1.13 Catalan Numbers Continued ...

Remark 1.13.1. The book titled "enumerative combinatorics" by Stanley [10] gives a comprehensive list of places in combinatorics where Catalan numbers appear. A few of them are mentioned here for the inquisitive mind. The equivalence between these problems can be better understood after the chapter on recurrence relations.

 Suppose in an election two candidates A and B get exactly n votes. Then C_n equals the number of ways of counting the votes such that candidate A is always ahead of candidate B. For example,

$$C_3 = 5 = |\{AAABBB, AABABB, AABBAB, ABAABB, ABABAB\}|.$$

2. Suppose, we need to multiply n+1 given numbers, say $a_1, a_2, \ldots, a_{n+1}$. Then the different ways of multiplying these numbers, without changing the order of the elements, equals C_n . For example,

$$C_3 = 5 = |\{(((a_1a_2)a_3)a_4), ((a_1a_2)(a_3a_4)), ((a_1(a_2a_3))a_4), (a_1((a_2a_3)a_4)), (a_1(a_2(a_3a_4)))\}|.$$

3. C_n also equals the number of ways that a convex (n+2)-gon cab be sub-divided into triangles by its diagonals so that no two diagonals intersect inside the (n+2)-gon. For example, for a pentagon, the different ways are

Figure 1.4: Different divisions of pentagon

4. C_n is also equal to the number of full binary trees on 2n + 1 vertices, where recall that a full binary tree is a rooted binary tree in which every node either has exactly two offsprings or has no offspring.

Figure 1.5: Full binary trees on 7 vertices (or 4 leaves)

5. C_n is also equal to the number of Dyck paths from (0,0) to (2n,0), where recall that a Dyck path is a movement on an integer lattice in which each step is either in the North

East or in the South East direction (so the only movement from (0,0) is either to (1,1) or to (1,-1)).

6. C_n also equals the number of n nonintersecting chords joining 2n points on the circumference of a circle.

Figure 1.6: Non-intersecting chords using 6 points on the circle

7. C_n also equals the number of integer sequences that satisfy $1 \le a_1 \le a_2 \le \cdots \le a_n$ and $a_i \le i$, for all $i, 1 \le i \le n$.

The following article has been taken from [2].

Let A_n denote the set of all lattice paths from (0,0) to (n,n) and let $B_n \subset A_n$ denote the set of all lattice paths from (0,0) to (n,n) that does not go above the line Y = X. Then, the numerical values of $|A_n|$ and $|B_n|$ imply that $(n+1) \cdot |B_n| = |A_n|$. The question arises:

can we find a partition of the set A_n into (n+1)-parts, say $S_0, S_1, S_2, \ldots, S_n$ such that $S_0 = B_n$ and $|S_i| = |S_0|$, for $1 \le i \le n$?

The answer is in affirmative. Observe that any path from (0,0) to (n,n) has n right moves. So, the path is specified as soon as we know the successive right moves R_1, R_2, \ldots, R_n , where R_i equals ℓ if and only if R_i lies on the line $Y = \ell$. For example, in Figure 1.3, $R_1 = 0$, $R_2 = 0$, $R_3 = 1$, $R_4 = 1$, These R_i 's satisfy

$$0 \le R_1 \le R_2 \le \dots \le R_n \le n. \tag{1.1}$$

That is, any element of A_n can be represented by an ordered n-tuple (R_1, R_2, \ldots, R_n) satisfying Equation (1.1). Conversely, it can be easily verified that any ordered n-tuple (R_1, R_2, \ldots, R_n) satisfying Equation (1.1) corresponds to a lattice path from (0,0) to (n,n). Note that, using Remark 1.13.1.7, among the above n-tuples, the tuples that satisfy $R_i \leq i-1$, for $1 \leq i \leq n$ are elements of B_n , and vice-versa. Now, we use the tuples that represent the elements of B_n to get n+1 maps, f_0, f_1, \ldots, f_n , in such a way that $f_j(B_n)$ and $f_k(B_n)$ are disjoint, for $0 \leq j \neq k \leq n$, and $A_n = \bigcup_{k=0}^n f_k(B_n)$. In particular, for a fixed $k, 0 \leq k \leq n$, the map $f_k : B_n \longrightarrow A_n$ is defined by

$$f_k((R_1, R_2, \dots, R_n)) = (R_{i_1} \oplus_{n+1} k, R_{i_2} \oplus_{n+1} k, \dots, R_{i_n} \oplus_{n+1} k),$$

where \bigoplus_{n+1} denotes addition modulo n+1 and i_1, i_2, \ldots, i_n is a rearrangement of the numbers $1, 2, \ldots, n$ such that $0 \le R_{i_1} \oplus_{n+1} k \le R_{i_2} \oplus_{n+1} k \le \cdots \le R_{i_n} \oplus_{n+1} k$. The readers are advised to prove the following exercise as they give the required partition of the set A_n .