Fundamental I hysical Constants — Extensive Listing							
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$			
	1	UNIVERSAL					
speed of light in vacuum	c, c_0	299 792 458	${\rm m}~{\rm s}^{-1}$	(exact)			
magnetic constant	μ_0	$4\pi \times 10^{-7}$ = 12.566 370 614 × 10 ⁻⁷	${ m N}{ m A}^{-2} \ { m N}{ m A}^{-2}$	(avaat)			
electric constant $1/\mu_0 c^2$	ϵ_0	$= 12.300370014 \times 10$ $8.854187817 \times 10^{-12}$	$F m^{-1}$	(exact) (exact)			
characteristic impedance	-0			()			
of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_0	376.730 313 461	Ω	(exact)			
Newtonian constant							
of gravitation	G	$6.6742(10) \times 10^{-11}$	${ m m}^3~{ m kg}^{-1}~{ m s}^{-2}$	1.5×10^{-4}			
_	$G/\hbar c$	$6.7087(10) \times 10^{-39}$	$({\rm GeV}/c^2)^{-2}$	1.5×10^{-4}			
Planck constant	$h^{'}$	$6.6260693(11) \times 10^{-34}$	Ìs	1.7×10^{-7}			
in eV s		$4.13566743(35)\times 10^{-15}$	eV s	8.5×10^{-8}			
$h/2\pi$	\hbar	$1.05457168(18) \times 10^{-34}$	J s	1.7×10^{-7}			
in eV s		$6.58211915(56) \times 10^{-16}$	eV s	8.5×10^{-8}			
$\hbar c$ in Mev fm		197.326968(17)	MeV fm	8.5×10^{-8}			
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.17645(16) \times 10^{-8}$	kg	7.5×10^{-5}			
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.41679(11) \times 10^{32}$	K	7.5×10^{-5}			
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.61624(12) \times 10^{-35}$	m	7.5×10^{-5}			
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39121(40) \times 10^{-44}$	S	7.5×10^{-5}			
(, .)		CTROMAGNETIC					
				0			
elementary charge	e	$1.60217653(14) \times 10^{-19}$	C	8.5×10^{-8}			
	e/h	$2.41798940(21)\times10^{14}$	$A J^{-1}$	8.5×10^{-8}			
magnetic flux quantum $h/2e$	Φ_0	$2.06783372(18)\times 10^{-15}$	Wb	8.5×10^{-8}			
conductance quantum $2e^2/h$	G_0	$7.748091733(26) \times 10^{-5}$	S	3.3×10^{-9}			
inverse of conductance quantum	G_0^{-1}	12906.403725(43)	Ω	3.3×10^{-9}			
Josephson constant $\frac{2e}{h}$	$K_{ m J}$	$483597.879(41) \times 10^9$	$\mathrm{Hz}\mathrm{V}^{-1}$	8.5×10^{-8}			
von Klitzing constant ²			_	0			
$h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25812.807449(86)	Ω	3.3×10^{-9}			
Bohr magneton $e\hbar/2m_{ m e}$	$\mu_{ m B}$	$927.400949(80) \times 10^{-26}$	$ m J~T^{-1}$	8.6×10^{-8}			
in eV T^{-1}	<i>p</i> ∗D	$5.788381804(39) \times 10^{-5}$	${ m eV}~{ m T}^{-1}$	6.7×10^{-9}			
	$\mu_{ m B}/h$	$13.9962458(12) \times 10^9$	$\mathrm{Hz}\mathrm{T}^{-1}$	8.6×10^{-8}			
	$\mu_{ m B}/hc$	46.686 4507(40)	$m^{-1} T^{-1}$	8.6×10^{-8}			
	$\mu_{ m B}/k$	0.6717131(12)	$K T^{-1}$	1.8×10^{-6}			
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.05078343(43) \times 10^{-27}$	$ m JT^{-1}$	8.6×10^{-8}			
in eV T^{-1}	$\mu_{ m N}$	$3.152451259(21) \times 10^{-8}$	${ m eV}~{ m T}^{-1}$	6.7×10^{-9}			
	$\mu_{ m N}/h$	7.62259371(65)	$MHz T^{-1}$	8.6×10^{-8}			
	$\mu_{ m N}/hc$	$2.54262358(22) \times 10^{-2}$	$m^{-1} T^{-1}$	8.6×10^{-8}			
	$\mu_{ m N}/\hbar c$ $\mu_{ m N}/k$	$3.6582637(64) \times 10^{-4}$	$\mathrm{K}\mathrm{T}^{-1}$	1.8×10^{-6}			
		IC AND NUCLEAR		,			
	AIOM	General					
Concret							

