Integers

Problems about integers.

Problem 1 Describe the set of integers. Give some relevant and revealing examples/nonexamples.

Free Response: Hint: Hint

Problem 2 Explain how to model integer addition with pictures or items. What relevant properties should your model show?

Free Response: Hint: Hint

Problem 3 Explain how to model integer multiplication with pictures or items. What relevant properties should your model show?

Problem 4 Explain what it means for one integer to divide another integer. Give some relevant and revealing examples/nonexamples.

Free Response: Hint: Hint

Problem 5 Use the definition of divides to decide whether the following statements are true or false. In each case, an explanation must be given justifying your claim.

(a) 5|30 (*True* √/ *False*)

Hint: $30 = 5 \cdot 6$.

(b) 7|41 (True \checkmark / False)

Hint: There is no integer solution to 41 = 7k. But $41 = 7 \cdot 5 + 6$.

Author(s): Bart Snapp and Brad Findell

(c) 0|3 (True/False ✓)

Hint: There is no integer solution to 3 = 0k.

(d) 3|0 (True \checkmark / False)

Hint: The solution to 0 = 3k is k = 0.

- (e) $6|(2^2 \cdot 3^4 \cdot 5 \cdot 7)$. (True \checkmark / False)
- (f) $1000|(2^7\cdot 3^9\cdot 5^{11}\cdot 17^8)$ (True \checkmark / False)
- (g) $6000|(2^{21} \cdot 3^{17} \cdot 5^{89} \cdot 29^{20})$. (True \checkmark / False)

Hint: $6 = 2 \cdot 3$, $1000 = 2^3 \cdot 5^3$, and $6000 = 2^4 \cdot 3 \cdot 5^3$. In each case, the primes appear enough times in the second number.

Problem 6 Factor the following integers:

- (a) $111 \ 3 \cdot 37$
- (b) $1234 \ 2 \cdot 617$
- (c) $2345 \overline{)5 \cdot 7 \cdot 67}$
- (d) 4567 *prime*
- (e) $1111111 \overline{3 \cdot 7 \cdot 11 \cdot 13 \cdot 37}$

In each case, how large a prime must you check before you can be sure of your answers? Explain your reasoning.

Problem 7 Find the greatest common divisors below:

(a) $gcd(462, 1463) = \boxed{77}$

Hint: $462 = 2 \cdot 3 \cdot 7 \cdot 11$; $1463 = 7 \cdot 11 \cdot 19$.

(b) $gcd(541, 4669) = \boxed{1}$.

Hint: 541 is prime. $4669 = 7 \cdot 23 \cdot 29$

(c) $\gcd(10000, 2^5 \cdot 3^{19} \cdot 5^7 \cdot 11^{13}) = \boxed{10000}$

Hint: $10000 = 2^5 \cdot 5^5$.

(d) $gcd(11111, 2^{14} \cdot 7^{21} \cdot 41^5 \cdot 101) = \boxed{41}$

Hint: $111111 = 41 \cdot 271$

(e) $\gcd(437^5, 8993^3) = 23^5$

Hint: $437 = 19 \cdot 23$, and $8993 = 17 \cdot 23^2$.

Problem 8 Consider the following:

 $20 \div 8 = 2$ remainder 4,

 $28 \div 12 = 2$ remainder 4.

Is it correct to say that $20 \div 8 = 28 \div 12$? (Yes/No \checkmark)

Explain your reasoning.

Free Response: Hint: The answer "2 remainder 4" is not a single number but rather a pair of numbers that play different roles. Calling this pair of numbers "equal" is questionable. Furthermore, in the division problems, the 2 is about different things: groups of 8 versus groups of 12.

Problem 9 Give a formula for the nth even number: 2n

Problem 10 Give a formula for the nth odd number: 2n-1

Problem 11 Give a formula for the nth multiple of 3: 3n

Problem 12 Give a formula for the nth multiple of -7. $\boxed{-7n}$

Problem 13 Give a formula for the nth number whose remainder when divided by 5 is 1.

If the first such number is 1, the formula is 5n-4.

If the first such number is 6, the formula is 5n+1.