Selected Topics in Mathematics of Learning

High-Dimensional Statistics

Lecturer: Marius Yamakou

Winter Semester 2024/25 Department of Data Science, FAU

November 26, 2024

- 1 Understand the Structure and Role of Covariance and Correlation Matrices
 - Covariance and correlation matrices are essential tools for analyzing relationships between variables in datasets.

Objectives:

- 1 Understand the Structure and Role of Covariance and Correlation Matrices
 - Covariance and correlation matrices are essential tools for analyzing relationships between variables in datasets.
 - Covariance: Measures how two variables vary together. A positive covariance indicates that the variables increase together, while a negative covariance indicates they move in opposite directions.

Marius Yamakou

- 1 Understand the Structure and Role of Covariance and Correlation Matrices
 - Covariance and correlation matrices are essential tools for analyzing relationships between variables in datasets.
 - Covariance: Measures how two variables vary together. A positive covariance indicates that the variables increase together, while a negative covariance indicates they move in opposite directions.
 - **Correlation**: Normalizes the covariance to a scale of -1 to 1, providing a dimensionless measure of the strength and direction of the linear relationship.

- 1 Understand the Structure and Role of Covariance and Correlation Matrices
 - Covariance and correlation matrices are essential tools for analyzing relationships between variables in datasets.
 - Covariance: Measures how two variables vary together. A positive covariance indicates that the variables increase together, while a negative covariance indicates they move in opposite directions.
 - **Correlation**: Normalizes the covariance to a scale of -1 to 1, providing a dimensionless measure of the strength and direction of the linear relationship.
- 2 Explore the Concept of Sparsity
 - Sparsity: Refers to matrices with many zero (or near-zero) entries, indicating weak or no relationships between many pairs of variables.

- 1 Understand the Structure and Role of Covariance and Correlation Matrices
 - Covariance and correlation matrices are essential tools for analyzing relationships between variables in datasets.
 - Covariance: Measures how two variables vary together. A positive covariance indicates that the variables increase together, while a negative covariance indicates they move in opposite directions.
 - **Correlation**: Normalizes the covariance to a scale of -1 to 1, providing a dimensionless measure of the strength and direction of the linear relationship.
- 2 Explore the Concept of Sparsity
 - Sparsity: Refers to matrices with many zero (or near-zero) entries, indicating weak or no relationships between many pairs of variables.
 - Importance: Sparse covariance matrices simplify data interpretation and are critical for efficient modeling in high-dimensional settings.

- 3 Learn the Thresholding Method
 - Thresholding is a technique to induce sparsity in covariance matrices by setting small values to zero.

3 Learn the Thresholding Method

- Thresholding is a technique to induce sparsity in covariance matrices by setting small values to zero.
- Purpose: Helps reduce noise in the data and improves the interpretability of relationships between variables.

4 Examine Strategies for Selecting the Regularization Parameter

The regularization parameter determines the threshold for sparsity in covariance matrices.

3 Learn the Thresholding Method

- Thresholding is a technique to induce sparsity in covariance matrices by setting small values to zero.
- Purpose: Helps reduce noise in the data and improves the interpretability of relationships between variables.

4 Examine Strategies for Selecting the Regularization Parameter

- The regularization parameter determines the threshold for sparsity in covariance matrices.
- Balance: Choosing an appropriate value is crucial to balance sparsity with retaining significant relationships.

3 Learn the Thresholding Method

- Thresholding is a technique to induce sparsity in covariance matrices by setting small values to zero.
- Purpose: Helps reduce noise in the data and improves the interpretability of relationships between variables.

4 Examine Strategies for Selecting the Regularization Parameter

- The regularization parameter determines the threshold for sparsity in covariance matrices.
- Balance: Choosing an appropriate value is crucial to balance sparsity with retaining significant relationships.
- Methods: Include practical approaches like cross-validation and theoretical insights for optimal selection.

Outline

- Covariance/Correlation matrix
- 2 Sparsity
- 3 Thresholding
- 4 How to choose the regularization parameter?

1. Covariance and Correlation Matrices: Population Quantities

1. Covariance Matrix (Σ):

- $\Sigma = (\sigma_{ij})_{i,j=1,...,p}$, where each element $\sigma_{ij} = \text{Cov}(X_i, X_j)$.
- Covariance measures how two variables vary together:

$$Cov(X_i, X_j) = E[(X_i - E[X_i])(X_j - E[X_j])].$$

1. Covariance and Correlation Matrices: Population Quantities

1. Covariance Matrix (Σ):

- $\Sigma = (\sigma_{ij})_{i,j=1,...,p}$, where each element $\sigma_{ij} = \text{Cov}(X_i, X_j)$.
- Covariance measures how two variables vary together:

$$\operatorname{Cov}(X_i, X_j) = E[(X_i - E[X_i])(X_j - E[X_j])].$$

2. Correlation Matrix (R):

 $\blacksquare R = (\rho_{ij})_{i,j=1,\dots,p}$, where ρ_{ij} is the normalized covariance:

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}.$$

- Correlation is standardized and lies in [-1, 1].
- Diagonal entries are always $\rho_{ii} = 1$.

1. Covariance and Correlation Matrices: Sample Analogues

- 1. Sample Covariance Matrix: $\hat{\Sigma} = (\hat{\sigma}_{ij})_{i,j=1,...,p}$
 - An empirical estimate based on data:

$$\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k,i} - \bar{X}_i)(X_{k,j} - \bar{X}_j),$$

where $\bar{X}_i = \frac{1}{n} \sum_{k=1}^n X_{k,i}$ is the sample mean of variable X_i .

1. Covariance and Correlation Matrices: Sample Analogues

- 1. Sample Covariance Matrix: $\hat{\Sigma} = (\hat{\sigma}_{ij})_{i,j=1,...,p}$
 - An empirical estimate based on data:

$$\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k,i} - \bar{X}_i)(X_{k,j} - \bar{X}_j),$$

where $\bar{X}_i = \frac{1}{n} \sum_{k=1}^n X_{k,i}$ is the sample mean of variable X_i .

