Cuaternioni

Mihai-Sorin Stupariu

Sem. I, 2023 - 2024

Problematizare - generalități

Când este considerată o clasă de transformări:

- (i) de câte informații numerice este nevoie pentru a indica o transformare?
- (ii) există o structură algebrică subiacentă?

1. Translații

1. Translații

Context 2D, respectiv 3D:

- 2, respectiv 3 numere;
- $(\mathbb{R}^2, +)$, respectiv $(\mathbb{R}^3, +)$

O rotație 2D (originea este presupusă punct fix) este complet caracterizată de ${\bf 1}$ număr: unghiul rotației.

O rotație 2D (originea este presupusă punct fix) este complet caracterizată de **1** număr: unghiul rotației.

Avem

$$R_{\theta}(e_1) = (\cos \theta, \sin \theta) = \cos \theta \cdot e_1 + \sin \theta \cdot e_2$$

$$R_{\theta}(e_2) = (-\sin \theta, \cos \theta) = -\sin \theta \cdot e_1 + \cos \theta \cdot e_2$$

Așadar, R_{θ} este complet caracterizată de matricea

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right).$$

O rotație 2D (originea este presupusă punct fix) este complet caracterizată de 1 număr: unghiul rotației.

Avem

$$R_{\theta}(e_1) = (\cos \theta, \sin \theta) = \cos \theta \cdot e_1 + \sin \theta \cdot e_2$$

$$R_{\theta}(e_2) = (-\sin \theta, \cos \theta) = -\sin \theta \cdot e_1 + \cos \theta \cdot e_2$$

Așadar, R_{θ} este complet caracterizată de matricea

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right).$$

Matricea R_{θ} verifică relația $R_{\theta} \cdot R_{\theta}^{T} = \mathbb{I}_{2}$.

2. Rotații 2D. De reținut

- pentru a indica o rotație 2D este necesară / suficientă o singură informație numerică,
- a descrie o rotație ⇔
 - \Leftrightarrow a indica modul în care este transformat un reper ortonormat în alt reper ortonormat păstrând orientarea \Leftrightarrow
 - \Leftrightarrow a indica matricea de transformare între repere, în cazul 2D aceasta este de forma $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Definiție (i) O matrice pătratică $A \in \mathcal{M}_n(\mathbb{R})$ se numește **ortogonală** dacă $A \cdot A^T = A^T \cdot A = \mathbb{I}_n$.

Definiție (i) O matrice pătratică $A \in \mathcal{M}_n(\mathbb{R})$ se numește **ortogonală** dacă $A \cdot A^T = A^T \cdot A = \mathbb{I}_n$.

Definiție (ii) $O(n) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A \cdot A^T = A^T \cdot A = \mathbb{I}_n\}.$

Definiție (i) O matrice pătratică $A \in \mathcal{M}_n(\mathbb{R})$ se numește **ortogonală** dacă $A \cdot A^T = A^T \cdot A = \mathbb{I}_n$.

Definiție (ii) $O(n) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A \cdot A^T = A^T \cdot A = \mathbb{I}_n\}.$ Observații.

Definiție (i) O matrice pătratică $A \in \mathcal{M}_n(\mathbb{R})$ se numește **ortogonală** dacă $A \cdot A^T = A^T \cdot A = \mathbb{I}_n$.

Definiție (ii) $O(n) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A \cdot A^T = A^T \cdot A = \mathbb{I}_n\}.$ Observatii.

- (a) $(O(n), \cdot)$ este grup: **grupul ortogonal de ordinul** n.
- (b) $A \in O(n) \Rightarrow \det A \in \{\pm 1\}$, după cum păstrează sau schimbă orientarea, pentru $\det A = 1$, respectiv $\det A = -1$.

Definiție (i) O matrice pătratică $A \in \mathcal{M}_n(\mathbb{R})$ se numește **ortogonală** dacă $A \cdot A^T = A^T \cdot A = \mathbb{I}_n$.

Definiție (ii) $O(n) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A \cdot A^T = A^T \cdot A = \mathbb{I}_n\}.$

Observații.

- (a) $(O(n), \cdot)$ este grup: **grupul ortogonal de ordinul** n.
- (b) $A \in O(n) \Rightarrow \det A \in \{\pm 1\}$, după cum păstrează sau schimbă orientarea, pentru $\det A = 1$, respectiv $\det A = -1$.

Definiție (iii) $SO(n) = \{A \in O(n) \mid \det A = 1\}$. Se numește **grupul** special ortogonal de ordinul n.

Definiție (i) O matrice pătratică $A \in \mathcal{M}_n(\mathbb{R})$ se numește **ortogonală** dacă $A \cdot A^T = A^T \cdot A = \mathbb{I}_n$.

Definiție (ii) $O(n) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A \cdot A^T = A^T \cdot A = \mathbb{I}_n\}.$

Observații.

- (a) $(O(n), \cdot)$ este grup: **grupul ortogonal de ordinul** n.
- (b) $A \in O(n) \Rightarrow \det A \in \{\pm 1\}$, după cum păstrează sau schimbă orientarea, pentru $\det A = 1$, respectiv $\det A = -1$.

Definiție (iii) $SO(n) = \{A \in O(n) \mid \det A = 1\}$. Se numește grupul special ortogonal de ordinul n.

Observații.

(c) SO(n) este subgrup al lui O(n).

2. Rotații 2D și grupul SO(2)

Am văzut că unei rotații R_{θ} de unghi θ îi corespunde o matrice $M_{R_{\theta}}$ din SO(2).

2. Rotații 2D și grupul SO(2)

- Am văzut că unei rotații R_{θ} de unghi θ îi corespunde o matrice $M_{R_{\theta}}$ din SO(2).
- ▶ Şi reciproc este adevărat: se poate arăta că orice matrice $A \in SO(2)$ corespunde unei rotații de unghi convenabil.

2. Rotații 2D și grupul SO(2)

- Am văzut că unei rotații R_{θ} de unghi θ îi corespunde o matrice $M_{R_{\theta}}$ din SO(2).
- ▶ Şi reciproc este adevărat: se poate arăta că orice matrice $A \in SO(2)$ corespunde unei rotații de unghi convenabil.
- ▶ Grupul \mathcal{R}_{2D} al rotațiilor 2D este izomorf cu un grup de matrice

$$(\mathcal{R}_{2D}, \circ) \simeq (SO(2), \cdot).$$

► Rotațiile 2D pot fi interpretate cu ajutorul numerelor complexe:

$$(\cos \theta, \sin \theta) \equiv \cos \theta + i \sin \theta = e^{i\theta}.$$

Rotațiile 2D pot fi interpretate cu ajutorul numerelor complexe:

$$(\cos \theta, \sin \theta) \equiv \cos \theta + i \sin \theta = e^{i\theta}.$$

► Cercul / sfera 1-dimensională

$$S^{1} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1\} = \{z \in \mathbb{C} \mid |z| = 1\}.$$

Rotațiile 2D pot fi interpretate cu ajutorul numerelor complexe:

$$(\cos \theta, \sin \theta) \equiv \cos \theta + i \sin \theta = e^{i\theta}.$$

► Cercul / sfera 1-dimensională

$$S^{1} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1\} = \{z \in \mathbb{C} \mid |z| = 1\}.$$

 \triangleright (S^1, \cdot) este grup.

Rotațiile 2D pot fi interpretate cu ajutorul numerelor complexe:

$$(\cos \theta, \sin \theta) \equiv \cos \theta + i \sin \theta = e^{i\theta}.$$

► Cercul / sfera 1-dimensională

$$S^{1} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1\} = \{z \in \mathbb{C} \mid |z| = 1\}.$$

- \triangleright (S^1 , ·) este grup.
- Avem izomorfisme naturale

$$(\mathcal{R}_{2D}, \circ) \simeq (SO(2), \cdot) \simeq (S^1, \cdot).$$

$$R_{\theta} \leftrightarrow \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \leftrightarrow \cos \theta + i \sin \theta.$$

Remember: corpul $\mathbb C$ al numerelor complexe

Construcție: Se consideră mulțimea \mathbb{R}^2 , înzestrată cu două operații:

"+":
$$(a,b)+(a',b')=(a+a',b+b')$$

"": $(a,b)\cdot(a',b')=(aa'-bb',ab'+a'b)$

În raport cu cele două operații se obține un corp comutativ.

Remember: corpul $\mathbb C$ al numerelor complexe

Construcție: Se consideră mulțimea \mathbb{R}^2 , înzestrată cu două operații:

"+":
$$(a,b)+(a',b')=(a+a',b+b')$$

":": $(a,b)\cdot(a',b')=(aa'-bb',ab'+a'b)$

În raport cu cele două operații se obține un corp comutativ.

Notații:

$$1\equiv (1,0), \qquad i\equiv (0,1)$$

și folosind aceste notații orice pereche (a, b) se reprezintă sub forma a + ib.

Are loc relația fundamentală $i^2 = -1$.

Corpul $(\mathbb{C}, +, \cdot)$.

Remember: corpul $\mathbb C$ al numerelor complexe

Proprietăți și notații

- (i) Pentru $z = a + ib \in \mathbb{C}$, modulul lui z este $|z| = \sqrt{a^2 + b^2}$
- (ii) Dacă $z=a+ib\neq 0$, are loc relația $z^{-1}=\frac{\bar{z}}{|z|^2}$, unde $\bar{z}=a-ib$ este conjugatul lui z
- (iii) Orice număr complex $z \neq 0$ se scrie în mod unic sub forma

$$z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}, \qquad \rho = |z|.$$

3. Rotații 3D - generalități

Observație 1.

A indica o rotație $3D \Leftrightarrow$

 \Leftrightarrow a indica o schimbare de repere ortonormate cu păstrarea orientării

 \Leftrightarrow a indica o matrice din grupul SO(3)

De fapt

$$(\mathcal{R}_{3D}, \circ) \simeq (\mathrm{SO}(3), \cdot).$$

3. Rotații 3D - generalități

Observație 1.

A indica o rotație $3D \Leftrightarrow$

- \Leftrightarrow a indica o schimbare de repere ortonormate cu păstrarea orientării
- \Leftrightarrow a indica o matrice din grupul SO(3)

De fapt

$$(\mathcal{R}_{3D}, \circ) \simeq (\mathrm{SO}(3), \cdot).$$

Observație 2.

Orice matrice $A \in SO(3)$ (i.e. orice rotație în context 3D) admite o valoare proprie reală și un vector propriu (axă a rotației) . De asemenea, rotația este caracterizată de un unghi, măsurat în planul perpendicular pe axă. Pentru rotația de unghi θ și axă (v1, v2, v3):

$$glm :: rotate(\theta, vec3(v1, v2, v3))$$

3. Rotații 3D - problematizare: structura grupului SO(3)

Două posibilități:

- folosind unghiurile lui Euler
- folosind cuaternioni

3. Rotații 3D - unghiurile lui Euler: intuiție

Sursa: https://upload.wikimedia.org/wikipedia/commons/7/7e/Rollpitchyawplain.png

Altă reprezentare:

https://upload.wikimedia.org/wikipedia/commons/8/85/Euler2a.gif

3. Rotații 3D - unghiurile lui Euler: intuiție

Sursa: https://upload.wikimedia.org/wikipedia/commons/8/82/Euler.png

3. Rotații 3D - unghiurile lui Euler: formalizare

Exemplu: Rotația de unghi θ în jurul axei Oy are matricea asociată

$$\left(\begin{array}{ccc} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{array}\right).$$

Altfel spus, considerând axa Oy, elementului $\theta \in S^1$ i se asociază matricea $M_{Oy,\theta} \in SO(3)$.

3. Rotații 3D - unghiurile lui Euler: formalizare

Exemplu: Rotația de unghi θ în jurul axei Oy are matricea asociată

$$\left(\begin{array}{ccc} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{array}\right).$$

Altfel spus, considerând axa Oy, elementului $\theta \in S^1$ i se asociază matricea $M_{Oy,\theta} \in SO(3)$.

