AUTOMATA FORMAL LANGUAGES AND LOGIC

Lecture notes on Context Free Grammar/Linear Grammar

Prepared by: Prof.Sangeeta V I Assistant Professor

Department of Computer Science & Engineering PES UNIVERSITY

(Established under Karnataka Act No.16 of 2013) 100-ft Ring Road, BSK III Stage, Bangalore - 560 085

Table of contents

Section	Topic	Page number
1	Context Free Grammar (CFG)	4
2	Context Free Languages(CFL)	4

Examples Solved

#	Constructing Linear Grammar	Page number
1	Construct linear grammar for the even palindromes. $L=\{ww^R, w \in \{a,b\}^*\}$	5
2	Construct linear grammar for the even palindromes. $L=\{wCw^R, w \in \{a,b\}^*\}$	5
3	Construct linear grammar for $L=\{ww^R, w \in \{ab\}^* (ba)^*\}$	6
4	Construct linear grammar for $L=\{a^nww^Rb^n \mid w \in \{a,b\}^*\}$	6
5	Construct linear grammar for $L=\{a^nb^{n+1}, n>=0\}$	6
6	Construct linear grammar for $L=\{a^{n+2}b^n,n>=1\}$	7
7	Construct linear grammar for $L=\{a^nb^{2n},n>=0\}$	7
8	Construct linear grammar for $L=\{a^nb^{n-3},n>=3\}$	8
9	Construct linear grammar for L={anbm,n>m}	9
10	Construct linear grammar for L={a ⁿ b ^m ,n≠m}	9
11	Construct linear grammar for $L=\{a^nb^m,n=2+(m \text{ mod } 3)\}$	10

#	Constructing Linear Grammar	Page number
12	Construct linear grammar for L={a ⁿ b ^m ,n≠2m}	11
13	Construct linear grammar for L={a ⁿ⁺² b ^m ,m>n,n>=0}	13
14	Construct linear grammar for $L=\{a^nb^mc^md^n,n,m>=1\}$	14
15	Construct linear grammar for L= $\{a^nb^mc^k,k=n+m,n,m,k>=0\}$	14
16	Construct linear grammar for L={anbmck,m=2n, k=2,n>=0}	15
17	Construct linear grammar for L= $\{a^nb^mc^k,m,n>=0,k=n+2m\}$	15
18	Construct linear grammar for L={ w mod $3 \neq$ w mod $2,w \in \{a\}^*$ }	16

1. Context Free Grammar (CFG) is defined by 4 tuples G=(V,T,P,S) where,

V is the set of variables.

T is the set of terminal symbols.

P is the set of production rules of the form:

 $A \rightarrow \alpha$ (Variable \rightarrow String), Where $\alpha = \{VU\Sigma\}$ * and $A \subseteq V$.

A context-free grammar has no restrictions on the right side of its productions, while the left side must be a single variable.

S is the start symbol.

- CFG may not be right-linear or left-linear, i.e., it may have a variable in the middle of the right-hand side of the grammar, surrounded by terminal symbols on both sides.
- CFG may not even be linear, i.e., may have more than one variable on the right-hand side.
- If G is a CFG with alphabet Σ and start symbol S, then the language of G is the set $L(G)=\{w \in \Sigma^* \mid S \Rightarrow^* w\}$.
- Any language generated by a context free grammar(CFG) is a Context Free Language(CFL).
- CFG / Linear grammar has only one variable on the RHS of any production rule.

2. Context-Free Languages

Context-free languages are a strict superset of the regular languages. Every regular language is context-free, but not necessarily the other way around.

Example 1:

Construct linear grammar for the even palindromes. $L=\{ww^R, w \in \{a,b\}^*\}$

Palindrome is a sequence that reads the same backwards as forwards, e.g. madam.

Set of strings that belong to the language = $\{\lambda,aa,bb,abba,....\}$ Minimum strings: λ

 $w w^{R} = a a$

 $w w^R = b b$

w w^R=ab ba and so on.

There is a pattern which follows,

if we generate an 'a' at the start there has to be an 'a' at the end.

 $S \rightarrow aSa$

Similarly, if we generate 'b' at the start there has to be 'b' at the end.

 $S \rightarrow aSa|bSb$

Since it is an even palindrome, we will replace the S with λ .

CFG/linear grammar for the even palindromes is:

 $S{\rightarrow}aSa|bSb|\lambda$

Example 2:

Construct linear grammar for the even palindromes. $L=\{wCw^R, w \in \{a,b\}^*\}$

C represents the mid.

We can take the grammar from the previous example and replace $S \rightarrow \lambda$ with $S \rightarrow C$.

CFG/linear grammar for the even palindromes with C as seperator is:

 $S \rightarrow aSa|bSb|C$

Example 3:

Construct linear grammar for $L=\{ww^R, w \in \{ab\}^* | (ba)^*\}$

w here is either ab or ba.

If we generate 'ab' at the start we must generate 'ba' at the end. S→abSba

If we generate 'ba' at the start we must generate 'ab' at the end. $S \rightarrow baSab$

CFG/linear grammar for L= $\{ww^R, w \in \{ab\}^* | (ba)^*\}$ is:

 $S \rightarrow abSba|baSab|\lambda$

Example 4:

Construct linear grammar for $L=\{a^nww^Rb^n \mid w \in \{a,b\}^*\}$

We will first generate aⁿbⁿ.

 $S \rightarrow aSb$

Next, we will replace S with ww^R

Introduce new production $S \rightarrow A$, where A will take care of ww^R.

 $S \rightarrow aSb \mid A$

 $A \rightarrow aAa|bAb|\lambda$

CFG/linear grammar for $L=\{a^nww^Rb^n \mid w \in \{a,b\}^*\}$ is:

 $S \rightarrow aSb \mid A$

 $A \rightarrow aAa|bAb|\lambda$

Example 5:

Construct linear grammar for $L=\{a^nb^{n+1}, n>=0\}$

 a^nb^{n+1} is similar to a^nb^n but has an extra b.

$$a^nb^{n+1}=a^nbb^n$$

CFG/linear grammar for L= $\{a^nb^{n+1} \mid n>=0\}$ is:

$S \rightarrow aSb \mid b$

Example 6:

Construct linear grammar for $L=\{a^{n+2}b^n, n>=1\}$

$$a^{n+2}b^n = a^n a^2 b^n$$

Minimum value n=1, aa²b=aaab

$$n=2$$
, $a^2a^2b^2=aaaabb$

$$n=3$$
, $a^3a^2b^3$ = aaaaabbb and so on

There is a pattern which follows, there are an equal number of a's and b's in the middle there are two a's.

CFG/linear grammar for L= $\{a^{n+2}b^n, n>=1\}$ is:

Example 7:

Construct linear grammar for $L=\{a^nb^{2n},n>=0\}$

Enumerate the strings in L:

n	w(string)
0	λ
1	a bb
2	aa bbbb

There is a pattern which follows, for every 'a' there are two b's. $S \rightarrow aSbb \mid \lambda$

CFG/linear grammar for $L=\{a^nb^{2n},n>=0\}$ is:

S→aSbb |λ

Example 8:

Construct linear grammar for $L=\{a^nb^{n-3},n>=3\}$

Enumerate the strings in L:

n	w(string)
3	a^3b^0
4	$a^4b^{4-3} = a^4b^1 = aa^3b$
5	$a^5b^{5-3}=a^5b^2=a^2a^3b^2$

There is a pattern which follows, there are an equal number of a's and b's and extra three a's.

S→aSb |aaa

CFG/linear grammar for L= $\{a^nb^{n-3}, n>=3\}$ is:

S→aSb |aaa

Example 9:

Construct linear grammar for $L=\{a^nb^m,n>m\}$

Strings in the language L={more a's than b's}={a,aa...,aab,aaaabbbb,}

The pattern which follows is at least one more 'a' along with the same number of a's and b's.

 $S \rightarrow aSb |aS|a$ ($S \rightarrow aS|a$ will generate one or more a's)

CFG/linear grammar for $L=\{a^nb^m,n>m\}$ is:

S→aSb |aS|a

Example 10:

Construct linear grammar for $L=\{a^nb^m, n\neq m\}$

aⁿb^m,n≠m means either the number of a's are more or number of b's are more.

