```
In [1]: import pandas as pd  # Importing Libraries
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]: price= pd.read_csv('CSUSHPISA.csv') # House Prices
 price

Out[2]:		DATE	CSUSHPISA
	0	1987-01-01	63.965
	1	1987-02-01	64.424
	2	1987-03-01	64.735
	3	1987-04-01	65.131
	4	1987-05-01	65.563
	•••		
	433	2023-02-01	296.958
	434	2023-03-01	298.210
	435	2023-04-01	300.214
	436	2023-05-01	302.657
	437	2023-06-01	304.635

438 rows × 2 columns

```
In [3]: unemp_rate=pd.read_csv('U2RATE.csv') # Unemployement
unemp_rate
```

Out[3]:		DATE	U2RATE
	0	1967-01-01	1.6
	1	1967-02-01	1.6
	2	1967-03-01	1.5
	3	1967-04-01	1.6
	4	1967-05-01	1.6
	•••		
	675	2023-04-01	1.6
	676	2023-05-01	1.8
	677	2023-06-01	1.7
	678	2023-07-01	1.6
	679	2023-08-01	1.7

680 rows × 2 columns

```
constr_not_startd= pd.read_csv('NHFSEPNTS.csv') # thousands of units
constr_not_startd
```

Out[4]:		DATE	NHFSEPNTS
	0	1999-01-01	38.0
	1	1999-02-01	38.0
	2	1999-03-01	36.0
	3	1999-04-01	41.0
	4	1999-05-01	39.0
	•••		
	290	2023-03-01	90.0
	291	2023-04-01	93.0
	292	2023-05-01	94.0
	293	2023-06-01	97.0
	294	2023-07-01	108.0

295 rows × 2 columns

```
In [5]: #New Houses for Sale by Stage of Construction, Under Construction
  undr_constrtn = pd.read_csv('NHFSEPUCS.csv')
  undr_constrtn
```

Out[5]:		DATE	NHFSEPUCS
	0	1999-01-01	178.0
	1	1999-02-01	180.0
	2	1999-03-01	185.0
	3	1999-04-01	180.0
	4	1999-05-01	184.0
	•••		
	290	2023-03-01	273.0
	291	2023-04-01	267.0
	292	2023-05-01	266.0
	293	2023-06-01	262.0
	294	2023-07-01	254.0

295 rows × 2 columns

```
In [6]: # New Houses for Sale by Stage of Construction, Completed
  cnstr_cmplt= pd.read_csv('NHFSEPCS.csv')
  cnstr_cmplt
```

Out[6]:		DATE	NHFSEPCS
	0	1999-01-01	68.0
	1	1999-02-01	67.0

2	1999-03-01	68.0
3	1999-04-01	69.0
4	1999-05-01	72.0
•••		
290	2023-03-01	70.0
291	2023-04-01	70.0
292	2023-05-01	66.0
293	2023-06-01	69.0
294	2023-07-01	75.0

295 rows × 2 columns

```
In [7]: df_under_compl= pd.merge(cnstr_cmplt,undr_constrtn,on='DATE',how='inner') #joining
df_under_compl
```

Out[7]:

	DATE	NHFSEPCS	NHFSEPUCS
0	1999-01-01	68.0	178.0
1	1999-02-01	67.0	180.0
2	1999-03-01	68.0	185.0
3	1999-04-01	69.0	180.0
4	1999-05-01	72.0	184.0
•••			
290	2023-03-01	70.0	273.0
291	2023-04-01	70.0	267.0
292	2023-05-01	66.0	266.0
293	2023-06-01	69.0	262.0
294	2023-07-01	75.0	254.0

295 rows × 3 columns

```
In [8]: df_not_unemp =pd.merge(constr_not_startd,unemp_rate,on='DATE',how='inner')
df_not_unemp
```

Out[8]:

	DATE	NHFSEPNTS	U2RATE
0	1999-01-01	38.0	2.0
1	1999-02-01	38.0	2.0
2	1999-03-01	36.0	1.9
3	1999-04-01	41.0	1.9
4	1999-05-01	39.0	1.9
•••			
290	2023-03-01	90.0	1.8
291	2023-04-01	93.0	1.6

```
      292
      2023-05-01
      94.0
      1.8

      293
      2023-06-01
      97.0
      1.7

      294
      2023-07-01
      108.0
      1.6
```

295 rows × 3 columns

In [9]: join_df = pd.merge(df_under_compl,df_not_unemp,on='DATE',how='inner')
join_df

Out[9]:

	DATE	NHFSEPCS	NHFSEPUCS	NHFSEPNTS	U2RATE
0	1999-01-01	68.0	178.0	38.0	2.0
1	1999-02-01	67.0	180.0	38.0	2.0
2	1999-03-01	68.0	185.0	36.0	1.9
3	1999-04-01	69.0	180.0	41.0	1.9
4	1999-05-01	72.0	184.0	39.0	1.9
•••					
290	2023-03-01	70.0	273.0	90.0	1.8
291	2023-04-01	70.0	267.0	93.0	1.6
292	2023-05-01	66.0	266.0	94.0	1.8
293	2023-06-01	69.0	262.0	97.0	1.7
294	2023-07-01	75.0	254.0	108.0	1.6

295 rows × 5 columns

```
In [10]: join_data_df = pd.merge(join_df,price,on='DATE',how='inner')
```

In [11]: #renaming column name for better understing the data & aligning Data to center(for bette
join_data_df.rename(columns = {'NHFSEPCS':'Const_complt', 'NHFSEPUCS':'un_constr','NHFSE
join_data_df

Ou	t[1	1]	
					_

	DATE	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact
0	1999-01-01	68.0	178.0	38.0	2.0	93.207
1	1999-02-01	67.0	180.0	38.0	2.0	93.670
2	1999-03-01	68.0	185.0	36.0	1.9	94.216
3	1999-04-01	69.0	180.0	41.0	1.9	94.784
4	1999-05-01	72.0	184.0	39.0	1.9	95.343
•••						
289	2023-02-01	69.0	278.0	90.0	1.7	296.958
290	2023-03-01	70.0	273.0	90.0	1.8	298.210
291	2023-04-01	70.0	267.0	93.0	1.6	300.214
292	2023-05-01	66.0	266.0	94.0	1.8	302.657
293	2023-06-01	69.0	262.0	97.0	1.7	304.635

```
In [12]: join data df.describe()
                                    #calculating some statistical data like percentile, mean and s
Out[12]:
               Const_complt
                           un_constr Cnstr_not_Strtd Unemploy_Rate
                                                                Price_fact
                          294.000000
         count
                 294.000000
                                        294.000000
                                                     294.000000
                                                               294.000000
                  81.894558 184.258503
                                         52.615646
                                                       3.123129 171.417405
         mean
                  40.068019
                           67.904529
                                         22.246952
                                                       1.585905
                                                                49.479289
           std
                  31.000000
                          70.000000
                                         22.000000
                                                       1.500000 93.207000
          min
          25%
                  56.000000
                          123.250000
                                         36.250000
                                                       2.025000 140.161000
          50%
                  75.000000 185.000000
                                         47.000000
                                                       2.600000 164.796500
          75%
                  87.000000 230.000000
                                         66.500000
                                                       3.700000
                                                              189.398250
          max
                 194.000000 338.000000
                                        102.000000
                                                      13.200000 304.817000
In [13]: join data df.info() # prints information about the data
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 294 entries, 0 to 293
         Data columns (total 6 columns):
            Column
                               Non-Null Count Dtype
         ---
                               -----
            DATE
                              294 non-null object
          \cap
            Const_complt 294 non-null float64
          1
          2 un constr
                              294 non-null float64
          3 Cnstr not Strtd 294 non-null float64
            Unemploy Rate
                              294 non-null float64
              Price fact
                              294 non-null float64
         dtypes: float64(5), object(1)
        memory usage: 16.1+ KB
In [14]:
         join data df.duplicated().sum()
                                            # in the DataFrame are duplicated and not
Out[14]:
In [15]:
         join data df.isnull().sum()
                                         #Cheecking there null value in DataSet
         DATE
Out[15]:
         Const complt
                            0
         un constr
         Cnstr not Strtd
                            0
         Unemploy Rate
                            0
         Price fact
                            0
         dtype: int64
In [16]: join data df.nunique()
                                         #checking the number of unique values for each column.
         DATE
                            294
Out[16]:
         Const complt
                            109
        un constr
                            162
         Cnstr not Strtd
                            73
         Unemploy_Rate
                            55
         Price fact
                            294
         dtype: int64
```

Exploratory data analysis (EDA)

In [17]: join_data_df['year'] = pd.DatetimeIndex(join_data_df['DATE']).year # Creating New co

In [18]: join_data_df

\cap u+	[10]	
Out	I TO I	

	DATE	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact	year
0	1999-01-01	68.0	178.0	38.0	2.0	93.207	1999
1	1999-02-01	67.0	180.0	38.0	2.0	93.670	1999
2	1999-03-01	68.0	185.0	36.0	1.9	94.216	1999
3	1999-04-01	69.0	180.0	41.0	1.9	94.784	1999
4	1999-05-01	72.0	184.0	39.0	1.9	95.343	1999
•••							
289	2023-02-01	69.0	278.0	90.0	1.7	296.958	2023
290	2023-03-01	70.0	273.0	90.0	1.8	298.210	2023
291	2023-04-01	70.0	267.0	93.0	1.6	300.214	2023
292	2023-05-01	66.0	266.0	94.0	1.8	302.657	2023
293	2023-06-01	69.0	262.0	97.0	1.7	304.635	2023

294 rows × 7 columns

In [19]: join_df_mean = join_data_df.groupby(by='year', as_index=False).mean() # Mean of the Dat
join_df_mean

Out[19]:		year
	0	1999

	year	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact
0	1999	71.500000	183.000000	41.333333	1.875000	96.365333
1	2000	84.250000	180.250000	39.500000	1.766667	104.768417
2	2001	77.583333	182.333333	41.833333	2.416667	113.179500
3	2002	82.500000	199.000000	46.000000	3.183333	122.278500
4	2003	80.833333	213.916667	53.666667	3.316667	133.731000
5	2004	89.916667	243.250000	62.166667	2.850000	150.440083
6	2005	106.750000	279.500000	81.416667	2.433333	171.736750
7	2006	144.083333	318.166667	91.083333	2.191667	183.447417
8	2007	185.416667	267.166667	78.500000	2.291667	179.918833
9	2008	179.083333	190.416667	56.000000	3.116667	164.057167
10	2009	128.000000	115.750000	35.083333	5.958333	148.544583
11	2010	86.500000	97.083333	27.750000	5.991667	144.674167
12	2011	65.500000	77.166667	24.666667	5.266667	139.260000
13	2012	44.500000	77.750000	23.583333	4.425000	140.994667
14	2013	40.000000	99.083333	29.500000	3.916667	154.520417
15	2014	50.250000	117.750000	32.250000	3.116667	164.699333
16	2015	51.583333	127.333333	37.166667	2.583333	172.182417
17	2016	58.333333	146.583333	38.083333	2.333333	180.927250

```
2017
              62.250000 165.500000
                                          47.416667
                                                            2.133333 191.402000
    2018
              66.500000 191.083333
                                          56.166667
                                                            1.841667
                                                                     202.484750
    2019
              77.500000 198.166667
                                          54.666667
                                                                     209.473417
                                                            1.691667
   2020
              60.583333 184.166667
                                          59.083333
                                                            6.133333 222.155250
21
22 2021
                        225.250000
                                          89.500000
              34.416667
                                                            3.166667
                                                                     260.066667
                                                            1.675000 298.478917
23
   2022
              44.333333 298.666667
                                          96.833333
24 2023
              68.500000 272.000000
                                          91.666667
                                                            1.683333 299.879167
```

```
In [20]: plt.figure(figsize=(4,3))
    plt.scatter(join_data_df.year,join_data_df.Unemploy_Rate)
    plt.xlabel('year')
    plt.ylabel('Mean Unemployment Rate')
    plt.show()
```


the first peak in unemployment rate came in the year 2021 and started to decrease slowly from 2022 to 2023 became lowest in the year 2023

```
In [21]: plt.figure(figsize=(4,3))
  plt.scatter(join_data_df.year,join_data_df.Price_fact)
  plt.xlabel('year')
  plt.ylabel('Mean S&P Price Index')
  plt.show()
```


Out[22]:

The price of house kept on increasing from year 2003 to 2005 and started gradually decreasing from 2007 to 2012 (in the same year the unemployment rate started increasing), after 2020 there was large difference in the price of house.

In [22]: df_max=join_data_df.groupby(by='year', as_index=False).max() # max values of each fact
df_max

	year	DATE	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact
0	1999	1999-12-01	77.0	191.0	47.0	2.0	99.844
1	2000	2000-12-01	90.0	188.0	42.0	1.9	109.140
2	2001	2001-12-01	82.0	191.0	45.0	3.1	116.456
3	2002	2002-12-01	86.0	204.0	52.0	3.3	127.623
4	2003	2003-12-01	86.0	232.0	61.0	3.5	140.179
5	2004	2004-12-01	97.0	257.0	70.0	3.1	159.330
6	2005	2005-12-01	110.0	306.0	95.0	2.7	180.910
7	2006	2006-12-01	166.0	338.0	100.0	2.3	184.364
8	2007	2007-12-01	194.0	285.0	85.0	2.5	184.598
9	2008	2008-12-01	191.0	227.0	69.0	4.3	173.132
10	2009	2009-12-01	161.0	139.0	41.0	6.5	151.506
11	2010	2010-12-01	96.0	109.0	31.0	6.2	147.395
12	2011	2011-12-01	75.0	84.0	28.0	5.5	141.522
13	2012	2012-12-01	53.0	86.0	25.0	4.7	145.503
14	2013	2013-12-01	41.0	114.0	37.0	4.3	160.993
15	2014	2014-12-01	56.0	123.0	35.0	3.5	168.052
16	2015	2015-12-01	55.0	139.0	39.0	2.8	176.545
17	2016	2016-12-01	61.0	152.0	43.0	2.5	185.726
18	2017	2017-12-01	65.0	178.0	52.0	2.3	197.170
19	2018	2018-12-01	75.0	203.0	69.0	2.0	206.149

20	2019	2019-12-01	81.0	211.0	59.0	1.9	213.906
21	2020	2020-12-01	78.0	199.0	68.0	13.2	236.433
22	2021	2021-12-01	40.0	264.0	98.0	4.3	281.266
23	2022	2022-12-01	66.0	318.0	102.0	2.0	304.817
24	2023	2023-06-01	70.0	286.0	97.0	1.8	304.635

```
In [23]: plt.figure(figsize=(4,3))
   plt.scatter(df_max.year,df_max.Unemploy_Rate)
   plt.xlabel('year')
   plt.ylabel('Max Unemployment Rate')
   plt.show()
```


Maximum Unemploylent Rate was seen in the year 2021

```
In [24]: plt.figure(figsize=(4,3))
    plt.scatter(join_data_df.year,join_data_df.Price_fact)
    plt.xlabel('year')
    plt.ylabel('Max S&P Price Index')
    plt.show()
```


Out[25]:		year	DATE	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact
	0	1999	1999-01-01	67.0	175.0	36.0	1.7	93.207
	1	2000	2000-01-01	79.0	170.0	37.0	1.6	100.551
	2	2001	2001-01-01	75.0	170.0	39.0	1.9	109.846
	3	2002	2002-01-01	77.0	190.0	40.0	3.1	117.143
	4	2003	2003-01-01	77.0	202.0	51.0	3.1	128.460
	5	2004	2004-01-01	82.0	231.0	54.0	2.7	141.646
	6	2005	2005-01-01	102.0	264.0	70.0	2.3	161.288
	7	2006	2006-01-01	113.0	290.0	80.0	2.1	182.320
	8	2007	2007-01-01	169.0	234.0	72.0	2.1	174.342
	9	2008	2008-01-01	166.0	145.0	42.0	2.5	153.618
	10	2009	2009-01-01	96.0	106.0	29.0	4.8	147.695
	11	2010	2010-01-01	77.0	86.0	26.0	5.7	142.061
	12	2011	2011-01-01	56.0	70.0	23.0	4.9	136.675
	13	2012	2012-01-01	40.0	71.0	22.0	4.2	136.533
	14	2013	2013-01-01	37.0	87.0	22.0	3.5	146.827
	15	2014	2014-01-01	43.0	112.0	29.0	2.8	161.927
	16	2015	2015-01-01	48.0	112.0	36.0	2.4	168.634
	17	2016	2016-01-01	55.0	139.0	36.0	2.2	177.272
	18	2017	2017-01-01	59.0	153.0	45.0	2.0	186.800
	19	2018	2018-01-01	59.0	178.0	52.0	1.7	198.294
	20	2019	2019-01-01	74.0	190.0	51.0	1.5	206.495
	21	2020	2020-01-01	40.0	172.0	52.0	1.6	214.904
	22	2021	2021-01-01	32.0	188.0	75.0	1.9	239.413
	23	2022	2022-01-01	31.0	268.0	92.0	1.5	285.708
	24	2023	2023-01-01	66.0	262.0	86.0	1.5	296.601

```
In [26]: plt.figure(figsize=(4,3))
    plt.scatter(df_min.year,df_min.Unemploy_Rate)
    plt.xlabel('year')
    plt.ylabel('Min Unemployment Rate')
    plt.show()
```


Minimum Unemployment Rate was seen in the year 2019

```
In [27]: plt.figure(figsize=(4,3))
    plt.scatter(df_min.year,df_min.Price_fact)
    plt.xlabel('year')
    plt.ylabel('Min S&P Price Index')
    plt.show()
```



```
In [28]: sns.relplot(x="Price_fact", y="Unemploy_Rate", hue="year", palette="ch:r=-.5,l=.75", dat
```


In [29]: data_new=pd.read_csv('HNFSEPUSSA.csv') # Total number of houses for sale
 data_new.head(12)

Out[29]:		DATE	HNFSEPUSSA
	0	1963-01-01	235.0
	1	1963-02-01	238.0
	2	1963-03-01	242.0
	3	1963-04-01	246.0
	4	1963-05-01	248.0
	5	1963-06-01	253.0
	6	1963-07-01	254.0
	7	1963-08-01	264.0
	8	1963-09-01	257.0
	9	1963-10-01	274.0
	10	1963-11-01	258.0
	11	1963-12-01	264.0

In [30]: data_new.describe()

Out[30]: HNFSEPUSSA

count 727.000000

mean 313.906465

```
      std
      85.437649

      min
      142.000000

      25%
      253.500000

      50%
      312.000000

      75%
      362.000000

      max
      572.000000
```

```
In [31]: data_new['year']= pd.DatetimeIndex(data_new['DATE']).year
In [32]: data_new1=data_new.groupby(by='year',as_index=False).mean()
data_new1
```

year HNFSEPUSSA Out[32]: **0** 1963 252.750000 **1** 1964 258.750000 **2** 1965 236.583333 **3** 1966 211.666667 **4** 1967 187.583333 **56** 2019 330.333333 **57** 2020 303.833333 349.166667 **58** 2021 439.833333 **59** 2022

61 rows × 2 columns

432.857143

60 2023

```
In [33]: plt.scatter(data_new1.year,data_new1.HNFSEPUSSA)
    plt.xlabel('year')
    plt.ylabel('Mean house for sale')
    plt.show()
```


Maximum number of houses were available in 2007 and least in 2012

```
In [34]: data_max=data_new1.groupby(by='year',as_index=False).max()
    data_max
```

Out[34]:		year	HNFSEPUSSA
	0	1963	252.750000
	1	1964	258.750000
	2	1965	236.583333
	3	1966	211.666667
	4	1967	187.583333
	56	2019	330.333333
	57	2020	303.833333
	58	2021	349.166667
	59	2022	439.833333
	60	2023	432.857143

61 rows × 2 columns

```
In [35]: plt.figure(figsize=(4,3))
   plt.scatter(data_max.year,data_max.HNFSEPUSSA)
   plt.xlabel('year')
   plt.ylabel('Max house for sale')
   plt.show()
```



```
In [36]: data_min=data_new1.groupby(by='year',as_index=False).min()
    data_min
```

Out[36]:		year	HNFSEPUSSA
	0	1963	252.750000
	1	1964	258.750000
	2	1965	236.583333
	3	1966	211.666667
	4	1967	187.583333
	•••		
	56	2019	330.333333
	57	2020	303.833333
	58	2021	349.166667
	59	2022	439.833333
	60	2023	432.857143

61 rows × 2 columns

```
In [37]: plt.figure(figsize=(4,3))
   plt.scatter(data_min.year,data_min.HNFSEPUSSA)
   plt.xlabel('year')
   plt.ylabel('Min house for sale')
   plt.show()
```


In [38]: join_data_df.corr()

Out[38]:

	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact	year
Const_complt	1.000000	0.369077	0.259954	-0.033380	-0.189004	-0.439836
un_constr	0.369077	1.000000	0.923796	-0.525463	0.449616	-0.061550
Cnstr_not_Strtd	0.259954	0.923796	1.000000	-0.396526	0.686356	0.218150
Unemploy_Rate	-0.033380	-0.525463	-0.396526	0.5305_0	0.050090	
Price_fact	-0.189004	0.449616	0.686356	-0.169878	3 1.000000 0.8	0.843770
year	-0.439836	-0.061550	0.218150	0.050090	0.843770	1.000000

In [39]: data_df_new=pd.merge(data_new,join_data_df,on='DATE',how ='inner')

In [40]: data_df_new

Out[40]:

	DATE	HNFSEPUSSA	year_x	Const_complt	un_constr	Cnstr_not_Strtd	Unemploy_Rate	Price_fact	year_y
0	1999- 01-01	284.0	1999	68.0	178.0	38.0	2.0	93.207	1999
1	1999- 02-01	285.0	1999	67.0	180.0	38.0	2.0	93.670	1999
2	1999- 03-01	289.0	1999	68.0	185.0	36.0	1.9	94.216	1999
3	1999- 04-01	290.0	1999	69.0	180.0	41.0	1.9	94.784	1999
4	1999- 05-01	295.0	1999	72.0	184.0	39.0	1.9	95.343	1999
•••									
289	2023- 02-01	437.0	2023	69.0	278.0	90.0	1.7	296.958	2023
290	2023- 03-01	433.0	2023	70.0	273.0	90.0	1.8	298.210	2023
291	2023- 04-01	430.0	2023	70.0	267.0	93.0	1.6	300.214	2023

292	2023- 05-01	426.0	2023	66.0	266.0	94.0	1.8	302.657	2023
293	2023- 06-01	428.0	2023	69.0	262.0	97.0	1.7	304.635	2023

294 rows × 9 columns

Out[41]

In [41]: data_df_new=data_df_new.drop(columns=['year_x','year_y','Const_complt','un_constr','Cnst
data_df_new

:		DATE	HNFSEPUSSA	Unemploy_Rate	Price_fact
	0	1999-01-01	284.0	2.0	93.207
	1	1999-02-01	285.0	2.0	93.670
	2	1999-03-01	289.0	1.9	94.216
	3	1999-04-01	290.0	1.9	94.784
	4	1999-05-01	295.0	1.9	95.343
	•••				
	289	2023-02-01	437.0	1.7	296.958
	290	2023-03-01	433.0	1.8	298.210
	291	2023-04-01	430.0	1.6	300.214
	292	2023-05-01	426.0	1.8	302.657
	293	2023-06-01	428.0	1.7	304.635

294 rows × 4 columns

In [42]: data_df_new.rename(columns={'HNFSEPUSSA':'ttl_homes_avlbl_for_sale'},inplace=True)
 data_df_new

Out[42]:		DATE	ttl_homes_avlbl_for_sale	Unemploy_Rate	Price_fact
	0	1999-01-01	284.0	2.0	93.207
	1	1999-02-01	285.0	2.0	93.670
	2	1999-03-01	289.0	1.9	94.216
	3	1999-04-01	290.0	1.9	94.784
	4	1999-05-01	295.0	1.9	95.343
	•••				
	289	2023-02-01	437.0	1.7	296.958
	290	2023-03-01	433.0	1.8	298.210
	291	2023-04-01	430.0	1.6	300.214
	292	2023-05-01	426.0	1.8	302.657
	293	2023-06-01	428.0	1.7	304.635

294 rows × 4 columns

In [43]: data_df_new.drop(columns=['DATE'],axis=1,inplace=True)

In [44]: data df new

Out[44]:	ttl_h	omes_avlbl_for_sale	Unemploy_Rate	Price_fact
	0	284.0	2.0	93.207
	1	285.0	2.0	93.670
Out[44]:		284.0	2.0	93.207

	tti_nomes_uvibi_roi_sale	onemploy_nate	· · · · · · · · · · · · · · · · · · ·
0	284.0	2.0	93.207
1	285.0	2.0	93.670
2	289.0	1.9	94.216
3	290.0	1.9	94.784
4	295.0	1.9	95.343
•••			
289	437.0	1.7	296.958
290	433.0	1.8	298.210
291	430.0	1.6	300.214
292	426.0	1.8	302.657
293	428.0	1.7	304.635

294 rows × 3 columns

plt.scatter(data_df_new.ttl_homes_avlbl_for_sale,data_df_new.Price_fact) In [45]:

<matplotlib.collections.PathCollection at 0x1f1bd5afb20> Out[45]:

plt.scatter(data_df_new.Unemploy_Rate,data_df_new.Price_fact) In [46]:

 ${\tt <matplotlib.collections.PathCollection}$ at ${\tt 0x1f1bd558a00}{\tt >}$ Out[46]:

Building Data Science Model

