

Intro to Challenge 1

Data Sets

Challenge 1: Data Sets

Status: Challenge Complete

What to do next: All Done!

1. Get the Skills you Need

Study the practice questions in these levels. Mark them "Ready for Challenge" whne you are done.

Python skill level(s) you need

Level 1: What's Programming?

Level 2: In and out of Python

Data Science skill level(s) you need

Level 1: What's Data Science?

Level 2: Whats a data set?

Statistics skill level(s) you need

Level 1: What's Statistics?

Level 2: What's Data?

What you do

- 1. Download and open a data set
- 2. Talk about the social context of the data
- 3. Talk about the data itself
- 4. Do a data analysis to find answers

Key Data Science Points

- What is in data science that is not in stats and python?
- What is a data context?
- What is a data set?

Key Stats Points

- What is Data?
- What's a data type?
- What is a table
- Row
- Column

Key Python Points

- import pandas as pd
- dataFrame = pd.read_csv(", sep="")
- print()
- dataFrame.head()

Intro to Challenge 2

Describing Data

Challenge 2: Describing Data

Status: Challenge Complete

What to do next: All Done!

1. Get the Skills you Need

Study the practice questions in these levels. Mark them "Ready for Challenge" when you are done.

Python skill level(s) you need

Level 3: Making Calculations in Python

Level 4: Python Data Structures

Data Science skill level(s) you need

Level 3: Describing Data: Google Trends

Statistics skill level(s) you need

Level 4: Working with Graphs and Charts

Level 3: Describing Data

What you do

- 1. Download and open a data set
- 2. Talk about the social context of the data
- 3. Talk about the data itself
- 4. Do a data analysis to find answers

Key Data Science Points

- Bias
- Normalized
- Anonymized
- Missing values
- Google Trends

Key Stats Points

- Central tendency
- Mean
- Standard deviation

OnlineStatBook.com

Key Python Points

- df = pd.read_csv(")
- meanAsNumber = df["].mean()
- meanAsMoney = "\${???}".format(meanAsNumber)

Intro to Challenge 3

Data Tables

Challenge 3: Data Tables

Status: Qualifying Exam Open

What to do next: Click the button below to take your Qualifying Exam

1. Get the Skills you Need

Study the practice questions in these levels. Mark them "Ready for Challenge" when you are done.

Python skill level(s) you need

Level 5: Working with Tables

Level 6: Functions in Python

Data Science skill level(s) you need

Level 4: Data Tables: Auto Power

Statistics skill level(s) you need

Level 5: Working with Categorical Data

What you do

- 1. Download and open a data set
- 2. Talk about the social context of the data
- 3. Talk about the data itself
- 4. Do a data analysis to find answers

Key Data Science Points

- Data types
 - Categorical data vs. continuous data
 - Ints, floats and strings

Bad Data

	А	В	С	D	Е	F	G	Н	I	J	K
1	mpg	cylinders	displaceme	horsepowe	weight	acceleratio	year	origin	name		
29	11	8	318	210	4382	13.5	70	1	dodge d20	0	
30	9	8	304	193	4732	18.5	70	1	hi 1200d		
31	27	4	97	88	2130	14.5	71	3	datsun pl5	10	
32	28	4	140	90	2264	15.5	71	1	chevrolet v	ega 2300	
33	25	4	113	95	2228	14	71	3	toyota cord	ona	
34	25	4	98	?	2046	19	71	1	ford pinto		
35	19	6	232	100	2634	13	71	1	amc greml	in	
36	16	6	225	105	3439	15.5	71	1	plymouth	satellite cust	tom
37	17	6	250	100	3329	15.5	71	1	chevrolet o	hevelle mal	ibu
38	19	6	250	88	3302	15.5	71	1	ford torino	500	
30	10	6	222	100	2200	15.5	71	1	ame matae	lor	

Key Stats Points

Counts vs Frequencies

https://math.stackexchange.com/questions/2666834/what-is-the-difference-between-frequency-and-density-in-a-histogram

Two-way tables

	Sport Utility Vehicle (SUV)	Sports Car	Totals
male	21	39	60
female	135	45	180
Totals	156	84	240

https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2TwoWayTable.html

Key Python Points: DataFrames(Tables)

```
df = pd.DataFrame({
                                                   "strings" : ["1", "2", "3", "4", "5", "6"],
                                                   "more strings" : ["1.1","1.2", "1.3", "1.4", "1.5", "1.6"]
import numpy as np
import pandas as pd
trialNumberArray = np.arange(1,6,1)
initialSizeArray = np.arange(1,3.5,.5)
np.random.shuffle(initialSizeArray)
                                                         Create arrays (lists)
finalSizeArray = np.arange(2,4.5,.5)
np.random.shuffle(finalSizeArray)
dict = {
    'Trial Number': trialNumberArray,
                                                          Add them to a dictionary
    'Initial Size': initialSizeArray,
    'Final Size': finalSizeArray
                                                       Turn the dictionary into a DataFrame
experimentTable = pd.DataFrame(dict)
print("****Experiment table****")
print(experimentTable)
```

Parameters

```
def calculateGrowth(initial, final):
                          result = final - initial
                          return result
Says I'm a function
      What the function does
                 What the function
                 give back
```

```
print(calculateGrowth(3, 10))
table["Growth"] = calculateGrowth(table["Initial Size"],table["Final Size"])
```


Intro to Challenge 4

Charts and graphs

Challenge 4: Data Charts and Graphs

Status: Not yet ready for challenge

What to do next: Study the skill levels and mark the as 'Ready for Challenge'

1. Get the Skills you Need

Study the practice questions in these levels. Mark them "Ready for Challenge" when you are done.

Python skill level(s) you need

Level 7: Visualizing Bar Charts, Line Graphs and Scatter Plots

Level 8: Grouping in Python

Data Science skill level(s) you need

Level 5: Charts and Graphs: Journal Articles

Statistics skill level(s) you need

Level 5: Working with Categorical Data

What you do

- 1. Download and open a data set
- 2. Talk about the social context of the data
- 3. Talk about the data itself
- 4. Prepare the data
- 5. Do a data analysis to find answers
- 6. Report your results

Key Data Science Points: Credibility

Creators.

Credible data sources clearly specify who collected the data. The collectors are established and reputable.
 Judge the creators of this data set.

Providers.

Credible data sources are provided by established and reputable organizations. Judge the data provider.

Intentions.

• The creators and providers of credible data sources have no motivation to deceive. Judge the motivations of the creators and providers.

Expertise.

Credible data creators have the data collection skills needed to create unbiased and complete data. Judge the
expertise of these creators.

Methods.

 Credible data has well documented industry standard collection methods. Judge the collection methods of these creators.

Key Data Science Points: Data prep

- Filter columns
- Filter rows
- Rename columns
- Turn column numbers into strings
- Find and kill bad data
 - Nulls
 - Garbage
 - Impossible values

Key Stats Points - No new levels

Counts vs Frequencies

https://math.stackexchange.com/questions/2666834/what-is-the-difference-between-frequency-and-density-in-a-histogram

Two-way tables

Sport Utility Vehicle (SUV)	Sports Car	Totals
21	39	60
135	45	180
156	84	240
	Vehicle (SUV) 21 135	Vehicle (SUV) Sports Car 21 39 135 45

https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2TwoWayTable.html

Key Python Points: Bar Charts

```
import matplotlib %matplotlib inline
```

```
plot1 = femaleMale.plot(kind="barh")
plot1.set_xlabel("Number of responders")
plot1.set_title("Gender of responders in top 10")
```

```
print("****Three Variables****")
voting["Candidate 2"] = candidate2
voting["Candidate 3"] = candidate3
print(voting)
plot2 = voting.plot(kind="bar")
plot2.set_ylabel("% Voting for Candidate")
plot2.set_xlabel("Age of Voter")
plot2.set_title("Three Variable Plot")
```

Where the real work happens

Set up the plot

Multiple plots from multiple columns

Key Python Points: Line Charts

import matplotlib %matplotlib inline

Where the real work happens

plot1 = airQuality.plot(kind="line", x="Time", y="Carbon Monoxide")
plot1.set_title("Carbon Monoxide Over Time")
plot1.set_xlabel("Time (24-hour)")

Set up the plot

Multiple plots from multiple rows

plot1 = airQuality.plot(kind="line", x="Time", y=["Carbon Monoxide","Hydrocarbons","Nitrogen Dioxide"]) plot1.set_title("All Gasses Over Time") plot1.set_xlabel("Time (24-hour)")

Data Science Level 3

Describing Data

What's normalization?

- 1. What's the average number of calories a person **should** eat?
- 2. (2600+2000+2200+2000+1600+1400)/6 = **1966?**

Table drill: Open a new Jupyter notebook

- Do it!
 - Name it practiceFormatString
 - Enter
 - number = 897.654
- Once you got it done, help anyone else at your table get it done
- The first table done gets a bump for all

Personal Drill: formatting

Print("some text {}".format(variable)) Ignore it I want a decimal number (float) I want a decimal point How many spaces all together

I want a decimal point

Personal drill: Write the script to make this happen

```
897.657
The number is: 897.657
The integer number is: 898
The number as money is: $897.66
The number with 10 spaces is: 897.657
```