

一个极度混乱的 Hopf 纤维预习笔记

7月前

🐔 Yuanjue Chou 1楼 2021年8月6日

周六晚 7:00,将由 D.C.A.A 同志在@Geek学院 进行一场关于同伦群和 Hopf 纤维的沙龙。沙 龙将在群电话进行, 欢迎各位入群围观!

以下为本人为此次沙龙做的预习笔记,旨在向一些认为自己不能听沙龙的同学介绍一些基础的 前置知识。笔记的内容并非重点,简单了解需要掌握什么内容即可。由于是赶时间的产物,会 有很多杂七杂八的错误,欢迎补充和指正。

Il nous montre une correspondance subtile et fine, comme venue du vide.

Yuaniue Chou 2楼 2021年8月6日

1.群作用

以下内容摘自鄙人的抽代笔记,有少数更改,可能存在一定错误。写群作用原因在于同伦群介 绍中可能存在群作用相关内容,比如 $\pi_1(A,x_0)$ 作用于 $\pi_n(X,A,x_0)$

群作用 (group action) 是一个初等的课题。群作用的概念是将抽象代数联系到数学的几乎每一 个分支的概念,其出现在诸如几何、线代和微分方程等分支中。

在此我们需要把一个群看作一个集合的一组置换。之前接触过的最明显的例子是置换群 S_n , 它包括 $\{1,2,\ldots,n\}$ 的所有置换。这个方法的一个重要的一般例子是 Cayley 定理,它说每个 有限群 G 同构于 S_G 的一个子群,即群本身元素集合的置换。在 Cayley 定理的证明中(参见 教材),我们发现了一个同构,它将G的每个元素自然地映射为G的元素的一个置换。(即 使规模相对较小的 G , S_G 也可能很大。) 若 |G|=n , 易得 $S_X\cong S_n$

下面我们将看到,从 Cayley 定理的证明中得到的这一映射绝不是一个群作为某种集合的一组 置换实现的唯一途径。

定义1.1

如果存在同态 $\varphi:G \to S_X$,则称 G 作用于 X .

另外一个常见的说法是:

设 X 是集合,G 是群,则 G 在 X 上的右群作用是一个函数 $\alpha: X \times G \to X, (x,g) \mapsto x \cdot g$,满足:

- (i) 对任意 $x \in X$, $x \cdot 1 = x$;
- (ii) 对任意 $g,h\in G$, $x\in X$, 有 $(x\cdot g)\cdot h=x\cdot (gh)$.

此时称G作用于X。(类似地可定义左群作用)

实际上采用第二种定义方法的一般会把第一种称为置换表示,随后说明二者本质上是相同的。

我们将 g(x) 理解为与 g 相关的置换映射 x 到 X 的元素。利用这个与群元素相关联的置换的函数记号,从 G 中的群运算到置换群中的函数合成运算, φ 是同态的事实就等于断言: $(gh)(x)=g(h(x)), \ \text{for all} \ g,h\in G,x\in X \ \text{。注意我们在这里并不坚持}\ \varphi$ 是一个单射, G 的两个不同的元素可能与 X 上的相同置换相关联.

例子1.2

- (i) 如前所述,我们可以取 $X=\{1,2,\ldots,n\}$, $G=S_n=S_X$, $\varphi:S_n\to S_n$ 为恒等映射 。
- (ii) 设 X 是在 \mathbb{R}^3 上的单位立方体, G 是 X 的对称群,它作为 \mathbb{R}^3 上的线性变换再次作用于 X 。
- (iii) 让 G 通过由 $g(x)=gxg^{-1}$ 给出的共轭作用于 G ,在这个例子中,我们可以证明函数 g(x) 是双射(即 G 的置换) 。

定义1.3

设 G 是作用在集合 X 上的群,对于 $x\in X$, G 中 x 的稳定化子 (stabilizer)(记为 $\operatorname{stab}_G(x)$),是所有元素 $g\in G$ 的集合,使得 $g\cdot x=x$,即

$$\mathrm{stab}_G(x) = \{g \in G \mid g \cdot x = x\}$$

对于 $x\in X$, G 中 x 的轨道 (orbit)(记为 ${\rm orb}_G(x)$) ,是 X 中形式为 $g\cdot x$ 的所有元素的集合,对于 $g\in G$,即

$$\operatorname{orb}_G(x) = \{g \cdot x \mid g \in G\}$$

 \wedge

例子1.4

再次考虑例1.4 (iii)。 如果我们固定一个 $a \in G$,我们可以发现, a 的轨道是

$$\operatorname{orb}_G(a) = \left\{ gag^{-1} \mid g \in G \right\}$$

即我们之前定义的 G 中 a 的共轭类。如果我们观察 a 在 G 中的稳定化子,我们有

$$\mathrm{stab}_G(a) = \left\{g \in G \mid gag^{-1} = a\right\}$$

即我们之前定义的 a 在 G 中的中心化子。

我们已经知道元素的中心化子是G的子群,所以易得群作用的稳定化子是G的子群。

 \wedge

假设 G 是作用于 X 的有限群,对于任意 $x \in X$,我们有

$$|G| = |\operatorname{stab}_G(x)| |\operatorname{orb}_G(x)|$$

这是一个很重要的定理, 证明见书或自证。

实际上了解一下何为群作用可能就够了

Il nous montre une correspondance subtile et fine, comme venue du vide.

Yuanjue Chou 3楼 2021年8月6日

2.同伦及纤维

以下内容修改自鄙人的拓扑笔记、添加修改很多、不过仍然可能有错误存在

代数拓扑的目的是利用代数不变量对拓扑集和连续映射进行分类。实际上这些不变量大多定义函子,这些函子无法区分两个对象。所以,我们需要先引入合适的范畴和同伦概念。这种分类语言可以避免许多重复。

定义2.1

设 X,Y 为空间且 $f,g\in \mathsf{Top}(X,Y)$. 让 I 表示区间 $[0,1]\in\mathbb{R}$ 。我们说 f 与 g 是同伦的,或者说 f 和 g 是同伦映射,当且仅当存在一个映射 $F:X\times I\to Y$,使得

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$.

 $X \times Y$ 被称为 X 上的 cylinder, F 被称为 f 和 g 之间的同伦。

定义2.2

我们说 f 是 g 的同伦映射,或者 f 和 g 是同伦映射,当且仅当有映射 $F: X \to \mathsf{Top}(I,Y)$,使得

$$ev_0 \circ F = f$$
 and $ev_1 \circ = g$

其中 ev_i 是 $i\in I$ 的 evaluation map 。空间 $\mathsf{Top}(I.Y)$,同样写作 Y^I ,是 Y 中道路的空间,被称为 Y 上的道路空间。

同伦是一个等价关系,与映射的合成相容,即对任何定义了合成的映射 h,k 来说, $f\simeq g$ 隐含 $k\circ f\circ h\simeq k\circ g\circ h$ 。因此,我们很容易定义同伦关系 Top/\sim 。空间 X 和 Y 之间若有同伦等价,则称它们有相同的同伦类型。

下面来到余纤维和纤维。

定义2.3

称映射 $j:A\to X$ 是一个余纤维 (cofibration),如果任何源于 A 的同伦扩展到源于 X 的同伦. 更确切地说,让我们考虑如下实箭头的交换图:

如果有一个映射 G (用点箭头表示) 使得图仍然成立,我们说 j 对映射 g 具有同伦扩展性质 (h.e.p.)。如果 j 对任意映射 g 具有 h.e.p., 则 j 是余纤维。

在图中我们一般用 → 或 → 表示余纤维。

通过对 h.e.p. 的概念进行对偶,我们可以得到概念同伦提升性质 (h.i.p),详见 homotopy lifting property

定义2.4

称映射 $p: X \to A$ 是一个纤维 (fibration), 如果任何实箭头交换图

有一个映射 \overline{F} (用点箭头表示) 使得图成立。

 \wedge

在图中我们一般用 → 表示纤维。

发现 Hatcher 上的 h.e.p. 讲的更好懂些,看来我的书还是太差哩

定义2.5

空间 X 向子空间 A 的形变回缩是映射族 $f_t:X\to X$, $t\in I$,使得 $f_0=\mathrm{id}_A$, $f_1(X)=A$,且对所有 t , $f_t\mid A=\mathrm{id}_A$ 。

空间 X 向子空间 A 的形变回缩是一个从 X 的恒等映射到 X 在 A 上的回缩的同伦,即映射 $r:X\to X$ 使得 r(X)=A 且 $r\mid A=\mathrm{id}_A$ 。

 \wedge

假设给定一个映射 $f_0:X\to Y$,并且在子空间 $A\subset X$ 上给定一个 $f_0\mid A$ 的同伦 $f_t:A\to Y$,其能扩展到给定 f_0 的同伦 $f_t:X\to Y$ 。如果对于 (X,A) ,这个扩展问题总是可以解决的,则说 (X,A) 具有同伦扩展性质。

性质2.6

(X,A) 具有同伦扩展性质当且仅当 $X \times \{0\} \cup A \times I$ 是 $X \times I$ 的回缩。

实际上知道何为同伦和大概知道纤维是什么可能就够了。

Il nous montre une correspondance subtile et fine, comme venue du vide.

3.球面及同伦群

本节中所有"赤线"请自行替换成"赤道",这是个人翻译习惯导致的问题

我们来回顾一下我们熟悉的符号 S^n ,它表示所有满足 $x_1^2+x_2^2+\ldots+x_{n+1}^2=1$ 的点构成的集合,我们称之为 n -球面。同样回顾一下 T^n ,记作 n -环面。正如 \mathbb{R}_n 中的一点可以由 \mathbb{R} 中的 n 元组指定一样,在 n -环面上的一点也可以由圆 S_1 中的 n 元组指定。因此,二维环面 T^2 上的点由二元对 $(\theta,\ \psi)\in S_1\times S_1$ 指定。

正如立体投影 (stereographic projection) 将圆与直线相关联, S_2 与欧氏平面相关联一样,其通过三维欧氏空间上的扭曲度量 (distorted metric) 给出了 S_3 除一点以外的所有点的映射。了解 S_3 的一个方法是了解这种扭曲。立体投影涉及到从点到投影点的选择,以及一个基点 (antipodal points),在这个基点上我们可以想象像空间碰到球面。一对基点定义了一个赤线 (equator)——一个低一维的球面位于它们正中间。对于 S^3 来说,赤线是一个 S^2 ,并且在一个到 \mathbb{R}^3 立体投射下,它被投射至单位球面。沿着这个赤线球面,立体投影的像不变形。存在于这个球面上的距离和形状和在球面上一样出现在投影中。然而在赤线之外,事物被扭曲,这便出现了许多奇奇怪怪的有趣的形状。

现在再来简单看看同伦群。

定义3.1

设 X 为拓扑空间而 S^n 为 n 维球面。选定基点 $a\in S^n, x\in X$ 。定义 $\pi_n(X,x)$ 为 $[S^n,X] \ , \ \text{ 也就是由保持基点的连续映射 } f:S^n\to X \ \text{ 的同伦类构成的集合,称为同伦群。}$ (给定 $f,g:I^n\to X$,定义 $f*g:=(f\sqcup g)\circ s$,可以证明运算 $f,g\mapsto f*g$ 满足群公理,其幺元为常值映射 $\forall s\in S^n,\ e(s)=x$ 。)

 \wedge

为了方便起见, $s_1\wedge\cdots\wedge s_n$ 表示 $(s_1,\ldots,s_n)\in[0,1]^n$ 在商映射 $[0,1]^n\to[0,1]^n/\partial([0,1]^n)\simeq S^n \text{ rob} \ \text{o.}\ \ \text{n}\ S^n \text{ o.}\ \text{o.}\ A=0\wedge\cdots\wedge 0 \ \text{o.}$

