REMARKS

Claims 1-17 remain pending. Applicants note with appreciation that claims 1-4 and 6 were allowed, and that claims 9-17 were objected to due to informalities but otherwise indicated to contain allowable subject matter. Appropriate corrections to claims 9 and 11 have been made by the foregoing amendments. Reconsideration and withdrawal of the objections are respectfully requested.

Claims 5, 8-10, and 15 stand rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicants regard as the invention.

In particular, claims 5, 10, and 15 were rejected because they state that the batch "contains no sulfur," as it appears that they do contain "sulfur-containing compounds." Although Applicants respectfully disagree that the claims are indefinite, in an effort to advance prosecution claims 5, 10, and 15 have been amended to mention that the batch contains no "free" sulfur, i.e., in its elemental form.

No new matter is introduced by the amendments, as it is clear from the text of the specification (which otherwise mentions sulfide) and from the definition appearing in the table of Mendeleiev (copy included). This is particularly evident given that the claims call for a batch, glass, and/or process involving the sulfur-containing compounds molybdenum <u>disulfide</u> and strontium <u>sulfide</u>. Therefore, the mention of "no sulfur" would clearly be understood by persons of ordinary skill to mean that elemental or "free" sulfur is absent.

Claims 8-9 were rejected under 35 U.S.C. § 112, second paragraph, because the claims recite a range for the MoS₂/SrS ratio but do not specify whether it is a weight or molar ratio.

By the foregoing amendment, claim 8 has been amended to clarify that the ratio is a weight ratio. No new matter is introduced. A weight ratio is clearly apparent from the rest of the claim language and the specification, e.g., page 6, lines 10-12, which states: "The invention also proposes a bulk-tinted amber glass obtained from the above batch, which comprises, per 100% by weight of molten glass: ... MoO₃ between 0.05 and 0.5%; ... SrO: between 2 and 7%, the MoO₃ and SO₃ being obtained from molybdenum disulfide MoO₂ and strontium sulfide SrS such that the MoS2/SrS ratio in the batch is between 0.015 and 0.4 ..."

In view of the foregoing, reconsideration and withdrawal of the 35 U.S.C. § 112 rejections are respectfully requested.

Claims 7-10 were rejected under 35 U.S.C. § 102(b) as being anticipated by European Patent 1,193,226 to Oyama et al. ("Oyama").

Applicants respectfully traverse this rejection. Oyama describes amber glass that is used for lamps, in particular car direction indicators. The glass has a soda-lime-silica composition and proportions that are within a range disclosed, e.g., in Example 8 in Table 2 at page 6 of its description, with a color of the glass which is said to meet the SAE standard.

As recognized by the Office Action, claim 1 specifies a mixture comprising, per 100% by weight of mixture, 0.01% to 1% molybdenum disulfide by weight and 0.01% to 7% strontium sulfide by weight. This mixture is neither taught nor rendered obvious by Oyama or any of the remaining prior art of record. Claim 1 is thus patentable.

The Office Action asserts that "[b]ecause amber glasses having equivalent composition and structure to those of claim 7 can be produced by melting batches other than that of claim 1, (such as batches wherein the Sr and Mo components are provided by oxides rather than sulfides), the product-by-process limitation is not given patentable weight in determining distinctiveness of the claim."

Applicants respectfully submit the Office Action has failed to give proper weight to the limitations set forth in claim 7. Examination of product-by-process claims is discussed in the Manual of Patent Examining Procedure (M.P.E.P.) § 2113, which is reproduced in relevant part below:

The structure implied by the process steps should be considered when assessing the patentability of product-by-process claims over the prior art, especially where the product can only be defined by the process steps by which the product is made, or where the manufacturing process steps would be expected to impart distinctive structural characteristics to the final product. See, e.g., *In re Garnero*, 412 F.2d 276, 279, 162 USPQ 221, 223 (CCPA 1979) (holding "interbonded by interfusion" to limit structure of the claimed composite and noting that terms such as "welded," "intermixed," "ground in place," "press fitted," and "etched" are capable of construction as structural limitations.)

(emphasis added). As explained in detail in the text of the specification, "[t]he aim of the invention is to propose a glass containing no toxic material, such as lead, cadmium etc. ..., with a colour which is <u>stable</u> over time <u>and does not vary and is insensitive to thermal shocks</u>, with a high manufacturing production rate." page 4, line 22 to page 5, line 12 (emphasis added). The inventors discovered a glass having the underlined structural features is obtained when the original mixture contains SrS but not SrO as is used in Oyama.

