Maximal Sizes of Weak (2, 1)-Sum-Free Sets in Finite Abelian Groups

Peter E. Francis

Gettysburg College

September 18, 2023

- 1 Introductions and Definitions
 - Sumsets
 - Sum-free sets
 - \blacksquare Defining μ and $\mu \hat{}$
- **2** Established values and bounds for μ and μ
 - \bullet (2, 1)-sum-free sets
 - Weak (2,1)-sum-free sets
- 3 New Results
 - Divide and Conquer
 - A Sketch
- 4 Future Work

Maximal Sizes of Weak (2,1)-Sum-Free Sets in Finite Abelian Groups

Introductions and Definitions

—Sumsets

Ordinary Sumsets

Sumsets

Ordinary Sumsets

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write hA for the h-fold sumset of A, which consists of sums of exactly h terms of A:

$$hA = \left\{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^m \lambda_i = h \right\}.$$

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write hA for the h-fold sumset of A, which consists of sums of exactly h terms of A:

$$hA = \left\{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^m \lambda_i = h \right\}.$$

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write hA for the h-fold sumset of A, which consists of sums of exactly h terms of A:

$$hA = \left\{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^m \lambda_i = h \right\}.$$

Let
$$A = \{1, 2, 3\} \subset \mathbb{Z}_6$$
.

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write hA for the h-fold sumset of A, which consists of sums of exactly h terms of A:

$$hA = \left\{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^m \lambda_i = h \right\}.$$

Let
$$A=\{1,2,3\}\subset \mathbb{Z}_6.$$
 Then,
$$2A=\{1+1,\ 1+2,\ 1+3,\ 2+2,\ 2+3,\ 3+3\}$$

$$=\{0,2,3,4,5\}.$$

Introductions and Definitions

Sumsets

Restricted Sumsets

L Sumset:

Restricted Sumsets

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h\hat{A}$ for the <u>restricted</u> h-fold sumset of A, which consists of sums of exactly h <u>distinct</u> terms of A:

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h\hat{A}$ for the <u>restricted</u> h-fold sumset of A, which consists of sums of exactly h <u>distinct</u> terms of A:

$$h\hat{A} = \left\{\sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \{0,1\}, \sum_{i=1}^m \lambda_i = h\right\}.$$

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h\hat{A}$ for the <u>restricted</u> h-fold sumset of A, which consists of sums of exactly h <u>distinct</u> terms of A:

$$h\hat{A} = \left\{\sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \{0,1\}, \sum_{i=1}^m \lambda_i = h\right\}.$$

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h\hat{A}$ for the <u>restricted</u> h-fold sumset of A, which consists of sums of exactly h <u>distinct</u> terms of A:

$$h\hat{A} = \left\{\sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \{0,1\}, \sum_{i=1}^m \lambda_i = h\right\}.$$

Let
$$A = \{1, 2, 3\} \subset \mathbb{Z}_6$$
.

Suppose that $A = \{a_1, a_2, \dots, a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h\hat{A}$ for the <u>restricted</u> h-fold sumset of A, which consists of sums of exactly h <u>distinct</u> terms of A:

$$h\hat{A} = \left\{\sum_{i=1}^m \lambda_i a_i \mid \lambda_1, \dots, \lambda_m \in \{0,1\}, \sum_{i=1}^m \lambda_i = h\right\}.$$

Let
$$A=\{1,2,3\}\subset \mathbb{Z}_6.$$
 Then,

$$2^A = \{1+2, 1+3, 2+3\} = \{3,4,5\}.$$

Sum-free sets

(2,1)-sum-free sets

└─Sum-free sets

(2,1)-sum-free sets

A subset A of a given finite abelian group G is (2,1)-sum free if

$$2A \cap A = \emptyset$$
.

(2, 1)-sum-free sets

A subset A of a given finite abelian group G is (2,1)-sum free if

$$2A \cap A = \emptyset$$
.

(2,1)-sum-free sets

A subset A of a given finite abelian group G is (2,1)-sum free if

$$2A \cap A = \emptyset$$
.

