

EE 5313 Microprocessor Systems Project

SDRAM Controller for MT48LC16M4A2 memory device interfaced with the 80386DX processor.

Submitted by Nicholas Untrecht Rao Waqas Ali

Table of Contents

SDRAM Controller	4
Phase Locked Loop	5
32 bit address lines from μP breakdown	5
Characteristics	6
TOP LEVEL STATE DIAGRAM	7
State Transition Table	7
INITIALIZATION	8
State Diagram	8
State Transition Table	9
Command Table	10
Timing Diagram	11
Clock Cycles	12
Load Mode Register	13
AUTO REFRESH	14
State Diagram	14
State Transition Table	15
Command Table	16
Timing Diagram	17
Clock Cycles	18
READ	19
State Diagram	19
State Transition Table	20
Command Table	21
Timing Diagram	22
Clock Cycles	23
WRITE	24
State Diagram	24
State Transition Table	25
Command Table	26
Timing Diagram	27
Clock Cycles	28

Signal Generation	29
Chip Select	29
Memory Write	30
Memory Read	30
Command Signal	31
Bank Addresses (Tri-State Buffer)	32
Latches for Read	33
Buffer for Write	37
Ready#	38
RAS#	39
CAS#	40
WE#	41
DQM	42
CKE	43
A0-A11 AND A10	44
Counter	46
Refresh Timer	46

SDRAM Controller

- The Write and Read signal shown here are the combination of M/IO and ADS#, and the generation of these signal are shown in the signal generation section.
- The CS# is coming from the decoder, and the 9 upper bits of the microprocessor goes into the decode, the output of the decode is single, which is CS active low.
- The CLK2 runs as twice the speed of CLK.
- MA11-MA0 are the address lines going into the SDRAM, they will be used for different implementations depending on the CMD.
- CMD is a 3 bit output comprised of RAS#, CAS# and WE#.

Phase Locked Loop

32 bit address lines from μP breakdown

Characteristics

- MT38LC16M4A2 4 Meg x 4 x 4 banks
- Speed -7E
- Frequency of the controller is ≤ 133MHz | 132 MHz with PLL used above
- Clock Cycle = 7.5ns
- CL = 2 Cycles
- Burst Length = 8
- Refresh Time is 64ms (Commercial)
- Auto Precharge is enabled.

TOP LEVEL STATE DIAGRAM

State Transition Table

IDLE	Refresh_Req = 1	Auto_Refresh
IDLE	RD_Req =1 && Refresh_Req = 0	Read
IDLE	WR_Req = 1 && Refresh_Req = 0	Write
Auto_Refresh	CLR_REF_Req = 1	IDLE
Read	RD_Done = 1	IDLE
Write	WR_Done = 1	IDLE

- This is a top level state diagram. The RD_Done = 1 is defined as if we are in the Dout_8 state and no more read or write request is asserted.
- The WR_Done = 1 is defined as if we are in the Din_8 state and no more read or write request is asserted.
- The Dout_8 and Din_8 states are shown in the read and write section.

INITIALIZATION

1. State Diagram

- The Wait_tRFC is 66ns, and this bubble contains 7 wait states from Wait_tRFC1
 to Wait_tRFC7. The toal wait time is 9 CLKs, but the two CLK cycles of 7.5 ns
 are included in the transition from Auto_Refresh to Wait_tRFC and Wait_tRFC to
 Auto-Refresh.
- In Lode_Mode_Register command, we load the code, failing to do that would result in SDRAM being initialized with default values, which maybe undesired.
- The LMR is explained in the last part of this section.

2. State Transition Table

State	Condition	Next State
X	Reset# = 0	Wait_Clock_Stable
Wait_Clock_Stable	PLL = 0	Wait_Clock_Stable
Wait_Clock_Stable	PLL = 1	Wait_100us
Wait_100us	t_100us = 0	Wait_100us
Wait_100us	t_100us = 1	Send_Precharge
Send_Precharge	X	Wait_tRP
Wait_tRP	X	Auto_Refresh
Auto_Refresh	Х	Wait_tRFC1
Wait_tRFC1	X	Wait_tRFC7
Wait_tRFC7	Х	Auto_Refresh
Auto_Refresh	Х	Wait_tRFC
Wait_tRFC1	X	Wait_tRFC7
Wait_tRFC7	Х	Load_Mode_Register
Load_Mode_Register	Х	IDLE

3. Command Table

Signal	Enabled for (State(s))
CKE	Precharge, Auto_Refresh, LMR, IDLE
CS#	Precharge, Auto_Refresh, LMR, IDLE
RAS#	Precharge, Auto_Refresh, LMR
CAS#	Auto_Refresh, LMR
WE#	Precharge, LMR
A0-A9, A11	LMR
A10	Precharge
BA0, BA1	Precharge

5. Clock Cycles

Time	Value	No. of Clock Cycles
Waiting 100us before issuing any command	100us	13334
Precharge (tRP)	15ns	2
Auto_Refresh (tRFC) x2	66ns	9 x2 = 18
Load_Mode_Register (tMRD)	15ns	2

6. Load Mode Register

Address Bus	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Value	0	0	0	0	0	0	1	0	0	0	1	1

- Burst Length: The address lines A0, A1, A2 (1, 1, 0) are used to determine the burst length.
- Burst Type: The address line A3 (0) is determining the burst type.
- Cas Latency: Address lines A4, A5, A6 (0, 1, 0)determine the CAS latency.
- Op Mode: The Op mode is determined by the A7 and A8 (0,0)
- Write Burst Mode: Determined by A9 (0)
- A11 and A0 (0,0) are reserved and used for compatibility with future devices.

AUTO REFRESH

1. State Diagram

The Wait_tRFC is 66ns, and this bubble contains 7 wait states from Wait_tRFC1 to Wait_tRFC7. The toal wait time is 9 CLKs, but the two CLK cycles of 7.5 ns are included in the transition from Auto_Refresh to Wait_tRFC and Wait_tRFC to IDLE/Next Command.

2. State Transition Table

State	Condition	Next State
IDLE	Refresh_Req == 0	IDLE
IDLE	Refresh_Req == 1	Auto_Refresh
Auto_Refresh	X	Wait_tRFC
Wait_tRFC1	X	Wait_tRFC7
Wait_tRFC7	Х	NEXT CMD

3. Command Table

Signal	Enabled for State(s)
CKE	NOP, Auto_Refresh, Precharge
CS#	NOP, Auto_Refresh, Precharge
RAS#	Auto_Refresh, Precharge
CAS#	Auto_Refresh
WE#	Precharge
A10	Precharge

SDRAM Auto Refresh

5. Clock Cycles

Time	Value	No. of Clock Cycles
Precharge (tRP)	15ns	2
Auto_Refresh (tRFC)	66ns	9

READ

1. State Diagram

Once done reading out data (Leaving Dout_8) Assert READY# Low for 2 CLKs (W.S. Check_Ready), leave to IDLE knowing μP has been alerted to READY status.

2. State Transition Table

State	Condition(s)	Next State
IDLE	RD_Req = 0	IDLE
IDLE	RD_Req = 1 & Refresh_Req = 0	Active
Active	X	Wait_tRCD
Wait_tRCD	X	Read
Read	X	Wait_CL
Wait_CL	X	Dout_1
Dout_1	Х	Dout_2
Dout_2	Х	Dout_3
Dout_4	Х	Dout_4
Dout_4	X	Dout_5
Dout_5	X	Dout_6
Dout_6	X	Dout_7
Dout_7	X	Dout_8
Dout_8	X	Dout_8
Dout_8	X	Check_Ready
Check_Ready	X	IDLE

3. Command Table

Signal	Enabled for State(s)
CKE	NOP, Active, Precharge, Read, Dout_N, IDLE
CS#	NOP, Active, Precharge, Read, IDLE
RAS#	Active
CAS#	Read
WE#	WE# is high
A0-A9/A11	Active, Read
A10	Precharge, Read, Active
BA0,BA1	Precharge, Active
DQ	Read

5. Clock Cycles

Time	Value	No. of Clock Cycles
Precharge (tRP)	15ns	2
Auto_Refresh (tRFC)	66ns	9
CAS Latency (Wait_CL)	15ns	2
Active to Read/Write Delay (tRCD)	15ns	2

WRITE

State Diagram

1. State Transition Table

State	Condition	Next State
IDLE	WR_Req = 0	IDLE
IDLE	WR_Req = 1 && Refresh_Req = 0	Active
Active	X	tRCD
tRCD	X	Write (Din_1)
Write (Din_1)	X	Din_2
Din_2	X	Din_3
Din_3	X	Din_4
Din_4	X	Din_5
Din_5	X	Din_6
Din_6	X	Din_7
Din_7	X	Din_8
Din_8	Х	tWR
tWR	Х	tRP
tRP	X	IDLE

2. Command Table

Signal	Enabled for State(s)	
CKE	NOP, Active, Precharge, Write, Din_N, IDLE	
CS#	NOP, Active, Precharge, Write, IDLE	
RAS#	Active	
CAS#	Write	
WE#	Write	
A0-A9/A11	Active, Write	
A10	Precharge, Write, Active	
BA0,BA1	Precharge, Active	
DQ	Write	

1 2 3 4 5 6 7 8

READY# (Output)

a - 7.5 ns OR 1 CLK - b - tRCD 15 ns

Write Timing Diagram

11

tWR 1CLK + 7 ns

12

13

4. Clock Cycles

Time	Value	No. of Clock Cycles
Precharge (tRP)	15ns	2
Auto_Refresh (tRFC)	66ns	9
Active to Read/Write Delay (tRCD)	15ns	2
Write Recovery Time (tWR)	15ns	2

Signal Generation

1. Chip Select

2. Memory Write

3. Memory Read

M/IO#	W/R#	Output
1	1	Memory W
1	0	Memory R
0	1	I/O Write
0	0	I/O Read

4. Command Signal

Command	WE#	CAS#	RAS#
LMR	0	0	0
Active	1	1	0
Write	0	0	1
Read	1	0	1
Auto_Refresh	1	0	0
NOP	1	1	1

5. Bank Addresses (Tri-State Buffer)

6. Latches for Read

 Latches are done individually, but all 32 bits are outputted all at once, once done with an Output Enable pin.

7. Buffer for Write

8. Ready#

9. RAS#

11. WE#

12. DQM

- BE0# -> D0-7
- BE1# -> D8-15
- BE2# -> D16-23
- BE3# -> D24-31
- Input of BE0# -> BE3# and CMD 3
- Bit state value (all of the D_x states), single output of DQM#.

13. CKE

14. A0-A11 AND A10

State = Y == Send_Precharge
When A10 is low, the Send_Precharge to selected banks is done through BA1,BA0

15. Counter

16. Refresh Timer

