SC223 - Linear Algebra

Aditya Tatu

Lecture 30

October 18, 2023

Summary of Lecture 29

- **Similar matrices and Similarity transformation:** We say two matrices A and B are similar if there exists an invertible matrix, say S such that $B = SAS^{-1}$. The transformation $A \mapsto SAS^{-1}$ is said to be a similarity transformation of A by S.
- Let $T \in \mathcal{L}(U)$ be a linear operator. It is preferable to work with a basis of U, say β such that $[T]^{\beta}_{\beta}$ is diagonal/block-diagonal.

ullet Let $T\in \mathcal{L}(U)$, and $U=V_1\oplus V_2$.

- ullet Let $T \in \mathcal{L}(U)$, and $U = V_1 \oplus V_2$.
- Consider $T|_{V_1}$, $T|_{V_2}$.

• Consider
$$T|_{V_1}, T|_{V_2}$$
.
 $U \in U$, $U = U_1 + U_2$.
 $Tu = Tu_1 + Tu_2$, $u_1 \in V_1$
 $u_2 \in V_2$.

- Let $T \in \mathcal{L}(U)$, and $U = V_1 \oplus V_2$.
- Consider $T|_{V_1}$, $T|_{V_2}$.
- If $T(V_1) \subseteq V_1$, $T(V_2) \subseteq V_2$, then in a basis $B = B_{V_1} \cup B_{V_2}$, $[T]_B^B = ?$

Ex: let dim (0)=5, dim
$$(V_1)=2$$
, dim $(V_2)=3$.

- Let $T \in \mathcal{L}(U)$, and $U = V_1 \oplus V_2$.
- Consider $T|_{V_1}$, $T|_{V_2}$.
- ullet If $T(V_1)\subseteq V_1,\,T(V_2)\subseteq V_2$, then in a basis $B=B_{V_1}\cup B_{V_2},\,[T]_B^B=?$

$$[T]_{B}^{B} = \begin{bmatrix} [T_{V_{1}}]_{B_{V_{1}}}^{B_{V_{1}}} & 0 \\ 0 & [T_{V_{2}}]_{B_{V_{2}}}^{B_{V_{2}}} \end{bmatrix},$$

 $[T]_B^B$ becomes block-diagonal.

- ullet Let $T\in \mathcal{L}(U)$, and $U=V_1\oplus V_2$.
- Consider $T|_{V_1}$, $T|_{V_2}$.
- ullet If $T(V_1)\subseteq V_1,\,T(V_2)\subseteq V_2$, then in a basis $B=B_{V_1}\cup B_{V_2}$, $[T]_B^B=?$

$$[T]_{B}^{B} = \begin{bmatrix} [T_{V_{1}}]_{B_{V_{1}}}^{B_{V_{1}}} & 0 \\ 0 & [T_{V_{2}}]_{B_{V_{2}}}^{B_{V_{2}}} \end{bmatrix},$$

 $[T]_B^B$ becomes block-diagonal.

Definition: Let $T \in \mathcal{L}(U)$. If V is a subspace of U such that $\forall u \in V, Tu \in V$, then V is said to be an *invariant subspace* of T, or T-invariant subspace.

- ullet Let $T \in \mathcal{L}(U)$, and $U = V_1 \oplus V_2$.
- Consider $T|_{V_1}$, $T|_{V_2}$.
- If $T(V_1) \subseteq V_1$, $T(V_2) \subseteq V_2$, then in a basis $B = B_{V_1} \cup B_{V_2}$, $[T]_B^B = ?$

$$[T]_{B}^{B} = \begin{bmatrix} [T_{V_{1}}]_{B_{V_{1}}}^{B_{V_{1}}} & 0\\ 0 & [T_{V_{2}}]_{B_{V_{2}}}^{B_{V_{2}}} \end{bmatrix},$$

 $[T]_B^B$ becomes block-diagonal.

