

Mathe 1

Charlotte P., Lena W., Vera C., Christian K. | 20. Juni 2018

ITI WAGNER & IPD TICHY $\sum_{m=1}^{\infty} q_m(\omega) \int_0^{\frac{\pi}{A}} \left\{ (1+\mathrm{i}\eta) \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[k(x) \frac{\mathrm{d}^2 \psi_m(x)}{\mathrm{d}x^2} \right] - \omega^2 \psi_m(x) \right. \\ \left. \times \left[\rho_l(x) + \frac{\pi}{4} \rho_f b^2(x) \Gamma(\beta(x,\omega),\alpha(x)) \right] \right\} \psi_n(x) \, \mathrm{d}x \\ = \omega^2 \int_0^k \left\{ \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \left[\rho_l(x) + \frac{\pi}{4} \varphi_l b^2(x) \Gamma(\beta(x,\omega),\alpha(x)) \right] \right\} \\ \left. + \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \left[\beta(x,\omega) + \frac{1}{b(x)} \left[\sum_{m=1}^{\infty} q_m(\omega) \psi_m(x) + \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \right] \right\} \right. \\ \left. \times \left[\sum_{m=1}^{\infty} q_m(\omega) \psi_m(x) + \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \right] \right\} \psi_n(x) \, \mathrm{d}x. \quad (10)$

Gliederung

- Big Integer
- Exponentiation by squaring
- Kombinatorik
- Spieltheorie

Big integer

- die maximale Zahl ist größer als integer?
- nehme long long
- die Zahl ist größer als long long
- ????????????????????????????(Panik)

20. Juni 2018

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Big integer - Java nutzen

- import java.math.BigInteger
- Konstruktor: BigInteger(String val)
- Methoden:
 - BigInteger add(BigInteger val)
 - BigInteger multiply(BigInteger val)
 - BigInteger subtract(BigInteger val)
 - BigInteger abs()
 - BigInteger compareTo(BigInteger val)
 - BigInteger[] divideAndRemainder(BigInteger val) (Division mit Rest)
 - BigInteger gcd(BigInteger val)

Schriftliche Addition, Beispiel:

String x = "12035"

String y = "389"

vector
$$V_X = (5,3,0,2,1)$$

vector
$$v_y = (9,8,3,0,0)$$

vector
$$V_Z = ($$

$$v_z = (4)$$
, Ubertrag = 1

$$v_z = (4, 2)$$
, Übertrag = 1

$$v_z = (4, 2, 4)$$
, Übertrag = 0

$$v_z = (4, 2, 4, 2)$$
, Übertrag = 0

$$v_z = (4, 2, 4, 2, 1)$$
, Übertrag = 0

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_v = (9,8,3,0,0)$

vector $v_z = ()$

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_v = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_X = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Übertrag = 1

 $v_Z = (4, 2, 4)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Ubertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1


```
Schriftliche Addition, Beispiel:
```

```
String x = "12035"
```

String
$$y = "389"$$

vector
$$v_x = (5,3,0,2,1)$$

vector
$$v_y = (9,8,3,0,0)$$

vector
$$v_z = ()$$

$$v_z = (4)$$
, Übertrag = 1

$$v_z = (4, 2)$$
, Übertrag = 1

$$v_z = (4, 2, 4)$$
, Übertrag = 0

$$v_z = (4, 2, 4, 2)$$
, Ubertrag = 0

$$v_z = (4, 2, 4, 2, 1)$$
, Übertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Übertrag = 1

 $v_z = (4, 2, 4)$, Übertrag = 0

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

 $v_z = (4, 2, 4, 2)$, Übertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Übertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Spieltheorie

Schriftliche Addition, Beispiel:

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_v = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_{7} = (4, 2)$, Übertrag = 1

 $v_7 = (4, 2, 4)$, Übertrag = 0

 $v_7 = (4, 2, 4, 2)$, Übertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Übertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Karazuba-Multiplikation

Beobachtung:
$$(a_0 + a_1) \cdot (b_0 + b_1) = a_0 \cdot b_0 + a_1 \cdot b_1 + a_1 \cdot b_0 + a_0 \cdot b_1$$

Algorithm 1 recMult(int a, int b)

```
Require: a und b haben n Ziffern, sei k = \lfloor n/2 \rfloor
  if n=1 then
      return a · b
  end if
  schreibe a als a_1 \cdot B^k + a_0
  schreibe b als b_1 \cdot B^k + b_0
  c_{11} = recMult(a_1, b_1)
  c_{00} = recMult(a_0, b_0)
  return c_{11} \cdot B^{2k} + (recMult((a_1 + a_0), (b_1 + b_0)) - c_{11} - c_{00}) \cdot B^k + c_{00}
```

