class14

Tin Nguyen

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data import

```
colData <- read.csv("GSE37704_metadata.csv",row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv",row.names = 1)</pre>
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				

ENSG00000279928 0
ENSG00000279457 46
ENSG00000278566 0
ENSG00000273547 0
ENSG00000187634 258

check the correspondance of colData rows and countData columns

```
rownames(colData)
```

```
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
```

Remove the troublesome first column so we can match the matadata

```
counts <- countData[,-1]
all(rownames(colData) == colnames(counts))</pre>
```

[1] TRUE

We will ahve rows in 'counts' for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Remove zero count genes

If the rowSums() is zero then a give gene (i.e. row) has no count data and we should exclode these genes from further consideration.

```
#rowSums(counts) == 0

to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep, ]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

SEtup DESeq object for analysis

```
dds <- DESeqDataSetFromMatrix(countData = cleancounts,</pre>
                               colData = colData,
                               design = ~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
#Run DESeq analysis
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
#Extract the results
res <- results(dds)
head(res)
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

```
baseMean log2FoldChange
                                           lfcSE
                                                       stat
                                                                pvalue
               <numeric>
                             <numeric> <numeric> <numeric>
                                                             <numeric>
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                             0.4264571 0.1402658 3.040350 2.36304e-03
                           -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000188976 1651.1881
ENSG00000187961 209.6379
                            0.7297556 0.1318599 5.534326 3.12428e-08
                             0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187583 47.2551
ENSG00000187642 11.9798
                             0.5428105 0.5215599 1.040744 2.97994e-01
                      padj
                 <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

```
mycols <- rep("gray", nrow(res))
mycols[ res$log2FoldChange <= -2 ] <- "blue"
mycols[ res$log2FoldChange >= +2 ] <- "red"
mycols[res$padj >= 0.005] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col = mycols)

abline( v = -2, col = "red" )
abline( v = +2, col = "red" )
abline( h = -log(0.05), col = "red" )</pre>
```


#Add Gene annotation

```
library("AnnotationDbi")
library("org.Hs.eg.db")
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                   "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL" "PATH"
                                                                   "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
```

#row.names(res)

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 7 columns

```
baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                  29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583
                 47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
                               0.5428105 0.5215599
                                                     1.040744 2.97994e-01
ENSG00000187642
                  11.9798
                       padj
                                 symbol
                  <numeric> <character>
ENSG00000279457 6.86555e-01
                                     NΑ
ENSG00000187634 5.15718e-03
                                 SAMD11
ENSG00000188976 1.76549e-35
                                 NOC2L
ENSG00000187961 1.13413e-07
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
ENSG00000187642 4.03379e-01
                                  PERM1
```

#Save my results to a CSV file

```
write.csv(res, file = "results.csv")
```

#Result visualization

```
library(ggplot2)

ggplot(as.data.frame(res))+
   aes(log2FoldChange, -log(padj), label=res$symbol) +
   geom_point( color = mycols) +
   geom_vline(xintercept = -2, color = "red") +
   geom_vline(xintercept = 2, color = "red") +
   geom_hline(yintercept = -log(0.05), color = "red") +
   labs(title = "Title", x= "xaxis" ,y ="yaxis") +
   theme_bw() +
   labs( x = "Log2 Fold-Change", y = "-log(Adjusted P-value)")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

```
0.1792571 0.3248216
ENSG00000279457
                  29.9136
                                                    0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
                  47.2551
                               0.0405765 0.2718928
                                                    0.149237 8.81366e-01
ENSG00000187583
ENSG00000187642
                  11.9798
                               0.5428105 0.5215599 1.040744 2.97994e-01
                                 symbol
                                                          name
                       padj
                  <numeric> <character>
                                                   <character> <character>
ENSG00000279457 6.86555e-01
                                     NA
                                                            NA
                                                                        NA
ENSG00000187634 5.15718e-03
                                 SAMD11 sterile alpha motif ..
                                                                    148398
ENSG00000188976 1.76549e-35
                                  NOC2L NOC2 like nucleolar ..
                                                                     26155
ENSG00000187961 1.13413e-07
                                 KLHL17 kelch like family me..
                                                                    339451
ENSG00000187583 9.19031e-01
                                PLEKHN1 pleckstrin homology ..
                                                                     84069
ENSG00000187642 4.03379e-01
                                  PERM1 PPARGC1 and ESRR ind..
                                                                     84808
library(gage)
library(gageData)
library(pathview)
data(kegg.sets.hs)
# Examine the first 2 pathways in this kegg set for humans
head(kegg.sets.hs, 2)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066" "10720" "10941" "151531" "1548"
                                                           "1549"
                                                                    "1551"
 [9] "1553"
                       "1577"
              "1576"
                                "1806"
                                         "1807"
                                                  "1890"
                                                           "221223" "2990"
[17] "3251"
              "3614"
                       "3615"
                                "3704"
                                         "51733"
                                                  "54490"
                                                           "54575"
                                                                    "54576"
[25] "54577"
              "54578" "54579" "54600"
                                        "54657" "54658"
                                                           "54659"
                                                                    "54963"
                                         "7172"
[33] "574537" "64816"
                       "7083"
                                "7084"
                                                  "7363"
                                                           "7364"
                                                                    "7365"
[41] "7366"
              "7367"
                       "7371"
                                "7372"
                                         "7378"
                                                  "7498"
                                                           "79799"
                                                                    "83549"
[49] "8824"
                       "9"
              "8833"
                                "978"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

