

《模式识别》

第四章 归一化、判别分析、人脸识别

马锦华

https://cse.sysu.edu.cn/teacher/MaJinhua

SUN YAT-SEN University

声明:该PPT只供非商业使用,也不可视为任何出版物。由于历史原因,许多图片尚没有标注出处,如果你知道图片的出处,欢迎告诉我们 majh8@mail.sysu.edu.cn.

课程目录(暂定)

第一章	课程简介与预备知识	6学时
第二章	特征提取与表示	6学时
第三章	主成分分析	3学时
第四章	归一化、判别分析、人脸识别	3学时
第五章	EM算法与聚类	3学时
第六章	贝叶斯决策理论	3学时
第七章	线性分类器与感知机	3学时
第八章	支持向量机	3学时
第九章	神经网络、正则项和优化方法	3学时
第十章	卷积神经网络及经典框架	3学时
第十一章	循环神经网络	3学时
第十二章	Transformer	3学时
第十三章	自监督与半监督学习	3学时
第十四章	开放世界模式识别	6学时

Let's recap

· PCA

SON VITTE SEN UNITED

PCA compression: 144D -> 6D

PCA compression: 144D) 3D

What we will learn today

- Feature normalization
- Introduction to face recognition
- A simple recognition pipeline with kNN
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, *Journal of Cognitive Neuroscience* **3** (1): 71–86, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

每维度规范化

- per-dimension normalization
 - 虚拟的例子(判别性别)
 - ❖假设用两个特征:身高和体重
 - **❖**如果1. 身高单位毫米, 体重单位吨, 那么?
 - **❖**如果2. 身高单位公里, 体重单位克, 那么?
 - 很多时候,不同的维度需要统一到同样的取值范围!
- □ 训练集: $x_1,...,x_n, x_i = (x_{i1},x_{i2},...,x_{id})$
 - o 对每一维j,其数据为 $x_{1j}, x_{2j}, ..., x_{nj}$
 - o 取其最小值 $x_{min,i}$ 和最大值 $x_{max,i}$
 - o 对这一维的任何数据 $x_{ij} \leftarrow \frac{x_{ij} x_{min,j}}{x_{max,j} x_{min,j}}$

稀疏数据

- □ 新数据的范围是? 各维度统一了吗?
 - o [0 1] (训练集中的情况)
 - o 若某一维 $x_{max,j} = x_{min,j}$?
 - 也可以统一到[-1 1]

$$x_{ij} \leftarrow 2 \times \left(\frac{x_{ij} - x_{min,j}}{x_{max,j} - x_{min,j}} - 0.5\right)$$

- □ 稀疏数据sparse data: 数据中很多维度值为0
 - 如果所有数据≥ 0,在两种归一化中,原来是0的 会变成什么?

ℓ_2 或 ℓ_1 归一化

- □ 若各维度取值范围的不同是有意义的,但是不同数据点之间的大小(如向量长度norm)应保持一致
 - o 对每个数据 $x_i = (x_{i1}, x_{i2}, ..., x_{id})$

$$x_{ij} \leftarrow \frac{x_{ij}}{\|\boldsymbol{x}_i\|_{\ell_2}} \qquad \|\boldsymbol{x}_i\|_{\ell_2} = \sqrt{\boldsymbol{x}_i^T \boldsymbol{x}_i}$$

- □ ℓ₁归一化
 - o 适用于非负的特征,即 $x_{ij} \geq 0$ 总成立
 - o 若数据 x_i 是直方图(histogram)时,经常是最佳的

$$x_{ij} \leftarrow \frac{x_{ij}}{\|\mathbf{x}_i\|_{\ell_1}} \qquad \|\mathbf{x}_i\|_{\ell_1} = \sum_{j=1}^{\alpha} |x_{ij}|$$

zero-mean, unit variance

- □ 有时候有理由相信每一个维度是服从高斯分布的
 - o 希望每一个维度归一化到N(0,1)
- □ 对每一维j,其数据为 $x_{1j}, x_{2j}, ..., x_{nj}$
 - 0 计算其均值 $\hat{\mu}_j$ 和方差 $\hat{\sigma}_j^2$
 - o 对每一个特征值

$$x_{ij} \leftarrow \frac{x_{ij} - \widehat{\mu}_j}{\widehat{\sigma}_j}$$

规范化测试数据

- □ 怎样归一化测试数据?
 - 从测试集寻找最大值、最小值、均值?
- □ 除了在测试的时候,永远不要使用测试数据!
 - 测试集和训练集应该使用相同的归一化方法
 - ❖还记得吗?训练和测试集应该从相同的p(x)取样
 - ❖同样的归一化会保持这个限定!
 - 这个原则同样适用于交叉验证!
- □ 那么,怎样做?
 - o 保存从训练集上取得的归一化参数(parameter)
 - 使用同样的公式和保存的参数来归一化测试集

小结

- □ 归一化的方法应该是根据数据的特点来选择的
 - 在做任何机器学习之前,先搞清你的数据的特点
 - ❖稀疏?
 - ❖每一维有没有含义?
 - ❖每一维里面值的分布情况? Gauss?
 - ❖看你的数据! Do visualization!
- □ 归一化可能对准确度有极大的影响!
 - o 在有些例子里,正确的归一化能大幅度提高 accuracy
- □ 不同的归一化方法可以混合使用

What we will learn today

- Feature normalization
- Introduction to face recognition
- A simple recognition pipeline with kNN
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, *Journal of Cognitive Neuroscience* **3** (1): 71–86, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Detection versus Recognition

Detection finds the faces in images

Recognition recognizes WHO the person is

Digital photography

- Digital photography
- Surveillance

- Digital photography
- Surveillance
- Album organization

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
- Security/warfare
- Tele-conferencing
- Etc.

The Space of Faces

- An image is a point in a high dimensional space
 - If represented in grayscale intensity, an N \times M image is a point in R^{NM}
 - E.g. 100x100 image = 10,000 dim

Slide credit: Chuck Dyer, Steve Seitz, Nishino

100x100 images can contain many things other than faces

The Space of Faces

- A face image
- A (non-face) image

- An image is a point in a high dimensional space
 - If represented in grayscale intensity,
 an N x M image is a point in R^{NM}
 - E.g. 100x100 image = 10,000 dim
- However, relatively few high dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

Slide credit: Chuck Dyer, Steve Seitz, Nishino

- A face image
- A (non-face) image

- •Compute n-dim subspace such that the projection of the data points onto the subspace has the largest variance among all n-dim subspaces.
- Maximize the scatter of the training images in face space

Key Idea

- •So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs.
- USE PCA for estimating the sub-space (dimensionality reduction)

•Compare two faces by projecting the images into the subspace and measuring the EUCLIDEAN distance between them.

What we will learn today

- Feature normalization
- Introduction to face recognition
- A simple recognition pipeline with kNN
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, *Journal of Cognitive Neuroscience* **3** (1): 71–86, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Object recognition:

a classification framework

 Apply a prediction function to a feature representation of the image to get the desired output:

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Training Images

A simple pipeline - Training

A simple pipeline - Training

A simple pipeline - Testing

A simple pipeline - Testing

A simple pipeline - Training

Slide credit: L. Lazebnik

A simple pipeline - Testing

Slide credit: L. Lazebnik

- Feature normalization
- Introduction to face recognition
- A simple recognition pipeline with kNN
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, *Journal of Cognitive Neuroscience* **3** (1): 71–86, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

- Assume that most face images lie on a low-dimensional subspace determined by the first k (k<<d) directions of maximum variance
- Use PCA to determine the vectors or "eigenfaces" that span that subspace
- Represent all face images in the dataset as linear combinations of eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Training images: x₁,...,x_N

- Training
 - 1. Align training images x₁, x₂, ..., x_N

Note that each image is formulated into a long vector!

2. Compute average face

$$\mu = \frac{1}{N} \sum x_i$$

3. Compute the difference image (the centered data matrix)

$$X_{c} = \begin{bmatrix} 1 & 1 \\ X_{1} & \dots & X_{n} \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \mu & \dots & \mu \end{bmatrix}$$
$$= X - \mu \mathbf{1}^{T} = X - \frac{1}{n}X\mathbf{1}\mathbf{1}^{T} = X \left(I - \frac{1}{n}\mathbf{1}\mathbf{1}^{T}\right)$$

Eigenface algorithm

4. Compute the covariance matrix

$$\Sigma = \frac{1}{n} \begin{bmatrix} \mathbf{I} & & \mathbf{I} \\ \mathbf{x}_1^c & \dots & \mathbf{x}_n^c \\ \mathbf{I} & & \mathbf{I} \end{bmatrix} \begin{bmatrix} - & \mathbf{x}_1^c & - \\ & \vdots & \\ - & \mathbf{x}_n^c & - \end{bmatrix} = \frac{1}{n} \mathbf{X}_c \mathbf{X}_c^T$$

- 5. Compute the eigenvectors of the covariance matrix Σ
- 6. Compute each training image x_i 's projections as

$$x_i \rightarrow (x_i^c \cdot \varphi_1, x_i^c \cdot \varphi_2, ..., x_i^c \cdot \varphi_K) \equiv (a_1, a_2, ..., a_K)$$

