1. 要件分析/品質要件

じえっとあーる 株式会社ジェイテクト JTEKT

構造設計

じぇっとあーる 株式会社ジェイテクト JTEKT

配置図

知

-i

切り換え

ライン

8-67

逸脱検知

P.4 制御戦略

パッケージ構造

構造的な繋がりを明示的にし、ソフトウェアの変更性等の保守性向上のため、 実現する機能毎にクラス群をパッケージとして分別した。

パッケージ構成図

パッケージー覧

UI	ユーザによる操作を実現する。
走行	走行制御を実現する。
通信	Bluetoothによる通信機能を実現する。
条件判定	検知・警告等の判定機能を実現する。
検出	センサ値の取得・加工処理を実現する。
デバイス	各API呼び出しを実現する(クラス図は省略)。

クラス構造

ベーシックステージ走行を実現する ソフト構造をクラス図で示す。

パッケージ:条件判定

走行時の判定や異常の 判定を担う。 条件クラスを派生させる ことで拡張・追加が容易な 構造となっている。

走行軌跡条件で 『直線を走行している』等を 判定する。

パッケージ: 走行 走行の制御機能を担う。区間ごとにトレーサ、 走行姿勢を選択することで、様々な走行方法を 実現する(ボーナスは省略)。

3. 振る舞い設計

じえっとあーる 株式会社ジェイテクト JTEKT

全体処理

走行準備処理

ベーシックステージ走行の 振る舞いを シーケンス図で示す。

走行準備処理 (キャリブレーション、 走行体設置、 スタート入力待ち) 走行開始処理 (高速スタートの ための重心移動) たの理 (区間切り換え処理、

走行)

という処理の流れとなる。

走行開始処理

区間切り替え処理

ライン逸脱時

ライン逸脱判定時は座標トレース走行に 移行する。

4. 制御戦略

じえっとあーる 株式会社ジェイテクト JTEKT

・スタートする際、尻尾で地面を押す事で

重心を前に移動させる。地面を押す尻尾角は、

安定と速度が両立可能な128度を採用した。

5. 要素技術

じぇっとあーる 株式会社ジェイテクト JTEKT

ライントレース

【課題】

- ・高速な倒立走行をするために、コースの区間毎に転倒しない範囲の最速設定を見極める。
- 環境変化や外乱の影響を受けない光センサによる制御を確立する。

【対策】

下記四項目の技術を採用する。

PWM出力最適設定、光センサバンド幅補正、曲率半径指定走行、まいまい式

曲率半径指定走行

- ・速度V、曲率半径Rをコースの区間毎に指定する。
- ・左輪の速度がV-Turn、右輪の速度がV+Turnとなるとき、 図の速度と半径の比から旋回速度Turnを導出可能。

R: V = R - W/2: V - Turn

PWM出力最適設定 FWM

- ・倒立走行中、モータのPWM値が100を越え続けるとバランスが とれず転倒、もしくはカーブが曲がりきれないといった問題が 生じる。
- ・走行中の倒立振子APIの出力PWM値を計測し、PWM値が 100を超えない最適な速度を設定した。

まいまい式

- ・外乱光の影響を取り除くために、LED消灯時・点灯時の 光センサ値の差を用いる。
- ・LED消灯時・点灯時の光センサ値と、路面の色の対応関係を 実験により測定し、光センサの特性曲線を求めた。

光センサバンド幅補正

・環境により黒と白の光センサ値の幅(バンド幅)上が異なるため、 Lを200に線形補正する。

・右図のように、バンド幅補正後は 環境変化の影響が低減できている。

自己位置推定 🚟

- ・曲率半径指定旋回のため、コースのどの区間にいるのか推定する。
- ・タイヤのエンコーダ値からコース上の座標を演算し推定する。
- 単純な座標演算のみでは、ずれが累積していき、推定誤りが生じる。
- ・推定区間が実際の位置とずれている場合、ライン逸脱の懸念がある。 【対策】
- ・走行体の座標を算出し、区間毎に設定した座標と比較し推定する。

→ 座標演算 ┃ 区間切り換え

- ふらつき無く、走行が安定する直線走行時に座標のずれを補正する。
 - → 直線検知 座標補正
- ・走行距離と実際の区間距離の差から推定異常を判定する。
 - **→ 推定異常判定**

座標演算

- 車両の運動で一般的なオドメトリ手法によって、走行体の座標(X,Y)、 方向θ、移動距離*L*を算出する。
- スタートを原点とし、前後方向をX座標、左右方向をY座標としている。 $\Delta L = (\Delta L_p + \Delta L_I)/2$

 $\Delta \theta = (\Delta L_p - \Delta L_r)/W$

 $X_{i+1} = X_i + \Delta L \cos(\theta_i + \Delta \theta / 2)$ $Y_{i+1} = Y_i + \Delta L \sin(\theta_i + \Delta \theta / 2)$

 $\theta_{i+1} = \theta_i + \Delta \theta$

移動前

座標:(X_i, Y_i) 方向: θ.

移動後

座標:(X_{i+1}, Y_{i+1}) 方向: θ_{i+1}

直線検知 🖺

- 現在点と5cm前、10cm前の点の3点の座標の成す角αを
- 1 cmごとに α を求め、過去10 cm分の移動平均 $\overline{\alpha}$ を 算出する。
- $\overline{\alpha}$ が180±5° の時、直線走行と判断。

座標補正

座標補正無し

走行体の状態が安定する直線 コース上で、直線検知をして ふらつきがないことを確認し、 *X* or *Y* 座標と方向を補正する。

ゴール位置がずれている

座標補正有り

区間切り替え

- ·区間の切り換え点にX、Y座標と進入方向θを定義する。
- ・次の区間の進入方向に応じて、走行体の座標と切り換え点の 座標を下記条件式で比較し、次区間へ進入したかどうかを推定する。

 $(X-P_y)\cos\theta + (Y-P_y)\sin\theta \ge 0$

上図の場合次の進入方向は0度なので 条件式より $[X \ge P]$ の時に次区間と判定。

_100ms

13700 13900 14100 14300 14500 14700 時間[ms]

白の閾値

(3981, 475, 206) 切換点定義例

推定異常判定

- ・異常発生時は、認識している座標にずれが生じるため、 実際のコースの長さである区間距離上。これ、座標演算 より求めた区間の走行距離Lcaleとの差が大きくなる。
- ・実際の走行データを確認したところ、 L_{zone} と L_{calc} の差は、 正常の場合は、±10%以内に収まる。
- ・ $L_{calc} < 0.9L_{zone}$ 1.1 $L_{zone} < L_{calc}$ のとき異常と判定する。

ライン逸脱検知

【課題】

・正常走行と座標トレース走行(→ P.4 制御戦略)の切り替えを行う ために、ライン逸脱を検知する必要がある。

【対策】

- ・光センサ値より白と判定した時間が一定時間(閾値)を超過した 場合にラインから逸脱したと判断する。
- ・スタートからゴールまでの走行を10回計測した際、白と判定した 時間は最長100msであった。以上より、2倍のマージンを見て閾値を 200msとし、超過したらライン逸脱状態とみなす。

座標トレース 【課題】

・ライン逸脱した場合も、速度を落とすことなく ライン復帰し、ゴールまで走行する。

【対策】

- ・ライン逸脱を検知した後、進行方向に実際の ラインと交差する仮想ラインの座標を生成する。
- ・輝度PIDの代わりに現在地と仮想ラインとの

仮想ライン

距離はによる旋回量 $= d KP + \int d KI + \triangle d KD$

逸脱 ライン復帰 第3コーナーにおける

座標トレース走行

-- 走行軌跡

座標トレース走行例