```
X=data df new.drop(columns=['Price fact'],axis=1)
In [47]:
         Y=data df new['Price fact']
         from sklearn.model selection import train test split
In [48]:
         x train, x test, y train, y test = train test split(X, Y, test size=0.2)
         from sklearn.linear model import LinearRegression
In [49]:
         lin reg =LinearRegression()
In [50]:
         lin reg.fit(x train,y train)
In [51]:
Out[51]:
         ▼ LinearRegression
        LinearRegression()
         Y predict =lin reg.predict(x test)
In [52]:
         Y predict
         array([153.41606285, 172.37906649, 167.7940575 , 163.1885028 ,
Out[52]:
                176.69664417, 172.82896734, 178.72432773, 185.62325703,
                171.28809403, 156.31359967, 192.23420933, 170.10797781,
                143.98557452, 173.14863302, 172.14680434, 177.76533069,
                171.47404406, 213.15803869, 171.14497565, 151.90687822,
                151.15785739, 182.40605453, 168.26798453, 156.61097941,
                210.5244527 , 143.84245614, 170.86814162, 171.92568516,
                171.46290109, 171.82713866, 156.25196256, 171.92568516,
                177.01630985, 155.70769723, 156.12590941, 166.26258692,
                175.48657952, 159.31246193, 166.04668845, 191.20835447,
                201.15908195, 175.01265248, 171.62830542, 146.25492296,
                198.20583028, 159.04573217, 188.55422277, 212.23247057,
                176.37697849, 172.68584896, 144.32752614, 175.46255334,
```

```
In [53]:
        from sklearn.metrics import r2 score
In [54]:
        score=[]
         for i in range(1000):
             x train, x test, y train, y test = train test split(X,Y,test size=0.2,random state=i)
            lr=LinearRegression()
             lr.fit(x train, y train)
             yprd=lr.predict(x test)
             score.append(r2 score(y test,yprd))
         import numpy as np
In [55]:
         np.argmax(score)
Out[55]:
         score[np.argmax(score)]
In [56]:
        0.1922218021173141
Out[56]:
        Since the realtion between dependent and independent variable is not
        linear LR model is not giving good result Therefor we are using Random
        forest regressor
        from sklearn.ensemble import RandomForestRegressor
In [57]:
         regressor1 = RandomForestRegressor(n estimators = 100, max depth=9, random state = 0)
         regressor1.fit(x train, y train)
Out[57]:
                       RandomForestRegressor
        RandomForestRegressor(max_depth=9, random_state=0)
In [58]: Y pred = regressor1.predict(x test)
         r2 score(y test, Y pred)
        0.7087528973730306
Out[58]:
In [59]:
        scoree=[]
         for i in range(1000):
            x_train,x_test,y_train,y_test = train_test_split(X,Y,test size=0.2,random state=i)
            regressor = RandomForestRegressor(n estimators = 100, random state = 0)
             regressor.fit(x_train, y_train)
             yprd=regressor.predict(x test)
             scoree.append(r2 score(y test,yprd))
        np.argmax(scoree)
In [60]:
        193
Out[60]:
         scoree[np.argmax(scoree)]
In [61]:
        0.935544507957901
Out[61]:
         !pip install -U notebook-as-pdf
In [63]:
         !pyppeteer-install
```

192.11163666, 194.99977074, 159.81703895, 171.45349836,

193.66539317, 147.0373727 , 212.23247057])

```
Collecting notebook-as-pdf
  Downloading notebook as pdf-0.5.0-py3-none-any.whl (6.5 kB)
Collecting pyppeteer
  Downloading pyppeteer-1.0.2-py3-none-any.whl (83 kB)
     ----- 83.4/83.4 kB 671.0 kB/s eta 0:00:00
Requirement already satisfied: nbconvert in c:\users\lenovo\anaconda3\lib\site-packages
(from notebook-as-pdf) (6.5.4)
Collecting PyPDF2
  Downloading pypdf2-3.0.1-py3-none-any.whl (232 kB)
     ----- 232.6/232.6 kB 1.3 MB/s eta 0:00:00
Requirement already satisfied: nbclient>=0.5.0 in c:\users\lenovo\anaconda3\lib\site-pac
kages (from nbconvert->notebook-as-pdf) (0.5.13)
Requirement already satisfied: pygments>=2.4.1 in c:\users\lenovo\anaconda3\lib\site-pac
kages (from nbconvert->notebook-as-pdf) (2.15.1)
Requirement already satisfied: pandocfilters>=1.4.1 in c:\users\lenovo\anaconda3\lib\sit
e-packages (from nbconvert->notebook-as-pdf) (1.5.0)
Requirement already satisfied: beautifulsoup4 in c:\users\lenovo\anaconda3\lib\site-pack
ages (from nbconvert->notebook-as-pdf) (4.12.2)
Requirement already satisfied: packaging in c:\users\lenovo\anaconda3\lib\site-packages
(from nbconvert->notebook-as-pdf) (23.0)
Requirement already satisfied: nbformat>=5.1 in c:\users\lenovo\anaconda3\lib\site-packa
ges (from nbconvert->notebook-as-pdf) (5.7.0)
Requirement already satisfied: entrypoints>=0.2.2 in c:\users\lenovo\anaconda3\lib\site-
packages (from nbconvert->notebook-as-pdf) (0.4)
Requirement already satisfied: jupyter-core>=4.7 in c:\users\lenovo\anaconda3\lib\site-p
ackages (from nbconvert->notebook-as-pdf) (5.3.0)
Requirement already satisfied: defusedxml in c:\users\lenovo\anaconda3\lib\site-packages
(from nbconvert->notebook-as-pdf) (0.7.1)
Requirement already satisfied: mistune<2,>=0.8.1 in c:\users\lenovo\anaconda3\lib\site-p
ackages (from nbconvert->notebook-as-pdf) (0.8.4)
Requirement already satisfied: traitlets>=5.0 in c:\users\lenovo\anaconda3\lib\site-pack
ages (from nbconvert->notebook-as-pdf) (5.7.1)
Requirement already satisfied: jinja2>=3.0 in c:\users\lenovo\anaconda3\lib\site-package
s (from nbconvert->notebook-as-pdf) (3.1.2)
Requirement already satisfied: MarkupSafe>=2.0 in c:\users\lenovo\anaconda3\lib\site-pac
kages (from nbconvert->notebook-as-pdf) (2.1.1)
Requirement already satisfied: bleach in c:\users\lenovo\anaconda3\lib\site-packages (fr
om nbconvert->notebook-as-pdf) (4.1.0)
Requirement already satisfied: tinycss2 in c:\users\lenovo\anaconda3\lib\site-packages
(from nbconvert->notebook-as-pdf) (1.2.1)
Requirement already satisfied: jupyterlab-pygments in c:\users\lenovo\anaconda3\lib\site
-packages (from nbconvert->notebook-as-pdf) (0.1.2)
Requirement already satisfied: lxml in c:\users\lenovo\anaconda3\lib\site-packages (from
nbconvert->notebook-as-pdf) (4.9.2)
Requirement already satisfied: certifi>=2021 in c:\users\lenovo\anaconda3\lib\site-packa
ges (from pyppeteer->notebook-as-pdf) (2023.5.7)
Requirement already satisfied: tqdm<5.0.0,>=4.42.1 in c:\users\lenovo\anaconda3\lib\site
-packages (from pyppeteer->notebook-as-pdf) (4.65.0)
Collecting websockets<11.0,>=10.0
  Downloading websockets-10.4-cp310-cp310-win amd64.whl (101 kB)
     ----- 101.4/101.4 kB 2.9 MB/s eta 0:00:00
Requirement already satisfied: appdirs<2.0.0,>=1.4.3 in c:\users\lenovo\anaconda3\lib\si
te-packages (from pyppeteer->notebook-as-pdf) (1.4.4)
Requirement already satisfied: importlib-metadata>=1.4 in c:\users\lenovo\anaconda3\lib
\site-packages (from pyppeteer->notebook-as-pdf) (6.6.0)
Requirement already satisfied: urllib3<2.0.0,>=1.25.8 in c:\users\lenovo\anaconda3\lib\s
ite-packages (from pyppeteer->notebook-as-pdf) (1.26.15)
Collecting pyee<9.0.0,>=8.1.0
  Downloading pyee-8.2.2-py2.py3-none-any.whl (12 kB)
Requirement already satisfied: zipp>=0.5 in c:\users\lenovo\anaconda3\lib\site-packages
(from importlib-metadata>=1.4->pyppeteer->notebook-as-pdf) (3.15.0)
Requirement already satisfied: platformdirs>=2.5 in c:\users\lenovo\anaconda3\lib\site-p
ackages (from jupyter-core>=4.7->nbconvert->notebook-as-pdf) (2.5.2)
Requirement already satisfied: pywin32>=300 in c:\users\lenovo\anaconda3\lib\site-packag
es (from jupyter-core>=4.7->nbconvert->notebook-as-pdf) (305.1)
Requirement already satisfied: nest-asyncio in c:\users\lenovo\anaconda3\lib\site-packag
```

