

SAR TEST REPORT

Product Name Two-way Radio

Model QP-990-U1

FCC ID XMHQP-990-U1

Client Quantun Electronics, LLC

Manufacturer Shenzhen Surwave Technologies Co.,LTD

Date of issue October 8, 2013

TA Technology (Shanghai) Co., Ltd.

Report No.: RXA1308-0126SAR01R1 Page 2 of 76

GENERAL SUMMARY

Reference Standard(s)	FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices IEEE Std C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991) KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01 SAR Measurement Requirements for 100 MHz to 6 GHz KDB 447498 D01 Mobile Portable RF Exposure v05r01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies KDB 643646 D01 SAR Test for PTT Radios v01r01: SAR Test Reduction Considerations for Occupational PTT Radios
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only. General Judgment: Pass
Comment	The test result only responds to the measured sample.

Approved by Revised by SAR Manager SAR Engineer

TABLE OF CONTENT

1.	Gei	neral Information	. 5
	1.1.	Notes of the Test Report	. 5
	1.2.	Testing Laboratory	. 5
	1.3.	Applicant Information	. 6
	1.4.	Manufacturer Information	. 6
	1.5.	Information of EUT	. 7
	1.6.	The Maximum Reported SAR _{1g}	. 8
	1.7.	Test Date	. 8
2.	SA	R Measurements System Configuration	. 9
	2.1.	SAR Measurement Set-up	. 9
	2.2.	DASY5 E-field Probe System	10
	2.2	.1. EX3DV3 Probe Specification	10
	2.2	.2. E-field Probe Calibration	11
	2.3.	Other Test Equipment	11
	2.3	.1. Device Holder for Transmitters	11
	2.3	.2. Phantom	12
	2.4.	Scanning Procedure	12
	2.5.	Data Storage and Evaluation	14
	2.5	.1. Data Storage	14
	2.5	.2. Data Evaluation by SEMCAD	14
3.	Lab	poratory Environment	16
4.	Tiss	sue-equivalent Liquid	17
	4.1.	Tissue-equivalent Liquid Ingredients	17
	4.2.	Tissue-equivalent Liquid Properties	18
5.	Sys	stem Check	19
;	5.1.	Description of System Check	19
;	5.2.	System Check Results	21
6.	Ope	erational Conditions during Test	22
	6.1.	General Description of Test Procedures	22
	6.2.	Test Configuration	22
	6.2	.1. Face-Held Configuration	22
	6.2	.2. Body-Worn Configuration	22
	6.3.	Measurement Variability	22
7.	Tes	st Results	24
	7.1.	Conducted Power Results	24
	7.2.	SAR Test Results	25
8.	100	MHz to 700MHz Measurement Uncertainty	28
9.	Ma	in Test Instruments	30
A١	INEX	A: Test Layout	31

Report No.: RXA1308-0126SAR01R1	Page 4 of 76
ANNEX B: System Check Results	32
ANNEX C: Graph Results	34
ANNEX D: Probe Calibration Certificate	48
ANNEX E: D450V3 Dipole Calibration Certificate	59
ANNEX F: DAE4 Calibration Certificate	68
ANNEX G: The EUT Appearances and Test Configuration	

Report No.: RXA1308-0126SAR01R1 Page 5 of 76

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No.: RXA1308-0126SAR01R1 Page 6 of 76

1.3. Applicant Information

Company: Quantun Electronics, LLC

Address: 14005 NW 8 Street Unit 2 Sunrise, Florida 33323, USA

City: Florida

Postal Code: /

Country: USA

1.4. Manufacturer Information

Company: Shenzhen Surwave Technologies Co.,LTD

Address: RM602-603, Bagua RD.2 Bagualing, Futian District, Shenzhen, China

City: Shenzhen

Postal Code: /

Country: China

Report No.: RXA1308-0126SAR01R1 Page 7 of 76

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Exposure Category:	Controlled Environment /Occupational		
State of Sample:	Prototype Unit		
S/N:	1275A00139		
Hardware Version:	1		
Software Version:	1		
Antenna Type:	External Antenna		
Device Operating Configurations:			
Test Modulation:	FM (Analog, 12.5KHz), 4L-FSK (Digital, 6.25KHz)		
Operating Frequency Range(s):	400MHz - 470MHz (UHF)		
Test Frequency	406.5 MHz -418.0 MHz -435.5 MHz -453.5 MHz -469.5 MHz		

Report No.: RXA1308-0126SAR01R1 Page 8 of 76

Auxiliary Equipment Details

Name	Model	Manufacturer	S/N	Note
Battery	SL11374	1	1332B10871	1

Equipment under Test (EUT) is tested for 400MHz - 470MHz. The EUT has an external antennal that is used for Tx/Rx.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum Reported SAR_{1g}

Mode	Test Position		Limit SAR _{1g} 8.0 W/kg			
		Frequency (MHz)	100% duty cycle	50% duty cycle	100% duty cycle	50% duty cycle
			Measured SAR _{1g}		Reported SAR _{1g}	
			(W/I	kg)	(W/k	(g)
UHF	Towards Phantom	435.5	5.900	2.950	8.504	4.253
UHF	Towards Ground	435.5	8.110	4.055	11.168	5.583

1.7. Test Date

The test performed from September 1, 2013 to September 3, 2013.

