```
In [1]: import warnings
    warnings.filterwarnings('ignore', category=FutureWarning)
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from scipy import stats
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_s
    from sklearn.linear_model import Ridge
```

Carga de dataset

```
In [2]: data = pd.read_csv("./Barcelona_rent_price.csv", delimiter=';')
```

Análisis Exploratorio de Datos (EDA)

i. Tipo de dato Primero, verificamos los tipos de datos y su clasificación en el DataFrame:

```
In [3]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2311 entries, 0 to 2310
Data columns (total 6 columns):

_ 0 0.								
#	Column	Non-Null Count	Dtype					
0	Year	2311 non-null	int64					
1	Trimester	2311 non-null	int64					
2	District	2311 non-null	object					
3	Neighbourhood	2311 non-null	object					
4	Price (euro/month)	2311 non-null	float64					
5	Price (euro/m2)	2311 non-null	float64					
dtype	es: float64(2), int6	4(2), object(2)						
memory usage: 108.5+ KB								

ii. Estadística descriptiva Calculamos las estadísticas descriptivas para resumir la tendencia central, dispersión y forma de la distribución de los datos:

```
In [4]: data.describe()
```

Out[4]:

		Year	Trimester	Price (euro/month)	Price (euro/m2)
C	ount	2311.000000	2311.000000	2311.000000	2311.000000
me	mean	2017.745565	2.440502	820.780658	12.134531
	std	2.463095	1.116498	255.450568	2.419414
	min	2014.000000	1.000000	142.340000	3.180000
	25%	2016.000000	1.000000	653.860000	10.500000
	50%	2018.000000	2.000000	777.210000	12.100000
	75%	2020.000000	3.000000	926.500000	13.750000
	max	2022.000000	4.000000	2034.000000	21.300000

iii. Función de distribución Visualizamos la distribución de la variable objetivo "Price (euro/m2)" utilizando un histograma:

```
In [5]: plt.hist(data['Price (euro/m2)'], bins=30, edgecolor='k')
    plt.title('Distribución de Price (euro/m2)')
    plt.xlabel('Price (euro/m2)')
    plt.ylabel('Frecuencia')
    plt.show()
```



```
In [6]: # Prueba de Kolmogorov-Smirnov para 'Price (euro/m2)'
d, p_value = stats.kstest(data['Price (euro/m2)'], 'norm', args=(data['Pr
print('Prueba de Kolmogorov-Smirnov')
print('Estadístico=%.3f, p=%.3f' % (d, p_value))
if p_value > 0.05:
    print('Distribución probablemente normal')
```

```
else:
    print('Distribución probablemente no normal')
```

Prueba de Kolmogorov-Smirnov Estadístico=0.020, p=0.323 Distribución probablemente normal

iv. Interpretar la variable objetivo en base a la función de distribución Creamos un boxplot para identificar visualmente la presencia de outliers en "Price (euro/m2)":

```
In [7]: plt.boxplot(data['Price (euro/m2)'])
   plt.title('Boxplot de Price (euro/m2)')
   plt.ylabel('Price (euro/m2)')
   plt.show()
```


Calidad del Dato Presencia de outliers Identificamos outliers utilizando el rango intercuartílico (IQR):

```
In [8]: Q1 = data['Price (euro/m2)'].quantile(0.25)
Q3 = data['Price (euro/m2)'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
```

Corrección o imputación de outliers Reemplazamos los outliers con la mediana para mantener la integridad de los datos:

```
In [9]: median_value = data['Price (euro/m2)'].median()
   data['Price (euro/m2)'] = data['Price (euro/m2)'].apply(lambda x: median_
```

```
In [10]: plt.boxplot(data['Price (euro/m2)'])
    plt.title('Boxplot de Price (euro/m2) despues de tratar outliers')
    plt.ylabel('Price (euro/m2)')
    plt.show()
```

Boxplot de Price (euro/m2) despues de tratar outliers


```
In [11]: plt.hist(data['Price (euro/m2)'], bins=30, edgecolor='k')
   plt.title('Distribución de Price (euro/m2) después de tratar outliers')
   plt.xlabel('Price (euro/m2)')
   plt.ylabel('Frecuencia')
   plt.show()
```



```
In [13]: stat, p = stats.shapiro(data['Price (euro/m2)'])
    print('Prueba de Shapiro-Wilk')
    print('Estadístico=%.3f, p=%.3f' % (stat, p))
    if p > 0.05:
        print('Distribución probablemente normal')

else:
        print('Distribución probablemente no normal')

# Prueba de Kolmogorov-Smirnov para 'Price (euro/m2)'
d, p_value = stats.kstest(data['Price (euro/m2)'], 'norm', args=(data['Print('Prueba de Kolmogorov-Smirnov'))
    print('Prueba de Kolmogorov-Smirnov')
    print('Estadístico=%.3f, p=%.3f' % (d, p_value))
    if p_value > 0.05:
        print('Distribución probablemente normal')
    else:
        print('Distribución probablemente no normal')
```

Prueba de Shapiro-Wilk Estadístico=0.998, p=0.002 Distribución probablemente no normal Prueba de Kolmogorov-Smirnov Estadístico=0.016, p=0.619 Distribución probablemente normal

LA DISTRIBUCIION NO ES NORMAL, Y FALLA LA NORMALIZACION CON METODO BOX-COX Y CON METODO NORMALIZACION LOGARITMICA, POR LO QUE SE SUGIERE LA ELECCION DE OTRO TIPO DE REGRESEION PARA ENTRENAMIENTO Y EVALUACION DE MODELO

Selección de Variables Altamente Correladas Calculamos la matriz de correlación para identificar variables altamente correlacionadas con la variable objetivo:

Price (euro/m2) 1.000000

Price (euro/month) 0.784603

Year 0.467137

Trimester 0.053613

Name: Price (euro/m2), dtype: float64

Binarización de Categóricas Convertimos las variables categóricas en variables binarias utilizando One-Hot Encoding:

```
In [15]: data_encoded = pd.get_dummies(data, columns=['District', 'Neighbourhood']
    data_encoded.head()
```

Out[15]:

	Year	Trimester	Price (euro/month)	Price (euro/m2)	District_Ciutat Vella	District_Eixample	Dis
C	2014	1	589.55	10.76	True	False	
1	2014	1	712.79	10.58	True	False	
2	2014	1	540.71	14.40	True	False	
3	2014	1	673.44	11.01	True	False	
4	2014	1	736.09	10.42	False	True	

5 rows × 89 columns

División Train Test Dividimos el conjunto de datos en conjuntos de entrenamiento y prueba:

```
In [16]: X = data_encoded.drop('Price (euro/m2)', axis=1)
y = data_encoded['Price (euro/m2)']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
```

Transformación (Escalado) Escalamos los datos utilizando MinMaxScaler para que todas las características tengan el mismo rango:

```
In [17]: scaler = MinMaxScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
```

Modelo: Entrenamos un modelo de regresión RIDGE con los datos escalados:

```
In [18]: # Definir el modelo de regresión Ridge
    ridge_model = Ridge()
    # Entrenar y evaluar el modelo Ridge
    ridge_model.fit(X_train_scaled, y_train)
    y_pred_ridge = ridge_model.predict(X_test_scaled)
```

Evaluación del Modelo Evaluamos el rendimiento del modelo utilizando MAE, MSE y R²:

```
In [19]: mae_ridge = mean_absolute_error(y_test, y_pred_ridge)
    mse_ridge = mean_squared_error(y_test, y_pred_ridge)
    rmse_ridge = np.sqrt(mse_ridge)
    r2_ridge = r2_score(y_test, y_pred_ridge)
    print(f'MAE (Ridge): {mae_ridge}, MSE (Ridge): {mse_ridge}, RMSE (Ridge):
```

MAE (Ridge): 0.607612448267257, MSE (Ridge): 0.7824533789149293, RMSE (Ridge): 0.8845639484598777, R 2 (Ridge): 0.847514968129041

El modelo tiene un buen desempeño, con un alto valor de R² indicando que explica el 84.75% de la variabilidad de los datos.

6. Validación Cruzada Estratificada

```
In [20]: from sklearn.model_selection import KFold, cross_val_score

# Validación cruzada con KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
scores_ridge = cross_val_score(ridge_model, X_train_scaled, y_train, cv=k
print(f'Validación cruzada R² (Ridge): {scores_ridge.mean()}, {scores_rid
Validación cruzada R² (Ridge): 0.8560940748870116, 0.01813650583547809
SE HA COMPROBADO LA VALIDACION DEL MODELO CON UN UN R2 DE 0.856
```

Conclusiones:

- 1. El modelo presenta un despues de la eleccion de modelos mas robustos a distribuciones probablemente no normales un desempeño R2 = 84.5% (menor que el modelo clusters kmeans)
- 2. A pesar de los ajustes, las predicciones son alejadas de la realidad, por lo que se decide continuar con modelos con otro tipo de gestion de outliers.