${\bf Fundamental\ Physical\ Constants--Extensive\ Listing}$

Fundamental I hysical Constants — Extensive Listing				
Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
	~ j			
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.297352568(24) \times 10^{-3}$		3.3×10^{-9}
inverse fine-structure constant	α^{-1}	137.03599911(46)		3.3×10^{-9}
mireigo mas surusurus comsumu		13030 000 11(10)		3.3 / 10
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10973731.568525(73)	m^{-1}	6.6×10^{-12}
	$R_{\infty}c$	$3.289841960360(22)\times10^{15}$	Hz	6.6×10^{-12}
	$R_{\infty}hc$	$2.17987209(37)\times10^{-18}$	J	1.7×10^{-7}
$R_{\infty}hc$ in eV		13.6056923(12)	eV	8.5×10^{-8}
Bohr radius $\alpha/4\pi R_{\infty}=4\pi\epsilon_0\hbar^2/m_{\rm e}e^2$	a_0	$0.5291772108(18)\times 10^{-10}$	m	3.3×10^{-9}
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc$	o .			
$= \alpha^2 m_{\rm e} c^2$	$E_{ m h}$	$4.35974417(75) \times 10^{-18}$	J	1.7×10^{-7}
in eV		27.2113845(23)	eV	8.5×10^{-8}
quantum of circulation	$h/2m_{ m e}$	$3.636947550(24) \times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	6.7×10^{-9}
	$h/m_{ m e}$	$7.273895101(48)\times10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	6.7×10^{-9}
	Elec	troweak		
E3	O /(± -\3	$1.16639(1) \times 10^{-5}$	${ m GeV^{-2}}$	8.6×10^{-6}
Fermi coupling constant ³ weak mixing angle ⁴ θ_{W} (on-shell scheme)	$G_{\mathrm{F}}/(\hbar c)^3$	$1.10039(1) \times 10^{-5}$	Gev -	8.0 × 10
weak mixing angle $\theta_{\rm W}$ (on-shell scheme) $\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.22215(76)		3.4×10^{-3}
$SIII \ VW = SW = I \ (IIIW/IIIZ)$,		3.4 × 10
	Elec	tron, e ⁻		
electron mass	$m_{ m e}$	$9.1093826(16) \times 10^{-31}$	kg	1.7×10^{-7}
in u, $m_{ m e}=A_{ m r}({ m e})$ u (electron	e	0.100 3020(10) // 10	8	211 / 10
relative atomic mass times u)		$5.4857990945(24) \times 10^{-4}$	u	4.4×10^{-10}
energy equivalent	$m_{ m e}c^2$	$8.1871047(14)\times10^{-14}$	J	1.7×10^{-7}
in MeV		0.510998918(44)	MeV	$8.6 imes 10^{-8}$
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633167(13) \times 10^{-3}$		2.6×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87564(47) \times 10^{-4}$		1.6×10^{-4}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.4461702173(25) \times 10^{-4}$		4.6×10^{-10}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.4386734481(38) \times 10^{-4}$		7.0×10^{-10}
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.7244371095(13) \times 10^{-4}$		4.8×10^{-10}
electron to alpha particle mass ratio	$m_{ m e}/m_{ m lpha}$	$1.37093355575(61)\times10^{-4}$		4.4×10^{-10}
electron charge to mass quotient	0 /m	$-1.75882012(15)\times10^{11}$	${ m C~kg^{-1}}$	8.6×10^{-8}
electron charge to mass quotient electron molar mass $N_{\rm A}m_{ m e}$	$-e/m_{\rm e}$ $M({\rm e}), M_{\rm e}$	$-1.73882012(13) \times 10$ $5.4857990945(24) \times 10^{-7}$	kg mol ⁻¹	4.4×10^{-10}
Compton wavelength $h/m_{\rm e}c$	$\lambda_{ m C}$	$2.426310238(16) \times 10^{-12}$	m	6.7×10^{-9}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\frac{\lambda_{\mathrm{C}}}{\lambda_{\mathrm{C}}}$	$386.1592678(26) \times 10^{-15}$	m	6.7×10^{-9}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.817940325(28)\times10^{-15}$	m	1.0×10^{-8}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$\sigma_{ m e}$	$0.665245873(13) \times 10^{-28}$	m^2	2.0×10^{-8}
Thomson cross section (on) o) re	Ое	0.000210010(10) // 10	***	2.0 / 10
electron magnetic moment	$\mu_{ m e}$	$-928.476412(80) \times 10^{-26}$	$ m J~T^{-1}$	8.6×10^{-8}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.0011596521859(38)		3.8×10^{-12}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.28197107(85)		4.6×10^{-10}
electron magnetic moment				
anomaly $ \mu_{ m e} /\mu_{ m B}-1$	$a_{ m e}$	$1.1596521859(38) \times 10^{-3}$		3.2×10^{-9}
electron g -factor $-2(1+a_{\rm e})$	$g_{ m e}$	-2.0023193043718(75)		3.8×10^{-12}

				Relative std.	
Quantity	Symbol	Value	Unit	uncert. u_{r}	
electron-muon					
magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.7669894(54)		2.6×10^{-8}	
electron-proton					
magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106862(66)		1.0×10^{-8}	
electron to shielded proton					
magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}'$	-658.2275956(71)		1.1×10^{-8}	
$(H_2O, sphere, 25 ^{\circ}C)$					
electron-neutron	,	0.00 0.00 ₹0(0.0)		2 4 40 7	
magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.92050(23)		2.4×10^{-7}	
electron-deuteron	,	21.49.029.409(29)		1 1 10-8	
magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.923493(23)		1.1×10^{-8}	
electron to shielded helion ⁵	, ,	004 050 055 (10)		1.0 10-8	
magnetic moment ratio	$\mu_{ m e}/\mu_{ m h}'$	864.058255(10)		1.2×10^{-8}	
(gas, sphere, 25 °C)		1 760 950 74(15) > 1011	$s^{-1} T^{-1}$	0.6 10=8	
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$\gamma_{ m e}$	$1.76085974(15) \times 10^{11}$	$^{ m S}$ $^{ m I}$ $^{ m I}$ $^{ m MHz}$ $^{ m T}$	8.6×10^{-8} 8.6×10^{-8}	
	$\gamma_{ m e}/2\pi$	28024.9532(24)	MITZ I	8.0 × 10	
	N	Iuon, μ^-			
		1 009 591 40/99) 10=28	1 .	1.710-7	
muon mass	$m_{ m \mu}$	$1.88353140(33)\times10^{-28}$	kg	1.7×10^{-7}	
in u, $m_{\mu} = A_{\rm r}(\mu)$ u (muon		0.119.499.0964(90)		0.6 × 10=8	
relative atomic mass times u) energy equivalent	$m_{\mu}c^2$	$0.1134289264(30) 1.69283360(29) \times 10^{-11}$	u J	2.6×10^{-8} 1.7×10^{-7}	
in MeV	$m_{\mu}c$	$1.09283360(29) \times 10$ 105.6583692(94)	MeV	8.9×10^{-8}	
III IVIC V		100.000 0002 (04)	IVIC V	0.3 \(10	
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2838(54)		2.6×10^{-8}	
muon-tau mass ratio	$m_{ m \mu}/m_{ au}$	$5.94592(97)\times10^{-2}$		1.6×10^{-4}	
muon-proton mass ratio	$m_{\mu}/m_{ m p}$	0.112 609 5269(29)		2.6×10^{-8}	
muon-neutron mass ratio	$m_{\mu}^{\mu}/m_{ m n}$	0.1124545175(29)		2.6×10^{-8}	
muon molar mass $N_{ m A} m_{ m \mu}$	$M(\mu), M_{\mu}$	$0.1134289264(30) \times 10^{-3}$	$kg mol^{-1}$	2.6×10^{-8}	
	(* //	,	Ü		
muon Compton wavelength $h/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$11.73444105(30) \times 10^{-15}$	m	2.5×10^{-8}	
$\lambda_{ m C,\mu}/2\pi$	$\lambda_{\mathrm{C},\mu}$	$1.867594298(47) \times 10^{-15}$	m	2.5×10^{-8}	
muon magnetic moment	$\mu_{ extsf{\mu}}$	$-4.49044799(40) \times 10^{-26}$	$ m J~T^{-1}$	8.9×10^{-8}	
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197045(13) \times 10^{-3}$		2.6×10^{-8}	
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059698(23)		2.6×10^{-8}	
muon magnetic moment anomaly		1 107 010 01 (00) 10-3		F 0 10-7	
$ \mu_{\mu} /(e\hbar/2m_{\mu})-1$	a_{μ}	$1.16591981(62) \times 10^{-3}$		5.3×10^{-7}	
muon g -factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318396(12)		6.2×10^{-10}	
muon-proton	/	2 102 245 110 (00)		2 2 × 10-8	
magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345118(89)		2.8×10^{-8}	
Tau, $ au^-$					
tau mass ⁶	m	$2.167.77(59) \times 10^{-27}$	ls a	1.6×10^{-4}	
	$m_{ au}$	$3.16777(52)\times10^{-27}$	kg	1.0×10^{-2}	
in u, $m_{\tau} = A_{\rm r}(\tau)$ u (tau relative atomic mass times u)		1.90768(31)	u	1.6×10^{-4}	
energy equivalent	$m_{ au}c^2$	$2.84705(46) \times 10^{-10}$	J	1.6×10^{-4}	
		=:= 1, 00(10) // 10	-	10	

