Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»			
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,			
информационные технологии»				

Лабораторная работа №4

«Фильтрация синусоидальных сигналов»

ДИСЦИПЛИНА: «Цифровая обработка сигналов»

Выполнил: студент гр. ИУК4-72Б			Сафронов Н.С.	
	(подпись)	_	(Ф.И.О.)	
Проверил:		(Тронов К.А.	
	(подпись)		(Ф.И.О.)	
Дата сдачи (защиты):				
Результаты сдачи (защиты):				
- Балльная оценка:				
- Оценка:				

Калуга, 2023

Цель работы: формирование практических навыков выполнения фильтрации синусоидальных сигналов с различными значениями параметров.

Постановка задачи

- 1. Задать параметры синусоидальных сигнала.
- 2. Выполнить фильтрацию трех синусоидальных сигналов с разными частотами, используя четыре вида фильтров (Баттерворта, Чебышева 1 рода, Чебышева 2 рода, эллиптического).

Вариант 14

Значения частот: $s_1 = 20$, $s_2 = 50$, $s_3 = 60$.

Фильтр Баттерворта:

$$s_1 + s_2$$
: P Φ , s_1 ;
 $s_1 + s_2 + s_3$: Φ B Ψ , $s_2 + s_3$.

Фильтр Чебышёва 1 рода:

$$s_1 + s_2$$
: ФНЧ, s_1 ;
 $s_1 + s_2 + s_3$: ПФ, $s_2 + s_3$.

Фильтр Чебышёва 2 рода:

$$s_1 + s_2$$
: ФВЧ, s_2 ;
 $s_1 + s_2 + s_3$: РФ, $s_1 + s_2$.

Эллиптический фильтр:

$$s_1 + s_2$$
: $\Pi \Phi$, s_2 ;
 $s_1 + s_2 + s_3$: Φ HЧ, s_1 .

Листинг программы

```
amp = 0.1;
step = 0.001;
t = (0:step:0.25);
freq1 = 20;
freq2 = 50;
freq3 = 60;
s1 = amp*sin(2*pi*freq1*t);
s2 = amp*sin(2*pi*freq2*t);
s3 = amp*sin(2*pi*freq3*t);
```

```
%% Фильтр Баттерворта, s1 + s2
s = s1 + s2;
subplot(5, 1, 1)
plot(t, s1);
legend("s 1");
subplot(5, 1, 2)
plot(t, s2);
legend("s 2");
subplot(5, 1, 3);
plot(t, s);
legend("s");
n = 2;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
w0 = 0.1;
Q = w0/(w2 - w1);
[b1, a1] = lp2lp(b, a, w0, Q);
f = abs(freqs(b1, a1, t));
subplot(5, 1, 4);
plot(t, f);
legend("AYX");
sf = s1.*f + s2;
subplot(5, 1, 5);
plot(t, sf);
legend("Результат фильтрации");
sgtitle("Фильтр Баттерворта")
%% Фильтр Чебышева 1 рода, s1 + s2
s = s1 + s2;
subplot(5, 1, 1)
plot(t, s1);
legend("s 1");
subplot(5, 1, 2)
plot(t, s2);
legend("s 2");
subplot(5, 1, 3);
plot(t, s);
legend("s");
n = 2;
Rp = 0.1;
[z, p, k] = cheb1ap(n, Rp);
[b, a] = zp2tf(z, p, k);
w0 = 0.1;
[b1, a1] = lp2lp(b, a, w0);
f = abs(freqs(b1, a1, 2*pi*t));
subplot(5, 1, 4);
plot(t, f);
legend("AYX");
sf = s1.*f + s2;
```

```
subplot(5, 1, 5);
plot(t, sf);
legend("Результат фильтрации");
sgtitle ("Фильтр Чебышева первого рода")
%% Фильтр Чебышева 2 рода, s1 + s2
s = s1 + s2;
subplot(5, 1, 1)
plot(t, s1);
legend("s 1");
subplot(5, 1, 2)
plot(t, s2);
legend("s 2");
subplot(5, 1, 3);
plot(t, s);
legend("s");
n = 2;
Rs = 45;
w0 = 0.2;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0);
f = abs(freqs(b1, a1, t));
subplot(5, 1, 4)
plot(t, f);
legend("AYX");
sf = s1 + s2.*f;
subplot(5, 1, 5);
plot(t, sf);
legend("Результат фильтрации");
sgtitle("Фильтр Чебышева второго рода");
%% Эллиптический фильтр, s1 + s2
s = s1 + s2;
subplot(5, 1, 1)
plot(t, s1);
legend("s 1");
subplot(5, 1, 2)
plot(t, s2);
legend("s_2");
subplot(5, 1, 3);
plot(t, s);
legend("s");
n = 2;
Rp = 0.1;
Rs = 45;
w1 = 0.05;
w2 = 0.15;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
```

```
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
f = abs(freqs(b1, a1, t));
subplot(5, 1, 4)
plot(t, f);
legend("AYX");
sf = s1 + s2.*f;
subplot(5, 1, 5);
plot(t, sf);
legend("Результат фильтрации");
sgtitle("Эллиптический фильтр");
%% Фильтр Баттерворта, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(6, 1, 1);
plot(t, s1);
legend("s 1");
subplot(6, 1, 2);
plot(t, s2);
legend("s 2");
subplot(6, 1, 3);
plot(t, s3);
legend("s 3");
subplot(6, 1, 4);
plot(t, s);
legend("s");
n = 2;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
w0 = 0.15;
[b1, a1] = lp2hp(b, a, w0);
f = abs(freqs(b1, a1, t));
subplot(6, 1, 5)
plot(t, f);
legend("AYX");
sf = s1 + s2.*f + s3.*f;
subplot(6, 1, 6);
plot(t, sf);
legend("Результат фильтрации");
sgtitle("Фильтр Баттерворта");
%% Фильтр Чебышева 1 рода, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(6, 1, 1);
plot(t, s1);
legend("s 1");
subplot(6, 1, 2);
plot(t, s2);
legend("s 2");
subplot(6, 1, 3);
```

```
plot(t, s3);
legend("s 3");
subplot(6, 1, 4);
plot(t, s);
legend("s");
n = 2;
Rp = 0.1;
[z, p, k] = cheblap(n, Rp);
[b, a] = zp2tf(z, p, k);
w1 = 0.05;
w2 = 0.15;
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
f = abs(freqs(b1, a1, t));
subplot(6, 1, 5);
plot(t, f);
legend("AYX");
sf = s1 + s2.*f + s3.*f;
subplot(6, 1, 6);
plot(t, sf);
legend ("Результат фильтрации");
sgtitle ("Фильтр Чебышева первого рода");
%% Фильтр Чебышева 2 рода, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(6, 1, 1);
plot(t, s1);
legend("s 1");
subplot(6, 1, 2);
plot(t, s2);
legend("s 2");
subplot(6, 1, 3);
plot(t, s3);
legend("s 3");
subplot(6, 1, 4);
plot(t, s);
legend("s");
n = 2;
Rs = 45;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
w1 = 0.05;
w2 = 0.1;
w0 = 2 * pi * sqrt(w1 * w2);
Bw = 2 * pi * (w2 - w1);
[b2, a2] = lp2bs(b, a, w0, Bw);
f = abs(freqs(b2, a2, 2*pi*t));
subplot(6, 1, 5)
plot(t, f);
legend("AYX");
```

```
sf = s1.*f + s2.*f + s3;
subplot(6, 1, 6);
plot(t, sf);
legend("Результат фильтрации");
sgtitle ("Фильтр Чебышева второго рода");
%% Эллиптический фильтр, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(6, 1, 1);
plot(t, s1);
legend("s 1");
subplot(6, 1, 2);
plot(t, s2);
legend("s 2");
subplot(6, 1, 3);
plot(t, s3);
legend("s 3");
subplot(6, 1, 4);
plot(t, s);
legend("s");
n = 2;
Rp = 0.1;
Rs = 45;
w0 = 0.05;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2lp(b, a, w0);
f = abs(freqs(b1, a1, t));
subplot(6, 1, 5)
plot(t, f);
legend("AYX");
sf = s1.*f + s2 + s3;
subplot(6, 1, 6);
plot(t, sf);
legend("Результат фильтрации");
sqtitle("Эллиптический фильтр");
```

Результаты выполнения программы

Рисунок 1 — Фильтр Баттерворта, $s_1 + s_2$

Рисунок 2 — Фильтр Чебышёва первого рода, $s_1 + s_2$

Рисунок 3 — Фильтр Чебышёва второго рода, $s_1 + s_2$

Рисунок 4 – Эллиптический фильтр, $s_1 + s_2$

Рисунок 5 — Фильтр Баттерворта, $s_1 + s_2 + s_3$

Рисунок 6 – Фильтр Чебышёва первого рода, $s_1 + s_2 + s_3$

Рисунок 7 — Фильтр Чебышёва второго рода, $s_1 + s_2 + s_3$

Рисунок 8 – Эллиптический фильтр, $s_1 + s_2 + s_3$

Вывод: в ходе выполнения лабораторной работы были сформированы практические навыки выполнения фильтрации синусоидальных сигналов с различными значениями параметров.