 $S \rightarrow A \mid B$ (A-takes care of more a's , B-takes care of more b's)

 $A \rightarrow aAb|aA|a$

 $B \rightarrow aBb|bB|b$

CFG/linear grammar for $L=\{a^nb^m,n\neq m\}$ is:

 $S \rightarrow A \mid B$

 $A \rightarrow aAb|aA|a$

 $B \rightarrow aBb|bB|b$

Example 11:

Construct linear grammar for $L=\{a^nb^m, n=2+(m \mod 3)\}$

Enumerate the strings in L:

m	n=2+(m mod 3)	w=a ⁿ b ^m
0	n=2+0mod3=2+0=2	aa
1	n=2+1mod3=2+1=3	aaab
2	n=2+2mod3=2+2=4	aaaabb
3	n=2+3mod3=2+0=2	aabbb
4	n=2+4mod3=2+1=3	aaabbbb
5	n=2+5mod3=2+2=4	aaaabbbb

We see that there is a restriction on the number of a's=2,3 or 4. The number of b's are always multiples of 3.

Base cases: aabbb,aaabbbbb,aaaabbbbb

$$S \rightarrow aaA|aaabA|aaaabbA$$

 $A \rightarrow bbbA|\lambda$

CFG/linear grammar for $L=\{a^nb^m, n=2+(m \text{ mod } 3)\}$ is:

Example 12:

Construct linear grammar for $L=\{a^nb^m, n\neq 2m\}$

L={number of a's \neq twice the number of b's}

aab, aa
aabb, aaaaabbb ,...... $\ensuremath{\notin} L$

Enumerate the strings in L:

m (#b's)	n (#a's)	w , n≠2m
0	≠ 0	No b's, At least one 'a'=a ⁺
1	≠2	One 'b'. No of a's ≠2 w∈ {b,ab,aaab,aaaaab}
2	<i>≠</i> 4	Two b's No of a's ≠4 w ∈ {bb,abb,aabb,aaabb,aaaaabb,aaaaaabb,}
3	<i>≠</i> 6	Three b's No of a's ≠6 w ∈ {bbb,abbb,aaabbb,aaaaabbb,aaaaaabbb,}
4	≠8	Four b's No of a's ≠8 w ∈ {bbbb,abbbb,aaabbbb,aaaabbbb,aaaaaabbbb,}

```
Strings in the language :
{b,ab,aaab,aaaab,aaaaab.....}
{bb,abb,aabb,aaabb,aaaaabb,aaaaaabb,.....}
{bbb,abbb,aabbb,aaabbb,aaaaabbb,aaaaaabbb,......}
{bbbb,abbbb,aabbbb,aaabbbb,aaaaabbbb,aaaaaabbbb,......}
General form :
{b<sup>+</sup>,....}
```

```
{b,ab,aaab,aaaab,aaaaab.....}
{bb,abb,aabb,aaabb,aaaaabb,aaaaaabb,.....}
{bbb,abbb,aabbb,aaabbb,aaaaabbb,aaaaaabbb,......}
General form:
\left\{b^{+}\text{,ab*},\dots\right\}
{b,ab,aab,aaab,aaaab,aaaaab.....}
{bb,abb,aabb,aaabb,aaaaabb,aaaaaabb,.....}
{bbb,abbb,aabbb,aaabbb,aaaaabbb,aaaaaabbb,.....}
Pattern is,aa(b<sup>+</sup>)b
General form:
\{b^+,ab^*,aab^+b,....\}
{b,ab,aab,aaab,aaaab,aaaab.....}
{bb,abb,aabb,aaabb,aaaaabb,aaaaaabb,.....}
{bbb,abbb,aabbb,aaabbb,aaaaaabbb,aaaaaabbb,.....}
Pattern is,aa(b<sup>+</sup>)b
General form:
\{b^+,ab^*,aab^+b,aaab^*b,....\}
aab, aaaabb, aaaaaabbb ,......∉ L
We do not want to generate 'aab', so we build upon it so it doesn't occur.
The cases to handle which we saw so far:
   1. At Least one a = a^+
   2. b<sup>+</sup>
   3. ab*
CFG/linear grammar for L=\{a^nb^m, n\neq 2m\} is:
S \rightarrow aaSb|A|B|aC
A \rightarrow aA|a
            (case 1)
B \rightarrow Bb|b
            (case 2)
C \rightarrow Cb|\lambda
            (case 3)
```

Example 13:

Construct linear grammar for $L=\{a^{n+2}b^m,m>n,n>=0\}$

n (#a's)	m (#b's)	String
0	>0	$a^{n+2}b^m = a^2b^m = a^2bb^*$
1	>1	$a^{n+2}b^m = a^{1+2}b^m = aa^2bbb^*$
2	>2	$a^{n+2}b^m = a^{2+2}b^m = aaa^2bbbb*$

