

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

لمحتوى المفاهيمي:

سلسلة تمارين-2 (مستوى 03)

<u>التمرين (1) :</u>

E = 12 V نشكل الدارة الكهربائية المبينة في الشكل التالي و التي تتكون من مولد للتوتر قوته المحركة الكهربائية

قاطعة $K=100~\Omega$ ، ناقل أومي مقاومتة $\Gamma=100~\Omega$ ، وشيعة ذاتيتها $\Gamma=1.2~H$ و مقاومتها الداخلية Γ

ردا علمت أنه في لحظة t = 17.5 ms يكون t = 17.5

ن المحظة : $u_{AM}=8~V$

أ- التوتر $u_{
m MB}$ بين طرفي الناقل الأومي .

ب- شدة التيار المار بالدارة .

جـ طاقة الوشيعة .

3- نعيد التجربة السابقة ثلاث مرات باستعمال نفس مولد التوتر مع وشائع لها نفس المقاومة الداخلية و تختلف في قيم الذاتية و نواقل أومية ذات مقاومات مختلفة كما في الجدول التالى:

	K <u>E</u> +	
В	R L, r	A

	التجربة 1	التجربة 2	التجربة 3
L(mH)	30	20	40
$R(\Omega)$	290	190	190

يبين (الشكل-5) المنحنيات البيانية لتطور شدة التيار الكهربائي i(t) بدلالة الزمن t بالنسبة للتجارب الثلاث

$$\begin{array}{l} (u_{MB})_{t\,=\,17.5} = E \;\; \text{--} \;\; (u_{AM})_{t\,=\,17.5} \\ (u_{MB})_{t\,=\,17.5} = 12 \;\; \text{--} \;\; 8 = 4 \; V \end{array}$$

أنسب كل تجربة بالمنحنى البياني الموافق لها مع التعليل .

الأجوبة :

1- عند اللحظة t = 17.5 ms

$$t = 17.5 \text{ ms} \rightarrow u_{AM} = 8 \text{ V}$$

أ- إيجاد قيمة <u>u_{MB</u> : حسب قانون جمع التوترات :</u>}

$$E = u_{AM} + u_{MB}$$

عند اللحظة t = 17.5 ms يكون

$$E = (u_{AM})_{t=17.5} + (u_{MB})_{t=17.5}$$

ب- شدة التيار المار في الدارة : لدينا ·

 $u_{MB} = R i$

عند اللحظة t = 17.5 ms يكون

$$(u_{MB})_{t=17.5} = R.(i)_{t=17.5} \rightarrow (i)_{t=17.5} = \frac{(u_{MB})_{t=17.5}}{R}$$

$$(i)_{t=17.5} = \frac{4}{100} = 0.04 \text{ A}$$

جـ طاقة الوشيعة:

$$E_{(L)} = \frac{1}{2} L i^2$$

عند اللحظة t = 17.5 ms يكون :

$$E_{(L)t=17.5} = \frac{1}{2} L (i)^{2}_{t=17.5}$$

$$E_{(L)t=17.5} = \frac{1}{2} .1.2 (0.04)^{2} = 9.6 .10^{-4} J$$

2- المنحنى الموافق لكل تجربة:

 $r \cdot E$ و $I_0 = \frac{E}{R+r}$: التجربتين الموافقتين للمنحنيين (1) ، (2) لهما نفس شدة التيار الأعظمية ، و بما أن

نفسهما في التجارب الثلاث ، تكون I_0 متعلقة بR فقط ، و عليه التجربتين الموافقتين للمنحنيين (1) ، (2) تكونان لهما نفس المقاومة ، و هذا محقق في التجربتين (2) ، (3) ، أي المنحنيين (1) ، (2) يوافقان التجربتين (2) ، (3) من دون ترتيب ، في حين يوافق المنحني (3) التجربة (1) من دون شك.

، $au_1 < au_2$ و بالتالى $au_2 < au_3$ ، و من المنكونيين (1) ، (2) ، للحظ أن $au_1 < au_2$ و حيث أن $au=rac{L}{R+r}$ ، و au ، نفسهما في التجربتين الموافقتين للمنحنيين (1) ، (2) تكون τ إذن متعلق بالذاتية فقط ، حيث تزداد قيمة τ كلما ازدادت قيمة الذاتية L و العكس صحيح .

 τ نلاحظ أن قيمة L في التجربة (3) تكون أكبر من التجربة (2) و عليه τ في التجربة (3) يكون أكبر ، أي يوافق τ الخاص بالمنحنى (2) و هو τ . إذن :

- (2) التجربة (1) المنحنى
- $(2) \rightarrow \text{التجربة}$
- (1) التجربة (3) التجربة

التمرين (2) :

نحقق التركيب الكهربائي التجريبي المبين في الشكل المقابل باستعمال التجهيز

- مكثفة سعتها (C) غير مشحونة .
- ناقلين أوميين مقاومتهما R' ، R' .
 - مولد ذي توتر ثابت (E) .
 - بادلة (k) ، أسلاك توصيل .

