Máster Universitario en Visión Artificial

Controlador visual basado en *Deep Learning* para la conducción autónoma en robots reales

Francisco Pérez Salgado

14 - Octubre - 2020

Índice

Introducción

IV BehaviorStudio

Objetivos

V Piloto JetBot

| Infraestructura

Introducción

Disciplinas involucradas

Robótica Visión Artificial

Deep Learning

Objetivos

Tareas a resolver

Controlador visual

Crear un controlador visual basado en *deep learning* para el robot real JetBot

BehaviorStudio

Crear una plataforma de ejecución de comportamientos centralizada, flexible y robusta.

Integración

Integrar el controlador visual basado en *deep learning* con BehaviorStudio

\bigcirc 5

Infraestructura

Herramientas utilizadas

Características

Intercambio de cerebros

Intercambio «en caliente» de cerebros. Depuración de comportamientos en vivo.

Grabación de *datasets*

Creación de conjuntos de datos a partir de topics de ROS utilizando la tecnología ROSBags.

Entornos reales y simulados

Soporte para ejecución tanto con robots reales como robots simulados,

Arquitectura

- Modelo-Vista-Controlador (MVC)
- Piloto y Cerebro
- Sensores y actuadores
- Controlador

GUL

Validación (entorno simulado)

Modo headless

Piloto JetBot

Requisitos

- Redes neuronales
- Conjuntos de datos
- Transfer Learning

Normalización

Parámetros

Operaciones

Tamaño: 224 x 224 px

Etiqueta: (7, 73) = (15, 178) Etiqueta normalizada: (-0.86, 0.27)

Ångulo de giro: **-72°** (-1.26 rad)

potencia motor izq.: **0.19** (19%) potencia motor der: **0.26** (26%)

Tamaño: 224 x 224 px

Etiqueta: (50 , 50) = (112 , 112) Etiqueta normalizada: (0, 0.5)

Ángulo de giro: • (o rad)

potencia motor izq.: **0.23** (23%) potencia motor der: **0.23** (23%)

Tamaño: 224 x 224 px

Etiqueta: **(66, 73)** = **(141, 178)** Etiqueta normalizada: **(0.32, 0.27)**

Ángulo de giro: 50° (0.86 rad)

potencia motor izq.: **0.25** (25%) potencia motor der: **0.20** (20%)

Transfer learning

Cambio de dominio

Se entrena la arquitectura desde cero, para una tarea concreta.

La ResNet se entrena con Imagenet para tareas de clasificación.

pre-entrenamient

La red pre-entrenada se vuelve a entrenar para otra tarea.

La ResNet' se entrena con nuestro *dataset* para tareas de regresión.

ajuste fin

- ExperimentosResnet18*
- MobileNet

EjemplosMuestras de resultados

PROJECT NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada.

PROJECT NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada.

Place Your Image

PROJECT NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada.

PROJECT NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada.

ResNet-18*

Métricas

Circuito	Longitud (m)	Tiempo sentido h (s)	Tiempo sentido ah (s)	
Training	2.80 m	18.4"	21.7"	
А	1.74 m	13.9"	14.8"	
В	2.70 m	14.3"	14.9"	
С	2.20 m	11.4"	11.9"	
D	2.60 m	14.0"	14.5"	
E	2.60 m	13.7"	14.0"	
F	2.35 m	12.4"	12.5"	
G	2.90 m	-	-	
н	0.80 m	1.4"	1.4"	
I	1.80 m	7.4"	8.2"	
J	4.00 m	18.4"	19.7"	
K	4.00 m	18.5"	20.1"	

MobileNet-v2*

Métricas

Circuito	Longitud (m)	Tiempo sentido h (s)	Tiempo sentido ah (s)	
Training	2.80 m	19.6	21.9	
А	1.74 m	14.5	15.7	
В	2.70 m	15.9	16.5	
С	2.20 m	13.4	15.7	
D	2.60 m	16.2	17.8	
Е	2.60 m	13.5	14.1	
F	2.35 m	13.2	14.0	
G	2.90 m	-	-	
Н	0.80 m	1.2	1.3	
I	1.80 m	6.5	7.0	
J	4.00 m	-	-	
K	4.00 m	-	-	

Comparativa Métricas

		ResNet-18*		MobileNet-v2*	
Circuito	Longitud (m)	Tiempo h (s)	Tiempo ah (s)	Tiempo h (s)	Tiempo ah (s)
Training	2.80 m	18.4"	21.7"	19.6	21.9
А	1.74 m	13.9"	14.8"	14.5	15.7
В	2.70 m	14.3"	14.9"	15.9	16.5
С	2.20 m	11.4"	11.9"	13.4	15.7
D	2.60 m	14.0"	14.5"	16.2	17.8
Е	2.60 m	13.7"	14.0"	13.5	14.1
F	2.35 m	12.4"	12.5"	13.2	14.0
G	2.90 m	-	-	-	-
н	0.80 m	1.4"	1.4"	1.2	1.3
1	1.80 m	7.4"	8.2"	6.5	7.0
J	4.00 m	18.4"	19.7"	-	-
K	4.00 m	18.5"	20.1"	-	-

Conclusiones

Hitos y lecciones aprendidas

Recursos

lconos:

- <u>surang from www.flaticon.com</u>"
- svgrepo.com

Plantilla:

• Graphicbulb

Imágenes:

- <u>msoe.edu</u>
- <u>fullstackfeed</u>
- <u>datasmart</u>

Our Best Services

We provide best value to user

OUR SERVICE 01

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare, imperdiet ante et, vehicula nisl. Vestibulum in posuere diam.

OUR SERVICE 02

Lorem Ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Dui eu purus ornare, imperdiet ante et, vehicula nisl. Vestibulum in posuere diam.

OUR SERVICE 03

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare, imperdiet ante et, vehicula nisl. Vestibulum in posuere diam.

OUR SERVICE 04

Lorem Ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare, imperdiet ante et, vehicula nisl. Vestibulum in posuere diam.

Step By Step

We provide best value to user

PUT SERVICE NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare.

PUT SERVICE NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare.

PUT SERVICE NAME HERE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare.

PUT SERVICE NAME HERE

Lorem ipsum dolor sit amet, consectetu adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare.

Mountain Chart

We provide best value to user

PUT CHART OPTION HERE

adipiscing elit. Cras placerat malesuada mauris. Duis eu purus ornare, imperdiet ante et, vehicula nisl. Vestibulum in posuere diam. Sed commodo aliquam augue vel tempor. Aliquam erat volutpat. Sed maximus diam sapien, at fringilla odio bibendum ut. Nullam pulvinar tempor urna, nec placerat nunc sodales nec.