NUEN 647 Final Project

Uncertainty quantification of depletion calculations for specific isotopes using ORIGEN.

I Introduction

Determing composition of irradiated fuel is of importance for a myriad of reasons. Whether for flux calculations, reprocessing, or irradiation history verification, calculating fuel composition requires a Bateman solver, and a means for building a sparse matrix.

Applications using these compositions rarely report the uncertainty associated with results, even when inputs, such as flux shape, fission yield, cross sections, and half-lives have varying degrees of uncertainty. A further source of error in this calculation is due to the multi-group approximation, but will not be explored here.

Several isotope concentrations, of interest to the writer, will calculated as a function of burnup with the depletion code ORIGEN for a thermal and fast system using depleted uranium. The uncertainty of these concentrations will then be determined.

II Objectives

- 1. Build ORIGEN model for fast and thermal system which calculates concentrations of isotopes shown in Table 1.
- 2. Determine how to vary fission yields for calculation
- 3. Determine how to vary cross section and or flux spectrum inputs for calculation
- 4. Determine how to vary half-life information for calculation
- 5. Create a sampling space for all possible variations of calculations
- 6. Determine importance of various uncertain parameters by running the code a number of times randomly sampling the sample space (still not 100% sure how to do this not even 50% sure how to do this)

Table 1: Isotope solve list.

$^{133}\mathrm{Cs}$	$^{136}\mathrm{Ba}$	$^{153}\mathrm{Eu}$
$^{134}\mathrm{Cs}$	$^{138}\mathrm{Ba}$	$^{154}\mathrm{Eu}$
$^{135}\mathrm{Cs}$	$^{149}\mathrm{Sm}$	$^{239}\mathrm{Pu}$
		$^{242}\mathrm{Pu}$
$^{148}\mathrm{Nd}$	$^{106}\mathrm{Rh}$	$^{125}\mathrm{Sb}$
137Cs 148Nd	150 Sm 106 Rh	

III Quantities of Interest and Uncertain Parameters

Quantities of interest are shown in Table 1 above. Uncertain parameters are listed below:

- Fission yield
- Cross sections
- Half-lives

IV Prediction

The first major prediction for this project is that half-lives will not have a large impact on results because they are relatively well known. Secondly, ¹²⁵Sb is notorious for being difficult to calculate, I would would predict that there would be large uncertainties due to uncertainties in the cross section data.