Homework2 - Sets, Intro to number theory, propotitions

January 31, 2025

Sets

Standard Venn diagrams:

1. De Morgan for 3 variables: use a Venn diagram to explain the following properties:

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

- 2. In a Venn diagram of 2 sets, write what regions are included in each of the following sets. Describe the set using \cup , \cap , $\overline{\ }$, A, B
 - (a) $\{t|(t\in A)\land (t\in B)\}$
 - (b) $\{t|(t\in A)\vee(t\in B)\}$
 - (c) $\{t | (t \in U) \land (\neg(t \in A))\}$

Divisors, modulo

Theorem (Quotient-Remainder Theorem). Let $n \in \mathbb{Z}$, $d \in \mathbb{N}$.

Then there are (unique) integers q, r such that n = dq + r and $0 \le r < d$.

We define: n div d to returns q, and n mod d (or n % d) to returns r.

1. Evaluate the following expressions. If not possible, write "undefined":

- (a) 4 | 7
- (b) 4 | 12
- (c) $4 \mid -12$
- (d) 12 ∤ 4
- (e) 0 | 12
- (f) 12 | 0
- (g) $\frac{4}{12}$
- (h) $\frac{12}{4}$
- (i) $\frac{0}{12}$
- (j) $\frac{12}{0}$
- 2. For each of the following values of n and d find the integers q and r such that n = dq + r and $0 \le r < d$.
 - (a) n = 28, d = 7
 - (b) n = -28, d = 7
 - (c) n = 31, d = 7
 - (d) n = -31, d = 7
 - (e) n = 0, d = 6
 - (f) n = 5, d = 6
 - (g) n = -5, d = 6
 - (h) n = -10, d = 6
- 3. Evaluate:
 - (a) 7 mod 5
 - (b) -7 mod 5
 - (c) 3 mod 5
 - (d) -3 mod 5
 - (e) 0 mod 5
 - (f) 0 mod 3
 - (g) 48 mod 12
 - (h) 48 mod 11
 - (i) -48 mod 11
- 4. Evaluate. If the statement is True, what is the integer q?
 - (a) 6 | 42

- (b) 6 | 40
- (c) $39 \mod 8 = 7$
- (d) $41 \mod 10 = 3$
- (e) $41 \mod 13 = 2$

Propositions

- 1. Write the truth table for $(p \lor q) \lor r$ and $p \lor (q \lor r)$. Is the connective \lor assosiative? Explain
- 2. Is the connective ∨ commutative? Explain
- 3. Write the truth table for $(p \wedge q) \wedge r$ and $p \wedge (q \wedge r)$. Is the connective \wedge assosiative? Explain
- 4. Is the connective ∧ commutative? Explain
- 5. Write the truth table for $(p \to q) \to r$ and $p \to (q \to r)$. Is the connective \to assosiative? Explain
- 6. Is the connective \rightarrow commutative? Explain
- 7. We define the connectives ⊕ (read "xor", "exclusive or" or "ex-or") and ↔ (read "if and only if", "iff"):

p	q	$p \oplus q$	$p \leftrightarrow q$
T	T	F	T
T	F	T	F
F	T	T	F
F	F	F	T

- 8. Write the truth table for $(p \oplus q) \oplus r$ and $p \oplus (q \oplus r)$. Is the connective \oplus assosiative? Explain
- 9. Is the connective ⊕ commutative? Explain
- 10. Write an expression, logically equivalent to $p \oplus q$, using only the connectives \neg, \lor, \land
- 11. Write the truth table for $(p \leftrightarrow q) \leftrightarrow r$ and $p \leftrightarrow (q \leftrightarrow r)$. Is the connective \leftrightarrow assosiative? Explain
- 12. Is the connective \leftrightarrow commutative? Explain
- 13. Write an expression, logically equivalent to $p \leftrightarrow q$, using only the connectives \neg, \lor, \land
- 14. A function f takes n boolean arguments, and returns a boolean value. How many different inputs can f take? How many different such functions f exists? (consider logically equivalent functions as the same)