1- نضع البادلة في الوضع (1) عند اللحظة t=0 فنشاهد على شاشة راسم الاهتزاز المهبطى المنحنى $u_c(t)$ الممثل في الشكل التالى :

أ- ما هي قيمة شدة التيار الكهربائي المار في الدارة بعد مدة $\Delta t = 14~\mathrm{s}$ من غلقها ؟

- قيمة ثابت الزمن au ، مع شرح الطريقة المتبعة .
 - القوة المحركة الكهربائية للمولد E .

جـ عندما تشحن المكثفة كليا تخزن طاقة ($E_C=0.49\ mJ$) . استنتج سعة المكثفة (C) ، و كذا المقاومة R .

د- بين أن المعادلة التفاضلية التي يحققها $\mathbf{u}_{\mathrm{C}}(t)$ هي من الشكل :

$$\tau_1 \frac{du_C(t)}{dt} + u_C(t) = A$$

حيث $A \cdot \tau_1$ هما ثابتين يطلب كتابة عبارتهما .

هـ أوجد من المعادلة التفاضلية وحدة au_1

2- نضع البادلة في الوضع (2) عند اللحظة t=0 فنشاهد على شاشة راسم الاهتزاز المهبطي المنحنى $u_R(t)$ الممثل في الشكل التالي :

-2 (s)

أ- أوجد من البيان قيمة au_2 ثم استنتج قيمة 'R . ب- اعتمادا على المنحنى $u_R(t)$ السابق مثل بشكل كيفي المنحنيين $u_C(t)$ ، i(t) الممثلين لتغيرات شدة التيار المار بالدارة و التوتر بين طرفي المكثفة بدلالة الزمن . اشرح .

1- أ- قيمة شدة التيار بعد 14s من غلق القاطعة:

بعد $\Delta t = 14~{
m s}$ من غلق القاطعة ، تبلغ الدارة النظام الدائم و عندها تكون شدة التيار معدومة .

ب- قيمة τ :

$$t=\tau \ \rightarrow \ u_C=0.63 \ u_{Cmax}=0.63 \ (\ 3.5 \ .\ 2)=4.4 \ V$$

(بالقسمة على السلم نجد : 2.2 cm)

 $\tau_1 = 2 s$: بالأسقاط نجد

- قيمة <u>E :</u> من البيان

$$E = u_{Cmax} = (3.5 . 2) = 7 V$$

جـ سعة المكثفة C : عندما تشحن المكثفة كليا تكون طاقتها أعظمية و عليه يكون :

$$E_{(C)0} = 0.49 \text{ mJ}$$

و لدينا:

$$E_{(C)0} = \frac{1}{2}CE^2 \rightarrow C = \frac{2.E_{(C)0}}{E^2}$$

$$C = \frac{2.0.49.10^{-3}}{(7)^2} = 2.10^{-5} F$$

- قيمة R :

$$\tau_1 = RC \ \to \ R = \frac{\tau_1}{C}$$

$$R = \frac{2}{2.10^{-5}} = 10^5 \,\Omega$$

د- كتابة المعادلة التفاضلية : حسب قانون جمع التوترات :

$$u_{AD} = u_{AB} + u_{BD}$$

$$E=u_C\ +\ Ri$$

$$E = u_C + R \frac{dq}{dt}$$

$$E = u_C + RC \frac{du_C}{dt}$$

$$RC\frac{du_C}{dt} + u_C = E \rightarrow \frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{E}{RC}$$

 $au_{1} rac{\mathrm{du}_{\mathrm{C}}(t)}{\mathrm{dt}} + \mathrm{u}_{\mathrm{C}}(t) = A$: نجد المعادلة التفاضلية المعطاة

$${\color{red}\bullet}\;\tau_1=RC$$

$$A = E$$

هـ وحدة τ من المعادلة التفاضلية : مما سبق يمكن كتابة :

$$\tau_1 \frac{du_C(t)}{dt} + u_C(t) = E \rightarrow [\tau] \frac{[U]}{[T]} + [U] = [U]$$

(لأن وحدة E هي الفولط).

$$[\tau] \frac{[U]}{[T]} = [U] - [U] \rightarrow [\tau] \frac{[U]}{[T]} = [U]$$

. 1. (5V - 2V = 3V : مثلا : 5V - 2V = 3V) . (4V - 2V) . (

$$[\tau] = \frac{[U] \cdot [T]}{[U]} \rightarrow [\tau] = [T] = s$$

2- أ- قيمة رτ

$$t = \tau \rightarrow u_R = -0.37 \ u_{Cmax} = -0.37 \ (3.5 \ . \ 2) = 2.6$$

(بالقسمة على السلم نجد: 1.3 cm).

