Exercise 3.5 Page No: 3.73

In each of the following systems of equation determine whether the system has a unique solution, no solution or infinite solutions. In case there is a unique solution, find it from 1 to 4:

$$1. x - 3y = 3$$
$$3x - 9y = 2$$

Solution:

The given system of equations is:

$$x - 3y - 3 = 0$$

 $3x - 9y - 2 = 0$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = 1$$
, $b_1 = -3$, $c_1 = -3$
 $a_2 = 3$, $b_2 = -9$, $c_2 = -2$

So according to the question, we get

$$a_1 / a_2 = 1/3$$

 $b_1 / b_2 = -3/-9 = 1/3$ and,
 $c_1 / c_2 = -3/-2 = 3/2$
 $a_1 / a_2 = b_1/b_2 \neq c_1/c_2$

Hence, we can conclude that the given system of equation has no solution.

2.
$$2x + y = 5$$

 $4x + 2y = 10$
Solution:

 \Rightarrow

The given system of equations is:

$$2x + y - 5 = 0$$

 $4x + 2y - 10 = 0$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = 2$$
, $b_1 = 1$, $c_1 = -5$
 $a_2 = 4$, $b_2 = 2$, $c_2 = -10$

So according to the question, we get

$$a_1 \ / \ a_2 \! = \! 2/4 = 1/2$$

$$b_1 / b_2 = 1/2$$
 and,

$$c_1/c_2 = -5/-10 = 1/2$$

$$\Rightarrow$$
 $a_1/a_2 = b_1/b_2 = c_1/c_2$

Hence, we can conclude that the given system of equation has infinity many solutions.

3.
$$3x - 5y = 20$$

 $6x - 10y = 40$
Solution:

The given system of equations is:

$$3x - 5y - 20 = 0$$
$$6x - 10y - 40 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = 3$$
, $b_1 = -5$, $c_1 = -20$
 $a_2 = 6$, $b_2 = -10$, $c_2 = -40$

So according to the question, we get

$$a_1 / a_2 = 3/6 = 1/2$$

 $b_1 / b_2 = -5/-10 = 1/2$ and,

$$c_1/c_2 = -20/-40 = 1/2$$

$$\Rightarrow$$
 $a_1/a_2 = b_1/b_2 = c_1/c_2$

Hence, we can conclude that the given system of equation has infinity many solutions.

4.
$$x - 2y = 8$$

 $5x - 10y = 10$
Solution:

The given system of equations is:

$$x - 2y - 8 = 0$$

 $5x - 10y - 10 = 0$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = 1$$
, $b_1 = -2$, $c_1 = -8$
 $a_2 = 5$, $b_2 = -10$, $c_2 = -10$

So according to the question, we get

$$a_1 / a_2 = 1/5$$

$$b_1 / b_2 = -2/ -10 = 1/5$$
 and,

$$c_1 \, / \, c_2 = \text{-}8/\, \text{-}10 = 4/5$$

$$\Rightarrow$$
 $a_1 / a_2 = b_1 / b_2 \neq c_1 / c_2$

Hence, we can conclude that the given system of equation has no solution.

Find the value of k for which the following system of equations has a unique solution: (5-8)

5.
$$kx + 2y = 5$$

 $3x + y = 1$
 Solution:

The given system of equations is:

$$kx + 2y - 5 = 0$$

$$3x + y - 1 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = k$$
, $b_1 = 2$, $c_1 = -5$

$$a_2 = 3$$
, $b_2 = 1$, $c_2 = -1$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 \neq b_1 / b_2$$

$$k/3 \neq 2/1$$

$$\Rightarrow$$
 k \neq 6

Hence, the given system of equations will have unique solution for all real values of k other than 6.

6.
$$4x + ky + 8 = 0$$

$$2x + 2y + 2 = 0$$

Solution:

The given system of equations is:

$$4x + ky + 8 = 0$$

$$2x + 2y + 2 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 4$$
, $b_1 = k$, $c_1 = 8$

$$a_2 = 2$$
, $b_2 = 2$, $c_2 = 2$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 \neq b_1 / b_2$$

$$4/2 \neq k/2$$

$$\Rightarrow$$
 k \neq 4

Hence, the given system of equations will have unique solution for all real values of k other than 4.

$$7.4x - 5y = k$$

$$2x - 3y = 12$$

Solution

The given system of equations is:

$$4x - 5y - k = 0$$

$$2x - 3y - 12 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 4$$
, $b_1 = 5$, $c_1 = -k$

$$a_2 = 2$$
, $b_2 = 3$, $c_2 = 12$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 \neq b_1 / b_2$$

$$4/2 \neq 5/3$$

 \Rightarrow k can have any real values.

Hence, the given system of equations will have unique solution for all real values of k.

$$8. x + 2y = 3$$

$$5x + ky + 7 = 0$$

Solution:

The given system of equations is:

$$x + 2y - 3 = 0$$

$$5x + ky + 7 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 1$$
, $b_1 = 2$, $c_1 = -3$

$$a_2 = 5, b_2 = k, c_2 = 7$$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 \neq b_1 / b_2$$

$$1/5 \neq 2/k$$

$$\Rightarrow$$
 k \neq 10

Hence, the given system of equations will have unique solution for all real values of k other than 10.

Find the value of k for which each of the following system of equations having infinitely many solution: (9-19)

9.
$$2x + 3y - 5 = 0$$

$$6x + ky - 15 = 0$$

Solution:

The given system of equations is:

$$2x + 3y - 5 = 0$$

$$6x + ky - 15 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 2$$
, $b_1 = 3$, $c_1 = -5$

$$a_2 = 6$$
, $b_2 = k$, $c_2 = -15$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

$$2/6 = 3/k$$

$$\Rightarrow$$
 k = 9

Hence, the given system of equations will have infinitely many solutions, if k = 9.

10.
$$4x + 5y = 3$$

$$kx + 15y = 9$$

Solution:

The given system of equations is:

$$4x + 5y - 3 = 0$$

$$kx + 15y - 9 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 4$$
, $b_1 = 5$, $c_1 = -3$

$$a_2 = k$$
, $b_2 = 15$, $c_2 = -9$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

$$4/k = 5/15 = -3/-9$$

$$4/k = 1/3$$

$$\Rightarrow$$
k = 12

Hence, the given system of equations will have infinitely many solutions, if k = 12.

11.
$$kx - 2y + 6 = 0$$

$$4x - 3y + 9 = 0$$

Solution:

The given system of equations is:

$$kx - 2y + 6 = 0$$

$$4x - 3y + 9 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = k$$
, $b_1 = -2$, $c_1 = 6$
 $a_2 = 4$, $b_2 = -3$, $c_2 = 9$

So according to the question,

For unique solution, the condition is

$$a_1 \ / \ a_2 = b_1 \ / \ b_2 = c_1 \ / \ c_2$$

$$k/4 = -2/-3 = 2/3$$

$$\Rightarrow$$
k = 8/3

Hence, the given system of equations will have infinitely many solutions, if k = 8/3.

12.
$$8x + 5y = 9$$

$$kx + 10y = 18$$

Solution:

The given system of equations is:

$$8x + 5y - 9 = 0$$

$$kx + 10y - 18 = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 8$$
, $b_1 = 5$, $c_1 = -9$

$$a_2 = k$$
, $b_2 = 10$, $c_2 = -18$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

$$8/k = 5/10 = -9/-18 = 1/2$$

Hence, the given system of equations will have infinitely many solutions, if k = 16.

13. 2x - 3y = 7

$$(k+2)x - (2k+1)y = 3(2k-1)$$

Solution:

The given system of equations is:

$$2x - 3y - 7 = 0$$

$$(k+2)x - (2k+1)y - 3(2k-1) = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 2$$
, $b_1 = -3$, $c_1 = -7$
 $a_2 = (k+2)$, $b_2 = -(2k+1)$, $c_2 = -3(2k-1)$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

 $2/(k+2) = -3/-(2k+1) = -7/-3(2k-1)$
 $2/(k+2) = -3/-(2k+1)$ and $-3/-(2k+1) = -7/-3(2k-1)$
 $\Rightarrow 2(2k+1) = 3(k+2)$ and $3\times 3(2k-1) = 7(2k+1)$
 $\Rightarrow 4k+2 = 3k+6$ and $18k-9 = 14k+7$

 \Rightarrow k=4 and $4k = 16 \Rightarrow$ k=4

Hence, the given system of equations will have infinitely many solutions, if k = 4.

14. 2x + 3y = 2(k+2)x + (2k+1)y = 2(k-1)

Solution:

The given system of equations is:

$$2x + 3y - 2 = 0$$

$$(k+2)x + (2k+1)y - 2(k-1) = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = 2$$
, $b_1 = 3$, $c_1 = -5$
 $a_2 = (k+2)$, $b_2 = (2k+1)$, $c_2 = -2(k-1)$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

 $2/(k+2) = 3/(2k+1) = -2/-2(k-1)$
 $2/(k+2) = 3/(2k+1)$ and $3(2k+1) = 22(k-1)$
 $\Rightarrow 2(2k+1) = 3(k+2)$ and $3(k-1) = (2k+1)$
 $\Rightarrow 4k+2 = 3k+6$ and $3k-3 = 2k+1$
 $\Rightarrow k = 4$ and $k = 4$

Hence, the given system of equations will have infinitely many solutions, if k = 4.

15.
$$x + (k+1)y = 4$$

 $(k+1)x + 9y = 5k + 2$
Solution:

The given system of equations is:

$$x + (k+1)y - 4 = 0$$

$$(k+1)x + 9y - (5k + 2) = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$

Here,
$$a_1 = 1$$
, $b_1 = (k+1)$, $c_1 = -4$
 $a_2 = (k+1)$, $b_2 = 9$, $c_2 = -(5k+2)$
So according to the question,
For unique solution, the condition is
$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

$$1 / k+1 = (k+1) / 9 = -4 / -(5k+2)$$

$$1 / k+1 = k+1 / 9$$
and
$$k+1 / 9 = 4 / 5k+2$$

$$\Rightarrow 9 = (k+1)^2$$
and
$$(k+1)(5k+2) = 36$$

$$\Rightarrow 9 = k^2 + 2k + 1$$
and
$$5k^2 + 2k + 5k + 2 = 36$$

$$\Rightarrow k^2 + 2k - 8 = 0$$
and
$$5k^2 + 7k - 34 = 0$$

$$\Rightarrow k^2 + 4k - 2k - 8 = 0$$
and
$$5k^2 + 7k - 10k - 34 = 0$$

$$\Rightarrow k(k+4) - 2(k+4) = 0$$
and
$$(5k+17) - 2(5k+17) = 0$$

$$\Rightarrow (k+4)(k-2) = 0$$
and
$$(5k+17) (k-2) = 0$$

Its seen that k=2 satisfies both the condition.

and

Hence, the given system of equations will have infinitely many solutions, if k = 9.

k = -17/5 or k = 2

16.
$$kx + 3y = 2k + 1$$

 $2(k+1)x + 9y = 7k + 1$
Solution:

 \Rightarrow k = -4 or k = 2

The given system of equations is:

$$kx + 3y - (2k + 1) = 0$$

 $2(k+1)x + 9y - (7k + 1) = 0$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = k$$
, $b_1 = 3$, $c_1 = -(2k+1)$
 $a_2 = 2(k+1)$, $b_2 = 9$, $c_2 = -(7k+1)$

So according to the question,

For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

 $k / 2(k+1) = 3 / 9$ and $3 / 9 = -(2k+1) / -(7k+1)$
 $3k = 2k + 2$ and $7k+1 = 3(2k+1) = 6k + 3$
 $k = 2$ and $k = 2$

Hence, the given system of equations will have infinitely many solutions, if k = 2.

17.
$$2x + (k-2)y = k$$

 $6x + (2k-1)y = 2k + 5$
Solution:

The given system of equations is:

$$2x + (k-2)y - k = 0$$

$$6x + (2k-1)y - (2k+5) = 0$$
The above equations are of the form
$$a_1 x + b_1 y - c_1 = 0$$

$$a_2 x + b_2 y - c_2 = 0$$
Here,
$$a_1 = 2, b_1 = k-2, c_1 = -k$$

$$a_2 = 6, b_2 = 2k-1, c_2 = -2k-5$$
So according to the question,
For unique solution, the condition is

$$a_1 / a_2 = b_1 / b_2 = c_1 / c_2$$

 $2/6 = (k-2)/(2k-1)$ and $(k-2)/(2k-1) = -k/-2k-5$
 $4k - 2 = 6k - 12$ and $(k-2)/(2k+5) = k(2k-1)$
 $2k = 10$ and $2k^2 - 4k + 5k - 10 = 2k^2 - k$
 $\Rightarrow k = 5$ and $2k = 10 \Rightarrow k = 5$

Hence, the given system of equations will have infinitely many solutions, if k = 5.

18.
$$2x + 3y = 7$$

 $(k+1)x + (2k-1)y = 4k+1$
Solution:

The given system of equations is:

$$2x + 3y - 7 = 0$$

$$(k+1)x + (2k-1)y - (4k+1) = 0$$

The above equations are of the form

$$a_1 x + b_1 y - c_1 = 0$$

 $a_2 x + b_2 y - c_2 = 0$

Here,
$$a_1 = 2$$
, $b_1 = 3$, $c_1 = -7$
 $a_2 = (k+1)$, $b_2 = 2k-1$, $c_2 = -(4k+1)$

So according to the question,

For unique solution, the condition is

$$\begin{array}{l} a_1 \ / \ a_2 = b_1 \ / \ b_2 = c_1 \ / \ c_2 \\ 2 \ / \ (k+1) = 3 \ / \ (2k-1) = -7 \ / \ - \ (4k+1) \\ 2 \ / \ (k+1) = 3 \ / \ (2k-1) \quad \text{and} \quad 3 \ / \ (2k-1) = 7 \ / \ (4k+1) \\ 2 \ (2k-1) = 3 \ (k+1) \quad \text{and} \quad 3 \ (4k+1) = 7 \ (2k-1) \\ \Rightarrow 4k-2 = 3k+3 \quad \text{and} \quad 12k+3 = 14k-7 \\ \Rightarrow k = 5 \quad \text{and} \quad 2k = 10 \\ \Rightarrow k = 5 \quad \text{and} \quad k = 5 \end{array}$$

Hence, the given system of equations will have infinitely many solutions, if k = 5.