Zadanie 2

Roch Kowalski mieszkający na stałe w Warszawie (szerokość geograficzna $\lambda=52^\circ$, przyspieszenie grawitacyjne $g_W=9,812\,\mathrm{m/s^2})$ przywiózł z podróży po świecie dwie dokładne wagi sprężynowe wyskalowane w kilogramach. Jedną kupił w ekwadorskiej stolicy Quito ($\lambda=0^\circ$, $g_R=9,780\,\mathrm{m/s^2})$, drugą zaś otrzymał w prezencie w stacji badawczej na biegunie ($\lambda=90^\circ$, $g_B=9,832\,\mathrm{m/s^2})$. Razu pewnego kupił kilogram komosy ryżowej i dla sprawdzenia rzetelności sprzedawczyni zważył go w domu na obu posiadanych wagach. Roch nie posiadał się ze zdumienia, gdyż skazania wag były różne. Jaka była różnica wskazań wag Δ , jeśli sprzedawczyni była uczciwa i bardzo dokładna? Ile wyniosłaby ta różnica, gdyby założyć, że Ziemia jest jednorodą kulą o promieniu $R_Z=6,371\cdot10^6$ m, masie $M_Z=5,972\cdot10^{24}$ kg, okresie obrotu T=23h56m. Przyjmij $G=6,674\cdot10^{-11}\,\mathrm{m}^3/\mathrm{kg/s^2}$.

Odpowiedž: $\Delta=m_{\text{waga z równika}}-m_{\text{waga z bieguna}}=m\cdot\frac{g_W}{g_Rg_B}(g_B-g_R)=5,3$ g. Dla Ziemi jako jednorodnej kuli: $\Delta=3.5$ g.

Warszern:
$$\frac{R_{\delta w}}{m_{w}} = \frac{F}{J_{R}}$$
 $m_{w} = \frac{F}{J_{w}}$
 $m_{w} = \frac{F}{J_{R}}$
 $m_{w} = \frac{F}{J_{R}}$