Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 7: Teoría de Rentas o Anualidades

Solución de Ejercicio Nº11

e-financebook

- 11. Hoy día nació el hijo de **Perciles**, por lo que se ha propuesto ahorrar mensualmente un monto tal, que le permita a su hijo disfrutar de US\$ 70,000.00 dentro de 18 años.
 - a) ¿Cuánto deberá depositar al final de cada mes en la cuenta de ahorros que le ofrece una tasa efectiva anual (TEA) de 2.5% para los primeros 9 años y 3.5% para el tiempo restante? (Asuma periodos mensuales de 30 días y años de 360 días).
 - b) ¿Cuál sería ese valor si utiliza años de 365 días para idealizar a la tasa de interés?

Respuestas: a) US\$ 240.49, b) Tarea.

DATOS		
Nombre	Descripcion	Valor
S	Ahorro deseado acumular en el futuro	70,000.00
TEA1	Tasa de Interés Efectiva Anual 1 (TEA)	2.5%
Tiempo1	Tiempo que dura el crédito 1	9 años
TEA2	Tasa de Interés Efectiva Anual 2 (TEA)	3.5%
Tiempo2	Tiempo que dura el crédito 2	9 años
f	Frecuencia de pago	mensual

FÓRMULAS		
Número	Fórmula	
19	$TEP2 = (1 + TEP1) \begin{bmatrix} \frac{N^{\circ} diasTEP2}{N^{\circ} diasTEP1} \\ -1 \end{bmatrix}$	
20	$S = C * (1 + TEP) $ $\frac{N^{o}días Trasladar}{N^{o}días TEP}$	
53	$S = R * \left(\frac{(1 + TEP)^{n} - 1}{TEP} \right)$	

SOLUCIÓN

- a) Primero dividimos los depósitos en dos grupos:
 - ✓ El primero, compuesto por los primeros 108 depósitos, los cuales están afectos a una TEA de 2.5%.
 - ✓ El segundo, compuesto por los últimos 108 depósitos (del 109 al 216), los cuales están afectos a una TEA de 3.5%.

No es posible juntarlos en una sóla fórmula por estar afectos a diferentes tasas de interés; entonces:

S1 = R *
$$\left(\frac{(1 + \text{TEM1})^{\text{N}} - 1}{\text{TEM1}}\right)$$

S1 = R * $\left(\frac{(1 + 2.05983626\%)^{108} - 1}{2.05983626\%}\right)$
S1 = 120.8168695 * R

Luego, para el segundo tramo:

TEM2 =
$$(1 + TEA2)$$
 -1

$$\begin{bmatrix}
30 \\
360
\end{bmatrix}$$
TEM2 = $(1 + 3.5\%)$ -1

TEM2 = 0.0287089871

TEM2 = 2.87089871%

S2 = R * $\left(\frac{(1 + TEM2)^{n} - 1}{TEM2}\right)$

S2 = R * $\left(\frac{(1 + 2.87089871\%)^{108} - 1}{2.87089871\%}\right)$

S2 = 126.4054878 * R

✓ Finalmente, planteamos la igualdad en t=216:

$$St = S1*(1+TEM2)^{n} + S2$$

$$70,000.00 = 120.8168695*R*(1+2.87089871\%)^{108} + 126.4054878*R$$

$$70,000.00 = 164.6609915 * R + 126.4054878 * R$$

 $70,000.00 = 291.0664793 * R$

$$R = \frac{70,\!000.00}{291.0664793}$$

$$R = 240.49$$

b) Tarea!!!