Analyse Mathématique : SEG - S1

Optimisation des fonctions numériques à plusieurs variables - avec contraintes

Pr. Hamza El Mahjour

2 novembre 2023

Département des Mathématiques, FPL, Abdelmalek Essaadi University.

Outline

- 1. Introduction
- 2. Sous contraintes d'égalité

Introduction

Le problème de choix du consommateur peut être posé par l'économiste comme suit :

- maximiser l'utilité
- sous une contrainte de budget
- maximiser le profit
- sous la contrainte des prix imposés
- minimiser un coût.

On Imagine le problème suivant.

Un consommateur qui a un montant de son salaire m choisit combien il dépensera sur un bien x dont le prix est p.

Et combien doit-il céder de son revenu pour dépenser un montant y sur les autres biens?

On Imagine le problème suivant.

Un consommateur qui a un montant de son salaire m choisit combien il dépensera sur un bien x dont le prix est p.

Et combien doit-il céder de son revenu pour dépenser un montant y sur les autres biens?

Le consommateur est confronté à un problème de contrainte budgétaire

$$px + y = m$$

Supposons que les préférences du consommateurs sont représentés par une fonction u(x, y).

En termes mathématiques

max u(x, y) sous la contrainte px + y = m

C'est un problème typique de maximisation sous contrainte.

Dans ce cas, puisque y = m - px.

Donc on peut le transformer en un problème à une seule dimension

$$h(x)=u(x,m-px)$$

C'est un problème typique de maximisation sous contrainte.

Dans ce cas, puisque v = m - px.

Donc on peut le transformer en un problème à une seule dimension

$$h(x)=u(x,m-px)$$

Malheureusement, si la fonction de « contrainte » est plus compliquée ... Cette idée ne marche pas!

C'est un problème typique de maximisation sous contrainte.

Dans ce cas, puisque y = m - px.

Donc on peut le transformer en un problème à une seule dimension

$$h(x) = u(x, m - px)$$

Malheureusement, si la fonction de « contrainte » est plus compliquée ... Cette idée ne marche pas!

On a besoin du multplicateur de Lagrange

Sous contraintes d'égalité

Donc on part d'un problème de maximisation (minimisation) d'une fonction à deux variables f(x, y) avec des contraintes sur les variables x et y qui doivent satisfaire une certaine égalité g(x, y) = c.

On exprimera le problème mathématiquement

$$\max f(x, y)$$
 sous la contrainte $g(x, y) = c$. (prob. maximisat°)

$$\min f(x, y)$$
 sous la contrainte $g(x, y) = c$. (prob. maximisat°)

La première étape va consister à introduire ce multiplicateur de Lagrange, noté généralement λ , associé à la contrainte g(x,y)=c. Alors on a le Lagrangien \mathcal{L} qui est défini par

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda (g(x, y) - c)$$

Où l'expression g(x, y) - c (qui doit être nulle quand la contrainte est satisfaite) est multiplié par λ .

Notons que $\mathcal{L}(x,y) = f(x,y)$ pour tout point (x,y) qui vérifie la contrainte g(x, y) = c.

Notons aussi que les dérivées partielles de \mathcal{L} par rapport à x et y sont

$$\begin{cases} \frac{\partial LL}{\partial x} &= \frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x}, \\ \\ \frac{\partial LL}{\partial x} &= \frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y}. \end{cases}$$

Il sera expliqué plus tard qu'il ne pourrait exister qu'un point où, pour une valeur adéquate de λ les dérivées partielles premières doivent s'annuler et que la contrainte soit satisfaite.

Attaquons un exemple!

Un consommateur dispose d'une fonction d'utilité U(x,y) = xy et est soumis à une contrainte budgétaire 2x + y = 100. Trouver l'unique solution au problème de demande du consommateur

$$\max U$$
, $2x + y = 100$.

Solution

Le lagrangien est $\mathcal{L}(x, y) = xy - \lambda(2x + y - 100)$. En prenant en considération la contrainte, les deux dérivées partielles donnent $\frac{\partial \mathcal{L}}{\partial x} = y - 2\lambda = 0$ et $\frac{\partial \mathcal{L}}{\partial y} = x - \lambda = 0$, avec la contrainte 2x + y = 100. On en déduit des deux premières égalités que $y = 2\lambda$ et $x = \lambda$. Donc, y = 2x. En injectant ceci dans notre contrainte on trouve 2x + 2x = 100 c-à-d x = 25

Procédure de résolution

Pour trouver l'unique solution du problème $\max(\min)u(x,y)$ sous contrainte g(x, y) = c, on respecte ce qui suit

- 1. Écrire l'expression du Lagrangien : $\mathcal{L}(x,y,\lambda) = f(x,y) \lambda(g(x,y)-c)$
- 2. Trouver $\frac{\partial \mathcal{L}}{\partial \mathbf{x}}$ et $\frac{\partial \mathcal{L}}{\partial \mathbf{y}}$ et mettez les en égalité avec 0.
- 3. Les deux équations de l'étape 2) avec les contraintes engendrent les trois équations :

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x} = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y} = 0$$

$$g(x, y) = c$$

résoudre le système des trois inconnus les solutions (x, y, λ) candidates.