Problema

X1	X2	YD	YR	El	EP	ERMS
1	1	1	0	1	1	
1	0	0	1	-1	1	0.75
0	1	0	1	-1	1	
0	0	0	0	0	0	

Parámetros de entrada

numeroPatrones = 4

numeroSalidasDeseadas = 1

numeroSalidaRed = 1

numeroEntradas = 2

Configuración de la red

• Algoritmo de entrenamiento: Regla Delta

• Función de activación: Función Rampa

• Función de activación: Función Escalón

Inicialización pesos sinápticos

• Para inicializar los pesos debemos conocer el tamaño de la matriz de peso (w)

$$\circ$$
 $w = numeroEntradas * numerosSalidas$

$$\circ w = 2 * 1 = 2$$

• Inicialización de los pesos decidido por el usuario entre -1,1

Iniciar Entrenamiento

• Presentar primer patrón de entrada

o Calcular la salida de la red

Calcular salida de la función soma

$$s = x_1 * w_{11} + x_2 * w_{21}$$

 $s = 1 * (-1) + 1 * (-1)$
 $s = -1 - 1 = -2$

Aplicando la funcion de activacion

$$YR = FA(-2)$$

$$YR1 = 0$$

o Calcular el error que produce la salida de la red

$$ErrorLineal = YD - YR$$

 $ErrorLineal = 1 - 0 = 1$

o Calcular el error producido en el patrón

$$EP = \frac{\sum Errores Lineales}{numeros alidas}$$

$$EP = \frac{1}{1} = 1$$

- Realizar ajuste de los pesos
 - Aplicamos la regla Delta

$$wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada$$

 $w11 = (-1) + 1 * 1 * 1$
 $w21 = (-1) + 1 * 1 * 1$
 $w11 = 0$
 $w21 = 0$

Obtenemos la nueva matriz de peso

• Presentar segundo patrón de entrada

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s = x_1 * w_{11} + x_2 * w_{21}$$

 $s = 1 * (0) + 0 * (0)$
 $s = 0$
Aplicando la funcion de activacion
 $YR = FE(0)$
 $YR2 = 1$

o Calcular el error que produce la salida de la red

$$ErrorLineal = YD - YR$$

 $ErrorLineal = 0 - 1 = -1$

o Calcular el error producido en el patrón

$$EP = \frac{\sum |erroresLineales|}{numeroSalidas}$$

$$EP = \frac{1}{1} = 1$$

- Realizar ajuste de los pesos
 - Aplicamos la regla Delta

$$w11 = (0) + 1 * -1 * 1$$

$$w21 = (0) + 1 * -1 * 0$$

$$w11 = -1$$

$$w21 = 0$$

Obtenemos la nueva matriz de peso

Presentar tercer patrón de entrada

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s = x_1 * w_{11} + x_2 * w_{21}$$

$$s = 0 * (-1) + 1 * (0)$$

$$s = 0$$

Aplicando la funcion de activacion

$$YR = FE(0)$$

$$YR3 = 1$$

Calcular el error que produce la salida de la red

$$ErrorLineal = YD - YR$$

$$ErrorLineal = 0 - 1 = -1$$

o Calcular el error producido en el patrón

$$EP = \frac{\sum |erroresLineales|}{numeroSalidas}$$

$$EP = \frac{1}{1} = 1$$

$$EP = \frac{1}{1} = 1$$

- Realizar ajuste de los pesos
 - Aplicamos la regla Delta

$$wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada$$

$$w11 = (-1) + 1 * -1 * 0$$

$$w21 = (0) + 1 * -1 * 1$$

$$w11 = -1$$

$$w21 = -1$$

Obtenemos la nueva matriz de peso

Presentar cuarto patrón de entrada

0 0

- o Calcular la salida de la red
 - Calcular salida de la función soma

$$s = x_1 * w_{11} + x_2 * w_{21}$$

 $s = 0 * (-1) + 0 * (-1)$
 $s = 0$
Aplicando la funcion de activacion

$$YR = FA(0)$$
$$YR4 = 0$$

Calcular el error que produce la salida de la red

$$ErrorLineal = YD - YR$$

 $ErrorLineal = 0 - 0 = 0$

o Calcular el error producido en el patrón

$$EP = \frac{\sum |erroresLineales|}{numeroSalidas}$$

$$EP = \frac{0}{1} = 0$$

- Realizar ajuste de los pesos
 - Aplicamos la regla Delta

$$wNuevo = pesoActual + rataAprendisaje * errorLineal * entrada w11 = (-1) + 1 * 0 * 0 w21 = (-1) + 1 * 0 * 0 w11 = -1 w21 = -1$$

Obtenemos la nueva matriz de peso

Se calcula el error RMS, también llamado error de iteración

$$ERMS = \frac{\sum erroresPatron}{numeroPatrones}$$

ERMS =
$$\frac{1+1+1+0}{4}$$

ERMS = $\frac{3}{4}$ = 0,75

Si el ERMS ≥ al ErrorMaximoPermitido entonces

Termina el entrenamiento.

Sino se cumple la condición entonces

Siga con la siguiente iteracion.