Name:	

MATH 236 EXAM 1

- Print your name clearly in the space provided.
- You may use your textbook and class notes only.
- You may not consult with anyone other than me.

Honor Statement:

I have neither given nor received help on this exam, and all of the answers are my own.

Signature

Question	Points	Score
1	14	
2	20	
3	16	
4	8	
5	16	
6	12	
7	14	
Total:	100	

1. [14 points] Show that $P \Rightarrow [Q \land R]$ if and only if $(P \Rightarrow Q) \land (P \Rightarrow R)$.

Solution 1 The following truth table proves the assertion:

P	Q	R	$Q \wedge R$	$P \Rightarrow Q$	$P \Rightarrow R$	$P \Rightarrow Q \wedge R$	$[P \Rightarrow Q] \land [P \Rightarrow R]$
\overline{T}	T	T	T	T	T	T	T
T	T	F	F	T	F	F	T
T	F	T	T	T	T	T	T
F	T	T	F	T	F	F	T
T	F	F	T	F	F	F	T
F	F	T	T	T	T	T	T
F	T	F	T	T	T	T	T
F	F	F	T	F	T	F	T

2. [20 points] Prove that an integer n is odd if and only if n^3 is odd.

Solution 2 (\Rightarrow) Let n be odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. We wish to show that n^3 is odd. We have

$$n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1.$$

Since $k \in \mathbb{Z}$, $4k^3 + 6k^2 + 3k \in \mathbb{Z}$ so that n^3 is odd.

(\Leftarrow) We prove the contrapositive; that is, we show that if n is even, then n^3 is even. Let n = 2k for some $k \in \mathbb{Z}$. We show that n^3 is also odd. We have

$$n^3 = (2k)^3 = 8k^3 = 2(4k^3).$$

Since $k \in \mathbb{Z}$, $4k^3 \in \mathbb{Z}$ so that n^3 is even. Thus if n^3 is odd, then n is odd.

3. [16 points] Prove that if x + y is irrational, then either x is irrational or y is irrational.

Solution 3 We proceed by proving the contrapositive; that is, if x and y are both rational, then x + y is rational. Write $x = \frac{a}{b}, y = \frac{c}{d}$ in lowest terms with $a, b, c, d \in \mathbb{Z}$, $b, d \neq 0$. Then $x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ which is a rational number since $ad + bc, bd \in \mathbb{Z}$ and $bd \neq 0$ since $b, d \neq 0$. Hence if x + y is irrational, then either x is irrational or y is irrational.

4. [8 points] Write out "if-then" statement(s) that need to be proved in order to prove the following:

A map of CW complexes $f: X \to Y$ is a homotopy equivalence if and only if $f_*: \pi_i(X) \to \pi_i(Y)$ is a group isomorphism for all i.

Solution 4 If a map of CW complexes $f: X \to Y$ is a homotopy equivalence, then $f_*: \pi_i(X) \to \pi_i(Y)$ is a group isomorphism for all i.

If $f_*: \pi_i(X) \to \pi_i(Y)$ is a group isomorphism for all i, then a map of CW complexes $f: X \to Y$ is a homotopy equivalence.

- 5. [16 points] Which of the following is equal to the set $\{x \in \mathbb{R} : x(x+2)^2(x-\frac{3}{2})=0\}$?
 - (a) $\{-2,0,3\}$
 - (b) $\left\{\frac{3}{2}, -2, 0\right\}$
 - (c) $\{-2, -2, 0, \frac{3}{2}\}$
 - (d) $\{-2,3\}$

Justify your answers.

Solution 5 Let $a \in A = \{x \in \mathbb{R} : x(x+2)^2(x-\frac{3}{2}) = 0\}$. Then $a(a+2)^2(a-\frac{3}{2}) = 0$ and hence either a = 0, a + 2 = 0 or $(a - \frac{3}{2}) = 0$. This implies that either a = 0, a = -2, or $a = \frac{3}{2}$. Thus both the sets $\{\frac{3}{2}, -2, 0\}$ and $\{-2, -2, 0, \frac{3}{2}\}$ are contained in A. The other direction is similar.

6. [12 points] Prove or give a counterexample:

If $A \cup C \subseteq B \cup C$, then $A \subseteq B$.

Solution 6 See Homework number 2 solution.

7. [14 points] Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution 7 Let $x \in A \cap (B \cup C)$. We have

- $\Rightarrow x \in A \text{ and } [x \in B \text{ or } x \in C]$
- $\Rightarrow x \in A \ and \ x \in B \ or \ x \in A \ and \ x \in B$
- $\Rightarrow x \in (A \cap B) \cup (A \cap C).$

Thus $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

To show the other direction, let $x \in (A \cap B) \cup (A \cap C)$. Then $\Rightarrow x \in (A \cap B) \cup (A \cap C)$

- $\Rightarrow x \in A \ and \ x \in B \ or \ x \in A \ and \ x \in B$
- $\Rightarrow x \in A \text{ and } [x \in B \text{ or } x \in C]$
- $\Rightarrow x \in A \cap (B \cup C).$

We conclude that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.