ФГАОУ ВО «Санкт-Петербургский Политехнический университет Петра Великого»

Физико-Механический институт Высшая школа теоретической механики

Отчет по индивидуальному заданию

Решение уравнения колебаний струны методом конечных разностей. Вариант 27

Студент:

Чеботин А.А.

группа: 5030103/90301

Преподаватель:

Витохин Е.Ю

Содержание

1.			2
	1.1.	Формулировка задачи.	2
	1.2.	Описание численного метода	2
	1.3.	Подготовка контрольных тестов	5
	1.4.	Модульная структура программы	5
	1.5.	Численный анализ решения задачи	10
	1.6.	Выводы	13

Глава 1

1.1. Формулировка задачи.

Требуется получить конечно-разностное решение первой начально-краевой задачи для уравнения колебания струны

$$\frac{\partial^2 U}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2}$$

С начальными условиями:

$$U(x,0) = f(x) = (x^2 + 0.5)\cos(\pi x)$$
$$U_t(x,0) = \Phi(x) = (x + 0.7)^2$$

И краевыми условиями:

$$U(0,t) = \phi(t) = 0.5$$

$$U(1,t) = \psi(t) = 2t - 1.5$$

Обозначения:

ullet c=1 - скорость звука в среде (по условию задачи)

Решение получить с шагом h=0.1 по пространству, $0 \le x \le 1, \ 0 \le t \le 0.5.$

1.2. Описание численного метода

1. Дискретизация. Область непрерывного изменения значения аргументов x и t разбивается на конечное число интервалов, то есть на пространственновременную область $\Omega \times T = (0 \le x \le 1; \ 0 \le t \le 0.5)$ наносится конечноразностная сетка

$$x_i = ih, \ x_0 = 0, \ x_n = 1, \ i = 0, 1, ..., n \ (n = \frac{l}{h} = 11)$$

$$t^k = k\Delta t, \ t^0 = 0, \ t^k = 0.5, \ k = 0, 1, ..., K \ (K = \frac{t^*}{\Delta t})$$

где k - номер слоя по времени, Δt - шаг интегрирования по времени, i - номер узла по пространству, h=0.1 - пространственный шаг.

Также вводятся два *временных слоя*. *Нижений* $t^k = k\Delta t$, на котором распределение искомой функции $U(x_i, t^k)$ известно, и *верхний* $t^{k+1} = (k+1)\Delta t$, на котором распределение функции $U(x_i, t^{k+1})$ нужно вычислить. Введем определение:

Определение 1.1. Сеточной функцией U_i^k назовем функцию, определенную только в дискретном множестве точек (в узлах) разностной сетки.

Таким образом, мы на сетке введем две сеточные функции, первая T_i^k из которых известна, а вторую T_i^{k+1} нужно найти методом конечных разностей.

2. Аппроксимация. Идея метода конечных разностей: вместо производных мы используем их конечно-разностные аналоги.

Шаг по времени можно задать с учетом условия Куранта:

$$\Delta t = C \frac{h}{c},$$

где C - число Куранта, c=1.

(a) **Явная схема**. Для определения U_i^{k+1} аппроксимируем дифференциалы уравнения колебания струны:

$$\frac{\partial^2 U}{\partial t^2} = \frac{U_i^{k+1} - 2U_i^k + U_i^{k-1}}{\Delta t^2}$$

$$\frac{\partial^2 U}{\partial r^2} = \frac{U_{i+1}^k - U_i^k + U_{i+1}^k}{h^2}$$

Подставляя эти аппроксимации в исходное уравнение, и выражая единственную неизвестную U_i^{k+1} , мы получим *явное* выражение для его определения:

$$U_i^{k+1} = \frac{c^2 \Delta t^2}{h^2} \left(U_{i+1}^k - U_i^k + U_{i-1}^k \right) + 2U_i^k - U_i^{k-1}$$

(b) **Неявная схема**. Используя неявную схему, производные будут заменяться следующими выражениями

$$\frac{\partial^2 U}{\partial t^2} = \frac{U_i^{k+1} - 2U_i^k + U_i^{k-1}}{\Delta t^2}$$

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i+1}^{k+1} - U_i^{k+1} + U_{i+1}^{k+1}}{h^2}$$

То есть мы дифференциал по x аппроксимировали соотношением на верхнем временном слое, в отличие от аппроксимации по явной схеме. После подставления данных аппроксимаций, приводим подобные слагаемые и получаем следующее разностное уравнение:

$$-AU_{i-1}^{k+1} + BU_i^{k+1} - CU_{i+1}^{k+1} = F_i,$$

$$A = \frac{1}{h^2}, \ B = \frac{h^2 + 2c^2\Delta t^2}{\Delta t^2 h^2 c^2}, \ C = \frac{1}{h^2}, \ F_i = \frac{2U_i^k}{\Delta t^2 c^2} - \frac{U_i^{k-1}}{\Delta t^2 c^2}$$

Разностное уравнение есть СЛАУ с трехдиагональной матрицей, поэтому в случае неявной схемы нужно перейти к ее решению (этап 3).

3. **Решение СЛАУ**. В результате аппроксимации мы свели исходную задачу к системе алгебраических уравнений. Образованная этими уравнениями СЛАУ имеет трехдиагональную матрицу, поэтому будем применять метод прогонки, алгоритм которого имеет сложность O(n).

СЛАУ МКР будет иметь следующую структуру:

$$\begin{pmatrix} B & -C & 0 & 0 & \dots & 0 \\ -A & B & -C & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & -A & B & -C \\ 0 & \dots & 0 & 0 & -A & B \end{pmatrix} \cdot \begin{pmatrix} U_1^{k+1} \\ U_2^{k+1} \\ \vdots \\ U_{n-1}^{k+1} \\ U_n^{k+1} \end{pmatrix} = \begin{pmatrix} F_1^{k+1} \\ F_2^{k+1} \\ \vdots \\ F_{n-1}^{k+1} \\ F_n^{k+1} \end{pmatrix}$$

Алгоритм метода прогонки. Мы должны найти прогоночные коэффициенты.

(а) Прямой ход.

$$i = 1: P_1 = \frac{C}{B}, Q_1 = \frac{F_1}{B}$$

$$i = 2, ..., n: P_i = \frac{C}{B - AP_{i-1}}, Q_i = \frac{F_i + AQ_{i-1}}{B - AP_{i-1}}$$

(b) Обратный ход. Находим искомое решение, используя найденные прогоночные коэффициенты

$$U_i^{k+1} = P_i U_{i+1}^{k+1} + Q_i$$

1.3. Подготовка контрольных тестов

Для исследования метода будем проводить следующие тесты:

- 1. Построим поверхности явной и неявной схем;
- 2. Построим разрезы, зафиксировав определенный момент времени;
- 3. Сравним схемы численно.

1.4. Модульная структура программы

Программа написана на языке C++. В коде имеются различные пользовательские типы:

- enum ListOfMediums перечисление, состоящее из набора целочисленных констант. В нашем случае перечислителями будут различные среды.
- struct MediumData простейшая структура, имеющая два элемента: (const int MediumID идентификатор среды, const double cSoundWaveSpeed скорость звука в среде);
- namespace MediumDataBase пространство имен. Здесь используется контейнер vector из стандартной библиотеки C++. Мы используемся вектор структур MediumData и при инициализации задаем значения для всех элементов структуры MediumData;
- struct IntegrateParameters простейшая структура, содержащая два элемента шаг интегрирования по времени и по координате x;
- class StringVibrationSolver основной класс программы, решающий уравнение колебания струны. Класс имеет свои функции функции начальных и краевых условий, функции создания сетки, функции получения решения по явной и неявной схеме. Для передачи структур в функции класса StringVibrationSolver (например, структуру с определенной средной и структуру с параметрами интегрирования) используется константная ссылка, чтобы повысить эффективность алгоритма и избавиться от дополнительных затрат. Обычные переменные будут передаваться по значению, не затрачивая при этом расходы на дополнительный доступ в функции класса.