Report No.: RXA1308-0126SAR01R1 Page 9 of 76

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An
 arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

Figure 1. SAR Lab Test Measurement Set-up

Report No.: RXA1308-0126SAR01R1 Page 10 of 76

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV3 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity \pm 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV3 E-field

Probe

Figure 3. EX3DV3 E-field probe

Report No.: RXA1308-0126SAR01R1 Page 11 of 76

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the

ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Figure 4.Device Holder

The DASY device holder is constructed of low-loss POM material. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Report No.: RXA1308-0126SAR01R1 Page 12 of 76

2.3.2. Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation ofthe liquid. Reference markings on the phantom allow installation of thecomplete setup, including all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.

Shell Thickness 2±0.2 mm Filling Volume Approx. 30 liters

Dimensions 190×600×0 mm (H x L x W)

Figure 5.ELI4 Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

Report No.: RXA1308-0126SAR01R1 Page 13 of 76

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- · extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) $(\Delta \mathbf{x}_{area}, \Delta \mathbf{y}_{area})$	Maximum Zoom Scan Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Maximum Zoom Scan Spatial Resolution (mm) ∆z _{zoom} (n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25

Report No.: RXA1308-0126SAR01R1 Page 14 of 76

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RXA1308-0126SAR01R1 Page 15 of 76

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

Report No.: RXA1308-0126SAR01R1 Page 16 of 76

with **SAR** = local specific absorption rate in mW/g

 $\boldsymbol{E_{tot}}$ = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

Report No.: RXA1308-0126SAR01R1 Page 17 of 76

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, sugar, salt, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 450MHz		
Water	38.56		
Sugar	56.32		
Salt	3.95		
Preventol	0.10		
Cellulose	1.07		
Dielectric Parameters Target Value	f=450MHz ε=43.5 σ=0.87		

Table 4: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 450MHz		
Water	51.16		
Sugar	46.78		
Salt	1.49		
Preventol	0.10		
Cellulose	0.47		
Dielectric Parameters Target Value	f=450MHz ε=56.7 σ=0.94		

Report No.: RXA1308-0126SAR01R1 Page 18 of 76

4.2. Tissue-equivalent Liquid Properties

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

	<u> </u>			
Eronuono.	Description	Dielectric Parameters		Temp
Frequency	Description	ε _r	σ(s/m)	င
450MU-	Target value	43.50	0.87	22.0
450MHz (head)	±5% window	41.33 — 45.68	0.83 — 0.91	22.0
	2013-9-3	44.26	0.86	21.5

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Eroguopov	Decerinties	Dielectric Par	Temp	
Frequency	Description	ε _r	σ(s/m)	${\mathfrak C}$
4500411-	Target value	56.70	0.94	22.0
450MHz	±5% window	53.87 — 59.54	0.89 - 0.99	22.0
(body)	2013-9-1	55.55	0.97	21.5

Report No.: RXA1308-0126SAR01R1 Page 19 of 76

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 398 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Figure 6. System Check Set-up

Report No.: RXA1308-0126SAR01R1 Page 20 of 76

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D450V3 SN: 1065									
Head Liquid									
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
11/09/2010	-20.5	/	59.2	1					
11/08/2011	-21.2	3.4%	60.6	1.4Ω					
11/07/2012	-22.1	7.8%	61.3	2.1Ω					
	Body Liqu	uid							
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
11/09/2010	-20.4	/	56.5	/					
11/08/2011	-19.8	2.9%	58.1	1.6Ω					
11/07/2012	-20.5	0.5%	59.2	2.7Ω					

Report No.: RXA1308-0126SAR01R1 Page 21 of 76

5.2. System Check Results

Table 7: System Check for Head Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	398mW Measure SAR _{1g}	Measure Normalized		Limit (±10%	
		ε _r	σ(s/m)	(℃)		(W/kg)		Deviation)	
450MHz	2013-9-3	44.26	0.86	21.5	2.00	5.03	4.76	5.67	

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate.

Table 8: System Check for Body Tissue Simulating Liquid

Frequency	Frequency Test Date		Dielectric Temp		398mW Measure SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%	
		٤r	σ(s/m)	(℃)		(W/kg)		Deviation)	
450MHz	2013-9-1	55.55	0.97	21.5	1.78	4.47	4.51	-0.89	

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate.

Report No.: RXA1308-0126SAR01R1 Page 22 of 76

6. Operational Conditions during Test

6.1. General Description of Test Procedures

The spatial peak SAR values were assessed for UHF (400-470MHz) systems. The EUT batterys must be Full energe and checked periodically during the test to ascertain uniform power output.

6.2. Test Configuration

6.2.1. Face-Held Configuration

The front of the EUT is towards the phantom.

The front surface of the EUT is positioned at 25mm parallel to the flat phantom.

The surface of the EUT antenna is positioned at 36mm to the flat phantom.

6.2.2. Body-Worn Configuration

The back of the EUT is towards the phantom.

The belt clip of the EUT directed tightly to touch the bottom of the flat phantom.