- **Definition:** Let $T \in \mathcal{L}(U)$. If V is a subspace of U such that $\forall u \in V, Tu \in V$, then V is said to be an *invariant subspace* of T, or T-invariant subspace.
- U and $\{\theta\}$ are trivial examples of invariant subspaces.

$$A \in \mathbb{R}^{n \times n}$$
, $A \in \mathcal{L}(\mathbb{R}^n)$
 $C(A)$, Let $y \in C(A^T)$, $Ay \in C(A)$.
 $\overline{C(A^T)}$: Let $y \in C(A^T) \Rightarrow y = A^T \times Ay = AZ$.

- ullet Let $T\in \mathcal{L}(U)$, and $U=V_1\oplus V_2$.
- Consider $T|_{V_1}$, $T|_{V_2}$.
- ullet If $T(V_1)\subseteq V_1, T(V_2)\subseteq V_2$, then in a basis $B=B_{V_1}\cup B_{V_2}$, $[T]_B^B=?$

$$[T]_{B}^{B} = \begin{bmatrix} [T_{V_{1}}]_{B_{V_{1}}}^{B_{V_{1}}} & 0 \\ 0 & [T_{V_{2}}]_{B_{V_{2}}}^{B_{V_{2}}} \end{bmatrix},$$

 $[T]_B^B$ becomes block-diagonal.

- **Definition:** Let $T \in \mathcal{L}(U)$. If V is a subspace of U such that $\forall u \in V, Tu \in V$, then V is said to be an *invariant subspace* of T, or T-invariant subspace.
- U and $\{\theta\}$ are trivial examples of invariant subspaces.
- Other examples include N(T), R(T).

ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.

- ullet Let V be a 1-dimensional invariant subspace for $T\in \mathcal{L}(U)$.

- Let V be a 1-dimensional invariant subspace for $T \in \mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., x = 0

- Let V be a 1-dimensional invariant subspace for $T \in \mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore Tx =

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u$

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- ullet Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2 u \Rightarrow Tu = \frac{a_2}{a_1} u$.
- We usually write this as $Tu = \lambda u$,

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u =$

- Let V be a 1-dimensional invariant subspace for $T \in \mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2 u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.

• Note that if
$$Tu = \lambda u$$
, then $(T - \lambda I)u = \theta$.
$$\left(\begin{array}{c} T - \lambda I \end{array} \right) \left(\begin{array}{c} \hat{G} \end{array} \right) = \begin{array}{c} \theta \end{array}$$

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u = \theta$.
- Thus $(T \lambda I)$ is

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2 u \Rightarrow Tu = \frac{a_2}{a_1} u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u = \theta$.
- ullet Thus $(T-\lambda I)$ is not invertible, and det

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u = \theta$.
- ullet Thus $(T-\lambda I)$ is not invertible, and $det([T]^{eta}_{eta}-\lambda I_n)=$

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u = \theta$.
- Thus $(T \lambda I)$ is not invertible, and $det([T]^{\beta}_{\beta} \lambda I_n) = 0$.

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- ullet Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2 u \Rightarrow Tu = \frac{a_2}{a_1} u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u = \theta$.
- Thus $(T \lambda I)$ is not invertible, and $det([T]^{\beta}_{\beta} \lambda I_n) = 0$.
- Define $c(\lambda) = det([T]_{\beta}^{\beta} \lambda I)$. Eigenvalues of T are roots of the polynomial $c(\lambda)$, and the eigenvector is a non-zero vector belonging to $\mathcal{N}(T \lambda I)$.

- ullet Let V be a 1-dimensional invariant subspace for $T\in\mathcal{L}(U)$.
- $V = \{ku \mid \forall k \in \mathbb{F}\}, u \neq \theta$. Let $x \neq \theta, x \in V$, i.e., $x = a_1 u$ for some non-zero $a_1 \in \mathbb{F}$.
- Since V is T-invariant, $Tx \in V$, therefore $Tx = a_2u \Rightarrow Tu = \frac{a_2}{a_1}u$.
- We usually write this as $Tu = \lambda u$, and we call λ as the eigenvalue associated with eigenvector u.
- Note that if $Tu = \lambda u$, then $(T \lambda I)u = \theta$.
- Thus $(T \lambda I)$ is not invertible, and $det([T]^{\beta}_{\beta} \lambda I_n) = 0$.
- Define $c(\lambda) = det([T]^{\beta}_{\beta} \lambda I)$. Eigenvalues of T are roots of the polynomial $c(\lambda)$, and the eigenvector is a non-zero vector belonging to $\mathcal{N}(T \lambda I)$.
- ullet The polynomial c is called the **characteristic polynomial** of T.

