

FCC REPORT

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: EKO Star 5.0 G50

Trade mark: EKO

FCC ID: 2AC7IEKONG50

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Dec., 2018

Date of Test: 12 Dec., to 21 Dec., 2018

Date of report issued: 22 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	22 Dec., 2018	Original

Tested by: Date: 22 Dec., 2018

Test Engineer

Reviewed by: Date: 22 Dec., 2018

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
			-
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.		
	6.6.	2 Radiated Emission Method	26
	6.7	Spurious Emission	
	6.7.		
	6.7.	2 Radiated Emission Method	46
7	TES	ST SETUP PHOTO	54
Ω	FIIT	T CONSTRUCTIONAL DETAILS	55

Test Summary

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (c)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Pass: The FUT complies with the essential requirements in the standard.				

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp	
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122	
Manufacturer/ Factory:	INTERGLOBE CONNECTION LTD	
Address:	RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK	

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	EKO Star 5.0 G50
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.9dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: Omega LTE Q60 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 55

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber.

Measurements in both horizontal and vertical polarities were performed. During the test, each emission was

maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-21-2019
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-21-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	·

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -2.9 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kl	Hz		
Limit:	Frequency range	Limit (d	dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the loga			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment Test table/Insula Remark E.U.T: Equipment Under LISN: Line Impedence Ste	E.U.T EMI Receiver	ilter — AC power	
	Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	Mobile Phone	Product model:	EKO Star 5.0 G50
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
11	MHz	₫₿u₹		<u>ab</u>	— <u>dBu</u> ⊽	—dBu∜	<u>ab</u>	
1	0.162	17.43	0.71	10.77	28.91	55. 34	-26.43	Average
2	0.206	28.53	0.73	10.76	40.02	63, 36	-23.34	QP
3	0.497	29.64	0.76	10.76	41.16	56.05	-14.89	QP
1 2 3 4 5 6 7 8	0.510	14.85	0.76	10.76	26.37	46.00	-19.63	Average
5	1.054	10.27	0.78	10.88	21.93	46,00	-24.07	Average
6	1.065	25.73	0.78	10.88	37.39	56.00	-18.61	QP
7	2.540	24.87	0.78	10.94	36.59	56.00	-19.41	QP
8	2.540	11.47	0.78	10.94	23.19	46.00	-22.81	Average
9	4.721	29.47	0.76	10.86	41.09	56.00	-14.91	QP
10	4.874	15.19	0.76	10.85	26.80	46.00	-19.20	Average
11	18.622	28.36	0.70	10.92	39.98	60.00	-20.02	QP
12	18.721	13.26	0.70	10.92	24.88	50.00	-25.12	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	EKO Star 5.0 G50		
Test by:	Carey	Test mode:	Wi-Fi Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%		

