Contents

1	Basi	C																				1
'	1.1	vimrc																				1
	1.2	default																				1
																						1
	1.3	judge																				1
	1.4	Random																				
	1.5	Increase stack si	ze .	• •	•		٠			٠		•	٠.	٠		٠	٠	٠		 •	•	1
2	Mat	ching and Flow																				2
_	2.1	Dinic																				2
	2.2	MCMF																				2
	2.2	HopcroftKarp .																				2
	2.3	KM																				2
	2.5	SW																				3
	2.5	GeneralMatching																				3
	2.0	GeneralMatching		• •	•		•			•	•	•		•		•	•	•	•	 •		3
3	Grap	nh.																				3
•	3.1	Strongly Connec	ted C	om	oor	en	t															3
	3.2	2-SAT																				4
	3.3	Tree																				4
	3.4	Manhattan MST																				4
	3.5	TreeHash																				5
	3.6	Maximum Indepe																				5
	3.7	Min Mean Weigh																				5
	3.8	Block Cut Tree	-																			5
	3.9	Heavy Light Dec																				5
		Dominator Tree																				6
	5.10	Bommator free			•		•		• •	•	•	•		•		•	•	•	•	 •	•	·
4	Date	3 Structure																				6
	4.1	Lazy Segtree .																				6
	4.2	Sparse Table .																				7
	4.3	Binary Index Tre																				7
	4.4	Special Segtree																				7
	4.5	Treap																				7
	4.6	LiChao Segtree																				8
	4.7	Persistent Segm																				8
	4.8	Blackmagic																				8
	4.9	Centroid Decom																				8
		2D BIT																				8
		25 5				•	•	•		•	•			·	•	•	•		•		•	·
5	Dyn	amic Programmir	ng																			9
	5.1	CDQ																				9
		-																				
6	Mat	h																				9
6	Mat 6.1	h Theorem																		 		9
6																						•
6	6.1	Theorem																				9
6	6.1 6.2	Theorem Linear Sieve				 		 														9 10
6	6.1 6.2 6.3	Theorem Linear Sieve Exgcd				 		 												 		9 10 10
6	6.1 6.2 6.3 6.4	Theorem Linear Sieve Exgcd CRT				 		 												 		9 10 10 10
6	6.1 6.2 6.3 6.4 6.5	Theorem Linear Sieve Exgcd CRT Factorize				 		 												 		9 10 10 10 10
6	6.1 6.2 6.3 6.4 6.5 6.6	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List				 		· · · · · ·												 		9 10 10 10 10
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List				 																9 10 10 10 10 10
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT																				9 10 10 10 10 10 10
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT FWT																				9 10 10 10 10 10 11 11
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT FWT Lucas																				9 10 10 10 10 10 11 11
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT FWT Lucas Berlekamp Mass																				9 10 10 10 10 10 11 11 11
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT FWT Lucas Berlekamp Mass Gauss Eliminatio																				9 10 10 10 10 10 11 11 11 11
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT Lucas Berlekamp Mass Gauss Eliminatio Linear Equation																				9 10 10 10 10 10 10 11 11 11 11 11 12
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT Lucas Berlekamp Mass Gauss Eliminatio Linear Equation LinearRec																				9 10 10 10 10 10 11 11 11 11 12 12
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT FWT Lucas Berlekamp Mass Gauss Eliminatio Linear Equation LinearRec SubsetConv .	ey .																			9 10 10 10 10 10 11 11 11 11 12 12
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT FWT Lucas Berlekamp Mass Gauss Eliminatio Linear Equation LinearRec SubsetConv . SqrtMod																				9 10 10 10 10 10 10 11 11 11 11 12 12 12
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT Ewill Berlekamp Mass Gauss Eliminatio Linear Equation LinearRec . SubsetConv . SqrtMod DiscreteLog .																				9 10 10 10 10 10 10 11 11 11 11 12 12 12 12
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18	Theorem Linear Sieve Exgcd CRT Factorize NTT Prime List NTT FWT Evaluation Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Rec SubsetConv . SqrtMod DiscreteLog . FloorSum	ey																			9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv . SqrtMod DiscreteLog . FloorSum . Linear Programr Lagrange Interp	ey																			9 10 10 10 10 10 10 11 11 11 12 12 12 12 13 13
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20	Theorem Linear Sieve Exgcd Exgcd CRT Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation LinearRec SubsetConv . SqrtMod DiscreteLog . FloorSum Linear Programr	ey																			9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.20 Geo 7.1	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT Prime List FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Rec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp	ey	Sim																		9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.20 Geo	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT Ewill Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv SqrtMod DiscreteLog . FloorSum Linear Programr Lagrange Interp	ey	Sim																		9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.19 6.20 Geo 7.1 7.2 7.3	Theorem Linear Sieve Exgcd Exgcd CRT Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv . SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull Convex Hull trick	ey	Sim																		9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 14 14
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.20 Geo 7.1 7.2	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Rec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull	ey	Sim																		9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.19 6.20 Geo 7.1 7.2 7.3	Theorem Linear Sieve Exgcd Exgcd CRT Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv . SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull Convex Hull trick	ey	Sim																		9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 14 14
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation LinearRec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull Convex Hull trick Dynamic Convex	eey	Simp																		10 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.14 6.15 6.16 6.17 6.18 6.19 6.20 7.1 7.2 7.3 7.4 7.5 7.6	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT FWT Evel Lucas Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull . Convex Hull trick Dynamic Convex Half Plane Inters	egy	Simpon	ole																	10 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4 7.7 7.7	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT Prime List FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Rec SubsetConv SqrtMod DiscreteLog . FloorSum Linear Programr Lagrange Interp Convex Hull Convex Hull Convex Hull trick Dynamic Convex Half Plane Inters	egy		olex																	10 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 14 14 14 15 15 15
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.14 6.15 6.16 6.17 6.18 6.19 6.20 7.1 7.2 7.3 7.4 7.5 7.6	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT Prime List FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Rec SubsetConv SqrtMod DiscreteLog . FloorSum Linear Programr Lagrange Interp Convex Hull Convex Hull Convex Hull trick Dynamic Convex Half Plane Inters	ey		olex																	10 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 6.13 6.14 6.16 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4 7.5 7.7 7.7 7.7	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Programr Lagrange Interp metry 2D Point Convex Hull Convex Hull trick Dynamic Convex Half Plane Inters Minimal Enclosin Minkowski TriangleCenter Circle Triangle	egy		olex																	10 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 14 14 14 14 15 15 15 15
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Strire	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull Convex Hull trick Dynamic Convex Half Plane Inters Minimal Enclosin Minkowski TriangleCenter Circle Triangle	ection	Simpon																		10 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 14 14 14 14 15 15 15 15 16
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Strir 8.1	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation LinearRec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp metry 2D Point Convex Hull rick Dynamic Convex Hull trick Dynamic Convex Hull trick Minimal Enclosin Minkowski TriangleCenter Circle Triangle	ey	Simpon																		10 10 10 10 10 10 11 11 11 11 12 12 12 12 12 12 13 13 13 14 14 14 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Strire 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT Prime List NTT Prime List FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Rec SubsetConv SqrtMod DiscreteLog . FloorSum Linear Programr Lagrange Interp Convex Hull Convex Hull Convex Hull trick Dynamic Convex Half Plane Inters Minimal Enclosin Minkowski TriangleCenter Circle Triangle Ingology	egy	Sim		· · · · · · · · · · · · · · · · · · ·																10 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 14 14 14 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 7.2 7.3 7.4 7.7 7.8 7.9 Strir 8.1 8.2 8.3	Theorem Linear Sieve Exgcd Factorize NTT Prime List NTT FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Equation Linear Pogramr Lagrange Interp Metry 2D Point Convex Hull rick Dynamic Convex Hulf Plane Inters Minimal Enclosin Minkowski TriangleCenter Circle Triangle Mgology KMP Kartorize KMP Manacher	eg Circo	Sim																		100 100 100 100 100 100 100 100 100 100
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4 7.7 7.8 7.9 Strir 8.1 8.2 8.3 8.4	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT Prime List NTT Prime List FWT Ewill Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Equation Linear Programm Lagrange Interp Linear Programm Lagrange Interp Convex Hull Convex Hull Convex Hull trick Dynamic Convex Hull trick Dynamic Convex Hull friand Inters Minimal Enclosin Minkowski	egy. n which is a section of the control of the	Simpon																		100 100 100 100 100 100 101 111 111 111
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 7.2 7.3 7.4 7.5 7.7 7.8 7.9 Strir 8.1 8.2 8.3 8.4 8.5	Theorem Linear Sieve Exgcd Exgcd Factorize NTT Prime List NTT Prime List FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Rec SubsetConv SqrtMod DiscreteLog FloorSum Linear Programr Lagrange Interp Convex Hull Convex Hull Convex Hull Convex Hull rick Dynamic Convex Hull rick Dynamic Convex Hull friand Inters Minimal Enclosin Minkowski TriangleCenter Circle Triangle gology KMP Z-algorithm Manacher SuffixArray Simp SuffixArray Sals	egy	Simpon		· · · · · · · · · · · · · · · · · · ·																100 100 100 100 100 100 100 100 100 100
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 7.1 7.3 7.4 7.5 7.6 7.7 8.1 8.2 8.3 8.4 8.5 8.6	Theorem Linear Sieve Exgcd	ection	Simple	olex	· · · · · · · · · · · · · · · · · · ·																100 100 100 100 100 100 100 100 100 100
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 Geo 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8.1 8.2 8.3 8.4 8.5 8.5 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	Theorem Linear Sieve Exgcd Factorize Factorize NTT Prime List NTT FWT FWT Berlekamp Mass Gauss Eliminatio Linear Equation Linear Equation Linear Equation Linear Programr Lagrange Interp Metry 2D Point Convex Hull Convex Hull trick Dynamic Convex Half Plane Inters Minimal Enclosin Minkowski TriangleCenter Circle Triangle agology KMP Z-algorithm Manacher SuffixArray SAIS SuffixArray SAIS SuffixArray SAIS Palindromic Tree	egy	on the control of the		· · · · · · · · · · · · · · · · · · ·																100 100 100 100 100 100 100 100 100 100
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 7.1 7.3 7.4 7.5 7.6 7.7 8.1 8.2 8.3 8.4 8.5 8.6	Theorem Linear Sieve Exgcd	ey	Simpon																		100 100 100 100 100 100 100 100 100 100

```
Misc
     18
     DLX ......
                                                     18
       9.5
       9.6
     Basic
   1.1 vimrc
   set ts=4 sw=4 nu rnu et hls mouse=a
   filetype indent on
   sv on
   inoremap jk <Esc>
   inoremap {<CR> {<CR>}<C-o>0
   nnoremap J 5j
   nnoremap K 5k
   nnoremap <F1> :w<bar>!g++ '%' -o run -std=c++20 -DLOCAL -Wfatal-errors -fsanitize=address,undefined -g &&
       echo done. && time ./run<CR>
   1.2 default
   #include <bits/stdc++.h>
   using namespace std;
   template<ranges::range T,</pre>
       class = enable_if_t<!is_convertible_v<T,</pre>
       string_view>>>
   istream& operator>>(istream &s, T &&v) {
     for (auto &&x : v) s >> x; return s;
   template<ranges::range T,
       class = enable_if_t<!is_convertible_v<T,</pre>
       string_view>>>
   ostream& operator<<(ostream &s, T &&v) {
     for (auto &&x : v) s << x << ' '; return s;
   template<class... T> void dbg(T... x) { char e{}}; ((
    cerr << e << x, e = ' '), ...); }
#define debug(x...) dbg(#x, '=', x, '\n')</pre>
   #else
   #define debug(...) ((void)0)
   #pragma GCC optimize("03,unroll-loops")
   #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
   #endif
   template<class T> bool chmin(T &a, T b) { return (b < a</pre>
        and (a = b, true)); }
   template<class T> bool chmax(T &a, T b) { return (a < b
    and (a = b, true)); }
template<class T> inline constexpr T inf =
       numeric_limits<T>::max() / 2;
   1.3 judge
   set -e
   g++ -03 a.cpp -o a
   g++ -03 ac.cpp -o c
   g++ -03 gen.cpp -o g
   for ((i=0;;i++))
     echo "case $i"
     ./g > inp
     time ./a < inp > wa.out
     time ./c < inp > ac.out
     diff ac.out wa.out || break
   done
   1.4 Random
   mt19937 rng(random_device{}());
i64 rand(i64 l = -lim, i64 r = lim) {
     return uniform_int_distribution<i64>(l, r)(rng);
   double randr(double l, double r) {
     return uniform_real_distribution<double>(l, r)(rng);
   1.5
       Increase stack size
18 | ulimit -s
```

```
Matching and Flow
2.1 Dinic
template<class Cap>
struct Dinic {
  struct Edge { int v; Cap w; int rev; };
  vector<vector<Edge>> G;
  int n, S, T;
  Dinic(int n, int S, int T): n(n), S(S), T(T), G(n)
  void add_edge(int u, int v, Cap w) {
    G[u].push_back({v, w, (int)G[v].size()});
    G[v].push_back({u, 0, (int)G[u].size() - 1});
  vector<int> dep;
  bool bfs() {
    dep.assign(n, 0);
dep[S] = 1;
    queue<int> que;
    que.push(S);
    while (!que.empty()) {
      int u = que.front(); que.pop();
      for (auto [v, w, _] : G[u])
  if (!dep[v] and w) {
           dep[v] = dep[u] + 1;
           que.push(v);
    return dep[T] != 0;
  Cap dfs(int u, Cap in) {
    if (u == T) return in;
    Cap out = 0;
    for (auto \&[v, w, rev] : G[u]) {
       if (w \text{ and } dep[v] == dep[u] + 1) {
         Cap f = dfs(v, min(w, in));
        w -= f, G[v][rev].w += f;
in -= f, out += f;
if (!in) break;
      }
    if (in) dep[u] = 0;
    return out;
  Cap maxflow() {
    Cap ret = 0;
    while (bfs()) {
      ret += dfs(S, inf<Cap>);
    return ret;
};
2.2 MCMF
template<class Cap>
struct MCMF {
  struct Edge { int v; Cap f, w; int rev; };
  vector<vector<Edge>> G;
  int n, S, T;
  MCMF(int n, int S, int T) : n(n), S(S), T(T), G(n) {}
  void add_edge(int u, int v, Cap cap, Cap cost) {
   G[u].push_back({v, cap, cost, (int)G[v].size()})
    G[v].push_back({u, 0, -cost, (int)}G[u].size() - 1})
  vector<Cap> dis;
  vector<bool> vis;
  bool spfa() {
    queue<int> que;
    dis.assign(n, inf<Cap>);
vis.assign(n, false);
    que.push(S);
    vis[S] = 1;
    dis[S] = 0;
    while (!que.empty()) {
      int u = que.front(); que.pop();
      vis[u] = 0;
      for (auto [v, f, w, _] : G[u])
         if (f and chmin(dis[v], dis[u] + w))
           if (!vis[v]) que.push(v), vis[v] = 1;
```

return dis[T] != inf<Cap>;

```
Cap dfs(int u, Cap in) {
     if (u == T) return in;
     vis[u] = 1;
     Cap out = 0:
     for (auto &[v, f, w, rev] : G[u])
  if (f and !vis[v] and dis[v] == dis[u] + w) {
          Cap x = dfs(v, min(in, f));
          in -= x, out += x;
f -= x, G[v][rev].f += x;
          if (!in) break;
     if (in) dis[u] = inf<Cap>;
     vis[u] = 0;
     return out;
   pair<Cap, Cap> maxflow() {
     Cap a = 0, b = 0;
     while (spfa()) {
        Cap x = dfs(S, inf<Cap>);
       a += x;
b += x * dis[T];
     return {a, b};
};
2.3 HopcroftKarp
// Complexity: 0(n ^ 1.5)
// edge (u \in A) -> (v \in B) : G[u].push\_back(v);
struct HK {
   vector<int> l, r, a, p;
   int ans:
   HK(int n, int m, auto \&G) : l(n, -1), r(m, -1), ans{}
     for (bool match = true; match; ) {
       match = false;
        queue<int> q;
        a.assign(n, -1), p.assign(n, -1);
for (int i = 0; i < n; i++)
          if (l[i] == -1) q.push(a[i] = p[i] = i);
        while (!q.empty()) {
          int z, x = q.front(); q.pop();
          if (l[a[x]] != -1) continue;
          for (int y : G[x]) {
  if (r[y] == -1) {
               for (z = y; z != -1; ) {
                 r[z] = x;
                 swap(l[x], z);
                 x = p[x];
               }
               match = true;
               ans++:
               break;
             } else if (p[r[y]] == -1) {
               q.push(z = r[y]);
               p[z] = x;
               a[z] = a[x];
            }
         }
       }
     }
  }
};
2.4 KM
i64 KM(vector<vector<int>> W) {
   const int n = W.size();
   vector<int> fl(n, -1), fr(n, -1), hr(n), hl(n);
for (int i = 0; i < n; ++i) {</pre>
     hl[i] = *max_element(W[i].begin(), W[i].end());
   auto Bfs = [\&](int s) {
     vector<int> slk(n, INF), pre(n);
vector<bool> vl(n, false), vr(n, false);
     queue<int> que;
     que.push(s);
     vr[s] = true;
     auto Check = [&](int x) -> bool {
  if (vl[x] = true, fl[x] != -1) {
    que.push(fl[x]);
}
```

return vr[fl[x]] = true;

```
GeneralMatching(int _n): n(_n), g(_n), mat(n, -1),
      while (x != -1) swap(x, fr[fl[x] = pre[x]]);
                                                                      hit(n) {}
                                                                    void add_edge(int a, int b) \{ // 0 \le a != b < n \}
      return false;
                                                                      g[a].push_back(b);
    while (true) {
                                                                      g[b].push_back(a);
      while (!que.empty()) {
         int y = que.front(); que.pop();
for (int x = 0, d = 0; x < n; ++x) {</pre>
                                                                    int get_match() {
                                                                      for (int i = 0; i < n; i++) if (!g[i].empty()) {</pre>
           if (!vl[x] \text{ and } slk[x] >= (d = hl[x] + hr[y] -
                                                                        unmat.emplace(0, i);
     // If WA, increase this
                                                                      // there are some cases that need >=1.3*n^2 steps
                                                                      for BLOCK=1
        }
                                                                      // no idea what the actual bound needed here is.
      }
                                                                      const int MAX_STEPS = 10 + 2 * n + n * n / BLOCK /
      int d = INF;
      for (int x = 0; x < n; ++x) {
                                                                      mt19937 rng(random_device{}());
         if (!vl[x] \text{ and } d > slk[x]) d = slk[x];
                                                                      for (int i = 0; i < MAX_STEPS; ++i) {
                                                                        if (unmat.empty()) break;
      for (int x = 0; x < n; ++x) {
                                                                         int u = unmat.top().second;
         if (vl[x])_hl[x] += d;
                                                                        unmat.pop();
                                                                         if (mat[u] != -1) continue;
         else slk[x] -= d;
                                                                        for (int j = 0; j < BLOCK; j++) {
         if (vr[x]) hr[x] -= d;
                                                                           ++hit[u];
                                                                           auto &e = g[u];
      for (int x = 0; x < n; ++x) {
         if (!vl[x] and !slk[x] and !Check(x)) return;
                                                                           const int v = e[rng() % e.size()];
                                                                          mat[u] = v;
                                                                           swap(u, mat[v]);
 };
                                                                           if (u == -1) break;
  for (int i = 0; i < n; ++i) Bfs(i);</pre>
  i64 \text{ res} = 0;
                                                                        if (u != -1) {
  for (int i = 0; i < n; ++i) res += W[i][fl[i]];</pre>
                                                                          mat[u] = -1
                                                                           unmat.emplace(hit[u] * 100ULL / (g[u].size() +
  return res;
2.5 SW
                                                                      int siz = 0;
int w[kN][kN], g[kN], del[kN], v[kN];
                                                                      for (auto e : mat) siz += (e != -1);
return siz / 2;
void AddEdge(int x, int y, int c) {
  w[x][y] += c;
  w[y][x] += c;
                                                                 };
pair<int, int> Phase(int n) {
                                                                  3
                                                                       Graph
 fill(v, v + n, 0), fill(g, g + n, 0);
int s = -1, t = -1;
                                                                      Strongly Connected Component
  while (true) {
                                                                 struct SCC {
    int c = -1;
                                                                    int n:
    for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;
  if (c == -1 || g[i] > g[c]) c = i;
                                                                    vector<vector<int>> G;
                                                                    vector<int> dfn, low, id, stk;
                                                                    int scc{}, _t{};
                                                                    SCC(int _n) : n{_n}, G(_n) {}
void dfs(int u) {
    if (c == -1) break;
v[c] = 1, s = t, t = c;
for (int i = 0; i < n; ++i) {
                                                                      dfn[u] = low[u] = _t++;
                                                                      stk.push_back(u);
      if (del[i] || v[i]) continue;
                                                                      for (int v : G[u]) {
      g[i] += w[c][i];
                                                                        if (dfn[v] == -1) {
                                                                           dfs(v)
                                                                        chmin(low[u], low[v]);
} else if (id[v] == -1) {
  return make_pair(s, t);
                                                                          chmin(low[u], dfn[v]);
int GlobalMinCut(int n) {
  int cut = kInf;
  fill(del, 0, sizeof(del));
                                                                      if (dfn[u] == low[u]) {
  for (int i = 0; i < n - 1; ++i) {
                                                                        int t;
    int s, t; tie(s, t) = Phase(n);
del[t] = 1, cut = min(cut, g[t]);
                                                                        do {
                                                                          t = stk.back();
    for (int j = 0; j < n; ++j) {
                                                                           stk.pop_back();
      w[s][j] += w[t][j];
w[j][s] += w[j][t];
                                                                           id[t] = scc;
                                                                        } while (t != u);
    }
                                                                        scc++;
                                                                      }
  return cut;
                                                                    void work() {
                                                                      dfn.assign(n, -1);
2.6 GeneralMatching
                                                                      low.assign(n, -1);
                                                                      id.assign(n, -1);
for (int i = 0; i < n; i++)
struct GeneralMatching { // n <= 500</pre>
  const int BLOCK = 10;
                                                                        if (dfn[i] == -1) {
  int n;
  vector<vector<int> > g;
                                                                          dfs(i);
  vector<int> hit, mat;
```

std::priority_queue<pair<i64, int>, vector<pair<i64,</pre>

int>>, greater<pair<i64, int>>> unmat;

```
3.2 2-SAT
                                                                 int inside(int x, int y) {
struct TwoSat {
                                                                   return in[x] <= in[y] and in[y] < out[x];</pre>
  int n;
  vector<vector<int>> e;
                                                                 int lca(int x, int y) {
  vector<bool> ans;
  TwoSat(int n) : n(n), e(2 * n), ans(n) {}
                                                                   if (x == y) return x;
                                                                   if ((x = in[x] + 1) > (y = in[y] + 1))
  void addClause(int u, bool f, int v, bool g) { // (u
    e[2 * u + !f].push_back(2 * v + g);
                                                                     swap(x, y)
                                                                             _lg(y - x);
                                                                   return pa[cmp(st[h][x], st[h][y - (1 << h)])];</pre>
    e[2 * v + !g].push_back(2 * u + f);
                                                                 int dist(int x, int y) {
  void addImply(int u, bool f, int v, bool g) \{ // (u = v) \}
                                                                  return dep[x] + dep[y] - 2 * dep[lca(x, y)];
     f) -> (v = g)
    e[2 * u + f].push_back(2 * v + g);
                                                                 vector<int> virTree(vector<int> ver) {
    e[2 * v + !g].push_back(2 * u + !f);
                                                                   sort(all(ver), [&](int a, int b) {
  return in[a] < in[b];</pre>
  bool satisfiable() {
  vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 *
                                                                   });
                                                                   for (int i = ver.size() - 1; i > 0; i--)
    n, -1);
                                                                    ver.push_back(lca(ver[i], ver[i - 1]));
    vector<int> stk;
                                                                   sort(all(ver), [&](int a, int b) {
    int now = 0, cnt = 0;
    function<void(int)> tarjan = [&](int u) {
                                                                     return in[a] < in[b];</pre>
                                                                   });
       stk.push_back(u);
                                                                   ver.erase(unique(all(ver)), ver.end());
      dfn[u] = low[u] = now++;
      for (auto v : e[u]) {
  if (dfn[v] == -1) {
                                                                 void inplace_virTree(vector<int> &ver) { // O(n),
           tarjan(v);
                                                                   need sort before
           low[u] = min(low[u], low[v]);
                                                                   vector<int> ex;
        else\ if\ (id[v] == -1)
                                                                   for (int i = 0; i + 1 < ver.size(); i++)
           low[u] = min(low[u], dfn[v]);
                                                                     if (!inside(ver[i], ver[i + 1]))
                                                                       ex.push_back(lca(ver[i], ver[i + 1]));
                                                                   vector<int> stk, pa(ex.size(),
      if (dfn[u] == low[u]) {
                                                                   for (int i = 0; i < ex.size(); i++) {
        int v;
                                                                     int lst = -1;
        do {
                                                                     while (stk.size() and in[ex[stk.back()]] >= in[ex
           v = stk.back();
                                                                   [i]]) {
           stk.pop_back();
                                                                       lst = stk.back();
           id[v] = cnt;
                                                                       stk.pop_back();
        } while (v != u);
         ++cnt:
                                                                     if (lst != -1) pa[lst] = i;
      }
                                                                     if (stk.size()) pa[i] = stk.back();
    };
                                                                     stk.push_back(i);
    for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1)
    tarjan(i);
                                                                   vector<bool> vis(ex.size());
    for (int i = 0; i < n; ++i) {
                                                                   auto dfs = [&](auto self, int u) -> void {
      if (id[2 * i] == id[2 * i + 1]) return false;
      ans[i] = id[2 * i] > id[2 * i + 1];
                                                                     vis[u] = 1;
                                                                     if (pa[u] != -1 and !vis[pa[u]])
                                                                       self(self, pa[u]);
    return true:
                                                                     if (ex[u] != ver.back())
                                                                       ver.push_back(ex[u]);
};
                                                                   };
3.3 Tree
                                                                   const int s = ver.size();
                                                                   for (int i = 0; i < ex.size(); i++)</pre>
struct Tree {
                                                                     if (!vis[i]) dfs(dfs, i);
  int n, lqN;
                                                                   inplace_merge(ver.begin(), ver.begin() + s, ver.end
  vector<vector<int>> G, st;
  vector<int> in, out, dep, pa, seq;
Tree(int n) : n(n), G(n), in(n), out(n), dep(n), pa(n)
                                                                       [&](int a, int b) { return in[a] < in[b]; });
                                                                   ver.erase(unique(all(ver)), ver.end());
       -1) {}
  int cmp(int a, int b) {
                                                              };
    return dep[a] < dep[b] ? a : b;</pre>
                                                              3.4 Manhattan MST
  void dfs(int u) {
                                                              vector<tuple<int, int, int>> ManhattanMST(vector<Pt> P)
    in[u] = seq.size();
    seq.push_back(u);
    for (int v : G[u]) if (v != pa[u]) {
                                                                 vector<int> id(P.size());
                                                                 iota(all(id), 0);
      dep[v] = dep[u] + 1;
                                                                 vector<tuple<int, int, int>> edges;
for (int k = 0; k < 4; ++k) {
      pa[v] = u;
      dfs(v);
                                                                   sort(all(id), [&](int i, int j) -> bool {
                                                                     return (P[i] - P[j]).ff < (P[j] - P[i]).ss;</pre>
    out[u] = seq.size();
  void build() {
                                                                   map<int, int> sweep;
                                                                   for (int i : id) {
    seq.reserve(n);
                                                                     for (auto it = sweep.lower_bound(-P[i].ss); \
    lgN = \__lg(n);
                                                                         it != sweep.end(); sweep.erase(it++)) {
                                                                       int j = it->ss;
Pt d = P[i] - P[j];
    st.assign(lgN + 1, vector<int>(n));
    st[0] = seq;
    for (int i = 0; i < lgN; i++)
                                                                       if (d.ss > d.ff) break;
      for (int j = 0; j + (2 << i) <= n;
                                                                       edges.emplace_back(d.ss + d.ff, i, j);
        st[i + 1][j] = cmp(st[i][j], st[i][j + (1 << i)
    ]);
                                                                     sweep[-P[i].ss] = i;
```

```
}
for (Pt &p : P) {
    if (k % 2) p.ff = -p.ff;
    else swap(p.ff, p.ss);
    }
}
return edges;
}
```

3.5 TreeHash

```
map<vector<int>, int> id;
vector<vector<int>> sub;
vector<int> siz;
int getid(const vector<int> &T) {
  if (id.count(T)) return id[T];
  int s = 1;
  for (int x : T) {
   s += siz[x];
  sub.push_back(T);
  siz.push_back(s)
  return id[T] = id.size();
int dfs(int u, int f) {
  vector<int> S;
for (int v : G[u]) if (v != f) {
    S.push_back(dfs(v, u));
  sort(all(S))
  return getid(S);
```

3.6 Maximum IndependentSet

3.7 Min Mean Weight Cycle

```
// d[i][j] == 0 if {i,j} !in E
long long d[1003][1003], dp[1003][1003];
pair<long long, long long> MMWC() {
memset(dp, 0x3f, sizeof(dp));
for (int i = 1; i <= n; ++i) dp[0][i] = 0;
for (int i = 1; i <= n; ++i) {
  for (int j = 1; j \ll n; ++j) {
   for (int k = 1; k \le n; ++k) {
    dp[i][k] = min(dp[i - 1][j] + d[j][k], dp[i][k]);
 long long au = 111 \ll 31, ad = 1;
for (int i = 1; i <= n; ++i) {
  if (dp[n][i] == 0x3f3f3f3f3f3f3f3f) continue;
  long long u = 0, d = 1;
  for (int j = n - 1; j >= 0; --j) {
  if ((dp[n][i] - dp[j][i]) * d > u * (n - j)) {
    u = dp[n][i] - dp[j][i];
    d = n - j;
   }
  if (u * ad < au * d) au = u, ad = d;
 long long g = \_\_gcd(au, ad);
return make_pair(au / g, ad / g);
```

3.8 Block Cut Tree

```
struct BlockCutTree {
  int n;
  vector<vector<int>> adj;
  BlockCutTree(int _n) : n(_n), adj(_n) {}
  void addEdge(int u, int v) {
     adj[u].push_back(v);
     adj[v].push_back(u);
  pair<int, vector<pair<int, int>>> work() {
  vector<int> dfn(n, -1), low(n), stk;
     vector<pair<int, int>> edg;
int cnt = 0, cur = 0;
     function<void(int)> dfs = \lceil \& \rceil (int x)  {
       stk.push_back(x);
       dfn[x] = low[x] = cur++;
       for (auto y : adj[x]) {
         if (dfn[y] == -1) {
           dfs(y);
            low[x] = min(low[x], low[y]);
            if (low[y] == dfn[x]) {
              int v;
              do {
                v = stk.back();
                stk.pop_back();
                edg.emplace_back(n + cnt, v);
              } while (v != y);
              edg.emplace_back(x, n + cnt);
              cnt++;
         } else {
            low[x] = min(low[x], dfn[y]);
       }
     for (int i = 0; i < n; i++) {
       if (dfn[i] == -1) {
         stk.clear();
         dfs(i);
     return {cnt, edg};
};
```

3.9 Heavy Light Decomposition

```
struct HLD {
  vector<int> siz, top, dep, pa, in, out, seq;
  vector<vector<int>> G;
  HLD(int n) : n(n), G(n), siz(n), top(n),
  dep(n), pa(n), in(n), out(n), seq(n) {}
  int cur{};
  void addEdge(int u, int v) {
    G[u].push_back(v)
    G[v].push_back(u);
  void work(int root = 0) {
    cur = 0;
    top[root] = root;
    dep[root] = 0;
    pa[root] = -1;
    dfs1(root);
    dfs2(root);
  void dfs1(int u) {
    if (pa[u] != -1) {
      G[u].erase(find(all(G[u]), pa[u]));
    siz[u] = 1;
    for (auto &v : G[u]) {
      pa[v] = u;
      dep[v] = dep[u] + 1;
      siz[u] += siz[v];
      if (siz[v] > siz[G[u][0]]) {
         swap(v, G[u][0]);
    }
  void dfs2(int u) {
```

dfs(s);

for (int i = tk - 1; i >= 0; --i) {

for (int u : r[i])

```
in[u] = cur++;
                                                                                 sdom[i] = min(sdom[i], sdom[find(u)]);
    seq[in[u]] = u;
for (int v : G[u]) {
                                                                               if (i) rdom[sdom[i]].push_back(i);
                                                                              for (int u : rdom[i]) {
       top[v] = (v == G[u][0] ? top[u] : v);
                                                                                 int p = find(u);
                                                                                 dom[u] = (sdom[p] == i ? i : p);
       dfs2(v);
                                                                              if (i) merge(i, rp[i]);
    out[u] = cur;
  int lca(int x, int y) {
  while (top[x] != top[y]) {
   if (dep[top[x]] < dep[top[y]]) swap(x, y);</pre>
                                                                            vector<int> p(n, -2); p[s] = -1;
for (int i = 1; i < tk; ++i)
  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];</pre>
                                                                            for (int i = 1; i < tk; ++i)
       x = pa[top[x]];
                                                                              p[rev[i]] = rev[dom[i]];
    return dep[x] < dep[y] ? x : y;</pre>
                                                                            return p;
                                                                         }
  int dist(int x, int y) {
  return dep[x] + dep[y] - 2 * dep[lca(x, y)];
                                                                      };
                                                                       4
                                                                             Data Structure
  int jump(int x, int k) {
                                                                            Lazy Segtree
    if (dep[x] < k) return -1;</pre>
                                                                       template<class S, class T>
    int d = dep[x] - k;
    while (dep[top[x]] > d) {
                                                                       struct Seg {
                                                                         Seg<S, T> *ls{}, *rs{};
       x = pa[top[x]];
                                                                         int 1, r;
                                                                         S d{};
    return seq[in[x] - dep[x] + d];
                                                                         T f{};
  bool isAnc(int x, int y) {
                                                                         Seg(int _l, int _r) : l{_l}, r{_r} {
  if (r - l == 1) {
    return in[x] <= in[y] and in[y] < out[x];</pre>
                                                                              return;
  int rootPar(int r, int x) {
    if (r == x) return r;
                                                                            int mid = (1 + r) / 2;
    if (!isAnc(x, r)) return pa[x];
                                                                            ls = new Seg(1, mid);
     auto it = upper_bound(all(G[x]), r, [&](int a, int
                                                                            rs = new Seg(mid, r);
    b) -> bool {
                                                                            pull();
       return in[a] < in[b];</pre>
    }) - 1;
return *it;
                                                                         void upd(const T &g) {
                                                                            g(d), g(f);
  int rootSiz(int r, int x) {
                                                                         void pull() {
    if (r == x) return n;
                                                                            d = 1s->d + rs->d;
    if (!isAnc(x, r)) return siz[x];
    return n - siz[rootPar(r, x)];
                                                                         void push() {
                                                                            ls->upd(f);
  int rootLca(int a, int b, int c) {
                                                                            rs->upd(f);
                                                                            f = T{};
    return lca(a, b) ^ lca(b, c) ^ lca(c, a);
                                                                         S query(int x, int y) {
                                                                            if (y <= l or r <= x) return S{};
if (x <= l and r <= y) return d;
3.10
      Dominator Tree
struct Dominator {
                                                                            push();
  vector<vector<int>> g, r, rdom; int tk;
vector<int> dfn, rev, fa, sdom, dom, val, rp;
                                                                            return ls->query(x, y) + rs->query(x, y);
                                                                         void apply(int x, int y, const T &g) {
                                                                            if (y <= l or r <= x) return;</pre>
  Dominator(int n): n(n), g(n), r(n), rdom(n), tk(0),
    dfn(n, -1), rev(n, -1), fa(n, -1), sdom(n, -1), dom(n, -1), val(n, -1), rp(n, -1) {}
                                                                            if (x \ll 1 \text{ and } r \ll y) {
                                                                              upd(g);
  void add_edge(int x, int y) { g[x].push_back(y); }
  void dfs(int x) {
    rev[dfn[x] = tk] = x;
                                                                            push();
                                                                            1s->apply(x, y, g);
     fa[tk] = sdom[tk] = val[tk] = tk; tk++;
    for (int u : g[x]) {
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
                                                                            rs->apply(x, y, g);
                                                                            pull();
       r[dfn[u]].push_back(dfn[x]);
                                                                         void set(int p, const S &g) {
   if (p + 1 <= l or r <= p) return;</pre>
  void merge(int x, int y) { fa[x] = y; }
                                                                            if (r - l == 1) {
  int find(int x, int c = 0) {
  if (fa[x] == x) return c ? -1 : x;
  if (int p = find(fa[x], 1); p != -1)
                                                                              d = g;
                                                                              return;
       if (sdom[val[x]] > sdom[val[fa[x]]])
                                                                            push();
                                                                            ls->set(p, g);
         val[x] = val[fa[x]];
                                                                            rs->set(p, g);
       fa[x] = p;
       return c ? p : val[x];
                                                                            pull();
                                                                         int findFirst(int x, int y, auto pred) {
  if (y <= l or r <= x or !pred(d)) return -1;</pre>
    return c ? fa[x] : val[x];
  vector<int> build(int s) {
   // return the father of each node in dominator tree
                                                                            if (r - l == 1) return l;
                                                                            push();
    // p[i] = -2 \text{ if i is unreachable from s}
                                                                            int res = ls->findFirst(x, y, pred);
```

return res == -1 ? rs->findFirst(x, y, pred) : res;

int findLast(int x, int y, auto pred) {

return;

```
National Central University - __builtin_orz()
     if (r - l == 1) return l;
                                                                          ls->insert(x, y, id);
     push();
                                                                          rs->insert(x, y, id);
     int res = rs->findLast(x, y, pred);
     return res == -1 ? ls->findLast(x, y, pred) : res;
                                                                        void fix() {
                                                                          while (!f.empty() and use[f.back()]) f.pop_back();
};
                                                                          while (!g.empty() and use[g.back()]) g.pop_back();
4.2 Sparse Table
                                                                        int query(int x, int y) {
                                                                          if (y <= l or r <= x) return -1;
fix();</pre>
template<class T, auto F>
struct SparseTable {
                                                                          if (x <= l and r <= y) {
  return g.empty() ? -1 : g.back();</pre>
  int n, lgN;
vector<vector<T>> st;
   SparseTable(const vector<T> &V) {
                                                                          return max({f.empty() ? -1 : f.back(), ls->query(x,
     n = V.size();
                                                                           y), rs->query(x, y)});
     lgN = __lg(n);
     st.assign(lgN + 1, vector<T>(n));
                                                                     };
     st[0] = V
     for (int i = 0; (2 << i) <= n; i++)
for (int j = 0; j + (2 << i) <= n; j++) {
                                                                      4.5
                                                                           Treap
                                                                     mt19937 rng(random_device{}());
         st[i + 1][j] = F(st[i][j], st[i][j + (1 << i)])
                                                                     template<class S, class T>
                                                                     struct Treap {
                                                                        struct Node {
                                                                          Node *ls{}, *rs{};
  T qry(int l, int r) { // [l, r)
  int h = __lg(r - l);
                                                                          int pos, siz;
                                                                          u32 pri;
     return F(st[h][l], st[h][r - (1 << h)]);</pre>
                                                                          S d{\daggery, e{};
                                                                          T f{};
};
                                                                          Node(int p, S x) : d\{x\}, e\{x\}, pos\{p\}, siz\{1\}, pri\{1\}
                                                                          rng()} {}
4.3 Binary Index Tree
                                                                          void upd(T &g) {
template<class T>
                                                                            g(d), g(e), g(f);
struct BIT {
  int n;
                                                                          void pull() {
  vector<T> a;
BIT(int n) : n(n), a(n) {}
int lowbit(int x) { return x & -x; }
                                                                            siz = Siz(ls) + Siz(rs);
                                                                            d = Get(ls) + e + Get(rs);
  void add(int p, T x) {
                                                                          void push() {
   if (ls) ls->upd(f);
   if (rs) rs->upd(f);
     for (int i = p + 1; i <= n; i += lowbit(i))</pre>
       a[i - 1] += x;
                                                                            f = T{};
  T qry(int p) {
     T r{};
                                                                        } *root{};
     for (int i = p + 1; i > 0; i \rightarrow lowbit(i))
                                                                        static int Siz(Node *p) { return p ? p->siz : 0; }
static S Get(Node *p) { return p ? p->d : S{}; }
       r += a[i - 1];
     return r;
                                                                        Treap() : root{} {}
                                                                        Node* Merge(Node *a, Node *b) {
  T qry(int l, int r) { // [l, r)
                                                                          if (!a or !b) return a ? a : b;
     return qry(r - 1) - qry(l - 1);
                                                                          if (a->pri < b->pri) {
                                                                            a->push();
   int kth(T k) {
                                                                            a \rightarrow rs = Merge(a \rightarrow rs, b);
     int x = 0;
                                                                            a->pull();
     for (int i = 1 \ll \_lg(n); i; i >>= 1) {
                                                                            return a;
       if (x + i \le n \text{ and } k \ge a[x + i - 1]) {
                                                                          } else {
         x += i
                                                                            b->push();
         k -= a[x - 1];
                                                                            b->ls = Merge(a, b->ls);
       }
                                                                            b->pull();
                                                                            return b;
     return x;
};
                                                                        void Split(Node *p, Node *&a, Node *&b, int k) {
                                                                          if (!p) return void(a = b = nullptr);
4.4 Special Segtree
                                                                          p->push();
struct Seg {
  Seg *ls, *rs;
                                                                          if (p->pos <= k) {
                                                                            Split(p->rs, a->rs, b, k);
  int 1, r;
  vector<int> f, g;
// f : intervals where covering [l, r]
// g : intervals where interset with [l, r]
                                                                            a->pull();
                                                                          } else {
                                                                            b = p;
  Seg(int _l, int _r) : l{_l}, r{_r} {
  int mid = (l + r) >> 1;
                                                                             Split(p->ls, a, b->ls, k);
                                                                            b->pull();
     if (r - l == 1) return;
     ls = new Seg(1, mid);
     rs = new Seg(mid, r);
                                                                        void insert(int p, S x) {
                                                                          Node *L, *R;
                                                                          Split(root, L, R, p);
root = Merge(Merge(L, new Node(p, x)), R);
  void insert(int x, int y, int id) {
  if (y <= l or r <= x) return;</pre>
     g.push_back(id);
     if(x \le 1 \text{ and } r \le y) {
                                                                        void erase(int x) {
  Node *L, *M, *R;
       f.push_back(id);
```

