PMATH 351: Real Analysis

Instructor Stephen New LaTeXer Iris Jiang
Spring 2020

Contents

1	Cardinality	. 2
2	Metric Spaces	. 12
3	Limits and Continuity	22
4	Separability and Completeness	30
	Index	36

1. Cardinality

Definition 1.1 — domain, range, image, inverse image.

Let X and Y be sets and let $f: X \to Y$. Recall the **domain** of f and the **range** of f are the sets

$$Domain(f) = X, Range(f) = f(X) = \{f(x) | x \in X\}$$

for $A \subseteq X$, the **image** of A under f is the set

$$f(A) = \{ f(x) | x \in A \}$$

For $B \subseteq Y$, the **inverse image** of B under f is the set

$$f^{-1}(B) = \{ x \in X | f(x) \in B \}$$

Definition 1.2 — Composite.

Let X, Y and Z be sets, let $f: X \to Y$ and let $g: Y \to Z$. We define the **composite** function $(g \circ f)(x) = g(f(x))$ for all $x \in X$

Definition 1.3 — injective, surjective, bijective.

We say that f is **injective** (or **one-to-one**) when for every $y \in Y$ there exists at most one $x \in X$ such that f(x) = y. Equivalently, f is injective when for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

We say that f is **surjective** (or **onto**) when for every $y \in Y$ there exists at least one $x \in X$ such that f(x) = y. Equivalently, f is surjective when Range(f) = Y

We say that f is **bijective** (or **invertible**) when f is both injective and surjective, that is when for every $y \in Y$ there exists exactly one $x \in X$ such that f(x) = y. When f is both injective and surjective, that is when for every $y \in Y$ there exists exactly one $x \in X$ such that $f^{-1}: Y \to X$ such that for all $y \in Y$, $f^{-1}(y)$ is equal to the unique element $x \in X$ such that f(x) = y. Note that when f is bijective so is f^{-1} , and in this case we have $(f^{-1})^{-1} = f$

Theorem 1.1 Let $f: X \to Y$ and let $g: Y \to Z$. Then

- (1) If f and g are both injective then so is $g \circ f$
- (2) If f and g are both surjective then so is $g \circ f$
- (3) If f and g are both invertible then so is $g \circ f$, and in this case $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Proof.

- (1) Suppose that f and g are both injective. Let $x_1, x_2 \in X$. If $g(f(x_1)) = g(f(x_2))$ then since g is injective we have $f(x_1) = f(x_2)$, and then since f is injective we have $x_1 = x_2$. Thus $g \circ f$ is injective.
- (2) Suppose that f and g are both injective. Given $z \in Z$, since g is surjective we can choose $y \in Y$ so that g(y) = z, then since f is surjective we can choose $x \in X$ so that f(x) = y, and then we have g(f(x)) = g(y) = z. Thus $g \circ f$ is surjective.
- (3) Follows (1) and (2).

Definition 1.4 — identity function.

For a set X, we define the **identity function** on X to be the function $I_X: X \to X$ given by $I_X(x) = x$ for all $x \in X$. Note that for $f: X \to Y$ we have $f \circ I_X = f$ and $I_Y \circ f = f$.

Definition 1.5 — inverse.

Let X and Y be sets and let $f: X \to Y$. A **left inverse** of f is a function $g: Y \to X$ given by $g \circ f = I_X$. Equivalently, a function $g: Y \to X$ is a left inverse of f when g(f(x)) = x for all $x \in X$.

A **right inverse** of f is a function $h: Y \to X$ such that $f \circ h = I_Y$. Equivalently, a function $h: Y \to X$ is a right inverse of f when f(h(y)) = y for all $y \in Y$.

Theorem 1.2 Let X and Y be nonempty sets and let $f: X \to Y$. Then

- (1) f is injective \iff f has a left inverse.
- (2) f is surjective \iff f has a right inverse.
- (3) f is bijective \iff f has a left inverse g and a right inverse h, and in this case we have $g = h = f^{-1}$.

Proof.

- (1) Suppose first that f is injective. Since $X \neq \emptyset$ we can choose $a \in X$ and then define $g: Y \to X$ as follows: if $y \in \text{Range}(f)$ then (using the fact the f is injective) we define g(y) to be the unique element $x_y \in X$ with $f(x_y) = y$, and if $y \notin \text{Range}(f)$, then we define g(y) = a. Then for every $x \in X$ we have $y = f(x) \in \text{Range}(f)$, so $g(y) = x_y = x$, that is g(f(x)) = x. Conversely, if f has a left inverse, say g, then f is injective since for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x = g(f(x_1)) = g(f(x_2)) = x_2$.
- (2) Suppose first that f is onto. For each $y \in Y$, choose $x_y \in X$ with $f(x_y) = y$, then define $g: X \to Y$ by $g(y) = x_y$ (We need the Axiom of Choice for this). Then g is a right inverse of f since for every $y \in Y$ we have $f(g(y)) = f(x_y) = y$. Conversely, if f has a right inverse, say g, then f is onto since given any $g \in Y$ we can choose g(y) and then we have g(y) = g(y) = y.
- (3) Suppose first that f is bijective. The inverse function $f^{-1}: Y \to X$ is a left inverse for f because given $x \in X$ we can let y = f(x) and then $f^{-1}(y) = x$ so that $f^{-1}(f(x)) = f^{-1}(y) = x$. Similarly, f^{-1} is a right inverse for f because given $y \in Y$ we can let x be the unique element in X with y = f(x) and then we have $x = f^{-1}(y)$ so that $f(f^{-1}(y)) = f(x) = y$. Conversely, suppose that g is a left inverse for f and h

is a right inverse for f. Since f has a left inverse, it is injective by (1). Since f has a right inverse, it is surjective by (2). Since f is injective and surjective, it is bijective. As shown above, the inverse function f^{-1} is both a left inverse and a right inverse. Finally, note that $g = f^{-1} = h$ because for all $y \in Y$ we have

$$g(y=g(f(f^{-1}(y))) = f^{-1}(y) = f^{-1}(f(h(y))) = h(y)$$

Corollary 1.3

Let X and Y be sets. Then there exists an injective map $f: X \to Y$ if and only if there exists a surjective map $g: Y \to X$.

Proof. Suppose $f: X \to Y$ is an injective map. Then f has a left inverse. Let g be a left inverse of f. Since $g \circ f = I_X$, we see that f is a right inverse of g. Since g has a right inverse, g is surjective. Thus, there is a surjective map $g: Y \to X$. Similarly, if $g: Y \to X$ is surjective, then it has a right inverse $f: X \to Y$ which is injective.

Definition 1.6 — same cardinality, less than or equal to, less than.

Let A and B be sets. We say that A and B have the **same cardinality**, and write |A| = |B|, when there exists a bijective map: $f: A \to B$ (or equivalently when there exists a bijective map $g: B \to A$).

We say that the cardinality of A is **less than or equal to** the cardinality of B, and write $|A| \leq |B|$, when there exists an injective map $f: A \to B$ (or equivalently a surjective map $g: B \to A$).

We say that the cardinality of A is **less than** the cardinality of B, and write |A| < |B|, when $|A| \le |B|$ and $|A| \ne |B|$, (that is when there exists an injective map $f: A \to B$ but there does not exist a bijective map $g: A \to B$).

We also write $|A| \ge |B|$ when $|B| \le |A|$; and |A| > |B| when |B| < |A|.

- **Example 1.1** Let $\mathbb{N} = \{n \in \mathbb{Z} | n \ge 0\} = \{0, 1, 2, \dots\}.$
 - (1) The map $f: \mathbb{N} \to 2\mathbb{N}$ given by f(k) = 2k is bijective, so $|2\mathbb{N}| = |\mathbb{N}|$.
 - (2) The map $g: \mathbb{N} \to \mathbb{Z}$ given by g(2k) = k and g(2k+1) = -k-1 for $k \in \mathbb{N}$ is bijective, so we have $|\mathbb{Z}| = |\mathbb{N}|$.
 - (3) The map $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by $h(k,l) = 2^k(2l+1) 1$ is bijective, so we have $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Theorem 1.4 For all sets A, B and C

- (1) |A| = |A|
- (2) If |A| = |B| then |B| = |A|
- (3) If |A| = |B| and |B| = |C|, then |A| = |C|
- $(4) |A| \le |B| \iff (|A| = |B| \text{ or } |A| < |B|)$
- (5) If $|A| \le |B|$ and $|B| \le |C|$, then $|A| \le |C|$

Proof.

- (1) holds because the identity function $I_A: A \to A$ is bijective.
- (2) holds because if $f: A \to B$ is bijective then so is $f^{-1}: B \to A$.
- (3) holds because if $f:A\to B$ and $g:B\to C$ are bijective then so is the composite $g\circ f:A\to C$

Definition 1.7 — finite, infinite, countable.

Let A be a set. For each $n \in \mathbb{N}$, let $S_n = \{0, 1, 2, \dots, n-1\}$. For $n \in \mathbb{N}$, we say that the cardinality of A is equal to n, or that A has n **elements**, and we write |A| = n, when $|A| = |S_n|$.

We say that A is **finite** when |A| = n for some $n \in \mathbb{N}$. We say A is **infinite** when A is not finite. We say that A is **countable** when $|A| = |\mathbb{N}|$

Note 1.1 When a set A is finite with |A| = n, and when $f: A \to S_n$ is a bijection, if we let $a_k = f^{-1}(k)$ for each $k \in S_n$ then we have $A = \{a_0, a_1, \cdots, a_{k-1}\}$ with the elements a_k distinct. Conversely, if $A = \{a_0, a_1, \cdots, a_{k-1}\}$ with the elements a_k all distinct, then we define a bijection $f: A \to S_n$ by $f(a_k) = k$. Thus we see that A is finite with |A| = n if and only if A is of the form $A = \{a_0, a_1, \cdots, a_{n-1}\}$ with the elements a_k all distinct. Similarly, a set A is countable if and only if A is of the form $A = \{a_0, a_1, a_2, \cdots\}$ with the elements a_k all distinct.

Note 1.2 For $n \in \mathbb{N}$, if A is a finite set with |A| = n + 1 and $a \in |A \setminus \{a\}| = n$. Indeed, if $A = \{a_0, a_1, \dots, a_n\}$ with the elements a_i distinct, and if $a = a_k$ so that we have $A \setminus \{a\} = \{a_0, a_1, \dots, a_{k-1}, a_{k+1}, \dots, a_n\}$, then we can define a bijection $f: S_n \to A \setminus \{a\}$ by $f(i) = a_i$ for $0 \le i < k$ and $f(i) = a_{i+1}$ for $k \le i < n$.

Theorem 1.5 Let A be a set. Then the following are equivalent:

- (1) A is infinite
- (2) A contains a countable subset
- $(3) |\mathbb{N}| \leq |A|$
- (4) There exists a map $f: A \to A$ which is injective but not surjective

Proof.

- (1) \Longrightarrow (2) Suppose A is infinite. Since $A \neq \emptyset$ we can choose an element $a_0 \in A$. Since $A \neq \{a_0\}$ we can choose an element $a_1 \in A \setminus \{a_0\}$. Since $A \neq \{a_0, a_1\}$ we can choose $a_3 \in A \setminus \{a_0, a_1\}$. Continue this procedure: having chosen distinct elements $a_0, a_1, \dots, a_{n-1} \in A$, since $A \neq \{a_0, a_1, \dots, a_{n-1}\}$ we can choose $a_n \in A \setminus \{a_0, a_1, \dots, a_{n-1}\}$. In this way we obtain $\{a_0, a_1, a_2, \dots\} \subseteq A$.
- (2) \iff (3) Suppose that A contains a countable subset, say $\{a_0, a_1, a_2, \dots\} \subseteq A$ with the element a_i distinct. Since a_i are distinct, the map $f: \mathbb{N} \to A$ given by $f(k) = a_k$ is injective, and so we have $|\mathbb{N}| \leq |A|$. Conversely as a map from $\mathbb{N} \to f(\mathbb{N})$ where f is bijective, so we have $|\mathbb{N}| = |f(\mathbb{N})|$ hence $f(\mathbb{N})$ is a countable subset of A.
- (2) \Longrightarrow (4) Suppose that A has a countable subset, say $\{a_0, a_1, a_2, \dots\} \subseteq A$ with the element a_i distinct. Define $f: A \to A$ by $f(a_k) = a_{k+1}$ for all $k \in \mathbb{N}$ and by f(b) = b for all $b \in A \setminus \{a_0, a_1, a_2, \dots\}$. Then f is injective but not surjective (the element a_0 is not in the range of f).
- (4) \Longrightarrow (1) To prove this we shall prove that if A is finite then every injective map $f: A \to A$ is surjective. We prove this by induction on the cardinality of A.

The only set A with |A| = 0 is the set $A \neq \emptyset$, and then the only function $f: A \to A$ is the empty function, which is surjective.

Since that base case may appear too trivial, let us consider the next case. Let n = 1 and let A be a set with |A| = 1, say $A = \{a\}$. The only function $f: A \to A$ is the function given by f(a) = a, which is surjective.

Let $n \geq 1$ and suppose, inductively, that for every set A with |A| = n, every injective

map $f:A\to A$ is surjective. Let B be a set with |B|=n+1 and let $g:B\to B$ be injective.

Suppose, for a contradiction, that g is not surjective. Choose an element $b \in B$ which is not in the range of g so that we have $g: B \to B \setminus \{b\}$. Let $A = B \setminus \{b\}$ and let $f: A \to A$ be given by f(x) = g(x) for all $x \in A$. Since $g: B \to A$ is injective and f(x) = g(x) for all $x \in A$, f is also injective. Again since g is injective, there is no element $x \in B \setminus \{b\}$ with g(x) = g(b), so there is no element $x \in A$ with f(x) = g(b), and so f is not surjective. Since |A| = n, this contradicts the induction hypothesis. Thus g must be surjective.

By the Principle of Induction, for every $n \in \mathbb{N}$ and for every set A with |A| = n, every injective function $f: A \to A$ is surjective.

Corollary 1.6

Let A and B be sets.

- (1) If A is countable then A is infinite
- (2) When $|A| \leq |B|$, if B is finite so is A (equivalently if A is infinite then so is B)
- (3) If |A| = n and |B| = m then |A| = |B| if and only if n = m
- (4) If |A| = n and |B| = m then $|A| \le |B|$ if and only if $n \le m$
- (5) When one of the two sets A and B is finite, if $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

Proof.

- (1) If A is countable then A contains a countable subset (itself), so A is infinite by Theorem 1.5.
- (2) Suppose that $|A| \leq |B|$ and that |A| is infinite. Since A is infinite, we have $|\mathbb{N}| \leq |A|$ (by Theorem 1.5). Since $|\mathbb{N}| \leq |A|$ and $|A| \leq |B|$ we have $|\mathbb{N}| \leq |B|$ (by Theorem 1.4). Since $|\mathbb{N}| \leq |B|$, B is infinite (by Theorem 1.5).
- (3) Suppose that |A| = n and |B| = m. If n = m then we have $S_n = S_m$ and so $|A| = |S_n| = |S_m| = |B|$. Conversely, suppose that |A| = |B|. Suppose, for a contradiction, that $n \neq m$, say n > m, and note that $S_m \subsetneq S_n$. Since |A| = |B| we have $|S_n| = |A| = |B| = |S_m|$ so we must have n = m.
- (4) Suppose |A| = n and |B| = m. If $n \le m$ then $S_n \subseteq S_m$ so the inclusion map $I: S_n \to S_m$ is injective and we have $|A| = |S_n| \le |S_m| = |B|$. Conversely, suppose that $|A| \le |B|$ and suppose, for a contradiction, that n > m. Since $|A| \le |B|$ we have $|S_n| = |A| \le |B| = |S_m|$ so we can choose an injective map $f: S_n \to S_m$. Since n > m we have $S_m \subseteq S_n$ so we can consider f as a map $f: S_n \to S_m$, and this map is injective but not surjective. This contradicts Theorem 1.5, and so $n \le m$.
- (5) Suppose that one of the two sets A and B is finite, and that $|A| \leq |B|$ and $|B| \leq |A|$. If A is finite then, since $|B| \leq |A|$, (2) implies that B is finite. If B is finite then, since $|A| \leq |B|$, (2) implies that A is finite. Thus, in either case, we see that A and B are both finite. Since A and B are both finite with $|A| \leq |B|$ and $|B| \leq |A|$, we must have |A| = |B| by (3) and (4).

Theorem 1.7 Let A be a set. Then $|A| \leq |\mathbb{N}| \iff A$ is finite or countable.

Proof. First we claim that every subset of $\mathbb N$ is either finite or countable. Let $A\subseteq \mathbb N$ and suppose that A is not finite.

Since $A \neq \emptyset$, we can set $a_0 = \min\{A\}$ (using the Well-Ordering Property of N). Note that

 $\{0, 10, \cdots, a_0\} \cap A = \{a_0\}.$

Since $A \neq \{a_0\}$ (so the set $A \setminus \{a_0\}$ is nonempty), we can set $a_1 = \min\{A \setminus \{a_0\}\}$. Then we have $a_0 < a_1$ and $\{0, 1, \dots, a_1\} \cap A = \{a_0, a_1\}$.

Since $A \neq \{a_0, a_1\}$ we can set $a_2 = \min\{A \setminus \{a_0, a_1\}\}$. Then we have $a_0 < a_1 < a_2$ and $\{0, 1, 2, \dots, a_3\} \cap A = \{a_0, a_1, a_2\}$

We continue the procedure: having chosen $a_0, a_1, \dots, a_{n-1} \in A$ with $a_0 < a_1 < \dots < a_{n-1}$ such that $\{0, 1, \dots, a_{n-1}\} \cap A = \{a_0, a_1, \dots, a_{n-1}\}$. Since $A \neq \{a_0, a_1, \dots, a_{n-1}\}$, we can set $a_n = \min\{A \setminus \{a_0, a_1, \dots, a_{n-1}\}\}$ and then we have $a_0 < a_1 < \dots < a_{n-1} < a_n$ and $\{0, 1, \dots, a_n\} \cap A = \{a_0, a_1, \dots, a_n\}$.

In this way, we obtain a countable set $\{a_0, a_1, a_2, \dots\} \subseteq A$ with $a_0 < a_1 < a_2 < \dots$ with the property that for all $m \in \mathbb{N}$, $\{0, 1, 2, \dots, a_m\} \cap A = \{a_0, a_1, \dots, a_m\}$.

Since $0 \le a_0 < a_1 < a_2 < \cdots$, it follows (by induction) that $a_k \ge k$ for all $k \in \mathbb{N}$. It follows in turn that $A \subseteq \{a_0, a_1, a_2, \cdots\}$ because given $m \in A$, since $m \le a_m$ we have

$$m \in \{0, 1, 2, \dots, m\} \cap A \subseteq \{0, 1, 2, \dots, a_m\} \cap A = \{a_0, a_1, \dots, a_m\}.$$

Thus $A = \{a_0, a_1, a-2, \dots\}$ and the elements a_i are distinct, so A is countable. This proves our claim that every subset of \mathbb{N} is either finite or countable.

Suppose that $|A| \leq |\mathbb{N}|$ and choose an injective map $f: A \to \mathbb{N}$. Since f is injective, when we consider it as a map $f: A \to f(A)$, it is bijective, and so |A| = |f(A)|. Since $f(A) \subseteq \mathbb{N}$, the previous paragraph shows that f(A) is either finite or countable. If f(A) is finite with |f(A)| = n then $|A| = |f(A)| = |S_n|$, and if f(A) is countable then we have $|A| = |f(A)| = |\mathbb{N}|$. Thus A is finite or countable.

Theorem 1.8 Let A be a set. Then

- (1) $|A| < |\mathbb{N}| \iff A \text{ is finite}$
- (2) $|\mathbb{N}| < |A| \iff A$ is neither finite nor countable
- (3) if $|A| \leq |\mathbb{N}|$ and $|\mathbb{N}| \leq |A|$ then $|A| = |\mathbb{N}|$

Proof.

(1) By Theorem 1.5

$$|A| < |\mathbb{N}| \iff (|A| \le |\mathbb{N}| \text{ and } |A| \ne |\mathbb{N}|)$$

 $\iff (A \text{ if finite or countable and } A \text{ is not countable})$
 $\iff A \text{ is finite}$

(2) By Theorem 1.7

$$|\mathbb{N}| < |A| \iff (|\mathbb{N}| \le |A| \text{ and } |\mathbb{N}| \ne |A|)$$

 $\iff (A \text{ is not finite and } A \text{ is not countable})$

(3) Suppose that $|A| \leq |\mathbb{N}|$ and $|\mathbb{N}| \leq |A|$. Since $|A| \leq |\mathbb{N}|$, we know that A is finite or countable by Theorem 1.7. Since $|N| \leq |A|$, we know that A is infinite by Theorem 1.5. Since A is finite or countable and A is not finite, it follows that A is countable. Thus $|A| = |\mathbb{N}|$

Definition 1.8 — at most countable, uncountable.

Let A be a set. When A is countable we write $|A| = \aleph_0$. When A is finite we write $|A| < \aleph_0$. When A is infinite we write $|A| \ge \aleph_0$. When A is either finite or countable we write $|A| \le \aleph_0$ and we say that A is **at most countable**. When A is neither finite nor

countable we write $|A| > \aleph_0$ and we say that A is **uncountable**.

Theorem 1.9

- (1) If A and B are countable sets, then so is $A \times B$
- (2) If A and B are countable sets, then so is $A \cup B$
- (3) If A_0, A_1, A_2, \cdots are countable sets, then so is $\bigcap_{k=0}^{\infty} A_k$
- (4) Q is countable

Proof.

- (1) Let $A = \{a_0, a_1, a_2, \dots\}$ with the a_i distinct and let $B = \{b_0, b_1, b_2, \dots\}$ with b_i distinct. Since every positive integer can be written uniquely in the form $2^k(2l+1)$ with $k, l \in \mathbb{N}$, the map $f : A \times B \to \mathbb{N}$ given by $f(a_k, b_l) = 2^k(2l+1) 1$ is bijective, and so $|A \times B| = |\mathbb{N}|$
- (2) Similar to (1), since the map $g: \mathbb{N} \to A \cup B$ given by $g(k) = a_k$ is injective, we have $|\mathbb{N}| \leq |A \cup B|$. Since the map $h: \mathbb{N} \to A \cup B$ given by $h(2k) = a_k$ and $h(2k+1) = b_k$ is surjective, we have $|A \cup B| \leq |\mathbb{N}|$. Since $|\mathbb{N}| \leq |A \cup B|$ and $|A \cup B| \leq |\mathbb{N}|$, we have $|A \cup B| = |\mathbb{N}|$ by Theorem 1.8
- (3) For each $k \in \mathbb{N}$, let $A_k = \{a_{k0}, a_{k1}, a_{k2}, \cdots\}$ with the a_{ki} distinct. Since the map $f: \mathbb{N} \to \bigcap_{k=0}^{\infty} A_k$ given by $f(k) = a_{0,k}$ is injective, $|\mathbb{N}| \le \left|\bigcap_{k=0}^{\infty} A_k\right|$. Since $\mathbb{N} \times \mathbb{N}$ is countable by (1), and since the map $g: \mathbb{N} \times \mathbb{N} \to \bigcap_{k=0}^{\infty} A_k$ given by $g(k, l) = a_{k, l}$ is surjective, we have $\left|\bigcap_{k=0}^{\infty} A_k\right| \le |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$. By Theorem 1.8, we have $\left|\bigcap_{k=0}^{\infty} A_k\right| = |\mathbb{N}|$.
- (4) Since the map $f: \mathbb{N} \to \mathbb{Q}$ given by f(k) = k is injective, we have $|\mathbb{N}| \leq |\mathbb{Q}|$. Since the map $g: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$ given by $g(\frac{a}{b}) = (a, b)$ for all $a, b \in \mathbb{Z}$ with b > 0 and $\gcd(a, b) = 1$, is injective, and since $\mathbb{Z} \times \mathbb{Z}$ is countable, we have $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N}|$. Since $|\mathbb{N}| \leq |\mathbb{Q}|$ and $|\mathbb{Q}| \leq |\mathbb{N}|$, we have $|\mathbb{Q}| = |\mathbb{N}|$

Exercise 1.1 Let A be a countable set. Show that the set of finite sequences with terms in A is countable. Show that the set of all finite subsets of A is countable.

Definition 1.9 — power set.

For a set A, let $\mathcal{P}(A)$ denote the **power set** of A, that is the set of all subsets of A, and let 2^A denote the set of all functions from A to $S_2 = \{0, 1\}$

Theorem 1.10

- (1) For every set A, $\mathcal{P}(A) = |2^A|$
- (2) For every set A, $|A| < \mathcal{P}(A)$
- (3) \mathbb{R} is uncountable

Proof.

(1) Let A be any set. Define a map $g: \mathcal{P}(A) \to 2^A$ as follows: given $S \in \mathcal{P}(A)$, that is given $S \subseteq A$, we define $g(S) \in 2^A$ to be the map $g(S): A \to \{0,1\}$ given by

$$g(S)(a) = \begin{cases} 1 & \text{if } a \in S, \\ 0 & \text{if } a \notin S. \end{cases}$$

Define map $h: 2^A \to \mathcal{P}(A)$ as follows: given $f \in 2^A$, that is given a map: $f: A \to \{0,1\}$, we define $h(f) \in (A)$ to be the subset

$$h(f) = \{a \in A | f(a) = 1\} \subseteq A$$

This maps g and h are the inverses of each other because for every $S \subseteq A$ and every $f: A \to \{0,1\}$ we have

$$f = g(S) \iff \forall a \in A, f(a) = g(S)(a) \iff \forall a \in A, f(a) = \begin{cases} 1 & \text{if } a \in S, \\ 0 & \text{if } a \notin S. \end{cases}$$
$$\iff \forall a \in A, (f(a) = 1 \iff a \in S) \iff \{a \in A | f(a) = 1\} = S$$
$$\iff h(f) = S$$

(2) Let A be any set. Since the map $f: A \to \mathcal{P}(A)$ given by $f(a) = \{a\}$ is injective, we have $|A| \leq |\mathcal{P}(A)|$. We need to show that $|A| \neq |\mathcal{P}(A)|$. Let $g: A \to \mathcal{P}(A)$ be any map. Let $S = \{a \in A | a \notin g(a)\}$. Note that S cannot be in the range of g because we could choose $g \in A$ so that g(g) = S then, by the definition of S, we would have

$$a \in S \iff a \notin g(a) \iff a \notin S$$

which is impossible. Since S is not in the range of g, the map g is not surjective. Since g was an arbitrary map from A to $\mathcal{P}(A)$, it follows that there is no surjective map from A to $\mathcal{P}(A)$. Thus there is no bijective map from A to $\mathcal{P}(A)$ and so we have $|A| \neq |\mathcal{P}(A)|$.

(3) We prove \mathbb{R} is uncountable using the fact that every real number has a unique decimal expansion which does not end with an infinite string of 9's. Define a map $g: 2^{\mathbb{N}} \to \mathbb{R}$ as follows: given $f \in 2^{\mathbb{N}}$, that is given a map $f: \mathbb{N} \to \{0,1\}$, we define g(f) to be the real number of $g(f) \in [0,1)$ with the decimal expansion $g(f) = 0.f(1)f(2)f(3)\cdots$, that is $g(f) = \sum_{k=0}^{\infty} f(k)10^{-k-1}$. By the uniqueness of decimal expansions, the map g is injective, so we have $|2^{\mathbb{N}}| \leq |\mathbb{R}|$. Thus $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| = |2^{\mathbb{N}}| \leq |\mathbb{R}|$, and so \mathbb{R} is uncountable by Theorem 1.8.

Theorem 1.11 — Cantor-Schroeder-Bernstein.

Let A and B be sets. Suppose that $|A| \leq |B|$ and $|B| \leq |A|$. Then |A| = |B|

Proof. We sketch a proof. Choose injective functions $f:A\to B$ and $g:B\to A$. Since the functions $f:A\to f(A)$, $g:B\to g(B)$ and $f:g(B)\to f(g(B))$ are bijective, we have |A|=|f(A)| and |B|=|g(B)|=|f(g(B))|. Also note that $f(g(B))\subseteq f(A)\subseteq B$. Let X=f(g(B)), Y=f(A) and Z=B. Then we have $X\subseteq Y\subseteq Z$ and we have |x|=|z| and we need to show that |Y|=|Z|. The composite $h=f\circ g:Z\to X$ is a bijective. Define sets Z_n and Y_n for $n\in\mathbb{N}$ recursively by

$$Z_0 = Z, Z_n = h(Z_{n-1})$$
 and $Y_0 = Y, Y_n = h(Y_{n-1})$

Since $Y_0 = Y$, $Z_0 = Z$, $Z_1 = h(Z_0) = h(Z) = X$ and $X \subseteq Y \subseteq Z$, we have

$$Z_1 \subseteq Y \subseteq Z_0$$

Also note that for $1 \leq n \in \mathbb{N}$,

$$Z_n \subseteq Y_{n-1} \subseteq Z_{n-1} \implies h(Z_n) \subseteq h(Y_{n-1}) \subseteq h(Z_{n-1}) \implies Z_{n+1} \subseteq Y_n \subseteq Z_n$$

By the Induction Principle, it follows that $Z_n \subseteq Y_{n-1} \subseteq Z_{n-1}$ for all $n \ge 1$, so we have

$$Z_0 \supseteq Y_0 \supseteq Z_1 \supseteq Y_1 \supseteq Z_2 \supseteq Y_2 \supseteq \cdots$$

Let $U_n = \frac{Z_n}{Y_n}$, $U = \bigcup_{n=0}^{\infty} U_n$ and $V = \frac{Z}{U}$. Define $H: Z \to Y$ by

$$H(x) = \begin{cases} h(x) & \text{if } x \in U \\ x & \text{if } x \in V \end{cases}$$

Verify that H is bijective.