In other words, the problem is not only to obtain an amber glass with specific constituting elements, but also to obtain a very special one, one which is stable in time and insensitive to thermal shocks. Such a glass is not disclosed or suggested in Oyama, and Oyama thus fails to disclose or suggest the glass of claim 7 for at least this reason.

Oyama discloses that MoS₂ may be added in the mixture as a source of molybdenum (Mo), and Na₂S and K₂S may be added in the mixture to as a source of sulfur (S) to obtain an amber glass. However, it was found that such components do not ensure consistency in the quality of the glass, such as color stability over time. In other words, Oyama does not disclose

an amber glass with the same physical characteristics that are achieved when molybdenum disulfide and strontium sulfide are used in the batch, as presently claimed.

Applicants also note that, surprisingly, the use of SrS as claimed in claim 1 (from which claim 7 depends), provides better stability in the obtained color during manufacturing, and an excellent quality of repeatability while using equivalent proportion on different batches, with respect to the color obtained at the exit of the fusion furnace. As additional evidence of this unexpected result, a table of measurements with native S and SrS is submitted herewith and explained on the attached page.

In view of foregoing, claim 7 is clearly novel and non-obvious. Claim 8 is patentable for at least the same reasons applicable to claims 1 and 7.

Regarding claims 8 and 9, the Office Action asserts, "Oyama teaches glass compositions that meet all the compositional limitation of the claims . . . The sulfur component is given by Oyama as S rather than SO₃ as in instant claims. However this sulfur would actually be present in the glass in the oxidized form SO₃ ... Regarding the limitations that the MoO₃ and SO₃ are obtained from molybdenum disulfide and strontium sulfide, these are product-by-process limitations."

Contrary to the Office Action's statements, the structural quality of the glass will <u>not</u> be the same when SrS and MoS₂ are added in the batch, for reasons discussed above. Therefore, claim 8 is neither taught nor suggested by Oyama or the remaining prior art of record.

Dependent claims 9 and 10 are allowable for at least the same reasons applicable to claim 8, from which they depend, and for the additional reason that the claimed MoS₂/SrS ratio in claim 9 is clearly not disclosed or suggested in Oyama – which does not even disclose SrS. Also, claim 10, which specifies no free sulfur, is further non-obvious over Oyama, which discloses adding sulfur.

CONCLUSION

In view of the foregoing, favorable reconsideration and allowance of the subject application are respectfully requested. The Examiner is invited to telephone the undersigned at the number listed below if doing so would be helpful to resolve any outstanding issues.

Respectfully submitted,

Date: September 1, 2009 By: /Paul M. Rivard/

Paul M. Rivard Registration No. 43,446 BANNER & WITCOFF, LTD. 1100 13th Street N.W. Washington, DC 20005-4051 (202) 824-3000 (telephone) (202) 824-3001 (facsimile)

-9-

	OBSERVATIONS					0			-		Ç.			Moseum	measurement conditions:	- Multipoints measurements	- Colorimeter THOMA TFB	Ťŧ		Type "A" illuminant:	. Voltage = 13 5 5 5 5	votage - 15,5 volts.		Measurements after 4 minutes.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. A and Y = +/- 0,0008.		-	.,		
minutes	e 1	\	7 7007	4,20,4	T	432.0	433.0		419.2	410.0	\overrightarrow{T}	$\frac{1}{1}$	420.0						-										•		
Measurements after 4 minutes	Série 1	×	568 5	566 5	562.5	560.0	559,8		579.3	579.0	578.8	578.5	578,0							-											
Measure	Echantillon	Cotantinoli		2	3	4	5		7	ω	6	9	11																		
	Durée h		0	24	48	72	96	•	0	24	48	72	96			_1													٠	•	

TECHNICAL COMPARISON SRS/SULFUR

The experience of VERMONT based on use of glasses containing sulphide has surprisingly demonstrated that it is considerably better, comparatively than the one containing elementary sulfur. In other words it has been verified experimentally that the color and the stability with regard to the type of colouring product which is used was much better.

Herewith are results obtained with fusion of two batches of glass, one with native or elementary sulfur and the other with strontium sulphide.

The quantity of each product has been adjusted in order to obtain in theory the same kind of colour.

Samples have been extracted and bulb has been blown "with mouth" and have allowed representative samplings in thickness, as obtained through industrial manufacturing without thermal treatment. Then for evaluating possible modification of the color in time, the samples have been continued every 24 hours on four days.

Each sample was then measured on a identical thickness zone (1mm) with a colorimeter THOMA.

The table in appendix shows the measurements.

