# Action Recognition in Videos using Deep Learning

Deep Learning course MSc in Al

Georgios Batsis

### About project

#### **Action Recognition:**

- o Classifying the activity being performed by a human
- $\circ$  We need a set of evidence to recognize an action  $\rightarrow$  Video classification

#### Video:

- A signal which combined spatial and temporal information
- Sequence of images-frames



# MODELS

#### Baseline

Step 1 → Feature Extraction of each frame: Texture information → GLCM features:

- Contrast
- Dissimilarity
- Homogeneity
- ASM
- o Energy
- Correlation

Step 2 → Temporal Aggregation: Statistics → Mean & Std

Step 3 → Definition of a classifier pipeline:

- Standard Scaler
- SVM with RBF Kernel

### Going Deeper...



#### Experiments: Step 1 -> Choose Base CNN Model

#### **Most popular pretrained models:**

- . VGG
- ResNet
- MobileNet.

#### **Choose which layers will be left frozen:**

CNNs consist of:

- Convolutional Block → Convolutional and Pooling Layers
- Classifier → Fully Connected Layers

#### Freezing options:

- o Last (or other) Convolutional Layer
- o Penultimate Layer of classifier

### Experiments: Step 2 → Deep Model Construction

#### **After pre-trained CNN selection, decide if:**

- Use the extracted features directly
- Add trainable layer(s) after feature extraction

#### **Define the RNN-based part:**

- Model (e.g. LSTM)
  - Hidden state dimension
  - Number of layers
  - Direction
- Final classifier

# Approach A



### Approach B



### Approach C



### Approach C'



## Approach D



# RESULTS

#### Dataset

#### UCF101 Human Actions dataset:

A small subset was used in this project

Official train-test splitting

Classes:

0: Playing Guitar

1: Rock Climbing Indoor

2: Soccer Juggling

3: Band Marching



#### Preprocessing

#### Sequence level transformation:

- > Problem: Differences in the total number of frames per video & the Fps
- ➤ Solution: Extract video segments → Shorter videos with fixed number of frames



#### Frame-level transformation:

- ➤ Resize (e.g. 224x224)
- ➤ Normalize → mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]

### Results: Baseline

| True\Predicted | 0  | 1  | 2   | 4   |
|----------------|----|----|-----|-----|
| 0              | 54 | 28 | 82  | 4   |
| 1              | 17 | 63 | 12  | 0   |
| 2              | 59 | 8  | 135 | 0   |
| 3              | 4  | 0  | 18  | 112 |

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.41      | 0.32   | 0.36     | 168     |
| 1            | 0.64      | 0.70   | 0.67     | 92      |
| 2            | 0.55      | 0.67   | 0.60     | 202     |
| 3            | 0.97      | 0.84   | 0.90     | 134     |
|              |           |        |          |         |
| accuracy     |           |        | 0.61     | 596     |
| macro avg    | 0.64      | 0.63   | 0.63     | 596     |
| weighted avg | 0.62      | 0.61   | 0.61     | 596     |
|              |           |        |          |         |
| weighted avg |           |        |          |         |
|              |           |        |          |         |

#### Pre-trained CNN selection:

All models tested using the DNN of Approach A

- ➤ ResNet 125 freezed at the last Convolutional Layer (we receive output of Average Pooling) outperforms VGG 19 freezed at the penultimate Layer of classifier [97% vs 92% F1 Score in validation dataset].
- > If we freeze the last Convolutional Layer of VGG the model can't learn...
- ➤ MobileNet overfits...

| <b>Model Name</b> | F1 Score | Loss |
|-------------------|----------|------|
| Approach A        | 87.8     | 2.9  |
| Approach B        | 97.7     | 0.64 |
| Approach C        | 98.4     | 0.44 |
| Approach C (Bid)  | 97.7     | 0.57 |
| Approach D        | 98.6     | 0.29 |



| Model Name       | F1 Score | Loss |  |
|------------------|----------|------|--|
| Approach A       | 87.8     | 2.9  |  |
| Approach B       | 97.7     | 0.64 |  |
| Approach C       | 98.4     | 0.44 |  |
| Approach C (Bid) | 97.7     | 0.57 |  |
| Approach D       | 98.6     | 0.29 |  |





| Model Name       | F1 Score | Loss |
|------------------|----------|------|
| Approach A       | 87.8     | 2.9  |
| Approach B       | 97.7     | 0.64 |
| Approach C       | 98.4     | 0.44 |
| Approach C (Bid) | 97.7     | 0.57 |
| Approach D       | 98.6     | 0.29 |



| <b>Model Name</b> | F1 Score | Loss |
|-------------------|----------|------|
| Approach A        | 87.8     | 2.9  |
| Approach B        | 97.7     | 0.64 |
| Approach C        | 98.4     | 0.44 |
| Approach C (Bid)  | 97.7     | 0.57 |
| Approach D        | 98.6     | 0.29 |



| Model Name       | F1 Score | Loss |
|------------------|----------|------|
| Approach A       | 87.8     | 2.9  |
| Approach B       | 97.7     | 0.64 |
| Approach C       | 98.4     | 0.44 |
| Approach C (Bid) | 97.7     | 0.57 |
| Approach D       | 98.6     | 0.29 |

## Results: Approach C & Test Dataset

| True\Predicted | 0   | 1   | 2   | 4   |
|----------------|-----|-----|-----|-----|
| 0              | 510 | 0   | 0   | 0   |
| 1              | 2   | 812 | 37  | 14  |
| 2              | 13  | 1   | 603 | 4   |
| 3              | 0   | 1   | 0   | 346 |

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 1.00   | 0.99     | 510     |
| 1            | 1.00      | 0.94   | 0.97     | 865     |
| 2            | 0.94      | 0.97   | 0.96     | 621     |
| 3            | 0.95      | 1.00   | 0.97     | 347     |
|              |           |        |          |         |
| accuracy     |           |        | 0.97     | 2343    |
| macro avg    | 0.97      | 0.98   | 0.97     | 2343    |
| weighted avg | 0.97      | 0.97   | 0.97     | 2343    |
|              |           |        |          |         |





Thank you!