复变函数 B 第一次习题课

张礼贤 邓凯宁

中国科学技术大学

2022年9月11日

习题课两节内容概览

第一节 45 分钟 张礼贤 作业中的问题,及从作业回溯的基础知识 第二节 45 分钟 邓凯宁 拓展:什么是复数? 复数就是"一次多项式", 复数就是特殊的矩阵

- 1 第2题
 - 复数的三角形式——就要这个形式
 - 如何找辐角? 关于反三角函数的说明
- 2 第7题
 - 和差化积——注明关键变形的理由,否则一律当成不会做
 - 等比数列求和公式——运算律真的有意义
- ③ 第 16 题
 - 复数的乘除和模长——善用运算律,不要画蛇添足
 - 数列收敛
- 4 第 19 题
 - 开集、边界、连通、区域——基本概念不能忘
- 5 多项式 (第 4 题、第 14 题)
 - 带余除法、一次因式定理 (第 4 题) ——简单但有用
 - 根与系数的关系、实系数多项式虚根成对定理 (第 14 题)
 - 代数基本定理——基本定理不简单

- 1 第2题
 - 复数的三角形式——就要这个形式
 - 如何找辐角? 关于反三角函数的说明
- ② 第7型
 - 和差化积——注明关键变形的理由,否则一律当成不会做
 - 等比数列求和公式——运算律真的有意义
- 3 第 16 题
 - 复数的乘除和模长——善用运算律,不要画蛇添足
 - 数列收敛
- 4 第 19 题
 - 开集、边界、连通、区域——基本概念不能忘
- 🌀 多项式 (第 4 题、第 14 题)
 - 带余除法、一次因式定理 (第 4 题) ——简单但有用
 - 根与系数的关系、实系数多项式虚根成对定理 (第 14 题)
 - 代数基本定理——基本定理不简单

第2题

用三角式及指数式表示下列复数,并求辐角的一般值:

(2)
$$z = -\sqrt{3}i$$

(4)
$$z = 1 - \cos \theta + i \sin \theta$$

复数的三角形式

三角形式必须严格符合

$$r(\cos\phi + i\sin\phi), r \ge 0, \phi \in \mathbb{R}$$
 (1)

复数的三角形式 $r(\cos \phi + i \sin \phi), r \geq 0, \phi \in \mathbb{R}$

第 (2) 小题, $-\sqrt{3}i$, 模长为 $\sqrt{3}$, 辐角为 $-\frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$.

不是三角形式

$$\sqrt{3}i\sin(-\frac{\pi}{2})$$

是三角形式

$$\sqrt{3}\left(\cos(-\frac{\pi}{2})+\mathrm{i}\sin(-\frac{\pi}{2})\right)$$

复数的三角形式 $r(\cos \phi + i \sin \phi), r \geq 0, \phi \in \mathbb{R}$

第(4)小题,

$$1 - \cos \theta + i \sin \theta = 2 \sin^2 \frac{\theta}{2} + i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$
 (2)

$$= 2\sin\frac{\theta}{2}(\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}) \tag{3}$$

是三角形式吗?

$$2\sin\frac{\theta}{2}\left(\cos(\frac{\pi}{2} - \frac{\theta}{2}) + i\sin(\frac{\pi}{2} - \frac{\theta}{2})\right)$$

讨论 θ 的范围,找到真正的三角形式!

$1 - \cos \theta + i \sin \theta$

问题

设 $1 - \cos \theta + i \sin \theta = r(\cos \phi + i \sin \phi)$, 如何找到 ϕ 的值?

有的同学这样做: 首先计算模长:

$$r = |1 - \cos \theta + i \sin \theta| = \sqrt{(1 - \cos \theta)^2 + \sin^2 \theta}$$
 (4)

$$=\sqrt{2-2\cos\theta}\tag{5}$$

$$=\sqrt{4\sin^2\frac{\theta}{2}}\tag{6}$$

$$=2|\sin\frac{\theta}{2}|\tag{7}$$

这完全正确。接下来计算辐角的余弦:

$1 - \cos \theta + i \sin \theta$

因为 $r\cos\phi = 1 - \cos\theta$, 所以辐角的余弦:

$$\cos \phi = \frac{1 - \cos \theta}{r} \tag{8}$$

$$=\frac{1-\cos\theta}{2|\sin\frac{\theta}{2}|}\tag{9}$$

$$=\frac{2\sin^2\frac{\theta}{2}}{2|\sin\frac{\theta}{2}|}\tag{10}$$

$$=|\sin\frac{\theta}{2}|\tag{11}$$

由此能否说明

$$\phi = \arccos|\sin\frac{\theta}{2}| + 2k\pi, \ k \in \mathbb{Z}$$
 (12)

余弦函数

反余弦函数 arccos(x)

正弦函数

反正弦函数 arcsin(x)

正切函数

反正切函数 arctan(x)

如何确定 $1 - \cos \theta + i \sin \theta$ 的辐角?

