# Методы машинного обучения. Инкрементное и онлайновое обучение

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: vokov@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

BMK МГУ • 7 декабря 2021

### Содержание

- 🚺 Задачи инкрементного и онлайнового обучения
  - Постановка задачи и проблематика IL/OL
  - Ленивое обучение и отбор эталонных объектов
  - Онлайновый наивный байесовский классификатор
- ② Градиентные и точные инкрементные методы
  - Онлайновый градиентный спуск
  - Инкрементные решающие деревья
  - Инкрементный метод наименьших квадратов
- Прогнозирование и онлайновые ансамбли
  - Адаптивные модели краткосрочного прогнозирования
  - Адаптивная селекция и композиция моделей
  - Онлайновое обучение ансамбля

# Задача онлайнового обучения

# Задача обучения с учителем на потоке данных:

```
(x_i,y_i)_{i=1}^\ell — последовательность прецедентов «объект, ответ» a(x,\mathbf{w}) — параметрическая модель зависимости y(x) \mathscr{L}(a,y) — функция потерь
```

```
инициализировать параметры модели w_0; для всех i=1,\dots,\ell получить очередной объект x_i; сделать предсказание a_i:=a(x_i,w_{i-1}); получить ответ y_i и оценить потерю \mathscr{L}_i:=\mathscr{L}(a_i,y_i); обновить модель w_i:= Update (w_{i-1},x_i,y_i);
```

$$Q(t) = rac{1}{t} \sum_{i=1}^t \mathscr{L}(a_i, y_i)$$
 — кривая обучения (learning curve)

Steven C. H. Hoi et al. Online learning: a comprehensive survey. 2018

# Проблематика инкрементного и онлайнового обучения

- Как эффективно обновить модель по одному прецеденту?
- Как усложнять модель по мере роста объёма данных?
- Как обеспечить то же качество, что в оффлайне?
- Как избежать хранения всей выборки данных?
- Как при этом избежать «катастрофического забывания»?
- Как, добавляя новые объекты, ещё и удалять старые?

# Что может добавляться в задачах машинного обучения:

- объекты основной, но не единственный случай
- признаки
- размерность модели
- классы/кластеры
- подвыборки/подзадачи
- области пространства данных, моменты разладки

# Online Learning ≠ Incremental Learning. В чём отличия?

- Online обрабатывает объекты в потоке, по одному Incremental может накапливать пакеты обновлений
- Online может забывать старые данные (catastrophic forgetting) Incremental часто подразумевает эквивалентность результата оффлайновому обучению по полной выборке
- Online исследования озабочены теоретическими гарантиями Incremental сосредоточен на реализации быстрых алгоритмов
- Online обязательно является Incremental Incremental HE обязательно является Online

Continual (lifelong) learning — обучение одной модели разным задачам так, чтобы новые задачи не вытесняли старые

Anytime algorithm — алгоритм, который обучается по потоку, но в любой момент может быть использован для предсказаний

# Напоминание. Ленивое обучение (lazy learning)

 $U\subseteq X^\ell$  — множество хранимых эталонов (prototypes)  $\mathcal{K}_h(x,x_j)$  — ядро ширины h, сходство пары объектов x и  $x_j$ 

Метрическая классификация (kNN, окно Парзена, RBF):

$$a(x) = \arg\max_{y \in Y} \sum_{j \in U} [y_j = y] K_h(x, x_j)$$

Непараметрическая регрессия (Надарая-Уотсона):

$$a(x) = \frac{\sum\limits_{j \in U} y_j K_h(x, x_j)}{\sum\limits_{j \in U} K_h(x, x_j)}$$