First constatations, the color obtained with the elementary sulfur is clearer than the other and such color loses intensity with time.

When Strontium Sulphide is used the results are much better (see table herewith).

The low reactivity of the native sulfur, and the difficulty to maintain its ratio at high retention values when it is used in a oven at temperature higher than 1300°C, implies adjustment constantly of the material quantity with regard to the fusion conditions and the time it stays in the bath. The resulting color is inconstant.

With the SrS, the quantities which are introduced are constant for a specific color with an excellent repeatitibility of the color for obtaining the request color precisely within the standards.

HANDBOOK CHEMISTRY and PHYSICS

DITION
1973-1974

PERIODIC TABLE OF THE ELEMENTS

ģ	<u>×</u>		K.L		K-L-M		-L-M-N		0-N-M-		-N-O-N-		-0-P-0	
[-	2 0 He	o Se Se	20.17, 2-8	18 º Ar	39.948 2-8-8	% Kr	83.80	Xe o	131.30	% R 0	(222) -32-18-8 -N-O-P			
2		9 -	18.9984	C + + + + + 5 + 5 + 5 + 5 + 5 + 5 + 5 +	35,53	35 +1 Br +5	79.904 -8-18-7	53 +1 I +5 +7	126.9045 131.30 -18-18-7 -18-18-8 -M-N-O	88 At	(209) -32-18-6 -32-18-7			
63		8 2 0	15.9994	S + 6 -2	32.06 2-8-6	Se +6	78.96 -8-18-6	52 +4 Te +6	127.60	84 +2 Po +4	(209) -32-18-6			
Sa		~Z -++++	14.0067 - 2 2-5 - 3	15 P 45 L35 L35	30.9738	33 As +5 -3	74.9216 -8-18-5	51 Sb +5	121.75 -18-18-5	83 +3 Bi +5	208.9806 -32-18-5			
4a		6 C C L L L L L L L	12.011	14 +2 Si +4	28.086	32 +2 Ge +4	72.59	50 +2 Sn +4	112.40 114.82 118.69 -18-18-2 -18-18-3 -18-18-4	82 +2 Pb +4	207.2 -32-18-4			
32		5 +3 B	10.81 2-3	13 +3 Al	26.9815 2-8-3	31 Ga	69.72	49 +3 In	114.82 -18-18-3	81 Ti +1	204.37			
88			Transition	Elements		30 +2 Zn	65.37	48 +2 Cd		80 +1 Hg +2	200.59			
٩			Ę	튑		Cu +2	63.546 -8-18-1	47 +1 Ag	107.868 -18-18-1	79 +1 Au +3	196.9665 32-18-1			
						Z; +3 Z; +3	58.71 -8-16-2	46 +2 Pd +4	106.4 18-18-0	+3 78 +2 +4 Pt +4	195.09			
∞	s-	guration			Group 8	C ₀ ^{±2} C ₀ ^{±3}	58.9332 -8-15-2	Rh +3	102.9055 -18-16-1	F =	190.2 -32-14-2 192.22			
	← Oxidation States KEY TO CHART	-18-18-4 ← Electron Configuration		}	l	26 +2 Fe +3	55.847 -8-14-2	Ru +3	98.9062 -18-13-2 -18-15-1	76 +3 Os +4	190.2 -32-14-2			
2	2 - Oxig	4. 1		Transition Elements		25 Mn	54.9380 -8-13-2	43 +4 Tc +6		75 +4 Re +6	186.2			
99	SO + + 2 18.69	-181-		Transition		Cr +3	51.996 -8-13-1	42 +6 Mo	95.94 -18-13-1		183.85			
Sb	Atomic Number					23 V + +3 V + +3	50.9414 -8::11-2	41 +3 Nb+5	92.9064 18-12-1	73 +5 Ta	180.947, - 32-11-2	105		
4	Atomi					### ### ###	47.90 -8-10-2	40 +4 Zr	91.22 -18-10-2	72, +4 Hf	178.49 32-10-2	104	32-10-2	
36						21 Sc +3	44.9559 -8-9-2	39 +3 Y	88.9059 -18-9-2	57* +3 La	138.9055	89** Ac +3	(227)	
2a	l I	4 +2 Be	9.01218	12 +2 Mg	24.305 2-8-2	28 Ca +2	40.08	38 +2 Sr	87.62 -18-8-2		137.34	88 +2 Ra	(226) -18-8-2	
la	H. +1 H1 1.008°	Li Li	6.94, 2-1	Na +	22.9898. 2-8-1	57 ±	39.102 -8-8-1	37 +1 Rb	85.467 ₈ -18-81	გაე	132.9055 -18-8-1	± ₹	(223) -18-8-1	

