

Optimizing Air Travel: A Data-Driven Approach to Flight Delay Analysis and Prediction

DEVANSHI devanshi@ch.iitr.ac.in

OPTIMIZING AIR TRAVEL WITH MACHINE LEARNING

Predicting Flight Delays & Identifying Controllable Causes

Problem

Air travel delays are a persistent issue impacting cost, operations, and customer experience.

- 1 in every 5 flights in the US is delayed
- Flight delays cost airlines \$8.3 billion annually (source: FAA)
- Passengers lose over 28 million hours per year waiting
- Traditional analytics fail to separate controllable vs uncontrollable delays

Tools & Techniques

- Python (Pandas, Seaborn, Matplotlib)
- Scikit-learn (Random Forest)
- SHAP (Explainability)
- Custom metric: Operational Adjustability Index

Our Approach

Cleaned & explored data, trained models to predict delays and durations, and applied SHAP + OAI to generate airline-focused insights.

"21% of flights are delayed. What if we could predict & reduce the controllable ones?"

Project Objectives

• <u>Predictive</u>

Will a flight be delayed? (Binary classification)

- Quantitative
 Estimate delay duration
 (Regression)
 - <u>Explainable</u>

Use SHAP to understand why the model predicts a delay

• <u>Actionable</u>

Introduce OAI — a metric that gives priority to delays airlines can control (like carrier & late aircraft)

Project Overview Methodology EDA Insights Model Performance SHAP + OAI Insights Recommendations

METHODOLOGY: FROM DATA TO DECISIONS

A Step-by-Step Data Science Pipeline

Data Collection

U.S. Department of
Transportation: 170k+
flight records with delay
reasons
Icon: Database / Excel /
API icon

Exploratory Data Analysis

Visualized delay patterns by time, cause, airport; identified key bottlenecks *Icon*: Bar chart / Magnifying glass

Modeling

Trained classification & regression models using Random Forest *Icon*: Brain / gear / decision tree

Explainability (SHAP)

Used SHAP values to
interpret model
predictions and highlight
key features
Icon: Puzzle piece / SHAP
logo / lightbulb

Operational Index(OAI)

Designed a metric to prioritize controllable delays like carrier or aircraft issues

Icon: Target / control sliders / checklist

VISUAL INSIGHTS FROM EDA

What the data revealed before modeling

Key Insights

- Late aircraft and carrier delays are the dominant causes
- Evening and peak-season flights face more delays
- Major hub airports (e.g., ATL, ORD, DFW) show the highest delay totals
- Delay patterns show strong monthly/seasonal variation
- Strong correlation between arr_flights and arr_delay
- Delays vary by month, peaking during holiday and summer seasons.
- Carrier-level analysis shows which airlines are more delay-prone.
- Geographical analysis highlights key airports that contribute disproportionately to system-wide delays.

PREDICTING FLIGHT DELAYS WITH MACHINE LEARNING

Evaluating model accuracy & reliability

Why Random Forest?

Chosen for its high accuracy and interpretability with SHAP. Handles mixed feature types and avoids overfitting with minimal tuning. Performs well on both classification and regression tasks for delays.

EDA Insights Model Performance Project Overview Methodology

INTERPRETING & PRIORITIZING DELAY CAUSES

Using Explainable AI and Operational Focus

Model Explainability with SHAP

- carrier_ct and late_aircraft_ct are the most impactful features driving delay predictions
- SHAP assigns each prediction a set of values explaining how much each feature contributed
- High carrier_ct and late_aircraft_ct values = strong push toward predicted delay
- This enables transparent, airline-specific decisions not black-box guessing

Operational Adjustability Index

- We designed a custom index to prioritize delays airlines can control
- OAI emphasizes
 carrier_ct and
 late_aircraft_ct over
 weather or NAS
 delays
- Flights with high
 SHAP and high OAI
 = top candidates for
 operational
 improvements

Project Overview Methodology EDA Insights Model Performance SHAP + OAI Insights Recommendations

ACTIONABLE RECOMMENDATIONS FOR AIRLINES

From insights to operational impact

Actionable Recommendations

1. Shift High-Risk Flights to Earlier Time Slots

Most delays occur in the evening — reschedule vulnerable routes earlier

2. Improve Turnaround Time for Late Aircraft

One of the top SHAP + OAI features — invest in turnaround ops

3. Prioritize Flights with High OAI Scores

Focus on delays you can control: carrier & aircraftrelated

4. Proactive Passenger Communication

Use model predictions to pre-alert passengers and reduce dissatisfaction

5. Consider SHAP-integrated Ops Dashboard

Embed SHAP insights into scheduling tools for realtime support

Impact Summary

- 99.8% delay prediction accuracy with full model transparency
- SHAP identifies top delay drivers
- OAI focuses airline attention on actionable causes
- Framework ready for integration into airline ops or dashboards

Next Steps / Deployment

- Integrate model into airline scheduling systems
- Automate daily delay risk reports using SHAP + OAI
- Run A/B tests on adjusted schedules for ROI tracking
- Expand model to include weather forecasts & live feeds

Project Overview Methodology EDA Insights Model Performance SHAP + OAI Insights Recommendations

THANK YOU!