Today we are going to...

To understand how and why computer systems use binary

Success Criteria

Recognise the use of binary in computer systems

Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte

Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- Computers understand only two things: power on, or power off
- This is represented by switches, and computers are essentially calculators made up of billions of switches
- Power on = 1
- Power off = 0

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- □ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- Computers use a binary number system consisting of only 0s and 1s
- Everything that a computer needs to process must be converted into a binary format
- This format is used for storing numbers, text, images, sound and program instructions

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- → Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- □ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Bits and bytes

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
-] Bit
- □ Byte
- ☐ Nibble
- □ Kilobyte
- ☐ Megabyte
- ☐ Gigabyte
- ☐ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

File	Size
One character of text	1 byte
A full page of text	30 KB
One small digital colour photograph	3 MB
Music CD	600 MB
A DVD	4.5 GB
Hard disk	1 TB

Literacy Focus

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- ☐ Kilobyte
- InterpretationInterpretatio
- ☐ Gigabyte
- ☐ Register

- □ Recognise the use of binary in computer systems
- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Binary representation

Number of Switches (Bits)	Possible combinations or states
1	2
2	4
3	
4	
5	
6	
7	
8	

Literacy Focus □ Binary Denary Conversion Register Bit Byte **Nibble Kilobyte** Megabyte Gigabyte Register

- ☐ Recognise the use of binary in computer systems
- Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Y10/11

IGCSE CS

Binary and denary number systems

 Denary is a base 10 number system with 10 digits 0-9

Why 10 digits?

 Binary is a Base-2 system with 2 digits, 0 and 1

My Success Criteria

- Recognise the use of binary in computer systems
- Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- □ Binary
- Denary
- □ Conversion
- Register
- Bit
- Byte
- Nibble
- Kilobyte
- Megabyte
- Gigabyte
- Register

Y10/11

IGCSE CS

Numbers with the denary system

Thousands, Hundreds, Tens and Units

1000	100	10	0	
2	7	0	3	

$$2x1000 + 7x100 + 0x10 + 3x1 = 2703$$

- □ Binary
- Denary
- Conversion
 - Register
 - Bit
- Byte
- **Nibble**
- **Kilobyte**
- Megabyte
- Gigabyte
- Register

Recognise the use of binary in computer systems

Base 2

nibble

iteracy Focus

We start at 1 and double each number...

Byte

- □ Binary
- Denary
- □ Conversion
- l Register
- ☐ Bit
- ☐ Byte
- → Nibble
- ☐ Kilobyte
- □ Megabyte
- ☐ Gigabyte
- □ Register

- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- ☐ Kilobyte
- ☐ Megabyte
- ☐ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

•What is:

32 + 16 + 8

+1 57

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- ☐ Byte
- □ Nibble
- ☐ Kilobyte
- Megabyte
- □ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Complete Task 1a

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- → Kilobyte
- ☐ Megabyte
- □ Gigabyte
- ☐ Register

- □ Recognise the use of binary in computer systems
- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- Convert 28 to binary:
- Method
 - Working right to left, write out the numbers 1, 2, 4, 8 and so on doubling each time to 128

128	64	32	16	8	4	2	1
0	0	0	1	1	1	0	0

• 28 has a 16 in it, leaving 12. 12 is 8 + 4

My Success Criteria

- □ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- □ Megabyte
- ☐ Gigabyte
- □ Register

How would we convert...

96

1100000

- □ Binary
- ☐ Denary
- ☐ Conversion
- l Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- ☐ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

How would we convert...

112

1110000

- □ Binary
- Denary
- ☐ Conversion
- Register
-] Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- ☐ Megabyte
- ☐ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

How would we convert...

127

111111

- □ Binary
- □ Denary
- ☐ Conversion
- Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- ☐ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Now complete Task 1b and Task 2

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
-] Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- □ Gigabyte
- □ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Checkpoint 1

Must

Recognise the use of binary in computer systems

Could

√How confident are you with this?

