CIS 606 Analysis of Algorithms

Elementary Graph Algorithms

RATIONALE

- Graphs are a powerful means of modeling data in real-world such as social median networks, web pages and links, road maps in a GIS system.
- Graph problems pervade computer science and hundreds of interesting computational problems are couched in terms of graphs, e.g., computing the shortest path.
- Developing graph algorithms is fundamental to computer science.

OBJECTIVES

- Understand the definition of a graph
- Understand different type of graphs
- Learn to use adjacent list and matrix to represent a graph in the computer system

PRIOR KNOWLEDGE

- Linked list
- Matrix

GRAPH

- A graph is a structure linking a set of objects.
- A graph is a pair G=(V, E):
 - V is a set of vertices, known as nodes, V={v₁, v₂, ..., v_n};
 - E is a set of edges, $E = \{e_1, e_2, ..., e_n\}$, where each edge e_i is a pair of vertices (v_i, v_j) and connects two vertices v_i and v_j .

$$V = \{v_1, v_2, v_3\}$$

$$E = \{(v_1, v_2), (v_1, v_3), (v_3, v_2)\}$$

DIRECTED GRAPHS

- In a directed graph (also called digraph), every edge has a direction.
- For edge $e_i = (v_i, v_j)$, v_i is the source and v_j is the destination.
- In-degree of a vertex v is the number of edges coming toward to v.
- Out-degree of a vertex v is the number of outgoing edges

$$V = \{v_1, v_2, v_3\}$$

$$E = \{(v_1, v_2), (v_1, v_3), (v_3, v_2)\}$$

$$In-degree(v_1) = 0$$

Out-degree(
$$v_1$$
) = 2

UNDIRECTED GRAPH

- In an undirected graph, edges have no specific directions or always "two-way".
- Degree of a vertex is the number of edges connecting that vertex or the number of adjacent vertices.

$$V = \{v_1, v_2, v_3\}$$

$$E = \{(v_1, v_2), (v_1, v_3), (v_2, v_1), (v_3, v_1), (v_3, v_2)\}$$

WEIGHTED GRAPH

• In a weighted graph, every edge $e_i = (v_i, v_j)$ has a weight/cost $w(v_i, v_j)$

$$w(v_1, v_2) = 2$$

$$w(v_1, v_3) = -1$$

$$w(v_3, v_2) = 1.5$$

PATH

- A path on a graph G=(V, E) is a list of vertices $\{v_0, v_1, ..., v_k\}$ such that (v_i, v_j) is an edge in E for all $0 \le i \le k$, and we say a path from v_0 to v_k .
- A cycle is a path that begins and ends at the same node.

DIRECTED ACYCLIC GRAPHS (DAGS)

A DAG is a directed acyclic graph without cycles.

GRAPH CONNECTIVITY

 A undirected graph is connected if for all pairs of vertices u and v, there exists a path from u to v.

GRAPH REPRESENTATION—ADJACENCY LISTS

- Adjacent Lists G = (V, E) where |V| = n and |E| = m
 - Assign each node a number from 1 to n
 - An array of length n in which each entry stores a list of all adjacent vertices for a vertex in V.

ADJACENCY LIST PROPERTY

Operations	Time	
Out-degree(v)	O(m)	
In-degree(v)	O(n+m)	
Exist(e=(u,v))	e=(u,v)) O(m)	
Insert(e)	e) O(1)	
Delete(e)	O(m)	

Space: O(|V|+|E|) = O(n+m)

GRAPH REPRESENTATION-ADJACENCY MATRIX

- Adjacent Lists G = (V, E) where |V| = n and |E| = m
 - Assign each node a number from 1 to n
 - A n×n matrix M where M[i, j] = the weight of e=(v_i, v_j) if e exists, otherwise M[i, j]=0.

V₁ 1

 V_2 2

V₃ 3

1	2	3	4
0	0.1	0.2	0
0	0	0	0.3
0	0	0	0
0	0	0.4	0

ADJACENCY MATRIX PROPERTY

Operations	Time	
Out-degree(v)	O(n)	
In-degree(v)	O(n)	
Existence(e=(u,v))	O(1)	
Insert(e)	O(1)	
Delete(e)	O(1)	

Space: $O(|V| \times |V|) = O(n^2)$

SUMMARY

- A graph consist of a set V of vertices and a set E of edges.
- Every edge connect two vertices and may have a direction.
- A path from v to u on a graph is a sequence of vertices from v to u such that every two adjacent vertex has an edge.
- A graph is connected if for all pairs of vertices, there is a path from u
 to v.
- There are two representations for a graph: adjacency list and adjacency matrix.
- In the adjacency list, every vertex u has a list to store all its adjacent vertices.

In the adjacency matrix, every edge (u,v) corresponds a cell in it.

TO PREPARE FOR THE NEXT LESSON

Read the Chapter 22.2 for BFS.

GRAPH CONNECTIVITY (CONT)

 A graph is fully connected/complete if there exists an edge from every vertex to every other vertex.

Fully connected

Fully connected

