Paper Number(s): E3.10

ISE3.7

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2002**

EEE/ISE PART III/IV: M.Eng., B.Eng. and ACGI

MATHEMATICS FOR SIGNALS AND SYSTEMS

Friday, 3 May 10:00 am

There are FIVE questions on this paper.

Answer THREE questions.

Corrected Copy

Time allowed: 3:00 hours

Examiners responsible:

First Marker(s):

Weiss,G.

Second Marker(s): Allwright, J.C.

Special instructions to invigilators: None

Information for candidates: None

1. On the real vector space $\mathbb{R}^{3\times3}$ (which contains all the real 3×3 matrices), we define an inner product by

$$<\boldsymbol{a},\boldsymbol{b}> \ = \ \frac{1}{2} \ \mathrm{trace} \ \boldsymbol{a}^T \boldsymbol{b} \,,$$

where a^T is the transpose of a. We define the subspaces

$$S = \{ a \in \mathbb{R}^{3 \times 3} \mid a^T = a \}$$

(these are the so-called symmetric, or self-adjoint real matrices), and

$$A = \{ a \in \mathbb{R}^{3 \times 3} \mid a^T = -a \}$$

(these are the so-called anti-symmetric, or skew-adjoint real matrices).

- (a) What are the dimensions of $\mathbb{R}^{3\times3}$, S and A? [2]
- (b) Find an orthonormal basis in A. [4]
- (c) Show that A is orthogonal to S. From here, using your answer to part (a), conclude that in fact, A is the orthogonal complement of S. [4]
- (d) Show that if $a \in A$, then the eigenvalues of a are imaginary. (Hint: the complex matrix ia is self-adjoint.) [3]
- (e) Show that if $a \in A$, then det a = 0. (Hint: use part (d) and a certain symmetry of the eigenvalues.) [3]
- (f) We denote the orthogonal projectors from $\mathbb{R}^{3\times3}$ onto S and A by \mathbf{P}_S and \mathbf{P}_A (thus, $\mathbf{P}_S + \mathbf{P}_A = I$, the identity operator acting on $\mathbb{R}^{3\times3}$). Check that these projectors are given by

$$\mathbf{P}_{S}x = \frac{1}{2}(x + x^{T}), \qquad \mathbf{P}_{A}x = \frac{1}{2}(x - x^{T}).$$

(Hint: use the conclusion from part (c).) [4]

- 2. We denote by c_0 is the space of sequences convergent to zero, and by c the space of convergent sequences. We consider the indices (i.e., the discrete time) to run from 0 to ∞ .
 - (a) Give an example of a sequence $a \in l^1$ that has infinitely many nonzero terms, and also infinitely many zero terms. [3]
 - (b) Which of the inclusions $c_0 \subset l^2$ or $l^2 \subset c_0$ is true? Give a very brief explanation of your answer, and show that $c_0 \neq l^2$. [3]
 - (c) Give an example of a sequence $b \in l^{\infty}$ such that $b \notin \mathbf{c}$, and compute its norm in l^{∞} . [2]
 - (d) Compute the Z transforms of the sequences u and y given by

$$u_k = k, \qquad y_k = (-1)^k.$$

For each of these Z transforms, indicate a domain (the largest domain that you can determine) where the series defining the Z transform is convergent. [4]

- (e) If possible, find a linear system which, starting from initial state zero, if it receives the input u, it produces the output y. Here, u and y are the signals from part (d). If you think that this is impossible, then explain why you think so. [4]
- (f) Give an example of a sequence $q=(q_k)$ such that the series defining its \mathbb{Z} transform does not converge for any value of the variable z. Hint: think of the \mathbb{Z} transform as a Taylor series in the variable $\zeta=z^{-1}$. How do you compute the radius of convergence of this series? Make this radius zero. [4]

- 3. In this question, S_{τ} denotes the right shift operator by τ on $L^{2}[0,\infty)$ and * denotes the convolution product.
 - (a) Define the natural inner product and the corresponding norm on the space $L^2[0,\infty)$. For $s \in \mathbb{C}_+$ and $\varphi \in L^2[0,\infty)$ defined by $\varphi(t) = e^{-st}$, compute $\|\varphi\|_2$. [3]
 - (b) Let $g \in L^2[0,\infty)$ and let $\mathcal{L}g$ denote its Laplace transform. Show that

$$|(\mathcal{L}g)(s)| \le \frac{||g||_2}{\sqrt{2\operatorname{Re} s}}$$
 for all $s \in \mathbb{C}_+$.

Hint: use the result about $\|\varphi\|_2$ from part (a) and the Cauchy-Schwarz inequality. [3]

- (c) In the sequel, consider f to be the characteristic function of the interval [0,2] and $g(t)=e^{-5t}$, $t\geq 0$. (Thus, f(t)=1 for $t\in [0,2]$ and f(t)=0 for t>2.) Compute the Laplace transforms $F=\mathcal{L}f$ and $G=\mathcal{L}g$. [3]
- (d) Compute $||f||_2$, < f, g > and $||g||_2$ and check that the Cauchy-Schwarz inequality holds for them. [4]
- (e) Define $h = S_3g$, i.e., h is obtained by delaying g by 3 time units. Compute

$$H = \mathcal{L}h$$
, $||h||_2$ and $P = \mathcal{L}(h * g)$. [4]

(f) Compute

$$||G||_2$$
, $||H||_2$ and $\langle F, G \rangle$,

where the norms and the scalar products correspond to the Hardy space $H^2(\mathbb{C}_+)$ and F, G, H are as defined above. [3]

4. Consider the system described by

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \; = \; \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \alpha \\ \beta \end{bmatrix} u \, ,$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

where u is the input signal, x is the state (with two components), y is the output signal and α, β are real constants.

- (a) For which values of α, β is the system stable? [2]
- (b) Compute the transfer function G of this system. [3]
- (c) For $\alpha = \beta = 1$, compute the impulse response and the step response of this system, as functions of $t \ge 0$. [2]
- (d) Still considering $\alpha = \beta = 1$, compute $\|\mathbf{G}\|_{\infty}$ and $\|\mathbf{G}\|_{2}$ (i.e., the norms of \mathbf{G} in $H^{\infty}(\mathbb{C}_{+})$ and in $H^{2}(\mathbb{C}_{+})$). [3]
- (e) Still considering $\alpha = \beta = 1$, if $u(t) = te^{-3t}$ and x(0) = 0, compute the output signal y as a function of t. [2]
- (f) For $\alpha = 1$ and $\beta = 0$ (be careful, β has changed), consider the cascade connection of the system with a delay line of 2 time units. Thus, if z is the output signal of the delay line, then z(t) = y(t-2). Compute the transfer function **H** from u to z. [2]
- (g) Compute $||\mathbf{H}||_{\infty}$, where **H** is the transfer function from part (f). [3]
- (h) Suppose now that α and β are functions of t: $\alpha(t) = \cos t$ and $\beta(t) = \sin t$. Is the the system with input u and output y still linear? Does this system have a transfer function? Explain very briefly your answer.

[3]

- 5. (a) Explain briefly what is meant by a time-invariant operator on l^2 . [3]
 - (b) State the discrete-time version of the Fourés-Segal theorem and discuss briefly its connections with systems theory. [7]
 - (c) Define the space $BL(\omega_b)$ of band-limited functions with angular frequencies not higher than ω_b . Give two examples of functions in this space which are linearly independent. [4]
 - (d) State the sampling theorem and discuss briefly its significance for the transmission and storage of signals. [6]

[END]

SOLUTIONS

Question 1 (a) 9,6 and 3.

(b) Matrices in A are of the form

$$m = \begin{bmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \delta \end{bmatrix}$$
. The scalar product of

two matrices a, b ∈ R3×3 can also be written in the form $\langle a,b \rangle = \frac{1}{2} \sum_{k=1}^{3} \sum_{i=1}^{3} a_{jk} b_{jk}$.

Hence, the following is an orthonormal basis

$$e_{1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad e_{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad e_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}.$$

(The matrix m above is $m = \alpha e_1 + \beta e_2 + \gamma e_3$.)

