Longest Common Subsequence

- Biological applications often need to compare the DNA of two (or more) different organisms
- A strand of DNA consists of a string of molecules called bases, where the possible bases are adenine, guanine, cytosine, and thymine
- each of these bases by its initial letter, we can express a strand of DNA as a string over the finite set {A, C, G, T}

- For example, the DNA of one organism may be S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, and the DNA of another organism may be S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA.
- One reason to compare two strands of DNA is to determine how "similar the two strands are, as some measure of how closely related the two organisms are

- We can, and do, define similarity in many different ways
- For example, we can say that two DNA strands are similar if one is a substring of the other.
- In our example, neither S_1 nor S_2 is a substring of the other.
- Alternatively, we could say that two strands are similar if the number of changes needed to turn one into the other is small.

- another way to measure the similarity of strands S_1 and S_2 is by finding a third strand S_3
- In which the bases in S_3 appear in each of S_1 and S_2 ; these bases must appear in the same order, but not necessarily consecutively
- The longer the strand S_3 we can find, the more similar S_1 and S_2 are

- S₁= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- S₂ = GTCGTTCGGAATGCCGTTGCTCTGTAAA
- S₃ is GTCGTCGGAAGCCGGCCGAA

Problem Statement

- A subsequence of a given sequence is just the given sequence with zero or more elements left out
- Formally, given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a subsequence of X if there exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $x_{ij} = z_j$

Problem Statement

- For example, Z = <B, C, D, B> is a subsequence of X = <A, B,
 C, B, D, A, B> with corresponding index sequence <2, 3, 5, 7>
- Given two sequences X and Y, we say that a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y

Problem Statement

- For example, if X = <A, B, C, B, D, A, B> and Y = <B, D, C, A, B,
 A>, the sequence <B, C, A> is a common subsequence of both X and Y
- But not a longest common subsequence (LCS) of X and Y
- Sequence <B, C, B, A>, which is also common to both X and Y, has length 4 is the LCS
- Since X and Y have no common subsequence of length 5 or greater

Step 1: Characterizing a longest common subsequence

- Brute–force approach to solve LCS problem:
 - Enumerate all subsequences of X
 - Check each subsequence to see whether it is also a subsequence of Y
 - Keeping track of the longest subsequence we find.
- Each subsequence of X corresponds to a subset of the indices {1, 2,...,m} of X
- Because X has 2^m subsequences, this approach requires exponential time, making it impractical

Basis of Optimal substructure of an LCS

- Given a sequence $X = \langle x_1, x_2,...,x_m \rangle$, we define the ith prefix of X, for i = 0,1,...,m, as $X_i = \langle x_1, x_2,...,x_i \rangle$
- For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X4 = \langle A, B, C, B \rangle$ and X_0 is the empty sequence

Theorem 15.1 Optimal substructure of an LCS

- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}

Proof of Theorem 15.1

• (1) If $\mathcal{X}_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k+1, contradicting the supposition that Z is a longest common subsequence of X and Y. Thus, we must have $\mathcal{X}_k = x_m = y_n$.

• Now, the prefix Z_{k-1} is a length-(k -1) common subsequence of X_{m-1} and Y_{n-1}

Proof of Theorem 15.1

- We wish to show that it is an LCS
- Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than $k\!-\!1$
- Then, appending $x_m = y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction

Proof of Theorem 15.1

- (2) If $2x \neq x_m$, then Z is a common subsequence of X_{m-1} and Y
- If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y
- (3) The proof is symmetric to (2)

Step 2: A recursive solution

- Theorem 15.1 implies that we should examine either one or two subproblems when finding an LCS of $X = \langle x1, x2,...,xm \rangle$ and $Y = \langle y1, y2,...,yn \rangle$
- If $x_m = y_n$, we must find an LCS of X_{m-1} and Y_{n-1}
- Appending $x_m = y_n$ to this LCS yields an LCS of X and Y
- If $x_m \neq y_n$, then we must solve two subproblems: finding an LCS of X_{m-1} and Y and finding an LCS of X and Y_{n-1} .

Step 2: A recursive solution

- Whichever of these two LCSs is longer is an LCS of X and Y
- Because these cases exhaust all possibilities, we know that one of the optimal subproblem solutions must appear within an LCS of X and Y.

Step 2: Overlapping Subproblem

- To find an LCS of X and Y, we may need to find the LCSs of X and Y_{n-1} and of X_{m-1} and Y
- But each of these subproblems has the subsubproblem of finding an LCS of X_{m-1} and Y_{n-1}
- Many other subproblems share subsubproblems.

Step 2: Overlapping Subproblem

- Let us define c[i, j] to be the length of an LCS of the sequences X_i and Y_j
- either i = 0 or j = 0, one of the sequences has length 0, and so the LCS has length 0

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j - 1], c[i - 1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Step 3: Computing the length of an LCS

- LCS problem has only θ (m*n) distinct subproblems, however, we can use dynamic programming to compute the solutions bottom up.
- We maintain two 2D tables c and b for dynamic programming
- c table maintains the length of the common sub sequence
- b table helps to construct the solution

Step 3: Computing the length of an LCS

```
LCS-LENGTH(X, Y)
    m = X.length
   n = Y.length
    let b[1..m, 1..n] and c[0..m, 0..n] be new tables
    for i = 1 to m
    c[i, 0] = 0
   for j = 0 to n
    c[0, j] = 0
    for i = 1 to m
        for j = 1 to n
10
            if x_i == y_i
11
                 c[i, j] = c[i-1, j-1] + 1
                 b[i, j] = "\\\"
12
13
             elseif c[i - 1, j] \ge c[i, j - 1]
                 c[i, j] = c[i-1, j]
14
                 b[i, j] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
                 b[i, j] = "\leftarrow"
17
18
    return c and b
```


Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The square in row i and column j contains the value of c[i, j] and the appropriate arrow for the value of b[i, j]. The entry 4 in c[7, 6]—the lower right-hand corner of the table—is the length of an LCS $\langle B, C, B, A \rangle$ of X and Y. For i, j > 0, entry c[i, j] depends only on whether $x_i = y_j$ and the values in entries c[i-1, j], c[i, j-1], and c[i-1, j-1], which are computed before c[i, j]. To reconstruct the elements of an LCS, follow the b[i, j] arrows from the lower right-hand corner; the sequence is shaded. Each " \setminus " on the shaded sequence corresponds to an entry (highlighted) for which $x_i = y_j$ is a member of an LCS.

Step 4: Constructing an LCS

- b table returned by LCS-LENGTH enables us to quickly construct an LCS for $X = \langle x_1, x_2,...,x_m \rangle$ and $Y = \langle y_1, y_2,...,y_n \rangle$
- We simply begin at b[m, n] and trace through the table by following the arrows
- Whenever we encounter a " χ " in entry b[i,j], it implies that $x_i = y_j$ is an element of the LCS that LCS-L ENGTH found.

Step 4: Constructing an LCS

- With this method, we encounter the elements of this LCS in reverse order.
- The following recursive procedure prints out an LCS of X and Y in the proper, forward order
- The initial call is PRINT –LCS(b, X, X.length, Y.length)

For the b table in Figure 15.8 this procedure prints BCBA The procedure takes time O(m + n) since it decrements at least one of i and j in each recursive call

- Once you have developed an algorithm, you will often find that you can improve on the time or space it uses
- Some changes can simplify the code and improve constant factors but otherwise yield no asymptotic improvement in performance.
- Others can yield substantial asymptotic savings in time and space.

- In the LCS algorithm, for example, we can eliminate the b table altogether. Each c[i, j] entry depends on only three other c table entries: c[i-1, j-1], c[i-1, j], and c[i, j-1].
- Given the value of c[i, j], we can determine in O(1) time which of these three values was used to compute c[i,j], without inspecting table b.

- Thus, we can reconstruct an LCS in O(m+n) time using a procedure similar to PRINT -LCS.
- Although we save θ (mn) space by this method, the auxiliary space requirement for computing an LCS does not asymptotically decrease, since we need θ (mn) space for the c table anyway.

- We can, however, reduce the asymptotic space requirements for LCS-LENGTH, since it needs only two rows of table c at a time: the row being computed and the previous row.
- This improvement works if we need only the length of an LCS; if we need to reconstruct the elements of an LCS, the smaller table does not keep enough information to retrace our steps in O(m + n) time