Basic Seminar in Mathematics An Introduction to Computational Stochastic PDEs

Katsuya ITO

November 21, 2016

Contents

1	An Introduction to Computational Stochastic PDEs		
	1.1	Variational formulation of elliptic PDEs	3
	1.2	Galerkin approximation	6

1 An Introduction to Computational Stochastic PDEs

1.1 Variational formulation of elliptic PDEs

Let us develop the Galerkin approximation and the finite element method for two-dimensional elliptic PDEs, such as

$$-\nabla \cdot (a(\mathbf{x})\nabla u(\mathbf{x})) = -\sum_{i=1}^{2} \frac{\partial}{\partial x_{i}} a(\mathbf{x}) \frac{\partial u(\mathbf{x})}{\partial x_{j}} = f(\mathbf{x}), \quad \mathbf{x} \in D,$$
 (1.1.1)

$$u(\mathbf{x}) = g(\mathbf{x}), \ \mathbf{x} \in \partial D$$
 (1.1.2)

where $D \subset \mathbb{R}^2$ is a bounded domain with piecewise smooth boundary ∂D and $u: D \to \mathbb{R}$ is an unknown function, and $g: \partial D \to \mathbb{R}$, $g: \partial D \to \mathbb{R}$ is given suitable functions.

Def 1.1.1. A function $u \in C^2(D) \cap C(D \cup \partial D)$ that satisfies these PDE's conditions is called classical solution

In many practical cases, a is discontinuous and we do not have classical solutions and we are content with weak solutions. In this section, we often assume that the diffusion coefficient a(x) satisfies following regularity.

Def 1.1.2. The diffusion coefficient a(x) is regular if a(x) satisfies

$$0 < a_{min} \le a(x) \le a_{max} < \infty$$
 for almost all $x \in D$

for some $a_{min}, a_{max} \in \mathbb{R}$.

To set up a variational formulation, We will check the definitions of function spaces below.

Def 1.1.3. Let D be a domain and Y be a Banach space. And we use α as multi-index. For $p \geq 1$, the Sobolev space $W^{r,p}(D,Y)$ is the set of functions whose weak derivatives up to order $r \in \mathbb{N}$ are $L^p(D,Y)$. That is

$$W^{r,p}(D,Y) = \{ u : \mathcal{D}^{\alpha} u \in L^p(D,Y) \text{ if } |\alpha| \le r \}$$

and Sobolev space $W^{r,p}(D,Y)$ is a Banach space with norm

$$||u||_{W^{r,p}(D,Y)} := \left(\sum_{0 \le \alpha \le r} ||\mathcal{D}^{\alpha}u||_{L^{p}(D,Y)}^{p}\right)^{1/p}$$

If p = 2 and Y is Hilbert space, $H^r(D, Y)$ is used to denote $W^{r,2}(D, Y)$. $H^r(D, Y)$ is a Hilbert space with inner product

$$\langle u, v \rangle_{H^r(D,Y)} := \sum_{0 \le \alpha \le r} \langle \mathcal{D}^{\alpha} u, \mathcal{D}^{\alpha} v \rangle_{L^2(D,H)}$$

Especially, $H^r(D, \mathbb{R})$ is abbreviated to $H^r(D)$.

 $H_0^1(D)$ is the completion of $C_c^{\infty}(D)$ with respect to the $H^1(D)$ norm and is a Hilbert space with the $H^1(D)$ inner product

The correct solution space is written as,

$$H_q^1(D) = \{ w \in H^1(D) : w|_{\partial D} = g \}$$

which needs precise definition later because $w \in H^1(D)$ can be non-continuous function on \bar{D} , and we can assign any value to w on ∂D because of this and the fact that measure of ∂D is zero.

Now, we are ready to set up a variational formulation of elliptic PDE1.1.1.

Def 1.1.4. A weak solution to the BVP (1.1.1) - (1.1.2) is a function $u \in W = H_g^1(D)$ that satisfies

$$a(u,v) = l(v) \ \forall v \in V = H_0^1(D)$$

where

$$a(u,v) := \int_{D} a \nabla u \cdot \nabla v d\mathbf{x}$$
$$l(v) = \langle f, v \rangle_{L^{2}(D)}$$

Prop 1.1.5. The classical solution to the BVP (1.1.1) - (1.1.2) is a weak solution

Proof. First, we multiply both sides of (1.1.1) by a test function $\phi \in C_c^{\infty}(D)$ and integrate over D, and obtain

$$\int_{D} -\nabla \cdot (a(\mathbf{x})\nabla u(\mathbf{x}))\phi(\mathbf{x})d\mathbf{x} = \int_{D} f(\mathbf{x})\phi(\mathbf{x})d\mathbf{x}$$

and by the product rule for ∇

$$\nabla \cdot (\phi a \nabla u) = \nabla \cdot (a \nabla u) \phi + \nabla \phi \cdot a \nabla u$$

we can split the intergal of the left-hand side and get

$$\int_{D} a\nabla u \cdot \nabla \phi d\mathbf{x} - \int_{D} \nabla \cdot (\phi a \nabla u) d\mathbf{x} = \int_{D} f(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x}$$

And the divergence theorem in \mathbb{R}^2 gives

$$\int_{D} \nabla \cdot (\phi a \nabla u) d\mathbf{x} = \int_{\partial D} (\phi a \nabla u) \cdot \mathbf{n} ds$$

Here $\phi \in C_c^{\infty}(D)$, we have $\phi(x) = 0$ on ∂D and the left-hand side is 0. Hence

$$\int_{D} a\nabla u \cdot \nabla \phi d\mathbf{x} = \int_{D} f(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x}$$

We cannot use the Lax-Milgram lemma because $W \neq V$ when $g \neg 0$. So we need some modifications to prove the existence and uniqueness of the weak solutions.

4

Def 1.1.6. Let $D \subset \mathbb{R}^2$ be a bounded domain. $L^2(\partial D)$ is the Hilbert space $L^2(\partial, \mathbb{R})$ equipped with the norm

$$||g||_{L^2(\partial D)} := \left(\int_{\partial D} g(x)^2 dV(x)\right)^{1/2}$$

Lem 1.1.7. Let $D \subset \mathbb{R}^2$ be a bounded domain with a sufficiently smooth boundary ∂D . Then there exists a bounded linear operator $\gamma: H^1(D) \to L^2(\partial D)$ such that

$$\gamma w = w|_{\partial D}, \ \forall w \in C^1(\bar{D})$$

Proof. $w \in H^1(D)$ can be approximated by a sequence in $C(\bar{D})$, $\{w_n\}$ and the restrictions of these functions are a Cauchy sequence so we can define γ by

$$\gamma(w) := \lim_{n \to \infty} w_n|_{\partial D}$$

as a linear operator $H^1(D) \to L^2(\partial D)$

Def 1.1.8. Let $D \subset \mathbb{R}^2$ be a bounded domain. The trace space $H^{1/2}(\partial D)$ is defined as

$$H^{1/2}(\partial D) := \gamma(H^1(D)) = \{\gamma w | w \in H^1(D)\}$$

 $H^{1/2}(\partial D)$ is a Hilbert space equipped with the norm

$$||g||_{H^{1/2}(\partial D)} := \inf\{||w||_{H^1(D)}|\gamma w = g, \ w \in H^1(D)\}$$

Prop 1.1.9. There exists $K_{\gamma} > 0$ such that , for all $g \in H^{1/2}(\partial D)$, there exists $u_g \in H^1(D)$ such that

$$||u_g||_{H^1(D)} \le K_\gamma ||g||_{H^{1/2}(\partial D)}$$

and

$$\gamma(u_q) = g$$

Proof. See Hackbusch Theorem 6.2.28

Thm 1.1.10. Let a be a regular diffusion coefficient, $f \in L^2(D)$, $g \in H^{1/2}(\partial D)$. Then BVP (1.1.1) - (1.1.2) has a unique solution $u \in H^1_g(D)$

Proof. Let $g \in H^{1/2}(\partial D)$.

 $u_q \in H^1(D)$ such that $\gamma(u_q) = g$

and solve the variational problem to find $u_0 \in V$

$$a(u_0, v) = \hat{l}(v) := l(v) - a(u_g, v)$$

Solving this problem is equivalent to finding the weak solution of the BVP.

So We can use the Lax-Milgram lemma to new variational problem by the lemma below and can prove this theorem.

Lem 1.1.11. Let a be a regular diffusion coefficient. Then the bilinear form a(,) is bounded form. And the seminorm $|\cdot|_E$ defined by

$$|u|_E := a(u, u)^{1/2}$$

is equivalent to the semi-norm $|\cdot|_{H^1(D)}$ on $H^1(D)$

Proof.

Thm 1.1.12. Assume the same conditions of the theorem above and let $u \in W$ be a weak solution of the BVP. Then

$$|u|_{H^1(D)} \le K(||f||_{L^2(D)} + ||g||_{H^{1/2}(\partial D)})$$

This variational formulation gives upper bound for the errors of approximations.

Thm 1.1.13. Consider a weak problem to find $\tilde{u} \in W$ such that

$$\tilde{a}(\tilde{u}, v) = \tilde{l}(v) \ \forall v \in V$$

where $\tilde{a}: W \times V \to \mathbb{R}, \tilde{l}: V \to \mathbb{R}$ are defined as

$$\tilde{a}(u,v) := \int_{D} \tilde{a} \nabla u \cdot \nabla v d\mathbf{x}$$

$$\tilde{l}(v) = \langle \tilde{f}, v \rangle_{L^2(D)}$$

Now let \tilde{a} be a regular diffusion coefficient, $\tilde{f} \in L^2(D)$ $g \in H^{1/2}(\partial D)$. Then this weak problem has a unique solution $\tilde{u} \in W$. And let $u \in W$ be the weak solution of the original BVP. Then,

$$|u - \tilde{u}|_{H^1(D)} \le \frac{K_p}{\tilde{a}_{min}} ||f - \tilde{f}||_{L^2(D)} + \frac{1}{\tilde{a}_{min}} ||a - \tilde{a}||_{L^{\infty}(D)} |u|_{H^1(D)}$$

1.2 Galerkin approximation

We return to the approximation of the original BVP.

Def 1.2.1. Let $V^h \subset H^1_0(D), W^h \subset H^1_g(D)$ be the finite dimensional subspaces of test solution space and solution space such that

$$v - w \in V^h$$
, $\forall v, w \in W^h$

Then the Galerkin approximation for the (1.1.1)-(1.1.2) is the function $u_h \in W^h$ satisfying

$$a(u_h, v) = l(v) \ \forall v \in V^h$$
(1.2.1)

Thm 1.2.2. Let a be a regular diffusion coefficient, $f \in L^2(D)$, $g \in H^{1/2}(\partial D)$. Then Galerkin approximation (1.2.1) will be defined uniquely and will be the best approximation. i.e.

$$|u - u_h|_E = \inf_{w \in W^h} |u - w|_E$$

Finally we consider the accuracy of the Galerkin approximation \tilde{u}_h when a and f are approximated.

I have run out of my energy.