

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070053302

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 4K Media Player

Model No.: InVision 4K Media Player, 503-HD4KRK328

FCC ID: 2AB6Z-INVISION4K

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 02 Jul., 2015

Date of Test: 02 Jul., to 10 Aug., 2015

Date of report issued: 10 Aug., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Aug., 2015	Original

Prepared by: Date: 10 Aug., 2015

Report Clerk

Reviewed by: Date: 10 Aug., 2015

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4	IES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		_
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	50
7	TES	T SETUP PHOTO	57
8	EUT	CONSTRUCTIONAL DETAILS	58

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	4K Media Player
Model No.:	InVision 4K Media Player, 503-HD4KRK328
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	External Antenna
Antenna gain:	2 dBi
AC adapter:	Model No.: PS18C120K1500UD Input:100-240V AC,50/60Hz 0.5A Output:12.0V DC MAX 1500mA
Remark:	Model No.: InVision 4K Media Player, 503-HD4KRK328 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCIS15070053302

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is a Reverse-SMA antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	[[] [] [] [] [] [] [] [] [] [Limit (c	dBuV)			
	Frequency range (MHz)	Yerage Average				
		0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46			
	5-30 * Decreases with the logarithm	60	50			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
	Refer to section 5.6 for details					
Test Instruments:	Refer to section 5.6 for details	;				
Test Instruments: Test mode:	Refer to section 5.6 for details Refer to section 5.3 for details					

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 533RF Condition

EUT : 4K Media Player

Model : InVision 4K Media Player, 503-HD4KRK328

Test Mode : Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT
Remark

:							
101	Read	LISN	Cable	2	Limit	Over	-240-00-24
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
MHz	₫₿uѶ	dB	dB	dBu₹	dBu∜	<u>dB</u>	
0.154	49.14	0.25	10.78	60.17	65.78	-5.61	QP
0.194	44.51	0.25	10.76	55.52	63.84	-8.32	QP
0.230	42.62	0.25	10.75	53.62	62.44	-8.82	QP
0.270	40.36	0.26	10.75	51.37	61.12	-9.75	QP
0.307	37.11	0.26	10.74	48.11	60.06	-11.95	QP
0.385	32.59	0.25	10.72	43.56	58.17	-14.61	QP
0.426	22.71	0.26	10.73	33.70	47.33	-13.63	Average
0.668	14.07	0.20	10.77	25.04	46.00	-20.96	Average
1.338	13.72	0.25	10.91	24.88	46.00	-21.12	Average
1.671	15.18	0.27	10.94	26.39	46.00	-19.61	Average
2.334	19.31	0.29	10.94	30.54	46.00	-15.46	Average
3.346	11.94	0.29	10.91	23.14	46.00	-22.86	Average
	0. 154 0. 194 0. 230 0. 270 0. 307 0. 385 0. 426 0. 668 1. 338 1. 671 2. 334	Freq Level MHz dBuV 0.154 49.14 0.194 44.51 0.230 42.62 0.270 40.36 0.307 37.11 0.385 32.59 0.426 22.71 0.668 14.07 1.338 13.72 1.671 15.18 2.334 19.31	Freq Level Factor MHz dBuV dB 0.154 49.14 0.25 0.194 44.51 0.25 0.230 42.62 0.25 0.270 40.36 0.26 0.307 37.11 0.26 0.385 32.59 0.25 0.426 22.71 0.26 0.668 14.07 0.20 1.338 13.72 0.25 1.671 15.18 0.27 2.334 19.31 0.29	MHz dBuV dB dB 0.154 49.14 0.25 10.78 0.194 44.51 0.25 10.76 0.230 42.62 0.25 10.75 0.270 40.36 0.26 10.75 0.307 37.11 0.26 10.74 0.385 32.59 0.25 10.72 0.426 22.71 0.26 10.73 0.668 14.07 0.20 10.77 1.338 13.72 0.25 10.91 1.671 15.18 0.27 10.94 2.334 19.31 0.29 10.94	MHz dBuV dB dB dBuV 0.154 49.14 0.25 10.78 60.17 0.194 44.51 0.25 10.76 55.52 0.230 42.62 0.25 10.75 53.62 0.270 40.36 0.26 10.75 51.37 0.307 37.11 0.26 10.74 48.11 0.385 32.59 0.25 10.72 43.56 0.426 22.71 0.26 10.73 33.70 0.668 14.07 0.20 10.77 25.04 1.338 13.72 0.25 10.91 24.88 1.671 15.18 0.27 10.94 26.39 2.334 19.31 0.29 10.94 30.54	MHz dBuV dB dB dBuV dBuV 0.154 49.14 0.25 10.78 60.17 65.78 0.194 44.51 0.25 10.76 55.52 63.84 0.230 42.62 0.25 10.75 53.62 62.44 0.270 40.36 0.26 10.75 51.37 61.12 0.307 37.11 0.26 10.75 48.11 60.06 0.385 32.59 0.25 10.72 43.56 58.17 0.426 22.71 0.26 10.73 33.70 47.33 0.668 14.07 0.20 10.77 25.04 46.00 1.338 13.72 0.25 10.91 24.88 46.00 1.671 15.18 0.27 10.94 26.39 46.00 2.334 19.31 0.29 10.94 30.54 46.00	MHz dBuV dB dB dBuV dBuV dB 0.154 49.14 0.25 10.78 60.17 65.78 -5.61 0.194 44.51 0.25 10.76 55.52 63.84 -8.32 0.230 42.62 0.25 10.75 53.62 62.44 -8.82 0.270 40.36 0.26 10.75 51.37 61.12 -9.75 0.307 37.11 0.26 10.74 48.11 60.06 -11.95 0.385 32.59 0.25 10.72 43.56 58.17 -14.61 0.426 22.71 0.26 10.73 33.70 47.33 -13.63 0.668 14.07 0.20 10.77 25.04 46.00 -20.96 1.338 13.72 0.25 10.91 24.88 46.00 -21.12 1.671 15.18 0.27 10.94 26.39 46.00 -19.61 2.334 19.31 0.29

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: 533RF Job No.

EUT

4K Media Player InVision 4K Media Player, 503-HD4KRK328 Model

Test Mode : Wifi mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

ond R	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u></u>	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.154	49.83	0.27	10.78	60.88	65.78	-4.90	QP
2	0.186	47.20	0.28	10.76	58.24	64.20	-5.96	QP
	0.226	45.04	0.27	10.75	56.06	62.61	-6.55	QP
4 5	0.266	41.66	0.27	10.75	52.68	61.25	-8.57	QP
5	0.299	17.34	0.26	10.74	28.34	50.28	-21.94	Average
6 7	0.337	37.94	0.27	10.73	48.94	59.27	-10.33	QP
7	0.417	18.98	0.28	10.73	29.99	47.51	-17.52	Average
8	0.658	12.03	0.23	10.77	23.03	46.00	-22.97	Average
8 9 10	1.671	13.04	0.26	10.94	24.24	46.00	-21.76	Average
10	2.334	26.59	0.26	10.94	37.79	56.00	-18.21	QP
11	2.334	15.77	0.26	10.94	26.97	46.00	-19.03	Average
12	3.346	8.80	0.27	10.91	19.98	46.00	-26.02	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Maximum	Limit(dBm)	Result			
1031 011	802.11b	802.11g	Elittit(dBitt)	Nesuit		
Lowest	15.82	15.72	14.96		Pass	
Middle	14.88	15.27	14.22	30.00		
Highest	14.27	15.06	13.89			

Test plot as follows:

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2009 and KDB558074v03r03 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB	Limit(kHz)	Result			
1031011	802.11b	Liiiii(Ki iz)	result			
Lowest	8.16	15.68	16.40			
Middle	8.00	15.76	16.48	>500	Pass	
Highest	7.20	15.52	16.32			

Test CH	99%	Limit(kHz)	Result		
1031 011	802.11b 802.11g 802.11n(H20)				Limit(Kriz)
Lowest	12.32	16.40	17.52		N/A
Middle	12.24	16.40	17.52	N/A	
Highest	12.16	16.32	17.60		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 31.JUL.2015 17:22:33

Lowest channel

Date: 31.JUL.2015 17:01:12

Middle channel

Date: 31.JUL.2015 17:03:42

Highest channel

Date: 31.JUL.2015 17:07:00

Lowest channel

Date: 31.JUL.2015 17:08:56

Middle channel

Date: 31.JUL.2015 17:10:11

Highest channel

Test mode: 802.11n(H20)

Date: 31.JUL.2015 17:13:43

Lowest channel

Date: 31.JUL.2015 17:16:33

Middle channel

Date: 31..TUT..2015 17:18:42

Highest channel

99% OBW

Test mode: 802.11b

Date: 31.JUL.2015 17:22:58

Lowest channel

Date: 31.JUL.2015 17:23:28

Middle channel

Date: 31.JUL.2015 17:23:51

Highest channel

Date: 31.JUL.2015 17:25:01

Lowest channel

Date: 31.JUL.2015 17:25:26

Middle channel

Date: 31..THT..2015 17:25:48

Highest channel

Test mode: 802.11n(H20)

Date: 31.JUL.2015 17:26:25

Lowest channel

Date: 31.JUL.2015 17:26:48

Middle channel

Date: 31.JUL.2015 17:27:11

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.4:2009 and KDB558074v03r03 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Pow	Limit(dBm)	Result			
	802.11b	Lilliit(GDIII)	Nosuit			
Lowest	7.70	3.95	2.83			
Middle	7.18	2.98	2.37	8.00	Pass	
Highest	7.09	3.14	1.50			

Test plot as follows:

Date: 31.JUL.2015 17:29:50

Lowest channel

Date: 31.JUL.2015 17:30:15

Middle channel

Date: 31..TUT..2015 17:30:33

Highest channel

Date: 31.JUL.2015 17:31:06

Lowest channel

Date: 31.JUL.2015 17:31:30

Middle channel

Date: 31..TUT..2015 17:32:40

Highest channel

Test mode: 802.11n(H20)

Date: 31.JUL.2015 17:35:09

Lowest channel

Date: 31.JUL.2015 17:35:56

Middle channel

Date: 31..TUT..2015 17:36:16

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table				
Test Instruments:	Ground Reference Plane Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

802.11b

Date: 31.JUL.2015 17:40:20

Lowest channel

Date: 31.JUL.2015 17:47:51

Highest channel

Date: 31..TIII..2015 17:42:09

Lowest channel

Date: 31..ππ..2015 17:50:58

Highest channel

802.11n(H20)

Date: 31.JUL.2015 17:43:32

Lowest channel

Date: 31.JUL.2015 17:52:41

Highest channel

6.6.2 Radiated Emission Method

0.0.2	radiated Emission M	adiated Emission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
	Test Method:	ANSI C63.4: 2009 and KDB 558074v03r03 section 12.1								
	Test Frequency Range:	2.3GHz to 2.5GHz								
	Test site:	Measurement D	istance: 3m							
	Receiver setup:									
		Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value				
	Limit:		KIVIO	TIVITZ	SIVITIZ	Average Value				
	LIIIII.	Freque	ency	Limit (dBuV/	m @3m)	Remark				
		Above 1		54.0	0	Average Value				
				74.0		Peak Value				
	Test setup:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
	Test Instruments:	ments: Refer to section 5.6 for details								
	Test mode:	Refer to section								
	Test results:	Passed		-						
		1								

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 533RF

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 Model

Test mode : Wifi-B-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

EMARI	8 25		Antenna Factor			Limit Line	Remark
8			<u>dB</u> /m	 			
1 2	2390.000 2390.000	TO SERVICE 1 (1997) 500			54.41 41.74		Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Job No. : 533RF

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 : Wifi-B-L Mode Model

Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: MT REMARK :

ReadAntenn		Antenna	Cable	Preamo		Limit	Over		
Freq		Factor						Remark	
MHz	dBu∇	dB/m	dB	dB	dBu∜/m	dBu√/m	dB		
2390, 000 2390, 000									

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No.

