IHPCSS 2019 HYBRID CHALLENGE

WHAT IS IT

Haven't heard of this challenge yet? This is for you...

THE CHALLENGE

Simple aim

Practice what you've learned

Relaxed atmosphere

SIMPLE PROBLEM - STEADY STATE HEAT EQUATION

^{*}Final state is reached when the variation of temperature on the metal plate between iteration n and iteration n+1 is less than a certain threshold, indicating that convergence has been reached.

SIMPLE AIM - BE AS FAST AS YOU CAN

CHALLENGE SETUP

Size of metal plate: 14560 x 14560

To reach convergence: 3586 iterations

Your Mission

You are given 4 nodes

How fast can you run it to convergence?

OpenMP C Synchronous MPI Data movement
Non-blocking OpenACC
Hybrid FORTRAN Communicator
Reduction
Pragma Deadlock Halo swap Data dependence
Copy CPU Directives

No obligation to participate

No registration required

You are free to submit or not at the end

HOW TO GET STARTED

You take part? This is how you get ready

- > git clone
- > make
- > I_

HOW TO GET STARTED - THE BIG PICTURE

HOW TO GET STARTED - CONCRETELY, ON BRIDGES

- 1) Get the repository (serial, OpenMP, MPI, OpenACC etc... source codes)
- > git clone https://github.com/capellil/IHPCSS_Coding_challenge.git
- 2) Compile all source codes
- > module load cuda/9.2 mpi/pgi openmpi/19.4-nongpu && make
- 3) Run locally (if no output_file given, it prints to console)
- > ./run.sh <language> <technology> <size> [output file]
- 4) Submit job to bridges nodes (output_file is mandatory)
- > ./submit.sh <language> <technology> <size> <output_file>
- 5) Verify an output file
- > ./verify.sh <output_file>

```
<langage> = C | FORTRAN

<technology> = serial | openmp | mpi | openacc | hybrid_cpu | hybrid_gpu

<size> = small | big
```

COMPETITION SETUP

Could be useful information...

COMPETITION SETUP - THE TECHNOLOGIES

Note

Without MPI, you have a single-node solution. Are you allowed to do it? Absolutely! But, how likely are you to be faster than someone using all 4 nodes...

COMPETITION SETUP - THE CATEGORIES

Fastest GPU code

COMPETITION SETUP - CONDITIONS FOR A VALID SUBMISSION

Team of 1, 2 or 3 members

Submission deadline Friday 12th of July, at noon

LAST TIPS

Almost ready to go...

LAST TIPS

Need more information?

The GitHub README is your friend!

https://www.github.com/capellil/IHPCSS_Coding_challenge

Still have questions?

- ➤ l.capelli@ed.ac.uk
- ➤ tanujkr.aasawat@riken.jp

GOOD LUCK ENJOY

- 1) Yes, the fastest GPU team will really win this trophy
- 2) Yes, the fastest CPU team will win an identical one

