DÉNOMBREMENT

1 Ensembles finis et cardinaux

1.1 Cardinal d'un ensemble fini

Définition 1.1

On dit qu'un ensemble non vide E est fini s'il existe $n \in \mathbb{N}^*$ et une bijection de [1,n] sur E. Dans ce cas, l'entier n est unique et est appelé **cardinal** de E : on le note card E, |E| ou encore #E. Par convention, \varnothing est fini et card $\varnothing = 0$.

REMARQUE. Plus prosaïquement, le cardinal est le nombre d'éléments d'un ensemble.

Proposition 1.1

Deux ensembles finis ont même cardinal si et seulement si il existe une bijection de l'un sur l'autre.

Méthode Déterminer le cardinal d'un ensemble

Pour déterminer le cardinal d'un ensemble A, il suffit de trouver un ensemble B de cardinal connu et une bijection de A sur B ou de B sur A. Alors card A = card B.

Proposition 1.2

Soit E un ensemble fini et A une partie de E. Alors A est fini et card $A \leq \text{card E}$. Il y a égalité **si et seulement** si A = E.

1.2 Opération sur les ensembles finis

Proposition 1.3

Soient E et F deux ensembles finis. Alors $E \cup F$ et $E \cap F$ sont finis et

$$\operatorname{card}(E \cup F) = \operatorname{card} E + \operatorname{card} F - \operatorname{card}(E \cap F)$$

Exercice 1.1

Principe d'inclusion-exclusion

Soient A_1, \ldots, A_n n ensembles finis. Montrer que

$$\operatorname{card}\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n (-1)^{k-1} \sum_{1\leqslant i_1 < i_2 < \dots < i_k \leqslant n} \operatorname{card}\left(\bigcap_{l=1}^k A_{i_l}\right)$$

Définition 1.2 Partition

Soit E un ensemble (pas nécessairement fini) et $(A_i)_{i\in I}$ une famille de parties de E. On dit que $(A_i)_{i\in I}$ est une partition de E si

- ▶ les A_i sont non vides;
- ▶ les Ai sont disjoints deux à deux;

$$\blacktriangleright E = \bigcup_{i \in I} A_i.$$

On note alors
$$E = \bigsqcup_{i \in I} A_i$$
.

REMARQUE. Il arrive de parler de partition même si les parties en question ne sont pas toutes vides.

Proposition 1.4

Soit E un ensemble fini et $(A_i)_{1 \leqslant i \leqslant n}$ une partition de E. Alors card $E = \sum_{i=1}^n \operatorname{card} A_i$.

REMARQUE. La relation est vraie même si les parties ne sont pas toutes vides.

Proposition 1.5

Soient E et F deux ensembles finis. Alors $E \times F$ et F^E sont finis. De plus, $\operatorname{card}(E \times F) = \operatorname{card} E \times \operatorname{card} F$ et $\operatorname{card}(F^E) = (\operatorname{card} F)^{\operatorname{card} E}$.

L'application de $\mathcal{P}(E)$ dans $\{0,1\}^E$ qui à une partie de E associe sa fonction indicatrice est clairement bijective. On en déduit la proposition suivante.

Proposition 1.6

Soit E un ensemble fini. Alors l'ensemble des parties de E noté $\mathcal{P}(E)$ est également fini et card $\mathcal{P}(E) = 2^{\operatorname{card} E}$.

1.3 Applications entre ensembles finis

Proposition 1.7

Soit $f: E \to F$. Si E est fini, alors Im f est fini et $\operatorname{card}(\operatorname{Im} f) \leq \operatorname{card} E$.

Proposition 1.8

Soit $f: E \to F$.

- (i) Si f est injective et F fini, alors E est fini et card $E \leq \operatorname{card} F$.
- (ii) Si f est surjective et E fini, alors F est fini et card $E \geqslant \operatorname{card} F$.
- (iii) Si f est bijective et E fini, alors F est fini et card $E = \operatorname{card} F$.

