

MAMDR: A Model Agnostic Learning Framework for Multi-Domain Recommendation

Linhao Luo, Yumeng Li, Buyu Gao, Shuai Tang, Sinan Wang, Jiancheng Li, Tanchao Zhu, Jiancai Liu, Zhao Li, and Shirui Pan

Monash University, Alibaba Group, Hangzhou Link2Do Technology, and Griffith University

Presenter: Linhao Luo

Background

Recommender System

Recommender systems have been widely applied in many applications.

Single-domain Recommendation

Example: User-item recommender system.

Single Domain

Conventional recommender systems are trained and predicted on samples collected from a **single domain**.

Multi-domain Recommendation (MDR)

Cosmetics

Outdoor exercises

House cleanings

Multi-domain recommendation

Challenges

Long-tailed data distribution across domains.

Singles Day Promotion (Double 11)

One shared model for all domains

Long-tailed data distribution

One model for each domain

Challenges

 Designing a model for each domain is time-consuming and unscalable.

One model for each domain

Thousands of domains

Challenges

- Existing MDR methods cannot generalize to all circumstances.
- Shared parameters suffer from the domain conflict, and specific parameters are inclined to overfitting.

One model with shared and specific parameters

Domain Conflict

Contributions

- We present a multi-domain recommender system served in Taobao, and propose a novel model agnostic learning framework: MAMDR, which is compatible with arbitrary model structures.
- We propose two scalable algorithms: Domain Negotiation (DN) and Domain Regularization (DR) to alleviate the domain conflict and overfitting problem in MDR.
- We provide a **disturbed implementation** of MAMDR and publicized various benchmark **datasets** to simulate the real-world challenges in MDR problems.

Methodology

Scale to new domain by increasing specific parameters.

How to combine shared and specific parameters for serving?

Domain Negotiation (DN)

 Domain Negotiation (DN) is proposed to mitigate the domain conflict problem for shared parameters.

```
Algorithm 1: Domain Negotiation (DN)
   Input: n different domains \mathcal{D}, initial model
              parameters \Theta, learning rate \alpha and \beta, maximum
              training epoch N.
   Output: \Theta
1 for epoch = 1, \cdots, N do
        \Theta_1 \leftarrow \Theta;
         Randomly shuffle \mathcal{D};
        for i \leftarrow 1, \cdots, n do
              Update \widetilde{\Theta}_{i+1} \leftarrow \widetilde{\Theta}_i - \alpha \cdot \nabla L(\widetilde{\Theta}_i, T^i);
         end
         Update \Theta \leftarrow \Theta + \beta \cdot (\widetilde{\Theta}_{n+1} - \Theta);
9 return \Theta
```


Analysis of Domain Negotiation (DN)

In DN, we serially perform training on each domain, which provides a sequence of loss $L(\widetilde{\Theta}_i, T^i)$, which can be simplified as $L_i(\widetilde{\Theta}_i)$. The following notations are also defined to facilitate analysis.

$$g_i = L'_i(\widetilde{\Theta}_i)$$
 (gradients from domain i), (4)

$$\overline{g}_i = L'_i(\widetilde{\Theta}_1)$$
 (gradients from domain *i* at initial point), (5)

$$\overline{H}_i = L_i''(\widetilde{\Theta}_1)$$
 (Hessian at initial point), (6)

$$\widetilde{\Theta}_i = \widetilde{\Theta}_1 - \alpha \sum_{j=1}^{i-1} g_j$$
 (sequence of gradient descent). (7)

Analysis of Domain Negotiation (DN)

We can perform the Taylor expansion on the g_i when α is small enough, which is formulated as:

$$g_{i} = L'_{i}(\widetilde{\Theta}_{1}) + L''(\widetilde{\Theta}_{1})(\widetilde{\Theta}_{i} - \widetilde{\Theta}_{1}) + O(\alpha^{2}), \tag{14}$$

$$= \overline{g}_i + \overline{H}_i(\widetilde{\Theta}_i - \widetilde{\Theta}_1) + O(\alpha^2), \tag{15}$$

$$= \overline{g}_i - \alpha \overline{H}_i \sum_{j=1}^{i-1} g_j + O(\alpha^2), \tag{16}$$

$$= \overline{g}_i - \alpha \overline{H}_i \sum_{j=1}^{i-1} \overline{g}_j + O(\alpha^2) \quad (\text{using } g_j = \overline{g}_j + O(\alpha)).$$

(17)

Analysis of Domain Negotiation (DN)

Then, the gradients $\widetilde{\Theta}_{n+1} - \Theta$ for outer loop can be formulated as:

$$-(\widetilde{\Theta}_{n+1} - \Theta)/\alpha = \sum_{i=1}^{n} g_i = \sum_{i=1}^{n} \overline{g}_i - \alpha \sum_{i=1}^{n} \sum_{j=1}^{i-1} \overline{H}_i \overline{g}_j + O(\alpha^2).$$
(18)

InnerGrad =
$$\mathbb{E}(\overline{H}_i \overline{g}_j) = \mathbb{E}(\overline{H}_j \overline{g}_i),$$
 (19)

$$= \frac{1}{2} \mathbb{E}(\overline{H}_i \overline{g}_j + \overline{H}_j \overline{g}_i), \qquad (20)$$

$$= \frac{1}{2} \mathbb{E} \left(\frac{\partial}{\partial \Theta} \langle \overline{g}_i, \overline{g}_j \rangle \right). \tag{21}$$

Domain Conflict

Domain Regularization (DR)

• Domain-specific parameters θ^i .

$$\Theta = \theta^S + \theta^i$$

 θ^i can be treated as a direction pointing to the optimal position of each domain.

DN

However, it is easy to overfit on some data sparsity domains.

a. Specific Parameters and Finetune

Domain Regularization (DR)

 Domain Regularization (DR) utilize data from other domains to help training specific parameters

```
Algorithm 2: Domain Regularization (DR)
    Input: n different domains \mathcal{D}, target domain D^i,
                 specific parameters \theta^i, learning rate \alpha, \gamma,
                 sample number k
    Output: \theta^i
1 Sample k domains from \mathcal{D} as \widetilde{\mathcal{D}};
2 for D^j in \widetilde{\mathcal{D}} do
         \widetilde{\theta^i} \leftarrow \theta^i;
          Update \widetilde{\theta}^i \leftarrow \widetilde{\theta}^i - \alpha \cdot \nabla L(\widetilde{\theta}^i, T^j) # Update on
            domain j;
          Update \widetilde{\theta}^i \leftarrow \widetilde{\theta}^i - \alpha \cdot \nabla L(\widetilde{\theta}^i, T^i) # Using domain i
            as regularization;
         Update \theta^i \leftarrow \theta^i + \gamma \cdot (\widetilde{\theta^i} - \theta^i);
7 end
s return \theta^i
```


b. Domain Regularization

$$-(\widetilde{\theta}^i - \theta^i)/\alpha = g_j + g_i = \overline{g}_j + \overline{g}_i - \alpha \overline{H}_i \overline{g}_j$$

This regularizes the gradients on domain j to optimize domain i.

Model Agnostic Learning Framework for Multi-Domain Recommendation

```
Algorithm 3: MAMDR
  Input: n different domains \mathcal{D}, shared parameters \theta^S,
            domain-specific parameters \{\theta^1, \cdots, \theta^n\},
            learning rate \alpha, \beta, \gamma, sample size k, maximum
            training epoch N.
  Output: \Theta = \{\theta^S, \{\theta^1, \cdots, \theta^n\}\}
1 for epoch = 1, \cdots, N do
       Update \theta^S using Domain Negotiation (Algorithm
       for i = 1, \cdots, n do
            Update \theta^i using Domain Regularization
             (Algorithm 2);
6 end
7 return \Theta = \{\theta^S, \{\theta^1, \cdots, \theta^n\}\}
```

MAMDR is **agnostic to model structure** that can be incorporated with any existing recommendation model.

Large-scale Implementation

Fig. 6. Implementation of MAMDR in PS-Worker architecture.

Fig. 7. The illustration of Embedding PS-Worker cache.

Experiments

Dataset

TABLE I OVERALL STATISTIC OF DATASETS.

Dataset	#Domain	#User	#Item	#Train	#Val	#Test	Sample / Domain
Amazon-6	6	445,789	172,653	9,968,333	3,372,666	3,585,877	2,821,146
Amazon-13	13	502,222	215,403	11,999,607	4,100,756	4,339,523	1,572,299
Taobao-10	10	23,778	6,932	92,137	37,645	43,502	17,328
Taobao-20	20	58,190	16,319	243,592	96,591	106,500	22,334
Taobao-30	30	99,143	29,945	394,805	151,369	179,252	24,180
Taobao-online	69,102	84,307,785	16,385,662	420,097,203	23,340,352	46,415,298	7,088

Metrics: AUC

Performance comparison

Performance on MDR benchmark datasets

TABLE V
COMPARISON WITH MULTI-DOMAIN RECOMMENDATION METHODS UNDER AVERAGE AUC AND AVERAGE RANK METRICS.