就此题而言,由于 $1-\cos\theta$ 总是非负的,所以仅由辐角的正弦或者正切就能确定辐角。

- 1 第2题
 - 复数的三角形式——就要这个形式
 - 如何找辐角? 关于反三角函数的说明
- 2 第7题
 - 和差化积——注明关键变形的理由,否则一律当成不会做
 - 等比数列求和公式——运算律真的有意义
- 3 第 16 题
 - 复数的乘除和模长——善用运算律,不要画蛇添足
 - 数列收敛
- 4 第 19 题
 - 开集、边界、连通、区域——基本概念不能忘
- 🌀 多项式 (第 4 题、第 14 题)
 - 带余除法、一次因式定理(第4题)——简单但有用
 - 根与系数的关系、实系数多项式虚根成对定理 (第 14 题)
 - 代数基本定理——基本定理不简单

第7题

利用复数的指数式,证明以下等式:

$$\sum_{k=1}^{n} \sin k\theta = \frac{1}{2} \cot \frac{\theta}{2} - \frac{\cos(n\theta + \frac{\theta}{2})}{2\sin\frac{\theta}{2}}, 0 < \theta < \pi$$
 (13)

解答

因为 $e^{ik\theta} = \cos k\theta + i\sin k\theta$,所以 $\sum_{k=1}^{n} \sin k\theta$ 就是 $\sum_{k=1}^{n} e^{ik\theta}$ 的虚部.

利用等比数列求和公式

$$\sum_{k=1}^{n} (e^{i\theta})^k = \frac{e^{i\theta} (1 - (e^{i\theta})^n)}{1 - e^{i\theta}} = \frac{e^{i\theta} (1 - e^{in\theta})}{1 - e^{i\theta}}$$
(14)

常规操作:分子分母同乘以 $1-e^{-i\theta}$ 以把分母化为实数。

$$\frac{e^{i\theta}(1 - e^{in\theta})(1 - e^{-i\theta})}{(1 - e^{i\theta})(1 - e^{-i\theta})} = \frac{(e^{i\theta} - 1)(1 - e^{in\theta})}{2(1 - \cos\theta)}$$
(15)

解答

找到它的虚部:

$$\frac{\sin\theta - \sin(n+1)\theta + \sin n\theta}{2(1-\cos\theta)} \tag{16}$$

三角恒等变形:

$$\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{4\sin^2\frac{\theta}{2}} - \frac{\sin(n+1)\theta - \sin n\theta}{4\sin^2\frac{\theta}{2}}$$
 (17)

要证的是

$$\frac{1}{2}\cot\frac{\theta}{2} - \frac{\cos(n\theta + \frac{\theta}{2})}{2\sin\frac{\theta}{2}} \tag{18}$$

和差化积, $\sin(\mathbf{n}+1)\theta - \sin\mathbf{n}\theta = 2\cos(\mathbf{n}\theta + \frac{\theta}{2})\sin\frac{\theta}{2}$.

和差化积

只要记住有这么个公式, 现场推导即可

 $\sin \alpha - \sin \beta = 2 \cos \operatorname{orsin}(??) \cos \operatorname{orsin}(??)$

$$\alpha = \frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2} \tag{19}$$

$$\beta = \frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2} \tag{20}$$

运算律真的有意义

定理

等比数列求和公式:设1-q可以作分母,则:

$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$
 (21)

证明.

