北京邮电大学 2018-2019 学年

线性代数期末试题(A)

注意:请将所有题(包括填空题)的答案写在答题纸上,否则无效.

- 一. 填空题(每小题3分,共30分)
- 1. 已知 x_1, x_2, x_3 是方程 $x^3 + px + q = 0$ 的3个根,

$$| \begin{array}{cccc} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{array} | = \underline{\hspace{1cm}} .$$

2. 已知 $\alpha = (1,-1,1)^T$, $A = E + \alpha \alpha^T$,则 $A^2 =$ ______.

则 a = .

4. 将 3 阶矩阵
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
表示为两个初等矩阵相乘:

A = .

5. 设 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, $\beta_1=\alpha_1+\alpha_2+2\alpha_3$, $\beta_2=2\alpha_2+\alpha_3-3\alpha_1$, $\beta_3=\alpha_1+6\alpha_2+a\alpha_3$.则当a=______时, β_1,β_2,β_3 线性相关.

- 6. 已知 A, A^* , B 都是 n 阶非零矩阵(A^* 是 A 的伴随矩阵), 若 AB = O (O 为零矩阵), 则 $r(B) = _____$.
- 7. 已知 $A = \begin{pmatrix} 1 & 2 & 3 \\ x & y & z \\ 0 & 0 & 1 \end{pmatrix}$ 的 3 个特征值为 1,2,3 ,则 $x = \underline{\hspace{1cm}}$

8. 已知
$$A$$
 与 $\begin{pmatrix} 1 & 1 & -3 \\ 0 & -2 & 4 \\ 0 & 0 & 5 \end{pmatrix}$ 相似,则 $|\lambda E - A| =$ ______.

- 10 . 空间曲线 $\begin{cases} x^2 + y^2 + z^2 = 9 \\ y z = 1 \end{cases}$ 在 xoy 面上的投影曲线方程 为 _____.

二. (10 分) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}$ $(n \ge 2)$.

三. **(10 分)** 已知可逆矩阵
$$A = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 1 & 3 \\ 4 & 1 & 10 \end{pmatrix}$$
,若矩阵 B 满足

$$A^{-1}BA = 2A^{-1}B + E$$
, $Rightarrow B$.

四. (10 分)设 $\alpha_1 = (1,-2,3,1)^T$, $\alpha_2 = (2,0,4,-3)^T$, $\alpha_3 = (4,-4,10,-1)^T$, $\alpha_4 = (3,-2,5,-2)^T$, 求 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一组极大无关组,并将其余向量用该极大无关组线性表示.

五. (12 分) 已知方程组
$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 = 1 \\ x_1 - 2x_2 + 4x_3 = 1 \\ 2x_1 - 4x_2 + 2x_3 - 3x_4 = t \end{cases}$$
 有解.
$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 = 1 \\ x_1 - 2x_2 + x_3 - 2x_4 = 2 \end{cases}$$

(1) 求t; (2) 求该方程组的通解.

開

六. (10 分) 设 α_1 = (1,-1,1,-1), α_2 = (-1,2,0,1), α_3 = (-1,1,0,0),利用施密特正交化方法,求与 $\alpha_1,\alpha_2,\alpha_3$ 等价的正交向量组 β_1,β_2,β_3 ,其中 β_1 = α_1 .

七. (12 分) 已知二次型 $f = 4x_1^2 + 5x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_1x_3$ 在正交变换 x = Py 下化为标准形 $f = y_1^2 + ay_2^2 + by_3^2 (a < b)$,其中 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$.

(1) 求a,b; (2) 求正交矩阵P.

八. (6分) 已知 A 为 n 阶可逆矩阵, A^* 为 A 的伴随矩阵. 求证: $(A^*)^* = |A|^{n-2} A$.