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Naive Exponentiation

Algorithm 2 Bereche $y = x^n$ naiv

```
Require: n > 0 \lor x \neq 0
Ensure: v = x^n
  v \leftarrow 1
  if n < 0 then
       X \leftarrow 1/x
       N \leftarrow -n
  else
       X \leftarrow x
       N \leftarrow n
  end if
  while N \neq 0 do
       y \leftarrow y \cdot X
       N \leftarrow N - 1
  end while
  return y
```

Bei ICPC gehen wir davon aus, dass Multiplikation zweier Zahlen in $\mathcal{O}(1)$ liegt, also naive Exponentiation in $\mathcal{O}(n)$

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Idee

Beobachtung:

$$x^{n} = \begin{cases} (x^{2})^{n/2} & \text{für n gerade} \\ x \cdot (x^{2})^{(n-1)/2} & \text{für n ungerade} \end{cases}$$
 (1)

Exponentiation by Squaring, rekursiv

Algorithm 3 Exponentiation(n, x) (rekursiv)

```
if n < 0 then
return Exponentiation(-n, 1/x)
else if n = 0 then
return 1
else if n = 1 then
return x
else if n = 1 modulo n = 1 then
return Exponentiation(n/2, n = 1)
else
return n = 1 return n =
```

Da Multiplikation konstant viel Zeit benötigt, liegt die Exponentiation in $\mathcal{O}(log(n))$

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Beispiel


```
2^{10638} = (2^{5319})^2
2^{5319} = 2 \cdot (2^{2659})^2
2^{2659} = 2 \cdot (2^{1329})^2
2^{1329} = 2 \cdot (2^{664})^2
2^{664} = (2^{332})^2
2^{332} = (2^{166})^2
2^{166} = (2^{83})^2
2^{83} = 2 \cdot (2^{41})^2
2^{41} = 2 \cdot (2^{20})^2
2^{20} = (2^{10})^2
2^{10} = (2^5)^2
2^5 = 2 \cdot (2^2)^2
2^2 = (2^1)^2
```

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Exponentiation by Squaring, iterativ

Algorithm 4 Exponentiation(n, x) (iterativ)

```
if n < 0 then
   n = -n
   x = 1/x
end if
if n=0 then
   return 1
   v=1
end if
while n > 1 do
   if n \mod 2 = 0 then
      x = x \cdot x
      n = n/2
   else
      y = y \cdot x
      x = x \cdot x
      n = (n-1)/2
   end if
end while
```

Kombinatorik

Definition

"Combinatorics is a branch of discrete mathematics concerning the study of countable discrete structures"

^aCompetitive Programming 3

Bei ICPC-Aufgaben erkennbar an:

- "Wie viele Moeglichkeiten gibt es, ..?"
- "Berechne die Anzahl an X."
- Alles, was mit Zählen zu tun hat

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Kombinatorik bei ICPC

Die Lösung für eine Kombinatorik-ICPC-Aufgabe ist meist eine kurze rekursive Formel, oft in Verbindung mit Greedy oder DP. Der Aufwand liegt nicht in der Implementierung, sondern im Aufstellen der Formel.

- Kombinatorik-Aufgaben von einer Person bearbeiten lassen
 - bestenfalls mit guten mathematischen Kenntnissen
- Sobald die Formel fertig ist, Lösung coden und abgeben!

Kombinatorik bei ICPC

Gängige Formeln sollte man kennen... ...oder ausprobieren!

On-Line Encyclopedia of Integer Sequences

Unter http://oeis.org/ kann man die ersten Lösungen für kleine Probleminstanzen eingeben und so prüfen, ob bereits eine Formel für diese Folge existiert.

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Aufgabe - Mauerbau

- Baue eine Mauer aus bestimmten Ziegeln.
- jeder Ziegel ist 2 Einheiten breit und 1 Einheit hoch und kann beliebig gedreht werden.
- jede Mauer ist 2 Einheiten hoch und m Einheiten breit (0 < m <= 50).
- Aufgabe: Wie viele Kombinationen an Ziegelsteinen gibt es?

Fibonacci

Definition:

$$f(0) = 0$$

 $f(1) = 1$
 $n > 1 : f(n) = f(n-1) + f(n-2)$

Also: 0, 1, 1, 2, 3, 4, 8, 13, 21, 34, 55, 89...

Sollte man erkennen!

Fibonacci - Implementierung

- Mit DP in O(n)
- Binet's Formel:

$$f(n) = \frac{(\phi^n - (-\phi)^{-n})}{\sqrt{5}}$$

 $\phi := goldener Schnitt$

$$\phi = \frac{(1+\sqrt{5})}{2}$$

 ϕ gerundet nutzen. Anzahl der Nachkommastellen entscheidet über Genauigkeit!

- oder vorberechnen!
- Achtung: Wird sehr schnell sehr groß.

