Basiswissen Statistik & Schnelleinstieg in R

Schnelleinstieg in R

Vektoren

Matrizen

Einnahmen	Ausgaben
375	897
480	390
7209	10978

Dataframes

Person	Burger/Tag
Stefan	0.03
Moni	0.04
Michael	0.8

• Vektoren myLuckmyWumbers <- c(1,7,1,5,3,9)

Matrizen

b <matrix(data=myVector,
nrow=2, ncol=3)</pre>

Einnahmen	Ausgaben
375	897
480	390
7209	10978

• a Dataframes

Person	Burger/Tag
Stefan	0.03
Moni	0.04
Michael	0.8

Vektoren

1 7 1 5 3

Matrizen

numeric

Einnahmen	Ausgaben
375	897
480	390
7209	10978

character / Dataframes

Person	Burger/Tag
Stefan	0.03
Moni	0.04
Michael	0.8

Numeric vs. character

```
c(1,2,3,4)
> [1] 1 2 3 4

c(94,95,"Gesundheit",97)
> [1] "94" "95" "Gesundheit"
"97"
```

Numeric vs. character vs. factor

Vektoren

7 1 5

Matrizen

numeric

Einnahmen	Ausgaben
375	897
480	390
7209	10978

character / Dataframes

Person	Kekse/Tag
A	0.03
В	0.04
C	0.8

Listen

```
> myList <- list(a,b,c)</pre>
> myList [[1]] [1] 1 2 3 4
[[2]]
Col 1 Col 2
Row 1 1 3
Row 2 2 4
[[3]] [1] "94" "95" "Gesundheit" "97"
unlist (myList)
```

Benutzung zur Textverarbeitung

Relevante Funktionen u.a.

- grep (zum Suchen auch mit regex)
- gsub (zum Ersetzen)
- strplit (zum Aufsplitten)
- paste (zum Zusammensetzen)

Plan für heute

Denken wie ein/e Statistiker/in

Skalenniveaus

Einfache statistische Testverfahren

Denken wie ein/e Statistiker/in

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

Denken wie ein/e Statistiker/in

Falsifikationistischer Ansatz:

 Wir beginnen mit einer Fragestellung, z.B.: Sterben Raucher früher?

 Wir stellen eine Hypothese auf, z.B.: Raucher sterben früher...

 ...und überprüfen die Nullhypothese: Raucher sterben nicht früher.

Denken wie ein/e Statistiker/in

Wir tun dies, indem wir Daten erheben...

...diese Daten auswerten...

 und fragen, wie wahrscheinlich es ist, dass die beobachtete Verteilung durch Zufall zustandekommt.

Visuelle Inspektion der Daten

Raucher vs. Nichtraucher

Skalenniveaus

- Variablen sind unterschiedlich **skaliert**
- Beispiel: Familienstand vs. Schulnoten vs. Körpergröße
- Wodurch unterscheiden sich diese drei Variablen?

Skalenniveaus

- Nominalskala
- Ordinalskala
- Intervallskala
- Verhältnisskala
- Absolutskala

kategorial

metrisch

Nominalskala

- Klassifizierung ohne Ordnungsrelation
- z.B. Familienstand: ledig, verheiratet, verwitwet, geschieden
- keine "Hierarchie": ledig ist nicht "besser" oder "größer" als verheiratet, geschweige denn "halb so gut" oder "doppelt so gut" o.ä.
- Auch binäre Variablen sind nominalskaliert,
 z.B. "lebendig" vs. "tot"

Ordinalskala

- Ordnungsrelation: z.B. Gold > Silber > Bronze
- keine Angaben, um wie viel Gold "besser" ist als Silber, Silber besser als Bronze etc.

