

Universidad Nacional De Colombia

Trabajo 1 - Hielos

Modelos no lineales

Autores:

Sofía Cuartas Santiago Carvajal Torres

Entregado a:

Juan Carlos Correa Morales

Contents

Prueba piloto
Análisis descriptivo
Resumen de los datos
Gráfico de los datos
Modelos
Modelo para 10 ML
Modelo logistico
Modelo bertalanffy
Elección del mejor modelo
Modelo para 20 ML
Modelo logistico
Modelo bertalanffy
Elección del mejor modelo
Modelo para 30 ML
Modelo logistico
Modelo bertalanffy
Elección del mejor modelo

Prueba piloto

Se decidió llevar a cabo una prueba piloto con el propósito de determinar el tiempo apropiado para tomar medidas en el experimento principal, que involucraba llenar recipientes con 10, 20 y 30 ml de agua, congelarlos y luego observar cuánto se derretía. La prueba piloto fue esencial por las siguientes razones:

Determinar el intervalo de tiempo adecuado: Antes de comenzar el experimento principal, necesitabamos establecer cuánto tiempo debía transcurrir antes de medir la muestra. Sacar las muestras demasiado pronto significaría que aún estarían en gran parte congeladas, lo que arrojaría resultados poco útiles. En contraste, retirarlas demasiado tarde podría resultar en que el hielo se derritiera por completo, lo que también sería inapropiado. La prueba piloto permitió encontrar un equilibrio en el tiempo de espera.

Evaluar la variabilidad: Realizando varias pruebas con diferentes cantidades de agua (10, 20 y 30 ml), pudimos determinar si la cantidad de agua tenía alguna influencia en el tiempo que tardaba en derretirse el hielo. Esta evaluación ayudó a anticipar si sería necesario ajustar las expectativas o el enfoque para las mediciones posteriores en el experimento principal.

Ajustar el procedimiento: La prueba piloto también brindó la oportunidad de realizar ajustes en el procedimiento experimental si fuera necesario. Por ejemplo, si se hubiera observado que todas las muestras se derretían de manera similar en un corto período de tiempo, podría haberse decidido usar recipientes más grandes o modificar la temperatura ambiente de congelación para obtener resultados más interesantes y significativos.

Con los resultados de la prueba piloto, pudimos identificar que había cierta variabilidad en los tiempos de inicio y finalización para cada muestra. Esto sugiere que factores como la temperatura ambiente o las diferencias en la cantidad de agua pueden influir en el proceso de derretimiento del hielo. Basándose en estos datos, decidimos que los tiempos adecuados para tomar las muestras eran en 20, 40 y 60 minutos.

Table 1: Prueba piloto

Medida	Inicio	Final
10	12	60
10	15	65
20	16	70
20	14	74
30	15	82
30	15	80

Análisis descriptivo

Table 2: Primeros datos en la base de datos

Valor_inicial	Tiempo	Volumen_derretido
10	20	2.4
10	20	2.0
10	20	2.6
10	20	2.4
10	40	5.0
10	40	4.9

Resumen de los datos

Se peude observar que el valor inicial de agua en los recipientes tiene un impacto significativo en el tiempo de derretimiento del hielo. Los recipientes con menos agua tienden a tener un tiempo de derretimiento más corto, mientras que los recipientes con más agua tienen un tiempo de derretimiento más largo. Además, la variabilidad en las mediciones puede variar según la cantidad de agua presente, siendo más alta en los recipientes con 20 ml de agua como podemos ver en su desviación estándar.

Valor_inicial	Tiempo	Media	DesviacionEstandar
10	20	2.350	0.2516611
10	40	5.425	0.5560276
10	60	8.600	0.2828427
20	20	4.550	1.2897028
20	40	9.450	1.7233688
20	60	13.050	1.3304135
30	20	18.400	2.2449944
30	40	22.000	0.8164966

26.250

0.9574271

60

30

Table 3: Resumen de los datos

Volumen Derretido en Función del Tiempo Volumen derretido 20 -Valor Inicial 10 20 30 40 20 30 50 60 Tiempo

