```
In [1]: %matplotlib inline
   import matplotlib.pyplot as plt
   import pandas as pd
```

In [3]: df = pd.read\_csv('C:/Users/danal/Desktop/Ex\_Files\_Data\_Science\_Python/Exercise Fi
df.head()

Out[3]:

|            | Open   | High   | Low    | Close  | Volume  |
|------------|--------|--------|--------|--------|---------|
| Date       |        |        |        |        |         |
| 2016-12-07 | 195.95 | 195.98 | 195.94 | 195.96 | 3024607 |
| 2016-12-06 | 195.28 | 195.95 | 195.26 | 195.94 | 4005017 |
| 2016-12-05 | 195.25 | 195.40 | 195.25 | 195.25 | 1184931 |
| 2016-12-02 | 195.25 | 195.35 | 195.17 | 195.20 | 1520838 |
| 2016-12-01 | 195.22 | 195.40 | 195.14 | 195.31 | 1683012 |

```
In [5]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
    df.loc['2016-04', 'Close'].plot(ax=ax1)
    df.loc['2016-04', 'Volume'].plot(ax=ax2, rot=45)
```

## Out[5]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1916db19ac8>



```
In [6]: cax, vax = df[['Close', 'Volume']].plot(subplots=True)
    xmin, xmax = cax.get_xlim()
    cax.hlines(df['Close'].mean(), xmin, xmax, color='green')
```

Out[6]: <matplotlib.collections.LineCollection at 0x1916dc550c8>





In [8]: import numpy as np

```
In [10]: @interact(limit=6)
    def plot_sin(limit):
        xs = np.linspace(-limit, limit, 100)
        plt.plot(xs, np.sin(xs), label='sin(x) [{} - {}]'.format(-limit, limit))
        plt.show()
```

