<u> </u>	冼择颙	(请把选项)	直接写在	题后括号内) (共 :	5 颗.	短颙	3 分	. 共	15	分)
,		\ トイト J L ルビイバ 。	ᆸᄶᄀᄔ	NG /H JH J I J	ノ(ノ)・	<i>J</i> 1623,		0 /1	<i>,</i> / \	10	// //

1. 设 $f(x, y, z) = \ln(xy + z)$, 则全微分 df(1, 2, 0) = 0

A.
$$dx + \frac{1}{2}dy + \frac{1}{2}dz$$

$$B. \ \frac{1}{2}dx + dy - \frac{1}{3}dz$$

C.
$$3dx + \frac{1}{4}dy + \frac{1}{5}dz$$

D.
$$\frac{1}{2}dx - dy + \frac{1}{2}dz$$

2. 设 f(x,y) 为连续函数,则二次积分 $\int_{-1}^{0} dx \int_{x+1}^{\sqrt{1-x^2}} f(x,y) dy$ 等于(

A.
$$\int_{0}^{1} dy \int_{-1}^{0} f(x, y) dx$$

B.
$$\int_0^1 dy \int_{-1}^{y+1} f(x, y) dx$$

C.
$$\int_0^1 dy \int_{-\sqrt{1-y^2}}^{y-1} f(x,y) dx$$

D.
$$\int_0^1 dy \int_{-\sqrt{1-y^2}}^0 f(x, y) dx$$

3. 设平面曲线 L 为下半圆周 $y = -\sqrt{1-x^2}$,则曲线积分 $\int_{\mathcal{L}} (x^2 + y^2) ds = ($

A.
$$\frac{\pi}{2}$$

C. -π

4. 力 $F = (x+y)^m (yi-xj)$ 构成力场(y>0)。若已知质点在此力场内运动时场力所做 的功与路径无关,则m = (

C. $\frac{1}{2}$

D. 0

5. 下列级数中条件收敛的是(

A.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$$

B.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{\frac{2}{3}}}$$

A.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$$
 B. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{\frac{2}{3}}}$ C. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{\frac{3}{2}}}$ D. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2}$

二、简答题(共 5 题, 每题 6 分, 共 30 分)

- 2. $u = xy^2z$ 在点 P(1,-1,2) 处沿什么方向的方向导数最大? 求此方向导数的最大值。
- 3. 已知拋物线 $y^2 = x$ 与直线 y x + 2 = 0 所围平面图形为 D ,计算 $I = \iint_{\Omega} dx dy$ 。
- 4. 已知 f(x) 是以 2π 为周期的函数,它在 $[-\pi,\pi]$ 上的取值为 $f(x) = \begin{cases} -x, -\pi \le x < 0 \\ x \pi, 0 \le x \le \pi \end{cases}$

若 S(x) 是 f(x) 的傅里叶级数的和函数,分别计算 $S(0), S(\frac{3\pi}{2})$ 。

5. 求微分方程 $\frac{dy}{dx} + 3y = 8$ 满足初始条件 y(0) = 2 的特解。

三、计算题(共 5 题, 每题 8 分, 共 40 分)

- 1. 设函数 z = z(x, y) 由方程 $e^z + yz + x^2 = e + \ln(1-x)$ 所确定,求 $\frac{\partial^2 z}{\partial y^2}\Big|_{\substack{x=0 \ y=0}}$ 。
- 2. 计算 $I = \iiint_{\Omega} x^2 dx dy dz$, 其中: Ω 是由平面 z = 0, z = y, y = 1 以及抛物柱面 $y = x^2$ 所 围区域。
- 3. 计算 $I = \iint_{\Sigma} z^2 dx dy$, 其中 Σ 是球面 $z = -\sqrt{1 x^2 y^2}$ 的下侧。
- 4. 将函数 $f(x) = \frac{1}{(1+x)(2-x)}$ 展开成 x 的幂级数。
- 5. 求微分方程 $y'' + 2y' + y = 2e^{-x}$ 的通解。

四、应用与证明题(共2题,第一题10分,第二题5分,共15分)

- 1. 修建一座形状为长方体的仓库,已知**库顶**每平方米造价为 300 元,**墙壁**每平方米造价为 200 元,**地面**每平方米造价为 100 元,**其它**花费共需 2 万元。现投资 14 万元,问:不考虑仓库库顶、墙壁、地面的厚度时,仓库的长、宽、高如何设计才能使其容积最大?
- 2. 证明: 若数项级数 $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 收敛,且 $\lim_{n \to \infty} a_n = 0$,则数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛。