De-Morgan's Theorem

LAB # 03

Fall 2023

CSE-202L: Digital Logic Design Lab

Group Members:

AHSAN RAZA (22PWCSE2099)

Hassan Zaib Jadoon (22PWCSE2144)

Mutahhar Fayyaz (22PWCSE2176)

Class Section: A

Submitted to:

Dr. Rehmat Ullah Khattak

October 27, 2023

Department of Computer Systems Engineering

University of Engineering and Technology, Peshawar

Lab # 3:

De-Morgan's Theorem

OBJECTIVES:

• Experimentally verify the De-Morgan's theorems using two input variables.

DE-MORGAN'S THEOREM:

- $(X + Y)' = X' \cdot Y'$
- (X . Y)' = X' + Y'

COMPONENTS REQUIRED

- 7432 quad 2-input OR gate
- 7404 hex inverter
- LED
- 7430 quad 2-input AND gate
- DIP switch
- Three 1 $k\Omega$ resistors

LOGIC CIRCUIT DIAGRAMS:

•
$$(X + Y)' = X' \cdot Y'$$

EXPERIMENT:

Table 1: (X+Y)'=(X'.Y')

X	Y	(X + Y)'	(X' . Y')
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

• (X . Y)' = X' + Y'

Fig. 3.3: Circuit for (X.Y)'

EXPERIMENT:

Table 2: (X.Y)'=(X'+Y')

X	Y	(X .Y)'	(X' +Y')
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0