Using FMINCON to solve dynamic optimization problems

Two approaches are presented, both reformulating the problem to a general nonlinear program. In one case, "substitution", the decision variable consists solely of the input sequence (as the resulting state sequence is an explicit function of the intial condition and the input sequence). In the other case, both the input **and** state sequences are decision variables, and the optimization problem includes equality constraints which constrain the state and input sequences to satisfy the system's governing equation.

Contents

- Some parameters
- Continuous dynamics
- Desired State trajectory
- Create anonymous function representing objective function
- Constraint Functions
- Create parm object, which has details of the problem
- Case 1: only the input is treated as a decision variable
- Call FMINCON
- Recover input/state trajectories and plot
- Effect of uncertainties on system response
- Solve problem with equality constraints to represent dynamics
- Call FMINCON
- Recover input/state trajectories and plot
- Attribution

Some parameters

```
TS = 0.05;
N = 120;
TFinal = TS*N;
```

Continuous dynamics

$$\dot{x}_1 = \sin(x_1) + \frac{\gamma}{1 + x_1^2} \tan^{-1}(x_2)$$

$$\dot{x}_2 = -\frac{1}{\tau}(x_2 - u)$$

```
tau = 0.2;

gamma = 10;

fDyn = @(x,u) [-\sin(x(1)) + gamma/(1+x(1)^2)*atan(x(2)); -1/tau*(-u+x(2))];

nx = 2;

nu = 1;
```

Desired State trajectory

Create specific piecewise-linear desired trajectory for x1.

```
tValues = [0 3 3.5 5.5 6];
xDesValues = [0 0.75*pi/4 0.67*pi/4 1.25*pi/4 1.25*pi/4];
tGrid = 0:TS:TFinal;
xDesGrid = interp1(tValues, xDesValues, tGrid);
plot(TS*(0:N), xDesGrid)
title('Desired Trajectory for x1')
xlabel('Time')
```


Create anonymous function representing objective function

Write a function which has two input arguments: a state sequence and an input sequence, and returns the value of the objective.

```
objJ = @(xSeq, uSeq) TS*norm(xSeq(1,:)-xDesGrid)^2;
```

Constraint Functions

The inequality constraint function accepts two arguments - a state and input sequence, and returns a vector of values. fmincon interprets this as values that are constrained to all be <= 0. In our example, we have constraints on the final value of x1 (should be close to final value of xDesGrid), as well as constraints on the magnitude of x1. Here we put the rate-bound on x1 as 0.07.

This control problem has no explicit equality constraints.

```
cE = @(xSeq, uSeq) [];
```

Create parm object, which has details of the problem

Look in fminconDynamicSystemTemplate to see what variables should be specified as fields of parm. They are listed below with short comments to remind you of their meanings.

Case 1: only the input is treated as a decision variable

By setting the messages to fminconDynamicSystemTemplate to 'obj' and 'constraint', it is assumed that the only decision variables are the input sequence, and the state sequence will automatically be solved for, given the initial condition, dynamic equations, and input sequence. Let nDV denote the number of decision variables. Since the input dimension is known (parm.nu) and the horizon (N) is known, the number of decision variables is easy to deermine.

```
nDV = parm.nu*N;
dvInit = randn(nDV,1); % give FMINCON a random initial value for decision variable
fmcOBJ = @(dv) fminconDynamicSystemTemplate(dv, parm, 'obj');
fmcCON = @(dv) fminconDynamicSystemTemplate(dv, parm, 'constraint');
```

Call FMINCON

```
options = optimoptions('fmincon','MaxFunctionEvaluations',20000,'display','iter');
[uDV,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD] = fmincon(fmcOBJ,dvInit,...
    [],[],[],[],[],fmcCON,options);
% The returned variable |uDV| should be a column vector, of dimension
% |nDV|. It represents the optimal input trajectory, as determined by the
% optimization.
```

```
First-order Norm of Iter F-count f(x) Feasibility optimality step 0 121 3.069091e+00 1.528e+01 8.947e-01
```

1	242	1.943241e+00	7.973e+00	9.626e-01	4.906e+00
2	363	4.963573e-01	4.323e+00	3.969e-01	2.649e+00
3	484	3.587988e-01	1.254e+00	3.929e-01	2.207e+00
4	605	3.956191e-02	3.782e-01	2.289e-01	5.148e-01
5	726	2.607185e-02	9.003e-02	2.087e-01	2.279e-01
6	848	2.337256e-02	2.209e-02	1.156e-01	3.580e-02
7	969	2.216128e-02	0.000e+00	4.963e-02	3.319e-02
8	1090	2.081750e-02	0.000e+00	2.406e-02	1.067e-02
9	1211	1.842743e-02	0.000e+00	2.174e-03	1.027e-02
10	1332	7.248300e-03	0.000e+00	3.763e-03	7.885e-02
11	1453	4.499085e-03	0.000e+00	3.411e-03	3.078e-02
12	1574	3.804180e-03	0.000e+00	1.327e-03	1.181e-02
13	1695	3.753184e-03	0.000e+00	2.749e-04	2.163e-03
14	1816	3.752684e-03	0.000e+00	2.000e-04	6.386e-04
15	1937	2.419953e-03	0.000e+00	1.512e-03	2.711e-02
16	2058	1.770221e-03	0.000e+00	9.268e-04	1.961e-02
17	2179	1.653241e-03	0.000e+00	4.624e-04	4.630e-03
18	2300	1.633029e-03	0.000e+00	2.825e-04	2.086e-03
19	2421	1.632193e-03	0.000e+00	1.312e-04	2.519e-03
20	2542	1.634261e-03	0.000e+00	1.022e-04	1.099e-03
21	2663	1.633999e-03	0.000e+00	6.117e-05	8.916e-04
22	2784	1.632492e-03	0.000e+00	4.000e-05	3.385e-04
23	2905	1.174852e-03	0.000e+00	1.043e-03	2.214e-02
24	3026	9.677132e-04	0.000e+00	5.324e-04	2.099e-02
25	3147	9.506039e-04	0.000e+00	3.215e-04	2.105e-03
26	3268	9.435168e-04	0.000e+00	1.716e-04	2.756e-03
27	3389	9.445846e-04	0.000e+00	1.059e-04	1.634e-03
28	3510	9.457759e-04	0.000e+00	6.567e-05	1.113e-03
29	3631	9.455788e-04	0.000e+00	4.491e-05	5.756e-04
29 30	3631 3752	9.455788e-04 9.449102e-04	0.000e+00 0.000e+00	4.491e-05 3.196e-05	5.756e-04 4.762e-04
29 30	3631 3752	9.455788e-04 9.449102e-04	0.000e+00 0.000e+00	4.491e-05 3.196e-05	5.756e-04 4.762e-04
					4.762e-04
30	3752	9.449102e-04	0.000e+00	3.196e-05 First-order	4.762e-04 Norm of
30 Iter	3752 F-count	9.449102e-04 f(x)	0.000e+00 Feasibility	3.196e-05 First-order optimality	4.762e-04 Norm of step
30 Iter 31	3752 F-count 3873	9.449102e-04 f(x) 9.445771e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05	4.762e-04 Norm of step 3.211e-04
30 Iter 31 32	3752 F-count 3873 3994	9.449102e-04 f(x) 9.445771e-04 9.446149e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05	4.762e-04 Norm of step 3.211e-04 1.737e-04
30 Iter 31 32 33	3752 F-count 3873 3994 4115	f(x) 9.445771e-04 9.446149e-04 9.447201e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06	4.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04
30 Iter 31 32 33 34	3752 F-count 3873 3994 4115 4236	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06	4.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05
30 Iter 31 32 33 34 35	3752 F-count 3873 3994 4115 4236 4357	f(x) 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02
30 Iter 31 32 33 34 35 36	3752 F-count 3873 3994 4115 4236 4357 4478	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.614662e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02
30 Iter 31 32 33 34 35 36 37	3752 F-count 3873 3994 4115 4236 4357 4478 4599	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.614662e-04 7.568039e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03
30 Iter 31 32 33 34 35 36 37 38	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720	f(x) 9.445771e-04 9.445771e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.614662e-04 7.568039e-04 7.559286e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03
30 Iter 31 32 33 34 35 36 37 38 39	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841	f(x) 9.445771e-04 9.445771e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03
30 Iter 31 32 33 34 35 36 37 38 39 40	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.559755e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03
30 Iter 31 32 33 34 35 36 37 38 39 40 41	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.550755e-04 7.548207e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447201e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.55475be-04 7.548207e-04 7.546467e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05	Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.559286e-04 7.550755e-04 7.548207e-04 7.544040e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447201e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.55475be-04 7.548207e-04 7.546467e-04	0.000e+00 Feasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05	Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.559286e-04 7.550755e-04 7.548207e-04 7.544040e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447201e-04 8.165063e-04 7.614662e-04 7.559286e-04 7.559286e-04 7.550755e-04 7.548207e-04 7.544040e-04 7.542283e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.554755e-04 7.548207e-04 7.542283e-04 7.542270e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.554755e-04 7.548207e-04 7.542283e-04 7.542270e-04 7.542910e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05 2.679e-05	Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688 5809	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.559286e-04 7.550755e-04 7.548207e-04 7.544040e-04 7.542283e-04 7.542270e-04 7.542910e-04 7.543609e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05 2.679e-05 3.106e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04 3.076e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688 5809 5930	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.559286e-04 7.554135e-04 7.548207e-04 7.542283e-04 7.542283e-04 7.542270e-04 7.543806e-04 7.543806e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05 2.679e-05 3.106e-05 2.712e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04 3.076e-04 3.124e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688 5809 5930 6051	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.554755e-04 7.548207e-04 7.542283e-04 7.542283e-04 7.542270e-04 7.543806e-04 7.543394e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05 2.679e-05 3.106e-05 2.712e-05 1.563e-05	4.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04 3.076e-04 3.124e-04 2.557e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688 5809 5930 6051 6172	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.55475e-04 7.548207e-04 7.542283e-04 7.542270e-04 7.542910e-04 7.543806e-04 7.543394e-04 7.542714e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.679e-05 3.106e-05 2.712e-05 1.563e-05 1.062e-05	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04 3.076e-04 3.124e-04 2.557e-04 1.771e-04
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688 5809 5930 6051 6172 6293	f(x) 9.445771e-04 9.445771e-04 9.446149e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.554135e-04 7.55475be-04 7.548207e-04 7.542283e-04 7.542270e-04 7.543806e-04 7.543394e-04 7.542202e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05 2.679e-05 3.106e-05 2.712e-05 1.563e-05 1.062e-05 8.271e-06	1.762e-04 Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04 3.076e-04 3.124e-04 2.557e-04 1.771e-04 1.112e-04 7.870e-05
30 Iter 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	3752 F-count 3873 3994 4115 4236 4357 4478 4599 4720 4841 4962 5083 5204 5325 5446 5567 5688 5809 5930 6051 6172 6293 6414	f(x) 9.445771e-04 9.446149e-04 9.447201e-04 9.447612e-04 8.165063e-04 7.568039e-04 7.559286e-04 7.559286e-04 7.554135e-04 7.548207e-04 7.542283e-04 7.542283e-04 7.543806e-04 7.543806e-04 7.543394e-04 7.542202e-04 7.541945e-04	0.000e+00 Feasibility 0.000e+00	3.196e-05 First-order optimality 2.064e-05 1.527e-05 9.055e-06 8.000e-06 8.542e-04 6.426e-04 2.290e-04 1.490e-04 1.087e-04 6.922e-05 5.768e-05 5.194e-05 5.088e-05 3.718e-05 2.071e-05 2.679e-05 3.106e-05 2.712e-05 1.563e-05 1.062e-05 8.271e-06 8.039e-06	Norm of step 3.211e-04 1.737e-04 1.030e-04 6.936e-05 1.609e-02 1.124e-02 1.751e-03 1.555e-03 1.619e-03 1.330e-03 1.120e-03 6.545e-04 7.845e-04 7.143e-04 4.331e-04 2.710e-04 3.076e-04 3.124e-04 2.557e-04 1.771e-04 1.112e-04 7.870e-05 6.456e-05

55	6777	7.542077e-04	0.000e+00	3.514e-06	4.052e-05
56	6898	7.542162e-04	0.000e+00	3.249e-06	3.360e-05
57	7019	7.542201e-04	0.000e+00	2.477e-06	3.141e-05
58	7140	7.542194e-04	0.000e+00	2.751e-06	2.889e-05
59	7261	7.542165e-04	0.000e+00	2.126e-06	2.452e-05
60	7382	7.542129e-04	0.000e+00	1.955e-06	2.242e-05
00	7302	7.0121290 01	0.0000100	1.5550	2.2120 00
				First-order	Norm of
Ttor	F-count	f(x)	Feasibility	optimality	step
61	7503	7.542097e-04	0.000e+00	1.600e-06	1.874e-05
62		7.138124e-04			
	7624		0.000e+00	2.194e-04	1.143e-02
63	7745	7.037103e-04	0.000e+00	1.857e-04	7.272e-03
64	7866	7.026355e-04	0.000e+00	1.252e-04	1.461e-03
65	7987	7.022736e-04	0.000e+00	7.293e-05	8.004e-04
66	8108	7.022133e-04	0.000e+00	6.910e-05	6.885e-04
67	8229	7.021464e-04	0.000e+00	4.998e-05	5.497e-04
68	8350	7.020886e-04	0.000e+00	2.094e-05	3.636e-04
69	8471	7.020414e-04	0.000e+00	2.333e-05	3.903e-04
70	8592	7.020128e-04	0.000e+00	1.754e-05	3.258e-04
71	8713	7.019946e-04	0.000e+00	1.601e-05	2.688e-04
72	8834	7.019833e-04	0.000e+00	1.799e-05	3.264e-04
73	8955	7.019757e-04	0.000e+00	1.722e-05	4.387e-04
74	9076	7.019697e-04	0.000e+00	1.223e-05	4.245e-04
75	9197	7.019618e-04	0.000e+00	9.976e-06	3.435e-04
76	9318	7.019511e-04	0.000e+00	1.104e-05	2.588e-04
77	9439	7.019426e-04	0.000e+00	1.144e-05	1.676e-04
78	9560	7.019358e-04	0.000e+00	9.531e-06	1.369e-04
79	9681	7.019313e-04	0.000e+00	5.802e-06	1.478e-04
80	9802	7.019310e-04	0.000e+00	5.699e-06	1.516e-04
81	9923	7.019340e-04	0.000e+00	6.609e-06	1.754e-04
82	10044	7.019378e-04	0.000e+00	6.741e-06	1.853e-04
83	10165	7.019370e-04	0.000e+00	5.359e-06	1.421e-04
84	10286	7.019385e-04	0.000e+00	4.077e-06	1.290e-04
85	10407	7.019358e-04	0.000e+00	3.434e-06	9.512e-05
86		7.019330e-04 7.019320e-04	0.000e+00		
				4.066e-06	6.577e-05
87	10649	7.019281e-04	0.000e+00	4.712e-06	7.350e-05
88	10770	7.019256e-04	0.000e+00	3.595e-06	7.874e-05
89	10891	7.019250e-04	0.000e+00	1.980e-06	6.536e-05
90	11012	7.019253e-04	0.000e+00	2.152e-06	5.642e-05
				-1	
- .				First-order	Norm of
	F-count	f(x)	Feasibility	optimality	step
91	11133	7.019255e-04	0.000e+00	2.811e-06	4.993e-05
92	11254	7.019253e-04	0.000e+00	2.689e-06	5.353e-05
93	11375	7.019242e-04	0.000e+00	1.395e-06	5.910e-05
94	11496	7.019229e-04	0.000e+00	1.868e-06	4.918e-05
95	11617	7.019221e-04	0.000e+00	1.970e-06	3.799e-05
96	11738	7.019217e-04	0.000e+00	1.483e-06	4.231e-05
97	11859	7.019218e-04	0.000e+00	9.874e-07	3.080e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the optimality tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

Recover input/state trajectories and plot

Reshape the decision variable into a sequencte of input values.

```
uSeq = reshape(uDV,[nu,N]);
% Simulate the discretized system, starting from the specified initial
% condition, using the optimal input.
xSeq = zeros(nx,N+1);
xSeq(:,1) = parm.x0;
for i=1:N
    xSeq(:,i+1) = xSeq(:,i) + TS*fDyn(xSeq(:,i), uSeq(:,i));
end
% \ Reconstruct the signal ($\dot x) 2$) that should be bounded by |RBvalue|
x2Dot = -1/tau*(-uSeq+xSeq(2,1:end-1));
clf
subplot(2,1,1)
plot(1:N, uSeq, 'g', 1:N, x2Dot(1:N), 'k--', 1:N, ...
   repmat(RBValue,[1 N]),'r',1:N,repmat(-RBValue,[1 N]),'r')
legend('Input','Rate-of-Change','RateBound')
title('Optimal input, rate-of-change and Bound')
grid on
subplot(2,1,2)
plot(1:N+1, xDesGrid, 'r', 1:N+1,xSeq(1,:),'b')
legend('x1Desired', 'x1 (actual)')
title('x1: Desired and Actual')
```


Effect of uncertainties on system response

Create new dynamics, with slightly different parameters. Use the optimized control signal (optimized on original plant model) on this perturbed plant model. See the degradation in the tracking performance.

This degradation points to the advantage of feedback - instead of computing 120 control actions (here), and just applying them, it is advantageous to apply some portion of the optimal input sequence, measure the actual response, and then reoptimize the input over some time-interval of the future (perhaps another 120 steps). Even if there is a mismatch between the true plant behavior and the plant model (used in optimization), the continuous act of reassessing (based on measurement) and reoptimization provides feedback which leads to corrective actions. We will revisit this extensively in the MPC/receding horizon control section.

Solve problem with equality constraints to represent dynamics

There are still no additional equality constraints. However, by setting the messages to fminconDynamicSystemTemplate to have the suffix StateEq, the optimization problem is formulated with decision variables for both input and state, and the state-equations are imposed as equality constraints (see the variable StateEvolveMismatch in the code for fminconDynamicSystemTemplate).

```
nDV = (parm.nu + parm.nx) *N;
dvInit = randn(nDV,1);
fmcOBJ = @(dv) fminconDynamicSystemTemplate(dv, parm, 'objStateEQ');
fmcCON = @(dv) fminconDynamicSystemTemplate(dv, parm, 'constraintStateEQ');
```

Call FMINCON

```
options = optimoptions('fmincon', 'MaxFunctionEvaluations', 80000, 'display', 'iter');
[uxDV, FVAL, EXITFLAG, OUTPUT, LAMBDA, GRAD] = fmincon(fmcOBJ, randn(nDV, 1), ...
[],[],[],[],[],[],fmcCON, options);
```

Iter	F-count	f(x)	Feasibility	optimality	step
0	361	9.483837e+00	2.150e+01	1.804e+00	
1	722	7.232506e+00	1.797e+01	1.809e+00	3.393e+00
2	1083	2.585848e+00	7.081e+00	1.792e+00	1.051e+01
3	1444	1.365645e+00	2.743e+00	1.181e+00	4.228e+00
4	1805	9.337296e-01	1.241e+00	5.968e-01	1.682e+00
5	2166	4.835873e-01	6.200e-01	3.627e-01	1.617e+00
6	2528	2.873504e-01	5.395e-01	3.676e-01	8.551e-01
7	2889	5.744935e-02	2.107e-01	2.124e-01	2.009e+00
8	3251	4.138454e-02	9.623e-02	1.375e-01	4.742e-01
9	3612	3.463719e-02	1.347e-03	1.001e-01	7.712e-01
10	3973	2.942671e-02	3.120e-06	2.427e-02	7.746e-02
11	4334	2.552461e-02	5.262e-06	3.051e-03	6.760e-02
12	4695	8.771866e-03	1.571e-04	3.421e-03	4.067e-01
13	5056	5.544621e-03	4.229e-05	4.581e-03	1.627e-01
14	5417	4.748609e-03	2.681e-06	4.295e-03	3.696e-02
15	5778	3.984464e-03	2.251e-06	9.664e-04	3.418e-02
16	6139	3.743529e-03	1.450e-06	6.483e-04	2.868e-02
17	6500	3.772539e-03	2.867e-07	3.997e-04	1.287e-02
18	6861	3.778303e-03	8.606e-08	2.641e-04	4.173e-03
19	7222	3.764253e-03	1.191e-07	2.000e-04	4.746e-03
20	7583	2.461776e-03	9.544e-06	7.255e-04	7.798e-02
21	7944	1.804635e-03	5.034e-06	9.070e-04	5.227e-02
22	8305	1.670882e-03	3.389e-07	5.534e-04	1.310e-02
23	8666	1.637171e-03	7.020e-08	3.488e-04	4.574e-03
24	9027	1.628547e-03	9.478e-08	1.682e-04	6.062e-03
25	9388	1.635369e-03	1.804e-08	1.292e-04	2.505e-03
26	9749	1.636717e-03	6.054e-09	7.368e-05	1.511e-03
27	10110	1.634652e-03	2.322e-09	4.000e-05	9.636e-04
28	10471	1.205411e-03	4.504e-06	7.009e-04	4.754e-02
29	10832	9.939367e-04	2.089e-06	5.525e-04	3.327e-02
30	11193	9.716199e-04	7.838e-08	2.980e-04	6.262e-03
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
31	11554	9.594558e-04	6.153e-08	1.763e-04	6.031e-03
32	11915	9.538354e-04	5.210e-08	1.631e-04	4.795e-03
33	12276	9.491614e-04	1.211e-07	1.385e-04	6.097e-03
34	12637	9.472295e-04	4.237e-08	1.182e-04	3.531e-03
35	12998	9.461301e-04	6.568e-09	8.320e-05	1.529e-03
36	13359	9.454038e-04	6.534e-10	6.981e-05	7.343e-04
37	13720	9.447820e-04	1.150e-09	2.827e-05	7.272e-04
38	14081	9.445654e-04	1.252e-09	2.514e-05	5.706e-04
39	14442	9.446458e-04	1.743e-09	2.514e-05	6.043e-04
40	14803	9.447668e-04	1.272e-09	1.981e-05	4.673e-04
41	15164	9.448300e-04	1.102e-09	1.482e-05	4.268e-04
42	15525	9.448310e-04	5.515e-10	1.138e-05	3.549e-04
43	15886	9.448055e-04	1.199e-10	9.071e-06	2.721e-04
44	16247	9.447817e-04	4.441e-11	8.000e-06	1.710e-04
45	16608	8.137413e-04	1.870e-06	3.730e-04	2.955e-02
46	16969	7.622989e-04	1.213e-06	5.367e-04	1.680e-02
47	17330	7.581975e-04	5.950e-08	2.841e-04	3.335e-03
48	17691	7.563655e-04	1.448e-08	1.331e-04	2.729e-03
49	18052	7.561880e-04	3.941e-09	1.135e-04	1.325e-03
50	18413	7.556597e-04	1.645e-08	6.628e-05	2.126e-03
51	18774	7.552056e-04	2.606e-09	5.271e-05	1.401e-03
52	19135	7.547972e-04	1.708e-09	5.271e-05	9.891e-04

53	19496	7.545673e-04	4.171e-10	4.958e-05	5.919e-04
54	19857	7.542772e-04	1.067e-09	3.522e-05	1.002e-03
55	20218	7.541694e-04	8.798e-10	2.687e-05	9.097e-04
56	20579	7.542406e-04	1.051e-09	2.687e-05	7.433e-04
57	20940	7.543021e-04	1.744e-10	1.842e-05	3.459e-04
58	21301	7.543179e-04	1.826e-10	1.361e-05	2.754e-04
59	21662	7.542905e-04	9.209e-11	1.106e-05	2.179e-04
60	22023	7.542514e-04	3.133e-11	8.701e-06	1.740e-04
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
61	22384	7.542223e-04	2.478e-11	6.329e-06	1.391e-04
62	22745	7.542103e-04	2.605e-11	4.661e-06	1.263e-04
63	23106	7.542121e-04	2.443e-11	4.661e-06	1.163e-04
64	23467	7.542140e-04	2.926e-11	4.661e-06	9.320e-05
65	23828	7.542124e-04	1.614e-11	3.753e-06	7.438e-05
66	24189	7.542093e-04	6.902e-12	3.186e-06	6.340e-05
67	24550	7.542080e-04	1.768e-12	2.672e-06	4.635e-05
68	24911	7.542097e-04	1.793e-12	1.907e-06	3.394e-05
69	25272	7.542124e-04	1.415e-12	1.600e-06	3.071e-05
70	25633	7.149915e-04	6.674e-07	1.845e-04	1.560e-02
71	25994	7.039657e-04	1.915e-07	1.857e-04	8.266e-03
72	26355	7.033531e-04	5.627e-09	1.730e-04	1.614e-03
73	26716	7.025979e-04	8.741e-09	8.024e-05	1.459e-03
74	27077	7.024364e-04	5.327e-09	7.396e-05	1.221e-03
75	27438	7.023183e-04	2.772e-09	6.161e-05	1.066e-03
76	27799	7.021888e-04	2.061e-09	3.320e-05	8.775e-04
77	28160	7.021146e-04	8.197e-10	2.931e-05	4.945e-04
78	28521	7.020589e-04	6.004e-10	1.389e-05	4.399e-04
79	28882	7.020159e-04	6.863e-10	1.260e-05	4.521e-04
80	29243	7.019873e-04	3.550e-10	1.182e-05	4.243e-04
81	29604	7.019720e-04	1.192e-10	1.114e-05	3.194e-04
82	29965	7.019616e-04	1.294e-10	9.959e-06	2.687e-04
83	30326	7.019541e-04	7.075e-11	8.711e-06	2.158e-04
84	30687	7.019470e-04	5.216e-11	8.711e-06	2.174e-04
85	31048	7.019412e-04	3.774e-11	5.795e-06	2.109e-04
86	31409	7.019367e-04	1.231e-10	5.721e-06	2.086e-04
87	31770	7.019334e-04	1.448e-10	5.721e-06	1.994e-04
88	32131	7.019312e-04	2.960e-11	2.938e-06	1.181e-04
89	32492	7.019294e-04	1.431e-11	2.938e-06	8.588e-05
90	32853	7.019278e-04	1.475e-11	2.938e-06	1.104e-04
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
91	33214	7.019273e-04	1.285e-11	2.307e-06	9.248e-05
92	33575	7.019278e-04	4.304e-12	2.248e-06	6.302e-05
93	33936	7.019288e-04	7.772e-12	2.248e-06	6.340e-05
94	34297	7.019294e-04	7.007e-12	2.248e-06	6.589e-05
95	34658	7.019294e-04	1.494e-11	2.036e-06	7.953e-05
96	35019	7.019280e-04	2.393e-11	1.919e-06	9.146e-05
97	35380	7.019261e-04	9.067e-12	1.811e-06	7.318e-05
98	35741	7.019255e-04	2.398e-12	1.730e-06	4.927e-05
99	36102	7.019259e-04	3.357e-12	1.628e-06	5.758e-05
100	36463	7.019267e-04	3.103e-12	1.516e-06	6.048e-05
101	36824	7.019268e-04	3.320e-12	1.402e-06	5.942e-05
102	37185	7.019255e-04	1.540e-12	1.294e-06	5.588e-05
103	37546	7.019234e-04	1.806e-12	1.212e-06	5.159e-05

```
    104
    37907
    7.019218e-04
    2.264e-12
    1.169e-06
    4.660e-05

    105
    38268
    7.019212e-04
    1.610e-12
    1.110e-06
    4.270e-05

    106
    38629
    7.019216e-04
    8.221e-13
    9.437e-07
    3.976e-05
```

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the optimality tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

Check size of decision variable, and verify that this makes sense to you

```
numel(uxDV)
ans =
```

Recover input/state trajectories and plot

360

```
uSeq = reshape(uxDV(1:N*parm.nu),[parm.nu,N]);
xSeq = [parm.x0 reshape(uxDV(N*parm.nu+1:end),[parm.nx,N])];
x2Dot = -1/tau*(-uSeq+xSeq(2,1:end-1));
clf
subplot(2,1,1)
plot(1:N,uSeq,'g',1:N,x2Dot(1:N),'k--',1:N,...
    repmat(RBValue,[1 N]),'r',1:N,repmat(-RBValue,[1 N]),'r')
legend('Input','Rate-of-Change','RateBound')
title('Optimal input, rate-of-change and Bound')
grid on
subplot(2,1,2)
plot(1:N+1, xDesGrid, 'r', 1:N+1,xSeq(1,:),'b')
legend('x1Desired', 'x1 (actual)')
title('x1: Desired and Actual')
```


Attribution

ME C231A and EECS C220B, UC Berkeley, Fall 2016

Published with MATLAB® R2016a