Problem 1: Show that $\mathbb{R}P^N$ is a differentiable manifold by definition.

Let $(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}$. Recall that $\mathbb{R}P^n$ is the set of lines in \mathbb{R}^{n+1} which pass through the origin, so $\mathbb{R}P^n$ can be identified as the quotient space of $\mathbb{R}^{n+1} - \{0\}$ by an equivalence relation. $(x_1, x_2, \ldots, x_{n+1}) \sim (\lambda x_1, \ldots, \lambda x_{n+1})$ for $\lambda \in \mathbb{R}, \lambda \neq 0$. The points of $\mathbb{RP}^{\mathbb{N}}$ will be denoted by $[x_1, \ldots, x_{n+1}]$.

To prove property (1) of differentiable manifolds, define subsets V_1, \ldots, V_{n+1} of $\mathbb{R}P^n$ by $V_i = \{[x_1, \dots, x_{n+1}] | x_i \neq 0\}$. We claim that $\mathbb{R}P^n$ can be covered by V_1, \dots, V_{n+1} .

To prove property (2), we define $X_i: \mathbb{R}^n \to V_i$ so that $X_i(y_1, \dots, y_n) - [y_1, \dots, y_{i-1}, 1, y_i, \dots, y_n]$ where $y_i = \frac{x_i+1}{x_i}$. Easy to check $V_1 \cap V_j \neq \emptyset$ and $X^{-1}(V_i \cap V_j)$ are open.

In addition,
$$X_j^{-1}X_i(y_1,\ldots,y_n) = X_j^{-1}[y_1,\ldots,y_{i-1},1,y_i,\ldots,y_n]$$

 $= X^{j-1}[\frac{y_1}{y_j},\ldots,1,\frac{y_{j+1}}{y_j},\ldots,\frac{y_{i-1}}{y_j},\frac{1}{y_j},\frac{y_i}{y_j},\ldots,\frac{y_n}{y_j}] = (\frac{y_1}{y_j},\frac{y_{j-1}}{y_j},\frac{y_{j+1}}{y_j},\ldots,\frac{y_{i-1}}{y_j},\frac{1}{y_j},\frac{y_i}{y_j},\ldots,\frac{y_n}{y_j}).$
This mapping is differentiable, thus done.

Problem 2: Show why the set of tangent vectors which is tangent to all the curves starting from a point on a manifold M form a linear space (called a tangent space at p of M, denoted by T_pM).

A tangent vector at p of M is the tangent vector at t=0 of some curve $(-\epsilon,\epsilon)\to M$ with

 T_pM is a vector space. Moreover if we chose a parametrization $\overline{\underline{X}}:U\to M$, then T_pM has a basis $\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\}$ and we define its dual basis as $\{dx_1, \dots, dx_n\}$. Recall for a basis $\{e_1, \dots, e_n\}$ of V^n , then $\{e_1^*, \dots, e_n^*\}$ is the dual basis of $(V^n)^*$. Key idea

is to mimic the orthonormal basis of \mathbb{R}^n . Define $\{e_1^*, \ldots, e_n^*\}$ such that $e_i^*(e_j) = \delta_{ij}$.

We see that we can eventually derive $\alpha'(0) = \sum_{i} x_{i}'(0) (\frac{\partial}{\partial x_{i}})_{0}$, which implies that every vector on T_pM is a linear combination of the basis vectors, so it is a vector space.

Problem 3: Show we can put a differentiable structure on a tangent bundle of a differentiable manifold.

Recall that if M is a differentiable manifold, then the set $TM = \{(p, v) : p \in M, v \in T_pM\}$ with a differential structure is called the tangent bundle of M. We prove that such a differential structure always exists.

Let $\{(U_{\alpha}, X_{\alpha})\}$ be a maximal differential structure on M. Denote the coordinates of U_{α} by $(x_1^{\alpha},\ldots,x_n^{\alpha})$ and the associated bases of the tangent spaces $X_{\alpha}(U_{\alpha})$ by $\{\frac{\partial}{\partial x_1^{\alpha}},\ldots,\frac{\partial}{\partial x_n^{\alpha}}\}$. Then for every α , define $Y_{\alpha}: U \times \mathbb{R}^n \to TM$ by $Y_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha}, \mu_1, \dots, \mu_n) = (\underline{X}_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha}), \sum_{i=1}^n u_i \frac{\partial}{\partial x_i^{\alpha}})$

1

where $\mu \in \mathbb{R}^n$. Then $(U_\alpha \times \mathbb{R}^n, Y_\alpha)$ is a differential structure on TM. The proof for this is similar enough to problem 1 that it is left as an exercise to the reader.

Problem 4: If M is a manifold and G is a group that acts discontinuously on M, Show M/G is a manifold. (See theorem on page 23, Do Carmo Riemannian Geometry).

Recall that we say a group G acts on a differentiable manifold M if there exists a mapping $\phi: G \times M \to M$ such that

- (1) for each $g \in G$, the mapping $\phi_i : M \to M$ given by $\phi_g(p) = \phi(g, p)$ for $p \in M$ is a diffeomorphism and ϕ_e is the identity
- (2) if $g_1, g_2 \in G$, then $\phi_{g_1g_2} = \phi_{g_1}\phi_{g_2}$

We also say that an action is properly discontinuous if every $p \in M$ has a neighborhood $U \subset M$ such that $U \cup g(U) = \emptyset$ for all $g \neq e$. Note that each such group action determines an equivalence relation on M. We can form a quotient space M/G using this equivalence relation. In fact, M/G has a differential structure with respect to which the projection $M \to M/G$ is a local diffeomorphism. Hence M/G is also a differentiable manifold. An example is the Torus viewed as \mathbb{R}^k/G where $G = \mathbb{Z}^k$.