

UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Program	B. Tech SCS	Semester	II
Course	Mathematics II	Course Code	MATH 1005
Session	Jan-May 2018	Topic	Differential Equations

CO1:

1. Let e^x be a solution the differential equation $(D^2 - 2D + 1)y = 0$ then how to find the second linearly independent solution.

2. How to find an integrating factor for the differential equation $\frac{dy}{dx} + P(x)y = R(x)$?

3. Given that $y_1 = e^{\frac{2x}{3}}$ is a solution of 9y'' - 12y' + 4y = 0 on the interval $(-\infty, \infty)$, use reduction of order to find a second solution y_2 .

4. Consider the boundary-value problem $y'' + \lambda y = 0$, $y(0) = 0 = y(\frac{\pi}{2})$. Is it possible to find real values of λ so that the problem possesses (a) trivial solutions? (b) nontrivial solutions?

5. Find the general solution of $x^4y'' + x^3y' - 4x^2y = 1$ given that $y_1 = x^2$ is a solution of the associated homogeneous equation.

6. Find the transform u = g(x), such that the differential equation $y'' + tanx y' + cos^2 x y = 0$ will be transferred into a constant coefficient differential equation.

7. Find the transform u = g(x), such that the differential equation $2xy'' + (5x^2 - 2) + 2x^3y = 0$ will be transferred into a constant coefficient differential equation and hence obtain the constant coefficient differential equation.

8. Find complementary function of $(2x+5)^2y'' - 6(2x+5)y' + 8y = 0$

9. The indicated functions are known linearly independent solutions of the associated homogeneous differential equations on $(0, \infty)$. Find the general solution of the given nonhomogeneous equation.

(a)
$$x^2y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = x^{\frac{3}{2}};$$
 $y_1 = x^{-\frac{1}{2}}\cos x, \ y_2 = x^{-\frac{1}{2}}\sin x$

(b)
$$x^2y'' + xy' + y = \sec(\ln x)$$
; $y_1 = \cos(\ln x)$, $y_2 = \sin(\ln x)$

CO2:

10. If the following equations are exact then explain the procedure to obtain the functions M(x, y) and N(x, y).

(a)
$$M(x,y)dx + \left(xe^{xy} + 2xy + \frac{1}{x}\right)dy = 0$$
 (b) $\left(x^{\frac{-1}{2}}y^{\frac{1}{2}} + \frac{x}{x^2 + y}\right)dx + N(x,y)dy = 0$

11. Differential equations are sometimes solved by having a clever idea. Here is a little exercise in cleverness: Although the differential equation $\left(x - \sqrt{x^2 + y^2}\right)dx + ydy = 0$ is not exact, show how the rearrangement $\frac{(xdx + ydy)}{\sqrt{x^2 + y^2}} = dx$ and the observation $\frac{1}{2}d(x^2 + y^2) = xdx + ydy$ can lead to a solution.

12. Show that every separable first-order equation $\frac{dy}{dx} = f(x)g(y)$ is exact.

13. Show that $(x^3 + y)dx + (y^3 + x)dy = 0$ is exact. More generally, is M(x,y)dx + M(y,x)dy = 0 exact? Explain.

- 14. If M(x,y)dx + N(x,y)dy = 0 and P(x,y)dx + Q(x,y)dy = 0 are exact, is (M+P)dx + (N+Q)dy = 0 exact? Explain.
- 15. (a) Give a convincing demonstration that the second order equation ay'' + by' + cy = 0, a, band c are constants, always possesses at least one solution of the form $y = e^{m_1 x}$, m_1 is a constant.
 - (b) Explain why the differential equation in part (a) must then have a second solution either of the form $y_2 = e^{m_2 x}$ or of the form $y_2 = xe^{m_1 x}$, m_1 and m_2 are constants.
- 16. Suppose that $y_1 = e^x$ and $y_2 = e^{-x}$ are two solutions of a homogeneous differential equation. Explain why $y_3 = coshx$ and $y_4 = sinhx$ are also solutions of the equation.
- 17. Given that $y = c_1 + c_2 x^2$ is a two-parameter family of solutions of xy'' y' = 0 on the interval $(-\infty, \infty)$, show that constants c_1 and c_2 cannot be found so that a member of the family satisfies the initial conditions y(0) = 0, y'(0) = 1.
- 18. Show that the given functions form a fundamental set of solutions of the differential equation on the indicated interval.
 - (a) y'' y' 12y = 0; e^{-3x} , e^{4x} ; $(-\infty, \infty)$
 - (b) y'' 2y' + 5y = 0; $e^x \cos 2x, e^x \sin 2x$; $(-\infty, \infty)$ (c) $x^2 y'' + xy' + y = 0$; $\cos(\ln x), \sin(\ln x)$; $(0, \infty)$
- 19. Show that the variable u = lnx transforms the equation $x^2y'' + axy' + by = 0$ into constant coefficient differential equation y'' + (a - 1)y' + by = 0.
- 20. Show that the solution of the differential equation $x^2y'' 3xy' + y = \frac{\ln x \sin(\ln x) + 1}{x}$ is $y = x^2 \left(c_1 x^{\sqrt{3}} + c_2 x^{-\sqrt{3}} \right) + \frac{1}{x} \left[\frac{\ln x}{61} \left\{ 5 \sin(\ln x) + 6 \cos(\ln x) \right\} + \frac{2}{3721} \left\{ 27 \sin(\ln x) + 6 \cos(\ln x) \right\} \right]$

