



# Plasma-based Defect Engineering of Graphene for Biosensing Applications

Jordan Low Jun Yi, Koo Min Seo, Wong Yin Leng Angelina



# Background

- Diabetes mellitus is caused by insulin deficiency, resulting in elevated blood glucose levels
- Managed through monitoring of blood glucose levels with the aid of glucose biosensors.
- Graphene is a monolayer of carbon atoms arranged in a hexagonal lattice with large surface to volume ratio and high electrical conductivity.
- Used as an electrode surface in biosensors as its band structure is easily modified, and thus can amplify signals.

#### Research Aim

• In this project, plasma defects were engineered onto graphene surface to enhance immobilization of glucose oxidase (GOx) enzyme molecules for glucose-sensing applications.



- GOx anchored onto the graphene substrate via physical adsorption and catalyses the breakdown of glucose
- Low power RF plasma exposure introduces defects on the graphene surface
  - → Increases surface adsorption of glucose oxidase enzyme
  - → Leads to larger dynamic range of glucose sensing
- Quality of graphene ascertained using Raman spectroscopy
- Electrical properties of the graphene-based biosensor (GBB) monitored using an IV probe station.

# Materials and Methods

# **Graphene synthesis by Chemical Vapor Deposition (CVD)**

- 10mm x 80mm copper (Cu) strip was placed in a horizontal quartz tube.
- Hydrogen gas was introduced, and the heat supply was switched on for the removal of contaminants.
- Methane gas was introduced for 1h to allow for the chemisorption of methane molecules to form the honeycomb pattern of graphene.



# **Graphene transfer**

- The Cu layer was dissolved in FeCl<sub>3</sub>
- Remaining graphene was transferred onto a glass slide and heated in an incubator at 100°C for 1h.



- 2 silver ink droplets with Cu wires attached used as metal contacts, which were insulated with waterinsoluble superglue.
- Graphene surface immobilised with 1mg/dl GOx solution



# **Defect Engineering via RF plasma**

- Each GBB placed within a horizontal quartz tube and hydrogen gas introduced at 26.5 SCCM.
- Capacitively coupled remote plasma switched on at 50W.
- GBBs exposed to 0, 5, 10, 15 and 20 min of plasma treatment.



# IV measurements

Resistance of biosensors measured using an IV probe station. Different concentrations of glucose were tested.

# Results

# Raman Spectroscopy

Before plasma treatment:



After plasma treatment:



- Raman Shift of the Graphitic band is 1587.94/cm
  - → Graphene is a monolayer
- Defect band is weak
  - → Graphene has little defects
- Raman Shift of the Graphitic band remains at 1587.94/cm
- → Graphene remained a monolayer Defect band is significantly larger
  - → Defects had been introduced onto graphene

#### **IV Characterisation**



Exposure to plasma for 0, 5 and 10 min:

- Initial resistance increased for a longer exposure to plasma
- A longer exposure to plasma resulted in a gentler gradient



Exposure to plasma for 15 and 20 min:

- Increasing glucose concentration does not affect resistance
  - Plasma had resulted in defects to a degree that GOx is unable to bind effectively to graphene

# Discussion

- Plasma causes defects to be introduced onto graphene
- Defects increase the surface area for adsorption of GOx onto graphene
- Each GOx molecule obstructs the movement of electrons, reducing electron mobility on the graphene surface



: Initial resistance increases with a longer duration of plasma treatment

GOx (FADH<sub>2</sub>) + O<sub>2</sub> 
$$\rightarrow$$
 GOx (FAD) + H<sub>2</sub>O<sub>2</sub>  
Glucose + GOx (FAD+)  $\rightarrow$  Glucolactone + GOx (FADH<sub>2</sub>)

- FAD is needed as a redox cofactor for GOx to function
- FAD present in glucose oxidase is first reduced to FADH<sub>2</sub>
- FADH<sub>2</sub> reacts with oxygen, forming hydrogen peroxide and regenerating FAD
- FAD can continue to catalyse the oxidation of other glucose molecules

Glucose + 
$$O_2 \rightarrow$$
 Glucolactone +  $H_2O_2$   
 $H_2O_2 \rightarrow H^+ + HO_2^-$ 

- H<sup>+</sup> and HO<sub>2</sub><sup>-</sup> are electrophilic and causes the electron cloud to skew away from the graphene surface
- Lower concentration of mobile charge carriers on the surface of graphene causes an increase in resistance
  - : Resistance increases with glucose concentration

# Conclusion

Graphene exposed to 5 & 10 minutes of plasma are best candidates as effective biosensors:

- 10 minutes of plasma:
  - Increase immobilization of GOx  $\rightarrow$  achieve greater range of values
  - Greater reliance on specificity of  $GOx \rightarrow compromises$  in accuracy.
- 5 minutes of plasma: Achieves a better accuracy while keeping a high range of values

Graphene exposed to 5 minutes of RF plasma in a depressurized chamber of 0.7 mbar of hydrogen gas with a flow rate of 26.5 SCCM is the most ideal biosensor.