Exercise 1.2 Show that $|\mathbb{R}| = |2^{\mathbb{N}}|$

Solution. $g: 2^{\mathbb{N}} \to \mathbb{R}$ as follows: for $f \in 2^{\mathbb{N}}$ we let g(f) be the real number $g(f) \in [0,1)$ with decimal expansion $g(f) = 0.f(1)f(2)\cdots$. Then g is injective so $|2^{\mathbb{N}}| \leq \mathbb{R}$. Define $h: 2^{\mathbb{N}} \to [0,1)$ as follows: for $f \in 2^{\mathbb{N}}$ let h(f) be the real number $h(f) \in [0,1]$ with binary expansion $h(f) = 0.f(0)f(1)f(2)\cdots$. Then h is surjective so we have $|[0,1]| \leq |2^{\mathbb{N}}|$. The map $k: \mathbb{R} \to [0,1]$ given by $k(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}(x)$ is injective, so we have $|\mathbb{R}| \leq |[0,1]|$. Since $|\mathbb{R}| \leq |[0,1]| \leq |2^{\mathbb{N}}|$ and $|2^{\mathbb{N}}| \leq \mathbb{R}$, we have $|\mathbb{R}| = |2^{\mathbb{N}}|$ by the Cantor-Schroeder-Bernstein Theorem (1.11)

Notation 1.1 For sets A and B, we write A^B to denote the set of functions $f: B \to A$

Theorem 1.12 Let A and B be finite sets and let $\mathcal{P}(A)$ is the power set of A (that is the set of all subsets of A). Then

- (1) if A and N are disjoint then $|A \cup B| = |A| + |B|$
- $(2) |A \times B| = |A| \cdot |B|$
- (3) $|A^B| = |A|^{|B|}$
- (4) $|\mathcal{P}| = 2^{|A|}$

Proof. The proof is left as an exercise

Theorem 1.13 Let A, B, C and D be sets with |A| = |C| and |B| = |D|. Then

- (1) if $A \cap B = \emptyset$ and $C \cap D = \emptyset$ then $|A \cup B| = |C \cup D|$
- (2) $|A \times B| = |c \times D|$
- (3) $|A^B| = |C^D|$

Proof. The proof is left as an exercise

It is possible to define certain specific sets called **cardinals** such that for every set A there exists a unique cardinal κ with $|A| = |\kappa|$. We can then define the **cardinality** of a set A to be equal to the unique cardinal κ such that |A| = || and, in this case, we define the **cardinality** of the set A to be $|A| = \kappa$. In foundational set theory, the natural numbers are defined, formally, to be equal to the sets $0 = \emptyset$, $1 = \{0\} = \{\emptyset\}$, $2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$ and, in general, $n+1=n\cup\{n\}$ so that the natural number n is equal to the set that we previously denoted by S_n , that is $n=S_n=\{0,1,\cdots,n-1\}$. The finite cardinals are equal to the natural numbers and the countable cardinal \aleph_0 is equal to the set of natural numbers. The previous theorem allows us to define **arithmetic operations** on cardinals which extend the usual arithmetic operations on the natural numbers. Given cardinals κ and κ we define $\kappa + \lambda$, $\kappa \cdot \lambda$ and κ to be the cardinals such that

$$- \kappa + \lambda = |(\kappa \times \{0\}) \cup (\lambda \times \{1\})|$$

-
$$\kappa \cdot \lambda = |\kappa \times \lambda|$$

- $\kappa^{\lambda} = |\kappa^{\lambda}|$

Theorem 1.14 Let κ, λ and μ be cardinals. Then

- (1) $\kappa + \lambda = \lambda + \kappa$
- (2) $(\kappa + \lambda) + \mu = \kappa + (\lambda + \mu)$
- (3) $\kappa + 0 = \kappa$
- (4) $\lambda \le \mu \implies \kappa + \lambda \le \kappa + \mu$
- (5) $\kappa \cdot \lambda = \lambda \cdot \kappa$
- (6) $(\kappa \cdot \lambda) \cdot \mu = \kappa \cdot (\lambda \cdot \mu)$
- (7) $\kappa \cdot 1 = \kappa$
- (8) $\kappa \cdot (\lambda + \mu) = (\kappa \cdot \lambda) + (\kappa \cdot \lambda)$
- (9) $\lambda \le \mu \implies \kappa \cdot \lambda \le \kappa \cdot \mu$
- (10) $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$
- $(11) (\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$
- $(12) (\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$
- (13) $\lambda \le \mu \implies \kappa^{\lambda} \le \kappa^{\mu}$
- (14) $\kappa \leq \lambda \implies \kappa^{\mu} \leq \lambda^{\mu}$

Proof. We sketch a proof for (9) and (11) and leave the rest as an exercise.

- (9) Let A, B and C be sets with $|A| = \kappa$, $|B| = \lambda$ and $|C| = \mu$ and suppose that $|B| \le |C|$. We need to show that $|A \times B| \le |A \times C|$. Let $f : B \to C$ be an injective map. Define $F : A \times B \to A \times C$ by F(a, b) = (a, f(b)) then verify that F is injective.
- (11) Let A, B and C be sets with $|A| = \kappa$, $|B| = \lambda$ and $|C| = \mu$. We need to show $|(A^B)^C| = |A^{B \times C}|$. Define $F: (A^B)^C \to A^{B \times C}$ by F(f)(b,c) = f(c)(b). Verify that F is bijective with inverse $G: A^{B \times C} \to (A^B)^C$ given by G(q)(c)(b) = q(b,c)

Exercise 1.3 Show that $\left|\bigcup_{n=0}^{\infty} \mathbb{R}^n\right| = 2^{\aleph_0}$

Exercise 1.4 Find $|\mathbb{R}^{[0,1]}|$

_

2. Metric Spaces

Definition 2.1 — inner product, orthogonal, homomorphism, isomorphism.

isomorphism Let $F = \mathbb{R}$ or \mathbb{C} . Let U be a vector space over F. An inner product on U (over F) is function $\langle , \rangle : U \times U \to F$ (meaning that if $u, v \in U$ then $\langle u, v \rangle \in F$) such that for all $u, v, w \in U$ and all $t \in F$ we have

(Sesquilinearity)

(1)
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle, \langle tu, v \rangle = t \langle u, v \rangle$$

 $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle, \langle u, tv \rangle = \overline{t} \langle u, v \rangle$

(2) (Conjugate Symmetry)

$$\langle u, v \rangle = \langle v, u \rangle$$

(3) (Positive Definition)

$$\langle u, u \rangle \ge 0$$
 with $\langle u, u \rangle = 0 \iff u = 0$

For $u, v \in U$, $\langle u, v \rangle$ is called the **inner product** of u with v. We say that u and v are orthogonal when $\langle u, v \rangle = 0$. An inner product space (over F) is a vector space over F equipped with an inner product. Given two inner product spaces U and V over F, a linear map $L: U \to V$ is called a **homomorphism** of inner product spaces (or we say that L preserves inner product) when $\langle L(x), L(y) \rangle = \langle x, y \rangle$ for all $x, y \in U$. A bijection homomorphism is called an **isomorphism**.

Definition 2.2 — norm (length).

Let U be an inner product space over $F = \mathbb{R}$ or \mathbb{C} . For $u \in U$, we define the **norm** (or **length**) of u to be

$$||u|| = \sqrt{\langle u, u \rangle}$$

Theorem 2.1 Let U be an inner product space over $F = \mathbb{R}$ or \mathbb{C} . For $u, v \in U$ and $t \in F$ we have

- (1) (Scaling) ||tu|| = |t|||u||
- (2) (Positive Definiteness) $||u|| \ge 0$ with $||u|| = 0 \iff u = 0$ (3) $||u+v||^2 = ||u||^2 + 2\operatorname{Re}\langle u,v\rangle + ||v||^2$

- (4) (Polarization Identity) if $F = \mathbb{R}$ then $\langle u, v \rangle = \frac{1}{4}(\|u + v\| \|u v\|)$ and if $F = \mathbb{C}$ then $\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 + i\|u + iv\|^2 - \|u - v\| - i\|u - iv\|^2)$
- (5) (The Cauchy-Schwarz Inequality) $|\langle u, v \rangle| \leq ||u|| ||v||$ with $|\langle u, v \rangle| = ||u|| ||v||$ if and only if $\{u, v\}$ is linearly dependent
- (6) (The Triangle Inequality) $|||u|| ||v||| \le ||u|| + ||v||$

Proof. The first 4 parts are easy to prove.

(5) Suppose that $\{u,v\}$ is linearly dependent. Then one of x and y is a multiple of the other, say v = tu with $t \in F$. Then we have $|\langle u, v \rangle| = |\langle u, tu \rangle| = |\bar{t} \langle u, u \rangle| =$ $|t|||u||^2 = ||u||||tu|| = ||u|||v||$. Next suppose that $\{u,v\}$ is linearly independent. Then $1 \cdot v + t \cdot u \neq 0$ for all $t \in F$, so in particular $v - \frac{\langle v, u \rangle}{\|u\|^2} u \neq 0$. Thus we have

$$\begin{array}{ll} 0 & < & \|v-\frac{\langle v,u\rangle}{\|u\|^2}u\|^2 = \left\langle v-\frac{\langle v,u\rangle}{\|u\|^2}u,v-\frac{\langle v,u\rangle}{\|u\|^2}u\right\rangle \\ \\ & = & \langle v,v\rangle-\frac{\overline{\langle v,u\rangle}}{\|u\|^2}\left\langle v,u\rangle-\frac{\langle v,u\rangle}{\|u\|^2}\left\langle u,v\rangle+\frac{\langle v,u\rangle}{\|u\|^2}\frac{\overline{\langle v,u\rangle}}{\|u\|^2}\left\langle u,u\rangle\right. \\ \\ & = & \|v\|^2-\frac{|\left\langle v,u\rangle\right.|^2}{\|u\|^2} \end{array}$$

So that $\frac{|\langle u,v\rangle|^2}{|u|^2} < |v|^2$ and hence $|\langle u,v\rangle| \le |u||v|$ (6) Using (3) and (5), and the inequality $|\operatorname{Re}(z)| \le |z|$ for $z \in \mathbb{C}$ (which follows Pythagoras' Theorem in \mathbb{R}^2), we have

$$||u+v||^2 = ||u||^2 + \operatorname{Re}\langle u, v \rangle + ||v||^2 \le ||u||^2 + 2|\langle u, v \rangle| + ||v||^2$$

$$\le ||u||^2 + 2||u||||v|| + ||v|| = (||u|| + ||v||)^2$$

Taking the square root on both sides gives $||u+v|| \leq ||u|| + ||v||$. Finally note that $||u|| = ||(u+v) - v|| \le ||u+v|| + ||-v|| = ||u+v|| + ||v||$ so that we have $||u|| - ||v|| \le ||u + v||$, and similarly $||v|| - ||u|| \le ||u + v||$, hence $|||u|| - ||v||| \le ||u + v||$

Definition 2.3 — norm, unit vector, normed linear space, homomorphism, isomorphism.

Let $F = \mathbb{R}$ or \mathbb{C} . Let U be a vector space over F. A **norm** on U is a function $\| \cdot \| : U \to \mathbb{R}$ (meaning that if $u \in U$ then $||u|| \in \mathbb{R}$) such that for all $u, v \in U$ and all $t \in F$ we have

- (1) (Scaling) ||tu|| = |t|||u||
- (2) (Positive Definitenes) $||u|| \ge 0$ with $||u|| = 0 \iff u = 0$
- (3) (Triangle Inequality) $||u+v|| \le ||u|| + ||v||$

For $u \in U$ the real number ||u|| is called the **norm** (or **length**) of u, and we say that u is a unit vector when ||u|| = 1. A normed linear space (over F) is a vector space equipped with a norm. Given two normed linear spaces U and V over F, a linear map $L:U\to V$ is called a homomorphism of normed linear spaces (or we say that L preserves norm) when ||L(x)|| = ||x|| for all $x \in U$. A bijection homomorphism is called an isomorphism.

Definition 2.4 — distance.

Let $F = \mathbb{R}$ or \mathbb{C} and let U be a normed linear space over F. For $u, v \in U$, we define the **distance** between u and v to be

$$d(u, v) = ||v - u||$$

Theorem 2.2 Let U be a normed linear space over $F = \mathbb{R}$ or \mathbb{C} . For all $u, v, w \in U$

- (1) (Symmetry) d(u, v) = d(v, u)
- (2) (Positive Definiteness) $d(u,v) \ge 0$ with $d(u,v) = 0 \iff u = v$
- (3) (Triangle Inequality) $d(u, w) \leq d(u, v) + d(v, w)f$

Proof. The proof is left as exercise

Definition 2.5 — metric, distance, metric space, homomorphism, isomorphism.

Let X be a non-empty set. A **metric** on X is a map $d: X \times X \to \mathbb{R}$ such that for all $a, b, c \in X$ we have

- (1) (Symmetry) d(a,b) = d(b,a)
- (2) (Positive Definiteness) $d(a,b) \ge 0$ with $d(a,b) = 0 \iff a = b$
- (3) (Triangle Inequality) $d(a,c) \le d(a,b) + d(b,c)$

For $a, b \in X$, d(a, b) is called the **distance** between a and b. A **metric space** is a set X which is equipped with a metric d, and we sometimes denote the metric space by X and sometimes by the pair (X, d). Given two metric spaces (X, d_X) and (Y, d_Y) , a map $f: X \to Y$ is called a homomorphism of metric spaces (or we say that f is **distance preserving**) when $d_Y(f(a), f(b)) = d_X(a, b)$ for all $a, b \in X$. A bijective homomorphism is called an **isomorphism** or an **isometry**.

Note 2.1 Every inner product space is also a normed linear space, using the induced norm given by $\|u\| = \sqrt{\langle u, u \rangle}$. Every normed linear space is also a metric space, using the induced metric given by $d(u, v) = \|u - v\|$. If U is an inner product space over $\mathbf{F} = \mathbb{R}$ or \mathbb{C} then every subspace of U is also an inner product space using (the restriction of) the same inner product used in U. If U is a normed linear space over $\mathbf{F} = \mathbb{R}$ or \mathbb{C} then every subspace of U is also a normed linear space using the same norm. If X is a metric space then so is every subset of X using the same metric.

Example 2.1 Let $\mathbf{F} = \mathbb{R}$ or \mathbb{C} . The standard inner product on \mathbf{F}^n is given by

$$\langle u, v \rangle = v * u = \sum_{i=1}^{n} u_i \overline{v_i}$$

The standard inner product induces the **standard norm** on \mathbf{F}^n , which is also called the **2-norm** on \mathbf{F}^n , given by

$$||u||_2 = ||u|| = \sqrt{\langle u, u \rangle} = \left(\sum_{i=1}^n |u_i|^2\right)^{\frac{1}{2}}$$

The standard norm on \mathbf{F}^n induces the **standard metric** on \mathbf{F}^n , given by

$$d_2(u,v) = d(u,v) = ||v - u|| = \left(\sum_{i=1}^n |v_i - u_i|^2\right)^{\frac{1}{2}}$$

The **1-norm** on \mathbf{F}^n is given by

$$||u||_1 = \sum_{i=1}^n |u_i|$$

and it induces the **1-metric** on \mathbf{F}^n given by $d_1(u,v) = ||v-u||_1$. The **supremum norm** also called **infinity norm**, on \mathbf{F}^n is given by

$$||u||_{\infty} = \max\{|u_1|, |u_2|, \cdots, |u_n|\}$$

and it induces the **supremum metric** on \mathbf{F}^n given by $d_{\infty}(u,v) = ||v-u||_{\infty}$

Example 2.2 For $\mathbf{F} = \mathbb{R}$ or \mathbb{C} . We write

$$\mathbf{F}^{\omega} = \{u = (u_1, u_2, u_3, \cdots) | \text{ each } u_i \in \mathbf{F} \}$$

 $\mathbf{F}^{\infty} = \{u \in \mathbf{F}^{\omega} | \text{ there exists } n \in \mathbb{Z}^+ \text{ such that } u_k = 0 \text{ for all } k \geq n \}$

Recall that \mathbf{F}^{∞} is a countable-dimensional vector space with standard basis $\{e_1, e_2, e_3, \dots\}$ where $e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots)$ and so on. The **standard inner product** on \mathbf{F}^{∞} is given by

$$\langle u, v \rangle = \sum_{i=1}^{\infty} u_i \overline{v_i}$$

and it induces the **standard norm**, also called the **2-norm**, on \mathbf{F}^{∞} given by

$$||u||_2 = \sqrt{\langle u, v \rangle} = \left(\sum_{i=1}^n |u_i|^2\right)^{\frac{1}{2}}$$

The **1-norm** on \mathbf{F}^{∞} is given by

$$||u||_1 = \sum_{i=1}^{\infty} |u_i|$$

and it induces the **1-metric** on \mathbf{F}^{∞} given by $d_1(u,v) = ||v-u||_1$. The **supremum norm** also called the **infinity norm**, on \mathbf{F}^n is given by

$$||u||_{\infty} = \max\{|u_1|, |u_2|, \cdots, |u_n|\}$$

and it induces the **supremum metric** on \mathbf{F}^n given by $d_{\infty}(u,v) = ||v-u||_{\infty}$

■ Example 2.3 For $\mathbf{F} = \mathbb{R}$ or \mathbb{C} , the standard inner product, the 1-norm, the 2-norm and the ∞-norm, which are well defined on the vector space \mathbf{F}^{∞} , do not extend naturally to give a well defined inner product or well-defined norms on the vector space \mathbf{F}^{ω} (because the relevant sums do not necessarily converge). But we can, and do, extend there definitions to various subspaces of \mathbf{F}^{ω} . We define

$$\ell_1(\mathbf{F}) = \{ u \in \mathbf{F}^{\omega} \mid \sum_{i=1}^{\infty} |u_i| < \infty \}$$

$$\ell_2(\mathbf{F}) = \{ u \in \mathbf{F}^{\omega} \mid \sum_{i=1}^{\infty} |u_i|^2 < \infty \}$$

$$\ell_{\infty}(\mathbf{F}) = \{ u \in \mathbf{F}^{\omega} \mid \sup\{|u_1|, |u_2|, \dots\} < \infty \}$$