. $au_2 = 3 \, \mathrm{s}$ بالاسقاط في

- قيمة 'R : في دارة التفريغ يكون :

$$\tau_2 = (R + R')C$$

(أن الناقلين الأوميين في دارة التفريغ موصولين على التسلسل)

$$(R + R') = \frac{\tau_2}{C} \rightarrow R' = \frac{\tau_2}{C} - R$$

$$R' = \frac{3}{2.10^{-5}} - 10^5 = 5.10^4 \Omega$$

<u>ب- المنحنى(1)1:</u> لدينا:

$$u_R(t) = R.i(t) \rightarrow i(t) = \frac{u_R(t)}{R}$$

: نستنتج أن شكل تطور المنحنى i(t) هو نفسه شكل تطور المنحنى $u_{R}(t)$ و عليه يكون

- المنحنى <u>u_R(t) :</u>

حسب قانون جمع التوترات (عند التفريغ):

$$u_R + u_C = 0 \rightarrow u_C(t) = -u_R(t)$$

نستنتج أن المنحنى $\mathbf{u}_{C}(t)$ يكون متناظر مع المنحنى $\mathbf{u}_{R}(t)$ وفق محور الأزمنة كما يلي :

ملاحظة:

عمليا نحصل على المنحنى $u_{C}(t)$ من المنحنى $u_{R}(t)$ أو العكس ، بالاعتماد على راسم الاهتزاز المهبطي بالضغط على الزر INV .

<u>التمرين (3) :</u>

تحتوي دارة على العناصر الكهربائية التالية مربوطة على التسلسل (الشكل-2):

- مولد ذي توتر ثابت E .
- وشيعة ذاتيتها L و مقاومتها r.
- $_{ ext{-}}$ ناقل أومي مقاومته $\Omega = R = 90$.
 - قاطعة K .

للمتابعة الزمنية لتطور التوتر بين طرفي كل من الوشيعة $u_b(t)$ و الناقل الأومي $u_R(t)$ نستعمل راسم اهتزاز مهبطي ذاكرة .

 1^{-} أ- بين كيف يمكن ربط راسم الإهتزاز المهبطي بالدارة $u_{\rm B}(t)$ و $u_{\rm B}(t)$?

ب- نغلق القاطعة في اللحظة $t=0\ ms$ فنشاهد على الشاشة البيانين الممثلين للتوترين $u_b(t)$ و $u_b(t)$.

- انسب كل منحنى للتوتر الموافق له . مع التعليل .

2- أ- أثبت أن المعادلة التفاضلية لشدة التيار المار في الدارة تكون من الشكل:

$$\frac{di(t)}{dt} + A i(t) = B$$

R و R و L و E بدلالة E و R و R و R

جـ تحقق من أن العبارة $i(t) = \frac{B}{\Lambda} (1 - e^{-A t})$ هي حلا للمعادلة التفاضلية السابقة .

 I_0 د- احسب شدة التيار في النظام الدائم

- احسب قیم کل من \pm و au و au

و- احسب الطاقة الأعظمية المخزنة في الوشيعة .

أ- بين أن ثابت الزمن au يكتب بالعبارة : $au=rac{t_c}{2R}$ ، ثم احسب قيمته ، حيث : الزمن الموافق لتقاطع أ- بين أن ثابت الزمن au

. $u_b(t) = \frac{E}{R+r} (r+Re^{-\frac{t}{\tau}})$: المنحيين ، علما أن التوتر بين طرفي الوشيعة يعطى بالعلاقة

_ بور. 1-أ- المنحنى الموافق لكل توتر: ادرنا:

$$t = 0 \rightarrow i = 0 \rightarrow u_R = R.i = 0$$

و هذا يتوافق مع المنحنى (1) ، إذن:

 $u_R(t)$ النوتر $\leftarrow (1)$ $u_b(t) \rightarrow u_b(t)$

 $u_b(t)$ ، $u_R(t)$ ، $u_R(t)$ المهبطي للحصول على المنحنيين $u_B(t)$ ، $u_B(t)$ ، $u_B(t)$. $u_B(t)$. $u_B(t)$ ، $u_B(t)$. $u_B(t)$ ، u_B

و للحصول على $u_R > 0$ كما مبين في المنحنى $u_R(t)$ ، نضغط على الزر $u_R > 0$ في المدخل $u_R > 0$

2- أ- المعادلة التفاضلية : حسب قانون جمع التوترات :

$$E = u_b + u_R$$

$$E = L\frac{di}{dt} + r.i + R.i$$

$$L\frac{di}{dt} + (R+r)i = E \rightarrow \frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$$

: بالمطابقة مع المعادلة المعطاة
$$\frac{di(t)}{dt} + Ai(t) = B$$
 نجد

$$A = \frac{R+r}{L} \quad , \quad B = \frac{E}{L}$$

جـ التحقق من الحل:

•
$$i = \frac{B}{A} (1 - e^{-At})$$

$$\frac{di}{dt} = \frac{B}{A} (0 - (-Ae^{-At})) = Be^{-At}$$

: نجد
$$\frac{\mathrm{di}(t)}{\mathrm{dt}} + \mathrm{Ai}(t) = \mathrm{B}$$
 نجد نجد التعويض في المعادلة التفاضلية المعطاة

$$Be^{-At} + A.\frac{B}{A}(1-e^{-At}) = B$$

$$Be^{-At} + B - Be^{-At} = B \rightarrow B = B$$

إذن الحل المعطى هو حل للمعادلة التفاضلية .

د- • شدة التيار في النظام الدائم : لدينا :

 $u_R = R.i$

و في النظام الدائم أين يكون $i = I_0$ يكون :

$$u_{R(\infty)} = R.I_0 \ \rightarrow \ I_0 = \frac{u_{R(\infty)}}{R}$$

. من البيان
$$u_{R(\infty)}=9$$
 و منه

$$I_0 = \frac{9}{90} = 0.1 \,\text{A}$$

<u>● قيمة E :</u>
 حسب قانون جمع التوترات :

 $E = u_b + u_R$

من البيان:

 $t=0 \rightarrow \ u_{\text{b}}=0$, $u_{\text{R}}=10 \ \rightarrow \ E=0+10=10 \ V$

أو :

 $t = \infty \rightarrow u_b = 1 V$, $u_R = 9 V \rightarrow E = 1 + 9 = 10 V$

• قيمة r :
 طريقة - 1 ·

 $u_b = L \frac{d1}{dt} + ri$

ني النظام الدائم أين يكون يكون $\frac{\mathrm{d} \mathbf{l}}{\mathrm{d} t} = 0$ ، $\mathbf{i} = \mathbf{I}_0$ يكون :

$$u_{b(\infty)} = r.I_0 \rightarrow r = \frac{u_{b(\infty)}}{I_0}$$

: من البيان $V: u_{b(\infty)} = 1$ و منه

$$r = \frac{1}{0.1} = 10 \,\Omega$$

طريقة-2:

$$I_0 = \frac{E}{R+r} \rightarrow (R+r) = \frac{E}{I_0} \rightarrow r = \frac{E}{I_0} - R$$

 $r = \frac{10}{0.1} - 90 = 10 \Omega$

• قيمة τ :

 $t = \tau \rightarrow u_R = 0.63 \ u_{Rmax} = 0.63 \ . 9 = 5.67 \ V$

(بالقسمة على السلم نجد 2.8 cm) .

بالإسقاط نجد : τ = 10 ms .

• قيمة <u>L :</u>

$$\tau = \frac{L}{R+r} \rightarrow L = \tau (R+r)$$
 $L = 0.01 (90 + 10) = 1 H$

$$\frac{1}{1} = \frac{t_c}{\ln(\frac{2R}{R-r})} = \frac{1}{1}$$

 $u_R(t) = R.i$

و حيث أنه عنك غلق القاطعة يكون : $i = \frac{E}{R+r} (1-e^{-t/\tau})$ ، يمكن كتابة :

$$u_R = \frac{ER}{R+r} (1 - e^{-t/\tau})$$

و لدينا :

$$u_b(t) = \frac{E}{R+r} (r + R e^{-\frac{t}{\tau}})$$

عند النقطة c أين يتقاطع المنحنى $u_b(t)$ مع المنحنى $u_b=u_R$ يكون $u_b=u_b$ و منه :

$$\begin{split} &\frac{E}{R+r} (r+R e^{-t_{C}/\tau}) = \frac{ER}{R+r} (1-e^{-t_{C}/\tau}) \\ &\frac{Er}{R+r} + \frac{ER}{R+r} e^{-t_{C}/\tau} = \frac{ER}{R+r} 1 - \frac{ER}{R+r} e^{-t_{C}/\tau}) \\ &\frac{ER}{R+r} e^{-t_{C}/\tau} + \frac{ER}{R+r} e^{-t_{C}/\tau} = \frac{ER}{R+r} - \frac{Er}{R+r} \end{split}$$

$$\frac{2ER}{R+r} e^{-t_C/\tau} = \frac{E(R-r)}{R+r}$$

$$2R e^{-t_C/\tau} = R-r \rightarrow e^{-t_C/\tau} = \frac{R-r}{2R}$$

$$-\frac{t_C}{\tau} = \ln \frac{R-r}{2R} \rightarrow \frac{t_C}{\tau} = -\ln \frac{R-r}{2R}$$

$$\frac{t_C}{\tau} = \ln \frac{2R}{R-r} \rightarrow \tau = \frac{t_C}{\ln(\frac{2R}{R-r})}$$

- حساب قيمة ٦

$$\tau = \frac{0.8}{\ln(\frac{2.90}{90-10})} \approx 0.01 = 10 \text{ ms}$$

<u>التمرين (4) :</u>

دارة كهربائية تظم على التسلسل مولد توتر مستمر مثالي قوته المحركة الكهربائي E=10~V . ناقل أومي مقاومته E=10~V ، وشيعة ($(L~,r=10\Omega)$) . نغلق القاطعة عند اللحظة t=0 و نتابع تغيرات التوتر u_{MA}

نغُلق القاطعة عند اللحُظةْ t=0 و نتابع تغيرات التوتر u_{MA} بين طرفي المقاومة و التوتر u_{BM} بين طرفي المقاومة و التوتر u_{BM} بواسطة راسم اهتزاز و الذي يظهر على شاشته البيانين التالبين .

• أحسب $\mathbf R$ ، $\mathbf d$ من دون الإستعانة بثابت الزمن $\mathbf d$.

حساب L ، R : لدينا

$$u_{BM} = L \frac{di}{dt} + ri$$
$$u_{MA} = R i$$

و في النظام الدائم يكون:

$$u_{BM0} = r I_0 \dots (1)$$

$$u_{MA0} = R I_0 \dots (2)$$

بقسمة (1) على (2):

$$\frac{u_{BM0}}{u_{MA0}} = \frac{r}{R} \rightarrow R = r \frac{u_{MA0}}{u_{BM0}} \rightarrow R = 10. \frac{7}{2} = 35 \Omega$$

قيمة <u>L :</u> لدينا ·

$$u_{BM} = L\frac{di}{dt} + ri$$

عند اللحظة (t = 0 بكون:

$$(u_{BM})_{t=0} = L(\frac{di}{dt})_{t=0} + r i_{(t=0)}$$

من البيان (u_{MA}(t لدينا:

$$t=0 \ \to \ u_{MA}=0$$

و حبث أن : u_{MA} = Ri بكو ن :

$$i_{(t=0)} = \frac{(u_{MA})_{t=0}}{R} = \frac{0}{35} = 0$$

ومنه يصبح لدينا:

$$(u_{BM})_{t=0} = L(\frac{di}{dt})_{t=0} \rightarrow L = \frac{(u_{BM})_{t=0}}{(\frac{di}{dt})_{t=0}}$$
(1)

. $(\frac{d1}{A_t})_{t=0}$ ، $(u_{BM})_{t=0}$: نحسب

 $\frac{: (u_{BM})_{t=0}}{u_{BM}} = 9V$. يكون $u_{BM} = f(t)$

 $\frac{1}{2} \left(\frac{di}{dt} \right)_{t=0}$

: يكون t=0 عند اللحظة $u_{MA}=f(t)$ يكون tan α باعتبار

$$(\tan \alpha)_{t=0} = (\frac{du_{MA}}{dt})_{t=0} = \frac{7 - 0}{2.10^{-3} - 0} = 3500$$

و من البيان:

$$(\tan \alpha)_{t=0} = \frac{7 - 0}{2.10^{-3} - 0} = 3500$$

إذن :

$$(\frac{du_{\rm MA}}{dt})_{t=0}=3500$$

و لدينا نظريا:

$$u_{MA} = R \ i \longrightarrow \frac{du_{MA}}{dt} = R \, \frac{di}{dt}$$

و عند اللحظة t=0 يكون:

$$\left(\frac{du_{MA}}{dt}\right)_{t=0} = R\left(\frac{di}{dt}\right)_{t=0} \rightarrow \left(\frac{di}{dt}\right)_{t=0} = \frac{1}{R}\left(\frac{du_{MA}}{dt}\right)_{t=0}$$

 $\left(\frac{di}{dt}\right)_{t=0} = \frac{1}{35}.3500 = 100$

بالتعويض في عبارة L (1):

$$L = \frac{9}{100} = 0.09 H$$

تمارين مقترحة

التمرين (5): (بكالوريا 2012 - علوم تجريبية) (الحل المفصل: تمرين مقترح 34 على الموقع)

القطب RL بدلالة الزمن ، و تأثير المقدارين R و L على هذا التطور ، نركب الدارة الكهربائية (الشكل-4) . L نتابع تطور التوتر الكهربائي L بين طرفي الناقل الأومي L باستعمال راسم اهتزاز مهبطي ذي ذاكرة . أعد رسم الدارة على ورقة الإجابة ثم بين عليها كيفية ربط راسم ارهتزاز المهبطي .

لدراسة تطور شدة التيار الكهربائي i(t) المار في ثنائي

ب- متابعة تطور التوتر الكهربائي $u_R(t)$ مكنتنا من متابعة تطور الشدة i(t) للتيار الكهربائي المار في الدارة . فسر ذلك

2- نغلق القاطعة:

أ- جد المعادلة التفاضلية لشدة التيار الكهربائي i(t) المار في الدارة .

ب- علما أن حل هذه المعادلة من الشكل : $i(t) = A (1 - e^{-\frac{t}{\tau}})$ جد عبارتي A و τ . ماذا يمثلان ؟ 3- ننجز ثلاث تجارب مختلفة باستعمال وشيعة مقاومتها t ثابتة تقريبا و ذاتيتها t قابلة للتغير و نواقل أومية مختلفة . يبين (الشكل-5) المنحنيات البيانية لتطور شدة التيار الكهربائي i(t) بدلالة الزمن t بالنسبة للتجارب الثلاث و يمثل

الجدول المرفق قيم L و R المستعملة في كل تجربة:

	1	-					-	
			2					
1	7		-	-	-3-			-
1/					3	+		
16				-	10	2-91	-	
15					ىكل-			
6				1			t	(ms)

	التجربة 1	التجربة 2	التجربة 3
L(mH)	30	20	40
$R(\Omega)$	290	190	190

أ- أنسب كل تجربة بالمنحنى البياني الموافق لها . ب- جد قيمة المقاومة r .

<u>أجوبة مختصرة :</u>

1- أ) تمثيل كيفية ربط راسم الاهتزاز المهبطى:

E L, r Y

ب) من قانون أوم يمكن كتابة : $\frac{1}{R}u_R$ ، و بما أن $\frac{1}{R}$ ثابت فإن التوتر u_R بين طرفي الناقل الأومي يتناسب طرديا مع شدة التيار المار i المار بالدارة هذا ما يجعل شكل تغيرات تطور التوتر u_R نفسه شكل تغيرات تطور شدة التيار i و بالتالي يمكن القول أن متابعة تطور التوتر u_R بين طرفي الناقل الأومي تمكن من متابعة تطور شدة التيار المار بالدارة .

ر ثابت
$$\tau$$
 ثابت ($A=I_0$) ، يمثل A شدة التيار الأعظمية ($A=\frac{E}{R+r}$ ، بيمثل A ثابت ثابت ($A=\frac{E}{L}$ ، يمثل $A=\frac{E}{R+r}$ ، يمثل ثابت الزمن المميز للدارة $A=\frac{E}{L}$ المدروسة .

(2) التجربة (3) ، التجربة (3) ، التجربة (3) ، التجربة (3) ، التجربة (3)

التمرين (6): (بكالوريا 2013 - رياضيات) (الحل المفصل: تمرين مقترح 33 على الموقع)

بهدف تحديد مميزات وشيعة ، نحقق دارة كهربائية (الشكل-2) ، حيث : $t=0~{\rm ms}$. $t=0~{\rm ms}$

1- بين أن المعادلة التفاضلية للتوتر الكهربائي بين طرفي المقاومة تعطى

$$\frac{du_R}{dt} + \frac{R+r}{L}u_R = \frac{RE}{L}$$
 : بالشكل

ي حل المعادلة التفاضلية ،
$$u_R(t) = \frac{B}{A} (1 - e^{-At})$$
 : مي حل المعادلة التفاضلية -2

السابقة ، حيث A و B ثابتان يطلب تعيينهما .

3- باستعمال راسم اهتزاز مهبطي ذي ذاكرة تحصلنا على (الشكل-3) .

أ- اعد رسم الدارة ، ثم وضح عليها كيفية ربط راسم الإهتزاز

المهبطي لمشاهدة المنحنيين (1) و (2) (الشكل-3).

ب- أنسب لكل عنصر كهربائي من الدارة المنحنى الموافق له مع التعليل.

جــ استنتج القوة المحركة الكهربائية للمولد E ، و مقاومة الوشبعة r

4- اعتمادا على نقطة تقاطع المنحنيين (1) ، (2)

أ- بين أن ثابت الزمن
$$au$$
 يكتب بالعبارة : $au=\frac{t_c}{\ln(\frac{2R}{R-r})}$ ، ثم

احسب قيمته ، حيث t_c الزمن الموافق لتقاطع المنحيين ، علما أن التوتر بين طرفي الوشيعة يعطى بالعلاقة :

$$u_b(t) = \frac{E}{R+r} (r + R e^{-\frac{t}{\tau}})$$

ب- احسب ذاتية الوشيعة L

الشكل-2

أحمية مختصرة :

و الوشيعة .
$$A = \frac{ER}{L}$$
 ، $A = \frac{R+r}{L}$ ، $A = \frac{R+r}{L}$. $A = \frac{R+r}{L}$.

$$E = u_{b (t=\infty)} + u_{R (t=\infty)} = 10 \text{ V}$$
 $\frac{1}{2}$ $E = u_{b (t=0)} + u_{R (t=0)} = 10 \text{ V}$ $E = u_{b (t=0)} + u_{R (t=0)} = 10 \text{ V}$ $\tau = 8 \text{ ms}$ ($\tau = 10 \text{ Q}$

الصفحة : | 15

التمرين (7): (الحل المفصل: تمرين مقترح 28 على الموقع)

بواسطة مولد توتر ثابت قوته المحركة الكهربائية ${
m E}$ ، ناقلين أوميين -مقاومة الأول Ω = 5 = = 0 مقاومة الثاني R_2 مجهولة ، مكثفة فارغة سعتها C ، قاطعة K نحقق الدارة المبينة في الشكل التالي ثم نغلق القاطعة عند اللحظة t = 0

C . $_{
m D}$ التوتر $_{
m BC}$ بين طرفي الناقل الأومي $_{
m R_2}$ بالاعتماد على راسم الاهتزاز المهبطى أعطت البيانين $u_{BC}=g(t)$ ، $u_{AB}=f(t)$ المقابلين :

- 1- بين على الدارة السابقة كيفية وصل راسم الاهتزاز المهبطي بالدارة حتى نحصل على البيانين السابقين .
- 2- أكتب المعادلة التفاضلية بدلالة $u_{
 m CD}={
 m f}(t)$ حيث $u_{
 m CD}$ التوتر بين طرفي المكثفة مبينا حلها دون برهان .
 - : من اللحظية لكل من $C \cdot R_2 \cdot R_1 \cdot E$ العبارات اللحظية لكل من
 - شدة التيار المار في الدارة .
 - التوتر u_{AB} بين طرفي الناقل الأومى u_{AB} .
 - التوتر u_{BC} بين طرفي الناقل الأومي u_{BC} .

4- أكتب بدلالة \mathbf{R}_1 ، \mathbf{R}_2 ، \mathbf{R}_2 ، \mathbf{R}_3 ، الخطة \mathbf{C} ، \mathbf{R}_2 ، \mathbf{R}_1 ، و الأزمنة . 5- اعتمادا على الدراسة التجربية و النظرية السابقتين أوجد : $C \cdot R_2 \cdot I_0 \cdot E$. حيث I_0 شدة التيار الأعظمية المارة بالدارة

<u>أجوبة مختصرة :</u>

1) كيفية وصل راسم الاهتزاز المهبطى:

 $\frac{du_{CD}}{dt} + \frac{1}{(R_1 + R_2)C} u_{CD} = \frac{E}{(R_1 + R_2)C}$ ، و هي D : الأولى حلها C معادلة تفاضلية من الدرجة الأولى حلها $u_{CD} = E (1 - e^{-\frac{t}{(R_1 + R_2)C}})$

$$u_{BC} = \frac{E R_2}{(R_1 + R_2)} e^{-\frac{t}{(R_1 + R_2)C}} \cdot u_{AB} = \frac{E R_1}{(R_1 + R_2)} e^{-\frac{t}{(R_1 + R_2)C}} \quad i = \frac{E}{(R_1 + R_2)} e^{-\frac{t}{(R_1 + R_2)C}}$$
(3)

 $I_0 = \frac{u_{AB0}}{R_1} = 0.48 \,A$ $E = 12 \,V$ (5 $t = (R_1 + R_2) \,C = \tau$ (4)

.
$$C = \frac{\tau}{(R_1 + R_2)} = 2.10^{-4} \; F = 200 \, \mu F$$
 ، $R_2 = \frac{E}{I_0} - R_1 = 20 \, \Omega$ أو $R_2 = \frac{u_{BC0}}{I_0} = 20 \, \Omega$

التمرين (8): (الحل المفصل: تمرين مقترح 35 على الموقع)

بواسطة مولد توتر ثابت قوته المحركة الكهربائية E ، ناقلين أوميين مقاومة الأول R_1 و مقاومة الثاني R_2 مجهولة ، مكثفة فارغة سعتها R_1 ، فاطعة R_2 نحقق الدارة المبينة في الشكل التالي ثم نغلق القاطعة عند اللحظة R_1 .

 R_1 الدراسة التجريبية لتطور التوتر u_{AB} بين طرفي الناقل الأومي R_1 و المكثفة معا من u_{BC} بين طرفي الناقل الأومي R_2 و المكثفة معا من جهة أخرى ، و بالاعتماد على راسم الاهتزاز المهبطي و برمجيات

: المقابلين $u_{BC}=g(t)$ ، $u_{AB}=f(t)$ المقابلين

1- بين على الدارة السابقة كيفية وصل راسم الاهتزاز المهبطي بالدارة حتى نحصل على البيانين السابقين .

. أكتب المعادلة التفاضلية بدلالة q=f(t) حيث q شحنة المكّثفة q

B عين A و B ، ماذا يمثل B و ما هو مدلوه الفيزيائي . A عين A و B ، ماذا يمثل B و ما هو مدلوه الفيزيائي .

4- أكتب بدلالة C ، R2 ، R1 ، E العبارات اللحظية لكل من :

• شدة التيار المار في الدارة .

• التوتر \mathbf{u}_{AB} بين طرفي الناقل الأومى \mathbf{R}_1 .

• التوتر u_{BC} بين طرفي الناقل الأومي R_2 و المكثفة معا .

ثم عبر عن u_{BC} ، u_{AB} عند اللحظة t=0 و اللحظة u_{BC} ، u_{AB} .

رُ- أكتب بدلالـة \mathbf{c} ، \mathbf{R}_2 ، \mathbf{R}_1 ، \mathbf{E}_2 ، عند اللحظة \mathbf{c} ، \mathbf{R}_2 ، \mathbf{R}_3 ، \mathbf{E}_3 عند اللحظة وأ- أكتب بدلالـة $\mathbf{u}_{\mathrm{BC}}=\mathbf{E}$ ، المقارب $\mathbf{u}_{\mathrm{BC}}=\mathbf{E}$.

. $C \cdot R_2 \cdot \cdot R_1 \cdot E$ أوجد التيار الأعظمية المارة في الدارة هي $I_0 = 048 A$

أجوبة مختصرة :

1) كيفية و صل راسم الاهتزاز المهبطى بالدارة:

$$\frac{dq}{dt} + \frac{1}{(R_1 + R_2)C} q = \frac{E}{(R_1 + R_2)} (2$$

$$i = \frac{E}{(R_1 + R_2)} e^{-\frac{t}{(R_1 + R_2)C}}) \quad (4)$$

$$u_{AB} = \frac{E R_1}{(R_1 + R_2)} e^{-\frac{t}{(R_1 + R_2)C}}$$

$$t = 0 \rightarrow u_{AB} = u_{AB} = \frac{E R_1}{(R_1 + R_2)}$$
, $t = \infty \rightarrow u_{AB} = u_{AB} = 0$

$$u_{BC} = E - \frac{E R_1}{(R_1 + R_2)} e^{-\frac{t}{(R_1 + R_2)C}}$$
, $t = 0 \rightarrow u_{BC} = \frac{ER_2}{R_1 + R_2}$, $t = \infty \rightarrow u_{BC} = 0$

$$C = \frac{\tau}{(R_1 + R_2)} = 2.10^{-4} \text{ F} \quad \text{`} \quad R_2 = \frac{E}{I_0} - R_1 = 20 \Omega \quad \text{`} \quad R_1 = \frac{u_{AB0}}{I_0} = 5 \Omega \quad \text{`} \quad E = 12 \text{ V (6)}$$

التمرين (9): (الحل المفصل: تمرين مقترح 36 على الموقع)

- صدر المريض نعتبره ناقل أومي (دارة التفريغ) مقاومته R =

1- نشغل الجهاز بغلق القاطعة K_2 K_1 مفتوحة) فتشحن المكثفة C . المنحنيين (1) ، (2) التاليين يمثلان تغيرات التوتر $u_{\rm C}$ بين طرفي المكثفة بدلالة الزمن عند الشّحن و التفريغ على الترتيب

- أ- اعتمادا على البيان (1) أوجد قيمة ثابت الزمن τ .
 - ب- عين قيمة الطاقة الأعظمية المخزنة في المكثفة .
- د- بفرض أن المكثفة تشحن كليا عندما يصبح التوتر بين طرفيها 97% من التوتر الأعظمي ما هو الزمن Δt اللازم لشحن هذه المكثفة .
- 2- في اللحظة t_0 تغلق القاطعة K_1 K_2 مفتوحة) فتفرغ المكثفة بإرسال صدمات كهربائية بوضع المسريين على صدر المريض بحيث تنتهي عملية التفريغ بمجرد استهلاك الطاقة اللازمة للجهاز و المقدرة بـ 400 joule ، عندما تقدم المكثفة هذه الطاقة تتوقف عملية التفريغ .
 - أ- أكتب المعادلة التفاضلية بدلالة $u_{
 m C}$ التوتر بين طرفي المكثفة في دارة التفريغ (صدر المريض) .
 - . au' ، A عين قيم $u_C(t) = A \, e^{-t/ au'}$ عين قيم $u_C(t) = A \, e^{-t/ au'}$
 - جـ أحسب الشدة الأعظمية لتيار التفريغ .
 - $u_{C}(t)$ ، C ، (طاقة التي تحروها المكثفة و التي تقدم للجهاز بدلالة $E_{(C)0}$ (طاقة المكثفة الأعظمية) ، $u_{C}(t)$ ،

أجوبة مختصرة :

$$.E_{(C)_0} = \frac{1}{2}CE^2 = 528.75 \,\text{J}$$
 (ب، $R_1 = \frac{\tau}{C} = 1063.8 \,\Omega$ ، $\tau = 0.5 \,\text{s}$ (أ -1)

. $\Delta t = -\tau \ln 0.03 = 1.75$ (\Rightarrow

. A = 1500V
$$\tau' = R_2C = 2.35 \cdot 10^{-2} \text{ s}$$
 ($\because \frac{du_C}{dt} + \frac{1}{RC} u_C = \frac{E}{RC}$ ($\mathring{-}2$

.
$$I_0 = \frac{E}{R_2} = 30\,\mathrm{A}$$
 : حارة التفريغ تحتوي على المكثفة و المقاومة R_2 (صدر المريض) فقط لذا يكون

د) عند اللحظة t_0 (بداية التغريغ) تكون طاقة المكثفة أعظمية $E_{(C)0}$ و عند اللحظة t تكون طاقة المكثفة

: في المحررة $E'_{(C)}$ و منه فالطاقة المحررة $E'_{(C)}$ و التي تمثل الفرق بين الطاقتين يعبر عنها بالعلاقة $E_{(C)} = \frac{1}{2} C \, u_C^2$

.
$$u_C = \frac{2(E_{(C)0} - E_{(C)})}{C} = 740 V$$
 (4 $E'_{(C)} = E_{(C)0} - \frac{1}{2} C u_C^2$