Split(root, M, R, x);

```
Split(M, L, M, x - 1);
                                                                     if (y <= l or r <= x) return {};
     if (M) M = Merge(M->ls, M->rs);
                                                                     if (x \le 1 \text{ and } r \le y) \text{ return } d;
    root = Merge(Merge(L, M), R);
                                                                     return ls->query(x, y) + rs->query(x, y);
  S query() {
                                                                };
    return Get(root);
                                                                 4.8
                                                                      Blackmagic
};
                                                                #include <bits/extc++.h>
                                                                #include <ext/pb_ds/assoc_container.hpp>
4.6 LiChao Segtree
                                                                #include <ext/pb_ds/tree_policy.hpp>
struct Line {
                                                                #include <ext/pb_ds/hash_policy.hpp>
  i64 k, m; \bar{//} y = k + mx;
                                                                #include <ext/pb_ds/priority_queue.hpp>
  Line(): k{INF}, m{} {}
Line(i64 _k, i64 _m): k(_k), m(_m) {}
                                                                using namespace __gnu_pbds;
                                                                template<class T>
  i64 get(i64 x) {
   return k + m * x;
                                                                using BST = tree<T, null_type, less<T>, rb_tree_tag,
                                                                     tree_order_statistics_node_update>;
                                                                  _gnu_pbds::priority_queue<node, decltype(cmp),
struct Seg {
   Seg *ls{}, *rs{};
   int l, r, mid;
}
                                                                     pairing_heap_tag> pq(cmp);
                                                                gp_hash_table<int, gnu_pbds::priority_queue<node>::
                                                                     point_iterator> pqPos;
                                                                bst.insert((x << 20) + i)
  Line line{};
                                                                bst.erase(bst.lower\_bound(x << 20));
  Seg(int _l, int _r) : l(_l), r(_r), mid(_l + _r >> 1)
                                                                bst.order_of_key(x << 20) + 1;
                                                                 *bst.find_by_order(x - 1) \Rightarrow 20;
    if (r - l == 1) return;
                                                                 *--bst.lower_bound(x << 20) >> 20;
    ls = new Seg(l, mid);
                                                                *bst.upper_bound((x + 1) << 20) >> 20;
    rs = new Seg(mid, r)
                                                                 4.9 Centroid Decomposition
  void insert(Line L) {
                                                                struct CenDec {
    if (line.get(mid) > L.get(mid))
    swap(line, L);
if (r - l == 1) return;
                                                                   vector<vector<pair<int, i64>>> G;
                                                                   vector<vector<i64>> pdis;
                                                                   vector<int> pa, ord, siz;
    if (L.m < line.m) {</pre>
                                                                   vector<bool> vis;
      rs->insert(L);
                                                                   int getsiz(int u, int f) {
    } else {
                                                                     siz[u] = 1;
      ls->insert(L);
                                                                     for (auto [v, w] : G[u]) if (v != f and !vis[v])
    }
                                                                       siz[u] += getsiz(v, u);
                                                                     return siz[u];
  i64 query(int p) {
    if (p < l or r <= p) return INF;</pre>
                                                                   int find(int u, int f, int s) {
    if (r - l == 1) return line.get(p);
                                                                     for (auto [v, w] : G[u]) if (v != f and !vis[v])
  if (siz[v] * 2 >= s) return find(v, u, s);
    return min({line.get(p), ls->query(p), rs->query(p)
    });
                                                                     return u;
};
                                                                   void caldis(int u, int f, i64 dis) {
                                                                     pdis[u].push_back(dis);
for (auto [v, w] : G[u]) if (v != f and !vis[v]) {
4.7 Persistent SegmentTree
template<class S>
                                                                       caldis(v, u, dis + w);
struct Seg {
                                                                     }
  Seg *ls{}, *rs{};
  int 1, r;
                                                                   int build(int u = 0) {
  S d{};
                                                                    u = find(u, u, getsiz(u, u));
  Seg(Seg* p) { (*this) = *p; }
  Seg(int l, int r) : l(l), r(r) {
  if (r - l == 1) {
                                                                     ord.push_back(u);
                                                                     vis[u] = 1;
                                                                     for (auto [v, w] : G[u]) if (!vis[v]) {
      d = \{\};
                                                                       pa[build(v)] = u;
      return;
                                                                     caldis(u, -1, 0); // if need
    int mid = (l + r) / 2;
                                                                     vis[u] = 0;
    ls = new Seg(1, mid);
                                                                     return u;
    rs = new Seg(mid, r);
    pull();
                                                                   CenDec(int n): G(n), pa(n, -1), vis(n), siz(n), pdis
                                                                     (n) {}
  void pull() {
                                                               |};
    d = 1s -> d + rs -> d;
                                                                 4.10
                                                                       2D BIT
  Seg* set(int p, const S &x) {
   Seg* n = new Seg(this);
   if (r - l == 1) {
                                                                template<class T>
                                                                struct BIT2D {
      n->d = x;
                                                                  vector<vector<T>> val;
      return n;
                                                                   vector<vector<int>> Y;
                                                                   vector<int> X;
    int mid = (l + r) / 2;
                                                                   int lowbit(int x) { return x & -x; }
    if (p < mid) {
                                                                   int getp(const vector<int> &v, int x) {
      n->ls = ls->set(p, x);
                                                                     return upper_bound(all(v), x) - v.begin();
    } else {
      n->rs = rs->set(p, x);
                                                                   BIT2D(vector<pair<int, int>> pos) {
    }
                                                                     for (auto &[x, y] : pos) {
    n->pull();
                                                                       X.push_back(x);
    return n;
                                                                       swap(x, y);
  S query(int x, int y) {
                                                                     sort(all(pos));
```

```
sort(all(X));
     X.erase(unique(all(X)), X.end());
     Y.resize(X.size() + 1);
     val.resize(X.size() + 1);
for (auto [y, x] : pos) {
        for (int i = getp(X, x); i <= X.size(); i +=</pre>
     lowbit(i))
          if (Y[i].empty() or Y[i].back() != y)
             Y[i].push_back(y);
     for (int i = 1; i <= X.size(); i++) {</pre>
       val[i].assign(Y[i].size() + 1, T{});
  void add(int x, int y, T v) {
  for (int i = getp(X, x); i <= X.size(); i += lowbit</pre>
     for (int j = getp(Y[i], y); j <= Y[i].size(); j
+= lowbit(j))</pre>
          val[i][j] += v;
    qry(int x, int y) {
     for (int i = getp(X, x); i > 0; i -= lowbit(i))
  for (int j = getp(Y[i], y); j > 0; j -= lowbit(j)
          r += val[i][j];
     return r;
};
```

5 Dynamic Programming

5.1 CDO

```
auto cmp2 = [\&](int a, int b) -> bool { return P[a][1]
auto mid = l + (r - l) / 2;
self(self, l, mid);
auto tmp = vector<int>(mid, r);
  sort(l, mid, cmp2);
  sort(mid, r, cmp2);
  for (auto i = l, j = mid; j < r; j++) {
  while (i != mid and P[*i][1] < P[*j][1]) {</pre>
       bit.add(P[*i][2], dp[*i]);
     dp[*j].upd(bit.qry(P[*j][2]));
  for (auto i = 1; i < mid; i++) bit.reset(P[*i][2]);</pre>
  copy(all(tmp), mid);
self(self, mid, r);
}; cdq(cdq, all(ord));
```

6 Math

Theorem

· Pick's theorem

$$A = i + \frac{b}{2} - 1$$

· Laplacian matrix

$$L = D - A$$

• Extended Catalan number

$$\frac{1}{(k-1)n+1} \binom{kn}{n}$$

• Derangement $D_n = (n-1)(D_{n-1} + D_{n-2})$

Möbius

$$\sum_{i|n} \mu(i) = [n=1] \sum_{i|n} \phi(i) = n$$

· Inversion formula

$$\begin{split} f(n) &= \sum_{i=0}^n {n \choose i} g(i) \; g(n) = \sum_{i=0}^n (-1)^{n-i} {n \choose i} f(i) \\ f(n) &= \sum_{d \mid n} g(d) \; g(n) = \sum_{d \mid n} \mu(\frac{n}{d}) f(d) \end{split}$$

· Sum of powers

$$\begin{array}{l} \sum_{k=1}^{n} k^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} \ B_{k}^{+} \ n^{m+1-k} \\ \sum_{j=0}^{m} {m+1 \choose j} B_{j}^{-} = 0 \\ \\ \mathrm{note} : B_{1}^{+} = -B_{1}^{-} \ B_{i}^{+} = B_{i}^{-} \end{array}$$

• Cipolla's algorithm

$$\left(\frac{u}{p}\right) = u^{\frac{p-1}{2}}$$

$$1. \left(\frac{a^2 - n}{p}\right) = -1$$

2.
$$x = (a + \sqrt{a^2 - n})^{\frac{p+1}{2}}$$

· Cayley's formula

number of trees on n labeled vertices: n^{n-2} Let $T_{n,k}$ be the number of labelled forests on n vertices with k connected components, such that vertices 1, 2, ..., k all belong to different connected components. Then $T_{n,k}=kn^{n-k-1}$.

High order residue

$$\left[d^{\frac{p-1}{(n,p-1)}} \equiv 1\right]$$

Packing and Covering

 $|\mathsf{Maximum\ Independent\ Set}| + |\mathsf{Minimum\ Vertex\ Cover}| = |V|$

Kőnig's theorem

|maximum matching| = |minimum vertex cover

· Dilworth's theorem

width = |largest antichain| = |smallest chain decomposition|

· Mirsky's theorem

height = |longest chain| = |smallest antichain decomposition| = minimum anticlique partition

· Triangle center

-
$$G: (1,)$$

- $O: (a^2(b^2 + c^2 - a^2),) = (sin2A,)$
- $I: (a,) = (sinA)$
- $E: (-a, b, c) = (-sinA, sinB, sinC)$
- $H: (\frac{1}{b^2 + c^2 - a^2},) = (tanA,)$

Lucas'Theorem :

For $n, m \in \mathbb{Z}^*$ and prime $P, C(m, n) \mod P = \Pi(C(m_i, n_i))$ where m_i is the i-th digit of m in base P

• Stirling approximation:

$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n e^{\frac{1}{12n}}$$

- Stirling Numbers(permutation
$$|P|=n$$
 with k cycles): $S(n,k)=$ coefficient of x^k in $\Pi_{i=0}^{n-1}(x+i)$

- Stirling Numbers(Partition n elements into k non-empty set):

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

• Pick's Theorem : A = i + b/2 - 1

A: Area \circ i: grid number in the inner \circ b: grid number on the side

$$\begin{array}{l} \bullet \quad \text{Catalan number}: C_n = {2n \choose n}/(n+1) \\ C_n^{n+m} - C_{n+1}^{n+m} = (m+n)! \frac{n-m+1}{n+1} \quad for \quad n \geq m \\ C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!} \\ C_0 = 1 \quad and \quad C_{n+1} = 2(\frac{2n+1}{n+2})C_n \\ C_0 = 1 \quad and \quad C_{n+1} = \sum_{i=0}^n C_i C_{n-i} \quad for \quad n \geq 0 \end{array}$$

· Euler Characteristic:

planar graph: V-E+F-C=1 convex polyhedron: V-E+F=2

V, E, F, C: number of vertices, edges, faces(regions), and components

· Kirchhoff's theorem:

 $A_{ii}=deg(i), A_{ij}=(i,j)\in E\,?-1:0$, Deleting any one row, one column, and cal the det(A)

• Polya' theorem (c is number of color • m is the number of cycle size): $\left(\sum_{i=1}^{m} c^{\gcd(i,m)}\right)/m$

 • Burnside lemma:
$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

• 錯排公式: (n 個人中,每個人皆不再原來位置的組合數): dp[0] = 1; dp[1] = 0; dp[i] = (i-1) * (dp[i-1] + dp[i-2]);

```
• Bell 數 (有 n 個人, 把他們拆組的方法總數):
     B_n = \sum_{k=0}^{n} s(n,k) (second – stirling)
     B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k
   · Wilson's theorem:
     (p-1)! \equiv -1 \pmod{p}
   · Fermat's little theorem :
     a^p \equiv a (mod \ p)
   · Euler's totient function:
     A^{B^C} \bmod p = pow(A, pow(B, C, p - 1)) \bmod p
   • 歐拉函數降冪公式: A^B \mod C = A^{B \mod \phi(c) + \phi(c)} \mod C
   • 環相鄰塗異色:
     (k-1)(-1)^n + (k-1)^n
   • 6 的倍數:
     (a-1)^3 + (a+1)^3 + (-a)^3 + (-a)^3 = 6a
6.2 Linear Sieve
template<size_t N>
struct Sieve {
  array<bool, N + 1> isp{};
array<int, N + 1> mu{}, phi{};
   vector<int> primes{};
   Sieve() {
     isp.fill(true);
     isp[0] = isp[1] = false;
     mu[1] = 1;
     phi[1] = 1;
     for (int i = 2; i <= N; i++) {
       if (isp[i]) {
          primes.push_back(i);
          mu[i] = -1;
phi[i] = i - 1;
        for (i64 p : primes) {
          if (p * i > N) break;
          isp[p * i] = false;
          if (i % p == 0) {
  phi[p * i] = phi[i] * p;
            break;
          phi[p * i] = phi[i] * (p - 1);
          mu[p * i] = mu[p] * mu[i];
     }
  }
};
6.3 Exgcd
pair < i64, i64 > exgcd(i64 a, i64 b) { // ax + by = 1}
   if (b == 0) return {1, 0};
  auto [x, y] = exgcd(b, a % b);
return {y, x - a / b * y};
6.4 CRT
i64 CRT(vector<pair<i64, i64>> E) {
   i128 R = 0, M = 1;
   for (auto [r, m] : E) {
     i128 d = r - R, g = gcd<i64>(M, m);
if (d % g != 0) return -1;
     i128 x = exgcd(M / g, m / g).ff * d / g;
     R += M * x;
     M = M * m / g;
     R = (R \% M + M) \% M;
   return R;
6.5 Factorize
struct Factorize {
   i64 fmul(i64 a, i64 b, i64 p) {
     return (i128)a * b % p;
   i64 fpow(i64 a, i64 b, i64 p) {
     i64 res = 1;
     for (; b; b >>= 1, a = fmul(a, a, p))
       if (b & 1) res = fmul(res, a, p);
```

```
return res;
   bool Check(i64 a, i64 u, i64 n, int t) {
     a = fpow(a, u, n);
     if (a == 0 \text{ or } a == 1 \text{ or } a == n - 1) return true;
     for (int i = 0; i < t; i++) {
        a = fmul(a, a, n);
        if (a == 1) return false;
        if (a == n - 1) return true;
     return false;
   bool IsPrime(i64 n) {
     constexpr array<i64, 7> kChk{2, 235, 9375, 28178,
     450775, 9780504, 1795265022};
// for int: {2, 7, 61}
     if (n < 2) return false;
     if (n \% 2 == 0) return n == 2;
     i64 u = n - 1;
     int t = 0;
     while (u \% 2 == 0) u >>= 1, t++;
     for (auto v : kChk) if (!Check(v, u, n, t)) return
     return true;
   i64 PollardRho(i64 n) {
     if (n % 2 == 0) return 2;
     i64 x = 2, y = 2, d = 1, p = 1;
auto f = [](i64 x, i64 n, i64 p) -> i64 {
  return ((i128)x * x % n + p) % n;
     }:
     while (true) {
    x = f(x, n, p);
    y = f(f(y, n, p), n, p);
    def(abs(x - y), n)
        d = __gcd(abs(x - y), n);
if (d != n and d != 1) return d;
        if (d == n) ++p;
     }
   i64 PrimeFactor(i64 n) {
     return IsPrime(n) ? n : PrimeFactor(PollardRho(n));
};
       NTT Prime List
6.6
  Prime
               Root
                      Prime
                                   Root
  7681
               17
                      167772161
  12289
                      104857601
                                   3
               11
  40961
                      985661441
  65537
                      998244353
  786433
               10
                      1107296257
                                   10
  5767169
                      2013265921
  7340033
                      2810183681
                                   11
  23068673
                      2885681153
  469762049
                      605028353
6.7
       NTT
constexpr i64 cpow(i64 a, i64 b, i64 m) {
   i64 \text{ ret} = 1;
   for (; b; b >>= 1, a = a * a % m)
     if (b & 1) ret = ret * a % m;
   return ret;
};
template<i64 M, i64 G>
struct NTT {
   static constexpr i64 iG = cpow(G, M - 2, M);
   void operator()(vector<i64> &v, bool inv) {
     int n = v.size();
     for (int i = 0, j = 0; i < n; i++) {
        if (i < j) swap(v[ij, v[j]);
for (int k = n / 2; (j ^= k) < k; k /= 2);</pre>
     for (int mid = 1; mid < n; mid *= 2) {
   i64 w = cpow((inv ? iG : G), (M - 1) / (mid + mid</pre>
      ), M);
        for (int i = 0; i < n; i += mid * 2) {
          i64 \text{ now} = 1;
           for (int j = i; j < i + mid; j++, now = now * w
       % M) {
             i64 x = v[j], y = v[j + mid];
v[j] = (x + y * now) % M;
v[j + mid] = (x - y * now) % M;
        }
```

```
if (inv) {
       i64 in = cpow(n, M - 2, M);
        for (int i = 0; i < n; i++) v[i] = v[i] * in % M;
    }
  }
template<i64 M, i64 G>
vector<i64> convolution(vector<i64> f, vector<i64> g) {
  NTT<M, G> ntt;
  int sum = f.size() + g.size() - 1;
  int len = bit_ceil((u64)sum);
  f.resize(len); g.resize(len);
  ntt(f, 0), ntt(g, 0);
  for (int i = 0; i < len; i++) (f[i] *= g[i]) %= M;
  ntt(f, 1);
  f.resize(sum);
  for (int i = 0; i < sum; i++) if (f[i] < 0) f[i] += M
  return f;
vector<i64> convolution_ll(const vector<i64> &f, const
     vector<i64> &g) {
  constexpr i64 M1 = 998244353, G1 = 3;
  constexpr i64 M2 = 985661441, G2 = 3;
  constexpr i64 \text{ M1M2} = \text{M1} * \text{M2};
  constexpr i64 M1m1 = M2 * cpow(M2, M1 - 2, M1);
  constexpr i64 M2m2 = M1 * cpow(M1, M2 - 2, M2);
  auto c1 = convolution<M1, G1>(f, g);
auto c2 = convolution<M2, G2>(f, g);
  for (int i = 0; i < c1.size(); i++) {</pre>
    c1[i] = ((i128)c1[i] * M1m1 + (i128)c2[i] * M2m2) %
      M1M2:
  return c1;
6.8 FWT
  1. XOR Convolution
        • f(A) = (f(A_0) + f(A_1), f(A_0) - f(A_1))
• f^{-1}(A) = (f^{-1}(\frac{A_0 + A_1}{2}), f^{-1}(\frac{A_0 - A_1}{2}))
  2. OR Convolution
         • f(A) = (f(A_0), f(A_0) + f(A_1))
• f^{-1}(A) = (f^{-1}(A_0), f^{-1}(A_1) - f^{-1}(A_0))
                                                                        }
  3. AND Convolution
         • f(A) = (f(A_0) + f(A_1), f(A_1))
• f^{-1}(A) = (f^{-1}(A_0) - f^{-1}(A_1), f^{-1}(A_1))
6.9 FWT
void ORop(i64 & x, i64 & y) \{ y = (y + x) \% mod; \}
void ORinv(i64 &x, i64 &y) { y = (y - x + mod) \% mod; }
void ANDop(i64 &x, i64 &y) { x = (x + y) \% \text{ mod}; }
void ANDinv(i64 &x, i64 &y) { x = (x - y + mod) \% mod;
     }
void XORop(i64 &x, i64 &y) { tie(x, y) = pair{(x + y) \%}
mod, (x - y + mod) % mod}; }
void XORinv(i64 &x, i64 &y) { tie(x, y) = pair{(x + y)
     * inv2 % mod, (x - y + mod) * inv2 % mod}; }
void FWT(vector<i64> &f, auto &op) {
  const int s = f.size();
  for (int i = 1; i < s; i *= 2)
    for (int j = 0; j < s; j += i * 2)
for (int k = 0; k < i; k++)
  op(f[j + k], f[i + j + k]);</pre>
// FWT(f, XORop), FWT(g, XORop)
// f[i] *= g[i]
// FWT(f, XORinv)
6.10 Lucas
// C(N, M) mod D
// 0 <= M <= N <= 10^18 
// 1 <= D <= 10^6
i64 Lucas(i64 N, i64 M, i64 D) {
  auto Factor = [\&](i64 x) -> vector<pair<i64, i64>> {
     vector<pair<i64, i64>> r;
```

for (i64 i = 2; x > 1; i++)

```
if (x \% i == 0) {
          i64 c = 0;
          while (x % i == 0) x /= i, c++;
          r.emplace_back(i, c);
       }
     return r;
  };
  auto Pow = [\&](i64 a, i64 b, i64 m) -> i64 {
    i64 r = 1;
for (; b; b >>= 1, a = a * a % m)
if (b & 1) r = r * a % m;
     return r;
  };
  vector<pair<i64, i64>> E;
  for (auto [p, q] : Factor(D)) {
     const i64 \text{ mod} = Pow(p, q, 1 << 30);
     auto CountFact = [\&](i64 x) \rightarrow i64 \{
       i64 c = 0;
       while (x) c += (x /= p);
       return c;
     };
     auto CountBino = [&](i64 x, i64 y) { return
CountFact(x) - CountFact(y) - CountFact(x - y); };
     auto Inv = [&](i64 x) -> i64 { return (exgcd(x, mod
).ff % mod + mod) % mod; };
     vector<i64> pre(mod + 1);
     pre[0] = pre[1] = 1;
     for (i64 i = 2; i <= mod; i++) pre[i] = (i % p == 0
? 1 : i) * pre[i - 1] % mod;
function<i64(i64)> FactMod = [&](i64 n) -> i64 {
       if (n == 0) return 1;
       return FactMod(n / p) * Pow(pre[mod], n / mod,
     mod) % mod * pre[n % mod] % mod;
     };
     auto BinoMod = [\&](i64 x, i64 y) \rightarrow i64 \{
       return FactMod(x) * Inv(FactMod(y)) % mod * Inv(
     FactMod(x - y)) \% mod;
     i64 r = BinoMod(N, M) * Pow(p, CountBino(N, M), mod
     ) % mod:
     E.emplace_back(r, mod);
  return CRT(E);
6.11 Berlekamp Massey
template <int P>
vector<int> BerlekampMassey(vector<int> x) {
 vector<int> cur, ls;
 int lf = 0, ld = 0;
 for (int i = 0; i < (int)x.size(); ++i) {</pre>
  int t = 0;
  for (int j = 0; j < (int)cur.size(); ++j)
  (t += 1LL * cur[j] * x[i - j - 1] % P) %= P;</pre>
  if (t == x[i]) continue;
  if (cur.empty()) {
    cur.resize(i + 1);
    lf = i, ld = (t + P - x[i]) % P;
   continue:
  int k = 1LL * fpow(ld, P - 2, P) * (t + P - x[i]) % P
  vector<int> c(i - lf - 1);
  c.push_back(k);
  for (int j = 0; j < (int)ls.size(); ++j)
c.push_back(1LL * k * (P - ls[j]) % P);</pre>
  if (c.size() < cur.size()) c.resize(cur.size());</pre>
  for (int j = 0; j < (int)cur.size(); ++j)
  c[j] = (c[j] + cur[j]) % P;
if (i - lf + (int)ls.size() >= (int)cur.size()) {
ls = cur, lf = i;
   ld = (t + P - x[i]) \% P;
  }
  cur = c;
```

6.12 Gauss Elimination

return cur;

```
double Gauss(vector<vector<double>> &d) {
  int n = d.size(), m = d[0].size();
  double det = 1;
```

vector<int> p(n + 1), e(n + 1);

```
for (int i = 0; i < m; ++i) {
                                                                        p[0] = e[1] = 1;
  int p = -1;
                                                                        for (; k > 0; k >>= 1) {
  for (int j = i; j < n; ++j) {
   if (fabs(d[j][i]) < kEps) continue;</pre>
                                                                          if (k & 1) p = Combine(p, e);
                                                                          e = Combine(e, e);
   if (p == -1) fabs(d[j][i]) > fabs(d[p][i])) p = j;
                                                                        int res = 0;
  if (p == -1) continue;
                                                                        for (int i = 0; i < n; ++i) (res += 1LL * p[i + 1] *
  if (p != i) det *= -1;
                                                                          s[i] % P) %= P;
  for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);</pre>
                                                                        return res;
  for (int j = 0; j < n; ++j) {
    if (i == j) continue;
   double z = d[j][i] / d[i][i];
                                                                      6.15
                                                                             SubsetConv
   for (int k = 0; k < m; ++k) d[j][k] -= z * d[i][k];
                                                                     vector<i64> SubsetConv(vector<i64> f, vector<i64> g) {
                                                                        const int n = f.size();
                                                                        const int U = __lg(n) + 1
 for (int i = 0; i < n; ++i) det *= d[i][i];</pre>
                                                                        vector F(U, vector<i64>(n));
 return det;
                                                                        auto G = F, H = F;
                                                                        for (int i = 0; i < n; i++) {
   F[popcount<u64>(i)][i] = f[i];
6.13 Linear Equation
                                                                          G[popcount<u64>(i)][i] = g[i];
void linear_equation(vector<vector<double>> &d, vector<</pre>
     double> &aug, vector<double> &sol) {
  int n = d.size(), m = d[0].size();
vector<int> r(n), c(m);
                                                                        for (int i = 0; i < U; i++) {
                                                                          FWT(F[i], ORop);
                                                                          FWT(G[i], ORop);
  iota(r.begin(), r.end(), 0);
  iota(c.begin(), c.end(), 0);
for (int i = 0; i < m; ++i) {</pre>
                                                                        for (int i = 0; i < U; i++)
                                                                          for (int j = 0; j <= i; j++)
for (int k = 0; k < n; k++)
    int p = -1, z = -1;
    for (int j = i; j < n; ++j) {
  for (int k = i; k < m; ++k) {
    if (fabs(d[r[j]][c[k]]) < eps) continue;
    if (fabs(d[r[j]][c[k]]) > fab
                                                                               H[i][k] = (H[i][k] + F[i - j][k] * G[j][k]) %
                                                                          mod:
                                                                        for (int i = 0; i < U; i++) FWT(H[i], ORinv);
for (int i = 0; i < n; i++) f[i] = H[popcount<u64>(i)
         if (p == -1 \mid \overline{l} fabs(d[r[j]][c[k]]) > fabs(d[r[p
     ]][c[z]])) p = j, z = k;
                                                                          ][i];
       }
                                                                        return f:
                                                                     }
    if (p == -1) continue;
    swap(r[p], r[i]), swap(c[z], c[i]);
     for (int j = 0; j < n; ++j) {
                                                                      6.16 SqrtMod
       if (i == j) continue;
double z = d[r[j]][c[i]] / d[r[i]][c[i]];
                                                                      int SqrtMod(int n, int P) \{ // 0 \le x < P \}
                                                                        if (P == 2 or n == 0) return n;
if (pow(n, (P - 1) / 2, P) != 1) return -1;
       for (int k = 0; k < m; ++k) d[r[j]][c[k]] -= z *
    d[r[i]][c[k]];
       aug[r[j]] \stackrel{\cdot}{-=} z * aug[r[i]];
                                                                        mt19937 rng(12312);
                                                                        i64 z = 0, w;
                                                                        while (pow(w = (z * z - n + P) % P, (P - 1) / 2, P)
                                                                          != P - 1)
  vector<vector<double>> fd(n, vector<double>(m));
                                                                          z = rng() \% P
  vector<double> faug(n), x(n);
                                                                        const auto M = [P, w] (auto &u, auto &v) {
  for (int i = 0; i < n; ++i) {
                                                                          return make_pair(
    for (int j = 0; j < m; ++j) fd[i][j] = d[r[i]][c[j]
                                                                             (u.ff * v.ff + u.ss * v.ss % P * w) % P,
     11;
                                                                             (u.ff * v.ss + u.ss * v.ff) % P
    faug[i] = aug[r[i]];
                                                                          );
  d = fd, aug = faug;
                                                                        pair<i64, i64> r(1, 0), e(z, 1);
for (int w = (P + 1) / 2; w; w >>= 1, e = M(e, e))
  for (int i = n - 1; i >= 0; --i) {
    double p = 0.0;
                                                                          if (w \& 1) r = M(r, e);
    for (int j = i + 1; j < n; ++j) p += d[i][j] * x[j]
                                                                        return r.ff; // sqrt(n) mod P where P is prime
    x[i] = (aug[i] - p) / d[i][i];
  for (int i = 0; i < n; ++i) sol[c[i]] = x[i];
                                                                      6.17 DiscreteLog
                                                                      template<class T>
6.14
       LinearRec
                                                                      T BSGS(T x, T y, T M) {
                                                                       // x^? \equiv y (mod M)
template <int P>
                                                                      T t = 1, c = 0, g = 1;

for (T M_{-} = M; M_{-} > 0; M_{-} >>= 1) g = g * x % M;

for (g = gcd(g, M); t % g != 0; ++c) {
int LinearRec(const vector<int> &s, const vector<int> &
    coeff, int k) {
  int n = s.size()
                                                                        if (t == y) return c;
  auto Combine = [&](const auto &a, const auto &b) {
                                                                        t = t * x % M;
    vector < int > res(n * 2 + 1);
     for (int i = 0; i <= n; ++i) {
                                                                       if (y % g != 0) return -1;
       for (int j = 0; j <= n; ++j)
  (res[i + j] += 1LL * a[i] * b[j] % P) %= P;</pre>
                                                                       t /= g, y /= g, M /= g;
                                                                       T h = 0, gs = 1;
for (; h * h < M; ++h) gs = gs * x % M;
    for (int i = 2 * n; i > n; --i) {
                                                                       unordered_map<T, T> bs;
       for (int j = 0; j < n; ++j)
  (res[i - 1 - j] += 1LL * res[i] * coeff[j] % P)</pre>
                                                                       for (T s = 0; s < h; bs[y] = ++s) y = y * x % M;
                                                                       for (T s = 0; s < M; s += h) {
      %= P;
                                                                        t = t * gs % M;
    }
                                                                        if (bs.count(t)) return c + s + h - bs[t];
    res.resize(n + 1);
    return res;
                                                                       return -1;
```

