Finite State Machines

Models of synchronous sequential systems

- Two common models of synchronous sequential systems
 - Moore machines
 - · Mealy machines

EC3057D MTDS - Winter 2020

Moore Machine Inputs Next state register Output logic Clock Moore machine CC100X Moore machine

Mealy Machine Inputs Next state register Output logic Outputs Clock Mealy machine

Synchronous Sequential Circuit Analysis

Next State Equations — Q(t+1)• Excitation equations: $J_1 = X^* Q_0 \text{ and } K_1 = X + Q_0$ $J_0 = X + Q_1 \text{ and } K_0 = X^*$ • Characteristic equation of the JK flip-flop:

```
Next State Equations — Q(t+1)

• Excitation equations:

J_1 = X' Q_0 \text{ and } K_1 = X + Q_0
J_0 = X + Q_1 \text{ and } K_0 = X'

• Characteristic equation of the JK flip-flop:

Q(t+1) = K'Q(t) + JQ'(t)

• Next state equations:
```

Next State Equations -Q(t+1)

• Excitation equations:

 $J_1 = X' Q_0 \text{ and } K_1 = X + Q_0$ $J_0 = X + Q_1 \text{ and } K_0 = X'$

Characteristic equation of the JK flip-flop:

Q(t+1) = K'Q(t) + JQ'(t)

Next state equations:

$$\begin{split} Q_1(t+1) &= K_1 \, 'Q_1(t) + J_1 Q_1 \, '(t) \\ &= (X + Q_0(t))^* \, Q_1(t) + X^* \, Q_0 \, (t) \, Q_1 \, '(t) \\ &= X^* \, \left(Q_0(t)^* \, Q_1(t) + \, Q_0(t) \, Q_1(t)^* \right) \\ &= X^* \, \left(Q_0(t) \oplus Q_1(t) \right) \end{split}$$

$$\begin{split} Q_0(t+1) &= K_0'Q_0(t) + J_0Q_0'(t) \\ &= X \ Q_0(t) + (X + Q_1(t)) \ Q_0'(t) \\ &= X \ + Q_0(t)' \ Q_1(t) \end{split}$$

EC3057D MTDS - Winter 2020

State Table & Next State Equations

- $Q_1(t+1) = X' (Q_0(t) \oplus Q_1(t))$
 - $Q_1=0, Q_0=0, X=0 \Rightarrow Q_1(t+1)=0$
- $Q_0(t+1) = X + Q_0(t)$, $Q_1(t)$
 - $-Q_1=0, Q_0=0, X=0 \Rightarrow Q_0(t+1)=0$

Presen	t State	Inputs	Next State	Outputs
Q_1	Q ₀	X	Q_1 Q_0	Z
0	0	0	0 0	0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1		1

EC3057D MTDS - Winter 2020

State Table & Next State Equations

- $Q_1(t+1) = X' (Q_0(t) \oplus Q_1(t))$
 - $\ \ Q_1 \!\!=\!\! 0, \, Q_0 \!\!=\!\! 1, \, X \!\!=\! 1 \Longrightarrow Q_1(t \!\!+\!\! 1) \!\!=\! 0$
- $Q_0(t+1) = X + Q_0(t)$, $Q_1(t)$
 - $Q_1=0, Q_0=1, X=1 \Rightarrow Q_0(t+1)=1$

State	Inputs	Next State	Outputs .
Qo	X	Q_1 Q_0	Z
0	0	0	0
0	1		0
1	0		0
1	1	0 1	0
0	0		0
0	1		0
1	0		0
1	1		1
	0 0 1 1	0 0 0 1 1 0 1 1	0 0 0 0 0 0 1 1 1 0 1

State Table & Next State Equations

- $\bullet \quad Q_1(t{+}1) = X' \; (Q_0(t) \oplus Q_1(t))$
- $Q_0(t+1) = X + Q_0(t)$, $Q_1(t)$

Presen	t State	Inputs	Next State		Outputs
Q ₁	Qo	X	Q ₁	Qo	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

C3057D MTDS - Winter 2020

State Table & Characteristic Table

· The general JK flip-flop characteristic equation is:

Q(t+1) = K'Q(t) + JQ'(t)

 We can also determine the next state for each input/current state combination directly from the characteristic table

