Национальный исследовательский университет «МЭИ»

КУРСОВОЙ ПРОЕКТ

«Разработка модуля расчёта координат спутника Beidou»

Группа: ЭР-15-16

Студент: Серов К.М.

Преподаватель: Корогодин И.В.

Москва

ВВЕДЕНИЕ

Цель проекта - добавление в программное обеспечение приемника функции

расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

• требования назначения;

• отсутствие утечек памяти;

• малое время выполнения;

низкий расход памяти;

корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта

и контрольным мероприятиям:

• обработка данных от приемника, работа со сторонними сервисами для

подготовки входных и проверочных данных для разрабатываемого

модуля;

моделирование модуля в Matlab/Python;

реализация программного модуля на С/С++, включая юнит-тестирование

в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на

Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

Исходные данные: PRN спутника Beidou - C21

2

Этап 1. Использование сторонних средств

Описание этапа

На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах).

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года

Определим какому спутнику соответствует выданный PRN спутника.

Nº ≑	Спутник 🔺	PRN ÷	Дата (UTC) 💠	Ракета 💠	NSSDC ID +	SCN ÷	Орбита 💠	Статус +	Система +
29	Бэйдоу-3 М6	C21	12.02.2018 05:10	CZ-3B/YZ-1	2018-018B@	43208₺	<u>СОО</u> , ~21 500 км	действующий	Бэйдоу-3

Рисунок 1 — Состав орбитальной группировки космической навигационной системы Beidou на 10 марта 2020 года [1]

Номер спутника C21 соответствует спутнику Beidou – 3 M6, номер по спутниковому каталогу НОРАД (или SCN) равен 43208.

Проверим эту информацию, для этого воспользуемся данными о состоянии космических аппаратов Beidou на 02.03.21 из «Информационно-аналитического центра координатно-временного и навигационного обеспечения» [2].

PRN	НОРАД	Тип КА	Тип системы	Дата запуска	Факт. сущ. (дней)	Примечание
C21	43208	MEO-3	BDS-3	12.02.18	1114	Используется по ЦН

Рисунок 2 — Данные о состоянии космических аппаратов Beidou на 02.03.21 (источник «Информационно-аналитического центра координатно-временного и навигационного обеспечения»)

Информация с рисунков 1 и 2 совпадает.

1.1. Определение формы орбиты и положения спутника

Определим формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени по данным сервиса CelesTrak: общий вид + положение спутника на 18:00 МСК 16 февраля 2021, так, чтобы было видно подспутниковую точку и время.

18:00 по МСК соответствует 15:00 по UTC (UTC +3). Так как сервис CelesTrak работает в формате времени UTC, установим время 15:00 UTC 16 февраля 2021.

Рисунок 3 — Модель сервиса CelesTrak, видно подспутниковую точку и время

Рисунок 4 — Модель сервиса CelesTrak, общий вид орбиты спутника

1.2. Расчет графика угла места собственного спутника от времени

Рассчитаем график угла места собственного спутника от времени по данным Trimble GNSS Planning Online на интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Установили приблизительные координаты местоположения антенны и границы времени, также выбрали конкретный, интересующий нас, спутник C21.

Рисунок 5 — Экран настроек Trimble GNSS Planning Online

Рисунок 6 — Выбор собственного спутника

Рисунок 7 — График угла места спутника С21 от времени

По рисунку 6 видно, что спутник находился в зоне видимости в промежутке времени с 22:10 до 3:50.

1.3. Расчет диаграммы угла места и азимута спутника

Рассчитаем диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online на интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Зафиксируем моменты появления спутника в зоне видимости и его исчезновения, пронаблюдаем траекторию движения спутника.

Рисунок 8 — Момент появления спутника в зоне видимости (Время: 2021-02-16 22:10 UTC +03:00)

Рисунок 9 — Момент перед исчезновением спутника из зоны видимости (Время: $2021\text{-}02\text{-}17\ 03\text{:}40\ \text{UTC}\ +03\text{:}00)$

1.4. Формирование списка и описание параметров

Сформируем список и описание параметров, входящих в состав эфемерид в сигнале B1I Beidou. Сформируем список эфемерид [3]:

Таблица 1 — Описание параметров эфемерид

Параметры	Определение					
t_{oe}	Исходное время эфемерид					
\sqrt{A}	Квадратный корень из большой полуоси					
e	Эксцентриситет					
ω	Аргумент перигея					
$\triangle n$	Среднее отклонение движения от расчетного значения					
M_{0}	Средняя аномалия в исходное время					
Ω_0	Долгота восходящего узла орбитальной плоскости, вычисленная по					
	исходному времени					
Ω	Скорость прямого восхождения					
i_0	Угол наклона в исходное время					
IDOT	Скорость угла наклона					
C_{uc}	Амплитуда косинусного гармонического корректирующего члена к аргументу широты					
C_{us}	Амплитуда синусного гармонического корректирующего члена к аргументу широты					
C_{rc}	Амплитуда косинусного гармонического корректирующего члена к радиусу орбиты					
C_{rs}	Амплитуда синусного гармонического корректирующего члена к радиусу орбиты					
C_{ic}	Амплитуда косинусного гармонического корректирующего члена к углу наклона					
C_{is}	Амплитуда синусного гармонического корректирующего члена к углу наклона					

Таблица 2 — Значения параметров эфемерид спутника С21

Параметр	Обозначение	Значение	Размерность	
SatNum	PRN	21	=	
toe	t_{oe}	241200000.000	МС	
Crs	C_{rc}	-6.68437500000000000e+01	рад	
Dn	$\triangle n$	3.86908994426393704e-12	рад/мс	
M0	M_{0}	3.86908994426393704e-12	рад	
Cuc	C_{uc}	-3.16184014081954956e-06	рад	
e	e	6.40757265500724316e-04	-	
Cus	C_{us}	6.28596171736717224e-06	рад	
sqrtA	\sqrt{A}	5.28262227249145508e+03	M ^{1/2}	
Cic	C_{ic}	1.76951289176940918e-08	рад	
Omega0	Ω_0	-2.80692060956725220e-01	рад	
Cis	C_{is}	-6.79865479469299316e-08	рад	
i0	i_0	9.64946480705556331e-01	рад	
Crc	C_{rc}	2.33203125000000000e+02	рад	
omega	ω	-9.96705605657731697e-01	рад	
OmegaDot	Ω	-6.91350226083361201e-12	рад/мс	
iDot	IDOT	-1.40362989539061277e-13	рад/с	
Tgd	T_{GD}	1.4100000000000000e+05	MC	
toc	t_{oc}	2.4120000000000000e+08	МС	
af2	a_{f2}	0.00000000000000000e+00	mc/mc ²	
af1	a_{f1}	-1.83684178978182899e-11	мс/мс	
af0	a_{f0}	-8.41504871845245361e-01	МС	
URA	-	0	-	
IODE	-	257	-	
IODC	-	0	-	
codeL2	-	0	-	
L2P	-	0	-	
WN	-	789	-	

Этап 2. Моделирование

Описание этапа

Эфемериды - параметры некоторой модели движения спутника. В разных ГНСС эти модели разные, а значит отличается и формат эфемерид, и алгоритмы расчета положения спутника.

Одна из самых простых и удобных моделей - в системе GPS. Beidou наследует данную модель.

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущем этапе.

Построить трехмерные графики множества положений спутника Beidou с системным номером, соответствующим номеру студента по списку. Графики в двух вариантах: в СК ЕСЕГ WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Построить SkyView за указанный временной интервал и сравнить результат с Trimble GNSS Planning Online, полученный на прошлом этапе.

Приведём таблицу эфемеридов, используемых в данном этапе:

Таблица 3 — Значения параметров эфемерид спутника С21 для 3 этапа

Параметр	Обозначение	Значение	Размерность	
SatNum	PRN	21	-	
toe	t_{oe}	241200000.000	МС	
Crs	C_{rc}	-6.68437500000000000e+01	рад	
Dn	$\triangle n$	3.86908994426393704e-12	рад/мс	
M0	M_0	3.86908994426393704e-12	рад	
Cuc	C_{uc}	-3.16184014081954956e-06	рад	
e	e	6.40757265500724316e-04	-	
Cus	C_{us}	6.28596171736717224e-06	рад	
sqrtA	\sqrt{A}	5.28262227249145508e+03	$M^{1/2}$	
Cic	C_{ic}	1.76951289176940918e-08	рад	
Omega0	Ω_0	-2.80692060956725220e-01	рад	
Cis	C_{is}	-6.79865479469299316e-08	рад	
i0	i_0	9.64946480705556331e-01	рад	
Crc	C_{rc}	2.33203125000000000e+02	рад	
omega	ω	-9.96705605657731697e-01	рад	
OmegaDot	Ω	-6.91350226083361201e-12	рад/мс	
iDot	IDOT	-1.40362989539061277e-13	рад/с	

2.1. Алгоритм расчёта

В таблице 3 приведены параметры эфемерид вещания Beidou для вычисления их спутниковых координат в любую эпоху наблюдения. Эти параметры периодически обновляются и не должны использоваться вне установленного времени (около четырех часов), поскольку ошибка экстраполяции экспоненциально растет за пределами срока ее действия.

Для вычисления спутниковых координат, по навигационному сообщению, необходимо использовать следующий алгоритм.

• Вычислим время t_k из исходного времени эфемерид t_{oe} (t и t_{oe} выражаются в секундах в неделе GPS):

$$t_k = t - t_{oe}$$

Если $t_k > 302400$ секунд, вычитаем 604 800 секунд из t_k . Если $t_k < -302400$ секунд, то добавляем 604800 секунд.

• Вычислим среднюю аномалию для t_k ,

$$M_k = M_0 + \left(\frac{\sqrt{\mu}}{\sqrt{a^3}} + \Delta n\right) t_k$$

• Решим (итеративно) уравнение Кеплера для аномалии эксцентриситета $E_k\colon$

$$M_k = E_k - e\sin(E_k)$$

• Вычислим истинную аномалию U_k :

$$\upsilon_k = \arctan\left(\frac{\sqrt{1 - e^2}\sin(E_k)}{\cos(E_k - e)}\right)$$

• Вычислим аргумент широты u_k из аргумента перигея ω , истинной аномалии \mathcal{U}_k и поправок C_{uc} и C_{us} :

$$u_k = \omega + \upsilon_k + C_{uc} \cos(2(\omega + \upsilon_k)) + C_{us} \sin(2(\omega + \upsilon_k))$$

• Вычислим радиально расстояние r_k с учётом поправок C_{rc} и C_{rs} :

$$r_k = a(1 - e\cos(E_k)) + C_{rc}\cos(2(\omega + \upsilon_k)) + C_{is}\sin(2(\omega + \upsilon_k))$$

• Вычислим наклон i_k орбитальной плоскости по наклону i_o в исходное время t_{oe} и поправкам C_{ic} и C_{is} :

$$i_k = i_o + IDOT \cdot t_k + C_{ic} \cos(2(\omega + \upsilon_k)) + C_{is} \sin(2(\omega + \upsilon_k))$$

• Вычислим долготу восходящего узла λ_k (относительно Гринвича). В этом расчете используется долгота восходящего узла по исходному времени (Ω_0), поправка от видимого изменения звездного времени по Гринвичу между началом недели и опорным временем $t_k = t - t_{oe}$, а также изменение долготы восходящего узла по сравнению с исходным моментом t_{oe} :

$$\lambda_k = \Omega_o + (\dot{\Omega} - \omega_E)t_k - \omega_E t_{oe}$$

 $\omega_{\rm E} = 7.2921151467 \cdot 10^{-5}$ - скорость вращения Земли

• Расчетные положения спутников в орбитальной плоскости:

$$\begin{cases} x_k = r_k \cos(u_k) \\ y_k = r_k \sin(u_k) \end{cases}$$

• Pасчетные GEO / MEO / IGSO координаты спутника в BDCS:

$$\begin{cases} X_k = x_k \cos(\lambda_k) - y_k \cos(i_k)\sin(\lambda_k) \\ Y_k = x_k \sin(\lambda_k) + y_k \cos(i_k)\cos(\lambda_k) \\ Z_k = y_k \cos(i_k) \end{cases}$$

Построим трехмерный график множества положений спутника Beidou с системным номером 21:

Рисунок 10 – Траектория движения спутника

Построим SkyView за интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года:

Рисунок 11 — Модель SkyView (слева), SkyView с 1 этапа (справа)

Рисунок 12 — График угла места 2 этапа (сверху), 1 этапа (снизу)

При сравнении рисунков, полученных на 2 этапе, с рисунками, полученными на 1 этапе, видно, что они практически совпадают. Однако, имеется погрешность, связанная с тем, что мы используем параметры эфемерид в установленном промежутке времени (около четырех часов).

Код программы представлен в приложении 1.

```
clear all;
clc;
close all;
%% Эфемериды
SatNum = 21;
toe = 241200000.000* 10^{-3};
Crs = -6.684375000000000000e+01;
Dn = 3.86908994426393704e-12;
M0 = 7.11567786397328206e-01;
Cuc = -3.16184014081954956e-06;
e = 6.40757265500724316e-04;
Cus = 6.28596171736717224e-06;
sqrtA = 5.28262227249145508e+03;
Cic = 1.76951289176940918e-08;
Omega0 = -2.80692060956725220e-01;
Cis = -6.79865479469299316e-08;
i0 = 9.64946480705556331e-01;
Crc = 2.332031250000000000e+02;
omega = -9.96705605657731697e-01;
OmegaDot = -6.91350226083361201e-12;
iDot = -1.40362989539061277e-13;
Tgd =1.410000000000000000e+05;
toc = 2.4120000000000000000e+08;
af1 = -1.83684178978182899e-11;
af0 = -8.41504871845245361e-01;
URA = 0;
IODE = 257;
IODC = 1;
codeL2 = 0;
L2P = 0;
WN = 789;
%% Константы
mu = 3.986004418e14; % гравитационная постоянная
Omega E = 7.2921151467e-5; % скорость вращения
%% Расчет
tstart = (24*2 + 18 - 3)*60*60; % время старта 18:00 МСК 16 февраля
tstop = (24*3 + 6 - 3)*60*60; % время окончания 6:00 МСК 17 февраля
% Массив времени
t arr = tstart:1:tstop;
% Большая полуось
A = sqrtA^2;
% Среднее движение
n0 = sqrt(mu/A^3);
n = n0 + Dn;
for k = 1:length(t arr)
 % Время
 t(k) = t_arr(k) - toe;
 if t(k) > 302400
 t(k) = t(k) - 604800;
 end
 if t(k) < -302400
 t(k) = t(k) + 604800;
 end
 % Средняя аномалия
 M(k) = M0 + n*t(k);
```

```
% Решение уравнения Кеплера
 E(k) = M(k);
 E old(k) = M(k)+1;
 epsilon = 1e-6;
 while abs(E(k) - E old(k)) > epsilon
 E old(k) = E(k);
 E(k) = M(k) + e*sin(E(k));
 end
 % Истинная аномалия
nu(k) = atan2((sqrt(1 - e^2) * sin(E(k)))/(1 - e*cos(E(k))) , (cos(E(k))) - e)/(1 - e^2)/(1 - e^2)
e*cos(E(k)));
 % Коэффициенты коррекции
 Phi(k) = omega + nu(k);
 cor_cos(k) = cos(2*Phi(k));
 cor sin(k) = sin(2*Phi(k));
 % Аргумент широты
 delta u(k) = Phi(k) + Cuc*cor cos(k) + Cus*cor sin(k);
 % Ралиус
 delta_r(k) = A * (1 - e * cos(E(k))) + Crc*cor_cos(k) + Crs*cor_sin(k);
 % Наклон
 delta i(k) = i0 + iDot * t(k) + Cic*cor cos(k) + Cis*cor sin(k);
 % Положение на орбите
 x = delta r(k) * cos(delta u(k));
 y = delta r(k) * sin(delta u(k));
 % Долгота восходящего угла
 Omega(k) = OmegaO + (OmegaDot - OmegaE) * t(k) - OmegaE*toe;
 % Координаты
 coordx(k) = x * cos(Omega(k)) - y * cos(delta i(k)) * sin(Omega(k));
 coordy(k) = x * sin(Omega(k)) + y * cos(delta i(k)) * cos(Omega(k));
 coordz(k) = y * sin(delta_i(k));
coordx1(k) = coordx(k)*cos(Omega(k)) + coordy(k)*sin(Omega(k));
coordy1(k) = - coordx(k) * sin(Omega(k)) + coordy(k) * cos(Omega(k));
coordz1(k) = coordz(k);
end
%% Пересчет координат центра масс НКА в систему координат WGS-84
ppb = 1e-9;
mas = 1e-3/206264.8; % [рад]
MATRIX WGS 84 = [-3*ppb -353*mas -4*mas;
353*mas - 3*ppb 19*mas;
 4*mas -19*mas -3*ppb];
crd_WGS_84 = [coordx; coordy; coordz];
for i = 1:length(crd WGS 84(1,:))
 crd_WGS_84(:,i) = crd_WGS_84(:,i) + MATRIX_WGS_84 * crd WGS 84(:,i) + [0.07; -0; -
0.77];
end
crd WGS 84 = crd WGS 84.'; % Переход к вектору-строки
%% построение графиков
R Earth = 6371e3;
[XE, YE, ZE] = sphere(30);
surf(XE*R Earth,YE*R Earth,ZE*R Earth)
hold on
```

```
arid on
plot3(crd_WGS_84(:,1), crd_WGS_84(:,2), crd WGS 84(:,3))
plot3(coordx1, coordy1, coordz1)
title('Траектория движения спутника', 'FontName', 'Arial')
xlabel('X, M', 'FontName', 'Arial')
ylabel('Y, M', 'FontName', 'Arial')
zlabel('Z, M', 'FontName', 'Arial')
hold off
lgd = legend('Земля', 'СК ECEF WGS84', 'Инерциальная СК');
lgd.FontName = 'Arial';
%% Координаты корпуса Е и их перевод в систему WGS-84
Earth radius = 6378136;
Н = 300;% высота [м]
a = Earth radius;
B = deg2rad(55.45241346);% широта
N = a/sqrt((1-e^2*(sin(B))^2));
L = deg2rad(37.42114473); % долгота
llh = [N E H];
crd PRM = llh2xyz(llh)';
%% Постороение SkyPlot
for i = 1:length(crd_WGS_84(:,1))
 [X(i) Y(i) Z(i)] =
ecef2enu(crd WGS 84(i,1),crd WGS 84(i,2),crd WGS 84(i,3),B,L,H,wgs84Ellipsoid,'radian
s');
 if Z(i) > 0
 r(i) = sqrt(X(i)^2 + Y(i)^2 + Z(i)^2);
 teta(i) = acos(Z(i)/r(i));
 if X(i) > 0
 phi(i) = -atan(Y(i)/X(i))+pi/2;
 elseif (X(i)<0) \&\& (Y(i)>0)
 phi(i) = -atan(Y(i)/X(i)) + 3*pi/2;
 elseif (X(i)<0)&&(Y(i)<0)</pre>
 phi(i) = -atan(Y(i)/X(i))-pi/2;
 end
 else teta(i) = NaN;
 r(i) = NaN;
 phi(i) = NaN;
 end
end
% SkyPlot
figure
ax = polaraxes;
polarplot(ax,phi,teta*180/pi)
ax.ThetaDir = 'clockwise';
ax.ThetaZeroLocation = 'top';
title('SkyView')
% Угол места
th = hours(t arr/60/60 - 2*24); % Перевод временной оси в формат hh:mm:ss
figure
grid on
hold on
plot(th,(-teta)*180/pi+90,'DurationTickFormat','hh:mm:ss')
xlim([th(1) th(end)])
title('Угол места', 'FontName', 'Arial')
xlabel('Время в UTC', 'FontName', 'Arial')
ylabel('Угол места, град', 'FontName', 'Arial')
```

Список литературы и источников

- 1. Википедия. Бэйдоу https://ru.wikipedia.org/wiki/Бэйдоу#Список_спутников
- 2. «Информационно-аналитический центр координатно-временного и навигационного обеспечения» https://www.glonass-iac.ru/BEIDOU/
- BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B1I (Version 3.0) - China Satellite Navigation Office February 2019