Методы пространственной интерполяции в задаче оценки характеристик лесного массива

Глазырина Светлана Евгеньевна

кафедра ММП ВМК МГУ

Введение

- Знание характеристик лесного покрова необходимо для:
 - Экологического мониторинга
 - Лесного хозяйства
 - Территориального планирования
- Проблема: высокая стоимость и низкая доступность полевых измерений
- Решение: использование методов пространственной интерполяции и данных дистанционного зондирования

Используемые данные

- Данные лесного кадастра:
 - 693 измерения в Колвинском лесничестве
 - Пробные участки круги радиусом 9 м
 - Измерения сгруппированы в кластеры 3×3
- Данные дистанционного зондирования:
 - Мультиспектральные снимки Sentinel-2
 - Вегетационные индексы (NDVI, EVI)
 - Модель высот крон
 - Цифровая модель рельефа

Примеры данных дистанционного зондирования

Методы

- Случайный лес
 - Ансамблевый метод
 - Использование бутстрэпа и случайного подпространства признаков
- Обычный кригинг
 - Стохастический метод интерполяции
 - Учитывает пространственную корреляцию
- Метод обратно-взвешенных расстояний (IDW)
- Semi-Supervised Kernel Regression (SSKR)

Метрики качества

Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |t_i - \hat{t}_i|$$

• Root Mean Squared Error (RMSE):

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(t_i - \hat{t}_i)^2}$$

Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{t_i - \hat{t}_i}{t_i} \right| \cdot 100\%$$

Эксперименты и результаты

Метод	$MAE \pm std$	$RMSE \pm std$	$MAPE(\%) \pm std$
Random Forest	63.44 ± 5.50	83.31 ± 7.38	31.56 ± 2.48
Kernel Ridge	123.45 ± 6.08	158.14 ± 8.22	45.75 ± 1.77
IDW	68.78 ± 5.64	89.64 ± 7.21	32.88 ± 2.25

Таблица: Сравнение базовых методов

- Случайный лес показал лучшие результаты
- Обычный кригинг и IDW ограничены отсутствием учета дополнительных признаков
- SSKR демонстрирует преимущества использования неразмеченных данных

Заключение

- Подтверждена эффективность использования методов частичного обучения
- Данные дистанционного зондирования значительно улучшают качество оценки
- Предложена двухэтапная модель регрессии
- Результаты показывают перспективность комбинирования различных подходов