PMATH347S18 - Groups & Rings

CLASSNOTES FOR SPRING 2018

by

Johnson Ng

BMath (Hons), Pure Mathematics major, Actuarial Science Minor University of Waterloo

Table of Contents

1	Lect	ture 1 l	May 02nd 2018	17
	1.1	Introd	duction	17
		1.1.1	Numbers	17
		1.1.2	Matrices	18
2	Lect	ture 2 l	May 04th 2018	21
	2.1	Introd	duction (Continued)	21
		2.1.1	Permutations	21
3	Lect	ture 3 N	May 07th 2018	27
	3.1	Group	ps	27
		3.1.1	Groups	27
4	Lect	ture 4 N	May 09 2018	33
	4.1	Group	ps (Continued)	33
		4.1.1	Groups (Continued)	33
		4.1.2	Cayley Tables	34
	4.2	Subgr	roups	36
		4.2.1	Subgroups	37
5	Lect	ture 5 l	May 11th 2018	39
	5.1	Subgr	roups (Continued)	39
		5.1.1	Subgroups (Continued)	39
6	Lect	ture 6 l	May 14th 2018	43
	6.1	Subgr	roups (Continued 2)	43
		6.1.1	Alternating Groups	43
		6.1.2	Order of Elements	46
7	Lect	ture 7 l	May 16th 2018	47
	7.1	Subgr	roups (Continued 3)	47
		7.1.1	Order of Elements (Continued)	47

		7.1.2	Cyclic Groups	50
8	Lect	ure 8 N	lay 18th 2018	51
	8.1	Subgro	oups (Continued 4)	51
		8.1.1	Cyclic Groups (Continued)	51
9	Lect	ure 9 N	Tay 22nd 2018	55
	9.1	-	oups (Continued 5)	55
		9.1.1	Examples of Non-Cyclic Groups	55
	9.2	Norma	al Subgroup	56
		9.2.1	Homomorphism and Isomorphism	56
		9.2.2	Cosets and Lagrange's Theorem	59
10	Lect	ure 10]	May 23rd 2018	63
			al Subgroup (Continued)	63
			Cosets and Lagrange's Theorem (Continued)	63
			Normal Subgroup	65
11	Lect	11re 11]	May 25th 2018	67
			al Subgroup (Continued 2)	67
	11.1		Normal Subgroup (Continued)	67
		11.1.1	Troiniar out group (Committee)	٥
12			May 28th 2018	73
	12.1	Norma	al Subgroup (Continued 3)	73
		12.1.1	Normal Subgroup (Continued 2)	73
	12.2	Isomo	rphism Theorems	74
		12.2.1	Quotient Groups	75
13	Lect	ure 13]	May 30th 2018	77
	13.1	Isomo	rphism Theorems (Continued)	77
		13.1.1	Quotient Groups (Continued)	77
		13.1.2	Isomorphism Theorems	78
14	Lect	ure 14]	Jun 01st 2018	83
	14.1	Isomo	rphism Theorems (Continued 2)	83
		14.1.1	Isomorphism Theorems (Continued)	83
15	Lect	ure 15]	Jun 04th 2018	89
	15.1	Group	Action	89
			Cayley's Theorem	89
			Group Action	91
16	Lect	ure 16]	Jun 06th 2018	93

25	Lecture 25 Jun 29th 2018	137
	24.2.1 Integral Domain and Fields	
	24.2 Commutative Rings	134
	24.1.1 Isomorphism Theorems for Rings (Continued)	131
- 4	24.1 Rings (Continued 4)	131
24	Lecture 24 Jun 27th 2018	131
	23.1.2 Isomorphism Theorems for Rings	125
	23.1.1 Ideals (Continued)	125
,	23.1 Ring (Continued 3)	
23	Lecture 23 Jun 25th 2018	125
	22.1.1 Ideals	119
	22.1 Ring (Continued 2)	119
22	Lecture 22 Jun 22nd 2018	119
	21.1.2 Subring	116
	21.1.1 Rings (Continued)	113
	21.1 Rings (Continued)	113
21	Lecture 21 Jun 20th 2018	113
	20.2.1 Rings	111
	20.2 Rings	111
	20.1.1 p-Groups (Continued 2)	109
	20.1 Finite Abelian Groups (Continued 2)	109
20	Lecture 20 Jun 18th 2018	109
	19.1.1 p-Groups (Continued)	105
	19.1 Finite Abelian Groups (Continued)	105
19	Lecture 19 Jun 15th 2018	105
	18.1.2 p-Groups	103
	18.1.1 Primary Decomposition	101
-	18.1 Finite Abelian Groups	101
18	Lecture 18 Jun 13th 2018	101
	17.1.1 Group Action (Continued 2)	97
,	17.1 Group Action (Continued 2)	97
17	Lecture 17 Jun 08th 2018	97
	16.1.1 Group Action (Continued)	93
	16.1 Group Action (Continued)	93

	25.1	Commutative Rings (Continued)	137
		25.1.1 Integral Domain and Fields (Continued)	137
26	Lect	ure 26 Jul 04th 2018	143
	26.1	Commutative Rings (Continued 2)	143
		26.1.1 Prime Ideals and Maximal Ideals	143
		26.1.2 Fields of Fractions	145
27	Lect	ure 27 Jul 06th 2018	149
	27.1	Polynomial Ring	149
		27.1.1 Polynomials	149
		27.1.2 Factorization of Polynomials	155
28	Lect	ure 28 Jul 09th 2018	157
	28.1	Polynomial Ring (Continued 1)	157
		28.1.1 Factorization of Polynomials (Continued)	157
29	Lect	ure 29 Jul 11th 2018	163
	29.1	Polynomial Ring (Continued 2)	163
		29.1.1 Factorization of Polynomials (Continued 2)	163
		29.1.2 Quotient Rings of Polynomials	166
30	Lect	ure 30 Jun 13th 2018	169
	30.1	Polynomial Ring (Continued 3)	169
		30.1.1 Quotient Rings of Polynomials (Continued)	169
	30.2	Factorizations in Integral Domains	171
		30.2.1 Irreducibles and Primes	172
31	Inde	·x	175
32	List	of Symbols	177

EList of Definitions

1	Injectivity	21
2	Surjectivity	21
3	Bijectivity	21
4	Permutations	21
5	Order	22
6	Groups	27
7	Abelian Group	27
8	General Linear Group	29
9	Cayley Table	34
10	Subgroup	37
11	Special Linear Group	40
12	Center of a Group	40
13	Transposition	43
14	Odd and Even Permutations	44
15	Cyclic Groups	46
16	Order of an Element	47
18	Dihedral Group	55
19	Group Homomorphism	56
20	Isomorphism	57
21	Coset	59
22	Indov	61

23	Normal Subgroup 65
24	Product of Groups
25	Normalizer
26	Quotient Group
27	Kernel and Image
28	Group Action
29	Orbit & Stabilizer
30	p-Group
31	Ring
32	Trivial Ring
33	Characteristic of a Ring
34	Subring
35	Ideal
36	Quotient Ring
37	Principal Ideal
38	Ring Homomorphism
39	Ring Isomorphism
40	Kernel and Image
41	Units
42	Division Ring and Field
43	Zero Divisor
44	Integral Domain
45	Prime Ideals
46	Maximal Ideals
47	Fraction
48	Polynomials
49	Division of Polynomials
50	Monic Polynomial

51	Irreducible Polynomials	163
52	Division	172
53	Association	172

PList of Theorems

Proposition 1		22
• Proposition 2	Properties of S_n	24
■ Theorem 3	Cycle Decomposition Theorem	25
• Proposition 4	Group Identity and Group Element Inverse	27
• Proposition 5		31
• Proposition 6	Cancellation Laws	33
• Proposition 7		35
• Proposition 8	Intersection of Subgroups is a Subgroup	41
• Proposition 9	Finite Subgroup Test	41
■ Theorem 10	Parity Theorem	43
■ Theorem 11	Alternating Group	44
• Proposition 12	Cyclic Group as A Subgroup	46
• Proposition 13	Properties of Elements of Finite Order	48
• Proposition 14	Property of Elements of Infinite Order	49
• Proposition 15	Orders of Powers of the Element	49
• Proposition 16	Cyclic Groups are Abelian	50
• Proposition 17	Subgroups of Cyclic Groups are Cyclic	51
• Proposition 18	Other generators in the same group	52
■ Theorem 19	Fundamental Theorem of Finite Cyclic Group	os 53
• Proposition 20	Properties of Homomorphism	57
• Proposition 21	Isomorphism as an Equivalence Relation	58

12 ■ TABLE OF CONTENTS - ■ TABLE OF CONTENTS

Proposition 22	Properties of Cosets	60
■ Theorem 23	Lagrange's Theorem	63
Corollary 24		64
Corollary 25		65
Corollary 26		65
Proposition 27	Normality Test	67
Proposition 28	Subgroup of Index 2 is Normal	68
Lemma 29	Product of Groups as a Subgroup	70
Proposition 30	Product of Normal Subgroups is Normal .	71
Corollary 31		72
Theorem 32		73
Corollary 33		74
Lemma 34	Multiplication of Cosets of Normal Subgroup	s 75
Proposition 35		77
Proposition 36		78
Proposition 37	Normal Subgroup as the Kernel	80
■ Theorem 38	First Isomorphism Theorem	80
Proposition 39		84
■ Theorem 40	Second Isomorphism Theorem	85
■ Theorem 41	Third Isomorphism Theorem	86
■ Theorem 42	Cayley's Theorem	89
■ Theorem 43	Extended Cayley's Theorem	90
Corollary 44		91
Proposition 45		94
■ Theorem 46	Orbit Decomposition Theorem	95
Corollary 47	Class Equation	98
Lemma 48		98
■ Theorem 49	Cauchy's Theorem	90

• Proposition 50 group	Group of Elements of the Same Order is a Sub-
• Proposition 51	Decomposition of a Finite Abelian Group . 102
■ Theorem 52	Primary Decomposition 103
• Proposition 53	p-Groups are Finite
• Proposition 54	Finite Abelian <i>p</i> -Groups of Order <i>p</i> are Cyclic105
• Proposition 55	
■ Theorem 56 rect Product of	Finite Abelian Groups are Isomorphic to a Di-
■ Theorem 57	Finite Abelian Group Structure 110
• Proposition 58	More Properties of Rings
• Proposition 59	Implications of the Characteristic 115
• Proposition 60	Properties of the Additive Quotient Group . 119
• Proposition 61	
• Proposition 62 tity is the Ring	The Only Ideal with the Multiplicative Iden- Itself
• Proposition 63	Construction of the Quotient Ring 121
• Proposition 64	Ideals of $\mathbb Z$ are Principal Ideals 125
• Proposition 65	Properties of Ring Homomorphisms 126
• Proposition 66	
■ Theorem 67	First Isomorphism Theorem for Rings 128
■ Theorem 68	Second Isomorphism Theorem for Rings 129
■ Theorem 69	Third Isomorphism Theorem for Rings 130
■ Theorem 70	Chinese Remainder Theorem 131
Corollary 71	
• Proposition 72 teger Modulo	Ring With Prime Order Is Isomorphic to In- Prime
• Proposition 73	Ring Cancellations and Zeros 137
• Proposition 74	Fields are Integral Domains 139

\blacksquare TABLE OF CONTENTS - \blacksquare TABLE OF CONTENTS

•	Proposition 75	Finite Integral Domains are Fields	139
•	Proposition 76 acteristics	Integral Domains have Zero or Prime Char	140
ð	Proposition 77 is an Integral D	Ideal is Prime ←⇒ Quotient of Ring by Ideal Comain	
•	Proposition 78 Ideal is a Field	Ideal is Maximal \iff Quotient of Ring by	144
*	Corollary 79 Prime	Maximal Ideals of a Commutative Rings are	145
	Theorem 80	Field of Fractions	146
٥	Proposition 81	Ring is a Subring of Its Polynomial Ring	150
٥	Proposition 82	Polynomial Ring is an Integral Domain	153
ð	Proposition 83	$f(x) g(x) \wedge g(x) f(x) \implies f(x) = g(x)$.	157
٥	Proposition 84	Division Algorithm for Polynomials	158
٥	Proposition 85	Properties of the Greatest Common Divisor	160
٥	Proposition 86	Euclid's Lemma for Polynomials	164
_	Theorem 87 als	Unique Factorization Theorem for Polynomi.	164
٥	Proposition 88	Ideals of $F[x]$ are Principal Ideals	166
ð	Proposition 89		170
ð	Proposition 90		170
٥	Proposition 91	Division in an Integral Domain	172

Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

1 Lecture 1 May 02nd 2018

1.1 Introduction

1.1.1 Numbers

The following are some of the number sets that we are already familiar with:

$$\mathbb{N} = \{1, 2, 3, ...\} \qquad \mathbb{Z} = \{.., -2, -1, 0, 1, 2, ...\}$$

$$\mathbb{Q} = \left\{\frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N}\right\} \qquad \mathbb{R} = \text{ set of real numbers}$$

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i = \sqrt{-1}\} = \text{ set of complex numbers}$$

For $n \in \mathbb{Z}$, let \mathbb{Z}_n denote the set of integers modulo n, i.e.

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$$

where the [r], $0 \le r \le n-1$, are the congruence classes, i.e.

$$[r] = \{ z \in \mathbb{Z} : z \equiv r \mod n \}$$

These sets share some common properties, e.g. + and \times . Let's try to break that down to make further observation.

NOTE THAT for $R = \mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , or \mathbb{Z}_n , R has 2 operations, i.e. addition and multiplication.

Addition If $r_1, r_2, r_3 \in R$, then

- (closure) $r_1 + r_2 \in R$
- (associativity) $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$

Also, if $R \neq \mathbb{N}$, then $\exists 0 \in R$ (the additive identity) such that

$$\forall r \in R \quad r+0=r=0+r.$$

Also, $\forall r \in R$, $\exists (-r) \in R$ such that

$$r + (-r) = 0 = (-r) + r$$
.

Multiplication For $r_1, r_2, r_3 \in R$, we have

- (closure) $r_1r_2 \in R$
- (associativity) $r_1(r_2r_3) = (r_1r_2)r_3$

Also, $\exists 1 \in R$ (a.k.a the mutiplicative identity), such that

$$\forall r \in R \quad r \cdot 1 = r = 1 \cdot r.$$

Finally, for $R = \mathbb{Q}$, \mathbb{R} , or \mathbb{C} , $\forall r \in R$, $\exists r^{-1} \in R$ such that

$$r \cdot r^{-1} = 1 = r^{-1} \cdot r$$
.

Note that for $R = \mathbb{Z}_n$, where $n \in \mathbb{Z}$, not all $[r] \in \mathbb{Z}_n$ have a multiplicative inverse. For example, for $[2] \in \mathbb{Z}_4$, there is no $[x] \in \mathbb{Z}_4$ such that [2][x] = [1].

1.1.2 Matrices

For $n \in \mathbb{N} \setminus \{1\}$, an $n \times n$ matrix over \mathbb{R}^2 is an $n \times n$ array that can be expressed as follows:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

where for $1 \leq i, j \leq n$, $a_{ij} \in \mathbb{R}$. We denote $M_n(\mathbb{R})$ as the set of all $n \times n$ matrices over \mathbb{R} .

As in Section 1.1.1, we can perform addition and multiplication on $M_n(\mathbb{R})$.

 $^{2}\mathbb{R}$ can be replaced by \mathbb{Q} or \mathbb{C} .

¹ This is best proven using techniques introduced in MATH135/145.

Matrix Addition Given $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}] \in M_n(\mathbb{R})$, we define matrix addition as

$$A + B = [a_{ij} + b_{ij}],$$

which immediately gives the closure property, since $a_{ij} + b_{ij} \in \mathbb{R}$ and hence $A + B \in M_n(\mathbb{R})$. Also, by this definition, we also immediately obtain the associativity property, i.e.

$$A + (B + C) = (A + B) + C.$$

We define the zero matrix as

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

Then we have that 0 is the additive identity, i.e.

$$A + 0 = A = 0 + A$$
.

Finally, $\forall A \in M_n(\mathbb{R}), \exists (-A) \in M_n(\mathbb{R})$ (the additive inverse) such that

$$A + (-A) = 0 - (-A) + A.$$

Note that in this case, we also have that that the operation is commutative, i.e.

$$A + B = B + A.$$

Matrix Multiplication Given $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}] \in M_n(\mathbb{R}),$ we define the matrix multiplication as

$$AB = [d_{ij}]$$
 where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \in \mathbb{R}$.

Clearly, $AB \in M_n(\mathbb{R})$, i.e. it is closed under matrix multiplication. Also, we have that, under such a defintion, matrix multiplication is associative, i.e.

$$A(BC) = (AB)C.$$

Define the identity matrix, $I \in M_n(\mathbb{R})$, as follows:

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Then we have that *I* is the multiplicative identity, since

$$AI = A = IA$$
.

However, contrary to matrix addition, $\forall A \in M_n(\mathbb{R})$, it is not always true that $\exists A^{-1} \in M_n(\mathbb{R})$ such that

$$AA^{-1} = I = A^{-1}A$$
.

Also, we can always find some $A, B \in M_n(\mathbb{R})$ such that

$$AB \neq BA$$
,

i.e. matrix multiplication is not always commutative.

THE COMMON PROPERTIES of the operations from above: closure, associativity, and existence of an inverse, are not unique to just addition and multiplication. We shall see in the next lecture that there are other operations where these properties will continue to hold, e.g. permutations.

This is especially true if the **determinant** of *A* is 0.

2 Lecture 2 May 04th 2018

2.1 *Introduction* (Continued)

2.1.1 *Permutations*

Definition 1 (Injectivity)

Let $f: X \to Y$ be a function. We say that f is injective (or one-to-one) if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Definition 2 (Surjectivity)

Let $f: X \to Y$ be a function. We say that f is surjective (or onto) if $\forall y \in Y \ \exists x \in X \ f(x) = y$.

Definition 3 (Bijectivity)

Let $f: X \to Y$ be a function. We say that f is bijective if it is both injective and surjective.

Definition 4 (Permutations)

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by S_L .

Example 2.1.1

Consider the set $L = \{1,2,3\}$, which has the following 6 different permutations:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

FOR $n \in \mathbb{N}$, we denote $S_n := S_{\{1,2,\dots,n\}}$, the set of all permutations of $\{1,2,\dots,n\}$. Example 2.1.1 shows the elements of the set S_3 .

Definition 5 (Order)

The order of a set A, denoted by |A|, is the cardinality of the set.

Example 2.1.2

We have seen that the order of S_3 , $|S_3|$ is 6 = 3!.

• Proposition 1

 $|S_n| = n!$

Proof

 $\forall \sigma \in S_n$, there are n choices for $\sigma(1)$, n-1 choices for $\sigma(2)$, ..., 2 choices for $\sigma(n-1)$, and finally 1 choice for $\sigma(n)$.

Do elements of S_n share the same properties as what we've seen in the numbers? Given $\sigma, \tau \in S_n$, we can **compose** the 2 together to get a third element in S_n , namely $\sigma\tau$ (wlog), where $\sigma\tau : \{1,...,n\} \to \{1,...,n\}$ is given by $\forall x \in \{1,...,n\}, x \mapsto \sigma(\tau(x))$.

66 Note

$$\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}$$
 indicates the bijection $\sigma:\{1,2,3\}\to\{1,2,3\}$ with $\sigma(1)=1$, $\sigma(2)=3$ and $\sigma(3)=2$.

It is important to note that $:: \sigma, \tau$ are **both bijective**, $\sigma\tau$ is also bijective. Thus, together with the fact that $\sigma \tau : \{1,...,n\} \to \{1,...,n\}$, we have that $\sigma \tau \in S_n$ by definition of S_n .

 $\therefore \forall \sigma, \tau \in S_n, \ \sigma\tau, \tau\sigma \in S_n$, but $\sigma\tau \neq \tau\sigma$ in general. The following is an example of the stated case:

Example 2.1.3

Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}.$$

Compute $\sigma \tau$ and $\tau \sigma$ to show that they are not equal.

Solution

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \text{ but } \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

Perhaps what is interesting is the question of: when does commu**tativity occur?** One such case is when σ and τ have support sets that are disjoint¹.

On the other hand, the associative property holds², i.e.

$$\forall \sigma, \tau, \mu \in S_n \ \sigma(\tau \mu) = (\sigma \tau) \mu$$

The set S_n also has an identity element³, namely

$$\varepsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$

Finally, $\forall \sigma \in S_n$, since σ is a bijection, we have that its inverse function, σ^{-1} is also a bijection, and thus satisfies the requirements to be in S_n . We call $\sigma^{-1} \in S_n$ to be the **inverse permutation** of σ , such that

$$\forall x, y \in \{1, ..., n\} \quad \sigma^{-1}(x) = y \iff \sigma(y) = x.$$

It follows, immediately, that

$$\sigma\big(\sigma^{-1}(x)\big) = x \, \wedge \, \sigma^{-1}\big(\sigma(y)\big) = y.$$

... We have that

$$\sigma\sigma^{-1} = \varepsilon = \sigma^{-1}\sigma.$$

¹ This is proven in A₁

Exercise 2.1.1

Prove this as an exercise.

Exercise 2.1.2

Verify that the given identity element is indeed the identity, i.e.

$$\forall \sigma \in S_n \ \sigma \varepsilon = \sigma = \varepsilon \sigma.$$

Example 2.1.4

Find the inverse of

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$

Solution

By rearranging the image in ascending order, using them now as the object and their respective objects as their image, construct

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}.$$

It can easily (although perhaps not so prettily) be shown that

$$\sigma \tau = \varepsilon = \tau \sigma$$
.

With all the above, we have for ourselves the following proposition:

• Proposition 2 (Properties of S_n)

We have4

- 1. $\forall \sigma, \tau \in S_n \ \sigma \tau, \tau \sigma \in S_n$.
- 2. $\forall \sigma, \tau, \mu \in S_n \ \sigma(\tau \mu) = (\sigma \tau) \mu$.
- 3. $\exists \varepsilon \in S_n \ \forall \sigma \in S_n \ \sigma \varepsilon = \sigma = \varepsilon \sigma$.
- 4. $\forall \sigma \in S_n \ \exists ! \sigma^{-1} \in S_n \ \sigma \sigma^{-1} = \varepsilon = \sigma^{-1} \sigma.$

⁴ These properties show that S_n is a group, which will be defined later.

Consider

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 1 & 7 & 6 & 9 & 4 & 2 & 5 & 8 & 10 \end{pmatrix} \in S_{10}$$

If we represent the action of σ geometrically, we get

that σ can be decomposed into one 4-cycle, $\begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix}$, one 2cycle, $\begin{pmatrix} 4 & 6 \end{pmatrix}$, one 3-cycle, $\begin{pmatrix} 5 & 9 & 8 \end{pmatrix}$, and one 1-cycle, $\begin{pmatrix} 10 \end{pmatrix}$.

Note that these cycles are (pairwise) disjoint, and we can write⁵

$$\sigma = \begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 5 & 9 & 8 \end{pmatrix}$$

Note that we may also write

$$\sigma = \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 5 & 9 & 8 \end{pmatrix} \begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix}
= \begin{pmatrix} 6 & 4 \end{pmatrix} \begin{pmatrix} 9 & 8 & 5 \end{pmatrix} \begin{pmatrix} 7 & 2 & 1 & 3 \end{pmatrix}$$

It is interesting to note that the cycles can rotate their "elements" in a cyclic manner, i.e.

$$\begin{pmatrix} 1 & 3 & 7 & 2 \end{pmatrix} = \begin{pmatrix} 7 & 2 & 1 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 7 & 3 \end{pmatrix}.$$

Although the decomposition of the cycle notation is not unique (i.e. you may rearrange them), each individual cycle is unique, and is proven below⁶.

■ Theorem 3 (Cycle Decomposition Theorem)

If $\sigma \in S_n$, $\sigma \neq \varepsilon$, then σ is a product of (one or more) disjoint cycles of length at least 2. This factorization is unique up to the order of the factors.

66 Note (Convention)

Every permutation in S_n can be regarded as a permutation of S_{n+1} by fixing the permutation of n + 1. Therefore, we have that

$$S_1 \subseteq S_2 \subseteq \ldots \subseteq S_n \subseteq S_{n+1} \subseteq \ldots$$

⁵ We generally do not include the 1cycle and assume that by excluding them, it is known that any number that is supposed to appear loops back to themselves.

⁶ See bonus question of A₁. Proof will be included in the notes once the assignment is over.

3 Lecture 3 May 07th 2018

3.1 Groups

3.1.1 *Groups*

Definition 6 (Groups)

Let G be a set and * an operation on $G \times G$. We say that G = (G, *) is a group if it satisfies¹

- 1. Closure: $\forall a, b \in G \quad a * b \in G$
- 2. Associativity: $\forall a, b, c \in G$ a * (b * c) = (a * b) * c
- 3. *Identity*: $\exists e \in G \ \forall a \in G \ a * e = a = e * a$
- 4. *Inverse*: $\forall a \in G \ \exists b \in G \ a * b = e = b * a$

Definition 7 (Abelian Group)

A group G is said to be abelian if $\forall a, b \in G$, we have a * b = b * a.

• Proposition 4 (Group Identity and Group Element Inverse)

Let G *be a group and* $a \in G$.

- 1. The identity of G is unique.
- 2. The inverse of a is unique.

¹ If you wonder why the uniqueness is not specified for <u>Identity</u> and <u>Inverse</u>, see **6** Proposition 4.

Proof

1. If $e_1, e_2 \in G$ are both identities of G, then we have

$$e_1 \stackrel{(1)}{=} e_1 * e_2 \stackrel{(2)}{=} e_2$$

where (1) is because e_2 is an identity and (2) is because e_1 is an identity.

2. Let $a \in G$. If $b_1, b_2 \in G$ are both the inverses of a, then we have

$$b_1 = b_1 * e = b_1 * (a * b_2) \stackrel{(1)}{=} e * b_2 = b_2$$

where (1) is by associativity.

Example 3.1.1

The sets $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are all abelian, where the additive identity is 0, and the additive inverse of an element r is (-r).

66 Note

 $(\mathbb{N},+)$ is not a group for neither does it have an identity nor an inverse for any of its elements.

Example 3.1.2

The sets (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) and (\mathbb{C},\cdot) are **not** groups, since 0 has no multiplicative inverse in \mathbb{Q},\mathbb{R} or \mathbb{C} .

We may define that for a set S, let $S^* \subseteq S$ contain all the elements of S that has a multiplicative inverse. For example, $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. Then, (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) and (\mathbb{C},\cdot) are groups and are in fact abelian, where the multiplicative identity is 1 and the multiplicative of an element r is $\frac{1}{r}$.

Example 3.1.3

The set $(M_n(\mathbb{R}), +)$ is an abelian group, where the additive identity is the zero matrix, $0 \in M_n(\mathbb{R})$, and the additive inverse of an element M =

$$[a_{ij}] \in M_n(\mathbb{R}) \text{ is } -M = [-a_{ij}] \in M_n(\mathbb{R}).$$

Consider the set $M_n(\mathbb{R})$ under the matrix multiplication operation that we have introduced in Lecture 1 May 02nd 2018. We found that the identity matrix is

$$I = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & & dots \ 0 & 0 & \dots & 1 \end{bmatrix} \in M_n(\mathbb{R}).$$

But since not all elements of $M_n(\mathbb{R})$ have a multiplicative inverse², $(M_n(\mathbb{R}), \cdot)$ is not a group.

