Problem Statement

Santander wants to find which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

This kernels consists of:

- · Importing Data
- · Reducing Memory Usage
- Missing Values
- Basic EDA
- Feature Correlation
- Baseliner
- Decision Tree
- Model Importances
- Bayesian Optimisation
- ELI5
- 5Fold Submission

In [1]:

!pip install pydotplus

Collecting pydotplus

Downloading https://files.pythonhosted.org/packages/60/bf/62567830b700d9f6930e9ab6831d6ba256f7b0b730acb37278b0ccdffacf/pydotplus-2.0.2.tar.gz (278kB)

100% | 286kB 8.7MB/s eta 0:00:01

Requirement already satisfied: pyparsing>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from pydotplus) (2.2.0)

Building wheels for collected packages: pydotplus

Building wheel for pydotplus (setup.py) ... done

Stored in directory: /tmp/.cache/pip/wheels/35/7b/ab/66fb7b2ac1f6df87475b09dc48e707b6e0de80a6d8444e3628

Successfully built pydotplus

Installing collected packages: pydotplus

Successfully installed pydotplus-2.0.2

You are using pip version 19.0.3, however version 19.1.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command.

```
In [2]:
import gc
import os
import time
import math
import subprocess
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.model_selection import cross_val_score, train_test_split, KFold, StratifiedKFold
from sklearn.metrics import roc auc score
from bayes opt import BayesianOptimization
from sklearn.model_selection import StratifiedKFold
# Importing all models
# Classification
from sklearn.linear_model import LogisticRegression, ElasticNet, Lasso, Ridge
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier, ExtraTreesClassifier, GradientBoostingCl
assifier, \
   Random Forest Classifier, \ Voting Classifier
import lightgbm as lgb
import xgboost as xgb
import catboost as cat
from catboost import Pool, CatBoostClassifier
import warnings
print(os.listdir("../input"))
```

['test.csv', 'train.csv', 'sample submission.csv']

warnings.simplefilter('ignore')

Importing Data and Reducing Memory

```
In [3]:
def reduce mem usage(df):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.
    start mem = df.memory usage().sum() / 1024 ** 2
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    for col in df.columns:
        col_type = df[col].dtype
        if col type != object:
            c min = df[col].min()
            c max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c min > np.iinfo(np.int8).min and c max < np.iinfo(np.int8).max:</pre>
                     df[col] = df[col].astype(np.int8)
                elif c min > np.iinfo(np.int16).min and c max < np.iinfo(np.int16).max:</pre>
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:</pre>
                    df[col] = df[col].astype(np.int32)
                elif c min > np.iinfo(np.int64).min and c max < np.iinfo(np.int64).max:</pre>
                     df[col] = df[col].astype(np.int64)
            else:
                if c min > np.finfo(np.float16).min and c max < np.finfo(np.float16).max:</pre>
                     df[col] = df[col].astype(np.float16)
                elif c min > np.finfo(np.float32).min and c max < np.finfo(np.float32).max:</pre>
                     df[col] = df[col].astype(np.float32)
                el se
                     df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')
    end mem = df.memory usage().sum() / 1024 ** 2
    \label{lem:print('Memory usage after optimization is: {:.2f} \ MB'.format(end\_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df
def import data(file):
    """create a dataframe and optimize its memory usage"""
    df = pd.read csv(file, parse dates=True, keep date col=True)
    df = reduce_mem_usage(df)
    return df
In [4]:
train = import_data("../input/train.csv")
test = import_data("../input/test.csv")
sub = import data("../input/sample submission.csv")
```

```
print("\n\nTrain Size : \t{}\nTest Size : \t{}\".format(train.shape, test.shape))
Memory usage of dataframe is 308.23 MB
Memory usage after optimization is: 83.77 MB
Decreased by 72.8%
Memory usage of dataframe is 306.70 MB
Memory usage after optimization is: 83.58 MB
Decreased by 72.7%
Memory usage of dataframe is 3.05 MB
```

Train Size : (200000, 202) Test Size : (200000, 201)

Decreased by -145.1%

Memory usage after optimization is: 7.48 MB

In [5]: train.head()

Out[5]:

