Contents

- LICENSE
- Deep Learning Tutorials
- Getting Started
 - Download
 - Datasets
 - Notation
 - A Primer on Supervised Optimization for Deep Learning
 - Theano/Python Tips
- Classifying MNIST digits using Logistic Regression
 - The Model
 - Defining a Loss Function
 - Creating a LogisticRegression class
 - Learning the Model
 - Testing the model
 - Putting it All Together
 - Prediction Using a Trained Model
- Multilayer Perceptron
 - The Model
 - Going from logistic regression to MLP
 - Putting it All Together
 - Tips and Tricks for training MLPs
- Convolutional Neural Networks (LeNet)
 - Motivation
 - Sparse Connectivity
 - Shared Weights
 - Details and Notation
 - The Convolution Operator
 - MaxPooling
 - The Full Model: LeNet
 - Putting it All Together
 - Running the Code

- Tips and Tricks
- Denoising Autoencoders (dA)
 - Autoencoders
 - Denoising Autoencoders
 - Putting it All Together
 - Running the Code
- Stacked Denoising Autoencoders (SdA)
 - Stacked Autoencoders
 - Putting it all together
 - Running the Code
 - Tips and Tricks
- Restricted Boltzmann Machines (RBM)
 - Energy-Based Models (EBM)
 - Restricted Boltzmann Machines (RBM)
 - Sampling in an RBM
 - Implementation
 - Results
- Deep Belief Networks
 - Deep Belief Networks
 - Justifying Greedy-Layer Wise Pre-Training
 - Implementation
 - Putting it all together
 - Running the Code
 - Tips and Tricks
- Hybrid Monte-Carlo Sampling
 - Theory
 - Implementing HMC Using Theano
 - Testing our Sampler
 - References
- Recurrent Neural Networks with Word Embeddings
 - Summary
 - o Code Citations Contact
 - <u>Task</u>
 - Dataset

- Recurrent Neural Network Model
- Evaluation
- Training
- Running the Code
- LSTM Networks for Sentiment Analysis
 - Summary
 - <u>Data</u>
 - Model
 - Code Citations Contact
 - References
- Modeling and generating sequences of polyphonic music with the RNN-RBM
 - The RNN-RBM
 - Implementation
 - Results
 - How to improve this code
- Miscellaneous
 - Plotting Samples and Filters
- References