Nombres complexes

I. L'ensemble des nombres complexes

1. L'ensemble C - L'écriture algébrique

// Théorème :

Il existe un ensemble noté $\mathbb C$ appelé l'ensemble des nombres complexes, il contient l'ensemble $\mathbb R$ et il vérifie ce qui suit :

- L'ensemble \mathbb{C} contient un élément irréel i qui vérifie $i^2 = -1$.
- Tout élément z de \mathbb{C} s'écrit de façon unique sous la forme z = a + ib où a et b sont deux nombres réels.

O Vocabulaires:

- L'écriture z = a + ib s'appelle *l'écriture algébrique* du nombre complexe z.
- Le nombre a est appelé *partie réelle* du nombre z qu'on note par $\Re(z)$.
- Le nombre b est appelé *partie imaginaire* du nombre z qu'on note $\mathcal{I}m(z)$.
- Tout nombre qui s'écrit sous la forme ib est dit nombre **imaginaire pur**, et l'ensemble des nombres imaginaires purs est noté i \mathbb{R} .

O Exemples:

- o $\mathbf{z_1} = 5 + 7i$, alors $\Re(\mathbf{z_1}) = 2$ et $\Im(\mathbf{z_1}) = 7$.
- o $\mathbf{z_2} = 1 i$, alors $\Re(\mathbf{z_2}) = 1$ et $\Im(\mathbf{z_2}) = -1$.
- o $\mathbf{z_3} = 5$, alors $\Re(\mathbf{z_3}) = 5$ et $\Im(\mathbf{z_3}) = 0$.
- o $\mathbf{z_4} = 3i$, alors $\Re(\mathbf{z_4}) = 0$ et $\Im(\mathbf{z_4}) = 3$ (on a $\mathbf{z_4}$ est un nombre imaginaire pur)
- o $\mathbf{z}_5 = 1 \sqrt{5} + \sqrt{2} \frac{\pi}{2} + 4i$, alors $\Re(\mathbf{z}_5) = 1 \sqrt{5} + \sqrt{2} \frac{\pi}{2}$ et $\Im(\mathbf{z}_5) = 4$.

Application 0:

Ecrire sous la forme algébrique les nombres suivants :

$$z_1 = 4i - (2+5i)$$
 et $z_2 = 3(1+i) + i(i+1)$.

Propriété : Egalité de deux nombres complexes

Soient z = a + ib et z' = a' + ib' deux nombres complexes on a :

- $z = z' \Leftrightarrow a = a'et \ b = b'$.
- $z = 0 \Leftrightarrow a = 0 \text{ et } b = 0.$

Application 2:

Déterminer la valeur des nombres réels a et b dans les cas suivants :

- (1+2i)a + b = 5 4i
- (2+i)a + (3-2i)b = 1+4i

2. Opérations dans C

Les opérations de la somme et le produit de $\mathbb R$ se prolongent en $\mathbb C$ et elles ont les mêmes propriétés.

Propriété :

Soient z = a + ib et z' = a' + ib'. On a:

- z + z' = (a + ib) + (a' + ib') = a + b + i(b + b').
- $z \times z' = (a + ib) \times (a' + ib') = aa' bb' + i(ab' + a'b)$.
- $\frac{1}{z} = \frac{1}{a+ib} = \frac{a-ib}{(a+ib)\times(a-ib)} = \frac{a-ib}{a^2+b^2} \ (z \neq 0)$

Application 3:

Ecrire sous la forme algébrique les nombres suivants :

- $z_1 = (2+3i)(-1+i)$ $z_2 = (1+\sqrt{3}i)(1-\sqrt{3}i)$ $z_3 = \frac{1}{2+3i} + (2+i)^2$
- $z_4 = -\frac{1}{4i}$ $z_5 = \frac{1+i}{1-i}$ $z_6 = \left(\frac{1+i}{1-i}\right)^{14}$

O Remarque:

Pour tout nombre complexe z, on a : $z \in IR \Leftrightarrow Im(z) = 0$ et $z \in iIR \Leftrightarrow Re(z) = 0$.

Exercice O:

1. Soit z = (x + i)[(x + 5) - i(x - 7)] tel que x est réel.

- **b.** $z \in i\mathbb{R}$.
- **c.** $\Im m(z) = 2\Re e(z)$.
- **2.** Résoudre dans \mathbb{C} les équations suivantes $(E_1): iZ 1 = Z + 3i$ et $(E_2): \frac{Z+i}{Z-i} = i$.

Exercice 2:

Soit M un point du plan complexe d'affixe z = x + iy, M' le point d'affixe $z' = \frac{z+1}{z-1}$

1) Ecrire z' sous la forme algébrique.

2) Déterminer l'ensemble des points M du plan tels que z' est un nombre réel.

3) Déterminer l'ensemble des points M du plan tels que z' est un nombre imaginaire pur.

II. Représentation géométrique d'un nombre complexe

1. Définitions

Le plan (\mathcal{P}) est rapporté au repère orthonormé direct $(0; \overrightarrow{e_1}; \overrightarrow{e_2})$.

Définition

• Tout nombre complexe z = x + iy tels que x et y deux réels associé à un unique point M, appelé *l'image* de z, des coordonnées (x, y) et on écrit M(z).

• Tout point M(x; y), le nombre complexe z = x + iy s'appelle *l'affixe du point* M et on écrit z = aff(M).

• Le vecteur $\vec{u}(x; y)$ s'appelle *l'image vectoriel* du nombre z = x + iy et le nombre z s'appelle *l'affixe* du vecteur \vec{u} et on écrit $z = aff(\vec{u})$.

Application @:

Construire dans le plan complexe rapporté au repère orthonormé $(0; \overrightarrow{e_1}; \overrightarrow{e_2})$ les points A(-1+i); B(2-2i); $C(\frac{1}{2}i)$ et D(2+2i).

Propriété :

Soient $A(z_A)$ et $B(z_B)$ deux points du plan complexe. On a :

 $\bullet \ z_{\overrightarrow{AB}} = z_B - z_A.$

• L'affixe du point *I* le milieu du segment [AB] est $\frac{z_A+z_B}{2}$.

O Démonstration :

On sait que $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$, alors

$$aff(\overrightarrow{AB}) = (x_B - x_A) + i(y_B - y_A) = x_B + iy_B - (x_A + iy_A) = z_B - z_A.$$

Application 5:

On considère dans le plan complexe les points : A(2i); B(1-i) et C(3)

1) Déterminer l'affixe des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et $3\overrightarrow{AB} - \overrightarrow{BC}$.

2) Déterminer l'affixe du point D sachant que ABCD est un parallélogramme.

3) Déterminer l'affixe du point *I* le centre du parallélogramme *ABCD*.

2. Colinéarité de deux points

Propriété :

Soient $A(z_A), B(z_B)$ et $C(z_C)$ trois points du plan complexe. Les points A, B et C sont alignés si et seulement si $\frac{z_B - z_A}{z_C - z_A} \in \mathbb{R}$.

O Démonstration :

 $\times M(\bar{z})$

Les points A,B et C sont alignés si et seulement il existe un réel k tel que $\overrightarrow{AB} = k\overrightarrow{AC}$.

Et on a : $\overrightarrow{AB} = k\overrightarrow{AC} \iff z_B - z_A = k(z_C - z_A) \iff \frac{z_B - z_A}{z_C - z_A} = k \in \mathbb{R}$.

Application ©:

On considère dans le plan complexe les points A(4;-6),B(-2;3) et $C(-1;\frac{3}{2})$. Montrer que les points A,B et C sont alignés.

Points cocycliques

Propriété:

Soient $A(z_A), B(z_B)$, $c(z_C)$ et $D(z_D)$ quatre points non alignés et deux à deux distincts du plan complexe.