The surface of the EUT antenna is positioned at 26mm to the flat phantom.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and

Report No.: RXA1308-0126SAR01R1 Page 23 of 76

occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

Report No.: RXA1308-0126SAR01R1 Page 24 of 76

7. Test Results

7.1. Conducted Power Results

Table 9: Conducted Power Measurement Results

Description	Frequency (MHz)	Conducted Power (dBm)
	406.5	36.00
	418.0	35.68
Analog 12.5KHz UHF	435.5	34.95
	453.5	35.25
	469.5	35.56
	406.5	35.53
	418.0	35.45
Digital 6.25KHz UHF	435.5	35.20
	453.5	35.14
	469.5	35.47

Report No.: RXA1308-0126SAR01R1 Page 25 of 76

7.2. SAR Test Results

Table 10: SAR Values (UHF)

Test	Channel/		Channel	Maximum Tune -up	Conducted	Drift \pm 0.21dB		sured (W/kg)	Scaling	Repo		Graph
Position	Frequency (MHz)	Service	Spacing	Power (dBm)	Power (dBm)	Drift (dB)	100%	50%	Factor	100%	50%	Results
		Т	he EUT di	splay towa	rds phantom	for 12.5 Kl	Iz (Ana	log, Fac	e Held)			
	1/406.5	FM	12.5KHz	36.5	36.00	-0.051	4.940	2.470	1.12	5.533	2.766	Figure9
Towards Phantom	2/418.0	FM	12.5KHz	36.5	35.68	-0.036	5.130	2.565	1.21	6.207	3.104	Figure10
	3/435.5	FM	12.5KHz	36.5	34.95	-0.036	5.900	2.950	1.43	8.437	4.219	Figure11
	4/453.5	FM	12.5KHz	36.5	35.25	-0.023	6.180	3.090	1.33	8.219	4.110	Figure12
	5/469.5	FM	12.5KHz	36.5	35.56	-0.089	5.300	2.650	1.24	6.572	3.286	Figure13
		The	EUT disp	lay towards	ground for	12.5 KHz, E	Belt (An	alog, Bo	dy-Worn)			
	1/406.5	FM	12.5KHz	36.5	36.00	-0.047	6.010	3.005	1.12	6.731	3.366	Figure14
	2/418.0	FM	12.5KHz	36.5	35.68	-0.053	7.470	3.735	1.21	9.039	4.519	Figure15
Towards Ground	3/435.5	FM	12.5KHz	36.5	34.95	-0.063	6.620	3.310	1.43	9.467	4.733	Figure16
Cround	4/453.5	FM	12.5KHz	36.5	35.25	-0.042	6.970	3.485	1.33	9.270	4.635	Figure17
	5/469.5	FM	12.5KHz	36.5	35.56	-0.053	5.730	2.865	1.24	7.105	3.553	Figure18
		The	EUT disp	lay towards	s ground for	6.25 KHz, E	Belt (Di	gital, Bo	dy-Worn)			
Towards Ground	3/435.5	4L-FSK	6.25KHz	36.5	35.2	-0.047	8.100	4.050	1.35	10.935	5.468	Figure19
	The	EUT disp	lay toward	ds ground f	for 6.25 KHz	, Belt (1 st R	epeate	SAR, D	igital, Bo	dy-Worn)	
Towards Ground	3/435.5	4L-FSK	6.25KHz	36.5	35.2	-0.087	8.110	4.055	1.35	10.949	5.474	Figure20
Note: 1.T	he value with	blue colo	r is the ma	ximum SAF	R Value of eac	h test band						

^{2.} The EUT Radios with duty factors of 100% apply the maximum duty factor supported by the device to determine compliance

Report No.: RXA1308-0126SAR01R1 Page 26 of 76

Table 11: SAR Values are scaled for the power drift

Limits	Reported SAI (W/F	(g)	Power Drift (dB) ± 0.21	+ Power Drift	Reported SAR _{1g} (W/kg) (include + power drift)					
Frequency	Duty C	ycle	Power	10^(dB /10)	Duty	Cycle				
(MHz)	100%	50%	Drift(dB)		100%	50%				
The EUT display towards phantom for 12.5 KHz (Analog, Face Held)										
406.5	5.533	2.766	-0.051	1.012	5.599	2.799				
418.0	6.207	3.104	-0.036	1.008	6.257	3.129				
435.5	8.437	4.219	-0.036	1.008	8.504	4.253				
453.5	8.219	4.110	-0.023	1.005	8.260	4.131				
469.5	6.572	3.286	-0.089	1.021	6.710	3.355				
The	EUT display towa	rds ground for	12.5 KHz, Be	lt (Analog, Body-	Worn)					
406.5	6.731	3.366	-0.047	1.011	6.805	3.403				
418.0	9.039	4.519	-0.053	1.012	9.147	4.573				
435.5	9.467	4.733	-0.063	1.015	9.609	4.804				
453.5	9.270	4.635	-0.042	1.010	9.363	4.681				
469.5	7.105	3.553	-0.053	1.012	7.190	3.596				
The	EUT display towa	ards ground for	6.25 KHz, Be	elt (Digital, Body-	Worn)					
435.5	10.935	5.468	-0.047	1.011	11.055	5.528				
The EUT disp	lay towards groui	nd for 6.25 KHz	, Belt (1 st Re _l	peated SAR, Digi	tal, Body-Worr	1)				
435.5	10.949	5.474	-0.087	1.020	11.168	5.583				

Note: 1. The value with blue color is the maximum SAR Value of each test band.

