PH1 Mark Scheme – June 2007

Question		n	Answers / Explanatory notes	
1	(a)		Repeated units / monomers [accept particles/atoms] or long molecular chains. Not: randomly packed molecules or particles joined together	1
	(b)	(i) (ii)	molecules unravel / unfold [and align by rotation about single C–C bonds](1). Not steep because [small] force → large extension [or equiv] or because little/no resistive force between molecules / small force needed to rotate bonds (1) Molecules fully aligned (1). Steep because ratio of stress/strain high / [large] force → small extension orbecause applied	2
	(c)		force resisted by [covalent] bonds/forces within molecules [or monomers / atoms] (1).	2
		(i)	$\frac{\text{stress}}{\text{strain}} [\text{accept } \frac{Fl}{Ae} \text{ or equiv.}]$	1
		(ii)	Rubber: Large strain/extension (1) for [small] stress / force (1) [or steel: converse]	2
	(d)	(i) (ii)	e.g. flexible / tough / highly resilient / durable hard / rigid / strong	1 1
				[10]
2	(a)		Force extension / force per unit extension. [accept $k = \frac{F}{x}, \frac{F}{\Delta l}, \frac{F}{e}$]	1
	(b)		12 Nm ⁻¹ [or $\frac{1}{2}$ of each] (1) because the extension is doubled [or equiv.] (1) for a given F (1)	3
	(c)	(i) (ii)	extension = $0.1 \text{ m } (1)$ $F = k \times \text{ extension [or by impl.] } (1)$ $F = 12 \times 0.1 = 1.2 \text{ N } (1)$ Principle of Moments correct [allow dist to C of M] (1)	3
		\ /	1.2 × 0.8 = 0.5 (1) + 4x x = 0.12 m (1)	3
	(d)		~ 5 12 III (1)	[10]

Question		n	Answers / Explanatory notes	Marks available
3	(a)		Resultant / net force / [vector] sum of forces (1) [accept total force]	
			Correct example showing the resultant of two or more forces	1
	(b)	(i)	9800 N [N.B. Use of $g = 10$ N kg ⁻¹ penalised only once]	1
		(ii)	$a = \frac{[\Sigma]F}{m}$ [or by impl.] (1) $= \frac{(12000 - 9800)(1)}{1000} = 2 \cdot 2 \text{m s}^{-2}(1)$	3
	(c)	(i)	$\sigma = E \times \varepsilon [\text{or by impl.}]$	
			$= 2 \times 10^{11} \times 3.75 \times 10^{-5} (1) \left[= 7.5 \times 10^{6} \mathrm{Pa} \right]$	
			$T = \sigma \times A [\text{or by impl.}] = 7.5 \times 10^6 (\text{e.c.f.}) \times 1.2 \times 10^{-3} (1)$	
		(ii)	= 9000 N(1) Deceleration because $T < 9800 \text{ N}$ [explanation needed] e.c.f.	3 1
		(11)	Deceleration <u>occause 1 > 7000 tv</u> [explanation needed] e.e.i.	
				[10]
4	(a)		$\frac{\sin \theta_1}{\sin \theta_2}(1) = \text{constant}(1) [\text{or equiv. e.g. } n_1 \sin \theta_1 = n_2 \sin \theta_2]$	2
	(b)	(i)	$\frac{\sin 45^{\circ}}{\sin 26^{\circ}}(1) = 1 \cdot 6(1)$	2
		(ii)	1 < n < 1.6 [e.c.f.] (1) [accept e.g. $1.2 - 1.5$, not $1.3 - 1.6$] for TIR to occur [accept: reflection] (1)	2
		(iii)	$c_{\text{fibre}} = \frac{3 \cdot 0 \times 10^8}{1 \cdot 6[\text{e.c.f.}]} (1); t = \frac{10 \times 10^3}{c_{\text{fibre}}} = 5 \cdot 3 \times 10^{-5} \text{s}(1)$	2
	(c)		Any 2 × 1 of: larger information-carrying capacity / bandwidth ✓ Lighter [∴ easier/cheaper to install] ✓ less cross-talk / more secure ✓ lower cost raw materials / production ✓ resistant to corrosion ✓	
			■ greater distance before boosting required ✓ N.B. not "faster"	2
			IV.D. HUL TASICI	[10]

	Quest	tion	Answers / Explanatory notes	
5	(a))	[particle] vibration along wave direction[not particles move]	1
	(b)	(i)	$v = 5189 \text{ m s}^{-1}$	1
		(iii)	RHS: $\frac{\text{Nm}}{\text{m}^2\text{kg}}$ (1)[or by impl.] = $\frac{\text{kg m s}^{-2}(1)\text{m}^3}{\text{m}^2\text{kg}}$ = m ² s ⁻² shown (1) [or equiv. in dimensions]	4
			then substitution $\rightarrow t = 141 \text{ m} \checkmark$	4
				[10]

	Questio	n	Answers / Explanatory notes	
6	(a)		Speed has magnitude only (1); velocity has direction <u>too</u> (1). [or speed is a scalar (1); velocity is a vector (1)] [accept for 1 mark: velocity is speed in a specific direction]	1
	(b)	(i)	$s = \frac{u+v}{t}(1); \therefore 3 \cdot 4 = \frac{u+0}{2} \times 2 \cdot 13(1) \text{ [or eqiv.]}$ manipulation (1) $\rightarrow u = 3 \cdot 4 \text{ m s}^{-1}$ [accept: inserting all figures and showing that, e.g. $3 \cdot 6 = 3 \cdot 6$]	3
		(ii)	v = u + at [or equiv.] $0 = 3 \cdot 4 \pm 2 \cdot 13a$ (1) $a = \pm 1 \cdot 6 \text{ m s}^{-1}$ (1) N.B. Use of other equations of motion equally acceptable.	3
		(iii)	4.26 - 0.90 [or $2.13 + 1.23$] [or by impl.](1) = 3.36 s (1)	2
		(iv)	$3 \times \text{diagram with only weight or [force due to] gravity shown}$ (3×1) [3 correct diagrams with no labels \rightarrow (2)]	3
		(v)	No (1) because air resistance / drag would affect result (1) [Accept: Yes ✓ because air resistance has only small effect ✓] [N.B. No [or yes] unqualified → 0]	2
	(c)	(i)	$v_{\rm R} = \sqrt{3 \cdot 4^2 + 2 \cdot 0^2}$ [or by impl](1) = 3 · 9 m s ⁻¹ (1) $\theta = 59 \cdot 5^{\circ}$ to horizontal [direction must be clear] (1)	3
		(ii)	On vehicle (1) because no horizontal forces / v_h const. (1)	2
				[20]

Question			Answers / Explanatory notes	
7	(a)	(i)	maximum displacement [accept: height]	1
		(ii)	interact / overlap / interfere / combine / occupy same region	1
	(b)	(i)	Direction: up [or down] / vertical (1) Amplitude: Q > P [not just different] (1) In phase (1)	3
		(ii)	$2 \times 1.8 \ (\checkmark) = 3.6 \ \mathrm{m}$	1
	(c)	(i)	Top diagram: 2 loops shown ~ equal (1) Bottom diagram: 3 loops shown equal (1) nodes shown at ends (1)	3
		(ii)	$\begin{array}{ c c c c c c }\hline 1 & 2 & 3 \\ \hline 3.6 & 1.8 & (1) & 1.2 & (1) \\ \hline 0.28 & 0.56 & 0.83 & (1) & all & 1/2 \\ \hline \end{array}$	
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4
		(iii)	Graph: Scale + plotting (1); line (1)	2
		(iv)	inverse proportion [accept $f = \frac{c}{\lambda}$, with $c = \text{const or speed}$]	1
			4.2 [e.c.f. from graph] (1); speed of wave (1)	2
				[20]