Final Project Submission

Please fill out:

Student name: Jonathan Roman

· Student pace: Self paced

Scheduled project review date/time: April 29th, 2022, 9AM

Instructor name: Claude Fried

· Blog post URL:

Overview

This project analyzes the relationship between home ownership prices and factors that can influence those prices. Information from the data comes from King County data. Predictive analysis is done to help with possible upgrades to benefit homeowners.

Business Problem

A real estate firm wants to help their clients (Homeowners) sell their homes at a great price. The analysis can help show correlations between what drives the value of a home and may advise the homeowner to make the necessary upgrades to get better value for their homes.

Data Understanding

```
In [1]: # Your code here - remember to use markdown cells for comments as well!
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline

df = pd.read_csv('data/kc_house_data.csv')
   df.head()
```

Out[1]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO

5 rows × 21 columns

4

In [2]: #Checking the information, there is a notice of object types in the information with df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

- 0. 00.			
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(6),	int64(9), object	t(6)
memor	ry usage: 3.5+ N	1B	

In [3]: #checking stats df.describe()

Out[3]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	21597
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	1
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	О
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	1
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	2
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3
4							•

Data Preprocessing

```
In [4]: #choosing relevant columns
df_new = df.drop(['id', 'date', 'lat', 'long', 'zipcode'], axis=1)
df_new.head()
```

Out[4]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	gra
0	221900.0	3	1.00	1180	5650	1.0	NaN	NONE	Average	Avera
1	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Average	Avera
2	180000.0	2	1.00	770	10000	1.0	NO	NONE	Average	6 L Avera
3	604000.0	4	3.00	1960	5000	1.0	NO	NONE	Very Good	Avera
4	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Average	8 G
4										•

In [5]: #checking columns after dropping df_new.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 16 columns):

```
#
    Column
                   Non-Null Count Dtype
 0
    price
                   21597 non-null float64
 1
    bedrooms
                   21597 non-null int64
 2
    bathrooms
                   21597 non-null float64
    sqft living
 3
                   21597 non-null int64
 4
    sqft_lot
                   21597 non-null int64
 5
    floors
                   21597 non-null float64
 6
    waterfront
                   19221 non-null object
 7
    view
                   21534 non-null object
 8
                   21597 non-null object
    condition
 9
    grade
                   21597 non-null object
 10 sqft above
                   21597 non-null int64
 11
    sqft_basement 21597 non-null object
 12 yr_built
                   21597 non-null int64
 13
    yr_renovated
                   17755 non-null float64
    sqft living15 21597 non-null int64
 14
 15 sqft lot15
                   21597 non-null int64
dtypes: float64(4), int64(7), object(5)
memory usage: 2.6+ MB
```

```
In [6]: #Checking for missing values
        df_new.isna().sum()
Out[6]: price
                             0
        bedrooms
                             0
        bathrooms
                             0
        sqft living
                             0
        sqft_lot
                             0
        floors
                             0
        waterfront
                          2376
        view
                            63
        condition
                             0
        grade
                             0
        sqft_above
                             0
        sqft_basement
                             0
        yr built
                             0
        yr_renovated
                          3842
        sqft_living15
                             0
                             0
        sqft lot15
        dtype: int64
In [7]: #filling missing values for waterfront, view, yr_renovated with no type replaceme
        df_new.fillna({'waterfront':'NO', 'view':'NONE', 'yr_renovated': 0.0}, inplace=Tr
In [8]: | df_new['yr_renovated'].value_counts()
Out[8]: 0.0
                   20853
        2014.0
                      73
                      31
        2003.0
        2013.0
                      31
        2007.0
                      30
        1946.0
                       1
        1959.0
                       1
        1971.0
                       1
        1951.0
                       1
        1954.0
        Name: yr_renovated, Length: 70, dtype: int64
```

```
In [9]: df_new.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 16 columns):

		, ·	
#	Column	Non-Null Count	Dtype
0	price	21597 non-null	float64
1	bedrooms	21597 non-null	int64
2	bathrooms	21597 non-null	float64
3	sqft_living	21597 non-null	int64
4	sqft_lot	21597 non-null	int64
5	floors	21597 non-null	float64
6	waterfront	21597 non-null	object
7	view	21597 non-null	object
8	condition	21597 non-null	object
9	grade	21597 non-null	object
10	sqft_above	21597 non-null	int64
11	sqft_basement	21597 non-null	object
12	yr_built	21597 non-null	int64
13	yr_renovated	21597 non-null	float64
14	sqft_living15	21597 non-null	int64
15	sqft_lot15	21597 non-null	int64
dtyp	es: float64(4),	int64(7), object	է(5)
memo	ry usage: 2.6+ N	MB	

```
In [10]: #checking objects
         df_objects = df_new[['waterfront', 'view', 'condition', 'grade', 'sqft_basement']
         for col in (df objects):
             print(df objects[col].value counts(),
                   "----")
         NO
                21451
         YES
                  146
         Name: waterfront, dtype: int64 -----
         NONE
                      19485
                       957
         AVERAGE
         GOOD
                       508
         FAIR
                       330
         EXCELLENT
                       317
         Name: view, dtype: int64 -----
                     14020
         Average
         Good
                       5677
         Very Good
                      1701
         Fair
                       170
         Poor
                        29
         Name: condition, dtype: int64 ------
         7 Average
                         8974
         8 Good
                          6065
         9 Better
                          2615
         6 Low Average
                         2038
         10 Very Good
                         1134
         11 Excellent
                          399
         5 Fair
                           242
         12 Luxury
                           89
         4 Low
                           27
         13 Mansion
                           13
         3 Poor
                            1
         Name: grade, dtype: int64 -----
         0.0
                   12826
         ?
                     454
         600.0
                     217
         500.0
                     209
         700.0
                     208
         2310.0
                      1
         2490.0
                       1
         2196.0
                       1
         792.0
                       1
         1816.0
                       1
```

Name: sqft basement, Length: 304, dtype: int64 ------

```
In [11]: # converting sqft_basement to float and converting "?" to nan value
         df_new['sqft_basement'].replace('?', np.nan, inplace=True)
         df_new['sqft_basement'].astype('float64')
Out[11]: 0
                     0.0
                   400.0
         1
         2
                     0.0
         3
                   910.0
         4
                     0.0
                   . . .
         21592
                    0.0
         21593
                     0.0
         21594
                     0.0
         21595
                     0.0
         21596
                     0.0
         Name: sqft_basement, Length: 21597, dtype: float64
In [12]: #Converting sqft_basement "?" to column for imputing
         from sklearn.impute import MissingIndicator
         basement = df_new[['sqft_basement']]
         missing_indicator = MissingIndicator()
         missing indicator.fit(basement)
         basement result = missing indicator.transform(basement)
         basement_result
Out[12]: array([[False],
                 [False],
                 [False],
                 . . . ,
                 [False],
                 [False],
                 [False]])
```

