Mathematical Morphology

Idea of MM

- Mathematical Morphology
 - Combines two ideas
- Morphology part
 - The study of shape
- Mathematical part
 - Refers to the use of "Set Theory"

Basic Definition

A tuple is a fixed fixedlength list containing elements that need not have the same type. It can be, and often is, used as a key-value pair.

- · Consider a binary image
 - This can be thought of as a set of tuples
 - tuples in 2-D integer space Z^2
 - each tuple is a 2-D vector whose coordinates are the (x,y) values of the black pixels
 - · Black pixels are used by convention
 - Considered the "foreground"
 - You can modify this to be the white pixels

Example

Binary Image

 $A = \{ (1,0), (1,1), (2,1), (2,2), (3,2), (4,2), (3,3) \}$

In practice, we use the image itself to represent this set.

Basic Definitions

- Let A and B be sets in Z^2
 - with components a=(a1, a2) and b=(b1,b2), respectively
 - The *translation* of A by x = (x1,x2), denoted by $(A)_x$ is defined by:

$$(A)_x = \{c \mid c = a + x, \text{ for } a \in A\}$$

Basic Definitions

 The reflection of B, denoted by B is defined as:

$$\hat{B} = \{x \mid x = -b, \text{ for } b \in B\}$$

• The complement of set A is:

$$A^c = \{x \mid x \notin A\}$$

Basic Definitions

 The difference of two sets A and B, denoted by A-B, is defined by:

$$A - B = \{x \mid x \in A, x \notin B\} = A \cap B^c$$

Dilation Operator

• With A and B as sets in \mathbb{Z}^2 and \emptyset denoting the empty set, the *dilation* of A by B, denoted by $A \oplus B$ is defined as:

$$A \oplus B = \{x \mid (\hat{B})_x \cap A \neq \emptyset\}$$

or

$$A \oplus B = \{x \mid (\hat{B})_x \cap A \subseteq A\}$$

Dilation

- Process consists of obtaining the reflection of B, about its origin
- Then shifting this reflection, \hat{B} , by x
- The dilation of A by B is the set of all x displacements such that B and A overlap by at least one element
- B is often called the "structuring element"

Erosion

• For sets A and B in \mathbb{Z}^2 , the erosion of A by B, denoted by $A \ominus B$, is defined by:

$$A \ominus B = \{x \mid (B)_x \subseteq A\}$$

• $A \ominus B$ is the set of all points x, such that B, translated by x, is contained in A.

Dilation and Erosion Relationship

 Are duals of each other with respect to complementation and reflection, that is:

$$(A \ominus B)^c = A^c \oplus \hat{B}$$

Duality Proof

· Proof

$$(A \ominus B)^c = \{x \mid (B)_x \subseteq A\}^c$$

If set $(B)_x$ is contained in set A, then $(B)_x \cap A^c = \phi$, in which case the preceding equation becomes

$$(A \ominus B)^c = \{x \mid (B)_x \cap A^c = \phi\}^c$$

Duality Proof

But the complement of the set of x's that satisfy $(B)_x \cap A^c = \phi$, is the set of x's such that $(B)_x \cap A^c \neq \phi$

· thus

$$(A \ominus B)^c = \{x \mid (B)_x \cap A^c \neq \emptyset\}$$

$$=A^c\oplus \hat{B}$$

Dilation and Erosion

- Dilation
 - expands an image
- Erosion
 - shrinks an image
- From these two operators, we can construct several new operators

Opening

 The opening of set A, by structuring element B is:

$$A \circ B = (A \ominus B) \oplus B$$

 in other words, opening of A by B is simply the erosion of A by B, followed by a dilation by B

Closing

 The closing of set A, by structuring element B is:

$$A \bullet B = (A \oplus B) \ominus B$$

 in other words, closing of A by B is simply the dilation of A by B, followed by an erosion by B

Geometric Interpretation

- · Opening
 - can be considered a geometric *fitting* problem
 - it is the union of all translates of B that fit into \boldsymbol{A}

$$A \circ B = \bigcup \{(B)_x \mid (B)_x \subset A\}$$

Geometric Interpretation

- Alternative Interpretation
- · Opening
 - If you are painting A, using a brush shaped like B, then the opening is all the points that you can paint.

Geometric Interpretation

- · Closing
 - If you are painting the outside of A (ie, you are paint A^c), it is all the points you cannot paint.

Interesting Property

 Like dilation and erosion, opening and closing are duals with respects to set complementation and reflection

$$(A \bullet B)^c = A^c \circ \hat{B}$$

Properties of Opening and Closing

- · OPENING
 - (i) $A \circ B$ is a subset (subimage) of A
 - (ii) If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$
 - (iii) $(A \circ B) \circ B = (A \circ B)$
- · CLOSING
 - (i) A is a subset of A B
 - (ii) If C is a subset of D, then $C \bullet B$ is a subset of $D \bullet B$
 - (iii) $(A \bullet B) \bullet B = (A \bullet B)$

Filters: Closing of the Opening

Hit-or-Miss Transform

- · Basic tool for shape detection
- · Construct two elements
 - X and (W-X) where W is window slightly larger than X
 - Our goal is to find \boldsymbol{X} in the image
- Solution

$$A \otimes B = (A \ominus X) \cap (A^c \ominus [W-X])$$

Original

$$A \otimes B = (A \ominus X) \cap (A^c \ominus [W-X])$$

- New notation
- Let $B_1 = X$ and $B_2 = (W-X)$

$$A \otimes B = (A \ominus B_1) - (A \oplus \hat{B}_2)$$

Note, B1 and B2 have to be disjoint!

- Alternative Usage
 - B1 and B2 are two (distinct) structuring elements

$$A \oplus B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

- · is therefore-
 - all the points that B1 hits in A
 - · AND
 - all the points that B2 hits in Ac (misses in A)

Hit-or-Miss Transform

- For a normal structuring element used by dilation or erosion, zeros are ignored
 - For example:

0	1	0	
1	1	1	
0	1	0 +	Ignore these

- · For the hit-or-miss structuring element
 - O's are typically not ignored, instead we use a new notation (next slide)

Example

1	×	×
1	0	×
1	×	×

- •This means, you have to find regions in A, where both the 1s and 0s match.
- ·An "x" is used to denote the areas to be ignored
- •So, for the above example, you can think of B = two normal structuring elements, B1 and B2, where

- Using 'x', '0', and '1' is a common way of denoting hit-or-miss structuring elements
- It is a compact way of expressing two separate elements B1 and B2 as one element B

Basic Morphological Algorithms

Boundary extraction

$$\beta(A) = A - (A \ominus B)$$

Region Filling

- · Let A denote a set with a N_8 connected boundary
- · Let X_0 be an initial point in that boundary
- Using a N_4 structuring element
- · Region filling can be defined as:

$$X_k = (X_{k-1} \oplus B) \cap A^c$$
 $k = 1, 2, 3,$

- Algorithm terminates when $X_k = X_{k-1}$

Region Filling Example

Region Filling

- The repeated dilation of region filling would fill the entire image
- However, the intersection with A^c limits the results to inside the region of interest
- This "delimiting process" is sometimes called: conditional dilation

Connected Component Extraction

- Similar to region growing
- Let Y be a connected component
- Let X_o= p, a point on Y

$$X_k = (X_{k-1} \oplus B) \cap A \quad k = 1, 2, 3, ...$$

- Algorithm terminates when $X_k = X_{k-1}$

Side Note: Recall that MM routines often take a variable, N, denoting the number of times to apply the operator. If N=inf, this generally means stop when $X_k = X_{k-1}$ (that is, terminate when the image stops changing)

Convex Hull

- Let C(A) be the convex hull of A
- Let Bi, i=1,2,3,4, represent four structuring elements
- Let

$$X_{k}^{i} = (X \otimes B^{i})$$
, for $i = 1,2,3,4$ and $k = 1,2,...$

• Now, let $\mathbf{D}^{\mathbf{i}}$ = $\mathbf{X}^{\mathbf{i}}_{\mathrm{conv}}$ where "conv" means $X^{i}{}_{k} = X^{i}{}_{k-1}$

Convex Hull

 Now, let Dⁱ = Xⁱ_{conv} where "conv" means Xi has converged

$$X^{i}_{k} = X^{i}_{k-1}$$

· Then, the convex hull of A is

$$C(A) = \bigcup_{i=1}^{4} D^{i}$$

Thinning

 Thinning of A by structuring element B is defined as:

$$A \otimes B = A - (A \otimes B)$$
$$= A \cap (A \otimes B)^{c}$$

• Let B = $\{B\}$ = $\{B^1, B^2, B^3, \ldots, B^n\}$

Thinning

B is a set of structuring elements

$$A \otimes \{B\} = ((\dots((A \otimes B^1) \otimes B^2) \dots)B^n)$$

- In other words, the process is to thin A by one pass with B1, then this the results with one pass of B2, and so on.
- · Repeat the process until no further changes occur.

