Álgebra I. Hoja de ejercicios 8: Abelianización Universidad de El Salvador, ciclo impar 2018

Por cualquier pregunta, no duden en contactarme por correo electrónico cadadr@gmail.com.

Ejercicio 8.1. Para un grupo G y su subgrupo H denotemos por [G, H] el subgrupo generado por los conmutadores [g, h] donde $g \in G$ y $h \in H$. Demuestre que $[G, H] \subseteq H$ si y solamente si H es un subgrupo normal.

Ejercicio 8.2. En A_5 tenemos $[(1\ 2\ 4), (1\ 3\ 5)] = (1\ 2\ 3)$. De modo similar, exprese las permutaciones $(1\ 2)\ (3\ 4)$ y $(1\ 2\ 3\ 4\ 5)$ como conmutadores.

Ejercicio 8.3. Para las matrices elementales $E_{ij}(\lambda) := I + \lambda e_{ij}$ demuestre que

$$[E_{ij}(\lambda), E_{jk}(\mu)] = E_{ik}(\lambda \mu)$$

donde i, j, k son índices diferentes.

Ejercicio 8.4. *Encuentre todos los homomorfismos* $S_n \to \mathbb{Z}/m\mathbb{Z}$.

Ejercicio 8.5. Sea $f: G \to H$ un epimorfismo de grupos. Demuestre que $f^{ab}: G^{ab} \to H^{ab}$ es también un epimorfismo. Demuestre que si $f: G \to H$ es un monomorfismo, entonces $f^{ab}: G^{ab} \to H^{ab}$ no es necesariamente un monomorfismo (encuentre un contraejemplo específico).

Ejercicio 8.6. Consideremos la aplicación

$$\operatorname{Hom}(G,H) \to \operatorname{Hom}(G^{ab},H^{ab}),$$

 $f \mapsto f^{ab}.$

Demuestre que no es ni inyectiva, ni sobreyectiva en general (encuentre contraejemplos). Indicación: para ver que no es sobreyectiva, considere $G = \{\pm 1\}$ y $H = Q_8$.

Ejercicio 8.7. Sea k un cuerpo. Consideremos el grupo

$$G := \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \, \middle| \, a, b, c \in k \right\}.$$

- 1) Calcule el subgrupo conmutador [G, G].
- 2) Demuestre que la abelianización Gab es isomorfa al grupo aditivo

$$k^2 = \{(a,c) \mid a,c \in k\}.$$

Ejercicio 8.8. Calcule la abelianización del grupo de cuaterniones Q_8 .

Ejercicio 8.9. *Para el grupo diédrico*

$$D_n = \{ id, r, r^2, \dots, r^{n-1}, f, fr, fr^2, \dots, fr^{n-1} \}$$

- 1) calcule que $[D_n, D_n] = \langle r^2 \rangle$;
- 2) calcule $(D_n)^{ab}$.

Ejercicio 8.10. El grupo diédrico D_n permuta los vértices del n-ágono regular y esto nos da un monomorfismo natural $f: D_n \to S_n$. Calcule el homomorfismo correspondiente $f^{ab}: (D_n)^{ab} \to (S_n)^{ab}$.