Problem Set 15

MAT237: Advanced Calculus January 29, 2017 ANMOL BHULLAR

Problem 0.1. Let $Z_i \subseteq \mathbb{R}^n$, i = 1, ..., n be a collection of zero Jordan measure sets. Show that $\bigcup Z_i$ has also Jordan measure zero.

Solution. Let $\mathcal{Z} = \bigcup_{0 \leq i \leq k} \mathcal{Z}_i$. We are trying to show there exists a function $M : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ such that:

$$M(\mathcal{Z}) = \inf \left\{ \sum_{k=1}^{n} l(I_k) : I_k \text{ is an interval such that } \mathcal{Z} \subseteq \bigcup_{k=1}^{n} I_k \right\}$$

Consider I_1, \ldots, I_n where $I_1 \subseteq Z_1, I_2 \subseteq Z_2, \ldots, I_n \subseteq Z_n$. Since Z_k for $1 \le k \le n$ is a Jordan Measure Zero set, there exists a subinterval such that $I_k \subseteq \cup I_{k_i}$ where $\inf\{\sum_{i=1}^h I_{k_i}\} = 0$. Thus, it follows by the linear property of $\inf\{\lim m \inf\{\sum_{k=1}^n l(I_k)\} = 0$. This implies, $M(\mathcal{Z})$ has Jordan Measure Zero.