

Infraestructura actual.

Base de datos.	MySQL.
Localidad.	On-premises.
Volumen.	+ 15 GB.
Migración.	AWS.

Diseño a migrar.

Se adjunta el diagrama donde se estipula la arquitectura idónea para la migración del servicio, conservando el incremento del volumen de data.

Análisis y Evaluación.

1. Evaluación de la Base de Datos Actual (ITOps):

• Tamaño de la base de datos: Reconocer la tasa de crecimiento de la base de datos para estimar futuras necesidades de almacenamiento y capacidad.

Patrones de tráfico.

- Analizar métricas de rendimiento actuales: IOPS, latencia, carga de trabajo, número de conexiones concurrentes.
- Evaluamos el historial de crecimiento de la base de datos para predecir necesidades futuras.

Revisión del esquema:

 Verificamos, si hay esquemas complejos, funciones almacenadas, procedimientos o triggers que necesiten atención especial.

Auditoría de rendimiento:

• Identificar consultas lentas o ineficientes que puedan optimizarse antes de la migración.

Revisiones de integridad:

- Comprobamos la integridad de los datos, asegurándonos de que no haya corrupción.
- Revisamos las relaciones y claves foráneas para garantizar la integridad referencial.

Migración de una base de datos on-premises hacia la nube.

Revisión de dependencias:

- Identificamos todas las aplicaciones, servicios y procesos que interactúan con la base de datos.
- Comprendemos las cadenas de conexión y las credenciales utilizadas.

Identificación de potenciales obstáculos o problemas.

2. Selección del Servicio de AWS (ITOps):

- Incompatibilidad de versiones:
 - Asegurarnos de que la versión de MySQL on-premises sea compatible con la ofrecida en Amazon RDS o Aurora.

• Integraciones de terceros:

 Las herramientas o aplicaciones de terceros que interactúan con la base de datos pueden no ser compatibles inmediatamente con la versión de la base de datos en AWS.

Solución:

Amazon RDS.	Amazon Aurora.
PaaS.	MySQL x5.
	15 réplicas (R).
	Escalabilidad.
	Failover automático.

Amazon RDS para MySQL.

 Nos permite operar varias versiones de MySQL y se encarga del aprovisionamiento, parcheado, copias de seguridad, recuperación y fallos.

Planificación de la Migración.

3. Herramientas de Migración (DevOps):

Evaluación.

DMS.	SCT.
Migración offline.	Aurora.

- AWS Database Migration Service (DMS).
 - Permite la migración de datos entre bases de datos heterogéneas o homogéneas.

Solución:

- Migraríamos la base de datos a AWS con un tiempo mínimo de inactividad.
- Datos en tiempo real.

Después de mover el Snapshot, replicamos los cambios en tiempo real a AWS hasta que se haga el paso y bajar la bd de producción.

- AWS Schema Conversion Tool (SCT).
 - Ayuda a convertir el esquema de la base de datos fuente para que sea compatible con el objetivo.

Solución:

- Ideal, si necesitamos cambiar esquemas o convertir la base de datos a Aurora.
- Comprueba incompatibilidades.

3.1 Creación de un entorno de prueba (GitOps):

Configuramos una instancia de Amazon RDS o Aurora MySQL en AWS.

3.2 Migración de la base de datos (DataOps):

- Migración de datos iniciales:
 - Configuramos y lanzamos una tarea de migración en DMS para mover datos de la base de datos on-premises a AWS.
- Replicación continua:
 - Para minimizar el tiempo de inactividad, configuramos DMS para replicar datos de manera continua después de la migración inicial, capturando y replicando cambios en la base de datos fuente.

3.3 Validación (SysOps):

Realizamos pruebas exhaustivas en el nuevo entorno para asegurarse de que todo funciona correctamente. Esto incluye pruebas de rendimiento, pruebas de integración con otras aplicaciones y sistemas, y validación de datos.