Remarque. Si f est injective et E fini, Im f est fini et card(Im f) = card E puisqu'alors f induit une bijection de E sur Im f.

Principe des tiroirs de Dirichlet

Supposons que l'on veuille ranger $\mathfrak n$ paires de chaussettes dans $\mathfrak p$ tiroirs. Si $\mathfrak n > \mathfrak p$, il est évident qu'un des tiroirs comportera plus d'une paire de chaussettes. On peut formaliser cette remarque de la manière suivante. Si on note $\mathsf E$ l'ensemble des paires de chaussettes, $\mathsf F$ l'ensemble des tiroirs et $\mathsf f$ l'application qui à une paire de chaussettes associe le tiroir dans laquelle elle se trouve, alors la remarque précédente signifie que $\mathsf f$ n'est pas injective.

Exercice 1.2

Soit $n \in \mathbb{N}^*$. On se donne n+1 réels de l'intervalle [0,1[. Montrer que deux d'entre eux sont à une distance strictement inférieure à $\frac{1}{n}$ l'un de l'autre.

Exercice 1.3

Soit $x \in \mathbb{R}$ et $N \in \mathbb{N}^*$. Montrer qu'il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que

$$\left|x-\frac{p}{q}\right|\leqslant\frac{1}{qN}$$

Proposition 1.9

Soit $f: E \to F$ où E et F sont des ensembles finis de **même** cardinal. Les propositions suivantes sont équivalentes :

- (i) f est bijective;
- (ii) f est surjective;
- (iii) f est injective.

Proposition 1.10 Lemme des bergers

Soit $f: E \to F$ où E et F sont des ensembles finis. On suppose qu'il existe $r \in \mathbb{N}$ tel que card $(f^{-1}(y)) = r$ pour tout $y \in F$. Alors card E = r card F.

2 Listes, arrangements et combinaisons

2.1 Listes

Définition 2.1 Liste

Soient E un ensemble fini et $k \in \mathbb{N}$. On appelle k-liste d'éléments de E tout k-uplet d'éléments de E.

Remarque. Une k-liste est également une application de [1, k] dans E.

Proposition 2.1 Nombre d'arrangements

Soient k et n des entiers tels que $0 \le k \le n$. Le nombre de k-listes d'un ensemble de cardinal n est n^k .

2.2 Arrangements

Définition 2.2 Arrangement

Soient E un ensemble fini et $k \in \mathbb{N}$. On appelle k-arrangement d'éléments de E tout k-uplet d'éléments de E deux à deux distincts.

REMARQUE. Un k-arrangement est également une injection de [1, k] dans E.

Remarque. On remarquera que l'**ordre** des éléments compte dans un arrangement. (a, b, c) et (c, b, a) ne désignent pas le même arrangement.

Définition 2.3 Permutation

On appelle permutation d'un ensemble E de cardinal $\mathfrak n$ tout $\mathfrak n$ -arrangement d'éléments de E.

Proposition 2.2 Nombre d'arrangements

Soient k et $\mathfrak n$ des entiers tels que $0 \leqslant k \leqslant \mathfrak n$. Le nombre de k-arrangements d'un ensemble de cardinal $\mathfrak n$ est $\frac{\mathfrak n!}{(\mathfrak n-k)!}$.

Corollaire 2.1 Nombre de permutations

Le nombre de permutations d'un ensemble de cardinal n est n!.

2.3 Combinaisons

Définition 2.4 Combinaison

Soient E un ensemble fini et $k \in \mathbb{N}$. On appelle k-combinaison d'éléments de E toute partie de E de cardinal k.

REMARQUE. On remarquera que l'ordre des éléments ne compte pas dans un arrangement. $\{a, b, c\}$ et $\{c, b, a\}$ désignent la même combinaison.

