Data Science for Public Policy From Econometrics to Al

Working with Big Data and Intro to ML

ETH Zurich

06/03/2024

Outline

Working with Big Data

Intro to Machine Learning

Working with Big Data

What does Big Data mean?

- ▶ Datasets too large or complex to be handled with traditional data-processing software
 - Data with many observations
 - Data where each observation is big (e.g., images or text)

Working with Big Data – Challenges

- Require high computational power
- Very code-intensive \Rightarrow hurdles to reproducibility
- ▶ Raw data are hard to handle ⇒ we will learn some pre-processing techniques in the rest of the course

Working with Big Data - Computational Power

▶ Most laptops have between 8GB and 16GB of RAM

Working with Big Data - Computational Power

- Most laptops have between 8GB and 16GB of RAM
- ► However, large datasets require more just to load

```
import time
import psutil
start time = time.time()
start time = time.time()
mem_before = psutil.Process().memory_info().rss >>30

df = pd.read_csv(os.path.join(data_path, "wisc_parties_names_clean_wemb_fastt_info.csv"), low_memory=False)
print("Time to load the dataset: ", round(time.time() - start_time, 3), " seconds")
mem_after = psutil.Process().memory_info().rss / (1024 ** 3)  # Convert to MB
print("RAM used: ", mem_after-mem_before)
Time to load the dataset: 326.89 seconds
RAM used: 11.74294662475586
```

Working with Big Data - Computational Power

- ► Most laptops have between 8GB and 16GB of RAM
- ► However, large datasets require more just to load
- How do we efficiently handle big data?
 - Monitor time and memory (or CPU) usage: use functions time and psutil, o with cProfile

Working with Big Data – Computational Power

- ► Most laptops have between 8GB and 16GB of RAM
- ► However, large datasets require more just to load
- ► How do we efficiently handle big data?
 - Monitor time and memory (or CPU) usage: use functions time and psutil, o with cProfile
 - Use a server to process your data, e.g., ETH Euler Cluster
 - Reduce data dimension

Working with Big Data – Computational Power

- Most laptops have between 8GB and 16GB of RAM
- ► However, large datasets require more just to load
- How do we efficiently handle big data?
 - Monitor time and memory (or CPU) usage: use functions time and psutil, o with cProfile
 - Use a server to process your data, e.g., ETH Euler Cluster
 - Reduce data dimension
 - Run tasks in parallel using multiple CPUs (parallelization) see here and here for an introduction to parallel programming
 - Use GPUs instead see here for an introduction to GPUs

Working with Big Data – Computational Power

- Most laptops have between 8GB and 16GB of RAM
- ► However, large datasets require more just to load
- ► How do we efficiently handle big data?
 - Monitor time and memory (or CPU) usage: use functions time and psutil, o with cProfile
 - Use a server to process your data, e.g., ETH Euler Cluster
 - Reduce data dimension
 - Run tasks in parallel using multiple CPUs (parallelization) see here and here for an introduction to parallel programming
 - Use GPUs instead see here for an introduction to GPUs

IMPORTANT: Use the amount of resources you need: more does not always mean better!

Working with Big Data - Replicability I

- With code-intensive projects easy to mess up scripts
- ▶ Best practices for replicability (see Gentzkow and Shapiro, 2014)
 - At most four data directories: data/raw, data/proc, data/final, data/aux (often not needed)
 - Use readme.md files to annotate how each source of raw data was obtained
 - Keep scripts self-contained: one script = 1 task
 - Number scripts in order to execution (e.g., 00_scrape_data, 01_clean_data)
 - Comment scripts extensively (task of the script, describe functions)

Working with Big Data - Replicability II

- Packages and dependences can become obsolete very quickly
- ▶ Use virtual environments, venv

In the Command Line

```
Create the virtual environment in the directory of the project specifying the name (e.g., myenv)

$ cd myproject
myproject$ python -m venv -system-site-packages myenv

Activate the venv
myproject$ source myenv/bin/activate

Install needed packages
(myenv) myproject$ pip install packages
```

► Simple downloads: easy, clean

► Simple downloads: easy, clean, but hard for very large data

- ► Simple downloads: easy, clean, but hard for very large data
- ▶ APIs: *online software* that allows to access data and its feature

- ► Simple downloads: easy, clean, but hard for very large data
- ▶ APIs: online software that allows to access data and its feature
 - Mostly HTTP GET (only request data) and HTTP POST (request and send data) APIs

- Simple downloads: easy, clean, but hard for very large data
- ▶ APIs: online software that allows to access data and its feature
 - Mostly HTTP GET (only request data) and HTTP POST (request and send data) APIs
- Web Scraping: automatic information retrieval from websites

- ► Simple downloads: easy, clean, but hard for very large data
- ▶ APIs: *online software* that allows to access data and its feature
 - Mostly HTTP GET (only request data) and HTTP POST (request and send data) APIs
- Web Scraping: automatic information retrieval from websites
 - ► Command line: curl
 - Python: request to get webpage HTML content + BeautifulSoup for parsing HTML
 - ▶ If web pages use JavaScript or other interactive elements selenium works better

Outline

Working with Big Data

Intro to Machine Learning

What is Machine Learning?

