Predicting Term Deposit Subscription

Using Logistic Regression in SAS, R and Python

Introduction

A number of campaigns are being run by banks now-a-days aiming to get their customers to subscribe for different products like term deposits, credit cards, insurance and many more. In order to convince the customers to subscribe for the banking products multiple phone calls are made and a large amount of data is gathered by banks. Analysing such data can assist in identifying patterns which helps banking institutions to understand their customers to improve their business.

This project is oriented to develop a predictive model that analyses the customer behaviour for subscribing to one such banking products "term deposits". Our group was provided with the Portuguese banking institution marketing campaign dataset that aims to access whether term deposit would be subscribed or not based on several predictors. The data consists of 20 predictors (10 categorical and 10 numerical) and one response variable (categorical; whether the client subscribed to term deposit or not). The predictive model is trained and tested using the machine learning technique of logistic regression that classifies the response. In order to achieve the objective, logistic regression models were built in three different softwares; SAS, R and Python.

The analysis shows that the model on original data without any data pre-processing step does better.

Data Wrangling and Descriptive Analysis:

Imputation

No missing values were found in the dataset. However, there were few categorical variables containing "unknown" as a category.

	"unknown")))	gth(which(x ==	function(x) len	<pre>> sapply(bank,</pre>
default	education	marital	job	age
8597	1731	80	0	0
day_of_week	month	contact	loan	housing
0	0	0	990	990
poutcome	previous	pdays	campaign	duration
0	0	0	0	0
nr.employed	euribor3m	cons.conf.idx	cons.price.idx	emp.var.rate
0	0	0	0	0
				у
				0

Figure 1: Number of "Unknown" values in all the variables

Imputations were performed in order to deal with "unknown" values in each of the variables. Further, some of the categories with rare occurrences were removed.

Variable	Methods applied
Job	"Unknown" imputed by the largest category "admin."
Marital	"Unknown" imputed by the largest category "married"
Education	"Unknown" imputed by the largest category "university.degree"
	18 cases of category "Illiterate" removed
Default	3 cases of category "yes" removed
Housing	"Unknown" imputed by the largest category "yes"
Loan	"Unknown" imputed by the largest category "no"
pdays	Replaced "999" with "-1" to avoid skewness in the data

Table 1: Data Imputation and Cleaning

The encoding was performed for categorical variables for simplicity in model fitting.

Scaling

The distributions for a few feature variables are shown in Figure 2.

Figure 2: Distributions of numeric predictors

It can be seen that most of the distributions are highly skewed and the range of the features varies a lot. Thus, the numeric attributes were standardized to be centred at 0 with standard deviation 1.

Correlation

Figure 3 shows the correlation between the numerical variables.

Figure 3: Correlation

It can be observed from the graph that the variables euribor3m, emp.var.rate and nr.employed are highly correlated.

Outcome Imbalanced

The predicted outcome (y) is highly imbalanced with 11.26% of "yes" responses and 88.74% of "no" responses.

Figure 4: Proportion of Responses: Yes or No

In order to overcome the imbalanced proportion of responses, different sampling techniques (undersampling and oversampling) were performed.

Undersampling: A proportion of random samples were extracted from majority class ("no" responses) which were equal to the number of "yes" responses.

Oversampling: Random duplicates were generated from minority class ("yes" responses) which were equal to the number of "no" responses.

Model Fitting, Interpretation and Results

The dataset was split into training and test data with 80:20 ratio. Four different models were fitted and the scores obtained are listed in the below table.

Model	Accuracy	AIC	AUC
Model 1: Original Model	91.0%	14163.5	0.9265
(No imputation/scaling/sampling techniques)			
Model 2: Model with Imputation and Scaling	91.1%	14439.4	0.9318
Model 3: Model with Imputation, Scaling and Undersampling	85.1%	5025.0	0.9325
Model 4: Model with Imputation, Scaling and Oversampling	85.3%	39940.2	0.9337

Table 2: Model performance comparison

The ROC curves and AUC scores for all the models are shown figure 5.

Figure 5: ROC Curve

Since the data is imbalanced and the aim is to successfully identify people who subscribed to term deposit, the performance measures ROC (Receiver Operating Character) curve and AUC (Area Under Curve) were used to select the final model. It can be observed that the difference in AUC scores is not significant and ROC curves seems to overlap for all the models. Therefore, the final model is the original model since the model is performing equally well without applying any imputation, scaling or sampling technique.

Interpretation of coefficient estimates:

For the positive coefficient estimates, the predictor has a positive impact on subscription of term deposit, which implies that these predictors increase the chance of subscribing to term deposit. However, if the coefficient estimate is negative, then the chances of subscribing to term deposit are reduced.

For instance, it is estimated that the odds of subscribing to a term deposit drop by a factor of $0.2(e^{-1.597})$ for 1 unit increase in employment variation rate keeping all other predictors fixed.

Similarly, the estimated odds of subscribing to a term deposit for customers with university degree is approximately $1.2(e^{0.1924})$ times than customers with 4-year basic education.

Figure 6: Marginal Effects for job, contact, month and age (left to right)

The average effect of changes in variables job, contact, month and age on the change in probability of y is shown in the marginal effects plots.

The *job effect plot* shows that the difference in the predicted probabilities for retired is approximately 0.055 times more than the admin (reference level), that is the retired persons are more likely to subscribe to term deposit as compared to admin.

The *contact effect plot* shows that the difference in the predicted probabilities for telephone is approximately 0.029 times less than the cellular (reference level), that is the customers who have telephone are less likely to subscribe to term deposit as compared to the customers who have cellular phones.

The *month effect plot* depicts that the customers contacted during the month of March were more likely to subscribe to the term deposit.

The age effect plot represents the average change in probability of subscribing to term deposits (y = "yes") when age increases by 1 year. The effect of age on response; subscribing to a term deposit throughout is positive.

Comparison between the software

All the four models were built in SAS, R and Python. The AUC score, AIC and estimates were found to be approximately equal in all the three software. Interestingly, SAS returns a complete summary of the model, while certain coding needs to be done in R and Python to achieve those summaries.

The formula for logistic regression is quite similar in every software. In R, the base line functions glm(), summary() and predict() were used to fit models, evaluate performances and make predictions. Its output underlines the AIC and the deviance distribution. Whereas in python, sklearn.linear_model was imported to access LogisticRegression function in which the output also comprises of pseudo R-adjusted value and log likelihood value unlike in R. Further, it can be observed that the estimates are more precise in SAS and Python, however, they are in exponential terms in R.

References:

- [1] https://core.ac.uk/download/pdf/55616194.pdf
- [2] https://scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1143&context=math_theses
- [3] https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
- [4] https://www.scribbr.com/statistics/akaike-information-

criterion/#:~:text=The%20Akaike%20information%20criterion%20(AIC,best%20fit%20for%20the%20d ata

[5]https://www3.nd.edu/~rwilliam/stats3/Margins02.pdf#:~:text=For%20categorical%20variables%20w ith%20more%20than%20two%20possible,Jews%20were%20to%20succeed%20than%20were%20C atholics%2C%20etc.

Final Model Outputs:

SAS Output:

	Model	Con	vergenc	e Stat	tu	s		
Conve	rgence cri	terio	(GCON	V=1E	-8	3) satisfied.		
	IVIC	odel	Fit Statis	tics				
Criterion	Intercep	t On	ly Inte	rcept	а	nd Covariates		
AIC	229	73.16	88			13519.609		
sc	229	81.57	70			13964.956		
-2 Log L	229	71.16	88			13413.609		
Tes	ting Glob	al Nu	II Hypot	hesis	: 1	BETA=0		
Test	Test Chi-Square DF Pr > ChiSq							
Likeliho	od Ratio	9	557.5586 52 <.0001					
Score	119		921.0866	52	2	<.0001		
Wald		52	261.0290	.0290 52 <.0001				
Type 3 Analysis of Effects								
				Wald	T			
Effect		DF Chi-Square Pr > ChiSq						

	Analysis of	Maxim	um Likeliho	od Estimate	s	
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-241.9	197.9	1.4936	0.2217
age		1	-0.00092	0.00274	0.1133	0.7364
job	admin.	1	-0.0331	0.2579	0.0165	0.8979
job	blue-collar	1	-0.1966	0.2615	0.5653	0.4521
job	entrepreneu	1	-0.1507	0.2871	0.2754	0.5998
job	housemaid	1	0.1011	0.2955	0.1171	0.7322
job	management	1	-0.0899	0.2675	0.1130	0.7368
job	retired	1	0.3317	0.2710	1.4974	0.2211
job	self-employ	1	-0.1865	0.2842	0.4306	0.5117
job	services	1	-0.1579	0.2678	0.3475	0.5555
job	student	1	0.1211	0.2781	0.1895	0.6633
job	technician	1	-0.0944	0.2620	0.1300	0.7185
job	unemployed	1	0.0576	0.2866	0.0404	0.8406
marital	divorced	1	-0.1307	0.4774	0.0749	0.7843
marital	married	1	-0.1394	0.4729	0.0869	0.7681

Odds Ratio Estimates						
Effect	Point Estimate	95% Wald te Confidence Lim				
age	0.999	0.994	1.004			
job admin. vs unknown	0.967	0.584	1.604			
job blue-collar vs unknown	0.822	0.492	1.371			
job entrepreneu vs unknown	0.860	0.490	1.510			
job housemaid vs unknown	1.106	0.620	1.975			
job management vs unknown	0.914	0.541	1.544			

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	93.7	Somers' D	0.873		
Percent Discordant	6.3	Gamma	0.873		
Percent Tied	0.0	Tau-a	0.172		
Pairs	107128158	С	0.937		

```
R output:
```

```
Operiance Residuals:

Min 10 Median 30 Max
-5.7076 -0.3046 -0.1878 -0.1351 3.3134

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (4 not defined because of singularities)

Coefficients: (5 not defined because of singularities)

Coefficients: (6 not defined because of singularities)

Coefficients: (8 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (4 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (4 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (4 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (4 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (2 not defined because of singularities)

Coefficients: (3 not defined because of singularities)

Coefficients: (4 not defined because of singularities)

Coe
```

Python Output:

Current function value: 0.214317 Iterations 8

Results: Logit

Model: Dependent Variable Date: No. Observations Df Model: Df Residuals: Converged: No. Iterations:	le: y 2022- : 32956 19 32936 1.006	2022-04-23 19:33 32950 19 32930		o R-squa ikelihoo il: -value:	14: od: -76 -1: 0.6	14163.5039 14331.5589 -7061.8 -11575.	
	Coef.	Std.Err.	Z	P> z	[0.025	0.975]	
age	0.0058	0.0021	2.8031	0.0051	0.0018	0.0099	
job	0.0105	0.0062	1.7043	0.0883	-0.0016	0.0226	
marital	0.1415	0.0402	3.5239	0.0004	0.0628	0.2203	
education	0.0516	0.0110	4.6767	0.0000	0.0300	0.0732	
default	-0.3627	0.0728	-4.9832	0.0000	-0.5053	-0.2200	
housing	-0.0001	0.0227	-0.0045	0.9964	-0.0446	0.0444	
loan	-0.0015	0.0310	-0.0491	0.9608	-0.0622	0.0592	
contact	-0.6465	0.0663	-9.7494	0.0000	-0.7765	-0.5165	
month	-0.1163	0.0093	-12.5016	0.0000	-0.1345	-0.0981	
day_of_week	0.0533	0.0162	3.2909	0.0010	0.0216	0.0851	
duration	0.0045	0.0001	56.3180	0.0000	0.0044	0.0047	
campaign	-0.0367	0.0128	-2.8670	0.0041	-0.0618	-0.0116	
pdays	-0.0010	0.0002	-5.7841	0.0000	-0.0013	-0.0007	
	-0.0440		-0.7180				
poutcome	0.4349		5.1706				
emp.var.rate	-0.9352		-13.2085				
cons.price.idx	0.6862	0.0342					
cons.conf.idx	0.0166		3.3497				
euribor3m	0.6812	0.0820		0.0000			
nr.employed	-0.0134	0.0007	-20.0376	0.0000	-0.0148	-0.0121	