Tensor Categories, Chapter 7

Marcelo De Martino

Ghent University

December 16, 2021

- Recap
- 2 Section 7.7
- 3 Section 7.8
- 4 Section 7.9
- Section 7.10

Previously ...

§7.1

- ullet Definition of (left) module category over $\mathcal{C}\colon \mathcal{M}=(\mathcal{M},\otimes,m,l)$
- ullet Structures on ${\mathcal M}$ vs. monoidal functors $F:{\mathcal C} o \operatorname{End}({\mathcal M})$
- Abstract nonsense: $\operatorname{\mathsf{Hom}}_{\mathcal{M}}(X^*\otimes M,N)\cong \operatorname{\mathsf{Hom}}_{\mathcal{M}}(M,X\otimes N)$

§7.2

- C-module functors: $(F, s) \in \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_1, \mathcal{M}_2)$
- ullet Category of $\mathcal C$ -module functors

§7.3

ullet Module cat's for $\mathcal C$ (multi)tensor

§7.5

Exact module categories

... previously, still.

 $\S7.6$: Assume $\mathcal M$ is an exact $\mathcal C$ -module category

- ullet ${\cal M}$ has enough projectives
- \mathcal{M} is completely reducible: $\mathcal{M} = \bigoplus_{i \in I} \mathcal{M}_i$, \mathcal{M}_i indecomposable cat's
- $F: \mathcal{M}_1 \to \mathcal{M}_2$ additive module functor, \mathcal{M}_1 exact $\Rightarrow F$ exact

If $P \in \mathcal{C}$ nonzero, $X \in \mathcal{M}$ and $P \otimes X = 0$ then X = 0

$$(4.3.9) \qquad \underbrace{1 \xrightarrow{\operatorname{corv}'} * P \otimes P} \xrightarrow{1} \in \mathbb{R}^{\times}$$

$$\times \cong 1. \times \xrightarrow{\mathbb{R}^{n}} (P \cdot P) \cdot \times \xrightarrow{\sim} * P \cdot (P \cdot \times) = 0$$

- Recap
- 2 Section 7.7
- 3 Section 7.8
- 4 Section 7.9
- Section 7.10

Section 7.7

Proposition

 \mathcal{M}/\mathcal{C} indecomposable exact module category. Then, $Gr(\mathcal{M})$ is an irreducible \mathbb{Z}_+ -module over $Gr(\mathcal{C})$.

- Recap
- Section 7.7
- 3 Section 7.8
- 4 Section 7.9
- Section 7.10

Algebras in C

Assume $\mathcal C$ is a (multi)tensor category. We will describe a general construction to obtain module categories over $\mathcal C$.

Definition

A triple (A, m, u) with $A \in \mathcal{C}$, $m : A \otimes A \to A$, $u : \mathbb{1} \to A$ is called an algebra in \mathcal{C} if the following diagrams commute:

1. A
$$\stackrel{P}{\longrightarrow}$$
 A

U. \begin{align*}
\pm & \pm & \pm & \pm & \quad \text{(onit)} \\
A. A \left* \right* \right* \right* \\
A. A \left* \right* \right* \right* \right* \\
A. A \left* \right* \right*

Examples of Algebras

• Fun(G), functions on a finite group G is an algebra in Rep(G).

$$m(10g) = 1g$$
 , $u: 1riv \Rightarrow \lambda \mapsto v_{\lambda}: g \mapsto \lambda \, \forall y$

Proposition

If $X \in \mathcal{C}$ then $A = X \otimes X^*$ is an algebra in \mathcal{C} .

$$V: 1 \xrightarrow{\operatorname{Coev}_X} A = X \cdot X^*$$

Modules over algebras in ${\mathcal C}$

Definition

A right module over (A, m, u) in \mathcal{C} is a pair (M, p) with $M \in \mathcal{C}$ and $p : M \otimes A \to M$ such that the following diagrams commute:

$$(M. A)A \xrightarrow{a} M.(A.A) \qquad M.1 \longrightarrow M$$

$$P. \downarrow \qquad \downarrow . m$$

$$M.A \xrightarrow{P} M.A \qquad M.u \xrightarrow{P} M$$

Proposition

If (M, p) a right \mathcal{C} -module then (*M, q) is a left \mathcal{C} -module with q the image of p under:

Properties of Algebras

need
$$(M, \widetilde{\otimes}, \widetilde{\wedge}, \widetilde{\ell})$$
 + diagr
+ abelian

Proposition

The category $\mathcal{M} = \mathsf{Mod}_{\mathcal{C}}(A)$ is a left \mathcal{C} -module category.