- 2. Sample Correlation Matrix: $\hat{R} = (\hat{\rho}_{ij})_{i,j=1,\dots,p}$
 - Normalized version of $\hat{\Sigma}$:

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}}.$$

1. Covariance and Correlation Matrices: Sample Analogues

- 1. Sample Covariance Matrix: $\hat{\Sigma} = (\hat{\sigma}_{ij})_{i,j=1,...,p}$
 - An empirical estimate based on data:

$$\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k,i} - \bar{X}_i)(X_{k,j} - \bar{X}_j),$$

where $\bar{X}_i = \frac{1}{n} \sum_{k=1}^n X_{k,i}$ is the sample mean of variable X_i .

- 2. Sample Correlation Matrix: $\hat{R} = (\hat{\rho}_{ij})_{i,j=1,...,p}$
 - Normalized version of $\hat{\Sigma}$:

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}}.$$

Note:

■ The denominator uses n-1 (instead of n) to correct for bias, ensuring an unbiased estimate of population covariance.

Covariance Matrix: $\Sigma = (\sigma_{ij})_{i,j=1,...,p}$:

- If $\sigma_{ij} = 0$, the variables $X_{k,i}$ and $X_{k,j}$ are uncorrelated.
- This means their covariance is zero, indicating no linear relationship between these variables.

Covariance Matrix: $\Sigma = (\sigma_{ij})_{i,j=1,...,p}$:

- If $\sigma_{ij} = 0$, the variables $X_{k,i}$ and $X_{k,j}$ are uncorrelated.
- This means their covariance is zero, indicating no linear relationship between these variables.

Sparsity:

- Sparsity measures how many elements in Σ are zero (or close to zero).
- $lue{}$ Sparsity of Σ can be quantified using different measures.
- Sparse covariance matrices are useful in high-dimensional statistics because they simplify the structure of relationships between variables.

Adjacency Matrix: *A*:

- \blacksquare Represents the sparsity pattern of Σ as a binary matrix.
- $A = (A_{ij})_{i,j=1,\dots,p}, \quad A_{ij} = \mathbb{1}_{\{\sigma_{ij} \neq 0\}}.$

Adjacency Matrix: *A*:

- $lue{}$ Represents the sparsity pattern of Σ as a binary matrix.
- $A = (A_{ij})_{i,j=1,\dots,p}, \quad A_{ij} = \mathbb{1}_{\{\sigma_{ij} \neq 0\}}.$
- Visualizes variable connections (non-zero covariances).

Figure: Examples of adjacency matrices with varying sparsity. **Left:** Dense matrix: Many non-zero elements (less sparsity). **Middle:** Moderately sparse matrix: Fewer non-zero elements. **Right:** Highly sparse matrix:

Operator Norm: $\|A\|$

- lacktriangle The operator norm of the adjacency matrix (A) is a natural measure of sparsity.
- \blacksquare It provides an upper bound on the "strength" or "density" of connections represented by A.

Operator Norm: ||A||

- lacktriangle The operator norm of the adjacency matrix (A) is a natural measure of sparsity.
- \blacksquare It provides an upper bound on the "strength" or "density" of connections represented by A.

Key Inequalities:

- $\|A\| \le d$, where d is the maximum degree of the graph represented by the adjacency matrix A.
 - The degree of a node in the graph corresponds to the number of variables it is directly connected to.

Operator Norm: ||A||

- The operator norm of the adjacency matrix (A) is a natural measure of sparsity.
- \blacksquare It provides an upper bound on the "strength" or "density" of connections represented by A.

Key Inequalities:

- $\|A\| \le d$, where d is the maximum degree of the graph represented by the adjacency matrix A.
 - The degree of a node in the graph corresponds to the number of variables it is directly connected to.
- $\|A\| \le s$, if Σ (the covariance matrix) has at most s non-zero entries per row.
 - This is an alternative measure of sparsity, focusing on the number of significant relationships per variable.

Operator Norm: ||A||

- lacktriangle The operator norm of the adjacency matrix (A) is a natural measure of sparsity.
- \blacksquare It provides an upper bound on the "strength" or "density" of connections represented by A.

Key Inequalities:

- $\|A\| \le d$, where d is the maximum degree of the graph represented by the adjacency matrix A.
 - The degree of a node in the graph corresponds to the number of variables it is directly connected to.
- $\|A\| \le s$, if Σ (the covariance matrix) has at most s non-zero entries per row.
 - This is an alternative measure of sparsity, focusing on the number of significant relationships per variable.

Example:

- For p=3, consider the covariance matrix: $\Sigma=\begin{bmatrix} 2 & 0 & 0.5 \\ 0 & 1 & 0 \\ 0.5 & 0 & 3 \end{bmatrix}$
- The corresponding adjacency matrix is: $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
- The non-zero elements of A reflect the non-zero entries in Σ , showing the connections between variables.

Marius Yamakou

2. Definition: Operator Norm of a Matrix

How to quantify sparsity?

Mathematical Definition:

■ The operator norm of a matrix $A \in \mathbb{R}^{p \times p}$ is defined as:

$$||A|| = \sup_{\|x\|_2 = 1} ||Ax||_2,$$

where:

- $\|x\|_2 = \sqrt{\sum_{i=1}^p x_i^2}$ is the Euclidean (or ℓ_2) norm of x,
- $\|Ax\|_2$ is the Euclidean norm of the transformed vector Ax.

2. Definition: Operator Norm of a Matrix

How to quantify sparsity?

Mathematical Definition:

■ The operator norm of a matrix $A \in \mathbb{R}^{p \times p}$ is defined as:

$$||A|| = \sup_{\|x\|_2 = 1} ||Ax||_2,$$

where:

- $\|x\|_2 = \sqrt{\sum_{i=1}^p x_i^2}$ is the Euclidean (or ℓ_2) norm of x,
- $\|Ax\|_2$ is the Euclidean norm of the transformed vector Ax.

