

INF115 Lecture 1: Introduction to Databases

Adriaan Ludl

Department of Informatics
University of Bergen

Spring Semester

INF115 course content

An introduction to *methods for organizing, structuring, representing*

and storing large amounts of information.

Emphasis on: - techniques for data modeling,

- theory of **relational databases**.

Important topics: relational algebra, query language, storage media

and storage methods.

INF115 course content

An introduction to *methods for organizing, structuring, representing*

and storing large amounts of information.

Emphasis on: - techniques for **data modeling**,

- theory of **relational databases**.

Important topics: relational algebra, query language, storage media

and storage methods.

INF115 course content

An introduction to *methods for organizing, structuring, representing*

and storing large amounts of information.

Emphasis on: - techniques for data modeling,

- theory of **relational databases**.

Important topics: relational algebra, query language, storage media

and **storage methods**.

Practical information about INF115

- Course books
- Lecture schedule
- Group sessions
- Mandatory assignments
- Exam
- Software used in the course

Practical information about INF115

110

Course books

- Lecture schedule
- Group sessions
- Mandatory assignments
- Exam
- Software used in the course

INF115 Databases and Modelling

Course page updated regularly!

https://mitt.uib.no/courses/33533

Course Books

In Norwegian:

In English:

https://www.dbsys.info/Databasesystemer/

https://www.pdbmbook.com/

• **Both** cover the INF115 course material

• Students can choose the one they prefer

Lecture Schedule (preliminary)

Lectures will be recorded

Week	Day	Nr.	Торіс
3	18.01.2022	1	Introduksjon
3	21.01.2022	2	Tabeller og enklespørringer
4	25.01.2022	3	Tabelldefinisjon og Datamanipulering
4	28.01.2022	4	Spørringer mot flere tabeller
5	01.02.2022	5	Avanserte spørreteknikker
5	04.02.2022	6	Relasjonsmodellen
6	08.02.2022	7	Datamodellering med E/R
6	11.02.2022	8	Datamodellering med E/R
7	15.02.2022	9	E/R-diagrammer til tabeller
7	18.02.2022	10	Normalisering
8	22.02.2022	11	Filer og indekser
8	25.02.2022	12	Transaksjoner
9	01.03.2022		(vinterferie)
9	04.03.2022		(vinterferie)

on Tuesdays (14:15 – 16:00) and Fridays (10:15 to 12:00)

10	08.03.2022	13	Databaseadministrasjon
10	11.03.2022	14	Web-applikasjoner
11	15.03.2022	Х	No lecture - På vei uke
11	18.03.2022	15	XML og JSON
12	22.03.2022	16	XML og JSON
12	25.03.2022	17	Via Objekter to NoSQL
13	29.03.2022	18	Via Objekter to NoSQL
13	01.04.2022		
14	05.04.2022	IL	Invited Lecture
14	08.04.2022	IL	Invited Lecture
15	12.04.2022		(Paskeferie)
15	15.04.2022		(Paskeferie)
16	19.04.2022	IL	Invited Lecture
16	22.04.2022	IL	Invited Lecture

Group session schedule

Sessions start on 24th of January:

- 7 groups to happen physically,
- 1 online group.

You can only attend the group for which you are registered!

<u>Self-registration from today</u>
on mitt.uib.no

Teaching Assistant:
 Thomas Stautland

Thomas.Stautland@uib.no

Group	Day	Time	Place
1	Friday	08:15 - 10:00	<u>online</u>
2	Monday	10:15 - 12:00	<u>A55</u> & <u>Gr.rom 292</u> &
3	Thursday	10:15 - 12:00	TM51 ♂ Konf.rom D ♂
4	Friday	14:15 - 16:00	TM51 ♂ Konf.rom B ♂
5	Wednesday	08:15 - 10:00	TM51 ♂ Konf.rom D ♂
6	Thursday	14:15 - 16:00	TM51 ♂ Konf.rom A ♂
7	Wednesday	12:15 - 14:00	TM51 ♂ Konf.rom C ♂
8	Wednesday	14:15 - 16:00	TM51 ♂ Konf.rom C ♂

Mandatory assignments

NB NB

- Three mandatory hand-in assignments,
- Due dates will be announced on

https://mitt.uib.no/courses/33533/announcements

- Each assignment counts for 10% of the final grade.
- Each assignment must be passed (50%) to be allowed to take the exam.
- You can discuss the assignments in groups,
- but each student submits their solution individually.