	ID_code	target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	var_8	var_9	
0	train_0	0	8.921875	-6.785156	11.906250	5.093750	11.460938	-9.281250	5.117188	18.625000	-4.921875	5.746094	2.9
1	train_1	0	11.500000	-4.148438	13.859375	5.390625	12.359375	7.042969	5.621094	16.531250	3.146484	8.085938	-0.4
2	train_2	0	8.609375	-2.746094	12.078125	7.894531	10.585938	-9.085938	6.941406	14.617188	-4.917969	5.953125	-0.;
3	train_3	0	11.062500	-2.152344	8.953125	7.195312	12.585938	-1.835938	5.843750	14.921875	-5.859375	8.242188	2.:
4	train_4	0	9.835938	-1.483398	12.875000	6.636719	12.273438	2.449219	5.941406	19.250000	6.265625	7.679688	-9.4
(1)	111) Þ)

In [6]:

test.head()

Out[6]:

	ID_code	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	var_8	var_9	var_10
0	test_0	11.062500	7.781250	12.953125	9.429688	11.429688	-2.380859	5.847656	18.265625	2.132812	8.812500	-2.025391
1	test_1	8.531250	1.253906	11.304688	5.187500	9.195312	-4.011719	6.019531	18.625000	-4.414062	5.972656	-1.380859
2	test_2	5.484375	-10.359375	10.140625	7.046875	10.265625	9.804688	4.894531	20.250000	1.523438	8.343750	-4.707031
3	test_3	8.539062	-1.322266	12.023438	6.574219	8.843750	3.173828	4.941406	20.562500	3.375000	7.457031	0.009499
4	test_4	11.703125	-0.132690	14.132812	7.750000	9.101562	-8.585938	6.859375	10.601562	2.988281	7.144531	5.101562
(1)	iii)) Þ)

All the features are masked. This way I don't think we can create features based on domain knowledge if we don't know what the feature represent.

• But we can make aggregate features like count, max, min, mean, groupby features if we somehow find any relation between any two features.

Missing Values

Is the data missing at random? Or is this missing systematically? If the user chooses not to respond to some questions, they will be captured as 'blank' in the system/data.

So there could be 3 reasons for these blanks:

- 1. systematically skipping questions
- 2. random skipping questions
- 3. no opinion about those questions At any rate, 1 and 2 might be solved by imputing the blanks/NAs, but the third option might not, resulting in a bias (?).

```
In [7]:
```

```
\textbf{def missing\_values(df):}
    # Total missing values
   mis_val = df.isnull().sum()
    # Percentage of missing values
   mis_val_percent = 100 * df.isnull().sum() / len(df)
    # Make a table with the results
   mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
    # Rename the columns
   mis_val_table_ren_columns = mis_val_table.rename(
        columns={0: 'Missing Values', 1: '% of Total Values'})
    # Sort the table by percentage of missing descending
   mis val table ren columns = mis val table ren columns[
       mis_val_table_ren_columns.iloc[:, 1] != 0].sort_values(
        '% of Total Values', ascending=False).round(1)
    # Print some summary information
   print("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"
                                                            "There are " + str(mis_val_table_ren_columns.s
# Return the dataframe with missing information
    return mis val table ren columns
miss_train = missing_values(train)
miss test = missing values(test)
```

Your selected dataframe has 202 columns. There are 0 columns that have missing values. Your selected dataframe has 201 columns. There are 0 columns that have missing values.

Cool we don't have any missing values.

Basic EDA

```
In [8]:
```

```
def univariate(df, col, vartype, hue=None):
    Univariate function will plot the graphs based on the parameters.
   df
           : dataframe name
           : Column name
    vartype : variable type : continuos or categorical
                Continuos(0)
                              : Distribution, Violin & Boxplot will be plotted.
                Categorical(1) : Countplot will be plotted.
    hue
            : It's only applicable for categorical analysis.
    Call: univariate(df=data,col='col',vartype=0)
    sns.set(style="darkgrid")
   if vartype == 0:
        fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(20, 8))
        ax[0].set title("Distribution Plot")
        sns.distplot(df[col], ax=ax[0])
        ax[1].set_title("Violin Plot")
        sns.violinplot(data=df, x=col, ax=ax[1], inner="quartile")
        ax[2].set title("Box Plot")
        sns.boxplot(data=df, x=col, ax=ax[2], orient='v')
    if vartype == 1:
        temp = pd.Series(data=hue)
        print(len(temp.unique()))
        fig, ax = plt.subplots()
        width = len(df[col].unique()) + 6 + 4 * len(temp.unique())
        fig.set_size_inches(width, 7)
        ax = sns.countplot(data=df, x=col, order=df[col].value counts().index, hue=hue)
        if len(temp.unique()) > 0:
            for p in ax.patches:
                if p.get height() > 0:
                    ax.annotate('{:1.1f}%'.format((p.get_height() * 100) / float(len(loan_data))),
                                (p.get_x() + 0.05, p.get_height() + 20))
        else:
            for p in ax.patches:
                ax.annotate(p.get height(), (p.get x() + 0.32, p.get height() + 20))
        del temp
   else:
        exit
    plt.show()
```

