Licence 1- FSES

Examen - Outils mathématiques pour l'économiste – Janvier 2021 Durée 2h

Documents interdits, calculatrice collège autorisée. Les réponses devront être justifiées.

Exercice 1 Les questions sont en partie indépendantes

- 1) Résoudre l'équation $x^2 + x 6 = 0$
- 2) En déduire la résolution de l'équation $x^4 + x^2 6 = 0$.
- 3) Soit A(x) = $x^3 7x + 6$.
 - a) Montrer que x = 1 est une racine évidente de l'équation A(x) = 0
 - b) Déterminer les constantes a, b, c telles que $A(x) = (x 1)(ax^2+bx+c)$
 - c) Résoudre $g(x) \le 0$.

Exercice 2

Discuter le nombre de points d'intersection de la parabole d'équation $y = (x-1)^2$ et la droite d'équation y = ax-3 en fonction du paramètre a.

Exercice 3

Une personne dispose d'économies. Elle décide de dépenser la moitié de ses économies chaque année pendant les vacances mais de rajouter les 200 \in de « prime cadeau » que lui donne son employeur. Le 1^{er} janvier 2020, elle dispose de 5000 euros. On modélise les économies par une suite (U_n) de premier terme $U_0 = 5000$.

- 1) Justifier que la suite est définie par $U_{n+1} = 0.5U_n + 200$ puis exprimer U_n en fonction de n.
- 2) Au bout de combien de temps la somme aura-t-elle dépensé la moitié de sa somme de départ ?
- 3) La personne dépensera-t-elle, au fil des années, la totalité de ses économies ?

Exercice 4

Démontrer que pour tout $n \ge 1$, $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ (on fera un raisonnement par récurrence)

Exercice 5

Soit f la fonction définie par $f(x) = \ln(x^2+2x-3)$.

- 1) Déterminer l'ensemble de définition de f.
- 2) Déterminer l'image de 2 par f.
- 3) Déterminer le ou les antécédents de 0 par f.

Exercice 6

Soit g la fonction définie par $g(x) = e^{x^2-1}$.

- 1) Préciser l'ensemble de définition de g.
- 2) Résoudre l'inéquation $e^{x^2-1} < 1$.
- 3) Etudier les variations de la fonction g (on calculera la dérivée et on dressera le tableau de variations)
- 4) Etudier la convexité de la fonction g.
- 5) Montrer que la fonction g réalise une bijection de $[0;+\infty[$ sur $[e^{-1};+\infty[$. Déterminer l'expression de g^{-1} .