•	
Term	Definition
Binary	
Bit	
Byte	
Denary	

- You have seen how to represent the numbers 0-255 in binary, in a single byte (8 bits)
- What is the largest number that can be held in 16 bits?
- What's the largest denary number that can be held in
 - 2 denary digits? 4 digits?

- □ Binary
- ☐ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- ☐ Megabyte
- ☐ Gigabyte
- □ Register

- □ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Representing large integers

- Computers used to use 2 bytes to represent an integer
- Nowadays, they mostly use 4 bytes
- What is the largest integer that can be represented
 - in 2 bytes?
 - in 4 bytes?
- (Answers in the format 2ⁿ 1 please!)

- □ Binary
- Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- → Kilobyte
- □ Megabyte
- ☐ Gigabyte
- ☐ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Using 16 bits

 The eight most significant bit place values:

32,768 16,384 8,192 4,096 2,048 1,024 512 256 128

010110010

 The technique for conversion is identical to that used with only eight bits

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Checkpoint

√How confident are you?

Must

Recognise the use of binary in computer systems

Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte

Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Storage Sizes

Create this in your notebooks.
 How many <u>bytes</u> are in:

Kilo Byte	
Mega Byte	
Giga Byte	
Tera Byte	
Peta Byte	
Exa Byte	
Zetta Byte	
Yotta Byte	

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- □ Megabyte
- □ Gigabyte
- □ Register

- □ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Task! Worksheet 1

Now complete Task 3

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- ☐ Megabyte
- ☐ Gigabyte
- □ Register

- □ Recognise the use of binary in computer systems
- ☐ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- A computer register is a small, but very fast piece of memory
- It can have 8, 16 or 32 bits
- All calculations done by the computer are carried out in registers

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- □ Gigabyte
- ☐ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

- A standard numeric display uses 7 (or 8) segments
- Each segment is given a binary value
- Based on the binary values, lights are switched on or off to create a recognisable number

- □ Binary
- □ Denary
- □ Conversion
- □ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- □ Megabyte
- □ Gigabyte
- ☐ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

 A register of 8 bits is used to store and determine the state of each segment (including the decimal point - 0)

Display Register

7	6	5	4	3	2	1	0
1	1	0	1	1	0	1	0

What number would be represented if the register value was 11001100?

- □ Binary
- □ Denary
- □ Conversion
- □ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- Megabyte
- □ Gigabyte
- □ Register

- □ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Registers in industry

Registers can also be used to hold the state of a machine

- A robotic arm may have eight possible movements
- The register values below extend and lower the arm whilst opening the claw

left	right	claw	claw	arm	arm	Raise arm	arm
0	0	1	0	1	0	0	1

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- ☐ Bit
- □ Byte
- □ Nibble
- □ Kilobyte
- □ Megabyte
- □ Gigabyte
- □ Register

- □ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Checkpoint

√How confident are you?

Must

Recognise the use of binary in computer systems

Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte

Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

For your exam you need to be able to:

- ✓ Explain why computers use binary to represent any kind of data
- √ Give examples of the different types of data that computers can hold
- ✓ Convert whole numbers to binary and vice versa
- ✓ Define bit, byte, kilobyte, megabyte, gigabyte, terabyte
- ✓ Understand how registers are used in applications

- □ Binary
- □ Denary
- □ Conversion
- ☐ Register
- → Bit
- □ Byte
- □ Nibble
- → Kilobyte
- ☐ Megabyte
- ☐ Gigabyte
- ☐ Register

- ☐ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Reflect and Review

- Complete the skills 'checklist'
- Answer the confidence question and reflect in your progress diary

Kahoot.it

□ Denary □ Conversion □ Register □ Byte □ Nibble □ Kilobyte □ Megabyte □ Gigabyte □ Register

Literacy Focus

Binary

- □ Recognise the use of binary in computer systems
- □ Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
 - Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa

Homework

You will find the homework in the notebook. You should complete it by Wednesday

- □ Binary
- Denary
- Conversion
- Register
- Bit
- Byte
- **Nibble**
- **Kilobyte**
- Megabyte
- Gigabyte
- Register

- Recognise the use of binary in computer systems
- Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte

