A figura representa uma rede TCP/IP constituída por 5 routers interligados entre si por ligações Ethernet IEEE802.3 a 100Mpbs e/ou Série a 10Mpbs, com uma única ligação ao exterior.

- a. Atribua endereços IP a todas as interfaces dos routers, com exceção das interfaces IP1 e IP2.
- b. Suponha que está a usar encaminhamento estático. Apresente as tabelas de encaminhamento dos routers (utilizando como métrica o nº de saltos) de forma a garantir o correcto funcionamento da rede e o acesso ao exterior a partir de todas as redes. Utilize rotas agregadas sempre que possível.

R1

Destino/Máscara	Interface de saída	Prox. nó
130.27.249.192/26	130.27.249.254	
130.27.249.128/26	130.27.249.190	
130.27.249.0/25	130.27.249.190	130.27.249.189
130.27.248.0/25	130.27.249.254	130.27.249.253
0.0.0.0	IP2	IP1

R2

Destino/Máscara	Interface de saída	Prox. nó
130.27.248.192/26	130.27.249.253	
130.27.248.0/25	130.27.248.126	
192.168.1.0/24	192.168.1.254	
130.27.249.0/24	192.168.1.254	192.168.1.253
130.27.248.128/26	130.27.248.126	130.27.248.125
130.27.248.192/26	130.27.248.126	130.27.248.124
0.0.0.0	130.27.249.253	130.27.249.254

R3

Destino/Máscara	Interface de saída	Prox. nó
130.27.249.128/26	130.27.249.189	
130.27.249.0/25	130.27.249.126	
192.168.1.0/24	192.168.1.253	
130.27.248.0/23	192.168.1.253	192.168.1.254
0.0.0.0	130.27.249.189	130.27.249.190

R4

Destino/Máscara	Interface de saída	Prox. nó
130.27.248.128/26	130.27.248.190	
130.27.248.0/25	130.27.248.125	
130.27.248.192/26	130.27.248.125	130.27.248.124
0.0.0.0	130.27.248.125	130.27.248.126

R5

Destino/Máscara	Interface de saída	Prox. nó
130.27.248.192/26	130.27.248.124	
130.27.248.0/26	130.27.248.254	
130.27.248.128/26	130.27.248.254	130.27.248.125
0.0.0.0	130.27.248.254	130.27.248.126

c. Suponha agora que ativa o encaminhamento dinâmico na sua rede, recorrendo ao protocolo OSPF. Atribua custos a todas as ligações de acordo com a métrica utilizada pelo OSPF e preencha a seguinte tabela utilizando o algoritmo de Dijkstra para determinar os menores caminhos para todos os destinos a partir do Router R2, e a respetiva tabela de encaminhamento.

N	D(R1),P(R1)	D(R3),P(R 3)	D(R4),P(R 4)	D(R5),P(R5
Destino	Máscara de Rede	Interface de Saída	Próximo N	Nó Custo

Encaminhamento Dinâmico-> protocolo OSPF métrica OSPF=
$$\frac{10^8}{largura\ de\ banda(bps)}$$

10Mbps->custo=
$$\frac{10^8}{10*10^6}$$
 = 10

N	D(R1),P(R1)	D(R3),P(R3)	D(R4),P(R4)	D(R5),P(R5)
R2	1,R2	10,R2	1,R2	1,R2
R2,R1		2,R1	1,R2	1,R2
R2,R1,R4		2,R1		1,R2
R2,R1,R4,R5		2,R1		
R2,R1,R4,R5,R3		2,R1		

Destino/Máscara	Interface de saída	Prox. nó	custo
130.27.248.192/26	130.27.249.253		0
130.27.248.0/25	130.27.248.126		0
192.168.1.0/24	192.168.1.254		0
130.27.248.128/26	130.27.248.126	130.27.248.125	1
130.27.248.192/26	130.27.248.126	130.27.248.124	1
130.27.249.0/25	130.27.249.253	130.27.249.254	2
0.0.0.0	130.27.249.253	130.27.249.254	-

d. Que diferenças existem entre a tabela de encaminhamento resultante do exercício da alínea anterior e a calculada na alínea b para o router 2. Aponte vantagens e desvantagens entre uma e outra estratégia de encaminhamento, não só ao nível da métrica usada, mas também no que toca à filosofia subjacente ao processo de encaminhamento num e noutro caso.

	Enc.Estático	Enc.dinâmico
vantagens	Redução do overhead	Converge mais rapidamente
desvantagens	-Erros propagam-se -Converge lentamente	Necessário atualizar sempre que o custo se
	Some go fortamento	altera(+sobrecarga)

e. Se a rede em causa estiver a usar o protocolo BGP para garantir a conectividade com o exterior, qual seria o prefixo ou prefixos de rede que o router (R1) responsável pela ligação ao exterior terá que anunciar? Justifique a sua resposta.