² The multiplicative inverse of a matrix does not exist if its determinant is 0.

WE CAN TRY to do something similar as to what we did before: by excluding the elements that do not have an inverse. In this case, we exclude elements whose determinant is 0. We define the following set

Definition 8 (General Linear Group)

The general linear group of degree n over \mathbb{R} is defined as

$$GL_n(\mathbb{R}) := \{ M \in M_n(\mathbb{R}) : \det M \neq 0 \}$$

Note that : det $I = 1 \neq 0$, we have that $I \in GL_n(\mathbb{R})$. Also, $\forall A, B \in GL_n(\mathbb{R})$, we have that $: \det A \neq 0 \land \det B \neq 0$,

$$\det AB = \det A \det B \neq 0$$
,

and therefore $AB \in GL_n(\mathbb{R})$. Finally, $\forall M \in GL_n(\mathbb{R}), \exists M^{-1} \in GL_n(\mathbb{R})$ such that

$$MM^{-1} = I = M^{-1}M$$

since $\det M \neq 0$. $\therefore (GL_n(\mathbb{R}), \cdot)$ is a group.

SINCE we have introduced permutations in Lecture 2 May 04th 2018, we shall formalize the purpose of its introduction below.

Example 3.1.4

Consider S_n , the set of all permutations on $\{1, 2, ..., n\}$. By \bullet Proposition 2, we know that S_n is a group. We call S_n the symmetry group of degree n. For $n \geq 3$, the group S_n is not abelian³.

Now THAT we have a fairly good idea of the basic concept of a group, we will now proceed to look into handling multiple groups. One such operation is known as the **direct product**.

Example 3.1.5

Let G and H be groups. Their direct product is the set $G \times H$ with the component-wise operation defined by

$$(g_1, h_1) * (g_2, h_2) = (g_1 *_G g_2, h_1 *_H h_2)$$

where $g_1, g_2 \in G$, $h_1, h_2 \in H$, $*_G$ is the operation on G, and $*_H$ is the operation on H.

The closure and associativity property follow immediately from the definition of the operation. The identity is $(1_G, 1_H)$ where 1_G is the identity of G and 1_H is the identity of H. The inverse of an element $(g_1, h_1) \in G \times H$ is (g_1^{-1}, h_1^{-1}) .

By induction, we can show that if G_1 , G_2 , ..., G_n are groups, then so is $G_1 \times G_2 \times ... \times G_n$.

To facilitate our writing, use shall use the following notations:

Notation

Given a group G and $g_1, g_2 \in G$, we often denote its identity by 1, and write $g_1 * g_2 = g_1g_2$. Also, we denote the unique inverse of an element $g \in G$ as g^{-1} .

We will write $g^0 = 1$. Also, for $n \in \mathbb{N}$, we define

$$g^n = \underbrace{g * g * \dots * g}_{n \text{ times}}$$

and

$$g^{-n} = (g^{-1})^n$$

³ Let us make this an exercise.

Exercise 3.1.1

For $n \geq 3$, prove that the group S_n is not abelian.

With the above notations,

• Proposition 5

Let G be a group and $g,h \in G$. We have

1.
$$(g^{-1})^{-1} = g$$

2.
$$(gh)^{-1} = h^{-1}g^{-1}$$

3.
$$g^n g^m = g^{n+m}$$
 for all $n, m \in \mathbb{Z}$

4.
$$(g^n)^m = g^{nm}$$
 for all $n, m \in \mathbb{Z}$

Exercise 3.1.2

Prove **♦** *Proposition* 5 as an exercise.

₩ Warning

In general, it is not true that if $g,h \in G$, then $(gh)^n = g^nh^n$. For example,

$$(gh)^2 = ghgh$$
 but $g^2h^2 = gghh$.

The two are only equal if and only if G is abelian.

4 Lecture 4 May 09 2018

4.1 Groups (Continued)

4.1.1 *Groups* (Continued)

• Proposition 6 (Cancellation Laws)

Let G be a group and $g,h,f \in G$. Then

1.(a) (Right Cancellation)
$$gh = gf \implies h = f$$

(b) (Left Cancellation)
$$hg = fg \implies h = f$$

2. The equation ax = b and ya = b have unique solution for $x, y \in G$.

Proof

1.(a) By left multiplication and associativity,

$$gh = gf \iff g^{-1}gh = g^{-1}gf \iff h = f$$

(b) By right multiplication and associativity,

$$hg = fg \iff hgg^{-1} = fgg^{-1} \iff h = f$$

2. Let $x = a^{-1}b$. Then

$$ax = a(a^{-1}b) = (aa^{-1})b = b.$$

If $\exists u \in G$ *that is another solution, then*

$$au = b = ax \implies u = x$$

by Left Cancellation. The proof for ya = b is similar by letting $y = ba^{-1}$.

4.1.2 Cayley Tables

For a finite group, defining its operation by means of a table is sometimes convenient.

Definition 9 (Cayley Table)

Let G be a group. Given $x,y \in G$, let the product xy be an entry of a table in the row corresponding to x and column corresponding to y. Such a table is called a Cayley Table.

66 Note

By Cycle Decomposition Theorem 6, the entries in each row (and respectively, column) of a Cayley Table are all distinct.

Example 4.1.1

Consider the group $(\mathbb{Z}_2, +)$. Its Cayley Table is

$$\begin{array}{c|cccc} \mathbb{Z}_2 & [0] & [1] \\ \hline [0] & [0] & [1] \\ [1] & [1] & [0] \\ \end{array}$$

where note that we must have [1] + [1] = [0]; otherwise if [1] + [1] = [1] then [1] does not have its additive inverse, which contradicts the fact that it is in the group.

Example 4.1.2

Consider the group $\mathbb{Z}^* = \{1, -1\}$. Its Cayley Table (under multiplication) is

If we replace 1 by [0] and -1 by [1], the Cayley Tables of \mathbb{Z}_2 and \mathbb{Z}^* are the same. In thie case, we say that \mathbb{Z}_2 and \mathbb{Z}^* are isomorphic, which we denote by $\mathbb{Z}_2 \cong \mathbb{Z}^*$.

$$\begin{array}{c|cccc} \mathbb{Z}^* & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \\ \end{array}$$

Example 4.1.3

Given $n \in \mathbb{N}$, the Cyclic Group of order n is defined by

$$C_n = \{1, a, a^2, ..., a^{n-1}\}$$
 with $a^n = 1$.

We write $C_n = \langle a : a^n = 1 \rangle$ and a is called a generator of C_n . The Cayley *Table of* C_n *is*

C_n	1	а	a^2	 a^{n-2}	a^{n-1}
1	1	а	a^2	 a^{n-2}	a^{n-1}
а	а	a^2	a^3	 a^{n-1}	1
a^2	a^2	a^3	a^4	 1	а
	:			:	:
a^{n-2}	a^{n-2}	a^{n-1}	1	 a^{n-4}	a^{n-3}
a^{n-1}	a^{n-1}	1	а	 a^{n-3}	a^{n-2}

• Proposition 7

Let G be a group. Up to isomorphism, we have

- 1. if |G| = 1, then $G \cong \{1\}$.
- 2. *if* |G| = 2, then $G \cong C_2$.
- 3. *if* |G| = 3, then $G \cong C_3$.
- 4. if |G|=4, then either $G\cong C_4$ or $G\cong K_4\cong C_2\times C_2$.

 K_n is known as the **Klein n-group**

Proof

- 1. If |G| = 1, then it can only be $G = \{1\}$ where 1 is the identity element.
- 2. $|G| = 2 \implies G = \{1, g\}$ with $g \neq 1$. The Cayley Table of G is thus

$$\begin{array}{c|cccc}
G & 1 & g \\
\hline
1 & 1 & g \\
g & g & 1
\end{array}$$

where we note that $g^2 = 1$; otherwise if $g^2 = g$, then we would have g = 1 by Cycle Decomposition Theorem 6, which contradicts the fact that $g \neq 1$. Comparing the above Cayley Table with that of C_2 , we see that $G = \langle g : g^2 = 1 \rangle \cong C_2$.

3. $|G| = 3 \implies G = \{1, g, h\}$ with $g \neq 1 \neq h$ and $g \neq h$. We can then start with the following Cayley Table:

We know that by Cycle Decomposition Theorem 6, $gh \neq g$ and $gh \neq h$. Thus gh = 1. Similarly, we get that hg = 1.

<u>Claim:</u> Entries in a row (or column) must be distinct. Suppose not. Then say $g^2 = 1$. But since gh = 1, by Cycle Decomposition Theorem 6, we have that h = g, which is a contradiction.

With that, we can proceed to fill in the rest of the entries: with $g^2 = h$ and $h^2 = g$. Therefore,

Recall that the Cayley Table for C_3 is:

$$\begin{array}{c|ccccc} C_3 & 1 & a & a^2 \\ \hline 1 & 1 & a & a^2 \\ a & a & a^2 & 1 \\ a^2 & a^2 & 1 & a \\ \end{array}$$

 $\therefore G \cong C_3$ (by identifying g = a and $h = a^2$).

4. Proof will be added once assignment 1 is over

Subgroups 4.2.1

Definition 10 (Subgroup)

Let G be a group and $H \subseteq G$. If H itself is a group, then we say that H is a subgroup of G

5 Lecture 5 May 11th 2018

5.1 Subgroups (Continued)

5.1.1 Subgroups (Continued)

66 Note (Recall: definition of a subgroup)

Let G be a group and $H \subseteq G$. If H itself is a group, then we say that H is a subgroup of G.

66 Note

Since G is a group, $\forall h_1, h_2, h_3 \in H \subseteq G$, we have $h_1(h_2h_3) = (h_1h_2)h_3$. So H is a subgroup of G if it satisfies the following conditions, which we shall hereafter refer to as the Subgroup Test.

Subgroup Test

- 1. $h_1h_2 \in H$
- 2. $1_G \in H$
- 3. $\exists h_1^{-1} \in H \text{ such that } h_1 h_1^{-1} = 1_G$

Example 5.1.1

Given a group G, it is clear that $\{1\}$ and G are both subgroups of G.

Example 5.1.2

We have the following chain of groups:

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Note that the identity in H must also be the identity in G. This is because if $h_1, h_1^{-1} \in H$, then $h_1h_1^{-1} = 1_H$, but $h_1, h_1^{-1} \in G$ as well, and so $h_1h_1^{-1} = 1_G$. Thus $1_H = 1_G$.

Recall that the general linear group is defined as:

$$GL_n(\mathbb{R}) = (GL_n(\mathbb{R}), \cdot) = \{ A \in M_n(\mathbb{R}) : \det A \neq 0 \}$$

Definition 11 (Special Linear Group)

The special linear group of order n of \mathbb{R} is defined as

$$SL_n(\mathbb{R}) = (SL_n(\mathbb{R}), \cdot) = \{A \in M_n(\mathbb{R}) : \det A = 1\}$$

Example 5.1.3

Clearly, $SL_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$. Note that the identity matrix I must be in $SL_n(\mathbb{R})$ since $\det I = 1$. Also, $\forall A, B \in SL_n(\mathbb{R})$, we have that

$$\det AB = \det A \det B = 1$$

 $\therefore AB \in SL_n(\mathbb{R})$. Also, since $\det A^{-1} = \frac{1}{\det A} = 1$, we also have that $A^{-1} \in SL_n(\mathbb{R})$. We see that $SL_n(\mathbb{R})$ satisfies the Subgroup Test, and hence it is a subgroup of $GL_n(\mathbb{R})$.

Definition 12 (Center of a Group)

Given a group G, the the center of a group G is defined as

$$Z(G) = \{ z \in G : \forall g \in G \ zg = gz \}$$

Example 5.1.4

For a group G, Z(G) is an abelian subgroup of G.

Proof

Clearly, $1_G \in Z(G)$. Let $y, z \in G$. $\forall g \in G$, we have that

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Therefore $yz \in Z(G)$ and so Z(G) is closed under its operation. Also, $\forall h \in G$, we can write $h = (h^{-1})^{-1} = g^{-1}$. Since $z \in Z(G)$, we have

that $\forall g \in G$,

$$zg = gz \iff (zg)^{-1} = (gz)^{-1} \iff g^{-1}z^{-1} = z^{-1}g^{-1}$$

 $\iff hz^{-1} = z^{-1}h$

Therefore $z^{-1} \in Z(G)$. By the Subgroup Test, it follows that Z(G) is a subgroup of G.

Finally, since $Z(G) \subseteq G$, by its definition, we have that $\forall x, y \in Z(G)$, $x,y \in G$ as well, and we have that xy = yx. Therefore, Z(G) is abelian.

• Proposition 8 (Intersection of Subgroups is a Subgroup)

Let H and K be subgroups of a group G. Then their intersection

$$H\cap K=\{g\in G:g\in H\wedge g\in K\}$$

is also a subgroup of G.

Proof

Since H and K are subgroups, we have that $1 \in H$ and $1 \in K$ and hence $1 \in H \cap K$. Let $a, b \in H \cap K$. Since H and K are subgroups, we have that $ab \in H$ and $ab \in K$. Therefore, $ab \in H \cap K$. Similarly, since $a^{-1} \in H$ and $a^{-1} \in K$, $a^{-1} \in H \cap K$. By the Subgroup Test, $H \cap K$ is a subgroup of G.

• Proposition 9 (Finite Subgroup Test)

If H is a finite nonempty subset of a group G, then H is a subgroup if and only if H is closed under its operation.

This result says that if H is a finite nonempty subset, then we only need to prove that it is closed under its operation to prove that it is a subgroup. The other two conditions in the Subgroup Test are automatically implied.

The forward direction of the proof is trivially true, since H must satisfy the closure property for it to be a subgroup.

For the converse, since $H \neq \emptyset$, let $h \in H$. Since H is closed under its operation, we have that

$$h, h^2, h^3, ...$$

are all in H. Since H is finite, not all of the h^n 's are distinct. Then, $\forall n \in \mathbb{N}$, there must $\exists m \in \mathbb{N}$ such that $h^n = h^{n+m}$. Then by Cancellation Laws, $h^m = 1$ and so $1 \in H$. Also, because $1 = h^{m-1}h$, we have that $h^{-1} = h^{m-1}$, and thus the inverse of h is also in H. Therefore, H is a subgroup of G as requried.

6 Lecture 6 May 14th 2018

6.1 Subgroups (Continued 2)

6.1.1 Alternating Groups

Recall that $\forall \sigma \in S_n$, with $\sigma \neq \varepsilon$, σ can be uniquely decomposed (up to the order) as disjoint cycles of length at least 2. We will now present a related concept.

Definition 13 (Transposition)

A transposition $\sigma \in S_n$ is a cycle of length 2, i.e. $\sigma = \begin{pmatrix} a & b \end{pmatrix}$, where $a, b \in \{1, ..., n\}$ and a negb.

Example 6.1.1

We have that1

$$\begin{pmatrix} 1 & 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

Also, we can show that2

$$\begin{pmatrix} 1 & 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \tag{6.1}$$

Observe that the factorization into transpositions are **not unique or disjoint**. However, the following property is true.

■ Theorem 10 (Parity Theorem)

¹ If we apply the permutations on the right hand side, we have that

Exercise 6.1.1

Show that Equation 6.1 is true.

Exercise 6.1.2

Play around with the same idea and create a few of your own transpositions. Note that you will only be able to get an odd number of transpositions (why?). *If a permutations* σ *has* 2 *factorizations*

$$\sigma = \gamma_1 \gamma_2 \dots \gamma_r = \mu_1 \mu_2 \dots \mu_s$$
,

where each γ_i and μ_i are transpositions, then $r \equiv s \mod 2$.

Proof

This is the bonus question in A2. Proof shall be included after the end of the assignment.

Definition 14 (Odd and Even Permutations)

A permutation σ is even (or odd) if it can be written as a product of an even (or odd) number of transpositions. By Parity Theorem 10, a permutation must either be even or odd, but not both.

■ Theorem 11 (Alternating Group)

For $n \geq 2$, let A_n denote the set of all even permutations in S_n . Then

- 1. $\varepsilon \in A_n$
- 2. $\forall \sigma, \tau \in A_n \ \sigma \tau \in A_n \ and \ \exists \sigma^{-1} \in A_n \ such \ that \ \sigma \sigma^{-1} = \varepsilon = \sigma^{-1} \sigma$
- 3. $|A_n| = \frac{1}{2}n!$

66 Note

From items 1 and 2, we know that A_n is a subgroup of S_n . A_n is called the alternating subgroup of degree n.

Proof

1. We have that $\varepsilon = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$. Thus ε is even and so $\varepsilon \in A_n$.

2. $\forall \sigma, \tau \in A_n$, we may write

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_r$$
 and $\tau = \tau_1 \tau_2 \dots \tau_s$,

where σ_i , τ_i are transpositions, and r, s are even integers. Then

$$\sigma \tau = \sigma_1 \sigma_2 \dots \sigma_r \tau_1 \tau_2 \dots \tau_s$$

is a product of (r + s) transpositions, and thus $\sigma \tau$ is even. Thus $\sigma \tau \in A_n$.

For the inverse, note that since σ_i is a transposition, we have that $\sigma_i^2 = \varepsilon$ and thus $\sigma_i^{-1} = \sigma_i$. It follows that

$$\sigma^{-1} = (\sigma_1 \sigma_2 \dots \sigma_r)^{-1}$$

$$= \sigma_r^{-1} \sigma_{r-1}^{-1} \dots \sigma_2^{-1} \sigma_1^{-1}$$

$$= \sigma_r \sigma_{r-1} \dots \sigma_2 \sigma_1$$

which is an even permutation and

$$\sigma\sigma^{-1} = \sigma_1\sigma_2\dots\sigma_r\sigma_r\dots\sigma_2\sigma_1 = \varepsilon.$$

Thus $\exists \sigma^{-1} \in A_n$ such that it is the inverse of σ .

3. Let O_n denote the set of odd permutations in S_n . Then we have $S_n =$ $A_n \cup O_n$, and by the Parity Theorem, we have that $A_n \cap O_n = \emptyset$. Since $|S_n| = n!$, to prove that $|A_n| = \frac{1}{2}n!$, it suffices to show that $|A_n| = |O_n|$.

Let $\gamma = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $f: A_n \to O_n$ such that $f(\sigma) = \gamma \sigma$. Since σ is even, $\gamma \sigma$ is odd, and so f is well-defined.

Also, if $\gamma \sigma_1 = \gamma \sigma_2$, then by Cancellation Laws, $\sigma_1 = \sigma_2$, and hence f is injective.

Finally, $\forall \tau \in O_n$, we have that $\gamma \tau = \sigma \in A_n$. Note that

$$f(\sigma) = \gamma \sigma = \gamma \gamma \tau = \tau.$$

Therefore, f is surjective.

It follows that $|A_n| = |O_n|$.

For the proof of 3, we know that $|S_n|$ = n!, which is twice of the suggested order of A_n . Since we took out the even permutations of S_n , we just need to make the rest of the permutations, the odd permutations, into a set and prove that A_n and this new set has the same size. One way to show this is by creating a bijection between the two.

Also, note that the set of all odd permutations of S_n is not a group, since

- there is no identity element in this set; and
- · this set is not closed under map composition.

We have shown that ε is an even permutation, and so by the Parity Theorem, it cannot be an odd permutation, and there is only one identity in S_n . The set is not closed under map composition since if we compose two odd permutations, we would get an even permutation, which does not belong to this set.

6.1.2 Order of Elements

Notation

If G *is a group and* $g \in G$ *, we denote*

$$\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}.$$

Note that $1 = g^0 \in \langle g \rangle$.

If
$$x = g^m$$
, $y = g^n \in \langle g \rangle$ where $m, n \in \mathbb{Z}$, then

$$xy = g^m g^n = g^{m+n} \in \langle g \rangle$$

and we have $\exists x^{-1} = g^{-m} \in \langle g \rangle$ such that

$$xx^{-1} = g^m g^{-m} = g^0 = 1.$$

Along with the Subgroup Test, we have the following proposition:

• Proposition 12 (Cyclic Group as A Subgroup)

If G *is a group and* $g \in G$ *, then* $\langle g \rangle$ *is a subgroup of* G*.*

Definition 15 (Cyclic Groups)

Let G be a group and $g \in G$. Then we call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say that G is a cyclic group, and g is a generator of G.

7 Lecture 7 May 16th 2018

7.1 Subgroups (Continued 3)

7.1.1 *Order of Elements (Continued)*

Example 7.1.1

Consider $(\mathbb{Z}, +)$. Note that $\forall k \in \mathbb{Z}$, we can write $k = k \cdot 1 = \underbrace{1 + 1 + \ldots + 1}_{k \text{ times}}$. So we have that $(\mathbb{Z}, +) = \langle 1 \rangle$. Similarly, we would have $(\mathbb{Z}, +) = \langle -1 \rangle$.

However, observe that $\forall n \in \mathbb{Z}$ with $n \neq \pm 1$, there is no $k \in \mathbb{Z}$ such that $k \cdot n = 1$. Therefore, ± 1 are the only generators of \mathbb{Z} .

Let G be a group and $g \in G$. Suppose $\exists k \in \mathbb{Z}$ with $k \neq 0$ such that $g^k = 1$. Then $g^{-k} = (g^k)^{-1} = 1$. Thus wlog, we can assume that $k \geq 1$. By the Well Ordering Principle, $\exists n \in \mathbb{N}$ such that n is the smallest, such that $g^n = 1$.

With that, we may have the following definition:

Definition 16 (Order of an Element)

Let G be a group and $g \in G$. If n is the smallest positive integer such that $g^n = 1$, we say that the order of g is n, denoted by o(g) = n.

If no such n exists, then we say that g has infinite order and write $o(g) = \infty$.

• Proposition 13 (Properties of Elements of Finite Order)

Let G be a group with $g \in G$ where $o(g) = n \in \mathbb{N}$. Then

1. $g^k = 1 \iff n|k$;

2. $g^k = g^m \iff k \equiv m \mod n$; and

3. $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$ where each g^i is distinct from others.¹

¹ This also means that the order of the group is the same as the order of the generator.

Proof

1. (\Leftarrow) If n|k, then k = nq for some $q \in \mathbb{Z}$. Then

$$g^k = g^{nq} = (g^n)^q = 1^q = 1$$

 (\Longrightarrow) Suppose $g^k=1$. Since $k\in\mathbb{Z}$, the Division Algorithm, we can write k=nq+r with $q,r\in\mathbb{Z}$ and $0\le r< n$. Note $g^n=1$. Thus

$$g^r = g^{k-nq} = g^k(g^n)^{-q} = 1 \cdot 1 = 1.$$

Since $0 \le r < n$, we must have that r = 0. Thus $n \mid k$.

2. $(\Longrightarrow) g^k = g^m \Longrightarrow g^{k-m} = 1 \stackrel{by \ 1}{\Longrightarrow} n | (k-m) \iff k \equiv m \mod n$

 $(\Leftarrow) k \equiv m \mod n \implies \exists q \in \mathbb{Z} \ k = qnm$. The result follows from 1.

3. (\supseteq) is clear by definition of $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}.$

To prove (\subseteq) , let $x = g^k \in \langle g \rangle$ for some $k \in \mathbb{Z}$. By the Division Algorithm, k = nq + r for some $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then

$$x = g^k = g^{nq+r} = g^{nq}g^r \stackrel{by}{=} {}^1g^r.$$

Since $0 \le r < n$, we have that $x \in \{1, g, g^2, ..., g^{n-1}\}$. Thus $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$.

It remains to show that all the elements in $\langle g \rangle$ are distinct. Suppose $g^k = g^m$ for some $k, m \in \mathbb{Z}$ with $0 \le k, m < n$. By 2, we have that $k \equiv m \mod 2$. Therefore, k = m.

We can also use 1 by the fact that $g^{k-m} = 1$ from assumption to complete the uniqueness proof.

• Proposition 14 (Property of Elements of Infinite Order)

Let G be a group, and $g \in G$ such that $o(g) = \infty$. Then

- 1. $g^k = 1 \iff k = 0$;
- 2. $g^k = g^r \iff k = m;$
- 3. $\langle g \rangle = \{..., g^{-2}, g^{-1}1, g, g^2, ... \}$ where each g^i is distinct from others.

Proof

It suffices to prove 1, since 2 easily becomes true with 1, and 2 \implies 3.

1. $(\iff) g^0 = 1$

 (\Longrightarrow) Suppose for contradiction that $g^k=1$ for some $k\in\mathbb{Z}$ $k\neq0$. Then $g^{-k} = (g^k)^{-1} = 1$. Then we can assume that $k \ge 1$. This, however, implies that o(g) is finite, which contradicts our assumption. Thus k = 0.

2.

$$g^k = g^m \iff g^{k-m} = 1 \stackrel{by \ 1}{\iff} k - m = 0 \iff k = m$$

• Proposition 15 (Orders of Powers of the Element)

Let G be a group, and $g \in G$ with $o(g) = n \in \mathbb{N}$. We have that

$$\forall d \in \mathbb{N} \ d \mid n \implies o(g^d) = \frac{n}{d}$$

Proof

Let $k = \frac{n}{d}$. Note that $(g^d)^k = g^n = 1$. It remains to show that k is the smallest such positive integer. Suppose $\exists r \in \mathbb{N} \ (g^d)^r = 1$. Since o(g) = n, then $n \mid dr$. Then $\exists q \in \mathbb{Z} \ dr = nq$ by definition of divisibility. :: n = dk and $d \neq 0$, we have

$$dr = dkq \stackrel{d \neq 0}{\Longrightarrow} r = kq \implies r > k \quad \because r, k \in \mathbb{N} \implies q \in \mathbb{N}$$

7.1.2 Cyclic Groups

Recall the definition of a cyclic groups.

Definition 17 (Cyclic Groups)

Let G be a group and $g \in G$. Then we call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say that G is a cyclic group, and g is a generator of G.

• Proposition 16 (Cyclic Groups are Abelian)

All cyclic groups are abelian.

Proof

Note that a cyclic group G is of the form G = $\langle g \rangle$ *. So*

$$\forall a, b \in G \ \exists m, n \in \mathbb{Z} \ a = g^m \land b = g^n$$
$$a \cdot b = g^m g^n = g^{m+n} = g^{n+m} = g^n g^m = b \cdot a$$

8 Lecture 8 May 18th 2018

8.1 Subgroups (Continued 4)

8.1.1 Cyclic Groups (Continued)

66 Note

Consider the converse of \bullet Proposition 16: Are abelian groups cyclic? No! For example, $K_4 \cong C_2 \times C_2$ is abelian but not cyclic, since no one element can generate the entire group.

• Proposition 17 (Subgroups of Cyclic Groups are Cyclic)

Every subgroup of a cyclic group is cyclic.

Proof

Let $G = \langle g \rangle$ and H be a subgroup of G.

$$H = \{1\} \implies H = \langle 1 \rangle$$

$$H \neq \{1\} \implies \exists k \neq 0 \in \mathbb{Z} \ g^k \in H$$

$$\implies g^{-k} \in H \quad (\because H \text{ is a group })$$

We may assume that $k \in \mathbb{N}$. By the Well Ordering Principle, let $m \in \mathbb{N}$ be the smallest positive integer such that $g^m \in H$. We will now show that $H = \langle g^m \rangle$.

