Research Paper Reading Sheet		Date	2019. 3. 8
Title	Towards Text-based Emotion Detection : A Survey and Possible Improvements		
Author	Edward Chao-Chun Kao, Chun-Chieh Liu, Ting-Hao Yang, Chang-Tai Hsieh, Von-Wun Soo		

Abstract		
Research problem	Multimodal interaction에 대한 연구는 어느정도 진행되고 인기를 얻고 있지만	
	emotion detection from text 기술은 아직 더 많은 발전이 필요한 상황이다. 여전히	
	사람들이 computer와 interaction하는 가장 흔한 방식은 text이기 때문이다.	
Motivation/background	Multimodal interaction을 통해 emotion state를 detect할 수 있지만, 아직은 text를 통	
	한 interaction (with computer)이 가장 흔하다. Emotion detection from text 기술은 점	
	차 관심을 얻고 있으며, computer program을 통해 심리학적 이론을 증명하거나 인공	
	지능 pet을 만드는 것과 같이 theoretical and practical domain의 응용에 큰 가능성을	
	갖고 있다.	
Proposed approach	먼저 존재하는 text-based emotion detection method에 대해 소개한 후, 그 방식들의	
	한계점과 개선점을 파악하고 조사 결과를 종합한 system architecture을 제시한다.	
Contribution	Advanced human-computer interaction의 중요한 clue 기술이 된다.	
Conclusion	Emotion detection은 Affective computing (감정과 관련된)의 중요한 연구 분야이다.	
	Text로부터 감정을 추출해내는 것은 상대적으로 적은 주목을 받았지만 text-based	
	input은 인간과 computer가 소통하는 가장 흔한 방식이다. 이 논문에서는 현존하는	
	emotion detection에 대한 연구와 여러 방식들의 한계점을 알아보았고, 새로운	
	integrated system architecture를 제시하였다.	

Main Body		
Related Work	Emotion detection from text를 위한 세 가지 방법인 A) Keyword-based detection	
	method, B) Learning-based detection method, C) Hybrid method 각각은 특정한 한계	
	점이 존재한다. 이에 따라, 존재하는 method/approach와 심리학적 이론을 통합한	
	advanced architecture를 개발하는 것이 필요하다.	
Evaluation/ Experiments	ents Semantic analysis를 통해 semantic information을 추출하고, emotion model에 기반을	
	둔 ontology를 설계하며, case-based reasoning을 통해 새로운 keywords를 적용하는	
	architecture를 제시한다.	
	→ identification of newly-evolved vocabularies, systematic emotion ontology	
	based on OCC model as background knowledge, and collaborative method to	
	detect multiple emotions in the form of case-based reasoning.	
Future work		

Opinion(Quality of the idea, opinion)				