```
es (from nbclient>=0.5.0->nbconvert->notebook-as-pdf) (1.5.6)
Requirement already satisfied: jupyter-client>=6.1.5 in c:\users\lenovo\anaconda3\lib\si
te-packages (from nbclient>=0.5.0->nbconvert->notebook-as-pdf) (8.1.0)
Requirement already satisfied: jsonschema>=2.6 in c:\users\lenovo\anaconda3\lib\site-pac
kages (from nbformat>=5.1->nbconvert->notebook-as-pdf) (4.17.3)
Requirement already satisfied: fastjsonschema in c:\users\lenovo\anaconda3\lib\site-pack
ages (from nbformat>=5.1->nbconvert->notebook-as-pdf) (2.16.2)
Requirement already satisfied: colorama in c:\users\lenovo\appdata\roaming\python\python
310\site-packages (from tqdm<5.0.0,>=4.42.1->pyppeteer->notebook-as-pdf) (0.4.3)
Requirement already satisfied: soupsieve>1.2 in c:\users\lenovo\anaconda3\lib\site-packa
ges (from beautifulsoup4->nbconvert->notebook-as-pdf) (2.4)
Requirement already satisfied: six>=1.9.0 in c:\users\lenovo\appdata\roaming\python\pyth
on310\site-packages (from bleach->nbconvert->notebook-as-pdf) (1.14.0)
Requirement already satisfied: webencodings in c:\users\lenovo\anaconda3\lib\site-packag
es (from bleach->nbconvert->notebook-as-pdf) (0.5.1)
Requirement already satisfied: attrs>=17.4.0 in c:\users\lenovo\anaconda3\lib\site-packa
ges (from jsonschema>=2.6->nbformat>=5.1->nbconvert->notebook-as-pdf) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in c:\users
\lenovo\anaconda3\lib\site-packages (from jsonschema>=2.6->nbformat>=5.1->nbconvert->not
ebook-as-pdf) (0.18.0)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\lenovo\anaconda3\lib\s
ite-packages (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert->notebook-as-pdf)
Requirement already satisfied: tornado>=6.2 in c:\users\lenovo\anaconda3\lib\site-packag
```

Requirement already satisfied: tornado>=6.2 in c:\users\lenovo\anaconda3\lib\site-packag es (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert->notebook-as-pdf) (6.2) Requirement already satisfied: pyzmq>=23.0 in c:\users\lenovo\anaconda3\lib\site-package s (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert->notebook-as-pdf) (25.0.2) Installing collected packages: pyee, websockets, PyPDF2, pyppeteer, notebook-as-pdf Successfully installed PyPDF2-3.0.1 notebook-as-pdf-0.5.0 pyee-8.2.2 pyppeteer-1.0.2 web sockets-10.4

```
[INFO] Starting Chromium download.
              | 0.00/137M [00:00<?, ?b/s]
              | 20.5k/137M [00:00<19:28, 117kb/s]
 0%1
 0%1
              | 51.2k/137M [00:00<19:27, 117kb/s]
 0%|
              | 81.9k/137M [00:00<19:20, 118kb/s]
             | 133k/137M [00:00<11:42, 195kb/s]
 0%|
              | 164k/137M [00:00<11:38, 196kb/s]
 0%1
             | 256k/137M [00:01<06:24, 356kb/s]
 0%1
 0%|
             | 328k/137M [00:01<05:11, 438kb/s]
              | 481k/137M [00:01<03:13, 704kb/s]
 0%1
              | 614k/137M [00:01<02:37, 866kb/s]
 0%|
 1%|
             | 860k/137M [00:01<01:45, 1.29Mb/s]
 1%|
             | 1.19M/137M [00:01<01:14, 1.83Mb/s]
 1% | 1
              | 1.60M/137M [00:01<00:56, 2.40Mb/s]
 2%|1
             | 2.12M/137M [00:01<00:44, 3.06Mb/s]
 2%|1
             | 2.63M/137M [00:01<00:37, 3.61Mb/s]
 2% | 2
             | 3.07M/137M [00:02<00:35, 3.79Mb/s]
 3% | 2
              | 3.46M/137M [00:02<00:36, 3.61Mb/s]
              | 3.83M/137M [00:02<00:45, 2.96Mb/s]
 3%12
             | 4.56M/137M [00:02<00:33, 4.00Mb/s]
 3% | 3
 4%|3
              | 5.15M/137M [00:02<00:29, 4.44Mb/s]
 4% | 4
              | 5.70M/137M [00:02<00:28, 4.66Mb/s]
 5% | 4
             | 6.23M/137M [00:02<00:27, 4.80Mb/s]
 5% | 4
             [ 6.73M/137M [00:02<00:26, 4.84Mb/s]
 5% | 5
              | 7.23M/137M [00:02<00:27, 4.71Mb/s]
 6% | 5
              | 7.72M/137M [00:03<00:27, 4.75Mb/s]
 68 | 6
             | 8.22M/137M [00:03<00:28, 4.60Mb/s]
             | 8.69M/137M [00:03<00:31, 4.02Mb/s]
 68 | 6
              9.11M/137M [00:03<00:43, 2.94Mb/s]
 78 | 6
 7% | 7
             | 9.98M/137M [00:03<00:30, 4.15Mb/s]
 8%|7
             | 10.5M/137M [00:03<00:29, 4.28Mb/s]
 8%|8
             | 11.0M/137M [00:03<00:29, 4.22Mb/s]
              | 11.5M/137M [00:04<00:28, 4.40Mb/s]
 8 | 8
 9% | 8
             | 12.0M/137M [00:04<00:27, 4.47Mb/s]
```

```
| 12.6M/137M [00:04<00:25, 4.97Mb/s]
 98|9
              | 13.3M/137M [00:04<00:22, 5.40Mb/s]
10%|9
10%|#
              | 13.9M/137M [00:04<00:21, 5.63Mb/s]
              | 14.5M/137M [00:04<00:22, 5.50Mb/s]
11%|#
             | 15.1M/137M [00:04<00:22, 5.35Mb/s]
11% | #1
             | 15.6M/137M [00:04<00:30, 4.04Mb/s]
11% | #1
12%|#2
             | 16.5M/137M [00:04<00:23, 5.12Mb/s]
12% | #2
              | 17.1M/137M [00:05<00:28, 4.19Mb/s]
             | 17.6M/137M [00:05<00:27, 4.27Mb/s]
13%|#2
13%|#3
             [ 18.3M/137M [00:05<00:24, 4.88Mb/s]
14%|#3
              | 18.8M/137M [00:05<00:23, 5.01Mb/s]
14% | #4
             | 19.4M/137M [00:05<00:23, 5.06Mb/s]
15%|#4
             | 20.0M/137M [00:05<00:22, 5.23Mb/s]
             | 20.5M/137M [00:05<00:23, 4.86Mb/s]
15% | #4
              | 21.0M/137M [00:05<00:23, 4.85Mb/s]
15%|#5
16%|#5
             | 21.5M/137M [00:06<00:28, 4.06Mb/s]
             | 22.1M/137M [00:06<00:28, 4.07Mb/s]
16%|#6
16%|#6
             | 22.6M/137M [00:06<00:33, 3.41Mb/s]
              | 23.1M/137M [00:06<00:30, 3.69Mb/s]
17%|#6
             | 23.6M/137M [00:06<00:28, 4.01Mb/s]
17% | #7
18%|#7
             [ 24.0M/137M [00:06<00:28, 4.02Mb/s]
18%|#7
              | 24.6M/137M [00:06<00:25, 4.46Mb/s]
18%|#8
              | 25.2M/137M [00:06<00:23, 4.71Mb/s]
             | 25.7M/137M [00:07<00:23, 4.83Mb/s]
19%|#8
             [ 26.3M/137M [00:07<00:21, 5.04Mb/s]
19%|#9
              | 26.8M/137M [00:07<00:30, 3.63Mb/s]
20% | #9
20%|##
             | 27.5M/137M [00:07<00:25, 4.37Mb/s]
             | 28.0M/137M [00:07<00:24, 4.47Mb/s]
20%|##
21%|##
             | 28.5M/137M [00:07<00:25, 4.29Mb/s]
              | 29.0M/137M [00:07<00:25, 4.21Mb/s]
21% | ##1
             [ 29.5M/137M [00:07<00:25, 4.16Mb/s]
22% | ##1
22% | ##1
             [ 29.9M/137M [00:08<00:26, 4.07Mb/s]
22% | ##2
              | 30.3M/137M [00:08<00:27, 3.89Mb/s]
             | 30.8M/137M [00:08<00:26, 4.01Mb/s]
22% | ##2
             | 31.3M/137M [00:08<00:24, 4.24Mb/s]
23%|##2
             | 31.7M/137M [00:08<00:34, 3.05Mb/s]
23%|##3
              | 32.6M/137M [00:08<00:24, 4.30Mb/s]
24% | ##3
24% | ##4
             | 33.1M/137M [00:08<00:27, 3.79Mb/s]
             | 34.0M/137M [00:09<00:21, 4.82Mb/s]
25% | ##4
             | 34.5M/137M [00:09<00:23, 4.39Mb/s]
25% | ##5
             | 35.1M/137M [00:09<00:25, 4.02Mb/s]
26% | ##5
             | 35.6M/137M [00:09<00:24, 4.17Mb/s]
26% | ##5
26% | ##6
             | 36.0M/137M [00:09<00:24, 4.18Mb/s]
27% | ##6
              | 36.4M/137M [00:09<00:24, 4.06Mb/s]
             | 36.9M/137M [00:09<00:23, 4.21Mb/s]
27% | ##6
             | 37.4M/137M [00:09<00:26, 3.73Mb/s]
27% | ##7
             | 37.8M/137M [00:10<00:25, 3.87Mb/s]
28% | ##7
              | 38.2M/137M [00:10<00:26, 3.79Mb/s]
28% | ##7
28%|##8
             | 38.6M/137M [00:10<00:25, 3.86Mb/s]
             | 39.0M/137M [00:10<00:27, 3.58Mb/s]
28%|##8
29% | ##8
             | 39.5M/137M [00:10<00:24, 4.03Mb/s]
              | 40.0M/137M [00:10<00:23, 4.06Mb/s]
29% | ##9
             | 40.4M/137M [00:10<00:24, 4.00Mb/s]
29% | ##9
30%|##9
             | 40.8M/137M [00:10<00:24, 3.90Mb/s]
30%|###
              | 41.2M/137M [00:10<00:25, 3.77Mb/s]
             | 41.6M/137M [00:11<00:25, 3.79Mb/s]
30%|###
             | 42.0M/137M [00:11<00:28, 3.35Mb/s]
31%|###
31%|###
             | 42.3M/137M [00:11<00:31, 2.96Mb/s]
              | 42.6M/137M [00:11<00:31, 2.95Mb/s]
31% | ###1
31% | ###1
             | 42.9M/137M [00:11<00:34, 2.70Mb/s]
             | 43.2M/137M [00:11<00:39, 2.35Mb/s]
32% | ###1
32% | ###1
             | 43.5M/137M [00:11<00:43, 2.16Mb/s]
32% | ###1
             | 43.7M/137M [00:12<00:47, 1.97Mb/s]
             | 44.0M/137M [00:12<00:41, 2.26Mb/s]
32%|###2
             | 44.3M/137M [00:12<00:39, 2.37Mb/s]
32% | ###2
33%|###2
              | 44.6M/137M [00:12<00:57, 1.59Mb/s]
```

```
| 45.3M/137M [00:12<00:35, 2.58Mb/s]
33% | ###3
             | 45.6M/137M [00:12<00:34, 2.64Mb/s]
33%|###3
34% | ###3
             | 46.0M/137M [00:12<00:37, 2.42Mb/s]
34% | ###3
              | 46.2M/137M [00:13<00:37, 2.45Mb/s]
             | 46.5M/137M [00:13<00:37, 2.38Mb/s]
34% | ###3
34% | ###4
             | 46.8M/137M [00:13<00:40, 2.23Mb/s]
34% | ###4
             | 47.1M/137M [00:13<00:37, 2.41Mb/s]
              | 47.4M/137M [00:13<00:38, 2.31Mb/s]
35% | ###4
35% | ###4
             | 47.6M/137M [00:13<00:46, 1.91Mb/s]
35% | ###5
             48.2M/137M [00:13<00:31, 2.78Mb/s]
              | 48.6M/137M [00:14<00:29, 2.97Mb/s]
35% | ###5
             | 48.9M/137M [00:14<00:28, 3.09Mb/s]
36% | ###5
36%|###5
             | 49.3M/137M [00:14<00:28, 3.04Mb/s]
             | 49.7M/137M [00:14<00:26, 3.32Mb/s]
36% | ###6
              | 50.0M/137M [00:14<00:25, 3.39Mb/s]
37% | ###6
             | 50.4M/137M [00:14<00:24, 3.56Mb/s]
37% | ###6
             | 50.8M/137M [00:14<00:23, 3.68Mb/s]
37% | ###7
             | 51.3M/137M [00:14<00:21, 3.95Mb/s]
37% | ###7
              | 51.7M/137M [00:14<00:22, 3.77Mb/s]
38% | ###7
             | 52.1M/137M [00:15<00:30, 2.78Mb/s]
38% | ###8
38%|###8
             | 52.5M/137M [00:15<00:27, 3.07Mb/s]
39%|###8
             | 52.9M/137M [00:15<00:25, 3.32Mb/s]
39%|###8
             | 53.3M/137M [00:15<00:24, 3.41Mb/s]
39%|###9
             | 53.7M/137M [00:15<00:23, 3.56Mb/s]
             | 54.1M/137M [00:15<00:23, 3.52Mb/s]
40% | ###9
              | 54.5M/137M [00:15<00:23, 3.50Mb/s]
40% | ###9
             | 54.8M/137M [00:15<00:23, 3.47Mb/s]
40%|####
40%|####
             | 55.3M/137M [00:15<00:21, 3.76Mb/s]
41% | ####
             | 55.7M/137M [00:16<00:22, 3.59Mb/s]
              | 56.0M/137M [00:16<00:23, 3.43Mb/s]
41% | ####
41% | ####1
             | 56.4M/137M [00:16<00:28, 2.81Mb/s]
42% | ####1
             [ 57.0M/137M [00:16<00:22, 3.59Mb/s]
              | 57.5M/137M [00:16<00:20, 3.87Mb/s]
42% | ####1
             | 57.9M/137M [00:16<00:22, 3.48Mb/s]
42% | ####2
43%|####2
             | 58.3M/137M [00:16<00:21, 3.58Mb/s]
             | 58.7M/137M [00:16<00:22, 3.54Mb/s]
43% | ####2
             | 59.0M/137M [00:17<00:21, 3.58Mb/s]
43% | ####3
43% | ####3
             | 59.4M/137M [00:17<00:21, 3.60Mb/s]
             | 59.9M/137M [00:17<00:20, 3.80Mb/s]
44% | ####3
             | 60.4M/137M [00:17<00:17, 4.26Mb/s]
44% | ####4
             | 60.8M/137M [00:17<00:18, 4.05Mb/s]
44% | ####4
45%|####4
             | 61.3M/137M [00:17<00:24, 3.07Mb/s]
45%|####5
             [ 61.9M/137M [00:17<00:20, 3.74Mb/s]
46%|####5
             | 62.4M/137M [00:17<00:18, 4.06Mb/s]
46%|####6
             [ 63.1M/137M [00:17<00:16, 4.53Mb/s]
46%|####6
             | 63.6M/137M [00:18<00:16, 4.55Mb/s]
             | 64.0M/137M [00:18<00:16, 4.50Mb/s]
47% | ####6
47% | ####7
              | 64.5M/137M [00:18<00:16, 4.28Mb/s]
48% | ####7
             | 65.1M/137M [00:18<00:15, 4.56Mb/s]
             | 65.5M/137M [00:18<00:15, 4.53Mb/s]
48% | ####7
             | 66.3M/137M [00:18<00:13, 5.09Mb/s]
48%|####8
              | 66.9M/137M [00:18<00:13, 5.35Mb/s]
49% | ####8
             | 67.4M/137M [00:18<00:15, 4.41Mb/s]
49%|####9
50%|####9
             [ 68.2M/137M [00:19<00:13, 5.18Mb/s]
              | 68.8M/137M [00:19<00:12, 5.46Mb/s]
50%|#####
             | 69.4M/137M [00:19<00:13, 4.88Mb/s]
51% | #####
51%|#####1
           | 69.9M/137M [00:19<00:14, 4.55Mb/s]
             | 70.4M/137M [00:19<00:14, 4.61Mb/s]
51% | #####1
52% | #####1
             | 70.9M/137M [00:19<00:14, 4.68Mb/s]
52%|#####2
             | 71.4M/137M [00:19<00:15, 4.32Mb/s]
             | 71.8M/137M [00:19<00:15, 4.23Mb/s]
52%|#####2
             | 72.4M/137M [00:19<00:14, 4.42Mb/s]
53%|#####2
             [ 72.9M/137M [00:20<00:17, 3.66Mb/s]
53%|#####3
54%|#####3
            | 73.5M/137M [00:20<00:14, 4.27Mb/s]
54%|#####4
             | 74.1M/137M [00:20<00:13, 4.53Mb/s]
55%|#####4
              | 74.9M/137M [00:20<00:11, 5.35Mb/s]
```

```
| 75.5M/137M [00:20<00:11, 5.43Mb/s]
55% | #####5
             | 76.2M/137M [00:20<00:10, 5.60Mb/s]
56% | #####5
56% | #####6
            | 76.8M/137M [00:20<00:10, 5.71Mb/s]
57% | #####6
             | 77.4M/137M [00:20<00:10, 5.71Mb/s]
            | 78.1M/137M [00:21<00:09, 5.95Mb/s]
57% | #####7
           | 78.7M/137M [00:21<00:09, 5.88Mb/s]
58%|#####7
58%|#####7
           | 79.3M/137M [00:21<00:10, 5.61Mb/s]
             | 79.9M/137M [00:21<00:13, 4.28Mb/s]
58%|#####8
59%|#####8
            | 80.7M/137M [00:21<00:11, 5.07Mb/s]
59%|#####9
            81.3M/137M [00:21<00:13, 4.16Mb/s]
60%|#####9
            | 81.7M/137M [00:21<00:15, 3.56Mb/s]
            | 82.1M/137M [00:22<00:15, 3.43Mb/s]
60%|#####9
60%|######
            | 82.5M/137M [00:22<00:15, 3.40Mb/s]
            | 82.9M/137M [00:22<00:15, 3.47Mb/s]
61% | ######
            | 83.3M/137M [00:22<00:15, 3.38Mb/s]
61%|######
            | 83.9M/137M [00:22<00:13, 4.01Mb/s]
61%|######1
62%|######1 | 84.4M/137M [00:22<00:16, 3.20Mb/s]
62%|####### | 85.0M/137M [00:22<00:13, 3.97Mb/s]
            | 85.5M/137M [00:22<00:12, 4.04Mb/s]
62% | ######2
63%|######2
           | 86.0M/137M [00:23<00:13, 3.82Mb/s]
63%|####### | 86.4M/137M [00:23<00:13, 3.74Mb/s]
63%|####### | 86.8M/137M [00:23<00:13, 3.60Mb/s]
            | 87.3M/137M [00:23<00:12, 3.94Mb/s]
64%|######3
64%|######4
           | 87.7M/137M [00:23<00:13, 3.75Mb/s]
64%|######4 | 88.1M/137M [00:23<00:13, 3.75Mb/s]
           | 88.5M/137M [00:23<00:12, 3.74Mb/s]
65%|######4
            | 88.9M/137M [00:23<00:13, 3.60Mb/s]
65%|######4
65%|######5 | 89.3M/137M [00:24<00:13, 3.46Mb/s]
66%|######5 | 89.8M/137M [00:24<00:12, 3.83Mb/s]
             | 90.3M/137M [00:24<00:11, 4.00Mb/s]
66%|#####5
66%|######6
            90.7M/137M [00:24<00:12, 3.72Mb/s]
67%|######6
           91.1M/137M [00:24<00:16, 2.77Mb/s]
           | 91.4M/137M [00:24<00:15, 2.85Mb/s]
67% | ######6
            | 91.7M/137M [00:24<00:17, 2.64Mb/s]
67% | ######6
67%|######7 | 92.0M/137M [00:25<00:17, 2.50Mb/s]
67%|######7 | 92.3M/137M [00:25<00:17, 2.51Mb/s]
           | 92.7M/137M [00:25<00:19, 2.30Mb/s]
68%|######7
68%|######7
            | 92.9M/137M [00:25<00:21, 2.05Mb/s]
68%|####### | 93.3M/137M [00:25<00:18, 2.33Mb/s]
69%|######8 | 93.8M/137M [00:25<00:14, 2.89Mb/s]
           | 94.1M/137M [00:25<00:17, 2.44Mb/s]
69%|######8
69%|######8 | 94.4M/137M [00:25<00:17, 2.47Mb/s]
69%|######9 | 94.7M/137M [00:26<00:17, 2.42Mb/s]
69%|######9 | 94.9M/137M [00:26<00:23, 1.82Mb/s]
70%|######9
            | 95.2M/137M [00:26<00:27, 1.54Mb/s]
70%|######9 | 95.5M/137M [00:26<00:22, 1.87Mb/s]
70%|######9 | 95.7M/137M [00:26<00:24, 1.65Mb/s]
70%|###### | 95.9M/137M [00:27<00:28, 1.42Mb/s]
           | 96.2M/137M [00:27<00:23, 1.70Mb/s]
70%|#######
70%|####### | 96.4M/137M [00:27<00:23, 1.74Mb/s]
71%|###### | 96.6M/137M [00:27<00:23, 1.74Mb/s]
71%|####### | 97.1M/137M [00:27<00:15, 2.63Mb/s]
71%|####### | 97.6M/137M [00:27<00:12, 3.23Mb/s]
72%|####### | 98.0M/137M [00:27<00:11, 3.25Mb/s]
72%|####### | 98.4M/137M [00:27<00:14, 2.61Mb/s]
72%|####### | 99.1M/137M [00:28<00:14, 2.55Mb/s]
73%|######## 1 99.4M/137M [00:28<00:17, 2.16Mb/s]
73%|#######2 | 99.7M/137M [00:28<00:16, 2.21Mb/s]
73%|####### | 99.9M/137M [00:28<00:16, 2.30Mb/s]
73%|####### 1 100M/137M [00:28<00:16, 2.16Mb/s]
74%|######## 101M/137M [00:28<00:16, 2.15Mb/s]
74%|######## 1 101M/137M [00:29<00:13, 2.66Mb/s]
74%|####### | 101M/137M [00:29<00:14, 2.54Mb/s]
            | 102M/137M [00:29<00:10, 3.36Mb/s]
74% | #######4
```

```
75%|######## 1 102M/137M [00:29<00:11, 3.09Mb/s]
75%|####### 1 103M/137M [00:29<00:09, 3.57Mb/s]
76%|#######5 | 103M/137M [00:29<00:07, 4.42Mb/s]
76%|#######5 | 104M/137M [00:29<00:07, 4.42Mb/s]
76%|#######6 | 104M/137M [00:29<00:07, 4.39Mb/s]
77%|#######6 | 105M/137M [00:29<00:07, 4.26Mb/s]
77%|####### 1 106M/137M [00:30<00:06, 4.71Mb/s]
78%|######## 1 107M/137M [00:30<00:05, 5.86Mb/s]
79%|######## 1 108M/137M [00:30<00:08, 3.44Mb/s]
79%|#######9 | 108M/137M [00:30<00:08, 3.34Mb/s]
79%|#######9 | 109M/137M [00:30<00:08, 3.21Mb/s]
80%|####### | 109M/137M [00:31<00:09, 3.00Mb/s]
80%|#######9 | 109M/137M [00:31<00:09, 2.93Mb/s]
80%|####### | 110M/137M [00:31<00:09, 2.81Mb/s]
80%|######## | 110M/137M [00:31<00:09, 2.76Mb/s]
80%|######## | 110M/137M [00:31<00:09, 2.69Mb/s]
81%|####### | 110M/137M [00:31<00:12, 2.08Mb/s]
81%|######## | 111M/137M [00:31<00:10, 2.57Mb/s]
81%|######## 1 | 111M/137M [00:32<00:09, 2.62Mb/s]
82%|######## 1 | 112M/137M [00:32<00:08, 2.97Mb/s]
82%|######## 1 | 112M/137M [00:32<00:08, 2.94Mb/s]
82%|######### 112M/137M [00:32<00:08, 2.76Mb/s]
82%|######## 113M/137M [00:32<00:09, 2.47Mb/s]
83%|######## 1 113M/137M [00:32<00:08, 2.78Mb/s]
83%|######### 1 113M/137M [00:32<00:09, 2.51Mb/s]
83%|######## 1 114M/137M [00:33<00:12, 1.90Mb/s]
83%|######## 1 114M/137M [00:33<00:11, 2.04Mb/s]
84%|######## 1 115M/137M [00:33<00:10, 2.07Mb/s]
84%|######## 115M/137M [00:33<00:09, 2.34Mb/s]
84%|######## 115M/137M [00:33<00:09, 2.34Mb/s]
84%|######## 4 | 115M/137M [00:33<00:08, 2.51Mb/s]
85%|######## 4 | 116M/137M [00:33<00:07, 2.67Mb/s]
85%|######## 1 116M/137M [00:34<00:08, 2.35Mb/s]
85%|######### 116M/137M [00:34<00:08, 2.33Mb/s]
85%|######## 1 117M/137M [00:34<00:08, 2.40Mb/s]
85%|######## 117M/137M [00:34<00:08, 2.41Mb/s]
86%|######## 117M/137M [00:34<00:06, 2.84Mb/s]
86%|######## 118M/137M [00:34<00:06, 2.90Mb/s]
86%|######## 6 | 118M/137M [00:34<00:06, 3.07Mb/s]
86%|########6 | 118M/137M [00:34<00:06, 2.95Mb/s]
87%|########6 | 119M/137M [00:34<00:05, 3.58Mb/s]
87%|######## 1 119M/137M [00:35<00:04, 3.86Mb/s]
88%|######## 1 120M/137M [00:35<00:04, 4.17Mb/s]
88%|########7 | 120M/137M [00:35<00:04, 3.85Mb/s]
88%|######## 121M/137M [00:35<00:06, 2.64Mb/s]
89%|######## 1 121M/137M [00:35<00:04, 3.73Mb/s]
89%|######## 1 122M/137M [00:35<00:04, 3.49Mb/s]
89%|######## 1 122M/137M [00:35<00:04, 3.52Mb/s]
90%|########9 | 123M/137M [00:36<00:04, 3.40Mb/s]
90%|######## 1 123M/137M [00:36<00:04, 3.11Mb/s]
90%|######## | 123M/137M [00:36<00:04, 3.04Mb/s]
90%|######## | 124M/137M [00:36<00:04, 2.89Mb/s]
91%|######## | 124M/137M [00:36<00:04, 2.92Mb/s]
91%|######## | 124M/137M [00:36<00:06, 1.91Mb/s]
91%|##########1| 125M/137M [00:37<00:05, 2.35Mb/s]
91%|########## 1 125M/137M [00:37<00:04, 2.44Mb/s]
92%|##########1| 126M/137M [00:37<00:04, 2.60Mb/s]
92%|########## 126M/137M [00:37<00:04, 2.52Mb/s]
92%|########## 127M/137M [00:37<00:03, 3.25Mb/s]
93%|########## 127M/137M [00:37<00:02, 3.44Mb/s]
93%|########## 127M/137M [00:37<00:02, 3.42Mb/s]
93%|########## 128M/137M [00:37<00:02, 3.51Mb/s]
```

```
94%|########## 128M/137M [00:38<00:02, 3.38Mb/s]
 94%|########## 129M/137M [00:38<00:02, 2.99Mb/s]
 94%|########## 129M/137M [00:38<00:02, 3.49Mb/s]
 95%|########## 130M/137M [00:38<00:01, 3.92Mb/s]
 95%|#########5| 130M/137M [00:38<00:01, 4.00Mb/s]
 95%|#########5| 131M/137M [00:38<00:01, 3.13Mb/s]
 96%|#########5| 131M/137M [00:38<00:01, 2.93Mb/s]
 96%|#########5| 131M/137M [00:39<00:01, 2.76Mb/s]
 96%|#########6| 132M/137M [00:39<00:01, 2.89Mb/s]
 97%|########6| 132M/137M [00:39<00:01, 3.40Mb/s]
 97%|#########6| 133M/137M [00:39<00:01, 2.94Mb/s]
 97%|########## 133M/137M [00:39<00:01, 3.05Mb/s]
 97%|#########7| 133M/137M [00:39<00:01, 2.80Mb/s]
 98%|##########7| 134M/137M [00:39<00:01, 2.68Mb/s]
 98%|##########7| 134M/137M [00:39<00:01, 2.72Mb/s]
 98%|########## 134M/137M [00:40<00:00, 2.73Mb/s]
 98%|######### 135M/137M [00:40<00:00, 2.76Mb/s]
 99%|######### 135M/137M [00:40<00:00, 2.82Mb/s]
 99%|########## 135M/137M [00:40<00:00, 2.97Mb/s]
 99%|#########9| 136M/137M [00:40<00:00, 3.18Mb/s]
 99%|#########9| 136M/137M [00:40<00:00, 3.28Mb/s]
100%|#########9| 136M/137M [00:40<00:00, 3.01Mb/s]
100%|##########9| 137M/137M [00:40<00:00, 3.31Mb/s]
100%|######### 137M/137M [00:40<00:00, 3.35Mb/s]
[INFO] Beginning extraction
[INFO] Chromium extracted to: C:\Users\Lenovo\AppData\Local\pyppeteer\pyppeteer\local-ch
romium\588429
```

In []: