Data Communication BLM3051

Furkan ÇAKMAK

Lecture Information Form - Weekly Subjects

BLM3051 Data Communication

Week 5

Week	Date	Subjects
1	04.10.2021	Introduction to Data Communication Standards Used on Data Communication, Architectural models
2	11.10.2021	OSI Reference Model , Layers and Their Functions
3	18.10.2021	Signaling and Signal Encoding
4	25.10.2021	Parallel and Serial Transmission, Communication Media and Their Technical Specs., Multiplexing (TDM, FDM)
5	01.11.2021	Error Detection and Error Correction Techniques
6	08.11.2021	Data Link Control Techniques, Flow Control
7	15.11.2021	Asynchronous and Synchronous Data Link Protocols (BSC, HDLC)
8	22.11.2021	Ara Sınav
9	29.11.2021	Synchronous and Asynchronous Data Link Protocols
10	06.12.2021	LAN Technologies Continued, IEEE 802.4, 802.5, 802.11
11	13.12.2021	Connectionless and Connection Oriented Services, Switching
12	20.12.2021	Wide Area Networking Technologies (X.25, ISDN, FR, ATM, xDSL.)
13	27.12.2021	Communications Equipment's, TCP/IP Model, Security Issues
14	03.01.2022	Research Presentation 1

Furkan ÇAKMAK

Multiplexing

BLM3051 Data Communication

Week 5

Multiplexing Technics

BLM3051 Data Communication

Week 5

- FDM (Frequency Division Multiplexing)
- WDM (Wavelength Division Multiplexing)
- TDM (Time Division Multiplexing)

FDM (Frequency Division Multiplexing)

BLM3051 Data Communication

Week 5

- $\sum (p2p BW) < total BW$
- · Each signal has a different carriage signal
 - The signal to be sent is the sum of the carrier signals
 - Voice: 300-3300Hz BW
 - Guarded Band
- · Television and radio broadcasts

Furkan Çakmak

WDM (Wavelength Division Multiplexing)

BLM3051 Data Communication

Week 5

Synchronous TDM - Con't

BLM3051 Data Communication

Week 5

Example

- In Sync. TDM where 4 units are connected, each unit produces 250 characters / sec output.
- 1 bit is used for each frame to ensure synchronization.
- · Each frame contains a character from each unit.
- Accordingly, calculate the obtained data communication speed as bps.

Answer:

- 250 frame + 250 bit (for sync.)
- 250 frame x (4 unit x 8 bits/unit) / frame + 250 bit = 8250 bps

Furkan Çakmak

Asynchronous TDM

BLM3051 Data Communication

Week 5

Frame Bit (Synch)

Error Detection and Correction Techniques

BLM3051 Data Communication

Week 5

- Data Link Layer (in OSI model)
- Error reasons
 - Attenuation
 - Delay Distortion
 - Video + Voice
 - Problem in time sensitive conditions
 - Noise in the communication environment
 - Thermal noise
 - · Random electron motion
 - Intermodulation noise
 - CrossTalk
 - Impulse Noise

Error Detection

BLM3051 Data Communication

Week 5

- Both sides have original data?
- Sending data twice?
- Control block?
 - 4 different types
 - VRC (Vertical Redundency Code)
 - LRC (Longitudial Redundency Code)
 - CRC (Cyclic Redundency Check)
 - Checksum

Furkan Çakmak

VRC (Vertical Redundency Code)

BLM3051 Data Communication

Ø

Week 5

- Parity check
- Simple error coding technique
- The number of errors should be odd.
 Data Received 1
- XOR operation

Data Sent

 VRC
 Data

 1
 Ø
 1
 Ø
 1
 1
 Ø

 VRC
 Data

Data Received 2 VRC Data

1 Ø 1 1 Ø 1 1 Ø

Data Received 3

1 Ø 1 1 Ø 1 Ø Ø

ØØ

LRC (Longitudial Redundency Code)

BLM3051 Data Communication

Week 5

• LRC is 2D-VRC

	Byte 1	Byte 2		Byte 3	Byte 4	LRC
	1 1	Ø		1	1	1
	Ø	Ø		1	1	Ø
	Ø	1 1	15.0	Ø	1	Ø
	1	1		Ø	1	1
	2 1	Ø		1	Ø	Ø
	Ø	1		1	Ø	Ø
	1	Ø	92	Ø	Ø	1
VRC	Ø	1		Ø	Ø	1
1001	11Ø1 Ø	▼ ØØ11Ø1Ø1	110011	100	- 1111ØØØ Ø	10010011

