Força Electromotriz Induzida

João Olívia 52875 Ernesto González 52857

Física Experimental II Faculdade de Ciências - Universidade de Lisboa Ano Letivo 2019/2020

Conteúdo

1	Resumo	2
2	Introdução	3
3	Procedimento e Equipamento	4
4	Resultados	5
5	Conclusão	12
Bi	ibliografia	13

Resumo

Estudo da força eletromotriz induzida num circuito acoplado a uma calha em arrastamento. Análise da relação entre a força eletromotriz induzida no circuito pelo movimento da calha e os seguintes parâmetros: largura do circuito; raio de enrolamento do fio de arrastamento; número de ímanes. A calha inicialmente inserida no suporte onde se encontram os ímanes é movida com velocidade constante através de um motor com um suporte ao qual está conectada por um fio. O suporte é constituído por cilindros de diferentes raios o que permitiu a obtenção de diferentes velocidades de arrastamento da barra para a mesma velocidade angular do motor. Foram registados os diferentes parâmetros mencionados acima e feita a análise da relação entre a força eletromotriz induzida e estes. Os resultados da análise estão em concordância com os valores teóricos esperados uma vez que foi verificada a relação de porporcionalidade direta entre a força eletromotriz e todas as três variáveis.

Introdução

Para assegurar uma corrente eléctrica num circuito fechado é necessário despender energia [4**]. Neste caso a energia referida vem do motor que possibilita o movimento da barra. A energia mecânica proveniente do motor manifesta-se na energia cinética da barra que, ao fazer variar a posição do circuito em relação aos ímans e portanto a área, induz a força eletromotriz no mesmo. Esta influência da variação da área e da velocidade da barra na indução da força eletromotriz é explicada pelas seguintes equações:

Figura 2.1: Animação da montagem onde estão assinaladas as variáveis $l\ell$ e c, representando a largura do circuito e o comprimento da porção da barra dentro da estrutura, respetivamente.

$$\epsilon = \oint \overrightarrow{E} . \overrightarrow{d\ell} = \oint \frac{\overrightarrow{F}}{q} . \overrightarrow{d\ell} = \oint (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell}$$
 (2.1)

Uma vez que o circuito está em movimento em relação aos ímans então o integral de linha em (2.1) pode ser escrito da seguinte forma:

$$\oint (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} = \int_{-\ell} (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} + \int_{\ell} (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} + \int_{c} (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} + \int_{-c} (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} \tag{2.2}$$

Como a velocidade é nula na barra (ℓ) tem-se que:

$$\int_{\ell} (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} = 0 \tag{2.3}$$

Pelo que de (2.2) vem:

$$\oint (\overrightarrow{v} \times \overrightarrow{B}) \cdot \overrightarrow{d\ell} = \int_{-\ell} (\overrightarrow{v} \times \overrightarrow{B}) \cdot \overrightarrow{d\ell} + \int_{c} (\overrightarrow{v} \times \overrightarrow{B}) \cdot \overrightarrow{d\ell} + \int_{-c} (\overrightarrow{v} \times \overrightarrow{B}) \cdot \overrightarrow{d\ell} \tag{2.4}$$

Uma vez que os dois últimos integrais de (2.4) são simétricos:

$$\epsilon = \oint (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} = \int_{-\ell} (\overrightarrow{v} \times \overrightarrow{B}) . \overrightarrow{d\ell} = vB\ell = \frac{\partial (Bc\ell)}{\partial t} = \frac{\partial \Phi}{\partial t}$$
 (2.5)

Tendo em conta que $v = \omega r$, de (2.5) vem

$$\epsilon = \omega r B \ell \tag{2.6}$$

Procedimento e Equipamento

Material utilizado:

- Aparelho de indução com 3 espiras móveis
- Motor e unidade de comando
- Conjunto de 16 ímanes permanentes
- Amplificador de tensão
- Galvanómetro, régua e cronómetro

Procedimento:

- Começou por se acertar a velocidade de arrastamento da barra em aproximadamente 1 cm.s⁻¹ (O objetivo deste acerto é evitar uma velocidade linear muito elevada com o aumento do raio do suporte o que poderia afetar a medição do valor da força eletromotriz.) Para a realização do dito acerto foi usado o cronómetro com a finalidade de medir o tempo que a barra demora a percorrer o comprimento da calha., uma vez que a velocidade desejada é 1 cm.s⁻¹ então o valor do tempo desejado em segundos é igual ao comprimento da calha em centímetros.
- Fixou-se o número de ímanes no suporte e fizeram-se as medições da força eletromotriz com o auxílio do galvanómetro e do amplificador de tensão fazendo variar a velocidade de arrastamento e a largura do circuito. Repetiu-se este processo para 4, 6, 8, 10, 12 e 16 ímanes.

