Содержание

1	Тривиум	2
2	Теорема Турана и её обобщения	2
3	Тоерема Эрдёша-Стоуна	3
4	Двудольные графы	5
5	Числа Турана для гиперграфов	6

Тривиум

Если $\forall e \in E \rightarrow |e| = k$, то гиперграф k-однородный (k = 2 — обычный граф).

Определение 2. Число рёбер гиперграфа |E| или |E(H)| = e(H).

Степень вершины $v \in V - \deg v = \#\{e \in E \mid v \in e\}.$

$$\sum\limits_{v \in V} \deg v = \sum\limits_{e \in E} |e| = k|E|$$
 (в случае k -однородности).

 $\Delta(H) = \max_{v \in V} \deg v.$

$$\delta(H) = \min_{v \in V} \deg v.$$

$$t(H) = \frac{1}{|V|} \sum_{v \in V} \deg v.$$

Определение 3. Степенью ребра в H = (V, E) называется $\deg e = \# \{ f \in A \}$ $E \mid f \neq e, |f \cap e| \neq \emptyset$.

 $D(H)=\max_{e\in E}\deg e.$ Если H k-однороден, то $\Delta(H)-1\leqslant D(H)\leqslant k(\Delta(H)-1).$

Определение 4. $W \subset V$ в H = (V, E) называется *независимым*, если $\forall e \in E \rightarrow |e \cap W| < |e|$.

4ucno независимости $\alpha(H)$ — максимальный размер независимого множества в H.

Определение 5. Раскраска множества вершин H = (V, E) называется *пра*вильной, если любое ребро не является одноцветным. Равносильно: все цветовые множества независимы.

Хроматическое число $\chi(H)$ — минимальное число цветов в правильной раскраске гиперграфа.

Очевидно $\frac{|V|}{\alpha(H)} \leqslant \chi(H) \leqslant \Delta(H) + 1.$

2 Теорема Турана и её обобщения

 K_n — полный граф на n вершинах.

 $K_{n_1,...,n_r}$ — полный r-дольный граф с долями размера $n_1,...,n_r$.

 K_{m*r} — полный r-дольный граф с размерами долей = m.

Теорема 1 (Туран, 1941). Пусть n_1, \ldots, n_r числа, такие что $n_1 + \ldots + n_r =$ $n,n_i=\left\lceil \frac{n}{r} \right\rceil$ или $n_i=\left\lceil \frac{n}{r} \right\rceil$. Пусть граф G на n вершинах не содержит подграфа, изоморфного K_{r+1} . Тогда

$$|E(G)| \leq |E(K_{n_1,\dots,n_r})| \leq \left\lfloor \frac{n^2}{2} \left(1 - \frac{1}{r}\right) \right\rfloor$$

Доказательство. Пусть G = (V, E) — граф с максимальным числом вершин, не содержащий K_{r+1} . Покажем, что в G не существует тройки вершин u, v, w такой, что $(u, v) \in E, (u, w), (v, w) \notin E$. Пусть такая тройка есть, тогда

- \bullet Пусть $\deg w < \deg u$ (или $\deg w < \deg v$). Удалим w из G и заменим её на копию u — вершину u'. Получится граф с большим числом рёбер, при этом K_{r+1} он не содержит (иначе его содержал бы и G).
- Пусть $\deg w \geqslant \deg u, \deg w \geqslant \deg v$. Тогда удалим u, v из графа, добавим вместо них две копии вершины w. По аналогичному соображению число рёбер увеличилось, а K_{r+1} не появилось.

Вывод: отношение $u \sim v \Leftrightarrow (u,v) \notin E$ является отношением эквивалентности. Значит наш граф G является полным многодольным графом, притом ясно, что долей не больше r (будем считать, что ровно r, просто некоторые доли пусты). Покажем, что доли почти равны.

В самом деле, если |A| > |B| + 1, то при перекладывании одной вершины из A в B теряется |B| рёбер и проводится |A|-1 рёбер, стало быть число рёбер увеличивается. Значит размеры всех долей отличаются не более, чем на 1, что доказывает теорему.

Граф $K_{n_1,...,n_r}$ из теоремы Турана принято называть графом Турана.

Утверждение 1. Следствие: $\alpha(G) \geqslant \frac{n}{t(G)+1}$.