Verify that $\ell_1(\mathbf{F})$ is a normed linear space using **1-norm** given by $||u||_1 = \sum_{i=1}^{\infty} |u_i|$, hence $\ell_1(\mathbf{F})$ is also a metric space using the **1-metric** $d_1(u,v) = ||v-u||_1$. Verify that $\ell_{\infty}(\mathbf{F})$ is a normed linear space using the **supremum norm**, also called the **infinity norm**, given by $||u||_{\infty} = \sup\{|u_1|, |u_2|, \cdots\}$, hence $\ell_{\infty}(\mathbf{F})$ is also a metric space using the **supremum metric** $d_{\infty} = ||v-u||_{\infty}$. Verify that $\ell_2(\mathbf{F})$ is an inner product space using the **standard inner product** given by $\langle u, v \rangle = \sum_{i=1}^{\infty} u_i \overline{v_i}$. The standard inner product on $\ell_2(\mathbf{F})$ induces

the **standard norm**, also called the **2-norm**, on $\ell_2(\mathbf{F})$ given by $||u||_2 = \left(\sum_{i=1}^{\infty} |u_i|^2\right)^{\frac{1}{2}}$ and the **standard metric**, or the **2-metric**, $d_2(u,v) = ||v-u||_2$. Since we shall usually work with the field $\mathbf{F} = \mathbb{R}$, for p = 1, 2 or ∞ we shall write

$$\ell_n = \ell_n(\mathbb{R})$$

Example 2.4 For $\mathbf{F} = \mathbb{R}$ or \mathbb{C} and for $a.b \in \mathbb{R}$ with $a \leq b$, we write

$$\mathcal{F}([a,b],\mathbf{F}) = \mathbf{F}^{[a,b]} = \{f : [a,b] \to \mathbf{F}\}$$

$$\mathcal{B}([a,b],\mathbf{F}) = \{f : [a,b] \to \mathbf{F} \mid f \text{ is bounded}\}$$

$$\mathcal{C}([a,b],\mathbf{F}) = \{f : [a,b] \to \mathbf{F} \mid f \text{ is continuous}\}$$

Recall that for $f:[a,b]\to\mathbb{C}$ given by f=u+iv where $u,v:[a,b]\to\mathbb{R}$, the function f is continuous if and only if both u and v are continuous and, in this case, $\int_a^b f = \int_a^b +i \int_a^b v$. In the space $\mathcal{C}([a,b],\mathbf{F})$ we have the **1-norm**, the **2-norm**, and the **supremum norm**

$$||f||_1 = \int_a^b |f|$$
 $||f||_2 = \left(\int_a^b |f|^2\right)^{\frac{1}{2}}$
 $||f||_{\infty} = \sup_{a \le x \le b} |f(x)|$

The supremum norm also gives a well-defined norm on the space $\mathcal{B}([a,b],\mathbf{F})$. The 2-norm on $\mathcal{C}([a,b],\mathbf{F})$ is induced by the inner product $\mathcal{C}([a,b],\mathbf{F})$ given by

$$\langle f, g \rangle = \int_{a}^{b} f \overline{g}$$

Since we shall usually work with the field $\mathbf{F} = \mathbb{R}$ m we shall write

$$\mathcal{F}[a,b] = \mathcal{F}([a,b],\mathbb{R})$$
, $\mathcal{B}[a,b] = \mathcal{B}([a,b],\mathbb{R})$ and $\mathcal{C} = \mathcal{C}([a,b],\mathbb{R})$

For $\mathbf{F} = \mathbb{R}$ or \mathbb{C} and for $1 \leq p < \infty$, one can show that we can define a norm on \mathbf{F}^n by

$$||u||_p = \left(\sum_{i=1}^n |u_i|^p\right)^{\frac{1}{p}}$$

and we can define a norm on \mathbf{F}^{∞} or on the space $\ell_{\infty}(\mathbf{F}) = \{u \in \mathbf{F}^{\omega} | \sum_{i=1}^{\infty} |u_i|^p < \infty\}$ by

$$||u||_p = \left(\sum_{i=1}^{\infty} |u_i|^p\right)^{\frac{1}{p}}$$

Also, we can define a norm on the space $\mathcal{C}([a,b],\mathbf{F})$ by

$$||f||_p = \left(\int_{i=a}^b |f|^p\right)^{\frac{1}{p}}$$

■ Example 2.5 For any set $X \neq \emptyset$, the **discrete metric** on X is given by d(x,y) = 1 for all $x, y \in X$ with $x \neq y$ and d(x, x) = 0 for all $x \in X$.

Definition 2.6 — open ball, closed ball, punctured ball, bounded.

Let X be a metric space. For $a \in X$ and $0 < r \in \mathbb{R}$, the **open ball**, the **closed ball** and the (open) **punctured ball** in X centered at a of radius r are defined to be the sets

$$B(a,r) = B_X(a,r) = \{x \in X \mid d(x,a) < r\}$$
$$\overline{B}(a,r) = \overline{B}_X(a,r) = \{x \in X \mid d(x,a) \le r\}$$
$$B^*(a,r) = B_X^*(a,r) = \{x \in X \mid 0 < d(x,a) < r\}$$

When the metric on X denoted by d_p with $1 \leq p \leq \infty$, we often write B(a,r), $\overline{B}(a,r)$ and $B^*(a,r)$ as $B_p(a,r)$, $\overline{B}_p(a,r)$ and $B_p^*(a,r)$. For $A \subseteq X$, we say that A is **bounded** when $A \subseteq B(a,r)$ for some $a \in X$ and some $0 < r \in \mathbb{R}$.

Exercise 2.1 Draw a picture of the open balls $B_1(0,1)$, $B_2(0,1)$ and $B_{\infty}(0,1)$ in \mathbb{R}^2 (using the metrics d_1 , d_2 and d_{∞}).

Definition 2.7 — open, closed.

Let X be a metric space. For $A \subseteq X$, we say that A is **open** (in X) when for every $a \in A$ there exists r > 0 such that $B(a, r) \subseteq A$, and we say that A is closed (in X) when its complement $A^c = \mathbb{R}^n \setminus A$ is open in \mathbb{R}^n .

Example 2.6 Let X be a metric space. Show that for $a \in X$ and $0 < r \in \mathbb{R}$, the set B(a,r) is open and the set $\overline{B}(a,r)$ is closed.

Proof. Let $a \in X$ and Let r > 0. We claim that B(a,r) is open. We need to show that for all $b \in B(a,r)$ there exists s > 0 such that $B(b,s) \subseteq B(a,r)$. Let $b \in B(a,r)$ and note that d(a,b) < r. Let s = r - d(a,b) and note that s > 0. Let s = B(b,s), so we have d(s,b) < s. Then, by the Triangle Inequality, we have

$$d(x, a) \le d(x, b) + d(b, a) < s + d(a, b) = r$$

and so $x \in B(a,r)$. This shows that $B(b,s) \subseteq B(a,r)$ and hence B(a,r) is open. Next we claim that $\overline{B}(a,r)$ is closed, that is $\overline{B}(a,r)^c$ is open. Let $b \in \overline{B}(a,r)^c$, that is let $b \in X$ with $b \notin \overline{B}(a,r)$. Since $b \notin \overline{B}(a,r)$ we have d(a,b) > r. Let s = d(a,b) - r > 0. Let $x \in B(b,s)$ and not that d(x,b) < s. Then, by the Triangle Inequality, we have

$$d(a,b) \le d(a,x) + d(x,b) \le d(x,a) + s$$

and so d(x,a) > d(a,b) - s = r. Since d(x,a) > r we have $b \notin \overline{B}(a,r)$ and so $x \in \overline{B}(a,r)^c$. This shows that $B(b,s) \subseteq \overline{B}(a,r)^c$ and it follows that $\overline{B}(a,r)^c$ is open and hence that $\overline{B}(a,r)$ is closed.

Theorem 2.3 — Basic Properties of Open Sets.

Let X be a metric space

- (1) The sets \emptyset and X are open in X
- (2) If S is a set of open sets in X then the union $\bigcup S = \bigcup_{U \in S} U$ is open in X
- (3) If S is a finite set of open sets in X then the intersection $\bigcap S = \bigcap_{U \in S} U$ is open in X
- **Proof.** (1) The empty set is open because any statement of the form "for all $x \in \emptyset$, F" (where F is any statement) is considered to be true (by convention). The set X is open because given $a \in X$ we can choose any value of r > 0 and then $B(a, r) \subseteq X$ by the definition of B(a, r).
- (2) Let S be any set of open sets in X. Let $a \in \bigcup S = \bigcup_{U \in S} U$. Choose an open set $U \in S$ such that $a \in U$. Since U is open we can choose r > 0 such that $B(a,r) \subseteq U$. Since $U \in S$ we have $U \subseteq \bigcup S$. Since $B(a,r) \subseteq U$ and $U \subseteq \bigcup S$ we have $B(a,r) \subseteq \bigcup S$. Thus $\bigcup S$ is open.
- (3) Let S be a finite set of open sets in X. If $S \neq \emptyset$ then we use the convention that $\bigcap S = X$, which is open. Suppose that $S \neq \emptyset$. say $S = \{U_1, U_2, \dots, U_m\}$ where

each U_k is an open set. Let $a \in \bigcap S = \bigcap_{k=1}^m U_k$. For each index k, since $a \in U_k$ we can choose $r_k > 0$ so that $B(a, r_k) \subseteq U_k$. Let $r = \min\{r_1, r_2, \cdots, r_m\}$. Then for each index k we have $B(a, r) \subseteq B(a, r_k) \subseteq U_k$. Since $B(a, r)U_k$ for every index k, it follows that $B(a, r) \subseteq \bigcap_{k=1}^m U_k = \bigcap S$

Theorem 2.4 — Basic Properties of Closed Sets.

Let X be a metric space

- (1) The sets \emptyset and X are closed in X
- (2) If S is a set of closed sets in X then the union $\bigcap S = \bigcap_{U \in S} U$ is open in X
- (3) If S is a finite set of closed sets in X then the intersection $\bigcup S = \bigcup_{U \in S} U$ is open in X

Proof. The proof is left as exercise

Definition 2.8 — topology, topology space, metric topology, finer, coarser.

A **topology** on a set X is a set T of subsets of X such that

- (1) $\emptyset \in T$ and $X \in T$
- (2) For every set $S \subseteq T$ we have $\bigcup S \in T$
- (3) For every finite subset $S \subseteq T$ we have $\bigcap S \in T$

A topology space is a set X with a topology T. When X is a metric space, the set of all open sets in X is a topology on X. which we call the **metric topology** (or the topology **induced** by the metric). When X is any topological space, the sets in the topology T are called the **open sets** in X and their complements are called the **closed sets** in X. When S and T are both topologies on a set X with $S \subseteq T$, we say that the topology T is **finer** than the topology S, and the topology S is **coarser** than the topology T.

■ Example 2.7 Show that in \mathbb{R}^n , the metrics d_1, d_2 and d_∞ all induce the same topology *Proof.* For $a, x \in \mathbb{R}^n$ we have

$$\max_{a \le i \le n} |x_i - a_i| \le (\sum_{i=1}^n |x_i - a_i|^2)^{\frac{1}{2}} \le \sum_{i=1}^n |x_i - a_i| \le n \max_{a \le i \le n} |x_i - a_i|$$

and so

$$d_{\infty}(a,x) \le d_2(a,x) \le d_1(a,x) \le nd_{\infty}(a,x).$$

It follows that for all $a \in \mathbb{R}^n$ and r > 0 we have

$$B_{\infty}(a,x) \supseteq B_2(a,r) \supseteq B_1(a,r) \supseteq B_{\infty}(a,\frac{r}{n}).$$

Thus for $U \subseteq \mathbb{R}^n$, if U is open in \mathbb{R}^n using d_{∞} then it is open using d_2 . and if U is open using d_2 then it is open using d_1 , and if U is open using d_1 then it is open using d_{∞} .

■ Example 2.8 Show that on the space C[a, b], the topology induced by the metric d_{∞} is strictly finer than the topology induced by the metric d_1

Proof. For $f, g \in \mathcal{C}[a, b]$ we have

$$d_1(f,g) = \int_a^b |f - g| \le \int_a^b \max_{a \le x \le b} |f(x) - g(x)| = (b - a)d_{\infty}(f,g)$$

It follows that for $f \in \mathcal{C}[a,b]$ and r > 0 we have

$$B_{\infty}(f,r) \subseteq B_1(f,(b-a)r)$$

Thus for $U \subseteq \mathcal{C}[a, b]$, if U is open using d_1 then U is also open using d_{∞} , and so the topology induced by the metric d_{∞} is finer (or equal to) the topology induced by d_1 .

On the other hand, we claim that for $f \in \mathcal{C}[a,b]$ and r > 0, the set $B_{\infty}(f,r)$ is not open in the topology induced by d_1 . Fix $g \in B_{\infty}(f,r)$ and let s > 0. Choose a bump function $h \in \mathcal{C}[a,b]$ with $h \geq 0$, $\int_a^b h < h$ and $\max_{a \leq x \leq b} h(x) > 2r$. Then we have $g + h \in B_1(g,s)$ but $g + h \notin B_{\infty}(f,r)$. It follows that $B_{\infty}(f,r)$ is not open in the topology induced by d_1 , as claimed.

Example 2.9 For any set X, the **trivial topology** on X is the topology in which the only open sets in X are the sets \emptyset and X, and the **discrete topology** on X is the topology in which every subset of X is open. Note that the discrete metric on a nonempty set X induces the discrete topology on X.

Definition 2.9 — interior, closure, dense.

Let X be a metric space (or a topological space) and let $A \subseteq X$. The **interior** and the **closure** of A (in X) are the sets

$$A^{\circ} = \bigcup \{ U \subseteq X \mid U \text{ is open, and } U \subseteq A \}$$

$$\overline{A} = \bigcap \{ K \subseteq X \mid K \text{ is closed, and } A \subseteq K \}$$

We say that A is **dense** in X when $\overline{A} = X$.

Theorem 2.5 Let X be a metric space (or a topological space) and let $A \subseteq X$

- (1) The interior of A is the largest open set which is contained in A. In other words, $A^{\circ} \subseteq A$ and A° is open, and for every open set U with $U \subseteq A$ we have $U \subseteq A^{\circ}$
- (2) The closure of A is the smallest closed set which contains A. In other words, $A \subseteq \overline{A}$ and \overline{A} is closed, and for every closed set K with $A \subseteq K$ we have $\overline{A} \subseteq K$

Proof.

- (1) Let $L = \{U \subseteq X \mid U \text{ is open, and } U \subseteq A\}$. Note that A° is open (by Part 2 of Theorem 2.3 or by Part 2 of Definition 2.8) because A° is equal to the union if S, which is a set of open sets. Also note that $A^{\circ} \subseteq A$ because A° is equal to the union of S, which is a set of subsets of A. Finally note that for any open set U with $U \subseteq A$ we have $U \in S$ so that $U \subseteq \bigcup S = A^{\circ}$.
- (2) The proof is similar to (1)

Corollary 2.6

Let X be a metric space (or a topological space) and let $A \subseteq X$

- (1) $(A^{\circ})^{\circ} = A^{\circ}$ and $\overline{A} = A$
- (2) A is open $\iff A = A^{\circ}$
- (3) A is closed \iff $A = \overline{A}$

Proof. The proof is left as exercise

•

_

Definition 2.10 — interior point, limit point, isolated point, boundary point, boundary.

isolated point Let X be a metric space and let $A \subseteq X$.

An **interior point** of A is a point $a \in A$ such that for some r > 0 we have $B(a, r) \subseteq A$. A limit point of A is a point $a \in X$ such that for every r > 0 we have $B^*(a,r) \cap A \neq \emptyset$. An **isolated point** of A is a point $a \in A$ which is not a limit point of A.

A boundary point of A is a point of A is a point $a \in X$ such that for every r > 0 we have $B(a,r) \cap A \neq \emptyset$ and $B(a,r) \cap A^c \neq \emptyset$.

The set of all limit points of A is denoted by A'. The **boundary** of A, is the set of all boundary points of A.

Theorem 2.7 — Properties of Interior, Limit and Boundary Points.

Let X be a metric space and let $A \subseteq X$

- (1) A° is equal to the set of all interior points of A
- (2) A is closed $\iff A' \subseteq A$
- $(3) \ \overline{A} = A \cup A'$
- $(4) \ \partial A = A \setminus A^{\circ}$

Proof. We leave the proofs of (1) and (4) as exercise.

(2) Note that when $a \notin A$ we have $B(a,r) \cap A = B^*(a,r) \cap A$ and so

$$A \text{ is closed} \iff A^c \text{ is open}$$

$$\iff \forall a \in A^c, \ \exists r > 0, \ B(a,r) \subseteq A^c$$

$$\iff \forall a \in \mathbb{R}^n, \ (a \notin A \implies \exists r > 0, \ B(a,r) \subseteq A^c)$$

$$\iff \forall a \in \mathbb{R}^n, \ (a \notin A \implies \exists r > 0, \ B(a,r) \cap A = \emptyset)$$

$$\iff \forall a \in \mathbb{R}^n, \ (a \notin A \implies \exists r > 0, \ B^*(a,r) \cap A = \emptyset)$$

$$\iff \forall a \in \mathbb{R}^n, \ (\forall r > 0, B^*(a,r) \cap A \neq \emptyset \implies a \in A)$$

$$\iff \forall a \in \mathbb{R}^n, \ (a \in A' \implies a \in A)$$

$$\iff A' \subseteq A.$$

(3) We shall prove that $A \cup A'$ is the smallest closed set which contains A. It is clear that $A \cup A'$ is closed, that is $(A \cup A')^c$ is open. Let $a \in (A \cup A')^c$ with, that is let $a \in X$ with $a \notin A$ and $a \notin A'$. Since $a \notin A'$ we can choose r > 0 so that $B(a, r) \cap A = \emptyset$. We claim that because $B(a,r) \cap A = \emptyset$ it follows that $B(a,r) \cap A'$. Since $b \in B(a,r)$ and B(a,r) is open, we can choose s>0 so that $B(b,s)\subseteq B(a,r)$. Since $b\in A'$ it follows that $B(b,s) \cap A \neq \emptyset$. Choose $x \in B(b,s) \cap A$. Then we have $x \in B(b,s) \subseteq B(a,r)$ and $x \in A$ and so $x \in B(a,r) \cap A$, which contradicts the fact that $B(a,r) \cap A = \emptyset$. Thus $B(a,r) \cap A' \neq \emptyset$ as claimed. Since $B(a,r) \cap A = \emptyset$ and $B(a,r) \cap A' = \emptyset$, it follows that $B(a,r) \cap (A \cup A') = \emptyset$, hence $B(a,r) \subset (A \cup A')^c$. Thus proves that $(A \cup A')^c$ is open, and hence $A \cup A'$ is closed.

It remains to show that for every closed set K in X with $A \subseteq K$ we have $A \cup A' \subseteq K$. Let K be a closed set in X with $A \subseteq K$. Note that since $A \subseteq K$ it follows that $A' \subseteq K'$ because if $a \in A'$ then for all r > 0 we have $B(a,r) \cap A \neq \emptyset$ hence $B(a,r) \cap K \neq \emptyset$ and so $a \in K'$. Since K is closed we have $K' \subseteq K$ by (2). Since $A' \subseteq K'$ and $K' \subseteq K$, we have $A' \subseteq K$. Since AK and $A' \subseteq K$ we have $A \cup A' \subseteq K$ as required.

Let X be a topological space and let $A \subseteq X$, An interior point of A is a point $a \in A^{\circ}$. A **limit point** of A is a point $a \in X$ such that for every open set U in X with $a \in U$ there exists a point $b \in U \cap A$ with $b \neq a$. The **boundary** of A in X is the set $\partial A = \overline{A} \setminus A^{\circ}$, and a **boundary point** of A is a point $a \in \partial A$.

Note 2.2 Let X be a metric space and let $P \subseteq X$. Note that P is also a metric space using (the restriction of) the metric used in X. For $a \in P$ and $0 < r \in \mathbb{R}$, note that the open and closed balls in P, centered at a and of radius r, are related to the open and closed balls in X by

$$B_P(a,r) = \{ x \in P \mid d(x,a) < r \} = B_X(a,r) \cap P$$

$$\overline{B}_P(a,r) = \{x \in P \mid d(x,a) < r\} = \overline{B}_X(a,r) \cap P$$

Theorem 2.8 Let X be a metric space and let $A \subseteq P \subseteq X$

- (1) A is open in $P \iff$ there exists an open set U in X such that $A = U \cap P$
- (2) A is closed in $P \iff$ there exists a closed set K in X such that $A = K \cap P$

Proof.

- (1) Suppose that A is open in P. For each $a \in A$, choose $r_a > 0$ so that $B_P(a, r_a) \subseteq A$, that is $B_X(a, r_a) \cap P \subseteq A$, and let $U = \bigcup_{a \in A} B_X(a, r_a)$. Since U is equal to the union of a set of open sets in X, it follows that U is open in X. Note that $A \subseteq U \cap P$, and, since $B_X(a, r_a) \cap P \subseteq A$ for every $a \in A$, we also have $U \cap P = (\bigcup_{a \in U} B_X(a, r_a)) \cap P = \bigcup_{a \in A} (B_X(a, r_a) \cap P) \subseteq A$. Thus $A = U \cap P$ as required. Conversely, suppose that $A = U \cap P$ with U open in X. Let $a \in A$. Since we have $a \in A = U \cap P$, we also have $a \in U$. Since $a \in U$ and $u \in U \cap P = A$ we have $u \in A$ so that $u \in A$ so tha
- (2) Suppose that A is closed in P. Let B be the complement of A in P, that is $B = P \setminus A$. Then B is open in P. Choose an open set U in X such that $B = U \cap P$. Let K be the complement of U in X, that is $K = X \setminus U$. Then $A = K \cap P$ since for $x \in X$ we have

$$x \in A \iff (x \in P \text{ and } x \notin U \cap P) \iff (x \in P \text{ and } x \notin U)$$

 $\iff (x \in P \text{ and } x \in K) \iff (x \in K \cap P)$

Conversely, suppose that K is a closed set in P with $A = K \cap P$. Let B be the complement of A in P, that is $B = P \setminus A$, and let U be the complement of K in P, that is $U = P \setminus K$, and note that U is open in P. Then we have $B = U \cap P$ since for $x \in P$ we have

$$x \in B \iff (x \in P \text{ and } x \notin A) \iff (x \in P \text{ and } x \notin K \cap P)$$

 $\iff (x \in P \text{ and } x \notin K) \iff (x \in P \text{ and } x \in U) \iff (x \in U \cap P)$

Since U us open in P and $B = U \cap P$ we know that B is open in P. Since B is open in P, its complement $A = P \setminus B$ is closed in P.

Let X be a topological space and let $P \subseteq X$. Verify, as an exercise, that we can use the topology on X to define a topology on P as follows. Given a set $A \subseteq P$, we define A to be **open** in P when $A = U \cap P$ for some open set U in X. The resulting topology on P is called the **subspace topology**.

3. Limits and Continuity

Definition 3.1 — bounded, converge, limit, diverge, Cauchy.

Let $(x_n)_{n\geq p}$ be a sequence in a metric space X. We say that the sequence $(x_n)_{n\geq p}$ is **bounded** when the set $\{x_n\}_{n\geq p}$ is bounded, that is when there exists $a\in X$ and r>0 such that $x_n\in B(a,r)$ for all indices $n\geq p$

For $a \in X$, we say that the sequence $(x_n)_{n \geq p}$ converges to a (or that the **limit** of x_n is equal to a) and we write $\lim_{n \to \infty} x_n = a$ (or write $x_n \to a$) when for every $\epsilon > 0$ there exists an index $m \geq p$ such that $d(x_n, a) < \epsilon$ for all indices $n \geq m$. We say that the sequence $(x_n)_{n \geq p}$ converges (in X) when it converges to some point $a \in X$, and otherwise we say that $(x_n)_{n \geq p}$ diverges (in X).

We say that the $(x_n)_{n\geq p}$ is **Cauchy** when for every $\epsilon>0$ there exists an index $m\geq p$ such that $d(x_k,x_l)<\epsilon$ for all indices $k,l\geq m$.

When $(x_n)_{n\geq p}$ is a sequence in a topological space X and $a\in X$, we say that $(x_n)_{n\geq p}$ converges to a (or we say the **limit** of $(x_n)_{n\geq p}$ is equal to a) and we write $\lim_{n\to\infty} x_n = a$ (or we write $x_n\to a$) when for every open set U in X with $a\in U$ there exists an index $m\geq p$ such that $x_n\in U$ for every index $n\geq m$.

Theorem 3.1 — Basic Properties of Limits of Sequences. Let $(x_n)_{n\geq p}$ be a sequence in a metric space X, and let $a\in X$

- (1) If $(x_n)_{n>p}$ converges then its limit is unique
- (2) If $q \ge p$ and $y_n = x_n$ for all $n \ge q$, then $(x_n)_{n \ge p}$ converges if and only if $(y_n)_{n \ge p}$ converges and, in this case, $\lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n$
- (3) If $(x_n)_{n\geq p}$ converges then it is bounded
- (4) If $(x_n)_{n>p}$ converges then it is Cauchy
- (5) We have $\lim_{n\to\infty} = a$ if and only if for every open set U in X with $a\in U$ there exists an index $m\geq p$ such that $x_n\in U$ for every index $n\geq m$

Note 3.1 Because of Part 2 of the above theorem, the initial index p of a sequence $(x_n)_{n\geq p}$ does not affect whether or not the sequence converges and it does not affect the limit. For this reason, we often omit the initial index p from our notation and write (x_n) for the sequence $(x_n)_{n\geq p}$. Also, we often choose a specific value of p, usually p=1, in the statements or the proofs of various theorems with the understanding that any other initial value would work just as well.

Exercise 3.1 For each $n \in \mathbb{Z}^+$, let $x_n \in \mathbb{R}^{\infty}$ be the sequence given by $x_n = \frac{1}{n} \sum_{k=1}^n e_k$, that is by $(x_{n,k})_{k\geq 1} = (\frac{1}{n}, \frac{1}{n}, \cdots, \frac{1}{n}, 0, 0, 0, \cdots)$ with n non-zero terms. Show that (x_n) converges in $(\mathbb{R}^{\infty}, d_1)$.

Exercise 3.2 For each $n \in \mathbb{Z}^+$, let $f_n \in \mathcal{C}[0,1]$ be given by $f_n(x) = \sqrt{n}x^n$. Show that $(f_n)_{n\geq 1}$ converges in $(\mathcal{C}[0,1],d_1)$ but diverges in $(\mathcal{C}[0,1],d_2)$.

Note 3.2 Recall that $\mathcal{B}[a,b]$ denotes the space of bounded functions $f:[a,b]\to\mathbb{R}$. Let (f_n) be a sequence of bounded functions in $\mathcal{B}[a,b]$ and let $g\in\mathcal{B}[a,b]$. Note that (f_n) converges in the metric space $(\mathcal{B}[a,b],d_\infty)$, if and only if (f_n) converges uniformly on [a,b]. Indeed for $\epsilon>0$ we have $d_\infty(f_n,g)<\epsilon$ if and only if $\sup_{a\leq x\leq b}|f_n(x)-g(x)|<\epsilon$ if and only if $|f_n(x)-g(x)|<\epsilon$ for all $x\in[a,b]$. The same is true for a sequence (f_n) in $\mathcal{C}[a,b]$: (f_n) converges in the metric space $(\mathcal{C}[a,b],d_\infty)$ if and only if (f_n) converges uniformly on [a,b].

Theorem 3.2 — The Sequential Characterization of Limit Points and Closed Sets.

Let X be a metric space, let $a \in X$, and let $A \subseteq X$.

- (1) $a \in A'$ if and only if there exists a sequence (x_n) in $A \setminus \{a\}$ with $\lim_{n \to \infty} x_n = a$.
- (2) $a \in \overline{A}$ if and only if there exists a sequence (x_n) in A with $\lim_{n \to \infty} x_n = a$.
- (3) A is closed in X if and only if for every sequence (x_n) in A which converges in X, we have $\lim_{n\to\infty} x_n \in A$.

Proof.

- (1) Suppose that $a \in A'$ (which means that for every r > 0 we have $B^*(a,r) \cap A \neq \emptyset$). For each $n \in \mathbb{Z}^+$, choose $x_n \in B^*\left(a,\frac{1}{n}\right) \cap A$, that is choose $x_n \in A \setminus \{a\}$ with $d(x_n,a) < \frac{1}{n}$. Then $(x_n)_{n\geq 1}$ is a sequence in $A \setminus \{a\}$ with $\lim_{n\to\infty} x_n = a$. Suppose, conversely, that $(x_n)_{n\geq 1}$ is a sequence in $A \setminus \{a\}$ with $\lim_{n\to\infty} x_n = a$. Let r > 0. Choose $m \in \mathbb{Z}^+$ such that $d(x_n,a) < r$ for all $n \geq m$. Since $x_m \in A \setminus \{a\}$ with $d(x_m,a) < r$, we have $x_m \in B^*(a,r) \cap A$ and so $B^*(a,r) \cap A \neq \emptyset$.
- (2) Left as exercise
- (3) To prove Part 3, suppose that A is closed in X. Let $(x_n)_{n\geq 1}$ be a sequence in A which converges in X, and let $a=\lim_{n\to\infty}x_n\in X$. Suppose, for a contradiction, that $a\notin A$. Since $a\notin A$ we have $A=A\setminus\{a\}$ so in fact (x_n) is a sequence in $A\setminus\{a\}$. Since (x_n) is a sequence in $A\setminus\{a\}$ with $\lim_{n\to\infty}x_n=a$, it follows from Part 1 that $a\in A'$. Since A is closed we have $A'\subseteq A$ and so $a\in A$ giving the desired contradiction. Suppose, conversely, that for every sequence in A which converges in X, the limit

of the sequence lies in A. Let $a \in A'$. By Part 1, we can choose a sequence (x_n) in $A \setminus \{a\}$ with $\lim_{n \to \infty} x_n = a$. Then (x_n) is a sequence in A which converges in X, so its limit lies in A, that is $a \in A$. Since $a \in A'$ was arbitrary, this shows that $A' \subseteq A$, and so A is closed.

■ Example 3.1 Note that $\mathcal{C}[a,b]$ is closed in the metric space $(\mathcal{B}[a,b],d_{\infty})$. We can see this using Note 3.7 together with the above theorem. Indeed, given a sequence (f_n) with each $f_n \in \mathcal{C}[a,b]$, if the sequence (f_n) converges in $(\mathcal{B}[a,b],d_{\infty})$ to the function $g \in \mathcal{B}[a,b]$, then (f_n) converges uniformly to g on [a,b], and so (from MATH 148) we know that g must be continuous, hence $g \in \mathcal{C}[a,b]$.

Exercise 3.3 Let

$$\begin{split} \mathcal{R}[a,b] &= \big\{ f \in \mathcal{B}[a,b] \, \big| \, f \text{ is Riemann integrable} \big\}, \\ \mathcal{P}[a,b] &= \big\{ f \in \mathcal{B}[a,b] \, \big| \, f \text{ is a polynomial} \big\}, \\ \mathcal{C}^1[a,b] &= \big\{ f \in \mathcal{B}[a,b] \, \big| \, f \text{ is continuously differentiable} \big\}. \end{split}$$

Determine which of the above spaces are closed in the metric space $\mathcal{B}[a,b]$, using the supremum metric d_{∞} .

