

№8 | загадочный чайник

МЫШКИ и пробирки БУМАЖНЫЙ ВЕРТОЛЁТ

Продолжается ПОДПИСКА на журнал «КВАНТИК» на оставшиеся месяцы 2-го полугодия 2022 года

онлайн-подписка на сайте Почты России: podpiska.pochta.ru/ΠM068

по этой ссылке вы можете оформить подписку и для своих друзей, знакомых, родственников

другие варианты подписки:

kvantik.com/podpiska

подробно обо всех способах подписки, в том числе о подписке в некоторых странах СНГ и других странах, читайте на нашем сайте

НАШИ ИЗДАНИЯ

Редакция «Квантика» выпустила три набора плакатов с занимательными задачами из журнала:

Каждый набор содержит 10 плакатов формата А2 с задачами и ответы. Плакаты хорошо подходят для оформления школьных кабинетов математики и физики. Их можно использовать на кружках, в детских лагерях и дома

Как купить: в магазине «МАТЕМАТИЧЕСКАЯ КНИГА» (адрес: г. Москва, Большой Власьевский пер., д. 11), в интернет-магазине biblio.mccme.ru и других (см. список на сайте kvantik.com/buy)

www.kvantik.com

Журнал «Квантик» № 8, август 2022 г. Издаётся с января 2012 года

Выходит 1 раз в месяц Свидетельство о регистрации СМИ:

ПИ № ФС77-44928 от 04 мая 2011 г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).

Главный редактор С.А.Дориченко Редакция: В. Г. Асташкина, Т. А. Корчемкина, Е. А. Котко, Г. А. Мерзон, Н. М. Нетрусова, А. Ю. Перепечко, М.В. Прасолов, Н.А. Солодовников

Художественный редактор

и главный художник Yustas

Вёрстка: Р. К. Шагеева, И. Х. Гумерова Обложка: художник Мария Усеинова

kvantik@mccme.ru t.me/kvantik12

Учредитель и издатель:

Частное образовательное учреждение дополнительного профессионального образования «Московский Центр непрерывного математического образования»

Адрес редакции и издателя: 119002, г. Москва, Большой Власьевский пер., д. 11. Тел.: (499) 795-11-05, e-mail: kvantik@mccme.ru сайт: www.kvantik.com

Подписка на журнал в отделениях почтовой связи

 Почта России: Каталог Почты России (индексы ПМ068 и ПМ989)

• Почта Крыма: Каталог периодических изданий Республики Крым и г. Севастополя (индекс 22923)

• Белпочта: Каталог «Печатные СМИ. Российская Федерация Украина. Казахстан» (индексы 14109 и 141092)

Онлайн-подписка на сайтах

• Почта России: podpiska.pochta.ru/press/ПМ068

• агентство АРЗИ: akc.ru/itm/kvantik • Белпочта: kvan.tk/belpost

B vk.com/kvantik12 Nantik12.livejournal.com

По вопросам оптовых и розничных продаж обращаться по телефону (495) 745-80-31 и e-mail: biblio@mccme.ru

Формат 84х108/16 Тираж: 4000 экз.

Подписано в печать: 07.07.2022

Отпечатано в ООО «Принт-Хаус» г. Нижний Новгород,

ул. Интернациональная, д. 100, корп. 8. Тел.: (831) 218-40-40

Заказ № Цена свободная ISSN 2227-7986

СОДЕРЖАНИЕ

МАТЕМАТИЧЕСКИЙ КРУЖОК	
Четырёхмерный кубик: развёртка. Е	B. Cupoma 2
Мышки и пробирки. К. Кноп	12
ЗАДАЧИ В КАРТИНКАХ	
Карта осадков. <i>М. Прасолов</i>	5
ЧЕТЫРЕ ЗАДАЧИ	
Выдавить воду. М. Прасолов	6
ДЕТЕКТИВНЫЕ ИСТОРИИ	
Загадочный чайник. С. Дориченко	8
игры и головоломки	
Этюд Рети	11
Пара антислайдов. В. Красноухов	27
■ ЧТО ПОЧИТАТЬ?	
Метаморфозы букв и слов	16
МАТЕМАТИЧЕСКИЕ СЮРПРИЗЫ	
Совершенные магические квадрать	1. Φ. Нилов 18
УЛЫБНИСЬ	
Слова идолов. По рассказу С. Александера	20
■ МАТЕМАТИКА В ЛИТЕРАТУРЕ	
Так сколько же лет спустя? Г. Мерзон	23
СВОИМИ РУКАМИ	
Бумажный вертолёт. С. Полозков	24
НАМ ПИШУТ	
Загадки кнопочной NOKIA	26
ОТВЕТЫ	
Ответы, указания, решения	28
ОЛИМПИАДЫ	
Наш конкурс	32
KOMUKC	
День или ночь? A. Boponaes	IV с. обложки

ЧЕТЫРЁХМЕРНЫ<mark>Й К</mark>УБИК: РАЗВЁРТКА

В статье из «Квантика» \mathbb{N} 7 за 2022 год мы научились рисовать четырёхмерный кубик. Может, теперь его сделать? Из подручных материалов.

Совсем сделать, конечно, не получится. Ведь у нас всё-таки нет здесь четырёхмерного пространства, в котором такой кубик можно было бы хранить. Но зато можно сделать выкройку — развёртку — и подождать, когда кто-нибудь четырёхмерный её сложит в куб.

Действительно, когда мы делаем трёхмерный бумажный кубик, мы сначала рисуем на бумаге пло-

скую развёртку из шести квадратов — например, латинский крест (рис. 1). И эта развёртка, заметьте, двумерная! Её могли бы сделать и плоские человечки, живущие на листе бумаги. Потом мы её сворачиваем в куб, а вот это плоские человечки уже не могут: мы используем наше третье измерение.

Трёхмерный куб мы собирали из двумерных граней. А из чего же собирать четырёхмерный? Из трёхмерных кубиков, конечно! В прошлый раз мы выяснили, что их понадобится 8 штук — столько, сколько 3-граней у 4-куба. И склеивать их нужно будет уже не рёбрами, как кубик, а гранями — ведь у двух соседних 3-граней есть общая двумерная (квадратная) грань. Всё, что можно, склеим у себя в трёхмерном пространстве, а остальное они уж там в своём четырёхмерном сложат.

Выкройки, как и для двумерного кубика, могут быть разные. Проще всего сделать «обобщение» латинского креста: ведь мы знаем, что в четырёхмер-

ном кубе все двумерные грани должны соединять какие-то две 3-грани, «свободных» двумерных граней не должно оставаться; так же, как в трёхмерном кубе не болтаются ни к чему не приклеенные рёбра. Итак, берём 8 кубиков и склеиваем их — и вуаля! Развёртка готова (рис. 2).

Рис. 2

Теперь нужно разобраться, как наша выкройка будет потом, в четырёхмерье, складываться. Тут придётся потренировать наше почти уже 4-мерное воображение!

Задача 1. Найдите на развёртке (рис. 2) те двумерные грани, которые при сборке 4-куба склеиваются с раскрашенными гранями.

Задача 2. Считая, например, что синий куб на рисунке 3 — это «центральный» кубик развёртки (тот, который нам из нашего трёхмерного пространства совсем не виден за остальными), найдите на рисунке 3 все остальные кубики развёртки. Например, какому элементу развёртки соответствуют кубы, покрашенные на рисунке 4?

Рис. 3

Заметьте, что мы не можем разглядеть один из кубиков нашей развёртки ни с какой стороны — он полностью закрыт соседями. Так же и плоские человечки, когда смотрят на латинский крест, не видят центрального квадрата. Но можно сделать такую развёртку, чтобы им были видны все квадраты. Так же и мы — если захотим, можем переклеить одну из будущих 3-граней так, чтобы в новой развёртке нам были видны все кубики.

Задача 3. Предложите такую развёртку 4-куба, у которой видны все 3-грани. Сможете ли вы придумать (нарисовать или сделать) такую развёртку 4-куба, в которой каждый кубик-3-грань соединён не более чем с двумя другими?

Из каждой развёртки обычного 3-куба можно получить много развёрток 4-куба: достаточно к каждому её квадрату приклеить кубик, получив похожий на латинский крест «плоский слой» (высотой в один кубик), потом к этому плоскому слою приклеить ещё два кубика: один с одной стороны (к любому кубику слоя!), второй — с другой (тоже к любому кубику).

Так, например, получается развёртка на рисунке 2. Но бывают и такие развёртки 4-куба, которые из развёрток 3-куба не получишь.

Задача 4. Придумайте такую развёртку единичного 4-куба, которая помещается в коробку $4 \times 4 \times 2$.

Задача 5. Раз уж вы так здорово освоились с четырёхмерьем, то наверняка сможете нарисовать все 11 разных развёрток обычного, трёхмерного куба. Развёртки, отличающиеся поворотом или отражением, разными не считаются.

Теперь, когда вы умеете рисовать и даже почти изготавливать четырёхмерные кубики, вы, конечно, понимаете, что можно рисовать и пятимерные, и шестимерные... А вдруг на самом деле мы живём в каком-нибудь таком «пространстве большей размерности», пяти- или там десятимерном? Так плоские человечки или одномерные червяки могли бы жить у нас в трёхмерии, сами того не замечая и ничего не видя снаружи от своей плоскости... Мы живём, а пятимерные существа иногда подходят и смотрят «оттуда» на наш трёхмерный мир? Что ж, такое не исключено...

А что, если в одном четырёхмерном пространстве находятся сразу два трёхмерных мира (говорят: подпространства)? Могут они там поместиться? А может быть, жителям этих миров можно как-нибудь переходить из одного в другой? Или хотя бы что-нибудь передавать?.. Подумайте: каким может быть такой «портал», соединяющий миры?

 $(\Pi o \partial c \kappa a 3 \kappa a)$. Прежде чем придумывать про 4-мерье, можно «упростить задачу на одно измерение» и посмотреть, как это устроено в нашем трёхмерном пространстве. Какие пространства и как в него могут «помещаться»?)

И ещё. Двумерным человечкам не обязательно жить на плоскости. Они могут жить и на какой-нибудь изогнутой поверхности, например на сфере — на оболочке большого шара... Нам, смотрящим на них снаружи, это было бы хорошо видно. А как они могли бы догадаться об этом сами? Может, и наше трёхмерное пространство — какое-нибудь кривое? Как мы могли бы это проверить?

На рисунке ниже можно увидеть, где идёт дождь (и насколько сильный). А можно ли понять, в какую сторону дует ветер в Москве?

Ответ в следующем номере Автор Максим Прасолов

ЗАГАДОЧНЫЙ ЧАЙНИК

- ... A всему виной вот этот предмет. Холмс поставил на стол изящный заварочный чайник.
- Но ведь чай пили все, а яд подействовал только на сэра Артура и частично на сэра Майкла. Не разумнее ли предположить, что отраву подсыпали в их чашки?
 - Это трудно сделать незаметно.
 - Но если яд находился в чайнике...
- Который, кстати, остывает, прервал Ватсона Холмс и налил себе чаю. И вам, мой друг? Или предпочитаете молоко?

Ватсон с недоверием смотрел на предмет их обсуждения в руках Холмса.

- Пожалуй, молоко.
- Как угодно! и Холмс поднёс чайник к чашке Ватсона.
- Простите, Холмс, я же сказал, что предпо... Ватсон остановился на полуслове: из чайника в его чашку лилось горячее молоко.
- Как? В чайнике молоко? Но вы же только что налили себе из него чаю!
- И, пожалуй, стоит ещё чуть добавить, ответил Холмс, наполняя свою чашку доверху из того же чайника.
- ${\bf A}$ вам ещё чуть молока? Холмс снова наклонил чайник, но теперь из него полилось молоко.
- Но как, Холмс? Из одного и того же чайника льётся то чай, то молоко? Ведь вы же просто наклоняете его.
- Наблюдательность, Ватсон, вот то качество, которое вам всё ещё следует совершенствовать. Впрочем, возьмите чайник. Что вы про него скажете?
- С виду ничего необычного: крышка, ручка, носик, дырочка напротив, чтобы жидкость лучше текла... Откроем крышку. Хм, не открывается. А, её нужно открутить, видимо, страховка, чтобы не вываливалась при наклоне. Холмс! Но внутри только чай!
 - Откуда же взялось молоко?
- Наверное, двойное дно! Но чтобы это проверить, мне придётся разбить чайник.

- Это почти то же, что затоптать следы, можно упустить важные детали. Многие преступления, мой дорогой друг, не были раскрыты сразу только потому, что внешний осмотр не был тщательным.
 - Но я же рассмотрел чайник со всех сторон!
 - А снизу?
- Снизу? А тут ничего нет... хотя... странно внизу ручки тоже имеется маленькая, явно бесполезная дырочка. Из неё ничего не течёт, может, это чтобы ручка меньше нагревалась? Сдаюсь я осмотрел всё, разве только в носик не заглянул.
 - Ватсон, вы делаете успехи!
- О, а в носике перегородка. Кажется, понимаю: она делит внутренность чайника пополам. Но как заставить жидкость литься то из одной части, то из другой?
- Я повторю фокус ещё пару раз, но смотрите во все глаза. Холмс взял чайник в руки.
 - Заметили что-нибудь?
- Кажется, вы немного передвигаете пальцы. Похоже, то закрываете, то открываете дырочки.
- Именно, Ватсон, именно. Когда я зажимаю пальцем верхнюю дырочку, течёт молоко, а когда нижнюю – чай.
 - Невероятно! А почему?
- Физика, мой друг. Как вы заметили, крышка в чайнике закручивается, как в термосе— чтобы закрыть чайник герметично. Каждая ёмкость имеет два выхода наружу— тонкий носик и дырочку.
- Боже, это же ясно как день! Если дырочка закрыта пальцем, жидкость не потечёт! Как только она пытается вытечь, воздух внутри разрежается, и воздух снаружи заталкивает её обратно.
- Именно! А кто обратит внимание на то, зажата или нет верхняя дырочка? А уж нижнюю дырочку на ручке можно зажать или открыть совсем незаметно.
 - Так, значит, преступник...
- Налил чай в обе ёмкости. В нижнюю—с помощью шприца, и добавил туда яд. Всем гостям он разливал чай, зажав нижнюю дырочку, а сэру Артуру— зажав

верхнюю. Вот, собственно, схема. – И Холмс набросал на салфетке рисунок дьявольского изобретения.

- А кто же тогда преступник?
- Конечно, тот, кто разливал чай: сэр Майкл.
- Брат сэра Артура?
- Для страховки он и сам принял небольшое количество яда, чтобы отвести от себя подозрение. Просто налил себе чаю, открыв обе дырочки. И отпил совсем немного. Полиция тут же решила, что кто-то хочет извести всю их семейку.
 - Рискованный человек!
- Конечно: ведь небольшое количество яда попадало из нижней ёмкости во все чашки. Но в таких дозах яд безвреден.
- Вы ясновидец, Холмс! Но... может, аккуратно разрезать чайник на половинки и удостовериться?
- В этом нет нужды. Если обработать внутренности камер специальными веществами, это можно увидеть и с помощью X-лучей.
 - Каких лучей?
- Это новейшее изобретение немецкого физика Вильгельма Конрада Рентгена. Я думаю, оно ещё послужит криминалистике, а в будущем о нём будут писать даже в детских журналах.

Разумеется, Шерлок Холмс оказался прав. А устройство загадочного чайника теперь можно детально рассмотреть даже на видео — например, по ссылке kvan.tk/strange-teapot в интернете.

олимпиады КОНКУРС

Приглашаем всех попробовать свои силы в нашем

заочном математическом конкурсе.

Третий этап состоит из четырёх туров (с IX по XII) и идёт с мая по август.

Высылайте решения задач XII тура, с которыми справитесь, не позднее 5 сентября в систему проверки konkurs.kvantik.com (инструкция: kvan.tk/matkonkurs), либо электронной почтой по адресу matkonkurs@kvantik.com, либо обычной почтой по адресу 119002, Москва, Б. Власьевский пер., д. 11, журнал «Квантик».

В письме кроме имени и фамилии укажите город, школу и класс, в котором вы учитесь, а также обратный почтовый адрес.

В конкурсе также могут участвовать команды: в этом случае присылается одна работа со списком участников. Итоги среди команд подводятся отдельно.

Задачи конкурса печатаются в каждом номере, а также публикуются на сайте www.kvantik.com. Участвовать можно, начиная с любого тура. Победителей ждут дипломы журнала «Квантик» и призы. Желаем успеха!

56. Можно ли раскрасить каждое ребро куба в один из четырёх цветов так, чтобы все рёбра каждой грани были разного цвета?

57. Непоседливый кладовщик всю неделю переставлял товары по-разному: по алфавиту названий от А до Я и от Я до А, по возрастанию и по убыванию массы, по возрастанию и по убыванию суммы измерений, по возрастанию даты поступления, и каждый раз расположение товаров отличалось от предыдущих. Какое наименьшее количество товаров у него могло быть?

олимпиады

Авторы: Сергей Полозков (56), Никита Солодовников (57), Татьяна Корчемкина (58), Александр Перепечко (59), проект Euclidea (60)

58. У Яны день рождения в январе, а у Ани – в апреле. В 2018 году дни рождения девочек пришлись на вторники. В каком году у обеих девочек день рождения будет во вторник в следующий раз?

59. На фуршете встретились 10 минераловедов. Каждый принёс с собой коллекцию минералов, причём все камни на фуршете оказались разных размеров. За время фуршета каждые два гостя один раз побеседовали друг с другом наедине, обменявшись при этом самыми маленькими камнями, которые у них были на руках в тот момент. Могло ли оказаться, что всего в обменах участвовало:

- а) менее 10 камней;
- б) хотя бы 60 камней?

60. Два одинаковых правильных пятиугольника симметричны относительно пунктирной диагонали (см. рисунок). Найдите длину A'F, если стороны пятиугольников все равны 1.

ДЕНЬ ИЛИ НОЧЬ?

