

PROBABILISTIC MODELS FOR PENSTOCK INTEGRITY ASSESSMENT

Philippe BRYLA (EDF Hydro)
Emmanuel ARDILLON (EDF R&D)
Antoine DUMAS (PHIMECA)
Anne DUTFOY (EDF R&D)

PENSTOCK DIAGNOSES AT EDF

- EDF operates more than 450 hydropower plants
- Cumulated length > 250 km
- Average age > 60 years
- Loss of thickness due to corrosion
- Complete diagnoses with penstock assessment are performed periodically
 - Visual inspections (internal & external)
 with thickness measurements
 - Evaluation of the residual Margin Factor

PENSTOCK DIAGNOSIS & ASSESSMENT

Fitness for service of a penstock ⇔ Margin Factor ≥ 1

$$MF = \frac{f}{\sigma_c}$$
 Allowable stress

Maximal in-service stress

- The Margin Factor depends on :
 - Steel mechanical characteristics :
 Yield Stress σ_y & Ultimate Tensile Strength : σ_u
 - o Residual Thickness : $t = t_{design} + \Delta t$
 - Maximal in-service Pressure P (monitored)

PENSTOCK DIAGNOSIS & ASSESSMENT

- Diagnoses data show that σ_u and Δt scatter can be modelled by Normal or Log-Normal distributions
- The Margin Factor is calculated by taking a **calculation values** for Ultimate Tensile Strength $\sigma_{\mathbf{u}}^*$ and loss of thickness $\Delta \mathbf{t}^*$ at γ =2 standard deviations of their average values
- Initial issue: Search of minimal standard deviation multipliers γ such that
 a Margin Factor ≥ 1 guarantees the annual failure probability
 to be lower than a given target threshold P_{target}

 $P_{\text{target}} \sim 10^{-7} \text{ to } 10^{-6} \text{ pipe}^{-1}.\text{year}^{-1} \text{ (BS-7910, ISO-2394)}$

MAIN STEPS OF THE STUDY

- 1st structural reliability model with plastic collapse failure criterion for corroded wall outside welded joints
- 2nd structural reliability model with generalized Fracture Mechanics failure criterion for welded joints with residual manufacturing flaws
- Extension of both models to pipes with a hydrostatic pressure test before commissioning: evaluation of conditional failure probabilities
- Evaluation of the upper bound of annual failure probabilities :
 - Large deterministic calculation grids (2 000 to 14 000) Latin hypercubes
 - Probabilistic calculation grids
 - In-depth analysis for understanding the most influential factors

PLASTIC COLLAPSE MODEL (OUT OF WELDS) (1/2)

Model with 4 random variables

Variable	Description	Distribution
σ_{u}	σ _u Ultimate tensile strength (MPa)	
ε	$ε$ Deviation to the general correlation $σ_y$ - $σ_u$	
$\Delta \mathbf{t}_{extra}$	Δt _{extra} Manufacturing extra thickness (mm)	
$\Delta \mathbf{t}_{corr}$	Δt _{corr} Thinning due to corrosion (mm)	

$$\sigma_{\mathbf{v}} = A \cdot \sigma_{\mathbf{u}} - B + \varepsilon$$

- O Upper bound for annual corrosion rate : $\Delta t_{annual} = 100 \mu m.year^{-1}$
- O Residual thickness Year N: $t_N = t_{design} + \Delta t_{extra} \Delta t_{corr}$
- O Residual thickness Year N+1 : $t_{N+1} = t_N \Delta t_{annual}$

PLASTIC COLLAPSE MODEL (OUT OF WELDS) (2/2)

• Failure criterion : overcrossing of the flow stress σ_f by the hoop stress σ_c in the pipe wall

$$\sigma_{\mathcal{C}} > \sigma_f$$

$$\sigma_f = min\left(\frac{\sigma_y + \sigma_u}{2}; 0.85 \times \sigma_u\right)$$

Annual failure probability :

$$P_{annual}(N) = P(G_N \ge 0 \mid G_{N+1} < 0)$$

$$\Rightarrow$$

$$\Rightarrow P_{annual}(N) = \frac{P(G_{N+1} < 0 \cap G_N \ge 0)}{1 - P(G_N < 0)}$$

No failure before year N :

$$G_N = \sigma_f - \sigma_{C,N} > 0$$

Failure before year N+1 :

$$G_{N+1} = \sigma_f - \sigma_{C,N+1} < 0$$

FRACTURE MECHANICS MODEL FOR WELDS (1/4)

- Potential defects not detected by Non Destructive Testing
- Loss of thickness due to corrosion

FRACTURE MECHANICS MODEL FOR WELDS (2/4)

Model with 6 random variables

Variable	Description	Distribution
σ_{u}	Ultimate tensile strength (MPa)	Lognormal
3	Deviation to the general correlation σ_{y} - σ_{u}	Normal
$\Delta \mathbf{t}_{extra}$	Manufacturing extra thickness (mm)	Normal
$\Delta \mathbf{t}_{corr}$	Thinning due to corrosion (mm)	Normal
а	Flaw maximum height (mm)	Uniform [0; a _{max}]
K _{IC}	Steel toughness (MPa.m ^{1/2})	Weibull

 \blacksquare + 1 new parameter : Residual stress σ_{res} in welds

FRACTURE MECHANICS MODEL FOR WELDS (3/4)

- New parameters depend on the manufacturing & NDT processes
 - \circ Residual stress σ_{res} depends on the relief process

_	No stress relief	("as welded")	$\sigma_{\rm res} = 0.8 \times \sigma_{\rm v}$
---	------------------	---------------	--

- Partial mechanical relief
$$\sigma_{res} = 0.4 \times \sigma_{v}$$

- Post welding Heat Treatment
$$\sigma_{res} = 0.2 \text{ x } \sigma_{y}$$

- \circ Height a_{max} of residual manufacturing flaws depends on the detectability performance of Non Destructive Test (NDT)
 - S₁: Magnetic Particle (MP) on machined welded joint

$$a_{max} = 1.0 \text{ mm}, 2.c_{max} = 5 \text{ mm}$$

$$a_{max} = 1.5 \text{ mm}, 2.c_{max} = 10 \text{ mm}$$

$$a_{max} = 4.0 \text{ mm}, 2.c_{max} = 20 \text{ mm}$$

FRACTURE MECHANICS MODEL FOR WELDS (4/4)

Failure criterion (BS-7910)

$$G=K_R-f(L_R)<0$$

• with:

$$L_{R} = \frac{\sigma_{C}}{\sigma_{y}}$$

$$K_{R} = \frac{M \cdot (\sigma_{C} + \sigma_{r\acute{e}s}) \cdot \sqrt{\pi \cdot a}}{K_{IC}}$$

$$\sigma_{C} = \frac{f}{MF} \cdot \frac{t^{*}}{t}$$

Failure Assessment Diagrams (depending on the material)

CONDITIONAL FAILURE PROBABILITIES KNOWING A SUCCESSFUL HYDROSTATIC TEST

Conditional annual failure probability :

$$P_{annual-cond}(N) = P(G_{N+1} < 0 \mid G_N \ge 0 \cap G_{hydro-test} \ge 0)$$

$$\Rightarrow P_{annual-cond}(N) = \frac{P(G_{N+1} < 0 \cap G_N \ge 0 \cap G_{hydro-test} \ge 0)}{P(G_{hydro-test} \ge 0 \cap G_N \ge 0)}$$

PLASTIC COLLAPSE MODEL: DETERMINISTIC DESIGN OF EXPERIMENTS (DoE)

> 2 000 penstock configurations (Latin hypercube)

Variable	Mean value	Variation Coefficient or standard-deviation	
t _{design}	5 mm to 30 mm	-	
σ_{u}	320 to 750 MPa	C.V.: 5% to 10%	
3	-50 to +50 MPa	C.V.: 2% to 5%	
$\Delta \mathbf{t}_{appro}$	0 to 1 mm	S.D.: 0.25 to 0.50 mm	
$\Delta \mathbf{t_{corr}}$	1 to 3 mm	S.D.: 0.25 to 1.00 mm	

- In depth analysis of results :
 - Estimation of the upper bound of annual failure probability (for calculation values taken at $\gamma = 2$ or $Q_{2.5\%}$)
 - Identification of the major influent factors

MODEL IMPLEMENTATION (1/2)

- Very large number (thousands) of probability configurations to be performed
- System event probabilities calculated (System reliability)
 - Annual failure probability: double intersection
 - Conditional probability (given a successful initial Hydraulic Testing): triple intersection
 - For Fracture Mechanics, limit state function is locally non differentiable and can be discontinuous material with Lüder's plateau)

 ⇒ Convergence problems may occur
- This industrial need initiated an evolution in OT (V 1.14)
 - System event definition and reliability calculation
 - All the classical reliability methods available for single events have been adapted for system events:
 - FORM
 - FORM-IS
 - Subset Simulation
 - Directional Simulation / Adaptive directional Stratification
 - OpenTURNS is now ahead of other UQ tools, for System Events (UQLAB (ETH Zurich) uses only System-FORM)

MODEL IMPLEMENTATION (2/2)

- Implementation of the models in Persalys software
 - → **Persalys-Penstock** becomes the 1st dedicated tool based on Persalys
- Adaptation of reliability methods developed in Persalys
 - Subset Simulation
 - Directional Simulation
 - Adaptive Stratified Sampling
- Development of specific methods, not yet included in OpenTURNS
 - Multi-constraint-FORM-IS: necessary for conditional probability calculation
 - FORM-IS-Best Algorithm: iterative selection of a satisfactory optimization algorithm (6 possibilities)
 - → Persalys-Penstock includes enhanced reliability methods (not yet in OT or in Persalys)
- Comparative performance analysis of the methods is underway (R&D/PRISME)
- Treatment of large size DoEs (>> 1 000) is possible :
 - Optimized parallel computing
 - Large reduction of the computational time (CALIBRE: ratio 4,5)
- Probabilistic DoEs are also possible

EVENTS INTERSECTION PROBABILITY

• Failure probability:

$$p_f = P\left(\bigcap_{i=0}^N g_i(X) < 0\right)$$

g_i = limit state functions

Example in dimension with 2 limit state functions :

o $p_{f,Monte\ Carlo} = 1,24 \times 10^{-5}$ (818 000 samples, coefficient of variation = 10%)

INTERSECTION PROBABILITY EVALUATION (1/3)

General approach : FORM + Importance Sampling

V 1.1

1. Classical method : System-FORM

FORM on each limit state function + sampling around the N design points U*
 (instrumental density = mixture of the N densities centered around the U* points)

o **FORM**: $p_{f,FORM\ systeme} = P(\bigcap_{i=0}^{N} g_i(X) < 0) = \Phi_N(-\beta, [\rho]) = 4.21 \times 10^{-7}$

o **FORM-IS**: $P_{f,IS} = 1,42 \times 10^{-5}$ (6 530 samples, CoV = 10%)

Problem: depending on the relative position of the limit-state surfaces, the sampled values may not be centered around the right point

⇒ Poor computational efficiency

INTERSECTION PROBABILITY EVALUATION (2/3)

General approach : FORM + Importance Sampling

2. Multi-constraints FORM

- Multi-constraint optimization problem
- 4 optimization algorithms issued from NLOPT

$$Min \sum_{i} u_i^2$$
s.t. $\{g_i(U) = 0\}_{i=1,\dots,N}$

o **FORM-IS**: $P_{f,IS} = 1,42 \times 10^{-5}$ (970 samples, CoV = 10%)

Problem: The search algorithm for the U* point may not converge

But computational efficiency is generally increased

INTERSECTION PROBABILITY EVALUATION (3/3)

- For penstock conditional failure probability with successful hydro pressure test, the intersection can be located far from the U* points
 - $_{\odot}$ Monte-Carlo (reference probability): $p_{f_{reference}} = 9 imes 10^{-6}$
 - o System-FORM (samples centered on the 2 U* points): $P_{f,IS} = 1, 1 \times 10^{-5}$ (1 074 000 samples, CoV = 10%)
 - o Multi-constraint FORM (samples centered on the intersection point) $P_{f,IS} = 9, 1 \times 10^{-6}$ (17 580 samples, CoV = 10%)

PERSALYS-PENSTOCK INTERFACE (1/2)

Failure criterion

Material properties

Thickness

ritère de défaillance	Propriétés des matériaux	Épaisseur	Mécanique de la rupture	Méthode de calcul
-∆e appro distribution	1			
Distribution Norma	le <u>▼</u> µ 0			
	σ 0.25			
-∆e corr distribution -	le ▼ µ 1			
	σ 0.25			
	σ 0.25			
∆e annuelle	0.1			
Épaisseur nominale en	om 8			

PERSALYS-PENSTOCK INTERFACE (2/2)

Fracture Mechanics

Numerical method

PLASTIC COLLAPSE MODEL: UPPER BOUND OF ANNUAL FAILURE PROBABILITY (DETERMINISTIC DoE)

 The upper bound of annual failure probability increases with the variation coefficient of residual thickness

$$\alpha = \sigma(t) / \mu(t)$$

PLASTIC COLLAPSE MODEL: P_{ANNUAL-MAX} = f (MARGIN FACTOR) (DETERMINISTIC DoE)

- Margin Factor = 1 (calculated with γ = 2)
- $\alpha \leq 0.1$
- \Rightarrow P_{annual-max} < 10⁻⁹ pipe⁻¹.year⁻¹

PLASTIC COLLAPSE MODEL: EVALUATION OF ANNUAL FAILURE PROBABILITY (PROBABILISTIC DoE)

- Parameters of the random variables modelled by uniform distributions
- Application of a Monte-Carlo scheme to generate random parameters combinations for the calculation grid (instead of Latin hypercube)
- Estimation of the distribution of P_{annual} and of the marginal distribution P_{annual | α}

Conditional quantiles of $P_{\text{annual} \mid \alpha}$ as function of α

PLASTIC COLLAPSE MODEL: $P_{ANNUAL} = f (MARGIN FACTOR)$ PROBABILISTIC DoE (~ 1.7 X 10⁶ SAMPLES)

- Margin Factor = 1 (calculated with γ = 2)
- $\alpha \leq 0.1$
- \Rightarrow P_{annual} << 10⁻⁸ pipe⁻¹.year⁻¹

COMPARISON OF NUMERICAL METHODS (1/2)

COMPARISON OF NUMERICAL METHODS (2/2)

Mean CPU time per elementary probability calculation, with fracture mechanics option

Numerical method	Intersection calculation	Max. simulations	Annual probability increment	Conditional annual probability (successful hydro-test)
FORM	Intersection	-	0,5 s	0,5 s
FORM-IS	Intersection	20 000	8,0 s	16,0 s
	Product	20 000	8,0 s	11,3 s
	Difference	20 000	1,2 s	-
SUBSET	Intersection	20 000	6,5 s	13,5 s
	Product	20 000	3,2 s	10,3 s
	Difference	20 000	5,4 s	-

Typical large calculation grid (fracture mechanics):

- 14 400 conditional annual probability
- Computation time ~ 100 000 s CPU

Intel(R) Core(TM) i5-8350U CPU @ 1.70GHz 1.90 GHz 8,00 Go (7,84 Go utilisable)

FRACTURE MECHANICS MODEL: INFLUENCE OF NON DESTRUCTIVE TESTING ON THE ANNUAL FAILURE PROBABILITY

FRACTURE MECHANICS MODEL: INFLUENCE OF MANUFACTURING PROCESS ON THE ANNUAL FAILURE PROBABILITY

FRACTURE MECHANICS MODEL: INFLUENCE OF INITIAL HYDRO TESTING ON THE CONDITIONAL ANNUAL FAILURE PROBABILITY

CONCLUSIONS

- The probabilistic models allowed to assess the sensitivity of the upper bound of annual failure probability with regard to the Margin Factor of a penstock
 - For plastic collapse criterion (out of welds, without planar flas)
 - For fracture mechanic criterion (in welds with potential planar flaws)
- These models have been implemented in Persalys-Penstock
- Specific innovative numerical methods have been specifically developed and tested in order to calculate the probabilities corresponding to intersection of events
- Persalys-Penstock allows to solve deterministic or probabilistic large calculation grids
- Its application highlights that the annual failure probability depends on 4 major influencing factors :
 - The coefficient of variation of residual thickness
 - The relief of residual stress in welds
 - The detectability performance of Non destructive Tests
 - The initial hydrostatic pressure test leads to a significant reduction of the annual failure probability since the average cumulated corrosion thinning is moderate

