Towards the Development of an Autonomous Iceberg Draft Measurement Probe (AIDMP)

Mingxi Zhou and Ralf Bachmayer

Autonomous Ocean Systems Laboratory Memorial University of Newfoundland

Outline

Basic Design Concept **Customized Logging System Experiment Design** Conclusion and Future Work

Iceberg and Offshore Industry

AIDMP

Design Principles

Mechanical Design

Customized Logging System

Hardware

Software

Program Selection

Operation
Duration
Variable

Deployment
Delay and
Buzzer
Warning

Sampling Rate Variable

Experiment Design

Beam Width: 15 degree / Bin Size: 1 m / Iceberg depth 200m

Frequency	Properties	1-sonar	2-sonar	3 -sonar
ı Hz	Rotational Speed	o.26 rad/s	0.52 rad/s	o.79rad/s
	Translation Speed	0.042 m/s	o.o83 m/s	0.125 m/s
	Operation Time	8o min	40 min	26.6 min
2 Hz	Rotational Speed	o.52 rad/s	1.05 rad/s	1.57 rad/s
	Translation Speed	o.o83 m/s	0.167 m/s	0.25 m/s
	Operation Time	40 min	20 min	13.3 min

Factors and Responses

	Name	Levels
		o mm
Factors	Distance Between Center of Buoyancy	50 mm
	and Center of Mass	100 mm
	Angle of Attack of Wings	o degree
		90 degree
	Number of Fins	2
		4
	Ultimate Vertical Velocity	N/A
Responses	Ultimate Rotational Velocity	N/A
	Pitch & Roll Angle	N/A
	Settling Time	N/A

Data Analysis

Orientation at attitude sensor location

Collected Data

Z and Z dot at Depth sensor location

Orientation and Angular rate

directly obtain from attitude sensor, the orientation and angular rate is the same for whole body

Settling Time

Observing Plot of Vertical Speed vs. Time Plot of Angular Rate vs. Time

Responses

Speed of cylinder

$$\dot{v}_c = \dot{v}_0 + \omega \times v_0 + \dot{\omega} \times r_G + \omega \times (\omega \times r_G)$$

Where V_c is the speed at C location,

ω is the angular rate at collected by attitude sensor

 v_0 is the velocity of attitude sensor

the sign above the letter means take the derivative in the body frame

 r_G is the vector between body frame origin and c

Future Work

I. Conduct Experiment

II. Modify Operation

III. Revise Mechanical Design

Conclusion

I. Introduced basic concept AIDMP

II. Customized Logging System

III. Experiment Design