Duale Hochschule Baden-Württemberg Kurs: TINF23A Dipl.-Ing. Tim Lindemann

Klausur

Lineare Algebra in der Informatik

Bitte beachten Sie folgende Hinweise:

- Tragen Sie auf jedem Blatt unten Ihre Matrikelnummer ein!
- Falls nötig, nutzen Sie die Rückseiten der Aufgabenblätter oder die zusätzlichen Blätter am Ende der Klausur. Verweisen Sie in diesem Fall auf die Rückseite bzw. die entsprechenden Zusatzblätter!
- Die Bindung der Blätter darf nicht geöffnet werden (1 Punkt Abzug bei Missachtung)!

Matrikel-Nr.:			

Aufgabe 1: Grundlagen (5 + 5 = 10 Punkte)

(a) Untersuchen Sie auf Z die Relation

$$x \sim y \iff x \cdot y \ge 0.$$

auf Reflexivität, Symmetrie und Transitivität.

(b) Stellen Sie die komplexe Zahl z in Normalform z=x+iy dar:

$$z = \left(\frac{1+i}{1-i}\right)^n, \quad n \in \mathbb{N}.$$

Zeigen Sie mit vollständiger Induktion, dass für alle $n \in \mathbb{N}$ folgende Formel gilt:

$$\left(\begin{array}{ccc} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 2 \end{array}\right)^n = \left(\begin{array}{ccc} 1 & 0 & (2^n - 1)a \\ 0 & 1 & (2^n - 1)b \\ 0 & 0 & 2^n \end{array}\right).$$

Aufgabe 3: Lineare Abbildungen

$$(4+1+6+2=13 \text{ Punkte})$$

Gegeben ist die Abbildung

$$f_A: \mathbb{R}^3 \to \mathbb{R}^2, \quad x \mapsto \left(\begin{array}{c} x_1 - x_2 \\ x_1 + 2x_2 - x_3 \end{array}\right).$$

- (a) Zeigen Sie, dass die Abbildung linear ist.
- (b) Geben Sie die zugehörige Darstellungsmatrix bezüglich der Standardbasis an.
- (c) Bestimmen Sie jeweils eine Basis des Kerns und des Bildes von f_A .
- (d) Treffen Sie eine Aussage zur Injektivität und Surjektivität von f_A .

Matrikel-Nr.: Punkte:

(a) Bestimmen Sie die Determinante der Matrix

$$A = \left(\begin{array}{rrrr} 1 & -1 & -1 & 0 \\ -1 & 0 & 0 & -2 \\ -1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \end{array}\right).$$

(b) Bestimmen Sie die Inverse der Matrix

$$B = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

Lösen Sie das folgende Gleichungssystem in Abhängigkeit von a.

$$\left(\begin{array}{cc|cc|c}
1 & a & 1 & 2 \\
0 & 1 & a & -1 \\
1 & 2 & 2 & 1
\end{array}\right)$$

(a) Bestimmen Sie alle Eigenwerte und Eigenräume der Matrix.

$$\left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & 2 \end{array}\right)$$

(b) Geben Sie für alle Eigenwerte die zugehörigen algebraischen und geometrischen Vielfachheiten an. Ist A diagonalisierbar?

(a) Bestimmen Sie mit Hilfe einer LR-Zerlegung die Lösung des Gleichungssystems

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & -1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \end{array}\right).$$

(b) Bestimmen Sie die Householder-Matrix, die den Vektor $x=(1,2,2)^T$ in Richtung des ersten Einheitsvektors spiegelt.

- (a) Berechnen Sie $5^{43} \mod 11$.
- (b) Zeigen Sie, dass [14] ein multiplikatives Inverses in \mathbb{Z}_{97} besitzt und bestimmen Sie dieses.
- (c) Bestimmen Sie den Wert der Eulerschen φ -Funktion für n=48.

Matrikel-Nr.: Punkte:

Matrikel-Nr.:	Punkte:

