Specification and Data Issues: Part II

BS1802 Statistics and Econometrics

Jiahua Wu

382 Business School j.wu@imperial.ac.uk

Roadmap

- Regression analysis with cross-sectional data
 - The multiple regression analysis
 - Basics: estimation, inference, analysis with dummy variables
 - More technically involved: asymptotics, heteroskedasticity, specification and data issues
- Advanced topics
 - Limited dependent variable models
 - Panel data analysis
 - Regression analysis with time series data

Outline (Wooldridge, Ch. 3.3, 3.4, 5.2, 9.2, 9.5)

- Model diagnostics
- Using proxy variables for unobserved x variables
- Outliers
- A possible model fitting strategy

Outline

- Model diagnostics
- Using proxy variables for unobserved x variables
- Outliers
- A possible model fitting strategy

Statistical Properties of OLS Estimators

Theorem (3.1)

With a "good" model, the OLS estimators are unbiased, i.e., $E(\hat{\beta}_j) = \beta_j$, j = 0, 1, ..., k

Theorem (4.1, Normal Sampling Distribution) With a "good" model,

$$\hat{\beta}_{j} \sim \textit{Normal}\left(\beta_{j}, \textit{Var}(\hat{\beta}_{j})\right),$$

where the variance is given by

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1-R_j^2)}, \qquad j=1,\ldots,k.$$

Gauss-Markov Assumptions

- [MLR1] (linear in parameters) In the population model, y is related to x's by $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + u$, where $(\beta_0, \beta_1, \dots, \beta_k)$ are population parameters and u is disturbance
 - Common causes lead to violation of this assumption
 - Functional form misspecification: log vs level form, omitting quadratic forms
 - Identification of assumption violation
 - Residual plots, RESET, comprehensive model selection, Davidson-MacKinnon test

Residual Plots: A Correctly Specified Model

Residual Plots: A Misspecified Model

Gauss-Markov Assumptions

• [MLR2] (random sampling) $\{(x_{i1}, \ldots, x_{ik}, y_i), i = 1, 2, \ldots, n\}$ with $n \ge k + 1$ is a random sample drawn from the population model

Missing Data

- If any observation is missing data on one of the variables in the model, it cannot be used.
- Would this practice cause problems?
 - If data is missing at random, then the only consequence is a reduction in the sample size
 - A problem can arise if the data is missing in a systematic way.
 The sample becomes nonrandom (violation to MLR2)
 - Eg. High income individuals are more likely to refuse to provide income data. This affects the "randomness" of sampling.

Nonrandom Samples

- Exogenous sample selection
 - If the sample is chosen on the basis of an explanatory variable x, the OLS estimators will still be unbiased
 - Eg. Consider the family savings model

$$saving = \beta_0 + \beta_1 income + \beta_2 age + \beta_3 size + u.$$

Suppose the data set is based on a survey of people aged 35 years and over

 While the sample is nonrandom, zero-conditional mean assumption still holds as

$$E(u|income, age, size) = 0$$

for any subset of (income, age, size)

Nonrandom Samples

- Endogenous sample selection
 - If the sample is chosen on the basis of the dependent variable *y*, the OLS estimators will be biased
 - Eg. Consider the individual wealth model

$$wealth = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 age + u$$

Suppose the data set is based on a survey of people with wealth below \$250,000

The sample is nonrandom and

$$\begin{split} & \textit{E}(\textit{wealth}|\textit{educ},\textit{exper},\textit{age},\textit{wealth} < 250,000) \\ \neq & \textit{E}(\textit{wealth}|\textit{educ},\textit{exper},\textit{age}) \end{split}$$

Zero-conditional mean assumption fails!

Gauss-Markov Assumptions

- [MLR3] (no perfect collinearity) None of x's is constant and there is no perfect linear relationships among x's
 - Common causes lead to violation of this assumption
 - Multiple variables measure the same thing, dummy variables trap
 - Identification of assumption violation
 - Routinely reported by statistical softwares

A Model with Perfect Collinearity

```
> load("wage1.RData")
> male <- 1 - data$female
> wage.m1 <- lm(lwage ~ educ + exper + male + female, data)
        Coefficients: (1 not defined because of singularities)
                   Estimate Std. Error t value Pr(>|t|)
        (Intercept) 0.137239
                             0.101327 1.354
                                               0.176
        educ
                  0.091290 0.007123 12.816 < 2e-16 ***
        exper 0.009414 0.001449 6.496 1.93e-10 ***
        male
                  0.343597
                             0.037667 9.122 < 2e-16 ***
        female
                         NA
                                   NA
                                          NA
                                                  NA
```

