Chapitre 2 : Second degré

Premières Spécialité Mathématiques

1 Définition

Définition 1. Une fonction polynomiale du second degré est une fonction f définie sur les réels qui à tout nombre x associe un réel f(x) de la forme :

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

L'objectif de ce chapitre est d'étudier les fonctions polynomiales du second degré : l'allure de leur courbe représentative, leur extremum, leurs racines...

2 Allure du graphique

On trace la courbe représentative de deux fonctions polynomiales du second degré : une avec a>0 et une avec a<0.

Définition 2. Soit f une fonction polynomiale de degré 2. Sa courbe représentative est appelée une **parabole**.

Proposition 1. Soit f une fonction polynomiale de degré 2. telle que $f(x) = ax^2 + bx + c$. Alors:

- Si a > 0, il existe une valeur de x, notée x_m telle que f est décroissante sur $]-\infty; x_m]$ et croissante sur $[x_m; +\infty[$
- Si a < 0, il existe une valeur de x, notée x_M telle que f est croissante sur $]-\infty; x_M]$ et décroissante sur $[x_M; +\infty[$

Remarque.

- Dans le cas a > 0, les « branches de la paraboles sont tournées vers le haut ». Dans le cas contraire (a < 0), elles sont « tournées vers le bas ».
- Dans le cas a > 0, f admet un unique minimum, et ce minimum est atteint en x_m . Dans le cas contraire (a < 0), f admet un maximum, et ce maximum est atteint en x_M .

3 Recherche de l'extremum