Homework 1 Solution of

STAT 632 Bayesian Statistics

Yanxun Xu

September 15, 2015

1 Problem 1

Solution:

The data likelihood of X = [11.0, 11.5, 11.7, 11.1, 11.4, 10.9] is

$$p(X|\theta) = 1, \theta - \frac{1}{2} \le x_i \le \theta + \frac{1}{2},$$

where $\max\{X\} + \frac{1}{2} \le \theta \le \min\{X\} + \frac{1}{2}$, that is, $11.2 \le \theta \le 11.4$.

The prior distribution of θ is

$$p(\theta) = 1, 10 \le \theta \le 20.$$

The posterior distribution of θ is

$$p(\theta|X) \propto p(X|\theta)p(\theta) \propto 1.$$

Because of the available data, we know that $11.2 \le \theta \le 11.4$, so the normalizing constant equals to $\frac{1}{11.4-11.2} = 5$. Therefore,

$$p(\theta|X) = 5.$$

2 Problem 2

Solution:

(a) According to the condition $p(x,y,z) \propto f(x,z)g(y,z)h(z)$ as well as Bayes' rule, we have

$$p(x|y,z) = \frac{p(x,y,z)}{g(y,z)}$$

$$\propto f(x,z)h(z)$$

$$\propto f(x,z),$$

where p(x|y, z) is a function of x and z.

(b) According to the condition $p(x, y, z) \propto f(x, z)g(y, z)h(z)$ as well as Bayes' rule, we have

$$p(y|x,z) = \frac{p(x,y,z)}{f(x,z)}$$

$$\propto g(y,z)h(z)$$

$$\propto g(y,z),$$

where p(y|x, z) is a function of y and z.

(c) To show that X and Y are conditionally independent given Z, we should prove that p(x,y|z) = p(x|z)p(y|z).

$$p(x,y|z) = \frac{p(x,y,z)}{h(z)}$$

$$= \frac{p(x|y,z)g(y,z)}{h(z)}$$

$$= p(x|y,z)p(y|z)$$

$$\propto f(x,z)p(y|z) \text{ (according to the result of (a))}$$

$$\propto p(x|z)p(z)p(y|z)$$

$$\propto p(x|z)p(y|z)$$

3 Problem 3

Solution:

The data likelihood of *X* is

$$p(X|\theta) = \prod_{i=1}^{n} \theta \exp(-\theta x_i) = \theta^n \exp(-\theta n\bar{x}),$$

where n = 20 and $\bar{x} = 3.8$ in this case.

The prior distribution of θ is

$$p(\theta) = Gamma(\theta; \alpha, \beta),$$

where $\alpha = 0.04$ and $\beta = 0.2$ in this case.

The posterior distribution of θ is

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

$$= \theta^n \exp(-\theta n\bar{x})Gamma(\theta; \alpha, \beta)$$

$$= \theta^n \exp(-\theta n\bar{x})\frac{\beta^{\alpha}}{\Gamma(\alpha)}\theta^{\alpha-1} \exp(-\theta\beta)$$

$$\propto \theta^{\alpha+n-1} \exp(-\theta(\beta+n\bar{x}))$$

$$= Gamma(\theta; \alpha+n, \beta+n\bar{x})$$

$$= Gamma(\theta; 20.04, 76.2)$$

4 Problem 4

Solution:

The data likelihood of r follows a negative binomial distribution with an unknown parameter p, given by

$$p(r|p) = {k+r-1 \choose k} (1-p)^r p^k.$$

We assume that the prior distribution of p follows A beta distribution with parameters α and β , given by

$$p(p) = beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}.$$

The posterior distribution of p is

$$p(p|r) \propto p(r|p)p(p)$$

$$= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1-p)^{\beta-1}\binom{k+r-1}{k}(1-p)^rp^k$$

$$= c(\alpha,\beta,k,r)p^{\alpha+k-1}(1-p)^{\beta+r-1}$$

$$= beta(\alpha+k,\beta+r).$$

The third to last line says that p(p|r) is proportional to $p^{\alpha+k-1}(1-p)^{\beta+r-1}$, which means that it has the same shape as $beta(\alpha + k, \beta + r)$. But we also know that p(p|r) and the beta density must both integrate to 1, and therefore they are share the same scale. Thus, the family of beta distributions is a conjugate family of prior distributions for samples from a negative binomial distribution with an unknown parameter p.

