Decision Tree Construction!

Step 1: Play Pr. Play

Play

Yes No

9 5

2ntropy is at measure of uncertainity

Pr. 2ntropy is at measure of uncertainity Goal: Find the most simple décision trée Split the table (tree) according to the "attribute" with the highest "information gain". Where X represent on attribute. Source original. Step2: Calculate the Gain of each attribute. 20) Let X = Teme of me. (which takes 3 values cool, mild, hit T $\frac{1}{2}$ $\frac{$ H(T) = 4 H(C) + 6 H(M) + 4 (H(Hot)) = 0.911 Weighted average of H(C), H(M) & H(Hot) G(T) = 0.94 - 0.911 = 0.029 (small gain) Because H(T) is high (uncertainity) [6 (outlook) = 0.246 2b) Let X = 0 whook. $H(x) = \frac{5}{4}H(x) + 0 + \frac{5}{4}H(x) = 0.6...$ Outlook $\frac{5}{2} = \frac{3}{4} + \frac{3}{5} = \frac{3}{5} \frac{3}$

2c) Let X = Humidity. 6 (Humidity) = 0.151 2 d) Let X=Wind, 6 (wind) = 0.048 split the tree according to Outlook. Outlook = arg max G(X) Outlook is the attribute with the maximum gain 4,5,6,10,14 (com) rows: 1,2,8,9,1) H(ST2)= H(ST1) H(ST1) = -3 log 3 - 2 log 3 Iteratively continue.

A			1					,	,	,			1	
14	13	2		0	9	∞	7	9	UT	4	W	2	<u> 7</u>	
æ	0	0	S	æ	S	S	0	æ	Z	æ	0	S	S	C
3	工	Ζ	≤	Ζ	0	Ζ	0	0	C	Ζ	エ	エ	Ξ	-
1	Z	エ	Z	Z	Z		Z	Z	z	エ	エ	エ	工	ם
S	8	S	S	8	8	8	S	S	8	€	8	S	8	8
•	+	+	+	+	+		+		+	+	+			Play
		•			•			1			100	1		-

Will I play tennis today? Benowit test but on.

O T H W Play?

Outlook: S(unny), 69 + 25 - 14

Entropy: H(Take) = - 94 699 - 569 5

O(vercast),

R(ainy)

Temperature: H(ot),

C(ool) M(edium)

Humidity: H(igh),

L(ow) N(ormal)

Wind: S(trong)

H(Play?) = 0.94. W(eak)

Given the table Al A2 Result pr 0 0 0 3 = 1/2 H(R)=-1209/2-1209/2 H(R) = 1Pr. 0, 1 H (A1)= $\frac{1}{2}$ O + $\frac{1}{2}$ O = O
Pr. 1, 0 Entropy Gain of A! AI "I" -> "I" A1 Yes No Pr. 0 0 2 0,1 1 2 0 10 $1 (0) = -0 \log 0 - 1 \log 1 = 0$ $1 (0) = -1 \log 1 - 0 \log 0 = 0$ G(A1)=1=1-0. (very high) (1*) Gain of A2: $H(A_2) = \frac{1}{2} \left(-\frac{1}{2} \log_{\frac{1}{2}} - \frac{1}{2} \log_{\frac{1}{2}} \right) + \frac{1}{2} \left(-\frac{1}{2} \log_{\frac{1}{2}} - \frac{1}{2} \log_{\frac{1}{2}} \right)$ A2 Yeo No Pr.

H (6") "

H (1") "

H (42) = 1

Chow) (24) $G(A2) = 0 = 1 - 1 = 0 \quad (low) 24$ (1*) & (2*) Split according to A1. If Al=0 Al=1 Simple tree. No Yes. At the leaves of the tree there is no uncertainity. That is why we try to reduce entropy.

Inefficient tree: Split A2 A2=0 A2=1 Tree 2

A1=0 A1=1 A1=0 A1=1 No Yes No Yes. Computational complexity of the Comparisons tree is determined by the ** of comparisons (questions) that you have to make (evaluate). : Tree 2 is inefficient.