线代:初等变换,线性相关性与线性方程组

席睿恩 戴云舒

2025年5月11日

例题 1 己知
$$A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & 3 & 2 \end{pmatrix}$$
:

(2) 若
$$B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ -2 & 5 \end{pmatrix}$$
, 求 $AX = B$ 的解.

(1) 判断
$$A$$
 是否可逆,若可逆则求出 A^{-1} .
(2) 若 $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ -2 & 5 \end{pmatrix}$,求 $AX = B$ 的解.
(3) 若 $C = \begin{pmatrix} 3 & -2 & -1 \\ 0 & -2 & 1 \\ 0 & 9 & -4 \end{pmatrix}$ $\leftrightarrow A$,且有 $PA = C$,求出 P .

例题 2 有矩阵 $A_{m\times n}$, $B_{n\times l}$, $C_{n\times l}$:

- (1) 若 R(A) = n, 证明: R(AB) = R(B).
- (2) 若 R(A) = n, 且 AB = AC, 证明: B = C.
- (3) 若 R(A) = m,则类似地有哪些结论成立?

例题 3 已知 AB = C, 且 $|B| \neq 0$, 则下列说法正确的是:

- A. 矩阵 C 的行向量组与矩阵 A 的行向量组等价.
- B. 矩阵 C 的列向量组与矩阵 A 的列向量组等价.
- C. 矩阵 C 的行向量组与矩阵 B 的行向量组等价.
- D. 矩阵 C 的列向量组与矩阵 B 的列向量组等价.

例题 4 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是 n 维列向量, A 为 $m \times n$ 矩阵, 下列说法正确的是:

- A. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关.
- B. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关.
- C. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关.
- D. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关.

例题 5 记 $\alpha_1 = (1,3,1)^T$, $\alpha_2 = (2,1,3)^T$, $\alpha_3 = (4,5,2)^T$, $\alpha_4 = (7,9,10)^T$, 求 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ 这个向量组的一个最大无关线性组.

例题 6 设向量组 $\alpha_1 = (1,1,k)^T$, $\alpha_2 = (-1,k,1)^T$, $\alpha_3 = (-k,1,-1)^T$, $\alpha_4 = (1,4,5)^T$, 问:

- (1) 参数 k 为何值时, $\alpha_1, \alpha_2, \alpha_3$ 是向量组的一个最大线性无关组?
- (2) 参数 k 为何值时, α_1, α_2 是向量组的一个最大线性无关组?并在此时,求出 α_3, α_4 由最大线性无关组表出的线性表达式.

例题 7 (1) 设 $A_{m \times n} B_{n \times l} = \mathbf{0}$, 问 R(B) 的取值范围.

(3) 证明: $R(AB) \ge R(A) + R(B) - n$.

例题 8 记
$$A = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 2 & 1 & 7 & 4 & 3 \\ -1 & 2 & -1 & 3 & 0 \end{pmatrix}$$
.

- (1) 若 $b = (0,0,0)^T$, 且 Ax = b 的通解.
- (2) $b = (1,2,3)^T$, 且 Ax = b 的通解.

例题 9 当 a 取何值时, 线性方程组

$$\begin{cases}
-x_1 - 4x_2 + x_3 &= 1 \\
ax_2 - 3x_3 &= 3 \\
x_1 + 3x_2 + (a+1)x_3 &= 0
\end{cases}$$

无解、有唯一解、有无穷组解. 若有解则求出其通解.

例题 10 当 a,b 取何值时, 线性方程组

$$\begin{cases}
-x_1 - x_2 - 2x_3 + 3x_4 &= 0 \\
x_1 - 3x_2 - 5x_3 + 2x_4 &= -1 \\
x_1 + x_2 + ax_3 + 4x_4 &= 1 \\
x_1 + 7x_2 + 10x_3 + 7x_4 &= b
\end{cases}$$

无解、有唯一解、有无穷组解. 若有解则求出其通解.

例题 11 设向量组 $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (-1,3,1,7)^T$, $\alpha_3 = (-2,-5,a,10)^T$, $\alpha_4 = (3,2,4,7)^T$, $\beta = (0,-1,1,b)^T$, 讨论 a,b 取何值时有:

- (1) β 不能由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表出.
 - (2) β 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表出,并求出其表达式.

例题 12 当 a 取何值时, 齐次线性方程组

$$\begin{cases}
(1+a)x_1 + x_2 + \dots + x_n &= 0 \\
2x_1 + (2+a)x_2 + \dots + 2x_n &= 0 \\
&\vdots \\
nx_1 + nx_2 + \dots + (n+a)x_n &= 0
\end{cases}$$

有非零解,并求出其通解.

例题 13 非齐次线性方程组 $A_{n \times m} x = b$ 有解的充分条件是 ()

- A. R(A) = m.
- B. A 的行向量组线性相关.
- C. R(A) = n.
- D. A 的列向量组线性相关.

例题 14 下列命题正确的是()

- A. 若 Ax = b 有唯一解,则 |A| = 0.
- B. 若 Ax = 0 仅有零解,则 Ax = b 有唯一解.
- C. 若 Ax = 0 有非零解,则 Ax = b 有无穷组解.
- D. 若 Ax = b 有两个不同的解,则 Ax = 0 有无穷多组解.

例题 15 设 $A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a, b 取何值时,存在 C 使得 AC - CA = B,病 求出此时所有满足条件的 C.

例题 16 记 $\alpha_i(i=1,2,3,4)$ 是 4 维列向量, 其中 $\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\alpha_1=2\alpha_2-\alpha_3$, 令 $A_{4\times 4}=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$, $\beta=\alpha_1+\alpha_2+\alpha_3+\alpha_4$, 求 Ax=b 的通解.