Cavallaro, Jeffery Math 231b Homework #5

4.12.2

If A is an operator on a complex Hilbert space H such that $A\vec{x} \perp \vec{x}$ for every $\vec{x} \in H$, show $A \equiv 0$. By assumption: $\forall \vec{x} \in H, \langle A\vec{x}, \vec{x} \rangle = 0$.

Let $\varphi(\vec{x}, \vec{y}) = \langle A\vec{x}, \vec{y} \rangle$ be a bilinear functional on H with quadratic form:

$$\Phi(\vec{x}) = \varphi(\vec{x}, \vec{x}) = \langle A\vec{x}, \vec{x} \rangle = 0$$

Applying the polarization identity $\forall \vec{x}, \vec{y} \in H$:

$$4\varphi(\vec{x}, \vec{y}) = \Phi(\vec{x} + \vec{y}) - \Phi(\vec{x} - \vec{y}) + i\Phi(\vec{x} + i\vec{y}) - i\Phi(\vec{x} - i\vec{y})$$

But by closure: $\vec{x}+\vec{y}, \vec{x}-\vec{y}, \vec{x}+i\vec{y}, \vec{x}-i\vec{y} \in H$. And so $\Phi(\vec{x}+\vec{y}) = \Phi(\vec{x}-\vec{y}) = \Phi(\vec{x}+i\vec{y}) = \Phi(\vec{x}-i\vec{y}) = 0$

Thus $\forall \vec{x}, \vec{y} \in H$ it must be the case that:

$$4\varphi(\vec{x}, \vec{y}) = 4 \langle A\vec{x}, \vec{y} \rangle = 0$$

or
$$\langle A\vec{x}, \vec{y} \rangle = 0$$
.

But this only holds $\forall \vec{y} \in H$ if $A\vec{x} = 0$. But this only holds $\forall \vec{x} \in H$ if $A \equiv 0$.

$$\therefore A \equiv 0.$$

4.12.3

Give an example of a bounded operator A such that $||A^2|| \neq ||A||^2$.

Let $E=\mathbb{R}^2$ and let A(u)=A(x,y)=(y,0). Note that this corresponds to the matrix:

$$[A]_e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

A is clearly bounded (triangle inequality) and linear (matrix).

$$\|A\|=\sup_{\|u\|=1}\|Au\|=\sup_{\|u\|=1}|y|=1$$
 and so $\|A\|^2=1$

But
$$A^2=0$$
 and so $\left\|A^2\right\|=0$

$$\therefore \|A^2\| \neq \|A\|^2$$

Let $E = \mathbb{R}$ and let A(x) = x + 1.

$$||A|| = \sup_{|x|=1} |A(x)| = \sup_{|x|=1} |x+1| = 1$$

$$||A||^2 = 1^2 = 1$$

4.12.6

Let $(\vec{e_n})$ be a complete orthonormal sequence in a Hilbert space H and let (λ_n) be a sequence of scalars.

(a) Show that there exists a unique (linear) operator T on H such that $T\vec{e}_n = \lambda_n \vec{e}_n$.

Note that H is either finite dimensional or separable infinite dimensional, and so all (linear) operators on H can be represented by (infinite) matrix multiplication.

Assume $S\vec{e}_n = T\vec{e}_n = \lambda_n \vec{e}_n$.

$$S\vec{e}_n - T\vec{e}_n = (S - T)\vec{e}_n = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (s_{ij} - t_{ij})e_{n,j}\vec{e}_i = \vec{0}$$

But $\|\vec{e}_n\| = 1$ and thus $\vec{e}_n \neq \vec{0}$.

And so $s_{ij} - t_{ij} = 0$, and thus $s_{ij} = t_{ij}$.

$$\therefore S = T.$$

(b) Show that T is bounded iff (λ_n) is bounded.

Since $\|\vec{e}_n\| = 1$:

$$||T\vec{e}_n|| = ||\lambda_n \vec{e}_n|| = |\lambda_n| ||\vec{e}_n|| = |\lambda_n|$$

 \implies Assume T is bounded.

$$\exists\,M>0 \text{ such that } \|T\vec{e}_n\|=|\lambda_n|\leq M\,\|\vec{e}_n\|=M$$

Therefore (λ_n) is bounded.

 \iff Assume (λ_n) is bounded.

$$\exists M > 0 \text{ such that } |\lambda_n| \le M.$$
$$||T\vec{e}_n|| = |\lambda_n| \le M = M ||\vec{e}_n||.$$

Therefore T is bounded.

(c) For a bounded sequence (λ_n) , find the norm of T.

Since (λ_n) is bounded, $|\lambda_n|$ has a supremum.

Let
$$\lambda = \sup |\lambda_n|$$

$$\mathsf{Claim:} \, \|T\| = \lambda$$

Since $T \in \mathcal{B}(H)$:

$$||T\vec{e}_n|| \le ||T|| ||\vec{e}_n|| = ||T|| \cdot 1 = ||T|| ||T|| \ge ||T\vec{e}_n|| = ||\lambda_n\vec{e}_n|| = |\lambda_n| ||\vec{e}_n|| = |\lambda_n| \cdot 1 = |\lambda_n| \therefore ||T|| \ge \lambda$$

Furthermore:

$$\begin{split} \|T\| &= \sup_{\|\vec{x}\|=1} \|T\vec{x}\| \\ &= \sup_{\|\vec{x}\|=1} \left\| T \sum_{k=1}^{\infty} x_k \vec{e}_k \right\| \\ &= \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} x_k T \vec{e}_k \right\| \\ &= \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} x_k \lambda_k \vec{e}_k \right\| \\ &\leq \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} |\lambda_k x_k| \vec{e}_k \right\| \\ &= \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} |\lambda_k| |x_k| \vec{e}_k \right\| \\ &\leq \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} |\lambda_k| |x_k| \vec{e}_k \right\| \\ &= \lambda \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} |x_k| \vec{e}_k \right\| \end{split}$$

But note that:

$$\left\| \sum_{k=1}^{\infty} x_k \vec{e}_k \right\|^2 = \left\langle \sum_{k=1}^{\infty} x_k \vec{e}_k, \sum_{k=1}^{\infty} x_k \vec{e}_k \right\rangle$$

$$= \sum_{k=1}^{\infty} |x_k|^2$$

$$= \left\langle \sum_{k=1}^{\infty} |x_k| \vec{e}_k, \sum_{k=1}^{\infty} |x_k| \vec{e}_k \right\rangle$$

$$= \left\| \sum_{k=1}^{\infty} |x_k| \vec{e}_k \right\|^2$$

So taking the absolute value of the components does not change the norm.

Hence:

$$||T|| \le \lambda \sup_{\|\vec{x}\|=1} \left\| \sum_{k=1}^{\infty} |x_k| \, \vec{e}_k \right\| = \lambda \sup_{\|\vec{x}\|=1} ||\vec{x}|| = \lambda \cdot 1 = \lambda$$

$$\therefore \|T\| = \lambda$$

4.12.8

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x,y) = (x+3y,2x+y). Show that $T^* \neq T$.

From matrix theory, we know that:

$$[T]_e = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$

And since T^* is just the conjugate transpose, and in this case, just the transpose of T:

$$[T^*]_e = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$

And thus $T \neq T^*$.

Using the definition of the transpose, we have:

$$\langle Tu, v \rangle = \langle u, T^*v \rangle$$

So let $u = (x_1, y_1)$ and $v = (x_2, y_2)$:

$$\langle Tu, v \rangle = \langle (x_1 + 3y_1, 2x_1 + y_1), (x_2, y_2) \rangle$$

$$= x_2(x_1 + 3y_1) + y_2(2x_1 + y_1)$$

$$= x_1x_2 + 3y_1x_2 + 2x_1y_2 + y_1y_2$$

$$= x_1(x_2 + 2y_2) + y_1(3x_2 + y_2)$$

$$= \langle (x_1, y_1), (x_2 + 2y_2, 3x_2 + y_2) \rangle$$

$$= \langle u, T^*v \rangle$$

And so $T^*(x,y)=(x+2y,3x+y)$ (as expected) and therefore $T\neq T^*$.