1 Continuous-variable wavefunction

(a) Consider the wavefunction of a general single-mode pure state is given by

$$|\psi\rangle = \int \psi(q)|q\rangle dq = \int \tilde{\psi}(p)|p\rangle dp$$
 (1)

Show that $\tilde{\psi}(p)$ is the Fourier transform of $\psi(q)$. You may need to use the identity operator in the position and momentum basis, $\hat{\mathbb{I}} \equiv \int |q\rangle\langle q|dq = \int |p\rangle\langle p|dp$, and the overlap of the position and momentum eigenstates $\langle p|q\rangle = \frac{1}{\sqrt{2\pi}}e^{-iqp}$.

(b) Find, numerically, the probability of getting outcome $q \ge 2$ when a ground state is measured by homodyne detection in the \hat{q} basis.

2 Coherent state

- (a) Find the mean position $(\langle q \rangle)$, momentum $(\langle p \rangle)$, and their variances $(\langle \Delta q^2 \rangle, \langle \Delta p^2 \rangle, \langle \frac{\Delta q \Delta p + \Delta p \Delta q}{2} \rangle)$ of a coherent state $|\alpha\rangle$, where $\alpha \equiv \frac{q_\alpha + ip_\alpha}{\sqrt{2}}$.
 - (b) Write down the joint wavefunction, $\Psi(q_1, q_2)$, for the two-mode state $|\alpha\rangle|\beta\rangle$.
- (c) Show that no entanglement can be generated by sending two coherent state through a Beam Splitter, i.e. $|\Psi'\rangle \equiv \hat{B}(\theta)|\alpha\rangle|\beta\rangle$ is separable. You can do it either by showing $|\Psi'\rangle = |\phi_1\rangle|\phi_2\rangle$, where $|\phi_1\rangle$ and $|\phi_2\rangle$ are pure states, or showing $\Psi'(q_1, q_2) = \phi_1(q_1)\phi_2(q_2)$, or formally showing $\text{Tr}_1\{|\Psi'\rangle\langle\Psi'|\}$ is pure.

3 Gaussian transformation of mode operators

By using Baker-Campbell-Hausdorff formula, or otherwise, show the following identities:

- (a) $\hat{D}^{\dagger}(\beta)\hat{a}\hat{D}(\beta) = \hat{a} + \beta$
- (b) $\hat{R}^{\dagger}(\phi)\hat{a}\hat{R}(\phi) = e^{-i\phi}\hat{a}$
- (c) $\hat{S}^{\dagger}(r)\hat{a}\hat{S}(r) = \cosh r\hat{a} \sinh r\hat{a}^{\dagger}$
- (d) $\hat{B}^{\dagger}(\theta)\hat{a}_1\hat{B}(\theta) = \cos\theta\hat{a}_1 + \sin\theta\hat{a}_2$ and $\hat{B}^{\dagger}(\theta)\hat{a}_2\hat{B}(\theta) = -\sin\theta\hat{a}_1 + \cos\theta\hat{a}_2$

4 Two-mode squeezed state

- (a) Consider two modes that are prepared in oppositely squeezed vacuum state, $|\Psi\rangle = \hat{S}_1(r)\hat{S}_2(-r)|0\rangle|0\rangle$, where \hat{S}_i is the single-mode squeezing operator for mode i. By considering the wavefunction, or otherwise, show that $|\Psi'\rangle \equiv \hat{B}(\frac{\pi}{4})|\Psi\rangle$ is a two-mode squeezed state.
- (b) Show that two-mode squeezed state $|TMS\rangle$ is entangled. You can either use the wavefunction we introduced in lecture, or use the Fock state expression

$$|TMS\rangle = \sqrt{1 - \lambda^2} \sum_{n=0}^{\infty} \lambda^n |n\rangle |n\rangle .$$
 (2)

- (c) If mode 1 is measured by homodyne detection, show that the state of mode 2 is Gaussian, i.e. find the wavefunction of the (unnormalized) state $\langle q_1|TMS\rangle$, and verify it is a Gaussian function.
- (d) If mode 1 is measured by photon number detection, show that the state of mode 2 is Gaussian if the measurement outcome is $|0\rangle$.

Notation

Baker-Campbell-Hausdorff formula:

$$e^{X}Ye^{-X} = Y + \frac{1}{1!}[X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + \dots$$
 (3)