设
$$S = 1 + q + q^2 + ... + q^n$$
, 则

$$qS = q + q^2 + \dots + q^n + q^{n+1}$$
 (22)

所以

$$(1-q)S = S - qS = 1 - q^{n+1}$$
 (23)

到目前为止用了哪些运算律?接下来怎么做?板书

方阵

等比方阵列求和公式:

设 *A* 是方阵, *I* – *A* 是可逆的,则:

$$I + A + A^2 + ... + A^n = (I - A)^{-1}(I - A^{n+1})$$
 (24)

$$I + A + A^{2} + \dots + A^{n} = (I - A^{n+1})(I - A)^{-1}$$
 (25)

线性变换

等比线性变换列求和公式:

设 A 是线性变换, I - A 是可逆的, 则:

$$\mathcal{I} + \mathcal{A} + \mathcal{A}^2 + \dots + \mathcal{A}^n = (\mathcal{I} - \mathcal{A})^{-1} (\mathcal{I} - \mathcal{A}^{n+1})$$
 (26)

$$\mathcal{I} + \mathcal{A} + \mathcal{A}^2 + \dots + \mathcal{A}^n = (\mathcal{I} - \mathcal{A}^{n+1})(\mathcal{I} - \mathcal{A})^{-1}$$
(27)

- 1 第 2 题
 - 复数的三角形式——就要这个形式
 - 如何找辐角? 关于反三角函数的说明
- 2 第7题
 - 和差化积——注明关键变形的理由,否则一律当成不会做
 - 等比数列求和公式——运算律真的有意义
- ③ 第 16 题
 - 复数的乘除和模长——善用运算律,不要画蛇添足
 - 数列收敛
- 4 第 19 题
 - 开集、边界、连通、区域——基本概念不能忘
- 🌀 多项式 (第 4 题、第 14 题)
 - 带余除法、一次因式定理(第4题)——简单但有用
 - 根与系数的关系、实系数多项式虚根成对定理 (第 14 题)
 - 代数基本定理——基本定理不简单

第 16 题

下面复数列是否有极限?如果有则求出其极限值;如果没有则说明理由:

(1)
$$\frac{3+4i}{6}$$
, $\left(\frac{3+4i}{6}\right)^2$, ..., $\left(\frac{3+4i}{6}\right)^n$, ...

(2)
$$1, \frac{i}{2}, -\frac{1}{3}, -\frac{i}{4}, \frac{1}{5}, \frac{i}{6}, -\frac{1}{7}, -\frac{i}{8}, \cdots$$

(3)
$$1, i, -1, -i, 1, i, -1, -i, \cdots$$

复数的乘除和模长

$$|z_1 z_2| = |z_1||z_2| \tag{28}$$

$$|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|} \tag{29}$$

ε , N, ε , N, ε , N...

当
$$n > 1$$
 时, $|z_n - 0| < 0.8$.
当 $n > 8$ 时, $|z_n - 0| < 0.2$.
当 $n > 12$ 时, $|z_n - 0| < 0.1$.
当 $n > 16$ 时, $|z_n - 0| < 0.05$.
当 $n > 25$ 时, $|z_n - 0| < 0.01$.
当 $n > 37$ 时, $|z_n - 0| < 0.001$.

一句顶一万句

数列收敛于 c 的定义

如果下面这句话成立,就把 c 称为 $\{z_n\}$ 的极限,或者说 $\{z_n\}$ 收敛于 c:

对任意正数 ε , 存在正整数 N, 当 n > N 时, $|z_n - c| < \varepsilon$.

数列收敛以及不收敛的定义

对任意正数 ε ,存在正整数 N,当 n>N 时, $|z_n-c|<\varepsilon$

如果上面这句话成立,就说数列收敛于 c。 如果上面这句话不成立,就说数列不收敛于 c。 如果存在 c,使得数列收敛于 c,就说数列收敛。 如果对任意 c,数列不收敛于 c,就说数列不收敛。

收敛的等价刻画

子列刻画

一个数列收敛, 当且仅当: 其所有子列都收敛于同一极限值。

柯西收敛准则

数列 $\{z_n\}$ 收敛,当且仅当:对任意 $\varepsilon > 0$,存在 N,当 m, n > N 时, $|z_n - z_m| < \varepsilon$.

- 1 第2题
 - 复数的三角形式——就要这个形式
 - 如何找辐角? 关于反三角函数的说明
- 2 第7题
 - 和差化积——注明关键变形的理由,否则一律当成不会做
 - 等比数列求和公式——运算律真的有意义
- 3 第 16 题
 - 复数的乘除和模长——善用运算律,不要画蛇添足
 - 数列收敛
- 4 第 19 题
 - 开集、边界、连通、区域——基本概念不能忘
- 🌀 多项式 (第 4 题、第 14 题)
 - 带余除法、一次因式定理 (第 4 题) ——简单但有用
 - 根与系数的关系、实系数多项式虚根成对定理 (第 14 题)
 - 代数基本定理——基本定理不简单

平面点集中的点的分类:

连通与道路连通

可以证明:

道路连通一定连通

注意:

连通不一定道路连通

区域

定义

区域就是连通的开集。

可以证明:

开集如果是连通的,则必定是道路连通的。 换句话说,区域总是道路连通的。

(2) Im $z \geqslant 3$

不是区域,因为它不是开集。

边界: 直线 y = 3。

(4)
$$\frac{\pi}{4} < \arg z < \frac{\pi}{3} \coprod 1 < |z| < 2$$

(6)
$$2 < |z+1| < 3 \square -2 < \operatorname{Re} z \leqslant \frac{3}{2}$$

(8) Im z > 1 |z| < 2

$$(10) \left| \frac{z-1}{z+1} \right| > 1.$$

边界有范围则要注明

是线段,就不要只写一个直线。是弧,就不要写整个圆。

边界总是闭集

用区间来表述,要带上端点,即写成闭区间!

- 1 第2题
 - 复数的三角形式——就要这个形式
 - 如何找辐角? 关于反三角函数的说明
- 2 第7题
 - 和差化积——注明关键变形的理由,否则一律当成不会做
 - 等比数列求和公式——运算律真的有意义
- 3 第 16 题
 - 复数的乘除和模长——善用运算律,不要画蛇添足
 - 数列收敛
- 4 第 19 题
 - 开集、边界、连通、区域——基本概念不能忘
- 5 多项式 (第 4 题、第 14 题)
 - 带余除法、一次因式定理 (第 4 题) ——简单但有用
 - 根与系数的关系、实系数多项式虚根成对定理(第14题)
 - 代数基本定理——基本定理不简单

带余除法练习题

练习 0

$$(2x^6 + 5x^5 - 2x^4 + 6x^3 - 5x^2 + 7x - 2) \div (x^2 + 1)$$

$$(2x^7 - x^6 + 7x^5 - 3x^4 + 6x^3 - 5x^2 + 7x - 2) \div (x^5 + 3x^3 + x - 2)$$

带余除法练习题

练习 2

$$(x^3 - 10x + 5) \div (x - 3)$$

$$(x^4 - 4x^2 + 2x - 4) \div (x - 2)$$

带余除法练习题答案

练习0

$$(2x^6 + 5x^5 - 2x^4 + 6x^3 - 5x^2 + 7x - 2) \div (x^2 + 1)$$

= $(2x^4 + 5x^3 - 4x^2 + x - 1)...(6x - 1)$

$$(2x^7 - x^6 + 7x^5 - 3x^4 + 6x^3 - 5x^2 + 7x - 2) \div (x^5 + 3x^3 + x - 2)$$
$$= (2x^2 - x + 1)...(x^3 + 4x)$$

带余除法练习题答案

练习 2

$$(x^3 - 10x + 5) \div (x - 3)$$
$$= (x^2 + 3x - 1)...2$$

$$(x^4 - 4x^2 + 2x - 4) \div (x - 2)$$

= $(x^3 + 2x^2 + 2)...0$

一次因式定理

定理

若 f(x) 是多项式, f(a) = 0, 则 f(x) 有一次因式 (x - a).

很多同学初中就知道这个定理,即使不知道有这么个定理,大概也在默默地使用它。但是多数人恐怕并没有意识到如何严谨地证明它。

第 4 题

求解方程 $z^3 = -i$.

解答

$$z^3 = -i$$
 等价于 $z^3 + i = 0$,

而

$$z^{3} + i = (z - i)(z^{2} + iz - 1)$$
 (30)

所以 z = i 或者 $z^2 + iz - 1 = 0$,

后者是一个二次方程,由二次方程求根公式得

$$z = \frac{-i \pm \sqrt{3}}{2} \tag{31}$$

第 14 题

题目

设 z_1, z_2 是两复数, 如果 $z_1 + z_2$ 和 $z_1 z_2$ 都是实数, 证明 z_1 和 z_2 或者都是实数, 或者是一对共轭复数.

