Student #:	Student Name:
Grade 12 Physics	Class 9: Electric Field
	ts: A, B, C, and D. Object A is charged positively. Object A is B is repelled from Object C. Object C is attracted to Object D. ects B, C, and D?
 (a) B is negative, and C and (b) B and C are positive, and (c) B, C, and D are positive. (d) B, C, and D are negative. (e) B and C are negative, and 	d D is negative.
will accelerate at a greater rate (a) The electron; 1.12×10^2 (b) The proton; 1.12×10^{22} (c) The electron; 6.13×10^1 (d) The proton; 6.13×10^{18}	m/s^2 $^{18} m/s^2$
3. An electron is placed between then to <i>C</i> . Which of the follow	n two charged parallel plates at A . It is then moved to B and ring statements are true:
III. The electrostatic force is	is greater at A than at B . So B to C is the same as the work done from A to C . So the same at points A and C . So the decreases as the electron is repelled upward.
(a) I and II (b) I and III	<u> </u>
(c) II and III (d) II and IV (e) III and IV	• B • C
 Using your vast knowledge of electric following configurations: 	c fields, draw diagrams showing the electric field around the
(a) A single stationary charge	(b) Between two parallel plates
\oplus	
	+++++

(c) Three point charges

(d) Point charge and a uniformly negative charged sphere

5. Two $1\,\mathrm{kg}$ charges, each carry a charge of $+1\,\mathrm{C}$. What is the ratio of gravitational force to the electrostatic force?

- 6. A positively charged particle is fixed in place, unable to move. Another charged particle is then brought near and released.
 - (a) Which way does it move?
 - (b) What happens to the force, acceleration, and velocity on the moving particle as it moves?
 - (c) What happens to the charge's electric potential energy as it moves?

- 7. Physicist Robert Millikan used an *oil drop experiments* to discover the elementary charge, by suspending charged oil drops inside a known electric field (between two parallel plates). In an experiment replicating Millikan's oil drop experiment, a pair of parallel plates placed $0.0020\,\mathrm{m}$ apart and the top plate is positive. When the potential difference across the plates is $240\,\mathrm{V}$, an oil drop of mass $2.0\times10^{-14}\,\mathrm{kg}$ gets suspended between the plates.
 - (a) Draw a free-body diagram for the charge.
 - (b) What is the charge on the oil drop?
 - (c) Is there an excess or deficit of electrons on the oil drop?
 - (d) How many electrons are in excess or deficit?

Class 9 Homework Page 2 of 4

8. A positive charge of 3.2×10^{-5} C experiences a force of $4.8\,\mathrm{N}$ to the right when placed in an electric field. What is the magnitude and direction of the electric field at the location of the charge?

Class 9 Homework Page 3 of 4

9. An *electric dipole* is a pair of particles whose charges are equal and opposite. It resembles many molecules. One such case is shown in the diagram below. Two particles with charges $+12 \,\mu\text{C}$ and $-12 \,\mu\text{C}$ are $1.0 \,\text{mm}$ apart along the x-axis. What is the electric field (magnitude and direction) at P?

10. A test charge of $+5.0~\mu\text{C}$ experiences a force of $2.0\times10^3~\text{N}$ [S] when placed at the midpoint of two oppositely charge parallel plates. Assuming that the plates are electrically isolated and have a distance of separation of 8.0~mm, what will be the force experienced by a different charge of $-2.0~\mu\text{C}$, located 2.0~mm from the negative plate?

Class 9 Homework Page 4 of 4