Surveillance simulation equations

May 2020

1 Introduction

$S_{t+1} - S_t$	=	$-S_t\lambda$	(1)
$E_{t+1} - E_t$	=	$S_t \lambda - mE_t$	(2)
$I_{At+1} - I_{At}$	=	$\alpha m E_t - (\psi_A + \gamma_A) I_{At}$	(3)
$I_{AAt+1} - I_{AAt}$	=	$\psi_A I_{At} - \tilde{\gamma_A} I_{AAt}$	(4)
$I_{Pt+1} - I_{Pt}$	=	$(1-\alpha)mE_t - (\sigma_P + \psi_P)I_{Pt}$	(5)
$I_{APt+1} - I_{APt}$	=	$\psi_P I_{Pt} - \tilde{\sigma_P} I_{APt}$	(6)
$I_{Mt+1} - I_{Mt}$	=	$\sigma_P I_{Pt} - (\sigma_M + \psi_M + \gamma_M) I_{Mt}$	(7)
$I_{AMt+1} - I_{AMt}$	=	$\tilde{\sigma_P}I_{APt} + \psi_M I_{Mt} - (\tilde{\sigma_M} + \tilde{\gamma_M})I_{AMt}$	(8)
$I_{Ct+1} - I_{Ct}$	=	$\sigma_M I_{Mt} - (\gamma_C + \psi_C + \mu_C) I_{Ct}$	(9)
$I_{ACt+1} - I_{ACt}$	=	$\psi_C I_{Ct} + \tilde{\sigma_M} I_{AMt} - (\tilde{\gamma_C} + \tilde{\mu_C}) I_{ACt}$	(10)
$R_{t+1} - R_t$	=	$\gamma_A I_{At} + \gamma_M I_{Mt} + \gamma_C I_{Ct}$	(11)
$R_{At+1} - R_{At}$	=	$\tilde{\gamma_A}I_{AA_t} + \tilde{\gamma_M}I_{AM_t} + \tilde{\gamma_C}I_{AC_t}$	(12)
$D_{t+1} - D_t$	=	$\mu_C I_{Ct}$	(13)
$D_{At+1} - D_{At}$	=	$ ilde{\mu_C}I_{ACt}$	(14)

$$\lambda = \beta \frac{(I_A + I_P + I_M + I_C) + r(I_{AA} + I_{AP} + I_{AM} + I_{AC})}{N}$$
(15)

$$\psi_A + \gamma_A = 1$$
(16)

$$\sigma = \text{Progression rates between infectious compartments}$$
(17)

$$\gamma = \text{Recovery rates}$$
(18)

$$\psi = \text{Ascertainment rates}$$
(19)

$$\mu = \text{Death rates}$$
(20)

 $T\tilde{il}de$ on top of symbols indicate the same biological process, but for an ascertained class. To (21)