Target Distribution

```
In [9]:
```

```
univariate(train, 'target', 1)
```

0

In [10]:

```
train['target'].value_counts(normalize=True)
```

Out[10]:

0 0.89951 1 0.10049

Name: target, dtype: float64

Well the data is quite imbalanced. Almost 9:1 ratio of customer not proceding to make a successful transaction.

Lets check the masked features

Some measures by which we can do some EDA on masked features are checking their :

- mean
- std
- skew
- kurtosis

In [11]:

```
target = 'target'
features = train.columns.tolist()
features.remove(target)
features.remove("ID_code")
print("Feature Length : {}".format(len(features)))
```

Feature Length : 200

Mean

In [12]:

```
plt.figure(figsize=(16,6))
plt.title("Mean in train and test set")
sns.distplot(train[features].mean(axis=1), color="green", kde=True, bins=120, label='train')
sns.distplot(test[features].mean(axis=1), color="blue", kde=True, bins=120, label='test')
plt.legend()
plt.show()
```


Standard Deviation

In [13]:

```
plt.figure(figsize=(16,6))
plt.title("STD in train and test set")
sns.distplot(train[features].std(axis=1), color="green", kde=True, bins=120, label='train')
sns.distplot(test[features].std(axis=1), color="blue", kde=True, bins=120, label='test')
plt.legend()
plt.show()
```


Skewness

In [14]:

```
plt.figure(figsize=(16,6))
plt.title("Skew in train and test set")
sns.distplot(train[features].skew(axis=1), color="green", kde=True, bins=120, label='train')
sns.distplot(test[features].skew(axis=1), color="blue", kde=True, bins=120, label='test')
plt.legend()
plt.show()
```


In [15]:

```
# Skewness and Kurtosis
print("Skewness: %f" % train['target'].skew())
print("Kurtosis: %f" % train['target'].kurt())
```

Skewness: 2.657642 Kurtosis: 5.063112

Kurtosis

As we have most scores of features near mean i.e(located new mean/normally distributed) and kurtosis is 5.063 therefore this is leptokurtic.

Comparing Distributions of Features

In [16]:

```
def plot_and_compare(data, num):
    print('Distributions of first {} columns'.format(num))
    plt.figure(figsize=(26, 24))
    for i, col in enumerate(list(data.columns)[2:num + 2]):
        plt.subplot(math.ceil(num/4), 4, i + 1)
        plt.hist(data[col])
        plt.title(col)
    plt.show()
```

plot_and_compare(train, 10)

Distributions of first 10 columns

We can see that first 10 features have almost Normal Distribution. Lets check for more(50).

```
plot_and_compare(train, 50)
```

Distributions of first 50 columns

Not only they are normally distributed almost all the features have almost same distribution with same scales.

Lets check correlation to confirm the same.

Correlation

```
In [19]:
```

```
In [20]:
```

```
# AWFUL lot of time taken as the data is of 200 variables consisting of 0.2 Million recordss # plot_corr(train.iloc[:10])
```

In [21]:

```
tuniq = train.nunique().sort_values().reset_index()
tuniq.head()
```

Out[21]:

	index	0
0	target	2
1	var_68	15
2	var_108	127
3	var_12	150
4	var_25	237

Train and Test Distributions

Do both Train and Test set have same distributions?

