Student Information

Full Name : Damlanur Yağdı

 $Id\ Number:\ 2522118$

Answer 1

1(a)

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg p \lor \neg q$	$(p \land q) \iff (\neg p \lor \neg q)$
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	F	Т	F
F	F	Т	Т	F	Т	F

Hence, it is a contradiction.

1(b)

$$\begin{array}{lll} p \to ((q \vee \neg q) \to (p \wedge q)) & \equiv & \neg p \vee ((q \vee \neg q) \to (p \wedge q)) & \text{By table 7 line 1} \\ & \equiv & \neg p \vee (\neg (q \vee \neg q) \vee (p \wedge q)) & \text{By table 6 De Morgan's Laws} \\ & \equiv & \neg p \vee ((\neg q \wedge q) \vee (p \wedge q)) & \text{By table 6 De Morgan's Laws} \\ & \equiv & \neg p \vee (F \vee (p \wedge q)) & \text{By table 6 Negation Laws} \\ & \equiv & \neg p \vee (p \wedge q) & \text{By table 6 Identity Laws} \\ & \equiv & (\neg p \vee p) \wedge (\neg p \vee q) & \text{By table 6 Distributive Laws} \\ & \equiv & T \wedge (\neg p \vee q) & \text{By table 6 Negation Laws} \\ & \equiv & \neg p \vee q & \text{By table 6 Identity Laws} \end{array}$$

Answer 2

- a) $\forall x \exists y (W(x,y))$
- b) $\exists x \exists y \neg (F(x,y))$
- c) $\forall x(W(x,P) \rightarrow A(Ali,x))$
- d) $\exists y(W(Busra, y) \land F(TUBITAK, y))$
- e) $\exists x \exists y \exists z (S(x,y) \land S(x,z) \land y \neq z)$
- f) $\neg \exists y \exists x \exists z (W(x, y) \land W(z, y) \land x \neq z)$
- g) $\exists x \exists y \exists z ((W(x,z) \land W(y,z) \land x \neq y) \land \forall t (W(t,z) \rightarrow (t=x \lor t=y)))$

Answer 3

1	$p \to q$	premise
2	$(q \land \neg r) \to s$	premise
3	$\neg s$	premise
4	p	assumption
5	$\neg r$	assumption
6	p	copy4
7	q	\rightarrow e 1,6
8	$q \land \neg r$	∧ i 7, 5
9	s	\rightarrow e 2,8
10		¬e 3, 9
11	$\neg \neg r$	$\neg i \ 5 - 10$
12	r	¬¬e 11
13	$p \to r$	\rightarrow i 4 – 12

Answer 4

$p, p \to (q \land r), r \to s \vdash \neg(s \to \neg q)$				
1	p	premise		
2	$p \to (q \wedge r)$	premise		
3	$r \to s$	premise		
4	$s \rightarrow \neg q$	assumption		
5	$q \wedge r$	$\rightarrow e2, 1$		
6	r	\wedge e 5		
7	s	\rightarrow e 3,6		
8	$\neg q$	\rightarrow e 4, 7		
9	q	^e 5		
10		¬e 8,9		
11	$\neg(s \to \neg q)$	¬i 4 – 10	,	

Answer 5

1	$\forall x (P(x) \to (Q$	$(x) \to R(x))$ premise
2	$\exists x (P(x))$	premise
3	$\forall x(\neg R(x))$	premise
4	Q(c)	assumption
5	P(c)	assumption
6	$P(c) \rightarrow (Q(c) -$	$\rightarrow R(c)$) $\forall e1$
7	$Q(c) \to R(c)$	\rightarrow e 6, 5
8	Q(c)	copy4
9	R(c)	→e 7,8
10	$\neg R(c)$	$\forall e3$
11		¬e 10,9
12	<u> </u>	$\exists e2, 5-11$
13	$\neg Q(x)$	¬i 4 – 12
14	$\exists x (\neg Q(x))$	∃i 13