Erasmus School of Economics

MOOC Econometrics

Lecture 2.2 on Multiple Regression: Representation

Christiaan Heij

Erasmus University Rotterdam

Notation

• $y_i = \log(Wage)_i$

$$x_{1i} = 1$$
 $x_{2i} = \text{Female}_i$ $x_{3i} = \text{Age}_i$

$$x_{4i} = \mathsf{Educ}_i$$
 $x_{5i} = \mathsf{Parttime}_i$

• Let x_i be (5×1) vector with components (x_{1i}, \ldots, x_{5i}) .

Let β be (5×1) vector with components $(\beta_1, \ldots, \beta_5)$.

• Then wage equation can be written as

$$y_i = \sum_{j=1}^5 \beta_j x_{ji} + \varepsilon_i = x_i' \beta + \varepsilon_i$$

• Symbol ' (prime): transposition (see Building Blocks).

Ezafus,

Example

• $log(Wage)_i =$

$$\beta_1 + \beta_2$$
Female_i + β_3 Age_i + β_4 Educ_i + β_5 Parttime_i + ε_i

'Wage': yearly wage (index, median = 100)

'Female': gender dummy (1 for females, 0 for males)

'Age': age (in years)

'Educ': education (4 levels, from 1 for low to 4 for high)

'Parttime': part-time job dummy (1 if work on 3 or less days

per week, 0 if more than 3 days per week)

Lecture 2.2, Slide 2 of 13, Erasmus School of Economics

Matrix notation

• Write $y_i = x_i'\beta + \varepsilon_i$ for 500 observations in database:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{500} \end{pmatrix} = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_{500}' \end{pmatrix} \beta + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{500} \end{pmatrix}$$

• Let y: (500 \times 1) vector with components y_i

X: (500×5) matrix with rows x_i'

 ε : (500 × 1) vector with components ε_i

• Then wage equation for 500 observations becomes:

$$y = X\beta + \varepsilon$$

Ezafus,

Multiple regression model

• Model with *k* explanatory factors:

$$y_i = \beta_1 + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i = \sum_{j=1}^k x_{ji} \beta_j + \varepsilon_i$$
 (with $x_{1i} = 1$).

• y_i is dependent or explained variable,

 x_{1i}, \ldots, x_{ki} are regressor variables or explanatory factors.

• First 'explanatory' factor is the constant $x_{1i} = 1$.

Leafus,

Lecture 2.2, Slide 5 of 13, Erasmus School of Economics

Set of linear equations

- $y = X\beta + \varepsilon$
 - $\rightarrow X\beta$ is 'explained' part of y
 - ightarrow arepsilon is 'unexplained' part of y
- X explains much of y if $y \approx X\beta$ for some choice of β .
- $y = X\beta$ is set of *n* equations in *k* unknown parameters β .

Test

Let X be $(n \times k)$ matrix with rank(X) = r. What is the number of solutions of the equations $y = X\beta$?

Ezafus

Multiple regression model

- Let database contain *n* observations for all variables.
- As before, let

y: $(n \times 1)$ vector with components y_i

X: $(n \times k)$ matrix with elements x_{ii}

 β : $(k \times 1)$ vector with components β_i

 ε : $(n \times 1)$ vector with components ε_i

• Then model can be written as

$$y = X\beta + \varepsilon$$

Ezafus

Lecture 2.2, Slide 6 of 13, Erasmus School of Economics

Test answers

- $y = X\beta$ where X is $(n \times k)$ with rank(X) = r.
 - \rightarrow Always r < k and r < n.
 - \rightarrow If r = n = k: $y = X\beta$ has unique solution.
 - \rightarrow If r = n < k: $y = X\beta$ has multiple solutions.
 - \rightarrow If r < n: $y = X\beta$ has (in general) no solution.
- (Nearly always) n > k.

We assume r = k < n.

So $y = X\beta$ has (in general) no exact solution.

Interpretation of model coefficients

- Model: $y_i = \beta_1 + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i$.
- What happens to y if x_j increases by one unit while all other x-variables x_h (with $h \neq j$) remain fixed?
- Partial effect: $\frac{\partial y}{\partial x_j} = \beta_j$ (if x_h remains fixed for all $h \neq j$).
- Only possible as thought-experiment, called the 'ceteris paribus' assumption.

(Zafus)

Lecture 2.2, Slide 9 of 13, Erasmus School of Economics

Testing for model restrictions

- Factor x_i in model if (relevant) effect on y.
- Test for single factor j: Test $H_0: \beta_j = 0$ against $H_1: \beta_j \neq 0$.
- Test for two factors j and h: Test $H_0: \beta_j = \beta_h = 0$ against $H_1: \beta_i \neq 0$ and/or $\beta_h \neq 0$.
- General: Test $H_0: R\beta = r$ against $H_1: R\beta \neq r$ $\rightarrow R$ is given $(g \times k)$ matrix with rank(R) = g $\rightarrow r$ is given $(g \times 1)$ vector

Test

If $\beta_j = 0$, does this mean that x_j has no effect on y? Motivate your answer.

Decomposition of total effect

• Total effect if factors are mutually dependent (and $x_{1i} = 1$):

$$\frac{dy}{dx_j} = \frac{\partial y}{\partial x_j} + \sum_{h=2, h \neq j}^{k} \frac{\partial y}{\partial x_h} \frac{\partial x_h}{\partial x_j} = \beta_j + \sum_{h=2, h \neq j}^{k} \beta_h \frac{\partial x_h}{\partial x_j}$$

- Indirect effects $x_j \to x_h \to y$ combined: $\sum_{h=2, h \neq j}^k \beta_h \frac{\partial x_h}{\partial x_i}$
- So: Total effect = Partial effect + Indirect effect
- Example if part-time jobs more common for higher education:

Direct: Educ $\uparrow \Rightarrow Wage \uparrow$

Indirect: Educ $\uparrow \Rightarrow$ Parttime $\uparrow \Rightarrow$ Wage \downarrow

Total: Sum of \uparrow and \downarrow effect, need effect sizes

Lecture 2.2, Slide 10 of 13, Erasmus School of Economics

Test answers $(\beta_i = 0 \Rightarrow x_i \text{ no effect on } y?)$

- Yes, in sense that x_j has no partial effect (assuming all other explanatory factors remain fixed).
- No, in sense that x_j may have indirect effect (via other factors $x_j \to x_h \to y$).
- Example: $log(Wage)_i = \beta_1 + \beta_2 Educ_i + \beta_3 Parttime_i + \varepsilon_i$

If $\beta_2 = 0$ and $\beta_3 \neq 0$, then higher education still has indirect effect on wage if having part-time job is related to education level.

Lapus

TRAINING EXERCISE 2.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lafins

Lecture 2.2, Slide 13 of 13, Erasmus School of Economics