Linearization of Powers of the Golden Ratio

The golden ratio φ and the golden ratio conjugate φ are defined as

Assume *n* is a positive integer and $F_0 = 0$.

(a) Using $\phi^2 = \phi + 1$, prove by mathematical induction the following linearization of powers of the golden ratio:

$$\phi^n = F_n \phi + F_{n-1}.$$

Base case: For n = 1, $\phi^1 = F_1 \phi + F_{1-1} = (1)\phi + F_{0-1} = (1)\phi + 0$, so we get $\phi = \phi$, which is true.

Induction step: Suppose the equality is true for a positive integer n = k.

$$\phi^{k}$$

$$= \phi \phi^{k}$$

$$= \phi (F_{k}\phi + F_{k-1})$$

$$= \phi^{2}F_{k} + \phi F_{k-1}$$

$$= (\phi + 1)F_{k}$$

$$+ \phi F_{k-1}$$

$$= \phi (F_{k} + F_{k-1}) + F_{k}$$

$$= F_{k+1}\phi + F_{k}$$

Therefore, $\phi^n = F_n \phi + F_{n-1}$ is true for n = k + 1 and thus for all positive integers.

(a) Using $\phi^2 = -\phi + 1$, prove by mathematical induction the following linearization of powers of the golden ratio:

$$(-\varphi)^n = F_n \varphi + F_{n-1}.$$

Base case: For n = 1, $(-\phi)^1 = -F_1\phi + F_{1-1} = -\phi + F_{0-1} = -\phi + 0$, so we get $-\phi = -\phi$, which is true.

Induction step: Suppose the equality is true for a positive integer n = k.

$$\begin{aligned} & = -\phi (-\phi)^k \\ & -\phi \end{aligned} \\ & = -\phi (-F_k \phi \\ & + F_{k-1}) \\ & = \phi^2 F_k - \phi F_{k-1} \\ & = (-\phi + 1) F_k \\ & -\phi F_{k-1} \\ & = -\phi (F_k + F_{k-1}) \\ & + F_k \end{aligned}$$

Therefore, $(-\varphi)^n = F_n \varphi + F_{n-1}$ is true for n = k+1 and thus for all positive integers.