King Mongkut's University of Technology Thonburi Midterm Examination 2/2010

CPE 222 Signals and Systems Date: December 22, 2010 Computer Engineering Department Time: 1:00 – 4:00 p.m.

Instructions:

Violation of examination rules and regulations will not be tolerated.

Serious violator could face dismissal charge.

- 1. Only one calculator and one ruler with mathematical formula are allowed in the examination room.
- 2. Books, documents, and notes are not allowed in the examination room.
- 3. Carefully read the explanation in each problem and then answer each question.
- 4. Do not take the examination sheets out of the examination room.
- 5. Write your answers on the examination booklet(s).
- 6. This examination has 3 pages (7 problems, 100 points).
- 1. Determine the impulse response of these following systems:

a)
$$H(j\omega) = 2[\delta(\omega - 1) - \delta(\omega + 1)] + 3[\delta(\omega - 2\pi) + \delta(\omega + 2\pi)]$$
 (5 points)

b)
$$|H(e^{j\omega})| = \begin{cases} 1 & 0 \le |\omega| < \frac{\pi}{4} \\ 0 & \frac{\pi}{4} \le |\omega| \le \pi \end{cases}$$
 and $\angle H(e^{j\omega}) = -\frac{3\omega}{2}$ (5 points)

2. Determine the convolution between these following signals: (10 points)

$$x(t) = u(t+1) - u(t-1)$$
 and $y(t) = \{u(t-1) - u(t-3)\} + 2\{u(t-3) - u(t-4)\}.$

- 3. a). Consider an LTI system with frequency response $H(j\omega) = \frac{1}{j\omega + 2}$. Determine the response of this system when the input is $x(t) = e^{-t}u(t)$. (8 points)
- b). Consider an LTI system having the response $s[n] = a^n u[n]$; 0 < a < 1 when the input is unit step signal. Determine the impulse response of this system. (7 points)
- 4. Given an LTI system having the response: (15 points)

$$y(t) = [2e^{-t} - 2e^{-4t}]u(t)$$
 when the input: $x(t) = [e^{-t} + e^{-3t}]u(t)$.

Determine:

a) the impulse response of this system.

b) the frequency response of this system. (5 points)

(8 points)

(2 points)

c) the differential equation described this system.

นหาวิทยาลัยเทคโนโลยีพระจอมเกล้า**ธน**บุร**ี**

5. The property of an LTI system can be represented by the following equation:

$$y(t) = 0.5(x(t) + x(t-1)).$$
 (20 points)

Determine:

- a) the magnitude and phase response of this system. (10 points)
- b) the response of this system to the input x(t) = 5. (3 points)
- c) the response of this system to the input $x(t) = \cos(0.5\pi t)$. (3 points)
- d) the response of this system to the input $x(t) = e^{j\pi t}$. (4 points)
- 6. Consider a d-t system having the input x[n], the output y[n], and the Fourier transforms of these signals related by the following equation: (15 points)

$$Y(e^{j\omega}) = 2X(e^{j\omega}) + e^{-j\omega}X(e^{j\omega}) - \frac{dX(e^{j\omega})}{d\omega}.$$

- a) Determine the response of this system when $x[n] = \delta[n]$. (5 points)
- b) Is this system linear? Justify your answer with rational explanations.

 (5 points)
- c) Is this system time invariant? Justify your answer with rational explanations.

 (5 points)
- 7. Figure 7(a) illustrates the response $y_0[n]$ and the input $x_0[n]$ of a stable LTI system. Determine the impulse response and the response of this system when the input is $x_1[n]$ in Figure P7(b).

 (15 points)

Figure P7 (a) The input – output pair for problem 7 and (b) the given $x_1[n]$

Note:

Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk\Omega_0 t} \qquad \text{and} \qquad X[k] = \frac{1}{T} \int_0^T x(t) e^{-jk\Omega_0 t} dt$$

Discrete-Time Fourier Series:

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk\omega_0 n} \hspace{1cm} \text{and} \hspace{1cm} X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$

Fourier Transform:

$$X(j\omega) = \int\limits_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \ \ \text{and} \qquad x(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Discrete-Time Fourier Transform:

$$X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n] e^{-j\omega n} \hspace{1cm} \text{and} \hspace{1cm} x[n] = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Asst. Prof. Dr. Bundit Thipakorn
Asst. Prof. Peerapon Siripongwutikorn
Dr. Suthathip Maneewongvatana
Dept. of Computer Engineering

สานักหอสมุ่น ... เว็พยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

TABLE 1 PROPERTIES OF THE FOURIER TRANSFORM

Property	Aperiodic Signal	Fourier Transform
	x(t), y(t), h(t)	$X(j\Omega), Y(j\Omega), H(j\Omega)$
Linearity	ax(t) + by(t)	$aX(j\Omega) + bY(j\Omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\Omega t_0}X(j\Omega)$
Frequency Shifting	$e^{j\Omega_0 t} x(t)$	$X(j(\Omega-\Omega_0))$
Conjugation	x*(t)	$X^*(-j\Omega)$
Time Reversal	x(-t)	$X(-j\Omega)$
Time and Frequency Scaling	x(at)	$\frac{1}{\mid a\mid} X \bigg(\frac{j\Omega}{a}\bigg)$
Convolution	$x(t) \cdot y(t)$	$X(j\Omega)Y(j\Omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\theta)Y(j(\Omega-\theta))d\theta$
Differentiation in Time	$\frac{dx(t)}{dt}$	$j\Omega X(j\Omega)$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{\mathrm{j}\Omega}\mathrm{X}(\mathrm{j}\Omega) + \pi\mathrm{X}(0)\delta(\Omega)$
Differentiation in Frequency	t x(t)	$\mathrm{j}\frac{\mathrm{d}}{\mathrm{d}\Omega}\mathrm{X}(\mathrm{j}\Omega)$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\Omega) = X^*(-j\Omega) \\ \Re e\{X(j\Omega)\} = \Re e\{X(-j\Omega)\} \\ \Im m\{X(j\Omega)\} = -\Im m\{X(-j\Omega)\} \\ X(j\Omega) = X(-j\Omega) \\ \blacktriangleleft X(j\Omega) = \blacktriangleleft X(-j\Omega) \end{cases}$
Symmetry for Real and Even Signals	x(t) real and even	$X(j\Omega)$ real and even
Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\Omega)$ purely imaginary and odd
Even-Odd Decomposition for Real Signals	$x_e(t) = Ev\{x(t)\} [x(t)]$ real	$\Re \{X(j\Omega)\}$

