

ANALOGIZERS

Reasoning by analogy

Measuring Similarity

K-Nearest Neighbors (KNN)

Records represented as points in the Euclidean space

Training algorithm

Store training records and wait

Classification algorithm

For each new observation Z to be classified

- choose Z's k nearest neighbors
- classify Z as the majority of its neighbors

KNN ILLUSTRATION

Dataset

TIES

THE BEST NUMBER OF NEIGHBORS

COMPARISON - SIMILARITY MEASURES

SCALE TRANSFORMATION

REDUNDANT VARIABLES

Age	20
ncome	35

Age	25
Income	40

$5^2 + 5^2$	M
, , ,	

Age	50
Income	35

FEATURE SELECTION

Age	20
Income	35
Job	35

Age	25
Income	40
Job	40

Age	50
Income	35
Job	35

Data Science by Cláudia Antunes

Thank you!

