Perceptron

Geometric interpretation

Hyperplane

The decision in perceptron is made depending on

$$\overline{W}^T \overline{X} + b > 0$$
 or $\overline{W}^T \overline{X} + b \le 0$

- $\{\overline{X}: \overline{W}^T \overline{X} + b = 0\}$ is the critical region (decision boundary)
- $\overline{W}^T \overline{X} + b = 0$ defines a hyperplane

Example:

- In 2D space we have $w_1x_1 + w_2x_2 = 0$ (ignoring the bias term), which is a straight line through the origin.
- In N-dimensional space this is an (N-1)-dimensional hyperplane.

Geometric interpretation

Geometric interpretation

The angle between the current weight vector W and the positive instance \overline{X} is greater than 90°. Therefore, $\overline{W}^T\overline{X} < 0$, and this instance is going to get misclassified as negative.

Geometric interpretation

- The new weight vector \overline{W} is the addition of $\overline{W} + \overline{X}$ (as per the perceptron update rule).
- It lies in between X and W.
- Notice that the angle between \overline{W} and \overline{X} is less than 90° .
- Therefore, X will be classified as positive by W.

Vector algebra revision

Linear separability

If a given set of positive and negative training instances can be separated into those two groups using a straight line (hyperplane), then we say that the dataset is **linearly separable**.

Linear separability

• When a dataset is linearly separable, there can exist more than one hyperplanes that separates the dataset into positive/negative groups.

 In other words, the hyperplane that linearly separates a linearly separable dataset might not be unique.

However, (by definition) if a dataset is non-linearly separable, then there
exist NO hyperplane that separates the dataset into positive/negative
groups.

A non-linearly separable case

No matter how we draw straight lines, we cannot separate the red instances from the blue instances

Further remarks

 When a dataset is linearly separable it can be proved that the perceptron will always find a separating hyperplane!

- The final weight vector returned by the Perceptron is more influenced by the final training instances it sees
 - Take the average over all weight vectors during the training (Averaged Perceptron algorithm)