

Here
$$n = \frac{10}{4} \times 20$$
 $n_{\text{compression=150 mm}}$

$$W_{d_1} = \frac{20\times0.15 + \frac{1}{2}\times4\times10^2\times\left(\frac{50}{10^3}\right)^2}{10^3} N-m$$

$$W_{1} = \frac{1}{2}\times4\times10^2\times\left(\frac{50}{10^3}\right)^2 N-m$$

$$W_{d_i} = (3 + 0.5) N - m$$
 $W_{d_i} = 3.5 N - m$
 $W_{d_i} = 3.5 N - m$
 $M_{d_i} = 3.5 N - m$
 $M_{d_i} = 3.5 N - m$
 $M_{d_i} = 3.5 N - m$

$$= \frac{1}{2} \times 4 \times 10^{2} \times (50 \times 10^{-3})^{2} \quad N-m$$

Work done by spring in (a)
$$+(b)$$

$$W_d = (-0.5 + 0.5) N - m$$

$$= 0 N - m$$

$$W_d = 0 N - m$$
Answer

Brob Liven: - In a particular test, a load of 105 N causes a deflection of 0.2 mm at its point of deflection

We know that

$$\frac{W_{d} = \frac{1}{2} Fn}{= \frac{1}{2} \times 10^{5} \times 0.2 \times 10^{-3} \text{ N-m}}$$

Work done by body = - 490.5 N-	m anh
11115000	3.5 Given :-
6) Work done by body	I = 14
= + 10×300 × 6 N-m	V = 200 volls T=15 sec
= 1800 N-m Arris wer	m = 2 tome
Work done by the crane	= 2000 Kg
= -1800 N-m Answer	Werk done distance = 2m
(c) Work done by the body	Work done by electric motor
= +4X30 (drag Francis	= -2007/03/27-10
100 M-	- 7.4200° T 2 160°
omosphere	[-42000] Anwen
= -120 N-m	Work done by machine
(1) Work done by the body	=2000×9.81×2 N-m
= 0 N-m bcoz drag force is (justike Free expansion on unresisted	$= -39.24 \times 10^{3} N - m$
enjansion of gas)	* 60.1
(e) Work done by the rist	-39240 N=m / Answer
= 0 N-m	Work done by inextensible cable
	/= 0
	Work done by pulley
· State	= o
i, No	

www.theTECHNOCRATZ.com V2.0

iot done per y cle $U_{i} = b_{m} \cdot V_{so}$ $A = \overline{\Lambda} \left(\frac{2 \operatorname{com}}{u_{i}} \right)^{2}$ hy = (as). LA L = 250m. 1 : 10161 X 0.0314 X 0.250 N-m = 7065:N-m Wd=7068.5N Incated Power minutes (For double acting 2-stroke = 2 × 7. 066× 300 KW : 70.65 KW 7.065 KN-m 70.65 KW SXILFIR = 60 N irt of tilus moved = 10 Are of isen $A_i = 4 \text{ cm}^2$ $= 4 \text{ cm}^2$ $= 4 \text{ cm}^2$

a) Spring Number Spring number = change in steam pressure length of stylus no ved . Force Area X length of stylus moved 4X10-4X 64X10-30 = 25X106X10 N/m3-= 25 × 106 N/m3 25X10 6 N/m3 (b) Area of indicator diagram Area of piston = $\frac{\pi d^2}{2} = \frac{\pi \times 150^2 \times 10^{-6}}{2}$ = Tx (50x103) m Indicated power = 4.5 KW 12 = 216 rpm $\mathcal{W} = \frac{216}{80} \text{ TPS} \Rightarrow \frac{7.2}{2} \text{ TPS}$ 2 = 0.1L. ----

www.theTECHNOCRATZ.com V2.0

١	I P	, be ine	unlet p	ressure	and b.
be	the	delieve	ry pressu	ne of air	
	0	1.	~	``	

$$(: V_c = \frac{c}{\log V_{sw}})$$

Where Vc is the clearance volume. Vow is the swept volume

$$d = (p_2, v_2) = 0$$

$$\frac{\text{for } (a-b)}{p_2 V_c^n = p_1 V_1^n}$$

$$V_{I} = \left(\frac{p_{2}}{p_{I}}\right)^{\chi_{n}} V_{c}$$

$$V_1 = \left(\frac{p_2}{p_1}\right)^{\sum_{i=1}^{n} \frac{c_i V_{sta}}{loo}}$$

For
$$(b-c)$$
 at $b \rightarrow V_1$

at
$$c \rightarrow (V_c + V_{sw})$$
.

$$V_{2} = \left(\frac{p_{1}}{k_{2}}\right)^{\gamma_{n}} \left(\frac{cV_{s\omega}}{100} + V_{s\omega}\right)$$

$$V_{2} = \left(\frac{\beta_{1}}{\beta_{2}}\right)^{1/2} \cdot \left(1 + \frac{C}{100}\right) \cdot V_{500}$$

for (d-a)

at d
$$\rightarrow V_2$$

at a
$$\rightarrow V$$

Net work done at the piston face per eycle is given by

$$W = \int_{a}^{b} p dv + \int_{b}^{c} p dv + \int_{c}^{d} p dv + \int_{c}^{a} p dv$$

$$W = \frac{p_1 v_1 - p_2 v_c}{1 - n} + p_1 \left(v_c + v_{sw} - v_1 \right)$$

$$+ \frac{h_2 V_2 - h_1 (V_c + V_{sw})}{1 - n} + h_2 (V_c - V_2)$$

$$\int \dot{p} dv = \frac{\dot{p}_1 \, \dot{V}_1 - \dot{p}_2 \, \dot{V}_C}{I - N}$$

$$= \dot{p}_1 \left(\frac{\dot{p}_2}{\dot{p}_1}\right)^{\frac{N}{N}} \frac{\dot{C} \, \dot{V}_{SW}}{I \cos} - \dot{p}_2 \, \frac{\dot{c}}{I \cos} \, \dot{V}_{SW}$$

$$= \dot{p}_1 \left(\frac{\dot{p}_2}{\dot{p}_1}\right)^{\frac{N}{N}} \frac{\dot{C} \, \dot{V}_{SW}}{I \cos} - \dot{p}_2 \, \frac{\dot{c}}{I \cos} \, \dot{V}_{SW}$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{p}_2}{\dot{p}_2}\right]^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{V}_{SW} - \dot{p}_1 \left(\frac{\dot{c}}{I \cos} \, \dot{V}_{SW} + \dot{V}_{SW}\right)$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{c}}{I \cos} + I - \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \right]$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{c}}{I \cos} + I - \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \right]$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{c}}{I \cos} + I - \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \right]$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{c}}{I \cos} + I - \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \right]$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{c}}{I \cos} + I - \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \right]$$

$$= \frac{\dot{V}_{SW} \, \dot{p}_1}{N - I} \left[\frac{\dot{p}_1}{\dot{p}_2}\right]^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} \right]$$

$$= -\dot{p}_1 \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} \right]$$

$$= -\dot{p}_1 \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} \right]$$

$$= -\dot{p}_1 \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} \right]$$

$$= -\dot{p}_1 \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} \right]$$

$$= -\dot{p}_1 \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot{v}_{SW} \right]$$

$$= -\dot{p}_1 \left(\frac{\dot{p}_1}{\dot{p}_2}\right)^{\frac{N}{N}} \left(I + \frac{\dot{c}}{I \cos}\right) \, \dot{v}_{SW} - \frac{\dot{c}}{I \cos} \, \dot$$

V2.0

vww.theTECHNOCRATZ.con V2.0

$$\begin{array}{c} \int \rho dv = -\frac{h_1 V_{sw}}{\eta_{-1}} \left[\eta \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} \right] \\ - \frac{\eta c}{loo} \left(\frac{h_1}{h_1} \right) - \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} - \frac{\eta c}{loo} \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_1} \right) - \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} - \frac{\eta c}{loo} \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_1}{h_2} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right) - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right) - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} - \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \left(\frac{h_2}{h_2} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} \\ + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}} + \frac{\eta c}{loo} \left(\frac{h_2}{h_1} \right)^{\frac{k \eta}{\eta}$$

vww.theTECHNOCRATZ.con V2.0

(iv) Indicated power

$$= \mathcal{W} \times \frac{n}{60} \qquad (n = 390 \text{ rpm})$$

Indicated Power = -2.7KW

Answes

Now, using similar tru'angle

$$\frac{1524x}{31} = \frac{122}{122}$$

Swept volume = zx volume of frustum of cone

$$= \frac{2 \times 3.14}{3} \left[3.828 \times 10^6 \right]$$

$$h = \frac{\alpha p_1 \cdot V_{SW}}{100} - p_e V_{SW} + p_i \left[\frac{c V_{SW}}{100} + \frac{\alpha V_{SW}}{100} \right]$$

$$\int_{00}^{\infty} \frac{V_{SW} + \frac{c V_{SW}}{100}}{\frac{\alpha V_{SW}}{100} + \frac{c V_{SW}}{100}}$$

$$W = V_{s\omega} \left[\frac{p_i}{loz} \left\{ a + (a+c) \ln \frac{100+c}{a+c} \right\} - p_e \right]$$

volume -

Net work done at piston face per yele

$$W = 0 + p_1(v_p - v_g) + p_1 v_p l_n(\frac{v_g}{v_p}) + 0 + p_e(v_p - v_p)$$

Answer

We Know that

$$W = p_m V_{sw}$$

Arriver

$$p_{m} = 10^{3} \left[5.5 \left(30 + 35 \ln \frac{105}{35} \right) \right] - 100 \right]$$

| pm = 276×10 N/m2 | mswer W= pm Vsw . = 276×10^{3} $\int 0.28 \times \frac{\pi}{4} (0.230)^{2}$ = 3210.8 N-m/yelo W= 3210.8 N-m/cycle Answes (i) · Indicated power = 2x W x N = (2X 3210.8 X 132) W = 14.13 KW Indicated Power = 14.13 KN Answes 200 (in Kin/m2) 300 200

26' 34 40 45

V -> (in dm3)

100

Workdone by the fluid system $= 10^{3} \left(\frac{600+500}{2} \times 100 \right) \times 6$ $+ \frac{500+400}{2} \times 8 + \frac{400+300}{2} \times 6$ $+ \frac{300+200}{2} \times 5 \right]$

= 13×106 N/m2 ×10-3 m3

= 13×103 N-m

baloon is fully inflated is given by

A 2 = 0.003

$$30 = \frac{0.003}{150 \times 10^{-9}} \Rightarrow 0.2 \text{ m}$$

n= 200 mm

Now up to n = 200 mm the pressure in the left end remains same as initial i-e 100×10³ fa. Now on further movement of the piston, when have to follow by = constant. Now, when x = 250 mm then volume of the left position of the uplinder is given by x = 250 mm then x = 250 mm the x = 250 mm then $x = 250 \text{$

www.theTECHNOCRATZ.com V2.0

www.theTECHNOCRATZ.com V2.0

Volume leaked from the main. shaft Power = Torque X 2TT N to the rigid versel = 260 X2TT X 3000 W = (mass decreased) x ap volume = 0.1X0.1520 81692 W = 0-01520 m3 = 81.7 KW Workdone = Op Vsw Shaft Power = 81.7 KW = - 1.5×10 ×0.01520 J = -22.8×103 T (a) $W = 2\pi NT$ 15×10 = 2×T × 1440 T Workdore = - 22.8 Ki mixe. b = batm + hydrostatic pressure $T = \frac{15 \times 10^{6} \times 60}{2\pi \times 1990} \text{ N-m}$ = 100×103+ 991-T= 99.5 X 103 N-m = 102+ 3.2X1100X3.8) T= 99.5 KN- m / this wer = 1.27×105 N/m2 (b) Power delivered to the propeller shaft change in volume $\Delta V = \frac{4}{3} T(r_2^3 - r_1^3)$ P = 2TINIT $=\frac{4}{3}\pi \left[0.5^3-0.25^3\right]$ $f = 2x\pi \times 1440 \times 770 \times 10^3$ W = 0.458 m3 14.52 KW .: W = p DV -= 1.27X105X0.458 J P= 14.52MW | Answer = .58.2 KJ W= 58.2 KJ Anxwer

(c) Not rate of working of the traduction year = (-15000+14520) X103 N-m/s = -480X103 N-m/s -480×103 N-m/s Answer diameter of cylinder = 400 mm Not work done during the process by the fluid = 2000 Nm $V_{SW} = \frac{\pi}{4} \times \left(\frac{400}{1000}\right)^2 \times \frac{485}{1000} \text{ m}^3$ $V_{sw} = 0.0609 \text{ m}^3$ Work done by the piston = p Vsw = 101. X10 8 X0.0609 N-m = 6169.17 N-m

Work done on the fluid = (6169.17-2000)

= 4169.17 N-m

... Workdome in one minute by the mentar $= \frac{4169.17}{10} \text{ N-m}$ $= \frac{4169.17}{10} \text{ N-m}$ $= \frac{10}{10} \text{ N-m}$ $= \frac{277NT}{4169.17}$ $= \frac{4169.17}{2\times 17\times 10\times 840} \text{ N-m}$ T= 0.079 N-m

T= 0.079 N-m

Answer

Shaft power = Workdone in one min 60= $\frac{4169.17}{60\times10}$ W

Shaft power = 6.95 W

Shaft power = 6.95 W

The shaft power = 6.95 W

Prob (a) Net work done by the accumulation = 24×0.35×10×60 = 5040 N-m

5040 N-m Answer

(b) Network done by the motor = 4169.17 - 5040 = -870.83 N-m

- 370.83 N-m] Answes

Examples 3.1,3.2,3.3 and 3.9 are prepared also (IMP) (solved in Boot)

chapter -9- 281" SEP 2007

Temperature

Prob 4.1 (a) Given Temp = 336°C so $t_F = \frac{9}{5}t_c + 32$ = $\frac{9}{5} \times 336 + 32$ = $\frac{9}{5} \times 336 + 32$ = $\frac{636.8}{5}$ ° F

(b) Given temp = 5°F $t_c = \frac{5}{9} (F-32)$ = $\frac{5}{9} (5-32)$ = $-15^{\circ}C$ $t_c = -15^{\circ}C$ Answer

(c) Given temp = -1

$$t_F = 1.8 + c + 32$$

=(1.8 x - 1 + 32) F
= 30.2 F
 $t_F = 30.2 \text{ F}$ Answer

(d) viven relip - 10,0.

$$t_{c} = \frac{5}{9} (F - 32)$$

$$t_{c} = \frac{5}{9} (1050 - 32) \implies 565.56^{\circ}c$$

$$t_{c} = 565.56^{\circ}c$$
Answer

(e)
$$Temp_1 = 68^{\circ}F$$
 $t_{c_1} = \frac{5}{9} (68-32) \Rightarrow 20^{\circ}C$
 $Temp_2 = 554^{\circ}F$
 $t_{c_2} = \frac{5}{9} (554-32) \Rightarrow 250^{\circ}C$
 $Temp_3 = 56^{\circ}F$
 $t_{c_4} = \frac{5}{9} (554-32) \Rightarrow 250^{\circ}C$
 $Temp_4 = \frac{5}{9} (554-32) \Rightarrow 250^{\circ}C$
 $Temp_5 = \frac{5}{9} (554-32) \Rightarrow 250^{\circ}C$
 $\Delta t_{c_5} = \frac{5}{9} (554-32) \Rightarrow 250^{\circ}C$

Prob $t = a \ln P + b$ 4.2at t = 0, $P = 1.86 \Rightarrow a \ln 1.86 + b = 0 - 0$ at t = 100, $P = 6.81 \Rightarrow a \ln 6.81 + b = 100 - 0$ Solving eq. 0 and 0 Weget. a = 76.92 and b = -47.57

Now at
$$P = 2.5$$

 $t = 76.92 \ln 2.5 - 47.57$
 $= 22.91^{\circ} C$ framer
 $t = 22.91^{\circ} C$ Answer

Prop (9) ta = l+mtg+ntg at += 0 (1=0) L of t=100 = tA=+6 100 = m (100) + m (100) 2. 1 = m + 100n - 0 at $t_A = 51$ and $t_B = 50$ 51=50m+2500n - 1 Multiplying eq @ by 50, then subtract from eq @ , We get n = -1 > 51=50m-1 m=52 =1.04 When t = 25°C then to $25 = (1 \cdot \alpha + \beta) + \left(\frac{1}{2500}\right) + \frac{1}{6}$ 62500 = 2600+B - +B tB - 2600 tB + 62500 =0 +B = 5000 + 1(5200) - 4(65200). = 2600 + 255/19 +B = \$4.27°C tB = 24.27°C / Amsuca

(b) The two given thermometers are arbitrary Each step from the selection of the thermometric substance and the earning material to the choice of the no. of equal sub-divisions b/s the fixed point is unclated. It is upto us which we shall call right one and which wrong. All that is necessary is that We should make a decision and stick to it. (a) p= 1000[1+ x(+-0)] 1366 = 1000 (1+xx) d = 3.66×10-3 (b) ... P= 1000 (1+3.66×10-3+c) 1000 -1 = 3.66×10-3+c $t_c = \frac{b}{3.66} = \frac{1}{3.66 \times 10^{-3}}$ > tc = 0.273 p = 273 = 0.273×1075-273 = 20.475°c N 20.5°C Q = 3.66 X 10-3 + ~ 50.2°C 1his wer

Chapter -5 (=4200) (i) Heat transfer for versel & insulation
$$Q_{vi} = mc\Delta t$$
 $Q_{vi} = mc\Delta t$
 $= +5.02 \text{ KT}$

1 $J = 0.2388 \times 10^{-3}$ Kilocolovis . (ii) Heat transfer for versel & insulation & hodes

1 $Btu = 0.252 \text{ Kcal}$)

 $= 1.055 \times 10^3 \text{ J}$

Answer

Prob Given: - mass of water = 10 Kg

 $= 10.055 \times 10^3 \text{ J}$

Answer

Prob Given: - mass of water = 10 Kg

 $= 10.055 \times 10^3 \text{ J}$

(i) Heat transferred to water

 $= 10.055 \times 10^3 \text{ J}$

on) Heat transferred to vessel
$$Q_v = +5.02 \,\text{KJ}$$

(iii) Heat transferred for steel Bar
$$Q_{SB} = -(Q_W + Q_V)$$

$$= -(100.8 + 5.02) \text{ KJ}$$

$$= -105.82 \text{ KJ}$$

(iv) & Heat transferred for versel, insulation from Since the Cu Block is well insulated and the contents

$$Q_{vic} = Q_{vi} + Q_{vi} + Q_{sc}$$
= (100.8 + 5.02 - 105.82) KJ

Muswer

(i) Heat transferred to the VERNEL. and circulation, Pui = 5.02 KT

(il) Heat transferred for steel Bar $Q_{sg} \leq -(Q_U + Q_W)$ = - (100.52+5-02) KJ = -105.52 KJ

iii) Heat transferred to the oil = 100.52 KJ

(in Heat transferred to the versel, insulation and contents =0

from the top and the sides, so there is no heat for the system comprising the vessel

2	f Q	W
q		0
Ь	0	+
С .	1 1	0
d	+	
e	Q ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ŧ	0	-
7		0
h ·	. О	-

Frob (a) Q and W are both zero as the vessel is well insulated and sealed.

(b) Wi zero as the calorimeter is sealed only. Heat is supplied by the calcrimeter to the water and here calorimeter is a system , therefore Q is negative

Q = - 2X4186 X 0.03

=-0.251 KJ

Anuel

Prob (a) Heat and work interactions 5.8 are both zero as the vessel is well insulated and rigid.

(c) Adding the process (a) + (b) W=0.

Chapter-6

The First law of Thermodynamics

6) @ Stirring Work done on the contents of versel B in ft-lbf

Since stituting work is done on the versel B, therefore work is negative whose magnitude is given by

$$W = -\frac{2\pi \times 1485}{60} \times 40\times 60 \times \frac{0.75}{12} \text{ ft lbf}$$

1 Mechanical equivalent of heat in ftlbf/Btu

$$T = \frac{W}{Q}$$

O change in the energy of the mixture in each versel

DE = - (-23326) ft lag

= 23326 ft lbf

= 30 Btu

+30 Btu foreach vessel Answer

@ nisplacement work & the network

Lone by the gas during process (1)

displacement work by ges = 200x2.8 KN-m

+ 0.56e KN-m

Not work done by ges = (0.560-1.8) KN-m

= - 0.640KV-m

+0.56CKN=m , -0.64CKN-m

1 Network done by the gas and the heat

transfer from the gas in process (ii)

Network done by thegas = - 0.560 KN-m

Heat transfer from the gas = +1.2KJ

-C.56c K.T , +1.2 K.T Answer

Increase in Energy of gas in process (i)

and in process (ii)

DE, = (1-2-0.560) KT

= + 0.640 KJ

ΔE2 = (-1.2 + 0.560) KJ

= -0.640 KJ

+0.640 KJ, -0.640 KJ Aruwer

Increase in energy of the gas for the combined process (i) plus (ii)

 $\Delta E = \Delta E + \Delta E$

= (0.640 - 0.640) KJ

Answes

has p=200x105

W = - 21TNT 0

W = -2 TX 270 x 492X1.5 X51X60 J

= -63.85×106 J

= -63.85 MI

www.theTECHNOCRATZ.com **V2.0**

Aswer

$Q = mc\Delta t$		6)3 = (84-30) KT	** 3.35	22
$Q = 173 \times 4 \cdot 19 \times 10^{3} \times 8^{9}$ $Q = 63 \cdot 79 \times 10^{6} T$	g 1	12	13 = -6KT	•	
Q = 63.75 MT		<u> </u>	= -6 KJ. Answer		
mechanical equivalent of h	cat	6·S	<u>AE</u>		
$J = \frac{Q}{V}$		(b) (c)	+		
$J = \frac{63.85}{63.79}$		(d)	+		
J = 1 Answer	,	(f) (f)	. +		
Brob The working fluid in a	n engine	(b)	t	Answer	
continuously executes a cy	y cur process.	(4)	<u>ΔΕ</u>	•	
$W_1 = -15 \text{ KJ}$ $W_2 = 44 \text{ KJ}$		(b)	<u>#</u>	Answer	
$Q_1 = 75 \text{ KJ}$ $Q_2 = -90 \text{ KJ} \text{and } 0$	$Q_3 = \langle \rangle$	6-7 (a)	- O		
EWych = ERych (for a		(c)		Answer	
-15+44 = 75-90+ Q3					
03 = (-15+44-75+9	to) KJ				

www.theTECHNOCRATZ.com V2.0

oil DE = (KE) -KE) = (0- 4000) TV-m = - 4000 N-m Answer

Ci DE = + 4000 N-m Answer

AE = O Non Musues

Since the gyroscope is placed inside a well insulated rigid Box,

Ultimately DE=0 Answer

In crease in energy of the contents of the turbine casing = 0 (Since W=0, Q=0)

नी एए हा

(a) Increase in Energy of a system

Q = 40 KT

W= 45 KN-m

DE = Q-W = (40-45) KJ www.theTECHNOCRATZ.com (9) = (b) is a yelle process

DE = . - 5KJ Answer

(b) Since the second process executes b/w the same initial and final states, so the

DE = -SKT

from Ist Law

DE = Q-W

 $-5 = (\varphi - 35) KJ$

Q = 30 KJ , Argue:

(a) system -> 3 kg of air + N2 P, = 100 KPa -> P2 = 400 KPa t, = 30° c - + 2 = 90° c

. Heat transfer from the mixture = -105 Workdone on the mixture

DE = Q-W

DE = -10- (-64) KT

DE = (64-10)KT

DE = 54 KT frome?

(b) -> p3 = 100 FPa t3 = 30°C

Workdone by the nexture = 50 KJ

V2.0

Mediania

Mechanis oil

69 Since the gyroscope is placed inside a well insulated rigid Box,

Ultimately DE =0 Answer

Ir crease in energy of the contents of the turbine casing = 0 = (Since W=0, Q=0) Auwer

Q = 40 KT W= 45 KN-m

$$\Delta E = Q - W'$$

= $(40 - 45) KJ$

V2.0

(h) Since the second process executes b/w the same initial and final states, so the DE = -SKT

from Ist Law

$$\Delta E = Q - \omega$$

$$-5 = (Q - 35) KJ$$

(a) system -> 3 kg of air + N2 P, = 100 KPa -> P2 = 900 KPa t1 = 30° C -> +2=90°C

Heat transfer from the mixture = -10J Workdone on the mixture

(b)
$$\rightarrow p_3 = 100 \text{ kf} \text{ a}$$

 $t_3 = 30^{\circ} \text{ c}$

Workdone by the nexture = 50 KJ

www.theTECHNOCRATZ.com (9) = (b) is a yelle process

$$\sum_{i=0}^{\infty} Q_{ij} c_{ij} c_{ij} = \sum_{i=0}^{\infty} W_{ij} c_{ij} c_{ij}$$

$$-10+Q = 50-64$$

$$Q = (-64+50+10) KJ$$

$$Q = -4 KJ Answer$$

(i) DE=0 Answer

Since (a)+(b) is a cyclic process

(i) Q=0 (given) and W=-ve (stiming work)

DE = +ve

vis since ou already zero, W=4, DE=

Q23 = 840 KJ (Since heat is given to system)
Q12 = Q43 = 0 (adiabatic compression)
Let pressure at state() and state() be the

het pressure at state @ and state @ be the pressure at state @ and state @ be the

for the process 1-2
$$\frac{1-2}{p_1 v_1^{1.4} = p_2 v_2^{1.4}}$$

$$\frac{1-2}{p_2} = p_1 \left(\frac{v_1}{v_2}\right)^{1.4} \Rightarrow 100 \times 10^3 \left(\frac{1.3}{0.18}\right)^{1.4} P_2$$

$$\frac{1-3}{p_2} P_2 = 1592.72 \text{ KPc}$$

For the process 3-4
$$p_3 \, o_3^{1.9} = p_4 \, p_4^{1.9}$$

$$p_4 = p_3 \left(\frac{o_3}{v_4} \right)^{1.9} \Rightarrow 3500 \times 10^3 \left(\frac{o.18}{1.3} \right)^{1.9} p_4$$

$$p_4 = 819.7 \, \text{KPa} \, \text{V}$$

(a) Work done by air in process (i)
$$W_{1-2} = \frac{\beta_1 V_1 - \beta_2 v_2}{\gamma - 1}$$

W_= (100×1.3-1592.72×0.18) KN-m

W1-2 = 0392 KN-n1 Answer

Workdone by the air in process (ii)

W₂₋₃ = 0 (since volume is constant)

Work done by the air in process (111) $W_{3-9} = \frac{b_3 V_3 - b_4 v_4}{r-1} \Rightarrow \frac{(350000.18 - 215920.13)}{(1.9-1)}$

W3-9 = 86/KN-m HYUWEI

Wank done by the air in process (iv) $W_{4-1} = 0 \text{ (since volume is constant)}$

(h) Heat transfer from air during process (i)

for a cycle Σ Rupice = Σ Weyele $Q_{12} + Q_{2-3} + Q_{3-4} + Q_{4-1} = W_{1-2} + W_{2-3} + W_{3-7} + Q_{4-1}$ $Q_{4-1} = W_{12} + W_{24} - Q_{2-3}$ = (-392 + 861 - 840) KJ = -371 KJ

GA- = -371 KJ

(c) increase in internal energy in process as $(\Delta E)_{l-2} = Q_{l-2} - W_{l-2}$ = [C-(-392)] kJ

 $(\Delta E)_{1-2} = 392 \text{ KJ}$ Thower

Increase in Internal energy in process (ii)

$$QE_{2-3}^{2} = Q_{2-3} - W_{2-3}^{2}$$

$$= (840 - 0) KT$$

$$(AE)_{2-3}^{2} = 840 KT / Answer$$

Increase in Internal energy in process (iii)

$$(AE)_{3-4} = Q_{3-4} - QV_{3-4}$$

= $(0-861) \text{ kJ}$

Increase in Inderval energy in process (11)

$$(\Delta E)_{4-1} = Q_{4-1} - W_{4-1}$$

= $(-371-0) \text{ kJ}$

(a) Since an insulated rigid vessel is system 69,=0 SW,=0 dE,= 0 Answer DE2 = Q2-W2 (p) AE, = (-45-0) ks DF2 = -45 KJ. Answer intial energy of the system (C) . Take = 30 KJ

Energy after the process (a) DEa = Et + E, = (30 to) FT

30 KJ

Energy after the process (b) $\Lambda E_b = E_i + E_1 + E_2$ = (30+0-95) 15 = -15 KJ 30 KI, -15 KI MW. 189 Prob Increase in Energy of contents of cylinder 0=-4KJ/ Swept volume = Area of piston x swept length $\Delta V = \frac{\pi}{2} \times (00 \times 10^{-3})^{2} \times (85 \times 10^{-3}) m^{3}$ DV = 6.676 X10-4 m3 Workdone, W = pAV $W = 240 \times 10^3 \times 6.676 \times 10^{-9} Nm$ W = 0.160 KJ Using Ist low of thermodynamics DE = Q-W

DE = (-4-0.160) F.J - - 4.16 KJ

DE = - 4016 KJ /hiswes

6.19 (a) Given Initial energy of the system = 10KJ Since a system consisting of a mixture of air & gasoline vapour its contained in a Rigid vessel.

> The Warkdone in each process become Zero) W/

V2.0

Energy of the agreem after procession

$$\Delta E_2 = 0$$

$$\Delta E^3 = -35 \text{ kJ}$$

(b) Govern: An equal mass of same mixture is contained in a cylinder closed by a piston.

Workdone during process (i)

Since extergy of the system depends only on its temperature & chemical

= 3 KT www.theTECHNOCRATZ.com **V2.0**

Was - 3 KT Answer

Heat transfer during process (iii)

Workdone by the system W= + 31 KJ

Energy of the system

Using Istlaw of Thermodynamics

CCHAPTER-87	
CCHAFIER WII	(b) 98 W=0
[THE PURE SUBSTANCES]	Q-WAD DE
LINE FORE SOBSTITUTE	θ= Δ€
7.1) Given,	= -lox10J.
The mass of Bure substance m= 2.5Kg	-Aus
P1 = FOOXIONIA	×
11 = 700/19 (414)	73) Given, m= 4.2kg
$v_1 = 0.2 \text{m}^3 / \text{kg}$	E1 = 85.7 KT. K1 = 13.6 KNm
ρ ₂ = 700 ×10 Nm	K2= 1-15 KNm P1=4.9 KNm
UZ=0.2 m / Kg	P2= 0.85 KNM 44= 159 KJ/Kg.
(a) The initial and final states of the system are	U2 = 159 xy.2 = 667.8 KJ.
same as fruence and specific volume are	
independent properties; so the final temp is :00°C.	(a) E=K+U+P
Therefore,	=) K1+P1+U1=E1
Twoiare in sperific internal energy (in)=0	=) U1=E1-(K1+P1)
- Ans	=85.7-(136+4.9)
	= 67.2 kJ.
(b) Work done by regition = 1200 Hm $\Delta E = 0$	Specific volume 01 = 67-2 - 16 KJ./Kg
Bu Direct Caw of Harmodynamics-	1 0 y.2 1 0
By first can of thomodynamics-	-Aus
⇒ D = 1200J.	(b) Change in k.E. (AK)= K2-K1
-Aus	= (1.15x103-13.6x103) N-W
72) Guien,	=-12.45 Xio3 N-m.
Internal energy=10×103 J.	Change in P.E. = $\Delta P = P2 - P1$
1 10-1 La 10- To 414Trus = +0×10 T.	=8.co-4-cx10 ³
(b) By first law of thermodynamics-	= -4.05 x 103 N-m.
VE= Q-M	Change in internal energy DU=U2-U1
ΔE= Q-W -10×10 ³ =+6×10 ³ -W	= 667. 8 KJ-67-2 KJ
=> W=16x103J	= 600.6 kJ-
And And	DE=AK+AP+Ath
	= (-12.45x103-4.05x103+600.6x103)]-

www.theTECHNOCRATZ.com

ΔE=584-1 KJ.	№ 7·S)
By first law,	for diplacement work,
0 6-W=4E	dw=pdv ===================================
Q=0 because from is adiabatic.	On Jaw = Spav
W=-584-1KI	=> W=P [dy (mico primere
-Aus	is field constant)
(c) Sino offuts of granty and nection are	<u> W= PΔV —(1)</u>
ngligible, .	By first law of thinwodynamics,
O OK=c and AP=0	To the system. The is change in internal ener
ΔU=U2-U1 = 6σα6 KJ	In the nexture, there is change in internal ever
W= -600.6 KJ.	$\Rightarrow ^{0}\Lambda U = 0 + V $
-fus	$\omega + U \Delta = 0 \pi \sigma$
	= \(\Omega \omega \omeg
7.4) Given m = 0.3 kg. P= g=x10 ³ Niv- ² T=40°C	We know that,
P=gux103 Nw-2 T=40°C	$\Delta H = \Delta U + \Delta V$
V=120 dun3 =120×10-3m3	∴ Θ=ΔH
	=> Heat transfer during the process is equal t
Intimal energy of the interact U= 30.4×103 J.	the change in enthalpy.
Therefore, Enthalpy of substance	the change in enthalpy. Hense Proved
H= U+PV	
H = U + PV = 30.4 x 10 ³ + 90 x 10 ³ x 120 x 10 ⁻³	e 7.6)
= 412coJ	The work down due to
<u> </u>	expansion i.e. displacement
Therefore, specific enthalpy (h) = H	work (Wd)= PAV
· · · · · · · · · · · · · · · · · · ·	Let Wark done by shaft
- 41200 - 137.3 KJ/kg	be Wopapy and vi suma
0.3	webt by yetim be Av.
Aug.	the state of the s
	Grow It law, change in internal energy-
www.theTECHNOCR/	$\Delta c = 0$

D : tane 00 cumque	7.8) Gwin 14=Cv.11+
Since the energy changes are only internal energy.	NE=CO H
P. notions. /K=D-Wiotay-	(a) Cv = 4186 J/ gk m=1 kg
$\Delta V = -W_{\text{Total}} (as \theta = 0)$. growers in internal energy for 1kg of
But WTotal=Wa +W skaft	water at 100°C
= PAV - Warapt - WT-14	Va = (2186x1x120)]
the second	= 418.6 KJ.
=> DU=-(PAV-WSRAGE)	-Aus
⇒ Δυ= (PΔV-Wstage) ⇒ Wstage = Δυ+PΔV = ΔΗ	(b) Cp = 2093]/kg.k. m=2kg.
	Increase in entralpy from 2 kg of ico at constant
=> WSEART = AH	volume from 20 cto 0 c
	$\Delta H = (2093 \times 2 \times 20)$
Wank dony by the stirner is equal to change	= 83.72 kJ
Henre Proved	-Aus . HA
The state of the s	C) Grim m= 3kg Cv=718J/kgk
7.7) Guin Browns are field at constant temp	Can STIVEY To Hold trush = 60C
1 P 0	Final trub. = 5°C Printing = 400×103 Nm²
Also, specific heat at contant volume is defined	Ppinal = 300×103 Nm²
The story of the s	- Francisco
of the netter with time with speatfre	(i) Thouas in internal energy Au=mc/At
held contant.	Δu = 3x718 L5-60), 00
Therefore -	=-118cooJ
$c_{v} = \frac{\delta u}{\delta T}$	=-118.5 KJ
le .	-Aus
=> Cu dt = du	Ø (\$20 ± 05 ± 01)
=> Du = CVDt (where A denotes much	(ii) Increase in enthalpy of air AH = mcp At
Clauge)	ΔH= 3×100 (×(560)
Sin larily.	=-165825].
CP = (QH)	= -165.8 KJ-
A later than the second of the	-Aw
⇒ Cpst=SH ΔH=CpΔT (whire Δ= mall change)	iii No my Q- W be ajoluled to
www.thetechnocratz.co	
V2.0	

9) Given,	$\Delta t = t_2 - t_1 = 30.5^{\circ}c$
$PV = 260 \pm 171 \times 13^{3}$	±2=±1+Δ±
±= 1.524-273°	= 280.+30.53°C
Specific heat at contant volume,	= 310.53°C
Speafae Mar a comment	A0s6,
1	$\Delta U = m c_V \Delta \pm$
t= 1.52u-273	=1x 0.658 x 30.5
dt 1.0 an du - 1	=20.069 KJ
$\frac{dt}{du} = 1.52 \text{an} \frac{du}{dt} = 1.52$	By first law, a-vice
=> cv= 0.658 KJ/kg.K.	ΔΨ= 8-30
Specific feat at courtant framure,	W=0 (as the usual is niged)
$\frac{c_p = dH}{c_p} = \frac{c_p - dH}{c_p}$	∆\$= 0 =20.069 KJ
ot	P2 V2 = 260x 310.53 + 71x 10 ³
R= u+Pv	= 151730
R= ±+273 +0.26\$+71	P1 V1 = 260 x 280 +71 x 103
1.62	= 143850
Differentiating both sides w.r.t. t.	· VI = V2 (D. COTTE YORK)
dR = 1 +0.26	-> 0 151730 P1
dt 1.52	143860
=0.918 KT /kg.K.	$= 633.08 \times 10^3 \text{ Ni m}^{-2}$
-Aus	-Aus
b) Since the internal energy and enthalpy welle	
functions of temperature only Therefore.	7.10) 6ww.
AR=CPAt	$\rho = 200 \times 10^3 \text{ Nw}^2$
AH = CVAt	
	to 150 200 300 400 500 600 700
c) Given m=1kg. P1 = 600×103 Nm-2	R(KJ) 2763.5 2870.5 3072.5 3276.7 3437.0 37c4.6 3927
+1=20°C ΔH= 28 KJ / Kg	1 70
6=ive	Grobp is
ΔH=mcp Δt	

www.theTECHNOCRATZ.com V2.0

1 - 4	[CHAPTER-8]
ist law of thermodynamics-	LCUAFICK 91
Δ <u>w</u> = 0-w	TTUE CIRCT I AND ADDITED TO STATE
for adiabatic from 6.0	ETHE FIRST LAW APPLIED TO FLOW
$\Delta u = -\omega$	Que- 8.1) Waterra
M= 4.8 KNm	1717
-Aus	F. (8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8
	The state of the s
7:12) (a) Griven,	——————————————————————————————————————
m=0.95kg _u=16kJ[kg	√ 20 m.
V= 120 ms R=1500 m	
t= u+mgh+1m2	CONTROL DESCRIPTION OF THE PROPERTY OF THE PRO
	Communication of the communica
= mu + mgh + 1 ms2	12=13°C
	Water still V = mid-
-1= ΛΕ = 0.95 ×16×103+0.95×9.81 ×1500+1 ×0.95×1 κού	Given, R=c(t-ts)
	Guater = 4.18 x 103 J/KgK
= 360192.5 J = 36.02 kJ	C gif. = 1.88 x 103 J/ Kg K
(b) Given	
(b) Giru, u=20 KJ/Kg U=200 ms-1	FOR OIL:-
- h=270m W=-2200N-W	Δ Hoil = Co (+2'-1-1)
= AE = mu + mgh + 1 mv²	=1.88×10 ³ (40-80)
= COE 3	= -7.52 ×104 J/kg
= 0.95 x 20,3 0.95 x 9.81 x 270+ 1 x 0.95 x (2,0)2	
2102=	Mail S. F.E.E. from single striam.
21535.26J	mail (11 2gc. 3c)
= 21.5 KJ	$= 7 - W_x = 0.08 \times (-7.52 \times 10^4)$
-Aus	$W_{x} = 6.016 \times 10^{3} \text{J/s}.$
	FOR WATER:-
	$\Delta \theta_{\text{width}} = C_0(\frac{1}{2} - \frac{1}{2})$
The second of th	=4.18x103 (25-15) =41.8x103J/kg
1 43.5163(3 - 34.5.5.34-3.34-3.34-3.34-3-3-3-3-3-3-3-3-3-3-3	= 1 10 X 10 (23-13)

www.theTECHNOCRATZ.com V2.0

Show Privile toble up = 0.001064 m² 1kg		~
[PROPERTIES OF PURE SUBSTANCES] 9.10 (a) Guim, saturated water primare x. axi3 Nuc 5.0.66 nuc 6.0.66 nuc 6.0.6	CHAPTER-97	
= 37.5 ban Color	LCIVALICAL	(R) Given,
= 37.5 ban Color	TOTAL OF OUR CHRETANCEST	Prutura = 3.75 x 1 16 N/W2
Solumber	[PROPERTIES OF PURE SUBSTAINCES	
(a) Given, and status for the folia 1053.9 kT 19		Tutorial engy (42) at 40 bon = 10824KI/Kg By interpolation
(a) Given - Saturated water primiting = 1.01.2×10 4 Mm² = 4.00×103	(b) Given dry soturated diam t =200°C	And the second of the second o
= 1.01325ban	ug=0.12716m3/kg_	
= 1.01325ban	C. L Ed st. a barming - 1.01:2X10 - Nmi2	(i) Guin atam P= 400×103 Hm2=4bar
Solumabed temp. = 100° co ° C Specific volume 0 = c. 7725 we're g. Euralfy (f) = 3213.6 KT 1 kg Tutomal eurogy (1 = fpv	= 1.01 325 bar	
(d) Given, dry saturated Atam P=1.0132.ban Saturated temp. = 100°C (e) Given, wet Atam x=0.9 P=1.0132.ba. saturated temp. = 100°C (f) Given provide temp. = 100°C (f) Given provide temp. = 100°C (f) Given provide = 63 ban at 6 ban Hfg = 2085.0KJ/kg at 7 ban Hfg1 = 2064.9KJ/kg. at 63 ban frg = 2008.0KJ/kg. 1111 = 2018.97 kJ/kg.		Sperific volume = c. 7725 m3/kg
(d) Grim, dry saturated Atam P=1.0132.bas Saturated trup. = lev's (e) Grim, and Atam x=0.9 P=1.01328ba. saturated trup. = lev's saturated trup. = lev's (f) Grim primare = 6.3 ban of chan Heg=2085.0KI/kg at 7 ban Heg=2085.0KI/kg at 6.3 ban- feg=2085.0 (2085-2064.9) - 2018.97 KJ/kg - 2018.97 KJ/kg	Salurana temp. 2 too co c	ENRAPRY (F) = 3273.6 KJ/Kg
Satisfated temp. = 100°C = 2964.6KJ(kg) (Q) Given, wet attain x=0.9 P=1.01325bQ: satisfated temp. = 100°C = 2964.6KJ(kg) (P) Given primare = 6.3 ban Of 6 ban Hfg = 2085.0KJ(kg) at 7 ban Hfg = 2064.9KJ(kg) of 63 ban fg = 2085.0KJ(kg) 110 - 2078.97 kJ(kg)		Internal energy u= R-by
= 2964.6KT/KS (Q) (rium, with attain x=0.9 P=1.01328ba: solvented temp. =100'C (Q) (rium with attain x=0.9 P=1.01328ba: 9.2) Plane diagram of H20 (Q) Lyp (P) (rium purvice = 6.3 ban of 6 ban H49 = 2085.0KT/KS of 7 ban H492 = 2064.9KT/KS at 6.3 ban Rfg = 2085 = 2064.9KT/KS = 2078.97 KJ/KS = 2078.97 KJ/KS	(a) Gram, dry saturated utam 1-1-1-12	= 22736 - 400×0.7725
(b) R~p (f) Gridin province = 6.3 ban Of Coan Heg = 2085. OKTING At 7 ban Heg = 2064.9 kT/rg. Of 6.3 ban- Reg = 2085. 2064.9) = 2078.97 kf/rg.	Satisfalid temp. = 100 c	
(b) R~p (f) 6 min pure = 6.3 ban Of 6 ban Heg = 2085. OKJ kg A 7 ban Heg = 2064.9 kT kg Of 6.3 ban Reg = 2085. 2064.9) = 2078.97 kg kg	0 P-101328h0	<i>y</i>
(f) Grimm promore = 6.3 ban of 6 ban Heg = 2085. OKJ kg of 63 ban - 2085 oct 1 kg of 63 ban - 2085 oct 1 kg feg = 2085 oct 1 kg = 2018-97 kg kg	(0) Grum, wet strang = 0.9 1=1.01323000.	9.2) Plane diagram of H20
(f) Grain promote = 6.3 ban at 6 ban Heg = 2085. OKI kg at 7 ban Heg = 2064.9 KT kg. at 6.3 ban - feg = 2085.2064.91 - 2078.97 KJ kg - 2078.97 KJ kg	saturated trup. = (50 C	Cartab Chitap
at 6 ban Heg = 2085. 0 kJ/kg. at 6.3 ban - ch 6.3 ban -		
at 7 ban Hpg2 = 2064.9 kT/kg. at 6.3 ban- frg = 2008 at 0.3 (2085-2064.9) = 2678.97 kJ/kg = 2678.97 kJ/kg	(f) Guin priving - 6.3 par	Alimania amin'ny any amin'ny avonana amin'ny avonana amin'ny avona amin'ny avona amin'ny avona amin'ny avona a
0+63 ban- Rfg, 2008 - 0.3 (2085-2064.9) - 2078-97 k7/k9	OF Chan High = 2083. OKAT Fig.	
Efg - 2018-93 (2085-2064.9) - 2018-93 kalka		
= 2678-97 kg/kg	0+6.3 ban-	1.19 '81
	Rfg - 2009 1 1 2003 - 2004 1	
	-2078.97 KJ/Kg.	
(g) Griver Dry saturated vapour += 100 C www.theTECHNOCRATZ.com	-0- 1 the= 2676.0 kg/kg V2.	0

117 = 1001022 6. - 1037.6 49= 250212 94) Juleu, volume = 0.04 m t=240'c, m==8kg => 0.94mg+0.94mg=mg at 210°C => 0.94m==0.04mg Je= 0.0012291 m3/Kg = 0059645 W3/kg · Va=Maxig => 0.1 = mg x c.30676 mg = 0.32599 kg J=mfrttmarg Thorefore mg=0.01387 kg 0 24 = 8x 0.0012291+ mg x 0.059645 => mg = 0.0301672 -0.505 m= mg+mg = 0.32599+0.01387 Total man m=mp+mg= 0+0.505 Agam at 1=1600 114=675.5KJ/Kg = 8.505 Kg Hg=2756.7 KJ/K Specific volume of mixture - 0.04 -8-205 H=Hgmg+Hpmp =675.5x 0.01387+2756.7x 0.32599 = 0.004702 m3/16 = 908.02KJ/Pi H= u+PV at t = 240°C from iteam tableu=H-PVx13 2 = 1037.6 KI/kg Rg = 2802.2 KI/kg = 908.02-6.18 ×105 KO = 850.19 KJ/Kg H=mghg tunghe = 8x1037.6+0.505x2802.2 (b) +2=250° P= 6.1806 ban = 6.1808 × 105 Nm-2 = 9718.7KJK9 From superfrated tables. 1=11+PV P1=6bar and P2=7bar L=H-PV R1=2951.6KJ/Kg and Rz=2954.6KJ/Kg = 9718.7-97187(3.3478×103x0.004702) R= R1+ (R2-R2) X(P-P1) = 2952.14 KJ/Kg = 9702.96 KJ/Kg =2952.14 X 0.347 KT= 1024.4 KJ. 3-5; Given t=160°C AH = 1024.4-913= 112.4 KJ. 1 += 160° U+= 0.00 11022 .theTECHNOCRATZ.con

V2.0

Constitution and the constitution of the L

V2 = -0.39391-0-3367 x 0.1806 + 0.39391	At 3 bon
$0_{1} = 40.53531 - 0.5351$ $\chi 0.1000 + 0.7323$	Ug=2543.0 KJ/kg Uf=561.6 KJ/kg
= 0.36352 m3/Kg	U=0.958x 2543.0+0042x561.6
	= 2459.78 m31 kg
$V_2 = V_2 \times M$ = 0.133 M^3	-Aus
H2= 42+ PV2	(b) t2=160°c v=0-58m3/kg
$a_1 U_2 = H_2 - PV_2$	P1=3bar V1=0.65626 m3/ Kg V
=1024.4-6.1806 x105 x0.133x10-3	Pz=4bar Uz=0.48338 m3/Kg
= 942/19 KJ.	Prumore at v= 0.58 m3/kg is-
Au = 942.19-851=92KJ	- P (by interpolation) = 3+ (0.65026-0.58)x1
Also, de= 42 = 112.4 kJ	6.65026-0.48338
de= Autw	=3.421 baz = 342.1KN/w
ω= 112.4-92 = 20.4 KJ.	At 160'C
-Aus	P1=3ban h1=2781.4 KJ1 Kg
	P2=4 ban R2=2773.6 KT/Kg
9.6) (9) Given U=0.58m3 m=1Kg	ENtraphy at 3.421 ban.
$\rho = 3 \cos x 10^3 \text{ N/m}^2 = 3 \text{ bar}$	R= 2781.4+ (3.421-3) x (2773.6-2+81.4)
From steam table t=133.54°C	(4-3)
0=0.58-0.58m31kg	: h= 2778-2 KJ/Kg
1 0	: AR = 144: 5KJ/Kg
At 3 ban Up = 0.0010735 m3/kg	H=U+PV
vg = 0.60553 m3/Kg	and 02 = 2778.2-342.1 x 0.58
: U=7.X 0.60553 + (1-X) X0.0010735	= 2579.8 4J/Kg
0.58 = x x 0.6044 565 +0.00 10735	×
$\sigma r \chi = 0.958$	·· Du = 2573.8-2459.7
Again from stram table at 3 bar	=120.1 KJ /Ko
Hp = 561.4KJ/Kg. and Hg =2724.7KJ/Kg.	From I'm law of in manding
: H= x Hq + (1-x) Hg	Q-X° AU
=> 1+= 0.9.58 x2724.7 +0.042 x 561.4	$d=\Delta v$
= 2633.04 KJ1Kg	= 120.1 KJ1 Kg
	-Ans
www.theTECHNOCR	

www.theTECHNOCRATZ.com

9.9) Griven, flumure of boiler = 8 ban (P1) 9.8) P2=1 bon Temperature (tel =116°C The enthalpy of the stram before enting into the throttling calonineter; x be its drynus factor 5 1 N 5577 (H1) is given as (H1) at 8 bar HI = x + (1-x) Hp = xx2767.5+ (1-x1x720.9 Given - man of dry saturated steam = 0.03 kg At francise (Ps) = 1 bar; the saturated temp. is 99.63°C Pi = 3 bar But the timp. here is 1160; therefore the Prunure of saturated water introduced = 3 bar stram obtained from T.C. is superficiated . THIS at 3 banenthalpy would bette Vg=ugxVg=0.03 x 0.60553 at100'C H2 = 2676.2 KJ/Kg H2"= 2776.3 KT/Kg Np=mpxvp=mpx 0.0010735. By interpolation at 1=116°C H2 = H2 + (1-100) (H2 -H2) =0.0181659 + wp x0.0010735 -Also, at outical foint-=2676.2+16 (2776.3-2676.2) V=mara turve = 0.003170 (mgtmf) = 0.003170x6.03tmf) H2= 2708.17 KJ/Ka But the enthality of steam runains the sain but the volume runains some throughout. : 0.0 181659 tmpx 0.0010735=0.003170 (0.03 tmp) Therefore H1=H2 From (and D) => 0.0020965 mp = 0.0180708 2708.17=xx2767.5+(1-x)x720.9 => mp = 0.0180708 0.0020965 1987-27= 2x2046.6 Man of saturable water added is 8-61kg. -Aus www.theTECHNOCRATZ.com

	- C = 0.30/U x 2 22
$h_2 = h_1' + \frac{(k_2' h_1')}{t_2' + h_2'} \times \frac{(t_2 - t_1')}{t_2' + h_2'}$	υ _c =0.35264 x0.02 =0.6070408 m ³
	$Also V_{SW} = I d^2 \times L$
=27+8-7 KJ/Kg-	$J \times \frac{1}{2} = W^2 \times U$
H2= f2: my =2778.7 KJ/kg x0.007 kg	
- (QU,Q, Y) (A.	= TX (0.280)2x 0.305 = 0.01877m3
New HI=Hz-internal energy of the hearter cow?	2
Titrual eurgy of wer sum	(0) PVN (N=NC+N2M)
$= v_{X}I = 230 \times 3.73$	- Courto +
- 264.4716	$-11V_1' = 0$.
Thrush surger of frater coil = 869.4718	6x10.0070408) =1-8x(0.025812)
Tutural energy of Richer coil = 869.47/8 H1= 194509-869.4=18581.55/6	5 = (3.66061h
R1=18581.5 = 2654.5 KJ/Kg	
0.007	$n = \frac{1.2388}{\text{hi}} (3.6606) \approx 1.24$
014ba P = 213+ 6KJ/Kg	
At 4 bar fig = 2737.6 KJ/Kg .: R1	(b) Wark done (w) = P2V2-P1V1
: R1=Rf+xRfg	W)=P2V2-P1V1
=> 2654.5=604.7+xx2132.9	-10 ⁵ :(1.3 '0 0058)
=> 2650.3 = BOY. 1 TAX E1325	=105,(1.2 (0.025812-6x0.0070408)
: > x= c.361 - Pus	- 0·24 = 0 011 ss = 5
	= 0.0469 SX 105
	=4696 K103J = 4.696 KJ
9.12) Given.	CCI VI -Aus
Diameter of yearder	CCI VL - U- Up + 22 Upg2
= 21.0 mm	
Mass of steem	1.2906=0.0010476 + x2x1.4270524
z1.02kg	A2 - 0 0A2
Primirio (P)	Also H2 = HB2 + x2 HBB2
= ;bar	=439.4+0.963x2244.1
L=305mm	= 2066-21
P2=1.2 ber	UZ = 2465.82-1-2×106×0.025812
Jc = 0.35204 m/Kg	=2462.42 KJ/kg
U1 (from strom toble) www.theTECHNOCRATE	

```
= -7.655
 By In law-
    Q-W= DU
  Q= Dutu
  =-7.655+4.656 =-2.959 "J.
9.13) Guien, _____
 Mg=1kg
P1=1×106H/m2
   =10bar, ti=250'C
P2=2×106 N/m2=20 bon
W=-610×13 H-m + Ve-
   =-610 KJ.
  Q=-890×103 J=-890KJ.
From superficiented table-
   R1=2943.0 KJ/Kg
 From Int law-
     AU=6-W
    m( fiz-fiz) =6-W
    1(R2-2943.0) =-870+610
     : R2 = 2663 KJ 1Kg
At Pz=20 bon fg=2797.2KJ/Kg.
Bz Lfg; so lfu cham is will indurated
     RZ=RB+XRBBZ
At P2=20 bar,
    2663 = 908.5+ x (1888+)
       ⇒x=0.92
                          www.theTECHNOCRATZ.com
```

Au = U2-41

= (2462.72-2845.47) KT1Kg

```
914) Given t1=80°C and t2=65°C
     Cal Specific that (p=4.19 X10 J/kgk_
           Q=mcpst
           Q= Cp At = 4.19x103 x 65+80
                  =-6: 85 KJ1Kg_
   (b) All 1= 80°C ff = 334,9 KJ (kg
       A! 12=65°C fif1 = 272.0 KJ/Kg
       Du=m(figi-figs)
        9= ff2-ff1
         = 272.0-354.9= -62.9 K3/kg -Aus
9.15) Given U= 60 ms - P1=8 bay
       T= 79.6 k superficat)
Pz= 160x 103 N/2 = .6 bar
   X= :96 and A== 12 an 2
       Q=0 (Adiabatic froms)
 (a) t1= Saturation temp at 8 bar + 19.6
        =170.4+79.6 = 250.0°C
     From superficiented table, R = 2950.4 KIKg
     Form S.F.E.E.
   al- Pz=1.6 bar
```

· (2607.464-2950.4)+422 ·602-0	Powin delivered by turbine w=3430xw3w
2 2	M=6,1 Kg/s By S. F.E. E. Θ-Wx = R2-R1 + νι²-νι²-νι²-νι² ω
√2 = 685472	By S. F.E.E.
V2=830m87	0-wx - h2-h1 + 42-42-10
υ ₁ = υθιτχρθή	
= 0.0010 546 + 0.96 (1.091 - 0.0010645) 3	$- \Rightarrow \left(-\frac{1.0 \times 10^{3} - 3430 \times 10^{3}}{6.1}\right) = \frac{100 \times 10^{3} + 10^{3} + 10^{3}}{6.1} + \frac{100 \times 10^{3}}{100} = \frac{100 \times 10^{3} + 10^{3}}{100} + \frac{100 \times 10^{3}$
= 1.04750 m ³ / Kg	
×	- h2 = 3590×103 28824×103
m=A2V2 - 12×104×030 - 0.951 Kg/6.	0.1
V1 1.04750	fiz = 2293.87 KT/Kg.
-ftus	hz=herthea
(b) Temp. of exhaulted water from condensor t=	at P2: 0.15 ban hf2 = 226.0 KT/Kg.
45°C	heg= 2373.2 KJ/kg
Initial temp of cooling water =10°C	2293-17=226-0+2 (23+3-2)
Final temp. of cooling water = 2500	=ix=0.871
m= 01957 kg/8	12: Uf1+xveg2
By SFEE- - 8-w= Δm (ΔR+ ν² + 82)0 29c 9c)	At P2= 0.15tan 0/2=0.001014m3/kg
- B-W= AW (AR + V2 + 83)0	Ugy = 10.020980 m3/Kg
	0.001014+0.871x10.020980
my (k3-k2) +u1 (V32-V22) +u0 (k5-kv)=0	= 8.729282 m3/Kg
29c	
0.951 (398-2607-46)×103-0.951 (83012 + mc (104.8-42)	m = A2V2 -> A2 - mv2
2 XI X103=0	
	- 6.1x8.729292
=) mc=38.8kg/s	2.00
-Aus	$A_2 = 0.266 \mathrm{m}^2$
6.1.2.1.000	- Aus
9.16) Guien P1= 2×106 N/W2 +1=250°C	a land to the second of the se
$\frac{\beta_{1}=2902.4kJIKq}{\beta_{2}=15K10^{3}N/m^{2}}$ Vzc20ms-1	
Heat transfer rate to atm(9)= 160×100	
E.	
www.theTECHNOCRATZ.	com
V2.0	

SUBJEK II	(0=W+Zh?
0+W=0	OJ-W+Zh
	= 718:68 KT/KS
1.2	V4 = 17. 346 - (1-0-52-7) 19.45
hat body temp. = revice	= 443 2 47/89
cat andy tank = 115 c	Paa 0.07375710" 13/m2
	Variable War
State T Sagretta Ugudas 200°C V-	Vuc 24 9.66 ~ 4.477 x 0.0 7 375 710 7 x 152
5/2-2015alfry-; hi-852.4 kg/tg	= 685.67 Kg/Eg. h= V+P
P1 = 15.549 ×105 N/m2	Proces 1-2 (130turning) 3/ 18 = 11
0, 2 0. 0015 65 m3/3	Process 1-2 (Potrigonal) 3/3 = 3h
U, ch, pv,	DW = AB = AU = 1930 - SH3 / Kg Am
= 852.4×103 - 15.549×105×0.0011565	45-1-12-19310 - 850.601
= 870:60 KT /kg	= 1015. 43. KJ/Kg
A A Para e A A A A A A A A A A A A A A A A A A	Price 275 (adiabatic)
State II By saturated rapour temp at 200's	Og - Cadralanci
	Dagon Augtou = O SWR = - DU
3 2 0.12.716 m3/kg: P. = 15.549×105 N/m-	⇒ 0 W = U, -U3 = 2593.18-1891-745
V. 2 2770.9- 15, 549 x 107 x 0.12916	= 702.8 K7/Kg
V. 2 2770.9- 15. 549 x107 x 0.12916	Pages 2-ty 10 - 1
No. of the state o	An a (180 thermal) => A Q = 1 h
that II west vapour, TA 0.712; to 40°C	1 Aug -1262.9 K1/kg
h, 2 hgc (17) X/3	50 = U4-U3- 685,67-1891.745
422 25744 - (1-0.762) (2544 - 1475)	= -1206. 075 kg/kg
= 2001. T. KT/kg	Ans 40
P3: 0:07375 × 105 N/m2	AN= 00- 000 -1282.94 1206.075
V, = 19.596 - (1-0.761) (19.545) = 14.8943 52/kg	2-81K3/kg 353
U = h_s - Peul	Process 4 -1 (adiabates) 1 + 120 ord
= 2001.56 - (0.07375 x 14.8943 x 10-3)	2 2 2 2
= 189.1-7-5 KIK9	AREA WILLIAM
	=) Au, U, -U, = i Since 625.67
	= -1 by, 93 kt/kg

delved Engra From saturated states inton, into hig ova temps interval between 17.5°C and rovic 7 5 0 7 c 0 2 7 c >> T= 1948.3 S= 1.6912+ 0.875x 5.3192= 6.326 KT/KAK 0.13285 156.2 X103 while is appointedly the A.M. of 175's and 200's 61 damp= 1256'C is good precision can be actived by using small ten 52. 6.97 KT/KgK From Sahrested Stem table i. Table is self consistent in this region. 5 55 4 bar 6 . 924 6 K7-/ Kg. K 2 or 10 ban = 6.9279 xy / xyx Salved Emple 12.3 .. the temp at which entropy is 6.97 Ky/kgk.... T. = 80+273 = 353 K P = 9+ (6.98+6.97) x1 T1= 04273= 273K Coll = 1 = 353 ... U. 41 P = 9.185 bar = 918.5 KN/m2 P= 9185 ber => 918.5 KN/m2 *** power = 90000 Kg/kg--h = 2946.8 - (2946.8 - 2943.0) x 0.185 ... h= 294609 KJ/Kg = 16000 11 = 0.25963- (0.25963- 0.23275) x 6.185 4.41x3600 > 10 = 0.25466 m3/kg ha Unpu 4. U= mpv= 2712.2 Kg/kg This falls under saturated steam table at :50°C 14 P & 39.776 bar = 39.776 x10 N/m= S= S= S+ 75A 5.661 = 2.7935+ 3.27732 i x c 0 €75 U = UL+7116 = 0.001251 : 0.575x0048= www.theTECHNOCRATZ.com

•		ă.		
8_ SA	d dien		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	1 V= 2411.38 Halle	2007 1000	Free Carrie	
1) 	V= = 411.38 K1/kg		From Softwares steam table	
1		W	Ver 3000 59t 21: 120.26 = 0.88540)
	Som 13.6		20 20 20 20 20 20 20 20 20 20 20 20 20 2	54
1				
1	$\Delta s = do$	P= 6007103 N/m2	= 120.2+ (0.92321-0.88540	1 / Imain
	AS2 2046.5		= 120.2+ (0.92321-0.88540 0.9584-0.88540	100-120.2)
it m	· (170.41,271)		= 120.2+ 15.117 = 135.400	
ģ.	AS= 4.6140 KT/Kg K	increase in contrally		and a second
1	Choquim wind		(b) W = .9. V. ln P1	
1 2	W2 800 (0.24026 - 11/5)			
	111. 32 KT		= 10 x 0.01 In (10)	- · · · · · · · · · · · · · · · · · · ·
} ——	Q = W+ OU			
1	- Aug 2046.5- 19: 20		:. W= 16.094 KT	3 3,0 9
-	= 1955 0	2.72		
<u> </u>	3 Cam		(5 S, = 2.1392+ 0.95 (4.4442)	
<u> </u>	Ve= 88 = 54	4.1.1.6	5, = 2. 1342+ 0.95 (4.4442) 3, = 6. 36066 KT/Kg K Sufer Adapted at 2 to 2	
	7.6 29 47 16	100	Super heated at 2 box 120°C = 7.1260	
	L AV2 1855.5 45/Kg			7 7 7 7 7
/	37/89		The state of the s	×1.5 / 1
-8/21	2.8		S1: 7-1268+ (7-2794-7-1268) x (135	A STATE OF THE STA
	2 179.5500 19		150-126.2 135	· Vo - 120.2)
	= 0.11274 + 0.95619430 - 091274)		: 5 = 2 20413 KJ/kge	
3	(= 0.18464 m3/Kg		Interced in entropy; AS=52-51	
- 7	mex = V1 = 0.054 Kg		VC =0.844 K.7/Kg	
	0.054 Ka		VES DEVINO TO KT/KD	
	0,			
	V, 7		Δ(3 Δαμας	N/+ + 2
	2×10 · 0 x 2 · 0 · 0 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2		15 = 00422 K3/K7	
	2×10 · 0 x 2 · 0 · 0 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2		AS = 00422 K3/kg	
	4 × 16 · 0 × 10 × 10 × 10 × 10 × 10 × 10 × 10		AS = 00422 K3/Ky	

www.theTECHNOCRATZ.com V2.0

Fige In E	Part 1 - Senting 1 - A
B.(4	
insted steam at 100 14 N/m2	TWO IS
hi= hi= 412.5 K5/Rg 7	TOS EV
SI=SI, = 130 27 KT/Kg 8 = 3	= 1117. 3 43/13
V=Vf = 0.0010434 m3/kg	(c) q u = 9x-x
pump work	
Wp V. (Po - Pr)	7 = West 44 9.5 x 150 = 18.8 %.
= 0.0010434(1.4x15-3-64x102) N.T	
= 1.356 KT	00 135
This work is ignored by process 1-12; 2=0; w=0	(9) A 1 v2 75] + WK = - [vdP
W3-4= W, 2 = 445.9 K7/kg	[27: 3]
for process 2-3	: Wx = - \ VdP
h= h= h = 417.5 K5/kg	96 final and Inikal pressure are B. S. P. respectively
h = 2787.8 KT/kg	then wx = - V(P2-P1)
: Head transfer = h2-h2= 2370.3 KT/19	= Wx = V(P,-B)
work dime =0	
Procen 2→3) Q = 2370.3 KT	(b) W1 = 0.001007 (7-3) ×106
Procen 3-4	
	: WT = 3.02 KT / Kg
i war is equal to expansion work from about 10 was a	
7,470	(m) 19-18
Process 4-1	(a) S, = 6,74H
hy = 234119 KT/Kg	: S1 = S2
412 412.5 KT/Kg	
= heat transfer = - (hy-h)	6,7 × 13 × 17 × 17 × 17 × 17 × 17 × 17 × 1
2 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Work done =0	2.00 2.112-5
	ha = 163.4 + 6 202(2403.2)
•	ha: 2015:195
The state of the s	. W= 1022.4
	4

FLAT IRANSFER ...

Q1. A cold storage room has walls made of 0.23 m of brick on outside, 0.00 m of plastic foam, and finally 1.5 cm of wood on the inside. The outside and inside air temperatures are 22°C and - 2°C respectively, if the inside and outside heat transfer coefficients are respectively 29 and 12° W/m²k and thermal conductivity of brick, foam and wood are 0.90, 0.02 and 0.17 W/mk.

a) The rate of heat removed by refrigeration of the local area is 90 m².

b) The temperature of inside surface of the brick.

Sol": drea (= 90 m²)
Let 9 se nate of heat removal sy refrigeration

	Word	Phylic	in ick,	
71 = -3"/	- la	Torons.	· ·	$\tau_o = 2^{\epsilon}$
hi = 29 W/mix.	k1 = 0.17 = N)mk	0.07	0.98 W/mk	$ho = 12 W/m^2 K$
	,,,,,	31.42		tur d

$$Q = \frac{T_B - T_A}{\left(\frac{1}{h \ddot{c} A}\right) + \frac{1}{(h o A)} + \left(\frac{b_1}{K_1 A}\right) + \left(\frac{b_2}{K_2 A}\right) + \left(\frac{b_3}{K_3 A}\right)}$$

$$Q = \frac{(22+2)\times 90}{\left(\frac{1}{29}\right) + \left(\frac{1}{12}\right) + \left(\frac{0.015}{0.17}\right) + \left(\frac{0.08}{0.02}\right) + \left(\frac{0.23}{0.93}\right)}$$

Let the nate of heat transfer through brick be 91. 9 = 91 = (Conduction + Convection) through brick.

$$486.4 = \frac{(22-T_1)^{\circ}C}{\left(\frac{0.23}{0.98\times90}\right)} + \frac{(22-T_1)}{\left(\frac{1}{12\times90}\right)}$$

$$T_1 = 22^{\circ} - \frac{486.4}{90} \left[\frac{50.23}{6.98} \right] + \left\{ \frac{1}{12} \right\}$$

$$= 22^{\circ} C - 1.718^{\circ} C$$

92. Hot sir at a temperature of 60°C is flowing through a steel pipe of 10 cm diameter. The pipe is covered with two layers of different insulating materials of thick ness 5 cm and 3 cm; their corresponding thermal conductivities are 0.23 and 0.37 to mk. The inside and entside heat transfer coefficients are 50 and 12 N/m² K. The atmosphere is at 25°C. Find rate of heat loss from a 50 m length of pipe, neglecting resistance of steel pipe.

Ol " Length of pipe = 50 m
Diameter of pipe = 10 cm = 0.1 m
Thermal conductivities of two insulating materials,

10 cm 5 cm 3 cm 10 cm 5 cm 3 cm 10 cm 5 cm 3 cm 10 cm

K2 = 10.37 W/mK

92. Hot sir at a temperature of 60°C is flowing through a steel pipe of 10 cm diameter. The pipe is covered with two layers of different insulating materials of thickness 5 cm and 3 cm; their corresponding thermal conductivities are 0.23 and 0.37 to mk. The inside and entside heat transfer coefficients are 50 and 12 N/m² K. The atmosphere is at 25°C. Find rate of heat loss from a 50 m length of pipe, neglecting resistance of steel pipe.

Length of pipe = 10 cm = 0.1 m Diameter of pipe = 10 cm = 0.1 m Thermal conductivities of two insulating materials, $k_1 = 0.23 \ W/mk$ $k_2 = 0.37 \ W/mk$

 $k_1 = 6.23$ $k_1 = 0.23$ $k_2 = 0.37$ $k_1 = 0.37$ $k_2 = 0.37$ $k_3 = 0.37$ $k_4 = 0.37$ $k_5 = 0.37$ $k_6 = 0.37$ $k_7 = 0.37$ $k_8 = 0.37$

Rate of heat last,
$$g = \frac{(60-25)}{\left(\frac{1}{hiAl}\right) + \left(\frac{1}{hoA_0}\right) + \frac{ln\left(\frac{10}{5}\right)}{k_1A_1} + \frac{ln\left(\frac{13}{5}\right)}{k_2A_2}}$$

$$\frac{9 - (60 - 25)}{(58 \times 2\pi)(5 \times 10^{-2}) \times 50} + \frac{1}{12 \times 2\pi \times 50 \times 13 \times 10^{-2}} + \frac{1}{(0.23 \times 2\pi \times 50)} + \frac{1}{(0.37 \times 2\pi \times 50)} + \frac{1}{(0.37 \times 2\pi \times 50)}$$

$$Q = \frac{35 \times 27 \times 50}{1} + \frac{1}{12 \times 13 \times 10^{-2}} + \frac{\ln 2}{0.23} + \frac{\ln (1.3)}{0.37}$$

$$9 = \frac{10995.58}{0.345 + 0.641 + 0.709 + 3.01}$$

$$9 = \frac{10995.58}{4.705}$$

93. Alt at 15°C flows over a hot plate of area 40×80 cm², which is maintained at 150°C, The heat transfer coefficient is 29 W/m²K.

Det vinine the heat transfer rate.

Sol?: Area of plate = 40×80 cm²

1274/mik

transfer Rate, g = hA (Ti-Ts)

9 = 29 × 0.32 × (150°C-15°C)

1252.8 W = 1.253 KW 94. If the plate in the above problem is made.

of stiel (K = 43 W/mK) and having thickness

20 cm and that 502 W is lost from the

plate surface by radiation, determine the

inside temperature of the plate.

Sol":

Qc = 1252.0W 8 = 502 W

Heat loss through radiation; 9r = 582 W Heat loss through convection, 9c = 1252.8 W Since, the plate is made of steel and heat flows inside steel by conduction. Heat loss for conduction must be equal to not loss to the surroundings as there is no loss of heat

9 conduction =
$$9c + 9r$$

 $\frac{T_i^2 - 150}{(0.2)} = 1252.8 + 582$
 $\frac{0.2}{(0.32 \times 43)}$
 $\frac{-(1834.8 \times 6.2)}{(0.32 \times 43)} + \frac{1}{(0.2)}$

 $T_{c}^{\circ} = \left(1834.8 \times \frac{6.2}{6.32 \times 43} + 150^{\circ}\right)^{\circ}C$

7 Ti = 176.66°C

95. An insulated steam pipe of diameter 75 mm is laid down in a room in which the air and walls are at a temp of 20°C. The surface temp and emissivity are 226°C and 0.85 respectively. Calculate the rate of heat transfer from surface per unit length of the pipe if h = 16 W/m k.

soln:

Rate of heat transfer $g = heat trans. + through through radiation consection, <math>g_c$ gr

 $9r = e \frac{6A}{L} (Ts^4 - To^4) = radiation per unit length.$

 $92 = 0.85 \times 5.66 \times 10^{-8} \times 27 \left(\frac{75}{2} \times 10^{-3}\right) \left(220^{4} - 20^{4}\right)$

" . Br = 26.55 W

 $g_c = \text{convection per unit length} = \frac{1_s - T_0}{\frac{1}{14}}$

$$g_{c} = (220-20)(16)(2\pi)\left(\frac{75}{2}\times10^{-3}\right)$$

$$= 753.98 \text{ W}.$$

$$\Rightarrow g = g_{c} + g_{s}$$

$$= 753.98 + 26.55$$

96. The inner surface of a brick wall is at 40°C and the outer surface is at 20°C. Calculate the rate of heat transfer per square metric of surface area of the wall, which is 250 mm thick.

Kbrick = 0.52 W/mk.

soln:

Let the area of bright wall be A.

Rate of heat transfer, $Q = \frac{T\hat{c} - T_0}{L}$

A Rate per unit area = $\frac{Q}{A}$ $\frac{Q}{A} = \frac{Ti - To}{\frac{L}{K}} = \frac{(Ti - To) K}{L}$ $\frac{Q}{A} = \frac{0.52 (40 - 20)}{350 \times 10^{-3}}$

OT. of furnance wall consists of 125 mm wide refractory brick and 125 mm wide insulating fire brick separated by an air gap. The outside wall is covered with a 12 mm thickness of plaster. The inner surface of the wall is at 1100°C and the room temp. 25°C. I laculate the rate at which heat is lost per m² of wall surface. The neat transfer coefficient from the outside wall surface to the air in the room is 17 W/m²k and resistance to heat flow of the air sap is 0.16 k/w. The thermal conductivity of refractory brick, firebrick wall and plaster are 1.6,0.3 and 0.14 respectively. Calculate also, each interface temp. and the temp. of outside surface of the wall.

soln:

Ti = 1100°C
$$|k_1| = 1.66$$
 $|k_2| = 0.3$ $|k_3| = 1.00$ °C $|k_3| = 1.66$ $|k_2| = 0.3$ $|k_3| = 1.00$ °C $|k$

Heat transfer | area , $g = \frac{T_0^2 - T_0}{\frac{L_1}{K_1} + \frac{L_2}{K_2} + \frac{L_3}{K_3} + \frac{1}{h} + 0.1}$

$$g = \frac{1100 - 25}{\left(\frac{125 \times 10^{-3}}{1.6}\right) + \left(\frac{125 \times 10^{-3}}{0.3}\right) + \left(\frac{12 \times 10^{-3}}{0.14}\right) + \left(\frac{1}{17}\right) + 0.16}$$

$$Q = 1344.871 W$$

 $Q = 1.344 KW$

Let heat transfer rate | area through ref. brick, fire brick and plaster be 91, 82, 93. Then, $9 = 8_1 = 8_2 = 8_3$.

$$Q_1 = \frac{(1100 - T_3) \times 1.6}{125 \times 10^{-3}} = 1344.877$$
 $T_3 = 994.93 \approx 995\% = T_3$

$$Q_2 = \frac{(T_4 - 219.38) \times 0.3}{125 \times 10^{-3}} = 1344.877$$

$$T_4 = 779.74 \times 780^{\circ}C = T_4$$

$$g_3 = \frac{(T_5 - 25)}{\frac{12 \times 10^{-3}}{0.14} + \frac{1}{17}} = 1344.877$$

$$T_5 = 219.38 \approx 220^{\circ} C = T_5$$

Jemp. of outside surface of wall,
$$T$$
:
$$9 = \frac{T - 25}{17} = 1344.877$$

$$\Rightarrow \boxed{T = 104°C}$$

98. A steel pipe of 100 mm bore and 7mm wall thickness, carrying steam at 260°C is insulated with 40 mm earth covering. This covering is in twen insulated with 60 mm of asbestos felt. If the atmospheric temp. is 15°C, Calculate therate at which heat is lost by steam per m length of pipe. The heat transfer coeff for inside and outside surface are 550 and 15 W/m²k and thermal conductivity of steam, earth and as bestos felt are 50,0.09 and 0.07 W/mk nesp. Calculate also the temperature of outside surface.

$$Q = \frac{T_0^2 - T_S}{\left[\frac{1}{hA_1} + \frac{1}{h_SA_2} + \frac{\ln(\frac{h_2}{g_Y})}{2\pi k_1 l_y} + \frac{\ln(\frac{r_3}{r_2})}{2\pi k_2 l_2} + \frac{\ln(\frac{r_4}{r_3})}{2\pi k_3 l_3}\right]}$$

8 per unit length, $\theta' = \frac{\theta}{L}$ $\theta' = \frac{260 - 15}{\left[\frac{1}{550 \times 50 \times 10^{-3} \times 27}\right] + \left(\frac{1}{15 \times 157}\right]}$ 245 5.8×10⁻³ + 0.067 + 0, 245 T-15 = 116 = 4.8 199. 10 body at 1100°C in black surrounding at 550°C has an emissitivity of 0.7 at 550°C.

Calculate rate of hear loss by radiation per m²:

(a) When body is assumed to be grey with e = 0.4.

soin:

Rate of nadiation = $e \, f \, A \, (T_2 \, Y - T_1 \, Y)$.

Radiation per m^2 , $g_g = R$, = $e \, f \, (T_2 \, Y - T_1 \, Y)$.

= $5.67 \times 10^{-8} \times 0.4 \times (1373^4 - 823^4)$

(b) When body is not grey.

Assume e is independent of surface temp.

$$\begin{array}{lll}
0_1 &= e \rho A T_1^4 \\
\frac{0_1}{A} &= e \rho T_1^4 \\
&= 0.4 \times 5.67 \times 10^{-8} \times (1373)^4 \\
&= 8.06 \times 10^{12} \times 10^{-8} = 8.06 \times 10^4
\end{array}$$

to the property of the same of	-
$Q_2 = e \rho A T_2^4$ $Q_2 = e \rho T_2^4$	-
92 = ep 124	
A	
$= 0.7 \times 5.67 \times 10^{-3} \times (823)$	
$= 0.7 \times 5.67 \times 10^{-8} \times (823)^{4}$ $= 1.82 \times 10^{4}$	
	-w
". Net 9 = Q2 - 92	
6 N X	
$= (8.06 + 1.82) \times 10^{4}$ $= 6.242 \times 10^{4}$	
-4.202×10^{4}	
6.492	-4-9
D = 1/2 42 KIAIT	
9 = 62.92 KW	