```
In [13]: df_new['sqft_basement_missing'] = basement_result
df_new
```

Out[13]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
0	221900.0	3	1.00	1180	5650	1.0	NO	NONE	Average
1	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Average
2	180000.0	2	1.00	770	10000	1.0	NO	NONE	Average
3	604000.0	4	3.00	1960	5000	1.0	NO	NONE	Very Good
4	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Average
21592	360000.0	3	2.50	1530	1131	3.0	NO	NONE	Average
21593	400000.0	4	2.50	2310	5813	2.0	NO	NONE	Average
21594	402101.0	2	0.75	1020	1350	2.0	NO	NONE	Average
21595	400000.0	3	2.50	1600	2388	2.0	NO	NONE	Average
21596	325000.0	2	0.75	1020	1076	2.0	NO	NONE	Average

21597 rows × 17 columns

In [15]: df_new['sqft_basement'] = basement_imputed
df_new

Out[15]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
0	221900.0	3	1.00	1180	5650	1.0	NO	NONE	Average
1	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Average
2	180000.0	2	1.00	770	10000	1.0	NO	NONE	Average
3	604000.0	4	3.00	1960	5000	1.0	NO	NONE	Very Good
4	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Average
21592	360000.0	3	2.50	1530	1131	3.0	NO	NONE	Average
21593	400000.0	4	2.50	2310	5813	2.0	NO	NONE	Average
21594	402101.0	2	0.75	1020	1350	2.0	NO	NONE	Average
21595	400000.0	3	2.50	1600	2388	2.0	NO	NONE	Average
21596	325000.0	2	0.75	1020	1076	2.0	NO	NONE	Average

21597 rows × 17 columns

In [16]: df_new.isna().sum()

Out[16]: price 0 bedrooms 0 bathrooms 0 sqft_living 0 sqft_lot 0 floors 0 waterfront 0 view 0 0 condition grade 0 sqft_above 0 sqft_basement 0 0 yr_built 0 yr_renovated sqft_living15 0 sqft_lot15 0 sqft_basement_missing 0

dtype: int64

In [17]: #converting boolean column sqft_basement_missing to binary values
df_new['sqft_basement_missing'] = df_new['sqft_basement_missing'].astype(int)
df_new

Out[17]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
0	221900.0	3	1.00	1180	5650	1.0	NO	NONE	Average
1	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Average
2	180000.0	2	1.00	770	10000	1.0	NO	NONE	Average
3	604000.0	4	3.00	1960	5000	1.0	NO	NONE	Very Good
4	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Average
21592	360000.0	3	2.50	1530	1131	3.0	NO	NONE	Average
21593	400000.0	4	2.50	2310	5813	2.0	NO	NONE	Average
21594	402101.0	2	0.75	1020	1350	2.0	NO	NONE	Average
21595	400000.0	3	2.50	1600	2388	2.0	NO	NONE	Average
21596	325000.0	2	0.75	1020	1076	2.0	NO	NONE	Average

21597 rows × 17 columns

```
In [18]: #Dealing with ordinal categories using pandas
          df new['view'] = df new['view'].astype('category')
          df new['condition'] = df new['condition'].astype('category')
          df_new['grade'] = df_new['grade'].astype('category')
          print(df new['view'])
          print(df new['condition'])
          print(df_new['grade'])
                    NONE
          0
          1
                    NONE
          2
                    NONE
          3
                    NONE
          4
                    NONE
          21592
                    NONE
          21593
                    NONE
          21594
                    NONE
          21595
                    NONE
          21596
                    NONE
          Name: view, Length: 21597, dtype: category
          Categories (5, object): ['AVERAGE', 'EXCELLENT', 'FAIR', 'GOOD', 'NONE']
          0
                      Average
          1
                      Average
          2
                      Average
          3
                    Very Good
          4
                      Average
                      . . .
          21592
                      Average
          21593
                      Average
          21594
                      Average
          21595
                      Average
          21596
                      Average
          Name: condition, Length: 21597, dtype: category
          Categories (5, object): ['Average', 'Fair', 'Good', 'Poor', 'Very Good']
                        7 Average
          1
                        7 Average
          2
                    6 Low Average
          3
                        7 Average
                            8 Good
          4
                            8 Good
          21592
                            8 Good
          21593
          21594
                        7 Average
          21595
                            8 Good
                        7 Average
          Name: grade, Length: 21597, dtype: category
          Categories (11, object): ['10 Very Good', '11 Excellent', '12 Luxury', '13 Mans ion', ..., '6 Low Average', '7 Average', '8 Good', '9 Better']
```

