

Spatial Tracker: Tracking Any 2D Pixels in 3D Space

A novel Framework for Dense and Long-Range Motion Estimation.

Presented By Kishore Reddy Mamidi Mohammed Fazil Khasim Alex Chilaka

Why Does Pixel Tracking Fail in Real Life?

- Cameras capture the 3D world as flat
 2D images.
- Q When an object rotates, occludes, or moves out-of-plane —
 - Traditional 2D methods lose track.
- @ Tracking fails because:
 - No depth awareness
 - Gets confused by occlusions
 - Struggles with long-range motion
- Real life happens in 3D so why do we still track in 2D?

Previous Work: Optical Flow

Q What is Optical Flow?

- Estimates dense pixel-wise motion between two adjacent video frames
- Commonly used in video analysis, object detection, and action recognition
- Popular models: RAFT, FlowNet, PWC-Net

X Limitations:

- Only works for short-term motion
- Breaks under occlusion, large displacements, or rotation
- Cannot reason about depth or 3D structure
- Treats motion as purely 2D leads to incorrect tracking in real-world scenes

Previous Work: Point Tracking

Q What is Point Tracking?

- Follows a few selected key points across multiple frames
- Tracks motion over longer time spans than optical flow
- Examples: Particle Video, PIPs, TAPIR

X Limitations:

- Only tracks sparse points not every pixel
- Fails if the keypoint is occluded or goes out of view
- Often treats points independently, ignoring spatial context
- Limited temporal window can't handle long occlusion

Previous Work: Scene Flow

Q What is Scene Flow?

- Estimates dense 3D motion of points in the scene
- Uses inputs like RGB-D video or stereo camera views
- Generates 3D trajectories across time (like optical flow, but in 3D)
- Examples: RAFT-3D, Dynamic Fusion, FlowNet3D

X Limitations:

- Requires depth sensors or stereo camera setups
- Often slow and computationally expensive
- Many models are designed only for structured environments (e.g., self-driving)
- Doesn't generalize well to unconstrained or monocular video

What is SpatialTracker?

★ Core Problem:

- Pixel motion tracking in videos often fails due to:
- Occlusion, Rotation, Complex 3D motion, Lack of depth in 2D projections

SpatialTracker's Solution:

- Lifts 2D pixels into 3D space using depth estimation.
- Tracks motion across time using 3D trajectories.
- Uses a Transformer model to predict and refine movement.
- Applies ARAP (As-Rigid-As-Possible) constraints to handle occlusions and enforce spatial consistency.

⊴ Why It Works:

- 3D motion is simpler, smoother, and physically meaningful.
- Avoids 2D issues like flattening and irrelevant neighboring context.

How Does SpatialTracker Work?

- Step-by-Step Pipeline:
- **1. Start with monocular video** no depth sensors needed.
- 2. Estimate depth for each frame using a model like ZoeDepth.
- **3. Lift 2D pixels into 3D** → each pixel becomes a 3D point.
- **4. Encode scene with Triplanes** (XY, XZ, YZ) to preserve spatial information.
- 5. Track pixels over time using a Transformer-based trajectory model.
- 6. Enforce rigidity using ARAP constraints to maintain structure, even under occlusion.

Triplane Encoding of Input Video Frames

Process:

- Obtain monocular depth maps and multi-scale feature maps for each frame.
- Unproject 2D pixels into 3D point clouds.
- Splat 3D points onto three orthogonal planes (XY, XZ, YZ) to create triplane feature maps.

Iterative Trajectory Prediction

Input features:

$$G_{m_t} = [\gamma(X_{m_t}), F_{m_t}, C_{m_t}, \gamma(X_{m_t} - X_1)] \in R^{D}$$

- Positional encoding : Captures the current 3D location.
- Feature vector: Extracted from triplane representation.
- Correlation features : Compare local triplane features around the point.
- Offset from starting position: Encodes motion relative to the initial position.

Transformer Updates:

$$G_{m} \in R_{MTSMD} = \{G_{m_{i,t}} | i = 1,, N; t = 1, ..., T_{s}\}$$

Transformer predicts new positions and features

$$X_{m+1}, F_{m+1} = \Psi(G_m)$$

Repeat for M iterations to refine trajectories.

ARAP – As Rigid As Possible Constraint

1. What is ARAP?

- ARAP enforces that points belonging to the same rigid part maintain constant distances over time.
- Enhances spatial consistency during occlusions and complex motions.

2. Why Use ARAP?

- Handles occlusions by leveraging neighboring visible points in the same rigid group.
- Prevents unrealistic deformations in tracked trajectories.

3. Rigidity Embedding

- At each iteration m, compute a rigidity embedding Eⁿ for each trajectory i.
- Aggregates input features across all the frames.
- Calculate affinity S_{im_j} between any two trajectories i and j, Uses cosine similarity to measure motion similarity:

$$S_{i_j} = sim(E_{i_j}, E_{i_j})$$

ARAP Loss

Loss Function:

• Encourages distances between points with high rigidity affinity to remain constant over time:

$$\begin{aligned} & \mathbf{L}_{\text{arap}} = \sum_{m=1}^{M} \sum_{t=1}^{Ts} \sum_{\Omega ij} \mathbf{w}^{m} \ \mathbf{s}^{m}_{ij} \ || \mathbf{d}(\mathbf{X}^{m}_{i,t}, \ \mathbf{X}^{m}_{j,t}) - \\ & \mathbf{d}(\mathbf{X}_{i,1}, \mathbf{X}_{j,1}) ||_{1} \end{aligned}$$

- Rigidity embeddings are learned self-supervisedly.
- Spectral clustering on affinity scores produces meaningful segmentation of rigid parts.

Loss Calculation

Trajectory Loss:

$$L_{traj} = \sum_{m=1}^{M} \sum_{i=1}^{N} \sum_{t=1}^{Ts} w^{m} || X_{i,t}^{m} - X_{i,t}^{m} ||_{1}$$

Visibility Loss:

$$L_{vis} = \sum_{i=1}^{N} \sum_{t=1}^{Ts} CE(v_{i,t}, v_{l,t})$$

Total Loss:

$$L_{total} = L_{traj} + \alpha L_{vis} + \beta L_{arap}$$

where α and β are weighting coefficients. In practice, they are set as 10 and 0.1, respectively

Training & Implementation details

• Training:

- Trained on TAP-Vid-Kubric dataset with 11,000 RGB-D sequences.
- Used ground truth depth maps and camera intrinsics during training.
- Inference uses ZoeDepth for metric depth estimation.

Parameters:

- Iteration steps M=6.
- Sliding window length Ts=8.
- Transformer consists of 6 blocks with spatial and temporal attention layers.

Experiments Overview

- Conducted evaluations on three long-range tracking benchmarks.
- TAP-Vid: Real and synthetic videos.
- BADJA: Videos of moving animals with key points.
- Point Odyssey: Synthetic dataset with diverse animated characters.

- Compared against baseline methods.
- TAP-Net, PIPs, Omni Motion, TAPIR, CoTracker.
- Evaluated using metrics like AJ (Average Jaccard), <δx_avg (average position accuracy), OA (Occlusion Accuracy), MTE (Median Trajectory Error), and Survival Rate.

2D Pixel Tracking

- Input: RGB video without known depth or camera intrinsics.
- Depth Estimation: Uses ZoeDepth to estimate depth maps.
- Evaluation: Only evaluates the 2D projection of 3D trajectories onto the image plane.
- Datasets: TAP-Vid benchmark, which includes Kinetics, DAVIS, and RGB-Stacking, BADJA and Point Odyssey.
- Average Position Accuracy (<δx_avg), Average Jaccard (AJ), Occlusion Accuracy (OA).

Results on TAP-Vid Benchmark

- Reported results on Kinetics, DAVIS, and RGB-Stacking datasets.
- Spatial Tracker consistently outperforms baselines across all metrics.
- Follows the "queried first" protocol from CoTracker, use the first frame as the query frame and predict the 2D locations of query pixels in all subsequent frames.

Methods	Kinetics [9]		DAVIS [50]		RGB-Stacking [33]		Average					
	AJ ↑	$<\delta_{ m avg}\uparrow$	OA ↑	AJ ↑	$<\delta_{ m avg}\uparrow$	OA ↑	AJ ↑	$<\delta_{ m avg}\uparrow$	OA †	AJ ↑	$<\delta_{ m avg}\uparrow$	OA ↑
TAP-Net [11]	38.5	54.4	80.6	33.0	48.6	78.8	54.6	68.3	87.7	42.0	57.1	82.4
PIPs [17]	31.7	53.7	72.9	42.2	64.8	77.7	15.7	28.4	77.1	29.9	50.0	75.9
OmniMotion [71]		12	825	46.4	62.7	85.3	69.5	82.5	90.3	8	2	\$3
TAPIR [12]	49.6	64.2	85.0	56.2	70.0	86.5	54.2	69.8	84.4	53.3	68.0	85.3
CoTracker [29]	48.7	64.3	86.5	60.6	75.4	89.3	63.1	77.0	87.8	57.4	72.2	87.8
Ours	50.1	65.9	86.9	61.1	76.3	89.5	63.5	77.6	88.2	58.2	73.3	88.2

