1

Linear Equations in Linear Algebra

1.8

INTRODUCTION TO LINEAR TRANSFORMATIONS

- A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .
- The set \mathbb{R}^n is called **domain** of T, and \mathbb{R}^m is called the **codomain** of T.
- The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m .
- For x in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of x (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the **range** of T. See Fig. 2 on the next slide

Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$.

- For each \mathbf{x} in \mathbb{R}^n , $T(\mathbf{x})$ is computed as $A\mathbf{x}$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a matrixtransformation by $x \mapsto Ax$.
- Observe that the domain of T is \mathbb{R}^n when A has n columns and the codomain of T is \mathbb{R}^m when each column of A has m entries.

- The range of T is the set of all linear combinations of the columns of A, because each image $T(\mathbf{x})$ is of the form $A\mathbf{x}$.
- Example 1:

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$. and define a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ by $T(x) = Ax$, so

that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}.$$

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- **b.** Find an **x** in \mathbb{R}^2 whose image under *T* is **b**.
- c. Is there more than one x whose image under T is b?
- d. Determine if \mathbf{c} is in the range of the transformation T.

Solution:

a. Compute

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}.$$

b. Solve T(x) = b for x. That is, solve Ax = b, or

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix} \tag{1}$$

Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix}$$
(2)

• Hence
$$x_1 = 1.5$$
, $x_2 = -.5$, and $x = \begin{bmatrix} 1.5 \\ -.5 \end{bmatrix}$.

The image of this \mathbf{x} under T is the given vector \mathbf{b} .

- c. Any x whose image under T is b must satisfy equation (1).
 - From (2), it is clear that equation (1) has a unique solution.
 - \blacksquare So there is exactly one **x** whose image is **b**.
- d. The vector **c** is in the range of T if **c** is the image of some **x** in \mathbb{R}^2 , that is, if $\mathbf{c} = T(\mathbf{x})$ for some **x**.
 - This is another way of asking if the system Ax = c is consistent.

To find the answer, row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

- The third equation, 0 = -35, shows that the system is inconsistent.
- So \mathbf{c} is *not* in the range of T.

SHEAR TRANSFORMATION

• Example 3: Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is called a **shear** transformation.

• It can be shown that if T acts on each point in the 2×2 square shown in Fig. 4 on the next slide, then the set of images forms the shaded parallelogram.

SHEAR TRANSFORMATION

- The key idea is to show that T maps line segments onto line segments and then to check that the corners of the square map onto the vertices of the parallelogram.
- For instance, the image of the point $u = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ is

$$T(\mathbf{u}) = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix},$$

and the image of
$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 is $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$.

- T deforms the square as if the top of the square were pushed to the right while the base is held fixed.
- Definition: A transformation (or mapping) T is linear if:
 - i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T;
 - ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

- Linear transformations preserve the operations of vector addition and scalar multiplication.
- Property (i) says that the result $T(\mathbf{u} + \mathbf{v})$ of first adding \mathbf{u} and \mathbf{v} in \mathbb{R}^n and then applying T is the same as first applying T to \mathbf{u} and \mathbf{v} and then adding $T(\mathbf{u})$ and $T(\mathbf{v})$ in \mathbb{R}^m .
- These two properties lead to the following useful facts.
- If T is a linear transformation, then T(0) = 0

and
$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$
. (4) for all vectors \mathbf{u} , \mathbf{v} in the domain of T and all scalars c , d .

- Property (3) follows from condition (ii) in the definition, because T(0) = T(0u) = 0.
- Property (4) requires both (i) and (ii): $T(c\mathbf{u} + d\mathbf{v}) = T(c\mathbf{u}) + T(d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$
- If a transformation satisfies (4) for all \mathbf{u} , \mathbf{v} and c, d, it must be linear.
- (Set c = d = 1 for preservation of addition, and set for d = 0 preservation of scalar multiplication.)

 Repeated application of (4) produces a useful generalization:

$$T(c_1 \mathbf{v}_1 + ... + c_p \mathbf{v}_p) = c_1 T(\mathbf{v}_1) + ... + c_p T(\mathbf{v}_p)$$
 (5)

- In engineering and physics, (5) is referred to as a *superposition principle*.
- Think of $\mathbf{v}_1, ..., \mathbf{v}_p$ as signals that go into a system and $T(\mathbf{v}_1), ..., T(\mathbf{v}_p)$ as the responses of that system to the signals.

- The system satisfies the superposition principle if whenever an input is expressed as a linear combination of such signals, the system's response is the *same* linear combination of the responses to the individual signals.
- Given a scalar r, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$.
- T is called a **contraction** when $0 \le r \le 1$ and a **dilation** when r > 1.