Estadística. Grupo m3 Hoja 3. Estimación puntual

- 1. Sea (X_1, \ldots, X_n) una muestra aleatoria simple. En los siguientes casos, encontrar el estimador de máxima verosimilitud para θ :
 - (a) $f_{\theta}(x) = \frac{1}{\theta} \text{ si } x = 1, 2, \dots, \theta \ (\theta \text{ es entero y } 1 \le \theta \le \theta_0)$
 - (b) $f_{\theta}(x) = e^{-x+\theta} \text{ si } \theta \le x < \infty \text{ y } \theta > 0$
 - (c) $f_{\theta}(x) = \theta \alpha x^{\alpha-1} e^{-\theta x^{\alpha}}$ para x > 0 (α conocido)
 - (d) $f_{\theta}(x) = \theta(1-x)^{\theta-1} \text{ si } 0 < x < 1 \text{ y } \theta \ge 1$
 - (e) $f_{\theta}(x) = \theta(1-\theta)^{-1} x^{\frac{2\theta-1}{1-\theta}}$ si 0 < x < 1 y $1/2 \le \theta < 1$
- 2. Para cada uno de los siguientes casos, encontrar la familia conjugada natural y hallar la distribución a posteriori:
 - (a) (X_1, \ldots, X_n) es una muestra aleatoria simple de $X \sim Poisson(\theta)$
 - (b) (X_1, \ldots, X_n) es una muestra aleatoria simple de $X \sim Gamma(1, \theta)$
 - (c) (X_1,\ldots,X_n) es una muestra aleatoria simple de $X\sim N(\theta,1/r)$ siendo r conocido
- 3. Sea X una observación de la densidad

$$f_{\theta}(x) = \frac{2x}{\theta^2} I_{(0,\theta)}(x)$$

donde $\theta > 0$. Supongamos que θ tiene una distribución a priori U(0,1). Hallar la mediana de la distribución a posteriori.

4. Sea (X_1,\ldots,X_n) una muestra aleatoria simple del modelo

$$f_{\theta}(x) = \theta x^{\theta - 1}$$

para $x \in (0, 1) \ y \ \theta > 0$.

- (a) Encontrar la familia conjugada natural
- (b) Hallar la distribución a posteriori correspondiente a una a priori de esta familia conjugada
- 5. Sea (X_1, \ldots, X_n) una muestra aleatoria simple del modelo $B(1, \theta)$ para $\theta \in (0, 1)$. Encontrar el ECUMV para estimar θ y $\theta(1 \theta)$.

- 6. Encontrar la cota de Frechet-Cramer-Rao y el estimador eficiente (si existe) en los siguientes casos:
 - (a) (X_1, \ldots, X_n) es una muestra aleatoria simple del modelo $f_{\theta}(x) = \frac{1}{\theta} e^{-x/\theta}$ si x > 0 y $\theta > 0, (Exp(\frac{1}{\theta}))$ para estimar θ
 - (b) $(X_1, ..., X_n)$ es una muestra aleatoria simple del modelo $f_{\theta}(x) = \theta(1 \theta)^x$ si $x = 0, 1, ..., y \ 0 < \theta < 1$, para estimar θ
 - (c) (X_1, \ldots, X_n) es una muestra aleatoria simple del modelo $N(0, \sigma^2)$, para estimar σ (lo mismo para estimar σ^2)
- 7. Sea (X_1, \ldots, X_n) una muestra aleatoria simple del modelo $N(\mu, 1)$
 - (a) Probar que la cota de Frechet-Cramer-Rao para estimar μ^2 es $\frac{4\mu^2}{n}$
 - (b) Probar que $T(X_1, ..., X_n) = \bar{X}^2 1/n$ es el ECUMV para estimar μ^2
- 8. Sea (X_1, \ldots, X_n) una muestra aleatoria simple del modelo Gamma(1, a)
 - (a) Probar que $T(X_1, ..., X_n) = (n-1)/(n\bar{X})$ es el ECUMV para estimar a, con varianza $\frac{a^2}{n-2}$
 - (b) Probar que la cota de Frechet-Cramer-Rao para estimar a es $\frac{a^2}{n}$
- 9. Sea (X_1, \ldots, X_n) una muestra aleatoria simple del modelo $Exp(\theta)$. Encontrar el estimador de máxima verosimilitud de θ y probar que es consistente.
- 10. Sea (X_1, \ldots, X_n) una muestra aleatoria simple del modelo $U(0, \theta)$, con $\theta > 0$. Sea $M_n = X_{(n)}$. Demostrar que M_n es consistente para θ . ¿Es $Y_n = 2\bar{X}$ consistente para θ ?