极值图论笔记 (编纂中)

授课人: 彭兴, 窦春阳; 编辑: 章亦流 2025 年 3 月 9 日

1 Lecture 1: Turán Theorem and Erdös-Stone-Simonovits Theorem

定义 1 (Turán 数).	
定理 1.1 (Mantel, 1902).	
证明.	
证明.	
证明.	
定理 1.2 (Turán, 1941).	
证明.	
Zykov.	
定理 1.3 (Erdös-Stone-Simonovits).	
引理 1.4.	
证明.	
定理 <i>1.3</i> 的证明.	

2 Lecture 2: Erdös-Stone-Simonovits Theorem and Szemerédi's Regularity Lemma

定义 2 (边密度). 顶点子集 $A,B \subset V$ 间的边密度 $d(A,B) := \frac{e(A,B)}{|A|\,|B|}$.

定义 3 $(\varepsilon$ -正则)。对于顶点子集 $A,B \subset V$,称 (A,B) 是 ε -正则对,若 $\forall A' \subset A,B' \subset B$,其中 $\left|A'\right| \geq \varepsilon \left|A\right|,\left|B'\right| \geq \varepsilon \left|B\right|$,都有 $\left|d(A',B')-d(A,B)\right| \leq \varepsilon$. 称分划 $P:V = \bigsqcup_{i=0}^k V_i$ 是 ε -正则的,若 $\sum_{(V_i,V_j) \in \mathbb{Z}} \frac{\left|V_i\right|\left|V_j\right|}{n^2} \leq \varepsilon$.

称分划 $P:V=\coprod_{i=0}^k V_i$ 为 ε -正则的均分,若 $|V_1|=\cdots=|V_k|$, $|V_0|\leq \varepsilon n$,且 $\{(V_i,V_j)|V_i,V_j\in P\}$ 中的非 ε -正则对有 $\leq \varepsilon k^2$ 个.

定理 2.1 (Szemerédi 正则性引理). $\forall \varepsilon > 0 \forall m \in \mathbb{N}_+ \exists n_0(\varepsilon, m) \exists M \in \mathbb{N}_+$ 使得对于任意顶点数 $n \geq n_0$ 的图 G, 都有分划 $V = \bigsqcup^k V_i$, 满足

- $(1) |V_0| \leq \varepsilon n$
- (2) $|V_1| = \cdots = |V_k|$
- (4) $\{(V_i, V_j)|V_i, V_j \in P\}$ 中的非 ε -正则对有至少一个, 至多 εk^2 个. 即 P 是一个 ε -正则的均分.

定义 4 (缩略图和爆破图). 给定 $d \in (0,1]$, 对于 ε -正则均分 $V = \bigsqcup_{i=0}^{k} V_i$, 记 $\ell = |V_k|$, 构造图 $R, V(R) = \{v_1, \ldots, v_k\}$, $E(R) = \{v_i v_j | (V_i, V_j) \varepsilon$ -正则且 $d(V_i, V_j) \ge d\}$, 则称 $R \not\in G$ 的参数 ε, ℓ, d 的缩略图. 对于 $s \in \mathbb{N}_+$, R 的爆破图 R(s) 即 k 部 s 个点 A_1, \ldots, A_k , 其中 A_i, A_j 之间完备 $\iff v_i v_j \in E(R)$.

引理 2.2 (图嵌入引理). $\forall d \in (0,1], \Delta \geq 1, \exists \varepsilon_0(d,\Delta)$ 使得: 若图 G,H 满足 $(1)\Delta(H) \leq \Delta$; (2)G 有参数为 $\varepsilon \leq \varepsilon_0, \ell \geq 2s\Delta/d$ 和 d 的缩略图 $R;(3)H \subset R(s)$, 则 $H \subset G$.

定理*1.3*的另一证明.

定义 5.

引理 2.3.

引理 2.4.

证明. □

定理*2.1*的证明.

定理 2.5.

3 Lecture 3: Embedding Lemma, Counting Lemma and Removal Lemma

引理 3.1. (A,B) 是 ε -正则对,令 d=d(A,B),若有 $Y\subset B, |Y|\geq \varepsilon\,|B|$,则 A 中有 $>(1-\varepsilon)\,|A|$ 个顶点都在 Y 中有 $\geq (d-\varepsilon)\,|Y|$ 个邻点.

证明. 取 $X\subset A, |X|\geq \varepsilon\,|A|$ 则由 ε -正则知 $|d(X,Y)-d|\leq \varepsilon,$ 故 $e(X,Y)\geq (d-\varepsilon)\,|X|\,|Y|$