Visualize the estimated training face x_i

$$x_i \approx \mu + a_1 \varphi_1 + a_2 \varphi_2 + \dots + a_K \varphi_K$$

Top eigenvectors: $\Phi_1, ..., \Phi_k$

Mean: µ

Eigenface algorithm

6. Compute each training image x_i 's projections as

$$x_i \rightarrow (x_i^c \cdot \varphi_1, x_i^c \cdot \varphi_2, \dots, x_i^c \cdot \varphi_K) \equiv (a_1, a_2, \dots, a_K)$$

Visualize the reconstructed training face x_i

$$x_i \approx \mu + a_1 \varphi_1 + a_2 \varphi_2 + \dots + a_K \varphi_K$$

Eigenvalues (variance along eigenvectors)

Reconstruction and Errors

- Only selecting the top K eigenfaces, reduces the dimensionality.
- Fewer eigenfaces result in more information loss, and hence less discrimination between faces.

Eigenface algorithm

Testing

- 1. Take query image t
- 2. Project into eigenface space and compute projection

$$t \rightarrow ((t-\mu) \cdot \varphi_1, (t-\mu) \cdot \varphi_2, ..., (t-\mu) \cdot \varphi_K) \equiv (w_1, w_2, ..., w_K)$$

- 3. Compare projection w with all N training projections
 - Simple comparison metric: Euclidean
 - Simple decision: K-Nearest Neighbor
 (note: this "K" refers to the k-NN algorithm, is different from the previous K's referring to the # of principal components)

Shortcomings

- Requires carefully controlled data:
 - -All faces centered in frame
 - -Same size
 - –Some sensitivity to angle
- Alternative:
 - -"Learn" one set of PCA vectors for each angle
 - Use the one with lowest error
- Method is completely knowledge free
 - –(sometimes this is good!)
 - –Doesn't know that faces are wrapped around 3D objects (heads)
 - -Makes no effort to preserve class distinctions

Pros

Non-iterative, globally optimal solution

Limitations

 PCA projection is optimal for reconstruction from a low dimensional basis, but may NOT be optimal for discrimination... Is there a better dimensionality reduction?

Besides face recognitions, we can also do Facial expression recognition

- Feature normalization
- Introduction to face recognition
- A simple recognition pipeline with kNN
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71-86, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Which direction will be the first principle component

Fischer's Linear Discriminant Analysis

Goal: find the best separation between two classes

Slide inspired by N. Vasconcelos

Difference between PCA and LDA

- PCA preserves maximum variance
- LDA preserves discrimination
 - Find projection that maximizes scatter between classes and minimizes scatter within classes

• Using two classes as example:

 We want to learn a projection W such that the projection converts all the points from x to a new space (For this example, assume m == 1):

$$z = w^{\mathrm{T}}x$$
 $z \in \mathbf{R}^m$ $x \in \mathbf{R}^n$

Let the per class means be:

$$E_{X|Y}[X|Y=i]=\mu_i$$

And the per class covariance matrices be:

$$[(X - \mu_i)(X - \mu_i)^T \mid Y = i] = \Sigma_i$$

We want a projection that maximizes:

$$J(w) = \max \frac{between \ class \ scatter}{within \ class \ scatter}$$

Fischer's Linear Discriminant Analysis

Slide inspired by N. Vasconcelos

The following objective function:

$$J(w) = \max \frac{between \ class \ scatter}{within \ class \ scatter}$$

Can be written as

$$J(w) = \frac{\left(E_{Z|Y}[Z \mid Y=1] - E_{Z|Y}[Z \mid Y=0]\right)^{2}}{\text{var}[Z \mid Y=1] + \text{var}[Z \mid Y=0]}$$

LDA with 2 variables

We can write the between class scatter as:

$$(E_{Z|Y}[Z|Y=1]-E_{Z|Y}[Z|Y=0])^{2} = (w^{T}[\mu_{1}-\mu_{0}])^{2}$$
$$= w^{T}[\mu_{1}-\mu_{0}][\mu_{1}-\mu_{0}]^{T}w$$

Also, the within class scatter becomes:

$$var[Z | Y = i] = E_{Z|Y} \{ (z - E_{Z|Y}[Z | Y = i])^{2} | Y = i \}
= E_{Z|Y} \{ (w^{T}[x - \mu_{i}])^{2} | Y = i \}
= E_{Z|Y} \{ w^{T}[x - \mu_{i}][x - \mu_{i}]^{T} w | Y = i \}
= w^{T} \Sigma_{i} w$$

LDA with 2 variables

We can plug in these scatter values to our objective function:

And our objective becomes:

$$J(w) = \frac{\left(E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0]\right)^{2}}{\text{var}[Z|Y=1] + \text{var}[Z|Y=0]}$$
$$= \frac{w^{T}(\mu_{1} - \mu_{0})(\mu_{1} - \mu_{0})^{T}w}{w^{T}(\Sigma_{1} + \Sigma_{0})w}$$

The scatter variables

Between class scatter

Maximizing the ratio

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

 Is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

$$\max_{w} w^{T} S_{B} w \quad \text{subject to} \quad w^{T} S_{W} w = K$$

 And can be accomplished using Lagrange multipliers, where we define the Lagrangian as

$$L = w^T S_B w - \lambda (w^T S_W w - K)$$

And maximize with respect to both w and λ

Setting the gradient of

$$L = w^{T} (S_{B} - \lambda S_{W}) w + \lambda K$$

With respect to w to zeros we get

$$\nabla_{w} L = 2(S_B - \lambda S_W) w = 0$$

or

$$S_B w = \lambda S_W w$$

- This is a generalized eigenvalue problem

• The solution is easy when
$$S_w^{-1} = (\Sigma_1 + \Sigma_0)^{-1}$$

In this case

$$S_W^{-1}S_Bw=\lambda w$$

And using the definition of S_B

$$S_W^{-1}(\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w = \lambda w$$

• Assuming that $(\mu_1 - \mu_0)^T w = \alpha$ is a scalar, this can be written as

$$S_W^{-1}(\mu_1-\mu_0)=\frac{\lambda}{\alpha}W$$

and since we don't care about the magnitude of w

$$w^* = S_W^{-1}(\mu_1 - \mu_0) = (\Sigma_1 + \Sigma_0)^{-1}(\mu_1 - \mu_0)$$

LDA with n variables and C classes

Variables

- N Sample images: $\{x_1, \dots, x_N\}$
- C classes: $\{Y_1, Y_2, \dots, Y_c\}$
- Average of each class: $\mu_i = \frac{1}{N_i} \sum_{x_k \in Y_i} x_k$
- Average of all data: $\mu = \frac{1}{N} \sum_{k=1}^{N} x_k$

Scatter Matrices

- Scatter of class i: $S_i = \sum_{x_k \in Y_i} (x_k \mu_i)(x_k \mu_i)^T$
- Within class scatter: $S_W = \sum_{i=1}^{c} S_i$
- Between class scatter: $S_B = \sum_{i=1}^{c} \sum_{j \neq i} (\mu_i \mu_j) (\mu_i \mu_j)^T$ Time-consuming to compute
- Between class scatter (in practice):

$$S_B = S_T - S_W = \sum_{i=1}^C N_i (\mu_i - \mu) (\mu_i - \mu)^T$$

• Total scatter:
$$S_T = \sum_{x} (x - \mu)(x - \mu)^T$$

 Recall that we want to learn a projection W such that the projection converts all the points from x to a new space z:

$$z = w^{\mathsf{T}} x$$
 $z \in \mathbf{R}^m$ $x \in \mathbf{R}^n$

- After projection:
 - Between class scatter $\tilde{S}_B = W^T S_B W$
 - Within class scatter $\tilde{S}_W = W^T S_W W$
- So, the objective becomes:

$$W_{opt} = \arg \max_{\mathbf{W}} \frac{\left| \widetilde{S}_{B} \right|}{\left| \widetilde{S}_{W} \right|} = \arg \max_{\mathbf{W}} \frac{\left| W^{T} S_{B} W \right|}{\left| W^{T} S_{W} W \right|}$$

$$W_{opt} = \arg\max_{\mathbf{W}} \frac{\left| W^T S_B W \right|}{\left| W^T S_W W \right|}$$

• Solve generalized eigenvector problem:

$$S_R w_i = \lambda_i S_W w_i$$
 $i = 1, ..., m$

Solution: Generalized Eigenvectors

$$S_B w_i = \lambda_i S_W w_i$$
 $i = 1, ..., m$

- Rank of W_{opt} is limited
 - $Rank(S_B) <= C-1$
 - $Rank(S_W) \le N-C$

PCA vs. LDA

- Eigenfaces exploit the max scatter of the training images in face space
- Fisherfaces attempt to maximise the between class scatter,
 while minimising the within class scatter.

Results: Eigenface vs. Fisherface

Input: 160 images of 16 people

• Train: 159 images

Test: 1 image

Variation in Facial Expression, Eyewear, and Lighting

With glasses

Without glasses

3 Lighting conditions

5 expressions

Eigenface vs. Fisherface

What we have learned today

- Feature normalization
- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71–86.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.