

Ludwig Horvath ludhor@kth.se

Software infrastructure

Geometry

assign_geometry.m edit_tornado_geometry.m.m edit_redspot_geometry.m assign_geometryframe.m assign_thru:

assign_thrustframe.m display_geometry.m

Thrust (T)

Body (B)

MAC (M)

Parameters

S: 30.0164

b: 9.076

c: 3.6961

m: 9300

lxx: 12874

lyy: 75673

Izz: 85554 Ixz: 1331

Reference (R)

Reference (R)	Thrust (T)	Body (B)	MAC (M)
IR: 5.5	IT: 14.3	IB: 8.514	XM: 6.9378
hR: 0	hT: 0	hB: 0.213	ZM: 0
	aT: 0		

0

R

M

Parameters

S: 30.0164

b: 9.076

c: 3.6961

m: 9300

lxx: 12874

lyy: 75673

Izz: 85554

lxz: 1331

Inertia

assign_patches.m

assign_thickness.m

assign_material.m

assign_elements.m

assign_inertia.m

calculate_inertia_1,m

calculate_inertia_2.m

calculate_inertia_3.m

display_inertia.m

Parameters S: 30.0164 b: 9.076

MAC (M) XM: 6.9378 YM: 0 ZM: 0

Actuation

Time constant: 0.1 s

Rise time: 0.8426 s

Settling time: 3.3115 s

max: 25 deg

min: -25 deg

assign_controlsurface.m		assign_propulsion.m													
Time constant:	0.1 s		0	0	0	0	0	Time constant:	0.1 s		0	0	0	0	0
		max: 21.5 deg	0	0	0	0	0			max: 30 deg	0	0	0	0	0
			0	0	0	0	0				0	0	0	0	0
Rise time:	0.8426 s		0	0	0	0	0	Rise time:	0.8426 s		0	0	0	0	0
		min: -21.5 deg	0	0	0	0	0			min: -30 deg	0	0	0	0	0
			0	0	0	0	0				0	0	0	0	0
Settling time:	3.3115 s		0	0	0	0	0	Settling time:	3.3115 s		0	1	0	0	0
			1	1	0	0	0				0	0	0	0	0

0 0 0 0 0

Time constant: 10 s

Rise time: 84.2633 s

Settling time: 331.1485 s

Tmax: 65200

method: MilEngine.m

Aerodynamics

create_edit_batch.mload_batch.minspect_batch.mdisplay_batch.msolve_batch.mcreate_interpolant.m

alpha	alpha_dot	beta	beta_dot	P	Q	R	M	h	delta_a	delta_e	delta_r	CD	CC	CL	9
	<u> </u>		<u> </u>	_	_	_							<u> </u>	<u> </u>	-
-10	0	0	0	0	0	0	0.3	1000	0	-21.5	0	0.047781	-0.022985	-0.58697	-0.
-8.8333	0	0	0	0	0	0	0.3	1000	0	-21.5	0	0.039979	-0.02232	-0.51527	-0.
-7.6667	0	0	0	0	0	0	0.3	1000	0	-21.5	0	0.032428	-0.023412	-0.44595	-0.
-6.5	0	0	0	0	0	0	0.3	1000	0	-21.5	0	0.026	-0.017402	-0.37807	-0.
-5.3333	0	0	0	0	0	0	0.3	1000	0	-21.5	0	0.02003	-0.022667	-0.30876	-0.
:		:	:	:	:	:	:	:	:		:	:	1	:	
20.333	0	0	0	0	0	0	0.3	1000	0	21.5	0	0.20044	0.042066	1.2722	0.
21.5	0	0	0	0	0	0	0.3	1000	0	21.5	0	0.22308	0.051353	1.3388	0
22.667	0	0	0	0	0	0	0.3	1000	0	21.5	0	0.24576	0.01612	1.398	0.
23.833	0	0	0	0	0	0	0.3	1000	0	21.5	0	0.27155	0.041866	1.467	0.
25	0	0	0	0	0	0	0.3	1000	0	21.5	0	0.2974	0.04682	1.531	0

create_interpolant.m

[alpha_grid, delta_e_grid] = ndgrid(alpha.grid);

interpolant.CD = griddedInterpolant(alpha_grid, delta_e_grid,CD_grid);

AeroFM_NL.m

D = qbar * S * (CD(alpha, delta_e) + CD_Q(alpha, delta_e) * (c*DQ/(2*V)));

Aerodynamics - Some considerations

Time/iteration: ≈ 3 s

(using my computer and mesh)

state variables: $\alpha \beta p q r \delta_a \delta_e \delta_r \Rightarrow \approx |\alpha| x |\beta| x |p| x |q| x |r| x |\delta_a| x |\delta_e| x |\delta_r|$

Time/Iteration: 2.9465 s

Est time of completion: 11-Mar-2025 11:55:40

Est time left: 0.78329 h

 $3^8 \times 3 = 19683 / 3600 \approx 5.5 h$

 Excluding M, h and unsteady derivatives

- Avoid the detrimental event of linearly extrapolations from biased states to flip sign of i.e. drag

where

Conditions

$$C_L(\alpha, \delta_c) = b_1 + b_2 \alpha + b_3 \sqrt{\sin^2(b_4 \delta_c)} \alpha^2$$

$$C_D(\alpha, \delta_c) = b_1 + b_2 \alpha^2 + b_3 \sqrt{\arctan^2(b_4 \delta_c)} \alpha^2$$

$$C_m(\alpha, \delta_c) = b_1 + b_2 \alpha + b_3 \sqrt{\arctan^2(b_4 \delta_c)} \alpha$$

```
Cm modelfun = a(b,x) b(1) + b(2)*x(:,1) + ...
+b(3)*sart(atan(b(4).*x(:,2)).^2).*x(:,1);
Cm model = fitnlm(X, T.Cm, Cm modelfun);
         = predict(Cm model, X);
Cm pred
predictor.Cm = Cm model;
```

 $\mathbf{x} = [T_{\text{com}}, \theta, \delta_e, \alpha]^T$.

database

... using fminsearch i found:

M = 0.3 h = 1000 m

M 	h [m]	u [m/s]	w [m/s]	theta [rad]	delta_e [rad]	T [N]	Tcom [%]	gamma [deg]
0.3	1000	100.34	10.937	0.63217	-3.0004e-17	49651	83.783	30

resolve_sf.m

М	h [m]	u [m/s]	w [m/s]	theta [rad]	delta_e [rad]	T [N]	Tcom [%]	gamma [deg]
0.30102	1000	101.03	10.937	0.59322	-4.0999e-16	49125	82.895	30.003

Overdamped short period mode

Unstable but slow phugoid mode

Stable slow "phugoid mode"

Overdamped yaw subsidence mode

Overdamped roll mode

Slow but unstable spiral mode

Longitudinal

	Mode 1	Mode 2	Mode 3	Mode 4
ctrb	1	1	1	1
stbl	1	1	1	1
λ	-1.2590 + 0.00001i	0.4735 + 0.44721i	0.4735 - 0.44721i	-0.3108 + 0.00001i
ω_n	1.2590	0.6512	0.6512	0.3108
5	1	-0.7270	-0.7270	1
au	0.7943	2.1121	2.1121	3.2173

Lateral

	Mode 1	Mode 2	Mode 3	Mode 4
ctrb	1	1	1	1
stbl	1	1	1	1
λ	4.8643	-5.5487	-1.8940	0.0165
ω_n	4.8643	5.5487	1.8940	0.0165
5	-1	1	1	-1
τ	0.2056	0.1802	0.5280	60.4712

Longitudinal

$$K_{\mathrm{lon}} = egin{bmatrix} 0 & 0 & -100000 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

	Mode 1	Mode 2	Mode 3	Mode 4
λ	-8.5055	-0.6090	0.0416 + 0.1741i	0.0416 - 0.1741i
ω_n	8.5055	0.6090	0.1790	0.1790
5	1	1	-0.2321	-0.2321
T	0.1176	1.6421	24.0655	24.0655

Lateral

$$K_{
m lat} = egin{bmatrix} 0 & 0 & 6.9343 & 0 \ 0 & -4.7989 & 0.6666 & 0 \end{bmatrix}$$

	Mode 1	Mode 2	Mode 3	Mode 4
λ	-81.4494	-21.1182	1.3022	0.0340
ω_n	81.4494	21.1182	1.3022	0.0340
5	1	1	-1	-1
au	0.0123	0.0474	0.7679	29.3959

