Uppsala Universitet Matematiska Institutionen Ernst Dieterich, Thomas Erlandsson 2012-03-07 LINJÄR ALGEBRA II LINJÄR ALGEBRA 1MA722

Skrivtid: 8.00–13.00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng. Den som inte går något av programmen F, W, MaKand och är godkänd på duggan får hoppa över den första uppgiften.

- 1. (a) Låt $T: \mathbf{R}^2 \to \mathbf{R}^2$ vara den linjära avbildning som definieras som spegling med avseende på linjen $x_1 = x_2$. Bestäm T:s matris i standardbasen.
 - (b) $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ definierar en linjär avbildning $T : \mathbb{R}^3 \to \mathbb{R}^2$ genom $T(\mathbf{x}) = A\mathbf{x}$. Bestäm dimensionen av nollrummet Nul A samt ange en bas i Nul A.
- 2. (a) För vilka värden på konstanten a är $A = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}$ ortogonalt diagonaliserbar? Motivera Ditt svar!
 - (b) $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. Bestäm en diagonalmatris D och en inverterbar matris P så att $A = PDP^{-1}$.
- 3. \mathcal{P}_n är rummet av polynom av grad högst n inklusive nollpolynomet.
 - (a) Visa att polynomen 1+t, 3+2t är en bas i \mathcal{P}_1 samt bestäm koordinaterna för polynomet p(t)=1 med avseende på denna bas.
 - (b) För p och q i \mathcal{P}_1 kan man t ex definiera den inre produkten

$$< p, q > = \int_0^1 p(t)q(t) dt$$
 (1)

Låt W vara det delrum av \mathcal{P}_1 som genereras av p(t) = t, dvs låt $W = \operatorname{Span}\{t\}$. Bestäm den ortogonala projektionen av polynomet $p_0(t) = 1$ på W med avseende på den inre produkten (1) samt beräkna avståndet från $p_0(t) = 1$ till W.

- 4. (a) Bevisa att $x_1^2 + 2ax_1x_2 + x_2^2 = 1$ är en hyperbel då |a| > 1.
 - (b) Hyperbel
n $x_1^2+4x_1x_2+x_2^2=1\,$ skär en av sina symmetriaxlar i två punkter. Bestäm av
ståndet mellan dessa.

V.G.V!

- 5. Kolonnrummet till matrisen $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ är ett delrum $U \subset \mathbb{E}^3$.
 - (a) Finn en bas i U.
 - (b) Finn en ortonormal bas i U.
 - (c) Bestäm det minsta avståndet mellan vektorn $w = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ och U, samt ange den vektor $u \in U$ där det minsta avståndet antas.
- 6. Ytan Y i \mathbb{E}^3 består av alla punkter (x,y,z) som uppfyller ekvationen

$$3x^2 + 4y^2 + 2z^2 + \sqrt{8}xz = 4.$$

Bestäm ytans typ, ytans största avstånd från origo, samt de punkter på ytan där det största avståndet antas. (Punkternas koordinater skall anges i standardbasen.)

- 7. Låt $x = (x_1, x_2, x_3)$ och $y = (y_1, y_2, y_3)$ vara vektorer i ${\bf R}^3$.
 - (a) För vilka värden på konstanterna a, b och c definierar

$$\langle x, y \rangle = ax_1y_1 + bx_2y_2 + cx_3y_3$$

en inre produkt på \mathbb{R}^3 ? Motivera Ditt svar!

(b) Är det sant att olikheten

$$(x_1y_1 + 2x_2y_2 + 3x_3y_3)^2 \le (x_1^2 + 2x_2^2 + 3x_3^2)(y_1^2 + 2y_2^2 + 3y_3^2)$$

gäller för alla x och y i \mathbb{R}^3 ? Motivera Ditt svar!

- 8. Avbildningen $F: \mathcal{P}_3 \to \mathcal{P}_2$ ges av F(p(x)) = xp''(x).
 - (a) Visa att F är linjär.
 - (b) Finn F:s matris med avseende på standardbaserna i \mathcal{P}_3 och \mathcal{P}_2 .
 - (c) Finn en bas i F:s nollrum.
 - (d) Finn en bas i F:s värderum.
 - (e) Redovisa huruvida dina svar på (c) och (d) stämmer överens med dimensionssatsens påstående.

LYCKA TILL!

Dorningas till tentan 2012-03-04 1. (a) $\begin{bmatrix} T \end{bmatrix} = \begin{pmatrix} T(e_1) & T(e_2) \end{pmatrix} = \begin{pmatrix} e_2 & e_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (b) dim(N(A)) = 3 - rang(A) = 3 - 1 = 2e, e, e N(A) e_1, e_2 ar linjart oberoende $f \Rightarrow e_1, e_2$ ar en bas i N(A) $dim\left(N(A)\right) = 2$ 2. (a) For alla $a \in \mathbb{R}$ ar $A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$ symmetrisk, altiså ortogonalt diagonaliserbar enligt Spektralsatsen. (6) A: s egenvarden ar $\lambda_1 = 1$, $\lambda_2 = 2$. A: s egentum at $F(1) = span \{ \{1\} \}$, $E(2) = span \{ \{1\} \}$ Alltså är $b_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $b_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ en bas i \mathbb{R}^2 så att $Ab_4 = b_4$, $Ab_5 = 2b_5$ For $P = \begin{pmatrix} b_1 & b_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix}$ och $D = \begin{pmatrix} \lambda_1 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix}$ gäller dä PAP = Dalltså även A = PDP-1 t=(1,t) at en bas i \mathcal{Z}_1 . Altså är $b=(b_1,b_2)=(1+t,3+2t)$ en bas i \mathcal{Z}_1 omm $\begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix}$ ar inverterbar. Detta ar fallet, då $\det(\underbrace{t}_{t}) = -1 \neq 0$. p(t) = 1 = 6 - 26, was at $[p] = \begin{bmatrix} -e \\ 1 \end{bmatrix}$.