Key Intuition:

■ The operator norm measures the maximum "stretch" that A applies to any vector of unit length.

2. Definition: Operator Norm of a Matrix

How to quantify sparsity?

Mathematical Definition:

■ The operator norm of a matrix $A \in \mathbb{R}^{p \times p}$ is defined as:

$$||A|| = \sup_{\|x\|_2 = 1} ||Ax||_2,$$

where:

- $\|x\|_2 = \sqrt{\sum_{i=1}^p x_i^2}$ is the Euclidean (or ℓ_2) norm of x,
- $\|Ax\|_2$ is the Euclidean norm of the transformed vector Ax.

Key Intuition:

lacktriangleright The operator norm measures the maximum "stretch" that A applies to any vector of ${f unit}$ length.

Special Cases:

- For symmetric matrices (e.g., covariance matrices): $\|A\| = \max_{i=1,...,p} |\lambda_i|$, where λ_i are the eigenvalues of A. (In this case, we also talk of the spectral norm of A.)
- For adjacency matrices: $||A|| \le d$, where d is the maximum degree of the graph.

Theoretical Perspective

Thresholding is a method to induce sparsity in covariance matrices by setting small values to zero.

Theoretical Perspective

Thresholding is a method to induce sparsity in covariance matrices by setting small values to zero.

Hard-Thresholding Operator: Theoretical Perspective

■ The operator $T_{\lambda}(u)$ is defined as:

$$T_{\lambda}(u) = u \, \mathbb{1}_{\{|u| > \lambda\}} = \begin{cases} u, & \text{if } |u| > \lambda, \\ 0, & \text{if } |u| \le \lambda. \end{cases}$$

where $\lambda > 0$ is the threshold parameter.

Theoretical Perspective

Thresholding is a method to induce sparsity in covariance matrices by setting small values to zero.

Hard-Thresholding Operator: Theoretical Perspective

■ The operator $T_{\lambda}(u)$ is defined as:

$$T_{\lambda}(u) = u \, \mathbb{1}_{\{|u| > \lambda\}} = \begin{cases} u, & \text{if } |u| > \lambda, \\ 0, & \text{if } |u| \le \lambda. \end{cases}$$

where $\lambda > 0$ is the threshold parameter.

Purpose:

Removes weak relationships (small |u|) from the covariance matrix to make it sparse.

Theoretical Perspective

Key Properties of T_{λ} :

Preserves symmetry:

If
$$M_{ij} = M_{ji}$$
, then

$$\mathsf{T}_{\lambda}(M_{ij}) = M_{ij} \, \mathbb{1}_{\{|M_{ij}| > \lambda\}} = M_{ji} \, \mathbb{1}_{\{|M_{ji}| > \lambda\}} = T_{\lambda}(M_{ji}),$$

Theoretical Perspective

Key Properties of T_{λ} :

Preserves symmetry:

If
$$M_{ij} = M_{ji}$$
, then

$$\mathsf{T}_{\lambda}(M_{ij}) = M_{ij} \, \mathbb{1}_{\{|M_{ij}| > \lambda\}} = M_{ji} \, \mathbb{1}_{\{|M_{ji}| > \lambda\}} = T_{\lambda}(M_{ji}),$$

- Invariance under permutations:
 - Reordering variable labels does not affect the thresholding process.

Theoretical Perspective

Key Properties of T_{λ} :

Preserves symmetry:

If
$$M_{ij} = M_{ji}$$
, then

$$\mathsf{T}_{\lambda}(M_{ij}) = M_{ij} \, \mathbb{1}_{\{|M_{ij}| > \lambda\}} = M_{ji} \, \mathbb{1}_{\{|M_{ji}| > \lambda\}} = T_{\lambda}(M_{ji}),$$

- Invariance under permutations:
 - Reordering variable labels does not affect the thresholding process.
- Does not necessarily preserve positive definiteness:
 - A positive definite matrix has all positive eigenvalues, but applying T_{λ} may break this property.

Theoretical Perspective

Challenge: Hard-thresholding can result in a covariance matrix that is no longer positive definite, which is problematic in many applications.

Theoretical Perspective

Challenge: Hard-thresholding can result in a covariance matrix that is no longer positive definite, which is problematic in many applications.

Solution:

If the operator norm satisfies:

$$||T_{\lambda}(A) - A|| \le \epsilon$$

and the smallest eigenvalue $\lambda_{\min}(A) > \epsilon$.

Theoretical Perspective

Challenge: Hard-thresholding can result in a covariance matrix that is no longer positive definite, which is problematic in many applications.

Solution:

If the operator norm satisfies:

$$||T_{\lambda}(A) - A|| \le \epsilon$$

and the smallest eigenvalue $\lambda_{\min}(A) > \epsilon$.

■ Then $T_{\lambda}(A)$ remains positive definite because:

$$\lambda_{\min}(T_{\lambda}(A)) \ge \lambda_{\min}(A) - \epsilon > 0.$$

Theoretical Perspective

Suppose we observe X_1,\ldots,X_n , i.i.d. p-variate random variables with mean 0 and covariance matrix Σ . Set $X_j=(X_{j,1},\ldots,X_{j,p})^{\top}$. Suppose that each component $X_{i,j}$ is sub-Gaussian with parameter 1.

Theoretical Perspective

Suppose we observe X_1,\ldots,X_n , i.i.d. p-variate random variables with mean 0 and covariance matrix Σ . Set $X_j=(X_{j,1},\ldots,X_{j,p})^{\top}$. Suppose that each component $X_{i,j}$ is sub-Gaussian with parameter 1.

