Exercises in Foundations in Representation Theory

Exercise Sheet 5

Jendrik Stelzner

Exercise 1.

(i)

The given statement is **false**. We give some counterexamples:

1) Let B be any noncommutative k-algebra and consider the k-algebra

$$A \coloneqq B \times B^{\mathrm{op}}$$
.

Then A is again noncommutative, but

$$A^{\text{op}} = (B \times B^{\text{op}}) = B^{\text{op}} \times (B^{\text{op}})^{\text{op}} = B^{\text{op}} \times B \cong B \times B^{\text{op}} = A$$
.

We can also do the same construction with the tensor product \otimes_k instead of the product \times . (Note that B can be identified with a subalgebra of $B \otimes_k B^{\text{op}}$ via $b \mapsto b \otimes 1$ because k is a field. It hence follows from the noncommutativity of B that A is also noncommutative.)

2) If B is any commutative k-algebra then

$$M_n(B)^{\mathrm{op}} \cong M_n(B^{\mathrm{op}}) = M_n(B)$$

as k-algebras, where the first isomorphism is given by the matrix transpose $M \mapsto M^T$. But the k-algebra $M_n(B)$ is noncommutative whenever $n \geq 2$ and $B \neq 0$.

3) It holds for any group G that

$$k[G]^{\mathrm{op}} = k[G^{\mathrm{op}}] \cong k[G]$$

as k-algebras, where the second isomorphism is induced by the group isomorphism

$$G^{\mathrm{op}} \to G$$
, $g \mapsto g^{-1}$.

But if G is noncommutative then k[G] is also noncommutative.

4) Consider the quiver Q with a single vertex and and two distinct arrow α and β :

Then $kQ \cong k\langle \alpha, \beta \rangle$ is the free k-algebra on two generators α and β , which in particular not commutative (because α and β don't commute). But

$$(kQ)^{\mathrm{op}} \cong k(Q^{\mathrm{op}}) = kQ$$

as k-algebras because $Q = Q^{op}$.

5) Let $\mathfrak g$ be a Lie algebra over a field k. Then the Lie algebra isomorphism

$$\mathfrak{g} \to \mathfrak{g}^{\mathrm{op}}, \quad x \mapsto -x$$

extends to an algebra isomorphism

$$\mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{g}^{\mathrm{op}}) \cong \mathcal{U}(\mathfrak{g})^{\mathrm{op}} \ .$$

(Here we denote by $\mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} .) But if \mathfrak{g} is not abelian (as most Lie algebras tend to be) then $\mathcal{U}(\mathfrak{g})$ is noncommutative (because \mathfrak{g} is a Lie subalgebra of $\mathcal{U}(\mathfrak{g})$).

(ii)

The statement is **true**: One of the \otimes -Hom-adjunctions states that the map

$$\operatorname{Hom}_B(N \otimes_A M, P) \to \operatorname{Hom}_A(M, \operatorname{Hom}_B(N, P)), \quad f \mapsto [m \mapsto [n \mapsto f(m \otimes n)]$$

is a well-defined isomorphism of k-vector space.

(iii)

The statement is **true**: The Yoneda embedding $Y: \mathcal{C} \to \mathbf{Fun}(\mathcal{C}, \mathbf{Set})$ is fully faithful and thus reflects isomorphisms. It therefore follows for any two ojects $X, X' \in \mathrm{Ob}(\mathcal{C})$ that the map

 $\{ \text{isomorphisms } X \to X' \} \to \{ \text{natural isomorphisms } h^{X'} \to h^X \} \,, \quad f \mapsto f^*$

is a well-defined bijection. It therefore follows from $h^X \cong h^{X'}$ that also $X \cong X'$

(iv)

