Writing a Thesis or Dissertation for University of Idaho with LaTeX

Joe Vandal

University of Idaho • Idaho Falls Center for Higher Education Department of Nuclear Engineering and Industrial Management

December 6th, 2023

University of Idaho

Department of Nuclear Engineering and Industrial Management

About the Author

Experience

B.S Chemical Engineering (2015-2019) - Michigan Technological University M.S. Nuclear Engineering (2021-2023) - University of Idaho - NRC Fellow Modeling and Simulation Intern at Idaho National Lab

Select Publications

Vandal, J., et al., 2023. A paper that is also a thesis chapter.

Journal of Idaho 100, 123456

Root, S. J., 5 2024. Dynamic system modeling and pid controller design for a molten salt microreactor.

Master's thesis, University of Idaho

LaTeX Defense Joe Vandal

Introduction
Subsections
Conclusions

Outline

- Introduction
- 2 Subsections
- 3 Conclusions

- Introduction
- 2 Subsections
- 3 Conclusions

Background

Block 1

- Item 1
- Item 2
- Item 3
- Item 4

Block 2

Block 3

Defense
Joe Vandal

Introduction

'and a 'and

Background

Block 1

Block 2

- Item 1
- Item 2
- Item 3

Block 3

Defense
Joe Vandal

Introduction

onclusions

eferences

Background

Block 1

Block 2

Block 3

- Item 1
- Item 2
- Item 3

Defense
Joe Vandal

Introduction

insections .

eferences

Molten Salt Nuclear Battery

Left Block 1

- Item 1
- Item 2
- Item 3

Left Block 2

ANS Logo

LaTeX Defense Joe Vandal

Introduction
Subsections
Conclusions

Molten Salt Nuclear Battery

Left Block 1

Left Block 2

- Item 1
- Item 2
- Item 3

University of Idaho

Department of Nuclear Engineering and Industrial Management

Uldaho Logo

LaTeX Defense Joe Vandal

Introduction
Subsections

Citations

LaTeX Defense

A Citation [1]

- Item 1
- Item 2

Another Citation [2]

Journal of Idaho 100, 123456

No Citation

Joe Vandal

ubsections

Conclusions

^[1] Vandal, J., et al., 2023. A paper that is also a thesis chapter.

^[2] Root, S. J., 5 2024. Dynamic system modeling and pid controller design for a molten salt microreactor. Master's thesis, University of Idaho

Citations

LaTeX Defense Joe Vandal

Introduction

A Citation [1]

Another Citation [2]

- Item 1
- Item 2

No Citation

^[1] Vandal, J., et al., 2023. A paper that is also a thesis chapter. Journal of Idaho 100, 123456

Citations

LaTeX

A Citation [1]

Another Citation [2]

No Citation

• Item 1

Defense Joe Vandal

Introduction

^[1] Vandal, J., et al., 2023. A paper that is also a thesis chapter. Journal of Idaho 100, 123456

^[2] Root, S. J., 5 2024. Dynamic system modeling and pid controller design for a molten salt microreactor. Master's thesis. University of Idaho

- 1 Introduction
- 2 Subsections
 - Subsection 1
 - Subheadings
- 3 Conclusions

LaTeX Defense Joe Vandal

Subsections

Conclusion

Reference

Subsection 1

A Tikz Drawing

Defense

Joe Vandal

Introduction Subsections

Conclusions

LaTeX Defense Joe Vandal

Subsections

Conclusions

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{de(t)}{dt}}_{\text{Derivative}}$$

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{de(t)}{dt}}_{\text{Derivative}}$$

Proportional

- Control output is manipulated in proportion to the error defined by the proportional gain constant
- High gain yields an aggressive controller that is prone to overshooting the setpoint
- Low gain may result in steady-state offset

Integral

Derivative

LaTeX Defense

Joe Vandal

Subsections

Conclusions

eferences

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{de(t)}{dt}}_{\text{Derivative}}$$

Proportional

Integral

- Considers cumulative error to help eliminate steady-state offset
- As the process variable settles around the set-point, the cumulative error approaches a constant value and the effect of the integral controller diminishes.

Derivative

LaTeX Defense Joe Vandal

Subsections

Conclusion

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{d e(t)}{dt}}_{\text{Derivative}}$$

Proportional

Integral

Derivative

- Estimates the time rate of change of the error to dampen overshoot
- Backs-off the proportional response when the process variable rapidly approaches the set-point
- Can be difficult to tune

LaTeX Defense Joe Vandal

Introduction

Subsections

LaTeX Defense Joe Vandal

. . . .