In [22]:

```
train_correlations = train.drop(["target"], axis=1).corr()
train_correlations = train_correlations.values.flatten()
train_correlations = train_correlations[train_correlations != 1]

test_correlations = test.corr()
test_correlations = test_correlations.values.flatten()
test_correlations = test_correlations[test_correlations != 1]

plt.figure(figsize=(20,5))
sns.distplot(train_correlations, color="Blue", label="train")
sns.distplot(test_correlations, color="Red", label="test")
plt.xlabel("Correlation values found in train (except 1)")
plt.ylabel("Density")
plt.title("Correlations between features");
plt.legend()
```

Out[22]:

<matplotlib.legend.Legend at 0x7f2d9d1c9160>

As we have the peak at 0.0 this states that we have no correlation between features at all. (Might have to check that)

Modelling

Baseliner

```
In [23]:
def baseliner_clas(train, feat, target, cv, metric):
    eval_dict = {}
   models = [lgb.LGBMClassifier()]
    # LogisticRegression(), SVC(), GaussianNB(), KNeighborsClassifier(), DecisionTreeClassifier(), ExtraTree
Classifier(), AdaBoostClassifier(), BaggingClassifier(),
    # RandomForestClassifier(), ExtraTreesClassifier(), GradientBoostingClassifier(), xgb.XGBClassifier(), c
at.CatBoostClassifier(verbose=0)
    for model in models:
        model name = str(model).split("(")[0]
        results = cross_val_score(model, train[feat], train[target], cv=cv,
                                  scoring=metric)
        print(model_name, results.mean(), results)
        eval dict[model name] = results.mean()
    return eval dict
In [24]:
base_1 = baseliner_clas(train, features, target, 3, 'roc_auc')
LGBMClassifier 0.863698056662805 [0.86160664 0.86346855 0.86601898]
In [25]:
def lgb_model(train, feat, target):
   x_train, x_valid, y_train, y_valid = train_test_split(train[feat], train[target], test_size=0.2, random_
state=13)
   train_set = lgb.Dataset(x_train, label=y_train)
   valid_set = lgb.Dataset(x_valid, label=y_valid)
   MAX ROUNDS = 2000
    params = {
        "boosting": 'gbdt', # "dart",
        "learning_rate": 0.01,
        "nthread": -1,
        "seed": 13,
        "num_boost_round": MAX_ROUNDS,
        "objective": "binary",
        "metric": "auc",
   }
   model = lgb.train(
        params,
        train_set=train set,
        valid sets=[train set, valid set],
        early stopping rounds=50,
        verbose eval=100
```

LGB Feature Importance

lgb.plot_importance(model, figsize=(24, 50))

```
In [26]:
```

return model

```
model = lgb_model(train, features, target)
```

```
Training until validation scores don't improve for 50 rounds.
        training's auc: 0.808229
                                          valid_1's auc: 0.783972
[100]
                                          valid_1's auc: 0.816763
valid_1's auc: 0.833576
[200]
        training's auc: 0.849473
[300]
        training's auc: 0.872012
[400]
        training's auc: 0.887753
                                          valid_1's auc: 0.845329
[500]
        training's auc: 0.899421
                                          valid_1's auc: 0.85369
[600]
        training's auc: 0.908498
                                          valid_1's auc: 0.860118
[700]
        training's auc: 0.916037
                                          valid_1's auc: 0.865098
[800]
        training's auc: 0.922215
                                          valid_1's auc: 0.869045
                                          valid_1's auc: 0.872287
[900]
        training's auc: 0.927419
        training's auc: 0.932136
[1000]
                                          valid_1's auc: 0.87518
        training's auc: 0.936347
                                          valid 1's auc: 0.877597
[1100]
        training's auc: 0.940073
                                          valid_1's auc: 0.879591
[1200]
[1300]
        training's auc: 0.943386
                                          valid_1's auc: 0.881509
        training's auc: 0.946381
                                          valid 1's auc: 0.883191
[1400]
                                          valid_1's auc: 0.884555
[1500]
        training's auc: 0.949136
[1600]
        training's auc: 0.951636
                                          valid 1's auc: 0.885831
[1700]
        training's auc: 0.954023
                                          valid 1's auc: 0.887035
[1800]
        training's auc: 0.956277
                                          valid_1's auc: 0.888005
[1900]
        training's auc: 0.958292
                                          valid 1's auc: 0.888845
                                          valid_1's auc: 0.889645
[2000]
       training's auc: 0.960191
Did not meet early stopping. Best iteration is:
                                          valid 1's auc: 0.889645
[2000]
       training's auc: 0.960191
```


