CONTENTS

INTRODUCTION	1
PROJECT INFORMATION	1
ARCHITECTURAL PLAN	1
STRUCTURAL PLAN	1
LATERAL LOAD RESISTING SYSTEM	1
DESIGN CRITERIA	1
ANALYSIS AND SHOP DRAWING TOOLS	2
DESIGN CODES	2
MATERIAL PROPERTIES	2
LOADS ACTING ON THE STRUCTURE	3
DEAD LOAD	3
LIVE LOAD	3
SNOW LOAD	3
SEISMIC LOAD	3
HORIZONTAL DESIGN SPECTRUM	4
REDUCED HORIZONTAL DESIGN SPECTRUM	5
VERTICAL DESIGN SPECTRUM	6
LOAD COMBINATIONS	6
ANALYSIS RESULTS	6
STRUCTURAL MODEL	6
EIGENVALUE ANALYSIS	8
1 st MODE	9
2 nd MODE	10
3 rd MODE	12
4 th MODE	13
5 th MODE	15
6 th MODE	17
7 th MODE	18
8 th MODE	20
9 th MODE	21
MODAL MASSES	23
MINIMUM NUMBER OF MODES TO BE CONSIDERED IN DESIGN	25
DESIGN BASE SHEAR	26

THE MODE SUPERPOSITION PROCEDURE	26
BUILDING IRREGULARITY CHECKS	26
CALCULATION OF λ	27
PLAN IRREGULARITY CONDITIONS	29
A1-TORSIONAL IRREGULARITY	29
A2-SLAB DISCONTINUITY	30
A3-PLAN ASPERITIES	30
VERTICAL IRREGULARITY CONDITIONS	30
B1-WEAK STORY	30
B2-SHOFT STORY	31
B3-DISCONTINUITY OF VERTICAL STRUCTURAL ELEMENTS	32
FINAL DESIGN	32
SLAB DESIGN	32
BEAM DESIGN	33
FLEXURAL DESIGN	34
SHEAR DESIGN	35
COLUMN DESIGN	36
FLEXURAL DESIGN	37
CHECK FOR STRONG COLUMN-WEAK BEAM CONDITION	39
SHEAR DESIGN	
BEAM TO COLUMN CONNECTION	42
REINFORCEMENT FOR THE CONNECTION	42
ATTACHMENTS	43

INTRODUCTION

This report clearly introduces the analysis and design procedures for the structure given as a term

project in CE490-Introduction to Earthquake Engineering course in Civil Engineering Department of

Middle East Technical University.

PROJECT INFORMATION

This structure is a 6 story police headquarters located at Tokat city center having considerable risk of

earthquake and the building rests on ZC type soil.

ARCHITECTURAL PLAN

Architectural plan of the structure is provided at the end of this report. There are 6 stories and an

entrance floor in this project. It is also important to note that there is no basement floor in the building

and all floors have the same architectural plans.

STRUCTURAL PLAN

Structural plans are provided at the end of this report.

LATERAL LOAD RESISTING SYSTEM

Lateral load resisting system is selected as moment frame system with high ductility level and it is

considered that all infilled and curtain walls do not contact with the structural framing system. The

structural framing system consists of the following three components;

• Slab Thickness: 15cm

• Beams: 30x60 cm

• Columns: 40x60 cm

It is important to note that there is no shear wall in this structure.

DESIGN CRITERIA

This part of the report will introduce the analysis and drawing tools, design codes, material properties,

loads acting on structure and load combinations.

1

ANALYSIS AND SHOP DRAWING TOOLS

The followings tools are utilized to complete this project.

- SAP2000 v19.2.2
- Autodesk AutoCAD 2017

DESIGN CODES

Design of this structure is performed in accordance with the following specifications.

- Turkish Earthquake Specification for Buildings-TBDY 2017
- Requirements for design and construction of Reinforced Concrete Structures-TS500
- Design Loads for Buildings-TS498

MATERIAL PROPERTIES

This is a reinforced concrete structure as it is stated at the beginning of this report; therefore, the following materials are used in the design of the building.

Table 1: Concrete Properties

Property	Value	Units
Unit Weight	25	kN/m ³
Modulus of Elasticity (E)	32000	MPa
Shear Modulus (G)	12800	MPa
Poisson's Ratio	0.20	-
Coefficient of Thermal Expansion (α)	10-5	/ °C

Table 2: Reinforcing Steel Properties

Property	Value	Units
Modulus of Elasticity Es	200000	MPa
Shear Modulus Gs	81000	MPa
Poisson's Ratio	0.30	-
Coefficient of Thermal Expansion	10 ⁻⁵	/ °C

LOADS ACTING ON THE STRUCTURE

DEAD LOAD

Self-weight of the structure is automatically calculated by SAP2000 software.

LIVE LOAD

Live load acting on the structure is selected as 5 kN/m² in accordance with the Section-12 and Table-7 in TS498. Furthermore, live load application at different floor levels are also determined under the guidance of Section-13(Live Load Reduction) and Table-8.

Table 3: Effective Live Load at Floor Levels

Floors	Live Load Reduction Factor (β)	Live Load kN/m ²	Effective Live Load at Floor Levels kN/m ²
1	1,00	5,00	5,00
2	1,00	5,00	5,00
3	1,00	5,00	5,00
4	0,95	5,00	4,75
5	0,88	5,00	4,40
6	0,80	5,00	4,00
Roof Level	1,00	1,50	1,50

SNOW LOAD

Snow load acting on the structure roof is selected as 0,80 kN/m² in accordance with the Section-8 and Table-4 in TS498.

SEISMIC LOAD

Seismic load calculations are performed under the guidance of TBDY 2018 both in equivalent lateral load procedure and mode superposition procedure, and they are introduced in the upcoming <u>Design</u> <u>Base Shear</u> section.

