1. Consider the following Turing Machine.

_					
	State	Input	Write	Move	Next
_	q_0	Ш	Ц	L	q_a
	q_0	0	0	R	q_0
_	q_0	1	1	R	q_1
	q_1	Ш	Ш	L	q_f
	q_1	0	0	R	q_1
	q_1	1	1	R	q_0

Determine what happens when the Turing Machine is run with the following inputs initially on the tape.

- (a) 0001
- (b) 0111
- (c) 0110
- (d) 0101010001
- (e) 00000000000000111
- (f) 00
- (g)

Solution:

- (a) Fail
- (b) Fail
- (c) Accept
- (d) Accept
- (e) Fail
- (f) Accept
- (g) Accept
- 2. Give the state table for a Turing Machine that appends a parity bit to a tape with a string of consecutive 0's and 1's.

Solution:					
	State	Input	Write	Move	Next
	q_0	Ш	0	L	q_a
	q_0	0	0	R	q_0
	q_0	1	1	R	q_1
	q_1	\sqcup	1	${ m L}$	q_f
	q_1	0	0	R	q_1
	q_1	1	1	R	q_0

3. Construct a Turing Machine to compute the sequence $0 \sqcup 1 \sqcup 0 \sqcup 1 \sqcup 0 \sqcup \ldots$, that is, 0 blank 1 blank 0 blank, etc [1]. Give the state table for a Turing Machine that appends a parity bit to a tape with a string of consecutive 0's and 1's.

Solution:					
	State	Input	Write	Move	Next
	$\overline{q_0}$	Ш	0	R	q_1
	q_0	0	0	\mathbf{R}	q_f
	q_0	1	1	R	q_f
	q_1	\sqcup	\sqcup	\mathbf{R}	q_2
	q_1	0	0	\mathbf{R}	q_f
	q_1	1	1	R	q_f
	q_2	\sqcup	1	R	q_3
	q_2	0	0	\mathbf{R}	q_f
	q_2	1	1	R	q_f
	q_3	Ш	Ш	\mathbf{R}	q_0
	q_3	0	0	\mathbf{R}	q_f
	q_3	1	1	R	q_f

4. Give the state table for a Turing Machine that multiplies a string of consecutive 0's and 1's by 2. The machine should treat the initial contents of the tape as a natural number written in binary form, with the least significant bit at the end. That is, if the contents of the tape are 01101, then the right-most 1 represents the number 1, the middle 1 represents the number 4 and the left-most 1 represents the number 8. Then the number on the tape is 8 + 4 + 1 = 13.

Solution:					
	State	Input	Write	Move	Next
	$\overline{q_0}$	Ш	0	R	q_a
	q_0	0	0	\mathbf{R}	q_0
	q_0	1	1	\mathbf{R}	q_0

5. Give the state table for a Turing Machine that multiplies a string of consecutive 0's and 1's by 2. The machine should treat the initial contents of the tape as a natural number written in binary form, with the most significant bit at the end. That is, if the contents of the tape are 01101, then the right-most 1 represents the number 16, the middle 1 represents the number 4 and the left-most 1 represents the number 2. Then the number of the tape is 2 + 4 + 16 = 22.

olution:					
	State	Input	Write	Move	Next
	q_0	Ц	Ц	L	q_1
	q_0	0	0	R	q_0
	q_0	1	1	R	q_0
	q_1	Ш	Ц	R	q_4
	q_1	0		R	q_2
	q_1	1	Ц	R	q_3
	q_2	Ц	0	L	q_0
	q_2	0	0	R	q_f
	q_2	1	1	R	q_f
	q_3	Ц	1	L	q_0
	q_3	0	0	R	q_f
	q_3	1	1	R	q_f
	q_4	\sqcup	0	R	q_a
	q_4	0	0	R	q_f
	q_4	1	1	R	q_f

6. Give the state table for a Turing Machine that adds 1 to a string of consecutive 0's and 1's, where the least significant digit is on the right of the input.

α		
~ ∩	lution	٠
SO	լանյալ	٠

State	Input	Write	Move	Next
q_0	Ц	Ц	L	q_1
q_0	0	0	\mathbf{R}	q_0
q_0	1	1	R	q_0
q_1	Ш	1	L	q_a
q_1	0	1	${ m L}$	q_a
q_1	1	0	L	q_1

7. Give the state table for a Turing Machine that subtracts 1 to a string of consecutive 0's and 1's, where the least significant digit is on the right of the input.

α		
50	lution	•
$\mathcal{O}_{\mathbf{U}}$	uuioii	٠

State	Input	Write	Move	Next
q_0 q_0	0	0	L R	q_1 q_0
q_0	1	1	R	q_0
q_1 q_1	⊔ 0	⊔ 1	L L	$q_a \ q_1$
q_1	1	0	L	q_a

- 8. List all words of length at most three in Σ^* where Σ is:
 - (a) $\{0,1\}$
 - (b) $\{a, b, c\}$
 - (c) {}

Solution:

- (a) $\{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111\}$
- (b) $\{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, abc, acb, bac, bca, cab, cba\}$
- (c) $\{\epsilon\}$
- 9. Design a Turing machine to recognise the language $\{0^n1^n|n\geq 0\}$.

α		
	lution	٠
L)()	ししょしょくフェエ	

State	Input	Write	Move	Next
q_0	Ц	Ц	R	q_a
q_0	0	\sqcup	\mathbf{R}	q_1
q_0	1	1	R	q_f
$\overline{q_1}$	Ш	Ш	L	q_2
q_1	0	0	\mathbf{R}	q_1
q_1	1	1	R	q_1
$\overline{q_2}$	Ш	Ш	L	q_f
q_2	0	0	\mathbf{R}	q_f
q_2	1	Ц	L	q_3
q_3	Ц	Ц	R	q_0
q_3	0	0	L	q_3
q_3	1	1	L	q_3

10. Design a Turing machine to recognise the language $\{ww^R \mid w \in \{0,1\}^*\}$ where w^R is w reversed. For example, when w = 101011 then $w^R = 110101$.

Solution:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Move	Write	Input	State
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Move	Write	Input	State
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R			q_0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R		0	q_0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R	Ц	1	q_0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m L}$	Ц	Ш	q_1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{R}	0	0	q_1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R	1	1	q_1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	Ц	Ц	q_2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m L}$	\sqcup	0	q_2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L	1	1	q_2
$egin{array}{cccccccccccccccccccccccccccccccccccc$	L	Ц	Ц	q_3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{R}	0	0	q_3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R	1	1	q_3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L	Ш	Ш	q_4
q_4 1 \sqcup L q_5	${ m L}$	0	0	
	L	Ц	1	
q_5 \square \square \square \square \square \square	R	Ц	Ш	$\overline{q_5}$
$q_5 \qquad \qquad 0 \qquad \qquad \mathrm{L} \qquad \qquad q_5$	${\bf L}$	0	0	q_5
q_5 1 1 L q_5	L	1	1	

11. Design a Turing machine to recognise the language $\{a^i b^j c^k | i, j, k \in \mathbb{N}_0\}$

References

[1] A. M. Turing. On computable numbers, with an application to the entscheidungs problem. $Proceedings\ of\ the\ London\ Mathematical\ Society,\ s2-42(1):230-265,\ 1937.$