In the Claims:

1. (original) Photoinitiators of the formula I

$$\begin{bmatrix} R_{30} & O & R_1 \\ R_{31} & X - L & Z & R_4 & R_3 \end{bmatrix}_n$$

wherein

n is 1 or 2;

L is a linker;

X is -O-, -S- or -NR₃₂-;

Z is a direct bond, $-CH_2$ -, -O-, -S- or $-NR_{10}$ -;

 R_1 is

- (a) linear or branched C₁-C₁₂-alkyl, which is unsubstituted or substituted by one or more of the groups C₁-C₄-alkyoxy, phenoxy, halogen or phenyl;
- (b) a radical of the formula

(c) a radical of the formula

$$(CH2)q where q is 0, 1, 2 or 3; or$$

(d) a radical of the formula

where Ar is phenyl, which is unsubstituted or substituted by one or more of the groups halogen, OH, NO₂, -N(R_{10})₂, C₁-C₁₂-alkyl, C₁-C₄-alkyl that is additionally substituted by OH, halogen, N(R_{10})₂, C₁-C₁₂-alkoxy, -COO(C₁-C₁₈-alkyl), -CO(OCH₂CH₂)_nOCH₃ or -OCO(C₁-C₄-alkyl); C₁-C₁₂-alkyoxy, C₁-C₄-alkyoxy that is additionally substituted by -COO(C₁-C₁₈-alkyl) or -CO(OCH₂CH₂)_nOCH₃; -OCO(C₁-C₄-alkyl), C₁-C₈-alkylthio, phenoxy, -COO(C₁-C₁₈-alkyl), -CO(OCH₂CH₂)_nOCH₃, phenyl or benzoyl; where n is 1-20;

 R_2 if n is 1, independently of R_1 has one of the meanings of R_1 ; or R_1 together with R_2 forms a ring of the formula

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

where m is 1 or 2;

R₂ if n is 2, is a direct bond, C₂-C₁₆-alkylene, cyclohexylene, xylylene, dihydroxyxylylene, C₄-C₈-alkenediyl, C₆-C₁₀-alkadienediyl or dipentenediyl;

R₃ is hydrogen, C₁-C₁₂-alkyl, C₂-C₄-alkyl substituted by one or more of the groups hydroxy, C₁-C₄-alkyl, C₅-C₁₂-cycloalkyl or C₇-C₉-phenylalkyl;

is C_1 - C_{12} -alkyl, C_2 - C_4 -alkyl substituted by one or more of the groups hydroxy, C_1 - C_4 -alkoxy, -CN, -COO(C_1 - C_4 -alkyl); C_3 - C_5 -alkenyl, C_5 - C_{12} -cycloalkyl, C_7 - C_9 -phenylalkyl, phenyl; or R_4 and R_2 together is C_1 - C_7 -alkylene, C_7 - C_{10} -phenylalkylene, o-xlylene, 2-butenylene or C_2 - C_3 -oxa- or azaalkylene; or R_4 and R_3 together is C_3 - C_7 -alkylene that may be interrupted by -O-, -S-, -CO- or -N(R_{13})- and substituted by hydroxy, C_1 - C_4 -alkoxy or -COO(C_1 - C_4 -alkyl);

R₅ is hydrogen or C₁-C₄-alkyl; or R₅ together with R₃₀ is C₁-C₂-alkylene;

R₆ is hydrogen, C₁-C₈-alkyl or phenyl;

R₇, R₈ and R₉ independently of each other are hydrogen or C₁-C₄-alkyl, or R₇ and R₈ together are C₃-C₇-alkylene;

R₁₀ is hydrogen, C₁-C₈-alkyl, C₃-C₅-alkenyl, C₇-C₉-phenlyalkyl, C₁-C₄-hydroxyalkyl or phenyl;

 R_{11} and R_{12} independently of each other are hydrogen or C_1 - C_4 -alkyl, or R_{11} and R_{12} together are C_3 - C_7 -alkylene;

is hydrogen, C₁-C₁₂-alkyl, which may be interrupted by one or more -O- or C₃-C₅-alkenyl, C₇-C₉-phenylalkyl, C₁-C₄-hydroxyalkyl, -CH₂CH₂CN, -CH₂CH₂COO(C₁-C₄-alkyl), C₂-C₈-alkanoyl, or benzoyl;

R₃₀ and R₃₁ independently of one another are hydrogen, C₁-C₁₈-alkyl or C₁-C₁₈-alkyl substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), -CN and/or -COO(C₁-C₄-alkyl); C₃-C₁₈-alkenyl, C₅-C₁₂-cycloalkyl, C₇-C₉-phenylalkyl, C₂-C₁₈-alkanoyl, benzoyl or norbornenoyl; or C₂-C₁₈-alkanoyl, benzoyl or norbornenoyl substituted by C₁-C₄-alkoxy, -NR₃₃R₃₄, -SR₃₅, -COOH or -COO(C₁-C₄-alkyl); or benzoyl or norbornenoyl substituted by hydroxy, or C₃-C₅-alkenoyl, -SO₂-(C₁-C₁₂-alkyl) or -SO₂-(C₁-C₁₂-alkylphenyl); or -CO-NH-C₁-C₁₂-alkyl or -CO-NH-(C₀-C₁₂-Alkylen)-N=C=O optionally interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinan-2,4,6-trion-1,3-diyl; or

R₃₀ and R₃₁ together with the group –N-L-X form cyclic structures selected from

is hydrogen, C₁-C₁₈-alkyl or C₁-C₁₈-alkyl substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), -CN and/or -COO(C₁-C₄-alkyl); C₃-C₁₈-alkenyl, C₅-C₁₂-cycloalkyl, C₇-C₉-phenylalkyl, C₂-C₁₈-alkanoyl, benzoyl or norbornenoyl; or C₂-C₁₈-alkanoyl benzoyl or norbornenoyl substituted by hydroxy, C₁-C₄-alkoxy, -NR₃₃R₃₄, -SR₃₅, -COOH or -COO(C₁-C₄-alkyl); or C₃-C₅-alkenoyl, -SO₂-(C₁-C₁₂-alkyl) or -SO₂-(C₁-C₁₂-alkylphenyl); or -CO-NH-C₁-C₁₂-alkyl or -CO-NH-(C₀-C₁₂-Alkylen)-N=C=O optionally interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinan-2,4,6-trion-1,3-diyl;

 R_{33} and R_{34} independently of one another are hydrogen, C_1 - C_{12} -alkyl, C_2 - C_4 -hydroxy-alkyl, C_3 - C_{10} -alkoxyalkyl, C_3 - C_5 -alkenyl, C_5 - C_{12} -cycloalkyl, C_7 - C_9 -phenylalkyl, phenyl, C_2 - C_{18} -alkanoyl or benzoyl; or R_{33} and R_{34} together are C_2 - C_8 -alkylene optionally interrupted by -O-, -S- or -N R_{36} -, or are C_2 - C_8 -alkylene optionally substituted by hydroxy, C_1 - C_4 -alkoxy, -O-CO-(C_1 - C_4 -alkyl), or -COO(C_1 - C_4 -alkyl);

R₃₅ is C₁-C₁₈-alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, C₁-C₁₂-alkylphenyl, -CH₂-COO(C₁-C₁₈-alkyl), -CH₂CH₂-COO(C₁-C₁₈-alkyl) or -CH(CH₃)-COO(C₁-C₁₈-alkyl);

R₃₆ is hydrogen, C₁-C₁₂-alkyl optionally interrupted by one or more no adjacent –O-atoms, C₃-C₅-alkenyl, C₇-C₉-phenylalkyl, C₁-C₄-hydroxyalkyl, -CH₂CH₂CN, -CH₂CH₂COO(C₁-C₄-alkyl), C₂-C₁₂-alkanoyl or benzoyl;

with the proviso that the following compounds are excluded:

2. (original) Photoinitiators according to claim 1, wherein

n 'is 1 or 2;

L is a linker;

X is -O-, -S- or $-NR_{32}$ -;

Z is a direct bond;

 R_1 is

- (a) linear or branched unsubstituted C₁-C₁₂-alkyl;
- (b) a radical of the formula;

(d) a radical of the formula

wherein Ar is phenyl, which is unsubstituted or substituted by one or more of the groups NO_2 , $-N(R_{10})_2$, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, phenoxy;

R₂ if n is 1, independently of R₁ has one of the meanings of R₁;

R₂ if n is 2, is C₂-C₈alkylene;