Si on note $A_{k,n}$ l'ensemble des k-arrangements et $C_{k,n}$ l'ensemble des k-combinaisons d'un même ensemble de cardinal n, le lemme des bergers appliqué à l'application $f: \left\{ \begin{array}{ccc} A_{k,n} & \longrightarrow & C_{k,n} \\ (x_1,\dots,x_k) & \longmapsto & \{x_1,\dots,x_k\} \end{array} \right.$ fournit le résultat suivant.

Proposition 2.3 Nombre de combinaisons

Soient k et n des entiers tels que $0 \le k \le n$. Le nombre de k-combinaisons d'un ensemble de cardinal n est $\binom{n}{k}$.

2.4 Preuves combinatoires de relations entre coefficients binomiaux

Si E est un ensemble de cardinal n et $k \in \mathbb{N}$, on note $\mathcal{P}_k(E)$ l'ensemble des parties de E de cardinal n.

Symétrie des coefficients binomiaux

Soient E un ensemble de cardinal n et $k \in \mathbb{N}$ tel que $0 \leqslant k \leqslant n$. L'application $\left\{ \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ X & \longmapsto & \overline{X} \end{array} \right.$ est une involution induisant une bijection de $\mathcal{P}_k(E)$ sur $\mathcal{P}_{n-k}(E)$. On en déduit que $\binom{n}{k} = \binom{n}{n-k}$.

- Relation du triangle de Pascal -

Soient E un ensemble de cardinal n+1, x un élément fixé de E et $k \in \mathbb{N}$ tel que $0 \le k \le n$. On note \mathcal{A} l'ensemble des parties de E de cardinal k+1 contenant x et \mathcal{B} l'ensemble des parties de E de cardinal k+1 ne contenant pas x. \mathcal{A} et \mathcal{B} forment clairement une partition de $\mathcal{P}_{k+1}(E)$ de sorte que

$$\binom{n+1}{k+1}=\operatorname{card}\mathcal{A}+\operatorname{card}\mathcal{B}$$

Raisonnement élémentaire

Choisir un élément de \mathcal{A} consiste à choisir une partie de $E \setminus \{x\}$ de cardinal k et à lui ajouter x. Comme $\operatorname{card}(E \setminus \{x\}) = n$, il y a $\binom{n}{k}$ façons de le faire. Ainsi $\operatorname{card} \mathcal{A} = \binom{n}{k}$.

 $\begin{array}{l} \operatorname{card}(E\setminus\{x\})=n, \ \operatorname{il} \ y \ a \ \binom{n}{k} \ \operatorname{façons} \ \operatorname{de} \ \operatorname{le} \ \operatorname{faire}. \ \operatorname{Ainsi} \ \operatorname{card} \ \mathcal{A}=\binom{n}{k}. \\ \operatorname{Choisir} \ \operatorname{un} \ \operatorname{\acute{e}l\acute{e}ment} \ \operatorname{de} \ \mathcal{B} \ \operatorname{consiste} \ \operatorname{\grave{a}} \ \operatorname{choisir} \ \operatorname{une} \ \operatorname{partie} \ \operatorname{de} \ E\setminus\{x\} \ \operatorname{de} \ \operatorname{cardinal} \ k+1. \ \operatorname{Comme} \ \operatorname{card}(E\setminus\{x\})=n, \ \operatorname{il} \ y \ a \ \binom{n}{k+1} \ \operatorname{façons} \ \operatorname{de} \ \operatorname{le} \ \operatorname{faire}. \ \operatorname{Ainsi} \ \operatorname{card} \ \mathcal{B}=\binom{n}{k+1}. \end{array}$

On en déduit que
$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$
.

Raisonnement rigoureux

$$\operatorname{card} \mathcal{P}_k(E\setminus \{x\}) = \operatorname{card} \mathcal{A}$$

ou encore card $\mathcal{A} = \binom{n}{k}$. L'application $\left\{ \begin{array}{ccc} \mathcal{P}_{k+1}(E \setminus \{x\}) & \longrightarrow & \mathcal{B} \\ F & \longmapsto & F \end{array} \right.$ est bijective de sorte que

$$\operatorname{card} \mathcal{P}_{k+1}(E \setminus \{x\}) = \operatorname{card} B$$

ou encore card $\mathcal{B} = \binom{n}{k+1}$. Finalement, $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Cardinal de l'ensemble des parties d'un ensemble fini -

Soit E un ensemble de cardinal n. Les $\mathcal{P}_k(E)$ pour $k \in [0, n]$ forment une partition de $\mathcal{P}(E)$. On en déduit que

$$\operatorname{card} \mathcal{P}(E) = \sum_{k=0}^n \text{card} \mathcal{P}_k(E)$$

Autrement dit

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k}$$

C'est la formule du binôme de Newton appliqué à $(1+1)^n$.

- Preuve de l'identité $k\binom{k}{n} = n\binom{n-1}{k-1}$ -

Soient E un ensemble de cardinal $n \ge 1$ et $k \in \mathbb{N}$ tel que $1 \le k \le n$. On considère l'ensemble $\mathcal{A} = \{(x, F), x \in \mathbb{N} \}$ $F, F \in \mathcal{P}_k(E)$ }. L'idée consiste à déterminer le cardinal de \mathcal{A} de deux manières différentes.

Raisonnement élémentaire

Choisir un élément (x, F) de A peut se faire de la manière suivante :

- \blacktriangleright on choisit un élément x de E (n choix possibles);
- ▶ puis on choisit partie F' de cardinal k-1 de $E \setminus \{x\}$ $\binom{n-1}{k-1}$ choix possibles) et on pose $F = F' \cup \{x\}$.

Ainsi card $\mathcal{A} = \mathfrak{n} \binom{n-1}{k-1}$.

Mais choisir un élément (x, F) de A peut également se faire de la manière suivante :

- \blacktriangleright on choisit une partie F de cardinal k de E $\binom{n}{k}$ choix possibles);
- \triangleright puis on choisit un élément x de F (k choix possibles).

Ainsi card $\mathcal{A} = k\binom{n}{k}$.

Raisonnement rigoureux

Pour $x \in E$, notons $\mathcal{B}_x = \{(x, F), x \in F, F \in \mathcal{P}_k(E)\}$. Les \mathcal{B}_x pour $x \in E$ forment une partition de \mathcal{A} . Ainsi

$$\operatorname{card} \mathcal{A} = \sum_{x \in F} \operatorname{card} \mathcal{B}_x$$

Or pour tout $x \in E$, l'application $\begin{cases} \mathcal{P}_{k-1}(E \setminus \{x\}) & \longrightarrow & \mathcal{B}_x \\ F & \longmapsto & (x, F \cup \{x\}) \end{cases}$ est bijective de sorte que

$$\operatorname{card} \mathcal{P}_{k-1}(\mathsf{E} \setminus \{x\}) = \operatorname{card} \mathcal{B}_x$$

ou encore $\operatorname{card} \mathcal{B}_x = \binom{n-1}{k-1}$. On en déduit que $\operatorname{card} \mathcal{A} = \mathfrak{n} \binom{n-1}{k-1}$. Pour $F \in \mathcal{P}_k(E)$, posons $\mathcal{C}_F = \{(x,F), \ x \in F\}$. Les \mathcal{C}_F pour $F \in \mathcal{P}_k(E)$ forment une partition de \mathcal{A} . Ainsi

$$\operatorname{card} \mathcal{A} = \sum_{F \in \mathcal{P}_k(E)} \operatorname{card} \mathcal{C}_F$$

Or pour tout $F \in \mathcal{P}_k(E)$, l'application $\begin{cases} F & \longrightarrow & \mathcal{C}_F \\ x & \longmapsto & (x,F) \end{cases}$ est bijective de sorte que

$$\operatorname{card} F = \operatorname{card} \mathcal{C}_F$$

ou encore card $C_F = k$. On en déduit que card $A = k \binom{n}{k}$.

Exercice 2.1

Donner une preuve combinatoire de l'identité $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$.