Definition and equivalent condition for cellularly stratified

A finite dimensional k-algebra with anti-automorphism involution i with inflation data $(B_1, V_1, \phi_1; \dots; B_n, V_n, \phi_n)$

Original definition

(Cellularity) A is iterated inflation of cellular algebras B_l along V_l

(Existence of idem) $\forall l, \exists 0 \neq u_l, v_l \in V_l$ s.t. $e_l := 1_{B_l} \otimes u_l \otimes v_l$ is an idempotent

(Irreversible layer) $l > m \Rightarrow e_l e_m = e_m = e_m e_l$

Remarks

- $e_n = 1;$ $V_n = k;$ $\phi_l(u_l, v_l) = 1_{B_l} = \phi_l(v_l, u_l)$
- (ideal within cell chain) $J_l := \bigoplus_{i=1}^l B_i \otimes V_i \otimes V_i = Ae_l A$

$$\begin{array}{rcl} B_l & \cong & \frac{e_l A e_l}{e_l J_{l-1} e_l} \\ 1_{B_l} & \mapsto & e_l \end{array}$$

• B_l is corner split quotient of A/J_{l-1} wrt e_l realized by $S_l := Ae_l \otimes_{e_l Ae_l} B_l$

Equivalent condition

(E+I) \exists idempotents $\{e_l : l = 1, ..., n\}$ s.t.

- \bullet $e_n = 1$
- $l > m \implies e_l e_m = e_m = e_m e_l$

(J)
$$J_l := Ae_l A$$
 $B_l := \frac{e_l Ae_l}{e_l J_{l-1} e_l}$, we have

•
$$\forall e_l, \exists p_l, q_l \in A \text{ s.t.} \begin{cases} e_l = p_l q_l \\ i(e_l) = q_l p_l \mod J_{l_1} \\ i(p_l) = p_l \end{cases}$$

- B_l is cellular wrt $\phi_l \circ (i|_{B_l})$
- $J_l = J_{l-1} \oplus X_l$ as vector space with $i(X_l) = X_l$ for l = 2, ..., n

(Free) $\forall l, \quad S_l := \frac{Ae_l}{J_{l-1}e_l} \in A - B_l \text{-bimod}$, we have

- S_l free of finite rank $m(=\dim_k V_l)$ over B_l
- As right B_l -module, $S_l \cong \left\{ \begin{array}{ll} e_l B_l^{\oplus m} & \text{if } q_l e_l = c e_l \text{ for some } c \in k^{\times} \\ e_l B_l^{\oplus a} \oplus q_l e_l B_l^{\oplus b} & (a+b=m) \end{array} \right\} = V_l \otimes_k B_l$
- Multiplication induces isomorphism of A-A-bimodule:

$$\frac{Ae_l}{J_{l-1}e_l} \otimes_{B_l} \frac{e_l A}{e_l J_{l-1}} \cong \frac{Ae_l A}{Ae_{l-1} A} \left(= \frac{J_l}{J_{l-1}}\right)$$