半导体一体化指纹模组 SFM-V1.7产品规格书

508DPI

指纹容量

100枚

配套上位机调试

配套完整指令集

七彩呼吸灯

颜色/频率可调

误识率 (FAR)

<0.0001%

1 产品概述

SFM-V1.7一体化半导体指纹模组集成彩色环绕灯带,主要由一体化指纹传感器 和指纹算法等组成。实现指纹注册,比对,删除功能。该模块外观精致轻薄一体化,具有<mark>环形炫酷呼吸灯,指纹识别速度快、安全性高,支持360度任意角度识别、深度自学习功能、高性能、低功耗。该模块采用标准UART通讯</mark>。可为客户提供高效、灵活的二次开发支持。同时集成化芯片也大大减小了指纹模组的体积。产品结构简单,模组化设计,提高了产品的稳定性和一致性。

SFM-V1.7半导体指纹模组应用**提供了一个可用外部控制部分(上位机)通过串口**, 按照 SFM-V1.7一体化程序通信协议交互通信,来实现一个指纹处理模组功能的平台。方便进行二次开发。 广泛应用于指纹门锁、抽屉锁、指纹采集器、身份识别、授权许可、嵌入式生物触摸等领域中。

2 技术参数

2.1 性能参数

像素	160×160	
分辨率	508DPI	
芯片封装	Ø13.5mm*0.8mm	
模组封装	Ø21mm*7.13mm	
比对速度	1:1<5ms/指纹	
启动时间	<140ms	
采像时间	<150ms	
拒真率 (FRR)	<1%	
误识率(FAR)	<0.0001%	
存储容量	100 枚指纹数据	
按压次数	1,000,000 次	

2.2 电气参数

项目	典型值	单位
触控供电电压	3.3±5%	V
指纹模组供电电压	$3.3 \pm 5\%$	V
工作电流(不包含 LED)	<40	mA
工作峰值电流(3.3V 供电 25°C)	40	mA
静态功耗	< 5	μΑ
工作温度	-20~+65	${\mathbb C}$
存储温度	-40~+80	${\mathbb C}$
ESD 非接触放电	±15	KV
ESD 接触放电	±8	KV

说明:工作电流:指纹模组处于采像状态下的电流,比如注册过程及比对过程;静态功耗:指纹模组的指纹供电电压为 0 电平而触控供电电压为 3.3V 状态下的电流;触控供电电压超出规定范围可能会出现异常情况。

3产品结构尺寸

4 通讯接口定义

通讯接口:标准 UART TTL 电平

波特率: 默认 115200 bps, 1 起始位, 1 停止位, 3.3V TTL 电平

连接器: XH-6-1.0: 6Pin 线束立贴条形连接器,间距 1.0mm

Pin 脚定义:

Pin	定义	说明
1	V_TOUCH	3.3V 触摸供电(须一直供电)
2	TOUCH_OUT	唤醒 IRQ (ture:1, flase:0)
3	VCC	指纹模组 VCC,额定电压 3.3V
4	TX	UART_TX(指纹模组->MCU)
5	RX	UART_RX(MCU->指纹模组)
6	GND	GND

说明: 串口为3.3V的TTL电平,接电脑需要电平转换,V_TOUCH 须一直供电TOUCH_OUT为触控输出,触控芯片输出为高电平有效,电平值与V_TOUCH 保持一致。当手指触摸在金属框表面时TOUCH_OUT输出有效电平。

与串口(CH340E)连接示意:

	Pin	定义	说明
色	1	V_TOUCH	3.3V 触摸供电(须一直供电)
左色	2	TOUCH_OUT	唤醒 IRQ (ture:1, flase:0)
录色	3	vcc	指纹模组 VCC, 额定电压 3.3V
色	4	TX	UART_TX(指纹模组->MCU)
色	5	RX	UART_RX (MCU->指纹模组)
色	6	GND	GND

5 低功耗参考设计

为了达到最优的低功耗设计,实际应用时建议将模组的 VCC_3V3 保持断电状态,通过判断TOUCH_OUT 管脚信号控制该路电压开启或者关闭。即当TOUCH_OUT 呈现有效电平时,使能 VCC_3V3 电源,此时指纹模组进入到工作状态。

6 可靠性测试项目

编					
码	测试项目	测试条件	判定依据	样品数	备注
1	百格测试	1、分别取做过耐化妆品和耐人工汗的试验样品各 3 个 2、用百格刀,分别在传感器Coating 表面和金属圈表面划 10 × 10 个 1mm×1mm 的小网格3、用无尘布将试样表面碎片清理干净4、用 3M 610#胶纸贴在小网格上,压平后静置 5S,然后迅速拉起胶纸5、同一测试部位重复测试三次,每次测试时均需用新的胶纸	测试后,标准要大于 4B(脱落面积<5%)	11	
2	铅笔硬度测试	1、铅笔要求:选三菱 3H 铅笔及 1000#砂纸,使铅笔的笔头与砂纸平面呈 90 度直角,将铅笔头磨成圆柱形。 2、试验方法:将铅笔安装在铅笔硬度测试机上,调节平衡,加负重 1KgF,以 45±1°角,在传感器指纹感应面的不同位置,划出 3 条 5-10mm 长的线条,然后用橡皮擦擦去铅笔划痕。 备注:每划完一次,需要将铅笔旋转 90 度,避开铅笔笔头磨损区域,否则测试结果无效。	1、试验后功能测试正常 2、用橡皮擦去铅笔痕迹后,表面无划痕	4	
3	RCA 磨擦 测试	1、负重: 175g 2、摩擦次数: 350圈 3、摩擦位置: 传感器指纹感应 面的中心区域	1、试验后功能测试正常 2、耐磨处 Coating 不能有脱落、基材漏出等明显外观缺陷	4	
			1、外观检查: 无变色、 变形、水泡、印记、		

	I	Т	Γ		
4	低温工作	模组在工作状态下经 -20 ℃,2 小时后立即进行检测	氧化、涂层脱落等跟实验前不同的异常现象; 2、试验后功能测试正常;	5	
5	高温工作	模组在工作状态下经 +65 ℃,2 小时后立即进行检测	1、外观检查: 无变色、变形、水泡、印记、 变形、水泡、印记、 氧化、涂层脱落等跟 实验前不同的异常现 象; 2、试验后功能测试正 常;	5	
6	防水测试	1、模组处于工作状态下,在其 指纹采集面滴满水,保持2小时 后,用干棉布擦干; 2、静置10min以上	试验后模组功能及外 观测试正常	5	
7	耐人工汗	1、按《人工汗水配置指导书》 配置酸性人工汗水溶液,PH值 =4.6 ± 0.1 2、用防水胶纸把 BTB 连接器包 裹保护。用浸泡过人工汗水溶液 的无尘布,将试验样品包裹紧 密,并用密封胶袋封好,放在 55±3℃、90-95%RH 的恒温恒湿 箱中储存 96H 3、取出后将产品表面的溶液擦 干	3、金属件表面不得出 现氧化、锈蚀、变色、	5	
8	水煮百格测试	1、把传感器用 100℃水煮 30分钟 2、试样不能接触沸水溶器壁 3、用无尘布擦干后常温恢复至少 0.5h,检查传感区域油漆和金属环外观面,如果没有掉漆,则用百格刀在金属环外观面划百格,然后用 3M610 胶纸粘贴表面并用手指压平,静置 5秒,90°角迅速垂直拉起胶纸,测试3次。	水煮后传感区域油漆、金属环外观面的镀层不能掉漆,百格测试 3B以上。	5	
		1、用防水胶带把 BTB 连接器包裹保护; 2、先用棉布将产品表面擦干净; 3、将 NIVEA 防晒油(SPF30)、 NIVEA 护手霜在试样表面涂均匀,每种化妆品涂 3 个样品;	1、试验后功能测试正常 2、试验后样品表面允许轻微变色、发白、直径不大于 0.5mm 的麻点。		

9	耐化妆品	4、将样品放在 55±3℃、 90-95%RH 的恒温恒湿箱中储存 48H	3、样品表面不允许起 泡(用手指可以抠掉 的)、脱落、开裂、分 离等明显异常。	6	
10	橡皮磨擦	1、负重: 500g 2、在待磨区域滴 2 滴人工汗水; 3、使用专用橡皮,在传感器金属圈外观面来回磨擦 200 个循环(100 个循环滴一次汗水) 4、 每分钟 40-60 次、 行程 10mm(橡皮不能脱离试样) 备注: 当试样面积较小,行程无法做到 10mm 时,由工程师确认后按能做到的最大行程进行试验。	1、试验后功能测试正常 2、耐磨处镀层不能有脱落、基材漏出等明显外观缺陷	4	
11	ESD 测试	按照 IEC61000-4-2 要求,接触 ±8KV,每个极性 10 枪;空气 ±15KV,每个极性 10 枪。需要 上电测试。测试方法: 1、模组要求上电,只需接VDD 和 GND 即可; 2、模组要放在模拟整机机壳的 ESD 治具中测试(或者直接放在整机机壳中测试) 3、接触放电对金属接触放电;带金属环的模组,接触金属环放电,不带金属环的模组,接触部分放电; 4、空气放电,将静电枪置于模组 sensor 区域上方,按下放电开关,将静电枪放电头缓缓向下移动,当静电击穿空气(产生火花)完成一次放电; 5、每种放电模式下正负各打 10次,每打一次都要放电,每次间隔>1s。	试验后模组功能测试正常	5	