MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #8 and Additional Practice Questions

1. The sample space is {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} (where HTH means heads on the first flip, tails on the second, heads on the third, and so on). Each of these outcomes occurs with probability $(\frac{1}{2})^3$ because the three flips are independent.

X = 0 if the outcome is TTT.

X = 1 if the outcome is in {HHT, HTH, THH}.

X = 2 if the outcome is in {HTT, THT, TTH}.

X = 3 if the outcome is HHH.

Thus the probability distribution of X is given by

- 2. (a) Without any further information, the best the doctor can answer is to say that about one in every three pairs of twins worldwide is a pair of identical twins and hence the probability is about $\frac{3}{10}$.
 - (b) Let I be the event the twins are identical and M be the event they're both male.

 $Pr(I) = \frac{3}{10}$ from the question.

 $Pr(M|I) = \frac{1}{2}$ from the question.

 $\Pr(M|\overline{I}) = \frac{1}{4}$ from the question.

By Bayes' theorem,

$$\Pr(I|M) = \frac{\Pr(M|I)\Pr(I)}{\Pr(M|I)\Pr(I) + \Pr(M|\overline{I})\Pr(\overline{I})}$$
$$= \frac{\frac{\frac{1}{2} \times \frac{3}{10}}{(\frac{1}{2} \times \frac{3}{10}) + (\frac{1}{4} \times (1 - \frac{3}{10}))}}{= \frac{6}{13}.$$

So the doctor can say that the probability is about $\frac{6}{13}$.

3. (a) Using the definition of expected value,

$$E[X] = \frac{1}{2} \times 0 + \frac{1}{3} \times 1 + \frac{1}{6} \times 2 = \frac{2}{3}.$$

Now, using $E[X] = \frac{2}{3}$,

$$Var[X] = \frac{1}{2} \times (0 - \frac{2}{3})^2 + \frac{1}{3} \times (1 - \frac{2}{3})^2 + \frac{1}{6} \times (2 - \frac{2}{3})^2 = \frac{2}{9} + \frac{1}{27} + \frac{8}{27} = \frac{5}{9}.$$

(b) Because E[Y] = 2 we have

$$2 = E[Y] = p \times 0 + \frac{1}{12} \times 1 + \frac{1}{3} \times 2 + q \times 3 = \frac{3}{4} + 3q.$$

Solving $2 = \frac{3}{4} + 3q$, we see $q = \frac{5}{12}$.

Then, because $p + \frac{1}{12} + \frac{1}{3} + q = 1$, we have that $p = \frac{1}{6}$.

4. (a) $\Pr(X=8) = \frac{1}{256}$ because exactly when the string is 11111111. $\Pr(Y=8) = \frac{1}{256}$ because exactly when the string is 00000000. $\Pr(X=8 \land Y=8) = 0$ because there is no binary string of length 8 with 8 0s and 8 1s. Thus $\Pr(X=8 \land Y=8) \neq \Pr(X=8) \Pr(Y=8)$ and so X and Y are not independent. (There are many other examples that will show this, as well).

(b) Because the string has length 8, Z = X + Y is always 8. So the probability distribution of Z is given by

$$\begin{array}{c|c} z & 8 \\ \hline \Pr(Z=z) & 1 \end{array}$$

5. (a) One example is a random variable X with probability distribution given by

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline \Pr(X=x) & \frac{1}{2} & \frac{1}{2} \end{array}$$

Then $E[X] = \frac{1}{2}$, but $Pr(X = \frac{1}{2}) = 0$.

(b) One example is a random variable Y with probability distribution given by

$$\begin{array}{c|c|c}
y & -1000000 & 1 \\
\hline
\Pr(Y=y) & \frac{1}{1000} & \frac{999}{1000}
\end{array}$$

Then $E[Y] = \frac{1}{1000} \times -1000000 + \frac{999}{1000} \times 1 = -999.001$, but $\Pr(Y > 0) = \frac{999}{1000}$.

(c) The best you'll manage is $\frac{1}{3}$ (google "Markov's inequality" for why). One example would be

$$\begin{array}{c|c|c} z & 0 & 3 \\ \hline \Pr(Z=z) & \frac{2}{3} & \frac{1}{3} \end{array}$$

Then $E[Z] = \frac{1}{3} \times 3 = 1$, and $\Pr(Z \ge 3E[Z]) = \Pr(Z \ge 3) = \frac{1}{3}$.