^{2.} The Exposure category about EUT: Controlled Environment /Occupational, so the SAR limit is 8.0W/kg averaged over any 1 gram of tissue.

Report No.: RXA1308-0126SAR01R1 Page 27 of 76

Table 12: SAR Measurement Variability Results

Test Position	Frequency (MHz)	Measured SAR (1g) 50%	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)	
Digital, Body-Worn	435.5	4.050	4.055	1.0	N/A	N/A	

Note: 1) When the original highest measured SAR is ≥ 4.0 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 7.25 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 7.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 4.0 W/kg

Report No.: RXA1308-0126SAR01R1 Page 28 of 76

8. Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom			
1	System repetivity	Α	0.5	N	1	1	0.5	9			
	Measurement system										
2	-probe calibration	В	6.7	N	1	1	6.7	∞			
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞			
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	8			
5	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	8			
6	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8			
7	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	8			
8	-readout Electronics	В	1.0	N	1	1	1.0	8			
9	-response time	В	0.8	R	$\sqrt{3}$	1	0.5	8			
10	-integration time	В	4.3	R	$\sqrt{3}$	1	2.5	8			
11	-RF Ambient noise	В	3.0	R	$\sqrt{3}$	1	1.7	80			
12	-RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	8			
13	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8			
14	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8			
15	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞			
		Tes	st sample Relate	ed							
16	-Test Sample Positioning	Α	2.9	N	1	1	2.9	71			
17	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5			
18	- Power drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞			
		Ph	ysical paramete	er							

Report No.: RXA1308-0126SAR01R1 Page 29 of 76

19	-phantom Uncertainty	В	4.0	R	$\sqrt{3}$	1	2.3	8
20	Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	N	1	0. 84	0. 9	8
21	-Liquid conductivity (measurement uncertainty)	В	2.5	Ν	1	0. 71	1.8	9
22	-Liquid permittivity (measurement uncertainty)	В	2.5	N	1	0. 26	0. 7	9
23	-Liquid conductivity -temperature uncertainty	В	1.7	R	$\sqrt{3}$	0. 71	0. 7	8
24	-Liquid permittivity -temperature uncertainty	В	0.3	R	$\sqrt{3}$	0. 26	0.05	8
Combined standard uncertainty		$u_c' = \sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$					11.72	
Expan 95 %)	ded uncertainty (confidence interval of	$u_e = 2u_c$		N	k=2		23.44	

Report No.: RXA1308-0126SAR01R1 Page 30 of 76

9. Main Test Instruments

Table 13: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year	
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested		
03	Power meter	Agilent E4417A	GB41291714	March 10, 2013	One year	
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year	
05	Power sensor	E9327A	US40441622	January 2, 2013	One year	
06	Signal Generator	HP 8341B	2730A00804	September 11, 2012	One year	
07	Amplifier	IXA-020	0401	No Calibration Requested		
08	E-field Probe	EX3DV3	3519	February 20, 2013	One year	
09	DAE	DAE4	1317	January 25, 2013	One year	
10	Validation Kit 450MHz	D450V3	1065	November 9, 2010	Three years	
11	Dual directional coupler	778D-012	50519	March 25, 2013	One year	
12	Temperature Probe	JM222	AA1009129	March 14, 2013	One year	
13	Hygrothermograph	WS-1	64591	September 27, 2012	One year	

*****END OF REPORT *****

Report No.: RXA1308-0126SAR01R1 Page 31 of 76

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the Flat Phantom (450MHz, 15.4cm depth)

Report No.: RXA1308-0126SAR01R1 Page 32 of 76

ANNEX B: System Check Results

System Performance Check at 450 MHz Head TSL

DUT: Dipole450 MHz; Type: D450V3; Serial: 1065

Date/Time: 9/3/2013 8:09:21 AM

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\epsilon_r = 44.26$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.6 ℃

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(10.80,10.80, 10.80); Calibrated: 2/20/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

d=15mm, Pin=398mW/Area Scan (41x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.15 mW/g

d=15mm, Pin=398mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 52.2 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 3.29 W/kg

SAR(1 g) = 2.00 mW/g; SAR(10 g) = 1.31 mW/g Maximum value of SAR (measured) = 2.15 mW/g

0 dB = 2.15 mW/g

Figure 7 System Performance Check 450MHz 398mW

Report No.: RXA1308-0126SAR01R1 Page 33 of 76

System Performance Check at 450 MHz Body TSL

DUT: Dipole450 MHz; Type: D450V3; Serial: 1065

Date/Time: 9/1/2013 3:26:21 PM

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; σ = 0.97 mho/m; ε_r = 55.55; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

d=15mm, Pin=398mW/Area Scan (61x221x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.9 mW/g

d=15mm, Pin=398mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 44.7 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.17 mW/g

Maximum value of SAR (measured) = 1.89 mW/g

0 dB = 1.89 mW/g

Figure 8 System Performance Check 450MHz 398mW

Report No.: RXA1308-0126SAR01R1 Page 34 of 76

ANNEX C: Graph Results

Face Held, Front towards Phantom 406.5MHz (12.5 kHz Channel Spacing)

Date/Time: 9/3/2013 2:08:19 PM

Communication System: PTT; Frequency: 406.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 406.5 MHz; $\sigma = 0.827 \text{ mho/m}$; $\varepsilon_r = 45.36$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(10.80,10.80, 10.80); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Phantom 406.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.34 W/kg

Front towards Phantom 406.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 74.455 V/m; Power Drift = -0.051 dB

Peak SAR (extrapolated) = 6.437 mW/g

SAR(1 g) = 4.94 mW/g; SAR(10 g) = 3.75 mW/g Maximum value of SAR (measured) = 5.18 W/kg

Figure 9 Face Held, Front towards Phantom 406.5MHz

Report No.: RXA1308-0126SAR01R1 Page 35 of 76

Face Held, Front towards Phantom 418.0MHz (12.5kHz Channel Spacing)

Date/Time: 9/3/2013 2:38:39 PM

Communication System: PTT; Frequency: 418 MHz; Duty Cycle: 1:1

Medium parameters used: f = 418 MHz; σ = 0.839 mho/m; ϵ_r = 45.011; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(10.80,10.80, 10.80); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Phantom 418.0MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.52 W/kg

Front towards Phantom 418.0MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 74.435 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 6.677 mW/g

SAR(1 g) = 5.13 mW/g; SAR(10 g) = 3.88 mW/g Maximum value of SAR (measured) = 5.38 W/kg

Figure 10 Face Held, Front towards Phantom 418.0MHz

Report No.: RXA1308-0126SAR01R1 Page 36 of 76

Face Held, Front towards Phantom 435.5MHz (12.5 kHz Channel Spacing)

Date/Time: 9/3/2013 9:38:15 AM

Communication System: PTT; Frequency: 435.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 436 MHz; σ = 0.851 mho/m; ε_r = 44.602; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(10.80,10.80, 10.80); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Phantom 435.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.30 W/kg

Front towards Phantom 435.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 73.786 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 7.637 mW/g

SAR(1 g) = 5.9 mW/g; SAR(10 g) = 4.48 mW/gMaximum value of SAR (measured) = 6.18 W/kg

Report No.: RXA1308-0126SAR01R1 Page 37 of 76

Figure 11 Face Held, Front towards Phantom 435.5MHz

Report No.: RXA1308-0126SAR01R1 Page 38 of 76

Face Held, Front towards Phantom 453.5MHz (12.5 kHz Channel Spacing)

Date/Time: 9/3/2013 10:07:26 AM

Communication System: PTT; Frequency: 453.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 454 MHz; σ = 0.864 mho/m; ε_r = 44.21; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(10.80,10.80, 10.80); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Phantom 453.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.59 W/kg

Front towards Phantom 453.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 69.985 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 8.003 mW/g

SAR(1 g) = 6.18 mW/g; SAR(10 g) = 4.69 mW/g Maximum value of SAR (measured) = 6.48 W/kg

Figure 12 Face Held, Front towards Phantom 453.5MHz

Report No.: RXA1308-0126SAR01R1 Page 39 of 76

Face Held, Front towards Phantom 469.5MHz (12.5 kHz Channel Spacing)

Date/Time: 9/3/2013 1:48:26 PM

Communication System: PTT; Frequency: 469.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; σ = 0.876 mho/m; ε_r = 43.907; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(10.80,10.80, 10.80); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Phantom 469.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.74 W/kg

Front towards Phantom 469.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 73.290 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 6.869 mW/g

SAR(1 g) = 5.3 mW/g; SAR(10 g) = 4.01 mW/g Maximum value of SAR (measured) = 5.54 W/kg

Figure 13 Face Held, Front towards Phantom 469.5MHz

Report No.: RXA1308-0126SAR01R1 Page 40 of 76

Body-Worn, Front towards Ground 406.5MHz (12.5kHz Channel Spacing)

Date/Time: 9/1/2013 9:42:21 PM

Communication System: PTT; Frequency: 406.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 406.5 MHz; σ = 0.935 mho/m; ϵ_r = 56.309; ρ = 1000

kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 406.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.60 W/kg

Front towards Ground 406.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.330 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 8.182 mW/g

SAR(1 g) = 6.01 mW/g; SAR(10 g) = 4.45 mW/g

Figure 14 Body-Worn, Front towards Ground 406.5MHz

Report No.: RXA1308-0126SAR01R1 Page 41 of 76

Body-Worn, Front towards Ground 418.0MHz (12.5kHz Channel Spacing)

Date/Time: 9/1/2013 9:15:24 PM

Communication System: PTT; Frequency: 418 MHz; Duty Cycle: 1:1

Medium parameters used: f = 418 MHz; σ = 0.943 mho/m; ε_r = 56.07; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 418.0MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.24 W/kg

Front towards Ground 418.0MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 91.935 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 10.211 mW/g

SAR(1 g) = 7.47 mW/g; SAR(10 g) = 5.52 mW/g Maximum value of SAR (measured) = 7.83 W/kg

Figure 15 Body-Worn, Front towards Ground 418.0MHz

Report No.: RXA1308-0126SAR01R1 Page 42 of 76

Body-Worn, Front towards Ground 435.5MHz (12.5kHz Channel Spacing)

Date/Time: 9/1/2013 8:28:38 PM

Communication System: PTT; Frequency: 435.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 435.5 MHz; $\sigma = 0.959$ mho/m; $\varepsilon_r = 55.845$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 435.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.34 W/kg

