Esercizi slides 2

Riccardo Marchesin, Cesare Straffelini

Ottobre 2022

- 1. Se l'insieme Y appartiene alla famiglia \mathcal{X} , allora $\bigcap \mathcal{X} \subseteq Y \subseteq \bigcup \mathcal{X}$
- 2. Sia $\mathcal{X} \in \mathcal{P}(\mathcal{P}(A))$. Mostrare che $\bigcup \mathcal{X} = A \setminus \bigcap \{A \setminus X \mid X \in \mathcal{X}\}$.
- 3. Data una relazione $R \in \mathcal{P}(X \times X)$, è vero che $R \circ R^{-1}$ coincide con la relazione identità?
- 4. Sotto quali condizioni valgono le seguenti espressioni?

$$f^{-1}[f[A]] \subseteq A$$
 $f^{-1}[f[A]] \supseteq A$ $f^{-1}[f[A]] = A$ $f[f^{-1}[A]] \subseteq A$ $f[f^{-1}[A]] \supseteq A$ $f[f^{-1}[A]] = A$

5. Sia $f \in (A \to B)$, $A_i \subseteq A$, $B_i \subseteq B$. Quali delle seguenti valgono?

$$\begin{aligned} &\operatorname{dom}(f) = f^{-1}[\operatorname{img}(f)] \\ &\operatorname{img}(f) = f[\operatorname{dom}(f)] \\ &f[A_1 \cup A_2] = f[A_1] \cup f[A_2] \\ &f[A_1 \cap A_2] = f[A_1] \cap f[A_2] \\ &f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2] \\ &f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2] \end{aligned}$$

- 6. Cosa succede se nell'es precedente consideriamo \subseteq oppure \supseteq invece dell'uguaglianza?
- 7. Esprimere una biezione tra $A \times B$ e $B \times A$.
- 8. Esprimere una biezione tra $A \times (B \times C)$ e $(A \times B) \times C$
- 9. Esprimere una biezione tra $\mathcal{P}(A)$ e $(A \to \{0,1\})$
- 10. Esprimere una biezione $\operatorname{tra}(A \times \{0\}) \cup (B \times \{1\})$ e $(B \times \{0\}) \cup (A \times \{1\})$.
- 11. Esprimere una biezione tra $A \cup B$ e $(A \times \{0\}) \cup ((B \setminus A) \times \{1\})$
- 12. Sia $f \in (A \to B)$ arbitraria, e f^{-1} la relazione inversa di f. Mostrare che f è iniettiva se e solo se $f^{-1} \in (img(f) \to A)$
- 13. Definire una biezione f, e la sua inversa, tra $(A \cup B) \to C$ e $(A \to C) \times (B \to C)$, supponendo che $A \cap B = \emptyset$.