

Factorization

various factorizations have been proposed to speed up pretrained networks [14, 20].

Distillation

Another method for training small networks is distillation [9] which uses a larger network to teach a smaller network

3.1. Depthwise Separable

model is based on depthwise separable convolutions which is a form of factorized convolutions which factorize a standard convolution into a depthwise convolution and a 1 × 1 convolution called a pointwise

convolution.

Convolution The MobileNet

Depthwise separable convolution are made up of two layers: depthwise convolutions and pointwise convolutions. We use depthwise convolutions to apply a single filter per each input channel (input depth). Pointwise convolution, a simple 1×1 convolution, is then used to create a linear combination of the output of the depthwise layer. MobileNets use both batchnorm and ReLU nonlinearities for both layers.

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

 1×1 convolutions do not require this reordering in memory and can be implemented directly with GEMM which is one of the most optimized numerical linear algebra algorithms. MobileNet spends 95% of it's computation time in 1×1 convolutions which also has 75% of the parameters as can be seen in Table 2. Nearly all of the additional parameters are in the fully connected layer.

GEMM

unstructured sparse matrix operations are not typically faster than dense matrix operations until a very high level of sparsity. Our model structure puts nearly all of the computation into dense 1 × 1 convolutions. This can be implemented with highly optimized general matrix multiply (GEMM) functions

Typically spall Matrix sproton

dense spaniona > Jense matrix.

(x1 cmv.

Alpha

In order to construct these smaller and less computationally expensive models we introduce a very simple parameter acalled width multiplier. The role of the width multiplier a is to thin a network uniformly at each layer

B E (0, 1) THE 0.05,05,04

Resolution

ply this to the input image and the internal representation of every layer is subsequently reduced by the same multiplier. In practice we implicitly set ρ by setting the input resolu-

tion. We can now express the computational cost for the core layers of our network as depthwise separable convolutions with width multiplier α and resolution multiplier β : $D_K \cdot D_K \cdot \alpha M \cdot \rho D_F \cdot \rho D_F + \alpha M \cdot \alpha N \cdot \rho D_F \cdot \rho D_F$ (7)

Result of mobilenet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2
Table 5.	Narrow vs Sh	allow MobileN	let
Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.75 MobileNet	68.4%	325	2.6
Shallow MobileNet	65.3%	307	2.9
Table 6	. MobileNet V	Vidth Multiplie	r
Width Multiplier			
Width Multiplier	ImageNet	Million	Million
Width Multiplier	ImageNet Accuracy	Million Mult-Adds	
Width Multiplier 1.0 MobileNet-224			
1.0 MobileNet-224	Accuracy 70.6%	Mult-Adds	Parameters
1.0 MobileNet-224	Accuracy 70.6%	Mult-Adds 569	Parameters 4.2
1.0 MobileNet-224 0.75 MobileNet-224	Accuracy 70.6% 68.4% 63.7%	Mult-Adds 569 325	Parameters 4.2 2.6
1.0 MobileNet-224 0.75 MobileNet-224 0.5 MobileNet-224 0.25 MobileNet-224	Accuracy 70.6% 68.4% 63.7%	Mult-Adds 569 325 149 41	4.2 2.6 1.3
1.0 MobileNet-224 0.75 MobileNet-224 0.5 MobileNet-224 0.25 MobileNet-224	Accuracy 70.6% 68.4% 63.7% 50.6%	Mult-Adds 569 325 149 41	4.2 2.6 1.3
1.0 MobileNet-224 0.75 MobileNet-224 0.5 MobileNet-224 0.25 MobileNet-224 Tabl	Accuracy 70.6% 68.4% 63.7% 50.6%	Mult-Adds 569 325 149 41 et Resolution	Parameters 4.2 2.6 1.3 0.5
1.0 MobileNet-224 0.75 MobileNet-224 0.5 MobileNet-224 0.25 MobileNet-224 Tabl	Accuracy 70.6% 68.4% 63.7% 50.6% 7. MobileNet ImageNet	Mult-Adds 569 325 149 41 et Resolution Million	Parameter 4.2 2.6 1.3 0.5 Million

4.7. Face Embeddings

and width multiplier $\alpha,$ the number of input channels M becomes αM and the number of output channels N becomes

 αN .

The computational cost of a depthwise separable convolution with width multiplier α is:

 $D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F + \alpha M \cdot \alpha N \cdot D_F \cdot D_F$ (6)

The FaceNet model is a state of the art face recognition model [25]. It builds face embeddings based on the triplet loss. To build a mobile FaceNet model we use distillation to train by minimizing the squared differences of the output

Depthwise conv

Depthwise convolution with one filter per input channel (input depth) can be written as:

 $\hat{\mathbf{G}}_{k,l,m} = \sum_{i,j} \hat{\mathbf{K}}_{i,j,m} \cdot \mathbf{F}_{k+i-1,l+j-1,m}$ (3)

COMputational est = DK. DK. M. DF. Pr.

Depthwise separable convolutions cost

 $D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F \quad (5)$ which is the sum of the depthwise and 1×1 pointwise convolutions. By expressing convolution as a two step process of filter-

 $\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F}$ $= \frac{1}{N} + \frac{1}{D^2}$