```
student - Jupyter Notebook
In [19]: #reordering categories
          df new['view'] = df new['view'].cat.reorder categories(['NONE', 'FAIR', 'AVERAGE'
          df new['condition'] = df new['condition'].cat.reorder categories(['Poor', 'Fair']
          df_new['grade'] = df_new['grade'].cat.reorder_categories(['3 Poor', '4 Low', '5 F
                                                                            '9 Better', '10 Very Go
In [20]:
          # Assigning numbers to the categories
          df_new['view'] = df_new['view'].cat.codes
          df new['condition'] = df new['condition'].cat.codes
          df new['grade'] = df new['grade'].cat.codes
          df_new
Out[20]:
                     price
                           bedrooms
                                     bathrooms
                                                sqft_living sqft_lot floors waterfront view condition
               0 221900.0
                                                      1180
                                                                                       0
                                                                                                 2
                                   3
                                           1.00
                                                              5650
                                                                      1.0
                                                                                NO
                  538000.0
                                   3
                                           2.25
                                                      2570
                                                              7242
                                                                      2.0
                                                                                NO
                                                                                       0
                                                                                                 2
                  180000.0
                                   2
                                                      770
                                                             10000
                                                                                NO
                                                                                       0
                                                                                                 2
                                           1.00
                                                                      1.0
               3
                  604000.0
                                   4
                                           3.00
                                                      1960
                                                              5000
                                                                      1.0
                                                                                NO
                                                                                       0
                                                                                                 4
                  510000.0
                                                      1680
                                                                                                 2
                                   3
                                           2.00
                                                              8080
                                                                      1.0
                                                                                NO
                                                                                       0
                                  ...
                                                                                 ...
                                             ...
                                                                       ...
           21592
                  360000.0
                                   3
                                           2.50
                                                      1530
                                                              1131
                                                                      3.0
                                                                                NO
                                                                                       0
                                                                                                 2
           21593 400000.0
                                   4
                                           2.50
                                                      2310
                                                              5813
                                                                      2.0
                                                                                NO
                                                                                                 2
                                                                                       n
           21594 402101.0
                                   2
                                           0.75
                                                      1020
                                                              1350
                                                                      2.0
                                                                                NO
                                                                                       0
                                                                                                 2
           21595 400000.0
                                   3
                                           2.50
                                                      1600
                                                              2388
                                                                      2.0
                                                                                                 2
                                                                                NO
                                                                                       0
           21596 325000.0
                                                      1020
                                                              1076
                                                                                                 2
                                   2
                                           0.75
                                                                      2.0
                                                                                NO
                                                                                       0
          21597 rows × 17 columns
In [21]: #Dealing with binary category
          from sklearn.preprocessing import OrdinalEncoder
          waterfront_binary = df_new[['waterfront']]
          encoder waterfront = OrdinalEncoder()
```

```
encoder_waterfront.fit(waterfront_binary)
encoder waterfront.categories [0]
```

Out[21]: array(['NO', 'YES'], dtype=object)

```
In [22]: waterfront_encoded = encoder_waterfront.transform(waterfront_binary)
    waterfront_encoded = waterfront_encoded.flatten()
    waterfront_encoded
```

Out[22]: array([0., 0., 0., ..., 0., 0., 0.])

In [23]: #replacing column

df_new['waterfront'] = waterfront_encoded
 df_new

Out[23]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	g
0	221900.0	3	1.00	1180	5650	1.0	0.0	0	2	
1	538000.0	3	2.25	2570	7242	2.0	0.0	0	2	
2	180000.0	2	1.00	770	10000	1.0	0.0	0	2	
3	604000.0	4	3.00	1960	5000	1.0	0.0	0	4	
4	510000.0	3	2.00	1680	8080	1.0	0.0	0	2	
21592	360000.0	3	2.50	1530	1131	3.0	0.0	0	2	
21593	400000.0	4	2.50	2310	5813	2.0	0.0	0	2	
21594	402101.0	2	0.75	1020	1350	2.0	0.0	0	2	
21595	400000.0	3	2.50	1600	2388	2.0	0.0	0	2	
21596	325000.0	2	0.75	1020	1076	2.0	0.0	0	2	

21597 rows × 17 columns

In [24]: df_new['waterfront'].value_counts()

Out[24]: 0.0 21451 1.0 146

Name: waterfront, dtype: int64

In [25]: df_new.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 17 columns):

#	Column	Non-Null	Count	Dtype
0	price	21597 no	n-null	float64
1	bedrooms	21597 no	n-null	int64
2	bathrooms	21597 no	n-null	float64
3	sqft_living	21597 no	n-null	int64
4	sqft_lot	21597 no	n-null	int64
5	floors	21597 no	n-null	float64
6	waterfront	21597 no	n-null	float64
7	view	21597 no	n-null	int8
8	condition	21597 no	n-null	int8
9	grade	21597 no	n-null	int8
10	sqft_above	21597 no	n-null	int64
11	sqft_basement	21597 no	n-null	float64
12	yr_built	21597 no	n-null	int64
13	yr_renovated	21597 no	n-null	float64
14	sqft_living15	21597 no	n-null	int64
15	sqft_lot15	21597 no	n-null	int64
16	<pre>sqft_basement_missing</pre>	21597 no	n-null	int32
dtype	es: float64(6), int32(1)	, int64(7), int8	(3)
memor	∽y usage: 2.3 MB			

In [26]: df_new.describe()

Out[26]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wa
count	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	21597.000000	21597
mean	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	1.494096	0
std	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	0.539683	0
min	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.000000	0
25%	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	1.000000	0
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	2.000000	0
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1
4							

```
In [27]: #dealing with extreme outlier in bedrooms and sqft_living
    df_new = df_new[df_new['bedrooms'] < 10]
    df_new = df_new[df_new['sqft_living'] <= 10000]
    df_new.info()</pre>
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21589 entries, 0 to 21596
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	price	21589 non-null	float64
1	bedrooms	21589 non-null	int64
2	bathrooms	21589 non-null	float64
3	sqft_living	21589 non-null	int64
4	sqft_lot	21589 non-null	int64
5	floors	21589 non-null	float64
6	waterfront	21589 non-null	float64
7	view	21589 non-null	int8
8	condition	21589 non-null	int8
9	grade	21589 non-null	int8
10	sqft_above	21589 non-null	int64
11	sqft_basement	21589 non-null	float64
12	yr_built	21589 non-null	int64
13	yr_renovated	21589 non-null	float64
14	sqft_living15	21589 non-null	int64
15	sqft_lot15	21589 non-null	int64
16	<pre>sqft_basement_missing</pre>	21589 non-null	int32
	es: float64(6), int32(1) ry usage: 2.5 MB), int64(7), int8	3(3)

In [28]: #Checking heatmap for possible correlations to price
fig, ax = plt.subplots(figsize=(16,10))
sns.heatmap(df_new.corr(), annot=True);


```
In [29]: # Using scatter plots to check correlations
for i, col in enumerate(df_new.columns):
    plt.figure(i, figsize=(10,10))
    sns.scatterplot(x=col, y=df_new['price'], data=df_new)
    import matplotlib.ticker as mtick #importing ticker to customize tickers
    fmt = '${x:,.0f}' #setting the format to $
    tick = mtick.StrMethodFormatter(fmt) #appending it to a formatter
    plt.gca().yaxis.set_major_formatter(tick) #applying the format
```


Modeling

Baseline Model

```
In [30]:
         #setting up base model with highest correlated column to price from heatmap
         import statsmodels.api as sm
         import statsmodels.formula.api as smf
         x_basic = df_new['sqft_living']
         y_basic = df_new['price']
         model = sm.OLS(y basic, sm.add constant(x basic)).fit()
         model.summary()
Out[30]:
```

OLS Regression Results

Covariance Type:

Dep. Variable: R-squared: 0.489 price OLS Adj. R-squared: Model: 0.489 Method: Least Squares F-statistic: 2.069e+04 **Date:** Thu, 28 Apr 2022 Prob (F-statistic): 0.00 Time: 11:50:55 Log-Likelihood: -2.9966e+05 No. Observations: AIC: 5.993e+05 21589 **Df Residuals:** BIC: 5.993e+05 21587 **Df Model:** 1

std err [0.025 coef P>|t| 0.975] **const** -3.739e+04 4378.923 -8.539 0.000 -4.6e+04 -2.88e+04 sqft_living 1.930 143.837 0.000 273.760 281.324 277.5422

Omnibus: 13425.398 **Durbin-Watson:** 1.980 Prob(Omnibus): 0.000 Jarque-Bera (JB): 331839.191 Skew: 2.568 Prob(JB): 0.00 **Kurtosis:** 21.507 Cond. No. 5.66e+03

nonrobust

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.66e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [57]: m, c = np.polyfit(x_basic, y_basic, 1)

fig = plt.figure(figsize=(7, 5))
    fig.suptitle('Price vs. Square foot living', fontsize=16)
    plt.scatter(x_basic, y_basic)
    plt.plot(x_basic, m*x_basic+c, c='black')
    plt.xlabel('Square Foot Living', fontsize=14)
    plt.ylabel('Price', fontsize=14)
    plt.show()
```

Price vs. Square foot living

Homoscedasticity Check for Baseline Model