Exam INF115

3-hour written exam on 30th of May, 30.05.2022.

Note: exam form will depend on regulations.

Exact location and time can be found (here) at a later date.

Be aware that location and time may change up to a few days before the exam!

Software used in the course

Install it <u>now</u> before the first group sessions ©

- MySQL Workbench: visual database design tool: https://dev.mysql.com/downloads/workbench/
- PHP: webpage script language
- XAMPP: web server stack, contains MariaDB and PHP: https://www.apachefriends.org/download.html

- Recommended **E/R Diagram Editors**:
 - LucidChart
 - or MySQL Workbench Diagrams
- Recommended SQL Stacks:
 - phpMyAdmin
 - MySQL Workbench

For questions about the software please contact the TA or the student group leaders:

Teaching Assistant: Thomas Stautland

Thomas.Stautland@uib.no

How to study INF115 successfully ©

- Attend the lectures live online!
 - Ask questions
 - Discuss with your colleagues: IRL or on discord @
 - **Read** the **chapters** corresponding to the lectures

- Try to answer each question by yourself,
- Be active during group sessions,
- attend the consultancies for the mandatory assignments.

- Study all the topics and problems again during exam preparation
- Reach out to us if you have questions!

Questions on course organization?

INF115 Databases and Modelling

Course page updated regularly!

https://mitt.uib.no/courses/33533

First Quizz

Please answer the practice quizz on mitt.uib now © (you can take it again later if you want)

Link:

https://mitt.uib.no/courses/33533/quizzes/22618

Chapter 1: Learning goals

- > Important uses of database systems
- > Tasks of a database system
- > How to **develop** a database system
- > Important concepts of database systems
- Understand the principles of digital representation of data

Databases are **behind** many software applications

- Account management
- Cloud computing, Email, Github ...
- **Health**: Statistics, *Coronavirus test results*, Hospitals, *Genetics* ...
- Banks, Payment systems
- Universities, Research, Weather forecast, Machine learning ...
- Media, Wikipedia
- Online services: **government** (tax), banks, stock market, shopping, travel, videos, games ...

DIKW Pyramid (or hierarchy)

DIKW: Data, Information, Knowledge, Wisdom

"scientia potestas est" (= knowledge is power)
- Francis Bacon, philosopher (1561–1626)

Reference:

Henry, Nicholas L. (May–June 1974).

"Knowledge Management:

A New Concern for Public Administration".

Public Administration Review. 34 (3): 189–196.

doi:10.2307/974902. JSTOR 974902.

Rowley, Jennifer (2007). "The wisdom hierarchy: representations of the DIKW hierarchy".

Journal of Information and Communication Science. **33** (2): 163–180. doi:10.1177/0165551506070706

https://en.wikipedia.org/wiki/DIKW_pyramid

What is a database?

Database (DB) = a **logically** organized **collection** of **data** (*information*)

Examples: A university keeps many databases

> every database can contain many tables:

Why use databases?

- Allows to collect & organize data from many sources in one system
 - Create, update, delete tables and entries
 - Streamline data curation and administration
- Store & access data efficiently (even big data: e.g. Wikipedia)
 - Queries, indexing, search, references ...
- Serve the same data to many users simultaneously
 - Allow users to choose an appropriate view of the data
 - Security: control access rights of users
 - Allow access over a network (internet or internal)
- Want to guarantee consistency & integrity of the data
 - Transaction management enables reliable backups

Why use databases?

- Allows to collect & organize data from many sources in one system
 - Create, update, delete tables and entries
 - Streamline data curation and administration
- Store & access data efficiently (even big data: e.g. Wikipedia)
 - Queries, indexing, search, references ...
- Serve the same data to many users simultaneously
 - Allow users to choose an appropriate view of the data
 - Security: control access rights of users
 - Allow access over a network (internet or internal)
- Want to guarantee consistency & integrity of the data
 - Transaction management enables reliable backups

A database table is like a spreadsheet, but:

- All columns have a (logical) name
- All values in a given column are of the same type
- And a few more restrictions that we will describe later ...

ElevNr	Fornavn	Etternavn	Fødselsdato	Kjønn
1	Ailin	Liane	09.10.2010	J
2	Gorm	Syrstad	13.05.2010	G
3	Ulf	Borgen	29.08.2010	G
4	Karina	Habbestad	02.12.2010	J
5	Anneli	Karlsen	19.06.2010	J

Database tables

Structured Query Language: SQL queries

SELECT Fornavn, Etternavn

FROM Elev

WHERE Kjønn = 'J'

ORDER BY Etternavn

Metadata

- Metadata are «data about data».
- Metadata are also stored in tables.
- They can be obtained using SQL.

III IVIYOC	XL IIICladala is iii liic
	INFORMATION_SCHEMA
In other	DB systems this is often
called	System Catalog.

In MySOL metadata is in the

Tabell	AntallRader
Kunde	507
Vare	1305
Ordre	5729

Life cycle of a database system

- 1. Preliminary study (Forstudie): Which need for the new system?
- 2. Analysis: What shall the system do?
- 3. Design: How should the system be built?
- 4. Implementation: Make (programming) the system!
- 5. Testing: Does it work as expected?
- **6. Production**: **Use** the system!
- 7. Maintenance: Keep it running for years!

Agile (smidig) method

- > Not strict on planning and documentation at the beginning
- > Iterative process with many small deliverables
- > Testing & feedback from users while developing
- > Example: **Scrum framework**

Now: 15 minute break Lecture resumes at 15:10

Summary: Chapter 1 – Introduction (Part 1)

- Databases are behind many software applications.
- A Database (DB) is a logically organized collection of data (information).
- DB systems (DBS) allow to collect & organize data from many sources.
- DBS enable us to store & access data efficiently and reliably.
- DB Tables and SQL
- Life cycle of a DB system development

Data models

- (DB) System development needs good planning.
- Making models helps to understand the system.
- A data model represents the structure of the database.

Example from MySQL Workbench

A printout (papirskjema)

Etternavn: Hansen **Fornavn**: Hans

Ansatt dato: 23.08.2010

Stilling: Programmerer Lønn: 525.000

Prosjektdeltakelse siste år:

 Prosjektkode
 Timer

 1002
 44

 1007
 25

 1012
 10

Quizz on Database Design

Please answer the practice quizz on mitt.uib now © (you can take it again later if you want)

Link:

https://mitt.uib.no/courses/33533/quizzes/

A Few Examples of Database Use Cases

- Print out of a table (on paper or on a screen),
- Calculate the invoice for an order (e.g. online shopping),
- Search for results of hockey matches (in a local league, or for the last week),
- Find a list of Wikipedia articles containing search terms,
 - Management of access rights to the database,
 - And many more ...

More Examples: Databases and Tables

- Cloud computing: UserAccounts, Passwords (encrypted), UserData, ...
- Email: Contacts, Inbox, Sent, Labels, Spam ...
- Health: Corona test results, Patients, Medication, Hospitals, Doctors, Appointments, ...
- Payment systems: eID, Cardnumber, PaymentOperations, ...
- Wikipedia: Articles, Pictures, Media, Users, ...
- Libraries: Books, Journals, Articles, Loans, ...
- (Almost) All **businesses** use databases
- Many systems must be operational 24/7 (critical services)
- Databases are part of larger information processing systems:
 - Examples: **Accounting** systems, Project **planning** systems, ...

Employees Table (Ansatt)

AnsattNr	Etternavn	Fornavn	AnsattDato	Stilling	Lønn
1	Veum	Varg	01.01.1996	Løpegutt	383 000.00
2	Stein	Trude	10.10.2004	DBA	470 700.00
3	Dudal	Inger-Lise	24.12.2012	Sekretær	499 000.00
4	Hansen	Hans	23.08.2010	Programmerer	525 000.00
5	Bjørnsen	Henrik	01.01.2014	Tekstforfatter	575 000.00
6	Gredelin	Sofie	18.05.2012	Underdirektør	825 850.00
7	Zimmermann	Robert	17.05.1999	Regnskapsfører	575 000.00
_	N 111				

1 rad = **1** ansatt

AnsattNr = 4

Etternavn = Hansen

Fornavn = Hans

AnsattDato = 23.08.2010

Stilling = Programmerer

Lønn = 525 000

Project Table

ProsjektNr	Budsjett	Leder	Start	Slutt
1001	kr 15 000.00	20	12.01.2019	12.03.2019
1002	kr 750 000.00	8	23.06.2019	23.07.2019
1007	kr 125 000.00	2	12.06.2020	
1009	kr 500 000.00	20	01.01.2020	
1012	kr 10 000.00	4	10.07.2020	
1020	kr 900 000.00	8	23.07.2019	01.09.2019

Employee and Projects

- One employee can participate in 0, 1 or many projects.
- A project can have **0**, **1** or **many** participants.
- Need another table to describe who works where !

ProjectParticipation Table

Which employees have worked on which project – and how many hours?

> The table represents a **relationship**.

(norsk: forhold)

ProjectParticipation is a coupling table.

(ProsjektDeltakelse er en koblingstabell.)

ProsjektNr	AnsattNr	AntTimer
1001	1	12
1002	4	44
1002	8	20
1002	13	125
1002	20	2
1007	4	25
1007	11	20
1009	2	5
1009	17	10
1009	20	23
1012	4	10
1020	1	20
1020	8	35
1020	17	125

Missing values

- NULL can be used to indicate that some values are missing in a table (e.g. the *Project* table).
- They occur **because**:
 - We forgot to register data.
 - We do not know the correct value.
 - It is not meaningful to register a value in this field
- NULL is not a value.
- NULL can cause problems! So be careful!

Relational database = « Table database »

- > A table can be seen as a mathematical relation (relasjon).
- ➤ A relational database (relasjonsdatabase)
 is a collection of tables (relations).

- Other types of databases:
 - Hierarchical databases
 - Network databases
 - Object oriented databases
 - Object-relational databases
 - Logical databases
 - NoSQL databases

Hierarchical database model

Database system = DBMS + database

- DBMS = **D**ata **B**ase **M**anagement **S**ystem
- DBHS = DataBaseHåndteringsSystem
- Examples: MySQL, MariaDB, Access, Oracle, PostgreSQL, SQL Server, ...
- **SQL** = language to interact with a database via a DBMS

Tasks for a database system

- Store large amounts of structured data over long time in a secure manner.
- Find data quickly and accurately.
- Serve many users simultaneously:
 - Define user access rights (read or write).
 - Allow access over a network.
- Robustly manage failures such as crashed disks and electricity cuts.
- Communicate with other programs.

Database clients in a network

• A database is a **shared** resource.

 Client/server architecture: many clients are connected to one server via the network.

Database Applications

Many interact with databases via an application.

Database Users and Tools / Applications

- Applications & tools form an additional layer
 between the user and the database.
- Applications & tools communicate with the DB using SQL.
- The **enduser** does not need to know SQL.

> DBA: database administrator can be different from the developer.

5 minutes breakout rooms:

How would you design an application to manage read and write access rights of the users of a database?

5 minutes breakout rooms:

How would you design an application to manage read and write access rights of the users of a database?

- > A table **Users** with columns:
 - UserNumber, UserName, TableName, ReadAccess, WriteAccess.
- > A GUI where one can add users and set values.

User Number	User Name	Table Name	Read Access	Write Access			DBAcessRights User Table Read Write
					4	•	
					•		
							CANCEL SAVE

Representation of Data in Computers

➤ <u>All values in a table</u> are represented as **numbers** which can be **represented using 0s and 1s**.

> A row of a database table can be stored as a sequence of values.

> A database table can be stored as a sequence of rows.

AnsNr Fornavn		Etternavn		
11	Varg	Veum		
12	Ada	Lovløs		
13	Jon	Nymann		

Quizz on Data Representation

Please answer the practice quizz on mitt.uib now © (you can take it again later if you want)

Link:

https://mitt.uib.no/courses/33533/quizzes

Summary: Chapter 1 – Introduction (Part 1)

- Databases are behind many software applications.
- A Database (DB) is a logically organized collection of data (information).
- DB systems (DBS) allow to collect & organize data from many sources.
- DBS enable us to store & access data efficiently and reliably.
- DBS are part of information processing systems.
- A DB may contain incomplete data, some values may be missing.
- A DB should <u>not</u> contain errors or contradictions.

INF115 52

Summary: Chapter 1 – Introduction (Part 2)

- Databases are behind many software applications and tools.
- DBMS = **D**ata **B**ase **M**anagement **S**ystem
- SQL = language to interact with a database via a DBMS

- A data model represents the structure of the database.
- A DB may contain incomplete data, because some values may be missing.
- Data representation:
 - Memory (RAM and disk) store sequences of numbers.
 - A computer stores values as numbers encoded as 0s and 1s.
 - A **table** is stored as a **sequence of values**.

Questions?

Next lecture on Friday

21.01.2022 (10:15 - 12:00)

INF115 54

INF115 Lecture 1: Representation of Data

Adriaan Ludl

Department of Informatics
University of Bergen

Spring Semester

Representation of Data in Computers

- 1. How do **computers** work?
- 2. Represenation of numbers
- 3. Representation of text
- 4. Representation of tables

How do computers work?

The physical **details** of a **computer** are **complex** (gates, transistors...). Let's consider **a simplified but useful model**.

A computer can store data and execute programs.

Disk and RAM

- Random access memory (RAM, hurtigminnet) is much faster than the disk.
- The data in the RAM is lost when the machine is turned off!

Bits and Bytes

A simplified model of *storage media*:

Both disk and RAM contain numbered sequences of bytes.

- 1 byte = 8 bits in either 0 or 1 state.
- Every bit can store 2 different values.
- 2 bits can store $2^2 = 4$ values.

• • •

• **8 bits** can store 2⁸ = **256 values**.

L	1	0	0	1	1	0	1	0
2	0	0	1	1	1	0	1	1
3	1	1	1	0	1	1	1	0
1	0	0	0	0	0	1	1	0
5	1	0	0	0	0	0	1	1

...

Units to measure data size

SI Unit: Value: Binary Unit: Value:

Måleenhet	Verdi	IT-bruk	Binær måleenhet	Verdi
kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	2 ¹⁰
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2 ⁶⁰
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰

Representing Numbers

Integer numbers (or integers):

- ➤1 byte = **256** different patterns of bits
- 1 byte can be interpreted as an **integer** in [0..255]
- 2 bytes can be interpreted as a integer in [0.. 65 535]
- > When using the first bit as the sign bit we can represent:

integer numbers in [-32 768..+32 767]

.

Representing Numbers

Integer numbers (or integers):

- ≥1 byte = **256** different patterns of bits
- 1 byte can be interpreted as an **integer** in [0..255]
- 2 bytes can be interpreted as a **integer** in [0.. 65 535]
- > When using the first bit as the sign bit we can represent:

integer numbers in [-32 768..+32 767]

Every decimal number (or float) can be represented as two integers:

- **For example**: the number 486.229 can be written as 0.486229×10³.
- Which can be represented as the integers 486229 and 3.
- The same method can be used for all decimal numbers.

Representing Text

A character encoding assigns one number to every symbol.

➤ Letters, digits, special symbols can thus be represented as numbers!
With 2 bytes we can represent 65 536 symbols.

A string of characters is a sequence of symbols.

ASCII and Unicode are two examples of character encodings.

Tegn	Kode	Tegn	Kode
Α	65	æ	145
Z	90	Æ	146
а	97	!	33
Z	122	=	61
0	60	?	63
9	71	@	64

..

From 0 and 1 to database tables

Every cell in a database table contains a value:

• **Integer** numbers: 1, 2, 3 ...

• **Decimal** numbers (floats): such as 0.0, 0.101 ...

• **Text** (string of characters): «Gjelder hele Svalbard» ...

• Boolean truth values: True or False

• Date / Time (as numbers): 26.01.2021, 10:15:00.000

From 0 and 1 to database tables

Every cell in a database table contains a value:

• **Integer** numbers: 1, 2, 3 ...

• **Decimal** numbers (floats): such as 0.0, 0.101 ...

• **Text** (string of characters): «Gjelder hele Svalbard» ...

• Boolean truth values: True or False

• Date / Time (as numbers): 26.01.2021, 10:15:00.000

- ➤ All values are represented as numbers which can be represented using 0s and 1s (as we just saw).
- >A row of a database table can be stored as a sequence of values.
- >A database table can be stored as a sequence of rows ...

A database table:

AnsNr	Fornavn	Etternavn
11	Varg	Veum
12	Ada	Lovløs
13	Jon	Nymann

A possible physical organization in memory:

Quizz on Data Representation

Please answer the practice quizz on mitt.uib now © (you can take it again later if you want)

Link:

https://mitt.uib.no/courses/33533/quizzes