■ Example 3.2 Recall that \mathbb{R}^{∞} denotes the set of sequences with only finitely many non-zero terms. Show that \mathbb{R}^{∞} is dense in the metric space (ℓ_1, d_1) .

Proof. Since the closure of \mathbb{R}^{∞} in ℓ_1 is contained in ℓ_1 (by the definition of closure), it suffices to show that $\ell_1 \subseteq \overline{\mathbb{R}^{\infty}}$. Let $a = (a_n)_{n \ge 1} \in \ell_1$, so we have $\sum_{n=1}^{\infty} |a_n| < \infty$. For each $n \in \mathbb{Z}^+$ let $x_n = (x_{n,k})_{k \ge 1}$ be the sequence given by $x_{n,k} = a_k$ for $1 \le k \le n$ and $x_{n,k} = 0$ for k > n, that is

$$(x_{n,k})_{k\geq 1}=(x_{n,1},x_{n,2},\cdots,x_{n,n},x_{n,n+1},\cdots)=(a_1,a_2,\cdots,a_n,0,0,0,\cdots).$$

Then each $x_n \in \mathbb{R}^{\infty}$ and, in the metric space ℓ_1 , we have $x_n \to a$ because given $\epsilon > 0$ we can choose an index m so that $\sum_{k>m} |a_k| < \epsilon$ and then for all $n \ge m$ we have

$$||x_n - a||_1 = \sum_{k=1}^{\infty} |x_{n,k} - a_k| = \sum_{k>n} |a_k| \le \sum_{k>m} |a_k| < \epsilon.$$

It follows, from Part 2 of Theorem 3.8, that $a \in \overline{\mathbb{R}^{\infty}}$ and so we have $\ell_1 \subseteq \overline{\mathbb{R}^{\infty}}$, as claimed.

Exercise 3.4 Find the closure of \mathbb{R}^{∞} in the metric space ℓ_2 using the metric d_2 , and find the closure of \mathbb{R}^{∞} in the metric space ℓ_{∞} using the metric d_{∞} .

Definition 3.2 — limit.

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $A \subseteq X$, let $f: A \to Y$, let $a \in A'$, and let $b \in Y$. We say that the **limit** of f(x) as x tends to a is equal to b, when for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in A$, if $0 < d_X(x, a) < \delta$ then $d_Y(f(x), b) < \epsilon$.

_

Theorem 3.3 — The Sequential Characterization of Limits.

Let X and Y be metric spaces, let $A \subseteq X$, let $f: A \to Y$, let $a \in A' \subseteq X$, and let $b \in Y$. Then $\lim_{x \to a} f(x) = b$ if and only if for every sequence (x_n) in $A \setminus \{a\}$ with $x_n \to a$ we have $\lim_{n \to \infty} f(x_n) = b$.

Proof. Suppose that $\lim_{x\to A} f(x) = b$. Let (x_n) be a sequence in $A\setminus\{a\}$ with $x_n\to a$. Let $\epsilon>0$. Since $\lim_{x\to a} f(x) = b$ we can choose $\delta>0$ such that $0< d(x,a)<\delta \implies d(f(x),b)<\epsilon$. Since $x_n\to a$ we can choose $m\in\mathbb{Z}^+$ such that $n\geq m\implies d(x_n,a)<\delta$. For $n\geq m$ we have $d(x_n,a)<\delta$ and we have $x_n\neq a$ (since (x_n) is a sequence in $A\setminus\{a\}$, sothat $0< d(x_n,a)<\delta$, and hence $d(f(x_n),b)<\epsilon$. Thus $\lim_{x\to a} f(x_n)=b$, as required.

 $d(\mathbf{x}_n,a) < \delta$, and hence $d(f(x_n),b) < \epsilon$. Thus $\lim_{n \to \infty} f(x_n) = b$, as required. Suppose, conversely, that $\lim_{x \to a} f(x) \neq b$. Choose $\epsilon > 0$ such that for every $\delta > 0$ there exists $x \in A$ such that $0 < d(x,a) < \delta$ and $d(f(x),b) \geq \epsilon$. For each $n \in \mathbb{Z}^+$, choose $x_n \in A$ such that $0 < d(x_n,a) < \frac{1}{n}$ and $d(f(x_n),b) \geq \epsilon$. For each n, since $0 < d(x_n,a)$ we have $x_n \neq a$ so the sequence (x_n) lies in $A \setminus \{a\}$. Since $d(x_n,a) < \frac{1}{n}$ for all $n \in \mathbb{Z}^+$, it follows that $x_n \to a$. Since $d(f(x_n),b) \geq \epsilon$ for all $n \in \mathbb{Z}^+$, it follows that $\lim_{x \to a} f(x) \neq b$. Thus we have found a sequence (x_n) in $A \setminus \{a\}$ with $x_n \to a$ such that $\lim_{x \to a} f(x_n) \neq b$.

Definition 3.3 — continuous, uniformly continuous, Lipschitz continuous, Lipschitz constant.

Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$. For $a \in X$, we say that f is **continuous** at a when for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in X$, if $d_X(x, a) < \delta$ then $d_Y(f(x), f(a)) < \epsilon$. We say that f is **continuous** (on X) when f is continuous at every point $a \in X$. We say that f is **uniformly continuous** (on X) when for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in X$, if $d_X(x, y) < \epsilon$ then $d_Y(f(x), f(y)) < \epsilon$. We say that f is **Lipschitz continuous** (on X) when there is a constant $\ell \geq 0$, called a **Lipschitz constant** for f, such that for all $x, y \in X$ we have $d(f(x), f(y)) \leq \ell \cdot d(x, y)$. Note that if f is Lipschitz continuous then f is also uniformly continuous (indeed we can take $\delta = \frac{\epsilon}{\ell}$ in the definition of uniform continuity).

Note 3.3 Let X and Y be metric spaces and let $a \in X$. If a is a limit point of X then f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$. If a is an isolated point of X then f is necessarily continuous at a, vacuously.

Theorem 3.4 — The Sequential Characterization of Continuity.

Let X and Y be metric spaces using metrics d_X and d_Y , let $f: X \to Y$, and let $a \in X$. Then f is continuous at a if and only if for every sequence (x_n) in X with $x_n \to a$ we have $\lim_{n \to \infty} f(x_n) = f(a)$.

Proof. The proof is left as an exercise.

Theorem 3.5 — Composition of Continuous Functions.

Let X, Y and Z be metric spaces, let $f: X \to Y$, let $g: Y \to Z$. If f is continuous at the point $a \in X$ and g is continuous at the point $f(a) \in Y$ then the composite function $g \circ f$ is continuous at a.

Proof. The proof is left as an exercise.

Theorem 3.6 — The Topological Characterization of Continuity.

Let X and Y be metric spaces and let $f: X \to Y$. Then f is continuous (on X) if an only if $f^{-1}(V)$ is open in X for every open set V in Y.

Proof. Suppose that f is continuous in X. Let V be open in Y. Let $a \in f^{-1}(V)$ and let $f(a) \in V$. Since V is open, we can choose $\epsilon > 0$ such that $B(f(a), \epsilon) \subseteq V$. Since f is continuous at a we can choose $\delta > 0$ such that for all $x \in X$ with $d(x, a) < \delta$ we have $d(f(x), f(a)) < \epsilon$. Then we have $f(B(a, \delta)) \subseteq B(f(a), \epsilon) \subseteq V$ and so $B(a, \delta) \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is open in X, as required.

Suppose, conversely, that $f^{-1}(V)$ is open in X for every open set V in Y. Let $a \in X$ and let $\epsilon > 0$. Taking $V = B(f(a), \epsilon)$, which is open in Y, we see that $f^{-1}(B(f(a), \epsilon))$ is open in X. Since $a \in f^{-1}(B(f(a), \epsilon))$ and $f^{-1}(B(f(a), \epsilon))$ is open in X, we can choose $\delta > 0$ such that $B(a, \delta) \subseteq f^{-1}(B(f(a), \epsilon))$. Then we have $f(B(a, \delta)) \subseteq B(f(a), \epsilon)$ or, in other words, for all $x \in X$, if $d(x, a) < \delta$ then $d(f(x), f(a)) < \epsilon$. Thus f is continuous at a hence, since a was arbitrary, f is continuous on X.

Definition 3.4 — continuous.

Let X and Y be topological spaces and let $f: X \to Y$. We say that f is **continuous** (on X) when $f^{-1}(V)$ is open in X for every open set V in Y. A bijective map $f: X \to Y$ such that both f and f^{-1} are continuous is called a **homomorphism**.

Note 3.4 If U and V are inner product spaces and $L: U \to V$ is an inner product space isomorphism, then L and its inverse preserve distance so they are both continuous (we can take $\delta = \epsilon$ in the definition of continuity), hence L is a homomorphism.

If U and V are finite-dimensional inner product spaces with say $\dim U = n$ and $\dim V = m$, and if $\phi: U \to \mathbb{R}^n$ and $\psi: V \to \mathbb{R}^m$ are inner product space isomorphisms (obtained by choosing orthonormal bases for U and V) then a map $F: U \to V$ is continuous if and only if the composite map $\psi F \phi^{-1}: \mathbb{R}^n \to \mathbb{R}^m$ is continuous. In particular, if F is linear then F is continuous (since $\psi F \phi^{-1}: \mathbb{R}^n \to \mathbb{R}^m$ is linear, hence continuous).

We shall see below that the same is true for finite dimensional normed linear spaces: every linear map between finite dimensional normed linear spaces is continuous. But this is not always true for infinite dimensional spaces.

■ Example 3.3 Recall from Example 2.24 that every set $U \subseteq \mathcal{C}[a,b]$ which is open using the metric d_1 is also open using the metric d_{∞} , but not vice versa. It follows that the identity map $I: \mathcal{C} \to \mathcal{C}[a,b]$ given by I(f) = f is continuous as a map from the metric space $(\mathcal{C}[a,b],d_{\infty})$ to the metric space $(\mathcal{C}[a,b],d_1)$, but not vice versa.

Theorem 3.7 Let U and V be normed linear spaces and let $F: U \to V$ be a linear map. Then the following are equivalent:

- (1) F is Lipschitz continuous on U,
- (2) F is continuous at some point $a \in U$,
- (3) F is continuous at 0, and
- (4) F(B(0,1)) is bounded.

In this case, if $m \ge 0$ with $F(\overline{B}(0,1)) \subseteq B(0,m)$ then m is a Lipschitz constant for F.

Proof. It is clear that if F is Lipschitz continuous on U then F is continuous at some point $a \in U$ (indeed F is continuous at every point $a \in U$). Let us show that if F is continuous at some point $a \in U$ then F is continuous at 0. Suppose that F is continuous at $a \in U$.

Let $\epsilon > 0$. Since F is continuous at $a \in U$, we can choose $\delta_1 > 0$ such that for all $u \in U$ we have $\|u - a\| \le \delta_1 \implies \|F(u) - F(a)\| \le 1$. Choose $\delta = \delta_1 \epsilon$. Let $x \in U$ with $\|x - 0\| < \delta$. If x = 0 then $\|F(x) - F(0)\| = \|0\| = 0$. Suppose that $x \ne 0$. Then for $u = a + \frac{\delta_1 x}{\|x\|}$ we have $\|u - a\| = \left\|\frac{\delta_1 x}{\|x\|}\right\| = \delta_1$ and so $\|F(u - a)\| = \|F(u) - F(a)\| \le 1$, that is $\|F\left(\frac{\delta_1 x}{\|x\|}\right)\| \le 1$ hence, by the linearity of F and the scaling property of the norm, we have

$$||F(x) - F(0)|| = ||F(x)|| = \frac{||x||}{\delta_1} ||F(\frac{\delta_1 x}{||x||})|| \le \frac{||x||}{\delta_1} < \frac{\delta_1 \epsilon}{\delta_1} = \epsilon.$$

Thus F is continuous at 0, as required

Next we show that if F is continuous at 0 then $F\left(\overline{B}(0,1)\right)$ is bounded. Suppose that F is continuous at 0. Choose $\delta > 0$ so that for all $u \in U$ we have $||u|| \le \delta \implies ||F(u)|| \le 1$. Let $m = \frac{1}{\delta}$. For $x \in U$, when x = 0 we have $||F(x)|| = 0 \le m$ and when $0 < ||x|| \le 1$ we have

$$||F(x)|| = \left\| \frac{||x||}{\delta} F\left(\frac{\delta x}{||x||}\right) \right\| = \frac{||x||}{\delta} \left\| F\left(\frac{\delta x}{||x||}\right) \right\| \le \frac{||x||}{\delta} = m||x|| \le m.$$

Thus $F(\overline{B}(0,1))$ is bounded, as required.

Finally we show that if $F\left(\overline{B}(0,1)\right)$ is bounded then F is Lipschitz continuous. Suppose that $F\left(\overline{B}(0,1)\right)$ is bounded. Choose m>0 so that $\|F(u)\|\leq m$ for all $u\in U$ with $\|u\|\leq 1$. Let $x,y\in U$. If x=y then $\|F(x)-F(y)\|=0$. Suppose that $x\neq y$. Then we have $\left\|\frac{x-y}{\|x-y\|}\right\|=1$ so that $\left\|F\left(\frac{x-y}{\|x-y\|}\right)\right\|\leq m$ and so

$$||F(x) - F(y)|| = ||F(x - y)|| = ||x - y|| \left| \left| F\left(\frac{x - y}{||x - y||}\right) \right| \right| \le m||x - y||.$$

Thus F is Lipschitz continuous with Lipschitz constant m, as required.

■ Example 3.4 Define $L: (\mathcal{C}[a,b], d_{\infty}) \to (\mathcal{C}[a,b], d_{\infty})$ by $L(f) = \int_a^x f(t)dt$. Show that L is Lipschitz continuous.

Proof. Let $f \in \mathcal{C}[a,b]$ with $||f||_{\infty} \leq 1$, that is with $\max_{a \leq x \leq b} |f(x)| \leq 1$. Then

$$||F(f)||_{\infty} = \max_{a \le x \le b} \left| \int_{a}^{x} f(t) dt \right| \le \max_{a \le x \le b} \int_{a}^{x} 1 dt = \max_{a \le x \le b} |x - a| = |b - a|.$$

Thus $F(\overline{B}(0,1))$ is bounded and so F is uniformly continuous.

■ Example 3.5 Define $D: (\mathcal{C}^1[0,1], d_\infty) \to (\mathcal{C}[0,1], d_\infty)$ by D(f) = f'. Show that D is not continuous.

Proof. For $n \in \mathbb{Z}^+$, define $f_n : [0,1] \to \mathbb{R}$ by $f_n(x) = x^n$. Then $f_n \in \mathcal{C}^1[a,b]$, and $||f_n||_{\infty} = \max_{0 \le x \le 1} |x^n| = 1$ so that $f_n \in B(0,1)$, and $||D(f_n)||_{\infty} = \max_{0 \le x \le 1} |n \, x^{n-1}| = n$. Thus $D(\overline{B}(0,1))$ is not bounded, so D is not continuous (at any point $g \in \mathcal{C}[0,1]$).

Example 3.6 Let X be a metric space and let $\emptyset \neq A \subseteq X$. Define $F: X \to \mathbb{R}$ by

$$F(x) = \operatorname{dist}(x, A) = \inf \{ d(x, a) | a \in A \}.$$

Show that F is uniformly continuous.