$$xo(t) = Od\{x(t)\} [x(t) j\Im m\{X(j\Omega)\}$$

real]

Parseval's Relation for Aperiodic Signal

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega$$

TABLE 2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_0 t}$	$2\pi\sum_{k=-\infty}^{\infty}a_k\delta(\Omega-k\Omega_0)$	a_k
$e^{j\Omega_0 t}$	$2\pi\delta(\Omega$ - $\Omega_0)$	$a_1 = 1$ $a_k = 0$, Otherwise
$\cos(\Omega_0 t)$	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, Otherwise$
$\sin(\Omega_0 t)$	$\frac{\pi}{\mathrm{j}}[\delta(\Omega-\Omega_{\scriptscriptstyle 0})-\delta(\Omega+\Omega_{\scriptscriptstyle 0})]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, Otherwise$
x(t) = 1	$2\pi\delta(\Omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (This is the Fourier series representation for any choice at $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1 & t \le T_1 \\ 0 & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\Omega_0 T_1}{k} \delta(\Omega - k\Omega_0)$	$\frac{\Omega_0 T_1}{\pi} \sin c \left(\frac{k\Omega_0 T_1}{\pi}\right) = \frac{\sin k\Omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta \left(\Omega - \frac{2\pi k}{T} \right)$	$a_k = \frac{1}{T}$ for all k

$e^{-at}u(t), \qquad Re\{a\} > 0$	$\frac{1}{a+j\Omega}$	
$\mathbf{x}(\mathbf{t}) = \begin{cases} 1 & \mathbf{t} < T_1 \\ 0 & \mathbf{t} > T_1 \end{cases}$	$\frac{2\sin\Omega T_1}{\Omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\Omega) = \begin{cases} 1 & \Omega < W \\ 0 & \Omega > W \end{cases}$	
δ(t)	1	_
u(t)	$\frac{1}{j\Omega} + \pi\delta(\Omega)$	
$t e^{-at}u(t)$, $Re\{a\} > 0$	$\frac{1}{(a+j\Omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\Omega)^n}$	

TABLE 3 BASIC DISCRETE-TIME-FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{\mathbf{k}=<\mathrm{N}>}a_{\mathbf{k}}\mathrm{e}^{\mathrm{j}\mathbf{k}(2\pi/\mathrm{N})\mathrm{n}}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\omega - \frac{2\pi k}{N} \right)$	a _k
$e^{j\omega_0 n}$	$2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-\omega_0-2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$
		$a_{k} = \begin{cases} 1 & k = m, m \pm N, m \pm 2N \\ 0 & \text{otherwise} \end{cases}$
		(b) $\frac{\omega_0}{2\pi}$ irrational \rightarrow The signal is aperiodic.
$\cos(\omega_0 n)$	$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$
	$\delta(\omega + \omega_0 - 2\pi l)$	

		$a_k = \begin{cases} \frac{1}{2} & k = m, m \pm N, m \pm 2N. \\ 0 & \text{otherwise} \end{cases}$
		(b) $\frac{\omega_0}{2\pi}$ irrational \rightarrow The signal is aperiodic.
$sin(\omega_0 n)$	$\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$
		$a_k = \begin{cases} \frac{1}{2j} & k = m, m \pm N, m \pm 2N, \\ 0 & \text{otherwise} \end{cases}$
		(b) $\frac{\omega_0}{2\pi}$ irrational \rightarrow The signal is aperiodic.
x[n] = 1	$2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1 & k = 0, \pm N, \pm 2N \dots \\ 0 & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & N_1 < n \le N/2 \end{cases}$ and	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\omega - \frac{2\pi k}{N} \right)$	$a_{k} = \frac{\sin[2\pi/N)(N_{1}+1/2)}{N\sin[2\pi k/2N]},$ $k \neq 0, \pm N, \pm 2N,$ $a_{k} = \frac{2N_{1}+1}{N}, k = 0, \pm N, \pm 2N,$
x[n+N] = x[n]		$a_k - \frac{1}{N}$, $k = 0, \pm 10, \pm 210, \dots$
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi k}{N} \right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], \qquad a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$\mathbf{x}[\mathbf{n}] = \begin{cases} 1 & \mathbf{n} \le \mathbf{N}_1 \\ 0 & \mathbf{n} > \mathbf{N}_1 \end{cases}$	$\frac{\sin[\omega(N_1+1/2)]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \sin c \left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(e^{j\omega}) = \begin{cases} 1 & 0 \le \omega \le W \\ 0 & W < \omega \le \pi \end{cases}$ $X(e^{j\omega}) \text{ periodic with }$ $\text{period } 2\pi .$	

ลานักหอสมุพ

มหาวิทยาลัยเทค ใน โลยีพระจอบเกล้าสมบุรี

δ[n]	1	
u[n]	$\frac{1}{1 - e^{j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega - 2\pi k)$	
$(n+1)a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^{n}u[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	