Super square-root scaling in batch steganography

Eli Dworetzky, Edgar Kaziakhmedov, and Jessica Fridrich

Secure payload (iid model)

(Ker, 2006) For fixed statistical detectability

$$P(n) \propto n^{0.5}$$

Secure payload (content-adaptive)

(Ker, 2018) Secure payload size

$$P(n) \propto n^{0.5}$$

if no diminishing FI: $I_i \ge \delta > 0$

Secure payload (batch steganography)

$$d=$$
 single image detector, $Y_i=$ fully embed X_i (log_2 3 bpp) $\Delta_i=\mathbb{E}[d(Y_i)]-d(X_i)$

$$P(n) \propto n^{0.85}$$

if payloads assigned based on Δ_i

Squared detector response shift at image capacity (ALASKA II)

Secure payload P(n) vs. bag size n

- Bag = everything Alice ever sends
- ullet Payload adjusted for constant empirical detectability $P_{
 m E}=0.2$
- Alice spreads payload with Warden's detector (HILL)

Secure payload P(n) vs. bag size n

- Bag = everything Alice ever sends
- Alice spreads payload with <u>her own detector</u>
- There still exist strategies with $P(n) \propto n^{0.85}$

More details

E. Dworetzky, E. Kaziakhmedov, J. Fridrich, "Secure Payload Scaling for Source Adaptive Payload Allocation," Proc. IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2024, San Francisco, CA, January 21–25, 2024

http://www.ws.binghamton.edu/fridrich/Research/Scaling.pdf