

Polar™ HiPerFET™ **Power MOSFET**

IXFK20N120P IXFX20N120P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$	1200 1200	V	
V _{GSS} V _{GSM}	Continuous Transient	± 30 ± 40	V V	
I _{D25}	$T_{\rm c} = 25^{\circ}{\rm C}$ $T_{\rm c} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	20 50	A A	
I _A E _{AS}	T _c = 25°C T _c = 25°C	10 1	A J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	15	V/ns	
$\overline{\mathbf{P}_{D}}$	T _C = 25°C	780	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C	
T _L	Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s	300 260	°C	
$\overline{M_d}$	Mounting Torque (TO-264)	1.13/10	Nm/lb.in	
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb	
Weight	TO-264 PLUS247	10 6	g g	

V _{DSS}	=	1200V
I _{D25}	=	20A
R _{DS(on)}	≤	$\textbf{570m}\Omega$
t _{rr}	≤	300ns

G = Gate	D = Drain
S = Source	Tab = Drain

Features

- Fast Intrinsic Diode
- Dynamic dv/dt Rating
- Avalanche Rated
- Low R_{DS(ON)} and Q_G
 Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Symbol Test Conditions Chara			cteristic Values		
$(T_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	1200		V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	3.5		6.5 V	
I _{gss}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±200 nA	
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 12$:5°C		50 μA 5 mA	
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$			570 mΩ	

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- Discharger Circuits in Lesers Pulsers, Spark Igniters, RF Generators
- High Voltage Pulse Power Supplies
- AC and DC Motor Drives
- High Speed Power Switching Application

6,727,585

6,771,478 B2 7,071,537

7,005,734 B2 7,157,338B2

7,063,975 B2

Symbol Test Conditions Chara		Charac	cteristic Values		
$(T_J = 25^{\circ}C U)$	Inless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 20V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	10	16	s	
C _{iss}			11.1	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		600	pF	
C _{rss}			60	pF	
R _{Gi}	Gate Input Resistance		1.6	Ω	
t _{d(on)}	Resistive Switching Times		48	ns	
t _r (-		45	ns	
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		72	ns	
t _f	$R_{_{G}} = 1\Omega$ (External)		70	ns	
$Q_{g(on)}$			193	nC	
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		74	nC	
\mathbf{Q}_{gd}			85	nC	
R _{thJC}				0.16 °C/W	
R _{thCS}			0.15	°C/W	

Source-Drain Diode

Symbol Test Conditions Ch		Chara	racteristic Values			
$(T_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.		
I _s	$V_{GS} = 0V$			20	Α	
I _{sm}	Repetitive, Pulse Width Limited by T_{JM}			80	Α	
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V	
t _{rr} Q _{RM}	$I_F = 10A$, -di/dt = $100A/\mu s$ $V_R = 100V$, $V_{GS} = 0V$		840 9	300	ns nC A	

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 10A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 10A Value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13 Maximum Transient Thermal Impedance

TO-264 Outline

CVMDOL	INCH	I E S	MILLIM	ETERS
SYMBOL	MIN	MAX	MIN	MAX
Α	.185	.209	4.70	5.31
A1	.102	.118	2.59	3.00
Ь	.037	.055	0.94	1.40
b1	.087	.102	2.21	2.59
b2	.110	.126	2.79	3.20
С	.017	.029	0.43	0.74
D	1.007	1.047	25.58	26.59
E	.760	.799	19.30	20.29
е	.215	BSC	5.46 BSC	
J	.000	.010	0.00	0.25
K	.000	.010	0.00	0.25
L	.779	.842	19.79	21.39
L1	.087	.102	2.21	2.59
ØΡ	.122	.138	3.10	3.51
øP1	.270	.290	6.86	7.37
Q	.240	.256	6.10	6.50
Q1	.330	.346	8.38	8.79
ØR	.155	.187	3.94	4.75
ØR1	.085	.093	2.16	2.36
S	.243	.253	6.17	6.43

PLUS247™ Outline

3 = Source

SYM	INCH	IES	MILLIN	1ETERS
STIM	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
Α1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.045	.055	1.14	1,40
b2	.075	.087	1.91	2,20
b4	.115	.126	2.92	3,20
С	.024	،031	0.61	0,80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17,53
D2	.035	.050	0.89	1.27
E	.620	.635	15.75	16.13
E1	.520	.560	13.08	14.22
е	.215 BSC		5.45 BSC	
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4,32
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.