R₃ is C₁-C₄-alkyl, C₂-C₄-alkyl substituted by hydroxy, C₁-C₄-alkoxy; C₃-C₅-alkenyl;

 R_4 independently of R_3 has one of the meanings of R_3 ; or R_4 together with R_3 is C_4 - C_5 -alkylene that may be interrupted by -O-, -N(R_{13})-;

R₅ is hydrogen;

R₆, R₇, R₈ and R₉ independently of each other are hydrogen or methyl;

R₁₀ is hydrogen, C₁-C₄-alkyl or C₃-C₅-alkenyl;

 R_{13} is hydrogen or C_1 - C_4 -alkyl;

R₃₀ and R₃₁ independently of one another are hydrogen, C₁-C₁₂-alkyl; or C₂-C₆-alkyl substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), or -COO(C₁-C₄-alkyl); allyl, cyclohexyl or C₇-C₉-phenylalkyl; or C₂-C₁₂-alkanoyl, benzoyl or norbornenoyl; or C₂-C₁₂-alkanoyl, benzoyl or norbornenoyl substituted by C₁-C₄-alkoxy, -COOH or -COO(C₁-C₄-alkyl); or C₃-C₅-alkenoyl; or -CO-NH-C₁-C₁₂-alkyl or -CO-NH-(C₀-C₁₂-alkylen)-N=C=O, optionally interrupted by one or two phenylene,methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-Isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl; R₃₂ is hydrogen or C₁-C₁₂-alkyl.

- 3. (original) Photoinitiators according to claim 2, wherein
- n is 1 or 2;
- L is linear or branched C₂-C₁₈-alkanediyl;
- X is -0-;
- Z is a direct bond;
- R₁ is
 - (a) linear or branched unsubstituted C₁-C₃-alkyl;
 - (b) a radical of the formula;

(d) a radical of the formula

where Ar is phenyl, which is unsubstituted or substituted by CH_3 - NO_2 or $-N(R_{10})_2$;

- R₂ if n is 1, independently of R₁ has one of the meanings of R₁:
- R₂ if n is 2, is C₂-C₈alkylene;
- R₃ is methyl,
- R₄ is methyl or R₄ together with R₃ is C₅-alkylene that is interrupted by -O-;
- R₅ is hydrogen;
- R₆, R₇, R₈ and R₉ are hydrogen;
- R₁₀ is hydrogen;

 R_{30} and R_{31} independently of one another are hydrogen, C_1 - C_{12} -alkyl; or C_2 - C_6 -alkyl substituted by hydroxy; C_1 - C_4 -alkoxy, -O-CO-(C_1 - C_4 -alkyl), or C_3 - C_5 -alkenoyl.

- 4.(currently amended) Photoinitiators according to any one of claims 1-3, claim 1, wherein n is 1 or
- 2, R₁ is benzyl, 4-aminobenzyl, propyl or allyl and R₂ is ethyl or is C₂-C₈alkylene.
- 5. (original) A composition comprising
- (A) at least one ethylenically unsaturated compound;
- (B) a photoinitiator of formula I as defined in claim 1.

6-7. (cancelled)

- 8. (new) Photoinitiators according to claim 2, wherein n is 1 or 2, R_1 is benzyl, 4-aminobenzyl, propyl or allyl and R_2 is ethyl or is C_2 - C_8 alkylene.
- 9. (new) Photoinitiators according to claim 3, wherein n is 1 or 2, R₁ is benzyl, 4-aminobenzyl, propyl or allyl and R₂ is ethyl or is C₂-C₈alkylene.
- 10. (new) A method for photopolymerization of ethylenically unsaturated compounds or mixtures containing ethylenically unsaturated compounds which method comprises preparation of a composition comprising ethylenically unsaturated compounds and compounds of the formula I according to claim 1 and exposure of the composition to electromagnetic radiation.
- 11. (new) A method for the preparation of multifunctional photoinitiators by reaction of compounds of the formula I as defined in claim 1 with appropriate reagents.
- 12. (new) A method for the preparation of multifunctional photoinitiators according to claim 11 by reaction of compounds of the formula I as defined in claim 1 with acids, acid halides, acid anhydrides, lactones, aldehydes, ketones, isocyanates, sulfonic acid chlorides, alkyl halides, alkyl sulphonates, epoxides, acrylates, methacrylates, amines, alcohols and thioalcohols.