Výroková a predikátová logika - XII

Petr Gregor

KTIML MFF UK

ZS 2013/2014

Důsledek věty o spočetném modelu

Pomocí kanonického modelu (s rovností) jsme dříve dokázali následující větu.

Věta Nechť T je bezesporná teorie nejvýše spočetného jazyka L. Je-li L bez rovnosti, má T model, který je spočetný. Je-li L s rovností, má T model, který je nejvýše spočetný.

Důsledek Ke každé struktuře A nejvýše spočetného jazyka bez rovnosti existuje spočetná elementárně ekvivalentní struktura \mathcal{B} .

Důkaz Teorie Th(A) je bezesporná, neboť má model A. Dle předchozí věty má spočetný model \mathcal{B} . Jelikož je teorie $\mathrm{Th}(\mathcal{A})$ kompletní, je $\mathcal{A} \equiv \mathcal{B}$.

Důsledek Ke každé nekonečné struktuře A nejvýše spočetného jazyka s rovností existuje spočetná elementárně ekvivalentní struktura \mathcal{B} .

Důkaz Obdobně jako výše. Jelikož v A neplatí sentence "existuje právě n *prvků*" pro žádné $n \in \mathbb{N}$ a $A \equiv \mathcal{B}$, není B konečná, tedy je spočetná.

Spočetné algebraicky uzavřené těleso

Řekneme, že těleso $\mathcal A$ je *algebraicky uzavřené*, pokud v něm každý polynom (nenulového stupně) má kořen, tj. pro každé $n \geq 1$ platí

$$\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

Např. těleso $\underline{\mathbb{C}}=\langle\mathbb{C},+,-,\cdot,0,1\rangle$ je algebraicky uzavřené, zatímco tělesa $\underline{\mathbb{R}}$ a \mathbb{Q} nejsou (neboť polynom x^2+1 v nich nemá kořen).

Důsledek Existuje spočetné algebraicky uzavřené těleso.

Důkaz Dle předchozího důsledku existuje spočetná struktura elementárně ekvivalentní s tělesem \mathbb{C} , tedy je to rovněž algebraicky uzavřené těleso.

Izomorfismus struktur

Nechť A, B jsou struktury jazyka $L = \langle F, R \rangle$.

- Bijekce $h: A \to B$ je *izomorfismus* struktur A a B, pokud platí zároveň
 - (i) $h(f^A(a_1,\ldots,a_n))=f^B(h(a_1),\ldots,h(a_n))$ pro každý n-ární funkční symbol $f\in\mathcal{F}$ a každé $a_1,\ldots,a_n\in A$,
 - (ii) $R^A(a_1,\ldots,a_n)\Leftrightarrow R^B(h(a_1),\ldots,h(a_n))$ pro každý n-ární relační symbol $R\in\mathcal{R}$ a každé $a_1,\ldots,a_n\in A$.
- A a B jsou izomorfní (via h), psáno A ≃ B (A ≃h B), pokud existuje izomorfismus h struktur A a B. Říkáme rovněž, že A je izomorfní s B.
- Automorfismus struktury A je izomorfismus A s A.

Např. potenční algebra $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ s X = n je izomorfní s Booleovou algebrou $\underline{^n2} = \langle {^n2}, -_n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ via $h : A \mapsto \chi_A$, kde χ_A je charakteristická funkce množiny $A \subseteq X$.

Izomorfismus a sémantika

Uvidíme, že izomorfismus zachovává sémantiku.

Tvrzení Nechť A, B jsou struktury jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Bijekce $h: A \to B$ je izomorfismus A a B, právě když platí zároveň

(i) $h(t^A[e]) = t^B(he)$

- pro každý term t a e: Var $\rightarrow A$,
- (ii) $A \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[he]$ pro každou formuli φ a $e: Var \to A$.

Důkaz (\Rightarrow) Indukcí dle struktury termu t, respektive formule φ .

