平成 22 年度 京都大学大学院理学研究科 (数学・数理解析専攻)

数学系 入学試験問題 数学 II

- \otimes 問題は8題あり、次の4つの分野群に分かれる. 分野群 [A] の問題は 1 と 2 の2題、分野群 [B] の問題は 3 と 4 の2題、分野群 [C] の問題は 5 から 7 の3題、分野群 [D] の問題は 8 の1題である.
- ⊗ この8問題中、3問題を2つ以上の分野群から選択して解答せよ。
- ⊗ 解答時間は 4時間 である.
- ⊗ 参考書・ノート類の持ち込みは 禁止 する.

「注意]

- 1. 指示のあるまで開かぬこと.
- 2. 解答用紙・計算用紙のすべてに,受験番号・氏名を記入せよ.
- 3. 解答は各問ごとに別の解答用紙を用い,問題番号を各解答用紙の枠内に記入 せよ.
- 4. 1 問を 2 枚以上にわたって解答するときは, つづきのあることを用紙下端に明示して次の用紙に移ること.
- 5. 提出の際は,解答用紙を問題番号順に重ね,計算用紙をその下に揃え,選択表を上におき、記入した面を外にして一括して二つ折にして提出すること.
- 6. この問題用紙は持ち帰ってよい.

「記号]

以下の問題で \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ, 自然数の全体 (0 は含まない), 整数の全体, 有理数の全体, 実数の全体、複素数の全体を表す.

- **1** 複素数体 $\mathbb C$ の部分体 K を $K=\mathbb Q(\sqrt{-17-4\sqrt{17}})$ によって定める.このとき $K/\mathbb Q$ は Galois 拡大であることを示し,Galois 群 $Gal(K/\mathbb Q)$ を求めよ.
- $oxed{2}$ $\mathbb{C}[x,y,z]$ を複素数体 \mathbb{C} 上の 3 変数多項式環とし, $R=\mathbb{C}[x,y,z]/(y^3-x^2z)$ とおく.

次の問(1)(2)(3)に答えよ.

- (1) R は整域であることを示せ.
- (2) R の商体 Q は \mathbb{C} 上純超越拡大であることを示せ.
- (3) RのQにおける整閉包 \tilde{R} を求めよ.
- $oxed{3}$ $S^2=\{(x,y,z)\mid x^2+y^2+z^2=1\}$ を 2 次元単位球面とし, $D^3=\{(x,y,z)\mid x^2+y^2+z^2<1\}$ を 3 次元単位球体とする.写像 $g:S^2\to\mathbb{R}^3$ を

$$g(x, y, z) = (x^2 - y^2, 2xy, z\sqrt{2 - z^2})$$

で定める.

連続写像 $f:D^3\to\mathbb{R}^3$ について,その S^2 への制限が g と一致するとき, $f(x_0,y_0,z_0)=(0,0,0)$ となる $(x_0,y_0,z_0)\in D^3$ が存在することを示せ.

- n を 2 以上の自然数とする.このとき 2 次元球面上の相異なる n 個の点 P_1, \ldots, P_n を選び,それらを同一視して得られる空間 X の整係数ホモロジー 群を計算せよ.
- $oxedsymbol{5}$ $\{f_n\}_{n=1}^\infty$ を $\mathbb R$ 上の非負可積分関数の列とする.このとき,ある実数 K が存在して

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log \int_{\mathbb{R}} f_n(x) dx \le K$$

が成り立つならば, ほとんど至る所

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log f_n(x) \le K$$

が成立することを示せ、ただし $\log 0 = -\infty$ とする。

 $\left|oldsymbol{6}
ight|\quad H=L^2([0,2])$ とおき,H 上の線型作用素T を, $f\in H$ に対して

$$Tf(x) = \int_0^x f(t)dt$$

で定める.このとき,I-T は H から H への全単射写像であることを示せ. ただし,I は H 上の恒等作用素とする.

 $oxed{7}$ (1)有界連続関数 $f:\mathbb{R} o\mathbb{R}$ と t>0 $x\in\mathbb{R}$ に対して、極限

$$\lim_{\varepsilon \to +0} \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-t|\xi|-\varepsilon|y|+i(x-y)\xi} f(y) dy d\xi$$

が存在することを示せ.

(2)上の極限をu(t,x)とおくと,u(t,x)は $t>0,x\in\mathbb{R}$ で

$$\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = 0$$

を満たす C^∞ 級関数であり、 $t\to +0$ のとき f(x) へ $\mathbb R$ 上広義一様収束することを示せ .

 $oxed{8}$ $\mathbb{Z}_{\geq 0}$ を非負整数の集合とする $.n \in \mathbb{Z}_{\geq 0}$ に対して, $\left[rac{n}{2}
ight]$ を $rac{n}{2}$ の整数部分とし, $n \bmod 2$ を n を 2 で割ったときの余りとする . また、関数 $\gamma: \mathbb{Z} \times \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ を以下のように定義する .

$$\gamma(x,0) = 0$$
 $\gamma(x,n+1) = 2 \times \gamma(x,n)$ $(x < 2^n$ のとき) $\gamma(x,n+1) = 2 \times \gamma(2^{n+1}-x-1,n) + 1$ $(x \ge 2^n$ のとき)

このとき、以下に示すプログラム

$$\begin{split} G &:= 0; K := 0; \\ \textbf{while} \ K &< N \ \textbf{do} \\ G &:= G \times 2 + \left((B \bmod 2) - \left(\left\lceil \frac{B}{2} \right\rceil \bmod 2 \right) \right)^2; \\ B &:= \left\lceil \frac{B}{2} \right\rceil; \ K := K + 1 \\ \textbf{done} \end{split}$$

が次の性質を満たすことを示せ、

任意の $b \in \mathbb{Z}_{\geq 0}$ について,上記プログラムを初期条件

$$N > 0 \land B = b \land 0 < b < 2^N$$

の下で実行したとき、プログラムが停止した時には

$$G = \gamma(b, N)$$

が成立する.

ただし,上記プログラムのループ不変条件は何であるかを明示し,それが実際に不変条件であることを証明すること.