Resultados

Durante toda a experiência usou-se $\omega = 1112 \pm 0.05 \; rad \, s^{-1}$. De (2.6) vem

$$\epsilon = \omega r B \ell \tag{4.1}$$

Portanto, se fixarmos a velocidade de arrastamento, ou seja, o raio de enrolamento do fio tem-se que:

$$\epsilon = \epsilon(\ell) \tag{4.2}$$

Uma vez que ϵ (f.e.m.i) é uma função da largura do circuito então o declive da reta (m) é dado por:

$$m = \frac{\epsilon}{\ell} \tag{4.3}$$

Pelo que de (4.1) vem:

$$\frac{\epsilon}{\ell} = m = \omega r B \tag{4.4}$$

Resolvendo para B:

$$B(r) = \frac{m}{\omega r} \tag{4.5}$$

Ao analisar os gráficos e as respetivas tabelas podemos facilmente constatar que a razão entre os declives das três retas é igual à razão entre os raios de enrolamento correspondentes à respetiva função o que confirma a validade dos resultados experimentais obtidos. Os declives positivos em todas as retas de todos os gráficos são a confirmação experimental de que a força eletromotriz induzida é diretamente proporcional à largura do circuito.

Figura 4.1: Nas 6 figuras encontra-se representado $\epsilon(\ell)$ para $r=7.85\pm0.05mm, r=16.00\pm0.05mm$ e $r=31.90\pm0.05mm$ para as 6 configurações de números de ímanes: 4, 6, 8, 10, 12, 16.

Tabela 4.1: Tabelas com os declives das retas da Figura 4.1. Uma tabela para cada configuração de número de ímanes. Cada tabela indica o declive da reta a que corresponde o respetivo raio e a intensidade total do campo magnético, estimada a partir de $\frac{m}{\omega r}$ em que m é o declive da reta e r o raio

Tabela 4.2: 4 ímanes, $\overline{B} = 3.47532334mT$

Declive	raio(r)(mm)	B(mT)
0.14473684	7.85 ± 0.05	18.43751425
0.19736842	16.00 ± 0.05	12.33552632
0.34868421	31.90 ± 0.05	13.90129337

Tabela 4.4: 8 ímanes, $\overline{B} = 3.49733553mT$

Declive	raio(r)(mm)	B(mT)
0.25000000	7.85 ± 0.05	31.84713376
0.45394737	16.00 ± 0.05	28.37171053
0.75657895	31.90 ± 0.05	23.71720838

Tabela 4.6: 12 ímanes, $\overline{B} = 3.0099368mT$

Declive	raio(r)(mm)	B(mT)
0.30263158	7.85 ± 0.05	38.5517935
0.55263158	216.00 ± 0.05	34.53947368
1.12500000	31.90 ± 0.05	35.26645768

Tabela 4.3: 6 ímanes, $\overline{B} = 3.63869615mT$

Declive	raio(r)(mm)	B(mT)
0.19736842	7.85 ± 0.05	25.14247402
0.34868421	16.00 ± 0.05	21.79276316
0.59210526	31.90 ± 0.05	18.56129352

Tabela 4.5: 10 ímanes, $\overline{B} = 3.13442077mT$

Declive	raio(r)(mm)	B(mT)
0.25000000	7.85 ± 0.05	31.84713376
0.50000000	16.00 ± 0.05	31.2500000
0.45502905	31.90 ± 0.05	30.93548919

Tabela 4.7: 16 imanes, $\overline{B} = 3.02984265mT$

Declive	raio(r)(mm)	B(mT)
0.40131579	7.85 ± 0.05	51.12303051
0.75000000	16.00 ± 0.05	46.8750000
1.51315789	31.90 ± 0.05	47.43441676

À semelhança do que foi verificado para a situação anterior, através dos gráficos acima podemos verificar a relação de proporcionalidade direta entre a força eletromotriz induzida e o raio de enrolamento do fio.

Através dos valores apresentados na tabela 4.1 e da equação (4.5) foram calculados os campos magnéticos médios de cada íman para cada número de ímans, tendo os valores sido apresentados nas respetivas legendas.

Fixando agora a largura do circuito temos que a força eletromotriz induzida passa a ser uma função do raio de enrolamento do fio:

$$\epsilon = \epsilon(r) \tag{4.6}$$

Com isto e seguindo um raciocínio análogo àquele feito na situação anterior obtemos uma expressão para o valor do campo (B):

$$B(\ell) = \frac{m}{\omega \ell} \tag{4.7}$$

Figura 4.2: Nas 6 figuras encontra-se representado $\epsilon(\ell)$ para $\ell=2.1\pm0.05cm, r=2.70\pm0.05cm$ e $r=4.00\pm0.05cm$ para as 6 configurações de números de ímanes: 4, 6, 8, 10, 12, 16.