Скриншоты программы:

```
Wave Equation.cpp*
Mechanic_lab1

    (Глобальная область)

                                                                                           → 😭 main()
             #define _CRT_SECURE_NO_WARNINGS
           ⊟#include <stdio.h>
            #include <vector>
             #include <array>
            #include <stdint.h>
            #define _USE_MATH_DEFINES

    #if defined(_USE_MATH_DEFINES) && !defined(_MATH_DEFINES_DEFINED)

            #define _MATH_DEFINES_DEFINED
            #define M_PI
#define M_PI_2
                                 3.14159265358979323846
                                  1.57079632679489661923
             #define M_PI_4
                                 0.785398163397448309616
             #define M_1_PI
                                 0.318309886183790671538
            #define M_2_PI
                                 0.636619772367581343076
            #define N 11 // 0 < x < 1
             #define K 51 //0 < t < 0.5
           ⊨enum ListOfMediums {
                 DryAir = 0,
                 Hydrogen = 1,
                 Nitrogen = 2,
                 Helium = 3,
                 Oxygen = 4,
                 CarbonDioxide = 5,
                 Acetone = 6,
                 Water = 7,
Petrol = 8,
                 Vodka = 9,
                 One = 10 //by exercise c = 1

□struct MediumData {
                 const int Medium_ID;
                 const double c_SoundWaveSpeed;
            3;
          pnamespace MediumDataBase {
                std::vector<MediumData> mediums = {
                     {0, 331.0},
{1, 1284.0},
{2, 334.0},
                     {3, 955.0},
{4, 316.0},
                     {5, 259.0},
                     {6, 1192.0},
                     {7, 1460.0},
{8, 1170.0},
                     {9, 1180.0},
                     {10, 1}
          pstruct IntegrateParameters {
                double delta_tStep;
                double h_xStep;
```

```
⊟class StringVibrationSolver {
                     inline double InitialValueFunction(double x);
                       inline double DerivativeIVF(double x);
                       inline double LeftBoundaryConditionFunction(double t);
                      inline double RightBoundaryConditionFunction(double t);
                     void SetCoordinateXGrid(std::array<double, N>& x, const IntegrateParameters& params);
void SetTimeGrid(std::array<double, K>& t, const IntegrateParameters& params);
                      \label{lem:void_getSolutionExplicit} void \ getSolutionExplicit(const \ MediumData\& \ medium, \ double(*U)[N], \ std::array<double, \ N>\& \ x, \ Array<double, \ N>\& \ x, \ Array</double, \ N>\& \ x, \ Array</do>
                                 std::array<double, K>& t, const IntegrateParameters& params);
                       \label{lem:const_mediumData& medium, double(*U)[N], std::array < double, N>\&\ x, array < double, N>\&
                                    std::array<double, K>& t, const IntegrateParameters& params);
☐ inline double StringVibrationSolver::InitialValueFunction(double x)
                       return (x * x + 0.5) * cos(M_PI * x);
          //derived NU
  □inline double StringVibrationSolver::DerivativeIVF(double x)
                        return (x + 0.7) * (x + 0.7);
  pinline double StringVibrationSolver::LeftBoundaryConditionFunction(double t)
                        return 0.5;
 □inline double StringVibrationSolver::RightBoundaryConditionFunction(double t)
                        return 2 * t - 1.5;
  pvoid StringVibrationSolver::SetCoordinateXGrid(std::array<double, N>& x, const IntegrateParameters& params)
                        x[0] = 0;
                        for (uint8_t i = 1; i < N; ++i) {
                                    x[i] = i * params.h_xStep;
```

```
pvoid StringVibrationSolver::SetTimeGrid(std::array<double, K>& t, const IntegrateParameters& params)
      t[0] = 0;
      for (uint8_t k = 1; k < K; ++k) {
         t[k] = k * params.delta_tStep;
void StringVibrationSolver::getSolutionExplicit(const MediumData& medium, double(*U)[N], std::array<double, N>& x,
     std::array<double, K>& t, const IntegrateParameters& params)
         U[0][i] = InitialValueFunction(x[i]);
         U[1][i] = InitialValueFunction(x[i]) + DerivativeIVF(x[i]) * params.delta_tStep;
      for (uint8_t k = 0; k < K; ++k)
         U[k][0] = LeftBoundaryConditionFunction(t[k]);
         U[k][N-1] = RightBoundaryConditionFunction(t[k]);
      /*Для сокращения выражений*/
      double h = params.h_xStep;
      double dt = params.delta_tStep;
      double c = medium.c_SoundWaveSpeed;
      /*Решение по явной схеме*,
      for (uint8_t k = 1; k < K-1; ++k)
          for (uint8_t i = 1; i < N - 1; ++i)
              2 * U[k][i] - U[k - 1][i];
      }
  1
void StringVibrationSolver::getSolutionImplicit(const MediumData& medium, double(*U)[N], std::array<double, N>& x,
      const IntegrateParameters& params)
  {
      for (uint8_t i = 0; i < N; ++i)
          U[0][i] = InitialValueFunction(x[i]);
          U[1][i] = InitialValueFunction(x[i]) + DerivativeIVF(x[i]) * params.delta_tStep;
      for (uint8_t k = 0; k < K; ++k)
          U[k][0] = LeftBoundaryConditionFunction(t[k]);
          U[k][N-1] = RightBoundaryConditionFunction(t[k]);
```

```
double h = params.h_xStep;
double dt = params.delta_tStep;
        double c = medium.c_SoundWaveSpeed;
       double A = 1.0 / (h * h);
double C = 1.0 / (h * h);
double B = ((h*h) + 2 * (c*c) * (dt*dt)) / ((h*h) * (c*c) * (dt*dt));
        std::array<double, N> F, P, Q;
        for (uint8_t k = 1; k < K - 1; ++k)
             for (uint8_t i = 0; i < N; i++)
                 F[i] = -((U[k - 1][i]) / (c * c * dt * dt)) + U[k][i] * (2 / (c * c * dt * dt));
ı
             P[0] = C / B;
             Q[0] = F[0] / B;
             for (uint8_t j = 1; j < N; ++j)
                 P[j] = C / (B - A * P[j - 1]);

Q[j] = (F[j] + A * Q[j - 1]) / (B - A * P[j - 1]);
             for (uint8_t j = N - 2; j > 0; --j)
                 U[k + 1][j] = P[j] * U[k + 1][j + 1] + Q[j];
 □int main()
       using namespace MediumDataBase;
       StringVibrationSolver mySolver;
ı
       IntegrateParameters params;
       params.h_xStep = 0.1;
       params.delta_tStep = 0.01;
       double U[K][N] = { 0 };
       std::array<double, N> x;
       std::array<double, K> t;
       mySolver.SetCoordinateXGrid(x, params);
       mySolver.SetTimeGrid(t, params);
       /*3десь можно задать материал (см. enum)*/
mySolver.getSolutionImplicit(mediums[One], U, x, t, params);
```

1.5. Численный анализ решения задачи

Рис 1.1 Поверхность (явная схема)

Рис 1.2. Поверхность (неявная схема)

Рис 2.1. Распределение U в разные моменты времени (явная схема)

Рис 2.2. Распределение U в разные моменты времени (неявная схема)

Рис 3. Сравнение схем в момент времени t=0.1.

Сравним численно:

Таблица 1. Явная схема

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Таблица 1. Явная схема											
$\begin{array}{c} 1_2 = 0.02 \\ 2_2 = 0.02 \\ 0.0500000 \\ 0.0500000 \\ 0.0500000 \\ 0.0500000 \\ 0.0500000 \\ 0.0500000 \\ 0.0500000 \\ 0.050000 \\ 0.0500000 \\ 0.050000 \\ 0.0$		$x_0 = 0$	$x_1 = 0.1$	$x_2 = 0.2$	$x_3 = 0.3$	$x_4 = 0.4$	$x_5 = 0.5$	$x_6 = 0.6$	$x_7 = 0.7$	$x_8 = 0.8$	$x_9 = 0.9$	$x_{10} = 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$t_0 = 0.00$	0.500000	0.485039		0.346793	0.203951	0.000000	-0.265755	-0.581907	-0.922279	-1.245884	-1.500000
$\begin{array}{c} I_{3} = 0.03 & 0.500000 & 0.503088 & 0.459919 & 0.378219 & 0.248578 & 0.041555 & -0.216517 & 0.0532824 & 0.854268 & 1.167308 & 1.1420900 \\ I_{4} = 0.04 & 0.500000 & 0.5050194 & 0.646771 & 0.3538694 & 0.058318 & 0.053181 & 0.0501181 & 0.050000 & 0.5108529 & 1.0420900 & 0.059518 & 0.050000 & 0.5108529 & 0.058592 & 0.058578 & -0.186232 & 0.486267 & 0.880604 & 1.112820 & 1.1400000 \\ I_{7} = 0.07 & 0.500000 & 0.520518 & 0.488809 & 0.465811 & 0.275984 & 0.088018 & -0.157823 & 0.449579 & 0.784705 & 1.085229 & 1.380000 \\ I_{9} = 0.09 & 0.500000 & 0.525256 & 0.499860 & 0.41217 & 0.283000 & 0.098215 & -0.144313 & -0.41358 & 0.737508 & 1.029903 & 1.340000 \\ I_{10} = 0.10 & 0.500000 & 0.525260 & 0.494880 & 0.418087 & 0.291252 & 0.107444 & -0.181249 & 0.413684 & 0.737508 & 0.075431 & -1.300000 \\ I_{10} = 0.10 & 0.500000 & 0.527824 & 0.498911 & 0.423855 & 0.298014 & 0.118019 & -0.943138 & 0.737508 & 0.075433 & -1.300000 \\ I_{11} = 0.11 & 0.500000 & 0.529810 & 0.5000502 & 0.432854 & 0.39936 & 0.152444 & -0.104407 & -0.378492 & 0.075437 & -0.280001 & 0.12410 & -0.280000 & 0.689776 & 0.948714 & -1.280000 & 0.12410 & -0.28961 & 0.500000 & 0.58976 & 0.436572 & 0.436572 & 0.149024 & -0.083174 & -0.343908 & 0.041731 & -0.922459 & -0.200000 & 0.52975 & 0.51180 & 0.399368 & 0.319689 & 0.149006 & -0.061405 & -0.39948 & -0.87174 & -0.1490000 & -0.529075 & 0.511810 & 0.439958 & 0.319689 & 0.149006 & -0.061405 & -0.399818 & -0.50000 & 0.529775 & 0.51180 & 0.349589 & 0.319689 & 0.149006 & -0.061405 & -0.309818 & -0.50000 & 0.520770 & 0.511800 & 0.442853 & 0.329876 & 0.104042 & -0.083174 & -0.349908 & 0.548133 & -0.43733 & -0.200000 & 0.520770 & 0.513490 & 0.442853 & 0.327882 & 0.104042 & -0.061005 & -0.309818 & -0.500000 & 0.520770 & 0.514500 & 0.442853 & 0.339868 & 0.160033 & -0.04040 & -0.276251 & -0.500000 & 0.571615 & 0.510410 & 0.349308 & 0.104024 & -0.051020 & -0.299994 & -0.546113 & -0.837308 & -0.104024 & -0.051020 & -0.299994 & -0.546113 & -0.837308 & -0.104024 & -0.061020 & -0.246000 & -0.577797 & -1.1200000 & -0.246000 &$	$t_1 = 0.01$	0.500000	0.491439	0.444969	0.356793	0.216051	0.014400	-0.248855	-0.562307	-0.899779	-1.220284	-1.480000
$ \begin{array}{c} I_{4} = 0.04 \\ 5, = 0.05 \\ 0.500000 \\ 0.5000000 \\ 0.5000000 \\ 0.510930 \\ 0.479220 \\ 0.398957 \\ 0.398957 \\ 0.258950 \\ 0.25895$	$t_2 = 0.02$	0.500000		0.452652	0.366268	0.227542	0.028184	-0.232457	-0.542948	-0.877110	-1.194076	-1.460000
$ \begin{array}{c} r_{8} = 0.06 & 0.500000 & 0.512834 & 0.473205 & 0.391560 & 0.258392 & 0.065878 & -0.186232 & 0.486267 & 0.88004 & -1.112820 & -1.480000 \\ r_{8} = 0.08 & 0.500000 & 0.509508 & 0.48809 & 0.405841 & 0.258042 & 0.088018 & -0.157823 & 0.449579 & 0.784705 & -1.085220 & 1.380000 \\ r_{9} = 0.08 & 0.500000 & 0.529325 & 0.488969 & 0.418087 & 0.288096 & 0.08215 & -0.144313 & 0.431588 & 0.737568 & 1.029903 & 1.340000 \\ r_{9} = 0.08 & 0.500000 & 0.525252 & 0.489896 & 0.418087 & 0.288096 & 0.08215 & -0.18619 & 0.341588 & 0.737568 & 1.029903 & 1.340000 \\ r_{9} = 0.10 & 0.500000 & 0.529220 & 0.494680 & 0.418087 & 0.29252 & 0.107444 & -0.131249 & 0.431588 & 0.737568 & -0.975453 & 1.300000 \\ r_{1} = 0.11 & 0.500000 & 0.529210 & 0.502737 & 0.428523 & 0.389258 & 0.125444 & -0.106407 & 0.378492 & 0.665776 & 0.948714 & -1.280000 \\ r_{2} = 0.12 & 0.500000 & 0.529861 & 0.500052 & 0.432853 & 0.349588 & 0.125444 & -0.106407 & 0.378492 & 0.665776 & 0.948714 & -1.280000 \\ r_{2} = 0.13 & 0.500000 & 0.530065 & 0.508872 & 0.436573 & 0.140924 & -0.081174 & 0.343908 & 0.617687 & 0.988714 & -1.280000 \\ r_{3} = 0.15 & 0.500000 & 0.529957 & 0.511180 & 0.433908 & 0.319689 & 0.147066 & -0.061405 & 0.398848 & 0.678718 & -0.898772 & -1.240000 \\ r_{3} = 0.15 & 0.500000 & 0.529757 & 0.511800 & 0.447853 & 0.323787 & 0.164042 & -0.061405 & 0.398848 & 0.568817 & 0.88772 & -1.240000 \\ r_{3} = 0.15 & 0.500000 & 0.529675 & 0.511800 & 0.447853 & 0.323787 & 0.16442 & -0.061405 & 0.398848 & 0.568817 & 0.88772 & -1.240000 \\ r_{3} = 0.15 & 0.500000 & 0.529675 & 0.511800 & 0.447855 & 0.328787 & 0.16442 & -0.061405 & 0.398848 & -0.68817 & -0.88772 & -1.240000 \\ r_{4} = 0.17 & 0.500000 & 0.529675 & 0.511800 & 0.447855 & 0.328785 & 0.16442 & -0.061405 & 0.398848 & -0.58817 & -0.88772 & -1.240000 \\ r_{3} = 0.17 & 0.500000 & 0.520675 & 0.511800 & 0.447855 & 0.328785 & 0.16442 & -0.061405 & 0.598848 & -0.568817 & -0.88772 & -1.240000 \\ r_{3} = 0.17 & 0.500000 & 0.520675 & 0.511615 & 0.449289 & 0.342613 & 0.16466 & -0.061405 & 0.398848 & -0.58817 & -0.887838 & -1$	$t_3 = 0.03$	0.500000	0.503058	0.459919	0.375219	0.238427	0.041355	-0.216557	-0.523824	-0.854268	-1.167358	-1.440000
$ \begin{array}{c} f_{9} = 0.06 \\ r_{7} = 0.07 \\ 0.500000 \\ 0.5090500 \\ 0.5020518 \\ 0.5020518 \\ 0.5484909 \\ 0.4058451 \\ 0.257548 \\ 0.2580518 \\ 0.421217 \\ 0.283905 \\ 0.421217 \\ 0.283905 \\ 0.088215 \\ 0.147305 \\ 0.147313 \\ 0.157823 \\ 0.044957 \\ 0.149570 \\ 0.14313 \\ 0.143153 \\ 0.737508 \\ 0.73508 \\ 0.73508 \\ 0.73508 \\ 0.73508 \\ 0.132900 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522000 \\ 0.522200 \\ 0.432352 \\ 0.432352 \\ 0.432352 \\ 0.432352 \\ 0.432352 \\ 0.432352 \\ 0.432352 \\ 0.147905 \\ 0.1479024 \\ 0.147212 \\ 0.14$	$t_4 = 0.04$	0.500000	0.508194	0.466771	0.383649	0.248708	0.053918	-0.201151	-0.504933	-0.831253	-1.140235	-1.420000
$ \begin{array}{c} 1_{7} = 0.07 & 0.500000 & 0.5290518 & 0.484800 & 0.405841 & 0.275984 & 0.088018 & 0.157831 & 0.449579 & 0.761183 & 1.057581 & 1.360000 \\ f_{8} = 0.08 & 0.500000 & 0.523525 & 0.489605 & 0.412217 & 0.28300 & 0.098215 & 0.148313 & 0.413684 & 0.713699 & 1.002580 & 1.320000 \\ f_{10} = 0.10 & 0.500000 & 0.527524 & 0.489801 & 0.423455 & 0.298034 & 0.116916 & 0.118619 & 0.413684 & 0.713699 & 1.002580 & 1.320000 \\ f_{11} = 0.11 & 0.500000 & 0.529520 & 0.088941 & 4.23245 & 0.28034 & 0.116916 & 0.118619 & 0.413684 & 0.713699 & 1.002580 & 1.320000 \\ f_{12} = 0.12 & 0.500000 & 0.529610 & 0.560052 & 0.432624 & 0.309368 & 0.125444 & 0.00407 & 0.378492 & 0.665776 & 0.948714 & 1.280000 \\ f_{12} = 0.13 & 0.500000 & 0.529610 & 0.506052 & 0.4326572 & 0.315075 & 0.140244 & 0.0810407 & 0.378492 & 0.665776 & 0.948714 & 1.280000 \\ f_{13} = 0.14 & 0.500000 & 0.529057 & 0.511180 & 0.439958 & 0.319608 & 0.087214 & 0.035308 & 0.617687 & 0.896772 & 1.240000 \\ f_{14} = 0.14 & 0.500000 & 0.529575 & 0.511180 & 0.439958 & 0.319608 & 0.072116 & 0.0359817 & 0.596966 & 0.877272 & 1.240000 \\ f_{15} = 0.15 & 0.550000 & 0.522956 & 0.512962 & 0.442553 & 0.327872 & 0.16406 & 0.061405 & 0.039848 & 0.566917 & 0.847383 & 1.200000 \\ f_{15} = 0.17 & 0.550000 & 0.522074 & 0.514203 & 0.445259 & 0.327882 & 0.160442 & 0.051020 & 0.029294 & 0.556131 & 0.823793 & 1.180000 \\ f_{15} = 0.17 & 0.550000 & 0.524044 & 0.515012 & 0.448682 & 0.33313 & 0.17199 & 0.031144 & 0.051020 & 0.596007 & 0.57774 & 0.1160000 \\ f_{15} = 0.19 & 0.5500000 & 0.524044 & 0.515012 & 0.448682 & 0.33313 & 0.17199 & 0.031144 & 0.051020 & 0.476774 & 0.757797 & 1.120000 \\ f_{21} = 0.21 & 0.5500000 & 0.510451 & 0.514559 & 0.449537 & 0.335275 & 0.75560 & 0.021699 & 0.9243102 & 0.476774 & 0.757797 & 1.120000 \\ f_{22} = 0.23 & 0.5500000 & 0.510451 & 0.513528 & 0.449680 & 0.33868 & 0.162313 & 0.04949 & 0.026677 & 0.454644 & 0.1600000000000000000000000000000000000$	$t_5 = 0.05$	0.500000	0.512834	0.473205	0.391560	0.258392	0.065878	-0.186232	-0.486267	-0.808064	-1.112820	-1.400000
$ \begin{array}{c} I_8 = 0.08 \\ 50,0000 \\ 50,00000 \\ 50$	$t_6 = 0.06$	0.500000	0.516950	0.479220	0.398957	0.267482	0.077242	-0.171793	-0.467819	-0.784705	-1.085229	-1.380000
