

CONCEVEZ UNE APPLICATION AU SERVICE DE LA SANTÉ PUBLIQUE

Soutenance du P3: le 22/02/2022

Version notebook: 6.3.0
Version Python: 3.8.8
Version Pandas: 1.2.4
Version Seaborn: 0.11.1
Version Matplotlib: 3.3.4

Plan

- Idée d'application : Nutri-Sport
- Nettoyage du data-set
- Analyse exploratoire
- * Conclusion

A. Idée d'application

Nutri-Sport:

L'idée d'application est de calculer un score en scannant un produit, ce score est basé sur les produits qui contiennent plus de protéines ainsi que des nutritions énergétique facile à absorber dans le but de couvrir le besoin des sportifs, puis l'application va suggérer des produit de même catégorie et score afin d'avoir plus de choix de produits. Le score sera représenter par trois modalité: **Mauvais**, **Moyen**, **Excellent**.

<u>Le choix de variables</u>: vu que l'application va traiter un besoin sportif, donc on doit se focaliser sur les valeurs nutritionnelles comme la protéine le sucre, de la matière grasse et d'autres, qui sont nécessaires pour calculer le score.

B.1. Présentation du jeu données:

fr.openfoodfacts.org.products.csv

fr.openfoodfacts.org.products:

- Le fichier est volumineux, il contient plus de 320 000 produits alimentaires.
- Taille: 320772 lignes, 162 colonnes, nombre de cases: 51965064
- Nombre de valeurs nulles: 39608589
- Nombre de valeurs non nulles: 12356475
- Le pourcentage des valeurs nulles: 76.2 %
- Le pourcentage des valeurs non nulles: 23.8 %

Variable_name Missing_values Missing_rate

B.1. Présentation des valeurs NaN de toutes les colonnes:

B.1. Présentation des valeurs non nulles de toutes les colonnes:

	Variable_name	completation_values	completation_rate
5	last_modifi	320772	100.000000
6	last_modifi	320772	100.000000
2	creator	320770	99.999377
3	created_t	320769	99.999065
4	created_dat	320763	99.997194
0	code	320749	99.992830
1	url	320749	99.992830
58	states_fr	320726	99.985660
57	states_tags	320726	99.985660
56	states	320726	99.985660
31	countries	320492	99.912711
33	countries_fr	320492	99.912711
32	countries_tags	320492	99.912711

B.2. Filtration des colonnes au dessus de 20% de NaN:

Le Via la fonction « flt_nan » on fixe le seuil à 80% pour supprimer les colonnes inférieur ou égale à 80% de NaN

```
prd_flt = flt_nan(prd, 80) # Suppréssion des colonnes qui contiennent de 80% de NaN prd_flt.shape

(320772, 54)

Le data-set est passé de 162 colonnes à 54.
```

En therme de pourcentage, le Data-set maintenant est à 66.7% de valeurs non nulles

Données manquantes en % par variable en-dessus de 80%

0.0

image_url
image_small_url
packaging
packaging_tags
main_category_fr
main_category
categories_tags

categories categories_fr pnns_groups_1

pnns_groups_2 quantity

vitamin-a_100g iron_100g vitamin-c_100g calcium_100g trans-fat_100g cholestero[_100g

additives_tags

B.2. <u>Filtration des colonnes NaN:</u>

Sur le « Barplot » à droit, la variable 'image_url' a un pourcentage 75% de NaN, qui représentait 20% de NaN dans le DataSet non filtré

B.3. Sélection des variable pour l'appli:

Après le premier filtrage, maintenant on doit garder que les variables qui nous intéressent pour notre application, en dessous la liste des variables potentielles

> Des variables qui concernent le code, le nom du produit, la date de création, le producteur, la marque ainsi que le pays de provenance (Object)

Les modalités nutri-score, classés come suite : 'A', 'B', 'C', 'D', 'E', (variable catégorique)

'pnns_groups_1' et 'pnns_groups_2' concernent les catégories des produits ainsi les sous groupe (Object)

Les 10 variables concernent: l'énergie calculée pour 100g, 8 variables nutritionnelles, et en dernier le score nutritionnel (Int, Floats)

fiber 100g proteins 100g

B.4. Traitement des valeurs aberrantes:

Pour traiter les valeurs aberrantes il existe plusieurs méthodes comme z-score, Interquartiles, percentile..., dans un premier temps on va prendre les seuils suivants:

Pour l'énergie 4000, le reste des variables entre 0 et 100g, 3.1g Cholestérol, sauf nurti-score.

