Collection Frames for Substructural Logics

Greg Restall

MELBOURNE LOGIC SEMINAR / 15 MARCH 2019

Joint work with Shawn Standefer

Our Aims

To better understand, to simplify and to generalise the ternary relational semantics for substructural logics.

Our Plan

Ternary Relational Frames Multiset Relations Multiset Frames Soundness Completeness **Beyond Multisets**

TERNARY RELATIONAL FRAMES

$$\langle P, N, \sqsubseteq, R \rangle$$

$$\langle P, N, \sqsubseteq, R \rangle$$

- ▶ P: a non-empty set
- $ightharpoonup N \subseteq P$
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- $\blacktriangleright \ R \subseteq P \times P \times P$

$$\langle P, N, \sqsubseteq, R \rangle$$

▶ P: a non-empty set

1. N is non-empty.

- $ightharpoonup N \subseteq P$
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- ightharpoonup $R \subset P \times P \times P$

$$\langle P, N, \sqsubseteq, R \rangle$$

- ▶ P: a non-empty set
- $ightharpoonup N \subseteq P$
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- $ightharpoonup R \subseteq P \times P \times P$

- 1. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).

$$\langle P, N, \sqsubseteq, R \rangle$$

- ▶ P: a non-empty set
- \triangleright N \subseteq P
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- $ightharpoonup R \subseteq P \times P \times P$

- 1. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and $x \sqsubseteq x'$, $y \sqsubseteq y'$, $z \sqsubseteq z'$, then Rxyz'.

$$\langle P, N, \sqsubseteq, R \rangle$$

- ▶ P: a non-empty set
- \triangleright N \subseteq P
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- $ightharpoonup R \subseteq P \times P \times P$

- 1. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and $x \sqsubseteq x', y \sqsubseteq y', z \sqsubseteq z'$, then Rxyz'.
- 4. $y \sqsubseteq y' \text{ iff } (\exists x) (Nx \land Rxyy').$

 $\langle P, R \rangle$

$$\langle P, R \rangle$$

- ▶ P: a non-empty set
- $\blacktriangleright \ R \subseteq P \times P$

$$\langle P, R \rangle$$

- ▶ P: a non-empty set
- $\blacktriangleright \ R \subseteq P \times P$

No conditions!

$$\langle P, R \rangle$$

- ▶ P: a non-empty set
- ightharpoonup $R \subseteq P \times P$

No conditions!

Binary relations are everywhere.

$$\langle P, \sqsubseteq \rangle$$

$$\langle P, \sqsubseteq \rangle$$

- ▶ P: a non-empty set
- $\blacktriangleright \ \sqsubseteq \ \subseteq P \times P$

$$\langle P, \sqsubseteq \rangle$$

- ▶ P: a non-empty set
- $ightharpoonup \sqsubseteq \subseteq P \times P$

 ⊑ is a partial order (or preorder).

$$\langle P, \sqsubseteq \rangle$$

- ▶ P: a non-empty set
- ightharpoonup \Box \Box \Box \Box \Box \Box \Box \Box \Box

1. \sqsubseteq is a partial order (or preorder).

Partial orders are everywhere.

$$\langle P, N, \sqsubseteq, R \rangle$$

- ▶ P: a non-empty set
- \triangleright N \subseteq P
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- $ightharpoonup R \subseteq P \times P \times P$

- 1. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).
- 3. R is downward preserved in the its two positions and upward preserved in the third, i.e. if Rx'y'z and $x \sqsubseteq x'$, $y \sqsubseteq y'$, $z \sqsubseteq z'$, then Rxyz'.
- 4. $y \sqsubseteq y' \text{ iff } (\exists x) (Nx \land Rxyy').$

Where can you find a structure like that?

One, Two, Three,...

$$\langle P, N, \sqsubseteq, R \rangle$$

One, Two, Three,...

$$\langle P, N, \sqsubseteq, R \rangle$$

$$N \subseteq P$$
 $\sqsubseteq \subseteq P \times P$ $R \subseteq P \times P \times P$

... and more

$$R^{2}(xy)zw =_{df} (\exists v)(Rxyv \land Rvzw)$$

$$R'^{2}x(yz)w =_{df} (\exists v)(Ryzv \land Rxvw)$$

... and more

$$R^{2}(xy)zw =_{df} (\exists v)(Rxyv \land Rvzw)$$

$$R'^{2}x(yz)w =_{df} (\exists v)(Ryzv \land Rxvw)$$

$$R^2, R'^2 \subseteq P \times P \times P \times P$$

In RW⁺

$$Rxyz \iff Ryxz$$

$$R^{2}(xy)zw \iff R'^{2}x(yz)w$$

In RW⁺ and in R⁺

$$Rxyz \iff Ryxz$$

$$R^{2}(xy)zw \iff R'^{2}x(yz)w$$

$$Rxxx$$

$$N \overline{z}$$

$$\underline{\mathbf{x}} \sqsubseteq \overline{\mathbf{z}}$$

$$R \underline{xy}\overline{z}$$

$$N \overline{z}$$

$$\underline{x} \sqsubseteq \overline{z}$$

$$R \underline{xy}\overline{z}$$

▶ The position of an <u>underlined</u> variable is closed *downwards* along \sqsubseteq .

$$N \overline{z}$$

$$\underline{\mathbf{x}} \sqsubseteq \overline{\mathbf{z}}$$

$$R \underline{xy}\overline{z}$$

- ▶ The position of an <u>underlined</u> variable is closed *downwards* along \sqsubseteq .
- ▶ The position of an $\overline{overlined}$ variable is closed *upwards* along \sqsubseteq .

$$N \bar{z}$$

$$\underline{\mathbf{x}} \sqsubseteq \overline{\mathbf{z}}$$

$$xy R \overline{z}$$

- ▶ The position of an <u>underlined</u> variable is closed downwards along \sqsubseteq .
- ▶ The position of an $\overline{overlined}$ variable is closed *upwards* along \sqsubseteq .

$$R \overline{z}$$

 $\underline{x} R \overline{z}$

 $xy R \overline{z}$

- ▶ The position of an <u>underlined</u> variable is closed downwards along \sqsubseteq .
- ▶ The position of an $\overline{overlined}$ variable is closed *upwards* along \sqsubseteq .

Collection Relations

Rz x Rz xy Rz

Collection Relations

XRz

X is a finite *collection* of elements of P; z is in P.

What kind of finite collection?

Trees Lists Multisets Sets more...

What kind of finite collection?

Trees Lists Multisets Sets more...

$$Rxyz \iff Ryxz$$

 $R^2(xy)zw \iff R'^2x(yz)w$

What kind of finite collection?

Trees Lists Multisets Sets more...

$$\begin{array}{ccc} Rxyz & \Longleftrightarrow & Ryxz \\ R^2(xy)zw & \Longleftrightarrow & R'^2x(yz)w \end{array}$$

MULTISET RELATIONS

(Finite) Multisets

[1,2] [1,1,2] [1,2,1] [1]

Greg Restall Collection Frames, for Substructural Logics 160

Finding our Target

$$R \subseteq \mathcal{M}(P) \times P$$

Finding our Target

$$R \subseteq \mathcal{M}(P) \times P$$

R generalises \sqsubseteq .

Finding our Target

$$R \subseteq \mathcal{M}(P) \times P$$

R generalises \sqsubseteq .

So, it should satisfy analogues of reflexivity and transitivity.

Reflxivity

[x] R x

X R x

 $X R x [x] \cup Y R y$

 $X R x [x] \cup Y R y X \cup Y R y$

$$(X R x \land [x] \cup Y R y) \Rightarrow X \cup Y R y$$

$$(X R x \land [x] \cup Y R y) \Rightarrow X \cup Y R y$$

 $X \cup Y R y$

$$(X R x \wedge [x] \cup Y R y) \Rightarrow X \cup Y R y$$
$$X \cup Y R y \qquad X R x$$

$$(X R x \wedge [x] \cup Y R y) \Rightarrow X \cup Y R y$$

$$X \cup Y R y \qquad X R x \qquad [x] \cup Y R y$$

$$(X R x \land [x] \cup Y R y) \Rightarrow X \cup Y R y$$

$$X \cup Y R y \Rightarrow (\exists x)(X R x \land [x] \cup Y R y)$$

$$(\exists x)(X \ R \ x \land [x] \cup Y \ R \ y) \Leftrightarrow X \cup Y \ R \ y$$

Left to Right

Right to Left

Compositional Multiset Relations

$$R \subseteq \mathcal{M}(P) \times P$$
 is compositional iff for each $X, Y \in \mathcal{M}(P)$ and $y \in P$

- [y] R y
- $(\exists x)(X R x \land [x] \cup Y R y) \iff X \cup Y R y$

SUM
$$y = \Sigma X$$
 (where $\Sigma[] = 0$)

SUM
$$y = \Sigma X$$
 (where $\Sigma[] = 0$)

PRODUCT
$$y = \Pi X$$
 (where $\Pi[] = 1$)

