# First-Order Differential Equations

CHAPTER 2

## CHAPTER CONTENTS

- 2.1 Solution Curves Without a Solution
- 2.2 Separable Variables
- 2.3 Linear Equations
- 2.4 Exact Equations
- 2.5 Solutions by Substitutions
- 2.6 A Numerical Methods (X)
- 2.7 Linear Models
- 2.8 Nonlinear Model
- 2.9 Modeling with Systems of First-Order DEs (X)

## 2.1 Solution Curve Without a Solution

#### Introduction

Begin our study of first-order DE with analyzing a DE qualitatively.

## Slope

A derivative dy/dx of y = y(x) gives slopes of tangent lines at points.

## Lineal Element

Assume dy/dx = f(x, y(x)). The value f(x, y) represents the slope of a line, or a line element is called a **lineal element**. See Fig 2.1.1.



(a) f(2, 3) = 1.2 is slope of lineal element at (2, 3)

$$dy/dx = 0.2xy$$
then  $f(x, y) = 0.2xy$ 



(b) A solution curve passing through (2, 3)

**FIGURE 2.1.1** Solution curve is tangent to lineal element at (2, 3)

#### Direction Field

If we evaluate f over a rectangular grid of points, and draw a lineal element at each point (x, y) of the grid with slope f(x, y), then the collection is called a **direction field** or a **slope field** of the following DE

$$dy/dx = f(x, y)$$

# **Example 1 Direction Field**

- For the DE dy/dx = 0.2xy,
- The direction field of dy/dx = 0.2xy is shown in Fig 2.1.2(a) and for comparison with Fig 2.1.2(a), some representative graphs of this family are shown in Fig 2.1.2(b).



(a) Direction field for dy/dx = 0.2xy



(b) Some solution curves in the family  $y = ce^{0.1x^2}$ 

**FIGURE 2.1.2** Direction field and solution curves in Example 1

# **Example 2 Direction Field**

Use a direction field to draw an approximate solution curve for  $dy/dx = \sin y$ , y(0) = -3/2.

#### **Solution:**

Recall from the continuity of f(x, y) and  $\partial f/\partial y = \cos y$ . Theorem 1.2.1 guarantees the existence of a unique solution curve passing any specified points in the plane. Now split the region containing (0, -3/2) into grids. We calculate the lineal element of each grid to obtain Fig 2.1.3.



**FIGURE 2.1.3** Direction field for  $dy/dx = \sin y$  in Example 2

## Increasing/Decreasing

If dy/dx > 0 for all x in I, then y(x) is increasing in I.

If dy/dx < 0 for all x in I, then y(x) is decreasing in I.

## DEs Free of the Independent variable

$$dy/dx = f(y) \tag{1}$$

is called **autonomous**. We shall assume f and f' are continuous on some I.

### Critical Points

$$dy/dx = f(y)$$
 (1)

The zeros of f in (1) are important. If f(c) = 0, then c is a **critical point**, **equilibrium point** or **stationary point**.

- Substitute y(x) = c into (1), then we have 0 = f(c) = 0.
  - If c is a critical point, then y(x) = c, is a solution of (1).
- A constant solution y(x) = c of (1) is called an equilibrium solution.

## Example 3 An Autonomous DE

## The following DE

$$dP/dt = P(a - bP),$$

where a and b are positive constants, is autonomous.

From f(P) = P(a - bP) = 0, the equilibrium solutions are P(t) = 0 and P(t) = a/b.

Put the critical points on a vertical line. The arrows in Fig 2.1.4 indicate the algebraic sign of f(P) = P(a - bP). If the sign is positive or negative, then P is increasing or decreasing on that interval.

$$\frac{dy/dx = f(y)}{dP/dt = f(P)} (1)$$

$$f(P) = P(a - bP) = 0$$
, the equilibrium solutions are  $P(t) = 0$  and  $P(t) = a/b$ .