Proof. Given $\epsilon > 0$, chose $\delta = \frac{\epsilon}{2}$. Let $x, y \in X$ with $d(x, y) < \delta = \frac{\epsilon}{2}$. Since $\operatorname{dist}(y, A) = \inf \{d(y, a) | a \in A\}$ we can choose $a \in A$ such that $d(y, a) < \operatorname{dist}(y, A) + \frac{\epsilon}{2}$. Then we have

$$\operatorname{dist}(x,A) \le d(x,a) \le d(x,y) + d(y,a) < \frac{\epsilon}{2} + \operatorname{dist}(y,A) + \frac{\epsilon}{2}$$

= M||t||.

so that $dist(x, A) - dist(y, A) < \epsilon$. Similarly, we have $dist(y, A) - dist(x, A) < \epsilon$ and so

$$|F(y) - F(x)| = |\operatorname{dist}(x, A) - \operatorname{dist}(y, A)| < \epsilon.$$

Theorem 3.8 Let U be an n-dimensional normed linear space over \mathbb{R} . Let $\{u_1, \dots, u_n\}$ be any basis for U and let $F: \mathbb{R} \to U$ be the associated vector space isomorphism given by $F(t) = \sum_{k=1}^{n} t_k u_k$. Then both F and F^{-1} are Lipschitz continuous.

Proof. Let
$$M = \left(\sum_{k=1}^n \|u_k\|^2\right)^{1/2}$$
. For $t \in \mathbb{R}^n$ we have
$$\|F(t)\| = \left\|\sum_{k=1}^n t_k u_k\right\| \leq \sum_{k=1}^n |t_k| \|u_k\| \text{ , by the Triangle Inequality,}$$
$$\leq \left(\sum_{k=1}^n t_k^2\right)^{1/2} \left(\sum_{k=1}^n \|u_k\|^2\right)^{1/2} \text{ , by the Cauchy-Schwarz Inequality,}$$

For all $s,t\in\mathbb{R}^n$, $\|F(s)-F(t)\|=\|F(s-t)\|\leq M\,\|s-t\|$, so F is Lipschitz continuous. Note that the map $N:U\to\mathbb{R}$ given by $N(x)=\|x\|$ is (uniformly) continuous, indeed we can take $\delta=\epsilon$ in the definition of continuity. Since F and N are both continuous, so is the composite $G=N\circ F:\mathbb{R}^n\to\mathbb{R}$, which given by $G(t)=\|F(t)\|$. By the Extreme Value Theorem, the map G attains its minimum value on the unit sphere $\left\{t\in\mathbb{R}^n\big|\|t\|=1\right\}$, which is compact. Let $m=\min_{\|t\|=1}G(t)=\min_{\|t\|=1}\|F(t)\|$. Note that m>0 because when $t\neq 0$ we have $F(t)\neq 0$ (since F is a bijective linear map) and hence $\|F(t)\|\neq 0$. For $t\in\mathbb{R}^n$, if $\|t\|>1$ then we have $\|t\|=1$ so, by the choice of m,

$$||F(t)|| = ||t|| \left| \left| F\left(\frac{t}{||t||}\right) \right| \right| \ge ||t|| \cdot m > m.$$

It follows that for all $t \in \mathbb{R}^n$, if $||F(t)|| \le m$ then $||t|| \le 1$. Since F is bijective, it follows that for $x \in U$, if $||x|| \le m$ then $||F^{-1}(x)|| \le 1$. Thus for all $x \in U$, if x = 0 then $||F^{-1}(x)|| = 0 = \frac{||x||}{m}$ and if $x \ne 0$ then since $\left\| \frac{mx}{||x||} \right\| = m$ we have

$$||F^{-1}(x)|| = \frac{||x||}{m} ||F^{-1}(\frac{mx}{||x||})|| \le \frac{||x||}{m}.$$

For all $x, y \in U$, we have $||F^{-1}(x) - F^{-1}(y)|| = ||F^{-1}(x - y)|| \le \frac{1}{m} ||x - y||$, so F^{-1} is Lipschitz continuous.

Corollary 3.9

When U and V are finite-dimensional normed linear spaces, every linear map $F:U\to V$ is Lipschitz continuous.

Corollary 3.10

Any two norms on a finite-dimensional vector space U induce the same topology on U.

4. Separability and Completeness

Definition 4.1 — dense, separable.

Let X be a topological space. Recall that for $A \subseteq X$ we say that A is **dense** in X when $\overline{A} = X$. We say that X is **separable** when it has a finite or countable dense subset.

Definition 4.2 — basis, base.

Let X be a topological space. A **basis** (or a **base**) for the topology on X is a set \mathcal{B} of open sets in X with the property that for every subset $A \subseteq X$, A is open if and only if for every point $a \in A$ there exists a basic set $U \in \mathcal{B}$ with $a \in U \subseteq A$.

■ Example 4.1 In a metric space X, the set of open balls $\mathcal{B} = \{B(a,r) | a \in X, 0 < r \in \mathbb{R}\}$ is a basis for the metric topology on X.

Theorem 4.1 Let X be a metric space. 1 If X is separable then there is a finite or countable basis for the metric topology on X.

- 2 If every infinite subset of X has a limit point then X is separable.
- 3 If X is separable then every subspace of X is separable.

Proof. The proof is left as an exercise.

- **Example 4.2** Euclidean space (\mathbb{R}^n, d_2) is separable with \mathbb{Q}^n as a countable dense subset. Every subspace of Euclidean space is also separable.
- Example 4.3 As an exercise, show that $(\ell_{\infty}, d_{\infty})$ is not separable (consider characteristic functions χ_A for subsets $A \subseteq \mathbb{N}$.
- **Example 4.4** As an exercise, show that the set (c, d_{∞}) of convergent sequences of real (or complex) numbers is separable. Every subspace of c is also separable, for example the space c_0 of sequences which converge to 0.
- **Example 4.5** As an exercise, show that the space $(\mathcal{B}[a,b],d_{\infty})$ of bounded functions on the interval [a,b] is not separable (consider characteristic functions χ_A for appropriate sets

 $A \subseteq [a,b]$).

■ Example 4.6 Later (using the Weierstrass Approximation Theorem) we will show that the space $(C[a,b],d_{\infty})$ of continuous real (or complex) valued functions on the interval [a,b] is separable. Once we have proven this, it will follow that every subspace of C[a,b] is separable.

Definition 4.3 — Cauchy sequence.

Recall that a sequence $(x_n)_{n\geq 1}$ in a metric space X is called a **Cauchy sequence** when it has the property that for all $\epsilon > 0$ there exists an index $m \in \mathbb{Z}^+$ such that for all indices $k, \ell \geq m$ we have $d(x_k, x_\ell) < \epsilon$.

Theorem 4.2 Let X be a metric space. 1 Every Cauchy sequence in X is bounded.

2 Every convergent sequence in X is Cauchy.

3 If some subsequence of a Cauchy sequence (x_n) converges, then (x_n) converges.

Proof. To prove Part 1, let $(x_n)_{n\geq 1}$ be a Cauchy sequence in X. Choose $m\in\mathbb{Z}^+$ such that $k,\ell\geq md(x_k,x_\ell)\leq 1$ and note that, in particular, we have $d(x_k,x_m)\leq 1$ for all $k\geq m$. Let $a=x_m$ and choose $r>\max\big\{d(x_1,a),d(x_2,a),\cdots,d(x_{m-1},a),1\big\}$. Then for all $n\in\mathbb{Z}^+$ we have $d(x_n,a)< r$ so the sequence (x_n) is bounded, as required.

We remark that Part 2 of this theorem was stated earlier, without proof, as Part 5 of Theorem 3.2. We give the proof here. Let $(x_n)_{n\geq 1}$ be a convergent sequence in X and let $a=\lim_{n\to\infty}x_n$. Let $\epsilon>0$. Choose $m\in\mathbb{Z}^+$ such that $n\geq md(x_n,a)<\frac{\epsilon}{2}$. Then for all $k,\ell\geq m$ we have

$$d(x_k, x_\ell) \le d(x_k, a) + d(a, x_\ell) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

so the sequence (x_n) is Cauchy, as required.

To prove Part 3, let $(x_n)_{n\geq 1}$ be a Cauchy sequence in X, let $(x_{n_k})_{k\geq 1}$ be a subsequence of $(x_n)_{n\geq 1}$, suppose tha $(x_{n_k})_{k\geq 1}$ converges, and let $a=\lim_{k\to\infty}x_{n_k}$. Let $\epsilon>0$. Since (x_n) is Cauchy we can choose $m\in\mathbb{Z}^+$ so that $k,\ell\geq md(x_k,x_\ell)<\frac{\epsilon}{2}$. Since $\lim_{k\to\infty}n_k=\infty$ and $\lim_{k\to\infty}x_{n_k}=a$, we can choose an index ℓ such that $n_\ell\geq m$ and $d(x_{n_\ell},a)<\frac{\epsilon}{2}$. Then for all $k\geq m$ we have

$$d(x_k, a) \le d(x_k, x_{n_\ell}) + d(x_{n_\ell}, a) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Definition 4.4 — complete, Hilbert space, Banach space.

A metric space X is called **complete** when every Cauchy sequence in X converges in X. A complete inner product space is called a **Hilbert space**, and a complete normed linear space is called a **Banach space**.

Theorem 4.3 Let X be a complete metric space and let $A \subseteq X$. Then A is complete if and only if A is closed in X

Proof. Suppose that A is closed in X. Let (x_n) be a Cauchy sequence in A. Since X is complete, (x_n) converges in X. Since A is closed in X and (x_n) is a sequence in A which converges in X, we have $\lim_{n\to\infty} x_n \in A$ by Theorem 3.5 (The Sequential Characterization of Closed Sets). Thus every Cauchy sequence in A converges in A, so A is complete.

Suppose, conversely, that A is complete. Let $a \in A'$, that is let $a \in X$ be a limit point of A. Since $a \in A'$, by Theorem 3.5 (The Sequential Characterization of Limit Points) we

can choose a sequence (x_n) in A (indeed in $A \setminus \{a\}$) with $\lim n \to \infty x_n = a$. Since (x_n) converges in X, it is Cauchy. Since (x_n) is Cauchy and A is complete, (x_n) converges in A, that is $a = \lim_{n \to \infty} x_n \in A$.

- **Example 4.7** Recall, from MATH 247 or PMATH 333, that (\mathbb{R}^n, d_2) is complete. It follows that every closed subset $A \subseteq \mathbb{R}^n$ is complete (using the standard metric d_2).
- **Example 4.8** Note that completeness is not invariant under homeomorphism. For example, \mathbb{R} is homeomorphic to $(0,1) \subseteq \mathbb{R}$, but \mathbb{R} is complete while (0,1) is not.

Theorem 4.4 Every finite-dimensional normed linear space is complete.

Proof. Let U be an n-dimensional normed linear space. Let $\{u_1, \dots, u_n\}$ be a basis for the vector space U and let $F: \mathbb{R}^n \to U$ be the associated vector space isomorphism given by $F(t) = \sum_{k=1}^n t_k u_k$. Recall, from Theorem 3.25, that both F and F^{-1} are Lipschitz continuous. Let L be a Lipschitz constant for F and let M be a Lipschitz constant for F^{-1} . Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in U. For each $n \in \mathbb{Z}^+$, let $t_n = F^{-1}(x_n) \in \mathbb{R}^n$. Note that (t_n) is a Cauchy sequence in \mathbb{R}^n because

$$||t_k - t_\ell|| = ||F^{-1}(x_k) - F^{-1}(x_\ell)|| \le M||x_k - x_\ell||.$$

Since (t_n) is a Cauchy sequence in \mathbb{R}^n and \mathbb{R}^n is complete, (t_n) converges in \mathbb{R}^n . Let $s = \lim_{n \to \infty} t_n \in \mathbb{R}^n$ and let $a = F(s) \in U$. Then we have $\lim_{n \to \infty} x_n = a$ because

$$||x_n - a|| = ||F(t_n) - F(s)|| \le L||t_n - s||.$$

Corollary 4.5

The metric spaces (\mathbb{R}^n, d_1) , (\mathbb{R}^n, d_2) and $(\mathbb{R}^n, d_{\infty})$ are all complete.

Theorem 4.6 The metric spaces (ℓ_1, d_1) , (ℓ_2, d_2) and $(\ell_{\infty}, d_{\infty})$ are all complete.

Proof. We prove that (ℓ_1, d_1) is complete and we leave the proof that (ℓ_2, d_2) and (ℓ_∞, d_∞) are complete as an exercise. Let $(a_n)_{n\geq 1}$ be a Cauchy sequence in ℓ_1 . For each $n\in\mathbb{Z}^+$, write $a_n=(a_{n,k})_{k\geq 1}=(a_{n,1},a_{n,2},a_{n,3},\cdots)$. Since $a_n\in\ell_1$ we have $\sum_{k=1}^\infty |a_{n,k}|<\infty$. Since $(a_n)_{n\geq 1}$ is Cauchy, for every $\epsilon>0$ we can choose $N\in\mathbb{Z}^+$ such that for all $n,m\geq N$ we have $\|a_n-a_m\|_1<\epsilon$, that is $\sum_{k=1}^\infty |a_{n,k}-a_{m,k}|<\epsilon$. For each fixed $k\in\mathbb{Z}^+$, note that for $n,m\geq N$ we have $|a_{n,k},-a_{m,k}|\leq\sum_{j=1}^\infty |a_{n,j}-a_{m,j}|<\epsilon$, and so the sequence $(a_{n,k})_{n\geq 1}$ is Cauchy in \mathbb{R} , so it converges. For each $k\in\mathbb{Z}^+$, let $b_k=\lim_{n\to\infty}a_{n,k}\in\mathbb{R}$ and let $b=(b_k)_{k\geq 1}$. We claim that $b\in\ell_1$. Since $(a_n)_{n\geq 1}$ is Cauchy, for every $\epsilon>0$ we can choose $N\in\mathbb{Z}^+$ such that for all $n,m\geq N$ we have $\|a_n-a_m\|_1<\epsilon$, that is $\sum_{k=1}^\infty |a_{n,k}-a_{m,k}|<\epsilon$. By the Triangle Inequality, for $n,m\geq N$ we have $\|\|a_n\|_1-\|a_m\|_1\|\leq \|a_n-a_m\|_1<\epsilon$ It follows that the sequence $(\|a_n\|)_{n\geq 1}$ is a Cauchy sequence in \mathbb{R} , so it converges. Let

 $M = \lim_{n \to \infty} ||a_n||_1 \in \mathbb{R}$. For each fixed $K \in \mathbb{Z}^+$ we have

$$\sum_{k=1}^{K} |b_k| = \sum_{k=1}^{K} \big| \lim_{n \to \infty} a_{n,k} \big| = \lim_{n \to \infty} \sum_{k=1}^{K} |a_{n,k}| \le \lim_{n \to \infty} \sum_{k=1}^{\infty} |a_{n,k}| = \lim_{n \to \infty} \|a_n\|_1 = M.$$

Since $\sum_{k=1}^{K} |b_k| \leq M$ for all $K \in \mathbb{Z}^+$ it follows that $\sum_{k=1}^{\infty} |b_k| \leq M$, so $b \in \ell_1$, as claimed.

Finally, we claim that $\lim_{n\to\infty} a_n = b$ in ℓ_1 . Let $\epsilon > 0$. Choose $N \in \mathbb{Z}^+$ such that for all $n, m \geq N$ we have $||a_n - a_m||_1 < \epsilon$. Then for each $K \in \mathbb{Z}^+$ we have

$$\sum_{k=1}^{K} |a_{n,k} - b_k| = \sum_{k=1}^{K} |a_{n,k} - \lim_{m \to \infty} a_{m,k}| = \lim_{m \to \infty} \sum_{k=1}^{K} |a_{n,k} - a_{m,k}|$$

$$\leq \lim_{m \to \infty} \sum_{k=1}^{\infty} |a_{n,k} - a_{m,k}| = \lim_{m \to \infty} ||a_n - a_m||_1 \leq \epsilon$$

Since $\sum_{k=1}^{K} |a_{n,k} - b_k| \le \epsilon$ for all $K \in \mathbb{Z}^+$ it follows that $||a_n - b||_1 = \sum_{k=1}^{\infty} |a_{n,k} - b_k| \le \epsilon$.

