Pr. Morad Lakhssassi

DS d'Analyse 1 - Durée 2h

CPI1 - Groupe 2

(Documents et calculatrice non autorisés)

Exercice 1:

- V1. Donner la définition d'une fonction lipschitzienne.
- V_2 . Montrer, en utilisant la définition de continuité (avec les ε), que toute fonction lipschitzienne sur un intervalle I dans \mathbb{R} est continue sur I. \mathcal{A} = \mathcal{L}
- $\sqrt{3}$. Soit $n \in \mathbb{N}$, montrer que la fonction $x \to (\ln x)^n$ est continue sur son domaine de définition que vous déterminerez. (Utiliser les théorèmes du cours et non la définition de la continuité.)

J Exercice 2:

Soit une fonction $f:[0,1] \rightarrow [0,1]$, continue

Montrer que $\exists x \in \mathbb{R}, f(x) = x$.

Exercice 3:

- \mathbb{Z} \mathbb{Z} 1. Soit f une fonction f T-périodique et g 2T-périodique, que peut-on dire sur la périodicité de f+g?
- $\sqrt{}$ 2. Montrer que si f est une fonction bijective de D dans D et impaire, alors sa bijection réciproque f^{-1} est impaire.

Exercice 4:

Calculer les limites suivantes, lorsque celles-ci existent :

$$\sqrt{\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}} \quad \frac{1}{2}$$

$$\bigvee_{x\to 0} \lim_{x\to 0} x. \sin\left(\frac{1}{x}\right) \emptyset$$

$$\sqrt{\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln x + x}} \quad \underline{1}$$

$$\lim_{x\to 1^+} \ln x \cdot \ln(\ln x) + \infty$$

Exercice 5:

Montrer que f est strictement décroissante.

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f of est croissante tandis que f of est strictement décroissante.