

£27 0	-3+ V	(,)	1,1 /,1	
(23) 2	e = v	$\frac{c(+)}{R} + C.$	d+	
particular	Solution	Vcp (+) =	A. e-st	
2 e	$^{2}f = \frac{A}{D}e$	-8+ <u>-</u> 34	ce-3f	
2=1 ms	2=106-2			
C= 1x10-6	F			
				$\frac{A}{6} = 3A \cdot 10^{6}$
				$A \cdot 10^{-6} - 3A \cdot 10^{-6}$
		-		- 2A 10 ⁻⁶)
VC (4)=	V2 - 1 - 2	+ Ycomp	$A = -10^{\circ}$	
	6 -34 -10 2	+ KIP-t/Z	Vc (0+)	=0 & z=lc =1
		- K1 = 0 =		
General s	islution	Vc (+) = 10	6e-+ 106	_3 t

Q4)
$$(S.cos(106)) = \frac{(VG1)}{10} + \int_{0}^{4} VC4)df + i_{1}(0)$$

dt

dt

dt

After writing KCL , we differ time each form with fine

 $-50.Sin(104) = \frac{1}{10} \frac{dV(4)}{d4} + V(4)$
 $Vp = A.cos(104) + B.Sin(104) + Solvetine into solvetion.$
 $-50.Sin(104) = \frac{1}{10} [-10ASIN(104) + 10Bccs(104)]$

the cosine coefficients should be zero on the light hand side and sine coefficients should be -50
 $-50 = -A + 13$
 $A = 25$
 $O = B + A$
 $B = -25$
 $V(4) = Vparticular + Vcomplementary

 $= Vp(4) + V_{1} = -t/2$
 $= 25.cos(104) - 25.sin(104) + C = \frac{1}{2} = 0.1 sec.$

Concert of inductor at $6 = 0$ is zero $6 = 0.1 sec.$

at $6 = 0$ all current goes through Resister

at $6 = 0$ all current goes through Resister

 $6 = 0.1 sec.$

threfore

 $6 = 0.1 sec.$
 $6 = 0.1 sec.$
 $6 = 0.1 sec.$$

threfore	50 = 25	· (05(0)	-25.sinke	V1= 25	
		1	0	K1= 25	

Q6) using KyL we obtain: $L \cdot d\hat{s}C+) + Q.\hat{s}C+) = 15.CosC200+)$ 2. dis(+) + 200 is(+) = 15.cos(200 +)particular solution piver in the hint! (Sp = A. cos (300 t) + B.sin (800 t) substitute (sp into eqn: disp(f) = - 300 A sin (300 f) + 300 B COS(300 f) - 600 Asin (300 t) + 600 B. cos (300 t) + 300 A Ces (300 f) + 300 B sin (300 f) = 15.008(300 f) coefficients of sines >0 of carines > 15 -> 300B = 600 A - 600 A + 300 B = 0 3=2A 600 B + 300 A = 15 1200 A + 300A = 15 -2 1500 A= 15 > A=10 $B = 2 \times 10^{2}$

 $\hat{C}_{SC} = k_1 \cdot e^{-t/\tau} \rightarrow k_1 \cdot e^{-t/\tau} = k_1 \cdot e^{-t/\tau}$ isc (+)= K1. e + 10 2 cos (200+) + 2.10 sin (200+) current accross L cannot change instanteneously
therefore $is(o^t) = 0$ -> substitute into eqn to find k_1 $\hat{c}_{s}(0) = 0 = k_{1} + 10^{-2} \implies k_{i} = -10^{-2}$ the solution is $\hat{l}s(+) = -10^{-2} - 1000 + 1000 (3000) + 2.10 sin(3000)$