Raport 2

Paweł Matławski album 249732

13 marca 2021

Spis treści

I	Dys	skretyzacja (przedziałowanie) cech ciągłych	1
	1.1	Dane	1
	1.2	Wybór cech	1
	1.3	Porównanie nienadzorowanych metod dyskretyzacji	
	1.4	Wpływ obserwacji odstających	8
2	Ana	aliza składowych głównych (Principal Component Analysis (PCA))	13
	2.1	Dane	13
	2.2	Przygotowanie danych	13
	2.3	Wyznaczenie składowych głównych	14
	2.4	Zmienność odpowiadająca poszczególnym składowym	14
	2.5	Wizualizacja danych wielowymiarowych	16
	2.6	Korelacja zmiennych	20
	2.7	Końcowe wnioski	20
3	Ska	lowanie wielowymiarowe (Multidimensional Scaling (MDS))	22
	3.1	Dane	22
	3.2	Redukcja wymiaru na bazie MDS	23
	3.3	Wizualizacja danych	25
-1	_		
1	L	Oyskretyzacja (przedziałowanie) cech ciągłych	
1.	1 .	Dane	
-•			
li	brar	y('datasets')	
at	tach	(iris)	

1.2 Wybór cech

```
plot(Sepal.Length)
```


plot(Sepal.Width)

plot(Petal.Length)

plot(Petal.Width)

plot(Species)

• Z powyższych wykresów możemy zauważyć, że cechy Petal są o wyższej zdolności dyskryminacyjnej, a cechy Sepal o niższej.

1.3 Porównanie nienadzorowanych metod dyskretyzacji

• Wybrałem cechy: jako lepszą Petal.Length, jako gorszą Sepal.Length. Zastosujemy teraz różne metody dyskretyzacji nienadzorowanej i porównamy metody.

```
library('arules')

## Loading required package: Matrix

##

## Attaching package: 'arules'

## The following objects are masked from 'package:base':

##

## abbreviate, write

d11 <- discretize(Sepal.Length, method = "interval", breaks = 3)

plot(d11)</pre>
```



```
d12 <- discretize(Sepal.Length, method = "frequency", breaks = 3)
plot(d12)</pre>
```



```
d13 <- discretize(Sepal.Length, method = "cluster", breaks = 3)
plot(d13)</pre>
```


d14 <- discretize(Sepal.Length, method = "fixed", breaks = c(-Inf, 5.5 , 6.5, Inf))
plot(d14)</pre>


```
d31 <- discretize(Petal.Length, method = "interval", breaks = 3)
plot(d31)</pre>
```



```
d32 <- discretize(Petal.Length, method = "frequency", breaks = 3)
plot(d32)</pre>
```



```
d33 <- discretize(Petal.Length, method = "cluster", breaks = 3)
plot(d33)</pre>
```


d34<- discretize(Petal.Length, method = "fixed", breaks = c(-Inf, 5.5 , 6.5, Inf)) plot(d34)

 \bullet Analizując powyższe rezultaty, możemy zauważyć że najskuteczniejszymi metodami są metody "k-means" i "equal frequency"

1.4 Wpływ obserwacji odstających

• Zastępując wartości największe i najmniejsze wartościami odstającymi, zbadamy ich wpływ na wyniki dyskretyzacji.


```
e12 <- discretize(iris2$Sepal.Length, method = "frequency", breaks = 3)
plot(e12)</pre>
```



```
e13 <- discretize(iris2$Sepal.Length, method = "cluster", breaks = 3)
plot(e13)</pre>
```


e14 <- discretize(iris2\$Sepal.Length, method = "fixed", breaks = c(-Inf, 5.5 , 6.5, Inf) plot(e14)


```
iris2$Petal.Length[which.min(iris2$Petal.Length)] <- min(iris2$Petal.Length) - 2*IQR(iris2$Petal.Length[which.max(iris2$Petal.Length)] <- max(iris2$Petal.Length) + 2*IQR(iris2$Petal.Length) + construction of the construct
```


e32 <- discretize(iris2\$Petal.Length, method = "frequency", breaks = 3)
plot(e32)</pre>

e33 <- discretize(iris2\$Petal.Length, method = "cluster", breaks = 3)
plot(e33)</pre>

e34 <- discretize(iris2\$Petal.Length, method = "fixed", breaks = c(-Inf, 5.5, 6.5, Inf) plot(e34)

• Zauważamy, że wartości odstające negatywnie wpływają na wyniki dyskretyzacji dla wszystkich metod, poza metodą "equal frequecy".

