SECURITY CLASSIFICATION: OFFICIAL (CLOSED), NON-SENSITIVE

SINGAPORE POLYTECHNIC

ET1006

2019/2020 SEMESTER TWO EXAMINATION

Diploma in Aerospace Electronics (DASE) 1st Year FT Diploma in Computer Engineering (DCPE) 1st Year FT Diploma in Electrical & Electronic Engineering (DEEE) 1st Year FT Common Engineering Programme (DCEP) 1st Year FT Diploma in Engineering with Business (DEB) 2nd Year FT

PRINCIPLES OF ELECTRICAL & ELECTRONIC ENGINEERING II

<u>Time Allowed</u>: 2 Hours

<u>Instructions to Candidates</u>

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 2 marks each.

Section B - 8 Short Questions, 10 marks each.

- 3. **ALL** questions are **COMPULSORY**.
- 4. All questions are to be answered in the answer booklet.
- 5. Start each question in Section B on a new page.
- 6. Fill in the Question Numbers, in the order that they were answered, in the boxes found on the front cover of the answer booklet under the column "Questions Answered".
- 7. This paper contains 10 pages, inclusive of formulae sheets.

SECTION A

MULTIPLE CHOICE QUESTIONS (20 marks)

- 1. Please **tick** your answers in the **MCQ box** on the inside of the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- A1. Which statement best describes an N-type semiconductor?
 - (a) The minority carriers are holes.
 - (b) The minority carriers are electrons.
 - (c) It is formed by adding trivalent impurity.
 - (d) The majority carriers are holes.
- A2. In an intrinsic semiconductor,
 - (a) the majority carriers are electrons.
 - (b) there are no free electrons.
 - (c) there are as many electrons as there are holes.
 - (d) the majority carriers are holes.
- A3. Which one of the following statements is true for a light emitting diode?
 - (a) Its forward conducting voltage drop is equal to 0.2 V.
 - (b) Its forward conducting voltage drop is equal to 0.7 V.
 - (c) Its forward conducting voltage drop is higher than that of a PN junction diode.
 - (d) Its forward conducting voltage drop is lower than that of a PN junction diode.
- A4. Which one of the following devices can be used as a transducer in the design of an automatic sun tracker?
 - (a) Moisture sensor
 - (b) Light dependent resistor
 - (c) Thermistor
 - (d) Light emitting diode
- A5. The resistance of a thermistor
 - (a) increases with an increase in temperature.
 - (b) decreases with an increase in temperature.
 - (c) increases with increase in light intensity.
 - (d) decreases with increase in light intensity.

A6. The circuit shown in Figure A6 uses a silicon diode. During the positive half cycle of the supply voltage, the peak current, I is equal to

- (a) 0.663 mA
- (b) 1.325 mA
- (c) 1.5 mA
- (d) 3 mA

Figure A6

A7. For the Zener diode regulator circuit shown in Figure A7 if $V_Z = 2.7 \text{ V}$ at $I_Z = 15\text{mA}$, the supply supply current, I is equal to

- (a) 6 mA
- (b) 9 mA
- (c) 21 mA
- (d) 24 mA

Figure A7

A8. If the LED shown in Figure A8 has a forward voltage drop of 2 V, the current flowing in the LED, I is equal to

- (a) 10 mA
- (b) 20 mA
- (c) 30 mA
- (d) 40 mA

Figure A8

A9. To operate an NPN transistor in the active mode the base of the transistor must be

- (a) positive with respect to the emitter.
- (b) negative with respect to the emitter.
- (c) positive with respect to the collector.
- (d) connected to ground.

A10. Which one of the following is not a characteristics of an ideal operational amplifier?

- (a) It has an infinite bandwidth.
- (b) It has an infinite voltage gain.
- (c) It has a very high input impedance.
- (d) It has zero output impedance.

SECTION B

SHORT QUESTIONS (80 marks)

- B1. The circuit shown in Figure B1 uses silicon diodes.
 - (a) Calculate the peak secondary voltage of the transformer. (2 marks)
 - (b) Calculate the peak current flowing through the load resistor, R_L. (4 marks)
 - (c) Determine the PIV for each diode. (2 marks)
 - (d) Given that the dc output voltage is 29.35 V and the peak to peak ripple voltage is 0.7 V, what is the ripple factor? (2 marks)

- B2. The transistor circuit shown in Figure B2 is operating in the saturation mode. If the current gain, β_{DC} is 220 and $V_{CE(sat)} = 0.2$ V, calculate
 - (a) the saturation current, $I_{C(sat)}$; (2 marks)
 - (b) the voltage, V_{BB} ; (4 marks)
 - (c) the current gain α_{DC} ; (2 marks)
 - (d) the voltage V_{CB} . (2 marks)

Figure B2

B3. For the circuit shown in Figure B3, if $V_{in1} = 0.2 \text{ V}$ and $V_{in2} = 0.4 \text{ V}$

- (a) calculate the output voltage V_{out1} . (3 marks)
- (b) calculate the output voltage V_{out2} . (3 marks)
- (c) calculate the output voltage $V_{out3.}$ (4 marks)

B4. For the circuit shown in Figure B4,

- (a) calculate V_{UTP} and V_{LTP} . (4 marks)
- (b) determine the value of V_{out} when V_{in} is larger than V_{UTP} . (1 mark)
- (c) determine the value of V_{out} when V_{in} is smaller than V_{LTP} . (1 mark)
- (d) draw the output waveform of V_{out} . (4 marks)

Assume that the saturation voltages of the operational amplifier are $+V_{sat}=12\ V$ and $-V_{sat}=-12\ V$

2019/2020/S2(Exam)

Page 5 of 10

B5. The phasor diagram for 3 sinusoidal voltage sources (A, B & C) is shown in Figure B5.

- (a) Express the 3 ac voltage phasors in polar form. (3 marks)
- (b) Write down the sinusoidal equations for the 3 voltage sources. (3 marks)
- (c) Express the sum of phasor B and phasor C in rectangular form. (2 marks)
- (d) State the phase relationship between phasor A and phasor B. (2 marks)

Figure B5

B6. For the circuit shown in Figure B6, calculate

- (a) the total impedance, Z_T in polar form; (2 marks)
- (b) the circuit current, I in polar form; (2 marks)
- (c) the total true power; (2 marks)
- (d) the voltages V_R and V_C in polar form. (4 marks)

Figure B6

SECURITY CLASSIFICATION: OFFICIAL (CLOSED), NON-SENSITIVE

SINGAPORE POLYTECHNIC

ET1006

B7. For the circuit shown in Figure B7, if the current I is $3\angle -60^{\circ}$ A calculate

(a)	the total impedance, Z_T ;	(2 marks)
(b)	the resistance R;	(2 marks)
(c)	the inductance L;	(2 marks)
(d)	the total reactive and apparent power.	(4 marks)

Figure B7

B8. For the circuit shown in Figure B8, calculate

- (a) the currents I_R , I_L and I_T in polar form; (5 marks) (b) the total impedance in polar form; (2 marks) (c) the current, I_T if a 100 μ F capacitor is now connected across the
- (c) the current, I_T if a 100 μ F capacitor is now connected across the supply. (3 marks)

Figure B8

- End of Paper -

This page is intentionally left blank

Formulae List

Number of electrons in a shell (band) = $2N^2$

6.25 x 10^{18} electrons \rightarrow 1C of negative charge

Ohm's Law for ac:

$$\overline{V} = \overline{I}\overline{Z}$$
 $\overline{I} = \frac{\overline{V}}{\overline{Z}} = \overline{V}\overline{Y}$ $\overline{Z} = \frac{\overline{V}}{\overline{I}}$

Capacitors:

Capacitive reactance, $X_C = \frac{1}{2\pi fC}$ in ohms

Inductors:

Inductive reactance, $X_L = 2\pi f L$ in ohms

AC Voltages and Currents:

$$\begin{split} I_{rms} &= I_p \: / \! \sqrt{\: 2} = 0.7071 \: I_p & I_{p-p} = 2I_p & I_{av} = 2I_p \: / \! \pi = 0.637I_p \\ V_{rms} &= V_p \: / \! \sqrt{\: 2} = \: 0.7071 \: V_p & V_{p-p} = 2V_p & V_{av} = 2V_p \: / \! \pi = 0.637V_p \\ \omega &= 2\pi f \end{split}$$

AC Impedance/Admittance:

Series circuit

$$Z_{R} = R \qquad Z_{C} = -jX_{C} = X_{C} \angle -90^{0} \qquad Z_{L} = jX_{L} = X_{L} \angle 90^{0} \qquad \phi \angle \ Z_{T}$$

Parallel circuit

$$Y_R = G$$
 $Y_C = jB_C = B_C \angle 90^0$ $B_L = -jB_L = B_L \angle -90^0$ $\phi \angle Y_T$

AC Power:

$$S = V I = I^2 Z$$
 $P = V I \cos \phi = I^2 R$ $Q = V I \sin \phi = I^2 X$ $\cos \phi = \frac{P}{S}$

Diodes:

Forward voltage drop is 0.7 V for silicon diode and 0.3 V for germanium diode

Zener impedance
$$Z_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

Half-Wave Rectifier:

$$V_{out(p)} = V_{sec(p)} - 0.7V$$
 $V_{AVG} = \frac{V_{out(p)}}{\pi}$ $PIV = V_{sec(p)}$

Centre-Tapped Full-Wave Rectifier:

$$V_{out(p)} = \frac{V_{sec(p)}}{2} - 0.7V$$
 $V_{AVG} = \frac{2V_{out(p)}}{\pi}$ $PIV = 2V_{out(p)} + 0.7V$

Full-Wave Bridge Rectifier:

$$V_{out(p)} = V_{sec(p)} - 1.4 \ V \ V_{AVG} = \frac{2V_{out(p)}}{\pi} \ PIV = V_{out(p)} + 0.7 \ V$$

Ripple Factor:

$$r = \frac{V_{r(rms)}}{V_{DC}}$$
 where $V_{r(rms)} = \frac{V_{r(p-p)}}{2\sqrt{3}}$

$$\textbf{Line Regulation} = \left(\frac{\Delta V_{OUT}}{\Delta V_{IN}}\right) 100\% \qquad \quad \textbf{Load Regulation} = \left(\frac{V_{NL} - V_{FL}}{V_{FL}}\right) 100\%$$

Transistors:

$$\begin{split} I_E &= I_C + I_B \quad \beta_{DC} = \frac{I_C}{I_B} \quad \alpha_{DC} = \frac{I_C}{I_E} \quad \beta_{DC} = \frac{\alpha_{DC}}{1 - \alpha_{DC}} \\ V_{BE} &= 0.7V \quad V_{CC} = V_{CE} + I_C R_C \\ V_{BB} &= V_{BE} + I_B R_B \quad V_{CE} = V_{CB} + V_{BE} \end{split}$$

Operational Amplifiers

Voltage Gain of Inverting Amplifier: $-\frac{R_f}{R_i}$

Voltage Gain of Non-inverting Amplifier: $1 + \frac{R_f}{R_i}$

Output voltage of summing amplifier:

$$V_0 = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3 + \dots + \frac{R_f}{R_n}V_n\right)$$
 for "n" inputs

Threshold Voltages for comparator with positive feedback:

Upper Trigger Point (UTP) =
$$\frac{R_2}{R_1 + R_2} (+V_{sat})$$

Lower Trigger Point (LTP) =
$$\frac{R_2}{R_1 + R_2} (-V_{sat})$$