Exercises in Foundations in Representation Theory

Exercise Sheet 11

Jendrik Stelzner

Exercise 1.

Lemma 1. Let $F: \mathcal{A} \to \mathcal{B}$ be an exact functor between abelian categories \mathcal{A} and \mathcal{B} . Then F respects exact sequences, i.e. if

$$X' \xrightarrow{f} X \xrightarrow{g} X''$$

is an exact sequence in A, then the resulting sequence

$$F(X') \xrightarrow{F(f)} F(X) \xrightarrow{F(g)} F(X'')$$

in \mathcal{B} is again exact.

Proof. It follows from the exactness of the functor F that it is both left exact and right exact. Hence F respects both kernels and cokernels. Therefore F respect both images and coimages. We have that

$$F(g) \circ F(f) = F(g \circ f) = F(0) = 0$$

because F is additive, and we find from the above discussion that the induced canonical morphism $\operatorname{im}(F(f)) \to \ker(F(g))$ in $\mathcal B$ is given by the image of the canonical morphism $\operatorname{im}(f) \to \ker(g)$ in $\mathcal A$ under the functor F. Since $\operatorname{im}(f) \to \ker(g)$ is an isomorphism the same follows for $\operatorname{im}(F(f)) \to \ker(F(g))$ (because the functor F respects isomorphisms).

Corollary 2. If $F: \mathcal{A} \to \mathcal{B}$ is an exact functor between abelian categories \mathcal{A} and \mathcal{B} , then for every long exact sequence

$$\cdots \to X_{i-1} \to X_i \to X_{i+1} \to \cdots$$

in \mathcal{A} the resulting sequence

$$\cdots \to F(X_{i-1}) \to F(X_i) \to F(X_{i+1}) \to \cdots$$

in \mathcal{B} is again exact.

We find that if $T^{\bullet} : \mathcal{A} \to \mathcal{B}$ is a cohomological δ -functor given by

$$T^{\bullet} = ((T^n)_{n \ge 0}, (\delta^n_{\xi})_{n \ge 0, \xi})$$

and if $F: \mathcal{B} \to \mathcal{C}$ is an exact functor, where \mathcal{A}, \mathcal{B} and \mathcal{C} are abelian categories, then

$$F \circ T^{\bullet} := ((F \circ T^n)_{n \ge 0}, (F(\delta_{\varepsilon}^n))_{n \ge 0, \xi})$$

is a δ -functor $\mathcal{A} \to \mathcal{C}$. If the category \mathcal{A} has enough injectives and T^{\bullet} is universal, then $F \circ T^{\bullet}$ is again universal. This holds because the δ -functors T^{\bullet} and $F \circ T^{\bullet}$ are universal if and only if the functors T^n (resp. $F \circ T^n$) annihilate all injective objects for every $n \geq 1$.

We are now prepared for the exercise: The functor $G \circ F$ is again left exact because both G and F are left exact. We find that $G \circ (\mathbb{R}^{\bullet} F)$ is a cohomological δ -functor $A \to \mathcal{C}$ with $G \circ T^0 \cong G \circ F$ because $T^0 \cong F$. The δ -functor $\mathbb{R}^{\bullet} F$ is universal, and hence $G \circ (\mathbb{R}^{\bullet} F)$ are universal as seen above.

Exercise 2.

We get from the short exact sequence $0 \to X \to I \to Y \to 0$ a long exact sequence

$$0 \to F(X) \to F(I) \to F(Y) \to (\mathbb{R}^1 F)(X) \to (\mathbb{R}^1 F)(I) \to \cdots$$

We know from the lecture that $(\mathbb{R}^n F)(I) = 0$ for every $n \ge 1$ because I is injective.

(i)

We get for every $n \ge 1$ from the exactness of the sequence

$$0 \to (\mathbb{R}^n F)(Y) \to (\mathbb{R}^{n+1} F)(X) \to 0$$

that the connecting morphism $(\mathbb{R}^n F)(Y) \to (\mathbb{R}^{n+1} F)(X)$ is an isomorphism.

(ii)

We also get from the exactness of the sequence

$$F(I) \to F(Y) \to (\mathbf{R}^1 F)(X) \to 0$$

that the connecting morphism $F(Y) \to (\mathbf{R}^1 F)(X)$ is a cokernel of $F(I) \to F(Y)$.

Exercise 3.

- (i) \iff (ii): That every object $P \in \mathrm{Ob}(\mathcal{A})$ is projective means that every short exact sequence $0 \to X' \to X \to P \to 0$ in \mathcal{A} ending in any object $P \in \mathrm{Ob}(\mathcal{A})$ splits.
- (i) \iff (iii): This equivalence follows from the equivalence (i) \iff (ii) by duality.
- (ii) \iff (iv): An object $P \in \text{Ob}(\mathcal{A})$ is projective if and only if the functor $\text{Hom}_{\mathcal{A}}(P, -)$ is exact (as known from the lecture).
- (iii) \iff (v): An object $I \in \text{Ob}(A)$ is injective if and only if the functor $\text{Hom}_{A}(-, I)$ is exact.
- (iii),(v) \Longrightarrow (vi): For every object $X \in \text{Ob}(\mathcal{A})$ one can use the identity $\text{id}_X \colon X \to X$ to see that the category \mathcal{A} has enough injective, because the object X is injective by (iii). That $R^1 \text{Hom}_{\mathcal{A}}(-,Y) = 0$ follows from $\text{Hom}_{\mathcal{A}}(-,Y)$ being exact, which holds by (v).
- (vi) \Longrightarrow (v): It follows for every $Y \in \mathrm{Ob}(\mathcal{A})$ from $\mathrm{R}^1 \mathrm{Hom}_{\mathcal{A}}(-,Y) = 0$ via the long exact sequence that $\mathrm{Hom}_{\mathcal{A}}(-,Y)$ is exact.
- (ii),(iv) \iff (vii): This follows from the equivalence (iii), (v) \iff (vi) by duality.

Exercise 4.

We assume that the given quiver Q has only finitely many vertices (so that the path algebra kQ is unital) and finitely many arrows (which is needed in part (iii) for P(i) to be finite). We abbreviate A := kQ. Instead of representations of Q over k we will work with A-modules. Then $X_i = \varepsilon_i X$ for every A-module X.

(ii)

We have for every vertex $i \in Q_0$ that $P(i) = A\varepsilon_i$ It follows that

$$A = \bigoplus_{i \in Q_0} A\varepsilon_i = \bigoplus_{i \in Q_0} P(i)$$

because the basis Q_* of A decomposes as $Q_* = \coprod_{i \in Q_0} Q_* \varepsilon_i$, with $Q_* \varepsilon_i$ being a basis of P(i). This shows that the A-modules P(i) are direct summands of the free A-module A, and hence projective.

(i)

We have for every A-module X an isomorphism of k-vector spaces

$$\Phi_2 \colon \operatorname{Hom}_A(A, X) \to X, \quad f \mapsto f(1).$$

The A-A-bimodule structure of A leads to a left A-module structure on $\operatorname{Hom}_A(A,X)$ given by

$$(a.f)(a') = f(a'a)$$

for all $a \in A$, $f \in \text{Hom}_A(A, X)$ and $a' \in A$. The above isomorphism of k-vector space is then an isomorphism of (left) A-modules because

$$(a \cdot f)(1) = f(1 \cdot a) = f(a \cdot 1) = a \cdot f(1)$$

for all $a \in A$ and $f \in \text{Hom}_A(A, X)$.

The decomposition $A = \bigoplus_{i \in Q_0} P(i)$ of A-modules results in a decomposition

$$\operatorname{Hom}_A(A,X) = \operatorname{Hom}_A\left(\bigoplus_{i \in Q_0} P(i), X\right) \cong \bigoplus_{i \in Q_0} \operatorname{Hom}_A(P(i), X)$$

of k-vector spaces. The isomorphism

$$\Phi_1 : \bigoplus_{i \in Q_0} \operatorname{Hom}_A(P(i), X) \to \operatorname{Hom}_A(A, X)$$

is explicitely given by

$$\Phi_1((f_i)_{i \in Q_0}) = \sum_{i \in Q_0} (f_i \circ \pi_i) = \sum_{i \in Q_0} \pi_i^*(f_i)$$

where $\pi_i \colon A \to P(i)$ denotes the projection along the decomposition $A = \bigoplus_{i \in I} P(i)$. The projection π_i is given by right multiplication with the idempotent ε_i . The complete isomorphism of k-vector spaces

$$\Phi \coloneqq \Phi_2 \circ \Phi_1 \colon \bigoplus_{i \in Q_0} \operatorname{Hom}_A(P(i), X) \to X$$

is therefore given by

$$\Phi((f_i)_{i \in I}) = \Phi_2(\Phi_1((f_i)_{i \in I})) = \left(\sum_{i \in Q_0} \pi_i^*(f_i)\right)(1) = \sum_{i \in Q_0} f(\pi_i(1)) = \sum_{i \in Q_0} f_i(\varepsilon_i)$$

for every $(f_i)_{i\in I} \in \bigoplus_{i\in I} \operatorname{Hom}_A(P(i),X)$. The restriction

$$\operatorname{Hom}_A(P(j), X) \hookrightarrow \bigoplus_{i \in Q_0} \operatorname{Hom}_A(P(i), X) \stackrel{\Phi}{\longrightarrow} X$$

is therefore given by

$$f \mapsto f(\varepsilon_i)$$
.

We note that

$$f(\varepsilon_i) = f(\varepsilon_i^2) = \varepsilon_i f(\varepsilon_i) \in \varepsilon_i X = X_i$$

for every $f \in \text{Hom}_A(P(i), X)$. This means that the isomorphism Φ maps the direct summand $\text{Hom}_A(P(i), X)$ into the direct summand X_i of X. It follows that the resulting restriction

$$\operatorname{Hom}_A(P(i), X) \to X_i, \quad f \mapsto f(\varepsilon_i)$$

is again an isomorphism.

(iii)

The quiver Q admits only finitely many paths because Q contains only finitely many arrows and no oriented cycles. It follows that the path algebra A is finite-dimensional, and hence that every module P(i) (which is a direct summand of A) is finite-dimensional. We also find that

$$\operatorname{End}_A(P(i)) = \operatorname{Hom}_A(P(i), P(i)) \cong P(i)_i$$

has as a basis the set

$$Q_*(i,i) = \{ p \in Q_* \mid s(p) = i = t(p) \} = \{ \text{oriented cycles at } i \} \cup \{ \varepsilon_i \} = \{ \varepsilon_i \}.$$

This shows that the k-algebra $\operatorname{End}_A(P(i))$ is one-dimensional, which reveals to us that $\operatorname{End}_A(P(i)) = k$ as k-algebras.¹

(iv)

If M is a decomposable A-module then there exists a decomposition $M = N \oplus P$ into two nonzero submodules N and P of M. The projection $e \colon M \to M$ onto N along the decomposition $M = N \oplus P$ is then an idempotent in the k-algebra $\operatorname{End}_A(M)$ with

$$im(e) = N$$
 and $ker(e) = P$.

It follows from $N \neq 0$ that $e \neq 0$, and from $P \neq M$ that $e \neq \mathrm{id}_M$. We hence see that the endomorphism algebra $\mathrm{End}_A(M)$ contains a non-trivial idempotent if the module M is decomposable.²

We have seen in the previous part of the exercise that $\operatorname{End}_A(P(i)) = k$ as k-algebras. The field k contains no non-trivial idemponents, and hence P(i) is indecomposable.

Exercise 5.

(i)

The short exact sequence $0 \to A' \to A \to A'' \to 0$ results in a long exact sequence

$$0 \to F(A') \to F(A) \to F(A'') \to (\mathbf{R}^1 F)(A') \to (\mathbf{R}^1 F)(A) \to \cdots$$

¹Here we use that for every one-dimensional k-algebra B the unique morphism of k-algebras $k \to B$, that is given by $\lambda \to \lambda \cdot 1_B$, is an isomorphism of k-algebras.

²This construction does in fact give a bijection between the direct sum decompositions $M = N \oplus P$ of M and the idempotents in the endomorphism algebra $\operatorname{End}_A(M)$.

We have for every $n \ge 1$ that $(\mathbb{R}^n F)(A') = 0$ and $(\mathbb{R}^n F)(A) = 0$ because the objects A' and A are F-acyclic. We find for every $n \ge 1$ from the exactness of the sequence

$$0 \to \mathbf{R}^n(A'') \to 0$$

that $R^n(A'') = 0$, which shows that A'' is also F-acyclic. We also find that the sequence

$$0 \to F(A') \to F(A) \to F(A'') \to 0$$

is again exact.

(ii)

We set $A^n := 0$ for every n < 0. It follows from the exactness of the sequence

$$\cdots \to A^{n-1} \to A^n \to A^{n+1} \to \cdots$$

that we have for every $n \in \mathbb{Z}$ a short exact sequence

$$0 \to Z^n \to A^n \to Z^{n+1} \to 0$$
.

We have for every n < 0 that $Z^n = 0$, and hence that Z^n is F-acyclic. If Z^n is acyclic then we get from the above short exact sequence and part (i) of this exercise that Z^{n+1} is also F-acyclic, since then both Z^n and A^n are F-acyclic. Whence we find inductively that Z^n is F-acyclic for every $n \in \mathbb{Z}$.

(iii)

Instead of doing this exercise I spent my holidays being sick and watching UK policits going crazy.

Exercise 6.

(i)

I didn't do this exercise, as it is nontrivial and I rather watched Trump's attempt at a record length government shutdown.

(ii)

We have the following commutative diagram with (short) exact columns, in which the first two rows are (long) exact:

We regard the rows of this diagram as chain complexes and the overall diagram as a short exact sequence of these chain complexes. The upper two rows are acyclic, hence the third row is acyclic by part (i) of Exercise 2 of Exercise sheet 8.

(iii)

We have for every $n \ge 0$ a short exact sequence

$$0 \to A^n \to I^n \to B^n \to 0$$
.

The object A^n is F-acyclic and the object I^n is injective, and hence also F-acyclic. It follows from part (i) of Exercise 5 that B^n is also F-acyclic.

(iv)

We have for every $n \geq 0$ the short exact sequence

$$0 \to A^n \to I^n \to B^n \to 0$$

of F-acyclic objects. It follows from part (i) of Exercise 5 that the sequence

$$0 \to F(A^n) \to F(I^n) \to F(B^n) \to 0$$

is again (short) exact for every $n \geq 0$. This shows the exactness of the sequence

$$0 \to F(A^{\bullet}) \to F(I^{\bullet}) \to F(B^{\bullet}) \to 0$$
,

because this exactness is computed degreewise.

(v)

We get from the short exact sequence $0 \to F(A^{\bullet}) \to F(I^{\bullet}) \to F(B^{\bullet}) \to 0$ the long exact cohomology sequence

$$\cdots \to \mathrm{H}^{n-1}(F(B^{\bullet})) \to \mathrm{H}^n(F(A^{\bullet})) \to \mathrm{H}^n(F(I^{\bullet})) \to \mathrm{H}^n(F(B^{\bullet})) \to \cdots$$

The chain complex B^{\bullet} is exact and consists of F-acyclic objects, hence the chain complex $F(B^{\bullet})$ is again exact by part (iii) of Exercise 5. We therefore have $H^n(F(B^{\bullet})) = 0$ for every n. We hence have for every $n \geq 0$ an exact sequence

$$0 \to \operatorname{H}^n(F(A^{\bullet})) \to \operatorname{H}^n(F(I^{\bullet})) \to 0$$

which tells us that the morphism $\mathrm{H}^n(F(A^{\bullet})) \to \mathrm{H}^n(F(I^{\bullet}))$ is an isomorphism. We have that $\mathrm{H}^n(F(I^{\bullet})) \cong (\mathbf{R}^n F)(X)$ for every $n \geq 0$ by the explicit computation of $(\mathbf{R}^n F)(X)$ via the injective resolution (I^{\bullet}, i^0) of X.