Problems 1 and 2 require you to have read the lecture notes or watched the lecture, but should be doable. Problem 3 can be attempted before the lecture, but it's alright to skip it.

Problem 4 requires a couple non-trivial ideas, but is interesting both conceptually and algorithmically. Problems 5 and 6 are quite important: make sure you attempt both (especially Problem 6), and read the solutions.

Problem 7 is worth doing if you have time, but not crucial.

# Warm-up

**Problem 1.** Check your understanding: summarise the key differences between a hash table and a Bloom filter, in terms of time and space complexity and guarantees provided.

**Solution 1.** Hash table:  $O(\log m + m' \log m)$  v.s. Bloom filter:  $O(T \log m + m')$  in space complexity (Typically, T is a constant.). When the number of buckets is large enough at order m' = O(n).

Bloom filter does not actually store the elements, just the bits representing if they are in the set – that's why it could be wrong sometimes.

Hash table: O(1) in expectation (e.g., for separate chaining) vs. Bloom filter: O(1) worst case in Lookup and Insert. However bloom filter can make mistakes sometime (false positives) and the simple version seen in class cannot handle Remove.

**Problem 2.** Prove the claim made in class: the expected time complexities of INSERT, LOOKUP, and Remove with separate chaining are all  $O(1 + \alpha)$ , where  $\alpha = n/m'$  is the load of the hash table. What is their *worst-case* time complexity?

**Solution 2.** All of them depends on the number items in one bucket – in an expected worst case sense.

Over the randomisation of  $h \sim \mathcal{H}$ , after inserting  $x_1, \ldots, x_{n-1}$ , how many operations do you need to perform to insert  $x_n$ ? Or look up one element after inserting  $x_1, \ldots, x_{n-1}$ ? Or remove  $x_n$  from  $x_1, \ldots, x_{n-1}$ ? They all depend on the size of the bucket  $h(x_n)$ . Denote  $T(x_1, \ldots, x_n)$  as the number of operation one needs to perform for INSERT, LOOKUP or REMOVE.

$$\mathbb{E}_{h\sim\mathcal{H}}[T(x_1,\ldots,x_n)]=\mathbb{E}_{h\sim\mathcal{H}}[N_{h(x_n)}],$$

where  $N_{h(x)}$  denote the size of the bucket for h(x) after  $x_1, \ldots, x_{n-1}$  is inserted over the randomisation of h.

**By linearity of expectation.** Given a universal hash family  $\mathcal{H}$ , we know for any  $x \neq x'$ , the following holds:

$$\Pr_{h \sim \mathcal{H}}[h(x) = h(x')] \leqslant \frac{1}{|\mathcal{Y}|}.$$

Without loss of generality, we will assume that  $x_1, ..., x_{n-1}$  are distinct (as this is the hardest case). We can compute the expectation as follows:

$$\mathbb{E}[N_{h(x_n)}] = \mathbb{E}\left[\sum_{i=1}^{n-1} \mathbb{1}_{\{h(x_i) = h(x_n)\}}\right] = \sum_{i=1}^{n-1} \mathbb{E}[\mathbb{1}_{\{h(x_i) = h(x_n)\}}] = \sum_{i=1}^{n-1} \Pr_{h \sim \mathcal{H}}[h(x) = h(x')] \leqslant \frac{n-1}{|\mathcal{Y}|}.$$

And  $|\mathcal{Y}| = m'$ .

In the absolute worst case, there are at most O(n) elements in any bucket.

# **Problem solving**

**Problem 3.** Give an example of a universal hash family  $\mathcal{H}$  from a universe  $\mathcal{X}$  to a set  $\mathcal{Y}$  for which the inequality is not always an equality:

$$\Pr_{h \sim \mathcal{H}} [h(x) = h(x')] \le \frac{1}{|\mathcal{Y}|} \quad \text{for all distinct } x, x' \in \mathcal{X}$$

**Solution 3.** Consider the hash family  $\mathcal{H} = \{h_1, h_2\}$  where  $h_1(0) = 0, h_1(1) = 1$ , and  $h_2(0) = 1, h_2(1) = 0$ .

For more, see, e.g., observations in https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/14.pdf.

**Problem 4.** Given three arrays A, B, and C each containing n positive integers, the task is to decide if there exist  $1 \le i, j, k \le n$  such that A[i] + B[j] = C[k]. We aim for an algorithm running in (expected) time  $O(n^2)$ . (We assume that, given a suitable hash function, we can evaluate it on any given input in constant time.)

- a) As a warm-up, describe an  $O(n^3)$ -time deterministic algorithm.
- b) Describe an efficient  $O(n^2)$  (expected) time algorithm.
- c) Prove its correctness, and expected time complexity.
- d) Analyze its worst-case time complexity. Can you get  $O(n^2)$  here as well?

### Solution 4.

- a) The baseline algorithm is to iterate over all  $1 \le i, j, k \le n$  triples (there are  $n^3$  of them) and, for each of them, check if A[i] + B[j] = C[k].
- b) Consider the following algorithm: we create a hash table T, and insert all n elements from C in T. Once this is done, we loop over all  $n^2$  possible pairs  $1 \le i, j \le n$ , and for each of them do a lookup in T to see if T contains the value A[i] + B[j]: if it does, we know there exists some k such that A[i] + B[j] = C[k] and return true. If no such pair i, j is found, then we can return false.

- c) Suppose there exist  $i^*, j^*, k^*$  such that  $A[i^*] + B[j^*] = C[k^*]$ . After inserting all element from C in T, the hash table contains the value  $C[k^*]$ ; which means that, when looping over all pairs i, j, we will consider  $i^*, j^*$  and return true after performing a lookup for  $A[i^*] + B[j^*]$  in T. Conversely, if the algorithm returns true at some iteration i, j, then this means T contains the value A[i] + B[j]; but since we inserted the prices listed in V (and only those values) into T, then there must be some index k such that C[k] = A[i] + B[j]. In total, the algorithm performs n insertions into the hash table T and at most  $n^2$  lookups. All options of collision handling mentioned in class (e.g., linear probing, separate chaining, and cuckoo hashing) have expected O(1) insertions and lookups, so the total *expected* time complexity is  $O(n) + O(n^2) = O(n^2)$ .
- d) We perform n insertions and at most  $n^2$  lookups in the hash table. Depending on the choice of collision handling, this means the following worst-case time complexity:
  - Using linear probing or chaining: all operations take O(n) worst-case time. This means that the worst-case time complexity is  $O(n^3)$ .
  - Using cuckoo hashing: insertions still takes O(n) time in the worst case. However, now lookups are only O(1) time even in the worst case, and so the total worst-case time complexity is  $O(n^2)$ .

**Problem 5.** (Perfect Hashing) Consider the following *two-level hashing* strategy: as in separate chaining, we will use a hash table A of size m' = O(n) to contain our n items, and deal with collisions by having each of the m' buckets handle its hashed elements on its own. But instead of having a linked list for each bucket, we will instead use a secondary *hash table* for each bucket. Here we focus on the case where all n elements are inserted at once at the beginning, and we want to focus on the lookups.

- a) Suppose that bucket k has  $n_k$  of the n elements hashed to it. What should be the size of the hash table  $A_k$  (the hash table in in bucket k) to guarantee it only has a collision with probability 1/2?
- b) Briefly describe how to do the batch insertion of all *n* elements (initialisation of the data structure).
- c) Analyse the expected time complexity of a lookup to your hash table.
- d) Analyse the expected space complexity of the overall data structure, and show it is O(n).

## Solution 5.

a) Suppose we make size of table m. The number of collision in expectation is.

$$\mathbb{E}\left[\text{\#number of collisions}\right] = \sum_{0 < i < j < n_k} \mathbb{1}_{\{h(i) = h(j)\}} = \sum_{0 < i < j < n_k} \Pr_{h \sim \mathcal{H}}[h(x) = h(x')] \leqslant \frac{\binom{n_k}{2}}{m}.$$

Set  $m = 2\binom{n_k}{2} = O(n_k^2)$ . By Markov's inequality,

$$\Pr\left[\text{\#number of collisions} \geqslant 1\right] \leqslant 1\mathbb{E}\left[\text{\#number of collisions}\right] \leqslant \frac{\binom{n_k}{2}}{m} \leqslant \frac{1}{2}.$$