Front towards Ground 435.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.257 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 9.083 mW/g

SAR(1 g) = 6.62 mW/g; SAR(10 g) = 4.89 mW/g

Figure 16 Body-Worn, Front towards Ground 435.5MHz

Report No.: RXA1308-0126SAR01R1 Page 43 of 76

Body-Worn, Front towards Ground 453.5MHz (12.5kHz Channel Spacing)

Date/Time: 9/1/2013 5:25:43 PM

Communication System: PTT; Frequency: 453.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 453.5 MHz; σ = 0.974 mho/m; ϵ_r = 55.462; ρ = 1000

kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 453.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.56 W/kg

Front towards Ground 453.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.509 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 9.543 mW/g

SAR(1 g) = 6.97 mW/g; SAR(10 g) = 5.16 mW/g Maximum value of SAR (measured) = 7.31 W/kg

Figure 17 Body-Worn, Front towards Ground 453.5MHz

Report No.: RXA1308-0126SAR01R1 Page 44 of 76

Body-Worn, Front towards Ground 469.5MHz (12.5kHz Channel Spacing)

Date/Time: 9/1/2013 4:51:16 PM

Communication System: PTT; Frequency: 469.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 469.5 MHz; σ = 0.988 mho/m; ϵ_r = 55.272; ρ = 1000

kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 469.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.33 W/kg

Front towards Ground 469.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.217 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 7.915 mW/g

SAR(1 g) = 5.73 mW/g; SAR(10 g) = 4.2 mW/g

Figure 18 Body-Worn, Front towards Ground 469.5MHz

Report No.: RXA1308-0126SAR01R1 Page 45 of 76

Body-Worn, Front towards Ground 435.5MHz (6.25kHz Channel Spacing)

Date/Time: 9/1/2013 6:05:43 PM

Communication System: PTT Digital; Frequency: 435.5 MHz; Duty Cycle: 1:1.99986

Medium parameters used (interpolated): f = 435.5 MHz; σ = 0.959 mho/m; ϵ_r = 55.845; ρ = 1000

kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 435.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 8.83 W/kg

Front towards Ground 435.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 97.589 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 11.474 mW/g

SAR(1 g) = 8.1 mW/g; SAR(10 g) = 5.85 mW/g

Maximum value of SAR (measured) = 8.51 W/kg

Figure 19 Body-Worn, Front towards Ground 435.5MHz

Report No.: RXA1308-0126SAR01R1 Page 46 of 76

Body-Worn, Front towards Ground 435.5MHz (1st Repeated SAR, 6.25kHz Channel Spacing)

Date/Time: 9/1/2013 7:20:41 PM

Communication System: PTT Digital; Frequency: 435.5 MHz; Duty Cycle: 1:1.99986

Medium parameters used (interpolated): f = 435.5 MHz; $\sigma = 0.959$ mho/m; $\varepsilon_r = 55.845$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV3 - SN3519; ConvF(11.79,11.79, 11.79); Calibrated: 2/20/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Front towards Ground 435.5MHz/Area Scan (61x201x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 9.17 W/kg

Front towards Ground 435.5MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 100.9 V/m; Power Drift = -0.087 dB

Peak SAR (extrapolated) = 11.469 mW/g

SAR(1 g) = 8.11 mW/g; SAR(10 g) = 5.87 mW/gMaximum value of SAR (measured) = 8.65 W/kg

Report No.: RXA1308-0126SAR01R1 Page 47 of 76

Figure 20 Body-Worn, Front towards Ground 435.5MHz

Report No.: RXA1308-0126SAR01R1 Page 48 of 76

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Certificate No: EX3-3519 Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV3 - SN:3519

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

February 20, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: February 22, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Report No.: RXA1308-0126SAR01R1 Page 49 of 76

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z ConvF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3519 Feb13

Report No.: RXA1308-0126SAR01R1 Page 50 of 76

EX3DV3 - SN:3519

February 20, 2013

Probe EX3DV3

SN:3519

Manufactured: Calibrated:

March 8, 2004 February 20, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3519_Feb13

Page 3 of 11

Report No.: RXA1308-0126SAR01R1 Page 51 of 76

EX3DV3-SN:3519

February 20, 2013

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.82	0.70	0.72	± 10.1 %
DCP (mV) ⁸	100.2	99.1	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	112.7	±3.0 %
		Y	0.0	0.0	1.0		116.6	
		Z	0.0	0.0	1.0		142.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report No.: RXA1308-0126SAR01R1 Page 52 of 76

EX3DV3-SN:3519

February 20, 2013

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	10.80	10.80	10.80	0.13	1.43	± 13.4 %
750	41.9	0.89	11.12	11.12	11.12	0.18	1.41	± 12.0 %
835	41.5	0.90	10.73	10.73	10.73	0.12	1.92	± 12.0 %
900	41.5	0.97	10.72	10.72	10.72	0.31	0.90	± 12.0 %
1750	40.1	1.37	9.03	9.03	9.03	0.30	0.91	± 12.0 %
1810	40.0	1.40	8.85	8.85	8.85	0.46	0.72	± 12.0 %
1900	40.0	1.40	8.79	8.79	8.79	0.34	0.83	± 12.0 %
2000	40.0	1.40	8.76	8.76	8.76	0.38	0.83	± 12.0 %
2100	39.8	1.49	8.93	8.93	8.93	0.76	0.57	± 12.0 %
2300	39.5	1.67	8.40	8.40	8.40	0.39	0.80	± 12.0 %
2450	39.2	1.80	7.94	7.94	7.94	0.31	0.92	± 12.0 %
2600	39.0	1.96	7.69	7.69	7.69	0.36	0.89	± 12.0 %
5200	36.0	4.66	4.99	4.99	4.99	0.41	1.80	± 13.1 %
5300	35.9	4.76	4.86	4.86	4.86	0.42	1.80	± 13.1 %
5500	35.6	4.96	4.51	4.51	4.51	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.31	4.31	4.31	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.28	4.28	4.28	0.48	1.80	± 13.1 %