Multicollinearity

- High correlation between two or more independent variables is known as multicollinearity
- Multicollinearity does not violate MLR3
- Effects of multicollinearity
 - Important variables can appear to be insignificant and standard errors can be large
 - Estimated coefficients can change substantially when variables are added or dropped

Multicollinearity: An Example (100 Observations)

```
> x1 <- rnorm(100, mean = 0, sd = 2)
> x2_1 <- x1 + rnorm(100, mean = 0, sd = 2)
> x2_2 <- x1 + rnorm(100, mean = 0, sd = 1)
> x2_3 <- x1 + rnorm(100, mean = 0, sd = 0.5)
> cor(x1, cbind(x1^2, x2_1, x2_2, x2_3))
```

x2_1 x2_2 x2_3 [1,] -0.1341789 0.6799878 0.88835 0.9630341

```
> y <- x1 + rnorm(100, mean = 0, sd = 4)
> m1 <- lm(y ~ x1 + x2_1)
> m2 <- lm(y ~ x1 + x2_2)
> m3 <- lm(y ~ x1 + x2_3)
> stargazer(m1, m2, m3, align = TRUE, no.space = TRUE)
```

Multicollinearity: An Example (100 Observations)

	Dependent variable: Y		
	(1)	(2)	(3)
×1	0.968***	1.080***	2.722***
	(0.257)	(0.411)	(0.674)
×2_1	-0.072		
_	(0.167)		
×2_2	, ,	-0.194	
_		(0.377)	
×2_3		,	-1.887***
			(0.670)
Constant	-0.607*	-0.622*	-0.598^{*}
	(0.351)	(0.353)	(0.338)
Observations	100	100	100
R^2	0.189	0.189	0.249
Adjusted R ²	0.172	0.173	0.233
Residual Std. Error (df = 97)	3.455	3.454	3.325
F Statistic (df = 2; 97)	11.285***	11.333***	16.054***

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Multicollinearity: Another Example (1,000 Observations)

	Dependent variable: y		
	(1)	(2)	(3)
×1	0.933***	1.067***	0.811***
	(0.090)	(0.143)	(0.276)
×2_1	0.087		
_	(0.065)		
x2_2		-0.050	
_		(0.128)	
x2_3		` ′	0.207
_			(0.269)
Constant	-0.215*	-0.213*	-0.211
	(0.129)	(0.129)	(0.129)
Observations	1,000	1,000	1,000
R^2	0.205	0.203	0.204
Adjusted R ²	0.203	0.202	0.202
Residual Std. Error (df = 997)	4.077	4.080	4.079
F Statistic (df = 2 ; 997)	128.384***	127.356***	127.631***

Note:

 $^{^*}p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Variance Inflation Factors

ullet The variance inflation factor for x_j is

$$VIF_j = \frac{1}{1 - R_j^2},$$

 R_j^2 is the R-squared from regressing x_j on all the other independent variables

- x_j is strongly correlated with other independent variables $\to R_j^2$ close to $1 \to VIF_i$ is large
- \bullet Rule of thumb: Value of \emph{VIF} greater than 10 indicates the multicollinearity problem
- R function: vif in multiple packages, such as HH, car, fmsb, faraway and VIF

Gauss-Markov Assumptions

- [MLR4] (zero conditional mean) The disturbance u satisfies $E(u|x_1,...,x_k)=0$ for any given value of $(x_1,...,x_k)$
 - Common causes lead to violation of this assumption
 - Missing important variables in the model (either unobservable or fail to include them in the model)
 - Identification of assumption violation
 - Case-by-case: mostly based on intuition and subject knowledge
- MLR1-4 are required for OLS estimators to be unbiased.

Gauss-Markov Assumptions

- [MLR5] (homoskedasticity) $Var(u_i|x_{i1},...,x_{ik}) = \sigma^2$ for i = 1, 2, ..., n. (It implies $Var(u_i) = \sigma^2$)
 - Common causes lead to violation of this assumption
 - Data issue
 - Identification of assumption violation
 - Residual plots, Breusch-Pagan test, White test
 - Solutions
 - Robust standard errors
- MLR1-5 are collectively known as the Gauss-Markov Assumptions

Normality Assumption

• [MLR6] (normality) The disturbance u is independent of all explanatory variables and normally distributed with mean zero and variance σ^2 :

$$u \sim \mathsf{Normal}(0, \sigma^2)$$

- MLR1-6 imply the OLS estimators are normally distributed
- The normality leads to the exact distributions of the t stat and the F stat, which are the basis for inference

Large-Sample (Asymptotic) Inference

- MLR6 $(u \sim \textit{Normal}(0, \sigma^2))$ is often too strong an assumption in practice
- How do we do inference without MLR6?
 - Central limit theorem (CLT) provides an answer
 - When n is large, the OLS estimators are approximately normally distributed

Large Sample (Asymptotic) Inference

 When u is not normally distributed, it is just as legitimate to write

$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \sim t_{n-k-1},$$

as t_{n-k-1} approaches Normal(0,1) for large n-k-1

- For good approximation, how "large" must the *n* be?
 - Depends on the distribution of *u*.
- t testing, F testing and the construction of confidence intervals are carried out exactly the same as under Normality assumptions
- Note that while we no longer need to assume normality with a large sample, we do still need homoskedasticity

Model Diagnostics

- After fitting a regression model, it is important to determine whether all the necessary model assumptions are valid
- Any violations may invalidate subsequent inferential procedures, resulting in faulty conclusions

Outline

- Model diagnostics
- Using proxy variables for unobserved x variables
- Outliers
- A possible model fitting strategy

Unobserved Explanatory Variable

- What if model is misspecified because no data is available on an important x variable?
- Often the omitted-variable bias can be reduced by using a proxy variable
- A proxy variable must be related to the unobserved variable
- Consider the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3^* + u$
 - ullet (eta_1,eta_2) are parameters of interest and x_3^* is unobserved
 - But we have a proxy variable x_3 , where $x_3^* = \delta_0 + \delta_3 x_3 + v_3$
 - Now suppose we just substitute x_3 for x_3^*
 - So, under what conditions will this solution give us unbiased estimates of β_1 and β_2 ?

Conditions for a Valid Proxy Variable

- A valid proxy (x_3) for a key unobserved variable (x_3^*) :
 - **1** ZCM assumption holds for observed, unobserved and the proxy: $E(u|x_1,x_2,x_3,x_3^*)=0$
 - ② If x_3 is controlled for, the conditional mean of x_3^* does not depend on x_1 and x_2 : $E(x_3^*|x_1,x_2,x_3)=E(x_3^*|x_3)=\delta_0+\delta_3x_3$
- That is, u is uncorrelated with x_1 , x_2 and x_3^* , and v_3 is uncorrelated with x_1 , x_2 and x_3
- Condition 2 implies $x_3^* = \delta_0 + \delta_3 x_3 + v_3$, and thus

$$y = (\beta_0 + \beta_3 \delta_0) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 \delta_3 x_3 + (u + \beta_3 v_3)$$

• OLS are unbiased for estimating (β_1, β_2) under conditions 1 and 2

Conditions for a Valid Proxy Variable

- Without the conditions, we can end up with biased estimates
 - Say $x_3^* = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + v_3$
 - Substituting x_3^* into the model, we have

$$y = (\beta_0 + \beta_3 \delta_0) + (\beta_1 + \beta_3 \delta_1) x_1 + (\beta_2 + \beta_3 \delta_2) x_2 + \beta_3 \delta_3 x_3 + (u + \beta_3 v_3)$$

- ullet Bias will depend on signs of eta_3 and δ_j
- This bias may still be smaller than omitted variable bias, though
- In practice, lagged dependent variables are commonly used as proxies
 - to account for omitted variables that contribute to both past and current levels of *y*

Lagged Dependent Variables: An Example

- Example 9.4. City Crime Rates (crime2.RData)
 - Consider a simple equation to explain city crime rates

$$crmrte = \beta_0 + \beta_1 unem + \beta_2 lawexpc + \beta_3 crmrte_{-1} + u,$$

where

- crmrte: a measure of per capita crime
- unem: the city unemployment rate
- lawexpc: per capita spending on law enforcement
- ullet crmrte $_{-1}$: the crime rate measured in some earlier year
- The data are from 46 cities for the year 1987. The crime rate is also available for 1982.

