МОДИФИКАЦИЯ АЛГОРИТМА ЛЕВЕНБЕРГА-МАРКВАРДТА ДЛЯ ЗАДАЧ НЕЛИНЕЙНОЙ РЕГРЕССИИ С УЧЕТОМ ПОГРЕШНОСТЕЙ КАК В ЗАВИСИМЫХ, ТАК И В НЕЗАВИСИМЫХ ДАННЫХ

Г.И. Рудой

1 Введение

Для известной задачи нахождения оптимальных коэффициентов некоторой фиксированной регрессионной модели, представленной в виде формулы, по набору экспериментальных данных широко применяется алгоритм Левенберга-Марквардта [?]. Однако, данный алгоритм построен и статистически обоснован в предположении о нормальности распределения регрессионных остатков и точно измеренных независимых переменных — иными словами, учитываются и рассматриваются только ошибки измерения зависимой переменной. Более того, предполагается, что ошибки для всех точек принадлежат одному и тому же распределению с одними и теми же параметрами.

В ряде физических приложений это предположение не выполняется. Например, в задаче нахождения дисперсионной зависимости прозрачного полимера (то есть, зависимости коэффициента преломления n от длины волны λ) погрешности измерения различных физических параметров, вообще говоря, различны. Так, например, если для измерения длины волны λ используется дифракционная решетка, то постоянной является относительная погрешность определения длины волны $\frac{\sigma_{\lambda_i}}{\lambda_i} \approx \text{const}$, и, следовательно, погрешность определения длины волны зависит от самой длины волны.

Таким образом, возникает задача поиска оптимальных коэффициентов регрессионной формулы с учетом отличающихся погрешностей различных экспериментальных точек. Для некоторых частных случаев эта задача уже была решена: например, в работе [?] вводится предположение, что зависимые переменные y_i измеряются неточно, и каждая переменная y_i имеет свою собственную погрешность измерения σ_{y_i} . Затем в работе показывается, что обычный функционал суммы квадратов регрессионных остатков, где каждый остаток нормирован на соответствующую величину $\sigma_{y_i}^2$, корректен и статистически состоятелен.

В настоящей работе вводятся дополнительные предположения о том, что независимые переменные также измеряются неточно, и каждая переменная имеет свою собственную погрешность измерения. Предлагается функционал качества и модифцированный алгоритм Левенберга-Марквардта, позволяющий найти оптимальные параметры согласно этому функционалу качества и опирающийся на классический алгоритм Левенберга-Марквардта (в дальнейшем будем называть их мАЛМ и АЛМ соответственно). Доказывается сходимость модифицированного алгоритма и приводятся результаты на экспериментальных данных по измерению насыщения лазерного излучателя.

2 Постановка задачи

Дана обучающая выборка $D = \{\mathbf{x}_i, y_i\} | i \in \{1, \dots, \ell\}, x_i \in \mathbb{R}^m, y_i \in \mathbb{R}$. Для каждой зависимой переменной переменной y_i известно стандартное отклонение ошибки ее измерения σ_{y_i} , а для соответствующего вектора независимых переменных \mathbf{x}_i аналогично известны стандартные отклонения его компонент $\sigma_{x_{ij}}|j \in \{1, \dots, m\}$. Пусть, кроме того, дана

некоторая параметрическая регрессионная модель $y = f(\mathbf{x}, \boldsymbol{\omega})$.

Для удобства обозначим вектор, составленный из ошибок измерений зависимых переменных σ_{y_i} как σ_y :

$$\boldsymbol{\sigma}_y = \{\sigma_{y_1}, \dots, \sigma_{y_\ell}\}.$$

Аналогично обозначим матрицу, составленную из ошибок измерений компонент независимых переменных $\sigma_{x_{ij}}$ как Σ_x :

$$\Sigma_x = \|\sigma_{x_{ij}}\| | i \in \{1, \dots, \ell\}, j \in \{1, \dots, m\}.$$

Требуется построить функционал ошибки $S(\omega)$ вектора параметров ω модели f, учитывающий ошибки измерений σ_{y_i} и $\sigma_{x_{ij}}$:

$$S(\boldsymbol{\omega}) = S(\boldsymbol{\omega}, \boldsymbol{\sigma}_{\boldsymbol{v}}, \boldsymbol{\Sigma}_{\boldsymbol{x}}), \tag{1}$$

и, кроме того, найти вектор параметров ω , минимизирующий функционал S:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}} S(\boldsymbol{\omega}) \tag{2}$$

3 Модифицированный функционал качества

Вводятся следующие физические соображения:

- 1. Чем больше погрешность определения зависимой переменной, тем меньше соответствующий регрессионный остаток должен учитываться при оптимизации параметров модели.
- 2. Чем больше погрешность определения некоторой независимой переменной, тем, аналогично, меньше должен учитываться соответствующий регрессионный остаток.
- 3. При прочих равных сильнее должны учитываться те точки, в которых производная регрессионной модели $\frac{\partial f}{\partial x_j}$ по соответствующей компоненте x_j меньше.

Рассмотрим случай $x \in \mathbb{R}$, то есть, независимая переменная всего одна. Пользуясь вышеупомянутыми соображениями (в частности, первым и вторым), введем следующее определение расстояния $\rho(x,i)$ от точки (x_i,y_i) из обучающей выборки до некоторой точки $(x,f(x,\omega))$ на кривой, описываемой регрессионной моделью:

$$\rho(x,i) = \frac{(x_i - x)^2}{\sigma_{x_i}^2} + \frac{(y_i - y)^2}{\sigma_{y_i}^2},\tag{3}$$

где $y = f(x, \boldsymbol{\omega})$.

Линеаризуем $f(x, \boldsymbol{\omega})$ в окрестности точки x_i :

$$f(x, \boldsymbol{\omega}) = f(x_i, \boldsymbol{\omega}) + (x - x_i) \frac{\partial f}{\partial x}(x_i, \boldsymbol{\omega}). \tag{4}$$

Введем для удобства обозначение $k = \frac{\partial f}{\partial x}(x_i, \boldsymbol{\omega}).$

Тогда расстояние (3) можно выразить через линеаризованную функцию (4) следующим образом:

$$\rho(x,i) = \frac{(x_i - x)^2}{\sigma_{x_i}^2} + \frac{(y_i - f(x_i, \boldsymbol{\omega}) - k(x - x_i))^2}{\sigma_{y_i}^2}.$$
 (5)

Минимизируем это расстояние (5) по x, для этого возьмем соответствующую производную и приравняем ее нулю:

$$2\frac{x_i - x}{\sigma_{x_i}^2} + 2k \frac{y_i - f(x_i, \omega) - k(x - x_i)}{\sigma_{y_i}^2} = 0.$$

Отсюда путем несложных преобразований можно получить выражение на $x - x_i$:

$$x - x_i = \frac{\sigma_{x_i}^2 k(y_i - f(x_i, \boldsymbol{\omega}))}{\sigma_{y_i}^2 + k^2 \sigma_{x_i}^2}$$

Подставив это выражение в (5), можно получить выражение для расстояния:

$$\rho(x,i) = \frac{(y_i - f(x_i, \omega))^2}{\sigma_{y_i}^2 + k^2 \sigma_{x_i}^2}.$$

Аналогичным образом можно получить выражение для случая, когда ${\bf x}$ — вектор m-мерном пространстве ${\mathbb R}^m$:

$$\rho(\mathbf{x}, i) = \frac{(y_i - f(\mathbf{x}_i, \boldsymbol{\omega}))^2}{\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$

Таким образом, функционал, минимизирующий сумму введеных согласно (3) расстояний, выглядит следующим образом:

$$S(\boldsymbol{\omega}) = \sum_{i=1}^{\ell} \frac{(y_i - f(\mathbf{x}_i, \boldsymbol{\omega}))^2}{\sigma_{y_i}^2 + \sum_{j=1}^{m} (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$
 (6)

Отметим, что этот функционал соответствует классической сумме квадратов регрессионных остатков при условии нормировки квадрата каждого остатка на на сумму квадратов погрешности определения зависимой величины σ_{y_i} и произведения частной производной регрессионной модели по j-ой компоненте вектора независимых величин на погрешность определения соответствующей компоненты $\sigma_{x_{ij}}$.