$ \begin{array}{c} I_{90} = 0.09 \\ J_{10} = 0.10 \\ J_{10} = 0.10 \\ J_{10} = 0.10 \\ J_{10} = 0.00 \\ J_{11} = 0.11 \\ J_{10} = 0.00 \\ J_{11} = 0.000 \\ J_{11} = 0.000 \\ J_{11} = 0.000 \\ J_{12} = 0.000 \\ J_{12} = 0.0000 \\ J_{12} = 0.0000 \\ J_{12} = 0.0000 \\ J_{12} = 0.00000 \\ J_{12} = 0.000000 \\ J_{12} = 0.0000000 \\ J_{12} = 0.000000 \\ J_{12} = 0.0000000 \\ J_{12} = 0.000000 \\ J_{12} = 0.0000000 \\ J_{12} = 0.0000000000000000000000000000000000$	$t_7 = 0.07$	0.500000		0.484809								-1.360000
$\begin{array}{c} 1_{11} = 0.10 & 0.500000 & 0.527824 & 0.498941 & 0.423455 & 0.298034 & 0.116916 & 0.118619 & -0.399006 & 0.689778 & -0.975453 & 1.300000 \\ t_{11} = 0.11 & 0.500000 & 0.529120 & 0.529737 & 0.428232 & 0.302458 & 0.12544 & -0.106419 & -0.378492 & -0.665776 & -0.98174 & 1.280000 \\ t_{12} = 0.12 & 0.500000 & 0.529861 & 0.506052 & 0.432694 & 0.30936 & 0.133442 & -0.094598 & -0.617687 & -0.896772 & 1.240000 \\ t_{13} = 0.13 & 0.500000 & 0.529865 & 0.519862 & 0.432698 & 0.315675 & 0.14096 & -0.072116 & -0.326817 & -0.593696 & -0.88772 & 1.240000 \\ t_{11} = 0.15 & 0.500000 & 0.529855 & 0.512962 & 0.442853 & 0.323787 & 0.154406 & -0.072116 & -0.326817 & -0.593696 & -0.871726 & 1.220000 \\ t_{12} = 0.15 & 0.500000 & 0.529655 & 0.512962 & 0.442853 & 0.323787 & 0.154406 & -0.072116 & -0.326817 & -0.593696 & -0.871726 & 1.220000 \\ t_{12} = 0.17 & 0.500000 & 0.520070 & 0.514800 & 0.447175 & 0.330486 & 0.166033 & -0.04940 & -0.276251 & -0.522655 & -0.800383 & 1.160000 \\ t_{13} = 0.18 & 0.500000 & 0.520440 & -0.151012 & 0.448602 & 0.33313 & 0.17199 & -0.031144 & -0.259620 & -0.99517 & -0.77892 & 1.140000 \\ t_{20} = 0.20 & 0.500000 & 0.519042 & 0.514599 & 0.449537 & 0.335275 & 0.175960 & -0.243102 & -0.476774 & -0.757797 & 1.120000 \\ t_{20} = 0.20 & 0.500000 & 0.519042 & 0.51528 & 0.449981 & 0.338968 & 0.161335 & -0.012313 & -0.22655 & -0.80034 & -0.63035 & -0.778424 & 1.100000 \\ t_{22} = 0.22 & 0.500000 & 0.519042 & 0.51528 & 0.449981 & 0.338968 & 0.191407 & 0.01354 & -0.178398 & -0.514594 & -0.737424 & 1.100000 \\ t_{22} = 0.23 & 0.500000 & 0.519042 & 0.51928 & 0.449981 & 0.338968 & 0.191407 & 0.01354 & -0.178398 & -0.61504 & -0.757424 & 1.100000 \\ t_{22} = 0.23 & 0.500000 & 0.519042 & 0.449330 & 0.338283 & 0.197302 & 0.01354 & -0.178398 & -0.61504 & -0.757424 & 1.00000 \\ t_{22} = 0.23 & 0.500000 & 0.590778 & 0.50972 & 0.449382 & 0.33911 & 0.18930 & -0.014165 & -0.099042 & 1.060000 \\ t_{22} = 0.25 & 0.500000 & 0.590778 & 0.50972 & 0.449382 & 0.339115 & 0.18935 & -0.117023 & -0.11703 & -0.317898 & -0.615121 & -0.900000 \\ t_$		0.500000										
$ \begin{array}{c} 1_{11} = 0.11 & 0.500000 & 0.529120 & 0.502737 & 0.428323 & 0.304258 & 0.125444 & -0.104607 & -0.378492 & 0.665776 & -0.948714 & 1.280000 \\ 1_{12} = 0.12 & 0.500000 & 0.529861 & 0.506052 & 0.436572 & 0.315075 & 0.140024 & -0.083174 & -0.34398 & -0.61738 & -0.896772 & 1.240000 \\ 1_{14} = 0.14 & 0.500000 & 0.529055 & 0.51180 & 0.439552 & 0.315075 & 0.140024 & -0.083174 & -0.34898 & -0.617687 & -0.896772 & 1.240000 \\ 1_{14} = 0.16 & 0.500000 & 0.529056 & 0.511296 & 0.42253 & 0.327387 & 0.154406 & -0.061405 & -0.30848 & -0.569817 & -0.847383 & 1.220000 \\ 1_{17} = 0.17 & 0.500000 & 0.529056 & 0.512962 & 0.442853 & 0.327387 & 0.154406 & -0.061405 & -0.30848 & -0.569817 & -0.847383 & 1.200000 \\ 1_{17} = 0.17 & 0.500000 & 0.529050 & 0.511890 & 0.447175 & 0.330486 & 0.160423 & -0.001404 & -0.276251 & -0.52255 & -0.00083 & 1.160000 \\ 1_{19} = 0.19 & 0.500000 & 0.524687 & 0.515459 & 0.448602 & 0.333113 & 0.171199 & -0.031144 & -0.235650 & -0.099517 & -0.77799 & 1.120000 \\ 1_{29} = 0.21 & 0.500000 & 0.521687 & 0.515559 & 0.449981 & 0.336087 & 0.180388 & -0.02109 & -0.243102 & -0.476774 & -0.757797 & 1.120000 \\ 1_{29} = 0.21 & 0.500000 & 0.516151 & 0.511916 & 0.449930 & 0.338262 & 0.184537 & -0.032355 & -0.104045 & -0.343766 & -0.717487 & 1.080000 \\ 1_{29} = 0.22 & 0.500000 & 0.516151 & 0.511916 & 0.449382 & 0.339115 & 0.188039 & 0.00548 & -0.14335 & -0.411695 & -0.699042 & 1.060000 \\ 1_{29} = 0.23 & 0.500000 & 0.509187 & 0.509072 & 0.449382 & 0.33915 & 0.188039 & 0.00548 & -0.14335 & -0.411695 & -0.699042 & 1.060000 \\ 1_{29} = 0.24 & 0.500000 & 0.509187 & 0.509072 & 0.449382 & 0.33915 & 0.188039 & 0.00548 & -0.14335 & -0.411695 & -0.699042 & 1.060000 \\ 1_{29} = 0.25 & 0.500000 & 0.509187 & 0.447636 & 0.339611 & 0.19487 & 0.022903 & -0.162663 & 0.371680 & -0.669914 & -0.000000 \\ 1_{29} = 0.25 & 0.500000 & 0.490414 & 0.447615 & 0.33965 & 0.339610 & 0.19487 & 0.035588 & -0.666856 & 1.020000 \\ 1_{29} = 0.25 & 0.500000 & 0.490400 & 0.49515 & 0.447635 & 0.339114 & 0.28058 & 0.017657 & -0.147193 & -0.33194 & -0.680725 & 0$	$t_9 = 0.09$	0.500000								-0.713699		-1.320000
$\begin{array}{c} 1_{12} = 0.12 & 0.500000 & 0.529861 & 0.506052 & 0.432694 & 0.309936 & 0.133442 & -0.094598 & -0.361130 & -0.641731 & -0.922459 & -1.260000 \\ 1_{13} = 0.13 & 0.500000 & 0.529675 & 0.51180 & 0.439588 & 0.319689 & 0.147966 & -0.072116 & -0.326817 & -0.59996 & -0.871726 & 1.220000 \\ 1_{15} = 0.15 & 0.500000 & 0.529757 & 0.511180 & 0.439588 & 0.319689 & 0.147966 & -0.072116 & -0.326817 & -0.59996 & -0.871726 & 1.220000 \\ 1_{10} = 0.16 & 0.500000 & 0.528675 & 0.512962 & 0.442853 & 0.323787 & 0.154466 & -0.061020 & -0.292994 & -0.546113 & -0.823790 & -1.180000 \\ 1_{17} = 0.17 & 0.500000 & 0.526070 & 0.514893 & 0.445259 & 0.327382 & 0.160442 & -0.051020 & -0.292994 & -0.546113 & -0.823790 & -1.180000 \\ 1_{19} = 0.18 & 0.500000 & 0.524044 & 0.515012 & 0.448602 & 0.33313 & 0.171199 & -0.031144 & -0.256220 & -0.499517 & -0.778982 & -1.160000 \\ 1_{19} = 0.19 & 0.500000 & 0.521044 & 0.515012 & 0.448602 & 0.33313 & 0.171199 & -0.031144 & -0.256220 & -0.499517 & -0.778982 & -1.160000 \\ 1_{20} = 0.20 & 0.500000 & 0.519042 & 0.513528 & 0.449981 & 0.336687 & 0.180338 & -0.012313 & -0.226707 & -0.45504 & -0.737424 & -1.100000 \\ 2_{21} = 0.21 & 0.500000 & 0.510515 & 0.513528 & 0.449981 & 0.338682 & 0.183357 & -0.003235 & -0.210445 & -0.432786 & -0.717847 & -1.080000 \\ 2_{22} = 0.22 & 0.500000 & 0.51057 & 0.509727 & 0.449382 & 0.33915 & 0.18039 & 0.00548 & -0.193304 & -0.680972 & -1.040000 \\ 2_{23} = 0.23 & 0.500000 & 0.509748 & 0.506618 & 0.448735 & 0.339560 & 0.191407 & 0.014354 & -0.173898 & -0.391304 & -0.680972 & -1.040000 \\ 2_{23} = 0.25 & 0.500000 & 0.506144 & 0.436786 & 0.339580 & 0.19407 & 0.014354 & -0.173898 & -0.391304 & -0.680972 & -1.040000 \\ 2_{23} = 0.25 & 0.500000 & 0.495247 & 0.448755 & 0.339283 & 0.193877 & 0.033579 & -0.117633 & -0.33104 & -0.680972 & -0.400000 \\ 2_{24} = 0.27 & 0.500000 & 0.485282 & 0.449545 & 0.433559 & 0.33944 & 0.055888 & -0.012471 & -0.331966 & -0.663096 & -0.663096 & -0.663096 & -0.663096 & -0.663096 & -0.663096 & -0.663096 & -0.663096 & -0$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.500000										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c} t_{18} = 0.18 & 0.500000 & 0.526070 & 0.514890 & 0.441715 & 0.330486 & 0.166033 & -0.040940 & -0.276251 & -0.522655 & -0.800983 & -1.160000 \\ t_{18} = 0.18 & 0.500000 & 0.524044 & 0.515012 & 0.448602 & 0.333113 & 0.171199 & -0.031144 & -0.25962 & -0.499517 & -0.778982 & -1.140000 \\ t_{29} = 0.19 & 0.500000 & 0.521687 & 0.514559 & 0.449981 & 0.333697 & 0.17890 & -0.021609 & -0.243102 & -0.476774 & -0.757797 & -1.120000 \\ t_{20} = 0.20 & 0.500000 & 0.516151 & 0.511916 & 0.449931 & 0.3386987 & 0.180338 & -0.012313 & -0.226707 & -0.454504 & -0.737424 & -1.100000 \\ t_{21} = 0.21 & 0.500000 & 0.516151 & 0.511916 & 0.449930 & 0.338262 & 0.180338 & -0.012313 & -0.226707 & -0.454504 & -0.737424 & -1.100000 \\ t_{22} = 0.22 & 0.500000 & 0.516515 & 0.51957 & 0.449832 & 0.339115 & 0.188039 & -0.005648 & -0.194335 & -0.411695 & -0.699042 & -1.060000 \\ t_{23} = 0.23 & 0.500000 & 0.506741 & 0.503651 & 0.446786 & 0.339610 & 0.19407 & 0.014354 & -0.178398 & -0.391304 & -0.680972 & -1.040000 \\ t_{24} = 0.24 & 0.500000 & 0.506414 & 0.503651 & 0.446786 & 0.339610 & 0.194487 & 0.022903 & -0.162663 & -0.371680 & -0.663596 & -1.020000 \\ t_{25} = 0.25 & 0.500000 & 0.495410 & -0.44719 & 0.338589 & 0.197302 & 0.031312 & -0.147163 & -0.352886 & -0.646865 & -1.000000 \\ t_{26} = 0.25 & 0.500000 & 0.495429 & 0.49545 & 0.43120 & 0.337544 & 