$$\begin{cases}
(M,p) \in \mathcal{M} \\
\times \in \mathcal{C}
\end{cases} \xrightarrow{(X \cdot M, q) \in \mathcal{M}}
\end{cases}$$

$$(X \cdot M) \cdot A \xrightarrow{\alpha} \times \cdot (M, q)$$

$$(Y \cdot M) \cdot A \xrightarrow{\alpha} \times \cdot (M, q)$$

$$(Y \cdot M) \cdot A \xrightarrow{\alpha} \times \cdot (M, q)$$

$$(Y \cdot M) \cdot A \xrightarrow{\alpha} \times \cdot (M, q)$$

$$(Y \cdot M) \cdot A \xrightarrow{\alpha} \times \cdot (M, q)$$

Properties of Algebras

Proposition (adjointness of $X \mapsto X \otimes A$ and Forg : $\mathsf{Mod}_\mathcal{C}(A) \to \mathcal{C}$)

For any $X \in \mathcal{C}$, $M \in \mathsf{Mod}_{\mathcal{C}}(A)$ there is a natural isomorphism $\mathsf{Hom}_{\mathcal{A}}(X \otimes A, M) \cong \mathsf{Hom}_{\mathcal{C}}(X, \mathsf{Forg}(M))$.

$$H_{A}(X \cdot A, M) \qquad H_{e}(X, M)$$

$$\Phi(\mathfrak{f}) = (X \times X \cdot 1 \xrightarrow{\circ} X \cdot A \xrightarrow{\mathfrak{f}} M)$$

$$\Psi(\mathfrak{g}) = (X \cdot A \xrightarrow{\mathfrak{g}} M \cdot A \xrightarrow{P} M)$$

$$Check: \Psi(\mathfrak{g}) \in H_{A}, \Phi \circ \Psi = id, \Psi \circ b = id.$$

Properties of Algebras

Proposition

For any $M \in \mathsf{Mod}_\mathcal{C}(A)$ there is a surjection $X \otimes A \to M$ for some $X \in \mathcal{C}$.

Proposition

If C has enough projectives then $Mod_{C}(A)$ has enough projectives.

Further definitions

Definition

Two algebras A, B in C are Morita equivalent if $Mod_{C}(A) \cong Mod_{C}(B)$.

Definition

An algebra A in C is called *exact* if $Mod_{C}(A)$ is exact.

Definition

Let (M,p) and (N,q) right and left A-mods. Then $\underline{M \otimes_A N}$ is the coeq of

$$M \cdot A \cdot N \xrightarrow{\text{(id } \cdot \text{q)} = g} M \cdot N \xrightarrow{\pi} M \cdot_{A} N$$

$$(\text{id } \cdot \text{q}) = g$$

Properties of the tensor over A

Proposition

Let (M, p) and (N, q) right and left A-mods. Then $M \otimes_A A \cong M$ and $A \otimes_A N \cong N$. Further, the functor $-\otimes_A -$ is bi-right exact.

$$M.A.A \xrightarrow{P.} M.A \xrightarrow{P} M \qquad \psi = \pi \circ \cup \circ \Gamma_{M}^{-1}$$

$$M.A.A \xrightarrow{P.} M.A \xrightarrow{P} M \qquad = P \cup \Gamma_{M}^{-1}$$

$$= P \cup \Gamma_{M}^{-1}$$

$$= 1d$$

Proposition

If M, N right A-mods, then $\operatorname{Hom}_{\mathcal{C}}(M \otimes_A {}^*N, X) \cong \operatorname{Hom}_A(M, X \otimes N)$.

$$\begin{array}{c} M \\ \varsigma \\ M \cdot 1 \\ \longrightarrow M \cdot (*_{N \cdot N}) \xrightarrow{\sim} (M \cdot {}^{k} N) \cdot N \xrightarrow{\pi'} (M \cdot {}^{k} N) \cdot N \end{array}$$

- Recap
- Section 7.7
- Section 7.8
- 4 Section 7.9
- Section 7.10

Fix $\mathcal C$ finite tensor cat, $\mathcal M$ a $\mathcal C$ -module cat, $M_1,M_2\in\mathcal M$

$$\mathcal{C} \to \mathsf{Vec}, \qquad X \mapsto \mathsf{Hom}_{\mathcal{M}}(X \otimes M_1, M_2).$$

Definition 2. H 12

The object $\underline{\text{Hom}}(M_1, M_2) \in \mathcal{C}$ representing the above functor is called *the internal Hom* from M_1 to M_2 .

Proposition

The assignment $\mathcal{M}^{op} \times \mathcal{M} \to \mathcal{C}$, with $(M_1, M_2) \mapsto \underline{\mathsf{Hom}}(M_1, M_2)$ is (bi)-functorial. Further, $\underline{\mathsf{Hom}}$ is left exact in both variables.

