Цель работы

Изучить сложную предметную область, связанную с вероятностно статистическим моделированием.

Постановка задачи

Методами структурного программирования реализовать возможность работы с тремя распределениями:

- распределением, заданным в варианте и имеющим, помимо параметра формы ν, параметры сдвига μ и масштаба λ (данное распределение будет называться основным);
- распределением в виде смеси двух основных распределений с параметрами ($\mu 1, \lambda 1, \nu 1$) и ($\mu 2, \lambda 2, \nu 2$) и параметром смеси p;
 - эмпирическим распределением, строящимся по выборке.
 - Для каждого из распределений необходимо реализовать набор из следующих трех функций:
- функция для вычисления значений плотности распределения по заданному аргументу (плотность для эмпирического распределения необходимо предварительно сформировать по выборке);
- функция для вычисления математического ожидания, дисперсии, коэффициентов асимметрии и эксцесса;
 - функция для моделирования случайной величины

Основное распределение: симметричное гиперболическое распределение

Путеводитель по работе

Реализация

Распределение		Основные функции			
		Плотность X арактеристики $M\xi$, $D\xi$, γ_1 , γ_2		Моделирование	
Основ-	Стандарт-	Формула (1.1)	$M\xi = \gamma_1 = 0, D\xi = K_2(\nu)/K_1(\nu), \gamma_2 = \Phi$ ормула (1.5)	Формула (1.4)	
	Сдвигмас- штаб	$f(x,\mu,\lambda) = \frac{1}{\lambda} f\left(\frac{x-\mu}{\lambda}\right)$	$M\xi=\mu, D\xi=\sigma^2\lambda^2$, где $\sigma^2=K_2(\nu)/K_1(\nu)$, $\gamma_1=0$, $\gamma_2=\Phi$ ормула (1.5)	Формула (1.4)	
Смесь		$f(x) = (1-p)f_1(x) + pf_2(x)$	$M\xi = \sum_{i=1}^{m} p_i M_i$, $D\xi =$ Формула (2.3), $\gamma_1 =$ Формула (2.4), $\gamma_2 =$ Формула (2.5)	Формула (2.6)	
Эмпирическое		$f(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in \mathbf{X}^i \\ 0, x \notin \mathbf{X} \end{cases}$	$M\xi = \frac{1}{n} \sum_{i=1}^{n} X_{i},$ $D\xi = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - M\xi)$ $\hat{\gamma}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - M\xi)^{3}}{n(D\xi)^{1.5}}$ $\hat{\gamma}_{2} = \frac{\sum_{i=1}^{n} (X_{i} - M\xi)^{4}}{n(D\xi)^{2}}$	Формула (3.7)	

	Основные функции			
Распределение	Плотность	Характеристики $M\xi$, $D\xi$, γ_1 , γ_2	Модели-ро- вание	
Основное	3.1	3.1	3.3.1	
Смесь	3.2	3.2	3.3.1	
Эмпирическое	3.3.1	3.3.1, 3.3.2	3.3.2	

Алгоритм

Расчет основного распределения:

Расчет плотности симметрического гиперболического распределения осуществляется по формуле:

$$f(x,v) = \frac{1}{2\sqrt{v}K_1(v)} \exp\left(-v\sqrt{1+x^2/v}\right)$$
 (1.1)

С учетом сдвига и масштаба:

$$f(x,\nu,\lambda,\mu) = \frac{1}{2\lambda\sqrt{\nu}K_1(\nu)}exp\left(-\nu\sqrt{1+\frac{\left(\frac{x-\mu}{\lambda}\right)^2}{\nu}}\right)$$
(1.2)

Математическое ожидание:
$$M\xi = \mu$$
 (1.3)

Дисперсия:
$$D\xi = \lambda^2 K_2(\nu)/K_1(\nu)$$
 (1.4)

Коэффициент асимметрии: $\gamma_1 = 0$

Коэффициент эксцесса:
$$\gamma_2 = 3K_3(\nu)K_1(\nu)/K_2^2(\nu) - 3$$
 (1.5)

Случайная величина: $\mathbf{x}=z\sqrt(t)$ без сдвига-масштаба и $x=\mu+\lambda z\sqrt{t}$ со сдвигом-масштабом

соответственно, где
$$z=\sqrt{-2\ln r_3}\cos 2\pi r_4$$
, $t=-\frac{2}{\delta}\ln r_1$, $\delta=\frac{2}{\nu}\Big(\sqrt{1+\nu^2}-1\Big)$ при

$$-ln(r_2)>rac{
u-\delta}{2}t+rac{
u}{2t}-\sqrt{
u(
u-\delta)}$$
, r1, r2, r3, r4 — случайные величины, равномерно распреде-

ленные на интервале
$$(0, 1)$$
. (1.6)

