1주차 스터디

+

딥러닝 CNN 완벽 가이드 - 세션1, 2, 3

세션1 - 딥러닝 개요와 경사하강법

세션2 - 오차 역전파, 활성화 함수, 손실 함수, 옵티마이저

세션3 – Keras Framework

발표자 : 오홍석, 임수진

1. 퍼셉트론

단층 퍼셉트론

입력층(input layer) 출력층(output layer)

다층 퍼셉트론

** 은닉층들의 층 수가 늘어난다고 해서 반드시 학습 효과가 향상되는 것은 아니며, 1~2개 층을 배치한 것만으로도 최대 성능을 나타내는 경우가 흔하다.

* RSS, MSE의 이해

$$RSS(w_0,w_1) = \sum_{i=1}^N (y_i - (w_0 + w_1 * x_i))^2$$
 (i 는 1부터 학습 데이터의 총 건수 N 까지)

$$MSE(w_0,w_1)=rac{1}{N}\sum_{i=1}^N(y_i-(w_0+w_1*x_i))^2$$
 (i는 1부터 학습 데이터의 총 건수 N까지)

* 단순선형회귀의 비용함수

2. 경사 하강법

- 학습률이 너무 작으면? 최소점에 수렴하는데 너무 오래 걸림
- 학습률이 너무 크면? 최소점을 찾지 못하거나 오히려 발산할 가능성 존재

* 손실함수의 편미분

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $y_i = actual \ value$

 $\hat{y}_i = predicted value$

n = # of observations

$$\frac{dLoss(w)}{dw_1} = \frac{2}{N} \sum_{i=1}^{N} -x_i * (y_i - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} x_i * (실제값_i - 예측값_i)$$

$$\frac{dLoss(w)}{dw_0} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} (실제값_i - 예측값_i)$$

* 가중치, 편향 업데이트

$$W = W - \alpha \frac{dL}{dw}$$

$$w_{1,new} = w_{1,old} - \eta \frac{dLoss(w)}{dw_1} = w_{1,old} + \eta (\frac{2}{N} \sum_{i=1}^{N} x_i * (실제값_i - 예측값_i))$$

$$w_{0,new} = w_{0,old} - \eta \frac{dLoss(w)}{dw_0} = w_{0,old} + \eta (\frac{2}{N} \sum_{i=1}^{N}$$
 실제값 $_i - 예측값_i)$

2. 경사 하강법

* 경사하강법의 유형

1) 배치 경사 하강법

2) 확률적 경사 하강법

3) 미니배치 경사 하강법

경사를 1회 계산하기 위해 전체 학습데이터 사용

-> 1개의 배치에 전체 학습데이터가 모두 들어감

경사를 1회 계산하기 위해 1개의 학습데이터 사용

-> 1개의 배치에 임의의 학습데이터 1개만 들어감

경사를 1회 계산하기 위해 일부 학습데이터 사용

-> 1개의 배치에 임의의 학습데이터 여러개가 들어감

- 일관된 방향을 향해 지속적으로 근접함.
- 데이터가 많으면 수행시간이 오래 걸림.
- 데이터가 많아도 수행시간이 빠름.
- 무작위 선택에 의해서 노이즈가 많을 수 있고 데이터의 편중이 있을 수 있음.
- 앞의 두가지 방법의 절충안.
- 배치 경사 하강법보다는 효율적이고,
 확률적 경사 하강법보다는 노이즈가 적음.