The statement is **true**: Suppose more generally that \mathcal{C} is a category which admits an initinal object I. Then the functor $F: \mathcal{C} \to \mathbf{Set}$ given by $F(A) = \{*\}$ is represented by I: There exists for every object $X \in \mathrm{Ob}(\mathcal{C})$ a (unique) bijection

$$\eta_X \colon h^I(X) \to F(X)$$

because both sets are singletons. The square

$$\begin{array}{ccc} h^I(X) & \xrightarrow{f_*} & h^I(X') \\ \eta_X & & & \downarrow \eta_{X'} \\ F(X) & \xrightarrow{F(f)} & F(X') \end{array}$$

commutes for every morphism $f: X \to X'$ in \mathcal{C} because the set F(X') is a singleton. This shows that $\eta: h^I \to F$ is a natural isomorphism, hence that I represents the functor F.

In our case C = k-Alg the initial object—and hence representing object of F—is given by the k-algebra k.

(v)

The statement is **true**: Let $(X^{\lambda})_{{\lambda} \in {\Lambda}}$ be a family of representations of Q over k. We can then define a new representation $\prod_{{\lambda} \in {\Lambda}} X^{{\lambda}}$ of Q over k by setting

$$\left(\prod_{\lambda \in \Lambda} X^{\lambda}\right)_{i} \coloneqq \prod_{\lambda \in \Lambda} X_{i}^{\lambda}$$

for every $i \in Q_0$, and

$$\left(\prod_{\lambda \in \Lambda} X^{\lambda}\right)_{\alpha} \coloneqq \prod_{\lambda \in \Lambda} X_{\alpha}^{\lambda} \colon \prod_{\lambda \in \Lambda} X_{s(\alpha)}^{\lambda} \to \prod_{\lambda \in \Lambda} X_{t(\alpha)}^{\lambda}$$

for every $\alpha \in Q_1$.

To construct the needed projections $p^{\lambda} \colon \prod_{\mu \in \Lambda} X^{\mu} \to X^{\lambda}$, let $\lambda \in \Lambda$ and for every $i \in Q_0$ let $p_i^{\lambda} \colon \prod_{\mu \in \Lambda} X_i^{\mu} \to X_i^{\lambda}$ be the canonical projection. Then the family $p^{\lambda} \coloneqq (p_i^{\lambda})_{i \in Q_0}$ is a morphism of representations $p^{\lambda} \colon \prod_{\mu \in \Lambda} X^{\mu} \to X^{\lambda}$ because the square

$$\begin{array}{ccc} \prod_{\mu \in \Lambda} X^{\mu}_{s(\alpha)} & \xrightarrow{\prod_{\mu \in \Lambda} X^{\mu}_{\alpha}} & \prod_{\mu \in \Lambda} X^{\mu}_{t(\alpha)} \\ p^{\lambda}_{s(\alpha)} \downarrow & & \downarrow p^{\lambda}_{t(\alpha)} \\ X^{\lambda}_{s(\alpha)} & \xrightarrow{X^{\lambda}_{\alpha}} & X^{\lambda}_{t(\alpha)} \end{array}$$

commutes for every arrow $\alpha \in Q_1$.

Suppose now that Y is a representation of Q over k and that for every $\lambda \in \Lambda$ we are given a morphism of representations $f^{\lambda} \colon Y \to X^{\lambda}$.

We then have at every vertex $i \in Q_0$ a family $(f_i^{\lambda})_{\lambda \in \Lambda}$ of k-linear maps $f_i^{\lambda} \colon Y_i \to X_i^{\lambda}$. It follows for every $i \in Q_0$ by the universal property of the product $\prod_{\lambda \in \Lambda} X_i^{\lambda}$ that there exists a unique k-linear map $f_i \colon Y_i \to \prod_{\lambda \in \Lambda} X_i^{\lambda}$ with $p_i^{\lambda} \circ f_i = f_i^{\lambda}$ for every $\lambda \in \Lambda$. The family $f = (f_i)_{i \in Q_0}$ is a morphism of representations $f \colon Y \to \prod_{\lambda \in \Lambda} X^{\lambda}$, i.e. the

square

$$\prod_{\lambda \in \Lambda} X_{s(\alpha)}^{\lambda} \xrightarrow{\prod_{\lambda \in \Lambda} X_{\alpha}^{\lambda}} \prod_{\lambda \in \Lambda} X_{t(\alpha)}^{\lambda}$$

$$f_{s(\alpha)} \uparrow \qquad \qquad \uparrow f_{t(\alpha)}$$

$$Y_{s(\alpha)} \xrightarrow{Y_{\alpha}} Y_{t(\alpha)}$$
(1)

commutes for every arrow $\alpha \in Q_1$. Indeed, we have for every $\mu \in \Lambda$ the following diagram:

$$f_{s(\alpha)}^{\mu} \xrightarrow{X_{s(\alpha)}^{\mu}} \xrightarrow{X_{\alpha}^{\mu}} X_{t(\alpha)}^{\mu} \leftarrow f_{t(\alpha)}^{\mu} \uparrow f_{t(\alpha)}^{\mu} \uparrow f_{t(\alpha)}^{\mu} \downarrow f_{t(\alpha)}^{\mu} \uparrow f_{t(\alpha)}^{\mu} \uparrow f_{t(\alpha)}^{\mu} \downarrow f_{t(\alpha)}^{\mu} \uparrow f_{t(\alpha)}^{\mu} \downarrow f_{t(\alpha)}^{\mu} \downarrow f_{t(\alpha)}^{\mu} \uparrow f_{t(\alpha)}^{\mu} \downarrow f_{t(\alpha)$$

The rounded triangles on the left and right commute by construction of f, the upper square commutes by construction of p^{μ} , and the outer square commutes because $f^{\mu} \colon Y \to X^{\mu}$ is a morphism of representations. It follows that

$$p_{t(\alpha)}^{\mu} \circ \left(\prod_{\lambda \in \Lambda} X_{\alpha}^{\lambda}\right) \circ f_{s(\alpha)} = p_{t(\alpha)}^{\mu} \circ f_{t(\alpha)} \circ Y_{\alpha}.$$

This holds for every $\mu \in \Lambda$, and so it follows that

$$\left(\prod_{\lambda \in \Lambda} X_{\alpha}^{\lambda}\right) \circ f_{s(\alpha)} = f_{t(\alpha)} \circ Y_{\alpha}.$$

This shows that the square (1) commutes, and hence that f is indeed a morphism of representations.

It holds that $p^{\lambda} \circ f = f^{\lambda}$ because

$$(p^{\lambda} \circ f)_i = p_i^{\lambda} \circ f_i = f_i^{\lambda}$$

at every vertex $i \in Q_0$ by construction of f. If $\tilde{f} \colon Y \to \prod_{\lambda \in \Lambda} X^{\lambda}$ is another morphism of representations with $p^{\lambda} \circ \tilde{f} = f^{\lambda}$ for every $\lambda \in \Lambda$, then it follows at every vertex $i \in Q_0$ that

$$p_i^{\lambda} \circ f_i = f_i^{\lambda} = (p^{\lambda} \circ \tilde{f})_i = p_i^{\lambda} \circ \tilde{f}_i$$

for every $\lambda \in \Lambda$, and hence that $f_i = \tilde{f}_i$ by the uniqueness of the f_i . This shows the uniqueness of f.

This shows altogether that the constructed representation $\prod_{\lambda \in \Lambda} X^{\lambda}$ is together with the projections $p^{\lambda} \colon \prod_{\mu \in \Lambda} X^{\mu} \to X^{\lambda}$ a product of the family $(X^{\lambda})_{\lambda \in \Lambda}$.