10011010 0/1101/1 11001100 101100/0 10010011

Furkan Çakmak

CRC (Cyclic Redundency Check)

BLM3051 Data Communication

Week 5

- The data to be sent is divided into a predetermined prime polynomial.
- The remainder value is added to the data to be sent as an error control code.
- The remainder zero in receiver side means that error-free transmission.
- Common polynomials used for CRC: 13-bits, 17-bits, 33-bits
 - The number of undetectable errors is almost zero
- Commonly used polynomials in CRC technique:
 - CRC-12

 $x^{12}+x^{11}+x^3+x+1$

• CRC-16

 $x^{16}+x^{15}+x^2+1$ $x^{16}+x^{12}+x^5+1$

• CRC-ITU • CRC-32

 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$

CRC (Cyclic Redundency Check) - Con't

BLM3051 Data Communication

Week 5

Example: Data Sent: 100100, polynom: $x^3 + x^2 + 1$, CRC = ?

1911

Furkan Çakmak

Checksum

BLM3051 Data Communication

Week 5

- The sender divides the data into N-bits parts (usually 16 bits are used).
- The parts are collected using the first complementary arithmetic.
 - In this way, a total value of only N bits is obtained.
- Calculate two's complement using summed value
 - The calculated value is added to the end of the information to be sent.
- The checksum detects all of the odd errors and most of the even numbers.
 - However, if one or more bits in a part are 0 when they are 1, but there is a 0 when 1 in another part, the error will not be understood because there will be no difference in this column sum.

1911

Hamming Code

BLM3051 Data Communication

Week 5

- If we sent m bit data, the error occurs in 1,2,...,m bit
- Adding error-free state, the data length will be m+1
- Control block length must be $log_2(m+1) \le r$
- m + r bit must be sent error-free
- So, control block length must be $log_2(m+r+1) \le r$
- (1, 2, 4, 8, 16. bits)

\mathbf{B}_{11}	\mathbf{B}_{10}	\mathbf{B}_9	$\mathbf{B_8}$	\mathbf{B}_7	\mathbf{B}_{6}	\mathbf{B}_{5}	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1
D_7	D_6	D_5	R ₄	D_4	D_3	D_2	R_3	\mathbf{D}_1	R ₂	R_1

Furkan Çakmak

Hamming Code - Con't

B9

 D_5

BLM3051 Data Communication

Week 5

 R_1

 R_3 R_2

1

1

0

0

1

1

0 0

0

0 0

 R_4

0

0

0

0

0

0

1

0

1

2

3

4

5

6

7

8

Info

Error-free

1. bit error

2. bit error

3. bit error

4. bit error5. bit error

6. bit error

7. bit error 8. bit error

9. bit error

- $R_1=B_1\oplus B_3\oplus B_5\oplus B_7\oplus B_9\oplus B_{11}$
- $R_2 = B_2 \oplus B_3 \oplus B_6 \oplus B_7 \oplus B_{10} \oplus B_{11}$
- $R_3 = B_4 \oplus B_5 \oplus B_6 \oplus B_7$
- $R_4 = B_8 \oplus B_9 \oplus B_{10} \oplus B_{11}$

 \mathbf{B}_{10}

 D_6

 \mathbf{B}_{11}

 D_7

B ₁₁	\mathbf{B}_{10}	B 9	$\mathbf{B_8}$	B ₇	\mathbf{B}_{6}	B ₅	B ₄	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1
1	0	0	15200	1	1	0	4	1	1000	30

- $R_1 = B_3 \oplus B_5 \oplus B_7 \oplus B_9 \oplus B_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$
- $R_2 = B_3 \oplus B_6 \oplus B_7 \oplus B_{10} \oplus B_{11} = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 0$

 $\mathbf{B_8}$

 R_4

 \mathbf{B}_7

 D_4

	10	1	0	1	0	10. bit	err
	11	1	0	1	1	11. bit	
\mathbf{B}_4		\mathbf{B}_3		\mathbf{B}_2		$\mathbf{B_1}$	-25
\mathbb{R}_3		\mathbf{D}_1		R_2		R_1	

D₃
Furkan Çakmak

 \mathbf{B}_{6}

 \mathbf{B}_5

 D_2

Thank you for your listening.

BLM3051 Data Communication

Week 5

