1. By using the formula: n = z + xR

$$74 = 30 + 0.1 \text{ A}$$

$$74 = \frac{30}{0.9} = \frac{160}{3} \approx 33.333$$

$$78 = 0.6 \text{ A} + 0.1 \text{ A}$$

$$78 = 20 + 0.1 \text{ A}$$

$$70 = 0.2 \text{ A} + 0.1 \text{ A}$$

$$70 = 0.8 \text{ A} + 0.8 \text{ A}$$

$$70 = \frac{640}{27} \approx 23.704$$

$$P_{1} = \frac{\lambda}{4} P_{0}$$

$$P_{1} = \frac{\lambda}{n} P_{0}$$

$$P_{2} = \frac{\lambda}{2u} P_{1} = \left(\frac{\lambda}{u}\right)^{\frac{1}{2}} P_{0}$$

$$P_{3} = \frac{\lambda}{3u} P_{1} = \left(\frac{\lambda}{u}\right)^{\frac{1}{2}} P_{0}$$

$$P_{4} = \frac{\lambda}{n} P_{1} = \left(\frac{\lambda}{u}\right)^{\frac{1}{2}} P_{0}$$

$$P_{5} = \frac{\lambda}{n} P_{1} = \left(\frac{\lambda}{u}\right)^{\frac{1}{2}} P_{0}$$

$$P_{6} = \frac{\lambda}{n} P_{0} = \frac{\lambda}{n} P_$$

Therefore Node A:
$$\lambda = r = \frac{100}{3} = \frac{5}{120}$$

$$W = \frac{1}{4} = \frac{1}{150}$$

Node B, C, D: M/M/1: Pn = (1-p) pn

$$\lambda = \frac{\rho}{1-\rho}$$

$$W = \frac{\rho}{\lambda(1-\rho)}$$

Therefore Node
$$B: \Delta = \frac{\frac{6200}{297}}{30}, \lambda = \frac{\rho}{1-\rho} = \frac{620}{271}$$

$$W = \frac{L}{R} = \frac{297}{2710}$$

Node
$$c: \rho = \frac{2600}{297}, \lambda = \frac{260}{37}$$

$$W = \frac{297}{270}$$

Node D:
$$\beta = \frac{640}{27}$$
, $\lambda = \frac{64}{17}$

$$W = \frac{27}{170}$$

For the system

(b)
$$W = \frac{L}{3 + 6 \text{ fal}} = \frac{13.357}{30} \approx 0.445 \text{ hour}$$

simulated result:

3. (i) same
$$\rho = \frac{\pi}{4} = \frac{0.8}{1} = 0.8$$
 (C=1)

$$\lambda = \frac{\rho}{1-\rho} = 4 \qquad \lambda g = \frac{\rho^2}{1-\rho} = 3.2$$

$$W = \frac{\rho}{\pi(1-\rho)} = 5 \qquad \text{where } \frac{\rho^2}{\pi(1-\rho)} = 4$$

$$lq = \frac{H^{\frac{1}{k}}}{2} \frac{\rho^2}{1-\rho}$$

$$l = lq + \rho$$

$$28 = \frac{44}{25}$$
 $\lambda = \frac{64}{25}$

	M/M /1	MEYI	MEIO/I	M/p/1	
) L	4	3.1	2,56	24	— More deterministic (less random) → better performance on L, W
w	5	4	3.2	3	
7. 14.1					

Simulated

2. Construct the queueing network:

Run the simulation:

- Simulated system number of customers (L): 13.5416 (Calculated: 13.357)
- Reference: Second trial 13.471

- Simulated system response time (W): 0.4377 (Calculated: 0.445)
- Reference: Second Trial: 0.486

3. (ii)

Construct the model:

For M/M/1:

- Simulated system number of customers (L): 3.9804 (Calculated: 4)
- Simulated system response time (W): 5.0344 (Calculated: 5)

For M/E₂/1:

- Set the service time distribution to Erlang-k: λ (each stage)=2, k=2, such that mean service rate μ =1
- Simulated system number of customers (L): 3.1724 (Calculated: 3.2)
- Simulated system response time (W): 3.9691 (Calculated: 4)

For M/ E₁₀/1:

- Set the service time distribution to Erlang-k: λ (each stage)=10, k=10, such that mean service rate μ =1
- Simulated system number of customers (L): 2.5432 (Calculated: 2.56)
- Simulated system response time (W): 3.1635 (Calculated: 3.2)

For M/D/1:

- Set the service distribution to deterministic with service rate μ =1
- Simulated system number of customers (L): 2.4471 (Calculated: 2.4)
- Simulated system response time (W): 3.0371 (Calculated: 3)