: 533RF : 4K Media Player EUT

Model : InVision 4K Media Player, 503-HD4KRK328

Test mode : Wifi-B-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

Fre			Antenna Factor							
	MHz	dBu∇	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500 2483.500					54.57 42.27			Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: 533RF Job No.

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328

: InVision 4K Media Pla
Iest mode : Wifi-B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Read	ReadAntenna		Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀		dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500	STATE OF THE STATE			0.00 0.00				Peak Average

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Job No. : 533RF

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 Model

Test mode : Wifi-G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

IIIIV.	r.	ReadAntenna		Cable Preamp			Limit	Over		
	Freq		Factor						Remark	
1	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2390.000	20.43	27.58	6.63	0.00	54.64	74.00	-19.36	Peak	
2	2390.000	7.96	27.58	6.63	0.00	42.17	54.00	-11.83	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 533RF Condition

Job No.

EUT : 4K Media Player

: InVision 4K Media Player, 503-HD4KRK328 : Wifi-G-L Mode Model

Test mode Power Rating : AC 120V/60Hz

Environment Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

ц,	ur .									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000	30.53	27.58	6.63	0.00	64.74	74.00	-9.26	Peak	
	2390,000	15.42	27, 58	6, 63	0.00	49.63	54.00	-4.37	Average	

Remark:

2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 533RF Job No.

: 4K Media Player EUT

Model : InVision 4K Media Player, 503-HD4KRK328
Test mode : Wifi-G-H Mode
Power Rating : AC 120V/600Z

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
Ī	MHz	dBu₹	dB/m	dB	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500	20.60 8.60		6.85 6.85		54.97 42.97			Peak Average
2 3 4	2486.659 2486.659			6.85 6.85	0.00	58.23	74.00	-15.77	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 533RF Condition

Job No.

EUT : 4K Media Player

Model : InVision 4K Media Player, 503-HD4KRK328

Test mode : Wifi-G-H Mode
Power Rating : AC 120V/60Hz

Environment : Torong F-C H Media Player

Environment : Temp:25.5°C Huni:55% Test Engineer: MT REMARK :

MAR.	v :	444	21.29		<u></u>		12.4	-44	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹		dB	dB	dBu∜/m	dBuV/m	dB	
1	2483.500	21.29	27.52	6.85	0.00	55.66	74.00	-18.34	Peak
2	2483.500	11.40	27.52	6.85	0.00	45.77	54.00	-8.23	Average
3	2484.828	28.13	27.52	6.85	0.00	62.50	74.00	-11.50	Peak
4	2484 828	10 94	27 52	6 85	0.00	45 31	54 00	-8 69	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC_PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 533RF Job No.

EUT : 4K Media Player

Model : InVision 4K Media Player, 503-HD4KRK328

Test mode : Wifi-N20-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

		Antenna Factor							
MHz	dBu∀	dB/m	dB	dB	dBu√/m	dBuV/m	dB		-
2390.000 2390.000			70 TO 10		54.78 42.10			Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 533RF Job No.

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 : Wifi-N20-L Mode Model

Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: MT REMARK :

	F		Antenna						Dan aula	
	rreq	rever	Factor	ross	ractor	rever	Line	Limit	Kemark	
- 5	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB		
	2390.000	28.31	27.58	6.63	0.00	62.52	74.00	-11.48	Peak	
2	2390.000	14.03	27.58	6.63	0.00	48.24	54.00	-5.76	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 533RF

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 : Wifi-N20-H Mode Model

Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

יונטוני			Antenna Factor				Limit Line		Remark
	MHz	dBu₹	dB/m	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2			27.52 27.52		0.00 0.00				Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 533RF Job No.