library(pathview)

```
library(gage)
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
                        "10720"
                                                              "1549"
                                                                       "1551"
              "1066"
                                 "10941"
                                           "151531" "1548"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
                        "7083"
                                 "7084"
[41] "7366"
                                           "7378"
                                                    "7498"
              "7367"
                        "7371"
                                 "7372"
                                                              "79799"
                                                                       "83549"
[49] "8824"
              "8833"
                        "9"
                                 "978"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201" "10606" "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                        "10714"
  [9] "108"
                "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                                        "159"
                                                               "158"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
 [33] "2272"
                "22978"
                         "23649"
                                  "246721"
                                            "25885"
                                                     "2618"
                                                               "26289"
                                                                        "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
                         "29922"
 [49] "2986"
                "2987"
                                  "3000"
                                            "30833"
                                                     "30834"
                                                               "318"
                                                                        "3251"
 [57] "353"
                "3614"
                         "3615"
                                  "3704"
                                            "377841" "471"
                                                               "4830"
                                                                        "4831"
 [65] "4832"
                "4833"
                                            "4882"
                                                     "4907"
                                                               "50484"
                                                                        "50940"
                         "4860"
                                   "4881"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                     "5138"
                                                               "5139"
                                                                        "5140"
                         "5143"
 [81] "5141"
                "5142"
                                            "5145"
                                                     "5146"
                                                               "5147"
                                   "5144"
                                                                        "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                            "5153"
                                                     "5158"
                                                               "5167"
                                                                        "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                            "5315"
                                                     "53343"
                                                               "54107"
                                                                        "5422"
[105] "5424"
                "5425"
                         "5426"
                                  "5427"
                                            "5430"
                                                     "5431"
                                                               "5432"
                                                                        "5433"
```

```
[113] "5434"
             "5435"
                       "5436"
                                "5437"
                                         "5438"
                                                 "5439"
                                                          "5440"
                                                                   "5441"
[121] "5471"
              "548644" "55276"
                                "5557"
                                         "5558"
                                                 "55703"
                                                          "55811"
                                                                   "55821"
                                                 "57804"
[129] "5631"
              "5634"
                       "56655" "56953"
                                         "56985"
                                                          "58497" "6240"
[137] "6241"
              "64425"
                       "646625" "654364"
                                         "661"
                                                 "7498"
                                                          "8382"
                                                                   "84172"
                       "84618" "8622"
                                         "8654"
                                                          "8833"
                                                                   "9060"
[145] "84265" "84284"
                                                 "87178"
[153] "9061"
              "93034"
                       "953"
                                "9533"
                                         "954"
                                                 "955"
                                                          "956"
                                                                   "957"
[161] "9583"
              "9615"
foldchanges = res$log2FoldChange
```

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mear	n p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	1 8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	3 9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	3 1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	9 3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	3.995727e-06
hsa03030	DNA replication	0.007586381	36 9	9.424076e-05
hsa03013	RNA transport	0.066915974	144 1	l.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	3.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8	3.961413e-03

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14

Info: Writing image file hsa04110.pathview.png

Figure 1: hsa04110

A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

```
'select()' returned 1:1 mapping between keys and columns
```

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14

Info: Writing image file hsa04110.pathview.pdf

Reactome analysis online

we need to make a little file of our significant genes that we can upload to the reactome webpage:

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14

```
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14
Info: Writing image file hsa04142.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/tinnguyen/Downloads/BIMM143/class14
Info: Writing image file hsa04330.pathview.png
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"
sig_genes[6]
ENSG00000188157
```

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote

"AGRN"