**Problem 1.** Let  $f:[0,5]\to\mathbb{R}$  be given by  $f(x)=x^3-3x+1$ .

(a) Sketch the graph of f as follows. Let  $g(x) = x^3 - 3x + 2$ . Factor it. Sketch it by first plotting its zeros. Now f(x) = g(x) - 1. Shift the graph of g down by one.



(b) What is the hypothesis of the Intermediate Value Theorem (IVT)? Does f satisfy it? Show that there

exists  $c \in (0,5)$  such that f(c) = 0. We know  $f(x) = x^2 - 3x + 1$  is continuous on [0,5]Note f(0) = 1 and f(1) = 1-3+1=-1. Since f is continuous from to to x=1, we know, by IVT, f(c)=0 for som ce(0,1)

**Problem 1** (continued). Let  $f:[0,5] \to \mathbb{R}$  be given by  $f(x) = x^3 - 3x + 1$ .

(c) What is the hypothesis of the Extreme Value Theorem (EVT)? Does f satisfy it? Find  $c_1, c_2 \in [0, 5]$ such that f has an absolute minimum at  $c_1$  and an absolute maximum at  $c_2$ .

Note Fis continuous on Eo, 5 ], and so has

absolute extrema

Note +'(x)= 3x2-3, so if f'(x)=9 x==1.

But we art only considering the internal [0,5], so the only cp. then is x=1.

Now f(0)=1 f(5)= 125-15+/=111.

f(1)=-1.

So f has an absolute minual of -1 at x=1 dent f has an als man val of 111 at X=5

(d) What is the hypothesis of the Mean Value Theorem (MVT)? Does f satisfy it? What is the conclusion of MVT? Find  $c \in (0,5)$  such that f satisfies the conclusion of the MVT at x = c

We want LE(0,5) such that f'(c) = f(b)-f(a)

Now f(5)-f(0) = 111

Gand f'(c) = 32-3

 $3c^2-3=\frac{111}{5}$ , so  $c^2-1=$ 

SO C = F

**Problem 2.** Let  $f:[0,5] \to \mathbb{R}$  be the piecewise defined function given by

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \in [0, 1); \\ 3 - (x - 2)^2 & \text{if } x \in [1, 5]. \end{cases}$$
where the piecewise defined function given by
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \in [0, 1); \\ 3 - (x - 2)^2 & \text{if } x \in [0, 1). \end{cases}$$
where the piecewise defined function given by
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \in [0, 1); \\ 3 - (x - 2)^2 & \text{if } x \in [0, 1). \end{cases}$$
where the piecewise defined function given by

For  $x \in (0,1) \cup (1,5)$ , the derivative of f is

$$f'(x) = \begin{cases} 2x & \text{if } x \in [0,1) ; \\ -2(x-2) & \text{if } x \in [1,5] . \end{cases}$$

(a) Sketch the graph of f.



(b) Does f satisfy the hypothesis of IVT on [0,5]? Show that there exists  $c \in (0,5)$  such that f(c) = 0.

Note f is continuous at 
$$x=1$$
, singe  $x^2+1|_{x=1}=2=3-(x-2)^2|_{x=1}$ 

We know f is continuous at x=1

Sine lim f(x) = lim f(x) = 2.

Since f is continuous on  $[c_0,5]$  and f(o) = 1 and f(5) = -6, there exists  $c \in (o_15)$  such that f(c) = 0, by IUT.

**Problem 2** (continued). Let  $f:[0,5]\to\mathbb{R}$  be the piecewise defined function given by

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \in [0, 1); \\ 3 - (x - 2)^2 & \text{if } x \in [1, 5]. \end{cases}$$

For  $x \in (0,1) \cup (1,5)$ , the derivative of f is

$$f'(x) = \begin{cases} 2x & \text{if } x \in [0,1) ; \\ -2(x-2) & \text{if } x \in [1,5] . \end{cases}$$

(c) Does f satisfy the hypothesis of EVT on [0,5]? Find  $c_1, c_2 \in [0,5]$  such that f has an absolute minimum

Does f satisfy the hypothesis of EVT on 
$$[0,5]$$
? Find  $c_1, c_2 \in [0,5]$  such that f has an absolute minimum at  $c_1$  and an absolute maximum at  $c_2$ .

The critical points occur when  $f'(x) = 0$ ,

So  $-2(x-2) = 0$ , so  $x-2=0$ , so  $x=2$ .

Now f is diff at  $x=1$ , since  $2(1) = -2(1-2)$ .

Now  $f(0) = 1$ 
 $f(5) = -6$ 
 $f(5) = -6$ 
 $f(2) = 3 - (2-2)^2 = 3$ 
and an absolute minimum at  $c_2$ .

and an absolute minimum at  $c_3$  and  $c_4$  and  $c_5$  and  $c_4$  and  $c_5$  and  $c_6$  and

(d) Does f satisfy the hypothesis of MVT on [0,5]? If so, find  $c \in (0,5)$  such that f satisfies the conclusion of the MVT at x = c.

of the MVT ax = c.

f is cont on 
$$[0,5]$$
 and diff on  $(0,5)$ ,

So MVT applies,

Now  $\frac{f(5)-f(0)}{5-0} = \frac{-6-1}{5} = -\frac{7}{5}$ 

Since  $x^2+1>0$ , the c we seek is

on the right side of  $x=1$ .

So,  $f(0)=(-2(0-2))=-\frac{7}{5}$ 

So  $(-2)=\frac{7}{10}$