0.202236 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{28} = 0.28 & 0.500000 & 0.495427 & 0.485214 & 0.435559 & 0.336162 & 0.204404 & 0.055388 & -0.102471 & -0.301966 & -0.59994 & -0.940000 \\ t_{29} = 0.29 & 0.500000 & 0.48567 & 0.479456 & 0.431501 & 0.334456 & 0.206404 & 0.05809 & -0.088331 & -0.286928 & -0.555287 & -0.920000 \\ t_{31} = 0.31 & 0.500000 & 0.445181 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071665 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{33} = 0.33 & 0.500000 & 0.445180 & 0.465292 & 0.410470 & 0.336164 & 0.208258 & 0.071665 & -0.026542 & -0.516196 & -0.820000 \\ t_{33} = 0.33 & 0.500000 & 0.447818 & 0.465292 & 0.410470 & 0.336164 & 0.218455 & 0.048995$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c} t_{19} = 0.19 & 0.500000 & 0.521687 & 0.514559 & 0.449937 & 0.335275 & 0.17596 & -0.021609 & -0.243102 & -0.476774 & -0.757797 & -1.120000 \\ t_{20} = 0.20 & 0.500000 & 0.519042 & 0.513528 & 0.449981 & 0.336987 & 0.180338 & -0.012313 & -0.226707 & -0.454504 & -0.737424 & -1.100000 \\ t_{21} = 0.21 & 0.500000 & 0.516151 & 0.511916 & 0.449930 & 0.338262 & 0.184357 & -0.003235 & -0.210445 & -0.432786 & -0.717847 & -1.080000 \\ t_{22} = 0.22 & 0.500000 & 0.513057 & 0.509727 & 0.449382 & 0.33915 & 0.188039 & 0.005648 & -0.194335 & -0.411695 & -0.669042 & -1.060000 \\ t_{23} = 0.23 & 0.500000 & 0.509798 & 0.506968 & 0.448335 & 0.339560 & 0.191407 & 0.014334 & -0.178398 & -0.391304 & -0.680972 & -1.040000 \\ t_{24} = 0.24 & 0.500000 & 0.509414 & 0.503651 & 0.446786 & 0.339611 & 0.194487 & 0.022903 & -0.162663 & -0.371680 & -0.663596 & -1.020000 \\ t_{25} = 0.25 & 0.500000 & 0.502937 & 0.499792 & 0.444735 & 0.339283 & 0.199877 & -0.339597 & -0.131935 & -0.334974 & -0.630725 & -0.980000 \\ t_{26} = 0.26 & 0.500000 & 0.499400 & 0.495415 & 0.442179 & 0.335889 & 0.199877 & 0.039597 & -0.131935 & -0.334974 & -0.630725 & -0.980000 \\ t_{27} = 0.27 & 0.500000 & 0.495829 & 0.490545 & 0.439120 & 0.337544 & 0.202236 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334456 & 0.208258 & 0.079653 & -0.02471 & -0.031966 & -0.589994 & -0.940000 \\ t_{31} = 0.31 & 0.500000 & 0.481518 & 0.462821 & 0.327532 & 0.211641 & 0.087137 & -0.048919 & -0.2772888 & -0.570944 & -0.900000 \\ t_{33} = 0.33 & 0.500000 & 0.478108 & 0.468029 & 0.44085 & 0.321542 & 0.214627 & 0.102121 & -0.025692 & -0.26542 & -0.516196 & -0.820000 \\ t_{33} = 0.33 & 0.500000 & 0.478108 & 0.449279 & 0.331645 & 0.214627 & 0.102121 & -0.025692 & -0.26542 & -0.516196 & -0.820000 \\ t_{34} = 0.43 & 0.500000 & 0.478108 & 0.448277 & 0.40405 & 0.321542 & 0.214627 & 0.102121 & -0.025692 & -0.26542 & -0.516196 & -0.820000 \\ t_{34} = 0.33 & 0.500000 & 0.476189 & 0.452828 & 0.470408 & 0.321542 & 0.214627 & 0.102121$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c} t_{23} = 0.23 & 0.500000 & 0.509798 & 0.566668 & 0.448335 & 0.339560 & 0.191407 & 0.014354 & -0.178398 & -0.391304 & -0.680972 & -1.040000 \\ t_{24} = 0.24 & 0.500000 & 0.506014 & 0.503651 & 0.446785 & 0.339610 & 0.191407 & 0.022903 & -0.162663 & -0.371680 & -0.663596 & -1.020000 \\ t_{25} = 0.25 & 0.500000 & 0.50937 & 0.499792 & 0.444735 & 0.339283 & 0.197302 & 0.031312 & -0.147163 & -0.352886 & -0.668685 & -1.000000 \\ t_{26} = 0.26 & 0.500000 & 0.499400 & 0.49515 & 0.442179 & 0.338589 & 0.199877 & 0.039597 & -0.131935 & -0.334974 & -0.630725 & -0.980000 \\ t_{27} = 0.27 & 0.500000 & 0.495249 & 0.49515 & 0.442179 & 0.33559 & 0.396162 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{28} = 0.28 & 0.500000 & 0.492247 & 0.485214 & 0.435559 & 0.336162 & 0.204404 & 0.055838 & -0.102471 & -0.301966 & -0.599994 & -0.940000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334456 & 0.206404 & 0.055838 & -0.102471 & -0.301966 & -0.599994 & -0.940000 \\ t_{30} = 0.30 & 0.500000 & 0.485158 & 0.479456 & 0.431501 & 0.334456 & 0.206404 & 0.063809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{31} = 0.31 & 0.500000 & 0.485195 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{32} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{34} = 0.34 & 0.500000 & 0.474659 & 0.445277 & 0.40485 & 0.213155 & 0.094695 & -0.03665 & -0.236701 & -0.529579 & -0.840000 \\ t_{34} = 0.34 & 0.500000 & 0.467867 & 0.48310 & 0.397291 & 0.318175 & 0.216642 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216427 & 0.102121 & -0.025692 & -0.226542 & -0.516196 & -0.820000 \\ t_{37} = 0.37 & 0.500000 & 0.464513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.00582 & -0.22873 & -0.489827 & -0.780000 \\ t_{39} = 0.39 & 0.500000 & 0.447818 & 0.392911 & 0.36647 & 0.302449 & 0.225931 & 0.18$												
$\begin{array}{c} t_{24} = 0.24 & 0.500000 & 0.506414 & 0.503651 & 0.446786 & 0.339611 & 0.194487 & 0.022903 & -0.162663 & -0.371680 & -0.663596 & -1.020000 \\ t_{25} = 0.25 & 0.500000 & 0.502937 & 0.499792 & 0.444735 & 0.339283 & 0.197302 & 0.031312 & -0.147163 & -0.352886 & -0.646865 & -1.000000 \\ t_{26} = 0.26 & 0.500000 & 0.499400 & 0.495415 & 0.442179 & 0.338589 & 0.199877 & 0.039597 & -0.131935 & -0.334974 & -0.630725 & -0.980000 \\ t_{27} = 0.27 & 0.500000 & 0.495299 & 0.490545 & 0.439120 & 0.337544 & 0.202236 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{28} = 0.28 & 0.500000 & 0.498247 & 0.485214 & 0.435559 & 0.336162 & 0.204404 & 0.05838 & -0.102471 & -0.301966 & -0.599994 & -0.940000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334466 & 0.206404 & 0.063889 & -0.088331 & -0.286928 & -0.55287 & -0.920000 \\ t_{30} = 0.30 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334466 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.481595 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{31} = 0.31 & 0.500000 & 0.474598 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{33} = 0.33 & 0.500000 & 0.47659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{34} = 0.34 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216427 & 0.102121 & -0.025692 & -0.226542 & -0.516196 & -0.820000 \\ t_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.31875 & 0.21642 & 0.10394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{39} = 0.39 & 0.500000 & 0.457488 & 0.435752 & 0.374755 & 0.306749 & 0.220373 & 0.016897 & -0.187912 & -0.463832 & -0.7800000 \\ t_{41} = 0.41 & 0.500000 & 0.454519 & 0.403791 & 0.382592 & 0.310764 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.463932 & -0.7400000000 \\ t_{41} = 0.44 & 0.500000 & 0.447188 & 0.400382 & 0.358310 & 0.298172 & 0.222539$												
$\begin{array}{c} t_{25} = 0.25 & 0.500000 & 0.502937 & 0.499792 & 0.444735 & 0.339283 & 0.197302 & 0.031312 & -0.147163 & -0.352886 & -0.646865 & -1.000000 \\ t_{26} = 0.26 & 0.500000 & 0.499540 & 0.495415 & 0.442179 & 0.338589 & 0.19937 & 0.039597 & -0.131935 & -0.334974 & -0.630725 & -0.980000 \\ t_{27} = 0.27 & 0.500000 & 0.495829 & 0.490545 & 0.439120 & 0.337544 & 0.202236 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{28} = 0.28 & 0.500000 & 0.492247 & 0.485214 & 0.435559 & 0.336162 & 0.204404 & 0.055838 & -0.102471 & -0.301966 & -0.59994 & -0.940000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334456 & 0.20404 & 0.063809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{20} = 0.30 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.062858 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.485195 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{23} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{33} = 0.33 & 0.500000 & 0.47659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{34} = 0.34 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{39} = 0.39 & 0.500000 & 0.46513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.06582 & -0.266542 & -0.16166 & -0.820000 \\ t_{49} = 0.49 & 0.500000 & 0.44518 & 0.392911 & 0.348793 & 0.298172 & 0.222539 & 0.142402 & 0.02530 & -0.182161 & -0.45393 & -0.780000 \\ t_{41} = 0.44 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.03660 & -0.176894 & -0.455330 & -0.660000 \\ t_{44} = 0.44 & 0.500000 & 0.447818 & 0.39255 & 0.371307 & 0.323673 & 0.229394$		0.500000										
