Computer Archetecture Midterm

Ziyi "Jason" Lan

Specification Document

Inputs and Outputs

There is one input and one output for the bike light. The single input is a button that is used to change between different operational modes. The output is a LED which performs different behaviors based on the input to the system.

• Operational Modes

As shown as above, the system output is in the cycle of four modes:

- oOff: the LED is turned off.
- oOn: the LED is turned on at normal brightness.
- oBlink: the LED is blinking between on and off at 1.8Hz.
- ODim: the LED is turned on at a light brightness.

• FSM

Block Diagram

Schematic

Input Conditioner

- Specification
 The input conditioner buffers the noisy signal (button press) in 33 clock cycles and outputs a smooth signal.
- Inputso1 bit noisy signaloclock
- Output

o1 bit stable signal

Cost

Name	Number	Cost
D Flip Flop	4	4*13=52
6 Bit Adder	1	36
2-1 Mux	1	7
2-1 And	1	3
Check 33	1	6
2-1 XOR	1	3
Total		117

One Bit Full Adder

• Specification

This one bit adder takes a one bit number and a carry-in, computes their sum and outputs the sum as well as sets the carry-out flag.

• Input

- o An one bit number
- o An one bit carry-in

Output

- \circ Sum
- o Carryout

Cost

Name	Number	Cost
2-1 AND	1	3

2-1 XOR	1	3
Total		6

Six-Bit Full Adder

• Specification

The 6-bit adder in the input conditioner takes in a five bit number, adds one to it and outputs the sum and carryout. It is started by adding one to the LSB.

Input

o "1"

o A 6-bit number

Output

oSum

oCarry-out

Cost

Name	Number	Cost
One-bit Adder	5	6*6
Total		36

Check 33

- Specification
 - Checks whether the input is 33 by comparing each bit.
- Input
 - o A 6-bit number
- Output
 - o State (whether is 33)
- Cost

Name	Number	Cost
6-1 AND	1	7
Total		7

Instruction Decoder

- Specification
 - The decoder takes the 4-bit one-hot output from the 4-stage ring counter and selects the corresponding state of LED.
- Input
 - o Four-Stage Ring Counter output
- Output

o LED Instruction

Cost

Name	Number	Cost
2-1 AND	4	12
4-1 OR	1	5
Total		17

Frequency Change Module

Specification

This module uses 12 D Flip Flops to reset the frequency of the clock. Each single DFF reduce the frequency by half. Since the clock is 2^15 Hz and the desired frequency for blink to be 8Hz and frequency for dim to be 128Hz, we need $(2^15/8=2^12)$ 12 DFFs for blink and $(2^15/128=2^8)$ 8 DFFs for dim.

Input

o Clock Signal: 2^15 Hz

• Output

o Blink Signal: 8Hzo Dim Signal: 128Hz

Cost

Name	Number	Cost
DFF	12	156
Total		156

Total Cost

Name	Number	Cost
Input	1	117
Conditioner		
Instruction	1	17
Decoder		
Frequency	1	156
Changer		
Four-Stage	1	83
Ring Counter		
Clock	1	2
Total		373