Finding the mjor descriptors of species networks Tanya Strydom $^1;$ Andrew P. Beckerman 1 Abstract: TODO

 ${\bf Keywords:}\ {\bf food\ web,\ structure,\ dimensionality\ reduction}$

- ¹ Blah blah Vermaat et al. (2009)
- ² "It is incumbent on network ecologists to establish clearly the independence and uniqueness of the descriptive
- $_{\rm 3}$ $\,$ metrics used." Lau et al. (2017)

Table 1: An informative caption about the different network properties

			Reference (for
			maths), can make
Label	Definition	"Function"	footnotes probs
Basal	Percentage of basal taxa, defined as		
	species who have a vulnerability of		
	zero		
Connectance	L/S^2 , where S is the number of		
	species and L the number of links		
Cannibal	Percentage of species that are		
	cannibals		
ChLen	Mean food chain length, averaged		
	over all species (where a food chain		
	is defined as a continuous path		
	from a 'basal' to a 'top' species)		
ChSD	Standard deviation of ChLen		
ChNum	log number of food chains		
Clust	mean clustering coefficient		TODO
	(probability that two taxa linked to		
	the same taxon are also linked)		
GenSD	Normalized standard deviation of		Williams & Martinez
	generality of a species standardized		(2008)
	by L/S		
Herbivore	Percentage of herbivores plus		
	detritivores (taxa that feed only on		
	basal taxa)		

			Reference (for
			maths), can make
Label	Definition	"Function"	footnotes probs
Intermediate	Percentage of intermediate taxa		
	(with both consumers and		
	resources)		
LinkSD	Normalized standard deviation of		
	links (number of consumers plus		
	resources per taxon)		
Loop	Percentage of taxa in loops (food		
	chains in which a taxon occurs		
	twice)		
L/S	links per species		
MaxSim	Mean of the maximum trophic		TODO
	similarity of each taxon to other		
	taxa, the number of predators and		
	prey shared by a pair of species		
	divided by their total number of		
	predators and prey		
Omnivory	Percentage of omnivores (taxa that		
	feed on \geq 2 taxa with different		
	trophic levels)		
Path	characteristic path length, the		
	mean shortest food chain length		
	between species pairs		
Richness	Number of nodes in the network		
TL	Prey-weighted trophic level		Williams & Martinez
	averaged across taxa		(2004)
Тор	Percentage of top taxa (taxa		
	without consumers)		

			Reference (for
			maths), can make
Label	Definition	"Function"	footnotes probs
VulSD	Normalized standard deviation of		
	vulnerability of a species		
	standardized by L/S		
Links	The number of links in the network		
Diameter	Diameter can also be measured as		Delmas et al. (2019)
	the average of the distances		
	between each pair of nodes in the		
	network		
ρ	Spectral radius is a a conceptual		Staniczenko et al.
	analog to nestedness (and more		(2013)
	appropriate for unipartite		
	networks). It is defined as the		
	absolute value of the largest real		
	part of the eigenvalues of the		
	undirected adjacency matrix		
Complexity	SVD complexity of a network,	Something about	Strydom et al. (2021)
	defined as the Pielou entropy of its	structural v	
	singular values	behavioural	
		complexity being	
		captured	
Centrality	Centrality is a measure of how	Centrality can help in	
	'influential' a species is, under	quantifying the	
	various definitions of 'influence'	importance of species	
		in a network	
S1	Number of linear chains		Stouffer et al. (2007)
			Milo et al. (2002)
S2	Number of omnivory motifs		Stouffer et al. (2007)
			Milo et al. (2002)

			Reference (for
			maths), can make
Label	Definition	"Function"	footnotes probs
S4	Number of apparent competition		Stouffer et al. (2007)
	motifs		Milo et al. (2002)
S5	Number of direct competition		Stouffer et al. (2007)
	motifs		Milo et al. (2002)
Intervality			TODO Stouffer et al.
			(2006)

^{4 |} Sepal.Length|Sepal.Width|Petal.Length|Petal.Width|Species|

5		-	-	-	-
6	5.1	13.5	11.4	10.2	setosa
7	14.9	13.0	11.4	10.2	setosa
8	14.7	13.2	11.3	10.2	setosa
9	14.6	3.1	11.5	10.2	setosa
10	15.0	13.6	11.4	10.2	setosa
11	15.4	13.9	11.7	10.4	setosa

¹² Source: Article Notebook

3 References

- 14 Delmas, E., Besson, M., Brice, M.-H., Burkle, L. A., Riva, G. V. D., Fortin, M.-J., Gravel, D., Guimarães,
- P. R., Hembry, D. H., Newman, E. A., Olesen, J. M., Pires, M. M., Yeakel, J. D., & Poisot, T. (2019).
- Analysing ecological networks of species interactions. Biological Reviews, 94(1), 16–36. https://doi.org/10.
- 17 1111/brv.12433
- Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J., & Ellison, A. M. (2017). Ecological network metrics:
- Opportunities for synthesis. *Ecosphere*, 8(8), e01900. https://doi.org/10.1002/ecs2.1900
- Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network Motifs: Simple
- Building Blocks of Complex Networks. Science, 298(5594), 824–827. https://doi.org/10.1126/science.298.
- 5594.824
- Staniczenko, P. P. A., Kopp, J. C., & Allesina, S. (2013). The ghost of nestedness in ecological networks.

- Nature Communications, 4(1), 1391. https://doi.org/10.1038/ncomms2422
- 25 Stouffer, D. B., Camacho, J., & Amaral, L. A. N. (2006). A robust measure of food web intervality. Proceedings
- of the National Academy of Sciences, 103(50), 19015–19020. https://doi.org/10.1073/pnas.0603844103
- 27 Stouffer, D. B., Camacho, J., Jiang, W., & Nunes Amaral, L. A. (2007). Evidence for the existence of a robust
- pattern of prey selection in food webs. Proceedings of the Royal Society B: Biological Sciences, 274(1621),
- ²⁹ 1931–1940. https://doi.org/10.1098/rspb.2007.0571
- 30 Strydom, T., Dalla Riva, G. V., & Poisot, T. (2021). SVD Entropy Reveals the High Complexity of Ecological
- Networks. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.623141
- ³² Vermaat, J. E., Dunne, J. A., & Gilbert, A. J. (2009). Major dimensions in food-web structure properties.
- Ecology, 90(1), 278–282. https://doi.org/10.1890/07-0978.1
- Williams, R. J., & Martinez, N. D. (2004). Limits to Trophic Levels and Omnivory in Complex Food Webs:
- Theory and Data. The American Naturalist, 163(3), 458–468. https://doi.org/10.1086/381964
- Williams, R. J., & Martinez, N. D. (2008). Success and its limits among structural models of complex food
- webs. The Journal of Animal Ecology, 77(3), 512–519. https://doi.org/10.1111/j.1365-2656.2008.01362.x