Lemma

If $n>\log(p)$, then for any $\delta>0$, the thresholded sample covariance matrix $T_{\lambda_n}(\widehat{\Sigma})$ with

$$\lambda_n = 8\sqrt{\frac{\log(p)}{n}} + \delta$$

satisfies

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \le 8 \exp\left(-\frac{n}{16}\min\{\delta, \delta^2\}\right),\,$$

where A is the adjacency matrix of Σ and $\|A\|$ operator norm of A.

Theoretical Perspective

Suppose we observe X_1,\ldots,X_n , i.i.d. p-variate random variables with mean 0 and covariance matrix Σ . Set $X_j=(X_{j,1},\ldots,X_{j,p})^{\top}$. Suppose that each component $X_{i,j}$ is sub-Gaussian with parameter 1.

Lemma

If $n>\log(p)$, then for any $\delta>0$, the thresholded sample covariance matrix $T_{\lambda_n}(\widehat{\Sigma})$ with

$$\lambda_n = 8\sqrt{\frac{\log(p)}{n}} + \delta$$

satisfies

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \le 8 \exp\left(-\frac{n}{16}\min\{\delta, \delta^2\}\right),\,$$

where A is the adjacency matrix of Σ and ||A|| operator norm of A.

Interpretation: For large n, the probability of $T_{\lambda_n}(\hat{\Sigma})$ deviating significantly from Σ becomes very small.

The bound demonstrates that thresholded covariance estimators perform well in high-dimensional settings under sub-Gaussian assumptions.

Theoretical Perspective

Proof:

- 1 Show that $\|\widehat{\Sigma} \Sigma\|_{\max} \leq \lambda_n$,
- 2 Use 1 to show $||T_{\lambda_n}(\widehat{\Sigma}) \Sigma|| \le 2||A||\lambda_n$.

Step 1: Bounding $\|\widehat{\Sigma} - \Sigma\|_{\max}$

$$\|\widehat{\Sigma} - \Sigma\|_{\mathsf{max}} = \max_{i,j} |\widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Theoretical Perspective

Proof:

- 1 Show that $\|\widehat{\Sigma} \Sigma\|_{\max} \leq \lambda_n$,
- 2 Use 1 to show $||T_{\lambda_n}(\widehat{\Sigma}) \Sigma|| \le 2||A||\lambda_n$.

Step 1: Bounding $\|\widehat{\Sigma} - \Sigma\|_{\max}$

$$\|\widehat{\Sigma} - \Sigma\|_{\max} = \max_{i,j} |\widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Using union bound and concentration inequalities for sub-Gaussian variables, we have:

$$\begin{split} & \mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) = \mathbb{P}\left(\max_{i,j} |\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) = \mathbb{P}\left(\bigcup_{i,j} \{|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\}\right) \\ & \leq \sum_{i,j=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right). \end{split}$$

Theoretical Perspective

Proof:

- 1 Show that $\|\widehat{\Sigma} \Sigma\|_{\max} \leq \lambda_n$,
- 2 Use 1 to show $||T_{\lambda_n}(\widehat{\Sigma}) \Sigma|| \le 2||A||\lambda_n$.

Step 1: Bounding $\|\widehat{\Sigma} - \Sigma\|_{\max}$

$$\|\widehat{\Sigma} - \Sigma\|_{\max} = \max_{i,j} |\widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Using union bound and concentration inequalities for sub-Gaussian variables, we have:

$$\begin{split} & \mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) = \mathbb{P}\left(\max_{i,j} |\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) = \mathbb{P}\left(\bigcup_{i,j} \{|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\}\right) \\ & \leq \sum_{i,j=1}^{p} \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right). \end{split}$$

For sub-Gaussian variables: $\mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \leq 2\exp\left(-cn\min\{\lambda_n,\lambda_n^2\}\right)$. Thus: $\|\widehat{\Sigma} - \Sigma\|_{\max} = \max_{i,j} |\widehat{\Sigma}_{ij} - \sigma_{ij}| \leq \lambda_n$ with high probability.

Theoretical Perspective

Step 2: Thresholding the Covariance Matrix

$$\text{Consider the decomposition: } |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| = |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij} + \widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Theoretical Perspective

Step 2: Thresholding the Covariance Matrix

Consider the decomposition:
$$|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| = |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij} + \widehat{\Sigma}_{ij} - \sigma_{ij}|$$
.

Using the triangle inequality:
$$|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| \leq |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| + |\widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Theoretical Perspective

Step 2: Thresholding the Covariance Matrix

Consider the decomposition:
$$|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| = |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij} + \widehat{\Sigma}_{ij} - \sigma_{ij}|$$
.

Using the triangle inequality:
$$|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| \leq |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| + |\widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Case 1:
$$\sigma_{ij} = 0$$
: $T_{\lambda_n}(\widehat{\Sigma}_{ij}) = \widehat{\Sigma}_{ij} \cdot \mathbb{1}_{\{|\widehat{\Sigma}_{ij}| > \lambda_n\}} = 0$.

$$\text{ Case 2: } \sigma_{ij} \neq 0 \text{: } |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| = |\widehat{\Sigma}_{ij} \, \mathbbm{1}_{\{|\widehat{\Sigma}_{ij}| > \lambda_n\}} - \widehat{\Sigma}_{ij}|$$

$$\implies |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| = \begin{cases} |\widehat{\Sigma}_{ij} - \widehat{\Sigma}_{ij}|, & \text{if } |\widehat{\Sigma}_{ij}| > \lambda_n, \\ |0 - \widehat{\Sigma}_{ij}|, & \text{if } |\widehat{\Sigma}_{ij}| \leq \lambda_n, \end{cases} = \begin{cases} 0, & \text{if } |\widehat{\Sigma}_{ij}| > \lambda_n, \\ |\widehat{\Sigma}_{ij}|, & \text{if } |\widehat{\Sigma}_{ij}| \leq \lambda_n, \end{cases}$$

$$\implies |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| \leq \lambda_n.$$

Theoretical Perspective

Step 2: Thresholding the Covariance Matrix

Consider the decomposition:
$$|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| = |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij} + \widehat{\Sigma}_{ij} - \sigma_{ij}|$$
.

Using the triangle inequality:
$$|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| \leq |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| + |\widehat{\Sigma}_{ij} - \sigma_{ij}|.$$

Case 1:
$$\sigma_{ij} = 0$$
: $T_{\lambda_n}(\widehat{\Sigma}_{ij}) = \widehat{\Sigma}_{ij} \cdot \mathbb{1}_{\{|\widehat{\Sigma}_{ij}| > \lambda_n\}} = 0$.

$$\text{ Case 2: } \sigma_{ij} \neq 0 \text{: } |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| = |\widehat{\Sigma}_{ij} \, \mathbbm{1}_{\{|\widehat{\Sigma}_{ij}| > \lambda_n\}} - \widehat{\Sigma}_{ij}|$$

$$\implies |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| = \begin{cases} |\widehat{\Sigma}_{ij} - \widehat{\Sigma}_{ij}|, & \text{if } |\widehat{\Sigma}_{ij}| > \lambda_n, \\ |0 - \widehat{\Sigma}_{ij}|, & \text{if } |\widehat{\Sigma}_{ij}| \leq \lambda_n, \end{cases} = \begin{cases} 0, & \text{if } |\widehat{\Sigma}_{ij}| > \lambda_n, \\ |\widehat{\Sigma}_{ij}|, & \text{if } |\widehat{\Sigma}_{ij}| \leq \lambda_n, \end{cases}$$

$$\implies |T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \widehat{\Sigma}_{ij}| \le \lambda_n.$$

Combining both cases we have: $|T_{\lambda_n}(\widehat{\Sigma}_{ij}) - \sigma_{ij}| \leq 2\lambda_n A_{ij}$, where the adjacency matrix $A_{ij} = \mathbbm{1}_{\{\sigma_{ij} \neq 0\}}$ ensures that this bound is tight.

Theoretical Perspective

Theoretical Perspective

$$\mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) \le \sum_{i,j=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \quad (*)$$

(i)
$$i = j$$
: $\mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \le 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right)$

Theoretical Perspective

$$\mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) \leq \sum_{i,j=1}^{p} \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \quad (*)$$

(i)
$$i = j$$
: $\mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \le 2 \exp\left(-cn\min\{\lambda_n, \lambda_n^2\}\right)$

(ii)
$$i \neq j$$
: $2(\widehat{\Sigma}_{ij} - \sigma_{ij}) = \frac{2}{n} \sum_{k=1}^{n} X_{ki} X_{kj} - 2\sigma_{ij}$

Theoretical Perspective

$$\mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) \leq \sum_{i,j=1}^{p} \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \quad (*)$$

(i)
$$i = j$$
: $\mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \le 2 \exp\left(-cn\min\{\lambda_n, \lambda_n^2\}\right)$

(ii)
$$i \neq j$$
: $2(\widehat{\Sigma}_{ij} - \sigma_{ij}) = \frac{2}{n} \sum_{k=1}^{n} X_{ki} X_{kj} - 2\sigma_{ij}$

$$=\frac{1}{n}\sum_{k=1}^{n}X_{ki}^{2}+\frac{2}{n}\sum_{k=1}^{n}X_{ki}X_{kj}+\frac{1}{n}\sum_{k=1}^{n}X_{kj}^{2}-\frac{1}{n}\sum_{k=1}^{n}X_{ki}^{2}-\frac{1}{n}\sum_{k=1}^{n}X_{kj}^{2}$$

$$+ \sigma_{ii} + \sigma_{jj} - \sigma_{ii} - \sigma_{jj} - 2\sigma_{ij}$$

Theoretical perspective

$$= \left[\frac{1}{n} \sum_{k=1}^{n} (X_{ki} + X_{kj})^2 - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij})\right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{ki}^2 - \sigma_{ii}\right)\right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{kj}^2 - \sigma_{jj}\right)\right] \quad (**)$$

Theoretical perspective

$$= \left[\frac{1}{n} \sum_{k=1}^{n} (X_{ki} + X_{kj})^2 - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij}) \right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{ki}^2 - \sigma_{ii} \right) \right]$$

$$- \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{kj}^2 - \sigma_{jj} \right) \right] \quad (**)$$

By assumption: $X_{ki} \sim \mathsf{subG}(1)$ and $X_{kj} \sim \mathsf{subG}(1)$, it follows that:

 $X_{ki} + X_{kj} \sim \mathsf{subG}(2) \text{ and } (X_{ki} + X_{kj})^2 \sim \mathsf{subExp}(4, 16)$

Theoretical perspective

$$= \left[\frac{1}{n} \sum_{k=1}^{n} (X_{ki} + X_{kj})^2 - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij}) \right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{ki}^2 - \sigma_{ii} \right) \right]$$

$$- \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{kj}^2 - \sigma_{jj} \right) \right] \quad (**)$$

By assumption: $X_{ki} \sim \mathsf{subG}(1)$ and $X_{kj} \sim \mathsf{subG}(1)$, it follows that:

$$X_{ki} + X_{kj} \sim \operatorname{subG}(2)$$
 and $(X_{ki} + X_{kj})^2 \sim \operatorname{subExp}(4, 16)$

$$\textstyle \mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) \leq \sum_{i=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) + \sum_{i \neq j}^p \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right)$$

Theoretical perspective

$$= \left[\frac{1}{n} \sum_{k=1}^{n} (X_{ki} + X_{kj})^{2} - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij})\right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{ki}^{2} - \sigma_{ii}\right)\right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{kj}^{2} - \sigma_{jj}\right)\right] \quad (**)$$