$\begin{array}{c} t_{26} = 0.26 & 0.500000 & 0.499400 & 0.495415 & 0.442179 & 0.338589 & 0.199877 & 0.039597 & -0.131935 & -0.334974 & -0.630725 & -0.980000 \\ t_{27} = 0.27 & 0.500000 & 0.495829 & 0.490545 & 0.439120 & 0.337544 & 0.202236 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{29} = 0.29 & 0.500000 & 0.498672 & 0.479456 & 0.431501 & 0.334456 & 0.204404 & 0.063809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334456 & 0.206404 & 0.063809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{30} = 0.30 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.485188 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{32} = 0.32 & 0.500000 & 0.473659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{33} = 0.33 & 0.500000 & 0.474659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{34} = 0.34 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{36} = 0.36 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{37} = 0.37 & 0.500000 & 0.467818 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ t_{39} = 0.39 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.01671 & -0.194226 & -0.463832 & -0.780000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148663 & 0.038827 & -0.187912 & -0.450938 & -0.7200000 \\ t_{42} = 0.42 & 0.500000 & 0.44430 & 0.385557 & 0.341146 & 0.228877$	$t_{24} = 0.24$	0.500000	0.506414	0.503651	0.446786	0.339611			-0.162663	-0.371680	-0.663596	-1.020000
$\begin{array}{c} t_{27} = 0.27 & 0.500000 & 0.495829 & 0.490545 & 0.439120 & 0.337544 & 0.202236 & 0.047769 & -0.117022 & -0.317989 & -0.615121 & -0.960000 \\ t_{28} = 0.28 & 0.500000 & 0.492247 & 0.485214 & 0.435559 & 0.336162 & 0.204044 & 0.055838 & -0.102471 & -0.301966 & -0.59994 & -0.940000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334466 & 0.206404 & 0.63809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{30} = 0.30 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.481595 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{23} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{33} = 0.33 & 0.500000 & 0.474659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{54} = 0.34 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{57} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{36} = 0.36 & 0.500000 & 0.46513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.7600000 \\ t_{37} = 0.37 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ t_{39} = 0.39 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.366647 & 0.302546 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.450938 & -0.720000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ t_{42} = 0.42 & 0.500000 & 0.444430 & 0.385557 & 0.341146 & 0.288977 & $												
$\begin{array}{c} t_{28} = 0.28 & 0.500000 & 0.492247 & 0.485214 & 0.435559 & 0.336162 & 0.204404 & 0.655838 & -0.102471 & -0.301966 & -0.59994 & -0.940000 \\ t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334456 & 0.206404 & 0.663809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{31} = 0.31 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.481595 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{32} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{33} = 0.33 & 0.500000 & 0.474659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.36965 & -0.236701 & -0.529579 & -0.840000 \\ t_{34} = 0.34 & 0.500000 & 0.471247 & 0.445727 & 0.404085 & 0.321542 & 0.214627 & 0.102121 & -0.025692 & -0.226542 & -0.516196 & -0.820000 \\ t_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{36} = 0.36 & 0.500000 & 0.4664513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ t_{38} = 0.38 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ t_{39} = 0.39 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ t_{41} = 0.44 & 0.500000 & 0.447818 & 0.382517 & 0.34975 & 0.224849 & 0.153307 & 0.03589 & -0.172037 & -0.412618 & -0.660000 \\ t_{42} = 0.42 & 0.500000 & 0.447818 & 0.3892911 & 0.34975 & 0.224849 & 0.153307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ t_{44} = 0.44 & 0.500000 & 0.430555 & 0.357798 & 0.366330 & 0.269309 & 0.228381 & 0.169143 & 0.044645 & -0.155124 & -0.362531 & -0.580000 \\ t_{44} = 0.44 & 0.500000 & 0.433055 & 0.357798 & 0.366330 & 0.269309 & 0.228885 & 0.173330 & 0.$												
$\begin{array}{c} t_{29} = 0.29 & 0.500000 & 0.488672 & 0.479456 & 0.431501 & 0.334456 & 0.206404 & 0.063809 & -0.088331 & -0.286928 & -0.585287 & -0.920000 \\ t_{30} = 0.30 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ t_{31} = 0.31 & 0.500000 & 0.481595 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{32} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{33} = 0.33 & 0.500000 & 0.474659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{44} = 0.34 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{36} = 0.36 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{37} = 0.37 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ t_{38} = 0.38 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.22044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ t_{39} = 0.39 & 0.500000 & 0.455118 & 0.400382 & 0.358310 & 0.298172 & 0.222539 & 0.142402 & 0.025230 & -0.182161 & -0.438104 & -0.700000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.03660 & -0.176894 & -0.425330 & -0.680000 \\ t_{42} = 0.42 & 0.500000 & 0.447818 & 0.385557 & 0.341146 & 0.288977 & 0.224849 & 0.15307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ t_{43} = 0.45 & 0.500000 & 0.434557 & 0.364452 & 0.314957 & 0.274337 & 0.224695 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{46} = 0.46 & 0.500000 & 0.430557 & 0.364452 & 0.314957 & 0.274337 & 0.227695 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{46} = 0.46 & 0.500000 & 0.430557 & 0.364452 & 0.314957 & 0.274337 & 0.22$												
$\begin{array}{c} b_{30} = 0.30 & 0.500000 & 0.485118 & 0.473311 & 0.426952 & 0.332440 & 0.208258 & 0.071685 & -0.074657 & -0.272888 & -0.570944 & -0.900000 \\ b_{31} = 0.31 & 0.500000 & 0.481595 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ b_{32} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ b_{33} = 0.33 & 0.500000 & 0.474659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036655 & -0.236701 & -0.529579 & -0.840000 \\ b_{34} = 0.34 & 0.500000 & 0.471247 & 0.445727 & 0.404085 & 0.321542 & 0.214627 & 0.102121 & -0.025692 & -0.226542 & -0.516196 & -0.820000 \\ b_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ b_{36} = 0.36 & 0.500000 & 0.46513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ b_{37} = 0.37 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ b_{39} = 0.39 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ b_{40} = 0.40 & 0.500000 & 0.457188 & 0.392911 & 0.349793 & 0.293644 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.450938 & -0.720000 \\ b_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ b_{42} = 0.42 & 0.500000 & 0.443057 & 0.364452 & 0.314957 & 0.274337 & 0.224849 & 0.15307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ b_{44} = 0.44 & 0.500000 & 0.433057 & 0.364452 & 0.314957 & 0.274337 & 0.226588 & 0.162349 & 0.041594 & -0.163251 & -0.387406 & -0.620000 \\ b_{44} = 0.44 & 0.500000 & 0.433057 & 0.364452 & 0.314957 & 0.274337 & 0.226858 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ b_{45} = 0.46 & 0.500000 & 0.43255 & 0.357798 & 0.306330 & 0.269309 & 0.22$												
