Wafer Nano Fabrication Process Document

2020/01/10

POSCO HRD Group

Kim Jong Chan

- Wafer: 약 300mm의 disk 형태, 반도체를 제작하는 순도 높은 규소재료
- Wafer Fabs : Wafer를 생산하는 공장, 현재 수집된 데이터는 Fabs에서 발생하는 데이터 중 일부만 추출하여 가져온 것이다.
- Integrated Circuit (IC): 다수의 전기적 소자들을 하나의 규소 기판에 모아 전기적 특성을 가진 Chip을 부르는 말
- Die: Wafer IC 회로에서 발생하는 여러 Chip 들 중 하나, 가장 작은 단위 Unit
- Wafer를 이용한 IC Chip 제작 과정 :
 - 1. Wafer Preparation : 모래에서 뽑은 광물을 정화하여 순도 99.999%의 규소 생성
 - 2. Wafer Fabrication (반도체 8대 공정): Wafer 제작 / 산화공정 / 포토공정 / 식각공정 / 박막 증착 공정 / 금 속 배선 공정 / EDS 검사 / Packing 의 절차를 밟아 가며, 하나의 Wafer Disk에서 수백개의 IC Chip을 생성
 - 3. Test & Sort: 생성된 Die 의 탐침 검사 및 불량 Wafer 선택
 - 4. Assembly and Packing : 보호용 Package로 개별 Chip에 대한 Packing
 - 5. Final Test: 전기스펙, 환경스펙 등 Package된 IC Chip에 대한 종합평가
- * CMOS 소자 제작에 대한 공정 결과 Data를 받아 분석
- * 8대 공정 중, 4가지 Process에 대한 데이터이며,
 Oxidation / Photo(spin coat+ soft bake) / Photo (Exposure) / Etching / Implantation 으로 총 5개의 파일로 구성되어 있음
- * CMOS 에서도 각각 제품에 특성에 맞게 Process가 모두 다르지만, 해당 데이터는 가장 일반적인 Wafer Fabs Process를 가정하여 분석

• Wafer Fabrication 총 4 단계의 Process에서 발생한 Data로 분석 각 단계별로 넘어갈 때, Wafer가 Process가 같은 3개의 Chamber로 나뉘어 들어감

Oxidation Process

- 750°C ~ 1100°C 에서 Oxide 산화물을 성장 시킴
- **산화물 :** 반도체 공정에 필요한 물질로, 반도체 내 구조를 형성하는데 사용 (건물에 있어서 시멘트와 같은 역할) 다른 전기적 Device를 보호하거나 서로 다른 Layer를 구분할 때, 또는 외부의 이물질로부터 IC를 보호할 때, 산화물을 길러 사용
- 2가지 Oxidation 방식이 존재
 - 1) Wet: 수증기가 반응에 참여하는 방식 (Si + 2H2O -> SiO2 + 2H2) / 첨가물이 Vapor
 - 2) Dry: 산소가스가 반응에 참여하는 방식 (Si + O² -> SiO²) / 첨가물이 Gas
 - Dry 방식보다 Wet 방식이 반응속도가 더 빠르나, Dry 방식이 산화물을 더욱 정확하게 생성 할 수 있음
 - 산화물의 생성 속도(산화물이 쌓인 높이 nm) 는 시간과 온도에 비례
 - Dry 방식과 Wet 방식에 따라서 첨가물이 다르게 들어감
- 데이터에선 Photo공정을 하기 전에 실시된 산화공정 데이터로, Dry 방식으로 작동된 경우와 Wet 방식으로 작동된 2가지 경우가 있음
- Thickness 값이 700nm 이상일 때, 다음 Photo공정에서 문제없이 공정이 진행될 수 있음

