

Applications of Derivatives

Calculus & Analytical Geometry MATH- 101 Instructor: Dr. Naila Amir (SEECS, NUST)

Objectives

- -> + is ais [a, b]

 -> p is differentiable Extreme Values of functions.
- The Mean Value theorem. >> f 13 th on [0,15] >> f in diff on (0,16)
- Monotonic Functions and The First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test

$$f'(x) > 0$$
 Function increasing $f'(x) < 0$ Function decreasing $f'(x) = 0$ Stationary Point

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 4

• Sections: (4.3)

Increasing and Decreasing Functions

A function f(x) is **strictly increasing** on an interval I if $f(x_1) \in f(x_2)$ whenever $x_1 < x_2$.

A function f(x) is strictly decreasing on an interval I if $f(x_1) > f(x_2)$

Whenever $x_1 < x_2$.

How the Derivative is connected to Increasing/Decreasing Functions

- When the function is increasing, what is the sign (+ or -) of the slopes of the tangent lines? POSITIVE Slope \checkmark
- ➤ When the function is decreasing, what is the sign (+ or -) of the slopes of the tangent lines? NEGATIVE Slope

First Derivative Test for Increasing and Decreasing Functions

Let f(x) be differentiable on the open interval (a, b)

If f'(x) < 0 for each value of x in an interval (a,b), then f(x) is decreasing on (a,b).

If f'(x) = 0 for each value of x in an interval (a, b), then f(x) is constant on (a, b).

Procedure for finding intervals on which a function is increasing or decreasing

If f(x) is a continuous function on an open interval (a,b). To find the open intervals on which f is increasing or decreasing:

- Find the critical points of f(x) in (a,b).
- Make a sign chart: The critical points, divide the x axis into intervals. Test the sign (+ or -) of the **derivative** inside each of these intervals.
- 3. If f'(x) > 0 in an interval, then f(x) is increasing in that interval.
- 4. If f'(x) < 0 in an interval, then f(x) is decreasing in that interval.

$$\searrow (-\infty,-1) \cup (0,2)$$
 Example:

Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Solution: f(x) is continuous and Domain of f(x) is the set of all Real numbers.

1. Find the critical points: Calculate the derivative and determine where the derivative is 0 or undefined

$$f'(x) = 12x^3 - 12x^2 - 24x = 0$$

$$\Rightarrow 12x(x^2 - x - 2) = 0$$

$$\Rightarrow 12x(x - 2)(x + 1) = 0$$

$$\Rightarrow x = 0, 2, -1$$

2. Find the sign of the derivative on each interval:

$$f'(-2) = -96 < 0$$

 $f'(-0.5) = 7.5 > 0$
 $f'(1) = -24 < 0$
 $f'(3) = 144 > 0$

The function is increasing on:

$$(-1,0) \cup (2,\infty) \quad \checkmark$$

because the first derivative is positive on this interval.

The function is decreasing on:

$$(-\infty, -1) \cup (0,2) \checkmark$$

because the first derivative is negative on this interval.

The First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f(x).

a) If f'(x) changes sign from positive to negative at c, then f(x) has a

local maximum at c.

The First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f(x).

b) If f'(x) changes sign from negative to positive at c, then f(x) has a local minimum at c.

The First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f(x).

c) If f'(x) does not changes sign at c (i.e., f'(x) is positive on both sides of c or it is negative on both sides), then f(x) has no local maximum or minimum at c. minimum at c.

No Local Maximum or Minimum

The First Derivative Test

Determine the sign of the derivative of f(x) to the left and right of the critical point.

left	right	conclusion
+		f(c) is a relative maximum
_	+	f(c) is a relative minimum
No change		No relative extremum V

$$\sqrt{V} \rightarrow (-\infty,0)$$

$$f(x) = x^3 - 6x^2 + 1$$

$$\Rightarrow f'(x) = 3x^2 - 12x = 0$$

Stationary points: x = 0.4

Singular points: None

Relative max. f(0) = 1Sign of f'Behavior of fRelative max. f(0) = 1Property April 1985

Relative max. f(0) = 1Relative max. f(0) = 1Relative max. f(0) = 1Property April 1985

Relative max. f(0) = 1Relative max. f(0) = 1

Relative min.

$$f(4) = (-31)$$

$$\sqrt{2}$$
 (-0,0) $\sqrt{2}$ (4,0) $\sqrt{2}$

ond

(-00,0)

No obselute Extreme

Example:

Find all the relative extrema of

$$f(x) = \sqrt[3]{x^3 - 3x}$$

$$\Rightarrow f'(x) = \frac{x^2 - 1}{\sqrt[3]{x^3 - 3x}}$$

Stationary points: $x = \pm 1$

Singular points: $x = 0, \pm \sqrt{3}$

Local max. $f(-1) = \sqrt[3]{2}$

$$f(x) = \sqrt[3]{x^3 - 3x}$$

Local min. $f(1) = -\sqrt[3]{2}$

Domain Not a Closed Interval

Example: Find the absolute extrema of $f(x) = \frac{1}{(x-2)}$ on $[3, \infty)$

Solution:
$$f(x) = \frac{1}{(x-2)}$$

$$\Rightarrow f'(x) = \frac{-1}{(x-2)^2} \checkmark$$

Singular point: $\alpha = 2$ (Not a critical point)

At end point: x = 3

$$f'(3) = \frac{-1}{(3-2)^2} < 0$$
 Decreasing

and

$$f(3) = \boxed{1}$$

Absolute Max.

Absolute Max.

Practice Questions

Book: Thomas Calculus (11th Edition) by Georg B.Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

■ Chapter: 4

■ Exercise: 4.3

Q # 1 - 36.