

Repertorio de instrucciones

Semana 5 – Arquitectura de computadoras

Esta presentación esta basada en el libro de:

■ William Stallings, Computer Organization and Architecture, 9th Edition, 2017

Archivos presentación y ejemplos se alojan en:

https://github.com/ruiz-jose/tudw-arq.git

Repertorio de instrucciones

- Tipos de instrucciones
- Modos de direccionamiento
- Operandos de la instrucción
- Banderas

Arquitectura acumulador (ACC)

Repertorio de instrucciones

Código operación (C ₇ C ₆)	Nemónico		Efecto
0 = 00 1 = 01 2 = 10 3 = 11	LDA STA ADD HLT	dirección dirección dirección	ACC ← Memoria[dirección] Memoria[dirección] ← ACC ACC ← ACC + Memoria[dirección] Detiene CPU

Equivalencia de las estructura de control «if» entre python y ensamblador

UNER virtual Octo de instrucción - Etapa de captación y ejecución

Equivalencia de las estructura de control «while» entre python y ensamblador

UNER virtual Tipos de instrucciones

Tipo de instrucciones

Tipo	Código operación / Nemónico		Efecto
Movimiento	$0 = 000 \rightarrow LDA d$ $1 = 001 \rightarrow STA d$		ACC ← Memoria[dirección] Memoria[dirección] ← ACC
Aritmética	$2 = 010 \rightarrow ADD di$ $3 = 011 \rightarrow SUB di$		ACC ← ACC + Memoria[dirección] ACC ← ACC – Memoria[dirección]
Control	4 = 100 → JMP di 5 = 101 → JMZ di 6 = 110 → JMC di 7 = 111 → HLT	rección	PC ← dirección Si ACC == 0 entonces PC ← dirección Si 255 > ACC < 0 entonces PC ← dirección Detiene CPU

Modos de direccionamiento

- Modos de direccionamiento: Indican la manera que se obtienen los operandos de una instrucción.
 - Direccionamiento directo: dentro de la instrucción se encuentra la dirección del operando.

Direccionamiento inmediato: el valor del operando forma parte de la instrucción.

Tipo		pperación mónico	Efecto
Movimiento	0 = 0000 → LDA 1 = 0001 → LDI	dirección valor	ACC ← Memoria[dirección] ACC ← valor
Aritmética	2 = 0010 → ADD 3 = 0011 → ADI	dirección valor	ACC ← ACC + Memoria[dirección] ACC ← ACC + valor

- Modos de direccionamiento
 - Por registro

Acumulador

Acumulador

Las operaciones tienen como operando implícito el registro (ACC) y para el otro operando se proporciona su dirección en la memoria y el resultado se coloca en el ACC.

Stack

Cuenta con una pila y las operaciones se realizan sobre los elementos almacenados en ella accesibles desde el tope (SP).

Un stack o pila posee dos operaciones:

- · Push que permite colocar un dato en la primera posición libre.
- Pop que permite retirar el último dato que se encuentra en la pila.

Registros (R)

Se cuenta con un banco de registros y las operaciones se realizan entre ellos.

Operandos de la instrucción Se clasifican según el numero de operandos **explícitos** en la instrucción:

Banderas

Flags - Banderas

Cero - (resultado=0) – Zero – Flag Z

1 byte = 8 bits, se puede representar 2^8 = 256 valores (0-255)

Si el resultado de la ALU es cero → el flag Zero = 1

Acarreo – (o me llevo) – Carry – Flag C

Se activa el Carry = 1: si el resultado es mayor o menor al rango soportado por el registro de 8 bits (0255) → indica que el resultado es erróneo.

.data x db 3 y db 2

z db 7 w db 0

Preguntas?