## Statistiques pour Big Data

Documents et calculatrice interdits. La plus grande importance sera accordée lors de la correction à la justification des réponses. Les exercices sont indépendants. Durée 2h.

# Questions de cours

- 1. Présentez le principe de cross-validation et les différentes méthodes.
- 2. Décomposer l'erreur de prédiction en fonction du biais et de la variance.

### Exercice 1

- 1. ( $\frac{1}{2}$  point) La régression Ridge (ou Lasso) est en général utilisée lorsque l'hypothèse ci-dessous n'est pas satisfaite :
  - 1. H1 concernant le rang de X
  - 2. H2 concernant l'espérance et la variance des résidus
  - 3. H3 concernant la normalité des résidus.
- 2. ( $\frac{1}{2}$  point) La régression pénalisée peut être vue comme une régression avec comme critère d'estimation la somme du carré des résidus et une contrainte sur :
  - 1. le plan de (X) X
  - 2. les paramètres
  - 3. Il n'y a pas de lien

## Exercice 2

Toutes les variables sont centrées et réduites. Dans la régression multiple sur p variable explicatives, le nombre de coefficients inconnus  $\{\beta_j\}$  est p, c'est-à-dire  $tr(P_X)$  où  $P_X$  est l'application qui à Y fait correspondre  $\hat{Y}$ . La trace de cette application donne le nombre effectif de paramètres. Cette notion peut être étendue à la régression ridge.

- 1. (2 points) Dans le cas de la régression ridge, donnez l'expression de  $\hat{\beta}_{ridge}$
- 2. (2 points) Donnez l'expression de  $\hat{Y}$  (ou encore  $P_x$ ).
- 3. (2 points) En utilisant la décomposition en valeurs singulière de X : X = UDV' avec U et V matrices orthogonales et  $D = \text{diag}(d_1, ..., d_p)$ ,  $\hat{Y} = (UD(D^2 + \lambda I)^{-1}DU')$ .
- 4. (1 point) En déduire que le nombre effectif de paramètres de la régression ridge est  $\sum_{i=1}^{p} \frac{d_i^2}{d_i^2 + \lambda}$

### Exercice 3

Soit un modèle de régression  $Y = X\beta + \varepsilon$  pour lequel nous nous intéressons à la régression ridge. Les variables sont déjà centrées-réduites. Nous allons considérer que  $\lambda$  est fixé et  $\varepsilon \sim N(0, \sigma^2 I_n)$ . De plus,  $X\beta_{ridge} \neq P_X Y$  et la régression ridge est utile.

- 1. Dans le cadre de la régression par MCO pour  $Y = X\beta + \varepsilon$ , rappeler la loi de  $\hat{\beta}$ .
- 2. Rappeler l'expression de l'estimateur  $\hat{\beta}_{\text{ridge}}$  et trouver sa loi.
- 3. D'après l'énoncé, pour quoi  $\hat{Y}^{MCO} = P_X Y \neq \hat{Y}^{\text{ridge}}$ ? Comparer alors  $Y - \hat{Y}^{\text{ridge}}$  et  $Y - \hat{Y}^{MCO}$ . Sont-ils colinéaires? Conclure sur l'orthogonalité entre  $\hat{Y}^{MCO}$  et  $Y - \hat{Y}^{\text{ridge}}$ .
- 4. Soit l'estimateur de  $\sigma^2$  issu de la régression par MCO :  $\hat{\sigma}^2 = \frac{||Y \hat{Y}||^2}{n-p} = \frac{\hat{\varepsilon}^2}{n-p}$ . Montrez que  $\hat{\beta}$  et  $\hat{\sigma}^2$  sont indépendants. Pour cela exprimer  $\hat{\beta}$  en fonction de la matrix de projection orthogonal  $P_X$  avec  $P_XY = X\beta$  et  $\hat{\varepsilon}$  en fonction de  $I_n P_X$ .
- 5. Soit l'estimateur de  $\sigma^2$  issu de la régression ridge :  $\hat{\sigma}_{\text{ridge}}^2 = \frac{||Y \hat{Y}^{\text{ridge}}||^2}{n Tr(X(X'X + \lambda I_n)^{-1}X')}$ . Peut-on aussi montrer que  $\hat{\sigma}_{\text{ridge}}^2$  et  $\hat{\beta}^{\text{ridge}}$  sont indépendants? Pour cela, vous montrerez que  $\hat{\beta}^{\text{ridge}}$  est fonction de  $P_X Y$  et vous ferez le lien avec la question 4.
- 6. Quelle conséquence à votre réponse précédente sur les intervalles de confiance de l'estimateur ridge?

### Exercice 4

On considère ici un problème de classification binaire  $Y = \{-1, +1\}$  de données dans un espace de description  $X \in \mathbb{R}^d$ . On note  $\{(x_i, y_i) \in (X, Y)\}$ ,  $i \in \{1, ..., n\}$  l'ensemble d'apprentissage considéré. La fonction de décision du classifieur considéré est donnée par :  $f(\beta, \beta_0) = \text{sign}(\beta' x + \beta_0)$ . On considère dans un premier temps un ensemble de données linéairement séparable. Cet ensemble de données et la frontière de décision sont représentés (en sur la figure 1.

- 1. Sur cette figure, l'échantillon  $x_i$  et de label  $y_i$  est représenté par le point A. On s'intéresse à sa distance signée  $\gamma^i$  à la frontière de decision dont le point le plus proche est représenté par B. Sachant que  $\frac{\beta}{|\beta||}$  est un vecteur unitaire othogonal à la frontière de décision, donner l'expression de i en fonction de  $x_i$ ,  $y_i$ ,  $\beta$  et  $\beta_0$ . Que cela implique-t-il si l'on souhaite éloigner au maximum les points de la frontière de décision?
- 2. On considère alors le problème d'optimisation sous contraintes suivant :

$$\min_{\beta_0, \beta} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^{N} \xi_i$$
  
sc  $y_i(x_i'\beta + \beta_0) \ge 1, \forall i$ 

Poser le Lagrangien à considérer pour optimiser ce problème sous contraintes

- 3. Donner la solution analytique de la minimisation de ce Lagrangien par rapport à  $\beta$  et  $\beta_0$ .
- 4. En déduire une nouvelle formulation "duale" de notre problème d'optimisation sous contraintes



Fig. 1 : Ensemble de données

5. Quel est le problème du problème d'optimisation que l'on a considéré? Proposer une nouvelle formulation qui corrige ce problème

## Exercice 5

Soit des données provenant du Survey  $British\ Social\ Attitudes$ . Notre objectif est de prédire la variable  $imm\_brit$ . Cette variable est comprise entre 0 et 100 et représente la proportion d'immigrant perçu au Royaume-Uni par le répondant :

imm\_brit = Sur 100 personnes, selon vous combien sont issues de l'immigration hors pays occidentaux? Nous utiliserons les inputs :

- resp\_female : Est-ce que le répondant est une femme ?
- resp\_age [RAge] : Age du répondant
- resp household size : De combien de personne est composé la foyer du répondant?
- resp\_party\_cons : Est-ce que le répondant soutient le parti conservateur ?
- resp\_party\_lab : Est-ce que le répondant soutient le labor party?
- resp\_party\_libdem : Est-ce que le répondant soutient le parti libéral démocrate?
- resp\_party\_snp : Est-ce que le répondant soutient le Scottish National Party
- resp\_party\_green : Est-ce que le répondant soutient le Green Party
- resp party ukip: Est-ce que le répondant soutient le Respondent le UK Independence Party
- resp. party bnp: Est-ce que le répondant soutient le British National Party
- resp party other : Est-ce que le répondant soutient un autre parti ou ne se pronnonce pas
- resp\_newspaper : Le répondant lit les quotidiens



Fig. 2 : Estimation des coefficients d'une régression ridge pour plusieurs valeurs de  $\lambda$ 



Fig. 3 : MSE pour plusieurs  $\lambda$ 

- resp\_internet\_hrs : Le nombre d'heures passées sur internet par semaine
- resp\_religious : Le répondant pratique une religion
- resp\_time\_current\_employment : Mois d'ancienneté dans sont travail actuel resp\_urban\_area : Densité de la population
- resp\_health : Etat de santé du répondant
- resp\_household\_income : Revenu sur foyer du répondant
- 1. Pourquoi la régression pénalisée vous semble adaptée dans ce problème?
- 2. On estime le modèle ridge pour plusieurs valeurs de l'hyperparamètre  $\lambda$  et on obtient le graphique suivant (figure 2) : Est-ce que la régression Ridge vous semble utile?
- 3. La figure 3 représente la MSE du modèle pour les différents  $\lambda$ . Quelle valeur (environ) est optimale?
- 4. On obtient les résultats suivants pour les modèles ridge et lasso, que pouvez vous commenter?

|                                          | Ridge    | Lasso    |
|------------------------------------------|----------|----------|
| cste                                     | 37.03    | 36.71    |
| $resp\_female$                           | 5.94     | 5.34     |
| $resp\_age$                              | -0.04    | -0.1     |
| $resp\_household\_size$                  | 1.15     | 0.93     |
| $resp\_party\_lab$                       | -2.58    | -0.58    |
| $resp\_party\_libdem$                    | -3.90    | -1.49    |
| $resp\_party\_snp$                       | 3.82     | 0.00     |
| $resp\_party\_green$                     | -3.34    | 0.00     |
| $resp\_party\_ukip$                      | -4.15    | -0.00    |
| $resp\_party\_bnp$                       | 8.82     | 5.82     |
| $resp\_party\_other$                     | 2.73     | 2.56     |
| $resp\_newspaper$                        | 1.61     | 0.01     |
| $resp\_internet\_hrs$                    | -0.03    | 0.00     |
| $\operatorname{resp\_religious}$         | 0.51     | 0.00     |
| $resp\_time\_current\_employment$        | -0.01    | 0.00     |
| $resp\_urban\_area\_rural$               | -1.22    | 0.00     |
| ${\tt resp\_urban\_area\_rather\_rural}$ | -0.86    | 0.00     |
| $resp\_urban\_area\_rather\_urban$       | 0.29     | 0.00     |
| resp_urban_area_urban                    | 1.66     | 0.15     |
| $\operatorname{resp\_healthfair}$        | -1.21    | 0.00     |
| resp_healthfairly good                   | -0.24    | 0.00     |
| ${\rm resp\_healthgood}$                 | -0.10    | 0.00     |
| $resp\_household\_income$                | -1.20    | -1.28    |
| MSE                                      | 386.4369 | 386.9932 |

 ${\it Tab.}\ 1$  : Résultats de l'estimation ridge et lasso