	Method	Ama	zon-6	Amaz	on-13	Taoba	ao-10	Taob	ao-20	Taoba	o-30
		AUC	RANK	AUC	RANK	AUC	RANK	AUC	RANK	AUC	RANK
	MLP	0.7464	9.0	0.7016	8.6	0.7022	11.3	0.7255	9.9	0.7416	10.7
	WDL	0.7449	9.0	0.7026	7.9	0.7154	8.9	0.7235	10.6	0.7559	8.4
Single	NeurFM	0.6505	10.7	0.6152	10.2	0.7374	4.1	0.7461	6.4	0.7673	6.1
domain	AutoInt	0.7531	8.2	0.7214	6.4	0.7302	5.8	0.7471	6.3	0.7623	6.5
	DeepFM	0.7333	10.0	0.6976	8.5	0.7271	6.6	0.7347	8.8	0.7484	9.4
	Shared-bottom	0.7794	3.0	0.7088	5.0	0.7197	7.7	0.7572	4.3	0.7714	6.1
Multi	MMOE	0.7816	2.7	0.7381	4.2	0.7250	5.9	0.7494	6.0	0.7717	4.2
domain	PLE	0.7801	3.5	0.7114	6.3	0.7287	5.3	0.7603	3.3	0.7725	4.0
uomam	Star	0.7719	5.8	0.7209	7.1	0.7202	8.0	0.7324	8.9	0.7483	9.4
	MLP+MAMDR	0.7957	2.5	0.7577	3.5	0.7445	2.7	0.7613	3.2	0.7750	3.1

Performance comparison

Performance on industry datasets

TABLE VIII
RESULTS ON THE INDUSTRY DATASET UNDER AVERAGE AUC METRIC.

Methods RAW	MMOE	CGC	PLE	RAW+Separate	RAW+DN	RAW+MAMDR
AUC 0.7503	0.7497	0.7489	0.7513	0.7460	0.7559	0.7700

Average AUC of 69,102 domains

TABLE IX
RESULTS ON TOP 10 LARGEST DOMAINS OF INDUSTRY DATASET UNDER AUC METRIC.

Methods	Top 1	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
RAW	0.8202	0.7635	0.8439	0.7295	0.6962	0.7417	0.6661	0.7524	0.7540	0.6912
MMOE	0.8166	0.7597	0.8288	0.7694	0.6945	0.7453	0.6677	0.7315	0.7478	0.6941
CGC	0.8172	0.7640	0.8307	0.7747	0.7215	0.7392	0.6726	0.7444	0.7357	0.7019
PLE	0.8158	0.7643	0.8261	0.7768	0.7327	0.7284	0.6793	0.7410	0.7472	0.7038
RAW+Separate	0.8127	0.7635	0.8285	0.7569	0.6896	0.7367	0.6701	0.7370	0.7283	0.6947
RAW+DN	0.8173	0.7655	0.8397	0.7643	0.7188	0.7344	0.6664	0.7523	0.7505	0.7021
RAW+MAMDR	0.8226	0.7704	0.8469	0.8090	0.7391	0.7648	0.6965	0.7666	0.7689	0.7150

Learning Framework Comparison

TABLE X
COMPARISON WITH OTHER LEARNING FRAMEWORKS UNDER AVERAGE AUC METRIC ON TAOBAO-10.

Method	Alternate	Alternate+Finetune	Weighted Loss	PCGrad	MAML	Reptile	MLDG	DN	DR	MAMDR (DN+DR)
MLP	0.7022	0.7126	0.7157	0.7254	0.6896	0.7117	0.7074	0.7204	0.7407	0.7445
WDL	0.7154	0.7040	0.7098	0.7153	0.6945	0.7212	0.7182	0.7295	0.7346	0.7376
NeurFM	0.7154	0.7465	0.7393	0.7526	0.7479	0.7579	0.7543	0.7572	0.7553	0.7609
DeepFM	0.7271	0.7280	0.7259	0.7562	0.7237	0.7402	0.7480	0.7352	0.7466	0.7581
Shared-bottom	0.7197	0.7225	0.7171	0.7269	0.6816	0.7255	0.7195	0.7233	0.7244	0.7339
Star	0.7202	0.7303	0.7297	0.7221	0.7228	0.7353	0.7181	0.7328	0.7255	0.7520

Traditional Learning Framework

Multi-Task Learning Framework

Meta-Learning Framework

Parameters Analysis

Fig. 8. Results under different sam-Fig. 9. Results under different learning ple number k. rates.

Thanks for your listening!

