

Data warehouse (OLAP) vs operational database (OLTP)

Transactions = tuples = samples = instances...

Data cube, data cuboid, cells

Dimension, dimension levels, dimension values

Ex. 3 transactions: (9/15/16, Urbana), (9/15/16, Urbana), (9/15/16,

Chicago) → data warehouse. Data cubes. One of cubes = sales

Cube: dimension tables and fact tables (measures).

Dimension = ("time", "location")

concept hierarchy of each dimension

time: year-month-date (dimension levels) vs dimension values

location: country-state-city (dimension levels)

One measure = count.

Two base cells: (9/15/16, Urbana): 2, (9/15/16, Chicago)

Base cuboids: (date, city) → (month, city)... not empty

Aggregate cuboids: (*, city), (year, *); Apex cuboid: (*, *)

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Pattern (Itemset) Mining Methods
- Pattern Evaluation Methods

Pattern Discovery: Definition

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Frequent Patterns (Itemsets)

- Itemset: A set of one or more items
- k-itemset: $X = \{x_1, ..., x_k\}$
- (absolute) support (count) of X: Frequency or the number of occurrences of an itemset X
- (relative) support, s: The fraction of transactions that contains X (i.e., the probability that a transaction L contains X)
- An itemset X is frequent if the support of X is no less than a minsup threshold

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Let minsup = 50%

Freq. 1-itemsets:

Beer: 3 (60%); Nuts: 3 (60%)

Diaper: 4 (80%); Eggs: 3 (60%)

Freq. 2-itemsets:

{Beer, Diaper}: 3 (60%)

From Frequent Itemsets to Association Rules

- Association rules: $X \rightarrow Y$ (s, c)
 - Support, s: The probability that a transaction contains X ∪ Y
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - $-c = \sup(X \cup Y) / \sup(X)$
- Association rule mining: Find all of the rules, X → Y, with minimum support and confidence
- Frequent itemsets: Let *minsup* = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3,
 Diaper: 4, Eggs: 3
 - Freq. 2-itemsets: {Beer, Diaper}: 3
- Association rules: Let minconf = 50%
 - − Beer → Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: Itemset: $X \cup Y$, a subtle notation!

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain?

```
- TDB_1: T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}
```

- Assuming (absolute) minsup = 1
- Let's have a try

```
1-itemsets: \{a_1\}: 2, \{a_2\}: 2, ..., \{a_{50}\}: 2, \{a_{51}\}: 1, ..., \{a_{100}\}: 1, 2-itemsets: \{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1 ..., ..., \{a_{99}, a_{100}\}: 1, ... 99-itemsets: \{a_1, a_2, ..., a_{99}\}: 1, ..., \{a_2, a_3, ..., a_{100}\}: 1 100-itemset: \{a_1, a_2, ..., a_{100}\}: 1 - In total: \binom{100}{1} + \binom{100}{2} + ... + \binom{100}{100} = 2^{100} - 1 sub-patterns!
```

A too huge set for any computer to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y > X, with the same support as X
 - Let Transaction DBTDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P₁: "{a₁, ..., a₅₀}: 2"; P₂: "{a₁, ..., a₁₀₀}: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: **Max-patterns**: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X, with the same support as X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DBTDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know {a₁, ..., a₄₀} is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}, ...,$ any more!
- Thus in many applications, mining closed-patterns is more desirable than mining max-patterns

- Transaction, itemset
- Pattern (itemset), min_sup (abs. rel.)
- Frequent pattern (itemset)
- Association rules: item

 item (sup, conf.)
 - Min_sup, min_conf
- Number of frequent patterns: huge
- Compression:
 - Closed pattern (lossless)
 - Max pattern (lossy)

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Pattern (Itemset) Mining Methods
- Pattern Evaluation Methods

Efficient Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach

The Downward Closure Property of Frequent Patterns

- Observation: From TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - We get a frequent itemset: {a₁, ..., a₅₀}
 - Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, ..., a_{49}\}$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!?

A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find **frequent** (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_{\nu} := \{ \text{frequent items} \}; // \text{ frequent 1-itemset } \}
While (F_k!=\emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_{k}; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at
   minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

The Apriori Algorithm: An Example

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

ltemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

F_{2}	ltemset	sup
_	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

ltemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

3 rd	scan	F	-
		_	

Itemset	sup
{B, C, E}	2

Apriori: Implementation Tricks

- How to generate candidates?
 - Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - $-F_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in F_3
 - $C_4 = \{abcd\}$

Candidate Generation: An SQL Implementation

Suppose the items in F_{k-1} are self-join listed self-join in an order abc abd bcd acd ace • Step 1: self-joining F_{k-1} acde abcd insert into C_k select *p.item*₁, *p.item*₂, ..., *p.item*_k. 1, q.item_{k-1} pruned from F_{k-1} as p, F_{k-1} as qwhere $p.item_1 = q.item_1, ..., p.item_k$ $_{2}$ = $q.item_{k-2}$, $p.item_{k-1}$ < $q.item_{k-1}$ Step 2: pruning for all *itemsets c in C_k* do for all (k-1)-subsets s of c do

if (s is not in F_{k-1}) then delete c

from C_k

Apriori: Improvements and Alternatives

- Reduce passes of transaction database scans
 - Partitioning (e.g., Savasere, et al., 1995)
 - Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)
 - Pruning by support lower bounding (e.g., Bayardo 1998)
 - Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - Tree projection (Agarwal, et al., 2001)
 - H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

 Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- Method: (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database (how?) and find local frequent patterns
 - Scan 2: Consolidate global frequent patterns (how to?)
- Why does this method guarantee to scan TDB only twice?

