

A Low-power

Carry Cut-Back Approximate Adder

with Fixed-point Implementation and Floating-point Precision

Vincent Camus Jeremy Schlachter Christian Enz

Ecole Polytechnique Fédérale de Lausanne (EPFL) Integrated Circuits Laboratory (ICLAB) Switzerland

Outline

- 1. State-of-the-Art
- 2. CCB Adder Circuit
- 3. CCB Adder Arithmetic
- 4. Results and Comparison

Approximate Circuits, a New Dimension

1. State-of-the-Art – Speculative Adders

ETBA, Weber 2013

Principle

- Sliced structure
- Speculated carry
- Error compensation

Advantages

- High speed
- Worst-case error control

Drawbacks

- Hardware overhead
- Delay overhead

Principle

Monitoring high-significance carry stages

Principle

- Monitoring high-significance carry stages
- Cutting the carry chain at low-significance positions

Principle

- Monitoring high-significance carry stages
- Cutting the carry chain at low-significance positions

Carry propagation

- Naturally doesn't propagate
- Artificially cut back

The <u>full</u> carry chain exists... but is never stimulated!

Carry chain transformed into false-path

- Strong timing relaxation
- Improved performance and efficiency

False-path engineering

- Non-recognized by regular timing analysis
- Requires timing exception script

Worst-case error

Worst-case error (very low thanks to the feed-back)

Multiple errors (do not increase worst-case error)

• Error control: *cut-back* length: 5 bits

• Error control: cut-back length: 4 bits

• Error control: cut-back length: 3 bits

Propagating error: 1 bit

Propagating error: 2 bits

Propagating error: 3 bits

Propagating error: many bits, without increasing errors

Propagating error: many bits, without increasing errors

4. CCB Adder – Implementation

General architecture

- Better error control
- Delay optimization

High-level description

- Design flexibility
- Optimized compilation

Implementations

- 32 bits
- 65 nm techno
- 800 MHz

Metrics

- Energy
- PDAP

Implementations

- 32 bits
- 65 nm techno
- 800 MHz

Metrics

- Energy
- PDAP
- Max error

Implementations

- 32 bits
- 65 nm techno
- 800 MHz

Metrics

- Energy
- PDAP
- Max error

Savings

- -14% energy
- -22% PDAP

0.1 % max error

Implementations

- 32 bits
- 65 nm techno
- 800 MHz

Metrics

- Energy
- PDAP
- Max error

Savings

- -14% energy
- -22% PDAP

0.1 % max error

4. CCB Adder – Comparison

Comparison of 32-bit adders (800 MHz, 65 nm techno)

Architecture	Max error (%)	Energy (fJ)	PDAP
Exact	0	79	100
ETBA		50 🔪	59
ISA	6	49 \ -18%	47 -45 %
CCB adder		41 J -16%	₃₃ / -30%
ETBA		82 \	117
ISA	0.4	69 -24 %	83 \ -42 %
CCB adder		62 -10%	68 / -18 %
ISA	0.2	78	99
CCB adder	0.1	68 -13%	78 -21%

State-of-the-Art

- Medium savings
- Inefficient for low errors (high overhead)

CBB adder

- High savings
- Decent savings for low errors (marginal overhead)

CCB Adder – Summary

Principle

- Carry Cut-Back technique
- False-path carry chain
- Floating-point-type precision

Results

- 30-45% better than existing
- 22 % savings 0.1 % error(IEEE half-precision equivalent)

New concept

Circuit functionality and timing co-designed by introduction and exploitation of false paths

