Variant Annotation

2017-02-28

Why Annotate Variants?

- Candidates for trait mapping...
- Putatively neutral variants for population genetics

A Photo Analogy

- Photo data: this nice duck
- EXIF data (metadata):
 - Date/time
 - Exposure settings
 - Geographic coordinates

Example Variants

- Variant data: Position, reference, alternate
- Annotation data:
 - Synonymous/ Nonsynonymous
 - Gene name
 - Functional impact

012345678

ATGCATGCG

. T.

. . . . C

Example Variants

- Variant data: Position, reference, alternate
- Annotation data:
 - Synonymous/ Nonsynonymous
 - Gene name
 - Functional impact

012345678

ATGCATGCG

. T

· · · · · · · · · · ·

ANNOVAR etc.

BAD_Mutations etc.

Annotation Schematic

What You'll Need

- Variants (VCF)
- Reference assembly (FASTA)
- Gene annotations (GFF)
- Annotation software
 - Custom script
 - ANNOVAR, SNPEff...

ANNOVAR

- Homepage: http://annovar.openbioinformatics.org/
 en/latest/
- Download requires registration (free)
- Need 'gtfToGenePred' from this link: http://hgdownload.cse.ucsc.edu/admin/exe/
 - Choose the platform that is correct for you
- Also need Perl

ANNOVAR Example

- Clone (or pull) the latest version of the repository
- Read the commands and comments in the 'annovar_cmds.sh' script
- If you downloaded the prerequisites and ANNOVAR software, edit the script and try it out.
- If you cannot, there are pre-built annotations in the 'Annotations/' directory.

ANNOVAR Example

- Output files are complex, but consistent
 - Important fields in 'exonic function':
 - 2 synon./nonsynon./nonsense/etc.
 - 3 Transcript and amino acid states
 - 12 SNP ID (rs identifier, e.g.)
 - Other info included is frequency, transition/ transversion, VCF metadata

ANNOVAR Example

SNP ID	Functional Class	CDS Impact	AA1	AA2	Residue
Barley_666866	Noncoding (UTR5)	NA	NA	NA	NA
Barley_271520	Exon	Nonsyn	Gly	Asp	8
Barley_271521	Exon	Nonsyn	Glu	Asp	26
Barley_271522	Exon	Syn	Ala	Ala	130
Barley_666867	Exon	Nonsyn	Thr	lle	147
Barley_271523	Exon	Syn	Ala	Ala	150
Barley_271525	Noncoding (UTR 3)	NA	NA	NA	NA
Barley_666868	Noncoding (UTR 3)	NA	NA	NA	NA

ANNOVAR Quirks

- Does not play nice with VCF format, especially from the GATK.
 - Script and command line are provided to convert to ANNOVAR-preferred format, though
- Uses GTF format, rather than GFF format
- Generates two output files you will need to merge them, or link them in your scripts

Why Annotate Variants?

- Candidates for trait mapping...
- Putatively neutral variants for population genetics

Why Annotate Variants?

 "All variants are interesting, but some variants are more interesting than others."

- One class of 'potentially interesting' variants occur at phylogenetically conserved sites
 - Variants in sufficiently conserved sites are presumed to have deleterious effects
- A long debate about genetic load in bottlenecked populations... Not for here.*

^{*:} see http://www.sciencedirect.com/science/article/pii/S0168952516000147 (Brandvain and Wright 2016) and http://www.nature.com/ng/journal/v46/n3/full/ng.2896.html (Simons et al. 2014) and https://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-9-r84 (Marth et al. 2010)

Consensus	AlaAspLeuIleGlySerMetAlaLysAsnMetGCTGACCTAATTGGTTCAATGGCCAAAAACATG	
Theobroma cacao	• • • • • • • • • • • • • • • • •	
Oryza sativa	• T • • • T • • • • • A • • • • • G • G • CA	
Setaria italica	• • • • • • • • • • • • • • • •	
Zea mays		
Sorghum bicolor		
Brachypodium distachyon		
Triticum turgidum		
Hordeum vulgare (Major allele)		
Hordeum vulgare (Minor allele)		

Tolerated Deleterious DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D V Α D Α VVAAVVVAVAAAVSVVVTVVVVIVAAAALATTTVVVVV Ε EDDEEEEEEE-EEEEEEEEEEEEVVEEEEEEE E LLLLLL-LMLLLLLLLLLLL-LLLLLLLLLLLLLLLL Ε

NDDDNNNNNDDDDNDNNNNDDDDDDDDDDNNNNNNDNN VVLVVVMMVVVVVVSVIIIIVMVVVVVIVVVIVVV

- DDDDDDDN-DDDDDDDDDDDDD-EEEEEEDDDDDDD EKSKEEEKEENAENEEEEDAAPAAAEKKEEGGEEEEE
- RNKKKRK-KKKKKNSSKDPESSPS-KS-SN---KKHHN
- EEEEEEQDDEEEEEEEDEEDDDDDEEEEEEEED
- TATTMTTSTTTTATSSCA-SPPMASREECGSSSMTAAT
- Heuristically, deleterious variants are in positions with high conservation, and tolerated variants are in positions with low conservation
- But! It is a formal likelihood ratio test of sequence conservation

- https://github.com/MorrellLAB/BAD_Mutations
- Python program, several dependencies. See the manual!
- Uses publicly available Angiosperm genomes from Phytozome and Ensembl Plants
- No example, has very high runtimes (~hours per gene)!

BAD_Mutations Workflow

Other Tools Exist

- SNPEff less flexible and more error-prone than ANNOVAR
 VEP - from Ensembl. Works well on "nice" genomes.
- Sorting Intolerant From Tolerant (SIFT)
 Polymorphism Phenotyping 2 (PPH2)
 Protein Variation Effect Analyzer (PROVEAN)
 Genomic Evolutionary Rate Profiling (GERP++)