HORIZONTAL DESIGN SPECTRUM

The above two plots demonstrate the horizontal design spectrum for the building resting on ZC soil type in Tokat city center. The first one taken from AFAD Webpage and the other plots are obtained by performing some calculations which are demonstrated in given MS Excel File.

REDUCED HORIZONTAL DESIGN SPECTRUM

The above two plots demonstrate the reduced horizontal design spectrum for the building resting on ZC soil type in Tokat city center.

VERTICAL DESIGN SPECTRUM

Application of vertical design spectrum is not necessary for this building owing to the reasons listed below in accordance with the Section-4.4.3.1 in TDBY 2018.

- There is no column resting on a beam.
- There is no span length larger than 20 m.
- There are no cantilevers larger than 5 m.

LOAD COMBINATIONS

The following load combinations are considered in the design of this structure.

- 1,4G + 1,6Q
- $1.0G + 1.0Q \pm 1.0EX \pm 0.3EY$
- $1.0G + 1.0Q \pm 1.0EY \pm 0.3EX$
- $1.0G + 1.0Q + 0.2S \pm 1.0EX \pm 0.3EY$
- $1.0G + 1.0Q + 0.2S \pm 1.0EY \pm 0.3EX$
- $0.9G \pm 1.0EX \pm 0.3EY$
- $0.9G \pm 1.0EY \pm 0.3EX$

ANALYSIS RESULTS

This part of the report provides the information about the analysis results of the structure.

STRUCTURAL MODEL

Structural model is prepared by using SAP2000 v19.2.2 and slabs, beams and columns are all modelled to achieve the actual building behavior. Centerline modelling is utilized to connect frame elements and 1,2x1,2 m and 1,2x1,0 m meshes are provided in slabs. Moreover, all gravity loads are applied to slabs in kN per meter squares.

Figure 1: 3D View of Structural Model

Figure 2: Structural Section View in Short Direction

Figure 3: Structural Section View in Long Direction

EIGENVALUE ANALYSIS

Eigenvalue analysis is performed by utilizing SAP2000 for the first 9 modes and they are presented in tabular and graphical form. R=8 and I=1,5 is selected for this design.

Table 4: Eigenvalue Analysis Results Taken From SAP2000

Mode Number	Period	Frequency	CircFreq	Eigenvalue
Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
1	0,839277	1,191502268	7,486429543	56,0466273
2	0,780323	1,281520846	8,052032947	64,83523458
3	0,686769	1,456094369	9,148910744	83,7025678
4	0,276438	3,617443053	22,72906504	516,6103976
5	0,254821	3,924319912	24,65722921	607,9789525
6	0,225745	4,429783772	27,83315231	774,6843677
7	0,160842	6,217289899	39,06438454	1526,02614
8	0,146176	6,841081566	42,98378318	1847,605617
9	0,131216	7,621038612	47,88439783	2292,915556

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,8393	1,1915	7,4864	56,0466
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R ₁ (θz-Direction) (radians)
1	0,003502	-0,00013	0,000151
2	0,008239	-0,000284	0,000129
3	0,012737	-0,000426	0,00011
4	0,016658	-0,000548	0,000085
5	0,019798	-0,000643	0,000056
6	0,022004	-0,000708	0,000028
7	0,023182	-0,000764	-0,000007224

2nd MODE

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,7803	1,2815	8,0520	64,8352
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R_1 (θ z-Direction) (radians)
1	-3,939E-11	-0,003611	0,000925
2	5,233E-11	-0,008647	0,001003
3	-4,397E-11	-0,01351	0,00096
4	2,695E-11	-0,017814	0,000847
5	-1,489E-11	-0,021314	0,000688
6	1,308E-11	-0,023834	0,000494
7	0,000005416	-0,025326	0,000377

3rd MODE

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,6868	1,4561	9,1489	83,7026
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R_1 (θ z-Direction) (radians)
1	0,005655	0,002336	-0,000399
2	0,013414	0,005522	-0,000458
3	0,020779	0,008541	-0,000444
4	0,027177	0,011161	-0,000396
5	0,032264	0,013241	-0,000326
6	0,035795	0,014683	-0,000237
7	0,037666	0,01544	-0,000205

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,2764	3,6174	22,7291	516,6104
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R ₁ (θz-Direction) (radians)
1	-0,010413	0,000405	-0,00046
2	-0,020313	0,00074	-0,000223
3	-0,021907	0,000768	0,000065
4	-0,014243	0,000471	0,000313
5	-0,000555	-0,000028	0,000403
6	0,013454	-0,000521	0,000321
7	0,022109	-0,001057	0,000116

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,2548	3,9243	24,6572	607,9790
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R_1 (θ z-Direction) (radians)
1	-1,224E-10	0,01105	-0,002312
2	5,12E-11	0,021864	-0,001113
3	3,081E-12	0,023855	0,000784
4	9,298E-11	0,015843	0,002478
5	-2,927E-10	0,001119	0,003263
6	3,403E-10	-0,014281	0,002837
7	0,000043	-0,024638	0,001957

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,2257	4,4298	27,8332	774,6844
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R_1 (θ z-Direction) (radians)
1	0,016884	0,00695	-0,000869
2	0,033275	0,013642	-0,000385
3	0,035985	0,014715	0,000446
4	0,023323	0,009505	0,001176
5	0,000656	0,000226	0,001508
6	-0,022466	-0,00921	0,001292
7	-0,036951	-0,014999	0,000968

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,1608	6,2173	39,0644	1526,0261
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R ₁ (θz-Direction) (radians)
1	-0,016346	0,000708	-0,000595
2	-0,020789	0,000822	0,000291
3	-0,003042	0,000033	0,000813
4	0,017886	-0,000819	0,000475
5	0,019314	-0,000801	-0,000345
6	-0,000173	0,000085	-0,000802
7	-0,019807	0,001656	-0,000571

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,1462	6,8411	42,9838	1847,6056
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R_1 (θ z-Direction) (radians)
1	5,881E-09	0,017764	-0,002876
2	-9,756E-09	0,023055	0,001445
3	1,727E-08	0,003861	0,004373
4	-3,107E-08	-0,019351	0,002519
5	4,276E-08	-0,021473	-0,002211
6	-3,924E-08	-0,000253	-0,004815
7	-0,000119	0,02296	-0,003706

T (sec)	f (cyc/sec)	W _n (rad/sec)	$W_n^2 (rad^2/sec^2)$
0,1312	7,6210	47,8844	2292,9156
Floors	U ₁ X-direction[m]	U ₂ Y-Direction[m]	R_1 (θ z-Direction) (radians)
1	-0,026943	-0,011045	0,001016
2	-0,034712	-0,014124	-0,000596
3	-0,005207	-0,002028	-0,001701
4	0,029976	0,012244	-0,000882
5	0,032398	0,013115	0,001049
6	-0,000617	-0,00033	0,00201
7	-0,034874	-0,013757	0,001525

MODAL MASSES

Mass Source (G+0.3Q);

Number of Floor= 6+ 1 (roof) = 7

Number of columns at a floor = 36

Slab thickness = 0.15 m

Slab area = 504.76 m^2

Slab volume = $0.15 \times 504.76 = 75.714 \text{ m}^3$

Beam dimensions = $0.3 \times 0.6 \text{ m}^2$

Beam cross-section area under slab = $(0.6-0.15) \times 0.3 = 0.135 \text{ m}^2$

Beam length of a roof = 268 m

Beam volume under a slab = $268 \times 0.135 = 36.18 \text{ m}^3$

Column dimension = $0.4 \times 0.6 = 0.24 \text{ m}^2$

Column Length = (3.5-0.6) = 2.90 m

Column volume = $0.24 \times 2.90 = 0.696 \text{ m}^3$

Unit Weight of Reinforced Concrete = 25kN/m³

Live load for floor = 5 kPa

Live load for roof = 1.5 kPa

Snow load = 0.8 kPa

DEAD LOAD = (75.714+36.18+0.696 x 36) x 25 x 7 = 23966.25 kN

LIVE LOAD = $504.76 \times (5 \times 6 + (1.5+0.8) \times 1) = 16303.748 \text{ kN}$

Mass Source = $(23966.25 + 0.3 \times 16303.748)/9.81 = 2941.6 \text{ tons}$

Table 5: Modal Mass Data from SAP2000

OutputCase	CaseType	GlobalFZ	GlobalMX
Text	Text	KN	KN-m
G	LinStatic	26983,95	432939,49
Q	LinStatic	14966,134	239319,77

To calculate the required information, the following formulas are used in MATLAB. Matlab code is also given as file in mail.

- Modal Mass, $M_n = \emptyset_n^T * m * \emptyset_n$
- Modal Excitation Factor, $L_{ni} = \emptyset_n^T *m*l_i$
- Effective Modal Mass, $M_{ni}^* = L_{ni}^2/M_n$
- Modal Force, $F_n = (L_{ni}/M_n) * m * \emptyset_n * Sa_n$

Where i = x or y

MATLAB SCRIPT;

```
clear all
close all
clc
mass=diag([87.03 87.03 2320 87.03 87.03 2320 87.03 87.03 2320 87.03 2320 87.03 2320
87.03 87.03 2320 79.355 79.355 2116.13]);
phi 1=load('mode 1.txt'); % mode shape for 1. mode
phi 1 Transpose=transpose(phi 1);
phi 2=load('mode 2.txt'); % mode shape for 2. mode
phi 2 Transpose=transpose(phi 2);
phi 3=load('mode 3.txt'); % mode shape for 3. mode
phi 3 Transpose=transpose(phi 3);
1 x=load('1 x.txt'); % length factor (1 0 0 1 0 0...)
l y=load('l y.txt'); % length factor (0 1 0 0 1 0...)
M_1= phi_1_Transpose*mass*phi_1; % modal mass for 1. mode
M 2= phi 2 Transpose*mass*phi 2; % modal mass for 2. mode
M_3= phi_3_Transpose*mass*phi_3; % modal mass for 3. mode
fprintf('modal masses %f\n', M 1,M 2,M 3)
L 1= phi 1 Transpose*mass*1 y; % modal excitation factor for 1. mode
L 2= phi 2 Transpose*mass*l x; % modal excitation factor for 2. mode
L 3= phi 3 Transpose*mass*1 x; % modal excitation factor for 3. mode (lx or ly)
fprintf('modal excitation factors %f\n', L 1,L 2,L 3)
M eff 1= (L 1)^2/M 1; % effective modal mass for 1. mode
M = ff^2 = (L^2)^2/M^2; % effective modal mass for 2. mode
M eff 3= (L 3)^2/M 3; % effective modal mass for 3. mode
fprintf('effective modal masses %f\n', M eff 1,M eff 2,M eff 3)
f 1=(L 1/M 1)*mass*phi 1; % modal forces for 1. mode
f^2 = (L^2/M^2) * mass*phi^2; % modal forces for 2. mode
f 3=(L 3/M 3)*mass*phi 3; % modal forces for 3. Mode
```

As a result of the MATLAB calculation made (given in above), modal mass, modal excitation, effective modal mass and modal force vectors are found as follows:

MODE NUMBER	1	2	3		
Modal Masses, M _n	0,9998	1	1		
Modal Excitation Factor, Ln	20,5667	-20,6154	-3,31E-14		
Effective Modal Mass, Mn*	423,0919	424,9994	1,10E-27		
MODE NUMBER	1	2	3	Floor Number	Direction
	2,15E-14	17,8843471	1,61E-29		Х
	17,43087786	-9,96E-14	-1,77E-29	1	Υ
	2,65E-13	-1,17E-13	1,59E-13		θ_z
	1,92E-13	44,12058383	8,94E-29		X
	43,40353041	-9,35E-14	-4,53E-29	2	Υ
<u>۾</u>	2,48E-13	-3,69E-13	3,77E-13		θ_z
fn/SaR	1,44E-13	68,68464845	1,81E-28		Х
	68,01909529	-2,44E-13	-5,34E-29	3	Υ
MODAL FORCES,	1,96E-13	-5,75E-13	5,76E-13		θ_z
O K	2,87E-13	88,95704391	2,76E-28		Х
7 F	88,54012262	-1,86E-13	-1,16E-28	4	Υ
OD/	1,40E-13	-8,49E-13	7,39E-13		θ_z
Σ	2,61E-13	103,4575749	2,67E-28		Х
	103,4340701	-3,10E-13	-1,13E-28	5	Υ
	3,18E-13	-8,20E-13	8,54E-13		θ_z
	3,03E-13	101,8952272	2,67E-28		Х
	102,2641677	-3,04E-13	-8,37E-29	6	Υ
	4,02E-13	-8,84E-13	8,37E-13		θ_z

MINIMUM NUMBER OF MODES TO BE CONSIDERED IN DESIGN

Table 6: Modal Mass Participations taken from SAP2000

OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0,839277	0,82794	0	4,763E-19	0,82794	0	4,763E-19
MODAL	Mode	2	0,780323	0	0,82222	2,428E-07	0,82794	0,82222	2,428E-07
MODAL	Mode	3	0,686769	0,0019	0	0	0,82984	0,82222	2,428E-07
MODAL	Mode	4	0,276438	0,10051	0	1,195E-16	0,93035	0,82222	2,428E-07
MODAL	Mode	5	0,254821	2,03E-19	0,1054	3,083E-07	0,93035	0,92762	5,511E-07
MODAL	Mode	6	0,225745	0,00028	5,881E-19	4,527E-17	0,93063	0,92762	5,511E-07
MODAL	Mode	7	0,160842	0,03575	1,917E-16	1,046E-14	0,96638	0,92762	5,511E-07
MODAL	Mode	8	0,146176	6,127E-17	0,03717	1,182E-07	0,96638	0,96479	6,693E-07
MODAL	Mode	9	0,131216	0,00013	5,522E-15	8,148E-13	0,9665	0,96479	6,693E-07

As it is seen from Figure-5, modal mass participation is above the 90 percent after the 4th mode and therefore minimum number of modes should be 4 for this structure.

According to TDBY 2018;

$$\sum_{\rm n=1}^{\rm YM} m_{\rm txn}^{\rm (X)} \ge 0.90 \, m_{\rm t}$$
 ; $\sum_{\rm n=1}^{\rm YM} m_{\rm tyn}^{\rm (Y)} \ge 0.90 \, m_{\rm t}$

DESIGN BASE SHEAR

EQUIVALENT LATERAL LOAD PROCEDURE

Because of time limitation, our team could not manage to perform equivalent lateral load procedure.

THE MODE SUPERPOSITION PROCEDURE

The mode superposition procedure is applied by means of SAP2000 and all the calculations and design are performed in accordance with this method.

Table 7: Design Base Shears in X and Y Directions in SAP2000

OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
Envelope	Combination	Max	2475,169	2644,231	61723,344	989026,9157	-154444,311	52586,192
Envelope	Combination	Min	-2475,169	-2644,231	24283,656	347033,7571	-493786,76	-52586,192

Design base shear is calculated by utilizing the SAP2000 and they are shown in figure above.

BUILDING IRREGULARITY CHECKS

This section provides the information about the irregularity checks of the structure in accordance with the TBDY-2018.

Earthquake code states that relative floor translations for the buildings having an isolation joint between structural framing system and the nonstructural systems should satisfy the following condition;

$$\Delta_i^X = u_i^X - u_{i-1}^X$$

$$\delta_i^X = \frac{R}{I} \Delta_i^X \ where \ R = 8 \ and \ I = 1,5 \ in \ this \ project.$$

$$\lambda \frac{\delta_{i,max}^{(X)}}{h_i} \leq 0,016 \ where \ h_i = 3,5 \ m \ in \ this \ project$$

CALCULATION OF λ

According to Section-4.9.1.4 in TDBY 2018, λ is the ratio of calculated elastic design spectrum acceleration of DD-3 earthquake in accordance with the Section-2.3.5.1 to elastic design spectrum acceleration of DD-2 earthquake for the vibration period in the direction of earthquake.

 $T_1 = 0.84 \text{ s}$ and $T_2 = 0.78 \text{ s}$ for the Y and X directions, respectively.

According to 2.3.5.1
$$S_{ae}\left(T\right) = \frac{S_{D1}}{T}$$
 when $T_{B} < T \le T_{L}$

 $T_L = 6 s for both DD - 2 and DD - 3 earthquakes$

 $T_B = 0.383$ for DD - 3 earthquake

 $T_B = 0.424 for DD - 2 earthquake$

 $S_{D1} = 0.156$ for DD - 3 earthqauke and it is taken from TBDY - 2018 website

 $S_{D1} = 0,406$ for DD - 2 earthqauke and it is taken from TBDY - 2018 website

$$\lambda = \frac{S_{ae} (T_1)^{DD-3}}{S_{ae} (T_1)^{DD-2}} = \frac{\frac{S_{D1}^{DD-3}}{T_1}}{\frac{S_{D1}^{DD-2}}{T_1}} = \frac{S_{D1}^{DD-3}}{S_{D1}^{DD-2}} = \frac{0,156}{0,406} = 0,3842 \ for \ T_1 \ period.$$

$$\lambda = \frac{S_{ae} (T_2)^{DD-3}}{S_{ae} (T_2)^{DD-2}} = \frac{\frac{S_{D1}^{DD-3}}{T_2}}{\frac{S_{D1}^{DD-2}}{T_2}} = \frac{S_{D1}^{DD-3}}{S_{D1}^{DD-2}} = \frac{0,156}{0,406} = 0,3842 \ for \ T_2 \ period.$$

