Primitivas de Memoria Virtual para Porgramas de Usuario

Virtual Memory Primitives for User Programs

Leandro Liptak Patricio Reboratti Damián Silvani

Programación de Sistemas Operativos Universidad de Buenos Aires

9 de junio, 2011

• Principalmente, permite

- Extender el espacio de direccionamiento
- Compartir páginas entre procesos
- Proteger páginas de código como sólo lectura
- Implementar copy-on-write
- Puede tener otras aplicaciones...
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones...
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones...
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones. . .
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones. . .
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones. . .
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones. . .
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- Principalmente, permite
 - Extender el espacio de direccionamiento
 - Compartir páginas entre procesos
 - Proteger páginas de código como sólo lectura
 - Implementar copy-on-write
- Puede tener otras aplicaciones...
 - Unix traduce un PF en un SIGSEGV, el usuario puede atraparlo
 - Se puede hacer algo mejor?

- trap
- prot1 y protN
- unprot
- dirty
- map2

- trap
- prot1 y protN
- unprot
- dirty
- map2

- trap
- prot1 y protN
- unprot
- dirty
- map2

- trap
- prot1 y protN
- unprot
- dirty
- map2

- trap
- prot1 y protN
- unprot
- dirty
- map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria
 física
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria
 física
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física.
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física.
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física.
- Necesita trap, prot1, unprot y map2

- Memoria compartida, distribuida en varias computadoras
- Acceso a una memoria compartida coherente
- Se divide el espacio en páginas:
 - En escritura, si la página reside en otras memorias físicas, se busca una copia actualizada y se invalida las otras copias.
 - Las de sólo lectura pueden estar en varias memorias físicas al mismo tiempo.
- Funciona similar a la virtualización con swapping:
 - Un Page Fault ocurre cuando la página no se encuentra en la propia memoria física.
 - El MMU puede buscar la página en el disco o en otra memoria física.
- Necesita trap, prot1, unprot y map2

Checkpointing concurrente

GC concurrente

GC generacional

Heap persistente

Extensión de direccionamiento

Compresión de páginas

Detección de heap overflow

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs.
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs.
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs.
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs.
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs.
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

- Cuando una página se hace más accesible, una TLB desactualizada a lo sumo causa un cache miss.
- Pero al proteger una página, es necesario invalidar la TLB.
- En multiprocesadores, el problema es más notorio:
 - Se debe interrumpir cada procesador e invalidar sus TLBs.
 - Costoso por software
- Solución: hacer flush por lote
- La mayoria de los algoritmos usan protN, no prot1

Tamaño de página óptimo

Acceso a páginas protegidas

Trap handlers sincrónicos

Conclusión