Lösungsskizzen zur Abschlussklausur

Systemsoftware (SYS) Betriebssysteme-orientierter Teil

6. Februar 2008

N	lame:										
V	ornan'	ne:									
\mathbb{N}	/ // (Iatrik	elnumn	ner:								
\mathbf{S}	tudier	ngang:									
	[inweise										
	Ihre	gen Sie zue n <i>Vornam</i> nen nicht _{	en und	Ihre	Matrike						
	Sie	reiben Sie können au in Verweis	.ch die l	leeren	Blätter	am En	de der	Heftung	g nutzei	n. In di	esem Fal
	• Lege	en Sie bitt	e Ihren	Licht	bildausu	veis und	l Ihren	Studen	tenausu	veis ber	eit.
		Hilfsmitte Taschenre				dig, do _l	pelseit	ig bescl	nrieben	es DIN-	A4-Blatt
	• Mit	Bleistift o	der Ro	tstift g	geschrie	bene Er	gebniss	e werde	en <i>nich</i>	t gewert	et.
	• Die	Bearbeitu	ngszeit	dieses	Teils d	er Abso	hlusskl	ausur b	eträgt	60 Min	uten.
F	fone dent	len Sie sic werden a s/in wird v	ıls Täus	schung	gsversuc	h anges	sehen u	$\operatorname{nd} \operatorname{der}_{i}$	die ent	$_{ m spreche}$	ende Stu-
			T	ı	T	T	T	Т	T	T	
	1)	2a)	2b)	3)	4a)	4b)	5a)	5b)	6a)	6b)	6c)

 $\mathbf{\Sigma}$

Note

Lösungsskizzen zur Abschlussklausur

Systemsoftware (SYS)

6.2.2008 MSc Christian Baun

Aufgabe 1 (6 Punkte)

Nennen Sie die drei Arten von Kontextinformation, die das Betriebssystem speichert, und beschreiben Sie in wenigen Sätzen, welche Informationen darin enthalten sind.

Aufgabe 2 (3+6 Punkte)

- a) Zeichnen Sie das 3-Zustands-Prozessmodell mit seinen Zuständen und allen Prozessübergängen.
- b) Zeichnen Sie das 6-Zustands-Prozessmodell mit seinen Zuständen und allen Prozessübergängen.

Aufgabe 3 (2 Punkte)

Moderne Betriebssysteme unterscheiden zwischen **Benutzermodus** (User Mode) und **Kernel-Modus** (Kernel Mode). Was halten Sie davon, Benutzermodus und Kernel-Modus zu einem einzigen Modus zusammenzufassen? Begründen Sie kurz ihre Antwort.

Aufgabe 4 (4+6 Punkte)

- a) Welche zwei **Gruppen von Ein- und Ausgabegeräten** gibt es bezüglich der kleinsten Übertragungseinheit. Was charakterisiert jede der beiden Gruppen? Nennen Sie für jede Gruppe zwei Geräte-Beispiele.
- b) Nennen Sie die drei existierenden Möglichkeiten, damit eine Anwendung Daten von Ein- und Ausgabegeräten lesen kann. Was sind die Unterschiede, Vor- und Nachteile?

Aufgabe 5 (3+2 Punkte)

- a) Nennen Sie drei häufige Gründe für Unterbrechungen und beschreiben Sie diese kurz.
- b) Was sind die Unterschiede zwischen Interrupts und Exceptions?

Aufgabe 6 (6+6+6 Punkte)

Auf einem Einprozessorrechner sollen fünf Prozesse verarbeitet werden.

Prozess	CPU-Laufzeit (ms)	Startzeit
A	3	0
В	5	2
С	4	3
D	6	6
Е	2	9

- a) Skizzieren Sie die Ausführungsreihenfolge der Prozesse mit einem Gantt-Diagramm (Zeitleiste) für First Come First Served (FCFS), Round Robin (Zeitquantum q=3 ms), Longest Job First (LJF), Shortest Job First (SJF), Longest Remaining Time First (LRTF) und Shortest Remaining Time First (SRTF).
- b) Berechnen Sie die mittleren Laufzeiten der Prozesse.
- c) Berechnen Sie die mittleren Wartezeiten der Prozesse.

A	C 1	-1 \
Λ 11	tgabe	1 1
Δu	igant	<i>1</i>
	O	,

Punkte:											

- Benutzer-Kontext: Daten des Prozesses im zugewiesenen Adressraum.
- Hardware-Kontext: Inhalte der Register in der CPU zum Zeitpunkt der Prozess-Ausführung und die Seitentabelle. Beispiele sind Befehlszähler, Stack-Pointer, Integer-Register und Floating-Point-Register.
- System-Kontext: Informationen, die das Betriebssystem über einen Prozess speichert. Beispiele sind Prozessnummer (PID), Prozesszustand, PPID, Prioritäten, Laufzeit und geöffnete Dateien.

Name: Vorname: Matr.Nr.:

Aufgabe 2)

Punkte:

a)

b)

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 3)

Punkte:																			
i unikut.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

- Die Trennung von Benutzermodus und priviligiertem Kernel-Modus erhöht die Sicherheit und Stabilität.
- Komplexe und tendentiell anfällige Software, die mit den Rechten des priviligierten Kernel-Modus läuft, wäre ein großes Sicherheitsrisiko.
- Ohne die Unterscheidung von User Mode und Kernel Mode könnten fehlerhafte Anwendungen direkt auf die Speicherbereiche zugreifen, in denen das Betriebssystem ausgeführt wird. Dieses würde die Stabilität des Systems gefährden.

