

Department of Mathematics and Natural Science MAT110: Differential Calculus and Co-ordinate Geometry Section ______, Quiz _____(Fall'22)

Name (PRINT):	ID:

Time: 25 minutes Total Marks: 27

Problem 1 Complete the definition, then use it to answer the question.

- a) A function f is said to be **continuous at** $\mathbf{x} = \mathbf{c}$ provided the following conditions are satisfied:
 - 1. f(x) is defined at x = c
 - 2. $\lim_{x\to c} f(x)$ exists.
 - $3. \lim_{x \to c} f(x) = f(c)$

Write in each case if the function is continuous or not. If not, which of the condition is hampered?

Draw the graph of the functions in the assigned space-

function	Continuous	which con-	Graph
	or not	dition was	
	(Yes/No)	broken?	
		(1/2/3/	
		No condi-	
		tion)	
			,
$f(x) = \frac{x^2 - 9}{x + 3}$	No	1	
$f(x) = \frac{1}{x+3}$	NO	1	
			, , , , , , , , , , , , , , , , , , ,
			<u></u>
$\int r^2 = 9$			
$a(x) \equiv \begin{cases} \frac{x}{x+3}, & x \neq -3 \end{cases}$	No	3	
$g(x) = \begin{cases} \frac{x^2 - 9}{x + 3}, & x \neq -3 \\ -5, & x = -3 \end{cases}$			
,			
			,
			/5
$h(x) = \begin{cases} \frac{x^2 - 9}{x + 3}, & x \neq -3 \\ -6, & x = -3 \end{cases}$			
$h(x) = \begin{cases} x + 3 \end{cases}, x \neq -3$	Yes	no condi-	
(-6, x = -3)		tion	

 $\boxed{[3+3+3+3+3=12]}$

Problem 2 Answer the following:

a. Find the limit and plot the graph showing the end behaviour: for $\lim_{x\to-\infty}\sqrt{5-x}$ [1+1 = 2]

b. Find the limit:
$$\lim_{x \to +\infty} (\sqrt{x^2 - 3x} - x)$$
 [3]

Solution: (a) $\lim_{x \to -\infty} \sqrt{5 - x} = +\infty$ Graph:

(b)

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - 3x} - x \right) = \lim_{x \to +\infty} \left(\sqrt{x^2 - 3x} - x \right) \times \frac{\left(\sqrt{x^2 - 3x} + x \right)}{\left(\sqrt{x^2 - 3x} + x \right)}$$

$$= \lim_{x \to +\infty} \frac{x^2 - 3x - x^2}{\left(\sqrt{x^2 - 3x} + x \right)}$$

$$= \lim_{x \to +\infty} \frac{-3x}{\left(\sqrt{x^2 \left(1 - \frac{3}{x} \right)} + x \right)}$$

$$= \lim_{x \to +\infty} \frac{-3x}{x \left(\sqrt{\left(1 - \frac{3}{x} \right)} + x \right)}$$

$$= \lim_{x \to +\infty} \frac{-3x}{x \left(\sqrt{\left(1 - \frac{3}{x} \right)} + 1 \right)}$$

$$= \lim_{x \to +\infty} \frac{-3}{x \left(\sqrt{\left(1 - \frac{3}{x} \right)} + 1 \right)} = -\frac{3}{2}$$

Problem 3 Let

$$g(t) = \begin{cases} t - 2, & t < 0 \\ t^2, & 0 \le t \le 2 \\ 2t, & t > 2 \end{cases}$$

Find

(a)
$$\lim_{t\to 0} g(t)$$

(b)
$$\lim_{t \to 1} g(t)$$

(c) $\lim_{t\to 2} g(t)$

and plot the graph.

[7+3 = 10]

Solution:

(a)
$$\lim_{t \to 0^{-}} g(t) = \lim_{t \to 0^{-}} (t - 2) = -2$$
 $\lim_{t \to 0^{+}} g(t) = \lim_{t \to 0^{+}} t^{2} = 0$

$$\lim_{t \to 0^+} g(t) = \lim_{t \to 0^+} t^2 = 0$$

$$\lim_{t\to 0^-}g(t)\neq \lim_{t\to 0^+}g(t)$$

: limit does not exist

(b)
$$\lim_{t \to 1} g(t) = \lim_{t \to 1} t^2 = 1^2 = 1$$

(c)
$$\lim_{t \to 2^{-}} g(t) = \lim_{t \to 2^{-}} t^{2} = 4$$

$$\lim_{t \to 2^+} g(t) = \lim_{t \to 2^+} 2t = 4$$

$$\lim_{t \to 2^{-}} g(t) = \lim_{t \to 2^{+}} g(t) = \lim_{t \to 2} g(t) = 4$$

Grpah:

