Automated Verification of Cyber-Physical Systems A.A. 2024/2025

Basic Notions

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

General Info for This Class

- Automated Verification of Cyber-Physical Systems is an elective course for the Master Degree in Computer Science
- Lecturer: Igor Melatti
- Where to find these slides and more:
 - https://igormelatti.github.io/aut_ver_cps/ 20242025/index_eng.html
 - also on MS Teams: "DT0759: Automated Verification of Cyber-Physical Systems (2024/25)", code ramh3r4
- 2 classes every week, 2 hours per class

Rules for Exams

- The exam consists in either reviewing a research paper or working on a project
- Each student may choose one between the two options
- Project: perform verification of a given cyber-physical system
 - also in small teams (max 3 students)
 - each team may choose one among the ones selected by lecturer
 - or may propose one (but wait for lecturer approval!)
 - each team will have to discuss its project with slides
- Paper: read a conference or journal paper and present it with slides
 - each student may choose one among the ones selected by lecturer
 - or may propose one (but wait for lecturer approval!)

Model Checking Problem

- ullet Input: a system ${\cal S}$ and (at least) a property arphi
 - ullet more precisely, a *model* of ${\mathcal S}$ must be provided
 - ullet that is, ${\cal S}$ must be described in some suitable language
- Output:

PASS
$$S$$
 satisfies φ , i.e., $S \models \varphi$

- ullet the system ${\cal S}$ is correct w.r.t. the property arphi
- mathematical certification, much better than, e.g., testing

FAIL
$$S$$
 does not satisfy φ , i.e., $S \not\models \varphi$

- ${\color{blue} \bullet}$ the system ${\mathcal S}$ is buggy w.r.t. the property φ
- a counterexample providing evidence of the error is also returned

Model Checking vs. Other Verification Techniques

- Model checking is fully automatic
 - \bullet a model checker only needs the description of ${\mathcal S}$ and the property φ
 - "press button and go"
 - this is not true for other verification tools such as proof checkers, which require human intervention in the process
- Model checking is correct for both PASS and FAIL
 - ullet unless the description of ${\mathcal S}$, or the property ${arphi}$, are wrong
 - this is not true for other verification techniques such as testing,
 which only guarantees the FAIL result
 - a buggy system may pass all tests, because the error is in some corner case

Model Checking Shortcomings

- Only works for finite-state systems
 - typical example: you may verify a system with 3, 4 or 5 processes, but not with *n* processes, for a generic *n*
- Requires skilled personnel to write descriptions (and properties)
 - must know both the model checker language and the system
 - however, less skilled than a proof checker user
 - very few exceptions in which the model is automatically extracted from the system
 - also direct translations from digital circuits to NuSMV are available
- Very resource demanding
 - besides PASS and FAIL, also OutOfMem and OutOfTime are expected results...
 - bounded model checking: PASS is limited to execution up to a given number of steps

Model Checking Algorithms

Two main categories:

Explicit visit the graph induced by the description of ${\cal S}$

- very good for invariants and LTL model checking of communication protocols
- ullet on-the-fly generation of the graph: only the reachable states are stored, the adjacency matrix is implicitly given by the description of ${\cal S}$
- Murphi, SPIN

Symbolic represent sets of states and transition relations as OBDDs

- very good for LTL and CTL model checking of hardware-like systems
- all translated into a boolean formula
- also SAT tools may be used (bounded mode)

Cyber-Physical Systems

- A Cyber-Physical System (CPS) is a system where a physical system is controlled and/or monitored by a software
- They are either partially or fully autonomous
 - we will mainly deal with fully autonomous CPSs
- Examples are everywhere:
 - Internet of Things devices
 - Unmanned Autonomous Vehicles
 - Drones
 - Medical Devices
 - Embedded Systems
 - ..

