Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 18. Feedback Loop and Activities for Quantifiable Quality Improvement

- Feedback Loop and Overall Mechanism
- Monitoring and Measurement
- · Analysis and Feedback
- Tool and Implementation Support

Importance of Feedback Loop

- All QA activities covered in Part II and Part III need additional support
 - Planning and goal setting (Chapter 5)
 - o Management via feedback loop
 - When to stop?
 - Adjustment and improvement, etc
 - All based on assessments/predictions
- Feedback loop for quantification/improvement
 - Focus of Part IV chapters
 - · Chapter 18: mechanism and implementation
 - o Chapter 19: models and measurements
 - Chapter 20: defect analyses and techniques
 - Chapter 21: risk identification techniques
 - o Chapter 22: software reliability engineering

QE Activities and Process Review

- Major activities
 - Pre-QA planning (Chapter 5)
 - QA (Part II and Part III)
 - Post-QA analysis & feedback Part IV

(maybe parallel instead of "post-")

- Overall process: Fig 5.1 (p.54)
 - Software quality engineering (SQE)

• Feedback loop zoom-in: Fig 18.1 (p.304)

- Multiple measurement sources
- Many types of analysis performed
- Multiple feedback paths

Feedback Loop Related Activities

- Monitoring and measurement
 - defect monitoring belongs to process management
 - o defect measurement belongs to defect handling
 - many other related measurements
- Analysis modeling
 - Historical baselines and experience
 - Choosing models and analysis techniques
 - Focus on defect/risk/reliability analyses
 - Goal: assessment/prediction/improvement
- Feedback and followup
 - Frequent feedback: assessment/prediction
 - Possible improvement areas identified
 - Overall management and improvement

Quality Monitoring and Measurements

- Quality monitoring needs
 - Quality as a quantified entity over time
 - Able to assess, predict, and control
 - Various measurement data needed

- Some directly in quality monitoring
- Others via analyses to provide feedback
- · Direct quality measurements
 - · Result, impact and related info
 - e.g., success vs. failure
 - classification info. (e.g., ODC)
 - Defect information: directly monitored
 - additional defect analysis in Chapter 20
 - Mostly used in quality monitoring

Indirect Quality Measurements

- Indirect quality measurements: Why?
 - o Other quality measurements (reliability)

need additional analyses/data

(See reliability definition in Chapter 22.)

- Unavailability of direct quality measurements early in the development cycle
 - => early (indirect) indicators
- Used to assess/predict/control quality

(to link to or affect various direct quality measurements)

- Types of indirect quality measurements
 - Environmental measurements
 - Product internal measurements
 - · Activity measurements

Indirect Measurements: Environment

- Process characteristics
 - · Entities and relationships
 - Preparation, execution and followup
 - Techniques used
- People characteristics
 - Skills and experience
 - Roles: planners/developers/testers
 - Process management and teams
- Product characteristics
 - Product/market environment
 - Hardware/software environment

Indirect Measurements: Internal

- Product internal measurements: most studied/understood in SE
- Software artifacts being measured
 - Mostly code-related
 - Sometimes SRS, design, docs etc
- Product attributes being measured
 - o Control: e.g., McCabe complexity
 - o Data: e.g., Halstead metrics
 - o Presentation: e.g., indentation rules
- Structures
 - Unstructured: e.g., LOC
 - Structured: examples above

Indirect Measurements: Activity

- Execution/activity measurements
 - Overall: e.g., cycle time, total effort
 - Phased: profiles/histograms
 - o Detailed: transactions in SRGMs
- Testing activity examples

- Timing during testing/usage
- · Path verification (white-box)
- Usage-component mapping (black-box)
- Measurement along the path
- Usage of observations/measurements: observation-based and predictive models

Immediate Followup and Feedback

- Immediate (without analyses): Why?
 - · Immediate action needed right away
 - critical problems => immediate fixing
 - most other problems: no need to wait
 - Some feedback as built-in features in various QA alternatives and techniques
 - · Activities related to immediate actions
- · Testing activity examples
 - · Shifting focus from failed runs/areas
 - · Re-test to verify defect fixing
 - o Other defect-related adjustments
- · Defect and activity measurements used

Analyses, Feedback, and Followup

- Most feedback/followup relies on analyses
- Types of analyses
 - Product release decision related
 - For other project management decisions, at the phase or overall project level
 - Longer-term or wider-scope analyses
- · Types of feedback paths
 - Shorter vs. longer feedback loops
 - · Frequency and time duration variations
 - Overall scope of the feedback
 - o Data source refinement
 - Feedback destinations

Analysis for Product Release Decisions

- Most important usage of analysis results
 - o Prominent in Fig 5.1 and Fig 18.1
 - Related to: "when to stop testing?"
- Basis for decision making
 - Without explicit quality assessment
 - implicit: planned activities,
 - indirect: coverage goals,
 - other factors: time/money-based
 - · With explicit quality assessment
 - failure-based: reliability,
 - fault-based: defect count & density
- Criteria preference: reliability defect coverage activity

Analyses for Other Decisions

- Transition from one (sub-)phase to another
 - Later ones: similar to product release
 - Earlier ones: reliability undefined
 - defects coverage activity,inspection and other early QA
- Other decisions/management-activities
 - Schedule adjustment
 - Resource allocation and adjustment
 - Planning for post-release support
 - Planning for future products or updates
- These are product-level or sub-product-level decisions and activities

Other Feedback and Followup

- Other (less frequent) feedback/followup
 - o Goal adjustment (justified/approved)
 - Self-feedback (measurement & analysis)
 - unsuitable measurements and models?
 - SRE measurement example in IBM
 - o Longer term, project-level feedback
 - May even carry over to followup projects
- Beyond a single-project duration/scope
 - Future product quality improvement
 - overall goal/strategy/model/data,
 - especially for defect prevention
 - Process improvement
 - More experienced people

Feedback Loop Implementation

Key question: sources and destinations

(Analysis and modeling activity at center.)

- Sources of feedback loop = data sources
 - · Result and defect data
 - the QA activities themselves
 - Activity data
 - both QA and development activities
 - o Product internal data: product

(produced by development activities)

- Environmental data: environment
- Additional sources of feedback loop
 - From project/QA planning
 - Extended environment: measurement data and models beyond project scope

Feedback Loop Implementation

- Feedback loop at different duration/scope levels
- Immediate feedback to current development activities (locally)
- Short-term or sub-project-level feedback
 - o most of the feedback/followup in Chapter 18
 - o transition, schedule, resource,
 - o destination: development activities
- Medium-term or project-level feedback
 - overall project adjustment and release
 - destination: major blocks in Fig 5.1
- Longer-term or multi-project feedback
 - to external destinations

Feedback Loop Implementation

• Overall implementation: Fig 18.2 (p.315)

- Originated from Fig 5.1
- Via intermediate refinement in Fig 18.1

Implementation Support Tools

- Type of tools
 - Data gathering tools
 - o Analysis and modeling tools
 - Presentation tools
- · Data gathering tools
 - Defects/direct quality measurements
 - from defect tracking tools
 - Environmental data: project db
 - · Activity measurements: logs
 - Product internal measurements
 - commercial/home-build tools
 - New tools/APIs might be needed

Implementation Support Tools

- Analysis and modeling tools
 - Dedicated modeling tools
 - e.g., SMERFS and CASRE for SRE
 - o General modeling tools/packages
 - e.g., multi-purpose S-Plus, SAS
 - Utility programs often needed for data screening and processing
- Presentation tools
 - Aim: easy interpretation of feedback
 - => more likely to act on
 - o Graphical presentation preferred
 - Some "what-if"/exploration capability

Strategy for Tool Support

- Using existing tools => cost reduction
 - · Functionality and availability/cost
 - Usability
 - Flexibility and programmability
 - Integration with other tools

- Tool integration issues
 - Assumption: multiple tools used

(All-purpose tools not feasible/practical.)

- External rules for inter-operability,
 - common data format and repository
- Multi-purpose tools
- Utilities for inter-operability

Tool Support Example

• IBM example: Fig 18.3 (p.319)