```
In [32]: model.predict(sm.add_constant(x_basic))
Out[32]: 0
                   290108.943350
         1
                   675892.620304
         2
                   176316.635760
         3
                   506591.869986
         4
                   428880.050168
         21592
                   387248.718123
         21593
                  603731.644759
                   245702.189169
         21594
         21595
                   406676.673077
         21596
                   245702.189169
         Length: 21589, dtype: float64
```

```
In [33]: #Checking for homoscedasticity
residuals = model.resid

plt.scatter(x=range(residuals.shape[0]), y=residuals, alpha=0.1);
```


Normality Check for Baseline Model

In [34]: import scipy.stats as stats
 fig = sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True)
 fig.show()

<ipython-input-34-d7327fda397e>:3: UserWarning: Matplotlib is currently using m
odule://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot s
how the figure.

fig.show()

In [35]: #Checking for linear regression assumptions for the baseline. Checking for normal
sns.kdeplot(x=model.resid);

Model 2

In [36]: ## Adding features to the model to see if it will improve scores. Adding features
#heatmap

X = pd.DataFrame(data=df_new, columns=['sqft_living', 'grade', 'sqft_above', 'sqft
y = df_new['price']
X.head()

Out[36]:

	sqft_living	grade	sqft_above	sqft_living15
0	1180	4	1180	1340
1	2570	4	2170	1690
2	770	3	770	2720
3	1960	4	1050	1360
4	1680	5	1680	1800

```
In [37]: model2 = sm.OLS(y, sm.add_constant(X)).fit()
model2.summary()
```

Out[37]:

OLS Regression Results

Dep. Varia	ıble:	price	R-squared:		d: 0.	0.543	
Mo	del:	OLS	Adj. R-squared:		d: 0.	0.543	
Meth	hod: Leas	st Squares	F-statistic:		o: 64	6417.	
D	ate: Thu, 28	3 Apr 2022	Prob (F-statistic):) :	0.00	
Ti	ime:	11:50:56	Log-Lil	kelihood	d: -2.9846e	-2.9846e+05	
No. Observation	ons:	21589		AIC	5.969e	+05	
Df Residu	ıals:	21584	BIC: 5.970e+05			+05	
Df Model:		4					
Covariance T	ype:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-3.342e+05	7291.222	-45.835	0.000	-3.48e+05	-3.2e+05	
sqft_living	218.5031	4.147	52.689	0.000	210.375	226.632	
grade	1.086e+05	2381.907	45.584	0.000	1.04e+05	1.13e+05	
sqft_above	-82.6951	4.389	-18.842	0.000	-91.298	-74.093	

 Omnibus:
 15263.820
 Durbin-Watson:
 1.972

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 578114.258

31.0497

 Skew:
 2.946
 Prob(JB):
 0.00

 Kurtosis:
 27.657
 Cond. No.
 1.64e+04

3.966

Notes:

sqft_living15

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

7.829 0.000

23.276

38.824

[2] The condition number is large, 1.64e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Homoscedasticity Check for Model 2

```
In [38]: residuals_m2 = model2.resid

plt.scatter(x=range(residuals_m2.shape[0]), y=residuals_m2, alpha=0.1);
```


Normality Check for Model 2

In [39]: fig = sm.graphics.qqplot(residuals_m2, dist=stats.norm, line='45', fit=True)
fig.show()

<ipython-input-39-6105dfd15eb7>:2: UserWarning: Matplotlib is currently using m
odule://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot s
how the figure.

fig.show()

In [40]: #Checking for linear regression assumptions for the baseline. Checking for normal
sns.kdeplot(x=model2.resid);

Multicollinearity Check for Model 2

```
In [41]: #Checking for values that have strong multicollnearity
df = X.corr().abs().stack().reset_index().sort_values(0, ascending=False)

df['pairs'] = list(zip(df.level_0, df.level_1))
df.set_index(['pairs'], inplace=True)

df.drop(columns=['level_1', 'level_0'], inplace=True)

df.columns = ['cc']

df.drop_duplicates(inplace=True)

df[(df.cc > 0.75) & (df.cc < 1)]</pre>
```

Out[41]:

СС

pairs	
(sqft_living, sqft_above)	0.875386
(sqft_living, grade)	0.764354
(sqft_living, sqft_living15)	0.758302
(grade, sqft_above)	0.756236

Out[42]: const 19.249482 sqft_living 5.162920 grade 2.822569 sqft_above 4.734643 sqft_living15 2.670811 dtype: float64

Checking target for transformation

In [43]: #Checking y hist to see if it needs transforming y.hist();

In [44]: # Transforming y using Log
y_log = np.log(y)
y_log.hist();

Model 3

