Дискретна математика

доц. д-р Тодорка Глушкова, Катедра "Компютърни технологии", ФМИ

КРАЙНИ АВТОМАТИ

Съдържание

- Детерминиран краен автомат
- Недетерминиран краен автомат
- Автоматите като преобразуватели
- Автомат на Мили
- Автомат на Мур
- Примери

Принципна схема:

- Ще разгледаме един сравнително прост, но важен вид разпознаватели на формални езици т.нар. *детерминирани крайни автомати(ДКА)*.
- Крайните автомати не разпознават всички езици с крайни описания, а само автоматните езици.
- ДКА се състои от входна лента, на която е написана дума от допустимите входни символи, която се чете от крайния автомат отляво надясно и от УУ, което може да се намира в краен брой вътрешни състояния.

- ДКА работи последователно в дискретни моменти от време- тактове.
- На всеки такт УУ се намира в едно вътрешно състояние и прочита един символ.
- След като ДКА изчете цялата дума, ако завърши работата в едно от фиксираните му заключителни състояния, казваме че той е разпознал входната дума (лампата светва).
- Във всички останали случаи той не е разпознал входната дума.

- <u>Дефиниция:</u> Входните думи, които се разпознават от ДКА, образуват *езика*, разпознаван от автомата.
- Дефиниция: ДКА над азбуката V наричаме наредената петорка: A=<K,V,δ,q₀,F>, където:
- $K \neq \emptyset$ е множество от вътрешни състояния;
- V множество от входни символи (входна азбука)
- − δ функция на преходите с дефиниционна област D(δ)⊆ KxV и област на стойностите R(δ)⊆K.
- q₀∈K начално състояние;
- F⊆K множество от заключителни състояния.

- ДКА е напълно определен, когато функцията на преходите δ е дефинирана за всяка наредена двойка от KxV, т.е. $D(\delta)$ = KxV.
- Автоматът А работи така:

Нека на A е зададена входна дума $a_{i1}, a_{i2}, ... a_{ik+1} \in V^*$. По текущото състояние и първия входен символ a_{i1} чрез функцията δ се определя следващото вътрешно състояние $p_1 = \delta(p_0, a_{i1})$.

- По състоянието p_1 и следващия входящ символ a_{i2} чрез δ се определя p_2 и т.н. Накрая по състоянието p_k и входящия символ a_{ik+1} се определя последното вътрешно състояние $p_{k+1} = \delta(p_k, a_{ik+1})$.
- Ако $p_{\kappa+1} \in F \Rightarrow A$ е разпознал думата, в противен случай автомата не разпознава думата.

- <u>Дефиниция:</u> Множеството T(A) от всички думи на входната азбука V, които ДКА A разпознава, се нарича **език, разпознаван от A.**
- Дефиниция: Два ДКА А1 и А2 са
 еквивалентни⇔ Т(А1)=Т(А2), т.е. когато
 разпознават един и същи език.

• Пример1: Да разгледаме ДКА:

$$A1 = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle, \kappa$$
 $\delta(q_0, 0) = q_0$ $\delta(q_1, 1) = q_2$ $\delta(q_0, 1) = q_1$ $\delta(q_2, 0) = q_0$ $\delta(q_2, 0) = q_0$ $\delta(q_2, 0) = q_0$

• Забележка: Функцията δ е дефинирана за всяка наредена двойка от KxV. Следователно A е напълно определен.

• За входната дума 011011 получаваме следната поредица от състояния на А1:

```
0 1 1 0 1 1 q_0 q_0 q_1 q_2 q_0 q_1 q_2 -изх. състояние \Rightarrow думата е разпозната.
```

• За думата 1 1 0 1 $q_0 = q_1 = q_2 = q_0 = q_1$ не е от F \Rightarrow думата не е разпозната.

```
<u>Пример2:</u> A2 = \langle \{q0,q1,q2\}, \{a,b\}, \delta, q0, \{q0,q1\} \rangle, като
\delta(q0,a)=q1
                \delta(q2,a)=q1
\delta(q1,b)=q2
                    \delta(q2,b)=q2
\delta(q1,a)=q1
  А2 не е напълно определен, защото \delta(q0,b)не е
  дефинирана. Следователно А2 не разпознава думи,
  започващи с b.
  За думата: a a b a
               q0 q1 q1 q2 q1-разпознава.
  За думата b a b a - не я разпознава.
```

• За нагледност функцията за преходите може да се задава таблично:

	a	b
q0	q1	
q1	q1	q2
q2	q1	q2

Графично представяне

- Всеки ДКА може да се представи с диаграма на преходите.
- Дефиниция: Диаграма на преходите на ДКА А се нарича ориентирания граф с отбелязани ребра, който се получава като за всяко вътрешно състояние на А поставим по един връх, а два върха р и q свързваме с ориентирано ребро от р към q, само когато δ(p, a) = q за някое a от автомата А.
- Началният връх се отбелязва със стрелка.

