RA200 Sande

For Sande avløpsreinseanlegg

С	NI	\Box	D	IN	ī	^	C	ш	10	CT	ГО	D	i	v	V
ᆮ	IV	v	n	יוו	V١	U	J	п	н	וכ	U	חי	ш	N	N

Versjon	Endringsgrunnlag	Utarbeida av	Dato
А	Første versjon	Peter Søreide Skaar Vegard Aven Ullebø Roar Bøyum	25.01.2024
В	Oppdatert utdjuopa teknisk forståing	Vegard Aven Ullebø	16.05.2024

SAMANDRAG

Dokumentet beskriver funksjonaliteten til Sande avløpsreinseanlegg. Dokumentet går stegvis igjennom prosessane til reinseanlegget og beskriver på kva måte dei ulike styringa skal virke. Beskrivinga tar for seg alle store og små prosessar og samanhengar og knyt dei opp mot kvarandre for å gi kunnskap om anleggets verkemåte. Funksjonsbeskrivinga legger til rette for programmering av styresystemet.

GODKJENNINGAR

Anleggs eigar:	Utført av:	
X	X	
Sunnfjord Kommune	Arbeidstaker	_

Documentation

Bachelorgruppe B024EF-03 | Svanehaugvegen 1 | 6812 | Førde | Norway | | Peter | Vegard | Roar |

REFERANSAR

RA200 Sande

https://www.statsforvalteren.no/siteassets/fm-innlandet/06-miljo-og-klima/forurensning/horinger/bjorlirenseanlegg/vedlegg-2-vurdering-av-renseteknologi.pdf

OMGREP OG FORKORTINGAR

SARA	Sande Reinseanlegg			
SBR	Sequence batch reactor			
P.E	Person ekvivalent			
BOF	Biologisk oksygen forbruk			
KOF	Kjemisk oksygen forbruk			
SS	Suspendert stoff			
PVC	Form for plastikk			
PP	Form for plastikk			
PEH	Form for plastikk			
PPM	Parts per million			
PAX-18	Polyaluminium-klorid			

Totalt organisk karbon LOC Limiting oxygen consentration

TOC

INNHALDSLISTE Endringshistorikk ______2 Samandrag _______2 1.1 1.2 1.3 1.4 1.4.1 Generelt 7 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 2.1 Aktiv slam- sequencing batch reactor (sbr)10 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 3.1 3.2 3.2.1 3.2.2

3.2.3 3.2.4

3.3		beskriving av program	19
3.4		Forbehandling/grovrista	19
3.5		Mottaktstank	20
3.6		Reaktor	22
3.	6.1	Luftesystem	22
3.	.6.2	Reaktor-soner	23
3.7		Reaktor-sekvensar	25
3.	.7.1	Pause	25
3.	.7.2	Innpumping	25
3.	.7.3	Reaksjon	26
3.	7.4	Sedimentering	26
3.	.7.5	Uttapping	26
3.8		Slamhandtering	27
3.9		Pumpehus	28
3.10)	Høgbelastningsmodus	29
4 D	rift (og vedlikehald av reinseanlegget	30
4.1		Verktøy og hjelpemidlar	30
4.2		Teknisk ettersyn	30
4.	.2.1	Forbehandling	31
4.	.2.2	Reaktorar	31
4.	.2.3	Ventilar	32
4.	.2.4	Røyrsystem	33
4.	.2.5	Roterande utstyr	34
4.	.2.6	Prøvetaking	35
4.	.2.7	Doseringssystem	36
4.	.2.8	Slammineraliseringsanlegg	37
4.	.2.9	Luftesystem reaktor	37
4.3		Prosessmessig ettersyn	37
4.	.3.1	Behandling av prøvar	37
4.	.3.2	Analyseutstyr og hjelpemidlar	38
4.	.3.3	Prosessmessig drift av reaktorane	39
5 F6	eilsø	øking	40
5.1		Forbehandling	40
5.2		Reaktor	41

5.3	Matepumper	43
5.4	Blåsemaskiner	45
5.5	Prosess	47
5.5.1	1 Reaktor	47
5.5.2	2 Prosess sedimenteringstest	48
5.5.3	3 Prosess utlaupsvatn	49
5.6	Naudprosedyrer	50
6 Utdji	upa teknisk beskriving (PROGAMMET I FOKUS)	51
6.1	Teknisk beskriving	51
6.2	Inngang/Utgang	51
6.3	Forriglingar	53
6.4	Logikk for sekvensane	53
6.4.1	1 Pause	53
6.4.2	2 Innpumping	53
6.4.3	3 Reaksjon	54
6.4.4	4 Sedimentering	54
6.4.5	5 Uttapping	54
6.5	Alarmliste	55
7 Tekn	nisk underlag	56
7.1	Interne datablad	56
7.2	Teknisk underlag frå leverandørar	56
7.2.1	1 Adresseliste frå leverandør	56

1 Introduksjon

1.1 GENERELT

Dette dokumentet er ein funksjonsbeskriving som inneheld informasjon om teknisk og prosess messig drift og vedlikehald for Sande reinseanlegg.

1.2 ANLEGGSINFORMASJON

Adresse: Sandevegen 245, 6973 Sande i Sunnfjord.

Driftsspenning er 3 x 230 Volt.

Ferdigstilt 2003

1.3 Hensikt (Heilt Generelt)

Hovudfunksjonen til anlegget er å reinse avløpsvatn og fjerne farlege stoff før vatnet blir tappa ut i elva Gaula. Anlegget bruker SBR-prosessen som reinseprisipp og bruker ein kombinasjon av biologisk og kjemisk reinsing. Anlegget er dimensjonert for ?? PE.

1.4 SIKKERHEIT

1.4.1 Generelt

Anlegget er bygd og alt utstyr er levert med tanke på å skape ein sikker arbeidsplass. På reinseanlegget er det likevel ein del forhald og arbeidsoppgåver som kan skape faremoment.

Det visast til vedlagt "Vernereglar for arbeid ved avlaupsanlegg". Driftsoperatøren må kjenne og følge desse vernereglane.

1.4.2 Kjemikaliar

Anlegget er utstyrt for bruk av flytande fellingskjemikalie PAX-18.

Følgande skal følgast:

Bruk av vernebriller og hanskar ved handtering.

Vi syner til det anvendte kjemikaliets datablad.

1.4.3 Elektrisk anlegg

Stadleg tilsyn av det elektriske anlegg er lokalt e-verk. Dei skal når som helst ha tilgang til anlegget for kontroll. Eventuelle berekningar skal følgjast.

Det er kunn autorisert installatør som har tilgang til å utbetre eller endre det elektriske anlegget.

Det er viktig at ansvarleg driftsoperatør raskt får utbetra faremoment på det elektriske anlegget. Det kan være defekte brytarar, stikkontaktar, jordingsfeil osv.

Det er forbodet å nytte ikkje normert materiell.

1.4.4 Drukning

Det er drukningsfare både ved reaktorane og dei underliggande tankane/basseng. Sørg alltid for at tilgangsluker kunn haldast opne ved nødvendig arbeidsoppdrag.

Gå aldri ifrå opne luker!

Vær spesielt oppmerksam på drukningsfaren ved reaktorane. Vatn under lufting vil ha mindre eigenvekt enn normalt. Det er derfor vanskeleg å holde seg flytande dersom en skulle falle uti.

1.4.5 **Gass**

Ved avlaupsanlegg er det alltid en fare for danning av gass.

Følgande kloakkgassar er helsefarlege: (Kilde "Arbeidstilsynet nr. 490)

Gass	Farenorm	Symptom
Hydrogen-sulfid (H₂S)	5 ppm (7 mg/m³) Lukt av rotne egg. Ved høge konsentrasjonar lammar gassen luktesansen.	Irritasjon av slimhinner og auge. Hovudpine, kvalme, svimmelheit og brekningar. Ved konsentrasjonar omkring faregrensa førekomer irritasjon av slimhinner og auge. Ved høge konsentrasjonar lammar den luktesansen og alvorlege forgiftingar og medvitsløyse kan skje utan forvarsel
Karbondioksid (CO ₂)	5000 ppm (9000 mg/m³)	Ved 4% gir gassen smerter og trykk i hovud, øyresus, langsam puls, uro, avmakt og kvalme. Ved 7-10% er det fare for kveling og ved 20% skjer kveling straks

Metan		Stor brennbarheit og kan fortrenge
		oksygen i tronge kummer.
Oksygen	Skal være over 20%	Det er ikkje nok berre å måle ok- sygen-innhaldet, atmosfære med 20% karbondioksid (dødeleg) innehelder framleis 16-17% oksygen.

1.4.6 Hygiene

Arbeid ved avlaupsanlegg medfører smitte- og infeksjonsfare. Personleg hygiene er her eit viktig stikkord. Ein kan beskytte seg sjølv mot dei fleste sjukdommar ved å være nøyaktig med sin personlege hygiene.

Sande reinseanlegg er et lukka anlegg, slik at man er lite utsett for luftborne smittefarar. Ved direkte kontakt med avlaupsvatnet, bruk alltid gummihanskar.

Sjølv om driftsoperatørar er meir utsett for smittefare enn den øvrige befolkninga, er risikoen for å utvikle sjukdom relativt liten.

Følgande sjukdommar er vanlegvis forbundet med avlaupsreinseanlegg:

- Mage/tarm infeksjonar
- Tuberkulose
- Polio

Følgande vaksinering skal tilbydast frå arbeidsgivar (Ta kontakt med lokalt helsepersonell):

- Hepatitt B
- BCG
- Stivkrampe

1.4.7 Reinhald

Generelt reinhald er viktig:

- For at anlegget skal fungere etter hensikta.
- Forhindre lukt.
- For at anlegget skal bli en sikker og triveleg arbeidsplass.

Personalavdeling bør vaskast etter behov eller minst en gang pr. 14. dag.

renasys

2.1 AKTIV SLAM- SEQUENCING BATCH REACTOR (SBR)

SBR står for Sequence Batch Reactor. På anlegget er det nytta SBR-teknologi, en reinsemetode basert på aktiv slam der alle prosessar føregår i same reaktortank. Reaktor nyttar biologisk reinsing for å koagulere og fjerne ikkje sedimenterbare partiklar og stabilisere organisk materiale. Avløpsvatn tilførast reaktor i «batcher» for å bli reinsa og uttappa. Kvar avløpsbatch går igjennom ein reaktorsekvens som består av fem delsekvensar:

Pause

Reaktoren venter til det er behov for kapasitet.

Innpumping

Reaktoren mottar avløpsvatn frå mottakstanken.

Reaksjon

Reaktoren luftast for å tilføre oksygen til mikroorganismane som igjen bryter ned organisk materiale, og næringsstoffet som nitrogen og fosfor.

Sedimentering

I sedimenteringsfasen skilast dei tyngre partiklane frå vatnet ved hjelp av gravitasjon.

Blåser og alle ventiler stengast i denne fasen for å oppnå rolege og stabile sedimenteringsforhold. Dette gir lave konsentrasjonar av suspendert stoff i avløpet.

Uttapping

Reinsa vatn drenerast mot resipient

2.2 BIOLOGISK REINSING

Biologisk reinsing omdanna organisk materiale (forureining) til sluttprodukta karbondioksid og vatn. Dette er i motsetning til kjemisk reinsing, som ved tilsetting av kjemikaliar, flytter forureining frå avløpsstraumen til slamfasen. Hensikten med biologisk reinsing av avløpsvatn er å koagulere og fjerne ikkje sedimenterbare partiklar og for å stabilisere organisk materiale. Dette blir gjort biologisk ved hjelp av mikroorganismar.

2.2.1 Adsorpsjon

Med adsorpsjon meinast at organisk materiale fester seg til det ytre slimlaget som mikroorganismane er omgitt av. Dei fleste organiske partiklane er adsorbert av bakteriane innan 30 minuttar etter at de er blitt pumpa inn i reaktoren.

2.2.2 Absorpsjon

Med absorpsjon meinast at organisk materiale blir "eten opp" av mikroorganismane og tatt inn i kroppen gjennom cellemembranen. Dette skjer ved at mikroorganismane skilje ut kjemikaliar (enzym) som bryter ned de adsorberte partiklane slik at de kan bli absorbert gjennom celle veggen.

Det absorberte materiale blir så nytta til å frigjere energi, slik at nye celler kan byggast opp. Dette nye cellematerialet, som også inneheld organisk materiale, kan fjernes frå det reinsa vatnet ved at det har høgare eigenvekt enn vatn. Det er derfor viktig å merke seg at reinseprosessen ikkje er avslutta før slammet og vatnet er separert. Sedimenteringsfasen er derfor en viktig del av reiseprosessen, kanskje den viktigaste.

2.2.3 Mikroorganismar

Mikroorganismane finnes i reaktoren og utgjer hovuddelen av slammet i et biologisk anlegg. I et biologisk/kjemisk anlegg er det alltid en fare for at slammet er et kjemisk slam, dvs. at ein overdoserar kjemikaliar og dermed redusert den biologiske aktiviteten.

I tillegg til mikroorganismar inneheld slammet uorganisk materiale.

For at mikroorganismar skal trivast må dei ha tilgang på:

- Karbon (C) Dette finnest bl.a. i organisk materialar
- Næringssalt som Fosfor & Nitrogen
- Sporstoff (metall)
- pH mellom 4 og 9, trivest best mellom 6,5 og 7,5
- Temperatur over 5 °C
- Oksygen
- God sirkulasjon

Alle desse forhold er normalt til stede ved reinsing av avløpsvatn frå hus haldningane. Anlegget tilsett oksygen og beheld mikroorganismane i reaktoren.

Det er bakterie-gruppa som er "fotsoldatane" i eit aktivt slam anlegg. Dette utgjer hovuddelen av mikroorganismane og står for største delen av den nedbrytinga som foregår i reinseanlegget. Dei formeirar seg ved celledeling, dersom dei har rikeleg tilgang på organisk materiale, då kan antala auka kraftig i løpet av kort tid.

Dei veks på lett nedbrytbande stoffer som f.eks.:

- Sukker
- Amino syrer
- Organiske syrer, etc.

Men dei kan også vakse på vanskelege nedbrytande stoff som f.eks.:

- Langkjeda hydrokarbon
- Desinfeksjonsmiddel
- Komplekse aromatiske komponentar
- Døde mikroorganismar, etc.

I tillegg til bakterie-gruppene består slammet av fire andre grupper. Desse gruppene er i antal mykje mindre enn bakterie-gruppene, men dei er framleis veldig viktig med omsyn til reinseresultatet. Desse andre gruppene blir brukt som indikatorar, ved mikroskopisk undersøking av slammet, for å undersøke om slammet er av god eller dårleg kvalitet.

De fire gruppene er:

2.2.3.1 Protozoa

Dette er eincella mikroskopiske dyr, som kunn er synlege ved mikroskop.

De lever hovudsakleg av bakteriar, noko som har fleire positive effektar. Det gir mindre suspendert materiale i det reinsa vatnet og fjerning av bakteriar som også stimulerer framvekst av gode bakteriar.

Fjerning av sjukdomsframkalla bakteriar er også en viktig eigenskap som protozoa-gruppa er kjend for.

2.2.3.2 Rotifers

I langtids lufteanlegg, som SBR-anlegg, er dette en av dei dominerande gruppene.

I samanlikning med protoza-gruppa fortærer denne gruppa også store mengder bakteriar, noko som bidrar til å holde bakterie-gruppa sunn og frisk.

Denne gruppa blir ofte nytta som indikator-gruppe i tilfelle tilførsel av giftstoff til anlegget. Da rotifers-gruppa rask vil redusere vet tilførsel av giftstoff.

2.2.3.3 Nematoder

Denne gruppa omfattar mikroskopiske marktypar. De lever av organisk materiale, andre nematoder, bakteriar, protozoa og rotifers.

Då dei reproduserer via egg, og er avhengig av både hann- og hunkjønn, er dette noko komplisert i et turbulent miljø som en luftetank. Dei er derfor avhengig av høy slamalder og lang luftetid for at denne gruppa skal vokse.

Deira viktigaste funksjon er "kanal-bygging" til slamfnokkene, noko som opnar for oksygentilførsel. I likleik med de andre gruppene fjernar denne også bakteriar.

2.2.3.4 Filamentus mikroorganismer

Denne gruppa er viktige "byggesteinar" for god fnokk danning, dvs. de hindrar utslepp av små partiklar. Dersom denne gruppa blir for dominerande, vil dei danne for store fnokkar. Ein vil då ha eit sedimenteringsproblem på anlegget. Følgande driftsforhold kan forårsake for stor vekst av denne gruppa:

- For lite oksygen
- For lavt F/M forhold
- For lite næringssalt (Fosfor eller nitrogen)
- For lav pH

2.2.4 Kjemiske reaksjonslikningar

Det er tre prosessar som skjer i ein aerob prosess (Prosess med tilgang på luft).

1. Stabilisering av organisk materiale (Oksidasjon)

Organisk materiale + O₂ + Bakteriar -> CO₂ + NH₃ + Energi + Andre Pr.

2. Oppbygging av nytt cellemateriale

Organisk materiale + O₂ + Bakteriar + Energi -> Nye bakteriar

I et aktiv slam anlegg er berre en liten del av det tilførte organiske materiale stabilisert (oksidert) til "låg-energi" produkt som CO₂, NO₃ og SO₄. Det meste blir nytta til produksjon av nytt cellemateriale. Det organiske materialet er med andre ord blitt flytta frå avløpsvatnet til slammet. For at anlegget skal ha ein høg reinseeffekt er vi derfor helt avhengig av å skilje slam og vann i sedimenteringsfasen.

For å oppnå dette må vi ha eit slam som sedimenterer, og slam på veggene i reaktorane må ikkje hindre sedimenteringa.

En viktig faktor som kontrollerer slammets sedimenteringseigenskaper, er slammets alder. Dei dominerande gruppene av mikroorganismar vil variere med slammets alder, og de ulike gruppene gir slammet varierande sedimenterings- og flokkuleringseigenskapar. Generelt kan vi sei at fersk slam gjer dårlege sedimenteringseigenskaper.

Slamalder definerast som mengde slam i reaktorane dividert med den mengde slam som blir fjernet frå reaktorane.

SLAMALDER = (MENGDE SLAM | REAKT.)/(MENGDE SLAM FJERNET PR.DAG)

WaterCare -reinseanlegg har kontinuerleg uttak av slam basert på slamalder og slamalderen vil derfor være tilnærma konstant. Dette er ein stor fordel i forhold til å nytta reaktorane som slamlagringstankar, fordi dette inneberer stor variasjon i slamalderen.

3. Endogen respirasjon (Oksidasjon av cellemateriale)

Bakteriar + O₂ -> CO₂ + NH₃ + H₂O + Energi

Denne reaksjonen er viktig for slam produksjonen i anlegget. Her får vi oksidert cellemateriale som elers måtte ha blitt fjerna som slam. Det er denne reaksjonen som sørger for at slammet blir stabilisert, dvs. at vi ikkje berre flytter det organiske materialet frå avløpsvatnet til slammet.

Kor stor nedbryting av slammet vi oppnår, endogen respirasjon, vil avhenge av tilgjengeleg organisk materiale i avløpsvatnet i forhold til mengde mikroorganismar (slam) i anlegget.

Visst det er rikeleg tilgang på organisk materiale i avløpsvatnet og lite slam i anlegget, vil vi hovudsakeleg få reaksjon 1 og 2, dvs. stor slam produksjon. Reaksjon 3 vil berre skje når det er liten tilførsel av nytt organisk materiale i forhold til mengda slam i anlegget.

Dette er eit viktig prosessparameter og heiter **slambelastning (kg BOF**₇/**kg SS x døgn)**. Dette forholdet er basert på ein viss mengde mikroorganismar kan fortære en viss mengde organisk materiale pr. dag. Ved langtidslufting, som på dette anlegget, kan 1000 mg av mikroorganismar fortære 40-160 mg organisk materiale pr. dag. Eksempel på kalkulasjon av slambelastning:

Belastning : $50 \text{ p.e./reaktor x } 70 \text{ gBOF}_7/\text{døgn} = 3,5 \text{ kgbof}_7/\text{døgn}$ mikroorganismar. : 3500 mg/l (Slamkonsentrasjon) x 10.000 l/tank = 35 kg

Slambelastning: 3,5 kgBOF₇/35 kg SS x døgn = 0,10

Ved SBR-anlegg må vi ta omsyn til at lufttankane også blir nytta som sedimenteringstankar. I gjennomsnitt vil reaktorane ha ein luftetid på 60%. For å finne den aerobe slambelastninga må vi derfor dele slambelastninga med 60%.

Aerob slambelastning: 0.10/60% = 0,15 kgBOF₇/kgSS x døgn

Ved denne slambelastninga vil vi normalt oppnå nitrifikasjon dersom følgande kriteria også er oppfylt:

- God biologisk drift
- Slamalder > 10 dagar
- Oksygen > 2 mg/liter

Nitrifikasjon utførast av to bakterietypar, Nitrosomonas og Nitrobacter. Reaksjonslikninga ved nitrifikasjon kan skrivast:

Organisk nitrogen(N) og ammonia(NH₃) + 0_2 -> Nitrat(NO₃)

Nitrifikasjon er oksidasjon, forbruk av oksygen, av nitrogenforbindelsar til nitrat. Dersom denne oksidasjonen, eller forbruket av oksygen, ikkje skjer i reinseanlegget vil dette belaste resipienten. Dette er helt tilsvarande som ved utslepp av organisk materiale. I tillegg til at nitrogenforbindelsene forbruker oksygen, kan også ammonium(NH₃) være giftig for fisk.

