图像特征

数字图像处理第9讲

内容

- 图像特征概述
- 形状特征
- 灰度/颜色特征
- 纹理特征

图像特征提取

- 目的: 对图像进行紧凑和有效地描述
 - 从图像到一个数值或向量的变换
 - 加入主观认识、抓住目标本质
 - 效率提高, 处理速度更快

图像特征类型

• 颜色: 直方图

•形状:边缘、轮廓

• 频域: 傅里叶变换

•特征点:角点、SIFT

内容

- 图像特征概述
- 形状特征
- 灰度/颜色特征
- 纹理特征

形状描述 - 链码

- 用方向线段来近似边界并用数字串表示
- 较大网格对图像重采样
 - 避免链码太长
 - 避免噪声和
- 沿边界对方向依次编码
 - 基于4连通或8连通
 - 用方向序数表示

链码的不变性

• 起始点选择的问题 - 编号序列的整数值为最小值

- 旋转不变性 一次差分
 - 相邻两个的角度差表示(逆时针转动次数)

链码举例

(a) 带噪声图像(b) 均值滤波后的图像(c) 阈值化分割(d) 外部边界(e) 边界重采样(f) 直线连接

边界的4方向Freeman链码: 00003033333333222222121111101101

链码的应用

8BD 8

最小周长多边形近似

- 数字边界可以用多边形以任意精度来近似
- 更大的减少顶点数, 简化表示形式
- 最小周长多边形近似
 - 可以想象成内外墙约束下的橡皮筋形状

多边形近似

- 基于聚合的方法
 - 沿边界拟合一条直线, 拟合误差超阈值, 就截断
- 基于分裂的方法
 - 边界的点到边界两端连线的距离超过阈值
 - 最大值对应分裂点

边界标记

- 将2维边界投影到1维的简单函数来表示
- 距离-角度函数
 - 边界上的点到质心的距离r, 作为夹角θ的函数r(θ)

凸壳和凸缺

- 凸壳
 - 包含原始图像的最小凸边集
- 凸缺
 - 凸壳和原始图像的差值
- 当边界包含明显的凸度时有价值
 - 可用来做边界分解
 - 也可用作特征

骨架

- 表示一个区域的结构形状
- 通过细化算法获取区域的骨架
- 中轴变换方法
 - 设R是一个区域,B为R的边界,对于R中的点p, 找p在B上"最近"的邻居。如果p在B上有多于一个同样距离的邻居,则称它属于R的中轴(骨架)

简单边界描绘子

- 边界的周长
 - 沿轮廓线计算像素的个数, 给出一个近似估计
- 边界的直径
 - 边界上两点之间的最远距离定义了直径
 - 直径的两个端点称为长轴
 - 长轴的方向是描述子之一
- 边界的曲率
 - 斜率的变化率
 - 相邻边界线段斜率差
 - 作为交点处的曲率描述子

形状数

- 定义
 - 值最小的循环差分链码
 - 例如: 4链码: 10103322
 - 循环差分链码: 33133030

(33133 | 030)

• 形状数: 03033133

- 形状数的阶数 n
 - 形状数序列的长度
 - 周长

形状数

- 对任意形状计算形状数
 - 给定阶数,给出所有矩形
 - 周长 n=12, 2x4, 3x3, 1x5
 - 找到和基本矩形偏心率最接近的网格
 - 以此网格来网格化边界
 - 50%以上包在边界内的正方形保留
 - 从某起点计算得到链码
 - 计算差分码,最小化得到形状数

Difference: 3 0 3 0 3 0 3 0 3 0 3 1 3 3 0 3 0 3 0

Shape no.: 0 3 0 3 0 3 0 3 0 3 0 3 0 3 3 1 3 3 0 0 3 3 0 0 3 3

简单区域描述子

- 区域的周长
- 区域的面积
 - 白色(灯光)区域中占总面积

Region no.	% of white pixels compared to the total white pixels		
1	20.4%		
2	64.0%		
3	4.9%		
4	10.7%		

Ratio of lights per region to total lights		
0.204		
0.640		
0.049		
0.107		

美洲的卫星图像来估计电能消耗,人口分布等,通过亮度区域的面积比例

内容

- 图像特征概述
- 形状特征
- 灰度/颜色特征
- 纹理特征

灰度/颜色特征

• 直方图

颜色特征用于目标检测

内容

- 图像特征概述
- 形状特征
- 灰度/颜色特征
- 纹理特征

什么是纹理

About 45,000,000 results (0.31 seconds) Advanced search

http://animals.nationalgeographic.com/

什么是纹理

纹理

- 什么是纹理?
 - 没有正式的定义
 - 具有规律性的同时具有随机性
 - 可对区域的平滑度、粗糙度、规律性等进行度量
 - 描述一个区域的重要手段是量化区域的纹理
- 量化区域纹理的主要方法
 - 统计方法: 平滑、粗糙、粒状
 - 结构化方法: 图像元的排列的规律
 - 频谱方法: 纹理的周期性

纹理

描述纹理的统计方法

- 灰度级共生矩阵
 - 相比直方图统计矩, 其能描述像素间的相对关系
 - K×K阶矩阵A, 8 bit图像是256×256
 - P为位置算子,如"左右两个像素的成对关系"
 - 元素Aij是图像中像素满足P的次数

描述纹理的统计方法

• 共生矩阵描述纹理

不变矩

- 如果f(x,y)是二维图像
- 各阶矩定义为

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

• 中心矩

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y)$$

• 由此还可以组合定义出一些不变矩

不变矩

• 对平移,尺度变化、镜像和旋转不变

矩	原图像	平 移	缩小一半	镜 像	旋转 45°	旋转 90°
ϕ_1	2.8662	2.8662	2.8664	2.8662	2.8661	2.8662
ϕ_2	7.1265	7.1265	7.1257	7.1265	7.1266	7.1265
ϕ_3	10.4109	10.4109	10.4047	10.4109	10.4115	10.4109
ϕ_4	10.3742	10.3742	10.3719	10.3742	10.3742	10.3742
ϕ_5	21.3674	21.3674	21.3924	21.3674	21.3663	21.3674
ϕ_6	13.9417	13.9417	13.9383	13.9417	13.9417	13.9417
φ ₇	-20.7809	-20.7809	-20.7724	20.7809	-20.7813	-20.7809

统计矩

- 基本思想
 - 将描述形状的任务简化为描述一个一维函数
 - 曲线看作随机变量r 的概率密度函数直方图
 - 形状可通过各阶的统计矩 (中心距) 定量描述

简单区域描述子

• 使用面积计算从图像中获取信息

口分布等, 通过亮度区域的面积比例

描述纹理的统计方法

- 统计纹理的灰度直方图
 - 令z为代表灰度级的随机变量
 - p(zi), i=1,2,...L-1为对应的直方图
- 计算直方图的统计矩
 - 关于z的第n阶矩

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i) \qquad m = \sum_{i=0}^{L-1} z_i p(z_i)$$

$$\mu_0(z) = 1$$
, $\mu_1(z) = 0$

描述纹理的统计方法

纹 理	均 值	标准差	(归一化后的) R	三阶矩	一致性
平滑	82.64	11.79	0.002	-0.105	0.026
粗糙	143.56	74.63	0.079	-0.151	0.005
规则	99.72	33.73	0.017	0.750	0.013

描述纹理的频谱方法

- 频谱方法
 - 傅里叶变换
 - 适合描述周期性纹理模式

- 频谱特征的检测常使用函数 $S(r,\theta)$
 - 对固定的r, 沿着圆上的特性
 - 对固定的θ,沿着辐射方向上的频谱特性

$$S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r) \qquad S(\theta) = \sum_{r=1}^{R_0} S_r(\theta)$$

描述纹理的频谱方法

小结

- 图像特征概述
- 形状特征
- 灰度/颜色特征
- 纹理特征