Aufgabe - Lieblingsschokolade

- Gegeben: Paket mit *n* Schokoladentafeln, alle gleich verpackt
- Davon sind *k* Tafeln in meiner Lieblingssorte
- Gesucht: Wahrscheinlichkeit, k Tafeln zu nehmen und nur Lieblingsschokolade zu ziehen

Binomialkoeffizient

Wie viele Möglichkeiten gibt es, *k* Objekte aus einer Menge von *n* verschiedenen Objekten zu ziehen?

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Rekursive Definition:

$$C(n,0) = C(n,n) = 1$$

 $C(n,k) = C(n-1,k-1) + C(n-1,k)$

Spieltheorie

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Binomialkoeffizient - Visualisierung

Abbildung: Visualisierung Binomialkoeffizient¹

¹Quelle: Wikipedia

Big Integer Exponentiation by squaring

Charlotte P., Lena W., Vera C., Christian K. – Mathe 1

Kombinatorik

Spieltheorie 00000000

20. Juni 2018

Binomialkoeffizient - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Vorberechnen
 - Meist interessieren nicht alle Werte
 - → Top-Down mit Zwischenspeichern
 - Lineare Laufzeit
- Mit nicht-rekursiver Formel
 - Lineare Laufzeit

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Implementierung

Algorithm 5 Binomialkoeffizient(n, k)

```
if k > n - k then
    k \leftarrow n - k
end if
result \leftarrow 1
i \leftarrow 0
while i < k do
    result \leftarrow result \cdot (n-1)
    result \leftarrow result \div (i+1)
    i + +
end while
return result
```

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Aufgabe - Der Mathetest

- Gegeben: Anzahl an Faktoren
- Gesucht: Anzahl an Möglichkeiten, diese korrekt zu klammern
- Beispiel:
 - Gegeben: {a, b, c, d}
 - a(b(cd)), (ab)(cd), ((ab)c)d, (a(bc))d, a((bc)d)
 - Lösung: 5

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Catalan Nummern

Definition:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

Rekursiv:

$$Cat(0) = 1$$

$$Cat(n+1) = \sum_{i=0}^{n} Cat(i) \cdot Cat(n-i)$$

Also: 1, 1, 2, 5, 14, 42, 132, 429, ...

Catalan Nummern

Cat (n) entspricht zum Beispiel:

- Anzahl verschiedener Binär-Bäume mit n Knoten
- Anzahl korrekter Klammerausdruecke mit n Klammerpaaren
- Anzahl verschiedener Möglichkeiten, n + 1 Faktoren korrekt zu klammern
- lacktriangle Anzahl Möglichkeiten, ein konvexes n+2-Eck in Dreiecke aufzuteilen

Implementierung

Algorithm 6 Catalan(n)

 $result = Binomialkoeffizient(2 \cdot n, n)$ return result \div (n+1)

Catalan Nummern - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Rekursiv mit DP
 - → Immernoch quadratische Laufzeit!
- Mit Binomialkoeffizient
 - → Lineare Laufzeit!

Spieltheorie

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Spieltheorie allgemein

- Formalisierung und Darstellung von Spielen
- Versuch, Spielausgang zu berechnen

Dabei muss gelten:

- Summe der Gewinne und Verluste aller Spieler beträgt 0 (Nullsummenspiel)
- Meistens ein Gewinner (+1) und ein Verlierer (-1)
- Spiel ist ohne Zufall
- Alle spielen perfekt

Beispielspiel

simples Beispielspiel

Alice und Bob haben sechs Münzen in der Mitte liegen und nehmen abwechselnd je eine bis drei davon. Wer die letzte Münze nimmt, gewinnt.

Spielbaum benutzen

Erstellen eines Spielbaumes

Schritt 1:

- Knoten: aktueller Spieler und Spielsituation
- Kanten: legale Spielzüge
- Wurzel: Spielsituation beim Start

Schritt 1:

- Knoten: aktueller Spieler und Spielsituation
- Kanten: legale Spielzüge
- Wurzel: Spielsituation beim Start

Schritt 2:

- An Blätter des Baumes Ergebnis schreiben
- Von unten nach oben Ergebnis berechnen

Kombinatorik

Spieltheorie

Kombinatorik

Kombinatorik

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Kombinatorik

Kombinatorik

Min-Max-Strategie

Min-Max-Strategie: Gewinn mit größtem Unterschied

$$minmax(k) = \begin{cases} k.Bewertung & \text{für k Blatt-Knoten} \\ -min\{minmax(k')|k'Kindknoten\} & \text{sonst} \end{cases}$$
(2)

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Kombinatorik

Spieltheorie

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Min-Max-Strategie

Min-Max-Strategie: Gewinn mit größtem Unterschied

$$minmax(k) = \begin{cases} k.Bewertung & \text{für k Blatt-Knoten} \\ -min\{minmax(k')|k'Kindknoten\} & \text{sonst} \end{cases}$$
(3)