130.27.248.0/23

2. A figura representa uma rede constituída por 6 routers (A, B, C, D, E, e F) interligados entre si por 8 ligações ponto a ponto. Esta rede garante conectividade ao exterior, através do router D, a 6 redes locais, devidamente identificadas (Rede A, Rede B, Rede C, Rede D, Rede E e Rede F).

 Utilize o algoritmo de Dijkstra para calcular os caminhos mais curtos a partir do router D. Mostre a tabela com todas as iterações que é necessário realizar.

Iteração N	D(A), P(A) $D(B), P(B)$	D(C),P(C)	D(E),P(E)	D(F),P(F)
------------	-------------------------	-----------	-----------	-----------

Iteração	N	D(A),P(A)	D(B),P(B)	D(C),P(C)	D(E),P(E)	D(F),P(F)
0	D	∞	3,D	∞	<mark>2,D</mark>	∞
1	D,E	∞	3,D	5,E		3,E
2	D,E,F	∞	3,D	4,F		
3	D,E,F,B	7,B		4,F		
4	D,E,F,B,C	6,C				
5	D,E,F,B,C,A	6,C				

 A partir do resultado da alínea anterior, construa uma tabela de encaminhamento simplificada do referido router D.

Destino Próximo Nó Custo

DESTINO	PROX. NÓ	CUSTO
D	D	0
E	E	2
F	E	3
В	В	3
С	E	4
Α	E	6

c. O algoritmo de Dijkstra é utilizado pelos algoritmos de estado de ligação, um dos algoritmos de encaminhamento estudados. Explique sucintamente o funcionamento dos algoritmos de estado de ligação realçando os seus pontos fortes e fracos.

Nos algoritmos de estado de ligação todos os routers conhecem a topologia da rede na sua totalidade e com essa informação constroem a tabela de encaminhamento.

Inicialmente, necessitam apenas de conhecer apenas os seus vizinhos diretos, para a identificação de todos os seus vizinhos. Ao fim de algum tempo todos os nós ficam com o conhecimento completo da topologia, assim como dos custos de todas as ligações.

Este algoritmo acaba por convergir rapidamente no entanto muitos recursos a nível de CPU e memória, necessitando também uma maior largura de banda.

d. Supondo que está a utilizar um algoritmo de vectores de distância, qual a tabela de encaminhamento logo após a <u>primeira iteração</u>. Mostre todas as tabelas de distância que teve que calcular para chegar ao resultado.

Inicio
$$[D-B \rightarrow 3D-E \rightarrow 2]$$

D^B	Α	С	D
Α	4	∞	∞
С	∞	2	∞
D	∞	∞	3

A-4 C-2 D-3

DE	С	D	F	
С	3	∞	∞	
D	∞	2	∞	
F	∞	∞	1	

C-3 D-2 F-1

D^D	В	Е
Α	∞	∞
В	3	∞
С	∞	∞
E	∞	2
F	∞	∞

1ª ITERAÇÃO

D^{D}	В	E
Α	7	∞
В	3	∞
С	5	5
E	∞	2
F	∞	3

B-A->4 B-C->2 E-C->3 E-F->1

DESTINO	PROX. NÓ	CUSTO
A	В	7
В	В	3
С	В	5
E	E	2
F	E	3

e. Suponha que está a utilizar um protocolo de encaminhamento baseado no algoritmo vector de distância com envenenamento do percurso inverso. Qual a <u>tabela de distâncias final</u> do router E, e como reagiria ele, nessas circunstâncias, a uma falha da ligação entre E e D?

Percurso inverso—anunciar aos vizinhos rotas que passam por eles, mas com métrica " ∞" (ex:envia ao seu vizinho B toda a tabela mas c/ métricas ∞ nas rotas q apreendeu com ele)

DE	С	D	F
Α	∞	∞	
В	∞	∞	
С	3	∞	
D	∞	2	
F	∞	∞	1

4. Considere a rede da figura abaixo. Os nós da rede usam um protocolo de encaminhamento baseado em vetores de distância para determinar os caminhos mais curtos. Inicialmente, o sistema está estável, isto é, todos os nós têm uma estimativa correta dos custos dos caminhos mais curtos. No instante t1, a ligação entre A e B quebra-se. O protocolo evolui sincronamente, com todos os nós a trocarem mensagens de encaminhamento nos mesmo instantes, começando no instante t2 > t1..

 Apresente as tabelas de distância dos nós no instante t1, imediatamente antes da ligação entre os nós A e B se quebrar.

D ^A	В	С	B->2
В	2	4	C->1
С	5	1	D->4
D	4	6	

DB	Α	С	D
В	2	11	6
С	3	10	7
D	6	15	2

A->2

C->3

D->2

Dc	Α	В	D
Α	1	12	3
В	3	10	7
D	5	12	5

A->1

B->3

D->5

D^D	Α	В	С
Α	5	4	6

В	7	2	8
С	6	5	5

A->4

B->2

C->5