Decision Tree

```
In [27]:
```

Out[27]:

Bayesian Optimisation

In [28]:

```
bayesian_tr_index, bayesian_val_index = list(StratifiedKFold(n_splits=2, shuffle=True, random_state=1).spli
t(train, train.target.values))[0]
print(len(bayesian_tr_index), len(bayesian_val_index))
```

100000 100000

In [29]:

```
# Function for LGB model creation for bayesian optimisation
def LGB_bayesian(
    num_leaves,
                # int
   min data in leaf, # int
   learning_rate,
   min sum hessian in leaf,
                                # int
   feature fraction,
   lambda_l1,
    lambda 12,
   min_gain_to_split,
   max_depth):
    # LightGBM expects next three parameters need to be integer. So we make them integer
   num_leaves = int(num_leaves)
   min_data_in_leaf = int(min_data_in_leaf)
   max_depth = int(max_depth)
   assert type(num_leaves) == int
   assert type(min_data_in_leaf) == int
   assert type(max depth) == int
    param = {
        'num_leaves': num_leaves,
        'max_bin': 63,
        'min_data_in_leaf': min data in leaf,
        'learning_rate': learning_rate,
        'min_sum_hessian_in_leaf': min_sum_hessian_in_leaf,
        'bagging_fraction': 1.0,
        'bagging_freq': 5,
        'feature_fraction': feature_fraction,
        'lambda l1': lambda l1,
        'lambda l2': lambda l2,
        'min_gain_to_split': min_gain_to_split,
        'max depth': max depth,
        'save binary': True,
        'seed': 13,
        'feature_fraction_seed': 13,
        'bagging_seed': 13,
        'drop seed': 13,
        'data_random_seed': 13,
        'objective': 'binary'
        'boosting_type': 'gbdt',
        'verbose': 1,
'metric': 'auc'
        'is unbalance': True,
        'boost_from_average': False,
   }
   xg train = lgb.Dataset(train.iloc[bayesian tr index][features].values,
                            label=train.iloc[bayesian_tr_index][target].values,
                            feature name=features,
                            free_raw_data = False
    xg_valid = lgb.Dataset(train.iloc[bayesian_val_index][features].values,
                            label=train.iloc[bayesian_val_index][target].values,
                            feature name=features,
                            free_raw_data = False
    num round = 5000
   clf = lgb.train(param, xg_train, num_round, valid_sets = [xg_valid], verbose_eval=250, early_stopping_ro
    predictions = clf.predict(train.iloc[bayesian val index][features].values, num iteration=clf.best iterat
ion)
    score = roc_auc_score(train.iloc[bayesian_val_index][target].values, predictions)
```

```
return score
# Region Space for Bayesian Optimisation
region_space_LGB = {
    'num_leaves': (5, 20),
    'min data in leaf': (5, 20),
    'learning_rate': (0.01, 0.3),
    'min_sum_hessian_in_leaf': (0.00001, 0.01),
    'feature fraction': (0.05, 0.5),
    'lambda_l1': (0, 5.0),
    'lambda l2': (0, 5.0),
    'min_gain_to_split': (0, 1.0),
    'max_depth':(3,15),
LGB BO = BayesianOptimization(LGB bayesian, region space LGB, random state=13)
In [30]:
init points = 5
n iter = 5
LGB B0.maximize(init points=init points, n iter=n iter, acq='ucb', xi=0.0, alpha=1e-6)
```