Example 3

 $A = \{1,3\}$ is (2,1)-sum free in \mathbb{Z}_6 :

$$2A = \{1+1, 1+3, 3+3\} = \{0, 2, 4\}$$

so

$$2A \cap A = \emptyset$$
.

Sum-free sets

Weak (2,1)-sum-free sets

A subset A of a given finite abelian group G is $\underline{\text{weakly}}$ (2,1)-sum free if

$$2\hat{A} \cap A = \emptyset$$
.

Weak (2,1)-sum-free sets

A subset A of a given finite abelian group G is $\underline{\text{weakly}}$ (2,1)-sum free if

$$2^A \cap A = \emptyset$$
.

Weak (2,1)-sum-free sets

A subset A of a given finite abelian group G is $\underline{\text{weakly}}$ (2,1)-sum free if

$$2^A \cap A = \emptyset$$
.

$$A = \{1, 3, 5\}$$
 is weakly $(2, 1)$ -sum free in \mathbb{Z}_6 :

Weak (2,1)-sum-free sets

A subset A of a given finite abelian group G is $\underline{\text{weakly}}$ (2,1)-sum free if

$$2^A \cap A = \emptyset$$
.

Example 4

 $A = \{1,3,5\}$ is weakly (2,1)-sum free in \mathbb{Z}_6 :

$$2^A = \{1+3, 1+5, 3+5\} = \{0, 2, 4\}$$

SO

$$2^A \cap A = \emptyset$$
.

$\underset{\cdot}{\mathsf{Maximal}}\ \mathsf{Sizes}\ \mathsf{of}\ \mathsf{Weak}\ (2,1)\text{-}\mathsf{Sum}\text{-}\mathsf{Free}\ \mathsf{Sets}\ \mathsf{in}\ \mathsf{Finite}\ \mathsf{Abelian}\ \mathsf{Groups}$

Introductions and Definitions

 \sqsubseteq Defining μ and μ

$$\mu$$
^(G , {2, 1})

 \sqsubseteq Defining μ and μ'

$$\mu^{\hat{}}(G, \{2, 1\})$$

We denote the maximum size of a weakly (2,1)-sum-free subset of G as $\mu^{\hat{}}(G,\{2,1\})$.

 \sqsubseteq Defining μ and μ'

$$\mu^{\hat{}}(G, \{2, 1\})$$

We denote the maximum size of a weakly (2,1)-sum-free subset of G as μ (G, {2,1}). That is,

$$\mu^{\widehat{}}(G,\{2,1\}) = \max\{|A| \mid A \subseteq G, 2\hat{}A \cap A = \emptyset\}.$$

 \sqsubseteq Defining μ and μ

$$\mu$$
 (G , {2, 1})

We denote the maximum size of a weakly (2,1)-sum-free subset of G as μ (G, {2,1}). That is,

$$\mu \hat{\ } (G,\{2,1\}) = \max\{|A| \mid A \subseteq G, 2\hat{\ } A \cap A = \emptyset\}.$$

 \sqsubseteq Defining μ and μ $\hat{}$

$$\mu$$
(G , {2, 1})

We denote the maximum size of a weakly (2,1)-sum-free subset of G as μ (G, {2,1}). That is,

$$\mu^{\widehat{}}(G,\{2,1\}) = \max\{|A| \mid A \subseteq G, 2\hat{}A \cap A = \emptyset\}.$$

$$\mu^{\hat{}}(\mathbb{Z}_4, \{2,1\}) = 2.$$

A	$A\subseteq \mathbb{Z}_4$	2^A	$2\hat{A} \cap A$
3	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
3	$\{0, 1, 3\}$	$\{0, 1, 3\}$	$\{0, 1, 3\}$
3	$\{0, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$
3	$\{1, 2, 3\}$	$\{1, 3, 4\}$	$\{1, 3\}$
2	$\{1, 3\}$	$\{0, 2\}$	Ø

$\underset{\cdot}{\mathsf{Maximal}}\ \mathsf{Sizes}\ \mathsf{of}\ \mathsf{Weak}\ (2,1)\text{-}\mathsf{Sum}\text{-}\mathsf{Free}\ \mathsf{Sets}\ \mathsf{in}\ \mathsf{Finite}\ \mathsf{Abelian}\ \mathsf{Groups}$

Introductions and Definitions

 \sqsubseteq Defining μ and μ

$$\mu(G, \{2, 1\})$$

 \square Defining μ and μ

$$\mu(G, \{2, 1\})$$

We define $\mu(G,\{2,1\})$ similarly, as the maximum size of a (2,1)-sum-free set in G.

 \sqsubseteq Defining μ and μ $\hat{}$

$$\mu(G, \{2, 1\})$$

We define $\mu(G, \{2,1\})$ similarly, as the maximum size of a (2,1)-sum-free set in G.

Observation

For any G,

$$\mu$$
^(G , {2,1}) $\geq \mu$ (G , {2,1}).

(2, 1)-sum-free sets

Solving $\mu(\mathbb{Z}_n, \{2, 1\})$

(2, 1)-sum-free sets

Solving $\mu(\mathbb{Z}_n, \{2, 1\})$

Theorem G.4 (Diananda and Yap)

For all positive integers n, we have

$$\mu(\mathbb{Z}_n, \{2,1\}) = v_1(n,3).$$

(2, 1)-sum-free sets

Solving $\mu(\mathbb{Z}_n, \{2, 1\})$

Theorem G.4 (Diananda and Yap)

For all positive integers n, we have

$$\mu(\mathbb{Z}_n, \{2,1\}) = v_1(n,3).$$

Define:

$$v_1(x,3) = \begin{cases} \left(1+\frac{1}{p}\right)\frac{x}{3} & \text{if } x \text{ has prime divisors congruent to 2 mod 3,} \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor \frac{x}{3} \right\rfloor & \text{otherwise.} \end{cases}$$

(2, 1)-sum-free sets

Solving $\mu(G, \{2, 1\})$

Theorem G.18 (Green and Ruzsa)

Let κ be the exponent of G. Then

$$\mu(G,\{2,1\}) = \mu(\mathbb{Z}_{\kappa},\{2,1\}) \cdot \frac{n}{\kappa} = v_1(\kappa,3) \cdot \frac{n}{\kappa}.$$

(2, 1)-sum-free sets

Solving $\mu(G, \{2, 1\})$

Theorem G.18 (Green and Ruzsa)

Let κ be the exponent of G. Then

$$\mu(G,\{2,1\}) = \mu(\mathbb{Z}_{\kappa},\{2,1\}) \cdot \frac{n}{\kappa} = v_1(\kappa,3) \cdot \frac{n}{\kappa}.$$

We define the **exponent** of G to be the order of the largest factor in its invarient decomposition.

Established values and bounds for μ and μ

(2,1)-sum-free sets

Solving $\mu(G, \{2, 1\})$

Theorem G.18 (Green and Ruzsa)

Let κ be the exponent of G. Then

$$\mu(G,\{2,1\}) = \mu(\mathbb{Z}_{\kappa},\{2,1\}) \cdot \frac{n}{\kappa} = v_1(\kappa,3) \cdot \frac{n}{\kappa}.$$

We define the **exponent** of G to be the order of the largest factor in its invarient decomposition.

Example 6

lacksquare Established values and bounds for μ and μ

(2, 1)-sum-free sets

Solving $\mu(G, \{2, 1\})$

Theorem G.18 (Green and Ruzsa)

Let κ be the exponent of G. Then

$$\mu(G,\{2,1\}) = \mu(\mathbb{Z}_{\kappa},\{2,1\}) \cdot \frac{n}{\kappa} = v_1(\kappa,3) \cdot \frac{n}{\kappa}.$$

We define the **exponent** of G to be the order of the largest factor in its invarient decomposition.

Example 6

Let $G \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_{24}$. Then the exponent of G is $\kappa = 24$, so

$$\mu(G, \{2,1\}) = v_1(24,3) \cdot 8 = 12 \cdot 8 = 96.$$

Established values and bounds for μ and μ

Weak (2, 1)-sum-free sets

Cyclic Groups and a Simple Equality

Cyclic Groups and a Simple Equality

Theorem G.67 (Zannier)

For all positive integers we have

$$\mu \hat{} (\mathbb{Z}_n, \{2,1\}) = \begin{cases} \left(1 + \frac{1}{p}\right) \frac{n}{3} & \text{if } n \text{ has prime divisors cong. to } 2(3) \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor \frac{n}{3} \right\rfloor + 1 & \text{otherwise.} \end{cases}$$

Established values and bounds for μ and μ

Weak (2, 1)-sum-free sets

Cyclic Groups and a Simple Equality

Theorem G.67 (Zannier)

For all positive integers we have

$$\mu^{\hat{}}(\mathbb{Z}_n,\{2,1\}) = \begin{cases} \left(1 + \frac{1}{p}\right) \frac{n}{3} & \text{if } n \text{ has prime divisors cong. to } 2(3) \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor \frac{n}{3} \right\rfloor + 1 & \text{otherwise.} \end{cases}$$

Proposition 11, P

For any G with $|G| = n \equiv 0 \mod 2$,

$$\mu^{\hat{}}(G, \{2, 1\}) = \frac{n}{2}.$$

Established values and bounds for μ and μ Weak (2,1)-sum-free sets

Some groups of the Form $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$

Established values and bounds for μ and μ

└─ Weak (2, 1)-sum-free sets

Some groups of the Form $\mathbb{Z}_{n_1} imes \mathbb{Z}_{n_2}$

Theorem 13, P

For any positive integer $w \equiv 1 \mod 2$,

$$\mu^{\hat{}}(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2,1\}) \geq 3w + 1.$$

lacksquare Established values and bounds for μ and μ

└─Weak (2, 1)-sum-free sets

Some groups of the Form $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$

Theorem 13, P

For any positive integer $w \equiv 1 \mod 2$,

$$\mu^{\hat{}}(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2,1\}) \geq 3w + 1.$$

Theorem 14, P

For all positive $\kappa \equiv 1 \bmod 6$,

$$\mu$$
^ $(\mathbb{Z}_{\kappa}^2, \{2,1\}) \ge \frac{\kappa - 1}{3} \cdot \kappa + 1.$

☐ Divide and Conquer

"Grouping" Groups

└ Divide and Conquer

"Grouping" Groups

We will categorize groups G into three types.

Divide and Conquer

"Grouping" Groups

We will categorize groups G into three types.

■ type I: |G| has a divisor congruent to 2 mod 3

"Grouping" Groups

We will categorize groups G into three types.

- type I: |G| has a divisor congruent to 2 mod 3
- type II: |G| is divisible by 3 but has no prime divisors congruent to 2 mod 3

"Grouping" Groups

We will categorize groups G into three types.

- type I: |G| has a divisor congruent to 2 mod 3
- **type II**: |G| is divisible by 3 but has no prime divisors congruent to 2 mod 3
- **type III**: all divisors of |G| are congruent to 1 mod 3

Maximal Sizes of Weak (2,1)-Sum-Free Sets in Finite Abelian Groups

New Results

└─Divide and Conquer

Type I

Divide and Conquer

Type I

Theorem 9

If G is a group of type I, then

$$\mu$$
^(G , {2, 1}) = μ (G , {2, 1}).

└─Divide and Conquer

Type II

Divide and Conquer

Type II

Theorem 10

If G is a group of type II, then

$$\mu$$
(G , {2,1}) $\leq \mu$ (G , {2,1}) + 1.

Divide and Conquer

Type II

Theorem 10

If G is a group of type II, then

$$\mu^{\hat{}}(G, \{2,1\}) \leq \mu(G, \{2,1\}) + 1.$$

Corollary 11

If $w \equiv 1 \mod 2$ has no prime divisors congruent to 2 mod 3, then

$$\mu^{\hat{}}(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2, 1\}) = \mu(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2, 1\}) + 1 = 3w + 1.$$

Maximal Sizes of Weak (2, 1)-Sum-Free Sets in Finite Abelian Groups

New Results

Divide and Conquer

Type III

└ Divide and Conquer

Type III

Proposition 12

Let $G = G_1 \times \mathbb{Z}_{\kappa}$ with $|G_1|$ odd and $\kappa \equiv 1 \mod 6$.

Divide and Conquer

Type III

Proposition 12

Let $G = G_1 \times \mathbb{Z}_{\kappa}$ with $|G_1|$ odd and $\kappa \equiv 1$ mod 6. Define

$$D=\left\{\pm 1,\pm 3,\ldots,\pm rac{\kappa-4}{3}
ight\}\subset \mathbb{Z}_{\kappa},$$
 and

$$A = \left\{ \left(0, \ldots, 0, \frac{\kappa + 2}{3}\right) \right\} \cup \left(G_1 \times D\right) \subset G.$$

Divide and Conquer

Type III

Proposition 12

Let $G = G_1 \times \mathbb{Z}_{\kappa}$ with $|G_1|$ odd and $\kappa \equiv 1 \mod 6$. Define

$$D=\left\{\pm 1,\pm 3,\ldots,\pm rac{\kappa-4}{3}
ight\}\subset \mathbb{Z}_{\kappa},$$
 and

$$A = \left\{ \left(0, \ldots, 0, \frac{\kappa + 2}{3}\right) \right\} \cup \left(G_1 \times D\right) \subset G.$$

Then A is weakly (2,1)-sum free in G.

Divide and Conquer

Type III

Proposition 12

Let $G = G_1 \times \mathbb{Z}_{\kappa}$ with $|G_1|$ odd and $\kappa \equiv 1 \mod 6$. Define

$$D=\left\{\pm 1,\pm 3,\ldots,\pm rac{\kappa-4}{3}
ight\}\subset \mathbb{Z}_{\kappa},$$
 and

$$A = \left\{ \left(0, \ldots, 0, \frac{\kappa + 2}{3}\right) \right\} \cup \left(G_1 \times D\right) \subset G.$$

Then A is weakly (2,1)-sum free in G.

Theorem 13

For every group G of type III,

$$\mu$$
(G , {2, 1}) $\geq \mu$ (G , {2, 1}) + 1.

LA Sketch

A Sketch of the Proof of Proposition 12

A Sketch of the Proof of Proposition 12

Instead of proving the proposition in full generality, let $\kappa=25$;

$$G = G_1 \times \mathbb{Z}_{25}$$
.

A Sketch of the Proof of Proposition 12

Instead of proving the proposition in full generality, let $\kappa=25$;

$$G=G_1\times\mathbb{Z}_{25}$$
.

Then define

$$D = \left\{ \pm 1, \pm 3, \dots, \pm \frac{25 - 4}{3} \right\} = \{ -7, -5, -3, -1, 1, 3, 5, 7 \} \subset \mathbb{Z}_{25}$$

and

$$A=\{(0,\ldots,0,9)\}\cup (\mathit{G}_1\times \mathit{D})\subset \mathit{G}.$$

A Sketch of the Proof of Proposition 12

Instead of proving the proposition in full generality, let $\kappa = 25$;

$$G = G_1 \times \mathbb{Z}_{25}$$
.

Then define

$$D = \left\{ \pm 1, \pm 3, \dots, \pm \frac{25 - 4}{3} \right\} = \{ -7, -5, -3, -1, 1, 3, 5, 7 \} \subset \mathbb{Z}_{25}$$

and

$$A = \{(0, \ldots, 0, 9)\} \cup (G_1 \times D) \subset G.$$

We will show that A is weakly (2,1)-sum free in G.

Since

$$D = \{-7, -5, -3, -1, 1, 3, 5, 7\} \equiv \{18, 20, 22, 24, 1, 3, 5, 7\}$$

is an arithmetic progression, we can quickly write

$$2D = \left\{0, \pm 2, \pm 4, \dots, \pm 2 \cdot \frac{25 - 4}{3}\right\}$$

$$= \left\{-14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14\right\}$$

$$= \left\{11, 13, 15, 17, 19, 21, 23, 0, 2, 4, 6, 8, 10, 12, 14\right\}.$$

Since

$$D = \{-7, -5, -3, -1, 1, 3, 5, 7\} \equiv \{18, 20, 22, 24, 1, 3, 5, 7\}$$

is an arithmetic progression, we can quickly write

$$2D = \left\{0, \pm 2, \pm 4, \dots, \pm 2 \cdot \frac{25 - 4}{3}\right\}$$

$$= \left\{-14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14\right\}$$

$$= \left\{11, 13, 15, 17, 19, 21, 23, 0, 2, 4, 6, 8, 10, 12, 14\right\}.$$

We can see that D is (2,1)-sum free, and we can partition \mathbb{Z}_{25} as

$$\mathbb{Z}_{25} = D \cup \{9\} \cup 2D \cup \{16\}.$$

Now, if we take any (not necessarily distinct)

$$a_1, a_2 \in A \setminus \{(0, \ldots, 0, 9)\},\$$

we know the last coordinates of a_1 and a_2 are in D, so the last coordinate of $a_1 + a_2$ is in 2D, not in $D \cup \{9\}$;

Now, if we take any (not necessarily distinct)

$$a_1, a_2 \in A \setminus \{(0, \dots, 0, 9)\},\$$

we know the last coordinates of a_1 and a_2 are in D, so the last coordinate of $a_1 + a_2$ is in 2D, not in $D \cup \{9\}$; hence, $a_1 + a_2 \notin A$.

Now, if we take any (not necessarily distinct)

$$a_1, a_2 \in A \setminus \{(0, \ldots, 0, 9)\},\$$

we know the last coordinates of a_1 and a_2 are in D, so the last coordinate of $a_1 + a_2$ is in 2D, not in $D \cup \{9\}$; hence, $a_1 + a_2 \notin A$. It remains to be shown that

$$(0,\ldots,0,9)+(A\setminus\{(0,\ldots,0,9)\})$$

is disjoint from A, for which it is sufficient to show that D+9 is disjoint from D.

Now, if we take any (not necessarily distinct)

$$a_1, a_2 \in A \setminus \{(0, \ldots, 0, 9)\},\$$

we know the last coordinates of a_1 and a_2 are in D, so the last coordinate of $a_1 + a_2$ is in 2D, not in $D \cup \{9\}$; hence, $a_1 + a_2 \notin A$. It remains to be shown that

$$(0,\ldots,0,9)+(A\setminus\{(0,\ldots,0,9)\})$$

is disjoint from A, for which it is sufficient to show that D+9 is disjoint from D. Well,

$$D+9=\{2,4,6,8,10,12,14,16\}\subset (2D\cup \{16\}),$$

which is disjoint from D, so we are done.

Maximal Sizes of Weak (2,1)-Sum-Free Sets in Finite Abelian Groups

Future Work

Future Work

Future Work

A more general categorization on the groups G of type II for which

$$\mu$$
(G , {2,1}) = μ (G , {2,1}) + 1

is not known and would be valuable to find. It is curious that the value of $\mu^{\hat{}}(G,\{2,1\})$ did not depend on the exponent of the group G for type I but seems to for type II.

Future Work

A more general categorization on the groups G of type II for which

$$\mu$$
(G , {2,1}) = μ (G , {2,1}) + 1

is not known and would be valuable to find. It is curious that the value of μ (G, {2,1}) did not depend on the exponent of the group G for type I but seems to for type II.

It is also still open to prove or disprove that

$$\mu$$
(G , {2,1}) = μ (G , {2,1}) + 1

for every group G of type III. This task presents to be very challenging.

Thank you!

Thank you! Questions?