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
in MeV		1776.99(29)	MeV	1.6×10^{-4}
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.48(57)		1.6×10^{-4}
tau-muon mass ratio	$m_{ au}/m_{ extsf{u}}$	16.8183(27)		1.6×10^{-4}
tau-proton mass ratio	$m_{ m au}/m_{ m p}$	1.893 90(31)		1.6×10^{-4}
tau-neutron mass ratio	$m_{ m au}/m_{ m n}$	1.891 29(31)		1.6×10^{-4}
tau molar mass $N_{ m A} m_{ au}$	$M(au), M_{ au}$	$1.90768(31)\times10^{-3}$	${\rm kg\ mol^{-1}}$	1.6×10^{-4}
tau Compton wavelength $h/m_{ au}c$	$\lambda_{\mathrm{C}, au}$	$0.69772(11) \times 10^{-15}$	m	1.6×10^{-4}
$\lambda_{\mathrm{C}, au}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.111046(18) \times 10^{-15}$	m	1.6×10^{-4}
7.C, t/ 211		Proton, p	m	1.0 × 10
		-		
proton mass ${\rm in} {\rm u}, m_{\scriptscriptstyle {\rm D}} = A_{\scriptscriptstyle {\rm r}}({\rm p}) {\rm u} \ ({\rm proton}$	$m_{ m p}$	$1.67262171(29) \times 10^{-27}$	kg	1.7×10^{-7}
relative atomic mass times u)		1.00727646688(13)	u	1.3×10^{-10}
energy equivalent	$m_{ m p}c^2$	$1.50327743(26)\times 10^{-10}$	J	1.7×10^{-7}
in MeV	$m_{ m p}c$	938.272029(80)	MeV	8.6×10^{-8}
III IVIC V		360.212 023 (00)	1110 1	0.0 × 10
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267261(85)		4.6×10^{-10}
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.880 243 33(23)		2.6×10^{-8}
proton-tau mass ratio	$m_{ m p}^{ m p}/m_{ m au}$	0.528012(86)		1.6×10^{-4}
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.99862347872(58)		5.8×10^{-10}
proton charge to mass quotient	$e/m_{ m p}$	$9.57883376(82)\times10^7$	${ m C~kg^{-1}}$	8.6×10^{-8}
proton molar mass $N_{\rm A}m_{ m p}$	$M(\mathbf{p}), M_{\mathbf{p}}$	$1.00727646688(13)\times10^{-3}$	$kg \text{ mol}^{-1}$	1.3×10^{-10}
Proton moral mass 1 Amp	тт (р), ттр	1.60. 2. 6 166 66(13) // 16	11.51	1.0 / 10
proton Compton wavelength $h/m_{ m p}c$	$\lambda_{\mathrm{C,p}}$	$1.3214098555(88) \times 10^{-15}$	m	6.7×10^{-9}
$\lambda_{ m C,p}/2\pi$	$\lambda_{ m C,p}$	$0.2103089104(14)\times10^{-15}$	m	6.7×10^{-9}
proton rms charge radius	$R_{ m p}$	$0.8750(68) \times 10^{-15}$	m	7.8×10^{-3}
proton magnetic moment	$\mu_{ m p}$	$1.41060671(12)\times10^{-26}$	$ m J~T^{-1}$	8.7×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.521032206(15) \times 10^{-3}$		1.0×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792847351(28)		1.0×10^{-8}
proton g -factor $2\mu_{ m p}/\mu_{ m N}$	a	5.585 694 701(56)		1.0×10^{-8}
proton g -factor $2\mu_{\rm p}/\mu_{\rm N}$ proton-neutron	$g_{ m p}$	9.909 034 101(90)		1.0 × 10
magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.45989805(34)		2.4×10^{-7}
shielded proton magnetic moment	$\mu_{ m p}'$	$1.41057047(12)\times 10^{-26}$	$ m J~T^{-1}$	8.7×10^{-8}
$(H_2O, sphere, 25 °C)$	r			
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993132(16)\times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}^\prime/\mu_{ m N}$	2.792775604(30)		1.1×10^{-8}
proton magnetic shielding	. р	, ,		
correction $1 - \mu_{\rm p}'/\mu_{\rm p}$	$\sigma_{ m p}'$	$25.689(15) \times 10^{-6}$		5.7×10^{-4}
$(H_2O, sphere, 25 °C)$	r			
proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\gamma_{ m p}$	$2.67522205(23)\times10^8$	$s^{-1} T^{-1}$	8.6×10^{-8}
1 2 2 7 7 7 7	$\gamma_{ m p}^{ m p}/2\pi$	42.577 4813(37)	$ m MHz~T^{-1}$	8.6×10^{-8}
shielded proton gyromagnetic	/P/	,		-
ratio $2\mu_{\mathrm{p}}^{\prime}/\hbar$	$\gamma_{ m p}'$	$2.67515333(23) \times 10^8$	$s^{-1} T^{-1}$	8.6×10^{-8}
$(H_2O, \text{ sphere, } 25 ^{\circ}C)$, Þ	(- / -		-
\ \(\frac{2}{2} = \gamma \cdot \text{r} \text{-} \gamma \cdot \text{r} \text{-} \gamma \cdot \text{r}				

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
	$\gamma_{ m p}'/2\pi$	42.576 3875(37)	$ m MHz~T^{-1}$	8.6×10^{-8}
	N	leutron, n		
neutron mass $\label{eq:mass} \text{in u, } m_{\rm n} = A_{\rm r}({\rm n}) \text{ u (neutron}$	$m_{ m n}$	$1.67492728(29)\times 10^{-27}$	kg	1.7×10^{-7}
relative atomic mass times u) energy equivalent in MeV	$m_{ m n}c^2$	$1.00866491560(55) 1.50534957(26) \times 10^{-10} 939.565360(81)$	u J MeV	5.5×10^{-10} 1.7×10^{-7} 8.6×10^{-8}
neutron-electron mass ratio neutron-muon mass ratio neutron-tau mass ratio neutron-proton mass ratio neutron molar mass $N_{\rm A}m_{\rm n}$	$m_{ m n}/m_{ m e}$ $m_{ m n}/m_{ m \mu}$ $m_{ m n}/m_{ m \tau}$ $m_{ m n}/m_{ m p}$ $M({ m n}), M_{ m n}$	$1838.6836598(13) \\ 8.89248402(23) \\ 0.528740(86) \\ 1.00137841870(58) \\ 1.00866491560(55) \times 10^{-3}$	${ m kg\ mol^{-1}}$	7.0×10^{-10} 2.6×10^{-8} 1.6×10^{-4} 5.8×10^{-10} 5.5×10^{-10}
neutron Compton wavelength $h/m_{\rm n}c$ $\lambda_{\rm C,n}/2\pi$ neutron magnetic moment to Bohr magneton ratio to nuclear magneton ratio	$\lambda_{\mathrm{C,n}}$ $\lambda_{\mathrm{C,n}}$ μ_{n} $\mu_{\mathrm{n}}/\mu_{\mathrm{B}}$ $\mu_{\mathrm{n}}/\mu_{\mathrm{N}}$	$\begin{aligned} &1.3195909067(88)\times 10^{-15}\\ &0.2100194157(14)\times 10^{-15}\\ &-0.96623645(24)\times 10^{-26}\\ &-1.04187563(25)\times 10^{-3}\\ &-1.91304273(45)\end{aligned}$	$egin{array}{c} m \\ m \\ J T^{-1} \end{array}$	6.7×10^{-9} 6.7×10^{-9} 2.5×10^{-7} 2.4×10^{-7} 2.4×10^{-7}
neutron g -factor $2\mu_{\rm n}/\mu_{\rm N}$ neutron-electron	$g_{ m n}$	-3.82608546(90)		2.4×10^{-7}
magnetic moment ratio neutron-proton	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25) \times 10^{-3}$		2.4×10^{-7} 2.4×10^{-7}
magnetic moment ratio neutron to shielded proton magnetic moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}$ $\mu_{ m n}/\mu_{ m p}'$	-0.68497934(16) $-0.68499694(16)$		2.4×10^{-7} 2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$rac{\gamma_{ m n}}{\gamma_{ m n}/2\pi}$	$\begin{array}{c} 1.83247183(46)\times 10^{8} \\ 29.1646950(73) \end{array}$	$ m s^{-1} \ T^{-1} \ MHz \ T^{-1}$	$2.5 \times 10^{-7} \\ 2.5 \times 10^{-7}$
	D	euteron, d		
deuteron mass $ {\rm in} \ {\rm u}, \ m_{\rm d} = A_{\rm r}({\rm d}) \ {\rm u} \ ({\rm deuteron}$	$m_{ m d}$	$3.34358335(57)\times 10^{-27}$	kg	1.7×10^{-7}
relative atomic mass times u) energy equivalent in MeV	$m_{ m d}c^2$	$ 2.01355321270(35) 3.00506285(51) \times 10^{-10} 1875.61282(16) $	u J MeV	1.7×10^{-10} 1.7×10^{-7} 8.6×10^{-8}
deuteron-electron mass ratio deuteron-proton mass ratio deuteron molar mass $N_{ m A} m_{ m d}$	$m_{ m d}/m_{ m e} \ m_{ m d}/m_{ m p} \ M({ m d}), M_{ m d}$	3670.4829652(18) 1.99900750082(41) $2.01355321270(35) \times 10^{-3}$	kg mol ⁻¹	4.8×10^{-10} 2.0×10^{-10} 1.7×10^{-10}
deuteron rms charge radius deuteron magnetic moment to Bohr magneton ratio to nuclear magneton ratio	$R_{ m d} \ \mu_{ m d} \ \mu_{ m d}/\mu_{ m B} \ \mu_{ m d}/\mu_{ m N}$	$2.1394(28) \times 10^{-15}$ $0.433073482(38) \times 10^{-26}$ $0.4669754567(50) \times 10^{-3}$ $0.8574382329(92)$	$^{ m m}$ J ${ m T}^{-1}$	1.3×10^{-3} 8.7×10^{-8} 1.1×10^{-8} 1.1×10^{-8}

