

Project Management and Software Development for Medical Applications

Image Processing for Digital Breast Tomosynthesis

Final Presentation, 25.07.2023

Project Supervisor: Mickael Tardy

Presented by: Berfin Kavsut

Section 01

Background & Motivation

Digital Breast Tomosynthesis

- 3D images reconstructed from 2D X-ray projections
- Cross-sectional visualization via slices

Figure 1. Acquisition Geometry of Digital Breast Tomosynthesis [1]

Figure 2. Slabbing slices [2]

- [1] D. Kontos, P. R. Bakic, and A. D. A. Maidment, "Texture in digital breast tomosynthesis: a comparison between mammographic and n tomographic characterization of parenchymal properties," in Proc. SPIE, vol. 6915, Mar. 17, 2008, p. 69150A. doi: 10.1117/12.773144.
- [2] HealthManagement.org, "Digital Breast Tomosynthesis in screening approaches to reduce reading time," HealthManagement, https://healthmanagement.org/c/decision-support/whitepaper/digital-breast-tomosynthesis-in-screening-approaches-to-reduce-reading-time (accessed May 13, 2023).

Pipeline

Figure 3. Pipeline schematic of the project

Dataset

Dataset of Breast Cancer Screening - DBT [3] Training dataset with boxes indicating lesion locations

- normal
- actionable
- biopsy-proven benign boxes
- biopsy-proven cancer boxes

Required pre-processing [4]

[3] M. Buda, A. Saha, R. Walsh, S. Ghate, N. Li, A. Święcicki, J. Y. Lo, M. A. Mazurowski, Detection of masses and architectural distortions in digital breast tomosynthesis: a publicly available dataset of 5,060 patients and a deep learning model. (https://doi.org/10.1001/jamanetworkopen.2021.19100).

[4] https://github.com/mazurowski-lab/duke-dbt-data

Program Settings

Data Management

- Data directories
 - Config directory
 - Input directory
 - Output directory
- Bit-depth: 16

Evaluation

- IQA metrics:
 - o CNR
 - Contrast
- Classification performance metrics:
 - Accuracy
 - Sensitivity
 - Specificity
 - AUC
 - Youden

Configurations

Slab Generation Parameters

Projection method: MIP, AIP, Soft MIP

Thickness: 6, 8, 10, 12, 14

Overlap: 0%, 50%

Breast skin removal: Yes, No

Configuration #: 60

Volume #: 1880

Slab images #: > 1 million

Encoding method: SHA-256 algorithm

projection method	mip / aip / soft mip
thickness	6
overlap	0/3
breast skin removal	no / yes

projection method	mip / aip / soft mip
thickness	14
overlap	0 / 7
breast skin removal	no / yes

Projection Methods

MIP
$$f_w^{MIP}(x) = 1 \text{ if } x = 1, \text{ else } 0$$

AIP
$$f_w^{AIP}(x) = 1$$

Soft MIP
$$f_w^{softMIP}(x) = x^4$$

$$P_s(x)$$
, $0 \le x \le 1$

Create projection line: $P_s(0) = min(P)$, $P_s(l) = max(P)$.

Compute projection:
$$p = \frac{1}{\int_0^1 f_w(x) dx} \int_0^1 f_w(x) P_s(x) dx$$

Figure 4. Maximum intensity projection and average intensity projection [5]

[5] F. Diekmann, H. Meyer, S. Diekmann et al., "Thick Slices from Tomosynthesis Data Sets: Phantom Study for the Evaluation of Different Algorithms," *Journal of Digital Imaging*, vol. 22, no. 5, pp. 519-526, Oct. 2009, doi: 10.1007/s10278-007-9075-y.

Evaluation Methods

Image Quality Assessment Metrics

- Contrast
- Contrast-to-noise ratio
 No-reference methods without background annotations.

Classification Performance Metrics

- Accuracy
- Sensitivity
- Specificity
- AUC ROC
- Youden

Binary classification

Image Quality Assessment Metrics

Figure 5. Background region and region of interests (ROI).

