

ONLINE HACKATHON

Quantum code challenge

Innovative Quantum Algorithms for Smart Cities

22-25 OCTOBER 2024

Motivation: Effects of Climate Change

- "Climate change concerns the increase, in intensity and frequency of extreme phenomena such as strong storms, floods, rising sea levels,[...]" https://www.mase.gov.it/pagina/i-cambiament-i-climatici
- "Storms have become more intense and frequent in many geographic areas
 [...]. These storms are capable of destroying entire communities, causing enormous human and economic losses."
 https://unric.org/it/effetti-del-cambiament-o-climatico
- "Other effects of climate change, rising sea levels will increase the risk of flooding and erosion around coasts, with significant consequences for people, infrastructure, businesses and nature in these areas.[...].

Severe thunderstorms are expected to become more common and intense[...]" https://climate.ec.europa.eu

Nubifragi e grandinate in Sardegna, le strade diventano fiumi

Task definition

- Predict if rains at least once within the next N hours based on sensor data from previous M hours
- Different set of features possible from all datasets
- Supervised binary classification task on sliding windows evaluated with Macro F1 score

Quantum Kernels

The main idea behind quantum kernel machine learning is to leverage quantum feature maps to perform the kernel trick^[1]. In this case, the **quantum kernel** K is created by mapping a **classical feature vector** \mathbf{x}_i to a Hilbert space using a **quantum feature map** $\phi(\mathbf{x}_i)$.

Mathematically:

$$K_{ij} = \left| \langle \phi(\mathbf{x}_i) | \phi(\mathbf{x}_j) \rangle \right|^2$$

Figure: Encoding of classical data into quantum states.

[1] Schuld, Maria. "Supervised quantum machine learning models are kernel methods." arXiv e-prints (2021): arXiv-2101.

Quantum Support Vector Machines (QSVM)

- The QSVM algorithm applies to problems that require a feature map for which computing the kernel is not efficient classically^[2].
- QSVM uses a **Quantum processor** to solve this problem by a direct estimation of the kernel in the feature space^[3].
- The method used falls in the category of what is called **supervised learning**, consisting of a training phase and a test or classification phase where new data without labels is classified according to the solution found in the training phase^[3].

[2] Havlíček, V., Córcoles, A.D., Temme, K. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209-212 (2019).
[3] https://docs.quantum.ibm.com

Data preprocessing

- 27 sets of features from "Particulate Matter", "UniqueAttendance_15" and "Weather"
- Sampled hourly from the 1st of August at 0:00 to the 8th October at 21:00
- Missing data approximated with forward filling strategy
- Label rain if "cod_weather" in "Weather" is 2xx, 3xx or 5xx
- ~1300 Unbalanced data samples (1/4 rain over all windows with N=24, 1/25 with N=2)
- Variable input and prediction windows sizes (M and N)

Results with Q-SVM with amplitude embedding

Classical SVM with different kernels.

Quantum SVM with amplitude embedding quantum kernel.
Simplified task to allow simulation of quantum kernels: input window of 2h
Amplitude embedding qubit efficient (logarithmic w.r.t. features space size)
Quantum kernel is comparable with classical ones.
Simulated with Pennylane for various prediction window sizes

Results with Q-SVM with angle embedding (best result)

- Quantum SVM with angle embedding quantum kernel.
- Simplified task to allow simulation with a linear number of qubits:
 - o input window of **1h**
 - compressed features (total attendance, average particles and temperature)
- Quantum kernel is **better** than classical ones on the same split!
- **Simulated** with Pennylane

Model	Macro average F-1 score
Q-SVM angle embedding	0.76
Q-SVM amplitude embedding	0.61
SVM linear kernel	0.53
SVM poly 2 kernel	0.56
SVM poly 4 kernel	0.70
SVM RBF kernel	0.73
SVM sigmoid kernel	0.52