Timing Analysis

Overview

- ° Circuits do not respond instantaneously to input changes
- Predictable delay in transferring inputs to outputs
 - Propagation delay
- ° Sequential circuits require a periodic clock
- Goal: analyze clock circuit to determine maximum clock frequency
 - Requires analysis of paths from flip-flop outputs to flip-flop inputs
- ° Even after inputs change, output signal of circuit maintains original output for short time
 - Contamination delay

Sequential Circuits

- Sequential circuits can contain both combinational logic and edge-triggered flip flops
- A clock signal determines when data is stored in flip flops
- ° Goal: How fast can the circuit operate?
 - Minimum clock period: T_{min}
 - Maximum clock frequency: f_{max}
- Maximum clock frequency is the inverse of the minimum clock period

Combinational Logic Timing: Inverter

- Combinational logic is made from electronic circuits
 - An input change takes time to propagate to the output
- The output remains unchanged for a time period equal to the contamination delay, t_{cd}
- The new output value is guaranteed to valid after a time period equal to the propagation delay, t_{pd}

Combinational Logic Timing: XNOR Gate

- The output is guaranteed to be stable with old value until the contamination delay
 - Unknown values shown in waveforms as Xs
- The output is guaranteed to be stable with the new value after the propagation delay

Combinational Logic Timing: complex circuits

- Propagation delays are additive
 - Locate the longest combination of t_{pd}
- Contamination delays may not be additive
 - Locate the shortest path of t_{cd}
- Find propagation and contamination delay of new, combined circuit

Clocked Device: Contamination and Propagation Delay

- Timing parameters for clocked devices are specified in relation to the clock input (rising edge)
- Output unchanged for a time period equal to the contamination delay, t_{cd} after the rising clock edge
- New output guaranteed valid after time equal to the propagation delay, t_{Clk-Q}
 - Follows rising clock edge

Clocked Devices: Setup and Hold Times

- Timing parameters for clocked devices are specified in relation to the clock input (rising edge)
- D input must be valid at least t_s (setup time) before the rising clock edge
- D input must be held steady t_h (hold time) after rising clock edge
- Setup and hold are input restrictions
 - Failure to meet restrictions causes circuit to operate incorrectly

Edge-Triggered Flip Flop Timing

- The logic driving the flip flop must ensure that setup and hold are met
- Timing values (t_{cd} t_{pd} t_{Clk-Q} t_s t_h)

Analyzing Sequential Circuits

- ° What is the minimum time between rising clock edges?
 - $T_{min} = T_{CLK-Q}(FFA) + T_{pd}(G) + T_{s}(FFB)$
- Trace propagation delays from FFA to FFB
- Oraw the waveforms!

Analyzing Sequential Circuits

- Own or with the wind of the circuit? Hint: evaluate all FF to FF paths
- Maximum clock frequency is 1/T_{min}

Analyzing Sequential Circuits

Path FFA to FFB

•
$$T_{Clk-Q}(FFA) + T_{pd}(H) + T_{s}(FFB) = 5ns + 5ns + 2ns = 12ns$$

Path FFB to FFB

•
$$T_{CLK-O}(FFB) + T_{pd}(F) + T_{pd}(H) + T_{s}(FFB) = 4ns + 4ns + 5ns + 2ns$$

Analyzing Sequential Circuits: Hold Time Violation

- One more issue: make sure Y remains stable for hold time (T_h) after rising clock edge
- Remember: contamination delay ensures signal doesn't change
- Our Property of the second of the second
 - $T_{cd}(FFA) + T_{cd}(G) >= T_h$
 - 1ns + 2ns > 2ns

Analyzing Sequential Circuits: Hold Time Violations

Path FFA to FFB

•
$$T_{CD}(FFA) + T_{CD}(H) > T_{h}(FFB) = 1 \text{ ns} + 2 \text{ns} > 2 \text{ns}$$

Path FFB to FFB

•
$$T_{CD}(FFB) + T_{CD}(F) + T_{Cd}(H) > T_h(FFB) = 1ns + 1ns + 2ns > 2ns$$

Summary

- Maximum clock frequency is a fundamental parameter in sequential computer systems
- Possible to determined clock frequency from propagation delays and setup time
- ° The longest path determines the clock frequenct
- All flip-flop to flip-flop paths must be checked
- Hold time are satisfied by examining contamination delays
- The shortest contamination delay path determines if hold times are met