Combo 7

July 3, 2024

1 Lema 13: Lema de minimización acotada

1.1 Enunciado

Sean $n, m \geq 0$. Sea $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ un predicado Σ -p.r.. Entonces

- (a) M(P) es Σ -recursiva.
- (b) Si hay una funcion Σ -p.r. $f:\omega^n\times\Sigma^{*m}\to\omega$ tal que

 $M(P)(\vec{x}, \vec{\alpha}) = \min_t P(t, \vec{x}, \vec{\alpha}) \le f(\vec{x}, \vec{\alpha}), \text{ para cada } (\vec{x}, \vec{\alpha}) \in D_{M(P)},$

entonces M(P) es Σ -p.r..

1.2 Demostración

- (a) Sea $\bar{P}=P\cup C_0^{n+1,m}|_{(\omega^{n+1}\times \Sigma^{*m})-D_P}.$ Note que \bar{P} es Σ -p.r., dado que:
 - Como $D_P, \omega^{n+1} \times \Sigma^{*m}$ son Σ -p.r., $(\omega^{n+1} \times \Sigma^{*m}) D_P$ es Σ -p.r. por Lema
 - Como $C_0^{n+1,m}$ y $(\omega^{n+1}\times\Sigma^{*m})-D_P$ son Σ -p.r., $C_0^{n+1,m}|_{(\omega^{n+1}\times\Sigma^{*m})-D_P}$ es Σ -p.r. por lema de "clausura"
 - La unión de dos funciones Σ -p.r. es Σ -p.r.

Veremos a continuación que $M(P) = M(\bar{P})$. Notese que

$$\{t \in \omega : P(t, \vec{x}, \vec{\alpha}) = 1\} = \{t \in \omega : \bar{P}(t, \vec{x}, \vec{\alpha}) = 1\}$$

Esto claramente dice que $D_{M(P)}=D_{M(\bar{P})}$ y que $M(P)(\vec{x},\vec{\alpha})=M(\bar{P})(\vec{x},\vec{\alpha})$, para cada $(\vec{x},\vec{\alpha})\in D_{M(P)}$, por lo cual $M(P)=M(\bar{P})$.

Veremos entonces que $M(\bar{P})$ es Σ -recursiva. Sea k tal que $\bar{P} \in \mathrm{PR}_k^{\Sigma}$. Ya que \bar{P} es Σ -total y $\bar{P} \in \mathrm{PR}_k^{\Sigma} \subseteq \mathrm{R}_k^{\Sigma}$, tenemos que $M(\bar{P}) \in \mathrm{R}_{k+1}^{\Sigma}$ y por lo tanto $M(\bar{P}) \in \mathrm{R}^{\Sigma}$.

(b) Ya que $M(P)=M(\bar{P})$, basta con probar que $M(\bar{P})$ es Σ -p.r. Primero veremos que $D_{M(\bar{P})}$ es un conjunto Σ -p.r.. Notese que

$$\chi_{D_{M(\vec{P})}}^{\omega^n \times \Sigma^{*m}} = \lambda \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \le f(\vec{x}, \vec{\alpha})} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$$

lo cual nos dice que

$$\chi_{D_{M(\vec{P})}}^{\omega^n \times \Sigma^{*m}} = \lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq x} \; \bar{P}(t, \vec{x}, \vec{\alpha}) \right] \circ \left[f, p_1^{n,m}, ..., p_{n+m}^{n,m} \right]$$

Pero el Lema de cuantificación acotada nos dice que $\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq x} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r. por lo cual tenemos que $\chi_{D_{M(\bar{P})}}^{\omega^n \times \Sigma^{*m}}$ lo es.

Sea

$$P_1 = \lambda t \vec{x} \vec{\alpha} \left[\bar{P}(t, \vec{x}, \vec{\alpha}) \wedge (\forall j \in \omega)_{j < t} \ j = t \vee \neg \bar{P}(j, \vec{x}, \vec{\alpha}) \right]$$

Note que P_1 es Σ -total. Ahora, P_1 es Σ -p.r dado que:

- La negación de un predicado Σ -p.r. es Σ -p.r.
- \bullet La conjunción de dos predicados $\Sigma\text{-p.r.}$ con igual dominio es $\Sigma\text{-p.r.}$
- Sabemos que \bar{P} es Σ -p.r.
- Por lema de cuantificación acotada y varias composiciones, $\lambda t \vec{x} \vec{\alpha} [(\forall j \in \omega)_{j < t} \ j = t]$ es Σ -p.r.

Ademas notese que para $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ se tiene que

$$P_1(t,\vec{x},\vec{\alpha})=1$$
si y solo si $(\vec{x},\vec{\alpha})\in D_{M(\bar{P})}$ y $t=M(\bar{P})(\vec{x},\vec{\alpha})$

Esto nos dice que

$$M(\bar{P}) = \left(\lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right] \right) |_{D_{M(\bar{P})}}$$

por lo cual para probar que $M(\bar{P})$ es Σ -p.r. solo nos resta probar que

$$F = \lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right]$$

lo es. Pero

$$F = \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{y} t^{P_1(t, \vec{x}, \vec{\alpha})} \right] \circ \left[C_0^{n,m}, f, p_1^{n,m}, ..., p_{n+m}^{n,m} \right]$$

y por lo tanto el Lema de Iteración, tenemos que F es Σ -p.r..

2 Lema 14

2.1 Enunciado

Supongamos $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to O$ es Σ -recursiva y $S\subseteq D_f$ es Σ -r.e., entonces $f|_S$ es Σ -recursiva.

2.2 Demostración

- $S = \emptyset$ Entonces $f|_S = \emptyset$ y por lo tanto $f|_S$ es Σ -recursiva.
- $S \neq \emptyset$ Haremos el caso n=m=1 y $O=\Sigma^*$. Tenemos que hay una $F:\omega \to \omega \times \Sigma^*$ tal que $I_F=S$ y $F_{(1)},\ F_{(2)}$ son Σ -recursivas. Ya que $f,\ F_{(1)}$ y $F_{(2)}$ son Σ -computables, hay macros

$$[W2 \leftarrow f(V1, W1)]$$
$$[V2 \leftarrow F_{(1)}(V1)]$$
$$[W1 \leftarrow F_{(2)}(V1)]$$

Ya que los predicados $D = \lambda xy[x \neq y]$ y $D' = \lambda \alpha \beta[\alpha \neq \beta]$ son Σ -p.r., tenemos que son Σ -computables, por lo cual hay macros

[IF
$$D(V1, V2)$$
 GOTO A1]
[IF $D'(W1, W2)$ GOTO A1]

Para para hacer mas amigable la lectura los escribieremos de la siguiente manera

[IF V1
$$\neq$$
 V2 GOTO A1]
[IF W1 \neq W2 GOTO A1]

Sea \mathcal{P} el siguiente programa

$$\begin{array}{lll} \text{L2} & [\text{N2} \leftarrow F_{(1)}(\text{N20})] \\ & [\text{P2} \leftarrow F_{(2)}(\text{N20})] \\ & [\text{IF N1} \neq \text{N2 GOTO L1}] \\ & [\text{IF P1} \neq \text{P2 GOTO L1}] \\ & [\text{P1} \leftarrow f(\text{N1},\text{P1})] \\ & \text{GOTO L3} \\ \text{L1} & \text{N20} \leftarrow \text{N20} + 1 \\ & \text{GOTO L2} \\ \text{L3} & \text{SKIP} \end{array}$$

Es facil ver que $\mathcal P$ computa a $f|_S$, dado que tenemos que ver que $f|_S=\Psi^{1,1,*}_{\mathcal P}$.