Last name	
First name	

LARSON—OPER 731—CLASSROOM WORKSHEET 26 Matroid Polytopes & Matchings

- 1. What is the rank of a matroid?
- 2. (**Scheduling**) Jobs 1, 2, ..., 10 are to be processed by a single machine. Each job requires one hour to process, and has a profit c_j . The problem is to find an ordering of the jobs that maximizes total profit. Let the independent sets of a matroid M be sets of jobs that can mutually be completed by the deadline d_j .

Job j	c_{j}	d_{j}
1	20	3:00 PM
2	15	1:00 PM
3	10	2:00 PM
4	10	1:00 PM
5	6	2:00 PM
6	4	5:00 PM
7	3	5:00 PM
8	2	4:00 PM
9	2	2:00 PM
10	1	6:00 PM

Matroid Polytopes

Let M be a matroid. The convex hull of the characteristic vectors of the independent sets in M defines a polytope $\mathcal{P}_{\mathcal{I}(M)}$.

3. Let G be a path graph with 3 vertices and 2 edges. Let M be the corresponding graphic matroid. Find $\mathcal{P}_{\mathcal{I}(M)}$.

We know from Minkowski's Theorem that there is a representation of this polytope as an intersection of half-spaces (defined by linear inequalities). In fact there is an attractive theorem that gives us the inequalities in terms of the rank r = r(M).

Matroid Polytope Theorem. For any matroid M,

$$\mathcal{P}_{\mathcal{I}(M)} = \{ x \in \mathbb{R}^{E(M)} : \sum_{e \in T} x_e \le r_M(T) \ \forall T \subseteq E(M) \}$$

4.	Check that this the convex hull description of the polytope $\mathcal{P}_{\mathcal{I}(M)}$ of the graphic matroid in the last example is in fact the polytope defined half-space description of $\mathcal{P}_{\mathcal{I}(M)}$ given in the Matroid Polytope Theorem.
	Matchings, Matching Matroid & the Matching Polytope
5.	What is a matching? in a graph? What is a maximum matching?
6.	What is $\delta(v)$? If M is a matching, what vertices are $covered$ by M ? What vertices are $exposed$ by M ?
7.	If M is a matching in a graph, what is an alternating path? What is an augmenting path?
8.	What is Berge's Theorem? Why is it true?
9.	(Matching Matroid Theorem) Let G be a graph and $W\subseteq V(G)$. $M=(E(M),\mathcal{I}(M))$ with $E(M)=W$ and
	$\mathcal{I}(M) = \{X \subseteq W : G \text{ has a matching that covers } X\}.$
	is a matroid.