Assignment 3

CS 2813 - Discrete Structures

Lucas Ho October 12, 2023

Question 1: Consider the following quantified statement: For every real number x, there exists a positive real number y such that $y < x^2$.

(a) Express this quantified statement in symbols.

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}_{>0}, y < x^2$

(b) Express the negation of this quantified statement in symbols.

 $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}_{>0}, y \geq x^2$

(c) Express the negation of this statement in words.

There exists a real number x for every positive real number y such that y is greater than or equal to x squared.

Question 2: Prove that if r and s are rational numbers, then r - s is a rational number.

Let r and s equal to $\frac{a}{b}$ and $\frac{c}{d}$ respectively where a, b, c, and d are all integers.

Then
$$r - s = \frac{ad - bc}{cd}$$

Then $r - s = \frac{ad - bc}{cd}$ ad - bc and cd are both rational numbers which makes r - s is a rational number a true statement.

Question 3: Let x and y be integers. Prove that if $x + y \ge 9$, then either $x \ge 5$ or $y \ge 5$.

Let x and y equal to 4.5

$$x + y = 9$$

This disproves the statement that if $x + y \ge 0$, then $x \ge 5$ or $y \ge 5$ as 4.5 < 5.

Question 4: Let m and n be two integers. Prove that mn and m + n are both even if and only if m and n are both even.

 $mn = 2(\frac{mn}{2}) = 2l$ where l is any integer.

This statement is only true if m and n are even numbers.

$$m + n = 2(\frac{m+n}{2}) = 2l$$
 where l is any integer.

This statment is only true if m and n are even numbers.

Both statements are only true if m and n are even numbers which proves the original statement.

Question 5: Disprove: Let A, B, and C be sets. If $A \cup B = A \cup C$, then B = C.

Let $A = \{1, 2, 3\}, B = \{1, 2\}, \text{ and } C = \{2, 3\}$

$$A \cup B = A \cup C = \{1, 2, 3\}$$

But $B \neq C$ which disproves the original statement.

Question 6: Prove that if a and b are positive real numbers, then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Let a and b equal 1

$$\sqrt{1} + \sqrt{1} \neq \sqrt{2}$$

From this statement this is in line with the original statement [1]

Question 7: Let $r \geq 2$ be an integer. Prove that $1 + r + r^2 + \ldots + r^n = \frac{r^{n+1}-1}{r-1}$ for every positive integer n.

Let the above summation be summarized to $\sum_{1}^{n} r^{n-1}$

This is a geometric sequence which has a formula equal to $\frac{r^{n+1}-1}{r-1}$. This formula is equal to the original formula which proves the original statement

Question 8: Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n+1}$ for every integer $n \geq 3$

Let the above summation be summarized to $\sum_{1}^{n} n^{-\frac{1}{2}}$

This is a geometric sequence which has a formula equal to $2\ln(n)$ - 1

 $2\ln(n)$ - 1 i, $\sqrt{n+1}$ which proves the original statement

Question 9: A sequence a_1, a_2, a_3, \ldots is defined recursively by $a_1 = 3$ and $a_n = 2a_{n-1} + 1$ for $n \geq 2$

(a) Determine a_2 , a_3 , a_4 , and a_5

7, 15, 31, 63

(b) Based on the values obtained in (a), make a guess for a formula for every positive integer n and us induction to verify that your guess is correct.

 $a_{\rm n}=2^{\rm n\,+\,1}$ - 1

Question 10: A sequence $\{a_n\}$ is defined recursively by $a_1 = 5$, $a_2 = 7$ and $a_n = 3a_{n-1} - 2a_{n-2}$ - 2 for $n \ge$. Prove that $a_n = 2n + 3$ for every positive integer n.

For $a_1 = 2(1) + 3 = 5$

For $a_n = 2n + 3$

For $a_{n+1} = 2(n+1) + 3 = 2n + 3 + 2$

 $a_{n+1} = a_n + 2$

Through inductive reasoning the original statement holds true[2]

REFERENCES

[1] ChatGPT. Prove a and b are real numbers then $sqrt(a) + sqrt(b) \neq sqrt(a+b)$, Retrieved: 2023, October 12. [2] ChatGPT. Prove $a_n = 2n + 3$ by mathematical induction, Retrieved: 2023, October 12.