6.18 FloorSum

```
// sigma 0 \sim n-1: (a * i + b) / m
i64 floor_sum(i64 n, i64 m, i64 a, i64 b) {
  u64 \text{ ans} = 0:
  if (a < 0) {
    u64 a2 = (a % m + m) % m;
ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
  if (b < 0) {
    u64 b2 = (b \% m + m) \% m;
    ans -= 1ULL * n * ((b2 - b) / m);
    b = b2;
  while (true) {
    if (a >= m) {
       ans += n * (n - 1) / 2 * (a / m);
       a \% = m;
    if (b >= m) {
       ans += n * (b / m);
       b \% = m;
    u64 y_max = a * n + b;
    if (y_max < m) break;
n = y_max / m;</pre>
    b = y_max \% m;
    swap(m, a);
  return ans;
}
```

6.19 Linear Programming Simplex

```
// \max\{cx\} subject to \{Ax <= b, x >= 0\}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// x = simplex(A, b, c); (A <= 100 x 100)
vector<double> simplex(
    const vector<vector<double>> &a,
     const vector<double> &b,
     const vector<double> &c) {
  int n = (int)a.size(), m = (int)a[0].size() + 1;
  vector val(n + 2, vector<double>(m + 1));
  vector<int> idx(n + m);
  iota(all(idx), 0);
  int r = n, s = m - 1;
  for (int i = 0; i < n; ++i) {
     for (int j = 0; j < m - 1; ++j)
val[i][j] = -a[i][j];
     val[i][m - 1] = 1;
    val[i][m] = b[i];
     if (val[r][m] > val[i][m])
       r = i;
  copy(all(c), val[n].begin());
  val[n + 1][m - 1] = -1;
  for (double num; ; ) {
     if (r < n)
       swap(idx[s], idx[r + m])
       val[r][s] = 1 / val[r][s];
       for (int j = 0; j <= m; ++j) if (j != s)
  val[r][j] *= -val[r][s];</pre>
       for (int i = 0; i <= n + 1; ++i) if (i != r) {
  for (int j = 0; j <= m; ++j) if (j != s)
    val[i][j] += val[r][j] * val[i][s];
  val[i][s] *= val[r][s];</pre>
       }
    }
    for (int j = 0; j < m; ++j)
  if (s < 0 || idx[s] > idx[j])
   if (val[n + 1][j] > eps || val[n + 1][j] > -eps
      && val[n][j] > eps)
    s = j;
if (s < 0) break;</pre>
     for (int i = 0; i < n; ++i) if (val[i][s] < -eps) {
          || (num = val[r][m] / val[r][s] - val[i][m] /
     val[i][s] < -eps
```

```
II num < eps \&\& idx[r + m] > idx[i + m])
        r = i:
    if (r < 0) {
      // Solution is unbounded.
      return vector<double>{};
  if (val[n + 1][m] < -eps) {
    // No solution.
    return vector<double>{};
  vector<double> x(m - 1);
  for (int i = m; i < n + m; ++i)
    if (idx[i] < m - 1)</pre>
      x[idx[i]] = val[i - m][m];
  return x;
}
6.20
      Lagrange Interpolation
```

```
struct Lagrange {
  int deg{};
  vector<i64> C;
  Lagrange(const vector<i64> &P) {
     deg = P.size() - 1;
     C.assign(deg + 1, 0);
     for (int i = 0; i <= deg; i++) {
  i64 q = comb(-i) * comb(i - deg) % mod;</pre>
       if ((deg - i) \% 2 == 1) {
         q = mod - q;
       C[i] = P[i] * q % mod;
    }
  i64 \ operator()(i64 \ x) \ \{ \ // \ 0 <= x < mod
     if (0 \le x \text{ and } x \le \text{deg}) {
       i64 \text{ ans} = comb(x) * comb(deg - x) % mod;
       if ((deg - x) \% 2 == 1) {
         ans = (mod - ans);
       return ans * C[x] % mod;
     vector<i64> pre(deg + 1), suf(deg + 1);
     for (int i = 0; i <= deg; i++) {
       pre[i] = (x - i);
       if (i) {
         pre[i] = pre[i] * pre[i - 1] % mod;
     for (int i = deg; i >= 0; i--) {
       suf[i] = (x - i);
       if (i < deg) {
         suf[i] = suf[i] * suf[i + 1] % mod;
     i64 \text{ ans} = 0;
     for (int i = 0; i <= deg; i++) {
  ans += (i == 0 ? 1 : pre[i - 1]) * (i == deg ? 1
  : suf[i + 1]) % mod * C[i];</pre>
       ans %= mod;
     if (ans < 0) ans += mod;
     return ans;
  }
};
```

7 Geometry

7.1 2D Point

```
using Pt = pair<double, double>;
using numbers::pi;
constexpr double eps = 1e-9;
Pt operator+(Pt a, Pt b) { return {a.ff + b.ff, a.ss + b.ss}; }
Pt operator-(Pt a, Pt b) { return {a.ff - b.ff, a.ss - b.ss}; }
```

```
Pt operator*(Pt a, double b) { return {a.ff * b, a.ss *
                                                                   return min(inside(p, L, less{}), inside(p, U,
     b}; }
                                                                   greater{}));
Pt operator/(Pt a, double b) { return {a.ff / b, a.ss /
                                                                static bool cmp(T a, T b) { return sig(a \land b) > 0; }
double operator*(Pt a, Pt b) { return a.ff * b.ff + a.
                                                                int tangent(T v, bool close = true) {
    ss * b.ss; }
                                                                   assert(v != T{});
double operator^(Pt a, Pt b) { return a.ff * b.ss - a.
                                                                   auto l = V.begin(), r = V.begin() + L.size() - 1;
    ss * b.ff; }
                                                                                       r = V.end()
                                                                   if (v < T{}) l = r,
                                                                   if (close) return (lower_bound(l, r, v, cmp) - V.
double abs(Pt a) { return sqrt(a * a); }
double cro(Pt a, Pt b, Pt c) { return (b - a) ^ (c - a)
                                                                   begin()) % n;
                                                                   return (upper_bound(l, r, v, cmp) - V.begin()) % n;
int sig(double x) { return (x > -eps) - (x < eps); }
                                                                array<int, 2> tangent2(T p) {
  array<int, 2> t{-1, -1};
Pt rot(Pt u, double a) {
  Pt v{sin(a), cos(a)}
  return {u ^ v, u * v};
                                                                   if (inside(p) == 2) return t;
                                                                   if (auto it = lower_bound(all(L), p); it != L.end()
                                                                    and p == *it) {
  int s = it - L.begin();
bool inedge(Pt a, Pt b, Pt c) {
  return ((a - b) \wedge (c - b)) == 0 and (a - b) * (c - b)
     <= 0:
                                                                     return \{(s + 1) \% n, (s - 1 + n) \% n\};
bool banana(Pt a, Pt b, Pt c, Pt d) {
                                                                   if (auto it = lower_bound(all(U), p, greater{}); it
                                        b) or \
  if (inedge(a, c, b) or inedge(a, d,
                                                                    != U.end() and p == *it) {
                                                                     int s = it - U.begin() + L.size() - 1;
    inedge(c, a, d) or inedge(c, b, d))
                                                                     return \{(s + 1) \% n, (s - 1 + n) \% n\};
    return true
  return sig(cro(a, b, c)) * sig(cro(a, b, d)) < 0 and
                                                                   for (int i = 0; i != t[0]; i = tangent((A[t[0] = i]
      sig(cro(c, d, a)) * sig(cro(c, d, b)) < 0;
                                                                    - p), 0));
                                                                   for (int i = 0; i != t[1]; i = tangent((p - A[t[1]
Pt Inter(Pt a, Pt b, Pt c, Pt d) {
                                                                   = i]), 1));
  double s = cro(c, d, a), t = -cro(c, d, b);
return (a * t + b * s) / (s + t);
                                                                  return t;
                                                                int Find(int l, int r, T a, T b) {
  if (r < l) r += n;</pre>
struct Line
                                                                   int s = sig(cro(a, b, A[l % n]));
 Pt a{}, b{};
                                                                  while (r - l > 1) {
  Line() {}
                                                                     (sig(cro(a, b, A[(l + r) / 2 % n])) == s ? l : r)
  Line(Pt _a, Pt _b) : a{_a}, b{_b} {}
                                                                    = (1 + r) / 2;
Pt Inter(Line L, Line R)
                                                                  }
  return Inter(L.a, L.b, R.a, R.b);
                                                                  return 1 % n;
                                                                vector<int> LineIntersect(T a, T b) { // A_x A_x+1
7.2 Convex Hull
                                                                   interset with ab
                                                                   assert(a != b);
vector<Pt> Hull(vector<Pt> P) {
  sort(all(P));
                                                                   int l = tangent(a - b), r = tangent(b - a);
  P.erase(unique(all(P)),
                                                                   if (sig(cro(a, b, A[l])) * sig(cro(a, b, A[r])) >=
                           P.end());
  P.insert(P.end(), rall(P));
  vector<Pt> stk;
                                                                  return {Find(l, r, a, b), Find(r, l, a, b)};
  for (auto p : P) {
                                                                }
                                                              };
    while (stk.size() >= 2 and \
        cro(*++stk.rbegin(), stk.back(), p) <= 0 and \setminus
                                                                   Dynamic Convex Hull
        (*++stk.rbegin() < stk.back()) == (stk.back() <
     p)) {
                                                              template<class T, class Comp = less<T>>
      stk.pop_back();
                                                              struct DynamicHull {
                                                                set<T, Comp> H;
                                                                DynamicHull() {}
void insert(T p) {
    stk.push_back(p);
  stk.pop_back();
                                                                   if (inside(p)) return;
  return stk;
                                                                   auto it = H.insert(p).ff;
                                                                   while (it != H.begin() and prev(it) != H.begin() \
                                                                       and cross(*prev(it, 2), *prev(it), *it) <= 0) {</pre>
7.3 Convex Hull trick
                                                                     it = H.erase(--it);
template<class T>
                                                                   while (it != --H.end() and next(it) != --H.end() '
struct Convex {
  int n;
                                                                       and cross(*it, *next(it), *next(it, 2)) <= 0) {</pre>
  vector<T> A, V, L, U;
                                                                     it = --H.erase(++it);
  Convex(const vector<T> &_A) : A(_A), n(_A.size()) {
                                                                  }
    auto it = max_element(all(A));
                                                                int inside(T p) { // 0: out, 1: on, 2: in
    L.assign(A.begin(), it + 1);
                                                                  auto it = H.lower_bound(p)
    U.assign(it, A.end()), U.push_back(A[0]);
                                                                   if (it == H.end()) return 0;
    for (int i = 0; i < n; i++) {
   V.push_back(A[(i + 1) % n] - A[i]);</pre>
                                                                   if (it == H.begin()) return p == *it
                                                                  return 1 - sig(cross(*prev(it), p, *it));
                                                              };
  int inside(T p, const vector<T> &h, auto f) { // 0:
                                                              7.5 Half Plane Intersection
    out, 1: on, 2: in
    auto it = lower_bound(all(h), p, f);
if (it == h.end()) return 0;
                                                              vector<Pt> HPI(vector<Line> P) {
                                                                const int n = P.size();
    if (it == h.begin()) return p == *it;
                                                                sort(all(P), [\&](Line L, Line R) \rightarrow bool {
    return 1 - sig(cro(*prev(it), p, *it));
                                                                   Pt u = L.b - L.a, v = R.b - R.a;
                                                                   bool f = Pt(sig(u.ff), sig(u.ss)) < Pt{};</pre>
                                                                   bool g = Pt(sig(v.ff), sig(v.ss)) < Pt{};</pre>
  int inside(T p) {
```

```
if (f != g) return f < g;</pre>
                                                                                                           if (v <= 0) j++;
       return (sig(u ^ v) ? sig(u ^ v) : sig(cro(L.a, R.a,
         R.b))) > 0;
                                                                                                         return R:
                                                                                                     }
   });
   auto Same = [&](Line L, Line R) {
       Pt u = L.b - L.a, v = R.b - R.a;
                                                                                                     7.8
                                                                                                              TriangleCenter
       return sig(u \wedge v) == 0 and sig(u * v) == 1;
                                                                                                     Pt TriangleCircumCenter(Pt a, Pt b, Pt c) {
    deque <Pt> inter;
                                                                                                       double a1 = atan2(b.y - a.y, b.x - a.x) + pi / 2;
double a2 = atan2(c.y - b.y, c.x - b.x) + pi / 2;
    deque <Line> seg;
    for (int i = 0; i < n; i++) if (i == 0 or !Same(P[i -
                                                                                                       double ax = (a.x + b.x) /
         1], P[i])) {
                                                                                                       double ay = (a.y + b.y) / 2;
       while (seg.size() >= 2 and sig(cro(inter.back(), P[
                                                                                                       double bx = (c.x + b.x) / 2;
       i].b, P[i].a)) == 1) {
                                                                                                      seg.pop_back(), inter.pop_back();
       while (seg.size() >= 2 and sig(cro(inter[0], P[i].b
                                                                                                       return Pt(ax + r1 * cos(a1), ay + r1 * sin(a1));
        , P[i].a)) == 1) {
          seg.pop_front(), inter.pop_front();
                                                                                                     Pt TriangleMassCenter(Pt a, Pt b, Pt c) {
       if (!seg.empty()) inter.push_back(Inter(seg.back(),
                                                                                                      return (a + b + c) / 3.0;
         P[i]));
                                                                                                     }
       seg.push_back(P[i]);
                                                                                                     Pt TriangleOrthoCenter(Pt a, Pt b, Pt c) {
    while (seg.size() >= 2 and sig(cro(inter.back(), seg
                                                                                                      return TriangleMassCenter(a, b, c) * 3.0 -
TriangleCircumCenter(a, b, c) * 2.0;
       [0].b, seg[0].a) == 1) {
       seg.pop_back(), inter.pop_back();
    inter.push_back(Inter(seg[0], seg.back()));
                                                                                                     Pt TriangleInnerCenter(Pt a, Pt b, Pt c) {
    return vector<Pt>(all(inter));
                                                                                                      Pt res;
                                                                                                       double la = abs(b - c);
                                                                                                       double lb = abs(a - c);
7.6 Minimal Enclosing Circle
                                                                                                       double lc = abs(a - b);

res.x = (la * a.x + lb * b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + b.x + lc * c.x) / (la + lb + b.x + lc * c.x) / (la + lb + b.x + b.x
using circle = pair<Pt, double>;
struct MES {
                                                                                                            lc);
    MES() {}
                                                                                                       res.y = (la * a.y + lb * b.y + lc * c.y) / (la + lb +
    bool inside(const circle &c, Pt p) {
                                                                                                            lc);
       return abs(p - c.ff) <= c.ss + eps;</pre>
                                                                                                       return res;
   circle get_cir(Pt a, Pt b) {
       return circle((a + b) / 2., abs(a - b) / 2.);
                                                                                                     7.9 Circle Triangle
                                                                                                     double SectorArea(Pt a, Pt b, double r) {
    circle get_cir(Pt a, Pt b, Pt c) {
                                                                                                         double theta = atan2(a.ss, a.ff) - atan2(b.ss, b.ff);
       Pt p = (b - a) / 2.;
       p = Pt(-p.ss, p.ff);
                                                                                                         while (theta <= 0) theta += 2 * pi;
                                                                                                        while (theta >= 2 * pi) theta -= 2 * pi;
theta = min(theta, 2 * pi - theta);
       double t = ((c - a) * (c - b)) / (2 * (p * (c - a)))
                                                                                                         return r * r * theta / 2;
       p = ((a + b) / 2.) + (p * t);
       return circle(p, abs(p - a));
                                                                                                     vector<Pt> CircleCrossLine(Pt a, Pt b, Pt o, double r)
    circle get_mes(vector<Pt> P) -
       if (P.empty()) return circle{Pt(0, 0), 0};
       mt19937 rng(random_device{}());
                                                                                                         double h = cro(o, a, b) / abs(a - b);
       shuffle(all(P), rng);
circle C{P[0], 0};
for (int i = 1; i < P.size(); i++) {</pre>
                                                                                                        Pt v = (a - b) / abs(a - b);
                                                                                                         Pt u = Pt{-v.ss, v.ff};
                                                                                                         Pt H = o + u * h;
                                                                                                        h = abs(h);
          if (inside(C, P[i])) continue;
          C = get_cir(P[i], P[0]);
for (int j = 1; j < i; j++) {
   if (inside(C, P[j])) continue;</pre>
                                                                                                         vector<Pt> ret;
                                                                                                         if (sig(h - r) <= 0) {
                                                                                                            double d = sqrt(max(0., r * r - h * h));
for (auto p : {H + (v * d), H - (v * d)})
  if (sig((a - p) * (b - p)) <= 0) {</pre>
              C = get_cir(P[i], P[j]);
for (int k = 0; k < j; k++) {
  if (inside(C, P[k])) continue;</pre>
                                                                                                                   ret.push_back(p);
                 C = get_cir(P[i], P[j], P[k]);
          }
                                                                                                         return ret;
                                                                                                     }
       return C;
                                                                                                     double AreaOfCircleTriangle(Pt a, Pt b, double r) {
   }
                                                                                                         if (sig(abs(a) - r) \leftarrow 0 and sig(abs(b) - r) \leftarrow 0) {
};
                                                                                                            return abs(a ^ b) / 2;
7.7 Minkowski
                                                                                                         if (abs(a) > abs(b)) swap(a, b);
vector<Pt> Minkowski(vector<Pt> P, vector<Pt> Q) { // P
                                                                                                        auto I = CircleCrossLine(a, b, {}, r);
if (I.size() == 1) return abs(a ^ I[0]) / 2 +
        , Q need sort
    const int n = P.size(), m = Q.size();
                                                                                                            SectorArea(I[0], b, r);
   P.push_back(P[0]), P.push_back(P[1]);
Q.push_back(Q[0]), Q.push_back(Q[1]);
                                                                                                         if (I.size() == 2) {
                                                                                                            return SectorArea(a, I[0], r) + SectorArea(I[1], b,
    vector<Pt> R;
    for (int i = 0, j = 0; i < n or j < m; ) {
                                                                                                              r) + abs(I[0] \wedge I[1]) / 2;
       R.push_back(P[i] + Q[j]);
       auto v = (P[i + 1] - P[i]) \wedge (Q[j + 1] - Q[j]);
                                                                                                         return SectorArea(a, b, r);
       if (v >= 0) i++;
```

```
Stringology
```

```
8.1 KMP
```

```
vector<int> build_fail(string s) {
  const int len = s.size();
  vector<int> f(len, -1);
  for (int i = 1, p = -1; i < len; i++) {
    while (~p and s[p + 1] != s[i]) p = f[p];
if (s[p + 1] == s[i]) p++;
    f[i] = p;
  return f;
}
```

