MaxSubSum1 (Obs! n = a.length-1):

$$T(n) = C + \sum_{i=0}^{n} \left(\sum_{j=i}^{n} (C + \sum_{k=i}^{j} C) \right)$$
 Några operationer före och efter andra loopen, medan den första loopen enbart kör nästa loop, som i sin tur kör några operationer innan den hoppar till nästa loop som har ett par operationer.
$$\sum_{k=i}^{j-1} C = C(j-i+1)$$

$$\sum_{k=i}^{n} C + C(j-i+1) = \frac{C}{2}(i-n-4)(i-n-1)$$

$$\sum_{i=0}^{n} \frac{C}{2}(i-n-4)(i-n-1) = \frac{C}{6}(n+1)(n^2+8n+12) = \frac{C}{6}(n^3+9n^2+20n+12)$$

$$T(n) = C + \frac{C}{6}(n^3+9n^2+20n+12) = \frac{C}{6}(n^3+9n^2+20n+18)$$

Rough estimate = $O(n^3)$

E	F	G	Н	1	J	К	L	М	N	
	Algo1-CPU	Handviftning (t_e = 2.8e-7)	Matematisk An. = 1.67e-6							
64	0.199	0.073	0.073 Algo1-CPU, Handviftning (t_e = 2.8e-7) and							
128	0.921	0.588	0.625	Matematisk An. = 1.67e-6						
256	5.239	4.707	4.831	400					Algo1-CPU	
512	37.174	37.65	37.99						Handvift	
1024	301.252	301.252	301.252	300					Matematis	
				300					An. = 1. 67e-6	
									0.00	
				200						
				100						
				0						
				0	200	400	600 80	00 1000		
							.,			
					N					

MaxSubSum2 (Obs! n = a.length-1):

 $T(n) = C + \sum_{i=0}^{n} (C + \sum_{j=i}^{n} C)$ Ett par operationer innan och efter första loopen, som har några operationer innan och efter andra loopen som i sin tur har några operationer.

$$\sum_{i=i}^{n} C = (n+1-i)C$$

$$\sum_{i=0}^{n} C + (n+1-i)C = \frac{C}{2}(n+1)(n+4)$$

$$T(n)=C+\frac{C}{2}(n+1)(n+4)=\frac{C}{2}(n+3)(n+2)=\frac{C}{2}(n^2+5n+6)$$

Rough Estimate = $O(n^2)$

MaxSubSum3 (Obs! n = a.length-1):

$$T(n) = C + \sum_{i=0}^{n} C = 2C + Cn$$

Det sker några operationer innan loopen, som i sin tur har några operationer (test och inkrementering inräknat)

Rough Estimate = O(n)

Pedantisk analys:

$$T(n)=4+\sum_{i=0}^{n}5=5(n+1)+4=5n+9$$

Det sker 4 operationer innan och efter loopens exekvering, samt 5st i själva loopen. (test och ikrementering inräknat)

Tillvägagångssätt & andra notiser:

I alla teoretiska uträkningar (handviftning/matematisk analys/pedantisk analys) har vi använt oss av det största empiriska värdet för att bryta ut tiden för elementära operationer enligt formeln:

$$t_e = \frac{(empiriskM\ddot{a}tning(n))}{T(n)}, n \in N: \forall \ e \in N, n \geq e, N = \{ \ storlekar \ p \mathring{a} \ Arrays \ som \ vi \ har \ m \ddot{a}tt \ med \}$$

Vid matematisk analys har vi valt att döpa summan av alla konstanta operationer till C utan att särskilja på C inuti olika loopar. Vid uträkningarna för de matematiska analyserna har vi satt alla konstanter C=1.

Rapport författat av Alexander Sopov och Oskar Willman