Math 340: Lec 23 Markov Chains (1)

Asa Royal (ajr74)

April 9, 2024

Remark. Markov chains are useful because they reduce conditional probability calculations to matrix operations

0.1 Overview of Markov Chains

Definition 1 (Markov chain). A Markov Chain is a sequence of rnadom variables X_1, \ldots, X_n that takes values in some "state space" S and satisfy the Markov property. The Markov Property states that the future is independent of the past but conditioned on the present. Formally,

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$$

Definition 2 (time-homogenous Markov Chain). If we assume that $\mathbb{P}(X_{n+1} = y | X_n = x)$ does not depend on n, we say that the chain is time-homogenous. If a Markov Chain is time-homogenous, we can define a transition matrix, P, which includes the transition probability between all states in the state space.

Theorem 3 (Properties of the transition matrix P). Let P be a transition matrix. Then

- 1. $0 \le P(x, y) \le 1$
- 2. $\forall x, \sum_{y \in S} P(x, y) = 1$. (Interpretation: If we're at state x, we must move somewhere)

0.2 Examples of markov chains

Example (Simple random walk). A simple random walk on \mathbb{Z} is a Markov Chain with $S = \mathbb{Z}$ and

$$P(x,y) = \begin{cases} 0 & \text{if } |x-y| \neq 1\\ p & \text{if } |x-y| = 1 \end{cases}$$

Example (Other examples). Simple walk on graph, random process with urn of red/blue marbles where num of given color of marbles change when we pick one of its kind.

0.3 n-step transitions

Motivating question: What is the distribution of X_n given we're at some current state X_0 ?

Proposition 4.

$$\mathbb{P}(X_n = y | X_0 = x) = P^{(n)}(x, y)$$

Where $P^{(n)}$ is the nth power of the transition matrix P.

Example (Finding two step transition probabilities).

$$\mathbb{P}(X_2 = x_2 | X_0 = x_0) = \sum_{x_1 \in S} (X_2 = x_2, X_1 = x_1 | X_0 = x_0)$$
 partitioning
$$= \sum_{x_1 \in S} \frac{\mathbb{P}(X_2 = x_2, X_1 = x_1, X_0 = x_0)}{\mathbb{P}(X_0 = 0)}$$
 cond. prob
$$= \sum_{x_1 \in S} \frac{\mathbb{P}(X_2 = x_2 | X_1 = x_1, X_0 = x_0) \mathbb{P}(X_1 = x_1, X_0 = x_0)}{\mathbb{P}(X_0 = 0)}$$
 cond. prob
$$= \sum_{x_1 \in S} \frac{\mathbb{P}(X_2 = x_2 | X_1 = x_1) \mathbb{P}(X_1 = x_1, X_0 = x_0)}{\mathbb{P}(X_0 = 0)}$$
 Markov property
$$= \sum_{x_1 \in S} \frac{\mathbb{P}(X_2 = x_2 | X_1 = x_1) \mathbb{P}(X_1 = x_1 | X_0 = x_0) \mathbb{P}(X_0 = 0)}{\mathbb{P}(X_0 = 0)}$$
 cond. prob
$$= \sum_{x_1 \in S} \mathbb{P}(X_2 = x_2 | X_1 = x_1) \mathbb{P}(X_1 = x_1 | X_0 = x_0)$$
 cond. prob
$$= \sum_{x_1 \in S} P(x_0, x_1) P(x_1, x_2) \text{trans. matrix}$$

$$= P^{(2)}(x, y)$$
 def. matrix mult