# Lamprey 与元胞自动机 XJTU 数学建模课程汇报

计算机 2205 李雨轩 计算机 2204 马润东 计算机 2203 易兰昕 计算机 2203 赵文文

Team 26

2024年4月2日





XJTU 数学建模课程汇报

Team, 26

- 2 题目重述
- 3 基于元胞自动机的模拟
- 4 稳定性评估模型
- 5 结论



•00000

- 2 题目重述
- 3 基于元胞自动机的模拟
- 4 稳定性评估模型
- 5 结论

# 元胞自动机:介绍

# 元胞自动机 (Cellular Automaton)

元胞自动机是一种离散的、分布式的计算模型,由一系列相同结 构的元胞组成,每个元胞在离散的时间和空间上演化、根据一组 规则进行状态的转换。

- 元胞 (Cell): 空间中的单个单元,通常组成一个规则的网格。
- 状态 (State): 每个元胞可以处于有限的状态之一。
- 邻居 (Neighborhood): 每个元胞有一组相邻元胞,通常定 义为固定范围内的相邻元胞。
- 转换规则 (Transition Rule): 定义了根据元胞的当前状态和 邻居的状态来确定下一个时刻元胞的状态的规则。

4 D > 4 A > 4 B > 4 B > 4

# 形式化定义

元胞自动机

000000

元胞自动机由一个五元组  $(\mathcal{L}, \mathcal{E}_1, \mathcal{E}_2, \mathcal{N}, \mathcal{R})$  完全定义了其行为。

$$\mathcal{CA}_{ extit{modified}} \stackrel{ extit{def}}{=} (\mathcal{L}, \mathcal{E}_1, \mathcal{E}_2, \mathcal{N}, \mathcal{R})$$

- $\mathcal{L}$  是一个二维网格,用于表示细胞的空间布局。 $\mathcal{E}_1$  和  $\mathcal{E}_2$  表示一组有限状态,每个细胞在任何时刻都处于  $\mathcal{E}_1 \times \mathcal{E}_2$  中。
- N 是邻域定义,它确定了哪些相邻细胞的状态会影响当前细胞状态的更新。
- $\mathcal{R}: (\mathcal{E}_1 \times \mathcal{E}_2)^{|\mathcal{N}|} \to \mathcal{E}_1 \times \mathcal{E}_2$  是转换函数,它根据细胞的当前状态及其邻居确定细胞的下一个状态。这里  $|\mathcal{N}|$  是邻域 $\mathcal{N}$  中的细胞数量。

- 《ロ》《御》《注》《注》 - 注 - 釣へ(C

# 元胞自动机与模拟

元胞自动机

000000

元胞自动机(Cellular Automata , CA)具有强大的空间运算能力,常用于自组织系统演变过程的研究。它是一种时间、空间、状态都离散,空间相互作用和时间因果关系都为局部的网格动力学模型,具有模拟复杂系统时空演化过程的能力。它这种"自下而上"的研究思路,充分体现了复杂系统局部的个体行为产生全局、有秩序模式的理念。

# 元胞自动机的历史

元胞自动机

000000

细胞自动机最早由美籍数学家冯·诺依曼 (John von Neumann) 在 1950 年代为模拟生物细胞的自我复制而提出, 但 是并未受到学术界重视。直到 1970 年,英国数学家约翰·何顿· 康威(John Horton Conway)设计了生命游戏并经马丁·葛登在 《科学美国人》杂志上介绍、才吸引了科学家们的注意。此后、 英国学者史蒂芬·沃尔夫勒姆 (Stephen Wolfram) 对初等元胞机 256 种规则所产生的模型进行了深入研究,并用熵来描述其演化 行为,将细胞自动机分为平稳型、周期型、混沌型和复杂型。

## 一些概念上的解释

# 元胞空间

形状、大小

# 元胞邻居

定义域

## 元胞规则

转移方程

## 元胞边界

有限/无限



- 1 元胞自动机
- 2 题目重述
- 3 基于元胞自动机的模拟
- 4 稳定性评估模型

大多数动物物种存在雌雄两性,但有些会呈现性别比例偏差,称为适应性性别比变异。例如,Lamprey的性别比受到食物可用性的影响,导致雌性或雄性比例的变化。

#### 任务

关注性别比及其依赖于局部条件的问题,特别是对于 Lamprey。

- 当 Lamprey 的种群可以改变其性别比时,对更大的生态系统有什么影响?
- 对 Lamprey 的种群有什么优点和缺点?
- 在 Lamprey 的性别比发生变化的情况下,生态系统的稳定性有什么影响?
- 具有可变性别比的 Lamprey 种群的生态系统能否为生态系统中的其他物种,如寄生虫,提供优势?



