Prova 2 Solução

Valor total: 15 pontos

Quadro Simplex (maximização):

	X _B	X _N	
f	0	$-c_j + \mathbf{c_B B^{-1} a_j}$	c _B B-1b
X _B	I	B-1N	B-1b

Problei Maxim			Problema de Minimização		
	≥ 0	\leftrightarrow	≥		
Variáveis	≤ 0	\leftrightarrow	≤	Restrições	
	Livre	\leftrightarrow	=		
	≤	\leftrightarrow	≥ 0		
Restrições	\geq	\leftrightarrow	≤ 0	Variáveis	
	=	\leftrightarrow	Livre		

(Baseado em Hillier & Lieberman, pág. 90)

A Empresa de Manufatura Ômega descontinuou a produção de uma determinada linha de produtos não-lucrativa. Esse fato acabou criando um considerável excesso de capacidade produtiva. A direção está levando em conta a possibilidade de dedicar esse excesso de capacidade produtiva para um ou mais produtos; a estes vamos chamá-los produtos 1, 2 e 3. A capacidade disponível nas máquinas que poderiam limitar a produção está sintetizada na tabela a seguir:

Tipo de Máquina	Tempo Disponível (Horas-Máquina por Semana)
Fresadora	500
Torno	350
Retificadora	150

O número de horas-máquina exigidas para cada unidade do respectivo produto é:

Tipo de Máquina	Produto 1	Produto 2	Produto 3
Fresadora	9	3	5
Torno	5	4	0
Retificadora	3	0	2

O departamento de vendas sinaliza que o potencial de vendas para os produtos l e 2 excede a taxa de produção máxima e que o potencial de vendas para o produto 3 é de 20 unidades por semana. O lucro unitário seria, respectivamente, de US\$ 50, US\$ 20 e US\$ 25 para os produtos 1, 2 e 3. O objetivo é determinar quanto de cada produto a Ômega deveria produzir para maximizar os lucros.

1. Formule um modelo de PL que pode ser usado para resolver o problema.

 x_i = quanto de cada produto j a ser fabricado por semana.

```
Max. 50x1 + 20x2 + 25x3

s.a.

Fresadora) 9x1 + 3x2 + 5x3 <= 500

Torno) 5x1 + 4x2 <= 350

Retificadora) 3x1 + 2x3 <= 150

Max_P3) x3 <= 20
```

2. Copie a solução completa obtida pelo LINGO (solução + análise de sensibilidade).

Objective	value:	2904.762	
	Variable	Value	Reduced Cost
	X1	26.19048	0.000000
	X2	54.76190	0.000000
	Х3	20.00000	0.000000
	Row	Slack or Surplus	Dual Price
	FRESADORA	0.00000	4.761905
	TORNO	0.00000	1.428571
	RETIFICADORA	31.42857	0.000000
	MAX_P3	0.000000	1.190476

Ranges in which the basis is unchanged:

Objective Coefficient Ranges:

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	50.00000	1.250000	25.00000
X2	20.00000	20.00000	1.000000
Х3	25.00000	INFINITY	1.190476

Righthand Side Ranges:

	Current	Allowable	Allowable
Row	RHS	Increase	Decrease
FRESADORA	500.0000	55.00000	137.5000
TORNO	350.0000	183.3333	73.33333
RETIFICADORA	150.0000	INFINITY	31.42857
MAX_P3	20.00000	27.50000	20.00000

3. <u>Descreva</u> a solução encontrada (variáveis de decisão, folgas, F.O.).

Fabricar 26,2 unidades do produto 1, 54,76 unidades do produto 2 e 20 unidades do produto 3 por semana, fornecendo um lucro semanal de US\$ 2.904,76. Haverá uma sobra de 31,4 horas-máquina da Retificadora.

4. Monte a matriz B correspondente à Base ótima.

$$x_B = (x_1, x_2, x_3, s_3)$$

$$B = \begin{bmatrix} 9 & 3 & 5 & 0 \\ 5 & 4 & 0 & 0 \\ 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5. Suponha que um engenheiro da empresa encontre um dispositivo para aumentar a capacidade da Fresadora em 27 horas-máquina. Com isso ela passaria de 500 para 527 horas-máquina por semana. O aluguel desse dispositivo seria de US\$ 100 por semana. Verifique se o uso desse dispositivo vale a pena. Use apenas os dados obtidos na questão 2 para justificar sua resposta.

Valeria a pena sim.

Com um aumento de 27 horas-máquina na fresadora, não haverá mudança de Base, de acordo com a análise de sensibilidade. Além disso, o Preço Dual da fresadora indica que teremos um aumento de US\$

4.76 de lucro para cada hora-máquina a mais. Dessa forma, teríamos um aumento de lucro total de US\$ 128.52. Com um custo de US\$ 100, sobraria ainda um lucro adicional de US\$ 28.52, fazendo o dispositivo valer a pena.

6. Se você pudesse alterar o limite de tempo de apenas uma das máquinas sem custo adicional algum, qual deles causaria o maior impacto no lucro total? Justifique sua resposta e calcule o aumento máximo no lucro que poderia ser obtido, usando apenas as informações da resposta da questão 2.

Tipo de Máquina	Preço Dual	Aumento máximo	Lucro adicional
Fresadora	4.761905	55	261,90
Torno	1.428571	183.33	261,90

Vemos pelos cálculos acima que não faria diferença aumentarmos o tempo da Fresadora ou do Torno. Os dois forneceriam um lucro adicional total de US\$ 261,90.

7. Suponha que, numa determinada semana, a Retificadora tenha um problema mecânico e precise de manutenção, reduzindo sua disponibilidade naquela semana para 100 horas-máquina. Faça apenas um pivoteamento no Simplex Dual e diga se a solução obtida já é a solução ótima, ou se ainda é inviável (o que indicaria a necessidade de continuação do Simplex Dual), ou se é viável mas ainda não é ótima. Justifique sua resposta. Obs.: considere os dados <u>originais</u> do problema e as soluções obtidas nas Questões 1 a 4.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ s_3 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 4/21 & -1/7 & 0 & -20/21 \\ -5/21 & 3/7 & 0 & 25/21 \\ 0 & 0 & 0 & 1 \\ -4/7 & 3/7 & 1 & 6/7 \end{bmatrix} \begin{bmatrix} 500 \\ 350 \\ 100 \\ 20 \end{bmatrix} = \begin{bmatrix} 26.19 \\ 54.76 \\ 20 \\ -18.57 \end{bmatrix}$$

$$f = 50 \cdot 26.19 + 20 \cdot 54.76 + 25 \cdot 20 = 2904.762$$

Base	x 1	x 2	x 3	s1	s2	s3	s4	RHS
f	0	0	0	100/21	10/7	0	25/21	2904.762
x 1	1	0	0	4/21	-1/7	0	-20/21	26.19
x 2	0	1	0	-5/21	3/7	0	25/21	54.76
x 3	0	0	1	0	0	0	1	20
s3	0	0	0	-4/7	3/7	1	6/7	-18.57

s1 entra na Base no lugar de s3...

Base	x 1	x 2	x 3	s1	s2	s3	s4	RHS
f	0	0	0	0	5	25/3	25/3	2750
x 1	1	0	0	0	0	1/3	-2/3	20

x 2	0	1	0	0	1/4	-5/12	5/6	125/2
						0		
s1	0	0	0	1	-3/4	-7/4	-3/2	65/2

Essa solução já é a ótima, pois todos os $x_{ij} \ge 0$ e não há nenhum custo reduzido negativo.

8. Em certa ocasião, a direção da empresa cogitou a fabricação de um novo produto, que precisaria de 4 horas-máquina na Fresadora, 2 no Torno e 4 na Retificadora. Usando a restrição Dual correspondente, determine o lucro unitário mínimo para esse novo produto, de modo que sua produção seja interessante economicamente. **Obs.: considere os dados <u>originais</u> do problema e as soluções obtidas nas Questões 1 a 4.**

A nova coluna inserida no modelo Primal corresponderia a uma nova restrição no modelo Dual:

$$4y_1 + 2y_2 + 4y_3 \ge c_4$$

onde y_1 , y_2 e y_3 são os preços duais das três restrições. Assim, temos:

$$4 \cdot 4.761905 + 2 \cdot 1.428571 + 4 \cdot 0 \ge c_4 :: c_4 \le 21.90$$

Ou seja, para que valha a pena fabricar o Produto 4, ele terá que apresentar um lucro superior a US\$ 21,90 por unidade.