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

EC3057D MTDS - Winter 202

State Table & Characteristic Table

- With these equations, we can make a table showing $J_1,\,K_1,\,J_0$ and K_0 for the different combinations of present state Q_1Q_0 and input X

$$\begin{split} J_1 &= X \text{'} \ Q_0 \\ K_1 &= X + Q_0 \end{split} \qquad \begin{aligned} J_0 &= X + Q_1 \\ K_0 &= X \text{'} \end{aligned}$$

Presen	t State	Inputs	Flip-flop Inputs			
Q_1	Q _o	Х	J_1	K ₁	J_0	Ko
0	0	0	0	0	0	1
0	0	1	0	1	1	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
1	0	0	0	0	1	1
1	0	1	0	1	1	0
1	1	0	1	1	1	1
1	. 1	1	0	1	1	0

EC2057D MTDS Winter 2020

Sizes of state diagrams

- Always check the size of your state diagrams
 - If there are n flip-flops, there should be 2^n nodes in the diagram
 - If there are m inputs, then each node will have 2^m outgoing arrows
- · In our example,
 - We have two flip-flops, and thus four states or nodes.
 - There is one input, so each node has two outgoing arrows.

Mealy State Table • $Q_0(t+1) = D_0 = EN' Q_0 + EN Q_0'$ • $Q_1(t+1) = D_1 = EN' Q_1 + EN Q_1' Q_0 + EN Q_1 Q_0'$ • MAX= EN Q₁ Q₀ Output Next State Present State Q1 Q0 EN= 0 EN= 1 0 0 0 0 0 0 0 0 0 0 0

Sequential circuit analysis summary

- To analyze sequential circuits, you have to:
 - Find Boolean expressions for the outputs of the circuit and the flip-flop inputs
 - Use these expressions to fill in the output and flip-flop input columns in the state table
 - Finally, use the characteristic equation or characteristic table of the flip-flop to fill in the next state columns.
- The result of sequential circuit analysis is a state table or a state diagram describing the circuit

EC2057D MTDS MS-to- 2020

Design of Sequence Detector

Sequence Detector

• A circuit that detects the occurrence of a particular pattern on its input is referred to as a sequence detector.

Design a circuit that examine a string of 0's and 1's applied to the input X and for any input sequence ending in 101 will produce an output Z=1 coincident with the last 1.

The circuit does not reset when a 1 output occur.

We assume that the input X can only change between clock pulses

EC3057D MTDS - Winter 2020

Design of 101 Sequence Detector

• State Diagram:

EC3057D MTDS - Winter 2020

Design of 101 Sequence Detector

• State Diagram:

EC3057D MTDS - Winter 2020

Design of a Sequence Detector S₀: start S_1 : got 1 S₂: got 10

Design of a Sequence Detector

S₃: got 101

State Table

Transition Table with State assignment

Prese	Next	Present		
nt state	X = 0	X = 1	Output (Z)	
S_0	S_0	$\mathbf{S_1}$	0	
$\mathbf{S_1}$	S_2	$\mathbf{S_1}$	0	
\mathbf{S}_2	S_0	S_3	0	
S_2 S_3	S_2	$\mathbf{S_1}$	1	

	A+		
AB	X = 0	X = 1	Z
00	00	01	0
01	11	01	0
11	00	10	0
10	11	01	1

State Diagram Development

- · To develop a sequence detector state diagram:
 - 1. Construct some sample input and output sequences to make sure that you understand the problem statement.
 - 2. Begin in an initial state in which NONE of the initial portion of the sequence has occurred (typically "reset" state).
 - 3. Add a state that recognizes that the first symbol has occurred.
 - 4. Add states that recognize each successive symbol occurring.
 - 5. Each time you add an arrow to the state graph, determine it can go to one of the previously defined states or whether a new state must be added
 - 6. The final state represents the input sequence occurrence.
 - 7. Add state transition arcs which specify what happens when a symbol $\it not$ in the proper sequence has occurred.
 - 8. Check your state graph for completeness and non-redundant arcs.
 - When your state graph is complete, test it by applying the input sequences formulated in part1 and making sure the output sequences are correct

Sequential circuit design procedure

Step 1:

Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs. (It may be easier to find a state diagram first, and then convert that to a table)

Assign binary codes to the states in the state table, if you haven't already. If you have n states, your binary codes will have at least \[log_2 n]\] digits, and your circuit will have at least \[log_2 n \] flip-flops

<u>Step 3:</u>
For each flip-flop and each row of your state table, find the flip-flop input values that are needed to generate the next state from the present state. You can use flip-flop excitation tables here.