Intervallskala

- metrische Skala: Intervalle zwischen einzelnen Punkten sind gleich groß
- z.B. Temperatur: Abstand zwischen 10°C und 20°C so groß wie zwischen 20°C und 30°C
- Jedoch: 40°C ist nicht doppelt so warm wie 20°C und 20°C nicht viermal so warm wie 5°C!
- Grund: Nullpunkt willkürlich festgelegt

Verhältnisskala

- alle intervallskalierten Variablen mit natürlichem Nullpunkt
- z.B. Lebensalter, Temperatur in Kelvin (beginnt mit -273,15°C, dem absoluten Nullpunkt)

Absolutskala

- genauer Wert einer Merkmalsausprägung
- nur natürliche Zahlen möglich
- lässt sich paraphrasieren mit "*n* Stück", z.B. 5 Stück, 10 Stück, 1000 Stück etc.
- z.B. Zahl der Schüler/innen in einer Klasse,
 Anzahl der Todesfälle im Jahr

Übungsaufgabe

- Affixart (Präfix vs. Suffix)
- Schulnote
- Alter von ProbandInnen in der Form "unter 18", "18-49", "49 und älter"
- Dauer einer Veranstaltung
- Körpergröße
- Likert-Skala (z.B.: Bewerten Sie x auf einer Skala von 1-5)

Grundgesamtheit und Stichprobe

Sind meine Daten repräsentativ?

- Nur in den seltensten Fällen können wir die gesamte Population untersuchen
- Deshalb ziehen wir eine Stichprobe
- Faustregel: Je größer die Stichprobe, desto besser
- Beispiel: Münzwurf

Ist meine Münze gezinkt?

- Wahrscheinlichkeit für Kopf und Zahl ist für gewöhnlich 50:50
- Natürlich ist es dennoch möglich, bei 10
 Würfen 10mal Kopf zu bekommen...
- …aber nicht sehr wahrscheinlich!

Gerichtete und ungerichtete Hypothesen

Gerichtet:

- Die Münze ist so gezinkt, dass öfter Kopf erscheint.
- Die Münze ist so gezinkt, dass öfter Zahl erscheint.

Ungerichtet:

Die Münze ist irgendwie gezinkt.

Grafik: 100.000*30 Würfe einer Münze (Simulation)

Anzahl Kopf (von 30)

Zentraler Grenzwertsatz

- Zieht man theoretisch unendlich viele
 Stichproben aus einer Grundgesamtheit, geht
 die Verteilung mit wachsendem
 Stichprobenumfang in eine
 Normalverteilung über
- Grenzwert: n≥30
- ab einer Stichprobengröße von 30 kann man statistische Verfahren heranziehen, die auf der Normalverteilung beruhen.

Worauf testen wir?

- Isolierte Daten machen in der Regel keinen Sinn
- "Studierende trinken häufig Bier" ist keine statistisch wirklich sinnvolle Aussage
- "Studierende trinken häufiger Bier als Grundschüler" hingegen ist eine falsifizierbare Hypothese.
- Ebenso: "Mit zunehmendem Alter steigt bei Akademikern der Alkoholkonsum"

Was ist eine wissenschaftliche Hypothese?

- Eine wissenschaftliche Hypothese macht eine allgemeine Aussage, die sich auf mehr als ein einzelnes Ereignis bezieht.
- 2. Diese Aussage muss sich in der Form wenn..., dann oder je..., desto paraphrasieren lassen.
- 3. Sie ist **potentiell falsifizierbar.**

Wie testen wir?

- Wir testen Nullhypothesen...
- ...um durch deren Zurückweisung die Alternativhypothese zu untermauern.

Beispiel:

H1: Die Münze, die ich werfe, ist gezinkt.

Wie muss Ho lauten?

Ho: Die Münze, die ich werfe, ist nicht gezinkt.

Wie testen wir?

- Wir testen Nullhypothesen...
- ...um durch deren Zurückweisung die Alternativhypothese zu untermauern.

Beispiel:

H1: Kopf vs. Zahl ~ 50:50

Wie muss Ho lauten?

