Particle Physics

matter is made up of 17 fundamental particles these particles are categorized based on their properties

Light Quiz

- Diffraction
 - interference
- polarization
 - what it is
 - how it occurs (4 ways)
 - * reflection
 - * scattering
 - * double diffraction
 - * filtering (polarizing filters)
 - diagram what is happening
 - how can this show the quantum nature of light
 - * light is both a wave and a particle
 - * comes in distinct packets of energy
 - Single slit: calculate: explain
 - thin film: why does it result in diffraction?
 - * calculate λ or thickness
 - General properties of light
 - * Wien's law \rightarrow find peak λ or temp of peak λ
 - Discussion Questions from lab
 - photoelectric effect
 - * work function
 - · determining E_k

10 multiple choice 2 explain questions 3 full answer questions

the light lab showed quantum nature of light as different colours of light require different voltages

Thin Film

when light contacts a thin clear film, some of the light will be refracted and some will be refracted. Some of that refracted light will hit the second boundary and will reflect back out.

```
air \rightarrow n = 1

bubble \rightarrow n > 1
```

when light reflects off a slow medium from a fast medium, it will invert. \therefore the light that is bouncing off the top layer will be $\frac{\lambda}{2}$ out of phase from the light passing through the bottom medium.

Thus in order to cause constructive interference, the light passing through must pass total a $\frac{\lambda}{2}$, so the width of the medium must be $\frac{\lambda}{4}$. Some with destructive.

In order for the light to totally delete itself, the light must maintain it's $\frac{\lambda}{2}$ wavelength phase shift, so the width of the medium must be λ

this all changes if the medium on the inside of the bubble is slower than the medium the bubble is made of, as in this means there would be a double reflection.

Example Find the min thickness of a bubble (n = 1.4) that can produce a maximum brightness for 540 nm light in air.

for bubble min thickness for constructive is found at $\frac{\lambda}{4}$

find λ in the bubble

$$\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1}$$

$$\lambda_2 = \frac{\lambda_1 n_1}{n_2}$$

$$= 3.857.71 nm$$

find thickness

$$t = \frac{\lambda_2}{4}$$

whats the angle to the 3rd maxima for a single slit diffraction pattern where the screen is $2.7~\mathrm{m}$ from a $0.14~\mathrm{mm}$ slit that has $350~\mathrm{nm}$ light waves passing through it.

$$L = 2.7$$

$$W = 0.15 \times 10^{-}3m$$

$$\lambda = 350 \times 10^{-}9m$$

$$m = 3$$

$$wsin\theta = (m + 0.5)\lambda$$

$$theta = \sin^{-1}(\frac{(m + 0.5)\lambda}{w})$$

$$0.47^{o} = \theta$$