Observație: Există o aplicație

$$S^1 \times S^1 \times S^1 \longrightarrow SO(3)$$

ce se obține utilizând rotațiile în jurul axelor de coordonate.

3. Rotații 3D - unghiurile lui Euler: formalizare

Exemplu: Rotația de unghi θ în jurul axei Oy are matricea asociată

$$\left(\begin{array}{ccc} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{array}\right).$$

Altfel spus, considerând axa Oy, elementului $\theta \in S^1$ i se asociază matricea $M_{OY,\theta} \in SO(3)$.

Observație: Există o aplicație

$$S^1 \times S^1 \times S^1 \longrightarrow SO(3)$$

ce se obține utilizând rotațiile în jurul axelor de coordonate.

Fapt: Orice matrice din SO(3) poate fi obținută ca produs al unor rotații (3) în jurul axelor de coordonate, cu unghiuri alese convenabil (unghiurile lui Euler).

3. Rotații 3D - unghiurile lui Euler: *Gimbal Lock* llustrare *Gimbal Lock*

Exemple
$$R(\alpha, (1,0,0))$$
 (notative de unghi α is axa $(1,0,0)$)

 $R(\frac{\partial L}{2}, (0,1,0))$
 $R(y, (0,0,1))$

compunere (scriene matrice, in multim ...)

matricea $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\cos(\alpha+y)$ $\sin(\alpha+y)$ $\sin(\alpha+y)$ $\sin(\alpha+y)$ $\sin(\alpha+y)$ $\sin(\alpha+y)$ $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\sin(\alpha+y)$ $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\sin(\alpha+y)$ $\cos(\alpha+y)$ $\cos($

Observatie. Fie

$$\mathcal{H} = \left\{ M \in \mathcal{M}_2(\mathbb{C}) \mid M = s \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) + a \left(\begin{array}{cc} i & 0 \\ 0 & i \end{array} \right) + b \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) + c \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right), \; s, a, b, c \in \mathbb{R} \right\}.$$

Au loc relatiile

$$\left(\begin{array}{cc} i & 0 \\ 0 & i \end{array}\right)^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right), \ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right), \ \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right).$$

De fapt, $(\mathcal{H}, +, \cdot) \simeq (\mathbb{H}, +, \cdot)$.

Notatie Tie
$$q = S + ai + bj + ck = (s, v)$$
, unde $v = (a, b, c)$

Cuaccosta notatie:

(i) immultirea ente

 $q \cdot q' = (s \cdot s - v \cdot v', s \cdot v' + s' \cdot v + v \times v')$

(ii) $|q|^2 = s^2 + ||v||^2$

(iii) $|q|^2 = s^2 + ||v||^2$

(iii) $|q|^2 = s^2 + ||v||^2$

(iii) $|q|^2 = s^2 + ||v||^2$

(iv) $|q|^2 = s^2 + ||v||^2$

(iv) $|q|^2 = s^2 + ||v||^2$

(iv) $|q|^2 = s^2 + ||v||^2$

Propoziție. (legătura dintre rotații 3D și cuaternioni)

(i) Fie rotația 3D având axa dată de versorul u și unghiul heta. Fie cuaternionul $q\in S^3$ dat de

Fie $P \in \mathbb{R}^3$ și P' punctul obținut aplicând rotația de unghi θ și axă u lui P, adică

$$P' = R_{u,\theta}(P).$$

Atunci în $\mathbb H$ are loc relația

$$(0,P')=q\cdot(0,P)\cdot q^{-1}.$$

Altfel spus, pentru a determina P' efectuăm în \mathbb{H} calculul $q \cdot (0, P) \cdot q^{-1}$ și rezultatul ne va conduce la cuaternionul (0, P').