Remark 1. One can also somewhat avoid this explicit calculations:

- 1) We have that $\mathbf{Rep}_k(Q) \cong \mathbf{Fun}(\mathbf{Path}(Q), k\text{-}\mathbf{Mod})$ as categories, and one can argue that the functor category $\mathbf{Fun}(\mathbf{Path}(Q), k\text{-}\mathbf{Mod})$ inherits all the nice properties of the module category $k\text{-}\mathbf{Mod}$. But we haven't (yet) shown in the lecture that a functor category $\mathbf{Fun}(\mathcal{C}, \mathcal{D})$ between categories \mathcal{C} and \mathcal{D} inherits products (and more generally limits) from \mathcal{D} , and checking this by hand amounts to the above calculations.
- 2) One can argue that $\operatorname{\mathbf{Rep}}_k(Q) \cong kQ\operatorname{\mathsf{-Mod}}$, but kQ is for a general quiver Q (no finiteness conditions on Q are given on the exercise sheet) not a unital k-algebra, which may make some people uncomfortable.

(vi)

The statement is **false**: If the category **Field** would have a terminal object K then there would exist (unique) field homomorphisms $\mathbb{F}_2 \to K$ and $\mathbb{F}_3 \to K$. But then K would need to have both characteristic 2 and characteristic 3, which cannot be.

Exercise 2.

(i)

Lemma 2. Let (F, G, φ) be an adjunction from a category \mathcal{C} to a category \mathcal{D} . Then F preserves epimorphisms and G preserves monomorphisms, i.e. if f is an epimorphism in \mathcal{C} then F(f) is an epimorphism in \mathcal{D} , and if g is a monomorphism in \mathcal{D} then G(g) is a monomorphism in \mathcal{C} .

Proof. For every morphism $f: X \to X'$ in \mathcal{C} and every object $Y \in \mathrm{Ob}(\mathcal{D})$ the square

$$\mathcal{D}(F(X),Y) \xrightarrow{\varphi_{X,Y}} \mathcal{C}(X,G(Y))$$

$$\downarrow^{f^*} \qquad \qquad \uparrow^{f^*}$$

$$\mathcal{D}(F(X'),Y) \xrightarrow{\varphi_{X',Y}} \mathcal{C}(X',G(Y))$$

$$(2)$$

commutes by the naturality of φ .

The horizontal arrows in (2) are bijections, so it follows that the map $F(f)^*$ is injective if (and only if) the map f^* is injective. If f is an epimorphism then the map $f^*: \mathcal{C}(X,G(Y)) \to \mathcal{C}(X',G(Y))$ is injective for all $Y \in \mathrm{Ob}(\mathcal{D})$, so it then follows that $F(f)^*: \mathcal{D}(F(X),Y) \to \mathcal{D}(F(X'),Y)$ is injective for all $Y \in \mathrm{Ob}(\mathcal{D})$. This is

precisely what it means for F(f) to be a epimorphism. This shows that the functor F preserves epimorphisms, and it can be shown in the same way that the functor G preserves monomorphisms.

Lemma 3. If $U: \mathcal{C} \to \mathcal{D}$ is a faithful functor then U reflects monomorphisms and epimorphisms, i.e. if U(f) is a monomorphism (resp. epimorphism) then f is a monomorphism (resp. epimorphism).

Proof. Let $f: X \to Y$ be a morphism such that U(f) is a monomorphism in \mathcal{D} . Let $g_1, g_2 \colon W \to X$ be two morphisms in \mathcal{C} with $f \circ g_1 = f \circ g_2$. Then

$$fg_1 = fg_2 \implies U(f)U(g_1) = U(f)U(g_2) \implies U(g_1) = U(g_2) \implies g_1 = g_2$$

because U is faithful. This shows that U reflects monomorphisms. That U also reflects epimorphisms can be shown in the same way.

Corollary 4. Let \mathcal{C} be a category and let $U \colon \mathcal{C} \to \mathbf{Set}$ be a faithful functor. Let f be a morphism in \mathcal{C} . If U(f) is injective then f is a monomorphism, and if U(f) is surjective then f is an epimorphism.