绝大多数同学的做法是设 $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$ 来讨论。

我的证明

设 $z_1 + z_2 = -b$, $z_1 z_2 = c$, 由题意 b, c 都是实数. 由二次方程根与系数的关系 (或者说韦达定理), z_1 , z_2 是关于 z 的实系数一元二次方程 $z^2 + bz + c = 0$ 的两个根. 由求根公式,

$$z = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

若 $b^2 - 4c \ge 0$, 则 z_1, z_2 都是实数, 否则 z_1, z_2 是一对共轭的复数.

二次方程的韦达定理

设

$$az^2 + bz + c = 0$$

为一元二次方程,如果 z1, z2 是它的两个根,则

$$z_1+z_2=-\frac{b}{a}$$

$$z_1 \cdot z_2 = \frac{c}{a}$$

反之, 如果两个复数 z_1, z_2 满足上述两式, 则它们是 $az^2 + bz + c = 0$ 的 两根.

二次方程韦达定理的证明

证明

由因式定理,若 $az^2 + bz + c$ 有零点 z_1, z_2 ,则它有一次因式 $(z - z_1)$,有一次因式 $(z - z_2)$,所以

$$az^2 + bz + c = a(z - z_1)(z - z_2)$$

比较两边的 z 的系数就知道 $b = -a(z_1 + z_2)$.

比较两边的常数项就知道 $c = az_1z_2$.

反之,如果 z_1, z_2 满足上述两式,那么 $a(z-z_1)(z-z_2) = az^2 + bz + c$, 所以它们是 $az^2 + bz + c$ 的两根.

三次方程的韦达定理

设

$$az^3 + bz^2 + cz + d = 0$$

为一元三次方程,如果 z_1, z_2, z_3 是它的三个根,则

$$z_1+z_2+z_3=-\frac{b}{a}$$

$$z_1 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_1 = \frac{c}{a}$$

$$z_1 \cdot z_2 \cdot z_3 = -\frac{d}{a}$$

反之,如果两个复数 z_1, z_2, z_3 满足上述三式,则它们是 $az^3 + bz^2 + cz + d = 0$ 的三根.

三次方程韦达定理的证明

证明.

由因式定理,若 $az^3 + bz^2 + cz + d$ 有零点 z_1, z_2, z_3 ,则它有一次因式 $(z - z_1)$,有一次因式 $(z - z_2)$,有一次因式 $(z - z_3)$,所以

$$az^3 + bz^2 + cz + d = a(z - z_1)(z - z_2)(z - z_3)$$

比较两边的 z^2 的系数就知道 $b = -a(z_1 + z_2 + z_3)$. 比较两边的 z 的系数就知道 $c = a(z_1z_2 + z_2z_3 + z_3z_1)$. 比较两边的常数项就知道 $d = -az_1z_2z_3$. 反之,如果 z_1, z_2, z_3 满足上述三式,那么 $a(z-z_1)(z-z_2)(z-z_3) = az^3 + bz^2 + cz + d$,所以它们是 $az^3 + bz^2 + cz + d$ 的三根.

虚根共轭成对

证明在这就不写了,当作一道练习题,同学们自己试试看,不会的看群 里的文件《1 答案和作业中的问题.pdf》。

实系数多项式虚根共轭成对

前提! 实系数!!! 实系数!!! 实系数!!!

比如说: $z^3 + iz + 1 = 0$ 的三个根:

-1.0047 + 0.345379i, 0.224543 + 0.690315i, 0.780156 - 1.03569i

代数基本定理

定理

一元 n 次复系数多项式恰能分解为 n 个一次因式的乘积。

$$z^{n} + a_{n-1}z^{n-1} + ... + a_{1}z + a_{0} = (z - z_{1})(z - z_{2})...(z - z_{n})$$

代数基本定理——等价表述

定理

一元 n 次复系数多项式一定存在一个复数根。

$$z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0} = 0$$

代数基本定理——实系数多项式的情形

定理

实系数多项式总能分解为一次因式和二次因式的乘积。

$$z^{n} + a_{n-1}z^{n-1} + ... + a_{1}z + a_{0} = (z - x_{1})(z - x_{2})...(z^{2} + b_{0}z + c_{0})(z^{2} + b_{1}z + c_{1})...$$