Name: Priyanka, student-id: 20179, Week-3, HW2

Part-1

A. Key Generation

Key Generation			Questions related to Key Generation	
Item Assumption	Alice d = 7, G=5	Bob d = 3, G=5	 Does Eve know Bob's public key P_{Bob}? ?? Bob's private key S_{Bob}? ?? 	
Public Key	Step 1-B PU _{Alice} = ??	Step 1-A PU _{Bob} = ??	 Alice's public key P_{Alice}? ?? Alice's private key S_{Alice}? ?? Does Alice know Bob's public key P_{Bob}? ?? 	
Private Key	Step 1-B PR _{Alice} = ??	Step 1-A PR _{Bob} = ??	 Bob's public key P_{Bob}? ?? Bob's private key S_{Bob}? ?? Does Bob know Alice's public key P_{Alice}? ?? 	
			 Alice's private key S_{Alice}? ?? How many keys are required for N people to communicate using Asymmetric Key Cryptography? ?? 	

Solution:

A. Key Generation

Key Generat	<u>ion</u>		Questions related to Key Generation	
Item	Alice	Bob	 Does Eve know Bob's public key P_{Bob} → yes 	
Assumption	d = 7, G=5	d = 3, G=5	Bob's private key S _{Bob} →no	
Public Key	Step 1-B	Step 1-A	 Alice's public key P_{Alice} → yes Alice's private key S_{Alice} → no 	
	PU _{Alice} → 35		 Does Alice know Bob's public key P_{Bob} → yes 	
Private Key		Step 1-A	 Bob's private key S_{Bob} → no Does Bob know 	
	PR _{Alice} → 7	PR _{Bob} →3	 Alice's public key P_{Alice} → yes 	
			 Alice's private key S_{Alice} → no How many keys are required for N people to communicate using 	

В.

Confidentiality

Alice sends the message (the number 11) to Bob

Alice	Bob			
Step 2-A: Alice uses Bob's public key P _{Bob} to <u>encrypt</u> the message: 11	Step 4-A: Bob uses his private key PR_{Bob} (i.e, secret key S_{Bob}) to decrypt the cipher text and			
Question: • What are the values of C1 and C2?	retrieve the message (the number 11). Questrion? O What is the value of msg'?			
C1=K*G C1 =PRA * G We have D=7, G=5	Value → 11 ==> Proof			
Q=D*G(Q=public key, d=private, G= base point) Q=7*5=35 Q=35 C1=35 C2=M+K+Q C2=M + PRA * PUB C2=11+7*15 C2=11+105 C2=116	Msg'=C2-d*C1 Msg'= (M + PRA * PUB) - PRB * PUA Msg'= (11+7*15)- 3*35 Msg'= 11+105-105 Msg'=11+0 Msg'=11 So, msg=msg' • Instead of msg, why would Bob			
	receive msg'? Answer: Bob receives msg' because during the encryption process, the original message M is transformed into the ciphertext C2, and the decryption process recovers the message as msg'.			
	 Can Eve read the original message on Step 3-A. 			

Answer: No, because Eve does not have access to the private keys needed to decrypt

the message.

0	Can Confidentiality gurantee that				
	Bob receives the original message				
	sent from Alice?				

Answer: Yes, if the encryption is performed correctly, confidentiality ensures that only Bob can decrypt the message

 Can Confidentiality gurantee that Bob knows that someone has modified Alice's message?

Answer: No, confidentiality alone does not verify integrity, alice needs hash or digital signature

Authentication/integrity/non-repudaiation

Alice	Bob			
Step 2-B1: Alice calculates the HASH of the message (the number 11).	Step 4-B: Bob finds HASH' from msg'Again, assuming the MD function is			
 Assuming the MD function is 	message mod 3 = msg % 3 • Questrion?			
message mod 3 = msg % 3	What is the value of HASH'?			
• Questrion?	Answer: Bob retrieve msg'=11			
2. What is the value of HASH?	Hash'=Msg'mod3			
Answer: HASH=11MOD=2	Hash'=11 Mod 3=2			
Value of hash=2	Hash'=2			
3. Can Eve find the message from the HASH?	Step 4-C: Bob <u>decrypts</u> the digital signature with Alice's public key P _{Alice} and find HASH.			
Answer: No, the HASH is a one-way function, and HASH does not allow Eve to retrieve the original message.	Questrion?What is the value of HASH?			
4. Step 2-B2: Alice calculates the	Answer: Hash= C2-D _{bob} *C1			
digital signature	Hash= 107- 3* 15			
by <u>encrypting</u> the HASH with her private key PR _{Alice} (= secret key	Hash= 107-25			
S _{Alice}).	Hash= 82			

Question:

5. What are the values of C1 and C2?

Answer: C1=K*G

C1=3*5=15

C1=15

C2= hash+k*PU_{alice}

C2= 2+ 3*35= 107

C2=107

6. Can Eve find the HASH from {HASH}S_{Alice} on Step 3-B?

Answer: No, if properly encrypted, Eve cannot find the HASH without Alice's private key.

- 3. Step 4-D: Compare HASH and HASH'
 - Questrion?
- Does HASH=HASH'?

Answer: Hash=2

Hash'=2

Hash=Hash'

- What conclusion can be reached if
- HASH = HAHS'

Answer: If they are equal, it means the message is correct, and Bob can confirm that it was not modified.

• HASH != HAHS'

Answer: if they are not equal, it indicates that the message was modified during transmission.

 Can Authentication/Integrity/Nonrepudaiation gurantee that Bob receives the original message sent from Alice?

Answer: Yes, provided that the hashing and signature mechanisms are properly implemented

 Can Authentication/Integrity/Nonrepudaiation gurantee that Bob knows that someone has modified Alice's message?

Answer: Yes, if the HASH values differ, it indicates modified.

?

 Can Authentication/Integrity/Nonrepudaiation & Confidentiality gurantee that Bob receives the message sent from Alice?

Answer: yes, confidentiality protects the message while integrity ensures that it is the correct message.

 Can Authentication/Integrity/Nonrepudaiation & Confidentiality gurantee that Bob knows that someone has modified Alice's message?

Answer: Yes, the combination ensures both the message's confidentiality and integrity checks.