## 可行方案与困境

## 常规思路

- Lotka-Volterra 捕食者-猎物模型:基于两个微分方程,描述 了捕食者和猎物种群的变化随时间的动态过程。
- 生态位模型:通常使用特征向量来表示物种在多维资源空间中的位置,从而探讨物种之间的竞争和共存关系。
- 地理信息系统 (GIS) 模型:使用地理信息系统技术,结合地理数据和生态学数据,进行空间分析和模拟
- 马尔科夫链模型:用于描述物种在时间上的变化和转移。马尔科夫链模型可以用于研究种群的迁徙、种群的状态转换、物种在不同生境中的分布等问题。

## 面临的问题

存在的问题:数据不好找、参数不好确定...

- 2 题目重述
- ③ 基于元胞自动机的模拟 生命游戏 生态系统模拟 原建模问题分析
- 4 稳定性评估模型
- 5 结论

- 2 题目重述
- ③ 基于元胞自动机的模拟 生命游戏 生态系统模拟 原建模问题分析
- 4 稳定性评估模型
- 5 结论

#### 生命游戏

## 规则

- 如果一个细胞周围有三个细胞为生,则该细胞为生(即该细 胞原先为死则转为生)
- 如果细胞周围有两个细胞为生,则该细胞不变
- 在其他情况下,该细胞为死



图 1: 生命游戏

图 2: 人像

XJTU 数学建模课程汇报

Team, 26

生命游戏中的较复杂演化模式:"播种机"模式不断生成"高斯帕机枪"来制造"滑翔机"

生命游戏中的一种可持续繁殖模式:"高斯帕机枪"不断制造"滑翔机"

- 2 题目重述
- 3 基于元胞自动机的模拟 生命游戏 生态系统模拟 原建模问题分析
- 4 稳定性评估模型
- 5 结论

以下是元胞自动机可以用来模拟生态环境的几个原因:

- 局部互动性: 元胞自动机中的每个单元格只与其周围的邻居 单元格交互,这种局部互动反映了自然界中生物个体之间的 相互作用。生态系统中的物种往往与其周围环境和其他物种 进行交互。
- 简单规则的复杂性: 元胞自动机的规则通常非常简单, 但是 当大量的单元格按照这些规则交互时, 可以产生出复杂的全 局行为。这种复杂性反映了生态系统中群体行为的出现。
- 适应性和演化: 元胞自动机中的规则可以随着时间演化和变 化,从而模拟生态系统中物种的适应性和演化过程。通过调 整规则,可以模拟出不同环境条件下生物的适应性和生态系 统的稳定性。



## 元胞自动机模拟的缺陷

元朐自动机

## 尽管元胞自动机模拟生态环境有一定优势,但也存在缺陷

- 简化的模型: 元胞自动机模型是对现实的简化和抽象,可能 忽略了许多真实世界中复杂的因素和相互作用。
- 参数选择困难:定义模拟中的状态和规则需要合适的参数选择,这可能是一个困难的过程。参数的选择可能会影响模拟结果的准确性和可靠性。
- 计算资源消耗:当模拟规模较大时,元胞自动机模型可能需要大量的计算资源和时间来完成模拟。这可能限制了模拟的规模和复杂性。

于是就有学者提出用一系列 CA 来模拟生态系统不同方面的特性。为更好地认识和了解 CA , 可以将复杂的生态系统进行分解, 用不同的 CA 模拟生态系统的不同特征。

- 4 ロ ト 4 団 ト 4 差 ト 4 差 ト 9 Q ()

## 生命游戏启示下的一个新思路

元胞自动机

Lamprey 是可以改变性别比例的生物,性别取决于幼鱼阶 段的生长速度。关于这一主题的研究对我们理解不同性别比例物 种的影响做出了重大贡献。利用元胞自动机模型模拟不同性别比 例的 Lamprey, 探究能够改变性别比例的 Lamprey 的优缺点,以 及不同性别比例对生态系统的影响,并定量评估 Lamprev 性别 比例对生态系统的影响。

我们不必严格拘泥干收集到的数据,通过比较模型模拟的不 同规则下的结果,使分析和解决问题变得更加容易和方便。

## 难点在于规则

- 在生态系统中添加合适的规则: …
- 稳定值试出来作为初值...
- 找趋于稳定值的规则...