注意到当 n=0 时, $S^0=\{-1,1\}$ 而 $\pi_0(X,x)$ 的元素——对应到 X 的连通分支 。

对于 $n \geq 1$, $\pi_n(X, x)$ 带有自然的群结构: 首先, 我们构造一个连续映射:

$$s:S^n o S^nee S^n$$

在此 $S^n \vee S^n$ 定义为将两份 S^n 沿基点黏合得到的拓扑空间。映射s 定义为

$$egin{aligned} s\left(x_1 \wedge \cdots \wedge x_n
ight) \ &= \left\{egin{aligned} x_1 \wedge \cdots \wedge x_{n-1} \wedge \left(1-2x_n
ight), & x_n \leq rac{1}{2} \ x_1 \wedge \cdots \wedge x_{n-1} \wedge \left(2x_n-1
ight), & x_n \geq rac{1}{2} \end{aligned}
ight.$$

直观来看,s 的效应相当于将球面 S^n 沿赤线掐扁。

同伦群的内容详见 A.Hatcher, *Algebraic Topology* 的第四章第一节,有诸多图辅助食用。 (Hatcher yyds)

关于这部分我感觉 D.C.A.A 会在沙龙里讲, 所以简单了解一下即可

Il nous montre une correspondance subtile et fine, comme venue du vide.

Yuanjue Chou 5楼 2021年8月6日

4.Hopf 纤维

本节是我睡前半小时随便写的乱七八糟的东西,可以跳过直接看末尾的几个网站

Hopf 纤维是从 3 -球面 S^3 到 2 -球面 S^2 的映射。它为更深入地理解这两个基本对象提供了一个窗口。纤维,如我们在第二部分所见,是一种特殊的映射类型。直观地说,纤维将两个空间结合成第三个空间。这两个空间称为 base 和 fiber,其组合被称为纤维的全空间,或仅仅是全空间或纤维。

给定两个空间 X 和 Y ,利用一个图谱 (atlas) $\{U_{\alpha}\}$ 为 X 定义一个具有 base X 、fiber Y 和 全空间 Z 的纤维。(一个空间 X 的映射集族基本上是完全覆盖空间的开集的集合)。本质上,全空间是通过给 Z 赋予一个图谱来定义的,每个图表以一致的方式(形如 $U_{\alpha} \times Y$)从一个图表传递到下一个。被称为天平的映射是指从 Z 到 X 的映射,它将图上 $U_{\alpha} \times Y$ 的一对 (x,y) 代表的点带到 x 。对于所有 $x \in X$,在 Z 中都有一个 Y 的"副本",由 $\{x\} \times Y$ 给出。这就是所谓的 x 上的 fiber。对于任何一对空间,我们都可以定义平凡纤维,其中 $Z = X \times Y$,只需要在 $\{U_{\alpha}\}$ 中有一个开集来描述这个纤维。(在此回顾一下 2 中的纤维定义及那张要命的交换图)

我们再来回顾 S^3 ,将其在 \mathbb{C}^2 中描述:

$$S^3 = \{(z_1,z_2) \in \mathbb{C}^2 \, | \, |z_1|^2 + |z_2|^2 = 1 \ \}.$$

考虑比值 z_2/z_1 。这是一个复数(显然,除非 $z_1=0$)。通过设置 $z_2/0=\infty$,我们得到了一个映射

$$f:S^3 o S^2, (z_1,z_2)\mapsto z_2/z_1.$$

这便是 Hopf 纤维。

另一种创造 Hopf 纤维的方法是利用单位四元数的 S^3 旋转 S^2 。如果我们选择一个点 $p\in S^2$,那么对于任何四元数 q , $R_q(p)$ 也在 S^2 中。因此我们可以定义一个从 S^3 到 S^2 的 映射 $g_p(q)=R_q(p)$ 。也就是说,点 $q\in S^3$ 的图像是 S^2 上的点,其中 p 由旋转 R_q 取值。(摘自 arxiv:0908.1205)

一个很好的 Hopf 纤维介绍是: https://doi.org/10.2307/3219300

N. Johnson 的主页, 其上有很多相关内容: https://nilesjohnson.net/hopf.html

一个交互式的 Hopf 纤维演示: https://samuelj.li/hopf-fibration/

Il nous montre une correspondance subtile et fine, comme venue du vide.