Comprehensive List of Mathematical Symbols

Comprehensive List of Mathematical Symbols

For the corresponding web guides, see Mathematical Symbols.

Table of Contents

1	Const	tant	3
	1.1	Key Mathematical Numbers	3
	1.2	Key Mathematical Sets	4
	1.3	Key Mathematical Infinities	5
	1.4	Other Key Mathematical Objects	6
2	Varia	bles	6
	2.1	Variables for Numbers	6
	2.2	Variables in Geometry	7
	2.3	Variables in Calculus	7
	2.4	Variables in Linear Algebra	8
	2.5	Variables in Set Theory and Logic	8
	2.6	Variables in Probability and Statistics	9
3	Delin	niters	10
	3.1	Common Delimiters	10
	3.2	Other Delimiters	10
4	Oper	ators	11

2 Table of Contents

	4.1	Common Operators	11
	4.2	Function-related Operators	12
	4.3	Elementary Functions	12
	4.4	Algebra-related Operators	13
	4.5	Geometry-related Operators	14
	4.6	Logic-related Operators	15
	4.7	Set-related Operators	16
	4.8	Vector-related Operators	16
	4.9	Matrix-related Operators	17
	4.10	Probability-related Operators	18
	4.11	Statistics-related Operators	18
	4.12	Key Probability Functions and Distributions	19
	4.13	Calculus-related Operators	20
5	Relation	onal Symbols	21
	5.1	Equality-based Relational Symbols	21
	5.2	Comparison-based Relational Symbols	21
	5.3	Number-related Relational Symbols	22
	5.4	Geometry-related Relational Symbols	22
	5.5	Set-related Relational Symbols	22
	5.6	Logic-related Relational Symbols	23
	5.7	Probability-related Relational Symbols	23
	5.8	Calculus-related Relational Symbols	24
6	Notati	ional Symbols	24
	6.1	Common Notational Symbols	24
	6.2	Notational Symbols in Geometry and Trigonom-	2.5
	6.3	etry	25
	6.3	Notational Symbols in Calculus	25
	6.4	Notational Symbols in Probability and Statistics	26
7	Δdditi	ional Resources	26

1 Constant

1.1 Key Mathematical Numbers

Symbols (Explanation)	LaTeX Code	Example
0 (Zero, additive identity)	\$0\$	3 + 0 = 3
1 (One, multiplicative identity)	\$1\$	$5 \times 1 = 5$
$\sqrt{2}$ (Square root of 2)	\$\sqrt{2}\$	$(\sqrt{2}+1)^2 = 3 + 2\sqrt{2}$
<i>e</i> (Euler's constant)	\$e\$	$ ln(e^2) = 2 $
π (Pi, Archimedes' constant)	\$ \pi\$	$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \cdots$
φ (Phi, golden ratio)	\varphi\	$\varphi = \frac{1 + \sqrt{5}}{2}$
<i>i</i> (Imaginary unit)	\$ i \$	$(1+i)^2 = 2i$

1.2 Key Mathematical Sets

Symbols (Explanation)	LaTeX Code	Example
Ø (Empty set)	\varnothing\	$ \varnothing = 0$
N (Set of natural numbers)	\mathbb{N}	$\forall x,y \in \mathbb{N}, x+y \in \mathbb{N}$
\mathbb{Z} (Set of integers)	\mathbb{Z}	$\mathbb{N}\subseteq\mathbb{Z}$

Comprehensive List of Mathematical Symbols

\mathbb{Z}_+ (Set of positive integers)	<pre>\$\mathbb{Z}_+\$</pre>	$3 \in \mathbb{Z}_+$
Q (Set of rational numbers)	\$\mathbb{Q}\$	$\sqrt{2} \notin \mathbb{Q}$
\mathbb{R} (Set of real numbers)	<pre>\$\mathbb{R}\$</pre>	$\forall x \in \mathbb{R} \ (x^2 \ge 0)$
\mathbb{R}_+ (Set of positive real numbers)	\$\mathbb{R}_+\$	$\forall x, y \in \mathbb{R}_+ (xy \in \mathbb{R}_+)$
\mathbb{C} (Set of complex numbers)	<pre>\$\mathbb{C}\$</pre>	$\exists z \in \mathbb{C} \left(z^2 + 1 = 0 \right)$
\mathbb{Z}_n (Set of integer modulo n)	<pre>\$\mathbb{Z}_n\$</pre>	In the world of \mathbb{Z}_2 , $1+1=0$.
\mathbb{R}^3 (Three-dimensional Euclidean space)	\$\mathbb{R}^3\$	$(5,1,2) \in \mathbb{R}^3$

Key Mathematical Infinities

Symbols (Explanation)	LaTeX Code	Example
ℵ ₀ (<u>Cardinality</u> of natural numbers)	\$\aleph_0\$	$\aleph_0 + 5 = \aleph_0$
c (Cardinality of real numbers)	<pre>\$\mathfrak{c}\$</pre>	$\mathfrak{c}=2^{\aleph_0}$
ω (Smallest infinite ordinal number)	\$\omega\$	$\forall n \in \mathbb{N} (n < \omega)$

1.4 Other Key Mathematical Objects

Symbols (Explanation)	LaTeX Code	Example
0 (Zero vector)	0	$\forall \mathbf{v} \in V, \mathbf{v} + 0 = \mathbf{v}$
$\frac{e}{\text{(Identity element of a group)}}$	\$e\$	$e \circ e = e$
<i>I</i> (Identity matrix)	\$I \$	AI = IA = A
C (Constant of integration)	\$C\$	$\int 1 \mathrm{d}x = x + C$
T (<u>Tautology</u>)	\$\top\$	For each proposition P , $P \wedge \top \equiv P$.
⊥ (<u>Contradiction</u>)	\$\bot\$	For each proposition P , $P \land \neg P \equiv \bot$.
Z (Standard normal distribution)	\$Z\$	$Z \sim N(0,1)$

2 Variables

2.1 Variables for Numbers

Symbols (Explanation)	LaTeX Code	Example
m, n, p, q (Integers and natural numbers)	\$m\$, \$n\$, \$p\$, \$q\$	m+n-q=1

a, b, c (Coefficients for functions and equations)	\$a\$, \$b\$, \$c\$	ax + by = 0
x, y, z (Unknowns in functions and equations)	\$x\$, \$y\$, \$z\$	If $2x + 5 = 3$, then $x = -1$.
Δ (<u>Discriminant</u>)	\$\Delta\$	$\Delta = b^2 - 4ac$ for quadratic polynomials
i, j, k (Index variables)	\$i\$, \$j\$, \$k\$	$\sum_{i=1}^{10} i = 55$
t (Time variable)	\$t\$	At $t = 5$, the velocity is $v(5) = 32$.
z (Complex numbers)	\$z\$	$z\bar{z} = z ^2$

2.2 Variables in Geometry

Symbols (Explanation)	LaTeX Code	Example
P, Q, R, S (Vertices)	\$P\$, \$Q\$, \$R\$, \$S\$	$\overline{PQ} \perp \overline{QR}$
ℓ (Lines)	\$\ell\$	$\ell_1 \parallel \ell_2$
α , β , γ , θ (Angles)	<pre>\$\alpha\$, \$\beta\$, \$\gamma\$, \$\theta\$</pre>	$\alpha + \beta + \theta = 180^{\circ}$

2.3 Variables in Calculus

Symbols (Explanation)	LaTeX Code	Example
(Explanation)		

f(x), $g(x,y)$, $h(z)$ (Functions)	\$f(x)\$, \$g(x,y)\$, \$h(z)\$	f(2) = g(3,1) + 5
a_n , b_n , c_n (Sequences)	\$a_n\$, \$b_n\$, \$c_n\$	$a_n = \frac{3}{n+2}$
h , Δx (Limiting variables in derivatives)	\$h\$, \$\Delta x\$	$\lim_{h \to 0} \frac{e^h - e^0}{h} = 1$
δ , ε (Small quantities in proofs involving limits)	\$\delta\$, \$\varepsilon\$	For all $\varepsilon > 0$, there is a $\delta > 0$ such that $ x < \delta$ implies that $ 2x < \varepsilon$.
F(x), $G(x)(Antiderivatives)$	\$F(x)\$, \$G(x)\$	F'(x) = f(x)

2.4 Variables in Linear Algebra

Symbols (Explanation)	LaTeX Code	Example	
u, v, w (Vectors)	<pre>\$\mathbf{u}\$, \$\mathbf{v}\$, \$\mathbf{w}\$</pre>	$3\mathbf{u} + 4\mathbf{v} = \mathbf{w}$	
A, B, C (Matrices)	\$A\$, \$B\$, \$C\$	AX = B	
λ (Figenvalues)	\$\lambda\$	$A\mathbf{v} = \lambda \mathbf{v}$	

2.5 Variables in Set Theory and Logic

Symbols (Explanation)	LaTeX Code	Example
A, B, C (Sets)	\$A\$, \$B\$, \$C\$	$A \subseteq B \cup C$

Comprehensive List of Mathematical Symbols

a,b,c \$a\$, \$b\$, \$c\$ $a\in A$ (Elements) P,Q,R \$P\$, \$Q\$, \$R\$ $P\vee\neg P\equiv \top$ (Propositions)

2.6 Variables in Probability and Statistics

Symbols (Explanation)	LaTeX Code	Example
X, Y, Z (Random variables)	\$X\$, \$Y\$, \$Z\$	E(X+Y) = E(X) + E(Y)
μ (Population ${ m {\color{red} means}}$)	\$\mu\$	$H_0: \mu = 5$
σ (Population standard deviations)	\$\sigma\$	$\sigma_1 = \sigma_2$
s (Sample standard deviations)	\$s\$	$s \neq \sigma$
n (Sample sizes)	\$n\$	For $n \ge 30$, use the normal distribution.
ho (Population correlations)	\$\rho\$	$H_a: \rho < 0$
r (Sample correlations)	\$r\$	If $r = 0.75$, then $r^2 = 0.5625$.
π (Population proportions)	\$ \pi\$	$\pi = 0.5$
p (Sample proportions)	\$ p\$	$p = \frac{X}{n}$

3 Delimiters

3.1 Common Delimiters

Symbols (Explanation)	LaTeX Code	Example
(<u>Decimal separator</u>)	\$.\$	25.9703
: (Ratio indicator)	\$:\$	1:4:9=3:12:27
, (Object separator)	\$,\$	(3, 5, 12)
(), [], {} (Order-of-operation indicators)	\$()\$, \$[]\$, \$\{ \}\$	$(a+b) \times c$
(), [] (Interval indicators)	\$()\$, \$[]\$	$3 \notin (3,4], 4 \in (3,4]$

3.2 Other Delimiters

Symbols (Explanation)	LaTeX Code	Example
(), [], $\begin{pmatrix} x & y \end{pmatrix}$, $\begin{bmatrix} a \\ b \end{bmatrix}$ (Vector/matrix indicators)	<pre>\$()\$, \$[]\$, \$\begin{pmatrix} x & y \end{pmatrix}\$, \$\begin{bmatrix} a \\ b \end{bmatrix}\$</pre>	$\begin{pmatrix} 1 & 4 \\ 3 & 6 \end{pmatrix}$
{} (Set builder)	\$ \{ \}\$	$\{\pi,e,i\}$
, : ("Such that" markers)	\$ <mark>\mid, :</mark> \$	$\{x \in \mathbb{R} \mid x^2 - 2 = 0\}$

10 3.2 Other Delimiters

, (Metric-related operators)	\$, \ \ \$	(3,4) = 5
$\begin{cases} f(x) & x \geq a \\ g(x) & x < a \end{cases}$ (Piecewise-function marker)	<pre>\$\begin{cases} f(x) & x \ge a \\ g(x) & x < a \end{cases}\$</pre>	$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$
$\langle angle$ (Inner product operator)	\$ <mark>\langle \rangle</mark> \$	$\langle ka, b \rangle = k \langle a, b \rangle$
[] (<mark>Ceiling operator</mark>)	\$\lceil \rceil\$	$\lceil 2.476 \rceil = 3$
[] (<mark>Floor operator</mark>)	\$ <mark>\lfloor \rfloor</mark> \$	$\lfloor \pi \rfloor = 3$

4 Operators

4.1 Common Operators

Symbols (Explanation)	LaTeX Code	Example
x + y (Sum)	\$x+y\$	2a + 3a = 5a
x - y (Difference)	\$x-y\$	11 - 5 = 6
-x (Additive inverse)	\$-x\$	-3+3=0
$x \times y, x \cdot y, xy$ (Product)	<pre>\$x \times y\$, \$x \cdot y\$, \$xy\$</pre>	(m+1)n = mn + n
$x \div y, x/y$ (Quotient)	\$x <mark>\div</mark> y\$, \$x/y\$	$152 \div 3 = 50.\overline{6}$

$\frac{x}{y}$ (Fraction)	\$ <mark>\displaystyle</mark> \frac{x}{y}\$	$\frac{53+5}{6} = \frac{53}{6} + \frac{5}{6}$
x^y (Power)	\$x^y\$	$3^4 = 81$
$x \pm y$ (Plus and minus)	\$x <mark>\pm</mark> y\$	$\frac{-b \pm \sqrt{\Delta}}{2a}$
\sqrt{x} (Positive square root)	\$\sqrt{x}\$	$\sqrt{2} \approx 1.414$
x (Absolute value)	\$ x \$	x-3 <5
x% (Percent)	\$x <mark>\%</mark> \$	$x\% \doteq \frac{x}{100}$

4.2 Function-related Operators

Symbols (Explanation)	LaTeX Code	Example
dom <i>f</i> (Domain)	\$\operatorname{dom}f\$	If $g(x) = \ln x$, then $dom(g) = \mathbb{R}$.
$\operatorname{ran} f$ (Range)	\$\operatorname{ran}f\$	If $h(y) = \sin y$, then $\operatorname{ran}(h) = [-1.1]$.
f(x) (Image of an element)	\$f(x)\$	g(5) = g(4) + 3
f(X) (Image of a set)	\$f(X)\$	$f(A \cap B) \subseteq f(A) \cap f(B)$
$f \circ g$ (Composite function)	\$f <mark>\circ</mark> g\$	If $g(3) = 5$ and $f(5) = 8$, then $(f \circ g)(3) = 8$.

4.3 Elementary Functions

Symbols (Explanation)	LaTeX Code	Example
$k_n x^n + \dots + k_0 x^0$ (Polynomial)	\$k_n x^n + \cdots + k_0x^0\$	The polynomial $x^3 + 2x^2 + 3$ has a root in $(-3, -2)$.
e^x , $\exp x$ (Natural exponential function)	<pre>\$e^x\$, \$\exp x\$</pre>	$e^{x+y} = e^x \cdot e^y$
b^x (General exponential function)	\$b^x\$	$2^x > x^2$ for large x .
$\ln x$ (Natural logarithmic function)	\$\ln x\$	$\ln(x^2) = 2\ln x$
$\log x$ (Common logarithmic function)	\$\log x\$	$\log 10000 = 4$
$\log_b x$ (General logarithmic function)	\$\log_b x\$	$\log_2 x = \frac{\ln x}{\ln 2}$
$\sin x$ (Sine function)	\$\sin x\$	$\sin \pi = 0$
$\cos x$ (Cosine function)	\$\cos x\$	$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$
$\tan x$ (Tangent function)	\$\tan x\$	$\tan x = \frac{\sin x}{\cos x}$

4.4 Algebra-related Operators

Symbols (Explanation)	LaTeX Code	Example
$\gcd(x,y)$	\$ <mark>\gcd</mark> (x,y)\$	$\gcd(35,14) = 7$
(<u>Greatest</u> <u>common</u> factor)		

$\lfloor x \rfloor$ (Floor operator)	<pre>\$\lfloor x \rfloor\$</pre>	$\lfloor 3.6 \rfloor = 3$
$\lceil x \rceil$ (Ceiling operator)	<pre>\$\lceil x \rceil\$</pre>	$\lceil \pi \rceil = 4$
$\min(A)$ (Minimum)	\$\min (A)\$	If $min(A) = 3$, then $min(A + 5) = 8$.
$\max(A)$ (Maximum)	\$\max (A)\$	$\max(A \cup B) \ge \max(A)$
$x \mod y$ (Modulo operator)	<pre>\$x\bmod y\$</pre>	$36 \bmod 5 = 1$
$\sum_{i=m}^{n} a_i$ (Summation)	<pre>\$\displaystyle \sum_{i=m}^n a_i\$</pre>	$\sum_{i=1}^{5} i^2 = 55$
$\prod_{i=m}^{n} a_i$ (Pi Product)	<pre>\$\displaystyle \prod_{i=m}^n a_i\$</pre>	$\prod_{i=1}^{n} = n!$
[a] (<mark>Equivalence class</mark>)	\$[a]\$	$[a] \doteq \{x \mid xRa\}$
$\deg f$ (Degree of polynomial)	\$ <mark>\deg</mark> f\$	$\deg(2x^2 + 3x + 5) = 2$
\overline{z} (Complex conjugate)	\$\bar{z}\$	$\overline{5 - 8i} = 5 + 8i$
z (Absolute value of complex number)	\$ z \$	$ e^{\pi i} = 1$
arg z (Arguments of complex number)	\$\arg z\$	$\arg(1+i) = \frac{\pi}{4} + 2\pi n$

4.5

Geometry-related Operators

Syml	bols
(Exp	lanation)

LaTeX Code

Example

$\angle ABC$ (Angle)	\$\angle ABC\$	$\angle ABC = \angle CBA$
$\angle ABC$, $m\angle ABC$ (Measure of angle)	\$ <mark>\measuredangle</mark> ABC\$, \$m\angle ABC\$	$\angle ABC = \angle A'B'C'$
\overrightarrow{AB} (Infinite line)	\$\\\overleftrightarrow\\ \{AB}\\$	$\overrightarrow{AB} = \overrightarrow{BA}$
\overline{AB} (Line segment)	<pre>\$\overline{AB}\$</pre>	$\frac{\text{If }B}{AB} \neq \frac{B'}{AB'}.$
\overrightarrow{AB} (Ray)	<pre>\$\overrightarrow {AB}\$</pre>	$\overrightarrow{AB} \cong \overrightarrow{CD}$
AB (Distance between two points)	\$ AB \$	AB < A'B'
$\triangle ABC$ (Triangle)	\$\triangle ABC\$	$\triangle ABC \cong \triangle A'B'C'$
$\Box ABCD$ (Quadrilateral)	\$ <mark>\square</mark> ABCD\$	$\Box ABCD = \Box DCBA$

4.6 Logic-related Operators

Symbols (Explanation)	LaTeX Code	Example
$\neg P$ (Negation)	\$\lnot P\$	$\neg(1=2)$
$P \wedge Q$ (Conjunction)	\$P \land Q\$	$P \wedge Q \equiv Q \wedge P$
$P \lor Q$ (Disjunction)	\$P \lor Q\$	$\pi^e \in \mathbb{Q} \vee \pi^e \notin \mathbb{Q}$
$P \to Q$ (Conditional)	\$P \to Q\$	$P \to Q \equiv (\neg P \lor Q)$
$P \leftrightarrow Q$ (Biconditional)	\$P \leftrightarrow Q\$	$P \leftrightarrow Q \implies P \to Q$

$\forall x P(x)$	$\sigma \$	$\forall y \in \mathbb{N} (y+1 \in \mathbb{N})$
(Universal		
statement)		
$\exists x P(x)$	<pre>\$\exists x P(x)\$</pre>	$\exists z (z^2 = -\pi)$
(Existential		
statement)		

4.7 Set-related Operators

Symbols (Explanation)	LaTeX Code	Example
\overline{A} , A^c (Complement)	<pre>\$\overline{A}\$, \$A^{c}\$</pre>	$\overline{\overline{A}} = A$
$A \cap B$ (Intersection)	\$A <mark>\cap</mark> B\$	$\{2,5\}\cap\{1,3\}=\varnothing$
$A \cup B$ (Union)	\$A <mark>\cup</mark> B\$	$\mathbb{N} \cup \mathbb{Z} = \mathbb{Z}$
A/B, $A-B$ (Set difference)	\$A/B\$, \$A-B\$	In general, $A - B \neq B - A$.
$A \times B$ (Cartesian product)	\$A \times B\$	$(11, -35) \in \mathbb{N} \times \mathbb{Z}$
$\mathcal{P}(A)$ (Power set)	<pre>\$\mathcal{P}(A)\$</pre>	$\mathcal{P}(\varnothing) = \{\varnothing\}$
A (Cardinality)	\$ A \$	$ \mathbb{N} =leph_0$

4.8 Vector-related Operators

Symbols (Explanation)	LaTeX Code	Example
$\ \mathbf{v}\ $ (Norm of vector)	\$\ \mathbf{v} \ \$	(3,4) = 5

$\mathbf{u} \cdot \mathbf{v}$ (Dot product)	<pre>\$\mathbf{u} \cdot \mathbf{v}\$</pre>	$\mathbf{u} \cdot \mathbf{u} = \ \mathbf{u}\ ^2$
$\mathbf{u} \times \mathbf{v}$ (Cross product)	<pre>\$\mathbf{u} \times \mathbf{v}\$</pre>	$\mathbf{u} \times \mathbf{u} = 0$
proj _v u (<mark>Projection</mark> vector)	<pre>\$\operatorname{proj} _{\mathbf{v}} \mathbf{u}\$</pre>	$\operatorname{proj}_{(0,1)}(5,4) = (0,4)$
span(S) (Span of vectors)	<pre>\$\operatorname{span} (S)\$</pre>	$\operatorname{span}(\{\mathbf{i}, \mathbf{j}\}) = \mathbb{R}^2$
$\dim(V)$ (Dimension of vector space)	\$\dim(V)\$	$\dim(\mathbb{R}^3) = 3$

Matrix-related Operators

Symbols (Explanation)	LaTeX Code	Example
A + B (Matrix sum)	\$A+B\$	A + X = B
A - B (Matrix difference)	\$A-B\$	In general, $A - B \neq B - A$.
-A (Additive inverse)	\$-A\$	B + (-B) = 0
kA (Scalar product)	\$kA\$	(-1)A = -A
AB (Matrix product)	\$AB\$	AI = IA = A
A^T (Matrix transpose)	\$A^T\$	$I^T = I$
A^{-1} (Matrix inverse)	\$A^{-1}\$	$(AB)^{-1} = B^{-1}A^{-1}$
$\operatorname{tr}(A)$ (Trace of matrix)	<pre>\$\operatorname{tr} (A)\$</pre>	$\operatorname{tr}(A^T) = \operatorname{tr}(A)$

$$\begin{split} \det(A), |A|, \begin{vmatrix} x & y \\ w & z \end{vmatrix} & \$ \texttt{\det}(A)\$, \$ |A|\$, \\ \$ \texttt{\begin}\{\texttt{\vmatrix}\} \times \& & \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} = 2 - 12 = -10 \\ \texttt{\y \w \& z} \\ \texttt{\end}\{\texttt{\vmatrix}\}\$ \end{split}$$

4.10 Probability-related Operators

Symbols (Explanation)	LaTeX Code	Example
n! (Factorial)	\$n!\$	$4! = 4 \cdot 3 \cdot 2 \cdot 1$
nPr (Permutation)	\$nPr\$	$5P3 = 5 \cdot 4 \cdot 3$
nCr , $\binom{n}{r}$ (Combination)	<pre>\$nCr\$, \$\displaystyle \binom{n}{r}\$</pre>	$ \binom{5}{2} = \binom{5}{3} $
P(E) (Probability of event)	\$P(E)\$	$P(A \cup B \cup C) = 0.\overline{3}$
P(A B) (Conditional probability)	\$P(A B)\$	$P(A B) = \frac{P(A \cap B)}{P(B)}$
E(X) (Expected value of random variable)	\$E(X)\$	E(X+Y) = E(X) + E(Y)
V(X) (Variance of random variable)	\$V(X)\$	V(5X) = 25V(X)

4.11 Statistics-related Operators

Symbols	LaTeX Code	Example
(Explanation)		_

\overline{X} (Sample mean)	<pre>\$\overline{X}\$</pre>	$\overline{3X} = 3\overline{X}$
s^2 (Sample variance)	\$s^2\$	$s^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$
σ^2 (Population variance)	\$\sigma^2\$	$\sigma^2 = \frac{\sum (X - \mu)^2}{n}$

4.12 Key Probability Functions and Distributions

Symbols (Explanation)	LaTeX Code	Example
Bin(n, p) (Binomial distribution)	<pre>\$\operatorname{Bin} (n, p)\$</pre>	If X stands for the number of heads in 10 coin tosses, then $X \sim \text{Bin}(10, 0.5)$.
Geo(p) (Geometric distribution)	<pre>\$\operatorname{Geo} (p)\$</pre>	$Y \sim \text{Geo}(1/5)$, then $E(Y) = 5$.
U(a,b) (Continuous uniform distribution)	\$U(a,b)\$	If $X \sim U(3,7)$, then $V(X) = \frac{(7-3)^2}{12}$.
$N(\mu, \sigma^2)$ (Normal distribution)	\$N(\mu, \sigma^2)\$	If $X \sim N(3, 5^2)$, then $\frac{X-3}{5} \sim Z$.
z_{lpha} (Critical z-score)	z_{λ}	$z_{0.05} \approx 1.645$
$t_{lpha, u}$ (Critical t-score)	t_{λ}, ∞	$t_{0.05,1000} \approx z_{0.05}$
$\chi^2_{\alpha,\nu}$ (Critical Chisquared-score)	\$\chi^2_{\alpha, \nu}\$	$\chi^2_{0.05,30} \approx 43.77$

 $\begin{array}{lll} F_{\alpha,\nu_1,\nu_2} & & F_{\alpha,\nu_1,\nu_2,\nu_2} & & F_{\alpha,\nu_1,\nu_1,\nu_2} & & F_{\alpha,\nu_1,\nu_2} & & F_{\alpha,\nu_1,\nu_2,\nu_2} & & F_{\alpha,\nu_1,\nu_2} & & F_{\alpha,\nu_1,$

4.13 Calculus-related Operators

Symbols (Explanation)	LaTeX Code	Example
$\lim_{n\to\infty} a_n$ (Limit of sequence)	<pre>\$\displaystyle \lim_ {n \to \infty} a_n\$</pre>	$\lim_{n \to \infty} \frac{n+3}{2n} = \frac{1}{2}$
$\lim_{x \to c} f(x)$ (Limit of function)	<pre>\$\displaystyle \lim_ {x \to c} f(x)\$</pre>	$\lim_{x \to 3} \frac{\pi \sin x}{2} =$ $\frac{\pi}{2} \lim_{x \to 3} \sin x$
$\sup(A)$ (Supremum)	\$ <mark>\sup</mark> (A)\$	$\sup([-3,5)) = 5$
$\inf(A)$ (Infimum)	\$ <mark>\inf</mark> (A)\$	If $B = \left\{ \frac{1}{1}, \frac{1}{2}, \dots \right\}$, then $\inf(B) = 0$.
f' , f'' , f''' , $f^{(n)}$ (Derivative)	\$f'\$, \$f''\$, \$f'''\$, \$f^{(n)}\$	$(\sin x)''' = -\cos x$
$\int_{a}^{b} f(x) \mathrm{d}x$ (Definite integral)	<pre>\$\displaystyle \int_a^ b f(x)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</pre>	$\int_0^1 \frac{1}{1+x^2} = \frac{\pi}{4}$
$\int f(x) dx$ (Indefinite integral)	<pre>\$\displaystyle \int f(x) \mathrm{d}x\$</pre>	$\int \ln x \mathrm{d}x = x \ln x - x$
f_x (Partial derivative)	\$f_x\$	If $f(x,y) = x^2y^3$, then $f_x(x,y) = 2xy^3$.

5 Relational Symbols

5.1 Equality-based Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
x = y (Equal)	x = y	3x - x = 2x
$x \neq y$ (Non-equal)	\$x \ne y\$	$2 \neq 3$
$x \approx y$ (Approximately equal)	\$x <mark>\approx</mark> y\$	$\pi \approx 3.1416$
$x \sim y$, xRy (Related to)	\$x <mark>\sim</mark> y\$, \$xRy\$	xRy if and only if $ x = y $
$x \equiv y$ (Equivalent to)	\$x <mark>\equiv</mark> y\$	$2 \equiv 101 \text{ in mod } 33$
$f(x) \propto g(x)$ (Proportional to)	\$f(x) \propto g(x)\$	$V \propto r^3$

5.2 Comparison-based Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
x < y (Less than)	\$x < y\$	$\sin x < 3$
x > y (Greater than)	\$x > y\$	$\pi > e$
$x \le y$ (Less than or equal to)	<pre>\$x \le y\$</pre>	$n! \le n^n$

 $x \ge y$ (Greater than or equal to)

\$x \ge y\$

 $x^2 \ge 0$

5.3 Number-related Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
$m \mid n$ (Divisibility)	\$m <mark>\mid</mark> n\$	101 1111
$m \perp n$ (Coprime integers)	\$m <mark>\perp</mark> n\$	$31 \perp 97$

4 Geometry-related Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
$\ell_1 \parallel \ell_2$ (Parallel)	<pre>\$\ell_1 \parallel \ell_2\$</pre>	$\overline{PQ} \parallel \overline{RS}$
$\ell_1 \perp \ell_2$ (<u>Perpendicular</u>)	\$\ell_1 \perp \ell_2\$	$\overrightarrow{AB} \perp \overrightarrow{BC}$
$F \sim F'$ (Similar figures)	\$F \sim F'\$	$\triangle ABC \sim \triangle DEF$
$F \cong F'$ (Congruent figures)	\$F <mark>\cong</mark> F'\$	$\Box ABCD \cong \Box PQRS$

5.5 Set-related Relational Symbols

Symbols LaTeX Code Example (Explanation)

$a \in A$ (Member of)	\$a \in A\$	$\frac{2}{3} \in \mathbb{R}$
$a \notin A$ (Not a member of)	\$a \notin A\$	$\pi \notin \mathbb{Q}$
$A \subseteq B$ (Subset of)	\$A <mark>\subseteq</mark> B\$	$A \cap B \subseteq A$
A = B (Equal Sets)	\$A = B\$	If $A = B$, then $A \subseteq B$.

5.6 Logic-related Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
$P \Longrightarrow Q$ (Implies)	\$P <mark>\implies</mark> Q\$	x is even \Longrightarrow 2 divides x
$P \iff Q$ (Implied by)	\$P <mark>\impliedby</mark> Q\$	$x = 3 \iff 3x + 2 = 11$
$P \iff Q$, $P \equiv Q$ (If and only if)	\$P <mark>\iff</mark> Q\$, \$P \equiv Q\$	$ \begin{array}{l} x \neq y \iff \\ (x - y)^2 > 0 \end{array} $
P : Q (Therefore)	\$P \therefore Q\$	$i \in \mathbb{C} :: \exists z (z \in \mathbb{C})$
P :: Q (Because)	\$P \because Q\$	$x = \frac{\pi}{2} ::$ $\sin x = 1 \text{ and } \cos x = 0$

5.7 Probability-related Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
$A \perp B$ (Independent events)	\$A \perp B\$	If $A \perp B$, then $P(A \cap B) = P(A) \cap P(B)$.

