

IHK Abschlussprüfung

Sommer 2017

Entwicklung eines Carsharing Simulator

Prüfling: Felix Heitbrock

Prüflingsnummer: 101 20505

Ausbildungsbetrieb: Werkzeugmaschinenlabor RWTH

Aachen

- 1 Person und Ausbildung
- 2 Aufgabenstellung
- 3 Lösungsansatz
- 4 Testfälle
- 5 Ausblick

- 1 Person und Ausbildung
- 2 Aufgabenstellung
- 3 Lösungsansatz
- 4 Testfälle
- 5 Ausblick

Ausbildung

Wer bin ich?

- Felix Heitbrock
- Gymnasium Herzogenrath
- Berufskolleg Alsdorf Informationstechnischer Assistent
- MATSE Ausbildung und Studium
- Werkzeugmaschinenlabor WZL der RWTH Aachen
 - Lehrstuhl für Werkzeugmaschinen Gruppe Informationstechnik und MES

Ausbildung

Tätigkeiten am WZL

- Werkzeugmaschinenlabor WZL der RWTH Aachen
 - Lehrstuhl für Werkzeugmaschinen Gruppe Informationstechnik und MES
- Betreuung und Weiterentwicklung des Smart Automation Lab (SAL) MES
- Erstellen einer Simulation des SAL
- iCellFactory
 - Weiterentwicklung eines Biotechnologischen Leitsystems
 - Entwicklung eines Scheduling Systems

- 1 Person und Ausbildung
- 2 Aufgabenstellung
- 3 Lösungsansatz
- 4 Testfälle
- 5 Ausblick

Aufgabenstellung

Wiederholung der Aufgabenstellung

- Angebot $a_{ij}(t)$
- Nachfrage $n_{ij}(t)$

- Städte werden durch m x m Felder abgebildet
- Jedes Quadrat Q_{ij} des Feldes besitzt:
 - Tageszeitabhängiges Nachfragepolynom $n_{ij}(t)$ mit $t \in [0,24]$
 - Tageszeitabhängiges Abstellungspolynom $a_{ij}(t)$ mit $t \in [0,24]$

Zur Bestimmung wann wie viele Autos des Carsharing-Dienstes angeboten bzw. nachgefragt werden

- Daten werden in Eingabedatei übergeben
- Zu bestimmen ist:
 - $-B_{ij}(t)$ (beschreibt den Gesamtbedarf bis zum Zeitpunkt t)
 - Maximaler Bedarf, also Maximum von $B_{ij}(t)$
 - **Endzustand** der Bedarfsfunktion am Ende des Tages: $B_{ij}(24)$
- Berechnete Daten werden in einer Ausgabedatei gespeichert

- 1 Person und Ausbildung
- 2 Aufgabenstellung
- 3 Lösungsansatz
- 4 Testfälle
- 5 Ausblick

Dateneingabe

- DateiEinlesen ließt die Eingabedatei ein
 - Hier wird EingabeDaten instanziiert
- In EingabeDaten befinden sich alle Daten, die das Programm zum Erzeugen der Ausgabedaten benötigt

```
# Stadtname

# m

1

# Polynome Nachfrage

0 0.2023761 -0.0287711 0.0016925 -0.0000352

# Polynome Abstellungen

0.434782 0 0 0 0
```


Theorie: Berechnung der Bedarfsfunktion

■ Die Integrale von $n_{ij}(s)$ und $a_{ij}(s)$ geben an, wann ein Auto ausgeliehen/zurückgegeben werden wird

$$N_{ij}(t) = \int_0^t n_{ij}(s) ds$$
$$A_{ij}(t) = \int_0^t a_{ij}(s) ds$$

- Die Bedarfsfunktion ergibt sich aus diesen Integralen
 - Nur ganzzahlige Werte sind zugelassen

$$\boldsymbol{B_{ij}(t)} = [N_{ij}(t)] - [A_{ij}(t)]$$

Implementierung: Berechnung der Bedarfsfunktion

- Bestimmen der Änderungen
 - Verschieben der Integrale (in Y-Richtung)
 - Anwenden des Bisektionsverfahrens mit n Iterationen
- Aus den Änderungen ergibt sich die Bedarfsfunktion

$$n = \frac{\ln(\frac{24}{genauigkeit})}{\ln(2)}$$

Polynom, Aenderung & Bedarf

Die Simulation

- Der Endzustand des Tages $B_{ij}(24)$
 - Jede Änderung des Tages wird aufaddiert (Reihenfolge egal)
- Der maximale Bedarf entspricht dem maximalen Funktionswert der Bedarfsfunktion
 - Alle Änderungen werden nach zeitlichem Auftreten sortiert (bei gleichzeitigen Änderungen hat die Abstellung Vorrang)
 - Es wird durch alle Änderungen iteriert und so der Maximalwert ermittelt

Datenausgabe

AusgabeDaten

Attributes

+ Endzustand : int[,]
+ InputData : EingabeDaten

+ Maximalbedarf : int[,]
+ Simulationsverlauf : List<string>

□ Operations
+ AusgabeDaten(inputData : EingabeDaten)
+ GeneriereText() : string

- DateiSchreiben schreibt die berechneten Ergebnisse in eine Ausgabedatei
 - Die AusgabeDaten (Ergebnisse der Berechnung) werden übergeben
- Die Ausgabedatei hat folgendes Format:

```
# Stadtname
Abstellung in Q_11 zu t=2,30
Nachfrage in Q_11 zu t=3,76
...
Abstellung in Q_11 zu t=23,00
Nachfrage in Q_11 zu t=23,43
Endzustand des Tages:
0
Maximaler Bedarf:
1
```


- 1 Person und Ausbildung
- 2 Aufgabenstellung
- 3 Lösungsansatz
- 5 Testfälle
- 5 Ausblick

Testfälle

Fehler- und Sonderfälle

Black Box Tests

 Tests ohne Kenntnisse über die innere Funktionsweise des Systems

Fehlerfälle

 Fälle, bei denen eine Berechnung der Lösung nicht möglich ist

Sonderfälle

 Testen von Besonderheiten, die nur manchmal auftreten

- 1 Person und Ausbildung
- 2 Aufgabenstellung
- 3 Lösungsansatz
- 4 Testfälle
- 5 Ausblick

Ausblick

Erweiterungs- und Verbesserungsmöglichkeiten

- Verwendung von Interfaces erlaubt es, Eingabe und Ausgabeformat beliebig auszutauschen z. B.:
 - Anderes Dateiformat
 - GUI Benutzerschnittstelle
- Parallelisierung
 - Gut realisierbar, da einzelne Bedarfsfunktionen unabhängig voneinander berechnet werden können
- Bessere Skalierung
 - Nicht jede einzelne Nullstelle bestimmen
 - Beschleunigung des Algorithmus zu Lasten der Genauigkeit

Bild Quellen

- https://pixabay.com/
- http://www.wzl.rwth-aachen.de/de/bfaaa371d001b65dc12581210028729b.htm
- http://www.smartautomationlab.de
- https://www.google.de/maps

Vielen Dank für Ihre Aufmerksamkeit

