Department of Computer Science and Engineering School of Technology Pandit Deendayal Energy University (PDEU) Digital Electronics and Computer Organization Lab (DECO) 20CP203P

For Odd Roll Number:

Let us assume that Mango Singh is designing a circuit which can produce the bitwise binary summation and bit-wise binary subtraction. Suppose you are given two four-bit numbers e.g., $X_0 X_1 X_2 X_3$, and $Y_0 Y_1 Y_2 Y_3$. Here, X_0 and Y_0 are the least significant bits, and X_3 and Y_3 are most significant bits. Assume the suitable output variables. Write down the Verilog code for the above mentioned problem statement. Display the four-bit output on output screen for sum $(S_0 S_1 S_2 S_3)$ and carry $(C_0 C_1 C_2 C_3)$ for summation mode (m), and difference and borrow for subtraction mode (m). (No need to generate EPWave).

Note: Take $X_3 X_2 X_1 X_0$, and $Y_3 Y_2 Y_1 Y_0$ as 0100 and 0001, respectively as inputs.

For Even Roll Number:

Let us assume that Delhi Singh is designing a circuit which can produce the bitwise binary summation using carry propagator and generator methods. Suppose you are given two four-bit numbers e.g., X_0 X_1 X_2 X_3 , and Y_0 Y_1 Y_2 Y_3 . Here, X_0 and Y_0 are the least significant bits and X_3 and Y_3 are most significant bits. Assume the suitable output variables. Write down the Verilog code for the above mentioned problem statement with expressions of the outputs. Display the four-bit output on output screen for sum $(S_0$ S_1 S_2 $S_3)$, carry $(C_0$ C_1 C_2 $C_3)$, carry generators $(G_0$ G_1 G_2 $G_3)$, and carry propagators $(P_0$ P_1 P_2 $P_3)$. (No need to generate EPWave).

Note: Take $X_3 X_2 X_1 X_0$, and $Y_3 Y_2 Y_1 Y_0$ as 0101 and 0011, respectively as inputs.