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): Reduce the number of candidates (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- Observation: A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries
 - {ab, ad, ae}
 - {bd, be, de}
 - ...
 - Frequent 1-itemset: a, b, d, e

Itemsets	Count
{ab, ad, ae}	35
{bd, be, de}	298
	•••
{yz, qs, wt}	58

Hash Table

 ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- Tid-List: List of transaction-ids containing an itemset
- Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$

A transaction DB in Horizontal Data Format

Tid	ltemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

ltem	TidList
a	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- Tid-List: List of transaction-ids containing an itemset
- Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$
- Properties of Tid-Lists
 - t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
 - t(X) \subset t(Y): transaction having X always has Y (e.g., t(ac) \subset t(ce))
- Deriving frequent patterns based on vertical intersections

ltem	TidList
a	10, 20
b	20, 30
С	10, 30
d	10
9	10 20 20

http://www.cs.rpi.edu/~zaki/PaperDir/SIGKDDo3-diffsets.pdf

Diffset Based Mining

P: itemset; X, Y: items

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Idea: Frequent pattern growth (FPGrowth)
 - Find frequent single items and partition the database based on each such item
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called *conditional database*)
 - To facilitate efficient processing, an efficient data structure, FPtree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path—single path will generate all the combinations of its subpaths, each of which is a frequent pattern

Example: Construct FP-tree from a Transactional DB

TID	Items in the Transaction	Ordered, frequent items
100	{f, a, c, d, g, i, m, p}	{f, c, a, m, p}
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	{b, f, h, j, o, w}	{f, b}
400	$\{b, c, k, s, p\}$	{c, b, p}
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

Answer: f:4, a:3, c:4, b:3, m:3, p:3; fm: 3, cm: 3, am: 3, cp:3; fcm: 3, fam:3, cam: 3; fcam: 3.

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

Sort frequent items in frequency descending order, f-list F-list = f-c-a-b-m-p

3. Scan DB again, construct FP-tree

ϵ	escend	ing		
		Heade	rTable	>f:4> C:1
	Item	Frequency	Header	
	f	4		c:3
	С	4		
	a	3		> a:3 p:1
	b	3		$\overline{m}.\overline{2}$
	m	3		28
	р	3		, p:2

Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
 - Patterns containing p: p's conditional database: fcam:2, cb:1
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1
 - **–**
- p's conditional pattern base: transformed prefix paths of item p

Conditional pattern bases

anditional nattorn back

<u>ite</u>	<u>m Conamonarpattermoase</u>
c	<i>f:</i> 3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Conditional pattern bases

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB:
$$fca:2$$
, $fcab:1 \rightarrow fca:3$

b-conditional PB:
$$fca:1, f:1, c:1 \rightarrow \phi$$

$$\alpha$$
-conditional PB: $fc:3$ → $fc:3$

c-conditional PB:
$$f:3 \rightarrow f:3$$

Conditional pattern bases

```
{} {} {} {}

| | | | |

f:3 f:3 f:3 f:3

| | | cm-cond. cam-cond.

c:3 c:3 FP-tree FP-tree

| am-cond.
a:3 FP-tree

m-cond.
FP-tree
```

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

p-conditional PB: fcam:2, $cb:1 \rightarrow c:3$

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

 α -conditional PB: $fc:3 \rightarrow fc:3$

c-conditional PB: $f:3 \rightarrow f:3$

mine(<f:3, c:3, a:3>|m)

 \rightarrow (am:3) + mine(<f:3, c:3>|am)

 \rightarrow (cam:3) + (fam:3) + mine (<f:3>|cam)

→ (fcam:3)

 \rightarrow (cm:3) + mine(<f:3>|cm)

→ (fcm:ȝ)

 \rightarrow (fm:3)

31

Conditional pattern bases

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

FP-tree

Actually, for single branch FPtree, all frequent patterns can be generated in one shot

```
m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam: 3, cam: 3
fcam: 3
```

Conditional pattern bases

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

 α -conditional PB: fc:3 → fc:3

c-conditional PB: $f:3 \rightarrow f:3$

Conditional pattern bases

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

 α -conditional PB: fc:3 → fc:3

c-conditional PB: $f:3 \rightarrow f:3$

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Scaling FP-growth by Database Projection

YouTube: https://www.youtube.com/watch?v=LXx1xKF90Dq

- What if FP-tree cannot fit in memory? DB projection
 - Project the DB based on patterns
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Pattern (Itemset) Mining Methods
- Pattern Evaluation Methods

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - Support, confidence, correlation, ...
 - Subjective interestingness measures: One man's trash could be another man's treasure
 - Query-based: Relevant to a user's particular request
 - Against one's knowledge-base: unexpected, freshness, timeliness
 - Visualization tools: Multi-dimensional, interactive examination

Limitation of the Support-Confidence Framework

- Are s and c interesting in association rules: "A ⇒ B" [s, c]?

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

- Association rule mining may generate the following:
 - play-basketball ⇒ eat-cereal [40%, 66.7%] (highers & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - ¬ play-basketball ⇒ eat-cereal [35%, 87.5%] (high s & higher c)

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

Lift is more telling than s & c

В

400

200

600

C

¬B

350

50

400

 \sum_{row}

750

250

1000

- Lift(B, C) may tell how B and C are correlated
 - Lift(B, C) = 1: B and C are independent
 - > 1: positively correlated
 - < 1: negatively correlated</p>

•	For our example,	$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$
	• •	$600/1000 \times 750/1000 = 0.85$
		$lift(B, \neg C) = \frac{200/1000}{600/1000} = 1.33$
		$tyt(B, 10) = \frac{1.33}{600/1000 \times 250/1000} = 1.33$

- Thus, B and C are negatively correlated since lift(B, C) < 1;
 - B and \neg C are positively correlated since lift(B, \neg C) > 1

Interestingness Measure: χ²

Observed value

Expected value

Another measure to test correlated eyents: χ²

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- General rules
 - $-\chi^2$ = 0: independent

	1	B		\sum_{row}
С	4	400 (450)	350 (300)	750
¬С	2	200 (150) 50 (100)		250
Σ_{col}		600	400	1000

 $-\chi^2$ > 0: correlated, either positive or negative, so it needs additional test

• Now,
$$\chi^2 = \frac{(400 - 450)^2}{450} + \frac{(350 - 300)^2}{300} + \frac{(200 - 150)^2}{150} + \frac{(50 - 100)^2}{100} = 55.56$$

- χ² shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- χ^2 = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

	В	¬B	\sum_{row}
C	100	1000	1100
¬C	1000	100000	101000
$\sum_{col.}$	1100	101000	102100

null transactions

Contingency table with expected values added

	В	¬B	\sum_{row}	
С	100 (11.85)	1000	1100	
¬С	1000 (988.15)	100000	101000	
$\Sigma_{\text{col.}}$	1100	101000	102100	

Interestingness Measures & Null-Invariance

- Null invariance: Value does not change with the # of nulltransactions
- A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	X² and lift are not null-invariant
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	
AllConf(A, B)	$\frac{s(A \cup B)}{\max\{s(A), s(B)\}}$	[0, 1]	Yes	Jaccard, consine,
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	AllConf,
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	MaxConf, and Kulczynski are null-invariant
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	measures
MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)},\frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes	/2

 $\max\{s(A \cup B)/s(A), s(A \cup B)/s(B)\}$

43

Measure	Definition	Range	Null-Invariant
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No
Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No
AllConf(A,B)	$\frac{s(A \cup B)}{\max\{s(A), s(B)\}}$	[0, 1]	Yes
Jaccard(A,B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
Kulczynski(A,B)	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0, 1]	Yes
MaxConf(A, B)	$max\{\frac{s(A)}{s(A \cup B)}, \frac{s(B)}{s(A \cup B)}\}$	[0, 1]	Yes

	В	¬B	\sum_{row}
С	100 (11.85)	1000	1100
¬С	1000 (988.15)	100000	101000
$\Sigma_{col.}$	1100	101000	102100

 $\max\{ s(A \cup B) / s(A), s(A \cup B) / s(B) \}$

Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - D₄—D₆ differentiate the null-invariant measures
 - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

All 5 are null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100, 000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on those cases

Analysis of DBLP Coauthor Relationships

 Recent DB conferences, removing balanced associations, low sup, etc.

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163 (2)	0.315 (7)	0.355 (9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335 (4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	12	120	12	0.100 (10)	0.316 (6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high,

Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Imbalance Ratio with Kulczynski Measure

- IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: $IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$
- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is neutral & balanced; D₅ is neutral but imbalanced
 - D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	0.5	0
D_5	1,000	100	10,000	100,000	0.09	0.29	0.5	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- Null-invariance is an important property
- Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
- Exercise: 4th Credit Project?
 - ("Spam detection", "SVM")
 - ("Spam detection", "Matrix factorization")
 - ("Link prediction", "SVM")
 - ("Link prediction", "Matrix factorization")

Summary

- Basic Concepts:
 - Frequent Patterns, Association Rules, Closed Patterns and Max-Patterns
- Frequent Itemset Mining Methods
 - The Downward Closure Property and The Apriori Algorithm
 - Extensions or Improvements of Apriori
 - Mining Frequent Patterns by Exploring Vertical Data Format
 - FPGrowth: A Frequent Pattern-Growth Approach
 - Mining Closed Patterns
- Which Patterns Are Interesting?—Pattern Evaluation Methods
 - Interestingness Measures: Lift and χ^2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

References

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00

References (cont.)

- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014
- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010