a reaktivitu halogénov,
- ✓ zapísať chemickou rovnicou reakciu HCl s vodou a s NaOH,
- ✓ porovnať príčinu inertnosti vzácnych plynov, dusíka a CO₂
 a z toho vyplývajúce využitie,
- ✓ určiť hlavné využitie prvkov Si, N, P, O, Cl, I, vzácnych plynov, Fe, Zn, Cr, Cu, Ag, Au, Hg a ich zlúčenín (silikóny, kremeň, silikagél, hlinitokremičitany, amoniak, salmiak, uhličitan amónny, rajský plyn, HNO₃, liadky, H₃PO₄, fosforečnany, H₂O₂, SO₂, H₂SO₄, chlórnany, chlorečnany, modrá skalica, AgNO₃, zinkova beloba, amalgám),
- ✓ spracovať záznam o uskutočnených plameňových skúškach iónov Li, Na, K, Ca, Sr, Cu; reakciách alkalického kovu s vodou, kovu s kyselinou; dôkazoch zásaditých vlastností NaHCO₃ a kyselinotvorných vlastnostiach CO₂; príprave a dôkazoch H₂, CO₂, O₂,
- ✓ porovnať základné vlastnosti a charakteristiky kovov Fe, Zn, Cr, Cu, Ag, Au, Hg a alkalických kovov (farba, oxidačné čísla, tvrdosť, hustota, reaktivita a výskyt v rýdzej forme),

- ✓ opísať základný princíp výroby surového železa a ocele a ich využitie,
- ✓ rozlíšiť zloženie zliatin bronz, mosadz, spájka, nerezová oceľ a ich využitie,
- ✓ porovnať reaktivitu kovov Cu, Ag, Au z hľadiska správania sa kovov na vzduchu a z hľadiska reakcie s HNO₃ a lúčavkou kráľovskou.

Organické látky, uhľovodíky

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ aplikovať vedomosti o štruktúre atómu a postavení prvkov v PSP pri	organická chémia
určovaní väzbovosti atómov C, H, S, O, N a halogénov v	organická zlúčenina, uhľovodík, deriváty uhľovodíkov
molekulách organických zlúčenín,	izoméria (konštitúcia, konfigurácia, konformácia)
✓ rozlíšiť na základe konštitučného vzorca druh uhľovodíka a tvar	acyklický – priamy, rozvetvený reťazec
ret'azca,	cyklický reťazec
✓ určiť typ vzorca organickej zlúčeniny,	alifatický uhľovodík
✓ zapísať vzorce všetkých konštitučných izomérov uhľovodíkov s	štruktúra organických zlúčenín
daným molekulovým vzorcom $(C_3 - C_6)$,	primárny, sekundárny, terciárny a kvartérny atóm uhlíka
✓ rozlíšiť častice: radikál, elektrofil (elektrofilné činidlo), nukleofil	nasýtený a nenasýtený uhľovodík
(nukleofilné činidlo),	empirický (stechiometrický) vzorec, sumárny (molekulový vzorec),
✓ určiť stechiometrický a molekulový vzorec z relatívneho zastúpenia	konštitučný (štruktúrny) vzorec, zjednodušený konštitučný vzorec

	prvkov v mo	olekule,				
/	vypočítať zo	stechiometrického	vzorca	relatívne	zastúpenie	prvk

- v zlúčenine,
- ✓ napísať vzorec a názov alkylových skupín: metyl-, etyl-, propyl-, izopropyl- butyl-, vinyl-,
- ✓ uviesť príklady alkánov, cykloalkánov, alkénov, alkánov, alkánov (vzorce, názvy),
- ✓ utvoriť názvy a vzorce: nerozvetvených alkánov, alkénov, alkínov C_1-C_{10} a cykloalkánov C_3-C_6 ; rozvetvených alkánov, alkénov a alkínov C_4-C_{10} s maximálne dvomi alkylovými skupinami uvedenými vyššie,
- ✓ uviesť vzorce a triviálne názvy: benzén, toluén styrén, naftalén, skupiny fenyl-,
- ✓ utvoriť názov a napísať vzorec arénov odvodených od benzénu s maximálne dvomi alkylovými skupinami.

reakčná schéma

činidlo, radikál, nukleofil, elektrofil

výpočet stechiometrického vzorca

substitučné (systémové) názvoslovie

triviálne názvy

reťazec, uhľovodíkový zvyšok

názvoslovie alifatických a aromatických uhľovodíkov,

uhľovodíkových zvyškov (alkyl, cykloalkyl, aryl)

Uhľovodíky dôležité v praxi

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ aplikovať vedomosti o základných vlastnostiach alifatických	alkány, cykloalkány
uhľovodíkov (skupenstvo, rozpustnosť vo vode a v nepolárnych	homologický rad, homologický vzorec
rozpúšťadlách, horľavosť, výbušnosť v zmesi so vzduchom, typ	substitučná radikálová reakcia

väzieb a charakteristické reakcie),

- ✓ zapísať chemickú rovnicu chlorácie metánu (nie mechanizmus),
- ✓ zapísať chemickú rovnicu horenia metánu (dokonalé, nedokonalé),
- ✓ zapísať chemickú rovnicu reakcie eténu a etínu s H₂O, HCl, H₂,
- ✓ uviesť príklad využitia eténu, etínu,
- ✓ vymenovať uhľovodíky, ktoré sa využívajú ako zdroje energie (metán, propán, bután) a príklady ich konkrétneho využitia,
- ✓ porovnať fosílne palivá z hľadiska ich vyčerpateľnosti, ekologických dôsledkov ich ťažby, spracovania a využitia, obsahu škodlivých prímesí,
- ✓ uviesť príklady alternatívnych zdrojov energie, obnoviteľných a neobnoviteľných zdrojov energie,
- ✓ vysvetliť pojem plast, polymér, makromolekula,
- ✓ priradiť skratky PP, PE, PS, PVC k názvom makromolekulových látok a porovnať ich základné fyzikálne a chemické vlastnosti (hustota, tepelná a elektrická vodivosť, horľavosť, rozložiteľnosť v zemi) a spôsob ich využitia,
- ✓ vysvetliť podstatu aromatického charakteru arénov,
- ✓ porovnať základné vlastnosti alifatických a aromatických uhľovodíkov (horľavosť, rozpustnosť, skupenstvo, karcinogénne účinky, charakteristické reakcie),

alkény, alkadiény, alkíny

jednoduchá a násobná väzba

adičná elektrofilná reakcia

polymerizácia

fosílna surovina

zemný plyn, odorizácia zemného plynu

ropa

frakčná destilácia ropy

benzín, oktánové číslo benzínu

nafta, mazut, asfalt

petrochémia

plast, polymér, makromolekula

PE, PP, PVC, PS

arény

substitučná elektrofilná reakcia na aromatickom jadre

- ✓ zapísať chemickou rovnicou nitráciu benzénu do prvého stupňa,
- ✓ vymenovať príklady využitia benzénu, toluénu, styrénu a naftalénu.

Deriváty uhľovodíkov

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ označiť uhľovodíkový zvyšok a funkčné skupiny v uvedených	deriváty
vzorcoch,	heteroatóm
✓ uviesť charakteristické skupiny derivátov uhľovodíkov (F-, Cl-, Br-,	funkčná (charakteristická) skupina
I-, OH, -NO ₂ , -NH ₂ , CO-, -CHO, - COOH) a spôsob tvorenia ich	izoméria funkčných skupín
názvov,	halogénderiváty
✓ použiť triviálne názvy a vzorce derivátov uhľovodíkov: chloroform,	insekticídy
jodoform, vinylchlorid, anilín, etylénglykol, glycerol, fenol,	freóny
formaldehyd, acetaldehyd, acetón, kyselina mravčia, octová,	hydroxyderiváty
benzoová,	alkoholy (jednosýtne a viacsýtne; primárne, sekundárne, terciárne)
✓ utvoriť názov a napísať vzorec derivátov odvodených od benzénu a	fenoly
alkánov C_1 – C_{10} s maximálne jedným druhom funkčnej skupiny	karbonylové zlúčeniny
uvedenej vyššie,	aldehydy, ketóny
✓ aplikovať základné vlastnosti derivátov uhľovodíkov (rozpustnosť	nitroderiváty
vo vode, skupenstvo v porovnaní s uhľovodíkmi, charakteristický	amíny (primárne, sekundárne, terciárne)
zápach, polárny charakter väzby C-heteroatóm, tvorba vodíkovej	heterocyklické zlúčeniny
väzby, zásaditý, kyslý, amfotérny charakter, typické reakcie),	karboxylové kyseliny

- ✓ vyznačiť čiastkové náboje na atómoch väzby C-heteroatóm,
- \checkmark zapísať reakčnú schému reakcie brómetánu s NaOH (S_N aj eliminačný produkt),
- ✓ uviesť príklady využitia chloroformu, CCl₄, teflónu, nitrozlúčenín, metanolu, etanolu, glycerolu, etylénglykolu, formaldehydu, acetónu, ich účinok na ľudský organizmus a nebezpečenstvo pri manipulácii s nimi (toxicita, horľavosť, výbušnosť),
- ✓ uviesť využitie freónov, posúdia vplyv ich chemického pôsobenia na ozónovú vrstvu a z toho vyplývajúce dôsledky pre životné prostredie,
- ✓ rozlíšiť primárny, sekundárny a terciárny amín a alkohol, jednosýtny a viacsýtny alkohol,
- ✓ zapísať chemickou schémou základné princípy výroby etanolu,
- ✓ napísať reakčnú schému oxidácie etanolu na acetaldehyd a kyselinu octovú,
- ✓ porovnať silu karboxylových kyselín s anorganickými kyselinami,
- ✓ uviesť využitie karboxylových kyselín (mravčia, octová, benzoová),
- ✓ rozlíšiť na príklade esteru a aminokyseliny funkčné a substitučné deriváty karboxylových kyselín.

funkčné a substitučné deriváty karboxylových kyselín

Látky v živých organizmoch

Výkonový štandard	Obsahový štandard
Žiak vie/dokáže	
✓ opísať lipidy z hľadiska výskytu, štruktúry, vlastností, významu a	lipidy
zastúpenia vo výžive človeka,	jednoduché lipidy: tuky, oleje, vosky
✓ porovnať oleje a tuky z hľadiska štruktúry (obsahu mastných	stužovanie olejov
kyselín) a z hľadiska ich významu pre organizmus (zdravá výživa,	zmydelňovanie tukov, mydlá
obezita),	zložené lipidy: fosfolipidy
✓ aplikovať poznatky o fyzikálnych a chemických vlastnostiach látok	hydrofóbne a hydrofilné vlastnosti látok
pri vysvetľovaní podstaty významných reakcií lipidov, napr.	cholesterol
stužovanie olejov, žltnutie tukov, zmydelňovanie,	mastné karboxylové kyseliny, esenciálne mastné kyseliny
✓ porovnať výskyt, význam a zloženie jednoduchých a zložených	ω-3 a ω-6 -mastné kyseliny
lipidov,	sacharidy
✓ spracovať záznam o uskutočnenom pokuse overujúcom vlastnosti	mono-, oligo- a polysacharidy
a využitie lipidov,	aldózy, ketózy, tri-, pent- a hexózy
✓ porovnať význam LDL – "zlého cholesterolu" a HDL – "dobrého	chiralita, chirálne centrum, optická izoméria
cholesterolu" pre človeka,	ribóza, deoxyribóza, glukóza, fruktóza, sacharóza, laktóza, škrob,
✓ uviesť pôvod, výskyt a význam sacharidov,	glykogén, celulóza
✓ identifikovať chirálne atómy uhlíka vo vzorci monosacharidu,	proteíny
✓ porovnať glukózu a fruktózu, sacharózu a laktózu, škrob, glykogén a	aminokyseliny, proteinogénne aminokyseliny
celulózu z hľadiska štruktúry a významu pre výživu človeka,	α-uhlík

✓ spracovať záznam o uskutočnenom pokuse dokazujúcom redukčné vlastnosti sacharidov a dôkaze škrobu v potravinách,

- ✓ vysvetliť vzťah medzi zložením, štruktúrou, vlastnosťami a funkciou proteínov,
- ✓ uviesť vzorce a triviálne názvy aminokyselín (glycín, alanín),
- ✓ vyznačiť peptidovú väzbu vo vzorci peptidu,
- ✓ vysvetliť vzťah medzi denaturáciou a zmenou biologických funkcií
 proteínov,
- ✓ prakticky overiť vplyv denaturačných činidiel a zmeny fyzikálnych podmienok na proteíny,
- ✓ uviesť príklady fibrilárnych (kolagén, keratín) a globulárnych bielkovín (hemoglobín, myoglobín),
- ✓ vysvetliť štruktúru, vlastnosti a funkciu enzýmov,
- ✓ vysvetliť vplyv enzýmu na priebeh reakcie,
- ✓ opísať vplyv faktorov na rýchlosť enzýmovej reakcie,
- ✓ overiť pokusom katalytický účinok enzýmu,
- ✓ dať do vzťahov zloženie, štruktúru, vlastnosti, výskyt, funkcie a význam DNA a RNA,
- ✓ aplikovať princíp komplementarity na príklade DNA.

peptidová väzba

primárna, sekundárna, terciárna a kvartérna štruktúra

fibrilárne, globulárne proteíny

denaturácia

hém, hemoglobín, myoglobín

lipoproteíny, glykoproteíny, fosfoproteíny, hemoproteíny

enzým

apoenzým, kofaktor, koenzým,

aktívne miesto, aktivačná energia, enzým-substrátový komplex

špecifický katalytický účinok

inhibícia a aktivácia enzýmu

nukleové kyseliny

adenín, guanín, cytozín, uracil, tymín

nukleozid, nukleotid

makroergická väzba

ADP, ATP

polynukleotidový reťazec

DNA, RNA