Find simplified equations for the flip-flop inputs and the outputs.

Step 5: Build the circuit!

Another Example

Sequence detector (Mealy)

- A sequence detector is a special kind of sequential circuit that looks for a special bit pattern in some input
- · The detector circuit has only one input, X
 - One bit of input is supplied on every clock cycle
 - This is an easy way to permit arbitrarily long input sequences
- · There is one output, Z, which is 1 when the desired pattern is found
- · Our example will detect the bit pattern "1001":

Inputs: 11100110100100110...
Outputs: 00000100000100100...

 A sequential circuit is required because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found

EC3057D MTDS - Winter 2020

Step 1: Making a state table

- The first thing you have to figure out is precisely how the use of state will help you solve the given problem
 - Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs
 - Sometimes it is easier to first find a state diagram and then convert that to a table
- This is usually the most difficult step. Once you have the state table, the rest of the design procedure is the same for all sequential circuits

EC3057D MTDS - Winter 202

A basic Mealy state diagram

- · What state do we need for the sequence detector?
 - We have to "remember" inputs from previous clock cycles
 - $-\,$ For example, if the previous three inputs were 100 and the current input is 1, then the output should be 1
 - In general, we will have to remember occurrences of parts of the desired pattern—in this case, 1, 10, and 100
- · We'll start with a basic state diagram:

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

EC3057D MTDS - Winter 2020

Overlapping occurrences of the pattern

- What happens if we're in state D (the last three inputs were 100), and the current input is 1?
 - The output should be a 1, because we've found the desired pattern
 - But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains two occurrences of 1001
 - To detect overlapping occurrences of the pattern, the next state should be B.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

EC3057D MTDS - Winter 2020

Filling in the other arrows

- Two outgoing arrows for each node, to account for the possibilities of X=0 and X=1
- The remaining arrows we need are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Step 2: Assigning binary codes to states

- We have four states ABCD, so we need at least two flip-flops $\mathbf{Q}_1\mathbf{Q}_0$
- The easiest thing to do is represent state A with $Q_1Q_0 = 00$, B with 01, C with 10, and D with 11
- The state assignment can have a big impact on circuit complexity, but we won't worry
 about that too much in this class

				_	Pres	ent		Ne	xt.	
Present		Next		1	Sto	ite	Input	Sto	ate	Output
State	Input	State	Output		Q_1	Qo	X	Q_1	Qo	Z
Α	0	Α	0		0	0	0	0	0	0
Α	1	В	0		0	0	1	0	1	0
В	0	С	0		0	1	0	1	0	0
В	1	В	0		0	1	1	0	1	0
С	0	D	0		1	0	0	1	1	0
С	1	В	0		1	0	1	0	1	0
D	0	Α	0		1	1	0	0	0	0
D	1	В	1	1	1	1	1	0	1	1

EC3057D MTDS - Winter 2020

Step 3: Finding flip-flop input values

- Next we have to figure out how to actually make the flip-flops change from their present state into the desired next state
- · This depends on what kind of flip-flops you use!
- We'll use two JKs. For each flip-flip Q_i look at its present and next states, and
 determine what the inputs J_i and K_i should be in order to make that state change.

Pre	sent		Ne	ext					
St	ate	Input	St	ate	FI	Flip flop inputs		Output	
Q_1	Qo	X	Q_1	Qo	J_1	K ₁	Jo	K ₀	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

EC3057D MTDS - Winter 2020

JK excitation table

An excitation table shows what flip-flop inputs are required in order to make a
desired state change

Q(†)	Q(†+1)	Ъ	K	Operation
0	0	0	×	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

 This is the same information that's given in the characteristic table, but presented "backwards"

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

EC3057D MTDS - Winter 2020

 Use the JK excitation table on the right to find the correct values for *each* flip-flop's inputs, based on its present and next states

