

Problématique

Contexte:

En 2016, des agents de la ville de Seattle ont effectué des relevés minutieux de la consommation et des émissions de CO2 des bâtiments.

Inconvénient : ces relevés sont coûteux à obtenir.

Problématique : Peut-on prévoir ces données pour les bâtiments qui n'ont pas été étudiés à partir des données existantes?

Objectifs:

- Modéliser la consommation énergétique et les émissions de gaz à effet de serre (GES) des bâtiments de la ville de Seattle non destinés à l'habitation.
- Évaluer l'intérêt de l'ENERGY STAR Score

Présentation du jeu de données

Source des données :

https://data.seattle.gov/dataset/2016-Building-Energy-Benchmarking/2bpz-gwpy

Dimensions : 3376 lignes × 46 colonnes. Chaque ligne représente un bâtiment.

On va retrouver des informations sur :

- Le lieu (adresse, position géographique, district)
- Les types d'usage du bâtiment (Bureaux, hôtel, entrepôt, ...)
- La taille (nombre d'étages, surface)
- La consommation énergétique
- La quantité de GES émise
- La nature des sources d'énergie (électricité, gaz, vapeur)

Nettoyage du jeu de données

- Suppression des variables :
 - constantes (3 colonnes)
 - vides à plus de 90%
 - répétées (Electricity(kWh), Electricity(kBtu))
 - non normalisées WN*
 - Fortement corrélées à d'autres variables
- Suppression des bâtiments destinés à l'habitation
- Imputation des valeurs manquantes sauf pour l'ENERGYSTARScore

 \rightarrow 1578 lignes, 17 colonnes

Variables à modéliser (targets)

Asymétrie des variables continues

- Suppression des variables énergétiques
- l'ENERGYSTARScore : dropna ou fillna par la médiane ou la moyenne
- Regroupement de types d'usage du bâtiment
- Encodage: OneHotEncoding, TargetEncoding
- Si OneHotEncoding : Regroupement des variables de surface en une seule nommée TotalGFA
- Sélection de variables (RFE ou SelectKBest)
- Transformation en log(1+X) pour les variables continues
- Scaling: StandardScaler ou MinMaxScaler

- Suppression des variables énergétiques
- l'ENERGYSTARScore : dropna ou fillna par la médiane ou la moyenne
- Regroupement de types d'usage du bâtiment
- Encodage : **OneHotEncoding**, TargetEncoding
- Si OneHotEncoding : Regroupement des variables de surface en une seule nommée TotalGFA
- Sélection de variables (RFE ou SelectKBest)
- Transformation en log(1+X) pour les variables continues
- Scaling : StandardScaler ou MinMaxScaler

Usage Principal	Usage Principal GFA	Usage secondaire	Usage Secondaire GFA
Bureau	400 000	Parking	100 000

Bureau Parking
0.80 0.20

- Suppression des variables énergétiques
- l'ENERGYSTARScore : dropna ou fillna par la médiane ou la moyenne
- Regroupement de types d'usage du bâtiment
- Encodage: OneHotEncoding, TargetEncoding
- Si OneHotEncoding : Regroupement des variables de surface en une seule nommée TotalGFA
- Sélection de variables (RFE ou SelectKBest)
- Transformation en log(1+X) pour les variables continues
- Scaling: StandardScaler ou MinMaxScaler

LargestPropertyUseType		LargestPropertyUseTyp
Warehouse		2.29e+06
Retail Store		4.26e+06
Office]	9.13e+06
Office	Ī	9.13e+06
Retail Store		4.26e+06
K-12 School		3.63e+06
Self-Storage Facility		6.65e+06
Office]	9.13e+06

- Suppression des variables énergétiques
- l'ENERGYSTARScore : dropna ou fillna par la médiane ou la moyenne
- Regroupement de types d'usage du bâtiment
- Encodage: OneHotEncoding, TargetEncoding
- Si OneHotEncoding : Regroupement des variables de surface en une seule nommée TotalGFA
- Sélection de variables (RFE ou SelectKBest)
- Transformation en log(1+X) pour les variables continues
- Scaling: StandardScaler ou MinMaxScaler

Usage Principal GFA	Usage Secondaire GFA	Usage tertiaire GFA	TotalGFA
900 000	90 000	10 000	1 000 000

- Suppression des variables énergétiques
- l'ENERGYSTARScore : dropna ou fillna par la médiane ou la moyenne
- Regroupement de types d'usage du bâtiment
- Encodage: OneHotEncoding, TargetEncoding
- Si OneHotEncoding : Regroupement des variables de surface en une seule nommée TotalGFA
- Sélection de variables (RFE ou SelectKBest)
- Transformation en log(1+X) pour les variables continues
- Scaling: StandardScaler ou MinMaxScaler

Modèles

Modèles de base :

- KNN (KNeighboorsRegressor)
- SGD (SGDRegressor)
- SVR
- KernelRidge

Méthodes ensemblistes :

- RandomForest
- Bagging (BaggingRegressor)
- Boosting (Adaboost et GradientBoosting)
- Voting

Méthode

Target 1 : Consommation d'énergie

Feature Engineering:

- dropna()
- OneHotEncoding
- StandardScaler

Modèle final : **BaggingRegressor**

- base_estimator = KernelRidge
 - alpha = 0.01
 - kernel = 'poly'
 - degree = 2
- n_estimators = 50

Résultats

- Cross-validation :
 - R² moyen : **0.74**
 - Écart-type : 0.13
- Test set: 0.76

Sans l'ENERGYSTARScore

En reprenant le même modèle :

- Cross-validation:

- R² moyen : **0.59**

- Écart-type: 0.25

- Test set: 0.73

Sans l'ENERGYSTARScore

Feature Engineering:

- OneHotEncoding
- MinMaxScaler

Modèle final : RandomForestRegressor

- min_samples_leaf = 2
- min_samples_split = 2
- n_estimators = 10

Résultats

- Cross-validation :
 - R² moyen : **0.65**
 - Écart-type : 0.09
- Test set : **0.66**

Avec l'ENERGYSTARScore

Sans l'ENERGYSTARScore

Target 2 : Émission des GES

Avant le Feature Engineering :

- Suppression des outliers à l'aide d'une IsolationForest

Feature Engineering:

- Transformation des variables Electricity, NaturalGas et SteamUse en pourcentages

Electricity (kBtu)	NaturalGas (kBtu)	SteamUse (kBtu)
9000	900	100

Target 2 : Émission des GES

Feature Engineering:

- dropna()
- TargetEncoding
- StandardScaler

Modèle final : BaggingRegressor

- base_estimator = KernelRidge
 - alpha = 1
 - kernel = 'poly'
 - degree = 2
- max_features = 0.75
- n_estimators = 30

Résultats

- Cross-validation:
 - R² moyen : **0.65**
 - Écart-type : 0.09

- Test set: 0.64

Sans l'ENERGYSTARScore

Feature Engineering:

- TargetEncoding
- MinMaxScaler

Modèle final : **SVR**(C=10⁴)

Résultats

- Cross-validation:
 - R² moyen : 0.60
 - Écart-type : 0.03
- Test set: 0.51

Avec l'ENERGYSTARScore

Sans l'ENERGYSTARScore

Conclusion

- Modélisation **avec** l'ENERGYSTARScore :
 - Consommation : $R^2 \sim 0.75$
 - Émissions : $R^2 \sim 0.65$
- Variables les plus importantes :
 - Taille (surface, étages)
 - ENERGYSTARScore
 - Type d'usage
 - Sources d'énergies

- Modélisation sans l'ENERGYSTARScore :
 - Consommation : $R^2 \sim 0.65$
 - Émissions : $R^2 \sim 0.60$

- Il est possible de prédire la consommation avec une bonne précision
- Pour les émissions en revanche, il faudrait peut-être plus de données pour améliorer le modèle

MERCI POUR VOTRE ATTENTION