Creating isochrones using TA-DA

T. O'Neill, 4/2021

Instructions for how to use the IDL program TA-DA to generate photometry for isochrones from synthetic spectra

Home page: [TA-DA - A Tool for Astrophysical Data Analysis

https://users.astro.ufl.edu/~ndario/TADA/index.html

- Manual: https://users.astro.ufl.edu/~ndario/TADA/downloads/tada_manual.pdf
- Paper: https://iopscience.iop.org/article/10.1088/0004-6256/144/6/176

Steps:

- Launch UVA Remote Desktop
 - Remote desktop access instructions:
 https://virginia.service-now.com/its/?id=itsweb_kb_article&sys_id=f9dc08eddb1d1380f0
 32f1f51d96192d
 - Remote desktop has IDL installed with requisite licenses
- Transfer files to remote desktop using OneDrive
 - o Remote desktop already has OneDrive installed for cloud based file transfer
 - Set up One Drive on my laptop to be able to retrieve isochrones:
 https://virginia.service-now.com/its/?id=itsweb_kb_article&sys_id=2b0ebf45db20d304f0
 32f1f51d9619c6
 - Added file folder "tada_data" and file "tada.sav" (downloaded from TA-DA website) to my local OneDrive folder, waited until it synced to remote desktop
- Launch IDL and open TA-DA
 - In IDL navigated to OneDrive folder's directory
 - IDL command: cd,'/path/'
 - Launched TA-DA
 - IDL command: tada
 - Will open a widget which is the program
 - o Instructions on how to navigate widget are in manual linked above
 - For following steps, used same parameters as specified in Schamlz et al. (2008) and Gouliermis et al. (2012)
- Select tab "Evolutionary Models"
 - Select "Evolutionary models" option
 - Choose evolutionary model: Pisa PMS (mediumY, ML1.20, XD4E5)
 - Meaning: Y = 0.254, Alpha: 1.2, X_D (initial abundance of D) = 4×10^{-5}
 - Choose metallicity [M/H] = -0.6

- Select "Specific Isochrones"
 - List desired ages 0.5 through 5.5 Myr in 0.5 Myr steps
- o Click submit
- Select tab "Synthetic Photometry"
 - Select Atmosphere models: "Kurucz"
 - These are Kurucz (1993) models
 - Metallicity: -0.65
 - Allow extrapolation for log g if needed
 - Reddening Law: Cardelli (1989)
 - Input Av = 0.3
 - Input Rv = 3.1
 - o Distance modulus: 18.95 mag
 - Select photometric bands to perform photometry:
 - Instrument: ACSWFC
 - Add bands: "F555W" and "F814W"
 - o Click submit
- Plot window launches automatically
 - o Can plot 555 814 vs 555, etc to visually confirm that worked
 - Close window
- Select tab "Synthetic photometry results"
 - Select units for synthetic photometry: Vegamag
 - Click "save synthetic photometry to file" and save to OneDrive as .txt
 - File includes: Teff, luminosity, mass, age, g, radius, 555 and 814 magnitudes
 - o Can then retrieve this file on your local machine and proceed with analysis