Cyber-Physical Systems with Controllers

Buck DC/DC Converter

Buck DC/DC Converter

Continuous time dynamics

$$i_L = a_{1,1}i_L + a_{1,2}v_O + a_{1,3}v_D$$
 (1)

$$\dot{v_O} = a_{2,1}i_L + a_{2,2}v_O + a_{2,3}v_D$$
 (2)

$$q \rightarrow v_D = R_{\rm on} i_D$$
 (3) $\bar{q} \rightarrow v_D = R_{\rm off} i_D$ (7)
 $q \rightarrow i_D \ge 0$ (4) $\bar{q} \rightarrow v_D \le 0$ (8)

$$u \rightarrow v_u = R_{\text{on}}i_u \quad (5) \qquad \qquad \bar{u} \rightarrow v_u = R_{\text{off}}i_u \quad (9)$$

$$v_D = v_U - V_{in}$$
 (6) $i_D = i_L - i_u$ (10)

where:

- i_L, v_O are state variables
- $u \in \{0, 1\}$ is the action

Discrete time dynamics with sampling time T

$$i_{L}' = (1 + Ta_{1,1})i_{L} + Ta_{1,2}v_{O} + Ta_{1,3}v_{D}$$
 (11)

$$v_{O}' = Ta_{2,1}i_{L} + (1 + Ta_{2,2})v_{O} + Ta_{2,3}v_{D}.$$
 (12)

$$q \rightarrow v_D = R_{\rm on} i_D(13)$$
 $\bar{q} \rightarrow v_D = R_{\rm off} i_D$ (17)

$$q \rightarrow i_D \geq 0$$
 (14) $\bar{q} \rightarrow v_D \leq 0$ (18)

$$u \rightarrow v_u = R_{\rm on} i_u$$
 (15) $\bar{u} \rightarrow v_u = R_{\rm off} i_u$ (19)

$$v_D = v_u - V_{in}$$
 (16) $i_D = i_L - i_u$ (20)

- \bullet Goal: keep v_O in a desired safe interval
 - typically, $5 0.01V \le v_O \ge 5 + 0.01V$
- Notwithstanding the input voltage V_i and the resistance R may vary in some given interval
 - typically, $R = 5 \pm 25\%\Omega$, $V_i = 15 \pm 25\%V$
- Effectively used in laptops: from battery voltage (V_i) to laptop processor voltage (v_O)

Inverted Pendulum

Inverted Pendulum

Continuous time dynamics

$$\ddot{\theta} = \frac{g}{I}\sin\theta + \frac{1}{mI^2}Fu$$

where:

- \bullet θ is the state variable
- $u \in \{0,1\}$ is the action
- m, l, F are system parameters

Continuous time dynamics

$$\dot{x}_1 = x_2 \tag{21}$$

$$\dot{x}_2 = \frac{g}{l} \sin x_1 + \frac{1}{ml^2} Fu$$
 (22)

Discrete time dynamics with sampling time T

$$x_1' = x_1 + Tx_2 (23)$$

$$x'_{1} = x_{1} + Tx_{2}$$

$$x'_{2} = x_{2} + T\frac{g}{I}\sin x_{1} + T\frac{1}{mI^{2}}Fu$$

(24)

In This Course

To deal with cyber-physical systems:

- Probabilistic Model Checking
 - rather than "are there errors?", it is "is the error probability low enough?"
 - which entails "what is the error probability?"
 - the system is probabilistic, i.e., a Markov Chain
- Statistical Model Checking
 - rather than "are there errors?", it is "is the error probability low enough?"
 - which entails "what is the error probability?"
 - the system may be a non-probabilistic simulator
 - the answer is given with some statistical confidence
 - bridge between testing and verification

In This Course

To deal with cyber-physical systems:

- System Level Formal Verification
 - directly use a simulator instead of describing the system within the model checker
 - this will also need some background on systems simulation
 - bridge between testing and verification
- Automatic Synthesis of Controllers
 - rather than "are there errors in this system?", it is "generate a controller so that errors are avoided"