Finally,

$$\langle g^m \rangle \subseteq H \wedge H \subseteq \langle g^m \rangle \implies H = \langle g^m \rangle$$

• Proposition 18 (Other generators in the same group)

Let
$$G = \langle g \rangle$$
 with $o(g) = n \in \mathbb{N}$. We have
$$G = \langle g^k \rangle \iff \gcd(k, n) = 1$$

If we have k such that $g^k \in G$, and k and n are coprimes, then g^k is also a generator of G.

Proof

For (\Longrightarrow) ,

$$G = \langle g^k \rangle \implies g \in \langle g^k \rangle \implies \exists x \in \mathbb{Z} \quad g = g^{kx}$$

$$\implies 1 = g^{kx-1} \implies n \mid (kx-1) \quad (\because 0 \ Proposition \ 13)$$

$$\implies \exists y \in \mathbb{Z} \quad kx - 1 = ny \quad (\because Division \ Algorithm)$$

$$\implies 1 = kx + ny$$

Then

$$\therefore 1 \mid kx \land 1 \mid ny \land 1 = kx + ny$$
$$\gcd(k, n) = 1 \qquad (\because \gcd Characterization)$$

For (\Leftarrow) , note that $g \in G \implies \langle g^k \rangle \subseteq G$. It suffices to show that

$$G \subseteq \langle g^k \rangle$$
, i.e. $g \in \langle g^k \rangle$.

$$\gcd(k,n) = 1 \implies \exists x, y \in \mathbb{Z} \ 1 = kx + ny \quad (\because Bezout's Lemma)$$
$$\implies g = g^1 = g^{kx + ny} = (g^k)^x (g^n)^y = (g^k)^x \in \langle g^k \rangle$$

Theorem 19 (Fundamental Theorem of Finite Cyclic Groups)

Let $G = \langle g \rangle$ with $o(g) = n \in \mathbb{N}$.

- 1. H is a subgroup of $G \implies \exists d \in \mathbb{N} \ d \mid n \ H = \langle g^d \rangle \implies |H| \mid n$.
- 2. $k \mid n \implies \langle g^{\frac{k}{n}} \rangle$ is the unique subgroup of G of order k.

Proof

1. Note

0 Proposition 17 $\Longrightarrow \exists m \in \mathbb{N} \ H = \langle g^m \rangle$

Let $d = \gcd(m, n)$. Want to show that $H = \langle g^d \rangle$.

$$d = \gcd(m, n) \implies d \mid m \implies \exists k \in \mathbb{Z} \ m = dk$$

$$\implies g^m = g^{dk} = (g^d)^k \in \langle g^d \rangle \implies H \subseteq \langle g^d \rangle$$

$$d = \gcd(m, n) \implies \exists x, y \in \mathbb{Z} \ d = mx + ny \ (\because \textbf{Bezout's Lemma})$$

$$\implies g^d = g^{mx + ny} = (g^m)^x (g^n)^y = (g^m)^x (1) \in H$$

$$\implies \langle g^d \rangle \subseteq H$$

$$\therefore H = \langle g^d \rangle$$

Note: $d = \gcd(m, n) \implies d \mid n \implies |H| = o(g^d) = \frac{n}{d}$ \therefore 0 Proposition 15. Thus |H| | n.

2. Let K be a subgroup of G with order k such that $k \mid n$. By 1, we have $K = \langle g^d \rangle$ with $d \mid n$. Note that

$$k = |K| \stackrel{(1)}{=} o(g^d) \stackrel{(2)}{=} \frac{n}{d}$$

where (1) is by • Proposition 13 and (2) is by • Proposition 15. Thus $d = \frac{n}{k}$ and $K = \langle g^{\frac{n}{k}} \rangle$

This is a significant result that classifies the structure of a cyclic group (hence its name). The theorem tells us that for a group with finite order, it has only finitely many subgroups, and the order of each of these subgroups are multiples of n. Inversely, there are no subgroups of *G* where its order is some integer that does not divide n.

Note: It is clear that $d \in \mathbb{N}$ and $d \le n$. In a sense, this theorem is more powerful than • Proposition 17.

9 Lecture 9 May 22nd 2018

9.1 Subgroups (Continued 5)

9.1.1 Examples of Non-Cyclic Groups

Example 9.1.1

The Klein 4-group is

$$K_4 = \{1, a, b, c\}$$
 where $a^2 = b^2 = c^2 = 1$ and $ab = c$.

We may also write

$$K_4 = \langle a, b : a^2 = 1 = b^2, ab = ba \rangle.$$

Note that we can replace (a, b) by (a, c) or (b, c).

Example 9.1.2

The symmetric group of degree 3 is

$$S_3 = \{\varepsilon, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\}$$

where $\sigma^3 = \varepsilon = \tau^2$ and $\sigma \tau = \tau \sigma^2$. We may also express S_3 as

$$S_3 = \langle \, \sigma, \tau : \sigma^3 = \varepsilon = \tau^2, \, \sigma \tau = \tau \sigma^2 \, \rangle$$

Definition 18 (Dihedral Group)

For $n \geq 2$, the dihedral group of order 2n is

$$D_{2n} = \{1, a, ..., a^{n-1}, b, ba, ..., b^{n-1}\}$$

Recall from Assignment 1 that the dihedral group is a set of rigid motions for transforming a regular polygon back to its original position while changing the index of its vertices.

where $a^n = 1 = b^2$ and aba = b. Note that a represents a rotation of $\frac{2\pi}{n}$ radians, and b represents a reflection through the x-axis

Example 9.1.3

We may write the dihedral group as

$$D_{2n} = \langle a, b : a^n = 1 = b^2, aba = b \rangle$$

Exercise 9.1.1

Prove the following:

- 1. $D_4 \cong K_4$
- 2. $D_6 \cong S_3$

9.2 Normal Subgroup

9.2.1 Homomorphism and Isomorphism

Definition 19 (Group Homomorphism)

Let G, H be groups. A mapping

$$\alpha: G \rightarrow H$$

is called a group homomorphism if $\forall a, b \in G$,¹

$$\alpha(ab) = \alpha(a)\alpha(b)$$
.

¹ Note that ab uses the operation of G while $\alpha(a)\alpha(b)$ uses the operation of H.

Example 9.2.1 (A classical example)

Consider the determinant map:

$$\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$$
 given by $A \to \det A$

Since

$$\det AB = \det A \det B$$

we have that the determinant map is a homomorphism.

Note that \mathbb{R}^* is the set of real numbers that has a multiplicative inverse.

This is a classical example to show a homomorphism, especially since the group $GL_n(\mathbb{R})$ uses matrix multiplication while \mathbb{R}^* uses regular arithmetic multiplication.

• Proposition 20 (Properties of Homomorphism)

Let $\alpha: G \to H$ be a group homomorphism. Then

- 1. $\alpha(1_G) = 1_H$
- 2. $\forall g \in G \ \alpha(g^{-1}) = \alpha(g)^{-1}$
- 3. $\forall g \in G \ \forall k \in \mathbb{Z} \ \alpha(g^k) = \alpha(g)^k$

Proof

1. Note that

$$\alpha(1_G)\alpha(g) = \alpha(1_G \cdot g) = \alpha(g) = \alpha(g \cdot 1_G) = \alpha(g)\alpha(1_G)$$

Thus it must be that $\alpha(1_G) = 1_H$ for only the identity of H satisfies this equation.

2. Since H is a group, we know that

$$1_H = \alpha(g)\alpha(g)^{-1}$$
.

Now with part 1, we have that

$$\alpha(g)\alpha(g^{-1}) = \alpha(gg^{-1}) = \alpha(1_G) = 1_H = \alpha(g)\alpha(g)^{-1}.$$

By lacktriangle Proposition 6, we have that $\alpha(g^{-1}) = \alpha(g)^{-1}$.

3. This is simply a result of applying the definition repeatedly, which we can then perform an induction procedure to complete the proof.

Definition 20 (Isomorphism)

Let G, H be groups. Consider a mapping

$$\alpha:G\to H$$

We say that α is an *isomorphism* if it is a homomorphism and bijective.

If α is an isomorphism, we say that G is **isomorphic to** H, or that G and H are **isomorphic**, and denote that by $G \cong H$.

• Proposition 21 (Isomorphism as an Equivalence Relation)

- 1. (Reflexive) The identity map $G \rightarrow G$ is an isomorphism.
- 2. (Symmetric) If $\sigma: G \to H$ is an isomorphism, then the inverse map $\sigma^{-1}: H \to G$ is also an isomorphism.
- 3. (Transitive) If $\sigma: G \to H$ and $\tau: H \to K$, then the composition map $\tau \sigma: G \to K$ is also an isomorphism.

Proof

1. The identity map is clearly bijective. For all $g_1, g_2 \in G$, we have that

$$\alpha(g_1g_2) = g_1g_2 = \alpha(g_1)\alpha(g_2).$$

Thus the identity map is a homomorphism, and hence an isomorphism.

2. Since σ is a bijective map, its inverse σ^{-1} exists and is also a bijective map. Since σ is bijective, we have that

$$\forall h_1, h_2 \in H \ \exists ! g_1, g_2 \in G \ \sigma(g_1) = h_1, \sigma(g_2) = h_2.$$

Note that since σ has a bijective inverse, we also have

$$g_1 = \sigma^{-1}(h_1)$$
 and $g_2 = \sigma^{-1}(h_2)$.

Then since σ *is a homomorphism,*

$$\sigma^{-1}(h_1h_2) = \sigma^{-1}(\sigma(g_1)\sigma(g_2)) = \sigma^{-1}(\sigma(g_1g_2))$$

= $g_1g_2 = \sigma^{-1}(h_1)\sigma^{-1}(h_2).$

3. We know that the composition map of two bijective map is bijective. Let $g_1, g_2 \in G$, then since both τ and σ are homomorphisms

$$\tau\sigma(g_1g_2) = \tau(\sigma(g_1)\sigma(g_2)) = \tau\sigma(g_1)\tau\sigma(g_2),$$

where we note that $\sigma(g_1), \sigma(g_2) \in H$.

Example 9.2.2

Let $\mathbb{R}^+ = \{r \in \mathbb{R} : r \geq 0\}$. Show that $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$.

Solution

Consider the map

$$\alpha: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot) \quad r \mapsto e^r,$$

where e is the natural exponent. Note that the exponential map from $\mathbb R$ to \mathbb{R}^+ is bijective². Also, $\forall r, s \in \mathbb{R}$ we have that

$$\alpha(r+s) = e^{r+s} = e^r e^s = \alpha(r)\alpha(s).$$

Therefore, α is an isomorphism and $(\mathbb{R},+)\cong (\mathbb{R}^+,\cdot)$.

Example 9.2.3

Show that $(\mathbb{Q}, +) \not\cong (\mathbb{Q}^*, \cdot)$.

Solution

Suppose, for contradiction, that $\tau:(\mathbb{Q},+)\to(\mathbb{Q}^*,\cdot)$ is an isomorphism. In particular, we have that τ is onto. Then $\exists q \in \mathbb{Q}$ such that $\tau(q) = 2$. Let $\tau(\frac{q}{2}) = \alpha$. Since τ is an isomorphism, we have

$$\alpha^2 = \tau(\frac{q}{2})\tau(\frac{q}{2}) = \tau(\frac{q}{2} + \frac{q}{2}) = \tau(q) = 2.$$

But that implies that $\alpha = \sqrt{2}$, which is clearly not rational. Thus, we know that there is no such τ and

$$(\mathbb{Q},+)\not\cong(\mathbb{Q}^*,\cdot)$$

as required.

² The image of the map covers all positive real numbers while taking all real numbers, which is the perfect candidate as a map here.

9.2.2 Cosets and Lagrange's Theorem

Definition 21 (Coset)

Let H be a subgroup of a group G.

 $\forall a \in G \quad Ha = \{ha : h \in H\}$ is the right coset of H generated by a

and

 $\forall a \in G \quad aH = \{ah : h \in H\}$ is the left coset of H generated by a

66 Note

Note that 1H = H = H1. Also, since a1 = a and $1 \in H$, we have that $a \in aH$, and similarly so for $a \in Ha$.

In general, aH and Ha are not subgroups of G. For example, we know that A_n is a subgroup of S_n . But if σ is an odd permutation, then σA_n and $A_n \sigma$ are sets of odd permutations since A_n is the set of even permutations. As proven before, O_n , the set of odd permutations is not a subgroup of S_n .

Also, in general, $aH \neq Ha$, since not all groups are abelian.

• Proposition 22 (Properties of Cosets)

Let H be a subgroup of G, and let $a, b \in G$. Then

- 1. $Ha = Hb \iff ab^{-1} \in H$. In particular, $Ha = H \iff a \in H$.
- 2. $a \in Hb \implies Ha = Hb$.
- 3. $Ha = Hb \vee Ha \cap Hb = \emptyset$. Then the distinct right cosets of H forms a partition of G.⁴

We can create an analogued version of this proposition for the left cosets.

Proof

1. For (\Longrightarrow) ,

$$Ha = Hb \implies a = 1a \in Ha = Hb$$

 $\implies \exists h \in H \ a = hb$
 $\implies ab^{-1} = h \in H.$

3
 \leq \equiv XOR

⁴ Note that this is true because by definition, we iterate over all elements of *G* to construct the cosets of the subgroup *H*. The earlier part of this statement implies that cosets must be distinct (otherwise, they are the same set), and so if we take the union of these cosets, by iterating through all elements of *G*, we get that

$$\bigcup_{a\in G} Ha = G.$$

Summarizing the above argument, we observe that the distinct cosets partitions *G*.

For
$$(\Leftarrow)$$
,
$$ab^{-1} \in H \implies \forall h \in H \ ha = h(ab^{-1})b \in Hb$$

$$\implies Ha \subseteq Hb$$

$$ab^{-1} \in H \implies (ab^{-1})^{-1} = ba^{-1} \in H$$

$$\implies \forall h \in H \ hb = h(ba^{-1})a \in Ha$$

$$\implies Hb \subseteq Ha$$

Let b = 1. Then

$$Ha = H \iff a \in H \qquad \because 1^{-1} = 1$$

2. Note

$$a \in Hb \implies \exists h \in H \ a = hb \implies ab^{-1} \in H \stackrel{by_1}{\Longrightarrow} Ha = Hb$$

3. Trivially, if $Ha \cap Hb = \emptyset$, we are done.

$$Ha \cap Hb \neq \emptyset$$

$$\implies \exists x \in Ha \cap Hb$$

$$\implies (x \in Ha \stackrel{by 1}{\Longrightarrow} Hx = Hb) \land (x \in Hb \stackrel{by 1}{\Longrightarrow} Hx = Hb)$$

$$\implies Ha = Hb$$

By \bullet Proposition 22, we have that G can be written as a disjoint union of cosets of a subgroup H. We now define the following terminology that we shall use for the upcoming content.

Definition 22 (Index)

Let H be a subgroup of a group G. We call the number of disjoint cosets of H in G as the index of H in G, and denote this number by [G:H].

10 Lecture 10 May 23rd 2018

10.1 Normal Subgroup (Continued)

10.1.1 Cosets and Lagrange's Theorem (Continued)

■ Theorem 23 (Lagrange's Theorem)

Let H be a subgroup of a finite group G. Then

$$|H| \mid |G|$$
 and $[G:H] = \frac{|G|}{|H|}$

Proof

Since G is finite, there can only be finitely many cosets of H. Let k = [G:H] and $Ha_1, Ha_2, ..., Ha_k$ be the distinct right cosets of H in G. By

• Proposition 22, we have that these cosets partition G, i.e.

$$G = \bigcup_{i=1}^{k} Ha_i.$$

Note that by the definition of a right coset, the map

$$H \rightarrow Hb$$
 defined by $h \mapsto hb$

is a surjection from H to Hb. By Cancellation Laws, the map is injective, since if $hb_1 = hb_2$, then $b_1 = b_2$. Therefore, for i = 1, ..., k,

$$|H| = |Ha_i|$$
.

Then we have

$$|G| = k |H| \implies |H| \mid |G| \land [G:H] = k = \frac{|G|}{|H|}$$

Corollary 24

- 1. If G is a finite group and $g \in G$, then $o(g) \mid G$.
- 2. If G is a finite group and |G| = n, then $g^n = 1$.

Proof

- 1. Let $H = \langle g \rangle$. Then by Lagrange's Theorem 23, $o(g) = |H| \mid |G|$.
- 2. For some $g \in G$, let $o(g) = m \in \mathbb{Z} \setminus \{0\}$. Then by 1, $m \mid n$ and so $g^n = (g^m)^{\frac{n}{m}} = 1$.

66 Note

Let $n \in \mathbb{N} \setminus \{1\}$. Euler's Totient Function, or more generally written as Euler's ϕ -function is defined as

$$\phi(n) \equiv \Big| \big\{ k \in \{1, ..., n-1\} : \gcd(k, n) = 1 \big\} \Big|. \tag{10.1}$$

Note that the set \mathbb{Z}_n^* under multiplication has a similar definition to the set on the RHS, since the only numbers from 1 to n that has an inverse are those that are coprime with n. Thus $\phi(n) = |\mathbb{Z}_n^*|$.

With Corollary 24, we have Euler's Theorem that states that

$$\forall a \in \mathbb{Z} \ \gcd(a,n) = 1 \implies a^{\phi(n)} \equiv 1 \mod n.$$
 (10.2)

If n = p where p is some prime number, then Euler's Theorem implies Fermat's Little Theorem, i.e. $a^{p-1} \equiv 1 \mod p$.

If p is prime, then every group G of order p is cyclic. In fact, g = $\langle g \rangle$ for $g \neq 1 \in G$. Hence, the only subgroup of G are $\{1\}$ and G itself.

Proof

Let $g \in G$ such that $g \neq 1$. By \blacktriangleright Corollary 24, $o(g) \mid p$. Since $g \neq 1$ and p is prime, by uniqueness of prime factorization, it must be that o(g) = p. Thus we can write $G = \langle g \rangle$. If H is a subgroup of G, then by Lagrange's Theorem, we have |H| | p. Since p is prime, we either have |H| = 1 or p. In other words, we either have that $H = \{1\}$ or H = G, respectively.

Corollary 26

Let H and K be finite subgroups of G. If gcd(|H|, |K|) = 1, then $H \cap$ $K = \{1\}.$

Proof

Since $H \cap K$ is a subgroup of H and of K, by Lagrange's Theorem 23, $|H \cap K| \mid |H| \wedge |H \cap K| \mid |K|$. By assumption that gcd(|H|, |K|) = 1, we have 1 that $|H \cap K| = 1$, and hence $|H \cap K| = \{1\}$.

 $^{1}|H \cap K|$ is a common divisor for |H|and |K|. But gcd(|H|, |K|) = 1

Normal Subgroup

We have seen that given H is a subgroup of a group G and $g \in G$, gHand *Hg* are generally not the same.

Definition 23 (Normal Subgroup)

Let H be a subgroup of a group G. If $\forall g \in G$, we have Hg = gH, then we say that H is a normal subgroup of G, and write

Example 10.1.1

 $\{1\} \triangleleft G \ and \ G \triangleleft G.$

Example 10.1.2

The center, Z(G), of a group G is an abelian group. By \blacksquare Definition 23,

$$Z(G) \triangleleft G$$
.

Example 10.1.3

If G is abelian, then every subgroup of G is normal in G.

• Proposition (Normality Test)

Let H be a subgroup of G. The following are equivalent:

- 1. $H \triangleleft G$;
- 2. $\forall g \in G \quad gHg^{-1} \subseteq H$;
- 3. $\forall g \in G \quad gHg^{-1} = H^2$

 $^{\scriptscriptstyle 2}$ This means that

 $H \triangleleft G \iff H$ is the only conjugate of H

11 Lecture 11 May 25th 2018

The following theorem is useful for A2. The proof is not provided in this lecture, but expect the corollary to be restated and proven in a later lecture.

Corollary

Let G be a finite group and H, $K \triangleleft G$, $H \cap K = \{1\}$ and |H| |K| = |G|. Then $G \cong H \times K$.

11.1 Normal Subgroup (Continued 2)

11.1.1 Normal Subgroup (Continued)

66 Note (Recall)

Recall the definition of a normal subgroup as in \blacksquare Definition 23. Let H be a subgroup of G. If gH = Hg for all $g \in G$, then $H \triangleleft G$.

• Proposition 27 (Normality Test)

Let H be a subgroup of a group G. The following are equivalent:

- 1. $H \triangleleft G$
- 2. $\forall g \in G \ gHg^{-1} \subseteq H$
- 3. $\forall g \in G \ gHg^{-1} = H$

SS Note

Note that item 3 is indeed a stronger statement that item 2. But since the statements are equivalent, while using the Normality Test, if we can show that item 2 is true, item 3 is automatically true.

Proof

 $(1) \implies (2)$:

$$x \in gHg^{-1} \implies \exists h \in H \ x = ghg^{-1}$$

 $\implies \exists h_1 \in H \ gh = h_1g \quad \because gh \in gH = Hg$
 $\implies x = ghg^{-1} = h_1gg^{-1} = h_1 \in H$
 $\implies gHg^{-1} \subseteq H$

 $(2) \implies (3)$:

$$(2) \implies \forall g \in G \quad gHg^{-1} \subseteq H$$

$$\implies \exists g^{-1} \in G \quad g^{-1}Hg \subseteq H$$

$$\implies H \subseteq gHg^{-1}$$

$$\stackrel{(2)}{\implies} gHg^{-1} = H$$

 $(3) \implies (1)$:

$$(3) \implies \forall g \in G \quad gHg^{-1} = H$$

$$\implies \forall x \in gH \quad xg^{-1} \in gHg^{-1} = H$$

$$\implies x \in Hg \quad \because gg^{-1} = 1$$

$$\implies gH \subseteq Hg$$

Using a similar argument, we would have $Hg \subseteq Hg$. And so gH = Hg as required. \Box

Example 11.1.1

Let $G = GL_n(\mathbb{R})$ and $H = SL_n(\mathbb{R})$.¹ For $A \in G$ and $B \in H$ we have $\det ABA^{-1} = \det A \det B \det A^{-1} = \det A(1) \frac{1}{\det A} = 1.$

Thus $\forall A \in G$, $ABA^{-1} \in H$. By \bullet Proposition 27, $H \triangleleft G$, i.e. $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$.²

¹ Recall **②** Definition 8 and **③** Definition 11.

66 Note

The normality is true for any field, not just \mathbb{R} .

 $\forall H \ subgroup \ of \ G \land [G:H] = 2 \implies H \triangleleft G$

Proof

Let $a \in G$.

$$a \in H \implies aH = Ha$$

$$a \notin H \implies G = H \cup Ha \implies Ha = G \setminus H :: 0$$
 Proposition 22

$$a \notin H \implies G = H \cup aH \implies aH = G \setminus H \quad \because 0 \text{ Proposition } 22$$

That implies that aH = Ha for any $a \in G$. Hence, by \bullet Proposition 27, $H \triangleleft G$.

Example 11.1.2

Let A_n be the Alternating Group contained by S_n .³ By \bullet Proposition 28, since $[S_n : A_n] = 2$ because $S_n = A_n \cup O_n$ and O_n is a coset of A_n , we have that

³ Recall the definition of alternating group from \blacksquare Theorem 11 and S_n from **D**efinition 4

$$A_n \triangleleft S_n$$
.

Example 11.1.3

Let

$$D_{2n} = \{1, a, a^2, ..., a^{n-1}, b, ba, ba^2, ..., ba^{n-1}\}$$

be the **Dihedral Group** of order 2n. Since $[D_{2n}: \langle a \rangle] = 2,4$ we have that

 $\langle a \rangle \triangleleft D_{2n}$:: 0 Proposition 27.

⁴ The coset of $\langle a \rangle$ is $b \langle a \rangle$.

LET *H* and *K* be subgroups of a group *G*. Recall an earlier discussion: $H \cap K$ is the largest subgroup contained in both H and K.

What is the "smallest" subgroup that contains both *H* and *K*? Since $H \cap K$ is the largest, it makes sense to think about $H \cup K$. However,

$$H \cup K$$
 is a subgroup of $G \iff H \subseteq K \veebar K \subseteq H$

While we know that $H \cup K$ can indeed be such a subgroup, the price of the restriction is too high, since it is overly restrictive.

A more "useful" construction turns out to be the **product** of the

subgroups.

Definition 24 (Product of Groups)

$$HK := \{hk : h \in H, k \in K\}$$

However, HK is not necessarily a subgroup. For example, for $h_1k_1, h_2k_2 \in HK$, it is not necessary that $h_1k_1h_2k_2 \in HK$, since k_1h_2 is not necessarily equal to h_2k_1 .

♣ Lemma 29 (Product of Groups as a Subgroup)

Let H and K be subgroups of G. The following are equivalent:

- 1. HK is a subgroup of G
- 2. $HK = KH^{5}$
- 3. KH is a subgroup of G

⁵ If one of *H* or *K* is normal, then the lemma immediately kicks in.

Proof

It suffices to prove $(1) \iff (2)$, since $(1) \iff (3)$ simply through exchanging H and K.

(1) \implies (2): Let $kh \in KH$ such that $k \in K$ and $h \in H$. Their inverses are $k^{-1} \in K$ and $h^{-1} \in H$, since K and H are groups. Note that

$$kh = (h^{-1}k^{-1})^{-1} \in HK$$
 : HK is a subgroup of G.

Therefore $kh \in HK$, which implies $KH \subseteq HK$. By a similar argument, we can arrive at $HK \subseteq KH$ and so HK = KH.

(2) \Longrightarrow (1): Note that $1 = 1 \cdot 1 \in HK$. $\forall hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$. For $h_1k_1, h_2k_2 \in HK$, note that $k_1h_2 \in KH = HK$, so there exists $hk \in HK$ such that $k_1h_2 = hk$. Therefore,

$$h_1k_1h_2k_2=h_1hkk_2\in HK.$$

By the Subgroup Test, HK is a subgroup of G.

• Proposition 30 (Product of Normal Subgroups is Normal)

Let H and K be subgroups of G.

- 1. $H \triangleleft G \lor K \triangleleft G \implies HK = KH$ is a subgroup of G
- 2. $H, K \triangleleft G \implies HK = KH \triangleleft G$

Proof

1. Without loss of generality, suppose $H \triangleleft G$. Then

$$HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$$
 (11.1)

By Lemma 29, HK = KH is a subgroup of G.

2. Suppose $H, K \triangleleft G$. Then

$$\forall g \in G \ \forall hk \in HK \ g^{-1}(hk)g = (g^{-1}hg)(g^{-1}kg) \in HK$$

Thus $gHKg^{-1} \subseteq HK$. Thus by \bullet Proposition 27, we have that $HK \triangleleft G$.

66 Note

Note that Equation (11.1) is a weaker statement than the regular normality that we have defined, since it only requires all elements of K to work instead of the entire G.

With that, we define the following notion:

Definition 25 (Normalizer)

Let H be a subgroup of G. The normalizer of H, denoted by $N_G(H)$, is defined to be

$$N_G(H) := \{ g \in G : gH = Hg \}$$

66 Note

By the above definition, we immediately see that $H \triangleleft G \iff N_G(H) = G$ by Equation (11.1). Observe that since we only needed kH = Hk in Equation (11.1) for all $k \in K$, we have that $k \in N_G(H)$.

