su valor máximo (o mínimo) en algún punto \mathbf{x}_0 de I. Una generalización de este hecho teórico también se cumple en \mathbb{R}^n . Estos teoremas garantizan que el máximo o el mínimo que se está buscando realmente existe; por tanto, la búsqueda no será en vano.

Definición Se dice que un conjunto $D \subset \mathbb{R}^n$ está **acotado** si existe un número M > 0 tal que $\|\mathbf{x}\| < M$ para todo $\mathbf{x} \in D$. Un conjunto es **cerrado** si contiene todos los puntos de su frontera.

Veamos un ejemplo importante. Obsérvese que los conjuntos de nivel $\{(x_1, x_2, \cdots, x_n) | f(x_1, x_2, \dots, x_n) = c\}$ de una función continua f son siempre cerrados.

Así, un conjunto está acotado si está estrictamente contenido en alguna bola (grande). La generalización apropiada del teorema de una variable sobre máximos y mínimos es el siguiente, el cual enunciamos sin demostración.

Teorema 7 Teorema de existencia de máximos y mínimos globales Sea D cerrado y acotado en \mathbb{R}^n y sea $f \colon D \to \mathbb{R}$ continua. Entonces f alcanza sus valores de máximo y de mínimo absolutos en ciertos puntos \mathbf{x}_0 y \mathbf{x}_1 de D.

Enunciado de forma simple, \mathbf{x}_0 y \mathbf{x}_1 son puntos donde f alcanza sus valores mayor y menor. Como en el cálculo de una variable, estos puntos no tienen por qué ser únicos.

Supongamos que ahora $D=U\cup\partial U$, donde U es abierto y ∂U es su frontera. Si $D\subset\mathbb{R}^2$, suponemos que ∂U es una curva suave a trozos; es decir, D es una región acotada por una familia de curvas suaves—por ejemplo, un cuadrado o los conjuntos mostrados en la Figura 3.3.7.

Si \mathbf{x}_0 y \mathbf{x}_1 están en U, sabemos por el Teorema 4 que son puntos críticos de f. Si están en ∂U y ∂U es una curva suave (es decir, la imagen de una trayectoria suave \mathbf{c} con $\mathbf{c}' \neq 0$), entonces son puntos de máximo y de mínimo de f considerada como una función sobre ∂U . Estas

Figura 3.3.7 $D = U \cup \partial U$: dos ejemplos de regiones cuya frontera es una curva suave a trozos.