

Unconstrained optimization method

$$\min_{\mathbf{x}} f(\mathbf{x})$$

- Simulated annealing
 - Start from an initial point
 - Repeatedly consider various new solution points
 - Accept or reject some of these solution candidates
 - Converge to the optimal solution

Unconstrained optimization method

$$\min_{\mathbf{x}} f(\mathbf{x})$$

- Simulated annealing
 - It was introduced by Metropolis in 1953
 - It is based on "similarities" and "analogies with the way that alloys manage to find a nearly global minimum energy level when they are cooled slowly.

Simulated Annealing is a stochastic optimization method

- It uses randomness strategically to explore the solution space
- Randomness can help escape local minima
- This increases the chance of searching near the global optimum

Local optimization

Start from an initial point

Repeatedly consider various new solution points

Reduce cost function at each iteration

Converge to optimal solution

Local optimization

Start from an initial point

Repeatedly consider various new solution points

Reduce cost function at each iteration

Converge to optimal solution

Simulated annealing

Start from an initial point

Repeatedly consider various new solution points

Accept/reject new solution using probability at each iteration

Converge to optimal solution

Local optimization

Local optimization attempts to reduce cost function at each iteration

Local optimization

Local optimization attempts to reduce cost function at each iteration

Simulated annealing accept/reject new solution candidate based on probability

- Intelligently controls the degree of randomness added to stochastic search methods
- Initially, the randomness added to function evaluations is large
- The "temperature" is then slowly lowered according to a predetermined "annealing schedule"


```
Step 1: start from an initial point X = X_0 \& K = 0
Step 2: evaluate cost function F = f(X_k)
Step 3: randomly move from X_K to a new solution X_{K+1}
Step 4: if f(X_{K+1}) < F, then
        Accept new solution
        X = X_{K+1} \& F = f(X_{K+1})
        End if
Step 5: if f(X_{K+1}) \ge F, then
        Accept new solution with certain probability
        X = X_{K+1} \& F = f(X_{K+1}) \text{ iff rand()} < \varepsilon
        End if
Step 6: K = K + 1 \& go to Step 2
```



```
Step 1: start from an initial point X = X_0 \& K = 0
Step 2: evaluate cost function F = f(X_k)
Step 3: randomly move from X_K to a new solution X_{K+1}
Step 4: if f(X_{K+1}) < F, then
        Accept new solution
        X = X_{K+1} \& F = f(X_{K+1})
        End if
Step 5: if f(X_{K+1}) \ge F, then
        Accept new solution with certain probability
        X = X_{K+1} \& F = f(X_{K+1}) \text{ iff rand()} < \varepsilon
        End if
Step 6: K = K + 1 \& go to Step 2
```



```
Step 5: if f(X_{K+1}) \ge F, then

Accept new solution with certain probability

X = X_{K+1} \& F = f(X_{K+1}) iff rand() < \varepsilon

End if
```

- Option 1 : constant probability ε (e.g. ε=0.1)
- Option 2: Dynamically varying probability, i.e., decreasing over time

Step 5: if $f(X_{K+1}) \ge F$, then Accept new solution with certain probability $X = X_{K+1} \& F = f(X_{K+1})$ iff rand() $< \varepsilon$ End if

Metropolis criterion probability of acceptance
 (Use Boltzmann distribution to determine the probability)

$$\mathbf{\varepsilon} = exp\left[-\frac{f(X_{k+1}) - F}{T_{k+1}}\right]$$

 T_{k+1} is a "temperature" parameter that gradually decreases

E.g.,
$$T_{k+1} = \alpha \cdot T_k$$
 where $\alpha < 1$

Step 5: if $f(X_{K+1}) \ge F$, then

Accept new solution with certain probability

$$X = X_{K+1} \& F = f(X_{K+1}) \text{ iff rand()} <= exp\left[-\frac{f(X_{k+1}) - F}{T_{k+1}}\right]$$

End if

High temperature

Attempt to accept all new solutions even if $[f(X_{k+1}) - F]$ is large

Low temperature

Only accept the new solutions where $[f(X_{k+1}) - F]$ is small

Temperature Annealing schedules

Logarithmic annealing schedule

$$t^{(k)} = t^{(1)} \frac{\ln(2)}{\ln(k+1)}$$

Exponential annealing schedule

$$t^{(k+1)} = \gamma t^{(k)}$$

Fast annealing

$$t^{(k)} = \frac{t^{(1)}}{k}$$

Simulated Annealing for non linear optimization

➤ Suppose we want to solve this problem

$$\max f(x) = 12x^5 - 975x^4 + 28000x^3 - 345000x^3 + 1800000x$$

Subject to $0 \le x \le 31$

➤ Graphically we have:

 \triangleright We can see that there are tre local maxima in x=5,20,31 but only x=20 is the global maximum

Simulated Annealing for non linear optimization

- > Starting point: we can choose the initial point randomly, however it is always better to start from a good initial solution. In this case, since no information is available we can choose to start from x = 15.5
- ➤ **Neighborhood Structure** : all feasible solutions can be considered as candidate solutions. In this case we prefer feasible solutions that are relatively close to the current solution.
- Selection of a candidate solution: the new candidate solution can be randomly sampled from a normal distribution with mean $\mu = 0$ and variance $\sigma = \frac{31-0}{6}$ (the denominator equal to 6 increases the probability of choosing a feasible solution), i.e.

$$x_{k+1} = x_k + N(0, \sigma)$$

If x_{k+1} is unfeasible we sample again until we find a feasible one.

➤ **Temperature schema**: we decrease the temperature every n=5 iterations

$$T_1 = 0.2 f(x_0)$$

 $T_2 = 0.5T_1$
 $T_3 = 0.5T_2$
 $T_4 = 0.5T_3$
 $T_5 = 0.5T_4$

Simulated Annealing for non linear optimization

	Iterazione	Т	Soluzione	f(x)
	0		x = 15.5	3 741 121.000
	1	748224	x = 17.557	4 167 533.956
	2	748224	x = 14.832	3 590 466.203
	3	748224	x = 17.681	4 188 641.364
	4	748224	x = 16.662	3 995 966.078
	5	748224	x = 18.444	4 299 788.258
	6	374112	x = 19.445	4 386 985.033
	7	374112	x = 21.437	4 302 36.329
	8	374112	x = 18.642	4 322 687.873
	20	46764	x = 20.680	4 378 591.085
	21	46764	x = 20.031	4 399 955 913
	22	46764	x = 20.184	4 398 462.299
Maximun	n!			
	25	46764	x = 19.377	4 383 048.039

- \triangleright We can notice that in the first iterations f(x) changes considerablt since the Temperature is high
- > Subsequently solutions tend to concentrate in the neighborhood of the optimal solution

Simulated Annealing for TSP

- How can a solution be represented?
 - A vector of integers, i.e., (1,4,2,3,6,5,1)
- How is the initial solution chosen?
 - Every feasible solution is eligible as initial solution
- How is the neighborhood chosen?
 - A neighbour solution is obtained by swapping 2 integers
 - $(1,4,2,3,6,5,1) \rightarrow (1,4,3,2,6,5,1)$
- Mechanism of random selection
 - The initial and final points of a subsequence of the solution vector are randomly selected and the subsequent is swapped (as long as the new candidate solution is feasible)
- Cooling schedule (temperature schedule)
 - $T_1 = 0.2 \cdot f(x_0)$
 - $T_n = 0.5 \cdot T_{n-1}$. every 5 iterations

Settaggio iniziale dei parametri

■ Initial solution

$$\mathbf{x}_0 = (1,2,3,4,5,6,7,1)$$

$$\Box f(x_0) = 69$$

$$\Box T_1 = 13.8$$

$$r=0.2779 -> start from 3$$

0<= r <0.2	da 2
$0.2 \le r \le 0.4$	da 3
$0.4 \le r \le 0.6$	da 4
$0.6 \le r \le 0.8$	da 5
$0.8 \le r \le 1$	da 6

$$r=0,161 -> end in 4$$

$$x_0 = (1,2,3,4,5,6,7,1)$$

 $x_1 = (1,2,4,3,5,6,7,1)$

Feasible? yes

$$0 \le r \le 1/3$$
 Fino a 4
 $1/3 \le r \le 2/3$ Fino a 5
 $2/3 \le r \le 1$ Fino a 6

$$f(x_1)=65 \le f(x_0)=69$$

Settaggio iniziale dei parametri

■ Initial solution

$$\mathbf{x}_0 = (1,2,3,4,5,6,7,1)$$

$$\Box f(x_0) = 69$$

$$\Box T_1 = 13.8$$

r=0.2779 -> start from 3

0<= r <0.2	da 2
$0.2 \le r \le 0.4$	da 3
$0.4 \le r \le 0.6$	da 4
$0.6 \le r \le 0.8$	da 5
0.8<= r <=1	da 6

r=0,161 -> end in 4

$$x_0 = (1,2,3,4,5,6,7,1)$$

 $x_1 = (1,2,4,3,5,6,7,1)$

Feasible? yes

$$0 \le r \le 0.25$$
 Fino a 4
 $0.25 \le r \le 0.5$ Fino a 5
 $0.5 \le r \le 0.75$ Fino a 6
 $0.75 \le r \le 1$ Fino a 7

$$f(x_1)=65 \le f(x_0)=69$$

Initial solution: 1-2-3-4-5-6-7-1

Distance: 69

swap 3-4

Iteration 0:

Initial solutionle x_0 : 1-2-3-4-5-6-7-1

Distance: 69

Iteration 1: swap 3-4

New solution x_1 : 1-2-4-3-5-6-7-1

Distance: 65

Iteration 0:

Initial solution x_0 : 1-2-3-4-5-6-7-1

Distance: 69

Iteration 1: swap 3-4

New solution x_1 : 1-2-4-3-5-6-7-1

Distance: 65

Iteration 2: Swap 3-5-6

New solution x_2 : 1-2-4-6-5-3-7-1

Distance: 64

Iteration 2: Swap 3-5-6

New solution x_2 : 1-2-4-6-5-3-7-1

Distance: 64

Iteration 3: Swap 3-7

New solution x_3 : 1-2-4-6-5-3-7-1

Shell I accept x₃?

$$f(x_2)=64 < f(x_3)=66$$
 $T = 13.83$
Prob(acceptance)= $e^{(f(x_3)-f(x_2))}/T=e^{-2/13.8}=0.865$

x₃ will be accepted with probability 0.865 !!!

Iteration 2: Swap 3-5-6

New solution x_2 : 1-2-4-6-5-3-7-1

Distance: 64

Iteration 3: Swap 3-7

New solution x_3 : 1-2-4-6-5-3-7-1

Shell I accept x₃?

$$f(x_2)=64 < f(x_3)=66$$
 $T = 13.83$
Prob(acceptance)= $e^{(f(x_3)-f(x_2))}/T=e^{-2/13.8}=0.865$

x₃ will be accepted with probability 0.865 !!!

Simulated Annealing: results

Iterazione	Т	Soluzione	f(x)
0		1-2-3-4-5-6-7-1	69
1	13.8	1-3-2-4-5-6-7-1	68
2	13.8	1-2-3-4-5-6-7-1	69
3	13.8	1-3-2-4-5-6-7-1	68
4	13.8	1-3-2-4-6-5-7-1	65
5	13.8	1-2-3-4-6-5-7-1	66
6	6.9	1-2-3-4-5-6-7-1	69
7	6.9	1-3-2-4-5-6-7-1	68
8	6.9	1-2-3-4-5-6-7-1	69
14	3.43	1-3-5-7-6-4-2-1	63
15	3.43	1-3-7-5-6-4-2-1	66
16	1.725	1-3-5-7-6-4-2-1	63
25	0.8625	1-3-7-5-6-4-2-1	66

This is a new simulation of the SA starting from the same initial solution 1-2-3-4-5-6-7-1

Note that we generate the optimal soltion at iterations 14 and 16

Simulated annealing final remarks

- A number of decisions must be taken when applying SA
 - Solution Representation and generation
 - Initial temperature T?
 - Temperature schedule ?
 - How many iterations with the same T value?
 - Stop criteria?

Practical issues

- The initial temperature must be such that about 50% of worsening solutions are initially accepted
- The cooling schedule should be slow for example 10%
- The final temperature should be such that no worsening solutions are accepted, i.e. $T \approx 0$
- ➤ **Note:** Can be teoretically proved that SA asymptotically converges to the global optimum. In practice however its convergence speed is highliy influenced by the **cooling schedule**

Simulated annealing does not guarantee global optimum

However, it tries to avoid a large number of local minima Therefore, it often yields a better solution than local optimization

Simulated annealing is not deterministic

Whether accept or reject a new solution is random

You can get different answers from multiple runs

Simulated annealing is more expensive than local optimization

It is the price you must pay to achieve a better optimal solution

