Раздел 2. Векторная алгебра на плоскости и в пространстве

Контрольная работа №2 Вариант 1

- 1. Векторы \vec{a} и \vec{b} образуют угол $\phi = \frac{\pi}{6}$. Зная, что $|\vec{a}| = 4 |$ и $|\vec{b}| = 5$, вычислить $(\vec{a} + 3\vec{b})(2\vec{a} \vec{b})$.
- 2. Даны два вектора \vec{a} и \vec{b} , для которых $|\vec{a}| = 2$, $|\vec{b}| = 5$, $\phi = \angle(\vec{a}; \vec{b}) = \frac{\pi}{2}$. Найти: $|(4\vec{a} + 2\vec{b}) \times (4\vec{a} \vec{b})|$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{BD} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{AB} + \overrightarrow{AC}) - \overrightarrow{OC}$.
- 5. ABCD произвольный четырёхугольник. Точки M и N середины сторон BC и AD соответственно. Доказать, что $\overrightarrow{MN} = \frac{1}{2} \cdot \left(\overrightarrow{BA} + \overrightarrow{CD} \right)$.

Раздел 2. Векторная алгебра на плоскости и в пространстве

Контрольная работа №2 Вариант 2

- 1. Векторы \vec{a} и \vec{b} образуют угол $\phi = \frac{\pi}{4}$. Зная, что $|\vec{a}| = 8$ и $|\vec{b}| = 3$, вычислить $(7\vec{a} + 2\vec{b})(5\vec{a} \vec{b})$.
- 2. Даны два вектора \vec{a} и \vec{b} , для которых $|\vec{a}| = 3$, $|\vec{b}| = 7$, $\phi = \angle(\vec{a}; \vec{b}) = \frac{\pi}{6}$. Найти: $|(\vec{3}\vec{a} + 5\vec{b}) \times (4\vec{a} \vec{b})|$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{DB} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{AB} - \overrightarrow{AO}) + \overrightarrow{OC}$.
- 5. Доказать, что если векторы \vec{a} и \vec{b} удовлетворяют условию $(\vec{a} + \vec{b}) \cdot (|\vec{b}| \cdot \vec{a} |\vec{a}| \cdot \vec{b}) = 0$, то эти векторы либо коллинеарные, либо $|\vec{a}| = |\vec{b}|$.

Раздел 2. Векторная алгебра на плоскости и в пространстве

Контрольная работа №2 Вариант 3

- 1. Векторы \vec{a} и \vec{b} образуют угол $\phi = \frac{\pi}{3}$. Зная, что $|\vec{a}| = 7$ и $|\vec{b}| = 6$, вычислить $(3\vec{a} + 2\vec{b})(5\vec{a} 2\vec{b})$.
- 2. Даны два вектора \vec{a} и \vec{b} , для которых $|\vec{a}| = 4$, $|\vec{b}| = 5$, $\phi = \angle(\vec{a}; \vec{b}) = \frac{\pi}{3}$. Найти: $|(4\vec{a} + 3\vec{b}) \times (2\vec{a} \vec{b})|$.
- 3. В параллелограмме \overrightarrow{ABCD} : \overrightarrow{K} и M середины сторон \overrightarrow{BC} и \overrightarrow{CD} , $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{AC} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{BC} + \overrightarrow{AO}) + \overrightarrow{OC}$.
- 5. ABCD параллелограмм. Доказать, что $\overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD}^2 = \overrightarrow{AB}^2$.

Раздел 2. Векторная алгебра на плоскости и в пространстве Контрольная работа №2

Вариант 4

- 1. Векторы \vec{a} и \vec{b} образуют угол $\phi = \frac{2\pi}{3}$. Зная, что $|\vec{a}| = 2$ и $|\vec{b}| = 3$, вычислить $(4\vec{a} + 2\vec{b})(5\vec{a} 3\vec{b})$.
- 2. Даны два вектора \vec{a} и \vec{b} , для которых $|\vec{a}| = 5$, $|\vec{b}| = 2$, $\phi = \angle(\vec{a}; \vec{b}) = \frac{3\pi}{4}$. Найти: $|(\vec{3}\vec{a} + 6\vec{b}) \times (4\vec{a} \vec{b})|$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{CA} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{BC} - \overrightarrow{AB}) + \overrightarrow{OC}$.
- 5. Доказать, что для любых точек пространства A, B, C, D верно равенство $\overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD} + \overrightarrow{AB} \cdot \overrightarrow{CD} = 0$.

Раздел 2. Векторная алгебра на плоскости и в пространстве

Контрольная работа №2 Вариант 5

- 1. Векторы \vec{a} и \vec{b} образуют угол $\phi = \frac{3\pi}{4}$. Зная, что $|\vec{a}| = 6$ и $|\vec{b}| = 3$, вычислить $(5\vec{a} + 3\vec{b})(5\vec{a} \vec{b})$.
- 2. Даны два вектора \vec{a} и \vec{b} , для которых $|\vec{a}| = 3$, $|\vec{b}| = 4$, $\phi = \angle(\vec{a}; \vec{b}) = \frac{3\pi}{2}$. Найти: $|(7\vec{a} + 2\vec{b}) \times (3\vec{a} \vec{b})|$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{DC} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{DA} + \overrightarrow{AO}) - \overrightarrow{AB}$.
- 5. Дан прямоугольник ABCD и произвольная точка M пространства. Доказать, что $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$.