Math 5601: Introduction to Numerical Analysis Homework assignment 3

Dr. Xiaoming He*

Show all relevant work in detail to justify your conclusions. Partial credit depends upon the work you show.

Problem #1: Consider f(t) = sin(t). (Simplify your solutions as much as possible)

- (a) Without using the general inner product expression of the best approximation, find the best approximation $p(t) \in P^3[-1, 1]$ to $f(t) \in C[-1, 1]$ with respect to the L^2 norm.
 - (b) Find the Taylor polynomial approximation p(t) of degree 3 at t=0.
 - (c) Find the Lagrange polynomial approximation p(t) of degree 3 that interpolates f(t) at $t = -1, -\frac{1}{3}, \frac{1}{3}, 1$.

Problem #2: Based on $u_1 = 1$, $u_2 = x$, $u_3 = x^2$, use Gram-Schmidt orthogonalization process to compute the three polynomials $w_1(x)$, $w_2(x)$, and $w_3(x)$ which are orthonormal on the interval [0,1] with respect to the inner product $(f,g) = \int_0^1 f(x)g(x) \ dx$. Using these polynomials, find the best approximation in $P_2[0,1]$ for $f(x) = x^{\frac{1}{2}}$.

Problem #3: Find the quadratic polynomial p(t) that satisfies p(0) = f(0), p(2) = f(2), p'(2) = f'(2).

^{*}Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, hex@mst.edu