安全多方计算基础讲义

安全多方计算(Secure Multi-Party Computication) 简称为MPC

- > 安全多方计算基础讲义(1) —— MPC基本概念及基础组件
- > 安全多方计算基础讲义(2) —— 基于秘密分享方法的 MPC 协议
- > 安全多方计算基础讲义(3) —— 基于混淆电路方法的 MPC 协议

安全多方计算基础讲义(1)

安全多方计算基本概念及基础组件

● 冯登国 ●

报告提纲

安全多方计算的概念

- ➤ 安全多方计算(MPC)是80年代提出的一个概念 [Yao86, GMW87]
- ➤ MPC 已成为大数据时代实现隐私计算的核心技术之一

$$(y_1, \dots, y_5) = f(x_1, \dots, x_5)$$

隐私性

除了函数输出外,不泄漏任何输入数据的信息

正确性

保证协议输出为指定函数的计算结果

- [Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS 1986
- [GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In STOC 1987

MPC 安全定义 —— 基于模拟的安全模型

REAL MODEL

IDEAL MODEL

安全多方计算发展阶段

- [Yao86, GMW87, BGW88, CCD88, RB89, BMR90] 给出了 MPC 的可行性结果
- 80年代研究工作也给出了当前 MPC 协议的基础框架

Fairplay:首个 MPC 实现,实现了半诚实安全的 Yao 安全两方计算 (2PC) 协议

大数据时代,数据隐私计算的迫切需求

安全多方计算应用

- 数据安全法
- 个人信息保护法

- 数据价值
- 企业经济利益

安全多方计算(MPC)能打破数据孤岛,实现数据流通,保护数据隐私,已在诸多领域发现实际应用

政务、金融、	医疗等领域			
联合风控	联合营销			
智慧医疗	智慧园区			
机器学习	区块链			
数据库安全	基因分析			
•••••				

报告提纲

安全多方计算分类(1)

(1)敌手行为

- > 半诚实敌手 (按照协议描述执行,但试图从协议记录中获取信息)
- > 恶意敌手(可以执行任何攻击,发送任意的消息)

安全多方计算分类(2)

(2)腐化门限 t

 $n/2 \le t < n$

通常t = n - 1

n表示参与方总数, t表示不诚实参与方数量的上界

安全多方计算分类(3)

(3)输出可达性

- ▶ 中止安全(Security with abort):腐化实体获得输出后,可以阻止诚实实体获得输出
- > 公平性(Fairness):要么腐化实体和诚实实体均获得输出,要么他们均没有输出
- **▶ 保证输出传送(Guaranteed output delivery):**所有诚实实体总是获得输出

一般而言

- 不诚实大多数情况 ($n/2 \le t < n$) 仅能达到中止安全 [Cle86] (Coin-tossing 协议不能满足公平性)
- 诚实大多数情况 (t < n/2) 能达到公平性和保证输出传送

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC 1986

安全多方计算分类(4)

(4)计算模型

- ➤ 布尔电路:由 AND、XOR、NOT 等逻辑门组成
- ightharpoonup **算术电路:**由 ADD、MULT 等运算组成,通常定义在域 \mathbb{F} 上或环 \mathbb{Z}_{2^k} (即 mod 2^k)上
- > RAM程序:由 read、write 等指令组成的程序

- 大部分 MPC 协议考虑布尔电路模型或算术电路模型
- 目前,只有少数 MPC 协议针对 RAM 计算模型设计,适合于输入为数据库的应用场景

安全多方计算分类(5)

(5)敌手计算能力

- · 概率多项式时间(PPT): 任意PPT敌手不能打破协议安全性
- 无限计算能力(信息论安全或无条件安全):即使无限计算能力的敌手也不能打破协议安全性

(抵抗量子计算机攻击)

信息论安全 MPC 协议需要在诚实大多数模型下设计

安全多方计算分类(6)

(6)腐化策略

- 静态腐化(Static Corruption):在协议运行前,敌手决定腐化(Corrupt)哪些实体
- **自适应腐化(Adaptive Corruption):**在协议运行过程中,敌手能自适应决定腐化哪些实体

已知实际高效的 MPC 协议均考虑静态腐化

安全多方计算分类(7)

(7)网络模型

- ・ 同步 (Synchronous) 网络模型:同一个交互轮的消息在固定延时 Δ 内一定到达
- **异步(Asynchronous)网络模型:**没有要求同步时钟,也没有要求预先固定的网络延时,更加现实的网络假设(通常要求 t < n/3)

已知高效的 MPC 协议均考虑同步网络模型

MPC 基本设计方法

报告提纲

MPC 基础组件

实际高效 MPC 协议基础组件

- > 线性秘密分享
- > 信息论消息认证码
- > 零知识证明
- > 混淆电路

- > 承诺方案
- ▶ 投币协议
- ▶ 同态加密

- ➤ 不经意传输(OT)
- ➤ 相关不经意传输(COT)
- ➤ 不经意线性计算(OLE)
- ➤ 向量不经意线性计算(VOLE)

(n,t)门限线性秘密分享(1)

LSSS定义

- ▶ 分享算法 $[x] \leftarrow Share(x) : P_i$ 获得份额 x^i , 其中共有n个参与方 P_1, \dots, P_n
- ▶ 重构算法 $x \leftarrow Rec([x], i) : P_i$ 获得秘密值 x (要求至少 t+1 个份额)
- ▶ 打开算法 $x \leftarrow Open([x])$: 所有参与方获得 x

线性性质

- [z] = [x] + [y], [z] = [x] + c, $[z] = c \cdot [x]$ 均能够本地计算,无需通信,其中 c 为公开的常数
- 应用于MPC协议设计中,加法等线性门是 free(即无需通信)

本次讲义主要关注定义在有限域 \mathbb{F} 上的 LSSS, 其也能扩展到环(如 \mathbb{Z}_{2^k})上

(n,t)门限线性秘密分享(2)

加法秘密分享

- 主要用在不诚实大多数MPC协议中(t=n-1)
- $x = x^1 + x^2 + \dots + x^n \in \mathbb{F}$, 其中 x 为秘密(secret), x^i 为份额(share)

重复秘密分享

- 主要用在诚实大多数MPC协议中(t < n/2, n 较小);以n = 3, t = 1为例
- $x = x^1 + x^2 + x^3 \in \mathbb{F}$: P_1 持有 (x^2, x^3) , P_2 持有 (x^1, x^3) , P_3 持有 (x^1, x^2)

(n,t)门限线性秘密分享(3)

Shamir 秘密分享及其推广

- 主要用在诚实大多数MPC协议中($t+1 \le (n+1)/2$)
- x = f(0), $x^i = f(\alpha_i)$, 其中 f 为次数 t 的随机多项式, $\alpha_1, \dots, \alpha_n \in \mathbb{F}$ 为不同的非零域元素
- 净 推广形式(打包秘密分享,packed secret sharing): $x_i = f(\beta_i)$, $x^i = f(\alpha_i)$,一个多项式分享 k个 秘密 x_1, \dots, x_k ,其中 $\beta_1, \dots, \beta_k, \alpha_1, \dots, \alpha_n \in \mathbb{F}$ 为不同的域元素(更小的腐化门限 $t + k \leq (n+1)/2$)

(n,t)门限线性秘密分享(4)

3种秘密分享的共性

> 均满足线性性质(加法同态性),均可用于设计高效的MPC协议

3种秘密分享的区别

- \triangleright 针对恶意敌手,加法秘密分享需要结合信息论消息认证码(**IT-MAC**)实现秘密的认证,Shamir 及重复秘密分享直接保证了秘密的认证性(由于大部分实体是诚实的,**重构需要** t+1/n **个分享**)
- 重复秘密分享适合于少量参与方(分享尺寸与参与方数量成指数关系,例如:3-9 个参与方),Shamir 秘密分享适合于大量参与方

秘密重构 Rec([x], i)

- \triangleright P_i 从**安全通道**收到x的分享[x](记[x]为秘密x的分享)
- 加法秘密分享: $x = \sum_{i=1}^{n} x^{i}$ (认证性:用 IT-MAC 验证)
- Shamir 秘密分享:拉格朗日插值方法计算 x = f(0) (认证性:验证所有分享落在多项式 f 上)
- 重复秘密分享: $x = x^1 + x^2 + x^3$ (认证性:验证分享的一致性)

信息论消息认证码(IT-MAC)

BDOZ

$$M = K + x \cdot \Delta \in \mathbb{F}$$

- ∆:全局密钥
- K:本地密钥,仅用一次
- *x*:消息
- *M*:消息认证码(MAC)

SPDZ

$$M = x \cdot \Delta \in \mathbb{F}$$

- Δ:全局密钥
- x:消息
- M:消息认证码(MAC)
- 更紧致

伪造不同消息的 MAC 等价于 获得了Δ,发生概率1/|F|

- [BDOZ11] Rikke Bendlin, Ivan Damg ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multiparty computation. In *EUROCRYPT 2011*
- [DPSZ12] Ivan Damg ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat homomorphic encryption. In *CRYPTO 2012*

信息论消息认证码(IT-MAC)

BDOZ

$$M = K + x \cdot \Delta$$

$$M_j[x^i] = K_j[x^i] + x^i \cdot \Delta_j$$
(相互认证)

 P_i 的份额 x^i 被 P_j 的密钥认证

- ➤ 适用于设计恶意敌手模型下常数轮的 MPC 协议
- ▶ 通常用 Hash 函数实现批量认证 (认证通信开销常数小)

更多细节将在第二讲中介绍

SPDZ

$$M = x \cdot \Delta$$

$$\sum_{i \in [1,n]} M^i = \sum_{i \in [1,n]} x^i \cdot \sum_{i \in [1,n]} \Delta^i$$

认证码、秘密和全局密钥均被加法分享

- ➤ 适用于设计SPDZ类MPC协议,用IT-MAC转化半诚实GMW协议到恶意安全
- 通常用随机线性组合方法实现批量认证 (认证通信开销常数小)

更多细节将在第二讲中介绍

零知识证明

- 完备性 (Completeness)
- 可靠性 (Soundness)
- 零知识性 (Zero Knowledge)

混淆电路定义

- C 为电路 , GC 为混淆电路
- e编码信息, d 解码信息
- x电路输入, y 电路输出
- X 输入编码, Y 输出编码

- Garble 混淆算法
- Encode 编码算法
- Decode 解码算法
- Eval 计算算法

混淆电路构造见第三讲

承诺方案

- 常用于设计不诚实大多数恶意敌手模型下 MPC 协议, 也用在零知识证明协议设计中
- 实际高效 MPC**常用承诺方案**:Commit(x,r) = H(x,r),其中H为随机预言机,r 为随机数

投币(coin-tossing)协议

 P_{i} $Commit(r_{i})$ P_{j} $Open r_{i}$ $\bigoplus_{i \in [1,n]} r_{i}$

- ▶ 多个参与方共同生成一个随机数r
- 不诚实参与方(即使合谋)不能控制随机数,使其偏离既定分布
- \rightarrow 例如:产生均匀随机串 $r \in \{0,1\}^n$

诚实大多数 MPC 协议

同态加密(HE)

- ➤ 全同态加密 (FHE): f为任意电路(包括乘法、加法等运算)
- \triangleright 层级同态加密 (Leveled FHE) : f 为指定深度的任意电路
- ▶ 类同态加密 (SHE): f为深度浅的任意电路
- ▶ 加法同态加密 (AHE): f为只包括加法等线性操作的电路

实际高效 MPC 协议主要采用

报告提纲

不经意传输(OT)基本定义

- > OT 完备性: OT 能用于建立关于任何函数的 MPC 协议 [STOC:Kilian88,C:CGT95]
- **1-out-of-2 OT** ⇒ 1-out-of-N OT ⇒ k-out-of-N OT [JC:NP05]

不经意传输(OT)背景

- > OT 依赖于公钥密码组件 [C:IR88]
- > OT 能基于不同困难假设构造
 - Enhanced trapdoor permutation [EGL85]
 - DDH [C:PVW08,CCS:MR19,CCS:MRR20,AC:MRR21]
 - CDH [SODA:NP01,LATINCRYPT:CO15,PKC:CSW20,EC:DGHMW20]
 - LWE [C:PVW08,IMACC:BDGM19,SCN:Quach20]
 - LPN [EC:DGHMW20]
 - SIDH [AFRICACRYPT:Vitse19,EC:LGG21]

基础 OT 协议举例:Naor-Pinkas 协议

循环群 (G, q, g, C)

- $r \leftarrow \mathbb{Z}_q, g^r, C^r$ 预计算
- $(PK_0)^r$, $(PK_1)^r = C^r/(PK_0)^r$
- $E_0 = H((PK_0)^r, 0) \oplus m_0$
- $E_1 = H((PK_1)^r, 1) \oplus m_1$

$$PK_b = g^k, PK_{1-b} = C/PK_b$$

$$(g^r, E_0, E_1)$$

$$m_b = H((g^r)^k, b) \oplus E_b$$

- > 半诚实敌手模型下可证明安全
- ➤ CDH困难假设,随机预言机模型

不经意传输(OT)

- 需要公钥密码操作 —— 计算效率低 (与对称密码操作比较)
- · MPC 协议需要大量的OTs (如亿级数量), 使得基于公钥操作的OT协议效率过低

不经意传输扩展(OT Extension)

不经意传输扩展可以用于解决需要大量 OTs 的问题 [Beaver96, IKNP03]

- IKNP类 PRG: [IKNP03, KK13, ALSZ13, ALSZ15, KOS15, OOS17, PSS17, Scholl18, Roy22],
 利用伪随机生成器实现扩展
- PCG类 LPN: [BCGI18, BCGIKS19, BCGIKRS19, SGRR19, YWLZX20, CRR21, GYWZXZL22],
 基于LPN问题中噪音的稀疏性实现扩展
- PCF类 LPN/DCR/DDH: [BCGIKS20, OSY21, BCGIKRS22, ADOS22], 目前实际效率低

不经意传输扩展协议比较

OT 类型	通信效率	计算效率	通信轮数	困难假设
IKNP类	线性,低	线性,高	0(1)	OWF
PCG类	亚线性,高	线性,低	0(1)	LPN
PCF类	亚线性,高	线性,更低	0(1)	LPN/DCR/DDH的变形

随机不经意传输 (ROT)

 $ROT \Rightarrow OT [C:Beaver95]$

$$m_b = u_b \oplus r_c$$

相关不经意传输 (COT)

 $r_b = H(x_b, label)$

- ▶ 相关强健 Hash 函数: Correlation Robust Hash Function (CRHF)
- 杂凑函数 (RO): SHA256, SM3, SHA3, ...
- 密钥固定的分组密码 (RPM): AES, SM4, ... [SP:BHKR13, SP:GKWY20]

向量不经意线性函数计算(VOLE)

- ➤ 向量不经意线性计算(VOLE), COT算术变形, 常定义在大域F上
- ➤ 可用于生成 IT-MACs

不经意线性函数计算(OLE)

- ➤ 不经意线性计算(OLE), OT 算术变形, 常定义在大域 F 上
- > 可用于生成 Beaver 三元组