• For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e =$

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e = diag(\lambda_1, \dots, \lambda_n)$.

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e = diag(\lambda_1, \dots, \lambda_n)$.
- Note that for any other basis β , $[T]^{\beta}_{\beta}[v_i]_{\beta} =$

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e = diag(\lambda_1, \dots, \lambda_n)$.
- Note that for any other basis β , $[T]^{\beta}_{\beta}[v_i]_{\beta} = \lambda_i [v_1]_{\beta}$.

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e = diag(\lambda_1, \dots, \lambda_n)$.
- Note that for any other basis β , $[T]^{\beta}_{\beta}[v_i]_{\beta} = \lambda_i [v_1]_{\beta}$.
- Thus,

$$[T]_{\beta}^{\beta} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ [v_1]_{\beta} & [v_2]_{\beta} & \dots & [v_n]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \lambda_1 [v_1]_{\beta} & \lambda_2 [v_2]_{\beta} & \dots & \lambda_n [v_n]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e = diag(\lambda_1, \dots, \lambda_n)$.
- Note that for any other basis β , $[T]^{\beta}_{\beta}[v_i]_{\beta} = \lambda_i [v_1]_{\beta}$.
- Thus,

$$[T]_{\beta}^{\beta} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ [v_{1}]_{\beta} & [v_{2}]_{\beta} & \dots & [v_{n}]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \lambda_{1} [v_{1}]_{\beta} & \lambda_{2} [v_{2}]_{\beta} & \dots & \lambda_{n} [v_{n}]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$= \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ [v_{1}]_{\beta} & [v_{2}]_{\beta} & \dots & [v_{n}]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \underbrace{\begin{bmatrix} \lambda_{1} & 0 & \dots & \vdots \\ 0 & \lambda_{2} & \dots & 0 \\ 0 & \dots & \vdots & \lambda_{n} \end{bmatrix}}_{\beta}$$

- For $T \in \mathcal{L}(U)$, dim(U) = n, if a diagonal matrix representation is preferred, we need an *eigenbasis* of the linear operator: $e = \{v_1, \dots, v_n\}$.
- Since $Tv_i = \lambda_i v_i$, $[T]_e^e = diag(\lambda_1, \dots, \lambda_n)$.
- Note that for any other basis β , $[T]^{\beta}_{\beta}[v_i]_{\beta} = \lambda_i [v_1]_{\beta}$.
- Thus,

$$[T]_{\beta}^{\beta} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ [v_{1}]_{\beta} & [v_{2}]_{\beta} & \dots & [v_{n}]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \lambda_{1} [v_{1}]_{\beta} & \lambda_{2} [v_{2}]_{\beta} & \dots & \lambda_{n} [v_{n}]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ [v_{1}]_{\beta} & [v_{2}]_{\beta} & \dots & [v_{n}]_{\beta} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}}_{E} \underbrace{\begin{bmatrix} \lambda_{1} & 0 & \dots & \vdots \\ 0 & \lambda_{2} & \dots & 0 \\ 0 & \dots & \vdots & \lambda_{n} \end{bmatrix}}_{\Lambda}$$

$$[T]_{\beta}^{\beta} E = E\Lambda \Rightarrow \Lambda = [T]_{F}^{E} = E^{-1} [T]_{\beta}^{\beta} E$$

• Eigenvalues of T are roots of $det([T]^{\beta}_{\beta} - \lambda I_n)$, and corresponding eigenvectors are linearly independent vectors in $\mathcal{N}(T - \lambda I)$.

Examples

 $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$

Results on Eigenvectors and Eigenvalues

• Proposition 19: Let $\lambda_1, \ldots, \lambda_m$ be distinct eigenvalues of $T \in \mathcal{L}(U)$. Then the eigenvectors v_1, \ldots, v_m associated with these eigenvalues are linearly independent.