Trigonometric and Inverse Trig Problems

Wednesday, March 17, 2021

FOYMULA:
$$y = Sin(ax+b)$$
, $y^{(n)} = a^{2} Sin((ax+b) + u^{T}_{2})$
 $y = (Sin2x Sin3x) Cos4x = Sin2n (Sin3n Cos4n)$
 $= Sin2n (\frac{1}{2}(Sin7n - Sinn))$
 $= 1 (2Sin2n Sin7n - 2Sin2n Sinn)$
 $= 1 (2Sin2n Sin7n - 2Sin2n Sinn)$
 $= 1 (cos5n - Cos9n - (cosx - Cos3n))$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$
 $= 1 (cos5n - Cos9n - Cosn + Cos3n)$

$$\begin{aligned} y &= -\frac{1}{64} \left(\frac{\sin 2\pi - \frac{1}{4} \sin 2\pi + \cos 2\pi$$

Successive Differentiation Page 2

2) $y = Sin^{-1} \left(\frac{2n}{1+n^2}\right)$ Then Prove that

2)
$$y = \frac{\sin^{2}\left(\frac{2\pi}{1+x^{2}}\right)}{(x+x^{2})^{2}}$$
 Then Prove that

 $y^{(n)} = \frac{2(-1)^{n-1}(n-1)!}{(n-1)!}$ Sind Sinnd

Soil: Pat $x = \tan \alpha$, $x = \tan^{2} x$
 $y = \sin^{2}\left(\frac{2\tan x}{1+\tan^{2}\alpha}\right) = \sin^{2}\left(\sin 2\alpha\right) = 2\alpha$
 $y = x \tan^{2}x$ Then Find $y^{(n)}$

Soil: Diff $y = x \tan^{2}x$ Then Find $y^{(n)}$
 $y^{(n)} = \frac{x}{1+x^{2}} + \frac{\tan^{2}x}{8} = A + B$

(Suy)

 $y^{(n)} = A^{(n-1)} + B^{(n-1)}$
 $A^{(n)} = \frac{1}{2}\left(\frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}}\right)$
 $A^{(n)} = \frac{1}{2}\left(\frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}}\right)$
 $A^{(n-1)} = \frac{1}{2}\left(\frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}}\right)$
 $A^{(n-1)} = \frac{1}{2}\left(\frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}}\right)$
 $A^{(n-1)} = \frac{1}{2}\left(\frac{C^{(n-1)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}} + \frac{C^{(n)}}{(x-1)^{n+1}}\right)$
 $A^{(n-1)} = \frac{1}{2}\left(\frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^{(n)}}{(x+1)^{n+1}} + \frac{C^$