TABLE OF CONTENTS

We can imagine the list of numbers below carrying on forever:

$$a_1 = 0.1$$

 $a_2 = 0.01$
 $a_3 = 0.001$
 $a_4 = 0.0001$
 $a_5 = 0.00001$
 \vdots

A sequence is a list of infinitely many numbers with a specified order. It is denoted $\{a_1, a_2, \dots, a_n, \dots\}$ or $\{a_n\}_{n=1}^{\infty}$, etc. Imagine *adding up* this sequence of numbers.

A series is a sum $a_1 + a_2 + \cdots + a_n + \cdots$ of infinitely many terms.

To handle sequences and series, we should define them more carefully. A good definition should allow us to answer some basic questions, such as:

- ► What does it mean to add up infinitely many things?
- ► Should infinitely many things add up to an infinitely large number?
- ▶ Does the order in which the numbers are added matter?
- Can we add up infinitely many functions, instead of just infinitely many numbers?

Sequence

A sequence is a list of infinitely many numbers with a specified order.

Some examples of sequences:

 \blacktriangleright {1,2,3,4,5,6,7,8,...} (natural numbers)

• $\{3, 1, 4, 1, 5, 9, 2, 6, \cdots\}$ (digits of π)

 \blacktriangleright {1, -1, 1, -1, 1, ...} (powers of -1: (-1)⁰, (-1)¹, (-1)², etc.)

Sequence

A sequence is a list of infinitely many numbers with a specified order. It is denoted $\{a_1, a_2, a_3, \dots, a_n \dots\}$ or $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$, etc.

$$\{a_n\}_{n=1}^{\infty} = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

- \triangleright n=1: this is the index of the first term of our sequence. Sometimes it's 0, sometimes something else, for example a year.
- \blacktriangleright ∞ : there is no end to our sequence.
- $ightharpoonup \frac{1}{n}$: this tells us the value of a_n .
- ▶ Often we omit the limits and even the brackets, writing $a_n = \frac{1}{n}$.

SEQUENCE NOTATION

For convenience, we write a_1 for the first term of a sequence, a_2 for the second term, etc.

In the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$, a_3 is another name for

Sometimes we can find a rule for a sequence. In the above sequence, $a_n =$

We can write $\{a_n\}_{n=1}^{\infty} =$

Our primary concern with sequences will be the behaviour of a_n as n tends to infinity and, in particular, whether or not a_n "settles down" to some value as n tends to infinity.

Convergence

A sequence $\{a_n\}_{n=1}^{\infty}$ is said to converge to the limit A if a_n approaches A as n tends to infinity. If so, we write

$$\lim_{n\to\infty} a_n = A \qquad \text{or} \qquad a_n \to A \text{ as } n \to \infty$$

A sequence is said to converge if it converges to some limit. Otherwise it is said to diverge.

Convergence

A sequence $\{a_n\}_{n=1}^{\infty}$ is said to converge to the limit A if a_n approaches A as n tends to infinity. If so, we write

$$\lim_{n\to\infty} a_n = A \qquad \text{or} \qquad a_n \to A \text{ as } n\to\infty$$

A sequence is said to converge if it converges to some limit. Otherwise it is said to diverge.

- \blacktriangleright {1,2,3,4,5,6,7,8,···} (natural numbers) This sequence
- $\{3, 1, 4, 1, 5, 9, 2, 6, \dots\}$ (digits of π)
 This sequence
- ▶ $\{1, -1, 1, -1, 1, \dots\}$ (powers of $-1 : (-1)^0$, $(-1)^1$, $(-1)^2$, etc.) This sequence

Does the sequence $a_n = \frac{n}{2n+1}$ converge or diverge?

Consider the sequence
$$a_n = \frac{1}{3^n + 1}$$
.

$$\lim_{n\to\infty} {a_n} =$$

Theorem 3.1.6

$$\lim_{x \to \infty} f(x) = L$$

and if $a_n = f(n)$ for all positive integers n, then

$$\lim_{n\to\infty}a_n=L$$

CAUTIONARY TALE

Consider the sequence $b_n = \sin(\pi n) =$

$$\lim_{n\to\infty} \frac{b_n}{b} = \lim_{x\to\infty} f(x)$$

Theorem

If $\lim_{x\to\infty} f(x) = L$ and if $a_n = f(n)$ for all natural n, then $\lim_{n\to\infty} a_n = L$.

Arithmetic of Limits

Let A, B and C be real numbers and let the two sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge to A and B respectively. That is, assume that

$$\lim_{n\to\infty}a_n=A$$

$$\lim_{n\to\infty}b_n=B$$

Then the following limits hold.

- (a) $\lim_{n\to\infty} \left[a_n + b_n \right] = A + B$
- (b) $\lim_{n\to\infty} \left[a_n b_n \right] = A B$
- (c) $\lim_{n\to\infty} Ca_n = CA$.
- (d) $\lim_{n\to\infty} a_n b_n = A B$
- (e) If $B \neq 0$, then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$

Evaluate the following limits:

$$ightharpoonup \lim_{n\to\infty}e^{-n}=$$

$$ightharpoonup \lim_{n \to \infty} \frac{1+n}{n} =$$

$$\blacktriangleright \lim_{n\to\infty} \frac{1}{n^2} =$$

$$\blacktriangleright \lim_{n\to\infty} 2n^2 =$$

$$\blacktriangleright \lim_{n\to\infty} \left(\frac{1}{n^2}\right) \left(2n^2\right) =$$

Continuous functions of limits

If $\lim_{n\to\infty} a_n = L$ and if the function g(x) is continuous at L, then

$$\lim_{n\to\infty}g(a_n)=g(L)$$

Evaluate
$$\lim_{n\to\infty} \left[\sin\left(\frac{\pi n}{2n+1}\right) \right]$$

Squeeze Theorem

If $a_n \le c_n \le b_n$ for all sufficiently large natural numbers n, and if

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L$$

then

$$\lim_{n\to\infty}c_n=L$$

Evaluate

$$\lim_{n\to\infty} \left(\frac{2n+\cos n}{n+1}\right)$$

Let
$$a_n = (-n)^{-n}$$
. Evaluate $\lim_{n \to \infty} a_n$.