I. Amendments to the Claims

This listing of claims replaces without prejudice all prior versions and listings of claims in the application.

Listing of the Claims:

1.-15. (Canceled).

- 16. (Previously Presented) A stabilizer system for stabilizing halogen-containing polymers against thermal degradation, the stabilizer system comprising:
 - (a) at least one perfluoroalkanesulphonate salt; and
 - (b) at least one indole wherein the indole has the general formula (I)

(I)

wherein m is 0, 1, 2 or 3;

R3 is C1-C18 alkyl, C2-C18 alkenyl, phenyl,

$$- \underbrace{\hspace{1cm}}_{(\mathsf{R}^5)_{\mathsf{m}}}$$

C7-C24 alkylphenyl, C7-C10 phenylalkyl or C1-C4 alkoxy; R4 and R5 are H, C1-C4 alkyl, or C1-C4 alkoxy.

- 17. (Previously Presented) The stabilizer system of claim 16, wherein the perfluoroalkanesulfonate salt is a salt of a metal selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, Sn, Zn, Al, La and Ce.
- 18. (Previously Presented) The stabilizer system of claim 17, wherein the perfluoroalkanesulfonate salt is sodium triflate or potassium triflate.

Application No. 10/552,917 Atty Dkt. LA65134(101-6 PCT US)

- (Previously Presented) The stabilizer system of claim 16, wherein R3 is phenyl. 19.
- 20. (Previously Presented) The stabilizer system of claim 16, wherein the indole is selected from the group consisting of 2-phenylindole and 2-phenyllaurylindole.
- 21. (Previously Presented) The stabilizer system of claim 16, wherein the indole is present in an amount of from about 0.01 to about 10 parts by weight, based on the weight of the halogencontaining polymer and the perfluoroalkanesulfonate salt is present in an amount of from about 0.001 to about 5 parts by weight, based on the weight of the halogen-containing polymer.
- 22. (Previously Presented) The stabilizer system of claim 16, further comprising metal soaps, polyols, disaccharide alcohols, glycidyl compounds, hydrotalcites, alkali metal/alkaline earth metal aluminosilicates, alkali metal/alkaline earth metal hydroxides, alkaline earth metal oxides, alkaline earth metal (hydrogen) carbonates, alkali metal (alkaline earth metal) hydroxycarboxylates or carboxylates, phosphates, plasticizers, antioxidants, fillers, pigments, light stabilizers, lubricants, epoxidized fatty esters and mixtures thereof.
- 23. (Previously Presented) A halogen-containing polymer comprising the stabilizer system of claim 16.
- 24 (Previously Presented) A process for stabilizing a chlorine-containing polymer against thermal degradation, the process comprising adding the stabilizer system according to claim 16 to the chlorine-containing polymer.
- (Previously Presented) A stabilizer system for stabilizing halogen-containing polymers 25. against thermal degradation, the stabilizer system comprising:
 - (a) at least one perfluoroalkanesulphonate salt; and
 - (b) at least one urea wherein the urea has the general formula (II)

$$R^{\theta}$$
 N
 R^{θ}
 R^{θ}
 R^{θ}
 R^{0}
 R^{0}

Application No. 10/552,917 Atty Dkt. LA65134(101-6 PCT US)

wherein Y is S or NH

 R^6 , R^7 , R^8 and R^9 , independently of one another, are H, C_1 - C_{18} alkyl optionally substituted with hydroxyl groups and/or C_1 - C_4 alkoxy groups, C_2 - C_{18} alkenyl, phenyl optionally substituted with up to 3 hydroxy and/or C_1 - C_4 alkyl/alkoxy groups, C_7 - C_{20} alkylphenyl or C_7 - C_{10} phenylalkyl; and 2-substituents selected from R^6 to R^9 may also form a ring, or a dimerized or trimerized urea thereof, and reaction products thereof.

- 26. (Previously Presented) The stabilizer system of claim 25, wherein the perfluoroalkanesulfonate salt is a salt of a metal selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, Sn, Zn, Al, La and Ce.
- (Previously Presented) The stabilizer system of claim 26, wherein the perfluoroalkanesulfonate salt is sodium triflate or potassium triflate.
- (Previously Presented) The stabilizer system of claim 25, wherein R⁶, R⁷, R⁸ and R⁹ independently are phenyl or H.
- (Previously Presented) The stabilizer system of claim 25, wherein the urea is selected
 from the group consisting of N,N'-diphenylthiourea, N-phenylurea, trishydroxyethyl and
 trishydroxypropyl isocyanurate.
- 30. (Previously Presented) The stabilizer system of claim 25, wherein the urea is present in an amount of from about 0.01 to about 10 parts by weight, based on the weight of the halogen-containing polymer and the perfluoroalkanesulfonate salt is present in an amount of from about 0.001 to about 5 parts by weight, based on the weight of the halogen-containing polymer.
- 31. (Previously Presented) The stabilizer system of claim 25, further comprising metal soaps, polyols, disaccharide alcohols, glycidyl compounds, hydrotalcites, alkali metal/alkaline earth metal aluminosilicates, alkali metal/alkaline earth metal hydroxides, alkaline earth metal oxides, alkaline earth metal (hydrogen) carbonates, alkali metal (alkaline earth metal) hydroxycarboxylates or carboxylates, phosphates, plasticizers, antioxidants, fillers, pigments, light stabilizers, lubricants, epoxidized fatty esters and mixtures thereof.

- (Previously Presented) A halogen-containing polymer comprising the stabilizer system of claim 25.
- 33. (Previously Presented) A process for stabilizing a chlorine-containing polymer against thermal degradation, the process comprising adding the stabilizer system according to claim 25 to the chlorine-containing polymer.
- 34. (Previously Presented) A stabilizer system for stabilizing halogen-containing polymers against thermal degradation, the stabilizer system comprising:
 - (a) at least one perfluoroalkanesulphonate salt; and
 - (b) at least one alkanolamines wherein the alkanolamine has the general formula (III)

$$R^{1} = \begin{bmatrix} R^{2} \\ N \end{bmatrix} (CHR^{3}a)y - CHR^{3}b - O \end{bmatrix} \begin{pmatrix} R^{1} \\ N \end{pmatrix} \begin{pmatrix} R^{1} \\ N \end{pmatrix} \begin{pmatrix} R^{2} \\ N \end{pmatrix} \begin{pmatrix} R^{2} \\ N \end{pmatrix} \begin{pmatrix} R^{2} \\ N \end{pmatrix} \begin{pmatrix} R^{3}a \\ N \end{pmatrix} \begin{pmatrix} R$$

wherein x is 1, 2, or 3;

y is 1-6;

n is 1-10;

 R^1 and R^2 independently of one another are H, C_1-C_{22} alkyl, $-[-(CHR^3_a)_y-CHR^3_b-O-]_n-H$, $-[-(CHR^3_a)_y-CHR^3_b-O-]_n-H$, $-[-(CHR^3_a)_y-CHR^3_b-O-]_n-H$, $-[-(CHR^3_a)_y-CHR^3_b-O-]_n-CO-R^4$, C_2-C_{20} alkenyl, C_2-C_{18} acyl, C_4-C_8 cycloalkyl, which may have OH substitution in the β -position, phenyl, C_7-C_{10} alkylphenyl or C_7-C_{10} phenylalkyl, or if x=1, R^1 and R^2 may also form, together with the N atom to which each is bonded, a closed 4-10 membered ring of carbon atoms optionally containing up to 2 heteroatoms, or if x=2, R^1 may be C_2-C_{18} alkylene which may have OH substitution at the two β -carbon atoms and/or may have interruption by one of more O atoms and/or by one or more NR $_2$ groups, dihydroxy-substituted tetrahydrodicyclopentadienylene, dihydroxy substituted ethylcyclohexanylene, dihydroxy-substituted 4,4'-(bisphenol-A-dipropyl ether)ylene, isophoronylene, dimethylcyclohexanylene, dicyclohexylmethanylene or 3,3'-dimethyldicyclohexylmethanylene, or if x=3, R^1 may be a trihydroxy-substituted (tri-N-propyl isocyanurate)triyl; R^3_a and R^3_b independently of one another are C_1-C_{22} alkyl, C_2-C_6 alkenyl, phenyl, C_6-C_{10} alkylphenyl, H or CH_2-X-R^5 , wherein X is O, S, -

Response to Office Action Mailed on November 13, 2008

Application No. 10/552,917 Atty Dkt. LA65134(101-6 PCT US)

O-CO- or -CO-O-:

R4is C1-C18 alkyl, alkenyl or phenyl; and

R⁵ is H, C₁-C₂₂ alkyl, C₂-C₂₂ alkenyl, phenyl or C₆-C₁₀ alkylphenyl.

- (Previously Presented) The stabilizer system of claim 34, further comprising a phosphorous-containing stabilizer.
- 36. (Currently Amended) The stabilizer system of elaim 32 claim 34, wherein the perfluoroalkanesulfonate salt is a salt of a metal selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, Sn, Zn, Al, La and Ce.
- (Previously Presented) The stabilizer system of claim 35, wherein the perfluoroalkanesulfonate salt is sodium triflate or potassium triflate.
- 38. (Previously Presented) The stabilizer system of claim 34, wherein n is 1 and v is 2 or 3.
- 39. (Previously Presented) The stabilizer system of claim 34, wherein the alkanolamines are reaction products of NH₃, or reaction products of primary or secondary amines, with ethane oxide, propene oxide, butane oxide or (thiol)glycidyl ethers or are reaction products of (thio)glycidyl ethers with alkanolamines.
- 40. (Previously Presented) The stabilizer system of claim 34, wherein the alkanolamine is present in an amount of from about 0.01 to about 10 parts by weight, based on the weight of the halogen-containing polymer and the perfluoroalkanesulfonate salt is present in an amount of from about 0.001 to about 5 parts by weight, based on the weight of the halogen-containing polymer.
- 41. (Previously Presented) The stabilizer system of claim 34, further comprising metal soaps, polyols, disaccharide alcohols, glycidyl compounds, hydrotalcites, alkali metal/alkaline earth metal aluminosilicates, alkali metal/alkaline earth metal hydroxides, alkaline earth metal oxides, alkaline earth metal (hydrogen) carbonates, alkali metal (alkaline earth metal) hydroxycarboxylates or carboxylates, phosphates, plasticizers, antioxidants, fillers, pigments,

light stabilizers, lubricants, epoxidized fatty esters and mixtures thereof.

- (Previously Presented) A halogen-containing polymer comprising the stabilizer system of claim 34.
- 43. (Previously Presented) A process for stabilizing a chlorine-containing polymer against thermal degradation, the process comprising adding the stabilizer system according to claim 34 to the chlorine-containing polymer.
- 44. (New) The stabilizer system of claim 16, wherein the indole is 2-phenylindole.
- 45. (New) The stabilizer system of claim 25, wherein the urea is N,N'-diphenylthiourea.
- 46. (New) The stabilizer system of claim 34, wherein the alkanolamine is tris(ethanol) amine.