3. PROBLEMS

Problem 1. Let the operations \triangle and \square be defined for all real numbers a and b as follows:

$$a \triangle b = a + 3b$$

$$a \square b = a + 4b$$

If $4 \triangle (5y) = (5y) \square 4$, what is the value of y?

- (A) 6/5
- (B) 1
- (C) 2
- (D) 3/5
- (E) 3/5

 \nearrow **Problem 2.** For the positive integer n, let $\langle n \rangle$ denote the sum of all the positive divisors of *n* with the exception of *n* itself. For example, <4>=1+2=3 and <12> = 1 + 2 + 3 + 4 + 6 = 16. What is <<<18>>>?

- (A) 1
- (B) 11
- (C) 21
- (D) 6
- (E)3

Problem 3. If $A \otimes B = \frac{A}{B} + \frac{B}{A}$, what is the value of $(3 \otimes 2) - (2 \otimes 3)$?

- (A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) 0 (D) 1 (E) $\frac{12}{12}$

Problem 4. If $\not \simeq$ represents an operation defined by $a \not \simeq b = a^3 + b$, find $(1 \stackrel{\wedge}{\sim} 2) \stackrel{\wedge}{\sim} 3$.

- (A) 3
- (B) 27 (C) 30 (D) 9

- (E)732

Problem 5. If $a \diamondsuit b = \frac{1}{a} + \frac{1}{b}$, for what decimal value of a is $a \diamondsuit 0.2 = 10$?

- (A) $\frac{1}{5}$ (B) $\frac{7}{10}$ (C) 0 (D) 1 (E) $\frac{1}{2}$

Problem 6. Given that $a \otimes b = (a^2 + b) \div 2$. What is the value of $5 \otimes 3$?

- (A) 14

- (B) 4 (C) 15 (D) 8 (E) 28

Problem 7. If $a \bowtie b = a^2 + b$, evaluate $(4 \bowtie 3) \bowtie 18$.

(A) 19

(B) 361

(C)380

(D) 324

(E) 379

 \approx **Problem 8.** Define $x \otimes y = x^3 - y$. What is $h \otimes (h \otimes h)$?

(A) - h

(B) - 0

(C) h

(D) 2h

(E) h^4

Problem 9. If $x \, \otimes y = x^2 - y^2$, what is $(3 \, \otimes 2) \, \otimes 4$?

(A) 5

(B) 25

(C) 9

(D) 16

(E) 25

Problem 10. If $\langle ab \rangle = ab - a - b$, find the value of b in the equation $\langle 3b \rangle = 5$.

(A) 5

(B) 4

(C) 3

(D) 15

(E) 2

Problem 11. If a • b = 2a - b, what does 3 • 4 equal?

(A) -2

(B) 2

(C) 10

(D) 5

(E) 12

Problem 12. Suppose that $a \odot b = ab - b$ for all integers a and b. What is the value of $3 \odot (-2)$?

(A) -4

(B) -5

(C) 8

(D) 4

(E) 7

Problem 13. If $A * B = 3A^2 - 2B^3$, find 7 * 3.

(A) 179

(B) -93

(C) 93

(D) 21

(E) 10

Problem 14. If $y = y^2 - 1$, find (9 < 9) < 1.

(A) 80

(B) 6400

(C) 6399

(D) 79

(E) 81

Problem 15. If $a \vee b = 3a - b^2$, find $2 \vee (3 \vee 1)$.

Problem 16. If 4! means $4 \cdot 3 \cdot 2 \cdot 1$, express $\frac{8!}{6!2!2!}$ in simplest form.

(A) 40320

(B) 56

(C) 28

(D) 14

(E) 120

Problem 17. Given $a \diamondsuit b = a(a+b) + b(a+b)$, find $9 \diamondsuit 7$.

(A) 256

(B) 225

(C) 4

(D) 16

(E) 289

 $\begin{vmatrix} a & c \\ d & b \end{vmatrix} = ab - cd$. If $\begin{vmatrix} 5 & x \\ -2 & 6 \end{vmatrix} = 8$, **Problem 18.** For all values a, b, c, and d,

what is x?

(A) 14

(B) - 11 (C) - 14 (D) - 15

(E) 11

Problem 19. If $a \diamondsuit b = a^2 b$, find $(3 \diamondsuit 2) - (2 \diamondsuit 3)$.

(A) 5

(B) 6

(C) 18

(D) 12

(E) - 6

Problem 20. If $x \odot y = \frac{x}{y} + xy$, express $\frac{3}{8} \odot \frac{3}{4}$ as a common fraction.

(A) $\frac{5}{32}$ (B) $\frac{9}{32}$ (C) $\frac{1}{2}$ (D) $\frac{32}{9}$ (E) $\frac{25}{32}$.

Problem 21. Given $a \diamondsuit b = \frac{(a^2 - b^2)}{ab}$, express $6 \diamondsuit 2$ as a common fraction.

(A) $\frac{8}{3}$ (B) $\frac{7}{3}$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$ (E) $\frac{3}{8}$

Problem 22. Given the operations: $a \approx b = 2a - b$ and $a \neq b = \frac{a+b}{b}$, evaluate:

6 ★ | 3☆9 | .

(A) $\frac{1}{2}$ (B) 3 (C) $\frac{1}{4}$ (D) 4 (E) -3

Problem 23. Evaluate 3 * 4 if $a * b = \frac{a^2 + b^2}{a + b}$. Express your answer as a common fraction.

(A) $\frac{5}{7}$ (B) $\frac{25}{7}$

(C) $\frac{9}{7}$ (D) $\frac{16}{7}$

(E) 1

Problem 24. The operation * is defined to be $a * b = \frac{8a - 2b}{2ab}$. Express 3 * (3 * 3)as a common fraction.

(A) $\frac{31}{3}$ (B) $\frac{31}{9}$ (C) $\frac{3}{11}$ (D) $\frac{11}{3}$ (E) 1

Problem 25. If $[abc] = \frac{a+b}{c}$, what is the value of [[123][231][312]]?

(A)3

(B)4

(C) 2

(D) 1

(E) 5

Problem 26. If $A \not \approx B = \frac{2A - B}{2}$, what is the value of $(3 \not \approx 4) \not \approx 5$? Express your answer as a common fraction.

(A) $-\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$ (E) 1

Problem 27. If a $\not\approx$ b = $\frac{a+b}{2}$, what is the value of $(7 \not\approx 9) \not\approx (30 \not\approx 17)$?

(A) $15\frac{1}{4}$ (B) $\frac{47}{2}$ (C) $15\frac{3}{4}$ (D) $\frac{11}{41}$ (E) $14\frac{3}{4}$

Problem 28. Given $a \bigstar b = \frac{a+b}{2}$, find $(7 \bigstar 9) \bigstar 12$.

(A) 10

(B) 8

(C) 20

(D) 96

(E)6

Problem 29. If $a \triangle b = (ab)^a$, find $5\triangle 2$. Express the answer as a whole number.

(A) 100,000

(B) 50,000

(C) 20,000

(D) 96,000

(E) 6,000

Problem 30. If $a \neq b = a^{b^a}$, then what value is associated with $2 \neq 3$?

(A) 64

(B) 512

(C) 8

(D) 128

(E) 1024

Problem 31. If $a \otimes b$ is defined as $2a - b^a$, what value is associated with $(5 \otimes 2)$

-(3**2**2)?

(A) - 24 (B) - 20 (C) - 22 (D) 22

(E) 24

(A) 121

(B) 22

(C) 11

(D) 144

(E) 81

Problem 33. For natural numbers, a and b $a \boxtimes b = b^a - a + b$. Find the value of $(4 \boxtimes 2) - (2 \boxtimes 4).$

(A) 32

(B) - 4

(C) 18

(D) 14

(E) 22

Problem 34. Given the $a + b = a^b - b^a$, and $a \nabla b = (a+b)(a-b)$, what is the value of $a + (a \nabla b)$ if a = 3 and b = 2?

(A) 118

(B) 15

(C) 243

(D) 125

(E) 115

Problem 35. If $(a + b) = (a \times b) + a^b + b^a$, find 3 + 5.

(A) 243

(B) 383

(C) 125

(D) 15

(E) 115

Problem 36. If $a \triangleq b = (\frac{1}{a})^b + (\frac{1}{b})^a$, find $2 \triangleq 3$.

(A) $\frac{17}{72}$ (B) $\frac{2}{17}$ (C) $1\frac{1}{9}$ (D) $\frac{1}{8}$ (E) $\frac{5}{6}$

Problem 37. If $a \diamondsuit b = \sqrt{a^2 + b^2}$, find the value of $(2\frac{1}{2}) \diamondsuit 6$ and express the result as a common fraction.

(A) $\frac{13}{2}$ (B) $\frac{17}{2}$ (C) $\frac{5}{2}$ (D) $\sqrt{13}$ (E) $\sqrt{61}$

Problem 38. Let ∇ be defined as $\nabla(a, b) = \sqrt{a^2 + b^2}$, for all real numbers a and b. Find ∇ (∇ (8, 5), 144).

(A) 85

(B) 125

(C) 135 (D) 145

(E) 165

Problem 39. Given $a \not \Rightarrow b = \sqrt{a^2 + b^2}$, find ((13 $\not \approx 84$) $\not \approx (36 \not \approx 77)$).

(A) 85

(B) $85\sqrt{2}$ (C) $83\sqrt{2}$ (D) 135 (E) $58\sqrt{2}$

Problem 40. Given that $x \diamondsuit y = \sqrt{x+y}$, find $(6 \diamondsuit 10) \diamondsuit 5$.

(A) 4

(B) 3

(C) 16 (D) $\sqrt{15}$

(E) 7

Problem 41. The symbols \rightarrow and * represent different operations, either +, -, \times , or \div , and x is a positive integer. Find x if $17 \spadesuit x = 54 * x$.

(A) 4

(B) 3

(C) 6

(D) 5

(E) 7