Table 1. 2D Tracking Results on the TAP-Vid Benchmark. We report the average jaccard (AJ), average position accuracy ($<\delta_{avg}^{x}$), and occlusion accuracy (OA) on Kinetics [9], DAVIS [50] and RGB-Stacking [33] datasets.

Results on BADJA dataset

- BADJA contains videos of moving animals with annotated keypoints.
- Evaluated using metrics like segA(segment based accuracy),
 δ3px(Percentage of keypoints within 3 pixels of ground truth.)
- Predicted keypoint positions are deemed accurate if their distance from the ground truth is less than 0.2A^1/2, where A is the summation of the area of the segmentation mask.

Methods	$\mathbf{segA} \downarrow$	$oldsymbol{\delta}^{3 extbf{px}}\uparrow$	
TAP-Net [11]	54.4	6.3	
PIPs [17]	61.9	13.5	
TAPIR [12]	66.9	15.2	
OmniMotion [71]	57.2	13.2	
CoTracker [29]	63.6	18.0	
Ours	69.2	17.1	

Results on the Point Odyssey Dataset

- Point Odyssey features diverse animated characters in complex environments.
- Evaluated using metrics like MTE (
 Median trajectory error) ,<δx_avg (
 Average position accuracy), Survival (
 Average number of frames until
 tracking failure).
- Tracking failure is identified when the L2error exceeds 50 pixels at a resolution of 256 x256.

Methods	$\mathbf{MTE}{\downarrow}$	$<\!\delta^{f x}_{ m avg}\uparrow$	Survival↑	
TAP-Net [11]	37.8	29.2	52.8	
PIPs [81]	41.0	30.4	67.0	
CoTracker [29]	30.5	56.2	76.1	
Ours w/ ZoeDepth [2]	28.3	58.4	78.6	
Ours w/ GT depth	26.6	64.1	78.0	

Qualitative Comparisons

- Handling self-occlusions better.
- Tracking small, fast-moving objects accurately.

3D Tracking Evaluation

- Evaluated on Point Odyssey using known depth and intrinsics.
- Chained RAFT-3D : Chains pairwise scene flow predictions.
- Lifted CoTracker: Lifts 2D trajectories into 3D using depth maps.
- Create 231 testing sequences from the test set, each consisting of 24 frames with reduced frame rate (onefifth of original).

Methods	$\text{ATE}_{3D}\downarrow$	$\delta_{0.1}\uparrow$	$\delta_{0.2}\uparrow$	
Chained RAFT3D [63]	0.70	0.12	0.25	
Lifted CoTracker [29]	0.77	0.51	0.64	
Ours	0.22	0.59	0.76	

Ablation Study

- Removing ARAP loss reduces performance significantly.
- Confirms the effectiveness of ARAP constraints.
- Tested with ZoeDepth, MiDaS, and DPT.
- ZoeDepth performs best due to its metric depth and temporal consistency.

Methods	AJ↑	$<\!\delta^x_{ m avg}\!\uparrow$	OA↑
Ours w/o ARAP	55.1	71.6	87.4
Ours w/ DPT [53]	51.4	70.7	83.3
Ours w/ MiDaS [5]	56.3	73.9	86.6
Ours w/ ZoeDepth [2] (default)	61.1	76.3	89.5

Rigid Part Segmentation

- Used spectral clustering on rigidity embeddings to identify rigid groups.
- Each color represents a distinct rigid group (e.g., car door, wheels).

Reference Image Parts

Tracking Results

Estimated Rigid

Conclusion

- Proposed a novel framework for dense and long-range motion estimation in videos.
- Tracking in 3D space improves accuracy and handles occlusions better than 2D tracking.
- ARAP constraints enforce spatial consistency and improve tracking during occlusions.
- Triplane representations enable efficient 3D tracking.
- Achieved state-of-the-art performance on multiple benchmarks.

Future Work

- Enhance monocular depth estimation to further improve tracking performance.
- Investigate closer interplay between motion estimation and depth reconstruction.
- Extend the method to handle multi-view scenarios for richer 3D context.

Thank you