Practical AI: clustering practicum

Stanislav Protasov for Harbour.Space University

Reading

https://scikit-learn.org/stable/modules/clustering.html

https://louvain-igraph.readthedocs.io/en/latest/<a>/intro.html

Agenda

- Problem statement
- How we measure quality
- Couple of algorithms
 - K-means
 - Louvain modularity
 - Hierarchical clustering
 - DBScan

Why do we cluster?

- And modelling is done to simplify data
- We simplify because we cannot make decisions based on millions of numbers
 - E.g. Linear regression brings **few numbers** to describe a domain instead of holding samples

- "Terminator and similar" is a good way to describe

customer's preferences

 Clustering is a way to bring limited number of entities (clusters or representatives) while preserving general idea about the structure.

Clustering - what is this?

Set partitioning - grouping of the set's elements into non-empty subsets, in such a way that every element is included in one and only one of the subsets.

Number of partitions - **Bells number** (~ e^x)
$$B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$$

Number of non-empty partitions of size k- **Stirling**

number of second kind

$$\left\{ egin{aligned} n \ k \end{aligned}
ight\} = rac{1}{k!} \sum_{i=0}^k (-1)^i inom{k}{i} (k-i)^n. \end{aligned}$$

NB: for any metric introduced, we <u>cannot</u> solve a problem with brute force

Clustering - what to do then?

Thus we put **limitations**:

- Pre-define number of clusters
- Implement iterative approaches
- Rely on distance to avoid considering obviously bad case

But even then clustering is usually slow.

Clustering - what is the object?

As we don't have any idea about cluster form, we will rely on distance. There are 2 major approaches to define distance

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} \infty & 2 & \infty & \infty & 1 \\ \infty & \infty & 5 & 1 & 6 \\ \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & 1 & \infty \end{pmatrix}$$

Clustering - how to understand success?

General idea: ... include groups with **small distances between cluster members**, dense areas of the data space ...

Also: maximize between-cluster variance, minimize within-class variance.

Internal evaluation (on the training data).

- Davies-Bouldin index $DB = \frac{1}{n} \sum_{i=1}^{n} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$
- Dunn index
- Silhouette Coefficient $D = \frac{\min_{1 \leq i < j \leq n} d(i,j)}{\max_{1 \leq k \leq n} d'(k)}$,

Purity, coverage, Differential edit distance - rely on pre-defined clusters (compare with validation set)

K-Means

Lab #1 Clustering with kNN

- Consider <u>clustering example</u>.
- Run.
- What is silhouette score for k={2, 3}?
- Why?

Louvain modularity

$$Q = rac{1}{2m} \sum_{ij} \left[A_{ij} - rac{k_i k_j}{2m}
ight] \delta(c_i, c_j),$$

- A_{ij} represents the edge weight between nodes i and j;
- ullet k_i and k_j are the sum of the weights of the edges attached to nodes i and j, respectively;
- ullet 2m is the sum of all of the edge weights in the graph;
- c_i and c_j are the communities of the nodes; and
- δ is a simple delta function.

- Graph-based
- Considers only existing edges (no cetroids)
- Starts with community number == number of nodes.
- Searches for communities.
 Change element
 assignment if this
 improves modularity

Hierarchical Clustering

Bottom-up (merge smaller clusters to improve metric)

Top-down (divide clusters to improve)

Rely on:

- Single links
- All within-cluster links
- Centroids

DBScan

Density-based spatial clustering of applications with noise.

Lab #2

Run different <u>clustering algorithms</u> on the same data.

Estimate quality.

Visualize your data. Please, refer to

https://nikkimarinsek.com/blog/7-ways-to-label-a-cluster-plot-python

Homework

User has multiple subscriptions. Too many to show a news feed. We need to bring this number to 10 without losing quality.

https://github.com/hsu-ai-course/hsu.ai/tree/master/homeworks/13