(S)NOWPAC

Generated by Doxygen 1.8.11

Contents

1	Hier	archica	I Index	1
	1.1	Class	Hierarchy	1
2	Clas	s Index		3
	2.1	Class	List	3
3	Clas	s Docu	mentation	5
	3.1	BasisF	ForMinimumFrobeniusNormModel Class Reference	5
	3.2	BasisF	ForSurrogateModelBaseClass Class Reference	5
		3.2.1	Detailed Description	6
		3.2.2	Constructor & Destructor Documentation	6
			3.2.2.1 BasisForSurrogateModelBaseClass(int n)	6
		3.2.3	Member Data Documentation	6
			3.2.3.1 nb_basis_functions	6
	3.3	BlackE	BoxBaseClass Class Reference	7
	3.4	Blackb	oxData Struct Reference	7
	3.5	Choles	skyFactorization Class Reference	7
		3.5.1	Detailed Description	8
		3.5.2	Member Function Documentation	8
			3.5.2.1 compute(Eigen::MatrixXd &, int &, double &, int)	8
	3.6	Gauss	ianProcess Class Reference	8
		3.6.1	Detailed Description	9
		3.6.2	Constructor & Destructor Documentation	9
			3.6.2.1 GaussianProcess(int)	q

iv CONTENTS

	3.6.3	Member	Function Documentation	9
		3.6.3.1	build(std::vector< std::vector< double > > const &, Eigen::VectorXd const &, Eigen::VectorXd const &)	9
		3.6.3.2	estimate_hyper_parameters(std::vector< std::vector< double > > const &, Eigen::VectorXd const &,	10
		3.6.3.3	evaluate(std::vector < double > const~&,~double~&,~double~&)~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~	10
		3.6.3.4	${\tt evaluate_kernel(std::vector< double > const \&, std::vector< double > const \&) \ .}$	10
		3.6.3.5	update(std::vector< double > const &, double &, double &)	11
3.7	Gaussi	anProcess	BaseClass Class Reference	11
	3.7.1	Detailed	Description	11
3.8	Gaussi	anProcess	KernelBaseClass Class Reference	12
	3.8.1	Detailed	Description	12
3.9	Gaussi	anProcess	Support Class Reference	12
3.10	Improv	ePoisedne	ss Class Reference	12
	3.10.1	Detailed	Description	13
	3.10.2	Construc	tor & Destructor Documentation	13
		3.10.2.1	ImprovePoisedness(BasisForSurrogateModelBaseClass &, double, int, double &, int)	13
	3.10.3	Member	Function Documentation	13
		3.10.3.1	improve_poisedness(int, BlackboxData &)	13
		3.10.3.2	replace_node(int, BlackboxData const &, std::vector< double > const &)	14
3.11	Improv	ePoisedne	ssBaseClass Class Reference	14
3.12	Minimu	ımFrobeniı	usNormModel Class Reference	15
3.13	NOWP	AC< TSui	rrogateModel, TBasisForSurrogateModel > Class Template Reference	15
3.14	Quadra	aticMinimiz	ation Class Reference	16
	3.14.1	Detailed	Description	16
	3.14.2	Construc	tor & Destructor Documentation	16
		3.14.2.1	QuadraticMinimization(int)	16
	3.14.3	Member	Function Documentation	16
		3.14.3.1	minimize(Eigen::VectorXd &, Eigen::VectorXd const &, Eigen::MatrixXd const &)	16
3.15	Quadra	aticMonom	ial Class Reference	17
	3.15.1	Detailed	Description	17

CONTENTS

	3.15.2	Construc	tor & Destructor Documentation	1/
		3.15.2.1	QuadraticMonomial(int dim_input)	17
	3.15.3	Member	Function Documentation	18
		3.15.3.1	evaluate_monomial(int, std::vector< double > const &)	18
3.16	Regula	rizedMinin	numFrobeniusNormModel Class Reference	18
3.17	Subpro	blemData	< TSurrogateModel, TSubproblemOptimization > Struct Template Reference	19
3.18	Subpro	blemDefin	itions < TSurrogateModel, TSubproblemOptimization > Class Template Reference	19
3.19	Subpro	blemOptin	nization < TSurrogateModel > Class Template Reference	19
3.20	Surroga	ateModelE	BaseClass Class Reference	20
3.21	Triangu	ılarMatrixC	Operations Class Reference	20
	3.21.1	Detailed	Description	21
	3.21.2	Construc	tor & Destructor Documentation	21
		3.21.2.1	TriangularMatrixOperations(int)	21
	3.21.3	Member	Function Documentation	21
		3.21.3.1	backward_substitution(Eigen::MatrixXd const &, Eigen::VectorXd &)	21
		3.21.3.2	compute_large_norm_solution(Eigen::MatrixXd const &, Eigen::VectorXd &)	22
		3.21.3.3	forward_substitution(Eigen::MatrixXd const &, Eigen::VectorXd &)	22
3.22	Vector	Operations	Class Reference	22
	3.22.1	Detailed	Description	23
	3.22.2	Member	Function Documentation	23
		3.22.2.1	add(double, std::vector< double > const &, std::vector< double > &)	23
		3.22.2.2	$\label{linear_const_diff_norm} \mbox{diff_norm(std::vector< double > const \&, std::vector< double > const \&) \ . \ . \ . \ .}$	23
		3.22.2.3	dot_product(std::vector< double > const &, std::vector< double > const &)	23
		3.22.2.4	minus(std::vector< double > const &, std::vector< double > const &, std → ::vector< double > &)	24
		3.22.2.5	rescale(double, std::vector< double > const &, std::vector< double > const &, std::vector< double > &)	24
		3.22.2.6	$\label{eq:const_decomposition} scale(double, std:: vector < double > const \ \&, \ std:: vector < double > \&) \ \ . \ \ . \ \ . \ \ .$	24
		3.22.2.7	set_zero(std::vector< double > &)	25

27

Index

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

BasisForSurrogateModelBaseClass
BasisForMinimumFrobeniusNormModel
BlackBoxBaseClass
BlackboxData
CholeskyFactorization
GaussianProcess
QuadraticMinimization
ImprovePoisedness
GaussianProcessKernelBaseClass
GaussianProcessBaseClass
GaussianProcess
ImprovePoisednessBaseClass
ImprovePoisedness
QuadraticMonomial
BasisForMinimumFrobeniusNormModel
SubproblemData < TSurrogateModel, TSubproblemOptimization >
SurrogateModelBaseClass
MinimumFrobeniusNormModel
RegularizedMinimumFrobeniusNormModel
TriangularMatrixOperations
GaussianProcess
QuadraticMinimization
VectorOperations
BasisForMinimumFrobeniusNormModel
GaussianProcessSupport
MinimumFrobeniusNormModel
NOWPAC< TSurrogateModel, TBasisForSurrogateModel >
QuadraticMinimization
RegularizedMinimumFrobeniusNormModel
$Subproblem Definitions < TSurrogate Model, TSubproblem Optimization > \dots $
SubproblemDefinitions < TSurrogateModel, SubproblemOptimization >
SubproblemOptimization < TSurrogateModel >

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BasisForMinimumFrobeniusNormModel	5
BasisForSurrogateModelBaseClass	
Base class for definiton of surrogate model	5
BlackBoxBaseClass	7
BlackboxData	7
CholeskyFactorization	
Cholesky factorization	7
GaussianProcess	
Gaussian process regression	8
GaussianProcessBaseClass	
Gaussian process regression	1
GaussianProcessKernelBaseClass	
Interface for Gaussian kernel defintion	2
GaussianProcessSupport	2
ImprovePoisedness	
Improve poisedness of interpolation nodes	2
ImprovePoisednessBaseClass	4
MinimumFrobeniusNormModel	5
NOWPAC< TSurrogateModel, TBasisForSurrogateModel >	5
QuadraticMinimization	
Quadratic minimization in unit ball	6
QuadraticMonomial	
Quadratic monomials	7
RegularizedMinimumFrobeniusNormModel	8
SubproblemData < TSurrogateModel, TSubproblemOptimization >	9
SubproblemDefinitions < TSurrogateModel, TSubproblemOptimization >	9
SubproblemOptimization < TSurrogateModel >	9
SurrogateModelBaseClass	0
TriangularMatrixOperations	
Forward and backward substitutions with lower triangular matrices	0
VectorOperations	
Vector operations	2

4 Class Index

Chapter 3

Class Documentation

3.1 BasisForMinimumFrobeniusNormModel Class Reference

Public Member Functions

- BasisForMinimumFrobeniusNormModel (int, double &)
- void set_nb_nodes (int)
- std::vector< double > & evaluate (std::vector< double > const &)
- double evaluate (std::vector< double > const &, int)
- std::vector< double > & gradient (std::vector< double > const &, int)
- void compute_basis_coefficients (BlackboxData const &)
- void get_mat_vec_representation (int, Eigen::VectorXd &, Eigen::MatrixXd &)
- void compute_mat_vec_representation (int)

Additional Inherited Members

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/BasisForMinimumFrobeniusNormModel.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/BasisForMinimumFrobeniusNormModel.cpp

3.2 BasisForSurrogateModelBaseClass Class Reference

Base class for definiton of surrogate model.

#include <BasisForSurrogateModelBaseClass.hpp>

Public Member Functions

BasisForSurrogateModelBaseClass (int n)

Constructor.

~BasisForSurrogateModelBaseClass ()

Destructor.

- virtual void **get_mat_vec_representation** (int, Eigen::VectorXd &, Eigen::MatrixXd &)=0
- virtual void compute basis coefficients (BlackboxData const &)=0
- virtual std::vector< double > & evaluate (std::vector< double > const &)=0
- virtual std::vector< double > & gradient (std::vector< double > const &, int)=0
- virtual double evaluate (std::vector< double > const &, int)=0
- int dimension ()

Protected Attributes

• int dim

Number of arguments of surrogate model.

• int nb_basis_functions

Number of basic basis functions.

std::vector< Eigen::VectorXd > basis_coefficients

Coefficients of surrogate basis functions in terms of basic basis function.

3.2.1 Detailed Description

Base class for definiton of surrogate model.

Defines the required structure of surrogate models to work with NOWPAC

3.2.2 Constructor & Destructor Documentation

3.2.2.1 BasisForSurrogateModelBaseClass::BasisForSurrogateModelBaseClass (int n) [inline]

Constructor.

Constructor to set number of arguments (dimension) of the basis

Parameters

dim_input | Number of arguments (dimension)

3.2.3 Member Data Documentation

3.2.3.1 int BasisForSurrogateModelBaseClass::nb_basis_functions [protected]

Number of basic basis functions.

Number of basis function, for example quadratic monomials, for surrogate basis functions

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate_models_cpp/include/BasisForSurrogateModelBaseClass.hpp

3.3 BlackBoxBaseClass Class Reference

Public Member Functions

- virtual void **evaluate** (std::vector< double > const &x, std::vector< double > &vals, void *param)
- virtual void evaluate (std::vector< double > const &x, std::vector< double > &vals, std::vector< double > &noise, void *param)

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate_models_cpp/include/BlackBoxBaseClass.hpp

3.4 BlackboxData Struct Reference

Public Attributes

- int max_nb_nodes
- int best index
- std::vector < std::vector < double >> nodes
- std::vector< std::vector< double >> values
- std::vector< std::vector< double >> noise
- std::vector< int > surrogate_nodes_index

The documentation for this struct was generated from the following file:

• /Users/Florian/home/sandbox/surrogate_models_cpp/include/BlackBoxData.hpp

3.5 CholeskyFactorization Class Reference

Cholesky factorization.

#include <CholeskyFactorization.hpp>

Protected Member Functions

void compute (Eigen::MatrixXd &, int &, double &, int)
 Computes Cholesky factorization.

3.5.1 Detailed Description

Cholesky factorization.

Computes the Cholesky factorization of a matrix M if M is positive definite, i.e. M = LL' with a lower triangular matrix L. If M is positive defineite the matrix M is over-written by L and p and offset are set to zero.

If M is not positive definite with a zero eigenvalue, a partial Cholesky decomposition in the upper left (p-1)x(p-1) block of M is returned.

Additionally, p and offset are set such that M + rho ep ep' (with the p-th canonical unit vector ep) has a zero eigenvalue.

3.5.2 Member Function Documentation

3.5.2.1 void CholeskyFactorization::compute (Eigen::MatrixXd & L, int & p, double & offset, int n) [protected]

Computes Cholesky factorization.

Parameters

L	matrix M to be factorizized on input and the factorized matrix L on output
p	index of the diagonal element such that M+offset ep ep $^{\wedge}$ T has a zero eigenvalue
offset	offset to shift non-positive eigenvalue of M to zero.
n	dimension of the matrix L

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/CholeskyFactorization.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/CholeskyFactorization.cpp

3.6 Gaussian Process Class Reference

Gaussian process regression.

#include <GaussianProcess.hpp>

Public Member Functions

GaussianProcess (int)

Constructor.

∼GaussianProcess ()

Destructor

 void estimate_hyper_parameters (std::vector< std::vector< double > > const &, Eigen::VectorXd const &, Eigen::VectorXd const &)

Estimation of hyper parameters.

- void build (std::vector< std::vector< double > > const &, Eigen::VectorXd const &, Eigen::VectorXd const &)

 Build the Gaussian process.
- void update (std::vector< double > const &, double &, double &)

Update the Gaussian process.

void evaluate (std::vector< double > const &, double &, double &)

Evaluate Gaussian process.

Protected Member Functions

- double evaluate_kernel (std::vector< double > const &, std::vector< double > const &)
 Evaluation of Gaussian process kernel.
- double d_evaluate_kernel (std::vector< double > const &, std::vector< double > const &, int)

 Evaluation of the derivative of the Gaussina process kernel.

3.6.1 Detailed Description

Gaussian process regression.

Computes a Gaussian process of given data points, function evaluations and noise estimates.

See also

GaussianProcessBaseClass CholeskyFactorization TriangularMatrixOperations

3.6.2 Constructor & Destructor Documentation

3.6.2.1 GaussianProcess::GaussianProcess (int n)

Constructor.

Class constructor.

Parameters

n dimension of the Gaussian process.

3.6.3 Member Function Documentation

3.6.3.1 void GaussianProcess::build (std::vector< std::vector< double > > const & nodes, Eigen::VectorXd const & values, Eigen::VectorXd const & noise) [virtual]

Build the Gaussian process.

Computes the Gaussian process
Requires the estimation of hyper parameters

Parameters

nodes	regression points
function	values
noise	in function values

See also

estimate_hyper_parameters

Implements GaussianProcessBaseClass.

Estimation of hyper parameters.

Estimates the hyper parameters of the Gaussian process.

The hyper parameters are the variance and the length scale parameters in the exponential kernel.

Parameters

nodes	regression points
function	values
noise	in function values

Implements GaussianProcessKernelBaseClass.

3.6.3.3 void GaussianProcess::evaluate (std::vector< double > const & x, double & mean, double & variance) [virtual]

Evaluate Gaussian process.

Computes the mean and variance of the Gaussian process. Requires the building of the Gaussian process.

Parameters

Х	point at which the Gaussian process is evaluated
mean	mean of the Gaussian process at point x
variance	variance of the Gaussina process at point x

See also

build

Implements GaussianProcessBaseClass.

3.6.3.4 double GaussianProcess::evaluate_kernel (std::vector< double > const & x, std::vector< double > const & y) [protected], [virtual]

Evaluation of Gaussian process kernel.

Evaluates the square exponential kernel.

 $Implements\ Gaussian Process Kernel Base Class.$

3.6.3.5 void GaussianProcess::update (std::vector < double > const & x, double & value, double & noise) [virtual]

Update the Gaussian process.

Includees a new point into the Gaussian process

Parameters

X	new point to be included into the Gaussian process
value	new function value at new point
noise	new noise estimate at new function value

Implements GaussianProcessBaseClass.

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/GaussianProcess.hpp
- /Users/Florian/home/sandbox/surrogate models cpp/src/GaussianProcess.cpp

3.7 GaussianProcessBaseClass Class Reference

Gaussian process regression.

#include <GaussianProcessBaseClass.hpp>

Public Member Functions

• GaussianProcessBaseClass ()

Constructor.

∼GaussianProcessBaseClass ()

Destructor.

virtual void build (std::vector< std::vector< double > > const &, Eigen::VectorXd const &, Eigen::VectorXd const &)=0

Build the Gaussian process.

- virtual void update (std::vector< double > const &, double &, double &)=0
 - Update the Gaussian process.
- virtual void evaluate (std::vector< double > const &, double &, double &)=0

Evaluate Gaussian process.

3.7.1 Detailed Description

Gaussian process regression.

Interface for Gaussian process regression

See also

GaussianProcessKernelBaseClasss

The documentation for this class was generated from the following file:

• /Users/Florian/home/sandbox/surrogate_models_cpp/include/GaussianProcessBaseClass.hpp

3.8 Gaussian Process Kernel Base Class Class Reference

Interface for Gaussian kernel defintion.

#include <GaussianProcessKernelBaseClass.hpp>

Public Member Functions

virtual void estimate_hyper_parameters (std::vector< std::vector< double > > const &, Eigen::VectorXd const &, Eigen::VectorXd const &)=0

Virtual member function for the estimation of hyper parameters of the kernel.

virtual double evaluate_kernel (std::vector< double > const &, std::vector< double > const &)=0
 Virtual membber function for the evaluation of the kernel.

3.8.1 Detailed Description

Interface for Gaussian kernel defintion.

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate_models_cpp/include/GaussianProcessKernelBaseClass.hpp

3.9 GaussianProcessSupport Class Reference

Public Member Functions

- void initialize (const int, const int, double &, Eigen::VectorXd const &, int)
- void smooth_data (BlackboxData &)

Additional Inherited Members

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate models cpp/include/GaussianProcessSupport.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/GaussianProcessSupport.cpp

3.10 ImprovePoisedness Class Reference

Improve poisedness of interpolation nodes.

#include <ImprovePoisedness.hpp>

Public Member Functions

• ImprovePoisedness (BasisForSurrogateModelBaseClass &, double, int, double &, int)

Constructor.

∼ImprovePoisedness ()

Destructor.

int replace_node (int, BlackboxData const &, std::vector< double > const &)

Find node to be replaced by better poised node.

• void improve_poisedness (int, BlackboxData &)

Improves poisedness of interpolation nodes.

Additional Inherited Members

3.10.1 Detailed Description

Improve poisedness of interpolation nodes.

3.10.2 Constructor & Destructor Documentation

3.10.2.1 ImprovePoisedness::ImprovePoisedness (BasisForSurrogateModelBaseClass & B, double poisedness_threshold, int m, double & rad, int verbose)

Constructor.

Set parameters required for the improvement of the poisedness of interploation nodes

Parameters

В	basis for surrogate model
poisedness_threshold	threshold for poisedness constant
m	maximal number of interpolation nodes
rad	radius arround current best point of ball that contains well poised points
verbose	switch output on (verbose = 3) or off (verbose = 0)

See also

BlackboxData

3.10.3 Member Function Documentation

3.10.3.1 void ImprovePoisedness::improve_poisedness (int reference_node, BlackboxData & evaluations)
[virtual]

Improves poisedness of interpolation nodes.

Improves poisedness of interpolation nodes by maximizing the absolute value of basis functions. Nodes to replace existing interpolation nodes are computed and appended to the list of nodes,

See also

BlackboxData

The index of nodes to reduce the poisedness value are indicated in evaluations BlackboxData

Parameters

reference_node	index of node that is not replaced
evaluations	structure containing interpolation nodes,

See also

BlackboxData

Implements ImprovePoisednessBaseClass.

3.10.3.2 int ImprovePoisedness::replace_node (int reference_node, BlackboxData const & evaluations, std::vector < double > const & new_node) [virtual]

Find node to be replaced by better poised node.

Finds a node to replace another interpolation node to improve poisedness

Parameters

re	eference_node	index of node that is not replaced
eı	valuations	interpolation nodes,

See also

BlackboxData

Parameters

new_node new node to replace an existing interpolation node

 $Implements\ Improve Poisedness Base Class.$

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/ImprovePoisedness.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/ImprovePoisedness.cpp

3.11 ImprovePoisednessBaseClass Class Reference

Public Member Functions

- ImprovePoisednessBaseClass (double threshold_for_poisedness_constant_input, BasisForSurrogate
 — ModelBaseClass &basis input)
- virtual int replace_node (int, BlackboxData const &, std::vector< double > const &)=0
- virtual void improve_poisedness (int, BlackboxData &)=0

Protected Attributes

- BasisForSurrogateModelBaseClass * basis
- double poisedness_constant
- · double threshold for poisedness constant
- std::vector< bool > index_of_changed_nodes

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate_models_cpp/include/ImprovePoisednessBaseClass.hpp

3.12 MinimumFrobeniusNormModel Class Reference

Public Member Functions

- MinimumFrobeniusNormModel (BasisForMinimumFrobeniusNormModel &)
- double evaluate (std::vector< double > const &)
- std::vector< double > & gradient (std::vector< double > const &)
- void **set_function_values** (std::vector< double > const &, std::vector< double > const &, std::vector< int > const &)

Additional Inherited Members

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/MinimumFrobeniusNormModel.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/MinimumFrobeniusNormModel.cpp

3.13 NOWPAC< TSurrogateModel, TBasisForSurrogateModel > Class Template Reference

Public Member Functions

- · NOWPAC (int)
- void set_blackbox (BlackBoxBaseClass &, int)
- void set_blackbox (BlackBoxBaseClass &)
- int **optimize** (std::vector< double > &, double &)
- void set_option (std::string const &, int const &)
- void set_option (std::string const &, double const &)
- void set_option (std::string const &, bool const &)
- void set_option (std::string const &, Eigen::VectorXd const &)
- void void user_data (void *)
- void set_lower_bounds (Eigen::VectorXd const &)
- void set_upper_bounds (Eigen::VectorXd const &)
- void set_trustregion (double const &)
- void set trustregion (double const &, double const &)
- void set_max_trustregion (double const &)
- void set_max_number_evaluations (int const &)

Additional Inherited Members

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate_models_cpp/src/NOWPAC.cpp

3.14 QuadraticMinimization Class Reference

Quadratic minimization in unit ball.

```
#include <QuadraticMinimization.hpp>
```

Public Member Functions

· QuadraticMinimization (int)

Constructor.

∼QuadraticMinimization ()

Destructor.

• void minimize (Eigen::VectorXd &, Eigen::VectorXd const &, Eigen::MatrixXd const &)

Solve quadratic minimization in unit ball.

Additional Inherited Members

3.14.1 Detailed Description

Quadratic minimization in unit ball.

3.14.2 Constructor & Destructor Documentation

3.14.2.1 QuadraticMinimization::QuadraticMinimization (int n)

Constructor.

Contructor to set dimension of quadratic optimizatin problem

Parameters

n dimension of quadratic optimization problem

3.14.3 Member Function Documentation

3.14.3.1 void QuadraticMinimization::minimize (Eigen::VectorXd & y, Eigen::VectorXd const & g, Eigen::MatrixXd const & H)

Solve quadratic minimization in unit ball.

Solves the quadratic minimization y = argmin g'x + 0.5x'Hx subject to ||x|| <= 1. Implementation of algorithm from More/Sorensen, Computing a trust region step (1983).

Parameters

у	solution of quadratic optimization problem
g	gradient of quadratic opjective function
Н	hessian of quadratic objective function

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate models cpp/include/QuadraticMinimization.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/QuadraticMinimization.cpp

3.15 QuadraticMonomial Class Reference

Quadratic monomials.

```
#include <QuadraticMonomial.hpp>
```

Public Member Functions

· QuadraticMonomial (int dim_input)

Constructor.

Protected Member Functions

double evaluate_monomial (int, std::vector< double > const &)
 Evaluation of monomials.

3.15.1 Detailed Description

Quadratic monomials.

Evaluates quadratic monomials in dim dimensions. Monimial 0 = 1 Monomial $1 \dots$ dim = x_i Monomial dim+1 \dots 2*dim = $0.5*x_i^2$ Monomial 2*dim+1 \dots 3*dim = x_1*x_2 \dots x_1*x_n Monomial 3*dim+1 \dots 4*dim-1 = x_2*x_3 \dots x_2*x_n \dots Monoial (dim 2 + 3*dim +2)/2 = x_1^2

3.15.2 Constructor & Destructor Documentation

3.15.2.1 QuadraticMonomial::QuadraticMonomial(int dim_input) [inline]

Constructor.

Parameters

dim_input	Dimension of monomials
-----------	------------------------

3.15.3 Member Function Documentation

3.15.3.1 double QuadraticMonomial::evaluate_monomial (int $basis_number$, std::vector < double > const & x) [protected]

Evaluation of monomials.

Evaluation of monomial number p

Parameters

р	Number of monomial as discribed
Х	Point where monomial is evaluated

See also

QuadraticMonomial

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/QuadraticMonomial.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/QuadraticMonomial.cpp

3.16 RegularizedMinimumFrobeniusNormModel Class Reference

Public Member Functions

- RegularizedMinimumFrobeniusNormModel (BasisForMinimumFrobeniusNormModel &)
- double evaluate (std::vector< double > const &)
- std::vector< double > & gradient (std::vector< double > const &)
- void **set_function_values** (std::vector< double > const &, std::vector< double > const &, std::vector< int > const &)

Static Public Member Functions

• static double regularization_objective (std::vector< double > const &, std::vector< double > &, void *)

Additional Inherited Members

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/RegularizedMinimumFrobeniusNormModel.
 hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/RegularizedMinimumFrobeniusNormModel.cpp

3.17 SubproblemData < TSurrogateModel, TSubproblemOptimization > Struct Template Reference

Public Attributes

- TSubproblemOptimization< TSurrogateModel > * me
- VectorOperations * vo
- int constraint_number

The documentation for this struct was generated from the following file:

• /Users/Florian/home/sandbox/surrogate_models_cpp/include/SubproblemDefinitions.hpp

3.18 SubproblemDefinitions< TSurrogateModel, TSubproblemOptimization > Class Template Reference

Static Public Member Functions

- static double **opt trial point obj** (std::vector< double > const &, std::vector< double > &, void *)
- static double **opt_criticality_measure_obj** (std::vector< double > const &, std::vector< double > &, void *)
- static double opt_restore_feasibility_obj (std::vector< double > const &, std::vector< double > &, void *)
- static double trustregion_constraint (std::vector< double > const &, std::vector< double > &, void *)
- static double constraints_for_subproblems (std::vector< double > const &, std::vector< double > &, void
 *)

Additional Inherited Members

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate_models_cpp/include/SubproblemDefinitions.hpp

3.19 SubproblemOptimization < TSurrogateModel > Class Template Reference

Public Member Functions

- SubproblemOptimization (std::vector< TSurrogateModel > &, double &, Eigen::VectorXd &)
- double compute_criticality_measure (std::vector< double > &)
- double compute_trial_point (std::vector< double > &)
- double restore_feasibility (std::vector< double > &)
- void set lower bounds (Eigen::VectorXd &)
- void set_upper_bounds (Eigen::VectorXd &)

Public Attributes

- · VectorOperations vo
- std::vector< double > best_point
- Eigen::VectorXd * inner_boundary_constant
- double * delta
- Eigen::VectorXd feasibility thresholds
- std::vector< TSurrogateModel > * surrogate_models
- std::vector< double > criticality_gradient

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate models cpp/include/SubproblemOptimization.hpp

3.20 SurrogateModelBaseClass Class Reference

Public Member Functions

- SurrogateModelBaseClass (BasisForSurrogateModelBaseClass &basis_input)
- virtual double **evaluate** (std::vector< double > const &)=0
- virtual std::vector< double > & gradient (std::vector< double > const &)=0
- virtual void **set_function_values** (std::vector< double > const &, std::vector< double > const &, std
 ::vector< int > const &)=0
- int dimension ()

Protected Attributes

- std::vector< double > model_gradient
- std::vector< double > function_values
- BasisForSurrogateModelBaseClass * basis

The documentation for this class was generated from the following file:

/Users/Florian/home/sandbox/surrogate models cpp/include/SurrogateModelBaseClass.hpp

3.21 TriangularMatrixOperations Class Reference

Forward and backward substitutions with lower triangular matrices.

#include <TriangularMatrixOperations.hpp>

Public Member Functions

• TriangularMatrixOperations (int)

Constructor.

∼TriangularMatrixOperations ()

Destructor.

void forward_substitution (Eigen::MatrixXd const &, Eigen::VectorXd &)

Forward substituion

• void backward_substitution (Eigen::MatrixXd const &, Eigen::VectorXd &)

Backward substituion.

• void compute_large_norm_solution (Eigen::MatrixXd const &, Eigen::VectorXd &)

Look behind algorithm (Cline et al. 1982)

3.21.1 Detailed Description

Forward and backward substitutions with lower triangular matrices.

Forward and backward substituion with a lower triangular system matrix. The vector of the right-hand side is overwritten with the solution of the linear system.

3.21.2 Constructor & Destructor Documentation

3.21.2.1 TriangularMatrixOperations::TriangularMatrixOperations (int n)

Constructor.

Set dimension of linear systems

Parameters

n dimension of linear systems

3.21.3 Member Function Documentation

3.21.3.1 void TriangularMatrixOperations::backward_substitution (Eigen::MatrixXd const & L, Eigen::VectorXd & x)

Backward substituion.

Solves the linear system L'y = x for a lower triangular matrix L The input vextor x contains the right-hand side on input and the solution on output

Parameters

L	Lower triangular matrix
X	Vector of right-hand side on input, solution vector on output

3.21.3.2 void TriangularMatrixOperations::compute_large_norm_solution (Eigen::MatrixXd const & L, Eigen::VectorXd & y)

Look behind algorithm (Cline et al. 1982)

Computes an approximation of the largest norm solution y of the linear system Ly = p for a vector ||p|| = 1. Algorithm implemented from Cline et al., Generalizing the LINPACK condition estimator, 1982.

Parameters

L	lower triangular matrix
У	on output the solution an approximation to the largest norm solution

3.21.3.3 void TriangularMatrixOperations::forward_substitution (Eigen::MatrixXd const & L, Eigen::VectorXd & x)

Forward substituion.

Solves the linear system Ly = x for a lower triangular matrix L The input vextor x contains the right-hand side on input and the solution on output

Parameters

L	Lower triangular matrix
Χ	Vector of right-hand side on input, solution vector on output

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/TriangularMatrixOperations.hpp
- /Users/Florian/home/sandbox/surrogate_models_cpp/src/TriangularMatrixOperations.cpp

3.22 VectorOperations Class Reference

Vector operations.

```
#include <VectorOperations.hpp>
```

Public Member Functions

- void set_zero (std::vector< double > &)
 - Setting vector to zero.
- void scale (double, std::vector< double > const &, std::vector< double > &)
 - Scaling of vector.
- void add (double, std::vector< double > const &, std::vector< double > &)
 - Adding scaled vector.
- void minus (std::vector< double > const &, std::vector< double > const &, std::vector< double > &)
 Substracting two vectors.
- void rescale (double, std::vector< double > const &, std::vector< double > const &, std::vector< double > &)

Rescaling and shifting vector.

double diff_norm (std::vector< double > const &, std::vector< double > const &)

Norm of difference of vectors.

double dot_product (std::vector< double > const &, std::vector< double > const &)
 Dot product of two vectors.

3.22.1 Detailed Description

Vector operations.

3.22.2 Member Function Documentation

3.22.2.1 void VectorOperations::add (double s, std::vector< double > const & v, std::vector< double > & w)

Adding scaled vector.

Computes w = w + s v

Parameters

s	scaling factor
V	input vector
W	input and output vector

3.22.2.2 double VectorOperations::diff_norm (std::vector< double > const & v1, std::vector< double > const & v2)

Norm of difference of vectors.

Computes the 2 norm of the difference of two vectors

Parameters

v1	input vector
v2	input vector

Returns

norm of v1-v2

3.22.2.3 double VectorOperations::dot_product (std::vector< double > const & v1, std::vector< double > const & v2)

Dot product of two vectors.

Computes the dot product of two vectors

Parameters

v1	input vector
v2	input vector

Returns

dot product of v1 and v2

3.22.2.4 void VectorOperations::minus (std::vector< double > const & v1, std::vector< double > const & v2, std::vector< double > & w)

Substracting two vectors.

Computes w = v1 - v2

Parameters

v1	input vector
v2	input vector
output	vector

3.22.2.5 void VectorOperations::rescale (double s, std::vector< double > const & v1, std::vector< double > const & v2, std::vector< double > & w)

Rescaling and shifting vector.

Computes w = (v1 - v2)s

Parameters

s	scaling factor
v1	vector to be rescaled and shifted
v2	reference vector
W	output vector

3.22.2.6 void VectorOperations::scale (double s, std::vector< double > const & v, std::vector< double > & w)

Scaling of vector.

Computes w = s v

Parameters

s	scaling factor
V	input vector to be scaled
W	scaled vector s v

3.22.2.7 void VectorOperations::set_zero (std::vector< double > & ν)

Setting vector to zero.

Sets vector v to zero

Parameters

v on output a vector with elements zero

The documentation for this class was generated from the following files:

- /Users/Florian/home/sandbox/surrogate_models_cpp/include/VectorOperations.hpp
- $\bullet \ / Users/Florian/home/sandbox/surrogate_models_cpp/src/VectorOperations.cpp$

Index

add	ImprovePoisedness, 12
VectorOperations, 23	improve_poisedness, 13
	ImprovePoisedness, 13
backward_substitution	replace_node, 14
TriangularMatrixOperations, 21	ImprovePoisednessBaseClass, 14
BasisForMinimumFrobeniusNormModel, 5	,
BasisForSurrogateModelBaseClass, 5	minimize
BasisForSurrogateModelBaseClass, 6	QuadraticMinimization, 16
nb_basis_functions, 6	MinimumFrobeniusNormModel, 15
BlackBoxBaseClass, 7	minus
BlackboxData, 7	VectorOperations, 24
build	rodol opoladolo, 2 1
GaussianProcess, 9	NOWPAC< TSurrogateModel, TBasisForSurrogate Model >, 15
CholeskyFactorization, 7	nb_basis_functions
compute, 8	BasisForSurrogateModelBaseClass, 6
compute	
CholeskyFactorization, 8	QuadraticMinimization, 16
compute_large_norm_solution	minimize, 16
TriangularMatrixOperations, 21	QuadraticMinimization, 16
mangularivatifixOperations, 21	QuadraticMonomial, 17
diff_norm	evaluate monomial, 18
VectorOperations, 23	QuadraticMonomial, 17
dot_product	Quadraticivionomiai, 17
VectorOperations, 23	RegularizedMinimumFrobeniusNormModel, 18
vector Operations, 23	replace_node
estimate_hyper_parameters	ImprovePoisedness, 14
GaussianProcess, 10	rescale
evaluate	
GaussianProcess, 10	VectorOperations, 24
	scale
evaluate_kernel	
GaussianProcess, 10	VectorOperations, 24
evaluate_monomial	set_zero
QuadraticMonomial, 18	VectorOperations, 25
former and the self-real self-real	SubproblemData < TSurrogateModel, TSubproblem
forward_substitution	Optimization >, 19
TriangularMatrixOperations, 22	SubproblemDefinitions $<$ TSurrogateModel, $T \leftarrow$ SubproblemOptimization $>$, 19
GaussianProcess, 8	SubproblemOptimization < TSurrogateModel >, 19
build, 9	SurrogateModelBaseClass, 20
estimate_hyper_parameters, 10	
evaluate, 10	TriangularMatrixOperations, 20
evaluate_kernel, 10	backward_substitution, 21
GaussianProcess, 9	compute_large_norm_solution, 21
update, 10	forward_substitution, 22
GaussianProcessBaseClass, 11	TriangularMatrixOperations, 21
GaussianProcessKernelBaseClass, 12	
GaussianProcessSupport, 12	update
	GaussianProcess, 10
improve_poisedness	
ImprovePoisedness, 13	VectorOperations, 22

28 INDEX

```
add, 23
diff_norm, 23
dot_product, 23
minus, 24
rescale, 24
scale, 24
set_zero, 25
```