• 3а пример 1:

За пример 2:

Пример 3: За A2, който не е напълно определен получаваме следния еквивалентен на него напълно определен краен автомат:

•
$$\delta(q0,a)=q1$$

•
$$\delta(q0,b)=s$$

•
$$\delta(q1,a)=q1$$

•
$$\delta(q1,b)=q2$$

$$\delta(q2,a)=q1$$

$$\delta(q2,b)=q2$$

$$\delta(s, a) = s$$

$$\delta(s, b) = s$$

- **Лема:** Нека $A = \langle K, V, \delta, q_0, F \rangle$ е произволен ненапълно определен ДКА. Тогава съществува еквивалентен ва него, който е напълно определен.
- Теорема: (uvw-теорема) Нека L е формален език, разпознаван от ДКА. Тогава съществува константа n, така че ако α е дума от L с дължина ≥ n, то α може да се представи като конкатенация на три думи u,v,w така: α= uvw, като d(uv)≤ n, d(v) ≥1 и за всяко i =1,2... думите uviw също са от езика L.

- **Следствие:** Нека L е език, разпознаван от ДКА А с n-състояния. L не е празен език ⇔А разпознава думи с дължина <n.
- **Следствие:** Съществува алгоритъм, който определя дали един език, разпознаван от ДКА, е празен или не.
- Следствие: Съществува безконтекстен език, който не се разпознава от ДКА.

- За разлика от ДКА от всеки връх може да се премине в 0,1,2 или повече нови ребра, означени с един и същ входен символ, като всяко от тях представлява възможен преход.
- Както при ДКА една входна дума се разпознава, ако в диаграмата на преходите има поне един път от насочени ребра, водещи от началното към заключителното състояние.

- Дефиниция: НДКА А над азбука V наричаме петорката A=<K,V,δ,q₀,F>, където:
- К≠Ø е множество от вътрешни състояния;
- V крайно множество от входни символи (входна азбука)
- δ функция на преходите с дефиниционна област D(δ): D(δ)⊆ KxV и област на стойностите R(δ):R(δ)⊆P(K), където P(K) е множеството от всички подмножества на К.
- q_0 ∈ K начално състояние;
- F⊂K множество от заключителни състояния.

- Да отбележим, че докато при ДКА $\delta(q, a) = p e$ вътрешно състояние, при НДКА $\delta(q, a) = \{p_1, ..., p_e\}$ е крайно множество от вътрешни състояния.
- Графично НДКА се представя като ДКА
- Πρимер 4: Нека α = a₁a₂...a_k ∈ V*.
 δ(q₀,a₁)={p′₁,...p′_e}
 δ(p′₁,a₂), δ(p′₂,a₂),... δ(p′_e,a₂)

• <u>Работа на НДКА:</u> Нека $\omega = a_{i1}a_{i2}...a_{ik+1}$ е входна дума. По текущото състояние q на първия символ a_{i1} чрез $\delta(q, a_{i1}) = \{p_1...p_i\}$ определяме множеството от възможни следващи състояния. По всяко от тях и по следващия входен символ a_{i2} чрез δ се определят множествата от възможни следващи състояния и т.н. до последната буква. Ако в множеството от състоянията след нея има някое заключително състояние, казваме, че думата е разпозната.

- С други думи, казваме, че думата е прочетена, ако се е получило множество от вътрешни състояния, които имат с F непразно сечение.
- <u>Дефиниция:</u> *T(A) е езика* на автомата A, т.е. $T(A) = \{ \alpha \in V^* : \delta(q_0, \alpha) \cap F \neq \emptyset \}$
- <u>Дефиниция:</u> Два НДКА автомата са **еквивалентни**, ако T(A1)=T(A2).

