

### **General information**

#### Designation

Juglans regia

### Typical uses

Cabinet and carved work; gun stocks; rifle butts; bent work; superior joinery; propeller blades; fittings;

### **Composition overview**

Cellulose/Hemicellulose/Lignin/12%H2O

### **Compositional summary**

| -                 |                 |
|-------------------|-----------------|
| Material family   | Natural         |
| Base material     | Wood (hardwood) |
| Renewable content | 100 %           |

# **Composition detail (polymers and natural materials)**

| Wood | 100 | % |
|------|-----|---|
|      |     |   |

### **Price**

| Price | * 3.04 | - | 4.88 | USD/lb |  |
|-------|--------|---|------|--------|--|
|-------|--------|---|------|--------|--|

### **Physical properties**

| Density | 0.0224 | - | 0.0275 | lb/in^3 |  |
|---------|--------|---|--------|---------|--|
|---------|--------|---|--------|---------|--|

### **Mechanical properties**

| wechanical properties                  |          |   |        |          |
|----------------------------------------|----------|---|--------|----------|
| Young's modulus                        | * 0.286  | - | 0.319  | 10^6 psi |
| Yield strength (elastic limit)         | * 0.278  | - | 0.339  | ksi      |
| Tensile strength                       | 0.464    | - | 0.566  | ksi      |
| Elongation                             | * 0.48   | - | 0.59   | % strain |
| Compressive strength                   | 1.54     | - | 1.88   | ksi      |
| Flexural modulus                       | 0.26     | - | 0.29   | 10^6 psi |
| Flexural strength (modulus of rupture) | * 0.464  | - | 0.566  | ksi      |
| Shear modulus                          | * 0.0296 | - | 0.0406 | 10^6 psi |
| Shear strength                         | * 3.13   | - | 3.83   | ksi      |
| Rolling shear strength                 | * 0.116  | - | 0.348  | ksi      |
| Bulk modulus                           | * 0.145  | - | 0.162  | 10^6 psi |
| Poisson's ratio                        | * 0.02   | - | 0.04   |          |
| Shape factor                           | 5.7      |   |        |          |
| Hardness - Vickers                     | * 5.08   | - | 6.21   | HV       |
| Hardness - Brinell                     | 3.52     | - | 4.31   | ksi      |
| Hardness - Janka                       | * 1.14e3 | - | 1.4e3  | lbf      |
| Fatigue strength at 10^7 cycles        | * 0.139  | - | 0.17   | ksi      |
|                                        |          |   |        |          |





| Mechanical loss coefficient (tan delta)  | * 0.017  | - | 0.022  |             |
|------------------------------------------|----------|---|--------|-------------|
| Differential shrinkage (radial)          | 0.18     | - | 0.23   | %           |
| Differential shrinkage (tangential)      | 0.25     | - | 0.3    | %           |
| Radial shrinkage (green to oven-dry)     | 4.9      | - | 5.9    | %           |
| Tangential shrinkage (green to oven-dry) | 6.8      | - | 8.3    | %           |
| Volumetric shrinkage (green to oven-dry) | 12.3     | - | 15.1   | %           |
| Work to maximum strength                 | * 0.0387 | - | 0.0471 | ft.lbf/in^3 |
|                                          |          |   |        |             |

# **Impact & fracture properties**

| Fracture toughness | * 0.47 | - 0.573 | ksi.in^0.5 |
|--------------------|--------|---------|------------|

# **Thermal properties**

| Glass temperature             | 171     | - | 216    | °F                |
|-------------------------------|---------|---|--------|-------------------|
| Maximum service temperature   | 248     | - | 284    | °F                |
| Minimum service temperature   | * -99.4 | - | -9.4   | °F                |
| Thermal conductivity          | 0.0693  | - | 0.0809 | BTU.ft/hr.ft^2.°F |
| Specific heat capacity        | 0.396   | - | 0.408  | BTU/lb.°F         |
| Thermal expansion coefficient | * 17.3  | - | 23.2   | μstrain/°F        |