By assumption: $X_{ki} \sim \operatorname{subG}(1)$ and $X_{kj} \sim \operatorname{subG}(1)$, it follows that: $X_{ki} + X_{ki} \sim \operatorname{subG}(2)$ and $(X_{ki} + X_{kj})^2 \sim \operatorname{subExp}(4,16)$

$$\begin{split} & \mathbb{P}\left(||\widehat{\Sigma} - \Sigma||_{\max} > \lambda_n\right) \leq \sum_{i=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) + \sum_{i \neq j}^p \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \\ & \stackrel{(**)}{=} \sum_{i=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) + \sum_{i \neq j}^p \mathbb{P}\left(\left|\left[\frac{1}{n}\sum_{k=1}^n (X_{ki} + X_{kj})^2 - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij}) - \left[\left(\frac{1}{n}\sum_{k=1}^n X_{ki}^2 - \sigma_{ii}\right)\right] - \left[\left(\frac{1}{n}\sum_{k=1}^n X_{kj}^2 - \sigma_{jj}\right)\right]\right| > \lambda_n\right) \end{split}$$

Theoretical perspective

$$= \left[\frac{1}{n} \sum_{k=1}^{n} (X_{ki} + X_{kj})^{2} - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij})\right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{ki}^{2} - \sigma_{ii}\right)\right] - \left[\left(\frac{1}{n} \sum_{k=1}^{n} X_{kj}^{2} - \sigma_{jj}\right)\right] \quad (**)$$

By assumption: $X_{ki} \sim \text{subG}(1)$ and $X_{kj} \sim \text{subG}(1)$, it follows that: $X_{ki} + X_{kj} \sim \text{subG}(2)$ and $(X_{ki} + X_{kj})^2 \sim \text{subExp}(4, 16)$

$$\begin{split} & \mathbb{P}\left(||\widehat{\Sigma} - \Sigma||_{\max} > \lambda_n\right) \leq \sum_{i=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) + \sum_{i \neq j}^p \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \\ & \stackrel{(**)}{=} \sum_{i=1}^p \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) + \sum_{i \neq j}^p \mathbb{P}\left(\left|\left[\frac{1}{n}\sum_{k=1}^n (X_{ki} + X_{kj})^2 - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij}) - \left[\left(\frac{1}{n}\sum_{k=1}^n X_{ki}^2 - \sigma_{ii}\right)\right] - \left[\left(\frac{1}{n}\sum_{k=1}^n X_{kj}^2 - \sigma_{jj}\right)\right]\right| > \lambda_n\right) \\ & \leq \sum_{i=1}^p \mathbb{P}\left(\left|\widehat{\Sigma}_{ii} - \sigma_{ii}\right| > \lambda_n\right) \\ & + \sum_{i \neq j}^p \mathbb{P}\left(\left|\frac{1}{n}\sum_{k=1}^n (X_{ki} + X_{kj})^2 - (\sigma_{ii} + \sigma_{jj} + 2\sigma_{ij})\right| > \frac{\lambda_n}{3}\right) \\ & + \sum_{i \neq j}^p \mathbb{P}\left(\left|\frac{1}{n}\sum_{k=1}^n X_{ki}^2 - \sigma_{ii}\right| > \frac{\lambda_n}{3}\right) \\ & + \sum_{i \neq j}^p \mathbb{P}\left(\left|\frac{1}{n}\sum_{k=1}^n X_{ki}^2 - \sigma_{jj}\right| > \frac{\lambda_n}{3}\right). \end{split}$$

Theoretical perspective

$$\overset{(i)}{\leq} \sum_{i=1}^p 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right) + 3 \sum_{i \neq j}^p 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right)$$

Theoretical perspective

$$\stackrel{(i)}{\leq} \sum_{i=1}^p 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right) + 3 \sum_{i\neq j}^p 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right)$$
 Diagonal Terms ($i=j$): $\mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \leq 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right)$, where $c>0$.

Theoretical perspective

$$\stackrel{(i)}{\leq} \sum_{i=1}^p 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right) + 3 \sum_{i\neq j}^p 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right)$$
 Diagonal Terms ($i=j$): $\mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \leq 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right)$, where $c>0$.

Since there are p diagonal terms:

$$\sum_{i=1}^{p} \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \le p \cdot 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right).$$

Theoretical perspective

$$\stackrel{(i)}{\leq} \sum_{i=1}^p 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right) + 3 \sum_{i \neq j}^p 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right)$$
 Diagonal Terms ($i=j$): $\mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \leq 2 \exp\left(-cn \min\{\lambda_n,\lambda_n^2\}\right)$, where $c>0$.

Since there are p diagonal terms:

$$\sum_{i=1}^{p} \mathbb{P}\left(|\widehat{\Sigma}_{ii} - \sigma_{ii}| > \lambda_n\right) \le p \cdot 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right).$$

Off-Diagonal Terms
$$(i \neq j)$$
: $\mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \leq 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right)$. There are $\binom{p}{2} = \frac{p(p-1)}{2} \approx \frac{p^2}{2}$ (for large p) off-diagonal terms:

$$\sum_{i \neq i}^{p} \mathbb{P}\left(|\widehat{\Sigma}_{ij} - \sigma_{ij}| > \lambda_n\right) \leq \frac{p^2}{2} \cdot 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right).$$

Theoretical perspective

Combining Diagonal and Off-Diagonal Contributions:

From the union bound:

$$\begin{split} \mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) &\leq p \cdot 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right) + p^2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right). \\ &\leq p^2 c_1 \exp\left(-c_2 n \min\{\lambda_n, \lambda_n^2\}\right) \quad \text{for some } c_1, c_2 > 0 \end{split}$$

Theoretical perspective

Combining Diagonal and Off-Diagonal Contributions:

From the union bound:

$$\begin{split} \mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) &\leq p \cdot 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right) + p^2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right). \\ &\leq p^2 c_1 \exp\left(-c_2 n \min\{\lambda_n, \lambda_n^2\}\right) \quad \text{for some } c_1, c_2 > 0 \end{split}$$
 With $p^2 = \exp(2\log(p))$
$$\mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) \leq c_1 \exp\left(-c_2 n \min\{\lambda_n, \lambda_n^2\} + 2\log(p)\right). \end{split}$$

Theoretical perspective

Combining Diagonal and Off-Diagonal Contributions:

From the union bound:

$$\begin{split} \mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\max} > \lambda_n\right) &\leq p \cdot 2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right) + p^2 \exp\left(-cn \min\{\lambda_n, \lambda_n^2\}\right). \\ &\leq p^2 c_1 \exp\left(-c_2 n \min\{\lambda_n, \lambda_n^2\}\right) \quad \text{for some } c_1, c_2 > 0 \end{split}$$

With $p^2 = \exp(2\log(p))$

$$\mathbb{P}\left(\|\widehat{\Sigma} - \Sigma\|_{\mathsf{max}} > \lambda_n\right) \leq c_1 \exp\left(-c_2 n \min\{\lambda_n, \lambda_n^2\} + 2\log(p)\right).$$

Interpretation:

- The $2\log(p)$ term arises from the quadratic growth in the number of terms (p^2) .
- As p increases, the bound becomes weaker, reflecting the increasing probability of at least one large deviation.

Theoretical perspective

Choose:
$$\lambda_n = 8\sqrt{\frac{\log(p)}{n}} + \delta$$
.

$$\min\{\lambda_n, \lambda_n^2\} = \min\left\{8\sqrt{\frac{\log(p)}{n}} + \delta, \left(8\sqrt{\frac{\log(p)}{n}} + \delta\right)^2\right\}.$$

For large n, δ dominates $\sqrt{\frac{\log(p)}{n}}$, so:

$$\min\{\lambda_n, \lambda_n^2\} \approx \min\{\delta, \delta^2\}.$$

Theoretical perspective

Choose:
$$\lambda_n = 8\sqrt{\frac{\log(p)}{n}} + \delta$$
.

$$\min\{\lambda_n, \lambda_n^2\} = \min\left\{8\sqrt{\frac{\log(p)}{n}} + \delta, \left(8\sqrt{\frac{\log(p)}{n}} + \delta\right)^2\right\}.$$

For large n, δ dominates $\sqrt{\frac{\log(p)}{n}}$, so:

$$\min\{\lambda_n, \lambda_n^2\} \approx \min\{\delta, \delta^2\}.$$

Substituting into the probability bound:

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \le 8 \exp\left(-\frac{n}{16}\min\{\delta, \delta^2\}\right).$$

Note that the choice of $\delta = \sqrt{\frac{\log(p)}{n}}$ ensures a manageable trade-off between sparsity and accuracy in estimating the covariance matrix.

П

Theoretical perspective

Special Case: Choose
$$\delta = \sqrt{\frac{\log(p)}{n}}$$
.

$$\min\{\delta, \delta^2\} = \sqrt{\frac{\log(p)}{n}}.$$

Substitute:

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \le 8 \exp\left(-\frac{n}{16} \cdot \sqrt{\frac{\log(p)}{n}}\right).$$

Theoretical perspective

Special Case: Choose $\delta = \sqrt{\frac{\log(p)}{n}}$.

$$\min\{\delta, \delta^2\} = \sqrt{\frac{\log(p)}{n}}.$$

Substitute:

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \le 8 \exp\left(-\frac{n}{16} \cdot \sqrt{\frac{\log(p)}{n}}\right).$$

For $\log(p) < n$, simplify:

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \le 8p^{-\frac{1}{16}}.$$

Conclusion: The thresholded sample covariance estimator achieves:

$$\mathbb{P}\left(\|T_{\lambda_n}(\widehat{\Sigma}) - \Sigma\| > 2\|A\|\lambda_n\right) \to 0 \quad \text{as } p \to \infty.$$

How to choose λ in practice?

How to choose λ in practice?

We use a variation of K-fold cross-validation. The steps are the following:

■ Choose the number "splitting times" *K*.

How to choose λ in practice?

- Choose the number "splitting times" *K*.
- Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)

How to choose λ in practice?

- Choose the number "splitting times" *K*.
- Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)
- Possible choice which has been justified theoretically is $\frac{1}{n} = \frac{1}{n}$

$$n_1 = n \left(1 - \frac{1}{\log(n)} \right), \ n_2 = \frac{n}{\log(n)}.$$

How to choose λ in practice?

- Choose the number "splitting times" *K*.
- Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)
- Possible choice which has been justified theoretically is
 - $n_1 = n \left(1 \frac{1}{\log(n)} \right), n_2 = \frac{n}{\log(n)}.$
- Define a grid of values for λ : $\{\lambda_1, \ldots, \lambda_M\}$

How to choose λ in practice?

- Choose the number "splitting times" *K*.
- Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)
- Possible choice which has been justified theoretically is $n_1 = n \left(1 \frac{1}{\log(n)}\right)$, $n_2 = \frac{n}{\log(n)}$.
- Define a grid of values for λ : $\{\lambda_1, \ldots, \lambda_M\}$
- For each λ calculate the validation Mean Squared Error (MSE) within each fold.

4. Cross Validation: Informal

How to choose λ in practice?

We use a variation of K-fold cross-validation. The steps are the following:

- Choose the number "splitting times" *K*.
- Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)
- Possible choice which has been justified theoretically is $n_1 = n \left(1 \frac{1}{\log(n)}\right)$, $n_2 = \frac{n}{\log(n)}$.
- Define a grid of values for λ : $\{\lambda_1, \ldots, \lambda_M\}$
- For each λ calculate the validation Mean Squared Error (MSE) within each fold.
- For each λ calculate the overall cross-validation MSE.

4. Cross Validation: Informal

How to choose λ in practice?