Кроме того, если все независимые переменные измерены точно, то есть, $\forall i, j : \sigma_{x_i j} = 0$, то предложенный функционал переходит в предложенный в [?]. Если же, кроме того, все зависимые переменные имеют одну и ту же погрешность, то предложенный функционал переходит в известную сумму квадратов регрессионных остатков (с точностью до некоторого множителя σ_y).

4 Модифицированный алгоритм Левенберга-Марквардта

Для минимизации функционала (6) предлагается следующий итеративный алгоритм, предназначенный для использования с уже имеющимися реализациями АЛМ 1 :

1. Выбирается некоторое начальное приближение вектора параметров ω .

¹Предполагается, что реализация АЛМ «принимает на вход» массив значений y_i , функцию вычисления значения f в точках \mathbf{x}_i с вектором параметров $\boldsymbol{\omega}$, и критерий останова в виде числа итераций. Примером такой реализации, использовавшейся авторами, может служить [?].

- 2. Для каждой пары (\mathbf{x}_i, y_i) из обучающей выборки рассчитывается значение частной производной $\frac{\partial f}{\partial x}$ в точке $(\mathbf{x}_i, \boldsymbol{\omega})$.
- 3. Каждое значение зависимой переменной y_i и значение функции $f(\mathbf{x}_i, \boldsymbol{\omega})$ нормируется на соответствующую величину

$$\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2.$$

- 4. Выполняется итерация АЛМ для таким образом модифицированных значений функции f и зависимых переменных y_i , таким образом получается новое значение вектора ω .
- 5. Если критерий останова мАЛМ не достигнут, алгоритм продолжает выполнение с пункта 2.

Отметим следующее:

- Критерием останова мАЛМ могут служить обычные критерии вроде достижения некоторого числа итераций, нормы изменения вектора ω , и т. п.
- Если известно, что производная $\frac{\partial f}{\partial x}$ достаточно гладка в окрестности $(\mathbf{x}_i, \boldsymbol{\omega}) \mid i \in \{1, \dots, \ell\}$, на шаге 4 алгоритма мАЛМ представляется разумным выполнить сразу несколько итераций классического АЛМ во избежание потенциально ресурсоемкого пересчета производных и перенормировки значений y_i и f.

Сходимость предложенного алгоритма можно показать, сведя его к классическому АЛМ. Для этого вместо объектов (\mathbf{x}_i, y_i) в обучающей выборке будем формально рассматривать объекты $(\tilde{\mathbf{x}}_i, \tilde{y}_i)$, где $\tilde{y}_i = 0$, а $\tilde{\mathbf{x}}_i$ — вектор \mathbf{x}_i с дополнительно приписанным к нему значением y_i . Примем

$$\tilde{f}(\tilde{\mathbf{x}}_i, \boldsymbol{\omega}) = \frac{f(\mathbf{x}_i, \boldsymbol{\omega}) - y_i}{\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$

Тогда минимизация функционала (6) возможна средствами классического АЛМ, так как легко видеть, что (6) в этом случае эквивалентен

$$S(\boldsymbol{\omega}) = \sum_{i=1}^{\ell} (\tilde{y}_i - \tilde{f}(\tilde{\mathbf{x}}_i, \boldsymbol{\omega}))^2.$$

Кроме того, при возможности выполнить аналитическое дифференцирование функции f, этот метод показывает еще один способ практической минимизации функционала (6) без постоянной корректировки значений y_i и f, как в предложенном выше алгоритме.

Список литературы

- [1] Marquardt, D. W.: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.
- [2] King, Davis E.: *Dlib-ml: A Machine Learning Toolkit*. Journal of Machine Learning Research, 10:1755–1758, 2009.