Mobile IP

Beulah A.

AP/CSE

Motivation for Mobile IP

Routing

- Based on IP destination address, network prefix (e.g. 129.13.42) determines physical subnet
- Change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables

Specific routes to end-systems?

- Change of all routing table entries to forward packets to the right destination
- Does not scale with the number of mobile hosts and frequent changes in the location, security problems

Changing the IP-address?

- Adjust the host IP address depending on the current location
- Almost impossible to find a mobile system, DNS updates take to long time
- TCP connections break, security problems

Desirable Features of Mobile IP

Transparency

- Mobile end-systems should keep their IP address
- Continuation of communication after interruption of link is possible
- ▶ Point of connection to the fixed network can be changed

Compatibility

- ▶ Support of the same layer 2 protocols as IP
- No changes to current end-systems and routers required
- Mobile end-systems can communicate with fixed systems

Security

Authentication of all registration messages

Efficiency and scalability

- Only little additional messages to the mobile system required (connection typically via a low bandwidth radio link)
- World-wide support of a large number of mobile systems in the whole Internet

Mobile IP

- ▶ Entities and Terminology
- ▶ IP packet delivery
- Agent discovery
- ▶ Tunnelling and encapsulation

- Mobile Node (MN)
 - System (node) that can change the point of connection to the network without changing its IP address
 - Assigned a permanent IP called its *home address* to which other hosts send packets regardless of MN's location
 - Since this IP doesn't change it can be used by long-lived applications as MN's location changes

Home Network

- Provides home address to the mobile device.
- The home network is the subnet the MN belongs to with respect to its IP address.
- No mobile IP support is needed within the home network.

▶ Home Agent (HA)

- > System in the home network of the MN, typically a router
- Maintains a location directory of the mobile nodes belonging permanently to the home network
- Tunnel starts at the home agent.

Foreign Agent (FA)

- System in the current foreign network of the MN, typically a router
- Functions as point of attachment for a mobile node when it roams to the foreign network.
- Packets from the home agent are sent to the foreign node which delivers it to mobile node.

Care-of Address (COA)

- Address which identifies MN's current location
- Actual location of the MN from an IP point of view can be chosen, e.g., via DHCP
- The packets sent to the mobile node(MN) are delivered to COA using tunneling.
- COA is the tunnel end point.

- ▶ 2 types of COA
 - Foreign Agent COA
 - Usually the IP address of the FA
 - Many MN using FA can share COA as common COA
 - ▶ FA is the tunnel end point, and FA forwards packet to the MN
 - Co-Located COA
 - When the MN temporarily acquires an additional IP address, that acts as the COA.
 - MN is the tunnel end point.
- Correspondent node (CN)
 - At least one partner is needed for communication.
 - The CN can be a fixed or mobile node.

Tunnelling and Encapsulation

Tunnel

Virtual pipe for packets available between a tunnels entry point and an end point

Tunnelling

The process of sending a packet via tunnel and achieved by a mechanism called encapsulation

Encapsulation

 Assembling old packet(packet header and data) in data part of new packet

Decapsulation

Disassembling the data part of an encapsulated packet.

IP Packet Delivery

- ▶ Mobile IP \rightarrow Hides the mobility of the MN
- Data Transfer to the Mobile Node
- Data Transfer from the Mobile Node

Data Transfer to the Mobile Node

- 1. CN transmits to the IP address of MN, HA intercepts packet (proxy ARP)
 - \triangleright SA \rightarrow CN IP, DA \rightarrow MN IP
 - No knowledge about MN's current location
 - Standard routing mechanisms of the internet
- 2. HA tunnels packet to COA (FA), by encapsulation
 - New header on top of old IP (encapsulation)
 - \rightarrow SA \rightarrow HA, DA \rightarrow COA
 - \rightarrow Tunnel \rightarrow The path taken by the encapsulated packets.
 - Tunneling.
- 3. FA forwards the packet to the MN
 - Decapsulation
 - \triangleright SA \rightarrow CN IP, DA \rightarrow MN IP
 - Mobility not visible by MN

Data Transfer from the Mobile Node

- 4. CN transmits packet to the IP address of the receiver as usual.
 - \rightarrow SA \rightarrow MA IP, DA \rightarrow CN IP
 - FA works as default router and forwards the packet in standard manner ($CN \rightarrow Fixed Node$).
 - \rightarrow CN \rightarrow Mobile node, steps 1 through 3

Agent Discovery

- ▶ How to find a foreign agent is the major problem.
- ▶ How does the MN discover that it has moved?
- ▶ 2 methods:
 - Agent advertisement
 - Agent solicitation

Agent Advertisement

- Home Agents and Foreign Agents periodically send advertisement messages into their physical subnets
- Advertisement is similar to Beacon Broadcast
- MN listens to these messages and detects, if it is in the home or a foreign network (standard case for home network)
- MN reads a COA from the FA advertisement messages

Agent Advertisement

RFC 1256 +mobility extension (upper ICMP, lover mobility) Type=9 Code 0 (normal)or 16(only mobile)

0 7	8	15	16 23 24 31			
type	code		checksum			
#addresses	addr. size		lifetime			
router address 1						
preference level 1						
router address 2						
preference level 2						

type = 16

length = 6 + 4 * #COAs

(6 =the number of bytes in the seq. no.,

Lifetime, Flags, and Reserved + another 4 bytes per each COA)

R: registration required

B: busy, no more registrations

H: home agent

F: foreign agent

M: minimal encapsulation

G: Generic Routing Encapsulation

r: =0, ignored (former Van Jacobson compression)

T: FA supports reverse tunneling

reserved: =0, ignored

type = 16 length		length	sequence number		
	registration lifetime		R B H F M C r T reserved		
COA 1					
	COA 2				
1					

. . .

Agent Solicitation

- The mobile node must send **agent solicitations** when it enters a foreign network.
- When a mobile node enters into a new network it can send out three solicitations, one per second
- If a MN does not get a new address, many packets will be lost
- If a MN does not receive an answer to its solicitations it must decrease the rate of solicitations exponentially to avoid flooding the network
- When the MN discovers a new agent it stops sending agent solicitation.
- A MN understands its FA by receiving an advertisement

Summary

- Motivation for Mobile IP
- ▶ Desirable Features of Mobile IP
- ▶ Mobile IP
 - ▶ Entities and Terminology
 - ▶ IP packet delivery
 - Agent discovery

Test your knowledge

- ▶ What is a dual stack?
 - The host or router uses both IPv4 and IPv6, but at different times
 - The host or router uses both IPv4 and IPv6 at the same time
 - The host or router uses IPv4 at different times
- What is one major difference between IPv4 and IPv6 configuration?
 - The router doesn't enable the routing of IPv6 packets by default, so you would need to use the global command to enable IPv6 routing
 - You can use the network router subcommand to enable IPv6 routing
 - ▶ IP addresses are shortened from 128 bits to 32 bits

Test your knowledge

- When IPv4 addresses are exhausted and you're using IPv4 connections to access the Internet, you
 - won't be able to access IPv6 websites at all
 - may still be able to access some IPv6 websites with some limitations
 - will still be able to access IPv6 website with no problem at all

References

- ▶ Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.
- Prasant Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi – 2012.