<u>Пример 4:</u> Нека $A = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$, като

$$\delta(q_0, 0) = \{q_1, q_2\} \qquad \delta(q_1, 1) = \emptyset$$

$$\delta(q_0, 1) = \{q_0\} \qquad \delta(q_2, 0) = \{q_0, q_2\}$$

$$\delta(q_1, 0) = \{q_0, q_1\} \qquad \delta(q_2, 1) = \{q_1\}$$

- А)Нека пуснем думата $\alpha = 01000$ през НДКА:
- $\delta(q_0, 0) = \{q_1, q_2\}$
- $\delta(q_0, 01) = \delta(q_1, 1) \cup \delta(q_2, 1) = \emptyset \cup \{q_1\} = \{q_1\}$
- $\delta(q_0, 010) = \delta(q_1, 0) = \{q_0, q_1\}$
- $\delta(q_0,0100) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_1,q_2,q_0\}$
- $\delta(q_0,01000) = \delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0) = \{q_1,q_2,q_0\} \cap \{q_2\} \neq \emptyset$, следователно думата е разпозната от НДКА.

Б) Нека пуснем думата $\alpha = 101$ през НДКА:

- $\delta(q_0, 1) = \{q_0\}$
- $\delta(q_0, 10) = \delta(q_0, 0) = \{q_1, q_2\}$
- $\delta(q_0,101) = \delta(q_1,1) \cup \delta(q_2,1) = \emptyset \cup \{q_1\} = \{q_1\} \cap \{q_2\} = \emptyset$, следователно думата не е разпозната от НДКА.

• Схема на А)

• Схема на Б)

- **Теорема:** За всяко НДКА съществува еквивалентен на него ДКА
- Така ДКА и НДКА са взаимозаменяеми.
- ДКА са по-лесни за употреба, макар че понякога от технически съображения се предпочитат НДКА.

Крайните автомати като преобразуватели

- Крайните автомати можем да определим и като преобразуватели на формални езици.
- Ще разгледаме два вида крайни автоматипреобразуватели: автоматът на Мили и автоматът на Мур.

Принципна схема:

Крайните автомати като преобразуватели

- Включваме устройството и автоматът попада във фиксирано вътрешно състояние, прочита най-левия символ от входната лента, преминава в ново състояние и записва изходящия символ върху изходната лента и т.н.
- Той спира да работи когато е неопределен или когато изчерпи символите на думата.

Крайните автомати като преобразуватели

- Резултатът от работата му е думата, изписана на изходната лента. Казваме, че автоматът преобразува входната дума в изходна.
- Ако входните думи са от някакъв формален език, автоматът преобразува този език в езика, съставен от изходните думи.

- <u>Дефиниция</u>: Автомат на Мили с входна азбука V и изходна азбука W наричаме наредената шесторка: $M = \langle K, V, W, \delta, \lambda, q_0 \rangle$, където:
- К≠ Ø е множество от вътрешни състояния
- V-крайно множество (входна азбука)
- W-крайно множество от изходни символи (изходна азбука)
- • б функция на преходите.
- λ изходна функция с дефиниционна област
 (D(λ):D(λ)) ⊆ KxV и област на стойностите R(λ):R(λ)
 ⊆W

- Как работи?
- Нека е дадена стартова дума $\alpha = a_1 a_2 ... a_n \in V^*$. Включваме напрежението и УУ застава на първа позиция.

$$\delta(q_0, a_1) = p_1;$$

 $\delta(p_1, a_2) = p_2;...$
 $\delta(p_{k-1}, a_k) = p_k.$
 $\lambda(q_0, a_1) = b_1;$
 $\lambda(p_1, a_2) = b_2... \lambda(p_{k-1}, a_k) = b_k.$

- Думата $\beta = b_1 b_2 ... b_k \in W^* e$ резултат от действието на автомата M върху α , т.е. $\beta = M(\alpha)$.
- Пример 5: За автомата

$$M = \langle \{q0,q1\}, \{a,b\}, \{0,1\}, \delta, \lambda, q_0 \rangle$$

•
$$\delta(q_0, a) = \{q_0\}$$

$$\lambda(q_0,a)=0$$

•
$$\delta(q_0,b)=\{q_1\}$$

$$\lambda(q_0,b)=1$$

•
$$\delta(q_1,a)=\{q_1\}$$

$$\lambda(q_1,a)=1$$

•
$$\delta(q_1,b)=\{q_0\}$$

$$\lambda(q_1,b)=0$$

• Графично:

- Дефиниция: Наредена шесторка от вида: $N = \langle K, V, W, \delta, \lambda, q_0 \rangle$, където:
- К≠ Ø е множество от вътр. състояния
- V-крайно множество (входна азбука)
- W-крайно множество от изходни символи (изходна азбука)
- δ функция на преходите.
- λ изходна функция λ : K \to W, т.е. при всяко включване на напрежението в лявата долна клетка се изписва една и съща буква от W.