Corollary 31

Let H and K be subgroups of a group G.

$$K \subseteq N_G(H) \lor H \subseteq N_G(K) \implies HK = KH \text{ is a subgroup of } G$$

The proof of Corollary 31 is embedded in the proof of Proposition 30 while using the definition of a normalizer.

12 Lecture 12 May 28th 2018

12.1 Normal Subgroup (Continued 3)

12.1.1 Normal Subgroup (Continued 2)

■ Theorem 32

If $H \triangleleft G$ *and* $K \triangleleft G$ *satisfy* $H \cap K = \{1\}$ *, then*

$$HK \cong H \times K$$

Proof

Claim 1:

$$H \triangleleft G \land K \triangleleft G \land H \cap K = \{1\} \implies \forall h \in H \ \forall k \in K \ hk = kh$$

Consider $x = hkh^{-1}k^{-1}$. Note that since $H \triangleleft G$, by \clubsuit Proposition 27, we have that $\forall g \in G$, $gHg^{-1} = H$. Then $khk^{-1} \in kHk^{-1} = H$. Thus $x = h(kh^{-1}k^{-1}) \in H$. Using a similar argument, we can get that $x \in K$. Since $x \in H \cap K = \{1\}$, we have that $hkh^{-1}k^{-1} = 1$, we have that hk = kh as claimed.

Note that since $H \triangleleft G$, by \bullet Proposition 30, we have that HK is a subgroup of G.¹ Define $\sigma : H \times K \to HK$ by

$$\forall h \in H \ \forall k \in K \qquad \sigma((h,k)) = hk$$

¹ We do not need the more powerful statement that says that *HK* is a normal subgroup.

<u>Claim 2:</u> σ is an isomorphism.

Let $(h,k), (h_1,k_1) \in H \times K$. By Claim 1, note that $h_1k = kh_1$. Therefore,

$$\sigma((h,k)\cdot(h_1,k_1)) = \sigma((hh_1,kk_1)) = hh_1kk_1$$
$$= hkh_1k_1 = \sigma((h,k))\sigma((h_1,k_1))$$

Thus we see that σ is a group homomorphism. Note that by the definition of HK, σ is a surjection. Also, if $\sigma((h,k)) = \sigma((h_1,k_1))$, we have that

$$\begin{split} hk &= h_1 k_1 \implies h_1^{-1} h = k_1 k^{-1} \in H \cap K = \{1\} \\ &\implies h_1^{-1} h = 1 = k_1 k^{-1} \implies h_1 = h \wedge k_1 = k. \end{split}$$

Thus σ is an injection, and hence σ is bijective. Therefore, σ is an isomor*phism.* This proves that $HK \cong H \times K$.

An immediate result is the corollary that we were given in the last class but not proven.

Corollary 33

Let G be a finite group, H, K \triangleleft G such that $H \cap K = \{1\}$ and $|H||K| = \{1\}$ |G|. Then $G \cong H \times K$.

Example 12.1.1

Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1. Let G be a cyclic group of order mn. Write $G = \langle a \rangle$ with o(a) = mn. Let $H = \langle a^n \rangle$ and $K = \langle a^m \rangle$. Then we have

$$|H| = o(a^n) = m \land |K| = o(a^m) = n.$$

It follows that |H||K| = mn = |G|. Note that $H \cong C_m$ and $K \cong C_n$. Since gcd(m, n) = 1, by ightharpoonup Corollary 26, we have that $H \cap K = \{1\}$.

Also, since G is cyclic and thus abelian, we have that $H, K \triangleleft G$. Then by \blacktriangleright Corollary 33, we have that $G \cong C_{mn} \cong C_m \times C_n$.

Quotient Groups 12.2.1

Let *G* be a group and *K* a subgroup of *G*. Given a set

$$\{Ka: a \in G\},\$$

how can we create a group out of it?

A "natural" way to define an operation on the set of right cosets above is

$$\forall a,b \in G \qquad Ka * Kb = Kab. \tag{\dagger}$$

Note that it is entirely possible that for $a_1 \neq a$ and $b_1 \neq b$, we have $Ka = Ka_1$ and $Kb = Kb_1$. In order for Equation (†) to make sense as an operation, it is necessary that

$$Ka = Ka_1 \wedge Kb = Kb_1 \implies Kab = Ka_1b_1.$$

If the condition is satisfied, we say that the "multiplication" *KaKb* is well-defined.

♣ Lemma 34 (Multiplication of Cosets of Normal Subgroups)

Let K be a subset of G. The following are equivalent:

- 1. $K \triangleleft G$;
- 2. $\forall a, b \in G \ KaKb = Kab \ is \ well-defined$.

Proof

(1) \implies (2) Suppose $K \triangleleft G$. Suppose $Ka = Ka_1$ and $Kb = Kb_1$. Then $aa_1^{-1} \in K$ and $bb_1^{-1} \in K$. To show that $Kab = Ka_1b_1$, it suffices to show that $(ab)(a_1b_1)^{-1} \in K$. Note that since $K \triangleleft G$, we have that $aKa^{-1} = K$. Therefore,

$$\begin{split} ab(a_1b_1)^{-1} &= ab(b_1^{-1}a_1^{-1}) = a(bb_1^{-1})a_1^{-1} \\ &= \left(a(bb_1^{-1})a^{-1}\right)(aa_1^{-1}) \in K. \end{split}$$

Therefore $Kab = Ka_1b_1$ as required.

(2) \implies (1) If $a \in G$, we need to show that $\forall k \in K$, $aka^{-1} \in K$. Since Ka = Ka and $Kk = K(1)^2$, by (2), we have that Kak = Ka(1), i.e.

² This is cause 1 is in the same coset.

Kak = Ka. Thus $aka^{-1} = 1 \in K$, implying that $aKa^{-1} \subseteq K$ and hence $K \triangleleft G$.

13 Lecture 13 May 30th 2018

13.1 *Isomorphism Theorems (Continued)*

13.1.1 Quotient Groups (Continued)

• Proposition 35

Let $K \triangleleft G$ and write $G/K = \{Ka : a \in G\}$ for the set of cosets of K.

- 1. G_K is a group under the operation KaKb = Kab.
- 2. The mapping $\phi: G \to G/K$ given by $\phi(a) = Ka$ is a surjective homomorphism.
- 3. If [G:K] is finite, then $\left|\frac{G}{K}\right|=[G:K]$. In particular, if |G| is finite, then $\left|\frac{G}{K}\right|=\frac{|G|}{|K|}$.

Proof

1. By Lemma 34, the operation is well-defined, and ${}^G/_K$ is closed under the operation. The identity of ${}^G/_K$ is K = K(1) since $\forall Ka \in {}^G/_K$,

$$KaK(1) = Ka = K(1)Ka$$
.

Also, since

$$KaKa^{-1} = K(1) = Ka^{-1}Ka$$
,

the inverse of Ka is Ka^{-1} . Finally, by associativity of G, we have that

$$Ka(KbKc) = Kabc = (KaKb)Kc.$$

It follows that G_K is a group.

Exercise 13.1.1

Is φ injective?

Solution

We know that we cannot uniquely express a coset, since for $a,b \in Ka$ such that $a \neq b$, we have that Ka = Kb.

2. Clearly, ϕ is surjective. For $a, b \in G$,

$$\phi(ab) = Kab = KaKb = \phi(a)\phi(b).$$

Thus ϕ is a surjective homomorphism.

3. If [G:K] is finite, then by definition of the index [G:K], we have that $[G:K] = \left| \frac{G}{K} \right|$. Also, if |G| is finite, then by \blacksquare Theorem 23,

$$\left| \frac{G}{K} \right| = [G:K] = \frac{|G|}{|K|}.$$

Definition 26 (Quotient Group)

Let $K \triangleleft G$. The group G/K of all cosets of K in G is called the quotient group of G by K. Also, the mapping

$$\phi: G \to G/K$$
 defined by $a \mapsto Ka$

is called the coset (or quotient) map.

13.1.2 Isomorphism Theorems

Definition 27 (Kernel and Image)

Let $\alpha: G \to H$ be a group homomorphism. The *kernel* of α is defined by

$$\ker \alpha := \{ g \in G : \alpha(g) = 1_H \} \subseteq G$$

and the image of α is defined by

$$\operatorname{im} \alpha := \alpha(G) = {\alpha(g) : g \in G} \subseteq H.$$

• Proposition 36

Let $\alpha: G \to H$ be a group homomorphism.

- 1. $\lim \alpha$ is a subgroup of H
- 2. $\ker \alpha \triangleleft G$

Proof

1. Note that $1_H = \alpha(1_G) \in \alpha(G)$ (i.e. the identity is in im α). Also, for $h_1 = \alpha(g_1)$ and $h_2 = \alpha(g_2)$ in $\alpha(G)$ and $h_1, h_2 \in H$, we have

$$h_1h_2 = \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \in \alpha(G).$$

(i.e. im α i closed under its operation). By \bullet Proposition 20, $\alpha(g)^{-1} =$ $\alpha(g^{-1}) \in \alpha(G)$ (i.e. the inverse of an element is also in im α). Thus by the Subgroup Test, we have that im α is a subgroup of H.

2. For $\ker \alpha$, $\alpha(1_G) = 1_H$. For $k_1, k_2 \in \ker \alpha$, we have

$$\alpha(k_1k_2) = \alpha(k_1)\alpha(k_2) = 1 \cdot 1 = 1.$$

Also,

$$\alpha(k_1^{-1}) = \alpha(k_1)^{-1} = 1^{-1} = 1.$$

By the Subgroup Test, $\ker \alpha$ is a subgroup of G.

If $g \in G$ *and* $k \in \ker \alpha$ *, then*

$$\alpha(gkg^{-1})=\alpha(g)\alpha(k)\alpha(g^{-1})=\alpha(g)\alpha(g^{-1})=1.$$

Thus by \bullet *Proposition* 27, ker $\alpha \triangleleft G$.

Example 13.1.1

Consider the determinant map

$$\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$$
 defined by $A \mapsto \det A$.

Then $\ker \det = SL_n(\mathbb{R})$. Then $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$, as proven before.

Example 13.1.2

Define the sign of a permutation $\sigma \in S_n$ by

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even;} \\ -1 & \text{if } \sigma \text{ is odd.} \end{cases}$$

Then the sign mapping, $\operatorname{sgn}: S_n \to \{\pm 1\}$ defined by $\sigma \mapsto \operatorname{sgn}(\sigma)$ is a homomorphism.² Also, $\operatorname{ker} \operatorname{sgn} = A_n$. Thus, we have $A_n \triangleleft S_n$, as proven before.

² Think about why. It's quite straightforward using the defintion.

• Proposition 37 (Normal Subgroup as the Kernel)

If $K \triangleleft G$, then $K = \ker \phi$ where $\phi : G \rightarrow G/K$ is the coset map.

Proof

Recall that $\phi: G \to G/K$ is defined by $g \mapsto Kg$, $\forall g \in G$, and is a group homomorphism. By \bullet Proposition 22, we have

$$Kg = K = K1 \iff g \in K.$$

Thus $K = \ker \phi$.

■ Theorem 38 (First Isomorphism Theorem)

Let $\alpha: G \to H$ be a group homomorphism. We have

$$G_{\ker \alpha} \cong \operatorname{im} \alpha$$

Proof

Let $K = \ker \alpha$. Since $K \triangleleft G$ (by \bullet Proposition 36), G/K is a group. Let³

$$\bar{\alpha}: {}^{G}/_{K} \to \operatorname{im} \alpha$$
 be defined by $Kg \mapsto \alpha(g)$

Note that

$$Kg = Kg_1 \iff gg_1^{-1} \in K \iff \alpha(gg_1^{-1}) = 1 \iff \alpha(g) = \alpha(g_1).$$

Thus $\bar{\alpha}$ is well-defined and injective. Clearly, $\bar{\alpha}$ is surjective. It remains to

³ We must check that the function is well-defined, since cosets are not uniquely represented and so it is likely that a constructed mapping is not well-defined.

show that $\bar{\alpha}$ is a group homomorphism. $\forall g,h \in G$, we have

$$\bar{\alpha}(KgKh) = \bar{\alpha}(Kgh) = \alpha(gh) = \alpha(g)\alpha(h) = \bar{\alpha}(Kg)\bar{\alpha}(Kh).$$

Therefore, we have that $\bar{\alpha}$ is an isomorphism and hence $G_{\ker\alpha}\cong\operatorname{im}\alpha$ as desired. \Box

14 Lecture 14 Jun 01st 2018

14.1 *Isomorphism Theorems (Continued 2)*

14.1.1 *Isomorphism Theorems (Continued)*

66 Note (Recall)

In First Isomorphism Theorem 38, we had that for a group homomorphism $\alpha: G \to H$ where G and H are groups,

$$G_{\ker \alpha} \cong \operatorname{im} \alpha$$

Now let $\alpha: G \to H$ be a group homomorphism, $K = \ker \alpha$, $\phi: G \to G/K$ be the coset map, and $\bar{\alpha}$ be as defined in the proof of First Isomorphism Theorem 38. We then have the following commutative diagram to illustrate the relationship between the three groups.

A natural question to ask after seeing the relationship is: Is $\bar{\alpha}\phi = \alpha$? If it is, is the definition of $\bar{\alpha}$ unique? The answer is: **YES!** on both accounts.

Proof

Let $g \in G$. Then

$$\bar{\alpha}\phi(g) = \bar{\alpha}(\phi(g)) = \bar{\alpha}(Kg) = \alpha(g)$$

Suppose $\alpha = \beta \phi$ where $\beta : G/_K \to H$. Then

$$\beta(Kg) \stackrel{(1)}{=} \beta(\phi(g)) = \beta\phi(g) = \alpha(g) = \bar{\alpha}(Kg)$$

where (1) is because ϕ is surjective by \bullet Proposition 35. Therefore, we observe that $\beta = \bar{\alpha}$ for any $Kg \in {}^{G}/_{K}$. This proves that $\bar{\alpha}$ is the unique homomorphism such that ${}^{G}/_{K} \to H$ satisfying $\alpha = \bar{\alpha}\phi$.

With that, we have the following proposition.

• Proposition 39

Let $\alpha: G \to H$ be a group homomorphism, where G and H are groups. Let $K = \ker \alpha$. Then α factors uniquely as $\alpha = \bar{\alpha}\phi <$ where $\phi: G \to G/K$ is the coset map and $\bar{\alpha}: G/K \to H$ is defined by

$$\bar{\alpha}(Kg) = \alpha(g).$$

Note that ϕ *is surjective and* $\bar{\alpha}$ *is injective.*

In such a scenario, we also say that α factors through ϕ .¹

¹ Reference for the terminology: https://math.stackexchange. com/questions/68941/ terminology-a-homomorphism-factors.

Example 14.1.1

Let $G = \langle g \rangle$ be a cyclic group. Consider $\alpha : \mathbb{Z} \to G$, defined as

$$\forall k \in \mathbb{Z} \quad \alpha(k) = g^k,$$

which is a group homomorphism. By definition, α is surjective. Note that

$$\ker \alpha = \{k \in \mathbb{Z} : g^k = 1\}.$$

We have, therefore, two cases to consider.

• G is an infinite group

This would imply that $\ker \alpha = \{0\}$ since only $g^0 = 1$. Then by First Isomorphism Theorem 38, we have that

$$\mathbb{Z}_{\ker \alpha} \cong G$$

Note that²

 $^{^2}$ We are assuming that the group $\mathbb Z$ here works under the operation of addition, otherwise, if we employ multiplication, then $\mathbb Z$ would not be a group and α would not be a group homomorphism.

$$\mathbb{Z}_{\ker \alpha} = \{(\ker \alpha)k : k \in \mathbb{Z}\} = \{0 + k : k \in \mathbb{Z}\} = \mathbb{Z}.$$

Therefore

$$\mathbb{Z}\cong G$$

• *G* is a finite group

Suppose that $|G| = o(g) = n \in \mathbb{N}$, which is valid by \blacktriangleright Corollary 24. Then

$$\ker \alpha = n\mathbb{Z}$$

Then by the First Isomorphism Theorem 38, we have

$$\mathbb{Z}_{n\mathbb{Z}}\cong G.$$

Observe that

$$\mathbb{Z}_{n\mathbb{Z}} = \{n\mathbb{Z} + k : k \in \mathbb{Z}\} = \mathbb{Z}_n$$

since the set in the middle is the definition of the set of integers modulo $n.^3$ Therefore,

$$\mathbb{Z}_n \cong G$$

Therefore, we have that

$$\mathbb{Z} \cong G$$
 or $\mathbb{Z}_{o(g)} \cong G$

³ This is why we often see texts from various authors using $\mathbb{Z}/_{n\mathbb{Z}}$ to represent the set of integers modulo n.

■ Theorem 40 (Second Isomorphism Theorem)

Let H and K be the subgroups of a group G with $K \triangleleft G$. Then

- HK is a subgroup of G;
- *K* ⊲ *HK*;
- $H \cap K \triangleleft H$; and
- $HK/K \cong H/H \cap K$

Proof

Since $K \triangleleft G$, by Lemma 29 and \bullet Proposition 30, we have that HK = KH is a subgroup of G. Consequently, we have $K \triangleleft HK$, since K is clearly a subgroup of HK and $K \triangleleft G$, and so $\forall x \in HK \subseteq G$ we have that gK = Kg.

Consider $\alpha: H \to {HK}_{K}$, defined by⁴

⁴ Note that $Kh \in HK/K$ since $h \in H \subseteq HK$.

$$\alpha(h) = Kh$$

Now if $x = kh \in KH = HK$, then

$$Kx = K(kh) = Kh = \alpha(h).$$

Therefore, we have that α is surjective. Now by \bullet Proposition 22, observe that

$$\ker \alpha = \{h \in H : Kh = K\} = \{h \in Hh \in K\} = H \cap K.$$

Then by the First Isomorphism Theorem, we have that

$$HK/_K \cong H/_{H \cap K}$$

Since we have that $\ker \alpha = H \cap K$ and $\ker \alpha \triangleleft H$, we have that $H \cap K \triangleleft H$.

■ Theorem 41 (Third Isomorphism Theorem)

Let $K \subseteq H \subseteq G$ be groups, with $K \triangleleft G$ and $H \triangleleft G$. Then

$$H_{/K} \triangleleft G_{/K}$$
 and $(G_{/K}) / (H_{/K}) \cong G_{/H}$

Proof

Define $\alpha: {}^G/_K \to {}^G/_H$ by $\alpha(Kg) = Hg$ for all $g \in G$. Clearly, α is surjective. Now if $Kg = Kg_1$, for any $g, g_1 \in G$, then $gg_1 \in K \subseteq H$. Therefore, $Hg = Hg_1$. Thus α is well-defined. Now

$$\ker \alpha = \{Kg : Hg = H\} = \{Kg : g \in H\} = \frac{H}{K}.$$

Then

$$H/_K = \ker \alpha \triangleleft G/_K$$
.

By the First Isomorphism Theorem, we have

$$\left(G_{K}\right)/\left(H_{K}\right)$$

as required.

ONE REASON that we are interested in the symmetric group is that they contain all finite groups.

■ Theorem (Cayley's Theorem)

If G is a finite group of order n, then G is isomorphic to a subgroup of S_n .

15 Lecture 15 Jun 04th 2018

15.1 Group Action

15.1.1 Cayley's Theorem

■ Theorem 42 (Cayley's Theorem)

If G is a finite group of order n, then G is isomorphic to a subgroup of S_n .

Proof

Since G is finite, let $G = \{g_1, g_2, ..., g_n\}$ and let S_G be the permutation group of G. By identifying g_i with i, where $1 \le i \le n$, we see that $S_G \cong S_n^{-1}$. Therefore, it suffices to find an injective homomorphism² $\sigma: G \to S_G$.

Consider the function $\mu_a: G \to G$, where $a \in G$, such that $\mu_a(g) = ag$ for all $g \in G$. Clearly, μ_a is surjective. Suppose $\mu_a = \mu_b$, where $b \in G$. Then $a = \mu_a(1) = \mu_b(1) = b$. Thus μ_a is also injective. It follows that $\mu_a \in S_G$ by definition.

Now define the function $\sigma: G \to S_G$ such that $\sigma(a) = \mu_a$. Clearly, σ is injective, since $\sigma(a) = \sigma(b) \implies \mu_a = \mu_b$. Observe that $\sigma(ab) = \mu_{ab} = ab = \mu_a\mu_b$. Thus σ is a group homomorphism. Note that $\ker \sigma = \{1\}$, the trivial group. It follows from the First Isomorphism Theorem that $G \cong \operatorname{Im} \sigma \leq S_G \cong S_n$. $\sigma \in S_n \subseteq S_n$.

Cayley's Theorem is, however, too strong at times. We can certainly find a smaller integer m such that G is contained in S_m . Con-

- 1 S_{G} is the permutation group of G. We can think of S_{G} as a group of permutations that permutes the index of the elements of G. Since there are n indices, there are n! ways to permute the indices, and so $|S_{G}| = n! = |S_{n}|$. Then we can certainly find some isomorphism from S_{G} to S_{n} , and so $S_{G} \cong S_{n}$.
- ² Why do we need injectivity? We need homomorphicity in order to invoke the First Isomorphism Theorem so that we can get $G \cong \operatorname{im} \sigma \leq S_G \cong S_n$.
- ³ We shall use $H \le G$ to denote that H is a subgroup of G from here on.
- ⁴ This is a result from **6** Proposition 36

sider the following example.

Example 15.1.1

Let $H \leq G$ with $[G : H] = m < \infty$. Let $X = \{g_1H, g_2H, ..., g_mH\}$ be the set of all distinct left cosets of H in G⁵. For $a \in G$, define $\lambda_a : X \to X$ by $\lambda_a(gH) = agH, gH \in X$.

Note that λ_a is a bijection⁶, and so $\lambda_a \in S_X$, the permutation group of X. Consider the mapping $\tau: G \to S_X$ defined by $\tau(a) = \lambda_a$ for $a \in G$. Note that $\forall a,b \in G$, $\lambda_{ab} = \lambda_a \lambda_b$. Thus τ is a homomorphism. Note that if $a \in \ker \tau$, then aH = H which implies $a \in H$ by \bullet Proposition 22. Thus $\ker \tau \subseteq H$.

From the example above, if we apply the First Isomorphism Theorem, then

$$G_{\ker \tau} \cong \operatorname{im} \tau \leq S_X \cong S_m \leq S_n.$$

This is the result that we desired.

■ Theorem 43 (Extended Cayley's Theorem)

Let $H \leq G$ with $[G:H] = m < \infty$. If G has no normal subgroup contained in H except for the trivial subgroup $\{1\}$, then G is isomorphic to a subgroup of S_m .

Proof

By our assumption, let X be the set of all distinct left cosets of H in G. Then we have that |X| = m and so $S_X \cong S_m$ 7. From Example 15.1.1, we have that there exists a group homomorphism $\tau: G \to S_X$ with $K := \ker \tau \subseteq H$. So by the First Isomorphism Theorem, we have that

$$G_{K} \cong \operatorname{im} \tau$$
.

Since $K \subseteq H$ and $K \triangleleft G$, we have, by assumption, that $K = \{1\}$. It follows that

$$G \cong \operatorname{im} \tau \leq S_X \cong S_m$$
.

⁵ This is simply a consequence of [G:H]=m.

⁶ This is true as shown in the proof above, but it can also serve as a tiny exercise.

⁷ This is as argued in the proof of Cayley's Theorem.

Corollary 44

Let $|G| = m \in \mathbb{N}$ and p the smallest prime such that p|m. If $H \leq G$ with [G:H] = p, then $H \triangleleft G$.

Proof

Let X be the set of all distinct left cosets of H in G. We have |X| = p and so $S_X \cong S_p$. Let $\tau : G \to S_X \cong S_p$ be as defined in Example 15.1.1, with $K := \ker \tau \subseteq H$. By the First Isomorphism Theorem, we have that

$$G_{K} \cong \operatorname{im} \tau \leq S_{X} \cong S_{p}$$
,

i.e. G_K is isomorphic to a subgroup of S_p . Therefore, by Lagrange's Theorem, we have that |G/K| p!.

Also, since $K \subseteq H$, if $[H : K] = k \in \mathbb{N}$, then

$$\left| \frac{G}{K} \right| \stackrel{\text{(1)}}{=} \frac{|G|}{|K|} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = pk,$$

where (1) is by \bullet Proposition 35. Therefore we have that pk | p! and so k | (p-1)!.

Note that $k \mid |H|^8$, which divides |G|, and p is the smallest prime dividing |G|. Thus every prime divisor of k must be $\geq p.9$ Thus k = 1, which implies that K = H. Therefore, $H \triangleleft G$ as desired.

Group Action 15.1.2

Definition 28 (Group Action)

Let G be a group, X a non-empty set. A group action of G on X is a mapping $G \times X \to X$ denoted as $(a, x) \to ax$ such that

1.
$$1 \cdot x = x, x \in X$$

2.
$$a \cdot (b \cdot x) = (ab) \cdot x$$
, $a, b \in G$, $x \in X$

In this case, we say G acts on X.

⁸ This is clear since |H| = k |K|.

9 By the Fundamental Theorem of Arithmetic, and since *k* is finite, let $k = p_1^{a_1} p_2^{a_2} ... p_m^{a_m}$, where p_i 's are distinct primes and $a_i \in \mathbb{N}$ are the multiplicities of the *i*th, and by the Well-Ordering Principle, let $p_i < p_{i+1}$. Then we have, for some $b = b_1^{c_1} b_2^{c_2} \dots b_i^{c_j} \in \mathbb{N}$ where the b_i 's are distint primes, $b_i < b_{i+1}$, and $c_i \in \mathbb{N} \cup \{0\}$,

$$m = kb = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m} b_1^{c_1} b_2^{c_2} \dots b_j^{c_j}.$$

Since p is the smallest prime that divides m, we have

$$p = \min\{p_1, p_2, ..., p_m, b_1, b_2, ..., b_j\}$$

= \text{min}\{p_1, b_1\}

16 Lecture 16 Jun 06th 2018

16.1 Group Action (Continued)

16.1.1 Group Action (Continued)

Remark

Let G be a group acting on a set X. For $a,b \in G$, and $x,y \in X$, we have that

$$a \cdot x = b \cdot y \iff (b^{-1}a) \cdot x = y.$$

In particular, we have

$$a \cdot x = a \cdot y \iff x = y.$$

For $a \in G$, define $\sigma_a : X \to X$ by $\sigma_a(x) = a \cdot x$ for all $x \in X$. In A₃, we will be showing that¹:

- 1. $\sigma_a \in S_X$, the permutation group of X; and
- 2. The function $\Theta: G \to S_X$ given by $\Theta(a) = \sigma_a$ is a group homomorphism with

$$\ker\Theta = \{a \in G : a \cdot x = x, x \in X\}.$$

Note that the group homomorphism $\Theta: G \to S_X$ gives an **equivalent definition** of a **Group Action** of G on X. If X = G, |G| = n and $\ker \Theta = \{1\}^2$, then the map $\Theta: G \to S_G \cong S_n$ shows that G is isomorphic to a subgroup of S_n ³, which the equivalent statement of Cayley's Theorem.

