

Today

Real World Entity

Conceptual Level | Entity-Relationship Model (E/R) Level

Conceptual Level | Logical Level | Relational Model

Conceptual Level | Logical Level | Physical Level | SQL

Conceptual Level | Logical Level | Computable Entity

Relational

Edgar Frank "Ted" Codd, IBM, 1969, 1970

Information Retrieval

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Given a set, defining operations on elements of the set!

Given Z={integers}={..., -2, -1, 0, 1, 2, ...}

Operators & Operands:

Unary: -(2), 2!

Binary: 2+3, 2*3, 2^3

Closure:

Result is also an element of the set

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Query in Natural Language -> Query in Math Formula

Who made 'Pulp Fiction'?

```
π (σ (Movie × MovieDirector × Director))

Director.FirstName
Director.LastName

Movie.Id=MovieDirector.Movield
Director.Id=MovieDirector.DirectorId
```

Who acted in 'Pulp Fiction'?

```
π (σ (Movie × Starln × Actor))

Actor.FirstName Actor.LastName Movie.Id=Starln.MovieldAND

Actor.Id=Starln.ActorId
```

3

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Unary Operation	Binary Operation (Set Theory)
$\pi(R)$: Project	R1 ∪ R2: Union
$\sigma(R)$: Select	R1 ∩ R2: Intersection
ho(R) : Rename	R1 \ R2 : Set Difference
	R1 × R2: Cartesian Product

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations
Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Vertical

Filtering

Algebra \times Project (π)

 π , pi, is used to select a subset of <u>attributes</u> (columns) from a relation

$$A = \pi_{\text{attribute list}}(R)$$

R is a relation

<attribute list> subset of attributes of R

A is a <u>relation</u> including all tuples in R with only attributes in list

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

What are directors' name?

$$A = \pi_{FirstName, LastName}(Director)$$

<u>ld</u>	FirstName	LastName	DateOfBirth			MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

What are directors' name?

$$A = \pi_{FirstName, LastName}(Director)$$

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

How many movies each director made?

$$A = \pi_{FirstName, LastName, MovieCount}(Director)$$

<u>ld</u>	FirstName	LastName	DateOfBirth			MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

How many movies each director made?

$$A = \pi_{FirstName, LastName, MovieCount}(Director)$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Horizontal

Filtering

Algebra \times Selection (σ)

 σ , sigma, is used to select a subset of <u>tuples</u> from a relation based on a <u>condition</u> (θ) over relation's attributes.

$$A = \sigma_{\theta}(R)$$

R is a relation

 θ is a Boolean expression on the attributes of R A is a <u>relation</u> including tuples that make θ true

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director was born in US?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director was born in US?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director make more than 20 movies?

$$A = \sigma_{MovieCount > 20}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director make more than 20 movies?

$$A = \sigma_{MovieCount > 20}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director has same first and last names?

$$A = \sigma_{FirstName = LastName}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director has same first and last names?

$$A = \sigma_{FirstName = LastName}$$
 (Director)
= \emptyset

eta and be made up of number of Boolean clauses

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley					13
2	Alfred					47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies or is not American?

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies or is not American?

A1 =
$$\sigma_{PlaceOfBirth='USA'}$$
 AND (MovieCount > 20 OR PlaceOfBirth<>'USA') (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies or is not American?

A2 =
$$\sigma_{\text{(PlaceOfBirth='USA' AND MovieCount > 20) OR (PlaceOfBirth<>'USA')}}$$
 (Director)


```
Operation Precedence for Logical Operations
() > NOT > AND = OR
```

Commutative Law

```
A AND B = B AND A (we say A commutes with B under AND)
A OR B = B OR A (we say A commutes with B under OR)
```

Associative Law

```
A AND (B AND C) = (A AND B) AND C = A AND B AND C
A OR (B OR C) = (A OR B) OR C = A OR B OR C
```

Distributive Law

```
A AND (B OR C) = (A AND B) OR (A AND C)

A OR (B AND C) = (A OR B) AND (A OR C)
```

de Morgan's Theorem**

```
NOT (A \text{ AND } B) = \text{NOT}(A) \text{ OR NOT}(B)
NOT (A \text{ OR } B) = \text{NOT}(A) \text{ AND NOT}(B)
```

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

=
$$\sigma_{\text{MovieCount}} > 20 \text{ AND PlaceOfBirth='USA'}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

A1 =
$$\sigma_{PlaceOfBirth='USA'}$$
 (Director)
A = $\sigma_{MovieCount > 20}$ (A1)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{MovieCount > 20} (\sigma_{PlaceOfBirth='USA'} (Director))$$

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{PlaceOfBirth='USA'} (\sigma_{MovieCount > 20} (Director))$$

=
$$\sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

=
$$\sigma_{\text{MovieCount}} > 20 \text{ AND PlaceOfBirth='USA'}$$
 (Director)

=
$$\sigma_{\text{MovieCount} > 20}$$
 ($\sigma_{\text{PlaceOfBirth='USA'}}$ (Director))

$$\sigma_{\theta}(\sigma_{\theta'}(R))$$
 $=$
 $\sigma_{\theta AND \theta'}(R)$
 $=$
 $\sigma_{\theta'AND \theta}(R)$
 $=$
 $\sigma_{\theta'}(\sigma_{\theta}(R))$

Corollary: $\sigma_{\theta}(\sigma_{\theta'}(\sigma_{\theta''}(\sigma_{\theta'''}(R))) = \sigma_{\theta \text{ AND } \theta' \text{AND } \theta''}(R)$

Algebra \times Selection (σ) \times Project (π)

37

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Find directors' name who make more than 20 movies?

Algebra \times Selection (σ) \times Project (π)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Find directors' name who make more than 20 movies?

$$A1 = \sigma_{MovieCount > 20}$$
 (Director)

Algebra × Selection (σ) × Project (π)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Find directors' name who make more than 20 movies?

A1 =
$$\sigma_{\text{MovieCount} > 20}$$
 (Director)

A = $\pi_{\text{FirstName, LastName}}$ (A1)

=
$$\pi_{\text{FirstName, LastName}}$$
 ($\sigma_{\text{MovieCount}} > 20$ (Director))

Algebra × Selection (σ) × Project (π) 40

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Find directors' name who make more than 20 movies?

$$A = \sigma_{MovieCount > 20} (\pi_{FirstName, LastName} (Director))$$

Relational Model × Algebra

41

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra \times Rename (ρ)

 ρ , rho, is used to rename a relation or its attributes or both

$$A = \rho_{\langle R'(a'/a, b'/b, ...)\rangle}(R)$$

R is a relation

R' is the new name for R(a, b, ...)

a' is the new name for attribute a of R

b' is the new name for attribute b of R

...

43

Algebra \times Rename (ρ)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \pi_{\text{FirstName, Name}} \left(\rho_{\text{ActiveDirector(Name/LastName)}} \left(\sigma_{\text{MovieCount > 20}} (\text{Director}) \right) \right)$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Binary Operations

Relational Model × Algebra

46

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations
Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Union (U)

U, union, is used to include tuples exist in either relations

$$A = R1 \cup R2$$

R1 and R2 are relations A has all tuples from R1 and R2

No duplicate!

Algebra × Union (U)

U, union, is used to include tuples exist in <u>either</u> relations

$$A = R1 \cup R2$$

Commutative Law $R1 \cup R2 = R2 \cup R1$

Associative Law $R1 \cup (R2 \cup R3) = (R1 \cup R2) \cup R3 = R1 \cup R2 \cup R3$

Algebra \times Union (\cup)

	Director								
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount			
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13			
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47			
3	Clint	Eastwood	May 31, 1930	USA	803	35			

	Actor							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount		
7	John	Travolta	Feb. 18, 1954	USA	You	67		
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125		
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51		
4	Clint	Eastwood	May 31, 1930	USA	A good	69		

Show all American cast and crews' name?

Algebra \times Union (\cup)

	Director Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

		<u>Actor</u>								
Į	<u>d</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount			
	1	John	Travolta	Feb. 18, 1954	USA	You	61			
	2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125			
	3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51			
	4	Clint	Eastwood	May 31, 1930	USA	A good	69			

Actor ∪ Director

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

I		<u>Actor</u>								
ļ	d	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount			
	1	John	Travolta	Feb. 18, 1954	USA	You	61			
	2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125			
	3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51			
	4	Clint	Eastwood	May 31, 1930	USA	A good	69			

Actor U Director

Attribute Incompatibility (Datatype)

Algebra \times Union (\cup)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

	<u>Actor</u>								
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount			
1	John	Travolta	Feb. 18, 1954	USA	You	61			
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125			
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51			
4	Clint	Eastwood	May 31, 1930	USA	A good	69			

Actor ∪ Director

Attribute Incompatibility (Semantic)

Algebra \times Union (\cup)

	<u>Director</u>							
<u>ld</u>		FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7		Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2		Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3		Clint	Eastwood	May 31, 1930	USA	803	35	

	Actor Actor						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount	
7	John	Travolta	Feb. 18, 1954	USA	You	61	
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125	
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51	
4	Clint	Eastwood	May 31, 1930	USA	A good	69	

 $A = \pi_{\text{FirstName, LastName}} \left(\sigma_{\text{PlaceOfBirth='USA'}} \left(\text{Actor} \right) \right) \cup \left(\pi_{\text{FirstName, LastName}} \left(\sigma_{\text{PlaceOfBirth='USA'}} \left(\text{Director} \right) \right)$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations
Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Intersection (^)

o, intersection, is used to include tuples exist in both relations

$$A = R1 \cap R2$$

R1 and R2 are relations

A has tuples exist both in R1 and R2

Algebra × Intersection (^)

on, intersection, is used to include tuples exist in both relations

$$A = R1 \cap R2$$

Commutative Law $R1 \cap R2 = R2 \cap R1$

Associative Law

$$R1 \cap (R2 \cap R3) = (R1 \cap R2) \cap R3 = R1 \cap R2 \cap R3$$

Distributive Law
$$R1 \cap (R2 \cup R3) = (R1 \cap R2) \cup (R1 \cap R3)$$

$$R1 \cup (R2 \cap R3) = (R1 \cup R2) \cap (R1 \cup R3)$$

Algebra × Intersection (^)

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

	Actor							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount		
7	John	Travolta	Feb. 18, 1954	USA	You	67		
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125		
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51		
4	Clint	Eastwood	May 31, 1930	USA	A good	69		

Which actor has directed a movie?

Algebra × Intersection ()

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

	Actor							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount		
7	John	Travolta	Feb. 18, 1954	USA	You	67		
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125		
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51		
4	Clint	Eastwood	May 31, 1930	USA	A good	69		

$$A = \pi_{FirstName, LastName}$$
 (Actor \cap Director)

Algebra × Intersection ()

				Director				
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth_	BestMovi	eld		MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1		М	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203			47
3	Clint	Eastwood	May 31, 1930	USA	803	$\sqrt{}$		35
	•	•		•	·			
				Actor				
<u>ld</u>	FirstName	LastName	DateOfBirth-	PlaceOfBirth	BestLine			<u>MovieCount</u>
1	lohn	Travolta	Feb. 18, 1954	USA	You			61

<u>ld</u>	FirstName	LastName	DateOfBirth		BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe .	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

 $A = \pi_{FirstName, LastName} (Actor \cap Director)$

Algebra × Intersection (\cappa)

FirstName	LastName		
Stanley	Kubrick		
Alfred	Hitchcock		
Clint	Eastwood		

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}(\text{Director})$

FirstName	LastName		
Stanley	Kubrick		
Alfred	Hitchcock		
Clint	Eastwood		

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}$ (Actor)

Algebra × Intersection (\cappa)

FirstName	LastName
Stanley	Kubrick
Alfred	Hitchcock
Clint	Eastwood

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

$$A = (\pi_{FirstName, LastName}(Actor)) \cap (\pi_{FirstName, LastName}(Director))$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

\, minus, is used to exclude tuples from a relation

$$A = R1 \backslash R2$$

R1 and R2 are relations A has tuples in R1 but not in R2

\, minus, is used to exclude tuples from a relation

$$A = R1 \setminus R2$$

Commutative Law R1 \ R2 ≠ R2 \ R1

\, minus, is used to exclude tuples from a relation

$$A = R1 \setminus R2$$

Associative Law $R1 \setminus (R2 \setminus R3) \neq (R1 \setminus R2) \setminus R3 \text{ (Why?)}$

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	67
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

Which director never appeared in a movie?

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	61
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

$$A = \pi_{FirstName, LastName}$$
 (Director \ Actor)

	Director Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Actor					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestLine	MovieCount
7	John	Travolta	Feb. 18, 1954	USA	You	67
2	Samuel	Jackson	Dec. 21, 1948	USA	Say W	125
3	Uma	Thurman	Apr. 29, 1970	USA	I believe	51
4	Clint	Eastwood	May 31, 1930	USA	A good	69

 $A = \pi_{FirstName, LastName} \underbrace{(Director \setminus Actor)}$

FirstName	LastName
Stanley	Kubrick
Alfred	Hitchcock
Clint	Eastwood

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}$ (Director)

FirstName	LastName
Stanley	Kubrick
Alfred	Hitchcock
Clint	Eastwood

١		
	FirstName	LastName
	John	Travolta
	Samuel	Jackson
	Uma	Thurman
	Clint	Eastwood

 $\pi_{\text{FirstName, LastName}}$ (Actor)

FirstName	LastName		
Stanley	Kubrick		
Alfred	Hitchcock		
Clint	Eastwood		

FirstName	LastName
John	Travolta
Samuel	Jackson
Uma	Thurman
Clint	Eastwood

$$A = (\pi_{FirstName, LastName} (Director)) \setminus (\pi_{FirstName, LastName} (Actor))$$

Algebra × Set Compatibility

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Movie Movie				
<u>ld</u>	Title	Language	RunningTime		
1	2001: A Space Odyssey	English	142		
2	Rosemary's Baby	English	136		

Director and Movie do <u>not</u> share same

- i) Number of attributes
- ii) Datatype in attributes
- iii) Semantics in attributes

A = Director \(\alpha \) Movie

A = Director \(\) Movie

A = Director\\ Movie

Algebra × Set Compatibility

	Director					
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

	Movie Movie				
<u>ld</u>	Title	Language	RunningTime		
1	2001: A Space Odyssey	English	142		
2	Rosemary's Baby	English	136		

Find movies which are NOT the best movies of any directors?

Algebra × Set Compatibility

74

BestMovield
7
203
803

ld 1 2

Find movies which are NOT the best movies of any directors? $A = (\pi_{ld} \text{ (Movie)}) \setminus (\pi_{BestMovield} \text{ (Director)})$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations
Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product