Table 1. Gene targets and suggested primers utilized in the *Neisseria gonorrhoeae* Sequence Typing for Antimicrobial Resistance (NG-STAR) typing scheme.

Target	Primer	Nucleotide sequence (5' to 3')	Size (bp) of the amplicon	Allele sizes (bp) in NG- STAR	Reference
penA	PenA-A1(forward)	CGGGCAATACCTTTATGGTGGAAC	669	1746-1752	Ito et al, 2005
	PenA-B1 (reverse)	AACCTTCCTGACCTTTGCCGTC			
	PenA-A2 (forward)	AAAACGCCATTACCCGATGGG	581		
	PenA-B2 (reverse)	TAATGCCGCGCACATCCAAAG			
	PenA-A3 (forward)	GCCGTAACCGATATGATCGA	863		
	PenA-B3 (reverse)	CGTTGATACTCGGATTAAGACG			
	PenA-A4 (forward)	AATTGAGCCTGCTGCAATTGGC			
mtrR	MTR1 (forward)	AACAGGCATTCTTATTTCAG	916	698 - 708	Mavroidi et al, 2001
	MTR2 (reverse)	TTAGAAGAATGCTTTGTGTC			
porB1b	por-NGMAST-F	CAAGAAGACCTCGGCAA	737	30	Martin et al, 2004
	(forward)	CCGACAACCACTTGGT			
	por-NGMAST-R				
	(reverse)				
ponA	ponA1-f (forward)	CGCGGTGCGGAAAACTATATCGAT	1240	75	Ropp et al, 2011
	ponA1-r (reverse)	AGCCCGGATCGGTTACCATACGTT			
gyrA	GYRA-1 (forward)	AACCCTGCCCGTCAGCCTTGA	270	264	Lindback et al, 2002
	GYRA-2 (reverse)	GGACGAGCCGTTGACGAGCAG			
parC	parC F (forward)	GTTTCAGACGGCCAAAAGCC	332	332	Ng et al, 2002
	parC R (reverse)	GGCATAAAATCCACCGTCCCC			
23S rRNA	gonrRNAF (forward)	ACGAATGGCGTAACGATGGCCACA	712	567	Ng et al, 2002
	gonrRNAR2 (reverse)	TTCGTCCACTCCGGTCCTCTCGTA			

References

Ito M, Deguchi T, Mizutani K-S, Yasuda M, Yokoi S, Ito S-I, Takahashi Y, Ishihara S, Kawamura Y, Ezaki T. Emergence and spread of *Neisseria gonorrhoeae* clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan. Antimicrob Agents Chemother 2005;49:137-143.

Lindback E, Rahman M, Jalal S, Wretlind B. Mutations in *gyrA*, *gyrB*, *parC*, and *parE* in quinolone-resistant strains of *Neisseria gonorrhoeae*. APMIS 2002;110:651-657.

Ng L-K, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide resistance in *Neisseria gonorrhoeae*. Antmicrob Agents Chemother 2002;46:3020-3025.

Ng L-K, Sawatzky P, Martin IE, Booth S. Characterization of ciprofloxacin resistance in *Neisseria gonorrhoeae* isolates in Canada Sex Trans Dis 2002;29:780-788

Martin IMC, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis 2004;189:1497-1505. www.ng-mast.net

Mavroidi A, Tzouvelekis LS, Kyriakis KP, Avgerinou HA, Danillidou M, Tzelepi E. Multidrug-resistant strains of *Neisseria gonorrhoeae* in Greece. Antimicrob Agents Chemother 2001;45:2651-2654.

Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in *ponA*, the gene encoding penicillin-binding protein 1, and a novel locus, *penC*, are required for high-level chromosomally mediated penicillin resistance in *Neisseria gonorrhoeae*. Antimicrob Agents Chemother 2002;46:769-77.