Strings to understand the pattern:

a²bb*

aa²bbb*

aaa²bbbb*

The cases to handle which we saw so far:

- 1. Same number of a's and b's.
- 2. a²b=aab, substring (in the middle).
- 3. b*any number of b's at the end.

$$S \rightarrow aSb$$
 (case 1)

$$S \rightarrow aSb|aab$$
 (case 2)

$$S \rightarrow aSb|aab|Sb$$
 (case 3)

CFG/linear grammar for $L=\{a^{n+2}b^m,m>n,n>=0\}$ is:

 $S \rightarrow aSb|aab|Sb$

Example 14:

Construct linear grammar for $L=\{a^nb^mc^md^n,n,m>=1\}$

The cases to handle:

- 1. Equal number of a's and d's.
- 2. Equal number of b's and c's.

Minimum string in L=abcd

$$S \rightarrow aSd|aAd$$
 (case 1 and also n>=1, $S \rightarrow aAd$ and not $S \rightarrow A$)
 $A \rightarrow bAc|bc$ (case 2,and also m>=1, $A \rightarrow bc$ and not $A \rightarrow \lambda$)

CFG/linear grammar for L= $\{a^nb^mc^md^n,n,m>=1\}$ is:

$$S \rightarrow aSd|aAd$$

 $A \rightarrow bAc|bc$

Example 15:

Construct linear grammar for L= $\{a^nb^mc^k,k=n+m,n,m,k>=0\}$

Number of c's=number of a's + number of b's

We can rewrite $a^nb^mc^k = a^nb^mc^{n+m} = a^nb^mc^mc^n$

The cases to handle (similar to the previous one):

- 1. Equal number of a's and c's.
- 2. Equal number of b's and c's.

CFG/linear grammar for L= $\{a^nb^mc^md^n,n,m>=1\}$ is:

$$S \rightarrow aSc|A$$
 (n,m>=0 , λ is the minimum string in the language) $A \rightarrow bAc|\lambda$

Example 16:

Construct linear grammar for $L=\{a^nb^mc^k, m=2n, k=2, n>=0\}$

We can rewrite $a^nb^mc^k = a^nb^{2n}c^2$

We can have two variables A to handle a^nb^{2n} and B to handle c^2 .

CFG/linear grammar forL= $\{a^nb^mc^k, m=2n, k=2, n>=0\}$ is:

$$S \rightarrow AB$$

 $A \rightarrow aAbb|\lambda$

 $B \rightarrow cc$

Example 17:

Construct linear grammar for $L=\{a^nb^mc^k,m,n\geq 0,k=n+2m\}$

We can rearrange rewrite $a^nb^mc^k = a^nb^mc^{n+2m} = a^nb^mc^{2m}.c^n$

The cases to handle:

- 3. Equal number of a's and c's.
- 4. Every 'b' has 'cc'.

CFG/linear grammar for $L=\{a^nb^mc^k,m,n>=0,k=n+2m\}$ is:

$$\textbf{S}{\rightarrow} \, aSc|A$$

$$A \rightarrow bAcc | \lambda$$

Example 18:

Construct linear grammar for L={ $|w| \mod 3 \neq |w| \mod 2, w \in \{a\}^*$ }

Remainder for mod 3=0,1,2 Remainder for mod 3=0,1

We will find out a^n for which $a^n \mod 3 \neq a^n \mod 2$

a ⁿ	mod 2	mod 3
a^0	0	0
a^1	1	1
a^2	0	2
a^3	1	0
a^4	0	1
a^5	1	2
a^6	0	0
a^7	1	1
a^8	0	2
a ⁹	1	0
a ¹⁰	0	1
a ¹¹	1	2

$$L = \{\mathbf{a^2}, \mathbf{a^3}, \mathbf{a^4}, \mathbf{a^5}, \mathbf{a^8}, \mathbf{a^9}, \mathbf{a^{10}}, \mathbf{a^{11}}, \dots \}$$

Base cases: a^2 , a^3 , a^4 , a^5

Keep on adding 6 to each of a^2, a^3, a^4, a^5 ,we get a^8, a^9, a^{10}, a^{11} . Generate S in multiples of 6.

S→aaaaaaS|aa|aaa|aaaaa

CFG/linear grammar for L= $\{|w| \mod 3 \neq |w| \mod 2, w \in \{a\}^*\}$ is:

S→aaaaaaS|aa|aaa|aaaa|