Lógica para Computação

Primeiro Semestre, 2015

Aula 6: Dedução Natural

DAINF-UTFPR

Prof. Ricardo Dutra da Silva

Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado o método de dedução natural. O método usa:

- basicamente duas regras por conectivo (uma para introduzir o conectivo e outra para removê-lo);
- introdução de hipóteses que devem ser oportunamente descartadas.

A seguir veremos como são as regras para cada conectivo. Em geral, as regras serão apresentadas com o formato abaixo.

$$\frac{A_1}{B}$$
 ... $\frac{A_n}{B}$ (nome)

Acima da barra horizontal aparecem fórmulas A_1, A_2, \ldots, A_n que são premissas da regra, ou seja, fórmulas que são dadas como verdadeiras $(I(A_1) = I(A_2) = \ldots = I(A_n) = 1)$. Abaixo da barra horizontal é apresentada a conclusão, ou seja, a partir de A_1, A_2, \ldots, A_n podemos deduzir B. B é consequência lógica do conjunto de fórmulas A_1, A_2, \ldots, A_n . Entre os parênteses que aparecem na regra será colocado o nome da fórmula, comumente um dos conectivos seguido por um "i" (introdução do conectivo) ou por "e" (eliminação do conectivo).

 $\wedge\text{-introdução}$ Permite concluir $A\wedge B$ dado que Ae Bjá foram concluídas. A regra é escrita como

$$\frac{A}{A \wedge B} (\wedge i)$$

Acima da linha são fornecidas as duas premissas da regra e abaixo da linha a conclusão. A regra afirma que se A e B são fórmulas com interpretação verdadeira, então podemos concluir a fórmula $A \wedge B$. A justificativa é óbvia pela definição do conectivo¹. À direita está o nome da regra, " \wedge i", significando "introdução da conjunção", pois uma fórmula que contém a conjunção foi concluída.

¹Em caso de dúvida, use o método de tabela-verdade para verificar a consequência lógica.

∧-eliminação Temos duas regras para eliminar a conjunção

$$\frac{A \wedge B}{A}$$
 (\wedge e1)

е

$$\frac{A \wedge B}{B}$$
 (\wedge e2)

Uma regra diz que se temos uma prova de $A \wedge B$ então podemos concluir A, a outra, nas mesmas condições, diz que podemos concluir B.

Exemplo 6.1

Para provar que $p \land q, r \vdash q \land r$ é correta, podemos prosseguir como a seguir. Listamos inicialmente as premissas, ou seja, a teoria Γ , se houver. Chamamos essas fórmulas de premissas pois já são dadas pelo problema e consideradas verdadeiras. Temos duas premissas: $\Gamma = \{p \land q, r\}.$

1. $p \wedge q$ premissa

2. rpremissa

Pela aplicação da segunda regra de eliminação da conjunção, usando a primeira linha da prova, obtemos a fórmula que

$$\frac{p \wedge q}{q} (\wedge e2)$$

A aplicação é mostrada na linha três, indicando, à direita, a regra que foi usada e sobre qual fórmula (fórmula da linha 1).

1. $p \wedge q$ premissa2. rpremissa3. q $\wedge e2 \ 1$

Como as fórmulas q e r já foram concluídas (nas linhas 3 e 2), então podemos concluir que $q \wedge r$ também é verdadeira.

$$\frac{q}{q \wedge r} (\wedge i)$$

A quarta linha segue da aplicação da regra de introdução da conjunção.

- 1. $p \wedge q$ premissa
- $2. \quad r \quad premissa$
- 3. $q \wedge e2 1$
- 4. $q \wedge r$ $\wedge i \ 3,2$

Chegamos no consequente $q \wedge r$, portanto a dedução $p \wedge q$, $r \vdash q \wedge r$ é correta.

Exemplo 6.2

O sequente $(p \land q) \land r, s \land t \vdash q \land s$ é correto.

- 1. $(p \wedge q) \wedge r$ premissa
- 2. $s \wedge t$ premissa
- 3. $p \wedge q$ $\wedge e1$ 1
- 4. q $\wedge e2\ 3$
- 5. s $\wedge e1\ 2$
- 6. $q \wedge s$ $\wedge i \ 4.5$

As próximas regras demonstram a introdução e eliminação da dupla negação.

