1. If CINC2=\$, it reduces to separating hyperplane theorem on slides.

Now we just consider CINC2+\$ since (int CINC2+\$ arms intersection)

Now we just consider $C_1 \cap C_2 \neq \emptyset$, since $(int C_1) \cap C_2 = \emptyset$, any intersection x_0 must full on ∂G , namely $x_0 \in G_1 \cap \partial G_1$. Then we have $x_0 \in C_2 \cap \partial G_2$, otherwise, if $x_0 \in int C_2$, there exists a ball $U(x_0, E) \subset C_2$ and $x_0' \in V(x_0, E)$ s.t. $x_0' \in int C_1$, causing $(int C_1) \cap C_2 \neq \emptyset$.

Let C=C1-C2 which is a nonempty convex set.

Lemma: $0 \in \partial C$. Proof: Since $x_0 \in C_1 \cap C_2$, we have $0 \in C$. If $0 \in \text{int } C$, there exists a ball $V(0, E) \subset C$, $\forall d \in V(0, E)$, $\exists x_1 \in C_1$, $x_2 \in C_2$: $d = x_1 - x_2 \in \text{int } C$, namely $x_1 = x_2 + d \in C_1$, this is impossible for $x_2 \notin \text{int } C_1$.

Since $0 \in \partial C$, by supporting hyperplane theorem, there exists $w \neq 0$ s.t. $\forall x \in C$: $< w, x> \leq 0$, namely $\forall x_1 \in C_1$, $\forall x_2 \in C_2$: $w^Tx_1 \leq w^Tx_2$, take $b = \sup_{x_1 \in C_1} w^Tx_1$, then $\forall x_1 \in C_1$: $w^Tx_1 \leq b$, $\forall x_2 \in C_2$: $w^Tx_2 \geq b$. Q.E.D.

2. (a) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1

Thus OxtoyeSa (a<+a).

When a=+co, Sa=domf is convex (this will be shown in (b))

Similarly, Yx, y E Cx, YO = [0.1]: 0x+ By = Cx (a<+0)

When $a=+\infty$, $Ca=IR^n$ is still convex.

Therefore, Ya ∈ (-co.+co], So and Co are convex.

(b) domf = $S+\infty = \{x : f(x) < +\infty\}$, $\forall x, y \in S+\infty$, $\forall \theta \in [0, 1] : f(\theta x + \bar{\theta} y) \leq \theta f(x) + \bar{\theta} f(y) < \theta \cdot +\infty + \bar{\theta} \cdot +\infty = +\infty$

Then $\theta x + \bar{\theta} y \in S + \infty$, thus domf = $S + \infty$ is convex.

(c) Let $\alpha = \inf_{x \in X} f(x)$

If $a \notin f(x)$, then $M = C_a = \emptyset$ is convex.

If $\alpha \in f(x)$, then $\alpha = \min_{x \in X} f(x)$, $C_{\alpha} = \{x : f(x) \le \alpha\} = \{x : f(x) = \min_{x \in X} f(x)\} = M$ According to conclusion in (a), $M = C_{\alpha}$ is convex.

3. Suppose
$$\theta \in (\theta_0, |)$$
. Let $\alpha = \frac{\theta - \theta_0}{\theta_0}$, $\bar{\alpha} = -\frac{\bar{\theta}}{\bar{\theta}_0}$, Then $f(\theta \times + \bar{\theta} y) = f[\alpha x + \bar{\alpha}(\theta_0 \times + \bar{\theta}_0 y)]$

$$\leq \alpha f(x) + \bar{\alpha} f(\theta_0 x + \bar{\theta}_0 y)$$

$$< \alpha f(x) + \bar{\alpha} [\theta_0 f(x) + \bar{\theta}_0 f(y)]$$

$$= (\alpha + \bar{\alpha} \theta_0) f(x) + \bar{\alpha} \bar{\theta}_0 f(y)$$

$$= \theta f(x) + \bar{\theta} f(y)$$

For $\theta \in (0, \theta_0)$, the inequality can be proved similarly. Therefore, $\forall \theta \in (0,1)$: $f(\theta x + \overline{\theta} y) < \theta f(y) + \overline{\theta} f(y)$. Q.E.D.

4. Since f is differentiable and convex, by first-order condition we have:

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} \cdot (y-x) \qquad 0$$

$$f(x) \ge f(y) + \nabla f(y)^{\mathsf{T}} \cdot (x-y) \qquad 0$$

Then 0+0 is

$$f(x) + f(y) = f(x) + f(y) + \left[\nabla f(x) - \nabla f(y)\right]^{\mathsf{T}} \cdot (y - x)$$

Namely \x, y ∈ domf: <ofw - \rf(y), x-y> >0.