 ${\mathcal L}$ оказательство. Пусть $\alpha=\alpha(G)$, тогда \overline{G} не содержит $K_{\alpha+1}$. По теореме

Турана $|E(\overline{G})| \leqslant \left(1 - \frac{1}{\alpha}\right) \frac{n^2}{2} \Rightarrow |E(G)| \geqslant C_n^2 - \left(1 - \frac{1}{\alpha}\right) \frac{n^2}{2}$. Итак, $\frac{n^2}{2\alpha} \leqslant |E(G)| + \frac{n^2}{2} - C_n^2 = \frac{t(G)n}{2} + \frac{n}{2}$, что доказывает следствие. Получается, что оценка точна и достигается (с точностью до округления) на T(n,r).

3 Тоерема Эрдёша-Стоуна

Пусть H — произвольный граф. Числом Турана ex(n, H) называется

 $ex(n, H) = \max\{|E(G)| : |V(G)| = n, G \text{ не содержит подграфа, изоморфного } H\}.$

Теорема Турана говорит, что $ex(n, K_{r+1}) = |E(K_{n_1,...,n_r})|$.

Теорема 2 (Эрдёш-Стоун, 1946). Пусть $r \geqslant 2$, H — фиксированный граф $c \chi(H) = r + 1$, morda $ex(n, H) = (1 - \frac{1}{r}) \frac{n^2}{2} + o(n^2)$.

Лемма. Пусть $r\geqslant 1, \varepsilon>0$. Тогда для всех достаточно больших n любой граф на n вершинах $c\left(1-\frac{1}{r}+\varepsilon\right)C_n^2$ рёбрами содержит подграф $K_{t*(r+1)}$, $r\partial e \ t = \Omega_{r,\varepsilon}(\log n).$

Доказательство. Рассмотрим сначала случай, когда все вершины имеют степень не менее $(1 - \frac{1}{r} + \varepsilon) n$. Будем доказывать по индукции по r.

База, r=1, надо найти $K_{t,t}$. Пусть v_1,\ldots,v_t — случайно выбранные t вершин из V, а X число их общих соседей.

$$EX = \sum_{u \in V} \frac{C_{\deg u}^t}{C_n^t} \geqslant n \frac{C_{n\varepsilon}^t}{C_n^t} \geqslant n \frac{(n\varepsilon - t)^t}{n^t} = n \left(\frac{n\varepsilon - t}{n}\right)^t.$$

Хотим, чтобы EX > t, для этого можно взять $t = \Omega_{\varepsilon}(\log n)$ подходит для небольшой константы. При таком t существуют v_1, \ldots, v_t с не менее, чем t общими соседями, это и есть $K_{t,t}$.

Докажем шаг индукции. Пусть мы нашли K_{T*r} , где $T=\Omega_{r,\varepsilon}(\log n)$ в графе G. Обозначим U_1,\dots,U_r — доли этого графа, $U=\bigcup_{i=1}^r U_i$.

Пусть v — случайная вершина G, X_v — число её соседей внутри U.

$$EX_v = \frac{1}{n} \sum_{v \in V} \sum_{(u,v) \in E} 1 = \frac{1}{n} \sum_{u \in U} \deg u \geqslant rT \left(1 - \frac{1}{r} + \varepsilon \right).$$

Однако $X_v \leqslant rT$, значит

$$\begin{split} EX_v \leqslant rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)P\left(X_v < rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right) + \\ rTP\left(X_v > rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right) = \\ rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right) + rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)P\left(X_v > rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right). \end{split}$$

Отсюда
$$P\left(X_v > rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right)\right) \geqslant \frac{rT\frac{\varepsilon}{2}}{rT\left(\frac{1}{r} - \frac{\varepsilon}{2}\right)} \geqslant \frac{r\varepsilon}{r} \geqslant \varepsilon$$
.

Вывод: не менее εn вершин имеют хотя бы $rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)$ соседей в U. Обозначим его через $S,\,|S|\geqslant \varepsilon n.$

Далее, любая вершина из S имеет хотя бы εT соседей внутри U_i . Иначе, множество соседей в U имеет мощности сторого меньше, чем

$$\varepsilon T + (r-1)T = rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{r}\right) \leqslant rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right).$$

Пусть W_1,\dots,W_r случайные t-подмножества U_1,\dots,U_r , а X — число их общих соседей внутри S.

 $EX\geqslant |S|\left(rac{C_{arepsilon T}t}{C_T^t}
ight)^r$, тогда положим $t=rac{arepsilon}{2}T$, тогда $EX\geqslant arepsilon n\left(rac{arepsilon}{2}
ight)^{rt}\geqslant t$. Это выполнено при $t=c(r,arepsilon)\log n$ для подходящей константы c(r,arepsilon)>0.

Обратимся теперь к случаю, если не все степени достаточно большие. Покажем, что в G существует индуцированный подграф G' на s вершинах, все степени которого не меньше $\left(1-\frac{1}{r}+\varepsilon\right)s$, а $s\geqslant\frac{1}{2}\sqrt{\varepsilon}n$. Тогда по предыдущему рассуждению G' содержит K_{t*r} , где $t=\Omega_{r,\varepsilon}(\log s)=\Omega_{r,\varepsilon}(\log s)$.

Построим G' следующим образом: $G_n = G$. Далее:

- $\bullet\,$ если G_m содержит вершину степени < $\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)m,$ то удалим её из
- продолжаем, пока процесс не остановится.

Пусть G_s — итоговый граф, тогда в нём не менее чем $|E(G_n)| - \left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right) (n+n-1+\ldots+s+1) \geqslant \left(1 - \frac{1}{r} + \varepsilon\right) C_n^2 - \left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right) C_{n+1}^2 = \frac{\varepsilon}{2} C_n^2 - n$ рёбер. С другой стороны, $|E(G_s)| \leqslant C_s^2 \Rightarrow C_s^2 \geqslant \frac{\varepsilon}{2} C_n^2 - n \Rightarrow s \geqslant \frac{1}{2} \sqrt{\varepsilon} n$. П

Доказательство теоремы Эрдёша-Стоуна. Так как $\chi(H)=r+1$, то Hвкладывается в $K_{(r+1)*m}$ для какого-то m. Значит $ex(n,H) \leqslant ex(n,K_{(r+1)*m})$, что по лемме не больше, чем $(1-\frac{1}{r})\frac{n^2}{2}+o(n^2)$. С другой стороны граф Турана $T_{n,r}$ не содержит H, значит $ex(n,H)\geqslant$

 $|E(T_{n,r})| = (1 - \frac{1}{r}) \frac{n^2}{2}$.

Двудольные графы

Теорема Эрдёша-Стоуна говорит про двудольные графы только, что $ex(n, H) = o(n^2)$. Займёмся выяснением более точной оценки.

Теорема 3 (Шош, Ковари, Туран, 1954). $ex(n,K_{s,t})\leqslant \frac{1}{2}(s-1)^{\frac{1}{t}}n^{2-\frac{1}{t}}+$

Доказательство. Пусть $d_1\geqslant\ldots\geqslant d_n$ — степени вершин G. Пусть, кроме того, $d_1 \geqslant \ldots \geqslant d_m \geqslant t > d_{m+1} \geqslant \ldots d_n$. Тогда

$$\sum_{i=1}^{n} C_{d_i}^t = \sum_{i=1}^{m} C_{d_i}^t > \frac{1}{t!} m \sum_{i=1}^{m} (d_i - t + 1)^t \frac{1}{m}.$$

По неравенству Йенсена $(E\xi^t\geqslant (E\xi)^t)$ получаем

$$\sum_{i=1}^{n} C_{d_{i}}^{t} = \frac{m}{t!} \left(\sum_{i=1}^{m} \frac{d_{i} - t + 1}{m} \right)^{t} \geqslant \frac{1}{t!} m^{1-t} \left(\sum_{i=1}^{m} (d_{i} - t + 1) \right)^{t} \geqslant \frac{1}{t!} n^{1-t} \left(\sum_{i=1}^{n} d_{i} - m(t-1) - \sum_{i=m+1}^{n} d_{i} \right)^{t} > \frac{1}{t!} n^{1-t} \left((s-1)^{\frac{1}{t}} n^{2-\frac{1}{t}} \right)^{t} = \frac{s-1}{t!} n^{t} > (s-1) C_{n}^{t}.$$

Рассмотрим v_1,\dots,v_t — случайные t вершин и введём X — число их общих соседей, тогда $EX=\frac{\sum\limits_{i=1}^n C^t_{d_i}}{C^t_n}>s-1$. Значит существуют $v_1,\dots,v_t,$ имеющие хотя бы s общих соседей, значит $K_{s,t}$ найдено Это только оценка, в отличие от теоремы Эрдёша-Стоуна, получить точную асимптотику оказывается совсем непросто. Известно, что если s>(t-1)!, то оценка из теоремы точна асимптотически. Однако, уже для s=t=4 поведение $ex(n,K_{4,4})$ неизвестно.

Утверждение 2. • Если G — дистанционный граф в \mathbb{R}^2 на n вершинах, то $|E(G)| = O(n^{\frac{3}{2}})$

• Для дистанционного графа в \mathbb{R}^3 на n вершинах $|E(G)| = O(n^{\frac{5}{3}})$

Доказательство. Нужно заметить, что в первом случае G не содержит $K_{3,2}$, а во втором $K_{3,3}$, и применить теорему.

5 Числа Турана для гиперграфов

Определение 6. Пусть n > b > k. Числом Турана T(n,b,k) называется минимальное рёбер в k-однородном гиперграфе на n вершинах и числом независимости < b.

$$T(n, b, k) = \min\{|E(H)| : H \in \mathcal{H}_k, |V(H)| = n, \alpha(G) < b\}.$$

Гиперграфы данного множества называются (n,b,k)-системами.

Пример 1.
$$T(n,b,2) = |E(\overline{T_{n,b-1}})| = C_n^2 - |E(T_{n,b-1})| \sim \frac{n^2}{2(b-1)}$$
.

Если C_v^k — все k-подмножества, C_v^b — все b-подмножества, (k-подмножество A представляет b-подмножество B, если $A \subset B$), то T(n,b,k) — наименьшая система общих представителей.

Утверждение 3. $T(n,b,k)\geqslant \lceil \frac{n}{n-k}T(n-1,b,k)\rceil$.

Доказательство. Пусть H=(V,E) — произвольная (n,b,k)-система. Возьмём одну вершину v и удалим её вместе с рёбрами, останется $H_v-(n-1,b,k)$ -система, в которой хотя бы T(n-1,b,k) рёбер. Тогда

$$|E(H)|(n-k) = \sum_{v \in V} |E(H_v)| \ge T(n-1, b, k) \cdot n,$$

откуда следует утверждение.

Утверждение 4. $\forall b>k\geqslant 2 \to \exists \lim_{n\to\infty} rac{T(n,b,k)}{C_n^k}=t(b,k).$

Доказательство. $\frac{T(n,b,k)}{C_n^k} \geqslant \frac{T(n-1,b,k)}{C_{n-1}^k}$ по утверждению, значит последовательность монотонна (и ограничена единицей).

Определение 7. Величина t(b,k) называется Турановской плотностью.

Из доказательства следует, что $T(n,b,k) \leq t(b,k)C_n^k$.

Утверждение 5. $T(n,b,k) \leqslant T(n-1,b,k) + T(n-1,b-1,k-1)$.

Доказательство. Пусть $H_1=(V,E_1)$ — это минимальная (n-1,b,k)-система, $H_2=(V,E_2)$ — это минимальная (n-1,b-1,k-1)-система. Возьмём $v\notin V$ и рассмотри $H=(V\cup\{v\},E_1\cup E_2'),E_2'=\{e\cap\{v\}:e\in E_2\}$. Тогда H — это (n,b,k)-система, значит $|E(H)|\geqslant T(n,b,k)$, а с другой стороны |E(H)|=T(n-1,b,k)+T(n-1,b-1,k-1).

Утверждение 6. $t(b,k) \le t(b-1,k-1)$.

Доказательство.
$$\frac{k}{n}T(n,b,k)=T(n,b,k)-\frac{n-k}{n}T(n,b,k)\leqslant T(n,b,k)-T(n-k)$$
 $1,b,k)\leqslant T(n-1,b-1,k-1)\Rightarrow \frac{T(n,b,k)}{C_n^k}=\frac{k}{n}\frac{T(n,b,k)}{C_{n-1}^{k-1}}\leqslant \frac{T(n-1,b-1,k-1)}{C_{n-1}^{k-1}}$. Переходя к пределу, получаем требуемое.

Утверждение 7 (из анализа). Пусть b_0, \ldots, b_{l-1} — циклически упорядоченные действительные числа, $b = \frac{b_0 + \ldots + b_{l-1}}{l}$. Тогда $\exists n : \forall s = 1, \ldots, l \to b_m + b_{m+1} + \ldots + b_{m+s-1} \geqslant sb$.

Доказательство. Возьмём циклический сдвиг, соответствующий минимуму префиксных сумм. \Box

6 Верхняя оценка на турановскую плотность

Теорема 4.
$$t(n,k) \leqslant \left(\frac{k-1}{b-1}\right)^{k-1}$$
.

Доказательство. Пусть V — некоторое множество из n вершин и возьмём l,d так, что $k = \lceil \frac{db}{l} \rceil$. Разделим V на примерно равные части A_0,\ldots,A_{l-1} и построим следующий гиперграф. Каждое $B \subset V, \ |B| = k,$ включается в H в качестве ребра, если числа $b_i = |B \cap A_i|$ удовлетворяют свойству: $\exists m : \forall s = 1,\ldots,d \to \sum_{i=1}^s b_{m+i-1} \geqslant s \frac{b}{l}.$

Покажем, что это (n,b,k)-система. Пусть $C\subset V$, |C|=b. Введём $c_i=|C\cap A_i|$. Для чисел c_0,\ldots,c_{l-1} существует сдвиг, для которого все частичные суммы не меньше $\sum_{i=1}^s c_{m+i-1}\geqslant s\frac{b}{l}$. Тогда выберем $B\subset C$ следующим образом $B=(C\cap A_m)\sqcup (C\cap A_{m+1})\sqcup\ldots\sqcup W$, где $W=C\cap A_{j+m}$. Заметим, что $\frac{db}{l}\leqslant k$, а это значит для всех $s=1,\ldots,l$ неравенство на префиксные суммы b_i будет следовать либо из того, что $b_i=c_i$ до какого-то момента, либо из того, что $s\leqslant d$.

Оценим теперь число рёбер:

$$|E(H)| = \sum_{m=0}^{l-1} \sum_{a_1, \dots, a_{l+1}} \prod_{i=1}^{d} C_{A_{m+i-1}}^{a_i}$$

Притом средняя сумма берётся по наборам a_1,\dots,a_d , таким что $a_1,\dots,a_d\in$ $\{0,\dots,k\}a_1+\dots+a_d=k, a_1+\dots+a_s\geqslant rac{sb}{l} orall s=1,\dots d.$ Тогда

$$E(H) \leqslant l \sum_{a_1, \dots, a_d} \left(\prod_{i=1}^d C_{\frac{n}{l}}^{d_i} \right) \leqslant l \left(\frac{n}{e} \right)^k \sum_{a_1, \dots, a_d} \frac{1}{a_1! \dots a_d!}.$$

Положим l=b-1, d=k-1. Если условия на частичные суммы нет, то

сумма по всем a_1,\dots,a_d равна $\frac{d^k}{k!}$. Если l=b-1, то $s\frac{b}{b-1}\in(s,s+1)$, то есть $a_1+\dots+a_s\geqslant s\frac{b}{b-1}$ эквивалентно $a_1+\dots+a_s>s$. Введем $y_i=a_i-1,\,y_1+\dots+y_{k-1}=1,\,y_i\geqslant -1,\,y_1+\dots+y_s>$ $0 \forall s = 1, \dots, k.$

Тогда \exists ровно один циклический сдвиг последовательности $y_1, \dots, y_{k-1},$ такой, что все частичные суммы положительны.

Вывод: $\sum_{a_1,\dots,a_d} \frac{1}{a_1!\dots a_d!} = \frac{1}{k-1} \frac{(k-1)^k}{k!}, \text{ стало быть } |E(H)| \leqslant (1+o(1))(b-1)\left(\frac{n}{b-1}\right)^k \frac{(k-1)^k}{k!} \Rightarrow t(b,k) \leqslant \left(\frac{k-1}{b-1}\right)^{k-1}.$