Porismo de Poncelet e Quadriláteros Bicêntricos Jorge Craveiro

Resumo: Veremos um resultado de geometria dos mais encantadores, e difíceis, que há atualmente, o Porismo de Poncelet. Para chegar a isso, usaremos várias ferramentas de potência de ponto e círculos coaxiais. Logo depois, como consequência, veremos algumas caracterizações e propriedades dos Quadriláteros Bicêntricos, que admitem círculos inscrito e circunscrito ao mesmo tempo. Não só resultados métricos, como também alguns resultados de geometria projetiva e inversiva, serão muito úteis para deduzir propriedades bem interessantes desses quadriláteros.

Problema 1. Dados dois círculos C_1 e C_2 , de centros O e O', a diferença das potências de um ponto P em relação a eles é igual a $2 \cdot OO' \cdot PX$, em que PX é distância de P ao eixo radical dos círculos.

Problema 2. Dados dois círculos, o lugar geométrico dos pontos cuja razão das potências a esses círculos é constante é um terceiro círculo, coaxial com os dois círculos dados.

Problema 3. Uma reta corta duas circunferências dadas em quatro pontos distintos. As tangentes a esses dois círculos traçadas nesses pontos se intersectam em outros quatro pontos que estão sobre um círculo coaxial aos dois dados.

Problema 4. Se os vértices de um quadrilátero (completo) estão num círculo, uma tranversal que corte lados opostos sob mesmos ângulos corta cada par de lados opostos em ângulos iguais.

Problema 5. Se uma reta forma ângulos iguais com lados opostos de um quadrilátero (completo) inscritível, então podemos traçar círculos tangentes a cada par de lados opostos, tangenciando nas interseções dessa reta com lados opostos nos pontos de interseção da reta. Esses (três) círculos serão coaxiais com o círculo dado.

Problema 6. Se os vértices de um quadrilátero inscrito num círculo se movem de tal maneira que dois lados opostos continuam tangentes a um segundo círculo fixado, então qualquer par de lados opostos (do quadrilátero completo) se move tangenciando algum círculo coaxial com os círculos fixados.

Problema 7. Se os vértices de um triângulo se movem continuamente sobre um círculo, enquanto dois lados continuamente são tangentes a outros círculos fixos, coaxiais ao primeiro, então o terceiro lado tangencia um terceiro círculo fixo coaxial aos anteriores.

Como resultado disso, temos o Porismo de Poncelet:

Problema 8. (Porismo de Poncelet) Se dois círculos são tais que um polígono pode ser inscrito em um e circunscrito ao outro, então infinitos polígonos podem ser traçados dessa maneira, e cada diagonal do polígono variável é tangente a um círculo fixo (coaxial aos dois círculos dados).

Agora, vamos olhar para os quadriláteros bicêntricos. Antes disso, um lema útil para uma propriedade do quadrilátero bicêntrico:

Lema 1. Se uma corda AB se move sobre um círculo C sendo enxergada por um ponto fixo P, interno ao círculo, sob 90° , então o ponto médio da corda e a projeção de P na corda se movem num mesmo círculo C'. Além disso, as tangentes ao círculo C nos pontos A e B se intersectam em um ponto X que se move num círculo, e esses dois círculos são coaxiais com o primeiro, com P sendo um ponto limite desse sistema de círculos.

Para o que segue, consideremos os seguintes: ABCD é um quadrilátero. Quando for circunscritível, os pontos de tangência com seu incírculo serão $W,\,X,\,Y$ e $Z,\,$ sobre $AB,\,BC,\,CD$ e $DA,\,$ respectivamente. O quadrilátero completo ABCD é tal que AB e CD se cortam em $J,\,AD$ e BC em $K,\,$ e AC e BD em $P.\,$ Caso exista, o quadrilátero completo WXYZ é tal que WX e YZ se cortam em $L,\,WZ$ e XY em $M.\,$ Caso existam, o incentro de ABCD será $I,\,$ e o circuncentro de ABCD será $O.\,$ Os raios dos círculos inscrito e circunscrito serão $O.\,$ 0 será $O.\,$ 0 s

Problema 9. Seja ABCD um quadrilátero circunscritível. Ele será inscritível se, e somente se, os segmentos WY e XZ forem perpendiculares entre si.

Problema 10. (Fórmula de Fuss) Se ABCD é bicêntrico, então $\frac{1}{(R-d)^2} + \frac{1}{(R+d)^2} = \frac{1}{r^2}$. Se dois círculos são como na descrição acima (raios R, r, e distância entre os centros igual a d), satisfazendo à fórmula, então é possível inscrever/circunscrever um quadrilátero a esses círculos (e, portanto, infinitos).

Problema 11. (Teorema de Newton) Seja ABCD um quadrilátero circunscritível. Então seu incentro I pertence à mediana de Euler (reta de Gauss) do quadrilátero.

Problema 12. Seja um quadrilátero ABCD circunscritível. O quadrilátero será bicêntrico se, e somente se, $\frac{AW}{WB} = \frac{DY}{YC}$.

Problema 13. Seja um quadrilátero ABCD circunscritível. Os segmentos WY e XZ também se intersectam em P.

Problema 14. Seja o quadrilátero ABCD inscritível. Então O é ortocentro de JKP.

Problema 15. Seja o quadrilátero ABCD circunscritível. Então, J, K, L e M são colineares. Além disso, IP é perpendicular a JK.

Problema 16. Na situação anterior, o quadrilátero ABCD é inscritível se, e somente se, $\angle JIK = 90^{\circ}$.

Problema 17. Ainda na situação anterior, o quadrilátero ABCD é inscritível se, e somente se, a sua reta de Gauss for perpendicular à reta de Gauss do quadrilátero WXYZ.

Problema 18. Seja ABCD um quadrilátero bicêntrico. Mostre que os pontos O, I e P são colineares.