Les points A, B, C et D sont **cocycliques** (appartiennent au même cercle) si et seulement $si: \frac{z_{A-z_B}}{z_{C-z_B}} \times \frac{z_{C-z_D}}{z_{A-z_D}} \in \mathbb{R}.$

Application 0:

On considère dans le plan complexe les points A(1+i), B(3+i), C(2+2i) et D(2). Montrer que les points A,B,C et D sont cocycliques.

III. Conjugué d'un nombre complexe

Définition:

Soit z = a + ib, où a et b sont deux réels.

Le nombre a - ib est appelé le **conjugué** du nombre complexe z, et on le note par \bar{z} .

O Exemples:

$$\circ z_1 = 5 + 6i$$
, alors $\overline{z_1} = 5 - 6i$.

$$\circ z_2 = -1 - i$$
, alors $\overline{z_2} = -1 + i$.

$$\circ z_3 = i$$
, alors $\overline{z_3} = -i$.

O Interprétation géométrique :

Soit *z* un nombre complexe.

Dans le plan complexe, le point $M(\bar{z})$ est symétrique au point

Soient z et z' deux nombres complexes et n un nombre relatif.

$$\bullet \quad \overline{z+z'} = \bar{z} + \bar{z'} \; ;$$

•
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$
;

•
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\bar{z}}{\bar{z}'} (z' \neq 0);$$

•
$$\overline{(z^n)} = (\overline{z})^n (z' \neq 0).$$

Exemples:

o
$$\overline{(2-i)(1+i)^2} = (1+i)(-2i) = 2-2i$$
.

Soit z un nombre complexe différent de -2i. Simplifier l'expression $\frac{\overline{iz}}{z+2i} + i\left(\frac{3+z}{\overline{z}-2i}\right)$.

Exercice 3:

On pose z = x + iy où x et y sont deux réels.

- 1) a) Déterminer la forme algébrique du nombre complexe $3iz \overline{z}$.
 - b) Résoudre dans \mathbb{C} l'équation $3iz \overline{z} = 8i$.
 - c) Déterminer les nombres complexes z pour que $3iz \overline{z}$ soit un nombre imaginaire pur.
- 2) Résoudre l'équation $\frac{4z-2}{z+1} = -3 + i$.

Propriété :

Pour tout nombre complexe z, On a :

- $z + \overline{z} = 2Re(z)$ et $z \overline{z} = 2i Im(z)$.
- $z \in IR \Leftrightarrow \overline{z} = z$.
- $z \in iIR \Leftrightarrow \overline{z} = -z$.

Application 9:

On pose : $u = \frac{2+3i}{3+2i}$ et $v = \frac{2-3i}{3-2i}$. Sans calculer u + v et u - v, Montrer que u + v est réel et que u - v est imaginaire pur

IV. Module d'un nombre complexe

Définition

Soit z = x + iy, où x et y deux nombres réels, un nombre complexe.

Le module du nombre complexe z, est le nombre réel positif noté |z| et qui est défini par :

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$$

O Exemples:

O
$$|3-4i| = \sqrt{3^2+4^2} = \sqrt{25} = 5$$
 O $|1-i| = \sqrt{1^2+1^2} = \sqrt{2}$
O $|i| = \sqrt{1^2} = 1$ O $|-i| = \sqrt{(-1)^2} = 1$ O $\left|\frac{1}{2} + \frac{\sqrt{3}}{2}i\right| = 1$

$$|1 - i| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$|i| = \sqrt{1^2} = 1$$

$$|-i| = \sqrt{(-1)^2} = 1$$

$$\left| \frac{1}{2} + \frac{\sqrt{3}}{2}i \right| =$$

🎤 Propriété :

Soient z et z' nombres complexes et n un nombre relatif.

- $\bullet |z| = |-z| = |\bar{z}|.$
- $\bullet |z \times z'| = |z| \times |z'|.$
- $\bullet |z + z'| \le |z| + |z'|.$
- $\bullet \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} \ (z' \neq 0).$
- $\bullet \mid z^n \mid = \mid z \mid^n, (z \neq 0)$

Application @@:

On pose : $z_1 = 1 + i$ et $z_2 = 1 - i\sqrt{3}$.

- 1) Calculer $|z_1|$ et $|z_2|$.
- **2)** En déduire le module des nombres suivants : $z_1 \times z_2, z_1^6$ et $\left(\frac{z_1}{z_2}\right)^2$.

Interprétation géométrique :

Soit M(z) un point du plan complexe tels que z = x + iy.

On sait que $OM = \|\overrightarrow{OM}\| = \sqrt{x^2 + y^2}$.

Et on a $|z| = \sqrt{x^2 + y^2}$.

Alors OM = |z|.

Propriété :

Soient $A(z_A)$ et $B(z_B)$ deux points du plan complexe. On a : $AB = |z_B - z_A|$.

Application @@:

Dans le plan complexe, on considère les points A(-1+6i), B(1+9i) et C(2+4i). Montrer que le triangle ABC est isocèle.

Exercice @:

Déterminer dans le plan complexe l'ensemble (E) des points M(z) dans les cas suivants :

- **a.** |z-2+i|=|z-4i|;
- **6.** |z+i|=|z-1+i|;
- **c.** |z-2+i|=4;
- **d.** |iz-2|=|z+1-i|;
- **e.** $|iz| = |\overline{z} + 1 i|$.

V. La forme géométrique d'un nombre complexe

1. Argument d'un nombre complexe :

On muni le plan (\mathcal{P}) par un repère orthonormé direct $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$. Soit M(z) un point du plan complexe (\mathcal{P}) différent de O.

On appelle *argument* du nombre complexe z, la mesure de

l'angle orienté $(\overrightarrow{e_1}, \overrightarrow{OM})$ qu'on note par le symbole arg(z). Et on a $arg(z) \equiv \theta[2\pi]$ (c-à-d $arg(z) = \theta + 2k\pi/k \in \mathbb{Z}$).

Propriété :

Soit z un nombre complexe.

- $z \in \mathbb{R}_+^* \iff arg(z) \equiv 0[2\pi].$
- $z \in \mathbb{R}^*_- \iff arg(z) \equiv \pi[2\pi].$
- $z \in i\mathbb{R}_+^* \Leftrightarrow arg(z) \equiv \frac{\pi}{2}[2\pi].$
- $z \in i\mathbb{R}_+^* \iff arg(z) \equiv -\frac{\pi}{2}[2\pi].$

O Exemples:

$$\circ arg(2i) \equiv \frac{\pi}{2}[2\pi]$$

$$\circ arg(\sqrt{5} - \sqrt{7}) \equiv \pi[2\pi]$$

$$\circ arg(-2i) \equiv -\frac{\pi}{2}[2\pi]$$

$$\circ arg \ (1+\sqrt{3}) \equiv 0[2\pi]$$

Propriété :

Soit z un nombre complexe non nul.

• $arg(\overline{z}) \equiv -arg(z)[2\pi].$

 $arg(-z) \equiv \pi + arg(z)[2\pi].$

2. La forme trigonométrique d'un nombre complexe non nul:

Soit z = x + iy un nombre complexe non nul et θ son argument.

On sait que $\cos \theta = \frac{x}{|z|}$ et $\sin \theta = \frac{x}{|z|}$ alors $x = |z| \cos \theta$ et $y = |z| \sin \theta$.

C.à.d. $z = |z|(\cos \theta + i.\sin \theta)$

Cette écriture s'appelle la forme trigonométrique du nombre complexe z et on le note par $[|z|; \theta].$

O Exemples:

Déterminons la forme trigonométrique des deux nombres complexes z = 2 + 2i et z' =2 - 2i.

Application @@:

Ecrire sous la forme trigonométrique les nombres complexes suivants :

- $z_1 = 1 + i\sqrt{3}$
- $\begin{array}{ccc}
 & z_2 = 1 i\sqrt{3} \\
 & z_5 = 4
 \end{array}$
- $z_3 = -1 i\sqrt{3}$ $z_6 = -7$

- $z_4 = -2\sqrt{3} + 2i$

Propriété:

Soient z et z'deux éléments de \mathbb{C}^* tels que $z = [r; \theta]$ et $z' = [r'; \theta']$ et $n \in \mathbb{N}$:

- $[r, \theta] = [r', \theta'] \Leftrightarrow \begin{cases} r = r' \\ \theta = \theta + 2k\pi/k \in \mathbb{Z} \end{cases}$
- $z \times z' = [r, \theta] \times [r', \theta'] = [rr', \theta + \theta'].$
- $\frac{1}{z} = \frac{1}{[r,\theta]} = \left[\frac{1}{r}, -\theta\right].$ $\frac{z}{z'} = \frac{[r,\theta]}{[r',\theta']} = \left[\frac{r}{r'}, \theta \theta'\right].$
- $z^n = [r, \theta]^n = [r^n, n\theta].$

Application @3:

On considère z_1 , z_2 et z_3 trois nombres complexes non nuls tels que $arg(z_1) \equiv \frac{\pi}{2}[2\pi]$ et $arg(z_2) \equiv \frac{\pi}{4} [2\pi].$

Déterminer l'argument du nombre z₃ dans les cas suivants :

- **a.** $\frac{z_3}{z_2} = z_1^2$.
- **b.** $z_3 \times \overline{z_2} = 4z_1$.

Exercice ©:

On pose $z_1 = 1 + i\sqrt{3}$ et $z_2 = 1 + i$.

1) Ecrire z_1 et z_2 sous la forme trigonométrique puis en déduire la forme trigonométrique

du nombre $Z = \frac{z_1^2}{z_2}$

- 2) Ecrire Z sous la forme algébrique.
- **3)** En déduire la valeur de $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$.
- **4)** Montrer que $z^{12} \in \mathbb{R}$.

3. Angle entre deux vecteurs - Argument d'un nombre complexe

Propriété :

Soient $A(z_A), B(z_B), C(z_C)$ et $D(z_D)$ des points du plan complexe. On a :

- $(\overrightarrow{e_1}, \overrightarrow{AB}) \equiv \arg(z_B z_A) [2\pi].$
- $\frac{\overrightarrow{(AB, AC)}}{\overrightarrow{(AB, DC)}} \equiv \arg\left(\frac{z_C z_A}{z_B z_A}\right) [2\pi].$ $\overline{(AB, DC)} \equiv \arg\left(\frac{z_C z_D}{z_B z_A}\right) [2\pi].$

Application @@:

On considère dans le plan complexe les points A(2; 2), B(2; -1), C(4; 2) et D(6; 2).

- 1) Calculer $(\overrightarrow{AD}, \overrightarrow{AC})$, que peut-on déduire?
- **2)** Calculer (AC, AB). Que peut-on dire de la position des deux droites (AB) et (AC)?

Exercice ©:

Dans le plan complexe on considère les points A,B et C d'affixes respectivement z_A = $\sqrt{3} - i z_B = -z_A$ et $z_C = \sqrt{3} + 3i$ et soit D le point symétrique de C par rapport à l'axe réel.

- 1) Calculer $\frac{z_A z_D}{z_A z_C}$ puis déduire que les points A, D et C sont alignés.
- 2) Vérifier que $\frac{z_C z_A}{z_B z_A} = \frac{1 i\sqrt{3}}{2}$.
- 3) Montrer que le triangle ABC est équilatéral.

Exercice O:

On considère les points A, B, C et D d'affixes respectives $a = \sqrt{3}$; $b = 2 + \sqrt{3}$ $i\sqrt{3}$; $c = 2 - \sqrt{3} + 2i$; $d = (2 - \sqrt{3})i$.

Montrer que ABCD est un carré.

VI. Représentation complexe des transformations usuelles

1. La translation

Soit $t_{\vec{u}}$ une translation de vecteur $\vec{u}(z_{\vec{u}})$ et soit $M'(z_{M'})$ l'image du point $M(z_M)$ par la translation $t_{\vec{u}}$. On a : $t_{\vec{u}}(M) = M' \Leftrightarrow \overline{MM'} = \vec{u}$

$$\Leftrightarrow z_{\overrightarrow{MM'}} = z_{\overrightarrow{u}}$$

$$\Leftrightarrow z_{M'} - z_M = z_{\overrightarrow{u}}$$

$$\Leftrightarrow z_{M'} = z_M + z_{\overrightarrow{u}}$$

Cette écriture s'appelle la représentation complexe de la translation $t_{\vec{n}}$.

Application @5:

On considère la translation t de vecteur $\vec{u}(-1 + 2i)$.

- 1) Déterminer la représentation complexe de la translation t.
- **2)** Déterminer l'affixe du point A' l'image de A(2i) par la translation t
- **3)** Déterminer l'affixe de B tels que t(B) = B' et B'(2-3i).

2. L'homothétie

Soient $\Omega(z_{\Omega})$ un point du plan complexe et k un élément de \mathbb{R}^* . Soit h l'homothétie de centre Ω et de rapport k. Soit $M'(z_{M'})$ l'image de $M(z_M)$ par l'homothétie h. On a :

$$h(M) = M' \iff \overline{\Omega M'} = k \overline{\Omega M}$$

$$\iff z_{\overline{\Omega M'}} = k z_{\overline{\Omega M}}$$

$$\iff z_{M'} - z_{\Omega} = k(z_M - z_{\Omega})$$

$$\iff z_{M'} = z_{\Omega} + k(z_M - z_{\Omega})$$

$$\iff z_{M'} = k z_M + z_{\Omega}(1 - k)$$

Cette écriture s'appelle *la représentation complexe de l'homothétie h*.

Application @6:

On considère l'homothétie de centre $\Omega(2-i)$ et de rapport 4.

- 1) Déterminer la représentation complexe de l'homothétie h.
- **2)** Déterminer l'affixe du point A' l'image de A(1+i) par l'homothétie h.
- **3)** Déterminer l'affixe de B où h(B) = B' et B'(2i).

Exercice :

Connaitre la nature des transformations usuelles suivantes dont la représentation complexe est comme suit:

- z' = z 3i.
- z' + 2i = -5(z + 2i).
- z' = 1 z.
- z' = 4z 3i.

VII. Notation exponentielle – Applications trigonométriques

1. Notation exponentielle d'un nombre complexe

Activité:

1) On considère le nombre complexe $z = 2\sqrt{2} + 2i\sqrt{6}$. Montrer que $z = \left[4\sqrt{2}; \frac{\pi}{3}\right]$.

On écrit z sous la forme $z = 4\sqrt{2}e^{i\frac{\pi}{3}}$. Cette écriture s'appelle **une forme exponentielle** du nombre complexe z.

2) Donner une forme exponentielle des nombres complexes suivants : $z_1 = 1 - i$, $z_2 = 1 - i$ $2i, z_3 = 3 + 3i\sqrt{3} \text{ et } z_4 = -3.$

Définition

Tout nombre complexe z de module r et d'argument θ s'écrit sous la forme $z = re^{i\theta}$. Cette écriture s'appelle *la forme exponentielle* du nombre z.

O Exemples:

$$\circ e^{i\pi} = -1.$$

$$0.2e^{i\frac{3\pi}{4}} = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = 2\left(\cos\left(\pi - \frac{\pi}{4}\right) + i\sin\left(\pi - \frac{\pi}{4}\right)\right) = -\sqrt{2} + i\sqrt{2}.$$

∠ Application ②②:

- 1) Ecrire sous la forme algébrique les nombres complexes : $z_1 = 4e^{-i\frac{\pi}{3}}$ et $z_2 = e^{i\frac{5\pi}{4}}$.
- **2)** Ecrire sous la forme exponentielle le nombre complexe $z = -3\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$.

Propriété :

Soient r,r', θ et θ' des nombres réels. On a :

- $\bullet |e^{i\theta}| = 1$.
- $arg(e^{i\theta}) \equiv \theta[2\pi]$.
- $\bullet \, \overline{e^{i\theta}} = e^{-i\theta} \, .$
- $re^{i\theta} \times r'e^{i\theta'} = rr'e^{i(\theta+\theta')}$.
- $\bullet \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta} = \frac{1}{r}e^{i\theta}.$ $\bullet \frac{re^{i\theta}}{re^{i\theta'}} = \frac{r}{r'}e^{i(\theta \theta')}.$
- $(\forall n \in \mathbb{Z}) (re^{i\theta})^n = r^n e^{in\theta}$.

Application @8:

On pose : $z_1 = 1 - i$, $z_2 = 2i$ et $z_3 = 3 + 3i\sqrt{3}$. Ecrire sous la forme exponentielle les nombres suivants : $a = \frac{z_3}{z_1}$, $b = z_1^8$ et $c = \frac{z_1}{z_2 z_3}$

2. Formule de Moivre – Formules d'Euler – Applications

a. Formule de Moivre On a: $(\forall n \in \mathbb{Z})(\forall \theta \in \mathbb{R}) : (e^{i\theta})^n = e^{in\theta}$.

Ainsi: $(\forall n \in \mathbb{Z})(\forall \theta \in \mathbb{R}) : (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

Cette égalité s'appelle la formule de Moivre.

Application @ @:

- 1) Ecrire par deux méthodes différentes $(cos(x) + i sin(x))^2$ sous la forme algébrique.
- **2)** En déduire la valeur de cos(2x) et sin(2x)en fonction de cos(x) et sin(x).

b. Formules d'Euler

on sait que :
$$(\forall \theta \in \mathbb{R})$$
 $\begin{cases} e^{i\theta} = \cos(\theta) + i\sin(\theta) & (1) \\ e^{-i\theta} = \cos(\theta) - i\sin(\theta) & (2) \end{cases}$

La somme des deux égalités donne : $cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$.

En soustrayant l'équation (1) de l'équation (2) on obtient : $sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$. ces deux formules résultantes s'appelle les formules d'Euler.

Propriété (formules d'Euler):

$$(\forall \theta \in \mathbb{R}) \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \operatorname{et} \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Application 20:

- 1) En utilisant les formules d'Euler, montrer que $(\forall x \in \mathbb{R}) : (cos(x))^2 = \frac{1}{2}cos(2x) + \frac{1}{2}$. On dit dans ce cas-là qu'on a linéarisé le polynôme trigonométrique $(cos(x))^2$.
- **2)** Linéariser les expressions suivantes $sin^2(x)$ et $cos^3(x)$.

VIII. Equations de second degré dans C

Propriété :

On considère dans \mathbb{C} l'équation $az^2 + bz + c = 0$ où a,b et c sont des réels et $a \neq 0$.

- Le nombre $\Delta = b^2 4ac$ s'appelle le discriminant de l'équation.
- Si $\Delta > 0$, alors l'équation admet deux solutions réelles $z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- Si $\Delta = 0$, alors l'équation admet une solution réelle double $z_0 = -\frac{1}{2}$
- Si Δ < 0, alors l'équation admet deux solutions complexes conjuguées distinctes : z_1 = $\frac{-b-i\sqrt{-\Delta}}{2a} \text{ et } z_2 = \overline{z_1} = \frac{-b+i\sqrt{-\Delta}}{2a}.$

Application @@:

1) Résoudre dans C les équations :

$$-(E_1): z^2 = -4$$

$$\bullet (E_2): z^2 + 2\sqrt{3}z + 4 = 0$$

•
$$(E_2)$$
: $z^2 + 2\sqrt{3}z + 4 = 0$ • (E_3) : $2z^2 - 3z + 2 = 0$

- **2)** On pose $p(z) = z^3 6z^2 + 12z 16$.
- **a.** Déterminer les réels a et b tels que : $(\forall z \in \mathbb{C}) p(z) = (z-4)(z^2+az+b)$.
- **b.** Résoudre dans $\mathbb{C}: p(z) = 0$.

