Sapienza University of Rome

Master in Artificial Intelligence and Robotics Master in Engineering in Computer Science

Machine Learning

A.Y. 2020/2021

Prof. L. locchi, F. Patrizi

L. locchi, F. Patrizi

7. Linear models for classification

1 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

7. Linear models for classification

L. locchi, F. Patrizi

Overview

- Linearly separable data
- Linear models
- Least squares
- Fisher's linear discriminant
- Perceptron
- Support Vector Machines

References

- C. Bishop. Pattern Recognition and Machine Learning. Sect. 4.1, 7.1
- T. Mitchell. Machine Learning. Section 4.4

L. locchi, F. Patrizi

7. Linear models for classification

3 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Linear Models for Classification

Learning a function $f: X \to Y$, with ...

- $X \subseteq \Re^d$
- $Y = \{C_1, \ldots, C_k\}$

assuming linearly separable data.

Cont. spale inger Syonesed Hulliclass

Linearly separable data

20

Instances in a data set are *linearly separable* iff there exists a hyperplane that separates the instance space into two regions, such that differently classified instances are separated

L. locchi, F. Patrizi

7. Linear models for classification

5 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Linear discriminant functions

Linear discriminant function

Take an instance and represent a boundary that separate in classes.

$$y: X \to \{C_1, \ldots, C_K\}$$

Two classes:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

K-class:

$$y_1(\mathbf{x}) = \mathbf{w}_1^T \mathbf{x} + w_{10}$$

$$y_K(\mathbf{x}) = \mathbf{w}_K^T \mathbf{x} + w_{K0}$$

L. locchi, F. Patrizi

7. Linear models for classification

Compact notation

Two classes:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$
, with:

$$ilde{\mathbf{w}} = \left(egin{array}{c} w_0 \\ \mathbf{w} \end{array}
ight), ilde{\mathbf{x}} = \left(egin{array}{c} 1 \\ \mathbf{x} \end{array}
ight)$$

K-class:

 $\mathbf{y}(\mathbf{x}) = \begin{pmatrix} \mathbf{y}_{1}(\mathbf{x}) \\ \cdots \\ \mathbf{y}_{K}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{1}^{T}\mathbf{x} + w_{10} \\ \cdots \\ \mathbf{w}_{K}^{T}\mathbf{x} + w_{K0} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{w}}_{1}^{T} \\ \cdots \\ \tilde{\mathbf{w}}_{K}^{T} \end{pmatrix} \tilde{\mathbf{x}} = \tilde{\mathbf{W}}^{T} \tilde{\mathbf{x}}, \text{ with:}$ $\tilde{\mathbf{W}}^{T} = \begin{pmatrix} \tilde{\mathbf{w}}_{1}^{T} \\ \cdots \\ \tilde{\mathbf{w}}_{K}^{T} \end{pmatrix}, \text{ i.e.: } \tilde{\mathbf{W}} = (\tilde{\mathbf{w}}_{1}, \cdots, \tilde{\mathbf{w}}_{K})$

$$ilde{\mathbf{W}}^T = \left(egin{array}{c} ilde{\mathbf{w}}_1^T \ \cdots \ ilde{\mathbf{w}}_K^T \end{array}
ight)$$
 , i.e.: $ilde{\mathbf{W}} = (ilde{\mathbf{w}}_1, \cdots, ilde{\mathbf{w}}_K)$

L. locchi, F. Patrizi

7. Linear models for classification

7 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Linear discriminant functions

Multiple classes

Cannot use combinations of binary linear models.

One-versus-the-rest classifiers: K-1 binary classifiers: C_k vs. not- C_k

L. locchi, F. Patriz

7. Linear models for classification

9 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Multiple classes

Cannot use combinations of binary linear models.

One-versus-one classifiers: K(K-1)/2 binary classifiers: C_k vs. C_j

Multiple classes

K-class discriminant comprising K linear functions (\mathbf{x} not in dataset)

$$\mathbf{y}(\mathbf{x}) = \begin{pmatrix} y_1(\mathbf{x}) \\ \cdots \\ y_K(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{w}}_1^T \tilde{\mathbf{x}} \\ \cdots \\ \tilde{\mathbf{w}}_K^T \tilde{\mathbf{x}} \end{pmatrix} = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$$

Classify ${f x}$ as C_k if $y_k({f x})>y_j({f x})$ for all $j\neq k$ $(j,k=1,\ldots,K)$

Decision boundary between C_k and C_j (hyperplane in \Re^{D-1}):

$$(\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_i)^T \tilde{\mathbf{x}} = 0$$

L. locchi, F. Patrizi

7. Linear models for classification

11 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Multiple classes

Example of K-class discriminant

Learning linear discriminants

Given a multi-class classification problem and data set D with linearly separable data,

determine $\tilde{\mathbf{W}}$ such that $\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$ is the K-class discriminant.

L. locchi, F. Patrizi

7. Linear models for classification

13 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Approaches to learn linear discriminants

- Least squares
- Fisher's linear discriminant
- Perceptron
- Support Vector Machines

Least squares

$$\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$$

1-of-K coding scheme for \mathbf{t} : $\mathbf{x} \in C_k \to t_k = 1, t_j = 0$ for all $j \neq k$. E.g., $\mathbf{t}_n = (0, \dots, 1, \dots, 0)^T$

$$\tilde{\mathbf{X}} = \left(egin{array}{c} \tilde{\mathbf{x}}_1^T \\ \cdots \\ \tilde{\mathbf{x}}_N^T \end{array}
ight) \qquad \mathbf{T} = \left(egin{array}{c} \mathbf{t}_1^T \\ \cdots \\ \mathbf{t}_N^T \end{array}
ight)$$

Sum ab: 12:24

L. locchi, F. Patriz

7. Linear models for classification

15 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Least squares

Minimize sum-of-squares error function True = m of diagnal

$$E(\tilde{\mathbf{W}}) = \frac{1}{2} \widetilde{Tr} \Big\{ (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T})^T (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T}) \Big\}$$

Closed-form solution:

$$\tilde{\mathbf{W}} = \underbrace{(\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{T}}_{\tilde{\mathbf{X}}^{\dagger}} \quad \text{Subtrively.}$$

$$\mathbf{y}(\mathbf{X}) = \tilde{\mathbf{W}}^T \, \tilde{\mathbf{X}} = \mathbf{T}^T (\tilde{\mathbf{X}}^\dagger)^T \tilde{\mathbf{X}}$$

Least squares

Classification of new instance **x** not in dataset:

Use learnt $\tilde{\mathbf{W}}$ to compute:

$$\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}} = \begin{pmatrix} y_1(\mathbf{x}) \\ \cdots \\ y_K(\mathbf{x}) \end{pmatrix}$$

Assign class C_k to \mathbf{x} , where:

$$k = \underset{i \in \{1, \dots, k\}}{\operatorname{argmax}} \{ y_i(\mathbf{x}) \}$$

L. locchi, F. Patrizi

7. Linear models for classification

17 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Issues with least squares

Assume Gaussian conditional distributions. Not robust to outliers!

L. locchi. F. Patrizi

7. Linear models for classification

Perceptron and of 60' Anthor whole

$$o(x_1,\ldots,x_d) = \left\{ egin{array}{ll} 1 & ext{if } w_0 + w_1x_1 + \cdots + w_dx_d > 0 \\ -1 & ext{otherwise}. \end{array}
ight.$$

$$o(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} > 0 \\ -1 & \text{otherwise.} \end{cases} = sign(\mathbf{w}^T \mathbf{x})$$

L. locchi, F. Patriz

7. Linear models for classification

19 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Perceptron training rule

Consider the unthresholded linear unit, where

Minimizes error with respect to output

$$o = w_0 + w_1 x_1 + \cdots + w_d x_d = \mathbf{w}^T \mathbf{x}$$

Let's learn w_i from training examples $D = \{(\mathbf{x}_n, t_n)_{n=1}^N\}$ that minimize the squared error (loss function)

$$E(\mathbf{w}) \equiv \frac{1}{2} \sum_{n=1}^{N} (t_n - o_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2$$

Perceptron training rule

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}_n^T \mathbf{x}_n)^2 = \frac{1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial w_i} (t_n - \mathbf{w}^T \mathbf{x}_n)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} 2(t_n - \mathbf{w}^T \mathbf{x}_n) \frac{\partial}{\partial w_i} (t_n - \mathbf{w}^T \mathbf{x}_n)$$

$$= \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n) \frac{\partial}{\partial w_i} (t_n - \mathbf{w}^T \mathbf{x}_n)$$

$$= \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n) (-x_{i,n})$$

7. Linear models for classification

21 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Perceptron training rule

Unthresholded unit:

Update of weights w

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n) x_{i,n}$$

 η is a small constant (e.g., 0.05) called *learning rate*

Perceptron training rule

Thresholded unit:

Update of weights w

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta \sum_{n=1}^{N} (t_n - sign(\mathbf{w}^T \mathbf{x}_n)) x_{i,n}$$

L. locchi, F. Patrizi

7. Linear models for classification

23 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Perceptron algorithm

Given perceptron model $o(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x})$ and data set D, determine weights \mathbf{w} .

- 1 Initialize ŵ (e.g. small random values)
- Repeat until termination condition

•
$$\hat{w}_i \leftarrow \hat{w}_i + \Delta w_i$$

Output ŵ

Perceptron algorithm

Batch mode: Consider all dataset D

$$\Delta w_i = \eta \sum_{(\mathbf{x},t)\in D} (t - o(\mathbf{x})) x_i$$

Mini-Batch mode: Choose a small subset $S \subset D$

$$\Delta w_i = \eta \sum_{(\mathbf{x},t)\in S} (t-o(\mathbf{x})) x_i$$

Incremental mode: Choose one sample $(\mathbf{x}, t) \in D$

$$\Delta w_i = \eta (t - o(\mathbf{x})) x_i$$

 $o(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ for unthresholded, $o(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x})$ for thresholded Incremental and mini-batch modes speed up convergence and are less sensitive to local minima.

L. locchi, F. Patrizi

7. Linear models for classification

25 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Perceptron algorithm

Termination conditions

- Predefined number of iterations
- ullet Threshold on changes in the loss function $E(\mathbf{w})$

Perceptron training rule

Example:

$$\eta = 0.1$$
, $x_i = 0.8$

- if t = 1 and o = -1 then $\Delta w_i = 0.16$
- ullet if t=-1 and o=1 then $\Delta w_i=-0.16$

L. locchi, F. Patrizi

7. Linear models for classification

27 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Perceptron training rule

7. Linear models for classification

Perceptron training rule

Can prove it will converge:

- if training data is linearly separable
- ullet and η sufficiently small

Small $\eta \to \text{slow convergence}$.

L. locchi, F. Patrizi

7. Linear models for classification

29 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Perceptron: Prediction

Classification of new instance **x** not in dataset:

Classify **x** as C_k , for $k = sign(\mathbf{w}^T \mathbf{x})$, using learnt **w**

Consider two classes case.

Determine $y = \mathbf{w}^T \mathbf{x}$ and classify $\mathbf{x} \in C_1$ if $y \ge -w_0$, $\mathbf{x} \in C_2$ otherwise.

Corresponding to the projection on a line determined by \mathbf{w} .

L. locchi, F. Patrizi

7. Linear models for classification

31 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Fisher's linear discriminant

Adjusting \mathbf{w} to find a direction that maximizes class separation.

Consider a data set with N_1 points in C_1 and N_2 points in C_2

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in C_1} \mathbf{x}_n \qquad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in C_2} \mathbf{x}_n$$

Choose \mathbf{w} that maximizes $J(\mathbf{w}) = \mathbf{w}^T(\mathbf{m}_2 - \mathbf{m}_1)$, subject to $||\mathbf{w}|| = 1$.

L. locchi, F. Patrizi

7. Linear models for classification

L. locchi. F. Patrizi

7. Linear models for classification

33 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Fisher's linear discriminant

Fisher criterion

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

with

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$

Between class scatter

$$\mathbf{S}_W = \sum_{n \in C_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^T + \sum_{n \in C_2} (\mathbf{x}_n - \mathbf{m}_2) (\mathbf{x}_n - \mathbf{m}_2)^T$$

Within class scatter

Choose **w** that maximizes $J(\mathbf{w})$.

Find w that maximizes

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

by solving

$$\frac{d}{d\mathbf{w}}J(\mathbf{w})=0$$

$$\Rightarrow \textbf{w}^* \propto \textbf{S}_{\textit{W}}^{-1}(\textbf{m}_2 - \textbf{m}_1)$$

L. locchi, F. Patriz

7. Linear models for classification

35 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Fisher's linear discriminant

L. locchi, F. Patrizi

7. Linear models for classification

Summarizing, given a two classes classification problem, Fisher's linear discriminant is given by the function $y = \mathbf{w}^T \mathbf{x}$ and the classification of new instances is given by $y \ge -w_0$ where

$$\mathbf{w} = \mathbf{S}_{\mathcal{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

$$w_0 = \mathbf{w}^T \mathbf{m}$$

m is the global mean of all the data set.

L. locchi, F. Patrizi

7. Linear models for classification

37 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Fisher's linear discriminant

Multiple classes.

$$y = W^T x$$

Maximizing

$$J(\mathbf{W}) = Tr\left\{ (\mathbf{W}\mathbf{S}_W\mathbf{W}^T)^{-1}(\mathbf{W}\mathbf{S}_B\mathbf{W}^T) \right\}$$

. . .

Support Vector Machines (SVM) for Classification aims at maximum margin providing for better accuracy.

We have to maximize the margin.

L. locchi, F. Patriz

7. Linear models for classification

Distance is Called margin.

39 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

ALSO RULTICALS

Let's consider binary classification $y:X\to\{+1,-1\}$ with data set $D=\{\underbrace{(\mathbf{x}_n,t_n)_{n=1}^N},\underbrace{t_n}\in\{+1,-1\}$ and a linear model

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$
 of schiousut.

Assume D is linearly separable Exist the line that divide

We have to fine the weights
$$y(\mathbf{x}_n) > 0$$
, if $t_n = +1$ such that this occur.

$$t_n y(\mathbf{x}_n) > 0 \ \forall n = 1, \dots N$$

and 15:0

Let \mathbf{x}_k be the closest point of the data set D to the hyperplane $\bar{h}: \bar{\mathbf{w}}^T\mathbf{x} + \bar{w_0} = 0$

the *margin* (smallest distance between \mathbf{x}_k and \bar{h}) is $\frac{|y(\mathbf{x}_k)|}{||\mathbf{w}||}$

Given data set D and hyperplane \bar{h} , the margin is computed as

$$\min_{n=1,\ldots,N} \frac{|y(\mathbf{x}_n)|}{||\mathbf{w}||} = \cdots = \frac{1}{||\mathbf{w}||} \min_{n=1,\ldots,N} [t_n(\bar{\mathbf{w}}^T \mathbf{x}_n + \bar{w_0})]$$

using the property $|y(\mathbf{x}_n)| = t_n y(\mathbf{x}_n)$

L. locchi, F. Patriz

7. Linear models for classification

41 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

Given data set D, the hyperplane $h^*: \mathbf{w^*}^T \mathbf{x} + w_0^* = 0$ with maximum margin is computed as

$$\mathbf{w}^*, w_0^* = \underset{\mathbf{w}, w_0}{\operatorname{argmax}} \frac{1}{||\mathbf{w}||} \min_{n=1,\dots,N} [t_n(\mathbf{w}^T \mathbf{x}_n + w_0)]$$

Rescaling all the points does not affect the solution.

15:06

Rescale in such a way that for the closet point \mathbf{x}_k we have

at for the closet point
$$\mathbf{x}_k$$
 we have
$$t_k(\mathbf{w}^T\mathbf{x}_k + w_0) = 1$$

$$t_k(\mathbf{w}^T\mathbf{x}_k + w_0) = 1$$

Canonical representation:

$$t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1 \ \forall n = 1, \dots, N$$

THE WASTST POINT LOS DISTORUS 1.

L. locchi, F. Patriz

7. Linear models for classification

43 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

When the maxim margin hyperplane \mathbf{w}^* , w_0^* is found, there will be at least 2 closest points \mathbf{x}_k^{\oplus} and \mathbf{x}_k^{\ominus} (one for each class).

$$\mathbf{w}^{*T}\mathbf{x}_{k}^{\oplus} + w_{0}^{*} = +1$$
 $\mathbf{w}^{*T}\mathbf{x}_{k}^{\ominus} + w_{0}^{*} = -1$

In the canonical representation of the problem the maxim margin hyperplane can be found by solving the optimization problem

subject to

$$\int_{\mathcal{L}_n(\mathbf{w}^T\mathbf{x}_n+w_0)\geq 1} \forall n=1,\ldots,N$$

Quadratic programming problem solved with Lagrangian method.

L. locchi, F. Patriz

7. Linear models for classification

45 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

Solution

 $w^* = \sum_{n=1}^{N} a_n t_n x_n \quad w \in \mathbb{R}$

a; (Lagrange multipliers): results of the Lagrangian optimization problem

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \mathbf{x}_n^T \mathbf{x}_m$$

subject to

$$a_n \ge 0 \quad \forall n = 1, \dots, \Lambda$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Som an IPD.

SCRBE EN IBD

Karush-Kuhn-Tucker (KKT) condition: for each $\mathbf{x}_n \in X_D$, either $a_n = 0$ or $t_n y(\mathbf{x}_n) = 1$

 \mathbf{x}_n for which $a_m = 0$ do not contribute to the solution

Support vectors: x_k such that $a_k \neq 0$ and $t_k y(\mathbf{x}_k) = 1$

$$SV \equiv \{\mathbf{x}_k \in X_D \mid t_k y(\mathbf{x}_k) = 1\}$$

L. locchi, F. Patrizi

7. Linear models for classification

47 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

Hyperplanes expressed with support vectors $\mathcal{W}^{\mathsf{t}_{\mathbf{x}'}}$

$$y(\mathbf{x}) = \sum_{\mathbf{x}_i \in SV} a_i t_j \mathbf{x}^T \mathbf{x}_j + w_0 = 0$$

Note: other vectors $\mathbf{x}_n \notin SV$ do not contribute $(a_n = 0)$

To compute w_0 :

Support vector $\mathbf{x}_k \in SV$ satisfies $t_k y(\mathbf{x}_k) = 1$

$$t_k \left(\sum_{\mathbf{x}_j \in SV} a_j t_j \mathbf{x}_k^T \mathbf{x}_j + w_0
ight) = 1$$

Multiplying by t_k and using $t_k^2 = 1$

$$w_0 = t_k - \sum_{\mathbf{x}_i \in SV} a_j t_j \mathbf{x}_k^T \mathbf{x}_j$$

L. locchi, F. Patriz

7. Linear models for classification

49 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

Instead of using one particular support vector \mathbf{x}_k to determine w_0

$$w_0 = t_k - \sum_{\mathbf{x}_j \in SV} a_j t_j \mathbf{x}_k^T \mathbf{x}_j$$

a more stable solution is obtained by averaging over all the support vectors

$$w_0 = rac{1}{|SV|} \sum_{\mathbf{x}_k \in SV} \left(t_k - \sum_{\mathbf{x}_j \in S} a_j t_j \mathbf{x}_k^T \mathbf{x}_j \right)$$

L. locchi, F. Patrizi

7. Linear models for classification

Given the maximum margin hyperplane determined by a_k^* , w_0^*

Classification of a new instance \mathbf{x}'

$$sign(y(\mathbf{x}')) = sign\left(\sum_{\mathbf{x}_k \in SV} a_k^* t_k \mathbf{x}'^T \mathbf{x}_k + w_0^*\right)$$

L. locchi, F. Patrizi

7. Linear models for classification

51 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines

Optimization problem for determining \mathbf{w} (dimension |X|) transformed in an optimization problem for determining \mathbf{a} (dimension |D|)

Efficient when |X| < |D| (most of a_i will be zero). Very useful when |X| is large or infinite.

Support Vector Machines with soft margin constraints

What if data are "almost" linearly separable (e.g., a few points are on the "wrong side")

Let us introduce slack variables $\xi_n \geq 0$ $n = 1, \dots, N$

We allow for the misclassification but associate a price to misclassification and want to minimize the price, to solve the problem anyway.

L. locchi, F. Patrizi

7. Linear models for classification

53 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines with soft margin constraints

Sa lat at 15:46. (2)

- $\xi_n = 0$ if point on or inside the correct margin boundary
- 0 $\xi_n \le 1$ if point inside the margin but correct side
- ξ_n 1 if point on wrong side of boundary

when $\xi_n = 1$, the sample lies on the decision boundary $y(\mathbf{x}_n) = 0$ when $\xi_n > 1$, the sample will be mis-classified

Support Vector Machines with soft margin constraints

Soft margin constraint

$$t_n y(\mathbf{x}_n) \geq 1 - \xi_n, \quad n = 1, \dots, N$$

Optimization problem with soft margin constraints

subject to

Right classified normalized by the price We are allowed to right classify but pay a price.
$$\xi_n \geq 0, \quad n=1,\ldots,N$$

C is a constant (inverse of a regularization coefficient)

L. locchi. F. Patrizi

7. Linear models for classification

55 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Support Vector Machines with soft margin constraints

Solution similar to the case of linearly separable data.

$$\mathbf{w}^* \neq \sum_{n=1}^N a_n t_n \mathbf{x}_n$$

$$w_0^* =$$

with a_n computed as solution of a Lagrangian optimization problem.

Basis functions

So far we considered models working directly on

All the results hold if we consider a non-linear transformation of the inputs $\phi(\mathbf{x})$ (basis functions)

Decision boundaries will be linear in the feature space ϕ and non-linear in the original space ${\bf x}$

Classes that are linearly separable in the feature space ϕ may not be separable in the input space \mathbf{x} .

L. locchi, F. Patrizi

7. Linear models for classification

57 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Basis functions example

Basis functions examples

- Linear
- Polynomial
- Radial Basis Function (RBF)
- Sigmoid
- ...

L. locchi, F. Patrizi

7. Linear models for classification

59 / 61

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Linear models for non-linear functions

Learning non-linear function

$$y:X\to\{C_1,\ldots,C_K\}$$

from data set ${\it D}$ non-linearly separable.

Find a non-linear transformation ϕ and learn a linear model

$$y(\mathbf{x}) = \mathbf{w} \phi(\mathbf{x}) + w_0$$
 (two classes)

$$y_k(\mathbf{x}) = \mathbf{w} (\mathbf{x}) + w_0$$
 (multiple classes)

Summary

- Basic methods for learning linear classification functions
- Based on solution of an optimization problem
- Closed form vs. iterative solutions
- Sensitivity to outliers
- Learning non-linear functions with linear models using basis functions
- Further developed as kernel methods

L. locchi, F. Patrizi

7. Linear models for classification