SUM
$$y = \Sigma X$$
 (where $\Sigma[] = 0$)

PRODUCT
$$y = \Pi X$$
 (where $\Pi[] = 1$)

SOME SUM for some
$$X' < X$$
, $y = \Sigma X'$

SUM
$$y = \Sigma X$$
 (where $\Sigma[] = 0$)

PRODUCT
$$y = \Pi X$$
 (where $\Pi[] = 1$)

SOME SUM for some
$$X' \leq X$$
, $y = \Sigma X'$

SOME PROD. for some
$$X' \leq X$$
, $y = \Pi X'$

X R y iff...
$$sum \ y = \Sigma X \ (where \ \Sigma[\] = 0)$$

$$product \ y = \Pi X \ (where \ \Pi[\] = 1)$$

$$some \ sum \ for \ some \ X' \le X, \ y = \Sigma X'$$

$$some \ prod. \ for \ some \ X' \le X, \ y = \Pi X'$$

$$maximum \ y = max(X) \ (where \ max[\] = 0)$$

Sum

$$X R y iff y = \Sigma X$$

Sum

$$X R y iff y = \Sigma X$$

 $\text{refl. } n = \Sigma[n]$

Sum

$$X R y iff y = \Sigma X$$

refl.
$$n=\Sigma[n]$$
 trans. $y=\Sigma(X\cup Y)=\Sigma X+\Sigma Y=\Sigma([\Sigma X]\cup Y).$

X R y iff for some $X' \leq X$, $y = \Pi X'$

$$X R y iff for some X' \leq X, y = \Pi X'$$

Refl. $n = \Pi[n]$

X R y iff for some
$$X' \leq X$$
, $y = \Pi X'$

REFL.
$$n = \Pi[n]$$

TRANS. $Z \leq X \cup Y$ iff for some $X' \leq X$ and $Y' \leq Y$, $Z = X' \cup Y'$,

X R y iff for some
$$X' \leq X$$
, $y = \Pi X'$

REFL.
$$n = \Pi[n]$$

TRANS. $Z \le X \cup Y$ iff for some $X' \le X$ and $Y' \le Y$, $Z = X' \cup Y'$, so $X \cup Y$ R y iff for some $X' \le X$ and $Y' \le Y$, $y = \Pi(X' \cup Y')$.
But $\Pi(X' \cup Y') = \Pi X' \times \Pi Y' = \Pi([\Pi X'] \cup Y')$, and $X \in \Pi X'$.

 $X R y iff y \in X$

$$X R y iff y \in X$$

Refl. $n \in [n]$

$$X R y iff y \in X$$

Refl. $n \in [n]$

TRANS. Left to right: If $x \in X$ and $y \in ([x] \cup Y)$, then $y \in X \cup Y$.

$$X R y iff y \in X$$

Refl. $n \in [n]$

TRANS. Left to right: If $x \in X$ and $y \in ([x] \cup Y)$, then $y \in X \cup Y$.

Right to left: Suppose $y \in X \cup Y$. Is there some $x \in X$ where

 $y \in [x] \cup Y$?

$X R y iff y \in X$

Refl. $n \in [n]$

TRANS. Left to right: If $x \in X$ and $y \in ([x] \cup Y)$, then $y \in X \cup Y$.

Right to left: Suppose $y \in X \cup Y$. Is there some $x \in X$ where $y \in [x] \cup Y$?

If X is non-empty, sure: pick y if $y \in X$, and an arbitrary member otherwise.

$X R y iff y \in X$

Refl. $n \in [n]$

TRANS. Left to right: If $x \in X$ and $y \in ([x] \cup Y)$, then $y \in X \cup Y$.

Right to left: Suppose $y \in X \cup Y$. Is there some $x \in X$ where $y \in [x] \cup Y$?

If X is non-empty, sure: pick y if $y \in X$, and an arbitrary member otherwise.

But this fails when X = [].

Membership?

$X R y iff y \in X$

Refl. $n \in [n]$

TRANS. Left to right: If $x \in X$ and $y \in ([x] \cup Y)$, then $y \in X \cup Y$.

Right to left: Suppose $y \in X \cup Y$. Is there some $x \in X$ where $y \in [x] \cup Y$?

If X is non-empty, sure: pick y if $y \in X$, and an arbitrary member otherwise.

But this fails when X = [].

Membership is a compositional relation on $\mathcal{M}'(\omega) \times \omega$, on *non-empty* multisets.

Between?

 $min(X) \le y \le max(X)$

Between?

$$min(X) \le y \le max(X)$$

This is also compositional on $\mathcal{M}'(\omega) \times \omega$.

MULTISET FRAMES

Order

Consider the binary relation \sqsubseteq on P given by setting $x \sqsubseteq y$ iff [x] R y. This is a preorder on P.

Order

Consider the binary relation \sqsubseteq on P given by setting $x \sqsubseteq y$ iff [x] R y. This is a preorder on P.

[x] R x

Order

Consider the binary relation \sqsubseteq on P given by setting $x \sqsubseteq y$ iff [x] R y.

This is a preorder on P.

[x] R x

If [x] R y and [y] R z, then since [x] R y and [y] \cup [] R z, we have [x] R z, as desired.

R respects order

 $\underline{X} R \overline{y}$

Propositions

If $x \Vdash p$ and [x] R y then $y \Vdash p$

 \triangleright $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$

- $ightharpoonup x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$

- $ightharpoonup x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.

- $ightharpoonup x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.
- \triangleright x \Vdash A \circ B iff for some y, z where [y, z]Rx, both y \Vdash A and z \Vdash B.

- \triangleright $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.
- ▶ $x \Vdash A \circ B$ iff for some y, z where [y, z]Rx, both $y \Vdash A$ and $z \Vdash B$.
- $ightharpoonup x \Vdash t iff[]Rx.$

- \triangleright $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.
- ▶ $x \Vdash A \circ B$ iff for some y, z where [y, z]Rx, both $y \Vdash A$ and $z \Vdash B$.
- \triangleright x \Vdash t iff[]Rx.

This models the logic RW^+ .

- \triangleright $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.
- ▶ $x \Vdash A \circ B$ iff for some y, z where [y, z]Rx, both $y \Vdash A$ and $z \Vdash B$.
- $ightharpoonup x \Vdash t iff[]Rx.$

This models the logic RW^+ .

Our frames *automatically* satisfy the RW⁺ conditions:

- \triangleright $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.
- ▶ $x \Vdash A \circ B$ iff for some y, z where [y, z]Rx, both $y \Vdash A$ and $z \Vdash B$.
- $ightharpoonup x \Vdash t iff[]Rx.$

This models the logic RW^+ .

Our frames *automatically* satisfy the RW⁺ conditions:

 $[x,y]Rz \Leftrightarrow [y,x]Rz$

- \triangleright $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B.$
- \triangleright $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B.$
- ▶ $x \Vdash A \rightarrow B$ iff for each y, z where [x, y]Rz, if $y \Vdash A$ then $z \Vdash B$.
- ▶ $x \Vdash A \circ B$ iff for some y, z where [y, z]Rx, both $y \Vdash A$ and $z \Vdash B$.
- $ightharpoonup x \Vdash t iff[]Rx.$

This models the logic RW^+ .

Our frames *automatically* satisfy the RW⁺ conditions:

$$[x,y]Rz \Leftrightarrow [y,x]Rz$$

 $(\exists v)([x,y]Rv \land [v,z]Rw) \Leftrightarrow (\exists u)([y,z]Ru \land [x,u]Rw)$

Ternary Relational Frames for RW⁺

$$\langle P, N, \sqsubseteq, R \rangle$$

- ▶ P: a non-empty set
- $ightharpoonup N \subset P$
- $ightharpoonup \sqsubseteq \subseteq P \times P$
- $R \subseteq P \times P \times P$

- 1. N is non-empty.
- 2. \sqsubseteq is a partial order (or preorder).
- R is downward preserved in the its two positions and upward preserved in the third.
- 4. $y \sqsubseteq y' \text{ iff } (\exists x) (Nx \land Rxyy').$
- Rxyz ⇔ Rxyz
- 6. $(\exists v)(Rxyv \land Rvzw) \Leftrightarrow (\exists u)(Ryzu \land Rxuw)$

Multiset Frames for RW⁺

$$\langle P, R \rangle$$

- ▶ P: a non-empty set
- $ightharpoonup R \subseteq \mathcal{M}(P) \times P$

1. R is compositional. That is, [x] R x and $(\exists x)(X \ R \ x \land [x] \cup Y \ R \ y) \Leftrightarrow X \cup Y \ R \ y$

SOUNDNESS

Soundness Proof

Standard argument, by induction on the length of a proof.

It is straightforward in a natural deduction sequent system for RW⁺.

Soundness Proof

Standard argument, by induction on the length of a proof.

It is straightforward in a natural deduction sequent system for RW⁺.

Show that if $\Gamma > A$ is derivable, then for any model, if $x \Vdash \Gamma$ then $x \Vdash A$.

Soundness Proof

Standard argument, by induction on the length of a proof.

It is straightforward in a natural deduction sequent system for RW⁺.

Show that if $\Gamma \succ A$ is derivable, then for any model, if $x \Vdash \Gamma$ then $x \Vdash A$.

Extend \vdash to structures by setting

$$x \Vdash \epsilon \text{ iff } [] R x$$

$$x \Vdash \Gamma, \Gamma' \text{ iff } x \Vdash \Gamma \text{ and } x \Vdash \Gamma'$$

 $x \Vdash \Gamma$; Γ' iff for some y, z where [y, z] R x, $y \Vdash \Gamma$ and $y \Vdash \Gamma'$

COMPLETENESS

Completeness Proof

The canonical RW⁺ frame is a multiset frame.

BEYOND MULTISETS

Membership, Betweenness, . . .

Membership, Betweenness, ...

 $(\exists x)(X R x \land [x] \cup Y R y) \Leftrightarrow X \cup Y R y$

Membership, Betweenness, ...

$$(\exists x)(X R x \land [x] \cup [] R y) \Leftrightarrow X \cup [] R y$$

Membership, Betweenness, ...

 $(\exists x)(X \ R \ x \land Y(x) \ R \ y) \Leftrightarrow Y(X) \ R \ y$

Membership, Betweenness, . . .

$$(\exists x)(X R x \land Y(x) R y) \Leftrightarrow Y(X) R y$$

If Y(x) is a multiset containing x and X is a multiset, Y(X) is the multiset found by *replacing* x in Y(x) by X, in the natural way.

e.g., if
$$Y(x)$$
 is $[1, 2, 3, x]$ then $Y([3, 4])$ is $[1, 2, 3, 3, 4]$.

Frames on non-empty multisets model RW^+ without t. There are *no* normal points.

Frames on non-empty multisets model RW $^+$ without t. There are *no* normal points.

They model *entailment* but not *logical truth*.

(Sequents $\Gamma > A$ with a non-empty right hand side.)

Sets

$$R\subseteq \mathcal{P}^{\text{fin}}(P)\times P$$

Sets

$$R \subseteq \mathcal{P}^{fin}(P) \times P$$

$${}_{\{x\} R x}$$

Sets

$$R \subseteq \mathcal{P}^{fin}(P) \times P$$

$${}_{\{x\} R x}$$

 $(\exists x)(X R x \land Y(x) R y) \Leftrightarrow Y(X) R y$

Contraction

Since $\{x\}$ R x, we have $\{x, x\}$ R x.

Contraction

Since $\{x\}$ R x, we have $\{x, x\}$ R x.

Set frames are models of R⁺.

Contraction

Since $\{x\}$ R x, we have $\{x, x\}$ R x.

Set frames are models of R⁺.

OPEN QUESTION: Is the logic of set frames *exactly* R⁺?

Lists, Trees

We can take collections to be *lists* (order matters) or *leaf-labelled binary trees* (associativity matters), and the generalisation works well.

We can model the Lambek Calculus (lists), or the basic substructural logic B^+ (trees).

Lists, Trees

We can take collections to be *lists* (order matters) or *leaf-labelled binary trees* (associativity matters), and the generalisation works well.

We can model the Lambek Calculus (lists), or the basic substructural logic B^+ (trees).

The *empty list* is straightforward and natural.

The *empty tree* is less straightforward.

(To get the logic B^+ take the empty tree to be a *left* but not a *right* identity.)

Finite Structures

There is a general mathematical theory of finite structures. (The theory of *species*.)

Finite Structures

There is a general mathematical theory of finite structures. (The theory of *species*.)

What *other* finite structures give rise to natural logics like these?

The Upshot

▶ The collection of conditions on N, \sqsubseteq , R in ternary frames are not *ad hoc*, but arise out of a single underlying phenomenon, the *compositional relation*.

The Upshot

- ▶ The collection of conditions on N, \sqsubseteq , R in ternary frames are not *ad hoc*, but arise out of a single underlying phenomenon, the *compositional relation*.
- ► Identifying compositional relations on structures is a way to look for *natural* models of substructural logics.

The Upshot

- ▶ The collection of conditions on N, \sqsubseteq , R in ternary frames are not *ad hoc*, but arise out of a single underlying phenomenon, the *compositional relation*.
- ► Identifying compositional relations on structures is a way to look for *natural* models of substructural logics.
- ▶ Different logics are found by varying the *collections* being related, whether sets, multisets, lists, trees or something else.

THANK YOU!