As it is shown in below two tables, building is safe with respect to relative floor translations

Table 8: Building Drift Check in Y-Direction Under the 1,0G+1,0Q+1,0E_Y+0,3E_X

	Y-DIRECTION $(T_1=0.84 s)$								
$1,0G+1,0Q+1,0E_X+0,3E_Y$									
Floors	u _i (EY)	u _{i-1} (EY)	$\Delta_{i}^{(EY)}=u_{i}^{(EY)}-u_{i-1}^{(EY)}$	$\delta_i^{(EY)} = (R/I) * \Delta_i^{(EY)}$	$\lambda^*\delta_{i,max}$				
Floors	(mm)	(mm)	(mm)	(mm)	(EY)/h _i ≤0,016				
1st Story	3,0889	0,0000	3,08885	16,47	0,0018				
2nd Story	7,2956	3,0889	4,20676	22,44	0,0025				
3rd Story	11,2310	7,2956	3,93537	20,99	0,0023				
4th Story	14,6523	11,2310	3,42132	18,25	0,0020				
5th Story	17,4357	14,6523	2,78338	14,84	0,0016				
6th Story	19,4714	17,4357	2,03571	10,86	0,0012				
Roof	20,6376	19,4714	1,16623	6,22	0,0007				

Table 9: Building Drift Check in X-Direction Under the 1,0G+1,0Q+1,0E_X+0,3E_Y

	EX-DIRECTION ($T_2=0.78 s$)									
	$1,0G+1,0Q+1,0E_X+0,3E_Y$									
Floors/Displacements	$\delta_i^{\text{(EX)}} = (R/I)^* \Delta_i^{\text{(EX)}}$	λ*δ _{i,max} (EX)/h _i ≤0,016								
1st Story	3,1474	0,0000	3,14743	16,79	0,0018					
2nd Story	7,5631	3,1474	4,4157	23,55	0,0026					
3rd Story	11,6602	7,5631	4,09706	21,85	0,0024					
4th Story	15,1533	11,6602	3,49311	18,63	0,0020					
5th Story	17,9249	15,1533	2,77162	14,78	0,0016					
6th Story	19,8749	17,9249	1,94996	10,40	0,0011					
Roof	20,9353	19,8749	1,06038	5,66	0,0006					

PLAN IRREGULARITY CONDITIONS

A1-TORSIONAL IRREGULARITY

Table 10: Torsional Irregularity Check

Floors/Displacements	$(\Delta_i)_{max}$	$(\Delta_{\rm i})_{\rm min}$	$(\Delta_{i})_{ave} = 1/2[(\Delta_{i})_{max} + (\Delta_{i})_{min}]$	$\eta_{\rm bi} = (\Delta_{\rm i})_{\rm max}/(\Delta_{\rm i})_{\rm ave}$
1st Story	23,1268	20,9353	22,03105	1,05
2nd Story	21,9823	19,8749	20,9286	1,05
3rd Story	19,8455	17,9249	18,8852	1,05
4th Story	16,8025	15,1533	15,9779	1,05
5th Story	12,9629	11,6602	12,31155	1,05
6th Story	8,4505	7,5631	8,0068	1,06
Roof	3,0543	3,1474	3,10085	0,98

All η_{bi} values are smaller than 1,2 and therefore there is no torsional irregularity in building.

A2-SLAB DISCONTINUITY

The following conditions provides the safety of the slabs;

- No gaps in slab system.
- There is no sudden stiffness change in the slab.
- Stairs and elevator shafts are less than 1/3 in this building.

A3-PLAN ASPERITIES

Figure 4: A3 Type Irregularity Condition

The structure designed in this report is perfectly symmetric and such irregularity does not exist in this building.

VERTICAL IRREGULARITY CONDITIONS

B1-WEAK STORY

$$\eta_{ci} = \frac{(\sum A_e)_i}{(\sum A_e)_{i+1}}$$
 where $\sum A_e = \sum A_e + \sum A_w + 0.15 \sum A_k$

This structure is perfectly symmetric with respect to the column cross sections perpendicular to earthquake direction and therefore;

 $\eta_{ci} = 1$ for all floors. Therefore, there is no weak story in this structure.

B2-SHOFT STORY

Table 11: Soft Story Check in EY-Direction

	Y-DIRECTION $(T_1=0.84 s)$									
$1,0G+1,0Q+1,0E_Y+0,3E_X$										
Floors	u _i (EY) (mm)	u _{i-1} (EY) (mm)	$\begin{array}{c} \Delta_{i}^{\;(EY)} = u_{i} \\ {}^{(EX)} - u_{i-1}^{\;\;(EY)} \end{array}$ (mm)	$\eta_{ki} = (\Delta_i/h_i)_{ave}/((\Delta_{i+1}/h_{i+1})_{ave})$	$\mathbf{\eta}_{ki} = (\Delta_i/h_i)_{ave}/((\Delta_{i-1}/h_{i-1})_{ave})$					
1st Story	3,0889	0,0000	3,08885	0,7343	-					
2nd Story	7,2956	3,0889	4,20676	1,0690	1,3619					
3rd Story	11,2310	7,2956	3,93537	1,1502	0,9355					
4th Story	14,6523	11,2310	3,42132	1,2292	0,8694					
5th Story	17,4357	14,6523	2,78338	1,3673	0,8135					
6th Story	19,4714	17,4357	2,03571	1,7455	0,7314					
Roof	20,6376	19,4714	1,16623	-	0,5729					

