Espaces Vectoriels

Quentin ROBERT, Julie FIADINO

GENTS DO IT WITH PRECISION

Table des matières

1	Ve	ect	e	ur	\mathbf{s}	et	I	$\Sigma \mathbf{s}$	p	ac	es	S	ve	ec	tc	or	ie	ls																											3
Е×	ære	cio	e	1.	1																																								3
	1.1	1.																			 			 																					3
	1.2	2.																			 			 																					3
	1.3	3.																			 			 																					3
Ε×	ære	cio	e	1.	2																																								3
	2.1																				 			 																					3
	2.2																																												4
	2.3																																												4
	2.4																																												4
Es	ære	cio	e	1.	3																																								5
																																													5
	3.2																																												
	3.3																																												5
	0.6	, .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •		•	•		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	 •	•	•	•	•	•	0
Ex	ær																																												5
	4.1																																												5
	4.2	2.	•	٠	•	•	•							•	•			•		 •	 			 				•									•		 •			•	•	•	5
2	So	ous	S-6	esp	oa	.Ce	es	v	e	ct	or	i€	els	5																															6
Ех	ær																																												6
	5.1	1.																			 			 																					6
	5.2	2 .																			 			 																					7
Еэ	ær	cic	e	2.	6																																								8
Ε×	ær	cio	e	2.	7																																								8
	7.1	1.																			 			 																					8
	7.2	2.																			 																								8
	7.3	3.																			 			 																					8
	7.4																																												9
	7.5	<u> </u>																			 			 																					9
	7.6																																												9
	7.7																																												10
	7.8																																												10
	7.9																																												10
	7.1																																												10
	7.1																																												10
	7.1																																												11
	7.1																																												11
	7.1																																												11
	7.1																																												11
	1.1	ιIJ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	 	•		 	•	•	•	•	•	•	•	•			•	•	•	•	 •	•	•	•	•	•	11

1 Vecteurs et Espaces vectoriels

Exercice 1.1

1.

On le représente par un segment partant de l'origine du repère.

2

On décrit la droite de vecteur directeur \vec{u} passant par le point O

3.

On décrit un parallelograme de côtés \vec{u} et \vec{v} si les 2 vecteurs ne sont pas colinéaires.

Exercice 1.2

1.

L'élément neutre pour + est $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

$$\operatorname{car}\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

L'élément neutre pour \cdot est 1

$$\operatorname{car} 1 \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Vérifions que
$$E$$
 est un REV
Soit $A = \begin{pmatrix} a & b \\ \end{pmatrix}$ $B = \begin{pmatrix} a' & b' \\ \end{pmatrix}$ deux élémer

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ deux éléments de E

$$A + B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$$

$$= \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix}$$

$$= \begin{pmatrix} a' + a & b' + b \\ c' + c & d' + d \end{pmatrix}$$

$$= \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= B + A$$

3. Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, $C = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$ deux éléments de E

$$A + (B + C) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' + a'' & b' + b'' \\ c' + c'' & d' + d'' \end{pmatrix}$$

$$= \begin{pmatrix} a + (a' + a'') & b + (b' + b'') \\ c + (c' + c'') & d + (d' + d'') \end{pmatrix}$$

$$= \begin{pmatrix} (a + a') + a'' & (b + b') + b'' \\ (c + c') + c'' & (d + d') + d'' \end{pmatrix}$$

$$= \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix} + \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$$

$$= (A + B) + C$$

L'élément neutre est
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Soit
$$A \in E$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Le symétriqe de
$$A$$
 est $-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$

$$1 \cdot A = A, \, \forall A \in E$$

Soit
$$(\lambda, \alpha) \in \mathbb{R}^2$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$\lambda \cdot (\alpha \cdot A) = (\lambda \alpha) \cdot A$$

Soit
$$\lambda \in \mathbb{R}$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$

$$\lambda \cdot (A+B) = \lambda \cdot A + \lambda \cdot B$$

Soit
$$\lambda \in \mathbb{R}$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$(\lambda + \alpha) \cdot A = \lambda \cdot A + \alpha \cdot A$$

Donc E est un REV.

Exercice 1.3

1.

$$E\{f: I \to \mathbb{R}\}, 0_E: \forall x \in I, 0_E(x) = 0\}$$

Le mot "interne" signifie que l'addition se fait entre deux éléments de
$$E.$$
 + = $\left\{ \begin{array}{l} E\times E\longrightarrow E\\ (f,g)\longrightarrow +((f,g))=f+g \end{array} \right\}$

3. Soit
$$\alpha \in \mathbb{R}$$
, $\alpha f = \left\{ \begin{array}{l} I \longrightarrow \mathbb{R} \\ x \longrightarrow (\alpha f)(x) = \alpha f(x) \end{array} \right\}$ Le mot "externe" signifie que l'opération se fait entre un élément de E et un élément extérieur $(\in \mathbb{R})$.
$$\cdot = \left\{ \begin{array}{l} \mathbb{R} \times E \longrightarrow E \\ (\alpha, f) \longrightarrow \cdot ((\alpha, f)) = \alpha \cdot f \end{array} \right\}$$

$$\cdot = \left\{ \begin{array}{l} \mathbb{R} \times E \longrightarrow E \\ (\alpha, f) \longrightarrow \cdot ((\alpha, f)) = \alpha \cdot f \end{array} \right\}$$

Exercice 1.4

$$+=\left\{ \forall\left(u_{n}\right)\left(v_{n}\right)\text{ deux suites, }\left(u_{n}\right)+\left(v_{n}\right)=\left(w_{n}\right)\text{ tel que }\forall n\in\mathbb{N},\,w_{n}=u_{n}+v_{n}\right\}$$

$$\cdot = \{ \forall \alpha(u_n) \in \mathbb{R}^{\mathbb{N}}, \ \alpha \cdot (u_n) = (\alpha^n u_n) \}$$

L'élément neutre pour
$$\cdot$$
 est 1 car $1 \cdot (u_n) = (1^n u_n) = (u_n)$ $(\mathbb{R}^{\mathbb{N}}, +, \cdot)$ n'est pas un REV car $(\lambda + \alpha) \cdot (u_n) \neq \lambda \cdot (u_n) + \alpha \cdot (u_n)$

Contre-Exemple:

Pour
$$\alpha = 2, \lambda = 3, (u_n) = (1)_n$$

$$(3+2) \cdot (1)_n = 5 \cdot (1)_n$$

= $(5^n)_n$

$$3 \cdot (1)_n + 2 \cdot (1)_n = (3^n)_n + (2^n)_n$$
$$= (3^n + 2^n)_n \neq (5^n)_n$$

Définition: Si on prend la loi usuelle

Alors $(E, +, \cdot)$ est un $\mathbb{R}.E.V$

2 Sous-espaces vectoriels

Pour la suite du TD tout les $\mathbb{R}.E.V = \mathbb{R}$ Espace Vectoriel , E.V = Espace Vectoriel et S.E.V = Sous-Espace Vectoriel.

Exercice 2.5

1. a/ Sur \mathbb{R}^2 :

$$\underline{{}^{\textstyle *}A}: \ \{0_{\mathbb{R}^2}\} = \{(0,0)\} = \{0\}$$

(a)- On a
$$(0,0) \in A$$

(b)- Soit
$$(u, v) \in A^2 \longrightarrow u + v = (0, 0) + (0, 0) = (0, 0) \in A$$

(c)- Soit
$$u \in A$$
 et $\lambda \in \mathbb{R}$,

$$\lambda \cdot u = \lambda \cdot (0,0)$$

$$= (\lambda \cdot 0, \lambda \cdot 0)$$

$$= (0,0) \in A$$

Donc A est un Sous-Espace Vectoriel de \mathbb{R}^2

*B: Disque de rayon 1 et de centre
$$0 = (0,0)$$

 $\Longrightarrow \{(x,y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$

B n'est pas un S.E.V de \mathbb{R}^2 car si on prend $\lambda=2,$ et $u=(1,0)\in B.$ $\lambda\cdot u=2\cdot (2,0)\notin B.$

*C: Demi - plan n:
$$x \ge 0$$

 $\implies \{(x,y) \in \mathbb{R}^2, x \ge 0\}$

C n'est pas un S.E.V de $\mathbb{R}^2,$ il n'est pas stable par la loi exterieur :

Contre exemple : $\lambda = -3, u = (1, 2)$

$$\lambda \cdot u = -3 \cdot (1,3) = (-3,-6) \notin C$$

(a)-
$$O_{\mathbb{R}^2} \in D$$

(b)- Soit (u, v)
$$\in$$
 D, $u = (x, 0)$ et $v = (y, 0), (x, y) \in \mathbb{R}^2$
 $\implies u + v = (x, 0) + (y, 0) = (x + y, 0) \in D$

(c)- Soit
$$u = (x, 0) \in D$$
 et $\lambda \in \mathbb{R}$,
 $\Longrightarrow \lambda \cdot u = \lambda \cdot (x, 0) = (\lambda \cdot x, 0) \in D$

Donc D est un S.E.V de \mathbb{R}^2 .

*E : Droite
$$x + y = 0$$

 $\Longrightarrow \{(x, y) \in \mathbb{R}^2, x + y = 0\}$ Soit que $\{(x, -x), x \in \mathbb{R}\}$

(a)-
$$0_{\mathbb{R}^2} \in E \text{ car } 0 + 0 = 0$$

(b)- Soit
$$(u, v) \in E$$
,
 $u = (x, y) = (x, -x)$
 $v = (x', y') = (x', -x')$

$$u + v = (x, -x) + (x', -x')$$

= $(x + x', -x - x')$
= $(x + x', -(x + x'))$

(c)- Soit
$$u = (x, -x) \in \mathbb{R}$$
 et $\lambda \in \mathbb{R}$,
 $\Longrightarrow \lambda \cdot u = \lambda \cdot (x, -x) = (\lambda \cdot x, -\lambda \cdot x) \in E$

Donc E est un S.E.V de \mathbb{R}^2 .

$$\underline{*F}$$
: Droite $x + y = 1 \implies \{(x, y) \in \mathbb{R}^2, x + y = 1\}$

$$0+0 \neq 1 \Longrightarrow (0,0) \notin F$$

Donc F n'est pas un S.E.V.

b/ Il n'est pas possible que deux S.E.V d'une même E.V soit disjoint car le 0_E est présent et donc en commun entre chaque S.E.V.

c/Sous-espaces vectoriels de \mathbb{R}^2 :

- * $\{0_{\mathbb{R}^2}\}$ (Soit le (0, 0)).
- *Les droites vectorielles (droites passants par l'origine).
- $*\mathbb{R}^2$ lui-même.

2.

Sous-espaces vectoriels de \mathbb{R}^3 :

- * $\{0_{\mathbb{R}^3}\}$ (Soit le (0, 0, 0)).
- *Plan vectoriels (Passants par l'origine).
- *Droites vectorielles (Passants par l'origine).
- $*\mathbb{R}^3$.

Exercice 2.6

Pas encore fait.

Exercice 2.7

1. $F = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$. On a $F \subset \mathbb{R}^3$ et on sait que \mathbb{R}^3 est un \mathbb{R} .E.V. *On a $0 + 0 + 0 = 0 \Longrightarrow (0, 0, 0) \in F \Longrightarrow 0_{\mathbb{R}^3} \in F$. *Soit $(u, v) \in F^2$, on pose u = (x, y, z) et v = (x', y', z'). On a $u \in F \Longrightarrow x + y + z = 0$. $v \in F \Longrightarrow x' + y' + z' = 0$.

Donc:

$$u + v = (x, y, z) + (x', y', z')_{(1)}$$

$$= (x + x', y + y', z + z')_{(2)}$$

$$= (x + x') + (y + y') + (z + z')_{(3)}$$

$$= (x + y + z) + (x' + y' + z') \Longrightarrow 0 + 0 = 0_{(4)}$$

$$= (x + x', y + y', z + z') \in F \Longrightarrow u + v \in F.$$

-Ligne 1 à 2 utilisation de la loi usuelle.

-Ligne 3 à 4, on cherche à vérifier si $u + v \in F$, donc on addition leur composants pour le voir.

