Computational Mathematics TC2020

Assignment 01

Sebastián A. Saldaña A01570274 12.02.21

Preliminaries: Sets, relations and functions

- 1. Calculate the result of the following operations (4 marks):
 - (a) $\{a, b, c\} \times \{1, 2, 3, 4\}$ $S = \{(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4), (c, 1), (c, 2), (c, 3), (c, 4)\}$
 - (b) $\{a, \{b\}, \{\{c\}\}\} \times \emptyset$ $S = \emptyset$
 - (c) $\mathcal{P}(\{x: x \in \mathbb{N}, x < 4\})$ $S = \{\emptyset, 1, 2, 3, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
 - (d) $|\mathcal{P}(\{y : y \in \mathbb{Z}, 0 < y < 10\})| = 512$
- 2. The following are relations from $\{1, 2, 3, 4\}$ to $\{1, 2, 3, 4\}$. Indicate which relations are **transitive**, **reflexive**, or **symmetric**. Also indicate which are **functions** and which one are only **relations**. In case of being functions, indicate if they are **total** or **partial** functions, and which ones are **injective**, **surjective** and **bijective** (4 marks).
 - (a) $\{(2,2),(3,3),(1,1),(4,4)\}$ This is a reflexive, transitive, and symmetric relation which is also a total, bijective function.
 - (b) $\{(1,1),(2,2),(3,3),(4,3)\}$ This is a transitive relation and a total, surjective function.
 - (c) $\{(1,1),(3,4),(2,2),(3,3)\}$ This is only a relation
 - (d) $\{(1,1),(2,2),(3,3)\}$ This is a reflexive, transitive, and symmetric relation which is also a partial, surjective function.
- 3. Using the information from the lecture, investigate what is the **transitive closure**. Then, write its definition in your own words. Finally, find the transitive closure for each of the relations of the previous problem (2 marks)¹.

A **transitive closure** is the set of individual relations between elements of a relation that encapsulates all of these elements that will make it transitive.

- (a) $R^* = \{(2,2), (3,3), (1,1), (4,4)\}$
- (b) $R^* = \{(1,1), (2,2), (3,3), (4,3)\}$
- (c) $R^* = \{(1,1), (3,4), (2,2), (3,3), (4,3)\}$
- (d) $R^* = \{(1,1), (2,2), (3,3)\}$

¹Do not forget to cite the sources properly. Consider that they are reliable sources and, if possible, list two or three resouces; do not consider just the first definition you find.

Bibliography

- [1] Udacity. (2015). Transitive Closure Georgia Tech Computability, Complexity, Theory: Algorithms. Recovered from https://www.youtube.com/watch?v=NMOmAmylfMg
- [2] GVSUMath. (2015). Transitive Closure.

 Recovered from: https://www.youtube.com/watch?v=008Jfs9uZnc