I. kolo kategorie Z5

Z5-I-1

Honzík dostal kapesné a chce si za ně koupit něco dobrého. Kdyby si koupil čtyři koláče, zbylo by mu 5 Kč. Kdyby si chtěl koupit pět koláčů, chybělo by mu 6 Kč. Kdyby si koupil dva koláče a tři koblihy, utratil by celé kapesné beze zbytku.

Kolik stojí jedna kobliha?

(L. Dedková)

Nápověda. Kolik stojí jeden koláč?

Možné řešení. Honzíkovo kapesné lze vyjádřit třemi způsoby, a to jako

- součet ceny 4 koláčů plus 5 Kč,
- součet ceny 5 koláčů minus 6 Kč,
- součet cen 2 koláčů a 3 koblih.

Z prvních dvou vyjádření vyplývá, že jeden koláč stojí 5+6=11 Kč. Odtud také zjišťujeme, že Honzíkovo kapesné bylo $4\cdot 11+5=5\cdot 11-6=49$ Kč. Ze třetího vyjádření plyne, že za tři koblihy by Honzík zaplatil $49-2\cdot 11=27$ Kč. Jedna kobliha tedy stojí 27:3=9 Kč.

Z5-I-2

Honza měl tři klece (černou, stříbrnou, zlatou) a tři zvířata (morče, potkana a tchoře). V každé kleci bylo jedno zvíře. Zlatá klec stála nalevo od černé klece. Stříbrná klec stála napravo od klece s morčetem. Potkan byl v kleci napravo od stříbrné klece.

Určete, v které kleci bylo které zvíře.

(L. Hozová)

Nápověda. Jaké bylo pořadí klecí?

Možné řešení. Z posledních dvou informací vyplývá, že stříbrná klec nestála ani zcela vlevo, ani zcela vpravo, tedy stála uprostřed. Zlatá klec stála nalevo od černé klece, tedy pořadí klecí bylo: zlatá, stříbrná, černá.

Potkan byl v kleci napravo od stříbrné klece, tedy byl v černé kleci. Stříbrná klec stála napravo od klece s morčetem, tedy morče bylo ve zlaté kleci. Honza měl zvířata v klecích rozmístěna takto:

zlatá	stříbrná	černá
morče	tchoř	potkan

Z5-I-3

Na obrázku je diagram se sedmi políčky. Nakreslete do něj hvězdičky tak, aby byly splněny všechny následující podmínky:

- 1. Hvězdiček je celkem 21.
- 2. V každém políčku je alespoň jedna hvězdička.
- 3. V políčkách označených A, B, C je dohromady 8 hvězdiček.
- 4. V políčkách označených A a B je dohromady méně hvězdiček než v políčku označeném C.

- 5. V políčku označeném B je více hvězdiček než v políčku označeném A.
- 6. V kruhu je celkem 15 hvězdiček, v trojúhelníku celkem 12 hvězdiček a v obdélníku celkem 14 hvězdiček.

(E. Semerádová)

Nápověda. Určete nejdřív počty hvězdiček v políčkách A, B, C.

Možné řešení. Z druhé a páté podmínky vyplývá, že v políčku A je alespoň 1 hvězdička a v políčku B jsou alespoň 2 hvězdičky. Tedy v políčkách A a B jsou dohromady alespoň 3 hvězdičky. Ze třetí a čtvrté podmínky vyplývá, že v těchto dvou políčkách nejsou dohromady více něž 3 hvězdičky. Proto jsou v políčkách A a B dohromady právě 3 hvězdičky a v políčku C je 5 hvězdiček:

$$A = 1, \quad B = 2, \quad C = 5.$$

Také ostatní políčka označíme písmeny jako na následujícím obrázku:

Každé z políček A, B a C je společné dvěma ze tří útvarů zmiňovaných v šesté podmínce (např. políčko A patří kruhu a trojúhelníku). Políčko D je společné všem třem útvarům. Zbylá políčka E, F a G patří do navzájem různých útvarů. Součet hvězdiček v kruhu, trojúhelníku a obdélníku je 15+12+14=41 a v tomto součtu jsou hvězdičky z políček A, B, C započteny dvakrát, hvězdičky z políčka D třikrát a hvězdičky z políček

E, F, G jedenkrát. Přitom podle první podmínky je hvězdiček celkem 21 a v tomto součtu jsou hvězdičky z každého políčka počítány jedenkrát. Rozdíl 20 hvězdiček proto odpovídá součtu hvězdiček v políčkách A, B, C (kterých je celkem 8) a dvojnásobku počtu hvězdiček v políčku D proto musí být 6 hvězdiček:

$$D = (20 - 8) : 2 = 6.$$

Počty hvězdiček ve zbylých políčkách lze nyní dopočítat podle informací v šesté podmínce:

$$15 = A + C + D + E, \quad \text{tedy} \quad E = 15 - 1 - 5 - 6 = 3,$$

$$12 = A + B + D + F, \quad \text{tedy} \quad F = 12 - 1 - 5 - 2 = 3,$$

$$14 = B + C + D + G, \quad \text{tedy} \quad G = 14 - 2 - 5 - 6 = 1.$$

Jiné řešení. Stejně jako v předchozím řešení odvodíme počty hvězdiček v políčkách $A,\,B$ a C:

$$A = 1, \quad B = 2, \quad C = 5.$$

Podle informací v šesté podmínce zjišťujeme, že

$$15 = A + C + D + E$$
, tedy $D + E = 15 - 1 - 5 = 9$, $12 = A + B + D + F$, tedy $D + F = 12 - 1 - 2 = 9$, $14 = B + C + D + G$, tedy $D + G = 14 - 2 - 5 = 7$.

Odtud vidíme, že v políčkách E a F je stejný počet hvězdiček, a ten je o 2 větší než v políčku G. Nyní můžeme postupně dosazovat počty hvězdiček v kterémkoli z políček D, E, F, G, z předchozího vyjádřit počty ve zbylých třech políčkách a ověřit, zda je celkový součet A + B + C + D + E + F + G roven 21. Dosazujeme za G, přičemž máme na paměti,

že v každém políčku má být alespoň jedna hvězdička:

G	E = F	D	součet
1	3	6	21
2	4	5	23
3	5	4	25
4	6	3	27
5	7	2	29
6	8	1	31

Jediná vyhovující možnost je zvýrazněna na prvním řádku.

Z5-I-4

Eva s Markem hráli badminton a Viktor jim počítal výměny. Po každých 10 výměnách nakreslil Viktor křížek (X). Poté místo každých 10 křížků nakreslil kolečko (O) a odpovídajících 10 křížků smazal. Když Eva a Marek hru ukončili, měl Viktor nakresleno toto:

OOOXXXXXXX

Určete kolik nejméně a kolik nejvíce výměn Eva s Markem sehrála. (M. Smitková)

Nápověda. Kolik výměn mohla Eva s Markem sehrát, kdyby nakonec bylo nakresleno pouze jedno kolečko?

Možné řešení. Každé kolečko nahrazuje 10 křížků, předchozí zápis tedy odpovídá 37 křížkům. Každý křížek představuje 10 odehraných výměn, Eva s Markem tedy sehrála nejméně 370 a nejvíce 379 výměn.

Z5-I-5

Sestrojte libovolnou úsečku AS, pak sestrojte kružnici k se středem v bodě S, která prochází bodem A.

- 1. Sestrojte na kružnici k body E, F, G tak, aby spolu s bodem A tvořily obdélník AEFG. Najděte alespoň dvě řešení.
- 2. Sestrojte na kružnici k body B, C, D tak, aby spolu s bodem A tvořily čtverec ABCD. (L. Růžičková)

Nápověda. Co víte o úhlopříčkách v obdélníku a ve čtverci?

Možné řešení. 1. Obdélník je čtyřúhelník, který má všechny vnitřní úhly pravé. Úhlopříčky každého obdélníku jsou stejně dlouhé a protínají se ve svých středech. Odtud zejména plyne, že kružnice se středem v průsečíku úhlopříček, která prochází jedním vrcholem obdélníku, prochází také všemi ostatními vrcholy.

Z těchto vlastností lze odvodit několik řešení úlohy, např.:

- na kružnici k zvolíme libovolně bod E,
- \bullet bod F sestrojíme jako průsečík kružnice k s kolmicí k přímce AE jdoucí bodem E,

- bod G sestrojíme jako průsečík kružnice k s kolmicí k přímce EF jdoucí bodem F. Jiné řešení téže úlohy je toto:
- na kružnici k zvolíme libovolně bod E,
- \bullet bod Fsestrojíme jako průsečík kružnice ks přímkou AS,
- ullet bod G sestrojíme jako průsečík kružnice k s přímkou ES.

2. Čtverec je čtyřúhelník, který má všechny vnitřní úhly pravé a všechny strany stejně dlouhé. Kromě všech vlastností jmenovaných v předchozím případě navíc platí, že úhlopříčky každého čtverce jsou navzájem kolmé.

Úlohu lze řešit např. takto:

- \bullet bod C sestrojíme jako průsečík kružnice k s přímkou AS,
- \bullet body B a Dsestrojíme jako průsečíky kružnice ks kolmicí k přímce ACjdoucí bodem S.

Z5-I-6

Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách.

Které kartičky mohly zůstat na stole? Určete všechny možnosti. (L. Hozová)

Nápověda. Jaký je součet čísel na všech kartičkách?

Možné řešení. Součet čísel na všech osmi kartičkách je

$$2+3+5+7+11+13+17+19=77$$
,

a to je rovno 39+38. Ferda si vybral tři kartičky se součtem čísel 39. Postupným zkoušením od největších čísel najdeme všechny vyhovující možnosti:

v ruce	na stole
19, 17, 3	13,11,7,5,2
19, 13, 7	17, 11, 5, 3, 2