Universidade do Estado do Rio de Janeiro

Instituto de Matemática e Estatística

DEPARTAMENTO DE ANÁLISE MATEMÁTICA

Lista de Exercícios - Sequências

Professor João Caminada

24 de fevereiro de 2021

1. Determine o termo geral da sequência

1.1.
$$0, 2, 0, 2, 0, 2, \dots$$

1.2.
$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \dots$$
 1.3. $-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \dots$

1.3.
$$-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \dots$$

2. Determine se a sequência é convergente ou divergente, calculando seu limite no caso convergente.

2.1.
$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \dots$$

2.2.
$$1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{8}, 1, \frac{1}{16}, \dots$$

2.3.
$$\frac{1}{2}$$
, $-\frac{1}{2}$, $\frac{1}{4}$, $-\frac{3}{4}$, $\frac{1}{8}$, $-\frac{7}{8}$, ...

2.4.
$$a_n = (4 + \frac{1}{n})^{\frac{1}{2}}$$

2.5.
$$c_k = \frac{\sqrt{k+1}}{k-1}, k \ge 2$$

$$2.6. \ a_n = \frac{n^3 + 3n + 1}{4n^3 + 2}$$

2.7.
$$a_n = \sqrt{n+1} - \sqrt{n}$$

2.8.
$$a_n = \frac{n + (-1)^n}{n - (-1)^n}$$

2.9.
$$a_n = \frac{2n}{n+1} - \frac{n+1}{2n}$$

2.10.
$$a_n = n(\sqrt{n^2 + 1} - n)$$

2.11.
$$a_n = \frac{\text{sen } n}{n}$$

2.12.
$$b_n = \text{sen}(n\pi); c_n = \text{sen}(\frac{n\pi}{2})$$

2.13.
$$a_n = \frac{2n + \text{sen } n}{5n + 1}$$

2.14.
$$a_n = \frac{(n+3)!-n!}{(n+4)!}$$

2.15.
$$a_n = \sqrt[n]{n^2 + n}$$

2.16.
$$a_n = \frac{n \operatorname{sen}(n!)}{n^2+1}$$

2.17.
$$a_n = \frac{3^n}{2^n + 10^n}$$

2.18.
$$a_n = (\frac{n+2}{n+1})^n$$

2.19.
$$a_n = \frac{(n+1)^n}{n^{n+1}}$$

$$2.20. \ a_n = na^n, \ a \in \mathbb{R}$$

2.21.
$$a_n = \frac{n!}{n^n}$$

2.22.
$$a_n = n - n^2 \operatorname{sen} \frac{1}{n}$$

2.23.
$$a_n = (-1)^n + \frac{(-1)^n}{n}$$

2.24.
$$a_n = \sqrt[n]{a^n + b^n}$$
, onde $0 < a < b$

2.25.
$$a_n = (1 - \frac{1}{2})(1 - \frac{1}{3})\dots(1 - \frac{1}{n})$$

2.26.
$$a_n = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2})\dots(1 - \frac{1}{n^2})$$

2.27.
$$a_n = \frac{1}{n} \cdot \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)}$$

2.28.
$$a_n = \sqrt[n]{n}$$

2.29.
$$a_n = \frac{n^{\alpha}}{e^n}, \alpha \in \mathbb{R}$$

2.30.
$$a_n = \frac{\ln(n)}{n^a}, a > 0$$

2.31.
$$a_n = \sqrt[n]{a}, a > 0$$

2.32.
$$a_n = (\frac{n-1}{n})^n$$

2.35.
$$a_n = (\frac{3n+5}{5n+1})^n$$

2.33.
$$a_n = (\frac{n+1}{n})^{n^2}$$

2.36.
$$a_n = \left(\frac{3n+5}{5n+1}\right)^n \left(\frac{5}{3}\right)^n$$

2.34.
$$a_n = (\frac{n+1}{n})^{\sqrt{n}}$$

2.37.
$$a_n = (1 + \frac{1}{n^2})^n$$

- 3. Siga os passos abaixo para mostrar que $\lim_{n\to\infty}\sqrt[n]{n!}=\infty.$
 - (a) Mostre que

$$\log\left(\frac{\sqrt[n]{n!}}{n}\right) = \frac{1}{n} \sum_{k=1}^{n} \log\left(\frac{k}{n}\right)$$

(b) Mostre que

$$\lim_{n \to \infty} \log \left(\frac{\sqrt[n]{n!}}{n} \right) = \int_0^1 \log x \, dx = -1$$

[Dica: Soma de Riemann!]

(c) Mostre que

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = e^{-1}.$$

(d) Mostre que

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty.$$

- 4. Determine se as afirmações são verdadeiras ou falsas. Se forem verdadeiras demonstre, se forem falsas dê um contra-exemplo:
 - (a) Se $a_n \to a$, então $|a_n| \to |a|$.
 - (b) Se $|a_n| \to |a|$, então $a_n \to a$.
 - (c) Se $|a_n| \to 0$, então $a_n \to 0$.
 - (d) Se $a_n \to 0$, então $a_n \cdot b_n \to 0$.
 - (e) Se $a_n \cdot b_n \to 0$, então $a_n \to 0$ ou $b_n \to 0$.
 - (f) Se $c \cdot a_n$ converge e $c \neq 0$, então a_n converge.
 - (g) Se $a_n + b_n$ converge, então a_n converge e b_n converge.
 - (h) Se $\lim_{x\to\infty} f(x)$ não existe, então $a_n=f(n)$ não converge.
 - (i) Se a_n é uma sequência crescente limitada superiormente, então a_n é limitada.
 - (j) Se a_n é uma sequência decrescente limitada inferiormente, então a_n é limitada.
- 5. Considere a sequência definida recursivamente por

$$a_1 = \sqrt{2}$$
 e $a_{n+1} = \sqrt{2a_n} \ n = 2, 3, 4, \dots$

- (a) Mostre que a sequência é crescente e limitada superiormente por 2.
- (b) Mostre que a sequência é convergente.
- (c) Calcule $\lim_{n\to\infty} a_n$.
- 6. Considere a sequência definida recursivamente por

$$a_1 = \sqrt{2}$$
 e $a_{n+1} = \sqrt{2 + a_n} \ n = 2, 3, 4, \dots$

- (a) Mostre que a sequência é crescente e limitada superiormente por 3.
- (b) Mostre que a sequência é convergente.
- (c) Calcule $\lim_{n\to\infty} a_n$.

7. Considere a sequência definida recursivamente por

$$a_1 = 1$$
 e $a_{n+1} = 3 - \frac{1}{a_n} n = 2, 3, 4, \dots$

- (a) Mostre que a sequência é crescente e limitada superiormente por 3.
- (b) Mostre que a sequência é convergente.
- (c) Calcule $\lim_{n\to\infty} a_n$.
- 8. Considere a sequência definida recursivamente por

$$a_1 = 2$$
 e $a_{n+1} = \frac{1}{3 - a_n} \ n = 2, 3, 4, \dots$

- (a) Mostre que a sequência é decrescente e limitada inferiormente por 0.
- (b) Mostre que a sequência é convergente.
- (c) Calcule $\lim_{n\to\infty} a_n$.
- 9. Estude a convergência da sequência

$$a_n = \frac{n^2}{n!}.$$

Generalize para a sequência

$$a_n = \frac{n^k}{n!},$$

 $com k \in \mathbb{N}$.

10. O tamanho de uma população de peixes pode ser modelado pela fórmula

$$p_{n+1} = \frac{bp_n}{a + p_n},$$

onde p_n é o tamanho da população de peixes depois de n anos e a e b são constantes positivas que dependem da espécie e de seu habitat. Suponha que a população no ano 0 seja $p_0 > 0$.

- (a) Mostre que se $\{p_n\}$ é convergente, então os únicos valores possíveis para seu limite são 0 e b-a.
- (b) Mostre que $p_{n+1} < (b/a)p_n$.
- (c) Use o item (b) para mostrar que, se a > b, então $\lim_{n \to \infty} p_n = 0$. Interprete este resultado.
- (d) Agora assuma que a < b. Mostre que, se $p_0 < b a$, então $\{p_n\}$ é crescente e $p_n < b a$. Mostre também que, se $p_0 > b a$, então, $\{p_n\}$ é decrescente e $p_n > b a$. Deduza que se a < b, então $\lim_{n \to \infty} p_n = b a$. Interprete este resultado.
- (e) O que ocorre se $p_0 = b a$.