Отчётаполабораторнойработе№8

Программирование цикла. Обработка аргументов командной строки.

Виме Давид Тененте

Содержание

1	Це	льработы	3
2	3a,	дание	4
3	Вы	полнениелабораторнойработы	5
	3.1	Реализация циклов в NASM	5
	3.2	Обработка аргументов командной строки.	8
	3.3	Задание для самостоятельной работы	10
4	Вы	ІВОДЫ	13

Списокиллюстраций

з.1 Создаем каталог с помощью команды mкdir и фаил с помощью			
команды touch	ϵ		
3.2 Заполняем файл	7		
3.3 Запускаем файл и проверяем его работу	7		
3.4 Изменяем файл	8		
3.5 Запускаем файл и смотрим на его работу	8		
3.6 Редактируем файл	g		
3.7 Проверяем, сошелся ли наш вывод с данным в условии выводом .	g		
3.8 Создаем файл командой touch	S		
3.9 Заполняем файл	10		
3.10 Смотрим на работу программ			
3.11 Создаем файл командой touch			
3.12 Заполняем файл			
3.13 Смотрим на работу программы			
3.14 Изменяем файл			
3.15 Проверяем работу файла(работает правильно)			
3.16 Создаем файл командой touch			
3.17 Пишем программу			
3.18 Смотрим на рабботу программы при x1=5 x2=3 x1=4(всё верно)			
3.19 Смотрим на рабботу программы при x1=1 x2=3 x1=7(всё верно)			

1 Цельработы

Изучить работу циклов и обработкой аргументов командной строки.

2 Задание

Написать программы с использованием циклов и обработкой аргументов командной строки.

3 Выполнениелабораторнойработы

3.1 Реализация циклов в NASM

Создаем каталог для программ ЛБ8, и в нем создаем файл (рис. 3.1).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 lab8-2.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-2 1 2 '3'
1
2
3
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.1: Создаем каталогс помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.1 (рис. 3.2).

```
Lab8-1.asm [----] 0 L:[ 1+ 0  1/ 24] *(0  / 299b) 0037 0x025 [*][X]

Ginclude 'in_out.asm'

SECTION .data
msg1 db 'BBequre N: ',0h

SECTION .text
global _start
_start:
mov eax,msg1
call sprint
mov ecx, N
mov edx, 10
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
mov [N],ecx
mov eax,[N]
call iprintLF.
loop label.
call quit
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. 3.3).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 10
10
9
8
7
6
5
4
3
2
1
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.3: Запускаем файл и проверяем его работу

Снова открываем файл для редактирования и изменяем его, добавив изменение значения регистра в цикле (рис. 3.4).

```
Lab8-1.asm [----] 0 L:[ 1* 0 1/ 24] *(0 / 298b) 0037 0x025 [*][X]

Zinclude 'in_out.asm'
SECTION 'data
msgl db 'Введите N: ',0h
SECTION .bss
N: resb 10
SECTION .text
global _start
_start:
mov eax,msgl
call sprint
mov edx, 10
call sread
mov edx, 10
call store
mov edx, N
call atoi
mov [N],eax
mov ecx,[N]
label:
sub ecx,1.
mov [N],ecx
mov eax,[N]
call iprintLF
loop label
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. 3.5).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 10
9
7
5
3
1
Segmentation fault (core dumped)
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Регистр есх принимает значения 9,7,5,3,1(на вход подается число 10, в цикле label данный регистр уменьшается на 2 командой sub и loop).

Число проходов цикла не соответсвует числу N,так как уменьшается на 2.

Снова открываем файл для редактирования и изменяем его, чтобы все корректно работало (рис. 3.6).

```
call atói
mov [N],eax
mov ecx,[N]
label:
push ecx.
sub ecx,1
mov [N],ecx
mov eax,[N]
call iprintLF
pop ecx
loop label
```

Рис. 3.6: Редактируем файл

Создаем исполняемый файл и запускаем его (рис. 3.7).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 10
9
8
7
6
5
4
3
2
1
0
Segmentation fault (core dumped)
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.7: Проверяем, сошелся ли наш вывод с данным в условии выводом В

данном случае число проходов цикла равна числу N.

3.2 Обработка аргументов командной строки.

Создаем новый файл (рис. 3.8).

```
lucas@fedora:~/work/arch-pc/lab08$ touch lab8-2.asm
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.8: Создаем файл командой touch
Открываем файл в Midnight Commander и заполняем его в соответствии с листингом
8.2 (рис. 3.9).

Рис. 3.9: Заполняем файл

Создаем исполняемый файл и проверяем его работу, указав аргументы (рис. 3.10).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 lab8-2.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-2 1 2 '3'
1
2
3
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.10: Смотрим на работу программ

Програмой было обработано 3 аргумента.

Создаем новый файл lab8-3.asm (рис. 3.11).

```
lucas@fedora:~/work/arch-pc/lab08$ touch lab8-3.asm
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.11: Создаем файл командой touch

Открываем файл и заполняем его в соответствии с листингом 8.3 (рис. 3.12).

Рис. 3.12: Заполняем файл

Создаём исполняемый файл и запускаем его, указав аргументы (рис. 3.13).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-3 12 13 7 10 5
Результат: 47
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.13: Смотрим на работу программы

Снова открываем файл для редактирования и изменяем его, чтобы вычислялось произведение вводимых значений (рис. 3.14).

```
next:

cmp ecx,0h.

jz _end.

pop eax.

call atoi.

mul esi

mov esi,eax

loop next
_end:
```

Рис. 3.14: Изменяем файл

Создаём исполняемый файл и запускаем его, указав аргументы (рис. 3.15).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-3 5 3 4
Результат: 0
lucas@fedora:~/work/arch-pc/lab08$ mc
```

Рис. 3.15: Проверяем работу файла(работает правильно)

3.3 Задание для самостоятельной работы

ВАРИАНТ-20

1. Напишитепрограмму, котораянаходитсуммузначений функции 💸 для 💠

= ♠,♠,...,♠т.е.программадолжнавыводитьзначение ♠♠)+♠♠)+... + ♠♠♠. Значения ♠рпередаются как аргументы. Вид функции ♠♠ выбрать изтаблицы 8.1 вариантов заданий в соответствиис вариантом,полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу на нескольких наборах ♠= ♠, ♠,..., ♠♠

Создаем новый файл (рис. 3.16).

```
lucas@fedora:~/work/arch-pc/lab08$ touch lab8-4.asm
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.16: Создаем файл командой touch

Открываем его и пишем программу, которая выведет сумму значений, получившихся после решения выражения 3(10+x) (рис. 3.17).

Рис. 3.17: Пишем программу

Транслируем файл и смотрим на работу программы (рис. 3.18).

```
lucas@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
lucas@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-4 5 3 4
Функция: f(x) = 12x - 7
Результат: 123
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.18: Смотрим на рабботу программы при x1=5 x2=3 x1=4(всё верно)

Транслируем файл и смотрим на работу программы (рис. 3.19).

```
lucas@fedora:~/work/arch-pc/lab08$ ./lab8-4 1 3 7
Функция: f(x) = 12x - 7
Результат: 111
lucas@fedora:~/work/arch-pc/lab08$
```

Рис. 3.19: Смотрим на рабботу программы при x1=1 x2=3 x1=7 (всё верно)

4 Выводы

Мы научились решать программы с использованием циклов и обработкой аргументов командной строки.