 $\neg\neg$ -introdução Sabemos que $A \equiv \neg\neg A$. Logo, se temos A, podemos concluir $\neg\neg A$.

$$\frac{A}{\neg \neg A} (\neg \neg i)$$

 $\neg\neg$ -eliminação De forma similar, podemos concluir A caso tenhamos $\neg\neg A$.

$$\frac{\neg \neg A}{A} (\neg \neg e)$$

Exemplo 6.3

Para provar $p, \neg \neg (p \land r) \vdash \neg \neg p \land r$, após listar as premissas, podemos incluir a dupla negação na fórmula p. Precisamos de ¬¬p na conclusão do sequente.

1.	p	premissa
2.	$\neg\neg(p\wedge r)$	premissa
3.	$\neg \neg p$	¬¬i 1

Precisamos também de um r. A única fórmula que contém um r é a premissa da linha 2. Podemos usar a regra de remoção da dupla negação sobre a linha 2 para concluir $p \wedge r$. Em seguida, aplicamos a eliminação da conjunção nesta última fórmula.

1. p	premissa
$2. \neg \neg (p \land $	r) premissa
$3. \neg \neg p$	$\neg \neg i \ 1$
4. $p \wedge r$	$\neg \neg e \ 2$
5. r	$\wedge e2 \ 4$

Por fim, como temos $\neg \neg p$ e temos r, concluímos $\neg \neg p \land r$ usando a regra de introdução da conjunção.

1.	p	premissa
2.	$\neg\neg(p\wedge r)$	premissa
3.	$\neg \neg p$	$\neg \neg i \ 1$
4.	$p \wedge r$	$\neg \neg e \ 2$
5.	r	$\wedge e2 \ 4$
6.	$\neg\neg p \wedge r$	$\wedge i \ 3,5$

 \rightarrow -eliminação (modus ponens) Dado que $A \rightarrow B$ e A já foram concluídas, podemos concluir B. Já verificamos que esta regra é correta ao estudar consequência lógica, $A \rightarrow B$, $A \models B$. Se usarmos o teorema da dedução nesta última relação, verificamos que $A \rightarrow B \models A \rightarrow B$. Claramente é demonstrada a consequência lógica.

$$\frac{A}{B}$$
 $\xrightarrow{A \to B}$ $(\to e/MP)$

A dedução $\neg p \land q, \neg p \land q \rightarrow r \lor \neg p \vdash r \lor \neg p$ é correta como mostra a prova abaixo. A regra modus ponens é aplicada sobre as premissas das linhas 1 e 2.

- 1. $\neg p \land q$ premissa
- 2. $\neg p \land q \rightarrow r \lor \neg p$ premissa
- 3. $r \lor \neg p$ $\rightarrow e 1,2$

Exemplo 6.5

Prova de $p, p \to q, p \to (q \to r) \vdash r$.

- 1. p premissa
- 2. $p \rightarrow q$ premissa
- 3. $p \to (q \to r)$ premissa
- 4. $q \rightarrow e 1,2$
- 5. $q \rightarrow r$ $\rightarrow e 1.3$
- 6. r o e 4.5

 \rightarrow -eliminação (modus tollens) Suponha que tenhamos $A \rightarrow B$ e $\neg B$. Se A for verdade então, por modus ponens, concluímos B. Neste caso temos B e $\neg B$, o que é impossível. Então A só pode ser falso e $\neg A$ verdadeiro. Com isso podemos concluir a seguinte regra².

$$A \to B \qquad \neg B \qquad (MT)$$

²Podemos também raciocinar usando a semântica do conectivo →. Temos $I(\neg B) = 1$ e $I(A \rightarrow B) = 1$; se I(A) = 1 então $I(A \rightarrow B) = I(1 \rightarrow 0) = 0$, contradizendo $I(A \rightarrow B) = 1$. Portanto, I(A) = 0 e, consequentemente, $I(\neg A) = 1$.

Para provar o sequente $p \to (q \to r), p, \neg r \vdash \neg q$ usamos inicialmente a regra modus ponens nas linhas 1 e 2 para concluir $q \to r$. Como temos $\neg r$, por modus tollens, nas fórmulas das linhas 3 e 4, concluímos $\neg q$.

