

ISE224 Python for Engineers

Dr. Cheng-Bang Chen

Lab 9 - Forecasting

Forecasting

❖ Forecasting is a technique that uses historical data as inputs to make informed estimates that are predictive in determining the

direction of future trends.

❖ Notations:

 $\Box t$: the time index

 $\square Y_t$: the true value at time t

 $\square \hat{Y}_t$: the predicted(estimated) value at time t

 $\Box e_t$: the forecast error of time t. $(e_t = Y_t - \hat{Y}_t)$

Prediction Performance:

☐ Mean Squared Error (MSE)

$$MSE = \frac{\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}{n}$$

Week (t)	Y(t)	Y.hat(t)	e(t)
1	275	273	2
2	291	296	-5
3	307	314	-7
4	281	288	-7
5	295	301	-6
6	268	268	0
7	252	260	-8
8	279	272	7
9	264	274	-10
10	288	280	8

Naive Approach

❖ The naive method for prediction is a simple forecasting technique that assumes that the future value of a time series will be equal to the present value.

$$\widehat{Y}_{t+1} = Y_t$$

Using naïve method to predict the values of week 6 - 10. Calculate the MSE of this prediction.

Week (t)	Y(t)	Y.hat(t)	e(t)	e^2(t)
1	275			
2	291			
3	307			
4	281			
5	295			
6	268			
7	252			
8	279			
9	264			
10	288			

Naïve Trend Model

- ❖ When data values increase over time, they are said to be **nonstationary** in level or to have a **trend**.
- ❖ For the data with trend, if we apply the naïve method, the forecasting will be consistently low/high.

❖Naïve Trend Model:

Adjust the naïve method to take trend into consideration by adding the difference between two periods.

$$\widehat{Y}_{t+1} = Y_t + (Y_t - Y_{t-1})$$

Sales of Saws for the Acme Tool Company: 2000-2006

Naïve Trend Model

$$\widehat{Y}_{t+1} = Y_t + (Y_t - Y_{t-1}) = 2Y_t - Y_{t-1}$$

Using naïve trend method to predict the values of week 6 - 10.
Calculate the MSE of this prediction.

Week (t)	Y(t)	Y.hat(t)	e(t)	e^2(t)
1	275			
2	291			
3	307			
4	281			
5	295			
6	268			
7	252			
8	279			
9	264			
10	288			

- Simple Moving Average is a commonly used technique for time series analysis and forecasting. It is a statistical method that calculates the average of a specified number of data points over a specific period of time.
 - □ Assumes an average is a good estimator of future behavior
 - □Used if *little or no trend*
 - □Used for smoothing
- ❖ N-period moving average:

$$\widehat{Y}_{t+1} = \frac{(Y_t + Y_{t-1} + Y_{t-2} + \dots + Y_{t-n+1})}{n}$$

You're manager in Amazon's electronics department. You want to forecast ipad sales for months 4-6 using a 3-period moving average.

	Sales	
Month	Sales (1000)	
1	4	
2	6	
3	5	
4	?	
5	?	
6	?	

❖ You're manager in Amazon's electronics department. You want to forecast ipad sales for months 4-6 using a 3-period moving average.

Month	Sales (1000)	Moving Average (n=3)
1	4)	NA
2	6	NA
3	5	NA
4	?	4+6+5)/3=5
5	?	
6	?	

❖ What if ipad sales were actually 3 in month 4

Month	Sales (1000)	Moving Average (n=3)
1	4	NA
2	6	NA
3	5	NA
4	3	5
5	?	
6	?	

Forecast for Month 5?

Month	Sales (1000)	Moving Average (n=3)
1	4	NA
2	6	NA
3	5	NA
4	3	5
5	?	(6+5+3)/3=4.667
6	?	

❖ Actual Demand for Month 5 = 7

Month	Sales (1000)	Moving Average (n=3)
1	4	NA
2	6	NA
3	5	NA
4	3	5
5	7	4.667
6	?	

❖ Forecast for Month 6?

Month	Sales (1000	Moving Average (n=3)
1	4	NA
2	6	NA
3	5	NA
4	3	5
5	7 J	3 4.667
6	?	\longleftrightarrow (5+3+7)/3=5

Exercise: Using MA to forecast week 6-10

Using 5-period Moving Average method to predict the values of week 6 - 10. Calculate the MSE of this prediction.

Week (t)	Y(t)	Y.hat(t)	e(t)	e^2(t)
1	275			
2	291			
3	307			
4	281			
5	295			
6	268			
7	252			
8	279			
9	264			
10	288			

Simple Exponential Smoothing Method

Formally, the exponential smoothing equation is

$$\hat{Y}_{t+1} = \alpha Y_t + (1 - \alpha)\hat{Y}_t$$

- $\triangleright \hat{Y}_t$ = forecast value for the period t.
- $\triangleright \alpha$ = smoothing constant.
- $> Y_t$ = observed value of series in period t.
- The forecast \hat{Y}_{t+1} is based on weighting the most recent observation Y_t with a weight α and weighting the most recent forecast \hat{Y}_t with a weight of $1-\alpha$

Simple Exponential Smoothing Method

The implication of exponential smoothing can be better seen if the previous equation is expanded by replacing \hat{Y}_t with its components as follows:

$$\hat{Y}_{t+1} = \alpha Y_t + (1 - \alpha)\hat{Y}_t
= \alpha Y_t + (1 - \alpha)[\alpha Y_{t-1} + (1 - \alpha)\hat{Y}_{t-1}]
= \alpha Y_t + \alpha (1 - \alpha)Y_{t-1} + (1 - \alpha)^2\hat{Y}_{t-1}$$

Simple Exponential Smoothing Method

- \clubsuit The value of smoothing constant α must be between 0 and 1
- α can not be equal to 0 or 1.
- ❖ To estimate the best α , Forecasts are computed for α equal to .1, .2, .3, ..., .9 and the sum of squared forecast error is computed for each.

❖ The value of α with the smallest MSE is chosen for the best α using in producing the future forecasts.

Exercise: Using ES to forecast week 6-10

❖ Using Exponential Smoothing method with (α =0.2) to predict the values of week 6 - 10. Use $\hat{Y}_t = Y_t$ for the initial forecasting. Calculate the MSE of this prediction.

Week (t)	Y(t)	Y.hat(t)	e(t)	e^2(t)
1	275			
2	291			
3	307			
4	281			
5	295			
6	268			
7	252			
8	279			
9	264			
10	288			

Exercise: Using ES to forecast week 6-10

❖ Using Exponential Smoothing method with (α =0.3) to predict the values of week 6 - 10. Use $\hat{Y}_{t+1} = \frac{Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3} + Y_{t-4}}{5}$ for the initial forecasting. Calculate the MSE of this prediction.

Week (t)	Y(t)	Y.hat(t)	e(t)	e^2(t)
1	275			
2	291			
3	307			
4	281			
5	295			
6	268			
7	252			
8	279			
9	264			
10	288			