Ho: Kopf vs. Zahl ≠ 50:50

Beispiel Münzwurf

Kopf	Zahl	
20	0	klarer Fall: Kopf häufiger
0	20	klarer Fall: Zahl häufiger
7	13	???

 Können wir bei dieser Verteilung (7:13) die Nullhypothese zurückweisen?

Fehler erster und zweiter Art

 Fehler erster Art: Die Nullhypothese trifft zu, wird aber abgelehnt.

Grafik:

https://chemicalstatistician.wordpress.com/2014/05/12/applied-statistics-lesson-of-the-day-type-i-error-false-positive-and-type-2-error-false-negative/

Was ist Signifikanz?

- Wir definieren (im Voraus!) ein Kriterium, um Ho zurückzuweisen
- Das Risiko der falschen Zurückweisung (Fehler erster Art) soll möglichst gering sein
- Daher: Signifikanzschwelle

Grafik: 100.000*30 Würfe einer Münze (Simulation)

Worauf testen wir

d.h. wir testen auf...

...signifikante
 Unterschiede

...signifikanteZusammenhänge

Wie testen wir?

Parametrische vs. non-parametrische Tests:

- Parametrischen Tests liegt eine bestimmte Verteilung – meist die Normalverteilung – zugrunde.
- Non-parametrische Tests sind verteilungsfrei und können auf Variablen aller Skalenniveaus angewandt werden.

Beispiel: Chi-Quadrat (verteilungsfrei - Nominaldaten)

- Beispiel: zwei Kurse in historischer Sprachwissenschaft
- einer geleitet von Dozent A, der andere von Dozent B
- Rahmenbedingungen genau gleich
- alle machen am Ende genau die gleiche Prüfung

Ergebnisse

Beispiel: Chi-Quadrat

• Prüfungsergebnisse:

Dozent	bestanden durchgefaller	
Dozent A	20	10
Dozent B	10	20

Was wäre eigentlich zu erwarten?

Dozent	bestanden	durchgefallen	
Dozent A	15	15	
Dozent B	15	15	

Beispiel: Chi-Quadrat

$$\sum_{i=1}^{n}$$

 $(beobachtete\ Freq. - erwartete\ Freq.)^2$ $erwartete\ Freq.$

Dozent	bestanden	durchgefallen	
Dozent A	20	10	
Dozent B	10	20	

Dozent	bestanden	durchgefallen
Dozent A	15	15
Dozent B	15	15

Chi-Quadrat: Voraussetzungen

Jeder Test kann nur unter bestimmten **Voraussetzungen** angewandt werden. Bei Chi
Quadrat sind diese:

- Alle Beobachtungen sind unabhängig voneinander
- mind. 8o% der beobachteten Werte sind ≥ 5
- alle erwarteten Frequenzen sind > 1

Übungsbeispiel

 Groß- und Kleinschreibung in Hexenverhörprotokollen: belebt vs. unbelebt

beob. Werte

	unbelebt	belebt
klein	1201	451
groß	576	594

Erwartete Werte werden errechnet mit:
 (Zeilensumme * Spaltensumme) / N

Übungsbeispiel

 Groß- und Kleinschreibung in Hexenverhörprotokollen: belebt vs. unbelebt

beob. Werte

	unbelebt	belebt
klein	1201	451
groß	576	594

erw. Werte

	unbelebt	belebt
klein	1040.26	611.74
groß	736.74	233.26

Übungsbeispiel

Ergebnis

• X-squared = 160.78, df = 1, p-value < 2.2e-16

- Aber: p-Wert ist nicht alles!
- Beim Chi-Quadrat-Test (und auch bei anderen Vierfeldertests wie Fisher Exact Test) ist er von der Stichprobengröße abhängig.
- Er sagt nichts darüber aus, wie groß der **Effekt** wirklich ist.

Signifikanz und Effektstärke

- Signifikanz gibt an, wie wahrscheinlich es ist, dass eine Verteilung beobachtet werden kann, wenn die Nullhypothese gilt.
- Davon zu unterscheiden ist die Effektstärke.

Effektstärke

- berechnet Stärke der beobachteten Korrelation unabhängig von der Stichprobengröße
- bei Chi-Quadrat: φ bzw. Cramérs V.

$$V/\phi = \sqrt{\frac{\chi^2}{n \cdot (k-1)}}$$

Phi-Koeffizient

- Chi-Quadrat = 160.78
- N = 2822

$$\phi = \sqrt{\frac{160.78}{2822}}$$

$$\phi$$
= 0.24

Worauf testen wir

d.h. wir testen auf...

...signifikante
 Unterschiede

...signifikanteZusammenhänge

Signifikante Zusammenhänge

Internetnutzung nach Alter

Rangkorrelationskoeffizienten

- z.B. Spearman's Rho, Kendall's Tau
- vergleicht die Rangfolge der unabhängigen Variable mit der Rangfolge der abhängigen Variable
- Beispiel (aus Howell 2010): durchschnittliche Ausgaben für Alkohol und Tabak

Howell, David C. 2010. *Statistical Methods for Psychology*. 7th ed. Belmont: Wadsworth.

Alkohol	Tabak
4,02	4,56
4,52	2,92
4,79	4,79
4,89	4,89
5,27	3,53
5,63	3,47
5,89	3,2
6,08	4,51
6,13	3,76
6,19	3,77
6,47	4,02
	4,02 4,52 4,79 4,89 5,27 5,63 5,89 6,08 6,13 6,19

Region	Alkohol	Tabak	Rang Alkohol
Nordirland	4,02	4,56	1
East Anglia	4,52	2,92	2
Südwesten	4,79	4,79	3
East Midlands	4,89	4,89	4
Wales	5,27	3,53	5
West Midlands	5,63	3,47	6
Südosten	5,89	3,2	7
Schottland	6,08	4,51	8
Yorkshire	6,13	3,76	9
Nordosten	6,19	3,77	10
Norden	6,47	4,02	11

Region	Alkohol	cohol Tabak Rang Alkohol		Rang Tabak
Nordirland	4,02	4,56	1	11
East Anglia	4,52	2,92	2	2
Südwesten	4,79	4,79	3	1
East Midlands	4,89	4,89	4	4
Wales	5,27	3,53	5	6
West Midlands	5,63	3,47	6	5
Südosten	5,89	3,2	7	3
Schottland	6,08	4,51	8	10
Yorkshire	6,13	3,76	9	7
Nordosten	6,19	3,77	10	8
Norden	6,47	4,02	11	9

Region	Alkohol	Tabak	Rang Alkohol	Rang Tabak	Inversionen
Nordirland	4,02	4,56	1	11	10
East Anglia	4,52	2,92	2	2	1
Südwesten	4,79	4,79	3	1	0
East Midlands	4,89	4,89	4	4	1
Wales	5,27	3,53	5	6	3
West Midlands	5,63	3,47	6	5	1
Südosten	5,89	3,2	7	3	0
Schottland	6,08	4,51	8	10	3
Yorkshire	6,13	3,76	9	7	0
Nordosten	6,19	3,77	10	8	0
Norden	6,47	4,02	11	9	0

Kendall's Tau

$$\tau = 1 - \frac{2 \times (Anzahl der Inversionen)}{Anzahl an Objektpaaren}$$

- Wie viele Objektpaare?
- \rightarrow n(n-1)/2 = 11(10)/2 = 55

- Wie viele Inversionen?
- → Summe der letzten Tabellenspalte

Region	Alkohol	Tabak	Rang Alkohol	Rang Tabak	Inversionen
Nordirland	4,02	4,56	1	11	10
East Anglia	4,52	2,92	2	2	1
Südwesten	4,79	4,79	3	1	0
East Midlands	4,89	4,89	4	4	1
Wales	5,27	3,53	5	6	3
West Midlands	5,63	3,47	6	5	1
Südosten	5,89	3,2	7	3	0
Schottland	6,08	4,51	8	10	3
Yorkshire	6,13	3,76	9	7	0
Nordosten	6,19	3,77	10	8	0
Norden	6,47	4,02	11	9	0

