1 目的

太陽電池の各試験を行い、太陽電池の特性を知り、取り扱い上の要点を習得する。

2 理論

2.1 再生可能エネルギー

太陽光,風力,その他非化石エネルギー源のうち,エネルギー源として永続的に利用することができると認められるもののこと.

再生可能エネルギーとして、太陽光、風力、水力、地熱、太陽熱、大気中の熱その他の自然界に存する熱、バイオマスが挙げられる。 *1

2.2 太陽光発電の原理

現在最も多く使われている太陽電池は、シリコン系太陽電池である.この太陽電池では、電気的な性質の異なる2種類(p型、n型)の半導体を重ね合わせた構造をしている.

太陽電池に太陽の光が当たると,電子と正孔が発生し,正孔はp型半導体へ,電子はn型半導体側へ引き寄せられる。このため、表面と裏面につけた電極に導線をつなげば,電子がn型からp型に,正孔はp型からn型に流れ,電流を取り出すことができる。 *2

図1 太陽光発電の原理

2.3 種類

太陽光発電の種類は、使用している材料によって細かく分けられているが、大別すると図.2のようになる.

 $^{^{*1}}$ 環境省 平成26年度2050年再生可能エネルギー等分散型エネルギー普及可能性検証検討委託業務報告書 第1章再生可能エネルギー導入加速化の必要性,https://www.env.go.jp/earth/report/h27-01/,2019-7-1閲覧

 $^{^{*2}}$ 太陽電池とは - 太陽光発電協会,http://www.jpea.gr.jp/knowledge/solarbattery/index.html,2019-7-1閲覧

図2 太陽光発電の種類

3 実験装置回路

図3 実験装置回路

使用機器

太陽電池実験装置 照度計

実験方法 5

測定上の注意

実験装置のセレクトスイッチは以下の特性を持っているので、測定の際はすばやく読み取ること.

設定:太陽電池がセットされていなくても、「ON」にしたときランプが約 30 秒点灯する.

測定:太陽電池がセットされている場合に限り、約5秒点灯する.

5.1 開放電圧の照度依存性試験

- 1. 実験装置のコンセントを差し込む前に以下の設定を行う.
 - ・負荷スイッチは「OFF」にする.
 - \cdot スライドトランスは「0」にする.
- 2. 照度計を太陽電池脇のほぼ中心にセットする. 以降, 照度計は極力動かさないこと.
- 3. セレクトスイッチを設定にセット、装置の照明を ON にすることで、照度の設定ができる。 100lx が 理想だが、実験室の原明を感知するときがあるので、その時は最低値に設定する。
- **4.** セレクトスイッチを測定にセット、装置の照明を **ON** にすることで、各数値を読むことができる.この項目では発生電圧を読み取る.
- 5. 照度を対数的に上げていき同様の測定を行う(最高照度は 20000lx).

5.2 短絡電流の照度依存性試験

- 1. 以下の設定を行う.
 - · 負荷スイッチは「ON」にする.
 - ・負荷抵抗は「100%」にする.
 - ・スライドトランスは[0]にする.
- 2. 照度の設定は, 5.1 と同様に行い, 発電電流を読み取る.

5.3 電圧電流特性の照度依存性試験

- 1. 以下の設定を行う.
 - ·負荷スイッチは「ON」にする.
 - · 負荷抵抗は「0%」にする.
 - ・スライドトランスは「0」にする.
- 2. 照度の設定は, 5.1 を参照.
- **3.** 一定限度のもと、負荷抵抗を 0% から 100%まで増加し、それぞれの発電電圧および発電電流を読み取る.

6 結果

6.1 開放電圧の照度依存性試験

測定結果を表1に示す。また、グラフを短絡電流の照度依存特性と共に図4に示す。

表1 解放電圧の照度依存特性

照度(目標値)[lx]	照度(実測値)[lx]	発生電圧[V]
100	1.01E+02	11.0
200	2.01E+02	13.7
300	3.04E + 02	14.7
400	4.02E + 02	15.4
500	5.03E+02	15.8
600	5.98E + 02	16.1
700	7.11E+02	16.4
800	7.98E + 02	16.6
900	8.96E + 02	16.7
1000	1.05E+03	16.9
2000	2.10E+03	17.9
3000	2.99E+03	18.2
4000	3.97E + 03	18.5
5000	5.05E + 03	18.7
6000	5.97E + 03	18.8
7000	6.97E + 03	18.9
8000	7.96E + 03	19.0
9000	9.06E + 03	19.1
10000	1.07E + 04	19.1
20000	2.05E+04	19.5
最大値	2.55E+04	19.6

6.2 短絡電流の照度依存性試験

測定結果を表2に示す. また, グラフを解放電圧の照度依存特性と共に図4に示す.

表2 短絡電流の照度依存特性

照度(目標値)[lx]	照度(実測値)[lx]	発電電流[mA]
100	1.03E+02	3
200	2.01E+02	9
300	2.96E + 02	13
400	4.00E + 02	18
500	4.92E + 02	21
600	5.97E + 02	25
700	7.09E+02	29
800	7.98E + 02	32
900	9.02E + 02	35
1000	9.97E + 02	37
2000	1.97E + 03	63
3000	2.97E + 03	85
4000	4.01E+03	106
5000	5.09E+03	127
6000	6.05E + 03	143
7000	7.00E+03	158
8000	7.98E + 03	174
9000	9.03E+03	191
10000	1.00E+04	205
20000	2.02E+04	322
最大値	2.51E+04	379

6.3 電圧電流特性の照度依存性試験

表3	論理積(AND)	表4	論理和(OR)	表5	論理和(OR)		
負荷抵抗	発電電圧[V]	発電電線隨抵抗	電夠電電極[V]	発電電鐵網絡抗	電效框電性[V]	発電電流[mA]	電力[mW]
0	2.3	8 0	1814.3	570	70114.1	06	1719.0
5	2.2	95	1918.0	585	696 19 .0	94	1786.0
10	2.1	90	1819.4	580	66113.9	66	1871.1
15	2.0	85	16!0.7	595	$631_1 3.9$	105	1984.5
20	2.0	920	1810.7	590	63113.8	111	2086.8
25	1.9	925	17.9.8	6025	58818.7	117	2187.9
30	1.6	980	14.4.8	089	58818.6	130	2418.0
35	1.5	95	13.8.3	685	50613.5	141	2608.5
40	1.4	840	11.2.7	640	46918.4	153	2815.2
45	1.3	845	10.4.1	6245	440; 3.2	164	2984.8
20	1.2	\$0	9.6.3	029	39018.0	184	3312.0
55	1.0	\$ 5	9.0.6	625	34742.8	203	3613.4
09	0.0	0\$	8.₺.0	03:9	31540.5	225	3937.5
65	0.8	6 5	7.4.4	685	27712.0	249	4233.0
70	0.7	970	6.8.7	049	23618.8	281	4439.8
75	9.0	975	5.4.0	942	19219.4	291	3899.4
80	0.5	0₩	4.8.3	08-9	14710.2	298	3039.6
85	0.3	® 5	2.7.6	685	104.9.4	305	2257.0
06	0.2	066	1.8.2	640	76.8.1	309	1575.9
95	0.1	95	0.9.4	645	25.4.9	315	598.5
100	0.1	100	0.9.1	640	6.4.1	318	31.8