Quantum Dots

NATHAN PIERCE

UNIVERSITY OF MICHIGAN – DEARBORN

DEPARTMENT OF NATURAL SCIENCES

Determine radii of four differently-sized nanometer scale particles by application of quantum mechanics and by measuring peak wavelengths from their spectra.

Outline

- Introduction: What is a quantum dot?
- Theory: Quantization of energy & Bulk InP vs. InP in solution
- Apparatus & Methods: Transform collected spectra
- Results/Discussion
- Conclusion

Quantum Dots? Intro

- The dot: Semiconductor Nano-particles, Indium Phosphide (InP)
- Macroscopic investigation of a quantum system fluoresced color in visible depends on the size of the particle.
- Spectroscopy, quantum & semiconductor physics
- Goal: determine the sizes of the quantum dots

Theory

Bulk InP does not visibly fluoresce, but InP solution does. Why?

•
$$\lambda_{photon} \approx \frac{1240 \ eV \ nm}{E_{gap}}$$
, $E_{gap,bulk} = 1.344 \ eV$, $\lambda_{photon} \approx 923 \ nm$

- Bulk InP emits in IR range. What's the difference? Boundary conditions.
- Quantum dot: particles in a box. Physical size of dot R constrains energy of emitted photons

$$E = \frac{\hbar^2 n^2 \mathsf{p}^2}{2m_{_{\it P}}R^2} + \frac{\hbar^2 n^2 \mathsf{p}^2}{2m_{_{\it P}}R^2} + E_g \quad \text{Increasing R reduces emitted photon Energy! We can measure E-then solve for R.}$$

Theory

• The InP solution has a larger band gap energy than the bulk InP, by amount ΔE .

A larger band gap results in an emitted photon of greater

Conduction Band

energy.

Apparatus

Fig. 1 – Line diagram of experimental setup.

Fig. 2 – Photograph of the quantum dot vials. Source: CENCO

Methods

- Illuminate each vial with $400 \, nm$ excitation source.
- Measure peak emission wavelengths of spectroscopic samples for each quantum dot. Only the peak wavelength matters.
- Transform emission wavelength to energy using $E = \frac{hc}{\lambda}$
- Once the energy is known, we solve for R.

Results

Fig. 3 - Peaks are normalized for easy comparison of locations. The curves are generated by a single-peak Gaussian function.

$$E_{peak} = \frac{hc}{\lambda_{peak}}$$

$$E = \frac{\hbar^2 n^2 p^2}{2m_e R^2} + \frac{\hbar^2 n^2 p^2}{2m_h R^2} + E_g$$

Results

Dot Color	λ_{peak} (nm)	E_{peak} (eV)	Radius (nm)
Green	532.4 ± 1.5	2.329 ± 0.007	2.4 ± 0.3
Yellow	562.7 ± 1.5	2.204 ± 0.006	2.5 ± 0.3
Orange	591.8 ± 1.5	2.095 ± 0.005	2.7 ± 0.3
Red	626.9 ± 1.5	1.978 ± 0.005	2.9 ± 0.3

Fig 4 – Experimental results.

Color	Peak Wavelength (nm)	Radius (nm)
Green	540	2.367454
Yellow	570	2.533894
Orange	600	2.718174
Red	630	2.924941

Fig 5 – Manufacturer provided values.

Conclusion

- Color (λ) of InP solution shown to depend on size of the InP particle. Band gap energy dependence on R observed.
- Nano-particle exhibits macroscopic behavior predicted by quantum theory.
- Calculated nano-particle sizes in agreement with the manufacturer values.

Sources

- 1. Griffiths, David Jeffrey, and Darrell F. Schroeter. Introduction to Quantum Mechanics. Cambridge University Press, 2019.
- 2. Modern Physics, by Kenneth S. Krane, 3rd ed., Wiley, 2020, pp. 326–357.
- 3. Operating Instructions, 1751-18 CENCO Quantum Dots Lab Manual