Tabela 4.8: Tabelas com os declives das retas da Figura 4.1. Uma tabela para cada configuração de número de ímanes. Cada tabela indica o declive da reta a que corresponde a respetiva largura e a intensidade total do campo magnético, estimada a partir de $\frac{m}{\omega \ell}$ em que m é o declive da reta e ℓ a largura.

Tabela 4.9: 4 ímanes, $\overline{B} = 2.36594061mT$

Tabela 4.10: 6 imanes, $\overline{B} = 3.47532334mT$

Declive	$largura(\ell)(cm)$	B(mT)
0.37465117	4.00 ± 0.05	9.3662791
0.24976744	2.70 ± 0.05	9.25064609
0.20526160	2.10 ± 0.05	9.7743621

Declive	$largura(\ell)(cm)$	B(mT)
0.91005810	4.00 ± 0.05	22.75145243
0.49953489	2.70 ± 0.05	18.50129218
0.49953489	2.10 ± 0.05	23.78737566

Tabela 4.11: 8 ímanes, $\overline{B} = 2.9027268mT$

Tabela 4.12: 10 ímanes, $\overline{B} = 2.60181814mT$

Declive	$largura(\ell)(cm)$	B(mT)
0.91005810	4.00 ± 0.05	22.75145243
0.62441861	2.70 ± 0.05	23.12661523
0.34868421	2.10 ± 0.05	23.78737566

Declive	$largura(\ell)(cm)$	B(mT)
1.07944766	4.00 ± 0.05	26.98619149
0.79380817	2.70 ± 0.05	29.40030273
0.45502905	2.10 ± 0.05	21.66804993

Tabela 4.13: 12 ímanes, $\overline{B} = 2.68471514mT$

Tabela 4.14: 16 ímanes, $\overline{B} = 2.98126287mT$

Declive	$largura(\ell)(cm)$	B(mT)
1.31559598	4.00 ± 0.05	32.88989957
0.91869190	2.70 ± 0.05	34.02562578
0.62441861	2.10 ± 0.05	32.21658164

Declive	$largura(\ell)(cm)$	B(mT)
1.91776167	4.00 ± 0.05	47.94404184
1.28470926	2.70 ± 0.05	47.58182458
0.99906978	2.10 ± 0.05	47.57475132

Ao analisar os gráficos conseguimos facilmente verificar a relação de proporcionalidade direta entre a força eletromotriz e a largura do circuito, uma vez que a função que descreve a relação entre as duas últimas variáveis mencionadas é positivo para qualquer configuração de ímanes.

Através dos valores apresentados na tabela 4.8 e da equação (4.7) foram calculados os campos magnéticos médios de cada íman para cada número de ímans, tendo os valores sido apresentados nas respetivas legendas.

Figura 4.4: Força Eletromotriz Induzida, ϵ , em função do número de ímanes, N, na configuração com $r=31.90\pm0.05mm$.

Figura 4.3: Força Eletromotriz Induzida, ϵ , em função do número de ímanes, N, na configuração com $\ell=2.70\pm0.05cm$.

Como podemos ver nos gráficos das figuras 4 e 5 a proporcionalidade direta também se verifica entre a força eletromotriz induzida e o número de ímanes no suporte.

Pelos campos magnéticos deduzidos em cada configuração calculou-se a média do campo gerado por um íman $B_{iman}=3.06644517833333333$ e respetivo desvio padrão $\sigma=0.3980653766660031$. Assim apresentamos o valor esperado do campo de um único íman

$$B_{iman} = 3.066 \pm 0.398 \ mT.$$

Conclusão

Após a análise feita no capítulo anterior confirma-se a proporcionalidade direta de primeira ordem entre a força eletromotriz induzida e a velocidade de arrastamento da espira, a área das espiras e o campo magnético. Da mesma foi possível deduzir o campo magnético associado a cada íman: $B_{iman}=3.066\pm0.398~mT$.

Bibliografia

- [1] M.C. Abreu, L. Matias, L.F. Peralta *Física Experimental: Uma Introdução*. Editorial Presença, Lisboa: 1^a. ed., 1994. ISBN 972-23-1832-2.
- [2] R.A. Serway and J. W. Jewett, Jr. *Physics for Scientists and Engineers with Modern Physics*. Cengage, Boston: Tenth edition, 2014. ISBN 978-1-337-55329-2.
- [3] Jearl Walker, David Halliday, Robert Resnick Fundamentals of Physics. Wiley, United States of America: 10th edition, 2014. ISBN 978-1-118-23072-5.