PhotoLithography Process

- 반도체 공정에서 가장 중요한 공정
- 반도체의 Pattern 을 Wafer 위로 옮기는(Transfer)작업
- 감광물질(Photo resist)를 Wafer위에 입힌 뒤, Mask를 이용하여 감광물질을 반응하게 하는 빛을 쏘아 구조를 형성하는 방식
- Photo공정 내 8개의 Process가 존재
 - 1. Vapor Prime : Wafer를 준비하는 단계, Wafer를 증기에 노출시켜 표면을 Hydrophobic(소수성)을 띄도록 만든다.
 - Wafer에 이물질 제거 및 Resist를 쉽게 흡착 시킬 수 있도록 만든다.
 - 2. Spin Coat: Prime Wafer에 액체 Photo Resist 물질을 코팅한다.
 - Wafer를 회전판 위에 올려, 감광물질을 부으면서 회전판을 회전시켜 Resist 물질이 퍼지게 하는 작업
 - 3. Soft Bake: Coating의 쓰였던 용매를 제거하고 Wafer의 균일성 향상을 위해 Wafer를 굽는 작업
 - **4. Alignment and Exposure :** Wafer에 감광물질에 빛을 쏘여, Pattern을 새기기 위하여, 빛이 노출되는 부분을 조절하는 Mask를 위에 올려, Wafer와 Mask와 Light Source를 정렬하고, 빛을 노출시키는 과정
 - 5. Post-Exposure Bake (PEB): 감광물질이 빛에 노출된 직후, Develop과정 전에 Wafer를 살짝 굽는 작업
 - **6. Develop :** Photoresist 감광물질에 Pattern이 생성되는 단계로, Spin / Spray / puddle 방법을 이용해, Wafer에 Pattern을 남기는 과정
 - 7. Hard Bake: 남아있는 감광물질을 증발시키고, Resist와 wafer사이의 접착을 향상시키는 작업
 - 8. Develop Inspect: 품질 검증 및 오류를 수정하는 작업, Line Critical Dimension 을 확인하여, Transfer 된 구조 간의 거리를 확인한다. 25~55nm 사이로 CD 값이 나와야 적절히 공정이 진행되었다고 판단
- 데이터에서는 2개의 파일로 나뉘어 져 있으며, Spin Coat과정과 Soft Bake과정이 하나의 파일로 되어있고, Exposure과정이 다른 하나의 파일로 구성되어 있다.

PhotoLithography Process

- Resolution: Lithography 과정에서 사용되는 중요한 지표로, 얼마나 미세한 Pattern을 구현하는가에 대한 척도
- Lithography에서 Resolution과정이 Critical Dimension을 결정하는 가장 중요한 요인
- Lithography 과정에서 UV Spectrum에 따라 Resolution이 달라짐
 - G Line / H Line / I Line
 - Exposure : 단위 면적 당 Power x Time => Energy
- Lithography에서 Resolution 수 있는 여러 가지 개선안을 찾는 것이 중요 (SCALPEL / IPL / DESIRE 등 ..)

Etching Process

- 화학적/물리적 수단을 이용하여, Wafer 표면 위에 원하지 않는 물질을 선택적으로 제거 하는 단계
- 2가지 Process가 존재, Dry Etching / Wet Etching (현재 데이터에선, Dry Etching을 사용)

- Dry Etching

- 미세공정에 있어서 적합한 Process / 균일성이 좋으며, 매우 우수한 Profile (Etching된 Feature의 Sidewall 모양)
- Gas 형태의 Plasma를 제거하려는 부분에 노출, 물리/화학적 Process가 동시에 진행
- 불소 기반의 Source를 이용해 Plasma형태로 변환
- 첨가물엔 H2와 O2가 존재

- 핵심 Parameter :

- Etching Rate: Process가 진행되는 중, Wafer 표면에 Material이 제거되는 속도
- Etch Uniformity: Etching이 Wafer 표면에서 얼마나 균일하게 일어나는 지 파악
- Etch Selectivity : 다른 Material의 Etching Rate에 비해 Etching 되는 재료의 비율
 (동일한 조건에서 한 Film이 다른 Film에 비해 얼마나 빨리 Etching 되는가 나타내는 척도)
- 현재 주어져 있는 시간당 Etching Thickness를 이용해, Etching Rate를 계산하는 것이 중요

Implantation Process

- Wafer위에 전기적 특성을 부여하는 단계 , 반도체 결정구조에 Dopant (화학 물질에 도입되어 원래의 전기적 또는 광학적 특성을 변경시키는 미량의 불순물 원소)를 도입하여 전자적 특성을 부여
- 크게 2가지 타입의 공정이 존재, **Thermal Diffusion**과 **Ion Implantation** (현재 데이터는 Ion Implantation공정을 진행한 데이터)
 - Thermal Diffusion : 시간과 온도에 따라 Si 격자구조를 통해 Dopant가 이동하며, 전자적 특성이 부여됨
 - Ion Implantation : 고전압 이온충격을 통해 Dopant를 주입
- Ion Implantation 물리적인 Process로 기본적으로 화학반응이 없음
- Plasma를 먼저 생성한 뒤, 선택적으로 Ion을 전송하는 방식
- Annealing 과정을 병행하여 진행
 - Wafer 기판을 가열하면서, 원자의 격자 (Lattice) 사이에 손상된 부분을 수리 및 효과적인 Dopant 확산
 - Furnace Annealing: 800 ~ 1000℃에서 약 30분간 가열, 광범위하게 Dopant를 확산
 - Rapid Thermal Annealing (RTA) : 급속 열처리, Ar 또는 N²를 이용해 불필요한 Dopant의 확산을 줄임
 - Furnace Annealing을 먼저 진행한뒤, 너무 많은 Dopant를 제어하기 위해, RTA를 실시

