

Security (CS4028)

Lecture 6. Asymmetric Cryptography II

Chunyan Mu

chunyan.mu@abdn.ac.uk

The School of Natural and Computing Sciences

Schedule

	Week	Lecture 1	Lecture 2	Tutorial
	1	Intro to course & security	Intro to Crypto	-
	2	Symmetric Crypto	Hash	Math for crypto
⇒	3	Asymmetric Crypto-1	Asymmetric Crypto-2	Symmetric Crypto
	4	Signatures	Zero Knowledge Proof	Asymmetric Crypto
	5	Certificates	Authentication	Signature & certificates
	6	Access Control	AC models	Authentication
	7	Information flow control	Information flow control	Access control
	8	Management	Protocols	Concepts & management
	9	Network security	Network security	Protocols and communications
	10	Advanced topics	Advanced topics	Network
	11	Revision		

Outline

Review: Symmetric-key Cryptography

Basic mathematical background (optional)

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange: general overview

The protocol

The man-in-the-middle attack

ElGamal

key generation signature encryption/decryption

Summary

Outline

Review: Symmetric-key Cryptography

Basic mathematical background (optional)

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange: general overview

The protocol

The man-in-the-middle attack

ElGama

key generation signature

encryption/decryption

Summary

Secret Key Encryption

- ► Same key is used by sender and receiver, has to be share via some trusted channel.
- What do you do when there is no secure (trusted) channel?

Key Distribution

- ► With any symmetric algorithm, the key must be agreed upon by sender and receiver in a secure way
- ▶ Before 1976, key exchange was one of the biggest problems in secure communications.
- ► Various people and groups arrived at "asymmetric" algorithm solutions around the same period. Some public, some not.

Key Distribution

Possible Strategies:

- A key could be selected by A and physically delivered to B
- ▶ A third party could select the key and physically deliver it to A and B
- ► If A and B have previously used a key, one party could transmit the new key by encrypting it with the old key
- If both A and B have an encrypted connection with a third party C, C could deliver a key on the encrypted links to A and B

7 / 37

Key Establishment/agreement

Possible Strategies:

- ▶ Modern internet imposes new requirements.
- ▶ Need something that scales up to deal with huge numbers of communicating peers.
- Pairs of peers may be new to each other.
- May need to minimise dependence on trusted-third parties to deliver keys to peers.
 - ► Some intelligence agencies would like to roll this back a bit.

Outline

Review: Symmetric-key Cryptography

Basic mathematical background (optional)

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange: general overview

The protocol

The man-in-the-middle attack

FlGama

key generation

signature

encryption/decryption

Summary

The order of an integer

Definition: order

The order of an integer m modulo a (natural) number n is defined to be the smallest positive integer power r such that:

$$m^r = 1 \mod n$$

The order of an integer

Definition: order

The order of an integer m modulo a (natural) number n is defined to be the smallest positive integer power r such that:

$$m^r = 1 \mod n$$

Example: What's the order of 3 modulo 13?

 $3^1 \equiv 3 \pmod{13}$

 $3^2 \equiv 9 \pmod{13}$

 $3^3 \equiv 1 \pmod{13}$

So the order of 3 modulo 13 is 3.

The order of an integer

Remark

- ▶ The order r of m modulo n is denoted by $ord_n(m)$
- $ightharpoonup ord_n(m)$ does not always exists, e.g.,
 - ord₂₄(3): any even power of 3 yields 9 modulo 24, and any odd power of 3 is 3 modulo 24

$$3^3 = 3^1 \pmod{24}, \ 3^2 = 3^4 = 9 \pmod{24}$$

 $ightharpoonup ord_{24}(12)$: positive power vanishes

$$12^2 = 144 \pmod{24} = 0 \pmod{24}$$

► For such numbers there does not exist a positive finite power to yield its order, and the order is then defined as infinite.

Generators

Notation: \mathbb{Z}_n^*

- ► The symbol \mathbb{Z}_n denotes the complete set of residues modulo n, i.e., $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$.
- ► The symbol \mathbb{Z}_n^* denotes the reduced set of residues modulo n, i.e., $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : gcd(x, n) = 1\}$.
- ▶ Recall that 1 is relatively prime to all the other numbers.

Definition: generator

An element $g \in \mathbb{Z}_n^*$ is a generator $\operatorname{mod} n$ (or a generator of the set \mathbb{Z}_n^*) if for each $a \in \mathbb{Z}_n^*$ there exists some x where:

$$g^x \equiv a \mod n$$

Generators

Definition: generator

An element $g \in \mathbb{Z}_n^*$ is a generator $\operatorname{mod} n$ (or a generator of the set \mathbb{Z}_n^*) if for each $a \in \mathbb{Z}_n^*$ there exists some x where:

$$g^{x} \equiv a \mod n$$

Example: Find all the generators of \mathbb{Z}_7^*

m	m^1	m ²	m ³	m^4	m^5	m^6	$ord_7(m)$
1	1	1	1	1	1	1	1
2	2	4	1	2	4	1	3
3	3	2	6	4	5	1	6
4	4	2	1	4	2	1	3
5	5	4	6	2	3	1	6
6	6	1	6	1	6	1	2

The Discrete Logarithm Problem (DLP)

Evaluating the expression $a^x \mod n$ (modular exponentiation) is easy. The inverse problem of modular exponentiation is that of finding the discrete logarithm of a number. This is a hard problem:

The Discrete Logarithm Problem (DLP)

Find x such that $a^x \equiv b \pmod{n}$.

Example

If $3^x \equiv 15 \pmod{17}$, then x = 6.

Not all discrete logarithm have solutions, e.g., :

$$3^x \equiv 7 \pmod{13}$$

Outline

Review: Symmetric-key Cryptography

Basic mathematical background (optional)

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange: general overview

The protocol

The man-in-the-middle attack

FIGama

key generation signature encryption/decryption

Summary

Key agreement: Diffie-Hellman

General overview: Diffie-Hellman key exchange

- A method of securely exchanging cryptographic keys over a public channel
- One of the earliest practical examples of public key exchange implemented within the field of cryptography.
- ▶ Published in 1976 by Diffie and Hellman, the earliest publicly known work that proposed the idea of a private key and a corresponding public key
- ▶ Allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel.

Key agreement: Diffie-Hellman

General overview: Diffie-Hellman key exchange

An analogy illustrates the concept of public key exchange:

Image taken from: https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Diffie-Hellman for two parties

Protocol based on discrete logarithms

- 0. Alice and Bob agree on a large prime number n and an integer g, such that g is a generator mod n
- 1. Alice chooses a large random integer x and Bob chooses a large random integer y
- 2. Alice computes and sends Bob $X = g^x \mod n$, while Bob computes and sends Alice $Y = g^y \mod n$
- 3. Alice computes $k_B = Y^x \mod n = g^{yx} \mod n$
- 4. Bob computes $k_A = X^y \mod n = g^{xy} \mod n$ $k_A = k_B$ is used as the secret key Alice and Bob will share

Diffie-Hellman for two parties

An example

- 0. Alice and Bob agree on g = 7, while n = 23.
- 1. Alice chooses x = 5 and Bob chooses y = 8.
- 2. Alice computes $X = 7^5 \mod 23 = 17$, Bob computes $Y = 7^8 \mod 23 = 12$, Alice sends 17 to Bob and Bob sends 12 to Alice.
- 3. Alice computes $k_B = 12^5 \mod 23 = 18$
- 4. Bob computes $k_A = 17^8 \mod 23 = 18$

 $k_A = k_B = 18$ is the encryption key for the session.

Diffie-Hellman for four parties

Protocol (based on discrete logarithms)

- 0. Alice, Bob, Carol and Dave agree on a large prime number n and an integer g, such that g is a generator mod n
- 1. Choices:
 - Alice chooses a random large integer w
 - Bob chooses a random large integer x
 - Carol chooses a random large integer y
 - Dave chooses a random large integer z

Diffie-Hellman for four parties

Protocol (based on discrete logarithms)

- 2. Sent messages (round 1):
 - ▶ Alice sends Bob $W = g^w \mod n$
 - ▶ Bob sends Carol $X = g^x \mod n$

 - ▶ Dave sends Alice $Z = g^z \mod n$
- 3. Sent messages (round 2):
 - Alice sends Bob $Z' = Z^w \mod n = g^{zw} \mod n$
 - ▶ Bob sends Carol $W' = W^{\times} \mod n = g^{w \times} \mod n$
 - ightharpoonup Carol sends Dave $X' = X^y \mod n = g^{xy} \mod n$
 - ▶ Dave sends Alice $Y' = Y^z \mod n = g^{yz} \mod n$

Diffie-Hellman for four parties

Protocol (based on discrete logarithms)

- 4. Sent messages (round 3):
 - Alice sends Bob $Y'' = Y'^w \mod n = g^{yzw} \mod n$
 - ▶ Bob sends Carol $Z'' = Z'^x \mod n = g^{zwx} \mod n$
 - ightharpoonup Carol sends Dave $W'' = W'^y \mod n = g^{wxy} \mod n$
 - ▶ Dave sends Alice $X'' = X'^z \mod n = g^{xyz} \mod n$
- 5. Computation:
 - Alice computes $k_1 = X''^w \mod n = g^{xyzw} \mod n$
 - ▶ Bob computes $k_2 = Y''^x \mod n = g^{yzwx} \mod n$
 - ► Carol computes $k_3 = Z'''^y \mod n = g^{zwxy} \mod n$
 - ▶ Dave computes $k_4 = W''^z \mod n = g^{wxyz} \mod n$

 $k_1 = k_2 = k_3 = k_4$ the secret key Alice, Bob, Carol and Dave will share

The man-in-the-middle attack

Main drawback of Diffie-Hellman protocol:

vulnerable to man-in-the-middle attack

Imagine that Mallory can intercept communications...

- ► Consider the following man-in-the-middle attack:
 - 1. Alice sends Bob her public key PK_A
 - 2. Mallory intercepts PK_A and sends Bob his public key PK_M
 - 3. Bob replies by sending his public key PK_B
 - 4. Mallory intercepts PK_B and sends Alice PK_M

The man-in-the-middle attack

Main drawback of Diffie-Hellman protocol:

vulnerable to man-in-the-middle attack

Imagine that Mallory can intercept communications...

- Now, any time Alice sends a message to Bob, since she is using PK_M instead of PK_B , Mallory will:
 - 1. intercept it
 - 2. decrypt it using SK_M (eventually modify it)
 - 3. encrypt it using PK_B
 - 4. send it to Bob

Man-In-The-Middle (MITM) attack works because Diffie Hellman does not authenticate participants

Outline

Review: Symmetric-key Cryptography

Basic mathematical background (optional)

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange: general overview

The protocol

The man-in-the-middle attack

ElGamal

key generation signature encryption/decryption

Summary

ElGamal: overview

Overview

- asymmetric key encryption algorithm for public-key cryptography, which is based on Diffie-Hellman key exchange
- 2. described by Taher ElGamal in 1984

The algorithm

- 1. key generation
- 2. Signature and verification
- 3. encryption
- 4. decryption

ElGamal: key generation

Initial generation of keys

Alice wants to send a message to Bob.

- 1. Bob choose a prime number p
- 2. Bob choose two random numbers g (a generator of \mathbb{Z}_p^*) and x less than p
- 3. Bob compute $y = g^x \mod p$
- p, g and y are <u>PUBLIC</u>, x is <u>PRIVATE</u>

ElGamal: signature

Signature

- 1. Consider a given message M Bob wants to sign, he:
 - 1.1 chooses a SECRET random number k relatively prime to p-1
 - 1.2 computes $s_1 = g^k \mod p$
 - 1.3 computes s_2 , such that $M = (xs_1 + ks_2) \mod (p-1)$
- 2. Signature $S = (s_1, s_2)$
- 3. Note that:
 - \triangleright s_2 depends on x which is PRIVATE
 - $ightharpoonup s_1$ depends on k which is <u>SECRET</u>
- 4. Signature verification: Alice verifies $y^{s_1}s_1^{s_2} \mod p = g^M \mod p$