Непараметрическая оценка плотности (Парзена-Розенблатта):

$$a(x) = \frac{1}{|U|V_h} \sum_{i \in U} K_h(x, x_i)$$

# Онлайновый отбор эталонов (prototype selection)

```
B — «бюджет», максимальное число хранимых объектов |U| \Delta_j — накапливаемая оценка полезности объекта x_j C_j — счётчик, сколько раз объект x_j влиял на другого C_{\min} — минимальное значение счётчика влияний K_{\min} — минимальное влияние K_h(x_i,x_j) объекта x_j на x_i \mathscr{L}_{i\setminus j} — потеря на объекте x_i при исключении объекта x_j из U
```

```
для всех i=1,\dots,\ell
получить x_i; вычислить a(x_i); \Delta_i:=0; C_i:=0; для всех x_j\in U, близких к x_i: K_h(x_i,x_j)>K_{\min}
\Delta_i:=\Delta_i+(\mathscr{L}_{j\setminus i}-\mathscr{L}_j); \quad C_i:=C_i+1;
\Delta_j:=\Delta_j+(\mathscr{L}_{i\setminus j}-\mathscr{L}_i); \quad C_j:=C_j+1;
U:=U\cup\{x_i\};
если |U|>B то U:=U\setminus\{x_j:\frac{\Delta_j}{C_i}\to\min,\ C_j>C_{\min}\};
```

#### Преимущества и недостатки ленивого онлайна

### Преимущества:

- простота реализации
- ullet решения онлайна и оффлайна гарантированно совпадают (только при хранении всех данных,  $U=X^\ell$ )
- идею отбора эталонов можно переносить на другие онлайновые методы, для которых имеется быстрый способ
  - 1) оценивать влияние одних объектов на другие и
  - 2) оценивать декрементную потерю  $\mathscr{L}_{i\setminus i}$

### Недостатки:

- хранение выборки это не настоящий онлайн
- обучение ширины окна h и других параметров функций сходства  $K_h$  могут существенно усложнять алгоритм

### Напоминание. Наивный байесовский классификатор

«Оптимальный» байесовский классификатор:

$$a(x) = \arg \max_{y \in Y} \lambda_y P(y) p(x|y)$$

«Наивное» предположение о независимости признаков:

$$a(x) = \arg\max_{y \in Y} \left( \ln(\lambda_y P(y)) + \sum_{j=1}^n \ln \frac{p(x^j|y)}{p} \right)$$

Предположение, что одномерные плотности экспоненциальны:

$$p(x^{j}|y;\theta_{yj},\phi_{yj}) = \exp\left(\frac{x^{j}\theta_{yj} - c(\theta_{yj})}{\phi_{yj}} + h(x^{j},\phi_{yj})\right)$$

Задача максимизации log-правдоподобия распадается на независимые подзадачи по классам y и признакам j:

$$L(\theta,\phi) = \ln \prod_{i=1}^{\ell} p(x_i|y_i) = \sum_{j=1}^{n} \sum_{y \in Y} \left( \sum_{x_i \in X_y} \ln \frac{p(x_i^j|y;\theta_{yj},\phi_{yj})}{\theta,\phi} \right) \to \max_{\theta,\phi}$$

# Напоминание. Линейный наивный байесовский классификатор

Решение  $\theta_{yj}$  через среднее значение признака j в классе y:

$$\frac{\partial L}{\partial \theta_{yj}} = 0 \quad \Rightarrow \quad c'(\theta_{yj}) = \sum_{x_i \in X_y} \frac{x_i^j}{|X_y|} \equiv \bar{x}_{yj} \quad \Rightarrow \quad \theta_{yj} = [c']^{-1}(\bar{x}_{yj})$$

Решение  $\phi_{yj}$  выражается из уравнения  $rac{\partial L}{\partial \phi_{yj}}=0$ , например, в случае гауссовского распределения  $\phi_{yj}=rac{1}{\ell}\sum_{i=1}^\ell ig(x_i^j-ar x_{y_ij}ig)^2$ 

Naïve Bayes — линейный классификатор:

$$a(x) = \arg\max_{y \in Y} \left( \sum_{j=1}^{n} x^{j} \frac{\theta_{yj}}{\phi_{yj}} + \ln(\lambda_{y} P(y)) - \sum_{j=1}^{n} \frac{c(\theta_{yj})}{\phi_{yj}} + \underbrace{h(x^{j}, \phi_{yj})}_{\text{He зависит}} \right)$$