: 4K Media Player EUT

: InVision 4K Media Player, 503-HD4KRK328 Model

Test mode : Wifi-N20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

ши	5		Antenna Factor						
8	MHz	dBu∜	dB/m	<u>dB</u>	dB	$\overline{dB} \overline{uV}/\overline{m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500				0.00 0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Test Method:	ANSI C63.4:2009 and KDB558074 section 11								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:									
	Spectrum Analyzer								
	E.U.T								
	Non-Conducted Table								
	Ground Reference Plane								
Test Instruments:	Refer to section 5.6 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Date: 1.AUG.2015 10:28:40

30MHz~25GHz

Middle channel

Date: 1.AUG.2015 10:29:13

30MHz~25GHz

Highest channel

Date: 1.AUG.2015 10:29:44

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 1.AUG.2015 10:30:43

30MHz~25GHz

Middle channel

Date: 1.AUG.2015 10:31:22

30MHz~25GHz

Highest channel

Date: 1.AUG.2015 10:32:08

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 1.AUG.2015 10:32:55

30MHz~25GHz

Middle channel

Date: 1.AUG.2015 10:33:32

30MHz~25GHz

Highest channel

Date: 1.AUG.2015 10:34:03

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:200	09								
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
·	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	RMS 1MHz 3MHz Average									
Limit:	Francisco Lineit (JDs.)/(rs.@Oss.)									
	Frequency Limit (dBuV/m @3m) Remark									
	30MHz-88MHz 40.0 Quasi-peak Value									
	88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value									
	Above 1GHz 54.0 Average Value 74.0 Peak Value									
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the meters and to find the street Specified E 6. If the emission the limit spof the EUT have 10dB	at a 3 meter of the position was set 3 meter which was mountained to determine the antening and the rota table maximum reactiver system and width with sion level of the colified, then to would be reported to the position of the colified, then to would be reported to the position of the colified, then to would be reported to the total and would be reported to the total and would be reported to the total and the position of the position of the total and the position of the total and the position of the position of the position of the total and the position of the po	camber. The tage of the highes away from the maximum cal polarization was turned the total the turned the turned the turned to the turned the turned to turned to the turned to turn	able was ro ast radiation. I the interfer op of a varia e meter to for a value of the ons of the an T was arran to heights of from 0 degr eak Detect old Mode. ask mode wa be stopped a vise the emi one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a see to a see to 360 degrees					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Job No. : 533RF

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 : Wifi Mode Model

Test mode

Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK:

$r_{10}r_{01}r_{01}$									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹		dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	56.001	29.62	12.97	0.66	29.79	13.46	40.00	-26.54	
2	80.081	33.92	8.54	0.85	29.64	13.67	40.00	-26.33	
3	99.878	35.17	13.16	0.96	29.53	19.76	43.50	-23.74	
4	147.404	37.12	8.24	1.30	29.23	17.43	43.50	-26.07	
5	360.448	36.12	14.43	1.98	28.61	23.92	46.00	-22.08	
6	463.970	37.60	15.71	2.30	28.89	26.72	46.00	-19.28	

