

return value = -1

(b) The first 9 lines of the function are all constant time

:
$$T(m) = \theta(\frac{1}{2}) + C_1 = T(\frac{1}{4}) + C_1 + C_2$$

= logn · T(1) + C = O(logn) where n= high-low

(c)
$$T(n) = C_1 n + C_2 + T(\frac{h}{2}) = T(\frac{h}{4}) + C_3 \cdot \frac{h}{2} + C_4 + C_1 n + C_2$$

.. The worst case runtime is Ochlogn)

(b) The edges to add: <1.17, <2.27, ... <10,10> self-loops (reflexive)

<1,47,<1,67,<1,97,<1,107,<2,87 transitivity

(c) reflexive: PIP certainly true
transitive: if p12 and 215, then p15 V
antisymmetric: if p19 and 91p, then $p=9$
2f not, then one of p and 9 will be larger
than the other, resulting in the invalidity of one
of the divisibility.
: Divisibility is partial order on 230
3. Assume G is not connected, then there are more than I
connected components in the graph. It is guaranteed than that
one of the component has at least Lz I vertices because if not,
then the total number of vertices in every component nill
exceed n.
: Let's consider the particular component. Each vertex
has a degree of at most 2-1 since it cannot connect
to itself. Contradiction!
: 6 is comected.

4. (a) Based on Menger's Theorem, edge connectivity =
maximum number of edge-disjoint paths from s to t. which
is 2 (the 2 edges that extend out from 5)
i Edge connectivity is 2.
(b) toop invariant: after removing u, the remaining graph
is 3-connected at least 2-connected
(b) Loop invariant: When removing 2 vertices cone of them
is 14) the anoth is 3-connected
excluding the previously discovered u's.
excluding the previously discovered us.
(C) Base Cose: No vertex removed. Vacuously the.
IIt: Pcu): Loop invariant in (b)
Is: Consider another undiscovered vertex u. Let's
pair it with all the available v's. 2f all the
subgraph after removing no and v is 3-connected,
then the graph including n and excluding previously
discovered n's is 3-connected. According to IH, all
the graphs including previously found his are connected.
Correctness: After discovering all the vertices of the graph
and pairing them with all the other vertices, we
can safely determine that it's 3-connected.

kruskal's algorithm:

First, add the edge AB, then add BC, then add CD.

All the adding processes do not create cycles and 1,2,3 are

the smallest weights.

(b) Base Case: n=2 0-0 $\frac{2\cdot 1}{2}=1$ $\sqrt{ }$

IH: For kn, there exists an assignment that the cost is $\frac{n(n+1)}{2}$

IS: Consider Kn+1. Remove are vertex V from Kn+1 and its incident n edges. According to IH. MST cost is equal to $\frac{n(n-1)}{2}$. When we add back the edges and the vertex. since we only need one move edge to

traverse the whole set of vertices a every vertex

is connected to every other vertex), we assign weight

n to one of the added-back nedges. Thus,

MST cost = $\frac{n(n+1)}{2} + n = \frac{n(n+1)}{2}$.

6. (a) No. If (PBQ) A (-PBQ) is true, then both

pBQ and JPBQ is true, but it's impossible since

p and 7p are opposite, which cannot have both expressions

be true.

(et's color p true, then 7p and 9 must all be false.

However, 7p and 9 are connected. .: Not 2-colorable.

(b) Yes. p=True, 9=False => P@9=True and

7p @ 79 is true.

(0)