1.	$p \to (q \to r)$	premissa
2.	p	premissa
3.	$\neg r$	premissa
4.	$q \to r$	$\rightarrow e 2,1$
5.	$\neg q$	MT 4,3

Exemplo 6.7

Prova da dedução $\neg p \rightarrow q, \neg q \vdash p$.

1. $\neg p \rightarrow q$	premissa
$2. \neg q$	premissa
3. $\neg \neg p$	MT 1,2
4. <i>p</i>	$\neg \neg e \ 3$

A seguir veremos a regra de introdução da implicação. A regra usará a técnica de introdução de hipóteses, que é bastante importante em provas por dedução natural mas que deve ser bem compreendida e usada com cuidado.

→-introdução Incluir a implicação é uma tarefa um pouco mais complicada do que vimos, até agora, para os outros conectivos. A regra de introdução da implicação é mostrada a seguir.

$$\begin{array}{c}
[A]^{j} \\
\vdots \\
B \\
\hline
A \to B
\end{array} (\to i)^{j}$$

A primeira linha da regra, [A], é uma hipótese. Uma suposição temporária de que uma fórmula A é verdadeira. A premissa da regra informa que a partir da hipótese A, usando quaisquer regras de dedução natural, foi produzido um conjunto de deduções A, A_1, A_2, \ldots, A_n , com $A_n = B$. Em outras palavras, foi possível deduzir B a partir de A. A conclusão da regra significa que, se tal dedução foi possível, então podemos concluir que $A \to B$ é verdadeira.

Além disso, a regra diz que a hipótese A e todas as regras derivadas dela até B podem ser usadas até o momento em que B é encontrada. A partir do momento que concluímos $A \to B$, nenhuma das fórmulas entre A e B, incluindo estas, pode ser usada mais. Existe um escopo definido para a hipótese, um determinado local em que é possível usá-la. Em nossas provas, vamos mostrar esse escopo abrindo e fechando uma "caixa", como mostra o exemplo abaixo.

Para provar $p \to q \vdash \neg q \to \neg p$, iniciamos listando as premissas.

1.
$$p \rightarrow q$$
 premissa

Queremos chegar na fórmula $\neg q \rightarrow \neg p$ e portanto parece razoável usar a regra de introdução da implicação. A regra diz que se usarmos $\neg q$ como hipótese e formos capazes de deduzir $\neg p$, então podemos concluir $\neg q \rightarrow \neg p$. Fazemos então a hipótese $\neg q$ como abaixo. Note que foi criada uma "caixa" delimitando o escopo da hipótese.

1.
$$p \rightarrow q$$
 premissa
2. $\neg q$ hipótese

Precisamos deduzir $\neg p$ a partir da hipótese. Isso é obtido usando a regra modus tollens nas linhas 1 e 2.

Agora podemos concluir $\neg q \rightarrow \neg p$, conforme a regra de introdução da implicação, usando as fórmulas deduzidas nas linhas 2 e 3.

1. $p \rightarrow q$		premissa
2. 3.	q	hipótese
3.		MT 1,2
4.	$\neg q \rightarrow \neg p$	<i>→i 2-3</i>

Alguns pontos da aplicação dessa regra merecem nota:

- 1. Para concluir $A \to B$, a "caixa" deve iniciar com a hipótese A e terminar com a dedução B;
- 2. As fórmulas dentro da "caixa" podem ser usadas apenas dentro da caixa, somente dentro do escopo;
- 3. Qualquer fórmula concluída anteriormente à abertura da caixa pode ser usada dentro da caixa, desde que não pertença a alguma caixa que já foi fechada.
- 4. A conclusão de $A \to B$ é independente da interpretação da hipótese. Por isso, a conclusão é escrita fora da caixa.

Como podemos justificar que essa é uma regra correta? Queremos concluir $A \to B$, ou seja, $I(A \to B) = 1$. Em que condições poderemos fazer isso? Sabemos que existem três possibilidades para que $I(A \to B) = 1$:

1.
$$I(A) = 0 e I(B) = 0;$$

2.
$$I(A) = 0$$
 e $I(B) = 1$;

3.
$$I(A) = 1 e I(B) = 1$$
.

Notamos que se I(A) = 0, não dependemos da valoração de B e podemos assumir $I(A \rightarrow B) = 1$. Mas ainda existe o caso de I(A) = 1, para o qual obrigatoriamente I(B) = 1. Esse é o caso que temos que provar e é o caso refletido na regra de introdução da implicação.