Example of Thinning

Example of Thinning

Thickening

· A thickened by B is:

$$A \odot B = A \cup (A \odot B)$$

- Easy
 - To thickening set A,
 - Thin set C, where $C=A^c$
 - A⊙B = Cc

Skeletons

 Skeleton extraction ,S(A), of A, using structure element B

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

where

$$S_k(A) = \bigcup_{k=0}^K \{ (A \ominus kB) - [(A \ominus kB) \circ B] \}$$

Skeletons cont'

• B is a structuring element and $(A \ominus kB)$, indicates k successive erosions of A; such that

$$(A \ominus kB) = ((\dots (A \ominus B) \ominus B) \dots \ominus B)$$

 k times, and K is the last iterative step before A erodes to an empty set, ie:

$$K = \max\{ k \mid (A \ominus kB) \neq \emptyset \}$$

Α

S(A)

 Restricted skeletonization . . don't allow regions to be disconnected! (Another lecture)

Pruning

- Sometimes thinning and skeletonization leaves "spurs" or "parasite" structures
- We would like to remove these structures

This method is called "pruning"

Pruning

- 4 Steps
- First $X_1 = A \otimes \{B\}$
 - Let {B} be a sequence of structuring elements
 - Apply this K times
- · Second
 - Find the end points of X1 $X_2 = \bigcup_{k=1}^8 (X_1 \textcircled{\textcircled{*}} \ B^k)$

Pruning

· Third

$$X_3 = (X_2 \oplus H) \cap A$$

- Use an N8 structuring element, H to grow the end-points K times
- This is a form of conditional dilation
- Fourth
 - The union of X1 and X3 is the desired results

$$X_4 = X_1 \cap X_3$$

This technique is sometimes called "de-spurring" or "spur removal"

Modifications

- You can make modifications to MM operators
- One typical example is the "majority" dilation
 - Set a pixel to 1 if 5 or more of its N_8 neighbors are 1

Extension to Grayscale

- · MM can be extended to grayscale image
 - f is a 2D discrete function (image)
 - b is a 2D discrete function (smaller image)
- Dilation

$$(f \oplus b)(s,t) = \max\{ f(s-x,t-y) + b(x,y) | (s-x),(t-y) \in D_f; (x,y) \in D_b \}$$

Erosion

$$(f \ominus b)(s,t) = \min\{ f(s+x,t+y) - b(x,y) | (s+x),(t+y) \in D_f; (x,y) \in D_b \}$$

Extension to Grayscale

- Grayscale MM operators are very similar to spatial domain convolution
- But instead of a summation of the "mask" coefficients w/ the image
 - you perform a *min* or *max* over the domain

Grey-Level MM Example

Dilation

Erosion

Grey Level MM

- Dilation
 - Tends to brighten the image, remove dark regions
- Erosion
 - Tends to darken the image, remove bright regions
- · You can derive open, close
- Other operators

Summary

- · Mathematical Morphology
 - image processing approach based on set theory and shape (structuring elements)
 - provides a powerful framework for many operations
 - some operations can be easily expressed using MM
 such as boundary extraction
- · Often used to post-process "thresholded" images
 - Threshold
 - Perform some MM operation (clean up noise, fill in holes)
 - Result provides a nice segmented region

Active Research Areas

- Morphology Digest
 - http://www.cwi.nl/projects/morphology/
- · ISMM
 - International Symposium on Mathematical Morphology
- · 3D image analysis
- · Scale Spaces

Active Research Areas

- Revisiting old problems
 - Using MM
 - Old examples
 - Segmentation
 - Edge Detection (Using gray-level MM)
- You'll find MM mentioned in conjunction with other techniques