- b) Pick your first hash function *h*.
  - 1. Hash all n elements and find out each  $n_k$ , for k = 1, ..., m'. Assuming O(1) operation cost for hashing: O(m') = O(n).
  - 2. For the k-th position, initialise your secondary hash table with size  $O(n_k^2)$ . (If there is a collision, rehash until there isn't any. A constant number of rehashings is enough in expectation, and with high probability, for each fixed k.)
- c) O(1). Because no collision in the previous step.

d) Space complexity: how many buckets are in there? First we look at one particular position k,

$$n_k = \sum_{x} \mathbb{1}_{\{h(x)=k\}}$$

Remember that the first hash function  $h: m \to m'$ . Linearity of expectation:

$$\mathbb{E}\left[\sum_{k=1}^{m'} n_k^2\right] = \sum_{k=1}^{m'} \mathbb{E}[n_k^2]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_{x} \mathbb{1}_{\{h(x)=k\}}\right)^2\right]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_{x} \mathbb{1}_{\{h(x)=k\}}\right) \left(\sum_{y} \mathbb{1}_{\{h(y)=k\}}\right)\right]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_{x} \sum_{y} \mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}\right)\right]$$

$$= \sum_{k=1}^{m'} \mathbb{E}\left[\left(\sum_{x} \mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}\right) + \sum_{x\neq y} \mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}\right]$$

$$= \sum_{k=1}^{m'} \sum_{x} \mathbb{E}\left[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}\right] + \sum_{k=1}^{m'} \sum_{x\neq y} \mathbb{E}\left[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}\right]$$

It's one if and only if h(x) = k.

$$\mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}] = \mathbb{E}[\mathbb{1}_{\{h(x)=k\}}] = \Pr[h(x)=k].$$

It's one if and only if h(x) = k and h(y) = k.

$$\mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}] = \Pr[h(x) = k, h(y) = k].$$

Swapping the sum over, we get

LHS = 
$$\sum_{x} \sum_{k=1}^{m'} \mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(x)=k\}}] + \sum_{x \neq y} \sum_{k=1}^{m'} \mathbb{E}[\mathbb{1}_{\{h(x)=k\}} \cdot \mathbb{1}_{\{h(y)=k\}}]$$
  
=  $\sum_{x} \left(\sum_{k=1}^{m'} \Pr[h(x) = k]\right) + \sum_{x \neq y} \left(\sum_{k=1}^{m'} \Pr[h(x) = k, h(y) = k]\right)$   
=  $\sum_{x} 1 + \sum_{x \neq y} \Pr[h(x) = h(y)] \leq n + \frac{n(n-1)}{2} \frac{1}{m'} = O(n).$ 

See for instance Section 5.7: https://jeffe.cs.illinois.edu/teaching/algorithms/notes/05-hashing.pdf

**Problem 6.** We will analyse the error probability of the Bloom filter seen in class. We will focus on the error rate, that is, how frequently we would expect LOOKUP to make a mistake, "on average." In what follows, assume we inserted a dataset S of n elements into the Bloom filter. We will make the following (false, but convenient) assumption that we have truly random hash functions: the  $(h_i(x))_{i,x}$  are fully independent across elements  $x \in \mathcal{X}$  and hash functions  $1 \le i \le T$ , and  $h_i(x)$  is uniformly distributed in  $\{1, 2, \ldots, m'\}$  for every i and every x:

$$\forall i, x, y, \quad \Pr[h_i(x) = y] = \frac{1}{m'}$$

- a) Fix any  $1 \le i \le m'$ . After inserting n elements into our Bloom filter, what is the probability  $p_i$  that the i-th bit of our array A is set to 1? Let  $B := \frac{m'}{n}$  be the average number of extra bits used per element. Using the approximation  $1 + x \approx e^x$  (very accurate for small x), show that  $p_i \approx 1 e^{-T/B}$ .
- b) *Error rate*: What is the probability that, when calling LOOKUP(x) on a key which was *not* inserted (not part of the n keys from S), the value returned is yes?
- c) Say you have a target per-element storage value B in mind: B = 8 bits. What is the number of hash functions T you should use to minimise the probability of error?
- d) For the setting B = 8, and the choice of T above, what is the error rate you should expect?
- e) Let's use T=6 hash functions and explore the trade-off between space (parameter B) and error rate we could decide to use more space than 8 bits per element. What is the expected error rate if you increase B to 12 bits? 16? 32?

#### Solution 6.

a) Since we made the assumption of truly uniform hashing, the probability that, for any fixed element x inserted, the i-th bit is not set to 1 by the j-th hash function is equal to 1 - 1/m'. By independence, since we have T hash functions and n elements, the probability that the i-th bit is not set to 1 is equal to  $(1 - 1/m')^{Tn}$ , and so

$$p_i = 1 - \left(1 - \frac{1}{m'}\right)^{Tn} \approx 1 - e^{-\frac{nT}{m'}} = 1 - e^{-\frac{T}{B}}$$

b) For this to happen, we need *all* T bits  $h_1(x), ..., h_T(x)$  to be set to 1. By the previous question and our independence assumption, this happens with probability

$$p_1 \times \cdots \times p_T = \left(1 - e^{-\frac{T}{B}}\right)^T$$

c) Either eyeball it on a plot, or use calculus (differentiate  $\left(1-e^{-\frac{T}{8}}\right)^T$  with respect to T). You might want to use https://www.wolframalpha.com/... In detail: letting  $f(x) = (1-e^{-x/8})^x$ , we want to minimise f. Differentiating, you can check that

$$f'(x) = f(x) \left( \frac{x}{8} \cdot \frac{1}{e^{x/8} - 1} + \ln\left(1 - e^{-x/8}\right) \right)$$

and, since f(x) > 0 for all x > 0, f'(x) = 0 if, and only if,

$$\frac{x}{8} \cdot \frac{1}{e^{x/8} - 1} + \ln(1 - e^{-x/8}) = 0.$$

Going further to argue that there is exactly one solution requires more calculus and is not very interesting, but you can check that plugging  $x = 8 \ln 2$  in the left-hand side does evaluate to 0: f is minimised for  $x = 8 \ln 2 \approx 5.6$ .

The right answer is therefore T=6 (the function is minimised for  $T\approx 5.6$ , and we need an integer). In general, one can derive the answer (again, based on the above approximations and assumptions, which are actually quite well supported in practice) to be  $T=\lceil (\ln 2)B \rceil$ . See, e.g., the above computation replacing 8 by B, or this computation on WolframAlpha.

- d) We have  $(1 e^{-6/8})^6 \approx 0.0216$ , so the expected false positive rate when calling Lookup is roughly 2.16%.
- e) The corresponding values are 0.37%, 0.09%, and... 0.0025%. The rate decreases quite fast as a function of B (for fixed T, n): see this plot:



Namely, the error rate decreases polynomially, roughly as

$$\Theta(1/B^6)$$
.

Extra: why is the error rate r(B) decreasing as  $\Theta(1/B^6)$ ? One way to see it is to plot  $\log r(B)$  as a function of  $\log B$  (a "log  $\log \operatorname{plot}$ "), since if  $r(B) = 1/B^c$  for some

constant c, then  $\log r(B) = \log(1/B^c) = -c \log B$  and the log log plot will look like a line with slope -c. Which is roughly what we observe here, for c = 6: Another



way is to see how the expression  $r(B) = \left(1 - e^{-\frac{6}{B}}\right)^6$  from (d) behaves as B increases  $(B \to \infty)$ : then  $6/B \to 0$ , and Taylor approximations  $(e^u \approx 1 + u \text{ for small } u)$  give us

$$\left(1 - e^{-\frac{6}{B}}\right)^6 \approx \left(1 - \left(1 - \frac{6}{B}\right)\right)^6 = \frac{6^6}{B^6} = \frac{46656}{B^6} = \Theta\left(\frac{1}{B^6}\right)$$

as claimed.

### Advanced

**Problem 7.** Augment the Bloom filter data structure seen in class to add a Remove operation. Analyse the resulting guarantees (performance, error probability, space and time complexities).

**Solution 7.** (*Sketch*) One option is to use a secondary Bloom filter which keeps track of the deletions. (Note that this introduces a second type of errors now, false negatives, since the second Bloom filter has a small error probability of claiming an element was deleted.)

For a discussion, and other options, see, e.g., https://cs.stackexchange.com/questions/19292/deleting-in-bloom-filters (and references).