Fazemos a suposição de que I(A)=1 e, se deduzimos I(B)=1, todas as possibilidades para $I(A\to B)=1$ são cobertas. Podemos concluir $A\to B$ mesmo sem saber se I(A)=0 ou I(A)=1.

Para provar $\neg q \rightarrow \neg p \vdash p \rightarrow \neg \neg q$, começamos com as premissas.

1.
$$\neg q \rightarrow \neg p$$
 premissa

Para concluir $p \to \neg \neg q$ usamos a regra da introdução da implicação. A regra diz que precisamos ter uma hipótese p e que precisamos deduzir $\neg q$. A hipótese é feita abaixo com seu escopo delimitado por uma caixa.

1.
$$\neg q \rightarrow \neg p$$
 premissa
2. p hipótese

Pela regra de introdução da dupla negação chegamos na próxima linha de prova.

1.	$\neg q \to \neg p$	premissa
2.	p	hipótese
3.	$\neg \neg p$	$\neg \neg i \ 2$

Por modus tollens obtemos a quarta linha da prova.

1.
$$\neg q \rightarrow \neg p$$
 premissa
2. p hipótese
3. $\neg \neg p$ $\neg \neg i \ 2$
4. $\neg \neg q$ $MT \ 1,3$

Agora temos exatamente o que a regra de introdução da implicação pede. Iniciamos com a hipótese p e deduzimos $\neg \neg q$. Portanto, podemos concluir $p \to \neg \neg q$. Note que na descrição de como a fórmula foi deduzida referenciamos todas as linhas usadas na regra de introdução da implicação, ou seja, as linhas de 2 até 4.

1.	$\neg q \to \neg p$	premissa
2.	p	hipótese
3.	$ \begin{array}{c c} p\\ \neg\neg p\\ \neg\neg q \end{array} $	$\neg \neg i \ 2$
4.	$\neg \neg q$	MT 1,3
5.	$p \to \neg \neg q$	<i>→i 2-4</i>

Definição 6.1. Caso o sequente $\Gamma \vdash A$ possua teoria vazia, então este é denotado $\vdash A$ e chamado de teorema.

Provar o teorema $\vdash (q \to r) \to ((\neg q \to \neg p) \to (p \to r)).$

1. hipótese 2. hipótese 3. hipótese $\neg \neg i \ 3$ 4. MT 2,4 5. 6. $\neg \neg e 6$ 7. $\rightarrow e 1.6$ 8. \rightarrow i 3-7 \rightarrow i 2-8 9. 10. $(q \to r) \to ((\neg q \to \neg p) \to (p \to r))$ \rightarrow i 1-9

Algumas vezes, o teorema da dedução pode tornar uma prova mais simples de ser visualizada.

Exemplo 6.11

 $\overline{Provar \vdash (q \to r) \to ((\neg q \to \neg p) \to (p \to r))}.$

Sabemos que $\vdash (q \to r) \to ((\neg q \to \neg p) \to (p \to r))$ pode ser reescrito, conforme o teorema da dedução, como

$$\begin{split} q \to r \vdash (\neg q \to \neg p) \to (p \to r) \\ q \to r, \neg q \to \neg p \vdash (p \to r) \\ q \to r, \neg q \to \neg p, p \vdash r \end{split}$$

Podemos usar uma das formas alternativas em uma prova por dedução natural, como na prova abaixo.

1.	$q \rightarrow r$	premissa
2.	$\neg q \to \neg p$	premissa
3.	p	premissa
4.	$\neg \neg p$	$\neg \neg i \ 3$
5.	$\neg \neg q$	MT 2,4
6.	q	$\neg \neg e 5$
7.	r	$\rightarrow e$ 1,6

 \vee -introdução Dada uma premissa A, nós podemos concluir $A \vee B$ para qualquer fórmula B. A justificativa segue diretamente da definição da semântica do conectivo \vee . A interpretação $I(A \vee B) = 1$ se I(A) = 1 ou I(B) = 1. Já temos I(A) = 1, não dependendo de I(B). Da mesma forma, dada uma premissa B, podemos concluir $A \vee B$. Temos as regras abaixo.

$$\frac{A}{A \vee B} \text{ (Vi1)}$$

$$\frac{B}{A \vee B} \, (\vee \mathrm{i} 2)$$

 \lor -eliminação A exclusão da disjunção é uma regra mais complicada. Como usar uma fórmula $A \lor B$ em uma prova? Sabemos que pelo menos umas das duas subfórmulas é verdadeira, A ou B. No entanto, não sabemos qual. A solução é fornecer duas provas separadas para um mesmo argumento:

- 1. Fazemos a hipótese de que A é verdadeira e obtemos C.
- 2. Fazemos a hipótese de que B é verdadeira e obtemos C.
- 3. Neste caso podemos assumir C verdadeira já que chegamos neste resultado tanto por A quanto por B.