${\bf Fundamental\ Physical\ Constants--Extensive\ Listing}$

Fundamental Physical Constants — Extensive Listing					
Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$	
deuteron-electron				0	
magnetic moment ratio	$\mu_{ m d}/\mu_{ m e}$	$-4.664345548(50) \times 10^{-4}$		1.1×10^{-8}	
deuteron-proton	/	0.207.019.2004/45)		1.5×10^{-8}	
magnetic moment ratio deuteron-neutron	$\mu_{ m d}/\mu_{ m p}$	0.3070122084(45)		1.0 × 10	
magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}	
		elion, h			
1 1. 5		F 000 410 14/00\ 10-27	1	1 7 10-7	
helion mass ⁵	$m_{ m h}$	$5.00641214(86) \times 10^{-27}$	kg	1.7×10^{-7}	
in u, $m_{\rm h} = A_{\rm r}({\rm h})$ u (helion relative atomic mass times u)		3.014 932 2434(58)	u	1.9×10^{-9}	
energy equivalent	$m_{ m h}c^2$	$4.49953884(77) \times 10^{-10}$	J	1.7×10^{-7}	
in MeV	<i>m</i> _n c	2808.391 42(24)	MeV	8.6×10^{-8}	
		,			
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.885269(11)		2.0×10^{-9}	
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.9931526671(58)		1.9×10^{-9}	
helion molar mass $N_{ m A} m_{ m h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.0149322434(58)\times 10^{-3}$	kg mol ⁻¹	1.9×10^{-9}	
shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074553024(93) \times 10^{-26}$	$ m J~T^{-1}$	8.7×10^{-8}	
(gas, sphere, 25 °C) to Bohr magneton ratio		$-1.158671474(14) \times 10^{-3}$		1.2×10^{-8}	
to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m B} \ \mu_{ m h}'/\mu_{ m N}$	$-1.138071474(14) \times 10^{-1}$ -2.127497723(25)		1.2×10^{-8} 1.2×10^{-8}	
shielded helion to proton	$\mu_{ m h}/\mu_{ m N}$	2.121 431 120(20)		1.2 \(10	
magnetic moment ratio	$\mu_{ m h}'/\mu_{ m p}$	-0.761766562(12)		1.5×10^{-8}	
(gas, sphere, 25 °C)	. 117. 1	` '			
shielded helion to shielded proton	, , ,	0.761.706.1919/99\		4.0 10-9	
magnetic moment ratio	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}	
(gas/H ₂ O, spheres, 25 °C) shielded helion gyromagnetic					
ratio $2 \mu_h' /\hbar$	$\gamma_{ m h}'$	$2.03789470(18) \times 10^8$	$s^{-1} T^{-1}$	8.7×10^{-8}	
(gas, sphere, 25 °C)	/ n	2.00.001.0(10) // 10	J 1	01, 7, 10	
	$\gamma_{ m h}'/2\pi$	32.4341015(28)	$ m MHz~T^{-1}$	8.7×10^{-8}	
Alpha particle, α					
alpha particle mass	m	$6.6446565(11) \times 10^{-27}$	kg	1.7×10^{-7}	
in u, $m_{\alpha} = A_{\rm r}(\alpha)$ u (alpha particle	$m_{oldsymbol{lpha}}$	$0.0440000(11) \times 10$	ĸg	1.7 × 10	
relative atomic mass times u)		4.001506179149(56)	u	1.4×10^{-11}	
energy equivalent	$m_{oldsymbol{lpha}}c^2$	$5.9719194(10) \times 10^{-10}$	J	1.7×10^{-7}	
in MeV	a de la companya de l	3727.379 17(32)	MeV	8.6×10^{-8}	
		. ,			
alpha particle to electron mass ratio	$m_{f lpha}/m_{ m e}$	7294.2995363(32)		4.4×10^{-10}	
alpha particle to proton mass ratio	$m_{f lpha}/m_{f p}$	3.97259968907(52)	. 1	1.3×10^{-10}	
alpha particle molar mass $N_{ m A} m_{ m lpha}$	$M(\alpha), M_{\alpha}$	$4.001506179149(56)\times10^{-3}$	$kg mol^{-1}$	1.4×10^{-11}	
PHYSICO-CHEMICAL					
Avogadro constant	$N_{ m A}, L$	$6.0221415(10) \times 10^{23}$	mol^{-1}	1.7×10^{-7}	
atomic mass constant	-· A,	(-0) //		/. 20	
$m_{ m u} = \frac{1}{12} m(^{12}{ m C}) = 1~{ m u}$	$m_{ m u}$	$1.66053886(28)\times10^{-27}$	kg	1.7×10^{-7}	

