МИНИСТЕРСТВО ОБРАЗОВАНИЯ РУСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О.СУХОГО

Факультет автоматизированных и информационных систем Специальность 1-53 01 05 «Автоматизированные электроприводы» Кафедра «Автоматизированный электропривод»

РАСЧЕТНО-ПОЯНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине: «Электрические машины»

на тему: «Проектирование трёхфазного асинхронного электродвигателя с

короткозамкнутым ротором»

	Руководитель: доцент к.т.н.
	Тодарев В.В.
	Дата проверки
	Дата защиты
	Оценка работы
Подписи членом комиссии	
По защите курсового проекта	

Выполнил: студент гр. ЭП-21

Ларьков А.В.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Задание	4
1. Определение главных размеров электродвигателя	5
2. Расчёт обмотки, паза и ярма статора	7
3. Расчёт обмотки, паза и ярма ротора	12
4. Расчёт магнитной цепи асинхронной машины	17
5. Определение параметров асинхронной машины для рабочего режима	20
6.Расчёт постоянных потерь мощности	24
7. Рабочие характеристики асинхронного двигателя	26
8. Пусковые характеристики асинхронного двигателя	301
8.1 Расчёт пусковых характеристик с учётом эффекта вытеснения тока	301
8.2. Расчёт пусковых характеристик с учётом насыщения магнитной систем	Ы
асинхронной машины	356
9. Тепловой расчёт	401
Заключение	434
СПИСОК ЛИТЕРАТУРЫ	445

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.32.	.ПЗ
Разр	работ.	Ларьков А.В.				Литер.	Лист	Листов
Про	верил	Тодарев В.В				У 2		
					Содержание	ררד	V, гр.	ЭП-21

ВВЕДЕНИЕ

Целью данного курсового проектирования является расширение и закрепление знаний по курсу "Электрические машины", овладение современными методами расчёта и конструирования электрических машин, приобретение навыков пользования справочной литературой, что потребуется в процессе работы на производстве при пересчёте обмоток электрических машин на другое напряжение или при ремонте машин.

Асинхронные двигатели являются основными преобразователями электрической энергии в механическую и составляют основу электропривода большинства механизмов, используемых во всех отраслях народного хозяйства.

Уже в настоящее время асинхронные двигатели потребляют более 40 % вырабатываемой в стране электроэнергии, на их изготовление расходуется большое количество дефицитных материалов: обмоточной меди, изоляции, электротехнической стали и других, а затраты на обслуживание и ремонт асинхронных двигателей в эксплуатации составляют более 5 % затрат на ремонт и обслуживание всего установленного оборудования. Поэтому создание серий высокоэкономичных и надёжных асинхронных двигателей является важнейшей народнохозяйственной задачей, а правильный выбор двигателей, их эксплуатация и высококачественный ремонт играют первоочередную роль в экономии материальных и трудовых ресурсов в нашей стране.

								-
					КП.1-53 01 05.	ЭП-2	1.32	П3
Изм	Лист	№ докум.	Подпись	Дата	7471.7 00 01 00.	0112	1.02.	110
Разр	абот.	Ларьков А.В				Литер.	Лист	Листов
Про	верил	Тодарев В.В				У	3	
					ВВЕДЕНИЕ	ГГТУ, гр. ЭП-21		
							_	

Задание

Разработать проект трёхфазного асинхронного электродвигателя с короткозамкнутым ротором со следующими основными параметра-ми в качестве исходных данных:

- номинальная мощность на валу: Р=37 кВт;
- номинальные напряжения: U1ном.ф/U1ном=380/220 В;
- число полюсов: 2p=4;
- конструктивное исполнение: ІМ1;
- исполнение по способу защиты: IP44;
- способ охлаждения: ICO141;
- климатическое исполнение и категория размещения: УЗ;
- установочный размер: М;
- класс нагревостойкости изоляции: F.

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.32.	ПЗ
Разр	абот.	Ларьков А.В				Литер.	Лист	Листов
Про	верил	Тодарев В.В				У	4	
					Задание	ГГТУ, гр. ЭП-21		ЭП-21

1. Определение главных размеров электродвигателя

Высоту оси вращения h АД предварительно определяют по рисунку $\Pi.1\ [1]$ для заданных P_2 и 2p в зависимости от исполнения двигателя.

Принимает предварительное значение оси вращения (рис. П.1, а, стр.121, источник 1):

h=200 MM = 0.200 M.

Принимаем стандартное значение:

h = 200 MM = 0.2 M.

Тогда по таблице П.1 (ист.1, стр.121) принимаем значения внешнего диаметра статора АД: D_a =359 мм = 0,359 м.

Выбираем коэффициент K_D по таблице П.2 (ист.1, стр.121):

 $K_D = 0.68$.

Определяем внутренний диаметр статора:

 $D=K_D \cdot D_a=0,68 \cdot 0,359=0,244$ м, где

D – внутренний диаметр статора АД, м;

 K_D — коэффициент, характеризующий отношения внутренних и внешних диаметров сердечников статор асинхронных двигателей серий 4A и AИР при различных числах полюсов.

Находим полюсное деление двигателя, м:

$$\tau = \frac{\pi D}{2p} = \frac{\pi \cdot 0,244}{4} = 0,192 \text{ m}.$$

Находим расчетную мощность двигателя:

$$P = P_2 \cdot 10^3 \cdot \frac{k_E}{\eta \cdot \cos \phi} = 37 \cdot 10^3 \cdot \frac{0.98}{0.91 \cdot 0.89} = 44771 \text{ B} \cdot \text{A},$$

где P_2 – номинальная мощность на валу АД, кВт;

 k_E — коэффициент, характеризующий отношение ЭДС обмотки статора к номинальному напряжению (приближенно — по рис. П.2, [1], стр.122).

 $k_E = 0.98$.

л - КПД машины, о.е., предварительное значения которого можно определить по рис. П.3, а ([1], стр. 122).

n=0,91.

 $\cos \phi$ — коэффициент мощности АД, о.е., предварительное значение которого можно определить по рис. П.3 и П.4 ([1]).

$$\cos \varphi = 0.89$$

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.32.	ПЗ
	абот.	Ларьков А.В.		, ,	05000000000	Литер.	Лист	Листов
Про	верил	Тодарев В.В			Определение главных размеров электродвигателя	у ГГТ)	⁵ У, гр.	ЭП-21

Выбираем электромагнитные нагрузки (предварительные значения по рис. П.5, а, [1], стр.123).

$$B_6 = 0.78 \text{ T}_{\pi}$$
; $A = 39 \cdot 10^3 \text{ A/m}$.

Выбираем двухслойную обмотку исходя из мощности двигателя и высоты оси вращения:

$$k_{obm1} = 0.92$$
.

Предварительно коэффициент полюсного перекрытия a_{6} и коэффициент формы поля k_{B} определяем следующим образом:

$$a_{\delta} = \frac{2}{\pi} \approx 0,64.$$

$$k_B = \frac{\pi}{2\sqrt{2}} = 1,11.$$

Синхронная частота вращения двигателя:

$$n_1 = \frac{60 \cdot f_1}{p} = \frac{60 \cdot 50}{2} = 1500$$
 об / мин ,

где
$$f_1$$
=50 Гц;

р – число пар полюсов

Синхронная угловая частота вращения АД:

$$w = 2\pi \cdot \frac{n_1}{60} = 2\pi \cdot \frac{1500}{60} = 157,08 \ pad/c$$

С учётом выбранных ранее параметров определяем расчётная длина магнитопровода двигателя:

$$l_{\delta} = \frac{P^{'}}{D^{2} \cdot w \cdot k_{B} \cdot k_{o\delta M1} \cdot A \cdot B_{\delta}} = \frac{44771}{0,244^{2} \cdot 157,08 \cdot 1,11 \cdot 0,92 \cdot 39000 \cdot 10^{3} \cdot 0,78} = 0,154 \text{ m}$$

Определяем правильность выбора главных размеров D и $l_{\mbox{\tiny 6}}$ по выражению:

$$\lambda = \frac{l_{\delta}}{\tau} = \frac{0,154}{0.192} = 0,802$$

Данное значение лежит в допустимых пределах для АД принятого исполнения IP44 (рис. П.8, [1], стр.124).

Так как, длина сердечника не превышает 250...300 мм, радиальные вентиляционные каналы отсутствуют, поэтому:

$$l_1 = l_{CT1} = l_6 = 0,154 \text{ M}$$

Конструктивная длина сердечника ротора в машинах с h < 250 мм принимается равной длине сердечника статора:

$$l_2 = l_1 = 0,154 \text{ M}$$

Длина стали сердечника ротора если вентиляционные каналы отсутствуют

$$l_{CT2} = l_2 = 0,154 \text{ M}$$

Изм.	Лист	№ Докум	Подпись	Дата

Лист

2. Расчёт обмотки, паза и ярма статора.

Предварительно по рис. П.9 ([1], стр. 125) определяют диапазон возможных значений зубцового деления статора электродвигателя:

$$t_{z1min}$$
=0,014 м и t_{z1max} =0,016 м.

Находим предельные значения числа пазов статора АД исходя из ранее принятых значений $t_{z1min}\,u\;t_{z1max}$:

$$Z_{1\min} = \frac{\pi D}{t_{z_{1\max}}} = \frac{\pi \cdot 0,244}{0,016} = 47,909;$$

$$Z_{1\max} = \frac{\pi D}{t_{x\max}} = \frac{\pi \cdot 0,244}{0,014} = 54,753$$

Окончательное число пазов статора Z_1 выбирается из диапазона между значениями Z_{1min} и Z_{1max} . При этом необходимо учесть два условия:

Число пазов статора Z_1 будет кратно числу фаз m_1 АД (m_1 =3) и число пазов на полюс и фазу q_1 будет целым числом:

$$\frac{Z_1}{m_1} = \frac{48}{3} = 16;$$

$$q_1 = \frac{Z_1}{2pm_1} = \frac{48}{2 \cdot 2 \cdot 3} = 4;$$

Окончательно принимаем Z₁=48.

Окончательное значение зубцового деления обмотки статора:

$$t_{z1} = \frac{\pi D}{2pm_1q_1} = \frac{\pi \cdot 0,244}{2 \cdot 2 \cdot 3 \cdot 4} = 16$$
 м

Номинальный ток обмотки статора АД:

$$I_{1\text{HOM}} = \frac{P_2}{m_1 U_{1\text{HOM}, \phi} \text{pcos} \phi} = \frac{37 \cdot 10^3}{3 \cdot 220 \cdot 0.91 \cdot 0.89} = 69.2 \text{ A}$$

Число эффективных проводников в пазу (предварительное значение при условии, что число параллельных ветвей обмотки a=1 (параллельные ветви отсутствуют):

$$u'_{\Pi} = \frac{\pi DA}{I_{1HOM}Z_1} = \frac{\pi \cdot 0,244 \cdot 39000 \cdot 10^3}{69,2 \cdot 48} = 9$$

Число параллельных ветвей:

$$a = \frac{2p}{k} = \frac{2 \cdot 2}{4} = 1.$$

								•
					КП.1-53 01 05.	ЭП-2	1.32	П3
Изм	Лист	№ докум.	Подпись	Дата	33 3. 33.	<u> </u>		
Разр	абот.	Ларьков А.В			_	Литер.	Лист	Листов
Про	верил	Тодарев В.В			Расчёт обмотки,	У	7	
					паза и ярма статора	ררד	У, гр.	ЭП-21

Тогда фактическое число эффективных проводников в пазу u_{Π} при а = 1(в этом случае обмотка однослойная):

$$u_{\pi} = au'_{\pi} = 1 \cdot 9 = 9$$

Таким образом, $u_{\Pi} = 9$

Число витков в фазе обмотки статора:

$$w_1 = \frac{u_{\pi} Z_1}{2am_1} = \frac{9 \cdot 48}{2 \cdot 1 \cdot 3} = 72.$$

Находят окончательное значение линейной нагрузки:

$$A = \frac{2I_{1\text{HOM}}m_1w_1}{\pi D} = \frac{2 \cdot 69, 2 \cdot 3 \cdot 72}{\pi \cdot 0.244} = 38999 = 3,9 \cdot 10^3 \frac{A}{M}.$$

Значение А находится в допустимых пределах (рис. П.5, а, [1], стр.123).

Так как в нашем случае однойслойная концентрическая обмотка из круглого изолированного провода (всыпная обмотка), то она выполняется без укорочения шага, поэтому для них β =0,833 и k_{106M} =0,92.

Магнитный поток:

$$\Phi = \frac{k_E U_{1\text{hom}.\varphi}}{4k_B w_1 k_{0\text{GM}} f_1} = \frac{0.98 \cdot 220}{4 \cdot 1.11 \cdot 72 \cdot 0.92 \cdot 50} = 0.0147 \text{ B}6.$$

Индукция магнитного поля в воздушном зазоре:

$$B_6 = \frac{p\Phi}{Dl_6} = \frac{2 \cdot 0,0147}{0,244 \cdot 0,154} = 0,78 \text{ Тл.}$$

Значение произведения линейной нагрузки на плотность тока AJ найдём по рис. П.11, а ([1], стр.129):

$$AJ=300\cdot10^9 A^2/M^3$$
.

Плотность тока в обмотке статора (предварительное значение):

$$J_1 = \frac{AJ}{A} = \frac{300 \cdot 10^9}{38,999 \cdot 10^3} = 7,69 \cdot 10^6 \frac{A}{M^2} = 7,69 \frac{A}{MM^2}.$$

Площадь поперечного сечения эффективного проводника (предварительное значение):

$$q_{9\phi} = \frac{I_{1HOM}}{aI_1} = \frac{69.2}{1 \cdot 7.69} = 8.9 \text{ mm}^2.$$

При таком сечении диаметр эффективного проводника будет равен:

$$d_{\pi p} = \sqrt{\frac{4q_{3\varphi}}{\pi}} = \sqrt{\frac{4 \cdot 8.9}{\pi}} = 0,003 \text{ m} = 3,385 \text{ mm}.$$

В качестве обмоточного провода принимаем круглый медный изолированных провод марки ПЭТВ сечением $q_{\scriptscriptstyle 3л}$ =2,27 мм² и диаметром $d_{\scriptscriptstyle 3л}$ =1,7 мм (таблица 6, [1], стр.127). Диаметр провода с учетом изоляции $d_{\scriptscriptstyle H3}$ =1,785 мм

Изм.	Лист	№ Докум	Подпись	Дата

С учетом рекомендаций на странице 13 и 14 ([1]), принимаем число элементарных проводников $n_{\text{эл}}$ =4. Тогда уточнённое значение площади поперечного сечения эффективного проводника:

$$q_{\theta\phi} = q_{\theta\pi} n_{\theta\pi} = 2,27 \cdot 4 = 9,08 \text{ мм}^2.$$

Плотность тока в обмотке статора (уточнённое значение):

$$J_1 = \frac{I_{1\text{HOM}}}{aq_{3\pi}n_{3\pi}} = \frac{69.2}{1 \cdot 2.27 \cdot 4} = 7.621 \frac{A}{\text{MM}^2}.$$

Всыпную обмотку статора с круглыми обмоточным проводом будем укладывать в пазы трапецеидальной формы (рисунок П.13, а; [1], стр. 130).

Длина стали сердечника статора $l_{CT1} = l_6 = 0,154$ м.

Коэффициент заполнения сталью магнитопровода статора (таблица П.8, [1], стр. 132) k_{C1} =0,97.

По таблице П.7 ([1], стр.131) предварительно принимаем значения:

- Магнитной индукции в зубцах статора при постоянном сечении $B_{Z1} \! = \! 1,\! 6 \ T \pi.$
- Магнитной индукции в ярме статора В_а=1,4 Тл.

Рис. 2.1. Размеры трапецеидальных полузакрытых пазов статора асинхронного двигателя

Ширина зубца статора (предварительное значение):

$$b_{Z1} = \frac{B_{\delta}t_{Z1}l_{\delta}}{B_{Z1}l_{CT1}k_{C1}} = \frac{0.78 \cdot 16 \cdot 0.154}{1.6 \cdot 0.154 \cdot 0.97} = 8.04 \text{ MM}.$$

Высота ярма статора:

$$h_a = \frac{\Phi}{2B_a l_{CT1} k_{C1}} = \frac{0,0147}{2 \cdot 1,4 \cdot 0,154 \cdot 0,97} = 35,1 \cdot 10^{-3} \text{ m} = 35,1 \text{ mm} \,.$$

Изм.	Лист	№ Докум	Подпись	Дата

Размеры паза в штампе определим с учётом приведённых на стр. 15 и 16 ([1]) рекомендаций и рассчитаем по соответствующим выражениям (рис. 2.1).

- Ширина шлица паза $b_{m1} = 3,7$ мм.
- Высота шлица паза $h_{m1} = 1$ мм.
- Угол наклона грани клиновой части паза β_{κ} =45°.
- Высота паза:

$$h_{\pi 1} = \frac{D_a - D}{2} - h_a = \frac{359 - 244}{2} - 35,1 = 22,4$$
 mm.

• Меньшая ширина паза:

$$b_1 \! = \! \frac{\pi (D \! + \! 2h_{\text{III}1} \! - \! b_{\text{III}1}) \! - \! Z_1 b_{Z1}}{Z_1 \! - \! \pi} \! = \! \frac{\pi (244 \! + \! 2 \! \cdot \! 1 \! - \! 3, \! 7) \! - \! 48 \! \cdot \! 8, \! 04}{48 \! - \! \pi} \! = \! 8,\! 4 \text{ MM}.$$

Большая ширина паза:

$$b_2 = \frac{\pi(D + 2h_{\pi 1})}{Z_1} \cdot b_{Z1} = \frac{\pi(244 + 2 \cdot 22, 4)}{48} \cdot 8,4 = 10,9 \text{ mm}.$$

Высота клиновой части паза:

$$h_k = \frac{b_1 - b_{iii1}}{2} = \frac{8,4-3,7}{2} = 2,35 \text{ MM}.$$

Высота паза без учёта высота клиновой части и высота шлица:

$$h_{\text{п.к.}} = h_{\text{п1}} - \left(h_{\text{ш1}} + \frac{b_1 - b_{\text{ш1}}}{2}\right) = 22,4 - \left(1 + \frac{8,4 - 3,7}{2}\right) = 19,1 \text{ мм.}$$

Припуски на сборку по ширине Δb_{n1} и высоте Δh_{n1} паза (таблица П.9, [1], стр. 132):

 $\Delta b_{\pi 1} = 0,2$ mm; $\Delta h_{\pi 1} = 0,2$ mm.

Размеры паза «в свету»:

Высота паза:

$$h'_{\pi 1} {=} h_{\pi 1} \text{--} \ \Delta h_{\pi 1} = 22, \! 4 - 0, \! 2 = 22, \! 2$$
 мм.

Высота паза без учёта высоты клиновой части и высота шлица:

$$h'_{\text{п.к.}} = h_{\text{п.к.}}$$
 - $\Delta h_{\text{п1}} = 19, 1 - 0, 2 = 18.9$ mm.

Меньшая ширина паза:

$$b'_1=b_1-\Delta b_{\pi 1}=8,4-0,2=8,2$$
 mm.

Большая ширина паза:

$$b_2'=b_2$$
- $\Delta b_\pi=10,9-0,2=10,7$ мм.

Односторонняя толщина изоляции в пазу (таблица П.11, [1], стр. 133):

$$b_{\text{из}}=0,5 \text{ мм}.$$

Площадь, занимаемая корпусной изоляцией в пазу:

$$S_{\text{H3}} = b_{\text{H3}}(2h_{\text{H1}} + b_1 + b_2) = 0,5 \cdot (2 \cdot 22, 4 + 8, 4 + 10, 9) = 32 \text{ mm}^2.$$

Площадь, занимаемая прокладками для однослойной обмотки:

$$S_{\text{inp}} = (0.9 \cdot b_1 + 0.4 \cdot b_2) = 0.9 \cdot 8.4 + 0.4 \cdot 10.9 = 11.9 \text{ mm}^2.$$

Изм.	Лист	№ Докум	Подпись	Дата

Площадь поперечного сечения паза, остающаяся свободной для размещения проводников обмотки:

$$S_{\Pi}^{'} = \frac{b_{1}^{'} + b_{2}^{'}}{2} h_{\Pi.K}^{'} - (S_{\mu_{3}} - S_{\Pi p}) = \frac{8,2 + 10,7}{2} \cdot 18,9 - (32 - 11,9) = 158,5 \text{ mm}^{2}.$$

Коэффициент заполнения паза статора:

$$k_3 = \frac{d_{\text{M3}}^2 u_{\text{п}} n_{\text{эл}}}{s_{\text{п}}'} = \frac{1,758^2 \cdot 9 \cdot 4}{158,5} = 0,72.$$

Который находится в допустимом диапазоне для 2р=4 (0,72..0,74).

Уточняем среднее значение ширины зубца статора, приняв его в качестве расчётного:

$$\dot{b_{Z1}} {=} \pi \frac{D {+} 2(h_{\text{\tiny{III}}1} {+} h_{k)}}{Z_1} {-} b_1 {=} \pi \frac{244 {+} 2(1 {+} 2{,} 35)}{48} {-} 8{,} 4 {=} 8{,} 01 \text{ мм.}$$

$$b_{Z1}^{"} = \pi \frac{D+2h_{\pi 1}}{Z_1} - b_2 = \pi \frac{244+2\cdot22,4}{48} -10,9 = 8$$
 мм.

Поскольку расхождение между $\dot{b_{Z1}}$ и $\dot{b_{Z1}}$ до 0,5 мм, то

$$b_{Z1} = \frac{\dot{b_{Z1}} + \ddot{b_{Z1}}}{2} = \frac{8,01+8}{2} = 8,005 \text{ mm}$$

Пользуясь рекомендациями на странице 19 и рисунком П.14 ([1], стр. 134) определим величину воздушного зазора между статором и ротором:

Изм.	Лист	№ Докум	Подпись	Дата

3. Расчёт обмотки, паза и ярма ротора

Выбираем Z_2 =38, поскольку для машин небольшой мощности обычно выполняется условие Z_2 < Z_1 (Z_1 =48). Выбор пазов ротора выбирали из таблица $\Pi.12([1], \text{ стр. } 134)$.

Внешний диаметр ротора:

 $D_2 = D-2G = 244-2 \cdot 0,5 = 243 \text{ мм}.$

Длина сердечника ротора:

 $l_2 = l_{CT1} = l_{CT2} = l_6 = 0,154 \text{ M}.$

Зубцовое деление ротора:

$$t_{Z2} = \frac{\pi D_2}{Z_2} = \frac{\pi \cdot 243}{38} = 20,1 \text{ mm}.$$

Сердечник ротора выполнен с непосредственной посадкой на вал $(D_2 < 990$ мм), а так как $h \le 250$ мм (h = 200), то при непосредственной посадке на вал не используем шпонку.

Внутренний диаметр сердечника ротора:

$$D_i = D_B = k_B D_a = 0.23 \cdot 0.359 = 0.083 \text{ M}.$$

где D_B – диаметр вала

 k_B =0,23 – коэффициент, выбранный по табл. П.13 ([1], стр. 135).

Коэффициент, учитывающий влияние тока намагничивания на отношение токов I_1/I_2 (предварительное значение):

$$k_i = 0.2 + 0.8\cos\varphi = 0.2 + 0.8 \cdot 0.89 = 0.912$$

Выполняем скос пазов ротора. Ширину скоса выбираем из условия:

$$b_{ck} = (0,5..1)t_{Z2} = 1.20,1 = 20,1$$
 mm.

Относительная ширина скоса пазов в долях зубцового деления:

$$\beta_{c\kappa} = \frac{b_{c\kappa}}{t_{Z2}} = \frac{20,1}{20,1} = 1.$$

Угол скоса в электрических радианах:

$$\gamma_{\text{CK}} = \beta_{\text{CK}} \frac{2p}{Z_2} = 1 \cdot \frac{2 \cdot 2}{38} = 0,105.$$

					Расчёт обмотки, паза и ярма ротора	ггту, гр. ЭП-21		ЭП-21
Про	верил	Тодарев В.В			Poouöm of vomeu y 12			
Разр	абот.	Ларьков А.В.				Литер.	Лист	Листов
Изм	Лист	№ докум.	Подпись	Дата				
					КП.1-53 01 05.ЭП-21.32.ПЗ			

Рис. 3.1. Скос пазов ротора асинхронной машины

Коэффициент скоса:

$$k_{\text{CK}} = \frac{2\sin(\frac{\gamma_{CK}}{2})}{\gamma_{CK}} = \frac{2\cdot\sin(\frac{0.105}{2})}{0.105} = 0.9995.$$

Коэффициент приведения токов:

$$v_i = \frac{2m_i w_1 k_{o6\text{M}1}}{Z_2 k_{c\text{K}}} = \frac{2 \cdot 3 \cdot 72 \cdot 0.92}{35 \cdot 0.9995} = 10.$$

Ток в обмотке ротора (предварительное значение):

$$I_2=k_iI_{1\text{HOM}}v_i=0,912\cdot69,2\cdot10=631,1 \text{ A}.$$

В качестве обмотки ротора принимаем литую конструкцию с алюминиевыми стержнями и короткозамкнутыми кольцами (страница 20, [1]).

Задаёмся плотностью тока в алюминиевых стержнях ротора (страница 22, [1]):

$$J_2=2,7\cdot10^6 \text{ A/m}^2.$$

Площадь поперечного сечения стержня (предварительное значение):

$$q_c = \frac{I_2}{J_2} = \frac{631,1}{2,7 \cdot 10^6} = 233,7 \cdot 10^{-6} \text{ m}^2 = 233,7 \text{ m}^2.$$

В данном двигателе применяем трапецеидальные полузакрытые пазы (страница 23, рис. 3.2, а; [1]):

Изм.	Лист	№ Докум	Подпись	Дата

Рис. 3.2. Размеры трапецеидальных полузакрытых пазов ротора асинхронной машины

Ширина шлица паза b_{m2} =1,5 мм.

Высота шлица паза h_{m2} =0,7 мм.

Высота перемычки над пазом $h'_{iii2} = 0.3$ (так как паз полузакрытый).

По таблице П.7 ([1], стр. 131) принимаем значение магнитной индукции в зубцах ротора при постоянном сечении B_{Z2} =1,7 Тл.

Допустимая ширина зубца статора:

$$b_{Z 2.Z} = \frac{B_{\sigma} t_{Z2} l_{\sigma}}{B_{Z2} l_{CT2} k_{C2}} = \frac{0.78 \cdot 20.1 \cdot 0.154}{1.7 \cdot 0.154 \cdot 0.97} = 9.51 \text{ MM}.$$

Где k_{C2} =0,97 — коэффициент заполнения сталью магнитопровода ротора (таблица П.8, [1], стр. 132).

Размеры паза ротора:

Диаметр закругления верхней части паза:

$$b_{1} = \frac{\pi \left(D_{2} - 2h_{\text{III}2} - 2h_{\text{III}2}^{'}\right) - Z_{2}b_{\text{Z} \, 2.\text{Д}}}{Z_{2} + \pi} = \frac{\pi (243 - 2 \cdot 0.7 - 2 \cdot 0.3) - 38 \cdot 9.51}{38 + \pi} = 9.6 \text{ MM}.$$

Диаметр закругления нижней части паза:

$$b_2 = \sqrt{\frac{b_1^2 \left(\frac{Z_2}{\pi} + \frac{\pi}{2}\right) - 4q_c}{\frac{Z_2}{\pi} + \frac{\pi}{2}}} = \sqrt{\frac{9,6^2 \left(\frac{38}{\pi} + \frac{\pi}{2}\right) - 4 \cdot 233,7}{\frac{380}{\pi} + \frac{\pi}{2}}} = 4,9 \text{ MM}.$$

Расстояние между центрами закруглений верхней и нижней частей паза:

$$h_1 = (b_1 - b_2) \frac{Z_2}{2\pi} = (9,6-4,9) \frac{38}{2\pi} = 28,43 \text{ MM}.$$

Полная высота паза ротора для полузакрытого паза:

$$h_{\Pi 2} = h_1 + h_{\coprod 2} + \frac{b_1}{2} + \frac{b_2}{2} = 28,43 + 0,7 + \frac{9,6}{2} + \frac{4,9}{2} = 36,4 \text{ MM}.$$

Уточняем ширину зубцов ротора:

$$b_{Z2}' = \pi \frac{D_2 - 2(h_{\text{III}2} + h_{\text{III}}') - b_1}{Z_2} - b_1 = \pi \frac{242 - 2(0.7 + 0.3) - 9.6}{38} - 9.6 = 9.5 \text{ mm}$$

Изм.	Лист	№ Докум	Подпись	Дата

$$b_{Z2}^{\prime\prime} = \pi \frac{D_2 - 2h_{\pi 2} + b_2}{Z_2} - b_2 = \pi \frac{243 - 2 \cdot 36,4 + 4,9}{38} - 4,9 = 9,6 \text{ mm}.$$

Уточнённое значение ширины зубца ротора:

$$b_{z2} = \frac{b'_{Z2} + b''_{Z2}}{2} = \frac{9.5 + 9.6}{2} = 9.55 \text{ mm}.$$

Уточнённое значение площади поперечного сечения стержня:

$$q_c = \frac{\pi}{8} (b_1^2 + b_2^2) + \frac{1}{2} (b_1 + b_2) h_1 = \frac{\pi}{8} (9,6^2 + 4,9^2) + \frac{1}{2} (9,6 + 4,9) \cdot 28,43 = 251,7 \text{ MM}.$$

Плотность тока в стержне ротора (уточнённое значение):

$$J_2 = \frac{I_2}{q_c} = \frac{292,3}{125,2} = 2,51 \frac{A}{MM^2}.$$

Рис. 3.3. Замыкающее кольцо короткозамкнутого ротора с литой алюминиевой обмоткой и его размеры

Коэффициент для расчёта тока короткозамкнутого кольца:

$$\Delta = 2\sin\frac{\pi p}{Z_2} = 2\sin(\frac{\pi \cdot 2}{38}) = 0.329.$$

Ток короткозамкнутого кольца ротора:

$$I_{\kappa\pi} = \frac{I_2}{\Delta} = \frac{631,1}{0,329} = 1918,2 \text{ A}.$$

Плотность тока в короткозамкнутых кольцах принимаем согласно рекомендациям на странице 27 ([1]):

$$J_{KJ} = (J_2 \cdot 0.85) = 2.51 \cdot 0.85 = 2.13 \text{ A/mm}^2.$$

Площадь поперечного сечения короткозамкнутого кольца:

$$q_{\text{KJ}} = \frac{I_{\text{KJ}}}{I_{\text{KJ}}} = \frac{1918,2}{2,13} = 900,6 \text{ mm}^2.$$

Размеры замыкающих колец:

Высота кольца:

$$h_{\text{KII}} = 1,2h_{\text{II}2} = 1,2 \cdot 36,4 = 43,68 \text{ MM}.$$

Ширина кольца:

$$b_{\kappa\pi} = \frac{q_{\kappa\pi}}{h_{\kappa\pi}} = \frac{900,6}{43,68} = 20,6 \text{ mm}.$$

Изм.	Лист	№ Докум	Подпись	Дата

Средний диаметр кольца:

 $D_{\text{кл.cp}} = D_2 - h_{\text{кл}} = 243 - 43,68 = 199,32 \text{ мм}.$

Уточняем площадь поперечного сечения замыкающего кольца, принимая полученное значения в качестве расчётного:

 $q_{\text{кл}} = b_{\text{кл}} h_{\text{кл}} = 20,6.43,68 = 899,81 \text{ mm}^2.$

Изм.	Лист	№ Докум	Подпись	Дата

4. Расчёт магнитной цепи асинхронной машины

Марку стали магнитопровода принимаем согласно рекомендациям таблицы П.14([1], стр. 135): сталь марки 2013.

Коэффициент для расчёта магнитного напряжения воздушного зазора:

$$\gamma_1 = \frac{(\frac{b_{\text{III}1}}{\sigma})^2}{5 + \frac{b_{\text{III}1}}{\sigma}} = \frac{(\frac{3.7}{0.5})^2}{5 + \frac{3.7}{0.5}} = 4.4$$

Коэффициент для расчёта магнитного напряжения воздушного зазора:

$$k_{\delta} = \frac{t_{Z1}}{t_{Z1} - \gamma_1 \sigma} = \frac{16}{16 - 4.4 \cdot 0.5} = 1.16.$$

Магнитное напряжение воздушного зазора:

$$F_{\delta} = \frac{2}{\mu_0} B_{\sigma} \sigma k_{\sigma} = \frac{2}{12,56 \cdot 10^{-7}} 0,78 \cdot 0,5 \cdot 1,16 = 720,4 \text{ A}.$$

Где μ_0 – магнитная проницаемость (стр. 28, [1]).

Расчётная высота зубца статора:

 $h_{Z1}=h_{\pi 1}=22,4$ мм.

Расчётная индукция в зубцах статора:

$$B_{Z1}' = \frac{B_{\delta} t_{Z1} l_{\sigma}}{b_{Z1} l_{CT1} k_{C1}} = \frac{0.78 \cdot 16 \cdot 0.154}{8 \cdot 0.154 \cdot 0.97} = 1,608 \ Tл.$$

Если индукция в зубцах статора B'_{Z1} , будет меньше 1,8 Тл, то её фактическое уточнённое значение:

$$B_{Z1} {=} \ B'_{Z1}$$

Тогда напряжённости магнитного поля H_{Z1} :

$$H_{Z1}=726 \text{ A/m}.$$

Магнитное напряжение зубцовой зоны статора:

$$F_{Z1}=2h_{Z1}H_{Z1}=2\cdot22,4\cdot10^{-3}\cdot726=32,5 A.$$

Расчётная высота зубца ротора:

$$h_{Z2}=h_{\Pi 2}-0.1b_2=36.4-0.1\cdot4.9=35.91$$
 MM.

Расчётная индукция в зубцах ротора:

$$B'_{Z2} = \frac{B_{\delta} t_{Z2} l_{\sigma}}{b_{Z2} l_{CT2} k_{C2}} = \frac{0.78 \cdot 20.1 \cdot 0.154}{9.55 \cdot 0.154 \cdot 0.97} = 1.69 \text{ Тл}$$

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.32.	П3
Разр	абот.	Ларьков А.В				Литер.	Лист	Листов
Про	верил	Тодарев В.В			Расчёт магнитной	У	17	
					цепи асинхронной машины ГГТУ, гр. ЭП-2		ЭП-21	

Так как расчётная индукция в зубцах ротора B'_{Z2} , равна 1,8 Тл, то её фактическое уточнённое значение:

$$B_{Z2}=B'_{Z2}$$

Тогда напряжённости магнитного поля H_{Z1} :

$$H_{Z2}=1150 \text{ A/m}.$$

Магнитное напряжение зубцовой зоны статора:

$$F_{Z2}=2h_{Z2}H_{Z2}=2\cdot35,91\cdot10^{-3}\cdot1150=82,6A.$$

Коэффициент насыщения зубцовой зоны:

$$k_z = 1 + \frac{F_{z1} + F_{z2}}{F_{\sigma}} = 1 + \frac{32,5 + 82,6}{720,4} = 1,2.$$

Значение коэффициента насыщения зубцовой зоны находится о пределах 1,2 до 1,6, что предварительно говорит о правильности выбранных размерных соотношений и обмоточных данных АД (стр. 31, [1]).

Длина средней силовой линии магнитного поля в ярме статора:

$$L_a = \pi \frac{D_a - h_a}{2p} = \pi \frac{0,359 - 35,1}{4} = 0,25$$
 м.

Проектируемый АД имеет длину сердечника статора l_{CT1} =0,154 м < 300 мм, поэтому вентиляционные каналы в статоре отсутствуют (стр. 31, [1]). В этом случае расчётная высота ярма статора:

 $h_a'=h_a=0,0351$ м. (при $m_{k1}=0$).

Индукция в ярме статора:

$$B_a = \frac{\Phi}{2h'_a l_{CT1} k_{C1}} = \frac{0,0147}{2 \cdot 0,0351 \cdot 0,154 \cdot 0,97} = 1,4 \text{ Тл.}$$

Напряжённость поля ярма статора при индукции B_a (таблица П.16, [1], стр. 136):

$$H_a=400 \text{ A/m}.$$

Магнитное напряжение ярма статора:

$$F_a = L_a H_a = 0.25 \cdot 400 = 100 A.$$

Сердечник ротора проектируемого АД является сердечником с непосредственной посадкой на вал. Определим значение следующего выражения и оценим выполнения условия:

$$0,75\left(\frac{D_a}{2}-h_{\pi 2}\right)=0,75\left(\frac{0,359\cdot 10^3}{2}-36,4\right)=107,325~\text{mm}.$$

$$107,325>(D_B=83 \text{ mm}).$$

Поэтому для АД с 2p=4 расчётная высота ярма ротора определится по выражению:

$$h'_{j} = \frac{D_2 - D_B}{2} - h_{\pi 2} = \frac{243 - 0.08257 \cdot 10^3}{2} - 36,4 = 43,8 \text{ mm} = 0,043 \text{ m}.$$

Длина средней силовой линии магнитного поля в ярме ротора:

Изм.	Лист	№ Докум	Подпись	Дата

$$L_j = \pi \cdot \frac{D_j - h'_j}{2 \cdot p} = \pi \cdot \frac{0,08257 + 43,8 \cdot 10^3}{2 \cdot 2} = 9,9 \text{ мм} = 0,099 \text{ м}.$$

Индукция в ярме ротора:

$$B_j = \frac{\Phi}{2h_j'l_{CT2}k_{C2}} = \frac{0,0147}{2 \cdot 43,8 \cdot 10^{-3} \cdot 0,154 \cdot 0,97} = 1,12 \text{ Тл.}$$

Напряжённость поля ярма ротора при индукции B_j (таблица П.16, [1], стр. 136):

 $H_j=229 \text{ A/m}.$

Магнитное напряжение ярма ротора:

 $F_j = L_j H_j = 0,099 \cdot 229 = 22,67 A.$

Суммарное магнитное напряжение магнитной цепи на одну пару полюсов:

$$F_{II} = F_6 + F_{Z1} + F_{Z2} + F_a + F_i = 720,4 + 32,5 + 82,6 + 100 + 22,67 = 958,2 \text{ A}.$$

Коэффициент насыщения магнитной цепи:

$$k_{\mu} = \frac{F_{\text{tt}}}{F_{\sigma}} = \frac{560,689}{720,4} = 1,33$$

Намагничивающий ток АД:

$$I_{\mu} = \frac{\mathrm{pF}_{\mathrm{II}}}{0.9\mathrm{m}_{1}\mathrm{w}_{1}\mathrm{k}_{\mathrm{o}6\mathrm{m}1}} = \frac{2\cdot 958.2}{0.9\cdot 3\cdot 72\cdot 0.92} = 10.72\mathrm{A}.$$

Относительное значение намагничивающего тока:

$$I_{\mu}^* = \frac{I_{\mu}}{I_{1_{\text{HOM}}}} = \frac{10,72}{69,2} = 0,15.$$

Данное значение находится в пределах от 0,18 до 0,4, что говорит о корректном выборе размеров двигателя и параметров его обмоток (стр. 35, [1]).

Изм.	Лист	№ Докум	Подпись	Дата

5. Определение параметров асинхронной машины для рабочего режима

Длина пазовой части катушки обмотки статора:

$$l_{\pi 1} = l_1 = l_2 = 0,154 \text{ M}.$$

Средняя ширина катушки обмотки статора:

$$b_{\text{кт}} = \frac{\pi(D + h_{\Pi 1})}{2p} \beta = \frac{\pi(244 + 22,4)}{2 \cdot 2} \cdot 0,833 = 0,17 \text{ м}.$$

Коэффициенты $k_n=1,3$ и $k_{выл}=0,4$ для расчёта длины лобовой части катушки обмотки статора (таблица $\Pi.24$, обмотка всыпная с неизолированными лобовыми частями, [1], стр. 141).

Длина вылета прямолинейной части катушек обмотки статора из паза от торца сердечника до начала отгиба лобовой части (стр.37, [1], когда всыпная обмотка укладывается в пазы до запрессовки сердечника в корпус):

$$B=0.01 \text{ M}.$$

Длина изогнутой лобовой части катушки обмотки статора:

$$l_{\pi 1} = k_{\pi} b_{\kappa \tau} + 2B = 1,3 \cdot 0,17 + 2 \cdot 0,01 = 0,241 \text{ m}.$$

Длина вылета лобовой части катушки обмотки статора:

$$l_{\text{выл}1} = k_{\text{выл}} b_{\text{кт}} + B = 0.4 \cdot 0.17 + 0.01 = 0.078 \text{ м}.$$

Средняя длина витка обмотки фазы статора:

$$l_{cp1}=2(l_{\pi 1}+l_{\pi 1})=2(0,154+0,241)=0,79$$
 m.

Длина проводников фазы обмотки статора:

$$L_1 = l_{cp1}w_1 = 0.79 \cdot 72 = 56.88 \text{ mm}.$$

Расчётная температура и удельное сопротивление материала проводника медной обмотки статора при расчётной температуре (стр. 37, табл. П.26, [1]):

V_{расч}=115°С (для класса изоляции F);

$$\rho_{\scriptscriptstyle M} = \frac{1}{41} \cdot 10^{-6} \; \text{Om} \cdot \text{m}. \label{eq:rho_M}$$

Активное сопротивление обмотки статора:

$$r_1 = k_R \rho_M \frac{L_1}{q_{9\phi} a} = 1 \cdot \frac{1}{41} \cdot 10^{-6} \cdot \frac{56,88}{9,08 \cdot 10^{-6} \cdot 1} = 0,153 \text{ Om.}$$

где k_R =1 — коэффициент увеличения активного сопротивления фазы обмотки статора от действия эффекта вытеснения тока.

Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.	ЭП-2	1.32.	П3
Разр	абот.	Ларьков А.В		7 7 -	Определение	Литер.	Лист	Листов
Про	верил	Тодарев В.В			параметров	параметров ^{у 20}		
					асинхронной машины для рабочего режима	רדד)	У, гр.	ЭП-21

Относительное значение активного сопротивления обмотки статора:

$$r_1^* = r_1 \frac{I_{1HOM}}{U_{1HOM,\Phi}} = 0.153 \cdot \frac{69.2}{220} = 0.0481 \text{ o. e.}$$

Удельное сопротивление материала алюминиевой литой обмотки ротора и короткозамкнутого кольца при расчётной температуре V_{pacq} =115°C (стр. 37, [1]):

$$\rho_a = \frac{1}{22} \cdot 10^{-6} \text{ Om} \cdot \text{m} \quad (\Pi. 26, [1], \text{ ctp. } 142).$$

Активное сопротивление алюминиевого стержня ротора:

$$r_c = k_R \rho_a \frac{l_2}{q_c} = 1 \cdot \frac{1}{22} \cdot 10^{-6} \cdot \frac{0,154}{251,7 \cdot 10^{-6}} = 27,81 \cdot 10^{-6} \text{ Om.}$$

 $k_R=1$ (crp. 38, [1]).

Активное сопротивление фазы алюминиевого короткозамкнутого кольца:

$$r_{\scriptscriptstyle K\!\Pi} = \rho_a \frac{\pi D_{\scriptscriptstyle K\!\Pi.cp}}{Z_2 q_{\scriptscriptstyle K\!\Pi}} = \frac{1}{22} \cdot 10^{-6} \ \cdot \frac{\pi \cdot 199,\!32 \cdot 10^{-3}}{38 \cdot 899,\!81 \cdot 10^{-6}} = 0,\!832 \cdot 10^{-6} \ \text{Om}.$$

Активное сопротивление фазы алюминиевой обмотки ротора:

$$r_2 = r_c + \frac{2r_{\kappa\pi}}{\Delta^2} = 27,81 \cdot 10^{-6} + \frac{2 \cdot 0,832 \cdot 10^{-6}}{0.329^2} = 43,18 \cdot 10^{-6} \text{ Ом.}$$

Активное сопротивление ротора, приведённое к числу витков обмотки статора:

$$r_2' = r_2 \frac{4m_1(w_1k_{\text{obm}1})^2}{Z_2k_{\text{ck}}^2} = 43,\!18\,\cdot 10^{-6} \cdot \frac{4\cdot 3\cdot (72\cdot 0,\!92)^2}{38\cdot 0.9995^2} = 0,\!06\,\,\text{Om}.$$

Относительное значение приведённого активного сопротивления ротора:

$$r'_{2*} = r'_2 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\Phi}} = 0.06 \cdot \frac{69.2}{220} = 0.019 \text{ o. e.}$$

Радиальные вентиляционные каналы в данном АД отсутствуют, поэтому расчётная длина магнитопровода статора (при n_{κ} =0).

$$l_{6}=l_{1}=0,154 \text{ M}.$$

Обмотка без укорочения шага (β=1): (стр. 39, [1]):

$$k_{\beta}=k'_{\beta}=1;$$

Коэффициент магнитной проводимости пазового рассеяния статора (стр.40, формула (5.20), рис. Π .15, [1], стр. 142):

$$\lambda_{\Pi 1} = \frac{h_2}{3b_1} k_{\beta} + \left(\frac{h_1}{b_1} + \frac{3h_k}{b_1 + 2b_{m1}} + \frac{h_{m1}}{b_{m1}}\right) k_{\beta}' = \frac{18,1}{3 \cdot 9,6} \cdot 1 + \left(\frac{0}{9,6} + \frac{3 \cdot 2,35}{9,6 + 2 \cdot 3,7} + \frac{1}{3,7}\right) \cdot 1 = 1,31$$

где h_1 =0 (проводники закреплены пазовой крышкой), и

$$h_2 \!\!=\!\! h_{\!\scriptscriptstyle \Pi.K} \!\!-\! 2b_{\!\scriptscriptstyle H3} \!\!=\!\! 19,1 \!\!-\!\! 2\!\cdot\! 0,5 \!\!=\!\! 18,1$$
 мм.

Коэффициент магнитной проводимости лобового рассеяния статора:

$$\lambda_{\pi 1} = 0.34 \frac{q_1}{l_{\delta}'} (l_{\pi 1} - 0.64 \beta \tau) = 0.34 \cdot \frac{4}{0.154} (0.241 - 0.64 \cdot 0.833 \cdot 0.192) = 1.22.$$

Изм.	Лист	№ Докум	Подпись	Дата

Лист

Коэффициент ξ (паз статора – полузакрытый, скос пазов ротора присутствует $\beta_{c\kappa}\!\!=\!\!0,\!1$).

$$\xi = 2k_{ck}^{'}k_{\beta}-k_{obm1}^{2}\left(\frac{t_{Z2}}{t_{Z1}}\right)^{2}(1+\beta_{ck}^{2}) = 2\cdot2,1\cdot1-0,92^{2}\left(\frac{20,1}{16}\right)^{2}(1+1^{2}) = 1,53$$

где $k_{c\kappa}=2,1$ — коэффициент, который находят по рис. П.16 ([1], стр. 143) в зависимости от отношения t_{Z2}/t_{Z1} и $\beta_{c\kappa}$.

$$\frac{\mathsf{t}_{\mathsf{Z2}}}{\mathsf{t}_{\mathsf{Z1}}} = \frac{20,1}{16} = 1,256.$$

Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора:

$$\lambda_{\text{Д1}} = \frac{t_{Z1}}{12\delta k_{\delta}} \xi = \frac{16}{12 \cdot 0.5 \cdot 1.16} \cdot 1.53 = 3.52$$

Индуктивное сопротивление фазы обмотки статора:

$$\begin{split} \mathbf{x}_1 &= 15, 8 \frac{f_1}{100} \Big(\frac{w_1}{100}\Big)^2 \frac{l_\delta'}{pq_1} \Big(\lambda_{\Pi 1} + \lambda_{\Pi 1} + \lambda_{\Pi 1}\Big) \\ &= 15, 8 \cdot \frac{50}{100} \cdot (\frac{72}{100})^2 \cdot \frac{0,154}{4 \cdot 2} \cdot (1,31 + 1,22 + 3,52) = 0,477 \text{ Ом.} \end{split}$$

Относительное значение индуктивного сопротивления фазы статора: ξ

$$x_{1*} = x_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM}, 0}} = 0,477 \cdot \frac{69,2}{220} = 0,15 \text{ o. e.}$$

Коэффициент магнитной проводимости пазового рассеяния короткозамкнутого ротора: (рис. $\Pi.18$ а-д, рекомендации на стр. 41-42, [1], стр. 144):

$$\lambda_{\Pi 2} = \left[\frac{h_0}{3b_1} \cdot \left(1 - \frac{\pi b_1^2}{8q_c}\right)^2 + 0.66 - \frac{b_{\text{III}2}}{2b_1}k_{\text{Д}} + \frac{h_{\text{III}2}}{b_{\text{III}2}} = \right]$$

$$= \left[\frac{23.67}{3 \cdot 9.6} \cdot \left(0.66 - \frac{\pi \cdot 9.6^2}{2 \cdot 251.7}\right)^2 + 0.66 - \frac{1.5}{2 \cdot 9.6}\right] \cdot 1 + \frac{0.7}{1.5} = 1.65$$

где h_0 =23,67 мм — параметр паза по рис. П.18, а ([1], стр. 1444):

$$h_0 = h_1 + \frac{b_2}{2} - 0.1b_2 = 21.71 + \frac{4.9}{2} - 0.1 \cdot 4.9 = 23.67 \text{ MM}.$$

Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

$$\lambda_{J12} = \frac{2.3D_{\kappa_{J1},cp}}{Z_2I_{\delta}^{\prime}\Delta^2} \lg(\frac{4.7D_{\kappa_{J1},cp}}{h_{\kappa_{J1}} + 2b_{\kappa_{J1}}}) = \frac{2.3 \cdot 199.32 \cdot 10^{-3}}{38 \cdot 0.154 \cdot 0.329^2} \lg(\frac{4.7 \cdot 199.32 \cdot 10^{-3}}{43.68 \cdot 10^{-3} + 2 \cdot 20.6 \cdot 10^{-3}}) = 0.755$$

Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

Изм.	Лист	№ Докум	Подпись	Дата

Лист

$$\lambda_{\text{Д2}} = \frac{t_{\text{Z2}}}{12\delta k_{\delta}} \xi = \frac{20,1}{12 \cdot 0,5 \cdot 1,16} \cdot 1 = 2,89$$

Где коэффициент ξ равен:

$$\xi=1$$
 , так как $rac{Z_2}{p}=19$

 Δz =0.55 - коэффициент, который находят по рис. П.17 ([1], стр. 143) в зависимости от отношения t_{Z2}/t_{Z1} и b_{m2}/σ

Коэффициент проводимости скоса:

$$\lambda_{\text{CK}} = \frac{t_{Z2}\beta_{\text{CK}}^2}{12k_{\delta}k_{\mu}} = \frac{20,1\cdot1^2}{12\cdot1,16\cdot1,33} = 1,09$$

Индуктивное сопротивления фазы обмотки ротора:

$$\mathbf{x}_2 = 7.9 f_1 l_\delta' \cdot 10^{-6} (\lambda_{\Pi 2} + \lambda_{J 2} + \lambda_{Д 2} + \lambda_{\mathsf{CK}}) =$$

$$= 7.9 \cdot 50 \cdot 0.154 \cdot 10^{-6} (1.65 + 0.755 + 2.89 + 1.09) =$$

$$= 3.88 \cdot 10^{-6} \, \mathsf{Om}.$$

Индуктивное сопротивление фазы обмотки ротора, приведённое к числу витков обмотки статора:

$$x_2' = x_2 \frac{4m_1(w_1k_{06\text{M}1})^2}{Z_2k_{\text{CK}}^2} = 3,88 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (72 \cdot 0,92)^2}{38 \cdot 0,9995^2} = 0,539 \text{ Om}.$$

Относительное значение индуктивного сопротивления фазы ротора:

$$x_{2*} = x_2 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\Phi}} = 0.539 \cdot \frac{69.2}{220} = 0.17 \text{ o. e.}$$

Изм.	Лист	№ Докум	Подпись	Дата

6.Расчёт постоянных потерь мощности

Удельные потери мощности в стали марки 2013 при индукции 1 Тл и частоте перемагничивания 50 Гц (табл. П.27, [1], стр. 144):

$$P_{1,0/50}=2,5 \text{ BT/K}\Gamma.$$

Масса стали ярма статора:

 $m_a = \pi (D_a - h_a) h_a l_{CT1} k_{C1} \gamma_c = \pi (0,359 - 35.1) \cdot 35.1 \cdot 0,154 \cdot 0,97 \cdot 7,8 \cdot 10^3 = 41,62 \ \text{кг},$ где $\gamma_c = 7,8 \cdot 10^3 \, \text{кг/m}^3 - \text{удельная масса стали (стр. 44, источник 1).}$

Масса стали зубцов статора:

 $m_{Z1} = h_{Z1}b_{Z1}Z_1l_{CT1} k_{C1}\gamma_c = 22,4 \cdot 8 \cdot 48 \cdot 0,154 \cdot 0,97 \cdot 7,8 \cdot 10^3 = 10 \text{ kg}.$

Коэффициенты для нахождения основных потерь в стали (стр. 44, ист-ик 1): $k_{дa}=1,6;\ k_{дz}=1,8;\ b=1,3.$

Основные потери активной мощности в стали статора АД:

$$\begin{split} \mathrm{P_{ct.och}} &= \mathrm{p}_{\frac{1,0}{50}} \left(\frac{f_1}{50} \right)^b \left(k_{\mathrm{дa}} \mathrm{B}_{\mathrm{a}}^2 m_a + k_{\mathrm{дz}} B_{z1}^2 m_{z1} \right) \\ &= 2.5 \cdot \left(\frac{50}{50} \right)^{1.3} \left(1.6 \cdot 1.4^2 \cdot 41.62 + 1.8 \cdot 1.61^2 \cdot 10 \right) = 442.9 \; \mathrm{Bt}. \end{split}$$

Отношение ширины шлица пазов статора АД к воздушному зазору:

$$\frac{b_{\text{III}1}}{\delta} = \frac{7.4}{1} = 7.4.$$

По рис. П.19, б ([1], стр. 145) находим значения коэффициента β_{02} :

$$\beta_{02} = 0.35$$

Амплитуда пульсации индукции в воздушном зазоре над коронками зубцов ротора:

$$B_{02} = \beta_{02} k_{\sigma} B_{\sigma} = 0.35 \cdot 1.16 \cdot 0.78 = 0.317 \text{ Тл.}$$

Удельные поверхностные потери, т.е. потери, приходящиеся на 1 м^2 поверхности головок ротора:

$$p_{\text{пов2}} = 0.5k_{02} \left(\frac{Z_1 n}{10000}\right)^{1.5} (B_{02}t_{z1} \cdot 10^3)^2 =$$

$$= 0.5 \cdot 1.4 \cdot \left(\frac{48 \cdot 1500}{10000}\right)^{1.5} \cdot (0.317 \cdot 16)^2 = 347.9 \frac{\text{BT}}{\text{M}^2}.$$

где k_{02} =1,4 (стр. 45, [1]); $n\approx n_1$ =1500 об/мин.

					КП.1-53 01 05.	ЭП-2	1 32	П3	
Изм	Лист	№ докум.	Подпись	Дата					
Разр	абот.	Ларьков А.В				Литер.	Лист	Листов	
Про	верил	Тодарев В.В			Расчёт	У	24		
					постоянных потерь мощности	ררד	У , гр.	ЭП-21	

Полные поверхностные потери ротора:

 $P_{\text{пов2}} = p_{\text{пов2}}(t_{\text{Z2}} - b_{\text{III}2})Z_2l_{\text{CT2}} = 347.9 \cdot (20.1 - 1.5) \cdot 38 \cdot 0.154 = 37.9 \text{ Bt.}$

Амплитуда пульсаций индукции в среднем сечении зубцов ротора:

$$B_{\text{пул.2}} = \frac{\gamma_1 \delta}{2 t_{72}} B_{Z2} = \frac{4.4 \cdot 0.5 \cdot 10^{-3}}{2 \cdot 20.1} \cdot 1.69 = 0.0925 \text{ Тл.}$$

Масса стали зубцов ротора:

 $m_{Z2} = h_{Z2} b_{Z2} Z_2 l_{CT2} k_{C2} \gamma_c = 35,91 \cdot 9,55 \cdot 38 \cdot 0,154 \cdot 0,97 \cdot 7,8 \cdot 10^3 = 15,18 \text{ kg}.$

Пульсационные потери в зубцах ротора:

$$P_{\text{пул2}} = 0.11 (\frac{Z_1 n}{1000} B_{\text{пул.2}})^2 m_{Z2} = 0.11 \cdot \left(\frac{48 \cdot 1500}{1000} \cdot 0.0925\right)^2 \cdot 15.18 = 74.06 \ \text{Bt}.$$

Поверхностные и пульсационные потери в статоре АД с короткозамкнутым ротором незначительны, поэтому принимаем:

$$P_{\text{пов 1}} = 0$$
 и $P_{\text{пул 1}} = 0$ (стр. 45, [1]).

Добавочные потери в стали:

$$P_{\text{ct.дo6.}}\!\!=\!\!P_{\text{nob1}}\!\!+\!P_{\text{пул1}}\!\!+\!P_{\text{nob2}}\!\!+\!P_{\text{пул2}}\!\!=\!\!0\!\!+\!\!0\!\!+\!\!37,\!9\!\!+\!\!74,\!06\!\!=\!\!112~B_{T}.$$

Обычно $P_{\text{ст.доб}}$ в 4...8 раз меньше, чем $P_{\text{ст.осн}}$.

$$\frac{P_{\text{CT.OCH}}}{P_{\text{CT.106}}} = \frac{442.9}{112} = 3.954.$$

Полные потери в стали:

$$P_{ct} = P_{ct.och} + P_{ct.dof} = 442,9 + 112 = 554,9 Bt.$$

Асинхронные двигатели с системой охлаждения IC0141 имеют внешний обдув от центробежного вентилятора (рекомендации на стр. 46-49, [1]), поэтому механические потери:

$$P_{\text{Mex}} = K_{\text{T}} (\frac{n}{10})^2 D_a^4 = 0.833 \cdot \left(\frac{1500}{10}\right)^2 \cdot 0.359^4 = 311.4 \text{ Bt.}$$

где
$$K_T=1,3\cdot (1-D_a)=0,833$$
 (стр. 48, [1]).

Электрические потери в статоре в режиме холостого хода АД:

$$P_{91,x}=m_1I_u^2r_1=3\cdot10,72^2\cdot0,153=52,7$$
 Bt.

Активная составляющая тока холостого тока:

$$I_{x.a} = \frac{P_{cT} + P_{mex} + P_{\vartheta 1.x}}{m_1 U_{1\text{HOM}, \varphi}} = \frac{554,9 + 311,4 + 52,7}{3 \cdot 220} = 1,39 \text{ A}.$$

Реактивная составляющая тока холостого тока:

$$I_{x.p} \approx I_{\mu} = 10,72 \text{ A}.$$

Ток холостого хода АД:

$$I_x = \sqrt{I_{x.a}^2 + I_{x.p}^2} = \sqrt{1,39^2 + 10,72^2} = 10,81 \text{ A}.$$

Коэффициент мощности АД в режиме холостого хода:

$$cos\phi_x = \frac{I_{x.a}}{I_x} = \frac{1,39}{10,81} = 0.129$$

Изм.	Лист	№ Докум	Подпись	Дата

7. Рабочие характеристики асинхронного двигателя

Методы расчёта рабочих характеристик асинхронных машины базируются на Г-образной схеме замещения: (рис. 7.1).

Рисунок 7.1. Г-образная схема замещения асинхронной машины.

Параметры схемы замещения (рис.7.1):

$$\begin{split} r_{12} &= \frac{P_{\text{ст.осн}}}{m_1 I_{\mu}^2} = \frac{442,9}{3 \cdot 10,72^2} = 1,28 \text{ Ом;} \\ x_{12} &= \frac{U_{\text{1ном.}\varphi}}{I_{\mu}} - x_1 = \frac{220}{10,72} - 0,477 = 20 \text{ Ом.} \end{split}$$

Угол у

$$\begin{split} \gamma &= arctg(\frac{r_1x_{12} - r_{12}x_1}{r_{12}(r_1 + r_{12}) + x_{12}(x_1 + x_{12})}) = \\ &= arctg(\frac{0.153 \cdot 20 - 1.28 \cdot 0.477}{1.28 \cdot (0.153 + 1.28) + 20 \cdot (0.477 + 20)}) = 0.34^\circ < 1^\circ. \end{split}$$

Тогда (рекомендации на стр. 52, [1]):

Определим величины c₁, a, a', b и b':

Модуль коэф3фициента c_1

$$c_1 = 1 + \frac{x_1}{x_{12}} = 1,024$$

Параметры а' и b', о.е.

$$a'=c_1^2=1,024^2=1,049$$

 $b'=0$

Параметры а и в , Ом

$$a = c_{1a} \cdot r_1 = 1.024 \cdot 0.153 = 0.157$$

 $b = c_{1a} \cdot (x_1 + c_1 + x_2') = 1.024 \cdot (0,477 + 1.024 \cdot 0,539) = 1,054$

Активная и реактивная составляющие тока синхронного холостого хода АД:

$$I_{0a} = \frac{P_{\text{CT.OCH}} + 3I_{\mu}^{2}r_{1}}{3U_{1\text{HOM.}\phi}} = \frac{442.9 + 3 \cdot 10.72^{2} \cdot 0.153}{3 \cdot 220} = 0,751.$$

 $I_{0p} \approx I_{\mu}$.

Изм.	Лист	№ Докум	Подпись	Дата

Сумма потерь мощности в АД, не зависящих от скольжения:

$$P_{cT}+P_{Mex}=554,9+311,4=866,3 BT.$$

Выражения для расчёта рабочих характеристик в порядке вычисления и результаты расчёта приведены в табл. 7.1.

На рис. 7.2. приведены сами рабочие характеристики АД, представляющие собой графики зависимостей P_1 = $f(P_2)$, I_1 = $f(P_2)$, $cos\phi$ = $f(P_2)$, p= $f(P_2)$, s= $f(P_2)$.

Реактивное сопротивление X правой ветви Γ -образной схемы замещения АД (рис.7.1.):

$$X = b + \frac{b'r_2'}{s}$$

Таблица 7.1. Расчётные выражения и результаты расчёта рабочих характеристик асинхронного двигателя.

	Do ovelimento d	Б-				Скольжени	ие s		
№	Расчётная формула	Ед. изм.	0,004	0,007	0,01	0,012	0,014	0,017	$S_{HOM} = 0.019$
1	$\frac{a'r'_2}{s}$	Ом	15.729	8.988	6.291	5.243	4.494	3.701	3.311
2	$R = a + \frac{a'r'_2}{s}$	Ом	15.886	9.145	6.448	5.400	4.651	3.858	3.468
3	X	Ом	8.023	8.023	8.023	8.023	8.023	8.023	8.023
4	$Z=\sqrt{R^2+X^2}$	Ом	15.921	9.205	6.534	5.502	4.769	3.999	3.625
5	$I_2'' = \frac{U_{1_{\text{HOM}}, \varphi}}{Z}$	A	13.819	23.899	33.67	39.987	46.133	55.01	60.691
6	$\cos \phi_2 = \frac{R}{Z}$	-	0.998	0.993	0.987	0.981	0.975	0.965	0.957
7	$\sin \phi_2 = \frac{X}{Z}$	ı	0.066	0.114	0.161	0.192	0.221	0.264	0.291
8	I_{0a}	A	0.751	0.751	0.751	0.751	0.751	0.751	0.751
9	I_{0p}	A	10.72	10.72	10.72	10.72	10.72	10.72	10.72
10	$I_{1a}=I_{0a}+I_{2}^{"}\cos\varphi_{2}^{'}$	A	14.539	24.493	33.98	39.997	45.743	53.81	58.82
11	$I_{1p} = I_{0p} + I_2'' \sin \varphi_2'$	A	11.635	13.456	16.151	18.38	20.916	25.218	28.367
12	$I_1 = \sqrt{I_{1a}^2 + I_{1p}^2}$	A	18.622	27.946	37.623	44.019	50.298	59.432	65.303
13	$I_2'=c_1I_2''$	A	14.15	24.473	34.478	40.947	47.24	56.331	40.627
14	$P_1 = 3U_{1\text{HOM.}} I_a \cdot 10^{-3}$	кВт	9.596	16.165	22.427	26.398	30.19	35.519	38.821
15	$P_{91} = 3I_1^2 r_1 \cdot 10^{-3}$	кВт	0.159	0.358	0.65	0.889	1.161	1.621	1.957
16	$P_{92}=3(I_2')^2r_2'\cdot 10^{-3}$	кВт	0.036	0.108	0.214	0.302	0.402	0.571	0.695
17	$P_{ct} + P_{mex}$	кВт	866.3	866.3	866.3	866.3	866.3	866.3	866.3
18	$P_{\text{доб}} = 0.005 P_1$	кВт	0.048	0.081	0.112	0.132	0.151	0.178	0.194
19		кВт	1.109	1.413	1.842	2.189	2.58	3.236	3.713

Изм.	Лист	№ Докум	Подпись	Дата

	Расчётная формула	Г_	Скольжение s						
No		Ед. изм.	0,004	0,007	0,01	0,012	0,014	0,017	$S_{HOM} = 0.019$
20	$P_2=P_1-\sum P$	-	8.486	14.752	20.585	24.209	27.61	32.283	35.108
21	$n=1-\frac{\sum P}{P_1}$	-	0.884	0.913	0.918	0.917	0.915	0.909	0.904
22	$\cos\varphi = \frac{I_{1a}}{I_1}$	-	0.781	0.876	0.903	0.909	0.909	0.906	0.901

Puc. 7.2. Рабочие характеристики АД: (a) - $P_1 = f(P_2)$; (б) - $I_1 = f(P_2)$; (в) - $\cos \varphi = f(P_2)$; (г) - $\eta = f(P_2)$; (д) - $s = f(P_2)$

По рабочим характеристикам (рис. 7.2.) уточняем номинальные параметры двигателя по известной из условия проектирования номинальной мощности

 $P_{2.\text{ном}} = 37 \text{ кВт:}$

Номинальный ток (рис 7.2., б):

 $I_{1.HOM} = 69,2A;$

Номинальный коэффициент мощности (рис. 7.2., в):

 $\cos \varphi_{\text{HOM}} = 0.89;$

номинальный КПД (рис.7.2., г):

Изм.	Лист	№ Докум	Подпись	Дата

 $p_{\text{HOM}} = 0.91;$ номинальное скольжение (рис. 7.2., д): $s_{\text{HOM}} = 0.019$. Для уточнённого значения номинального скольжения рассчитываем параметры в табл. 7.1 и заносим результаты в последний столбец. Лист

№ Докум

Подпись

Дата

Лист

8. Пусковые характеристики асинхронного двигателя

8.1 Расчёт пусковых характеристик с учётом эффекта вытеснения тока

Вначале выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока, но без учёта влияния насыщения от полей рассеяния.

Расчёт проведём для рада скольжений, который будет начинаться со значения чуть ниже критического и заканчиваться s=1. Значение критического скольжения также необходимо включить в расчётный ряд (стр. 62, [1]).

Ниже покажем подробный расчёт для значения скольжения s=1.

Расчётная высота стержня ротора (полузакрытый паз):

$$h_{c2} = h_{\pi 2} - h_{\pi 2} = 36.4 - 0.7 = 35.7 \text{ MM}$$

Определяют «приведённую высоту» алюминиевого стрежня ротора литой короткозамкнутой обмотки в зависимости от расчётной температуры обмотки (п.5.)

$$v_{pacy}=115$$
°C.

$$\zeta = 65,15h_{c2}\sqrt{s} = 65,15 \cdot 35,7 \cdot 10^{-3} \cdot \sqrt{1} = 2,3$$

По рис. П.22 и П.23 ([1], страница) соответственно находим значения величин ϕ и ϕ '.

$$\varphi = f(\zeta) = 1,2$$

$$\phi' = f(\zeta) = 0.49$$

Глубина проникновения тока:

$$h_r = \frac{h_{c2}}{1 + \phi} = \frac{35,7}{1 + 1,2} = 16,2 \text{ MM} = 0,0162 \text{ M}$$

Проверяем условие (стр. 58, источник 1):

$$\frac{b_1}{2} \le h_r \le h_1 + \frac{b_1}{2}$$
, или 4,8 \le 16,2 \le 33,2

Условие выполняется, поэтому площадь сечения верхней части стрежня ротора, по которому распространяется ток при пуске:

$$q_r = \frac{\pi b_1^2}{8} + \frac{b_1 + b_r}{2} \left(h_r - \frac{b_1}{2} \right) = \frac{\pi \cdot 9.6^2}{8} + \frac{9.6 + 7.71}{2} \cdot \left(16.2 - \frac{9.6}{2} \right) = 134.9 \text{ mm}^2.$$

где ширина паза на глубине проникновения тока b_r:

$$b_r = b_1 - \frac{b_1 - b_2}{h_1} \left(h_r - \frac{b_1}{2} \right) = 9,6 - \frac{9,6 - 4,9}{28,4} \cdot \left(16,2 - \frac{9,6}{2} \right) = 134,9 \text{ MM}.$$

Проверил					характеристики асинхронного двигателя	ГГТУ, гр. ЭП-21		
Про	верил	Тодарев В.В		Пусковые		У	30	
Разр	работ.	Ларьков А.В			Пусковые	Литер.	Лист	Листов
Изм	Лист	№ докум.	Подпись	Дата				
					КП.1-53 01 05.	ЭП-2	1 32	П3

Коэффициент k_r:

$$k_r = \frac{q_c}{q_r} = \frac{251,7}{134,9} = 1,9$$

Коэффициент общего увеличения сопротивления фазы ротора под влиянием эффекта вытеснения тока:

$$K_{r} = \frac{r_{2} + r_{c}'(k_{r} - 1)}{r_{2}} = \frac{43,18 \cdot 10^{-6} + 27,81 \cdot 10^{-6} \cdot (1,9 - 1)}{43,18 \cdot 10^{-6}} = 1,58$$

где $r_c = r_c = 27.81 \cdot 10^{-6} \text{ Ом.}$

Приведённое активное сопротивление ротора с учётом влияния эффекта вытеснения тока:

$$r'_{2\zeta} = K_r r'_2 = 1,58 \cdot 0,06 = 0,095 \text{ Om.}$$

Коэффициент магнитной проводимости участка паза ротора, занятого проводником с обмоткой:

$$\lambda'_{112} = \frac{h_0}{3b_1} (1 - \frac{\pi b_1^2}{8q_c})^2 + 0.66 - \frac{b_{1112}}{2b_1} = \frac{23.67}{3.9.6} \cdot \left(1 - \frac{\pi \cdot 9.6^2}{8.251.7}\right)^2 + 0.66 - \frac{1.5}{2.9.6} = 1.18$$

Коэффициент магнитной проводимости пазового рассеяния с учетом эффекта вытеснения тока:

$$\lambda_{\Pi 2\zeta}=\lambda_{\Pi 2}-\Delta\lambda_{\Pi 2\zeta}=1,65-0,41=1,24$$
 где $\Delta\lambda_{\Pi 2\zeta}=\lambda_{\Pi 2}'\left(1-k_{\text{Д}}\right)=1,18\cdot\left(1-0,65\right)=0,41$ $\kappa_{\Pi}=\phi'=0,65$

Коэффициент, показывающий изменение индуктивного сопротивления фазы обмотки ротора от действия эффекта вытеснения тока:

$$K_{X} = \frac{\lambda_{\Pi 2\zeta} + \lambda_{\Lambda 2} + \lambda_{\Lambda 2}}{\lambda_{\Pi 2} + \lambda_{\Lambda 2} + \lambda_{\Lambda 2}} = \frac{1,24 + 0,755 + 2,89}{1,65 + 0,755 + 2,89} = 0,92$$

Приведенное индуктивное сопротивление ротора с учетом эффекта вытеснения тока:

$$x'_{27} = K_X x'_2 = 0.92 \cdot 0.539 = 0.496$$

В пусковом режиме активным сопротивлением r_{12} схемы замещения АД на рис. П.20, б (страница, [1]), пренебрегают, то есть $r_{12\pi}$ =0. (стр. 60, [1]).

Индуктивное сопротивление взаимоиндукции в схеме замещения АД (рис. $\Pi.20$, б, страница, [1]) в пусковом режиме:

$$\mathbf{x}_{12\pi} = \mathbf{k}_{\mu} \mathbf{x}_{12} = 1,33 \cdot 20 = 26,6 \ \mathsf{Om}$$

Коэффициент с₁ в пусковом режиме АД:

$$c_{1\pi} = 1 + \frac{x_1}{x_{12\pi}} = 1 + \frac{0,477}{26,6} = 1,018$$

Активное и реактивное сопротивления правой ветви Г-образной схемы замещения АД (рис.7.1) в пусковом режиме с учётом вытеснения тока:

$$R_{\pi} = r_1 + \frac{c_{1\pi}r'_{2\zeta}}{s} = 3,97 + \frac{1,018 \cdot 0,0948}{1} = 0,25 \text{ Om}$$

$$X_{\Pi} = x_1 + c_{1\Pi} x'_{2\zeta} = 0.477 + 1.018 \cdot 0.496 = 0.9819 \text{ Om}$$

Ток в обмотке ротора с учётом вытеснения тока в пусковом режиме:

$$I'_{2\pi} = \frac{U_{1\text{HOM.}\Phi}}{\sqrt{R_{\pi}^2 + X_{\pi}^2}} = \frac{220}{\sqrt{0.25^2 + 0.9819^2}} = 217.1 \text{ A}$$

Пусковой ток статора с учётом вытеснения тока:

$$I_{1\pi} = I_{2\pi}^{'} \frac{\sqrt{R_{\pi}^{2} + (X_{\pi} + X_{12\pi})^{2}}}{c_{1\pi}X_{12\pi}} = 217,1 \cdot \frac{\sqrt{0,25^{2} + (0,9819 + 26,6)^{2}}}{1,018 \cdot 26,6} = 221,1 \text{ A}.$$

Кратность пускового тока АД с учётом вытеснения тока:

$$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}} = \frac{221,1}{69,2} = 3,195$$

Кратность пускового момента АД с учётом вытеснения тока при скольжении:

$$M^* = \left(\frac{I'_{2\Pi}}{I'_{2HOM}}\right)^2 K_r \frac{S_{HOM}}{S} = \left(\frac{217,1}{62,15}\right)^2 \cdot 1,58 \cdot \frac{0,02}{1} = 0,39$$

Предварительно значение критического скольжения можно оценить по формуле:

$$s_{KP} = \frac{r_2'}{\frac{X_1}{c_{1\Pi}} + X_2'} = \frac{0,06}{\frac{0,477}{1,018} + 0,539} = 0,144$$

Соответственно, выберем расчётный ряд скольжений s: 0,05; 0,06; 0,1; 0,3; 0,7; 1.

Значение критического скольжения уточник после расчёта и построения пусковых характеристик.

Таблица 8.1. Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока.

№	Do ovičevog dominira	Ew work	Скольжение s					
745	Расчётная формула	Ед. изм.	0,05	0,06	0,1	0,3	0,7	1
1	ζ =63,61 $h_{c2}\sqrt{s}$	ı	0.508	0.556	0.718	1.244	1.9	2.271
2	$\varphi = f(\zeta)$	-	0.062	0.062	0.065	0.192	0.775	1.223
3	$h_r = \frac{h_{c2}}{1 + \varphi}$	MM	33.623	33.612	33.515	29.944	20.111	16.061
4	$k_r = \frac{q_c}{q_r}$	1	2.143	2.143	2.141	2.082	1.936	1.881

Изм.	Лист	№ Докум	Подпись	Дата

No	Расчётная формула	Ед. изм.			Сколь	жение s		
745	гасчетная формула	Ед. изм.	0,05	0,06	0,1	0,3	0,7	1
5	$K_r = \frac{r_2 + r_c'(k_r - 1)}{r_2}$	-	1.736	1.736	1.735	1.697	1.603	1.568
6	$r'_{2\zeta}=K_Rr'_2$	Ом	0.104	0.104	0.104	0.102	0.096	0.094
7	$k_{\mathcal{A}} = \phi' = f(\zeta)$	-	0.985	0.982	0.974	0.935	0.781	0.665
8	$\lambda_{\pi 2\zeta} = \lambda_{\pi 2} - \Delta \lambda_{\pi 2\zeta}$	-	1.632	1.629	1.619	1.573	1.391	1.254
9	$K_{X} = \frac{\lambda_{\pi 2\zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}}$	-	0.997	0.996	0.994	0.985	0.951	0.925
10	$\mathbf{x}_{2\zeta}^{'} = \mathbf{K}_{\mathbf{x}} \mathbf{x}_{2}^{'}$	Ом	0.537	0.537	0.536	0.531	0.513	0.499
11	$R_{\pi} = r_1 + \frac{c_{1\pi}r_{2\zeta}}{s}$	Ом	2.274	1.92	1.213	0.499	0.293	0.249
12	$X_{\pi} = x_1 + c_{1\pi} x_{2\zeta}$	Ом	1.024	1.024	1.023	1.018	0.999	0.985
13	$I_{2\pi}' = \frac{U_{1\text{HOM}.\varphi}}{\sqrt{R_{\pi}^2 + X_{\pi}^2}}$	A	88.214	101.095	138.684	194.129	211.353	216.612
14	$I_{1\pi} = I'_{2\pi} \frac{\sqrt{R_{\pi}^2 + (X_{\pi} + X_{12\pi})^2}}{c_{1\pi} X_{12\pi}}$	A	90.294	103.377	141.605	198.024	215.424	220.668
15	$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}}$	-	1.305	1.494	2.046	2.862	3.113	3.189
16	$M^* = (\frac{I'_{2\pi}}{I'_{2\text{HOM}}})^2 K_r \frac{S_{\text{HOM}}}{S}$	кВт	1.399	1.531	1.728	1.104	0.53	0.381

 $Puc\ 8.1.$ Пусковые характеристики АД с учётом эффекта вытеснения тока: (a) - $M^*=f(s)$; (δ) - $I^*_{ln}=f(s)$

По построенным пусковым характеристикам (рис.) уточняем, что $s_{\kappa p} = 0,166$.

Изм.	Лист	№ Докум	Подпись	Дата

Максимальный момент АД, соответствующий критическому скольжению, с учётом вытеснения тока:

$$M_{\text{max}}^* = (\frac{I_{2\pi(s_{\text{kp}})}'}{I_{2\text{hom}}'})^2 K_{R(s_{\text{kp}})} \frac{s_{\text{hom}}}{s_{\text{kp}}} = (\frac{170.461}{62.15})^2 \cdot 1,728 \cdot \frac{0.02}{0,166} = 1.567$$

Изм.	Лист	№ Докум	Подпись	Дата

8.2. Расчёт пусковых характеристик с учётом насыщения магнитной системы асинхронной машины

Определим необходимость учёта влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД. Для этого найдём значение полного тока паза статора в начальный момент времени пуска двигателя, то есть при s=1.

$$I_{1\pi a 3 a} = \frac{I_{1\pi} u_{\pi}}{a} = \frac{220.67 \cdot 9}{2} = 993.01 \text{ A}.$$

Полученное значение $I_{1паза}>400$ A, поэтому учёт влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД необходим. (стр. 64, [1]).

Выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока и влияния насыщения от полей рассеяния.

Расчётный ряд скольжений s примем таким же, что и при расчёте с учётом только вытеснения тока: 0.05, 0, 06, 0.3, 0.5, 0.7, 1.

Покажем подробный расчёт для значения скольжений s=1.

Первоначально зададимся значением коэффициента увеличения тока от насыщения зубцовой зоны полями рассеяния (рекомендации на стр. 65, [1]);

$$k_{\text{Hac}} = 1,45$$

Средняя МДС обмотки, отнесенная к одному пазу обмотки статора:

$$\begin{split} F_{\pi.\text{cp}} &= 0.7 \frac{k_{\text{\tiny Hac}} I_{1\pi} u_{\pi}}{a} \left(k_{\beta}' + k_{y} k_{\text{\tiny OGM1}} \frac{Z_{1}}{Z_{2}} \right) = \\ &= 0.7 \cdot \frac{1.45 \cdot 220.67 \cdot 9}{1} \cdot \left(1 + 0.96 \cdot 0.92 \cdot \frac{48}{38} \right) = 2132.4 \text{ A} \end{split}$$

Коэффициент C_N:

$$C_N = 0.64 + 2.5 \sqrt{\frac{\delta}{t_{Z1} + t_{Z2}}} = 0.64 + 2.5 \cdot \sqrt{\frac{0.5}{15 + 20.1}} = 0.934$$

Фиктивная индукция потока рассеяния в воздушном зазоре:

$$B_{\varphi\delta} = \frac{F_{\pi.cp}}{1,6\delta C_N} \cdot 10^{-3} = \frac{2132.4}{1,6\cdot 0,5\cdot 0.934} \cdot 10^{-3} = 2.854 \ \text{Tp}$$

Коэффициент К₆, характеризующий отношение потока рассеяния при насыщении к потоку рассеяния ненасыщенной машины (рис. П.26, [1], страница):

$$K_6 = f(B_{\phi 6}) = 0.75$$

Дополнительное эквивалентное раскрытие пазов статора:

$$c_{\mathfrak{1}} = (t_{\mathrm{Z1}} - b_{\mathrm{III}})(1 - K_{\delta}) = (16 - 3.7) \cdot (1 - 0.75) = 3.08$$
 мм

Дополнительное эквивалентное раскрытие пазов ротора:

$$c_{\text{32}} = (t_{\text{Z2}} - b_{\text{III}2})(1 - K_{\delta}) = (20,1 - 1,5) \cdot (1 - 0,75) = 4,65$$
 мм

Уменьшение коэффициента магнитной проводимости рассеяния паза статора для полузакрытых пазов (рис. П.27, в,г, стр. 148, [1]):

$$\Delta\lambda_{\text{\tiny II.Hac}} = \frac{h_{\text{\tiny III}} + 0.58h_k}{b_{\text{\tiny III}}} \frac{c_{1\text{\tiny 3}}}{c_{1\text{\tiny 3}} + 1.5b_{\text{\tiny III}}} = \frac{1 + 0.58 \cdot 2.35}{3.7} \cdot \frac{3.08}{3.08 + 1.5 \cdot 3.7} = 0.23$$

Изм.	Лист	№ Докум	Подпись	Дата

Уменьшение коэффициента магнитной проводимости рассеяния пазов ротора для полузакрытых пазов:

$$\Delta \lambda_{\text{\tiny II2.Hac}} = \frac{h_{\text{\tiny III2}}}{b_{\text{\tiny III2}}} \cdot \frac{c_{92}}{b_{\text{\tiny III2}} + c_{92}} = \frac{0.7}{1.5} \cdot \frac{4.65}{1.5 + 4.65} = 0.35$$

Коэффициенты проводимости дифференциального рассеяния при насыщении участков зубцов статора и ротора соответственно:

$$\lambda_{\text{п1.нас}} = \lambda_{\text{п1}} - \Delta \lambda_{\text{п1.нас}} = 1,31 - 0,23 = 1,08$$
 $\lambda_{\text{п2}\zeta,\text{нас}} = \lambda_{\text{п2}\zeta} - \Delta \lambda_{\text{п2.нас}} = 1,25 - 0,35 = 0.9$

Коэффициенты проводимости дифференциального рассеяния при насыщении участков зубцов статора и ротора соответственно:

$$\lambda_{\text{д1.Hac}} = \lambda_{\text{д1}} K_{\delta} = 3,52 \cdot 0,75 = 2,64$$
 $\lambda_{\text{д2.Hac}} = \lambda_{\text{д2}} K_{\delta} = 2.89 \cdot 0,75 = 2.17$

Индуктивные сопротивления обмоток статора и ротора с учетом насыщения от полей рассеяния:

$$x_{1.\text{нас}} = x_1 \frac{\lambda_{\Pi 1.\text{наc}} + \lambda_{\Pi 1.\text{наc}} + \lambda_{\Pi 1}}{\lambda_{\Pi 1} + \lambda_{\Pi 1} + \lambda_{\Pi 1}} = 0.477 \cdot \frac{1,08 + 2,64 + 1.22}{1,31 + 3,52 + 1.22} = 0.389 \text{ Ом}$$

$$\dot{x_{2\zeta,\text{нас}}} = \dot{x_2} \frac{\lambda_{\pi 2\zeta,\text{нас}} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}} = 0.539 \cdot \frac{0.9 + 2.17 + 0,755}{1,65 + 2.89 + 0,755} = 0.389 \text{ Ом}$$

Коэффициент с₁ в пусковом режиме АД с учётом насыщения:

$$c_{1\pi,\text{Hac}} = 1 + \frac{x_{1,\text{Hac}}}{x_{12\pi}} = 1 + \frac{0.389}{26.6} = 1,015$$

Находим активное $R_{\text{п.нас}}$ и реактивное $X_{\text{п.нас}}$ сопротивления правой ветви Γ образной схемы замещения АД (рис. 7.1) в пусковом режиме с учётом вытеснения
тока и насыщения:

$$R_{\text{п.нас}} = r_1 + \frac{c_{1\pi.\text{наc}}r_{2\zeta}'}{s} = 0,153 + \frac{1,015 \cdot 0.0941}{1} = 0.249 \text{ Ом}$$
 $X_{\text{п.нас}} = x_{1.\text{наc}} + c_{1\pi.\text{наc}}x_{2\zeta.\text{наc}}' = 0.389 + 1,015 \cdot 0.389 = 0.784 \text{ Ом}$

Ток в обмотке ротора в пусковом режиме с учётом вытеснения тока и насыщения:

$$I'_{2\pi,\text{hac}} = \frac{U_{1\text{hom},\varphi}}{\sqrt{R_{\pi,\text{hac}}^2 + X_{\pi,\text{hac}}^2}} = \frac{220}{\sqrt{0.249^2 + 0.784^2}} = 267.4 \text{ A}$$

Ток статора с учётом вытеснения тока и насыщения:

$$I_{1\pi,\text{Hac}} = I'_{2\pi,\text{Hac}} \frac{\sqrt{R_{\pi,\text{Hac}}^2 + (X_{\pi,\text{Hac}} + x_{12\pi})^2}}{c_{1\pi,\text{Hac}} x_{12\pi}} = 267.4 \cdot \frac{\sqrt{0.249^2 + (0.784 + 26,6)^2}}{1,015 \cdot 26,6} = 271.2 \text{ A}$$

Изм.	Лист	№ Докум	Подпись	Дата

Кратность тока статора АД с учётом вытеснения тока и насыщения:

$$I_{1\pi}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1\text{HOM}}} = \frac{271.2}{69.2} = 3.919 \text{ o. e.}$$

Кратность пускового момента АД с учётом вытеснения тока и насыщения:

$$M^* = \left(\frac{I'_{2\pi,\text{HaC}}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{S_{\text{HOM}}}{S} = \left(\frac{267.4}{62.15}\right)^2 \cdot 1,57 \cdot \frac{0,02}{1} = 0.58$$

Фактическое значение коэффициента насыщения:

$$k'_{\text{Hac}} = \frac{I_{1\pi,\text{Hac}}}{I_{1\pi}} = \frac{271.2}{220.67} = 1,229$$

Данное значение не отличается от принятого изначально на 10.... 15%, что допустимо и означает, что уточняющий перерасчёт пусковых параметров АД не требуется (стр. 68, [1]).

$$k_{\text{Hac}} = 1,45$$
 для $s = 1$

Таблица 8.2. Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока и насыщения:

No	Doorienvog domining	Ед.			Сколь	жение s		
745	Расчётная формула	изм.	0,05	0,06	0,1	0,3	0,7	1
1	k _{Hac}	-	1	1	1	1.183	1.317	1.45
2	$F_{\text{п.cp}} = 0.7 \frac{k_{\text{Hac}} I_{1 \text{п}} u_{\text{п}}}{a} \cdot \left(k_{\beta}' + k_{y} k_{\text{обм1}} \frac{Z_{1}}{Z_{2}}\right)$	кА	1.471	1.471	1.471	1.74	1.936	2.132
3	$B_{\phi\delta} = \frac{F_{\text{n.cp}}}{1,6\delta C_N} \cdot 10^{-3}$	Тл	1.968	1.968	1.968	2.329	2.591	2.854
4	$K_6=f(B_{\phi 6})$	-	0.895	0.895	0.865	0.834	0.784	0.735
5	$c_{91} = (t_{Z1} - b_{III})(1 - K_{\delta})$	MM	1.294	1.294	1.294	2.046	2.66	3.261
6	$\Delta \lambda_{\text{п1.Hac}} = \frac{h_{\text{ш1}} + 0.58h_k}{b_{\text{ш1}}} \cdot \frac{c_{19}}{c_{19} + 1.5b_{\text{ш1}}}$	-	0.0121	0.121	0.121	0.172	0.207	0.236
7	$\lambda_{\Pi 1. ext{Hac}} = \lambda_{\Pi 1} - \Delta \lambda_{\Pi 1. ext{Hac}}$	-	1.189	1.189	1.189	1.138	1.103	1.074
8	$\lambda_{\text{д1.нас}} = \lambda_{\text{д1}} K_{\delta}$	-	3.15	3.15	3.15	2.934	2.759	2.587
9	$\begin{aligned} \mathbf{x}_{1.\text{Hac}} &= \mathbf{x}_1 \cdot \\ \frac{\lambda_{\text{n1.Hac}} + \lambda_{\text{д1.Hac}} + \lambda_{\text{л1}}}{\lambda_{\text{n1}} + \lambda_{\text{д1}} + \lambda_{\text{л1}}} \end{aligned}$	Ом	0.438	0.438	0.438	0.417	0.401	0.385

Изм.	Лист	№ Докум	Подпись	Дата

№	Do avijava gada ana gura	Ед.			Сколь	жение s		
JNΩ	Расчётная формула	изм.	0,05	0,06	0,1	0,3	0,7	1
10	$c_{92} = (t_{Z2} - b_{III2})(1 - K_{\delta})$	MM	1.938	1.938	1.958	3.094	4.023	4.931
11	$\Delta \lambda_{_{\mathrm{II2.Hac}}} = rac{h_{_{\mathrm{III}2}}}{b_{_{\mathrm{III}2}}} rac{c_{_{92}}}{b_{_{\mathrm{III}2}} + c_{_{92}}}$	-	0.264	0.264	0.264	0.314	0.34	0.358
12	$\lambda_{\pi 2 \zeta. \text{hac}} = \lambda_{\pi 2 \zeta} - \Delta \lambda_{\pi 2. \text{hac}}$	-	0.986	0.986	0.986	0.936	0.91	0.892
13	$\lambda_{ extsf{A}2. ext{Hac}} = \lambda_{ extsf{A}2} extsf{K}_{\delta}$	-	2.586	2.586	2.586	2.409	2.265	2.124
14	$x'_{2\zeta,\text{Hac}} = x'_{2} \frac{\lambda_{\Pi 2\zeta,\text{Hac}} + \lambda_{\Pi 2,\text{Hac}} + \lambda_{\Pi 2}}{\lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{\Pi 2}}$	Ом	0.44	0.44	0.44	0.417	0.4	0.384
15	$c_{1\pi.\text{Hac}} = 1 + \frac{x_{1.\text{Hac}}}{x_{12\pi}}$	-	1.016	1.016	1.016	1.016	1.015	1.014
16	$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}} r_{2\zeta}'}{s}$	Ом	2.06	1.74	1.11	0.472	0.289	0.248
17	$X_{\text{п.нас}} = X_{\text{1.нас}} + c_{\text{1п.нас}} X'_{2\zeta.\text{нас}}$	Ом	0.886	0.886	0.886	0.841	0.807	0.774
18	$I'_{2\text{п.нас}} = \frac{U_{1\text{ном.}\phi}}{\sqrt{R_{\text{п.нас}}^2 + X_{\text{п.нас}}^2}}$	A	97.867	112.304	154.948	228.134	256.678	270.571
19	$I_{1_{\Pi,\text{HaC}}} = I'_{2_{\Pi,\text{HaC}}} \frac{\sqrt{R_{\Pi,\text{HaC}}^2 + (X_{\Pi,\text{HaC}} + x_{12\Pi})^2}}{c_{1_{\Pi,\text{HaC}}} x_{12\Pi}}$	A	99.768	114.394	157.642	237.747	260.553	274.487
20	$k'_{\text{Hac}} = \frac{I_{1\pi,\text{Hac}}}{I_{1\pi}}$	-	0.452	0.518	0.714	1.05	1.181	1.244
21	$k'_{ m Hac} = rac{I_{ m 1\Pi.Hac}}{I_{ m 1\Pi}}$ $I^*_{ m 1\Pi} = rac{I_{ m 1\Pi.Hac}}{I_{ m 1HOM}}$	-	1.442	1.653	2.278	3.349	3.765	3.967
	$\mathbf{M}^* = \left(\frac{I'_{2\pi,\text{Hac}}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{s_{\text{HOM}}}{s}$	-	1.557	1.709	1.952	1.41	0.765	0.595

(a) (б) $Puc. \ 8.2.$ Пусковые характеристики АД с учётом эффекта вытеснения тока и насыщения: (a) - $M^*=f(s)$; (б) - $I^*_{In}=f(s)$

Изм.	Лист	№ Докум	Подпись	Дата

По построенным пусковым характеристикам определяем критическое скольжение и максимальный момент, соответствующий критическому скольжению:

 $s_{\kappa p}=0,166;~{M_{max}}^*=1.803$

Изм.	Лист	№ Докум	Подпись	Дата

9. Тепловой расчёт

Электрические потери в пазовой части обмотки статора:

$$P_{\mathfrak{I}_{1}}' = k_{\rho} P_{\mathfrak{I}_{1}} \frac{2l_{1}}{l_{cp1}} = 0,958 \cdot 1957,4 \cdot \frac{2 \cdot 0,154}{0,79} = 731.1$$

где: $k_p=1,07$ для класса H.

Превышение температуры внутренней поверхности сердечника статора над температурой воздуха внутри двигателя:

$$\Delta \vartheta_{\text{\tiny \Pi OB} 1} = K \frac{P_{\text{\tiny 3\Pi}}' + P_{\text{\tiny CT.OCH}}}{\pi D l_1 \alpha_1} = 0.2 \cdot \frac{731.1 + 442.9}{\pi \cdot 244 \cdot 0.154 \cdot 119} = 16.7 ^{\circ} \text{C}.$$

где: K=0,2 – коэффициент, учитывающий, что часть потерь в сердечнике статора и в пазовой части обмотки передается через станину непосредственно в окружающую среду (табл. П.29, [1], стр. 148);

$$\alpha_1 = 119 \frac{\text{Вт}}{\text{м}^2 \cdot \text{°C}}$$
 коэффициент теплоотдачи с поверхности (рис. П. 28, [1], стр. 149)

Расчётный периметр поперечного сечения паза статора (стр. 71, [1], полузакрытый трапецеидальный паз).

$$\Pi_{\pi 1} = 2h_{\pi.K.} + b_1 + b_2 = 2 \cdot 19, 1 + 9, 6 + 4, 9 = 53 \text{ mm} = 0,053 \text{ m}$$

Перепад температуры в изоляции пазовой части обмотки статора:

$$\Delta \vartheta_{\text{\tiny M3.\Pi1}} = \frac{P'_{\text{\tiny 3\Pi1}}}{Z_1 \Pi_{\text{\tiny \Pi1}} l_1} \left(\frac{b_{\text{\tiny M3}}}{\lambda_{\text{\tiny 3KB}}} + \frac{b_1 + b_2}{16 \lambda'_{\text{\tiny 3KB}}} \right) \cdot 10^{-3}$$
$$= \frac{731.1}{48 \cdot 0.053 \cdot 0.154} \cdot \left(\frac{0.5}{0.16} + \frac{9.6 + 4.9}{16 \cdot 1.3} \right) \cdot 10^{-3} = 7.1^{\circ}\text{C}.$$

где: средняя эквивалентная теплопроводность пазовой изоляции

$$\lambda_{\text{9KB}} = 0.16 \frac{\text{BT}}{\text{M}^2 \cdot \text{°C}} \text{ (cTp. 72, [1].)}$$

среднее значение коэффициента теплопроводности внутренней изоляции катушки всыпной обмотки из эмалированных проводников с учетом неплотного прилегания проводников друг к другу

$$\lambda_{_{9 \text{KB}}}^{'} = 1,3 \frac{\text{Вт}}{\text{м}^{2} \cdot {}^{\circ} \text{С}}$$
 (по рис. П.30, стр. 151, [1], для $\frac{d}{d_{u_3}} = 0,952$)

Электрические потери в лобовых частях катушек обмотки статора:

$$P'_{\text{эл1}} = k_{\rho} P_{\text{э1}} \frac{2l_2}{l_{\text{cp1}}} = 1,07 \cdot 1957,4 \cdot \frac{2 \cdot 0,241}{0,79} = 1278 \text{ Bt.}$$

Проверил		Тодарев В.В			Тепловой расчёт	У	₄₀ ГУ, гр. ЭП-21		
Разр	абот.	Ларьков А.В			Литер. Лист Листо		Листов		
Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.ЭП-21.32.ПЗ				
					VII 1 52 01 05	$\Delta \Pi \Delta$	1 22	ПО	

Периметр условной поверхности охлаждения лобовой части одной катушки обмотки статора:

$$\Pi_{\pi 1} \approx \Pi_{\pi 1} = 0.053 \text{ M} = 53 \text{ MM. (ctp. 72, [1])}.$$

Перепад температуры по толщине изоляции лобовых частей обмотки статора:

$$\begin{split} \Delta\vartheta_{_{\mathrm{H3.71}}} &= \frac{P_{_{\mathrm{3Л1}}}'}{2Z_{_{1}}\Pi_{_{\mathrm{Л1}}}l_{_{\mathrm{Л1}}}} \Big(\frac{b_{_{\mathrm{H3.71}}}}{\lambda_{_{\mathrm{9KB}}}} + \frac{h_{_{\Pi1}}}{16\lambda_{_{\mathrm{9KB}}}'}\Big) \cdot 10^{-3} \\ &= \frac{1278}{2 \cdot 48 \cdot 0,053 \cdot 0,241} \cdot \Big(\frac{0}{0,16} + \frac{22.4}{16 \cdot 1,3}\Big) \cdot 10^{-3} = 1^{\circ}\text{C}. \end{split}$$

где $b_{\text{из.л1}}$ =0, т.к. лобовые части обмотки без изоляции (стр.72, [1]).

Превышение температуры наружной поверхности изоляции лобовых частей обмотки статора над температурой воздуха внутри машины:

$$\Delta \vartheta_{\text{пов.л1}} = K \frac{P_{\text{эл1}}'}{2\pi D l_{\text{выл1}} \alpha_1} = 0.2 \cdot \frac{1278}{2\pi \cdot 0.244 \cdot 0.078 \cdot 119} = 18^{\circ} \text{C}.$$

Среднее повышение температуры обмотки статора над температурой воздуха внутри двигателя:

$$\Delta\vartheta_{1}' = \frac{(\Delta\vartheta_{\text{пов1}} + \Delta\vartheta_{\text{из.п1}})2l_{1} + (\Delta\vartheta_{\text{из.л1}} + \Delta\vartheta_{\text{пов.л1}})2l_{\text{л1}}}{l_{\text{ср1}}} = \frac{(16.7 + 7.1) \cdot 2 \cdot 0,154 + (1 + 18) \cdot 2 \cdot 0,2441}{0,79} = 20,9^{\circ}\text{C}.$$

Эквивалентная поверхность охлаждения корпуса АД (поскольку двигатель имеет степень защиты IP44, то с учётом поверхности рёбер станины – стр.73, [1]):

 Π_p =0,39 м — условный периметр поперечного сечения ребер корпуса двигателя (по рис. П.31., [1], стр. 151).

$$S_{\text{кор}} = (\pi D_a + 8\Pi_p)(l_1 + 2l_{\text{выл}1}) = (\pi \cdot 0.359 + 8 \cdot 0.39) \cdot (0.154 + 2 \cdot 0.078) = 1.32 \text{ M}^2$$

Сумма потерь, отводимых в воздух внутри двигателя (стр.73, [1], двигатель имеет внешний вентилятор).

АД с внешним вентилятором (степень защиты двигателя IP44, система охлаждения IC0141):

Превышение температуры воздуха внутри машины над температурой окружающей среды:

$$\alpha_{\rm B} = 24 \; \frac{{\rm BT}}{{\rm M}^2 \cdot {}^{\circ} {\sf C}}$$
-коэффициент подогрева воздуха (рис. П.28, [1], стр. 149).
$$\Delta \vartheta_{\rm B} = \frac{\sum P_{\rm B}'}{s_{\rm kon} \alpha_{\rm B}} = \frac{2679.2}{1.32 \cdot 24} = 84.6 \, {}^{\circ} {\sf C}$$

Изм.	Лист	№ Докум	Подпись	Дата

Среднее превышение температуры обмотки статора над температурой окружающей среды:

$$\Delta \theta_1 = \Delta \theta_1' + \Delta \theta_B = 20.9 + 84.6 = 105.5$$
°C.

Значение величины $\Delta \theta_1$ не выше допустимого превышения температуры обмотки для изоляции класса H, равного 100°C (табл. П.30, стр. 152, [1]), поэтому нагрев двигателя находится в допустимых значениях.

Коэффициент, учитывающий изменение условий охлаждения по длине поверхности корпуса, обдуваемого наружным вентилятором (стр. 75, [1]):

$$k_{\rm m} = m' \sqrt{\frac{n_1}{100} D_a} = 2.5 \cdot \sqrt{\frac{1500}{100} \cdot 0.359} = 5.8.$$

где m[']=2.5 для АД с 2р=4 и h≤250 мм;

Требуемый для охлаждения расход воздуха:

$$Q_{\scriptscriptstyle B} = \frac{k_{\scriptscriptstyle m} \sum P_{\scriptscriptstyle B}'}{1100 \Delta \vartheta_{\scriptscriptstyle B}} = \frac{5.8 \cdot 2679.2}{1100 \cdot 84.6} = 0.17 \ \frac{{\scriptscriptstyle M}^3}{c}.$$

Расход воздуха, обеспечиваемый наружным вентилятором:

$$Q'_{B} = 0.6D_{a}^{3} \frac{n_{1}}{100} = 0.6 \cdot 0.359^{3} \cdot \frac{1500}{100} = 0.42 \frac{M^{3}}{c}.$$

Фактически обеспечиваемый расход воздуха должен быть больше требуемого, то есть должно выполняться условие:

 $Q_{\rm B}$ '> $Q_{\rm B}$ или 0.42>0.17 – в нашем случае условие выполняется.

V	1зм.	Лист	№ Докум	Подпись	Дата

Заключение

При проектировании данного электродвигателя были рассчитаны размеры статора и ротора, выбраны типы обмоток, обмоточные провода, изоляция, материалы активных и конструктивных частей машины. Отдельные части машины были сконструированы так, чтобы при изготовлении машины трудоёмкость и расход материалов были наименьшими, а при эксплуатации машина обладала наилучшими энергетическими показателями. При этом данная электрическая машина соответствует условиям применения её в электроприводе.

При выполнении проекта учитывалось соответствие технико-экономических показателей машины современному мировому уровню. Проектирование производилось с учётом требований государственных и отраслевых стандартов. При проектировании пришлось учесть назначение и условия эксплуатации, стоимость активных и конструктивных материалов, КПД, технологию производства, надёжность в работе и патентную чистоту.

					КП.1-53 01 05.	ЭП-2	1.32.	 ПЗ
Изм	Лист	№ докум.	Подпись	Дата	141.1 00 01 00.011 21.02.110			
Разр	абот.	Ларьков А.В				Литер.	Лист	Листов
Про	верил	Тодарев В.В				У	43	
					Заключение	ררדי	V, гр.	ЭП-21

СПИСОК ЛИТЕРАТУРЫ

- 1. Электрические машины: Курсовое проектирование. Учебное пособие по дисциплине «Электрические машины» для студентов специальностей 1-53 01 05 «Автоматизированные электроприводы» и 1-43 01 03 «Электроснабжение (по отраслям)» дневной и заочной форм обучения / В.В. Тодарев, В.В. Брель. Гомель: ГГТУ им. П.О. Сухого, 2019. 158 с.
- 2. Проектирование электрических машин: учебник для вузов/ И.П. Копылов; под ред. И.П. Копылова. 4-е изд., перераб. и доп. М.: Издательство Юрайт, 2011. 767 с.
- 3. Обмотки электрических машин: метод. указания к практ. занятиям и курсовому проекту по дисциплине «Электрические машины» для студентов специальностей 1-53 01 05 «Автоматизированные электроприводы» и 1-43 01 03 «Электроснабжение» днев. и заоч. форм обучения / авт.-сост.: В. С. Захаренко, В. В. Тодарев. Гомель: ГГТУ им. П. О. Сухого, 2007. 49 с.

					ЛИТЕРАТУРЫ	ГГТУ, гр. ЭП-21		
Проверил		Тодарев В.В			СПИСОК	У	44	
Разработ.		Ларьков А.В				Литер.	Лист	Листов
Изм	Лист	№ докум.	Подпись	Дата	КП.1-53 01 05.ЭП-21.32.ПЗ			