| iter | target | featur... | lambda_l1 | lambda_l2 | learni... | max_depth | min_da... | min_ga... | min_su... | num_le... | Training until validation scores don't improve for 50 rounds. Early stopping, best iteration is: [172] valid_0's auc: 0.878482 | 0.8785 | 0.4 | 1.188 | 4.121 | 0.2901 | 14.67 | 11.8 | 0.007758 | 14.62 | 0.609 Training until validation scores don't improve for 50 rounds. [250] valid 0's auc: 0.841747 [500] valid 0's auc: 0.865883 [750] valid 0's auc: 0.876802 [1000] valid_0's auc: 0.88262 [1250] valid_0's auc: 0.886424 [1500] valid_0's auc: 0.888831 [1750] valid 0's auc: 0.890229 [2000] valid_0's auc: 0.890931 [2250] valid_0's auc: 0.891364 Early stopping, best iteration is: [2297] valid_0's auc: 0.891447 Training until validation scores don't improve for 50 rounds. [250] valid 0's auc: 0.881064 valid_0's auc: 0.889032 [500] valid 0's auc: 0.891408 [750] [1000] valid 0's auc: 0.892038 Early stopping, best iteration is: [1081] valid_0's auc: 0.892177 Training until validation scores don't improve for 50 rounds. [250] valid_0's auc: 0.878957 [500] valid_0's auc: 0.883745 Early stopping, best iteration is: | 0.004804 | 19.33 Training until validation scores don't improve for 50 rounds. [250] valid 0's auc: 0.882276 [500] valid 0's auc: 0.88963 [750] valid 0's auc: 0.891443 Early stopping, best iteration is: [750] valid_0's auc: 0.891443 | 0.8914 | 0.05001 | 1.235 | 3.561 | 0.1041 | 6.324 | 15.43 | 5 | 0.002452 | 11.87 0.9186 Training until validation scores don't improve for 50 rounds. [250] valid 0's auc: 0.883366 [500] valid 0's auc: 0.888091 Early stopping, best iteration is: [481] valid_0's auc: 0.888299

6 | 0.8883 | 0.2888 | 0.7963 | 0.009826 | 5.699

| 0.06764 | 0.06368 | 0.2366 | 8.822 | 19.91

```
valid 0's auc: 0.878846
[500]
     valid 0's auc: 0.886936
Early stopping, best iteration is:
[665] valid 0's auc: 0.887614
| 7
| 0.03679
         | 0.8876 | 0.21
9 | 0.009781 | 7.858
                                 | 4.978 | 0.6158 | 0.2031 | 3.304 | 5.315
Training until validation scores don't improve for 50 rounds.
[250]
      valid 0's auc: 0.869858
       valid 0's auc: 0.884462
[500]
       valid 0's auc: 0.889389
[750]
[1000] valid_0's auc: 0.890797
Early stopping, best iteration is:
[988] valid_0's auc: 0.890881
                               | 0.4681 | 4.634 | 0.1089 | 5.749 | 5.199
         | 0.8909 | 0.2457
| 0.007056 | 5.492
 0.03918
Training until validation scores don't improve for 50 rounds.
      valid 0's auc: 0.863459
[250]
      valid 0's auc: 0.879242
      valid_0's auc: 0.886708
[750]
[1000] valid_0's auc: 0.89035
[1250] valid_0's auc: 0.892283
[1500] valid_0's auc: 0.893154
Early stopping, best iteration is:
[1685] valid_0's auc: 0.893483
 9 | 0.8935 | 0.07253 | 4.779 | 3.22 | 0.07664 | 15.0 | 6.072
| 0.4635 | 0.007511 | 5.002 |
Training until validation scores don't improve for 50 rounds.
[250] valid 0's auc: 0.877534
     valid_0's auc: 0.883738
Early stopping, best iteration is:
| 4.973 | 0.07274 | 0.2226 | 3.35
                                                                            | 19.87
 | 0.9903 | 0.002911 | 19.94
_______
In [31]:
LGB B0.max['target']
Out[31]:
0.893483494395378
In [32]:
LGB B0.max['params']
Out[32]:
{'feature_fraction': 0.0725311213806508,
 'lambda_l1': 4.778909939998174,
```

Training until validation scores don't improve for 50 rounds.

'lambda_l2': 3.220122059503974, 'learning_rate': 0.07663544326133201, 'max depth': 14.99504485809263,

'num leaves': 5.001626877554514}

'min_data_in_leaf': 6.071757005556453, 'min_gain_to_split': 0.4634735801572327

'min sum hessian in leaf': 0.007510919138894667,

```
In [33]:

param_lgb = {
        'num_leaves': int(LGB_B0.max['params']['num_leaves']),
        'max_bin': 63,
        'min_data_in_leaf': int(LGB_B0.max['params']['min_data_in_leaf']),
        'learning_rate': LGB_B0.max['params']['learning_rate'],
        'min_sum_hessian_in_leaf': LGB_B0.max['params']['min_sum_hessian_in_leaf'],
        'bagging_fraction': 1.0,
        'bagging_freq': 5,
        'feature_fraction': LGB_B0.max['params']['feature_fraction'],
        'lambda l1': LGB_B0.max['params']['lambda l1'],
```

