

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Final Exam Review

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: ramahto@fullerton.edu **Phone No**: 657-278-7274

Final Exam

- Day: Monday, 13 May 2024
- Time: 11:00 12:50 PM
- Lecture Slides from 1 to 14
- Bring a cheat-sheet of one page (A4 Size)- both side, pen, pencil and calculator.

Conversion

- 8-4-2-1 Code (BCD)
- 6-3-1-1 Code
- Excess-3 Code
- 2-out of 5 Code
- Gray Code
- Binary
- Octal
- Hexadecimal

Arithmetic Operations

- Adding two Binary, Octal, Hexadecimal number
- Subtraction of two Binary, Octal, Hexadecimal number
- Subtraction using 1's and 2's Complement
- Multiplication
- Division

Boolean Algebra

- Boolean Functions
- Truth Table
- Logical Circuits
- Minterm
- Maxterm
- K-Map
- Circuit design using NAND Gate and NOR Gate.
- Decoder

Designing Circuit using NAND or NOR Gate OR/AND to NOR/NOR

$$F2 = X'Z' + XZ + Y$$

 $F2' = (X + Y)(X' + Z')Y'$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Decoders

Design F1 with a Decoder

$$F1 = \Sigma m(2,3,5,7) - SOM$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

\boldsymbol{A}	В	C	<i>F</i> 1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Designing Logic Circuits with MUXs

Technique 1:

 For n variables, use n-1 variables as inputs to select lines. Hence, we need a 2ⁿ⁻¹-to-1 MUX.

Example: Given $F_1(X,Y,Z) = \Sigma m(1,2,5,7)$, 3 variables so we need a 2²-to-1 MUX. Lets allocate X and Y to select lines, leaving Z for the Data Lines.

	X	Y	Z	F		
Γ.	0	0	0	0	Notice F and Z	
I ₀	0	0	1	1	are the same	
	0	1	0	1	$\begin{cases} \mathbf{Z}^{1} & \mathbf{MUX} \\ \mathbf{Z}^{2} & \mathbf{Notice F and Z are} \end{cases} \xrightarrow{\mathbf{I}} \begin{cases} \mathbf{MUX} \\ \mathbf{Z} & \mathbf{I} \end{cases} \xrightarrow{\mathbf{I}} \begin{cases} \mathbf{I} & \mathbf{MUX} \\ \mathbf{Z} & \mathbf{I} \end{cases}$	=
l ₁	0	1	1	0	Complemented 3	
١.	1	0	0	0	Notice F and Z	
l ₂	1	0	1	1	are the same	
	1	1	0	0	Notice F and Z	
I ₃	1	1	1	1	∫ are the same	

S-R Latch

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

\overline{S}	\overline{R}	Q	Q^+	NA
1	1	0	0	X
1	1	1	1	0
1	1	1		0
1	0	0	0	1
1	0	1	0	1
0	1	0	1	
0	1	1	1	
0	0	0	− l inputs	not
0	0	1	− ∫ allowe	ed

NAND function			
X	Y	F _{NAND}	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOTE: any time one of the inputs X or Y is a 0 the output F is a 1.

D-Latch

2-to-1 MUX Equation: Z (output) = $A'I_0 + AI_1$

A is select line, I_0 and I_1 are input lines.

$$Q^+ = C'Q + CD; C = A$$

D-Flip Flop

D Latch with a CLR Input: a) implemented with a logic hazard-free function in AND-OR circuit form, and b) logic symbol

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Extra term removes the logic glitch: C'Q + CD + DQ

Mealy State Machine Analysis

Starting with the Logic Diagram (circuit)

Step 1) Write the state, input and output equations

Output equations Y = (A + B)X'
Input equations A+ = AX + BX
B+ = A'X

Mealy State Machine Analysis (Continue)

Step 3) Draw the State Diagram

Present State		х	Ne Sta	γ	
Α	В		Α	В	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
ᅱ	1	0	o	0	1
1	1	1	1	0	0

Mealy State Machine Design

State Diagram to Design

Mealy State Machine Design (Continue)

Q&A

