

FINAL PROJECT YELP DATA CHALLENGE

Hardik Chapanera, Pranab Bhadani, Ruchi Gupta Neema, Snehal Vartak

TASK 1

Recommend business to users

Recommendation systems: Our Approach

Customer Query

Represent Customer as Feature Vector

Food Service Ambience Cost Maximize
Cosine similarity

Restaurant

Restaurant 1: Feature Vector

Food Service Ambience Cost

Restaurant 2: Feature Vector

Food Service Ambience Cost

Feature Vector Selection

- Using text mining, we extracted top 15 words from the review text based on POS tagging.
- Finally we took 5 features as food, service, ambience, cost and misc.

```
Out[44]: ['place',
           'food',
           'time',
           'service',
           'pizza',
                                                           Food
           'White',
           'order',
                                                         Service
           'people',
                                                        Ambience
           'Castle',
           'fries',
                                                           Cost
           'beer',
                                                           Misc
           'way',
           'restaurant',
           'staff',
           'experience',
           'Vegas',
           'burgers',
           'sliders',
           'menu',
           'day']
```

Representation of Customer/ Restaurant as Vector from Reviews

Procedure from Review to Feature Vector

Example

Category Prediction for Each Sentence

Step 1: Train Word Embeddings

model.most_similar(["salmon"]) [(u'whitefish', 0.7713552713394165), (u'halibut', 0.7040623426437378), (u'trout', 0.7014901638031006), (u'scallop', 0.6834375858306885), (u'tuna', 0.6816917657852173), (u'saba', 0.6587077379226685), (u'hamachi', 0.6518269777297974), (u'swordfish', 0.6413819789886475), (u'mackerel', 0.6379843950271606), (u'tilapia', 0.6306815147399902)]

Step 2: Extract Noun from Sentences

Sentence

```
contentArray =['Those little \
    hamburger and cheeseburgers \
    were delicious!']
```

Noun

['hamburger', 'cheeseburgers']

Sentence

contentArray =['Those little \
 hamburger and cheeseburgers \
 were delicious!']

Assign Feature: FOOD

Similarity with hamburger

food - 0.811020091176 service - 1.02561366372 ambience - 1.09910923243 cost - 0.930332280695

Similarity with cheeseburgers

food - 0.841149821877 service - 1.01916900091 ambience - 1.02966656536 cost - 0.89333409816

Creating Restaurant Feature Vector and Customer Feature vector

Restaurant Feature Vector: Review 1

Review ID	Sentence ID	Reviews	Sentiment	food	service	ambience	cost	misc
1	1	Crave those crazy squares!!	1	1	0	0	0	0
1	2	Back home in Texas, my dad would crave them and have to settle for the frozen-aisle version.	1	1	0	0	0	0
1	3	This place is a bit of a show in the middle of the night as most people are drunk and sloppy while ordering lol.	1	0	0	1	0	0
1			1	1	0	1	0	0

Restaurant Feature vector is given by the mean of each review vector

Customer Feature vector

$$C = \frac{\sum_{i=1}^{n} w_i * R_i}{\sum_{i=1}^{n} w_i}$$

 w_i : Customer rating of restaurant i

 R_i : Restaurant i feature vector

Recommendation systems: Our Approach

Customer Query

Represent Customer as Feature Vector

Food Service Ambience Cost

RMSE Value = 1.63

<u>Restaurant</u>

Restaurant 1: Feature Vector

Food Service Ambience Cost

Maximize

Cosine similarity

Restaurant 2: Feature Vector

Food Service Ambience Cost

Algorithm 2: Collaborative Filtering Approach

- 1. Item Based Similarity
 - Calculate the similarity between item-item using cosine and pearson similarity.

Algorithm	Similarity	RMSE
Item Similarity Model	Cosine	3.84
KNN Basic	Cosine	1.0963
KNN With Means	Cosine	1.0312
KNN Basic	Pearson	1.1538
KNN With Means	Pearson	1.0837
Ranking Factorization		1.13671

2. User Based Similarity Evaluation -

Algorithm	Similarity	RMSE	
User Similarity Model	Cosine	3.74	
KNN Basic	Cosine	1.0833	
KNN With Means	Cosine	1.0386	
KNN Basic	Pearson	1.1374	
KNN With Means	Pearson	1.0843	

TASK 2

Predicting bad reviews for a Business

Machine Learning Approach

- Create features based on ratings
 - Apply classical machine learning models
 - works well with less training data.
- Applied Naive Bayes, Linear Regression, Logistic Regression, SVM and Random Forest
- Testing another model where features are tf-idf scores of reviews

Results

RMSE Values

Approach 1

1. LSTM (Recurrent Neural Network)

- 2. We preprocess the data to find number of reviews per day per Business
- 3. Parameter used: timestep = 4, unit = 10, hidden layer = 1
- 4. Result 1.4614 RMSE

Results

Predicted Results

Result Continued...

Approach 2

- Auto regressive Integrated Moving Average (ARIMA)
 - Statistical approach
 - works well with less training data.
 - Data need to be stationary
- Test for stationarity
- Dickey Fuller's test (t-stat < critical value)

Results of Dickey-Fuller Test:				
Test Statistic	-4.089946			
p-value	0.001006			
#Lags Used	28.000000			
Number of Observations Used	2669.000000			
Critical Value (1%)	-3.432802			
Critical Value (5%)	-2.862624			
Critical Value (10%)	-2.567347			
dtype: float64				

Results

Total Review Prediction

RMSE: 3.075

Negative Review Prediction

RMSE: 0.274

THANK YOU