**Онлайновое обучение** — рекуррентные формулы для  $ar{x}_{yj}, \; \phi_{yj}$ 

- ullet скорость  $O(n\ell)$  как в оффлайне, так и в онлайне
- решения онлайна и оффлайна совпадают

# Онлайновый наивный байесовский классификатор (ONB)

инициализировать 
$$b_y := \ln(\lambda_y P(y)); \quad \bar{x}_{yj} := 0; \quad \ell_y := 0;$$
 для всех  $i = 1, \ldots, \ell$  получить очередной объект  $x_i = (x_i^1, \ldots, x_i^n);$  сделать предсказание  $a_i := \arg\max_{y \in Y} \left(b_y + \sum_{j=1}^n x_i^j w_{yj}\right);$  получить ответ  $y_i$  и оценить потерю  $\mathcal{L}_i := \mathcal{L}(a_i, y_i);$  для  $y = y_i$  обновить средние по рекуррентной формуле:  $\bar{x}_{yj} := \frac{1}{\ell_y + 1} x_j^j + \frac{\ell_y}{\ell_y + 1} \bar{x}_{yj}; \quad \ell_y := \ell_y + 1;$  оценить параметры распределений:  $\theta_{yj} := [c']^{-1}(\bar{x}_{yj})$  и  $\phi_{yj}$  (в зависимости от типа признака); обновить коэффициенты линейной модели:  $w_{yj} := \frac{\theta_{yj}}{\phi_{yj}}; \quad b_y := \ln(\lambda_y P(y)) - \sum_{i=1}^n \frac{c(\theta_{yj})}{\phi_{yj}};$ 

# Алгоритм Perceptron для линейного классификатора

Пусть  $x_i \in \mathbb{R}^n$ ,  $y_i \in \{-1, +1\}$ ; модель  $a(x, w) = \operatorname{sign}(x^{\mathsf{T}}w)$ .

Старейший алгоритм онлайнового обучения (правило Хебба):

инициализировать параметры модели  $w_0 := 0;$  для всех  $i = 1, \dots, \ell$  получить  $x_i$ ; предсказать  $a_i := \mathrm{sign}(x_i^\mathsf{T} w_{i-1});$  получить  $y_i$ ; если  $a_i \neq y_i$  то обновить модель  $w_i := w_{i-1} + \eta y_i x_i;$ 

Это эквивалентно градиентному шагу с функцией потерь  $\mathcal{L}_i(w) = (-y_i x_i^\mathsf{T} w)_+$  и величиной шага  $\eta$ 

Вариант с нормализацией:  $w_i := w_{i-1} + \eta y_i \frac{x_i}{\|x_i\|}$ 



Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. 1958.

# Алгоритм Passive-Aggressive для линейного классификатора

$$\mathscr{L}_i(w) = (1 - y_i x_i^\mathsf{T} w)_+ - \mathsf{ф}$$
ункция потерь как в SVM

Идея:  $w_i =$  проекция  $w_{i-1}$  на множество  $\{w: \mathcal{L}_i(w) = 0\}$  passive — если  $\mathcal{L}_i(w_{i-1}) = 0$ , то не менять веса,  $w_i := w_{i-1}$  aggressive — сдвинуться как можно дальше к  $w: \mathcal{L}_i(w) = 0$ 

3адача поиска точки  $w_i$ , с параметром C и степенью  $p \in \{1,2\}$ :

$$\|w-w_{i-1}\|^2+C\mathscr{L}_i^p(w)\to \min_w$$

Аналитическое решение — тот же градиентный шаг вместе с  $\eta_i$ :

$$\underbrace{\eta_i = \frac{\mathcal{L}_i}{\|x_i\|^2}}_{\text{при }C=0} \text{ или } \underbrace{\eta_i = \min \left\{C, \frac{\mathcal{L}_i}{\|x_i\|^2}\right\}}_{\text{при }p=1} \text{ или } \underbrace{\eta_i = \frac{\mathcal{L}_i}{\|x_i\|^2 + \frac{1}{2C}}}_{\text{при }p=2}$$

K.Crammer et al. Online passive-aggressive algorithms. JMRL, 2006.