- (\Leftarrow) Dosazením termu $f(x_1,\ldots,x_n)$ do (i) či atomické formule $R(x_1,\ldots,x_n)$
- do (ii) pro ohodnocení $e(x_i) = a_i$ dostaneme, že h vyhovuje definici izomorfismu.

Důsledek Pro každé struktury A, B stejného jazyka,

$$A \simeq B \Rightarrow A \equiv B$$
.

Poznámka Obrácená implikace obecně neplatí, např. $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, ale $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$, neboť $|\mathbb{Q}| = \omega$ a $|\mathbb{R}| = 2^{\omega}$.

Konečné modely s rovností

Tvrzení Pro každé konečné struktury A, B stejného jazyka s rovností,

$$\mathcal{A} \equiv \mathcal{B} \Rightarrow \mathcal{A} \simeq \mathcal{B}.$$

Důkaz Je |A| = |B|, neboť lze vyjádřit "existuje právě n prvků".

- Nechť \mathcal{A}' je expanze \mathcal{A} do jazyka $L' = L \cup \{c_a\}_{a \in A}$ o jména prvků z A.
- Ukážeme, že \mathcal{B} lze expandovat na \mathcal{B}' do jazyka L' tak, že $\mathcal{A}' \equiv \mathcal{B}'$. Pak zřejmě $h \colon a \mapsto c_a^{\mathcal{B}'}$ je izomorfismus \mathcal{A}' s \mathcal{B}' a tedy i izomorfismus \mathcal{A} s \mathcal{B} .
- Stačí ukázat, že pro každé $c_a^{A'}=a\in A$ existuje $b\in B$ t.ž. $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.
- Označme Ω množinu formulí $\varphi(x)$ t.ž. $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, tj. $\mathcal{A} \models \varphi[e(x/a)]$.
- Jelikož je A konečné, existuje konečně formulí $\varphi_0(x), \ldots, \varphi_m(x)$ tak, že pro každé $\varphi \in \Omega$ je $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$ pro nějaké i.
- Jelikož $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \leq m} \varphi_i$, existuje $b \in B$ t.ž. $\mathcal{B} \models \bigwedge_{i \leq m} \varphi_i[e(x/b)]$.
- Tedy pro každou $\varphi \in \Omega$ je $\mathcal{B} \models \varphi[e(x/b)]$, tj. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \square

Důsledek Má-li kompletní teorie jazyka s rovností konečný model, jsou všechny její modely izomorfní.

Kategoričnost

- *Izomorfní spektrum* teorie T je počet $I(\kappa, T)$ navzájem neizomorfních modelů teorie T pro každou kardinalitu κ .
- Teorie T je κ -kategorická, pokud má až na izomorfismus právě jeden model kardinality κ , tj. $I(\kappa,T)=1$.

Tvrzení Teorie DeLO (tj. "bez konců") je ω -kategorická.

Důkaz Nechť \mathcal{A} , $\mathcal{B} \models DeLO$ s $A = \{a_i\}_{i \in \mathbb{N}}$, $B = \{b_i\}_{i \in \mathbb{N}}$. Indukcí dle n lze nalézt prosté parciální funkce $h_n \subseteq h_{n+1} \subset A \times B$ zachovávající uspořádání tak, že $\{a_i\}_{i < n} \subseteq \text{dom}(h_n)$ a $\{b_i\}_{i < n} \subseteq \text{rng}(h_n)$. Pak $\mathcal{A} \simeq \mathcal{B}$ via $h = \cup h_n$.

Obdobně dostaneme, že např. $\mathcal{A}=\langle\mathbb{Q},\leq\rangle$, $\mathcal{A}\upharpoonright(0,1]$, $\mathcal{A}\upharpoonright[0,1)$, $\mathcal{A}\upharpoonright[0,1]$ jsou až na izomorfismus všechny nejvýše spočetné modely teorie $DeLO^*$. Pak

$$I(\kappa, \textit{DeLO}^*) = egin{cases} 0 & \mathsf{pro} \ \kappa \in \mathbb{N}, \ 4 & \mathsf{pro} \ \kappa = \omega. \end{cases}$$

ω -kategorické kritérium kompletnosti

Věta Nechť jazyk L je nejvýše spočetný.

