Введение

Опишем процедуру построения теории, на которой держится математическая статистика.

В первую очередь в курсе теории вероятностей вводится понятие вероятностного пространства. Это понятие обобщает под одним термином три сущности, позволяющие в дальнейшем исследовать различные теоретические вопросы.

Итак, вероятностным пространством называют тройку

$$(\Omega, \mathcal{F}, P),$$

где Ω — это пространство элементарных исходов (все возможные результаты эксперимента), \mathcal{F} — семейство подмножеств Ω , которые называются событиями, P — функция на событиях (вероятность).

Задание вероятностного пространства означает задание модели физического эксперимента.

 ${\bf C}$ точки зрения теории меры, вероятность P называют еще вероятностной мерой.

В экспериментах мы хотим уметь рассчитывать вероятности событий, которые можно описать числами. Например, температуру в комнате, количество аварий, количество голов в матче и т.д. Поэтому естественно вводится понятие случайной величины.

$$X:\Omega\to\mathbb{R}$$

Случайная величина X, заданная на пространстве $(\Omega, \mathcal{F}, \mathcal{P})$, задает автоматически свою вероятностную меру, но уже на подмножествах B значений X (по-умному можно так записать $B \subseteq \operatorname{Im} X \subseteq \mathbb{R}$):

$$P_X(B) := P(\omega : X(\omega) \in B) \equiv P(X \in B) \equiv P(X^{-1}(B))$$

To есть каждая случайная величина, как говорят, индуцирует свое вероятностное пространство

$$(\mathcal{X}, \mathcal{F}_X, P_X)$$

Задание P_X называется заданием распределения X.

В задаче математической статистики мы имеем результат некоторого эксперимента. В терминах вероятностного пространства у нас есть исход $\omega \in \Omega$, на котором посчитана некоторая числовая характеристика X. В нашей мат. модели X — это случайная величина (обычно, случайный вектор), про распределение которой мы точно не знаем, но имеем уверенность, что это распределение лежит в некотором семействе распределений \mathcal{P} .

Если это семейство запараметризовано, т.е. каждому распределению семейства соответствует некоторый числовой параметр $\theta \in \Theta \subseteq \mathbb{R}^k$, то такое семейство называется параметризованным, и тогда задача узнать распределение сводится к задаче узнать параметр распределения.

Таким образом, статистическая модель (статистическое пространство) выглядит следующим образом

$$(\mathcal{X}, \mathcal{F}, \mathcal{P})$$

где \mathcal{X} — множество всех возможных значений X, \mathcal{F} — семейство событий на \mathcal{X}, \mathcal{P} — семейство распределений X.

Оценивание (Estimation)

Выборкой назвается набор из n случайных величин X_1, \ldots, X_n . Реализацией выборки называется набор чисел $X_1(\omega), \ldots, X_n(\omega)$.

Итак, задача статистики заключается в том, чтобы получить какую-либо информацию о распределении по данной выборке X_1, \ldots, X_n .

Узнать что-либо о распределении это то же самое, что узнать что-то о его параметре, некую величину $h(\theta)$, где θ — параметр распределения. То есть нам надо, чтобы была функция $\hat{\theta}(x_1,\ldots,x_n)$, такая что случайная величина $\hat{\theta}(X_1,\ldots,X_n)$ както характеризовала величину $h(\theta)$. Тогда $\hat{\theta}(X_1,\ldots,X_n)$ называют оценкой $h(\theta)$.

Несмещенность

Встает вопрос, как определить, насколько оценка хороша. Естественно потребовать, чтобы оценка в среднем была равна оцениваемому параметру, то есть, чтобы

$$E_{\theta}\hat{\theta}(X_1,\ldots,X_n) = h(\theta)$$

где E_{θ} — математическое ожидание по мере P_{θ} (иначе говоря, для распределения P_{θ}).

Если такое условие выполнено, то оценка $\hat{\theta}$ называется несмещенной для $h(\theta)$.

Квадратичное отклонение

Как для случайных величин важно понятие дисперсии (среднеквадратичного отклонения от среднего), так и для оценок важно понятие квадратичного смещения.

Квадратичным смещением называется

$$E_{\theta}(\hat{\theta}(X_1,\ldots,X_n)-h(\theta))^2$$

Для несмещенных оценок квадратичное смещение равно $D_{\theta}\hat{\theta}(X_1,\ldots,X_n)$.

Задачи

Задача 1. Пусть $F_{\theta}(x) = 1 - \theta^{x+1}, x \in \{0, 1, \ldots\}, \Theta = (0, 1)$. Построить несмещенную оценку для θ от одного наблюдения.

Решение. Нужно построить оценку $\hat{\theta}(X_1)$, чтобы $E_{\theta}\hat{\theta}(X_1) = \theta$.

Посчитаем математическое ожидание такой оценки в общем виде, а затем попытаемся понять, какой должна быть сама оценка.

$$E_{\theta}\hat{\theta}(X_1) = \sum_{k=0}^{\infty} \hat{\theta}(k) P_{\theta}(X_1 = k) = (*)$$

Найдем $P_{\theta}(X_1 = k)$ из нашей функции распределения.

Так как $F_{\theta}(x) = P_{\theta}(X \leq x)$, то

$$P_{\theta}(X_1 = k) = F_{\theta}(k) - F_{\theta}(k-1) = 1 - \theta^{k+1} - 1 + \theta^k = \theta^k(1-\theta)$$

Теперь вернемся к подсчету мат. ожидания:

$$(*) = \sum_{k=0}^{\infty} \hat{\theta}(k)\theta^k (1-\theta) = (1-\theta) \sum_{k=0}^{\infty} \hat{\theta}(k)\theta^k$$

(воспользовались суммой геом. прогрессии $\sum_{k=0}^{\infty} \theta = \frac{1}{1-\theta}$)

Итак, чтобы оценка $\sum_{k=0}^{\infty} \hat{\theta}(k) \theta^k$ была несмещенной, нужно, чтобы

$$(1-\theta)\sum_{k=0}^{\infty}\hat{\theta}(k)\theta^k = \theta \Leftrightarrow \sum_{k=0}^{\infty}\hat{\theta}(k)\theta^k = \frac{\theta}{1-\theta} = \theta + \theta^2 + \theta^3 + \dots = \sum_{k=1}^{\infty}\theta^k$$

Таким образом, мы хотим, чтобы $\hat{\theta}(0) = 0$, а $\hat{\theta}(k) = 1$ для всех $k = 1, 2, \dots$ Отсюда

$$\hat{\theta}(X_1) = I_{X_1 > 0}.$$

Задача 2. а) Найти несмещенную оценку для DX_1 вида cS^2 , где $S^2=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2,\, X_i$ — независимые одинаково распределенные (далее н.о.р.).

б) Найти ее квадратичное смещение в случае $X_i \sim \mathcal{N}(0, \theta)$.

 \square Пункт а).

$$ES^{2} = \frac{1}{n} \sum_{i=1}^{n} E(X_{i} - \overline{X})^{2} = \frac{1}{n} \sum (EX_{i}^{2} - 2EX_{i}\overline{X} + E\overline{X}^{2}) =$$

$$= \frac{1}{n} \sum EX_{i}^{2} - \frac{2}{n} \sum EX_{i}\overline{X} + \frac{1}{n} \sum E\overline{X}^{2} =$$

$$= EX_{1}^{2} - 2E\left(\frac{1}{n} \sum X_{i}\overline{X}\right) + \frac{1}{n}nE\overline{X}^{2} =$$

$$= EX_{1}^{2} - 2E\overline{X}^{2} + E\overline{X}^{2} = EX_{1}^{2} - E\overline{X}^{2}$$

Теперь посчитаем $E\overline{X}^2$:

$$E\overline{X}^{2} = E\left(\frac{X_{1} + \dots + X_{n}}{n}\right)^{2} = \frac{1}{n^{2}}E(X_{1}^{2} + \dots + X_{n}^{2} + 2\sum_{i < j} X_{i}X_{j}) =$$

$$= \frac{1}{n^{2}}\left(nEX_{1}^{2} + 2C_{n}^{2}(EX_{1})^{2}\right) = \frac{1}{n}EX_{1}^{2} + \frac{n-1}{n}(EX_{1})^{2}$$

Подставляя в предыдущую формулу, получаем, что

$$ES^{2} = EX_{1}^{2} - \frac{EX_{1}^{2}}{n} - \frac{n-1}{n}(EX_{1})^{2} = \frac{n-1}{n}(EX_{1}^{2} - (EX_{1})^{2}) = \frac{n-1}{n}EX_{1}$$

Таким образом, оценка S^2 — смещенная, но оценка $S_0 = \frac{n}{n-1}S^2$ будет несмещенной. Теперь пункт б). Теперь мы знаем, что $X_i \sim \mathcal{N}(0,\theta)$, то есть $EX_i = 0$, $DX_i = \theta$.

Так как наша оценка несмещенная, то квадратичным смещением будет просто дисперсия DS_0 .

$$DS_0 = ES_0^4 - (ES_0^2)^2 = ES_0^4 - (EX_1)^2 = ES_0^4 = E\left(\frac{n}{n-1}S^2\right)^2 = \frac{n^2}{(n-1)^2}ES^4$$

Для поиска ES^4 воспользуемся тем, что $S^2=\overline{X^2}-\overline{X}^2$. тогда

$$ES^{4} = E\frac{1}{n^{2}}(\overline{X^{2}}^{2} - \overline{X}^{2})^{2} = \frac{1}{n^{2}}E(\overline{X^{2}}^{2} - 2\overline{X^{2}} + \overline{X}^{4}) = \frac{1}{n^{2}}(E())$$