8.2 Z-algorithm

```
vector<int> zalgo(string s) {
   if (s.empty()) return {};
   int len = s.size();
   vector<int> z(len);
   z[0] = len;
   for (int i = 1, l = 1, r = 1; i < len; i++) {
    z[i] = i < r ? min(z[i - l], r - i) : 0;
    while (i + z[i] < len and s[i + z[i]] == s[z[i]]) z
      if (i + z[i] > r) l = i, r = i + z[i];
   return z;
}
```

8.3 Manacher

```
vector<int> manacher(const string &s) {
  string p = "@#"
  for (char c : s) p += c + '#';
 p += '$';
 vector<int> dp(p.size());
 int mid = 0, r = 1;
for (int i = 1; i < p.size() - 1; i++) {</pre>
    auto &k = dp[i];
    k = i < mid + r ? min(dp[mid * 2 - i], mid + r - i)
    while (p[i + k + 1] == p[i - k - 1]) k++;
    if (i + k > mid + r) mid = i, r = k;
  return vector<int>(dp.begin() + 2, dp.end() - 2);
```

8.4 SuffixArray Simple

```
struct SuffixArray {
  int n;
   vector<int> suf, rk, S;
   SuffixArray(vector<int> _S) : S(_S) {
     n = S.size();
     suf.assign(n, 0);
rk.assign(n * 2, -1);
     iota(all(suf), 0);
     for (int i = 0; i < n; i++) rk[i] = S[i];
for (int k = 2; k < n + n; k *= 2) {
       auto cmp = [\&](int a, int b) -> bool {
          return rk[a] == rk[b]? (rk[a + k / 2] < rk[b +
                k / 2]) : (rk[a] < rk[b]);
       sort(all(suf), cmp);
       auto tmp = rk;
       tmp[suf[0]] = 0;
for (int i = 1; i < n; i++) {</pre>
          tmp[suf[i]] = tmp[suf[i - 1]] + cmp(suf[i - 1],
      suf[i]);
       rk.swap(tmp);
};
```

8.5 SuffixArray SAIS

```
namespace sfx {
#define fup(a, b) for (int i = a; i < b; i++)
#define fdn(a, b) for (int i = b - 1; i >= a; i--)
   constexpr int N = 5e5 + 5;
  bool _t[N * 2];
int H[N], RA[N], x[N], _p[N];
int SA[N * 2], _s[N * 2], _c[N * 2], _q[N * 2];
```

```
void pre(int *sa, int *c, int n, int z) {
     fill_n(sa, n, \emptyset), copy_n(c, z, x);
   void induce(int *sa, int *c, int *s, bool *t, int n,
     int z) {
     copy_n(c, z - 1, x + 1);
fup(0, n) if (sa[i] and !t[sa[i] - 1])
  sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
     copy_n(c, z, x);
fdn(0, n) if (sa[i] and t[sa[i] - 1])
  sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
   void sais(int *s, int *sa, int *p, int *q, bool *t,
  int *c, int n, int z) {
     bool uniq = t[n - 1] = true;
     int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
      last = -1;
     fill_n(c, z, 0);
fup(0, n) uniq &= ++c[s[i]] < 2;
     partial_sum(c, c + z, c);
if (uniq) { fup(0, n) sa[--c[s[i]]] = i; return; }
fdn(0, n - 1)
        t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i]
      + 1]);
     fully,
pre(sa, c, n, z);
fup(1, n) if (t[i] and !t[i - 1])
    sa[--x[s[i]]] = p[q[i] = nn++] = i;
induce(sa, c, s, t, n, z);
fup(0, n) if (sa[i] and t[sa[i]] and !t[sa[i] - 1])
        bool neq = last < 0 or !equal(s + sa[i], s + p[q[
     sa[i]] + 1], s + last);
        ns[q[last = sa[i]]] = nmxz += neq;
     sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz
       + 1);
     pre(sa, c, n, z);
      fdn(0, nn) sa[--x[s[p[nsa[i]]]] = p[nsa[i]];
     induce(sa, c, s, t, n, z);
   vector<int> build(vector<int> s, int n) {
     copy_n(begin(s), n, _s), _s[n] = 0;
     sais(_s, SA, _p, _q, _t, _c, n + 1, 256);
     vector<int> sa(n);
     fup(0, n) sa[i] = SA[i + 1];
     return sa;
   vector<int> lcp_array(vector<int> &s, vector<int> &sa
     int n = int(s.size());
     vector<int> rnk(n);
     fup(0, n) rnk[sa[i]] = i;
     vector<int> lcp(n - 1);
     int h = 0;
     fup(0, n) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
for (; j + h < n and i + h < n; h++)
  if (s[j + h] != s[i + h]) break;</pre>
        lcp[rnk[i] - 1] = h;
     return lcp;
   }
}
8.6 SuffixArray SAIS C++20
auto sais(const auto &s) {
   const int n = (int)s.size(), z = ranges::max(s) + 1;
   if (n == 1) return vector{0};
```

```
vector<int> c(z); for (int x : s) ++c[x];
partial_sum(all(c), begin(c));
vector < int > sa(n); auto I = views::iota(0, n);
vector<bool> t(n); t[n - 1] = true;
for (int i = n - 2; i >= 0; i--)
    t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i +</pre>
   1]);
auto is_lms = views::filter([&t](int x) {
      return x && t[x] & !t[x - 1]; });
auto induce = [&] {
  for (auto x = c; int y : sa)
    if (y--) if (!t[y]) sa[x[s[y] - 1]++] = y;
```