Exercise 4.1 Show that (ℓ_1, d_{∞}) and (ℓ_2, d_{∞}) are not closed in $(\ell_{\infty}, d_{\infty})$ and so they are not complete.

Exercise 4.2 Show that the metric spaces $(\mathcal{C}[a,b],d_1)$ and $(\mathcal{C}[a,b],d_2)$ are not complete. Hint: in the case [a,b]=[-1,1], consider $f_n:[-1,1]\to\mathbb{R}$ given by $f_n(x)=x^{1/2n-1}$ for $n\in\mathbb{Z}^+$. Show that if (f_n) did converge, either in $(\mathcal{C}[-1,1],d_1)$ or in $(\mathcal{C}[-1,1],d_2)$, then it would necessarily converge to a function g with g(x)=1 when x>0 and g(x)=-1 when x<0, but such a function g cannot be continuous.

Definition 4.5 — supremum norm, supremum metric.

Let $\mathbf{F} = \mathbb{R}$ or \mathbb{C} . For a metric space X, we define

$$\mathcal{F}(X, \mathbf{F}) = \mathbf{F}^X = \{f : X \to \mathbf{F}\}$$

$$\mathcal{B}(X, \mathbf{F}) = \{f : X \to \mathbf{F} | f \text{ is bounded}\}$$

$$\mathcal{C}(X, \mathbf{F}) = \{f : X \to \mathbf{F} | f \text{ is continuous}\},$$

$$\mathcal{C}_b(X, \mathbf{F}) = \{f : X \to \mathbf{F} | f \text{ is bounded and continuous}\}.$$

Since we usually take $\mathbf{F} = \mathbb{R}$ we write

$$\mathcal{F}(X) = \mathcal{F}(X,\mathbb{R})$$
, $\mathcal{B}(X) = \mathcal{B}(X,\mathbb{R})$, $\mathcal{C}(X) = \mathcal{C}(X,\mathbb{R})$ and $\mathcal{C}_b(X) = \mathcal{C}_b(X,\mathbb{R})$

Note that $\mathcal{B}(X,\mathbf{F})$ is a normed linear space using the **supremum norm** given by

$$||f||_{\infty} = \sup_{x \in X} |f(x)|$$

and a metric space using the **supremum metric** given by $d_{\infty}(f,g) = \sup_{x \in X} |f(x) - g(x)|$. These do not determine a well-defined norm and metric on $\mathcal{C}(X,\mathbf{F})$ since $||f||_{\infty} =$

 $\sup_{x \in X} |f(x)|$ might not be finite, but they do determine a well-defined norm and metric on $\mathcal{C}_b(X, \mathbf{F})$.

Definition 4.6 — converges uniformly.

For a sequence (f_n) in $\mathcal{F}(X)$ and for $g \in \mathcal{F}(X)$, we say that (f_n) **converges uniformly** to g on X, and write $f_n \to g$ uniformly on X, when for every $\epsilon > 0$ there exists $m \in \mathbb{Z}^+$ such that $|f_n(x) - g(x)| < \epsilon$ for every $n \ge m$ and every $x \in X$.

Note 4.1 For a sequence $(f_n) \in \mathcal{B}(X)$ and for $g \in \mathcal{B}(X)$, note that $|f_n(x) - g| < \epsilon$ for every $x \in X$ if and only if $||f_n - g||_{\infty} < \epsilon$. It follows that $f_n \to g$ uniformly on X if and only if $f_n \to g$ in the metric space $(\mathcal{B}(X), d_{\infty})$.

Theorem 4.7 Let X be a metric space. Then the metric spaces $(\mathcal{B}(X), d_{\infty})$ and $(\mathcal{C}_b(X), d_{\infty})$ are complete.

Proof. Let $(f_n)_{n\geq 1}$ be a Cauchy sequence in $(\mathcal{B}(X), d_{\infty})$. Note that for each $x \in X$, we have $|f_n(x) - f_m(x)| \leq \sup_{y \in X} |f_n(y) - f_m(y)| = ||f_n - f_m||_{\infty}$, and so the sequence $(f_n(x))_{n\geq 1}$ is a Cauchy sequence in \mathbb{R} , so it converges. Thus we can define a function $g: X \to \mathbb{R}$ by $g(x) = \lim_{n \to \infty} f_n(x)$ and then we have $f_n \to g$ pointwise in X.

We claim that $g \in \mathcal{B}(X)$, that is we claim that g is bounded. Since (f_n) is a Cauchy sequence in $\mathcal{B}(X)$, it is bounded (by Part 1 of Theorem 4.11) so we can choose $M \geq 0$ such that $||f_n||_{\infty} \leq M$ for all indices n. Then for all $x \in X$ we have $|f_n(x)| \leq ||f_n||_{\infty} \leq M$ and hence $|g(x)| = \lim_{n \to \infty} |f_n(x)| \leq M$. Thus g is a bounded function, that is $g \in \mathcal{B}(X)$.

We know that $f_n \to g$ pointwise on X. We must show that $f_n \to g$ uniformly on X. Let $\epsilon > 0$. Since (f_n) is Cauchy we can choose $m \in \mathbb{Z}^+$ such that $||f_k - f_\ell||_{\infty} < \epsilon$ for all $k, \ell \ge m$. Then for all $k \ge m$ and for all $x \in X$ we have

$$|f_k(x) - g(x)| = \lim_{\ell \to \infty} |f_k(x) - f_\ell(x)| \le \epsilon.$$

It follows that $f_n \to g$ uniformly on X, that is $f_n \to g$ in the metric space $(\mathcal{B}(X), d_{\infty})$. Thus $(\mathcal{B}(X), d_{\infty})$ is complete.

To show that $(C_b(X), d_\infty)$ is complete, it suffices (by Theorem 4.13) to show that $C_b(X)$ is closed in $\mathcal{B}(X)$. Let (f_n) be a sequence in $C_b(X)$ which converges in $(\mathcal{B}(X), d_\infty)$. Let $g = \lim_{n \to \infty} f_n \in \mathcal{B}(X)$. We need to show that g is continuous. Let $\epsilon > 0$ and let $a \in X$. Since $f_n \to g$ in $(\mathcal{B}(X), d_\infty)$ we know that $f_n \to g$ uniformly on X, so we can choose $m \in \mathbb{Z}^+$ such that $|f_m(x) - g(x)| < \frac{\epsilon}{3}$ for all $n \ge m$ and all $x \in X$. Since f_m is continuous at a we can choose $\delta > 0$ such that for all $x \in X$ with $d(x, a) < \delta$ we have $|f_m(x) - f_m(a)| < \frac{\epsilon}{3}$. Then for all $x \in X$ with $d(x, a) < \delta$ we have

$$\left|g(x) - g(a)\right| \le \left|g(x) - f_m(x)\right| + \left|f_m(x) - f_m(a)\right| + \left|f_m(a) - g(a)\right| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus g is continuous at a. Since a was arbitrary, g is continuous on X, hence $g \in \mathcal{C}_b(X)$. By the Sequential Characterization of Closed Sets (Part 3 of Theorem 3.8) it follows that $\mathcal{C}_b(X)$ is closed in $\mathcal{B}(X)$, as required.

Corollary 4.8

The metric space $(\mathcal{C}[a,b],d_{\infty})$ is complete.

Proof. Since every continuous function $f:[a,b]\to\mathbb{R}$ is bounded, we have $\mathcal{C}[a,b]=\mathcal{C}_b[a,b]$.

■ Example 4.9 In the metric space $(\mathcal{C}[a,b],d_{\infty})$, the space $\mathcal{R}[a,b]$ of Riemann integrable functions is closed, hence complete, and the spaces $\mathcal{P}[a,b]$ of polynomial functions, and $\mathcal{C}^1[a,b]$ of continuously differentiable functions, are not closed, and hence not complete.

Theorem 4.9 (Metric Completion) Every metric space X is isometric to a dense subspace of a complete metric space.

Proof. Let X be a metric space. Fix $a \in X$. For each $x \in X$, define $f_x : X \to \mathbb{R}$ by $f_x(t) = d(t,x) - d(t,a)$. Note that f_x is bounded since, by the Triangle Inequality, $|f_x(t)| = |d(x,t) - d(a,t)| \le d(a,x)$. Note that f_x is continuous (indeed f_x Lipschitz continuous) because for $s, t \in X$ we have

$$|f_x(s) - f_x(t)| = |d(s, x) - d(s, a) - d(t, x) + d(t, a)|$$

$$\leq |d(s, x) - d(t, x)| + |d(s, a) - d(t, a)|$$

$$\leq d(s, t) + d(s, t) = 2 d(s, t)$$

Define $F: X \to \mathcal{C}_b(X)$ by $F(x) = f_x$. We claim that F preserves distance, using the d_{∞} metric on $\mathcal{C}_b(X)$. For all $x, y, t \in X$ we have

$$|f_x(t) - f_y(t)| = |d(x,t) - d(a,t) - d(y,t) + d(a,t)| = |d(x,t) - d(y,t)| \le d(x,y)$$

hence for all $x, y \in X$ we have

$$||f_x - f_y||_{\infty} = \sup_{t \in X} |f_x(t) - f_y(y)| \le d(x, y).$$

On the other hand, for all $x, y \in X$ we also have

$$||f_x - f_y||_{\infty} = \sup_{t \in X} |f_x(t) - f_y(t)| \ge |f_x(y) - f_y(y)| = |d(x, y) - d(y, y)| = d(x, y),$$

and so F preserves distance, as claimed. Thus X is isometric to the image $F(X) \subseteq C_b(X)$, which is dense in its closure $\overline{F(X)}$, which is complete because it is a closed subspace of the complete metric space $C_b(X)$.

When X is a metric space and $F: X \to \mathcal{C}_b(X)$ is the distance preserving map in the proof of the above theorem, we often identify X with its isometric image F(X) and think of X as a dense subspace of the complete metric space $Y = \overline{F(X)}$. Alternatively we can do some cutting and pasting operations on sets to obtain a complete metric space Y which actually contains X as a dense subspace. Here is an outline of one possible way of constructing such a set Y. Choose a set Z which is disjoint from X and has the same cardinality as $\mathcal{C}_b(X)$ (a bit of set theory is required to prove that such a set Z exists). Choose a bijection $G: \mathcal{C}_b(X) \to Z$ and give Z the metric which makes G an isometry. Then Z is complete and the composite $H = G \circ F: X \to Z$ is distance preserving so that X is isometric to the image H(X), and H(X) is dense in the complete space $\overline{H(X)}$, and $\overline{H(X)}$ is disjoint from X. Then let $Y = (\overline{H(X)} \setminus H(X)) \cup X$ so that we have $X \subseteq Y$. Let $K: Y \to \overline{H(X)}$ be the bijection given by K(x) = h(x) if $x \in X$ and K(y) = y if $h \notin X$, and give Y the metric for which K is an isometry. Then Y is complete and X is dense in Y.

Definition 4.7 — metric spaces.

When X and Y are metric spaces with $X \subseteq Y$ such that X is dense in Y and Y is complete, we say that Y is the **metric completion** of X. The metric completion of X is unique in the sense of the following theorem.

Theorem 4.10 (Uniqueness of the Metric Completion) Let X, Y and Z be metric spaces with Y and Z complete such that $X \subseteq Y$ with $\overline{X} = Y$ and $X \subseteq Z$ with $\overline{X} = Z$. Then there is a (unique) isometry $F: Y \to Z$ with F(x) = x for all $x \in X$.

Proof. Let $a \in Y$. Since $\overline{X} = Y$ we can choose a sequence (x_n) in X with $x_n \to a$ in Y. Then (x_n) is Cauchy in Y, hence also in X, hence also in Z. Since (x_n) is Cauchy in Z, it converges in Z, say $x_n \to b$ in Z. In order for a map $F: Y \to Z$ to be continuous with F(x) = x for every $x \in X$, we must have

$$F(a) = F\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} x_n = b.$$

This shows that if such a map F exists, it is unique, and it must be given by the following procedure: given $a \in Y$ we choose a sequence (x_n) in X with $x_n \to a$ and then we define $F(a) = \lim_{n \to \infty} x_n \in Z$.

We claim that the above procedure does determine a well-defined map whose value F(a) does not depend on the choice of the sequence (x_n) . Let $a \in Y$ and let (x_n) and (y_n) be two sequences in X with $x_n \to a$ and $y_n \to a$ in Y. Let $b = \lim_{n \to \infty} x_n$ in Z and let $c = \lim_{n \to \infty} in Z$. We need to show that b = c. Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ such that for all indices $n \geq m$ we have $d_Y(x_n, a) < \frac{\epsilon}{4}$, $d_Y(y_n, a) < \frac{\epsilon}{4}$, $d_Z(x_n, b) < \frac{\epsilon}{4}$. and $d_Z(y_n, c) < \frac{\epsilon}{4}$. Then since $d_Z(x_n, y_n) = d_X(x_n, y_n) = d_Y(x_n, y_n)$ we have

$$d_{Z}(b,c) \leq d_{Z}(b,x_{n}) + d_{Z}(x_{n},y_{n}) + d_{Z}(y_{n},c)$$

$$= d_{Z}(b,x_{n}) + d_{Y}(x_{n},y_{n}) + d_{Z}(y_{n},c)$$

$$\leq d_{Z}(b,x_{n}) + d_{Y}(x_{n},a) + d_{Y}(a,y_{n}) + d_{Z}(y_{n},c)$$

$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon$$

Since $d_Z(b,c) < \epsilon$ for every $\epsilon > 0$ we must have $d_Z(b,c=0)$ hence b=c, as required.

Note that F is bijective with its inverse G given by the same construction: given $c \in Z$ we choose a sequence (x_n) in X with $x_n \to b$ in Z and define $G(c) = b = \lim_{n \to \infty} x_n$ in Y.

It remains to prove that F preserves distance. Let $a, b \in Y$. Chooose sequences (x_n) and (y_n) in Y with $x_n \to a$ and $y_n \to b$ in Y. Let $c, d \in Z$ with $x_n \to c$ and $y_n \to d$ in Z. We need to show that $d_Y(a, b) = d_Z(c, d)$. Since

$$d_Y(a,b) \le d_Y(a,x_n) + d_Y(x_n,y_n) + d_Y(y_n,b)$$

$$d_Y(x_n,y_n) \le d_Y(x_n,a) + d_Y(a,b) + d_Y(b,y_n)$$

it follows that

$$|d_Y(a,b) - d_Y(x_n, y_n)| \le d_Y(a, x_n) + d_Y(y_n, b).$$

Taking the limit as $n \to \infty$ gives $\left| d_Y(a,b) - \lim_{n \to \infty} d_Y(x_n,y_n) \right| = 0$ so that

$$d_Y(a,b) = \lim_{n \to \infty} d_Y(x_n, y_n) = \lim_{n \to \infty} d_X(x_n, y_n).$$

Similarly, we have $d_Z(c,d) = \lim_{n \to \infty} d_X(x_n,y_n)$ and hence $d_Y(a,b) = d_Z(c,d)$, as required.

Index

A	countable
at most countable7	D
В	dense
Banach space	diverge
basis 30 bijective 2 boundary 20 boundary point 20	finer
bounded	Hilbert space3
Cantor-Schroeder-Bernstein Theorem9 Cauchy	homomorphism
Cauchy sequence 31 closed 17 closed ball 16 closure 19	identity function
coarser 18 complete 31 composite 2 Composite 5	injective 2 inner product 12 interior 19
Composition of Continuous Functions	interior point

INDEX 38

L
limit 22, 24 limit point 20 Lipschitz constant 25 Lipschitz continuous 25
M
metric 14 metric space 14 metric spaces 35 metric topology 18
N
norm 13 norm (length) 12 normed linear space 13
0
open 17 open ball 16 orthogonal 12
P
power set
R
range
\$
same cardinality 4 separable 30 supremum metric 33 supremum norm 33 surjective 2
T
The Sequential Characterization of Continuity

The Topological Characterization of Conti-
nuity
$topology \dots \dots 18$
topology space
U
uncountable7
uniformly continuous
unit vector 13