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	₫₿u₹		₫B	₫₿u₹	dBu∜	<u>d</u> B	5-20-00-10: Nanta (COM)
0.166 0.461	32.62 20.66	0.70 0.62	10.77 10.74	44.09 32.02			
0.502	34.21	0.61	10.76	45.58			10 170 10 and 10
1.077	28. 78	0.67	10.76	40.33			
1.088	19.37	0.67	10.88	30.92	46.00	-15.08	Average
2.178 2.190	15.96 25.99	0.67	10.95 10.95	27.58 37.61			
4.926	31.95		10.85	43.50			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17.568 18.622	25. 97 11. 21	0. 69 0. 69	10.92	37.58	60.00	-22.42	QP
	MHz 0.166 0.461 0.502 0.502 1.077 1.088 2.178 2.190 4.926 4.926 17.568	MHz dBuV 0.166 32.62 0.461 20.66 0.502 34.21 0.502 28.35 1.077 28.78 1.088 19.37 2.178 15.96 2.190 25.99 4.926 31.95 4.926 17.92 17.568 25.97	Freq Level Factor MHz dBu7 dB 0.166 32.62 0.70 0.461 20.66 0.62 0.502 34.21 0.61 0.502 28.35 0.61 1.077 28.78 0.67 1.088 19.37 0.67 2.178 15.96 0.67 2.190 25.99 0.67 4.926 31.95 0.70 4.926 17.92 0.70 17.568 25.97 0.69	MHz dBuV dB dB 0.166 32.62 0.70 10.77 0.461 20.66 0.62 10.74 0.502 34.21 0.61 10.76 0.502 28.35 0.61 10.76 1.077 28.78 0.67 10.88 1.088 19.37 0.67 10.88 2.178 15.96 0.67 10.95 2.190 25.99 0.67 10.95 4.926 31.95 0.70 10.85 4.926 17.92 0.70 10.85 17.568 25.97 0.69 10.92	MHz dBuV dB dB dBuV 0.166 32.62 0.70 10.77 44.09 0.461 20.66 0.62 10.74 32.02 0.502 34.21 0.61 10.76 45.58 0.502 28.35 0.61 10.76 39.72 1.077 28.78 0.67 10.88 40.33 1.088 19.37 0.67 10.88 30.92 2.178 15.96 0.67 10.95 27.58 2.190 25.99 0.67 10.95 37.61 4.926 31.95 0.70 10.85 43.50 4.926 17.92 0.70 10.85 29.47 17.568 25.97 0.69 10.92 37.58	MHz dBuV dB dB dBuV dBuV 0.166 32.62 0.70 10.77 44.09 65.16 0.461 20.66 0.62 10.74 32.02 46.67 0.502 34.21 0.61 10.76 45.58 56.00 0.502 28.35 0.61 10.76 39.72 46.00 1.077 28.78 0.67 10.88 40.33 56.00 1.088 19.37 0.67 10.88 30.92 46.00 2.178 15.96 0.67 10.95 27.58 46.00 2.190 25.99 0.67 10.95 37.61 56.00 4.926 31.95 0.70 10.85 43.50 56.00 4.926 17.92 0.70 10.85 29.47 46.00 17.568 25.97 0.69 10.92 37.58 60.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH Maximum Conducted Output Power (dBm)					Limit(dDm)	Dogult
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	13.89	12.55	12.61	12.20		
Middle	14.10	13.15	12.72	11.92	30.00	Pass
Highest	13.24	12.49	12.49	12.46		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		6dB Emission B	Limit/IrLI¬\	Dogult		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	9.76	15.28	15.84	35.52		
Middle	10.24	15.28	15.44	35.52	>500	Pass
Highest	9.76	15.28	16.08	35.52		
Test CH	99% Occupy Bandwidth (MHz)				Limit/kU=\	Result
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.48	16.48	17.60	36.00		
Middle	12.40	16.48	17.60	35.84	N/A	N/A
Highest	12.40	16.40	17.60	35.84		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	8dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Toot CU	Power Spectral Density (dBm)					Dogult
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	4.50	1.03	0.55	-3.42		
Middle	4.78	0.48	0.20	-3.02	8.00	Pass
Highest	4.06	1.02	0.98	-2.91		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Conducted Linission				
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Me	etnoa							
	Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.209 and 15.205						
	Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013 and KDB 558074						
	Test Frequency Range:	2.3GHz to 2.5GHz							
	Test Distance:	3m							
	Receiver setup:	Frequency	Detecto		RBW		'BW	Remark	
		Above 1GHz	Peak RMS		1MHz 1MHz		MHz MHz	Peak Value Average Value	
	Limit:	Frequenc		Lim	nit (dBuV/m @		VII 1Z	Remark	
	Little.	Above 1GI			54.00		A۱	erage Value	
					74.00			Peak Value	
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
	Test setup:	150cm	AE EUT	1	3m Ground Reference Plane	n Antenna	Antenna Tov	ver V	
	Test Instruments:	Refer to section	5.8 for de	etails	5				
	Test mode:	Refer to section	5.3 for de	etails	3				
	Test results:	Passed							