Podemos enunciar a regra como abaixo.

$$\begin{array}{ccc} & & [A] & & [B] \\ & \vdots & \vdots & \vdots \\ \underline{A \vee B} & & \underline{C} & & \underline{C} \\ \hline & & & C & \end{array} (\vee \mathrm{e})$$

Note que a regra informa que precisamos de duas premissas. Cada uma terá seu próprio escopo.

Para provar o sequente $p \lor q \vdash q \lor p$ começamos como de costume, listando as premissas.

1.
$$p \lor q$$
 premissa

Temos uma disjunção, vamos tentar usar a regra de eliminação da disjunção. A regra diz que precisamos de duas hipóteses. Abaixo é criada a primeira hipótese e seu escopo é explicitado por uma caixa dentro da prova.

1.	$p \vee q$	premissa
2.	p	hipótese

Vamos tentar concluir $q \lor p$ a partir da hipótese p. Mas isso é fácil, a segunda regra de inclusão da disjunção pode ser usada.

1.	$p \vee q$	premissa
2.	p	hipótese
3.	$q \lor p$	<i>∨i2 2</i>

Chegamos na conclusão do sequente que queremos provar. No entanto, não basta chegar apenas pela hipótese de p. Segundo a regra de eliminação da disjunção, é preciso também fazer a hipótese de q e chegar na mesma conclusão. Fazemos então a hipótese q com seu escopo também bem definido.

1. $p \vee q$		premissa	
2.	p	hipótese	
3.	$q \lor p$	\lor i2 2	
4.	q	$hip \acute{o}tese$	

Novamente pela regra de inclusão da disjunção é possível concluir $q \vee p$.

1. 7	$p \vee q$	premissa
2.	p	hipótese
3.	$q \lor p$	\lor i $2~2$
4.	q	hipótese
5.	$q \lor p$	$\vee i1$ 4

Como encontramos $q \lor p$ por ambos os caminhos, podemos concluir que $q \lor p$ é verdadeira. A prova foi bem sucedida. A descrição de como a linha $q \lor p$ foi obtida reflete a regra de eliminação da disjunção. Temos o nome da regra $\lor e$, que foi aplicada na fórmula da linha 1 e que foi provada, independentemente, para hipóteses diferentes, nas linhas de 2 a 3 e de 4 a 5.

1. $p \vee q$	premissa		
$ \begin{array}{ccc} 2. & p \\ 3. & q \lor p \end{array} $	$\begin{array}{c} hip \acute{o}tese \\ \lor i2 \ 2 \end{array}$		
$ \begin{array}{ccc} 4. & q \\ 5. & q \lor p \end{array} $	hipótese ∨i1 4		
6. $q \vee p$	∨e 1,2-3,4-5		

A prova de $q \to r \vdash (p \lor q) \to (p \lor r)$ usa hipóteses para as regras de introdução da implicação e para eliminação da disjunção. Note os escopos dados pelas caixas.

Exemplo 6.14

 $Provar\;(p\vee q)\vee r\vdash p\vee (q\vee r).$

1.	$(p \vee$	q)	\vee	r	

 $p \lor q$

3.

2.

4. $p \lor (q \lor r)$

5.

6.

7.

8.

 $p \vee (q \vee r)$

 $q \vee r$

 $p\vee (q\vee r)$

9. *1*

10. $q \lor r$

11. $p \lor (q \lor r)$

12. $p \lor (q \lor r)$

premissa

 $hip \acute{o}tese$

hipótese

∨i1 3

 $hip \acute{o}tese$

∨i1 5

∀i1 6

 $\forall e \ 2,3-4,5-7$

 $hip \acute{o}tese$

∨i2 9

 $\vee i2\ 10$

∨e 1,2-8,9-11