

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 199 39 601 A 1

⑮ Int. Cl.⁷:
H 02 J 3/01

⑯ Aktenzeichen: 199 39 601.9
⑯ Anmeldetag: 23. 8. 1999
⑯ Offenlegungstag: 8. 3. 2001

DE 199 39 601 A 1

⑯ Anmelder:
Eltroplan-Revcon Elektrotechnische Anlagen
GmbH, 59199 Bönen, DE

⑯ Vertreter:
Zeitler & Dickel Patentanwälte, 80539 München

⑯ Erfinder:
Krause, Siegfried, Dipl.-Ing., 44137 Dortmund, DE

⑯ Entgegenhaltungen:
DE 197 30 185 A1
DE 37 08 468 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Verfahren zur Oberschwingungskompensation in elektrischen Versorgungsnetzen

⑯ Die Erfindung betrifft ein Verfahren zum Kompensieren von Oberschwingungen in einem elektrischen Versorgungsnetz für Verbraucher, welche diese Oberschwingungen in dem Versorgungsnetz erzeugen, wobei von dem Versorgungsnetz eine zeitvariable Netzspannung $U_{Netz}(t)$ bzw. eine zeitvariabler Netzstrom $I_{Netz}(t)$ zugeführt und von einem jeweiligen Verbraucher eine jeweilige zeitvariable Verbraucherspannung $U_{v(t)}$ bzw. ein jeweiliger zeitweiliger Verbraucherstrom $I_{v(t)}$ entnommen wird. Hierbei wird von der zeitvariablen Verbraucherspannung $U_{v(t)}$ bzw. von dem zeitvariablen Verbraucherstrom $I_{v(t)}$ eine vorbestimmte zeitvariable Netzsollspannung $U_{Netzsoll}(t)$ bzw. ein vorbestimmter zeitvariabler Netzsollstrom $I_{Netzsoll}(t)$ abgezogen und die Differenz als zeitvariable Kompensationsspannung $U_K(t)$ bzw. zeitvariabler Kompensationstrom $I_K(t)$ gemäß $U_K(t) = U_v(t) - U_{Netzsoll}(t)$ bzw. $I_K(t) = I_v(t) - I_{Netzsoll}(t)$ bestimmt und dem Versorgungsnetz zugeführt.

DE 199 39 601 A 1

Beschreibung

Die Erfindung betrifft ein Verfahren zum Kompensieren von Oberschwingungen in einem elektrischen Versorgungsnetz für elektrische Verbraucher, welche diese Oberschwingungen in dem Versorgungsnetz erzeugen, wobei von dem Versorgungsnetz eine zeitvariable Netzspannung $U_{Netz}(t)$ bzw. ein zeitvariabler Netzstrom $I_{Netz}(t)$ zugeführt und von einem jeweiligen Verbraucher eine jeweilige zeitvariable Verbraucherspannung $U_V(t)$ bzw. ein jeweiliger zeitvariabler Verbraucherstrom $I_V(t)$ entnommen wird, gemäß dem Oberbegriff des Anspruchs 1.

Nichtlineare Verbraucher beziehen aus einem Versorgungsnetz mit sinusförmigen Versorgungsspannungen bzw. -strömen nicht sinusförmige Verbraucherspannungen bzw. -ströme. Diese nicht sinusförmigen Spannungen bzw. Ströme können mittels Fourier-Reihen in sinusförmige Größen zerlegt werden, die aus einer Grundschwingung, wie z. B. $f = 50 \text{ Hz}$, und Oberschwingungen der Frequenz $n \cdot f$ bestehen. Die durch die Stromoberschwingungen der Verbraucherspannung bzw. des Verbraucherstrom verursachten Auswirkungen auf das speisende Netz werden als Netzrückwirkungen bezeichnet. Typische Netzrückwirkungen sind: Erhöhung der Verlustleistung im Versorgungsnetz und bei anderen Verbrauchern; Spannungsabfälle und Kommutierungseinbrüche; Verformung der Netzspannung; Resonanzerscheinungen im Netz; Störungen bei benachbarten Baugruppen und Verbrauchern, ggf. durch die vorgenannten Resonanzerscheinungen.

Zu den nicht linearen Verbrauchern zählen z. B. Drosseln, Transformatoren und leistungselektronische Baugruppen, wie Gleichrichter, Wechselrichter, Drehstromsteller usw. Der vermehrte Einsatz und die immer größeren Leistungen von leistungselektronischen Baugruppen hat dazu geführt, daß Normen erarbeitet wurden oder in Vorbereitung sind, die die zulässigen Stromoberschwingungen in bezug auf bestimmte Versorgungsnetze spezifizieren, mit dem Ziel, die Netzrückwirkungen zu begrenzen.

Bei der Reduzierung von Stromoberschwingungen unterscheidet man prinzipiell netzseitige und gerätetechnische Maßnahmen. Zu den netzseitigen Maßnahmen zählen z. B. Saugdrosselkreise und aktive Oberschwingungskompensation. Bei den gerätetechnischen Maßnahmen ist beispielsweise die Erhöhung der Pulszahl von Gleich- und Wechselrichterschaltungen bekannt (12-pulsige Gleichrichterschaltungen).

Aufgrund der rasanten Entwicklung in der Leistungselektronik, besonders durch die Verfügbarkeit von IGBT-Leistungstransistoren ist es möglich, Blindleistungsstromrichter zu realisieren, die ausschließlich Oberschwingungsblindleistung kompensieren. Dies bezeichnet man als aktive Oberschwingungskompensation und diese Blindleistungsstromrichter zeichnen sich dadurch aus, daß ihr Netzstrom nahezu jede Stromform annehmen kann.

Die grundsätzliche Funktion einer aktiven Oberschwingungskompensation besteht darin, die zu kompensierenden Ströme zu messen und ein Leistungsteil der aktiven Oberschwingungskompensation so anzusteuern, daß Ströme fließen, die dazu führen, daß sich der Oberschwingungsgehalt des Netzstroms in der Summe verringert.

Ein entscheidender Nachteil dieser Geräte besteht jedoch darin, daß die minimale Reaktionszeit bzw. Ansprechzeit 40 ms beträgt, also bezogen auf ein 50 Hz-Netz mindestens dem zweifachen der Periodendauer entspricht. Diese hohe Ansprechzeit der Geräte hat seine Ursache nicht in der Reaktionszeit des Leistungsteils der Oberschwingungskompensation selbst, die durch die maximale Taktfrequenz der Leistungstransistoren von 20 KHz maximal 50 Mikrosekunden

den beträgt, sondern ist in dem Funktionsprinzip der Meßwert erfassung und Auswertung der zu kompensierenden Ströme begründet.

Die zu kompensierenden Ströme haben einen Grundschwingungs- und Oberschwingungsanteil und werden z. B. mit hochwertigen direkt abbildenden Stromwandlern gemessen, welche beispielsweise eine Grenzfrequenz von ca. 50 KHz aufweisen. Da der Oberschwingungsanteil kompensiert werden soll, wird von dem gemessenen Strom nun eine 10 Oberschwingungsanalyse mittels digitaler Meßwertverarbeitung durchgeführt, die mit Hilfe einer direkten Fourier-Transformation (DFT) oder einer Fastfourier-Transformation (FFT) berechnet wird. Das Ergebnis der Rechnung liefert den Anteil der Grundschwingung (50 Hz) und die Anteile der Oberschwingungen ($n \cdot 50 \text{ Hz}$) nach ihrem Betrag und der jeweiligen Phasenlage. Die Oberschwingungsanteile werden nun in die Sollwerte für den Kompensationsstrom umgerechnet und vom Leistungsteil umgesetzt.

Die Durchführung der DFT oder FFT basiert mathematisch auf der Darstellung nicht sinusförmiger, periodischer Wechselgrößen durch Fourier-Reihen. Daraus ergibt sich die Ansprechzeit von 40 ms, die der doppelten Integrationszeit der Fourier-Integrale entspricht. Die FFT oder DFT muß eine Meßdauer von $n \cdot$ Periodendauer haben, um ein 25 richtiges Rechenergebnis zu erzielen. Wird die Meßdauer nicht genau eingehalten, führt dieses zu sog. Abbruchfehlern. Die Meßgenauigkeit nimmt dabei mit der Erhöhung der Meßdauer zu. Die theoretisch kürzeste, rein mathematische Meßdauer beträgt 1 · Periodendauer, die sich aufgrund 30 der Fourier-Integrale ergibt. Die Meßdauer ist ohne Berücksichtigung von sonstigen Durchlaufzeiten der Steuerungselektronik und des Rechnersystems identisch mit der Ansprechzeit, die eigentlich eine Verzugszeit darstellt. Man kann die Meßdauer auch als Abtastrate der Messung bezeichnen.

Hochwertige Oberschwingungsanalysatoren benötigen z. B. $8 \cdot$ Periodendauer Meßdauer, um ein Ergebnis mit befriedigender Meßgenauigkeit zu liefern. Grundsätzlich werden Wertänderungen des Oberschwingungsgehaltes über 40 die Meßdauer integriert. Dies bedeutet praktisch eine Mittelwertbildung. Daraus folgt, daß, bezogen auf dynamische Vorgänge, kleiner 20 ms oder wesentlich kleiner der Meßdauer die Genauigkeit sehr gering ist.

So beschleunigen und verzögern beispielsweise Frequenzumrührer (Gleichrichter am Netzeingang) innerhalb von $\leq 100 \text{ ms}$, wobei sich der Netzstrom innerhalb dieser Zeit von annähernd Leerlaufstrom bis Maximalstrom ändert. Gemäß einem anderen Beispiel haben Servoantriebe ein noch weitaus dynamischeres Betriebsverhalten und werden ebenfalls über Gleichrichter vom Netz gespeist. Diese Beispiele verdeutlichen, daß bei Vorgängen wie oben geschildert, eine DFT oder FFT mit einer Abtastrate (Meßdauer) von minimal $2 \cdot$ Netzperiodendauer ein schlechtes Ergebnis liefert.

Der Erfundung liegt daher die Aufgabe zugrunde, eine 55 verbesserte Oberschwingungskompensation zur Verfügung zu stellen, welche dem vermehrten Einsatz von leistungselektronischen Baugruppen mit einer entsprechend hohen Dynamik Rechnung trägt und auch Oberschwingungen mit einer derartig hohen Dynamik wirkungsvoll kompensiert.

60 Diese Aufgabe wird durch ein Verfahren der o. g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfundung sind in den abhängigen Ansprüchen angegeben.

Bei dem Verfahren der o. g. Art ist es erfundungsgemäß 65 vorgesehen, daß von der zeitvariablen Verbraucherspannung $U_V(t)$ bzw. von dem zeitvariablen Verbraucherstrom $I_V(t)$ eine vorbestimmte zeitvariable Netzspannung $U_{Netzsoll}(t)$ bzw. ein vorbestimmter zeitvariabler Netzsollstrom

$I_{Netzsoll}(t)$ abgezogen wird und die Differenz als zeitvariable Kompensationsspannung $U_K(t)$ bzw. zeitvariabler Kompensationsstrom $I_K(t)$ gemäß

$$U_K(t) = U_V(t) - U_{Netzsoll}(t) \text{ bzw.}$$

$$I_K(t) = I_V(t) - I_{Netzsoll}(t)$$

bestimmt und dem Versorgungsnetz zugeführt wird.

Dies hat den Vorteil, daß eine Oberschwingungskompensation mit niedrigen Ansprechzeiten und Reaktionszeiten zur Verfügung steht, welche durch den Verzicht auf Fourier-Transformationen lediglich durch eine Ansprechzeit eines Leistungsteiles einer Kompensationsvorrichtung bestimmt sind.

Die Ermittlung von Sollwerten für die Kompensation mittels $U_K(t)$ bzw. $I_K(t)$ erfolgt zweckmäßigerweise direkt aus Augenblickswerten der oberschwingungsbehafteten Spannung $U_V(t)$ bzw. des oberschwingungsbehafteten Verbraucherstromes $I_V(t)$ und somit in Echtzeit.

In einer bevorzugten Ausführungsform wird die vorbestimmte zeitvariable Netzsollspannung $U_{Netzsoll}(t)$ bzw. der vorbestimmte zeitvariable Netzsollstrom $I_{Netzsoll}(t)$ als

$$U_{Netzsoll}(t) = \hat{U}_{Netzsoll} \cdot \sin(\omega t + q) \text{ bzw.}$$

$$I_{Netzsoll}(t) = \hat{I}_{Netzsoll} \cdot \sin(\omega t + q)$$

gewählt, wobei $\hat{U}_{Netzsoll}$ und $\hat{I}_{Netzsoll}$ jeweilige Scheitelwerte sind und q eine Phasenlage verschiebender Parameter ist.

Zweckmäßigerweise wird der Phasenparameter q derart gewählt, daß sich $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$ im wesentlichen mit einem zeitlichen Verlauf von $U_V(t)$ bzw. $I_V(t)$ dekken.

Dadurch, daß $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$ derart bestimmt werden, daß ein Mittelwert der zeitvariablen Kompensationsspannung $U_{Netzsoll}(t)$ bzw. ein Mittelwert des zeitvariablen Kompensationsstromes $I_{Netzsoll}(t)$ Null ist, wird bei der Oberschwingungskompensation innerhalb bestimmter Zeiträume genausoviel Energie aus dem Versorgungsnetz entnommen, wie in dieses abgegeben wird.

Beispielsweise erfolgt das bestimmen von $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$, mit folgenden Schritten:

- Messen eines Anfangswertes eines Gleichrichter-mittelwertes von $U_V(t)$ bzw. $I_V(t)$
- Setzen dieses Anfangswertes als ersten Scheitelpunkt von $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$,
- Berechnen eines Mittelwertes von $U_K(t)$ bzw. $I_K(t)$ mittels Integration,
- Regeln eines Effektivwertes von $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$ derart, daß das Ergebnis der Integration von Schritt (c) Null wird.

Zweckmäßigerweise wird ein durch die Zuführung von $U_K(t)$ bzw. $I_K(t)$ aus dem Versorgungsnetz entnommener Leistungsteil gespeichert und zu einem entsprechenden Zeitpunkt dem Versorgungsnetz mittels $U_K(t)$ bzw. $I_K(t)$ wieder zugeführt.

Beispielsweise wird die zeitvariable Verbraucherspannung $U_V(t)$ bzw. der zeitvariable Verbraucherstrom $I_V(t)$ als Meßwert dem Versorgungsnetz entnommen.

Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Diese zeigt in:

Fig. 1 ein schematisches Blockschaltbild einer Anordnung zur Oberschwingungskompensation und

Fig. 2 einen zeitlichen Verlauf von verschiedenen Strömen

men bei der Ausführung des erfindungsgemäßen Verfahrens.

Nachfolgend wird die Erfindung lediglich beispielhaft anhand der auftretenden Ströme im Detail näher erläutert. Wegen des bekannten Zusammenhangs zwischen Strom und Spannung ist jedoch "Strom" auch synonym für "Spannung" zu verstehen, wobei etwaige Phasenunterschiede zwischen Strom und Spannung keinen Einfluß auf diese Austauschbarkeit von "Strom" und "Spannung" in den folgenden Ausführungen haben.

Die in Fig. 1 schematisch dargestellte Oberschwingungskompensation für ein Versorgungsnetzwerk 10, an dem ein nicht linearer Verbraucher 12 angeschlossen ist, umfaßt eine Kompensationsvorrichtung 14. Der Ausdruck "Versorgungsnetz" bezeichnet hier elektrische Energiezuführungen für an unterschiedlichen Orten vorhandene elektrische Verbraucher 12, wie beispielsweise Geräte in privaten Haushalten oder Produktionsunternehmen. Das Versorgungsnetzwerk 10 liefert einen Netzstrom $I_{Netz}(t)$ und der nichtlineare Verbraucher 12 führt einen Verbraucherstrom $I_V(t)$ 18 ab, welcher entsprechend den Charakteristiken des nichtlinearen Verbrauchers 12 oberflächenschwingungsbehaftet ist. Die Kompensationsvorrichtung 14 mißt den oberschwingungsbehafteten Verbraucherstrom $I_V(t)$ 16 und bestimmt daraus einen Kompensationsstrom $I_K(t)$ 20, welcher von der Kompensationsvorrichtung 14 zugeführt wird. Sowohl der Netzstrom $I_{Netz}(t)$ 16 als auch der Verbraucherstrom $I_V(t)$ 18 variieren über die Zeit. Ferner variieren auch die Oberschwingungen über die Zeit. Dementsprechend variiert der Kompensationsstrom $I_K(t)$ 20 über die Zeit.

Erfindungsgemäß arbeitet diese Meßwerterfassung und Verarbeitung in Echtzeit und weist eine hohe Meßgenauigkeit auf. Auf die einleitend beschriebenen Meßverfahren gemäß FFT und DFT wird erfindungsgemäß vollständig verzichtet, wie im folgenden näher ausgeführt wird. Die Ermittlung des Soll-Wertes für den Kompensationsstrom $I_K(t)$ 20 erfolgt direkt aus Augenblickswerten des oberschwingungsbehafteten Stroms $I_V(t)$ 18 der Verbraucher 12.

Die Kompensationsvorrichtung 14 umfaßt beispielsweise einen sechs-pulsigen Gleichrichter, der dem Versorgungsnetz 10 den nicht sinusförmigen Verbraucherstrom $I_V(t)$ 18 entnimmt. Der Kompensationsstrom $I_K(t)$ der aktiven Oberschwingungskompensation 14 soll bewirken, daß der dem Versorgungsnetz 10 entnommene Netzstrom 16 im Idealfall keinen Oberschwingungsanteil mehr aufweist. Somit würde der Netzstrom $I_{Netz}(t)$ 16 nur noch aus dem Grundschwingsanteil bestehen und wäre ein sinusförmiger Netzstrom. Hierbei wird der Verbraucherstrom $I_V(t)$ 18 von Stromwandlern gemessen und der Meßwerterfassung der Vorrichtung 14 zugeführt.

Erfindungsgemäß wird für einen Soll-Wert des Netzstromes $I_{Netzsoll}(t)$ eine sinusförmige Spannung verwendet, die eine Netzfrequenz und eine bestimmte Phasenlage zur Netz-Istspannung $I_{Netzist}(t)$ haben soll, wie beispielsweise $\cos \varphi = 1$. Der Effektivwert dieses Sollwertes des Netzstromes $I_{Netzsoll}(t)$ variiert dabei von annähernd Null bis zu einem Maximalwert, je nach Höhe des Verbraucherstroms 18. Der Oberschwingungsgehalt der Sollwertspannung des Netzstromes $I_{Netzsoll}(t)$ hat im Idealfall keinen Oberschwingungsgehalt oder nur einen sehr geringen, wenn der Netzstrom 10 einen sinusförmigen Verlauf annehmen soll.

Fig. 2 veranschaulicht über eine Zeitachse t die bei der Ausführung des erfindungsgemäßen Verfahrens auftretenden Ströme. Der oberschwingungsbehaftete Verbraucherstrom $I_V(t)$ ist mit 22 bezeichnet. Der angestrebte Netzsollstrom bzw. Sollwert des Netzstromes $I_{Netzsoll}(t)$ ist mit 24 bezeichnet. Der von der Kompensationsvorrichtung 14 zugeführte Kompensationsstrom $I_K(t)$ ist mit 26 bezeichnet.

DE 199 39 601 A 1

5

Die Sollwertspannung des Netzstroms $I_{Netz}(t)$ 24 ist beispielsweise gemäß folgender Funktion vorbestimmt

$$f_1(t) = \hat{U}_{sn} \cdot \sin(\omega t + q)$$

Die Istwertspannung des Verbraucherstroms $I_V(t)$ 22 folgt der Funktion

$$f_2(t) = U_1(t)$$

Die Sollwertspannung des Kompensationsstromes $I_K(t)$ 26 entspricht der Funktion

$$f_3(t) = U_{sk}(t)$$

Die Funktion $f_2(t)$ kann nahezu jeden Kurvenverlauf annehmen. Die Sollwertspannung des Kompositionstromes $I_K(t)$ 26 wird erfindungsgemäß errechnet aus:

$$f_3(t) = f_1(t) - f_2(t)$$

Durch Umstellen dieser Gleichung ergibt sich:

$$f_1(t) = f_2(t) + f_3(t)$$

Durch Einsetzen der Funktion $f_1(t)$ ergibt sich:

$$f_2(t) + f_3(t) = \hat{U}_{sn} - \sin(\omega t + q)$$

Geht man wieder von der Betrachtung der Spannungen zurück auf die Betrachtung der Ströme so folgt daraus, daß dann, wenn der Kompensationsstrom $I_K(t)$ 26 der Sollwertspannung des errechneten Kompensationsstroms folgt, die Summe aus $I_K(t) + I_V(t)$ einen sinusförmigen Netzstrom $I_{Netz}(t)$ 16 ergibt.

Der Istwert des Kompensationsstromes wird ebenfalls mittels eines Stromwandlers gemessen und durch Vergleich mit der Sollwertspannung des Kompensationsstroms geregelt.

Mit anderen Worten wird in Echtzeit und aus augenblicklichen Werten der Kompensationsstrom $I_K(t)$ 26 aus einer Differenz des Verbraucherstroms $I_V(t)$ 22 und des angestrebten Sollwertes des Netzstromes $I_{Netzsoll}(t)$ 24 ermittelt. Da dieses Verfahren auf eine zeitraubende Fourier-Transformation verzichtet, ergeben sich wesentlich kürzere Ansprech- und Reaktionszeiten, welche im wesentlichen nur noch durch die Bauteile der Kompensationsvorrichtung 14 und insbesondere durch dessen Leistungsteil begrenzt sind.

Die praktische Ausführung der Rechenoperation durch Berechnung der Differenz des Verbraucherstroms $I_V(t)$ 22 und des Netzwertsollstromes $I_{Netzsoll}(t)$ 24 wird beispielsweise mit einer Analogrechenschaltung ausgeführt, die eine sehr hohe Rechengeschwindigkeit aufweist. Bei Verwendung von schnellen Operationsstärkern für den Subtrahierer werden Transitfrequenzen von 10 MHz erreicht und die Anstiegs geschwindigkeit der Ausgangsspannung kann bis zu 100 V/μs betragen.

Diese Werte übertreffen die Reaktionszeit der im Stand der Technik verfügbaren Stromwandler und des Leistungsteils erheblich. Alternativ ist es auch möglich, die Rechenoperation der Differenzbildung mit Hilfe eines digitalen Rechensystems auszuführen.

Die Regelung des Effektivwertes der Sollspannung des Netzstromes $I_{Netzsoll}(t)$ 24 erfolgt derart, daß ein Mittelwert des Kompensationsstromes $I_K(t)$ 26 Null ist. Als Anfangswert wird ein Gleichrichtermittelwert des Verbraucherstroms $I_V(t)$ 22 verwendet, der einen Scheitelwert der Sollwertspannung des Netzstromes $I_{Netzsoll}(t)$ 24 erstmalig be-

6

stimmt. Daraufhin wird der Mittelwert der Sollwertspannung des Kompensationsstromes $I_K(t)$ 26 durch Integration berechnet und das Ergebnis dieser Integration regelt den Effektivwert der Sollwertspannung des Netzstromes $I_{Netzsoll}(t)$

5 24 derart, daß das Ergebnis der Integration Null wird, was einem Mittelwert Null entspricht. Dies bedeutet, daß bei der Oberschwingungskompenstion mittels des Kompensationsstromes $I_K(t)$ innerhalb von bestimmten Zeiträumen genauso viel Energie aus dem Versorgungsnetz 10 aufgenommen wird, wie in dieses Versorgungsnetz 10 abgegeben wird.

Ein Speicher des Leistungsteils der Kompensationsvorrichtung 14 übernimmt die Speicherung der aus dem Versorgungsnetz 10 aufgenommene Energie, bis diese wieder in das Versorgungsnetz 10 abgegeben wird. Daraus erfolgt, daß die vorab beschriebene Regelung entscheidend die Speichergröße bestimmt.

Das Funktionsprinzip der Meßwerterfassung, Meßwertauswertung und der Regelung kann sowohl für einphasige 20 als auch für dreiphasige aktive Oberschwingungskompenstation verwendet werden.

Patentansprüche

25 1. Verfahren zum Kompensieren von Oberschwingungen in einem elektrischen Versorgungsnetz für elektrische Verbraucher, welche diese Oberschwingungen in dem Versorgungsnetz erzeugen, wobei von dem Versorgungsnetz eine zeitvariable Netzspannung $U_{Netz}(t)$ bzw. ein zeitvariabler Netzstrom $I_{Netz}(t)$ zugeführt und von einem jeweiligen Verbraucher eine jeweilige zeitvariable Verbraucherspannung $U_V(t)$ bzw. ein jeweiliger zeitvariabler Verbraucherstrom $I_V(t)$ entnommen wird, dadurch gekennzeichnet, daß von der zeitvariablen Verbraucherspannung $U_V(t)$ bzw. von dem zeitvariablen Verbraucherstrom $I_V(t)$ eine vorbestimmte zeitvariable Netzollspannung $U_{Netzsoll}(t)$ bzw. ein vorbestimmter zeitvariabler Netzollstrom $I_{Netzsoll}(t)$ abgezogen wird und die Differenz als zeitvariable Kompensationsspannung $U_K(t)$ bzw. zeitvariabler Kompensationstrom $I_K(t)$ gemäß

$$U_K(t) = U_V(t) - U_{Netzsoll}(t) \text{ bzw.}$$

$$I_K(t) = I_V(t) - I_{Netzsoll}(t)$$

bestimmt und dem Versorgungsnetz zugeführt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß $U_V(t)$ bzw. $I_V(t)$ sowie $U_K(t)$ bzw. $I_K(t)$ in Echtzeit ermittelt werden und $U_K(t)$ bzw. $I_K(t)$ in Echtzeit dem Versorgungsnetz zugeführt werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die vorbestimmte zeitvariable Netzollspannung $U_{Netzsoll}(t)$ bzw. der vorbestimmte zeitvariable Netzollstrom $I_{Netzsoll}(t)$ als

$$U_{Netzsoll}(t) = \hat{U}_{Netzsoll} \cdot \sin(\omega t + q) \text{ bzw.}$$

$$I_{Netzsoll}(t) = \hat{I}_{Netzsoll} \cdot \sin(\omega t + q)$$

gewählt wird, wobei $\hat{U}_{Netzsoll}$ und $\hat{I}_{Netzsoll}$ jeweilige Scheitelwerte sind und q eine Phasenlage verschiedener Parameter ist.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Phasenparameter q derart gewählt wird, daß sich $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$ im wesentlichen mit einem zeitlichen Verlauf von $U_V(t)$ bzw. $I_V(t)$ deckt.

5. Verfahren nach einem der vorhergehenden Ansprüchen

che, dadurch gekennzeichnet, daß $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$ derart bestimmt werden, daß ein Mittelwert der zeitvariablen Kompensationsspannung $U_{Netzsoll}(t)$ bzw. ein Mittelwert des zeitvariablen Kompensationsstromes $I_{Netzsoll}(t)$ Null ist.

5

6. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgende Schritte zum Bestimmen von $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$.

- (a) Messen eines Anfangswertes eines Gleichrichtermittelwertes von $U_V(t)$ bzw. $I_V(t)$ 10
- (b) Setzen dieses Anfangswertes als ersten Scheitelwert von $U_{Netzsoll}(t)$ bzw. $I_{Netzsoll}(t)$,
- (c) Berechnen eines Mittelwertes von $U_K(t)$ bzw. $I_K(t)$ mittels Integration,
- (d) Regeln eines Effektivwertes von $U_{Netzsoll}(t)$ 15 bzw. $I_{Netzsoll}(t)$ derart, daß das Ergebnis der Integration von Schritt (c) Null wird.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein durch die Zuführung von $U_K(t)$ bzw. $I_K(t)$ aus dem Versorgungsnetz 20 entnommener Leistungsteil gespeichert und zu einem entsprechenden Zeitpunkt dem Versorgungsnetz mittels $U_K(t)$ bzw. $I_K(t)$ wieder zugeführt wird.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zeitvariable Verbraucherspannung $U_V(t)$ bzw. der zeitvariable Verbraucherstrom $I_V(t)$ als Meßwert dem Versorgungsnetz entnommen wird.

9. Verwendung des Verfahrens gemäß wenigstens einem der vorhergehenden Ansprüche zur einphasigen 30 oder dreiphasigen Oberschwingkompensation.

Hierzu 1 Seite(n) Zeichnungen

35

40

45

50

55

60

65

Fig. 1

Fig. 2

Method for harmonics compensation in electric power networks

Patent Number: EP1079493, A3
Publication date: 2001-02-28
Inventor(s): KRAUSE SIEGFRIED DIPL-ING (DE)
Applicant(s): ELTROPLAN REVCON ELEKTROTECHNI (DE)
Requested Patent: DE19939601
Application Number: EP20000118005 20000822
Priority Number(s): DE19991039601 19990823
IPC Classification: H02J3/01
EC Classification: H02J3/01
Equivalents:
Cited patent(s): DE3708468; WO8906879

Abstract

The method involves subtracting a defined time-variable desired supply voltage or current from the time variable load voltage or current, forming a time variable compensation current or voltage as the difference and feeding the compensation voltage or current to the supply network. An Independent claim is also included for an application of the method to single-phase or three-phase harmonic compensation.

Data supplied from the esp@cenet database - I2

THIS PAGE BLANK (USPTO)

DOCKET NO: WMP-IFT-648

SERIAL NO: _____

APPLICANT: F. Kloet et al.

LERNER AND GREENBERG P.A.

P.O. BOX 2480

HOLLYWOOD, FLORIDA 33022

TEL. (954) 925-1100