3.4 Cutover – Traslado (DataOps):

- Una vez, Hayamos confirmado que todo funciona como se espera, y la replicación continua haya capturado todos los cambios recientes, es el momento de hacer el cambio oficial.
- Esto implica, que Redirigiremos todas las conexiones de la base de datos y aplicaciones al nuevo endpoint en Amazon RDS/Aurora.

Realizado por Oscar Macias, Colombia. Fecha: 24-10-2023.

5.

4. Provisión y Configuración (DevOps):

Tamaño de la migración:

 Una base de datos de 15GB puede requerir tiempo para migrarse, y este tiempo puede ser un obstáculo si la ventana de migración es corta.

Interrupción del servicio:

• Dependiendo del método de migración, puede haber un período de inactividad. Comunicaríamos la planificación adecuadamente.

Configuraciones personalizadas:

• Si la base de datos actual tiene configuraciones personalizadas, es posible que se deban replicar o modificar para AWS.

Solución:

• Tipo de instancia.

• En función del tamaño y las necesidades de rendimiento, seleccionamos el tipo de instancia RDS adecuado.

Almacenamiento.

 Para mayor lectura, haremos uso del almacenamiento SSD (gp2) y habilitamos la auto escalabilidad de almacenamiento para el crecimiento impredecible.

Zonas de disponibilidad.

 Para la alta disponibilidad, Desplegamos la base de datos en múltiples zonas de disponibilidad.

Migración de una base de datos on-premises hacia la nube.

5. Configuración de Seguridad (GitOps):

- Seguridad y cumplimiento.
 - Las regulaciones de privacidad o industria pueden requerir cifrado específico, retención de datos o políticas de acceso.

Solución:

- Grupos de Seguridad.
 - Configuramos grupos de seguridad para restringir el acceso.
- Cifrado.
 - Usamos el cifrado en reposo y en tránsito.
- IAM.
 - Utilizamos roles de IAM para permitir que servicios y usuarios accedan a la base de datos.

6. Migración (DataOps):

- Backup inicial.
 - Realizamos una copia de seguridad completa de la base de datos actual para poder restaurarla si algo sale mal.

Solución:

- Snapshot inicial.
 - Realizamos o programamos una copia de seguridad completa de la base de datos y la importamos en AWS.
 - Implementar una política de retención de backups y testear la recuperación de datos regularmente.

Monitoreo y Mantenimiento.

Herramientas y prácticas de monitoreo.

7. Optimización Post-Migración (CloudOps):

- Rendimiento post-migración:
 - La base de datos puede no rendir de la misma manera en la nube que on-premises. Las pruebas de rendimiento son esenciales.
- Backup y recuperación:
 - Las estrategias actuales de backup y recuperación pueden necesitar ser revisadas y modificadas para AWS.

Solución:

Monitoreo.

Herramienta: Amazon CloudWatch.

- **Establecer Alarmas**: para métricas críticas, como utilización de CPU, latencia, errores, y utilización de almacenamiento.
- Notificación Inmediata: Configuramos alarmas para recibir notificaciones inmediatas en caso de problemas. Las notificaciones pueden ser por correo electrónico, SMS, o incluso integrarse con sistemas de tickets o chat.

Herramienta: Amazon CloudWatch Logs.

- Configuramos la base de datos RDS/Aurora para exportar logs a CloudWatch.
- Obtendremos información sobre errores, lentitud en las consultas y otras operaciones de la base de datos.

Migración de una base de datos on-premises hacia la nube.

Plan de acción para problemas de rendimiento o disponibilidad:

Optimización.

Herramienta: Amazon RDS / Aurora Events.

 Nos notificarán sobre eventos importantes relacionados con la base de datos, como backups, actualizaciones, o fallos.

Herramienta: AWS RDS Performance Insights.

- Analizamos las métricas para optimizar la base de datos.
- Obtenemos, una visión detallada del rendimiento.
- Podemos, visualizar la carga de la base de datos y filtrar según SQL, espera, y host.

