

Machine Learning

Support Vector Machines

Optimization objective

Alternative view of logistic regression

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

If
$$y=1$$
, we want $h_{\theta}(x)\approx 1$, $\theta^Tx\gg 0$
If $y=0$, we want $h_{\theta}(x)\approx 0$, $\theta^Tx\ll 0$

$$\frac{\theta^T x \gg 0}{\theta^T x \ll 0}$$

Alternative view of logistic regression

Cost of example:
$$-(y \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x))) \leftarrow$$

$$= \left| \frac{1}{1 + e^{-\theta^T x}} \right| - \left| \frac{1}{1 + e^{-\theta^T x}} \right| - \left| \frac{1}{1 + e^{-\theta^T x}} \right| \le$$

If y = 1 (want $\theta^T x \gg 0$):

If y = 0 (want $\theta^T x \ll 0$):

Support vector machine

Logistic regression:

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}$$

Support vector machine:

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{m} \theta_j^2$$

SVM hypothesis

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

Hypothesis:

Machine Learning

Support Vector Machines

Large Margin Intuition

Support Vector Machine

- \rightarrow If y=1, we want $\underline{\theta^T x \geq 1}$ (not just ≥ 0)
- \rightarrow If y = 0, we want $\theta^T x \leq -1$ (not just < 0)

$$0.4 \leq \varnothing -1$$

SVM Decision Boundary

$$\min_{\theta} C \left[\sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2 \right]$$

Whenever $y^{(i)} = 1$:

$$\Theta^{\mathsf{T}_{\mathsf{x}^{(i)}}} \geq 1$$

Whenever $y^{(i)} = 0$:

Min
$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$$
;

Sit. $\frac{1}{2} = \frac{1}{2} = 0$;

SVM Decision Boundary: Linearly separable case

Large margin classifier

Large margin classifier in presence of outliers

Machine Learning

Support Vector Machines

The mathematics behind large margin classification (optional)

Vector Inner Product

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$||u|| = ||v_1|| = ||v_1|$$

SVM Decision Boundary

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \left(0_{1}^{2} + 0_{2}^{2} \right) = \frac{1}{2} \left(\left[0_{1}^{2} + 0_{2}^{2} \right] \right)^{2} = \frac{1}{2} \left[\left[0_{1}^{2} + 0_{2}^{2} \right] \right]^{2}$$

$$= \frac{1}{2} \left[\left[0_{1}^{2} + 0_{2}^{2} \right] \right]^{2} = \frac{1}{2} \left[\left[0_{1}^{2} + 0_{2}^{2} \right] \right]^{2} = \frac{1}{2} \left[\left[0_{1}^{2} + 0_{2}^{2} \right] \right]^{2}$$

w = (Jw)

s.t.
$$\theta^T x^{(i)} \ge 1$$
 if $y^{(i)} = 1$ $\theta^T x^{(i)} \le -1$ if $y^{(i)} = 0$

Andrew Ng

SVM Decision Boundary

$$\Rightarrow \min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\mathbf{e}\|^{2} \leftarrow$$

s.t.
$$p^{(i)} \cdot \|\theta\| \ge 1$$
 i

if
$$y^{(i)} =$$

$$p^{(i)}\cdot\| heta\|\geq 1$$
 if $y^{(i)}=1$ $p^{(i)}\cdot\| heta\|\leq -1$ if $y^{(i)}=1$ $p^{(i)}\cdot\| heta\|\leq -1$ if $y^{(i)}=1$

where $p^{(i)}$ is the projection of $x^{(i)}$ onto the vector θ .

Simplification:
$$\theta_0 = 0$$
 $p^{(i)}$. $||\theta|| ||e||$

0.40

Support Vector Machines

Kernels I

Machine Learning

Non-linear Decision Boundary

Is there a different / better choice of the features f_1, f_2, f_3, \ldots ?