It follows for the forgetful functor $U \colon \mathbf{Top} \to \mathbf{Set}$ from Lemma 2 that it preserves monomorphisms and epimorphisms, because we have seen on the last exercise sheet that U is both a left adjoint and a right adjoint. It also follows from Corollary 4 that U reflects monomorphisms and epimorphisms, because U is faithful. This solves the exercise.

(ii)

Let $g_1, g_2 \colon Y \to Z$ be morphisms in **Haus** with $g_1 \circ f = g_2 \circ f$. We can then consider the equivalizer

$$E = \{ y \in Y \mid g_1(y) = g_2(y) \}.$$

The set E is closed in Y: It can be written as the preimage $E = (g_1, g_2)^{-1}(\Delta_Z)$ of the diagonal $\Delta_Z \subseteq Z \times Z$ under the continuous map $(g_1, g_2) \colon Y \to Z \times Z$, where the diagonal Δ_Z is closed in $Z \times Z$ because Z is Hausdorff. The equalizer E contains the image f(X) because $g \circ f = g_2 \circ f$. But this image is dense in Y, and so it follows that

$$E = \overline{E} \supset \overline{f(X)} = Y$$
.

This shows that E = Y and hence that $g_1 = g_2$.

(iii)

Let more generally $(X, x_0), (Y, y_0)$ be pointed, connected topological spaces, let X be Hausdorff and let $f: (X, x_0) \to (Y, y_0)$ be a morphism in \mathbf{Conn}_* for which the underlying continuous map $f: X \to Y$ is a local homeomorphism. Then f is a monomorphism in \mathbf{Conn}_* :

Let $g_1, g_2: (Z, z_0) \to (X, x_0)$ be morphisms in \mathbf{Conn}_* with $f \circ g_1 = f \circ g_2 \eqqcolon h$. We then consider the equalizer

$$E := \{ z \in Z \mid g_1(z) = g_2(z) \}.$$

We find as in the previous part of the exercise that the set E is closed in Z because X is Hausdorff.

The set E is also open: Let $z \in E$ and set $x := g_1(z) = g_2(z)$ and y := f(x) = h(z). Let $V \subseteq Y$ be an open neighbourhood of y and let $U \subseteq X$ be an open neighbourhood of x such that f restricts to a homeomorphism $f' : U \to V$. The set $W := g_1^{-1}(U) \cap g_2^{-1}(U)$ is then an open neighbourhood of z in Z for which we get the following diagram:

$$(W,z) \xrightarrow{g_1} (X,x)$$

$$\downarrow^{f'}$$

$$(V,y)$$

It follows from f' being a homeomorphism that already $g_1 \equiv g_2$ on W. This shows that E contains an open neighbourhood (namely W) around z.

The set E is also nonempty because it contains the base point z_0 . This shows altogether that E is a nonempty subset of Z which is both closed and open. It follows from Z being connected that E = Z and hence that $g_1 = g_2$.

Exercise 3.

(i)

(a) \Longrightarrow (d) There exists a unique morphism $Z \to Y$ for every object $Y \in \mathrm{Ob}(\mathcal{A})$; this holds in particular for Y = Z.

(d) \Longrightarrow (c) The morphisms id_Z and $0_{\mathcal{A}(Z,Z)}$ are both elements of the one-point set $\mathcal{A}(Z,Z)$, hence they are equal.

(c) \implies (a) It holds for every morphism $f: Z \to Y$ in \mathcal{A} that

$$f = f \circ id_Z = f \circ 0_{\mathcal{A}(Z,Z)} = 0_{\mathcal{A}(X,Y)}$$
.

This shows that the morphism $0_{\mathcal{A}(X,Y)}$ is the unique morphism $X \to Y$ in \mathcal{A} .

The implication circle (b) \implies (d) \implies (c) \implies (b) can be shown in the same way.

