Лекция 1. Введение <u>Основы ин</u>теллектуального анализа данных

Полузёров Т. Д.

БГУ ФПМИ

Структура лекции

- 1 О чем предмет
- 2 Основные обозначения
- Примеры реальных задач

Цели анализа данных

Цель анализа данных - решение прикладных задач используя данные. Например:

- Прогнозирование
- Моделирование
- Принятие решения
- Получение знаний

В зависимости от имеющихся данных и конечной цели, формулируется определенная "математическая" задача и решается с помощью подходящих методов.

Инструменты и типы данных

Входные данные могут быть различной природы:

- Табличные данные
- Временные ряды
- Текст
- 💿 Изображения, Видео

Для решения конкретной задачи выбирается наиболее подходящая область:

- Отатистика
- Отаминное обучение
- Глубокое обучение
- Визуализация

Типы задач

Решение осовной задачи сводится к решению некоторой "математической"здачи

Основные две группы задач:

- Обучение с учителем:
 - Регрессия прогноз численного значения
 - Классификация определения класса объекта
 - Ранжирование упорядочивание объектов
- Обучение без учителя:
 - Кластеризация выделение семейств, групп в данных
 - Поиск ассоциативных правил поиск зависимых событий
 - Понижение размерности сжатие данных при разумной потере информации

Этапы решения задач

Классическая схема решения задачи состоит из этапов:

- Определение задачи которую нужно решить
- Обор и подготовка данных
- Определение используемых инструментов, моделей
- Построение модели
- Первичная оценка качества модели (offline evaluation)
- Внедрение или доработка модели
- Оценка результатов работы в продакшене (online evaluation)

Постановка задачи. Обучение с учителем

```
\mathbb{X} - множество объектов \mathbb{Y} - множество ответов y^*: \mathbb{X} \to \mathbb{Y} -неизвестная зависимость (target function)
```

Дано:

$$X=\{x_1,...,x_\ell\}\subset \mathbb{X}$$
 - обучающая выборка (samples) $Y=\{y_1,...,y_\ell\}=\{y^*(x_i),i=1...\ell\}\subset \mathbb{Y}$ - известные ответы (targets)

Необходимо:

Найти алгоритм (решающую функцию, модель) $a: \mathbb{X} \to \mathbb{Y}$ приближающую y^* на всём множестве \mathbb{X}

Признаковое описание объектов

Отображения $f_j: \mathbb{X} \to D_j, j=1,...,n$ - признаки объекта (features), измерение некоторох характеристик объекта Вектор $(f_1(x),...,f_n(x))$ - признаковое описание объекта x.

Матрица "объекты-признаки":

$$F = (f(x_{ij}))_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_{\ell}) & \dots & f_n(x_{\ell}) \end{pmatrix}$$

Далее будем отождествлять признаковое описание объекта с самим объектом:

$$x := (f_1(x), ..., f_n(x))$$
 , т.е. $X := F$

Типы признаков

Основные типы признаков:

- ullet $D_j = \{0,1\}$ бинарный признак f_j
- ullet $|D_j|<\infty$ и определена только операция сравнения на равенство **категориальный** признак f_j
- ullet $|D_j|<\infty$ f_j и определены операции сравнения больше, меньше, равенство порядковый (ранговый) признак f_j
- ullet $D_j\subseteq \mathbb{R}$ количественный признак f_j

Примеры:

- Цвет категориальный признак, нельзя сказать "Красный"> "Синий"
- Офицерские звания пример порядкового признака, можно ортировать категории
- Время/дата может проявлять свойства непрерывных, категориальных, циклических типов

Форма множества ответов - определяет тип задачи

Задача классификации:

- ullet $\mathbb{Y} = \{0,1\}$ бинарная классификация
- ullet $\mathbb{Y}=\{1,...M\}$ на M непересекающихся классов (multiclass)
- ullet $\mathbb{Y}=\{0,1\}^M$ на M классов, которые могут пересекаться (multilabel)

Восстановления регрессии:

- $\mathbb{Y} = \mathbb{R}$
- $\mathbb{Y} = \mathbb{R}^m$

В задачах "обучения без учителя" - множество $\mathbb {Y}$ не определено

Модель - как семейство параметризованных функций

Модель - параметрическое семейство функций

$$\mathbb{A} = \{a(x,\theta)|\theta \in \Theta\}$$

где $a: \mathbb{X} \times \Theta \to \mathbb{Y}$ - фиксированная функция, Θ - множество допустимых значений θ

Пример:

- ullet $\{a(x)=\sum_{j=1}^n\omega_jx_j\;|\omega_j\in\mathbb{R}\}$ семейство линейных моделей для задачи регрессии, $\mathbb{Y}=\mathbb{R}$
- $\{a(x) = [(\sum_{j=1}^n \omega_j x_j) > 0] | \omega_j \in \mathbb{R} \}$ семейство линейных моделей для бинарной классификации, $\mathbb{Y} = \{0,1\}$

Метод обучения

Метод обучения (learning algorithm) - это отображение вида

$$\mu: (\mathbb{X} \times \mathbb{Y}) \to \mathbb{A}$$

которое произвольной конечной выборке $(X \times Y) = \{(x_i, y_i)_{i=1}^\ell$ ставит в соответствие некоторый алгоритм $a \in \mathbb{A}$

Обучить модель (fit) - значит с помощью метода обучения μ определить конкретные значения параметров для модели из выбранного семейства.

