CANCER TREATMENT COSTS

ESTI STERN

Agenda

- Business Problem
- Data Overview
- Exploratory Data Analysis
- Methodology
- Models
- Final Model
- Conclusion
- Next Steps

Business Problem

- The soaring costs of cancer treatment often place an overwhelming financial strain on patients and families.
- A key factor in managing treatment costs is how insurance companies assess and allocate coverage.
- By predicting treatment costs, insurers can set premiums that balance affordability for the customers with sustainability for the company.
- With a clearer picture of potential costs, insurers could offer personalized recommendations and better financial support for patients, improving the customer experience.

Data Overview

Dataset Dimensions:

• Rows: 50,000

Columns: 15 (original including target variable)

Time Span:

Years Covered: 2015 - 2024

Data Quality:

- No null values
- No duplicate records

Target Variable:

Treatment Cost (USD)

Feature Engineering:

- One-hot encoding expanded features to 29
- 18 columns discarded (from encoded Cancer Type and Country)
- Final Model Input: 11 selected features

Exploratory Data Analysis – Descriptive Statistics

	Age	Year	Genetic_Risk	Air_Pollution	Alcohol_Use	Smoking	Obesity_Level	Treatment_Cost_USD	Survival_Years	Target_Severity_Score
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000
mean	54.421540	2019.480520	5.001698	5.010126	5.010880	4.989826	4.991176	52467.298239	5.006462	4.951207
std	20.224451	2.871485	2.885773	2,888399	2,888769	2.881579	2.894504	27363.229379	2.883335	1.199677
min	20.000000	2015.000000	0.000000	0.000000	0.000000	0.000000	0.000000	5000.050000	0.000000	0.900000
25%	37.000000	2017.000000	2.500000	2.500000	2.500000	2.500000	2.500000	28686.225000	2.500000	4.120000
50%	54.000000	2019.000000	5.000000	5.000000	5.000000	5.000000	5.000000	52474.310000	5.000000	4.950000
75%	72.000000	2022.000000	7.500000	7.500000	7.500000	7.500000	7.500000	76232.720000	7.500000	5.780000
max	89.000000	2024.000000	10.000000	10.000000	10.000000	10.000000	10.000000	99999.840000	10.000000	9.160000

- Age: Mean = 54.4, Range = 20 89
- Genetic Risk, Air Pollution, Alcohol Use,
 Smoking, Obesity Level: All scaled 0 10
 with similar distributions (mean ≈ 5.0)
- Treatment Cost (USD): Mean = \$52,467,
 Range = \$5,000 \$99,999, Std Dev = \$27,363
- Survival Years: Mean = 5.0, Range = 0 10
- Severity Score: Mean = 4.95, Range = 0.9 9.16
- Most features are symmetrically distributed around their midpoints

Exploratory Data Analysis – Feature Distributions

- Gender
- Cancer Type
- Cancer Stage
- Country
- All groups are evenly represented

Exploratory Data Analysis – Correlation Heatmap

- Only Severity Score has a significant linear correlation with Treatment Cost
- Genetic Risk, Air Pollution, Alcohol Use, Smoking, and Obesity Level all have some linear correlation with Severity Score

Methodology

Models – Feature Selection

Random Forest

XGBoost

Final Model

- Final Model: Optimized XGBoost Regressor
- Achieved RMSE of 3,156 & R² of 0.9867
- Selected based on balance of accuracy and generalization

		Random Forest	XGBoost	Bayesian Ridge
Before Optimization	RMSE	9098	5042	144
	R2	0.89	0.966	0.99
After Optimization	RMSE	8862	3156	
	R2	0.89	0.98	

Conclusion

- Although performance of the XGBoost model slightly improved with all features, selected features were removed to simplify the model and reduce overfitting.
- Genetic and environmental factors though indirect emerged as key drivers of disease severity and treatment costs.
- Insurance providers can leverage this model to design more personalized policies based on patients' individual risk profiles and anticipated treatment costs.
- Healthcare practitioners can use the model to promote transparency, helping patients better understand potential expenses and make more informed decisions.

Next Steps

- Future improvements include adding treatment type, therapy duration, length of hospital stay, insurance coverage
- These factors may enhance predictive accuracy
- Could deepen insights into cost drivers and care pathways

Appendix

```
[ ] 1 # Mount google drive
       2 from google.colab import drive
       5 drive.mount('/content/drive')
       6 os.chdir('/content/drive/My Drive')
Trive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
[ ] 1 # Import libraries
       2 import pandas as pd
       3 import numpy as np
      4 import matplotlib.pyplot as plt
      5 import seaborn as sns
      6 # !pip install xgboost
      7 import xgboost as xg
      9 from xgboost import plot_importance
      10 from sklearn.ensemble import RandomForestRegressor
      11 from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV
      12 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
[ ] 1 # Load the data
       2 cancer_data = pd.read_csv('global_cancer_patients_2015_2024.csv')
[ ] 1 # Encode Gender
       2 cancer_data['Gender'] = cancer_data['Gender'].replace({'Other':2, 'Male':1, 'Female':0})
🛨 /tmp/ipython-input-5-2577140762.py:2: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version
      cancer_data['Gender'] = cancer_data['Gender'].replace({'Other':2, 'Male':1, 'Female':0})
[ ] 1 # Encode Cancer Stage
       2 cancer_data['Cancer_Stage'] = cancer_data['Cancer_Stage'].replace({'Stage 0':0, 'Stage I':1, 'Stage II':2, 'Stage III':3, 'Stage IV':4}
🛨 /tmp/ipython-input-6-2326103387.py:2: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version
      cancer_data['Cancer_Stage'] = cancer_data['Cancer_Stage'].replace({'Stage 0':0, 'Stage I':1, 'Stage II':2, 'Stage III':3, 'Stage IV':4})
[ ] 1 # One Hot encode Country/Region, Cancer Type
       2 cancer_data = pd.get_dummies(cancer_data, columns=['Country_Region', 'Cancer_Type'])
      1 # Splitting into features and target variable
       2 X = cancer_data.drop(['Treatment_Cost_USD', 'Patient_ID'], axis=1)
       3 y = cancer_data['Treatment_Cost_USD']
[ ] 1 # Splitting into training - 75% and testing - 25%
       2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=23)
```

```
[ ] 1 # Random Forest Regressor
       2 # Using all the features
       3 rf1 = RandomForestRegressor(random_state=23)
       4 rf1.fit(X_train, y_train)
          RandomForestRegressor
     RandomForestRegressor(random_state=23)
     1 # Test the model on X_test
       2 y_pred_rf1 = rf1.predict(X_test)
[ ] 1 # Accuracy metrics
       2 mse_rf1 = mean_squared_error(y_test, y_pred_rf1)
       3 mae_rf1 = mean_absolute_error(y_test, y_pred_rf1)
       4 rmse_rf1 = np.sqrt(mse_rf1)
       5 r2_rf1 = r2_score(y_test, y_pred_rf1)
       6 print('MSE:', mse_rf1)
       7 print('MAE:', mae_rf1)
       8 print('RMSE:', rmse_rf1)
       9 print('R2:', r2_rf1)
₹ MSE: 82778592.60447659
    MAE: 7438.889650951999
    RMSE: 9098.27415527124
    R2: 0.8900421379072706
      1 # Feature Importance
       2 importances = rf1.feature_importances_
       3 indices = np.argsort(importances)[::-1]
       4 features = X.columns
       6 plt.figure(figsize=(10, 6))
       7 plt.title('Feature Importances')
       8 plt.bar(range(len(features)), importances[indices], align='center')
       9 plt.xticks(range(len(features)), [features[i] for i in indices], rotation=45, ha='right')
      10 plt.xlim([-1, len(features)])
      11 plt.show()
```



```
2 mse_rf2 = mean_squared_error(y_test2, y_pred_rf2)
        3 mae_rf2 = mean_absolute_error(y_test2, y_pred_rf2)
        4 rmse_rf2 = np.sqrt(mse_rf2)
       5 r2_rf2 = r2_score(y_test2, y_pred_rf2)
        6 print('MSE:', mse_rf2)
       7 print('MAE:', mae_rf2)
        8 print('RMSE:', rmse_rf2)
       9 print('R2:', r2_rf2)

→ MSE: 80033645.19954082

     MAE: 7304.561677632
     RMSE: 8946.152536120811
     R2: 0.8936883529334898
[ ] 1 # XGBoost
        3 xgb1 = xg.XGBRegressor(objective='reg:squarederror', seed=23)
       4 xgb1.fit(X_train, y_train)
₹
                                    XGBRegressor
      XGBRegressor(base_score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample_bynode=None,
                  colsample_bytree=None, device=None, early_stopping_rounds=None,
                   enable_categorical=False, eval_metric=None, feature_types=None,
                  gamma=None, grow_policy=None, importance_type=None,
                   interaction_constraints=None, learning_rate=None, max_bin=None,
                  max_cat_threshold=None, max_cat_to_onehot=None,
                  max_delta_step=None, max_depth=None, max_leaves=None,
                  min_child_weight=None, missing=nan, monotone_constraints=None,
                  multi_strategy=None, n_estimators=None, n_jobs=None,
                  num_parallel_tree=None, random_state=None, ...)
[ ] 1 # Test the model on X test
        2 y_pred_xgb1 = xgb1.predict(X_test)
        2 rmse_xgb1 = np.sqrt(mean_squared_error(y_test, y_pred_xgb1))
        3 r2_xgb1 = r2_score(y_test, y_pred_xgb1)
       4 print('RMSE:', rmse_xgb1)
       5 print('R2:', r2_xgb1)
₹ RMSE: 5042.690719554216
     R2: 0.9662220791051046
     1 # Feature Importance
        2 plot_importance(xgb1)
```

