随机过程

教授: 吴明燕 笔记由 Dafu Zhu 编写 基于 2025 春季厦大数院《随机过程》

最后修改: 2025/03/25

目录

概	率论准	住备知识		2	
	0.1	事件概	:率	3	
		0.1.1	事件域	3	
		0.1.2	概率测度	4	
	0.2	独立性	·	7	
	0.3	条件概	率与条件独立	11	
	0.4	期望与	条件期望	13	
		0.4.1	离散随机变量的期望	13	
		0.4.2	条件期望	15	
	0.5	随机过	程	23	
		0.5.1	什么是随机过程	23	
		0.5.2	随机过程的分布	23	
		0.5.3	随机过程的存在性	24	
		0.5.4	随机过程的基本类型	25	
1	马氏	马氏链			
	1.1	离散时	·间马氏链	26	
	1.2	时齐马	氏链与转移概率	29	
	1.3	多步转	移概率与矩阵乘法	33	
		1.3.1	Chapman-Kolmogorov 方程	33	
		1.3.2	马氏链的任意有限维分布	35	
	1.4	(从固	定点出发的) 马氏链	36	
		1.4.1	链的状态: 常返和暂留	36	
		1.4.2	从数学角度:并改写成不交并	38	
		1.4.3	从"多步转移概率"角度判别	38	
		1.4.4	从"首次回访时间"角度判别	40	

2	泊松过程		48
	1.4.6	停时与强马氏性	45
	1.4.5	从"平均回访次数"角度判别	44

成绩:平时(作业+考勤)+期中论文+期末

概率论准备知识

概率论中, 随机变量的本质是可测函数。

$$X:\Omega\to S$$

S 的 σ -代数记为 S, 是个 Borel σ -代数 (由开集/闭集生成)

Q: 为什么要给 Ω 一个 σ -代数?

A: 样本空间是抽象的, 给它 σ-代数赋予它结构, 相当于对信息进行重整/提取概率测度的本质是集函数,

将信息具象化,

$$\mathbb{P}:\mathcal{F}\to[0,1]$$

$$A \to \mathbb{P}(A)$$

随机过程: 一族随机变量 $\{X_t\}_{t\in\mathbb{T}}$ 其中 \mathbb{T} 为指标集, $X_t:\Omega\to S$

Example 1

 $\mathbb{T} = \mathbb{N}_0$: 时间离散; $\mathbb{T} = [0, T]$: 时间连续

$$X:(\Omega,\mathcal{F},\mathbb{P})\to(S,\mathcal{S},\mu_X)$$

思考: 什么是随机过程的分布 $\{\mu_t\}_{t\in\mathbb{T}}$?

0.1 事件概率

0.1.1 事件域

Definition 1 (样本空间、事件)

样本点、样本空间、事件和事件的运算:

• 样本点 ω: 一次试验的结果

• 样本空间 Ω: 全体样本点

• 事件: Ω 的子集

• 事件的运算: 集合的运算, 即交并补 $(A \cap B, A \cup B, A^c)$

Definition 2

若 $A \cap B = \emptyset$, 则称 $A \subseteq B$ 不相交, 更一般地, 若 $A_i \cap A_j = \emptyset (i \neq j)$, 则称 $\{A_i\}_{i \geq 1}$ 互不相交

Definition 3

称 $\mathcal{F}\subset 2^\Omega=\{A|A\subset\Omega\}$ 是一个 σ 代数/事件域(其中 2^Ω 表示所有 Ω 的子集构成的集合,是一个集类)若

1. $\Omega \subset \mathcal{F}$

2. (对补封闭) $A \in \mathcal{F} \to A^c \in \mathcal{F}$

3. (对可列并封闭) $A_n \in \mathcal{F}, n \geqslant 1 \Rightarrow \bigcup_{n \geqslant 1} A_n = \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

 σ 代数是满足以上特定条件的集类,是由 Ω 的子集构成的集合

注: σ 代数对有限交/有限并/可列交封闭

现在给出了一个定义, 我们会想"为什么定义会这样给呢", 现在要举一些例子说明"定义有意义"

Example 2

最小的 σ 代数: $\{\emptyset, \Omega\}$

最大的 σ 代数: 2^{Ω}

以上这两个例子一个太小、一个太大,似乎没意义,所以叫它们"平凡的"

Example 3

 $A \subset \Omega, \sigma(\{A\}) = \sigma(A) = \{A, A^c, \Omega, \varnothing\} = \sigma(A^c)$

这是由 A 生成的 σ 代数

Definition 4 (划分/分割)

称 $\Pi_{\Omega} := \{\Lambda_n, n \geq 1\}$ 是 Ω 的一个分划, 若 $\Omega = \sum_{n \geq 1} \Lambda_n$

1. $\Omega = \bigcup_{n \geq 1} \Lambda_n$

2. $\{\Lambda_n\}_{n\geq 1}$ 互不相交

Example 4

 $\Omega = \sum_{n\geqslant 1} \Lambda_n, \Pi_{\Omega} := \{\Lambda_n\}_{n\geqslant 1}$

$$\sigma(\Pi_{\Omega}) = \left\{ \sum_{k \in J} \Lambda_k, J \subset \mathbb{N} \right\}$$

Problem 1 (作业 1-1)

证明:

- 1. $\sigma(\Pi_{\Omega})$ 是一个 σ 代数
- $2. \ \sigma(\Pi_{\Omega})$ 是包含集类 Π_{Ω} 的最小 σ 代数
- $(S,S)=(S,2^S)$: S 可列时, 取 2^S 为 σ 代数
- $(S,S)=(\mathbb{R},\mathcal{B}(\mathbb{R}))$: S 为实数集时, 取博雷尔集 $\mathcal{B}(\mathbb{R})$ 为 σ 代数

0.1.2 概率测度

Definition 5 (概率测度)

 (Ω, \mathcal{F}) 称 $\mathbb{P}: \mathcal{F} \to [0,1]$ 是概率测度

- 1. 非负性
- 2. 归一性
- 3. 可列可加性*

其中, 可列可加性的表述为: 设 $\{E_n, n \ge 1\}$ 是 \mathcal{F} 中互不相交的集合序列 $(E_i \cap E_j = \emptyset, i \ne j)$, 则

$$\mathbb{P}(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mathbb{P}(E_n)$$

Property 1

ℙ 满足有限可加性(可列可加一定有限可加,如果既不是可列可加、也不是有限可加,则不可测)

Corollary 1

- 1. $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- 2. 若 $A \subset B$, 则 $\mathbb{B} = \mathbb{A} + \mathbb{P}(BA^c) \geqslant \mathbb{P}(A)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Remark 1. 引用知乎上三维之外的大白话解释可列可加性:

首先,在我们总是习惯于处理有限相加,而很少遇到无限相加的情况。从测度论内容理解,有限相加与事实(数学的)不符,比如 (0,1) 区间有不可数个点,每个点的测度(理解为直径吧)是 0,按照习惯想法(有限相加),直径的加和(总宽度)应该为 0,显然,(0,1) 区间的宽度不可能是 0;

如果规定为"只要是无穷多个点相加,其宽度就不再是 0"的话,还是存在矛盾,我们知道,区间 (0,1) 上的有理数是是无穷多个的(而且是可列的),那么其宽度就应该为 1,可是无理数还是不可数的呢——理解为无理数是有理数的无穷大量或有理数是无理数的无穷小量,那么无理数的宽度是多少呢?即使还是 1,显然 (0,1) 区间的宽度不可能是 2 吧!?

于是,勒贝格说道:在测量长度、面积、体积时,我们采用可列可加性,即可列个点相加,规定其宽度(测度)为 0,如果点的个数超过了可列个(这时必是连续统的),那么,就不满足了——即这些点的总宽度就不是 0了,而是具有了非 0 的宽度(正测度),当然,具有测度的这些点是紧接在一起的,否则不一定有测度,比如康托大师制造的三分集就很诡异。

到这里,可列可加性事实上讲完了,再啰嗦一下次可列可加性。这是因为不论作为集合,还是概率上的事件(也是集合),一般是存在公共元素的,因此,一般情形下,当然满足次可列可加性的性质了,可列可加性只有在集合之间的距离大于 () 或事件之间完全独立的情形下,才会满足。

Property 2 (次可列可加性)

 $A_n \subset \mathcal{F}, n \geqslant 1$

$$\mathbb{P}(\bigcup_{n\geqslant 1} A_n) \leqslant \sum_{n\geqslant 1} \mathbb{P}(A_n)$$

证明: $\bigcup_{n\geqslant 1}A_n=\sum_{n\geqslant 1}B_n$, 其中 $B_1=A_1,B_2=A_2\cap (A_1)^c,\cdots,B_n=A_n\cap A_1^c\cap A_2^c\cap\cdots\cap A_{n-1}^c$ $B_n\subset A_n$, 由可列可加性和推论1(2)

Problem 2 (作业 1-2)

证明 $\bigcup_{n\geqslant 1}A_n=\sum_{n\geqslant 1}B_n$

证明:

1. 先证 $\bigcup_{n\geqslant 1} A_n \subseteq \sum_{n\geqslant 1} B_n$ 。 假设 $x \in \bigcup_{n\geqslant 1} A_n$, 若 $x \in A_1$,则 $x \in B_1$,

若 $x \in A_2$ 且 $x \notin A_1$,则 $x \in B_2$

. . .

若 $x \in A_n$ 且 $x \notin A_1, x \notin A_2, ..., x \notin A_{n-1}$,则 $x \in B_n$ $\forall x \in \bigcup_{n \ge 1} A_n$,都有 $x \in \bigcup_{n \ge 1} B_n$

 $\therefore B_i \cap B_j = \emptyset, i \neq j, \quad \therefore \bigcup_{n \geq 1} B_n = \sum_{n \geq 1} B_n, \quad x \in \sum_{n \geq 1} B_n \circ$

2. 再证 $\sum_{n\geqslant 1} B_n \subseteq \bigcup_{n\geqslant 1} A_n$ 假设 $x\in \sum_{n\geqslant 1} B_n$,则 $\exists n_0\in \mathbb{N}^+$,使得 $x\in B_{n_0}$,由 B 的定义

$$B_{n_0} = A_{n_0} \cap \left(\bigcap_{k=1}^{n_0-1} A_k^c\right)$$

$$\therefore x \in A_{n_0} \subseteq \bigcup_{n \geqslant 1} A_n$$
$$\therefore \bigcup_{n \geqslant 1} A_n = \sum_{n \geqslant 1} B_n$$

Property 3 (连续性)

- (1) A_n 个单调上升,即 $A_n \subset A_{n+1}$, $\lim_{n \to \infty} A_n = \bigcup_{n \geqslant 1} A_n$,则 $\mathbb{P}(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$
- $(2) \ B_n \downarrow \ \text{单调下降}, \ \ \mathbb{P} \ B_n \supset B_{n+1}, \ \ \lim_{n \to \infty} B_n = \cap_{n \geqslant 1} B_n, \ \ \mathbb{P}(\lim_{n \to \infty} B_n) = \lim_{n \to \infty} \mathbb{P}(B_n)$

证明: $(1) \cup_{n \geqslant 1} A_n = A_1 + A_2 \setminus A_1 + A_3 \setminus A_2 + \cdots$

$$\mathbb{P}(\bigcup_{n\geqslant 1} A_n) = \mathbb{P}(A_1) + \sum_{n\geqslant 1} \mathbb{P}(A_{n+1} \setminus A_n)$$

$$= \mathbb{P}(A_1) + \lim_{m\to\infty} \sum_{n=1}^m \mathbb{P}(A_{n+1} \setminus A_n)$$

$$= \mathbb{P}(A_1) + \lim_{m\to\infty} \sum_{n=1}^m [\mathbb{P}(A_{n+1}) - \mathbb{P}(A_n)]$$

$$= \mathbb{P}(A_1) + \lim_{m\to\infty} [\mathbb{P}(A_{m+1}) - \mathbb{P}(A_1)]$$

$$= \lim_{m\to\infty} \mathbb{P}(A_{m+1})$$

$$= \lim_{n\to\infty} \mathbb{P}(A_n) \quad \square$$

(2) $B_n \downarrow B \Rightarrow \forall n, B_{n+1} \subseteq B_n \Rightarrow \forall B_n^c \subseteq B_{n+1}^c$

$$\mathbb{P}(B) = \mathbb{P}(\cap_{n\geqslant 1} B_n) = 1 - \mathbb{P}((\cap_{n\geqslant 1} B_n)^c)$$

$$= 1 - \mathbb{P}(\cup_{n\geqslant 1} B_n^c)$$

$$= 1 - \mathbb{P}(B_1^c \cup (\cup_{n\geqslant 2} (B_n^c \setminus B_{n-1}^c)))$$

$$= 1 - \mathbb{P}(B_1^c) - \sum_{n\geqslant 2} (\mathbb{P}(B_n^c) - \mathbb{P}(B_{n-1}^c))$$

$$= 1 - \mathbb{P}(B_1^c) - \lim_{m \to \infty} \sum_{n=2}^m (\mathbb{P}(B_n^c) - \mathbb{P}(B_{n-1}^c))$$

$$= 1 - \mathbb{P}(B_1^c) - \lim_{m \to \infty} (\mathbb{P}(B_m^c) - \mathbb{P}(B_1^c))$$

$$= 1 - \mathbb{P}(B_1^c) - \lim_{n \to \infty} \mathbb{P}(B_n^c) + \mathbb{P}(B_1^c)$$

$$= 1 - \lim_{n \to \infty} \mathbb{P}(B_n^c)$$

$$= \lim_{n \to \infty} \mathbb{P}(B_n) \quad \square$$

第二个等式用到 De Morgan's Law

0.2 独立性

Definition 6 (事件间的独立性)

 $(\Omega, \mathcal{F}, \mathbb{P}), A, B \in \mathcal{F}$, 称 A 与 B 独立, 若 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, 记为 $A \perp \!\!\! \perp B$

Definition 7 (事件间的相互独立)

 $\{A_n\}_{n\geq 1}\subset \mathcal{F}$, 称其相互独立, 若 $\forall J\subset \mathbb{N}, \#J\geq 2$

$$\mathbb{P}(\bigcap_{k\in J} A_k) = \prod_{k\in J} \mathbb{P}(A_k)$$

Property 4

 $A \perp\!\!\!\perp B \Rightarrow A \perp\!\!\!\perp B^c, A^c \perp\!\!\!\perp B, A^c \perp\!\!\!\perp B^c$

Definition 8 (σ 代数间的独立性)

 $(\Omega, \mathcal{F}_1, \mathbb{P}), (\Omega, \mathcal{F}_2, \mathbb{P})$ 称 \mathcal{F}_1 与 \mathcal{F}_2 独立,若 $\forall A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$,有 $A_1 \perp \!\!\! \perp A_2$,记为 $\mathcal{F}_1 \perp \!\!\! \perp \mathcal{F}_2$

Definition 9 (σ 代数间相互独立)

 $(\Omega, \mathcal{F}_k, \mathbb{P})(k \ge 1)$ 称 $\{\mathcal{F}_k\}_{k \ge 1}$ 相互独立,若 $\forall J \subset \mathbb{N}, \#J \ge 2, \forall A_k \in \mathcal{F}_k(k \in J)$,有

$$\mathbb{P}(\bigcap_{k \in J} A_k) = \prod_{k \in J} P(A_k)$$

Property 5

 $\{\mathcal{F}_k\}_{k\geqslant 1}$ 相互独立 $\Leftrightarrow \forall A_k \in \mathcal{F}_k, \mathbb{P}(\cap_{k\geqslant 1}A_k) = \prod_{k=1}^{\infty} \mathbb{P}(A_k)$

证明: \Rightarrow 显然, J 取 \mathbb{N} 即可, $\mathbb{N} \subset \mathbb{N}$

 \Leftarrow 注意到右侧 $\forall A_k \in \mathcal{F}$ 对于左侧条件 $\forall A_k \in \mathcal{F}(k \in J)$ 更加一般,所以证 \Leftarrow 的过程也是从一般到特殊。从 $\cap_{k \geq 1} A_k \to \cap_{k \in J} A_k$ 即从 $k \in \mathbb{N} \to k \in J$ 。 思路是把 $k \in \mathbb{N} \to k \in J$ 和 $k \in J^c$,在 $k \in J^c$ 上取 $A_k = \Omega$,再利用性质 $\Omega \perp \!\!\! \perp A$ 。

对于 $\forall J \subseteq \mathbb{N}$

$$\begin{split} \bigcap_{k\geqslant 1} A_k &= \left(\bigcap_{k\in J} A_k\right) \cap \left(\bigcap_{k\in J^c} \Omega\right) \\ \mathbb{P}(\bigcap_{k\geqslant 1} A_k) &= \mathbb{P}\left(\left(\bigcap_{k\in J} A_k\right) \cap \left(\bigcap_{k\in J^c} \Omega\right)\right) \\ &= \mathbb{P}(\bigcap_{k\in J} A_k) \mathbb{P}(\bigcap_{k\in J^c} \Omega) \qquad [\Omega \perp \!\!\! \perp A_k] \\ &= \mathbb{P}(\bigcap_{k\in J} A_k) \end{split}$$

$$\prod_{k\geqslant 1}\mathbb{P}(A_k)=\prod_{k\in J}\mathbb{P}(A_k)\cdot\prod_{k\in J^c}\mathbb{P}(\Omega)=\Pi_{k\in J}\mathbb{P}(A_k)$$

又因为 $\mathbb{P}(\cap_{k\geqslant 1}A_k) = \prod_{k=1}^{\infty}\mathbb{P}(A_k)$

$$\mathbb{P}(\bigcap_{k\in J}A_k)=\prod_{k\in J}\mathbb{P}(A_k)\quad \Box$$

Definition 10 (离散随机变量)

令取值空间 $S=\{x_k\}_{k\geqslant 1}$ $(x_k$ 互不相同), $\Omega=\sum_{k\geqslant 1}\Lambda_k$ (划分), 则称

$$X(\omega) = \sum_{k \geqslant 1} x_k \mathbb{I}_{\Lambda_k}(\omega), \omega \in \Omega$$

为离散随机变量。其中

$$\mathbb{I}_{\Lambda_k}(\omega) = \begin{cases} 1 & \text{if } \omega \in \Lambda_k \\ 0 & \text{if } \omega \notin \Lambda_k \end{cases}$$

这个定义的核心思想是:

- 对于每个样本点 $\omega \in \Omega$, $X(\omega)$ 的取值是 x_k , 当且仅当 $\omega \in \Lambda_k$
- 因此, X 的取值由样本点 ω 所在的划分 Λ_k 决定

由于随机变量是个可测函数

$$X:(\Omega,?)\to (S,2^S)$$

那么 X 生成的 σ 代数表示为 $\sigma(X) := X^{-1}(2^S) = \{X^{-1}(A) | A \in 2^S\}$

Property 6

 $\sigma(X):=X^{-1}(2^S), \ \mathbb{N}$

- 1. $\sigma(X) = \sigma(\Pi_{\Omega})$ 故称 $\sigma(X)$ 为由 X 生成的 σ 代数。其中 $\Pi_{\Omega} = \{\Lambda_k, k \geqslant 1\}, \Lambda_k = \{X = x_k\}$
- $2. \ X: (\Omega, \sigma(X)) o (S, 2^S).$ 这个记号的解释是 $\forall A \in 2^S, X^{-1}(A) = \{\omega \in \Omega | X(\omega) \in A\} \in \sigma(X)$

证明: 要证 $\sigma(X)=\sigma(\Pi_\Omega)$, 即证两个集合互相包含 $\sigma(\Pi_X)=\{\sum_{k\in J}\Lambda_k|J\subseteq\mathbb{N}\} \text{ 由划分生成, } \sigma(X)=X^{-1}(2^S) \text{ 由 }X\text{ 生成 下证 }\sigma(X)\subseteq\sigma(\Pi_X)$

$$\forall A \in 2^S, X^{-1}(A) = \{\omega | X(\omega) \in A\}$$

$$= \sum_{x_k \in A} \{\omega \in \Omega | X(\omega) = x_k\}$$

$$= \sum_{x_k \in A} \{X = x_k\}$$

$$= \sum_{x_k \in A} \Lambda_k \in \sigma(\Pi_X)$$

第二个等式用到离散 r.v. 定义10 下证 $\sigma(\Pi_X) \subseteq \sigma(X)$

$$J \subseteq \mathbb{N}, \quad \sum_{k \in J} \Lambda_k = \sum_{k \in J} \{\omega | X(\omega) = x_k\}$$
$$= \{\omega | X(\omega) \in \{x_k, k \in J\}\}$$
$$= X^{-1}(\{x_k, k \in J\}) \in \sigma(X)$$

最后一个等式中 $\{x_k, k \in J\} \in 2^S$

Example 5

 $X = \mathbb{I}_A$ 由划分的定义 $\Pi_X = \{\Lambda_k\}_{k \geq 1}, \Lambda_k = \{X = x_k\}$, 知道划分将全集分成两部分

$$\begin{split} \Pi_X &= \{\{X=1\}, \{X=0\}\} \\ &= \{\{\omega \in \Omega | X(\omega) = 1\}, \{\omega \in \Omega | X(\omega) = 0\}\} \\ &= \{A, A^c\} \end{split}$$

 $\sigma(\Pi_A) = \{\varnothing, A, A^c, \Omega\} = \sigma(A) = \sigma(A^c)$ 其中 $\sigma(\Pi_A)$ 由划分生成, $\sigma(A)$ 由 A 生成,两者相等 另外, $\sigma(X) = \sigma(\Pi_A) = \sigma(\Pi_X) = \{\varnothing, A, A^c, \Omega\} = \sigma(A) \Rightarrow \sigma(\mathbb{I}_A) = \sigma(A)$

Definition 11 (离散随机变量间的独立性)

 $X:\Omega \to S_1, Y:\Omega \to S_2$ 为两离散随机变量, 称 $X \perp\!\!\!\perp Y$, 若 $\sigma(X) \perp\!\!\!\perp \sigma(Y)$ [定义8], 即 $X^{-1}(2^{S_1}) \perp\!\!\!\perp X^{-1}(2^{S_2})$ 即 $\forall E_1 \subseteq S_1, E_2 \subseteq S_2$,有 $\mathbb{P}(X \in E_1, Y \in E_2) = \mathbb{P}(X \in E_1)\mathbb{P}(Y \in E_2)$

 S_1, S_2 分别为 X, Y 的取值空间, $E_1 \subseteq S_1$ 为 X 的一个取值, $X \in E_1 := \{\omega \in \Omega | X(\omega) \in E_1\}$, E_2 同理

Theorem 1

 $X \perp \!\!\!\perp Y \Leftrightarrow \forall x \in S_X, y \in S_Y \not \exists \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$

证明: \Rightarrow 一般到特殊,取 $E_1 = \{x\}, E_2 = \{y\}$,由 $\{x\} \in S_X, \{y\} \in S_Y$ 易证 \Leftarrow

$$\mathbb{P}(X \in E_1, Y \in E_2) = \mathbb{P}(\bigcup_{x \in E_1} \{X = x\} \cap \{Y \in E_2\}) \\
= \sum_{x \in E_1} \mathbb{P}(\{X = x\} \cap \sum_{y \in E_2} \{Y = y\}) \\
= \sum_{x \in E_1} \sum_{y \in E_2} \mathbb{P}(X = x, Y = y) \\
= \sum_{x \in E_1} (\sum_{y \in E_2} \mathbb{P}(X = x) \mathbb{P}(Y = y)) \\
= \sum_{x \in E_1} \mathbb{P}(X = x) \mathbb{P}(Y \in E_2) \\
= \mathbb{P}(X \in E_1) \mathbb{P}(Y \in E_2)$$

第一个等式中, $\{X=x\} \cap \{Y \in E_2\}$ 看作一整个集合 $\subseteq \{X=x\}$,因为离散、每个 x 不相交,所以这是个不交并,由练习2,可以改写成加法形式。

第四个等式由条件 $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\mathbb{P}(Y=y)$ 成立。

Theorem 2

 $X \perp \!\!\!\perp Y \Leftrightarrow \forall x \in S_X, y \in S_Y, \mathbb{P}(X \leqslant x, Y \leqslant y) = \mathbb{P}(X \leqslant x)\mathbb{P}(Y \leqslant y)$

用定理1证明

 \Rightarrow 已知 $X \perp \!\!\! \perp Y$,由定义 $\frac{11}{1}$, $\forall E_1 \subseteq S_1, E_2 \subseteq S_2$,有 $\mathbb{P}(X \in E_1, Y \in E_2) = \mathbb{P}(X \in E_1)\mathbb{P}(Y \in E_2)$ 。取 $E_1 = \{\omega | X(\omega) \leqslant x\}, E_2 = \{\omega | Y(\omega) \leqslant y\}$ \Leftarrow

$$\begin{split} \mathbb{P}(X = x, Y = y) &= \mathbb{P}(X \leqslant x, Y \leqslant y) - \mathbb{P}(X \leqslant x^-, Y \leqslant y) - \mathbb{P}(X \leqslant x, Y \leqslant y^-) + \mathbb{P}(X \leqslant x^-, Y \leqslant y^-) \\ &= \mathbb{P}(X \leqslant x) \mathbb{P}(Y \leqslant y) - \mathbb{P}(X \leqslant x^-) \mathbb{P}(Y \leqslant y) - \mathbb{P}(X \leqslant x) \mathbb{P}(Y \leqslant y^-) + \mathbb{P}(X \leqslant x^-) \mathbb{P}(Y \leqslant y^-) \\ &= [\mathbb{P}(X \leqslant x) - \mathbb{P}(X \leqslant x^-)] [\mathbb{P}(Y \leqslant y) - \mathbb{P}(Y \leqslant y^-)] \\ &= \mathbb{P}(X = x) \mathbb{P}(Y = y) \end{split}$$

其中 x^-,y^- 为小于 x,y 的最大值,由于离散, $\{X\leqslant x\}-\{X\leqslant x^-\}=\{X=x\},\{Y\leqslant y\}-\{Y\leqslant y^-\}=\{Y=y\}$

Definition 12

称一列离散随机变量 $\{X_n\}_{n\geq 1}$ 相互独立, 若 $\sigma(X_n), n\geq 1$ 相互独立

Theorem 3

 $\{A_n\}_{n\geq 1}$ 事件列下列等价

- 1. $\{A_n\}_{n\geqslant 1}$ 相互独立
- 2. $\sigma(A_n), n \ge 1$ 相互独立
- 3. $\mathbb{I}_{A_n}, n \geq 1$ 相互独立

证明:

1. 由例题5, $\sigma(\mathbb{I}_{A_n}) = \sigma(A_n)$, 所以 $(2) \Leftrightarrow (3)$

2. 下证 $(2) \rightarrow (1)$, 一般到特殊, $A_n \subseteq \sigma(A_n)$

3. 下证 $(1) \to (2)$, $\sigma(A_n) = \{A_n, A_n^c, \varnothing, \Omega\}$, $\varnothing \coprod A_n, \Omega \coprod A_n$, 由性质4, $\varnothing \coprod A_n^c, \Omega \coprod A_n^c$ 由定理5, $\forall A_k \in \sigma(A_n), \mathbb{P}(\cap_{k \geqslant 1} A_k) = \prod_{k=1}^{\infty} \mathbb{P}(A_k)$

由于条件 (1), 上面等式成立 \Rightarrow 满足 σ 代数相互独立的定义

0.3 条件概率与条件独立

Definition 13 (条件概率)

 $B \in \mathcal{F}, \mathbb{P}(B) > 0$ 定义

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} =: \mathbb{P}_B(A) \quad \forall A \in \mathcal{F}$$

Theorem 4 (乘法公式)

 $\mathbb{P}(AB) = \mathbb{P}(A|B)\mathbb{P}(B),$

$$\mathbb{P}(\bigcap_{k=1}^{n} A_{k}) = \mathbb{P}(A_{1})\mathbb{P}(A_{2}|A_{1})\mathbb{P}(A_{3}|A_{1}A_{2})\cdots\mathbb{P}(A_{n}|\bigcap_{k=1}^{n-1} A_{k})$$

Theorem 5 (全概公式)

(1) $\Omega = \sum_{k\geqslant 1} \Lambda_k$ 划分 $\mathbb{P}(\Lambda_k) > 0$, 则 $\forall A \in \mathcal{F}$,

$$\mathbb{P}(A) = \sum_{k>1} \mathbb{P}(A|\Lambda_k) \mathbb{P}(\Lambda_k)$$

(2)* 一般地, $\{B_n\}_{n\geqslant 1}$ 互不相交, $\mathbb{P}(B)>0, \mathbb{P}(\sum_{n\geqslant 1}B_n)=1$,则 $\forall A\in\mathcal{F}$

$$\mathbb{P}(A) = \sum_{n \ge 1} \mathbb{P}(A|B_n)\mathbb{P}(B_n)$$

注: $\mathbb{P}(\cdot) = 1$ 不一定是全集,但概率测度是 1。同样, $\mathbb{P}(\cdot) = 0$ 不一定是 \emptyset ,而是叫零测集

证明:

(1) 由 $A=A\cap\Omega=A\cap(\sum_{k\geqslant 1}\Lambda_k)=\sum_{k\geqslant 1}(A\cap\Lambda_k)$,A 被划分成若干不相交的集合 $A\cap\Lambda_k$,根据可列可加性,得到

$$\mathbb{P}(A) = \sum_{k \ge 1} \mathbb{P}(A \cap \Lambda_k) = \sum_{k \ge 1} \mathbb{P}(A|\Lambda_k)\mathbb{P}(\Lambda_k)$$

(2)
$$\Omega = (\sum_{n \geqslant 1} B_n) + (\sum_{n \geqslant 1} B_n)^c = \sum_{n \geqslant 0} B_n$$
, $\not = \mathbb{P}(B_0) = (\sum_{n \geqslant 1} B_n)^c$
 $\mathbb{P}(B_0) = 1 - \mathbb{P}(\sum_{n \geqslant 1} B_n) = 0 \to 0 \leqslant \mathbb{P}(AB_0) \leqslant \mathbb{P}(B_0) = 0$

左边不等号成立是因为概率测度非负,右边不等号成立是因为 $AB_0 \subseteq B_0$,所以 $\mathbb{P}(AB_0) = 0$

$$\mathbb{P}(A) = \sum_{n\geqslant 0} \mathbb{P}(AB_n)$$
 [可列可加性]
$$= \sum_{n\geqslant 1} \mathbb{P}(AB_n) \quad [\mathbb{P}(AB_0) = 0]$$

$$= \sum_{n\geqslant 1} \mathbb{P}(A|B_n)\mathbb{P}(B_n) \quad [全概公式] \quad \Box$$

Theorem 6

 $\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$

$$A \perp \!\!\!\perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$$

 $\mathbb{P}(A|B)$ 见定义13

Theorem 7

 $\mathbb{P}_B: \mathcal{F} \to [0,1]$ 也是 (Ω, \mathcal{F}) 上的概率测度 [定义5]

Property 7

 $\mathbb{P}(C) > 0, \mathbb{P}(B) > 0$,则

$$\mathbb{P}_B(\cdot|C) = \mathbb{P}(\cdot|BC) = \mathbb{P}_{BC}(\cdot)$$

 $\mathbb{P}_B(\cdot|C)$ 见定义13

Definition 14

称 C条件发生下, A与 B独立, 若

$$\mathbb{P}_C(AB) = \mathbb{P}_C(A)\mathbb{P}_C(B)$$

记为 $A \perp \!\!\! \perp_C B$ (条件独立)

Theorem 8

$$\mathbb{P}(C) > 0, \mathbb{P}(BC) > 0 \, \, \mathbb{M} \, \, A \perp \!\!\! \perp_C B \Leftrightarrow \mathbb{P}_C(A|B) = \mathbb{P}_C(A)$$

证明: 由 $A \perp \!\!\! \perp_C B$, $\mathbb{P}_C(AB) = \mathbb{P}_C(A)\mathbb{P}_C(B)$

$$\mathbb{P}_C(A|B) = \frac{\mathbb{P}_C(AB)}{\mathbb{P}_C(B)} = \mathbb{P}_C(A)$$

0.4 期望与条件期望

0.4.1 离散随机变量的期望

Definition 15 (X 的期望)

 $X:\Omega \to S$

$$\mathbb{E}(X) = \sum_{x \in S} x \mathbb{P}(X = x) = \mathbb{E}^{\mathbb{P}}(X)$$

当此求和绝对收敛

注: $\mathbb{E}^{\mathbb{P}}(X)$ 强调这是在概率测度 \mathbb{P} 下的期望

Definition 16 (g(X) 的期望)

 $g: \mathbb{R} \to \mathbb{R}$

$$\mathbb{E}g(X) = \sum_{x \in S} g(x) \mathbb{P}(X = x)$$

当此求和绝对收敛

关于"求和绝对收敛"的讨论:

Example 6

 $\mathbb{E}(\mathbb{I}_A) = \mathbb{P}(A), A \in \mathcal{F}$

Example 7

X 是离散随机变量,由定义10, $X=\sum_{x\in S}x\mathbb{I}_{A_x}$,其中 $A_x:=\{X=x\}$ 。B 是任意的,求 $\mathbb{E}(\mathbb{I}_BX)$

Remark 2. 对于 $A_x := \{X = x\}$ 应这样理解, A_x 是样本空间 Ω 的一个子集,包含了所有使得 $X(\omega) = x$ 的样本点 ω 。

根据离散随机变量的定义, $X(\omega) = x_k$ 当且仅当 $\omega \in \Lambda_k$ 。因此对于每个 $x_k \in S$, 有

$$A_{x_k} = \{X = x_k\} = \{\omega \in \Omega | X(\omega) = x_k\} = \Lambda_k$$

所以 $A_x = \{A_{x_k}\}_{k \ge 1}$ 就是离散随机变量的划分

对于 $X=\sum_{x\in S}x\mathbb{I}_{A_x}$ 可以这样理解。对于每个 $x\in S$, $\mathbb{I}_{A_x}(\omega)$ 是事件 $A_x=\{X=x\}$ 的指示函数

$$\mathbb{I}_{A_x}(\omega) = \begin{cases} 1 & \text{if } X(\omega) = x \\ 0 & \text{if } X(\omega) \neq x \end{cases}$$

Solution. 要先求 $\mathbb{E}(|\mathbb{I}_B X|) < \infty$ 说明期望存在

对 $\forall \omega \in B$

$$\mathbb{I}_{B}X(\omega) = \mathbb{I}_{B}(\omega) \sum_{x \in S} (x \cdot \mathbb{I}_{A_{x}}(\omega))$$
$$= \sum_{x \in S} x \mathbb{I}_{A_{x} \cap B}(\omega)$$

其中 $\mathbb{I}_{A_r \cap B}$ 也可记为 $\mathbb{I}_{A_r B}$

 $\{A_xB,x\in S\}\cup\{B^c\}$ 构成了样本空间 Ω 的一个划分。因为 A_x 本身是对 Ω 的一个划分,其与 B 的交是对 B 的划分。并上 B^c ,则满足划分的定义4

对于 $\omega \in \Omega$, 由划分

$$\mathbb{I}_{B}X(\omega) = 0 \cdot \mathbb{I}_{B^{c}}(\omega) + \sum_{x \in S} x \mathbb{I}_{A_{x} \cap B}$$

$$\therefore \mathbb{E}|\mathbb{I}_B X| = \sum_{x \in S} |x| \mathbb{P}(A_x B) \leqslant \sum_{x \in S} |x| \mathbb{P}(A_x) = \mathbb{E}|x| < \infty$$

最后一个等号参考期望的定义15

$$\mathbb{E}(\mathbb{I}_B X) = \sum_{x \in S} x \mathbb{P}(A_x B) = \sum_{x \in S} x \mathbb{P}(\{X = x\} \cap B)$$

Theorem 9

 $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$

离散随机变量有两种表达形式,如定义10和练习7所示

$$X = \sum_{x \in S} x \mathbb{I}_{\{X = x\}} = \sum_{k \geqslant 1} x_k \mathbb{I}_{\Lambda_k}$$

$$\sum_{x \in S} x \mathbb{P}(X = x) = \sum_{k > 1} \mathbb{P}(X = x_k)$$

只有在"求和绝对收敛"(见定义15)的条件下,等式才成立

Remark 3.

- $1. \sum_{x \in S} (1)$ 级数的重排 (2) 可和族
- 2. X 是离散随机变量, $g: \mathbb{R} \to \mathbb{R}$, 则

$$g(X) = \sum_{x \in S} g(x) \mathbb{I}_{X=x}$$

是一个离散随机变量,且 $\sigma(g(X)) \subseteq \sigma(X)$ 。下面说明这个结论 当 $x_1 \neq x_2$ 时可能 $g(x_1) = g(x_2)$,因此

$$\Pi_X=\{\{X=x\}|x\in S\}\neq \Pi_{g(X)}$$

其实 $\Pi_{g(X)}\subseteq \sigma(\Pi_X)$,因为对于 $x_1\neq x_2$ 但 $g(x_1)=g(x_2)$ 的情况,比如在 Π_X 上 x_1,x_2 对应的样本空间是 Ω_1,Ω_2 ,但在 $\Pi_{g(X)}$ 上是 $\Omega_1\cup\Omega_2$ 。这一项在 Π_X 里有,因为 σ 代数对可列并封闭。但 Ω_1,Ω_2 分别在 $\Pi_{g(X)}$ 上没有。把 σ 代数理解成信息,则 g(X)=y 提供的信息是比直接提供 x 的值要少的(在 $g(\cdot)$ 已知的情况下)。

 $3. \ X \perp \!\!\!\perp Y, \quad g,h: \mathbb{R} \to \mathbb{R}$,则 $g(X) \perp \!\!\!\perp h(Y)$ 。因为 $\sigma(X) \perp \!\!\!\perp \sigma(Y)$,而 $\sigma(g(X)) \subseteq \sigma(X)$, $\sigma(h(Y)) \subseteq \sigma(Y)$ 如果 X,Y 是连续随机变量,则对 g,h 有其他要求。特殊地,结论 3 对 g,h 连续时成立。

Theorem 10

- $(1) \ X \perp \!\!\!\perp Y, \mathbb{E}[X] < \infty, \mathbb{E}[Y] < \infty, \ \mathbb{M} \ \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$
- (2) X_1, X_2, \cdots, X_n 相互独立,则 $\mathbb{E}(X_1 \cdots X_n) = \mathbb{E}X_1 \cdots \mathbb{E}X_n$
- (3) $X \perp \!\!\!\perp Y, g, h : \mathbb{R} \to \mathbb{R}, \mathbb{E}|g(X)| < \infty, \mathbb{E}|h(Y)| < \infty$

$$\Rightarrow g(X) \perp \!\!\!\perp h(Y), \mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$$

Theorem 11

若 $X\geqslant 0$ 取整数值,则 $\mathbb{E}(X)=\sum_{k\geqslant 1}\mathbb{P}(X\geqslant k)$

证明:

0.4.2 条件期望

1°关于"给定集合"的条件期望

Definition 17

 $(\Omega, \mathcal{F}, \mathbb{P}), X : \Omega \to S, A \in \mathcal{F}, \mathbb{P}(A) > 0, \mathbb{E}|X| < \infty, \quad \text{定义 } X \notin A \text{ 的条件期望}$

$$\mathbb{E}(X|A) := \sum_{x \in S} \mathbb{P}(X = x|A)$$
$$= \sum_{x \in S} x \mathbb{P}_A(X = x)$$
$$= E^{\mathbb{P}_A}(X)$$

Property 8 (线性性)

 $\mathbb{E}(aX + bY|A) = a\mathbb{E}(X|A) + b\mathbb{E}(Y|A)$

证明: (用期望的性质)

Example 8

 $\mathbb{E}(\mathbb{I}_B|A) = 1 \cdot \mathbb{P}(B|A) + 0 \cdot \mathbb{P}(B^c|A) = \mathbb{P}(B|A)$

Example 9

 $B \perp \!\!\!\perp A \Rightarrow \mathbb{E}(\mathbb{I}_B | A) = \mathbb{E}(\mathbb{I}_B)$

Property 9

 $\mathbb{E}|X| < \infty, \mathbb{P}(A) > 0, X \perp \mathbb{I}_A \Rightarrow \mathbb{E}(X|A) = \mathbb{E}(X)$

证明:

$$\mathbb{E}(X|A) = \sum_{x \in S} x \mathbb{P}(X = x|A) = \sum_{x \in S} x \mathbb{P}(X = x) = \mathbb{E}(X)$$

其中

$$\sum_{x \in S} x \mathbb{P}(X = x | A) = \sum_{x \in S} x \frac{\mathbb{P}(\{X = x\} \cap A)}{P(A)} = \mathbb{E}(X \mathbb{I}_A) / \mathbb{P}(A)$$

最后一个等号由例题7

至此没有用到独立性, 可以得到以下推论

Corollary 2

 $\mathbb{E}(X|A) = \mathbb{E}(X\mathbb{I}_A)/\mathbb{P}(A)$

Problem 3 (作业 2-1)

Y 在 A 上取常数 c, 证明: $\mathbb{E}(XY|A) = c\mathbb{E}(X|A)$

 2° 关于"给定划分生成的 σ 代数"的条件期望

Definition 18

设 $\Pi = \{\Lambda_k\}_{k \geq 1}$ 是 Ω 的划分, X 为离散随机变量, $\mathbb{E}|X| < \infty$, 定义

$$\mathbb{E}(X|\sigma(\Pi))(\omega) := \mathbb{E}(X|\Lambda_k)$$

当 $\omega \in \Lambda_k$, 即

$$\mathbb{E}(X|\sigma(\Pi)) = \sum_{k \geq 1} \mathbb{I}_{\Lambda_k} \mathbb{E}(X|\Lambda_k)$$

期望的本质是积分, 现在因为数分里的积分不够用了, 我们要定义新积分, 希望它也能保留原先的好性质

Property 10 (线性性)

 $\mathbb{E}(aX + bY | \sigma(\Pi)) = a\mathbb{E}(X | \sigma(\Pi)) + b\mathbb{E}(Y | \sigma(\Pi))$

证明: $\omega \in \Lambda_k$, $LHS = \mathbb{E}(aX + bY | \Lambda_k) = a\mathbb{E}(X | \Lambda_k) + b\mathbb{E}(Y | \Lambda_k)$ 第二个等号由性质8成立。

Example 10

$$\begin{split} \mathbb{E}(X|\{\varnothing,\Omega\}) &= \mathbb{E}(X|\sigma(\Omega)) \\ &= \mathbb{I}_{\Omega} \mathbb{E}(X|\Omega) \qquad [\not \gtrsim \not \chi(\textbf{18})] \\ &= \sum_{x \in S} x \mathbb{P}(X=x|\Omega) \qquad [\not \gtrsim \not \chi(\textbf{17}), \Omega \perp \!\!\! \perp X] \\ &= \sum_{x \in S} x \mathbb{P}(X=x) \\ &= \mathbb{E}(X) \end{split}$$

独立可以理解为: 什么信息也没提供

Example 11

$$\mathbb{E}(\mathbb{I}_B|\sigma(A)) = \mathbb{E}(\mathbb{I}_B|\{A, A^c, \Omega, \varnothing\})$$

$$= \mathbb{E}(\mathbb{I}_B|\sigma(A, A^c))$$

$$= \mathbb{I}_A \mathbb{E}(\mathbb{I}_B|A) + \mathbb{I}_{A^c} \mathbb{E}(\mathbb{I}_B|A^c)$$

更进一步, 若 $A \perp\!\!\!\perp B$, 由 $\sigma(B) \perp\!\!\!\!\perp \sigma(A) \to \sigma(\mathbb{I}_B) \perp\!\!\!\!\perp \sigma(\mathbb{I}_A) \Rightarrow \mathbb{E}(\mathbb{I}_B | \sigma(A)) = \mathbb{E}(\mathbb{I}_B)$

可以把这个结果推广:

Property 11

$$\sigma(X) \perp \!\!\! \perp \sigma(\Pi), \ \, \mathbb{M} \, \, \mathbb{E}(X|\sigma(\Pi)) = \mathbb{E}(X)$$

证明: $\Pi_X = \{\{X = x\} | x \in S\}$, 默认 x 不相同 $\sigma(X) = \sigma(\Pi_X) = \{\{X = x\} | x \in S\}$ 不妨设 $\Pi = \{\Lambda_k, k \geqslant 1\}$ 则 $\sigma(X) \perp \!\!\! \perp \sigma(\Pi) \Rightarrow \forall x \in S, k \geqslant 1, \{X = x\} \perp \!\!\! \perp \Lambda_k$

$$\mathbb{E}(X|\sigma(\Pi)) = \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \mathbb{E}(X|\Lambda_k)$$

$$= \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \sum_{x\in S} x \mathbb{P}(X = x|\Lambda_k)$$

$$= \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \sum_{x\in S} x \mathbb{P}(X = x)$$

$$= \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \mathbb{E}(X)$$

$$= \mathbb{I}_{\Omega} \mathbb{E}(X)$$

$$= \mathbb{E}(X)$$

Example 12

 $\mathbb{E}(X|\sigma(X)) = X$

 $\sigma(X)$ 作为条件相当于知道了与 X 相关的所有信息,即提取已知量证明: $\sigma(X)=\sigma(\Pi_X)$,其中 $\mathbb{I}_X=\{\{X=x\}|x\in S\}$

$$\begin{split} \mathbb{E}(X|\sigma(X)) &= \sum_{x \in S} \mathbb{I}_{\{X = x\}} \mathbb{E}(X|X = x) \\ &= \sum_{x \in S} \mathbb{I}_{\{X = x\}} \mathbb{E}(X\mathbb{I}_{\{X = x\}}) / \mathbb{P}(X = x) \quad [$$

$$&= \sum_{x \in S} \mathbb{I}_{\{X = x\}} \cdot \frac{x \cdot \mathbb{P}(X = x) + 0 \cdot \mathbb{P}(X \neq x)}{\mathbb{P}(X = x)} \\ &= \sum_{x \in S} x \mathbb{I}_{\{X = x\}} = X \quad \Box \end{split}$$

Property 12 (提取已知量)

设 $\Pi=\{\Lambda_k,k\geqslant 1\}$ 为 Ω 的划分, $\mathbb{E}|X|<\infty,\mathbb{E}|XY|<\infty$,则当 $\sigma(X)\subseteq\sigma(\Pi)$ 时,有

- 1. $\mathbb{E}(X|\sigma(\Pi)) = X$
- 2. $\mathbb{E}(XY|\sigma(\Pi)) = X\mathbb{E}(Y|\sigma(\Pi))$

特别地, 取 $X = \mathbb{I}_A, A \in \sigma(\Pi)$, 则

- 1. $\mathbb{E}(\mathbb{I}_A|\sigma(\Pi)) = \mathbb{I}_A$
- 2. $\mathbb{E}(\mathbb{I}_A Y | \sigma(\Pi)) = \mathbb{I}_A \mathbb{E}(Y | \sigma(\Pi))$

证明: 只需证 (2), 因为从 (2) \rightarrow (1) 即 $Y = \mathbb{I}_{\Omega}$

 $X = \sum_{x \in S} x \mathbb{I}_{A_x}$, 其中 $A_x := \{X = x\}$

(Step 1) $\sigma(X) = \{ \sum_{x \in S_X'} A_x | S_X' \subseteq S_X \}$

 $\sigma(X) = \{ \sum_{k \in J} \Lambda_k | J \subseteq \mathbb{N} \}$

已知: $\sigma(X) \subseteq \sigma(\Pi) \Rightarrow \exists$ 一族 $\{x_k\}_{k \geqslant 1}$ (可能有相同元素),使得 $X = \sum_{k \geqslant 1} x_k \mathbb{I}_{\Lambda_k}$,其中 $\cup_{k \geqslant 1} \{x_k\} = S_x$ (S_x 为取值空间)

注: $\Pi \neq \Pi_X = \{A_x | x \in S\}$ 的加细划分

图 1: 加细划分

(Step 2) 对于 $\omega \in \Lambda_j, \forall j \geq 1$

$$\mathbb{E}(XY|\sigma(\Pi))(\omega) = \mathbb{E}(\sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k} Y | \sigma(\Pi))(\omega) \qquad [X = \sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k}]$$

$$= \mathbb{E}(\sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k} Y | \Lambda_j) \qquad [\sigma(\Pi) \overset{?}{\approx} \overset{?}{\times}]$$

$$= \mathbb{E}(\sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k} Y \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j) \qquad [\overset{!}{\approx} \overset{?}{\approx} (2)]$$

$$= \mathbb{E}(Y x_j \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j) \qquad [\mathbb{I}_{\Lambda_k} \mathbb{I}_{\Lambda_j} \overset{?}{\Rightarrow} \Lambda_k \neq \Lambda_j \overset{?}{\Rightarrow} = 0]$$

$$= x_j \mathbb{E}(Y \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j)$$

$$= x_j \mathbb{E}(Y \mathbb{I}_{\Lambda_j})$$

$$= x_j \mathbb{E}(Y | \mathbb{I}_{\Lambda_j})$$

$$= X(\omega) \mathbb{E}(Y | \mathbb{I}_{\Lambda_j})$$

$$\Rightarrow \mathbb{E}(XY | \sigma(\Pi)) = X \sum_{j\geqslant 1} \mathbb{I}_{\Lambda_j} \mathbb{E}(Y | \Lambda_j) = X \mathbb{E}(Y | \sigma(\Pi))$$

数学上有种现象叫"法国人的伎俩",即把定理当定义用。严格地讲,这么做有时会出现存在性和唯一性不满足的问题。下面介绍一个常被当做定义用的定理:

Theorem 12

 $\Pi=\{\Lambda_k,k\geqslant 1\}$ 为 Ω 的划分, $\mathbb{E}|X|<\infty$ 。 记 $Y:=\mathbb{E}(X|\sigma(\Pi))=\sum_{k\geqslant 1}\mathbb{I}_{\Lambda_k}\mathbb{E}(X|\Lambda_k)$,则

- 1. Y 仍是一个离散随机变量,且 $\mathbb{E}|Y| \geqslant \mathbb{E}|X| < \infty$
- 2. $\sigma(Y) \subseteq \sigma(\Pi)$ (记作 $Y \in \sigma(\Pi)$, 即 Y 的所有信息都在 $\sigma(\Pi)$ 里)
- 3. $\forall A \in \sigma(\Pi)$, 有 $\mathbb{E}(Y\mathbb{I}_A) = \mathbb{E}(X\mathbb{I}_A)$

证明: $(1)E|X| = \sum_{x \in S_n} |x| \mathbb{P}(X = x) < \infty$

$$\mathbb{E}|Y| = \sum_{k \ge 1} |\mathbb{E}(X|\Lambda_k)|\mathbb{P}(\Lambda_k) \geqslant \sum_{k \ge 1} \sum_{x \in S} |x|\mathbb{P}(\{X = x\} \cap \Lambda_k)$$

逻辑上,现在第一个等号不成立,但之后 $< \infty$ 一写出来,之前的所有等号立刻成立,此处只为书写简便

$$\mathbb{E}|X| = \sum_{x \in S_x} |x| \mathbb{P}(X = x) = \sum_{x \in S} |x| \sum_{k \geqslant 1} \mathbb{P}(\Lambda_k \cap \{X = x\})$$

我们知道 $\sum_{x\in S}|x|\sum_{k\geqslant 1}\mathbb{P}(\Lambda_k\cap\{X=x\})$ 绝对收敛,若求和次序交换后的 $\sum_{k\geqslant 1}\sum_{x\in S}|x|\mathbb{P}(\{X=x\}\cap\Lambda_k)$ 也绝对收敛,则 $\mathbb{E}|Y|<\infty$ 得证。有一个引理可以保证绝对收敛:

Lemma 1 ([4].P280. 推论)

从 273-280

Corollary 3 (来自定理12(1)) 1. (重期望公式) $\mathbb{E}|\mathbb{E}(X|\sigma(\Pi))| = \mathbb{E}|X|, \mathbb{E}(\mathbb{E}(X|\sigma(\Pi))) = \mathbb{E}(X)$

2. $|\mathbb{E}(X|\Lambda_k)| \leq \mathbb{E}(|X| \mid \Lambda_k), |\mathbb{E}(X|\sigma(\Pi))| \leq \mathbb{E}(|X| \mid \sigma(\Pi))$

(2) 由定义, $Y=\sum_{k\geqslant 1}y_k\mathbb{I}_{\Lambda_k}$,其中 $y_k:=\mathbb{E}(X|\Lambda_k)$ 记 $S_Y=\cup_{k\geqslant 1}\{y_k\}$,注意到,可能 $\exists i\neq j$,但 $y_i=y_j$ 故 $J_y=\{k|y_k=y\}(y\in S_Y)$ 中个数可能大于 1

$$Y = \sum_{y \in S_Y} y \mathbb{I}_{\sum_{k \in J_y} \Lambda_k}$$

$$\{Y=y\}=\sum_{k\in J_y}\Lambda_k\in\sigma(\Pi)$$

$$\sigma(Y) \subseteq \sigma(\Pi) \quad \Box$$

(3) $\mathbb{E}(Y\mathbb{I}_A) = \mathbb{E}(\mathbb{I}_A \mathbb{E}(X|\sigma(\Pi)))$

$$\begin{split} \mathbb{E}(Y\mathbb{I}_A) &= \mathbb{E}(\mathbb{I}_A \mathbb{E}(X|\sigma(\Pi))) \\ &= \mathbb{E}(\mathbb{E}(X\mathbb{I}_A|\sigma(\Pi))) \qquad [A \in \sigma(\Pi), \, \text{性质}(12)] \\ &= \mathbb{E}(X\mathbb{I}_A) \qquad [\text{重期望-推论}(3)] \end{split}$$

3° 关于离散随机变量的条件期望

Definition 19

概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$,X, Y 为离散随机变量, $\mathbb{E}|X| < \infty$ 。定义 $\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y)) = \mathbb{E}(X|\sigma(\Pi_Y))$,称为 X 关于 Y 的条件期望

注:
$$\omega = \{Y = y\} \in \Pi_Y$$
 或 $Y(\omega) = y$, $\mathbb{E}(X|Y)(\omega) = \mathbb{E}(X|Y = y)$

Example 13

$$\mathbb{E}(X|\Pi_{\Omega}) = \mathbb{E}(X|\sigma(\Omega)) = \mathbb{E}(X)$$

Example 14

$$\mathbb{I}_A \perp \!\!\!\perp \mathbb{I}_B \Rightarrow \mathbb{E}(\mathbb{I}_A | \mathbb{I}_B) = [\operatorname{Exa}(\frac{11}{1})] \mathbb{E}(\mathbb{I}_A)$$

Example 15

$$\mathbb{E}(X|X) = \mathbb{E}(X|\sigma(X)) = X[\text{Exa } 12]$$

Property 13

假设以下期望、条件期望都有意义

- 1. $\mathbb{E}(aX + bY|Z) = a\mathbb{E}(X|Z) + b\mathbb{E}(Y|Z)$
- 2. $X \perp \!\!\!\perp Y \Rightarrow \mathbb{E}(X|Y) = \mathbb{E}(X)$
- 3. $\sigma(X) \subseteq \sigma(Z) \Rightarrow \mathbb{E}(XY|Z) = X\mathbb{E}(Y|Z)$
- 4. $\mathbb{E}(\mathbb{E}(X|Z)) = \mathbb{E}(X)$
- 5. $|\mathbb{E}(X|Z)| \leq \mathbb{E}(|X| \mid Z)$

4°关于多个离散随机变量的条件期望

 $\mathbb{E}(Y|X_1,\cdots,X_n)$

- 1. 由 X_1, \dots, X_n 生成的 σ 代数 $\sigma(X_1, \dots, X_n)$
- 2. := $\mathbb{E}(Y|\sigma(X_1,\cdots,X_n))$

怎样生成 σ 代数可以包含 X_1, \dots, X_n 尽可能多的信息?

直觉是 $\bigcup_{k=1}^{\infty} \sigma(X_k)$, 然而它不一定是 σ 代数, 因为它对可列并不封闭。

每个 $\sigma(X_k)$ 是一个 σ 代数, 因此它对可列并封闭。

然而, $\bigcup_{k=1}^{\infty} \sigma(X_k)$ 只是将每个 $\sigma(X_k)$ 中的集合简单地并在一起,并没有保证这些集合的可列并仍然在 $\bigcup_{k=1}^{\infty} \sigma(X_k)$ 中。

例如,假设 $X_k \in \sigma(X_k)$,那么 X_k 在 $\bigcup_{k=1}^\infty \sigma(X_k)$ 中,但 $\bigcup_{k=1}^\infty X_k$ 可能不在 $\bigcup_{k=1}^\infty \sigma(X_k)$ 中,因为它可能不属于任何一个单独的 $\sigma(X_k)$ 。问题出在 $\bigcup_{k=1}^\infty \sigma(X_k)$ 缺少 $\{\sigma(X_k)\}_{k\geqslant 1}$ 交互的部分 怎样把 $\bigcup_{k=1}^\infty \sigma(X_k)$ 变成 σ 代数?

Definition 20 (多个离散随机变量的条件期望)

定义由离散随机变量 X_1, \dots, X_n 生成的 σ 代数

$$\begin{split} \sigma(X_1,\cdots,X_n) &:= (X_1,\cdots,X_n)^{-1}(2^{S_1}\times\cdots\times 2^{S_n})\\ &:= \{\underbrace{(X_1,\cdots,X_n)^{-1}(A_1\times\cdots\times A_n)}_{\text{柱集}} | A_1\times\cdots\times A_n\subseteq\underbrace{S_1\times\cdots\times S_n}_{\text{集积空间}} \}\\ &= \{\bigcap_{k=1}^\infty X_k^{-1}(A_k) | A_k\in 2^{S_k}, 1\leqslant k\leqslant n \} \end{split}$$

Theorem 13

令 $x_k = \sum_{i \ge 1} x_{k,i} \mathbb{I}_{\Lambda_{k,i}}, 1 \le k \le n$, 为离散随机变量,对每一个 k, $\Pi_k := \{\Lambda_{k,i} | i \ge 1\}$ 为 Ω 的划分,定义

$$\Pi_{(X_1,\dots,X_n)} := \{\Lambda_{1,i_1} \cap \dots \cap \Lambda_{n,i_n} | i_k \geqslant 1, 1 \leqslant k \leqslant n\}$$

则

1. $\Pi_{(X_1,\dots,X_n)}$ 是 Ω 的划分, 且

$$\sigma(\Pi_{(X_1,cdots,X_n)}) = \left\{ \sum_{\substack{(i_1,\cdots,i_n)\\ \in J_1\times\cdots\times J_n}} (\Lambda_{1,i_1}\cap\cdots\cap\Lambda_{1,i_n})|J_k\subseteq\mathbb{N}, 1\leqslant k\leqslant n \right\}$$

2. $\sigma(X_1,\cdots,X_n)=\sigma(\Pi_{(X_1,\cdots,X_n)})$ (即定义20是有意义的, well-defined, make sense, 良定义)

Problem 4 (作业 2-2)

证明定理13在n=2时成立

Definition 21

 $\mathbb{E}|Z|<\infty$ 定义

$$\mathbb{E}(Z|X_1,\cdots,X_n) = \mathbb{E}(Z|\sigma(X_1,\cdots,X_n)) := \mathbb{E}(Z|\sigma(\Pi_{(X_1,\cdots,X_n)}))$$

Definition 22

 $(\Omega, \mathcal{F}, \mathbb{P}), Y : \Omega \to S_Y, X_1 : \Omega \to S_1, X_2 : \Omega \to S_2$ 为离散随机变量,称 Y 和 (X_1, X_2) 独立,若 $\sigma(Y) \perp \!\!\! \perp \sigma(X_1, X_2).$ $[\sigma(Y) = Y^{-1}(2^{S_Y}), \sigma(X_1, X_2) = (X_1, X_2)^{-1}(2^{S_1} \times 2^{S_2})]$ 即 $\forall A \subseteq S_Y, B \subseteq 2^{S_1} \times 2^{S_2}, B = B_1 \times B_2$,有

$$\mathbb{P}(Y \in A, (X_1, X_2) \in B) = \mathbb{P}(Y \in A)\mathbb{P}((X_1, X_2) \in B)$$

其中 $\mathbb{P}((X_1, X_2) \in B) = \mathbb{P}(X_1 \in B_1, X_2 \in B_2)$

Problem 5 (作业 2-3)

证明:

有了上述定义,可以推广:

- 1. $(Y_1, \cdots, Y_n) \perp \!\!\! \perp (X_1, \cdots, X_n)$
- 2. $Y \perp \!\!\! \perp_A (X_1, \cdots, X_n) (A \in \mathcal{F}, \mathbb{P}(A) > 0)$

Property 14

 $Y \perp \!\!\!\perp (X_1, X_2) \Rightarrow Y \perp \!\!\!\perp X_1, Y \perp \!\!\!\perp X_2$

证明: 在定义22中取 $B_2 = \Omega$

$$\mathbb{P}(Y \in A, X_1 \in B_1) = \mathbb{P}(Y \in A, X_1 \in B_1, X_2 \in S_2)$$

$$= \mathbb{P}(Y \in A)\mathbb{P}(X_1 \in B_1, X_2 \in S_2) \qquad [Y \perp \!\!\! \perp (X_1, X_2)]$$

$$= \mathbb{P}(Y \in A)\mathbb{P}(X_1 \in B_1)$$

注:看到 ⇒ 要自然地问, 反过来 ← 成立吗? 做数学要多问自己一些问题, 即便没有答案

Corollary 4

$$(Y_1, \dots, Y_n) \perp \!\!\! \perp (X_1, \dots, X_n) \Rightarrow Y_k \perp \!\!\! \perp X_j, 1 \leqslant k \leqslant m, 1 \leqslant j \leqslant n$$

0.5 随机过程

0.5.1 什么是随机过程

Definition 23 (随机过程)

设 $(\Omega, \mathcal{F}, \mathbb{P})$ 为概率空间, (S, \mathcal{S}) 为可测空间, \mathbb{T} 为指标集/参数集,称随机变量族

$$\{X_t: (\Omega, \mathcal{F}, \mathbb{P}) \to (S, \mathcal{S}) | t \in \mathbb{T}\}$$

为 $(S ext{ } ext{$

- 1. $forallt \in \mathbb{T}$, X_t 为随机变量
- 2. \mathbb{T} 为时间集, X_t 为过程 X 在时刻 t 的状态

$$\mathbb{T}\backslash S\subseteq\mathbb{R}$$
 离散 $(e.g.\ \mathbb{N})$ 连续 $(e.g.\ \mathbb{R},\mathbb{R}^+)$ 可数集 $(e.g.\ \mathbb{N},\mathbb{Z})$ 离散时间/参数的随机过程 连续统 $(e.g.\ [0,T],\mathbb{R}^+)$ 连续时间/参数的随机过程

0.5.2 随机过程的分布

- 1. $\forall t \in \mathbb{T}, X_t : \Omega \to S$ 为随机变量/可测映射
- $2. X: \mathbb{T} \times \Omega \to S$ 二元映射
- 3. $X: \Omega \to S^{\mathbb{T}} \not = \{f | f: \mathbb{T} \to \S\}, X: \omega \to X(\omega) = X(\cdot, \omega)$

分布可用有限维分布族刻画

Definition 24

固定样本点 ω ,则 $X.(\omega)$ 为 $\mathbb{T}\to S$ 的映射,即 $X.(\omega)\in S^{\mathbb{T}}$,称 $X.(\omega)$ 是过程 X 的一个实现/样本路 径/样本函数

Definition 25

 $\forall n \geqslant 1, t_1, t_2, \cdots, t_n \$

$$(x_1, x_2, \dots, x_n) \mapsto F_{t_1, t_2, \dots, t_n}(x_1, x_2, \dots, x_n) = \mathbb{P}(X_{t_1} \leqslant x_1, \dots, X_{t_n} \leqslant x_n)$$

为X的n维分布

Definition 26 (过程的有限维分布族)

定义

$$\{F_{t_1,t_2,\cdots,t_n}|n\geqslant 1,t_1,\cdots,t_n\in\mathbb{T}\}$$

0.5.3 随机过程的存在性

- 1. (抽象的) 从概率论/测度论出发去证明随机过程存在性,不写出具体形式,满足随机过程符合给定的有限维分布族即可
- 2. (具体的) 构造性证明

Property 15

随机过程的有限维分布族具有以下两个性质

1. (对称性) 重排,设 $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$ 为双射,则

$$F_{t_{\sigma(1)}, \dots, t_{\sigma(n)}}(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = F_{t_1, \dots, t_n}(x_1, \dots, x_n)$$

2. (相容性) m≥n

$$F_{t_1,\dots,t_n,t_{n+1},\dots,t_m}(x_1,\dots,x_n,+\infty,\dots,+\infty) = F_{t_1,\dots,t_n}(x_1,\dots,x_n)$$

注:相容性类比从高维向低维的投影, $\mathbb{P}(X \leq +\infty) = F_X(+\infty) = 1$

这两个性质是随机过程存在的必要条件

Theorem 14 (Kolmogorov 定理)

设分布函数族

$$\{F_{t_1,\dots,t_n}|t_1,\dots,t_n\in\mathbb{T},n\geqslant 1\}$$

满足对称性,相容性,则必存在一个随机过程 $\{X_t, t \in \mathbb{T}\}$ 使得上述分布函数族 $F \neq X$ 的有限维分布族

0.5.4 随机过程的基本类型

- 1. 离散时间马氏链(由条件概率定义)
- 2. Poisson 过程
- 3. 更新过程
- 4. 连续时间马氏链
- 5. 离散时间 Martingale (由条件期望定义)
- 6. 布朗运动

Definition 27

对连续时间的随机过程 $\{X_t, t \in \mathbb{T}\}$

- 1. 若对一切的 $t_0 < t_1 < \cdots < t_n$ 有 $X_{t_1} X_{t_0}, \cdots, X_{t_n} X_{t_{n-1}}$ 相互独立,则过程 X 是独立增量过程 (e.g. 布朗运动)
- 2. 若对每一个 $S \in \mathbb{T}, X_{t+s} X_t$ 对一切的 t 都有相同分布, 称 X 为平稳增量过程

1 马氏链

1.1 离散时间马氏链

马尔可夫性 ↔ 已知现在, 过去与未来不相干/独立

Definition 28 ((离散时间) 马氏链)

称 S 值随机过程 $\{X_n, n \ge 0\}$ 为马氏链, 若 X 满足以下马氏性: $\forall n \ge 0, x_0, x_1, \cdots, x_n, y \in S$,

$$\mathbb{P}(\underbrace{X_{n+1} = y}_{\text{$\frac{1}{2}$}} | \underbrace{X_0 = x_0, \cdots, X_{n-1} = x_{n-1}}_{\text{$\frac{1}{2}$}, \text{$\frac{1}{2}$}}, \underbrace{X_n = x_n}_{\text{$\frac{1}{2}$}, \text{$\frac{1}{2}$}}) = \mathbb{P}(X_{n+1} = y | X_n = x_n) \tag{M_1}$$

其中 X_0 的分布称为 X 的初始分布

Definition 29

当S为有限集,称链为有限链,当S为无限集,称链为无限链

注: 改写 (M_1)

$$LHS = \mathbb{P}_{X_n = x_n}(X_{n+1} = y | X_0 = x_0, \dots, X_{n-1} = x_{n-1})$$

$$RHS = \mathbb{P}_{X_n = x_n}(X_{n+1} = y)$$

$$M_1 \Leftrightarrow \{X_{n+1} = y\} \perp \{X_n = x_n\} \{X_0 = x_0, \dots, X_{n-1} = x_{n-1}\}$$

$$\Leftrightarrow X_{n+1} \perp \{X_n = x_n\} (X_0, \dots, X_{n-1})$$

 (M_1) 未来 $\coprod_{\mathfrak{A}_{\underline{A}}}$ 过去

$$\mathbb{P}_{\mathfrak{V},\epsilon}(\mathbf{k},\mathbf{k}) = \mathbb{P}_{\mathfrak{V},\epsilon}(\mathbf{k},\mathbf{k})$$

Lemma 2 (马氏性的等价表示)

[Grimmett [2]] 下面三个命题等价

- 1. (M₁) 马氏性

$$\mathbb{P}(X_{n+1} = y | X_{n_1} = x_{n_1}, \dots, X_{n_k} = x_{n_k}) = \mathbb{P}(X_{n+1} = y | X_{n_k} = x_{n_k})$$
(M₂)

即

$$\{X_{n+1} = y\} \perp \!\!\! \perp_{\{X_{n_k} = x_{n_k}\}} \{X_{n_1} = x_{n_1}, \cdots, X_{n_{k-1}} = x_{n_{k-1}}\}$$

3. 对 $\forall m \ge 1, n \ge 0, \{y, x_i, 0 \le i \le n\} \subseteq S$, 有

$$\mathbb{P}(X_{n+m} = y | X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_{n+m} = y | X_n = x_n)$$
(M₃)

即

$${X_{n+m} = y} \perp_{{X_n = x_n}} {X_0 = x_0, \cdots, X_{n-1} = x_{n-1}}$$

证明: 思路 $1 \leftrightarrows 3 \leftrightarrows 2$

 $(2) \to (3)$,先处理一些记号的问题。记 (2) 中的 n 为 $n^{(2)}$,(3) 中的 n 为 $n^{(3)}$ 。则取 $n_k = n^{(3)} = n^{(2)} + 1 - m \leq n^{(2)}$,所以 $n^{(3)} + m = (n^{(2)} + 1 - m) + m = n^{(2)} + 1$,即已知 (2) 可推 (3)

 $(3) \to (1), \ \mathbb{R} \ m = 1, \ \mathbb{Z} \times \mathbb{R}$

只需证 $(3) \to (2), (1) \to (3)$

这里回顾独立的三种写法

- 1. A ⊥ B C 记号
- 2. $\mathbb{P}_B(A,C) = \mathbb{P}_B(A)\mathbb{P}_B(C)$ 定义
- $3. \mathbb{P}_{\mathcal{B}}(A|C) = \mathbb{P}_{\mathcal{B}}(A)$ 定理

(Step 1) 证明 $(3) \rightarrow (2)$

思路: (2)(3) 条件不同,想要由 (3) 推 (2),则切换到 (2) 的条件概率测度,展开,再用 (3) 的条件瘦身对 $\forall k \ge 2, 0 \le n_1 < n_2 < \cdots < n_k = n$

$$\begin{split} \tilde{\mathbb{P}}(X_{n+1} = y) &= \sum_{x_j \in S, j \in J} \tilde{\mathbb{P}}(X_{n+1} = y | X_j = x_j, j \in J) \cdot \tilde{\mathbb{P}}(X_j = x_j, j \in J) \qquad [全概公式] \\ &= \mathbb{P}(X_{n+1} = y | X_{n_k} = x_{n_k}) \sum_{x_j \in S, j \in J} \tilde{\mathbb{P}}(X_j = x_j, j \in J) \qquad [(3), \mathbb{P}_C(\cdot | A) = \mathbb{P}_C(\cdot)] \\ &= \mathbb{P}(X_{n+1} = y | X_{n_k} = x_{n_k}) \end{split}$$

其中,记号 $\sum_{x_j \in S, j \in J}$ 中的下标意为: 假设 J 中元素个数为 #J = u,则 $(x^{(1)}, \cdots, x^{(u)}) \in S^u$ 。从简单的开始, $\sum_{x \in S} \mathbb{P}(X = x) = \mathbb{P}(\Omega), \sum_{(x,y) \in S^2} \mathbb{P}(X = x, Y = y) = \mathbb{P}(\Omega), \cdots$, $\sum_{(x^{(1)}, \cdots, x^{(u)}) \in S^u} \mathbb{P}(X^{(1)} = x^{(1)}, \cdots, X^{(u)} = x^{(u)}) = \mathbb{P}(\Omega) = 1$

(Step 2) 下证 $(1) \rightarrow (3)$

- 1. m = 1 时,即 (1)
- 2. 假设 m = k 时 (3) 成立, 即 $\forall n \ge 1, \{y, x_i, n \ge i \ge 0\} \subseteq S$,

$$\{X_{n+k} = y\} \perp \!\!\! \perp_{\{X_n = x_n\}} \{X_0 = x_0, \cdots, X_{n-1} = x_{n-1}\} \xrightarrow{\text{th} f_{(14)}} \{X_{n+k} = y\} \perp \!\!\! \perp_{\{X_n = x_n\}} \{X_{n-1} = x_{n-1}\}$$

$$\mathbb{P}(X_{n+k} = y | X_0 = x_0, \cdots, X_n = x_n) = \mathbb{P}(X_{n+k} = y | X_n = x_n)$$

$$= \mathbb{P}(X_{n+k} = y | X_n = x_n, X_{n-1} = x_{n-1})$$
(*)

当 m = k + 1 时,对 $\forall \{y, x_i, n \geqslant i \geqslant 0\} \subseteq S$ 令 $\tilde{\mathbb{P}}_n(\cdot) := \mathbb{P}(\cdot | X_0 = x_0, \cdots, X_n = x_n)$

$$\begin{split} \tilde{\mathbb{P}}_n(X_{n+k+1} = y) &= \sum_{x_{n+1} \in S} \tilde{\mathbb{P}}_n(X_{n+k+1} = y | X_{n+1} = x_{n+1}) \cdot \tilde{\mathbb{P}}_n(X_{n+1} = x_{n+1}) \quad [定理(5)] \\ &= \sum_{x_{n+1} \in S} \mathbb{P}(X_{n+k+1} = y | X_{n+1} = x_{n+1}, X_n = x_n) \cdot \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n) \quad [(*), \; \mu 纳法假设] \\ &= \sum_{x_{n+1} \in S} \mathbb{P}(X_{n+k+1} = y, X_{n+1} = x_{n+1}, X_n = x_n) / \mathbb{P}(X_n = x_n) \quad [乘法公式-定理(4)] \\ &= \mathbb{P}(X_{n+k+1} = y, X_n = x_n) / \mathbb{P}(X_n = x_n) \\ &= \mathbb{P}(X_{n+k+1} = y | X_n = x_n) \end{split}$$

即 m = k + 1 得证

证明 (Step 2) 时如果在 x_{n+k} 处展开而不是在 x_{n+1} , 也是可以的。实际上在 x_{n+j} , $\forall j, 1 \leq j \leq k$ 展开都可以, 关键在于用性质14和全概公式5凑出乘法公式4、消元即可。

Remark 4. 三种写法的直觉

- 1. M1: 未来"下一步"跟过去"每一步"都无关
- 2. M2: 未来"下一步"跟过去的"任意若干步"都无关
- 3. M3: 未来"下 m 步" 跟过去"每一步" 都无关

可以推出,由 (2)(3),下式也成立:

対 $\forall m \geq 1, n \geq 0, \{y, x_i, 0 \leq i \leq n\} \subseteq S$

$$\mathbb{P}(X_{n+m} = y | X_{n_1} = x_{n_1}, \cdots, X_{n_k} = x_{n_k}) = \mathbb{P}(X_{n+m} = y | X_{n_k} = x_{n_k})$$

Corollary 5

若 X 是马氏链,则 $\forall n \geq 1, \{x_i, n \geq i \geq 0, y\} \subseteq S$,有

$$\mathbb{P}(X_{n+1} = y | X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_{n+1} = y | X_n = x_n, X_{n-1} = x_{n-1})$$

补充记号:

• 乘积空间

$$S^n := \underbrace{S \times \cdots \times S}_{n \uparrow \uparrow}$$

乘积 σ 代数

$$\bigotimes_n 2^S := \underbrace{2^S \times \cdots \times 2^S}_{\text{n } \uparrow \text{-}}$$

Property 16 (马氏性的等价条件)

下列三个命题等价

- 1. 马氏性 (M₁)
- 2. 对 $\forall n \geq 1, m \geq 1, A \in \otimes_n 2^S, B \in \otimes_m 2^S$, 即 $(A \subset S^n, B \subset S^m)$, 有

$$\mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_{n-1}) \in A, (X_{n+1}, \dots, X_{n+m}) \in B)$$

$$= \mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_{n-1}) \in A) \cdot \mathbb{P}_{\{X_n = x_n\}}((X_{n+1}, \dots, X_{n+m}) \in B)$$

即
$$(X_0, \dots, X_{n-1}) \perp_{\{X_n = x_n\}} (X_{n+1}, \dots, X_{n+m})$$
 的定义

3.
$$\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})\in B|(X_0,\cdots,X_{n-1})\in A)=\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})\in B)$$

证明: $(2) \Leftrightarrow (3)$, 独立的定义和定理, 显然

 $(3) \to (1), \ \mathbb{R} \ k = 0 \ \mathbb{Z} \ \mathbb{X}$

只需证 $(1) \rightarrow (3)$

只需证 (3) 对简单事件 A, B (单点集合) 成立, 即 $\forall n \ge 1, m \ge 1, \{x_0, x_1, \dots, x_{n+m} \subseteq S\}$, 有

$$\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})=x_{n+1}^{n+m}|(X_0,\cdots,X_{n-1})=x_0^{n-1})=\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})=x_{n+1}^{n+m})$$

其中 $x_{n+1}^{n+m} = (x_{n+1}, \dots, x_{n+m}), x_0^{n-1} = (x_0, \dots, x_{n-1})$

*只要对单点集合成立,对一般情况也成立,证明见定理1

只证 m=2, 令

$$\tilde{\mathbb{P}}_n(\cdot) := \mathbb{P}_{\{X_n = x_n\}}(\cdot | (X_0, \cdots, X_{n-1}) = x_0^{n-1}) = \mathbb{P}(\cdot | (X_0, \cdots, X_n) = x_0^n)$$

 \Rightarrow

$$\tilde{\mathbb{P}}_{n}((X_{n+1},X_{n+2}) = (x_{n+1},x_{n+2})) = \tilde{\mathbb{P}}_{n}(X_{n+1} = x_{n+1}) \cdot \tilde{\mathbb{P}}_{n}(X_{n+2} = x_{n+2}|X_{n+1} = x_{n+1})$$

$$= \mathbb{P}(X_{n+1} = x_{n+1}|X_{n} = x_{n}) \cdot \mathbb{P}(X_{n+2} = x_{n+2}|X_{n+1} = x_{n+1}) \qquad [M_{1}]$$

$$= \mathbb{P}(X_{n+1} = x_{n+1}|X_{n} = x_{n}) \cdot \mathbb{P}(X_{n+2} = x_{n+2}|X_{n+1} = x_{n+1}, X_{n} = x_{n}) \qquad [推论(5)]$$

$$= \mathbb{P}_{\{X_{n} = x_{n}\}}(X_{n+1} = x_{n+1}) \cdot \mathbb{P}_{\{X_{n} = x_{n}\}}(X_{n+2} = x_{n+2}|X_{n+1} = x_{n+1})$$

$$= \mathbb{P}_{\{X_{n} = x_{n}\}}((X_{n+1}, X_{n+2}) = (x_{n+1}, x_{n+2})) \qquad [乘法公式-定理(4)]$$

Corollary 6

设 X 为马氏链,则对每一个 $n \ge 1, m \ge 1, u_k < u_{k+1}, 0 \le k \le n+m-1$,有

$$(X_{u_0}, \cdots, X_{u_{n-1}}) \perp \!\!\! \perp_{\{X_{u_n} = x_{u_n}\}} (X_{u_{n+1}}, \cdots, X_{u_{n+m}})$$

1.2 时齐马氏链与转移概率

Definition 30 (时间齐次马氏链)

称马氏链 $X: \{X_n, n \ge 0\}$ 为时齐的或时间齐次马氏链, 若对 $\forall n \ge 0, i, j \in S$

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_1 = j | X_0 = i)$$

Definition 31

X 是时齐马氏链, 称

$$p_{ij} := p_{i,j} = \mathbb{P}(X_1 = j | X_0 = i)$$
 $i, j \in S$

为 X 从状态 i 到 i 的 (一步) 转移概率, 并称矩阵

$$P = \begin{pmatrix} p_{11} & p_{12} & p_{13} & \cdots \\ p_{21} & p_{22} & p_{23} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

为(一步)转移(概率)矩阵

若不加说明,则默认讨论的马氏链都是时齐的注:

$$\mathbb{P}(x_{n+1} = y) = \sum_{x \in S} \mathbb{P}(X_{n+1} = y | X_n = x) \cdot \mathbb{P}(X_n = x)$$
$$= \sum_{x \in S} p_{xy} \cdot \mathbb{P}(X_n = x)$$

Theorem 15 (转移矩阵的刻画)

转移矩阵是一个随机矩阵, 即

- 1. $\forall i, j \in S, p_{ij} \geqslant 0$
- 2. $\forall i \in S, \sum_{j \in S} p_{ij} = 1$

即转移矩阵的每一行 $(p_{ij})_{i \in S}$ 为 S 上的一个概率分布

注:另一种随机矩阵是指元素为随机变量的矩阵,和这里讲的没有关系

证明:

$$\sum_{j \in S} \mathbb{P}(X_1 = j | X_0 = i) = \mathbb{P}(X_1 \in S | X_0 = i) = \mathbb{P}(\Omega | X_0 = i) = 1$$

Definition 32 (时齐马氏链)

设 $X = \{X_n, n \ge 0\}$ 为一随机过程, 若

- 1. 初值 X_0 满足分布 $\mu = (\mu_i)_{i \in S}$,即 $\mathbb{P}(X_0 = i) = \mu_i, i \in S$
- 2. 存在一个随机矩阵 $P = (p_{ij})_{i,j \in S}$ 使得 $\forall n \ge 1, i_0, \dots, i_{n-1}, i, j \in S$

$$\mathbb{P}(X_{n+1}=j|X_0=i_0,\cdots,X_{n-1}=i_{n-1},X_n=i)=p_{ij}$$

则称 X 具有初始分布 μ 和转移矩阵 P 的(时齐)马氏链,记作 $X \sim \text{Markov}(\mu, P)$

上述定义与 (M_1) 马氏链定义 28 等价

证明: $(2) \rightarrow (M_1)$

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \sum_{(i_0, \dots, i_{n-1}) \in S^n} \mathbb{P}(X_{n+1} = j | X_n = i, X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1})$$

$$= \sum_{(i_0, \dots, i_{n-1}) \in S^n} p_{ij} \cdot \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = p_{ij}$$

所以 $\mathbb{P}(X_{n+1}=j|X_0=i_0,\cdots,X_{n-1}=i_{n-1},X_n=i)=\mathbb{P}(X_{n+1}=j|X_n=i)$ 即然有 (M_1) , 为什么还要定义32? 因为该定义决定了马氏链的有限维分布

Example 16 (Gambler's Ruin)

[Durrett [1]] P1

Example 1.1 (Gambler's Ruin). Consider a gambling game in which on any turn you win \$1 with probability p = 0.4 or lose \$1 with probability 1 - p = 0.6. Suppose further that you adopt the rule that you quit playing if your fortune reaches \$N. Of course, if your fortune reaches \$0 the casino makes you stop.

Let X_n be the amount of money you have after n plays. Your fortune, X_n has the "Markov property." In words, this means that given the current state, X_n , any other information about the past is irrelevant for predicting the next state X_{n+1} . To check

图 2: Gambler's Ruin

Claim 1. $\{X_n, n \ge 0\}$ 为(时齐)马氏链

1. 对于
$$0 < i_0, \dots, i_{n-1} < N, n \ge 0$$
 有

$$\mathbb{P}(X_{n+1}=i+1|X_n=i,X_0=i_0,\cdots,X_{n-1}=i_{n-1})$$

$$=\mathbb{P}(X_{n+1}=i+1|X_n=i)=0.4=\mathbb{P}(\Re n+1$$
次赌局赢一元)
$$\mathbb{P}(X_{n+1}=i-1|X_n=i,X_0=i_0,\cdots,X_{n-1}=i_{n-1})$$

$$=\mathbb{P}(X_{n+1}=i-1|X_n=i)=0.6=\mathbb{P}(\Re n+1$$
次赌局输一元)

2.
$$\mathbb{P}(X_{n+1}=0|X_n=0,X_0=i_0,\cdots,X_{n-1}=i_{n-1})=1=\mathbb{P}(X_{n+1}=0|X_n=0)$$
 $\mathbb{P}(X_{n+1}=N|X_n=N,X_0=i_0,\cdots,X_{n-1}=i_{n-1})=1=\mathbb{P}(X_{n+1}=N|X_n=N)$ 最后一个等号是由题目设定得到,从 $0\to 0$ 或 $N\to N$ 的概率都为 1,因为游戏结束综上, $p(i,i+1)=0.4,0< i< N, p(i,i-1)=0.6,0< i< N, p(0,0)=p(N,N)=1$ e.g.

When N = 5 the matrix is

图 3: N=5

Example 17 (Two-Stage Markov Chains)

[Durrett [1]] P7

Example 1.10 (Two-Stage Markov Chains). In a Markov chain the distribution of X_{n+1} only depends on X_n . This can easily be generalized to case in which the distribution of X_{n+1} only depends on (X_n, X_{n-1}) . For a concrete example consider a basketball player who makes a shot with the following probabilities:

1/2 if he has missed the last two times

2/3 if he has hit one of his last two shots

3/4 if he has hit both of his last two shots

图 4: Two-Stage Markov Chains

1.
$$\mathbb{P}(X_{n+1} = H | X_n = M, X_{n-1} = M) = 1/2$$

2.
$$\mathbb{P}(X_{n+1} = H | X_n = M, X_{n-1} = H) = \mathbb{P}(X_{n+1} = H | X_n = H, X_{n-1} = M) = 2/3$$

3.
$$\mathbb{P}(X_{n+1} = H | X_n = H, X_{n-1} = H) = 3/4$$

Claim 2. $Y_n = (X_n, X_{n-1}), n \ge 1$ 则 $\{Y_n, n \ge 1\}$ 是(时齐)马氏链, $Y_n : \Omega \to \{HH, HM, MH, MM\}$

证明:

$$\mathbb{P}(Y_{n+1} = HH|Y_n = HH, Y_j = (x_j, x_{j-1}), 1 \leqslant j \leqslant n-1)$$

$$= \mathbb{P}(X_{n+1} = H, X_n = H|X_n = H, X_{n-1} = H, X_j = x_j, X_{j-1} = x_{j-1}, 0 \leqslant j \leqslant n-1)$$

$$= \mathbb{P}(X_{n+1} = H|X_n = H, X_{n-1} = H)$$

$$= 3/4 \qquad [3.]$$

对 1.2. 同理

Proposition 1

设 $P = (p_{ij})_{i,j \in S}$ 为随机矩阵, $\mu = (\mu_i)_{i \in S}$ 为概率分布, $X = \{X_n, n \ge 0\}$ 为 S 值离散时间的随机过程,则 $X \sim \operatorname{Markov}(\mu, P)$ 当且仅当 X 有有限维分布,

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \cdots, X_n = i_n) = \mu_{i_0} P_{i_0, i_1} P_{i_1, i_2} \cdots P_{i_{n-1}, i_n} \quad (\forall n \geqslant 0, i_j \in S)$$

证明: ⇒

$$\begin{split} \mathbb{P}(X_0 = i_0, X_1 = i_1, \cdots, X_n = i_n) &= \mathbb{P}(X_0 = i_0) \mathbb{P}(X_1 = i_1 | X_0 = i_0) \cdots \mathbb{P}(X_n = i_n | X_0 = i_0, \cdots X_{n-1} = i_{n-1}) \quad [乘法公式] \\ &= \mathbb{P}(X_0 = i_0) \mathbb{P}(X_1 = i_1 | X_0 = i_0) \cdots \mathbb{P}(X_n = i_n | X_{n-1} = i_{n-1}) \quad [\text{Markov}] \\ &= \mu_{i_0} P_{i_0, i_1} \cdots P_{i_{n-1}, i_n} \end{split}$$

严格地讲, $\mathbb{P}(\cdot|A)$ 需保证 $\mathbb{P}(A)>0$ 。对 $\mathbb{P}(A)=0$ 情况的分类讨论,见 Resnick [3], prop 2.1.1 \leftarrow

1.
$$n = 0, \mathbb{P}(X_0 = i_0) = \mu_{i_0} \Rightarrow X_0 \sim (\mu_i)_{i \in S}$$

2.

$$\mathbb{P}(X_{n+1} = i_{n+1} | X_0 = i_0, \cdots, X_n = x_n) = \frac{\mathbb{P}(X_0 = i_0, \cdots, X_{n+1} = i_{n+1})}{\mathbb{P}(X_0 = i_0, \cdots, X_n = i_n)} = P_{i_n, i_{n+1}}$$

由时齐马氏链定义,初始分布和转移矩阵都符合定义32

$$X \sim \text{Markov}(\mu, P)$$

对于 $\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$, 如果我们想把 X_1 挖掉, 即

$$\mathbb{P}(X_0 = i_0, X_2 = i_2, \cdots, X_n = i_n) = \sum_{i_1 \in S} \mathbb{P}(X_0 = i_0, X_1 = i_1, \cdots, X_n = i_n)$$
$$= \mu_{i_0} \sum_{i_1 \in S} (P_{i_0, i_1} P_{i_1, i_2}) \cdots P_{i_{n-1}, i_n}$$

1.3 多步转移概率与矩阵乘法

Definition 33

设 $X = \{X_n, n \ge 0\}$ 为马氏链, 称

$$p_{ij}(m, m+n) := \mathbb{P}(X_{n+m} = j | X_m = i) \quad (i, j \in S, m, n \geqslant 0)$$

为 X 的 n 步转移概率, 并称 $P(m,m+n)=(p_{ij}(m,m+n))_{i,j\in S}$ 为 X 的 n 步转移(概率)矩阵, 其中

$$p_{i,j}(0,0) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

当 X 时齐, $P(m,m+1)=(p_{ij}(m,m+1))_{i,j\in S}=(p_{ij}(0,1))_{i,j\in S}=(p_{ij})_{i,j\in S}$ 可见 n=1 时, P(m,m+1) 与 m 无关。那 n>1 时呢?

1.3.1 Chapman-Kolmogorov 方程

Theorem 16 (C-K 方程)

设 $\{X_n, x \ge 0\}$ 为马氏链

$$p_{ij}(m, m+n+r) = \sum_{k \in S} p_{ik}(m, m+n) p_{kj}(m+n, m+n+r)$$

其中 $i,j \in S, m,n,r \geqslant 0$, 即

$$P(m, m + n + r) = P(m, m + n)P(m + n, m + n + r)$$

图 5: Multi-steps

证明:

$$\begin{split} p_{ij}(m,m+n+r) &= P(X_{m+n+r} = j | X_m = i) \\ &= \sum_{k \in S} P(X_{m+n+r} = j, X_{m+n} = k | X_m = i) \\ &= \sum_{k \in S} \mathbb{P}_{\{X_m = i\}}(X_{m+n+r} = j | X_{m+n} = k) \mathbb{P}_{\{X_m = i\}}(X_{m+n} = k) \quad [乘法公式] \\ &= \sum_{k \in S} p_{ik}(m,m+n) p_{kj}(m+n,m+n+r) \quad [\mathrm{Markov}] \end{split}$$

Corollary 7

设X为具有(-b)转移矩阵P的时齐马氏链,则

1. $\forall m,n\geqslant 0$,有 $P(m,m+n)=P(0,n)=P^n$ 。其中,约定 $P^0=I$ (单位矩阵)从而,可记 X 的 n 步转移概率为 $p_{ij}(n)$ 或 $p_{ij}^{(n)}$,n 步转移概率矩阵为 P(n),且有

$$P(n) = P^n = (p_{ij}^{(n)})_{i,j \in S}$$

2. C-K 方程可改写为

$$p_{ij}(m+n) = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)}$$

$$P(m+n) = P(m)P(n), \quad \mathbb{P}^{n} P^{m+n} = P^{m}P^{n}$$

证明:

$$P(m, m+n) = P(m, m+1) \cdot P(m+1, m+n)$$
 [C-K]
= $P \cdot P(m+1, m+n)$ [时齐]
= P^n \square

Proposition 2

 $\forall n \geq 0, P(n) = P^n$ 仍是一个随机矩阵 (定理15)

证明: n=2 时, $P^2=(p_{ij}(2))_{i,j\in S}$

 \Rightarrow

$$\sum_{j \in S} p_{ij}(2) = \sum_{j \in S} \sum_{k \in S} p_{ik} p_{kj} \quad [\text{C-K}, \ \& \& p_{ik}(1) = p_{ik}]$$

$$= \sum_{k \in S} \sum_{j \in S} p_{ik} p_{kj}$$

$$= \sum_{k \in S} p_{ik} p_{ik} \cdot (\sum_{j \in S} p_{kj})$$

$$= \sum_{k \in S} p_{ik} = 1 \quad \Box$$

第二个等号,级数可交换是因为非负,要么有限(收敛)、要么 $+\infty$ (发散)

1.3.2 马氏链的任意有限维分布

Proposition 3

 $X \sim \operatorname{Markov}(\mu, P)$, 其中 $\mu = (\mu_i)_{i \in S}, P = (p_{ij})_{i,j \in S}$, 则

$$\mathbb{P}(X_{u_1} = i_1, \dots, X_{u_n} = i_n) = \mu_{i_1}^{(u_1)} \prod_{k=1}^{n-1} p_{i_k, i_{k+1}}^{(u_{k+1} - u_k)}$$

其中, $0 < u_1 < u_2 < \dots < u_n$, $i_1, i_2, \dots, i_n \in S$, $\mu^{(u_1)} = (\mu_i^{(u_1)})_{i \in S}$ 为 X_{u_1} 的有限维分布

证明:

$$\mathbb{P}(X_{u_1} = i_1, \dots, X_{u_n} = i_n) = \mathbb{P}(X_{u_1} = i_1) \cdot \mathbb{P}(X_{u_2} = i_2 | X_{u_1} = i_1) \cdots \mathbb{P}(X_{u_n} = i_n | X_{u_1} = i_1, \dots, X_{u_{n-1}} = i_{n-1})
= (\mu_{i_1}^{(u_1)}) p_{i_1, i_2}^{(u_2 - u_1)} \cdots p_{i_{n-1}, i_n}^{(u_n - u_{n-1})} \quad [Markov]
= \mu_{i_1}^{(u_1)} \prod_{k=1}^{n-1} p_{i_k, i_{k+1}}^{(u_{k+1} - u_k)}$$

用概率表示不够直观,尝试用转移矩阵来表示

Lemma 3

 $\mu^{(m+n)} = \mu^{(n)} P^m(\forall m, n \geqslant 0), \quad \mathfrak{P}$

$$\mu_j^{(m+n)} = (\mu^{(n)}P^m)_j = \sum_{i \in S} \mu_i^{(n)} p_{ij}^{(m)}$$

特别地, 取 n=0, 则 $\mu^{(m)}=\mu\cdot P^m$ (μ 看成行向量), 即 $\mu_j^{(m)}=(\mu P^m)_j=\sum_{i\in S}\mu_i\cdot p_{ij}^{(m)}$

证明:

$$\mu_j^{(n+m)} = \mathbb{P}(X_{n+m} = j) = \sum_{i \in S} \mathbb{P}(X_{n+m} = j | X_n = i) \mathbb{P}(X_n = i)$$

$$= \sum_{i \in S} p_{ij}(m) \mu_i^{(n)}$$

$$= (\mu^{(n)} P^m)_j \quad \Box$$

 $\Rightarrow \mu^{(m+n)} = \mu^{(n)} P^m$

Theorem 17 (任意有限维分布 II)

 $\forall 0 \leqslant u_1 < u_2 < \dots < u_n, i_1, \dots, i_n \in S$

$$\mathbb{P}(X_{u_1} = i_1, \cdots, X_{u_n} = i_n) = (\mu P^{u_1})_{i_1} \prod_{k=1}^{n-1} P_{i_k, i_{k+1}}^{u_{k+1} - u_k}$$

其中, $P_{i,j}^m =: (P^m)_{i,j} =: p_{i,j}^{(m)}$

讨论随机过程地存在性:

抽象地, μ,P $\xrightarrow{\mathbb{R}^{\mathbb{H}(14)}}$ 有限维分布族 $\to X \sim \mathrm{Markov}(\mu,P)$, μ,P 可以刻画具备对称性、相容性的有限维分布具体地,参考 Resnick [3], P62, Section 2.1

1.4 (从固定点出发的)马氏链

固定 $i \in S$, 定义 $\mathbb{P}_i(\cdot) = \mathbb{P}(\cdot|X_0=i)$, $\mathbb{E}_i(X) = \mathbb{E}(X|X_0=i) = \sum_{x \in S} x \mathbb{P}_i(X=x)$

1.4.1 链的状态:常返和暂留

Definition 34

称状态i为常返的,若

$$\mathbb{P}_i(X_n = i \forall x \land n \ge 1) = 1$$

如果上面的概率 < 1, 则称为暂留的/非常返的

注: i 常返 $\Leftrightarrow \mathbb{P}_i(\bigcup_{n\geq 1}\{X_n=i\})=1$

思考: i 常返 ⇔ "不停地/无数次回到 i"

 $\Leftrightarrow \mathbb{P}_i(\omega|\omega\in$ 无数多个 $\{X_n=i\})$

 $\Leftrightarrow \mathbb{P}_i(\omega|\omega\in\cap_{k\geqslant 1}\cup_{n\geqslant k}\{X_n=i\},\forall k)$

 $\Leftrightarrow \mathbb{P}_i(X_n = i, i.o.)$ (infinitely often)

无数多次返回i可严格定义为:

$$\bigcap_{k\geqslant 1}\bigcup_{n\geqslant k}\{X_n=i\}$$

集合的语言中, ∪即∃, ∩即∀, 因此

- $\bigcup_{n>k} \{X_n=i\}$ 表示 $\exists n_0 \geqslant k$ 使得 $X_{n_0}=i$
- 对 $\forall k$ 取交集 $\bigcap_{k\geq 1}$, 即无论 k 多大, 总存在更大的 n 满足 $X_n=i$, 从而保证无限次返回

即 $\forall k, \exists n_k, s.t. \{X_{n_k} = i\}$ 发生

$$k = 1, n_1 \geqslant k$$

 $k = n_1 + 1, n_2 \geqslant n_1 + 1 > n_1$

Remark 5 (如何进一步理解). 无界和 ∞ 的区别是什么?

无界: $\forall M > 0, \exists k, s.t. |x_k| > M$

Example 18

 $1, 2, 3, 4, \cdots$ 为 $\infty/$ 无界

 $1,0,2,0,3,0,4,\cdots$ 并非 ∞ , 但是无界的

迁移到 $\bigcap_{k\geq 1}\bigcup_{n\geq k}$ 的例子

Example 19

 $A_1 = \{0, 1\}, A_2 = \{2\}, A_3 = \{0, 3\}, \cdots, \mathbb{N}$

$$\bigcap_{k=1}^{\infty} \bigcup_{n \geqslant k} A_n = \{0\}, \qquad \bigcap_{k=1}^{\infty} A_k = \emptyset$$

其中 $\bigcap_{k=1}^{\infty} \bigcup_{n \geq k}$ 也即 \limsup

但我们推理得到的"常返"和定义里的并不等价

$$\bigcap_{k\geqslant 1}\bigcup_{n\geqslant k}\{X_n=i\} \not\Leftrightarrow \bigcup_{n\geqslant 1}\{X_n=i\}$$

且 LHS 是 RHS 的子集,因此由定义的 $\mathbb{P}(RHS) = 1$ 不能推出 $\mathbb{P}(LHS) = 1$ 。于是我们疑惑为什么会叫它常返。这里要用到高阶知识"停时",我们最后会回到这个问题。 下面给出几种判断常返/暂留的方法。

1.4.2 从数学角度:并改写成不交并

i 常返 $\Leftrightarrow \mathbb{P}_i(\bigcup_{n\geq 1}\{X_n=i\})=1$

 $\Leftrightarrow \mathbb{P}_i(有限步到达i) = 1$

 $\Leftrightarrow \mathbb{P}(\mathcal{M}_i$ 出发条件下,有限时间内回到i) = 1

 $B_1(i) = \{X_1 = i\}, B_2(i) = \{X_2 = i\} \setminus \{X_1 = i\} = \{X_2 = i, X_1 \neq i\}, \dots, B_n(i) = \{X_n = i, X_{n-1} \neq i, \dots, X_1 \neq i\}$

$$\Rightarrow \sum_{n\geqslant 1} B_n(i) = \bigcup_{n\geqslant 1} \{X_n = i\} [\sharp \Im(2)]$$

i 常返 $\Leftrightarrow 1 = \mathbb{P}_i(\sum_{n \geq 1} B_n(i)) = \sum_{n \geq 1} \mathbb{P}_i(B_n(i))$,第二个等号由可列可加性得到(定义5)

$$\mathbb{P}_{i}(B_{n}(j)) = \mathbb{P}_{i}(X_{n} = j, X_{n-1} \neq j, \cdots, X_{1} \neq j)$$

$$= \mathbb{P}_{i}(\text{首次访问}j) \text{的时刻为}n)$$

$$= \mathbb{P}_{i}(\text{走}n\text{步首次到达}j)$$

故

$$\mathbb{P}_i(\sum_{n\geqslant 1}B_n(i))=\mathbb{P}_i($$
首次访问 j 的时刻为有限时间)
$$=\mathbb{P}_i($$
有限时间内首次访问 j)

记号

$$f_{ij} := \mathbb{P}_i$$
(首次访问j的时刻为有限时间)

$$f_{ij}(n) := \mathbb{P}_i(B_n(j)) = \mathbb{P}_i($$
首次访问 j 的时刻为 n)

Proposition 4

常返和暂留的等价命题

- 1. i 常返 $\Leftrightarrow 1 = f_{ii} = \sum_{n \geq 1} f_{ii}(n)$
- 2. i 暂留 $\Leftrightarrow 1 > f_{ii} = \sum_{n>1} f_{ii}(n)$

1.4.3 从"多步转移概率"角度判别

定义新记号 (P 不是转移矩阵)

$$P_{ij}(s) := \sum_{n \geqslant 0} s^n p_{ij}(n)$$
 $F_{ij}(s) := \sum_{n \geqslant 0} s^n f_{ij}(n)$

其中,
$$p_{ij}(0) = \delta_{ij}, f_{ij}(0) = 0$$

$$\delta = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

注: 当 |s| < 1 时, $P_{ij}(s)$, $F_{ij}(s)$ 绝对收敛 由 Abel 连续性定理,

$$\lim_{s \uparrow 1} F_{ij}(s) = \sum_{n \ge 1} f_{ij}(n) = f_{ij} \in [0, 1]$$

$$\lim_{s \uparrow 1} P_{ij}(s) = \sum_{n \ge 0} p_{ij}(0) = \text{finite}/+\infty$$

Lemma 4 (Grimmett [2], Thm 6.3.3)

设 |s| < 1,则

$$P_{ij}(s) = \delta_{ij} + P_{jj}(s)F_{ij}(s)$$

证明: 构造不交并, $B_m(i) = \{X_m = i, X_{m-1} \neq i, \dots, X_1 \neq i\}, m \geqslant 1$ $\Rightarrow \sum_{m \geqslant 1} B_m(i) = \bigcup_{n \geqslant 1} \{X_n = i\}, B_m(i) \subseteq \{X_n \neq i\}, m \geqslant n+1$

$$p_{ij}(n) = \mathbb{P}_i(X_n = j) = \mathbb{P}_i(\{X_n = j\} \cap \sum_{m \geqslant 1} B_m(j))$$

$$= \sum_{m \ge 1} \mathbb{P}_i(\{X_n = j\} \cap B_m(j)) = \sum_{m = 1}^n \mathbb{P}_i(\{X_n = j\} \cap B_m(j))$$

最后一个等号成立是因为 $m\geqslant n+1$ 时 $\{X_n=j\}\cap B_m(j)$ 为空集

$$\sum_{m=1}^{n} \mathbb{P}_{i}(\{X_{n}=j\} \cap B_{m}(j)) = \sum_{m=1}^{n} \mathbb{P}_{i}(X_{n}=j|B_{m}(j))\mathbb{P}_{i}(B_{m}(j))$$

其中 $X_m = j, X_{n-1} \neq j, \cdots, X_1 \neq j, X_{n-1} \in S \setminus \{j\}$ 用一般而非单点的马氏性(引理 $2M_3$)

$$\sum_{m=1}^{n} \mathbb{P}_{i}(X_{n} = j | B_{m}(j)) \mathbb{P}_{i}(B_{m}(j)) = \sum_{m=1}^{n} \mathbb{P}(X_{n} = j | X_{m} = j) \cdot f_{ij}(m)$$
$$= \sum_{m=1}^{n} p_{jj}(n - m) \cdot f_{ij}(m)$$

当 $n \ge 1$ 时,

$$\begin{split} P_{ij}(s) &= s^0 p_{ij}(0) + \sum_{n \geqslant 1} s^n \cdot p_{ij}(n) \\ &= \delta_{ij} + \sum_{n \geqslant 1} s^n \sum_{m=1}^n p_{jj}(n-m) f_{ij}(m) \\ &= \delta_{ij} + \sum_{n \geqslant 1} \sum_{m=1}^n s^n p_{jj}(n-m) f_{ij}(m) \\ &= \delta_{ij} + \sum_{n \geqslant 1} \sum_{m=1}^n (s^{n-m} p_{jj}(n-m)) (s^m f_{ij}(m)) \\ &= \delta_{ij} + \sum_{n \geqslant 1} \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} \mathbb{I}_{\{1 \leqslant m \leqslant n\}}(s^{n-m} p_{jj}(n-m)) (s^m f_{ij}(m)) \end{split}$$

把 $\mathbb{I}_{\{1\leqslant m\leqslant n\}}(s^{n-m}p_{jj}(n-m))(s^mf_{ij}(m))$ 看作 $a_{n,m}$,由推论1考察绝对收敛

 $0 \leqslant s < 1, |s| = s$

正向级数一定有意义,就看是有限/∞

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mathbb{I}_{\{1 \leqslant m \leqslant n\}} s^{n-m} p_{jj}(n-m) s^m f_{ij}(m)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{I}_{\{1 \leqslant m \leqslant n\}} s^{n-m} p_{jj}(n-m) s^m f_{ij}(m)$$

$$= \sum_{m=1}^{\infty} (\sum_{n=m}^{\infty} s^{n-m} p_{jj}(n-m)) s^m f_{ij}(m)$$

$$= (\sum_{n=0}^{\infty} s^n p_{jj}(n)) (\sum_{m=1}^{\infty} s^m f_{ij}(m)) < \infty \quad [变量代换n \leftarrow n-m]$$

Proposition 5

(1) j 常返 \Leftrightarrow

$$1 = f_{jj} \Leftrightarrow \sum_{n \ge 0} p_{jj}(n) = \infty$$

(2) j 暂留 ⇔

$$1 > f_{jj} \Leftrightarrow \sum_{n \geqslant 0} p_{jj}(n) < \infty$$

$$\Rightarrow \sum_{n \geqslant 0} p_{jj}(n) < \infty, \forall i \in S$$

$$\Rightarrow \lim_{n \to \infty} p_{ij}(n) = 0, \forall i \in S$$

证明: |s| < 1 时, $P_{ij}(s) = \delta_{ij} + P_{jj}(s)F_{ij}(s)$ $\Rightarrow P_{jj}(s) = 1 + P_{jj}(s)F_{jj}(s)$

$$P_{jj}(s) = \frac{1}{1 - F_{jj}(s)} \tag{*}$$

j 常返 $\Leftrightarrow 1 = f_{jj} = F_{jj}(1) \stackrel{\mathrm{Abel}}{=} \lim_{s \uparrow 1} F_{jj}(s)$ 对 (*),令 $s \to 1$,有 $\sum_{n \geqslant 0} p_{jj}(n) = +\infty$

1.4.4 从"首次回访时间"角度判别

Definition 35

首次回访的时刻

$$T_i = \min\{n \geqslant 1 | X_n = j\}$$

约定 $\min \emptyset = +\infty$

注:
$$\{T_j = \infty\} \Leftrightarrow \{\omega | \{n \geqslant 1 | X_n(\omega) = j\} = \varnothing\}$$

 $\Leftrightarrow \{\omega | X_n(\omega) \neq j, \forall n \geqslant 1\} = \bigcap_{n \geqslant 1} \{X_n \neq j\}$

Property 17

$$f_{jj} = \mathbb{P}_j(T_j < \infty), f_{jj}(n) = \mathbb{P}_j(T_j = n)$$

定义
$$\mathbb{P}_j(T_j < \infty) = \rho_{jj}$$

Proposition 6

联系命题5

1.
$$j$$
 常返 $\Leftrightarrow 1 = \rho_{ij} = \mathbb{P}_i(T_i < \infty) \Leftrightarrow 0 = \mathbb{P}_i(T_i = \infty)$

2.
$$j$$
 暂留 $\Leftrightarrow 1 > \rho_{jj} = \mathbb{P}_j(T_j < \infty) \Leftrightarrow 0 < \mathbb{P}_j(T_j = \infty)$

Definition 36

j 的平均回访时间

$$m_j := \mathbb{E}_j T_j = \mathbb{E}(T_j | X_0 = j)$$

Theorem 18

$$m_j = \mathbb{E}_j T_j = egin{cases} \sum_{n\geqslant 1} n f_{jj}(n) & j$$
常返 $\infty & j$ 暂留

证明:

(1)
$$j$$
 暂留 $\Rightarrow \mathbb{P}_j(T_j = \infty) > 0$
 $\Rightarrow \mathbb{E}T_j = \mathbb{E}T_j\mathbb{I}_{\{T_i = \infty\}} + \mathbb{E}T_j\mathbb{I}_{\{T_i < \infty\}} \geqslant \mathbb{E}T_j\mathbb{I}_{\{T_i = \infty\}} = \infty \cdot \mathbb{P}_{T_i = \infty} = \infty$

$$(2)$$
 j 常返 $\Rightarrow \mathbb{P}_j(T_j = \infty) = 0$

取期望时不起作用,因为 $0.\infty$ 是不定形

$$\begin{split} \mathbb{E}_{j}T_{j} &= \mathbb{E}_{j}T_{j}\mathbb{I}_{\{T_{j}<\infty\}} \\ &= \mathbb{E}_{j}T_{j}\mathbb{I}_{\sum_{n\geqslant 1}\{T_{j}=n\}} \\ &= \mathbb{E}_{j}\sum_{n\geqslant 1}T_{j}\mathbb{I}_{\{T_{j}=n\}} \quad [\not \in \mathbb{X} (10)] \\ &= \sum_{n\geqslant 1}n\mathbb{P}_{j}(T_{j}=n) \\ &= \sum_{n\geqslant 1}nf_{jj}(n) \end{split}$$

Definition 37

j 常返时

- 1. $\mathbb{E}_i T_i < \infty$ 称 j 是正常返
- 2. $\mathbb{E}_i T_i = \infty$ 称 j 是零常返(平均意义上再也不回来)

$$j$$
 常返 $\Leftrightarrow 1 = f_{jj} \Leftrightarrow \sum_{n \geqslant 0} p_{jj}(n) = \infty$
 $\Leftrightarrow 1 = \rho_{jj} = \mathbb{P}_j(T_j < \infty) \Leftrightarrow 0 = \mathbb{P}_j(T_j = \infty)$

$$\mathbb{P}_j(T_j < \infty) = \mathbb{P}(\mathcal{M}_j \text{出发条件下, 首次回到}_j \text{的时刻有限})$$

$$= \mathbb{P}(\mathcal{M}_j \text{出发条件下, 有限时间内至少访问}_j \text{有 1 次})$$

$$= \mathbb{P}(\mathcal{M}_j \text{出发条件下, 有限时间内回访}_j \text{的次数} \geqslant 1)$$

Definition 38

链在时刻0之后,访问j的次数

$$N(j) := \#\{n \geqslant 1 | X_n = j\} = \sum_{n \geqslant 1} \mathbb{I}_{X_n = j}$$

注: $N(j):\Omega \rightarrow \{0,1,2,\cdots\} \cup \{+\infty\}$

至此,做个阶段性小结,回顾i常返的几种等价表示

$$i$$
常 獎 $\stackrel{\text{Def}}{\Leftrightarrow} 1 = \mathbb{P}_i(\bigcup_{n \geqslant 1} \{X_n = i\})$

$$\Leftrightarrow 1 = f_{ii} := \sum_{n \geqslant 1} f_{ii}(n) = \sum_{n \geqslant 1} \mathbb{P}_i(X_1 \neq i, \dots, X_{n-1} \neq i, X_n = i) \Leftrightarrow \sum_{n \geqslant 1} p_{ii}(n) = \infty$$

$$\Leftrightarrow 1 = \rho_{ii} = \mathbb{P}_i(T_i^{(1)} := T_i < \infty) = \mathbb{P}_i\{N(i) \geqslant 1\} = 1$$

无数次地回访 \leftrightarrow 访问次数 $= \infty \leftrightarrow \mathbb{P}_i(N(i) := \sum_{n \geqslant 1} \mathbb{I}_{\{X_n = i\}} = \infty) = 1$ 两种表述的等价条件互相等价吗?即

$$\mathbb{P}_i(N(i) \geqslant 1) \stackrel{?}{\Leftrightarrow} \mathbb{P}_i(N(i) = \infty) = 1$$

需要 Strong Markov Property (SMP) 使上面 \Leftrightarrow 成立。这里先补充一些关于 N(j) 的内容,然后再回到证明。 考察 $\{N(y)=\infty\}=\cap_{k\geqslant 1}\{N(y)\geqslant k\}$

由概率测度的连续性(性质3)

$$\mathbb{P}_x(N(y) = \infty) = \lim_{k \to \infty} \mathbb{P}_x(N(y) \geqslant k)$$

其中,

$$\mathbb{P}_x(N(y) \geqslant k) = \mathbb{P}(\mathcal{M}_x$$
出发条件下,访问 j 的次数 $\geqslant k$)
$$= \mathbb{P}(\mathcal{M}_x$$
出发条件下,至少访问 y 有 k 次)
$$= \mathbb{P}(\mathcal{M}_x$$
出发条件下,第 k 次访问 y 的时刻有限)

$$\begin{split} T_y^{(1)} &:= T_y := \min\{n \geqslant 1 | X_n = y\} \\ T_y^{(2)} &:= \min\{n > T_y^{(1)} | X_n = y\} \\ &\vdots \\ T_y^{(k)} &:= \min\{n > T_y^{(k-1)} | X_n = y\}, \forall k \geqslant 2 \end{split}$$

$$\Rightarrow$$
 $\mathbb{P}_x(N(y) \geqslant k) = \mathbb{P}_x(T_y^{(k)} < \infty)$

Definition 39

第 k 次访问概率

$$\rho_{xy}^{(k)} := \mathbb{P}_x(T_y^{(k)} < \infty)$$

其中, $\rho_{xy}^{(1)} = \rho_{xy}$ 第 k 次回访概率

$$\rho_{yy}^{(k)} := \mathbb{P}_y(T_y^{(k)} < \infty)$$

注: $\rho_{yy}^{(2)} \stackrel{?}{=} \rho_{yy} \cdot \rho_{yy}$ 直观上是这样,但严格证明要求 SMP 这是因为不同时间对应的是不同的随机过程,如

- t = 0 时, 过程是 $\{X_n, n \ge 0\}$
- $t = T_i$ 时, 过程是 $\{X_{T_i+n}, n \ge 0\}$

SMP 是一个使得 $X_{T_i+n} = X_n, \forall T_i$ 的性质,之后会详细说。以上结论可总结成下面引理。

Lemma 5

(由 SMP 知)
$$\rho_{xy}^{(k)} = \rho_{xy} \rho_{yy}^{(k-1)}$$
特别地, $\rho_{yy}^{(k)} = \rho_{yy}^{k}$

接着我们回到证明

$$\mathbb{P}_i(N(i) \geqslant 1) = 1 \Leftrightarrow \mathbb{P}_i(N(i) = \infty) = 1$$

证明: \Leftarrow 显然, 因为 $\{N(i) = \infty\}$ 相对 $N(i) \geqslant 1$ 是小集合

 \Rightarrow

$$\mathbb{P}_i(N(i) = \infty) = \lim_{k \to \infty} \mathbb{P}_i(N(i) \geqslant k) \stackrel{\text{SMP}}{=} \lim_{k \to \infty} \rho_{ii}^k = 1$$

暂留的证明同理:

$$i$$
暂留 $\Leftrightarrow \mathbb{P}_i(N(i) = \infty) = \lim_{k \to \infty} \rho_{ii}^k = 0$
 $\Leftrightarrow 1 > \rho_{ii}$

1.4.5 从"平均回访次数"角度判别

$$N(y) = \sum_{n\geqslant 1} \mathbb{I}_{\{X_n = y\}} = \sum_{k\geqslant 1} \mathbb{I}_{\{N(y)\geqslant k\}}$$

Lemma 6 (Durrett [1], lem 1.11)

$$\mathbb{E}_{y}N(y) = egin{cases} \infty & y$$
常返 $rac{
ho_{yy}}{1-
ho_{yy}} & y$ 暂留

证明:

$$\mathbb{E}_{y}N(y) = \sum_{k \geqslant 1} \mathbb{P}(N(y) \geqslant k) = \sum_{k \geqslant 1} \mathbb{P}_{y}(T_{y}^{(k)} < \infty)$$
$$= \sum_{k \geqslant 1} \rho_{yy}^{(k)} \stackrel{\text{SMP}}{=} \sum_{k \geqslant 1} \rho_{yy}^{k}$$

 $\rho_{yy} = 1 \Rightarrow \mathbb{E}_y N(y) = \infty$

 $\rho_{yy} < 1 \Rightarrow \mathbb{E}_y N(y) = \rho_{yy} / (1 - \rho_{yy})$

下面证: i 常返 $\Leftrightarrow \mathbb{E}_i N(i) = \infty$, 也就是证 $\mathbb{P}_i (N(i) = \infty) = 1 \Leftrightarrow \mathbb{E}_i N(i) = \infty$

证明: ⇒ 显然

 $\Leftarrow N(y) \ \, 为非负 \ \, \mathrm{r.v.}, \ \, 有当 \, \, k \to \infty \, \, \mathrm{th}, \ \, \forall \omega, \textstyle \sum_{n=1}^k \mathbb{I}_{\{X_n=y\}}(\omega) \uparrow \sum_{n=1}^\infty \mathbb{I}_{\{X_n=y\}}(\omega)$

$$\mathbb{E}_{y}N(y) := \lim_{k \to \infty} \mathbb{E}_{y} \sum_{n=1}^{k} \mathbb{I}_{X_{n}=y}$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \mathbb{E}_{y} \mathbb{I}_{\{X_{n}=y\}}$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \mathbb{P}_{y}(X_{n}=y) = \sum_{n=1}^{\infty} p_{yy}(n)$$

将上面几个角度总结成下面定理

Theorem 19 (链的状态: 等价表述)

$$\begin{split} i \mbox{ \ensuremath{\mbox{$\stackrel{\text{Def}}{\Leftrightarrow}$}}} & 1 = \mathbb{P}_i(\bigcup_{n \geqslant 1} \{X_n = i\}) \quad [回 访 发生的概率] \\ & \Leftrightarrow 1 = f_{ii} := \sum_{n \geqslant 1} f_{ii}(n) = \sum_{n \geqslant 1} \mathbb{P}_i(X_1 \neq i, \cdots, X_{n-1} \neq i, X_n = i) \Leftrightarrow \sum_{n \geqslant 1} p_{ii}(n) = \infty \quad [\mbox{ if } \mbox{$\stackrel{\text{def}}{\Rightarrow}$} \\ & \Leftrightarrow 1 = \rho_{ii} = \mathbb{P}_i(T_i^{(1)} := T_i < \infty) = \mathbb{P}_i\{N(i) \geqslant 1\} = 1 \\ & \stackrel{\text{why the name}}{\Leftrightarrow} \mathbb{P}_i(N(i) = \infty) = \lim_{k \to \infty} \mathbb{P}_i(N(i) \geqslant k) \stackrel{\text{SMP}}{=} \lim_{k \to \infty} \rho_{ii}^k = 1 \\ & \Leftrightarrow \mathbb{E}_i N(i) = \infty \end{split}$$

1.4.6 停时与强马氏性

Definition 40 (停时/Stopping time)

随机变量 $\tau:\Omega\to\{0,1,2,\cdots\}\cup\{+\infty\}$,满足 $\forall\infty>n\geqslant 0,\{T=n\}\in\sigma(X_0,\cdots,X_n)$,称 τ 是关于 $(X_n)_{n\geqslant 0}$ 的停时

Example 20

$$\begin{split} T_y^{(1)} &:= T_y := \min\{n \geqslant 1 | X_n = y\} \\ & \{T_y^{(1)} = n\} = \{X_1 \neq y, \cdots, X_{n-1} \neq y, X_n = y\} \quad n \geqslant 1 \\ & = \{(X_0, X_1, \cdots, X_n) \in S \times (S \setminus \{y\}) \times \cdots \times (S \setminus \{y\}) \times \{y\}\} \\ & \in \sigma(X_0, \cdots, X_n) = (X_0, \cdots, X_n)^{-1}(\bigotimes_{n \neq 1} 2^S) \end{split}$$

Definition 41 (停时 σ 代数)

 τ 是关于 $(X_n)_{n\geq 0}$ 的停时, 定义

$$\mathcal{F}_{\tau} := \{A | A \cap \{\tau = n\} \in \sigma(X_0, \cdots, X_n), \forall n\}$$

$$\Leftrightarrow B \cap \{T = n\} \in \sigma(X_0, \cdots, X_n), \forall n$$

Proposition 7 (强马氏性)

 $X := \{X_n, n \ge 0\} \sim \operatorname{Markov}(\mu, P), \ \tau$ 是关于 $(X_n)_{n \ge 0}$ 的停时, 则

1. 在 $\{\tau < \infty\}$ 和 $\{X_{\tau} = x\}$ 条件下

$$(X_{\tau+n})_{n\geqslant 0} \sim \operatorname{Markov}(\delta_x, P)$$

其中 $\delta_x = (\delta_{xy})_{y \in S}$, 记号

$$\delta_{xy} = \begin{cases} 1 & y = x \\ 0 & y \neq x \end{cases}$$

注: $(X_{\tau+n})_{n\geqslant 0} \sim \operatorname{Markov}(\delta_x, P)$ under $\mathbb{P}(\cdot|\tau<\infty, X_{\tau}=x)$ 。 在原先的概率测度 \mathbb{P} 下, $(X_{\tau+n})_{n\geqslant 0}$ 不是马氏链

 $2. \forall J \subseteq \mathbb{N}_0, \#J < \infty,$ 有

$$\sigma(X_{\tau+n}, n \in J) \perp \!\!\! \perp_{\{\tau < \infty, X_{\tau} = x\}} \mathcal{F}_{\tau}$$

注:

- (a) $(X_{\tau+n})_{n\geq 0}$ 与 X_0, \dots, X_{τ} 独立
- (b) $(X_{\tau+n})_{n\geq 0} \perp \mathcal{F}_{\tau}$ under $\mathbb{P}(\cdot|\tau<\infty,X_{\tau}=x)$

证明: 只证 (1), (2) 留作作业

$$\begin{split} & \mathbb{P}(X_{\tau+0} = i_0, \cdots, X_{\tau+n} = i_n, \tau = m, X_{\tau} = x) \\ = & \mathbb{P}(X_m = i_0, X_{m+1} = i_1, \cdots, X_{m+n} = i_n, \tau = m) \\ = & \mathbb{P}(X_{m+1} = i_1, \cdots, X_{m+n} = i_n, \tau = m | X_m = i) \mathbb{P}(X_m = i) \\ = & \mathbb{P}(X_{m+1} = i_1, \cdots, X_{m+n} = i_n | X_m = i) \mathbb{P}(\tau = m, X_m = i) \\ = & \frac{\delta_{xi_0} p_{i_0, i_1} p_{i_1, i_2} \cdots p_{i_{n-1}, i_n}}{\delta_{xi_0}} \mathbb{P}(\tau = m, X_{\tau} = i) \\ = & p_{i_0, i_1} p_{i_1, i_2} \cdots p_{i_{n-1}, i_n} \mathbb{P}(\tau = m, X_{\tau} = i) \end{split}$$

其中第二个等号位置, $X_{m+1}=i_1,\cdots,X_{m+n}=i_n\in\sigma(X_{m+1},\cdots,X_{m+n})$ 为未来, $X_m=i$ 为现在, $\tau=m\in\sigma(X_0,\cdots,X_m)$ 中多出来个"现在" (X_m) 。但不影响,因为可证

$$X_m \perp \!\!\! \perp_{\{X_m=i\}} X_{m+1}$$

对 m 求和, 两边同除 $\mathbb{P}(\tau < \infty, X_{\tau} = i)$

$$\Rightarrow \mathbb{P}(X_{\tau+0} = i_0, \cdots, X_{\tau+n} = i_n | \tau < \infty, X_{\tau} = i) = \delta_{xi_0} p_{i_0, i_1} \cdots p_{i_{n-1}, i_n}$$

注意到
$$T_y^{(k)}=T_y^{(k-1)}+\min\{n\geqslant 1|X_{T_y^{(k-1)}+n}=y\}$$

$$\Rightarrow S_y^{(k)}=\min\{n\geqslant 1|X_{T_y^{(k-1)}+n}=y\}, \text{if } T_y^{(k-1)}<\infty$$

即 $(X_{T_y^{(k-1)}+n})_{n\geqslant 0}$ 的首次回访时刻 $S_y^{(k)}$

2 泊松过程

参考文献

- [1] Rick Durrett. Essentials of Stochastic Processes. 01 1999.
- [2] Geoffrey Grimmett and David Stirzaker. <u>Probability and random processes</u>. Oxford University Press, Oxford; New York, 2001.
- [3] Sidney I. Resnick. Adventures in stochastic processes. Birkhauser Verlag, CHE, 1992.
- [4] 菲赫金哥尔茨. 微积分学教程, volume 2. 高等教育出版社, 北京, 8 edition, 2006.