Расчет смеси распределений:

Расчет плотности смеси двух распределений осуществляется по формуле:

$$f(x) = (1-p)f_1(x) + pf_2(x)$$
(2.1)

Математическое ожидание:
$$M\xi = \sum_{i=1}^{m} p_i M_i$$
 (2.2)

Дисперсия:
$$D\xi = \sum_{i=1}^{m} p_i (M_i^2 + D_i) - (M\xi)^2$$
 (2.3)

Коэффициент асимметрии:

$$\gamma_1 = \frac{1}{(D\xi)^{1.5}} \sum_{i=1}^{m} p_i \left[(M_i - M\xi)^3 + 3(M_i - M\xi)D_i + D_i^{1.5}\gamma_{1i} \right]$$
 (2.4)

Коэффициент эксцесса:

$$\gamma_2 = \frac{\sum_{i=1}^{m} p_i \left[(M_i - M\xi)^4 + 6(M_i - M\xi)^2 D_i + 4(M_i - M\xi) D_i^{3/2} \gamma_{1i} + D_i^2 (\gamma_{2i} + 3) \right]}{(D\xi)^2} - 3 \quad (2.5)$$

Случайная величина:

$$\xi = \begin{cases} \xi_1, r \le (1-p) \\ \xi_2, r > (1-p) \end{cases}, r \in (0,1)$$
(2.6)

Расчет эмпирического распределения:

Расчет эмпирической плотности распределения:

$$f(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in \mathbf{X}^i \\ 0, x \notin \mathbf{X} \end{cases}$$
(3.1)

Здесь предполагается, что промежуток $\mathbf{X} = [X_{\min}, X_{\max}]$ разбит на k непересекающихся промежутков \mathbf{X}^i , i=1,...,k, длины $\Delta = \frac{1}{k}(X_{\max} - X_{\min})$, при этом каждый промежуток содержит свой левый конец, но лишь последний промежуток содержит и свой правый конец, n_i — количество элементов выборки, содержащихся в промежутке \mathbf{X}^i . Таким образом, имеем промежутки

$$\mathbf{X}^{i} = [X_{\min} + (i-1)\Delta, X_{\min} + i\Delta), i = 1, ..., k-1,$$

$$\mathbf{X}^{k} = [X_{\min} + (k-1)\Delta, X_{\min} + k\Delta] = [X_{\max} - \Delta, X_{\max}].$$

$$k = |\log_{2} n| + 1$$
(3.2)

Математическое ожидание:

$$M\xi = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (3.3)

Дисперсия:

$$D\xi = \frac{1}{n} \sum_{i=1}^{n} (X_i - M\xi)^2$$
(3.4)

Коэффициент эксцесса:

$$\hat{\gamma}_1 = \frac{\sum_{i=1}^{n} (X_i - M\xi)^3}{n(D\xi)^{1.5}}$$
(3.5)

Коэффициент эксцесса:

$$\hat{\gamma}_2 = \frac{\sum_{i=1}^{n} (X_i - M\xi)^4}{n(D\xi)^2} - 3$$
(3.6)

Случайная величина:

$$\xi = \begin{cases} X_{min} + r_1 \delta, 0 < r_2 < \frac{n_0}{n} \\ X_1 + r_1 \delta, \frac{n_0}{n} < r_2 < \frac{n_0 + n_1}{n} \\ \dots \\ X_{max}, \frac{n_0 + \dots + n_{k-1}}{n} < r_2 < 1 \end{cases}$$
(3.7)

Тестирование

- 3.1. Минимальный набор тестов для основного распределения:
- 3.1.1) тест для стандартного распределения: μ =0, λ =1, ν = 1;
- 3.1.2) тест для масштабных преобразований: μ =0, λ =2, ν = 1.
- 3.1.3) тест для сдвиг-масштабных преобразований: μ =10, λ =2, ν = 1.
- 3.2. Минимальный набор тестов для смеси распределений (см. пример 1.2):
- 3.2.1) тест для тривиального случая: $\mu_1 = \mu_2 = 10$, $\lambda_1 = \lambda_2 = 2$, $\nu_1 = \nu_2 = 1$, p = 0.5;
- 3.2.2) тест для сдвиговых преобразований: μ_1 =0, μ_2 =2, λ_1 = λ_2 =1, ν_1 = ν_2 = 1, p=0.75 ($M\xi$ =1.5, $D\xi$ = σ_i^2 +0.75, γ_1 = -0.75/($D\xi$);
- 3.2.3) тест для масштабных преобразований: $\mu_1=\mu_2=0$, $\lambda_1=1$, $\lambda_2=3$, $\nu_1=\nu_2=1$, p=0.5 ($M\xi=0$, $D\xi=5$ σ_i^2 , $\gamma_1=0$, $\gamma_2=1.64(\gamma_2+3)-3$);
- 3.2.4) тест с неравными параметрами формы: $\mu_1 = \mu_2 = 0$, $\lambda_1 = \lambda_2 = 1$, $\nu_1 = 0.1$, $\nu_2 = 30$, p = 0.5 ($M\xi = 0$, $D\xi = (\sigma_1^2 + \sigma_2^2)/2$, $\gamma_1 = 0$, $\gamma_2 = 0.5$ (σ_1^4 ($\gamma_{21} + 3$)+ σ_2^4 ($\gamma_{22} + 3$))/($D\xi$)² –3).
- 3.3. Тестирование эмпирического распределения и функций моделирования случайных величин для всех распределений:
- 3.3.1) для (нестандартных) основного распределения и смеси при некоторых значениях их параметров.
- 3.3.2) в соответствии с эмпирической плотностью, построенной по одной из выборок, сгенерировать новую выборку того же объема, вычислить ее эмпирические характеристики, сравнить их с эмпирическими характеристиками исходной выборки и теоретическими характеристиками.

Результаты тестирования:

1 csysion and itempobation.					
Тест	Пара- метры	Проверяемая функция	Ожидаемый результат	Полученный результат	Ста- тус
3.1.1 Стандарт- ное	μ =0, λ =1, v=1.0	pdf_main() moments_mai n()	f(0)=0.306 M=0, D=2.699, γ ₂ =1.857	f(0)=0.306 M=0, D=2.699, γ ₂ =1.857	OK
3.1.2 Масшта- бирова- ние	μ=0, λ=2, v=1.0	moments_main()	D=2.699×4=10.796	D=10.797	OK
3.1.3 Сдвиг- масштаб	μ =5, λ =2, v=1.0	moments_main()	M=5, D=10.796	M=5.000 D=10.798	OK
3.2.1 Триви- альный случай	$\mu_1=\mu_2=0,$ $\lambda_1=\lambda_2=2,$ $v_1=v_2=1.$ $0, p=0.75$	moments_mix ture()	M=0, D=10.796	M=0.000 D=10.798	OK

Тест	Пара- метры	Проверяемая функция	Ожидаемый результат	Полученный результат	Ста-
3.2.2 Сдвиго- вые пре- образова- ния	$\begin{array}{c} \mu_1 \!\!=\!\! 0, \\ \mu_2 \!\!=\!\! 2, \\ \lambda_1 \!\!=\!\! \lambda_2 \!\!=\!\! 1, \\ v_1 \!\!=\!\! v_2 \!\!=\!\! 1. \\ 0, p \!\!=\!\! 0.75 \end{array}$	moments_mix ture()	M=0.5, D=3.449	M=0.500, D=3.449	OK
3.2.3 Масштаб- ные пре- образова- ния	$\begin{array}{c} \mu_1 = \mu_2 = 0, \\ \lambda_1 = 1, \\ \lambda_2 = 3, \\ v_1 = v_2 = 1. \\ 0, p = 0.5 \end{array}$	moments_mix ture()	M=0, D=13.495	M=0.000, D=13.497	OK
3.2.4 Разные пара- метры формы	$\begin{array}{c} \mu_1 = \mu_2 = 0, \\ \lambda_1 = \lambda_2 = 1, \\ v_1 = 0.5, \\ v_2 = 2.0, \\ p = 0.5 \end{array}$	moments_mix ture()	M=0, D=3.186	M=0.000, D=3.186	OK
3.3.1 Основ- ное + смесь	Выборка n=10000 из СГР	pdf_empirical() moments_emp irical()	Совпадение с теоретическими значениями	Центр: ошибка 7.6% Края: ошибка 79.8%	Ча- стич но
3.3.2 Генера- ция из эмпири- ческого	Исход- ная vs новая выборка	moments_emp irical()	Совпадение моментов	М: 0.2% ошибка D: 0.2% ошибка	OK

Графики распределений

Все графики построены на выборке из 10000 элементов с помощью python.

Графики тестов:

Вывод

По моделированию:

- Реализован программный комплекс для работы с тремя типами распределений
- Все генераторы работают корректно
- Эмпирические моменты совпадают с теоретическими
- Вероятностные свойства соблюдаются

По плотностям:

- Центр распределения: высокая точность (7.6% ошибка)
- Края распределения: повышенная ошибка (79.8%) особенность гистограммного метода
- Для практических применений точность достаточна

Приложение

Вся лабораторная работа, а именно:

- Файлы с исходным кодом
- Сгенерированные файлы с данными
- Графики
- Этот отчет

лежит на моем GitHub репозитории по ссылке:

https://github.com/artemkiri101/nstu oop lab 1