802.11b mode:

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor						
MHz	—dBu7		āB	<u>ab</u>	dBu7/m	dBuV/m	<u>qb</u>	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50	
Test By:	Carey	Test mode:	802.11b Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq		Antenna Factor						
2	MHz	dBu7		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50
Test By:	Carey	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

0.00 51.72 74.00 -22.28 Peak 0.00 43.75 54.00 -10.25 Average

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

17.64 27.57

9.67 27.57

2483,500

2483.500

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

Product Name: Mobile Phone Product		Product Model:	EKO Star 5.0 G50
Test By:	Carey	Test mode: 802.11b Tx n	
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	dBu₹		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2483.500 2483.500								

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	Mobile Phone	Phone Product Model:		
Test By:	Carey	Test mode:	802.11g Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu7	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	duct Name: Mobile Phone Product Model:		EKO Star 5.0 G50
Test By:	Carey	Test mode: 802.11	
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.37

9.15 27.37

4.69

4.69

0.00 50.91 74.00 -23.09 Peak

0.00 42.89 54.00 -11.11 Average

2390.000

2390.000

17.17

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	ct Name: Mobile Phone Product Model:		EKO Star 5.0 G50		
Test By:	Carey	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq	Read Level	Antenna Factor	Cable Loss	Freamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu7	<u>dB</u> /m	āB	<u>dB</u>	dBuV/m	dBuV/m	<u>qp</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Product Name: Mobile Phone Product Mo		EKO Star 5.0 G50
Test By:	Carey	Test mode: 802.	
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

()							
Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50				
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode				
Test Channel:	Lowest channel	Polarization:	Vertical				
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%				

Freq		Antenna Factor					
MHz	—dBu7		 <u>ab</u>	dBu√/m	dBuV/m	<u>qp</u>	
2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq	KeadAntenna Level Factor							
MHz	dBu7	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone Product Model:		EKO Star 5.0 G50		
Test By:	Carey	Test mode: 802.11n(HT20) Tx			
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq		Antenna Factor						
MHz	dBu7	<u>dB</u> /m	<u>ab</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50		
Test By:	Carey	Test mode:			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
,	MHz	dBu7	<u>dB</u> /m	dB	<u>d</u> B	dBu√/m	dBuV/m	<u>qp</u>	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	ame: Mobile Phone Product Model:		EKO Star 5.0 G50		
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq		Factor						
MHz	dBu7	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50		
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>q</u> B	
2390.000 2390.000								

2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Name: Mobile Phone Product Model:		EKO Star 5.0 G50		
Test By:	Carey	Test mode: 802.11n(
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	ame: Mobile Phone Product Mo		EKO Star 5.0 G50		
Test By:	Carey Test mode:		802.11n(HT40) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

01711	Oonaactea Ennission	ni Metriod				
	Test Requirement:	FCC Part 15 C Section 15.247 (d)				
	Test Method:	ANSI C63.10:2013 and KDB 558074				
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
	Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
	Test Instruments:	Refer to section 5.8 for details				
	Test mode:	Refer to section 5.3 for details				
	Test results:	Passed				
	Tool Toodito.	1 40004				

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2	Radiated Emission Me	ethod						
	Test Requirement:	FCC Part 15 C S	ection 15	.209 a	and 15.205			
	Test Method:	ANSI C63.10:201	13					
	Test Frequency Range:	9kHz to 25GHz						
	Test Distance:	3m						
	Receiver setup:	Frequency	Frequency Detector RBW VBV					
	•	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak						
		Above 1GHz	Peak		1MHz		/IHz	Peak Value
	1 to the		RMS		1MHz : (dBuV/m @3r		/lHz	Average Value Remark
	Limit:	Frequency 30MHz-88MH	7	LIIIIII	40.0	11)	Oı	uasi-peak Value
		88MHz-216MH			43.5			uasi-peak Value
		216MHz-960MI			46.0			uasi-peak Value
		960MHz-1GH			54.0			uasi-peak Value
		Above 1GHz			54.0		1	Average Value
	Test Procedure:				74.0 e top of a rota			Peak Value
		The table was highest radia? The EUT was antenna, who tower. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the med. The test-reconspecified Base. If the emission the limit spen of the EUT we have 10dB med.	as rotated ation. Is set 3 m ich was not a height is to determinated and views as a secreted ear the anticherota ta aximum meiver system and width views and vie	d 360 neters mount is varied in the ent. emissing tenna able with Northe en test report ould b	away from the don the top ed from one ne maximum value on, the EUT was turned from the examination on, the EUT was turned from the examination on the ed. Otherwise re-tested of the examination of the exa	ne into of a neter value s of the was a beginn 0 of mode stopped the ne by	erferent variable to four of the fance ante arrange hts fro degree tect Funde. e was 1 ped and emissione us	re-height antenna remeters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees
	Test setup:	Below 1GHz EUT Turn Table Ground P	0.8m	4m V Im			_	

	Above 1GHz
	Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Controller
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50		
Test By:	Carey	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						Remark
,	MHz	dBu7			<u>ab</u>	dBu7/m	dBuV/m	<u>dB</u>	
1	30.424	42.40	10.70	0.78	29.98	23.90	40.00	-16.10	QF
2		38.33 38.63			29.81 29.59				
4		42.85 33.75	8.52 13.55		29.23 28.47				
6	364.260	34.96	14.87	3.09	28.62	24.30	46.00	-21.70	QP

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.0 G50
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		ReadAntenna		Cable	Cable Freamp			0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	—dBu7		<u>dB</u>	<u>dB</u>	dBu∛/m	dBuV/m	<u>dB</u>		
1	31.620	39.91	10.98	0.85	29.97	21.77	40.00	-18.23	QF	
2	169.599	43.55	9.39	2.66	29.05	26.55	43.50	-16.95	QP	
3	264.746	36.17	13.39	2.85	28.51	23.90	46.00	-22.10	QF	
4	284.977	45.39	13.52	2.90	28.48	33, 33	46.00	-12.67	QF	
5	815.968	32.54	21.10	4.30	28.13	29.81	46.00	-16.19	QF	
6	979.180	32.09	22.64	4.36	27.55	31.54	54.00	-22.46	QP	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz				802.11b						
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	50.17	30.94	6.81	41.82	46.10	74.00	-27.90	Vertical		
4824.00	52.48	30.94	6.81	41.82	48.41	74.00	-25.59	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	40.32	30.94	6.81	41.82	36.25	54.00	-17.75	Vertical		
4824.00	42.43	30.94	6.81	41.82	38.36	54.00	-15.64	Horizontal		
			Tost ch	annel: Mido	llo channol					
				tector: Peak						
	Read	Antenna	Cable	Preamp	value					
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.46	31.20	6.85	41.84	42.67	74.00	-31.33	Vertical		
4874.00	47.24	31.20	6.85	41.84	43.45	74.00	-30.55	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.45	31.20	6.85	41.84	42.66	54.00	-11.34	Vertical		
4874.00	37.41	31.20	6.85	41.84	33.62	54.00	-20.38	Horizontal		
			Test ch	annel: Highe	est channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	47.07	31.46	6.89	41.86	43.56	74.00	-30.44	Vertical		
4924.00	45.54	31.46	6.89	41.86	42.03	74.00	-31.97	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	37.74	31.46	6.89	41.86	34.23	54.00	-19.77	Vertical		
4924.00 Remark:	35.35	31.46	6.89	41.86	31.84	54.00	-22.16	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g							
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.56	30.94	6.81	41.82	43.49	74.00	-30.51	Vertical			
4824.00	47.51	30.94	6.81	41.82	43.44	74.00	-30.56	Horizontal			
			Dete	ctor: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	37.39	30.94	6.81	41.82	33.32	54.00	-20.68	Vertical			
4824.00	37.46	30.94	6.81	41.82	33.39	54.00	-20.61	Horizontal			
			T ()	1. 5.4: 1							
				annel: Midd							
				tector: Peak	Value		I				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.84	31.20	6.85	41.84	43.05	74.00	-30.95	Vertical			
4874.00	48.46	31.20	6.85	41.84	44.67	74.00	-29.33	Horizontal			
			Dete	ctor: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	36.89	31.20	6.85	41.84	33.10	54.00	-20.90	Vertical			
4874.00	38.42	31.20	6.85	41.84	34.63	54.00	-19.37	Horizontal			
			Tast als	analı I Kalı							
				annel: Highe							
	Dood	Antonno		tector: Peak	value		<u> </u>	Ι			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.72	31.46	6.89	41.86	43.21	74.00	-30.79	Vertical			
4924.00	47.09	31.46	6.89	41.86	43.58	74.00	-30.42	Horizontal			
			Dete	ctor: Averaç	ge Value						
Frequency	Read Level	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
(MHz)	(dBuV)	(42/111)	(-)	. ,							
	36.78	31.46	6.89	41.86	33.27	54.00	-20.73	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	20)			
				annel: Lowe				
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	47.82	36.06	6.81	41.82	48.87	74.00	-25.13	Vertical
4824.00	47.48	36.06	6.81	41.82	48.53	74.00	-25.47	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	37.64	36.06	6.81	41.82	38.69	54.00	-15.31	Vertical
4824.00	37.38	36.06	6.81	41.82	38.43	54.00	-15.57	Horizontal
			Test ch	nannel: Mido	lle channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	46.92	36.32	6.85	41.84	48.25	74.00	-25.75	Vertical
4874.00	48.46	36.32	6.85	41.84	49.79	74.00	-24.21	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	37.06	36.32	6.85	41.84	38.39	54.00	-15.61	Vertical
4874.00	38.23	36.32	6.85	41.84	39.56	54.00	-14.44	Horizontal
			Test ch	annel: High	est channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	46.73	36.58	6.89	41.86	48.34	74.00	-25.66	Vertical
4924.00	47.11	36.58	6.89	41.86	48.72	74.00	-25.28	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	36.84	36.58	6.89	41.86	38.45	54.00	-15.55	Vertical
4924.00	37.56	36.58	6.89	41.86	39.17	54.00	-14.83	Horizontal
Remark [,]								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	40)					
				annel: Lowe						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	47.89	36.06	6.81	41.82	48.94	74.00	-25.06	Vertical		
4844.00	47.52	36.06	6.81	41.82	48.57	74.00	-25.43	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	37.58	36.06	6.81	41.82	38.63	54.00	-15.37	Vertical		
4844.00	37.89	36.06	6.81	41.82	38.94	54.00	-15.06	Horizontal		
			T 4 - 1-	anal Mida	المستحدا					
				annel: Mido						
				tector: Peak	value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.98	36.32	6.85	41.84	48.31	74.00	-25.69	Vertical		
4874.00	48.52	36.32	6.85	41.84	49.85	74.00	-24.15	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.12	36.32	6.85	41.84	38.45	54.00	-15.55	Vertical		
4874.00	38.27	36.32	6.85	41.84	39.60	54.00	-14.40	Horizontal		
			Toot ob	oppol: High	act channal					
				annel: Highe tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	46.79	36.45	6.87	41.85	48.26	74.00	-25.74	Vertical		
4904.00	47.13	36.45	6.87	41.85	48.60	74.00	-25.40	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	36.89	36.45	6.87	41.85	38.36	54.00	-15.64	Vertical		
4904.00	37.54	36.45	6.87	41.85	39.01	54.00	-14.99	Horizontal		
Remark:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.