EE2302 Foundations of Information Engineering

Assignment 8 **Due: 11 pm, Nov 1**

Full Mark: 16 points

- 1. (4 marks) The set of all 2×2 real matrices in the form of $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is a vector space. Consider the subset of 2×2 real matrices which satisfy $a_{12} = -a_{21}$. Does it form a subspace? Prove or disprove it.
- 2. (4 points) Determine whether each of the following scalar-valued functions n-vectors is linear. If it is linear, give its inner product representation, i.e., an n-vector α for which $f(x) = \alpha^T x$ for all x. If it is not linear, give specific x, y, α, β for which superposition fails, i.e.,

$$f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)$$
.

- a) $f(x) = \max_{k} x_k$
- b) $f(x) = x_n x_1$
- 3. (4 points) What 3 by 3 matrices represent the transformations that
 - a) reflect every vector through the x-y plane?
 - b) rotate the x-y-plane through 90^o , leaving the z-axis alone?
- 4. (4 points) Consider the 2-dimensional space and the projection of b on the line passing through the origin and a, where a = (10, 10).
 - a) Determine the corresponding projection matrix P.
 - b) Suppose b = (3, 5). Determine the result after the projection.