DAY 9:

Vehicle Dataset

In [1]:

```
#to import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r"C:\Users\user\Downloads\ve.csv")[0:500]
df
```

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.241
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495
495	496.0	lounge	51.0	397.0	15003.0	1.0	45.512569	10.329
496	497.0	pop	51.0	790.0	38718.0	1.0	43.782372	11.254
497	498.0	lounge	51.0	397.0	17488.0	1.0	40.967571	14.207
498	499.0	lounge	51.0	425.0	24281.0	1.0	45.438110	12.318
499	500.0	lounge	51.0	701.0	25076.0	1.0	45.512569	10.329
500 rows × 11 columns								
4								•

localhost:8888/notebooks/Vehicle Liner%2CRidge%2CLasso.ipynb

```
In [3]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 11 columns):
                      Non-Null Count Dtype
     Column
                                      float64
 0
     TD
                      500 non-null
 1
     model
                      500 non-null
                                      object
 2
     engine_power
                      500 non-null
                                      float64
 3
                      500 non-null
                                      float64
     age_in_days
 4
                                      float64
                      500 non-null
 5
     previous_owners
                      500 non-null
                                      float64
 6
                      500 non-null
                                      float64
 7
                      500 non-null
     lon
                                      object
 8
     price
                      500 non-null
                                      object
                      0 non-null
 9
     Unnamed: 9
                                      float64
 10 Unnamed: 10
                      0 non-null
                                      object
dtypes: float64(7), object(4)
memory usage: 43.1+ KB
In [4]:
df.columns
Out[4]:
Index(['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previous_owner
       'lat', 'lon', 'price', 'Unnamed: 9', 'Unnamed: 10'],
      dtype='object')
Linear Regression
In [5]:
```

```
x=df[['ID','engine_power', 'age_in_days', 'km', 'previous_owners',
y=df[ 'lat']
```

In [6]:

```
# to split my dataset into test and train data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [7]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[7]:

LinearRegression()

```
In [8]:
print(lr.score(x_test,y_test))
0.012538908756927314
In [9]:
lr.score(x_train,y_train)
Out[9]:
0.0061884117429996666
Ridge Regression
In [10]:
from sklearn.linear_model import Ridge,Lasso
In [11]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
Out[11]:
0.012293461063633382
Lasso Regression
In [12]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[12]:
Lasso(alpha=10)
In [13]:
la.score(x_test,y_test)
Out[13]:
0.0059511790393329544
In [ ]:
```