

Computação Gráfica

TEXTURAS

amlucena@cruzeirodosul.edu.br

Na última aula...

Como é equacionada a propagação da luz?

I - Intensidade

ke – refletido

ka – absorvido

kr – refratado

kd - difuso

I = ke + ka + kr + kd

Na última aula...

Para que texturas?

- Aplicações de materiais simples nem sempre são suficientes para representar elementos reais. Para isso, usamos mapeamento de texturas.

Função de Mapeamento

 Retorna o ponto do objeto correspondente a cada ponto do espaço de textura

$$(x, y, z) = F(s, t)$$

- Corresponde à forma com que a textura é usada para "embrulhar" (wrap) o objeto
 - Na verdade, na maioria dos casos, precisamos de uma função que nos permita "desembrulhar" (unwrap) a textura do objeto, isto é, a inversa da função de mapeamento
- Se a superfície do objeto pode ser descrita em forma paramétrica esta pode servir como base para a função de mapeamento

Parametrização da Esfera

Função de mapeamento

$$x(\varphi,\theta) = \sin \varphi \cos \theta$$

$$y(\varphi, \theta) = \sin \varphi \sin \theta$$

$$z(\varphi,\theta) = \cos \varphi$$

$$\varphi = \pi \cdot t$$

$$\theta = 2\pi \cdot s$$

Função de mapeamento inversa

$$\varphi = \arccos z$$

$$\theta = \arctan \frac{y}{x}$$

$$t = \frac{\arccos z}{\pi}$$

$$s = \frac{\arctan \frac{y}{x}}{2\pi}$$

Parametrização do Cilindro

Função de mapeamento

$$x = \cos \theta$$

$$y = \sin \theta$$

$$z = z$$

$$\theta = 2\pi \cdot s$$

$$z = t$$

Função de mapeamento inversa

$$\theta = \arctan \frac{y}{x}$$

$$z = z$$

$$s = \frac{\theta}{2\pi}$$

$$t = z$$

Parametrizando Objetos Genéricos

- O que fazer quando o objeto não comporta uma parametrização natural?
- Uma sugestão é usar um mapeamento em 2 estágios [Bier e Sloan]:
 - Mapear textura sobre uma superfície simples como cilindro, esfera, etc aproximadamente englobando o objeto
 - Mapear superfície simples sobre a superfície do objeto. Pode ser feito de diversas maneiras
 - Raios passando pelo centróide do objeto
 - Raios normais à superfície do objeto
 - Raios normais à superfície simples
 - Raios refletidos (environment mapping)

Mapeamento UV

A convenção usual é usar U e V como o eixo do espaço de textura em que U corresponde a X no sistema de coordenadas cartesianas 2D e V corresponde a Y.

A OpenGL/WebGL trata os valores dos eixos UV como indo da esquerda para a direita na U eixo e para baixo no eixo V.

Mapeamento UV

Exemplos

Parametrização cúbica

Projetada em uma esfera

Projetada em um cilindro

Exemplos

Parametrização cilíndrica

Projetada em uma esfera

Projetada em um cubo

Exemplos

Parametrização esférica

Projetada em um cubo

Projetada em um cilindro

Bump mapping

Mapeamento básico de textura numa superfície suave.

• Nesta técnica a imagem mapeada é utilizada para fazer uma perturbação do vetor normal à superfície antes de calcular a iluminação, resultando em um efeito visual de superfície rugosa.

A superfície não muda realmente, sombreamento faz parecer mudada.

Exemplo de "Bump mapping"

Cilindro c/ mapa de texturas difuso

Cilindro c/ mapa de texturas difuso + bump map

Mapa de deslocamentos (displacement mapping)

- Uma desvantagem do mapeamento da rugosidade é o que ao observarmos a silhueta da superfície não vemos os detalhes da geometria que foram mapeados.
- Uma solução consiste em deslocar realmente a superfície
- Uso do mapa de texturas para deslocar cada ponto na superfície
 - valor de textura diz quanto mover na direção normal à superfície

Exercício 1:

A) Utilizando o arquivo disponível para a "Aula06_Ex1", crie outras geometrias, e verifique o comportamento do mapeamento UV em cada uma:

Geometrias:

- Cubo (CubeGeometry)
- Esfera (SphereGeometry)
- Anel (TorusGeometry)
- Tetraedro (TetrahedronGeometry)
- Cilindro (CylinderGeometry)

Confira algumas propriedades das textures em:

<u>Demo: Texture Parameters</u> Demo: Texture Rotation

Leia mais e consulte em:

https://threejs.org/manual/#en/materials

- **B)** Modifique as texturas pela textura "uv.png" e verifique o resultado.
- **C)** Modifique as texturas pela textura "earth.jpg" e verifique o resultado.

Exercício 2:

Utilizando os códigos elaborados em sala, , siga o roteiro proposto e modifique o arquivo 'Aula06_Ex2', para chegar no resultado da imagem ao lado.

Parte 1:

- Modifique o "material1" para o tipo Phong.
- Crie uma iluminação do tipo ambiente com intensidade de 0.8 e cor branca. (Não esqueça do "scene.add").
- 3. Crie uma fonte de luz do tipo direcional com intensidade 2 e coordenadas (-10,0,10) e target para a origem da cena.

Parte 2:

- 1. Utilizando a classe "THREE.TextureLoader" crie um texture loader na variável "loader".
- 2. Agora na variável "colorMap" carregue a imagem "earth.jpg" da pasta "img" através do método "load()".
- 3. Na declaração do "material1" passe o parâmetro "map: colorMap" junto com a cor e veja o resultado.
- 4. Novamente, utilizando o texture loader, carregue a imagem "space.jpg" na variável "spacebg".
- 5. Atribua a variável "spacebg" ao atributo "background" do objeto "scene" (scene.background = spacebg).
- 6. Dentro da função "animate", atribua uma rotação no eixo y "sphere1", com incrementos de 0.01.

Parte 3:

- 1. Utilizando o "loader" carregue a imagem "normal.jpg" na variavel "normalMap" e passe-a na declaração do "material1" no parâmetro "normalMap".
- 2. Aproxime o zoom com os controle do mouse: É possível notar alguma diferença? (repare a região das américas e cordilheira dos andes)
- 3. Romova o "colorMap" para perceber a diferença.

Parte 4:

- 1. No "material1", adicione os seguinte parametros specular: 0x333333, shininess: 15
- 2 Novamente, utilizando o "loader" carregue a imagem "specular.jpg" na variavel "specMap" e passe-a na declaração do "material1" no parâmetro "specularMap".
- 3 Aproxime o zoom com os controle do mouse: É possível notar alguma diferença? (repare no reflexo do mar e continentes).
- 4 Remova o "colorMap" para perceber a diferença.
- 5 Adicione todos os maps simultaneamente e remova o "AxisHelper" para gerar a cena final