Example 16.1.1

If G is a group, let G act on itself by $a \cdot x = a \cdot x \cdot a^{-1}$, for all $a, x \in G$. Note that the axioms of a group action is satisfied: ¹ This will be added after the assignment.

² This is also called a **faithful group action**.

Exercise 16.1.1

Verify that G is indeed isomorphic to a subgroup of S_n using the given information and the equivalent definition of a group action

94 Lecture 16 Jun o6th 2018 - Group Action (Continued)

1.
$$1 \cdot x = 1 \cdot x \cdot 1^{-1} = x$$
; and

2.
$$a \cdot (b \cdot x) = a \cdot (b \cdot x \cdot b^{-1}) \cdot a = ab \cdot x \cdot (ab)^{-1} = (ab) \cdot x$$
.

In this case, we say that G acts on itself by conjugation.

■ Definition 29 (Orbit & Stabilizer)

Let G be a group acting on a set X, and $x \in X$. We denote by

$$G \cdot x = \{g \cdot x : \forall g \in G\}$$

the orbit of X and

$$S(x) = \{ g \in G : g \cdot x = x \} \subseteq G$$

the stabilizer of X.

There is no standardized way of expressing the orbit and the stabilizer, i.e. the notation for orbit and stabilizers will be different across many references.

• Proposition 45

Let G be a group acting on a set X an $x \in X$. Let $G \cdot x$ and S(x) be the orbit and stabilizer of X respectively. Then

- 1. $S(x) \leq G$
- 2. there is a bijection from $G \cdot x$ to $\{gS(x) : g \in G\}$ and thus $|G \cdot x| = [G : S(x)]$.

Proof

1. Since $1 \cdot x = x$, we have $1 \in S(x)$. If $g, h \in S(x)$, then

$$gh \cdot x = g \cdot (h \cdot x) = g \cdot x = x$$

i.e. S(x) *is closed under "composition of group action". Also note that*

$$g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = 1 \cdot x = x.$$

Thus the inverse of each element is also in S(x). Therefore, by the Subgroup Test, $S(x) \leq G$.

2. For the sake of simplicity, let us write S = S(x). Consider the map

$$\phi: G \cdot x \to \{gS(x): g \in G\}$$

defined by $\phi(g \cdot x) = gS$ ⁴. To verify that the map is well-defined, note that

⁴ We go with the most simplistic and rather naive kind of function here.

$$g \cdot x = h \cdot x \iff (h^{-1}g) \cdot x = x = 1 \cdot x$$

$$\iff \phi(h^{-1}g \cdot x) = \phi(1 \cdot x)$$

$$\iff h^{-1}gS = 1 \cdot S = S$$

$$\iff gS = hS$$

We also observe that ϕ is injective. It is also clear that ϕ is onto, and therefore we have that ϕ is a bijection. It follows that

$$|G \cdot x| = |\{gS : g \in G\}| = [G : S]$$

■ Theorem 46 (Orbit Decomposition Theorem)

Let G be a group acting on a non-empty finite set X. Let

$$X_f = \{x \in X : a \cdot x = x, \forall a \in G\}$$

(Note that $x \in X_f \iff |G \cdot x| = 1)^5$

Let $G \cdot x_1$, $G \cdot x_2$, ..., $G \cdot x_n$ denote the distinct nonsingleton orbits (i.e. $|G \cdot x_i| > 1$ for all $1 \le i \le n$). Then

$$|X| = \left| X_f \right| + \sum_{i=1}^n [G : S(x_i)].$$

⁵ Notice that

$$\begin{aligned} x \in X_f &\iff \forall a \in G \ a \cdot x = x \\ &\iff \forall g \cdot x \in G \cdot x \quad g \cdot x = x \\ &\iff |G \cdot x| = 1 \end{aligned}$$

Proof

Note that for a, b \in *G and x, y* \in *X,*

$$a \cdot x = b \cdot y \overset{WLOG}{\iff} (b^{-1}a) \cdot x = y$$
$$\iff y \in G \cdot x$$
$$\overset{(1)}{\iff} G \cdot x = G \cdot y$$

where (1) is the conclusion after consider the other case where $(a^{-1}b) \cdot y = x$.

Thus, we see that the two orbits are either disjoint or the same, but not both. It follows that the orbits form a disjoint union of X. Since $x \in X_f \iff |G \cdot x| = 1$, the set $X \setminus X_f$ contains all nonsingleton orbits, which are disjoint. It follows that

$$|X| = |X_f| + \sum_{i=1}^n |G \cdot x_i| \stackrel{(2)}{=} |X_f| + \sum_{i=1}^n [G : S(x_i)]$$

where (2) is by • Proposition 45.

17 Lecture 17 Jun 08th 2018

17.1 *Group Action (Continued 2)*

17.1.1 *Group Action (Continued 2)*

66 Note (Recall **P** Theorem 46)

Let G act on a finite set $X \neq \emptyset$. Let¹

$$X_f = \{x \in X : a \cdot x = x, a \in G\}$$

Let $G \cdot x_1, G \cdot x_2, ..., G \cdot x_n$ be distinct nonsingleton orbits (ie. $|G \cdot x_i| > 1$). Then

$$|X| = |X_f| + \sum_{i=1}^n [G:S(x_i)].$$

Example 17.1.1 (Conjugacy Class & Centralizer)

Let G be a finite group acting on itself by conjugation. In the context of

P Theorem 46, we have that

$$X = G$$
 $G_f = \{x \in G : gxg^{-1} = x, g \in G\}$
 $= \{x \in G : gx = xg, g \in G\} = Z(G),$

where we recall that Z(G) is the center of G. Now for any $x \in G$, we have

$$G \cdot x = \{gxg^{-1} : g \in G\},$$

which is known as the conjugacy class of x. We also have

$$S(x) = \{g \in G : gxg^{-1} = x\} = \{g \in G : gx = xg\} = C_G(x),$$

 $^{\scriptscriptstyle \mathrm{I}}$ X_f is also called the set of elements of X that are fixed by the action of G.

which is called the centralizer of x.

Putting the above example with
Theorem 46, we have the following corollary.

► Corollary 47 (Class Equation)

Let G be a finite group and $\{gx_1g^{-1}:g\in G\}$, ..., $\{gx_ng^{-1}:g\in G\}$ denote the distinct nonsingleton conjugacy classes. Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C_G(x_i)].$$

♣ Lemma 48

Let G be a group of order p^m , where p prime and $m \in \mathbb{N}$, which acts on a finite set X. Let

$$X_f = \{x \in X : a \cdot x = x, a \in G\}.$$

Then we have

$$|X| \equiv \left| X_f \right| \mod p$$

Proof

By the Orbit Decomposition Theorem, we have that

$$|X| = \left| X_f \right| + \sum_{i=1}^n [G : S(x_i)],$$

where $[G:S(x_i)] > 1$ for $1 \le i \le n$. For any x_i , by Lagrange's Theorem, $[G:S(x_i)] \mid |G| = p^m$. Since $[G:S(x_i)] > 1$, we have, by the Fundamental Theorem of Arithmetic, that $[G:S(x_i)]$ must be a multiple of p, i.e. p divides $[G:S(x_i)]$, for all i. Therefore, $p \mid (|X| - |X_f|)$, i.e.

$$|X| \equiv \left| X_f \right| \mod p,$$

as required.

RECALL Lagrange's Theorem: If *G* is finite and $g \in G$, then

$$o(g) \mid |G|$$
.

An interesting question to ask here is: Is the converse true? I.e., given a group G with an integer m such that $m \mid |G|$, does G contain an element of order m?

Consider K_4 , the Klein 4-group. Note that all elements of K_4 have order at most 2, but $4|K_4| = 4$.

Now if *m* is some prime, is the converse still true?

■ Theorem 49 (Cauchy's Theorem)

Let p be a prime, G be a finite group. If $p \mid |G|$, then G contains an element of order p.

Proof (McKay)

Let |G| = n. Suppose $p \mid n$. Let

$$X = \{(a_1, ..., a_p) : a_i \in G, a_1 ... a_p = 1\}.$$

Note that $X \neq \emptyset$, since $(1,...,1) \in X$ (so the proof is not vacuous). Take any $a_1, ..., a_{p-1} \in G$, then a_p is uniquely determined, i.e.

$$a_p = (a_1 \dots a_{p-1})^{-1}.$$

Now for each a_i , we have n choices, thus $|X| = n^{p-1}$.

Let $\mathbb{Z}_p = (\mathbb{Z}_p, +)$ act on X by "cycling", i.e. $\forall k \in \mathbb{Z}_p$,

$$k \cdot (a_1, a_2, ..., a_p) = (a_{k+1}, a_{k+2}, ..., a_p, a_1, ..., a_k).$$

³ Note that

$$(a_1,...,a_p) \in X_f \iff \text{every cycled shift of } (a_1,...,a_p) \text{ is itself}$$

 $\iff a_1 = a_2 = \ldots = a_p \text{ and } a_1a_2...a_p = 1$

i.e. all of the components of the p-tuple are the same. Now if $(a_1, ..., a_p)$ has at least 2 distinct components, then its orbits must have p elements. ² Convince yourself why this is true.

³ We want to use **P** Theorem 46 from here.

In other words, for some $r \in \mathbb{N}$, for each $1 \le i \le r$, we have that $[G: S(x_i)] = p$. Then, by the Orbit Decomposition Theorem,

$$n^{p-1} = |X| = \left| X_f \right| + \sum_{i=1}^r [G : S(x_i)]$$
$$\left| X_f \right| = n^{p-1} - rp.$$

We observe that $|X_f|$ is indeed divisible by p and is non-zero, since $(1,...,1) \in X_f$. Therefore, there exists some $a \neq 1 \in G$, such that $(a,...,a) \in X_f$, i.e. $a^p = 1$. We know that p is the smallest power by construction, and therefore o(a) = p as required.

18 Lecture 18 Jun 13th 2018

18.1 Finite Abelian Groups

18.1.1 Primary Decomposition

66 Note (Notation)

Let G be an abelian group and $m \in \mathbb{Z}$. We define

$$G^{(m)} := \{ g \in G : g^m = 1 \}$$

• Proposition 50 (Group of Elements of the Same Order is a Subgroup)

Let G be an abelian group. Then $G^{(m)} \leq G$.

Proof

Note that $1^m = 1 \in G^{(m)}$. $\forall g, h \in G^{(m)}$, since G is abelian, we have that $1^m = 1 \in G^{(m)}$.

$$(gh)^m = g^m h^m = 1 \cdot 1 = 1.$$

Therefore $gh \in G^{(m)}$. Also, for $g \in G^{(m)}$, we have

$$(g^{-1})^m = (g^m)^{-1} = 1.$$

Thus $g^{-1} \in G^{(m)}$. By the Subgroup Test, we have that $G^{(m)} \leq G$.

¹ Pay attention that this is only true if *G* is abelian.

• Proposition 51 (Decomposition of a Finite Abelian Group)

Let G be a finite abelian group with |G| = mk such that gcd(m, k) = 1. Then

- 1. $G \cong G^{(m)} \times G^{(k)}$; and
- 2. $|G^{(m)}| = m \text{ and } |G^{(k)}| = k$.

Proof

1. Since G is abelian, $G^{(m)} \triangleleft G$ and $G^{(k)} \triangleleft G$.

Claim 1:
$$G^{(m)} \cap G^{(k)} = \{1\}$$

Proof of Claim 1:
$$\forall g \in G^{(m)} \cap G^{(k)}, g^m = 1 = g^k$$

Claim 2:
$$G = G^{(m)}G^{(k)}$$
 2

$$\forall g \in G :: o(g) = mk \quad 1 = g^{mk} = (g^k)^m = (g^m)^k$$

It follows that $g^k \in G^{(m)}$ and $g^m \in G^{(k)}$. From **Claim 1** and by abelianness, we have that

$$g = g^{mx+ky} = (g^k)^y (g^m)^x \in G^{(m)}G^{(k)}$$

Thus $G \subseteq G^{(m)}G^{(k)}$. On the other hand, since $G^{(m)} \triangleleft G$ and $G^{(k)} \triangleleft G$, by Lemma 29, we have that $G^{(m)}G^{(k)} \leq G$ and hence $G^{(m)}G^{(k)} \subseteq G$. Thus $G = G^{(m)}G^{(k)}$ as claimed.

From Claims 1 and 2, we can conclude by \blacktriangleright Corollary 33³, that $G \cong G^{(m)} \times G^{(k)}$ as required.

2. Write
$$|G^{(m)}| = m'$$
 and $|G^{(k)}| = k'$. By part (1), we have that $mk = |G| = m'k'$.

Claim 3: gcd(m, k') = 1

Suppose not

$$\implies \exists p \ prime \quad p \mid m \ and \ p \mid k'$$

$$\implies \exists g \in G^{(k)} \quad o(g) = p \quad \therefore \text{ Cauchy's Theorem}$$

Now
$$p \mid m \implies \exists q \in \mathbb{Z} \quad m = pq$$

$$\implies g^m = g^{pq} = 1 :: o(g) = p$$

$$\implies g \in G^{(m)}$$
.

By part (1), we have that $g \in G^{(m)} \cap G^{(k)} = \{1\} \implies g = 1$, which

² Recall that this is the Product

³ Should this not be ■ Theorem 32?

contradicts the fact that o(g) = p. Thus gcd(m, k') = 1 as claimed. Similarly, we can get that gcd(m', k) = 1.

Notice that $mk = m'k' \implies m \mid m'k'$ $\implies m \mid m' \quad :: \gcd(m, k') = 1 \text{ and similarly } k \mid k'. \text{ But then } mk = m'k' \text{ would imply that } m' = m \text{ and } k' = k.$

As a direct consequence of • Proposition 51, we have the following:

■ Theorem 52 (Primary Decomposition)

Let G be a finite abelian group with $|G| = p_1^{n_1} \dots p_k^{n_k}$, where p_1, \dots, p_k are distinct primes, and $n_1, \dots, n_k \in \mathbb{N}$. Then

1.
$$G\cong G^{\left(p_1^{n_1}\right)}\times\ldots\times G^{\left(p_k^{n_k}\right)}$$
; and

2.
$$\forall i \ 1 \leq i \leq k \quad \left|G^{\left(p_i^{n_i}\right)}\right| = p_i^{n_i}.$$

18.1.2 p-Groups

On a related note of the groups $G^{\left(p_i^{n_i}\right)}$, we define the following:

Definition 30 (p-Group)

Let p be a prime. A p-group is a group in which every element has an order that is a non-negative power of p.

• Proposition 53 (p-Groups are Finite)

A finite group G is a p-group \iff |G| is a power of p (including p^0).

Proof

 (\Leftarrow) If $|G| = p^{\alpha}$ for some $\alpha \in \mathbb{N} \cup \{0\}$ and $g \in G$, by \blacktriangleright Corollary 24, $o(g) \mid p^{\alpha}$

 \implies G is a p-group.

(\Longrightarrow) Consider the contrapositive and let $|G|=p^np_2^{n_2}\dots p_k^{n_k}$ where $p,p_2,...,p_k$ are distinct primes, $n\in\mathbb{N}\cup\{0\}$, and $n_2,...,n_k\in\mathbb{N}$. For $k\geq 2$, by Cauchy's Theorem, $p_2\mid |G|$

$$\implies \exists g_1 \in G \quad o(g_1) = p_2$$

$$\implies$$
 G is not a p-group.

Therefore, our desired result follows.

OUR END GOAL here is to prove to ourselves that all finite abelian groups can be written as cross products of cyclic groups, i.e. if *G* is an abelian group, then

$$G \cong C_1 \times C_2 \times \ldots \times C_n$$
.

With **P** Theorem 52, we have that

$$G \cong G_1 \times G_2 \times \ldots \times G_n$$
.

The following proposition will enable us to get to our goal from our current position:

• Proposition (Finite Abelian p-Groups of order p are Cyclic)

If G is a finite abelian p-group that contains only one subgroup of order p, where p is prime, then G is cyclic. In other words, if a finite abelian p-group is not cyclic, then it must have at least 2 subgroups of order p.

19 Lecture 19 Jun 15th 2018

19.1 Finite Abelian Groups (Continued)

19.1.1 p-Groups (Continued)

66 Note (Recall)

Recall the definition of a p-group:

G is a p-group if the order of all of its elements is a non-negative power of $p \iff |G| = p^k$ for some $k \in \mathbb{N} \cup \{0\}$.

We shall now proceed to prove the proposition mentioned by the end of last class.

• Proposition 54 (Finite Abelian *p*-Groups of Order *p* are Cyclic)

If G is a finite abelian p-group that contains only 1 subgroup of order p, then G is cyclic. In other words, if a finite abelian p-group is not cyclic, then G has at least 2 subgroups of order p.

Proof

Since G is finite, let $y \in G$ have maximal order.

Claim:
$$G = \langle y \rangle$$

Proof of Claim: Suppose not. Since $\langle y \rangle \triangleleft G^1$, consider the quotient group $G_{\langle y \rangle}$, which is, therefore, a nontrivial p-group, since $|\langle y \rangle| = p$. By Cauchy's Theorem, we know that $\exists z \in G_{\langle y \rangle}$ such that $o(z) = p^2$. In particular, we have that $z \neq 1^3$. Consider the coset map

 1 We have $\langle y \rangle$ ≤ G and G is abelian.

² Note that we have $G/\langle y \rangle$ is a p-group $\iff |G/\langle y \rangle| = p^k$ for some $k \in \mathbb{N} \cup \{0\}$. The existence of our chosen z follows from there by Cauchy's Theorem.

³ If z = 1, then its order would not be p.

$$\pi: G \to G/\langle y \rangle$$
.

Let $x \in G$ such that $\pi(x) = z^4$. Since

$$\pi(x^p) = \pi(x)^p = z^p = 1$$
,

we have that x^p gets mapped to 1 by π , i.e. $x^p \in \langle y \rangle$.

 $\implies \exists m \in \mathbb{Z} \text{ such that } x^p = y^m. \text{ We shall consider two cases:}$

Case 1: $p \nmid m$.

 $\therefore p \nmid m$, we have that $gcd(m, |\langle y \rangle|) = 1$, and hence by \bullet Proposition 18 5, we have that $o(y^m) = o(y)$. Because y has maximal order, we have

$$o(x^p) \stackrel{(1)}{<} o(x) \le o(y) = o(y^m) = o(x^p)$$

where note that (1) is true because x would need to take more powers of p than x^p to get back to 1. We observe that we have arrived at a contradiction.

Case 2: p | m.

$$p \mid m \implies \exists k \in \mathbb{Z} \ m = pk \implies x^p = y^m = y^{pk}$$

: G is abelian, we have that $(xy^-k)^p = 1$.

By assumption, there is only one subgroup of G of order p, call it H. Thus $xy^k \in H$. On the other hand, by the Fundamental Theorem of Finite Cyclic Groups 6 , $\langle y \rangle$ has only one subgroup of order p, which must be H. Therefore, in particular, we have $xy^{-k} \in \langle y \rangle$ which implies $x \in \langle y \rangle$. It follows that $z = \pi(x) = 1$ since $\langle y \rangle$ is the identity in the quotient group $G/\langle y \rangle$, which contradicts our choice of $z \neq 1$.

Therefore, by combining the two cases, we have that $G = \langle y \rangle$.

 4 Recall that π is surjective by

• Proposition 35.

b Proposition (Proposition 18) Let $G = \langle g \rangle$ with $o(g) = n \in \mathbb{N}$. We have

$$G = \langle g^k \rangle \iff \gcd(k, n) = 1$$

Proof Theorem (Theorem 19) Let $G = \langle g \rangle$ with $o(g) = n \in \mathbb{N}$.

- 1. H is a subgroup of $G \implies \exists d \in \mathbb{N}$ $d \mid n$ $H = \langle g^d \rangle \implies |H| \mid n$.
- 2. $k \mid n \implies \langle g^{\frac{k}{n}} \rangle$ is the unique subgroup of G of order k.

• Proposition 55

Let $G \neq \{1\}$ be a finite abelian p-group that contains one subgroup of order p. Let C be the cyclic subgroup of G of maximal order. Then $\exists B \leq G$ such that G = CB and $C \cap B = \{1\}$. By \blacktriangleright Corollary 33, we have $G \cong C \times B$.

Proof

We shall prove this result by induction. If |G| = p, then C = G by definition and we can choose $B = \{1\}$. The result follows from there.

Suppose that the result holds for all groups of order p^{n-1} with $n \in \mathbb{N}$ and $n \geq 2$. Consider the case for $|G| = p^n$. There are two cases to consider from here.

Case 1: If C = G, then we can pick $B = \{1\}$ so that the result follows.

Case 2: If $C \neq G$, then G is not cyclic. By \P Proposition 54, there exists at least 2 subgroups of G that are of order p. Since G is cyclic, by the Fundamental Theorem for Finite Cyclic Groups, we have that G contains exactly one subgroup of order G. Then G is G such that G is abelian, G is and consequently $G \cap G$ is abelian, G is and hence we may consider its coset map:

$$\pi: G \to G/D$$
.

If we consider $\pi \upharpoonright_C$, called the **restriction** of π on C ⁷, then $\ker \pi \upharpoonright_C = C \cap D = \{1\}$. Then by the First Isomorphism Theorem, we have

$$C = \frac{C}{\ker \pi} \upharpoonright_C \cong \operatorname{im} \pi \upharpoonright_C = \pi(C).$$

Now let y be the generator of the cyclic group C. Then since $\pi(C) \cong C$, we have $\pi(C) = \langle \pi(y) \rangle$. By assumption on C, $\pi(C)$ is the cyclic subgroup of G_D of maximal order B. Since $|G_D| = p^{n-1}$ by Lagrange's Theorem, and by the induction hypothesis, G_D has a subgroup E such that $\pi(C)E = G_D$ and $\pi(C) \cap E = \{1\}$.

Therefore, choose $B = \pi^{-1}(E)$, i.e. $\pi(B) = E$.

Claim 1: G = CB

Note that $D \subseteq B$ 9. If $x \in G$, $\therefore \pi(C)\pi(B) = \pi(C)E = \frac{G}{D}$, we have that $\exists u \in C$, $\exists v \in B$ such that

$$\pi(x) = \pi(u)\pi(v).$$

By homomorphicity, we have $\pi(xu^{-1}v^{-1}) = 1$ which implies $xu^{-1}v^{-1} \in D \subseteq B$. Then because $v \in B$, we have that $xu^{-1} \in B$ since B is a group. Then since G is abelian, we have

$$x = uxu^{-1} \in CB$$
.

Claim 2: $C \cap B = \{1\}$.

Let $x \in C \cap B$. Then $\pi(x) \in \pi(C) \cap \pi(B) = \pi(C) \cap E = \{1\}$. Then, $\therefore \pi(x) = 1 \in {}^{C}/_{D}$, we have that $x \in D$. Therefore, $x \in C \cap D = \{1\}$ which then x = 1.

⁷ The restriction of π on *C* simply means that we restrict the domain of π to work solely for the subset *C*. In plain words, we are only considering the case where π is applied onto elements of *C*.

⁸ Since $C \cong \pi(C)$, this is a clear result. Otherwise, if there is some other $\pi(K)$ that has a larger order than $\pi(C)$, then by $\pi^{-1}(K)$, we will get some cyclic subgroup that has an order that is larger than C, which is a clear contradiction to our assumption.

⁹ Note that *E* is a subgroup of $^{G}/_{D}$, so the identity of $^{G}/_{D}$, *D* must be in *E*. Therefore, we clearly have $D \subseteq B$.

108	<i>Lecture</i> 19	Jun 15th 2018	-	Finite Abelian	Groups	(Continued)

Since Claims 1 & 2 hold, the result follows by induction.

20 Lecture 20 Jun 18th 2018

20.1 Finite Abelian Groups (Continued 2)

20.1.1 *p-Groups* (Continued 2)

Recall that we had the following subgroup of a group *G*.

$$G^{(m)} = \{ g \in G : g^m = 1 \}.$$

We discussed about the Primary Decomposition, ■ Theorem 52, and then arrived at ♠ Proposition 55. With these, we can have the following theorem:

■ Theorem 56 (Finite Abelian Groups are Isomorphic to a Direct Product of Cyclic Groups)

Let $G \neq \{1\}$ be a finite abelian p-group. Then G is isomorpic to a direct product of cylic groups.

Proof

By lacktriangleq Proposition 55, there is a cyclic group C_1 and a subgroup B_1 of G, such that $G \cong C_1 \times B_1$. Since $B_1 \leq G$, we have that $|B_1| \mid |G|$, and so by \blacksquare Theorem 23, B_1 is also a p-group. If $B_1 \neq \{1\}$, then by lacktriangleq Proposition 55, there exists a cyclic group C_2 and a $B_2 \leq B_1$ such that $B_1 \cong C_2 \times B_2$.

By continuing this line of argument, we can get $C_1, C_2, ...$ until we get to some C_k with $B_k = \{1\}$, for some $k \in \mathbb{N}$. Then

$$G \cong C_1 \times C_2 \times \ldots \times C_k$$

as required.

Remark

We can verify that the decomposition of a finite abelian p-group into a direct product of cyclic groups is in fact unique up to their orders.¹

Combining the above remark, **P** Theorem 52 and **P** Theorem 56, we have the following theorem.

¹ This is the bonus question on A4. It will be included once the assignment is over.

■ Theorem 57 (Finite Abelian Group Structure)

If G is a finite abelian group, then

$$G \cong C_{p_1^{n_i}} \times \ldots \times C_{p_k^{n_k}}$$

where $C_{p_i^{n_i}}$ is a cyclic group of order $p_i^{n_i}$, where $1 \le i \le k$. The numbers $p_i^{n_i}$ are uniquely determined up to their order.²

² Note that the p_i 's do not have to be unique.

Remark

Note that if p_1 and p_2 are distinct primes, then

$$C_{p_1^{n_1}} \times C_{p_2^{n_2}} \cong C_{p_1^{n_1}p_2^{n_2}},$$

the cyclic group of order $p_1^{n_1}p_2^{n_2}$. Thus, by combining suitable prime factors together, for a finite abelian group G, we can also write

$$G \cong \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \ldots \times \mathbb{Z}_{m_r}$$

where $m_i \in \mathbb{N}$, $i \leq 1 \leq r$, $m_1 > 1$ and

$$m_1 \mid m_2 \mid \ldots \mid m_r$$

Example 20.1.1

Conder an abelian group G with order 48. Since $48 = 2^4 \cdot 3$, an abelian group of order 48 is isomorphic to $H \times \mathbb{Z}_3$, where H is an abelian group of order 2^4 . The options for H are:

Therefore, we have the following possible decompositions of G:

$$G \cong \mathbb{Z}_{2^4} \times \mathbb{Z}_3 \cong \mathbb{Z}_{48}$$

$$G \cong \mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_3 = \mathbb{Z}_2 \times \mathbb{Z}_{24}$$

$$G \cong \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_3 = \mathbb{Z}_4 \times \mathbb{Z}_{12}$$

$$G \cong \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{12}$$

$$G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_6$$

20.2 Rings

20.2.1 Rings

Definition 31 (Ring)

A set R is a ring if $\forall a, b, c \in R$,

1.
$$a+b \in R$$

2.
$$a + b = b + a$$

3.
$$a + (b + c) = (a + b) + c$$

4.
$$\exists 0 \in R \ a + 0 = a = 0 + a$$

5.
$$\exists (-a) \in R \ a + (-a) = 0 = (-a) + a$$

6.
$$ab \in R$$

7.
$$a(bc) = (ab)c$$

8.
$$\exists 1 \in R \ 1 \cdot a = a = a \cdot 1$$

9.
$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$

We call 1 as the **Unity** of R, 0 as the **Zero** of R, and -a as the **negative** of a.

The ring R is called a *Commutative Ring* if it also satisfies the following:

10.
$$ab = ba$$
.

As daunting as this definition seems, it is much easier to remember if we think of *R* being an abelian group under addition, "almost" a group under multiplication, save the fact that the multiplicative inverse of an element does not necessarily exist, and with the distributive law.

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative rings with the zero being 0, and unity being 1.

Example 20.2.2

For $n \in \mathbb{N}$, $n \geq 2$, \mathbb{Z}_n is a commutative ring with the zero being [0], and unity being [1].

Example 20.2.3

The set $M_n(\mathbb{R})$ is a ring using matrix addition and matrix multiplication, with zero being the zero matrix 0, and unity being the identity matrix I. We also know that $M_n(\mathbb{R})$ is not commutative.

*Warning

Note that since (R, \cdot) is not a group, we no longer have the liberty of using \bullet Proposition 6, i.e. we do not have left or right cancellation. For example, in \mathbb{Z} , $0 \cdot x = 0 \cdot y \implies x = y$.

21 Lecture 21 Jun 20th 2018

21.1 Rings (Continued)

21.1.1 Rings (Continued)

66 Note (Notation)

Given a ring R, to distinguish the difference between multiples in addition and in multiplication, for $n \in \mathbb{N} \land a \in R$, we write

$$na = \underbrace{a + a + \ldots + a}_{n \text{ times}}$$

and

$$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ times}}$$

respectively. Also, we will define

$$(-n)a = \underbrace{(-a) + (-a) + \ldots + (-a)}_{n \text{ times}}$$

and

$$a^{-n} = \left(a^{-1}\right)^n$$

 $if a^{-1} exists.$

66 Note

Recall that for a group G and $g \in G$, we have $g^0 = 1$, $g^1 = g$, and

114 Lecture 21 Jun 20th 2018 - Rings (Continued)

$$(g^{-1})^{-1} = g$$
. Thus for addition, we have

integer

$$\uparrow \\
0 \cdot a = 0 \\
\downarrow \\
zero in R \\
-(-a) = a$$

Also, by \bullet Proposition 5, if $n, m \in \mathbb{Z}$, we have

$$m \cdot a + n \cdot a = (m+n) \cdot a$$

 $n(ma) = (nm)a$
 $n(a+b) = na + nb$

• Proposition 58 (More Properties of Rings)

Let R be a ring and $r, s \in \mathbb{R}$.

1. If 0 is the zero of R, then $0 \cdot r = 0 = r \cdot 0$; 1

2.
$$-r(s) = -(rs) = r(-s);$$

3.
$$(-r)(-s) = rs$$
;

4.
$$\forall m, n \in \mathbb{Z}, (mr)(ns) = (mn)(rs).$$

This is a problem in A4.

¹ i.e. all the 0's are zeros of *R*.

Definition 32 (Trivial Ring)

A *trivial ring* is a ring of only one element. In this case, we have 1 = 0, i.e. the unity is the zero and vice versa.

Remark

If R is a ring with $R \neq \{0\}$, since $r = r \cdot 1$ for all $r \in R$, we have $1 \neq 0$. Otherwise, if 1 = 0, then $r = r \cdot 1 = r \cdot 0 = 0$, i.e. $R = \{0\}$.

Example 21.1.1

Let $R_1, R_2, ..., R_n$ be rings. We define component-wise operation on the product

$$R_1 \times R_2 \times \ldots \times R_n$$

as follows:

$$(r_1, r_2, ..., r_n) + (s_1, s_2, ..., s_n) = (r_1 + s_1, r_2 + s_2, ..., r_n + s_n)$$

 $(r_1, r_2, ..., r_n)(s_1, s_2, ..., s_n) = (r_1s_1, r_2s_2, ..., r_ns_n)$

We can check that $R_1 \times R_2 \times ... \times R_n$ is a ring with the zro being (0,0,...,0)and the unity being (1, 1, ..., 1). This set

$$R_1 \times R_2 \times \ldots \times R_n$$

is called the **direct product** of $R_1, R_2, ..., R_n$.

Definition 33 (Characteristic of a Ring)

If R is a ring, we define the characteristic of R, denoted by ch(R), in terms of the order of 1_R in the additive group (R, +), by

$$\operatorname{ch}(R) = \begin{cases} n & \text{if } o(1_R) = n \in \mathbb{N} \text{ in } (R, +) \\ 0 & \text{if } o(1_R) = \infty \text{ in } (R, +) \end{cases}$$

For $k \in \mathbb{Z}$, we write kR = 0 to mean that $\forall r \in R, kr = 0$.

By • Proposition 58, we have

$$kr = k(1_R \cdot r) = (k1_R) \cdot r$$

and so kR = 0 if and only if $k1_R = 0$. Then, since (R, +) is a group, by • Proposition 13 and • Proposition 14, it follows that:

• Proposition 59 (Implications of the Characteristic)

Let R be a ring and $k \in \mathbb{Z}^2$.

1.
$$ch(R) = n \in \mathbb{N} \implies (kR = 0 \iff n \mid k)$$

2.
$$ch(R) = 0 \implies (kR = 0 \iff k = 0)$$

² This is why we defined ch(R) = 0 if $o(1_R) = \infty$

Example 21.1.2

Each of \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} has characteristic 0. For $n \in \mathbb{N}$ with $n \geq 2$, the ring \mathbb{Z}_n has characteristic n.

21.1.2 Subring

Definition 34 (Subring)

A subset S of a ring R is a subring if S is a ring itself (under the same operations: addition and multiplication).

Note that properties (2), (3), (7) and (9) from \square Definition 31 are automatically satisfied. Thus, to show that S is a subring, it suffices to show the following:

Subring Test

1.
$$0, 1 \in S^3$$

2.
$$s, t \in S \implies (s-t), st \in S$$

Example 21.1.3

We have the following chain of commutative rings:

$$\mathbb{Z} \leq_r \mathbb{Q} \leq_r \mathbb{R} \leq_r \mathbb{C}$$

Example 21.1.4

If R is a ring, the center Z(R) of R is defined as

$$Z(R) = \{ z \in R : zr = rz, r \in R \}.$$

Note taht $0, 1 \in Z(R)$ *. Also, if* $s, t \in Z(R)$ *, then* $\forall r \in R$ *,*

$$(s-t)r = sr - tr = rs - rt = r(s-t)$$

and so $(s-t) \in Z(R)$. Also,

$$(st)r = s(tr) = s(rt) = (sr)t = (rs)t = r(st)$$

and so $st \in Z(R)$. By the Subring Test, $Z(R) \leq_r R$.

Unlike subgroups, since there is no proper suggestion of a symbolic representation, I shall use $S \le_r R$ to denote that S is a subring of R, in comparison to \le for subgroups, which has no subscript. Note that this is purely for keeping my writing succinct, and so the subscript r is used simply to indicate that the \le symbol is for denoting a subring and should not be confused with other r's that may be used in a proof. This notation is also not used in class, and should be avoided during materials outside of this set of notes.

³ The $0 \in S$ is certainly not necessary to be shown, since from part (2) we would have $s \in S \implies 0 \in (s - s) \in S$.

Example 21.1.5

Let

$$\mathbb{Z}[c] = \{a + bi : a, b \in \mathbb{Z}, i^2 = -1\} \subseteq \mathbb{C}.$$

It can be shown that $\mathbb{Z}[i] \leq_r \mathbb{C}$, and is called the ring of Gaussian integers.4

⁴ Proof that the Gaussian integers is a subring is in A4, which shall be included after the assignment is over.

22 Lecture 22 Jun 22nd 2018

22.1 Ring (Continued 2)

22.1.1 Ideals

Let R be a ring and A an additive subgroup of R. Since (R, +) is abelian, we have that $A \triangleleft R$. Thus, we can talk about the additive quotient group

$$R/A = \{r + a : r \in \mathbb{R}\}$$
 with $r + A = \{r + a : a \in A\}$

Using the properties that we know about cosets and quotient groups, we have the following proposition.

• Proposition 60 (Properties of the Additive Quotient Group)

Let R be a ring and A an additive subgroup of R. For $r, s \in R$, we have

1.
$$r + A = s + A \iff (r - s) \in A$$

2.
$$(r+A) + (s+A) = (r+s) + A$$

3.
$$0 + A = A$$
 is the additive identity of R_A

4.
$$-(r+A) = (-r) + A$$
 is the additive inverse of $r+A$

5.
$$\forall k \in \mathbb{Z} \quad k(r+A) = kr + A$$

This is just a translation of the properties of cosets and quotient groups, that we are familiar with, into the language of addition. You can (read: should) prove this as an exercise for yourself (read: myself).

Since R is a ring, it is natural to ask if we could make R/A into a ring¹. A natural way to define "multiplication" in R/A is

¹ *Ideally* (see what I did there?), we would want R_A as a ring, just as we had R_A as a group.

120 Lecture 22 Jun 22nd 2018 - Ring (Continued 2)

$$(r+A)(s+A) = rs + A \quad \forall r, s \in \mathbb{R}$$
 (†)

Note, however, that we would have

$$r + A = r_1 + A$$
 $s + A = s_1 + A$

with $r \neq r_1$ and $s \neq s_1$. In order for (†) to make sense, it is necessary that

$$r + A = r_1 + A \land s + A = s_1 + A \implies rs + A = r_1s_1 + A$$

so that this "multiplication" is well-defined.

• Proposition 61

Let A be an additive subgroup of a ring R. Then $\forall a \in A$, define

$$Ra = \{ra : r \in R\}$$
 $aR = \{ar : r \in R\}.$

The following are equivalent (TFAE):

- 1. $Ra \subseteq A$ and $aR \subseteq A$, $\forall a \in A$;
- 2. $\forall r, s \in R, (r+A)(s+A) = rs + A \text{ is well-defined in } R/A.$

Proof

(1) \Longrightarrow (2): If $r + A = r_1 + A$ and $s + A = s_1 + A$, for $r, r_1, s, s_1 \in R$, we need to show that

$$rs + A = r_1 s_1 + A.$$

By lacktriangle Proposition 60, we have that $(r-r_1), (s-s_1) \in A$, and so by (1), we have

$$rs - r_1 s_1 = rs - r_1 s + r_1 s - r_1 s_1$$

= $(r - r_1)s + r_1 (s - s_1)$
 $\in (r - r_1)R + R(s - s_1) \subseteq A$

Therefore, by \bullet Proposition 60 again, we have $rs + A = r_1s_1 + A$.

(2) \implies (1): Let $r \in R$ and $a \in A$. We have that

$$ra + A = (r + A)(a + A)$$
 \therefore (2)
 $= (r + A)(0 + A)$ \therefore $a, 0 \in A$
 \downarrow
 $zero \ of \ R$
 $= (r \cdot 0) + A$ \therefore (2)
 $= 0 + A$ \therefore 0 Proposition 58
 $= A$ \therefore 0 Proposition 60

Thus $ra \in A$ and so RaA. Similarly, we can show that $aR \subseteq A$.

Definition 35 (Ideal)

An additive subgroup A of a ring R is called an ideal of R if Ra, $aR \subseteq$ $A, \forall a \in A.$

Example 22.1.1

If R is a ring, $\{0\}$ and R are both ideals of R.

• Proposition 62 (The Only Ideal with the Multiplicative Identity is the Ring Itself)

Let A be an ideal of a ring R. If $1 \in A$, then A = R.

This also shows that if we want a nontrivial ideal, then the ideal should not have 1.

Proof

 $\forall r \in R, : A \text{ is an ideal and } 1 \in A, \text{ we have } r = r \cdot 1 \in A. \text{ It follows that }$ $R \subseteq A \subseteq R$ and so R = A.

• Proposition 63 (Construction of the Quotient Ring)

Let A be an ideal of a ring R. Then the additive quotient group R_A is a ring with the multiplication (r + A)(s + A) = rs + A, $\forall r, s \in R$. The unity of R_A is 1 + A.

Proof

: A is an additive subgroup of a ring R, R/A is an additive abelian group. By \bullet Proposition 61, the multiplication on R/A is well-defined. The multiplication is associative, since $\forall r, s, q \in R$,

$$(r+A)((s+A)(q+A)) = (r+A)(sq+A) = (rsq+A)$$

= $(rs+A)(q+A)$
= $((r+A)(s+A))(q+A)$.

We also have

$$(r+A)(1+A) = r+A = (1+A)(r+A)$$

and so the unity of R_A is 1 + A. The distributive property is inherited from R.

Definition 36 (Quotient Ring)

Let A be an ideal of a ring R. Then the ring R_A is called the quotient ring of R by A.

Definition 37 (Principal Ideal)

Let R be a commutative ring and A an ideal of R. If $A = aR = \{ar : r \in R\} = Ra$ for some $a \in A$, we say that A is a principal ideal generated by a, and denote $A = \langle a \rangle$.

Example 22.1.2

If $n \in \mathbb{Z}$, then $\langle n \rangle = n\mathbb{Z}$ is a(n) (principal) ideal of \mathbb{Z} , since \mathbb{Z} is commutative.

• Proposition (Ideals of \mathbb{Z} are Principal Ideals)

All ideals of \mathbb{Z} are of the form $\langle a \rangle$ for some $n \in \mathbb{Z}$.

We shall prove this in the next lecture.

23 Lecture 23 Jun 25th 2018

- **23.1** Ring (Continued 3)
- **23.1.1** *Ideals* (Continued)
 - **♦** Proposition 64 (Ideals of **Z** are Principal Ideals)

All ideals of \mathbb{Z} are of the form $\langle n \rangle$ for some $n \in \mathbb{Z}$.

Proof

Let A be an ideal of \mathbb{Z} . If $A = \{0\}$, then $A = \langle 0 \rangle$. Otherwise, let $a \in A$ with $a \neq 0$, and |a| be the minimum. Clearly, $\langle a \rangle = a\mathbb{Z} \subseteq A$. To prove the other inclusion, let $b \in A$. By the **Division Algorithm**, $\exists q, t \in \mathbb{Z}$ with $0 \leq r < |a|$ such that b = qa + r. Because A is an ideal, we have $r = b - qa \in A$. Since |r| < |a| which is the minimal case, it must be that r = 0. Therefore $b = qa \in \langle a \rangle$ and so $A \subseteq \langle a \rangle$.

23.1.2 *Isomorphism Theorems for Rings*

Definition 38 (Ring Homomorphism)

Let R and S be rings. A mapping

 $\Theta: R \to S$

is a ring homomorphism if $\forall a, b \in R$, we have

126 Lecture 23 Jun 25th 2018 - Ring (Continued 3)

1.
$$\Theta(a+b) = \Theta(a) + \Theta(b)$$

2.
$$\Theta(ab) = \Theta(a)\Theta(b)$$

3.
$$\Theta(1_R) = 1_S$$

66 Note (Remark)

(2) \implies (3) because $\Theta(1_R) \in S$ does not necessarily have a multiplicative inverse, since S is a ring.

Example 23.1.1

The mapping $k \mapsto [k]$ from $\mathbb{Z} \to \mathbb{Z}_n$ is a surjective ring homomorphism.

Example 23.1.2 (Direct Product of Rings)

If R_1 , R_2 are rings, the projection

$$\pi_1: R_1 \times R_2 \rightarrow R_1$$
 defined by $\pi_1(r_1, r_2) = r_1$

is a surjective ring homomorphism, since

1.
$$\pi_1(r_1+r_2,q_1+q_2)=r_1+r_2=\pi_1(r_1,q_1)+\pi_1(r_2,q_2);$$

2.
$$\pi_1(r_1r_2, q_1q_2) = r_1r_2 = \pi_1(r_1, q_1)\pi_1(r_2, q_2)$$
; and

3.
$$\pi(1,1)=1$$
.

We can a similar $\pi_2: R_1 \times R_2 \to R_2$ such that $(r_1, r_2) \mapsto r_2$, and we will get that π_2 is also a surjective ring homomorphism.

• Proposition 65 (Properties of Ring Homomorphisms)

Let $\Theta: R \to S$ be a ring homomorphism and let $r \in R$. Then

1.
$$\Theta(0_R) = 0_S$$

2.
$$\Theta(-r) = -\Theta(r)$$

3.
$$\Theta(kr) = k\Theta(r)$$

4.
$$\forall n \in \mathbb{N} \cup \{0\} \quad \Theta(r^n) = \Theta(r)^n$$

5.
$$u \in R^* \implies \forall k \in \mathbb{Z} \quad \Theta(u^k) = \Theta(u)^k$$

Proof

1. Note that

$$\Theta(r) = \Theta(0_R + r) = \Theta(0_R) + \Theta(r).$$

Therefore,

$$\Theta(0_R) = 0_S$$

as required.

2. Note that

$$0_S = \Theta(0_R) = \Theta(r - r) = \Theta(r) + \Theta(-r),$$

SO

$$\Theta(-r) = -\Theta(r).$$

3. Observe that

$$\Theta(kr) = \Theta(\underbrace{r + r + \ldots + r}_{k \text{ times}}) = \underbrace{\Theta(r) + \Theta(r) + \ldots + \Theta(r)}_{k \text{ times}} = k\Theta(r)$$

Item 4 follows by induction on the definition of a ring homomorphism, and Item 5 follows as a result from Item 4 because if $u \in R^*$, then $u^{-1} \in$ R^* such that $uu^{-1} = 1_R$.

Definition 39 (Ring Isomorphism)

A mapping of rings $\Theta: R \to S$ is a ring isomorphism if Θ is a bijective ring homomorphism. In this case, we say that R and S are isomorphic and denote that by $R \cong S$.

Definition 40 (Kernel and Image)

Let $\Theta: R \to S$ be a ring homomorphism. The **kernel** of Θ is defined by

$$\ker\Theta = \{r \in R : \Theta(r) = 0_S\}$$

and the *image* of Θ is defined by

$$im \Theta := \Theta(R) = {\Theta(r) : r \in R}.$$

• Proposition 66

Let $\Theta: R \to S$ be a ring homomorphism. Then

- 1. $im \Theta \leq_r S$
- 2. $\ker \Theta$ is an ideal of R

Proof

1. $\Theta(1_R) = 1_S$ by definition of a homomorphism so $\Theta(1_R) \in \operatorname{im} \Theta$. Suppose $s_1 = \Theta(r_1)$ and $s_2 = \Theta(r_2)$, then

$$s_1 - s_2 = \Theta(r_1) - \Theta(r_2) = \Theta(r_1 - r_2)$$

 $s_1 s_2 = \Theta(r_1)\Theta(r_2) = \Theta(r_1 r_2)$

are both in im Θ . By the Subring Test, im $\Theta \leq_r S$.

2. Since $\ker \Theta$ is an additive subgroup of R, it suffices to show that $ra, ar \in \ker \Theta$ for all $r \in R$ and $a \in \ker \Theta$. Let $r \in R$ and $a \in \ker \Theta$. Then

$$\Theta(ra) = \Theta(r)\Theta(a) = \Theta(r) \cdot 0 = 0$$

So $ra \in \ker \Theta$. Similarly so,

$$\Theta(ar) = \Theta(a)\Theta(r) = 0 \cdot \Theta(r) = 0$$

and so $ar \in \ker \Theta$. Therefore, $\ker \Theta$ is an ideal of R.

■ Theorem 67 (First Isomorphism Theorem for Rings)

Let $\Theta: R \to S$ be a ring homomorphism. Then

$$R_{\ker\Theta} \cong \operatorname{im}\Theta.$$

Proof

Let $A = \ker \Theta$. Since A is an ideal of R, we have that R/A is a ring. Define

$$\overline{\Theta}: \mathbb{R}_A \to \operatorname{im} \Theta \ by \ (r+A) \mapsto \theta(a).$$

Note that

$$r+A=s+A\iff (r-s)\in A\iff \Theta(r-s)=0\iff \Theta(r)=\Theta(s).$$

Therefore $\overline{\Theta}$ is well-defined and injective. Also, it is clear that $\overline{\Theta}$ is surjective. To show that $\overline{\Theta}$ is a homomorphism, note that $\forall r,s \in R$, we have

$$\begin{split} \overline{\Theta}(r+A+s+A) &= \overline{\Theta}(r+s+A) = \Theta(r+s) \\ &= \Theta(r) + \Theta(s) = \overline{\Theta}(r+A) + \overline{\Theta}(s+A). \end{split}$$

It follows that $\overline{\Theta}$ is a ring isomorphism and so

$$R_{\ker\Theta} \cong \operatorname{im}\Theta$$

as required.

Exercise 23.1.1

Let $A, B \leq_r R$, where R is a ring. Prove that

- 1. $A \cap B$ is the largest subring of R contained in both A and B.
- 2. If either A or B is an ideal of R, the sum

$$A + B = \{a + b : a \in A, b \in B\}$$

is a subring of R, and is the smallest subring of R that contains both A and B.

■ Theorem 68 (Second Isomorphism Theorem for Rings)

Let A be a subring and B an ideal of a ring R. Then

- 1. $A + B \leq_r R$;
- 2. B is an ideal of A + B;

130 Lecture 23 Jun 25th 2018 - Ring (Continued 3)

3. $A \cap B$ is an ideal of A; and

4.

$$(A+B)/_{B} \cong A/_{(A\cap B)}$$

■ Theorem 69 (Third Isomorphism Theorem for Rings)

Let A and B be ideals of R with $A \subseteq B$, then ${}^B\!/_A$ is an ideal of ${}^R\!/_A$ and

$$(R/A)/(B/A) \cong R/B.$$

24 Lecture 24 Jun 27th 2018

24.1 Rings (Continued 4)

24.1.1 *Isomorphism Theorems for Rings (Continued)*

■ Theorem 70 (Chinese Remainder Theorem)

Let A and B be ideals of R.

1.
$$A + B = R \implies \frac{R}{(A \cap B)} \cong \frac{R}{A} \times \frac{R}{B}$$

2.
$$A + B = R \land A \cap B = \{0\} \implies R \cong {}^{R}\!\!/_{A} \times {}^{R}\!\!/_{B}$$

Proof

It suffices to prove (1) since if (1) is true and $A \cap B = \{0\}$, then (2) immediately follows.

Define

$$\Theta: R \to R/_A \times R/_B \qquad r \mapsto (r + A, r + B)$$

Then Θ is a ring homomorphism ¹.

Proof (Θ is a ring homomorphism)

 $\forall r, s \in R$, we have

$$\Theta(rs) = (rs + A, rs + B)$$

$$\stackrel{(*)}{=} (r + A, r + B)(s + A, s + B)$$

$$= \Theta(r)\Theta(s)$$

Exercise 24.1.1

Prove that Θ *is a ring homomorphism.*

where (*) is by \bullet Proposition 63. Also by the same proposition, we have

$$\Theta(1) = (1 + A, 1 + B).$$

Then,

$$\Theta(r+s) = (r+s+A,r+s+B)$$

$$\stackrel{(\dagger)}{=} (r+A,r+B) + (s+A,s+B)$$

$$= \Theta(r) + \Theta(s)$$

where (†) is by **♦** Proposition 60.

Note that $\ker \Theta = A \cap B$ *, since*

$$\ker \Theta = \{r \in R : \Theta(r) = (A, B)\} = \{r \in A \land r \in B\} = A \cap B.$$

To show that Θ is surjective, let $(s+A,t+B) \in R_A \times R_B$ with $s, t \in R$. Since A+B=R, $\exists a \in A$, $\exists b \in B$ such that a+b=1. Let r=sb+ta. Then

$$s - r = s - sb - ta = s(1 - b) - ta = sa - ta = (s - t)a \in A$$

 $t - r = t - sb - ta = t(1 - a) - sb = tb - sb = (t - s)b \in B$

and so by **b** Proposition 60,

$$s + A = r + A$$
 and $t + B = r + B$.

Therefore

$$\Theta(r) = (r + A, r + B) = (s + A, t + B),$$

and so Θ is surjective. Then by the \blacksquare Theorem 67,

$$R_{(A \cap B)} \cong R_{A} \times R_{B}$$
.

Why is **P** Theorem 70 called the Chinese Remainder Theorem?

Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1. Then we know that

$$m\mathbb{Z} \cap n\mathbb{Z} = mn\mathbb{Z}.$$

Also, $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$ since 1 = ma + nb for some $a, b \in \mathbb{Z}$ by Bezout's Lemma. And so:

Corollary 71

1. If $m, n \in \mathbb{N}$ with gcd(m, n) = 1, then

$$\mathbb{Z}_{mn\mathbb{Z}} \cong \mathbb{Z}_{m\mathbb{Z}} \times \mathbb{Z}_{n\mathbb{Z}}$$

i.e.

$$\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$$

2. If $m, n \in \mathbb{N}$ with $m, n \geq 2$ and gcd(m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n)$$

where $\phi(m) = |\mathbb{Z}_m^*|$ is Euler's ϕ -function.

Let p be a prime. Recall that one consequence of Lagrange's Theorem is that every group G of order p is cyclic, i.e. $G \cong C_v$.

An analogous notion in rings is the following:

• Proposition 72 (Ring With Prime Order Is Isomorphic to Integer Modulo Prime)

If R is a non-trivial ring with |R| = p where p is prime, then $R \cong \mathbb{Z}_p$.

Proof

Define

$$\Theta: \mathbb{Z}_p \to R \qquad [k] \mapsto k \cdot 1_R.$$

Note that since R is an additive group with |R| = p, by Lagrange's Theorem, $o(1_R) = 1$ or p. Since R is non-trivial, we have that $1_R \neq 0$ by the remark on the definition of a trivial ring, and so $o(1_R) \neq 1$. Thus $o(1_R) = p$. Then, by • Proposition 59, we have

$$[k] = [m] \iff p \mid (k-m) \iff (k-m)1_R = 0 \iff k \cdot 1_R = m \cdot 1_R$$

in R. Thus, Θ is well-defined and injective. Θ is also a ring homomorphism 2 .

Exercise 24.1.2 *Prove that* Θ *is a ring homomorphism.*

Proof (Θ is a ring homomorphism)

 $\forall [a], [b] \in \mathbb{Z}$, we have

$$\Theta([a][b]) = \Theta([ab]) = ab \cdot 1_R$$

$$= (a \cdot 1_R)(b \cdot 1_R) = \Theta([a])\Theta([b]).$$

$$\Theta([1]) = 1 \cdot 1_R = 1_R$$

and

$$\Theta([a] + [b]) = \Theta([a+b]) = (a+b) \cdot 1_R$$
$$= a \cdot 1_R + b \cdot 1_R = \Theta([a]) + \Theta([b]).$$

So Θ is a ring homomorphism.

Now because $|\mathbb{Z}_p| = p = |R|$ and Θ is injective, Θ must be surjective. Therefore Θ is a ring isomorphism and hence $R \cong \mathbb{Z}_p$ as required.