Kernel

Given x, compute new feature depending on proximity to landmarks $l^{(1)}, l^{(2)}, l^{(3)}$

$$\zeta_1 = \text{Sinvitesty}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\zeta_2 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\zeta_3 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_4 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_5 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right) \\
\chi_6 = \text{Sinvitert}(x, \chi^{(1)}) = \exp\left(-\frac{\|x - \chi^{(1)}\|^2}{26^2}\right$$

Kernels and Similarity

$$f_1 = \text{similarity}(x, \underline{l^{(1)}}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

If
$$x \approx l^{(1)}$$
:
$$f_1 \approx \exp\left(-\frac{0^2}{26^2}\right)$$

If
$$\underline{x}$$
 if far from $\underline{l^{(1)}}$:

$$f_1 = exp\left(-\frac{(lorge number)^2}{262}\right)$$
 % C

Example:

2

Andrew Ng

Support Vector Machines

Kernels II

Machine Learning

Choosing the landmarks

Predict
$$y = 1$$
 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$

Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Andrew Ng

SVM with Kernels

⇒ Given
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}),$$
⇒ choose $l^{(1)} = x^{(1)}, l^{(2)} = x^{(2)}, \dots, l^{(m)} = x^{(m)}$

Given example
$$\underline{x}$$
:
$$f_1 = \text{similarity}(x, l^{(1)})$$

$$f_2 = \text{similarity}(x, l^{(2)})$$

For training example $(x^{(i)}, y^{(i)})$: In example (\sim , \sim). $f_{(i)}^{(i)} = \sin(x^{(i)}, x^{(i)})$ $f_{(i)}^{(i)} = \sin(x^{(i)}, x^{(i)})$

Andrew Ng

SVM with Kernels

Hypothesis: Given \underline{x} , compute features $\underline{f} \in \mathbb{R}^{m+1}$

 \rightarrow Predict "y=1" if $\theta^T f \geq 0$

0.1. + 0.1, + ... + 0mfm

Training:

 $\min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \left(\frac{1}{2} \sum_{j=1}^{\infty} \theta_j^2\right)$

SVM parameters:

C (=
$$\frac{1}{\lambda}$$
). > Large C: Lower bias, high variance.

→ Small C: Higher bias, low variance.

$$\sigma^2$$
 Large σ^2 : Features f_i vary more smoothly.

→ Higher bias, lower variance.

Small σ^2 : Features f_i vary less smoothly. Lower bias, higher variance.

Support Vector Machines

Using an SVM

Machine Learning

Use SVM software package (e.g. <u>liblinear</u>, <u>libsvm</u>, ...) to solve for parameters θ .

Need to specify:

→ Choice of parameter C.
Choice of kernel (similarity function):

E.g. No kernel ("linear kernel")

Predict "
$$y = 1$$
" if $\theta^T x \ge 0$

Predict " $\theta^T x \ge 0$

Gaussian kernel:

$$f_i = \exp\left(-rac{||x-l^{(i)}||^2}{2\sigma^2}
ight)$$
, where $l^{(i)}=x^{(i)}$.

Need to choose $\underline{\sigma}^2$.

Kernel (similarity) functions:

$$f = \exp\left(\frac{|\mathbf{x}_1|^2}{2\sigma^2}\right)$$

return

Note: <u>Do perform feature scaling</u> before using the Gaussian kernel.

Other choices of kernel

Note: Not all similarity functions similarity(x, l) make valid kernels.

(Need to satisfy technical condition called "Mercer's Theorem" to make sure SVM packages' optimizations run correctly, and do not diverge).

Many off-the-shelf kernels available:

- Polynomial kernel: k(x,l) = (x,l+1) = (x,l+1)

More esoteric: String kernel, chi-square kernel, histogram intersection kernel, ...

Multi-class classification

$$y \in \{1, 2, 3, \dots, K\}$$

Many SVM packages already have built-in multi-class classification functionality.

Otherwise, use one-vs.-all method. (Train K SVMs, one to distinguish y=i from the rest, for $i=1,2,\ldots,K$), get $\theta^{(1)},\theta^{(2)},\ldots,\underline{\theta^{(K)}}$ Pick class i with largest $(\theta^{(i)})^Tx$

Logistic regression vs. SVMs

- n=number of features ($x\in\mathbb{R}^{n+1}$), m=number of training examples
- → If n is large (relative to m): (e.g. $n \ge m$, n = (0.000), m = 10 m
- Use logistic regression, or SVM without a kernel ("linear kernel")

If
$$n$$
 is small, m is intermediate: $n = 1 - 1000$, $m = 10 - 10000$) \rightarrow Use SVM with Gaussian kernel

- If n is small, m is large: (n=1-1000), m=50,000+)
 - Create/add more features, then use logistic regression or SVM without a kernel
- > Neural network likely to work well for most of these settings, but may be slower to train.