1

Supplementary Material

Abstract

This document is the supplementary material for the article "Reconfigurable Massive MIMO: Harnessing the Power of the Electromagnetic Domain for Enhanced Information Transfer". Two parts of the original article are presented in a more detailed form. The first part is the channel modeling of reconfigurable massive MIMO (R-mMIMO) systems. The second part is the pseudo-code of the proposed EMR domain precoding algorithm.

I. CHANNEL MODEL FOR R-MMIMO SYSTEMS

We consider a point-to-point R-mMIMO system with N_r receive antennas and N_t transmit antennas. Assuming the n_t -th transmit antenna adopts μ_{n_t} -th radiation pattern and the n_r -th receive antenna adopts ν_{n_r} -th radiation pattern, respectively, then the time-delay (t,τ) domain channel between them is denoted by $H_{n_r,n_t}(t,\tau;\nu_{n_r},\mu_{n_t})$, whose detailed expression is given by Table I [1]. Furthermore, by restricting the receiver to equip a single non-reconfigurable antenna, as the original article assumes, the degraded channel model between the UE and the n_t -th antenna of the BS in the time-frequency (t,k) domain is obtained as $h_{n_t}(t,k;\mu_{n_t})$ in Table I.

II. EMR DOMAIN PRECODING ALGORITHM

The **EMR domain precoding algorithm** in the original article only gives a literal description, a more rigorous pseudo-code description of this algorithm is given below. The spectral efficiency (SE) is calculated as Equ. (1). Here, u and k are indexes for UE and subcarrier, respectively. $\mathbf{F}_{RF} \in \mathbb{C}^{N_t \times M_t}$ is the analog precoder, and $\mathbf{f}_{u,k} \in \mathbb{C}^{M_t}$ is the digital precoder. Besides, the n_t -th element of $\mathbf{h}_u^{\mathrm{H}}(t,k;\boldsymbol{\mu})$ is generated by $h(t,k;\boldsymbol{\mu}_{n_t})$ from Table I.

$$R = \frac{1}{K} \sum_{u=1}^{U} \sum_{k=1}^{K} \log \left(1 + \frac{|\boldsymbol{h}_{u}^{H}(t, k; \boldsymbol{\mu}) \boldsymbol{F}_{RF} \boldsymbol{f}_{u, k}|^{2}}{\sum_{j \neq u} |\boldsymbol{h}_{u}^{H}(t, k; \boldsymbol{\mu}) \boldsymbol{F}_{RF} \boldsymbol{f}_{j, k}|^{2} + \sigma_{n}^{2}} \right),$$
(1)

REFERENCES

[1] 3GPP, "Study on channel model for frequencies from 0.5 to 100 GHz," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 05 2017, version 14.0.0.

