LISTA 3 DE EJERCICIOS DE TOPOLOGÍA

- 1. Sea $A \stackrel{i}{\hookrightarrow} X$ un retracto tal que de $i_*(\pi_1(A))$ es normal en $\pi_1(X)$. Demuestre que $\pi_1(X) \cong \pi_1(A) \times (\pi_1(X)/i_*\pi_1(A))$.
- 2. Un grupo topológico G es un grupo con una topología tal que la operación de producto y la función que envía un elemento a su inverso son funciones continuas. Demuestre que si G es un grupo topológico 1-conexo y H es un subgrupo normal discreto, entonces

$$\pi_1(G/H, e) \cong H$$
,

donde e es la identidad de G/H.

- 3. Sea X la unión de círculos de radio n en \mathbb{R}^2 con centro (n,0) con la topología de subespacio. Demuestre que $X \simeq \bigvee_{n=1}^{\infty} S^1$ y determine si son espacios homeomorfos o no.
- 4. Sea $X \subseteq \mathbb{R}^3$ la unión de n rectas que pasan por el origen. Determine $\pi_1(\mathbb{R}^3 X)$.
- 5. Sea $X = \bigcup_{i=1}^{\infty} X_i \subseteq \text{en } \mathbb{R}^m$ con X_i convexo para i = 1, ..., n. Demuestre que si las intersecciones de cualesquiera tres conjuntos X_{i_1} , X_{i_2} , X_{i_3} son no vacías, entonces X es 1-conexo. Determine si el resultado es válido si se pide solamente que las intersecciones a pares sean no vacías.
- 6. Sea G un grupo. Demuestre que existe al menos un espacio X tal que $\pi_1(X) \cong G$.
- 7. Demuestre que \mathbb{R}^2 y \mathbb{R}^n no son homeomorfos si $n \neq 2$.
- 8. Demuestre que cualquier autohomeomorfismo del disco D^2 envía S^1 a $S^1.$
- 9. Determine el grupo fundamental de la botella de Klein.
- 10. Determine el grupo fundamental de $\mathbb{R}P^2$.
- 11. Demuestre que S^n es 1-conexo para n > 1.