 $^{^{\}circ}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Report No.: RXA1308-0126SAR01R1 Page 53 of 76

EX3DV3-SN:3519

February 20, 2013

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	11.79	11.79	11.79	0.05	1.25	± 13.4 %
750	55.5	0.96	10.78	10.78	10.78	0.42	0.86	± 12.0 %
835	55.2	0.97	10.56	10.56	10.56	0.20	1.37	± 12.0 %
900	55.0	1.05	10.46	10.46	10.46	0.36	0.93	± 12.0 %
1750	53.4	1.49	8.99	8.99	8.99	0.49	0.69	± 12.0 %
1810	53.3	1.52	8.79	8.79	8.79	0.54	0.68	± 12.0 %
1900	53.3	1.52	8.58	8.58	8.58	0.26	1.00	± 12.0 %
2000	53.3	1.52	8.61	8.61	8.61	0.38	0.80	± 12.0 %
2100	53.2	1.62	8.72	8.72	8.72	0.24	1.09	± 12.0 9
2300	52.9	1.81	8.13	8.13	8.13	0.57	0.67	± 12.0 9
2450	52.7	1.95	7.88	7.88	7.88	0.80	0.50	± 12.0 9
2600	52.5	2.16	7.61	7.61	7.61	0.62	0.50	± 12.0 9
3500	51.3	3.31	7.14	7.14	7.14	0.33	1.24	± 13.1 9
5200	49.0	5.30	4.49	4.49	4.49	0.50	1.90	± 13.1 9
5300	48.9	5.42	4.27	4.27	4.27	0.50	1.90	± 13.1 9
5500	48.6	5.65	3.96	3.96	3.96	0.55	1.90	± 13.1 9
5600	48.5	5.77	3.63	3.63	3.63	0.60	1.90	± 13.1 9
5800	48.2	6.00	3.88	3.88	3.88	0.59	1.90	± 13.1 9

 $^{^{\}rm C}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Report No.: RXA1308-0126SAR01R1 Page 54 of 76

EX3DV3-SN:3519

February 20, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV3-SN:3519

February 20, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV3-SN:3519

February 20, 2013

Dynamic Range $f(SAR_{head})$ (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Report No.: RXA1308-0126SAR01R1 Page 57 of 76

EX3DV3-SN:3519

February 20, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\(\phi, \(\Pri \)), f = 900 MHz

Report No.: RXA1308-0126SAR01R1 Page 58 of 76

EX3DV3- SN:3519

February 20, 2013

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-93.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3519_Feb13

Report No.: RXA1308-0126SAR01R1 Page 59 of 76

ANNEX E: D450V3 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

TA (Auden) Client Certificate No: D450V3-1065_Nov10 CALIBRATION CERTIFICATE Object D450V3 - SN: 1065 Calibration procedure(s) QA CAL-15.v5 Calibration Procedure for dipole validation kits below 800 MHz Calibration date: November 09, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01030) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01030) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01030) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-10 (No. 217-01026) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-10 (No. 217-01028) Mar-11 SN: 5047.2 / 06327 Type-N mismatch combination 31-Mar-10 (No. 217-01029) Mar-11 Reference Probe ET3DV6 (LF) SN: 1507 03-Jul-10 (No. ET3-1507_Jul10) Jul-11 SN: 654 ** DAE4 04-May-10 (No. DAE4-654_May10) May-11 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 04-Aug-99 (in house check Oct-10) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name **Eunction** Signature Calibrated by: Jeton Kastrati Laboratory Technician

Issued: November 9, 2010

Certificate No: D450V3-1065_Nov10

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Page 1 of 9

Technical Manager

Report No.: RXA1308-0126SAR01R1 Page 60 of 76

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etalormage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms eriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V3-1065_Nov10

Report No.: RXA1308-0126SAR01R1 Page 61 of 76

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	-0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.87 mW / g
SAR normalized	normalized to 1W	4.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.76 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.25 mW / g
SAR normalized	normalized to 1W	3.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.17 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1065_Nov10

Report No.: RXA1308-0126SAR01R1 Page 62 of 76

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.90 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	398 mW input power	1.77 mW / g
SAR normalized	normalized to 1W	4.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.51 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.18 mW / g
SAR normalized	normalized to 1W	2.94 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.03 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1065_Nov10 Page 4 of 9

Report No.: RXA1308-0126SAR01R1 Page 63 of 76

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	59.2 Ω - 4.9 jΩ	
Return Loss	- 20.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.5 Ω - 7.9 jΩ
Return Loss	- 20.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.354 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 16, 2010

Certificate No: D450V3-1065_Nov10

Report No.: RXA1308-0126SAR01R1 Page 64 of 76

DASY5 Validation Report for Head TSL

Date/Time: 09.11.2010 10:36:58

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1065

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 03.07.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 04.05.2010
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=398mW /d=15mm /Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.99 mW/g

Pin=398mW /d=15mm /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.3 V/m; Power Drift = -0.00664 dB

Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 2.01 mW/g

0 dB = 2.01 mW/g

Report No.: RXA1308-0126SAR01R1 Page 65 of 76

Report No.: RXA1308-0126SAR01R1 Page 66 of 76

DASY5 Validation Report for Body TSL

Date/Time: 09.11.2010 13:52:55

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1065

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: MSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.9 \text{ mho/m}$; $\epsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(7.11, 7.11, 7.11); Calibrated: 03.07.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 04.05.2010
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=398mW /d=15mm /Area Scan (61x201x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.89 mW/g

Pin=398mW /d=15mm, /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.4 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 2.7 W/kg

SAR(1 g) = 1.77 mW/g; SAR(10 g) = 1.18 mW/g

Maximum value of SAR (measured) = 1.89 mW/g

0 dB = 1.89 mW/g

Report No.: RXA1308-0126SAR01R1 Page 67 of 76

Report No.: RXA1308-0126SAR01R1 Page 68 of 76

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) .

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

TA Shanghai (Auden) Client Certificate No: DAE4-1317_Jan13 CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BJ - SN: 1317 Calibration procedure(s) QA CAL-06.v25 Calibration procedure for the data acquisition electronics (DAE) Calibration date: January 25, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 02-Oct-12 (No:12728) Oct-13 Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-13 (in house check) In house check: Jan-14 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-13 (in house check) In house check: Jan-14 Name Function Signature Calibrated by: R.Mayoraz Technician Fin Bomholt Deputy Technical Manager Approved by: Issued: January 25, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-1317_Jan13

Page 1 of 5

Report No.: RXA1308-0126SAR01R1 Page 69 of 76

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1317_Jan13

Page 2 of 5

Report No.: RXA1308-0126SAR01R1 Page 70 of 76

DC Voltage Measurement A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1......+3mV High Range: 1LSB = $6.1 \mu V$, 1LSB = Low Range: 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х .	Y	Z
High Range	404.011 ± 0.02% (k=2)	404.006 ± 0.02% (k=2)	403.901 ± 0.02% (k=2)
Low Range	3.98819 ± 1.55% (k=2)	3.99805 ± 1.55% (k=2)	3.98192 ± 1.55% (k=2)

Connector Angle

Connector Angle to be used in DASY system	117°±1°
---	---------

Certificate No: DAE4-1317_Jan13

Page 3 of 5

Report No.: RXA1308-0126SAR01R1 Page 71 of 76

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199994.16	-0.78	-0.00
Channel X + Input	20000.75	0.37	0.00
Channel X - Input	-19997.98	2.89	-0.01
Channel Y + Input	199995.20	0.02	0.00
Channel Y + Input	19999.08	-1.15	-0.01
Channel Y - Input	-20002.66	-1.68	0.01
Channel Z + Input	199994.67	-0.43	-0.00
Channel Z + Input	19997.92	-2.31	-0.01
Channel Z - Input	-20000.66	0.26	-0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2001.23	0.59	0.03
Channel X + Input	201.53	0.55	0.28
Channel X - Input	-198.20	0.62	-0.31
Channel Y + Input	2000.33	-0.29	-0.01
Channel Y + Input	200.43	-0.68	-0.34
Channel Y - Input	-199.64	-0.69	0.35
Channel Z + Input	2000.78	0.22	0.01
Channel Z + Input	200.32	-0.69	-0.34
Channel Z - Input	-199.27	-0.35	0.18

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-23.69	-25.75
	- 200	28.59	26.45
Channel Y	200	-1.44	-1.70
	- 200	-0.06	-0.16
Channel Z	200	-10.76	-11.18
	- 200	9.82	9.91

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	70	1.52	-4.72
Channel Y	200	8.54	10	4.31
Channel Z	200	10.79	5.34	-

Certificate No: DAE4-1317_Jan13

Report No.: RXA1308-0126SAR01R1 Page 72 of 76

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16104	15986
Channel Y	16111	15993
Channel Z	16217	16069

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.28	0.53	2.45	0.33
Channel Y	-1.29	-2.89	0.51	0.58
Channel Z	-0.39	-1.47	1.06	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: RXA1308-0126SAR01R1 Page 73 of 76

ANNEX G: The EUT Appearances and Test Configuration

a: EUT

b: belt clip

Report No.: RXA1308-0126SAR01R1 Page 74 of 76

c: battery

Picture 3: Constituents of the sample

Report No.: RXA1308-0126SAR01R1 Page 75 of 76

Picture 4: Face-held, the front of the EUT towards phantom, the distance from the EUT Antenna to the bottom of the Phantom is 36mm

Report No.: RXA1308-0126SAR01R1 Page 76 of 76

Picture 5: Body-worn, the front of the EUT towards ground, Belt clip directed tightly to touch the bottom of the flat phantom, the distance from the EUT Antenna to the bottom of the Phantom is 26mm