# **Electrical properties**

| Electrical resistivity                       | * 2.1e14 | - | 7e14  | µohm.cm |
|----------------------------------------------|----------|---|-------|---------|
| Dielectric constant (relative permittivity)  | * 3.85   | - | 4.71  |         |
| Dissipation factor (dielectric loss tangent) | * 0.053  | - | 0.065 |         |
| Dielectric strength (dielectric breakdown)   | * 25.4   | - | 50.8  | V/mil   |

# **Magnetic properties**

| Magnetic type  | Non-magnetic |
|----------------|--------------|
| May lette type | Non-magnetic |

# **Optical properties**

| Transparency | Opaque |
|--------------|--------|
|--------------|--------|

# **Durability**

| Water (fresh)           | Limited use  |
|-------------------------|--------------|
| Water (salt)            | Limited use  |
| Weak acids              | Limited use  |
| Strong acids            | Unacceptable |
| Weak alkalis            | Acceptable   |
| Strong alkalis          | Unacceptable |
| Organic solvents        | Acceptable   |
| Oxidation at 500C       | Unacceptable |
| UV radiation (sunlight) | Good         |

Flammability



Reference Shape

|                                                                                                                                           |        | Highly flammable |       |              |                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------|--------------|----------------------------|--|
| Primary production energy, CO2 and water                                                                                                  |        |                  |       |              |                            |  |
| Embodied energy, primary production                                                                                                       |        | 4.99e3           | -     | 5.5e3        | BTU/lb                     |  |
| Sources<br>0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond ar<br>MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2) | nd Jon | es, 2008);       | 11.6  | MJ/kg (Hubb  | pard and Bowe, 2010); 23.7 |  |
| CO2 footprint, primary production                                                                                                         |        | 0.574            | -     | 0.633        | lb/lb                      |  |
| Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Ham                                                      | mond   | and Jones        | , 200 | 8); 0.909 kg | /kg (Hubbard and Bowe,     |  |
| Water usage                                                                                                                               | *      | 1.84e4           | -     | 2.03e4       | in^3/lb                    |  |
| Processing energy, CO2 footprint & water                                                                                                  |        |                  |       |              |                            |  |
| Coarse machining energy (per unit wt removed)                                                                                             | *      | 274              | -     | 303          | BTU/lb                     |  |
| Coarse machining CO2 (per unit wt removed)                                                                                                | *      | 0.0478           | -     | 0.0528       | lb/lb                      |  |
| Fine machining energy (per unit wt removed)                                                                                               | *      | 903              | -     | 998          | BTU/lb                     |  |
| Fine machining CO2 (per unit wt removed)                                                                                                  | *      | 0.157            | -     | 0.174        | lb/lb                      |  |
| Grinding energy (per unit wt removed)                                                                                                     | *      | 1.6e3            | -     | 1.77e3       | BTU/lb                     |  |
| Grinding CO2 (per unit wt removed)                                                                                                        | *      | 0.279            | -     | 0.309        | lb/lb                      |  |
| Recycling and end of life                                                                                                                 |        |                  |       |              |                            |  |
| Recycle                                                                                                                                   |        | ×                |       |              |                            |  |
| Recycle fraction in current supply                                                                                                        |        | 8.55             | -     | 9.45         | %                          |  |
| Downcycle                                                                                                                                 |        | ✓                |       |              |                            |  |
| Combust for energy recovery                                                                                                               |        | ✓                |       |              |                            |  |
| Heat of combustion (net)                                                                                                                  | *      | 8.49e3           | -     | 9.16e3       | BTU/lb                     |  |
| Combustion CO2                                                                                                                            | *      | 1.69             | -     | 1.78         | lb/lb                      |  |
| _andfill                                                                                                                                  |        | ✓                |       |              |                            |  |
| Biodegrade                                                                                                                                |        | ✓                |       |              |                            |  |