 $\begin{array}{l} *\forall \ u \in F, \ \forall \ \lambda \in F, \ \lambda \cdot u \in F. \\ \mathrm{Soit} \ u = (x,y,z) \in F \ \mathrm{avec} \ x + y + z = 0 \ \mathrm{et} \ \lambda \in \mathbb{R}. \\ \mathrm{Donc} \ \lambda \cdot x + \lambda \cdot y + \lambda \cdot z = \lambda (x + y + z) \\ = \lambda \cdot 0 = 0 \\ \Longrightarrow \lambda \cdot \in F \end{array}$

F est un S.E.V de \mathbb{R}^3 , donc il est aussi un \mathbb{R} .E.V.

2.

 $\mathcal{F}=\{(x,y,z)\in\mathbb{R}^3, x+y+z=1\}\subset\mathbb{R}^3,\,\text{avec}\,\,\mathbb{R}^3\,\,\text{un}\,\,\mathbb{R}.\text{E.V.}$

*Rien que la première condition nous permets de montre que F n'est pas un S.E.V de \mathbb{R}^3 : $0+0+0\neq 1$.

Donc F n'étant pas un S.E.V de \mathbb{R}^3 , ne sera pas un E.V.

3.

 $\mathbf{F} = \{(x,y,z) \in \mathbb{R}^3, x \cdot y = 0\} \subset \mathbb{R}^3, \text{ avec } \mathbb{R}^3 \text{ un E.V.}$

Si on prend (1,0,42) et $(0,1,42) \in F$.

On aura:

$$(1,0,42) + (0,1,42) = (1,1,84) \notin \operatorname{car} 1 \times 1 \neq 0$$

F n'étant pas stable par addition, il n'est pas un S.E.V de \mathbb{R}^3 et donc par conséquent n'est pas un \mathbb{R} .E.V.

4.

$$F = \{(x, y, z) \in \mathbb{R}^3, x^2 = y^2\} \subset \mathbb{R}^3$$

Pareil pour ici, si on prend (1,0,-1) et $(2,0,2) \in F$.

On aura:

$$(1,0,-1) + (2,0,2) = (3,0,1) \Longrightarrow \notin F \text{ car } 3^2 \neq 1^2.$$

F n'est pas stable par addition ici non plus, il n'est donc pas un S.E.V de \mathbb{R}^3 et donc par conséquent n'est pas un \mathbb{R} .E.V.

5.

$$\mathcal{F} = \{u \in \mathbb{R}^3, u = \alpha \cdot (0, 1, 2) + \beta \cdot (1, 2, 3), (\alpha, \beta) \subset \mathbb{R}^2\} \subset \mathbb{R}^3, \text{ avec } \mathbb{R}^3 \text{ un E.V.}$$

$$*0_{\mathbb{R}^3} \in F$$
 il suffit de prendre $\alpha = \beta = 0$
 $\Longrightarrow (0 \cdot (0, 1, 2) + 0 \cdot (1, 2, 3)) = 0$

*Soit $(u, v) \in F^2$, alors:

$$u = \alpha \cdot (0, 1, 2) + \beta \cdot (1, 2, 3), \ (\alpha, \beta) \in \mathbb{R}^2$$

 $u = a \cdot (0, 1, 2) + b \cdot (1, 2, 3), \ (a, b) \in \mathbb{R}^2$

$$\implies u + v = \alpha \cdot (0, 1, 2) + \beta \cdot (1, 2, 3) + a \cdot (0, 1, 2) + b \cdot (1, 2, 3)$$

$$= (\alpha + a)(0, 1, 2) + (\beta + b)(1, 2, 3) \qquad ((\alpha + a) \ et \ (\beta + b) \in \mathbb{R})$$

$$= \lambda(0, 1, 2) + \theta(1, 2, 3) \qquad (avec \ \lambda = (\alpha + a) \ et \ \theta = (\beta + b))$$

Donc $u + v \in F$.

* Soit $u \in F, \lambda \in \mathbb{R}$

On a
$$u = \alpha \cdot (0, 1, 2) + \beta \cdot (1, 2, 3)$$
, avec $(\alpha, \beta) \in \mathbb{R}^2$

$$\Longrightarrow \lambda \cdot u = \lambda \cdot \alpha(0,1,2) + \lambda \cdot \beta(1,2,3)$$

Pareil ici $(\lambda \cdot \alpha)$ et $(\lambda \cdot \beta) \in \mathbb{R}$ donc on peut les remplacer par une autre inconnu tel :

(a(0,1,2) + b(1,2,3))

Donc $\lambda \cdot u \in F$

Donc F est bien un S.E.V de \mathbb{R}^3 et est donc un \mathbb{R} .E.V.

6.

$$F = \{ P \in \mathbb{R}[X], \ P(1) = C, \ P(X+1) = P(X) \} \subset \mathbb{R}[X]$$

 $P \in F \Longrightarrow$ admet une infinité de racines.

Or le seul pôlynome qui admets une infinité de racines est le pôlygone nul.

Donc $0_{\mathbb{R}[X]}$, F est bien un S.E.V de R[X].

$$*0_{\mathbb{R}_{[X]}} \in F$$

* * Soit $\lambda \cdot O_{\mathbb{R}[X]} + O_{\mathbb{R}}[X] = O_{\mathbb{R}}[X] \Longrightarrow \lambda \cdot O_{\mathbb{R}[X]} + O_{\mathbb{R}}[X] \in F$ (On fait ici les deux en un, l'addition et la multiplication a un λ)

Donc F est aussi un \mathbb{R} .E.V.

 γ .

$$\begin{split} \mathbf{F} &= \{P \in \mathbb{R}[X], \ P' = O_{\mathbb{R}[X]}\} = \mathbb{R}_0[X] \\ *0_{\mathbb{R}[X]} \in F \ \mathrm{car} \ O'_{\mathbb{R}[X]} = O_{\mathbb{R}[X]} \\ * \ * \ \mathrm{Soit} \ \lambda \in \mathbb{R}, \ (P,Q) \in F \ (\mathrm{De} \ \mathrm{même} \ \mathrm{ici} \ \mathrm{on} \ \mathrm{verifions} \ \mathrm{si} \ (\lambda \cdot P + Q) \in F : \\ (\lambda \cdot P + Q) &= (\lambda \cdot P') + Q' \\ &= \lambda \cdot P' + Q' \\ &= \lambda \cdot O_{\mathbb{R}[X]} + O_{\mathbb{R}[X]} \Longrightarrow O_{\mathbb{R}[X]} \\ \Longrightarrow (\lambda \cdot P + Q) \in F \end{split}$$

Donc F est un S.E.V de $\mathbb{R}[X]$ et est donc un \mathbb{R} .E.V.

8.

$$F = \{(U_n) \in \mathbb{R}^{\mathbb{N}}, (U_n) \text{ convergente}\} \subset \mathbb{R}^{\mathbb{N}}$$

 $\mathbb{R}^{\mathbb{N}}$ (l'ensemble des suites réelles est un $\mathbb{R}.E.V$).

On ne l'a pas demonté mais F est un \mathbb{R} . E. V car vu qu'elle est convergente * la suite null $\Longrightarrow 0$, * l'addition de deux suites convergente \Longrightarrow suite convergente \Longrightarrow suite convergente \Longrightarrow suite convergente.

9.

$$F = \{(U_n) \in \mathbb{R}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ U_{n+1} = 3U_n - 1\} \subset \mathbb{R}^{\mathbb{N}}$$

On a $0_{\mathbb{R}^{\mathbb{N}}} \notin F$ car $\forall n \in \mathbb{N}, \ 0 \neq 3 \times 0 - 1$

Donc F n'est pas un S.E.V de $\mathbb{R}^{\mathbb{N}}$, et n'est donc pas un \mathbb{R} .E.V.

10.

$$F = \{(U_n) \in \mathbb{R}^{\mathbb{N}}, (U_n) \text{ divergente}\}\$$

F n'est pas un S.E.V de $\mathbb{R}^{\mathbb{N}}$, car étant divergent il ne contient pas la suite nulle.

F n'est donc pas un \mathbb{R} .E.V.

11.

$$\begin{split} \mathbf{F} &= \{(U_n) \in \mathbb{R}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ U_{n+2} = 2U_{n+1} - U_n\} \subset \mathbb{R}^{\mathbb{N}} \\ *0_{\mathbb{R}^{\mathbb{N}}} \in F & (0 = 2 \times 0 - 0) \\ * \ \mathrm{Soit} \ U_n \ \mathrm{et} \ V_n \ \mathrm{deux} \ \mathrm{suites} \ \mathrm{de} \ \mathbf{F} \Longrightarrow U_{n+2} = 2U_{n+1} - U_n \ \mathrm{et} \ V_{n+2} = 2V_{n+1} - V_n \\ \mathrm{On} \ \mathrm{pose} \ \forall n \in \mathbb{N} \ \mathrm{avec} \ W_n = U_n + V_n \end{split}$$

$$U_{n+2} + V_{n+2} = 2U_{n+1} - U_n + 2V_{n+1} - V_n$$

$$\downarrow = 2(U_{n+1} + V_{n+1}) - (U_n + V_n)$$

$$W_{n+2} = 2W_{n+1} - W_n$$
Donc $W_n \in F$

Donc $W_n \in F$.

* Soit $(U_n)_{(n\in\mathbb{N})}, \in F, \ \lambda \in \mathbb{R}$, et toujours $U_{n+2} = 2U_{n+1} - U_n$. $\lambda \cdot U_{n+2} = \lambda (2U_{n+1} - U_n)$ $= \lambda \cdot 2U_{n+1} - \lambda \cdot U_n$ $\Longrightarrow \lambda \cdot U_n \in F$

Donc F est un S.E.V de $\mathbb{R}^{\mathbb{N}}$ et est donc un \mathbb{R} .E.V.

12.

$$F = \{(U_n) \in \mathbb{R}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ U_{n+2} = 2U_{n+1} - (U_n)^2\} \subset \mathbb{R}^{\mathbb{N}}$$

Contre exemple : Si on prend la suite constante $(1)_n \in F$ et on prend $\lambda = 2$.

$$\lambda \cdot (1)_n = 2(1)_n \Longrightarrow (2)_n \notin F \text{ (car } 2 \neq 2 \times 2 - 2^2)$$

F n'est pas un S.E.V de $\mathbb{R}^{\mathbb{N}}$ et n'est donc pas un \mathbb{R} .E.V.

13.

$$F = \{(U_n) \in \mathbb{R}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ U_n = \alpha 2^n + \beta 3^n + \gamma 4^n, \ (\alpha, \beta, \gamma) \in \mathbb{R}\}$$

*F contient la fonction nul car pour ($\alpha = \beta = \gamma = 0$)

* * Soit
$$(U_n)_n = (\alpha_1 2^n + \beta_1 3^n + \gamma_1 4^n)_n$$
 et $(V_n)_n = (\alpha_2 2^n + \beta_2 3^n + \gamma_2 4^n)_n$, deux éléments de F, et λ et $\mu \in \mathbb{R}$

$$\lambda \cdot U_n + \mu \cdot V_n = \lambda(\alpha_1 2^n + \beta_1 3^n + \gamma_1 4^n) + \mu(\alpha_2 2^n + \beta_2 3^n + \gamma_2 4^n)$$

$$= (\lambda \alpha_1 + \mu \alpha_2) 2^n + (\lambda \beta_1 + \mu \beta_2) 3^n + (\lambda \gamma + \mu \gamma) 4^n$$
Donc $\lambda \cdot (U_n)_n + \mu \cdot (V_n)_n \in F$

Donc F est un S.E.V de $\mathbb{R}^{\mathbb{N}}$, et est par conséquent un \mathbb{R} .E.V.

On ss place maintenant dans l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} , dont l'élément neutre $0_{\mathbb{R}^{\mathbb{R}}}$ est la fonction nulle qui à tout $x \in \mathbb{R}$ associe 0.

14.

$$F = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ croissant } \}$$

- * La fonction nulle étant croisssante et décroissante elle $\in F$.
- * Cependant pour $g: x \longrightarrow x$ contenu dans F son symétrique $-g: x \longrightarrow -x$ ne sera pas compris.

Donc F n'est pas un E.V.

15.

$$F = \{ f \in \mathbb{R}^{\mathbb{R}} | f(0) = 0.$$

* Contient donc la fonction nulle.

* * Soit
$$g, h \in F$$
 et $\lambda, \mu \in \mathbb{R}$, alors : $(\lambda \cdot f + \mu \cdot g)(0) = \lambda f(0) + \mu g(0) = 0$.

Donc
$$(\lambda \cdot f + \mu \cdot g \in F)$$

Donc F est stable par combinaison linéaire donc F est un S.E.V de $\mathbb{R}^{\mathbb{R}}$.