# **FIGURE 2.1.4** Phase portrait for Example 3

### Solution Curves

If we guarantee the existence and uniqueness of solution of (1), through any point  $(x_0, y_0)$  in R, there is only one solution curve. See Fig 2.1.5(a).

• Suppose (1) possesses exactly two critical points,  $c_1$ , and  $c_2$ , where  $c_1 < c_2$ . The graph of the equilibrium solution  $y(x) = c_1$ ,  $y(x) = c_2$  are horizontal lines and split R into three regions, say  $R_1$ ,  $R_2$  and  $R_3$  as in Fig 2.1.5(b).





(b) Subregions  $R_1$ ,  $R_2$ , and  $R_3$ 

**FIGURE 2.1.5** Lines  $y(x) = c_1$  and  $y(x) = c_2$  partition R into three horizontal subregions

- Some discussions without proof:
  - (1) If  $(x_0, y_0)$  in  $R_i$ , i = 1, 2, 3, when y(x) passes through  $(x_0, y_0)$ , will remain in the same subregion. See Fig 2.1.5(b).
  - (2) By continuity of f, f(y) can not change signs in a subregion.
  - (3) Since dy/dx = f(y(x)) is either positive or negative in  $R_i$ , a solution y(x) is **monotonic**.

(4) If y(x) is **bounded above** by  $c_1$ ,  $(y(x) < c_1)$ , the graph of y(x) will approach  $y(x) = c_1$ ;

If  $c_1 < y(x) < c_2$ , it will approach  $y(x) = c_1$  and  $y(x) = c_2$ ;

If  $c_2 < y(x)$ , it will approach  $y(x) = c_2$ ;

# Example 4 Example 3 Revisited

Referring to example 3, P = 0 and P = a/b are two critical points, so we have three intervals for P:

$$R_1: (-\infty, 0), R_2: (0, a/b), R_3: (a/b, \infty)$$

Let  $P(0) = P_0$  and when a solution pass through  $P_0$ , we have three kind of graph according to the interval where  $P_0$  lies on. See Fig 2.1.6.



**FIGURE 2.1.6** Phase portrait and solution curves in each of the three subregions in Example 4

# Example 5 Solution Curves of an Autonomous DE

The DE:  $dy/dx = (y-1)^2$  possesses the single critical point 1. From Fig 2.1.7(a), we conclude a solution y(x) is increasing in  $-\infty < y < 1$  and  $1 < y < \infty$ , where  $-\infty < x < \infty$ . See Fig 2.1.7.

The solutions of the following IVPs are shown in Fig.s 2.1.7(b) and 2.1.7(c), respectively.

$$dy/dx = (y-1)^2$$
,  $y(0) = -1$  (< 1)

$$dy/dx = (y-1)^2$$
,  $y(0) = 2$  (> 1)



**FIGURE 2.1.7** Behavior of solutions near y = 1 in Example 5

## **Attractors and Repellers**

- See Fig 2.1.8(a). When  $y_0$  lies on either side of c, it will approach c. This kind of critical point is said to be asymptotically stable, also called an attractor.
- See Fig 2.1.8(b). When  $y_0$  lies on either side of c, it will move away from c. This kind of critical point is said to be **unstable**, also called a **repeller**.
- See Fig 2.1.8(c) and (d). When  $y_0$  lies on one side of c, it will be attracted to c and repelled from the other side. This kind of critical point is said to be **semi-stable**.



**FIGURE 2.1.8** Critical point *c* is an attractor in (a), a repeller in (b), and semi-stable in (c) and (d)



**FIGURE 2.1.6** Phase portrait and solution curves in each of the three subregions in Example 4



**FIGURE 2.1.7** Behavior of solutions near y = 1 in Example 5

## Autonomous DEs and Direction Fields

Fig 2.1.9 shows the direction field of dy/dx = 2(y-1).

It can be seen that lineal elements passing through points on any **horizontal** line must have the same slope. Since the DE has the form dy/dx = f(y), the slope depends only on y.



**FIGURE 2.1.9** Direction field for an autonomous DE