Summe: 18

Kendall's Tau

$$\tau = 1 - \frac{2 \times (Anzahl \ der \ Inversionen)}{Anzahl \ an \ Objektpaaren}$$

1-2(18)/55=0.345

verbreitete Rangkorrelationskoeffizienten:

- Pearson's r
- Spearman's Rho
- Kendall's Tau

verbreitete Rangkorrelationskoeffizienten:

- Pearson's r
- Spearman's RhoKendall's Tau

parametrisch

nicht-parametrisch

- Die drei Koeffizienten haben unterschiedliche Voraussetzungen:
- Pearson's r: bivariate Normalverteilung und/oder >30
 Beobachtungen; lineares und monotones Verhältnis
 zwischen unabh. und abh. Variable; beide Variablen
 mindestens intervallskaliert; Homoskedastizität der
 Residuenvarianz; keine Autokorrelation

Homo-/Heteroskedastizität

- Die drei Koeffizienten haben unterschiedliche Voraussetzungen:
- Pearson's r: bivariate Normalverteilung und/oder >30
 Beobachtungen; lineares ι
 zwischen unabh. und abh. '
 mindestens intervallskaliei
 Residuenvarianz; keine Aut
- Spearman Rank Test: mon und unabh. Variable

- Die drei Koeffizienten haben unterschiedliche Voraussetzungen:
- Pearson's r: bivariate Normalverteilung und/oder >30
 Beobachtungen; lineares und monotones Verhältnis
 zwischen unabh. und abh. Variable; beide Variablen
 mindestens intervallskaliert; Homoskedastizität der
 Residuenvarianz; keine Autokorrelation
- Spearman Rank Test: mindestens intervallskalierte Daten; monotones Verhältnis zwischen abh. und unabh. Variable
- Kendall's Tau: monotones Verhältnis zwischen abh. und unabh. Variable

X: 1,2,3,4,5,6,7,8,9,10

y: 1,3,7,9,17,19,20,21,23,24

Spearman:

S = 3.6637e-14

rho=1

Pearson:

t= 10.70

cor=0.67

Kendall:

T=45

tau=1

X: 1, 11, 21, 31, 41, 51, 61, 71, 81, 91

y: 1,3,7,9,17,19,20,21,23,24

Spearman:

S = 3.6637e-14

rho=1

Pearson:

t= 10.70

cor=0.67

Kendall:

T=45

tau=1

X: 1,3,5,10,17,19,22,100,120,140

y: 1,3,7,9,17,19,20,21,23,24

Spearman:

S = 3.6637e-14 rho=1

Pearson:

t= 3.28

cor=0.76, p=0.01

Kendall:

T=45

tau=1

Wie berechne ich Koeffizienten?

- Pearsons Produkt-Moment-Korrelation ist über die Excel-Funktion KORREL verfügbar
- Spearman lässt sich z.B. über http://vassarstats.net errechnen
- alle Koeffizienten lassen sich mit etwas Basiswissen gut in R errechnen.

Was gibt es sonst noch?

Regression

- linear (metrische Daten) oder logistisch
 (kategoriale Daten)
- Grundformel:
 outcome = predictor1 +
 predictor2 + ... + error

- Bayessche Statistik
 - Fokus auf Erwartungen / Vorhersagen auf der Basis bereits bekannter Informationen

Zum Weiterlesen

Lineare Modelle und lineare gemischte Modelle

Tutorials auf www.bodowinter.com

Bayessche Statistik

 McElreath, Richard. 2016. Statistical Rethinking. A Bayesian Course with R and Stan. Boca Raton: CRC Press.