Problema de inverso: tasa de interés

Carlos Augusto Arellano Muro

3 de julio de 2019

Contenido

Problema directo vs problema inverso

Problema inverso Estimación de la tasa de interés Regularización

Problema directo vs problema inverso

El problema directo tiene como objetivo predecir

Teniendo

$$\begin{array}{cccc} x & \in & X & & entrada \\ y & \in & Y & & salida \\ F & : & X \to Y & & \end{array}$$

Predecir significa que teniendo los valores de entrada x, se calcula los valores de salida y=F(x).

Problema directo vs problema inverso

El problema inverso tiene como objetivo identificar Teniendo el valor de y, obtener $x = F^{-1}(y)$.

$$\begin{array}{cccc} x & \in & X & & entrada \\ y & \in & Y & & salida \\ F^{-1} & : & Y \to X \end{array}$$

Problemas de planteamiento:

- ightharpoonup F es inyectiva o sobreyectiva?
- $ightharpoonup i F^{-1}$ es continua?

Problema directo Predicción del capital

Un problema interesante es predecir el capital C(t) después de un tiempo dado a partir de un monto inicial C_0 y una tasa de interés r(t). Esto es, resolviendo la ecuación diferencial

$$\dot{C}(t) = r(t)C(t),$$

resultando

$$C(t) = C_0 e^{\int_0^t r(s)ds}.$$

Estimar la tasa de interés r(t) a partir del capital C(t) significa, que de la ecuación diferencial

$$\dot{C}(t) = r(t)C(t),$$

la solución es

$$r(t) = \frac{\dot{C}(t)}{C(t)}.$$

Donde la derivada se estima de la siguiente forma

$$\dot{C}(t) = \lim_{\Delta t \to 0} \frac{C(t + \Delta t) - C(t)}{\Delta t} \approx \frac{C(t) - C(t - \Delta t)}{\Delta t}.$$

Obteniendo datos...

Tasa de interés en el mercado a tres meses en los últimos diez años:

data.plot(grid = True,legend=False)

Figura 1: Tasa de interés trimestral en 10 años.

► Obtención del capital...

Integrando a través del método trapezoidal:

```
\label{eq:trap} \begin{array}{l} trap = & lambda \ rate\ , money\ , time\ : \\ & 0.5* \big( \ rate\ [time\ -1\ , 0\ ]*\ money\ [time\ -1\ ] + \\ & rate\ [time\ , 0\ ]*\ money\ [time\ ] \big)/100 \\ p0 = & 10 \\ p = & [p0\ , np\ .\ zeros\ (shape = np\ .\ shape\ (data\ )\ )\ \#\ simplificado \\ & \textbf{for}\ t\ \textbf{in}\ np\ .\ linspace\ (1\ , np\ .\ size\ (data\ )\ -1\ , np\ .\ size\ (data\ )\ : \\ & p\ [t\ ] = & p\ [t\ -1\ ] + trap\ (data\ .\ values\ ,p\ ,t\ ) \end{array}
```

Se obtiene la tasa de interés a partir del capital aproximando la derivada:

$$r(t) = \frac{\dot{C}(t)}{C(t)}.$$

Con la aproximación

$$\dot{C}(t) \approx \frac{C(t) - C(t - \Delta t)}{\Delta t}.$$

```
\label{eq:continuous} \begin{array}{lll} \text{estimrate=np.zeros(shape=np.shape(data.values[:,0]))} \\ \text{meses=np.linspace(1,np.size(data)-1,np.size(data),} \\ & & \text{dtype='int')} \\ \text{for t in meses:} \\ & \text{estimrate[t-1]=100*(p[t]-p[t-1])/p[t-1]} \end{array}
```

```
\label{eq:plt.plot} \begin{array}{l} \text{plt.plot} \, \big(\, \text{meses} \, [:-2] \, , \, \text{estimrate} \, [:-2] \, , \, 'r-' \, , \, \text{meses} \, , \\ & \text{data.values} \, [:\,,0] \, , \, 'b-' \, \big) \\ \\ \text{plt.grid} \, \big(\, \big) \end{array}
```


Figura 2: Tasa de interes trimestral en 10 años.

Agregando una pequeña variación al capital

```
\label{eq:delta} $\det = 1$ \\ pr=p+0.01*np.random.rand(np.size(p)) $\#$ Simplificado \\ meses=np.linspace(delta,size(data)+delta,size(data)) \\ estimrate2=np.zeros(shape=(np.size(meses),)) \\ \textbf{for t in meses:} \\ estimrate2[t-delta]=100*(pr[t]-pr[t-delta])/\\ (pr[t]*delta) \\ \\ plot([linspace(0,delta),meses[:-delta]],estimrate2,'r-',\\ linspace(1,size(data)),data.values[:,0],'b-') \\ \\ \end{tabular}
```


Figura 3: Estimación de la tasa de interés con una pequeña variación en el capital.

Problema de planteamiento.
 Obteniendo la derivada del capital con incertidumbre

$$\begin{split} \tilde{C}(t) &= C(t) + \epsilon(t) \\ \dot{\tilde{C}}(t) &\approx \frac{C(t) - C(t - \Delta t)}{\Delta t} + \frac{\epsilon(t) - \epsilon(t - \Delta t)}{\Delta t}. \end{split}$$

 F^{-1} es no continua.

▶ Minimizando para $d(t) \approx \dot{C}(t)$ el error entre éste y $\dot{\tilde{C}}$ mediante la funcional de costo J, se tiene:

$$J = \int_0^t \|d(\tau) - \frac{\widetilde{C}(\tau) - \widetilde{C}(\tau - \Delta \tau)}{\Delta \tau}\|^2 d\tau,$$

sin embargo el mínimo ocurre cuando $d=\dot{\widetilde{C}}$, el mismo valor obtenido con anterioridad.

▶ Se agrega a J un término que penalice las variaciones en d(t):

$$J = \int_0^t \|d(\tau) - \frac{\tilde{C}(\tau) - \tilde{C}(\tau - \Delta \tau)}{\Delta \tau}\|^2 + \alpha \|\frac{d(\tau) - d(\tau - \Delta \tau)}{\Delta \tau}\|^2 d\tau$$

a este término se le llama **término de regularización** ajustado a través del parámetro α .

```
num points = np. size(data)
Tx = np.linspace(1, num_points, num_points, dtype='int')
fitfunc=lambda x:100*(x[1]-x[0])/(x[0]*delta)
errfunc = lambda d, d_x \times d - fitfunc(x) + 1.5 \times (d - d_x) / delta
d1 = 0.2
d0 = 0.2
estimReg=np.zeros(shape=(np.size(meses),))
for k in meses:
    d1, success=optimize.leastsq(errfunc, d0,
                          args = (d1, [pr[k-delta], pr[k]])
    estimReg[k-delta]=d1
plot(Tx, data[:,0], "b-",
    [linspace(0, delta), meses[: - delta]], estimReg, "r-")
```


Figura 4: Estimación de la tasa de interés trimestral en 10 años.