What is Machine Learning?

In machine learning the objective is to learn rules from data and outcomes

What is Machine learning

Is a linear regression machine learning?

	Econometrics	Machine Learning
У	Dependent Variable,	Label
	Outcome	
×	Independent/Explanatory	Features
	Variable	
Objective		

	Econometrics	Machine Learning
у	Dependent Variable,	Label
	Outcome	
×	Independent/Explanatory	Features
	Variable	
Objective	Causal Inference:	Prediction: finding the
	precisely estimating the	best rule to predict <i>y</i>
	true parameters of	starting from x
	interest	

	Econometrics	Machine Learning
У	Dependent Variable,	Label
	Outcome	
×	Independent/Explanatory	Features
	Variable	
Objective	Causal Inference:	Prediction: finding the
	precisely estimating the	best rule to predict <i>y</i>
	true parameters of	starting from x
	interest	

ightarrow Optimizing for one task doesn't solve the other: the parameters of the best model for prediction are not necessarily the causal effect

Selected Coefficients (Nonzero Estimates) across Ten LASSO Regressions

What?	
Solving a Task	
Predict an outcome or learn patterns	

What?	How? I	
Solving a Task	Using Information	
Predict an outcome or learn patterns	Using labeled or unlabeled data: training set	

What?	How? I	How? II
Solving a Task	Using Information	Learning from Mistakes
Predict an outcome or	Using labeled or	Evaluating the
learn patterns	unlabeled data:	predictions with
	training set	performance metrics on
		the test set

What?	How? I	How? II
Solving a Task	Using Information	Learning from Mistakes
Predict an outcome or	Using labeled or	Evaluating the
learn patterns	unlabeled data:	predictions with
	training set	performance metrics on
		the test set
Filtering Spam	Set of emails labeled as	Check number of
	spam or not spam	correct predictions

Solving a Task: Some Examples

- Predict house prices
- Assigning topics to articles
- ► Detect disease from medical reports
- Detect tax evasion
- ► Dimensionality reduction
- Detect faces in images
- ► Recommend products, songs, videos, etc.

Data Classifications

Labeled Data

- The training data contains information on y: prices, spam/not spam
- If every label is contained equally often then the data are balanced otherwise unbalanced
- To learn the existing labels use Supervised Learning

- Continous vs. discrete labels:
 - Regression for continuous labels
 - Classification for discrete labels

Data Classifications

Labeled Data

- ► The training data contains information on y: prices, spam/not spam
- If every label is contained equally often then the data are balanced otherwise unbalanced
- ► To learn the existing labels use Supervised Learning

- Continous vs. discrete labels:
 - Regression for continuous labels
 - Classification for discrete labels

Unlabeled Data

- The training data does not have y labels
- ► To learn labels and patterns in the data use Unsupervised Learning

CLASSICAL MACHINE LEARNING

Source: https://vas3k.com/blog/machine learning/

Classifying Tasks

Back to our example tasks, which are supervised vs. unsupervised learning?

- Predict house prices
- Assigning topics to articles
- Detect disease from medical reports
- Detect tax evasion
- Dimensionality reduction
- Detect faces in images
- Recommend products, songs, videos, etc.

Evaluation: Performance Metrics

Once we train our ML model we need to evaluate how good it is . How?

- ▶ We need to evaluate the model on data it has not seen (out-of-sample data)
- ► Typically, we split the data into:
 - ▶ 70-80% training data
 - ▶ 30-20% test data, never seen during training
- ► Key question: how close the prediction is to the true label?
 - **Regression:** difference between predicted value (\hat{y}) and true value (y), e.g., mean squared error, mean absolute error (MSE, MAE)
 - Classification: share of correctly predicted labels (accuracy), share of true
 positives among all positive predictions (precision), share of true positives
 among all actual positives (recall)
 - ▶ Unsupervised learning: depends on the model/task, sometimes we'll need to be creative!
- ▶ Bad performances on the test set suggest under/over-fitting in the training set

Examples

Predicting recidivism rate - Ash, Goel, Li, Marangon, and Sun, 2023

One of the objectives of judges when deciding the sentencing outcome (incarcerating vs. other punishments) is to minimize the likelihood of committing another crime.

- ▶ The information is not available ex-ante
- However, we know whether past defendant re-offended after being sentenced, and their characteristics
- ▶ We use the universe of criminal cases in Wisconsin from 2000 to 2017 to predict recidivism rate starting from defendants characteristics and criminal history

Examples

Predicting recidivism rate - Ash, Goel, Li, Marangon, and Sun, 2023

- ► Task: predict recidivism episode (binary classification)
- ▶ Labels: Recidivism, defined as re-offense within 2 years from the date of disposition
- ► Features: Criminal history (using extended panel 1970-2019), case characteristics, gender, and age
- ▶ ML algorithm: XGBoost for classification tasks
- **Evaluation:** performance in out-of-sample test set, accuracy=0.65

Examples

Predicting recidivism rate – Ash, Goel, Li, Marangon, and Sun, 2023