ElGamal: signature

Why it works?

```
y^{s_1} \cdot s_1^{s_2} \mod p

= g^{xs_1} \cdot g^{ks_2} \mod p (since: y = g^x \mod p, s_1 = g^k \mod p)

= g^{xs_1+ks_2} \mod p

= g^{(p-1)j+M} \mod p (for some j, since:xs_1 + ks_2 = M \mod p - 1)

= g^M \cdot (g^{(p-1)})^j \mod p

= g^M \cdot 1^j \mod p (since: g^{p-1} = 1 \mod p)

= g^M \mod p
```

ElGamal

Example: Consider the message M = 5 Bob wants to sign

- 1. consider p = 11 (PUBLIC), g = 2 (PUBLIC)
- 2. choose private key x = 8 (PRIVATE)
- 3. calculate $y = g^x \mod p = 2^8 \mod 11 = 3$ (PUBLIC)
- 4. choose a random k = 9 (SECRET) such that gcd(k, p 1) = gcd(9, 10) = 1
- 5. compute $s_1 = g^k \mod p = 2^9 \mod 11 = 6$

ElGamal

Example: Consider the message M = 5 Bob wants to sign

- 6. compute s_2 such that $M=(xs_1+ks_2) \bmod p-1$ that is $M=(8\times 6+9\times s_2) \bmod 10 \to s_2=3$
- 7. generate signature $(s_1, s_2) = (6,3)$
- 8. Alice verify the signature:

$$y^{s_1} \times s_1^{s_2} \mod p = 3^6 \times 6^3 \mod 11$$

= $729 \times 216 \mod 11 = 10$
 $g^M \mod p = 2^5 \mod 11 = 10$

ElGamal: encryption

Encryption

- Alice wants to encrypt a given message M to Bob under his public key (p, g, y), she:
 - 1. chooses a SECRET random number k relatively prime to p-1
 - 2. computes $c_1 = g^k \mod p$
 - 3. computes $c_2 = y^k \times M \mod p$
- ightharpoonup Ciphertext $C = (c_1, c_2)$
- ► Note that:
 - \triangleright p, g, y are PUBLIC, k is SECRET
 - ciphertext C is twice the size of the plaintext M

ElGamal encryption

Example: Consider the plaintext M=5

Consider Alice wants to send plaintext M=5 to Bob under his public key (p,g,y)=(11,2,3).

- 1. Alice chooses at random k=9 (SECRET) such that gcd(k,p-1)=1, that is gcd(9,10)=1
- 2. Alice computes $c_1 = g^k \mod p = 2^9 \mod 11 = 6$
- 3. Alice computes $c_2 = y^k \times M \mod p = 3^9 \times 5 \mod 11 = 9$
- 4. Alice generates ciphertext $C = (c_1, c_2) = (6, 9)$

ElGamal: decryption

Decryption

Consider Bob wants to decrypt a given ciphertext $C = (c_1, c_2)$ using his private key x, he:

- ightharpoonup calculates $s = c_1^x \mod p$
- ▶ then computes $M = c_2 \cdot s^{-1} \mod p$ to obtain the plaintext
- the decryption algorithm produces the intended message, since

$$s = c_1^x = g^{kx} \mod p$$

$$s^{-1} = (g^{kx})^{-1}$$

$$c_2 \cdot s^{-1} = (y^k \times M) \times (g^{kx})^{-1} \mod p$$

$$= (g^{kx} \times M) \times (g^{kx})^{-1} \mod p$$

$$= M \mod p$$

ElGamal decryption

Example: Consider the ciphertext C = (6,9)

Bob wants to decrypt ciphertext C = (6, 9) using his private key x = 8:

- 1. $s = c_1^x \mod p = 6^8 \mod 11 = 4$
- 2. $s^{-1} = 3 \mod 11$
- 3. $M = c_2 \cdot s^{-1} \mod p = 9 \times 3 \mod 11 = 5$

Outline

Review: Symmetric-key Cryptography

Basic mathematical background (optional)

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange: general overview

The protocol

The man-in-the-middle attack

FIGama

key generation

encryption/decryption

Summary

Summary

This lecture

- ▶ RSA: key generation, encryption and decryption
- Diffie-Hellman key exchange
- ▶ ElGamal: key generation, signature, encryption and decryption

Next lecture

Signatures