1) Il value della velocità imitiale deve enere Tale de fanois μ , jercora il corje la distanza desa L nel Teny dass T_i . $L=V_o t_i - \frac{1}{2} \mu g t_i^2$

D'altra joule eniste un valore minimo di V che jernella l'arrive al bordo con relocità finale mulla quivei in corrisondeure eniste un valore MAX di pe rale cle

O = Vmin - Max g I, => Vum = Max g I,

Servictuerde mella joine equazione: L= May 7, -1 Mmx g 2,

=) Mmx = 2L = 0,075 => affinelé il met nou gti² familile 0 4M & 0,075

In questo con L= - Max Lmng =) m=-L= 1,81 kg

2) Davi i valeuri dell'acque Va e del corjer $V_c = \frac{m}{m}$, quando il corjer è completamente innuero, l'alterne dell'acque del Jonets saver $h = \frac{V_0 + V_c}{A} = V_0 = hA - V_c$

Ouande il corpo galleggia avra i una se solo una frazione $X = \frac{Sc}{Sc}$ Ouand la nuova al Eene sará $h' = \frac{Va + A Vc}{A} = h - \frac{1 - Sc}{Sa} Vc$

 $\Delta h = h' - h = \Delta - 1$ $A = \frac{1}{S_a} = \frac{1}{S_c} = \frac{1}{A} = \frac{2.5 \text{ cm}}{A}$

3) Se la share s' dene ferune de l'urb e l'arb é elos is aller
$$\begin{cases} \frac{1}{2} I \omega = \frac{1}{2} m v^2 & I = \frac{1}{3} M L^2 \\ I \omega = m v \end{cases}$$

$$= \int_{0}^{\infty} \frac{I \omega}{m v} = \frac{I \omega}{m v} = \sqrt{\frac{1}{3} \frac{M}{m}} L = R_0$$

quind: $\frac{M}{m} \neq 3$ affinché envire $R_0 \leq L$

$$= \frac{M}{m} = 3 \Rightarrow R_0 = L \Rightarrow v = \frac{I \omega}{m L} = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow v = \frac{I \omega}{m L} = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow v = \frac{I \omega}{m L} = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow v = \frac{I \omega}{m L} = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0 = L \omega$$

$$= \frac{M_0 = 3}{m L} \Rightarrow R_0 = L \Rightarrow r_0$$