- 1 The gut bacterial community potentiates Clostridioides difficile
- 2 infection severity.
- 3 Running title: Microbiota potentiates Clostridioides difficile infection severity
- 4 Nicholas A. Lesniak¹, Alyxandria M. Schubert¹, Kaitlyn J. Flynn¹, Jhansi L. Leslie^{1,4}, Hamide
- 5 Sinani¹, Ingrid L. Bergin³, Vincent B. Young^{1,2}, Patrick D. Schloss^{1,†}
- 6 † To whom correspondence should be addressed: pschloss@umich.edu
- 7 1. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
- 8 2. Division of Infectious Diseases, Department of Internal Medicine, University of Michigan
- 9 Medical School, Ann Arbor, MI
- 10 3. Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI
- 4. Current affiliation: Department of Medicine, Division of International Health and
- 12 Infectious Diseases, University of Virginia School of Medicine, Charlottesville, Virginia, USA

Abstract

14

The severity of Clostridioides difficile infections (CDI) has increased over the last few 15 decades. Patient age, white blood cell count, creatinine levels as well as C. difficile ribotype 16 17 and toxin genes have been associated with disease severity. However, it is unclear whether 18 specific members of the gut microbiota associate with variation in disease severity. The gut 19 microbiota is known to interact with *C. difficile* during infection. Perturbations to the gut 20 microbiota are necessary for C. difficile to colonize the gut. The gut microbiota can inhibit C. difficile colonization through bile acid metabolism, nutrient consumption and bacteriocin 21 22 production. Here we sought to demonstrate that members of the gut bacterial communities 23 can also contribute to disease severity. We derived diverse gut communities by colonizing germ-free mice with different human fecal communities. The mice were then infected with 24 25 a single C. difficile ribotype 027 clinical isolate which resulted in moribundity and 26 histopathologic differences. The variation in severity was associated with the human fecal 27 community that the mice received. Generally, bacterial populations with pathogenic 28 potential, such as Enterococcus, Helicobacter, and Klebsiella, were associated with more 29 severe outcomes. Bacterial groups associated with fiber degradation and bile acid

Deleted: there is an association between

Deleted: and

Deleted: Escherichia

Deleted: ,

Deleted: and lantibiotic production

Deleted: Anaerostipes
Deleted: Coprobacillus

Importance

30

31

32

33

34 Clostridioides difficile colonization can be asymptomatic or develop into an infection,

subtype, populations of gut bacteria can influence CDI disease severity.

35 ranging in severity from mild diarrhea to toxic megacolon, sepsis, and death. Models that

metabolism, such as Anaerotignum, Blautia, Lactonifactor, and Monoglobus, were associated

with less severe outcomes. These data indicate that, in addition to the host and C. difficile

predict severity and guide treatment decisions are based on clinical factors and *C. difficile* 43 44 characteristics. Although the gut microbiome plays a role in protecting against CDI, its 45 effect on CDI disease severity is unclear and has not been incorporated into disease 46 severity models. We demonstrated that variation in the microbiome of mice colonized with 47 human feces yielded a range of disease outcomes. These results revealed groups of bacteria associated with both severe and mild $\emph{C. difficile}$ infection outcomes. Gut bacterial 48 49 community data from patients with CDI could improve our ability to identify patients at 50 risk of developing more severe disease and improve interventions which target *C. difficile* 51 and the gut bacteria to reduce host damage.

Introduction

53

Clostridioides difficile infections (CDI) have increased in incidence and severity since C. 54 55 difficile was first identified as the cause of antibiotic-associated pseudomembranous colitis 56 (1). CDI disease severity can range from mild diarrhea to toxic megacolon and death. The 57 Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of 58 America (SHEA) guidelines define severe CDI in terms of a white blood cell count greater 59 than 15,000 cells/mm³ and/or a serum creatinine greater than 1.5 mg/dL. Patients who 60 develop shock or hypotension, ileus, or toxic megacolon are considered to have fulminant 61 CDI (2). Since these measures are CDI outcomes, they have limited ability to predict risk of 62 severe CDI when the infection is first detected. Schemes have been developed to score a 63 patient's risk for severe CDI outcomes based on clinical factors but have not been robust for 64 broad application (3). Thus, we have limited ability to prevent patients from developing 65 severe CDI. Missing from CDI severity prediction models are the effects of the indigenous gut bacteria. 66 C. difficile interacts with the gut community in many ways. The indigenous bacteria of a 67 68 healthy intestinal community prevent C. difficile from infecting the gut (4). A range of Deleted: provide a protective barrier preventing Deleted: . 69 mechanisms can disrupt this inhibition, including antibiotics, medications, or dietary Deleted: barrier 70 changes, and lead to increased susceptibility to CDI (5-7). Once *C. difficile* overcomes the Deleted: 4-6 71 inhibition and colonizes the intestine, the indigenous bacteria can either promote or inhibit Deleted: protective barrier 72 C. difficile through producing molecules or modifying the environment (8.9). Bile acids Deleted: 7, 73 metabolized by the gut bacteria can inhibit C. difficile growth and affect toxin production (4, Deleted: 9 74 10, 11). Bacteria in the gut also can compete more directly with *C. difficile* through

82	antibiotic production or nutrient consumption (12–14). While the relationship between the	Deleted: 11-13
83	gut bacteria and <i>C. difficile</i> has been established, the effect the gut bacteria can have on CDI	
84	disease severity is unclear.	
85	Recent studies have demonstrated that when mice with diverse microbial communities	
86	were challenged with a high-toxigenic strain resulted in varied disease severity (15) and	Deleted: 14
87	when challenged with a low-toxigenic strain members of the gut microbial community	
88	associated with variation in colonization (16). Here, we sought to further elucidate the	Deleted: 15
89	relationship between members of the gut bacterial community and CDI disease severity	
90	when challenged with a high-toxigenic strain, C. difficile ribotype 027 (RT027). We	
91	hypothesized that since specific groups of gut bacteria affect the metabolism of <i>C. difficile</i>	
92	and its clearance rate, specific groups of bacteria associate with variation in CDI disease	Deleted: infection dynamics, we can also identify
93	severity, To test this hypothesis, we colonized germ-free C57BL/6 mice with human fecal	Deleted: that affect the Deleted: of the infection
		Deleted: of the infection
94	samples to create varied gut communities. We then challenged the mice with <i>C. difficile</i>	
95	RT027 and followed the mice for the development of severe outcomes of moribundity and	
96	histopathologic cecal tissue damage. Since the murine host and <i>C. difficile</i> isolate were the	
97	same and only the gut community varied, the variation in disease severity we observed was	
98	attributable to the gut microbiome.	
99	Results	
,,	Tresures	
100	C. difficile is able to infect germ-free mice colonized with human fecal microbial	
101	communities without antibiotics. To produce gut microbiomes with greater variation	
102	than those found in conventional mouse colonies, we colonized germ-free mice with	
103	bacteria from human feces (17). We inoculated germ-free C57BL/6 mice with homogenized	Deleted: 16

feces from each of 15 human fecal samples via oral gavage. These human fecal samples were selected because they represented diverse community structures based on community clustering (18). After the gut communities had colonized for two weeks we confirmed them to be *C. difficile* negative by culture (19). We then surveyed the bacterial members of the gut communities by 16S rRNA gene sequencing of murine fecal pellets (Figure 1A). The bacterial communities from each mouse grouped more closely to those communities from mice that received the same human fecal donor community than to the mice who received a different human fecal donor community (Figure 1B). The communities were primarily composed of populations of Clostridia, Bacteroidia, Erysipelotrichia, Bacilli, and Gammaproteobacteria. However, the gut bacterial communities of each donor group of mice harbored unique relative abundance distributions of the shared bacterial classes. Next, we tested this set of mice with their human-derived gut microbial communities for susceptibility to C. difficile infection. A typical mouse model of CDI requires pre-treatment of conventional mice with antibiotics, such as clindamycin, to become susceptible to C. difficile colonization (20, 21). However, we wanted to avoid modifying the gut communities with an antibiotic to maintain their unique microbial compositions and ecological relationships. Since some of these communities came from people at increased risk of CDI, such as recent hospitalization or antibiotic use (18), we tested whether C. difficile was able to infect these mice without an antibiotic perturbation. We hypothesized that C. difficile would be able to colonize the mice who received their gut communities from a donor with a perturbed community. Mice were challenged with 10³ C. difficile RT027 clinical isolate spores. The mice were followed for 10 days post-challenge, and their stool was collected and plated for C. difficile colony forming units (CFU) to determine the extent of the

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Deleted: 17). The

Deleted: were allowed to equilibrate

Deleted: post-inoculation (18).

Deleted: 19,

139	infection. Surprisingly, communities from all donors were able to be colonized (Figure 2).	
140	Two mice were able to resist <i>C. difficile</i> colonization, both received their community donor	
141	N1, which may be attributed to experimental variation since this group also had more mice.	
142	By colonizing germ-free mice with different human fecal communities, we were able to	
143	generate diverse gut communities in mice, which were susceptible to <i>C. difficile</i> infection	
144	without further modification of the gut community.	
145	Infection severity varies by initial community. After we challenged the mice with <i>C</i> .	
146	difficile, we investigated the outcome from the infection and its relationship to the initial	
147	community. We followed the mice for 10 days post-challenge for colonization density, toxin	
148	production, and mortality. Seven mice, from Donors N1, N3, N4, and N5, were not colonized	
149	at detectable levels on the day after $\it C. difficile$ challenge but were infected (>10 6) by the	
150	end of the experiment. All mice that received their community from Donor M1 through M6	
151	succumbed to the infection and became moribund within 3 days post-challenge. The	
152	remaining mice, except the uninfected Donor N1 mice, maintained <i>C. difficile</i> infection	
153	through the end of the experiment (Figure 2). At 10 days post-challenge, or earlier for the	
154	moribund mice, mice were euthanised and fecal material were assayed for toxin activity	
155	and cecal tissue was collected and scored for histopathologic signs of disease (Figure 3).	
156	Overall, there was greater toxin activity detected in the stool of the moribund mice (Figure	Deleted: <i>P</i> = 0.003
157	<u>\$1</u>). However, when looking at each group of mice, we observed a range in toxin activity for	
158	both the moribund and non-moribund mice (Figure 3A). Non-moribund mice from Donors	
159	N2 and N5 through N9 had comparable toxin activity as the moribund mice at 2 days post-	Deleted: .
160	<u>challenge.</u> Additionally, not all moribund mice had toxin activity detected in their stool.	
161	Next, we examined the cecal tissue for histopathologic damage. Moribund mice had high	

164	levels of epithelial damage, tissue edema, and inflammation (Figure <u>\$2</u>) similar to	De	leted: S1
165	previously reported histopathologic findings for <i>C. difficile</i> RT027 (22). As observed with	De	leted: 21
 166	toxin activity, the moribund mice had higher histopathologic scores than the non-moribund		
167	mice ($P < 0.001$). However, unlike the toxin activity, all moribund mice had consistently		
168	high histopathologic summary scores (Figure 3B). The non-moribund mice, Donor groups		
169	N1 through N9, had a range in tissue damage from none detected to similar levels as the		
170	moribund mice, which grouped by community donor. Together, the toxin activity,		
171	histopathologic score, and moribundity showed variation across the donor groups but		
172	were largely consistent within each donor group.		
173	Microbial community members explain variation in CDI severity. We next interrogated		
174	the bacterial communities at the time of <i>C. difficile</i> challenge (day 0) for their relationship		
175	to infection outcomes using linear discriminant analysis (LDA) effect size (LEfSe) analysis		
176	to identify individual bacterial populations that could explain the variation in disease		
177	severity. We split the mice into groups by severity level based on moribundity or 10 days	De	leted: their
178	post infection (dpi) histopathologic score for non-moribund. This analysis revealed	\succ	leted: and
1 79	bacterial operational taxonomic units (OTUs) that were significantly different at the time of	int	leted: . We dichotomized the histopathologic scores o high and low groups by splitting on the median score 5
		De	leted: 20 genera
180	challenge by the disease severity (Figure 4A). OTUs associated with Akkermansia,	Sta	leted: Bacterial genera Turicibacter, Streptococcus, phylococcus, Pseudomonas, Phocaeicola, rabacteroides
181	Bacteroides, <u>Clostridium sensu stricto</u> , and <u>Turicibacter</u> were detected at higher relative	\vdash	leted: and Escherichia/Shigella
182	abundances in the mice that became moribund. OTUs associated with Anaerotignum,	=	leted: Populations of
 183	Enterocloster, and Murimonas were more abundant in the non-moribund mice that would	De	l eted: , Coprobacillus
184	develop only low intestinal injury. To understand the role of toxin activity in disease		
185	severity, we applied LEfSe to identify the <u>OTUs at the time of challenge that</u> most likely	De	l eted: genera
186	explain the differences between <u>communities that had</u> toxin activity <u>detected at anytime</u>		leted: to
		De	leted: the presence and absence of detected
	0		

204	point to those that did not (Figure 4B). An OTU associated with Bacteroides, OTU 7.		Deleted: Many genera that
205	associated with the presence of toxin also associated with moribundity. Likewise, OTUs		Deleted: were
206	associated with Enterocloster, and Murimonas that were associated with no detected toxin,		Deleted: , such as populations of <i>Escherichia/Shigella</i> and <i>Bacteroides</i> .
 207	also exhibited greater relative abundance in communities from non-moribund mice with a		Deleted: there were genera such as Anaerotignum, Deleted: ,
208	low histopathologic score. Lastly, we tested for correlations between the endpoint (10 dpi)	,	Deleted: that
209	relative abundances of OTUs, and the histopathologic summary score (Figure 4C). The		Deleted: bacterial operational taxonomic units (
210	endpoint relative abundance of <i>Bacteroides</i> , OTU 17, was positively correlated with	*****	Deleted:)
l 211	histopathologic score, as its day 0 relative abundance did with disease severity (Figure 4A).		
212	A population of <i>Bacteroides</i> , OTU 17, was positively correlated with the histopathologic		Deleted: Populations of <i>Klebsiella</i> and <i>Prevotellaceae</i> were
213	score and were increased in the group of mice with detectable toxin. We also tested for		
214	correlations between the endpoint relative abundances of OTUs and toxin activity but none		
215	were significant. This analysis identified bacterial populations that were associated with		Deleted: genera
1 216	the variation in moribundity, histopathologic score, and toxin.		
217	We next determined whether, collectively, bacterial community membership and relative		
218	abundance could be predictive of the CDI disease outcome. We trained <u>logistic regression</u>		Deleted: random forest
219	models with bacterial community relative abundance data from the day of colonization at		
220	each taxonomic rank to predict toxin, moribundity, and histopathologic summary score.		Deleted: day 10 post-challenge
221	For predicting if detectable toxin would be produced, microbial populations aggregated by		
222	genus rank classification performed similarly as models using lower taxonomic ranks		Deleted: phylum
223	(mean_AUROC = 0,787, Figure S3). C. difficile increased odds of producing detectable toxin		Deleted: 83
224	when the community infected had less abundant populations of <i>Monoglobus, Akkermansia</i> ,		Deleted: S2
	when the community infected had less abundant populations of antiographs, takes manistra-		Deleted: was more likely to produce Deleted: Verrucomicrobia
225	Extibacter, Intestinimonas and Holdemania and had more abundant populations of		Deleted: Verrucomicrobia Deleted: Campilobacterota
226	<u>Lachnospiraceae</u> (Figure 5A). Next, we assessed the ability of the community to predict		Deleted: Proteobacteria
1			

moribundity. Bacteria grouped by <u>order</u> rank classification was sufficient to predict which 248 249 mice would succumb to the infection before the end of the experiment (mean AUROC = 250 0.9205, Figure S3). Many populations contributed to an increase odds of moribundity 251 (Figure 5B). Populations related to Bifidobacteriales and Clostridia decreased the odds of a 252 moribund outcome. Lastly, the relative abundances of OTUs were able to predict a high or 253 low histopathologic score 10 dpi (histopathologic scores were dichotomized as in previous 254 analysis, mean AUROC = 0.99, Figure S3). The model identified some similar OTUs as the 255 LEfSe analysis, such as Murimonas (OTU 48), Bacteroides (OTU 7), and Hungatella (OTU 256 24). These models have shown that the relative abundance of bacterial populations and 257 their relationship to each other could be used to predict the variation in moribundity, 258 histopathologic score, and detectable toxin of CDI.

Discussion

259

260

261

262

263

264

265

266

267

268

269

Challenging mice colonized with different human fecal communities with *C. difficile* RT027 demonstrated that variation in members of the gut microbiome affects *C. difficile* infection disease severity. Our analysis revealed an association between the relative abundance of bacterial community members and disease severity. Previous studies investigating the severity of CDI disease involving the microbiome have had limited ability to interrogate this relationship between the microbiome and disease severity. Studies that have used clinical data have limited ability to control variation in the host, microbiome or *C. difficile* ribotype (23). Murine experiments typically use a single mouse colony and different *C. difficile* ribotypes to create severity differences (24). Recently, our group has begun

Deleted: class

Deleted: 91

Deleted: S2). The features with the greatest effect showed that communities with greater

Deleted: of bacteria belonging

Deleted: Bacilli and Firmicutes and reduced populations of Erysipelotrichia were more likely to result in

Deleted: Only one other class of bacteria was

Deleted: in

Deleted: mice, a group of unclassified Clostridia.

Deleted: genera

Deleted: S2). No genera had a significantly greater effect on the ...

Deleted: performance than any others, indicating the model was reliant on many genera for the correct prediction. The model used some of the genera

Deleted: in

Deleted: Coprobacillus, Anaerostipes,

Deleted: Communities with greater abundances of *Hungatella, Eggerthella, Bifidobacterium, Duncaniella* and *Neisseria* were more likely to have high histopathologic scores....

Deleted: 22

Deleted: 23

uncovering the effect microbiome variation has on C. difficile infection. We showed the

294	variation in the bacterial communities between mice from different mouse colonies	
295	resulted in different clearance rates of <i>C. difficile</i> (<u>16</u>). We also showed varied ability of	Deleted: 15
1 296	mice to spontaneously eliminate <i>C. difficile</i> infection when they were treated with different	
297	antibiotics prior to <i>C. difficile</i> challenge (25). Overall, the results presented here have	Deleted: 24
1 298	demonstrated that the gut bacterial community contributed to the severity of <i>C. difficile</i>	
299	infection.	
300	C. difficile can lead to asymptomatic colonization or infections with severity ranging from	
301	mild diarrhea to death. Physicians use classification tools to identify patients most at risk of	
302	developing a severe infection using white blood cell counts, serum albumin level, or serum	
303	creatinine level (2,26,27). Those levels are driven by the activities in the intestine (28).	Deleted: 25,
304	Research into the drivers of this variation have revealed factors that make <i>C. difficile</i> more	Deleted: 27
305	virulent. Strains are categorized for their virulence by the presence and production of the	
306	toxins TcdA, TcdB, and binary toxin and the prevalence in outbreaks, such as ribotypes 027	
307	and 078 (20, 29–32). However, other studies have shown that disease is not necessarily	Deleted: 19, 28-31
308	linked with toxin production (33) or the strain (34). Furthermore, there is variation in the	Deleted: 32
1 309	genome, growth rate, sporulation, germination, and toxin production in different isolates of	Deleted: 33
310	a strain (35–38). This variation may help explain why severe CDI prediction tools often	Deleted: 34–37
311	miss identifying many patients with CDI that will develop severe disease (3,24,39,40).	Deleted: 23, 38
1 312	Therefore, it is necessary to gain a full understanding of all factors contributing to disease	
313	variation to improve our ability to predict severity.	
314	The state of the gut bacterial community determines the ability of <i>C. difficile</i> to colonize and	
315	persist in the intestine. <i>C. difficile</i> is unable to colonize an unperturbed healthy murine gut	

325	community and is only able to become established after a perturbation (21). Once	Deleted: 20
326	colonized, the different communities lead to different metabolic responses and dynamics of	
327	the <i>C. difficile</i> population (<u>9, 25, 41</u>). Gut bacteria metabolize primary bile acids into	Deleted: 8, 24, 40
328	secondary bile acids (4, 42, 43). The concentration of these bile acids affects germination,	Deleted: 41
329	growth, toxin production and biofilm formation (10, 11, 44, 45). Members of the bacterial	Deleted: 9,
330	$community\ also\ affect\ other\ metabolites\ \textit{C.\ difficile}\ utilizes.\ \textit{Bacteroides\ theta iota omicron}$	Deleted: 43
331	produce sialidases which release sialic acid from the mucosa for <i>C. difficile</i> to utilize (46,	Deleted: 45,
332	47). The nutrient environment affects toxin production (48). Thus, many of the actions of	Deleted: 47
333	the gut bacteria modulate <i>C. difficile</i> in ways that could affect the infection and resultant	
334	disease.	
205		
335	A myriad of studies have explored the relationship between the microbiome and CDI	
336	disease. Studies examining difference in disease often use different <i>C. difficile</i> strains or	
337	ribotypes in mice with similar microbiota as a proxy for variation in disease, such as strain	
338	630 for non-severe and RT027 for severe (20, 29, 30, 49). Studies have also demonstrated	Deleted: 19, 28
339	variation in infection through tapering antibiotic dosage (21, 25, 50) or by reducing the	Deleted: 48
	variation in infection through tapering antibiotic dosage (21, 25, 30) or by reducing the	Deleted: 20, 24, 49
340	amount of <i>C. difficile</i> cells or spores used for the challenge (<u>20, 50</u>). These studies often	Deleted: 19, 49
341	either lack variation in the initial microbiome or have variation in the <i>C. difficile</i> infection	
342	itself, confounding any association between variation in severity and the microbiome.	
343	Recent studies have shown variation in the initial microbiome, via different murine	
344	colonies or colonizing germ-free mice with human feces, that were challenged with <i>C.</i>	
345	difficile resulted in varied outcomes of the infection (15, 16, 51).	Deleted: 14,

358 Our data have demonstrated gut bacterial relative abundances associate with variation in 359 toxin production, histopathologic scoring of the cecal tissue and mortality. This analysis 360 revealed populations of Akkermansia, <u>Anaerotignum, Blautia</u>, Enterocloster, Lactonifactor, 361 and Monoglobus were more abundant in the microbiome of non-moribund mice which had 362 low histopathologic scores and no detected toxin. The protective role of these bacteria are 363 supported by previous studies. Blautia, Lactonifactor, and Monoglobus have been shown to 364 be involved in dietary fiber fermentation and associated with healthy communities (52-365 54). Anaerotignum, which produce short chain fatty acids, has been associated with healthy 366 communities (55, 56), Akkermansia and Enterocloster were also identified as more 367 abundant in mice which had a low histopathologic scores but have contradictory 368 supporting evidence in the current literature. In our data, a population of Akkermansia. 369 OTU 5, was most abundant in the non-moribund mice with low histopathologic scores but 370 moribund mice had increased population of Akkermansia, OTU 8. This difference could 371 indicate either a more protective mucus layer was present inhibiting colonization (57, 58) 372 or mucus consumption by Akkermansia could have been crossfeeding C. difficile or exposing 373 a niche for C. difficile (59-61). Similarly, Enterocloster was more abundant and associated 374 with low histopathologic scores. It has been associated with healthy populations and has 375 been used to mono-colonize germ-free mice to reduce the ability of C. difficile to colonize 376 (62, 63). However, Enterocloster has also been involved in infections, such as bacteremia 377 (64, 65). These data have exemplified populations of bacteria that have the potential to be 378 either protective or harmful. Thus, the disease outcome is not likely based on the 379 abundance of individual populations of bacteria, rather it is the result of the interactions of 380 the community.

Deleted: Anaerostipes, Coprobacillus

Deleted: genera

Deleted: Coprobacillus

Deleted: 50-53). Anaerostipes and Coprobacillus

Deleted: have

Deleted: 54-

Deleted: Furthermore, *Coprobacillus*, which was abundant in mice with low histopathologic scores but rare in all other mice, has been shown to contain a putative type I lantibiotic gene cluster and inhibit *C. difficile* colonization (57–59).

Deleted: there were some

Deleted: which

Deleted: populations

Deleted: be attributed to

Deleted: 59, 60

Deleted: -63

Deleted: 64, 65

Deleted: 66, 67

400 The groups of bacteria that were associated with either a higher histopathologic score or 401 moribundity are members of the indigenous gut community that also have been associated 402 with disease, often referred to as opportunistic pathogens. Some of the populations of 403 <u>Bacteroides, Enterococcus, and Klebsiella</u> that associated with worse outcomes, have been 404 shown to have pathogenic potential, expand after antibiotic use, and are commonly 405 detected in CDI cases (66-69). In addition to these populations, Eggerthella, Prevotellaceae 406 and Helicobacter, which associated with worse outcomes, have also been associated with 407 intestinal inflammation (70-72). Recently, *Helicobacter hepaticus* was shown to be 408 sufficient to cause susceptibility to CDI in IL-10 deficient C57BL/6 mice (73). In our 409 experiments, when *Helicobacter* was present, the infection resulted in a high 410 histopathologic score (Figure 4C). While we did not use IL-10 deficient mice, it is possible 411 the bacterial community or host response are similarly modified by Helicobacter, allowing 412 C. difficile infection and host damage. These bacteria groups increased in severe outcomes 413 maintained their differences throughout the length of the experiment (Figure S4). These 414 <u>results agreed</u> Aside from *Helicobacter*, these groups of bacteria that associated with more 415 severe outcomes did not have a conserved association between their relative abundance 416 and the disease severity across all mice. 417 Since we observed groups of bacteria that were associated with less severe disease it may 418 be appropriate to apply the damage-response framework for microbial pathogenesis to CDI 419 (74, 75). This framework posits that disease is not driven by a single entity, rather it is an 420 emergent property of the responses of the host immune system, infecting microbe, C. 421 difficile, and the indigenous microbes at the site of infection. In the first set of experiments, 422 we used the same host background, C57BL/6 mice, the same infecting microbe, C. difficile

Deleted: Many

Deleted: with pathogenic potential

Deleted: are also facultative anaerobes. *Enterococcus, Klebsiella, Shigella/Escherichia, Staphylococcus,* and *Streptococcus...*

Deleted: (17, 68, 69)

Deleted: 70-73

Deleted: 74-76

Deleted: 77

Deleted: 78, 79

RT027 clinical isolate 431, with different gut bacterial communities. The bacterial groups in those communities were often present in both moribund and non-moribund and across the range of histopathologic scores. Thus, it was not merely the presence of the bacteria but their activity in response to the other microbes and host which affect the extent of the host damage. Additionally, while each mouse and C. difficile population had the same genetic background, they too were reacting to the specific microbial community. Different gut microbial communities can also have different effects on the host immune responses (76). Disease severity is driven by the cumulative effect of the host immune response and the activity of C. difficile and the gut bacteria. C. difficile drives host damage through the production of toxin. The gut microbiota can modulate host damage through the balance of metabolic and competitive interactions with C. difficile, such as bacteriocin production or mucin degradation, and interactions with the host, such as host mucus glycosylation or intestinal IL-33 expression (15, 77). For example, low levels of mucin degradation can provide nutrients to other community members producing a diverse non-damaging community (78). However, if mucin degradation becomes too great it reduces the protective function of the mucin layer and exposes the epithelial cells. This over-harvesting can contribute to the host damage due to other members producing toxin. Thus, the resultant intestinal damage is the balance of all activities in the gut environment. Host damage is the emergent property of numerous damage-response curves, such as one for host immune response, one for C. difficile activity and another for microbiome community activity, each of which are a composite curve of the individual activities from each group, such as antibody production, neutrophil infiltration, toxin production, sporulation, fiber and mucin degradation. Therefore, while we have identified populations of interest, it may

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

Deleted: 14, 80

458 be necessary to target multiple types of bacteria to reduce the community interactions 459 contributing to host damage. Here we have shown several bacterial groups and their relative abundances associated 460 461 with variation in CDI disease severity. Further understanding how the microbiome affects severity in patients could reduce the amount of adverse CDI outcomes. When a patient is 462 463 diagnosed with CDI, the gut community composition, in addition to the traditionally 464 obtained clinical information, may improve our severity prediction and guide prophylactic 465 treatment. Treating the microbiome at the time of diagnosis, in addition to C. difficile, may prevent the infection from becoming more severe. 466 467 **Materials and Methods** 468 Animal care. 6- to 13-week old male and female germ-free C57BL/6 were obtained from a 469 single breeding colony in the University of Michigan Germ-free Mouse Core. Mice (M1 n=3, 470 M2 n=3, M3 n=3, M4 n=3, M5 n=7, M6 n=3, N1 n=11, N2 n=7, N3 n=3, N4 n=3, N5 n=3, N6 471 n=3, N7 n=7, N8 n=3, N9 n=2) were housed in cages of 2-4 mice per cage and maintained in Deleted: , M1 n=3, M2 n=3, M3 n=3, M4 n=3, M5 n=7, M6 n=3.. 472 germ-free isolators at the University of Michigan germ-free facility. All mouse experiments 473 were approved by the University Committee on Use and Care of Animals at the University 474 of Michigan. 475 C. difficile experiments. Human fecal samples were obtained as part of Schubert et al. and 476 selected based on community clusters (18) to result in diverse community structures, Deleted: 17 Deleted: . 477 (Table S1). Feces were homogenized by mixing 200 mg of sample with 5 ml of PBS. Mice

were inoculated with 100 µl of the fecal homogenate via oral gavage. Two weeks after the

fecal community inoculation, mice were challenged with C. difficile. Stool samples from

478

484	each mouse were collected one day prior to <i>C. difficile</i> and plated for <i>C. difficile</i> enumeration	
485	to confirm no <i>C. difficile</i> was detected in stool prior to challenge. <i>C. difficile</i> clinical isolate	
4 86	431 came from Carlson <i>et al.</i> which had previously been isolated and characterized (35,36)	Deleted: 34,
4 87	and has recently been further characterized (37). Spores concentration were determined	Deleted: 36
4 88	both before and after challenge ($\frac{79}{}$). 10^3 <i>C. difficile</i> spores were given to each mouse via	Deleted: 82
1 489	oral gavage.	
490	Sample collection. Fecal samples were collected on the day of <i>C. difficile</i> challenge and the	
491	following 10 days. Each day, a fecal sample was collected and a portion was weighed for	
492	plating (approximately 30 mg) and the remaining sample was frozen at -20°C.	
493	Anaerobically, the weighed fecal samples were serially diluted in PBS, plated on TCCFA	
494	plates, and incubated at 37°C for 24 hours. The plates were then counted for the number of	
495	colony forming units (CFU) (80).	Deleted: 83
 496	DNA sequencing. From the frozen fecal samples, total bacterial DNA was extracted using	
497	MOBIO PowerSoil-htp 96-well soil DNA isolation kit. We amplified the 16S rRNA gene V4	
498	region and sequenced the resulting amplicons using an Illumina MiSeq as described	
499	previously (81).	Deleted: 84
500	Sequence curation. Sequences were processed with mothur(v.1.44.3) as previously	
501	described (81, 82). In short, we used a 3% dissimilarity cutoff to group sequences into	Deleted: 84, 85
502	operational taxonomic units (OTUs). We used a naive Bayesian classifier with the	
503	Ribosomal Database Project training set (version 18) to assign taxonomic classifications to	
504	each OTU (83). We sequenced a mock community of a known community composition and	Deleted: 86

512513	16s rRNA gene sequences. We processed this mock community with our samples to calculate the error rate for our sequence curation, which was an error rate of 0.19%.	
514	Toxin cytotoxicity assay. To prepare the sample for the activity assay, fecal material was	
515	diluted 1:10 weight per volume using sterile PBS and then filter sterilized through a 0.22-	
516	μ m filter. Toxin activity was assessed using a Vero cell rounding-based cytotoxicity assay as	
5 17	described previously (30). The cytotoxicity titer was determined for each sample as the last	Deleted: 29
 518	dilution, which resulted in at least 80% cell rounding. Toxin titers are reported as the log10	
519	of the reciprocal of the cytotoxicity titer.	
520	Histopathology evaluation. Mouse cecal tissue was placed in histopathology cassettes and	
521	fixed in 10% formalin, then stored in 70% ethanol. McClinchey Histology Labs,	
522	Inc. (Stockbridge, MI) embedded the samples in paraffin, sectioned, and created the	
523	hematoxylin and eosin-stained slides. The slides were scored using previously described	
524	criteria by a board-certified veterinary pathologist who was blinded to the experimental	
5 25	groups (30). Slides were scored as 0-4 for parameters of epithelial damage, tissue edema,	Deleted: 29
526	and inflammation and a summary score of 0-12 was generated by summing the three	
5 27	individual parameter scores. For non-moribund mice, histopathological summary scores	
528	used for LEfSe and logistic regression were split into high and low groups based on greater	
529	or less than the median summary score of 5 because the had a bimodal distribution (<i>P</i> <	
5 30	<u>0.05).</u>	
 531	Statistical analysis and modeling. To compare community structures, we calculated Yue	
532	and Clayton dissimilarity matrices (θ_{YC}) in mothur (84). For this calculation, we averaged of	Deleted: 87). We rarefied
533	1000 sub-samples, or rarified, samples to 2,107 sequence reads per sample to limit uneven	Deleted: sequences

sampling biases. We tested for differences in individual taxonomic groups that would explain the outcome differences with LEfSe (85) in mothur (default parameters, LDA > 4). We tested for differences in temporal trends through fitting a linear model to each OTU and testing for differences between histopathological summary scores with LEfSe (85) in mothur (default parameters, LDA > 3). Remaining statistical analysis and data visualization was performed in R (v4.0.5) with the tidyverse package (v1.3.1). We tested for significant differences in β -diversity (θ_{YC}), histopathological scores, and toxin activity using the Wilcoxon rank sum test, non-unimodality to non-moribund histopathological summary score using Hartigans' dip test, and toxin detection in mice using the Pearson's Chi-square test. We used Spearman's correlation to identify which OTUs that had a correlation between their relative abundance and the histopathologic summary score. P values were then corrected for multiple comparisons with a Benjamini and Hochberg adjustment for a type I error rate of 0.05 (86). We built 12 logistic regression models using the mikropml package (87). Sequence counts were summed by taxonomic ranks from day 0 samples. normalized by centering to the feature mean and scaling by the standard deviation, and features positively or negatively correlated were collapsed into a single feature. For each L2 logistic regression model, we ran 100 random iterations using values of 1e-0, 1e1, 1e2, 2e2, 3e2, 4e2, 5e2, 6e2, 7e2, 8e2, 9e2, 1e3, 1e4 for the L2 regularization penalty with a split of <u>80</u>% of the data <u>for training and 20</u>% of the data <u>for testing</u>. Lastly, we did not compare murine communities to donor community or clinical data because germ-free mice colonized with non-murine fecal communities have been shown to more closely resemble the murine communities than the donor species community (88). Furthermore, it is not our

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

Deleted: 88) in mothur.

Deleted:) using the Wilcoxon rank sum test.

Deleted: 89

Deleted: random forest

Deleted: 90) with relative abundance

Deleted: using mtry values of 1 through 10, 15, 20, 25, 40, 50, 100. The split for training and testing varied

Deleted: model

Deleted: avoid overfitting

Deleted: data. To determine

Deleted: optimal split

Deleted: tested splits (50%, 60%, 70%, 80%, 90% data

used for training) to find

Deleted: greatest portion

Deleted: data that could be used to train the model while still maintaining the same performance for the training model as the model with the held-out test data. The toxin and moribundity models were trained with 60

Deleted: . The histopathologic score model was trained

581	intention to make any inferences regarding human associated bacteria and their	
582	relationship with human CDI outcome.	
583	Code availability. Scripts necessary to reproduce our analysis and this paper are available	
584	in an online repository (https://github.com/SchlossLab/Lesniak_Severity_XXXX_2022).	
585	Sequence data accession number. All 16S rRNA gene sequence data and associated	
586	metadata are available through the Sequence Read Archive via accession PRJNA787941.	
587	Acknowledgements	
00,		
588	Thank you to Sarah Lucas and Sarah Tomkovich for critical discussion in the development	
589	and execution of this project. We also thank the University of Michigan Germ-free Mouse	
590	Core for assistance with our germfree mice, funded in part by U2CDK110768. This work	
591	was supported by several grants from the National Institutes for Health R01GM099514,	
592	U19AI090871, U01AI12455, and P30DK034933. Additionally, NAL was supported by the	
593	Molecular Mechanisms of Microbial Pathogenesis training grant (NIH T32 AI007528). The	
594	funding agencies had no role in study design, data collection and analysis, decision to	
595	publish, or preparation of the manuscript.	
596	Conceptualization: N.A.L., A.M.S., K.J.F., P.D.S.; Data curation: N.A.L., K.J.F.; Formal analysis:	Deleted:Page Break
597	N.A.L., K.J.F., J.L.L., I.L.B.; Investigation: N.A.L., A.M.S., H.S., I.L.B., V.B.Y., P.D.S.; Methodology:	
5 98	N.A.L., A.M.S., K.J.F., J.L.L., H.S., I.L.B., V.B.Y., P.D.S.; Resources: N.A.L., A.M.S., P.D.S.; Software:	
5 99	NAL; Visualization: N.A.L., K.J.F., P.D.S.; Writing - original draft: N.A.L.; Writing - review &	
600	editing: N.A.L., A.M.S., K.J.F., J.L.L., H.S., I.L.B., V.B.Y., P.D.S.; Funding acquisition: V.B.Y.;	
601	Project administration: P.D.S.; Supervision: P.D.S.	

604	References
605	1. Kelly CP , LaMont JT . 2008. <i>Clostridium difficile</i> more difficult than ever. New England
606	Journal of Medicine 359 :1932–1940. doi:10.1056/nejmra0707500.
607	2. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER,
608	Garey KW, Gould CV, Kelly C, Loo V, Sammons JS, Sandora TJ, Wilcox MH. 2018. Clinical
609	practice guidelines for Clostridium difficile infection in adults and children: 2017 update by
610	the infectious diseases society of america (IDSA) and society for healthcare epidemiology of
611	america (SHEA). Clinical Infectious Diseases 66 :e1–e48. doi:10.1093/cid/cix1085.
612	3. Perry DA, Shirley D, Micic D, Patel CP, Putler R, Menon A, Young VB, Rao K. 2021.
613	External validation and comparison of <i>Clostridioides difficile</i> severity scoring systems.
614	Clinical Infectious Diseases. doi:10.1093/cid/ciab737.
615	4. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H,
616	Kinnebrew M, Viale A, Littmann E, Brink MRM van den, Jenq RR, Taur Y, Sander C,
617	Cross JR, Toussaint NC, Xavier JB, Pamer EG. 2014. Precision microbiome reconstitution
618	restores bile acid mediated resistance to <i>Clostridium difficile</i> . Nature 517 :205–208.
619	doi:10.1038/nature13828.
620	5. Britton RA, Young VB. 2014. Role of the intestinal microbiota in resistance to
621	colonization by <i>Clostridium difficile</i> . Gastroenterology 146 :1547–1553.
622	doi:10.1053/j.gastro.2014.01.059.
623	€. Hryckowian AJ, Treuren WV, Smits SA, Davis NM, Gardner JO, Bouley DM,
624	Sonnenhurg II. 2018 Microbiota-accessible carbohydrates suppress Clostridium difficile

626	infection in a murine model. Nature Microbiology 3 :662–669. doi:10.1038/s41564-018-	
627	0150-6.	
628	Z. Vila AV, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, Mujagic Z, Jonkers	Deleted: 6
l 629	DMAE, Masclee AAM, Fu J, Kurilshikov A, Wijmenga C, Zhernakova A, Weersma RK.	
630	2020. Impact of commonly used drugs on the composition and metabolic function of the	
631	gut microbiota. Nature Communications 11 . doi:10.1038/s41467-019-14177-z.	
632	<u>8</u> . Abbas A, Zackular JP . 2020. Microbe-microbe interactions during <i>Clostridioides difficile</i>	Deleted: 7
633	infection. Current Opinion in Microbiology 53 :19–25. doi:10.1016/j.mib.2020.01.016.	
634	2. Jenior ML, Leslie JL, Young VB, Schloss PD. 2017. Clostridium difficile colonizes	Deleted: 8
635	alternative nutrient niches during infection across distinct murine gut microbiomes.	
636	mSystems 2. doi:10.1128/msystems.00063-17.	
637	10. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for <i>Clostridium</i>	Deleted: 9
638	difficile spores. Journal of Bacteriology 190 :2505–2512. doi:10.1128/jb.01765-07.	
639	11. Thanissery R, Winston JA, Theriot CM. 2017. Inhibition of spore germination, growth,	Deleted: 10
 640	and toxin activity of clinically relevant C. difficile strains by gut microbiota derived	
641	secondary bile acids. Anaerobe 45 :86–100. doi:10.1016/j.anaerobe.2017.03.004.	
642	12. Aguirre AM, Yalcinkaya N, Wu Q, Swennes A, Tessier ME, Roberts P, Miyajima F,	Deleted: 11
643	Savidge T, Sorg JA. 2021. Bile acid-independent protection against Clostridioides difficile	
644	infection. PLOS Pathogens 17:e1010015. doi:10.1371/journal.ppat.1010015.	
645	13. Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee I-K, Yun B-S, Matsuzaki K, Furukawa	Deleted: 12
 646	M , Min H-K , Bajaj JS , Zhou H , Hylemon PB . 2019. Bile acid 7α -dehydroxylating gut	
	22	

654	bacteria secrete antibiotics that inhibit <i>Clostridium difficile</i> : Role of secondary bile acids.
655	Cell Chemical Biology 26 :27–34.e4. doi:10.1016/j.chembiol.2018.10.003.
656	14. Leslie JL, Jenior ML, Vendrov KC, Standke AK, Barron MR, O'Brien TJ, Unverdorben Deleted: 13
657	L, Thaprawat P, Bergin IL, Schloss PD, Young VB. 2021. Protection from lethal
658	Clostridioides difficile infection via intraspecies competition for cogerminant. mBio 12.
659	doi:10.1128/mbio.00522-21.
660	15. Nagao-Kitamoto H, Leslie JL, Kitamoto S, Jin C, Thomsson KA, Gillilland MG, Kuffa Deleted: 14
661	P, Goto Y, Jenq RR, Ishii C, Hirayama A, Seekatz AM, Martens EC, Eaton KA, Kao JY,
662	Fukuda S, Higgins PDR, Karlsson NG, Young VB, Kamada N. 2020. Interleukin-22-
663	mediated host glycosylation prevents <i>Clostridioides difficile</i> infection by modulating the
664	metabolic activity of the gut microbiota. Nature Medicine 26 :608–617.
665	doi:10.1038/s41591-020-0764-0.
666	16. Tomkovich S, Stough JMA, Bishop L, Schloss PD. 2020. The initial gut microbiota and Deleted: 15
667	response to antibiotic perturbation influence <i>Clostridioides difficile</i> clearance in mice.
668	mSphere 5. doi:10.1128/msphere.00869-20.
١	
669	17. Nagpal R, Wang S, Woods LCS, Seshie O, Chung ST, Shively CA, Register TC, Craft S, Deleted: 16
670	McClain DA, Yadav H. 2018. Comparative microbiome signatures and short-chain fatty
671	acids in mouse, rat, non-human primate, and human feces. Frontiers in Microbiology 9 .
672	doi:10.3389/fmicb.2018.02897.
673	18. Schubert AM, Rogers MAM, Ring C, Mogle J, Petrosino JP, Young VB, Aronoff DM, Deleted: 17
 674	Schloss PD. 2014. Microbiome data distinguish patients with Clostridium difficile infection

680	and non- <i>C. difficile</i> -associated diarrhea from healthy controls. mBio 5 .	
681	doi:10.1128/mbio.01021-14.	
682	19. Gillilland MG, Erb-Downward JR, Bassis CM, Shen MC, Toews GB, Young VB,	Deleted: 18
 683	Huffnagle GB. 2012. Ecological succession of bacterial communities during	
684	conventionalization of germ-free mice. Applied and Environmental Microbiology 78 :2359–	
685	2366. doi:10.1128/aem.05239-11.	
686	20. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, Kelly CP.	Deleted: 19
 687	2008. A mouse model of <i>Clostridium difficile</i> -associated disease. Gastroenterology	
688	135 :1984–1992. doi:10.1053/j.gastro.2008.09.002.	
689	21. Schubert AM, Sinani H, Schloss PD. 2015. Antibiotic-induced alterations of the murine	Deleted: 20
 690	gut microbiota and subsequent effects on colonization resistance against <i>Clostridium</i>	
691	difficile. mBio 6. doi:10.1128/mbio.00974-15.	
692	22. Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL, Kuehne SA, Schwan	Deleted: 21
693	C, Eichhoff AM, Koch-Nolte F, Lyras D, Aktories K, Minton NP, Petri WA. 2016. The	
694	binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic	
695	eosinophilia. Nature Microbiology 1 . doi:10.1038/nmicrobiol.2016.108.	
696	23. Seekatz AM, Rao K, Santhosh K, Young VB. 2016. Dynamics of the fecal microbiome in	Deleted: 22
 697	patients with recurrent and nonrecurrent <i>Clostridium difficile</i> infection. Genome Medicine	
698	8 . doi:10.1186/s13073-016-0298-8.	
699	24. Dieterle MG, Putler R, Perry DA, Menon A, Abernathy-Close L, Perlman NS,	Deleted: 23
 700	Penkevich A, Standke A, Keidan M, Vendrov KC, Bergin IL, Young VB, Rao K. 2020.	
	24	

707	Systemic inflammatory mediators are effective biomarkers for predicting adverse	
708	outcomes in <i>Clostridioides difficile</i> infection. mBio 11 . doi:10.1128/mbio.00180-20.	
709	25. Lesniak NA, Schubert AM, Sinani H, Schloss PD. 2021. Clearance of <i>Clostridioides</i>	Deleted: 24
 710	difficile colonization is associated with antibiotic-specific bacterial changes. mSphere 6.	
711	doi:10.1128/msphere.01238-20.	
712	26. Lungulescu OA, Cao W, Gatskevich E, Tlhabano L, Stratidis JG. 2011. CSI: A severity	Deleted: 25
713	$index\ for\ {\it Clostridium\ difficile}\ infection\ at\ the\ time\ of\ admission.\ Journal\ of\ Hospital$	
714	Infection 79 :151–154. doi:10.1016/j.jhin.2011.04.017.	
715	27. Zar FA, Bakkanagari SR, Moorthi KMLST, Davis MB. 2007. A comparison of	Deleted: 26
1 716	vancomycin and metronidazole for the treatment of Clostridium difficile-associated	
717	diarrhea, stratified by disease severity. Clinical Infectious Diseases 45 :302–307.	
718	doi:10.1086/519265.	
719	28. Masi A di, Leboffe L, Polticelli F, Tonon F, Zennaro C, Caterino M, Stano P, Fischer S,	Deleted: 27
1 720	Hägele M, Müller M, Kleger A, Papatheodorou P, Nocca G, Arcovito A, Gori A, Ruoppolo	
721	M, Barth H, Petrosillo N, Ascenzi P, Bella SD. 2018. Human serum albumin is an essential	
722	component of the host defense mechanism against {\it Clostridium difficile} intoxication. The	
723	Journal of Infectious Diseases 218:1424–1435. doi:10.1093/infdis/jiy338.	
724	29. Abernathy-Close L, Dieterle MG, Vendrov KC, Bergin IL, Rao K, Young VB. 2020.	Deleted: 28
1 725	Aging dampens the intestinal innate immune response during severe Clostridioides difficile	
726	infection and is associated with altered cytokine levels and granulocyte mobilization.	
727	Infection and Immunity 88 . doi:10.1128/iai.00960-19.	
	25	

733	30. Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB. 2011.
1 734	Cefoperazone-treated mice as an experimental platform to assess differential virulence of
735	Clostridium difficile strains. Gut Microbes 2 :326–334. doi:10.4161/gmic.19142.
736	31. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff Deleted: 30
737	AA, Dekker FW, Kuijper EJ. 2008. Emergence of <i>Clostridium difficile</i> infection due to a new
738	hypervirulent strain, polymerase chain reaction ribotype 078. Clinical Infectious Diseases
739	47 :1162–1170. doi:10.1086/592257.
740	32. O'Connor JR, Johnson S, Gerding DN. 2009. Clostridium difficile infection caused by the
741	epidemic BI/NAP1/027 strain. Gastroenterology 136 :1913–1924.
742	doi:10.1053/j.gastro.2009.02.073.
743	33. Rao K, Micic D, Natarajan M, Winters S, Kiel MJ, Walk ST, Santhosh K, Mogle JA, Deleted: 32
744	Galecki AT, LeBar W, Higgins PDR, Young VB, Aronoff DM. 2015. Clostridium difficile
745	ribotype 027: Relationship to age, detectability of toxins A or B in stool with rapid testing,
746	severe infection, and mortality. Clinical Infectious Diseases 61 :233–241.
747	doi:10.1093/cid/civ254.
748	34. Walk ST, Micic D, Jain R, Lo ES, Trivedi I, Liu EW, Almassalha LM, Ewing SA, Ring C, Deleted: 33
749	Galecki AT, Rogers MAM, Washer L, Newton DW, Malani PN, Young VB, Aronoff DM.
750	2012. Clostridium difficile ribotype does not predict severe infection. Clinical Infectious
751	Diseases 55 :1661–1668. doi:10.1093/cid/cis786.
752	35. Carlson PE. Walk ST. Bourgis AET. Liu MW. Kopliku F. Lo E. Young VB. Aronoff DM. Deleted: 34
752	
753	Hanna PC. 2013. The relationship between phenotype, ribotype, and clinical disease in

760	human <i>Clostridium difficile</i> isolates. Anaerobe 24 :109–116.	
761	doi:10.1016/j.anaerobe.2013.04.003.	
762	36. Carlson PE, Kaiser AM, McColm SA, Bauer JM, Young VB, Aronoff DM, Hanna PC.	Deleted: 35
 763	2015. Variation in germination of <i>Clostridium difficile</i> clinical isolates correlates to disease	
764	severity. Anaerobe 33 :64–70. doi:10.1016/j.anaerobe.2015.02.003.	
765	37. Saund K, Pirani A, Lacy B, Hanna PC, Snitkin ES. 2021. Strain variation in	Deleted: 36
l 766	Clostridioides difficile toxin activity associated with genomic variation at both PaLoc and	
767	non-PaLoc loci. doi:10.1101/2021.12.08.471880.	
768	38. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, Holt KE, Seth-	Deleted: 37
l 769	Smith HMB, Quail MA, Rance R, Brooks K, Churcher C, Harris D, Bentley SD, Burrows	
770	C, Clark L, Corton C, Murray V, Rose G, Thurston S, Tonder A van, Walker D, Wren BW,	
771	Dougan G, Parkhill J. 2010. Evolutionary dynamics of Clostridium difficile over short and	
772	long time scales. Proceedings of the National Academy of Sciences 107:7527–7532.	
773	doi:10.1073/pnas.0914322107.	
774	39. Butt E, Foster JA, Keedwell E, Bell JE, Titball RW, Bhangu A, Michell SL, Sheridan R.	Deleted: 38
 775	2013. Derivation and validation of a simple, accurate and robust prediction rule for risk of	
776	mortality in patients with <i>Clostridium difficile</i> infection. BMC Infectious Diseases 13 .	
777	doi:10.1186/1471-2334-13-316.	
778	40. Beurden YH van, Hensgens MPM, Dekkers OM, Cessie SL, Mulder CJJ,	Deleted: 39
 779	Vandenbroucke-Grauls CMJE. 2017. External validation of three prediction tools for	
780	patients at risk of a complicated course of <i>Clostridium difficile</i> infection: Disappointing in an	
	27	

786	outbreak setting. Infection Control & Hospital Epidemiology 38 :897–905.	
787	doi:10.1017/ice.2017.89.	
788	41. Jenior ML, Leslie JL, Young VB, Schloss PD. 2018. Clostridium difficile alters the	Deleted: 40
 789	structure and metabolism of distinct cecal microbiomes during initial infection to promote	
790	sustained colonization. mSphere 3 . doi:10.1128/msphere.00261-18.	
791	42. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. 2016. Interaction of gut	Deleted: 41
 792	microbiota with bile acid metabolism and its influence on disease states. Applied	
793	Microbiology and Biotechnology 101 :47–64. doi:10.1007/s00253-016-8006-6.	
794	43. Long SL, Gahan CGM, Joyce SA. 2017. Interactions between gut bacteria and bile in	Deleted: 42
 795	health and disease. Molecular Aspects of Medicine 56 :54–65.	
796	doi:10.1016/j.mam.2017.06.002.	
797	44. Sorg JA, Sonenshein AL . 2010. Inhibiting the initiation of <i>Clostridium difficile</i> spore	Deleted: 43
 798	germination using analogs of chenodeoxycholic acid, a bile acid. Journal of Bacteriology	
799	192 :4983–4990. doi:10.1128/jb.00610-10.	
\$ 00	45. Dubois T, Tremblay YDN, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M,	Deleted: 44
 801	Briandet R, Dupuy B. 2019. A microbiota-generated bile salt induces biofilm formation in	
802	Clostridium difficile. npj Biofilms and Microbiomes 5. doi:10.1038/s41522-019-0087-4.	
803	46. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N,	Deleted: 45
 804	Choudhury B, Weimer BC, Monack DM, Sonnenburg JL. 2013. Microbiota-liberated host	
805	sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502 :96–99.	
806	doi:10.1038/nature12503.	
	28	

813	47. Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. 2014.	1: 46
814	4 Gut microbiota-produced succinate promotes <i>C. difficile</i> infection after antibiotic treatment	
815	or motility disturbance. Cell Host & Microbe 16 :770–777. doi:10.1016/j.chom.2014.11.003.	
\$ 16	6 48. Martin-Verstraete I, Peltier J, Dupuy B. 2016. The regulatory networks that control	l: 47
 817	7 Clostridium difficile toxin synthesis. Toxins 8 :153. doi:10.3390/toxins8050153.	
818	8 <u>49</u> . Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad	l: 48
819	R, Schreiber F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill	
820	J, Dougan G. 2012. Targeted restoration of the intestinal microbiota with a simple, defined	
821	bacteriotherapy resolves relapsing <i>Clostridium difficile</i> disease in mice. PLoS Pathogens	
822	8:e1002995. doi:10.1371/journal.ppat.1002995.	
823	3 50. Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB. 2011. The	l: 49
 824		
825		
L		
826	51. Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till	
827	LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi DS, Grover M,	
828	Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G, Kashyap PC, 2018. Clostridioides Moved	(insertion) [1]
829	9 <u>difficile</u> uses amino acids associated with gut microbial dysbiosis in a subset of patients	
830	with diarrhea. Science Translational Medicine 10 . doi:10.1126/scitranslmed.aam7019.	
831	1 52. Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. 2021. <i>Blautia</i> — a Moved	(insertion) [2]
832	2 <u>new functional genus with potential probiotic properties? Gut Microbes 13.</u>	1: 50
833	3 <u>doi:10.1080/19490976.2021.1875796.</u>	

839	53. Mabrok HB, Klopfleisch R, Ghanem KZ, Clavel T, Blaut M, Loh G. 2011. Lignan
840	transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast
841	cancer. Carcinogenesis 33:203–208. doi:10.1093/carcin/bgr256.
842	54. Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ,
843	Hedderley D, Henrissat B, Rosendale DI. 2019. Genomic insights from Monoglobus
844	$pectinily ticus: A\ pectin-degrading\ specialist\ bacterium\ in\ the\ human\ colon.\ The\ ISME$
845	Journal 13 :1437–1456. doi:10.1038/s41396-019-0363-6.
846	55. Choi S-H, Kim J-S, Park J-E, Lee KC, Eom MK, Oh BS, Yu SY, Kang SW, Han K-I, Suh
847	MK, Lee DH, Yoon H, Kim B-Y, Lee JH, Lee JH, Lee J-S, Park S-H, 2019. Anaerotignum
848	faecicola sp. Nov., isolated from human faeces. Journal of Microbiology 57:1073–1078.
849	doi:10.1007/s12275-019-9268-3
850	56. Ueki A, Goto K, Ohtaki Y, Kaku N, Ueki K. 2017. Description of Anaerotignum
851	aminivorans gen. Nov., sp. Nov., a strictly anaerobic, amino-acid-decomposing bacterium
852	isolated from a methanogenic reactor, and reclassification of Clostridium propionicum,
853	Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus
854	anaerotignum. International Journal of Systematic and Evolutionary Microbiology
855	67:4146-4153. doi:10.1099/ijsem.0.002268.
856	57 _e Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, Sander C, Xavier JB.
857	2013. E cological modeling from time-series inference: In sight into dynamics and stability of and color from color from
858	intestinal microbiota. PLoS Computational Biology 9 :e1003388.
859	doi:10.1371/journal.pcbi.1003388.

Deleteu: 51
Moved (insertion) [3]
Moved (insertion) [4]
Moved (insertion) [5]
Deleted: 52. Prado SBR do, Minguzzi BT, Hoffmann C, Fabi JP.
Moved up [2]: 2021.
Moved up [3]: 2019.
Moved up [4]: .¶ 56.
Moved up [1]: . 2018.
Moved up [5]: 2017.
Deleted: Modulation of human gut microbiota by dietary fibers from unripe and ripe papayas: Distinct polysaccharide degradation using a colonic in vitro fermentation model. Food Chemistry 348:129071. doi:10.1016/j.foodchem.2021.129071. 53. Muthuramalingam K, Singh V, Choi C, Choi SI, Kim YM, Unno T, Cho M.
Deleted: Dietary intervention using $(1,3)/(1,6)$ - $β$ -glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. European Journal of Nutrition 59 :2617–2629. doi:10.1007/s00394019-02110-5.¶
54. Han S-H, Yi J, Kim J-H, Lee S, Moon H-W. 2019. Composition of gut microbiota in patients with toxigenic Clostridioides (Clostridium) difficile: Comparison between subgroups according to clinical criteria and toxin gene load. PLOS ONE 14:e0212626. doi:10.1371/journal.pone.0212626.¶ 55. Duncan SH, Louis P, Flint HJ. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70:5810–5817.
doi:10.1128/aem.70.10.5810-5817.2004
Deleted: Ye J, Lv L, Wu W, Li Y, Shi D, Fang D, Guo F, Jiang H, Yan R, Ye W, Li L
Deleted: Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Frontiers in Microbiology 9. doi:10.3389/fmicb.2018.01967.¶ 57. Walsh CJ, Guinane CM, O'Toole PW, Cotter PD.
Deleted: A profile hidden markov model to investigate the distribution and frequency of LanB-encoding lantibiotic modification genes in the human oral and gut microbiome. PeerJ 5:e3254. doi:10.7717/peerj.3254.¶ 58. Sandiford SK. 2018. Current developments in lantibiotic discovery for treating <i>Clostridium difficile</i> infection. Expert Opinion on Drug Discovery 14:71–79. doi:10.1080/17460441.2019.1549032.¶ 59

h.,	TO N. I. I. T. D. W. Y. G. I. T. A. W. A.	
911	<u>58</u> . Nakashima T, Fujii K, Seki T, Aoyama M, Azuma A, Kawasome H. 2021. Novel gut	Deleted: 60
912	microbiota modulator, which markedly increases Akkermansia muciniphila occupancy,	
913	ameliorates experimental colitis in rats. Digestive Diseases and Sciences.	
914	doi:10.1007/s10620-021-07131-x.	
915	59. Geerlings S, Kostopoulos I, Vos W de, Belzer C. 2018. Akkermansia muciniphila in the	Deleted: 61
 916	human gastrointestinal tract: When, where, and how? Microorganisms 6 :75.	
917	doi:10.3390/microorganisms6030075.	
918	<u>60</u> . Deng H, Yang S, Zhang Y, Qian K, Zhang Z, Liu Y, Wang Y, Bai Y, Fan H, Zhao X, Zhi F.	Deleted: 62
919	2018. Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by	
920	restoring gut barrier and microbiome regulation. Frontiers in Microbiology ${\bf 9}.$	
921	doi:10.3389/fmicb.2018.02976.	
922	61. Engevik MA. Engevik AC. Engevik KA. Auchtung IM. Chang-Graham AL. Ruan W.	Deleted: 63
922	61. Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W,	Deleted: 63
 923	Luna RA, Hyser JM, Spinler JK, Versalovic J. 2020. Mucin-degrading microbes release	Deleted: 63
923 924	Luna RA , Hyser JM , Spinler JK , Versalovic J . 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the	Deleted: 63
 923	Luna RA, Hyser JM, Spinler JK, Versalovic J. 2020. Mucin-degrading microbes release	Deleted: 63
923 924	Luna RA , Hyser JM , Spinler JK , Versalovic J . 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the	Deleted: 63
923 924 925	Luna RA , Hyser JM , Spinler JK , Versalovic J . 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the human intestinal mucus layer. ACS Infectious Diseases 7 :1126–1142.	Deleted: 63 Deleted: 64
923 924 925 926	Luna RA , Hyser JM , Spinler JK , Versalovic J . 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the human intestinal mucus layer. ACS Infectious Diseases 7 :1126–1142. doi:10.1021/acsinfecdis.0c00634.	
923 924 925 926	Luna RA, Hyser JM, Spinler JK, Versalovic J. 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the human intestinal mucus layer. ACS Infectious Diseases 7:1126–1142. doi:10.1021/acsinfecdis.0c00634. 62. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. 2012. Suppression of <i>Clostridium</i>	
923 924 925 926 927 928	Luna RA, Hyser JM, Spinler JK, Versalovic J. 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the human intestinal mucus layer. ACS Infectious Diseases 7:1126–1142. doi:10.1021/acsinfecdis.0c00634. 62. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. 2012. Suppression of <i>Clostridium difficile</i> in the gastrointestinal tracts of germfree mice inoculated with a murine isolate	
923 924 925 926 927 928 929	Luna RA, Hyser JM, Spinler JK, Versalovic J. 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the human intestinal mucus layer. ACS Infectious Diseases 7:1126–1142. doi:10.1021/acsinfecdis.0c00634. 62. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. 2012. Suppression of <i>Clostridium difficile</i> in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family <i>Lachnospiraceae</i> . Infection and Immunity 80:3786–3794.	
923 924 925 926 927 928 929	Luna RA, Hyser JM, Spinler JK, Versalovic J. 2020. Mucin-degrading microbes release monosaccharides that chemoattract <i>Clostridioides difficile</i> and facilitate colonization of the human intestinal mucus layer. ACS Infectious Diseases 7:1126–1142. doi:10.1021/acsinfecdis.0c00634. 62. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. 2012. Suppression of <i>Clostridium difficile</i> in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family <i>Lachnospiraceae</i> . Infection and Immunity 80:3786–3794.	

936	63. Ma L, Keng J, Cheng M, Pan H, Feng B, Hu Y, Feng T, Yang F. 2021. Gut microbiome		Deleted: 65
937	and serum metabolome alterations associated with isolated dystonia. mSphere 6 .		
938	doi:10.1128/msphere.00283-21.		
939	64. Haas KN, Blanchard JL. 2020. Reclassification of the Clostridium clostridioforme and	***************************************	Deleted: 66
940	Clostridium sphenoides clades as Enterocloster gen. nov. And Lacrimispora gen. nov.,		
941	Including reclassification of 15 taxa. International Journal of Systematic and Evolutionary		
942	Microbiology 70 :23–34. doi:10.1099/ijsem.0.003698.		
943	65. Finegold SM, Song Y, Liu C, Hecht DW, Summanen P, Könönen E, Allen SD. 2005.		Deleted: 67
 944	Clostridium clostridioforme: A mixture of three clinically important species. European		
945	Journal of Clinical Microbiology & Infectious Diseases 24:319–324. doi:10.1007/s10096-		
946	005-1334-6.		
947	66. Tomkovich S, Taylor A, King J, Colovas J, Bishop L, McBride K, Royzenblat S,	***************************************	Deleted: 68. VanInsberghe D, Elsherbini JA, Varian B, Poutahidis T, Erdman S, Polz MF
948	Lesniak NA, Bergin IL, Schloss PD. 2021. An osmotic laxative renders mice susceptible to		
949	prolonged Clostridioides difficile colonization and hinders clearance. mSphere 6.		
950	doi:10.1128/msphere.00629-21.		Moved down [6]: . 2020.
951	67, Keith JW, Dong Q, Sorbara MT, Becattini S, Sia JK, Gjonbalaj M, Seok R, Leiner IM,		Deleted: Diarrhoeal events can trigger long-term Clostridium difficile colonization with recurrent blooms. Nature Microbiology 5:642–650. doi:10.1038/s41564- 020-0668-2.¶
952	Littmann ER, Pamer EG. 2020. Impact of antibiotic-resistant bacteria on immune		69. Garza-González E, Mendoza-Olazarán S, Morfin- Otero R, Ramírez-Fontes A, Rodríguez-Zulueta P,
953	activation and Clostridioides difficile infection in the mouse intestine. Infection and		Flores-Treviño S, Bocanegra-Ibarias P, Maldonado- Garza H, Camacho-Ortiz A. 2019. Intestinal microbiome changes in fecal microbiota transplant (FMT) vs. FMT
954	Immunity 88 . doi:10.1128/iai.00362-19.		enriched with <i>Lactobacillus</i> in the treatment of recurrent <i>Clostridioides difficile</i> infection. Canadian Journal of Gastroenterology and Hepatology 2019 :1–7. doi:10.1155/2019/4549298.¶
955	<u>68</u> . Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD,		70. Shafiq M, Alturkmani H, Zafar Y, Mittal V, Lodhi H, Ullah W, Brewer J. 2020. Effects of co-infection on the
 956	Semler MW, Zhang Y, Ware LB, Washington MK, Chazin WJ, Caprioli RM, Skaar EP.		clinical outcomes of <i>Clostridium difficile</i> infection. Gut Pathogens 12 . doi:10.1186/s13099-020-00348-7.¶ 71
		1	Deleted: 72

982	2016. Dietary zinc alters the microbiota and decreases resistance to <i>Clostridium difficile</i>	
983	infection. Nature Medicine 22 :1330–1334. doi:10.1038/nm.4174.	
984	69. Berkell M, Mysara M, Xavier BB, Werkhoven CH van, Monsieurs P, Lammens C,	Deleted: 73
l 985	Ducher A, Vehreschild MJGT, Goossens H, Gunzburg J de, Bonten MJM, Malhotra-	
986	Kumar S. 2021. Microbiota-based markers predictive of development of Clostridioides	
987	difficile infection. Nature Communications 12 . doi:10.1038/s41467-021-22302-0.	
988	70. Gardiner BJ, Tai AY, Kotsanas D, Francis MJ, Roberts SA, Ballard SA, Junckerstorff	Deleted: 74
 989	RK, Korman TM. 2014. Clinical and microbiological characteristics of Eggerthella lenta	
990	bacteremia. Journal of Clinical Microbiology 53 :626–635. doi:10.1128/jcm.02926-14.	
991	71. Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A, Amend L, Will SE,	Deleted: 75
992		
	Hofmann JD, Pils MC, Schmidt-Hohagen K, Neumann-Schaal M, Strowig T. 2020.	
993	Perturbation of the gut microbiome by <i>Prevotella</i> spp. enhances host susceptibility to	
994	mucosal inflammation. Mucosal Immunology 14 :113–124. doi:10.1038/s41385-020-0296-	
995	4.	
996	72. Nagalingam NA, Robinson CJ, Bergin IL, Eaton KA, Huffnagle GB, Young VB. 2013.	Deleted: 76
 997	The effects of intestinal microbial community structure on disease manifestation in IL-	
998	$10^{-/-}$ mice infected with <i>Helicobacter hepaticus</i> . Microbiome 1 . doi:10.1186/2049-2618-1-	
999	15.	
1000	73. Abernathy-Close L, Barron MR, George JM, Dieterle MG, Vendrov KC, Bergin IL,	Deleted: 77
1001	Young VB. 2021. Intestinal inflammation and altered gut microbiota associated with	

1007	inflammatory bowel disease render mice susceptible to Clostridioides difficile colonization	
1008	and infection. mBio. doi:10.1128/mbio.02733-20.	
1009	74. Pirofski L-a, Casadevall A. 2008. The damage-response framework of microbial	Deleted: 78
 1010	pathogenesis and infectious diseases, pp. 135–146. <i>In</i> Advances in experimental medicine	
1011	and biology. Springer New York.	
1012	<u>75</u> . Casadevall A, Pirofski L-a . 2014. What is a host? Incorporating the microbiota into the	Deleted: 79
 1013	damage-response framework. Infection and Immunity 83 :2–7. doi:10.1128/iai.02627-14.	
1014	76. Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, Hansen AK.	Moved (insertion) [6]
1015	2020. Human microbiota-transplanted C57BL/6 mice and offspring display reduced	Deleted: 80
1016	establishment of key bacteria and reduced immune stimulation compared to mouse	
1017	microbiota-transplantation. Scientific Reports 10 . doi:10.1038/s41598-020-64703-z.	
1018	77. Frisbee AL, Saleh MM, Young MK, Leslie JL, Simpson ME, Abhyankar MM, Cowardin	
 1019	CA, Ma JZ, Pramoonjago P, Turner SD, Liou AP, Buonomo EL, Petri WA. 2019. IL-33	
1020	drives group 2 innate lymphoid cell-mediated protection during <i>Clostridium difficile</i>	
1021	infection. Nature Communications 10 . doi:10.1038/s41467-019-10733-9.	
1022	78. Tailford LE, Crost EH, Kavanaugh D, Juge N. 2015. Mucin glycan foraging in the	Deleted: 81
 1023	human gut microbiome. Frontiers in Genetics 6 . doi:10.3389/fgene.2015.00081.	
1024	<u>79</u> . Sorg JA , Dineen SS . 2009. Laboratory maintenance of <i>Clostridium difficile</i> . Current	Deleted: 82
1025	Protocols in Microbiology 12 . doi:10.1002/9780471729259.mc09a01s12.	

1031	80. Winston JA, Thanissery R, Montgomery SA, Theriot CM. 2016. Cefoperazone-treated	Deleted: 83
 1032	mouse model of clinically-relevant <i>Clostridium difficile</i> strain R20291. Journal of Visualized	
1033	Experiments. doi:10.3791/54850.	
1034	81. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of	Deleted: 84
1035	a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence	
1036	data on the MiSeq illumina sequencing platform. Applied and Environmental Microbiology	
1037	79 :5112–5120. doi:10.1128/aem.01043-13.	
•		
1038	82. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski	Deleted: 85
1039	RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV,	
1040	Weber CF. 2009. Introducing mothur: Open-source, platform-independent, community-	
1041	supported software for describing and comparing microbial communities. Applied and	
1042	Environmental Microbiology 75 :7537–7541. doi:10.1128/aem.01541-09.	
1043	83. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve bayesian classifier for rapid	Deleted: 86
	wang Q, darriey din, riedje jin, cole jie. 2007. Naive bayesian classiner for rapid	Deletta. 00
1044	assignment of rRNA sequences into the new bacterial taxonomy. Applied and	
1045	Environmental Microbiology 73 :5261–5267. doi:10.1128/aem.00062-07.	
1046	84. Yue JC, Clayton MK. 2005. A similarity measure based on species proportions.	Deleted: 87
 1047	Communications in Statistics - Theory and Methods 34 :2123–2131. doi:10.1080/sta-	
1048	200066418.	
1010	20000110.	
1049	<u>85</u> . Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C.	Deleted: 88
1050	2011. Metagenomic biomarker discovery and explanation. Genome Biology 12 :R60.	
1051	doi:10.1186/gb-2011-12-6-r60.	

1058	86. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and	Deleted: 89
 1059	powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B	
1060	(Methodological) 57 :289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.	
1061	<u>87</u> . Topçuoğlu B, Lapp Z, Sovacool K, Snitkin E, Wiens J, Schloss P . 2021. Mikropml:	Deleted: 90
1062	User-friendly R package for supervised machine learning pipelines. Journal of Open Source	
1063	Software 6 :3073. doi:10.21105/joss.03073.	
1064	88. Rawls JF, Mahowald MA, Ley RE, Gordon JI. 2006. Reciprocal gut microbiota	Deleted: 91
 1065	transplants from zebrafish and mice to germ-free recipients reveal host habitat selection.	
1066	Cell 127 :423–433. doi:10.1016/j.cell.2006.08.043.	
1067		
1007		

Figure 1. Human fecal microbial communities established diverse gut bacterial communities in germ-free mice. (A) Relative abundances of the 10 most abundant bacterial classes observed in the feces of previously germ-free C57Bl/6 mice 14 days post-colonization with human fecal samples (i.e., day 0 relative to *C. difficile* challenge). Each column of abundances represents an individual mouse. Mice that received the same donor feces are grouped together and labeled above with a letter (N for non-moribund mice and M for moribund mice) and number (ordered by mean histopathologic score of the donor group). + indicates the mice which did not have detectable *C. difficile* CFU (Figure 2). (B) Median (points) and interquartile range (lines) of β -diversity (θ_{YC}) between an individual mouse and either all others which were inoculated with feces from the same donor or from a different donor. The β -diversity among the same donor comparison group was significantly less than the β -diversity of either the different donor group or the donor community (P < 0.05, calculated by Wilcoxon rank sum test).

Figure 2. All donor groups resulted in C. difficile infection but with different

outcomes. *C. difficile* CFU per gram of stool was measured the day after challenge with 10³ *C. difficile* RT027 clinical isolate 431 spores and at the end of the experiment, 10 days post-challenge. Each point represents an individual mouse. Mice are grouped by donor and labeled by the donor letter (N for non-moribund mice and M for moribund mice) and number (ordered by mean histopathologic score of the donor group). Points are colored by donor group. Mice from donor groups N1 through N6 succumbed to the infection prior to day 10 and were not plated on day 10 post-challenge. LOD = Limit of detection. <u>-Deceased-indicates mice were deceased at that time point so no sample was available.</u>

1097 Figure 3. Histopathologic score and toxin activity varied across donor groups. (A) 1098 Fecal toxin activity was detected in some mice post *C. difficile* challenge in both moribund 1099 and non-moribund mice. (B) Cecum scored for histopathologic damage from mice at the 1100 end of the experiment. Samples were collected for histopathologic scoring on day 10 post-1101 challenge for non-moribund mice or the day the mouse succumbed to the infection for the 1102 moribund group (day 2 or 3 post-challenge). Each point represents an individual mouse. 1103 Mice are grouped by donor and labeled by the donor letter (N for non-moribund mice and 1104 M for moribund mice) and number (ordered by mean histopathologic score of the donor 1105 group). Points are colored by donor group. Mice in group N1 that have a summary score of 1106 0 are the mice which did not have detectable C. difficile CFU (Figure 2). Missing points are 1107 from mice that had insufficient fecal sample collected for assaying toxin or cecum for 1108 histopathologic scoring. * indicates significant difference between non-moribund and moribund groups of mice by Wilcoxon test (P < 0.002). LOD = Limit of detection. -Deceased-1109 1110 indicates mice were deceased at that time point so no sample was available. 1111 Figure 4. Individual fecal bacterial community members of the murine gut associated 1112 with *C.difficile* infection outcomes. (A and B) Relative abundance of <u>OTUs</u> at the time of 1113 C. difficile challenge (Day 0) that varied significantly by the moribundity and 1114 histopathologic summary score or detected toxin by LEfSe analysis. Median (points) and 1115 interquartile range (lines) are plotted. (A) Day 0 relative abundances were compared 1116 across infection outcome of moribund (colored black) or non-moribund with either a high 1117 histopathologic score (score greater than the median score of 5, colored green) or a low 1118 histopathologic summary score (score less than the median score of 5, colored light green). 1119 (B) <u>Day 0 relative</u> abundances were compared between mice which toxin activity was

Α

1176 detected (Toxin +, colored dark purple) and which no toxin activity was detected (Toxin -, 1177 colored light purple). (C) <u>Day 10</u> bacterial <u>OTU relative abundances</u> correlated with 1178 histopathologic summary score. Each individual mouse is plotted and colored according to 1179 their categorization in panel A. Points at the median score of 5 (gray points) were not 1180 included in panel A. Spearman's correlations were statistically significant after Benjamini-1181 Hochberg correction for multiple comparisons. All bacterial groups are ordered by the LDA 1182 score. * indicates that the bacterial group was unclassified at lower taxonomic classification 1183 ranks. 1184 Figure 5. Fecal bacterial community members of the murine gut at the time of C. 1185 difficile infection predicted outcomes of the infection. On the day of infection (Day 0), 1186 bacterial community members grouped by different classification rank were modeled with 1187 <u>Jogistic regression</u> to predict the infection outcome. The models used the highest taxonomic 1188 classification rank without a decrease in performance. Models used all community members but plotted are those members with a mean odds ratio not equal to 1. Median 1189 1190 (solid points) and interquartile range (lines) of the group relative abundance are plotted. 1191 Bacterial groups are ordered by their <u>odds ratio</u>. * indicates that the bacterial group was 1192 unclassified at lower taxonomic classification ranks. (A) Bacterial members grouped by 1193 genus predicted which mice would have toxin activity detected at any point throughout the 1194 infection (Toxin +, dark purple). (B) Bacterial members grouped by order predicted which 1195 mice would become moribund (dark blue). (C) Bacterial members grouped by OTU 1196 predicted if the mice would have a high (score greater than the median score of 5, colored 1197 dark green) or low (score less than the median score of 5, colored light green) histopathologic summary score. 1198

Deleted: Endpoint...ay 10 bacterial OTUs...TU relative abundances correlated with histopathologic summary score. Each individual mouse is plotted (transparent ...nd colored according to their categorization in panel A. Points at the median score of 5 (gray point)....oints) were not included in panel A. Spearman's correlations were statistically significant after Benjamini-Hochberg correction for multiple comparisons. All bacterial groups are ordered alphabetically.

Deleted:

1237 distribution of number of either non-moribund or moribund mice which toxin was 1238 detected in the first three days post infection. Bars are colored by whether toxin was 1239 detected in stool from the mouse (dark purple) or not (light purple). Moribund mice had 1240 significantly more mice with toxin detected (P < 0.008) by Pearson's Chi-square test. 1241 Figure S2. Histopathologic score of tissue damage at the endpoint of the infection. 1242 Tissue collected at the endpoint, either day 10 post-challenge (Non-moribund) or day mice 1243 succumbed to infection (Moribund), were scored from histopathologic damage. Each point 1244 represents an individual mouse. Mice (points) are grouped and colored by their human 1245 fecal community donor. Missing points are from mice that had insufficient sample for 1246 histopathologic scoring. * indicates significant difference between non-moribund and 1247 moribund groups of mice by Wilcoxon test (P < 0.002). Figure S3. Logistic regression models predicted outcomes of the C. difficile challenge. 1248 1249 (A-C) Taxonomic classification rank model performance. Relative abundance at the time of 1250 C. difficile challenge (Day 0) of the bacterial community members grouped by different 1251 classification rank were modeled with random forest to predict the infection outcome. The 1252 models used the highest taxonomic classification rank performed as well as the lower 1253 ranks. Black rectangle highlights classification rank used to model each outcome. For all 1254 plots, median (large solid points), interquartile range (lines), and individual models (small 1255 transparent points) are plotted. (A) Toxin production modeled which mice would have 1256 toxin detected during the experiment. (B) Moribundity modeled which mice would 1257 succumb to the infection prior to day 10 post-challenge. (C) Histopathologic score modeled

Figure S1. Toxin detect in mice based on outcome of the infection. Comparison of the

1294 which mice would have a high (score greater than the median score of 5) or low (score less 1295 than the median score of 5) histopathologic summary score, 1296 Figure S4. Temporal dynamics of OTUs that differed between histopathologic 1297 summary score. Relative abundance of OTUs on each day relative to the time of C. difficile 1298 challenge (Day 0) that have a significantly different temporal trend by the histopathologic 1299 summary score by LEfSe analysis. Median (points) and interquartile range (lines) are 1300 plotted. Points and lines are colored by infection outcome of moribund (colored black) or 1301 non-moribund with either a high histopathologic score (score greater than the median 1302 score of 5, colored green) or a low histopathologic summary score (score less than the 1303 median score of 5, colored light green).

Deleted: (D) Bacterial phyla which affected the performance of predicting detectable toxin activity when permuted. (E) Bacterial classes which affected the performance of predicting moribundity when permuted. (D) Bacterial genera which affected the performance of predicting histopathologic score when permuted.

Page 38: [1] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
Page 38: [1] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
Page 38: [2] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
Page 38: [2] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
Page 38: [2] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
V	Lesniak, Nicholas	4/25/22 3:05:00 PM	
Page 38: [2] Deleted	,		
Page 39: [3] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	

₹..

Page 39: [3] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM

▼.....

	Page 39: [3] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
--	----------------------	-------------------	--------------------	--

▼.....

Page 39: [3] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	

▼.....

Page 39: [3] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
			•

₹.

Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
V	,	
Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
Page 39: [4] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM
Page 40: [5] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM

₹...

	Page 40: [6] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
	▼			
	Page 40: [6] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
	▼			
	Page 40: [6] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
	▼			
	Page 40: [6] Deleted	Lesniak, Nicholas	4/25/22 3:05:00 PM	
1	▼			