

Binary Arithmetic

CS 64: Computer Organization and Design Logic
Lecture #2
Winter 2020

1

Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

10001001

10010101

100111110

Administrative Stuff

• The class is still full... 🙁

- Did you check out the syllabus?
- Did you check out the class website?
- Did you check out Piazza (and get access to it)?
- Did you check out Gradescope (and get an account on it)?
- Do you understand how you will be submitting your assignments?

Lecture Outline

- Review of positional notation, binary logic
- Bitwise operations
- Bit shift operations
- Addition and subtraction in binary
- Two's complement

So Why Digital Design?

- Because that's where the "magic" happens
- Logical decisions are made with 1s and 0s
- Physically (engineering-ly?), this comes from electrical currents switching one way or the other & also how semiconducting material work, etc...
- But we don't have to worry about the physics part in this class...

Digital Design of a CPU (Showing Pipelining)

Digital Design in this Course

- We will not go into "deep" dives with digital design in this course
 - For that, check out CS 154 (Computer Architecture) and also courses in ECE
- We will, however, delve deep enough to understand the fundamental workings of digital circuits and how they are used for computing purposes.

COMPUTERS ARE DIGITAL MACHINES

Counting Numbers in Different Bases

- We "normally" count in 10s
 - Base 10: decimal numbers
 - We use 10 numerical symbols in Base 10: "0" thru "9"
- Computers count in 2s
 - Base 2: binary numbers
 - We use 2 numerical symbols in Base 2: "0" and "1"
 - Represented with 1 bit (Note: $2^1 = 2$)

Counting Numbers in Different Bases

Other convenient bases in computer architecture:

- Base 8: octal numbers
 - Number symbols are 0 thru 7
 - Represented with 3 bits $(2^3 = 8)$
- Base 16: hexadecimal numbers
 - Number symbols are 0 thru F:

including
$$A = 10$$
, $B = 11$, $C = 12$, $D = 13$, $E = 14$, $F = 15$

- Represented with 4 bits $(2^4 = 16)$
- Why are 4 bit representations convenient???

What's in a Number?

642

What is that???

Well, what NUMERICAL BASE are you expressing it in?

Positional Notation

642 in base 10 (decimal) can be described in "positional notation" as:

$$6 \times 10^{2} = 6 \times 100 = 600$$

+ $4 \times 10^{1} = 4 \times 10 = 40$
+ $2 \times 10^{0} = 2 \times 1 = 2 = 642$ in base 10

6	4	2
10 ²	10 ¹	1

$$642_{\text{(base 10)}} = 600 + 40 + 2$$

Positional Notation

642 in base 16 (hexadecimal) can be described in "positional notation" as:

$$6 \times 16^{2} = 6 \times 256 = 1536$$

+ $4 \times 16^{1} = 4 \times 16 = 64$
+ $2 \times 16^{0} = 2 \times 1 = 2 = 1602$ in base 16

6	4	2
16 ²	16 ¹	1

Positional Notation

This is how you convert any base number into decimal!

Each digit gets multiplied by B^N Where:

B = the base

N = the position of the digit

Example: given the number 642 in base 8:

Number in decimal = $6 \times 8^2 + 4 \times 8^1 + 2 \times 8^0$ = 418

Positional Notation in Binary

11101 in base 2 positional notation is:

$$1 \times 2^{4} = 1 \times 16 = 16$$

+ $1 \times 2^{3} = 1 \times 8 = 8$
+ $1 \times 2^{2} = 1 \times 4 = 4$
+ $1 \times 2^{1} = 1 \times 2 = 0$
+ $1 \times 2^{0} = 1 \times 1 = 1$

So, **11101** in base 2 is 16 + 8 + 4+ 0 + 1 = **29** in base 10

This is easy if you remember your powers of 2

Always Helpful to Know...

N	2 ^N	N	2 ^N	N	2 ^N
1	2	11	2048 = 2 kb	21	2 Mb
2	4	12	4 kb	22	4 Mb
3	8	13	8 kb	23	8 Mb
4	16	14	16 kb	24	16 Mb
5	32	15	32 kb	25	32 Mb
6	64	16	64 kb	26	64 Mb
7	128	17	128 kb	27	128 Mb
8	256	18	256 kb	28	256 Mb
9	512	19	512 kb	29	512 Mb
10	1024 = 1 kilobits	20	1024 kb = 1 megabits	30	1 Gb

1/9/20

Another Convenient Table...

HEXADECIMAL	BINARY
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

HEXADECIMAL (Decimal)	BINARY
A (10)	1010
B (11)	1011
C (12)	1100
D (13)	1101
E (14)	1110
F (15)	1111

Converting Binary to Octal and Hexadecimal (or any base that's a power of 2)

NOTE THE FOLLOWING:

Binary is1 bit per digit (0 or 1)

• Octal is 3 bits per digit (0, 1, 2, 3, 4, 5, 6 or 7)

Hexadecimal is
 4 bits per digit (0 thru F)

- Use the "group the bits" technique
 - Always start from the least significant digit
 - Group every 3 bits together for bin → oct
 - Group every 4 bits together for bin → hex

Converting Binary to Octal and Hexadecimal

• Take the example: **10100110**

...to octal (group in 3s):

2

4

6

Start your o

Start your grouping from the Least Significant Bit (LSB)!!!

REMEMBER:

246 in octal

...to hexadecimal (group in 4s):

10

6

A6 in hexadecimal

Converting Decimal to Other Bases

Algorithm for converting number in base 10 to other bases

While (the quotient is not zero)

- 1. Divide the decimal number by the new base
- 2. Make the remainder the next digit to the left in the answer
- 3. Replace the original decimal number with the quotient
- 4. Repeat until your quotient is zero

Example: What is 98 (base 10) in base 8?

Negative Numbers in Binary

- So we know that, for example, $6_{(10)} = 110_{(2)}$
- But what about $-6_{(10)}$???
- What if we added one more bit on the far left to denote "negative"?
 - i.e. becomes the new MSB
- So: **110** (+6) becomes **1110** (-6)
- But this leaves a lot to be desired
 - Bad design choice...

Twos Complement Method

- This is how Twos Complement fixes this.
- Let's write out $-6_{(10)}$ in 2s-Complement binary in 4 bits:

First take the unsigned (abs) value (i.e. 6)

and convert to binary:

0110

Then negate it (i.e. do a "NOT" function on it):

Now add 1: **1010**

So, $-6_{(10)} = 1010_{(2)}$ according to this rule

Let's do it Backwards... By doing it THE SAME EXACT WAY!

- 2s-Complement to Decimal method is the same!
- Take 1010 from our previous example
- Negate it and it becomes 0101
- Now add 1 to it & it becomes **0110**, which is $6_{(10)}$

Another View of 2s Complement

NOTE:

In Two's Complement, if the number's MSB is "1", then that means it's a negative number and if it's "0" then the number is positive.

Another View of 2s Complement

NOTE:

Opposite numbers show up as symmetrically opposite each other in the circle.

NOTE AGAIN:

When we talk of 2s complement, we must also mention the number of bits involved

Ranges

 The range represented by number of bits differs between positive and negative binary numbers

Given N bits, the range represented is:

0 to
$$+2^{N}-1$$
 for positive numbers

and
$$-2^{N-1}$$
 to $+2^{N-1}-1$

for 2's Complement negative numbers

Addition

- We have an elementary notion of adding single digits, along with an idea of carrying digits
 - Example: when adding 3 to 9, we put forward 2 and carry the 1 (i.e. to mean 12)
- We can build on this notion to add numbers together that are more than one digit long

Addition in Binary

Same mathematical principal applies

Q: What's being assumed here???

A: That these are purely positive numbers

Theoretically, I can add any binary no. with N1 digits to any other binary no. with N2 digits.

BUT THERE IS A PRACTICAL LIMITATION! Practically, a CPU must have a defined no. of digits that it's working with.

WHY???

Exercises

Implementing an **8-bit adder**:

- What is (0x52) + (0x4B)?
 - Ans: 0x9D, output carry bit = 0
- What is (0xCA) + (0x67)?
 - Ans: 0x31, output carry bit = 1

Black Box Perspective of ANY N-Bit Binary Adder

This is a useful perspective for either writing an N-bit adder function in code, or for designing the actual digital circuit that does this!

Output Carry Bit Significance

- For unsigned (i.e. positive) numbers,
 C_{OUT} = 1 means that the result did not fit into the number of bits allotted
- Could be used as an error condition for software
- For example, **you've designed a 16-bit adder** and during some calculation of positive numbers, your carry bit/flag goes to "1". Conclusion?
- Your result is outside the maximum range allowed by 16 bits.

Carry vs. Overflow

 The carry bit/flag works for – and is looked at – only for unsigned (positive) numbers

 A similar bit/flag works is looked at for if signed (two's complement) numbers are used in the addition: the overflow bit

Overflow: for Negative Number Addition

- What about if I'm adding two negative numbers?
 Like: 1001 + 1011?
 - Then, I get: 0100 with the extra bit set at 1
 - 1 0100 is the same as 16 + 8 = 24
 - Sanity Check:
 That's adding (-7) + (-5), so I expected -12, NOT 24!!!
 so what's wrong here?

 The answer is that -12 is beyond the capability of 4 bits in 2's complement!!!

How Do We Determine if Overflow Has Occurred?

When adding 2 signed numbers:

$$x + y = s$$

if x, y > 0 AND s < 0OR if x, y < 0 AND s > 0

Then, overflow has occurred

Example 1

Add: -39 and 92 in signed 8-bit binary

Side-note:

What is the range of signed numbers w/ 8 bits?

 -2^7 to $(2^7 - 1)$, or

-128 to 127

That's 53 in signed 8-bits! Looks ok!

There's a carry-out (we don't care)
But there is no overflow (V)
Note that V = 0, while Cout = 1 and Cin_signed_bit = 1

Add: 104 and 45 in signed 8-bit binary

There's no carry-out (again, we don't care)

But there **is** overflow!

Given that this binary result is not 149, but actually -107!

Note that V = 1, while Cout = 0 and Cin_signed_bit = 1

YOUR TO-DOs

- Do your reading for next week's classes
 - Ch. 2.6
- Start on Assignment #1 for lab
 - I'll put it up on our main website this afternoon
 - Meet up in the lab this Thursday
 - Do the lab assignment: setting up CSIL + exercises
 - You have to submit it as a PDF using Gradescope
 - Due next week on Tuesday, 1/14, by 11:59:59 PM

Binary Logic Refresher NOT, AND, OR

X	$\frac{NOT\;X}{X}$
0	1
1	0

X	Y	X AND Y X && Y X.Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	X OR Y X Y X + Y
0	0	0
0	1	1
1	0	1
1	1	1

Binary Logic Refresher Exclusive-OR (XOR)

The output is "1" only if the inputs are opposite

X	Y	X XOR Y X ⊕ Y
0	0	0
0	1	1
1	0	1
1	1	0

Bitwise NOT

• Similar to logical NOT (!), except it works on a bit-by-bit manner

• In C/C++, it's denoted by a tilde: ~

$$\sim (1001) = 0110$$

• Sometimes hexadecimal numbers are written in the **0xhh** notation, so for example:

The hex 3B would be written as **0x3B**

• What is $^{(0x04)}$?

• Ans: 0xFB

• What is ~(0xE7)?

• Ans: 0x18

Bitwise AND

• Similar to logical AND (&&), except it works on a bit-by-bit manner

• In C/C++, it's denoted by a single ampersand: &

```
(1001 \& 0101) = 1 0 0 1
\& 0 1 0 1
```

- What is (0xFF) & (0x56)?
 - Ans: 0x56
- What is (0x0F) & (0x56)?
 - Ans: 0x06
- What is (0x11) & (0x56)?
 - Ans: 0x10
- Note how & can be used as a "masking" function

Bitwise OR

• Similar to logical OR (||), except it works on a bit-by-bit manner

• In C/C++, it's denoted by a single pipe: |

```
(1001 \mid 0101) = 1001
\mid 0101
```

- What is (0xFF) | (0x92)?
 - Ans: 0xFF
- What is (0xAA) | (0x55)?
 - Ans: 0xFF
- What is (0xA5) | (0x92)?
 - Ans: B7

Bitwise XOR

- Works on a bit-by-bit manner
- In C/C++, it's denoted by a single carat: ^

What is (0xA1) ^ (0x13)?

• Ans: 0xB2

• What is (0xFF) ^ (0x13)?

• Ans: 0xEC

Note how (1[^]b) is always [^]b
 and how (0[^]b) is always b

Bit Shift *Left*

- Move all the bits N positions to the left
- What do you do the positions now empty?
 - You put in N number of 0s
- Example: Shift "1001" 2 positions to the left 1001 << 2 = **100100**

Why is this useful as a form of multiplication?

Multiplication by Bit Left Shifting

- Veeeery useful in CPU (ALU) design
 - Why?
- Because you don't have to design a multiplier
- You just have to design a way for the bits to shift (which is relatively easier)

Bit Shift *Right*

- Move all the bits N positions to the *right*, subbing-in either N number of Os or N 1s on the left
- Takes on two different forms
- Example: Shift "1001" 2 positions to the right 1001 >> 2 = either **0010** or **1110**
- The information carried in the last 2 bits is *lost*.
- If Shift Left does multiplication, what does Shift Right do?
 - It divides, **but** it truncates the result

Two Forms of Shift Right

- Subbing-in Os makes sense
- What about subbing-in the leftmost bit with 1?
- It's called "arithmetic" shift right:

1100 (arithmetic) >> 1 = 1110

- It's used for twos-complement purposes
 - What?

• Given an argument that's a 32-bit integer number i, write a function in C++ that can isolate the bit in **position 5** of that integer and print it.

```
• Example: i = 1266
```

- In 32-bits of binary, that's: 0000 0000 0000 0000 0000 0100 1111 0010
- So, the bit in position 5 is the highlighted one (it's 1)
- So your code should print out "1"

```
void print5(int i):
Answer:
               {
                    i >> 5;
                    i = i \& 1;
                    cout << i;</pre>
 1/9/20
                                         64, Wi20
```