

## RESTRUCTURING DEPOT MAINTENANCE OCCUPATIONAL SERIES TO IMPROVE FLEXIBILITY

GRADUATE RESEARCH PROJECT

Andrew J. Levien, Major, USAF

AFIT/ILS/ENS/10J-03

### DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

### AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

| reflect the of | spressed in this ficial policy or just the United State | position of the | ch paper are the<br>United States A | ose of the author<br>Air Force, Departr | and do not<br>nent of |
|----------------|---------------------------------------------------------|-----------------|-------------------------------------|-----------------------------------------|-----------------------|
|                |                                                         |                 |                                     |                                         |                       |
|                |                                                         |                 |                                     |                                         |                       |

## RESTRUCTURING DEPOT MAINTENANCE OCCUPATIONAL SERIES TO IMPROVE FLEXIBILITY

#### GRADUATE RESEARCH PROJECT

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

Andrew J. Levien, MS

Major, USAF

June 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

# RESTRUCTURING DEPOT MAINTENANCE OCCUPATIONAL SERIES TO IMPROVE FLEXIBILITY

Andrew J. Levien, MS Major, USAF

| Approved:                               |                          |
|-----------------------------------------|--------------------------|
|                                         | <u>17 May 10</u><br>date |
| // signed //_ Dr. Alan Johnson (Reader) | 17 May 10<br>date        |

#### Abstract

This research addresses Air Force Material Command's desire to develop a flexible depot workforce to meet the demands of maintaining an ever-changing and aging aircraft fleet. Air Force depot maintenance personnel are currently (and have been for quite some time) categorized in very narrow occupational specialties, resulting in the approximately 23,000 personnel to be spread over 171 different occupational specialties. Much of the depot work maintenance workload has decreased in volume but increased in velocity, thereby demanding a more flexible workforce that can perform skills from multiple occupational specialties in support of Lean strategies for production.

This study provides a comprehensive analysis into the potential strategies and ways ahead to best synchronize occupational series use in a transitional environment. This research addresses several questions: (1) what experimental and analytical models exist or can be created to determine if occupational series should be combined; (2) what series should be combined or created anew; and (3) how are series combined correctly to retain critical knowledge and promote product quality. A methodology is developed that can be applied to any production work environment to see the effects on production time as a result of cross-training.

#### Acknowledgments

I would like to express my sincere appreciation to my faculty advisors, Lt Col
Timothy Pettit and Dr. Alan Johnson, for their guidance and support throughout the
course of this graduate research effort. The insight and experience was certainly
appreciated. I would, also, like to thank sponsor, Mr. Steve McBride, from the Air Force
Materiel Command for both the support and latitude provided to me in this endeavor.

I am, also, indebted to the many maintenance professionals who spent their valuable time explaining the processes and procedures they use in the KC-135 depot production lines at Tinker AFB. Special thanks goes to Mr. Craig Rayner who served as my liaison and was always available to answer my questions.

Andrew J. Levien

#### **Table of Contents**

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| Abstract                                                        | iv   |
| Acknowledgments                                                 | v    |
| List of Figures                                                 | viii |
| List of Tables                                                  | ix   |
| I. Introduction                                                 | 1    |
| Background and Motivation                                       | 1    |
| Research Objectives, Questions, and Hypotheses                  | 3    |
| Assumptions                                                     | 4    |
| Limitations                                                     | 5    |
| Implications                                                    | 5    |
| II. Literature Review                                           | 6    |
| Cross-Training in a Military Environment                        | 6    |
| Determining the Optimal Workforce Composition                   |      |
| Cost of Cross Training                                          | 14   |
| Summary of Literature                                           | 15   |
| III. Methodology                                                | 16   |
| IV. Results and Analysis                                        | 18   |
| Analysis Overview                                               | 18   |
| Overview of KC-135 PDM Process                                  | 19   |
| Step 1: Ordered List of Tasks                                   | 22   |
| Step 2: Distribution of Completion Times of Tasks               | 23   |
| Step 3: List of Resources                                       | 27   |
| Step 4: Input from Work Centers                                 | 28   |
| Step 5: Create Multiple Discrete Event Simulation Models        | 28   |
| Validation of Current State Simulation Results                  | 30   |
| Model 2: Cross-Training Technicians on Two "Long Wait" Tasks    | 33   |
| Model 3: Cross-Training Technicians on all Low Complexity Tasks | 35   |
| Cross-Training Factor Sensitivity Analysis (Model 3)            | 36   |
| Model 4: Unlimited Technician Pool                              | 37   |
| Step 6: Compare Simulation Results                              | 38   |
| Step 7: Cost of Cross-Training                                  | 40   |

| Step 8: Make Decision                                     | 41 |
|-----------------------------------------------------------|----|
| V. Discussion                                             | 42 |
| Answers to Research Questions                             | 42 |
| Recommended Future Research                               | 43 |
| Conclusions                                               | 44 |
| Bibliography                                              | 45 |
| Appendix A – KC-135 Wage Grade Employees                  | 46 |
| Appendix B – Order of Tasks in IDOCK Major Job BA         | 47 |
| Appendix C: Distributions of Task Completion Times        | 50 |
| Appendix D: Data of Task Complexity from Tinker AFB Visit | 52 |
| Appendix E: "As-Is" Arena Model                           | 54 |
| Appendix F: Current State Model Summary Stats             | 59 |
| Appendix G: Model 2 Summary Stats                         | 63 |
| Appendix H: Model 3 Summary Stats                         | 67 |
| Appendix I: Model 4 Simulation Results                    | 71 |
| Appendix J: Blue Dart                                     | 72 |
| Appendix K: Quad Chart                                    | 75 |
| Appendix L: Form 298                                      | 76 |
|                                                           |    |

### **List of Figures**

| Page                                                                               |
|------------------------------------------------------------------------------------|
| Figure 1: Optimal Fraction of Flexible Servers (Chakravarthy & Agnihothri, 2005) 9 |
| Figure 2: Cross Training Employment Matrix (McCreery & Krajewski, 1999)            |
| Figure 3: Average Quality Output of Flexible Workers (Pinker & Shumsky, 2000) 12   |
| Figure 4: KC-135 Staggered Line Concept                                            |
| Figure 5: KC-135 IDOCK Process                                                     |
| Figure 6: Example Data from PDMSS                                                  |
| Figure 7: Actual Completion Times from PDMSS                                       |
| Figure 8: Sample Arena Input Analyzer Histogram                                    |
| Figure 9: Sample Arena Input Analyzer Histogram                                    |
| Figure 10: Arena Model of Pre-Dock                                                 |
| Figure 11: Current State Descriptive Statistics (from JMP)                         |
| Figure 12: Model 2 Modifications                                                   |
| Figure 13: Model 2 Descriptive Statistics (from JMP)                               |
| Figure 14: Model 3 Descriptive Statistics (from JMP)                               |
| Figure 15: Load Factor Sensitivity Analysis                                        |
| Figure 16: Model 4 Descriptive Statistics (from JMP)                               |
| Figure 17: Current State versus Model 3 Time to Complete Tasks                     |

### **List of Tables**

|                                                           | Page |
|-----------------------------------------------------------|------|
| Table 1: IDOCK Employees                                  | 27   |
| Table 2: Major Job BA Personnel                           | 27   |
| Table 3: Current State Simulation Results                 | 30   |
| Table 4: Model 2 Simulation Results                       | 34   |
| Table 5: Model 3 Simulation Results                       | 35   |
| Table 6: Model 4, Unlimited Resources, Simulation Results | 37   |
| Table 7: Comparison of Simulation Results                 | 38   |

## RESTRUCTURING DEPOT MAINTENANCE OCCUPATIONAL SERIES TO IMPROVE FLEXIBILITY

#### I. Introduction

#### **Background and Motivation**

"Between 1987 and 2002, the Department of Defense (DOD) downsized the civilian workforce in 27 key industrial facilities by about 56 percent" (U.S. Government Accountability Office, 2003). This U.S. Government Accountability Office (GAO) report, DOD Civilian Personnel: Improved Strategic Planning Needed to Help Ensure Viability of DOD's Civilian Industrial Workforce, required the services to develop a strategic workforce plan to ensure they were meeting the needs of the workforce and mission requirements even though these cuts were so dramatic. One of the clear concerns of the GAO is the viability of the depots. Several of their tasks were outsourced, yet, by law they are still required to retain at least 50% of depot maintenance funds to be spent for public sector performance—in other words, all depot maintenance cannot be all contracted out; however, they still must prove depot viability. The report also states three challenges that are affecting the services ability to create a successful plan to ensure the viability of the depots—high retirement eligibility in next 5 to 7 years, difficulty implementing multi-skilling, and increased training funding to re-vitalize workforce. This research project focuses on one of those challenges--"the services are having difficulty implementing multi-skilling—an industry and government best practice for

improving the flexibility and productivity of the workforce—even though this technique could help depot planners do more with fewer employees" (U.S. Government Accountability Office, 2003). To reduce the number of employees, depots need to either reduce unnecessary/unused job series or combine job series (cross-train) to enable employees to perform multiple tasks. This research focuses on the combining of job series—i.e. creating a more flexible workforce. Workforce flexibility is defined as the ability of the workforce to adjust to accomplish new or different tasks as the demand for tasks change.

In 2007-2008, the Air Force consolidated certain maintenance Air Force Specialty Codes (AFSC) in an effort to posture those career fields to support future generation aircraft technologies and maintenance concepts while developing a more flexible and efficient workforce to accommodate the Department of Defense Program Budget Decision 720 manpower cuts. AFSCs for military personnel are similar to job series for civilian personnel. The decision to cut manpower and consolidate certain AFSCs made it clear that that Air Force leadership was seeking to ensure the maintenance workforce is properly trained and utilized by combining career fields that are similar and/or may not be fully utilized. At the field level, maintenance personnel are consistently asked to perform tasks that are not in their "normal" career field because leaders realize the value of flexibility.

Visits to civilian industry partners by AFMC/A4 personnel have indicated that civilian organization's workforce is very streamlined. Additionally, from a tour of a Harley Davidson Motorcycle assembly plant, it was discovered that they create very

flexible workforce teams. They have much fewer specialties and train their workers on multiple tasks while still producing a quality product.

Air Force depot maintenance personnel are currently (and have been for quite some time) been categorized in very narrow occupational specialties, resulting in the approximately 23,000 personnel to be spread over 171 different occupational specialties. Much of the depot work maintenance workload has decreased in volume but increased in velocity, thereby demanding a more flexible workforce that can perform skills from multiple occupational specialties in support of Lean strategies for production.

However, the Air Force must also take into account the potential loss of knowledge—i.e. the loss of depth to create breadth—and the expense to gain the breadth—i.e. the cost of training the workforce in the new tasks. Several articles touch on this topic and are discussed at length in the literature review.

#### Research Objectives, Questions, and Hypotheses

This study provides a comprehensive analysis into the potential strategies and ways ahead to best synchronize occupational series use in a transitional environment.

This research will address several questions: (1) what experimental and analytical models exist or can be created to determine if occupational series should be combined; (2) what series should be combined or created anew; and (3) how are series combined correctly to retain critical knowledge and promote product quality. Question 1 is addressed through a thorough literature review. Question 2 is addressed by gathering data on the KC-135 programmed depot maintenance (PDM) process at Tinker AFB and using that data in a derived model to calculate cross-training production gains and costs. Question 3 is addressed through the literature review and through data gathered from personnel in the

KC-135 production line. The third question is a source for further research because this paper only touches the surface of this topic. The key objective is to create an optimally balanced and flexible workforce to meet the changing demands of the depot production lines—a workforce that can meet and/or exceed the production goals of depot. The hypothesis of this research is that combining certain occupational series will create a more flexible workforce, thus enabling the Air Logistics Centers (ALCs) to improve their current production goals.

#### **Assumptions**

Assumption 1: The research clearly identified who the subject matter expert (SME) is for the job series of interest and they provided an accurate opinion about the possible consolidations. If a SME is influenced in his/her decision due to Union pressures, desire not to cross-train, or any other reason, then the results might be skewed.

Assumption 2: The developed model assumes that each task is independent of each other. For example, the length of time to complete one operation has no bearing on the time to complete another operation. This is most likely not true, but it is an assumption that needed to be made to get distributions for each operation. With enough data, this assumption can be overcome.

Assumption 3: Although the literature review lists a couple of references about how long tasks take for a specialist versus a cross-trained worker, no hard data exists. Therefore, an assumption was made that the task would take 20% longer by a cross-trained worker. However, in Chapter 4, a sensitivity analysis was performed to determine the effect of choosing 20% versus a higher or lower factor.

#### Limitations

Limitation 1: Modeling every task in the sample process (KC-135 depot) would require months of full-time data gathering and effort. Therefore, only a sampling of the tasks were analyzed to test the methodology. To get a 100% accurate picture of the results of cross-training on the production time, all tasks would need to be mapped.

Limitation 2: Only two experts were consulted about the complexity of the KC-135 depot process. In order to get a real consensus on the complexity, one would need to survey many workers and managers involved in the process to have a better grasp of the real effect of cross-training.

#### **Implications**

This project will have a definite impact on the way ALCs are organized and maybe even how future civilian consolidation efforts are undertaken. While the model developed is specific to the KC-135 PDM process, the methodology used to develop that model is generic and can be used to ascertain the usefulness of cross-training in any production-type environment. It allows managers to see the effect of cross-training on actual production efforts.

#### **II. Literature Review**

Research questions one and three depend heavily on interpreting the literature on past research. To address these questions, this literature review focused on three main areas: (1) past/current cross training efforts in a military environment; (2) studies about the optimal workforce composition and the differences between specialists and generalists; and (3) monetary cost of cross-training. The first area, cross-training in a military environment does not specifically address the stated research questions, but it puts this paper into the proper context. In order to determine the usefulness of this research at an Air Force maintenance facility, it is important to understand if and how the military has developed a more flexible workforce in the past. The next three sections directly answer question 1 (what experimental and analytical models exist or can be created to determine if occupational series should be combined) and question 3 (how are series combined correctly to retain critical knowledge and promote product quality). The primary theory of this research is that a more flexible workforce gives an organization a roadmap for success and the next four sections clearly identify past research on this topic.

#### **Cross-Training in a Military Environment**

Cross-training has been common-place in the military for many years. The decisions as to which career fields to combine has not always been made public and it seems that Air Force leadership has consolidated based on anecdotal information versus actual data. One recent study, by Ken Marentette titled "An Objective Decision Tool for Use in Considering AFSC Pairs Consolidations" (2008) did attempt to develop a mathematical model to select which AFSC pairs make sense to think about combining. The model takes into account Subject Matter Experts (SME) opinion of the similarity of

their career fields in terms of their everyday job and in terms of the training those career fields undergo as the main contributing factors. The model also takes into account the training time of each AFSC. A key parameter they use is the workload savings coefficient. This coefficient is the "potential efficiencies gained as a result of consolidation, given as a percentage of original manpower levels." (p. 16) His research uses a coefficient of 8.5% based on previous research that was cited in the paper. This positive coefficient assumes that the work force becomes more efficient as organizations cross-train. While this may be true from a macro scale, it doesn't take into account the actual time it takes to complete tasks. It assumes that there was some "dead time" in certain career fields and by cross-training, that "dead time" is now productive time. His study looks at the AFSC consolidation from a macro level, instead of at a task or operation level. However, his research "removes a significant portion of subjectivity from the AFSC consolidation process," (2009) which is the primary goal of this research paper.

Another study conducted by Paskin and Treviño (2007) modeled the KC-135 PDM flight controls repair cell in an effort to find ways to improve the efficiency in the process. This research appeared to be geared towards Value Stream Mapping the process and looking for areas for improvement, however, in the process, they identified that one of the major areas for improvement was actual consolidation of tasks. Some of the tasks that were being completed by one specialty should be moved to another specialist. In other words, cross-training should occur to reduce the downtime for certain specialists. The model used a software package that was developed by other researchers and if put in the hands of the right people could probably be used to map any process and show ways

to improve process flow. The results of Paskin and Trevino's research do not appear to have been implemented or acted upon. This may be because of the complexity of the unknown nature of the software used. A key take-away from this research is how their model accounted for the task completion time of specialists versus generalists. They do not specifically state what numbers they used to account for this because the model has it built in based on the skill level of the technician selected to complete the task. However, they do say that they lowered the skill level from high to medium when they cross-trained a technician on a low-skill task. Their model attempts to demonstrate the steady state of the learning curve of the employees and hence tasks do take longer when completed by generalists instead of specialists.

#### **Determining the Optimal Workforce Composition**

Several articles discussed the benefit/cost trade-offs of using a specialist versus cross-trained workers. One premise is that if organizations are too flexible, they may lose the depth of knowledge that comes with specialization. If organizations are too specialized, they may not be flexible enough to meet the customer's needs. This is described in a model that Chakravarthy and Agnihothri (2005) developed for an organization that provides services to two types of customers to answer the question of what is best, total flexibility, total specialization, or some combination. Their model is supposed to allow managers to make decisions about cross-training. They try to describe the optimal workforce balance between specialists and generalists in a service-type industry—but it could be applied elsewhere. They understand that both flexibility and specialization come with a cost. One of their conclusions is that service organizations can't have all flexible servers—some level of expertise needs to be maintained by some.

The right percentage of flexible servers (or workers) is depended on the efficiency of a flexible server versus a dedicated server. According to Figure 1, as the efficiency level of a flexible server goes down, the percentage of an organizations workforce that should cross-train also goes down. If a flexible person is just a flexible (100% or E=1) as a dedicated server, then system efficiencies will be gained by cross-training them. It is key to find that balance to determine how many to cross-train.



Figure 1: Optimal Fraction of Flexible Servers (Chakravarthy & Agnihothri, 2005)

A study by Molleman and Slomp (1999) takes a team of workers who perform in a certain work center and looks at the task they perform. It looks at what is the optimal mix of multi-functionality and redundancy. They developed a model to study how three factors, multi-functionality, redundancy, and work efficiency, will affect team performance when absenteeism and product demand vary. Their study has a direct

correlation to aircraft maintenance organizations. Multi-functionality is the number of different tasks one worker has mastered and redundancy is the number of workers that are qualified to perform a specific task. They also take into account work efficiency—how efficient is a worker at a particular task. They study how these three factors will affect team performance when absenteeism and product demand vary. They conclude that each task should be mastered by at least 2 workers and the more uniform the distribution of multi-functionality the better the team performance. In the conclusion when they try to justify their validity, they discuss some other research on the Social Comparison Theory—this theory states that workers on teams prefer complementary jobs, not the same jobs. Team members expect that this will enhance their own identity as well as the group performance. They really look at cross-training from a team perspective. A team of employees should have experts on each task, but everybody should be "trained" on all tasks. This concept of a cross-trained team is another way to look at trying to improve the efficiency of an organization.

Question 3—how do we ensure we don't lose the depth of knowledge of experts when we cross-train—is directly addressed by McCreery and Krajewski, in "Improving Performance Using Workforce Flexibility in an Assembly Environment with Learning and Forgetting Effects" (1999). They use a simulation model of an assembly line and an experimental design that incorporated product variety and task complexity; they show that as task complexity increases, cross-training should be kept low, but as product variety increases, cross training should be increased. It talks about what is the right balance (Figure 2).



Figure 2: Cross Training Employment Matrix (McCreery & Krajewski, 1999)

Their article also addresses the difficult topic of how much longer it takes for cross-trained versus specialist workers to complete tasks. "In discussions with manufacturers, we have found task time variations of 10% to 20% to be representative of their product lines." (p. 2039) In other words, a cross-trained worker takes 10-20% longer than a specialist worker to complete the task at hand.

Pinker and Shumsky (The Effeciency-Quality Trade-off of Cross Trained Workers, 2000) note the difference in quality of service will vary between specialists and generalists. A good example is in the medical world—delivering a baby. An emergency room doctor may not be very good at delivering babies because he/she does it once in a long while, while an OB/GYN doctor will be much better because he/she does it all the time. There can be a trade-off in quality if organizations cross-train the wrong skill set.

Several skills are experience driven, not necessarily just training driven. As organizations cross-train more of their workforce, the quality of their work goes down (Figure 3). The key is finding the balance of quality with the profit of the organization.



Figure 3: Average Quality Output of Flexible Workers (Pinker & Shumsky, 2000)

There are at least a dozen other articles about this topic, but they all state the same things: cross-training creates flexibility, but with a cost. They attempt to create models that capture that cost, so decision makers can balance the projected benefits with the estimated costs.

Dietz and Rosenshine (Optimal Specialization of a Maintenance Workforce, 1997) use an analytical (vs. simulation modeling) approach to gain insight into the creating an optimal specialization strategy. Their optimization method explicitly recognizes the economic tradeoff between lower per-person costs and the lower average utilization resulting from specialization. They devised a list of maintenance specialties that were created out of a combination of certain tasks. They have the aggregate annual

costs for each specialty which includes direct training costs, opportunity costs of increased training time, and pay. They assume that the annual cost of a maintenance technician with a full range of skills is roughly 50% more than that of a typical technician with a highly specialized skill. Then, if they have a maximum annual manpower budget and a workflow chart that shows which tasks must be completed in what order, they calculate the specialty mix that meets their financial and production goals. It all reads well, but it is very hard to see how this can be applied to anything other than their simple example. A researcher would need to create a completely new analysis for each maintenance environment. This article does point out additional data that needs to be gathered: (1) Cost of training a person in a new task; (2) Change in salary if a person learns/performs more tasks; (3) Number of tasks a person currently performs and how much "free" time they have to perform new tasks if trained; (4) Are their tasks waiting to be done because no one who is trained to do them is available to do them? I.e. is there a bottleneck?; and (5) How much productivity time is lost when a generalist is doing a task versus a specialist? I.e. does a person doing their secondary task do it 90% as fast as a specialist?

Cost savings may be realized even if the "generalist" is 50% slower/less productive than the "specialist" according to Brusco and Johns (Staffing a Multi-Skilled Workforce with Varying Levels of Productivity: An Analysis of Cross-Training Policies, 1998). They present an integer linear programming model for evaluating cross-training configurations at the policy level. The data was collected from a large paper mill in the United States and is based on a single-shift operation. The results indicate that asymmetric cross-training structures that permit chaining of employee skill classes across

work activity categories are particularly useful. The study examines the importance of cross-training as a source of workforce flexibility. They define productivity as the efficiency of an employee working in a specific activity category. Productivity can range from 0 to 100%. They define a cross-training structure as a policy that governs the number of work activity categories for which employees are cross-trained, the level of productivity for cross-training, and the framework for deciding which skill classes are trained for various work activity categories. They state that increased flexibility makes it more difficult to determine the number of employees in each skill class and subsequently more difficult to estimate the benefits of additional cross training. With increased crosstraining it makes it difficult to determine the differences between specialties anymore and therefore organizations don't know if they need more of a certain specialty or just more people that are cross-trained across more than one specialty...therefore, organizations should eliminate the narrow specialties in their organizations and create new "job series" that encompass all the tasks they should accomplish. Their results indicated that a service delivery system may realize a large portion of available cost savings by crosstraining employees in work activity categories even if the nature of the work in these categories precludes cross-training at 100% productivity. They conclude that crosstraining has benefits even if the new "generalist" is not as productive as the "specialist" at a task.

#### **Cost of Cross Training**

The literature on the actual monetary cost of cross-training seems lacking.

Nembhard (A Real Options Model for Worforce Cross-Training, 2005) discusses how the real options approach can be used to mathematically calculate the costs of cross training.

The real options approach is the extension of financial option theory to options on real (i.e. non-financial) assets. He attempted to calculate the NPV (net present value) of the future benefits/costs associated with cross-training personnel. If the NPV is positive, then cross-training should be done. If it is negative, then cross-training would not be a wise decision. The research model is extremely technical and it might be hard to duplicate due to the number of assumptions that make his model work.

#### **Summary of Literature**

Significant research appears to have been done on the effect of cross-training and trying to utilize cross-training to increase the efficiency of organizations. The literature can be grouped in two distinct ways: (1) the theoretical results of cross-training and (2) mathematical calculations about the effect on production of the cross-training decision. The first group of literature keys on past research and opinions of the effect of cross-training. Because it is so theoretical in nature, it fails to provide direct guidance for managers to follow but does given them some information to ponder when making the decisions to cross-train or not. The second group of literature, the math models, appears to be very complex, but even more noteworthy, fairly specific to a specific industry, process, or operations. They don't appear to be able to be applied easily to other areas that a practitioner may be interested in. Therefore, this literature review provides a starting point for the methodology development and some basic guidelines for determining the benefits and costs of cross-training in this research paper.

#### III. Methodology

The goal of this project was to design a model that could be used for multiple applications to help leaders determine which career fields can be combined to improve workforce flexibility. However, after a thorough literature review, it became clear that developing a model that fits all environments is not practical. Therefore, this research develops a methodology, instead of a specific model, that can be applied to numerous work centers. This methodology is based on task completion so it is applicable to most manufacturing or process oriented work centers.

The methodology developed has 8 basic steps:

- 1) Create an ordered list of all operations/tasks that are completed in the work center. It must note which tasks can be done in parallel and which are sequential.
- 2) Based on historical data, determine the distribution of the length of time for each task (this research used Rockwell's Arena Input Analyzer to determine the best fit distribution), the number of people required to perform the task, and the occupational series required to perform the task.
- 3) Develop a list of resources available to the work center. Specifically, gather data about the current number of personnel in the work center and what their occupational series is.
- 4) Get input from work center employees and supervisors about the following
  - a. How difficult is the task to accomplish on a scale of 1-5 (5 being the most difficult)?
  - b. How difficult would it be to train a technician of a different career field, but in the same work center to perform the task on a scale of 1-5 (a 1 means they just have to be trained once or twice and a 5 means they must be trained 5 or more times)?
- 5) Create a discrete-event simulation Model that sequences all operations in the system.
  - a. First create the model to mirror how the work center functions now.

- b. Then modify it by allowing other occupational series to perform the tasks that were noted to be less difficult to perform and not difficult to train others on; however, modify the time to complete the task by 20% (this is an assumption because no data was gathered to confirm this diagnosis and no firm literature was found to give a good estimate; some research did use 10-20%).
- 6) Compare the simulations for time to complete the work center functions.
- 7) Compute the costs of cross-training (it will be the difficult to train number, multiplied by the length of time it takes to do the task, multiplied by 2 (the trainers and trainees time).
- 8) Decide whether the cost of cross-training is worth the change in work completion time. Also take into account subjective factors such a quality loss before making the decision to cross-train or not.

Step 4 above is similar to what Marentette's (2008) study did—SME's opinions were gathered. One difference is that this research gathered opinions on specific tasks, not on an overall career field. This distinction allowed calculations on the actual affect of cross-training on task completion.

This methodology is geared towards modeling each task as they occur as opposed to grouping some tasks together. Grouping the tasks into major jobs and modeling those major jobs can be advantageous. It aggregates tasks together to eliminate some variations that may occur from task to task, it keeps entities that pass through the model together removing the assumption that the tasks are independent, and it simplifies the model making it easy to follow. However, the major problem with grouping is the assignment of resources. If resources (primarily people) are shared among the different groups, some of the groups may consume the resources the entire time and never release them to the other groups. Grouping is not the best method when trying to measure the affect of cross-training in a production environment.

#### IV. Results and Analysis

#### **Analysis Overview**

To test the methodology, the KC-135 depot maintenance line at Tinker AFB was used as a test case. However, a couple disclaimers must be made. After selecting the KC-135 line and visiting the location, it was discovered that they already cross-trained their maintenance personnel to their fullest extent. The goal of this research was to try to find ways to reduce the occupational series within AFMC, but the KC-135 line only had 5 aircraft maintenance related occupational series: 2610—Electronic Integrated Systems Mechanic, 2892—Aircraft Electrician, 3806—Sheet Metal Mechanic, 8801— Miscellaneous Aircraft Overhaul, and 8852—Aircraft Mechanic. The 2610s, 2892s, and 3806s are fairly specialized skills so cross-training others on their tasks might be more difficult. The 8801s are just supervisors (WS 14, 15, and 16s). The 8852s are the most "generic" of the occupational series and it was discovered that the KC-135 line already used them on many cross-training tasks. (See Appendix A for the complete list of their current workforce) They actually have over 430 8852s, but within that occupational series, they are sub-assigned a specific specialty. These specific specialties are: AA— Aircraft, 1A—Engines, AH—Hydraulics, BA—Rigging, AG—Fuels, and 7H—Gear. As can be seen, within the occupational series, they have specialized significantly—they pulled "easier, more routine" tasks from the specific occupational series (like Engines, Hydraulics, etc) and made them part of the 8852s task. For the purposes of this research, the specific specialties (Gear and Hydraulics—the only two 8852s that are employed on the modeled tasks) were separated and treated like different specialties and then studied for potential cross-training. However, any cross-training between these skill sets will

NOT reduce the number of occupational series (they all are already one series—8852). This major job also utilized AS—sheet metal (OS 3806) employees, so these three specialties (gear, hydraulics, and sheet-metal) were studied for potential cross-training. However, this process will help prove or disprove the model. As a side note, it was also discovered that the other aircraft production lines at Tinker AFB operate this way. Therefore, although this research may show ways to cross-train, there may not be any gains towards reducing the number of occupational series.

#### **Overview of KC-135 PDM Process**

The KC-135 PDM is conducted by the 564<sup>th</sup> Aircraft Maintenance Squadron (AMXS) at Tinker AFB, OK. The 1221 personnel in the 564 AMXS are responsible for maintaining safe and mission capable aircraft and performing engineering analysis for future repairs. PDM is a periodic inspection and repair process that is required on all 408 KC-135 aircraft every 60 months. In FY09, they inspected and repaired 48 aircraft and they have 54 scheduled in FY10. They average 28 aircraft in work at any one time and they are currently averaging around 201 days per aircraft, although their production flow is built on a 167 day flow.

In Jan 09, the KC-135 implemented a new concept of operations called the staggered line concept (Figure 4). This concept separated the primary maintenance activities into two distinct processes—a speedy line and an extended line. To accomplish this, several tasks were added to the Inspection Dock (IDOCK) process to determine which process the aircraft would enter. It also added the complete gear removal, inspection, and re-installation to the IDOCK process to enable the aircraft to be moved during the speedy or extended line process. As seen in Figure 5, there are only three

doors into building 3001 (between spots 5 and 6 and in front of spots 1 and 12). This means aircraft need to be moved for others to enter or exit; hence, it is important that the gears be installed on the aircraft throughout these two processes. The overall process is as follows:

- 1) Aircraft arrival
- 2) Pre-dock (paint strip, wash, etc)
- 3) IDOCK
- 4) Speedy or Extended Flow Line
- 5) Systems Checks
- 6) Post Dock
- 7) Aircraft Departs



Figure 4: KC-135 Staggered Line Concept

This research focused on the IDOCK process because that is where the current bottleneck of the process is located. IDOCK has an average queue time (wait time) of 27 days from when the aircraft leaves pre-dock and IDOCK starts. This is due to the length of time an aircraft is spending in IDOCK. IDOCK consists of seven major jobs (Figure 5):

- 1) BC—Rewire
- 2) BB—Inspections
- 3) BE—Trunnion Bolts/Shear Pins
- 4) BA—Jack to Jig/Remove Gear/Shore
- 5) BD—Milk Bottles
- 6) BF—820 Bolts Remove and Replace
- 7) BG—Install Gear/Down Jack/Mask Off



Figure 5: KC-135 IDOCK Process

As seen in the IDOCK process map (Figure 5), some of these major jobs can be done simultaneously, while others are done in series. This research narrowed in on major job BA, but future research could address the entire IDOCK process.

#### **Step 1: Ordered List of Tasks**

Step 1 of the methodology was to create an ordered list of all operations and tasks (Figure 6). This was gathered from the historical data from the Programmed Depot Maintenance Scheduling System (PDMSS). This data contained the following information:

- 1) Tail number
- 2) Major job ID (a major job consists of many operations)
- 3) Operation ID (a operation is a specific task or job that must be completed)
- 4) Type of operation
- 5) Type of mechanic required (what specialty)
- 6) Work Unit Code
- 7) Number of mechanics required
- 8) The standard time to complete the operation
- 9) The actual time the mechanic recorded for operation completion
- 10) The data the operation was complete
- 11) The date the Major Job started
- 12) The date the Major Job Finished
- 13) A description of the operation

| 1  | Α        | В         | С            | D              | E        | F     | G       | Н      | I.      | J              | K               | L                |                                |
|----|----------|-----------|--------------|----------------|----------|-------|---------|--------|---------|----------------|-----------------|------------------|--------------------------------|
| 1  | TAIL_NR  | MAJOR_JOB | SEL_OP_NR_ID | TYPE_OPERATION | SKILL_CD | WUC   | WRKR_QY | STD_HR | ACTL_HR | OP_COMPLETE_DT | MAJOR_JOB_START | MAJOR_JOB_FINISH | DESCRIPTION                    |
| 2  | 57001427 | BA        | 01144        | E              | AS       | 11000 | 2       | 0.1    | 0.1     | 18-Jun-09      | 28-Apr-09       | 15-Aug-09        | 1B67(J) - JACK/JIG/SHORE - PRI |
| 3  |          |           |              |                |          |       |         |        |         |                |                 |                  | BODY & WING SHORING USED       |
| 4  |          |           |              |                |          |       |         |        |         |                |                 |                  |                                |
| 5  |          |           |              |                |          |       |         |        |         |                |                 |                  | REF 76 AMXG 09-04              |
| 6  |          |           |              |                |          |       |         |        |         |                |                 |                  |                                |
| 7  | 57001427 | BA        | 01145        | E              | AS       | 11000 | 2       | 0.1    | 0.1     | 18-Jun-09      | 28-Apr-09       | 15-Aug-09        | 1B67(J) - JACK/JIG/SHORE - PRI |
| 8  |          |           |              |                |          |       |         |        |         |                |                 |                  | WOODEN PADS TO BE USED TO      |
| 9  |          |           |              |                |          |       |         |        |         |                |                 |                  |                                |
| 10 |          |           |              |                |          |       |         |        |         |                |                 |                  | REF 76 AMXG 09-04              |
| 11 |          |           |              |                |          |       |         |        |         |                |                 |                  |                                |
| 12 |          |           |              |                |          |       |         |        |         |                |                 |                  |                                |
| 13 | 57001427 | BA        | 01146        | E              | AS       | 11000 | 1       | 0.1    | 0.1     | 18-Jun-09      | 28-Apr-09       | 15-Aug-09        | 1B67(J) YJACK/JIG/SHORE - PRI  |
| 14 |          |           |              |                |          |       |         |        |         |                |                 |                  | ENSURE AIRCRAFT IS COMPLET     |
| 15 |          |           |              |                |          |       |         |        |         |                |                 |                  | PROPER BALLAST IS INSTALLED    |
| 40 |          |           |              |                |          |       |         |        |         |                |                 |                  |                                |

Figure 6: Example Data from PDMSS

Data consisted of all aircraft going through the IDOCK process from 13 Jan 09 to 8 Dec 09. 13 Jan 10 was selected as the start date, because that is when the staggered line concept was implemented in IDOCK, so any data collected before than could not be

appropriately compared to the newer data. The data covered 44 aircraft that started, but not necessarily completed, IDOCK. Thirty aircraft were selected to use for the primary data analysis and left the other 14 for distribution validation (Although distribution validation was not completed for this research project). To filter out the 14 for validation, every 4<sup>th</sup> aircraft was selected and removed from the primary data. Of the 30 remaining aircraft, there were 772 different operations with data. An operation is a task that was performed on the aircraft under a separate task identification number. Several of those 772 tasks were only done on a few aircraft. This was due to several tasks that were unique to a specific aircraft or problem. In order to develop the standard process seen by most aircraft, all operations that occurred on less than 24 of the aircraft were filtered out—this left 113 operations. An interesting side note is that 52 of the 113 operations occurred more than once on an airplane. According to the data analysts at PDM, this must have been a data entry problem. Looking at it further, the data collected on these operations were identical, so the duplicates were ignored.

The tasks then need to be put in order. This was done through observation and based on input from the KC-135 analysts (see Appendix B for order). Several of the tasks were prerequisite for others, but a majority of them could be done in parallel if enough resources (people) were available to perform the task.

#### **Step 2: Distribution of Completion Times of Tasks**

The next step was to determine the distributions for the amount of time each of these 58 operations took to complete. The actual completion time data was analyzed

using the Input Analyzer function of Rockwell Automation Technologies program, Arena 12.0. A sample of the data is shown in Figure 7.

|    | A                  | В            | С     | D     | E     | F     | G     | Н     |
|----|--------------------|--------------|-------|-------|-------|-------|-------|-------|
| 3  | Average of ACTL_HR | SEL_OP_NR_ID |       |       |       |       |       |       |
| 4  | TAIL_NR 💌          | 01144        | 01145 | 01146 | 01147 | 01148 | 01158 | 01165 |
| 5  | 57001427           | 0.1          | 0.1   | 0.1   |       | 13.9  | 17.7  | 7     |
| 6  | 57001438           | 0.1          | 0     | 0.1   | 0.3   | 7.3   | 16.4  | 10.1  |
| 7  | 57001454           | 0.6          | 0.3   | 0     | 2.9   | 36.9  | 24    | 30.3  |
| 8  | 57001459           | 2.5          | 7.4   | 0.1   | 4.4   | 14.6  | 17.1  | 10.7  |
| 9  | 57001469           | 0.3          | 0.3   | 0.1   | 2.9   | 37.9  | 20.9  | 13.8  |
| 10 | 58000001           | 0.1          | 0.1   | 0.1   | 2.1   | 3.5   | 24    | 18.1  |
| 11 | 58000009           | 0            | 0     | 0.1   |       | 13.9  | 7.1   | 7.2   |
| 12 | 58000018           | 2.3          | 4.2   | 0.1   | 0     | 12.2  | 10.2  | 3.3   |
| 13 | 58000021           | 1.1          | 3     | 2.3   | 3     | 7.4   | 141.8 | 16.4  |
| 14 | 58000023           | 0.3          | 0.3   | 0.3   | 0.9   | 7     | 4     | 1.1   |
| 15 | 58000030           | 0            | 0     | 0     | 0     | 0.7   | 13.8  | 10.1  |
| 16 | 58000056           | 0.1          | 0.1   | 0.1   | 0.1   | 12    | 9.5   | 7.1   |
| 17 | 58000062           | 0.1          | 1.8   | 0.2   | 0     | 13.1  | 0.1   | 11.8  |
| 18 | 58000079           | 0.1          | 0.1   | 0.1   | 0.1   | 6.9   | 11.3  | 7.2   |
| 19 | 58000083           | 0.1          | 0.1   | 0.5   | 3.3   | 12.4  | 20    | 10.5  |
| 20 | 59001453           | 6.2          | 0.1   | 0.3   |       | 13    | 12    | 6     |
| 21 | 59001463           | 1.8          | 2     | 1.5   | 8     | 13.4  | 9.7   | 9.4   |
| 22 | 59001467           | 0.1          | 0     | 0.1   | 0.2   | 13.2  | 43.3  | 9.5   |
| 23 | 61000310           | 0.5          | 0.5   | 0.5   | 0     | 32.3  | 25    | 19.8  |
| 24 | 62003498           | 1.1          | 2.1   | 1.3   |       | 10    | 13.9  | 10.1  |
| 25 | 62003502           | 0.1          | 0.1   | 0.1   | 0.1   | 3.8   | 9.4   | 3.7   |
| 26 | 62003528           | 1            | 1     | 1     | 2     | 6.3   | 1     | 2.1   |
| 27 | 63007984           | 0.1          | 0.1   | 0.1   | 2.8   | 4.1   | 11.1  | 4.1   |
| 28 | 63007987           | 0.1          | 0.1   | 0     | 0.1   | 15.2  | 16.1  | 19.3  |
| 29 | 63007999           | 0.2          | 0.2   | 0.2   | 1.5   | 12.6  | 5.4   | 8     |
| 30 | 63008002           | 0.6          | 0.6   | 0     | 0.1   | 8     | 16.5  | 8     |
| 31 | 63008008           | 0.3          | 0.3   | 0.1   | 2     | 10    | 29.6  | 10    |
| 32 | 63008885           | 15           | 12    | 0.1   | 0.3   | 26.9  | 23.9  | 19.5  |
| 33 | 64014837           | 0.8          | 0.8   | 0.1   | 4.1   | 12.5  | 28.8  | 18.7  |

Figure 7: Actual Completion Times from PDMSS

Input analyzer was able to provide the most likely distribution of the data based on the square error, the chi square test p-value, and the Kolmogorov-Smirnov Test p-value. This data proved to be fairly problematic because none of the data clearly followed a clear distribution. As Figure 8 shows, the Chi Square Test p-value was only .0675. Normally, an analyst would like that value to be well above .05. In many of the cases, the p-value was actually less than .05, which can be seen in Figure 9. There are several reasons for these distribution problems. The basic premise of garbage in, garbage out can cause problems—it basically comes down, did the mechanic put the correct data in? The two main causes of this could be: (1) The database only requires mechanics to put a completion time in. Therefore, if they didn't put a start time in, the database will automatically calculate the completion time from the last time that mechanic was logged

into the system as at work or when the last task was completed. (2) The mechanics may have documented task completion for several jobs at once, leading them to just put the "standard" completion time into the database or leading the system to assume some tasks took 0 hours to complete.



Figure 8: Sample Arena Input Analyzer Histogram



Figure 9: Sample Arena Input Analyzer Histogram

These reasons can explain some of the outliers and some of the reasons a majority of the actual times are exactly the same as the standard time. This was particularly true with tasks whose standard time was less than 15 minutes. Over 50% of the recorded completion times were exactly the standard. Additionally, some of the data indicated that there might be two different distributions for the same data set—in other words, it peaked at a certain value then had another peak at higher values. This could be caused by a unique problem on a specific airplane, a seasonal issue, or a problem in the workplace at a particular time. This particular problem should be looked at more in the future. To deal with the first two problems (outliers and zeros), all zeros and some outliers that were more than 4 standard deviations away from the mean were removed. The p-values of the distributions with zeros removed only were compared with the distributions with high values and zeros removed. The distribution that had the highest p-value was selected for use in the Arena model. Eight outliers and 192 zero values (11 percent of the data points) were actually removed; leaving 1445 data points to determine the final distributions.

Arena determined that a Weibull distribution was the best fit for many of the operations. However, when an Exponential or Lognormal distribution was fit to the same data, the square error and p-values was not much different. Therefore, to better understand the distributions, the "second" best fit was sometimes used, depending on the p values. One problem or assumption with this data is that all the tasks are independent of each other. For example, the length of time to complete one operation has no bearing on the time to complete another operation. This is not true, but it is an assumption that

needed to be made to get distributions for each operation. With enough data, this assumption can be overcome. The actual distributions are shown in Appendix C.

**Step 3: List of Resources** 

The actual IDOCK workforce included 71 employees broken out in Table 1:

**Table 1: IDOCK Employees** 

| AS = SMCO (OS 3806)       | 43 |
|---------------------------|----|
| AA = Aircraft (OS 8852)   | 11 |
| AH = Hydraulics (OS 8852) | 6  |
| BA = Rigging (OS 8852)    | 6  |
| 1A = Engines (OS 8852)    | 1  |
| 7H = Gears (OS 8852)      | 4  |

Those 71 employees are shared among all seven major IDOCK major jobs. Major job BA utilizes all of the different specialists listed above during their operations, but only AS, 7H, and AH are used in the tasks that were modeled in this research. Additionally, the actually number made available to this model was scaled down to better reflect the resources actually in major job BA at any given time. The modified models (to allow cross-training) combined all employees into one pool to complete certain tasks. The final scale for this model is in Table 2. The scaled down pool was determined from through the validation of the model explained in Step 5 (to get the simulated flow time to match reality as closely as possible).

**Table 2: Major Job BA Personnel** 

| AS = SMCO (OS 3806)       | 6 |
|---------------------------|---|
| AA = Aircraft (OS 8852)   | 0 |
| AH = Hydraulics (OS 8852) | 2 |
| BA = Rigging (OS 8852)    | 0 |
| 1A = Engines (OS 8852)    | 0 |
| 7H = Gears (OS 8852)      | 3 |

The other resource constraint is the number of work stations. IDOCK has three available work stations—therefore, they can only work on 3 aircraft at a time.

## **Step 4: Input from Work Centers**

The second set of data points was collected during a visit to Tinker AFB in December 2009. During that visit, two supervisors provided information on 74 operations:

- 1) The certainty of task occurrence (All the time or percentage of the time)
- 2) Any pre-requisite tasks
- 3) Task priority (1-5)
- 4) Expected duration of the task
- 5) # of personnel needed to complete the task
- 6) Occupational series required to complete the task
- 7) How complex is the task (1-5)
- 8) How difficult to train a new mechanic on the task (1-5)
- 9) What kind of training is required to complete the task (OJT, Formal School)

When the 74 operations that supervisors provided input on were matched with the 113 operations that were left from PDMSS, 58 operations were left to analyze (Appendix D). These operations consisted of 1760 data points.

#### **Step 5: Create Multiple Discrete Event Simulation Models**

After a distribution was determined for each operation, an Arena model was created to simulate the flow of an aircraft through these 58 operations. The process started with the aircraft arrival. Aircraft arrive every 7 calendar days because their plan is to have 54 aircraft this year (which equates to one every 6.75 days). However, the model

was built to account for duty days so the model was configured for an aircraft to arrive every 5 days. The first process the aircraft encountered was pre-dock. Based on the historical data over the last year, the best distribution is a triangular with minimum of 10.5 days, average of 15 days, and maximum of 36.5 days (again, this is calendar days, so it was converted to duty days—minimum of 8.5 days, average of 11 days, and maximum of 26.5 days). The Chi Square test of a triangular distribution gave a p-value of .545; therefore it is an acceptable representation of the data. After pre-dock, the aircraft enters IDOCK. This part of the Arena model is shown in Figure 10. As was described earlier in the overview of the KC-135 depot process, the IDOCK has many major jobs. This Arena model mapped out 58 of the jobs for the BA major job. Some of those jobs occurred in parallel and some in series.



Figure 10: Arena Model of Pre-Dock

The simulations were run for 760 days with a warm-up period of 30 days to allow at least 3 airplanes to enter the system. It was run based on the work center running 24 hours a day. Therefore, the results are converted to actual duty days by dividing the results by 16 (work hours per day for this process). It was also run without consideration weekends (which is non-work time) so all comparisons with actual data is done using duty days, not calendar days. The model was replicated 100 times. The Current State Model is in Appendix E. Some results of the Current State Model are in Table 3 (all are averages over the 100 repetitions)—complete results are in Appendix F.

Table 3: Current State Simulation Results

| Time to complete tasks       | 297.5 hours; 18.6 duty days |
|------------------------------|-----------------------------|
| Aircraft through process     | 144.2                       |
| 7H Utilization               | 49.2%                       |
| AS Utilization               | 57.4%                       |
| IDOCK Space Utilization      | 82.6%                       |
| Operation 32184 Waiting Time | 71.0 hours                  |
| Operation 32204 Waiting Time | 44.4 hours                  |
| Operation 32205 Waiting Time | 47.5 hours                  |
| Operation 32206 Waiting Time | 51.4 hours                  |
| Operation 32256 Waiting Time | 56.3 hours                  |
| Operation 32257 Waiting Time | 61.2 hours                  |
| Operation 32500 Waiting Time | 64.3 hours                  |
| Operation 32504 Waiting Time | 64.6 hours                  |

#### **Validation of Current State Simulation Results**

The validation of the current state simulation results is important to determine whether the model is an accurate representation of reality. However, this is very difficult to do because of the availability of accurate data. According to the data in PDMSS, the average time to complete major job BA for the 30 aircraft that were modeled was 108 calendar days. This is definitely an inaccurate representation of reality because the

aircraft is out of IDOCK in an average of calendar 21.8 days. PDMSS also shows the date the major job started and the date a specific task was completed. When those two data points are subtracted from each other (for the 58 tasks that were modeled) gives an average of 42.6 calendar days (or 31.3 duty days) until last task modeled is complete. This does not match up with when an aircraft leaves IDOCK because some of the tasks can be completed or continued during other phases of IDOCK, so that is not a necessary comparison. Therefore, the 31.3 duty days seen in the PDMSS system should be compared with the simulation results. The simulation results of the current state, if all IDOCK personnel are including in the model, show that the time to complete all 58 modeled tasks is 138.64 hours. That converted to 8.6 actual duty days (IDOCK is mostly a 2-shift, 5-days a week operation, therefore, the hours is divided by 16 to get duty days). This does not compare well to the known average completion time of 31.3 duty days because of concurrent work. Some of the BA tasks are not started as soon as personnel become available because they may be routed to another job within IDOCK based on priorities. In order to get the model closer to the PDMSS reality of 31.3 duty days, the number of people available to work BA jobs (the resources) were cut (Table 2) to account for some of them working other jobs within BA. Even with reducing the manpower resources, the flow time only reached 18.6 duty days (Table 3). This clearly shows that any validation of the simulated data versus reality is very difficult, if not impossible. However, current state simulation results can and should be compared with the adjusted model simulation results to see if any gains can be achieved in flow time.

The current state results highlight several areas for improvement, but the key metric which defines the flow of aircraft through major job BA is the time to complete all tasks. The histogram, descriptive statistics, and confidence intervals are shown in Figure 11. The average was 297.5 hours with a rather small confidence interval, but the standard deviation is fairly large at 109.6 hours. This indicates that there is significant variability in the data and that variability may be an area that can be addresses in future research. Table 3 results also show the eight operations that had the longest wait times (that is the time waiting for a technician to become available to complete the task) because those are good areas to attack for potential increase in workforce or crosstraining opportunities. Six of those were noted to have a task complexity and difficulty to train rating of 3, 4, or 5. Two of those seven (operation 32500 and operation 32504) has a task complexity and difficulty to train rating of 1—tasks that are easily completed by generalists.



Figure 11: Current State Descriptive Statistics (from JMP)

#### Model 2: Cross-Training Technicians on Two "Long Wait" Tasks

In the next model, the two operations mentioned above (32500 and 32504) were changed to be allowed to be completed by any technician. The following changes were made to the initial Current State Model for those two operations only. First, the resources were changed from two 7H technicians to two 7H, AH, or AS technicians; the exact technician was selected in preferred order based on which technician was available. The preferred order was always the career field that originally completed the task, followed by a person of the same occupational series (i.e. AH or 7H), and then followed by whoever was left. The three preferred order sets were:

- 1) AH, 7H, AS
- 2) 7H, AH, AS
- 3) AS, 7H, AH

Second, the task completion times were multiplied by 1.2 (taking into account other technicians might take longer to complete). This 1.2 was used based on discussions with managers at the depot line and data from the literature review. The selection of 1.2 was subjected to sensitivity analysis in model 3. Figure 12 shows the changes from the Current State Model.



Figure 12: Model 2 Modifications

The results of the simulation are in Table 4 (full results in Appendix G) and the descriptive statistics are in Figure 13.

**Table 4: Model 2 Simulation Results** 

|                              | New Data Point              | Change from Current State |
|------------------------------|-----------------------------|---------------------------|
| Time to complete tasks       | 297.7 hours; 18.6 duty days | Negligible                |
| Aircraft through process     | 144.1                       | Negligible                |
| 7H Utilization               | 49.1%                       | Negligible                |
| AS Utilization               | 57.6%                       | Negligible                |
| IDOCK Space Utilization      | 82.6%                       | Negligible                |
| Operation 32184 Waiting Time | 72.1 hours                  | Increase 1.1 hour         |
| Operation 32204 Waiting Time | 44.3 hours                  | Negligible                |
| Operation 32205 Waiting Time | 47.4 hours                  | Negligible                |
| Operation 32206 Waiting Time | 51.3 hours                  | Negligible                |
| Operation 32256 Waiting Time | 56.2 hours                  | Negligible                |
| Operation 32257 Waiting Time | 61.3 hours                  | Negligible                |
| Operation 32500 Waiting Time | 0 hours                     | Cut 64.3 hours            |
| Operation 32504 Waiting Time | 0.2 hours                   | Cut 64.4 hours            |



| Quantiles |          |         |  |  |
|-----------|----------|---------|--|--|
| 100.0%    | maximum  | 2319.33 |  |  |
| 99.5%     |          | 687.195 |  |  |
| 97.5%     |          | 515.991 |  |  |
| 90.0%     |          | 422.474 |  |  |
| 75.0%     | quartile | 354.094 |  |  |
| 50.0%     | median   | 288.005 |  |  |
| 25.0%     | quartile | 226.299 |  |  |
| 10.0%     |          | 174.333 |  |  |
| 2.5%      |          | 124.155 |  |  |
| 0.5%      |          | 97.258  |  |  |
| 0.0%      | minimum  | 64.1347 |  |  |

| Moments        |           |
|----------------|-----------|
| Mean           | 297.72525 |
| Std Dev        | 116.57543 |
| Std Err Mean   | 0.9648512 |
| Upper 95% Mean | 299.61648 |
| Lower 95% Mean | 295.83402 |
| N              | 14598     |

| Confidence Intervals |                          |                                           |                            |  |
|----------------------|--------------------------|-------------------------------------------|----------------------------|--|
| Estimate             | Lower Cl                 | Upper Cl                                  | 1-Alpha                    |  |
| 297.7252             | 295.834                  | 299.6165                                  | 0.950                      |  |
| 116.5754             | 115.2535                 | 117.9283                                  | 0.950                      |  |
|                      | <b>Estimate</b> 297.7252 | <b>Estimate Lower Cl</b> 297.7252 295.834 | Estimate Lower CI Upper CI |  |

Figure 13: Model 2 Descriptive Statistics (from JMP)

## Model 3: Cross-Training Technicians on all Low Complexity Tasks

A third model was then created to modify all the operations whose complexity level was chosen to be one. This resulted in 20 tasks that were modified (in addition to the two tasks already modified in Model 2) exactly as operations 32500 and 32504 were modified in model 2. Model 3 results are shown in Table 5 (full results in Appendix H) and descriptive statistics shown in Figure 14.

Table 5: Model 3 Simulation Results

|                              | New Data Point              | Change from Current State   |
|------------------------------|-----------------------------|-----------------------------|
| Time to complete tasks       | 250.7 hours; 15.7 duty days | 46.8.1 hours; 2.9 duty days |
| Aircraft through process     | 145.3                       | Increase 1.1                |
| 7H Utilization               | 44.8%                       | Cut 4.4%                    |
| AS Utilization               | 59.0%                       | Increase 1.6%               |
| IDOCK Space Utilization      | 69.9%                       | Cut 12.7%                   |
| Operation 32184 Waiting Time | 56.1 hours                  | Cut 14.9 hours              |
| Operation 32204 Waiting Time | 42.4 hours                  | Cut 2.0 hours               |
| Operation 32205 Waiting Time | 45.3 hours                  | Cut 2.4 hours               |
| Operation 32206 Waiting Time | 48.9 hours                  | Cut 2.5 hours               |
| Operation 32256 Waiting Time | 53.4 hours                  | Cut 2.9 hours               |
| Operation 32257 Waiting Time | 58.0 hours                  | Cut 3.2 hours               |
| Operation 32500 Waiting Time | 1.7 hours                   | Cut 62.6 hours              |
| Operation 32504 Waiting Time | 1.9 hours                   | Cut 62.7 hours              |



Figure 14: Model 3 Descriptive Statistics (from JMP)

#### **Cross-Training Factor Sensitivity Analysis (Model 3)**

Because the load factor of 1.2 was selected somewhat arbitrarily (based on one research article and employee input), a sensitivity analysis of that factor was performed using Model 3 data. The question is: how much effect does the choice of a load factor have on the output of the model? A load factor of 1.0 means that the generalist completes the task at the same speed as a specialist does. The higher the load factor, the longer the generalists takes to complete the task. To do this analysis, model 3 was run several times with load factors ranging from 1.0 to 5. When the load factor was 4.25, the time to complete all the tasks equaled the current state (297.5 hours)—this would be considered the "break even" point. In other words, for this particular test case, as long as the load factor is less than 4.25, then cross-training could have some benefit. Figure 15 shows the relationship between the cross training load factor and the average time to complete all the tasks. The tasks that were selected for cross-training for this model were all rated a difficulty level of 1, meaning that according to their experts it would never take a generalists more than twice as long as a specialist to complete the task (meaning a load factor somewhere between 1 and 2 is appropriate for these tasks). As the figure shows, any load factor between 1 and 2 only changes the production time by 4%. Therefore, the selection of a load factor of 1.2 was justified for this simulation.



Figure 15: Load Factor Sensitivity Analysis

### **Model 4: Unlimited Technician Pool**

In order to understand the absolute fastest these 58 tasks could get accomplished with the current occupational series, a fourth model was created with unlimited resources.

The results are in Table 6 (full results in Appendix I) and descriptive statistics in Figure 16.

Table 6: Model 4, Unlimited Resources, Simulation Results

|                             | New Data Point             |
|-----------------------------|----------------------------|
| Time to complete tasks      | 115.5 hours; 7.2 duty days |
| Aircraft through process    | 146.0                      |
| 7H Utilization              | n/a                        |
| AS Utilization              | n/a                        |
| IDOCK Space Utilization     | 32.2%                      |
| All Operations Waiting Time | 0                          |



Figure 16: Model 4 Descriptive Statistics (from JMP)

## **Step 6: Compare Simulation Results**

A summary of the results are shown in Table 7 (all numbers are averages).

**Table 7: Comparison of Simulation Results** 

|                              | Current State | Model 2     | Model 3      | Model 4     |
|------------------------------|---------------|-------------|--------------|-------------|
| Time to complete tasks       | 297.5 hours   | 297.7 hours | 250.7 hours; | 115.2 hours |
| Aircraft through process     | 144.2         | 144.1       | 145.3        | 146.0       |
| 7H Utilization               | 49.2%         | 49.1%       | 44.8%        | n/a         |
| AS Utilization               | 57.4%         | 57.6%       | 59.0%        | n/a         |
| IDOCK Space Utilization      | 82.6%         | 82.6%       | 69.9%        | 32.2%       |
| Operation 32184 Waiting Time | 71.0 hours    | 72.1 hours  | 56.1 hours   | 0           |
| Operation 32204 Waiting Time | 44.4 hours    | 44.3 hours  | 42.4 hours   | 0           |
| Operation 32205 Waiting Time | 47.5 hours    | 47.4 hours  | 45.3 hours   | 0           |
| Operation 32206 Waiting Time | 51.4 hours    | 51.3 hours  | 48.9 hours   | 0           |
| Operation 32256 Waiting Time | 56.3 hours    | 56.2 hours  | 53.4 hours   | 0           |
| Operation 32257 Waiting Time | 61.2 hours    | 61.3 hours  | 58.0 hours   | 0           |
| Operation 32500 Waiting Time | 64.3 hours    | 0 hours     | 1.7 hours    | 0           |
| Operation 32504 Waiting Time | 64.6 hours    | 0.2 hours   | 1.9 hours    | 0           |

Model 2 showed negligible improvement from the current state, however the change from the current state to Model 3 does appear to show some improvement—the mean time to complete all tasks dropped 40.8 duty hours by cross-training the 22 low complex tasks. The results were imported into JMP statistical software for to determine whether the differences means in the data is statistically important. The null hypothesis is that the means from the Current State and Model 3 are the same. To test this, a Non-Parametric Wilcoxon test was performed (results in Figure 17). The p value equaled 0, therefore we reject the null hypothesis and conclude that the means are different. Additionally, a two-sample t-test was performed in Microsoft Excel to compare the two means. The p values were 0, confirming that the two means are statistically different. This t-test is also shown in Figure 17.



Figure 17: Current State versus Model 3 Time to Complete Tasks

Therefore, by cross-training employees on 22 of the 58 tasks, major job BA can be completed 40.8 hours faster—a 13.7% improvement. The waiting time for all the tasks also decreased, some more substantially than others. This waiting time reduction is what allowed the aircraft to actually get through all processes faster. However, the number of aircraft that made it through the system only increased slightly. This is due to the fact that the real limiting factor to pushing more aircraft through major job BA is the processing time, not the time waiting for a technician to become available. This was confirmed by Model 4. When unlimited personnel were made available, only 1 more aircraft (less than 1% improvement) made it through the system. Another interesting data point is that the overall technician utilization rate didn't change all that much with crosstraining. The 7H utilization rate when down 4.4%, but the AS utilization rate went up 1.6%. Both rates were below 60%, indicating that the mechanics are free 40% of the time. This is an interesting phenomenon that suggests that the real limiting factor or problem with the current major job BA process is the variability of task completion. There are times that they were busy and other tasks were waiting on them, and other times when the mechanics were waiting on tasks to be ready to complete. Some of this can also be explained by the fact that some tasks require a large number of people. For example, if a task required 5 people and only have 11 people work in the section, it may take a while for 5 technicians to get free at the same time.

### **Step 7: Cost of Cross-Training**

The cost of cross-training was calculated using several factors:

A = Average Time for a Specialist to Complete the Task

B = Training Factor (how much longer will it take to complete the task during training)

C = Number of People Involved in the Training (Trainer and Trainee)

D = Number of Times Training Must be Repeated

E = Salary of Personnel Involved in the Training (Factor C)

F = Formal Training Costs

Formula: (A\*B\*C\*D\*F + E) per task per person cross-trained

For this research,

A = gathered from PDMSS

B = 2 (assumed it takes twice as long to train as opposed to just completing the task)

C = 2 (one trainer and one trainee)

D = 2 or 4 (if the training difficulty level was 1, then the person only needed to be trained twice; if the training difficulty was 2, then person needed to be trained 4 times)

E = not used for this research; the cost was quantified in terms of hours for this research

F = 0 (all tasks that were cross-trained did not require any formal training; it is assumed that you are training a mechanic who already possesses basic aircraft maintenance skills) Cost = A \* 2 \* 2 \* (2 or 4)

It was calculated for each task that was cross-trained, multiplied by the number of people cross-trained on that task, and then summed together. There were 22 tasks that were subject to cross-training (16 7h-tasks, 4 as-tasks, and 2 ah-tasks). There were 11 technicians involved in the pool of technicians who were cross-trained (3 7h-technicians, 6 as-technicians, and 2 ah-technicians). The cross-training cost for these 11 technicians on all 22 tasks was 3,134 hours.

#### **Step 8: Make Decision**

Depending on the salary of these individuals, a manager must decide whether it is worth those 3,134 hours for a 13.7% gain in task completion time.

#### V. Discussion

#### **Answers to Research Questions**

Question 1: What experimental and analytical models exist or can be created to determine if occupational series should be combined?

Answer 1: The literature review addressed this at length. Several models have been created, but only one (Marentette K. A., 2008) discussed which jobs to combine. The rest of the models were more about what roles to combine, leaving the manager to ascertain what actual positions could be combined. Some of the models were role specific and some were task specific. Besides Marentette's model, the problem with most of these models is that they were very specific to the system or industry they were researching. In order to apply it to AFMC's research question, they would need to be adapted significantly. There is no one model that can be created to determine if occupational series should be combined. However, the methodology created in this research is a basic process that can be followed to determine which tasks should be combined with others. This methodology explains how a task-based discrete simulation model can be developed to show were production gains can be made with cross-training.

Question 2: What series should be combined or created a-new?

Answer 2: This research was unable to ascertain which occupational series should be combined or created anew because the production line selected to test the methodology only had a few occupational series. A method was created that can be used to look at work areas that have a large diversity of similar occupational series, but such areas may not exist. It appears that there is much specialization within in each occupational series, so reducing the number of occupational series may not be a realistic goal.

Question 3: How do organizations ensure they don't combine incorrectly thereby losing critical knowledge and affecting product quality?

Answer 3: Based on the literature, this is almost purely subjective. Most of the literature does suggest that some flexibility is good, but an organization must maintain a certain level of expertise (i.e. specialization). The proper degree of flexibility is a factor of the complexity of the tasks, the quality concerns of the final product, and level of utilization of current specialists. One way to overcome this might be to create a cross-trained team, as suggested by Molleman and Slomp (1999)—a team that consists of at least one expert for each task with all other team members being cross-trained on some of the other tasks. This creates a depth of knowledge, but also a breadth of some team members to help out when their utilization is low. The key to this research paper's methodology working is having an accurate opinion from the subject matter experts. If a consensus can be reached that the benefits of a flexible workforce outweighs the potential loss in depth, then a manager should feel confident in the cross-training decision. The decision cannot be made without first-level leadership and worker involvement.

#### **Recommended Future Research**

This research does not directly answer AFMCs original questions of how can the number of occupational series be reduced. Based on findings at the Tinker AFB KC-135 production line, there is limited benefits for this type of research in the future for these AFMC organizations. However, gains towards reducing the number of occupational series at specific locations might be feasible. AFMC should look at other work centers and analyze which ones have a large number of occupational series and apply this

methodology to them. If "non flexible" organizations can be found within AFMC, they should be studied.

#### Conclusions

Using the proposed methodology, determining which tasks should be shared with other occupational series is pretty clear. A cut in production time was seen when low complexity tasks were cross-trained, but the cost of cross-training might be very high in terms of time to train the new technicians. A delicate balance needs to be drawn, based on expert opinion, about which career fields can cross-train. A more flexible workforce can be obtained if the right team is put together to study it.

#### **Bibliography**

Brusco, M. J., & Johns, R. T. (1998). Staffing a Multi-Skilled Workforce with Varying Levels of Productivity: An Analysis of Cross-Training Policies. *Decision Sciences*, 499-515.

Chakravarthy, S. R., & Agnihothri, S. R. (2005). Optimal Workforce Mix in Service Systems with Two Types of Customer. *Production and Operations Management*, 218-231.

Dietz, D. C., & Rosenshine, M. (1997). Optimal Specialization of a Maintenance Workforce. *IIE Transactions*, 29 (5), 423-433.

Marentette, K. A. (2008). An Objective Decision Tool For Use in Considering Air Force Specialty Code Pairs for Consolidation. Wright Patterson AFB: Air Force Institute of Technology.

Marentette, K., & Johnson, A. (2009). A Measure of Cross-Training Benefit Versus Job Skill Specialization. *Computers & Industrial Engineering Journal*.

McCreery, J. K., & Krajewski, L. J. (1999). Improving Performance Using Workforce Flexibility in an Assembly Environment with Learning and Forgetting Effects. *International Journal of Production Research*, *37* (9), 2031-2058.

Molleman, E., & Slomp, J. (1999). Functional Flexibility and Team Performance. *Internation Journal of Production Research*, 1837-1858.

Nembhard, D. A., Nembhard, H. B., & Qin, R. (2005). A Real Options Model for Worforce Cross-Training. *The Engineering Economist*, 50, 95-116.

Paskin, M. A., & Trevino, A. W. (2007). Employing Organizational Modeling and Simulation to Deconstruct the KC-135 Aircraft's Programmed Depot Maintenance Flight Controls Repair Cell. Monterey: Naval Postgraduate School.

Pinker, E. J., & Shumsky, R. A. (2000). The Effeciency-Quality Trade-off of Cross Trained Workers. *Manufacturing and Service Operations Management*, 2 (1), 32-48.

U.S. Government Accountability Office. (2003). DOD Civilian Personnel: Improved Strategic Planning Needed to Help Ensure Viability of DOD's Civilian Industrial Workforce, GAO-03-472.

# Appendix A – KC-135 Wage Grade Employees

| Occ Series Code & Desc - Asgn        | Pay Plan Cd | Grade | <b>Total Of Duty Location</b> |
|--------------------------------------|-------------|-------|-------------------------------|
| 2610 Electronic Integrated Systems   | WG          | 13    | 12                            |
| 2610 Electronic Integrated Systems   | WL          | 12    | 2                             |
| 2610 Electronic Integrated Systems   | WS          | 13    | 2                             |
| 2610 Electronic Integrated Systems   | WG          | 12    | <u>10</u>                     |
|                                      |             |       | 26                            |
| 2892 Aircraft Electrican             | WL          | 10    | 3                             |
| 2892 Aircraft Electrican             | WS          | 10    | 4                             |
| 2892 Aircraft Electrican             | WL          | 09    | 6                             |
| 2892 Aircraft Electrican             | WG          | 10    | 50                            |
| 2892 Aircraft Electrican             | WG          | 08    | <u>27</u>                     |
|                                      |             |       | 90                            |
| 3501 Misc General Services & Support | WG          | 03    | <u>28</u>                     |
|                                      |             |       | 28                            |
| 3806 Sheet Metal Mechanic            | WS          | 14    | 1                             |
| 3806 Sheet Metal Mechanic            | WG          | 80    | 76                            |
| 3806 Sheet Metal Mechanic            | WG          | 10    | 248                           |
| 3806 Sheet Metal Mechanic            | WL          | 09    | 4                             |
| 3806 Sheet Metal Mechanic            | WL          | 10    | 6                             |
| 3806 Sheet Metal Mechanic            | WS          | 10    | 15                            |
| 3806 Sheet Metal Mechanic            | WS          | 13    | <u>4</u>                      |
|                                      |             |       | 354                           |
| 5703 Motor Vehicle Operating         | WG          | 06    | <u>3</u>                      |
|                                      |             |       | 3                             |
| 6904 Tool & Parts Attending          | WS          | 06    | 2                             |
| 6904 Tool & Parts Attending          | WG          | 06    | <u>11</u>                     |
|                                      |             |       | 13                            |
| 6907 Materials Handling              | WG          | 06    | 9                             |
| 6907 Materials Handling              | WS          | 06    | <u>1</u>                      |
|                                      |             |       | 10                            |
| 8801 Miscellaneous Aircraft Overhaul | WS          | 14    | 4                             |
| 8801 Miscellaneous Aircraft Overhaul | WS          | 15    | 1                             |
| 8801 Miscellaneous Aircraft Overhaul | WS          | 16    | <u>1</u>                      |
|                                      |             |       | 6                             |
| 8852 Aircraft Mechanic               | WG          | 08    | 12                            |
| 8852 Aircraft Mechanic               | WS          | 13    | 4                             |
| 8852 Aircraft Mechanic               | WS          | 11    | 6                             |
| 8852 Aircraft Mechanic               | WS          | 10    | 18                            |
| 8852 Aircraft Mechanic               | WL          | 11    | 6                             |
| 8852 Aircraft Mechanic               | WL          | 10    | 17                            |
| 8852 Aircraft Mechanic               | WL          | 09    | 6                             |
| 8852 Aircraft Mechanic               | WG          | 10    | 346                           |
| 8852 Aircraft Mechanic               | WS          | 14    | 1                             |
| 8852 Aircraft Mechanic               | WG          | 11    | <u>18</u>                     |
|                                      |             |       | <u>434</u>                    |
|                                      |             |       | 964                           |

Appendix B – Order of Tasks in IDOCK Major Job BA

| OPERATION DESCRIPTION                                                                                                                                                                                                                                                                                       | OPERARTION<br>NUMBER | Order |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|--|--|
| These tasks must be completed sequentially                                                                                                                                                                                                                                                                  |                      |       |  |  |
| 1B4(B)- REMOVE LH AND RH NOSE WHEEL WELL DOORS IAW: 1C-135(K)R-2-<br>7JG-7, TASK 3-32-1 INSTALLED ON OP #'S 20505 & 20506 -                                                                                                                                                                                 | 20542                | 1     |  |  |
| 1A1FA - REMOVE 3 EA ACCESS DOORS LOCATED ON LH SIDE OF DORSAL FIN.<br>HOLD FOR REINSTL. REF: T.O. 1C-135(K)R-2-2JG-19 TASK 10-24-1 STEP 2. REF.<br>T.O. 1C-135(K)R-4-2 FIG. 158                                                                                                                             | 66018                | 2     |  |  |
| 1B20 - COVER LOWER FUSELAGE ANTENNAE WITH PROTECTIVE FOAM PADDING FOR NON-GATM A/C THERE ARE 4 ANTENNAE (IFF, TACAN, COMM1, & COMM2) FOR GATM A/C THERE ARE 5 ANTENNAE (IFF, TACAN, COMM1, COMM2, & VDL) REF AFOSH 91-100                                                                                   | 20058                | 3     |  |  |
| 1B67(J) ¿JACK/JIG/SHORE - PRIOR TO JACKING ENSURE AIRCRAFT IS  COMPLETELY DEFUELED AND PROPER BALLAST IS INSTALLED IAW. T.O. 1C-  135(K)R-2-2JG-6 TASK 4-5.                                                                                                                                                 | 1146                 | 4     |  |  |
| 1B67(J) ?JACK/JIG/SHORE - PRIOR TO JACKING CALCULATE CENTER OF GRAVITY IN % OF MAC. SUBMIT 202 ENGR REQUEST IF OUT OF LIMITS. IAW.T.O. 1C-135(K)R-2-2JG-6 TASK 4-5-1 AND 4-5-2/4-5-3                                                                                                                        | 1147                 | 5     |  |  |
| 1B67(J) - JACK/JIG/SHORE - INSPECT A/C JACKS PRIOR TO USE FOR SERVICEABILITY IAW T.O. 35A2-1-1 AND OPERATING INSTRUCTIONS 76 AMXG 21-26 PARA 2.4. ALSO SEE DEFINITIZED GUIDE.REF 76 AMXG 09-04,00-96 & 76 AMXG 00-15 REF 1C-135(K)A-3-1 SPECIAL HANDLING 252 51MOCCR0010A65W                                | 1199                 | 6     |  |  |
| 1B67(J) SSQ TASK: JACK A/C IAW 1C-135(K) R-2-2JG-6 TASK 4-1 THRU 4-18-3,<br>AND REF: 76AMXGOI 21-26 PARA 2.4.5.1.                                                                                                                                                                                           | 32184                | 6.5   |  |  |
| 1B67(J) ¿JACK/JIG/SHORE - PROCURE 20 JACKS, 60 WOODEN PADS & VARIOUS BODY & WING SHORING TO JACK & SHORE A/C FOR STRUCTURAL REPAIRS, INCLUDING GAUGE INSTL. IAW.T.O. 1C-135(K)A-3-1 PAR 1-9.6 AND T.O. 1C-135-3-5 PAR 1-2 AND 1-3.REF 76 AMXG 09-04 REF 1C-135(K)A-3-1 SPECIAL HANDLING 252 51MOCCR0010A65W | 1148                 | 7     |  |  |
| 1B67(J) - JACK/JIG/SHORE - PRIOR TO USE, INSPECT ALL BODY & WING SHORING USED TO JACK & SHORE A/C FOR STRUCTURAL REPAIRS. REF 76 AMXG 09-04 REF 1C-135(K)A-3-1 SPECIAL HANDLING 252 51MOCCR0010A65W                                                                                                         | 1144                 | 8     |  |  |
| 1B67(J) - JACK/JIG/SHORE - PRIOR TO USE, INSPECT 60 WOODEN PADS TO BE USED TO JACK & SHORE A/C FOR STRUCTURAL REPAIRS. SEE DEFINITIZED LIST.  REF 76 AMXG 09-04,00-96 & 76 AMXG 00-15 REF 1C-135(K)A-3-1 SPECIAL HANDLING 252 51MOCCR0010A65W                                                               | 1145                 | 9     |  |  |
| 1B67(J) ¿JACK/JIG/SHORE - INSTALL FUSELAGE AND WING SHORING. IAW.T.O. 1C-135(K)A-3-1 PAR 1-9.6 AND IAW.T.O. 1C-135-3-5 PAR 1-2, 1-3.REF 76 AMXG 09-04, 76 AMXG 00-15                                                                                                                                        | 1165                 | 10    |  |  |
| The next two tasks may be completed in parallel                                                                                                                                                                                                                                                             |                      |       |  |  |
| 1B67B POSITION AND SET UP TRANSIT TO ACCOMPLISH AIRCRAFT LEVELING REQUIREMENTS TO FACILITATE REMOVAL, INSPECTION, AND REPLACEMENT OF MILK BOTTLE PINS. IAW 1C-135(K)A-3-1 PARA 1-9.2                                                                                                                        | 42110                | 12    |  |  |
| 1B67(J) ¿JACK/JIG/SHORE- JACK AIRCRAFT TO JIG POSITION IAW.T.O. 1C-<br>135(K)A-3-1 PAR 1-9.6 THRU 1-9.6.4 AND TABLE 1-52                                                                                                                                                                                    | 1158                 | 13    |  |  |
| The remaining tasks may be completed in parallel                                                                                                                                                                                                                                                            |                      |       |  |  |
| 1B4(B)- REMOVE NLG IAW. 1C-135(K)R-2-7JG-6 ***MULTIPLE TASKS*** REF. PROCESS ORDER 76 AMXG 07-10                                                                                                                                                                                                            | 32043                | 14    |  |  |

| 1B1(C)- REMOVE LH MLG IAW. 1C-135(K)R-2-7JG-1, -3 & -4 **MULTIPLE<br>TASKS**                                                                                                                                                                                                        | 32201 | 14 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| 1B1(C)- REMOVE R/H MLG IAW. 1C-135(K)R-2-7JG-1, -3 & -4 **MULTIPLE<br>TASKS**                                                                                                                                                                                                       | 32202 | 14 |
| 1B4(B)- MOVE NOSE LANDING GEAR FROM A/C TO GEAR SHOP FOR DISASSEMBLY AND REASSEMBLY. T.O. NOT REQUIRED                                                                                                                                                                              | 32500 | 14 |
| 1B1(C)- MOVE L/H & R/H MLG FROM A/C TO GEAR SHOP FOR DISASSEMBLY AND REASSEMBLY. ***CAUTION*** ENSURE WOODEN BLOCKS ARE USED BETWEEN JACK AND LANDING GEAR. T.O. NOT REQUIRED                                                                                                       | 32504 | 14 |
| 1B1(C.5,6,7,8)- REMOVE L/H SIDE STRUT PARTS SIDE STRUT ACTUATOR, UPPER & LOWER SIDE STRUT SEGMENTS AND UNIVERSALS IAW. 1C-135(K)R- 2-7JG-3 & 1C-135(K)R-2-10JG-5 **MULTIPLE TASKS**                                                                                                 | 32203 | 14 |
| 1B1(C.5,6,7,8)- REMOVE R/H SIDE STRUT COMPONENTS: SIDE STRUT ACTUATOR, UPPER & LOWER SIDE STRUT SEGMENTS AND UNIVERSALS IAW. 1C-135(K)R-2-7JG-3 & 1C-135(K)R-2-10JG-5 **MULTIPLE TASKS**                                                                                            | 32204 | 14 |
| 1B1(E)- REMOVE LH & RH MLG HOOK & SHAFT ASSY. FROM LOCK SUPPORT ASSY FOR INSPECTION IAW. 1C-135(K)R-2-7JG-3 TASK 2-69-1 STEPS 3 & 5 & TASK 2-71-2 STEPS 5 & 6.                                                                                                                      | 32030 | 14 |
| 1B1(C.2,9,10,20)- REMOVE & DISASSEMBLE L/H MLG WALKING BEAM, BEAM SUPPORT LINK & TRUNNION. IAW.1C-135(K)R-2-7JG-4 **MULTIPLE TASKS**                                                                                                                                                | 32205 | 14 |
| 1B1(C.2,9,10,20)- REMOVE & DISASSEMBLE R/H MLG WALKING BEAM, BEAM SUPPORT LINK & TRUNNION. IAW.1C-135(K)R-2-7JG-4 **MULTIPLE TASKS**                                                                                                                                                | 32206 | 14 |
| 1B1(G,H,I,J)- REMOVE L/H MLG OLEO DOOR RODS AND HOLD FOR INSPECTION. P/N 9-65806-11/-12, 9-65876-1, 9-65876, 69-9411 IAW. 1C-135(K)R-2-7JG-1 TASK 2-17-3 STEPS 4 & 6, TASK 2-17-5 STEPS 3 & 5, TASK 2-17-7 STEPS 2 & 3.                                                             | 32741 | 14 |
| 1B4(E)- INSPECT NLG TRUNNION CAPS FOR CORROSION REWORK IAW 1C-<br>135(K)A-3-4 FIG 8-2 IF CORROSION BEYOND LIMITS NOTIFY ALS TO CALL OUT<br>LOW % OPS FOR NLG TRUNNION BORING.                                                                                                       | 32067 | 14 |
| 1B59.B.3 - VISUALLY INSPECT NOSE GEAR TRUNNION SUPPORT FITTING FOR CRACKS CORROSION, WEAR, AND FAILED FASTENERS. AFTER THE NOSE LANDING GEAR IS REMOVED. REF: T.O.1C-135-36 SEC VII. INSPECTION IS FOR COMPONENTS NOT ON NOSE LANDING GEAR SUBMIT 173 CARDS TO CORRECT THE DEFECTS. | 32157 | 14 |
| 1B59.B.1- FROM INSIDE THE NOSE GEAR WHEEL WELL *****SPECIFICALLY INSPECT THE 3 EA. SCREWS FOR LOOSENESS THAT FASTEN THE BRACKET SUPPORTING THE NLG LOCK ACTUATOR TO THE BULKHEAD**** REF 1C-135- 36 SECTION VII. REF. 1C-135(K)R-4-1 FIG. 108 IND. 13,14,15.                        | 68194 | 14 |
| 1B1(L)- INSPECT LH MLG EMERGENCY EXTENSION CAM ROLLER IAW 1C-135-<br>36 PARA. 7-5.1 -                                                                                                                                                                                               | 32060 | 14 |
| 1B1(L)- INSPECT RH MLG EMERGENCY EXTENSION CAM ROLLER IAW 1C-135-<br>36 PARA. 7-5.1                                                                                                                                                                                                 | 32061 | 14 |
| 1B1(P)- WIPE OFF EXCESS GREASE & OIL FROM R/H MLG ACTUATOR ROD ENDS. INSPECT BEARINGS FOR CORROSION. IF CORROSION IS FOUND ROUTE TO MACHINE SHOP FOR BEARING REPLACEMENT. CALL OUT LOW % OP # 53384. T.O. NOT REQUIRED NOTIFY ALS TO PRINT OP# 73710 & ROUTE TO FIRST DROP STATION. | 32084 | 14 |
| 1B25 - CLEAN AND REMOVE CORROSION FROM LH FWD TRUNNION SUPPORT<br>CASTING. APPLY PRIMER AFTER REMOVAL. REF. 1C-135(K)A-3-4 FIG. 5-22.<br>REF. OP# 32258                                                                                                                             | 52741 | 14 |
| 1B25(C) - MLG TRUNNION SUPPORT STRUCTURE - VISUALLY INSPECT BEARING/BUSHING RETAINING SURFACE OF THE LH AFT TRUNNION SUPPORT FITTING. SEE DEFINITIZED GUIDE. IAW. T.O. 1C-135(K)A-3-4, FIGURE 5-22                                                                                  | 32253 | 14 |
| 1B25(C) - MLG TRUNNION SUPPORT STRUCTURE - VISUALLY INSPECT BEARING/BUSHING RETAINING SURFACE OF THE RH AFT TRUNNION SUPPORT FITTING. SEE DEFINITIZED GUIDE IAW. T.O. 1C-135(K)A-3-4, FIGURE 5-22                                                                                   | 32254 | 14 |

| 1B25(E-G) - MLG TRUNNION SUPPORT STRUCTURE - INSPECT R/H AFT MLG TRUNNION SUPPORT BOLTHEADS & ATTACHMENT NUTS. USE DEFINITIZED LIST IAW. 1C-135-3-5, FIG 5-11, 5-12. & 1C-135-36, PARA 7-2.12.2 WRITE UP DEFECTS. FIGURE 7-2-13, (IATP DETAIL 205) GET FORM T.O. 1C-135-36, FIGURE 8-1-7, "BOEING FSMP INSPECTION REPORTING FORM 38" AND FIGURE 8-1-8, FORM 38A, FIGURE 8-1-9, INSTRUCTIONS. WHEN FORM IS COMPLETE, GIVE TO SCHEDULER TO PUT IN THE FSMP BOOK. | 32256        | 14 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
| 1B25(C) - MLG TRUNNIONS SUPP STRUCTURE - VISUALLY INSP BEARING AND ALL THE AREA ADJACENT TO THE BEARING ON THE LH FWD TRUNNION FOR CRACKS. SEE DEFINITIZED GUIDE IAW. T.O. 1C-135(K)A-3-4, FIGURE 5-22                                                                                                                                                                                                                                                         | 32258        | 14 |
| 1B25(C) - MLG TRUNNIONS SUPP STRUCTURE - VISUALLY INSP BEARING AND ALL THE AREA ADJACENT TO THE BEARING ON THE RH FWD TRUNNION FOR CRACKS. SEE DEFINITIZED GUIDE IAW. T.O. 1C-135(K)A-3-4, FIGURE 5-22                                                                                                                                                                                                                                                         | 32259        | 14 |
| 1B1(D.1,2)- CLEAN AND INSPECT ONLY THE MAIN LANDING GEAR BOLTS, PINS<br>AND SHAFTS THAT ARE CURRENTLY BEING ROUTED. REF. 1C-135(K)A-3-3 SEC.<br>V. REF. AFI 21-101 REF. 4A4-29-2 CHAPTER 6 & TABLE 6-2.                                                                                                                                                                                                                                                        | 32450        | 14 |
| 1B1(E.2,3)- AFTER INSPECTION OF THE BORE, ALODINE (MIL-C-5541). THE TAPERED BORE AREA OF THE UPLOCK SUPPORT FITTING LH WHEEL WELL IAW 1C-135(K)A-3-4 FIG 8-1                                                                                                                                                                                                                                                                                                   | 32044        | 14 |
| 1B1(E.2,3)- AFTER INSPECTION OF THE BORE, ALODINE (MIL-C-5541). THE TAPERED BORE AREA OF THE UPLOCK SUPPORT FITTING R/H WHEEL WELL IAW 1C-135(K)A-3-4 FIG 8-1                                                                                                                                                                                                                                                                                                  | 32045        | 14 |
| 1B1- INSPECT L/H AFT OB FOLLOW UP DOOR HINGES FOR LOOSE, WORN AND/OR CORRODED CONDITION. IF DEFECTS ARE FOUND CALL OUT LOW % OP # 52881 FOR REPAIR. IAW 1C-135-36.                                                                                                                                                                                                                                                                                             | 32881        | 14 |
| 1B1- INSPECT R/H AFT OB FOLLOW UP DOOR HINGES FOR LOOSE, WORN AND/OR CORRODED CONDITION. IF DEFECTS ARE FOUND CALL OUT LOW % OP # 52882 FOR REPAIR. IAW 1C-135-36.                                                                                                                                                                                                                                                                                             | 32882        | 14 |
| 1B1(C)- FILL OUT & ATTACH FORMS TO OLD L/H MLG PARTS. CRATE OLD PARTS & TURN IN TO SUPPLY. T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                   | 32675        | 14 |
| 1B4(B)- FILL OUT & ATTACH FORMS TO OLD NOSE GEAR PARTS. CRATE OLD PARTS & TURN IN TO SUPPLY. T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                 | 32687        | 14 |
| 1B1(C)- FILL OUT & ATTACH FORMS TO OLD R/H MLG PARTS. CRATE OLD PARTS & TURN IN TO SUPPLY. T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                   | 32683        | 14 |
| 1B1(C)- FILL OUT & ATTACH FORMS TO OLD L/H MLG PARTS. CRATE OLD PARTS & TURN IN TO SUPPLY. T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                   | 32688        | 14 |
| 1B1(C)- FILL OUT & ATTACH FORMS TO OLD R/H MLG PARTS. CRATE OLD PARTS & TURN IN TO SUPPLY.T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                    | <b>32689</b> | 14 |
| 1B4(B)- UNCRATE NEW/OVERHAULED NOSE GEAR PARTS T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                                                               | 32694        | 14 |
| 1B1(C)- UNCRATE NEW/OVERHAULED LH MAIN GEAR PARTS T.O. NOT REQUIRED                                                                                                                                                                                                                                                                                                                                                                                            | 32695        | 14 |
| 1B87-A REMOVE FLAP TRACK LINK SUPPORT ASSY'S FROM LEFT & RIGHT WINGS REF FOR REMOVAL ONLY. 1C-135-4-1 FIG 79 AND REF:1C-135(K)R-2-8JG-1 INSPECT CENTER FLAP TRACK CASTINGS (WS 360 & 615) AFTER SUPPORT ASSY'S ARE REMOVED FOR CRACKS, CORROSION, AND GENERAL CONDITION REF T.O. 1C-135-36 AND 1C-135-6WS-10, SECTION 1B87, FIGURE 1B87-1                                                                                                                      | 32701        | 14 |

**Appendix C: Distributions of Task Completion Times** 

| Operation<br># | OC       | # of<br>Personnel | Distribution        | Average (no<br>data<br>removed) | Zeros<br>Removed | High<br>Values<br>Removed | Actual<br>Data<br>Points | Average<br>(zeros<br>removed) |
|----------------|----------|-------------------|---------------------|---------------------------------|------------------|---------------------------|--------------------------|-------------------------------|
| 01144          | AS       | 2                 | LOGN(1.08, 2.78)    | 1.23                            | 2                | 0                         | 27                       | 1.32222222                    |
| 01145          | AS       | 2                 | LOGN(1.42, 4.14)    | 1.3                             | 4                | 0                         | 25                       | 1.508                         |
| 01146          | AS       | 1                 | LOGN(0.334, 0.443)  | 0.33                            | 4                | 0                         | 25                       | 0.384                         |
| 01147          | 7h or as | 1                 | EXPO(1.96)          | 1.65                            | 4                | 0                         | 21                       | 1.96190476                    |
| 01148          | AS       | 6                 | LOGN(13.9, 12.7)    | 13.14                           | 0                | 0                         | 29                       | 13.137931                     |
| 01158          | AS       | 5                 | EXPO(20.1)          | 20.12                           | 0                | 0                         | 29                       | 20.1241379                    |
| 01165          | AS       | 6                 | UNIF(1, 20)         | 10.79                           | 0                | 1                         | 28                       | 10.7896552                    |
| 01189          | AS       | 6                 | EXPO(9.33)          | 9.01                            | 1                | 0                         | 28                       | 9.33214286                    |
| 01199          | 7H       | 2                 | LOGN(1.92, 8.38)    | 1.52                            | 3                | 0                         | 26                       | 1.69230769                    |
| 20058          | AS       | 1                 | EXPO(1.22)          | 1.17                            | 1                | 0                         | 24                       | 1.22083333                    |
| 20542          | AH       | 1                 | TRIA(0, 2, 4)       | 2.06                            | 0                | 0                         | 25                       | 2.064                         |
| 32030          | 7H       | 2                 | LOGN(0.575, 1.25)   | 0.71                            | 4                | 0                         | 25                       | 0.824                         |
| 32040          | 7H       | 2                 | EXPO(3.46)          | 3.34                            | 1                | 0                         | 28                       | 3.45714286                    |
| 32043          | 7H       | 2                 | EXPO(6.28)          | 7.79                            | 0                | 1                         | 28                       | 7.78965517                    |
| 32044          | 7H       | 1                 | LOGN(0.578, 1.23)   | 0.53                            | 7                | 0                         | 21                       | 0.7                           |
| 32045          | 7H       | 1                 | LOGN(1.05, 3.46)    | 1.16                            | 3                | 0                         | 25                       | 1.304                         |
| 32060          | 7H       | 1                 | LOGN(2.37, 10.2)    | 1.85                            | 2                | 0                         | 26                       | 1.99615385                    |
| 32061          | 7H       | 1                 | LOGN(2.55, 9.51)    | 1.74                            | 4                | 0                         | 24                       | 2.025                         |
| 32067          | 7H       | 1                 | LOGN(0.359, 0.615)  | 0.52                            | 3                | 0                         | 26                       | 0.58461538                    |
| 32083          | 7H       | 1                 | LOGN(0.384, 0.658)  | 0.45                            | 6                | 0                         | 23                       | 0.56521739                    |
| 32084          | 7H       | 1                 | LOGN(0.537, 1.12)   | 0.52                            | 7                | 0                         | 22                       | 0.69090909                    |
| 32157          | 7H       | 1                 | LOGN(1.95, 7.83)    | 1.56                            | 4                | 0                         | 25                       | 1.808                         |
| 32184          | 7H       | 6                 | TRIA(0, 8.17, 52)   | 20.06                           | 0                | 0                         | 29                       | 20.0551724                    |
| 32201          | 7H       | 2                 | EXPO(5.22)          | 4.68                            | 3                | 0                         | 26                       | 5.22307692                    |
| 32202          | 7H       | 2                 | EXPO(3.8)           | 5.04                            | 5                | 1                         | 23                       | 6.09583333                    |
| 32203          | 7H       | 2                 | LOGN(4.18, 21.9)    | 2.23                            | 4                | 0                         | 25                       | 2.592                         |
| 32204          | 7H       | 2                 | LOGN(2.43, 9.22)    | 1.73                            | 3                | 0                         | 26                       | 1.93461538                    |
| 32205          | 7H       | 2                 | EXPO(2.92)          | 3.98                            | 2                | 1                         | 26                       | 4.27037037                    |
| 32206          | 7H       | 2                 | LOGN(3.97, 19)      | 2.34                            | 2                | 0                         | 27                       | 2.51111111                    |
| 32253          | 7H       | 1                 | LOGN(2.32, 9.14)    | 1.46                            | 4                | 0                         | 25                       | 1.688                         |
| 32254          | 7H       | 1                 | EXPO(1.72)          | 1.37                            | 6                | 0                         | 23                       | 1.72173913                    |
| 32256          | 7H       | 2                 | LOGN(4.09, 19.5)    | 2.5                             | 1                | 0                         | 28                       | 2.59285714                    |
| 32257          | 7H       | 2                 | EXPO(2.46)          | 2.93                            | 0                | 1                         | 28                       | 2.93103448                    |
| 32258          | 7H       | 1                 | EXPO(0.881)         | 0.91                            | 7                | 1                         | 21                       | 1.20454545                    |
| 32259          | 7H       | 1                 | LOGN(1.23, 3.51)    | 0.98                            | 5                | 0                         | 24                       | 1.17916667                    |
| 32450          | 7H       | 1                 | EXPO(3.36)          | 2.9                             | 4                | 0                         | 25                       | 3.364                         |
| 32500          | 7H       | 2                 | LOGN(0.226, 0.2)    | 0.43                            | 5                | 1                         | 24                       | 0.525                         |
| 32504          | 7H       | 2                 | LOGN(0.0773, 0.066) | 0.11                            | 7                | 0                         | 22                       | 0.14545455                    |
| 32675          | 7H       | 1                 | LOGN(1.33, 3.37)    | 0.97                            | 5                | 0                         | 24                       | 1.17083333                    |
| 32676          | 7H       | 1                 | LOGN(2.3, 7.03)     | 1.71                            | 3                | 0                         | 26                       | 1.90384615                    |
| 32683          | 7H       | 1                 | LOGN(1.69, 4.8)     | 1.13                            | 7                | 0                         | 22                       | 1.49545455                    |
| 32687          | 7H       | 1                 | LOGN(1.56, 4.55)    | 1.13                            | 5                | 0                         | 24                       | 1.37083333                    |
| 32688          | 7H       | 1                 | LOGN(2.1, 8.02)     | 1.39                            | 6                | 0                         | 23                       | 1.75652174                    |

| 32689 | 7H       | 1 | LOGN(1.41, 4.87)   | 1.14  | 6 | 0 | 23 | 1.43913043 |
|-------|----------|---|--------------------|-------|---|---|----|------------|
| 32694 | 7H       | 1 | LOGN(1.27, 4.43)   | 1.21  | 6 | 0 | 23 | 1.53043478 |
| 32695 | 7H       | 1 | LOGN(1.99, 9.06)   | 1.83  | 8 | 0 | 21 | 2.52857143 |
| 32696 | 7H       | 1 | LOGN(0.872, 2.44)  | 0.79  | 9 | 0 | 20 | 1.14       |
| 32701 | ah or as | 1 | LOGN(5.27, 22.9)   | 3.39  | 2 | 0 | 25 | 3.656      |
| 32741 | AH       | 1 | EXPO(0.582)        | 0.58  | 0 | 0 | 22 | 0.58181818 |
| 32881 | 7H       | 1 | LOGN(0.424, 0.731) | 0.43  | 5 | 0 | 24 | 0.525      |
| 32882 | 7H       | 1 | LOGN(0.847, 2.38)  | 0.93  | 4 | 0 | 25 | 1.076      |
| 42110 | ag or as | 3 | 1 + EXPO(9.57)     | 10.57 | 0 | 0 | 29 | 10.5724138 |
| 52741 | AS       | 1 | LOGN(4.21, 7.26)   | 3.57  | 0 | 0 | 26 | 3.56538462 |
| 52743 | AS       | 1 | LOGN(3.45, 13.3)   | 2.82  | 1 | 0 | 25 | 2.928      |
| 64070 | as or ba | 1 | EXPO(1.6)          | 1.8   | 0 | 1 | 28 | 1.80344828 |
| 64090 | AS       | 1 | LOGN(1.46, 4.36)   | 1.2   | 4 | 0 | 25 | 1.396      |
| 66018 | AS       | 1 | EXPO(1.58)         | 1.44  | 2 | 0 | 20 | 1.58       |
| 68194 | 7H       | 1 | LOGN(0.46, 0.861)  | 0.61  | 1 | 0 | 28 | 0.63214286 |
|       |          |   |                    |       |   |   |    |            |

Appendix D: Data of Task Complexity from Tinker AFB Visit

Data Points from Visit to Tinker AFB

| Operation<br># | Certainty<br>of<br>Occurance | Prerequisite<br>Tasks         | Task<br>Priority | Duration       | # of<br>People | Other<br>OSs      | Complexity<br>to Perform | Difficulty<br>to Train | Training<br>Required |
|----------------|------------------------------|-------------------------------|------------------|----------------|----------------|-------------------|--------------------------|------------------------|----------------------|
| 01144          | all                          | no                            | 5                | 3 hrs          | 2              | as                | 1                        | 1                      | ojt                  |
| 01145          | all                          | no                            | 5                | 3 hrs          | 2              | as                | 1                        | 1                      | ojt                  |
| 01146          | all                          | no                            | 5                | 15 min         | 1              | as                | 3                        | 2                      | ojt                  |
| 01147          | all                          | no                            | 5                | 5-30 min       | 1              | 7H (ssq)          | 4                        | 3                      | ojt                  |
| 01148          | all                          | no                            | 5                | 14 hrs         | 2              | as                | 1                        | 1                      | ojt                  |
| 01158          | all                          | jacked                        | 5                | 8              | 5              | as                | 5                        | 5                      | ojt                  |
| 01165          | all                          | jacked                        | 5                | 8              | 5              | as                | 5                        | 5                      | ojt                  |
| 01189          | all                          | jacked                        | 5                | 8              | 5              | as                | 5                        | 5                      | ojt                  |
| 01199          | all                          | no                            | 5                | 30 min         | 2              | 7h                | 1                        | 2                      | ojt                  |
| 20058          | all                          | no                            | 5                | 5 min          | 1              | all<br>ah or      | 1                        | 1                      | ojt                  |
| 20542          | all                          | no                            | 5                | 30 min         | 1              | 8852              | 1                        | 1                      | ojt                  |
| 32030          | all                          | jacked                        | 5                | 2 hr           | 1              | 7h                | 3                        | 2                      | ojt                  |
| 32040          | all                          | strut jack                    | 5                | 1 hr           | 7              | 7h                | 5                        | 5                      | ojt                  |
| 32043          | all                          | jacked                        | 5                | 10 hrs         | 2              | 7h                | 4                        | 4                      | ojt                  |
| 32044          | all                          | insp c/w                      | 5                | 30 min         | 1              | 7h                | 2                        | 2                      | ojt                  |
| 32045          | all                          | insp c/w                      | 5                | 30 min         | 1              | 7h                | 2                        | 2                      | ojt                  |
| 32060          | all                          | no                            | 4                | 2 hr           | 1              | 7h                | 4                        | 4                      | ojt                  |
| 32061          | all                          | no                            | 4                | 2 hr           | 1              | 7h                | 4                        | 4                      | ojt                  |
| 32067          | all                          | gear out                      | 5                | 1 hr           | 1              | 7h                | 4                        | 3                      | ojt                  |
| 32083          | all                          | gear out                      | 2                | 10 min         | 1              | 7h                | 1                        | 1                      | ojt                  |
| 32084          | all                          | gear out                      | 2                | 10 min         | 1              | 7h                | 1                        | 1                      | ojt                  |
| 32157          | all                          | gear out                      | 5                | 2 hr           | 1              | 7h                | 5                        | 5                      | ojt                  |
| 32184          | all                          | cog                           | 5                | 3 hrs          | 7              | 7h (3 ssq)        | 5                        | 5                      | ojt/school           |
| 32201          | all                          | jacked                        | 5                | 2 hr           | 2              | 7h                | 4                        | 4                      | ojt                  |
| 32202          | all                          | jacked                        | 5                | 2 hr           | 2              | 7h                | 4                        | 4                      | ojt                  |
| 32203          | all                          | jacked                        | 5                | 2 hr           | 2              | 7h                | 4                        | 3                      | ojt                  |
| 32204          | all                          | jacked                        | 5                | 2 hr           | 2              | 7h                | 4                        | 3                      | ojt                  |
| 32205          | all                          | gear out                      | 5                | 4 hr           | 2              | 7h                | 4                        | 4                      | ojt                  |
| 32206          | all                          | gear out<br>gear              | 5                | 4 hr           | 2              | 7h                | 4                        | 4                      | ojt                  |
| 32253          | all                          | out/clean<br>gear             | 5                | 1.5 hr         | 1              | 7h or AS          | 4                        | 4                      | ojt                  |
| 32254          | all                          | out/clean                     | 5                | 1.5 hr         | 1              | 7h or AS          | 4<br>4                   | 4                      | ojt                  |
| 32256<br>32257 | all<br>all                   | gear out<br>gear out          | 4<br>4           | 4 hr<br>4 hr   | 1<br>1         | 7h<br>7h          | 4                        | 4                      | ojt<br>ojt           |
| 32258          | all                          | gear out<br>gear<br>out/clean | 4                | 4 m<br>1 hr    | 1              | 7h or AS          | 4                        | 4                      | ojt                  |
| 32259          | all                          | gear<br>out/clean             | 4                | 1 hr           | 1              | 7h or AS          | 4                        | 4                      | ojt                  |
| 32450          | all                          | gear out/bolt                 | 4                | 4 hr           | 1              | 7h or as or<br>ah | 3                        | 3                      | oit.                 |
| 32500          | all                          | rem<br>gear out               | 5                | 4 mr<br>15 min | 1              | an<br>7h          | 3<br>1                   | 3<br>1                 | ojt<br>ojt           |
| 32504          | all                          | •                             |                  | 15 min         |                | 711<br>7h         |                          |                        | -                    |
|                |                              | gear out                      | 5                |                | 2              |                   | 1                        | 1                      | ojt                  |
| 32675          | all                          | gear out                      | 3                | 1              | 2              | 7h                | 1                        | 2                      | ojt                  |
| 32676          | all                          | gear out                      | 3                | 1              | 2              | 7h                | 1                        | 2                      | ojt                  |

| 32683 | all               | gear out                | 3                           | 1                   | 2                   | 7h | l                    | 1 | 2 | ojt |
|-------|-------------------|-------------------------|-----------------------------|---------------------|---------------------|----|----------------------|---|---|-----|
| 32687 | all               | gear out                | 3                           | 1                   | 2                   | 7h | <u>l</u>             | 1 | 2 | ojt |
| 32688 | all               | gear out                | 3                           | 1                   | 2                   | 7h | <u>l</u>             | 1 | 2 | ojt |
| 32689 | all               | gear out                | 3                           | 1                   | 2                   | 7h | l                    | 1 | 2 | ojt |
| 32694 | all               | gear out                | 3                           | 1                   | 2                   | 7h | l                    | 1 | 2 | ojt |
| 32695 | all               | gear out                | 3                           | 1                   | 2                   | 7h | l                    | 1 | 2 | ojt |
| 32696 | all<br>DID NOT GA | gear out<br>ATHER DATA: | 3<br>Told it was no         | 1<br>of done in thi | 2<br>s major        | 7h | l                    | 1 | 2 | ojt |
| 32701 | job.              |                         | 1014 10 1145 11             | or done in the      | o 11111 o 1         |    |                      |   |   |     |
| 32741 | all               |                         | no                          | 2                   | 30 min              | 1  | ah<br>7h             | 1 | 1 | ojt |
| 32881 | all               |                         | no                          | 2                   | 1 hr                | 1  | or<br>aa<br>7h<br>or | 1 | 1 | ojt |
| 32882 | all               |                         | no                          | 2                   | 1 hr                | 1  | aa                   | 1 | 1 | ojt |
| 42110 | all               |                         | no                          | 5                   | 1 hr                | 1  | as                   | 5 | 5 | ojt |
| 52741 | all               | tr                      | union rem                   | 5                   | 4-16 hrs            | 1  | as                   | 4 | 5 | ojt |
| 52743 | all<br>DID NOT GA | tr<br>ATHER DATA:       | union rem<br>Told it was no | 5<br>ot done in thi | 4-16 hrs<br>s major | 1  | as                   | 4 | 5 | ojt |
| 64070 | job.              | ATHER DATA:             |                             |                     | v                   |    |                      |   |   |     |
| 64090 | job.              | ATHER DATA:             |                             |                     | · ·                 |    |                      |   |   |     |
| 66018 | job.              |                         |                             |                     |                     |    |                      |   |   |     |
| 68194 | all               | upl                     | ock act rem                 | 2                   | 1 hr                | 1  | 7h                   | 2 | 1 | ojt |
|       |                   |                         |                             |                     |                     |    |                      |   |   |     |

## Appendix E: "As-Is" Arena Model



Page 1 of Model with "Acft Arrive" Process Expanded



Page 2 of Model with "Batch" Process Expanded



Page 3a of Model with "Batch 2" Process Expanded

## Page 3b through 3g below are in parallel to page 3a.



Page 3b of Model with "Op32045" Process Expanded







Page 3g of Model

**Appendix F: Current State Model Summary Stats** 

| Statistic Name                   | Database Data Type        | Average  |
|----------------------------------|---------------------------|----------|
| 7H Tech.NumberSeized             | Total Number Seized       | 8114.36  |
| 7H Tech.ScheduledUtilization     | Scheduled Utilization     | 0.491632 |
| AH Tech.NumberSeized             | Total Number Seized       | 314.89   |
| AH Tech.ScheduledUtilization     | Scheduled Utilization     | 0.01458  |
| Aircraft.NumberIn                | Number In                 | 6499.14  |
| Aircraft.NumberOut               | Number Out                | 6489.9   |
| AS Tech.NumberSeized             | Total Number Seized       | 5731.68  |
| AS Tech.ScheduledUtilization     | Scheduled Utilization     | 0.574103 |
| IDOCK Space.NumberSeized         | Total Number Seized       | 145.21   |
| IDOCK Space.ScheduledUtilization | Scheduled Utilization     | 0.826289 |
| PreDockSpace.NumberSeized        | Total Number Seized       | 147      |
| System.NumberOut                 | Number Out                | 144.22   |
| 7H Tech.NumberBusy               | Number Busy               | 1.474897 |
| 7H Tech.NumberScheduled          | Number Scheduled          | 3        |
| 7H Tech.Utilization              | Instantaneous Utilization | 0.491632 |
| AH Tech.NumberBusy               | Number Busy               | 0.02916  |
| AH Tech.NumberScheduled          | Number Scheduled          | 2        |
| AH Tech.Utilization              | Instantaneous Utilization | 0.01458  |
| Aircraft.NVATime                 | NVA Time                  | 0        |
| Aircraft.OtherTime               | Other Time                | 0        |
| Aircraft.TotalTime               | Total Time                | 765.2779 |
| Aircraft.TranTime                | Transfer Time             | 0        |
| Aircraft.VATime                  | VA Time                   | 553.8152 |
| Aircraft.WaitTime                | Wait Time                 | 3058.284 |
| Aircraft.WIP                     | WIP                       | 31.69165 |
| AS Tech.NumberBusy               | Number Busy               | 3.444617 |
| AS Tech.NumberScheduled          | Number Scheduled          | 6        |
| AS Tech.Utilization              | Instantaneous Utilization | 0.574103 |
| Batch 1.Queue.NumberInQueue      | Number Waiting            | 0.077442 |
| Batch 1.Queue.WaitingTime        | Waiting Time              | 4.692734 |
| Batch 2.Queue.NumberInQueue      | Number Waiting            | 15.90973 |
| Batch 2.Queue.WaitingTime        | Waiting Time              | 45.97884 |
| Enter IDOCK.Queue.NumberInQueue  | Number Waiting            | 0.815802 |
| Enter IDOCK.Queue.WaitingTime    | Waiting Time              | 98.0176  |
| IDOCK Space.NumberBusy           | Number Busy               | 2.478868 |
| IDOCK Space.NumberScheduled      | Number Scheduled          | 3        |
| IDOCK Space.Utilization          | Instantaneous Utilization | 0.826289 |
| op01144.Queue.NumberInQueue      | Number Waiting            | 0.029865 |

| op01144.Queue.WaitingTime   | Waiting Time   | 3.609819 |
|-----------------------------|----------------|----------|
| op01145.Queue.NumberInQueue | Number Waiting | 0.015182 |
| op01145.Queue.WaitingTime   | Waiting Time   | 1.838709 |
| op01146.Queue.NumberInQueue | Number Waiting | 0.011553 |
| op01146.Queue.WaitingTime   | Waiting Time   | 1.396179 |
| op01147.Queue.NumberInQueue | Number Waiting | 9.15E-06 |
| op01147.Queue.WaitingTime   | Waiting Time   | 0.001106 |
| op01148.Queue.NumberInQueue | Number Waiting | 0.093376 |
| op01148.Queue.WaitingTime   | Waiting Time   | 11.30664 |
| op01158.Queue.NumberInQueue | Number Waiting | 0.058252 |
| op01158.Queue.WaitingTime   | Waiting Time   | 7.054331 |
| op01165.Queue.NumberInQueue | Number Waiting | 0.057057 |
| op01165.Queue.WaitingTime   | Waiting Time   | 6.908234 |
| op01189.Queue.NumberInQueue | Number Waiting | 0.14402  |
| op01189.Queue.WaitingTime   | Waiting Time   | 17.43624 |
| op01199.Queue.NumberInQueue | Number Waiting | 0.151881 |
| op01199.Queue.WaitingTime   | Waiting Time   | 18.34471 |
| op20058.Queue.NumberInQueue | Number Waiting | 0.016326 |
| op20058.Queue.WaitingTime   | Waiting Time   | 1.969692 |
| op20542.Queue.NumberInQueue | Number Waiting | 1.32E-06 |
| op20542.Queue.WaitingTime   | Waiting Time   | 0.000159 |
| op32030.Queue.NumberInQueue | Number Waiting | 0.086003 |
| op32030.Queue.WaitingTime   | Waiting Time   | 10.44063 |
| op32040.Queue.NumberInQueue | Number Waiting | 0.091501 |
| op32040.Queue.WaitingTime   | Waiting Time   | 11.10824 |
| op32043.Queue.NumberInQueue | Number Waiting | 0.123442 |
| op32043.Queue.WaitingTime   | Waiting Time   | 14.97754 |
| op32044.Queue.NumberInQueue | Number Waiting | 0.019499 |
| op32044.Queue.WaitingTime   | Waiting Time   | 2.367902 |
| op32045.Queue.NumberInQueue | Number Waiting | 0.02383  |
| op32045.Queue.WaitingTime   | Waiting Time   | 2.89364  |
| op32060.Queue.NumberInQueue | Number Waiting | 0.030375 |
| op32060.Queue.WaitingTime   | Waiting Time   | 3.688034 |
| op32061.Queue.NumberInQueue | Number Waiting | 0.041533 |
| op32061.Queue.WaitingTime   | Waiting Time   | 5.041998 |
| op32067.Queue.NumberInQueue | Number Waiting | 0.052891 |
| op32067.Queue.WaitingTime   | Waiting Time   | 6.419704 |
| op32083.Queue.NumberInQueue | Number Waiting | 0.055274 |
| op32083.Queue.WaitingTime   | Waiting Time   | 6.709574 |
| op32084.Queue.NumberInQueue | Number Waiting | 0.057915 |

| op32084.Queue.WaitingTime   | Waiting Time   | 7.030063 |
|-----------------------------|----------------|----------|
| op32157.Queue.NumberInQueue | Number Waiting | 0.061178 |
| op32157.Queue.WaitingTime   | Waiting Time   | 7.426283 |
| op32184.Queue.NumberInQueue | Number Waiting | 0.588227 |
| op32184.Queue.WaitingTime   | Waiting Time   | 71.0373  |
| op32201.Queue.NumberInQueue | Number Waiting | 0.206902 |
| op32201.Queue.WaitingTime   | Waiting Time   | 25.07506 |
| op32202.Queue.NumberInQueue | Number Waiting | 0.278997 |
| op32202.Queue.WaitingTime   | Waiting Time   | 33.81878 |
| op32203.Queue.NumberInQueue | Number Waiting | 0.323358 |
| op32203.Queue.WaitingTime   | Waiting Time   | 39.20387 |
| op32204.Queue.NumberInQueue | Number Waiting | 0.365902 |
| op32204.Queue.WaitingTime   | Waiting Time   | 44.36692 |
| op32205.Queue.NumberInQueue | Number Waiting | 0.391766 |
| op32205.Queue.WaitingTime   | Waiting Time   | 47.50852 |
| op32206.Queue.NumberInQueue | Number Waiting | 0.423485 |
| op32206.Queue.WaitingTime   | Waiting Time   | 51.35901 |
| op32253.Queue.NumberInQueue | Number Waiting | 0.071696 |
| op32253.Queue.WaitingTime   | Waiting Time   | 8.701814 |
| op32254.Queue.NumberInQueue | Number Waiting | 0.08378  |
| op32254.Queue.WaitingTime   | Waiting Time   | 10.16773 |
| op32256.Queue.NumberInQueue | Number Waiting | 0.464322 |
| op32256.Queue.WaitingTime   | Waiting Time   | 56.31926 |
| op32257.Queue.NumberInQueue | Number Waiting | 0.504384 |
| op32257.Queue.WaitingTime   | Waiting Time   | 61.20232 |
| op32258.Queue.NumberInQueue | Number Waiting | 0.094737 |
| op32258.Queue.WaitingTime   | Waiting Time   | 11.49749 |
| op32259.Queue.NumberInQueue | Number Waiting | 0.100788 |
| op32259.Queue.WaitingTime   | Waiting Time   | 12.23136 |
| op32450.Queue.NumberInQueue | Number Waiting | 0.107817 |
| op32450.Queue.WaitingTime   | Waiting Time   | 13.08406 |
| op32500.Queue.NumberInQueue | Number Waiting | 0.529971 |
| op32500.Queue.WaitingTime   | Waiting Time   | 64.30496 |
| op32504.Queue.NumberInQueue | Number Waiting | 0.532237 |
| op32504.Queue.WaitingTime   | Waiting Time   | 64.58376 |
| op32675.Queue.NumberInQueue | Number Waiting | 0.127454 |
| op32675.Queue.WaitingTime   | Waiting Time   | 15.46668 |
| op32676.Queue.NumberInQueue | Number Waiting | 0.198938 |
| op32676.Queue.WaitingTime   | Waiting Time   | 24.14217 |
| op32683.Queue.NumberInQueue | Number Waiting | 0.135474 |

| op32683.Queue.WaitingTime   | Waiting Time   | 16.43985 |
|-----------------------------|----------------|----------|
| op32687.Queue.NumberInQueue | Number Waiting | 0.14481  |
| op32687.Queue.WaitingTime   | Waiting Time   | 17.57498 |
| op32688.Queue.NumberInQueue | Number Waiting | 0.15309  |
| op32688.Queue.WaitingTime   | Waiting Time   | 18.57945 |
| op32689.Queue.NumberInQueue | Number Waiting | 0.162699 |
| op32689.Queue.WaitingTime   | Waiting Time   | 19.74535 |
| op32694.Queue.NumberInQueue | Number Waiting | 0.1696   |
| op32694.Queue.WaitingTime   | Waiting Time   | 20.58257 |
| op32695.Queue.NumberInQueue | Number Waiting | 0.17582  |
| op32695.Queue.WaitingTime   | Waiting Time   | 21.33612 |
| op32696.Queue.NumberInQueue | Number Waiting | 0.184031 |
| op32696.Queue.WaitingTime   | Waiting Time   | 22.33179 |
| op32701.Queue.NumberInQueue | Number Waiting | 0        |
| op32701.Queue.WaitingTime   | Waiting Time   | 0        |
| op32741.Queue.NumberInQueue | Number Waiting | 1.98E-05 |
| op32741.Queue.WaitingTime   | Waiting Time   | 0.002406 |
| op32881.Queue.NumberInQueue | Number Waiting | 0.18878  |
| op32881.Queue.WaitingTime   | Waiting Time   | 22.90826 |
| op32882.Queue.NumberInQueue | Number Waiting | 0.191569 |
| op32882.Queue.WaitingTime   | Waiting Time   | 23.24677 |
| op42110.Queue.NumberInQueue | Number Waiting | 0.053658 |
| op42110.Queue.WaitingTime   | Waiting Time   | 6.499888 |
| op52741.Queue.NumberInQueue | Number Waiting | 0.004704 |
| op52741.Queue.WaitingTime   | Waiting Time   | 0.570326 |
| op52743.Queue.NumberInQueue | Number Waiting | 0.008965 |
| op52743.Queue.WaitingTime   | Waiting Time   | 1.087826 |
| op66018.Queue.NumberInQueue | Number Waiting | 0.042188 |
| op66018.Queue.WaitingTime   | Waiting Time   | 5.08851  |
| op68194.Queue.NumberInQueue | Number Waiting | 0.196087 |
| op68194.Queue.WaitingTime   | Waiting Time   | 23.79513 |
| PreDock.Queue.NumberInQueue | Number Waiting | 0        |
| PreDock.Queue.WaitingTime   | Waiting Time   | 0        |
| PreDockSpace.NumberBusy     | Number Busy    | 3.074643 |

