

Computer Graphics

by Ruen-Rone Lee ICL/ITRI

- Modeling
 - 3D Reconstruction
 - Solid modeling
 - Curve and Surface modeling

Super-sampling
Multi-sampling
Post Processing

What is Anti-Aliasing

What is Aliasing

Staircase-edges (jaggies)

What is Aliasing

Polygon Poping

Major Issues

Smooth the jaggies along the edges

Aliased lines

Anti-aliased lines

Major Issues

Smooth the jaggies along the edges

Aliased triangles

Anti-aliased triangles

Why Anti-Aliasing?

- Not enough samples in computer-generated image, results in:
 - Jagged, crawling edge
 - Polygon popping, flickering
- Human eyes are sensitive to discontinuity
- Anti-Aliasing is required for better image quality

Why Anti-Aliasing?

- Fake resolution
 - Look smooth using anti-aliasing technique under lower resolution
- Higher resolution
 - Greater than 200ppi (pixel per inch)
 - Apple Retina Display (eg. 1440x900 → 2880x1800)

Conventional LCD Display

Retina Display

Accumulation Buffer

 Using jittering technique to draw jittered triangle into different buffers and then accumulate the buffer by some weighting into the final display buffer.

- How to solve aliasing
 - Taking more samples
 - Extra samples instead of one single central sample per-pixel
 - Increase the density of image information
- Two types of super-sampling anti-aliasing
 - Ordered Grid Super-Sampling
 - Rotated Grid Super-Sampling

- Advantage
 - Transparent to the user
 - Can handle correctly with interpenetrating objects
- Disadvantage
 - Need more memory to store data
 - Need more memory bandwidth to read/write Z and color data
 - Longer rasterization time

 Use more samples per screen grid cell, and blend with assigned weights

- Ordered Grid Super-Sampling
 - Sub-sample grid is parallel and aligned to the horizontal and vertical axis

Ordered Grid Super Sampling

- Rotated Grid Super-Sampling
 - The sub-sample grid is shifted off of the axis

Rotated Grid Super Sampling

Reduce the number of samples

Ordered Grid Super Sampling

An Implementation

3D Game World

Rotated Grid Super Sampling

Image Quality (Near Horizontal)

Image Quality

Image Quality (45 degree)

Image Quality (45+ degree)

Comparison

Eye Sensitivity to Different Angles

Some Findings

- Anti-aliasing improve the image quality, but always comes with performance cost.
- Higher resolution can only reduce the aliasing effect but not eliminate
- Typical rotating angle is about 20~30 degrees for RGSS
- RGSS is superior than OGSS
 - 2-sampled RGSS ≈ 4-sample OGSS

Anti-Aliasing Result

Anti-Aliasing Result

Non anti-aliasing

OGSS

RGSS

Anti-Aliasing Result

Non anti-aliasing OGSS RGSS

Multi-Sample AA (MSAA)

- Similar to super-sampling
- Sample texture once for all sub-samples in a pixel

MSAA

Sample texture once for all sub-samples in a pixel

More than just SSAA and MSAA

- CSAA (Coverage Sampling AA)
- AMSAA (Adaptive MSAA)
- Transparency AA
- CFAA (Custom Filter AA)
- SMAA (Subpixel Morphological AA)
- FXAA (Fast Approximate AA)
- SRAA (Subpixel Reconstruction AA)
- MLAA (Morphological AA)
- TXAA (Temporal AA)
- **•** ...

Coverage Sampling AA (CSAA)

 Decouple coverage samples from ordinary color samples

CSAA Mode	colorSamples value	coverageSamples value
Вх	4	8
BxQ (Quality)	8	8
16x	4	16
16xQ (Quality)	8	16

Coverage Sampling AA (CSAA)

Similar to Enhanced Quality AA (EQAA)

Adaptive AA and Transparency AA

 Solving texture aliasing with alpha transparency in texels

Adaptive AA and Transparency AA

Adaptive AA and Transparency AA

 Solving texture aliasing with alpha transparency in texels

Custom Filter AA (CFAA)

Custom Filter AA (CFAA)

Standard 8x MSAA (Box Filter)

12x CFAA Narrow Tent Filter

16x CFAA Wide Tent Filter

Morphological AA (MLAA)

Smooth out jaggies using post processing

Morphological AA (MLAA)

FXAA

Fast Approximate AA (post processing)

FXAA

◆ Find all the edges and smooth the edges

45

Subpixel Reconstruction AA

 \leftarrow Similar Quality \rightarrow

(a) $1 \times \text{Shading} + \text{Box (poor, fast)}$

(b) NEW: 1× Shading + SRAA (good, fast)

(c) $16 \times \text{Shading} + \text{Box} (\text{good}, \text{slow})$

Subpixel Reconstruction AA

(a) Vector Input

(b) $1 \times Shading$

(c) 1× Shading + **MLAA**

(d) 1× Shading + New SRAA

(e) 16384× Shading Reference

Subpixel Reconstruction AA

- Shaded sample
 - Edge
- Geometric sample

Use less samples to achieve higher samples

results

Q&A