Site	:	3m char	mber						
Cond	ition :	FCC PAI	RT15 CLA	SS B 3:	n VULB9	163 (30M)	(G) VER	FICAL	
Job 1	No. :	533RF							
EUT	:	4K Med	ia Playe	r					
	1 :				aver. 50	13-HD4KI	RK328		
	mode :				_, 0_, 0.		a.o.c.o		
	r Rating :								
Entri	ronment :	Temp. 2	5 5°C H	uni - 559	(
	Engineer:		0.00 11	ши. оо	v				
REMAI		JIL I							
I/EJILAJ	in :	D J	Antenna	C-11-	D		1:-:+	0	
	F						Limit	Over	D1-
	rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Kemark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	79.800	38.29	8.54	0.85	29.64	18.04	40.00	-21.96	QP
1 2 3 4 5	99.878	38.50	13.16	0.96	29.53	23.09	43.50	-20.41	QP
3	146.888	36.60				16.90		-26.60	
4	199.286				28.83			-23.90	
5	360.448								
6	434.065					24.89		-21.11	
	101.000	~~. ~~	10.00		-0.01	- 1.00	10.00		4.

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.21	31.54	10.58	40.22	51.11	74.00	-22.89	Vertical	
4824.00	48.71	31.54	10.58	40.22	50.61	74.00	-23.39	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.95	31.54	10.58	40.22	41.85	54.00	-12.15	Vertical	
4824.00	39.20	31.54	10.58	40.22	41.10	54.00	-12.90	Horizontal	

Test mode: 8	02.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.94	31.57	10.64	40.15	50.00	74.00	-24.00	Vertical
4874.00	46.94	31.57	10.64	40.15	49.00	74.00	-25.00	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.42	31.57	10.64	40.15	40.48	54.00	-13.52	Vertical
4874.00	37.05	31.57	10.64	40.15	39.11	54.00	-14.89	Horizontal

Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.37	31.61	10.70	40.08	49.60	74.00	-24.40	Vertical
4924.00	46.85	31.61	10.70	40.08	49.08	74.00	-24.92	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.06	31.61	10.70	40.08	39.29	54.00	-14.71	Vertical
4924.00	37.23	31.61	10.70	40.08	39.46	54.00	-14.54	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.24	31.54	10.58	40.22	50.14	74.00	-23.86	Vertical
4824.00	48.73	31.54	10.58	40.22	50.63	74.00	-23.37	Horizontal
Test mode: 80	est mode: 802.11g			nel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	38.02	31.54	10.58	40.22	39.92	54.00	-14.08	Vertical
4824.00	38.43	31.54	10.58	40.22	40.33	54.00	-13.67	Horizontal

Test mode: 802.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.03	31.57	10.64	40.15	50.09	74.00	-23.91	Vertical
4874.00	47.22	31.57	10.64	40.15	49.28	74.00	-24.72	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.55	31.57	10.64	40.15	40.61	54.00	-13.39	Vertical
4874.00	37.42	31.57	10.64	40.15	39.48	54.00	-14.52	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.69	31.61	10.70	40.08	50.92	74.00	-23.08	Vertical
4924.00	47.21	31.61	10.70	40.08	49.44	74.00	-24.56	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.78	31.61	10.70	40.08	40.01	54.00	-13.99	Vertical
4924.00	38.03	31.61	10.70	40.08	40.26	54.00	-13.74	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.69	31.54	10.58	40.22	50.59	74.00	-23.41	Vertical
4824.00	48.63	31.54	10.58	40.22	50.53	74.00	-23.47	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	39.02	31.54	10.58	40.22	40.92	54.00	-13.08	Vertical
4824.00	38.62	31.54	10.58	40.22	40.52	54.00	-13.48	Horizontal

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.57	31.57	10.64	40.15	50.63	74.00	-23.37	Vertical	
4874.00	46.35	31.57	10.64	40.15	48.41	74.00	-25.59	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.14	31.57	10.64	40.15	39.20	54.00	-14.80	Vertical	
4874.00	37.45	31.57	10.64	40.15	39.51	54.00	-14.49	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.76	31.61	10.70	40.08	49.99	74.00	-24.01	Vertical
4924.00	48.01	31.61	10.70	40.08	50.24	74.00	-23.76	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.36	31.61	10.70	40.08	39.59	54.00	-14.41	Vertical
4924.00	38.12	31.61	10.70	40.08	40.35	54.00	-13.65	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.