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 4)

- a) Man unterscheidet Zeichenorientierte Geräte und Blockorientierte Geräte:
 - Zeichenorientierte Geräte: Bei der Ankunft/Anforderung jedes einzelnes Zeichens wird immer mit dem Prozessor kommuniziert.
 - ⇒ Maus, Tastatur, Drucker, Terminals, Magnetbänder, ...
 - Blockorientierte Geräte: Die Datenübertragung wird erst bei Vorliegen eines kompletten Blocks (z.B. 1-4 kB) angestoßen.
 - ⇒ Festplatten, CD-/DVD-Laufwerke, Disketten-Laufwerke, ...
- b) Die drei Zugriffsmöglichkeiten sind **Busy Waiting**, **Interrupt-gesteuert** und **Direct Memory Access**:
 - Busy Waiting: Der Prozess sendet die Anfrage an das Gerät und wartet in einer Endlosschleife, bis die Daten bereit stehen.

Vorteil: Leicht zu implementieren. Keine zusätzliche Hardware notwendig.

Nachteil: Belastet den Prozessor und behindert die gleichzeitige Abarbeitung

mehrer Programme.

• Interrupt-gesteuert: Der Prozess initialisiert die Aufgabe und wartet auf einen Interrupt (Unterbrechung) durch den notwendigen Interrupt-Controller.

Vorteil: Die CPU ist während des Wartens nicht blockiert.

Nachteil: Zusätzliche Hardware notwendig.

• **Direct Memory Access**: Ein zusätzlicher DMA-Baustein überträgt die Daten direkt zwischen Speicher und Controller ohne Mithilfe der CPU.

Vorteil: Vollständige Entlastung der CPU.

Nachteil: Hoher Hardware-Aufwand

Name: Vorname: Matr.Nr.:

Aufgabe 5)

Punkte:													
i unikut.	•	•	•	•	•	•							

- a) Drei häufige Gründe für Unterbrechungen sind:
 - Fehlersituation: Ein Fehler bei einer Rechenoperation, z.B. Division durch Null, Gleitkommafahler, Adressfehler, usw.
 - Software-Interrupt: wird durch einen Prozess ausgelöst. Beispiele sind die TRAP-Funktion, um vom normalen Benutzermodus in den priviligierten Kernel-Modus zu wechseln und der Einzelschrittbetrieb beim Programmtest (Debugging, Trace).
 - Hardware-Interrupt: Ein-/Ausgabe-Geräte liefern Rückmeldungen an einen Prozess oder das Auftreten eines Stromausfalls.
- b) Unterschiede zwischen Interrupts und Exceptions:
 - Interrupts sind externe Unterberechungen. Das bedeutet, sie werden durch Ereignisse außerhalb des zu unterbrechenden Prozesses ausgelöst. Ein Beispiel ist, dass ein Ein-/Ausgabe-Gerät das Ende eines E/A-Prozesses meldet.
 - Exceptions sind interne Unterbrechungen oder Ausnahmen/Alarme und werden vom Prozess selbst ausgelöst.

Aufgabe 6)

Punkte:

a)

First Come First Served (FCFS)

Round Robin
(Zeitquantum = 3)

Longest Job First (LJF)

Shortest Job First (SJF)

Longest Remaining Time First (LRTF)

Shortest Remaining Time First (SRTF)

Name: Vorname: Matr.Nr.:

Aufgabe 6)

Punkte:

b) Laufzeit (Turnaround Time) der Prozesse

	Α	В	\mathbf{C}	D	\mathbf{E}
First Come First Served	3	6	9	12	11
Round Robin	3	14	14	14	5
Longest Job First	3	6	15	8	11
Shortest Job First	3	10	4	14	5
Longest Remaining Time First	19	18	10	10	9
Shortest Remaining Time First	3	12	4	14	2

First Come First Served	$\frac{3+6+9+12+11}{5}$	=	8, 2 ms
Round Robin	$\frac{3+14+14+14+5}{5}$	=	10 ms
Longest Job First	$\frac{3+6+15+8+11}{5}$	=	$8,6~\mathrm{ms}$
Shortest Job First	$\frac{3+10+4+14+5}{5}$	=	$7,2~\mathrm{ms}$
Longest Remaining Time First	$\frac{19+18+10+10+9}{5}$	=	$13,2~\mathrm{ms}$
Shortest Remaining Time First	$\frac{3+12+4+14+2}{5}$	=	$7~\mathrm{ms}$

c) Wartezeit der Prozesse – Zeit in der bereit-Liste

	A	В	\mathbf{C}	D	\mathbf{E}
First Come First Served	0	1	5	6	9
Round Robin	0	9	10	8	3
Longest Job First	0	1	11	2	9
Shortest Job First	0	5	0	8	3
Longest Remaining Time First	16	13	6	4	7
Shortest Remaining Time First	0	7	0	8	0

First Come First Served	$\frac{0+1+5+6+9}{5}$	=	4, 2 ms
Round Robin	$\frac{0+9+10+8+3}{5}$	=	$6~\mathrm{ms}$
Longest Job First	$\frac{0+1+11+2+9}{5}$	=	$4,6~\mathrm{ms}$
Shortest Job First	$\frac{0+5+0+8+3}{5}$	=	3, 2 ms
Longest Remaining Time First	$\frac{16+13+6+4+7}{5}$	=	$9,2~\mathrm{ms}$
Shortest Remaining Time First	$\frac{0+7+0+8+0}{5}$	=	$3~\mathrm{ms}$