Prácticas recomendadas:

- · Copia de seguridad.
 - **Backup Regular**: Programamos nuestros propios backups y probamos la restauración periódicamente.
- Mantenimiento Programado.
 - AWS nos informa, sobre actualizaciones, que pueden incluir parches de seguridad, mejoras de rendimiento, y nuevas características.

8. Corte Final y Validación (CloudOps):

- Tiempo de inactividad: Planeamos un corte final durante un período de baja demanda.
- Validación: Una vez Hemos migrado, validamos la integridad de los datos, las aplicaciones y el rendimiento.

9. Planes de Contingencia (DevSecOps):

- **Plan de reversión**: En caso de problemas, documentamos un RFC con una estrategia por un pipeline, o un plan para revertir hacia la infraestructura onpremises o estable en nube.
- **Pruebas de Failover**: Probamos escenarios de failover en AWS para asegurarte de que la recuperación sea fluida.

10. Documentación y Formación (DevSecOps):

Preparación previa.

- Formación del equipo: Asegurarnos de que el equipo de IT esté familiarizado con AWS y sus servicios relacionados con bases de datos.
- Mantenimiento y operaciones post-migración:
 - Puede haber una curva de aprendizaje en la gestión de bases de datos en AWS si el equipo no está familiarizado con la plataforma.

Solución:

- **Documentación**: Desde Confluence o cualquier WIKI, las configuraciones, optimizaciones realizadas.
- Formación: Capacitamos al equipo, con la administración de bases de datos en AWS.

11. Mantenimiento Continuo (FinOps):

- Costos inesperados.
 - Las transferencias de datos, las operaciones de E/S y la capacidad provisionada pueden incurrir en costos. Es vital estimar estos costos por adelantado.

Solución:

- Actualizaciones.
 - Programaos actualizaciones y mantenimiento periódicos.
- Costo.
 - Monitoreamos y optimizamos los costos con herramientas como AWS Cost Explorer.

Herramienta: AWS Trusted Advisor.

 Nos hace recomendaciones para ahorrar dinero, mejorar el rendimiento y cerrar brechas de seguridad.

Estrategias de Escalabilidad.

12. Escalabilidad Vertical (Scale-Up):

- RDS / Aurora.
 - Podemos cambiar fácilmente el tipo de instancia de tu base de datos en RDS o Aurora para una más potente si observas que los recursos actuales están siendo maximizados.

13. Escalabilidad Horizontal (Scale-Out):

- Read Replicas.
 - En situaciones donde la demanda de lecturas es alta, podemos configurar réplicas de lectura en RDS y Aurora.
 - Estas réplicas ayudan a distribuir la carga de las solicitudes de lectura entre varias instancias, aliviando así la presión sobre la instancia principal.

Aurora Auto-Scaling.

- Aurora tiene una característica que permite auto-escalar las réplicas de lectura basadas en demanda real.
- Se agregarán o eliminarán réplicas automáticamente según las métricas definidas, como la utilización de CPU o el número de conexiones.

14. Distribución geográfica (CloudOps):

- Aurora Global Database.
 - Si contamos con usuarios en diferentes partes del mundo, podemos usar Aurora Global Database.
 - Nos permite tener una base de datos principal en una región y hasta 5 réplicas de solo lectura en otras regiones, lo que mejora la latencia para los usuarios globales.

15. Optimización de la base de datos (DataOps):

- Índices.
 - Realizar Auditorías Regulares: identificar consultas lentas, tablas sin índices y otras posibles ineficiencias.
- Caché.

Herramienta: Amazon ElastiCache.

 Reduciremos la carga en la base de datos al almacenar en caché los resultados de consultas comunes.

16. Separación de cargas de trabajo (DataOps):

Separaríamos, las bases de datos según su tipo de carga.

17. Evaluación periódica:

 Realizaremos evaluaciones periódicas de la capacidad y el rendimiento y ajustaremos la infraestructura según sea necesario.

