Digital Transmission Laboratory RX FFT

Andreas Madner, Thomas Plainer, Moritz Tockner

Inhalt

- FFT IP Cores
- Avalon Streaming Interface
- Timing Diagramm
- Blockdiagramm
- Abschätzung des HW Aufwandes
- Testbench

- Variable Streaming FFT
 - Single-precision floating-point und fixed-point
 - Input und output Reihenfolgen
 - natural
 - digit-reversed
 - DC-centered
 - 8 bis 32-bit Daten und Twiddle Bitbreiten
- Fixed Transform Size FFT
 - Block floating-point
 - Streaming, Buffered Burst oder Burst Modus
 - Single-output oder Quad-Output (auch mehrere parallel)

Niedrigste Ressourcen

	Modus	Output	In/Out Reihenfolgen	Calculation Latency	Throughput Latency	ALMs	DSP	M10K	Registers
	Burst	Single	natural	223		653.9		2 3	1228
	Burst	Single	natural	423	166	639		2 3	1382
	Burst	Quad	natural	423	166	1 534	(5 8	3617
	Bufferd Burst	Quad	natural	171	160	1528	(5 16	3713
	Streaming	Quad	natural	128	128	1651		5 20	3878
	Variable Streaming	Quad	natural	128	256	8611	30	5 62	15156
					Nicht relevant für Burst				

Matlab Modell

Reicht die Latenz?

		Taktrate/Hz	Zeit/s	Zeit/ns	Takte
sys_clk_i	80 MHz	8.00E+07	1.25E-08	12.50	1
Baudrate	1.6 MS/s	2.00E+06	5.00E-07	500.00	40
Calculation Latency		100		5287.5	423
Zeit für 128 Chips				64000	5120
Zeit zum Ein- und Auslesen				3200	256
Benötigte / Verfügbare Zeit	0.132617				

Benötigen wir einen Eingangsbuffer?

		Taktrate/Hz	Zeit/s	Zeit/ns	Takte
sys_clk_i	80 MHz	8.00E+07	1.25E-08	12.50	1
Baudrate	1.6 MS/s	2.00E+06	5.00E-07	500.00	40
Calculation Latency				5287.5	423
Zeit für 128 Chips				64000	5120
Zeit zum Ein- und Auslesen				3200	256
Benötigte / Verfügbare Zeit	0.13261				
Zeit für 32 Chips				16000	1280
Benötigte / Verfügbare Zeit				0.530469	

Avalon Streaming Interface

Interface for unidirectional data streams from source to sink

Avalon Streaming Interface

Handshaking and flow control

Avalon Streaming Interface

Packet Data Transfers

- FFT Length: 128
- reduzierte Ressourcen: Burst
- Order I/O: natural
- Datenrepräsentation: Block Floating Point
- Datenbreite I/O: 12 bit
- Twiddle-Breite (sin/cos): 8 bit

Timing Diagramm

Blockdiagramm

Abschätzung des HW Aufwandes

- Register = 1425 (Output Register = 22+2; Control = 7+2)
- ALMs: 600
- Blockram = 3520 bits
- DSP = 2 (4 Fixed Point Signed Multiplier)

Testbench