A set of individuals V is almost decisive for x against y if xPy whenever xP_iy for every $i \in V$ and yP_ix for every $i \notin V$. A set of individuals V is almost decision for a pair $x, y \in X$, $[xP_iy \ \forall i \in V \ \& \ yP_ix \ \forall i \notin V] \ \rightarrow \ xPy$.

A set of individuals V is decisive for x against y if xPy when xP_iy for every $i \in V$.

A set of individuals V is decisive for a pair $x, y \in X$ $[xP_iy \forall i \in V] \rightarrow xPy$.

Notice that it is possible that a set V can be almost decisive but not decisive.

Suppose $xP_iy \forall i \in V$ is true and there exists $j \notin V$ such that xR_jy and the social preference is yRx. It satisfies almost decisive but not decisive.

Therefore, it is not always true that $D(x, y) \rightarrow \bar{D}(x, y)$.

But $\bar{D}(x,y) \to D(x,y)$. If $xP_iy \forall i \in V$ and $j \notin V$, xR_jy , and xPy then if part of the definition of almost decisive set is is false so the state is trivially true. It is decisive.

Lemma 1

If there is some individual J who is almost decisive for any ordered pair of alternative, then an Social welfare function satisfying conditions U, P, and I implies that J must be a dictator.

Proof: Suppose that person J is almost decisive for some x against some y, it means $\exists \ x, \ y \in X : D(x,y)$. Let z be another alternative and let i refers to all individuals other than J. Assume $xP_jy\&yP_Jz$, and that $yP_ix\ \&\ yP_iz$. We have not specified the preferences of the persons other than J between x and z. Now $[D(x,y)\&xP_jy\&yP_ix] \to xPy$. Further $[yP_jz\&yP_iz] \to yPz$ from the condition P Pareto principle. But $[xPy\&yPz] \to xPz$, by the transitivity of the strict social preference relation.

We have xPz without any assumption on the preference relation over x and z on part of the individuals other than J. We have only assumed yP_iz and yP_ix . Now, these ranking of x and y and the ranking of y and z has any effect on the ranking of x and z it violates condition I, independence of irrelevant alternatives.. Hence xPz must be independent of the assumptions on x and y and y and z. Also, xPz is the consequence of xP_jz alone without having any effect from the ordering of i s. This means that J is decisive for x against z.

We get $D(x,y) \rightarrow \bar{D}(x,z)$ (1).

Now suppose $zP_jx\&xP_jy$, and $zP_ix\&yP_ix$. We have zPx from Pareto condition. And $D(x,y)\&xP_jy\&yP_ix$, we have xPy. Using transitivity of strict social preference relation we have, $zPx\&xPy \to zPy$. Again, we have got the social relation over z and y without specifying the individual preference relation of i s. Hence J is decisive for z against y.

We get $D(x,y) \to \overline{D}(z,y)$ (2). We can also show $D(x,z) \to \overline{D}(y,z)$ (3) by interchanging z with y in (2). Again putting x in place of z, z in place of y, and y in place of x, we obtain from (1)

$$D(y,z) \rightarrow \bar{D}(y,x)$$
 (4).

We have $D(x,y) \rightarrow \bar{D}(x,z)$ from (1)

- $\rightarrow D(x,z)$ using the definition of decisive and almost decisive
- $\rightarrow \bar{D}(y,z)$ from (3)
- $\rightarrow D(y,z)$ from definition
- $\rightarrow \bar{D}(y,x)$ from (4).

We get that $D(x,y) \rightarrow \bar{D}(y,x)$ (5).

By interchanging x and y in (1), (2) and (5), we get

$$D(x,y) \to [\bar{D}(y,z)\&\bar{D}(z,x)\&\bar{D}(x,y)]$$
 (6).

Now,
$$D(x,y) \to \bar{D}(y,x)$$
 from (5) $\to D(y,x)$. Hence from (6) we have $D(x,y) \to [\bar{D}(y,z)\&\bar{D}(z,x)\&\bar{D}(x,y)]$ (7). Combining (1), (2), (5) and (7), it is seen that $D(x,y)$ implies that individual J is decisive for every ordered pair of alternatives from the set of three alternative $\{x,y,z\}$ given the condition U,P and I . Thus, J is a dictator over any set of three alternatives containing x and y .

Now, consider a larger number of alternatives. Take any two alternatives u and v out of the entire set of alternatives. If u and v are so chosen that they are same as x and y, then $\bar{D}(u,v)$ holds, as can be shown by taking a triple consisting of u,v and any other alternative z. If one of u and v is same as one of x and y, say u and x are same but not v and y, then take the triple consisting of $x(or\ u)$, y, and v. Since D(x,y), holds it again follows that $\bar{D}(u,v)$ and also $\bar{D}(v,u)$.

Let both u and v be different from x and y. Now first take $\{x,y,u\}$ and we get $\bar{D}(x,u)$ which implies D(x,u). Now take the triple $\{x,u,v\}$. Since D(x,u), it follows from previous argument that $\bar{D}(u,v)$ and also $\bar{D}(v,u)$. Thus, D(x,y) for some x and y, implies $\bar{D}(u,v)$ for all possible ordered pairs (u,v). Therefore, individual J is a dictator.