Genome Sequencing

Marc Tollis

Comparative Genomics

Cost per Genome

https://www.nlm.nih.gov/about/2018CJ.html

So You Want to Start a *de novo* Genome Assembly Project

Assuming you have a good reason to sequence and assemble a genome.

- 1. What is the size of the genome?
- 2. What will be your sequencing "recipe"?
- 1. Do you have the computational resources?
 - i.e. a machine with 32 processors, 512GB RAM
- 2. Do you have the time? Personnel? Bioinformatics experience?

Animal Genome Sizes

Large genomes have a lot of transposable elements

Problem of Repeats

True sequence with repeats

Other Questions

Expected Heterozygosity

Ploidy

Sequencing Technologies

- Sanger method old workhorse
 - "First generation sequencing"
 - Lower coverage, longer reads, fewer errors
- Next-generation sequencing now standard
 - "Second generation", PCR, short reads, more errors
 - 454, Illumina, SOLiD
- Third generation becoming standard (expensive)
 - Single molecule, long reads, many more errors
 - PacBio, Oxford Nanopore

Basic Overview of Sequencing Technologies

	Company	Platform	Read Length	Time per run	Number of reads per unit	Common error
Short reads	Illumina	NovaSeq 6000	2 X 250bp	≤44 hours	≤40 billion	Substitution
	454 Life Sciences*	GS FLX Titanium XL	≤1000bp	700Mb/day	~150,000	indel
	Applied Biosystems*	SOLID 5500xl W	25-50bp	5-8 days	~300 million	Substitution
Long reads	Pacific Biosciences	PacBio Sequel	≤60 kb (average 25 kb)	30 hours	≤4 million	indel
	Oxford Nanopore	MinION	≤4 Mb (average 6 kb)	≤72 hours	Tens of millions	indel

PacBio Sequel System

Generate Highly Accurate Long Reads

Produce HiFi reads using the circular consensus sequencing (CCS) mode to provide base-level resolution for detection of all variant types from single nucleotide to structural variants.

Optimize Your Run for Even Longer Reads

Sequence read lengths in the tens of kilobases using the continuous long read (CLR) sequencing mode to enable high-quality assembly of even the most complex genomes.

Half of Data in Reads

Longest Reads Up To

175 kb

Oxford Nanopore

illumina®

Illumina Paired-end and Mate-pairs

Paired-end (PE) "short insert library" sequencing

orientation

- Genome is fragmented to desired lengths
- Reads one end of the molecule, flips and then reads the other end
- Generates read pairs with a known distance between them

500bp ← FR

Mate-pair (MP)"jumping library" sequencing

- Circularizes longer molecules (2kb-25kb)
- Biotinylated, fragmented, enriched, and sequenced

Repeats Resolved

- Repeats can be resolved using paired-end information
- If one end of a read is unique, then you can map both reads.

Repeats Resolved

- Repeats can be resolved using paired-end information
- If one end of a read is unique, then you can map both reads.

- However, for longer repeats (i.e. LINEs) this will not work.
- Hence Illumina-based genomes tend to be fragmented.

How much to sequence?

(read number * read length in bp)

Coverage =

(The number of times a site in the genome is represented by a read)

Genome size in bp

How much to sequence?

Say, a typical mammal...

Libraries	Total Data (Gb)	Sequence Coverage
200bp paired-end	149.1	51.2X
500bp paired-end	141.7	48.7X
3kb mate-paired	57.3	19.7X
5kb mate-paired	72.5	24.9X
10kb mate-paired	28.5	9.8X
	449.1	154.3X

Cell Reports

Insights into the Evolution of Longevity from the Bowhead Whale Genome

Keane et al. (2015), Cell Reports

Resource

Fastq format

Each sequence has four lines

- 1. sequence name starting with "@"
- 2. Nucleotide sequence
- 3. Empty line except for "+"
- 4. Quality score information.

Phred Quality Scores

Logarithmically linked to error probabilities

Estimates several parameters based on peak shape and resolution at each base

These estimated parameters are then compared to lookup tables from known sequences

Allows the automation of quality control – especially helpful for large numbers of reads Was invented for the Human Genome Project

Base-calling of automated sequencer traces using phred. II. Error probabilities. Ewing B, Green P (1998). Genome Research.

Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Ewing B, Hillier L, Wendl MC, Green P. (1998). Genome Research.

Phred Quality Score	Probability of Error	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Data Quality Control

Quality score?

GC content?

Sequence duplication levels?

Overrepresented sequences, or adaptors?

Trimming

- Trimmomatic (Bolger et al. 2014 Bioinformatics)
 - Paired end mode:
 - ILLUMINACLIP trim adapters using database
 - HEADCROP
 - LEADING:3
 - TRAILING:3
 - SLIDINGWINDOW:4:15
 - MINLEN
 - Will trim entire dataset in pairs (F and R), and output singletons whose mates were eliminated

Three types of biases in NGS data

- Systematic bias
 - Problem with PCR, sequencer or library prep
 - Errors in base-calling
 - GC bias
 - High duplication rates
- Coverage bias

- Batch effects
 - Non-biological differences between experimental groups

Error correction

Substitution errors are most common in Illumina datasets

In theory, errors should be infrequent (0.0001) and random

But if you have 1 billion reads, that's 100,000 errors

Can be addressed by laying out all the reads covering a position

Use majority of reads to find (rare) erroneous sites, and correct them

Error correction

Error correction needs to be done before assembly!

K-spectrum-based correcting:

Reads are broken up into k-mers

Distances between k-mers are calculated

Errors are corrected

Some tools are:

SOAPdenovo error correction (Li et al. 2010)

Quake (Kelley et al. 2010)

Reptile (Yang et al. 2010)

Merging reads

Joins together overlapping reads to create single-end reads If you have 180/200bp libraries and ~100bp reads, this is recommended.

Speeds up assembly considerably so the assembler does not have to calculate the distance between these reads.

FLASH, Cope, PEAR are some tools that do this.

Choose genome, gather info

DNA Library preparation

Sequencing

Quality check

Trimming

Error correction

Merge overlapping reads

ASSEMBLE!

