1. tétel

a. Logikai műveletek, Neumann-elv

Az A és a B a logikai változókat, az L az eredményt jelöli.

Negálás	Logikai összeadás	Logikai szorzás	Kizáró vagy
Jelölése: NEM	Jelölése: VAGY	Jelölése: ÉS (AND)	Jelölés: XOR
(NOT)	(OR)	Jele: ^	A B L
Jele: ¬	Jele: v	A B L	0 xor 0 = 0
Egyváltozós	A B L	$0 \land 0 = 0$	0 xor 1 = 1
művelet.	$0 \ \ V \ 0 = 0$	$0 \land 1 = 0$	1 xor 0 = 1
A L	$0 \ v \ 1 = 1$	$1 \land 0 = 0$	1 xor 1 = 0
$\neg 0 = 1$	$1 \ \ v \ 0 = 1$	1 ^1 = 1	1 1101 1
$\neg 1 = 0$	$1 \ v \ 1 = 1$		

A Neumann-elveket Neumann János 1946-ban dolgozta ki a számítógépek ideális működéséhez. Ezek szerint a gépnek öt alapvető funkcionális egységből kell állnia: bemeneti egység, memória, aritmetikai és logikai egység, vezérlőegység, kimeneti egység, s ami lényegesebb: a gép működését a tárolt program elvére kell alapozni. Ez azt jelenti, hogy a gép a program utasításait az adatokkal együtt a központi memóriában, bináris ábrázolásban tárolja, s a Boolealgebra műveleteit ezek sorrendjében hajtja végre. A számítógépek az elmúlt évtizedekben páratlan fejlődésen mentek keresztül, de elvi felépítésük nem változott.

Neumann-elvek:

- 1. soros utasítás végrehajtás (az utasítások végrehajtása időben egymás után történik. Ellentéte a párhuzamos utasítás végrehajtás, amikor több utasítás egyidejűleg is végrehajtható)
- 2. kettes (bináris) számrendszer használata
- 3. belső memória (operatív tár) használata a program és az adatok tárolására
- 4. teljesen elektronikus működés
- 5. széles körű felhasználhatóság, alkalmasság bármilyen adatfeldolgozási feladatra (a számítógép univerzális Turing-gépként működik)
- 6. központi vezérlőegység alkalmazása

A Neumann-elvű számítógépek elméleti felépítése:

- központi egység
 - o központi feldolgozó egység (Central Processing Unit)
 - központi vezérlő egység (Control Unit)
 - aritmetikai-logikai egység (Arithmetical-Logical Unit)
 - regiszterblokk
 - gyorsító memória (cache)
 - matematikai társprocesszor (Floating Point Unit)
 - o operatív tár (memória)
- háttértárak (pl. merevlemez, CD vagy DVD, floppy stb.)
- perifériák
 - o input perifériák (pl. billentyűzet, egér, szkenner stb.)
 - o output perifériák (pl. monitor, nyomtató, hangszóró stb.)

A Neumann-elvben megjelenő szűk keresztmetszet

A Neumann-elveknek megfelelő számítógépek problémája a CPU és a memória közötti limitált adatátviteli képesség. Rendszerint a CPU nem kap annyi adatot a memóriából, mint amennyit fel tudna dolgozni. Ez nagyban befolyásolja a processzor működési sebességét, mivel a CPU-t várakozásra ítéli. Erre egy részleges megoldás volt a CPU cache bevezetése.

b. Ismertesse a FOR ciklust felismerő automatát

c. Szintaktikus elemzés

A szintaktikus elemzőnek a feladata a program struktúrájának a felismerése. A szintaktikus elemző működésének az eredménye lehet például az elemzett program szintaxisfája vagy ezzel ekvivalens struktúra. Bemenete egy szimbólumsorozat, eredménye pedig a szintaktikusan elemzett program, és ha vannak, akkor a szintaktikai hibák.

A szintaxist nagyobb részében környezetfüggetlen grammatikával, kisebb részét környezetfüggő vagy attribútum grammatikával lehet leírni. A környezetfüggetlen grammatikával leírható tulajdonságok vizsgálatát szintaktikus elemzésnek nevezzük. A programnyelv szintaktikájának azon követelményei, amelyek nem írhatók le környezetfüggetlen grammatikával a statikus szemantikát alkotják. (E tulajdonság ellenőrzésével a szemantikus elemző foglalkozik.) Továbbiakban a grammatika alatt mindig környezetfüggetlen (Chomsky 2-es típusú) grammatikát értünk. Legyen G=(T, N, S, P) egy grammatika. Ha $S\Rightarrow d$, akkor az d-t mondat formának nevezzük. Ha $S\Rightarrow x$, akkor az x a grammatika által definiált nyelv egy mondata. A program terminális szimbólumok sorozata, de csak akkor lesz a nyelvnek egy mondata, ha szintaktikusan helyes. Legyen a G=(T,N,S,P) egy grammatika és $a=a_1ba_2$ egy mondatformája. A b–t az a egy részmondatának nevezzük, ha van olyan A szimbólum, amelyre $S\Rightarrow a_1ba_2$ és $S\Rightarrow b$ b. A b egy egyszerű részmondata a–nak, ha a fentiekben az $A\Rightarrow b$ teljesül, azaz $A\rightarrow b$. Példa: $G=(\{i,+,*,(,)\},\{E,F,T\},E,P)$, ahol a P a következő szabályokat tartalmazza:

- $E \rightarrow T \mid E + T$
- $T \rightarrow F | T * F$
- $T \rightarrow i|(E)$

Ekkor az E+T*i+T*F mondatformának az i+T vagy az i+T*F nem részmondata, de E+T*i, T*F vagy T*i egy részmondata és T*F egyszerű részmondata. Egy mondatforma legbaloldalibb egyszerű részmondatát a mondatforma nyelének nevezzük. Az előző példában a mondatforma nyele az i.

Ha A→*a, akkor az xAb mondatforma legbaloldalibb helyettesítése xab, azaz xAb→_{legbal}xab.

Ha az $S \rightarrow^* x$ levezetésben minden helyettesítés legbaloldalibb helyettesítés, akkor ezt a levezetést legbaloldalibb levezetésnek nevezzük. Jelölése: $S \rightarrow_{legbal} x$.