(c) If $a \in S$, then $a_{jk} = a_{kj}$ (k,j=1,2,3). If $b \in A$, then bjk=-bkj, in particular, bjj=0. Hence,

$$\langle a,b \rangle = \sum_{k>j} a_{jk} b_{jk} + \sum_{k < j} a_{jk} b_{jk} - 1 -$$

$$= \sum_{k>j} \left(a_{jk} b_{jk} + a_{kj} b_{kj} \right) = 0$$

(because $a_{kj}b_{kj}=-a_{jk}b_{jk}$). (This argument has been written such that it remains valid for square matrices of arbitrary dimensions, in the 3×3 case there are only three terms in the last sum: (k,j)=(3,1),(3,2),(2,1).) Since $\dim S+\dim A=\dim \mathbb{R}^{3\times3}$ and S is orthogonal to A, it follows that. A is the orthogonal complement of S (i.e., the space of all matrices orthogonal to S).

- (d) If $a \in A$, then $(ia)^* = (\overline{i})a^T = (-i)(-a) = ia$, so that ia (being self-adjoint) has only real eigenvalues. Hence, the eigenvalues of a are on iR.
- (e) Since $a \in A$ is real, its eigenvalues are located symmetrically with respect to the real axis. Since a has 3 eigenvalues on iR, one of them must be zero. Since $\det a = \lambda_1 \lambda_2 \lambda_3$, where λ_j are the eigenvalues of a, we get $\det a = 0$.

An entirely different way to see that $\det a = 0$ is the following: using the structure from the answer to part (b), we have ax = 0, where $x = \begin{bmatrix} x \\ -\beta \end{bmatrix}$. (f) If we denote $a = \frac{1}{2}(x + x^T)$, $b = \frac{1}{2}(x - x^T)$, then it is easy to see that $a^T = a$ and $b^T = -b$, i.e., $a \in S$ and $b \in A$. Moreover, we have x = a + b. Since such a decomposition is unique, we must have $a = P_S x$ and $b = P_A x$.

Question 2 (a)
$$a_k = \begin{cases} \frac{1}{k^2} & \text{if } k \text{ is odd,} \\ 0 & \text{if } k \text{ is even.} \end{cases}$$

- (b) We have $l^2 = c_0$. Indeed, if $a \in l^2$, i.e., $\sum_{k=0}^{\infty} |a_k|^2 < \infty$, then $\lim_{k \to 0} a_k = 0$. We have $l^2 \neq c_0$ because the sequence $b_k = \frac{1}{\sqrt{k+1}}$ is in c_0 , but not in l^2 .
 - (c) $d_k = (-1)^k$, $d \notin \rho$, $\|d\|_{\infty} = 1$.
 - (d) If $u_k = k$, $y_k = (-1)^k$, k = 0, 1, 2, ..., then $\hat{u}(z) = \frac{z}{(z-1)^2}, \qquad \hat{y}(z) = \frac{z}{z+1}.$
 - \hat{u} has a singularity (a pole) of z=1, hence the series is convergent for |z|>1. \hat{y} has a singularity at z=-1, hence its series is also convergent for |z|>1.
 - (e) This is impossible, because any linear system is causal, i.e., at any time k, the response is caused by the past input only (up to k). In our case, for k=0, we have $u_0=0$, which together with $x_0=0$ (initial state zero) implies $y_0=0$, but we have $y_0=1$.
 - (f) Take $g_k = 2^{2^k}$. Denoting $\zeta = \frac{1}{z}$, we have $\hat{q}(z) = q_0 + q_1 \zeta + q_2 \zeta^2 + q_3 \zeta^3 + \dots$, for all $\zeta \in \mathbb{C}$ with $|\zeta| < R$. The radius of convergence R of this Taylor series is given by

 $\frac{1}{R} = \lim_{n \to \infty} \sup_{n \to \infty} |q_n|^{\frac{1}{n}}$. We get $\frac{1}{R} = \infty$, hence R = 0.

