安徽大学2012—2013学年第1学期

《 数理方法》考试试卷(A卷) (闭卷 时间120分钟)

考场登记表序号_____

题 号	_	=	Ξ	四	总分
得 分					
阅卷人					

一、填空题(每小题 2 分, 共 20 分。 每	:题错一空不得	分)
---------------------------------	---------	----

得分

- 2.计算 $e^{-3+i\frac{\pi}{4}}$ 的值为_____。
- 3. 计算幂级数 $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ 的收敛半径 R =________。
- 4.函数 $f_1(t), f_2(t)$ 的 Fourier 卷积 $f_1(t) * f_2(t)$ 的定义式为______。

- 7. $(\frac{\partial^2 u}{\partial x^2})^2 + (\frac{\partial u}{\partial y})^2 = \sin x \cos y$ 为二阶、_____、 偏微分方程。(填**线性**或**非线性**, **齐次**或**非齐次**)
- 8. 在分离变量法过程中得到函数 $u_n(x,t)=E_n\cos(\omega_n t-\theta_n)\times(\sin\frac{n\pi}{l}x)$, 代表驻波,其振幅依赖于点x的位置为 ________,波 u_n 的节点或波节点为________。

9. 考虑具有统一边界条件的泊松方程问题,即定解问题为

$$\begin{cases} \nabla^2 u(\mathbf{r}) = -f(\mathbf{r}) \\ [\alpha u + \beta \frac{\partial u}{\partial n}] \Big|_{S} = \varphi(\mathbf{r}_{S}) \end{cases}$$

为求解此定解问题,可以定义一个与此问题相应的格林函数 $G(\mathbf{r},\mathbf{r}_0)$,写出 $G(\mathbf{r},\mathbf{r}_0)$ 满足的定解问题为:______。

10. 设 $\Omega \in \mathbb{R}^3$ 是分片光滑的闭曲面 Σ 所围成的区域,函数u(x,y,z)和v(x,y,z)在 $\Omega + \Sigma$ 上具有一阶连续偏导数,在 Ω 内具有连续的所有二阶偏导数,则u与v满足的第二格林公式为

$$\iiint_{\Omega} u \nabla^2 v - v \nabla^2 u \ d\Omega =$$

二、计算题 (每小题 10 分, 共 60 分)

得	分	
---	---	--

1. 求 $f(t) = te^{s_0 t}$ 的拉普拉斯变换。

2. 计算积分
$$I = \oint_{|z|=3} \frac{2z^2 - z + 1}{(z-1)^3} dz$$
.

3. 试分别以 $z_0=0$ 及 $z_0=1$ 为中心将 $f(z)=\frac{z-1}{z+1}$ 展开成 Taylor 级数,并指出其收敛半径。

4. 一根长为l的两段固定的弦,用手将它的中点横向拉开距离为h,如图 1 所示,然后放手任其自由振动。写出它的初始条件、边界条件,并利用分离变量法求解此定解问题。

5. 求解初值问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0 \\ u(x,0) = \cos x & (-\infty < x < +\infty, t > 0, a > 0) \\ u_{t}(x,0) = e \end{cases}$$

6. 已知勒让得多项式系 $\{P_n(x)\}$ 满足如下关系式

$$\int_{-1}^{1} P_{m}(x)P_{n}(x)dx = \frac{2}{2n+1} \delta_{m,n} \triangleq \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$

试将 $f(x) = x^2$ 按 $\{P_n(x)\}$ 展开为广义傅立叶级数。

三、证明题(共10分)

得 分

证明函数 $f(z) = |z|^2$ 在 z = 0处可导但 f(z)在复平面上处处不解析。

戮

华

题勿超装

袎

试叙述《数理方法》课程中,求解偏微分方程的几种常见方法,并说明各种方法的适用类型(包括:方程类型与边界类型及初始条件)与特点。