JPEG 2000

Présentation

Algorithme

- 3 étapes :
 - Transformée en ondelette discrète
 - Compression par plans de bits
 - Encodage
- Traitements optionnels

Transformée en ondelettes discrète

Filtres de Daubechies

$$c_0 = \frac{1 + \sqrt{3}}{4\sqrt{2}}$$

$$c_1 = \frac{3 + \sqrt{3}}{4\sqrt{2}}$$

$$c_0 = \frac{1 + \sqrt{3}}{4\sqrt{2}} \qquad c_1 = \frac{3 + \sqrt{3}}{4\sqrt{2}} \qquad c_2 = \frac{3 - \sqrt{3}}{4\sqrt{2}} \qquad c_3 = \frac{1 - \sqrt{3}}{4\sqrt{2}}$$

$$c_3 = \frac{1 - \sqrt{3}}{4\sqrt{2}}$$

$$h = [0, c_0, c_1, c_2, c_3, c_4]$$

$$h = [0, c_0, c_1, c_2, c_3, c_4]$$
 $g = [0, -c_4, c_3, -c_2, c_1]$

Quantification

Encodage

- Deux parties :
 - EBCOT Tier 1 : codeur par plans de bits
 - MQ-Codec : codeur arithmétique

EBCOT Tier 1

MQ-Codec: codage arithmétique

Traitements optionnels

- Changement d'espace colorimétrique
- Pavage (tiling)
- Régions d'interêt

Y'UV et Y'CrCb

Pavage

Régions d'intérêt

13/15

Conclusion

- Avantages :
 - Plus efficace que JPEG
 - Résilience aux erreurs
 - Avec ou sans pertes
- Inconvénients :
 - Plus complexe en temps et en mémoire
 - Peu utilisé par le grand public

Questions?