Answer:

intro

We seek to maximise $like(\mu_0,\mu_1,\Sigma,\phi)=p(x,y|\mu_0,\mu_1,\Sigma,\phi)=\Pi p(y_i|\phi)p(x_i|\mu_0,\mu_1,\Sigma,y_i)$, using simple formula $p(x_i,y_i)=p(y_i)p(x_i|y_i)$, and that $p(y|\phi,\mu_0,...)=p(y|\phi)$. Then we can separately maximise $\Pi p(y_i|\phi)$ and $\Pi p(x_i|\mu_0,\mu_1,\Sigma,y_i)$, denoting each (not sure if this is standard) $like(\phi), like(\mu_0,\mu_1,\Sigma)$.

MLE of ϕ

 $like(\phi)=p(y|\phi)=\Pi_{i=1}^n\phi^{y_i}(1-\phi)^{1-y_i}$, where $y_i=0,1$. Then to maximise log likelihood, $l(\phi)=\sum y_i\log(\phi)+(1-y_i)\log(1-\phi)$ we seek $\frac{dl(\phi)}{d\phi}=0$, i.e. $\sum \frac{y_i}{\phi}+\frac{y_i-1}{1-\phi}=0=\sum \frac{y_i-\phi}{\phi(1-\phi)}$ which coincides with $\phi=\bar{y}$.

MLE of μ_0, μ_1

 $like(\mu_0, \mu_1, \Sigma) = \prod p(x_i | \mu_0, \mu_1, \Sigma, y_i)$, so we'll maximise over log likelihood i.e. over

$$-\frac{nd}{2}\log(2\pi) - \frac{n}{2}\log(|\Sigma|) - \frac{1}{2}\Sigma_{y_i=0}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0) - \frac{1}{2}\Sigma_{y_i=1}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)$$

Then the derivative of the log likelihood with respect to μ_0 is $\Sigma_{y_i=0}\Sigma^{-1}(x-\mu_0)$ i.e. is maximised with $\mu_0=\bar{x}$ averaged over $x_i:y_i=0$, and similarly for μ_1 .

MLE of Σ

To maximise over Σ seems pretty involved. We'll require a formula for $\frac{\partial}{\partial A_{ij}}\det(A)$. We'll use the matrix minors formulas: $\delta_{ik}|A|=\sum_{j=1}^n|A_{ji}|A_{jk}$ Where A_{ji} is the minor matrix, and $|A_{ji}|$ is its determinant. This gives a form of the inverse for A of $K_{ij}=\frac{(-1)^{i+j}}{|A|}|A_{ji}|$ as this gives $K_{ij}A_{jk}=\sum_{j=1}^n\frac{(-1)^{i+j}}{|A|}|A_{ji}|A_{jk}=\delta_{ij}$. Then $\frac{\partial}{\partial A_{ab}}|A|=\frac{\partial}{\partial A_{ab}}\left(\sum_{j=1}^n(-1)^{b+j}|A_{jb}|A_{jb}\right)$. The sum only has one term with a A_{ab} component, where j=a, so we get $\frac{\partial}{\partial A_{ab}}|A|=\frac{\partial}{\partial A_{ab}}(-1)^{a+b}|A_{ab}|A_{ab}=(-1)^{a+b}|A_{ab}|=A_{ba}^{-1}|A|$ (by using the minor form of matrix inverse). This gives us the formula $\nabla_A|A|=|A|(A^{-1})^T$.

So seeking a solution of

$$\nabla_A \left(\frac{n}{2} \log(|A|) - \frac{1}{2} \Sigma_{y_i = 0} (x - \mu_0)^T A (x - \mu_0) - \frac{1}{2} \Sigma_{y_i = 1} (x - \mu_1)^T A (x - \mu_1) \right) = 0$$

where we let $A=\Sigma^{-1}$ and use $|\Sigma|=1/|A|$, as well as assuming μ_0,μ_1 are already maximised (i.e. $\mu_0=\hat{\mu_0}_{MLE}$ etc.). Then we get $\frac{n}{2}A^{-1}-\frac{1}{2}\Sigma_{i=1}^n(x-\mu_{y_i})(x-\mu_{y_i})^T=0$ which gives the desired MLE equation, where we used that Σ , and so A too, are symmetric so $(A^{-1})^T=A^{-1}$, and that for any matrix A, $\frac{\partial}{\partial A}z^TAz=zz^T$.