

NP-C: Vertex Cover

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Cobertura de Vértices

Sea

Grafo G=(V,E)

Diremos

Set S ⊆ V es una cobertura de vértices

Si

 \forall eje e \in E=(u,v), u \in S y/o v \in S

Problema de decisión de cobertura de vértices

Sea

Grafo G=(V,E)

Determinar

Si existe una cobertura de vértices (VERTEX-COVER) de tamaño al menos k

(El problema de optimización busca el subconjunto de menor tamaño)

Ejemplo

Dado el Grafo

Existe una cobertura de vértices de k=3?

VERTEX-COVER ∈ "NP"

Sea

Grafo G=(V,E)

Certificado t: conjunto de nodos de V que forman el cubrimiento

Verificamos

Para todo $e=(u,v) \in E$, $siu \in tov \in t \rightarrow O(VE)$

Si|t|=k

⇒ VERTEX-COVER ∈ "NP"

INDEPENDENT-SET

Sea

Un grafo G=(V,E)

Un valor k

Determinar

Si existe un conjunto independiente de nodos de como mucho tamaño K

Un conjunto de nodos C ⊆ V es independiente si

No existe a,b \in C tal que existe eje (a,b) \in E

Relación entre INDEPENDENT-SET y VERTEX-COVER

Sea

Grafo G=(V,E)

S conjunto independiente de tamaño |S|

Llamaremos

C = V-S (complemento de S)

Para todo eje

 $e=(u,v) \in E$, $u \in S \Rightarrow v \in C$ (porque S es set independiente)

Por lo tanto para todo eje al menos un vértice pertenece a V-S

Entonces

V-S es una cobertura de vértices de G de tamaño |V-S|

Ejemplo

VERTEX-COVER es NP-C

INDEPENDENT-SET ≤_p VERTEX-COVER

Mantengo el mismo gráfo G=(V,E)

Y tomo k' = |V| - k

De forma equivalente

 $VERTEX-COVER \leq_{p} INDEPENDENT-SET$

Presentación realizada en Junio de 2020