$\begin{array}{c} t_{31} = 0.31 & 0.500000 & 0.481595 & 0.466821 & 0.421922 & 0.330128 & 0.209988 & 0.079463 & -0.061501 & -0.259846 & -0.556910 & -0.880000 \\ t_{32} = 0.32 & 0.500000 & 0.478108 & 0.460029 & 0.416423 & 0.327532 & 0.211614 & 0.087137 & -0.048919 & -0.247791 & -0.543137 & -0.860000 \\ t_{33} = 0.33 & 0.500000 & 0.474659 & 0.452982 & 0.410470 & 0.324665 & 0.213155 & 0.094695 & -0.036965 & -0.236701 & -0.529579 & -0.840000 \\ t_{34} = 0.34 & 0.500000 & 0.471247 & 0.445727 & 0.404085 & 0.321542 & 0.214627 & 0.102121 & -0.025692 & -0.226542 & -0.516196 & -0.820000 \\ t_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{36} = 0.36 & 0.500000 & 0.464513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ t_{37} = 0.37 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ t_{38} = 0.38 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ t_{40} = 0.40 & 0.500000 & 0.454519 & 0.407941 & 0.366647 & 0.302546 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.450938 & -0.720000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ t_{42} = 0.42 & 0.500000 & 0.444430 & 0.385557 & 0.341146 & 0.288977 & 0.224849 & 0.153307 & 0.035189 & -0.167513 & -0.39974 & -0.640000 \\ t_{44} = 0.44 & 0.500000 & 0.434057 & 0.36452 & 0.314957 & 0.274337 & 0.225901 & 0.168051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{45} = 0.45 & 0.500000 & 0.43057 & 0.36452 & 0.314957 & 0.274337 & 0.227695 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{46} = 0.46 & 0.500000 & 0.423370 & 0.35135 & 0.289565 & 0.259158 & 0.229168 & 0.173330 & 0.044688 & -0.147536 & -0.388063 & -0.5400000 \\ t_{49} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.2291$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c} t_{34} = 0.34 & 0.500000 & 0.471247 & 0.445727 & 0.404085 & 0.321542 & 0.214627 & 0.102121 & -0.025692 & -0.226542 & -0.516196 & -0.820000 \\ t_{35} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ t_{36} = 0.36 & 0.500000 & 0.464513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ t_{37} = 0.37 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ t_{38} = 0.38 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.720000 \\ t_{39} = 0.39 & 0.500000 & 0.4554519 & 0.407941 & 0.366647 & 0.302546 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.450938 & -0.720000 \\ t_{40} = 0.40 & 0.500000 & 0.451178 & 0.400382 & 0.358310 & 0.298172 & 0.222539 & 0.142402 & 0.025230 & -0.182161 & -0.438104 & -0.700000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ t_{42} = 0.42 & 0.500000 & 0.441430 & 0.385557 & 0.341146 & 0.288977 & 0.224849 & 0.153307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ t_{43} = 0.43 & 0.500000 & 0.441099 & 0.378349 & 0.332421 & 0.284191 & 0.225901 & 0.158086 & 0.038827 & -0.167513 & -0.399974 & -0.640000 \\ t_{44} = 0.44 & 0.500000 & 0.434057 & 0.364452 & 0.314957 & 0.274337 & 0.226858 & 0.162349 & 0.041594 & -0.163251 & -0.387406 & -0.620000 \\ t_{45} = 0.45 & 0.500000 & 0.434057 & 0.364452 & 0.314957 & 0.276930 & 0.228381 & 0.169143 & 0.044645 & -0.155242 & -0.362531 & -0.580000 \\ t_{46} = 0.46 & 0.500000 & 0.430525 & 0.357798 & 0.306330 & 0.269309 & 0.228381 & 0.169143 & 0.044685 & -0.155242 & -0.362531 & -0.580000 \\ t_{48} = 0.48 & 0.500000 & 0.423370 & 0.345135 & 0.289565 & 0.259158 & 0.229168 & 0.173330 & 0.044688 & -0.147536 & -0.338063 & -0.540000 \\ t_{49} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.22$												
$\begin{array}{c} b_{135} = 0.35 & 0.500000 & 0.467867 & 0.438310 & 0.397291 & 0.318175 & 0.216042 & 0.109394 & -0.015149 & -0.217272 & -0.502955 & -0.800000 \\ b_{136} = 0.36 & 0.500000 & 0.464513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ b_{137} = 0.37 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ b_{138} = 0.38 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ b_{139} = 0.39 & 0.500000 & 0.454519 & 0.407941 & 0.366647 & 0.302546 & 0.221310 & 0.136370 & 0.018897 & -0.18712 & -0.450938 & -0.720000 \\ b_{140} = 0.40 & 0.500000 & 0.451178 & 0.400382 & 0.358310 & 0.298172 & 0.222539 & 0.142402 & 0.025230 & -0.182161 & -0.438104 & -0.700000 \\ b_{141} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ b_{142} = 0.42 & 0.500000 & 0.444430 & 0.385557 & 0.341146 & 0.288977 & 0.224849 & 0.153307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ b_{143} = 0.43 & 0.500000 & 0.441009 & 0.378349 & 0.332421 & 0.284191 & 0.225901 & 0.158086 & 0.038827 & -0.167513 & -0.399974 & -0.640000 \\ b_{144} = 0.44 & 0.500000 & 0.434057 & 0.364352 & 0.314957 & 0.274337 & 0.226858 & 0.162349 & 0.041594 & -0.163251 & -0.387406 & -0.620000 \\ b_{145} = 0.45 & 0.500000 & 0.430525 & 0.357798 & 0.306330 & 0.269309 & 0.228381 & 0.169143 & 0.044645 & -0.155242 & -0.362531 & -0.580000 \\ b_{149} = 0.49 & 0.500000 & 0.423370 & 0.345135 & 0.289565 & 0.259158 & 0.229168 & 0.173330 & 0.044688 & -0.147536 & -0.338063 & -0.540000 \\ b_{149} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.229194 & 0.174349 & 0.043725 & -0.143679 & -0.325997 & -0.520000 \\ b_{149} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.229194 & 0.174349 & 0.043725 & -0.143679 & -0.325997 & -0.520000 \\ b_{149} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.2$												
$\begin{array}{c} t_{36} = 0.36 & 0.500000 & 0.464513 & 0.430779 & 0.390116 & 0.314578 & 0.217412 & 0.116488 & -0.005382 & -0.208837 & -0.489827 & -0.780000 \\ t_{37} = 0.37 & 0.500000 & 0.461177 & 0.423178 & 0.382592 & 0.310764 & 0.218745 & 0.123373 & 0.003569 & -0.201177 & -0.476792 & -0.760000 \\ t_{38} = 0.38 & 0.500000 & 0.457848 & 0.415552 & 0.374755 & 0.306749 & 0.220044 & 0.130013 & 0.011671 & -0.194226 & -0.463832 & -0.740000 \\ t_{39} = 0.39 & 0.500000 & 0.455199 & 0.407941 & 0.366647 & 0.302546 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.450938 & -0.720000 \\ t_{40} = 0.40 & 0.500000 & 0.451178 & 0.400382 & 0.358310 & 0.298172 & 0.222539 & 0.142402 & 0.025230 & -0.182161 & -0.438104 & -0.700000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ t_{42} = 0.42 & 0.500000 & 0.444430 & 0.385557 & 0.341146 & 0.288977 & 0.224849 & 0.153307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ t_{43} = 0.43 & 0.500000 & 0.441009 & 0.378349 & 0.332421 & 0.284191 & 0.225901 & 0.158086 & 0.038827 & -0.167513 & -0.399974 & -0.640000 \\ t_{44} = 0.44 & 0.500000 & 0.437552 & 0.371307 & 0.323673 & 0.279304 & 0.226858 & 0.162349 & 0.041594 & -0.163251 & -0.387406 & -0.620000 \\ t_{45} = 0.45 & 0.500000 & 0.434057 & 0.364452 & 0.314957 & 0.274337 & 0.227695 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{45} = 0.45 & 0.500000 & 0.43057 & 0.364452 & 0.314957 & 0.274337 & 0.227695 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{46} = 0.46 & 0.500000 & 0.43057 & 0.351356 & 0.297848 & 0.264243 & 0.228885 & 0.171583 & 0.045016 & -0.151377 & -0.350243 & -0.5500000 \\ t_{48} = 0.48 & 0.500000 & 0.423370 & 0.345135 & 0.289565 & 0.259158 & 0.229194 & 0.174349 & 0.043725 & -0.143679 & -0.325997 & -0.520000 \\ t_{49} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.229194 & 0.174349 & 0.043725 & -0.143679 & -0.325997 & -0.520000 \\ t_{49} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.229194$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c} t_{39} = 0.39 & 0.500000 & 0.454519 & 0.407941 & 0.366647 & 0.302546 & 0.221310 & 0.136370 & 0.018897 & -0.187912 & -0.450938 & -0.720000 \\ t_{40} = 0.40 & 0.500000 & 0.451178 & 0.400382 & 0.358310 & 0.298172 & 0.222539 & 0.142402 & 0.025230 & -0.182161 & -0.438104 & -0.700000 \\ t_{41} = 0.41 & 0.500000 & 0.447818 & 0.392911 & 0.349793 & 0.293644 & 0.223723 & 0.148063 & 0.030660 & -0.176894 & -0.425330 & -0.680000 \\ t_{42} = 0.42 & 0.500000 & 0.44430 & 0.385557 & 0.341146 & 0.288977 & 0.224849 & 0.153307 & 0.035189 & -0.172037 & -0.412618 & -0.660000 \\ t_{43} = 0.43 & 0.500000 & 0.441009 & 0.378349 & 0.332421 & 0.284191 & 0.225901 & 0.158086 & 0.038827 & -0.167513 & -0.399974 & -0.640000 \\ t_{44} = 0.44 & 0.500000 & 0.437552 & 0.371307 & 0.323673 & 0.279304 & 0.226858 & 0.162349 & 0.041594 & -0.163251 & -0.387406 & -0.620000 \\ t_{45} = 0.45 & 0.500000 & 0.434057 & 0.364452 & 0.314957 & 0.274337 & 0.227695 & 0.166051 & 0.043521 & -0.159181 & -0.374922 & -0.600000 \\ t_{46} = 0.46 & 0.500000 & 0.430525 & 0.357798 & 0.306330 & 0.269309 & 0.228381 & 0.169143 & 0.044645 & -0.155242 & -0.362531 & -0.580000 \\ t_{47} = 0.47 & 0.500000 & 0.426960 & 0.351356 & 0.297848 & 0.264243 & 0.228885 & 0.171583 & 0.045016 & -0.151377 & -0.350243 & -0.560000 \\ t_{48} = 0.48 & 0.500000 & 0.42370 & 0.345135 & 0.289565 & 0.259158 & 0.229168 & 0.173330 & 0.044688 & -0.147536 & -0.338063 & -0.540000 \\ t_{49} = 0.49 & 0.500000 & 0.419764 & 0.339141 & 0.281533 & 0.254078 & 0.229194 & 0.174349 & 0.043725 & -0.143679 & -0.325997 & -0.520000 \\ \end{array}$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \mid t_{50} = 0.50 \mid 0.500000 \mid \mid 0.416154 \mid 0.333378 \mid 0.273803 \mid 0.249024 \mid 0.228920 \mid \mid 0.174611 \mid 0.042194 \mid -0.139771 \mid -0.314048 \mid -0.500000 \mid 0.416174 \mid 0.416$												
	$t_{50} = 0.50$	0.500000	0.416154	0.333378	0.273803	0.249024	0.228920	0.174611	0.042194	-0.139771	-0.314048	-0.500000