**Appendix G: Model 2 Summary Stats** 

| Statistic Name                   | Database Data Type        | Average  |  |
|----------------------------------|---------------------------|----------|--|
| 7H Tech.NumberSeized             | Total Number Seized       | 7528.23  |  |
| 7H Tech.ScheduledUtilization     | Scheduled Utilization     | 0.491287 |  |
| AH Tech.NumberSeized             | Total Number Seized       | 626.42   |  |
| AH Tech.ScheduledUtilization     | Scheduled Utilization     | 0.013951 |  |
| Aircraft.NumberIn                | Number In                 | 6494.74  |  |
| Aircraft.NumberOut               | Number Out                | 6486.3   |  |
| AS Tech.NumberSeized             | Total Number Seized       | 5992.18  |  |
| AS Tech.ScheduledUtilization     | Scheduled Utilization     | 0.575758 |  |
| IDOCK Space.NumberSeized         | Total Number Seized       | 144.92   |  |
| IDOCK Space.ScheduledUtilization | Scheduled Utilization     | 0.825734 |  |
| PreDockSpace.NumberSeized        | Total Number Seized       | 147      |  |
| System.NumberOut                 | Number Out                | 144.14   |  |
| 7H Tech.NumberBusy               | Number Busy               | 1.473862 |  |
| 7H Tech.NumberScheduled          | Number Scheduled          | 3        |  |
| 7H Tech.Utilization              | Instantaneous Utilization | 0.491287 |  |
| AH Tech.NumberBusy               | Number Busy               | 0.027902 |  |
| AH Tech.NumberScheduled          | Number Scheduled          | 2        |  |
| AH Tech.Utilization              | Instantaneous Utilization | 0.013951 |  |
| Aircraft.NVATime                 | NVA Time                  | 0        |  |
| Aircraft.OtherTime               | Other Time                | 0        |  |
| Aircraft.TotalTime               | Total Time                | 777.5648 |  |
| Aircraft.TranTime                | Transfer Time             | 0        |  |
| Aircraft.VATime                  | VA Time                   | 552.8673 |  |
| Aircraft.WaitTime                | Wait Time                 | 3047.034 |  |
| Aircraft.WIP                     | WIP                       | 31.52931 |  |
| AS Tech.NumberBusy               | Number Busy               | 3.454549 |  |
| AS Tech.NumberScheduled          | Number Scheduled          | 6        |  |
| AS Tech.Utilization              | Instantaneous Utilization | 0.575758 |  |
| Batch 1.Queue.NumberInQueue      | Number Waiting            | 0.07738  |  |
| Batch 1.Queue.WaitingTime        | Waiting Time              | 4.691042 |  |
| Batch 2.Queue.NumberInQueue      | Number Waiting            | 16.78801 |  |
| Batch 2.Queue.WaitingTime        | Waiting Time              | 48.61924 |  |
| Enter IDOCK.Queue.NumberInQueue  | Number Waiting            | 0.928788 |  |
| Enter IDOCK.Queue.WaitingTime    | Waiting Time              | 111.7505 |  |
| IDOCK Space.NumberBusy           | Number Busy               | 2.477202 |  |
| IDOCK Space.NumberScheduled      | Number Scheduled          | 3        |  |
| IDOCK Space.Utilization          | Instantaneous Utilization | 0.825734 |  |
| op01144.Queue.NumberInQueue      | Number Waiting            | 0.030107 |  |

| op01144.Queue.WaitingTime   | Waiting Time   | 3.648623 |
|-----------------------------|----------------|----------|
| op01145.Queue.NumberInQueue | Number Waiting | 0.015991 |
| op01145.Queue.WaitingTime   | Waiting Time   | 1.937383 |
| op01146.Queue.NumberInQueue | Number Waiting | 0.010118 |
| op01146.Queue.WaitingTime   | Waiting Time   | 1.222385 |
| op01147.Queue.NumberInQueue | Number Waiting | 2.01E-05 |
| op01147.Queue.WaitingTime   | Waiting Time   | 0.00243  |
| op01148.Queue.NumberInQueue | Number Waiting | 0.094993 |
| op01148.Queue.WaitingTime   | Waiting Time   | 11.52506 |
| op01158.Queue.NumberInQueue | Number Waiting | 0.057567 |
| op01158.Queue.WaitingTime   | Waiting Time   | 6.987464 |
| op01165.Queue.NumberInQueue | Number Waiting | 0.056855 |
| op01165.Queue.WaitingTime   | Waiting Time   | 6.889684 |
| op01189.Queue.NumberInQueue | Number Waiting | 0.144388 |
| op01189.Queue.WaitingTime   | Waiting Time   | 17.50828 |
| op01199.Queue.NumberInQueue | Number Waiting | 0.153247 |
| op01199.Queue.WaitingTime   | Waiting Time   | 18.54402 |
| op20058.Queue.NumberInQueue | Number Waiting | 0.01585  |
| op20058.Queue.WaitingTime   | Waiting Time   | 1.918492 |
| op20542.Queue.NumberInQueue | Number Waiting | 3.63E-06 |
| op20542.Queue.WaitingTime   | Waiting Time   | 0.00044  |
| op32030.Queue.NumberInQueue | Number Waiting | 0.08338  |
| op32030.Queue.WaitingTime   | Waiting Time   | 10.15587 |
| op32040.Queue.NumberInQueue | Number Waiting | 0.08869  |
| op32040.Queue.WaitingTime   | Waiting Time   | 10.80164 |
| op32043.Queue.NumberInQueue | Number Waiting | 0.120127 |
| op32043.Queue.WaitingTime   | Waiting Time   | 14.62181 |
| op32044.Queue.NumberInQueue | Number Waiting | 0.017877 |
| op32044.Queue.WaitingTime   | Waiting Time   | 2.17147  |
| op32045.Queue.NumberInQueue | Number Waiting | 0.02226  |
| op32045.Queue.WaitingTime   | Waiting Time   | 2.70398  |
| op32060.Queue.NumberInQueue | Number Waiting | 0.028952 |
| op32060.Queue.WaitingTime   | Waiting Time   | 3.516353 |
| op32061.Queue.NumberInQueue | Number Waiting | 0.040299 |
| op32061.Queue.WaitingTime   | Waiting Time   | 4.894441 |
| op32067.Queue.NumberInQueue | Number Waiting | 0.051535 |
| op32067.Queue.WaitingTime   | Waiting Time   | 6.259044 |
| op32083.Queue.NumberInQueue | Number Waiting | 0.053948 |
| op32083.Queue.WaitingTime   | Waiting Time   | 6.552193 |
| op32084.Queue.NumberInQueue | Number Waiting | 0.056552 |

| op32084.Queue.WaitingTime   | Waiting Time   | 6.868404 |
|-----------------------------|----------------|----------|
| op32157.Queue.NumberInQueue | Number Waiting | 0.059837 |
| op32157.Queue.WaitingTime   | Waiting Time   | 7.267185 |
| op32184.Queue.NumberInQueue | Number Waiting | 0.595581 |
| op32184.Queue.WaitingTime   | Waiting Time   | 72.09714 |
| op32201.Queue.NumberInQueue | Number Waiting | 0.205168 |
| op32201.Queue.WaitingTime   | Waiting Time   | 24.92441 |
| op32202.Queue.NumberInQueue | Number Waiting | 0.277244 |
| op32202.Queue.WaitingTime   | Waiting Time   | 33.68573 |
| op32203.Queue.NumberInQueue | Number Waiting | 0.321507 |
| op32203.Queue.WaitingTime   | Waiting Time   | 39.06326 |
| op32204.Queue.NumberInQueue | Number Waiting | 0.364437 |
| op32204.Queue.WaitingTime   | Waiting Time   | 44.28848 |
| op32205.Queue.NumberInQueue | Number Waiting | 0.390303 |
| op32205.Queue.WaitingTime   | Waiting Time   | 47.44264 |
| op32206.Queue.NumberInQueue | Number Waiting | 0.422195 |
| op32206.Queue.WaitingTime   | Waiting Time   | 51.3167  |
| op32253.Queue.NumberInQueue | Number Waiting | 0.069735 |
| op32253.Queue.WaitingTime   | Waiting Time   | 8.470841 |
| op32254.Queue.NumberInQueue | Number Waiting | 0.081209 |
| op32254.Queue.WaitingTime   | Waiting Time   | 9.865315 |
| op32256.Queue.NumberInQueue | Number Waiting | 0.462698 |
| op32256.Queue.WaitingTime   | Waiting Time   | 56.24683 |
| op32257.Queue.NumberInQueue | Number Waiting | 0.50422  |
| op32257.Queue.WaitingTime   | Waiting Time   | 61.30875 |
| op32258.Queue.NumberInQueue | Number Waiting | 0.091948 |
| op32258.Queue.WaitingTime   | Waiting Time   | 11.16947 |
| op32259.Queue.NumberInQueue | Number Waiting | 0.097968 |
| op32259.Queue.WaitingTime   | Waiting Time   | 11.90029 |
| op32450.Queue.NumberInQueue | Number Waiting | 0.105359 |
| op32450.Queue.WaitingTime   | Waiting Time   | 12.79766 |
| op32500.Queue.NumberInQueue | Number Waiting | 2.88E-05 |
| op32500.Queue.WaitingTime   | Waiting Time   | 0.003496 |
| op32504.Queue.NumberInQueue | Number Waiting | 0.002048 |
| op32504.Queue.WaitingTime   | Waiting Time   | 0.248798 |
| op32675.Queue.NumberInQueue | Number Waiting | 0.124759 |
| op32675.Queue.WaitingTime   | Waiting Time   | 15.15525 |
| op32676.Queue.NumberInQueue | Number Waiting | 0.195734 |
| op32676.Queue.WaitingTime   | Waiting Time   | 23.78213 |
| op32683.Queue.NumberInQueue | Number Waiting | 0.132579 |

| op32683.Queue.WaitingTime   | Waiting Time   | 16.10533 |  |
|-----------------------------|----------------|----------|--|
| op32687.Queue.NumberInQueue | Number Waiting | 0.141515 |  |
| op32687.Queue.WaitingTime   | Waiting Time   | 17.19125 |  |
| op32688.Queue.NumberInQueue | Number Waiting | 0.149796 |  |
| op32688.Queue.WaitingTime   | Waiting Time   | 18.19848 |  |
| op32689.Queue.NumberInQueue | Number Waiting | 0.159371 |  |
| op32689.Queue.WaitingTime   | Waiting Time   | 19.36294 |  |
| op32694.Queue.NumberInQueue | Number Waiting | 0.166502 |  |
| op32694.Queue.WaitingTime   | Waiting Time   | 20.2297  |  |
| op32695.Queue.NumberInQueue | Number Waiting | 0.172958 |  |
| op32695.Queue.WaitingTime   | Waiting Time   | 21.01421 |  |
| op32696.Queue.NumberInQueue | Number Waiting | 0.181094 |  |
| op32696.Queue.WaitingTime   | Waiting Time   | 22.0028  |  |
| op32701.Queue.NumberInQueue | Number Waiting | 7.83E-05 |  |
| op32701.Queue.WaitingTime   | Waiting Time   | 0.009499 |  |
| op32741.Queue.NumberInQueue | Number Waiting | 0.00222  |  |
| op32741.Queue.WaitingTime   | Waiting Time   | 0.269719 |  |
| op32881.Queue.NumberInQueue | Number Waiting | 0.185692 |  |
| op32881.Queue.WaitingTime   | Waiting Time   | 22.562   |  |
| op32882.Queue.NumberInQueue | Number Waiting | 0.188428 |  |
| op32882.Queue.WaitingTime   | Waiting Time   | 22.89439 |  |
| op42110.Queue.NumberInQueue | Number Waiting | 0.052286 |  |
| op42110.Queue.WaitingTime   | Waiting Time   | 6.34087  |  |
| op52741.Queue.NumberInQueue | Number Waiting | 0.008067 |  |
| op52741.Queue.WaitingTime   | Waiting Time   | 0.980794 |  |
| op52743.Queue.NumberInQueue | Number Waiting | 0.011936 |  |
| op52743.Queue.WaitingTime   | Waiting Time   | 1.451594 |  |
| op66018.Queue.NumberInQueue | Number Waiting | 0.03946  |  |
| op66018.Queue.WaitingTime   | Waiting Time   | 4.771249 |  |
| op68194.Queue.NumberInQueue | Number Waiting | 0.192943 |  |
| op68194.Queue.WaitingTime   | Waiting Time   | 23.44292 |  |
| PreDock.Queue.NumberInQueue | Number Waiting | 0        |  |
| PreDock.Queue.WaitingTime   | Waiting Time 0 |          |  |
| PreDockSpace.NumberBusy     | Number Busy    | 3.064157 |  |
|                             |                |          |  |

**Appendix H: Model 3 Summary Stats** 

| Statistic Name                   | Database Data Type        | Average  |
|----------------------------------|---------------------------|----------|
| 7H Tech.NumberSeized             | Total Number Seized       | 5800.62  |
| 7H Tech.ScheduledUtilization     | Scheduled Utilization     | 0.448265 |
| AH Tech.NumberSeized             | Total Number Seized       | 1294.07  |
| AH Tech.ScheduledUtilization     | Scheduled Utilization     | 0.062313 |
| Aircraft.NumberIn                | Number In                 | 6546.42  |
| Aircraft.NumberOut               | Number Out                | 6536.7   |
| AS Tech.NumberSeized             | Total Number Seized       | 7162.1   |
| AS Tech.ScheduledUtilization     | Scheduled Utilization     | 0.590188 |
| IDOCK Space.NumberSeized         | Total Number Seized       | 145.83   |
| IDOCK Space.ScheduledUtilization | Scheduled Utilization     | 0.699076 |
| PreDockSpace.NumberSeized        | Total Number Seized       | 147      |
| System.NumberOut                 | Number Out                | 145.26   |
| 7H Tech.NumberBusy               | Number Busy               | 1.344795 |
| 7H Tech.NumberScheduled          | Number Scheduled          | 3        |
| 7H Tech.Utilization              | Instantaneous Utilization | 0.448265 |
| AH Tech.NumberBusy               | Number Busy               | 0.124625 |
| AH Tech.NumberScheduled          | Number Scheduled          | 2        |
| AH Tech.Utilization              | Instantaneous Utilization | 0.062313 |
| Aircraft.NVATime                 | NVA Time                  | 0        |
| Aircraft.OtherTime               | Other Time                | 0        |
| Aircraft.TotalTime               | Total Time                | 650.0961 |
| Aircraft.TranTime                | Transfer Time             | 0        |
| Aircraft.VATime                  | VA Time                   | 556.7697 |
| Aircraft.WaitTime                | Wait Time                 | 2739.863 |
| Aircraft.WIP                     | WIP                       | 29.13928 |
| AS Tech.NumberBusy               | Number Busy               | 3.541129 |
| AS Tech.NumberScheduled          | Number Scheduled          | 6        |
| AS Tech.Utilization              | Instantaneous Utilization | 0.590188 |
| Batch 1.Queue.NumberInQueue      | Number Waiting            | 0.077731 |
| Batch 1.Queue.WaitingTime        | Waiting Time              | 4.675877 |
| Batch 2.Queue.NumberInQueue      | Number Waiting            | 17.58623 |
| Batch 2.Queue.WaitingTime        | Waiting Time              | 50.45961 |
| Enter IDOCK.Queue.NumberInQueue  | Number Waiting            | 0.249633 |
| Enter IDOCK.Queue.WaitingTime    | Waiting Time              | 29.89458 |
| IDOCK Space.NumberBusy           | Number Busy               | 2.097229 |
| IDOCK Space.NumberScheduled      | Number Scheduled          | 3        |
| IDOCK Space.Utilization          | Instantaneous Utilization | 0.699076 |

| op01144.Queue.NumberInQueue | Number Waiting | 2.53E-05 |
|-----------------------------|----------------|----------|
| op01144.Queue.WaitingTime   | Waiting Time   | 0.003039 |
| op01145.Queue.NumberInQueue | Number Waiting | 0        |
| op01145.Queue.WaitingTime   | Waiting Time   | 0        |
| op01146.Queue.NumberInQueue | Number Waiting | 0.017739 |
| op01146.Queue.WaitingTime   | Waiting Time   | 2.132684 |
| op01147.Queue.NumberInQueue | Number Waiting | 2.81E-05 |
| op01147.Queue.WaitingTime   | Waiting Time   | 0.003371 |
| op01148.Queue.NumberInQueue | Number Waiting | 0.079684 |
| op01148.Queue.WaitingTime   | Waiting Time   | 9.589353 |
| op01158.Queue.NumberInQueue | Number Waiting | 0.051998 |
| op01158.Queue.WaitingTime   | Waiting Time   | 6.263114 |
| op01165.Queue.NumberInQueue | Number Waiting | 0.064091 |
| op01165.Queue.WaitingTime   | Waiting Time   | 7.711075 |
| op01189.Queue.NumberInQueue | Number Waiting | 0.151264 |
| op01189.Queue.WaitingTime   | Waiting Time   | 18.19921 |
| op01199.Queue.NumberInQueue | Number Waiting | 0.000356 |
| op01199.Queue.WaitingTime   | Waiting Time   | 0.043048 |
| op20058.Queue.NumberInQueue | Number Waiting | 7.3E-05  |
| op20058.Queue.WaitingTime   | Waiting Time   | 0.008761 |
| op20542.Queue.NumberInQueue | Number Waiting | 0.000141 |
| op20542.Queue.WaitingTime   | Waiting Time   | 0.016994 |
| op32030.Queue.NumberInQueue | Number Waiting | 0.074565 |
| op32030.Queue.WaitingTime   | Waiting Time   | 8.971644 |
| op32040.Queue.NumberInQueue | Number Waiting | 0.079635 |
| op32040.Queue.WaitingTime   | Waiting Time   | 9.583092 |
| op32043.Queue.NumberInQueue | Number Waiting | 0.114135 |
| op32043.Queue.WaitingTime   | Waiting Time   | 13.74546 |
| op32044.Queue.NumberInQueue | Number Waiting | 0.007456 |
| op32044.Queue.WaitingTime   | Waiting Time   | 0.897968 |
| op32045.Queue.NumberInQueue | Number Waiting | 0.011976 |
| op32045.Queue.WaitingTime   | Waiting Time   | 1.442537 |
| op32060.Queue.NumberInQueue | Number Waiting | 0.019075 |
| op32060.Queue.WaitingTime   | Waiting Time   | 2.297809 |
| op32061.Queue.NumberInQueue | Number Waiting | 0.03087  |
| op32061.Queue.WaitingTime   | Waiting Time   | 3.719112 |
| op32067.Queue.NumberInQueue | Number Waiting | 0.042705 |
| op32067.Queue.WaitingTime   | Waiting Time   | 5.144357 |
| op32083.Queue.NumberInQueue | Number Waiting | 0.000445 |
| op32083.Queue.WaitingTime   | Waiting Time   | 0.053563 |