- Следователно изходната дума е с един символ повече от входната.
- Как работи?
- Нека $\alpha = a_1 a_2 ... a_{\kappa} \in V^*$ е входна дума. $\lambda(q0) = b0$; $\delta(q0,a1) = p1$; $\lambda(p1) = b1$; $\delta(p1,a2) = p2$; $\lambda(p2) = b2$; $\delta(pk-1,ak) = pk$; $\lambda(pk) = bk$.
- Изходната дума е $\beta = b_0 b_1 b_2 ... b_k$, т.е. $\beta = N(\alpha)$.

Пример 6: За автомата

$$N = \langle \{q_0, q_1, q_2\}, \{a, b\}, \{0, 1\}, \delta, \lambda, q_0 \rangle$$

•
$$\delta(q_0, a) = \{q_1\}$$

$$\lambda(q_0)=0$$

•
$$\delta(q_0, b) = \{q_2\}$$

$$\lambda(q_1)=1$$

•
$$\delta(q_1,a)=\{q_1\}$$

$$\lambda(q_2)=0$$

•
$$\delta(q_1,b)=\{q_2\}$$

•
$$\delta(q_2,a)=\{q_1\}$$

•
$$\delta(q_2,b)=\{q_2\}$$

Пускаме през автомата думата

 α = aaaba.

 $N(\alpha) = 011101.$

Автомати на Мили и Мур

- **Дефиниция:** Казваме, че автоматът на Мили и автоматът на Мур са еквивалентни, ако $M(\alpha) = N(\alpha)$ за всяко α от V^* .
- **Теорема:** За всеки автомат на Мили съществува еквивалентен автомат на Мур и обратно.
- Теорема: Нека М е автомат на Мили, а L е автоматен език над V. Тогава М(L) е също автоматен език.

- D. W. Hoffmann, Theoretische Informatik, Hansen Verlag, 2009
- H. P. Gumm, M. Sommer, Einfuehrung in die Informatik, Oldenbourg Wissenschaftsverlag, 2004
- J. W. Grossman, Discrete Mathematics, Macmillan Pub. Co., 1990
- К. Манев, Увод в дискретната математика, КЛМН, 2005
- Й. Денев, Р. Павлов, Я. Демирович. *Дискретна математика*. Наука и изкуство, София, 1984.

- Д. Байнов, С. Костадинов, Р. Павлов, Л. Луканова. *Ръководство за решаване на задачи по дискретна математика.* Университетско издателство "Паисий Хилендарски", Пловдив, 1990.
- В.А. Успенский, *Машина Поста*, Москва, Наука, 1988, ISBN 5-02-013735-9.
- L. Lovasz, J. Pelikan, K. Vesztergombi, *Discrete Mathematics Elementary and Beyond*, Springer Verlag, New York, 2003, ISBN 0-387-95584-4.

- E. Bender, S. Williamson, *A Short Course in Discrete Mathematics*, Dover, 2006, ISBN 0-486-43946-1.
- P. Linz, An *Introduction to Formal Languages and Automata*, Jones and Bartlett Publishers, 6-th edition, Jones & Bartlett Publishers, ISBN-13: 9781284077247, 2016
- Kenneth H. Rosen, Kamala Krithivasan, Discrete mathematics and its application, McGraw-Hill Companies, 7-th edition, ISBN 978-0-07-338309-5, 2012

- Owen D. Byer, Deirdre L. Smeltzer, Kenneth L. Wantz, Journey into Discrete Mathematics, AMS, MAA Press, Providence Rhode Island, ISBN 9781470446963, 2018
- Christopher Rhoades, Introductory Discrete Mathematics, Willford Press, ISBN 1682854922, 9781682854921, 2018
- David Liben-Nowell, Discrete Mathematics for Computer Science, Wiley, 2017, ISBN 1119397197, 9781119397199, 2017.
- <u>http://www.jflap.org/</u> софтуерна среда