Principal component-guided sparse regression with pcLasso

Kenneth Tay (PhD student, Stanford University) with Jerry Friedman & Rob Tibshirani

Jul 29, 2019

Two big ideas in supervised learning

- Supervised learning setting: $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\mathbf{y} \in \mathbb{R}^n$ or $\mathbf{y} \in \{0, 1\}^n$ (usually $p \gg n$)
- \bullet Assume y and columns of X are centered

Sparsity: The response can be modeled well with just a handful of features.

• The lasso:

minimize
$$J(\beta_0, \beta) = \frac{1}{2} \| \mathbf{y} - \mathbf{X}\beta \|_2^2 + \lambda \|\beta\|_1.$$

- Good: Fast, sparse solution
- Not so good: If signal is weak and spread out over many correlated features (e.g. genes/proteins along a biological pathway), lasso focuses on individual features, may not predict well

Two big ideas in supervised learning

Dimensionality reduction with principal components: Main sources of variability (and hopefully signal) can be captured by a handful of derived variables.

- Let $\mathbf{X} = (\mathbf{UD})\mathbf{V}^T$ be the singular value decomposition (SVD) of \mathbf{X} .
- Columns of UD are principal components (PCs) of X.
- **PC** regression: OLS of **y** on first *k* PCs.
- Good: If signal is weak and spread out over many correlated features, PC regression aggregates signal across features, giving better prediction
- Not so good: PC regression not sparse in original variables

Marrying the lasso and PC regression

Goal: Devise a method that...

- Pools together signal from correlated features
- Is sparse in the original features

Sometimes, features come in groups (e.g. one-hot encodings of categorical features, genes in the same pathway)

Sub-Goal: Devise a method that makes use of feature grouping information

Our general idea

- Predictions $X\beta = (UD)(V^T\beta)$.
- $\mathbf{V}^T \beta$: Coordinates in principal component space. Think of predictions as a linear combination of PCs with coefficients $\mathbf{V}^T \beta$
- General idea: Penalize the coefficients in the principal component space!

One possibility:

$$\begin{split} & \underset{\boldsymbol{\beta}}{\text{minimize}} & & \frac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{\mathsf{X}} \boldsymbol{\beta} \right\|_2^2 + \lambda \left\| \boldsymbol{\beta} \right\|_1 + \frac{\theta}{2} \left\| \boldsymbol{\mathsf{V}}^T \boldsymbol{\beta} \right\|_2^2 \\ & = & \frac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{\mathsf{X}} \boldsymbol{\beta} \right\|_2^2 + \lambda \left\| \boldsymbol{\beta} \right\|_1 + \frac{\theta}{2} \boldsymbol{\beta}^T \boldsymbol{\mathsf{V}} \boldsymbol{\mathsf{V}}^T \boldsymbol{\beta}. \end{split}$$

Principal components lasso ("pcLasso"): single group case

Principal components lasso ("pcLasso"):

$$\underset{\boldsymbol{\beta}}{\operatorname{minimize}} \quad \frac{1}{2} \left\| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right\|_2^2 + \lambda \left\| \boldsymbol{\beta} \right\|_1 + \frac{\theta}{2} \boldsymbol{\beta}^T \mathbf{VZV}^T \boldsymbol{\beta}, \text{ where }$$

$$\mathbf{Z} = \mathbf{D}_{d_1^2 - d_j^2} = egin{pmatrix} d_1^2 - d_1^2 & & & & & \ & d_1^2 - d_2^2 & & & & \ & & \ddots & & & \ & & d_1^2 - d_m^2 \end{pmatrix},$$

 d_1, \ldots, d_m are the singular values of **X**.

pcLasso gives no penalty ("a free ride") to the part of β that lines up with the first PC; penalty increases for components that line up with the second, third etc. components.

Penalty contours: two predictors

Comparing shrinkage factors for prediction

Method	Predictions
Ordinary linear regression	$\sum_{j=1}^m \boldsymbol{u}_j \boldsymbol{u}_j^{T} \boldsymbol{y}$
Principal components regression of rank k	$\sum_{j=1}^m 1\{j \leq k\} \boldsymbol{u}_j \boldsymbol{u}_j^T \boldsymbol{y}$
Ridge regression	$\sum_{j=1}^{m} \frac{d_j^2}{d_j^2 + \mu} \mathbf{u}_j \mathbf{u}_j^T \mathbf{y}$
pcLasso without ℓ_1 penalty	$\sum_{j=1}^{m} \frac{d_j^2 + \mu}{d_j^2 + \theta(d_1^2 - d_j^2)} \boldsymbol{u}_j \boldsymbol{u}_j^T \boldsymbol{y}$

^{*} $\mathbf{u}_j = jth \ column \ of \ \mathbf{U}, \ m = rank(\mathbf{X})$

^{*} k, μ , θ : hyperparameters

Comparing shrinkage factors: **X** ≈ rank-3 matrix

Principal components lasso ("pcLasso") for groups

$$\hat{y} = \begin{bmatrix} X_1 = \\ U_1 D_1 V_1^T \end{bmatrix} \begin{bmatrix} \beta_1 \\ \end{bmatrix} + \begin{bmatrix} X_2 = \\ U_2 D_2 V_2^T \end{bmatrix} \begin{bmatrix} \beta_2 \\ \end{bmatrix} + \dots + \begin{bmatrix} X_K = \\ U_K D_K V_K^T \end{bmatrix} \begin{bmatrix} \beta_K \end{bmatrix}$$

Principal components lasso for groups:

$$\underset{\beta}{\text{minimize}} \quad J(\beta) = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X}\beta \|_2^2 + \lambda \| \beta \|_1 + \frac{\theta}{2} \sum_{k=1}^K \beta_k^T \boldsymbol{V}_k \boldsymbol{\mathsf{D}}_{d_{k_1}^2 - d_{k_j}^2} \boldsymbol{\mathsf{V}}_k^T \beta_k.$$

The quadratic penalty gives a *free ride* to components of β_k that align with the first PC of group k.

Some notes on computation

$$\underset{\beta}{\text{minimize}} \quad J(\beta) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_1 + \frac{\theta}{2} \sum_{k=1}^K \beta_k^T \mathbf{V}_k \mathbf{D}_{d_{k_1}^2 - d_{k_j}^2} \mathbf{V}_k^T \beta_k.$$

- J convex, non-smooth component separable ⇒ coordinate descent works.
- Can be extended easily to logistic and Cox regression models.
- Costly part: initial SVD of each X_k .
 - Possible approximation: Use SVD of lower rank instead.
 - ▶ After initial SVDs, pcLasso is almost as fast as glmnet!

Example: simulated data

- n = 200, p = 50, 5 groups of 10 predictors each
- Response: a linear combination of top eigenvector in first 2 groups

Test MSE (normalized by null MSE) Within-ap corr = 0, SNR = 1

Test MSE (normalized by null MSE)

Summary

- Introduced a new method, principal components lasso, which combines lasso sparsity with shrinkage toward leading PCs
- Works when features come in pre-assigned groups (non-overlapping and overlapping)
- Computationally fast
- Other things we did (see paper on arXiv:1810.04651):
 - Derived some theoretical properties
 - Degrees of freedom formula for single group, full-rank case
 - Strong rules for efficient screening of variables
 - Connection to group lasso and sparse group lasso
 - Extensive simulation results
- R package available: pcLasso

Thank you!

arXiv:1810.04651 kjytay@stanford.edu kjytay.github.io