Contrast

Contrast-to-noise ratio

$$C = \frac{\left(\overline{P_1} - \overline{P_2}\right)}{\left(\overline{P_1} + \overline{P_2}\right)}$$

$$CNR = \frac{\left(\overline{P_1} - \overline{P_2}\right)}{\sqrt{\sigma_{\overline{P_1}}^2 + \sigma_{\overline{P_2}}^2}}$$

 P_1 : pixel values of the ROI

 P_2 : pixel values of the background

Segmenting ROIs

Figure	6.	Slab	images	with	ROIs

projection method	mip
thickness	14
overlap	7
breast skin removal	no

Table 1. Sample x- and y-coordinates of ROIs

slice	x1	x2	y1	y2
#21	1411	1535	1080	1172
#26	1713	1834	478	583
#29	1380	1724	1216	1487

Segmenting Background Region

Figure 7. Background segmentation steps.

Classification Performance Metrics

$$accuracy = ACC = \frac{TP + TN}{TP + FP + TN + FN}$$

$$sensitivity = TPR = \frac{TP}{TP + FN}$$

$$specificity = TNR = \frac{TN}{TN + FP}$$

$$J = sensitivity + specificity - 1$$

Figure 8. Area under the ROC Curve and Youden's J statistic [6].

Dataset

Classification Performance

Normal: 1680

Actionable: 715

Benign: 124

Cancer: 76

Total: 1880

Labels

Positive: cancer

Negative: normal or benign

Image Quality Assessment

Benign: 124

Cancer: 76

Total: 200

Results

Classification Performance Results

- Best sensitivity and specificity with Youden > 0.5
- Selecting top prediction results: top 1, top 2, top 3
- Metrics are average for each configuration.

IQA Results

- Mean value of CNR and contrast are computed for each volume.

Remark: Slabs with AIP are missing!

Classification Performance Results

Sensitivity (Youden>0.5) Specificity (Youden>0.5)

Youden

AUC

Best

projection method	soft mip
thickness	14
overlap	7
breast skin removal	1
top	3
metric value	0.9211

projection method	mip
thickness	10
overlap	0
breast skin removal	0
top	2
metric value	0.9645

soft mip
6
0
0
1
0.6707

projection method	soft mip
thickness	8
overlap	0
breast skin removal	1
top	2
metric value	0.8761

Worst

projection method	soft mip
thickness	14
overlap	0
breast skin removal	1
top	3
metric value	0.1184

projection method	mip
thickness	6
overlap	3
breast skin removal	1
top	1
metric value	0.0349

projection method	mip
thickness	6
overlap	3
breast skin removal	1
top	1
metric value	0.0349

projection method	mip
thickness	10
overlap	5
breast skin removal	0
top	1
metric value	0.8420

IQA Results

CNR

Contrast

Best

projection method	mip
thickness	14
overlap	7
breast skin removal	1
metric value	3.774 = 0.026346

projection method	mip
thickness	12
overlap	6
breast skin removal	1
metric value	0.258 ∓ 0.000145

Worst

projection method	soft mip
thickness	10
overlap	0
breast skin removal	1
metric value	0.0014 = 0.0

projection method	soft mip
thickness	10
overlap	0
breast skin removal	1
metric value	0.000064 T 0.0

IQA Results

Figure 9. Best CNR (3.774) and contrast (0.258) results from the configuration giving best results.

IQA Results

Slab #2

Figure 10. Worst CNR (0.0014) and contrast (0.000064) results.

Discussion

Classification Performance Results

- Maximum Youden result: Soft MIP, thin slabs, without overlap.
 But actually the sensitivity are low ~0.8.
- Maximum sensitivity result: Soft MIP, thick slabs, with overlap.
- Best configuration results: **Soft MIP** gives better results than MIP overall.
- Not affected by breast skin removal.

IQA Results

Best configuration results: MIP, thick slabs, with overlap.
 Not affected by breast skin removal.

Slices

Slabs

Sample configuration

projection method	mip
thickness	14
overlap	7
breast skin removal	1

Section 05

Project Progress

Final Gantt Chart

Git Commit History

Thank you!