# Онлайновый градиентный спуск (Online Gradient Descent, OGD)

Минимизация аддитивного критерия

$$\sum_{i=1}^{\ell} \mathscr{L}(a(x_i, w), y_i) \to \max_{w}$$

Отличие от метода SGD (Stochastic Gradient Descent) в том, что объекты следуют в заданном порядке, а не в случайном:

```
инициализировать параметры модели w_0; для всех i=1,\dots,\ell получить объект x_i; предсказать a_i:=a(x_i,w_{i-1}); получить ответ y_i; оценить потерю \mathcal{L}_i:=\mathcal{L}(a_i,y_i); обновить модель w_i:=w_{i-1}-\eta_i\nabla_w\mathcal{L}\big(a(x_i,w_{i-1}),y_i\big);
```

*M.Zinkevich.* Online convex programming and generalized infinitesimal gradient ascent. 2003.

$$\mathscr{F}=\{\mathit{f}_{1},\ldots,\mathit{f}_{n}\}$$
 — множество признаков,  $\mathit{f}_{j}\colon X o \mathit{Ef}_{j},\ |\mathit{Ef}_{j}|<\infty$ 

Решающее дерево — алгоритм классификации a(x), задающийся деревом (связным ациклическим графом):

- 1)  $V=V_{ exttt{BHYTP}} \sqcup V_{ exttt{ЛИСТ}}, \ \ v_0 \in V$  корень дерева;
- 2)  $v \in V_{\text{внутр}}$ : признак  $f_v \in \mathscr{F}$  и функция  $S_v \colon \mathit{Ef}_v \to V$ ;
- 3)  $v \in V_{\mathsf{лист}}$ : метка класса  $y_v \in Y$ .

```
v := v_0;
пока (v \in V_{\mathtt{внутр}}):
v := S_v(f_v(x));
выход a(x) := y_v;
```

Если  $Ef_v \equiv \{0,1\}$  для всех v, то решающее дерево бинарное



```
v_0 := \mathsf{TreeGrowing}\; (X^\ell) - \mathsf{ф}ункция рекурсивно вызывает себя
```

Мажоритарное правило: Major  $(U) := \arg\max_{y \in Y} P(y|U)$ .

John Ross Quinlan. Induction of Decision Trees // Machine Learning, 1986.

```
U_{v} — множество объектов (x_{i},y_{i}), дошедших до вершины v. C_{v}[j,z,y]=\#\{x_{i}\in U_{v}\colon y_{i}=y,f_{j}(x_{i})=z\} — счётчики числа объектов для вычисления критерия ветвления Gain(f_{j},U_{v}).
```

```
для всех i=1,\dots,\ell:

получить x_i; предсказать a_i; получить y_i;

для всех v на пути от v_0 до листа, в который попал x_i:

C_v[j,f_j(x_i),y_i] += 1 для всех j=1,\dots,n;

f'_v := \arg\max_f \text{ Gain } (f,U_v) - \text{ критерий ветвления};

если (Gain (f'_v,U_v) > G_0) и (v \in V_{\text{лист}}) то

_ преобразовать v во внутреннюю вершину;

если (f'_v \neq f_v) и (v \in V_{\text{внутр}}) то

_ v := \text{TreeGrowing } (U_v); f_v := f'_v;
```

Paul E. Utgoff. Incremental Induction of Decision Trees. 1989

### Преимущества и недостатки

### Преимущества:

- хранится не выборка, а счётчики
- дерево растёт постепенно с ростом объёма данных
- решения онлайна (ID5R) и оффлайна (ID3) совпадают
- есть несколько версий более продвинутого алгоритма IDI

#### Недостатки:

- большой объём хранимых данных
- из-за этого большой лес из ID5R построить трудно

P.E.Utogff, N.C.Berkman, J.A.Clouse. Decision tree induction based on efficient tree restructuring. 1996

P.E.Utogff. An improved algorithm for incremental induction of decision trees. 1994

# Рекурсивный метод наименьших квадратов (RLS)

Пусть  $x_i \in \mathbb{R}^n$ ,  $y_i \in \mathbb{R}$ ; модель регрессии  $a(x, w) = x^T w$ . Метод наименьших квадратов (МНК) для линейной регрессии:

$${\textstyle\sum\limits_{i=1}^{\ell}} {\left( {x_i^{\mathsf{T}}w - y_i} \right)^2} + \lambda \mathop {\textstyle\sum\limits_{j=1}^{n}} {w_j^2} = \| {\mathit{Fw}} - {y} \|^2 + \lambda \| {w} \|^2 \to \mathop {\min }\limits_{w}$$

Решение задачи МНК (гребневая регрессия):

$$w^* = (F^{\mathsf{T}}F + \lambda I_n)^{-1}F^{\mathsf{T}}y$$

Новый объект  $x_i$  добавляется нижней строкой к  $F_{i-1}$ :

$$F_i^{\mathsf{T}} F_i = (F_{i-1}^{\mathsf{T}} x_i) \begin{pmatrix} F_{i-1} \\ x_i^{\mathsf{T}} \end{pmatrix} = F_{i-1}^{\mathsf{T}} F_{i-1} + x_i x_i^{\mathsf{T}}$$

Формула Шермана-Моррисона для матрицы  $A = F_{i-1}^{\mathsf{T}} F_{i-1} + \lambda I_n$ :

$$(A + uv^{\mathsf{T}})^{-1} = A^{-1} - \frac{A^{-1}uv^{\mathsf{T}}A^{-1}}{1 + v^{\mathsf{T}}A^{-1}u}$$

# Рекурсивный метод наименьших квадратов (RLS)

Рекурсивный МНК (Recursive Least Squares):

инициализировать 
$$w_0 := 0$$
,  $A_0 := (I_n + \lambda I_n)^{-1}$ ; для всех  $i = 1, \dots, \ell$ 
получить объект  $x_i$ ; сделать предсказание  $a_i := x_i^\mathsf{T} w_{i-1}$ ; получить ответ  $y_i$ ; оценить потерю  $\mathscr{L}_i := (a_i - y_i)^2$ ;  $A_i := A_{i-1} - \frac{A_{i-1} x_i x_i^\mathsf{T} A_{i-1}}{1 + x_i^\mathsf{T} A_{i-1} x_i}$ ;  $w_i := w_{i-1} - A_i x_i (a_i - y_i)$ ;

Сложность  $O(\ell n^2)$ , решение точное, совпадает с оффлайном

### Сравнение с OGD:

$$w_i := w_{i-1} - \eta_i x_i (a_i - y_i)$$

Сложность  $O(\ell n)$ , решение приближённое, отличается от оффлайна

# Задача прогнозирования временного ряда

$$y_0,y_1,\dots,y_t,\dots$$
 — временной ряд,  $y_i\in\mathbb{R}$   $x_t=(y_1,\dots,y_t)$  — описание предыстории ряда в момент  $t$   $\hat{y}_{t+d}(x_t;w)$  — модель временного ряда,  $d=1,\dots,D$   $w$  — вектор параметров,  $D$  — горизонт прогнозирования

Пример: линейная модель авторегрессии

$$\hat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

Метод наименьших квадратов:

$$Q_t(w) = \sum_{i=t_0}^{t-d} (\hat{y}_{i+d}(x_i, w) - y_{i+d})^2 \rightarrow \min_{w}$$

Основные явления в эконометрических временных рядах:

- тренды
- сезонности
- разладки (моменты смены модели ряда)

# Экспоненциальное скользящее среднее (ЭСС)

Простейшая регрессионная модель — константа  $\hat{y}_{t+1} = c$ , наблюдения учитываются с весами, убывающими в прошлое:

$$\sum_{i=0}^{t} \beta^{t-i} (y_i - c)^2 \to \min_{c}, \quad \beta \in (0,1)$$

Аналитическое решение — формула Надарая-Ватсона:

$$c \equiv \hat{y}_{t+1} = \frac{\sum_{i=0}^{t} \beta^{i} y_{t-i}}{\sum_{i=0}^{t} \beta^{i}}$$

Запишем аналогично  $\hat{y}_t$ , оценим  $\sum\limits_{i=0}^t eta^i pprox \sum\limits_{i=0}^\infty eta^i = rac{1}{1-eta}$ ,

получим 
$$\hat{y}_{t+1} = \hat{y}_t \beta + (1 - \beta) y_t$$
, заменим  $\alpha = 1 - \beta$ :

$$\hat{y}_{t+1} = \hat{y}_t + \alpha(y_t - \hat{y}_t) = \alpha y_t + (1 - \alpha)\hat{y}_t,$$

 $lpha \in (0,1)$  называется параметром сглаживания.

# Рекуррентная формула для среднего арифметического

Экспоненциальное скользящее среднее (ЭСС):

$$\hat{y}_{t+1} = \hat{y}_t + \frac{\alpha}{\alpha} (y_t - \hat{y}_t)$$

Среднее арифметическое:

$$\hat{y}_{t+1} = \frac{1}{t+1} \sum_{i=0}^{t} y_i = \hat{y}_t + \frac{1}{t+1} (y_t - \hat{y}_t)$$

При  $\alpha_t = \frac{1}{t+1}$  имеем среднее арифметическое При  $\alpha_t = \mathrm{const}$  имеем экспоненциальное скользящее среднее

Условие сходимости к среднему (для стационарных задач):

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

ЭСС применяется к нестационарным временным рядам

# Подбор параметра сглаживания

Экспоненциальное скользящее среднее (ЭСС):

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$$

Чем больше lpha, тем больше вес последних точек, при lpha o 1 прогноз стремится к тривиальному  $\hat{y}_{t+1} = y_t$ .

Чем меньше lpha, тем сильнее сглаживание, при lpha o 0 прогноз стремится к тривиальному  $\hat{y}_{t+1} = ar{y}$ .

Оптимальное  $lpha^*$  находим по скользящему контролю:

$$Q(\alpha) = \sum_{t=t_0}^{T} (\hat{y}_t(\alpha) - y_t)^2 \rightarrow \min_{\alpha}$$

Эмпирические правила:

если  $\alpha^*\in(0,0.3)$ , то ряд стационарен, ЭСС работает; если  $\alpha^*\in(0.3,1)$ , то ряд нестационарен, нужна модель тренда.

### Временные ряды с трендом и сезонностью

### Пример. Сочетания тренда и сезонности (модельные данные)



- Ряд 1 сезонность без тренда
- Ряд 2 линейный тренд, аддитивная сезонность
- Ряд 3 линейный тренд, мультипликативная сезонность
- Ряд 4 экспоненциальный тренд, мультипликативная сезонность

#### Аддитивный тренд и сезонность

Модель Хольта:  $\hat{y}_{t+d} = a_t + b_t d$ 

Рекуррентные формулы для параметров линейного тренда:

$$a_t = \alpha_1 y_t + (1 - \alpha_1)(a_{t-1} + b_{t-1})$$
  

$$b_t = \alpha_2(a_t - a_{t-1}) + (1 - \alpha_2)b_{t-1}$$

Модель Тейла-Вейджа:  $\hat{y}_{t+d} = (a_t + b_t d) + \frac{\theta_{t+d-s}}{\theta_{t+d-s}}, \ d \leqslant s$  Линейный тренд и аддитивная сезонность с периодом s:

$$a_{t} = \alpha_{1}(y_{t} - \theta_{t-s}) + (1 - \alpha_{1})(a_{t-1} + b_{t-1})$$

$$b_{t} = \alpha_{2}(a_{t} - a_{t-1}) + (1 - \alpha_{2})b_{t-1}$$

$$\theta_{t} = \alpha_{3}(y_{t} - a_{t}) + (1 - \alpha_{3})\theta_{t-s}$$

 $egin{aligned} heta_0,\dots, heta_{s-1} & - \end{array}$  сезонный профиль периода s  $lpha_1,lpha_2,lpha_3$  — параметры сглаживания

### Мультипликативный тренд и сезонность

Модель Уинтерса:  $\hat{y}_{t+d} = (a_t + b_t d) \cdot \theta_{t+d-s}, \ d \leq s$ Линейный тренд и мультипликативная сезонность периода s:

$$a_{t} = \alpha_{1}(y_{t}/\theta_{t-s}) + (1 - \alpha_{1})(a_{t-1} + b_{t-1});$$
  

$$b_{t} = \alpha_{2}(a_{t} - a_{t-1}) + (1 - \alpha_{2})b_{t-1};$$
  

$$\theta_{t} = \alpha_{3}(y_{t}/a_{t}) + (1 - \alpha_{3})\theta_{t-s};$$

Модель Уинтерса:  $\hat{y}_{t+d} = a_t \cdot r_t^d \cdot \theta_{t+d-s}, \ d \leqslant s$  Мультипликативные тренд и сезонность периода s:

$$a_{t} = \alpha_{1}(y_{t}/\theta_{t-s}) + (1 - \alpha_{1})a_{t-1}r_{t-1};$$
  

$$r_{t} = \alpha_{2}(a_{t}/a_{t-1}) + (1 - \alpha_{2})r_{t-1};$$
  

$$\theta_{t} = \alpha_{3}(y_{t}/a_{t}) + (1 - \alpha_{3})\theta_{t-s};$$

 $\theta_0, \dots, \theta_{s-1}$  — сезонный профиль периода s  $\alpha_1, \alpha_2, \alpha_3$  — параметры сглаживания

### Идея адаптивной селекции моделей

**Пример:** Динамика ЭСС ошибок прогнозов  $|\varepsilon_t|$  для 6 моделей (по реальным данным объёмов продаж в супермаркете):



**Идея:** кажется, можно успевать включать наиболее удачные модели и отключать менее удачные...

Разладка — момент времени, когда временной ряд переключается с одной модели поведения на другую

#### Адаптивная селективная модель

Пусть имеется k моделей прогнозирования,  $\hat{y}_{j,t+d}$  — прогноз j-й модели на момент t+d  $arepsilon_{jt}=y_t-\hat{y}_{jt}$  — ошибка прогноза j-й модели в момент t  $ilde{arepsilon}_{jt}=\gamma|arepsilon_{jt}|+(1-\gamma) ilde{arepsilon}_{j,t-1}$  — ЭСС модуля ошибки

Лучшая модель в момент времени t:

$$j_t^* = \arg\min_{j=1,...,k} \tilde{\varepsilon}_{jt}$$

Адаптивная селективная модель — прогноз по лучшей модели:

$$\hat{y}_{t+d} := \hat{y}_{j_t^*,t+d}$$

Требуется подбор  $\gamma$ , рекомендация:  $\gamma=0.01\dots0.1$ .

*Ю.П.Лукашин.* Адаптивные методы краткосрочного прогнозирования временных рядов. 2003.

### Адаптивная композиция моделей

Пусть имеется k моделей прогнозирования,  $\hat{y}_{j,t+d}$  — прогноз j-й модели на момент t+d  $arepsilon_{jt}=y_t-\hat{y}_{jt}$  — ошибка прогноза j-й модели в момент t  $ildе{arepsilon}_{jt}=\gamma|arepsilon_{jt}|+(1-\gamma) ilde{arepsilon}_{j,t-1}$  — ЭСС модуля ошибки

Линейная (выпуклая) комбинация моделей:

$$\hat{y}_{t+d} = \sum_{j=1}^{k} w_{jt} \hat{y}_{j,t+d}, \qquad \sum_{j=1}^{k} w_{jt} = 1, \ \forall t.$$

Адаптивный подбор весов [Лукашин, 2003]:

$$w_{jt} = \frac{(\tilde{\varepsilon}_{jt})^{-1}}{\sum_{s=1}^{k} (\tilde{\varepsilon}_{st})^{-1}}.$$

Требуется подбор  $\gamma$ , рекомендация:  $\gamma = 0.01...0.1$ .

*Ю.П.Лукашин.* Адаптивные методы краткосрочного прогнозирования временных рядов. 2003.

# Онлайновое обучение ансамбля: алгоритм $\mathsf{Hedge}(eta)$

```
b_t(x) \in [0,1], \ t=1,\ldots, T — [обучаемые] базовые предикторы \mathscr{L}(b,y) \in [0,1] — выпуклая по b функция потерь \beta \in (0,1) — параметр основания степени (\beta^z убывает по z) В бустинге фиксируем \ell, наращиваем T, а в Hedge — наоборот!
```

```
инициализировать веса предикторов w_{0t}=\frac{1}{T}, \quad t=1,\ldots,T; для всех i=1,\ldots,\ell получить очередной объект x_i; сделать предсказания b_t(x_i), \quad t=1,\ldots,T; получить ответ y_i и оценить потери \mathcal{L}_{it}:=\mathcal{L}(b_t(x_i),y_i); обновить веса предикторов: w_{it}:=\operatorname{norm}(w_{i-1,t}\,\beta^{\mathcal{L}_{it}}); дообучить предикторы b_t, \quad t=1,\ldots,T на (x_i,y_i);
```

Yoav Freund, Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997

# Финансовая интерпретация алгоритма $Hedge(\beta)$

Задача портфельного инвестора (Online Portfolio Selection):  $b_t$  — финансовые инструменты или стратегии (equity)  $\mathcal{L}_{it}$  — потеря от инструмента t в момент времени i  $w_{it}$  — доля капитала в инструменте t в момент времени i  $\mathcal{L}_i = \sum_{t=1}^T w_{it} \mathcal{L}_{it}$  — потеря по всему портфелю в момент i

### Теорема

Для любых  $\mathcal{L}_{it} \in [0,1]$  потеря ансамбля не сильно хуже потери лучшего из предикторов и стремится к ней при  $\ell \to \infty$ :

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}_i \leqslant \min_{t} \frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}_{it} + \sqrt{\frac{2 \ln T}{\ell}} + \frac{\ln T}{\ell}$$

**Интерпретация:** доходность портфеля стремится к доходности лучшего из инструментов при  $\ell \to \infty$  со скоростью  $O(\sqrt{\frac{\ln T}{\ell}})$ 

# Свойства алгоритма $Hedge(\beta)$

- ullet Теорема справедлива для любых  $\mathscr{L}_{it} \in [0,1],$  без каких-либо вероятностных предположений
- Та же оценка верна и для средних потерь ансамбля в силу выпуклости функции потерь и нормировки w<sub>it</sub>:

$$\mathscr{L}\left(\sum_{t=1}^{T} w_{it} b_{t}(x_{i}), y_{i}\right) \leqslant \sum_{t=1}^{T} w_{it} \mathscr{L}\left(b_{t}(x_{i}), y_{i}\right) = \mathscr{L}_{i}$$

- ullet Чем меньше eta, тем быстрее обучается ансамбль
- ullet Можно оценить eta, минимизировав более точную оценку:

$$\sum_i \mathscr{L}_i \leqslant rac{-L \ln eta + \ln T}{1-eta} o \min_eta,$$
 где  $L = \min_{oldsymbol{t}} \sum_i \mathscr{L}_{ioldsymbol{t}} \leqslant \ell$ 

Yoav Freund, Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997

#### Резюме

- Потоковых данных становится всё больше, в перспективе всё машинное обучение может стать инкрементным
- Инкрементные модификации существуют для большинства методов машинного обучения
- Не существует универсальных рецептов, как из обычного (оффлайнового) метода сделать онлайновый
- Инкрементные методы могут быть:
  - онлайновые или пакетные
  - точные или приближённые в сравнении с оффлайном
  - с изменяемой или неизменной сложностью модели
  - с хранением части выборки (эталонов) или без него
  - с теоретическими гарантиями или без них
  - с возможностью декремента или без него