2 Analiza składowych głównych (Principal Component Analysis (PCA))

2.1 Dane

• Będziemy pracować na zbiorze danych ji¿state.x77¡/i¿, który zawiera podstawowe informacje o 50 stanach USA.

```
library('datasets')
dane<-as.data.frame(state.x77)</pre>
```

2.2 Przygotowanie danych

• Za pomocą wykresów pudełkowych porównamy zmienność poszczególnych cech.

state.x77 - boxploty

• Wyraźnie zauważamy, że zarówno wariancja, jak i mediana zmiennej Area wyraźnie różni się od pozostałych, więc niezbędne będzie zastosowanie standaryzacji.

2.3 Wyznaczenie składowych głównych

```
dane.pca <- prcomp(state.x77, scale. = T, center = T, retx = T)</pre>
```

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
Population	0.13	0.41	-0.66	-0.41	0.41	-0.01	-0.06	-0.22
Income	-0.30	0.52	-0.10	-0.09	-0.64	0.46	0.01	0.06
Illiteracy	0.47	0.05	0.07	0.35	0.00	0.39	-0.62	-0.34
Life Exp	-0.41	-0.08	-0.36	0.44	0.33	0.22	-0.26	0.53
Murder	0.44	0.31	0.11	-0.17	-0.13	-0.33	-0.30	0.68
HS Grad	-0.42	0.30	0.05	0.23	-0.10	-0.64	-0.39	-0.31
Frost	-0.36	-0.15	0.39	-0.62	0.22	0.21	-0.47	0.03
Area	-0.03	0.59	0.51	0.20	0.50	0.15	0.29	0.01

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
Standard deviation	1.8971	1.2775	1.0545	0.8411	0.6202	0.5545	0.3801	0.3364
Proportion of Variance	0.4499	0.2040	0.1390	0.0884	0.0481	0.0384	0.0181	0.0141
Cumulative Proportion	0.4499	0.6539	0.7928	0.8813	0.9294	0.9678	0.9859	1.0000

• 1-szy wektor ładunków przypisuje w przybliżeniu jednakową wagę zmiennym Illiteracy, Murder, HS Grad i Life Exp i najmniejszą wagę zmiennej Area. Drugi największą wagę przypisuje zmiennym Area oraz Income, a najmniejszą Illiteracy i Life Exp. Trzeci zaś związany jest głównie ze zmiennymi Population i Area, a najmniejszą wagę przypisuje zmiennym HS Grad oraz Illiteracy.

2.4 Zmienność odpowiadająca poszczególnym składowym

```
wariancja <- (dane.pca$sdev ^2)/sum(dane.pca$sdev^2)
laczna.wariancja <- cumsum(wariancja)
barplot(wariancja, names.arg = c("PC1","PC2","PC3","PC4","PC5","PC6","PC7","PC8"))</pre>
```



```
barplot(laczna.wariancja, names.arg = c("PC1","PC2","PC3","PC4","PC5","PC6","PC7","PC8")
abline(h=0.8)
abline(h=0.9)
grid(ny = 10)
```


- PC1 wyjaśnia 45 procent całkowitej zmienności danych, a PC2 20 procent.
- Do wyjaśnienia 80 procent zmienności danych potrzebujemy co najmniej 4 składowych głównych, a do wyjaśnienia 90 procent 5 składowych.

2.5 Wizualizacja danych wielowymiarowych

```
kolory <- rainbow(9)

plot(dane.pca$x[,1], dane.pca$x[,2], col=kolory[as.numeric(state.division)], pch=16, xlatext(dane.pca$x[,1], dane.pca$x[,2]+0.2, labels=state.abb, cex=0.5)
legend("topright",legend=levels(state.division), col=kolory, pch=16, cex=0.7, bg="azure2")</pre>
```


library(plot3D) scatter3D(dane.pca\$x[,1], dane.pca\$x[,2], dane.pca\$x[,3], colvar=as.numeric(state.divis

text3D(dane.pca\$x[,1], dane.pca\$x[,2], dane.pca\$x[,3], labels = state.abb, add=TRUE, ce

library(ggbiplot)

Loading required package: ggplot2

```
## Loading required package: plyr
## Loading required package: scales
## Loading required package: grid
ggbiplot(dane.pca,ellipse=TRUE,choices=c(1,2), groups=state.division)
```


ggbiplot(dane.pca,ellipse=TRUE,choices=c(3,4), groups=state.division)

ggbiplot(dane.pca,ellipse=TRUE,choices=c(1,2), groups=state.region)

ggbiplot(dane.pca,ellipse=TRUE,choices=c(3,4), groups=state.region)

• Wykres rozrzutu w przestrzeni pokazuje nam, że najbardziej wyróżniającymi się stanami są Alaska, Kalifornia, Teksas oras Luizjana. Trzy pierwsze z wymienionych stanów

są zdecydowanie największymi pod względem powierzchni. Alaska wyróżnia się również niewielką liczbą mieszkańców. Luizjana zaś cechuje się zaś najwyższym stopniem analfabetyzmu, a także sporą liczbą morderstw i niewielkim dochodem na jednego mieszkańca.

• Stany na zachodzie kraju są bardzo zróżnicowane pod względem powierzchni. Te na południu wyróżniają się wysokim stopniem analfabetyzmu i sporą liczbą popełnianych morderstw.

2.6 Korelacja zmiennych

```
cor <- cor(dane)</pre>
```

	Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Population	1.00	0.21	0.11	-0.07	0.34	-0.10	-0.33	0.02
Income	0.21	1.00	-0.44	0.34	-0.23	0.62	0.23	0.36
Illiteracy	0.11	-0.44	1.00	-0.59	0.70	-0.66	-0.67	0.08
Life Exp	-0.07	0.34	-0.59	1.00	-0.78	0.58	0.26	-0.11
Murder	0.34	-0.23	0.70	-0.78	1.00	-0.49	-0.54	0.23
HS Grad	-0.10	0.62	-0.66	0.58	-0.49	1.00	0.37	0.33
Frost	-0.33	0.23	-0.67	0.26	-0.54	0.37	1.00	0.06
Area	0.02	0.36	0.08	-0.11	0.23	0.33	0.06	1.00

• Z wykresów oraz tabeli odczytujemy, że najsilniejsze korelacje występują pomiędzy średnią długością życia a liczbą popełnianych zabójstw. Zauważalne są również powiązania między stopniem analfabetyzmu a liczbą morderstw i procentem osób, które ukończyły szkołę średnią, a także, co ciekawe, średnią liczbą dni z temperaturą minimalną poniżej 0 stopni Celsjusza. Na średni dochód ma za to głóWnie wpływ procent osób, które ukończyły szkołę średnią.

2.7 Końcowe wnioski

```
dane.stand <- scale(dane)
par(mfrow=c(1,2))
boxplot(dane, main="boxploty-brak standaryzacji")
boxplot(dane.stand, main="boxploty-standaryzacja")</pre>
```

boxploty-brak standaryza

boxploty-standaryzacja


```
par(mfrow=c(1,2))
biplot(prcomp(state.x77, scale. = F), main="biplot-brak standaryzacji")

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length = arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length = arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length = arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length = arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length = arrow.len): zero-length arrow is of indeterminate angle and so skipped
biplot(dane.pca, main="biplot-standaryzacja")
```


- Jak widzimy po powyższych wykresach standaryzacja miała bardzo duże znaczenie, ponieważ pierwotne wykresy są zdominowane przez zmienną Area, która ma wyraźnie większą wariancję od pozostałych.
- Stany Zjednoczone są bardzo zróżnicowanym krajem. Poszczególne zmienne potrafią się bardziej różnić w zależności od położenia danego stanu.
- Do otrzymania zadowalającej reprezentacji danych potrzebujemy minimum czterech składowych.

