

Standard two-layered architecture for map-based planning & navigation

Obstacle Avoidance / Local motion planning

- Local target: next waypoint, pose in a plan
- Use sensors to acquire information about surrounding environment
- Plan (or re-plan) the path in real-time avoiding obstacles
- Aim to reach target as fast and as reliably possible

- ❖ Obstacle Avoidance / Local Planner problem: computing a motion control that avoid collisions with the obstacles as observed by sensors, whilst driving the robot towards the target location.
- ➤ Result of applying this technique **online**, at each sample time, is a sequence of motions that drive the vehicle free of collisions to the target

Taxonomy of obstacle avoidance algorithms

- ❖ Methods that compute the motion in one step and that do it in more than one
- \circ Sensors \rightarrow Motion: One-step methods directly reduce the sensor information to motion control
 - Various heuristics, e.g., Bug algorithms (reactive algorithms)
 - Use physical analogies assimilate the obstacle avoidance to a known physical problem, e.g.,
 Potential field method
- Sensors \rightarrow Intermediate Information Building \rightarrow Motion: Methods with more than one step compute some intermediate information, which is processed next to obtain the motion.
 - ✓ The methods of *subset of controls* compute an intermediate set of motion controls, and next choose one of them (the *best*) as a solution.
 - Subset of motion directions, e.g., Vector Field Histogram
 - Subset of velocity controls, e.g., Dynamic Window Adaptation

Vector Field Histogram

• Environment represented in a grid (2 DOF)

Koren & Borenstein, ICRA 1990

> cell values are equivalent to the probability that there is an obstacle

• Generate polar histogram:

Vector Field Histogram

- Space is divided into sectors k = 1, ..., N from robot location.
- Using sensor data, a polar histogram H is constructed around the robot, where each component represents the obstacle polar density in the corresponding sector.
- Function mapping observed obstacle distribution in sector k to a density value $h^k(q_{t_i})$ in the histogram representation:

$$h^{k}(\boldsymbol{q}_{t_{i}}) = \int_{\Omega_{k}} P(\boldsymbol{p})^{n} \left(1 - \frac{d(\boldsymbol{q}_{t_{i}}, \boldsymbol{p})}{d_{\max}}\right)^{r} d\boldsymbol{p}$$

where Ω_k is the set of points \boldsymbol{p} falling within a certain maximal distance from the robot

 $h^k(q_{t_i}) \propto$ probability that a point is occupied by an obstacle \times factor that increases as distance to point decreases

Vector Field Histogram: Step 1, select candidate directions

- ✓ **Set of candidate directions**: set of adjacent components with lower density than a *given threshold*, and close to the component that contains the target direction
- Candidate valleys

Vector Field Histogram: Step 2, select motion

- ✓ **Set of candidate directions**: set of adjacent components with lower density than a given threshold, and close to the component that contains the target direction
- \triangleright Select the *best* direction (i.e., sector) k_{sol}
 - Heuristic based on three cases

- ✓ Case 1: goal sector in the selected valley $\rightarrow k_{sol} = k_{target}$ where k_{target} is the sector that contains the goal location
- ✓ Case 2: goal sector not in the selected valley and the number of sectors in the valley is greater than a threshold m (e.g., $m=8 \rightarrow \text{valley of} \approx 45^{\circ} \rightarrow \text{large valley}) \rightarrow k_{sol} = k_{closer} \pm \frac{m}{2}$ where k_{closer} is the sector of the valley closer to k_{target}
- **Case 3**: goal sector not in the selected valley and number of sectors in the valley is lower than m (i.e., a narrow valley) $\rightarrow k_{sol} = \frac{k_i + k_j}{2}$ where k_i and k_j are the extremal sectors of the valley

Vector Field Histogram: Step 2, select motion

- Case 3: goal sector not in the selected valley and number of sectors in the valley is lower than m=8 (i.e., a narrow valley) $k_{sol} = \frac{k_i + k_j}{2}$ where k_i and k_j are the extreme sectors of the valley.
 - \circ The result is a sector k_{sol} whose bisector angle value is the direction solution for the direction to move θ_{sol}
 - \circ The linear velocity v is set inversely proportional to the distance to the closest obstacle.
 - ✓ The **control** is $u_t = (v_{sol}, \theta_{sol}) \rightarrow (v_{sol}, \omega_{sol} = \dot{\theta}_{sol})$

Dynamic Window Adaptation (DWA): velocity space

Basic ideas:

- Robot instantaneously moves over circular trajectories
- Radius is defined by $c = \frac{\omega}{v}$
- What are the velocities that determine obstacle-free and short circular trajectories (toward target)?
- → Work in velocity space!

Obstacle Avoidance: Basic Curvature Velocity Methods (CVM)

Simmons et al.

- Adding *physical constraints* from the robot and the environment on the *velocity space* (v, ω) of the robot
 - \triangleright Assumption that robot is traveling on arcs ($c = \omega / v$)
 - \triangleright Constraints: $-v_{max} < v < v_{max} \omega_{max} < \omega < \omega_{max}$
 - Obstacle constraints: Obstacles are transformed in velocity space
 - Objective function used to select the optimal speed

Dynamic Window Adaptation (DWA): velocity space

Dynamic Window Approach (DWA, 1987)

- Robot is assumed to instantaneously move on circular arcs (v, ω)
- 2D evidence grid is transformed into (v, ω) input-space based on robot deceleration capabilities / kino-dynamics, leading to V_a
- Static window V_s constrains velocities
- Dynamic window V_d accounts for vehicle dynamics
- Selection of (v, ω) -pair within $V_r = V_o \cap V_s \cap V_d$ maximizing objective containing heading, distance to goal and velocity terms

D. Fox, W. Burgard, S. Thrun, The Dynamic Window Approach to Collision Avoidance, IEEE Robotics & Automation Magazine 4(1):23 - 33 · April 1997

Dynamic Window Adaptation (DWA): Admissible velocities

 V_S = Space of possible velocities for the robot

- Robot move with a curvature defined by (v, ω)
- $d(v, \omega)$ = closest distance to an obstacle on the corresponding curvature
- Admissible velocity (v, ω) : the robot can stop before hitting the obstacle
- \dot{v}_b , $\dot{\omega}_b$ maximum accelerations (\pm) available for **breakage**

$$\text{Admissible velocities } \textit{V}_a \colon \qquad \textit{V}_a = \left\{ (v, \omega) \mid v \leq \sqrt{2 \cdot \operatorname{dist}(v, \omega) \cdot \dot{v_b}} \ \land \ \omega \leq \sqrt{2 \cdot \operatorname{dist}(v, \omega) \cdot \dot{\omega_b}} \right\}$$

Dynamic Window Adaptation (DWA): Admissible velocities

Admissible velocities
$$V_a$$
: $V_a = \left\{ (v, \omega) \mid v \leq \sqrt{2 \cdot \operatorname{dist}(v, \omega) \cdot \dot{v_b}} \land \omega \leq \sqrt{2 \cdot \operatorname{dist}(v, \omega) \cdot \dot{\omega_b}} \right\}$

From kinematics:

- Assuming a constant acceleration, distance d traveled in time interval t (from t=0) is $d=\frac{v_f-v_i}{2}t$ where v_i is the initial velocity, v_f is the final velocity, and $\frac{v_f-v_i}{2}$ is the average velocity
- It is also true that $v_f = v_i + at$, where a is the (constant) velocity in the interval
- Substituting v_f in $d = \frac{v_f v_i}{2} t$ and making a few additional operations:

$$v_f = v_i^2 + 2ad$$

- In our case, v_f must be 0
- $0 = v_i^2 + 2ad$
- $v_a = \sqrt{2da}$

DWA: Admissible velocities

Example 1 Again consider the example given in Figure 2. Figure 4 shows the velocities admissible in this situation given the accelerations $\dot{v}_b = 50$ cm/sec² and $\dot{\omega}_b = 60$ deg/sec². The non-admissible velocities are denoted by the dark shaded areas. For example all velocities in area right wall II would cause a sharp turn to the right and thus cause the robot to collide with the right wall in the example situation. The non-admissible areas are extracted from real world proximity information; in this special case this information was obtained from sonar sensors (see Section 5).

DWA: Dynamic window

- Not all velocities can be reached, we can restrict to what velocities can be reached in the next time window
 - $t = \text{Time interval during which the accelerations } \dot{v}, \dot{\omega} \text{ will be applied}$
 - (v_a, ω_a) = actual velocity

Dynamic window velocities, V_d : $V_d = \{(v, \omega) \mid v\epsilon[v_a - \dot{v} \cdot t, v_a + \dot{v} \cdot t] \land \omega\epsilon[\omega_a - \dot{\omega} \cdot t, \omega_a + \dot{\omega} \cdot t]\}$

DWA: Dynamic window

Example 2 An exemplary dynamic window obtained in the situation shown in Figure 2 given accelerations of 50 cm/sec² and 60 deg/sec² and a time interval of 0.25 sec is shown in Figure 5. The two dotted arrows pointing to the corners of the rectangle denote the most extreme curvatures that can be reached.

DWA: Set of velocities and Objective function

Set of velocities:
$$V_r = V_s \cap V_a \cap V_d$$

Best velocities: max over the cost function

$$G(v,\omega) = \sigma(\alpha \cdot \text{heading}(v,\omega) + \beta \cdot \text{dist}(v,\omega) + \gamma \cdot \text{velocity}(v,\omega))$$

Measure alignment with target: get to goal!

Measure Clearance: distance to closest obstacle on circular path → avoid obstacles Robot velocity: move fast!

Use kinematics equations!

DWA: In practice

$$V_r = V_s \cap V_a \cap V_d$$

$$G(v, \omega) = \sigma(\alpha \cdot \text{heading}(v, \omega) + \beta \cdot \text{dist}(v, \omega) + \gamma \cdot \text{velocity}(v, \omega))$$

Algorithm 1 DWA pseudocode

```
1: function DWA(robotPose, robotGoal, robotModel)
        laserscan \leftarrow readScanner()
        (v_{allowable}, w_{allowable}) \leftarrow generateWindow(robotVW, robotModel)
        for (each \ v \ in \ v_{allowable}) do
 4:
            for (each \ w \ in \ w_{allowable}) do
 5:
                dist \leftarrow findDist(v, w, laserscan, robotModel)
 6:
                breakDist \leftarrow calculateBreakingDistance(v)
 7:
                if (dist > breakDist) then
 8:
                    cost \leftarrow costFunction
 9:
                    if (cost > optimal) then
10:
                        best_v \leftarrow v
11:
                        best_w \leftarrow w
12:
                        optimal \leftarrow cost
13:
        return best_v, best_w
14:
```

DWA in action

DWA in action: Problems with narrow passage, dependence on $\boldsymbol{V_d}$

Read more on the reference paper!

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance", *IEEE Robotics Automation Magazine*, vol. 4, no. 1, pp. 23-33, March 1997.