Q(t)	Q(†+1)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Present State Input		Input	Next State		Flip flop inputs				Output
Q_1	Qo	X	Q_1	Qo	J_1	K ₁	J_0	Κo	Z
0	0	0	0	0	0	×	0	х	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	×	X	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	X	0	1	X	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	×	1	×	0	1

EC3057D MTDS - Winter 2020

Step 4: Find equations for the FF inputs and output

- Now you can make K-maps and find equations for each of the four flip-flop inputs, as well as for the output \boldsymbol{Z}
- · These equations are in terms of the present state and the inputs
- The advantage of using JK flip-flops is that there are many don't care conditions, which can result in simpler MSP equations

Pres	sent		Next						
Sto	ate	Input	St	ate	Flip flop inputs				Output
Q_1	Qo	X	Q_1	Qo	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	×	0	×	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	×	×	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	×	1	1	×	0
1	1	0	0	0	×	1	×	1	0
1	1	1	0	1	×	1	×	0	1

FF input equations

Step 5: Build the circuit

· Lastly, we use these simplified equations to build the completed circuit

Sequence detector (Moore)

- A sequence detector is a special kind of sequential circuit that looks for a special bit pattern in some input
- The detector circuit has only one input, X
 - One bit of input is supplied on every clock cycle
 - This is an easy way to permit arbitrarily long input sequences
- · There is one output, Z, which is 1 when the desired pattern is found
- Our example will detect the bit pattern "1001":

Inputs: 11100110100100110...
Outputs: 00000100000100100...

 A sequential circuit is required because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found

EC3057D MTDS - Winter 2020

Comparison of Mealy and Moore FSM

- · Mealy machines have less states
 - outputs are on transitions (n2) rather than states (n)
- Moore machines are safer to use
 - outputs change at clock edge (always one cycle later)
 - in Mealy machines, input change can cause output change as soon as logic is done – a big problem when two machines are interconnected – asynchronous feedback may occur if one isn't careful
- · Mealy machines react faster to inputs
 - react in same cycle don't need to wait for clock
 - outputs may be considerably shorter than the clock cycle
 - in Moore machines, more logic may be necessary to decode state into outputs – there may be more gate delays after clock edge

EC3057D MTDS - Winter 2020

Example: Sequence Detector

A sequential circuit has one input (X) and one output (Z). The circuit examines groups of four consecutive inputs and produces an output Z=1 if the input sequence 0101 or 1001 occurs. The circuit resets after every four inputs. Find a Mealy state graph. A typical input and output sequence is:

```
X = 0101 \mid 0010 \mid 1001 \mid 0100

Z = 0001 \mid 0000 \mid 0001 \mid 0000
```

C3057D MTDS - Winter 2020


```
1 module lockfam(input clock, reset,
coderw.anyre.
3 cottone (anyre.
4 cottone (along list) melwe,
5 input lineout);
6 localparan mo-1 blood, si=0 blood, si=3 blood,
7 si=3 blood, si=0 blood, si=3 blood,
8 vrong=3 blood, unlock=3 blood,
9 reg[2:0] lockstate;
10 alonys (posedge clock or posedge reset)
11 begin
12 if (reset == 1 bl)
13 lockstate (= mid)
14 else
15 coloristate)
16 si= (along si=
```

```
48 always @ (lockstate)
49 begin
50 case (lockstate)
51 s0: selsw = 0;
52 s1: selsw = 1;
53 s2: selsw = 2;
54 s3: selsw = 3;
55 wrong: selsw = 0;
66 unlock: selsw = 0;
67 default: selsw = 0;
68 endcase
59 end
60 assign locked = (lockstate == unlock) ? 0: 1;
61 assign alarm = (lockstate == wrong) ? 0: 1;
62 assign entimer = (lockstate == unlock) ? 1: 0;
63 endmodule

ECMSTD MIDS - Winter 2020
```

```
immodule consiston(tappet clock, clear, clea
```

```
33 segdisp sgl(.locked(locked),
34 .alarm(alarm),
35 .Sh(Sh),
36 .SB(SB),
37 .Sc(SC),
38 .Su(SD),
39 .SE(SE),
40 .SF(SF),
41 .SG(SG));
42 endmodule

EC3057D MTDS - Winter 2020
```

