Set Theory Problems

Short-answer problems about sets.

Problem 1 Given two sets X and Y, $X \cup Y$ is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive). \checkmark
- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 2 Given two sets X and Y, $X \cap Y$ is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).
- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 3 Given two sets X and Y, X - Y is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).

Learning outcomes:

Author(s): Bart Snapp and Brad Findell

- (c) in X and in Y.
- (d) in X but not in Y. \checkmark
- (e) in Y but not in X.

Problem 4 Explain the difference between the symbols \in and \subseteq .

Free Response: Hint: The symbol \in means "is an element of," whereas \subseteq means "is a subset of." The notation $X \in Y$ means that X is a single element in the set Y. In this case, X is typically not a set. The notation $X \subseteq Y$, in contrast, requires that both X and Y are sets and, furthermore, that every element of X is also in Y.

Problem 5 How is $\{\emptyset\}$ different from \emptyset ?

Free Response: Hint: The empty set, \emptyset , is a set that contains no elements. That is, $\emptyset = \{\}$. The set $\{\emptyset\}$ contains one element that is itself a set—and that element happens to be the empty set. We could instead write $\{\{\}\}$, but that looks ugly.

Problem 6 Consider the following Venn diagrams:

For each set expression below, identify the Venn diagram above in which the corresponding region is shaded:

- (a) $X \cap Y$ is figure C
- (b) $X \cup Y$ is figure B
- (c) X Y is figure D

Problem 7 Draw a Venn diagram for the set of elements that are in X or Y but not both. How does it differ from the Venn diagram for $X \cup Y$?

Free Response: Hint: A Venn diagram for elements in X or Y but not both is shown in figure (A) from the previous problem.

Problem 8 Consider the following Venn diagrams:

- (a) If Venn diagram (A) above shows the relationship between sets X and Y, then $X \cap Y = (0/\emptyset \checkmark/X \cup Y)$ and the sets are said to be (disjoint \checkmark / empty/ subsets).
- (b) If Venn diagram (B) above shows the relationship between sets X and Y, then we say that $(X \text{ and } Y \text{ are disjoint} / X \subseteq Y \checkmark / Y \subseteq X)$.
- (c) If we let X be the set of "right triangles" and we let Y be the set of "equilateral triangles" which diagram above shows the relationship between these two sets?

Multiple Choice:

- (i) Diagram (A). \checkmark
- (ii) Diagram (B).
- (iii) Neither of these.
- (iv) Not enough information.

Explain your reasoning.

Free Response: Hint: Diagram (A) is accurate because no right triangles are also equilateral triangles.

Problem 9 If $X = \{1, 2, 3, 4, 5\}$ and $Y = \{3, 4, 5, 6\}$ find the following: (List elements in ascending order, separated by commas, with no spaces.)

- (a) $X \cup Y = \{ \boxed{1, 2, 3, 4, 5, 6} \}$
- (b) $X \cap Y = \{ \boxed{3,4,5} \}$
- (c) $X Y = \{ \boxed{1,2} \}$
- (d) $Y X = \{ 6 \}$

Problem 10 Let $n\mathbb{Z}$ represent the integer multiples of n. So for example:

$$3\mathbb{Z} = \{\ldots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \ldots\}$$

Compute the following (use capital Z for \mathbb{Z}):

- (a) $3\mathbb{Z} \cap 4\mathbb{Z} = \boxed{12Z}$
- (b) $2\mathbb{Z} \cap 5\mathbb{Z} = \boxed{10Z}$
- (c) $3\mathbb{Z} \cap 6\mathbb{Z} = \boxed{6Z}$
- (d) $4\mathbb{Z} \cap 6\mathbb{Z} = \boxed{12Z}$
- (e) $4\mathbb{Z} \cap 10\mathbb{Z} = \boxed{20Z}$

Problem 11 Make a general rule for intersecting sets of the form $n\mathbb{Z}$ and $m\mathbb{Z}$. Explain why your rule works.

Free Response: Hint: The intersection of two sets is what they have in common. The intersection of the set of multiples of n and the set of multiples of m are called common multiples (surprise!), and they are all multiples of the least common multiple of n and m.

Problem 12 If $X \cup Y = X$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X \subseteq Y / X = Y / Y \subseteq X \checkmark / X = \emptyset)$ because every element of $(X / Y \checkmark)$ must be in $(X \checkmark / Y)$.

Problem 13 If $X \cap Y = X$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X \subseteq Y \checkmark/X = Y/Y \subseteq X/X = \emptyset)$ because every element of $(X \checkmark/Y)$ must be in $(X/Y \checkmark)$.

Problem 14 If $X - Y = \emptyset$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X \subseteq Y \checkmark/X = Y/Y \subseteq X/X = \emptyset)$ because every element of $(X \checkmark/Y)$ must be in $(X/Y \checkmark)$.