Fix M₁,
$$f: M_2 \rightarrow M_2':$$
 define $f' = \underbrace{H}(M_{1,1} -)(f)$
 $f' = \underbrace{H}(M_{1,1} - M_1, M_2) \xrightarrow{\sim} He(\underbrace{H}_{1,2}) \xrightarrow{\Rightarrow} \underbrace{Id}_{1,2}$
 $H_M(\underbrace{H}_{1,2} - M_1, M_2') \xrightarrow{\sim} He(\underbrace{H}_{1,2}) \xrightarrow{\downarrow}_{1,2}) \xrightarrow{\downarrow}_{1,2}$

Proposition

There are natural isomorphisms

$$(\text{def}) \quad \text{Hom}_{\mathcal{M}}(X \otimes M_1, M_2) \cong \text{Hom}_{\mathcal{C}}(X, \underline{\text{Hom}}(M_1, M_2)) \tag{1}$$

$$\operatorname{Hom}_{\mathcal{M}}(M_1, X \otimes M_2) \cong \operatorname{Hom}_{\mathcal{C}}(\mathbb{1}, X \otimes \operatorname{\underline{Hom}}(M_1, M_2)) \tag{2}$$

$$\underline{\operatorname{Hom}}(X\otimes M_1,M_2)\cong\underline{\operatorname{Hom}}(M_1,M_2)\otimes X^* \tag{4}$$

Proposition

If $M \in \mathcal{M}$ then $F_M : \mathcal{M} \to \mathcal{C}$ with $N \mapsto \underline{\mathsf{Hom}}(M,N)$ is a \mathcal{C} -mod functor.

$$S_{X,N}$$
: $F_{M}(X,N) = \underline{Hom}(M,X,N) \simeq X \cdot F_{M}(N)$ (3)

Corollary

If ${\mathcal M}$ is exact, then the bifunctor $\underline{\mathsf{Hom}}$ is exact.

Proposition

- (1) If $\underline{\mathsf{Hom}}$ is exact in the second variable then $\mathcal M$ is exact.
- (2) $\mathcal{M}_1, \mathcal{M}_2$ nonzero module cats and any $F: \mathcal{M}_1 \to \mathcal{M}_2$ is exact. Then, \mathcal{M}_1 is exact.
 - (1) $P \text{ proj} \Rightarrow H_{\mathcal{M}} \left(P \cdot M_{j} \right) \sim H \cdot e(P_{j} + \underline{hom}(M_{j}))$ In $e \Rightarrow H_{\mathcal{M}} \left(P \cdot M_{j} \right)$ is exact.

 ($\mathcal{M} \text{ exact iff } P \in \mathcal{C} \text{ proj} \Rightarrow P \otimes M \in \mathcal{M} \text{ proj, for all } M \in \mathcal{M}$)

What does $\underline{\mathsf{Hom}}$ look like in $\mathsf{Mod}_\mathcal{C}(A)$?

Proposition

 $A_M := \underbrace{\mathsf{Hom}(M,M)}$ is an algebra in $\mathcal C$ for all $M \in \mathcal M$ and $\underline{\mathsf{Hom}}(M,N)$ is a right A-module.

Recall
$$\phi_X : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X, \underline{H}_{1,2}) \cong \operatorname{\mathsf{Hom}}_{\mathcal{M}}(X \otimes M_1, M_2)$$

$$X = \underbrace{H_{1,2}} \sim eV_{12} := \underbrace{\varphi(id)} \sim u \quad i=2.$$

$$f: \left(\underbrace{H_{2,3}}, \underbrace{H_{1,2}} \right) \cdot M_{1} \simeq \underbrace{H_{2,3}}, \left(\underbrace{H_{1,2}}, M_{1} \right)$$

$$\stackrel{\sim}{\underset{e_{12}}{\longrightarrow}} \underbrace{H_{2,3}} \cdot M_{2} \stackrel{e_{23}}{\longrightarrow} M_{3} \quad i=2=3 \rightsquigarrow M$$

$$\sim \Phi^{-1}(f) : \underbrace{H_{2,3}} \cdot \underbrace{H_{1,2}} \longrightarrow \underbrace{H_{2,3}} \stackrel{e_{23}}{\longrightarrow} \underbrace{H_{2,2}} \stackrel{e_{23}}{\longrightarrow} \underbrace{H$$

- Recap
- Section 7.7
- Section 7.8
- 4 Section 7.9
- Section 7.10

Assume: $\mathcal C$ finite (multi)tensor category, $\mathcal M$ a $\mathcal C$ -module category and $M\in\mathcal M$ such that

- (1) $\underline{\mathsf{Hom}}(M,-):\mathcal{M}\to\mathcal{C}$ is right exact
- (2) For any $N \in \mathcal{M}$ there is $X \in \mathcal{C}$ and a surjection $X \otimes M \to N$.

Theorem

The functor $F_M: \mathcal{M} o \mathsf{Mod}_\mathcal{C}(A_M)$ given by

$$F_M(N) = \underline{\mathsf{Hom}}(M,N)$$

is an equivalence of cats.