void del() {

```
for(auto x = c; int y : sa | views::reverse)
                                                                  S.pop_back()
      if(y--) if(t[y]) sa[--x[s[y]]] = y;
                                                                  id.pop_back();
                                                                  lst = id.empty() ? odd : id.back();
  vector<int> lms, q(n); lms.reserve(n);
for (auto x = c; int i : I | is_lms) {
                                                             };
    q[i] = int(lms.size())
                                                                   SmallestRotation
                                                              8.8
    lms.push_back(sa[--x[s[i]]] = i);
                                                              string Rotate(const string &s) {
  induce(); vector<int> ns(lms.size());
                                                               int n = s.length();
  for (int j = -1, nz = 0; int i : sa \mid is_lms) {
                                                               string t = s + s;
int i = 0, j = 1;
    if (j > = 0) {
      int len = min({n - i, n - j, lms[q[i] + 1] - i});
                                                               while (i < n && j < n) \{
      ns[q[i]] = nz += lexicographical_compare(
                                                                int k = 0;
          begin(s) + j, begin(s) + j + len
                                                                while (k < n \& t[i + k] == t[j + k]) ++k;
          begin(s) + i, begin(s) + i + len);
                                                                if (t[i + k] \le t[j + k]) j += k + 1;
                                                                else i += k^{-} + 1;
    j = i;
                                                                if (i == j) ++j;
  ranges::fill(sa, 0); auto nsa = sais(ns);
                                                               int pos = (i < n ? i : j);</pre>
  for (auto x = c; int y : nsa | views::reverse)
  y = lms[y], sa[--x[s[y]]] = y;
                                                               return t.substr(pos, n);
  return induce(), sa;
                                                              8.9 Aho-Corasick
// SPLIT_HASH_HERE sa[i]: sa[i]-th suffix is the
                                                              struct ACauto {
// i-th lexicographically smallest suffix.
                                                                static const int sigma = 26;
// hi[i]: LCP of suffix sa[i] and suffix sa[i - 1].
                                                                struct Node {
                                                                  array<Node*, sigma> ch{};
Node *fail = nullptr;
struct Suffix {
  int n; vector<int> sa, hi, rev;
  Suffix(const auto &s) : n(int(s.size())),
                                                                  int cnt = 0;
    hi(n), rev(n) {
                                                                  vector<int> id;
    vector<int> _s(n + 1); // _s[n] = 0
                                                                } *root;
    copy(all(s), begin(_s)); // s shouldn't contain 0
                                                                ACauto() : root(new Node()) {}
    sa = sais(_s); sa.erase(sa.begin())
                                                                void insert(const string &s, int id) {
    for (int i = 0; i < n; i++) rev[sa[i]] = i;
                                                                  auto p = root;
    for (int i = 0, h = 0; i < n; i++) {
                                                                  for (char c : s) {
  int d = c - 'a';
      if (!rev[i]) { h = 0; continue; }
                                                                    if (!p->ch[d]) p->ch[d] = new Node();
      for (int j = sa[rev[i] - 1]; i + h < n \& j + h <
                                                                    p = p - ch[d];
           && s[i + h] == s[j + h];) ++h;
      hi[rev[i]] = h ? h-- : 0;
                                                                  p->id.emplace_back(id);
                                                                vector<Node*> ord;
};
                                                                void build() {
                                                                  root->fail = root;
8.7 Palindromic Tree
                                                                  queue<Node*> que;
                                                                  for (int i = 0; i
struct PAM {
                                                                                     < sigma; i++) {
                                                                    if (root->ch[i]) {
  struct Node {
    int fail, len, dep;
                                                                      root->ch[i]->fail = root;
    array<int, 26> ch;
                                                                      que.emplace(root->ch[i]);
    Node(int _len) : len{_len}, fail{}, ch{}, dep{} {};
                                                                    else {
  vector<Node> g;
                                                                      root->ch[i] = root;
  vector<int> id;
  int odd, even, lst;
  string S;
                                                                  while (!que.empty()) {
                                                                    auto p = que.front(); que.pop();
  int new_node(int len) {
    g.emplace_back(len);
                                                                    ord.emplace_back(p);
    return g.size() - 1;
                                                                    for (int i = 0; i < sigma; i++) {</pre>
                                                                      if (p->ch[i]) {
  PAM() : odd(new_node(-1)), even(new_node(0)) {
                                                                        p->ch[i]->fail = p->fail->ch[i];
                                                                         que.emplace(p->ch[i]);
    lst = g[even].fail = odd;
  int up(int p) {
                                                                      else {
    while (S.rbegin()[g[p].len + 1] != S.back())
                                                                         p->ch[i] = p->fail->ch[i];
      p = g[p].fail;
    return p;
                                                                    }
                                                                  }
  int add(char c) {
    S += c;
                                                                void walk(const string &s) {
    lst = up(lst);
                                                                  auto p = root;
    c -= 'a'
                                                                  for (const char &c : s) {
                                                                    int d = c - 'a';
    if (!g[lst].ch[c]) g[lst].ch[c] = new_node(g[lst].
                                                                    (p = p->ch[d])->cnt++;
    len + 2);
    int p = g[lst].ch[c];
    g[p].fail = (lst == odd ? even : g[up(g[lst].fail)
                                                                void count(vector<int> &cnt) {
    ].ch[c]);
    lst = p
                                                                  reverse(all(ord))
    g[lst].dep = g[g[lst].fail].dep + 1;
                                                                  for (auto p : ord) {
    id.push_back(lst);
                                                                    p->fail->cnt += p->cnt;
                                                                    for (int id : p->id)
    return lst;
                                                                       cnt[id] = p->cnt;
```

```
8.10
      Suffix Automaton
struct SAM {
  struct Node {
    int link{}, len{};
array<int, 26> ch{};
  vector<Node> n;
  int lst = 0;
  SAM() : n(1) {}
  int newNode() {
    n.emplace_back();
    return n.size() - 1;
  void reset() {
    lst = 0;
  int add(int c) {
    if (n[n[lst].ch[c]].len == n[lst].len + 1) { //
     General
      return lst = n[lst].ch[c];
    int cur = newNode();
    n[cur].len = n[lst].len + 1;
    while (lst != 0 and n[lst].ch[c] == 0) {
      n[lst].ch[c] = cur;
      lst = n[lst].link;
    int p = n[lst].ch[c];
    if (p == 0) {
      n[cur].link = 0;
      n[0].ch[c] = cur;
    else\ if\ (n[p].len == n[lst].len + 1) {
      n[cur].link = p;
    } else {
      int t = newNode();
      n[t] = n[p];
      n[t].len = n[lst].len + 1;
      while (n[lst].ch[c] == p) {
   n[lst].ch[c] = t;
         lst = n[lst].link;
      n[p].link = n[cur].link = t;
    return lst = cur;
|};
```

9 Misc

9.1 Fraction Binary Search

```
// Binary search on Stern-Brocot Tree
  Parameters: n, pred
// n: Q_n is the set of all rational numbers whose
    denominator does not exceed n
// pred: pair<i64, i64> -> bool, pred({0, 1}) must be
// Return value: {{a, b}, {x, y}}
// a/b is bigger value in Q_n that satisfy pred()
// x/y is smaller value in Q_n that not satisfy pred()
// Complexity: O(log^2 n)
using Pt = pair<i64, i64>;
Pt operator+(Pt a, Pt b) { return {a.ff + b.ff, a.ss +
    b.ss}; }
Pt operator*(i64 a, Pt b) { return {a * b.ff, a * b.ss
pair<pair<i64, i64>, pair<i64, i64>> FractionSearch(i64
     n, const auto &pred) {
  pair<i64, i64> low{0, 1}, hei{1, 0};
  while (low.ss + hei.ss <= n) {</pre>
    bool cur = pred(low + hei);
    auto &fr{cur ? low : hei}, &to{cur ? hei : low};
    u64 L = 1, R = 2;
while ((fr + R * to).ss <= n and pred(fr + R * to)
    == cur) {
      L *= 2;
      R *= 2;
    while (L + 1 < R) {
```

```
u64 M = (L + R) / 2;
      ((fr + M * to).ss \le n \text{ and } pred(fr + M * to) ==
     cur? L : R) = M;
    fr = fr + L * to;
  return {low, hei};
}
9.2 de Bruijn sequence
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L;
int buf[MAXC * MAXN];
  void dfs(int *out, int t, int p, int &ptr) {
    if (ptr >= L) return;
    if (t > N) {
      if (N % p) return;
for (int i = 1; i <= p && ptr < L; ++i)</pre>
         out[ptr++] = buf[i];
    } else
      buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
       for (int j = buf[t - p] + 1; j < C; ++j)
        buf[t] = j, dfs(out, t + 1, t, ptr);
  void solve(int _c, int _n, int _k, int *out) { //
    alphabet, len, k
    int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
    if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
9.3 HilbertCurve
long long hilbert(int n, int x, int y) {
 long long res = 0;
 for (int s = n / 2; s; s >>= 1) {
  int rx = (x \& s) > 0;
  int ry = (y & s) > 0;
res += s * 1ll * s * ((3 * rx) ^ ry);
  if (ry == 0) {
   if (rx == 1) x = s - 1 - x, y = s - 1 - y;
   swap(x, y);
 return res;
}
9.4 DLX
namespace dlx {
int lt[maxn], rg[maxn], up[maxn], dn[maxn], cl[maxn],
     rw[maxn], bt[maxn], s[maxn], head, sz, ans;
void init(int c) {
 for (int i = 0; i < c; ++i) {
  up[i] = dn[i] = bt[i] = i;
  lt[i] = i == 0 ? c : i - 1;
  rg[i] = i == c - 1 ? c : i + 1;
  s[i] = 0;
 rg[c] = 0, lt[c] = c - 1;
 up[c] = dn[c] = -1;
 head = c, sz = c + 1;
void insert(int r, const vector<int> &col) {
 if (col.empty()) return;
 int f = sz;
 for (int i = 0; i < (int)col.size(); ++i) {</pre>
  int c = col[i], v = sz++;
  dn[bt[c]] = v;
  up[v] = bt[c], bt[c] = v;
rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
  rw[v] = r, cl[v] = c;
  ++s[c];
  if (i > 0) lt[v] = v - 1;
 lt[f] = sz - 1;
```

void remove(int c) {

lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];

```
for (int i = dn[c]; i != c; i = dn[i]) {
   for (int j = rg[i]; j != i; j = rg[j])
   up[dn[j]] = up[j], dn[up[j]] = dn[j], --s[cl[j]];
}
++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
 lt[rg[c]] = c, rg[lt[c]] = c;
// Call dlx::make after inserting all rows.
void make(int c) {
 for (int i = 0; i < c; ++i)
  dn[bt[i]] = i, up[i] = bt[i];
void dfs(int dep) {
 if (dep >= ans) return;
 if (rg[head] == head) return ans = dep, void();
 if (dn[rg[head]] == rg[head]) return;
 int c = rg[head];
 int w = c;
 for (int x = c; x != head; x = rg[x]) if (s[x] < s[w])
     W = X;
 remove(w);
 for (int i = dn[w]; i != w; i = dn[i]) {
  for (int j = rg[i]; j != i; j = rg[j]) remove(cl[j]);
  dfs(dep + 1);
  for (int j = lt[i]; j != i; j = lt[j]) restore(cl[j])
 restore(w);
int solve() {
 ans = 1e9, dfs(0);
 return ans;
9.5 NextPerm
i64 next_perm(i64 x) {
  i64 y = x | (x - 1)
  return (y + 1) | (((~y & -~y) - 1) >> (__builtin_ctz(
9.6 FastIO
struct FastI0 {
  const static int ibufsiz = 4<<20, obufsiz = 18<<20;
char ibuf[ibufsiz], *ipos = ibuf, obuf[obufsiz], *</pre>
    opos = obuf;
  FastIO() { fread(ibuf, 1, ibufsiz, stdin); }
~FastIO() { fwrite(obuf, 1, opos - obuf, stdout); }
  template<class T> FastIO& operator>>(T &x) {
    bool sign = 0; while (!isdigit(*ipos)) { if (*ipos
    == '-') sign = 1; ++ipos; }
    x = *ipos++ & 15;
    while (isdigit(*ipos)) x = x * 10 + (*ipos++ & 15);
    if (sign) x = -x;
    return *this;
  template<class T> FastIO& operator<<(T n) {</pre>
    static char _buf[18];
    char* _pos = _buf;
    if (n < 0) *opos++ = '-', n = -n;
do *_pos++ = '0' + n % 10; while (n /= 10);
    while (_pos != _buf) *opos++ = *--_pos;
    return *this:
  FastIO& operator<<(char ch) { *opos++ = ch; return *
    this; }
} FIO;
#define cin FIO
#define cout FIO
9.7 Python FastIO
```

```
import sys
sys.stdin.readline()
sys.stdout.write()
```

9.8 Trick

```
dp[61][0][0][0][7] = 1;
for (int h = 60; h >= 0; h--) {
  int s = (n >> h & 1) * 7;
  for (int x = 0; x < 8; x++) if (__builtin_parity(x)
    == 0) {
    for (int y = 0; y < 8; y++)
      if (((y \& ~s) \& x) == 0)
        for (int a = 0; a < A[0]; a++)
           for (int b = 0; b < A[1]; b++)
             for (int c = 0; c < A[2]; c++) {
               if (dp[h + 1][a][b][c][y] == 0) continue;
               i64 i = ((x >> 2 \& 1LL) << h) % A[0];
               i64 j = ((x >> 1 \& 1LL) << h) % A[1];
               i64 k = ((x >> 0 & 1LL) << h) % A[2];
               auto &val =
               dp[h][(i + a) % A[0]][(j + b) % A[1]][(k
    + c) % A[2]][y & ~(s ^ x)];
               val = add(val, dp[h + 1][a][b][c][y]);
      }
  }
pair<i64, i64> Split(i64 x) {
  if (x == 1) return \{0, 0\};
  i64 h = __lg(x);
  i64 \ fill = (1LL << (h + 1)) - 1;
  i64 l = (1LL << h) - 1 - max(0LL, fill - x - (1LL <<
    (h - 1)));
  i64 r = x - 1 - 1;
  return {1, r};
};
{
  auto [ls, l] = DP(lo);
auto [rs, r] = DP(hi);
  if (r < K) {
    cout << "Impossible\n";</pre>
    return:
  if (l == K) cout << ls << '\n';
  else if (r == K) cout << rs << '\n';</pre>
    cout << (ls * (r - K) + rs * (K - l)) / (r - l) <<
     \n';
  }
}
{
  auto F = [\&](int L, int R) -> i64 {
    static vector<int> cnt(n);
    static int l = 0, r = -1;
    static i64 ans = 0;
    auto Add = [\&](int x) {
      ans += cnt[A[x]]++;
    auto Del = [\&](int x) {
      ans -= --cnt[A[x]];
    while (r < R) Add(++r);
while (L < l) Add(--l);</pre>
    while (R < r) Del(r--);
    while (l < L) Del(l++);</pre>
    return ans;
  };
  vector<i64> dp(n), tmp(n);
  function<void(int, int, int, int)> sol = [&](int l,
    int r, int x, int y) {
if (l > r) return;
    int mid = (l + r) / 2;
    int z = mid;
    for (int i = min(y, mid - 1); i >= x; i--)
      if (chmin(tmp[mid], dp[i] + F(i + 1, mid))) {
        z = i;
    if (l == r) return;
    sol(l, mid - 1, x, z);
    sol(mid + 1, r, z, y);
```

```
for (int i = 0; i < n; i++)
    dp[i] = F(0, i);
  for (int i = 2; i <= m; i++) {
    tmp.assign(n, inf<i64>);
sol(0, n - 1, 0, n - 1);
    dp = tmp;
  cout << dp[n - 1] << '\n';
9.9 PyTrick
from itertools import permutations op = ['+', '-', '*', '']
op = ['+', '-', '*', '']
a, b, c, d = input().split()
ans = set()
for (x,y,z,w) in permutations([a, b, c, d]):
  for op1 in op:
    for op2 in op:
       for op3 in op:
         val = eval(f"{x}{op1}{y}{op2}{z}{op3}{w}")
if (op1 == '' and op2 == '' and op3 == '') or
              val < 0:
            continue
         ans.add(val)
print(len(ans))
from decimal import *
from fractions import *
s = input()
n = int(input())
f = Fraction(s)
g = Fraction(s).limit_denominator(n)
h = f * 2 - g
if h.numerator \leftarrow n and h.denominator \leftarrow n and h \leftarrow g:
 g = h
print(g.numerator, g.denominator)
from fractions import Fraction
x = Fraction(1, 2), y = Fraction(1)
print(x.as_integer_ratio()) # print 1/2
print(x.is_integer())
print(x.__round__())
print(float(x))
r = Fraction(input())
N = int(input())
r2 = r - 1 / Fraction(N) ** 2
ans = r.limit_denominator(N)
ans2 = r2.limit_denominator(N)
if ans2 < ans and 0 <= ans2 <= 1 and abs(ans - r) >=
    abs(ans2 - r):
  ans = ans2
print(ans.numerator,ans.denominator)
```


$$\varphi = tan^{-1}(y/x)$$

 $\theta = \cos^{-1}(z/r)$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi$$

 $z = r \cos \theta$

 $x = r \sin \theta \cos \phi$