'lambda_l2': LGB_B0.max['params']['lambda_l2'],

'max depth': int(LGB B0.max['params']['max depth']),

'min_gain_to_split': LGB_B0.max['params']['min_gain_to_split'],

Model Interpreting

'save_binary': True,

'bagging_seed': 13,
'drop_seed': 13,
'data_random_seed': 13,
'objective': 'binary',
'boosting_type': 'gbdt',

'feature_fraction_seed': 13,

'boost_from_average': False,

'seed': 13,

'verbose': 1,
'metric': 'auc',
'is unbalance': True,

ELI5

```
In [34]:
```

}

```
import eli5

model = lgb.LGBMClassifier(**param_lgb, n_estimators = 20000, n_jobs = -1)
X_train, X_valid, y_train, y_valid = train_test_split(train[features], train[target], test_size=0.2, stratif
y=train[target])
model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_valid, y_valid)], verbose=1000, early_stopping_
rounds=200)
eli5.show_weights(model, targets=[0, 1], feature_names=list(X_train.columns), top=40, feature_filter=lambda
x: x != '<BIAS>')
```

```
Training until validation scores don't improve for 200 rounds.
        training's auc: 0.915152
                                             valid 1's auc: 0.891456
[1000]
        training's auc: 0.929421
                                             valid 1's auc: 0.895934
Early stopping, best iteration is:
[2356] training's auc: 0.93366 valid_1's auc: 0.896235
Out[34]:
Weight
        Feature |
 0.0285
        var_81
 0.0245
        var 139
 0.0208
        var_12
 0.0208
        var_53
 0.0192
        var_110
 0.0165
        var 26
 0.0164
        var_174
 0.0161
        var 76
 0.0161
        var_6
        var_166
 0.0158
 0.0156
        var_146
 0.0148
        var 80
 0.0144
        var_22
 0.0141
        var_99
 0.0141
        var_109
 0.0137
        var 21
 0.0134
        var_2
 0.0131
        var_148
 0.0130
        var_0
        var_133
 0.0129
 0.0129
        var_165
 0.0129
        var_13
 0.0126
        var_44
 0.0124
        var_190
 0.0121
        var_198
 0.0120
        var 78
 0.0113
        var_34
 0.0113
        var_179
        var_108
 0.0109
 0.0107
        var 33
 0.0104
        var_40
 0.0104
        var_1
 0.0102
        var_92
        var_94
 0.0101
 0.0101
        var_191
 0.0100
        var_169
 0.0098
        var_170
 0.0097
        var_115
 0.0097
        var_164
 0.0097
        var_154
  ... 160 more ...
Taking top 100 features and checking if the scores improves.
In [35]:
top features = [i for i in eli5.formatters.as dataframe.explain weights df(model).feature if 'BIAS' not in i
][:100]
X1 = train[top features]
X_train, X_valid, y_train, y_valid = train_test_split(X1, train[target], test size=0.2, stratify=train[targe
model.fit(X train, y train, eval set=[(X train, y train), (X valid, y valid)], verbose=1000, early stopping
rounds=200)
Training until validation scores don't improve for 200 rounds.
[1000] training's auc: 0.904977
                                             valid 1's auc: 0.88435
Early stopping, best iteration is:
[1659] training's auc: 0.912177
                                             valid 1's auc: 0.88535
Out[35]:
LGBMClassifier(bagging_fraction=1.0, bagging_freq=5, bagging_seed=13,
         boost_from_average=False, boosting_type='gbdt', class_weight=None,
         colsample bytree=1.0, data random seed=13, drop seed=13,
         feature fraction=0.0725311213806508, feature fraction seed=13,
         importance_type='split', is_unbalance=True,
         lambda l1=4.778909939998174, lambda_l2=3.220122059503974,
```

learning_rate=0.07663544326133201, max_bin=63, max_depth=14, metric='auc', min_child_samples=20, min_child_weight=0.001, min data in leaf=6, min gain to split=0.4634735801572327,

subsample freq=0, verbose=1)

min_split_gain=0.0, min_sum_hessian_in_leaf=0.007510919138894667,
n_estimators=20000, n_jobs=-1, num_leaves=5, objective='binary',
random_state=None, reg_alpha=0.0, reg_lambda=0.0, save_binary=True,
seed=13, silent=True, subsample=1.0, subsample_for_bin=200000,

Without removal score : 0.89538With removal score : 0.883403

So ELI5 isn't helping in reducing the features.

