Lista de exercíos – Energia e Potencial

1) Dentro da esfera de raio r=1m, o potencial é dado por:

$$V = 100 + 50r + 150 \text{sen } \theta \text{ sen } \phi [V]$$

- a) Encontre \vec{E} em P (r=1; $\theta = \pi/2$; $\phi = 0$)
- b) Quanto de carga existe dentro da esfera de raio r=1m?
- 2) Um carga pontual de 16 ηC está localizada em Q(2,3,5) no espaço livre, e uma linhda de cagas uniformes de 5 $\eta C/m$ está localizada na interseção dos planos x=2 e y=4. Se o pontencial na origem é de 100 V, encontrar V em P(4,1,3).
 - 3) Dado o potencial expresso por $V = 100 e^{-50x} sen50y [volts]$, no espaço livre.
 - a) Mostrar que $\vec{\nabla} \cdot \vec{D} = 0$;
 - b) Mostrar que y=0 representa uma superfície equipotencial;
 - c) Mostrar que \vec{E} é perpendicular à superfície y=0;
 - d) Encontrar a energia armazenada no cubo 0<x<1, 0<y<1 e 0<z<1.
 - 4) Um carga pontual Q de 6 ηC está localizada na origem do sistema de coordenadas, no espaço livre. Determinar o potencial V_P sendo P(0,2;0,4;0,4) e:
 - a) V=0 no infinito;
 - b) V=0 no ponto A (1,0,0)
 - c) V=20 volts no ponto B (0,5;1,0;-1,0)
 - 5) Calcular a energia acumulada em um sistema com 03 cargas pontuais iguais a Q, todas sobe a mesma reta, separadas entre si por distâncias iguais a d.
 - 6) Duas esferas condutoras concêntricas de raios **a=6cm** e **b=16cm** possuem cargas iguais e opostas, sendo **10**-8 C na esfera interior e **-10**-8 C na esfera exterior. Assumindo $\varepsilon = \varepsilon_0$ na região entre as esferas, determinar:
 - a) O máximo valor da intensidade de campo elétrico entre as esferas;
 - b) A diferença de potencial (V₀)entre as esferas;
 - c) A energia total armazenada (W_E)na região entre as esferas