PERIODIC TABLE OF THE ELEMENTS

71 +3	174.97 -32-9-2	L. 33	-32-9-2
78 43 43	140.12 140.9077 144.24 (145) 150.4 151.96 157.25 158.9254 162.50 164.9303 167.26 168.9342 173.04 174.97 174	Z°2	232.0381 231.0359 238.029 237.0482 124-9-2
69 +3 Tm	168.9342	⊡ Md	(256)
68 +3 Fr	167.26	5.H Tm	(257)
67 +3 HO	164.9303	కాచ	(254) · 29-8-2
% Ç	162.50	∓ Ç %	(251) -28-8 2
65 Th	158.9254	24 44 44	(247) -27-8· 2
25	157.25	\$ E E	(247)
63 +2 F ₁₁ +3	151.96 -25-8-2	95 +3 Am ⁺⁴	(243) -25-8-2
62 +2 Sm +3	150.4	94 Pu +4 +5	(244) -24-8-2
61 +3 Pm	(145)	93 Np+4 Np+4 S+4	237.0482 -22-9-2
3 Z	144.24	20 544	238.029 -21-9-2
59 +3 Pr	140.9077	91 +5 Pa +4	231.0359 -20-9-2
58 Ce +4	140.12	8년 4	232.0381
	*Lanthanides		**Actinides

Numbers in parentheses are mass numbers of most stable isotope of that element.

-0-P-Q

-N-0-P

MELTING AND BOILING POINTS, AND ATOMIC WEIGHTS OF

Based on the assigned relative atomic mass of $^{12}C = 12$

The following values apply to elements as they exist in materials of terrestrial origin and to certain artificial elements. When used with the footnotes, they are reliable to ±1 in the last digit, or ±3 if that digit is in small type.

Name	Sym bol	At. No.	At. wt.	M.P.°C	B.P.°C	Name	Sym- bol	At. No.	At. wt.	M.P.°C	B.P.°C
Actinium	Ac	89	(227)	1050	3200 ± 300	Molybdenum	Mo	42	95.94	2617	4612
Aluminum	Ai	13	26.9815"	660.37	2467	Neodymium	Nd	60	144.24	1021	3068
mericium	Am	95	(243)	994 ± 4	2607	Neon	Ne	10	20.179°	-248.67	-246.048
Antimony	Sb	51	121.75	630.74	1750	Neptunium	Np	93	237.0482b	640 ± 1	3902
Argon	Ar	18	39.948	189.2	- i 85.7	Nickel	Νí	28	58.71	1453	2732
Arsenic (gray)	As	33	74.9216*	817 (28 atm)	613 (sub.)	Niobium					
Astatine	Αt	85	~210	302	337	(Columbium)	Nb	41	92.9064*	2468 ± 10	4742
Barium	Ba	56		725	1640	Nitrogen	N	7	14.0067b.c	- 209.86	- 195.8
Berkelium	Bk	97	(247)	_		Nobelium	No	102	(254)		
Beryllium	Be	4	9.01218*	1278 ± 5	2970 (5 mm)	Osmium	Os	76	190.2	3045 ± 30	5027 ± 100
Bismuth	Bi	83	208.9806*	271.3	1560 ± 5	Oxygen	ő	8	15.9994b.c.d	-218.4	- 182.962
loron	B.	5	10.816.4 4	2300	2550(sub.)	Palladium	Pd	46	106.4	1552	3140
	Br	35	79.904°	-7.2	58.78	Phosphorus	P	15	30.9738	44.1 (white)	280 (white)
Bromine	Cd	48	112.40	320.9	765		Pt			1772	
admium	Ca	20	40.08		/63 1484	Platinum	Pu	78 94	195.09 (244)	641	3827 ± 100 3232
alcium				839 ± 2	1464	Plutonium					
alifornium	Ct	98	(251)	2660	4007	Polonium	Po	84	(~210)	254	962
arbon	C	6	12.0116.4	~3550	4827	Potassium	K	19	39.102	63.65	774
erium	Ce	58	140.12	799 ± 3	3426	Praeseodymium		59	140.9077*	931	3512
esium	Cs	55	132.9055°	28.40 ± 0.01	678.4	Promethium	Pm	61	(145)	~ 1080	2460(?)
hlorine	CI	17	35.453°	- 100.98	- 34.6	Protoactinium	Pa	91	231.0359*	< 1600	-
hromium	Cr	24	51.996°	1857 ± 20	2672	Radium	Ra	88	226.0254*.*.	700	1140
Cobalt	Co	27	58.9332*	1495	2870	Radon	Rn	86	(~222)	-71	-61.8
opper	Cu	29	63.546 ^{c.d}	1083.4 ± 0.2	2567	Rhenium	R¢	75	186.2	3180	5627 (est.)
urium	Cm	96	(247)	1340 ± 40	_	Rhodium	Rh	45	102.9055*	1966 ± 3	3727 ± 100
ysprosium	Dy	66	162.50	1412	2562	Rubidium	Rb	37	85.4678°	38.89	688
insteinium	Es	99	(254)	=	-	Ruthenium	Ru	44	101.07	2310	3900
rbium	Er	68	167.26	1529	2863	Samarium	Sm	62	150.4	1077	1791
uropium	Eu	63	151.96	822	1597	Scandium	Sc	21	44.9559*	1541	2831
ermium	Fm	100	(257)		_	Selenium	Se	34	78.96	217	684.9 ± 1.0
luorine	F	9	18.9984*	-219.62	-188,14	Silicon	Si	14	28,0864	1410	2355
rancium	Fr	87	(223)	(27)	(677)	Silver	Ag	47	107.868°	961.93	2212
adolinium	Gđ	64	157.25	1313 ± 1	3266	Sodium	Na	11	22.9898*	97.81 ± 0.03	882.9
allium	Ga	31	69.72	29.78	2403	Strontium	Sr	38	87.62*	769	1384
ermanium	Ge	32	72.59	937.4	2830	Sulfur	S	16	32.06 ⁴	112.8	444.674
old	Αu	79	196.9665*	1064.43	2807	Tantalum	Ta	73	180.9479	2996	5425 ± 100
afnium	Hſ	72	178.49	2227 ± 20	4602	Technetium	Tc	43	98.9062°	2172	4877
elium	He	2	4.00260b.c	-272.226 alm	- 268.934	Tellurium	Te	52	127.60	449.5 ± 0.3	989.8 ± 3.8
olmium	Но	67	164.9303*	1474	2695	Terbium	Tb	65	158.9254*	1356	3123
ydrogen	н	ì	1.0080 ^{6.d}	-259.14	-252.87	Thallium	ΤĬ	81	204.37	303.5	1457 ± 10
dium	ln	49	114.82	156.61	2080	Thorium	Th		232.0381*		~4790
dine	í"	53	126.9045*	113.5	184.35	Thulium	Tm	69	168.9342°	1545+15	1947
idium	İr	77	192.22	2410	4130	Tin	Sn		118.69	231.9681	2270
on	Fe	26	55.847	1535	2750	Titanium	on Ti		47.90	1660 ± 10	3287
rypton	Kr	36	83.80	- 156.6	~152.30 ± 0.10	Tungsten	W	74	183.85	3410 ± 10	5660
nthanum	La	57	138.9055	921 ± 5	3457		Ü		238.029****	1132.3 ± 0.8	3818
wrencium			(257)	741 X J	J731	Uranium	v		50.9414 b.c		3380
ad	Pb		207.2 ^{4.s}	227 502	1740	Vanadium	٧	23	JU.7414 ***	1890 ± 10	2300
thium	Li		6.941 c.d.e	327.502	1740	Wolfram					
itetium				180.54	1347	(see Tungsten)					
agnesium	Lu		174.97	1663 ± 5	3395	Xenon	Xe		131.30	-111.9	-107.1 ± 3
agnesium anganése	Mg		24.305°	648.8 ± 0.5	1090	Ytterbium	Yb		173.04	819	1194
	Mn		54.9380°	1244 ± 3	1962	Yttrium	Y		88.9059*	1522	3338
endelevium			(256)	-		Zinc	Zn		65.38	419.58	907
ercury	Hg	80	200.59	- 38.87	356.58	Zirconium	Zr	40	91.22	1852 ± 2	4377

variations in atomic weight due to inadvertent or undisclosed artificial isotopic

^{*} Mononuclidic element.

* Element with one predominant isotope (about 99 to 100°, abundance).

* Element for which the atomic weight is based on calibrated measurements.

* Element for which variation in isotopic abundance in terrestrial samples limits the precision of the atomic weight given.

* Element for which users are cautioned against the possibility of large

variations in atomic weight due to indiverties to indiverties a stories separation in commercially available materials.

1 Most commonly available long-lived isotope.

2 In some geological specimens this element has a highly anomalous isotopic composition, corresponding to an atomic weight significantly different from that given.