 $X \sim F$ (X follows distribution F)

\$X \sim F\$

 $Y \sim Bin(30, 0.4)$

5.8 Calculus-related Relational Symbols

Symbols (Explanation)	LaTeX Code	Example
$f(x) \sim g(x)$ (Asymptotically equal)	\$f(x) \sim g(x)\$	$\pi(x) \sim \frac{x}{\ln x}$
$f(x) \in O(g(x))$ (In the big-O of)	$f(x) \in O(g(x))$	$2x^2 + 3x + 3 \in O(x^2)$

6 Notational Symbols

6.1 Common Notational Symbols

Symbols (Explanation)	LaTeX Code	Example
, (Horizontal ellipsis)	\$\ldots\$, \$\cdots\$	$1^2 + 2^2 + \dots + n^2$
:, ··. (Vertical ellipsis)	\$\vdots\$, \$\ddots\$	$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$
$f: A \rightarrow B$, $A \stackrel{f}{\rightarrow} B$ (Function's domain/codomain specifier)	\$f : A \to B\$, \$A \overset{f}{\to} B\$	A function $g: \mathbb{N} \to \mathbb{R}$ can be thought of as a sequence.

$x \mapsto f(x)$ (Function mapping rule)	<pre>\$x \mapsto f(x)\$</pre>	The function $x \mapsto x^2$ is increasing in the interval $[0, \infty)$.
$Q.E.D.$, \blacksquare , \square (End-of-the-proof symbols)	\$Q. E. D.\$, \$\blacksquare\$, \$\square\$	Thus the result is established as desired.
$Q.E.A.$, \perp (Contradiction symbols)	\$Q. E. A.\$, \$\bot\$	Multiplying both sides of the equation yields that $1=2$. \bot

6.2 Notational Symbols in Geometry and Trigonometry

Symbols (Explanation)	LaTeX Code	Example
。 (<mark>Degree</mark>)	\$^ <mark>{\circ}</mark> \$	$\cos(90^\circ) = 0$
, (Arcminute)	\$'\$	$35' = \left(\frac{35}{60}\right)^{\circ}$
" (Arcsecond)	\$''\$	$20'' = \left(\frac{20}{60}\right)'$
rad (<mark>Radian</mark>)	\$ <mark>\mathrm{rad}</mark> \$	$\pi \operatorname{rad} = 180^{\circ}$
grad (<mark>Gradian</mark>)	\$ <mark>\mathrm{grad}</mark> \$	$100 \mathrm{grad} = 90^{\circ}$

6.3 Notational Symbols in Calculus

Symbols (Explanation)	LaTeX Code	Example	
$+\infty$ (Positive infinity)	\$+\infty\$	$\frac{n^2+1}{n}\to +\infty$	-

$-\infty$ (Negative infinity)	\$-\infty\$	$\lim_{x \to -\infty} e^x = 0$
Δx (Change in variable)	\$\Delta x\$	$m = \frac{\Delta y}{\Delta x}$
$\frac{\mathrm{d}x}{\text{(Differential)}}$	\$\mathrm{d} x\$	$\mathrm{d}y = f'(x)\mathrm{d}x$
∂x (Partial differential)	<pre>\$\partial x\$</pre>	$\frac{\partial f}{\partial x} \mathrm{d}x$
$\mathrm{d}f$ (Total differential)	<pre>\$\mathrm{d} f\$</pre>	$\frac{\mathrm{d}g(x,y)}{\frac{\partial g}{\partial x}}\mathrm{d}x + \frac{\partial g}{\frac{\partial y}{\partial y}}\mathrm{d}y$

6.4 Notational Symbols in Probability and Statistics

Symbols (Explanation)	LaTeX Code	Example
i.i.d. (Independent and identically distributed)	i.i.d.	Given n i.i.d. random variables X_1, \ldots, X_n , $V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n)$.
H_0 (Null hypothesis)	\$H_0\$	$H_0: \mu = 23$
H_a (Alternative hypothesis)	\$H_a\$	$H_a:\sigma_1^2\neq\sigma_2^2$

7 Additional Resources

• Ultimate LaTeX Reference Guide: A definitive reference guide on the LaTeX language, with the commands, environments and

packages most LaTeX users will ever need

- **Definitive Guide to Learning Higher Mathematics**: A standalone 10-principle framework for tackling higher mathematical learning, thinking and problem solving
- 10 Commandments of Higher Mathematical Learning: An illustrated web guide on 10 scalable rules for learning higher mathematics
- **Definitive Glossary of Higher Mathematical Jargon**: A tour around higher mathematics in 100 terms

