BLOCKCHAINS

ARCHITECTURE, DESIGN AND USE CASES

SANDIP CHAKRABORTY
COMPUTER SCIENCE AND ENGINEERING,
IIT KHARAGPUR

PRAVEEN JAYACHANDRAN

IBM RESEARCH,

INDIA

Course Instructors

Sandip Chakraborty
Department of CSE
IIT Kharagpur

Praveen Jayachandran
IBM Research
India

What We'll Cover in This Course

- A history of blockchain how the computation environment gradually evolved
- Blockchain architecture, design and protocol
- Blockchain consensus protocols
- Security and Privacy aspects of Blockchain
- Various use cases Finance, Supply Chain, Government
- Hyperledger Fabric a platform for Blockchain development
- Research aspects

What Is A Blockchain

 A decentralized computation and information sharing platform that enables multiple authoritative domains, who do not trust each other, to cooperate, coordinate and collaborate in a rational decision making

process

Microsoft Word to Google Doc – Sharing Information

Traditional way of sharing documents

Microsoft Word to Google Doc – Sharing Information

Shared Google doc – both the users can edit simultaneously

Problems with a Centralized System

A single point of failure

- If you do not have sufficient bandwidth to load Google doc, you'll not be able to edit
- What if the server crashes?

Image courtesy: http://timkellogg.me/

Centralized vs Decentralized vs Distributed

Complete reliance on single point (centralized) is not safe

- Decentralized: Multiple points of coordination
- Distributed: Everyone collectively execute the job

Photo courtesy: Baran, Paul. On distributed communications: I. Introduction to distributed communications networks. No. RM3420PR. RAND CORP SANTA MONICA CALIF, 1964.

A Plausibly Ideal Solution

Everyone edits on their local copy of the document – the Internet takes care of ensuring consistency

Blockchain – The Internet Database to Support Decentralization

A decentralized database with strong consistency support

A Very Simplified Look of the Blockchain

- Every node maintains a local copy of the global data-sheet
- The system ensures consistency among the local copies
 - The local copies at every node is identical
 - The local copies are always updated based on the global information

A Very Simplified Look of the Blockchain

- We call this a Public Ledger
 - A database of "historical information" available to everyone
 - The "historical information" may be utilized for future computation

An Example:

- Say, the historical information are the banking transactions
- The old transactions are used to validate the new transactions

Public Ledger Alice: 2100 Alice: 2100 Public Ledger of Bob of Alice Alice -> Bob: Alice -> Bob: **250 ?**50 **?** 50 Bob **Alice** Alice: 2100 **Alice: 2100 Public Ledger Public Ledger** of Jane Alice -> Bob: Alice -> Bob: of Eve **250 250** Eve Jane

Public Ledger Alice: 2100 Alice: 2100 Public Ledger of Bob of Alice Alice -> Bob: Alice -> Bob: **250 ?**50 Bob **Alice ?** 30 Alice: 2100 Alice: 2100 **Public Ledger Public Ledger** of Jane Alice -> Bob: Alice -> Bob: of Eve **250 250** Eve Jane

Public Ledger of Alice

Alice: 2100

Alice -> Bob:

250

Bob->Eve:

?30

Bob **Alice ?** 30

Alice: 2100 Alice -> Bob:

?50

Bob->Eve:

230

Public Ledger of Eve

Alice: 2100

Alice -> Bob:

?50

Bob->Eve:

230

Eve Jane

Alice: 2100

Alice -> Bob:

Bob->Eve:

230

Public Ledger

Public Ledger

of Bob

of Jane **250**

Public Ledger of Alice

Alice: 2100 Alice -> Bob:

250

Bob->Eve:

?30

? 80 Bob **Alice**

Alice: 2100 Alice -> Bob:

?50

Bob->Eve:

230

Public Ledger

of Bob

Public Ledger of Eve

Alice: 12100 Alice -> Bob:

?50

Bob->Eve:

230

Eve

Jane

Alice: 12100 Alice -> Bob:

> **?**50 Bob->Eve:

230

Public Ledger of Jane

Public Ledger of Alice

Alice: 2100
Alice -> Bob:

e -> Bob: ⊡50

Bob->Eve:

230

Alice P80 Bob

Alice: 2100 Alice -> Bob:

.iice -> 600 ?i50

Bob->Eve:

230

Public Ledger of Eve

Alice: 2100

Alice -> Bob:

250

Bob->Eve:

?30

Eve Jane

Alice: 2100

Alice -> Bob:

?50

Bob->Eve:

?30

Public Ledger

of Jane

Public Ledger

of Bob

Blockchains and Public Ledgers

- Blockchains work like a public ledger
- However, we need to ensure a number of different aspects
 - Protocols for Commitment: Ensure that every valid transaction from the clients are committed and included in the blockchain within a finite time.
 - Consensus: Ensure that the local copies are consistent and updated.
 - Security: The data needs to be tamper proof. Note that the clients may act maliciously or can be compromised.
 - Privacy and Authenticity: The data (or transactions) belong to various clients; privacy and authenticity needs to be ensured.

Formal Definition of a Blockchain

• A Blockchain is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way" (lansiti, Lakhani 2017)

• The keywords: **Open** (accessible to all), **Distributed or Decentralized** (no single party control), **efficient** (fast and scalable), **verifiable** (everyone can check the validity of information), **permanent** (the information is persistent)

Iansiti, Marco; Lakhani, Karim R. (January 2017). "The Truth About Blockchain". *Harvard Business Review*. Harvard University.

