# Wissenschaftliches Rechnen - Großübung 1.2

Themen: Gleitkommazahlen, Kondition

Ugo & Gabriel

8. November 2022

## Aufgabe 1: Gleitkommazahlen

1. Wie ist der absolute Fehler durch eine fehlerbehaftete Funktion G definiert?

Lösung -

$$E_a(x) = |G(x) - x|$$

Lösung Ende

2. Wie ist der relative Fehler durch eine fehlerbehaftete Funktion G definiert?

— Lösung —

$$E_r(x) = \frac{|G(x) - x|}{|x|}$$

– Lösung Ende —

- 3. Gegeben sei das dezimale Gleitkommazahlenformat  $\mathbb{G}(10,3)$  mit 3 Ziffern und das dezimale Festkommazahlenformat  $\mathbb{F}(10,2,2)$  mit zwei Stellen vor und zwei Stellen nach dem Komma, sowie die Funktionen  $G:\mathbb{R}\to\mathbb{G}(10,3)$  und  $F:\mathbb{R}\to\mathbb{F}(10,2,2)$ , die jeweils auf die nächste darstellbare Zahl **abrunden**.
  - a) Geben Sie den Abstand zwischen zwei Zahlen in den jeweiligen Formaten im Intervall [0,1,1[ sowie [10,100[ an
  - b) Geben Sie die obere Grenze des absoluten Fehlers an, der sich durch G sowie F auf dem Intervallen [0,1,1[ sowie [10,100[ ergibt.
  - c) Geben Sie die obere Grenze des relativen Fehlers an, der sich durch G sowie F auf dem Intervallen [0,1,1[ sowie [10,100[ ergibt.

Lösung

c) 
$$\begin{array}{c|cccc} & & [0,1,1[ & [10,100[ \\ \hline \mathbb{G} & 0,01 & 0,01 \\ \mathbb{F} & 0,1 & 0,001 \\ \end{array} ]$$

### Lösung Ende

- 4. Welche der folgenden Gesetze gelten für Festkommazahlen?
  - a) Assoziativgesetz für die Addition: a + (b + c) = (a + b) + c Ja
  - b) Distributivgesetz: a(b+c) = ab + ac Nein
  - c) Transitivität bzgl. Kleiner:  $a > b \land b > c \Rightarrow a > c$  Ja
  - d) Transitivität bzgl. Gleich:  $a = b \land b = c \Rightarrow a = c$  Ja
  - e) Antisymmetrie  $a < b \land b < a \Rightarrow a = b$  Ja
- 5. Geben Sie die zwei in der Vorlesung/Skript vorgestellten Definitionen der Maschinengenauigkeit an.

### - Lösung -

$$\begin{split} \epsilon &= \max_{x \in \mathbb{Q}^+} \frac{|x - G(x)|}{|x|} = \max_{x \in \mathbb{Q}^+} \frac{x - G(x)}{x}, \\ \epsilon &= \mathop{\arg\min}_{x \in \mathbb{Q}} G(1 + x) > 1, \end{split}$$

#### Lösung Ende -

- 6. Die zwei Definitionen sind äquivalent für den Fall G(x) = floor(x), wobei floor auf die nächste Gleitkommazahl des gegebenen Gleitkommzahlenformates abrundet. Überprüfen Sie ob diese Definition für unterschiedliche Funktionen übereinstimmen, indem Sie die Werte der jeweiligen Definition berechnen:
  - a)  $G_f(x) = floor(x)$ , wobei floor auf die nächste Gleitkommazahl des gegebenen Gleitkommzahlenformates abrundet.
  - b)  $G_{c}(x) = \text{ceil}(x)$ , wobei ceil auf die nächste Gleitkommazahl des gegebenen Gleitkommzahlenformates aufrundet.
  - c)  $G_r(x) = \text{round}(x)$ , wobei round auf die nächste Gleitkommazahl des gegebenen Gleitkommzahlenformates kaufmännisch rundet.

#### Lösung -

$$\begin{array}{l} {\rm a)} \ \, \max_{x \in \mathbb{Q}^+} \frac{|x - G_{\rm f}(x)|}{|x|} = b^{1 - n_m}, \ \, \left( \arg \min_{x \in \mathbb{Q}} G_{\rm f}(1 + x) > 1 \right) = b^{1 - n_m} \\ {\rm b)} \ \, \max_{x \in \mathbb{Q}^+} \frac{|x - G_{\rm c}(x)|}{|x|} = b^{1 - n_m}, \ \, \left( \arg \min_{x \in \mathbb{Q}} G_{\rm c}(1 + x) > 1 \right) = 0 \end{array}$$

b) 
$$\max_{x \in \mathbb{Q}^+} \frac{|x - G_{c}(x)|}{|x|} = b^{1 - n_m}, (\arg \min_{x \in \mathbb{Q}} G_{c}(1 + x) > 1) = 0$$

c) 
$$\max_{x \in \mathbb{Q}^+} \frac{|x - G_{\mathsf{r}}(x)|}{|x|} = \frac{1}{2} b^{1 - n_m}$$
,  $\left( \arg \min_{x \in \mathbb{Q}} G_{\mathsf{r}}(1 + x) > 1 \right) = \frac{1}{2} b^{1 - n_m}$ 

#### Lösung Ende

7. Geben Sie eine sinnvolle Obergrenze für den Fehler, der bei der Division zweier Gleitkommazahlen  $x,y\in\mathbb{G}(b,n_m)$  entstehen kann, in Abhängigkeit der Mantissenstellen  $n_m$  und Basis b an (relativer Fehler von  $\frac{G(x)}{G(y)}$ ).

#### Lösung -

Bei der Abschätzung wie im Skript erhält man  $|rac{r_y g_x - g_y r_x}{g_x g_y + r_y g_x}| < b\epsilon.$ 

#### Lösung Ende -

8. Gegeben sei das dezimale Gleitkommazahlenformat  $\mathbb{G}(10,3)$  mit 3 Ziffern sowie eine beliebige Zahl k. Geben Sie eine Subtraktion x-y an, die einen größeren oder gleich großen relativen Fehler hat als/wie k.

Wähle x=1 und  $y=1-(\frac{0{,}001}{k}).$  Der Fehler ist dann gegeben durch

$$\frac{1 - 0,999}{1 - 1 - \frac{0,001}{k}} = \frac{0,001}{\frac{0,0001}{k}} = k.$$

— Lösung Ende ——

## Aufgabe 2: Kondition

Die Kondition<sup>1</sup> einer Matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  ist definiert als

$$\kappa(\mathbf{A}) = \frac{\max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|}{\min_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|}$$

und charakterisiert den potentiellen numerischen Genauigkeitsverlust jener Matrix. Zunächst kann die Norm  $\|\cdot\|$  beliebig gewählt werden. Wie (fast) überall sonst im Kurs wählen wir im Folgenden die euklidische/ $\ell^2$ -Norm.

1. Wie sieht die Menge aus, die durch  $\|\mathbf{x}\|_2 = 1$  beschrieben wird?

Lösung -

Die Einheitskugel im  $\mathbb{R}^n$ .

– Lösung Ende -

2. Gegeben seien vier lineare Transformationen  $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathbb{R}^{2 \times 2}$ . Im Folgenden ist die Transformation des Einheitskreises unter diesen vier Transformationen zu sehen.



-5 -4 -3 -2 -1 1 2 3 4 5 x

-2 -1 -2 -3 -3

Transformiert mit  ${\bf B}$ 





Entscheiden Sie, ob die folgenden Aussagen gelten oder nicht.

- a) A ist orthogonal. Falsch
- b) B ist singulär. Korrekt
- c) C ist regulär. Korrekt
- d) D ist orthogonal. Korrekt
- e) A hat eine Kondition von 1. Korrekt

<sup>&</sup>lt;sup>1</sup>Falls der Nenner zu Null wird, gilt per Konvention  $\kappa(\mathbf{A}) = \infty$ .

- f) A hat eine größere Kondition als D. Falsch
- g) C hat eine größere Kondition als B. Falsch
- h) C hat eine größere Kondition als D. Korrekt
- 3. Geben Sie, unter Zuhilfenahme der Erkenntnisse der vorherigen Aufgabe, eine geometrische Interpretation für die Kondition an.

- Lösung —

Die Kondition beschreibt die Verzerrung der Einheitskugel nach einer linearen Transformation bzw. den Quotienten aus der stärksten Verlängerung und der stärksten Verkürzung durch besagte Transformation.

– Lösung Ende -

4. Berechnen Sie die Kondition der folgenden Matrizen:

$$\mathbf{A} = \begin{bmatrix} 12 & 0 \\ 0 & 3 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1/8 & 0 \\ 0 & 8 \end{bmatrix}$$

Lösung

- a)  $\kappa(\mathbf{A}) = 4$
- b)  $\kappa(\mathbf{B}) = 64$

Lösung Ende

5. Matrizen mit schlechter Kondition müssen nicht unbedingt einen hohen Genauigkeitsverlust aufweisen. Geben Sie eine Matrix  $\mathbf{A} \in \mathbb{G}(10,3)^{3\times 3}$  mit einer endlichen Kondition von größer oder gleich 100 an, welche einen relativen Fehler von 0 für alle Berechnungen  $\mathbf{A}\mathbf{x}$  mit  $\mathbf{x} \in \mathbb{G}(10,3)^3$  aufweist.

— Lösung –

$$\mathbf{A} = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Lösung Ende -