* Oxidation.csv (row: 423 / columns: 15)

변수명	타입	설명
No_Die	ID	공정에 들어가는 하나의 Wafer 고유 ID
Lot_Num	연속형	공정 생산 단위, 하나의 단위에 같은 Process가 작동
Wafer_Num	연속형	하나의 Lot 내 Wafer 번호, 하나의 Lot에 27개의 Wafer 존재
Chamber_Num	연속형	Process별 Chamber Number , 현 공정에 총 3개의 Chamber가 존재
Process	범주형	현재 진행되고 있는 공정 Process
Туре	범주형	Oxidation 공정에서 실행되는 Process Type, Dry 와 Wet 방식 존재
Time	범주형	공정이 시작된 시각
Datetime	범주형	공정이 시작된 날짜
Temp	연속형	공정이 수행되는 동안 Chamber 내 평균 온도 (℃ 단위)
H2O(ppm)	연속형	Wet 공정에서 투여되는 H2O의 량 (ppm 단위)
O2(ppm)	연속형	Dry 공정에서 투여되는 O2의 량 (ppm 단위)
Pressure	연속형	공정이 진행되는 동안 공정에 가해지는 압력 (Torr 단위)
Oxidation_Time	연속형	산화공정이 진행된 시간 (분 단위)
Thickness	연속형	산화공정이 완료된 후 성장한 산화물의 두께 (nm 단위) •이론상 700nm 이상 되어야 다음 공정을 정상적으로 진행 할 수 있음

* Photo_softbake.csv (row : 423 / columns : 19)

변수명	타입	설명
No_Die	ID	공정에 들어가는 하나의 Wafer 고유 ID
Lot_Num	연속형	공정 생산 단위, 하나의 단위에 같은 Process가 작동
Wafer_Num	연속형	하나의 Lot 내 Wafer 번호, 하나의 Lot에 27개의 Wafer 존재
Chamber_Num	연속형	Process별 Chamber Number , 현 공정에 총 3개의 Chamber가 존재
Process	범주형	현재 진행되고 있는 공정 Process
Time	범주형	공정이 시작된 시각
Datetime	범주형	공정이 시작된 날짜
N2_HMDS	연속형	HMDS 공정에서 N2 질소의 투여 량 (ppm 단위)
Pressure_HMDS	연속형	HMDS 공정에서 N2 산화물 생성시 가해지는 압력 (torr 단위)
Temp_HMDS	연속형	HMDS 공정에서 N2 산화물 생성시 가해지는 온도 (℃ 단위)
Temp_HMDS_bake	연속형	N2 산화물 흡착 시 발생하는 온도 (°C 단위)
time_HMDS_bake	연속형	N2 산화물 흡착이 진행된 시간 (초 단위)
spin1_softbake	연속형	Spin Coat 과정에서 첫 번째 회전 스핀 수 (rpm 단위)
spin2_softbake	연속형	Spin Coat 과정에서 두 번째 회전 스핀 수 (rpm 단위)
spin3_softbake	연속형	Spin Coat 과정에서 세 번째 회전 스핀 수 (rpm 단위)
photoresist_softbake	연속형	Spin Coating에 투여되는 Photoresist 량 (ml 단위)
temp_softbake	연속형	투여된 Resist를 흡착시킬 때 발생한 온도 (℃ 단위)
time_softbake	연속형	투여된 Resist를 흡착시키는 동안 시간 (초 단위)
photo_resist	연속형	흡착된 Resist의 최종 균일도 •1로 갈수록 균일, 1이상은 오목/ 이하는 볼록하게 분포

* Photo_lithograpy.csv (row : 423 / columns : 15)

변수명	타입	설명
No_Die	ID	공정에 들어가는 하나의 Wafer 고유 ID
Lot_Num	연속형	공정 생산 단위, 하나의 단위에 같은 Process가 작동
Wafer_Num	연속형	하나의 Lot 내 Wafer 번호, 하나의 Lot에 27개의 Wafer 존재
Chamber_Num	연속형	Process별 Chamber Number , 현 공정에 총 3개의 Chamber가 존재
Process	범주형	현재 진행되고 있는 공정 Process
Time	범주형	공정이 시작된 시각
Datetime	범주형	공정이 시작된 날짜
Lamp	범주형	lithography Exposure Laser 타입 (Hg-Arc)
UV_type	범주형	lithography Exposure Laser UV 타입 (G-line / H-line / I-line)
wavelength_uv	연속형	UV Laser 의 파장 (nm 단위)
resolution	연속형	해상도
energy_exposure	연속형	exposure Energy (mJ/cm^2)
Line_CD	연속형	Line Critical Dimension (nm) • Lithography 의 결과로 그려진 Wafer의 Line Pattern 간 거리 • 적정 nm 는 25~ 55nm 사이

* Etching.csv (row : 423 / columns : 16)

변수명	타입	설명
No_Die	ID	공정에 들어가는 하나의 Wafer 고유 ID
Lot_Num	연속형	공정 생산 단위, 하나의 단위에 같은 Process가 작동
Wafer_Num	연속형	하나의 Lot 내 Wafer 번호, 하나의 Lot에 27개의 Wafer 존재
Chamber_Num	연속형	Process별 Chamber Number , 현 공정에 총 3개의 Chamber가 존재
Process	범주형	현재 진행되고 있는 공정 Process
Time	범주형	공정이 시작된 시각
Datetime	범주형	공정이 시작된 날짜
Material	범주형	Etching 되고 있는 Source
Source Power	연속형	Dry Etching Plasma Source Power [W]
Selectivity	연속형	Etching 중 선택된 (Etching 하려는) 재료만 Etching되는 비율
Temp	연속형	Etching 공정에서 사용된 온도
Thin Film 1	연속형	Etching 실시 10분 후 Thin Film 두께 [nm]
Thin Film 2	연속형	Etching 실시 20분 후 Thin Film 두께 [nm]
Thin Film 3	연속형	Etching 실시 30분 후 Thin Film 두께 [nm]
Thin Film 4	연속형	Etching 실시 40분 후 Thin Film 두께 [nm]

* Ion_Implantation.csv (row : 423 / columns : 16)

변수명	타입	설명
No_Die	ID	공정에 들어가는 하나의 Wafer 고유 ID
Lot_Num	연속형	공정 생산 단위, 하나의 단위에 같은 Process가 작동
Wafer_Num	연속형	하나의 Lot 내 Wafer 번호, 하나의 Lot에 27개의 Wafer 존재
Chamber_Num	연속형	Process별 Chamber Number , 현 공정에 총 3개의 Chamber가 존재
Process	범주형	현재 진행되고 있는 공정 Process
Time	범주형	공정이 시작된 시각
Datetime	범주형	공정이 시작된 날짜
Flux60s	연속형	60초 동안 주입된 이온의 양
Flux90s	연속형	90초 동안 주입된 이온의 양
Flux160s	연속형	160초 동안 주입된 이온의 양
Flux480s	연속형	480초 동안 주입된 이온의 양
Flux840s	연속형	840초 동안 주입된 이온의 양
input_Energy	연속형	주입 시 사용된 Plasma 에너지
Current	연속형	주입 시 사용된 Plasma 전류
Temp_implantation	연속형	Hydrogen Ion 주입 시 Chamber 내 온도
Furnace_Temp	연속형	Annealing Furnace 작업 시 Chamber 내 온도
RTA_Temp	연속형	RTA 작업 시 Chamber 내 온도

* QualityInspection.csv (row : 423 / columns : 6)

변수명	타입	설명
No_Die	ID	공정에 들어가는 하나의 Wafer 고유 ID
Lot_Num	연속형	공정 생산 단위, 하나의 단위에 같은 Process가 작동
Wafer_Num	연속형	하나의 Lot 내 Wafer 번호, 하나의 Lot에 27개의 Wafer 존재
Datetime	Datetime	품질검사일자
Target	연속형	Wafer 내 불량 Chip 개수 (전체 2000개 Die)
Туре	범주형	불량 Wafer의 주요 오류