TABLE OF CONTENTS

We defined the definite integral using a limit and a sum.

Definition

Let *a* and *b* be two real numbers and let f(x) be a function that is defined for all *x* between *a* and *b*. Then we define $\Delta x = \frac{b-a}{N}$ and

$$\int_{a}^{b} f(x) dx = \lim_{N \to \infty} \sum_{i=1}^{N} f(x_{i,N}^{*}) \cdot \Delta x$$

when the limit exists and when the choice of $x_{i,N}^*$ in the ith interval doesn't matter.

Many of the operations that work nicely with sums and limits will also work nicely with integrals.

$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

$$\int_a^b (f(x) - g(x)) dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

MULTIPLYING A FUNCTION BY A CONSTANT

MULTIPLYING A FUNCTION BY A CONSTANT

ARITHMETIC OF INTEGRATION

When a, b, and c are real numbers, and the functions f(x) and g(x) are integrable on an interval containing a and b:

(a)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(b)
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

(c)
$$\int_a^b c \cdot f(x) dx = c \int_a^b f(x) dx$$
 when *c* is constant

ARITHMETIC OF INTEGRATION

Suppose
$$\int_{-1}^{1} f(x) dx = -6$$
 and $\int_{-1}^{1} g(x) dx = 10$.

$$\int_{-1}^{1} (2f(x) + g(x)) dx = 2 \int_{-1}^{1} f(x) dx + \int_{-1}^{1} g(x) dx = 2(-6) + 10 = -2$$

INTERVAL OF INTEGRATION

INTERVAL OF INTEGRATION

What rule do you think is being illustrated?

What happens in $\int_a^b f(x) \, dx$ when b < a?

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i,n}^{*}) \cdot \frac{b-a}{n}$$

This is the definition of a definite integral *whether or not a* < b.

PROPERTY OF DEFINITE INTEGRALS

$$\int_{a}^{b} f(x) \, \mathrm{d}x = -\int_{b}^{a} f(x) \, \mathrm{d}x$$

As strictly a measure of area, not usually a super useful fact – but helps later when we do arithmetic with integrals.

It's also useful that the definition works without having to worry about which limit of integration (*a* or *b*) is larger.

ARITHMETIC FOR DOMAIN OF INTEGRATION

When a, b, and c are constants, and f(x) is integrable over a domain containing all three:

(a)
$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0$$

(b)
$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \qquad \Delta x = \frac{b-a}{n} = -\frac{a-b}{n}$$

(c)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ for constant } c$$

Suppose $\int_{-1}^{0} f(x) dx = 1$, $\int_{0}^{1} f(x) dx = -3$, and $\int_{-1}^{1} g(x) dx = 10$.

$$\int_{-1}^{1} (2f(x) + g(x)) dx = 2 \left[\int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx \right] + \int_{-1}^{1} g(x) dx$$
$$= 2 [1 - 3] + 10 = 6$$

Suppose
$$\int_{-1}^{0} f(x) dx = 1$$
 and $\int_{0}^{1} f(x) dx = -3$.

$$\int_{-1}^{3} f(x) \, dx + \int_{3}^{0} f(x) \, dx = \int_{-1}^{0} f(x) \, dx = 1$$

Even and Odd Functions

Let f(x) be a function.

- We say f(x) is even when f(x) = f(-x) for all x, and
- we say f(x) is odd when f(x) = -f(-x) for all x.

INTEGRALS OF EVEN FUNCTIONS

Suppose f(x) is even. Then

$$\int_a^b f(x) \, \mathrm{d}x = \int_{-b}^{-a} f(x) \, \mathrm{d}x$$

INTEGRALS OF EVEN FUNCTIONS

Suppose f(x) is even. Then

$$\int_{-b}^{b} f(x) \, \mathrm{d}x = 2 \int_{0}^{b} f(x) \, \mathrm{d}x$$

INTEGRALS OF ODD FUNCTIONS

Suppose f(x) is odd. Then

$$\int_{-b}^{b} f(x) \, \mathrm{d}x = 0$$

Theorem 1.2.11 (Even and Odd)

Let a > 0.

(a) If f(x) is an even function, then

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 2 \int_{0}^{a} f(x) \, \mathrm{d}x$$

(b) If f(x) is an odd function, then

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

Integral Inequality

Let $a \le b$ be real numbers and let the functions f(x) and g(x) be integrable on the interval $a \le x \le b$.

If $f(x) \le g(x)$ for all $a \le x \le b$, then

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x$$

Integral Inequality

Let $a \le b$ and $m \le M$ be real numbers and let the function f(x) be integrable on the interval $a \le x \le b$.

If $m \le f(x) \le M$ for all $a \le x \le b$, then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Find a lower bound *c* and an upper bound *d* such that

$$c \le \int_1^5 f(x) \, \mathrm{d}x \le d$$

$$1.5 \le f(x) \le 2 \implies \overbrace{1.5(5-1)}^{6} \le \int_{1}^{5} f(x) \, dx \le \overbrace{2(5-1)}^{8}$$

Find a lower bound *c* and an upper bound *d* such that $d - c \le 3$ and

The area under the curve is no smaller than the area of the highlighted triangle.

$$\int_0^6 (\text{dashed line}) \, dx = \frac{1}{2} \cdot \frac{3}{2} \cdot 6 = \frac{9}{2} \le \int_0^6 f(x) \, dx$$

The area under the curve is not greater than the area under the solid yellow trapezoid. Because the dashed line has slope $-\frac{1}{4}$, the *y*-coordinate of point *A* is $\frac{1}{2}$. We can compute the area of the trapezoid as the difference in the area of the triangle under the dotted line, and the green cross-hatched triangle.

$$\int_{0}^{6} f(x) dx < \int_{0}^{6} (dashed line) dx = \frac{1}{2} \frac{1$$

ABSOLUTE VALUES

$$f(x) \le |f(x)|$$
 for any $f(x)$
 $-f(x) \le |f(x)|$ for any $f(x)$

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

because $\left| \int_a^b f(x) \, dx \right|$ is either $\int_a^b f(x) \, dx$ or $-\int_a^b f(x) \, dx$.