(ii)

We denote the zero object of \mathcal{A} by Z (because 0 is already overloaded enough). Then $\mathrm{id}_Z = 0_{\mathcal{A}(Z,Z)}$ by the previous part of the exercise, and therefore

$$0_{X,Y}=0_{Z,Y}\circ 0_{X,Z}=0_{Z,Y}\circ \mathrm{id}_Z\circ 0_{X,Z}=0_{Z,Y}\circ 0_{\mathcal{A}(Z,Z)}\circ 0_{X,Z}=0_{\mathcal{A}(X,Y)}$$
 for all $X,Y\in\mathcal{A}(X,Y)$.

Exercise 4.

(i)

Let M be a field and let $f \colon M \to K = \mathbb{Q}(i)$ and $g \colon M \to L = \mathbb{Q}(\sqrt{2})$ be field homomorphisms. Then $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ are field extensions of M. The subfield of $\mathbb{Q}(i)$ are $\mathbb{Q}(i)$, \mathbb{Q} , and the subfield of $\mathbb{Q}(\sqrt{2})$ are $\mathbb{Q}(\sqrt{2})$, \mathbb{Q} ; the only isomorphic subfields of $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ are $\mathbb{Q} \subseteq \mathbb{Q}(i)$ and $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$. Hence we find that $M = \mathbb{Q}$. There exist only a single field homorphism $\mathbb{Q} \to \mathbb{Q}$, namely the identity $\mathrm{id}_{\mathbb{Q}}$. Hence we find that $M = \mathbb{Q}$ and $f = g = \mathrm{id}_{\mathbb{Q}}$.

It follows that $P = \mathbb{Q}$ together with the inclusions $p \colon P \to \mathbb{Q}(i)$ and $q \colon P \to \mathbb{Q}(\sqrt{2})$ is a product of K and L in **Field**. (That there exist a *unique* morphism $M \to P$ follows from $\mathrm{id}_{\mathbb{Q}}$ follows from $\mathrm{id}_{\mathbb{Q}}$ being the only such homomorphism.)

(ii)

Suppose that a product P of K and L exists in the category **Field**. We find as above that P is isomorphic to a subfield of $\mathbb{Q}(i)$, and hence that either $P = \mathbb{Q}$ or $P = \mathbb{Q}(i)$. It follows from the existence of the (usual) diagonal homomorphism $\Delta_{\mathbb{Q}(i)} : \mathbb{Q}(i) \to P$ that P is a field extension of $\mathbb{Q}(i)$. We thus find that $P = \mathbb{Q}(i)$.

There exists precisely two field homomorphisms $\mathbb{Q}(i) \to \mathbb{Q}(i)$, the identity $\mathrm{id}_{\mathbb{Q}(i)}$ and the conjugation $c \colon \mathbb{Q}(i) \to \mathbb{Q}(i)$, $a+ib \mapsto a-ib$. If $p \colon P \to \mathbb{Q}(i)$ and $q \colon P \to \mathbb{Q}(i)$ are the structure morphisms belonging to the product P then it follows that p and q are isomorphisms, and that for every choice of field homomorphisms $f_1, f_2 \colon \mathbb{Q}(i) \to \mathbb{Q}(i)$ there exists a unique field homomorphism $g \colon \mathbb{Q}(i) \to \mathbb{Q}(i)$ such that the diagram

commutes. But then

$$f_1 = pg = pq^{-1}f_2 \,,$$

which cannot holds for both the choice $f_1 = \mathrm{id}_{\mathbb{Q}(i)}$, $f_2 = \mathrm{id}_{\mathbb{Q}(i)}$ (for which we get $f_1 = f_2$) and also the choice $f_1 = c$, $f_2 = \mathrm{id}_{\mathbb{Q}(i)}$ (for which we get $f_1 \neq f_2$).

This shows that no product of K and L exist in **Field**.