 $\label{eq:TABLE} TABLE\ I$ Channel model for R-mMIMO systems

	$H_{n_r,n_t}(t,\tau;\nu_{n_r},\mu_{n_t}) = \sum_{l=1}^{L} \alpha_l \boldsymbol{f}_{\mathrm{rx},n_r}^{\mathrm{T}}(\theta_{r,l},\phi_{r,l};\nu_{n_r}) \boldsymbol{T}_l \boldsymbol{f}_{\mathrm{tx},n_t}(\theta_{t,l},\phi_{t,l};\mu_{n_t}) \exp\left(\frac{\mathrm{j}2\pi \left(\boldsymbol{r}_{\mathrm{rx},l}^{\mathrm{T}}\boldsymbol{d}_{\mathrm{rx},n_r}\right)}{\lambda}\right)$		
General channel model			
	$\times \exp\left(\frac{\mathrm{j}2\pi\left(\mathbf{r}_{\mathrm{tx},l}^{\mathrm{T}}\boldsymbol{d}_{\mathrm{tx},n_{t}}\right)}{\lambda}\right) \exp\left(\frac{\mathrm{j}2\pi\left(\mathbf{r}_{\mathrm{rx},l}^{\mathrm{T}}\boldsymbol{v}\right)}{\lambda}t\right)\delta\left(\tau-\tau_{l}\right)$		
	$h_{n_t}(t, k; \mu_{n_t}) = \sum_{l=1}^{L} \alpha_l \mathbf{f}_{\text{rx}}^{\text{T}}(\theta_{r,l}, \phi_{r,l}) \mathbf{T}_l \mathbf{f}_{\text{tx},n_t}(\theta_{t,l}, \phi_{t,l}; \mu_{n_t}) \exp\left(\frac{j2\pi (\mathbf{r}_{\text{rx},l}^{\text{T}} \mathbf{d}_{\text{rx}})}{\lambda}\right)$		
Degraded channel model			
	$ imes \exp\left(rac{\mathrm{j}2\pi\left(oldsymbol{r}_{\mathrm{tx},l}^{\mathrm{T}}oldsymbol{d}_{\mathrm{tx},n_{t}} ight)}{\lambda}$	$\left(\frac{j2\pi\left(\boldsymbol{r}_{\mathrm{rx},l}^{\mathrm{T}}\boldsymbol{v}\right)}{\lambda}t\right)\exp\left(\frac{j2\pi\left(\boldsymbol{r}_{\mathrm{rx},l}^{\mathrm{T}}\boldsymbol{v}\right)}{\lambda}t\right)$ ex	$\operatorname{cp}\left(\mathrm{j}2\pi\tau_l\left(-\frac{B_w}{2}+\frac{B_wk}{K}\right)\right)$
Parameter	Definition	Parameter	Definition
α_l	Channel gain for l-th path	λ	Wavelength
L	Total number of paths	$ au_l$	Channel delay for l -th path
T_l	Polarization coupling matrix for l-th path	$oldsymbol{v}$	UE velocity vector
$(\theta_{r.l},\phi_{r,l})$	Elevation/azimuth angle for l-th arrival path	$(\theta_{t,l},\phi_{t,l})$	Elevation/azimuth angle for l-th departure path
ν_{n_r}	Pattern type for n_r -th receive antenna	μ_{n_t}	Pattern type for n_t -th transmit antenna
$f_{\mathrm{rx},n_r}(\theta_{r,l},\phi_{r,l};\nu_{n_r})$	Radiation pattern of n_r -th receive antenna	$f_{\mathrm{tx},n_t}(\theta_{t,l},\phi_{t,l};\mu_{n_t})$	Radiation pattern of n_t -th transmit antenna
$oldsymbol{r}_{\mathrm{rx},l}$	Spherical unit vector for l-th arrival path	$r_{\mathrm{tx},l}$	Spherical unit vector for l-th departure path
$d_{{ m rx},n_r}$	Location vector of n_r -th receive antenna	d_{tx,n_t}	Location vector of n_t -th transmit antenna
B_w	System bandwidth	K	Total number of subcarriers

Algorithm 1: EMR domain precoding algorithm

Input: CSI $h_{u,k}(\boldsymbol{\mu})$, $\forall u, k, \boldsymbol{\mu}$;

Output: EMR domain precoding vector μ^* ;

1 Initialization: $\mu^0 = \mathbf{0}_{N_t}$;

$$\begin{array}{lll} \textbf{2 for } i=1:T_{iter} \ \textbf{do} \\ \textbf{3} & \textbf{for } n_t=1:N_t \ \textbf{do} \\ \textbf{4} & \textbf{for } p=0:P-1 \ \textbf{do} \\ \textbf{5} & \widetilde{\boldsymbol{\mu}}=\left\{\mu_l=\mu_l^i,l< n_t,\mu_{n_t}=\bar{\mu}_p, \qquad \mu_m=\mu_m^{i-1},m>n_t\right\}; \\ \textbf{6} & Apply HP \ \text{to CSI} \ \boldsymbol{h}_{u,k}\left(\widetilde{\boldsymbol{\mu}}\right),\forall u,k, \ \text{and calculate SE value} \\ R_p=R\left(\boldsymbol{h}_{u,k}\left(\widetilde{\boldsymbol{\mu}}\right),\forall u,k\right) \ \text{according to Equ. (2)}; \\ \textbf{7} & \textbf{end} \\ \textbf{8} & p^{\star}=\arg\max_{0\leq p\leq P-1}R_p; \\ \end{array}$$

11 **end**

10

12 return $\mu^{\star} = \mu^{T_{iter}}$.

end