Violence Detection Using Al in Jail

Group no: 15

GUIDED BY:

TEAM MEMBERS:

MR.VIJU P POONTHOTTAM

AHAMMED YASEEN O -

MES22AD008

ASST. PROFESSOR

ABHINAND S-

MES22AD002

ADS DEPT

MOHAMMED RIHAN- MES22AD043

Introduction

- Al-driven system for jail violence detection.
- Uses deep learning for real-time monitoring.
- Enhances security and reduces manual effort.
- Detects and alerts violent incidents.
- Helps prison staff take quick action.

<u>Literature Review</u>

Title	Author	Method	Result	Accuracy
Violence Detection in Jails and Mental Asylums	Ashwin Saji Kumar et al., 2024 (IJISRT)	LRCN (CNN+LSTM)	High accuracy in detecting violent activities, real-time alerting using a Telegram bot	92%
The Risk Screener Violence (RS-V): Retrospective Prediction of Violent and Aggressive Incidents in Prison	Marjam V. Smeekens et al., 2024 (Frontiers in Psychology)	Risk Screening Tool (RS-V)	RS-V successfully predicts future violent incidents with medium to large predictive values	85%
Preventing Violence and Sexual Assault in Jail: A Situational Crime Prevention Approach	Nancy G. La Vigne et al., 2011 (Urban Institute)	Situational Crime Prevention	Increased inmate safety, reduced violent incidents through environmental control	78%
Real-Time Violence Detection and Alert System	Manjit Kumar Gautam et al., 2024 (IJRASET)	MobileNetV2- based CNN model	Faster violence detection, efficient real-time alerting through image processing and facial recognition	88%

Problem Statement

- High inmate violence rates.
- Manual surveillance is inefficient.
- Delayed responses cause injuries.
- Overcrowding increases risks.
- Need for automated solutions.

Methodology

- Uses CNN + LSTM for analysis.
- Detects aggressive behavior.
- Integrates with CCTV cameras.
- Sends alerts via Telegram bot.
- Trained on violence datasets.

Design & Implementation

- Captures and processes video input.
- Extracts frames for feature detection.
- CNN identifies aggressive actions.
- LSTM tracks motion over time.
- Generates confidence score.

Experimental Setup

- Dataset: RWF-2000 Violence Dataset
- Tools Used: OpenCV, TensorFlow, Python, Google Colab
- Hardware: GPU-enabled system for deep learning training
- Colab Integration: Model training and evaluation conducted in Google Colab for efficient resource utilization

Working of the Jail Violence Detection System

Video Input & Preprocessing

- Video Upload
- Accepts live CCTV footage or pre-recorded videos.
- Users can manually upload videos for analysis
- Frame Extraction
- Extracts frames from the video at regular intervals.
- Saves frames as images for further processing.

Image Preprocessing

- Resizes frames (e.g., **64×64 pixels**) for model input.
- Normalizes pixel values between 0 and 1.
- Converts images to **RGB format** for better analysis

Working of the Jail Violence Detection System

- Violence Detection Using CNN + LSTM Model
- Feature Extraction using CNN
- Detects aggressive behavior, motion patterns, and key features.

Sequence Learning using LSTM

- Analyzes multiple frames in sequence to track movement.
- Differentiates between normal activity and violent actions.

Violence Prediction

- The model classifies video sequences as Violence or Non-Violence.
- Generates a **confidence score** (e.g., 85% violence probability).

Working of the Jail Violence Detection System

Alert System & Results Display

Real-Time Alert Generation

- Sends instant alerts when violence is detected.
- Can be integrated with a Telegram bot to notify prison staff.

Results Visualization

- Highlights the detected violent frames for evidence.
- Displays a graph of predictions (training vs. validation accuracy)

Report Generation

- Generates a summary report with timestamps of violent incidents.
- Stores reports for future reference and analysis.

Model Workflow

```
USHEQUIC TR E-UVE
                                 TEJECERESI M T.UTT
     # ☑ Update dataset path to match Google Drive

BASE_PATH = "/content/drive/MyDrive/mini_violence/dataset"
         "Train - Violence": os.path.join(BASE_PATH, "train/Violence"),
"Train - Non-Violence": os.path.join(BASE_PATH, "train/Non-Violence"),
          "Test - Violence": os.path.join(BASE_PATH, "test/Violence"),
          "Test - Non-Violence": os.path.join(BASE_PATH, "test/Non-Violence")
     for label, folder in folders_to_check.items():
         if os.path.exists(folder):
             num_files = len(os.listdir(folder))
              → ✓ Train - Violence: 400 videos ✓ Train - Non-Violence: 400 videos
      ✓ Test - Violence: 100 videos
✓ Test - Non-Violence: 100 videos
[ ] from google.colab import drive
     drive.mount('/content/drive')

→ Mounted at /content/drive

     import random
      import shutil
     # Define paths
     DATASET_PATH = "/content/drive/MyDrive/mini_violence/dataset"
                                                                    5s completed at 12:22 PM
```

Results & Analysis

Accuracy: 96.71%

- Model correctly classifies violence vs. non-violence.
- **Real-time alerting system** reduces response time.
- Graph comparing training vs. validation accuracy.

Accuracy & Loss Graphs

Training Performance Metrics Over Epochs

Epoch	Accuracy	Loss	Val Accuracy	Val Loss	Learning Rate	Time per Step
1	0.8194	0.3744	0.9805	0.0554	0.0010	445ms
2	0.9620	0.1071	0.9776	0.0568	0.0010	391ms
3	0.9740	0.0736	0.9145	0.2405	0.0010	398ms
4	0.9746	0.0724	0.9817	0.0559	0.0005	392ms
5	0.9899	0.0316	0.9881	0.0281	0.0005	391ms
6	0.9894	0.0306	0.9754	0.0511	0.0005	392ms
7	0.9881	0.0257	0.9864	0.0342	0.0005	392ms
8	0.9897	0.0253	0.9952	0.0155	0.0005	400ms
9	0.9934	0.0208	0.9920	0.0204	0.0005	391ms
10	0.9905	0.0281	0.9934	0.0169	0.0005	391ms

Predicted output

Predicted output

Experimental Setup in Different Frames

- Classified frames as Violence/Non-Violence.
- Resized to 720p, 480p, 360p.
- Used **5-frame sequences** for prediction.
- Labeled frames (Red/Green) with confidence.
- Displayed every 10th frame in a 3x3 grid.
- Used Matplotlib for visualization.

Experimental setup in different frames

Predicted Frames (720p)

Experimental setup in different frames

Predicted Frames (480p)

Experimental setup in different frames

Predicted Frames (360p)

- Violence detection with occluded frames.
- Random black patches simulate blocked views.
- Frames resized to 720p, 480p, 360p.
- 5-frame sequences used for prediction.
- Labels with confidence scores displayed.
- 3x3 grid visualization for occlusion effects.

Predicted Frames with Occlusion (720p)

Predicted Frames with Occlusion (480p)

Predicted Frames with Occlusion (360p)

- Violence detection with adversarial testing.
- Frame rate adaptation for different motion speeds.
- 5-frame sequences used for prediction.
- Random adversarial variations (e.g., staged fights, sports).
- Frames resized to 32x32 for model compatibility.
- Confidence scores displayed with softmax predictions.
- 3x3 grid visualization for better readability.

Predicted Frames (fast)

Violence (99.95%)

Violence (99.90%)

Violence (99.81%)

Violence (99.99%)

Violence (99.98%)

Violence (99.97%)

Violence (99.96%)

Violence (99.99%) Violence (Check for ['boxing', 'mma', 'wrestling']) (99.99%)

Predicted Frames (normal)

Violence (99.96%)

Violence (99.96%)

Violence (99.98%)

Violence (99.99%)

Violence (99.99%)

Violence (99.98%)

Predicted Frames (slow)

Violence (99.97%)

Violence (99.99%)

Violence (99.97%)

Violence (99.99%) Violence (Check for ['boxing', 'mma', 'wrestling']) (99.99%) Violence (99.86%)

<u>Lighting-Adaptive Violence Detection in Videos</u>

- Violence detection under lighting variations.
- Conditions tested: brightness, contrast, blur, nighttime.
- Frames resized to 1280x720.
- 5-frame sequences for prediction.
- Deep learning model for classification.
- Confidence-based labels: Violence/Non-Violence.
- 3x3 grid for visual comparison.

<u>Lighting-Adaptive Violence Detection in Videos</u>

Predicted Frames (high_brightness)

Lighting-Adaptive Violence Detection in Videos

Predicted Frames (nighttime)

Lighting-Adaptive Violence Detection in Videos

Predicted Frames (blur)

Lighting-Adaptive Violence Detection in Videos

Predicted Frames (low_contrast)

Violence Detection with Blur Effects

- Violence detection with blur effects.
- Gaussian blur applied at 5x5 and 15x15 levels.
- Frames resized and normalized for model input.
- 5-frame sequences used for prediction.
- Model classifies frames as Violence/Non-Violence.
- Counts of each class recorded for analysis.
- Sample frames displayed for visual comparison.

Violence Detection with Blur Effects

Speed-Adaptive Violence Detection in Videos

- Violence detection with blur effects.
- Gaussian blur applied at 5×5 and 15×15 levels.
- Frames resized and normalized for model input.
- 5-frame sequences used for prediction.
- Model classifies frames as Violence/Non-Violence.
- Counts of each class recorded for analysis.
- Predictions compared across different blur levels.

Speed-Adaptive Violence Detection in Videos

Violence

Non Violence

```
5/5 — Os 62ms/step

Results for Normal Speed (1x):

✓ Violence Frames: 146, Non-Violence Frames: 0

5/5 — Os 7ms/step

Results for Slow Motion (0.5x):

✓ Violence Frames: 146, Non-Violence Frames: 0

5/5 — Os 7ms/step

Results for Fast Motion (2x):

✓ Violence Frames: 146, Non-Violence Frames: 0

(np.int64(146), np.int64(0))
```

```
5/5 — 1s 204ms/step

Results for Normal Speed (1x):

✓ Violence Frames: 0, Non-Violence Frames: 146

5/5 — 0s 48ms/step

Results for Slow Motion (0.5x):

✓ Violence Frames: 0, Non-Violence Frames: 146

5/5 — 0s 49ms/step

Results for Fast Motion (2x):

✓ Violence Frames: 0, Non-Violence Frames: 146

(np.int64(0), np.int64(146))
```

- Violence detection under different lighting conditions.
- Lighting variations: Normal, Bright, and Dim.
- Frames resized, normalized, and processed in 5-frame sequences.
- Model predicts Violence/Non-Violence for each frame sequence.
- Overall prediction is based on averaged confidence scores.
- Selected frames displayed with labels for visual comparison.
- Analysis helps assess model robustness to lighting changes.

Predicted Frames (Normal Lighting)

Violence (99.99%)

Violence (99.99%)

Violence (99.98%)

Violence (99.97%)

Violence (99.99%)

Violence (100.00%)

Violence (99.98%)

Violence (99.98%)

Predicted Frames (Bright Lighting)

Predicted Frames (Dim Lighting)

Violence (99.98%)

Violence (99.99%)

Violence (99.99%)

Violence (99.98%)

Violence (99.97%)

Violence (99.99%)

Violence (100.00%)

Violence (99.98%)

Violence (99.98%)

Challenges & Limitations

- Imbalanced dataset → More "Non-Violence" than "Violence" samples.
- **Blurred & unclear frames** → Hard to classify aggressive actions.
- **Subtle movements** → Some violent actions are too quick.
- Overfitting risk → Model may memorize training data.

Conclusion

- Improves security and reduces human error.
- Automates violence detection for jails.
- **Provides real-time alerts** for quick response.
- Can be integrated with existing CCTV systems.

Future Scope

- Improve dataset size for better model generalization.
- Enhance real-time processing speed.
- Expand to other security applications (schools, public places).
- Use multimodal AI (audio + video detection).

<u>References</u>

- Ashwin Saji Kumar et al., "Violence Detection in Jails and Mental Asylums," *IJISRT*, 2024.
- Marjam V. Smeekens et al., "Risk Screener Violence (RS-V): A Predictive Model for Violent Behavior," *Frontiers in Psychology*, 2023.
- Nancy G. La Vigne et al., "Crime Prevention in Jail: A Surveillance Monitoring Approach," *Urban Institute*, 2022.
- RWF-2000 Dataset: Real-world Fighting Dataset for Violence Detection.
- **UCF-Crime Dataset**: A Large-Scale Benchmark for Anomaly Detection in Surveillance Videos.
- Hockey Fight Dataset: A Video-Based Dataset for Violence Recognition in Sports.

<u>References</u>

- TensorFlow Documentation: https://www.tensorflow.org/
- OpenCV Documentation: https://docs.opencv.org/
- Google Colab: https://colab.research.google.com/ (Used for model training and evaluation).

Thank You & Queries

- •Thank you for your attention.
- Open to any questions.