شروین ایران عقیده

نام استاد: ابوالفضل تهرانيان

نام درس:

مبانی ماتریسها و جبر خطی

قضیه ۷ و ۸ فصل دوم

یکشنبه ۱۰:۱۵

قضیه V فرض کنیم V یک فضای برداری n بعدی بر روی هیات F باشد، و B و B دو پایه مرتب برای V باشند. آنگاه یک ماتریس n یکتا و لزوما معکوس پذیر مانند P که درایههایش در F هستند وجود دارد به طوری که به ازای هر بردار α در α

$$[\alpha]_B = P[\alpha]_{\dot{B}} \tag{1}$$

$$[\alpha]_{\dot{B}} = P^{-1}[\alpha]_{B} \tag{Y}$$

$$B = \{\alpha_1, ..., \alpha_n\}$$
 g $\acute{B} = \{ \acute{\alpha}_1, ..., \acute{\alpha}_n \}$

 P_{ij} و جود دارند که: P_{ij} و گور پایه مرتب برای P_{ij} هستند در این صورت اسکالرهای یکتایی مثل و P_{ij}

$$\alpha_{\mathbf{j}} = \sum_{i=1}^{n} p_{ij} \alpha_{i} \quad , \quad 1 \leq \mathbf{j} \leq \mathbf{n}$$

اگر $B^{'}$ مختصات بردار α نسبت به $x_{1}^{'},...,x_{n}^{'}$ باشد داریم:

 $\alpha = \dot{x}_1 \, \dot{\alpha}_1 + \dots + \dot{x}_n \, \dot{\alpha}_n$ $= \sum_{j=1}^n \dot{x}_j \, \dot{\alpha}_j$ $= \sum_{j=1}^n \dot{x}_j \, \sum_{i=1}^n p_{ij} \, \alpha_i$ $= \sum_{j=1}^n \sum_{i=1}^n (p_{ij} \dot{x}_j) \, \alpha_i$ $= \sum_{i=1}^n \sum_{j=1}^n (p_{ij} \dot{x}_j) \, \alpha_i \qquad , \qquad (\alpha = \sum_{i=1}^n x_i \alpha_i)$

:چون مختصات α در پایه B یکتا است پس

$$x_i = \sum_{j=1}^n p_{ij} x_j \rightarrow [\alpha]_B = P[\alpha]_B$$

جون B و B مستقل خطی هستند پس B=0 اگر و تنها اگرa B=0 پس طبق قضیه ۷ فصل ۹ هم ارز مـاتریس همـانی

n ×n است پس معکوس پذیر است پس:

$$[\alpha]_{\dot{B}} = P^{-1}[\alpha]_{B}$$

$$[\alpha]_B = P[\alpha]_{\dot{B}} \tag{1}$$

$$[\alpha]_{\dot{B}} = P^{-1}[\alpha]_{B} \tag{Y}$$

است که: V متشکل از بردارهای $\alpha_1,...,\alpha_n$ باشد و $A_1,...,\alpha_n$ پایه مرتبی برای $A_1,...,\alpha_n$ و در مورد آن (۱) درست باشد واضح $A_1,...,\alpha_n$ باشد واضح است که:

$$\dot{\alpha}_{j} = \sum_{j=1}^{n} p_{ij} \alpha_{i}$$

پس کافی است نشان دهیم که بردارهای $lpha_{
m j}$ که با این معادلات تعریف میشوند، تشکیل یک پایه میدهند.

فرض کنیم $Q = P^{-1}$ در این صورت:

$$\sum_{j} Q_{jk} \, \alpha_{j} = \sum_{j} Q_{jk} \sum_{i} p_{ij} \alpha_{i}$$

$$= \sum_{j} \sum_{i} p_{ij} Q_{jk} \alpha_{i}$$

$$= \sum_{i} \left(\sum_{j} p_{ij} Q_{jk} \right) \alpha_{i}$$

$$= \alpha_{k}$$

پس زیرفضای پدید آمده توسط مجموعه \acute{B} شامل B و نتیجتا مساوی با V است.

پس \dot{B} یک پایه است و بنابر تعریف پایه و قضیه ۷ واضح است که (۱) معتبر و در نتیجه چون p وارون پذیر است (۲) نیز معتبر میباشد.