Calcul Différentiel II

STEP, MINES ParisTech

9 décembre 2020 (#a46c5a3)

Question 1 (réponses multiples)	Cochez la case s'il est possibe d'expliciter
une dépendance fonctionnelle de la forr	ne $x = \psi(\lambda)$ par le théorème des fonctions
implicites quand:	

- \square A: $x\lambda^2 + x^2\lambda 1 = 0$ au voisinage de $(x, \lambda) = (1, 1)$,
- □ B: $\sin(\lambda x_1) + \sin(\lambda x_2) = 0$ au voisinage de $(x_1, x_2, \lambda) = (0, 0, 0)$, □ C: $\lambda x_1^2 + x_2 = x_1 + \lambda x_2^2 = 2$ au voisinage de $(x_1, x_2, \lambda) = (1, 1, 1)$.

Question 2 La méthode de Newton appliquée à la recherche d'une solution de

$$x^2 - 1 = 0, x \in \mathbb{R}$$

produit une suite de valeurs réelles \boldsymbol{x}_k définies par la récurrence

Question 3 Une fonction $f:\mathbb{R}^2\mapsto\mathbb{R}^2$ continûment différentiable et dont la matrice jacobienne est inversible en tout point est un C^1 -difféomorphisme de \mathbb{R}^2 sur son image $f(\mathbb{R}^2)$.

- ☐ A: vrai,
- \square B: faux.

Question 4 (réponses multiples) Le symbole ε désigne l'epsilon machine des doubles. Le nombre d'or $x=(1+\sqrt{5})/2\approx 1.618$ peut être représenté par un double x avec une erreur |x - x|:

- \square A: de l'ordre de $1.618 \times \varepsilon$,
- \square B: de l'ordre de ε ,
- \square C: de l'ordre de $\varepsilon/2$.
- $\hfill\Box$ D: nulle.

Question 5 Quand le double positif x diminue, l'erreur entre

$$y = ((1.0 + x) - 1.0) / x$$

et la valeur attendue 1.0

 □ A: augmente (de façon monotone), □ B: augmente (en tendance générale), □ C: diminue (en tendance générale).
Question 6 Appliquée à une fonction d'une variable, la méthode de différentiation automatique :
$\hfill\Box$ A: produit une fonction dérivée exacte,
☐ B: produit une fonction dérivée correctement arrondie,
☐ C: produit une fonction dérivée sans erreur de troncature.