

# Un système agnostique de détection et de diagnostic d'intrusion radio pour l'IoT

Pierre-François Gimenez, Jonathan Roux, Éric Alata. Guillaume Auriol. Mohamed Kaâniche, Vincent Nicomette

Nouvelles Avancées en Sécurité des Systèmes d'Information 22 ianvier 2020









# L'IoT se développe...

- L'IoT (Internet of Things) se développe rapidement
- Tout devient connecté (« smart »): les télévisions, les périphériques, les ampoules, les fourchettes...
- Environnements connectés: ville, bâtiment, usine, domicile...

#### .. et les menaces aussi

- Réduire une fonctionnalité. Exemple: couper le refroidissement d'un frigo
- Manipuler la fonctionnalité. Exemple: ouvrir des volets de l'extérieur
- Etendre la fonctionnalité. Exemple: fuiter de données avec une ampoule
- Utiliser l'objet pour lui-même. Exemple: créer un botnet (Mirai)





Comment protéger l'IoT ? Ce n'est pas facile:

# Spécificités de l'IoT vis-à-vis de la sécurité

**Hétérogénéité** protocoles (propriétaires ou non) et architectures matérielles en constante évolution

Mobilité réseaux dynamiques (ex: smartphones, montres connectées...)

**Nombre** ces objets se multiplient, ce qui augmente les interactions

**Vulnérabilité** manque d'expertise et de sensibilisation



## Approches existantes

### **Approches existantes**

Pare-feu Filtre les communications

**VPN** Isole des réseaux

Système de détection d'intrusion réseau (IDS) Surveille les communications réseaux

- Solutions partielles à cause de l'hétérogénéité, inadaptées aux réseaux décentralisés
- ightarrow IDS: diagnostic spécialisé pour certains types d'attaque ou certaines technologies



## Sommaire

- Contexte
- 2 Approche
- Machine learning
- Diagnostic
- Expérimentations et résultats
- **Conclusion**





#### Notre approche: un IDS...

- basé sur les communications radio (couche physique) → fonctionne avec les protocoles propriétaires (agnostique)
- ullet qui surveille plusieurs larges bandes de fréquences ( $\sim 100 \mathrm{MHz}$ ) ightarrowindépendant des protocoles (y compris futurs)
- qui modélise le comportement normal et n'utilise pas de signatures  $\rightarrow$ indépendant des attaques
- qui aide au diagnostic → pour faciliter le traitement de l'anomalie

## Remarques

- On ne couvre pas les communications filaires (déjà surveillées et moins utilisées dans l'IoT)
- On suppose qu'une attaque est perceptible dès la couche physique



#### Mesure radio

#### IDS basé sur SDR

- Besoin: mesurer les puissances radio sur un large spectre
- Outil: SDR (software defined radio) qui peut balayer de larges bandes de fréquence (jusqu'à 6 GHz)
- On obtient la puissance en chaque fréquence en fonction du temps (par FFT): un spectrogramme (ou un waterfall)
- Nombre de mesures à la seconde fixé: compromis entre résolution temporelle et fréquentielle

Modèle utilisé : HackRF One (280 euros)





# Exemple de spectrogramme



Perte d'information  $\rightarrow$  impossible de récupérer les communications haut niveau à partir d'un spectrogramme (démodulation impossible)



# Exemple d'anomalie



Une attaque par séquence de Bruijn ightarrow elle est visible



# Schéma général de l'approche

- Phase d'apprentissage du comportement normal
- Phase de détection d'anomalie







Pour simplifier le problème, on établit certaines hypothèses.

# Hypothèses sur les anomalies

- Les anomalies peuvent être détectées dès la couche physique
- Si on surveille plusieurs larges bandes de fréquence, on suppose qu'une anomalie peut être détectée en traitant chaque large bande indépendamment
- Si on a plusieurs sondes, on suppose qu'une anomalie peut être détectée en traitant chaque sonde indépendamment
- Une anomalie peut être détectée sur une courte durée: on ne traite pas de cas complexe comme « l'utilisateur allume toujours la lumière avant de faire un café »

Par contre, on s'impose de ne pas perdre d'information en « résumant » le spectrogramme



#### Quel modèle utiliser?

## Les contraintes du problème

- Pas d'expertise sur la forme des attaques dans le spectre radio
- ullet Les spectrogrammes sont de grandes tailles ( $\sim 10^4$  points)
- Plusieurs Go de données d'apprentissage
- L'inférence doit être faisable en temps-réel
- Le modèle doit permettre de localiser l'anomalie
- ightarrow Les réseaux de neurones sont adaptés à ce problème, plus précisément les auto-encodeurs



#### Auto-encodeur

#### Auto-encodeur

- Un réseau de neurones qui cherche à reconstruire ses entrées
- Le réseau a un goulot d'étranglement: il doit compresser l'entrée intelligemment
- Cette compression est adaptée aux exemples d'apprentissage légitimes
- Une fois appris: s'il reconstruit bien l'entrée, c'est qu'elle est légitime. Sinon, c'est que c'est une anomalie.
- On a une erreur de reconstruction: on fixe un seuil qui délimite les entrées légitimes des anomalies





### Exemple de reconstruction sans anomalie



Faible erreur de reconstruction (image de droite)



### Exemple de reconstruction avec anomalie



Grande erreur de reconstruction (image de droite)



### Paramètres de la SDR pour l'auto-encodeur

# SDR paramétrable

- Compromis entre résolution temporelle et fréquentielle
- Choix: résolution fréquentielle de 0.1MHz et résolution temporelle de 37.5ms
- On balaye 300 MHz, ce qui donne 3000 mesures par balayage

# Longueur temporelle à choisir

- ullet Nombre de paramètres de l'auto-encodeur  $\sim$  quadratique en la taille de l'entrée
- Beaucoup de paramètres → besoin de plus de données, de puissance de calcul et de temps d'apprentissage (et peut mener à du surapprentissage)
- Compromis entre taille des données et prise en compte du comportement temporel
- Choix: 600ms de mémoire (16 balayages)



# Diagnostic

#### Motivation

- Large surface surveillée : il ne suffit pas de dire qu'on a vu, il faut dire où
- En milieu professionnel, on peut donner des informations techniques à l'utilisateur
- $\rightarrow$  Traitable par un SOC (security operation center)

# **Objectif**

On travaille toujours sur la couche physique ! (pas de démodulation possible)

- Les dates de début et de fin de l'anomalie
- La fréquence de l'anomalie
- La position géographique de l'anomalie (approximative)



### Détection

#### Erreur de reconstruction en fonction du temps



Pour éviter les faux positifs: on regarde l'erreur cumulative (en rouge) Les seuils sont appris



## Diagnostic temporel



Intervalle de temps déduit de la surface rouge.

Ici: notre détection et l'attaque



# Diagnostic fréquentiel



Diagnostic fréquentiel: la fréquence avec l'erreur maximale Repose sur le diagnostic temporel!



### Diagnostic spatial



# Principe

- Dates et fréquence de l'anomalie connues : on peut estimer la puissance du signal
- Estimation de la position grâce à un barycentre des puissances de l'anomalie perçues par chaque sonde



#### Architecture de l'IDS





## Salle d'expérimentation

## Objets connectés

- Ampoule, sonnette, clavier, téléphones, ...
- Environnement pas complètement contrôlé : c'est une salle de pause avec des visiteurs et des stagiaires

#### Matériel IDS

- Bandes surveillées : 400-500MHz, 800-900MHz, 2400-2500MHz (bandes libres)
- 3 HackRF avec des antennes différentes (2 Go mesurés /jour /sonde)
- 9 jours d'apprentissage, 11 jours de tests
- Apprentissage et inférence faits avec un serveur de calcul (hors ligne)



# Attaques lancées avec Mirage

Mirage : framework modulaire dédié à l'analyse des réseaux sans-fils https://redmine.laas.fr/projects/mirage

| ID          | Name         | Technology | Туре                | Freq./Band      | #Inj. |  |  |  |
|-------------|--------------|------------|---------------------|-----------------|-------|--|--|--|
|             | 400–500 MHz  |            |                     |                 |       |  |  |  |
| 1           | scan433-17   | 433 MHz    | Scan 433 17 dBm     | 433 MHz         | 256   |  |  |  |
| 2           | DoS433-27    | 433 MHz    | DoS 27 dBm          | 433 MHz         | 50    |  |  |  |
| 3           | DoS433-40    | 433 MHz    | DoS 40 dBm          | 433 MHz         | 13    |  |  |  |
| 4           | TV-spoofing  | DVB-T      | TV spoofing         | 485-499 MHz     | 12    |  |  |  |
| 5           | bruijn       | 433 MHz    | De Bruijn injection | 433 MHz         | 13    |  |  |  |
|             |              |            | 800–900 MHz         |                 |       |  |  |  |
| 9           | scan868      | 868 MHz    | Scan 868 20 dBm     | 868 MHz         | 279   |  |  |  |
| 10          | DoS868       | 868 MHz    | DoS 35 dBm          | 868 MHz         | 80    |  |  |  |
| 2.4–2.5 GHz |              |            |                     |                 |       |  |  |  |
| 13          | blescan      | BLE        | BLE Scan            | 2.4-2.5 GHz     | 177   |  |  |  |
| 14          | zigbeescan   | Zigbee     | Zigbee Scan         | 2.4-2.5 GHz     | 25    |  |  |  |
| 15          | deauth       | WiFi       | Deauthentication    | 2.451-2.473 GHz | 33    |  |  |  |
| 16          | rogueAP      | WiFi       | RogueAP             | 2.461-2.483 GHz | 83    |  |  |  |
| 17          | esbinject    | ESB        | Injection ESB       | 2.4-2.5 GHz     | 66    |  |  |  |
| 18          | injectzigbee | Zigbee     | Injection Zigbee    | 2.48 GHz        | 33    |  |  |  |



## Métriques de performances

#### **Précision**

Proportion du temps d'alarme qui correspond à de vraies anomalies

 $\rightarrow$  bonne précision = peu de fausses alarmes

# Rappel

Proportions du temps d'anomalies correctement détecté

ightarrow bon rappel = peu d'anomalies ratées

### **Accuracy**

Proportion des prédictions (alarmes ou non) qui sont correctes

 $\rightarrow$  bonne accuracy = peu d'erreurs



# Résultat du diagnostic temporel (rappel)

| Name        | Probe 1    | Probe 2    | Probe 3    |  |  |
|-------------|------------|------------|------------|--|--|
| 400–500 MHz |            |            |            |  |  |
| scan433-17  | 51.52%     | 96.63%     | 0%         |  |  |
| DoS433-27   | 99.19%     | 99.21%     | 4.00%      |  |  |
| DoS433-40   | 99.19%     | 99.87%     | 95.77%     |  |  |
| TV-spoofing | 99.20%     | 99.85%     | 99.00%     |  |  |
| bruijn      | 77.88%     | 96.60%     | 84.48%     |  |  |
| probfail-1  | 99.83%     | 99.88%     | 9.59%      |  |  |
| anomaly462  | 3.51%      | 100%       | 5.36%      |  |  |
| anomaly467  | 70.75%     | 29.70%     | 6.18%      |  |  |
|             | 800–900    | MHz        |            |  |  |
| scan868     | 64.97%     | 74.13%     | 64.56%     |  |  |
| DoS868      | 82.09%     | 93.33%     | 63.95%     |  |  |
| harmo433    | 40.02%     | 40.73%     | 3.35%      |  |  |
| probfail-2  | 0%         | 0%         | 3.32%      |  |  |
| 2.4–2.5 GHz |            |            |            |  |  |
| ID 13–18    | $\leq 1\%$ | $\leq 1\%$ | $\leq 1\%$ |  |  |



# Résultat du diagnostic temporel (précision et accuracy)

|             | Bande                                                    | Sonde 1           | Sonde 2           | Sonde 3           |  |
|-------------|----------------------------------------------------------|-------------------|-------------------|-------------------|--|
| Précision:  | 400–500 MHz                                              | 99.13%            | 79.79%            | 87.54%            |  |
| i iccision. | 800–900 MHz<br>2.4–2.5 GHz 97.76% 96.38%<br>15.90% 8.03% | 97.40%            |                   |                   |  |
|             | 2.4-2.5 GHz                                              | 15.90%            | 8.03%             | 5.43%             |  |
|             |                                                          |                   |                   |                   |  |
|             |                                                          |                   |                   |                   |  |
|             | Bande                                                    | Sonde 1           | Sonde 2           | Sonde 3           |  |
| Accuracy:   | Bande<br>400–500 MHz                                     | Sonde 1<br>81.94% | Sonde 2<br>93.93% | Sonde 3<br>78.32% |  |
| Accuracy:   |                                                          |                   |                   |                   |  |
| Accuracy:   | 400–500 MHz                                              | 81.94%            | 93.93%            | 78.32%            |  |



# Résultat du diagnostic fréquentiel: erreur médiane

| Name        | Frequency   | Probe 1 | Probe 2 | Probe 3  |  |  |
|-------------|-------------|---------|---------|----------|--|--|
| 400–500 MHz |             |         |         |          |  |  |
| scan433-17  | 433 MHz     | 0.1 MHz | 0.1 MHz | ×        |  |  |
| DoS433-27   | 433 MHz     | 0.1 MHz | 0.1 MHz | 63.4 MHz |  |  |
| DoS433-40   | 433 MHz     | 0.1 MHz | 0 MHz   | 0 MHz    |  |  |
| TV-spoofing | 485–499 MHz | 0 MHz   | 0 MHz   | 0 MHz    |  |  |
| bruijn      | 433.8 MHz   | 0 MHz   | 0 MHz   | 0 MHz    |  |  |
| anomaly462  | 462 MHz     | ×       | 0.1 MHz | ×        |  |  |
| anomaly467  | 467 MHz     | 0 MHz   | 0 MHz   | ×        |  |  |
| 800–900 MHz |             |         |         |          |  |  |
| scan868     | 868 MHz     | 0.1 MHz | 0.1 MHz | 0.1 MHz  |  |  |
| DoS868      | 868 MHz     | 0.1 MHz | 0.1 MHz | 0.2 MHz  |  |  |
| harmo433    | 867.7 MHz   | 0 MHz   | 0 MHz   | 0 MHz    |  |  |



# Résultat du diagnostic spatial : distance médiane

| Name        | Pos. A | Pos. B | Pos. C | Pos. D | Pos. E | Pos. F | Moy.   |
|-------------|--------|--------|--------|--------|--------|--------|--------|
| scan433-17  | -      | -      | -      | -      | -      | 3.63 m | 3.63 m |
| DoS433-27   | -      | -      | -      | -      | -      | 3.96 m | 3.96 m |
| DoS433-40   | -      | 0.82 m | 0.51 m | -      | 1.24 m | -      | 0.86 m |
| TV-spoofing | -      | 0.45 m | 0.35 m | -      | 1.92 m | -      | 0.91 m |
| bruijn      | -      | 0.95 m | 0.32 m | -      | 2.12 m | -      | 1.13 m |
| scan868     | 2.45 m | -      | -      | -      | -      | 2.91 m | 2.68 m |
| DoS868      | 3.16 m | 2.47 m | 2.67 m | 3.13 m | 1.15 m | 2.19 m | 2.46 m |
| harmo433    | 2.13 m | -      | -      | 2.40 m | -      | -      | 2.27 m |
| Moyenne     | 2.68 m | 1.17 m | 0.91 m | 2.77 m | 1.61 m | 3.17 m | 1.95 m |

Problème: antenne différente par sonde et pas omnidirectionnelle



#### Conclusion

#### **Performances**

- Détection efficace sur les protocoles peu utilisés, inexistante sur 2.4–2.5 GHz (mais plein d'outils de détection pour le 2.4–2.4 GHz)
- Diagnostic temporel et fréquentiel précis, diagnostic spatial peu satisfaisant

## Expérience en ligne

- Sonde pas chère: Raspberry Pi 4 + HackRF
- 40% CPU utilisé
- 2Go RAM utilisé
- Consommation électrique: 4.5W (moins qu'une ampoule LED)

Et quelques surprises. . .



#### L'anomalie 462 MHz

#### Anomalie 462 MHz

- Signal puissant pendant 33h sur la fréquence 462 MHz
- Signal retracé jusqu'à l'écran d'un doctorant avec un HackRF  $\rightarrow$  signal non-malveillant
- Montre la pertinence du diagnostic





#### Résumé et conclusion

# Approche

IDS radio qui surveille de larges bandes de fréquences sans hypothèses sur les attaques et qui aide au diagnostic grâce au machine learning

#### **Performances**

- Matériel pas cher (environ 350 euros)
- Traite efficacement des bandes peu surveillées: complémentaire aux IDS existants

# Perspectives

- Améliorer la détection 2.4-2.5 GHz
- Détecter une fuite de données radio
- Détecter des anomalies longues