 $191\cos(\ln x) + \frac{1}{6}$

- 21. Explain the linear dependence and independence of the functions $y_1 = |x|x$ and $y_2 = x^2$ over the indicated intervals.
 - (a) (-1,1) (b) (0,1) (c) (-1,0)
- 22. Show that the Wronskian $w(y_1, y_2)$ of any two independent solutions $y_1(x)$ and $y_2(x)$ of the differential equation y'' + p(x)y' + q(x)y = 0 satisfies the identity $w = c e^{-\int p(x)dx}$ and hence find the Wronskian of y'' + xy' + xy = 0.
- 23. If α is any constant and $F(D) = (D \alpha)^r \phi(D)$, such that $\phi(\alpha) \neq 0$ then show that $\frac{1}{F(D)} e^{\alpha x} = \frac{e^{\alpha x}}{\phi(\alpha)} \frac{x^r}{r!}$
- 24. Show that the transformation $x = \sinh z$ transforms $(1 + x^2)y'' + xy' = 4y$ to $\frac{d^2y}{dz^2} = 4y$ and hence solve it.
- 25. Show that $y_{p_1} = 3e^{2x}$ and $y_{p_2} = x^2 + 3x$ are respectively particular solutions of $y'' - 6y' + 5y = -9e^{2x}$ and $y'' - 6y' + 5y = 5x^2 + 3x - 16$

CO3:

- 26. Use the substitution t = -x to solve the given initial-value problem on the interval $(-\infty, 0)$
 - (a) $4x^2y'' + y = 0$, y(-1) = 2, y'(-1) = 4; (b) $x^2y'' 4xy' + 6y = 0$, y(-2) = 8, y'(-2) = 0
- 27. Solve the following differential equations:
 - (a) $(D^3 5D^2 + 7D 3)y = e^{2x} \cosh 2x$
 - (b) $(D^4 + 3D^2 4)v = \cos^2 x \cosh x$

```
(c) (D^4 - 2D^3 + D^2)y = x^3
```

(d)
$$y'' - 4y' + y = \cos x \cos 2x$$

(e)
$$y^{iv} + 3y''' - 3y'' = x^2 + 3e^{2x} + 4sinx$$

(f)
$$(D^4 - 6D^3 + 14D^2 - 14D + 5)y = e^x + \sin(x + 3) + x$$

(g)
$$y'' - y = R(x)$$
 where $R(x) = x \sin x + (1 + x^2)e^x$; $e^{2x} \sin x + e^{\frac{x}{2}} \sin \left(\frac{x\sqrt{3}}{2}\right)$; $\left(1 + \frac{1}{e^x}\right)^{-2}$

(h)
$$y'' - 2y' + y = x^2 lnx$$

(i)
$$y'' + y = \sec^3 x \ tanx$$

(j)
$$\frac{1}{5}\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = 5\cos 4t$$
, given that $x(0) = \frac{1}{2}$ and $\left(\frac{dx}{dt}\right)_{t=0} = 0$

28. Apply the mentioned method to obtain the general solution of the following differential equations:

(a)
$$(1-x)y_2 + xy_1 - y = (1-x)^2$$
;

variation of parameters

(b)
$$(x^3 - 2x^2)y'' + 2x^2y' - 12(x - 2)y = 0$$
;

removal of first derivative

(c)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 9y = 0$$
;

when a part of C.F $y = x^3$ is known

(d)
$$(1+x)^2y'' + (1+x)y' + y = 2\sin\{\ln(1+x)\};$$

change the independent variable

(e)
$$x^2y_2 + xy_1 - y = x^2e^x$$
;

variation of parameters

(f)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = \frac{e^{2x}}{x^2}$$
;

(i) when a part of C.F is known and (ii) variation of parameters

29. Solve the following differential equations:

(a)
$$y_2 + (1 - \cot x)y_1 - \cot x y = \sin^2 x$$

(b)
$$x^3y''' + 2x^2y'' + 2y = 10\left(x + \frac{1}{x}\right)$$

(c)
$$x^2(\log_e x)^2 y_2 - 2x \log_e x \ y_1 + \{2 + \log_e x - 2 (\log_e x)^2\} y = (\log_e x)^3 x^2$$

(d)
$$y_2 + \left(1 + \frac{2}{x}cotx - \frac{2}{x^2}\right)y = x \cos x$$
 given that $\frac{\sin x}{x}$ is a part of C.F.

(e)
$$(x \sin x + \cos x) \frac{d^2y}{dx^2} - x\cos x \frac{dy}{dx} + \cos x y = \sin x (x\sin x + \cos x)^2$$

(f)
$$(y'' + y)cotx + 2(y' + tanx y) = secx$$

(g)
$$y'' + (tanx - 3cosx)y' + 2y cos^2 x = cos^4 x$$

(h)
$$y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$$

(i)
$$(D^2 + 2D + 2)y = e^{-x} \sec^3 x$$

(j)
$$16(x+1)^4 \frac{d^4y}{dx^4} + 96(x+1)^3 \frac{d^3y}{dx^3} + 104(x+1)^2 \frac{d^2y}{dx^2} + 8(x+1)\frac{dy}{dx} + y = x^2 + 4x + 3$$

(k)
$$(3x + 2)^2 y_2 + 5(3x + 2)y_1 - 3y = x^2 + x + 1$$

(1)
$$x^2y'' - 2x(3x - 2)y' + 3x(3x - 4)y = 2^{3x}$$

(m)
$$(D^4 + m^2D^2 + n^2D^2 + m^2n^2)y = \cos\left\{\left(\frac{m+n}{2}\right)x\right\}\cos\left\{\left(\frac{m-n}{2}\right)x\right\}$$

(n)
$$(D^2 + 2n\cos\alpha D + n^2)y = L\cos nx$$
 given that $y = 0, \frac{dy}{dx} = 0$ when $x = 0$

(o)
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$

(p)
$$(x+1)y'' + xy' - y = (x+1)^2$$