Quantization, Pruning & Distillation

Large Language Models: Introduction and Recent Advances

ELL881 · AlL821

Dinesh Raghu Senior Researcher, IBM Research

LLM Sizes

Image credits: https://huggingface.co/blog/large-language-models

LLM Sizes

Image credits: https://huggingface.co/blog/large-language-models

Larger the model, larger the

- 1. GPU memory requirement
- 2. latency
- 3. inference cost
- 4. environmental concerns

Image credits: https://huggingface.co/blog/large-language-models

Provider	Model	Input price for 1M tokens	Output price for 1M tokens	Price per API call	Total price
	gpt-4o	\$5.00	\$15.00	\$0.0080	\$80.00
	gpt-4o-mini	\$0.15	\$0.60	\$0.0003	\$3.15

Why is gpt-4o-mini so cheap when compared to gpt-4o?

Image credits: gptforwork.com

Provider	Model	Input price for 1M tokens	Output price for 1M tokens	Price per API call	Total price
	gpt-4o	\$5.00	\$15.00	\$0.0080	\$80.00
	gpt-4o-mini	\$0.15	\$0.60	\$0.0003	\$3.15

Why is gpt-4o-mini so cheap when compared to gpt-4o?

How can we deploy LLMs in a cost-effective manner while maintaining high performance?

Image credits: gptforwork.com

1. Model Compression (lossy)

2. Efficient Engineering (lossless)

1. Model Compression (lossy)

2. Efficient Engineering (lossless)

- 1. Model Compression (lossy)
 - 1. Quantization
 - 2. Pruning
 - 3. Distillation

2. Efficient Engineering (lossless)

- 1. Model Compression (lossy)
 - 1. Quantization: keep the model the same but reduce the number of bits
 - 2. Pruning: remove parts of a model while retaining performance
 - 3. Distillation: train a smaller model to imitate the bigger model
- 2. Efficient Engineering (lossless)

Model Compression

1. Quantization: keep the model the same but reduce the number of bits

2. Pruning: remove parts of a model while retaining performance

3. Distillation: train a smaller model to imitate the bigger model

Quantization: Problem with LLMs

- LLMs have billions of parameters which are expensive to store
- During inference, activations are created as a product of the input and the weights, which similarly are expensive to store
- The goal is to represent billions of values as efficiently as possible

Quantization: Numerical Values Representation

Sign Exponent Significand / Mantissa (1 bit) (8 bits) Significand / Mantissa (23 bits)

FP32 0 1000000 1001001000011111110110111

Quantization: Numerical Values Representation

Sign Exponent Significand / Mantissa (1 bit) (8 bits) (23 bits)

FP32 0 1000000 10010010001111111011011

FP16 0 10000 1001000 (1 bit) (5 bits) (10 bits)

Quantization: Numerical Values Representation

Image credits: Maarten Grootendorst

(23 bits)

Quantizing FP32 to INT8

Quantizing FP32 to INT8

$$S = \frac{2^{b-1}-1}{C}$$
 (scale factor)

$$X_{quantized} = round(s \cdot x)$$
 (quantization)

$$S = \frac{127}{10.8} = 11.76$$
 (scale factor)

$$X_{\text{quantized}} = \text{round}\left(\frac{11.76}{11.76} \cdot \frac{11.76}{11.76}\right)$$
 (quantization)

Dequantizing INT8 to FP32

$$S = \frac{2^{b-1}-1}{C}$$
 (scale factor)

$$X_{\text{quantized}} = \text{round}\left(S \cdot X\right)$$
 (quantization)

Dequantizing INT8 to FP32

Model Compression

- 1. Quantization: keep the model the same but reduce the number of bits
 - 1. Post Training Quantization
 - 2. Quantization Aware Training
- 2. Pruning: remove parts of a model while retaining performance
- 3. Distillation: train a smaller model to imitate the bigger model

Post Training Quantization (PTQ)

- Reduce the model size without altering the LLM architecture and without retraining
- Weights and biases are constants. Easy to compute the scale factor(s).
- Model input and activations are variable. Use a calibration dataset to compute the scale factor(s).

Post Training Quantization (PTQ)

8-bit Vector-wise Quantization

(1) Find vector-wise constants: $C_w \& C_x$

(2) Quantize

$$X_{F16}^*(127/C_X) = X_{I8}$$
 $W_{F16}^*(127/C_W) = W_{I8}$

(3) Int8 Matmul

$$X_{18} W_{18} = Out_{132}$$

(4) Dequantize

$$\frac{Out_{|32}^{*} (C_{X} \otimes C_{W})}{127*127} = Out_{F16}$$

Image credits: Dettmers et al., 2022

Post Training Quantization (PTQ)

Technical Specifications					
	H100 SXM	H100 NVL			
FP64	34 teraFLOPS	30 teraFLOPS			
FP64 Tensor Core	67 teraFLOPS	60 teraFLOPS			
FP32	67 teraFLOPS	60 teraFLOPS			
TF32 Tensor Core*	989 teraFLOPS	835 teraFLOPS			
BFLOAT16 Tensor Core*	1,979 teraFLOPS	1,671 teraFLOPS			
FP16 Tensor Core*	1,979 teraFLOPS	1,671 teraFLOPS			
FP8 Tensor Core*	3,958 teraFLOPS	3,341 teraFLOPS			
INT8 Tensor Core*	3,958 TOPS	3,341 TOPS			
GPU Memory	80GB	94GB			
GPU Memory Bandwidth	3.35TB/s	3.9TB/s			

Datasheet

NVIDIA H100 Tensor Core GPU

Extraordinary performance, scalability, and security for every data center.

Image credits: nvidia.com

PTQ: LLM.int8() [Dettmers et al., 2022]

- regular quantization retains performance at scales up to 2.7B parameters
- once systematic outliers occur at a scale of 6.7B parameters, regular quantization methods fail
- Irrespective of the scale, LLM.int8() maintains 16-bit accuracy

Image credits: Dettmers et al., 2022

PTQ: LLM.int8()

PTQ: LLM.int8()

LLM.int8()

8-bit Vector-wise Quantization

16-bit Decomposition

(1) Decompose outliers

(2) FP16 Matmul

 $X_{F16} W_{F16} = Out_{F16}$

Image credits: Dettmers et al., 2022

Model Compression

- 1. Quantization: keep the model the same but reduce the number of bits
 - 1. Post Training Quantization
 - 2. Quantization Aware Training
- 2. Pruning: remove parts of a model while retaining performance
- 3. Distillation: train a smaller model to imitate the bigger model

- Average memory requirements of finetuning a 65B parameter model is >780GB
- QLoRA reduces the memory requirement to <48GB without degrading the predictive performance

1.4-bit NormalFloat (NF4) Quantization

2. Double Quantization

3. Paged Optimizers

4.LoRA

- 1. NF4 Quantization
- 2. Double Quantization
- 3. Paged Optimizers
- 4. LoRA

Image credits: Shaw Talebi

- 1. NF4 Quantization
- 2. Double Quantization
- 3. Paged Optimizers
- 4. LoRA

Double Quantization is the process of quantizing the quantization constants for additional memory savings

- 1. NF4 Quantization
- 2. Double Quantization
- 3. Paged Optimizers
- 4. LoRA

Image credits: Shaw Talebi

Image credits: [Hu et al., 2022]

- 1. NF4 Quantization
- 2. Double Quantization
- 3. Paged Optimizers
- 1. LoRA

$$\mathbf{Y} = \mathbf{XW} + s\mathbf{XL}_1\mathbf{L}_2$$

$$\mathbf{Y} = \mathbf{X}\mathbf{W} + s\mathbf{X}\mathbf{L}_1\mathbf{L}_2$$

QLoRA [Dettmers et al. 2023]

$$\begin{split} \mathbf{Y} &= \mathbf{X}\mathbf{W} + s\mathbf{X}\mathbf{L}_{1}\mathbf{L}_{2} \\ \mathbf{Y}^{\mathrm{BF16}} &= \mathbf{X}^{\mathrm{BF16}}\mathrm{doubleDequant}(c_{1}^{\mathrm{FP32}}, c_{2}^{\mathrm{k\text{-}bit}}, \mathbf{W}^{\mathrm{NF4}}) + \mathbf{X}^{\mathrm{BF16}}\mathbf{L}_{1}^{\mathrm{BF16}}\mathbf{L}_{2}^{\mathrm{BF16}}, \\ \mathrm{doubleDequant}(c_{1}^{\mathrm{FP32}}, c_{2}^{\mathrm{k\text{-}bit}}, \mathbf{W}^{\mathrm{k\text{-}bit}}) &= \mathrm{dequant}(\mathrm{dequant}(c_{1}^{\mathrm{FP32}}, c_{2}^{\mathrm{k\text{-}bit}}), \mathbf{W}^{\mathrm{4bit}}) = \mathbf{W}^{\mathrm{BF16}} \end{split}$$

QLoRA [Dettmers et al. 2023]

Mean zero-shot accuracy over Winogrande, HellaSwag, PiQA, Arc-Easy, and Arc-Challenge using LLaMA models with different 4-bit data types.

- NFloat data type improves the bitfor-bit accuracy gains compared to regular 4-bit Floats
- Double Quantization (DQ) only leads to minor gains, it allows for a more fine-grained control over the memory footprint

QLoRA [Dettmers et al. 2023]

	Mean 5-shot MMLU Accuracy								
LLaMA Size	7B		13B		33B		65B		Mean
Dataset	Alpaca	FLAN v2	Alpaca	FLAN v2	Alpaca	FLAN v2	Alpaca	FLAN v2	
BFloat16	38.4	45.6	47.2	50.6	57.7	60.5	61.8	62.5	53.0
Float4	37.2	44.0	47.3	50.0	55.9	58.5	61.3	63.3	52.2
NFloat4 + DQ	39.0	44.5	47.5	50.7	57.3	59.2	61.8	63.9	53.1

Mean 5-shot MMLU test accuracy for LLaMA models finetuned with adapters on Alpaca and FLAN v2 for different data types.

Model Compression

1. Quantization: keep the model the same but reduce the number of bits

2. Pruning: remove parts of a model while retaining performance

3. Distillation: train a smaller model to imitate the bigger model

Pruning

Unstructured Pruning

Structured Pruning

Image credits: neuralmagic.com

Magnitude Pruning [Han et al. 2015, See et al. 2016]

- prune weights with smallest absolute value
- prunes 40% of the weights with negligible performance loss
- by adding a retraining phase after pruning, we can prune 80% with no performance loss

Image credits: See et al. 2016

Wanda [Sun et al. 2023]

Magnitude Pruning

Image credits: Sun et al. 2023

Wanda [Sun et al. 2023]

Magnitude Pruning

Wanda

Image credits: Sun et al. 2023

Unstructured Pruning

Dense Matrix

Sparse Matrix

Image credits: nvidia.com

Unstructured pruning can work only if the hardware supports.

Structured Pruning

- NVIDIA A100 GPU supports fine-grained structured sparsity to its Tensor Cores
- Sparse Tensor Cores accelerate a 2:4 sparsity pattern.

Image credits: nvidia.com

Structured Pruning

Input Operands	Accumulator	Dense TOPS	vs. FFMA	Sparse TOPS	vs. FFMA
FP32	FP32	19.5	-	-	-
TF32	FP32	156	8X	312	16X
FP16	FP32	312	16X	624	32X
BF16	FP32	312	16X	624	32X

- NVIDIA A100 GPU supports fine-grained structured sparsity to its Tensor Cores
- Sparse Tensor Cores accelerate a 2:4 sparsity pattern.

Image credits: nvidia.com

Structured Pruning [Xia et al. 2022]

Model Compression

1. Quantization: keep the model the same but reduce the number of bits

2. Pruning: remove parts of a model while retaining performance

3. Distillation: train a smaller model to imitate the bigger model

$$\mathcal{L}_{\mathrm{NLL}}(\theta) = -\sum_{k=1}^{|\mathcal{V}|} \mathbb{1}\{y = k\} \log p(y = k \,|\, x; \theta)$$

$$\mathcal{L}_{ ext{KD}}(heta; heta_T) = -\sum_{k=1}^{|\mathcal{V}|} q(y = k \,|\, x; heta_T) imes \ \log p(y = k \,|\, x; heta)$$

Gold Label [0 0 1 0 0] Teacher Prediction [0.10 0.20 0.50 0.15 0.05]

Pros:

- No restriction on student network structure
- Biggest potential gain in speed

Cons:

- Needs training data
- Expensive to train student and get soft labels from the teacher

Gold Label [0	0	1	0	0]
Soft Target	0.90	0.01	0.05	0.01	0.03]
Hard Target [1.	0.	0	0	0]

$$\mathcal{L}_{\text{KD}}(\theta; \theta_T) = -\sum_{k=1}^{|\mathcal{V}|} q(y = k \mid x; \theta_T) \times \log p(y = k \mid x; \theta)$$

1. Word-Level Knowledge Distillation

$$\mathcal{L}_{ ext{WORD-KD}} = -\sum_{j=1}^{J} \sum_{k=1}^{|\mathcal{V}|} \quad q(t_j = k \,|\, \mathbf{s}, \mathbf{t}_{< j}) imes \ \log p(t_j = k \,|\, \mathbf{s}, \mathbf{t}_{< j})$$

$$\mathcal{L}_{ ext{KD}}(heta; heta_T) = -\sum_{k=1}^{|\mathcal{V}|} q(y = k \,|\, x; heta_T) imes \ \log p(y = k \,|\, x; heta)$$

1. Word-Level Knowledge Distillation

$$\mathcal{L}_{ ext{WORD-KD}} = -\sum_{j=1}^{J} \sum_{k=1}^{|\mathcal{V}|} \quad q(t_j = k \, | \, \mathbf{s}, \mathbf{t}_{< j}) imes \ \log p(t_j = k \, | \, \mathbf{s}, \mathbf{t}_{< j})$$

2. Sequence-Level Knowledge Distillation

$$egin{aligned} \mathcal{L}_{ ext{SEQ-KD}} &= -\sum_{\mathbf{t} \in \mathcal{T}} q(\mathbf{t} \, | \, \mathbf{s}) \log p(\mathbf{t} \, | \, \mathbf{s}) \ &pprox & -\sum_{\mathbf{t} \in \mathcal{T}} \mathbb{1}\{\mathbf{t} = \hat{\mathbf{y}}\} \log p(\mathbf{t} \, | \, \mathbf{s}) \ &= & -\log p(\mathbf{t} = \hat{\mathbf{y}} \, | \, \mathbf{s}) \end{aligned}$$

1. Word-Level Knowledge Distillation

$$\mathcal{L}_{ ext{WORD-KD}} = -\sum_{j=1}^{J} \sum_{k=1}^{|\mathcal{V}|} \quad q(t_j = k \,|\, \mathbf{s}, \mathbf{t}_{< j}) imes \ \log p(t_j = k \,|\, \mathbf{s}, \mathbf{t}_{< j})$$

$$\mathcal{L}_{ ext{KD}}(heta; heta_T) = -\sum_{k=1}^{|\mathcal{V}|} q(y = k \,|\, x; heta_T) imes \ \log p(y = k \,|\, x; heta)$$

2. Sequence-Level Knowledge Distillation

$$\mathcal{L}_{ ext{SEQ-KD}} = -\sum_{\mathbf{t} \in \mathcal{T}} q(\mathbf{t} \, | \, \mathbf{s}) \log p(\mathbf{t} \, | \, \mathbf{s})$$

Self-Instruct [Wang et al. 2023]

Model Compression

1. Quantization: keep the model the same but reduce the number of bits

2. Pruning: remove parts of a model while retaining performance

3. Distillation: train a smaller model to imitate the bigger model

Thank You!!!