Lagged Dependent Variables: An Example

Dependent Variable: log(crmrte ₈₇)				
Independent Variables	(1)	(2)		
unem ₈₇	029 (.032)	.009 (.020)		
log(lawexpc ₈₇)	.203 (.173)	140 (.109)		
log(crmrte ₈₂)	_	1.194 (.132)		
intercept	3.34 (1.25)	.076 (.821)		
Observations R-squared	46 .057	46 .680		

- Model (1): explanatory variables are insignificant with unexpected signs
- Model (2): use the lag of the dependent variable $crmrte_{82}$ as a proxy to control for unobserved factors

Outline

- Model diagnostics
- Using proxy variables for unobserved x variables
- Outliers
- A possible model fitting strategy

Outliers and Leverage

- Outliers are "unusual" observations that are far away from the "centre"
 - OLS is generally sensitive to outliers as large residuals once squared received much more weight in OLS
 - Outliers can be simple data entry errors
 - It is always a good idea to check summary statistics (min, max, etc)
 - Not unreasonable to fix observations where it's clear there was just an extra zero entered, etc.
 - Outliers can be that the observation is just truly very different from the others

Outliers and Leverage

- Outliers in the dependent variable
 - Observations lie far from the SRF
 - Rule of thumb: An outlier is an observation, whose residual is larger than 3 standard deviations away from the mean
- Outliers in the independent variable
 - Known as high-leverage points, to distinguish them from observations that are outliers in the response variable
 - Can be identified using leverage values or Cook's distances

Leverage Values

Recall that

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

That is, the fitted values of a multiple regression can be written as

$$\hat{y}_i = p_{i1}y_1 + p_{i2}y_2 + \cdots + p_{in}y_n$$

- p_{ii} is called the leverage value for the *i*th observation
 - It measures the "outlierness" in the independent variables
 - $0 \le p_{ii} \le 1$, and average of all leverage values is (k+1)/n
 - Rule of thumb: Points with p_{ii} greater than 2(k+1)/n are generally regarded as points with high leverage
 - Points with high leverage should be flagged and examined

Cook's Distance

 Cook's distance measures the influence of the jth observation by

$$C_{j} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \hat{y}_{i(j)})^{2}}{\hat{\sigma}^{2}(k+1)},$$

where \hat{y}_i is the fitted value obtained from the full sample, and $\hat{y}_{i(j)}$ is the fitted value obtained by deleting the *j*th observation

- Cook's distance can be thought of as the product of leverage and outlierness
- If a point is influential, its deletion causes large changes in fitted values, and value of C_j will be large
- Rule of thumb: Points with C_j values greater than 1 are influential

Outliers: An Example

- Example 9.8. R&D Intensity and Firm Size (rdchem.RData)
 - The regression model is

$$rdintens = \beta_0 + \beta_1 sales + \beta_2 profmarg + u,$$

where

- rdintens: R&D expenditures as a percentage of sales
- sales: annual sales (in millions)
- profmarg: profits as a percentage of sales
- The OLS equation using data on 32 chemical companies is

$$\widehat{\textit{rdintens}} = \underset{(0.586)}{2.625} + \underset{(.000044)}{.000053} \textit{sales} + \underset{(.0462)}{.0446} \textit{profmarg},$$

$$n = 32, R^2 = .0761$$

 Neither sales nor profmarg is statistically significant at even the 10% level in this regression.

Outliers: An Example

Outliers: An Example

- Of the 32 firms, 31 have annual sales less than \$20 billion, where one firm has annual sales of almost \$40 billion.
- Without the high-leverage observation, the estimated model is given by

$$\widehat{\textit{rdintens}} = \underset{(0.592)}{2.297} + \underset{(.000084)}{.000186} sales + \underset{(.0445)}{.0478} \textit{profmarg},$$

$$n = 31, R^2 = .173$$

- Using the sample of smaller firms, there is a statistically significant positive effect between R&D intensity and firm size.
- The profit margin is still not significant, and its coefficient has not changed by much.

Outline

- Model diagnostics
- Using proxy variables for unobserved x variables
- Outliers
- A possible model fitting strategy

A Possible Model Fitting Strategy

Understand the data set

- Examine the variables y, x_1, x_2, \ldots, x_k one at a time; Calculate the summary statistics, and also graphically by looking at histograms or box plots
- Construct pairwise scatter plots
- 2 Regression and variable selection
 - Model selection based on \bar{R}^2 and information criteria
 - Test for correct functional forms of variables

A Possible Model Fitting Strategy

- Residual analysis ensure satisfactory residual plots and no negative diagnostic messages. If needed, repeat Step 2.
 - Check linearity. If none, make a transformation on the variable
 - Check for heteroscedasticity
 - Look for outliers and high-leverage points

4 Model validation

- The model may be fitted by part of the data and validated by the remainder of the data when the amount of data is large
- Otherwise, resampling methods such as bootstrap, jackknife and cross-validation can be used