2.2.5 Simultanfelling

Ved krav til fosforfjerning i reinseanlegget nyttast kjemisk reinsing i tillegg til den biologiske. Med simultanfelling meinast det at to prosesser går samstundes, biologisk nedbryting og fjerning av fosfor ved kjemikalitilsetning.

Det tilsette kjemikaliet reagerer med løyst fosfat, orto-fosfat, og alkaliteten (HCO₃) til aluminiumfosfata og aluminiumhydroksid. Desse dannar så partiklar saman med mikroorganismane slik at de fjernes frå det reinsa vatnet Måling av orto-fosfat på utløpsvatnet er derfor en viktig driftsparameter.

Gunstige forhold for fjerning av fosfor i simultanfellingsanlegg finnes når:

- Det er god sirkulasjon (Flokkulering)
- 6,5 < pH < 7,5 (Optimalt for mikroorganismar)
- Gode biologiske fnokkar

3 TEKNISK BESKRIVING (ANLEGGET I FOKUS)

3.1 VATNES GANG GJENNOM ANLEGGET

Ved normal drift kjem avløpsvatnet inn til anlegget via innløpsrøyret til ein forbehandlingseining, for dette anlegget ein Hydropress – «Huber rotomat RO9» innløpsrist med ristgodsvasker og presse. Denne risten held tilbake uorganisk materiale som Q-tips, plast sanitetsbind osv. Dette er material som eit ikkje ønsker å ha med vidare i prosessen. Framandlegeme i avløpsvatnet kan føre til skader på pumper, ventilar og andre prosesskomponentar. Forbehandlingsdelet er utforma for å fjerne minst mogleg organisk materiale. Dette samsvarer med verkemåte på biologisk reinsing.

Frå rista renner vatnet med sjølvfall til mottakstanken. Hovudfunksjonen til denne tanken i tillegg til at den fungerer som pumpetank er å utjamne større periodiske tilstrøymingsmenger og fungera som oppsamlingstank ved straumbrot. Frå mottakstanken pumpes vatnet vidare til reaktorane.

Innpumping skjer til den reaktoren "som står for tur", dvs. den har drenert av reinsa vann og er i riktig fase (innpumpingsfase). Når vatnet er pumpa opp til en reaktor, føregår all reinsing i den same tanken. Vatnet blir dermed ikkje flytta frå tank til tank.

Dersom ingen av tankane er i innpumpingsfase blir vatnet lagra i mottakstanken, inntil en av reaktorane har avslutta sin syklus.

Etter biologisk/kjemisk reinsing i en av reaktortankane blir det reinsa avlaupsvatnet drenert via utlaupsrøyret til elva Gaula. På utløpsrøyret er det eit prøvetakingspunkt.

25.01.24

runksjonsbeskrivinga RA200 Sande

Slam

Avlaupsvatnet blir reinsa ved at reaktorane gjennomgår en syklus. Denne reinsesyklusen er nærmare beskrive under punkt 2.1 og 6.4. En del av denne syklusen er uttapping av overskotsslam.

I reaksjonsfasen tappast overskotsslam til slammineraliseringsanlegget basert på slamalder.

Slammineraliseringsanlegget består av fire sivbed celler. Sivbed er tette basseng fylt med filtrerings masser og be-planta med takrøyrs planter (siv). Siv bedet drenerast tilbake til utjamningstanken via ein pumpehus/kum på utsida av anlegget.

3.2 MEKANISK UTSTYR

3.2.1 Tankar

1. Mottaktstank

Mottaktstank/utjamningstank har eit total volum på ca. 100 m^3 . Tanken er laga i betong og ligger som «kjellar» under anlegget.

2. Reaktor

Reaktorane, $2 \times 165 \ m^3$, er standard Brimer tankar produsert av Kvamsøy Plastindustri AS i glassfiberarmert polyester tilpassa vårt behov for tilslutning i botn og via flensar på tankvegg. Tankane er dimensjonert for de laster vanlig drift tilsvara. Anslutninger på tankane er tilpassa aktuelle røyrtypa, ventiler og medie. Kvar tank har følgande inndeling av soner:

Bruksvolum

Bruksvolumet er den aktive delen av tanken som fyllast ved kvar innpumping.

Slamsona

Slamsona er den delen av tanken som er under utløpet, fråtrekket sikkerheitssonen.

Sikkerheitssone

Den tredje sonen er sonen mellom bruksvolumet og slamsonen. Den er til for å ta hand om varierande sedimenterings eigenskapar og overskotsslam.

3. Slamlager

"Slamlageret" er et slammineraliseringsanlegg basert på siv bed og er et stort basseng plassert utanfor anlegget.

4. Kjemikalielagring

Kjemikalietanken er produsert i rotasjonsstøypt PEH frå Polimoon Cipax AS.

3.2.2 Roterande utsyr

1. Kloakkpumper

På anlegget er det montert fem pumper. Pumpene styres av trykkgivarar/flottørar som signalerer start og stopp. Dei to matepumpene som pumper innløpet frå mottakstank til reaktorane er montert tørroppstilt i horisontal versjon på stativ i maskinrommet i kjellaren, med ventiler på kvar side for vedlikehald og service.

I pumpehuset utanfor anlegget er det montert to ned dykka pumper på geidefeste for retur pumping av rejektvatn frå siv bed og for retur pumping av slam frå påfyllingsrørene.

I maskinrommet er det montert en lett slukpumpe.

Det er nytta pumper frå ITT Flygt/xylem på anlegget.

2. Blåsemaskiner

På dette anlegget er det nytta skrue/lobekompressor. Levert av NESSCO Blåsemaskinene er vald spesielt for dette anlegget med omsyn til kapasitet, energiøkonomi og vedlikehaldskostnader.

3. Doseringspumpe

For dosering av kjemikalium nyttast membranpumper. Kjemikaliar blir pumpa direkte inn i reaktorane. For å endre mengde kjemikaliar har doseringspumpa moglegheit for justeringar lokalt på pumpa og ein kan endre tidsparameter i PLS programmet.

3.2.3 Ventilar

På dette anlegget er det montert fleire ulike ventiltypar, tilpassa ønsket funksjon. Ventilar levert av Lohse

<u>Membran ventiler</u> med automatisk drift er nytta som ventilar for utløp av reinsa vann. Ventilane er i PVC.

Skyvespjelds ventiler med automatisk drift er nytta for styring av innløp og slam.

Skyvespjelds ventiler med manuell drift er nytta på alle prosess leidningar som serviceventilar. Ventilane er i syrefast stål.

<u>Magnet ventiler</u> er hovudsakeleg brukt for å styre instrumentluft til automatiske ventiler.

3.2.4 Røyr

RA200 Sande

På dette reinseanlegget er det lagt vekt på å bruke rør i miljøvennlege material. Det er derfor valt røyr i PP eller PEH som hovudregel. Spesielle detaljer er i PVC. Ved å utnytte tilgjengelege leverandørars produktsortiment og kompetanse er det utvikla eit røyrsystem som fyller de krav reinseanlegget stiller. Røyr og detaljer er samansett ved muffeskøyt, flens og krage, sveis eller lim. Val av samansetnings metode er tilpassa krav til service og vedlikehald.

3.3 BESKRIVING AV PROGRAM

Beskrivinga av programmet i 3.3 gjeld for anlegg utstyrt med operatørterminal og Mitsubishi FX2N PLS. Justeringar foretast via SEKVENSTIDER i panelet. Benytt følgande prosedyre:

Sekvenstider → (Passord) → for eksempel Reaksjonssekvens

Operatørpanelet er anleggets informasjonspunkt mot driftsoperatør. I gjennomgang av dei einskilde element i programmet er det her brukt aktuelle meldingar som illustrasjon av anleggets driftsstatus.

Anlegget behandlar avløpsvatnet i porsjoner, dvs. en gitt mengde blir pumpet inn frå utjamningstanken, behandla og reinsa vatn blir så tappa ut frå reaktor.

Antal sekvensar er avhengig av til renninga. Ein reaktor - eller heile anlegget - vil være i "PAUSE sekvens" inntil kapasitet er nødvendig. Anlegget kan derfor være i ulike sekvensar, sjølv om operatøren er på anlegget til faste tider. Første oppgåve ved kvart driftsbesøk, er å fastslå kva sekvens dei ulike reaktorane er i.

3.4 FORBEHANDLING/GROVRISTA

Råkloakk renner igjennom grov rista (Huber rotomat R09). Huber rotomat er styrt av eigen styringseining. Grov rista fungerer som eit liten tank. I grovristtanken er det ein nivågivar som startar grovrist skrue ved innkommande avlaupsvatn. Skruen tek med uønska materialar og frakter det til avfallshandtering. Hubergrovrist er utstyrt med spyledyser som spyler skrue og tank når den er i operasjon. Etter grov rista renner avlaupsvatnet med sjølvfall til mottaktstanken.

Dersom grov rist skulle gå tett vil avløpsvatnet førast vidare til mottaktstanken via overløpsrøyr. NB! Her vil ikkje uønska materiale bli fjerna.

Figur 2 Illustrasjon huber-grovrist

3.5 MOTTAKTSTANK

Mottakstanken er cirka 100 kubikkmeter og ligger som kjeller på anlegget. Vatnet blir lagra i mottaktstanken før det pumpast vidare til reaktorane. Mottakstanken fungerer også som utjamningstank og samlar varierande tilstrøymingar for å gi resten av anlegget homogene forhold.

Mottaktstanken har fire sensorar:

- Trykkgivar for nivå (PP00-LT01)
- Trykkgivar for overløp (PP00-LT02)
- Flottør-vippe lav (PP00-LS02)
- Flottør-vippe høg (PP00-LS01)

Alle sensorane i mottaktstanken heng ifrå taket. Sensorane er tilgjengelege frå tilgangsluka som også er i taket på mottaktstanken.

Nivået i mottaktstanken blir primært målt med trykkgivar LT01 men kan også estimerast med flottør-vippene. For at vatnet skal pumpast vidare må trykkgivaren indikere at nivået er høgt nok. LS02 fungerer som backup. I toppen av mottaktstanken er det ei open kasse. Denne kassa er delt i to med ein liten skiljevegg som er mindre enn høgda på kassa. I venstre kammer kjem reinsa vatn frå rektorane og renner vidare til resipient på sjølvfall (rein side). På høgre side ligger det ein trykkgivar som måler eventuelt overløp. Dersom nivået i mottaktstanken blir for høgt vil vatnet renne over til den opne kassa, aktivere trykkgivar, renne over skiljevegg og ut i resipient røyret som direkte overløp (skitten side). (Sjå illustrasjon)

Det er også overløpsrøyr tilbake til mottaktstanken frå reaktortankane samt ein retur av rejektvatn frå slamelamineringsanlegget sjå punkt xx.xx

Figur 3 Illustrasjon mottakstank

RA200 Sande

Figur 4 Illustrasjon utløpskasse

3.6 REAKTOR

3.6.1 Luftesystem

Når systemet er i lufting bygger blåsaren opp trykkluft til diffuserane i botn av tanken. Diffurserane er laga av ein membran med små hull som dannar bobler når lufta kjem i kontakt med avlaupsvatnet. Boblene tilfører oksygen til mikroorganismane i reaktorane. Lufting av reaktoren er også med på å blande avlaupsvatnet og forhindrar at det aktive slammet legger seg i botn på reaktoren i reaksjonsfasen.

Dersom membranen på diffuseren strekkast ut eller blir ujamn kan dette føre til tap av effektivitet på lufting i tanken.

Luftesystemet er bygd opp av fleire diffusere som dekker mesteparten av botnarealet i reaktoren.

Figur 5 Diffuser oppsett i reaktor

Figur 6 Illustrasjon diffusere

3.6.2 Reaktor-soner

RA200 Sande

Figur 7 Illustrasjon reaktorsoner

Bruksvolum

Bruksvolumet er den aktive delen av tanken som fyllast ved kvar innpumpingsekvens

Slamsona

Slamsona er den delen av tanken som er under utløpet, fråtrekket sikkerheitssona. Her ligger det aktive slammet.

Sikkerheitssona

Den tredje sonen er sonen mellom bruksvolumet og slamsonen. Den er til for å ta hand om varierande sedimenteringseigenskapar og overskuddsslam.

I reaksjonssekvensen blandast desse sonene ved lufting av reaktoren. I sedimenteringssekvensen vil desse sonene komme tilbake og det reinsa avlaupsvatnet vil okkupere bruksvolumsona og kan drenerast til resipient.

3.7 REAKTOR-SEKVENSAR

Reaktorsekvensane er delt opp i fem sekvensar som er basert på SBR-teknologi beskrive i avsnitt 2.1. Sekvensane blir forklart i rekkjefølgje.

3.7.1 **Pause**

Ein reaktor vil være i pausesekvens så lenge det ikkje er bruk for reaktorens kapasitet. I pausesekvens vil reaktoren luftast periodisk gjennom tilhøyrande blåsar (PA01-BL01 / PA02-BL01) for å oppretthalde oksygeninnholdet i tanken og halde slammet aktivt, men samtidig ikkje bryte det heilt ned. Grad av periodisk lufting kan

Dersom følgande føresetnad er oppfylt går reaktoren over i innpumpingssekvens:

- Nivågivar i mottaktstank (PP00-LT01) signaliserer innpumpingsnivå.
 - a. Dersom nivågivar har feil vil flottør (PP00-LS02) fungere som backup.
- Nivågivar i respektiv reaktortank (PP01-LT01 / PP02-LT02) fungerer.
- Motorvern for pumpe ikkje slått ut.

3.7.2 Innpumping

Innpumpingsekvens byrjar ved å starte respektiv motor (PP01-PS01 / PP02-PS01) samt opne pneumatisk ventil (PP01-VP01 / PP02-VP01). Reaktor vil fyllast med avlaupsvatn så lenge nivågivar i mottakstank (PP00-LT01) eller flottør (PP00-LS02) signaliserer at det er nok vatn i mottakstanken. Startnivå for innpumping kan endrast frå operatørpanelet.

Dersom nivået i mottakstanken går under startnivå vil pumpe stoppe og ventil lukke. Dette medfører ikkje at innpumpingssekvensen er ferdig, men at den venter på meir vatn. Når nivågivar i mottaktstanken går over startnivå vil innpumping forsette.

I Innpumpingssekvens vil reaktoren periodisk lufte reaktoren.

Systemet vil sørge for at dei to matepumpene vil ha tilnærma lik gangtid.

Dersom reaktor skulle overfyllast vil overlaup frå reaktor førast ned i mottaktstank.

Dersom følgande føresetnad er oppfylt går reaktoren over i reaksjonssekvens:

• Nivågivar i reaktor (PP01-LT01 / PP02-LT02) signaliserer fullt bruksvolum eller makstid for innpumpingssekvens er nådd.

Lengda på sekvensen vil difor være bestemt av til-renninga opp mot makstid.

Når betingelse er oppfylt vil pumpe stoppe og pneumatisk ventil stenge.

renasys

25.01.24

3.7.3 Reaksjon

Reaksjonsfasen består av fleire delsekvensar:

Aerob

Reaktor tilførast kontinuerleg oksygen frå respektiv blåser (PA01-BL01 / PA02-BL01). Lengde av aerob fase kan endrast frå operatørpanelet.

Anoksisk

Reaktor tilførast ikkje oksygen, respektiv blåser (PA01-BL01 / PA02-BL01) stopper. Lengde av anoksisk fase kan endrast frå operatørpanelet

Simultanfelling

Simultanfelling betyr kombinert biologisk og kjemisk reinsing. I slutten av reaksjonssekvensen tilsettast det kjemikaliar i reaktortanken. Doseringspumpe (CH00-PH01 / CH00-PH02) pumpar (kjemikalie) frå kjemikalietank CH00-BX01 og tilsett direkte til reaktortank.

Dosering av kjemikaliar er proporsjonalt med innpumpa råkloakk. Gangtida kontrollerast frå operatørpanelet, eller justerast direkte på doseringspumpa. Doseringmengda kan og skal justerast av driftsoperatør. Den skal justerast i forhold til målt fosfat-fosfor (orto-fosfat) på resipientprøven.

Dersom følgande føresetnad er oppfylt går reaktoren over i sedimenteringssekvens

• Tid på reaksjonssekvens er ferdig.

3.7.4 Sedimentering

Sedimentering startar ved avslutta reaksjonsfase. I sedimenteringsfasen er eit roleg miljø nødvendig. Derfor skal den hydrauliske belastninga i tanken være lik null. Dette medfører ingen innpumping, opne ventilar eller lufting av reaktor.

Dersom følgande føresetnad er oppfylt går reaktoren over i uttapping sekvens.

• Tid på sedimenteringssekvens er ferdig.

3.7.5 Uttapping

Etter sedimenteringssekvensen vil slammet og SS være skilt ifrå vatnet. Vatnet på toppen av reaktoren kan no drenerast med sjølvfall mot resipient. Pneumatisk dreneringsventil (TW01-VP01) opnast og reinsa vatn drenerast ut.

Dersom følgande er oppfylt går reaktoren over i pausesekvens.

• Dreneringstid for reaktor ferdig, eller nivågivar i reaktor (PP01-LT01 / PP02-LT02) signaliserer stoppnivå.

	_		
20	CIAI	ALLAND	TEDINO
3.8	JEAI	чнайи	TERING

For å sikre eit stabilt og korrekt slamnivå i reaktoren, vil respektiv slamventil (PS01-VH01 / PS02-VH01) opne og tappe slam til siv bed ein gong i døgnet. Denne tiden kan endrast i operatørpanelet. Slam tappast ved sjølvfall til ein av fire siv bed celler. Kvar siv bed celle har sin respektive pneumatiske ventil (PS00-VP01, PS00-VP02, PS00-VP03, PS00-VP04) og slamuttak variera mellom desse fire cellene. Slamhandteringa skjer i reaksjons sekvensen.

Kva siv bed celle som er aktiv rullerast kvar 24 timar Menga som tappast ut er utrekna ved hjelp av slamalder spesifisert i 2.2.4

3.10 HØGBELASTNINGSMODUS

Høgbelastningsmodus blir aktivert ved stor til renning til anlegget.

Dersom til renningen er større ein anleggets kapasitet i normal drift vil sekvenstidene til reaktorane blir redusert for å auke kapasiteten.

Alle tider på høgkapasitetsmodus kan endrast i operatørpanelet.

Her er eit eksempel på sekvenstider:

Delsekvens	Normal sekvens Minutter	Høgbelastnings sekvens Minutter
1. Innpumping	45	45
2. Reaksjon	180	90
3. Sedimentering	90	90
4. Uttapping	30	30
5. Pause	Variabel(0 - uendeleg)	Variabel(0 - uendeleg)

Det tilførte avlaupsvatnet vil i slike situasjonar være svært uttynna, med lave konsentrasjonar av organisk materiale. Den nødvendige biologiske ned brytningstida (reaksjonstida) kan derfor reduserast. Det viktige i slike situasjonar er å behalde sedimenteringstida konstant, slik at ein forhindrar slamflukt.

renasys

25.01.24

4 Drift og vedlikehald av reinseanlegget

Driftsrutinar som er skildra i denne instruks er vegledande ut ifrå leverandørens erfaring med drift av reinseanlegg i over 20 år. Erfaringa er også at kvart anlegg har sin eigenart avhengig av til renning og samansetning av avlaupsvatn. Driftsrutinar må derfor justerast til det enkelte anlegget over tid.

Ved vedlikehald av komponentar synar vi i sin heilheit til leverandørens avvisingar

4.1 VERKTØY OG HJELPEMIDLAR

For å utføre tilsyn og vedlikehald mest mogleg rasjonelt bør det være en del verktøy og hjelpemidlar tilgjengeleg på anlegget. Følgande liste er leverandørens forslag. Ein del spesielle hjelpemidlar kan innkjøpast frå leverandøren. Ta kontakt for avtale.

Verktøyliste

Fastnøkler flensebolt

Skrujern div

Kniv

Lommelykt

Vernebriller

Lange hansker

Hach-meter

Sedimenteringssylinder

Måleglass

4.2 TEKNISK ETTERSYN

Teknisk ettersyn omfatter regelmessig ettersyn av mekanisk art.

Dette gjelder i stor grad renhold av anleggsdeler, kontroll av roterende utstyr etc.

For en del kontrollpunkt er det angitt forslag til hyppighet av tiltaket.

M1 betyr en gang pr måned, U1 en gang pr uke, M2 annenhver måned, U2 annenhver uke osv. Intervallene tilpasses erfaring på anlegget.

RA200 Sande

4.2.1 Forbehandling

I dette anlegget gjør innløpsrista og utjevningstanken grovarbeidet i anlegget. Her separeres uorganisk stoff ut som vasket og presset ristgods, og tanken fungerer som utjevningsmagasin for SBR-prosessen.

Mottakstank					
Komponent	Gjeremål	Frekvens			
Flottører	Spylast	M1			
Kablar	Spylast	M1			
Røyr	Spylast	M1			
Skillevegg	Spylast	M1			
Gjennomføring i skiljevegg (bend)	Spylast	M4 og ved slamtømming			
Trykkgivar	Feilretting	Ved feil			
Overløpkasse	Spylast	M1			

4.2.2 Reaktorar

Reaktorene omfatter anleggets biologiske trinn. For å sikre gode renseresultat - og et godt arbeidsmiljø i prosesshallen - må disse holdes rene og tette. Lekkasje i pakning på lokk gir vannsøl på reaktorens topp i tillegg til vond lukt i prosesshallen.

	Reaktorar					
Komponent	Gjeremål	Frekvens				
Tankvegg og topp	Spylast. NB! Skal ikkje utførast når anlegget er i sedimentering/uttappingssekvens	U2				
Trykkgivar	Kontrollere funksjonen. Avlest nivå mot registrert nivå	U2				
Flyteslam	Vannspeilet i reaktoren heves til over omløpsrøyr. Utflrast ved aktivering av innløpspumpe, samt innløpsventil	M1				
Luftesystem	Mønster i vannspeil, spesielt ved impulslufting. Ved mistanke om skade på lufter må tanken dreneres og spyles. NB! Sikkerhetsinstruks!! Aktuelle feil er sprekk i membran, løsnet membran eller lekkasje i sveiseskjøt.	U2				

Documentation

Bachelorgruppe B024EF-03 | Svanehaugvegen 1 | 6812 | Førde | Norway | | Peter | Vegard | Roar |

4.2.3 Ventilar

RA200 Sande

På dette renseanlegget er det valgt ventiler som er best mulig tilpasset den funksjon de skal fylle. Dette gjelder dimensjon, trykklasse, materiale og tilkoplingstype samt betjening.

Ventilar				
Komponent	Gjeremål	Frekvens		
Automatiske skyvespjeldsventiler og membranventiler Pneumatiske ventiler brukes i anleggets tilførsel-, utløp- og slamledninger fra den enkelte reaktor. Ventilene er erfaringsvis svært driftssikre for denne anvendelse. Dette gjelder såvel materialvalg, hydraulisk utforming som styringsutrustningen. Ventilene har trykk-eller fjær-retur og er normalt stengt. Ventilen styres fra magnetventil montert i maskinrom. Magnetventilen kan forstilles manuelt, ved bruk av operatørpanel, for prøving av automatventilen	Slamventil/Slampumpe tvangsåpnes for funksjonstesting, dvs. testes for eventuelle tetninger i ventil eller i rørsystemet. Ved svikt: Aktuelle slitedeler er membran, pakninger og fjærer. Se beskrivelse og delefortegnelse for ventilen i kap 7.	U2		
Manuelle ventiler Manuelle ventiler brukes som stengeventiler	Ingen Ved svikt: Syrefaste ventiler anses vedlikeholdsfrie, og byttes ved feil. Se datablad og teknisk underlag.	Vurderast		
Magnetventiler Magnetventiler er normalt lite belastet sammenlignet med designdata.	Ved svikt: Typisk feilkilde er svikt i spole eller membran. Ved langvarige luftlekkasjer fra anlegg til rom bør magnetventilene kontrolleres mot korrosjon.	M1		
Andre ventiler	Ingen Ved svikt: Funksjonsprøves ved å påtrykke luft manuelt.	Vurderast		

RA200 Sande

4.2.4 Røyrsystem

I dette renseanlegget benyttes i hovedsak rør i PEH eller PP. Rør og deler er valgt ut fra den påkjenning som kan forventes. For å gi best mulighet for inspeksjon, renspyling og staking er det plassert stakepunkt eller demonterbare koblinger på vitale steder i anlegget.

Hydraulikk

Rørsystemet i renseanlegget skal tjene flere formål. Noen ledninger er trykkledninger - andre er selvfallsledninger. Noen er dimensjonert for 100% fylling, andre er luftet for å unngå dette. I tillegg fører noen ledninger råkloakk mens andre fører renset vann.

Det er viktig å være klar over dette når tilsyn med anlegget utøves.

Røyrsystem				
Komponent	Gjøremål	Frekvens		
Utløp reinsa vatn	Spyling av røyr	M12		
Slam	Spyling av røyr	M12		
Drenering/omløp	Spyling av røyr	M6		
Prosessluft inn	Inspiser utstyr	M6		
Prosessluft ut	Inspiser og spyling	M6		
Oppheng I renseanlegget nyttes det i stor grad fritthengende horisontale rør. Disse er ved montasje sammenføyd og klamret med sikte på den funksjon de skal fylle. En del ledninger er strekk-påkjent - andre kan ha termisk ekspansjon.	Det er viktig at alle oppheng kontrolleres regelmessig og strammes opp/trekkes til ved behov.	M12		

RA200 Sande

4.2.5 Roterande utstyr

I renseanlegget er roterende utstyr dublert helt eller delvis (blåsemaskiner). Ved svikt på en maskin vil dette normalt aldri stanse anlegget, men det kan medføre redusert hydraulisk kapasitet. Regelmessig tilsyn og vedlikehold i følge oppsatte planer sikrer at anlegget til enhver tid har full kapasitet. Vedlikehold styres av periodisk aktivitet og dels av driftstimer avlest i display/skriver/operatørpanel.

Innløpspumper

Innløpspumpene er montert tørroppstilt i maskinrommet. Det nyttes standard avløpspumpe av anerkjent fabrikat. Vanlig ettersyn består av å kontrollere olje samt inspisere løpehjul og sugestuss.

Innløpspumper				
Gjeremål	Frekvens			
Utvendig reingjering	M12			
Deling av pumpehus og kontroll av løpehjul	M12			
Oljeskift/ kontroll av olje	M12			

Blåsemaskiner

På dette anlegget er det installert to lavtrykks skruekompressorer av type Robuschi LBR 15 i støykasse. En for hver reaktor.

<u>Tiltak ved ettersyn</u>

Blåsemaskinene er på enkelte anlegg montert i egne rom på grunn av støy. Normalt er rommet utstyrt med vifte som bringer varm luft ut i anleggsrommet og tilsvarende kjøligere luft tilbake. Det er viktig at det opprettholdes passende temperatur i maskinrommet (12 < temp < 25°C).

På grunn av stor luftgjennomstrømming er det viktig å unngå støv som kan sette seg i blåsemaskinenes luftkanaler, løpehjul m.fl.

For alle typene gjelder at erfaring vil avgjøre hvilke tiltak som settes inn. Den beste indikator er maskinens lydbilde. Endring her bør alltid medføre nærmere kontroll.

Skruekompressor				
Gjeremål	Frekvens			
Filter sugestuss	M4			
Tilbakeslagsventil trykkstuss	M12			
Oljenivå kfr. driftsmanual fra leverandør				
Akselkopling	M4			
Evt. Remdrift	M4			
Vibrasjonsdempar	M4			

Kompressor for instrumentluft

I renseanlegget er det en rekke ventiler som fjernstyres ved bruk av trykkluft. Trykkluft genereres ved en eller flere kompressorer med påbygd tank. Dette er standard utstyr for arbeidstrykk på opp til 8 bar.

Kompressor for styreluft				
Gjeremål	Frekvens			
Funksjonsprøve reguleringsventil	M1			
Funksjonsprøve sikkerheitsventil	M1			
Drenere Kondensat	U2			
Kontrollere olje	M6			
Fjerne støv frå motor	M6			
Kontroller tid for kompresjon	M6			
Kontroller røyrsystem, fittings og ventilar	M6			
Temperatur på motor	M6			
Måle motorstraum	M6			

4.2.6 Prøvetaking

Prøvetaking i renseanlegget skjer på innløp i mottakstanken og på utløp fra anlegget.

RA200 Sande

4.2.7 **Doseringssystem**

Doseringssystemet er en vital komponent i anlegget, og helt avgjørende for at riktige renseresultat oppnås. Ettersyn av komponentene i anlegget må derfor ha høy prioritet.

Doseringssystemet er tilpasset de kjemikalier som anlegget nytter. Alle deler, slanger mv er valgt ut fra mekanisk og kjemisk påkjenning.

Doseringssystem			
Komponent	Gjeremål	Frekvens	
Kjemikalier Kjemikalier kan leveres i engangsemballasje, returemballasje	Kvaliteten på kjemikaliet må kontrolleres. Vær spesielt oppmerksom på om kjemikaliet separeres i to sjikt.	U2	
eller bulk avhengig av anleggets størrelse.	Driftsoperatør må jevnlig kontrollere forbruk av kjemikalier i anlegget. Dette er direkte knyttet til tilrenning, og dermed ikke bare tidsavhengig.	U2	
Dosering i reaktor	Reingjerne doseringspunkt	U2	
Sugenippel/filter i kjemikalietank	Reingjere	M1	
Rørsystem Vanligvis brukes en spesialslange fra kjemikalitank, gjennom pumpe og helt framt til reaktor eller doseringsnippel på pumpeledning. Lange ledninger legges i varerør. Gjennom pumpe nyttes en ekstra slitesterk slangetype.	Slangen bør inspiseres for slitasje/skade	U2	

4.2.8 Slammineraliseringsanlegg

Slamlager				
Komponent	Gjeremål	Frekvens		
Innløpsledning	Reingjerast	M1		
Omløp	Reingjerast	M1		
Slamtømming	Etter 8-12 år	M120		
Vedlikehald	I et avslammineraliseringsanlegg er vedlikeholdsbehovet lite. Foruten kontroll av rør tilknyttet slamlageret er generelt ettersyn av drenering, lufting og sivplanter tilstrekkelig.	M1		

4.2.9 Luftesystem reaktor

<u>Rørsystem</u>

Tetting i rørsystem vil gi redusert lufttilførsel til reaktor og dermed dårligere renseresultat. Luftetallerken i reaktor har tilbakeslagssikring som skal hindre slam i å trenge inn i rørsystemet. Ved feil på tallerken eller dennes stengefunksjon kan tilbakestrømming skje, og rørsystemet må derfor spyles dersom det registreres slam i rørsystem.

<u>Tallerken</u>

Luftetallerken har stipulert levetid på 3 - 5 år. Normalt byttes hele tallerken når feil konstateres. Tallerken er festet til luftestokk med klammer og kan byttes med spesielt verktøy.

4.3 PROSESSMESSIG ETTERSYN

Et avløpsrenseanlegg er bygd for å etablere og ivareta en prosess, nemlig rensing av innkommende avløpsvann for en del gitte parametre. Det er viktig å holde alt mekanisk utstyr i orden, men uten en prosess som arbeider som forutsatt er anlegget lite verdt.

Forståelse for den biologiske prosessen og de element som påvirker den er en fundamental forutsetning for å oppnå de renseresultat som anlegget er forutsatt for å oppnå.

4.3.1 **Behandling av prøvar**

Utslippstillatelse vil angi hvilke parametrer som skal analyseres. Følgende rutiner foreslås for behandling av prøver før innlevering til laboratorium.

Documentation

	Prøvar					
Parameter	Konservering	Maks dagar før kons. (Forutsetter lagring i kjøleskap)	Nødvenig volum for analysering			
BOF	Fryses	3	500-1000 ml			
KOF	Fryses/syre	3	200 ml			
TOC/LOC	Fryses/syre	7	200 ml			
SS/VSS	Ingen (må analyseres som «dagsfersk» prøve	7	250 ml			
Total-fosfor	Fryses/syre	7	200 ml			
Fosfat-fosfor (O-P)	Syre (må filtrerast umiddelbart etter prøve)	7	100 ml			
Total-Nitrogen	Fryes/syre	7	100 ml			
Total Kjedal Nitrogen	Fryses	0	100 ml			
Nitritt/Nitrat	Fryses (Etter filtrering)	0	100 ml			
Ammonium	Fryses (Etter filtrering)	0	100 ml			

4.3.2 Analyseutstyr og hjelpemidlar

Følgende utstyr foreslås plassert på anlegget for prøvetaking og egen kontroll.

- Diverse kolber 250 ml og 500 ml
- 1000 ml lav sylinder for måling av SV_{30}
- Termometer
- Analyseapparat for analyse av fosfor, KOF + annet etter behov
- Filter apparat
- Prøveflasker (10 * 1000 ml)
- pH-meter
- Oksygen-måleapparat

4.3.3 **Prosessmessig drift av reaktorane**

Et godt renseresultat krever at både den mekaniske og prosessmessige delen fungerer etter forutsetningene. Dette innebærer at selv om anlegget fungerer perfekt mekanisk så kan utløpet ha dårlig kvalitet. Det er derfor viktig at driftsoperatøren også ivaretar prosessdelen av anlegget.

Følgende skal utføres jevnlig:

Reaktor testar				
Gjeremål	Hjelpemidlar	Observasjon		
Sedimenteringstest Slam tas fra en reaktor som er i reaksjonsfasen. Minimum luftetid på 30 minutter.	1 liters sylinder (Lav type)	Observer de første 5 minutter. Slammet skal danne en "byggestruktur" (fnokker) og et klart skille med toppvannet. Slammet skal ikke utgjøre med enn 250 ml etter 30 minutters sedimentering. Klarvannssonen skal være klar uten fett/olje på toppen.		
Lukt og farge Mannhullslokket til en reaktor som er i reaksjonsfasen åpnes. Minimums luftetid på 30 minutter. Observeres spesielt Skumming		Lukt • Fuktig kjeller/drivhus - bra (>2,0 mgO/l) • Septisk - for lite luft (< 1,0 mgO/l) Farge • Brunt - bra (Ved bruk av jernklorid/-sulfat vil slammet være mer svart) • Grått - for lite luft Hvitt/rødt - for mye luft		

FEILSØKING

Det er satt opp en oversikt med OBSERVASJON/FEILMELDINGER/TILTAK/UTSTYR for en del førekommande feil. For de tilfelle man også vil observere en FEILMELDING er disse tatt med.

5.1 FORBEHANDLING

			Forbehandling		
	OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK	HJELPEMIDLER
1.	Høgt nivå i mottakstank	HØYT NIVÅ I MOTTAKSTANK	Begge reaktorar i syklus. En eller fleire reaktorar i maks-syklus	Ingen tiltak. Tilrenninga til anlegget er større enn anleggets kapasitet.	
		UTL. MOTORVERN INNLØPSPUMPE (Dersom feilen skyldast en av pumpene)	En eller fleire reaktorar i pausefase.	Kontroller følgande : - Startflottør - Innløpspumper - Pumpeleidningar - Innløpsventilar	
2.	Slam i pumpekammer		Forbehandlingskammer har slamhøgde over innløpsrør til pumpekammer.		Septikbil (Vakuumbil)
3.	Innløpspumpa tar inn luft, reaktorane fyllest ikkje helt opp.	KONTR. INNLØP	Høgt nivå i forbehandlingsdel, pumpekammeret har lågare nivå.	•	Septikbil (Vakuumbil)

5.2 REAKTOR

RA200 Sande

		Reakto	r	
OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK (Sett bryter for val av aktuell reaktor i posisjon AV før tiltak uføres.)	HJELPEMIDLER
Reaktor tømmast ikkje helt ned til utløpsventil + 100 mm	KONTR. UTLØP (Til aktuell reaktor) De andre reaktorane har ikkje tilsvarande feilmelding. Utløpsventilen er tett eller delvis tett. 1. Drener tank til uk utløpsventil. Benytt slamventil til dette formålet. 2. Ventilar med flens; fjern ventilklokka, rengjer. Ventiler med union; tvangsopne vha. av trykkluft, demonter utløpsside og rengjer.		Ventilar med flens: Fastnøkkel (mm) Ventilar med union: Vannpumpetang (75-110 mm)	
	KONTR. UTLØP (Gjelder fleire enn en reaktor)	Kontroller nivå i utløpstank (Tank for utløpsprøver)	Dersom nivået i utløpstanken er høgt skyldast feilen tetning, stein, frost etc, i utløpet frå reinseanlegget. Feilen kan også skuldas delvis tetning eller tetning i utløpsleidning frå ventilane til utløpstank.	Høgtrykksbil
For høgt slamnivå	Gjelder anlegg med sensor på slamleidning:	Slamnivået til de andre reaktorane er OK.	1.Slamventil/-pumpe er tett. Same prosedyre som for tett utløpsventil. 2.Slamventil/-pumpe får ikkje signal. Kontroller styreluft/el leidning.	
		Gjelder alle reaktorane	1.Åpnings-/gangtid for slamventil/-pumpe er for kort. 2.Den organiske belastninga til anlegget er unormal høy. Kontroller følgande: Slamlageret (Er det fullt?) Septikslam (Har anlegget mottatt eksternt slam?)	Operatørpanel

Documentation

		Fortsetjir	ng reaktor	
OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK (Sett bryter for val av aktuell reaktor i posisjon AV før tiltak utførast.)	HJELPEMIDLER
Omrøring i reaktor er unormal.			Skade på tallerken eller lufterør. 1.Drener tanken til mottakstank. 2.Observer lekkasje. 3.Spyl og luft godt. Kontroller for eventuelle gassar og følg sikkerheitsinstruks før nedstigning i aktuell tank. 4.Utfør feilretting.	Rør - deler Tallerkenlufter(e)
Reaktor(er) fyllast ikkje heilt opp.	KONTR. INNLØP	Kunn en reaktor.	Innløpsventil er tett eller delvis tett.Utlaupsventil tettar ikkje.	
	KONTR. INNLØP	Gjelder begge reaktorane	Innlaupspumpe eller innlaupsleidning er tett eller delvis tett.	
Reaktor er tom.	KONTR. INNLØP	Ventilar og røyr	Lekkasje i dreneringsventil. - Demonter ventil og utfør vedlikehald.	Røyr - delar
Lukt i anleggsrom		Avtrekksrør frå reaktorane	Ved tetting - Spyl og demonter om nødvendig	Spyleslange eventuelt høgttrykkspylar
			Utett lokk på reaktor/mottakstank - Kontroller pakningar	

5.3 MATEPUMPER

RA200 Sande

		Matep	umper	
OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK	HJELPEM.
Pumpe går ikkje	Motorvern utløyst innlaupspumpe	Motorvern for aktuell pumpe (Skal være utkopla ved denne feilmeldinga)	Denne feil kjem når motorvernbrytaren for matepumpa har løyst ut. Legg inn motorvernet. Finn en reaktor som er nedtappa, dvs. er i Pause-fase og sett den ut av drift. Opne reaktorens innløpsventil og aktiver manuell bryter for matepumpe. Matepumpe vil da starte og gå i 5 minutt. Registrer om det blir pumpa inn kloakk til den aktuelle reaktor. Dersom dette ikkje skjer, skal manuell køyring stanses og motorvernet til matepumpa koplast ut etter 1 minutt. Dersom innpumpning føregår normalt i 5 minuttars perioden, tyder dette på at matepumpa er i orden og ytterlege tiltak er ikkje nødvendig. OBS! FEILSØK ALDRI PUMPE MED STRØMTILFØRSEL! Dersom den aktuelle reaktoren ikkje fyllast og motorvernet, på nytt koplast ut må følgjande utførast: Slå ut motorvernet til puma Trekk ut støpslet til matepumpe i halsen på forsed./utjevningstanken. Matepumpa som er montert på geidefeste, løftast opp frå brønnen. Feilsøking av pumpe: Benytt pumpeleverandørs instruksjonshefte. Installasjon av pumpe: Senk ned pumpa. Sett inn støpsel og legg inn motorvernet i styringsskapet, dvs. trykk inn blå knapp.	
		Skal pumpe være i drift ?	Dersom pumpe skal være i drift; kontroller følgjande: - Startsignal (Flottør el. trykkgivarr) - Kontaktor - Sikringar	

	Fortsetjing matepumper				
OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK	HJELPEMIDLER	
Liten eller ingen kapasitet.	KONTR. INNLØP begge reaktorar)		 Tetting rør, ventiler. Opne ventil for trykkavlastning av pumperør Demonter, reingjer Feil dreieretning =>Omkopling i el anlegg kan forårsake dette Løypehjul skada Kan være øydelagt, løyst på akseltapp etc. Se eigen instruks for pumper Pumpe sluttar ikkje til fot. Kablar, kjetting e.l. kan ligge mellom. Fot kan være skada. 		
Støy			 Stein e.l. kan ligge mellom. Pakning i fot er defekt Kontroller løypehjul og lager Sjå egen instruks 	Septikbil (Vakuumbil)	
Varm motor			 Feil på lager =>sjå vedlikehaldsrutine Feil spenning =>kontroller el. opplegg Tette rør => tørrkøyring Manglande kjøling =>reingjøre motor 	Septikbil (Vakuumbil)	

5.4 BLÅSEMASKINER

Blåsemaskiner					
OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK	HJELPEMIDLER	
Blåser går ikkje	Motorvern til Blåser utløyst	Motorvern for aktuell blåser (Skal være utkopla ved denne feilmeldinga)	 Feilmelding vil koma fram dersom dette motorvernet slår ut. Legg inn motorvern og tvangskøyr blåser vha. manuell bryter. For anlegg med felles luftesystem må luftventil til en av reaktorane opnast. Følgjande skal utførast dersom maskina framels slår ut på motorvern: Før arbeid skal maskinen skal gjerast straumlaus (sikkerheitsbrytar, støpsel etc.). Feilsøking blåsemaskin: Benytt leverandørs instruksjonshefte. 		
		Skal blåser være i drift ?	 Dersom blåser skal være i drift; kontroller følgjande: Startsignal (Luftefase alternativt Pausefase) Kontaktor Sikringar 		
Lavt trykk	FEIL PÅ PROSESSLUFT.	Kontroller om det er lufting i reaktor, om det er lekkasje på luftleidning	 Tett luftfilter. Bytt filter iht instruks for maskin Defekte lamellar (lamellkompressor). Bytt lamellar iht instruks. Normalt intervall tilsvara ca 12 månadar drift. Defekte tilbakeslagsventilar på blåser. Lekkasje på luftleidning. (For anlegg med felles luftesystem.) Feil struping av impulslufteventil. (For anlegg med felles luftesystem.) 		

	Fortsetjing blåsemaskiner				
OBSERVASJON	FEILMELDING	KONTROLLER	TILTAK	HJELPEMIDLER	
Høgt trykk		kva av reaktorane skal ha lufting.	- Tetting rør/ventiler. Demonter og kontroller.		
Støy			 Defekt lager. Byttes iht instruks for maskin Nokon typar maskiner har eit smørebehov (Kontroller gangtid) 	Feittpresse	
Varm motor			 Tette rør. Kontroller røyrsystem Manglande kjøling. Kontroller romtemperatur. Reingjer motor utvendig 		

5.5 Prosess

RA200 Sande

5.5.1 Reaktor

Observasjonar av skum i reaktor - Gjerast gjennom mannhull i reaksjonsfasen

	Prosess reaktor					
Observasjon	Sannsynleg årsak	Kontroller	Tiltak	Hjelpemidlar		
Store mengder kvitt skum	Organisk overbelastning av reaktor	Anlegget er i en oppstartingsfase	- Ingen .Dette vil stoppe etter innkøyring.	Ingen		
		Reaktorane er blitt tømt for slam	- Kontroller drenerings- - Ventiler	Ingen		
Skinnande mørkt brunt skum. (Ofte tjukt)	Reaktorane har for lav organisk belastning	Kontroller slambelastning (F/M)	 Fjern slam frå anlegget ved: Tvangsopning/start slamventilane/- pumpene når anlegget er i reaksjonsfase. 	Ingen		
"Klissete" mørkt skum.	Filamentus bakteriar. (Nocardia)		 Fjern slam frå anlegget ved: Tvangsopning/start slamventilane/- pumpene når anlegget er i reaksjonsfase. 	Ingen		
Mørkt brunt, nesten svart skum. Lukter "septisk"	For lite luft	- Blåser - Luftarrangement - Mål oksygennivå - Kontroller om slammet også er mørkt brunt/svart.	 Reparer event. feil ved blåser(e)/ luftarrangement. Kontroller slamnivå og event. fjern slam. 	O ₂ -apparat Luftmengde- måler		
Små mengder lyst skum	Ikke noe problem. Et tegn på at anlegget fungerer bra.					

RA200 Sande

5.5.2 **Prosess sedimenteringstest**

Observasjonar basert på sedimenteringstestar

		sess sedimenterings		
Observasjon	Sannsynleg årsak	Kontroller	Tiltak	Hjelpemidlar
Slamnivå større enn 250 ml	Organisk overbelastning av reaktor(ane)	Slammengde i slamlageret.	Tømm slamlager.	Ingen
	Mangelfullt uttak av overskotsslam.	Tvangsopen/køyr slamventilar/-pumper.	Rengjer og testkøyr.	Ingen
	Slamsvelling.	Tynn ut sedimenteringsprøve. Utfør sedimenteringstest på nytt.	 Fjern slam frå anlegget ved: Tvangsopen/start slamventilane/- pumpene når anlegget er i reaksjonsfase. 	Ingen
Mørkt brunt, nesten svart, illeluktande	For små luftmengder.	Blåser Luftarrangement Mål oksygennivå	Reparer event. feil ved blåser(e)/ luftarrangement.	O ₂ -apparat Luftmengdemåler
slam. Lukter "septisk".	Organisk overbelasta.	Kontroller mottakstank. Mottak av f.eks. septisk slam, toalettslam etc.	Tømm mottakstank.	Vakuumbil
"Aske-lignande" stoffar på overflaten. Slammet sedimenterer raskt, men klarvatnssona inneheldt partiklar.	Anlegget er for lavt belasta.	Slammet skal lukte "godt". (Drivhus/fuktig kjeller)	 Dersom anlegget har fleire enn 1 reaktor; sett 1 eller fleire reaktorar ut av drift. Fjern slam frå anlegget ved: Tvangsopen/start slamventilane/pumpene når anlegget er i reaksjonsfase. 	Ingen
Rask sedimentering, men klarvatnssona er blakket, dvs. innehalde store mengder partiklar.	Slammet innehalde stort sett berre bakteriar, dvs. manglar de høgareståande organismane som dannar gode fnokkar. Slammet er utsett for "giftverknad".	Kontroller lufting, dvs. tilstrekkeleg lufting både i reaksjonsfase og pausefase. Giftstoff i innløpet.	 Luftfordeling/- arrangement. Innløpsprøver (For påvising av event. giftstoff) 	O ₂ -apparat Luftmengdemåler Innløps- prøvetakar (Karusell)

Documentation

RA200 Sande

Store deler av slammet flyter opp etter en periode på meir enn 1 time.	Anlegget nitrifiserer og det førgår denitrifisering i sedimenteringssylinderen.		Ingen. Dette er et teikn på at den biologiske delen fungerer godt.	
--	---	--	---	--

5.5.3 **Prosess utlaupsvatn**

Prosess utlapusvatn					
Observasjon	Sannsynleg årsak	Kontroller	Tiltak	Hjelpemidlar	
Utlaupsvatnet er gulfarga og lukter avlaupsvatn.	For små luftmengder.	Kontroller blåser(e), luftarrangement, luftfordeling og lufttilførsel i reaktorane.	Føreta nødvendige reperasjonar, reingjering eller utskiftingar.	Lamellar Tallerken-lufterar	
Utlaupsvannet inneheld store mengder partiklar. Partiklane sedimenterer lett.	Slamnivået i anlegget er for høgt.	Kontroller: - Slamnivå i slamlager - Slamventil/- pumpe - Organisk belastning - Luftsystem.	Utfør nødvendige tiltak.	Ingen	

5.6 NAUDPROSEDYRER

Naudprosedyrer				
Situasjon	Konsekvens			
Straumbrot	Anlegget er utkopla. Dei reaktorane som er i syklus vil bli ståande ved det punkt dei er kome. Når straumforsyninga er intakt, vil reaktorane fortsette behandlingstida. Avlaupet vil bli lagra i mottakstanken inntil den er full, da vil naudoverløpet i mottakstanken bli aktivisert.			
Ekstrem tilrenning	Anleggets maksprogram vil automatisk bli aktivisert. Eventuell tilrenning utover dette vil, etter at mottakstanken er full, vil gå i overlaup.			
Flom/frost i resipient	Høg vasstilstand i resipient kan føre til at utlaupet stuves opp og hindrar avrenning frå reaktor. Visst dette skjer vil feilmelding "KONTR. UTLØP TWxx" for alle reaktorane førekomme.			
Frost i tilførselsnett	Tilrenninga til anlegget vil stanse. Reaktorane vil da gå i Pause sekvens. Dosering av kjemikalie vil ikkje føregå så lenge tilrenning til anlegget er lik null.			
Svikt i tilsyn	Dette reinseanlegget er bygget for heilautomatisk drift. Dei viktige unormale mekaniske situasjonane vil utløyse alarm. Men anlegget må også ha eit prosessmessig tilsyn. Svikt i dette tilsynet vil gi dårlege reinseresultat.			
Brann	Utsett del av anlegget er styreskapet. Ved brann i styreskapet vil hele anleggets automatiske utstyr bli slått ut.			

6 Utdjupa teknisk beskriving (PROGAMMET I FOKUS)

Utdjupa teknisk beskriving baserer seg nytt PLS program som er utarbeida av bachelorgruppa.

6.1 TEKNISK BESKRIVING

Programmet er laga rundt to tilstandsmaskiner som styrar kvar sin reaktor. I tillegg er det ein del felles kode som programmet nyttar. Tilstandsmaskinane styrar all logikk og styring rundt kvar reaktortilstand og har den overordna ansvaret og passar på kva funksjonsblokk med tilsvarande logikk som køyrarar.

6.2 INNGANG/UTGANG

PLS variabel	Funksjonsbeskrivelse	Lokasjon	Signal type	Signal
r L3 Valiabel	r unitajonabeatriveiae	LORGSJOH	Jigilai type	Jigilal
Innganger				
PP00_LS01_X	Flottør høg høg	Mottakstank	Digital Inngang	0-24VDC
PP00_LS02_X	Flottør lav lav	Mottakstank	Digital Inngang	0-24VDC
PP03_LS01_X	Flottør overløp pumpestasjon slam	Pumpestasjon	Digital Inngang	0-24VDC
PP03_LS02_X	Flottør overløp pumpestasjon drenering	Pumpestasjon	Digital Inngang	0-24VDC
PP03_LS03_X	Flottør start stop pumpestasjon drenering	Pumpestasjon	Digital Inngang	0-24VDC
PP03_LS04_X	Flottør start stop pumpestasjon slam	Pumpestasjon	Digital Inngang	0-24VDC
WH_Overflow	Puls Overløp MJK	Tankrom	Digital Inngang	0-24VDC
	Nettutfall	Lokal	Digital Inngang	0-24VDC
PP01_LT01_X	Nivå reaktor 1	Reaktor 1	Analog Inngang	4-20mA
PP02_LT02_X	Nivå reaktor 2	Reaktor 2	Analog Inngang	4-20mA
PP00_LT01_X	Nivå mottakstank	Mottakstank	Analog Inngang	4-20mA
PP01_PS01_XF	Motorvern matepumpe 01	Kjeller	Digital Inngang	0-24VDC
Fan_R1_XF	Motorvern vifte blåser 01	Kjeller	Digital Inngang	0-24VDC
PA01_BL01_XF	Motorvern blåser reaktor 1	Kjeller	Digital Inngang	0-24VDC
CH00_PH01_XF	Motorvern doseringspumpe 1	Kjeller	Digital Inngang	0-24VDC
Returpumpe_XF	Motorvern pumpestasjon slam	Kjeller	Digital Inngang	0-24VDC

PP02_PS01_XF	Motorvern matepumpe 02	Kjeller	Digital Inngang	0-24VDC
Fan_R2_XF	Motorvern vifte blåser 02	Kjeller	Digital Inngang	0-24VDC
PA02_BL01_XF	Motorvern blåser reaktor 2	Kjeller	Digital Inngang	0-24VDC
CH00_PH02_XF	Motorvern doseringspumpe 2	Kjeller	Digital Inngang	0-24VDC
Drenpumpe_XF	Motorvern pumpestasjon dren	Kjeller	Digital Inngang	0-24VDC
Felles_R1_XF	Jordfeil felles R1	Kjeller	Digital Inngang	0-24VDC
Felles_R2_XF	Jordfeil felles R2	Kjeller	Digital Inngang	0-24VDC
JordFeilStepscr	??	Kjeller	Digital Inngang	0-24VDC
Felles_Kurser_XF	Jordfeil felles kurser	Kjeller	Digital Inngang	0-24VDC
PA01_PR01_WL	Prosessluft R1 lavt	Kjeller	Digital Inngang	0-24VDC
PA02_PR01_WL	Prosessluft R2 lavt	Kjeller	Digital Inngang	0-24VDC
IA01_PR01_WL	Instrumentluft lavt	Kjeller	Digital Inngang	0-24VDC
<u>Utganger</u>				
PP01_PS01_Y	Matepumpe R1	Kjeller	Digital Utgang	0-24VDC
Fan_R1_Y	Vifte blåser R1	Kjeller	Digital Utgang	0-24VDC
PA01_BL01_Y	Blåser	Kjeller	Digital Utgang	0-24VDC
CH00_PH01_Y	Doseringspumpe R1	Kjeller	Digital Utgang	0-24VDC
PP03_PS02_Y	Pumpe Slam	Pumpestasjon	Digital Utgang	0-24VDC
PP02_PS01_Y	Matepumpe R2	Kjeller	Digital Utgang	0-24VDC
Fan_R2_Y	Vifte blåser R2	Kjeller	Digital Utgang	0-24VDC
PA02_BL01_Y	Blåser R2	Kjeller	Digital Utgang	0-24VDC
CH00_PH02_Y	Doseringspumpe R2	Kjeller	Digital Utgang	0-24VDC
Drenpumpe_Y	Pumpe Dren	Pumpestasjon	Digital Utgang	0-24VDC
PS00_VP05_Y	Dreneringsventil Slam	Pumpestasjon	Digital Utgang	0-24VDC
TW01_VP01_Y	Utløpsventil R1	Kjeller	Digital Utgang	0-24VDC
TW02_VP01_Y	Utløpsventil R2	Kjeller	Digital Utgang	0-24VDC
PP01_VP01_Y	Innløpsventil R1	Kjeller	Digital Utgang	0-24VDC

Documentation

PP02_VP01_Y	Innløpsventil R2	Kjeller	Digital Utgang	0-24VDC
PS02_VP01_Y	Slamventil R2	Kjeller	Digital Utgang	0-24VDC
PS00_VP01_Y	Sivbedventil Celle1	Kjeller	Digital Utgang	0-24VDC
PS00_VP02_Y	Sivbedventil Celle2	Kjeller	Digital Utgang	0-24VDC
PS00_VP03_Y	Sivbedventil Celle3	Kjeller	Digital Utgang	0-24VDC
PS00_VP04_Y	Sivbedventil Celle4	Kjeller	Digital Utgang	0-24VDC
PS01_VP01_Y	Slamventil R1	Kjeller	Digital Utgang	0-24VDC

6.3 FORRIGLINGAR

Det ligg forrigling på styringa av matepumpene til reaktorane. Det skal ikkje være mogleg at begge pumpene går samtidig og beskyttelse for dette er handtert i funksjonsblokka fbSwap.

Det skal heller ikkje inntreffe at begge reaktorane kan være i tilstand innpumping samstundes.

6.4 LOGIKK FOR SEKVENSANE

Alle sekvensane er styrt av funksjonsblokker. Under kommer ei forklaring rundt bruk og logikken til funksjonsblokkene.

6.4.1 **Pause**

Funksjonsblokka brukast for å kontrollere pause sekvensen til tilstandsmaskinen. Den blir kalla ein gong for kvar reaktor, og gir signal til tilstandsmaskina om at pausesekvensen er ferdig. Den styrer og blåsarane i pausesekvensen.

Funksjonsblokka tar i mot signaler i frå mottakstank og reaktortank, og sjekkar om det reaktoren er klar til å gå i innpumpingsekvens. Den er forrigla mot den andre reaktoren slik at begge reaktorane ikkje kan gå i innpumping samtidig. Blokka styrar og blåsar, og har parameterar for gangtid og intervall.

6.4.2 Innpumping

Innpumping funksjonsblokka styrar sekvensen innpumping for den respektive reaktoren. Blokka er ansvarleg for å styre dei forskjellige komponentane som brukast i sekvensen, som pumper, ventiler og nivågivar.

Funksjonsblokka styrer alt av logikk rundt innpumpingsfasen og samhald mellom komponentar som er aktive i tilstanden. Funksjonsblokka startar innpumpingsfasen og pumpar inn i reaktoren til bruksnivået er fylt. Om det er lite tilstrøyming og nivået i mottakstanken blir lavt før den er ferdig å pumpe bruksnivået til reaktoren, vil den pause til ein har tilstrekkeleg nivå i mottakstanken, og fortsette innpumpingen. Det er ein parameter for makstid for innpumpingsfasen, slik at ved lite tilstrøyming i mottaktstanken blir ikkje heile bruksnivået i reaktoren fylt. Den styrar og blåser i reaktor i denne fasen.

6.4.3 Reaksjon

Reaksjons funksjonsblokka er blokka som styrer logikken i reaktortilstanden reaksjon. Blokka er ansvarleg for å styre dei forskjellige inn og ut komponentane som brukast i sekvensen, som start, stopp blåser og start av doseringspumper for kjemikalie.

Funksjonsblokka styrer alt av logikk rundt reaksjonsfasen og samhald mellom komponentane som er aktive i tilstanden. Blokka starter og stopper ein blåser som veksler på å tilføre luft i reaktoren. Dette gir aerob og anoksisk periodar. Lengde på periodane er tilgjengelege via parameter. For at reaktoren skal få gå vidare til sedementerignstilstand må det sikrast at blåsaren ikkje skal gå. Dette er gjort ved XGL. Funksjonsblokka er også ansvarleg for å starte og stoppa kjemikalie doseringspumpe, gangtid på dosering er også tilgjengeleg via parameter.

6.4.4 **Sedimentering**

Sedimenterings funksjonsblokka har ansvar for å styre all logikk som skjer i sedementeringstilstanden. Blokka blir brukt for å telle tida reaktoren er i sedimenteringsfasen

Funksjonsblokka styrer alt av logikk rundt uttapingsfasen og samhold mellom dei akutelle komponentane i denne tilstanden. Blokka er ansvarleg for å telle tida reaktoren har vært i sedementeringsfasen. Dersom denne tida overstiger parameter PST sendast eit ugangssignal Y til tilstandsmaskina og reaktoren går vidare til neste tilstand.

6.4.5 Uttapping

Uttaping funksjonsblokka har ansvar for å styre all logikk som skjer i uttapingsfasen. Blokka blir brukt for å styre uttapping av ferdig behandla avlaupsvatn mot resepient.

Funksjonsblokka styrer alt av logikk rundt uttapingsfasen og samhold mellom dei aktuelle komponentane i denne tilstanden. Blokka er ansvarleg for å opne og lukke dreneringsventilen samt å lese av og lagre unna kor mykje vatn som blei drenert mot resipienten. Kor mykje som blir tappa ut blir sendt på utgangen Y1. Uttaping vil skje til nivågivar i reaktortanken gir ut BXL eller dersom total uttapingstid overstige paramter PUT.

6.4.6 Slamuttak

RA200 Sande

Slamuttak funksjonsblokka er ansarleg for å rekne ut mengde med slam som skal tappast til sivbed og kva ventilar som skal opne og i kva rekkefølge alt skal skje. Funksjonsblokka sikrar ønska funksjonalitet ved å styre forskjellige opne (YH) og lukke (YL) kommandoar. Den hentar også tilbake BCH og BCL. Funksjonsblokka har fleire stillbare parameter som kan endre, mengde slam som sleppast ut og aktuelle tidsperiodar.

Slamuttak funksjonsblokka blir brukt av kvar tilstandsmaskin og køyrast seperat for kvar reaktor.

Funksjons blokka har ein intern timer som teller opp mot parameter PTI. Dersom den interne timeren teller forbi PTI vil blokka gjere seg klar for slamutak. Slamuttak skjer kun i reaksjonstilstanden som styrer XE. Dersom tida er større ein PTI og reaktoren er i reaksjonstilstand vil blokka opne reaktorens slamventil og opne korrekt sivbed ventil basert på integer input X2 som hentast ifrå SivbedRotation. Funksjonsblokka reknar også ut kor mykje slam som skal fjernast ved hjelp av PRAntattslamNivå og PISlamalder paramterer. Når slamfjernig er ferdig lukker blokka dei respektive opne ventilane og sender ein puls på utgang Y som indikerer ferdig prosess.

6.5 ALARMLISTE

ID	ObservationType	Class	Message
1	Digital	Alarm	Høgt nivå mottakstank
2	Digital	Alarm	Lavt nivå mottakstank
3	Digital	Alarm	Nivåvippe høg mottakstank
4	Digital	Alarm	Nivåvippe lav mottakstank
5	Digital	Alarm	Anlegg i overløp
6	Digital	Alarm	Pressostat reaktor 1 lavt trykk
9	Digital	Alarm	Pressostat reaktor 2 lavt trykk
10	Digital	Alarm	Høgt nivå reaktor 1
11	Digital	Alarm	Høgt lavt reaktor 1
12	Digital	Alarm	Høgt lavt reaktor 2
13	Digital	Alarm	Høgt nivå reaktor 2
15	Digital	Alarm	Pressostat styreluft lavt trykk
16	Digital	Alarm	Vann på gulv kjeller
17	Digital	Alarm	Nettutfall
18	Digital	Alarm	Feil på UPS
19	Digital	Alarm	Motorvern blåser reaktor 1 utløyst
20	Digital	Alarm	Motorvern blåser reaktor 2 utløyst
21	Digital	Alarm	Motorvern doseringspumpe reaktor 1 utløyst
22	Digital	Alarm	Motorvern vifte blåser reaktor 1 utløyst
23	Digital	Alarm	Motorvern vifte blåser reaktor 2 utløyst
24	Digital	Alarm	Motorvern dren pumpe pumpehus utløyst
25	Digital	Alarm	Motorvern retur pumpe pumpehus utløyst
26	Digital	Alarm	Motorvern doseringspumpe reaktor 2 utløst
27	Digital	Alarm	Motorvern matepumpe 1 utløyst
28	Digital	Alarm	Motorvern matepumpe 2 utløyst

7 TEKNISK UNDERLAG

Teknisk underlag omfattar dels interne datablad og dels produsentens datablad, spesifikasjonar mv. Materialet må fornyast når det skjer utskifting i anlegget.

7.1 INTERNE DATABLAD

Datablad ligger vedlagt digitalt.

7.2 TEKNISK UNDERLAG FRÅ LEVERANDØRAR

7.2.1 Adresseliste frå leverandør

KOMPONENT	LEVERANDØR
Hovedleverandør	Goodtech Biovac 1921 SØRUMSAND 63 86 64 60
Prosessleverandør	WaterCare AS 1941 BJØRKELANGEN 6385 5810
Utjevningstank	Plassbygget betong
Innløpsrist	Hydropress Huber AS
Reaktor	Kvamsøy Plastindustri AS c/o WaterCare AS
Pumper prosessvann	Itt Flygt AS
Blåsemaskiner	Nessco AS c/o WaterCare AS
Pneumatiske ventiler	Gemü AB c/o WaterCare AS
PLS, operatørpanel	Beijer as
Rør og deler	Pipelife AS/Hallingplast AS/GF Norge AS
Kontaktor	Groupe Schneider AS
Magnetventilar pneumatikk	Norgren AS

Documentation