I diddinate in joical constants — Entensive Eisting				
Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
$= 10^{-3} \ { m kg \ mol^{-1}}\!/N_{ m A}$				
energy equivalent	$m_{ m u}c^2$	$1.49241790(26) \times 10^{-10}$	J	1.7×10^{-7}
in MeV		931.494043(80)	MeV	8.6×10^{-8}
Faraday constant $^7 N_{ m A} e$	F	96485.3383(83)	$C \text{ mol}^{-1}$	8.6×10^{-8}
molar Planck constant	$N_{ m A} h$	$3.990312716(27)\times 10^{-10}$	$\rm J~s~mol^{-1}$	6.7×10^{-9}
	$N_{ m A}hc$	0.11962656572(80)	$\rm J~m~mol^{-1}$	6.7×10^{-9}
molar gas constant	R	8.314472(15)	$\mathrm{J}\ \mathrm{mol^{-1}}\ \mathrm{K^{-1}}$	1.7×10^{-6}
Boltzmann constant $R/N_{\rm A}$	k	$1.3806505(24) \times 10^{-23}$	$ m J~K^{-1}$	1.8×10^{-6}
in eV K^{-1}		$8.617343(15) \times 10^{-5}$	${ m eV~K^{-1}}$	1.8×10^{-6}
	k/h	$2.0836644(36) \times 10^{10}$	$\mathrm{Hz}\ \mathrm{K}^{-1}$	1.7×10^{-6}
	k/hc	69.50356(12)	${\rm m}^{-1}~{\rm K}^{-1}$	1.7×10^{-6}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.413996(39) \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	1.7×10^{-6}
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.6867773(47) \times 10^{25}$	m^{-3}	1.8×10^{-6}
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.710981(40)\times10^{-3}$	$\mathrm{m}^3 \; \mathrm{mol}^{-1}$	1.7×10^{-6}
Sackur-Tetrode constant (absolute entropy constant) ⁸ $\frac{5}{2} + \ln[(2\pi m_u kT_1/h^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.1517047(44)		3.8×10^{-6}
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$	0,	-1.1648677(44)		3.8×10^{-6}
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670400(40) \times 10^{-8}$	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-4}$	7.0×10^{-6}
first radiation constant $2\pi hc^2$	c_1	$3.74177138(64) \times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2$	1.7×10^{-7}
first radiation constant for spectral radiance $2hc^2$	$c_{1 m L}$	$1.19104282(20)\times10^{-16}$	$\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}$	1.7×10^{-7}
second radiation constant hc/k	c_2	$1.4387752(25) \times 10^{-2}$	m K	1.7×10^{-6}
Wien displacement law constant	-	` '		
$b = \lambda_{\text{max}} T = c_2 / 4.965 114 231$	b	$2.8977685(51) \times 10^{-3}$	m K	1.7×10^{-6}

¹ See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

² See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

³ Value recommended by the Particle Data Group (Hagiwara, et al., 2002).

⁴ Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Hagiwara, *et al.*, 2002). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z})=0.231\ 24(24)$.
⁵ The helion, symbol h, is the nucleus of the ³He atom.

⁶ This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group, (Hagiwara, *et al.*, 2002), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

⁷ The numerical value of F to be used in coulometric chemical measurements is $96\,485.336(16)$ [1.7×10^{-7}] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants K_{J-90} and R_{K-90} given in the "Adopted values" table.

⁸ The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$. ⁹ The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12 = M_u/N_A = 1$ u is the atomic mass constant, N_A is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is $m(X) = A_r(X)$ u and the molar mass of X is $M(X) = A_r(X)M_u$.

 $^{^{10}}$ This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

¹¹ This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect. ^a This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections, and is deduced from measurements on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities.