Thermodynamique

Chapitre 3 : Premier principe de la Thermodynamique

1. Les différentes transformations :

- o Transformation isochore: le volume du système ne varie pas
- o *Transformation isotherme*: température uniforme à chaque instant et constamment égale à une certaine température T1
- o Transformation monotherme:
 - Notion de thermostat : système à l'équilibre thermique de grande taille par rapport au système étudié
 - Transformation monotherme : système à chaque instant au contact d'un thermostat de température fixe T1
- Transformation isobare: pression uniforme à chaque instant et constamment égale à une certaine pression P1
- o *Transformation monobare* : système au contact mécanique avec le milieu extérieur qui impose une pression P1 constante
- o *Transformation réversible* : transformation très lente, passant par une succession d'états d'équilibre
- o Transformation mécaniquement réversible : système au contact mécanique avec le milieu extérieur, pression du système uniforme et égale à la pression imposée par le milieu extérieur
- o Point de vue mécanique : non-conservation de l'énergie mécanique
- Point de vue thermodynamique :
 Les frottements sont des interactions système macroscopique vs système avec un grand nombre de particules (gaz)

2. Travail:

Le travail c'est le transfert d'E macroscopique d'un système à un autre s'effectuant par un mouvement d'ensemble ordonné, provoqué par l'action de forces Le travail se note W et se mesure en joules (J).

W>0 si le travail est considéré comme reçu par le système

W < 0 si le travail est considéré comme fourni par le système

3. Formules:

Force de pression

$$\delta W = -P_{ext}dV$$
 avec $dV = Sdx$

En compression : $dV < 0 \Rightarrow \delta W > 0$

En détente : $dV > 0 \Rightarrow \delta W < 0$

Travail total

$$W = \int_{V_i}^{V_f} \delta W$$

4. Transfert thermique:

Il s'agit d'un transfert d'E microscopique désordonnée d'un système à un autre.

Le transfert thermique se note Q et se mesure en joules (J).

Si Q > 0: transfert thermique reçu par le système

Si Q < 0: transfert thermique cédé par le système

Si Q=0: pas de transfert thermique. On parle alors de transformation adiabatique. Les parois entourant un tel système sont dites calorifugées ou athermanes. Au contraire, des parois diathermanes permettent les échanges thermiques

4.1 Différents types de transferts thermiques :

- o *Conduction thermique*: transmission de proche en proche de l'agitation thermique sans déplacement macroscopique de matière (phases condensées).
- Convection thermique : transfert impliquant un déplacement macroscopique de matière (fluides).
- o Rayonnement thermique : transfert ne nécessitant pas de milieu matériel : l'E thermique se propage sous forme d'ondes électromagnétiques.

5. Premier principe de la thermodynamique :

Il existe une fonction d'état extensive, appelée énergie interne U, dont la variation au cours d'une transformation pour un système fermé satisfait à la relation :

$$\Delta(E+U)=W+O$$

W est le travail des actions extérieurs, Q le transfert thermique échangé avec l'extérieur et E l'énergie mécanique macroscopique.

Voici la version élémentaire du premier principe (lorsque E est nulle) : $dU = \delta W + \delta Q$

o Phases condensées indilatables et incompressibles :

$$\Delta U_m = C_m \Delta T$$

6. Enthalpie:

$$\Delta U = W + Q = W' + W'' + Q$$

W': travaux forces pressantes

W": travaux forces autres que pressantes

o Transformation monobare:

$$\delta W' = -P_{ext}dV = -P_1dV \Rightarrow W' = -P_1\int dV = -P_1\Delta V$$

La fonction H d'état extensive (enthalpie) se trouve avec :

$$H = U + PV$$

Dans le cas de la transformation monobare :

$$\Delta H = W^{\prime\prime} + Q$$

7. Cas des GP:

$$C_{P,m} - C_{V,m} = R$$

	Monoatomique	Diatomique
$C_{P,m}$	$\frac{5}{2}R$	$\frac{7}{2}R$
c_P	$\frac{5}{2}\frac{R}{M}$	$\frac{7}{2}\frac{R}{M}$
Н	$\frac{5}{2}nRT$	$\frac{7}{2}nRT$

o Rapport γ d'un GP :

$$\gamma = \frac{C_{P,m}}{C_{V,m}} = \frac{C_P}{C_V} = \frac{c_P}{c_V}$$

Relation de Mayer : $\gamma \geq 1$

noatomique Di	atomique
$\frac{5}{2}$	$\frac{7}{5} = 1.4$
	5

o Formules:

$$C_{P,m} = \frac{\gamma R}{\gamma - 1}$$
 et $C_{V,m} = \frac{R}{\gamma - 1}$

8. Cas des phase condensées :

$$H_m \approx U_m$$

On a alors $C_P = C_V = C$

Voici un ordre de grandeur :

$$c_{eau} = 4.18 \ kJ.K^{-1}.kg^{-1}$$