

Fast Bayesian Inference in GLMs with Low

Rank Data Approximations

Brian L. Trippe

Jonathan H. Huggins

OVERVIEW

- Scientists, engineers & social scientists are often interested in the relationship between a large set of features and a response.
- For example, a biologist may wish to understand the effect of natural variations of certain genes on the presence of a disease.
- Bayesian generalized linear models (GLMs) provide coherent uncertainty quantification but can be slow to learn.
- We propose a low rank approximation of data -- as a form of likelihood approximation.
- We show improved dimension dependence in time and memory scaling of inference.
- We provide theoretical guarantees and experiments providing a 10x speed-up with minimal approximation error.

OUR APPROACH

- Perform an M-truncated SVD of covariates $X \approx U \mathrm{diag}(\lambda) V^T$.
- Define an approximation to the likelihood:

$$p(y_i|x_i^T\beta) \approx \tilde{p}(y_i|x_i^TUU^T\beta)$$

Do approximate Bayesian inference at a fraction of cost:

$$\tilde{p}(\beta|X,Y) \propto p(\beta) \prod_{i=1} \tilde{p}(y_i|x_i^T U U^T \beta)$$

Inference Method	Naive	Our Approach
MCMC (per iteration)	O(DN)	O([D+N]M)
Laplace Approximation	$O([N+D]D^2)$	O([N+M]DM)

When data are exactly low rank, our approach is exact; otherwise it is an approximation.

LOGISTIC REGRESSION WITH LAPLACE APPROXIMATIONS

We compare of several Gaussian approximations to the exact Bayesian posterior in a toy 2D logistic regression model. Points represent the dataset; lines represent posterior samples of the decision boundary.

The usual Laplace approximation closely captures the exact posterior.

l approximation to X.

The factorized Laplace approximation underestimates uncertainty.

uncertain.

As expected, our approximation yields greater uncertainty than the usual Laplace approximation.

ACKNOWLEDGEMENTS

We thank Raj Agrawal for helpful comments and discussion.

BACKGROUND

Generalized Linear Models (GLMs)

- Consider a regression of N, D-dimensional covariates, X, on N responses, Y.
- GLMs are a widely used class of interpretable models w. parameter $\beta \in \mathbb{R}^D$.
- Accommodate different response types (counts, binary, heavy-tailed)
- Characterized by likelihoods of the form: $y_i|x_i, \beta \sim p(y_i|x_i^T\beta)$

Tamara Broderick

Conjugate Gaussian Bayesian Regression

Generative Model Analytic Posterior $p(\beta|Y,X) = \mathcal{N}(\beta|\mu_N,\Sigma_N)$ $\beta \sim \mathcal{N}(0, \sigma_{\beta}I)$ $\Sigma_N := \left(\Sigma_{\beta}^{-1} + \tau X^T X\right)^{-1}$ for i = 1, 2, ..., N: $y_i \sim \mathcal{N}(x_i^T \beta, \tau^{-1})$ $\mu_N := \tau \Sigma_N X^T Y$

Posterior has an analytic form, but inference takes $O(ND^2+D^3)$ time

Conjugate Regression when X is Rank M<D

We can write the SVD of X as: $X = U \operatorname{diag}(\lambda) V^{T}$, for some $U \in \mathbb{R}^{D,M}$, $V \in \mathbb{R}^{N,M}$ with M < D, N

And then: $\Sigma_N = \sigma_\beta^2 \left\{ I - U \operatorname{diag} \left(\frac{\tau \lambda^2}{\sigma_\beta^{-2} + \tau \lambda^2} \right) U^T \right\} \quad \text{and} \quad \mu_N = U \frac{\tau \lambda}{\sigma_\beta^{-2} + \tau \lambda^2} V^T Y.$

Exact inference takes O(NDM) time

KEY THEORETICAL RESULTS

Theorem: In conjugate linear regression, if each $|y_i| < b$, our approximation $\tilde{p}(\beta|X,Y) = \mathcal{N}(\tilde{\mu}_N,\tilde{\Sigma}_N)$, satisfies:

$$\|\tilde{\mu}_{N} - \mu_{N}\|_{2} \leq \sigma_{\beta}^{2} \tau \left(\lambda_{M+1}^{2} \|\mu_{N}\|_{2} + \lambda_{M+1} \sqrt{N}b\right)$$
Also,
$$\Sigma_{N}^{-1} - \tilde{\Sigma}_{N}^{-1} = \tau (X^{T}X - UU^{T}X^{T}XUU^{T}),$$
hence
$$\|\Sigma_{N}^{-1} - \tilde{\Sigma}_{N}^{-1}\|_{2} = \tau \lambda_{N,M+1}^{2}.$$

Corollary (consistency):

 $\tilde{\mu}_N \stackrel{p}{\to} \tilde{\mu}$, the maximum a priori vector satisfying $U^T \tilde{\mu} = U^T \beta$

Corollary (conservativeness):

 $\tilde{p}(\beta|X,Y)$ is no less uncertain than $p(\beta|X,Y)$; Formally, $\tilde{\Sigma}_N \succeq \Sigma_N \text{ and } H(\tilde{p}(\beta|X,Y)) \geq H(p(\beta|X,Y)).$

RESULTS FOR LOGISTIC REGRESSION

Approximate posterior mean and standard deviation across a subset of parameters as M varies. X-axis represents ground truth from running Hamiltonian Monte Carlo.