Функционалы качества

 $\mathcal{L}(a,x)$ - функция потерь (loss function) - неотрицательная функция пропорциональная величине ошибки алгоритма $a\in\mathbb{A}$ на объекте $x\in\mathbb{X}$, если верный ответ есть $y\in\mathbb{Y}$

Функции потерь для задач классификации:

• $\mathcal{L}(a,x) = [a(x) \neq y]$ - индикатор ошибки

Функции потерь для задач регрессии:

- ullet $\mathcal{L}(a,x)=|a(x)-y|$ абслолютное значение ошибки
- $\mathcal{L}(a,x) = (a(x) y)^2$ квадрат ошибки

Эмпирический риск - функционал качества алгоритма a на конечной выборке $X\subset \mathbb{X}$

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}(a,x_i)$$

Основной метод обучения

Метод минимизации эмпирического риска:

$$\mu(X) = \arg\min_{a \in A} Q(a, X)$$

Пример: метод наименьших квадратов, $Y=\mathbb{R},\mathcal{L}$ - квадратична

$$\mu(X) = \arg\min_{a \in A} \sum_{i=1}^{\ell} (a(x_i, \theta) - y_i)^2$$

Два этапа модели:

- Этап обучения (fit): по имеющейся выборке X с помощью метода обучения μ построить a.
- ullet Этап применения обученной модели (predict): $\hat{y}_i = a(x_i^{'})$

Обобщающая способность

Если минимум функционала Q(a,X) достигается на алгоритме a, то это еще не гарантирует, что a будет хорошо приближать целевую зависимость на произвольной контрольной выборке $X^{'}\in\mathbb{X}$

Обобщающая способность метода μ характеризуется величиной $Q(\mu(X), X')$, где X и X' получены из одного и того же неизвестного распределения $\mathbb X$

Крайние ситуации при обучении:

- **Недообучение** ситуация, когда качество плохое и на X, и на X^{\prime}
- Переобучение качество на X хорошее, но на X' существенно хуже

Пример недо- и переобучения

Переобучение - проблема обобщающей способности

Из-за чего возникает переобучение? Избыточная сложность пространства параметров ⊖ позволяет черезмерно точно подстроиться под обучающую выборку. Переобучение есть всегда, когда оптимизация идет по конечной выборке

Избавиться нельзя. Как минимизировать?

- Использовать класс более "простых"моделей
- Накладывать ограничение на параметры модели регуляризация
- Увеличить обучающую выборку

Эмпирические оценки обобщающей способности

ullet Отложенная выборка (hold-out), $X = X_{train} \sqcup X_{test}$

$$HO(\mu, X_{train}, X_{test}) = Q(\mu(X_{train}), X_{test})
ightarrow extit{min}$$

• Скользящий контроль (leave-one-out):

$$LOO(\mu, X) = \frac{1}{L} \sum_{i=1}^{L} Q(\mu(X \setminus \{x_i\}), x_i) \rightarrow min$$

ullet Кросс-проверка (cross-validation), $X = X_1 \sqcup X_2 \sqcup ... \sqcup X_k$

$$CV(\mu, X^L) = rac{1}{k} \sum_{i=1}^k Q(\mu(X \setminus X_k), X_k)
ightarrow min$$

Кросс-валидация

Кредитный скоринг

Объекты - заявки клиентов на кредит Цель - одобрить или отклонить заявку

Признаки:

- Бинарные: пол. наличие авто, имеет ли действующие кредиты
- Непрерывные: зарплата, сумма кредита
- Порядковые: образование, должность
- Категориальные: тип кредита, семейный статус

- Дисбаланс классов: очень мало дефолтных
- Требование оценки вероятности дефолта
- Интерпретируемость модели

Отток клиентов

Объекты - абонент в определенный момент времени Цель - распознавать риск ухода клиента

Признаки:

- Бинарные: пол, подключался ли во время акций
- Непрерывные: месячный расход трафика, число подключенных функций
- Категориальные: источник привлечения клиента

- Оценивание вероятностей
- Сверхбольшие выборки
- Сложность в формировании признакового описания объектов

Биометрическая идентификация

Объекты - образцы отпечатков пальцев Цель - идентифицировать человека

- Нетривиальное преобразование входных данных в информативные признаки
- Требование сверхвысокой точности

Оценка стоимости недвижимости

Объекты - описание объекта недвижимости Цель - оценить стоимость Признаки:

- Бинарные: комерческая ли, наличие балкона, лифта, мусоропровода
- Непрерывные: площадь, год постройки дома
- Категориальные: район города

- Данные могут быть очень разнородной
- Стоимость меняется со временем: зависимость непостоянна
- Влияние внешних экономических факторов

Прогнозирование объемов продаж

Объекты - тройка (товар, магазин, день) Цель - прогноз числа продаж

- Разреженные данные
- Функция потерь сильно не симметрична

Ранжирование поисковой выдачи

Объекты - поисковой запрос Цель - формирование выдачи по убыванию релевантности

- Очень много данных,
- Требование быстрой обработки запросов
- Сложность формирования размеченной выборки

Резюме

- Основные понятия: объект, признак, модель, функция потерь, метод обучения, эмпирический риск, обобщающая способность
- Модель функция, заданная с точностью до параметров.
 Обучить модель найти оптимальный набор параметров
- Проблема описывается математически ightarrow сводится к задаче оптимизации ightarrow решается