Table 12:Soft Story Check in EX-Direction

	EX-DIRECTION ($T_2=0.78 \text{ s}$)									
$1,0G+1,0Q+1,0E_X+0,3E_Y$										
Floors	u _i (EX)	u _{i-1} (EX)	$\Delta_{i}^{(EX)} = u_{i}^{(EX)}$ $u_{i-1}^{(EX)}$	$ \eta_{ki} = (\Delta_i/h_i)_{ave}/((\Delta_{i+1}/h_{i+1})_{ave}) $	$\mathbf{\eta}_{ki} = (\Delta_i/h_i)_{ave}/((\Delta_{i-1}/h_{i-1})_{ave})$					
1st Story	3,1474	0,0000	3,14743	0,7128	-					
2nd Story	7,5631	3,1474	4,4157	1,0778	1,4030					
3rd Story	11,6602	7,5631	4,09706	1,1729	0,9278					
4th Story	15,1533	11,6602	3,49311	1,2603	0,8526					
5th Story	17,9249	15,1533	2,77162	1,4214	0,7935					
6th Story	19,8749	17,9249	1,94996	1,8389	0,7035					
Roof	20,9353	19,8749	1,06038	-	0,5438					

There is no soft story mechanism in this structure as it is seen from above two table because in both tables η_{ki} <2,0.

B3-DISCONTINUITY OF VERTICAL STRUCTURAL ELEMENTS

There is no column discontinuity in this project and the structural framing system is regular in accordance with the TBDY 2018.

FINAL DESIGN

SLAB DESIGN

Slab thickness is determined in accordance with the Section-11 in TS500 by utilizing the following equation.

$$h \geq \frac{l_{sn}}{15 + \frac{20}{m}} \Big(1 - \frac{\alpha_s}{4}\Big) \text{ and } h \geq 80 \text{ mm}$$

<u>15 cm slab thickness</u> is determined for this structure and detailed calculations are shown in attachments at the end of this report.

Figure 5: 3D View of Designed Beams and Columns

This figure above is to demonstrate the beams and columns which are designed for this project and they are called B01 and B02 for beams and C01 and C02 for columns.

Figure 6: Section Views of the Designed Beams and Columns

It is noted that B01 and B02 are on the left and right side on Figure-5

BEAM DESIGN

Two adjacent beams are designed having a dimension of 300x600 mm. Same concrete class and reinforcing steel are utilized; therefore, minimum tension steel ratio can be calculated as the following;

$$\rho_{min} = 0.8 * \frac{f_{ctd}}{f_{yd}} = 0.8 * \frac{1.9}{1.5 * \frac{420}{1.15}} = 0.00277$$

Moreover, dimensions of the beams are also same; thus, minimum tension steel area can be calculated as the following;

$$A_{s,min} = \rho_{min} * b_w * d = 0.00277 * 300 * (600 - 25) = 477.825 \ mm^2$$

According to TS500 Section 7.3,

$$A_{sl} = 0.001 * b_w * d = 0.001 * 300 * (600 - 25) = 172.5 mm^2$$

Use $4\emptyset 10$ (314 mm²) for the mid – depth of the section.

FLEXURAL DESIGN

$$A_s = \frac{M_d}{f_{yd}*0,875*d} = \frac{84,19*10^6}{365*0,875*575} = 458,45 \text{ mm}^2, A_{s,min} > A_s \text{ use } A_{s,min} \text{ for the span.}$$

Use $3\emptyset 14$ (462 mm²) for the span of B01 beam.

$$A_s = \frac{M_d}{f_{vd}*0.875*d} = \frac{85,58*10^6}{365*0.875*575} = 460,57 \text{ mm}^2, A_{s,min} > A_s \text{ use } A_{s,min} \text{ for the span.}$$

Use $3\emptyset14$ (462 mm²) for the span of B02 beam

Also use $2\emptyset 14$ (308 mm²) hanger bars in both beams

$$A_S = \frac{M_d}{f_{Vd} * 0.875*d} = \frac{179.62*10^6}{365*0.875*575} = 978.11 \text{ mm}^2$$

 $A_s > A_{s,min}$ use A_s for the left support of 1st beam

 $2\emptyset14$ (308 mm²) already exist and use $5\emptyset14$ (770) mm² for the left support of B01 beam

$$A_s = \frac{M_d}{f_{\gamma d} * 0.875 * d} = \frac{157,46 * 10^6}{365 * 0.875 * 575} = 857,44 \text{ mm}^2$$

 $A_s > A_{s,min}$ use A_s for the right support of 1st beam

 $2\emptyset14$ (308 mm²) already exist and use $4\emptyset14$ (616) mm² for the right support of B01 beam

$$A_S = \frac{M_d}{f_{3/d} * 0.875 * d} = \frac{154,17 * 10^6}{365 * 0.875 * 575} = 859,52 \text{ } mm^2$$

 $A_s > A_{s,min}$ use A_s for the left support of 2nd beam

 $2\emptyset14$ (308 mm²) already exist and $4\emptyset14$ (616) mm² comes from right support of 1st beam

$$A_S = \frac{M_d}{f_{\gamma d} * 0.875 * d} = \frac{179.1 * 10^6}{365 * 0.875 * 575} = 975.3 \text{ mm}^2$$

 $A_{s,min} > A_s$ use $A_{s,min}$ for the right support of 2nd beam

 $2\emptyset14~(308~mm^2)$ already exist and use $5\emptyset14~(770)~mm^2$ for the rigth support of B02 beam

Clear spacing between two bars should be greater than 20 mm, bar diameter and 4/3 of nominal aggregate dimension according to TS500-Section 7.3.

$$l_b = \left(0.12 * \frac{f_{yd}}{f_{ctd}} * \emptyset\right) \ge 20\emptyset$$
 according to TS500 Section 9.1.2.1

 $l_b \geq 50 \emptyset$ according to TSC2007 Section 3.4.3.1 (c)

$$l_b = \left(0.12 * \frac{365}{1.267} * 14\right) = 484 \ mm \ge 20 * 14 = 280 \ mm$$

$$l_b \ge 50\emptyset = 50 * 14 = 700 \text{ mm}$$
 and l_b should be 70 cm

It is important to note that $\frac{1}{4}$ of the larger tension steel used at the supports for a beam should be continues along the beam in accordance with the TSC2007 Section 3.4.3.1 (a). In the design, $2\phi14$ are selected as hanger bars that are continues along the beam 1 and 2.