Andere Möglichkeit der Berechnung:

$$minmax(s,k) = \begin{cases} k.Bewertung & \text{für k Blatt-Knoten} \\ min\{minmax(k')|k'Kindknoten\} & \text{falls s = A} \\ max\{minmax(k')|k'Kindknoten\} & \text{falls s = B} \end{cases}$$

$$(4)$$

Implementierung

Wie gewöhnt als Baum

```
struct Node {
  vector<int> children
  int Bewertung
```

Spieler-IDs können weggelassen werden

```
int minmax(Zustands-Knoten k):
  if (k ist Blatt) {
    return k.getBewertung
   else {
        for (alle Kindknoten kind von k) {
        res = - min(res, Bewertung(k))
```

Nachdenken nicht vergessen

Beispiel

Die Spieler A und B multiplizieren x abwechselnd mit einer Zahl von 2 bis 9. Am Anfang ist x=1. Wer zuerst über eine Grenze n kommt, gewinnt.

Nachdenken nicht vergessen

Beispiel

Die Spieler A und B multiplizieren x abwechselnd mit einer Zahl von 2 bis 9. Am Anfang ist x=1. Wer zuerst über eine Grenze n kommt, gewinnt.

- Problem: Je acht Kindknoten: Baum wird zu groß
- Lösung: Optimale Strategie anhand kleiner Bäume herleiten
- Im Beispiel: A nimmt immer 2, B immer 9 als Faktor

Fazi

Falls möglich, anhand kleiner Teilbäume Regel herleiten, statt direkt anzufangen, zu implementieren.

Nachdenken nicht vergessen

Beispiel

Die Spieler A und B multiplizieren x abwechselnd mit einer Zahl von 2 bis 9. Am Anfang ist x=1. Wer zuerst über eine Grenze n kommt, gewinnt.

- Problem: Je acht Kindknoten: Baum wird zu groß
- Lösung: Optimale Strategie anhand kleiner Bäume herleiten
- Im Beispiel: A nimmt immer 2, B immer 9 als Faktor

Fazit

Falls möglich, anhand kleiner Teilbäume Regel herleiten, statt direkt anzufangen, zu implementieren.

Nim-Spiel

- Mehrere Haufen mit Objekten
- Zwei Spieler nehmen abwechselnd von einem Haufen
- Wer das letzte Objekt nimmt, gewinnt
- Für wenigei Haufen mit Spielbaum modellierbar
- Für viele Haufen eigene Optimalstrategie nötig

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Nim-Spiel: Optimalstrategie

- Nim-Zahl: Anzahl Objekte in Haufen binär mit XOR verknüpfen
- Gewinnstrategie: In jedem Zug die Nim-Zahl auf 0 bringen

Beispiel

5 Haufen mit 6, 3, 5, 2 und 7 Elemente

Binär: 110₂, 011₂, 101₂, 010₂ und 111₂ Elemente

Dann: 110₂ XOR 011₂ XOR 101₂ XOR 010₂ XOR 111₂ = 101₂

Der Spieler am Zug hat also die Möglichkeit, die Nim-Zahl auf 0 zu

bringen (z. B. indem er vom letzten Stapel 5 Elemente entfernt), und hat

somit eine Gewinnstrategie.

Grundy-Zahlen

- Theorem von Sprague-Grundy: Jedes neutrale Spiel äquivalent zu Standard-Nim-Spiel
- Grundy-Zahlen: kleinste Zahl, die nicht Grundy-Zahl von Nachfolgerstellung ist
- Nim-Zahlen entsprechen Grundy-Zahlen
- Gewinnstrategie: Grundy-Zahl in jedem Zug auf 0 bringen

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1

Kombinatorik

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: $001_2 \text{ XOR } 000_2 \text{ XOR } 011_2 = 010_2 = 2$

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001_2 XOR 000_2 XOR $011_2 = 010_2 = 2$
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- 1, 2 und 1 Elemente: 001₂ XOR 010₂ XOR 001₂ = 010₂ = 2

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- 1, 2 und 1 Elemente: 001₂ XOR 010₂ XOR 001₂ = 010₂ = 2
- 1, 2 und 2 Elemente: 001₂ XOR 010₂ XOR 010₂ = 010₂ = 2

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- 1, 2 und 1 Elemente: 001₂ XOR 010₂ XOR 001₂ = 010₂ = 2
- 1, 2 und 2 Elemente: 001₂ XOR 010₂ XOR 010₂ = 010₂ = 2
- Kleinste nicht vorkommende Zahl ist 0, also keine Gewinnstrategie

ICPC-Aufgabe

20. Juni 2018