- (i) Je-li teorie T jazyka L bez rovnosti ω -kategorická, je kompletní.
- (ii) Je-li teorie T jazyka L s rovností ω -kategorická a bez konečného modelu, je kompletní.

extstyle ext

Např. teorie $DeLO^+$, $DeLO^+$, $DeLO^+$ jsou kompletní a jsou to všechny (navzájem neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

Poznámka Obdobné kritérium platí i pro vyšší než spočetné kardinality.

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K \subseteq M(L)$ je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- ullet teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Není-li K uzavřená na el. ekvivalenci, není axiomatizovatelná.

Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

Důsledek kompaktnosti

Věta *Má-li teorie* T *pro každé* $n \in \mathbb{N}$ *alespoň* n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme extenzi $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ teorie T v jazyce rozšířeném o spočetně nových konstantních symbolů c_i .
- Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- Jeho redukt na původní jazyk je hledaný nekonečný model teorie T.

Důsledek Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i \overline{K} jsou axiomatizovatelné.

 $D\mathring{u}kaz$ (\Rightarrow) Je-li T konečná axiomatizace K v uzavřeném tvaru, pak teorie s jediným axiomem $\bigvee_{\varphi \in T} \neg \varphi$ axiomatizuje \overline{K} . Nyní dokažme (\Leftarrow).

- Nechť T, S jsou teorie jazyka L takové, že M(T) = K, $M(S) = \overline{K}$.
- Pak $M(T \cup S) = M(T) \cap M(S) = \emptyset$ a dle věty o kompaktnosti existují konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Jelikož

$$M(T) \subseteq M(T') = \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K.

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- charakteristiky 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1+1+\cdots+1$ (+ aplikováno (p-1)-krát).
- *charakteristiky* p, kde p je prvočíslo, je-li p je nejmenší t.ž. $A \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií T ∪ {p1 = 0}.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{p1 \neq 0 \mid p \in \mathbb{N}^+\}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

extstyle ext

Otevřená axiomatizovatelnost

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

Důkaz Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'. \square

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \leq n \\ i \neq j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.

Definovatelné množiny

Zajímá nás, které množiny lze v dané struktuře zadefinovat.

• Množina definovaná formulí $\varphi(x_1, \dots, x_n)$ ve struktuře \mathcal{A} je množina

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$$

 $\mathsf{Zkr\'{a}cen\'{y}m}\ \mathsf{z\'{a}pisem},\ \varphi^{\mathcal{A}}(\overline{x}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})]\},\ \mathsf{kde}\ |\overline{x}| = n.$

• Množina definovaná formulí $\varphi(\overline{x},\overline{y})$ s parametry $\overline{b}\in A^{|\overline{y}|}$ ve struktuře $\mathcal A$ je

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Např. pro $\varphi=E(x,y)$ je $\varphi^{\mathcal{G},b}(x,y)$ množina sousedů vrcholu b v grafu \mathcal{G} .

• Pro strukturu \mathcal{A} , množinu $B \subseteq A$ a $n \in \mathbb{N}$ označme $\mathbf{Df}^n(\mathcal{A}, B)$ třídu všech množin $D \subseteq A^n$ definovatelných ve struktuře \mathcal{A} s parametry z B.

Pozorování $\operatorname{Df}^n(\mathcal{A}, B)$ je uzavřená na doplněk, sjednocení, průnik a obsahuje \emptyset , A^n . Tedy tvoří podalgebru potenční algebry $\mathcal{P}(A^n)$.

Definovatelnost a automorfismy

Ukážeme, že definovatelné množiny jsou invariantní vůči automorfismům.

Tvrzení Nechť $D \subseteq A^n$ je množina definovatelná v struktuře \mathcal{A} z parametrů \overline{b} a h je automorfismus \mathcal{A} , který je identický na \overline{b} . Pak h[D] = D.

Důkaz Nechť $D=\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}).$ Pak pro každé $\overline{a}\in A^{|\overline{x}|}$

$$\overline{a} \in D \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[he(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$$

$$\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h\overline{a}, \overline{y}/h\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow h\overline{a} \in D. \quad \Box$$

Např. graf $\mathcal G$ má právě jeden netriv. automorfismus h zachovávající vrchol 0.

Navíc množiny $\{0\}$, $\{1,4\}$, $\{2,3\}$ jsou definovatelné z parametru 0. Tedy $Df^{1}(\mathcal{G},\{0\}) = \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$

Základní algebraické teorie

• *Teorie grup* nad jazykem $L = \langle +, -, 0 \rangle$ s rovností má axiomy

$$x+(y+z)=(x+y)+z$$
 (asociativita +)
 $0+x=x=x+0$ (neutralita 0 k +)
 $x+(-x)=0=(-x)+x$ (-x je inverzní prvek k x)

- Teorie komutativních grup má navíc x + y = y + x (komutativita +)
- *Teorie okruhů* je jazyka $L = \langle +, -, \cdot, 0, 1 \rangle$ s rovností, má navíc axiomy

$$1 \cdot x = x = x \cdot 1$$
 (neutralita 1 k ·) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (asociativita ·) $x \cdot (y + z) = x \cdot y + x \cdot z, (x + y) \cdot z = x \cdot z + y \cdot z$ (distributivita · k +)

- Teorie komutativních okruhů má navíc $x \cdot y = y \cdot x$ (komutativita ·)
- Teorie těles stejného jazyka má navíc axiomy

 $x \neq 0 \rightarrow (\exists y)(x \cdot y = 1)$

(existence inverzního prvku k ·)

 $0 \neq 1$

(netrivialita)

Robinsonova aritmetika

Jak efektivně a přitom co nejúplněji axiomatizovat $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$? Jazyk aritmetiky je $L=\langle S,+,\cdot,0,\leq\rangle$ s rovností.

Robinsonova aritmetika Q má axiomy (konečně mnoho)

$$S(x) \neq 0 \qquad x \cdot 0 = 0$$

$$S(x) = S(y) \rightarrow x = y \qquad x \cdot S(y) = x \cdot y + x$$

$$x + 0 = x \qquad x \neq 0 \rightarrow (\exists y)(x = S(y))$$

$$x + S(y) = S(x + y) \qquad x \leq y \leftrightarrow (\exists z)(z + x = y)$$

Poznámka Q je velmi slabá, např. nedokazuje komutativitu či asociativitu operací +, · ani transitivitu \leq . Nicméně postačuje například k důkazu existenčních tvrzení o numerálech, která jsou pravdivá v $\underline{\mathbb{N}}$.

Např. pro
$$\varphi(x,y)$$
 tvaru $(\exists z)(x+z=y)$ je
$$Q \vdash \varphi(\underline{1},\underline{2}), \quad \textit{kde } \underline{1} = S(0) \textit{ a } \underline{2} = S(S(0)).$$

Peanova aritmetika

Peanova aritmetika PA má axiomy

- (a) Robinsonovy aritmetiky Q,
- (b) schéma indukce, tj. pro každou formuli $\varphi(x, \overline{y})$ jazyka L axiom

$$(\varphi(0,\overline{y}) \wedge (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

Poznámka PA je poměrně dobrou aproximací $\operatorname{Th}(\underline{\mathbb{N}})$, dokazuje všechny základní vlastnosti $\underline{\mathbb{N}}$. Na druhou stranu existují tvrzení pravdivá v $\underline{\mathbb{N}}$ ale nezávislá v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat $\underline{\mathbb{N}}$ (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) \ ((X(0) \land (\forall x)(X(x) \to X(S(x)))) \to (\forall x) \ X(x)).$$

