Student Number:

Question 1 [10 marks]

Insert the sequence

into the hash table below using the hash function

$$h_1(k) = (5k+3) \mod 11$$

and resolving collisions by double probing with the secondary hash function

$$h_2(k) = 7 - (k \mod 7)$$

Index	Value
0	39
1	
2	12
3	44
4	
5	
6	88
7	23
8	12
9	11
10	

Question 2 [10 marks]

Let $U = \{0, 1, 2, ..., 54\}$ denote the universe of possible keys for a hashing scheme. Suppose that a hash table of size 11 (with indices T[0], T[1], ..., T[10]) is used with the hash function

$$h(k) = (6k+4) \mod 11$$

Give a set S of 5 distinct values in U which are all mapped to entry T[10] of the hash table by the hash function h(k).

$$S = \underline{1} \underline{12} \underline{23} \underline{34} \underline{45}$$