IX. La représentation complexe de la rotation

Soit R une rotation de centre $\Omega(z_{\Omega})$ et de mesure d'angle θ , et soit $M'(z_{M'})$ l'image de

$$M(z_{M})$$
 par la rotation R . On a : $R(M) = M' \Leftrightarrow \begin{cases} \frac{\Omega M' = \Omega M}{(\overline{\Omega M}, \overline{\Omega M'})} \equiv \theta[2\pi] \\ \Leftrightarrow \begin{cases} |z_{M'} - z_{\Omega}| = |z_{M} - z_{\Omega}| \\ \arg\left(\frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}}\right) \equiv \theta[2\pi] \end{cases} \\ \Leftrightarrow \begin{cases} \frac{|z_{M'} - z_{\Omega}|}{|z_{M} - z_{\Omega}|} = 1 \\ \arg\left(\frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}}\right) \equiv \theta[2\pi] \end{cases} \\ \Leftrightarrow \begin{cases} \left|\frac{|z_{M'} - z_{\Omega}|}{|z_{M} - z_{\Omega}|} = 1 \right| \\ \arg\left(\frac{|z_{M'} - z_{\Omega}|}{|z_{M} - z_{\Omega}|}\right) \equiv \theta[2\pi] \end{cases} \\ \Leftrightarrow \frac{|z_{M'} - z_{\Omega}|}{|z_{M} - z_{\Omega}|} = e^{i\theta} \end{cases}$

Propriété :

Soit R une rotation de centre $\Omega(z_{\Omega})$ et de mesure d'angle θ , et soit $M'(z_{M'})$ l'image de $M(z_{M})$ par la rotation R. On a : $z_{M'} = (z_{M} - z_{\Omega})e^{i\theta} + z_{\Omega}$.

Application 20:

- 1) On considère la rotation R de centre $\Omega(2+3i)$ et de mesure d'angle $\frac{\pi}{2}$.
- α . Déterminer la représentation complexe de la rotation R.
- **b.** Déterminer l'affixe du point A' l'image A(2-i) par la rotation R.
- **c.** Déterminer l'affixe du point B avec R(B) = B' et B'(-2 4i).
- 2) Déterminer l'image du point M(4i) par la rotation de centre O et de mesure d'angle $\frac{5\pi}{6}$.

Exercice 9:

On considère la transformation F représentée par : z' = -iz + i - 1.

- Montrer qu'il existe un point unique M du plan complexe (\mathcal{P}) invariant par la transformation F. Notons ce point par Ω et son affixe par ω .
- **2)** Vérifier, pour tout M(z) et M'(z') du plan (\mathcal{P}) , que : $F(M) = M' \Leftrightarrow z' \omega = -i(z \omega)$.
- **3)** En déduire la nature de la transformation F.

Exercice de synthèse : Session Normale 2020

1) On considère dans l'ensemble des nombres complexes C l'équation

$$(E): z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$$

- **a.** Vérifier que $\Delta = -4(\sqrt{6} \sqrt{2})^2$.
- **b.** En déduire les solutions de l'équation (E).
- **2)** 2) On considère les nombres complexes $a = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} \sqrt{2})$; $b = 1 + i\sqrt{3}$ et $c = \sqrt{2} + i\sqrt{2}$.
 - **a.** Vérifier que $b\bar{c} = a$ puis déduire que: ac = 4b.
 - **b.** Écrire les deux nombres complexes a et b sous forme trigonométrique.
 - En déduire que $a = 4\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$.
- **3)** Dans le plan complexe est rapport à un repère orthonormé direct $(0; \vec{u}; \vec{v})$. On considére les points B; C et D d'affixes respectives b; c et d tel que $d = a^4$.

Soit z l'affixe du point M du plan et z' l'affixe du point M' image de M par la rotation R de centre O et d'angle $\frac{\pi}{12}$.

- **a.** Vérifier que $z' = \frac{1}{4}az$.
- **b.** Déterminer l'image du point C par la rotation R.
- **c.** Déterminer la nature du triangle *OBC*.
- **d.** Montrer que $a^4 = 128b$ et en déduire que les points O; B et D sont alignés.