TK1 Exercise 9

Team members:

Krishna Chaitanya Enimidisetty	2364582
Praveen Kumar Pendyala	2919474
Ramachandra Kamath Arbettu	2792374
Yanai Avi Gonen	1107805

Task 1: 'Snapshot'-Algorithm of Chandy and Lamport

a. Illustration 1.i is the correct and 1.ii is wrong.

Reason:

Quoting the rule from lecture slides,

Marker sending rule for process Pi

- After P_i has recorded its state, for each outgoing channel C
- P_i sends one marker message over C (before it sends any other message over C)

In 1.i marker message is the first message sent on channel after recording state. In 1.ii, P1 sends a different message after recording the state and before sending the marker message on channel

Example:

Consider a distributed system of 2 processors operating on 2 resources - money and quantities. The total resources at any recorded state must be constant.

Applying the above methods for a series of events in this system gives us:

Recorded states:

Case 1

P1: <\$500, 10> C1: <> P2: <\$500, 10> C2: <>

Total resources <\$1000, 20> - consistent snapshot

Case 2

P1: <\$500, 10> C1: <> P2: <\$550, 10> C2: <>

Total resources <\$1050, 20> - inconsistent snapshot

Inconsistency in case 2 comes from the fact that we sent a message over the channel C1 before sending MARK MESSAGE after recording state.

b. 2 possible recording of states

Case 1:

S_P1

_____: <M1,M2> C_{P3p1}: <>

S_P2

C_{P1P2}: <> C_{P3P2}: <M3, M4>

S_P3 C_{P1P3}: <> C_{P2P3}: <>

Case 2:

S_P1

C_{P2P1}: <M1,M2> C_{P3p1}: <M6>

S_P2

C_{P1P2}: <> C_{P3P2}: <>

S_P3

C_{P1P3}: <> C_{P2P3}: <>

Task 2: Snapshot vs. Actual Program Flow

a)

Pre snap: {S_{m1}}

Post snap: $\{S_{m2}, r_{m1}, r_{m2}\}$

$$\begin{aligned} &\text{Sys:} < S_{\text{m2}}, \, S_{\text{m1}}, \, r_{\text{m1}}, \, r_{\text{m2}} > \\ &\text{Sys':} < S_{\text{m1}}, \, S_{\text{m2}}, \, r_{\text{m1}}, \, r_{\text{m2}} > \end{aligned}$$

Observed snapshot state $S_{snap} = (<>, <S_{m1}>)$