5Fold Prediction & Submission

```
In [36]:
%%time
folds = StratifiedKFold(n splits=5, shuffle=True, random state=13)
y pred lgb = np.zeros(len(test))
num round = 20000
for fold_n, (train_index, valid_index) in enumerate(folds.split(train[features], train[target])):
    print('Fold', fold_n, 'started at', time.ctime())
    X_train, X_valid = train[features].iloc[train index], train[features].iloc[valid index]
    y train, y valid = train[target].iloc[train index], train[target].iloc[valid index]
    train_data = lgb.Dataset(X_train, label=y_train)
    valid data = lgb.Dataset(X valid, label=y valid)
    lgb model = lgb.train(
        param lgb,
        train data, num round,
        valid sets = [train data, valid data],
        verbose eval=1000,
        early_stopping_rounds = 1000)
    y_pred_lgb += lgb_model.predict(test[features], num_iteration=lgb_model.best_iteration)/5
Fold 0 started at Thu May 23 21:53:56 2019
Training until validation scores don't improve for 1000 rounds.
                                          valid_1's auc: 0.8925
[1000] \quad \text{training's auc: 0.915072}
[2000]
       training's auc: 0.929153
                                          valid 1's auc: 0.89617
[3000] training's auc: 0.940718
                                          valid<sup>-</sup>1's auc: 0.896497
[4000] training's auc: 0.950536
                                          valid 1's auc: 0.896168
Early stopping, best iteration is:
[3245] training's auc: 0.943273
                                          valid 1's auc: 0.896583
Fold 1 started at Thu May 23 21:55:43 2019
Training until validation scores don't improve for 1000 rounds.
                                          valid_1's auc: 0.887972
[1000] training's auc: 0.915683
[2000] training's auc: 0.929641
                                          valid 1's auc: 0.892794
[3000] training's auc: 0.941147
                                          valid 1's auc: 0.892949
```

```
Early stopping, best iteration is:
[2920] training's auc: 0.940291
                                         valid 1's auc: 0.893084
Fold 2 started at Thu May 23 21:57:21 2019
Training until validation scores don't improve for 1000 rounds.
[1000] training's auc: 0.914678
                                         valid 1's auc: 0.892208
[2000] training's auc: 0.929145
[3000] training's auc: 0.940704
                                         valid_1's auc: 0.896409
                                         valid 1's auc: 0.896585
Early stopping, best iteration is:
[2952] training's auc: 0.940199
                                         valid 1's auc: 0.896619
Fold 3 started at Thu May 23 21:59:01 2019
Training until validation scores don't improve for 1000 rounds.
[1000] training's auc: 0.914758
                                         valid 1's auc: 0.894037
       training's auc: 0.929022
                                         valid 1's auc: 0.898242
[2000]
[3000] training's auc: 0.940578
                                         valid_1's auc: 0.898285
Early stopping, best iteration is:
[2195] training's auc: 0.931409
                                         valid 1's auc: 0.898555
Fold 4 started at Thu May 23 22:00:21 2019
Training until validation scores don't improve for 1000 rounds.
[1000] training's auc: 0.914961
                                         valid 1's auc: 0.893687
[2000] training's auc: 0.929198
                                         valid 1's auc: 0.897151
[3000] training's auc: 0.940755
                                         valid 1's auc: 0.897263
Early stopping, best iteration is:
                                         valid 1's auc: 0.897471
[2663] training's auc: 0.937059
CPU times: user 30min 35s, sys: 11.4 s, total: 30min 46s
Wall time: 7min 58s
```

```
In [37]:
```

```
# Submitting the 5Fold LGB Predictions
submission_lgb = pd.DataFrame({
    "ID_code": test["ID_code"],
    "target": y_pred_lgb
})
submission_lgb.to_csv('sub_lgb.csv', index=False)
```

This submission score 0.90038 on public leaderboard. (Almost top 9% in Public LB)

Conclusion

TODO -

- 1. H20 AutoML
- 2. Using XGBoost, Catboost
- 3. Ensembling, Stacking, Blending
- 4. Feature Removal

In []: