Умножение на детерминанти

Започваме със следната

Лема. Нека $m, n \in \mathbb{N}$. Да разгледаме $(n+m) \times (n+m)$ детерминантата

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 & 0 & \dots & 0 \\ * & * & \dots & * & b_{11} & b_{12} & \dots & b_{1m} \\ * & * & \dots & * & b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & * & b_{m1} & b_{m2} & \dots & b_{mm} \end{vmatrix},$$

където числата a_{ij} , $i, j = 1, 2, \ldots, n$ и b_{kl} , $k, l = 1, 2, \ldots, m$ лежат в някакво числово поле F, а със символа * са означени произволно числа от същото това поле, които обаче не ни интересуват конкретно. Не-

ка разгледаме още
$$n \times n$$
 детерминантата $\Delta_1 = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} u$

$$m imes m$$
 детерминатата $\Delta_2 = egin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mm} \end{bmatrix}$. Тогава е изпълнено

равенството $\Delta = \Delta_1 \Delta_2$.

Доказателство. Нека означим детерминантата $\Delta = |c_{ij}|, i, j = 1, 2, \dots, n+$

m. Имаме, че

$$c_{ij} = \begin{cases} a_{ij}, \text{при } i \leq n, j \leq n \\ 0, \text{при } i \leq n, j > n \\ *, \text{при } i > n, j \leq n \\ b_{i-n,j-n}, \text{при } i > n, j > n \end{cases}$$

По дефиниция имаме, че

$$\Delta = \sum (-1)^{[\alpha_1 \dots \alpha_n \ \alpha_{n+1} \dots \alpha_{n+m}]} c_{1\alpha_1} \dots c_{n\alpha_n} c_{n+1,\alpha_{n+1}} \dots c_{n+m,\alpha_{n+m}},$$

където с $\alpha_i, i=1,2,\ldots,n+m$ е зададена някаква пермутация на числата $1\ 2\ldots n+m$. Разглеждаме първите n множителя във всеки член, т.е. $c_{k\alpha_k}$ за $k=1,2,\ldots,n$. Ако $\alpha_k>n$, то $c_{k\alpha_k}=0$ и цялото събираемо се анулира. Нека сега $\alpha_k\leq n$ за $\forall k=1,2,\ldots,n$. Така получаваме, че $\alpha_1\ \alpha_2\ \ldots\ \alpha_n$ всъщност е пермутация на числата $1\ 2\ \ldots\ n$. Следователно $\alpha_{n+1}\ \alpha_{n+2}\ \ldots\ \alpha_m$ е пермутация на числата $n+1\ n+2\ \ldots\ m$. В такъв случай между числата от $\alpha_1\ \alpha_2\ \ldots\ \alpha_n$ и числата от $\alpha_{n+1}\ \alpha_{n+2}\ \ldots\ \alpha_m$ не се образуват никакви инверсии. Означаваме $\beta_1=\alpha_{n+1}-n,\ldots,\beta_m=\alpha_{n+m}-n$ и получаваме, че $\beta_1\ \ldots\ \beta_m$ е пермутация на числата $1\ 2\ \ldots\ m$. Сега вече имаме, че

$$(-1)^{[\alpha_1 \dots \alpha_n \ \alpha_{n+1} \dots \alpha_{n+m}]} = (-1)^{[\alpha_1 \dots \alpha_n] + [\alpha_{n+1} \dots \alpha_{n+m}]}$$
$$= (-1)^{[\alpha_1 \dots \alpha_n] + [\beta_1 \dots \beta_m]} = (-1)^{[\alpha_1 \dots \alpha_n]} (-1)^{[\beta_1 \dots \beta_m]}.$$

Освен това $c_{1\alpha_1} = a_{1\alpha_1}, \ldots, c_{n\alpha_n} = a_{n\alpha_n}; \ c_{n+1,\alpha_{n+1}} = b_{1,a_{n+1}-n} = b_{1\beta_1}, \ldots, c_{n+m,\alpha_{n+m}} = b_{m,\alpha_n+m-n} = b_{m\beta_m}$ и вече можем да запишем

$$\Delta = \sum (-1)^{[\alpha_1 \dots \alpha_n]} a_{1\alpha_1} \dots a_{n\alpha_n} (-1)^{[\beta_1 \dots \beta_m]} b_{1\beta_1} \dots b_{m\beta_m},$$

където α_1 ... α_n е произволна пермутация на числата 1 2 ... n, а β_1 ... β_m е произволна пермутация на числата 1 ... m. Така

$$\Delta = \sum (-1)^{[\alpha_1 \dots \alpha_n]} a_{1\alpha_1} \dots a_{n\alpha_n} \sum (-1)^{[\beta_1 \dots \beta_m]} b_{1\beta_1} \dots b_{m\beta_m} = \Delta_1 \Delta_2.$$

Теорема. Нека $\Delta_1 = |a_{ij}|$ и $\Delta_2 = |b_{ij}|$ са две детерминанти от ред n и нека $\Delta = |c_{ij}|$ е детерминанта от ред n, такава че $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$ за $\forall i, j = 1, 2, \ldots, n$. Тогава е изпълнено равенството

$$\Delta = \Delta_1 \Delta_2.$$

(Иначе казано, елементът в i-тия ред и j-тия стълб на Δ се получава като i-тия ред на Δ_1 се умножи почленно с j-тия стълб на Δ_2 и произведенията се сумират. Ще наричаме това правило "ред по стълб".)

$$D = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 0 & \dots & 0 \\ \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 & 0 & \dots & 0 \\ -1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1n} \\ 0 & -1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 & b_{n1} & b_{n2} & \dots & b_{nn} \end{vmatrix}$$

Според Лемата имаме, че $D = \Delta_1 \Delta_2$. Нека сега за всяко i = 1, 2, ..., n към i-тия ред на D прибавяме (n+1)-вия ред, умножен по a_{i1} , (n+2)-рия ред, умножен по $a_{i2}, ..., 2n$ -тия ред, умножен по a_{in} . Така получаваме

$$D = \begin{vmatrix} 0 & 0 & \dots & 0 & d_{11} & \dots & d_{1j} & \dots & d_{1n} \\ 0 & 0 & \dots & 0 & d_{21} & \dots & d_{2j} & \dots & a_{2n} \\ \dots & \dots \\ 0 & 0 & \dots & 0 & d_{n1} & \dots & d_{nj} & \dots & d_{nn} \\ -1 & 0 & \dots & 0 & b_{11} & \dots & b_{1j} & \dots & b_{1n} \\ 0 & -1 & \dots & 0 & b_{21} & \dots & b_{2j} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 & b_{n1} & \dots & b_{nj} & \dots & b_{nn} \end{vmatrix},$$

където $d_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}=c_{ij}$. От свойствата на детерми-

нантите имаме

$$D = (-1)^{n} \begin{vmatrix} c_{11} & c_{12} & \dots & c_{1n} & 0 & 0 & \dots & 0 \\ c_{21} & c_{22} & \dots & c_{2n} & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} & 0 & 0 & \dots & 0 \\ b_{11} & b_{12} & \dots & b_{1n} & -1 & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & b_{2n} & 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nn} & 0 & 0 & \dots & -1 \end{vmatrix}$$

$$\stackrel{\text{Лемата}}{=} (-1)^{n} \begin{vmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{vmatrix} \cdot \begin{vmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 \end{vmatrix} = (-1)^{n} \Delta (-1)^{n} = \Delta.$$

Така
$$D=\Delta$$
 и $D=\Delta_1\Delta_2$. Следователно $\Delta=\Delta_1\Delta_2$.

От тази Теорема, приложена за Δ_1 и Δ_2^t , с която сме означили транспонираната детерминанта на Δ_2 , получаваме, че $\Delta = \Delta_1 \Delta_2^t$, където $\Delta = |c_{ij}|$ и $c_{ij} = a_{i1}b_{j1} + a_{i2}b_{j2} + \cdots + a_{in}b_{jn}$. С други думи произведението на две детерминанти може да бъде пресметнато и по правилото "ред по ред". В сила са още правилата за умножение "стълб по стълб" и "стълб по ред". По-общо всичко това може да се разглежда като следствие от свойството, че за произволна квадратна матрица A имаме $\det A = \det A^t$.

свойството, че за произволна квадратна матрица
$$A$$
 имаме $\det A = \det A^t$. Пример: Нека $\Delta_1 = \begin{vmatrix} -2 & 0 \\ 1 & 3 \end{vmatrix}, \Delta_2 = \begin{vmatrix} 2 & 1 \\ -4 & 5 \end{vmatrix}$. Имаме $\Delta_1 = \Delta_1 \Delta_2 = \begin{vmatrix} -2.2 + 0.(-4) & (-2).1 + 0.5 \\ 1.2 + 3.(-4) & 1.1 + 3.5 \end{vmatrix} = \begin{vmatrix} -4 & -2 \\ -10 & 16 \end{vmatrix}$. Проверка: $\Delta_1 = -2.3 - 0.1 = -6$, $\Delta_2 = 2.5 - 1.(-4) = 14$, $\Delta = -4.16 - (-2).(-10) = -84$. И наистина, $\Delta_1 \Delta_2 = (-6).14 = -84 = \Delta$.