SHEAR DESIGN

According to TS500 Section 8.1;

$$s_{max} \le \begin{cases} \frac{d}{4} = \frac{600 - 25}{4} = 143.75 \ mm \\ 8\emptyset_l = 8 * 14 = 112 \ mm \\ 150 \ mm \end{cases}$$

where d is the effective depth and \emptyset_l is the smallest longitudinual bar.

Above condition should be applied to near the supports (region having the length of two times of effective depth.

$$s_{max} \le \frac{d}{2} = \frac{600-25}{2} = 287,5 \text{ mm should be applied at the span.}$$

Use $\emptyset 8$ ($50~mm^2$) for the shear reinforcement for the B01 beam

$$\frac{A_{SW}}{s} \ge 0.3 * \frac{f_{ctd}}{f_{ywd}} * d \to \frac{50*2}{s} \ge 0.3 * \frac{\frac{1.9}{1.5}}{365} * (250) \leftrightarrow s \le 384.21 \ mm$$

According to TSC2007, plastic moment of the column is the 1.4 times of its moment capacity.

$$M_{pi} \cong 1.4 * M_{ri} = 1.4 * 179.62 = 251.47 \ kN - m$$

$$M_{pj} \cong 1.4 * M_{rj} = 1.4 * 157.46 = 220.44 \ kN - m$$

 V_{dy} is the shear force under 1.0G+1.0Q load combination

$$V_{dy} = 79 \, kN \, taken \, from \, SAP2000$$

$$V_e = V_{dy} \pm \frac{\left(M_{pi} + M_{pj}\right)}{l_n} = 79 \pm \frac{251,47 + 220,44}{3.2 - 0.6} = 260,5 \text{ kN}$$

$$V_e \ge V_d$$
 and $V_e = V_c + V_w$

$$V_{cr} = 0.65 * f_{ctd} * b_w * d * \left(1 + \gamma \frac{N_d}{A_c}\right), \gamma = 0 \ (TS500 \ Section \ 8.1.3)$$

$$V_{cr} = 0.65 * f_{ctd} * b_w * d \text{ and } V_c = 0.8 * V_{cr}$$

$$V_{cr} = \frac{0.65 * \frac{1.9}{1.5} * 250 * (600 - 25)}{1000} = 118,35 \ kN \ and \ V_c = 0.8 * 118,35 = 94,68 \ kN$$

$$V_{max} = 0.22 * f_{cd} * b_w * d = \frac{0.22 * \frac{30}{1.5} * 250 * (600 - 25)}{1000} = 632.5 \ kN \ge V_e = 260.5 \ kN$$

$$V_w = V_e - V_c = 260.5 - 94.68 = 165.82 \, kN$$

$$V_w = \frac{A_{sw}}{s} f_{ywd} d \rightarrow s = \frac{A_{sw} * f_{ywd} * d}{V_w} = \frac{2*50*365*(600-25)}{165,82*1000} = 126,6 \ mm$$

Use $\emptyset 8/10$ cm close to the supports and use $\emptyset 8/20$ cm at span.

Use $\emptyset 8$ ($50 \text{ } mm^2$) for the shear reinforcement for the B02 beam

Drawings provided at the end.

COLUMN DESIGN

Column design is done by using interaction diagrams. To do that, minimum reinforcement is put in the column section by using SAP2000, and interaction diagrams of the columns are obtained from SAP2000. Diagrams are plotted in MS Excel to provide better understanding. Furthermore, loads coming for different load combinations are also exported from SAP2000 and axial loads (P) and moments (M2 and M3) are also plotted on the corresponding interaction diagrams.

According to TS 500 Section 7.4;

$$\rho_t = \frac{A_{st}}{A_c} \ge 0.01 \ and \ thus A_{st} = 250*600*0.01 = 1500 \ mm^2$$

$$N_d \le 0.9 * f_{cd} * A_c = 0.9 * \frac{30}{1.5} * 250 * \frac{600}{1000} = 2700 \ kN \ since \ N_d = 1000 \ kN$$

 $8\emptyset16$ (1608 mm^2) is put in columns to start with the iteration.

FLEXURAL DESIGN

In accordance with the interaction diagrams shown above, minimum reinforcement $(8\emptyset16)$ is sufficient for columns C01 and C02

Figure 7: Column Orientation and Moment M2 and M3 Directions

CHECK FOR STRONG COLUMN-WEAK BEAM CONDITION

Figure 8: Moment Directions for Strong Column Weak Beam

Joint A

$$(M_{ra} + M_{rij}) \ge 1.2 * (M_{ri} + M_{ri})$$

 $M_{ra}=340.7\ kN-m$ for this section according to $N_d=2735.72\ kN$ for Column CO1

 $M_{r\ddot{\mathrm{u}}}=310,\!6\,kN-m$ for this section according to $N_d=3228,\!79\,kN$ for Column CO2

$$M_{ri} = (3 * 113 + 2 * 154) * \frac{420}{1,15} * 0,875 * (600 - 25) = 118,8 kN - m$$

$$M_{rj} = \left(\frac{0,85 * 103,75 * 300 * 0,85 * 20}{1000}\right) * \left(300 - \frac{0,85 * 103,75}{2}\right) + \frac{154 * 365 * 3}{1000} * 0275 + \frac{154 * 365 * 7}{1000} * 275 = 269,67 \ kN - m$$