# Future Work

- Investigate other types of plasma to engineer defects on Graphene surface
- Explore more cost-effective ways to produce GBBs
- Study alternative electrode surfaces besides Graphene





An Institute of

# Plasma-based Defect Engineering of **Graphene for Biosensing Applications**

Jordan Low Jun Yi, Koo Min Seo, Wong Yin Leng Angelina



# Background

- Diabetes mellitus caused by insulin deficiency, resulting in elevated blood glucose levels
- Managed through monitoring of blood glucose levels with the aid of glucose biosensors.
- Graphene is a monolayer of carbon atoms arranged in a hexagonal lattice with large surface to volume ratio and high electrical conductivity.
- Used as an electrode surface in biosensors as its band structure is easily modified, and thus can amplify signals.

# Research Aim

• In this project, plasma defects were engineered onto graphene surface to enhance immobilization of glucose oxidase (GOx) enzyme molecules for glucose-sensing applications.



- GOx anchored onto the graphene substrate via physical adsorption and catalyses the breakdown of glucose
- Low power RF plasma exposure introduces defects on the graphene surface
- → Increases surface adsorption of glucose oxidase enzyme
- → Leads to larger dynamic range of glucose sensing
- The quality of graphene ascertained using Raman spectroscopy
- Electrical properties of the graphene-based biosensor (GBB) monitored using an IV probe station.

# Materials and Methods

#### **Graphene synthesis by Chemical Vapor Deposition (CVD)**

- 10mm x 80mm copper (Cu) strip was placed in a horizontal quartz tube.
- Hydrogen gas was introduced, and the heat supply was switched on for the removal of contaminants.
- Methane gas was introduced for 1h to allow for the chemisorption of methane molecules to form the honeycomb pattern of graphene.



# **Graphene transfer**

- The Cu layer was dissolved in FeCl<sub>3</sub>
- Remaining graphene was transferred onto a glass slide and heated in an incubator at 100°C for 1h.



# • 2 silver ink droplets with Cu wires attached used as metal contacts, which were insulated with waterinsoluble superglue.

 Graphene surface immobilised with 1mg/dl GOx solution



# **Defect Engineering via RF plasma**

- Each GBB placed within a horizontal quartz tube and hydrogen gas introduced at 26.5 SCCM.
- Capacitively coupled remote plasma switched on at 50W.
- GBBs exposed to 0, 5, 10, 15 and 20 min of plasma treatment.



# IV measurements

Resistance of biosensors measured using an IV probe station. Different concentrations of glucose were tested.

### Results

# Raman Spectroscopy

Before plasma treatment:



After plasma treatment:



- Raman Shift of the Graphitic band is
- 1587.94/cm
- Raman shift of "G" band =  $1581.6 + 11/(1 + n^{1.6})$ 
  - → Graphene is a monolayer
  - Defect band is weak
    - → Graphene has little defects
- Raman Shift of the Graphitic band remains at 1587.94/cm
  - → Graphene remained a monolayer
- Defect band is significantly larger
  - → Defects had been introduced onto graphene

### **IV Characterisation**



Exposure to plasma for 0, 5 and 10 min:

- Initial resistance increased for a longer exposure to plasma
- A longer exposure to plasma resulted in a gentler gradient



Exposure to plasma for 15 and 20 min:

- Increasing glucose concentration does not affect resistance
  - Plasma had resulted in defects to a degree that GOx is unable to bind effectively to graphene

# Discussion

- Plasma causes defects to be introduced onto graphene
- Defects increase the surface area for adsorption of GOx onto graphene
- Each GOx molecule obstructs the movement of electrons, reducing electron mobility on the graphene surface
- : Initial resistance increases with a longer duration of plasma treatment



 $GOx (FADH_2) + O_2 \rightarrow GOx (FAD) + H_2O_2$ Glucose + GOx (FAD+)  $\rightarrow$  Glucolactone + GOx (FADH<sub>2</sub>)

- FAD is needed as a redox cofactor for GOx to function
- FAD present in glucose oxidase is first reduced to FADH<sub>2</sub>
- FADH<sub>2</sub> reacts with oxygen, forming hydrogen peroxide and regenerating FAD
- FAD can continue to catalyse the oxidation of other glucose molecules

Glucose + 
$$O_2 \rightarrow$$
 Glucolactone +  $H_2O_2$   
 $H_2O_2 \rightarrow H^+ + HO_2^-$ 

- H<sup>+</sup> and HO<sub>2</sub><sup>-</sup> are electrophilic and causes the electron cloud to skew away from the graphene surface
- Lower concentration of mobile charge carriers on the surface of graphene causes an increase in resistance
- : Resistance increases with glucose concentration

# Conclusion

Graphene exposed to 5 & 10 minutes of plasma are best candidates as effective biosensors:

- 10 minutes of plasma:
  - Increase immobilization of GOx  $\rightarrow$  achieve greater range of values
  - Greater reliance on specificity of  $GOx \rightarrow compromises$  in accuracy.
- 5 minutes of plasma: Achieves a better accuracy while keeping a high range of values

Graphene exposed to 5 minutes of RF plasma in a depressurized chamber of 0.7 mbar of hydrogen gas with a flow rate of 26.5 SCCM is the most ideal biosensor.

# Future Work

- Investigate other types of plasma to engineer defects on Graphene surface
- Explore more cost-effective ways to produce GBBs
- Study alternative electrode surfaces besides Graphene