第十三章 轴

13.1 概述

轴是组成机器的重要零件之一,用来支承旋转的机械零件。

轴的功用: 支承回转零件及传递运动和动力。

(1) 转轴

工作时既承受弯矩又承受转矩。

(2) 心轴

用来支承转动零件,只承受弯矩而不传递转矩。

(3) 传动轴

主要用于传递转矩而不承受弯矩,或所承受的弯矩很小的轴。

按照轴线形状的不同,轴可分为直轴、曲轴和挠性轴。

直轴根据外形的不同,可分为光轴、阶梯轴、实心轴和空心轴等。

曲轴

挠性轴

光 轴

阶梯轴

空心轴

轴的材料:

- (1) 碳素结构钢(45、Q235A、Q275A)
- 特点:对应力集中的敏感性小、价格较便宜、可热处理,应用广泛
 - (2) 合金钢(20Cr、40Cr、20CrMnTi)
- 特点: 良好力学性能和热处理工艺性、对应力集中敏感,价格较贵
 - (3) 球墨铸铁

特点:铸造性能好、吸振性好、对应力集中不敏感、价格低。

13.2 轴的结构设计

轴的组成:轴颈、轴头和轴身

轴的结构设计要求:

足够的承载能力,准确而可靠的工作位置,良好的制造和装配工艺性,尽量减小应力集中以提高疲劳强度。

13.2.1 轴上零件的轴向固定

轴向定位的目的是限制轴上零件相对于轴的移动,使其准确可靠地处在正确的位置上,保证机器正常工作。

(1)轴肩和轴环

结构简单,方便可靠,可承 受较大轴向力。

(2)套筒

多用于轴上两个零件之间距离不大,或不便于加工出轴肩的地方。此时,应保证套筒与被定位零件可靠接触。

(3)圆螺母

能承受较大的轴向力,轴上须加工螺纹,适用于轴向力较大 或两零件间距离较大时的定位。

圆螺母轴向固定

(4)弹性挡圈

结构简单,适用于无轴向力或轴 向力较小的情况。

弹性挡圈定位

轴端挡圈定位

(5)轴端挡圈

定位可靠,方便,常用。 适用于经常装拆或有冲击的 场合。

13.2.2 轴上零件的周向固定

周向定位的目的是限制轴上零件相对于轴的转动,以传递运动和 转矩。通常采用键、花键、销、过盈配合及成型联接等。

13.2.3 轴的结构工艺性

- (1)轴的结构应简单,轴的台阶数要尽可能少;
- (2)螺纹轴段要有退刀槽、磨削段要有越程槽;
- (3)设置必要的中心孔;
- (4)圆角半径、倒角尺寸尽可能统一;
- (5)同一根轴上各轴段的键槽尽可能布置在同一母线上;
- (6)为了便于装配,轴端应有倒角;
- (7)过盈配合的轴头,在零件装入端应有导向锥面;
- (8)定位轴肩的高度不能防碍零件的拆卸;
- (9)任一零件装配时,不应触及其他零件的配合表面。

13.2.4 提高疲劳强度的措施

1. 采用合理结构

尽量避免在轴上开横 孔、切口和凹槽; 增大轴 肩过渡圆角半径; 采用卸 荷槽(图a)、过渡肩环 (图b) 、凹切圆槽(图 c); 在轴与轴上零件的 过盈配合处, 在轮毂上开 卸荷槽(图d)

2. 改善轴的表面质量

降低轴的表面粗糙度,对轴的表面渗碳、渗氮及碳氮共渗等化学处理,辗压、喷丸等机械强化处理,可显著提高轴的承载能力。

13.3 轴的强度计算

目的: 验算经结构设计初步得出的轴能否满足强度要求

13.3.1 按扭转强度计算

(1) 对于只传递转矩的圆截面轴

强度条件:
$$\tau = \frac{T}{W_T} \approx \frac{9.55 \times 10^6 P}{0.2d^3 n} \le [\tau]$$
 (MPa)

(2) 转轴

可用上式来估算轴的直径,但必须把轴的许用扭转剪应力 [τ] 适当降低,以补偿弯矩对轴的影响。

将降低后的许用应力代入上式,并改写为设计公式:

$$d \ge \sqrt[3]{\frac{9.55 \times 10^6}{0.2[\tau]}} \sqrt[3]{\frac{P}{n}} = C \sqrt[3]{\frac{P}{n}} \quad \text{(mm)}$$

式中C是轴的材料和承载情况确定的常数。 应用上式求出的d值,一般作为轴最细处的直径。

常用材料的 [7] 值和 C 值

轴的材料	Q235, 20	35	45	40Cr, 35SiMn
[r] /MPa	12~20	20~30	30~40	40~52
C	160~135	135~118	118~107	107~98

注, 当作用在轴上的弯矩比传递的转矩小或只传递转矩时, C 取较小值; 否则取较大值。

13.3.2 按弯扭合成强度计算

通过结构设计,轴的主要结构尺寸、轴上零件的位置、外载荷及支反力的作用位置等均已确定,这时可按下述步骤进行弯扭合成强度校核计算。

(1)画出轴的空间受力图

如图a),把载荷分解到水平面H和垂直面V上,求出支承处的水平支反力 R_H 、垂直支反力 R_V 。

(2) 作出水平面H及垂直面V上的弯矩图 M_H 、 M_V 。

根据求出的水平面H及垂直面V上的各力,即可分别作出水平面上的弯矩图 M_H (图b)和垂直面上的弯矩图 M_V (图c)。

(3) 作合成弯矩图M

计算合成弯矩 $M = \sqrt{M_H^2 + M_V^2}$

- (4) 作扭矩图T
- (5) 弯扭合成,作当量弯矩图 M_e

当量弯矩 M_e 的计算公式为:

$$M_e = \sqrt{M^2 + (\alpha T)^2}$$

式中 α 是考虑到弯矩M及扭矩T所产生的应力的循环特性不同而引入的应力校正系数。当扭转剪应力为静应力时, $\alpha \approx 0.3$; 当扭转剪应力为脉动循环变应力时, $\alpha \approx 0.6$; 当扭转剪应力为对称循环变应力时, $\alpha = 1.0$ 。若转矩的变化规律不清楚,一般也按脉动循环处理。

(6) 校核轴的强度(或计算危险截面轴径)

轴的强度校核公式为

$$\sigma_e = \frac{M_e}{W} = \frac{\sqrt{M^2 + (\alpha T)^2}}{W} \le \left[\sigma_{-1b}\right] \quad \text{(MPa)}$$

- ❖ 对于实心圆轴, 抗弯截面系数W≈0.1d³
- ❖ $[\sigma_{-1b}]$ —轴的许用弯曲应力,MPa,见下表。

材料	轴的许用弯曲应力			MPa
	σ_{B}	[σ _{+1b}]	[\sigma_{0b}]	$[\sigma_{-1b}]$
碳膏钢	400	130	70	40
	500	170	75	45
	600	200	95	55
	700	230	110	65
合金钢	800	270	130	75
	900	300	140	80
	1 000	330	150	90
终 钢	400	100	50	30
	500	120	70	40

危险截面轴径可由下式计算:

$$d \ge \sqrt[3]{\frac{M_e}{0.1[\sigma_{-1b}]}} \quad \text{mm}$$