Instituto Tecnológico de Costa Rica

Escuela de Ingeniería en Computadores

Fundamentos de arquitectura de computadores

Proyecto

Lógica combinatoria: Calculadora tomógrafo

Estudiante	Carné
Rodríguez Rojas Andrés	2019279722
Soto Varela Óscar	2020092336

Profesor:

Luis Alberto Chavarría Zamora

Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores

 ${\rm CE}\,1107$ — Fundamentos de Arquitectura de Computadores

Proyecto Individual

Lógica Combinatoria: Calculadora tomógrafo

Fecha de asignación: 11 marzo 2025 | Fecha de entrega: 10 abril 2025

Grupo: 1-2 personas Profesores: Luis Chavarría Zamora

1. Descripción

En este punto el estudiante ya conoce los aspectos teóricos y prácticos preliminares de los circuitos lógicos digitales combinatorios como compuertas y sus diversas técnicas de diseño. Con este, la persona estudiante pondrá en práctica su perspicacia en diseño combinatorio tomando un sensor, mostrando el resultado al usuario y ejecutando un actuador.

2. Especificación

El circuito estará representado por tres etapas en la Figura 1. Este podrá usar fuentes de tensión o baterías como alimentación.

Figura 1: Diagrama de bloques del proyecto individual. Las etapas digitales diseñadas por el estudiante funcionarán con la disciplina estática de 0V a 5V

Las etapas se describen a continuación:

- Sensores: Estará constituido por un arreglo de sensores propuestos por el estudiante (al menos cuatro bits) que tengan alguna interacción humana no eléctrica. Entre este módulo y el circuito combinatorio no hay ninguna interfaz adicional. Este rubro requiere que no sean ni botones ni switches.
- Visualizador con LED: En este visualizador muestra de forma gráfica el comportamiento mediante n leds propuesto por los estudiantes.

Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores CE 1107 — Fundamentos de Arquitectura de Computadores

- Circuito Combinatorio: Esta etapa estará conformada por únicamente circuitos integrados. Esta etapa requiere poner en práctica los conceptos teóricos del curso. Se observa que se tienen al menos 4 bits. Esta etapa tendrá dos submódulos:
 - 1. Decodificador 1: Es un módulo que tomará la cantidad binaria y comenzará a acumular el valor en codigo binario de forma circular de 0 a 3, sumando el acumulado (no use sumador, solo el decodificador). Esto será enviado al BCD. Tome en cuenta que para el acumulado se debe usar un registro que se activa con un botón (será el único elemento secuencial).
 - 2. Decodificador 2: Es un módulo que se encargará de habilitar un actuador en dos rangos de valores lógicos (por ejemplo que se active en el intervalo de 1 en decimal a 2 decimal y que luego se reactive en el rango de 0 y 3 en decimal, los intervalos de activación no deben ser contiguos y deben espcificarse claramente).
- Desacople: Esta etapa tiene el propósito de desacoplar eléctricamente el Circuito Combinatorio y el Accionador. Esta etapa debe ser construída con componentes discretos, no únicamente mecánicos o magnéticos.
- Visualizador: Está conformado por un display de siete segmentos, que recibirá 7 bits. Estos deben representar los valores en hexadecimal.
- Accionador: El accionador será un motor de CD, que requiere una alimentación por separado al resto del circuito.
- Visualizador 7 segmentos: El visualizador debe mostrar el resultado actual en el display de 7 segmentos.

3. Metodología de trabajo

El estudiante deberá seguir los siguientes lineamientos:

- 1. Los circuitos deben ser diseñados solamente con compuertas CMOS o solamente con compuertas TTL (¿por qué no es conveniente mezclarlos?, colocar en el documento cómo se conectan si se usarán con dos tecnologías diferentes).
- 2. Los estudiantes pueden usar herramientas Electronic design automation (EDA) o de inteligencia artificial para simplificación. Debe documentar los procedimientos automatizados y los mismos deben ser validados por usted. En este proyecto usted será un diseñador(a), no un ejecutador(a) sin criterio técnico crítico. Esto debe formar parte de conocimiento de ingeniería.
- 3. Los circuitos deben ser simulados antes de ser implementados físicamente para que el estudiante tenga una referencia para comparar.

Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores

CE 1107 — Fundamentos de Arquitectura de Computadores

4. Evaluación y entregable

Se evaluarán los siguiente entregables:

- 1. Presentación proyecto $100\,\%$ funcional $(70\,\%)$: Una defensa de 15 minutos donde el profesor evaluará el sistema.
- 2. Documentación (30%): Esta se encuentra conformada por los siguientes documentos:
 - a) Artículo científico tipo paper (20%): El paper a realizar deberá tener una extensión no mayor a 4 páginas completas (incluyendo bibliografías), deberá ser realizado con LATEX, siguiendo un formato establecido (IEEE Transactions o ACM, por ejemplo). Debe ser redactado en tercera persona singular. Se les provee un ejemplo de paper en el enlace. En general el paper deberá contar con las siguientes secciones:
 - 1) Abstract (en inglés): Un buen abstract tiene las siguientes características:
 - a' Un abstract permite a los lectores obtener la esencia o esencia de su artículo o artículo rápidamente, para decidir si leer el artículo completo.
 - b' Un abstract prepara a los lectores para seguir la información detallada, los análisis y los argumentos en su artículo completo.
 - c' Un abstract ayuda a los lectores a recordar puntos clave de su paper.
 - d' Un abstract es de entre 150 y 250 palabras.
 - 2) Palabras clave significativas (a lo sumo 6).
 - 3) Introducción: Una buena introducción muestra el contexto del problema o lo que se va a solucionar, introduce el tema al lector. Al final de la introducción se indica la organización del documento (primero se muestra el algoritmo, luego....).
 - 4) Algoritmo desarrollado.
 - 5) Resultados.
 - 6) Conclusiones escritas en prosa.
 - 7) Recomendaciones escritas en prosa.
 - 8) Bibliografía, en formato IEEE y referenciadas en el texto (usar cite). Referencia bien para evitar problemas de plagio. Una documento no referenciado en el texto no existe.
 - b) Bitácora (Atributo evaluado: Conocimiento de Ingeniería) (10 %): Es un documento donde el estudiante indica detalladamente los procedimientos que implementó en el diseño, tablas, ecuaciones booleanas, herramientas de automatización utilizadas y otras relacionadas. Debe existir una división clara de días en que se realizó. El estudiante debe desarrollarlo en PDF e irlo actualizando en un Git (se revisará el historial de los commits, habrá penalidad si realiza pocos commits).

Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores CE 1107 — Fundamentos de Arquitectura de Computadores

Los documentos deben ser desarrollados LAT_EX, entregando el PDF. Se prohíbe el uso de referencias hacia sitios no confiables.

Si tienen dudas puede escribir al profesor al correo electrónico de Luis Chavarría. Los documentos serán sometidos a control de plagios. La entrega se debe realizar a más tardar las 11:59 pm mediante TEC-Digital la fecha de entrega, cualquier entrega tardía después de este punto recibirá una penalización de un punto por minuto en la documentación.

Abstract—This project consists in the designing and creation of a 3 bits circular adder which inputs are given by 4 photoresistors and its calculus is made entirily throught logical gates. Plus each input will be hold by a flip-flop and not processed until a button signal is given. Then, the result is send to a BCD which shows the result in a 7-segment display. Furthermore in 2 specific results will also activate a dc motor.

Index Terms—BCD, Digital design, Logical Gates, combinatorial logic

I. Introducción

II. ALGORITMO DESARROLLADO

III. RESULTADOS

IV. CONCLUSIONES

V. RECOMENDACIONES