 $340.7 + 310.6 = 651.3 \ge 647.2 = 1.2 * 269.67$ TSC2007 Section 3.3.5.1 is OK

SHEAR DESIGN

At joint A;

$$V_e = \frac{(M_a + M_{\ddot{\mathbf{u}}})}{l_n}$$

$$M_{\ddot{\mathrm{u}}} + M_a = \sum M_p = M_{pi} + M_{pj} = 1.4 * M_{ri} + 1.4 * M_{rj} = 1.4 * 319.8 * 2 = 639.6 \; kN - m$$

According to TBDY 2018, plastic moment of the column is the 1.4 times of its moment capacity.

$$V_e = \frac{(639,6)}{3,5-0.6} = 220,6 \text{ kN}$$

$$N_d = 3228.8 \ kN \ge 0.05 * A_c * f_{ck} = 0.05 * 250 * 600 * \frac{30}{1000} = 225 \ kN, so \ V_c \ne 0$$

$$V_{cr} = 0.65 * f_{ctd} * b_w * d * (1 + \gamma \frac{N_d}{A_c})$$

 $\gamma = 0.07$ owing to axial compression (TS500 Section 8.1.3)

$$V_c = 0.8 * V_{cr} = 0.8 * 0.65 * \frac{1.9}{1.5} * 250 * (600 - 25) * (1 + 0.07 * \frac{3228.8}{250*600}) = 94.83 kN$$

$$V_w = V_e - V_c = 220,6 - 94,83 = 125,77 \ kN$$

$$\frac{A_{SW}}{s} = \frac{V_W}{f_{ywd}*d} = \frac{63,68}{\frac{420}{1.15}*(600-25)} = 0,6$$

Use Φ 12 with 2 legs;

$$s = \frac{2*79}{0.6} = 263.3 \ mm$$

$$N_d = 3228.8 \ kN > 0.20 * A_c * f_{ck} = 0.2 * 250 * 600 * \frac{25}{1000} = 750 \ kN$$

Since
$$N_d \ge 0.20 * A_c * f_{ck}$$
;

Figure 9: Transverse Reinforcement Area According to TDBY 2018

For 60 cm direction;

$$A_{sh} \ge 0.30 * s * b_k * \left[\left(\frac{A_c}{A_{ck}} \right) - 1 \right] * \left(\frac{f_{ck}}{f_{ywk}} \right) \text{ and } A_{sh} \ge 0.075 * s * b_k * \left(\frac{f_{ck}}{f_{ywk}} \right)$$

$$A_{sh} \ge 0.3 * 100 * 200 * \left[\left(\frac{250*600}{200*500} \right) - 1 \right] * \left(\frac{30}{420} \right) = 214.3 \ mm^2$$

$$A_{sh} \ge 0.075 * 100 * 200 * \left(\frac{30}{420} \right) = 107.14 \ mm^2$$

$$A_{sh} = 2 * \left(\pi * \frac{12^2}{A} \right) = 226.2 \ mm^2 \ mm^2 \ (2 \ \text{legs} \ \Phi 12 \ \text{is ok})$$

For 40 cm direction;

$$\begin{split} A_{sh} &\geq 0.30*s*b_{k}*\left[\left(\frac{A_{c}}{A_{ck}}\right)-1\right]*\left(\frac{f_{ck}}{f_{ywk}}\right) \ and \ A_{sh} \geq 0.075*s*b_{k}*\left(\frac{f_{ck}}{f_{ywk}}\right) \\ A_{sh} &\geq 0.3*100*500*\left[\left(\frac{400*600}{200*500}\right)-1\right]*\left(\frac{30}{420}\right) = 535.7 \ mm^{2} \\ A_{sh} &\geq 0.075*100*500*\left(\frac{30}{420}\right) = 267.85 \ mm^{2} \end{split}$$

$$A_{sh} \ge 0.073 * 100 * 300 * \left(\frac{420}{420}\right) = 207.03 \text{ mm}$$

$$A_{sh} = 2 * \left(\pi * \frac{12^2}{4}\right) = 226,2 \ mm^2 \ mm^2$$
 (2 legs Φ 12 is not ok, use 2Φ 14 crossties)

$$\begin{cases} s_0 \le 200 \ mm \\ s_0 \le \frac{b_{min}}{2} = \frac{250}{2} = 125 \ mm \end{cases}$$

Thus select $s_0 = 100 \text{ mm}$ at the middle zone of columns

use $\Phi12/10$ cm at the column confinement region and $\Phi12/10$ cm at the column central zone.

BEAM TO COLUMN CONNECTION

Joint A is designed as beam to column connection and it is not a surrounded connection because there are 4 beams connected to this column.

$$V_e = 1.25 * f_{yk} * (A_{s1} + A_{s2}) - V_{col}$$

Figure 10: Beam Column Design Principle taken from TDBY 2018

In this design, A_{s1} and A_{s2} are the tension steels provided for the 1^{st} and 2^{nd} beams, respectively.

$$A_{s1} = 3\Phi 14 + 4\Phi 14 = 1078 \text{ mm}^2$$

$$A_{s2} = 3\Phi 14 = 462 \text{ mm}^2$$

V_{col}=106,5 KN is obtained from analysis

$$V_e = 1,25 * 420 * (1078 + 462) - 106,5 = 702 kN$$

 $V_e \le 0.6 * b_i * h * f_{cd}$ where $b_i = 250$ mm(not surrounded by 4 sides) and h = 600 mm

$$V_e = 702 \le 0.6 * 250 * 600 * \frac{30}{1.5} = 1800 \ kN \to OK$$

REINFORCEMENT FOR THE CONNECTION

h=600 mm

0.6 *6=3,6 stirrups minimum

Max spacing, 10 cm and Beam depth, 60 cm

Use $\Phi 10/10$ stirrups at connections

Drawings for the columns provided at the end.

