Tarea 1. Algoritmos de descenso estocástico

Aprendizaje de Máquina I

February 2, 2021

Descripción. Implementar versiones estocásticas de algoritmos de descenso de gradiente:

- 1. Descenso de gradiente estocático.
- 2. Descenso de gradiente estocástico accelerado de tipo Nesterov.
- 3. AdaDelta
- 4. ADAM
- 5. NADAM

Para resolver el problema de regresión:

$$\min_{\alpha,\mu} F(\alpha,\mu) = \frac{1}{2} \|\Phi\alpha - y\|_2^2 \tag{1}$$

donde

$$\Phi = [\phi_1, \phi_2, \dots, \phi_n]$$

con

$$\phi_{ij} = \exp\left(-\frac{1}{2\sigma^2}(j-\mu_i)^2\right);$$

j: representa las posiciones donde se tienen muestras en una serie de tiempo;

y: es un vector de dimensión n que representa los valores de la serie de tiempo;

 α : es un vector de coeficientes de dimensión m cuyas entradas representan la contribución de cada una de las j-ésimas funciones base ϕ_j para aproximar óptimamente y;

 σ : es una constante que determina el ancho de cada fuc
nión base.

 ϕ_i : es el i-ésimo vector columna (función radial base) cuya contribución para ajustar los datos y esta dada por el coeficiente α_i

Estrategia de solución

Dado un vector de medias iniciales μ_0 y t=0, para resolver (??) usar alternar hasta convergencia:

1. Resolver (aproximadamente)

$$\alpha_{t+1} = \arg\min_{\alpha} F(\alpha, \mu_t)$$

con μ_t fija.

2. Resolver aproximadamente

$$\mu_{t+1} = \arg\min_{\alpha} F(\alpha_{t+1}, \mu)$$

con α_{t+1} fija.

3. Hacer t=t+1

Entrega de la tarea

La tarea se entrega como el fuente del notebook de jupyterlab (.pynb) con la ltima ejecucin. Usar $n \ge 1000$, $m \ge 15$.

Enviar la tarea a aprendizaje.maquina@cimat.mx. Con asunto: "Tarea número_de_tarea. grupo nombre_del_curso_inscrito". Ejemplo: Tarea 1. grupo Aprendizaje Automático I Fecha de entrega: 2 de febrero 2021 a las 12pm (límite).

Penalización por retraso: la calificación de la tarea se multiplicará por 0.9^n donde $n \ge 0$ son los días de retraso.

Material de apoyo

https://www.cimat.mx/~mrivera/cursos/optimizacion/descenso_grad_estocastico/descenso_grad_estocastico.html