3. 오차 역전파

* 역전파 알고리즘

출력층으로부터 역순으로 gradient를 전달해서 전체 층의 가중치를 업데이트 하는 방식

4. Chain Rule

* 미분의 연쇄법칙 - 합성함수의 미분

$$z = f(g(x))$$

$$\frac{dz}{dx} = f'(g(x)) *g'(x)$$

* 미분의 연쇄법칙 – 의존 변수들의 순차적인 변화율

$$\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{\frac{dy}{du} \cdot \frac{du}{dx}}{\frac{du}{dv} \cdot \frac{dv}{dx}} \cdot \frac{\frac{dv}{dx}}{\frac{dx}{dx}} = \frac{\frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}}{\frac{du}{dv} \cdot \frac{dz}{dx}} \cdot \frac{dz}{dx}$$

- 변수가 여러 개일 때 어떤 변수에 대한 다른 변수의 변화율을 알아내기 위해 사용됨
- 변수 y가 변수 u에 의존하고, 다시 변수 u가 변수 x에 의존한다고 하면 x에 대한 y의 변화율은 u에 대 한 y의 변화율과 x에 대한 u을 변화율을 곱하여 계산할 수 있음

** 심층 신경망은 합성 함수의 연쇄 결합

4. Chain Rule

* 신경망의 역전파 계산

5. 활성화 함수

* 딥러닝 네트워크에 비선형성을 적용하기 위함

5. 활성화 함수 (Sigmoid & softmax)

- Sigmoid : 마지막 classification(binary)
- Softmax : 마지막 classification(multi)

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Vanishing Gradient

5. 활성화 함수 (Tanh)

* Vanishing Gradient 여전히 존재

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

5. 활성화 함수 (Relu)

• 은닉층에 사용됨

Zero centered

* Dying ReLU

$$f(x) = max(0, x).$$

5. 활성화 함수 (Leaky ReLU / EELU / Maxout)

Leaky ReLU $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

6. 손실함수

* 학습과정이 올바르게 이뤄질 수 있도록 적절한 가이드 제공

* 회귀 :
$$\mathbf{MSE}(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + w_1 * x_i))^2$$
 (i는 1부터 확습 데이터의 총 건수 N까지)

* 분류 :
$$L = -\frac{1}{m} \sum_{i=1}^{m} y_i \cdot \log(\hat{y}_i)$$

$$L = -\frac{1}{m} \sum_{i=1}^{m} (y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i))$$

6. 손실함수

0.0

Case 1	예측 값 0.1 0.9 0.0	실제 값 0 1 0	CE $-\sum_{i=1}^{5} i$ 번째 실제값 $* log(i)$ 번째예측값) $= - log(0.9) = 0.105$
Case 2	0.1 0.7 0.2	0 1 0	$= - \log(0.7) = 0.356$
Case 3	0.4 0.5 0.1	0 1 0	$= - \log(0.5) = 0.693$
Case 4	0.990 0. <mark>X</mark> 1 0.0 1	0 1	= - log(0.01) = 6.90

Squared Error

$$0.1^2 = 0.01$$

$$0.3^2 = 0.09$$

$$0.5^2 = 0.25$$

$$0.99^2 = 0.980$$

- * 보다 최적으로 GD를 적용
- * 최소 Loss로 보다 빠르고 안정적으로 수렴할 수 있는 기법 적용 필요

$$w_{t+1} = w_t - \eta \frac{dLoss}{dw_t}$$

Local minimum

Saddle point

* momentum

$$w_{t+1} = w_t - \eta \frac{dLoss}{dw_t}$$

Momentum 적용 식

momentum 계수
$$v_t = \dot{\gamma} v_{t-1} + \eta \frac{dLoss}{dw_t}$$
 새로운 Gradient

$$w_{t+1} = w_t - v_t$$

* Adagrad

$$w_{t+1} = w_t - \eta \frac{dLoss}{dw_t}$$

$$s_t = s_{t-1} + g_t^2$$

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{s_t + \varepsilon}} * g_t$$

* RMSProp

$$s_t = s_{t-1} + g_t^2$$

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{s_t + \varepsilon}} * g_t$$

지수 가중 평균 계수
$$s_t = \gamma s_{t-1} + (1-\gamma) \, g_t^2$$

$$w_{t+1} = w_t \, - \frac{\eta}{\sqrt{s_t + \varepsilon}} \, * g_t$$

감사합니다