M = 0.75 h = 10000 m

M 	h [m]	u [m/s]	w [m/s]	theta [rad]	delta_e [rad]	T [N]	Tcom [%]	gamma [deg]	
0.75	10000	224.39	9.6201	0.060299	0.081458	5226.9	22.141	1	

resolve_sf.m

M	h [m]	u [m/s]	w [m/s]	theta [rad]	delta_e [rad]	T [N]	Tcom [%]	gamma [deg]
-	***	-			<u> </u>	*	*	
0.75	10000	224.39	9.6201	0.060851	0.13249	5483.6	23.228	1

Overdamped short period mode

Unstable short period mode

Slow but unstable phugoid mode

Slow but unstable phugoid mode

Fast underdamped yaw subsidence mode

Overdamped roll mode

Slow but unstable spiral mode

Longitudinal

	Mode 1	Mode 2	Mode 3	Mode 4
λ	-2.3907	1.4330	0.2146	-0.1434
ω_n	2.3907	1.4330	0.2146	0.1434
5	1	-1	-1	1
au	0.4183	0.6979	4.6596	6.9724

Lateral

	Mode 1	Mode 2	Mode 3	Mode 4
λ	-2.0876 + 23.5309i	-2.0876 - 23.5309i	-2.0284	0.0215
ω_n	23.6233	23.6233	2.0284	0.0215
5	0.0884	0.0884	1	-1
τ	0.4790	0.4790	0.4930	46.5863

Longitudinal

$$K_{\mathrm{lon}} = egin{bmatrix} 0 & 0 & 100 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

	Mode 1	Mode 2	Mode 3	Mode 4
λ	-4.1245	0.2102 + 0.2979i	0.2102 - 0.2979i	-0.1923
ω_n	4.1245	0.3646	0.3646	0.1923
5	1	-0.5765	-0.5765	1
au	0.2425	4.7575	4.7575	5.2004

Lateral

$$K_{\text{lat}} = \begin{bmatrix} 0 & 0 & 6.9343 & 0 \\ 0 & -4.7989 & 0.6666 & 0 \end{bmatrix}$$

	Mode 1	Mode 2	Mode 3	Mode 4
λ	-164.4602	-76.0062	-8.8531	0.0233
ω_n	164.4602	76.0062	8.8531	0.0233
5	1	1	1	-1
τ	0.0061	0.0132	0.1130	42.8982

М	h [m]	u [m/s]	w [m/s]	theta [rad]	delta_e [rad]	T [N]	Tcom [%]	gamma [deg]
0.75	10000	224.39	9.6201	0.060851	0.13249	5483.6	23.228	1

Stability Analysis and Control design

- Phase 1: LTI based stability analysis and control design
 - Relies on assumption of small angle of attack around a s-f equilibrium point.
 - Simplifies analysis and pole-placement a lot.
 - Used for design a-priori nonlinear simulation, which introduces new challenges.

Stability Analysis and Control design

- Phase 2: Insert the LTI -based controller in cascade with nonlinear plant
 - Displayed a clear attenuation of the concerned unstable modes
 - Relied heavily on perturbations being small
 - Revealed new unstable behaviour that had to be mitigated through the implementation of additional control strategies.

Stability Analysis and Control design

- Phase 3: Introducement of PID controllers for reference tracking and improved stabilty
 - Added PID to enforce attenuation of nonzero roll-angle error and/or nonzero pitch-angle error
 - Introduced an additional PID controller for reference tracking of the heading angle.
 - Added logic to allow for manual control, manual manuevers are in XOR with the PID controllers (not the SAS). Thus the flight controller is a hybrid controller with two different states, switches based on stick motion.

Following a reference in heading angle ψ

Future work

- Solve for stationary turn + pull-up + pull-down maneuvers
- Design an extended kalman filter based on the nonlinear mode)
- Make filter + controller adaptive to time variant flight condition using gain scheduling
- Design an improved autopilot using these additions + current existing solution + 3D-dubins (?)
- Make a huge batch calculation to extend the aerodynamic to a higher dimensional interpolant
- Incorporate effects from A/D, D/A, ZOH and time delays