

實驗六 馬達控制

111-2 機電系統原理與實驗一

實驗目的

- •使用L298N控制馬達
 - 馬達正反轉
 - PWM 控馬達轉速快慢
- 讀取編碼器
- Position Control (PID)

Motor & Encoder

Motor (SOHO 17330-15YC)

• Volt : 12V

• Cont. Torque: 19g-cm

Gearhead (GBP30-F)

• Ratio : 16

• Cont. Torque: 12kg-cm

•Encoder (EE3020-500)

• Volt : $5V \pm 10\%$

• Phase Difference : 90° ± 45°

Response Frequency: 40kHz

・綠(B)DIO/ENC.B 紅(+)5V 白(A) DIO/ENC.A 黑(-)GND

Encoder電壓接錯會燒掉

Encoder連接myRIO

- DIO12/ENC.B (pin 22) (綠)
- DIO11/ENC.A (pin 18) (白)
- Encoder供電: 5V / DGND

Encoder電壓接錯會燒掉

DIO15 / I2C.SDA	34	33	+3.3 V
DIO14 / I2C.SCL	32	31	DIO10 / PWM2
DGND	30	29	DIO9 / PWM1
DGND	28	27	DIO8 / PWM0
DIO13	26	25	DIO7 / SPI.MOSI
DGND	24	23	DIO6 / SPI.MISO
DIO12 / ENC.B	22	21	DIO5 / SPI.CLK
DGND	20	19	DIO4
⊨ DIO11 / ENC.A	18	17	DIO3
DGND	16	15	DIO2
UART.TX	14	13	DIO1
DGND	12	=	DIO0
UART.RX	10	9	Al3
DGND	8	7	Al2
AGND	6	5	Al1
AO1	4	3	AIO 🗎
AO0	2	_	+5V

Code-Encoder

Encoder 相位

0	0
1	0
1	1
0	

User Interface顯示位置、圈數

- ·將Encoder讀值轉換成圈數(rev)
 - 減速機 1:16
 - Encoder解析度:500
 - ·每一片光盤對應encoder之解析度為4
 - 馬達輸出軸轉一圈, Encoder讀值為32000 counts (16x500x4)
- •計算Position (Degree or Radian)
 - 將圈數轉換成Degree or Radian

User Interface

Encoder

馬達驅動模組 (L298N)

馬達驅動模組 (L298N)

	運作方式	IN 1	IN 2
馬達A	順時針	High	Low
	逆時針	Low	High
	停止	Low	Low

	運作方式	IN 3	IN 4
馬達B	順時針	High	Low
	逆時針	Low	High
	停止	Low	Low

Pulse Width Modulation (PWM)

- Frequency (200Hz)
- Duty cycle

Ref:https://blog.csdn.net/samxx8/article/details/53229069

Code-Motor

PWM (Speed)

- Duty cycle (0~1)
- Frequency 200Hz
- L298N ENA

DIO (Direction)

- 控制L298N之IN1,2來決定馬達A正反轉
- DIO (Boolean)

User Interface

Motor

DutyCycle 1: 0.8: 0.6: 0.6: 0.4: 0.2: 0Dir.

Encoder

PID Position Control

Measured state

https://www.researchgate.net/figure/Block-diagram-of-a-system-with-PID-controller_fig1_268802558

Position Control

·PID 控制器說明

Position Control

- ·User Interface 需顯示
 - Set Point / Desired degree (以Indicator顯示)
 - Current Degree (以Indicator顯示)
 - Waveform Chart(Desire Degree & Current Degree)

Position Control

PID VI

- Setpoint = Desire Degree
- Process Variable = Current Degree
- Time Period = Loop Time (sec)
- PID gain → Create Control
- 確保 PWM Duty Cycle <= 100%
- •記得判斷正反轉,用DIO控制L298N!

Waveform chart

• 同時顯示 Desire Degree 和 Current Degree

配分

- •實驗驗收 17:30前
 - 編碼器與馬達基本操作
 - 讀取編碼器、角度換算10%
 - 馬達正反轉、快慢調整10%
 - Position Control
 - Setpoint 10%
 - Sine Wave 10%
- •實驗報告 4/13前 60% (建議2-5頁)
 - 探討PWM頻率對系統的影響
 - •探討PID各項參數對系統的影響(Overshoot, Steady-State Error, Settling Time...等)
 - Setpoint,計算Steady-State Error,需繳CSV檔
 - Sine Wave,計算RMSE(方均根誤差),需繳CSV檔
 - Labview程式截圖

實驗報告說明

Setpoint

- 0° (0~0.5s) 360° (0.5-5s)
- Steady-State Error
- Write Spreadsheet
 - Type : CSV
 - 內容:期望值、實際值、時間(0-5s)
- PID參數

Sine Wave

- 0 $^{\circ}$ (0~0.5s), Sine Wave $\pm 360^{\circ}$, 0.5Hz (0.5-4.5s), 0 $^{\circ}$ (4.5~6s)
- RMSE
- Write Spreadsheet
 - Type : CSV
 - •內容:期望值、實際值、時間(0-6s)
- · PID參數

Sine Wave Input and Response

Bio-inspired Robotic Laboratory

Velocity Control

- •超前部屬:
 - •如何做到速度控制?

- •計算Angular Velocity
 - ●現在loop的position扣掉上一個loop的position,除 ▲以一個迴圈的時間