3 Skalowanie wielowymiarowe (Multidimensional Scaling (MDS))

3.1 Dane

Posługując się znalezioną funkcją, znalazłem dataset który odpowiadałby wymogom zadania.

```
available_datasets <- data(package='datasets')[['results']][, 3];

meets_reqs <- function(datasets) {
  sapply(datasets, function(ds) {
   dat <- get(sub(" .*", "", ds))
   hasfactors <- "factor" %in% sapply(dat, class)
  hasfactors
})</pre>
```

```
res <- meets_reqs(available_datasets)</pre>
res[res]
##
                        CO2
                                        ChickWeight
                                                                 InsectSprays
##
                       TRUE
                                                TRUE
                                                                         TRUE
             OrchardSprays
                                        PlantGrowth
##
                                                                    Puromycin
##
                       TRUE
                                                TRUE
                                                                         TRUE
##
               ToothGrowth
                                              attenu
                                                                     chickwts
                       TRUF.
                                                TRUF.
                                                                         TRUF.
##
                    infert
##
                                                iris
                                                                           npk
                       TRUE
##
                                                TRUE
                                                                         TRUE
##
                      sleep state.division (state)
                                                        state.region (state)
##
                                                TRUE
                                                                         TRUE
##
                warpbreaks
##
                       TRUF.
data(npk)
View(npk)
factorvar <- sapply(npk, is.factor)</pre>
factorvar
## block
                           K yield
              N
                    Ρ
## TRUE TRUE TRUE TRUE FALSE
```

3.2 Redukcja wymiaru na bazie MDS

```
library("MASS")
library("optiscale")
## Loading required package: lattice
npk.dist <- dist(npk)</pre>
npk.mds <- isoMDS(npk.dist, k=2)</pre>
## initial value 0.712301
         5 value 0.590791
## iter
## final value 0.588167
## converged
scree.plot = function(d, k) {
  stresses=isoMDS(d, k=k)$stress
  for(i in rev(seq(k-1)))
    stresses=append(stresses,isoMDS(d, k=i)$stress)
  plot(seq(k),rev(stresses), type="b", xaxp=c(1,k, k-1), ylab="Stress", xlab="Number of
scree.plot(npk.dist, k=5)
```

```
## initial value 0.000000
## final value 0.000000
## converged
## initial value 0.400718
## iter 5 value 0.214257
## iter 10 value 0.155711
## iter 15 value 0.141583
## iter 20 value 0.130529
## final value 0.126861
## converged
## initial value 0.607137
## iter 5 value 0.401897
## iter 10 value 0.361144
## iter 15 value 0.353391
## iter 20 value 0.349573
## final value 0.348928
## converged
## initial value 0.712301
## iter 5 value 0.590791
## final value 0.588167
## converged
## initial value 8.068614
## final value 7.526833
## converged
```



```
npk.mdsscaled <- opscale(x.qual =npk.mds$points[,1], x.quant = npk.mds$points[,2])
shepard(npk.mdsscaled, main.title= "Shepard Diagram")</pre>
```

Shepard Diagram for Variable: npk.mds\$points[, 1]

• Poprzez analizę funkcji STRESS zależnej od wymiaru oraz diagramu Sheparda widzimy, że wymiar d=2 jest optymalny dla naszego dataset.

3.3 Wizualizacja danych

Nonmetric MDS

npk.mds2 <- isoMDS(npk.dist, k=3)</pre>

```
## initial value 0.607137
## iter 5 value 0.401897
## iter 10 value 0.361144
## iter 15 value 0.353391
## iter 20 value 0.349573
## final value 0.348928
## converged

scatterplot3d(npk.mds2$points[,1], npk.mds2$points[,2], z= npk.mds2$points[,3], color=np
```


• Możemy zauważyć, że cechy z bloku 1, ,3 i 4 wyróżniają się większą odmniennością, a więc świadczy to o mniejszej regularności wyników na temat wzrostu groszku (temat badań).