Boolean Griprenton	
Constructed from variables and connectives of BA:	
$\mathcal{L}_{\mathcal{G}}: \mathcal{L}_{\mathcal{G}} \to \mathcal{L}$	
Same as propositions, evels atomic propositions being realled as variables	
Can be unterproted in any B.A.	
Definition 1.40 Let ϕ and ψ be formulas of propositional logic. We say that ϕ and ψ are semantically equivalent iff $\phi \models \psi$ and $\psi \models \phi$ hold. In that case we write $\phi \equiv \psi$. Further, we call ϕ valid if $\models \phi$ holds.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
PROOF: First, suppose that $\vDash \phi_1 \to (\phi_2 \to (\phi_3 \to \cdots \to (\phi_n \to \psi)))$ holds. If $\phi_1, \phi_2, \ldots, \phi_n$ are all true under some valuation, then ψ has to be true as well for that same valuation. Otherwise, $\vDash \phi_1 \to (\phi_2 \to (\phi_3 \to \cdots \to (\phi_n \to \psi)))$ would not hold (compare this with Figure 1.11). Second, if $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds, we have already shown that $\vDash \phi_1 \to (\phi_2 \to (\phi_3 \to \cdots \to (\phi_n \to \psi)))$ follows in step 1 of our completeness proof.	
	4
	+
	+
	+
	+

Negation Normal Form A boolean expression is in NNF, if every occourance of '7' is in front of a variable. a) remone (-) using a -> b= -a v b
b) Use De Morganie Laus. 4: 7 (p → 9 Nr) V 77n. 7 (7bV (2nr)) V71n = (77b1 (72v7r)) v77r = (p1 (72v7r)) vn E- NNF Every boolean enpressions is equal to an expressions in NNF proof: le induction on size of enpressions Base Case: e = 2, e = 0, e = 1 and action Step: i) $e = e_1 v e_2$ ii) $e = e_1 \wedge e_2$ Tii) e= \(\tau f \) = \(\tag g \) = \(\tag g \) 9 f = f(1/5) => C = 7f(1/75) Sf=f, Vf2 => e=7f, N+2 This therefore yields an algorithm to connect to NWF is O(n) time.

CONDUNCTIVE NORMAL FORM. diteral: A variable or its negation Clause: A disjunction of Situals A boolean exp² is en CNF, if et is a conjunction of че: (pn(1qv-n)) vn = (pvr) \((\frac{1}{2} \nu \tau \tau) \nu \)
= (pvr) \(\tau \tau \tau) \nu \frac{1}{2} \)
= (pvr) Every boolean enpression is equal to an expression in CWF proof: for an eight of, convect to NNF 4 -> if Y = P, AY, apply IHon P, & Y2. let $\Psi_1 = C_1 \wedge C_2 - C_n$ $\Psi_2 = d_1 \wedge d_2 - d_n$. then, $\Psi = \bigwedge_{\substack{1 \le i \le n \\ i \le j \le n}} (Ci \ Vd_j)$

DISTUNCTIVE NORMAL FORM

A boolean enpression is in DNF, if it can be uniter s, D, VD, -- In, where each Dis a cony of literals.

* Every boolean enpression can be converted to DNF.

* All conversions so far, hold in all BA, because
the rules used are valid in all BAs.

Lemma 1.43 A disjunction of literals $L_1 \vee L_2 \vee \cdots \vee L_m$ is valid iff there are $1 \leq i, j \leq m$ such that L_i is $\neg L_j$.

PROOF: If L_i equals $\neg L_j$, then $L_1 \lor L_2 \lor \cdots \lor L_m$ evaluates to T for all valuations. For example, the disjunct $p \lor q \lor r \lor \neg q$ can never be made false. To see that the converse holds as well, assume that no literal L_k has a

matching negation in $L_1 \vee L_2 \vee \cdots \vee L_m$. Then, for each k with $1 \leq k \leq n$, we assign F to L_k , if L_k is an atom; or T, if L_k is the negation of an atom. For example, the disjunct $\neg q \lor p \lor r$ can be made false by assigning F to p and r and T to q.

Definition 1.44 Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it has a valuation in which is evaluates to T.

For example, the formula $p \vee q \rightarrow p$ is satisfiable since it computes T if we assign T to p. Clearly, $p \lor q \to p$ is not valid. Thus, satisfiability is a weaker concept since every valid formula is by definition also satisfiable but not vice versa. However, these two notions are just mirror images of each other, the mirror being negation.

Proposition 1.45 Let ϕ be a formula of propositional logic. Then ϕ is satis fiable iff $\neg \phi$ is not valid.

Proof: First, assume that ϕ is satisfiable. By definition, there exists a valuation of ϕ in which ϕ evaluates to T; but that means that $\neg \phi$ evaluates to F for that same valuation. Thus, $\neg \phi$ cannot be valid.

Second, assume that $\neg \phi$ is not valid. Then there must be a valuation of $\neg \phi$ in which $\neg \phi$ evaluates to F. Thus, ϕ evaluates to T and is therefor satisfiable. (Note that the valuations of ϕ are exactly the valuations of $\neg \phi$.)

2.4 Normal Form Reduction

Exercise 2.32.

Reduce to Negative Normal Form (NNF) the formula

$$\neg(\neg p \lor q) \lor (r \to \neg s)$$

Solution.

1. $\neg(\neg p \lor q) \lor (\neg r \lor \neg s)$

2. $(\neg \neg p \land \neg q) \lor (\neg r \lor \neg s)$

3. $(p \land \neg q) \lor (\neg r \lor \neg s)$

*

Exercise 2.33. 🛎 🙇

Reduce to NNF the formula

$$(\neg p \to q) \to (q \to \neg r)$$

Solution.

1. $\neg(\neg p \rightarrow q) \lor (q \rightarrow \neg r)$

2. $\neg (p \lor q) \lor (\neg q \lor \neg r)$

3. $(\neg p \land \neg q) \lor (\neg q \lor \neg r)$

Exercise 2.34.

Reduce to Conjunctive Normal Form (CNF) the formula

$$\neg(\neg p \lor q) \lor (r \to \neg s)$$

Solution.

- 1. $\neg(\neg p \lor q) \lor (\neg r \lor \neg s)$
- 2. $(\neg \neg p \land \neg q) \lor (\neg r \lor \neg s)$
- 3. $(p \land \neg q) \lor (\neg r \lor \neg s)$ NNF
- 4. $(p \lor \neg r \lor \neg s) \land (\neg q \lor \neg r \lor \neg s)$

*

Exercise 2.35.

Reduce to CNF the formula

$$(\neg p \to q) \to (q \to \neg r)$$

Solution.

- 1. $\neg(\neg p \rightarrow q) \lor (q \rightarrow \neg r)$
- 2. $\neg (p \lor q) \lor (\neg q \lor \neg r)$
- 3. $(\neg p \land \neg q) \lor (\neg q \lor \neg r)$ NNF
- 4. $(\neg p \lor \neg q \lor \neg r) \land (\neg q \lor \neg r)$

*

Exercise 2.36.

Reduce to CNF the following formulas: