2012 年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2012

学科試験

問題

EXAMINATION QUESTIONS

(高等専門学校留学生)

COLLEGE OF TECHNOLOGY STUDENTS

化学 CHEMISTRY

注意 ☆試験時間は60分

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES

(2012)

CHEMISTRY

Nationality	No.		
Name	Please print full name, underlining family name)	Marks	

If necessary, use the following data to answer the questions below.

Atomic Weight: H = 1.0, C = 12.0, O = 16.0, Na = 23.0, S = 32.0, Cl = 35.5, Cu = 63.6

Faraday's constant: $F = 9.65 \times 10^4 \text{ C/mol}$

Molar volume of gas at the standard state: 22.4 L/mol

Write the number of your answer in the box provided.
Choose the one alternative that best answers the question.

- 1. Answer the following questions.
- (A) What is the oxidation number of manganese in KMnO₄?

(B) Which is a redox reaction?

① NaCl + AgNO₃
$$\rightarrow$$
 AgCl + NaNO₃

$$\bigcirc$$
 Ca(OH)₂ + 2 HCl \rightarrow CaCl₂ + 2 H₂O

$$\textcircled{3}$$
 2 NaHCO₃ \rightarrow Na₂CO₃ + H₂O + CO₂

$$\textcircled{4}$$
 HCl + NH₃ \rightarrow NH₄Cl

$$\textcircled{5}$$
 C₂H₅OH + 3 O₂ → 2 CO₂ + 3 H₂O

(C) Which of the following elements has the greatest electronegativity value?
① Al ② C ③ F ④ Na ⑤ O
(D) Which of the following compounds belongs to the alkyne group?
① methane ② ethane ③ propylene ④ propyne ⑤ isoprene
(E) Which of the following gases has the highest density at the standard state?
① Cl ₂ ② O ₂ ③ N ₂ ④ H ₂ ⑤ SO ₂
(F) Which of the following compounds is optically active?
① NH ₂ CH ₂ COOH ② CH ₃ CH ₂ CH(NH ₂)COOH ③ (CH ₃) ₂ C(NH ₂)COOH ④ HOOC(CH ₂) ₄ COOH ⑤ NH ₂ (CH ₂) ₅ NH ₂
 A mixture of 6.0 mol of H₂ gas and 4.5 mol of I₂ vapor was heated at a constant temperature in a reaction vessel and allowed to reach equilibrium. At the equilibrium, the amount of HI was 8.0 mol. Answer the following questions.
(A) Calculate the value of the equilibrium constant for $H_2(g) + I_2(g) \stackrel{\textstyle >}{} 2 \ HI(g)$
① 8 ② 16 ③ 32 ④ 64 ⑤ 128

(E		e in the same re	\$1.500 p	- T		he same constant um. Calculate
	① 0.40 mol	② 1.2 mol	③ 1.6 mol	④ 2.5 mol	⑤ 3.2 mol	
						241 Ib
3.	The solution	was prepared by	y dissolving 4.0	g of NaOH in	1000mL of wa	ter.
(A	(x) What is the n	nolarity of this s	olution?			
	① 0.050 mo	l/L ② 0.10 r	nol/L ③ 0	25 mol/L ④	1.0 mol/L	⑤ 1.5 mol/L
(B	t) What is the r	oH value of this s	solution?			
(D	y what is the p	or varue or time s	orditon.			
	① 1 ② 4	4 3 7 4	10 ⑤ 13			0.00000000
						Andrew D
(C	C) How much of solution?	of a 0.10 mol/L I	H ₂ SO ₄ solution	is required to r	neutralize 20 ı	nL of this NaOH
		② 10 mL			50 mL	agreement (III)
						0.002.33

4. The thermochemical equation for the combustion of propane is given as follows; $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$ $\Delta H = -2220 \text{ kJ}$
(A) How many kilojoules are liberated when 8.80 g of C ₃ H ₈ (g) reacts according to this reaction?
① 111 kJ ② 222 kJ ③ 333 kJ ④ 444 kJ ⑤ 555 kJ
III
(B) The heats of formation of CO ₂ (g) and H ₂ O(l) are 394 kJ/mol and 286 kJ/mol respectively. Calculate the heat of formation of C ₃ H ₈ (g).
① 106 kJ/mol ② 502 kJ/mol ③ 610 kJ/mol ④ 896 kJ/mol ⑤ 1040 kJ/mol
5. An aqueous solution of $CuSO_4$ was electrolyzed with platinum electrodes for 2.0 hours with a 1.5 A current.
(A) What is the correct combination of electrode and generated gas?
① O ₂ at cathode ② O ₂ at anode ③ H ₂ at cathode
(4) H ₂ at anode (5) SO ₂ at cathode (6) SO ₂ at anode
(B) How many coulombs were flowed in this electrolysis?
① 3.00 C ② 180 C ③ 360 C ④ 5400 C ⑤ 10800 C
(C) How many grams of Cu were deposited on the platinum electrode?
(C) now many grains of Cu were deposited on the platificant electrode.
① 0.890 g ② 1.78 g ③ 3.56 g ④ 7.12 g ⑤ 14.2 g

6. The combustion of 12.0 mg of a monocarboxylic acid, which contains only carbon, hydrogen and oxygen, gave 17.6 mg of CO_2 and 7.20 mg of H_2O .
(A) Which is the compositional formula of this compound?
① CH ₂ O ② CHO ₂ ③ CH ₂ O ₂ ④ C ₂ H ₃ O ₂ ⑤ C ₃ H ₆ O ₂
(B) Determine the molecular weight of this compound.
① 30 ② 60 ③ 45 ④ 46 ⑤ 74
7. Answer the following questions about a synthetic polymer.
(A) Choose the correct combination of monomers if the polymer has amide bonds.
ethylene and propylene
(B) Which of the following polymers is made of repeating units linked by amide bonds?
① PE ② PET ③ Nylon 6,6 ④ PVC ⑤ PVA