JESENSKI ISPITNI ROK

DUBOKO UČENJE 1

29.08.2024.

- Klasifikacijski konvolucijski model za 1D podatke Slojevi:
 - a) konvolucijski bez nadopunjavanja (2 jezgre, korak 1, ReLU aktivacija)
 - b) maxpool
 - c) FC s 2 izlaza
 - d) Softmax

Početni parametri konvolucijskog sloja:

$$\mathbf{w}_{1A} = [-0.5 \ 0.5], \ b_{1A} = 0$$

$$w_{1B} = [0.5 \ 0.5], \ b_{1B} = -0.5$$

Početni parametri FC sloja:

$$W_2 = I$$
, $b_2 = 0$

- a) Jednadžbe modela
- b) Odredi izlaz za ulaze $x_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$ $x_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ (konvolucija se provodi korelacijom s nezrecaljenim filtrima)
- c) Odredite gradijente s obzirom na sve konvolucijske parametre u podatku x_1 ako je zadano y=1. Pretpostavite da model prediktira P(y=1|x)
- 2. $f(x) = x^4 2x^3 + 5$ Raspišite dvije iteracije optimizacije gradijentnim spustom: $x_0 = -1$, $\varepsilon = 0$

Bi li postupak drugačije konvergirao za različite inicijalizacije i ako je korak dovoljno mali? Ako da, navedite rješenja koja bi gradijentni spust mogao naći. Bi li vaš postupak bolje konvergirao s drugim algoritmom? Ako da, kojim? Skicirajte ga i navedite zašto.

3. Razmatramo model kao u 2. labosu. Napišite implementaciju SoftmaxCrossEntropyWithLogits prema sučelju Layer. Uključite metode forward, backward_inputs, backward_parameters

4. Razmatramo jezični model na razini slova. Model predviđa sljedeće slovo temeljem prethodnih. Rješavamo običnim povratnim modelom koji u povratnoj vezi ima prijenosnu fju tanh i na izlazu softmax. Na ulaz dovodimo niz znakova kodiranih jednojediničnim kodom. Model treba moći raditi s 80 različitih znakova. Skriveni sloj ima 200 dimenzija.

Odredite dimenzije svih parametara povratnog modela.

5. Razmatramo obični povratni model koji u povratnoj vezi ima prijenosnu funkciju min(1,x), a na izlazu identitet bez nelinearnosti.

Zadatak je prebrojati jedinice i nule u binarnom broju. Na ulaz dolazi proizvoljno dugačak niz jedinica i nula u jednojediničnoj reprezentaciji. $W_{hh}=I$, početno stanje $h_0=[0\ 0]$, a za preostale parametre modela (za elemente W_{xh},W_{hy},b_h,b_o) vrijedi $|t_i|\leq 1,\ t_i\in \mathbf{Z}$

Odredite vrijednosti ostalih parametara modela.

 Razmatramo model za ugrađivanje 2D podataka u 1D metrički prostor Slojevi:

h1: FC s 2 izlaza i ReLU

s2: FC s 1 izlazom

Model učimo trojnim gubitkom L(a, p, n) = max(d(a, p) - d(a, n) + m, 0)

$$W_1 = I$$
, $W_2 = [0.4 \ 0.6]$, $b_1 = 0$, $b_2 = 0$

d odgovara L1 metrici, m=1

- a) Jednadžbe modela ako na ulaz dolazi trojka (x_a, x_p, x_n)
- b) Iznos gubitka za ulaz $(x_a, x_p, x_n) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}$
- c) Odredite gradijenta gubitka s obzirom na sve parametre modela