UNIVERSIDAD DE GRANADA

Metodología de la Programación

Grado de Ingeniería Informática Ejercicio 2. Matrices

Este ejercicio consiste en la implementación de un proyecto, que está formado por varios ficheros de código fuente (.cpp y .h), y su compilación mediante un fichero makefile. Se deberá implementar una clase matriz para representar las matrices cuadradas de dimensión n (utilizar una constante global para determinar la dimensión) con coeficientes enteros. Debe contener, al menos, los métodos miembro:

- Un constructor por defecto que genere la matriz cero (todas las componentes son cero).
- Una función miembro get_component para obtener una componente de la matriz.
- Una función miembro set_component que modifique una componente de la matriz.
- Una función miembro imprimir que muestre por pantalla la matriz.

Se pueden añadir otras funciones miembro que se consideren necesarias. Implementar las siguientes funciones externas a la clase para formar una biblioteca con la que operar con las matrices:

- Una función suma que sume dos matrices.
- Una función producto que multiplique dos matrices de la manera usual.
- Una función traza que devuelva la suma de los elementos de la diagonal.

Implementar otra biblioteca con las siguientes operaciones especiales:

■ Una función producto_especial que multiplique dos matrices componente a componente (no de la forma usual). Por ejemplo,

$$\left(\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array}\right) * \left(\begin{array}{cc} 1 & 3 \\ 0 & 2 \end{array}\right) = \left(\begin{array}{cc} 2 & 3 \\ 0 & 0 \end{array}\right)$$

• Una función twisted_mult que multiplica dos matrices A y B como A#B=APB, donde P es la matriz que tiene todas sus componentes a cero excepto la diagonal principal inversa que son unos. Por ejemplo,

$$\left(\begin{array}{cc}1&1\\1&0\end{array}\right)\#\left(\begin{array}{cc}2&0\\1&1\end{array}\right)=\left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}0&1\\1&0\end{array}\right)\left(\begin{array}{cc}2&0\\1&1\end{array}\right)=\left(\begin{array}{cc}3&1\\1&1\end{array}\right)$$

Además se implementará un programa probando las funciones anteriores. Dividir el código en diferentes ficheros tal y como se ha explicado en clase y realizar un fichero makefile que compile todo el proyecto. Sigue el árbol usual de carpetas para el proyecto:

