

ГЕНЕРАТИВНЫЕ МОДЕЛИ

Large Language Models - sorted by billion parameters

Al Masters

О ПРЕПОДАВАТЕЛЯХ И КУРСЕ

РОМАН ИСАЧЕНКО, лектор

- Кандидат физико-математических наук, преподаватель МФТИ
- Занимаюсь компьютерным зрением в Yandex

ВЛАДИМИР КОНДРАТЕНКО,

семинарист

🖆 Старший разработчик в SberDevices

🗖 telegram: @username27

КОРОТКО О КУРСЕ

Курс посвящен современным методам построения генеративных порождающих моделей. Рассматриваются следующие классы генеративных моделей:

- авторегрессионные модели,
- модели скрытых переменных,
- модели нормализационных потоков,
- состязательные модели,
- диффузионные модели.

Особое внимание уделяется свойствам различных классов генеративных моделей, их взаимосвязям, теоретическим предпосылкам и методам оценивания качества.

Целью курса является знакомство слушателя с широко применяемыми продвинутыми методами глубокого обучения.

Курс сопровождается практическими заданиями, позволяющими на практике понять принципы устройства рассматриваемых моделей.

СТРУКТУРА КУРСА

14 лекций

14 семинаров

6 домашних заданий

экзамен

КАК ФОРМИРУЕТСЯ ОЦЕНКА?

6 дз по 13 баллов: **78 БАЛЛОВ**

устный экзамен: 26 БАЛЛОВ

максимум за курс: **104 БАЛЛА** Финальная оценка выставляется по формуле:

floor(relu(#баллов/8 - 2))

Nº	ТЕМА ЛЕКЦИИ
1	Логистика. Введение в генеративное моделирование. Постановка задачи. Минимизация дивергенций. Авторегрессионное моделирование (PixelCNN).
2	Модели нормализующих потоков. Прямая и обратная KL дивергенции. Линейные и авторегрессионные нормализующие потоки.
3	RealNVP. Непрерывные во времени нормализующие потоки. Нейронные дифференциальные уравнения и метод сопряженных функций.
4	Основы байесовского вывода. Модели скрытых переменных. Вариационная нижняя оценка (ELBO). EM-алгоритм, амортизированный вывод.
5	Градиент ELBO, репараметризация. Вариационный автокодировщик (VAE). Деквантизация данных для непрерывной модели. Сравнение нормализующих потоков с VAE. Теорема об операции над ELBO. Оптимальное априорное распределение в VAE.
6	Потоки в априорном распределении VAE. VAE с дискретным скрытым пространством. Векторная квантизация, сквозной градиент (VQ-VAE). Гумбель-софтмакс трюк (DALL-E).
7	Неявные генеративные модели без оценки правдоподобия. Модель генеративных состязательных сетей (GAN). КL дивергенция vs JS дивергенция. VAE с неявным энкодером. Топологические особенности обучения GAN моделей. Расстояние Вассерштейна.
8	Дуальность Канторовича-Рубинштейна. Wasserstein GAN. GAN с градиентным штрафом. Вариационная минимизация f-дивергенций.
9	Оценивание качества неявных моделей (FID, MMD, Precision-Recall, truncation trick).
10	Прямой и обратный процессы гауссовской диффузии. Модель DDPM: вариационная нижняя оценка, репараметризация.
11	Введение в стохастические дифференциальные уравнения. Уравнение Колмогорова-Фоккера- Планка и динамика Ланжевена. Техники оценки функции скора (implicit + denoising score matching).
12	Модель NCSN и её связь с DDPM. Стохастические дифференциальные уравнения для моделей диффузии. Обратный стохастическое дифференциальное уравнение.
13	Нормализующий поток для диффузии. Модель DDIM.
14	Техники условной генерации: classifier guidance и classifier-free guidance.

ЧТО НУЖНО ЗНАТЬ?

- Теория вероятностей + Статистика
- Машинное обучение + Основы глубокого обучения
- Python + Основы pytorch

КЛЮЧЕВЫЕ МОМЕНТЫ

- Курс математически нагружен.
- Курс постоянно развивается.
- Любой фидбек, особенно негативный, приветствуется!

REPO:

https://github.com/r-isachenko/2024-DGM-AlMasters-course

РОМАН ИСАЧЕНКО

telegram: @roman_isachenko

ДО ВСТРЕЧИ НА КУРСЕ!