24.2 Commutative Rings

24.2.1 Integral Domain and Fields

Definition 41 (Units)

Let R be a ring. We say that $u \in R$ is a unit if u has a multiplicative inverse in R, and denote it by u^{-1} . We have

$$uu^{-1} = 1 = u^{-1}u$$

66 Note

If u is a unit in R, and $r,s \in R$, we have

$$ur = us \implies r = s$$
 (Right Cancellation)
 $ru = su \implies r = s$ (Left Cancellation)

Let R^* denote the set of all units in R. We know that the definition of a ring is that R is "almost" a group under multiplication except that its elements do not necessarily have multiplicative inverses. Since R^*R is the set that contains all units, i.e. all elements with multiplicative inverses in R, we have that (R^*, \cdot) is a group. This is called the *Group of Units* of R.

Example 24.2.1

Note that 2 is a unit in \mathbb{Q} , but it is not a unit in \mathbb{Z} . We have that

$$\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$$
 and $\mathbb{Z}^* = \{\pm 1\}$

Example 24.2.2

Consider the ring of Gaussian Integers,

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}, i^2 = -1\} \subseteq \mathbb{C}.$$

Then3

$$\mathbb{Z}[i]^* = \{\pm 1, \pm i\}.$$

³ Proof to be added once A₄ is over.

Definition 42 (Division Ring and Field)

A non-trivial ring R is a division ring if

$$R^* = R \setminus \{0\}.$$

A commutative division ring is a field.

Example 24.2.3

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields but \mathbb{Z} is not.

Example 24.2.4

 \mathbb{Z}_n is a field \iff n is prime.

Remark

If R is a division ring or a field, then its only ideals are $\{0\}$ or R, since if $A \neq \{0\}$ is an ideal of R, then $\exists a \in A, a \neq 0$, such that $1 = aa^{-1} \in A$, which implies that A = R by \bullet Proposition 62.

Remark

It can be shown that every finite division ring is a field, and this is known as Wedderburn's Theorem.

Note that if n = ab for some integer n with 0 < a, b < n, then in \mathbb{Z} we have

$$[a][b] = [n] = [0]$$

but $[a] \neq [0] \neq [b]$ by our definition of a, b.

Definition 43 (Zero Divisor)

Let R be a non-trivial ring. If $0 \neq a \in R$, then a is called a **zero divisor** if $\exists 0 \neq b \in R$ such that ab = 0.

This remark is not as useful or spectacular within this course, but it will be once we go into PMATH348 contents.

25 Lecture 25 Jun 29th 2018

25.1 Commutative Rings (Continued)

25.1.1 *Integral Domain and Fields (Continued)*

Recall the definition of a zero divisor.

Definition (Zero Divisor)

Let R be a non-trivial ring. If $0 \neq a \in R$, then a is called a **zero divisor** if $\exists 0 \neq b \in R$ such that ab = 0.

Example 25.1.1

[2], [3], [6] in \mathbb{Z}_6 are all zero divisors since

$$[0] = [2][3] = [4][3] = [6][2].$$

Example 25.1.2

The matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is a zero divisor in $M_n(\mathbb{R})$ since

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

• Proposition 73 (Ring Cancellations and Zeros)

Let R be a ring. TFAE:

1.
$$\forall ab = 0 \in R \quad a = 0 \lor b = 0$$
;

- 2. $\forall ab = ac \in R \land a \neq 0 \implies b = c$;
- 3. $\forall ba = ca \in R \land a \neq 0 \implies b = c$.

Proof

It suffices to prove $(1) \iff (2)$, since $(1) \iff (3)$ would have a similar argument.

(1) \Longrightarrow (2): Let ab = ac with $a \neq 0$. Then a(b-c) = 0. Then by (1), since $a \neq 0$, $(b-c) = 0 \iff b = c$.

(2) \implies (1): Let $ab = 0 \in R$. We now have 2 cases:

Case 1 If a = 0, we are done.

Case 2 If $a \neq 0$, then $ab = 0 = a \cdot 0$, and so by (2), b = 0.

With that, we can make the following definition.

Definition 44 (Integral Domain)

A commutative ring $R \neq \{0\}$ (i.e. non-trivial ring) is called an **integral** domain if it has **no zero divisor**, i.e. if $ab = 0 \in R$ then a = 0 or b = 0.

Example 25.1.3

 \mathbb{Z} is an integral domain since $ab = 0 \implies a = 0$ or b = 0.

Example 25.1.4

Note that if p is prime, then $p \mid ab \implies p \mid a \lor p \mid b$, i.e. [a][b] = [0] in $\mathbb{Z}_p \implies [a] = 0$ or [b] = 0. So \mathbb{Z}_p is an integral domain.

However, for n not prime, with n = ab, if we have n = ab such that 1 < a, b < n, then

$$[a][b] = [0]$$
 in \mathbb{Z}_n

but neither [a] nor [b] is [0].

With that, we have that \mathbb{Z}_n is an integral domain if and onely if n is prime.

• Proposition 74 (Fields are Integral Domains)

Every field is an integral domain.

Proof

 $\forall a,b \in R$, where R is a field, such that ab = 0, we want to show that a = 0 or b = 0. We have 2 cases:

Case 1: a = 0. There is nothing to do since the proof is complete.

Case 2: $a \neq 0$. Since $a \neq 0 \in R$, we know that $\exists a^{-1} \in R$ since R is a field. And so

$$b = a^{-1}ab = a^{-1} \cdot 1 = 0$$

Therefore, by definition, the field R is an integral domain.

66 Note

Using the proof from above, we can show that every subring of a field is an integral domain¹.

¹ This will become useful in PMATH348

66 Note

The converse of **♦** *Proposition* 74 *is not true. As shown in Example* 25.1.3, \mathbb{Z} is an integral domain but not a field.

However, we have the following partial converse:

• Proposition 75 (Finite Integral Domains are Fields)

Every finite integral domain is a field.

Proof

Let R be a finite integral domain, say $|R| = n \in \mathbb{N}$. Let

$$R = \{r_1, r_2, ..., r_n\}.$$

Then for some $a \in R$ such that $a \neq 0$, by \bullet Proposition 73, the set

$$\{ar_1, ar_2, ..., ar_n\}$$

have distinct elements. Since R is finite and so |aR| = n, and $aR \subseteq R$, we have that aR = R. In particular, $\exists 1 \in aR$ such that 1 = ab for some $b \in \mathbb{R}^2$. It follows that ab = 1 = ba since \mathbb{R} is commutative, which then implies that a is a unit. Therefore, R is a field.

² We can prove for a more general case by not assuming that R is a commutative ring: We can find $c \in R$ such that 1 = ca. Then

$$b = (ca)b = c(ab) = c.$$

Recall that the characteristic of a ring R, denoted by ch(R), is the order of the unity, 1_R , in (R, +), and write

$$\operatorname{ch}(R) = \begin{cases} 0 & o(1_R) = \infty \\ n & o(1_R) = n \in \mathbb{N} \end{cases}$$

• Proposition 76 (Integral Domains have Zero or Prime Characteristics)

The characteristic of any integral domain is 0 or a prime p.

Proof

Let R be an integral domain. We have 2 cases:

Case 1: ch(R) = 0. Our job is done.

Case 2: $ch(R) = n \in \mathbb{N}$. Suppose $n \neq p$ a prime, and say n = ab for some $a, b \in R$ such that 1 < a, b < n. If 1 is the unity of R, then by

• Proposition 58, we have

$$ab = (a \cdot 1)(b \cdot 1) = (ab)(1) = n(1) = 0.$$

Since R is an integral domain, we have that either

$$a \cdot 1 = 0$$
 or $b \cdot 1 = 0$.

This contradicts that fact that n is the characteristic. Therefore, n must be prime.

66 Note

Let R be an integral domain with ch(R) = p a prime. For $a, b \in R$, by the Binomial Theorem, we have

$$(a+b)^p = \sum_{i=1}^p \binom{p}{i} a^{p-i} b^i.$$

Since p is prime, we have $p\mid \binom{p}{i}=\frac{p(p-1)...(p-i+1)}{i!}$ for $1\leq i\leq p-1$. *Therefore, since* ch(R) = p, we have that

$$(a+b)^p = a^p + b^p$$

This is known as the Freshman's Dream.

26 Lecture 26 Jul 04th 2018

26.1 Commutative Rings (Continued 2)

26.1.1 Prime Ideals and Maximal Ideals

Definition 45 (Prime Ideals)

Let R be a commutative ring. An ideal $P \neq R$ is a prime ideal of R if $r, s \in R$ satisfy: $rs \in R \implies r \in P$ or $s \in P$.

Example 26.1.1

For $n \in \mathbb{N} \setminus \{1\}$, $n\mathbb{Z} = \langle n \rangle$ is a prime ideal if and only if n is prime.

♦ Proposition 77 (Ideal is Prime ← Quotient of Ring by Ideal is an Integral Domain)

If R is a commutative ring, then an ideal $P \neq R$ of R is a prime ideal if and only if R/P is an integral domain.

Proof

Since R is commutative, so is R_{p} . Since $P \neq R$, we know that $1 \notin P^1$, i.e. $0 + P = P \neq 1 + P$, and so R_{p} is a non-trivial ring.

¹ See **♦** Proposition 62.

To prove (\Longrightarrow) , let (r+P)(s+P)=0+P=P. Since P is an ideal², we have that rs+P=P and so $rs\in P$. WLOG, since P is a prime ideal, if $r\in P$, then r+P=P. And so R/P is an integral domain.

² See **♦** Proposition 61.

To prove (\Leftarrow) , let $rs \in P$. Then since P is an ideal,

$$(r+P)(s+P) = rs + P = P.$$

Since $R_{/p}$ is an integral domain, either

$$r + P = P \text{ or } s + P = P$$

so $r \in P$ or $s \in P$, which implies that P is a prime ideal.

Definition 46 (Maximal Ideals)

Let R be a (commutative) ring. An ideal $M \neq R$ or R is a maximal ideal if $\forall A$ that is an ideal of R, we have that

$$M \subseteq A \subseteq R \implies A = M \text{ or } A + R.$$

♦ Proposition 78 (Ideal is Maximal ← Quotient of Ring by Ideal is a Field)

If R is a commutative ring, then an ideal $M \neq R$ is a maximal ideal if and only if R_M is a field.

Proof

Similar to the proof of \blacktriangle Proposition 77, $\stackrel{R}{\nearrow}_M$ is a nontrivial commutative ring. Let $r \in R$.

 (\Longrightarrow) Suppose M is a maximal ideal. Since ${}^R\!/_M$ is non-trivial, let $r+M\neq 0+M\in {}^R\!/_M$. Let $\langle \ r\ \rangle = rR$ Note that $r\notin M$ and $r\in \langle \ r\ \rangle +M$. Thus, $M\subsetneq \langle \ r\ \rangle +M$. Since M is maximal and M is a proper subset of $\langle \ r\ \rangle +M$, we have that $\langle \ r\ \rangle +M=R$. In particular, we have $1\in \langle \ r\ \rangle +M$ and so $\exists s\in R$ and $m\in M$ such that 1=rs+m. Thus

$$1 + M = rs + M = (r + M)(s + M).$$

Therefore s + M is the multiplicative inverse of r + M, and so R_M is a field.

 (\iff) Since R_M is a non-trivial field, we know $0+M \neq 1+M$.

Therefore $M \neq R$. Suppose A is an ideal such that $M \subsetneq A \subseteq R$. Choose $r \in A \setminus M$. Since $r \notin M$ and so $r + M \neq 0 + M$ and R/M is a field, we have that $\exists s + M \in \mathbb{R}/M$ such that (r + M)(s + M) = 1 + M. Since M is an ideal, we have

$$rs + M = 1 + M \implies \exists m \in M \quad 1 = rs + m.$$

Since $r, m \in A$ and A is an ideal, we have that $1 \in A$ and so A = R, implying that M is maximal.

Combining • Proposition 74, • Proposition 77, and • Proposition 78, we get the following corollary.

Corollary 79 (Maximal Ideals of a Commutative Rings are Prime)

Every maximal ideal of a commutative ring is a prime ideal.

66 Note

The converse of Corollary 79 *is not true.*

Example 26.1.2

In \mathbb{Z} , $\{0\}$ is a prime ideal, but is clearly not maximal.

26.1.2 *Fields of Fractions*

Recall that every subring of a field is an integral domain. The converse is actually true 3 , i.e. every integral domain R is isomorphic to a subring of a field *F*.

³ This is in comparison with • Proposition 74.

Let *R* be an integral domain and $D = R \setminus \{0\}$. Consider

$$X = R \times D = \{(r, s) : r \in R, s \in D\}$$

We say that

$$(r,s) \equiv (r_1,s_1) \in X \iff rs_1 = r_1s \tag{26.1}$$

Example 26.1.3

Show that Equation (26.1) is an equivalence relation.

- 1. $(r,s) \equiv (r,s)$
- 2. $(r,s) \equiv (r_1,s_1) \iff (r_1,s_1) \equiv (r,s)$

3.
$$(r,s) \equiv (r_1,s_1) \land (r_1,s_1) \equiv (r_2,s_2) \implies (r,s) = (r_2,s_2)$$

Note that using the above idea, we can construct the smallest field that contains \mathbb{Z} , and that field is \mathbb{Q} . Motivated by this idea, we make the following definition.

Definition 47 (Fraction)

Let R be an integral domain, $D = R \setminus \{0\}$, and $X = R \times D$. The fraction, $\frac{r}{s}$ to be the equivalent class [(r,s)] of the pair $(r,s) \in X$.

Let *F* denote the set of all these fractions, i.e.

$$F = \{ [(r,s)] : r \in R, s \in D \} = \{ \frac{r}{s} : r \in R, s \in R \setminus \{0\} \}.$$

The addition and multiplication of F are defined by

$$\frac{r}{s} + \frac{r_1}{s_1} = \frac{rs_1 + sr_1}{ss_1}$$
$$\frac{r}{s} \cdot \frac{r_1}{s_1} = \frac{rr_1}{ss_1}$$

where we note that $ss_1 \neq 0$ since $s, s_1 \in R \setminus \{0\}$ and R is an integral domain.

It can be shown that *F* is a field⁴. Also, we have $R \cong R' = \frac{r}{1} : r \in R$ $\subseteq F$.

⁴ Prove this as an easy exercise to ease yourself with the concept.

Exercise 26.1.1 *Prove that F is a field.*

■ Theorem 80 (Field of Fractions)

Let R be an integral domain. Then there is a field F containing fractions $\frac{r}{s}$ with $r,s \in R$ and $s \neq 0$. By identifying that $r = \frac{r}{1}$, for any $r \in R$, we have that R is a subring of F. The field F is called the **field of fractions** of R.

66 Note

We can generalize $D = R \setminus \{0\}$ to any subset $D \subseteq R$ satisfying

- 1. $1 \in D$
- 2. 0 ∉ D
- 3. $a,b \in D \implies ab \in D$

27 Lecture 27 Jul 06th 2018

27.1 Polynomial Ring

27.1.1 Polynomials

Definition 48 (Polynomials)

Let R be a ring and x a variable. Let

$$R[x] = \left\{ f(x) = \sum_{i=0}^{m} a_i x^i : m \in \mathbb{N} \cup \{0\}, a_i \in R, 0 \le i \le m \right\}.$$

Each element in R[x] is called a **polynomial** in x over R. If $a_m \neq 0$, we say that f(x) has **degree** m, denoted by $\deg f = m$, and we say that a_m is the **leading coefficient** of f(x).

If deg f = 0, then $f(x) = a_0 \in R$. In this case, we call f(x) a constant polynomial. Note if

$$f(x) = 0 \iff a_0 = a_1 = \dots = a_m = 0,$$

we define $\deg 0 = -\infty$, and f(x) is called a zero polynomial.

For

$$f(x) = a_0 + a_1 x + \dots + a_m x^m$$

 $g(x) = b_0 + b_1 x + \dots + b_n x^n$

in R[x]. If $m \le n$, we can define $a_i = 0$ for $m + 1 \le i \le n$. Then the

addition and multiplication on R[x] can be defined as

$$f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$f(x)g(x) = (a_0 + a_1x + \dots + a_mx^m)(b_0 + b_1x + \dots + b_nx^n)$$

$$= a_0b_0 + (a_1b_0 + a_1b_0)x + (a_2b_0 + a_1b_1 + a_0b_2)x^2 + \dots$$

$$+ (a_mb_m)x^{m+n}$$

$$= c_0 + c_1x + \dots + c_{m+n}x^{m+n}$$

where $c_i = a_0b_i + a_1b_{i-1} + \ldots + a_{i-1}b_1 + a_ib_0$.

• Proposition 81 (Ring is a Subring of Its Polynomial Ring)

Let R be a ring and x a variable.

- 1. R[x] is a ring
- 2. R is a subring of R[x]
- 3. If Z = Z(R) denote the center of R, then the center of R[x] is Z[x]. In particular, x is in the center of R[x].

Proof

1. Checking all 9 properties: Let

$$f(x) = a_0 + a_1 x + \dots + a_m x^m$$

$$g(x) = b_0 + b_1 x + \dots + b_n x^n$$

$$h(x) = d_0 + d_1 x + \dots + d_k x^k$$

be in R[x].

• (Closed under addition and multiplication) Suppose, WLOG, that $m \le n$. Let $a_i = 0$ for $m + 1 \le i \le n$. Then

$$f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

and we observe that $a_i + b_i \in R$ for $0 \le i \le n$ since R is a ring. And so $f(x) + g(x) \in R[x]$. Also, we have

$$f(x)g(x) = c_0 + c_1x + \ldots + c_{m+n}x^{m+n}$$

where
$$c_i = a_0b_i + a_1b_{i-1} + \ldots + a_{i-1}b_1 + a_ib_0 \in R$$
 for $1 \le i \le n$

m + n. And so $f(x)g(x) \in R[x]$.

• (Commutativity of Addition) Suppose, WLOG, that $m \le n$. Let $a_i = 0$ for $m + 1 \le i \le n$. Then

$$f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

= $(b_0 + a_0) + (b_1 + a_1)x + \dots + (b_n + a_n)x^n$
= $g(x) + f(x)$

• (Zero and Unity) It is clear that the zero and unity of R are the zero and unity of R[x] respectively, since only

$$f(x) + 0 = f(x) = 0 + f(x)$$

and

$$1f(x) = f(x) = f(x) \cdot 1.$$

• (Associativity) Suppose, WLOG, that $m \le n \le k$. Let $a_i = b_j =$ 0 for $m + 1 \le i \le k$ and $n + 1 \le j \le k$. Then

$$f(x) + [g(x) + h(x)]$$

$$= f(x) + [(b_0 + d_0) + (b_1 + d_1)x + \dots + (b_k d_k)x^k]$$

$$= (a_0 + b_0 + d_0) + (a_1 + b_1 + d_1)x + \dots + (a_k + b_k + d_k)x^k$$

$$= [(a_0 + b_0) + (a_1 + b_1)x + \dots + (a_k + b_k)x^k] + d(x)$$

$$= [f(x) + g(x)] + h(x)$$

and if we use the summation notation for f(x), g(x) and h(x), we

have

$$f(x)[g(x)d(x)] = f(x) \left[\left(\sum_{j=0}^{n} b_{j} x^{j} \right) \left(\sum_{l=0}^{k} d_{l} x^{l} \right) \right]$$

$$= \left[\sum_{i=0}^{m} a_{i} x^{i} \right] \left[\sum_{j=0}^{n} \sum_{l=0}^{k} b_{j} d_{l} x^{j+l} \right]$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{l=0}^{k} a_{i} b_{j} d_{l} x^{i+j+k}$$

$$= \left[\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} x^{i+j} \right] \left[\sum_{l=0}^{k} d_{l} x^{l} \right]$$

$$= \left[\left(\sum_{i=0}^{m} a_{i} x^{i} \right) \left(\sum_{j=0}^{n} b_{j} x^{j} \right) \right] h(x)$$

$$= [f(x)g(x)]h(x)$$

• (Inverse) Since R is a ring, and in particular an additive ring, for each $a_i \in R$, $0 \le i \le m$, we have that $\exists (-a_i) \in R$ such that $a_i + (-a_i) = 0$. Particularly, we have that

$$-f(x) = (-a_0) + (-a_1)x + (-a_2)x^2 + \ldots + (-a_m)x^m$$

is the inverse of $f(x) \in R[x]$.

• (*Distributivity*) Again, using the summation notation, since R is a ring, we have

$$f(x)[g(x) + h(x)]$$

$$= \left[\sum_{i=0}^{m} a_i x^i\right] \left[\sum_{j=0}^{n} b_j x^j + \sum_{l=0}^{k} d_l x^l\right]$$

$$= \left[\sum_{i=0}^{m} a_i x^i\right] \left[\sum_{j=0}^{k} (b_j + d_j) x^j\right]$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{k} a_i (b_j + d_j) x^{i+j} = \sum_{i=0}^{m} \sum_{j=0}^{k} (a_i b_j + a_i d_j) x^{i+j}$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{k} a_i b_j x^{i+j} + \sum_{i=0}^{m} \sum_{j=0}^{k} a_i d_j x^{i+j}$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j x^{i+j} + \sum_{i=0}^{m} \sum_{j=0}^{k} a_i d_j x^{i+j}$$

$$= f(x)g(x) + f(x)d(x).$$

Proof for the other side is similar.

With that, we have that R[x] is a ring.

- 2. We already have that R is a ring, and so it suffices to prove that $R \subseteq$ R[x]. This is, however, rather simple, since $\forall r \in R$, we have that r is a constant polynomial, and so $r \in R[x]$, and therefore $R \subseteq R[x]$.
- 3. Let

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m \in Z[x]$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n \in R[x].$$

We have that

$$f(x)g(x) = \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j x^{i+j}.$$

Since $a_i \in Z$ for $0 \le i \le n$, we have

$$f(x)g(x) = \sum_{i=0}^{m} \sum_{j=0}^{n} b_j a_i x^{i+j} = \sum_{j=0}^{n} \sum_{i=0}^{m} b_j a_i x^{j+i} = g(x)f(x)$$

for any $g(x) \in R[x]$. And so Z[x] = Z(R[x]).

For \supseteq , $f(x) \in Z(R[x]) \implies \forall b \in R \subseteq R[x]$ we have f(x)b =bf(x). It follows that

$$\forall 0 \leq i \leq n \quad a_i b = b a_i$$

and so $a_i \in Z(R)$, which implies that $Z(R[x]) \subseteq Z[x]$. Therefore, Z(R[x]) = Z[x].

*Warning

Althought $f(x) \in R[x]$ can be used to define a function from $R \to R$, the polynomial is not the same as the function it defines. For example, if $R = \mathbb{Z}_2$, then $\mathbb{Z}_2[x]$ is an infinite set, but there are only 4 different functions from $\mathbb{Z}_2 \to \mathbb{Z}_2$

• Proposition 82 (Polynomial Ring is an Integral Domain)

Let R be an integral domain. Then

1. R[x] is an integral domain.

2. If $f(x) \neq 0$ and $g(x) \neq 0$ in R[x], then¹

$$\deg(fg) = \deg f + \deg g$$

3. The units in R[x] are R^* , the units in R.

¹ In order to preserve this for when we have the case of $\deg 0$, we have to define $\deg 0 = -\infty$. Otherwise, say if we define $\deg 0 = -1$, then if $\deg f = -1$, then $\deg(fg) = \deg f + \deg g$ would imply that $\deg g = -2$, which is undefined.

Proof

We shall prove (1) and (2) together.

1 & 2. Suppose $f(x) \neq 0 \neq g(x) \in R[x]$, say

$$f(x) = a_0 + a_1 x + \dots + a_m x^m \quad a_m \neq 0$$

 $g(x) = b_0 + b_1 x + \dots + b_n x^n \quad b_n \neq 0.$

Then

$$f(x)g(x) = a_m b_n x^{m+n} + \dots a_0 b_0.$$

Now since R is an integral domain, we have that $a_m b_n \neq 0$ and so $f(x)g(x) \neq 0$. Thus R[x] is an integral domain. Moreover, we see that

$$\deg(fg) = m + n = \deg f + \deg g.$$

3. Suppose that $u(x) \in R[x]$ is a unit of R[x] with inverse $u^{-1}(x)$ which we shall write as v(x). Since u(x)v(x) = 1, by (2), we have that

$$\deg u + \deg v = \deg 1 = 0.$$
 (27.1)

Now by (1), R[x] is an integral domain, and so since u(x)v(x) = 1, we have that $u(x) \neq 0 \neq v(x)$. Therefore, $\deg u, \deg v \geq 0$, which implies that we must have $\deg u = 0 = \deg v$ from Equation (27.1). Therefore, units in R[x] are from R^* .

66 Note

Recall that \mathbb{Z}_n is an integral domain if and only if n = p a prime. If $n \neq p$, then, e.g., for $\mathbb{Z}_4[x]$, we have

$$2x \cdot 2x = 4x^2 = 0$$

and so

$$\deg(2x) + \deg(2x) \neq \deg(4x^2) = \deg(2x \cdot 2x).$$

Factorization of Polynomials 27.1.2

Definition 49 (Division of Polynomials)

Let R be a commutative ring and $f(x), g(x) \in R[x]$. We say that f(x)divides g(x), denoted as $f(x) \mid g(x)$ if $\exists q(x) \in R[x]$ such that

$$g(x) = q(x)f(x)$$

Definition 50 (Monic Polynomial)

Let R be a commutative ring and $f(x) \in R[x]$. f(x) is monic if its leading coefficient is 1.

We shall prove the following proposition next class.

• Proposition

Let R be an integral domain, and f(x), $g(x) \in R[x]$ be monic polynomials. If f(x) | g(x) and g(x) | f(x), then f(x) = g(x).

28 Lecture 28 Jul 09th 2018

28.1 Polynomial Ring (Continued 1)

28.1.1 *Factorization of Polynomials (Continued)*

Since the actual focus of our study right now is really fields instead of just integral domains, we shall use fields in place of integral domains or commutative rings from here on unless explicitly stated otherwise. So we redefine Definition 49 as follows:

Definition (Division of Polynomials)

Let F be a field and consider F[x]. For f(x), $g(x) \in F[x]$, we say that f(x) | g(x) if $\exists q(x) \in F[x]$ such that

$$g(x) = q(x)f(x)$$
.

and restate the last stated proposition as follows:

• Proposition 83 $(f(x) | g(x) \land g(x) | f(x) \implies f(x) = g(x))$

Let F be a field and $f(x), g(x) \in F[x]$ be monic polynomials¹. If f(x) | g(x) and g(x) | f(x), then f(x) = g(x).

¹ Note that polynomials being monic is analogous to integers being positive. For example, you (read: I) should try to reiterate the proof below by replacing the monic property with positive integers.

Proof

Since f(x) | g(x) and g(x) | f(x), $\exists r(x), s(x) \in F[x]$ such that

$$g(x) = r(x)f(x)$$
 and $f(x) = s(x)g(x)$.

Then

$$f(x) = s(x)r(x)f(x)$$
.

By **b** Proposition 82, we have that

$$\deg f = \deg s + \deg r + \deg f$$

and so

$$\deg s + \deg r = 0 \implies \deg s = \deg r = 0$$
 : $\deg s$, $\deg r \ge 0$.

And so $\exists t \in F$ such that f(x) = tg(x). Since f(x) and g(x) are monic, we must have t = 1 and so f(x) = g(x).