Gráfico de los datos

Modelos

En el gráfico de los datos, las diferentes medidas para las cuales fueron tomados los datos, tienen un comportamiento diferente, por lo se decidió ajustar modelos diferentes para los recipientes con 10, 20 y 30 ml. Además de esto utilizamos dos modelos diferentes, como Bertalanffy y Gompertz, dado que en término de sus ecuaciones son más diferentes.

```
modelo_logistico <- nls(Volumen_derretido~SSlogis(Tiempo,Asym,b2,b3),data = datos_10ml)</pre>
```

Error in iniFn(mCall = mCall, data = data, LHS = LHS, ...): too few distinct input values to fit a l

Dado que la función **nls** ni **Optim** no converge por la cantidad de datos, se decidió ajustar los modelos con la librería **GENSA** dado que usualmente tiene mejor estabilidad que las otras funciones mencionadas anteriormente.

Modelo para 10 ML

Modelo logistico

```
# Definir la función de ajuste
modelo <- function(Tiempo, b0, b1) {</pre>
 b0 / ((1 - \exp(b1 * Tiempo))^{(-1)})
# Definir la función objetivo para la optimización
objetivo <- function(params) {</pre>
 b0 <- params[1]
 b1 <- params[2]
 predicciones <- modelo(datos_10ml$Tiempo, b0, b1)</pre>
  error <- sum((datos_10ml$Volumen_derretido - predicciones)^2)</pre>
  return(error)
}
# Definir límites para los parámetros
limites <- matrix(c(-100, -100, # limite inferior para b0 y b1
                    100, 100), # límite superior para b0 y b1
                  ncol = 2,
                  byrow = TRUE)
# Ejecutar la optimización con GENSA
resultado_optimizacion_logistico_10ml <- GenSA(fn = objetivo,
                                 lower = limites[1, ],
                                 upper = limites[2, ])
# Obtener los valores óptimos de los parámetros
valores_optimos_logistico_10ml <- resultado_optimizacion_logistico_10ml$par
valores_optimos_logistico_10ml
```

Modelo logístico

Modelo bertalanffy

$$Y_i = \beta_0 (1 - \beta_1 e^{-\beta_2 * t_i})^3$$

```
# Definir la función de ajuste
modelo <- function(Tiempo, b0, b1, b2) {</pre>
  b0 * ((1 - b1 * exp(-b2 * Tiempo))^3)
}
# Definir la función objetivo para la optimización
objetivo <- function(params) {</pre>
  b0 <- params[1]
  b1 <- params[2]
  b2 <- params[3]
  predicciones <- modelo(datos_10ml$Tiempo, b0, b1,b2)</pre>
  error <- sum((datos_10ml$Volumen_derretido - predicciones)^2)</pre>
  return(error)
}
# Definir límites para los parámetros
limites \leftarrow matrix(c(-100,-100, -100,
                                         # límite inferior para b0 y b1
                     100, 100, 100), # limite superior para b0 y b1
                   ncol = 3,
                  byrow = TRUE)
# Ejecutar la optimización con GENSA
resultado_optimizacion_bertalanffy_10ml <- GenSA(fn = objetivo,
                                 lower = limites[1, ],
                                 upper = limites[2, ])
# Obtener los valores óptimos de los parámetros
valores_optimos_bertalanffy_10ml <- resultado_optimizacion_bertalanffy_10ml$par
```

Modelo bertalanffy

Elección del mejor modelo

Table 4: MSE muestras de $10~\mathrm{ML}$

bertalanffy	gompertz
1.3575	1.457262

Modelo para 20 ML

Modelo logistico

Modelo bertalanffy

$$Y_i = \beta_0 (1 - \beta_1 e^{-\beta_2 * t_i})^3$$

Modelo bertalanffy

Elección del mejor modelo

Table 5: MSE muestras de 20 ML

bertalanffy	Logistico
19.21	19.81207

Modelo para 30 ML

Modelo logistico

Modelo bertalanffy

$$Y_i = \beta_0 (1 - \beta_1 e^{-\beta_2 * t_i})^3$$

Elección del mejor modelo

Table 6: MSE muestras de 30 ML

bertalanffy	Logistico
20.06485	33.70446