5 Problem 5

Solution:

(a) The joint distribution of $P(Y_1 = y_1, \dots, Y_{100} = y_{100} | \theta)$ can be written as,

$$P(Y_1 = y_1, \dots, Y_{100} = y_{100}|\theta) = \theta^{\sum_{i=1}^{100} y_i} (1-\theta)^{100-\sum_{i=1}^{100} y_i},$$

which can also be written as,

$$P(\sum_{i=0}^{100} Y_i = y | \theta) = {100 \choose y} \theta^y (1-\theta)^{100-y}.$$

(b) The data likelihood of $\sum_{i=1}^{100} Y_i = 57$ for each of those 11 values of θ and the corresponding plot are given in Table 1 and Figure 1 (Upper), respectively.

Table 1: The data likelihood for each parameter

heta	0.0	0.1	0.2	0.3	0.4	0.5
$P(\sum_{i=0}^{100} Y_i = 57 \theta)$	0.000	4.107×10^{-31}	3.738×10^{-16}	1.307×10^{-8}	2.286×10^{-4}	3.007×10^{-2}
θ	0.6	0.7	0.8	0.9	1.0	
$P(\sum_{i=0}^{100} Y_i = 57 \theta)$	6.673×10^{-2}	1.853×10^{-3}	1.004×10^{-7}	9.396×10^{-18}	0.000	

(c) The posterior distribution for each of those 11 values of θ and the corresponding plot are given in Table 2 and Figure 1 (Lower), respectively.

Table 2: The posterior distribution for each parameter

θ	0.0	0.1	0.2	0.3	0.4	0.5
$P(\sum_{i=0}^{100} Y_i = 57 \theta)$	0.000	4.148×10^{-29}	3.776×10^{-14}	1.320×10^{-6}	2.309×10^{-2}	3.037×10^{0}
θ	0.6	0.7	0.8	0.9	1.0	
$P(\sum_{i=0}^{100} Y_i = 57 \theta)$	6.740×10^{0}	1.872×10^{-1}	1.014×10^{-5}	9.490×10^{-16}	0.000	

- (d) The posterior density $p(\theta)P(\sum_{i=0}^{100}Y_i=y|\theta)$ as a function of θ is shown in Figure 2 (Upper). (e) The posterior density $P(\theta|\sum_{i=0}^{100}Y_i=y)$ as a function of θ is shown in Figure 2 (Lower). Figure 1 and Figure 2 tells us that a discrete or continuous uniform prior distribution gives a posterior distribution that is proportional to the sampling probability, i.e., data likelihood.

Figure 1: The data likelihood (Upper) and the posterior distribution (Lower) as a function of θ

Figure 2: The posterior density $p(\theta)P(\sum_{i=0}^{100}Y_i=y|\theta)$ (Upper) and the posterior distribution density $P(\theta|\sum_{i=0}^{100}Y_i=y)$ (Lower) as a function of θ

6 Problem 6

Solution:

Using the following code, we are able to find the corresponding a,b values and compute $P(\theta > 0.5) | \sum_{i=0}^{100} Y_i = 57$, displaying with a contour plot, as shown in Figure 3. The plot indicates that low values of n_0 (weak prior beliefs) or high prior expectations θ_0 are generally 90% or more certain that the approval ratings θ is more than 0.5.

```
library(ggplot2)
theta_0 = c(1:9) / 10
n_0 = c(1, 2, 8, 16, 32)
for(i in 1:length(theta_0)){
    for(j in 1:length(n_0)) {
        a[(i - 1) * length(n_0) + j] = theta_0[i] * n_0[j]
        b[(i - 1) * length(n_0) + j] = (1 - theta_0[i]) * n_0[j]
        prob[(i - 1) * length(n_0) + j] =
            sum(rbeta(1000, theta_0[i] * n_0[j] + y, (1 - theta_0[i]) * n_0[j] + n - y) > 0.5) / 1000
    }
}
qplot(a + b, a / (a + b), prob) + geom_contour(aes(colour = ..level..))
```


Figure 3: A contour plot of posterior quantities under different beta prior distributions