• Proposition 84 (Division Algorithm for Polynomials)

Let F be a field, and $f(x), g(x) \in F[x]$ with $f(x) \neq 0$. Then $\exists ! q(x), r(x) \in F[x]$ such that

$$g(x) = q(x)f(x) + r(x)$$

with $\deg r < \deg f$.²

 2 Note that this includes the case for r=0, and this is yet another reason why we defined deg $0=-\infty$.

Proof

We shall first prove the existence of such a q(x) and r(x). For simplicity, write

$$\deg f = m$$
 and $\deg g = n$.

If n < m, then

$$g(x) = 0f(x) + g(x)$$

and we are done. Suppose that $n \ge m$ and proceed by induction of n. Write

$$f(x) = a_0 + a_1 x + \dots + a_m x^m$$

$$g(x) = b_0 + b_1 x + \dots + b_n x^n.$$

Consider³

³ We are implicitly using the fact that $x \in Z[x]$.

$$g_1(x) = g(x) - b_n a_m^{-1} x^{n-m} f(x)$$

$$= (b_n x^n + \dots + b_0) - b_n a_m^{-1} x^{n-m} (a_m x^m + \dots + a_0)$$

$$= 0x^n + (b_{n-1} - b_n a_m^{-1} a_{m-1}) x^{n-1} + \dots,$$

thus either $g_1(x) = 0$ or $g_1(x) \neq 0$, but in any case, $\deg g_1 < n$.

Case 1: $g_1(x) = 0$. In this case, we have

$$g(x) = b_n a_m^{-1} x^{n-m} f(x)$$

and so we can pick

$$q(x) = b_n a_m^{-1} x^{n-m}$$
$$r(x) = 0,$$

and the result follows.

Case 2: $g_1(x) \neq 0$. By induction, we can find some $g_1(x), r_1(x) \in F[x]$ such that

$$g_1(x) = q_1(x)f(x) + r_1(x)$$

with $\deg r_1 < \deg f$. It follows that

$$g(x) = g_1(x) + b_n a_m^{-1} x^{n-m} f(x)$$

= $q_1(x) f(x) + r_1(x) + b_n a_m^{-1} x^{n-m} f(x)$.

So pick

$$q(x) = q_1(x) + b_n a_m^{-1} x^{n-m}$$

 $r(x) = r_1(x) < \deg f,$

and so the result follows.

To prove uniqueness, suppose we have

$$q_1(x)f(x) + r_1(x) = q_2(x)f(x) + r_2(x)$$

with $\deg r_1, \deg r_2 < \deg f$. Then

$$r_2(x) - r_1(x) = [q_1(x) - q_2(x)]f(x).$$

If $q_1(x) - q_2(x) \neq 0$, then

$$\deg(r_2 - r_1) = \deg(q_1 - q_2) + \deg f \ge \deg f$$

which is a contradiction since $\deg(r_2 - r_1) < \deg f$. Thus we must have $q_1(x) = q_2(x)$ and so $r_1(x) = r_2(x)$.

• Proposition 85 (Properties of the Greatest Common Divisor)

Let F be a field and f(x), $g(x) \in F[x]$ with $f(x) \neq 0 \neq g(x)$. Then $\exists ! d(x) \in F[x]$ such that

- 1. d(x) is monic;
- 2. d(x) | f(x) and d(x) | g(x);

3.
$$e(x) \mid f(x) \land e(x) \mid g(x) \implies e(x) \mid d(x)$$
;

4.
$$\exists u(x), v(x) \in F[x]$$
 $d(x) = u(x)f(x) + v(x)g(x)$

In this case, we say that d(x) is the greatest common divisor of f(x) and g(x), and denote this by $d(x) = \gcd[f(x), g(x)]$.

Proof

Consider the set

$$X = \{u(x)f(x) + v(x)g(x) : u(x), v(x) \in F[x]\}.$$

Since $f(x) = 1 \cdot f(x) + 0 \cdot g(x) \in X$, the set X contains non-zero polynomial and thus contains monic polynomials (since F is a field⁴). Among all of the monic polynomials, choose

$$d(x) = u(x)f(x) + v(x)g(x)$$

to have minimal degree. Then we get (1) and (4) in the bag automatically so. (3) also follows almost immediately, since

$$e(x) | f(x) \wedge e(x) | g(x)$$

$$\implies \exists a(x), b(x) \in F[x] \quad f(x) = a(x)e(x) \wedge g(x) = b(x)e(x)$$

$$\implies d(x) = u(x)f(x) + v(x) = [u(x)a(x) + v(x)b(x)]e(x)$$

$$\implies e(x) | d(x).$$

It remains to prove (2). By \bullet Proposition 84, we have that $\exists q(x), r(x) \in$

⁴ This is cause if we have

$$f(x) = a_m x^m + \ldots + a_0$$

Then

$$a_m^{-1}f(x) = x^m + \ldots + a_m^{-1}a_0$$

is a moic polynomial in F[x].

F[x] with deg $r < \deg f$ such that

$$f(x) = q(x)d(x) + r(x).$$

Then

$$r(x) = f(x) - q(x)d(x) = f(x) - q(x)[u(x)f(x) + v(x)g(x)]$$

= $[1 - q(x)u(x)]f(x) - q(x)v(x)g(x)$.

Note that if $r(x) \neq 0$, then write $k \neq 0 \in F$ as the leading coefficient of r(x). Since F is a field, we have that $\exists k^{-1} \in F$, and so $k^{-1}r(x)$ is a monic polynomial of X with $deg(k^{-1}r) < deg d$, which contradicts the fact that the degree of d(x) is minimal. Thus r(x) = 0 and $d(x) \mid f(x)$. *Using a similar argument, we can show that* d(x) | g(x)*. Therefore,* (2) follows.

Exercise 28.1.1

Reiterate this proof for integers, by removing the '(x)' and replacing instances of monic polynomials with positive integers.

29 Lecture 29 Jul 11th 2018

29.1 Polynomial Ring (Continued 2)

29.1.1 Factorization of Polynomials (Continued 2)

66 Note

If d(x) and $d_1(x)$ satisfies \bullet Proposition 85, then in particular (3) is satisfied, i.e.

$$d(x) | d_1(x)$$
 and $d_1(x) | d(x)$,

then since $d_1(x) = d(x)$ by \bullet Proposition 83. Thus d(x) is unique and is therefore called the greatest common divisor of f(x) and g(x), denoted by $\gcd(f(x), g(x)) = d(x)$.

Note that in integers, $p \in \mathbb{Z}$ is prime if $p \geq 2$ and whenever p = ab, then $a = \pm 1$ or $b = \pm 1$, where $a, b \in \mathbb{Z}$. We can have an "analogous" notion with polynomials.

Definition 51 (Irreducible Polynomials)

Let F be a field. A non-zero polynomial $l(x) \in F[x]$ is irreducible if $\deg l \ge 1$ and if

$$l(x) = l_1(x)l_2(x)$$

for $l_1(x)$, $l_2(x) \in F[x]$, then $\deg l_1 = 0$ or $\deg l_2 = 0$ ¹.

Polynomials that are not irreducible are called *reducible polynomials*.

¹ Note that polynomials of degree 0 are the units of F[x].

• Proposition 86 (Euclid's Lemma for Polynomials)

Let F be a field and $f(x), g(x) \in F[x]$. If $l(x) \in F[x]$ is irreducible and l(x) | a(x)b(x), then l(x) | a(x) or l(x) | b(x).

Proof

Suppose $l(x) \mid f(x)g(x)$ and $l(x) \mid f(x)$. Since $l(x) \mid f(x)$, we have gcd[l(x), f(x)] = 1. Then by \bullet Proposition 85, $\exists s(x), t(x) \in F[x]$ such that

$$l(x)s(x) + f(x)t(x) = 1.$$

Multiplying the equation by g(x), and since F[x] is a field, we have

$$l(x)s(x)g(x) + f(x)g(x)t(x) = g(x).$$

Since l(x) | f(x)g(x) by assumption, we have that l(x) divides the right hand side, and so it must also divide the left hand side, i.e. l(x) | g(x). \square

Theorem 87 (Unique Factorization Theorem for Polynomials)

Let F be a field and $f(x) \in F[x]$ with deg $f \ge 1$. Then we can write

$$f(x) = cl_1(x)l_2(x) \dots l_m(x)$$

where $c \in F^*$ is a unit, and for $1 \le i \le m$, $l_i(x)$ is a irreducible monic polynomial. This factorization is unique up to the order of l_i .

Proof

We shall only prove for when f(x) is a monic polynomial, for if f(x) is not monic, then it has some leading coefficient $a \neq 1 \in F$. Then since F is a field, we have that $a^{-1}f(x)$ is a monic polynomial for which we can continue our consideration.

Suppose f(x) is a monic polynomial that has the least degree such that it cannot be expressed as a product of irreducible monic polynomials. Clearly, f(x) cannot be irreducible itself, or it would trivially be

This is a good proof for an exercise.

Exercise 29.1.1

Prove • Proposition 86.

This is, yet again, a good proof for an exercise.

Exercise 29.1.2

Proof Proof

expressible as a product of irreducible monic polynomials. Therefore, $\exists s(x), t(x) \in F[x]$ such that

$$f(x) = s(x)t(x)$$

where $1 \leq \deg s$, $\deg t \leq \deg f$. Since f(x) is the polynomial of the least degree that cannot be expressed as a product of irreducible monic polnomials, r(x) and t(x) must be expressible as a product of irreducible monic polynomials. But this would contradict the fact that f(x) is not expressible as a product of irreducible monic polynomials, and so f(x)must be

$$f(x) = l_1(x)l_2(x) \dots l_m(x)$$

where $l_i(x)$ is an irreducible monic polynomial, for $1 \le i \le m$. For the case where f(x) is not monic, say with a as its leading coefficient, we would have

$$f(x) = al_1(x)l_2(x) \dots l_m(x).$$

For uniqueness, suppose

$$f(x) = cl_1(x)l_2(x)...l_m(x) = dk_1(x)k_2(x)...k_n(x)$$

for units $c,d \in F^*$ and irreducible monic polynomials l_i, k_j for $1 \le i \le m$ and $1 \le j \le n$. Since $l_1(x) \mid f(x)$, by \bullet Proposition 86, $l_1(x) \mid k_i(x)$ for some $1 \le j \le n$. Relabelling the indices for the k_i 's if necessary, we can have that $l_1(x) \mid k_1(x)$. Since $k_1(x)$ is irreducible and monic, we must have that $l_1(x) = k_1(x)$.

Now if we continue this line of argument for i = 2, 3, ..., m, and end up with $l_2(x) = k_2(x)$, $l_3(x) = k_3(x)$, ..., $l_m(x) = k_m(x)$, where, WLOG, we suppose that $m \le n$. However, we must have that n = m, otherwise we would have some k_i , where $m < j \le n$ that cannot divide any of the l_i 's.

For the sake of comparison with \mathbb{Z} , observe the table below:

	Z	F[x]
elements	т	f(x)
size	m	$\deg f$
units	{±1}	F*
	$\left(\mathbb{Z}\setminus\{0\}\right)\Big/\{\pm1\}\cong\mathbb{N}$	$\left(F[x]\setminus\{0\}\right)/F^*\cong\{h:h\text{ is monic }\}$
unique	$m=\pm 1p_1^{\alpha_1}\dots p_n^{\alpha_n}$	$f(x) = cl_1(x)^{\alpha_1} \dots l_n(x)^{\alpha_n}$
factorization	p_i prime	$\deg f \geq 1$ and l_i are irreducible
ideals	$\langle n \rangle : n \in \mathbb{N}$	$\langle h(x) \rangle : h \text{ monic}$
	$\mathbb{Z}_{\left\langle n \right\rangle}$ is a field	$F[x]/\langle h(x) \rangle$ is a field
	iff n prime	iff $h(x)$ is irreducible

In the next section, we will be investigating if the analogy given in the last row for polynomials holds.

29.1.2 Quotient Rings of Polynomials

• Proposition 88 (Ideals of F[x] are Principal Ideals)

If F is a field. Then all ideas of F[x] are of the form

$$\langle h(x) \rangle = h(x)F[x]$$
 for any $h(x) \in F[x]$.

If $\langle h(x) \rangle \neq \{0\}$ and h(x) is monic, then it is uniquely determined.

Proof

Let A be an ideal of F[x]. If $A = \{0\}$, then $A = \langle 0 \rangle$. If $A \neq \{0\}$, then it contains a non-zero polynomial. Since A is an ideal, it has a monic polynomial². Amongst all monic polynomials in A, choose $h(x) \in A$ that has the minimal degree. Clearly, $\langle h(x) \rangle \subseteq A$. To prove for \supseteq , note that for $f(x) \in A$, by \triangle Proposition 84,

$$\exists q(x), r(x) \in F[x]$$
 $f(x) = q(x)h(x) + r(x)$ $\deg r < \deg h$.

If $r(x) \neq 0$, then let $u \neq 0$ be the leading coefficient of r(x). Then since

² If $f(x) \in A$ has a leading coefficient a, then we know that $a^{-1} \in F$, and so $a^{-1}f(x) \in Ff(x) \subseteq A$ is monic.

A is an ideal and f(x), $h(x) \in A$, we have

$$u^{-1}r(x) = u^{-1} (f(x) - q(x)h(x))$$

= $u^{-1}f(x) - u^{-1}q(x)h(x) \in A$.

Then we have that $\deg u^{-1}r = \deg r < \deg h$ is a monic polynomial in A, contradicting the minimality of $\deg h$. Thus r(x) = 0 and so $f(x) = g(x)h(x) \in \langle h(x) \rangle$. Therefore $A\langle h(x) \rangle$ and so $A = \langle h(x) \rangle$.

Now suppose that $A = \langle h(x) \rangle = \langle k(x) \rangle$. Then we must have h(x) | k(x) and k(x) | h(x). Since h(x) and k(x) are both monic, by \bullet Proposition 83, we have that h(x) = k(x).

30 Lecture 30 Jun 13th 2018

30.1 Polynomial Ring (Continued 3)

30.1.1 Quotient Rings of Polynomials (Continued)

Let A be a non-zero ideal in F[x]. By \bullet Proposition 88, we know that A is a principal ideal and can be written as $A = \langle h(x) \rangle$, for a unique polynomial $h(x) \in F[x]$.

Suppose that deg $h=m\geq 1$. Consider the quotient ring $R=F[x]/_A$, and so we have

$$R = \left\{ \overline{f(x)} : f(x) + A, f(x) \in F[x] \right\}.$$

Write $t = \bar{x} = x + A$. Then by the **Division Algorithm**¹, we have

$$R = \{\overline{a_0} + \overline{a_1}t + \ldots + \overline{a_{m-1}}t^{m-1} : a_i \in F\}.$$

The map $\theta: F \to R$, given by $a \mapsto \bar{a}$, is an injective homomorphism, since θ is not a zero map and $\ker \theta$ is an ideal of F Note that a field F has only 2 ideals: $\{0\}$ and F itself. Since $\ker \theta \neq F$, we have that $\ker \theta = \{0\}$ and so θ is injective.. Since we have $F \cong \theta(F)$ by the First Isomorphism Theorem for Rings, by identifying F with $\theta(F)$, we can write

$$R = \{a_0 + a_1t + \dots a_{m-1}t^{m-1} : a_i \in F\}.$$

It is clear that, in *R*, we have

$$a_0 + a_1 t + \ldots + a_{m-1} t^{m-1} = b_0 + b_1 t + \ldots + b_{m-1} t^{m-1}$$

$$\iff$$

$$\forall i \in \mathbb{Z} \ 0 \le i \le m-1 \quad a_i = b_i$$

¹ This entire part until Proposition 89 might need to be rewritten since I am a little lost as to some of the details regarding the discussion.

170 Lecture 30 Jun 13th 2018 - Polynomial Ring (Continued 3)

Finally, in the ring R, we have h(t) = 0.

The following proposition follows from the above discussion.

• Proposition 89

Let F be a field and let h(x), $f(x) \in F[x]$ be monic with $(\deg h, \deg f \ge 1)$. Then the quotient ring R = F[x]/A is given by

$$R = \{a_0 + a_1t + \ldots + a_{m-1}t^{m-1} : a_i \in F, h(t) = 0\}$$

in which each element of R can be uniquely represented in the above form.

66 Note

In \mathbb{Z} , we have that $\mathbb{Z}/\langle n \rangle = \mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$ which is analogous to our statement in \bullet Proposition 89 for the case of integers.

Example 30.1.1

Consider $\mathbb{R}[x]$ and let $h(x) = x^2 + 1 \in \mathbb{R}[x]$. Then

$$\mathbb{R}[x] = \{a + bt : a, b \in \mathbb{R}, t^2 + 1 = 0\} \cong \{a + bi : a, b \in \mathbb{R}, i^2 = -1\} = \mathbb{C}$$

66 Note

Recall that \mathbb{Z}_n *is a field (or an integral domain) if and only if n is prime.*

• Proposition 90

Let F be a field nad $h(x) \in F[x]$ be a monic polynomial with deg $h \ge 1$. TFAE:

- 1. $F[x]/\langle h(x) \rangle$ is a field;
- 2. $F[x]/\langle h(x) \rangle$ is an integral domain;
- 3. h(x) is irreducible in F[x].

Proof

- $(1) \implies (2)$ since a field is an integral domain (see § Proposition 74).
- (2) \implies (3): Write $A = \langle h(x) \rangle$, If h(x) = f(x)g(x) for f(x), $g(x) \in$ F[x], then

$$[f(x) + A][g(x) + A] = f(x)g(x) + A \quad \therefore A \text{ is an ideal}$$
$$= h(x) + A = 0 \in F[x]/A.$$

Then by (2), either f(x) + A = 0 or g(x) + A = 0, i.e. either $f(x) \in A$ or $g(x) \in A$. But if $f(x) \in A = \langle h(x) \rangle$, then f(x) = g(x)h(x)for some $q(x) \in F[x]$. Then h(x) = f(x)g(x) = q(x)h(x)g(x), which then implies that $0 = h(x)[1 - q(x)g(x)] \implies q(x)g(x) = 1$ since F[x] is an integral domain. Then we have that $\deg g = 0$. Similarly, if $g(x) \in A$, then we have deg f = 0. Therefore, h(x) is irreducible in F[x]by definition.

(3) \implies (1): Note that $F[x]/\langle h(x) \rangle$ is a commutative ring. To show that it is a field, it suffices to show that every non-zero element of $F[x]/\langle h(x) \rangle$ has an inverse. Let $f(x) + A \neq 0 \in F[x]/\langle h(x) \rangle$ with $f(x) \in F[x]$. Then $f(x) \notin A$, and so h(x) / f(x). Since h(x) is irreducible by (3), we have that

$$d(x) = \gcd[f(x), h(x)] = 1.$$

Then by \bullet Proposition 85, $\exists u(x), v(x) \in F[x]$ such that

$$1 = u(x)h(x) + v(x)f(x).$$

Since $h(x)u(x) \in A$, we have that

$$[v(x) + A][f(x) + A] = 1 + A.$$

It follows that f(x) + A has an inverse in $F[x]/\langle h(x) \rangle$ and thus $F[x]/\langle h(x) \rangle$ is a field.

30.2.1 Irreducibles and Primes

We have discussed much about the similarities between \mathbb{Z} and F[x], and in this chapter, we wish to abstract these similarties and study them in a more general manner to see if other sets that share the same kind of properties. For example, if a set has a **unique factorization** for elements and the **principal ideal** being the only ideal of the set, then do we still see the same analogy playing out?

Definition 52 (Division)

Let R be an integral domain and a, $b \in R$. We say that $a \mid b$ if b = ca for some $c \in R$.

66 Note

Recall that in \mathbb{Z} , if $n \mid m$ and $m \mid n$, then $n = \pm m$, and the ideal generated by them are the same, i.e. $\langle n \rangle = \langle m \rangle$.

Similarly so in F[x] < if f(x) | g(x) and g(x) | f(x), then f(x) = cg(x) for some $x \in F[x]^* = F^*$, and $\langle f(x) \rangle = \langle g(x) \rangle$.

• Proposition 91 (Division in an Integral Domain)

Let R *be an integral domain. Then* $\forall a, b \in R$ *, TFAE:*

1. a | b and b | a;

2. a = ub for some unit $u \in R$;

3. $\langle a \rangle = \langle b \rangle$.

This should be an easy exercise.

Exercise 30.2.1

Prove • Proposition 91.

Definition 53 (Association)

Let R be an integral domain. $\forall a,b \in R$, we say that a is associated to b, denoted by $a \sim b$, if $a \mid b$ and $b \mid a$.

66 Note

By lacktriangle Proposition 91, we have that $a \sim a$ for any $a \in R$.

Also,
$$a \sim b \iff b \sim a$$
.

We also have $a \sim b \wedge b \sim c \implies a \sim c$.

In other words, \sim is an equivalence relation in R. Also, it can be shown that²

1.
$$a \sim a' \wedge b \sim b' \implies ab \sim a'b'$$
.

2.
$$a \sim a' \wedge b \sim b' \implies (a \mid b \iff b \mid a)$$

² More exercise is always good.

Exercise 30.2.2

Prove that the two statements following this is true.

Example 30.2.1

Let $R = \mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} : m, n \in \mathbb{Z}\}$. Note that this is an integral domain³. Observe that

$$(2+\sqrt{3})(2-\sqrt{3}) = 1 \implies 2+\sqrt{3}$$
 is a unit in R.

Then we would have

$$3 + 2\sqrt{3} = (2 + \sqrt{3})\sqrt{3}$$

and so by **6** Proposition 91, we have

$$3 + 2\sqrt{3} \sim \sqrt{3} \in \mathbb{Z}[\sqrt{3}].$$

 3 For $(a + b\sqrt{3})$, $(c + d\sqrt{3}) \in R$ such that

$$(a+b\sqrt{3})(c+d\sqrt{3})=0$$

we would have that

$$(a+b\sqrt{3})(a-b\sqrt{3})(c+d\sqrt{3})(c-d\sqrt{3}) = 0$$
$$(a^2-3b^2)(c^2-3d^2) = 0.$$

Since \mathbb{Z} is an integral domain, suppose $a^2-3b^2=0$. If b=0, then a=0 and we are done. If $b\neq 0$, then we have $3=\left(\frac{a}{b}\right)^2$, and we notice that $\sqrt{3}$ is irrational. Thus it can only be that b=0. Therefore, $a+b\sqrt{3}=0$, implying that there are no zero divisors in $R=\mathbb{Z}[\sqrt{3}]$.

Abelian Group, 27 acts on, 91 additive identity, 18 Alternating Group, 44, 69 associated to, 172 Association, 172 associativity, 17

Bijectivity, 21

Cauchy's Theorem, 99 Cayley Table, 34 Cayley's Theorem, 89, 93 Center of a Group, 40 Center of a Ring, 116 centralizer, 98 Characteristic, 115 Chinese Remainder Theorem, 131 Class Equation, 98 closure, 17 Commutative Ring, 111 conjugacy class, 97 conjugation, 94 constant polynomial, 149 Coset, 59 Coset Map, 78 Cycle Decomposition Theorem, 25

degree, 149
Dihedral Group, 55, 69
direct product, 30, 115
Division, 172
Division Algorithm, 158
Division of Polynomials, 155

Cyclic Group, 35, 46, 50

Division Ring, 135

Equivalence Relation, 58, 173 Euler's ϕ -function, 64, 133 Euler's Theorem, 64 Euler's Totient Function, 64, 133 Even Permutations, 44

Extended Cayley's Theorem, 90

factors through, 84 faithful group action, 93 Fermat's Little Theorem, 64 Field, 135 Field of Fractions, 146 Finite Abelian Group Structure, 110 Finite Subgroup Test, 41 First Isomorphism Theorem, 80, 128 Fraction, 146

Gaussian Integers, 135 Gaussian integers, 117 General Linear Group, 29, 68 generator, 46, 50, 122 Greatest common divisor, 160 Group Action, 91, 93 Group Homomorphism, 56 Group of Units, 135 Groups, 27

Homomorphism, 56, 125

Ideal, 121 Image, 127 Image of a Homomorphism, 78 Index, 61 Injectivity, 21
Integral Domain, 138
inverse permutation, 23
Irreducible Polynomials, 163
isomorphic, 57
isomorphic to, 57
Isomorphism, 57

Kernel, 78, 127 Klein n-group, 35

Lagrange's Theorem, 63 leading coefficient, 149

Maximal Ideals, 144 Monic Polynomial, 155 mutiplicative identity, 18

Normal Subgroup, 65 Normality Test, 67 Normalizer, 71

Odd Permutations, 44 one-to-one, 21 onto, 21 Orbit, 94 Orbit Decomposition Theorem, 95 Order, 22 Order of an Element, 47

p-Group, 103 p-Groups are Finite, 103 Parity Theorem, 43 Permutations, 21 polynomial, 149 Primary Decomposition, 103 Prime Ideals, 143 Principal Ideal, 122, 166, 169 Product of Groups, 70

Quotient Group, 78 Quotient Map, 78 Quotient Ring, 122

reducible polynomials, 163 restriction, 107 Ring, 111 Ring Homomorphism, 125 Ring Isomorphism, 127

Second Isomorphism Theorem, 85, 129 sign of a permutation, 80 Special Linear Group, 40, 68 Stabilizer, 94

Stabilizer, 94
Subgroup, 37
Subgroup Test, 39
Subring, 116
Subring Test, 116
Surjectivity, 21
symmetry group, 30

Third Isomorphism Theorem, 86, 130 Transposition, 43 Trivial Ring, 114

Unique Factorization Theorem for Polynomials, 164 Units, 134 Unity, 111

Zero Divisor, 136 Zero of a Ring, 111 zero polynomial, 149

32 List of Symbols

$M_n(\mathbb{R})$	set of $n \times n$ matrices over \mathbb{R}
\mathbb{Z}_n^*	set of integers modulo n ; each element has its multiplicative inverse
S_n	symmetry group of degree <i>n</i>
D_{2n}	dihedral group of degree n ; a subset of S_n
K_n	Klein <i>n</i> -group
A_n	alternating group of degree n ; a subset of S_n
F[x]	polynomial ring over a field F
$ D_{2n} $	order of the dihedral group; the size of the dihedral group
$\begin{pmatrix} 1 & 2 & \dots & n \end{pmatrix}$	An n-cycle
$\det A$	determinant of matrix A
$CL(\mathbb{D})$	general linear group of degree <i>n</i> ;
$GL_n(\mathbb{R})$	the set that contains elements of $M_n(\mathbb{R})$ with non-zero determinant
$SL_n(\mathbb{R})$	special linear group of order n ;
$SL_n(\mathbf{R})$	the set that contains elements of $GL_n(\mathbb{R})$ with determinant of 1
Z(G)	center of group G
$\langle g \rangle$	cyclic group with generator g ; principal ideal with generator g
$\langle h(x) \rangle$	principal ideal with generator $h(x) \in F[x]$
$n \mid d$	n divides d
$H \leq G$	<i>H</i> is a subgroup of <i>G</i> (used sparsely in this notebook)
$H \triangleleft G$	H is a normal subgroup of G
$G_{/H}$	quotient group of G by $H \triangleleft G$
ker α	kernel of α
$im \alpha$	image of α
$G^{(m)}$	group of elements of G with order m
ch(R)	characteristic of the ring R