We use a variation of K-fold cross-validation. The steps are the following:

- Choose the number "splitting times" *K*.
- Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)
- Possible choice which has been justified theoretically is $n_1 = n \left(1 \frac{1}{\log(n)}\right)$, $n_2 = \frac{n}{\log(n)}$.
- Define a grid of values for λ : $\{\lambda_1, \ldots, \lambda_M\}$
- For each λ calculate the validation Mean Squared Error (MSE) within each fold.
- For each λ calculate the overall cross-validation MSE.
- Locate under which λ cross-validation MSE is minimized.

4. Cross Validation: Informal

How to choose λ in practice?

We use a variation of K-fold cross-validation. The steps are the following:

- Choose the number "splitting times" *K*.
- **Split** Split the sample randomly into two pieces of size n_1 and n_2 . (We will do that K times.)
- Possible choice which has been justified theoretically is $n_1 = n \left(1 - \frac{1}{\log(n)} \right), n_2 = \frac{n}{\log(n)}.$
- Define a grid of values for λ : $\{\lambda_1, \ldots, \lambda_M\}$
- For each λ calculate the validation Mean Squared Error (MSE) within each fold.
- For each λ calculate the overall cross-validation MSE.
- Locate under which λ cross-validation MSF is minimized.
- This approach ensures the regularization parameter is chosen to balance the trade-off between inducing sparsity (through thresholding) and maintaining an accurate covariance estimate.

We have n observations $\{X_i\}_{i=1}^n$, where each $X_i \in \mathbb{R}^p$. The goal is to select λ using cross-validation for thresholding covariance matrices.

We have n observations $\{X_i\}_{i=1}^n$, where each $X_i \in \mathbb{R}^p$. The goal is to select λ using cross-validation for thresholding covariance matrices.

1. Split the Data:

- For k = 1, ..., K, divide the indices $\{1, ..., n\}$ into:
 - Training set of size n_1 .
 - Validation set of size n_2 .

We have n observations $\{X_i\}_{i=1}^n$, where each $X_i \in \mathbb{R}^p$. The goal is to select λ using cross-validation for thresholding covariance matrices.

1. Split the Data:

- For k = 1, ..., K, divide the indices $\{1, ..., n\}$ into:
 - Training set of size n_1 .
 - Validation set of size n_2 .

2. Estimate Covariance Matrices:

- On the training set (n_1) , compute: $\widehat{\Sigma}_{1,k}$ (Training Covariance Matrix).
- On the validation set (n_2) , compute: $\widehat{\Sigma}_{2,k}$ (Validation Covariance Matrix).

3. Thresholding:

■ For each $\lambda \in \{\lambda_1, \dots, \lambda_M\}$, apply the thresholding operator:

$$T_{\lambda}(\widehat{\Sigma}_{1,k}) = (\widehat{\Sigma}_{1,k})_{i,j} \, \mathbb{1}_{\{|(\widehat{\Sigma}_{1,k})_{i,j}| > \lambda\}}$$

3. Thresholding:

■ For each $\lambda \in \{\lambda_1, \dots, \lambda_M\}$, apply the thresholding operator:

$$T_{\lambda}(\widehat{\Sigma}_{1,k}) = (\widehat{\Sigma}_{1,k})_{i,j} \, \mathbb{1}_{\{|(\widehat{\Sigma}_{1,k})_{i,j}| > \lambda\}}$$

4. Validation Error:

Record the error on the validation set:

$$e_k(\lambda) = \|T_\lambda\left(\widehat{\Sigma}_{1,k}\right) - \widehat{\Sigma}_{2,k}\|_F^2,$$

where $\|\cdot\|_F$ is the Frobenius norm.

5. Aggregate Errors:

■ Average the error across all *K* folds:

$$\bar{e}(\lambda) = \frac{1}{K} \sum_{k=1}^{K} e_k(\lambda).$$

5. Aggregate Errors:

■ Average the error across all *K* folds:

$$\bar{e}(\lambda) = \frac{1}{K} \sum_{k=1}^{K} e_k(\lambda).$$

4. Cross Validation: Formalized:

• Choose λ that minimizes the average validation error:

$$\widehat{\lambda} = \underset{\lambda \in \{\lambda_1, \dots, \lambda_M\}}{\operatorname{argmin}} \bar{e}(\lambda).$$

This formalized process ensures a principled selection of λ for thresholding the covariance matrix, balancing sparsity and accuracy.

Some things to remember:

■ **Definition of Sparsity:** Sparsity refers to the number of zero (or near-zero) entries in the covariance matrix. It is often quantified through adjacency matrices or operator norms.

Some things to remember:

- Definition of Sparsity: Sparsity refers to the number of zero (or near-zero) entries in the covariance matrix. It is often quantified through adjacency matrices or operator norms.
- Thresholding Operator: The thresholding operator $T_{\lambda}(u)$ removes small values in the covariance matrix to induce sparsity while preserving larger, significant relationships.

Some things to remember:

- Definition of Sparsity: Sparsity refers to the number of zero (or near-zero) entries in the covariance matrix. It is often quantified through adjacency matrices or operator norms.
- Thresholding Operator: The thresholding operator $T_{\lambda}(u)$ removes small values in the covariance matrix to induce sparsity while preserving larger, significant relationships.
- Why Thresholding? Thresholding is preferred over penalization in high-dimensional statistics because it directly simplifies the covariance matrix structure while maintaining interpretability.

Some things to remember:

- Definition of Sparsity: Sparsity refers to the number of zero (or near-zero) entries in the covariance matrix. It is often quantified through adjacency matrices or operator norms.
- Thresholding Operator: The thresholding operator $T_{\lambda}(u)$ removes small values in the covariance matrix to induce sparsity while preserving larger, significant relationships.
- Why Thresholding? Thresholding is preferred over penalization in high-dimensional statistics because it directly simplifies the covariance matrix structure while maintaining interpretability.
- **Consistency:** The thresholded covariance matrix is a consistent estimator. It converges to the true covariance matrix as the sample size n grows, provided the threshold λ is chosen appropriately.