[] 1 # Accuracy metrics


```
[ ] 1 # XGBoost
    2 # With less features
    3 xgb2 = xg.XGBRegressor(objective='reg:squarederror', seed=23)
    4 xgb2.fit(X_train2, y_train2)
```

XGBRegressor

XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, num_parallel_tree=None, random_state=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...)

```
[ ] 1 # Test the model on X_test
2 y_pred_xgb2 = xgb2.predict(X_test2)
```

```
1 # Metrics
2 rmse_xgb2 = np.sqrt(mean_squared_error(y_test2, y_pred_xgb2))
3 r2_xgb2 = r2_score(y_test2, y_pred_xgb2)
4 print('RMSE', rmse_xgb2)
5 print('RMSE', r2_xgb2)
```

```
RMSE: 5051.359034992242
R2: 0.9661058517387933
```

```
[ ] 1 # Randomized Search Cross Validation
       2 # Random Forest Regressor
       3 param_distributions = {
       4 'n_estimators': [i for i in range(5, 101)],
            'max_depth': [1, 3, 5],
       6 'min_samples_leaf': [1, 3, 5]
       7 }
       9 rscv = RandomizedSearchCV(RandomForestRegressor(), param_distributions)
       10 rscv.random_state = 23
      11 rscv.fit(X_train2, y_train2)
      12
      13 print(f'selected_params: {rscv.best_params_},',
              f'train accuracy: {rscv.score(X_train2, y_train2):.4f},',
              f' test accuracy: {rscv.score(X_test2, y_test2):.4f}')
 🚁 selected_params: {'n_estimators': 52, 'min_samples_leaf': 3, 'max_depth': 5}, train accuracy: 0.4258, test accuracy: 0.4169
       1 # Grid Search
       2 # Random Forest Regressor
       3 # Default values: n_estimators=100, max_depth=None, min_samples_split=2, min_samples_leaf=1
       5 param_grid = {
             'n_estimators': [50, 100, 200],
             'max_depth': [None, 10, 20],
             'min_samples_split': [2, 5, 10],
             'min_samples_leaf': [1, 3, 5]
       10 }
      12 grid_search = GridSearchCV(estimator=RandomForestRegressor(random_state=23), param_grid=param_grid, cv=3, n_jobs=-1, scoring='r2')
      13 grid_search.fit(X_train2, y_train2)
      15 results = pd.DataFrame(grid_search.cv_results_)
      17 pivot_table = results.pivot_table(
       values='mean_test_score',
           index='param_max_depth',
            columns='param_n_estimators'
      21)
      22
      23 sns.heatmap(pivot_table, annot=True, cmap='coolwarm')
      24 plt.title('Grid Search Mean R2 Scores')
      25 plt.xlabel('Number of Estimators')
      26 plt.ylabel('Max Depth')
      27 plt.show()
```



```
1 # Grid Search XGBoost
       2 # Default values: max_depth=6, learning_rate=0.3, n_estimators=100
      4 param_grid = {
      5 'max_depth': [3, 5, 7],
            'learning_rate': [0.01, 0.1, 0.2],
            'n_estimators': [100, 200, 300]
      8 }
      10 xgb_grid_search = GridSearchCV(estimator=xg.XGBRegressor(objective='reg:squarederror', seed=23), param_grid=param_grid, cv=3, scoring='r2', n_jobs=-1)
      11 xgb_grid_search.fit(X_train, y_train)
      12
      13 print(xgb_grid_search.best_params_)print(xgb_grid_search.best_score_)
₹
               GridSearchCV
             best_estimator_:
              XGBRegressor
               XGBRegressor
[ ] 1 # XGBoost with parameters from grid search
       2 xgb3 = xg.XGBRegressor(objective='reg:squarederror', seed=23, max_depth=3, learning_rate=0.2, n_estimators=300)
      3 xgb3.fit(X_train, y_train)
₹
                                   XGBRegressor
    XGBRegressor(base_score=None, booster=None, callbacks=None,
                 colsample bylevel=None, colsample bynode=None,
                 colsample_bytree=None, device=None, early_stopping_rounds=None,
                 enable_categorical=False, eval_metric=None, feature_types=None,
                 gamma=None, grow_policy=None, importance_type=None,
                 interaction_constraints=None, learning_rate=0.2, max_bin=None,
                 max_cat_threshold=None, max_cat_to_onehot=None,
                 max_delta_step=None, max_depth=3, max_leaves=None,
                 min_child_weight=None, missing=nan, monotone_constraints=None,
                 multi_strategy=None, n_estimators=300, n_jobs=None,
                 num_parallel_tree=None, random_state=None, ...)
[ ] 1 # Test the model on X_test
       2 y_pred_xgb3 = xgb3.predict(X_test)
    1 # Metrics
      2 rmse_xgb3 = np.sqrt(mean_squared_error(y_test, y_pred_xgb3))
      3 r2_xgb3 = r2_score(y_test, y_pred_xgb3)
      4 print('RMSE:', rmse_xgb3)
      5 print('R2:', r2_xgb3)
FMSE: 3158.3536292263802
    R2: 0.9867495765181149
```

```
1 !pip install lazypredict scikit-learn pandas
        2 from lazypredict.Supervised import LazyRegressor
        3 reg = LazyRegressor(verbose=1, ignore_warnings=True, custom_metric=mean_squared_error)
        4 models, predictions = reg.fit(X_train, X_test, y_train, y_test)
Requirement already satisfied: starlette<0.47.0,>=0.40.0 in /usr/local/lib/python3.11/dist-packages (from fastapic1->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict) (0.46 Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.11/dist-packages (from gitpython<4,>=3.1.9->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict) (4.0.
     Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.11/dist-packages (from importlib_metadata!=4.7.0,<9,>=3.7.0-xmlflow-skinny==3.1.1->mlflow>=2.0.0->lazypr
     Collecting opentelemetry-semantic-conventions==0.55b1 (from opentelemetry-sdk-3,>=1.9.0->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict)
      Downloading opentelemetry semantic conventions-0.55b1-pv3-none-anv.whl.metadata (2.5 kB)
     Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.11/dist-packages (from pydantic<3,>=1.10.8->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict
     Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.11/dist-packages (from pydantic<3,>=1.10.8->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict)
     Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.11/dist-packages (from pydanti<3,>=1.10.8->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredi
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.17.3->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredi
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.17.3->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict) (3.10)
     Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.17.3->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict) (2
     Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.11/dist-packages (from uvicorn<1->mlflow-skinny==3.1.1->mlflow>=2.0.0->lazypredict) (0.16.0)
     Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.11/dist-packages (from gitdb<5,>=4.0.1->gitpython<4,>=3.1.9->mlflow-skinny==3.1.1->mlflow>=2.0.0->l
     Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.11/dist-packages (from google-auth~=2.0->databricks-sdk<1,>=0.20.0->mlflow-skinny==3.1.1->mlf
     Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.11/dist-packages (from google-auth~=2.0->databricks-sdk<1,>=0.20.0->mlflow-skinny==3.1.1->mlflow>=2.0
     Requirement already satisfied: anvio<5.>=3.6.2 in /usr/local/lib/python3.11/dist-packages (from starlette<0.47.0.>=0.40.0->fastapi<1->mlflow-skinny==3.1.1->mlflow>=2.0.0->l
     Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.11/dist-packages (from anyio<5,>=3.6.2->starlette<0.47.0,>=0.40.0->fastapi<1->mlflow-skinny==3.1.1->ml
     Requirement already satisfied: pyasn1<0.7.0,>=0.6.1 in /usr/local/lib/python3.11/dist-packages (from pyasn1-modules>=0.2.1->google-auth~=2.0->databricks-sdk<1,>=0.20.0->mlf
     Downloading lazypredict-0.2.16-py2.py3-none-any.whl (14 kB)
     Downloading mlflow-3.1.1-py3-none-any.whl (24.7 MB)
                                                 --- 24.7/24.7 MB 35.7 MB/s eta 0:00:00
     Downloading mlflow_skinny-3.1.1-py3-none-any.whl (1.9 MB)
                                                  - 1.9/1.9 MB 52.6 MB/s eta 0:00:00
     Downloading nytest runner-6.0.1-pv3-none-anv.whl (7.2 kB)
     Downloading alembic-1.16.2-py3-none-any.whl (242 kB)
                                                  — 242.7/242.7 kB 13.3 MB/s eta 0:00:00
     Downloading docker-7.1.0-py3-none-any.whl (147 kB)
                                                 - 147.8/147.8 kB 8.2 MB/s eta 0:00:00
     Downloading graphene-3.4.3-py2.py3-none-any.whl (114 kB)
                                                  - 114.9/114.9 kB 5.4 MB/s eta 0:00:00
     Downloading gunicorn-23.0.0-py3-none-any.whl (85 kB)
                                                 --- 85.0/85.0 kB 5.0 MB/s eta 0:00:00
     Downloading databricks_sdk-0.57.0-py3-none-any.whl (733 kB)
                                                  - 733.8/733.8 kB 28.7 MB/s eta 0:00:00
     Downloading graphql_core-3.2.6-py3-none-any.whl (203 kB)
                                                  — 203.4/203.4 kB 10.3 MB/s eta 0:00:00
     Downloading graphql_relay-3.2.0-py3-none-any.whl (16 kB)
     Downloading opentelemetry_api-1.34.1-py3-none-any.whl (65 kB)
                                                  - 65.8/65.8 kB 3.4 MB/s eta 0:00:00
     Downloading opentelemetry_sdk-1.34.1-py3-none-any.whl (118 kB)
                                                  — 118.5/118.5 kB 8.0 MB/s eta 0:00:00
     Downloading opentelemetry_semantic_conventions-0.55b1-py3-none-any.whl (196 kB)
                                                  - 196.2/196.2 kB 9.7 MB/s eta 0:00:00
     Installing collected packages: pytest-runner, gunicorn, graphql-core, opentelemetry-api, graphql-relay, docker, alembic, opentelemetry-semantic-conventions, graphqne, datat
     Successfully installed alembic-1.16.2 databricks-sdk-0.57.0 docker-7.1.0 graphene-3.4.3 graphql-core-3.2.6 graphql-relay-3.2.0 gunicorn-23.0.0 lazypredict-0.2.16 mlflow-3.1
     ('Model': 'AdaBoostRegressor', 'R-Squared': 0.3286490447844169, 'Adjusted R-Squared': 0.3270877634932179, 'RMSE': np.float64(22481.261695240097), 'Time taken': 5.3840494155 ('Model': 'BaggingRegressor', 'R-Squared': 0.8650137183745837, 'Adjusted R-Squared': 0.8646997967894083, 'RMSE': np.float64(10080.70005218789), 'Time taken': 3.924968719482
      ('Model': 'BayesianRidge', 'R-Squared': 0.9999723891685212, 'Adjusted R-Squared': 0.9999723249572852, 'RMSE': np.float64(144.17355859043957), 'Time taken': 0.1254317760467
      ['Model': 'DecisionTreeRegressor', 'R-Squared': 0.6332886709465174, 'Adjusted R-Squared': 0.632435853902207, 'RMSE': np.float64(16615.29433416246), 'Time taken': 0.58081007
      ['Model': 'DummyRegressor', 'R-Squared': -2.8252380731563775e-05, 'Adjusted R-Squared': -0.0023538994792915435, 'RMSE': np.float64(27437.972111720595), 'Time taken': 0.0432
      'Model': 'ElasticNet', 'R-Squared': 0.3667519701627481, 'Adjusted R-Squared': 0.36527930032591727, 'RMSE': np.float64(21833.974519624204), 'Time taken': 0.0637905597686767
      ('Model': 'ElasticNetCV', 'R-Squared': 0.03068291003815682, 'Adjusted R-Squared': 0.028428684247547853, 'RMSE': np.float64(27013.372692612338), 'Time taken': 0.46320843696E
      ("Model': 'ExtraTreesgressor', "R-Squared': 0.960168429528893, "Adjusted R-Squared': 0.960950216574309, 'RMSE': np.float64(18136.399584598657), 'Time taken': 0.288690328 ('Model': 'ExtraTreesgressor', "R-Squared': 0.96168429528893, 'Adjusted R-Squared': 0.909590216574309, 'RMSE': np.float64(8404.664234821757), 'Time taken': 23.7964777946
```

'Model': 'GammaRegressor', 'R-Squared': 0.22996286966297297, 'Adjusted R-Squared': 0.22817208563893332, 'RMSE': np.float64(24076.963198336074), 'Time taken': 0.1481337547

```
1 # Bayesian Ridge
       2 # Standardize the data
       3 from sklearn.preprocessing import StandardScaler
       4 scaler = StandardScaler()
       5 X_train_scaled = scaler.fit_transform(X_train)
       6 from sklearn.linear_model import BayesianRidge
       7 br1 = BayesianRidge()
       8 br1.fit(X_train_scaled, y_train)
       BayesianRidge
    BayesianRidge()
     1 # Standardize X test
       2 X_test_scaled = scaler.transform(X_test)
       3 # Test on X_test
       4 y_pred_br1 = br1.predict(X_test_scaled)
     1 # Metrics
       2 rmse_br1 = np.sqrt(mean_squared_error(y_test, y_pred_br1))
       3 r2_br1 = r2_score(y_test, y_pred_br1)
       4 print('RMSE:', rmse_br1)
       5 print('R2:', r2_br1)
F RMSE: 144.1255113387782
    R2: 0.9999724075686152
```