(ii) Fie $q=s+ai+bj+cK\in S^3$ un cuaternion de normă 1. El corespunde unei rotații având matricea 3×3

$$\left(\begin{array}{cccc} s^2 + a^2 - b^2 - c^2 & 2ab - 2sc & 2ac + 2sb \\ 2ab + 2sc & s^2 - a^2 + b^2 - c^2 & 2bc - 2sa \\ 2ac - 2sb & 2bc + 2sa & s^2 - a^2 - b^2 + c^2 \end{array}\right).$$

Exemplul 1. Considerăm rotația $R_{\mathrm{u},\theta}$ dată de vectorul $\mathrm{u}=(0,0,1)$ și de unghi $\theta=\frac{\pi}{2}(=90^\circ)$. Avem $R_{\mathrm{u},\theta}(1,0,0)=(0,1,0)$. Interpretarea acestei relații folosind cuaternioni este următoarea.

(i) Vectorul u corespunde, de fapt, cuaternionului k. Conform propoziției anterioare, rotației $R_{\rm u,\theta}$ i se asociază cuaternionul

$$q = \cos\frac{\theta}{2} + \sin\frac{\theta}{2}u = \cos\frac{\pi}{4} + \sin\frac{\pi}{4}k.$$

Atunci:

$$q = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}k, \quad q^{-1} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}k.$$

(ii) Punctele (1,0,0), (0,1,0), (0,0,1) corespund respectiv cuaternionilor i,j,k, deci $R_{u,\theta}(1,0,0)=(0,1,0)$ se rescrie $R_{u,\theta}(i)=j$. Se poate verifica faptul că are loc relația $(0,j)=q\cdot(0,i)\cdot q^{-1}$ (altfel spus $j=q\cdot i\cdot q^{-1}$, sau, echivalent, $j\cdot q=q\cdot i$). Aceasta este exact rescrierea din propoziția anterioară (cu $P=(1,0,0)\equiv i,P'=(0,1,0)\equiv j$).

Exemplul 2. Considerăm rotația $R_{\mathrm{u},\theta}$ dată de vectorul $\mathbf{u}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ și de unghi $\theta=\frac{2\pi}{3}(=120^\circ)$. De exemplu, avem $R_{\mathrm{u},\theta}(1,0,0)=(0,1,0)$ (în figură A=(1,0,0), B=(0,1,0)) - rotația de la A la B are loc în planul x+y+z=1 (perpendicular pe axa u a rotației). Punctul $Q=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$ este fix. Practic are o rotație a lui QA către QB, unghiul fiind de 120° .

Exemplul 2 (continuare). Considerăm rotația $R_{\rm u,\theta}$ dată de vectorul ${\bf u}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ și de unghi $\theta=\frac{2\pi}{3}(=120^\circ)$. Avem $R_{\rm u,\theta}(1,0,0)=(0,1,0)$. Interpretarea acestei relații folosind cuaternioni este următoarea.

(i) Vectorul u se scrie cu cuaternioni u = $(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}) \equiv \frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j + \frac{1}{\sqrt{3}}k$. Conform propoziției anterioare, rotației $R_{\mathrm{u},\theta}$ i se asociază cuaternionul

$$q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} u = \cos \frac{2\pi}{6} + \sin \frac{2\pi}{6} (\frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j + \frac{1}{\sqrt{3}}k) = \dots$$

Prin calcul, se deduce

$$q = \frac{1}{2}(1+i+j+k), \quad q^{-1} = \frac{1}{2}(1-i-j-k).$$

(ii) Punctele (1,0,0),(0,1,0),(0,0,1) corespund respectiv cuaternionilor i,j,k, deci $R_{\mathrm{u},\theta}(1,0,0)=(0,1,0)$ se rescrie $R_{\mathrm{u},\theta}(i)=j$. Se poate verifica faptul că are loc relația $(0,j)=q\cdot(0,i)\cdot q^{-1}$, care este exact rescrierea din propoziția anterioară (cu $P=(1,0,0)\equiv i,P'=(0,1,0)\equiv j$).

Alte detalii teoretice și despre implementare:

K. Shoemake, Quaternions

https://www.cprogramming.com/tutorial/3d/quaternions.html