```
In [45]:
         # Creating new model using new logged target and dropping highest multicollinear
         X 3 = X.drop(columns = 'sqft living')
         model3 = sm.OLS(y_log, sm.add_constant(X_3)).fit()
         model3.summary()
```

Out[45]:

OLS Regression Results

Dep. Variable: price R-squared: 0.524 Model: OLS Adj. R-squared: 0.524 Method: Least Squares F-statistic: 7917. Date: Thu, 28 Apr 2022 Prob (F-statistic): 0.00 Time: 11:50:57 Log-Likelihood: -8744.7 No. Observations: 21589 AIC: 1.750e+04 **Df Residuals:** 21585 BIC: 1.753e+04

> Df Model: 3

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	11.5993	0.011	1080.475	0.000	11.578	11.620
grade	0.2254	0.003	65.354	0.000	0.219	0.232
sqft_above	4.086e-05	5.05e-06	8.095	0.000	3.1e-05	5.08e-05
sqft_living15	0.0002	5.67e-06	28.903	0.000	0.000	0.000

Omnibus: 78.737 **Durbin-Watson:** 1.970 Prob(Omnibus): 0.000 Jarque-Bera (JB): 77.659 Skew: 0.134 Prob(JB): 1.37e-17 Kurtosis: 2.879 Cond. No. 1.27e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.27e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Homoscedasticity Check for Model 3

```
In [46]: #Checking for homoscedasticity
    residuals_m3 = model3.resid

plt.scatter(x=range(residuals_m3.shape[0]), y=residuals_m3, alpha=0.1);
```


Normality Check for Model 3

In [47]: fig = sm.graphics.qqplot(residuals_m3, dist=stats.norm, line='45', fit=True)
fig.show()

<ipython-input-47-80110c023be7>:2: UserWarning: Matplotlib is currently using m
odule://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot s
how the figure.

fig.show()

Multicollinearity Check for Model 3

СС

```
In [49]: #Checking for values that have strong multicollnearity
df = X_3.corr().abs().stack().reset_index().sort_values(0, ascending=False)

df['pairs'] = list(zip(df.level_0, df.level_1))
df.set_index(['pairs'], inplace=True)

df.drop(columns=['level_1', 'level_0'], inplace=True)

df.columns = ['cc']

df.drop_duplicates(inplace=True)

df[(df.cc > 0.75) & (df.cc < 1)]</pre>
```

Out[49]:

pairs
(grade, sqft_above) 0.756236

Model 4

Out[50]:

	bedrooms	bathrooms	floors	waterfront	view	grade	sqft_above	sqft_basement	sqft_living15
0	3	1.00	1.0	0.0	0	4	1180	0.0	1340
1	3	2.25	2.0	0.0	0	4	2170	400.0	1690
2	2	1.00	1.0	0.0	0	3	770	0.0	2720
3	4	3.00	1.0	0.0	0	4	1050	910.0	1360
4	3	2.00	1.0	0.0	0	5	1680	0.0	1800

4

```
In [51]: model4 = sm.OLS(y_log, sm.add_constant(X_m4)).fit()
model4.summary()
```

Out[51]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.586
Model:	OLS	Adj. R-squared:	0.586
Method:	Least Squares	F-statistic:	3400.
Date:	Thu, 28 Apr 2022	Prob (F-statistic):	0.00
Time:	11:50:57	Log-Likelihood:	-7223.5
No. Observations:	21589	AIC:	1.447e+04
Df Residuals:	21579	BIC:	1.455e+04

Df Model: 9

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	11.7059	0.014	859.499	0.000	11.679	11.733
bedrooms	-0.0113	0.003	-3.414	0.001	-0.018	-0.005
bathrooms	-0.0164	0.005	-3.209	0.001	-0.026	-0.006
floors	0.0548	0.006	9.517	0.000	0.044	0.066
waterfront	0.3582	0.031	11.728	0.000	0.298	0.418
view	0.0697	0.003	19.975	0.000	0.063	0.077
grade	0.1768	0.003	50.700	0.000	0.170	0.184
sqft_above	0.0001	6.05e-06	22.433	0.000	0.000	0.000
sqft_basement	0.0003	7.22e-06	38.870	0.000	0.000	0.000
sqft_living15	8.383e-05	5.62e-06	14.921	0.000	7.28e-05	9.48e-05

 Omnibus:
 14.443
 Durbin-Watson:
 1.970

 Prob(Omnibus):
 0.001
 Jarque-Bera (JB):
 13.826

 Skew:
 0.042
 Prob(JB):
 0.000995

 Kurtosis:
 2.908
 Cond. No.
 3.80e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.8e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Homoscedasticity Check for Model 4

```
In [52]: #Checking homoscedasticity
    residuals_m4 = model4.resid

plt.scatter(x=range(residuals_m4.shape[0]), y=residuals_m4, alpha=0.1, );
```


Normality Check for Model 4

In [53]: fig = sm.graphics.qqplot(residuals_m4, dist=stats.norm, line='45', fit=True)
fig.show()

<ipython-input-53-04e01d904544>:2: UserWarning: Matplotlib is currently using m
odule://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot s
how the figure.

fig.show()


```
In [54]: sns.kdeplot(x=model4.resid);
```


Multicollinearity Check for Model 4

```
In [55]: #Checking for values that have strong multicollnearity
df = X_m4.corr().abs().stack().reset_index().sort_values(0, ascending=False)

df['pairs'] = list(zip(df.level_0, df.level_1))
df.set_index(['pairs'], inplace=True)

df.drop(columns=['level_1', 'level_0'], inplace=True)

df.columns = ['cc']

df.drop_duplicates(inplace=True)

df[(df.cc > 0.75) & (df.cc < 1)]</pre>
```

Out[55]:

СС

pairs
(sqft_above, grade) 0.756236

```
In [56]: X vif2 = add constant(X m4)
            pd.Series([variance inflation factor(X vif2.values, i)
                                for i in range(X_vif2.shape[1])], index=X_vif2.columns)
Out[56]: const
                                   35.010929
            bedrooms
                                     1.674202
            bathrooms
                                     2.905953
            floors
                                    1.820664
            waterfront
                                    1.174861
            view
                                    1.340636
                                   3.154466
            grade

      sqft_above
      4.684944

      sqft_basement
      1.870827

      sqft_living15
      2.793846

             dtype: float64
```

Conclusion

This analysis leads to this recommendation on what the real estate company should advise homeowners on when it comes to increasing the value of their home for sale.

 Grade is one of the most important factors that can be controlled by the homeowner for price.

A per grade increase of a home (housing construction including quality materials for exterior and interior) can increase the value of a home by 17.7%. Homeowners should modify their homes with higher quality materials for interiors and exteriors structures.

For the interior of homes:

Plumbing, Flooring, Climate control, Electrical are components of a home that can improve grade.

For the exterior of homes:

Exterior walls and Roofing are components of a home that can improve grade.

While quality materials are desirable for a home upgrade, craftsmanship plays an important role in grading. If a home has the highest quality materials but poorly constructed, grade could be negatively affected.

To highlight this, if we were to focus on adding bedrooms and bathrooms instead of upgrades that focus on grade, it could possibly have a negative effect on pricing with a roughly 0.1% and % 0.2% per bed or bath decrease in the value of the home.

Homes could have less bedrooms and bathrooms but yet still hold the same value as a home with more bedrooms or bathrooms.

Next Steps

Further analyses could yield additional insights to growth:

- **Better grade evaluation.** This model could include whether exterior or interior builds have more of an impact on home value.
- Renovation allocations vs Expected value. Information on renovation costs vs value increase for those did renovations or kitchen upgrades could provide further insights.
- Landscaping impact. Homes are not only the house itself but the surround of the entire property. It adds to the exterior presence which could possibly influence demand and therefore could lead to an adjustment in price.