SHENDUO ZHANG

November 8, 2020 (GMT+8)

zhangshenduo@gmail.com

Problem 1

On $L^2[a,b]$, consider the function set $\left\{e^{2\pi \mathbf{i} n x}\right\}_{n=-\infty}^{\infty}$,

- 1. If $|b-a| \le 1$, prove that $S^{\perp} = \{\theta\}$;
- 2. If |b-a| > 1, prove that $S^{\perp} \neq \{\theta\}$.

Solution 1.a First, we know S forms a orthogonal system in $L^2[a,b]$. The elements in set S has periodic of length 1. And by Fourier analysis, S forms a complete basis for all integrable and quadratic integrable periodic function on \mathbb{R} with periodic length 1, i.e. $L^2[T]$, where T is a length 1 interval. Let T be such an interval and $[a,b] \subset T$. Then by extending $L^2[T] \ni f|_{T\setminus [a,b]} := 0$ and completeness of S, the claim follows.

Solution 1.b Take $f \in S^{\perp}$, we have the following equation

$$\int_{a}^{a+1} f(x)\overline{e^{2\pi i n x}} dx + \int_{a+1}^{a+1+\epsilon} f(x)\overline{e^{2\pi i n x}} dx = 0, \forall n \in \mathbb{Z}.$$
 (1)

We construct a function $f \neq 0$ such that,

$$\int_{a}^{a+1} f(x)\overline{e^{2\pi i n x}} dx = -\int_{a+1}^{a+1+\epsilon} f(x)\overline{e^{2\pi i n x}} dx \forall n \in \mathbb{Z}.$$
 (2)

Using the periodic nature of $e^{2\pi i nx}$,

$$\int_{a}^{a+1} f(x)\overline{e^{2\pi \mathbf{i}nx}} dx = \int_{a}^{a+\epsilon} -f(x)\overline{e^{2\pi \mathbf{i}nx}} dx \forall n \in \mathbb{Z}.$$
 (3)

An obvious choice of f can be taken as,

$$f(x) = \begin{cases} 1, & x \in [a, a + \epsilon] \\ 0, & x \in (a + \epsilon, a + 1] \\ -1, & x \in (a + 1, a + 1 + \epsilon] \end{cases}$$
 (4)

Problem 2

Let $\{e_n\}_1^{\infty}$, $\{f_n\}_1^{\infty}$ be two orthonormal set, such that

$$\sum_{n=1}^{\infty} ||e_n - f_n||^2 < 1.$$
 (5)

Prove that completeness of one implies that of the other one.

Solution 2.a Suppose $\{e_n\}$ is complete and $\{f_n\}$ is not. Completeness implies totalness. Then exist a f such that $f \neq 0$ and $\langle f, f_n \rangle = 0, \forall n \in \mathbb{N}$. Hence by completeness of $\{e_n\}$ we have

$$||f||^2 = \sum_{n=1}^{\infty} |\langle f, e_n \rangle|^2$$

$$= \sum_{n=1}^{\infty} |\langle f, e_n \rangle - \langle f, f_n \rangle|^2$$

$$= \sum_{n=1}^{\infty} |\langle f, e_n - f_n \rangle|^2$$

$$\leq \sum_{n=1}^{\infty} ||f||^2 ||e_n - f_n||^2$$

$$< ||f||^2$$

Problem 3

Let \mathfrak{X} be a Hilbert space. Let \mathfrak{X}_0 be a closed linear subspace of \mathfrak{X} . Let $\{e_n\}$ and $\{f_n\}$ be orthonormal basis of \mathfrak{X}_0 and \mathfrak{X}_0^{\perp} . Prove that: $\{e_n\} \cup \{f_n\}$ is a set of orthonormal basis of \mathfrak{X} .

Solution 3.a First, orthogonality and normality is trivial, because taking union does not change the norm of each element and the two basis are subset of orthogonal sets. It only suffices to prove $\{e_n\} \cup \{f_n\}$ is a set of basis for \mathfrak{X} . This can be done by orthogonal decomposition. For any given $x \in \mathfrak{X}$, \mathfrak{X}_0 is a closed subset of \mathfrak{X} , hence there exists a unique $x_0 \in \mathfrak{X}_0$, $x_1 \in \mathfrak{X}_0^{\perp}$ such that $x = x_0 + x_1$. And $\{e_n\}$, $\{f_n\}$ are basis of \mathfrak{X}_0 , \mathfrak{X}_0^{\perp} , hence we have the follows identity,

$$x = x_0 + x_1 = \sum_{n=0}^{\infty} \langle e_n, x_0 \rangle e_n + \sum_{m=0}^{\infty} \langle f_m, x_1 \rangle f_m$$
 (6)

which give the claim.

Problem 4

Let \mathfrak{X} be an inner product space, $\{e_n\}$ be an orthonormal set in \mathfrak{X} . Prove that,

$$\left| \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\langle y, e_n \rangle} \right| \le ||x|| ||y||, \quad \forall x, y \in \mathfrak{X}$$
 (7)

Proof.

$$\left| \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\langle y, e_n \rangle} \right|^2 \le \left(\sum_{n=1}^{\infty} \langle x, e_n \rangle^2 \right) \left(\sum_{n=1}^{\infty} \langle y, e_n \rangle^2 \right)$$

$$\le \|x\| \|y\|$$

Problem 5

Find $(a_0, a_1, a_2) \in \mathbb{R}^3$ minimizing $\int_0^1 |e^t - a_0 - a_1 t - a_2 t^2|^2 dt$.

Solution 5.a Expanding e^t to the polynomial orthogonal basis,

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{3!} + \cdots$$
 (8)

each term is non-negative on [0,1]. By the monotonicity of $|x|^2$, the choice of $(1,1,\frac{1}{2})$ minimizes the integral.

Problem 6

Assume all \mathcal{X}, \mathcal{Y} are Banach spaces.

Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, prove that

- 1. $||A|| = \sup_{||x|| < 1} ||Ax||$,
- 2. $||A|| = \sup_{||x|| < 1} ||Ax||$.

Solution 6.a

$$||A|| = \sup_{\|x\|=1} ||Ax|| \le \sup_{\|x\| \le 1} ||Ax|| = \sup_{\|x\| \le 1} \left\| A \frac{x}{\|x\|} \right\| ||x|| \le \sup_{\|x\| \le 1} \left\| A \frac{x}{\|x\|} \right\| = ||A||$$
 (9)

Solution 6.b It follows from that the unit ball is dense in its closure and norm of bounded operator is a uniformly continuous function. \Box

Problem 7

Let $f \in \mathcal{L}(\mathcal{X}, \mathbb{R}^1)$, prove that

- 1. $||f|| = \sup_{||x||=1} f(x),$
- 2. $\sup_{\|x\|<\delta} f(x) = \delta \|f\| (\forall \delta > 0).$

Solution 7.a

$$||f|| = \sup_{\|x\|=1} |f(x)| = \sup_{\|x\|=1} \operatorname{sign}(f(x))f(x) \le \sup_{\|x\|=1} f(x)$$
(10)

The other direction is trivial because absolute value of f always dominates f.

Solution 7.b Assume $\delta > 0$, from what we have proved,

$$\delta \|f\| = \delta \sup_{\|x\|=1} f(x) = \sup_{\|x\|=1} \delta f(x) = \sup_{\|x\|=1} f(\delta x) = \sup_{\|x/\delta\|=1} f(x) = \sup_{\|x\|=\delta} f(x)$$
 (11)

Then from what we have proved in problem 6,

$$\sup_{\|x\|=\delta} f(x) = \sup_{\|x\|<\delta} f(x) \tag{12}$$

Problem 8

Let $y(t) \in C[0,1]$, define a functional on C[0,1]

$$f(x) = \int_0^1 x(t)y(t)dt \quad (\forall x \in C[0,1]),$$
(13)

find ||f||.

Solution 8.a The norm on C[0,1] is defined to be

$$||x||_C = \sup_{t \in [0,1]} |x(t)| \tag{14}$$

Hence we have the following upper bound for f on unit sphere,

$$||f|| = \sup_{\|x\|=1} \int_0^1 x(t)y(t)dt \le \int_0^1 ||x||_C |y(t)|dt = \int_0^1 |y(t)|dt$$
 (15)

The lower bound can be implemented by Fourier approximation. Denote $\bar{y} = \text{sign} y$ Observe that

$$\int_{0}^{1} \bar{y}(t)y(t)dt \tag{16}$$

However, \bar{y} is not a continuous function. It's a step function. Consider the Fourier series of \bar{y} , we can construct the following uniformly convergence,

$$\sum_{n=0}^{\infty} \langle \bar{y}, e_i \rangle e_i \to \bar{y} \tag{17}$$

almost everywhere, and e_i is the triangular Fourier basis aligned for interval [0, 1]. Then $\forall \epsilon > 0$, there exists such an N that

$$\sup_{t \in T} \left| |y(t)| - \sum_{n=0}^{N} \langle \bar{y}, e_i \rangle e_i(t) y(t) \right| \le \epsilon \tag{18}$$

where T is interval [0,1] minus a set of 0 Lebesgue measure. Integral the above inequality and the claim follows.

Problem 9

Let f be a non-zero bounded linear functional on \mathcal{X} , let $d = \inf\{\|x\| | f(x) = 1\}$, prove that: $\|f\| = 1/\|d\|$.

Solution 9.a

$$||f|| = \inf\left\{\frac{|f(x)|}{||x||}\right\}$$
 (19)

$$\frac{1}{\|d\|} = \inf\left\{\frac{1}{\|x\|} \middle| f(x) = 1\right\} = \inf\left\{\frac{f(x)}{\|x\|} \middle| f(x) = 1\right\} = \|f\|$$
 (20)

The last equality holds because the linearity of f and $\|\cdot\|$ allow us to change the contour without changing the ratio.

Problem 10

Let $f \in \mathcal{X}^*$, prove that $\forall \epsilon > 0, \exists x_0 \in \mathcal{X}$, such that $f(x_0) = ||f||$ and $||x_0|| \le 1 + \epsilon$.

Solution 10.a

$$||f|| = \sup_{\|x\|=1} |f(x)| \tag{21}$$

 $\forall \epsilon > 0$, we have $x_1 \in \mathcal{X}$ such that $f(x_1) > ||f|| - \epsilon$. Let $x_0 = x_1 \frac{||f||}{f(x_1)}$, then $f(x_0) = ||f||$ and $||x_0|| \le \frac{||f||}{||f|| - \epsilon}$. Then let $\epsilon = \frac{\delta}{1+\delta} ||f||$, where $\delta > 0$, would give the claim.