Devoir Maison no 16

Problème - Théorème de Hoffman et Singleton (1960)

On se donne dans ce problème un entier naturel non nul n. On note comme dans le cours I_n la matrice identité de taille n et J_n la matrice carrée de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1. On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est orthogonale si $M^{\top} \times M = I_n$. L'ensemble des matrice orthogonales est noté $O_n(\mathbb{R})$.

Partie I - Du classique.

- 1. Exprimer sans démonstration J_n^2 en fonction de J_n .
- 2. On définit la matrice $M \in \mathcal{M}_5(\mathbb{R})$ par

$$M = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

- (a) Calculer M^2 .
- (b) Exprimer $M^2 + M$ en fonction de I_5 et J_5 .
- (c) Soit $p \in \mathbb{N}$. Donner $(M^2 + M)^p$ en fonction de p.
- 3. On définit la matrice $S \in \mathcal{M}_3(\mathbb{R})$ par

$$S = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- (a) Donner trois vecteurs colonnes X, Y, Z de $\mathcal{M}_{3,1}(\mathbb{R})$ non nuls vérifiant respectivement SX = 2X, SY = 4Y, SZ = 3Z.
- (b) Si $A = {}^t (a_1 \quad a_2 \quad a_3)$ est un vecteur colonne, on appelle norme de A le réel $||A|| = \sqrt{a_1^2 + a_2^2 + a_3^2}$. Donner la norme des vecteurs X, Y, Z obtenus à la question précédente.
- (c) On pose X' = X/||X||, Y' = Y/||Y||, Z' = Z/||Z|| et P la matrice dont les vecteurs colonnes sont X', Y', Z' dans cet ordre. Montrer que P est orthogonale. En déduire que P est inversible ainsi que l'expression de P^{-1} sans calcul.
- (d) Calculer $D = P^{-1}SP$ et en déduire que S est inversible.
- (e) Soit $p \in \mathbb{N}$. Calculer S^p en fonction de p.

Partie II - Le groupe orthogonal.

- 1. Montrer que $O_n(\mathbb{R})$ est inclus dans $\mathrm{GL}_n(\mathbb{R})$ et que l'inclusion est stricte.
- 2. Montrer que $O_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

Partie III - Valeurs propres de J_n .

On suppose qu'il existe un vecteur colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul et un réel λ tel que $J_nX = \lambda X$.

- 1. Montrer que pour tout $i \in [1; n]$, $S_n = \lambda x_i$, où x_i est le coefficient de X se trouvant à la i^e ligne et où $S_n = \sum_{i=1}^n x_i$.
- 2. Montrer que $nS_n = \lambda S_n$.
- 3. On suppose que $S_n \neq 0$. Donner la valeur de λ et montrer que tous les coefficients de X sont égaux.
- 4. On suppose désormais que $S_n = 0$.
 - (a) Montrer qu'il existe $i_0 \in [1; n]$ tel que $x_{i_0} \neq 0$.

Page 1/3 2023/2024

MP2I Lycée Faidherbe

(b) À l'aide de la question 1, montrer que $\lambda = 0$.

Partie IV - Théorème spectral.

On se donne dans cette partie une matrice $A \in \mathcal{M}_3(\mathbb{R})$ symétrique. On introduit la fonction

$$\varphi: \left\{ \begin{array}{l} \mathcal{M}_3(\mathbb{R}) \to \mathbb{R} \\ M = (m_{ij})_{1 \le i, j \le 3} \mapsto \sum_{i=1}^3 \sum_{j \ne i} m_{ij}^2 \end{array} \right.$$

En d'autres termes, $\varphi(M)$ est la somme des carrés des coefficients non diagonaux de M. On admet que φ est minorée et atteint sa borne inférieure sur $\{P^{-1}AP \mid P \in O_3(\mathbb{R})\}$, c'est-à-dire qu'il existe une matrice $P_0 \in O_3(\mathbb{R})$ telle que

$$\forall P \in O_3(\mathbb{R}), \qquad \varphi\left(P_0^{-1}AP_0\right) \le \varphi\left(P^{-1}AP\right)$$

On pose $B = P_0^{-1} A P_0$.

- 1. Calculer $\varphi(S)$, où S est la matrice donnée à la question 3 de la partie I.
- 2. Montrer que B est symétrique (on rappelle que P_0 est orthogonale). Ainsi, B est de la forme

$$B = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

Le but de cette partie est de montrer que B est diagonale. Pour cela, on effectue un raisonnement par l'absurde et on suppose (raisonnement analogue dans les autres cas) que $c \neq 0$.

3. Soit $\theta \in \mathbb{R}$. Montrer que $U(\theta)$ est orthogonale, où $U(\theta)$ est la matrice définie par

$$U(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$$

- 4. Donner les coefficients non diagonaux de $C(\theta) = U(\theta)^{-1}BU(\theta)$. On note $C(\theta) = (c_{ij}(\theta))_{1 \le i,j \le 3}$.
- 5. Montrer qu'il existe $\theta_1 \in \left[0; \frac{\pi}{2}\right]$ que l'on ne cherchera pas à calculer tel que $c_{13}(\theta_1) = 0$.
- 6. Montrer que $\varphi(C(\theta_1)) = \varphi(B) 2c^2$ et conclure à une absurdité.

On n'a pris n=3 que pour simplifier les calculs, le cas général se démontre de façon tout-à-fait analogue. Ainsi, on vient de démontrer le résultat suivant, connu sous le nom de théorème spectral :

Théorème spectral : Soit $M \in S_n(\mathbb{R})$. Il existe $P \in O_n(\mathbb{R})$ et D diagonale telles que $M = PDP^{-1}$

Partie V - Théorème de Hoffman et Singleton.

On se donne dans toute cette partie une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant les conditions suivantes :

- A est symétrique.
- Les coefficients de A sont tous égaux à 0 ou 1 et les coefficients diagonaux de A sont tous nuls.
- Il existe un entier $d \ge 1$ tel que

$$A^2 + A - (d-1)I_n = J_n \qquad (*)$$

On note $A = (a_{ij})_{1 \le i,j \le n}$, $A^2 = (b_{ij})_{1 \le i,j \le n}$ et on appelle U le vecteur colonne à n lignes dont tous les coefficients sont égaux à 1.

- 1. (a) Montrer que pour tout $i \in [1; n]$, $b_{ii} = \sum_{k=1}^{n} a_{ik}$. En d'autres termes, b_{ii} est le nombre de coefficients égaux à 1 se trouvant sur la i^e ligne de la matrice A (il n'est pas demandé de le prouver).
 - (b) Montrer que $b_{ii} = d$ (on pourra regarder le coefficient en position (i, i) dans la relation (*)).
 - (c) À l'aide des deux questions précédentes, montrer que AU = dU puis donner la valeur de A^2U .
 - (d) Calculer J_nU .
 - (e) Montrer que $n = d^2 + 1$.

Page 2/3 2023/2024

MP2I Lycée Faidherbe

2. Montrer qu'il existe une matrice P inversible et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tels que

$$A = P \times \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \times P^{-1}$$

- 3. On se donne dans cette question un entier $i \in [1; n]$. On pose X_i le vecteur colonne dont les coordonnées sont nulles, sauf la i^e qui vaut 1, et on pose $Y_i = PX_i$.
 - (a) Montrer que Y_i n'est pas le vecteur colonne nul.
 - (b) Montrer que $AY_i = \lambda_i Y_i$.
 - (c) Montrer que $J_n Y_i = (\lambda_i^2 + \lambda_i (d-1))Y_i$.
 - (d) À l'aide de la partie III, montrer que si $\lambda_i^2 + \lambda_i (d-1) = n$ alors Y_i et U sont proportionnels, et en déduire qu'alors $\lambda_i = d$.
 - (e) Donner les deux racines α et β du polynôme $X^2 + X (d-1)$ (on notera α la racine positive).
 - (f) Montrer que $\lambda_i \in \{\alpha, \beta, d\}$.

Ainsi, tous les λ_i sont égaux à α, β ou d. On note a le nombre de λ_i égaux à α et b le nombre de λ_i égaux à β (a et b sont donc des entiers naturels, éventuellement nuls). On admet qu'un seul des λ_i est égal à d.

- 4. Montrer que $a + b = d^2$.
- 5. On admet que $a\alpha + b\beta + d = 0$. En utilisant la question 3.(e), montrer que $\sqrt{4d-3}(a-b) = d(d-2)$.
- 6. On suppose dans cette question que $a \neq b$.
 - (a) Montrer que $\sqrt{4d-3} \in \mathbb{Q}$. En déduire qu'il existe $p \in \mathbb{N}^*$ tel que $4d-3=p^2$.
 - (b) En déduire une expression de d(d-2) en fonction de p.
 - (c) À l'aide de la question 5, montrer qu'il existe $k \in \mathbb{Z}$ tel que $k \times p = 15$. En déduire les valeurs possibles de p.
- 7. Donner la valeur de d si a = b.
- 8. En déduire le théorème de Hoffman et Singleton :

Théorème de Hoffman et Singleton (1960) : $d \in \{1, 2, 3, 7, 57\}$

Page 3/3 2023/2024