Question 3 (a) On the space $L^{2}[0,\infty)$, $< f, g > = \int_{0}^{\infty} f(t) \overline{g(t)} dt$, $||f||_{2}^{2} = \int_{0}^{\infty} |f(t)|^{2} dt$. If $||f(t)||_{2}^{2} = \int_{0}^{\infty} |f(t)|^{2} dt$. Hence, $||g||_{2}^{2} = \int_{0}^{\infty} e^{-2(Res)t} dt = \frac{1}{2Res}$.

(b) We have, for any $g \in L^2[0,\infty)$,

$$|(\mathcal{Z}_g)(s)| = \left| \int_0^\infty g(t) e^{-st} dt \right| = \langle g, \overline{\varphi} \rangle,$$

where $\overline{\phi}$ is the complex conjugate of ϕ introduced in part (a). By the Cauchy-Schwarz inequality, we get

 $|(\mathcal{L}_g)(s)| \le ||g||_2 \cdot ||\overline{\varphi}||_2 = ||g||_2 ||\varphi||_2$ = $||g||_2 \cdot \frac{1}{\sqrt{2 \operatorname{Re} s}}$.

(c)
$$F(s) = \frac{1}{s} (1 - e^{-2s}), G(s) = \frac{1}{s+5}$$

(d)
$$\|f\|_{2}^{2} = \int_{0}^{2} dt = 2$$
, hence $\|f\|_{2} = \sqrt{2}$.
 $\|g\|_{2}^{2} = \int_{0}^{\infty} e^{-10t} dt = \frac{1}{10}$, so $\|g\|_{2} = \frac{1}{110}$.
 $\langle f, g \rangle = \int_{0}^{2} e^{-5t} dt = \frac{1}{5} (1 - e^{-10}) \approx \frac{1}{5}$

Cauchy - Schwarz:
$$\frac{1}{5} < \frac{1}{10} \cdot \sqrt{2} \left(= \frac{1}{15} \right).$$

(e)
$$H(s) = e^{-3s} \frac{1}{s+5}$$
, $||h||_2 = ||g||_2 = \frac{1}{\sqrt{10}}$
 $P(s) = H(s) G(s) = e^{-3s} \frac{1}{(s+5)^2}$.

(f)
$$\|G\|_2 = \|g\|_2 = \frac{1}{\sqrt{10}}$$
, by Paley-Wiener.
Similarly, $\|H\|_2 = \|h\|_2 = \frac{1}{\sqrt{10}}$.

Using the Paley-Wiener theorem a third time, we have

$$\langle F,G \rangle = \langle f,g \rangle = \frac{1}{5} (1 - e^{-10})$$
.

Question 4 (a)
$$\dot{x} = Ax + Bu$$
, $B = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, $A = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix}$, $\det (sI-A) = s^2 + 4s + 3$ (this is the characteristic polynomial), $\sigma(A) = \{-1, -3\}$. The system is stable regardless of α , β .

(b) $C = [0 \ 1]$, $y = Cx$, $G(s) = C(sI-A)^{-1}B$.

 $C(sI-A)^{-1} = \begin{bmatrix} 0 \ 1 \end{bmatrix} \frac{1}{s^2 + 4s + 3} \begin{bmatrix} s + 4 & -3 \\ 4 & s \end{bmatrix} = \frac{1}{s^2 + 4s + 3} \begin{bmatrix} 1 & s \end{bmatrix}$, hence $G(s) = \frac{\beta s + \alpha}{s^2 + 4s + 3} = \frac{\beta s + \alpha}{(s+1)(s+3)}$.

(c) For $\alpha = \beta = 1$, $G(s) = \frac{1}{s+3}$, hence the impulse response is $g = \mathcal{L}^{-1}G$, $g(t) = e^{-3t}$. The step response is $y_{step}(t) = \int_0^t g(\sigma) d\sigma = \frac{1}{3}(1 - e^{-3t})$.

(d) $\|G\|_{\infty} = \|\frac{1}{s+3}\|_{\infty} = \frac{1}{3}$, $\|G\|_2 = \|g\|_2 = \frac{1}{\sqrt{6}}$.

(e) $u(t) = te^{-3t}$, $\hat{u}(s) = \frac{1}{(s+3)^2}$, $\hat{y}(s) = \frac{1}{(s+3)^3}$, $y(t) = \frac{t^2}{2}e^{-3t}$.

