2016/2017 学年第二学期 <u>数学分析</u> 期中考试 (闭卷) 考试时间 2017/04/15

班级 ______ 学号 _____ 姓名 _____

题号	I	II	III	IV	V	VI	总分
得分							

I. (20分) 计算题: 1). $\lim_{n\to\infty} \sum_{j=1}^n \frac{1}{\sqrt{n^2+j^2}};$ 2). $\lim_{n\to\infty} \int_0^1 x^{n+\frac{1}{x}} dx.$

II. (10分) 设 $f,g\in C[0,1],$ f(1-x)=f(x), g(x)+g(1-x)=2, $\forall x\in [0,1].$ 证明: $\int_0^1 fg=\int_0^1 f.$

III. (30分) 判断积分的敛散性: 1). $\int_0^1 x^{\ln x} dx$; 2). $\int_0^\infty \sin(\sin x^2) dx$.

IV. (30分) 判断数项级数的敛散性: 1). $\sum_{n=1}^{\infty} \frac{\sin n}{n}$; 2). $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)$.

V. (10分) 设 $f:[a,b]\to\mathbb{R}$ 且 $\forall x\in[a,b],\ \lim_{t\to x}f(t)$ 都存在有限极限.问:f 是否必Riemann可积?

VI. 选做题(选且只能选一题)
1). (5分)设 $f \geq 0$, $\int_0^1 f = 1$. 证明: $\exists \zeta \in [0,1] \text{ s.t. } \int_0^1 \frac{f(x)dx}{|\zeta - x|} = \infty$.
2). (20分)设 $f \in C([0,\infty[)]]$ 且 $\int_0^\infty f^2 < \infty$. 令 $\phi(x) = f(x) - 2e^{-x} \int_0^x e^t f(t) dt$. 证明: $\int_0^\infty f^2 = \int_0^\infty \phi^2$. 阁下选做第______题.