Problem

AB is the diameter of the circle O. Extend AB to C.CD is tangent to the circle at D.BE is tangent to the circle at B and meets CD at E. Show that $CA = \sqrt{3}CD$ if $DE = \frac{1}{2}EC$.

Solution

Connect OB.

Since both CD and BE are tangents of circle, BE = DE. Since $DE = \frac{1}{2}EC$, $BE = \frac{1}{2}EC$. So $\angle C = 30^\circ$. Thus OC = 2OD. Since OB = OD, CB = OC - OB = OC - OD = 2OD

OD = OD = OB = OA. Thus CA = 3CB. We know that $CD^2 = CA \times CB = \frac{1}{3}CA^2$. So $CA^2 = 3CD^2 \quad \Rightarrow \quad CA = \sqrt{3}CD$.