Who Hurts Their Liver The Most? Çağatay Doruk Balcı – Uras Varolgüneş

Dataset:

Survey data about Slovakian students aged between 15-30. Consists of 150 variables, that reflect habits, personality traits and demography.

Objective:

To predict drinking habits of students based on other variables in the dataset and see the relationship between alcohol consumption and other variables.

Methodology:

- -To distinguish between heavy drinkers and the others, we label students who drink a lot as 1 and the rest as 0.
- -The data set consists of 150 variables, to come up with a parsimonious model, picking out the most distinguishing variables is the key.
- -First we conduct explaratory data analysis to discover interesting connections between alcohol consumption and the other variables.
- -Then to construct our model, we apply feature selection to the variables which correlate with alcohol consumption the most.
- -To solve the classification problem, we apply logistic regression, decision tree and KNN algorithms.
- -After the feature selection process, we proceed with hyperparameter tuning to optimize the algorithms.
- -Regularization parameter in Logistic Regression
 - -K in K nearest neighbours.

EDA and Important Figures

General Distribution of Students

Finances

Health

Smoking

Important Features Correlation

Logistic Regression Impacts

<u>Decision Tree Variables</u>

-Entertainment Spending -Finances -Smoking

-Entertainment Spending

KNN Variables

-Finances
-Smoking
-Romantic
-Difficulty Getting Up
-Giving
-Preferring Big Dogs over Small
Dogs

Results

	Logistic Regression					
ı		Precision	Recall	F-1 Score		
l	0	0.80	0.95	0.87		
ı	1	0.74	0.37	0.49		
	Avg / Total	0.78	0.78	0.74		

Decision Tree						
	Precision	Recall	F-1 Score			
0	0.79	0.91	0.85			
1	0.50	0.28	0.36			
Avg / Total	0.72	0.75	0.73			

KNN					
	Precision	Recall	F-1 Score		
0	0.81	0.95	0.87		
1	0.60	0.23	0.34		
Avg / Total	0.76	0.79	0.75		

	Average Accuracy Score on 5-Fold Cross Validation Set
Logistic Regression	0.833
Decision Tree	0.799
KNN	0.808

Conclusion

- -We should keep in mind that this is a survey data set, so there is a possibility of response bias, which might have caused some distortion in the results.
- -Observing the learning curves for Logistic Regression and KNN algorithms, we conclude that if we had more data we could have achieved better results.
- -Average Accuracy Scores imply that Logistic Regression provides the best fit overall.
 -None of the models have a high success rate predicting students that identify
- themselves as drinking a lot. Recall scores for positive labels are considerably low, but compared to the other two methods, Logistic Regression provides an almost satisfactory recall score for positive labels and a decent precision score.