Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждения высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «MACTEP ШЕСТЕРЁНОК» ДЛЯ «AutoCAD»

по дисциплине

«Основы разработки САПР» (ОРСАПР)

1	Добавлено примечание ([KA1]): GC	
1	Добавлено примечание ([GL2R1]): +	

		Выполнил:
		студент гр. 580-2
		Лубов Г.П.
<u> </u>		2023 г.
		Руководитель:
	к.т.н.,	доцент каф. КСУП
		Калентьев А.А.
"	>>	2023 г

Томск, 2023

Лабораторная 3. Проект системы.

Оглавление

1 Описание САПР	3
1.1 Информация о выбранной САПР	3
1.2 Описание АРІ	3
1.3 Обзор аналогов плагина	6
2 Описание предмета проектирования	10
3 Проект системы	11
3.1 Диаграмма классов	11
3.2 Макеты пользовательского интерфейса	13
4 Список используемых источников	14

1 Описание САПР

1.1 Информация о выбранной САПР

Аutodesk AutoCAD — система автоматизированного проектирования (САПР) для создания трёх- и двухмерных моделей. Позволяет выполнять построение 3D-моделей деталей, объединять их в сборки, а также выполнять чертежи и инженерные расчёты физических характеристик. AutoCAD и специализированные приложения на его основе применяются в области машиностроения, строительства, архитектуры и т.д. Программа имеет русскую локализацию [1].

Прямым аналогом разрабатываемого плагина является инструмент "Цилиндрическая зубчатое зацепление" в Autodesk Inventor.

Косвенными аналогами разрабатываемого плагина являются САПР Autodesk Fusion 360 и Kompas-3D.

1.2 Описание АРІ

API (Application Program Interface) — программный интерфейс приложения, набор функций, позволяющий взаимодействовать с программой через другие программы. Для AutoCAD есть API на двух языка программирования: C#/.NET и Python. Для разработки плагина, рассматриваемого в данной работе, будет использоваться API для языка C#/.NET [2].

Основные библиотеки АРІ представлены ниже:

- 1. AcDbMgd.dll. Используется для работы с объектами файла чертежа;
- 2. AcMgd.dll. Используется для работы с самим приложением AutoCAD;
- 3. AcCui.dll. Используется для работы с файлами пользовательских настроек;

Некоторые используемые методы и классы API представлены в таблицах 1.1-1.6.

Добавлено примечание ([KA3]): Ссылка на источник.

Добавлено примечание ([GL4R3]): +

Добавлено примечание ([КА5]): Ссылка на

Добавлено примечание ([GL6R5]): +

Таблица 1.1 – Некоторые используемые классы АРІ

Название	Тип данных	Описа ние
DocumentManager	DocumentManager	Класс, хранящий коллекцию открытых документов AutoCAD
Database	Database	Класс, хранящий все графические и большинство неграфических объектов AutoCAD
TransactionManager	TransactionManager	Класс, обрабатывающий все транзакции и работающий с реестром операционной системы
Line	Line	Класс, определяющий прямую линию
Point3d	Point3d	Класс, определяющий точку в трёхмерном пространстве
Circle	Circle	Класс, определяющий окружность
Solid3d	Solid3d	Класс, позволяющий создавать тело

Таблица 1.2 – Некоторые используемые методы АРІ

Название	Входные	Тип возвращаемых	Описание
	параметры	данных	
Line()	Point3d, Point3d	Line	Создаёт линию через
			2 точки в трёхмерном
			пространстве
Circle.Center()	Point3d	void	Устанавливает центр
			окружности
Circle.Radius()	double	void	Устанавливает
			радиус окружности
Solid3d()	Array <point3d></point3d>	Solid3d	Создаёт твёрдое тело
			по точкам в
			пространстве
Object.	NumberOfObjects,	Array <object></object>	Создаёт полярный
ArrayPolar()	AngleToFill,		массив из элементов
	CenterPoint		

Таблица 1.3 – Основные методы интерфейса DocumentManager

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
MdiActiveDocume	-	Document	Возвращает
nt()			созданный документ
			чертежа
MdiActiveDocume	-	Editor	Возвращает редактор
nt()			чертежа

Таблица 1.4 – Основные методы интерфейса TransactionManager

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
StartManager()	-	Transaction	Реализует работу с
			примитивами
Transaction.Commi	-	Editor	Завершает работу с
t()			примитивами

Таблица 1.5 – Основные методы класса BlockTableRecord

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
AppendEntity()	object	void	Реализует работу с
			примитивами

Таблица 1.6 – Основные методы класса Solid3d

таблица 1.6 Основные методы класса воназа			
Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
CreateWedge()	Double, double	void	Создаёт объект по
			заданной длине,
			ширине, высоте
Extrude()	Int, double,	void	Выполняет
	double		выдавливание области
			на заданную длину

1.3 Обзор аналогов плагина

"Цилиндрическое зубчатое зацепление" – инструмент в программе Autodesk Inventor, позволяющий создавать зубчатые передачи ременного, цепного, червячного, цилиндрического и конического зацепления косозубого и прямозубого типов по заданным параметрам [3]. С помощью данного инструмента можно в автоматизированном режиме получить готовый узел зубчатой передачи по заданным параметрам. В данный момент данный программный продукт на территории РФ не распространяется. Пользовательский интерфейс инструмента представлен на рисунке 1.1.

Добавлено примечание ([КА7]): Выравнивание по ширине.

Добавлено примечание ([GL8R7]): +

Рисунок 1.1 – Пользовательский интерфейс инструмента "Цилиндрическое зубчатое зацепление" в программе Autodesk Inventor

Autodesk Fusion 360 – система автоматизированного проектирования, себя автоматизированного включающая модули геометрического моделирования, инженерных расчётов, производства, проектирования печатных формирования конструкторской автоматизации Преимуществом программного продукта простой данного является пользовательский интерфейс и возможность работы в облаке с конструкторской документацией [4]. С помощью данного программного продукта можно вручную создать модель шестерни. В данный момент этот программный продукт на территории РФ не распространяется. Пользовательский интерфейс программы представлен на рисунке 1.2.

Добавлено примечание ([KA9]): По ширине.
Добавлено примечание ([GL10R9]): +

Рисунок 1.2 – пользовательский интерфейс Autodesk Fusion 360

Котрав-3D — система автоматизированного проектирования отечественной разработки, включающая в себя модули автоматизированного геометрического моделирования, инженерных расчётов, производства, проектирования печатных плат, автоматизации и формирования конструкторской документации [5]. Изначально система была ориентирована на создание конструкторской документации в соответствии с ЕСКД, ЕСТД, СПДС и международными стандартами. Преимуществом данного программного обеспечения является его доступность в РФ, в отличие от импортных САПР. С помощью данного программного продукта можно вручную создать модель шестерни. Пользовательский интерфейс программы представлен на рисунке 1.3.

Добавлено примечание ([KA11]): По ширине
Добавлено примечание ([GL12R11]): +

Рисунок 1.3 – пользовательский интерфейс Kompas-3D

2 Описание предмета проектирования

Зубчатое колесо (шестерня) — основная деталь зубчатой передачи в виде диска с зубьями на цилиндрической или конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса [6]. Чертёж шестерни представлен на рисунке 2.1.

Рисунок 2.1 – чертёж шестерни

Шестерня имеет следующие параметры:

- внешний диаметр шестерни D (1 1000 мм, но не менее d);
- диаметр посадочного отверстия d (1 999 мм, но не более, чем 9D/10);
- толщина шестерни S (1 1000 мм)
- количество зубов N (3 1000 шт.);
- высота зуба h (0,1 999 мм, но не более, чем диаметр посадочного отверстия d).

Добавлено примечание ([KA13]): ОС ТУСУР Добавлено примечание ([GL14R13]): +

3 Проект системы

3.1 Диаграмма классов

UML-диаграмма классов — тип статической структурной диаграммы, описывающей структуру системы посредством обозначения классов, их атрибутов, методов, связей на диаграмме [7-10].

На рисунке 3.1 отображена диаграмма классов приложения.

Рисунок 3.1 – Пример UML-диаграммы классов

Архитектура приложения реализована по паттерну MVVM.

Класс MainVM представляет собой объект, через который будет осуществляться обработка пользовательского ввода и передача его в модель (таблица 3.1).

Добавлено примечание ([КА15]): Длинное тире Добавлено примечание ([GL16R15]): +

Добавлено примечание ([КА17]): Межстрочный интервал

Добавлено примечание ([GL18R17]): +

Добавлено примечание ([KA19]): - factory- не возвращает ICadBuilder

- ParameterVM, Parameter нужны properties
- Parameter конструктор?
 ParameterVM что с валидацией?
- Project cadConnectorFactory int? Project CadBuilderFactory не хранить? валидацию убрать из AutoCadBuilder

Добавлено примечание ([GL20R19]): +

Таблица 3.1 – Описание класса MainVM

Название	Описание
_project	Хранит экземпляр проекта
BuildCommand	Вызывает команду построения шестерни
MainVM	Конструктор
Paramaters	Хранит все параметры шестерни

Класс Parameters представляет группу параметров моделируемого объекта (таблица 3.2).

Таблица 3.2 – Описание класса ParametersVM

two-miles of its common termination of the			
Название	Описание		
_parametersVms	Параметры шестерни		
ParametersVM	Конструктор		

Класс ParameterVM является представлением параметра, который отвечает за первичную валидацию параметра и дальнейшую отправку этого параметра на уровень модели (таблица 3.3).

Таблица 3.3 – Описание класса ParameterVM

Название	Описание
ParameterVM	Конструктор
Validate	Выполняет валидацию текущего фрагмента

Kласс Cross Validator осуществляет перекрёстную валидацию между зависимыми параметрами (таблица 3.4).

Таблица 3.4 – Описание класса CrossValidator

Название	Описание
ValidateDepend entParameters	Валидирует зависимые параметры

Класс Project является главным классом модели. Через него происходит взаимодействие с САПР, выполняется подключение, отключение, выбор целевой САПР и выполняется построение модели (таблица 3.5).

Таблица 3.5 – Описание класса Ргојест

Название	Описание
_builder	Хранит экземпляр обёртки над построителем
Build	Выполняет построение модели
ConnectToCad	Выполняет подключение к САПР
DisconnectFrom Cad	Выполняет отключение от САПР
SelectCad	Выбирает конкретную САПР для использования при построении

Интерфейс ICadBuilder абстрагирует Project от конкретной реализации построителя (таблица 3.6).

Таблица 3.6 – Описание интерфейса ICadBuilder

Название	Описание
Build	Выполняет построение модели в САПР
ConnectToCad	Выполняет подключение к САПР
DisconnectFrom Cad	Выполняет отключение от САПР

Класс Parameter выполняет хранение информации об одном из параметров модели (таблица 3.7).

Таблица 3.7 – Описание класса Parameter

Название	Описание
MaxValue	Хранит максимальное допустимое значение параметра
MinValue	Хранит минимальное допустимое значение параметра
Name	Хранит название параметра
Parameter	Конструктор
Value	Значение параметра

Перечисление CadName отображает названия САПР, с которыми в настоящий момент времени может работать плагин (таблица 3.8).

Таблица 3.8 – Описание перечисления CadName

Two midwe to the comment of the comm	
Название	Описание
AutoCad	Перечисление для Autodesk AutoCAD

Класс CadBuilderFactory предоставляет конкретный экземпляр ICadBuilder классу Project. Данное решение применено для упрощения модификации плагина в будущем на тот случай, если потребуется подключить этот плагин к другой САПР (таблица 3.9).

Таблица 3.9 – Описание класса CadBuilderFactory

Название	Описание
MakeBuilder	Создаёт экземпляр конкретного построителя модели в соответствующей САПР

Класс AutoCadBuilder предоставляет конкретную реализацию построителя для САПР AutoCAD (таблица 3.10).

Таблица 3.10 – Описание класса AutoCadBuilder

Название	Описание
AutoCadBuilder	Конструктор
Build	Выполняет построение модели в AutoCAD
BuildGearTooth	Выполняет построение одного зуба в AutoCAD
Parameters	Хранит параметры моделируемой шестерни

Библиотека CommunityToolkit.Guard предоставляет реализацию методов валидации без необходимости реализовывать их самостоятельно.

Таблица 3.11 – Описание класса ParametersVM

Название	Описание
Guard	Реализует методы валидации значений на минимум, максимум, т.п.
ThrowHelper	Реализует методы для облегчения выбрасывания исключений

Запуск плагина предполагается выполнять из САПР через командную строку.

3.2 Макеты пользовательского интерфейса

Пример макета пользовательского интерфейса представлен на рисунке 4.9.

Рисунок 3.1 — Пользовательский интерфейс

Валидация некорректных данных представлена на рисунке 4.10.

Рисунок 3.2 — Интерфейс с неправильно введенным значением параметра

Рисунок 3.3 — Интерфейс с неправильно введенными значениями параметров

Добавлено примечание ([KA21]): Показать пример с валидацией зависимых параметров

Добавлено примечание ([GL22R21]): +

4 Список используемых источников

- 1. Языковые пакеты для САПР Autodesk AutoCAD. [Электронный ресурс]. Режим доступа: свободный (дата образения 16.10.23). https://www.autodesk.com/support/technical/article/caas/tsarticles/ts/2edY5Oczsv93t DF1ugCKHU.html
- 2. Документация AutoCAD .NET API для разработчиков. [Электронный ресурс]. Режим доступа: свободный (дата обращения 16.10.23), https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-390A47DB-77AF-433A-994C-2AFBBE9996AE
- 3. Обучающая статья "Autodesk Inventor. Построение зубчатой передачи". [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://www.pointcad.ru/novosti/autodesk-inventor.-postroenie-zubchatoj-peredachi
- 4. Официальный сайт САПР Autodesk Fusion 360. [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://www.autodesk.com/products/fusion-360/overview?term=1&tab=subscription
- 5. Официальный сайт САПР Коmpas-3D. [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://kompas.ru/kompas-3d/about/
- 6. Энциклопедия "Академик". [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://dic.academic.ru/dic.nsf/ruwiki/1200290
- 7. Руководство "What is Class Diagram". [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-class-diagram/
- 8. UML. Основы. Краткое руководство по стандартному языку объектного моделирования. Изд: Символ-Плюс, 2011, с.192 (3-е издание)
- 9. Язык UML. Руководство пользователя. Изд: ДМК Пресс, 2015, с.496 Работы студенческие по направлениям подготовки и специальностям

Добавлено примечание ([КА23]): Межабзацный интервал должен быть равен 0

Добавлено примечание ([GL24R23]): +

технического профиля. Общие требования и правила оформления, Томск 2021 г., $52\ c.$

10. Применение UML 2.0 и шаблонов проектирования. Введение в объектно- ориентированный анализ, проектирование и итеративную разработку. Изд: Вильямс, 2013, с.739 (3-е издание)