Discussion Session 4:	
1) plot the following signals	1 × (+)
a) x (2++4)	
b) $\times \left(\frac{-+}{2} + 1\right)$	
c) 3 x (-++1) + 2	
d) -x(+) u(+-1)	
Answers:	

.((1)		/		2)
X(+) =	rect ($\left(\frac{+}{2}-3\right)$	h(t) = rect(t+1)	2)
				<u>م-</u>

3) Find Vont and I out with phasor method	
<u> </u>	
1	
3 sin (2+) @ \frac{1}{2} = \frac{1}{7} = \frac{3}{3} \tag{Vout}	
Answer	
HASWEY	
•	

 $b) \quad \lambda(+) = \begin{cases} \chi(+) & + > 0 \\ \chi(+) & + > 0 \end{cases}$

Transfer Function: Laplace transform of the impulse response. $H(s) = \int h(\tau) e^{-sT} d\tau$ $x(+) = e^{s+}$ -> y(+) = H(s) est LTI Eigen function of a LTI system Some properties of laplace: (x(+): a caus $L \left\{ a f(t) + b g(t) \right\} = a F(s) + b G(s)$ Linea rity L{ \$(+T) u(+-T)} = e^{-Ts} F(s) Time Shifting $L\left\{e^{a+}f(t)\right\} = F(s-a)$ Frequency Shifting $L\{f(+)\} = sF(s) - f(0^+)$ Differentiation in time domain $L\{f''(+)\} = SL\{f(+)\} - f'(0+) = S^2F(s) - SF(0+) - f'(0+)$ $L\left\{\int_{-\infty}^{t} f(t) dt\right\} = \frac{F(s)}{s}$ Integration in time domain Convolution Theorem $L \{ f(+) * g(+) \} = F(s) G(s)$ Differentiation is 5 domain $L\left\{+f(+)\right\} = \frac{-d}{ds} F(s)$ (1) { = e-at u(+) $L\{f^{n}\} = (-1)^{n} \frac{J^{n}}{ds^{n}} F(s)$ L-1 { = +e^a+ u(+) partial Fraction: (degree of N(s) is less than degree of D(s)) PG) Example: $y(s) = \frac{3}{s(s+2)}$ (no repeated factor, no irreducible quatratic factor)
(5-a)2 (52.w2)

Example	#2:	y(s) = _	5s+7 (5+1) ²	(Repeated	linear	factor)
			$\frac{A}{S+1} + \frac{B}{(S+1)^2}$			
			> 19 (511)2			
Example	# 3:	what is	y(f) in e	example #2?		
	4					