Exercises:

$$2-a: 1-(1/2)^2-(1/2)^2 = 0.5$$

2-b: 0

2-c:

$$1 - (0.6)2 - (0.4)2 = 0.48$$

$$1 - (0.4)2 - (0.6)2 = 0.48$$

$$0.5 \times 0.48 + 0.5 \times 0.48 = 0.48$$

2-d:

$$1-(1/4)2-(3/4)2 = 0.375$$

$$1-(0/8)2-(8/8)2 = 0$$

$$1-(1/8)2-(7/8)2 = 0.218$$

$$4/20*0.375+8/20*0.218 = 0.16252$$

2-e:

$$1-(3/5)2-(2/5)2 = 0.48$$

$$1-(3/7)2-(4/7)2 = 0.4898$$

$$1-(2/4)2-(2/4)2 = 0.5$$

$$1-(2/4)2-(2/4)2 = 0.5$$

5/20*0.48+7/20*0.4898+4/20*0.5+4/20*0.5 = 0.4914

2-f: Car Type

2-g: Everyone is different and has no commonality with others

3-a: Entropy =
$$-4/9 \times \log(4/9) - 5/9 \times \log(5/9) = 0.9911$$

3-b:

Entropy =
$$4/9 \times [-1/4 \times \log 2(1/4) - 3/4 \times \log 2(3/4)] + 5/9 \times [-1/5 \times \log 2(1/5) - 4/5 \times \log 2(4/5)] = 0.7616$$

al: $0.9911 - 0.7616 = 0.2294$

Entropy =
$$5/9 \times [-2/5 \times log2(2/5) - 3/5 \times log2(3/5)] + 4/9 \times [-2/4 \times log2(2/4) - 2/4 \times log2(2/4)] = 0.9839$$

a2: 0.9911 - 0.9839 = 0.0072

3-c:

a3	Class label	Split ponit	Entropy	Info Gain
1.0	+	2. 0	0.848	0. 143
3. 0	_	3. 5	0. 989	0.003
4. 0	+	4. 5	0. 918	0. 073
5. 0	_	5. 5	0. 984	0. 007
5. 0	_			
6. 0	+	6. 5	0. 973	0.018
7. 0	+	7. 5	0.889	0. 102
7. 0	-			

3-d: a1

3-e:

al's classification error rate = 2/9

a2's classification error rate = 4/9

So al is the best division

3-f:

a1=0.167+0.178=0.345

So al is the best division

5-a:

$$\Delta A = E - 107EA = T - 103EA = F = 0.2813$$

$$\Delta B=E-104EB=T-106EB=F = 0.2565$$

Therefore, the decision tree induction algorithm selects the A attribute

5-b:

GINI :
$$G=1-(104)2-(106)2=0.48$$

GINIA=T:
$$1-(74)2-(73)2=0.4898$$

GINIA=F:
$$1-(30)2-(33)2=0$$

EA=GINI
$$-107$$
GINIA=T -103 GINIA=F=0. 1371

GINIB=T:
$$1-(43)2-(41)2=0.3750$$

GINIB=F:
$$1-(61)2-(65)2=0.2778$$

Therefore, the decision tree induction algorithm selects the B attribute

5-c:

Information gain examines the contribution of features to the entire data, not to specific categories, so generally it can only be used for global feature selection

The Gini coefficient is a feature selection method similar to the information entropy, which is used for the impurity of the data. When making feature selection, we can choose the one with the largest $\Delta \operatorname{Gini}(X)$.

18-a: $0.5 \times 0 + 0.5 \times 1 = 50\%$ (The number of positive examples and negative examples are equal)

 $18-b: 0.5\times0.8 + 0.5\times0.2 = 50\%$

 $18-c: 2/3 \times 0 + 1/3 \times 1 = 1/3 = 33.3\%$

 $18-d: 2/3 \times 1/3 + 1/3 \times 2/3 = 4/9 = 44.4\%$