(f) For $\alpha = 1$, $\beta = 0$, $G(s) = \frac{1}{(s+1)(s+3)}$, the delay transfer function is e^{-2s} , hence $H(s) = e^{-2s}/(s+1)(s+3)$.

(g) $\|H\|_{\infty} = \|G\|_{\infty}$, because $|e^{-2i\omega}| = 1$ for $\omega \in \mathbb{R}$. G attains its sup at $s = 0$, hence $\|H\|_{\infty} = \frac{1}{3}$.

(h) With α , β functions of t , the system is still linear but it is not time-invariant. Hence, the system

has no transfer function.

Question 5 (a) We denote by 5 the operator of right shift (or delay) by one step on ℓ^2 (the indices are from 0 to ∞). Thus,

$$S(u_0 u_1 u_2 ...) = (0 u_0 u_1 ...)$$
.

A bounded operator T from L^2 to L^2 is called time invariant if TS = ST.

Theorem (Fourés-Segal) Let T be a bounded linear operator from L^2 to L^2 . T is time-invariant if and only if there exists $G \in H^{\infty}(\mathcal{E})$ such that $T = \mathcal{Z}^1 G \mathcal{Z}$ ($\mathcal{Z} = \mathcal{Z}$ -transform). If this is the case, then $\|T\| = \|G\|_{\infty}$.

Consider a linear system described by $\begin{cases}
X_{k+1} = A \times_k + B u_k & u = input signal \\
Y_k = C \times_k + D u_k & y = output signal
\end{cases}$

where A,B,C,D are constant matrices and the eigenvalues of A are in Θ (i.e., A is stable). If x(0)=0, then y=Tu, where T is the input-out-put operator of the system. This is bounded on L^2 and time-invariant. According to the Fourés-Segal theorem, $T=Z^TGZ$, with $G\in H^\infty(E)$. It can be checked that $G(z)=C(zI-A)^TB+D$. The norm $\|G\|_{\Theta}$ can be seen from the magnifude B ode plot of G.

(C) BL(ω_b) is the subspace of $L^2(-\infty,\infty)$ consisting of those functions whose Fourier transform is in $L^2[-i\omega_b,i\omega_b]$ (in other words, $u\in BL(\omega_b)$ if $(Fu)(i\omega)=0$ for $|\omega|>\omega_b$). Such functions are analytic on all C, in particular, they are infinitely differentiable. In practice, signals will usually not belong to such a space, but they can be approximated very well by band-limited functions. The following functions form an orthonormal basis in BL(ω_b):

$$e_{k}(t) = \frac{\sin \omega_{b}(t-k\tau)}{\sqrt{\pi\omega_{b}}(t-k\tau)}, \quad k \in \mathbb{Z},$$

$$\tau = \pi/\omega_{b}.$$

Notice that e_k is obtained by shifting e_0 to the right by the amount kz (if k<0 then we are actually shifting to the left).

Thus, for example, e_0 and e_7 are linearly independent functions in BL (w_b) .

(d) Theorem (Whittaker - Kotelnikov - Shannon).

If $u \in BL(\omega_b)$ and $\tau \in (0, \frac{\pi c}{\omega_b}]$, then for all $t \in \mathbb{R}$, $u(t) = \sum_{k \in \mathbb{Z}} u(kz) \frac{\sin \omega_b(t-kz)}{\omega_b(t-kz)}$

This shows that if we sample the signal at the time instants kz, keZ, where I is the sampling period, then u can be completely reconstructed from these samples. It is easier to store and for transmit samples of a signal than the whole signal. In practice, signals are not exactly bandlimited; just "almost" bandlimited. This means that u = v + e, where $v \in BL(w_b)$ and e is a small error (deviation). Also, the samples u(kz) cannot be taken for all $k \in \mathbb{Z}$, only for a finite (but possibly very large) set of integers. Then, the formula will hold approximately, for values of t which are not close to the end of the time interval in which samples were taken. The condition $\tau \leq \frac{\pi}{\omega_b}$ means that the sampling frequency $\frac{1}{\tau} \geq 2$ times the highest frequency components of u.

[END]