Universidad Simón Bolívar

EC2422 - Comunicaciones I

Enero – Marzo 2018

Práctica 1: Modulación de onda continua – AM y DSB

1. Objetivos:

Estudiar las características de diversas modulaciones lineales: AM y DSB a través de simulaciones realizadas en Matlab.

2. Preparación:

- 1. Tenga disponibles las expresiones en tiempo y en frecuencia de la señal en cada punto de interés del sistema mostrado en la Figura 1, para las modulaciones AM, DSB: a la salida del transmisor, a la salida del filtro pasabanda del receptor, y a la salida del filtro pasabajo del receptor.
- 2. Calcule el valor de la amplitud de la portadora en cada caso para lograr que la potencia de transmisión sea la misma en todos los tipos de modulación considerados.
- 3. Asuma que a la señal transmitida se le agrega ruido blanco gaussiano. Determine el procedimiento para calcular en su simulación la potencia de señal, la potencia del ruido, y el cociente potencia promedio de señal a potencia de ruido en cada uno de los puntos mencionados anteriormente.

Figura 1.

- 4. Genere un mensaje x(t) conformado por 3 tonos de amplitudes y frecuencias distintas. Seleccione las frecuencias de los tonos del mensaje que usará de prueba.
- 5. Seleccione la frecuencia de la portadora a usar en su simulación, las frecuencias de corte de los filtros a utilizar y la frecuencia del detector síncrono. Utilice una frecuencia de muestreo de 90.000 Hz y un número de muestras N = 200.000. Tome en cuenta que la mayor frecuencia utilizada en la simulación debe ser menor a $\frac{fs}{2}$, por lo que fc + W debe ser menor que $\frac{fs}{2}$, donde W es el ancho de banda del mensaje considerado en el punto 4.

3. Actividades:

Realice las siguientes actividades, generando y guardando las gráficas de interés. Utilice, entre otras, las funciones *plot, subplot, title, axis*, para presentar adecuadamente sus resultados. Las gráficas deben estar identificadas, y debe verificar en todo caso que el eje de frecuencia esté correctamente escalado y concuerde con los valores utilizados en su simulación.

- a) Escriba una función que le permita seleccionar el mensaje a utilizar, lo procese para que no tenga nivel DC, su máxima amplitud sea unitaria y tenga el número de muestras apropiado para ser utilizado en su simulación. La sintaxis es **function** [msg] = mensaje(selector), donde "selector" es la variable que permite seleccionar el mensaje. Los mensajes a considerar son el correspondiente al punto 4 y el archivo de sonido suministrado, *archivo1*.
- b) Grafique el espectro del mensaje (módulo de la transformada de Fourier) usando apropiadamente la función *fft*. Verifique que los tonos del mensaje se encuentran a la frecuencia seleccionada. Grafique la señal en el dominio temporal.
- c) Escriba una función que le permita seleccionar y simular el proceso de modulación AM y DSB. Para el caso de la modulación AM utilice dos índices de modulación μ (μ es el máximo valor de $k_a \cdot m(t)$) distintos. Haga la prueba posteriormente para un índice de modulación mayor a 1. La sintaxis de la función es function [msg mod] = modulador(msg, selector modulacion, fc, μ).
- d) Grafique el espectro a la salida del transmisor para cada una de las modulaciones, así como la señal en tiempo.
- e) Escriba una función que le permita seleccionar y simular el canal de comunicación a utilizar. El canal de transmisión puede ser sin ruido, o con ruido blanco gaussiano con potencia Pr. (function [msg_canal] = canal(msg_mod, selector_ruido, Pr)). El factor de atenuación en esta práctica se considera unitario, con lo cual solo se considera el efecto del ruido.
- f) Escriba una función que le permita simular el receptor (filtro pasabanda, detector síncrono y filtro pasabajo) y la fase a utilizar en el detector síncrono. La sintaxis de la función es **function [y_BPF y_D y_LPF] = receptor(msg_canal, fase_detector).** , donde y_BPF, y_D y y_LPF son las salidas del filtro pasabanda, detector síncrono y filtro pasabajo, respectivamente.
- g) Grafique el espectro de la señal a la entrada del receptor, a la salida del filtro pasabanda, a la salida del detector y del filtro pasabajo, para el caso de canal sin ruido y con ruido. Verifique que los valores de las frecuencias en las gráficas previamente realizadas coincidan con los valores utilizados en su simulación.
- h) Calcule el cociente potencia de señal a potencia de ruido en la entrada del detector, y de la señal a la salida del filtro pasabajo.

i) Analice el efecto que se produce cuando no hay coherencia de fase en la portadora, variando la fase del detector en el receptor. Observe los efectos sobre el mensaje detectado.	