* on constate que toutes les nutritions maintenant n'ont pas de valeurs négatives sauf le nutrition score qui est normal car le nutri grade A contient des valeurs négatives

%timeit min max(food facts[slct ingr])

food_f	ood_facts.describe()								
	energy_100g	fat_100g	saturated- fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
count	2.611130e+05	243891.000000	229554.000000	144090.000000	243588.000000	244971.000000	200886.000000	259922.000000	255510.000000
mean	1.141915e+03	12.730379	5.129932	0.020071	32.073981	16.003484	2.862111	7.075940	2.028624
std	6.447154e+03	17.578747	8.014238	0.358062	29.731719	22.327284	12.867578	8.409054	128.269454
min	0.000000e+00	0.000000	0.000000	0.000000	0.000000	-17.860000	-6.700000	-800.000000	0.000000
25%	3.770000e+02	0.000000	0.000000	0.000000	6.000000	1.300000	0.000000	0.700000	0.063500
50%	1.100000e+03	5.000000	1.790000	0.000000	20.600000	5.710000	1.500000	4.760000	0.581660
75%	1.674000e+03	20.000000	7.140000	0.020000	58.330000	24.000000	3.600000	10.000000	1.374140
max	3.251373e+06	714.290000	550.000000	95.238000	2916.670000	3520.000000	5380.000000	430.000000	64312.800000

				fat_100g			0		p	<u>-</u>
	count	260959.000000	243887.000000	229551.000000	144085.000000	243569.000000	244952.000000	200881.000000	259918.000000	255352.000000
	mean	1123.689921	12.725256	5.125925	0.018316	32.055323	15.985449	2.832473	7.079409	1.588497
	std	795.937819	17.503695	7.913684	0.038483	29. 140680	21.165362	4.588272	8.156552	6.242531
	min	0.000000	9.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
nut	25%	377.000000	0.000000	0.000000	0.000000	6.000000	1.300000	0.000000	0.700000	0.063500
nut	50%	1100.000000	5.000000	1.790000	0.000000	20.600000	5.710000	1.500000	4.760000	0.580000
	75%	1674.000000	20.000000	7.140000	0.020069	58.330000	24.000000	3.600000	10.000000	1.371600
	max	4000.000000	100.000000	100.000000	1.580000	100.000000	100.000000	100.000000	100.000000	100.000000

sugars 100g

* Les valeurs au dessus des seuils sont remplacées par des Nan pour pouvoir après les remplacées par la moyenne de chaque sous catégorie

fat 100g cholesterol 100g carbohydrates 100g

fat 100a

salt 100g

B.4. Traitement des valeurs aberrantes: on va revenir sur ce point avec la méthode « Percentile »

Le Boxplot en dessous représente les nutritions après le filtrage, maintenant il n'y a pas de valeurs négatives sauf le nutrition score qui est normal car le nutri grade A contient des valeurs négatives, Ainsi l'Energie est fixée à 4000

B.5. Traitement des lignes dupliquées et entièrement NaN:

Suppréssion des lignes dupliquées

```
food_facts[food_facts.duplicated() == True].shape[0]
2

food_facts = food_facts.drop_duplicates()
food_facts[food_facts.duplicated() == True].shape[0]
0
```

Cela concerne les variables nutritions sélectionnées, en dessous on constate que le

dataset food facts est passé de 320753 lignes à 262744 * de 74.7% de données ---->

à 84.0% de données

Suppréssion des lignes dupliquées en fonction des variables

"code", "product_name", "brands", "nutrition_grade_fr", "nutrition-score-fr_100g

Suppréssion des lignes entièrement NaN

B.6. Remplacement des valeurs NaN par la moyenne:

* Correction des noms de catégories 'pnns_groups_1'et'pnns_groups_2' et remplacer les 'NaN' et 'Unknown' par 'To Define' * De chaque sous catégorie pnns_groups_2 on remplace les NaN par la moyenne si la moyenne de chaque sous catégorie de produit par variable est différent de NaN

• On remarque qu'il reste que le 'cholesterol_100g' avec des NaN car la moyenne de cette variable dans plusieurs catég-produit égale à NaN, dans ce cas on remplace par la moyenne de la variable même.

```
* Nombre de colonnes sans NaN -----: 19

* Nombre de colonnes NaN -----: 0

* Nombre de colonnes mixtes-----: 0

* Nombre de lignes ------: 215764

* Nombre de colonnes ------: 19

* Nombre de cases -------: 4099516

* Nombre de valeurs nulles -----: 4099516

* Nombre de valeurs non nulles -----: 4099516

* le pourcentage des valeurs non nulles ----: 0.0 %

* le pourcentage des valeurs non nulles ---: 100.0 %
```

Distribution des NaN / variable

0

B.6. Remplacement la modalité To Define:

En dessous on a créé un dictionnaire qui contient les noms des catégories pnns1 et pnns2 pour remplacer les modalité 'To Define' aux produits non définis, cela concerne presque 5500 produits.

On remarque que après le remplacement des modalités 'To Define' par leur catégories et sous catégories créées auparavant, le nombre de valeurs a diminué de 165763 à 160298

Un échantillon du dictionnaire créé

```
['Ice Cream', 'Milk And Dairy Products'],
diction = {'Ice Cream' :
            'Extra Virgin Olive Oil': ['Fats', 'Fat And Sauces'],
            'Potato Chips':
                                       'Salty And Fatty Products', 'Salty Snacks'),
                                       ['Ice Cream', 'Milk And Dairy Products'],
            'Premium Ice Cream':
                                      ['Dressings And Sauces', 'Fat And Sauces'],
            'Tomato Ketchup':
            'Beef Jerky':
                                      ['Processed Meat', 'Fish Meat Eggs'],
            'Pinto Beans':
                                       ['Legumes', 'Cereals And Potatoes'],
            'Cookies':
                                      ['Biscuits And Cakes', 'Sugary Snacks'],
            'Popcorn':
                                       ['Cereals', 'Cereals And Aotatoes'],
            'Salsa':
                                       ['Dressings And Sauces', 'Fat And Sauces'],
                                      ['Dressings And Sauces', 'Fat And Sauces'],
            'Tomato Sauce':
            'Cut Green Beans':
                                      ['Legumes', 'Cereals And Potatoes'],
            'Black Beans':
                                      ['Legumes', 'Cereals And Potatoes'],
                                      ['Legumes', 'Cereals And Potatoes'],
            'Creamy Peanut Butter':
            'Tortilla Chips':
                                       ['Appetizers','Salty Snacks'],
            'Apple Sauce':
                                       'Dressings And Sauces', 'Fat And Sauces'],
                                      ['Sweets', 'Sugary Snacks'],
            'Candy':
                                      ['Chocolate Products', 'Sugary Snacks'],
            'Milk Chocolate':
                                       ['Dressings And Sauces', 'Fat And Sauces'],
            'Pasta Sauce':
            'Chicken Broth':
                                      ['Processed Meat', 'Fish Meat Eggs'],
            'Cottage Cheese':
                                       ['Cheese', 'Milk And Dairy Products'],
                                      ['Milk And Yogurt', 'Milk And Dairy Products'],
            '2% Reduced Fat Milk':
                                      ['Milk And Yogurt', 'Milk And Dairy Products'],
            'Greek Nonfat Yogurt':
```

```
food_facts['pnns_groups_1'].value_counts()

To Define 165763
```

```
food_facts['pnns_groups_1'].value_counts()

To Define 160298
```


la méthode « Percentile » : *

On remarque que malgré les seuils qu'on a pris (0 et 100g), on a toujours des valeurs atypiques comme illustré par exemple il y a des produits qui ont 100% de la protéine ou de la fibre ce qui n'est pas normale, donc pour supprimer ces valeurs on utilise la méthode percentile pour les éliminer

product_name	brands	countries_fr	fiber_100g	proteins_100g
Eau	Delhaize	France	0.0	0.0
Eau	Marque Repère	France	0.0	0.0
Eau	Vital	France	100.0	100.0

Au dessus l'exemple de l'eau qui contient 100g de protéines et de fibre, avec la méthode percentile on va supprimer toutes ces valeurs


```
for col in food_facts_clean[slct_ingr].columns:
    if food_facts_clean[col].dtypes != 'object':
        food_facts_clean.loc[food_facts_clean[col] > food_facts_clean[col].quantile(0.999)] = np.nan
    #food_facts.loc[food_facts[col] < 0] = np.nan
food_facts_clean = food_facts_clean.dropna()</pre>
```


C.1. Analyse univariée: les indicateurs de distribution quantitatives et qualitatives

Après l'enregistrement du Dataset la taille du fichier est passée de 827Mo à 43Mo

fr.openfoodfacts.org. products.csv

Nutri_score_clean

C.1. Analyse univariée: les indicateurs de distribution quantitatives et qualitatives

Variables quantitatives: présenté par le Boxplot et la méthode Describe()

- 'energy_100g',
- 'fat_100g',
- 'saturated-fat_100g',
- 'cholesterol_100g',
- 'carbohydrates_100g',
- 'sugars_100g',
- 'fiber_100g',
- · 'proteins_100g',
- 'salt_100g',
- 'nutrition-score-fr_100g'

Variables qualitatives:

le nutrition_grade_fr est une variable qualitative ordinale, qui indique le nutriscore des individus.

C.2. Analyse bivariée:

La distribution de nutrition-scor-fr_100g par nutriscore_grade :

La distribution de la variable nutri-score évolue linéairement avec les modalités de la variable nutri-grade, clairement corrélée selon le Boxplot, à droit les intervalles de chaque nutri-grade en fonction de nutri-score

• A: entre -15 et 2

• **B**: entre 0 et 2

• **C**: entre 2 et 10

• **D**: entre 11 et 20

• E: entre 20 et 40

C.2. Analyse bivariée: la distribution des variables par nutriscore_grade

C.2. Analyse bivariée:

- L'ensemble de ces variables sont corrélées linéairement avec le nuti-grade, plus il y a de sucre ('sugars_100g'), de graisses ('fat_100g','saturated-fat_100g','cholesterol_100g',) et de sel ('salt_100g') dans un produit et plus son Nutri-Score est mauvais.
- pour le reste des variables ce n'est pas le cas, donc le calcul de nutri-score est basé sur les nutritions qui évoluent de manière linéaire

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

--0.2

C.2. Analyse bivariée:

On constate la présence de corrélations entre les variables suivantes:

- energy_100g et fat_100g = 0.74
- energy_100g et nutrition-score = 0.62
- fat_100g et saturated_fat_100g = 0.68
- saturated_fat_100g et nutrition-score = 0.63
- sugars_100g et carbohydrates_100g = 0.62
- energy_100g et carbohydrates_100g = 0.56
- sugars_100g et nutrition-score = 0.41

l'ensemble des variables en fonction de nutri-grade

C.3.1 Analyse multivariée: Analyse par composantes principales ACP

Selon le cumule de variance on constate qu'on peut réduire les dimension de notre dataset à 7 dimensions

C.3.1 Analyse multivariée: ACP

On constate la présence de corrélations entre les variables suivantes:

- energy_100g et fat_100g = 0.74
- energy_100g et nutrition-score = 0.62
- fat_100g et saturated_fat_100g = 0.68
- saturated_fat_100g et nutrition-score = 0.63
- sugars_100g et carbohydrates_100g = 0.62
- energy_100g et carbohydrates_100g = 0.56
- sugars_100g et nutrition-score = 0.41

C.3. Analyse multivariée: Analyse de la variance (ANOVA) indépendance des variables

Hypothèses stochastiques:

- 1. les échantillons sont issus d'une population normale (gaussienne): on parle de test paramétrique
- 2. les variances conditionnelles (variances dans chaque sous-population) sont identiques : homoscédasticité
- 3. les sous-échantillons sont indépendants
- * En toute rigueur, on devrait vérifier les deux premières hypothèses pour que l'analyse ANOVA soit valide

1. <u>Test de normalité avec Shapiro-Wilk test:</u>

Selon le test de normalité avec Shapiro-Wilk la distribution n'est pas normale, dans ce cas l'analyse d'ANOVA n'est pas valide, mais on va vérifier la deuxième condition.

w = 0.9589363932609558 / p = 0.0 Hypothèse nulle est rejetée : energy_100g n'est pas de distribution normale

2. Test d'homogénéité avec Levene's test:

Selon le test de Levene pvalue < 0.05 donc l'homogénéité n'est pas la même pour les nuri-grade sur la variable energy_100g.

Cela nous confirme encore une fois que le test de ANOVA n'est pas valide car les deux conditions la normalité ainsi que l'homogénéité ne sont pas valides

LeveneResult(statistic=2165.7907561155494, pvalue=0.0)

D. Conclusion

D. Faisabilité de l'Appli:

Calcul de Nutri-Sport:

Le choix des variables potentielles → Calcul de Score → Normalisation de résultats

Sur le Boxplot, on constate que le score calculé est bien corrélé avec le nutri_grade, plus le produit est protéiné et plus il est bien classé, plus de gras et plus est moins classé.


```
nutri score fnl.insert(19, 'Score', 0)
scr = { 'fat 100g':-3,
         'cholesterol_100g':-1,
         'sugars 100g':-5,
         'fiber_100g':5,
         'proteins 100g':5,
         'salt 100g':1}
for index in nutri_score_fnl.index:
    for k in scr.keys():
        if k in nutri score fnl:
            s = s + nutri_score_fnl[k][index]*scr[k]
    nutri score fnl.at[index, 'Score' ] = s
nutri_score_fnl['Score'].max()
400
nutri score fnl['Score'].min()
-800
```


Conclusion

La faisabilité de l'Appli:

- Le dataset contient des données utiles pour répondre à la problématique (Appli)
- La traçabilité des sources de données
- Contient des données détaillées sur chaque produit

Aspect négatif:

- La répartition de NaN distincte sur l'ensemble des variables
- Le manque d'infos sur les catégories pnns1 et pnns1