Таблица 2. Неявная схема

	$x_0 = 0$	$x_1 = 0.1$	$x_2 = 0.2$	$x_3 = 0.3$	$x_4 = 0.4$	$x_5 = 0.5$	$x_6 = 0.6$	$x_7 = 0.7$	$x_8 = 0.8$	$x_9 = 0.9$	$x_{10} = 1$
$t_0 = 0.00$	0.500000	0.485039	0.436869	0.346793	0.203951	0.000000	-0.265755	-0.581907	-0.922279	-1.245884	-1.500000
$t_1 = 0.01$	0.500000	0.491439	0.444969	0.356793	0.216051	0.014400	-0.248855	-0.562307	-0.899779	-1.220284	-1.480000
$t_2 = 0.02$	0.500000	0.497369	0.452653	0.366270	0.227545	0.028187	-0.232453	-0.542944	-0.877108	-1.194172	-1.460000
$t_3 = 0.03$	0.500000	0.502793	0.459918	0.375225	0.238436	0.041366	-0.216545	-0.523813	-0.854267	-1.167649	-1.440000
$t_4 = 0.04$	0.500000	0.507683	0.466761	0.383663	0.248728	0.053942	-0.201124	-0.504907	-0.831257	-1.140822	-1.420000
$t_5 = 0.05$	0.500000	0.512017	0.473177	0.391584	0.258427	0.065922	-0.186183	-0.486220	-0.808086	-1.113801	-1.400000
$t_6 = 0.06$	0.500000	0.515779	0.479157	0.398993	0.267538	0.077314	-0.171712	-0.467742	-0.784764	-1.086693	-1.380000
$t_7 = 0.07$	0.500000	0.518962	0.484693	0.405891	0.276068	0.088127	-0.157700	-0.449465	-0.761307	-1.059606	-1.360000
$t_8 = 0.08$	0.500000	0.521564	0.489771	0.412282	0.284024	0.098371	-0.144135	-0.431380	-0.737735	-1.032643	-1.340000
$t_9 = 0.09$	0.500000	0.523592	0.494379	0.418168	0.291414	0.108059	-0.131004	-0.413475	-0.714075	-1.005904	-1.320000
$t_{10} = 0.10$	0.500000	0.525057	0.498503	0.423549	0.298247	0.117202	-0.118293	-0.395743	-0.690360	-0.979478	-1.300000
$t_{11} = 0.11$	0.500000	0.525977	0.502129	0.428429	0.304531	0.125814	-0.105986	-0.378173	-0.666629	-0.953449	-1.280000
$t_{12} = 0.12$	0.500000	0.526375	0.505242	0.432808	0.310277	0.133910	-0.094066	-0.360757	-0.642926	-0.927892	-1.260000
$t_{13} = 0.13$	0.500000	0.526280	0.507827	0.436687	0.315495	0.141506	-0.082516	-0.343491	-0.619301	-0.902871	-1.240000
$t_{14} = 0.14$	0.500000	0.525723	0.509874	0.440064	0.320196	0.148618	-0.071316	-0.326368	-0.595807	-0.878439	-1.220000
$t_{15} = 0.15$	0.500000	0.524738	0.511369	0.442941	0.324392	0.155264	-0.060449	-0.309386	-0.572504	-0.854639	-1.200000
$t_{16} = 0.16$	0.500000	0.523362	0.512305	0.445315	0.328093	0.161463	-0.049895	-0.292548	-0.549452	-0.831503	-1.180000
$t_{17} = 0.17$	0.500000	0.521633	0.512676	0.447186	0.331312	0.167234	-0.039635	-0.275856	-0.526715	-0.809054	-1.160000
$t_{18} = 0.18$	0.500000	0.519590	0.512479	0.448551	0.334061	0.172598	-0.029648	-0.259317	-0.504357	-0.787302	-1.140000
$t_{19} = 0.19$	0.500000	0.517272	0.511714	0.449408	0.336353	0.177574	-0.019917	-0.242943	-0.482442	-0.766250	-1.120000
$t_{20} = 0.20$	0.500000	0.514715	0.510387	0.449756	0.338201	0.182184	-0.010423	-0.226749	-0.461033	-0.745890	-1.100000
$t_{21} = 0.21$	0.500000	0.511957	0.508504	0.449593	0.339616	0.186450	-0.001150	-0.210753	-0.440190	-0.726208	-1.080000
$t_{22} = 0.22$	0.500000	0.509030	0.506080	0.448919	0.340613	0.190393	0.007920	-0.194978	-0.419968	-0.707182	-1.060000
$t_{23} = 0.23$	0.500000	0.505968	0.503130	0.447734	0.341203	0.194036	0.016799	-0.179450	-0.400421	-0.688784	-1.040000
$t_{24} = 0.24$	0.500000	0.502797	0.499675	0.446039	0.341399	0.197400	0.025501	-0.164200	-0.381594	-0.670983	-1.020000
$t_{25} = 0.25$	0.500000	0.499543	0.495739	0.443836	0.341215	0.200506	0.034034	-0.149259	-0.363526	-0.653742	-1.000000
$t_{26} = 0.26$	0.500000	0.496230	0.491349	0.441131	0.340662	0.203375	0.042406	-0.134663	-0.346250	-0.637023	-0.980000
$t_{27} = 0.27$	0.500000	0.492874	0.486537	0.437930	0.339754	0.206028	0.050622	-0.120449	-0.329791	-0.620787	-0.960000
$t_{28} = 0.28$	0.500000	0.489492	0.481335	0.434243	0.338504	0.208482	0.058682	-0.106658	-0.314165	-0.604992	-0.940000
$t_{29} = 0.29$	0.500000	0.486095	0.475780	0.430081	0.336923	0.210757	0.066585	-0.093328	-0.299380	-0.589599	-0.920000
$t_{30} = 0.30$	0.500000	0.482693	0.469908	0.425459	0.335024	0.212868	0.074325	-0.080499	-0.285437	-0.574569	-0.900000
$t_{31} = 0.31$	0.500000	0.479291	0.463758	0.420396	0.332822	0.214829	0.081893	-0.068210	-0.272329	-0.559865	-0.880000
$t_{32} = 0.32$	0.500000	0.475894	0.457368	0.414910	0.330329	0.216653	0.089277	-0.056499	-0.260039	-0.545452	-0.860000
$t_{33} = 0.33$	0.500000	0.472503	0.450778	0.409028	0.327558	0.218351	0.096462	-0.045401	-0.248546	-0.531299	-0.840000
$t_{34} = 0.34$	0.500000	0.469118	0.444027	0.402776	0.324524	0.219929	0.103428	-0.034947	-0.237819	-0.517376	-0.820000
$t_{35} = 0.35$	0.500000	0.465737	0.437151	0.396184	0.321241	0.221394	0.110153	-0.025167	-0.227824	-0.503659	-0.800000
$t_{36} = 0.36$	0.500000	0.462358	0.430189	0.389285	0.317723	0.222746	0.116612	-0.016085	-0.218521	-0.490124	-0.780000
$t_{37} = 0.37$	0.500000	0.458979	0.423174	0.382116	0.313987	0.223987	0.122779	-0.007718	-0.209865	-0.476753	-0.760000
$t_{38} = 0.38$	0.500000	0.455595	0.416139	0.374714	0.310049	0.225113	0.128623	-0.000083	-0.201809	-0.463529	-0.740000
$t_{39} = 0.39$	0.500000	0.452205	0.409115	0.367120	0.305924	0.226116	0.134114	0.006815	-0.194303	-0.450440	-0.720000
$t_{40} = 0.40$	0.500000	0.448806	0.402130	0.359377	0.301630	0.226988	0.139221	0.012973	-0.187296	-0.437474	-0.700000
$t_{41} = 0.41$	0.500000	0.445397	0.395211	0.351526	0.297185	0.227717	0.143910	0.018394	-0.180737	-0.424623	-0.680000
$t_{42} = 0.42$	0.500000	0.441977	0.388379	0.343614	0.292607	0.228287	0.148151	0.023089	-0.174574	-0.411880	-0.660000
$t_{43} = 0.43$	0.500000	0.438548	0.381657	0.335683	0.287914	0.228682	0.151910	0.027075	-0.168758	-0.399240	-0.640000
$t_{44} = 0.44$	0.500000	0.435111	0.375063	0.327779	0.283125	0.228883	0.155159	0.030372	-0.163240	-0.386698	-0.620000
$t_{45} = 0.45$	0.500000	0.431672	0.368612	0.319944	0.278259	0.228867	0.157869	0.033008	-0.157976	-0.374251	-0.600000
$t_{46} = 0.46$	0.500000	0.428236	0.362320	0.312222	0.273335	0.228613	0.160016	0.035014	-0.152921	-0.361896	-0.580000
$t_{47} = 0.47$	0.500000	0.424808	0.356198	0.304652	0.268371	0.228096	0.161576	0.036428	-0.148038	-0.349628	-0.560000
$t_{48} = 0.48$	0.500000	0.421399	0.350258	0.297273	0.263385	0.227292	0.162531	0.037288	-0.143290	-0.337444	-0.540000
$t_{49} = 0.49$	0.500000	0.418017	0.344509	0.290121	0.258394	0.226178	0.162867	0.037637	-0.138647	-0.325340	-0.520000
$t_{50} = 0.50$	0.500000	0.414674	0.338960	0.283228	0.253414	0.224728	0.162574	0.037521	-0.134080	-0.313310	-0.500000
ш 30 : 40							11				

1.6. Выводы

Был исследован метод конечных разностей. Метод достаточно прост в реализации. Была получена поверхность с распределением U(x,t) по явной и неявной схеме. Проведено графическое сравнение схем.