Subsections

Conclusion

Reference

Subheadings

Heading

Defense

Joe Vandal

Subsections Subsections

C

Reference

No subheading on this slide

LaTeX Defense Joe Vandal

4.0

Subsections

Conclusions

References

Block for second slide

- Textbook Citation with chapter [3, Ch. 7]
- Another textbook citation with chapter [4, Ch. 6]

Block for third slide

^[3] Kerlin, T. W. et al., 2019. Dynamics and Control of Nuclear Reactors. Knoxville, Tennessee: Elsevier Inc

LaTeX Defense Joe Vandal

Subsections

Conclusions

eferences

Block for second slide

Block for third slide

- A citation that only appears for the third frame [1]
- Item 2

Block for 4th slide

- Emphasis emphasis
- Item 2
- ullet $t_{1/2}$ halflife bring back the citation from the second slide [4, Ch. 6]

$$^{87}Br \xrightarrow{\beta^{-}} ^{87}Kr^{*} \rightarrow ^{86}Kr + n$$

Block for fifth slide

LaTeX Defense Joe Vandal

Subsections

Conclusions

eferences

LaTeX Defense Joe Vandal

Joe Valle

Subsections

Conclusion:

Reference

Block for 4th slide

Block for fifth slide

- Precursors produced near the core exit and long lived precursors may emit their neutrons outside of the core
- These neutrons are effectively lost from the fission chain reaction [3, Ch. 3]
- Larger power transport requires a higher flow rate
- Greater delayed neutron losses
- Negative feedback

A Table

Years	$c_4 \times 10^9$	$c_3 \times 10^6$	$c_2\times10^4$	$c_1 \times 10^2$	c ₀	root (°)	slope $(pcm/^o)$
0.0	-2.797	1.789	-4.361	4.829	-2.009	111.41	224.24
0.5	-2.755	1.755	-4.272	4.732	-1.976	113.69	203.69
1.0	-1.838	1.253	-3.253	3.826	-1.682	115.79	189.71
1.5	-2.533	1.632	-3.253	4.507	-1.909	117.38	175.96
2.0	-2.418	1.578	-3.930	4.440	-1.895	119.45	161.06
2.5	-1.461	1.026	-2.750	3.337	-1.515	121.06	152.71
3.0	-1.137	0.856	-2.425	3.070	-1.440	122.67	146.08
3.5	-2.054	1.357	-3.433	3.953	-1.727	124.58	130.85
4.0	-2.527	1.617	-3.967	4.438	-1.892	126.46	120.67
4.5	-2.869	1.831	-4.460	4.935	-2.081	128.35	111.30
5.0	-2.338	1.520	-3.785	4.291	-1.855	130.55	102.04
5.5	-1.471	1.054	-2.852	3.467	-1.585	132.29	93.34
6.0	-2.626	1.702	-4.211	4.729	-2.027	134.96	83.90
6.5	-1.672	1.141	-2.985	3.550	-1.607	137.45	77.56
7.0	-3.321	2.095	-5.036	5.492	-2.292	139.19	69.73
7.5	-2.419	1.579	-3.936	4.459	-1.932	142.69	59.45
8.0	-7.991	0.648	-1.960	2.623	-1.305	144.62	55.65

LaTeX Defense Joe Vandal

Introduction
Subsections

ferences

- 1 Introduction
- 2 Subsections
- 3 Conclusions

Conclusions

Summary of Work Completed

- Item 1
- Item 2
- Item 3

Results In-Brief

Defense

Joe Vandal

Introduction

Conclusions

Conclusions

Summary of Work Completed

Results In-Brief

- Item 1
- Item 2
- Item 3

Defense
Joe Vandal

introduction

Acknowledgements

This work and my coursework is being completed under a Graduate Fellowship funded by Nuclear Regulatory Commission (NRC).

LaTeX Defense Joe Vandal

Subsections
Conclusions

University of Idaho

Department of Nuclear Engineering and Industrial Management

References I

1. Vandal, J., et al., 2023. A paper that is also a thesis chapter. Journal of Idaho 100, 123456.

- 2. Root, S. J., 5 2024. Dynamic system modeling and pid controller design for a molten salt microreactor. Master's thesis, University of Idaho.
- 3. Kerlin, T. W. et al., 2019. Dynamics and Control of Nuclear Reactors. Knoxville, Tennessee: Elsevier Inc.
- 4. Duderstadt, J. J. et al., 1976. Nuclear Reactor Analysis. New York, NY: Wiley & Sons, first edition.

LaTeX Defense Joe Vandal

Subsections
Conclusions
References