Results are obtained with h_0^P not estimated

ESTIMATED PARAMETERS ON WEDNESDAYS MLE UNDER P (10 YEARS), h_0^P IS NOT ESTIMATED									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	2.8088e - 12	4.2623e - 12	6.1934e - 12	3.5905e - 12	5.4600e - 12	6.3953e - 12	4.6217e - 08	9.4962e - 09	6.0203e - 08
std	(1.6131e - 12)	(2.5834e - 12)	(3.9750e - 12)	(3.2904e - 12)	(1.1365e - 11)	(9.6017e - 12)	(6.5673e - 08)	(3.9504e - 08)	(1.1125e - 07)
α	2.8432e - 06	3.0108e - 06	3.3280e - 06	3.4479e - 06	3.2260e - 06	3.8446e - 06	5.0619e - 06	4.7246e - 06	4.2666e - 06
std	(1.7287e - 07)	(1.4165e - 07)	(6.8708e - 08)	(7.2684e - 08)	(1.0531e - 07)	(4.4826e - 07)	(1.9245e - 07)	(5.1619e - 07)	(6.2468e - 07)
β	0.7547	0.7800	0.7765	0.7741	0.7481	0.7330	0.7164	0.7213	0.7367
std	(0.0091)	(0.0081)	(0.0039)	(0.0033)	(0.0076)	(0.0066)	(0.0044)	(0.0037)	(0.0104)
γ	282.8582	257.5847	245.0747	240.1084	265.0348	249.7486	220.9118	228.0519	231.3436
std	(15.0365)	(8.3939)	(3.7044)	(3.0829)	(5.6624)	(13.0735)	(4.0505)	(15.0427)	(18.6141)
λ	-1.2113	-0.4440	0.3671	1.0834	1.1370	1.1813	1.0379	1.3007	2.3327
std	(0.1965)	(0.1680)	(0.4132)	(0.1262)	(0.1437)	(0.1115)	(0.1435)	(0.1788)	(0.6399)
h_0^P	1.8577e - 04	1.5148e - 04	2.8871e - 04	1.5829e - 04	4.7132e - 05	4.2333e - 05	3.2775e - 05	1.1844e - 04	1.7374e - 03
std	(1.0489e - 04)	(9.1154e - 05)	(2.0136e - 04)	(1.2662e - 04)	(2.4992e - 05)	(3.5129e - 05)	(2.8812e - 05)	(7.1522e - 05)	(1.9334e - 03)
persistency	0.9813	0.9795	0.9764	0.9728	0.9746	0.9707	0.9632	0.9646	0.9614
std	(0.0010)	(0.0008)	(0.0014)	(0.0007)	(0.0008)	(0.0029)	(0.0016)	(0.0029)	(0.0063)
·-		·		·		·		·	
logLikValue	3.1120	3.1381	3.1539	3.2156	3.2363	3.2308	3.2015	3.2191	3.2950