Truth tables

- 1. What does it mean (in terms of truth tables) to say that two sentences are logically equivalent?
- 2. Show that $P \to Q$ and $\neg P \lor Q$ are logically equivalent.
- 3. If two sentences ϕ and ψ are logically equivalent, what do we know about the sequents $\phi \vdash \psi$ and $\psi \vdash \phi$?
- 4. If $\phi \vdash \psi$, then what do we know about the truth tables of ϕ and ψ ?
- 5. Find a sentence whose only connectives are \wedge and \neg , and that is logically equivalent to $P \to Q$.
- 6. Can there be a correctly written proof with the following lines?

1 (1)
$$P \rightarrow Q$$
 A

1
$$(n)$$
 $Q \rightarrow P$

Biconditional

- 1. Show that $\neg(P \leftrightarrow Q)$ and $P \leftrightarrow \neg Q$ are logically equivalent.
- 2. Can there be a correctly written proof with the following lines?

$$\begin{array}{ccc} 1 & & (1) & \neg P \vee Q & & \mathbf{A} \\ 2 & & (2) & \neg (Q \wedge \neg P) & & \mathbf{A} \end{array}$$

$$2 \qquad (2) \quad \neg (Q \land \neg P) \qquad \mathbf{A}$$

$$1,2 \quad (n) \quad P \leftrightarrow Q$$

- 3. Prove that $P \leftrightarrow \neg P \vdash P \land \neg P$
- 4. Prove that $P \wedge Q \vdash P \leftrightarrow Q$
- 5. Prove that $\neg P \land \neg Q \vdash P \leftrightarrow Q$

New proofs from old

- 1. Prove that $(P \wedge Q) \vee (\neg P \wedge \neg Q) \vdash P \leftrightarrow Q$
- 2. Prove that $(P \to Q) \to R \vdash (\neg P \lor Q) \to R$
- 3. Show that if $\phi \vdash \psi$ then $\chi \to \phi \vdash \chi \to \psi$