Presentations by Colin Madland

Colin Madland

Last updated: 2022-05-16

Contents

1	Welcome	5
O'	TESSA22 - Assessment and Digital Technology in Higher Edu-	
	cation	7
	Introduction	7
	Assessment in Higher Education	7
	Technology-Mediated Assessment	7
	Research Directions	
2	Literature	9
3	Methods	11
	3.1 math example	11
4	Applications	13
		13
	4.2 Example two	13
5	Final Words	15

4 CONTENTS

Welcome

Please use the table of contents on the left to navigate through my presentations.

OTESSA22 - Assessment and Digital Technology in Higher Education

Introduction

Background

Scriven, 1967

Bloom, 1968

Mislevy, 1994

Black and Wiliam, 1998

Pellegrino et al., 2001

Approaches to Learning

Biggs, 1993

Conceptions of Assessment

Brown, 1994; 1996

Assessment in Higher Education

Technology-Mediated Assessment

Research Directions

Literature

Here is a review of existing methods.

Methods

We describe our methods in this chapter.

Math can be added in body using usual syntax like this

math example 3.1

p is unknown but expected to be around 1/3. Standard error will be approximated

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

You can also use math in footnotes like this¹.

We will approximate standard error to 0.027^2

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

 $^{^1}$ where we mention $p=\frac{a}{b}$ 2p is unknown but expected to be around 1/3. Standard error will be approximated

Applications

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two

Final Words

We have finished a nice book.