| op32084.Queue.NumberInQueue | Number Waiting       | 0.000506 |  |  |
|-----------------------------|----------------------|----------|--|--|
| op32084.Queue.WaitingTime   | Waiting Time         | 0.060948 |  |  |
| op32157.Queue.NumberInQueue | Number Waiting       | 0.045108 |  |  |
| op32157.Queue.WaitingTime   | Waiting Time         | 5.433878 |  |  |
| op32184.Queue.NumberInQueue | Number Waiting       | 0.467115 |  |  |
| op32184.Queue.WaitingTime   | Waiting Time         | 56.1092  |  |  |
| op32201.Queue.NumberInQueue | Number Waiting       | 0.196074 |  |  |
| op32201.Queue.WaitingTime   | Waiting Time         | 23.61947 |  |  |
| op32202.Queue.NumberInQueue | Number Waiting       | 0.267924 |  |  |
| op32202.Queue.WaitingTime   | Waiting Time         | 32.28095 |  |  |
| op32203.Queue.NumberInQueue | Number Waiting       | 0.313746 |  |  |
| op32203.Queue.WaitingTime   | Waiting Time         | 37.80341 |  |  |
| op32204.Queue.NumberInQueue | Number Waiting       | 0.351679 |  |  |
| op32204.Queue.WaitingTime   | Waiting Time         | 42.37203 |  |  |
| op32205.Queue.NumberInQueue | Number Waiting       | 0.37616  |  |  |
| op32205.Queue.WaitingTime   | Waiting Time         | 45.32989 |  |  |
| op32206.Queue.NumberInQueue | Number Waiting       | 0.405733 |  |  |
| op32206.Queue.WaitingTime   | Waiting Time         | 48.89195 |  |  |
| op32253.Queue.NumberInQueue | Number Waiting       | 0.056088 |  |  |
| op32253.Queue.WaitingTime   | Waiting Time         | 6.758013 |  |  |
| op32254.Queue.NumberInQueue | Number Waiting       | 0.068894 |  |  |
| op32254.Queue.WaitingTime   | Waiting Time         | 8.300852 |  |  |
| op32256.Queue.NumberInQueue | Number Waiting       | 0.443611 |  |  |
| op32256.Queue.WaitingTime   | Waiting Time         | 53.4492  |  |  |
| op32257.Queue.NumberInQueue | Number Waiting       | 0.480988 |  |  |
| op32257.Queue.WaitingTime   | Waiting Time         | 57.95019 |  |  |
| op32258.Queue.NumberInQueue | Number Waiting       | 0.080519 |  |  |
| op32258.Queue.WaitingTime   | Waiting Time         | 9.701291 |  |  |
| op32259.Queue.NumberInQueue | Number Waiting       | 0.086933 |  |  |
| op32259.Queue.WaitingTime   | Waiting Time         | 10.47366 |  |  |
| op32450.Queue.NumberInQueue | Number Waiting       | 0.094841 |  |  |
| op32450.Queue.WaitingTime   | Waiting Time         | 11.42628 |  |  |
| op32500.Queue.NumberInQueue | Number Waiting       | 0.01439  |  |  |
| op32500.Queue.WaitingTime   | Waiting Time         | 1.732594 |  |  |
| op32504.Queue.NumberInQueue | Number Waiting       | 0.016185 |  |  |
| op32504.Queue.WaitingTime   | Waiting Time         | 1.948868 |  |  |
| op32675.Queue.NumberInQueue | Number Waiting       | 0.000667 |  |  |
| op32675.Queue.WaitingTime   | Waiting Time         | 0.080311 |  |  |
| op32676.Queue.NumberInQueue | Number Waiting       | 0.015235 |  |  |
| op32676.Queue.WaitingTime   | Waiting Time 1.83459 |          |  |  |

|                             | 1              |          |
|-----------------------------|----------------|----------|
| op32683.Queue.NumberInQueue | Number Waiting | 0.001899 |
| op32683.Queue.WaitingTime   | Waiting Time   | 0.228722 |
| op32687.Queue.NumberInQueue | Number Waiting | 0.003918 |
| op32687.Queue.WaitingTime   | Waiting Time   | 0.471948 |
| op32688.Queue.NumberInQueue | Number Waiting | 0.005329 |
| op32688.Queue.WaitingTime   | Waiting Time   | 0.642293 |
| op32689.Queue.NumberInQueue | Number Waiting | 0.006877 |
| op32689.Queue.WaitingTime   | Waiting Time   | 0.828667 |
| op32694.Queue.NumberInQueue | Number Waiting | 0.00836  |
| op32694.Queue.WaitingTime   | Waiting Time   | 1.007439 |
| op32695.Queue.NumberInQueue | Number Waiting | 0.009805 |
| op32695.Queue.WaitingTime   | Waiting Time   | 1.181395 |
| op32696.Queue.NumberInQueue | Number Waiting | 0.011387 |
| op32696.Queue.WaitingTime   | Waiting Time   | 1.372056 |
| op32701.Queue.NumberInQueue | Number Waiting | 0.001393 |
| op32701.Queue.WaitingTime   | Waiting Time   | 0.167789 |
| op32741.Queue.NumberInQueue | Number Waiting | 0.01691  |
| op32741.Queue.WaitingTime   | Waiting Time   | 2.036356 |
| op32881.Queue.NumberInQueue | Number Waiting | 0.012802 |
| op32881.Queue.WaitingTime   | Waiting Time   | 1.542431 |
| op32882.Queue.NumberInQueue | Number Waiting | 0.013988 |
| op32882.Queue.WaitingTime   | Waiting Time   | 1.685266 |
| op42110.Queue.NumberInQueue | Number Waiting | 0.041294 |
| op42110.Queue.WaitingTime   | Waiting Time   | 4.96643  |
| op52741.Queue.NumberInQueue | Number Waiting | 0.004331 |
| op52741.Queue.WaitingTime   | Waiting Time   | 0.521979 |
| op52743.Queue.NumberInQueue | Number Waiting | 0.008793 |
| op52743.Queue.WaitingTime   | Waiting Time   | 1.057715 |
| op66018.Queue.NumberInQueue | Number Waiting | 0.041854 |
| op66018.Queue.WaitingTime   | Waiting Time   | 5.026512 |
| op68194.Queue.NumberInQueue | Number Waiting | 0.116179 |
| op68194.Queue.WaitingTime   | Waiting Time   | 13.99663 |
| PreDock.Queue.NumberInQueue | Number Waiting | 0        |
| PreDock.Queue.WaitingTime   | Waiting Time   | 0        |
| PreDockSpace.NumberBusy     | Number Busy    | 3.070331 |
|                             |                |          |

**Appendix I: Model 4 Simulation Results** 

| Statistic Name                   | Database Data Type        | Average  |
|----------------------------------|---------------------------|----------|
| 7H Tech.NumberSeized             | Total Number Seized       | 8766.93  |
| AH Tech.NumberSeized             | Total Number Seized       | 462.58   |
| Aircraft.NumberIn                | Number In                 | 6573.95  |
| Aircraft.NumberOut               | Number Out                | 6568.65  |
| AS Tech.NumberSeized             | Total Number Seized       | 5083.2   |
| IDOCK Space.NumberSeized         | Total Number Seized       | 145.99   |
| IDOCK Space.ScheduledUtilization | Scheduled Utilization     | 0.321525 |
| PreDockSpace.NumberSeized        | Total Number Seized       | 147      |
| System.NumberOut                 | Number Out                | 145.97   |
| 7H Tech.NumberBusy               | Number Busy               | 2.021995 |
| AH Tech.NumberBusy               | Number Busy               | 0.172902 |
| Aircraft.NVATime                 | NVA Time                  | 0        |
| Aircraft.OtherTime               | Other Time                | 0        |
| Aircraft.TotalTime               | Total Time                | 484.9375 |
| Aircraft.TranTime                | Transfer Time             | 0        |
| Aircraft.VATime                  | VA Time                   | 553.1313 |
| Aircraft.WaitTime                | Wait Time                 | 982.7678 |
| Aircraft.WIP                     | WIP                       | 13.77321 |
| AS Tech.NumberBusy               | Number Busy               | 2.795573 |
| Batch 1.Queue.NumberInQueue      | Number Waiting            | 0.06943  |
| Batch 1.Queue.WaitingTime        | Waiting Time              | 4.164117 |
| Batch 2.Queue.NumberInQueue      | Number Waiting            | 8.153757 |
| Batch 2.Queue.WaitingTime        | Waiting Time              | 23.19356 |
| Enter IDOCK.Queue.NumberInQueue  | Number Waiting            | 0.002575 |
| Enter IDOCK.Queue.WaitingTime    | Waiting Time              | 0.30859  |
| IDOCK Space.NumberBusy           | Number Busy               | 0.964574 |
| IDOCK Space.NumberScheduled      | Number Scheduled          | 3        |
| IDOCK Space.Utilization          | Instantaneous Utilization | 0.321525 |

### Appendix J: Blue Dart

# Blue Dart Submission Form

| First Name: <u>Andrew</u> Last Name: <u>Levien</u>                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rank (Military, AD, etc.):Major Designator #AFIT/ILS/ENS/10J-03_                                                                                                                                               |
| Student's Involved in Research for Blue Dart: None                                                                                                                                                             |
| Position/Title: Student                                                                                                                                                                                        |
| Phone Number:302-943-1428 E-mail:andrew.levien@afit.edu                                                                                                                                                        |
| School/Organization: <u>AFIT/ENS</u>                                                                                                                                                                           |
| Status: [X] Student [] Faculty [] Staff [] Other                                                                                                                                                               |
| Optimal Media Outlet (optional):                                                                                                                                                                               |
| Optimal Time of Publication (optional):                                                                                                                                                                        |
| General Category / Classification:                                                                                                                                                                             |
| [ ] core values [ ] command [ ] strategy [ ] war on terror [ ] culture & language [ ] leadership & ethics [ ] warfighting [ ] international security [ ] doctrine [ X] other (specify): _Workforce Composition |
| Suggested Headline: Flexibility Key to Dynamic Work Environments                                                                                                                                               |
| Keywords: <u>Cross-Training, Workforce Flexibility, Work Flow Simulation, Depot</u> Workforce                                                                                                                  |

#### **Blue Dart**

This research addresses Air Force Material Command's desire to develop a flexible depot workforce to meet the demands of maintaining an ever-changing and aging aircraft fleet. Air Force depot maintenance personnel are currently (and have been for quite some time) categorized in very narrow occupational specialties, resulting in the approximately 23,000 personnel to be spread over 171 different occupational specialties. Much of the depot work maintenance workload has decreased in volume but increased in

velocity, thereby demanding a more flexible workforce that can perform skills from multiple occupational specialties in support of Lean strategies for production.

This study provides a comprehensive analysis into the potential strategies and ways ahead to best synchronize occupational series use in a transitional environment. This research addresses several questions: (1) what experimental and analytical models exist or can be created to determine if occupational series should be combined; (2) what series should be combined or created anew; and (3) how are series combined correctly to retain critical knowledge and promote product quality. A methodology is developed that can be applied to any production work environment to see the effects on production time as a result of cross-training. The methodology was tested on the KC-135 PDM line at Tinker AFB—showing a 13.3% gain in throughput time at a cost of 3134 man-hours.

The research questions were answer through the thorough literature review and application of the methodology on the KC-135 PDM line. 1) The literature review addressed this at length. Several models have been created, but only one (Marentette K. A., 2008) discussed which jobs to combine. The rest of the models were more about what roles to combine, leaving the manager to ascertain what actual positions could be combined. Some of the models were role specific and some were task specific. Besides Marentette's model, the problem with most of these models is that they were very specific to the system or industry they were researching. In order to apply it to AFMC's research question, they would need to be adapted significantly. There is no one model that can be created to determine if occupational series should be combined. However, the methodology created in this research is a basic process that can be followed to determine which tasks should be combined with others. This methodology explains how a taskbased discrete simulation model can be developed to show were production gains can be made with cross-training. 2) This research was unable to ascertain which occupational series should be combined or created anew because the production line selected to test the methodology only had a few occupational series. A method was created that can be used to look at work areas that have a large diversity of similar occupational series, but such areas may not exist. It appears that there is much specialization within in each occupational series, so reducing the number of occupational series may not be a realistic goal. 3) Based on the literature, this is almost purely subjective. Most of the literature does suggest that some flexibility is good, but an organization must maintain a certain level of expertise (i.e. specialization). The proper degree of flexibility is a factor of the complexity of the tasks, the quality concerns of the final product, and level of utilization of current specialists. One way to overcome this might be to create a cross-trained team, as suggested by Molleman and Slomp (1999)—a team that consists of at least one expert for each task with all other team members being cross-trained on some of the other tasks. This creates a depth of knowledge, but also a breadth of some team members to help out when their utilization is low. The key to this research paper's methodology working is having an accurate opinion from the subject matter experts. If a consensus can be reached that the benefits of a flexible workforce outweighs the potential loss in depth, then a manager should feel confident in the cross-training decision. The decision cannot be made without first-level leadership and worker involvement.

Using the proposed methodology, determining which tasks should be shared with other occupational series is pretty clear. A cut in production time was seen when low

complexity tasks were cross-trained, but the cost of cross-training might be very high in terms of time to train the new technicians. A delicate balance needs to be drawn, based on expert opinion, about which career fields can cross-train. A more flexible workforce can be obtained if the right team is put together to study it.

The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the US Government.

Apr 07

## Appendix K: Quad Chart



## Appendix L: Form 298

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |              |                              | OMB No. 074-0188 |                                         |                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|------------------|-----------------------------------------|--------------------------------------------------------------|
| The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| 1. REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE (DD-MN                                                                                                                                 | Л-YYYY)      | 2. REPORT TYPE               |                  |                                         | 3. DATES COVERED (From – To)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06-17-2010                                                                                                                                  | )            | Master's Grad                | duate Resear     | ch Paper                                | May 2009 - Jun 2010                                          |
| 4. TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AND SUBTITL                                                                                                                                 | E            |                              |                  |                                         | CONTRACT NUMBER                                              |
| RESTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCTURIN                                                                                                                                     | G DEPOT      | MAINTENANCE                  | COCCUPAT         | ONAL                                    |                                                              |
| 102511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                             |              | MPROVE FLEXIB                |                  |                                         | GRANT NUMBER                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEK                                                                                                                                         | ies to it    | VIPKOVE FLEAID               | ILII I           | 00.                                     | CHART HOMBER                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  | 5c.                                     | PROGRAM ELEMENT NUMBER                                       |
| 6. AUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR(S)                                                                                                                                       |              |                              |                  | 5d.                                     | PROJECT NUMBER                                               |
| Levien,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Andrew J.,                                                                                                                                  | Major, US    | AF                           |                  | 5e.                                     | TASK NUMBER                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  | 5f. \                                   | WORK UNIT NUMBER                                             |
| 7. PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MING ORGAN                                                                                                                                  | IZATION NAM  | MES(S) AND ADDRESS(S         | 5)               | l                                       | 8. PERFORMING ORGANIZATION                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ce Institute of                                                                                                                             |              |                              |                  |                                         | REPORT NUMBER                                                |
| Graduat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e School of E                                                                                                                               | ngineering a | and Management (AFI)         | Γ/EN)            |                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | obson Street, l                                                                                                                             |              |                              |                  |                                         | AFIT/ILS/ENS/10J-03                                          |
| WPAFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 OH 45433-7                                                                                                                                | 765          |                              |                  |                                         |                                                              |
| 9. SPONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORING/MONIT                                                                                                                                 | ORING AGEN   | ICY NAME(S) AND ADDR         | RESS(ES)         |                                         | 10. SPONSOR/MONITOR'S ACRONYM(S)                             |
| AFMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C/A4DI                                                                                                                                      |              |                              |                  |                                         |                                                              |
| Attn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mr. Steve N                                                                                                                                 | /IcBride     |                              |                  |                                         | 44 CRONCOR/MONITOR/C REPORT                                  |
| 4375 Chidlaw Rd Bldg 262, Rm C109 DSN: 787-3271 NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |              | 11. SPONSOR/MONITOR'S REPORT |                  |                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              | HOMBER(O)                    |                  |                                         |                                                              |
| WPAFB OH 45433-5006 e-mail: steve.mcbride@wpafb.af.mil   12. DISTRIBUTION/AVAILABILITY STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             | _            |                              | IMITED           |                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              | ASE; DISTRIBUTION UNI        | LIMITED.         |                                         |                                                              |
| 13. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| 14. ABSTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                           |              |                              |                  |                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         | to meet the demands of maintaining an ever-                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         | en for quite some time) categorized in very                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         | 1 different occupational specialties. Much of                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the depot work maintenance workload has decreased in volume but increased in velocity, thereby demanding a more flexible workforce that can |              |                              |                  |                                         |                                                              |
| perform skills from multiple occupational specialties in support of Lean strategies for production. This study provides a comprehensive analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| into the potential strategies and ways ahead to best synchronize occupational series use in a transitional environment. This research addresses several questions: (1) what experimental and analytical models exist or can be created to determine if occupational series should be combined; (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |              |                              |                  |                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         | critical knowledge and promote product                       |
| quality. A methodology is developed that can be applied to any production work environment to see the effects on production time as a result of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| cross-training.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| Cross-Training, Multi-tasking, Workforce Flexibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             |              |                              |                  |                                         |                                                              |
| 16. SECUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ITY CLASSIFIC                                                                                                                               | CATION OF:   | 17. LIMITATION OF ABSTRACT   | 18. NUMBER<br>OF | 19a. NAME OF Timothy Pettit, Lt         | RESPONSIBLE PERSON Col. USAF (ENS)                           |
| a. REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b. ABSTRACT                                                                                                                                 | c. THIS PAGE |                              | PAGES            | ·                                       | NE NUMBER (Include area code)                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              | TITI                         | 06               |                                         | kt xxxx; e-mail: timothy.pettit@afit.edu                     |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                           | U            | UU                           | 86               | 1 , , , , , , , , , , , , , , , , , , , | **                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |              |                              |                  |                                         | Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 |

Form Approved