Warm up Problems - Solutions

Recalling Some Useful Results from Real Analysis With Proof

Question 1:

For all $x, y \in \mathbb{R}$, show the following chain of inequalities.

$$|x| - |y| \le ||x| - |y|| \le |x - y| \le |x| + |y|$$

Proof:

We first show that for all $x, z \in \mathbb{R}$, one has that $|x+z| \leq |x| + |z|$. Observe that

$$|x+z|^2 = (x+z)^2 = x^2 + 2xz + z^2 \le |x|^2 + 2|x||z| + |z|^2 = (|x|+|z|)^2.$$

We thus have that $|x+z|^2 \leq (|x|+|z|)^2$. Taking the square root of both sides, noting that $f(x) = \sqrt{x}$ is monotonically increasing on $[0, \infty)$, proves the desired result. Letting z = (-y) yields $|x-y| \leq |x| + |y|$. Also note that since $x \leq |x|$ for all $x \in \mathbb{R}$, it is immediate that $|x| - |y| \leq ||x| - |y||$. We lastly need to show that $||x| - |y|| \leq |x - y|$, a result known as the reverse triangle inequality. Observe that

$$|x| = |x - y + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|$$

and

$$|y| = |y - x + x| \le |y - x| + |x| \implies -|x - y| \le |x| - |y|.$$

Combining these two inequalities we have

$$-|x - y| \le |x| - |y| \le |x - y|$$

which implies the desired result. Putting everything together we have that

$$|x| - |y| \le ||x| - |y|| \le |x - y| \le |x| + |y|,$$

as desired. \square

Question 2

Let x, y, p be real numbers satisfying $x, y \ge 0$ and $p \in (0, 1]$. Show that

$$(x+y)^p \le (x)^p + (y)^p$$

Hint: Since $p \in (0,1)$, there exists $m \in (0,1)$ such that p = 1 - m.

Proof:

Note that the case of x=0 or y=0 is immediate and the case of p=1 was shown above. We can thus assume that x,y>0 and $p\in(0,1)$. Using the hint we have that

$$(x+y)^{p} = (x+y)^{1-m}$$

$$= x(x+y)^{-m} + y(x+y)^{-m}$$

$$= \frac{x}{(x+y)^{m}} + \frac{y}{(x+y)^{m}}$$

$$\leq \frac{x}{x^{m}} + \frac{y}{y^{m}}$$

$$= xx^{-m} + yy^{-m}$$

$$= x^{1-m} + y^{1-m}$$

$$= x^{p} + y^{p}$$

proving the desired result. \Box

Question 3:

(a) Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Show that if there exists an $N\in\mathbb{N}$ such that $a_n\leq b_n$ for all $n\geq N$ then $a\leq b$.

Proof:

We first show that if a_n is a convergent sequence of real numbers with limit a and satisfying $a_n \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$. Assume to the contrary that a < 0. Since $\lim_{n \to \infty} a_n = a$ and since -a > 0, we know that there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have that $|a_n - a| < -a$. This implies that $a_n < 0$, a contradiction. Now, consider the subsequences $A_{n_j} = a_N, a_{N+1}, a_{N+2}, \cdots$ and $B_{n_j} = B_N, B_{N+1}, B_{N+2}, \cdots$ of a_n and b_n respectively. Note that since $a_n \leq b_n$ for all $n \geq N$ we have that $B_{n_j} - A_{n_j} \geq 0$ for all $j \in \mathbb{N}$. Since every subsequence of a convergent sequence must converge to the same limit as the parent sequence we now know that

$$0 \le \lim_{j \to \infty} B_{n_j} - \lim_{j \to \infty} A_{n_j} = \lim_{n \to \infty} (b_n - a_n) = b - a$$

This proves that $a \leq b$, which is what we wanted to show. \square

(b) Give an example to show that $a_n < b_n$ $\forall n$ and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, but $a \le b$, as opposed to a < b.

Proof:

Take $a_n = \frac{1}{n}$ and $b_n = \frac{1}{2n}$. \square

Question 4:

Show the following:

(a) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable with $f(x)\geq 0$ for all $x\in[a,b]$. Show that $\int_a^b f(x)dx\geq 0$.

(b) Let $f,g:[a,b]\to\mathbb{R}$ be Riemann integrable with $f(x)\leq g(x)$ for all $x\in[a,b]$. Show that $\int_a^b f(x)dx\leq\int_a^b g(x)dx$.

(c) Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable and assume that $f(x) \ge 0$ for all $x \in [a, b]$. Let $d \in \mathbb{R}$ satisfy a < d < b. Show that $\int_a^d f(x) dx \le \int_a^b f(x) dx$.

Proof of (a)

Using the limit (of a sequence of partial sums) definition of the Riemann integral we have

$$0 = \sum_{i=1}^{n} 0 \frac{b-a}{n} \le \sum_{i=1}^{n} f(x_i) \frac{b-a}{n}$$

Using question 3 on the above chain of inequalities we have

$$0 \le \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \frac{b-a}{n} = \int_{a}^{b} f(x) dx,$$

as desired. \square

Proof of (b)

Since $f(x) \leq g(x)$ for all $x \in [a, b]$ we have that $g(x) - f(x) \geq 0$ for all $x \in [a, b]$. By part (a) we have that $\int_a^b g(x) - f(x) dx \geq 0$. Using the linearity of the integral we have that $\int_a^b f(x) dx \leq \int_a^b g(x) dx$, which is what we wanted to show. \square

Proof of (c)

Note that:

$$\int_{a}^{b} f(x)dx = \int_{a}^{d} f(x)dx + \int_{d}^{b} f(x)dx$$

By part (a), this is all we need to conclude the desired result. \Box

Question 5:

Let $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$ and assume that $\sum_{n=1}^{\infty} a_n < \infty$, that is assume that the series $\sum_{n=1}^{\infty} a_n$ converges. Show that $\lim_{n \to \infty} \sum_{k=n+1}^{\infty} a_k = 0$.

Proof:

Define the sequence $S_n := \sum_{i=1}^n a_i$. By the convergence of $\sum_{n=1}^{\infty} a_n$ we have that for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$\left| \sum_{i=1}^{n} a_i - \sum_{i=1}^{\infty} a_i \right| = \left| \sum_{i=n+1}^{\infty} a_i - 0 \right| < \epsilon,$$

proving the desired result.

Question 6:

Let S be a non-empty set of real numbers that is bounded above. Show that the upper bound a of the set S is the supremum of S if and only if for all $\epsilon > 0$ there exists $s \in S$ such that $a - \epsilon < s$.

Proof: First let a be the supremum of S. Assume to the contrary that for some $\epsilon > 0$ there does not exist such an $s \in S$. Then, for all $s \in S$ we have that $s \leq a - \epsilon < a$. But by definition this implies that $a - \epsilon$ is an upper bound of the set S, which contradicts that a is the supremum of S. Now assume that for all $\epsilon > 0$ there exists an $s \in S$ such that $a - \epsilon < s$. Let a' be the supremum of S and assume to the contrary that $a \neq a'$. Then there exists $s \in \mathbb{R}$ such that $s \in S$ such that

$$a' < r = a - (a - r) = a - \epsilon < s$$

But this is a contradiction, as we assumed $a' \geq s$ for all $s \in S$. It follows that a = a', completing the proof. \square

Question 7:

Let X be a compact subset of \mathbb{R} , that is, let X be closed and bounded. Let $f: X \to \mathbb{R}$ be a continuous function. Show that $\sup_{t \in X} |f(t)| = \max_{t \in X} |f(t)|$.

Proof:

Let X and f be as above. Since the absolute value function is continuous on X and since the composition of continuous function is continuous, we know from the extreme value theorem that there exists $t^* \in X$ such that

$$|f(t)| \le |f(t^*)| = \max_{t \in X} |f(t)|$$

for all $t \in X$. If we consider the set

$$S = \{ |f(t)| : t \in X \},$$

the above show that $|f(t^*)|$ is an upper bound for S. From here, we just need to observe that $|f(t^*)|$ is the least upper bound of S. To do so, let M be any upper bound of S. Then for all $s \in S$ we have that $s \leq M$. However, note that since t^* is in X, we have that $|f(t^*)| \in S$. It follows that $|f(t^*)| \leq M$. We can thus conclude that

$$|f(t^*)| = \max_{t \in X} |f(t)| = \sup_{t \in X} |f(t)|$$

which is what we wanted to show.