## 实现起来并不复杂

for each cell in the grid do

Calculate the number of live neighbors surrounding the

cell

Update

end for

Update the grid with the new cell states

200

# 模拟结果

元胞自动机



图 3: stimulate

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

- 2 题目重述
- ③ 基于元胞自动机的模拟 生命游戏 生态系统模拟 原建模问题分析
- 4 稳定性评估模型
- 5 结论

## 问题 2

元胞自动机

我们在环境性别决定模拟模型中添加"灾难",得到了对"灾难"的两种生态系统响应。利用随时间变化的猎物和Lamprey 数量的数据,我们分析了 Lamprey 的优点和缺点:优点:改变性别比例有助于维持不同环境条件下 Lamprey 种群的稳定性和恢复力。缺点:当 Lamprey 处于极度食物短缺的情况下,种群的遗传多样性和长期生存能力可能面临风险。

元朐自动机

我们在问题 2 中添加一个新的生态系统(有猎物的生态系 统,以及性别比例始终为 1:1 的 Lamprey 的生态系统),并获取 发生灾害的三个生态系统的数据。基于 AHPTopsis 模型,构建 了生态系统稳定性评估模型,确定 Lamprey 对生态系统稳定性 的影响。最终, 三个生态系统稳定性得分分别为 44.98、21.89 和 33.13。因此, 能够调节性别比例的 Lamprey 对生态系统的稳定 性具有显着影响,并显着促进其稳定性。

## 问题 4

元胞自动机

我们向问题 1 的生态系统添加新物种——寄生虫。我们模拟在环境性别决定模拟模型的帮助下,这个新的生态系统并比较了两个系统中寄生虫的数量,从而得出结论 Lamprey 的性别比例可能导致寄生虫数量增加。

- 2 题目重述
- 3 基于元胞自动机的模拟
- 4 稳定性评估模型

## 生态系统稳定性的四个决定性要素

## 层次分析法(AHP)

- 物种数量的波动性
- 周期的长度
- 生态系统的抵抗力
- 生态系统的恢复力

利用层次分析法 (AHP), 我们可以得出上述四项的权重因数





- 目标层:评估生态系统的稳定性
- 准则层:
  - 物种种群变异性: 指生态系统中物种数量的波动。
  - 种群变化周期: 生态系统中自然周期的持续时间。
  - 生态系统复原力:生态系统从干扰中恢复到扰动前的状态的能力。
  - 生态系统抵抗力:生态系统在结构和功能发生不重大变化的情况下承受干扰的能力。
- 方案层
  - 系统 A: 猎物和可以改变性别的 Lamprey 种群。
  - 系统 B: 猎物和不能改变性别的 Lamprey 种群。
  - 系统 C: 猎物和性别比例始终为 1: 1 的 Lamprey 种群。

• 构造判断矩阵: 判断矩阵 A 中的每个元素 aii 表示因素 i 相

对于因素 j 的重要性, 其中  $a_{ii} = 1/a_{ii}$ 。

- 一致性检验: 计算矩阵 A 的最大特征根  $\lambda$ , 然后计算一致性 指标 CI, 其中  $CI = (\lambda_{max} - n)/(n-1)$ 。一致性指标越接近 0,一致性越好, 我们引入随机一致性指标 RI 来衡量 CI 的 大小,  $RI = (\sum_{i=0}^{n} CI_i)/n$ 。显然, RI 的大小与判断矩阵的阶 数有关,因此我们引入检验系数 CR, CR = CI/RI。当 CR < 0.1 时,认为该判断矩阵通过一致性检验。
- 计算标准权重:对比较矩阵进行归一化,求得如下的权重向 量。 $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots, \omega_n)$ ,其中  $\omega_i = \left(\prod_{j=1}^n a_{ij}\right)^{\frac{1}{n}} / \left(\sum_{k=1}^n \left(\prod_{j=1}^n a_{kj}\right)^{\frac{1}{n}}\right), (i=1,2,\ldots,n)$

4 (a) 4 (b) 4 (b) 4 (b) 4 (c) 4

# 计算生态系统稳定性得分

元朐自动机

- 我们按照模型一模拟生态系统 A, 系统 B, 系统 C, 假设在 to 时间之前,系统处于稳定状态,猎物和 Lamprey 的数量处于 周期性变化的稳定状态。在 to 时间, 发生灾难, 导致猎物数 量急剧减少, 持续 m 年后猎物和 Lamprey 的数量恢复稳定
- 综合考虑物种数量的波动性、周期的长度、生态系统的抵抗 力、生态系统的恢复力,再对结果进行归一化处理我们获得

描述生态系统稳定性的矩阵 
$$\mathbf{M} = \begin{bmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn} \end{bmatrix}$$
。

- 1 元胞自动机
- 2 题目重述
- 3 基于元胞自动机的模拟
- 4 稳定性评估模型
- 5 结论

- 当 Lamprey 种群能改变性别比例时,猎物数量减少, Lamprev 数量增加。
- 优势: 改变性别比例有助干增加 Lamprey 种群在不同环境 条件下的稳定性和恢复力。
- 劣势: 当 Lamprev 种群处于极度食物短缺的情况下、雌性 Lamprey 的数量会急剧减少、性别比例失衡 ǎ、影响遗传多 样性和种群的长期生存能力。
- 能够调节性别比例的 Lamprey 种群对生态系统的稳定性具 有重大影响,大大提高其稳定性。
- Lamprey 性别比例的变化可能导致寄生虫数量增加。



Thanks!

made by Li Yuxuan

《四》《圖》《意》《意》