${\rm CS6350}$ - Homework/Assignment-5

Arnab Das(u1014840)

November 13, 2016

1: Margins

(1) For a xor function in two dimension of x_1, x_2 and label y, the examples sets in the form of tuple (x_1, x_2, y) are (-1, -1, -1), (-1, 1, 1), (1, -1, 1) and (1, 1, -1), where variables are boolean and takes $\{-1, 1\}$. It is not linearly separable in the euclidean space. However, the transformation, ϕ , of mapping $[x_1, x_2]$ to $[x_1, x_1x_2]$ makes it linearly separable in which the datapoints now (x_1, x_1x_2, y) becomes (-1, 1, -1), (-1, -1, 1), (1, -1, 1) and (1, 1, -1). The line $x_1x_2 = 0$ is a separating classifier. Since $x_1x_2 = 0$ is equaldistant from all the 4 points in the transformed space, it gives the maximum margin, which is the distance of any of the points (since equidistant) from this line, and equal to 1 unit. The linear classifier in the transformed space when mapped back to the original euclidean space, will be combination of the lines $x_1 = 0$ and $x_2 = 0$, as shown in Figure-1(c). This is because in the transformed space, since $x_1x_2 = 0$ means that line satisfies all points which has $x_1 = 0$ or/and $x_2 = 0$, hence in the euclidean space it is a combination of both.

Figure 1: Space transformation for Xor to make linearly separable

(2a) For $D_1 = \{x_1, x_2, x_3, x_5, x_7\}$, the linear classifier with the maximum margin will be parallel to the line joining x_1 and x_3 , and the distance of this classifer will be equal from $x_1 and x_3$ on one side and x_5 on the other side. Hence, the maximum possible margin for D_1 will be half the distance of x_5 from the line joining x_1 and x_3 . The line joining x_1, x_3 is $x_1 - x_2 = 0$. Then, margin for D_1 will be:

$$D_{1_{marginMax}} = \frac{1}{2 \times \sqrt[2]{2}}$$

For $D_2 = \{x_1, x_5, x_6, x_8\}$, the linear classifier with the maximum margin will be parallel to the line joining x_5, x_6 , and the distance of this classifier will be equal from x_5 and x_6 on one side and x_1 on the other side. Hence, the maximum possible margin for D_2 will be half of the distance of x_1 from the line joining x_5 and x_6 . The line joining x_5, x_6 is $\sqrt[2]{3}x_1 + x_2 - \sqrt[2]{3} = 0$. Then the margin for D_2 will be:

$$D_{2_{marginMax}} = \frac{\sqrt[2]{3}}{4}$$

For $D_3 = \{x_3, x_4, x_5, x_7\}$, the linear classifier with the maximum margin will be parallel to the line joining x_4 and x_3 , and the distance of this classifier will be equal from x_4 and x_3 from one side and from x_5 on the other side. Hence, the maximum possible margin for D_3 will be half of the distance of x_5 from the line joining x_3 and x_4 . The line joining x_3 and x_4 is $2x_1 - x_2 - 1 = 0$. Then the margin for D_3 will be:

$$D_{3_{marginMax}} = \frac{1}{2 \times \sqrt[2]{5}}$$

(2b) For D_1 , $R = \frac{3}{2}$ and $\gamma = \frac{1}{2 \times \sqrt[3]{2}}$, perceptron mistake bound for $D_1 = 18$.

For D_2 , R=1 and $\gamma=\frac{\sqrt[2]{3}}{4}$, perceptron mistake bound for $D_2=\frac{16}{3}$.

For D_3 , $R = \frac{3}{2}$ and $\gamma = \frac{1}{2 \times \sqrt[3]{5}}$, perceptron mistake bound for $D_3 = 45$.

 D_3 has the greatest mistake bound.

(2c) A higher mistake bound indicates how well the classifier can fit the training data by making only this bounded number of mistakes. Hence, a low mistake bound will means the classifier fits the training data quickly. However, that provides no guarantees on the test data. Since the perceptron learns by making mistakes, hence a lower number of mistakes indicate that the learning performed by the perceptron has been less, and hence its predictive power intuitively reduces on the test data. To put it simply, a classifier learns less if it makes less number of mistakes because that is its only entry point towards learning and updates. Hence, the classifier with a higher mistakes bound is easier to learn and the one with a small mistake bound is difficult to learn. Thus the ranking in order of ease of ranking will be D_3 , D_1 , D_2 .