Lecture 12

Augmenting Data Structures, Disjoint-Set Data Structure

Insertion phase:

Insertion phase:

Keep adding 1 to the sizes of every node we visit

Insertion phase:

Keep adding 1 to the sizes of every node we visit while searching for the correct leaf

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insert 15 in this tree

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insert 15 in this tree $\frac{10}{3}$ $\frac{16}{2}$ $\frac{7}{1}$ $\frac{12}{1}$ $\frac{14}{1}$

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insert 15 in this tree $\frac{10}{3}$ $\frac{16}{2}$ $\frac{7}{1}$ $\frac{12}{1}$ $\frac{14}{1}$

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insert 15 in this tree

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insert 15 in this tree $\frac{10}{3}$ $\frac{16}{3}$

Insertion phase:

Keep adding 1 to the **sizes** of **every node** we visit while **searching** for the correct leaf where new node can be inserted.

Insert 15 in this tree $\frac{10}{3}$ $\frac{16}{3}$ $\frac{7}{1}$ $\frac{12}{1}$ $\frac{14}{2}$

Fix-up phase:

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

Fix-up phase:

- Fix-ups involve only rotations and recolouring.
- Recolouring doesn't require changing sizes.

Fix-up phase:

- Fix-ups involve only rotations and recolouring.
- Recolouring doesn't require changing sizes.
- During rotations size changes are doable in constant time.

DIY.

Users: 1 2 3 4 ... 98 99

New Feature: To identify groups keep a representative for each group.

New Feature: To identify groups keep a representative for each group.

Goal: Design a data-structure so that:

Goal: Design a data-structure so that:

1. Merging is fast.

Goal: Design a data-structure so that:

- 1. Merging is fast.
- 2. Finding representative is fast.

Disjoint-set Data Structure

Disjoint-set Data Structure

Disjoint-set data structure maintains:

Disjoint-set Data Structure

Disjoint-set data structure maintains:

• A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

Operations of disjoint-set data structure:

• Make-Set(x): Creates a new set with x as the only member.

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

- Make-Set(x): Creates a new set with x as the only member.
- Union(x, y): Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y, respectively.

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

- Make-Set(x): Creates a new set with x as the only member.
- **Union**(x, y): Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y, respectively. Choose a representative for $S_x \cup S_y$.

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

- Make-Set(x): Creates a new set with x as the only member.
- **Union**(x, y): Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y, respectively. Choose a representative for $S_x \cup S_y$. Destroys S_x and S_y .

Disjoint-set data structure maintains:

- A collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- A representative for each set which is a member of the set.

- Make-Set(x): Creates a new set with x as the only member.
- Union(x, y): Adds $S_x \cup S_y$ to the collection, where S_x and S_y contain x and y, respectively. Choose a representative for $S_x \cup S_y$. Destroys S_x and S_y .
- Find-Set(x): Gives the representative of the unique set that contains x.

Disjoint-set data structure is useful in:

• Finding friend groups on social networks.

- Finding friend groups on social networks.
- Finding connected components in graphs.

- Finding friend groups on social networks.
- Finding connected components in graphs.
- Kruskal's algorithms to find minimum spanning tree.

- Finding friend groups on social networks.
- Finding connected components in graphs.
- Kruskal's algorithms to find minimum spanning tree.
- Finding systems on the same network, etc.

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of *m* Make-Set, Union, and Find-Set operations,

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set operations, takes $O(m + n \log n)$ time under the above heuristic.

Heuristic: Appending the shorter list at the end of the longer list, will make Union faster.

Claim: A sequence of m Make-Set, Union, and Find-Set operations, first n of which are Make-Set operations, takes $O(m + n \log n)$ time under the above heuristic.

Proof: DIY.