```
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mour
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q https://archive.apache.org/dist/spark/spark-3.0.0/spark-3.0.0-bin-hadoop3.2.tgz
!tar xf spark-3.0.0-bin-hadoop3.2.tgz
# set your spark folder to your system path environment.
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK HOME"] = "/content/spark-3.0.0-bin-hadoop3.2"
# install findspark using pip
!pip install -q findspark
!pip install pyspark
     Requirement already satisfied: pyspark in /usr/local/lib/python3.7/dist-packages (3.2.0)
     Requirement already satisfied: py4j==0.10.9.2 in /usr/local/lib/python3.7/dist-packages
import findspark
findspark.init()
findspark.find()
     '/content/spark-3.0.0-bin-hadoop3.2'
from pyspark.sql import SparkSession
spark = SparkSession.builder\
        .master("local")\
        .appName("Colab")\
        .config('spark.ui.port', '4050')\
        .getOrCreate()
```

spark

SparkSession - in-memory SparkContext

Spark UI

Version v3.0.0 Master local AppName Colab

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import sqlite3
import seaborn as sns
import sklearn

New Section

```
import pyspark
from pyspark import SparkContext
from pyspark.sql import SQLContext

import pandas as pd
from pyspark.sql import SparkSession
from pyspark.context import SparkContext
import time

from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.sql.functions import *
from pyspark.sql.types import Row
from datetime import datetime

from pyspark.sql import functions as F

from pyspark.ml.feature import VectorAssembler

from pyspark.ml.regression import DecisionTreeRegressor
```

from pyspark.ml.classification import DecisionTreeClassifier

from sklearn.linear_model import LinearRegression

Double-click (or enter) to edit

```
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.sql.functions import col
```

```
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import RandomForest
from pyspark.mllib.linalg import SparseVector
from pyspark.ml.classification import RandomForestClassifier
```

Airpollution=pd.read_csv("drive/MyDrive/my_data/Airpollution2.csv")
Lifeexpectancy=pd.read_csv("drive/MyDrive/my_data/Life expectancy_Li2.csv")
Human_rights_score=pd.read_csv("drive/MyDrive/my_data/Human rights score2.csv")

Airpollution

	Entity	Code	Year	water	indoor	Alcohol	BMI	Smoking	Outdoor	
0	Afghanistan	AFG	1990	7554.05	22388.50	356.53	7701.58	6393.67	4383.83	113
1	Afghanistan	AFG	1991	7359.68	22128.76	320.60	7747.77	6429.25	4426.36	114
2	Afghanistan	AFG	1992	7650.44	22873.77	293.26	7991.02	6561.05	4568.91	118
3	Afghanistan	AFG	1993	10270.73	25599.76	278.13	8281.56	6731.97	5080.29	123
4	Afghanistan	AFG	1994	11409.18	28013.17	250.69	8472.30	6889.33	5499.23	126
6463	Zimbabwe	ZWE	2013	4254.28	7613.56	7377.88	5229.30	9099.55	2053.58	26
6464	Zimbabwe	ZWE	2014	4098.77	7429.45	7202.13	5291.30	8902.22	2030.92	26
6465	Zimbabwe	ZWE	2015	3921.29	7267.03	7174.62	5371.63	8818.57	1994.91	26
6466	Zimbabwe	ZWE	2016	3802.26	7134.60	7174.60	5524.17	8758.49	2030.88	26
6467	Zimbabwe	ZWE	2017	3796.07	6982.34	7227.99	5713.00	8714.71	2112.19	26

6468 rows × 10 columns

pandaDF=pd.merge(Lifeexpectancy, Airpollution, on=["Entity", "Code", "Year"])

pandaDF

	Entity	Code	Year	LE	GDP	Рор	water	indoor	Alcohol	
0	Afghanistan	AFG	1990	50.331	963.00	12412000.0	7554.05	22388.50	356.53	77
1	Afghanistan	AFG	1991	50.999	881.17	13299000.0	7359.68	22128.76	320.60	77
2	Afghanistan	AFG	1992	51.641	843.88	14486000.0	7650.44	22873.77	293.26	79
3	Afghanistan	AFG	1993	52.256	578.40	15817000.0	10270.73	25599.76	278.13	82
4	Afghanistan	AFG	1994	52.842	428.42	17076000.0	11409.18	28013.17	250.69	84
5554	Zimbabwe	ZWE	2013	56.897	1604.00	13350000.0	4254.28	7613.56	7377.88	52
5555	Zimbabwe	ZWE	2014	58.410	1594.00	13587000.0	4098.77	7429.45	7202.13	52
5556	Zimbabwe	ZWE	2015	59.534	1560.00	13815000.0	3921.29	7267.03	7174.62	53
5557	Zimbabwe	ZWE	2016	60.294	1534.00	14030000.0	3802.26	7134.60	7174.60	55
5558	Zimbabwe	ZWE	2017	60.812	1582.37	14237000.0	3796.07	6982.34	7227.99	57

5559 rows × 13 columns

pandaDF1=pd.merge(pandaDF, Human_rights_score, on=["Entity", "Code", "Year"])

pandaDF1

Entity Code Year LE GDP Pop water indoor Alcohol

from pyspark.sql.types import DoubleType
from pyspark.sql.functions import col

Z Alghanistan ArG 1992 31.041 043.00 144000000.0 1000.44 22013.11 293.20 19 pandaDF1.describe()

	Year	LE	GDP	Рор	water	indooı
count	5159.000000	5159.000000	4522.000000	5.159000e+03	5159.000000	5159.000000
mean	2003.574142	67.901436	13560.018618	3.472152e+07	8838.602016	11605.92015
std	8.061120	9.741005	15629.614473	1.307415e+08	53305.993049	58971.623230
min	1990.000000	26.172000	0.000000	4.800000e+04	0.010000	0.020000
25%	1997.000000	61.422500	2546.195000	2.041500e+06	8.945000	83.305000
50%	2004.000000	70.333000	7903.330000	7.582000e+06	180.030000	770.240000
75%	2011.000000	75.100000	18963.750000	2.291550e+07	3385.680000	5891.875000
max	2017.000000	84.290000	156299.000000	1.421022e+09	811265.910000	790215.840000

pandaDF1.isna().sum()

Entity 0 Code 0 Year 0 LE 0 GDP 637 Pop 0 water 0 indoor 0 Alcohol 0 BMI 0 Smoking Outdoor 0 Diet 0 HRS

dtype: int64

pandaDF1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5159 entries, 0 to 5158
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
--- 0 Entity 5159 non-null object

```
1
     Code
                5159 non-null
                                 object
 2
     Year
                5159 non-null
                                 int64
 3
     LE
                                 float64
                5159 non-null
 4
     GDP
                4522 non-null
                                 float64
 5
     Pop
                5159 non-null
                                 float64
                                 float64
 6
     water
                5159 non-null
 7
                                 float64
     indoor
                5159 non-null
 8
                                 float64
     Alcohol
                5159 non-null
 9
                                 float64
     BMI
                5159 non-null
 10
                                 float64
     Smoking
                5159 non-null
                                 float64
 11
     Outdoor
                5159 non-null
 12
                                 float64
     Diet
                5159 non-null
 13
     HRS
                5159 non-null
                                 float64
dtypes: float64(11), int64(1), object(2)
```

memory usage: 604.6+ KB

pandaDF1.dtypes

Entity	object
Code	object
Year	int64
LE	float64
GDP	float64
Pop	float64
water	float64
indoor	float64
Alcohol	float64
BMI	float64
Smoking	float64
Outdoor	float64
Diet	float64
HRS	float64

dtype: object

pandaDF1.aggregate

```
<bound method DataFrame.aggregate of</pre>
                                                      Entity Code Year
                                                                               LE ...
                                                                                         Smoking
0
      Afghanistan
                    AFG
                           1990
                                 50.331
                                                 6393.67
                                                            4383.83
                                                                      11381.38 -2.74
1
      Afghanistan
                     AFG
                           1991
                                 50.999
                                                 6429.25
                                                            4426.36
                                                                      11487.83 -2.66
                                          . . .
2
      Afghanistan
                     AFG
                           1992
                                 51.641
                                                 6561.05
                                                            4568.91
                                                                      11866.24 -2.59
3
      Afghanistan
                     AFG
                           1993
                                 52.256
                                                 6731.97
                                                            5080.29
                                                                      12335.96 -2.51
4
      Afghanistan
                     AFG
                           1994
                                 52.842
                                                 6889.33
                                                            5499.23
                                                                      12672.95 -2.48
                                          . . .
                     . . .
                            . . .
                                     . . .
                                                      . . .
                                                                 . . .
. . .
                                          . . .
5154
          Zimbabwe
                     ZWE
                           2013
                                 56.897
                                                 9099.55
                                                            2053.58
                                                                        2687.64 -0.83
5155
          Zimbabwe
                     ZWE
                           2014
                                 58.410
                                                 8902.22
                                                            2030.92
                                                                        2654.38 -0.78
5156
          Zimbabwe
                     ZWE
                                 59.534
                                                            1994.91
                                                                        2635.95 -0.85
                           2015
                                                 8818.57
                                          . . .
5157
          Zimbabwe
                     ZWE
                                                                        2641.38 -0.88
                           2016
                                 60.294
                                                 8758.49
                                                            2030.88
5158
          Zimbabwe
                     ZWE
                                                                        2664.13 -0.74
                           2017
                                 60.812
                                                 8714.71
                                                            2112.19
```

[5159 rows x 14 columns]>

pandaDF2=pandaDF1[pandaDF1["Year"] == 2000]

	Entity	Code	Year	LE	GDP	Pop	water	indoor	Alcohol
10	Afghanistan	AFG	2000	55.841	502.37	20780000.0	11121.65	28329.38	167.51
38	Albania	ALB	2000	73.955	4808.48	3129000.0	11.05	994.48	864.91
66	Algeria	DZA	2000	70.640	6834.55	31042000.0	788.45	336.49	673.03
91	Andorra	AND	2000	78.857	NaN	65000.0	0.01	0.35	46.45
119	Angola	AGO	2000	46.522	2013.64	16395000.0	22087.22	14498.16	3560.78
5029	Venezuela	VEN	2000	72.112	13992.61	24192000.0	1293.12	212.07	10022.18
5057	Vietnam	VNM	2000	73.025	2773.10	79910000.0	2858.19	29539.65	32313.21
5085	Yemen	YEM	2000	60.683	4212.11	17409000.0	14981.53	9066.98	118.54
5113	Zambia	ZMB	2000	44.000	1428.50	10416000.0	11561.74	7217.43	5115.96
5141	Zimbabwe	ZWE	2000	44.649	2211.20	11881000.0	3602.97	6028.13	6006.02

185 rows × 14 columns

Data Visulization

sns.kdeplot(x='LE', data=pandaDF2)

sns.kdeplot(x='GDP', data=pandaDF2)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5322de0590>

sns.kdeplot(x='Diet ', data=pandaDF2)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5322d3e550>

sns.kdeplot(x='HRS ', data=pandaDF2)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5322cf75d0>

sns.kdeplot(x='water ', data=pandaDF2)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5322c31a90>

sns.kdeplot(x='Smoking ', data=pandaDF2)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5322c12bd0>

sns.kdeplot(x='Alcohol ', data=pandaDF2)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f5322b84150>
```

```
1e-5
2.00 -
1.75 -
```

Double-click (or enter) to edit

≥ *** |

```
pandaDF2['logAlcohol']=np.log(pandaDF2['Alcohol '])
pandaDF2['logDiet']=np.log(pandaDF2['Diet '])
pandaDF2['logSmoking']=np.log(pandaDF2['Smoking '])
pandaDF2['logWater']=np.log(pandaDF2['water '])
pandaDF2['logBMI']=np.log(pandaDF2['BMI '])
pandaDF2['logindoor']=np.log(pandaDF2['indoor'])
pandaDF2['logoutdoor']=np.log(pandaDF2['Outdoor '])
pandaDF2['logpop']=np.log(pandaDF2['Pop '])
pandaDF2['logGDP']=np.log(pandaDF2['GDP'])
```

/usr/local/lib/python3.7/dist-packages/pandas/core/series.py:726: RuntimeWarning: in
 result = getattr(ufunc, method)(*inputs, **kwargs)
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/u""Entry point for launching an IPython kernel.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u after removing the cwd from sys.path.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u import sys

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:8: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:9: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u if __name__ == '__main__':

pandaDF2

	Entity	Code	Year	LE	GDP	Рор	water	indoor	Alcohol
10	Afghanistan	AFG	2000	55.841	502.37	20780000.0	11121.65	28329.38	167.51
38	Albania	ALB	2000	73.955	4808.48	3129000.0	11.05	994.48	864.91
66	Algeria	DZA	2000	70.640	6834.55	31042000.0	788.45	336.49	673.03
91	Andorra	AND	2000	78.857	NaN	65000.0	0.01	0.35	46.45
119	Angola	AGO	2000	46.522	2013.64	16395000.0	22087.22	14498.16	3560.78
5029	Venezuela	VEN	2000	72.112	13992.61	24192000.0	1293.12	212.07	10022.18
5057	Vietnam	VNM	2000	73.025	2773.10	79910000.0	2858.19	29539.65	32313.21
5085	Yemen	YEM	2000	60.683	4212.11	17409000.0	14981.53	9066.98	118.54
5113	Zambia	ZMB	2000	44.000	1428.50	10416000.0	11561.74	7217.43	5115.96
5141	Zimbabwe	ZWE	2000	44.649	2211.20	11881000.0	3602.97	6028.13	6006.02

185 rows × 23 columns

```
pandaDF2 drop=pandaDF2.drop(columns=['Entity', 'Code', 'Year'])
```

```
pandaDF3 drop=pandaDF2 drop.drop(columns=['Alcohol ', 'Diet ', 'Smoking ', 'water ', 'BMI ',
```

pandaDF3_drop

	LE	HRS	logAlcohol	logDiet	logSmoking	logWater	logBMI	logindoor	log
10	55.841	-2.61	5.121043	9.519374	8.910522	9.316649	9.067573	10.251655	8
38	73.955	-0.23	6.762625	7.350792	7.953592	2.402430	7.430820	6.902220	6
66	70.640	-1.94	6.511790	9.377673	9.584756	6.670069	9.697890	5.818568	ξ
91	78.857	3.35	3.838376	2.927989	4.171614	-4.605170	3.546163	-1.049822	2
119	46.522	-2.55	8.177735	8.117975	8.874335	10.002754	7.752812	9.581777	7
5029	72.112	-1.03	9.212556	8.530587	9.393360	7.164813	9.442448	5.356916	8
5057	73.025	-0.15	10.383231	9.834629	10.964289	7.957944	9.118498	10.293489	ξ
5085	60.683	-0.86	4.775250	9.061188	9.045824	9.614573	8.773922	9.112395	8
5113	44.000	-0.28	8.540120	7.319925	8.331827	9.355457	7.613562	8.884254	7
5141	44.649	-0.92	8.700518	7.767222	9.056184	8.189514	8.453109	8.704192	7

185 rows × 11 columns

pd.plotting.scatter_matrix(pandaDF3_drop, alpha=0.5, figsize=(15,15), ax=None, grid=False, di

```
<matplotlib.axes._subplots.AxesSubplot object at 0x7f5322828e50>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53227ea390>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532281e890>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53227d4d90>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f53227992d0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532274d7d0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322704cd0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53226c6210>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532267a710>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322632c10>],
(<matplotlib.axes. subplots.AxesSubplot object at 0x7f53225f4150>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f53225aa650>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53225e1b50>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532258bb90>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f5322559590>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532250fa90>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53224c5f90>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53224884d0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532243e9d0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53223f4ed0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53223b5410>],
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532236a910>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53223a1e10>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322364350>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322319850>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f53222ced50>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322293290>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322249790>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53221fec90>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f53221c11d0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f53221776d0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532212ebd0>],
(<matplotlib.axes. subplots.AxesSubplot object at 0x7f53220f2110>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322125610>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f53220dcb10>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322092fd0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322054550>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f532200aa50>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321fbff50>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321f82490>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321f37990>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321eeee90>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321eb03d0>],
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321e678d0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f5321e9ddd0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321e5f310>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5328ada090>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322db8090>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322c98310>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322b71690>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5322abc910>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321d0ccd0>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321ccc310>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321c82910>],
(<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321c39f10>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321bfb550>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321bb2b50>.
```

```
<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321b75190>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321b2c790>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321b61d90>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321b243d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321adc9d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321a87b10>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321a54610>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321a0bc10>],
 (<matplotlib.axes. subplots.AxesSubplot object at 0x7f53219ce250>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321983850>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f5321939e50>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53218fd490>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53218b1a90>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f5321875110>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f532182b6d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321861cd0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321823310>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53217db910>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321790f10>],
 <matplotlib.axes. subplots.AxesSubplot object at 0x7f532173fb90>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f532170e590>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f53216c3a90>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321678f90>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f532163c4d0>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f53215f19d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53215a7ed0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f532156a410>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f532159f910>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321555e10>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321519350>],
 <matplotlib.axes. subplots.AxesSubplot object at 0x7f53214cd850>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321484d50>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321448290>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53213fd790>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53213b2c90>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f53213761d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f532132a6d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321362bd0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321324110>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53212da610>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f5321290b10>],
 (<matplotlib.axes. subplots.AxesSubplot object at 0x7f5321247fd0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321208550>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f53211c5990>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f5321176f50>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321137490>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f53210ec990>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f5321123e90>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53210e53d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f53210998d0>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x7f532104fdd0>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x7f5321015310>]],
dtype=object)
```



```
from pyspark.sql import SparkSession
#Create PySpark SparkSession
spark = SparkSession.builder \
    .master("local[1]") \
    .appName("SparkByExamples.com") \
    .getOrCreate()
#Create PySpark DataFrame from Pandas
sparkDF=spark.createDataFrame(pandaDF2)
sparkDF.printSchema()
sparkDF.show()
```

```
8
```

```
root
```

```
|-- Entity: string (nullable = true)
|-- Code: string (nullable = true)
|-- Year: long (nullable = true)
|-- LE: double (nullable = true)
|-- GDP: double (nullable = true)
|-- Pop : double (nullable = true)
|-- water : double (nullable = true)
|-- indoor: double (nullable = true)
|-- Alcohol : double (nullable = true)
|-- BMI : double (nullable = true)
```

```
|-- Smoking : double (nullable = true)
|-- Outdoor : double (nullable = true)
|-- Diet : double (nullable = true)
|-- HRS : double (nullable = true)
|-- logAlcohol: double (nullable = true)
|-- logDiet: double (nullable = true)
|-- logSmoking: double (nullable = true)
|-- logWater: double (nullable = true)
|-- logBMI: double (nullable = true)
|-- logindoor: double (nullable = true)
|-- logoutdoor: double (nullable = true)
|-- logGDP: double (nullable = true)
```

						+	+
Entity	Code	Year	LE	GDP	Рор	water	indoor <i> </i>
Afghanistan	AFG	2000	55.841	502.37	2.078E7	 11121.65	28329.38
Albania	ALB	2000	73.955	4808.48	3129000.0	11.05	994.48
Algeria	DZA	2000	70.64	6834.55	3.1042E7	788.45	336.49
Andorra	AND	2000	78.857	NaN	65000.0	0.01	0.35
Angola	AG0	2000	46.522	2013.64	1.6395E7	22087.22	14498.16
Antigua and Barbuda	ATG	2000	73.94	NaN	76000.0	1.31	2.43
Argentina	ARG	2000	73.576000000000001	14368.94	3.6871E7	420.72	3717.56
Armenia	ARM	2000	71.40899999999999	5139.83	3070000.0	41.1	1137.76
Australia	AUS	2000	79.592	36603.05	1.8991E7	9.45	63.94
Austria	AUT	2000	78.23899999999999	34796.26	8069000.0	0.29	133.54
Azerbaijan	AZE	2000	66.763	4214.89	8123000.0	426.1	2690.85
Bahamas	BHS	2000	71.914	NaN	298000.0	3.07	9.02
Bahrain	BHR	2000	74.44	17021.72	665000.0	3.91	2.82
Bangladesh	BGD	2000	65.447	1485.31	1.27658E8	49136.61	79623.84
Barbados	BRB	2000	77.16199999999999	12600.02	272000.0	3.15	0.55
Belarus	BLR	2000	67.36399999999999	9110.98	9872000.0	30.6	618.33
Belgium	BEL	2000	77.867	33719.77	1.0282E7	7.26	65.51
Belize	BLZ	2000	68.847	NaN	247000.0	12.58	38.18
Benin	BEN	2000	55.3910000000000005	1908.94	6866000.0	5467.56	5174.32
Bhutan	BTN	2000	60.88399999999999	NaN	591000.0	188.41	287.65
						+	+

only showing top 20 rows

→

sparkDF.show()

		+						
Entity				•			indoor <i>l</i>	
+ Afghanistan					2.078E7		++- 28329.38	
Albania	ALB	2000	73.955	4808.48	3129000.0	11.05	994.48	
Algeria	DZA	2000	70.64	6834.55	3.1042E7	788.45	336.49	
Andorra	AND	2000	78.857	NaN	65000.0	0.01	0.35	
Angola	AGO	2000	46.522	2013.64	1.6395E7	22087.22	14498.16	
Antigua and Barbuda	ATG	2000	73.94	NaN	76000.0	1.31	2.43	
Argentina	ARG	2000	73.576000000000001	14368.94	3.6871E7	420.72	3717.56	
Armenia	ARM	2000	71.40899999999999	5139.83	3070000.0	41.1	1137.76	

```
Australia | AUS | 2000 |
                                  79.592|36603.05| 1.8991E7|
                                                                9.45
                                                                         63.94
   Austria | AUT | 2000 |
                      0.29
                                                                        133.54
                                 66.763 | 4214.89 | 8123000.0 |
Azerbaijan | AZE | 2000 |
                                                               426.1 | 2690.85 |
   Bahamas | BHS | 2000 |
                                  71.914
                                              NaN | 298000.0
                                                                 3.07
                                                                          9.02
   Bahrain | BHR | 2000 |
                                  74.44 | 17021.72 | 665000.0 |
                                                                3.91
                                                                          2.82
Bangladesh | BGD | 2000 |
                                  65.447 | 1485.31 | 1.27658E8 | 49136.61 | 79623.84 |
  Barbados | BRB | 2000 | 77.161999999999 | 12600.02 | 272000.0 |
                                                                3.15
                                                                          0.55|
                      Belarus | BLR | 2000 |
                                                                30.6
                                                                        618.33 | 1
   Belgium | BEL | 2000 |
                                  77.867 | 33719.77 | 1.0282E7 |
                                                                7.26
                                                                         65.51
    Belize | BLZ | 2000 |
                                              NaN | 247000.0
                                  68.847
                                                               12.58
                                                                         38.18
     Benin | BEN | 2000 | 55.39100000000005 | 1908.94 | 6866000.0 | 5467.56 | 5174.32 |
                                              NaN | 591000.0 | 188.41 |
    Bhutan | BTN | 2000 | 60.883999999999999 |
                                                                        287.65
```

only showing top 20 rows

sparkDFdrop=sparkDF.na.drop()

sparkDFdrop.show()

+ Entity	Code	Year	LE	GDP	 Pop	 water	indoor
+ Afghanistan	 AFG	2000	55.841	502.37	 2.078E7	+ 11121.65	⊦ 28329.38
Albania	ALB	2000	73.955	4808.48	3129000.0	11.05	994.48
Algeria	DZA	2000	70.64	6834.55	3.1042E7	788.45	336.49
Angola	AG0	2000	46.522	2013.64	1.6395E7	22087.22	14498.16
Argentina	ARG	2000	73.576000000000001	14368.94	3.6871E7	420.72	3717.56
Armenia	ARM	2000	71.40899999999999	5139.83	3070000.0	41.1	1137.76
Australia	AUS	2000	79.592	36603.05	1.8991E7	9.45	63.94
Austria	AUT	2000	78.23899999999999	34796.26	8069000.0	0.29	133.54
Azerbaijan	AZE	2000	66.763	4214.89	8123000.0	426.1	2690.85
Bahrain	BHR	2000	74.44	17021.72	665000.0	3.91	2.82
Bangladesh	BGD	2000	65.447	1485.31	1.27658E8	49136.61	79623.84
Barbados	BRB	2000	77.16199999999999	12600.02	272000.0	3.15	0.55
Belarus	BLR	2000	67.36399999999999	9110.98	9872000.0	30.6	618.33
Belgium	BEL	2000	77.867	33719.77	1.0282E7	7.26	65.51
Benin	BEN	2000	55.3910000000000005	1908.94	6866000.0	5467.56	5174.32
Bolivia	BOL	2000	62.452	4173.55	8418000.0	1370.32	3007.4
Bosnia and Herzeg	BIH	2000	74.403	7082.04	3751000.0	5.28	1657.34
Botswana	BWA	2000	50.629	8044.14	1643000.0	665.39	391.98
Brazil	BRA	2000	70.116	9834.42	1.7479E8	11101.07	25221.52
Bulgaria	BGR	2000	71.501	8410.8	7998000.0	11.39	2730.34
+	DGIN				+	+	2/30.34

only showing top 20 rows

```
→
```

sparkDFdrop.select(mean("GDP")).show(truncate=False)

from pyspark.sql.functions import col, skewness, kurtosis
sparkDFdrop.select(skewness('GDP'),kurtosis('GDP')).show()

```
+-----+
| skewness(GDP)| kurtosis(GDP)|
+-----+
|1.4330526864939621|1.0271548775507586|
```

```
import pyspark
```

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import approx_count_distinct,collect_list
from pyspark.sql.functions import collect_set,sum,avg,max,countDistinct,count
from pyspark.sql.functions import first, last, kurtosis, min, mean, skewness
from pyspark.sql.functions import stddev, stddev_samp, stddev_pop, sumDistinct
from pyspark.sql.functions import variance,var_samp, var_pop
from pyspark.mllib.stat import Statistics
```

from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext

Double-click (or enter) to edit

sparkDFdrop.select(sparkDFdrop['Code'], sparkDFdrop['GDP'] + 1).show()

```
+---+
|Code|(GDP + 1)|
+---+
 AFG
      503.37
 ALB | 4809.48 |
 DZA | 6835.55 |
 AGO |
     2014.64
 ARG | 14369.94
 ARM 5140.83
 AUS | 36604.05 |
 AUT | 34797.26 |
 AZE | 4215.89 |
 BHR | 17022.72 |
 BGD | 1486.31
```

```
BRB | 12601.02 |
 BLR
      9111.98
 BEL | 33720.77 |
 BEN
       1909.94
 BOL
      4174.55
 BIH
      7083.04
 BWA
      8045.14
 BRA
      9835.42
 BGR | 8411.8
+----+
only showing top 20 rows
```

sparkDFdrop.filter(sparkDFdrop['LE'] > 65).show()

```
LE| GDP| Pop | water |
            Entity|Code|Year|
      .-----
            Albania | ALB | 2000 | 73.955 | 4808.48 | 3129000.0 | 11.05 |
                                                                         994
                              70.64 | 6834.55 | 3.1042E7 | 788.45 |
            Algeria | DZA | 2000 |
                                                                        336
          Argentina | ARG | 2000 | 73.57600000000001 | 14368.94 |
                                                     3.6871E7 | 420.72 | 3717
            Armenia | ARM | 2000 | 71.408999999999 | 5139.83 |
                                                      3070000.0
                                                                  41.1
                                                                        1137
          Australia | AUS | 2000 |
                                     79.592 | 36603.05 |
                                                      1.8991E7
                                                                  9.45
                                                                          63
            Austria | AUT | 2000 | 78.23899999999999 | 34796.26 |
                                                      8069000.0
                                                                  0.29
                                                                         133
                                                                        2690
         Azerbaijan | AZE | 2000 |
                                     66.763 | 4214.89 |
                                                      8123000.0
                                                                 426.1
            Bahrain | BHR | 2000 |
                                     74.44 | 17021.72 |
                                                      665000.0
                                                                  3.91
                                                                           2
         Bangladesh | BGD | 2000 |
                                     65.447 | 1485.31 |
                                                      1.27658E8 49136.61 79623
           Barbados | BRB | 2000 | 77.1619999999999 | 12600.02 |
                                                       272000.0
                                                                  3.15
            Belarus | BLR | 2000 | 67.3639999999999 | 9110.98 |
                                                      9872000.0
                                                                  30.6
                                                                         618
            Belgium | BEL | 2000 |
                                     77.867 | 33719.77 |
                                                      1.0282E7
                                                                  7.26
                                                                          65
Bosnia and Herzeg... | BIH | 2000 |
                                     74.403 | 7082.04 |
                                                      3751000.0
                                                                  5.28
                                                                        1657
                                   70.116 9834.42
             Brazil | BRA 2000 |
                                                      1.7479E8 | 11101.07 | 25221
           Bulgaria | BGR | 2000 |
                                     71.501 | 8410.8
                                                      7998000.0
                                                                 11.39
                                                                       2730
                             79.118|36942.56|
68.583| 3583.59|
76.366|15211.62|
             Canada | CAN | 2000 |
                                                    3.0588E7
                                                                 24.08
                                                                          29
         Cape Verde | CPV | 2000 |
                                                                 78.76
                                                      428000.0
                                                                         153
             Chile | CHL | 2000 |
                                                       1.5342E7
                                                                  86.4
                                                                        1145
             China| CHN|2000|71.3969999999999| 4730.35|1.29055104E9|25217.51|548103
           Colombia | COL | 2000 | 72.945 | 8496.79 | 3.963E7 | 1369.15 | 4758
```

only showing top 20 rows

```
sparkDFdrop.groupBy("LE").count().show()
```

```
45.09
                      1 |
 77.161999999999999
                      1 |
            65.082
                      1
            58.485
                      11
            51.941
                      1
            68.684
                      1
44.648999999999994
            70.852
                      1
            58.472
            51.203
                      1
            39.441
 74.731000000000001
                      1
            77.779
                      1|
            60.706
                      1
+----+
only showing top 20 rows
```

```
sparkDFdrop.createOrReplaceTempView("LE")
sqlDF = spark.sql("SELECT * FROM LE")
sqlDF.show()
```

```
Entity|Code|Year|
                                     LE|
                                                       GDP |
                Afghanistan | AFG | 2000 |
             Albania | ALB | 2000 |
                                           70.64 | 6834.55 | 3.1042E7 | 788.45 | 336.49
             Algeria | DZA | 2000 |
              Angola | AGO | 2000 |
                                           46.522 | 2013.64 | 1.6395E7 | 22087.22 | 14498.16
           Argentina | ARG | 2000 | 73.5760000000001 | 14368.94 | 3.6871E7 | 420.72 | 3717.56
             Armenia | ARM | 2000 | 71.408999999999 | 5139.83 | 3070000.0 |
                                                                        41.1 1137.76
           Australia | AUS | 2000 |
                                           79.592|36603.05| 1.8991E7|
                                                                         9.45
                                                                                63.94
             Austria | AUT | 2000 | 78.2389999999999 | 34796.26 | 8069000.0 |
                                                                         0.29 | 133.54
          Azerbaijan | AZE | 2000 |
                                           66.763 | 4214.89 | 8123000.0 |
                                                                        426.1 2690.85
             Bahrain | BHR | 2000 |
                                           74.44 | 17021.72 | 665000.0 |
                                                                         3.91
                                                                                  2.82
          Bangladesh | BGD | 2000 |
                                           65.447 | 1485.31 | 1.27658E8 | 49136.61 | 79623.84
            Barbados | BRB | 2000 | 77.1619999999999 | 12600.02 | 272000.0 |
                                                                         3.15
                                                                                 0.55
             Belarus | BLR | 2000 | 67.363999999999 | 9110.98 | 9872000.0 |
                                                                         30.6
                                                                                618.33
             Belgium | BEL | 2000 |
                                           77.867|33719.77| 1.0282E7|
                                                                         7.26 65.51
               Benin | BEN | 2000 | 55.39100000000000 | 1908.94 | 6866000.0 | 5467.56 | 5174.32
             Bolivia | BOL | 2000 |
                                  62.452 | 4173.55 | 8418000.0 | 1370.32 | 3007.4
|Bosnia and Herzeg...| BIH|2000|
                                          74.403 | 7082.04 | 3751000.0 |
                                                                        5.28 | 1657.34
                                         50.629| 8044.14|1643000.0| 665.39| 391.98
70.116| 9834.42| 1.7479E8|11101.07|25221.52
            Botswana | BWA | 2000 |
              Brazil | BRA | 2000 |
            Bulgaria | BGR | 2000 |
                                           71.501 8410.8 7998000.0 11.39 2730.34
```

only showing top 20 rows

SQL queries

```
#1. SQL query with ORDER BY
sqlDF.select(sqlDF["GDP"], sqlDF["LE"]).where(col("GDP") > 10000).orderBy(desc("GDP")).show(1
```

```
+----+

| GDP| LE|

+-----+

|50063.82|77.652|

|48888.03|74.327|

|45886.47|76.812|

|45788.12|77.467|

|43251.1|79.858|

|39021.18|76.712|

|38806.5|76.852|

|37899.95|78.187|

|37772.76|77.969|

|36942.56|79.118|

+-----+

only showing top 10 rows
```

#2. SQL query with BETWEEN
sqlDF.select(sqlDF["GDP"].between(10000, 30000)).show(5)

```
#3. SQL query with min, max and mean sqlDF.agg({'GDP': 'max'}).show() sqlDF.agg({'GDP': 'min'}).show() sqlDF.agg({'GDP': 'mean'}).show()

+----+
|max(GDP)|
+----+
|50063.82|
+----+
|min(GDP)|
+----+
|414.05|
```

+----+

```
+-----+
| avg(GDP)|
+-----+
|11295.573836477997|
+-----+
```

#4. SQL query with like
sqlDF.select("Code",sqlDF["Entity"].like("A%")).show(5)

++	+
Code Entity	LIKE A%
++	+
AFG	true
ALB	true
DZA	true
AGO	true
ARG	true
++	+
only showing	top 5 rows

sqlDF.select("Code", sqlDF.Entity.endswith("a")).show(n=10)

```
+---+
|Code|endswith(Entity, a)|
+---+
 AFG
               false
 ALB
               true
DZA
               true
| AGO|
               true
 ARG
               true
ARM
               true
| AUS |
               true
| AUT|
               true
| AZE|
               false
BHR
               false
```

only showing top 10 rows

sqlDF.select("Code", sqlDF.Entity.startswith("A")).show(n=10, truncate=False)

#5. SQL query with group by and order by
sqlDF.select("Entity").where(col("Entity").isNotNull()).groupBy("Entity").count().orderBy("co

+	+	+	
Entity	cour	nt	
+	+	+	
Chad	1		
Paraguay	1		
Russia	1		
Yemen	1		
Senegal	1		
Sweden	1		
Philippines	1		
Djibouti	1		
Malaysia	1		
Singapore	1		
+	+	+	
only showing	top	10	rows

Double-click (or enter) to edit

Random Forest Regression Analysis

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.inspection import permutation_importance

pandaDF3_dropnull=pandaDF3_drop.dropna()

import random
random.seed(123)
```

```
feature_names=['HRS ', 'logAlcohol', 'logDiet', 'logSmoking', 'logWater', 'logBMI', 'logindoo
X = pd.DataFrame(pandaDF3_dropnull, columns=feature_names)
y = pandaDF3_dropnull.LE
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=12)
```

X_train

	HRS	logAlcohol	logDiet	logSmoking	logWater	logBMI	logindoor	logoutdooi
1097	1.63	6.733152	6.571611	7.399618	3.869116	7.297525	5.593000	6.271442
2076	0.94	9.906702	9.301336	10.307491	1.729884	9.926525	7.883823	8.802336
567	0.15	7.370659	7.692688	8.074714	7.222800	8.074605	8.008831	7.522287
3317	3.43	6.817524	7.348813	8.460064	0.698135	7.948756	2.705380	6.75404
2020	-0.82	7.817714	8.209716	8.171732	8.491783	8.062943	8.837280	6.75434{
119	-2.55	8.177735	8.117975	8.874335	10.002754	7.752812	9.581777	7.956733
4238	-0.70	10.927496	9.375142	10.764683	9.754409	10.634066	9.546614	9.740307
4357	-3.23	8.365111	9.546891	7.909655	9.599719	9.409492	9.818140	8.474499
5057	-0.15	10.383231	9.834629	10.964289	7.957944	9.118498	10.293489	9.593087
2412	-0.28	9.532163	9.764791	10.124997	5.635218	10.195697	8.512450	8.771350

119 rows × 10 columns

```
rf = RandomForestRegressor(n_estimators=100, oob_score=True)
rf.fit(X_train, y_train)
```

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:446: UserWarning: X does not have "X does not have valid feature names, but"
RandomForestRegressor(oob_score=True)

```
→
```

```
rf.feature_importances_
```

```
array([0.0233963 , 0.01860784, 0.01983792, 0.02829134, 0.15692406, 0.02859029, 0.00827395, 0.01478526, 0.02862626, 0.67266678])
```

```
plt.barh(feature_names, rf.feature_importances_)
plt.xlabel("Random Forest Feature Importance")
```

Text(0.5, 0, 'Random Forest Feature Importance')


```
# Predicting the Test set results
y_pred = rf.predict(X_test)
# Evaluating the Algorithm
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))
     Mean Absolute Error: 2.927326500000008
     Mean Squared Error: 14.633554043975062
     Root Mean Squared Error: 3.82538286240411
from sklearn.metrics import r2_score
from scipy.stats import spearmanr, pearsonr
predicted train = rf.predict(X train)
predicted test = rf.predict(X test)
test_score = r2_score(y_test, predicted_test)
spearman = spearmanr(y_test, predicted_test)
pearson = pearsonr(y_test, predicted_test)
print(f'Out-of-bag R-2 score estimate: {rf.oob score :>5.3}')
print(f'Test data R-2 score: {test score:>5.3}')
print(f'Test data Spearman correlation: {spearman[0]:.3}')
print(f'Test data Pearson correlation: {pearson[0]:.3}')
     Out-of-bag R-2 score estimate: 0.766
     Test data R-2 score: 0.881
     Test data Spearman correlation: 0.922
```

Double-click (or enter) to edit

Test data Pearson correlation: 0.94

Multiple linear regression model analysis

```
from pyspark.ml.feature import VectorAssembler
features cols=list(sparkDFdrop.columns)
features cols
     ['Entity',
      'Code',
      'Year',
      'LE',
      'GDP',
      'Pop',
      'water',
      'indoor',
      'Alcohol',
      'BMI',
      'Smoking',
      'Outdoor ',
      'Diet ',
      'HRS ',
      'logAlcohol',
      'logDiet',
      'logSmoking',
      'logWater',
      'logBMI',
      'logindoor',
      'logoutdoor',
      'logpop',
      'logGDP']
features_cols.remove('LE')
features cols.remove('Entity')
features cols.remove('Code')
features cols.remove('Year')
features_cols.remove('Pop ')
features cols.remove('water ')
features_cols.remove('indoor')
features cols.remove('Outdoor ')
features_cols.remove('Alcohol ')
features_cols.remove('BMI ')
features cols.remove('Diet ')
features cols.remove('Smoking')
features cols.remove('GDP')
vec=VectorAssembler(inputCols=features cols, outputCol='features')
```

```
df=vec.transform(sparkDFdrop)
ml_ready_df=df.select(['LE', 'features'])
ml ready df.show(5)
                                  features
         -----+
                55.841 [-2.61,5.12104305...]
                73.955 | [-0.23,6.76262545...|
                 70.64 [-1.94, 6.51178990...]
                46.522 | [-2.55, 8.17773490... |
     |73.5760000000001|[-0.27,8.94870414...|
    +----+
    only showing top 5 rows
from pyspark.sql.functions import rand
import random
random.seed(123)
splits = ml ready df.randomSplit([0.75, 0.25])
train df = splits[0]
test df = splits[1]
from pyspark.ml.regression import LinearRegression
lr = LinearRegression(featuresCol = 'features', labelCol='LE', maxIter=10, regParam=0.3, elas
lr model = lr.fit(train df)
print("Coefficients: " + str(lr_model.coefficients))
print("Intercept: " + str(lr model.intercept))
    Coefficients: [-0.15804686841402,-0.5158848116539819,0.35723941350459776,0.4113042281209
    Intercept: 25.58605148899589
trainingSummary = lr_model.summary
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("R^2: %f" % trainingSummary.r2)
    RMSE: 5.156488
    R^2: 0.765020
lr predictions = lr model.transform(test df)
```

R Squared (R2) on test data = 0.785412

Store data in SQL Database

```
conn=sqlite3.connect("Lifeexpectancy.db")
print(conn)
     <sqlite3.Connection object at 0x7f532315cc70>
conn.execute("DROP TABLE IF EXISTS `Lifeexpectancy`")
print("Table dropped")
conn=sqlite3.connect("Lifeexpectancy.db")
try:
 conn.execute('''CREATE TABLE Lifeexpectancy
               (Entity
                            TEXT NOT NULL,
                Code
                          TEXT NOT NULL,
                Year
                        INTEGER,
                Lifeexpectancy
                                  FLOAT DEFAULT 0,
                GDPpercap
                            FLOAT DEFAULT 0,
                Population
                             FLOAT DEFAULT 0,
                WaterDeaths
                              FLOAT DEFAULT 0,
                IndoorDeaths
                              FLOAT DEFAULT 0,
                AlcoholDeaths FLOAT DEFAULT 0,
                HighBMIDeaths FLOAT DEFAULT 0,
                SmokingDeaths FLOAT DEFAULT 0,
                OutdoorDeaths FLOAT DEFAULT 0,
                DietDeaths
                              FLOAT DEFAULT 0,
                HRS
                              FLOAT DEFAULT 0,
                logAlcohol
                              FLOAT DEFAULT 0,
                logDiet
                              FLOAT DEFAULT 0,
                logSmoking
                              FLOAT DEFAULT 0,
```

```
logWater
                               FLOAT DEFAULT 0,
                logBMI
                               FLOAT DEFAULT 0,
                logIndoor
                               FLOAT DEFAULT 0,
                logOutdoor
                               FLOAT DEFAULT 0,
                logPop
                               FLOAT DEFAULT 0,
                                                              );''')
                logGDP
                               FLOAT DEFAULT 0
 print("Table created successfully")
except Exception as e:
 print(str(e))
 print('Table creation failed!!!')
finally:
 conn.close()
     Table dropped
     Table created successfully
Lifeexpectancy_list=pandaDF2.values.tolist()
Lifeexpectancy list
conn = sqlite3.connect("Lifeexpectancy.db")
cursor = conn.cursor()
try:
 cursor.executemany('''
        INSERT INTO Lifeexpectancy (Entity, Code, Year,
        Lifeexpectancy, GDPpercap, Population, WaterDeaths,
        IndoorDeaths, AlcoholDeaths, HighBMIDeaths, SmokingDeaths, OutdoorDeaths,
       DietDeaths, HRS, logAlcohol, logDiet, logSmoking, logWater, logBMI,
        logIndoor, logOutdoor, logPop, logGDP)
       VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)''', Lifeexpectancy_list)
  conn.commit()
 print("Data Insterted successfully")
except Exception as e:
 print(str(e))
 print("Insertion failed!")
finally:
 conn.close()
     Data Insterted successfully
conn = sqlite3.connect("Lifeexpectancy.db")
try:
 df = pd.read_sql_query('''
               SELECT GDPpercap,
               count(*) as N,
               avg(GDPpercap) as mean GDPpercap,
```

	GDPpercap	N	mean_GDPpercap	max_GDPpercap	min_GDPpercap
0	414.05	185	11750.487901	54039.96	414.05