

Introduction to Linear Independence

Source: Introduction to linear independence (video) | Khan Academy

Span of Vectors: What Directions Can We Reach?

Example: Vectors
$$ec{v}_1 = egin{bmatrix} 2 \ 3 \end{bmatrix}$$
 and $ec{v}_2 = egin{bmatrix} 4 \ 6 \end{bmatrix}$

• The **span** of a set of vectors is the set of **all vectors you can reach** by forming **linear combinations**:

$$c_1ec{v}_1+c_2ec{v}_2$$

• Since $\vec{v}_2=2\vec{v}_1$, we can write:

$$c_1ec{v}_1+c_2ec{v}_2=(c_1+2c_2)ec{v}_1$$

Let's call $c_3=c_1+2c_2.$ So:

All combinations $\Rightarrow \vec{v} = c_3 \vec{v}_1$

• Visual Analogy \sqsubseteq : Every linear combination of \vec{v}_1 and \vec{v}_2 lies on a straight line through the origin—the line defined by \vec{v}_1 in both directions (positive and negative).

Think of \vec{v}_1 as a rail, and \vec{v}_2 just another train car riding that same track $\underline{\omega}$.

Scenario Scenario

Definition

A set of vectors is linearly dependent if one vector can be expressed as a combination of the others.

Our Earlier Example

- $ec{v}_2=2ec{v}_1$, so $ec{v}_2$ contributes **no new direction**.
- Span is still just a 1D line, even with two vectors.
- Conclusion: The set $\{ ec{v}_1, ec{v}_2 \}$ is linearly dependent.

Imagine having two compasses, but both only ever point north. One isn't helping!

R³ Example: The Plane vs 3D Space

Visualize

- Two non-parallel vectors in \mathbb{R}^3 define a **plane** \mathfrak{P} .
- To span the full 3D space (\mathbb{R}^3), we need a third vector that **isn't** stuck in that plane.

Scenario

- If vector 3 lies in the plane formed by vectors 1 and 2 → it's redundant (still just define a plane).
- If vector 3 shoots **out of** the plane → it adds a **new dimension** and the set becomes linearly independent.

Picture a paper plane lying on a desk (2 vectors); adding a pencil standing upright is the 3rd vector breaking out into full 3D.

extstyle ext

Vectors:

$$ec{a} = egin{bmatrix} 2 \ 3 \end{bmatrix}, \quad ec{b} = egin{bmatrix} 7 \ 2 \end{bmatrix}, \quad ec{c} = egin{bmatrix} 9 \ 5 \end{bmatrix}$$

- At first glance, none are scalar multiples... so maybe they're independent?
- But ullet0: $ec{c}=ec{a}+ec{b}$
- So $ec{c}$ is **dependent** on the first two!
- Hence, the set is linearly dependent despite appearing unique at first glance.

It's like solving a puzzle only to realize one piece was made by taping two others together.

Pure Independence: Vectors That Go Their Own Way

Example:

$$ec{v}_1 = egin{bmatrix} 7 \ 0 \end{bmatrix}, \quad ec{v}_2 = egin{bmatrix} 0 \ -1 \end{bmatrix}$$

- Can we get one from the other? Nope.
- No scalar of $ec{v}_1$ gives $ec{v}_2$, and vice versa.
- * They point in perpendicular directions.
- Together, their span = \mathbb{R}^2 , the entire 2D space.

Like mixing red and blue—suddenly you can make purple and everything else. Perfect independence!

Redundant Sets Still Span the Same Space

Even with dependent sets, the **span** can be the same:

- In the example above, the span of $\{\vec{a},\vec{b},\vec{c}\}$ is still \mathbb{R}^2 .
- \vec{c} is just **extra baggage**.
- The most efficient set that spans the space is called a basis (formal definition to come).

 $% \fine \f$

math Independence in 3D: The Axes Squad

Vectors:

$$ec{v}_1 = egin{bmatrix} 2 \ 0 \ 0 \end{bmatrix}, \quad ec{v}_2 = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, \quad ec{v}_3 = egin{bmatrix} 0 \ 0 \ 7 \end{bmatrix}$$

- None of these can be written as a combo of the others.
- Each adds a completely new direction.
- They're just scaled versions of the standard unit vectors \hat{i} , \hat{j} , \hat{k} .
- This is the **perfect linearly independent set** in \mathbb{R}^3 .

Like x, y, and z axes—each pointing into its own dimension without overlap.

🔑 Key Takeaways

- **Span**: All vectors that can be built from linear combinations of a given set.
- **!!! Linear independence**: No vector in the set can be built from others—each adds **new directionality**.
- \mathbb{N} In \mathbb{R}^2 , any more than 2 vectors will be linearly dependent.
- \bigoplus In \mathbb{R}^3 , 3 **non-coplanar** vectors can span the entire space.