Билет 16

Формирование ЧМ- сигнала. СМХ. Выбор рабочего режима.

Формирование ЧМ сигнала.

ЧМ сигнал может быть получен с помощью частотного модулятора. Частотный модулятор состоит из автогенератора и элемента с помощью которого изменяется частота автогенерации.

Рис.4.5.

Автогенератор - генератор с самовозбуждением, т.е. усилитель, охваченный цепью положительной обратной связи (колебания с выхода поступают на вход, поддерживая возникшие колебания).

Для LRC - генератора цепью обратной связи может быть катушка обратной связи.

Элементом, управляющим частотой генератора, в этом случае является варикап (емкость p-n перехода, которая зависит от приложенного напряжения).

Для RC - генератора цепью обратной связи является цепочка RC.

В качестве резистора R используются сопротивления транзисторов, зависящие от приложенного напряжения. Частота генерации RC генератора определяется выражением:

$$\omega_{\Gamma} = \frac{1}{RC} \tag{4.3}$$

В соответствии с модулирующим НЧ сигналом меняется R, следовательно, меняется частота генерации генератора.

Статическая модуляционная характеристика (СМХ).

Основной характеристикой частотного модулятора является статическая модуляционная характеристика (CMX).

Статической Модуляционной Характеристикой частотного модулятора называется зависимость частоты генерируемых колебаний от напряжения смещения E:

$$\omega_{\varepsilon} = f(E)$$

Пусть нам известна зависимость сопротивления R в цепи обратной связи частотно-модулируемого генератора от напряжения смещения E:

- 1. Задаемся каким-то смещением Е', по графику находим R'.
- 2. Определяем частоту генерации:

$$\omega_{\mathbf{r}}^{\prime} = \frac{1}{R^{\prime}C}$$

3. Задаемся смещением Е", находим R", находим ω_r ", и т.д. Стандартная СМХ для частотного модулятора имеет вид:

Выбор рабочего режима по СМХ.

- 1. Выбираем на глаз линейный участок на СМХ.
- 2. Определяем границы рабочего участка: ω_{rmax} , ω_{rmin} , E_{max} , E_{min} .
- 3. Выбираем рабочую точку в середине рабочего участка. Определяем ω_0 и $E_{\text{p.t.}}$ для рабочей точки.
- 4. Определяем максимальную амплитуду модулирующего (Н.Ч.) сигнала:

$$U_{\text{m}} \cong \frac{E_{\text{max}} - E_{\text{min}}}{2} \approx E_{\text{max}} - E_{\text{p.t.}}$$

5. Определяем максимально-допустимую девиацию частоты:

$$\Delta\omega_{\text{max}} \cong \frac{\omega_{\text{r max}} - \omega_{\text{r min}}}{2} \approx \omega_{\text{r max}} - \omega_{0}$$

6. Определяем максимально допустимый индекс неискаженной ЧМ.

$$M_{\text{wmax}} = \frac{\Delta \omega_{\text{max}}}{\Omega}, M_{\text{wmax}} = \frac{\Delta f_{\text{max}}(\Gamma \mu)}{F(\Gamma \mu)}$$

 Задача различения сигналов. Критерии различения. Оптимальные алгоритмы приема при полностью известных сигналах на фоне АБГШ. Когерентный прием.

Задача обнаружения сигнала на фоне шума является частным случаем задачи различения двух сигналов. В общем случай задача различения — задача проверки m статистических гипотез.

Рассматриваются гипотезы: H_k : $y(t) = S_k(t) + \eta(t)$, $k = \overline{I:m}$, по каждой из которых на входе приемного устройства в смеси с шумом присутствует сигнал $S_k(t)$. Обрабатывая выборку наблюдаемого процесса y(t), надо принять решение о том, который из m возможных сигналов пришел на вход приемника.

Для задач различения чаще более обоснованным является применение критерия идеального наблюдателя, максимума апостериорной вероятности и максимума отношения правдоподобия.

2.2.1. Критерий идеального наблюдателя (критерий Зигерта-Котельникова)

Критерий идеального наблюдателя заключается в минимизации средней вероятности ошибки. Для случая m гипотез он выглядит следующим образом:

$$P_{OUU} = \sum_{k=1}^{m} \sum_{j=1}^{m} P(H_k) P(\gamma_j | H_k) = P_{OUU \ min} , \qquad (2.27)$$

где $P(H_k)$ - априорные вероятности появления сигналов $S_k(t)$, $P(\gamma_j | H_k)$ -вероятность принять решение о появлении j – го сигнала при условии, что на самом деле присутствует k – ый сигнал. По критерию идеального наблюдателя решающее правило имеет вид:

приемник регистрирует сигнал $S_k(t)$, если для всех 1 ($1 \neq k$) выполняющиеся m-1 неравенство:

$$A_{kl}\left(\vec{\mathbf{y}}_{n}\right) > \frac{p_{l}}{p_{t}} \tag{2.28}$$

$$k = \overline{l:m}, \qquad \Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right) = \frac{w\left(\overrightarrow{\mathbf{y}}_{n} \mid H_{k}\right)}{w\left(\overrightarrow{\mathbf{y}}_{n} \mid H_{l}\right)}, \qquad \overrightarrow{\mathbf{y}}_{n} = \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}) - \frac{1}{2} \left(y_{1}, \dots, y_{n}\right), \qquad p_{l} = P(H_{l}), \ p_{k} = P(H_{k}), \ p_{k} = P(H_$$

априорные вероятности появления сигналов $S_l(t)$ и $S_k(t)$ соответственно.

Алгоритм (2.28) можно переписать в следующем виде:

$$p_k w(\overrightarrow{\mathbf{y}_n} | H_k) > p_l w(\overrightarrow{\mathbf{y}_n} | H_l), k \neq l$$

$$p_k w(\overrightarrow{\mathbf{y}_n} \mid H_k) = \max_k \tag{2.29}$$

Рисунок 2.7. Структурная схема алгоритма различения сигналов по критерию идеального наблюдателя.

Приемник, работающий по правилу (2.29) назван Котельниковым В.А. идеальным (оптимальным).

2.2.2. Критерий максимальной апостериорной вероятности (МАВ).

Критерий МАВ можно получить, переписав формулу (2.29) следующим образом:

$$\frac{p_k w \left(\overrightarrow{\mathbf{y_n}} \mid H_k\right)}{\sum\limits_{i=l}^m p_i w \left(\overrightarrow{\mathbf{y_n}} \mid H_i\right)} = P \Big(H_k \mid \overrightarrow{\mathbf{y_n}}\Big) \quad \text{- апостериорная вероятность гипотезы } H_k \implies$$

совокупность неравенств, эквивалентная (2.29) принимает вид:

$$P(H_{k} \mid \overrightarrow{\mathbf{y}_{\mathbf{n}}}) = \max_{k} \tag{2.30}$$

Рисунок 2.8. Структурная схема алгоритма различения сигналов по критерию **MAB**.

Недостатком алгоритмов (2.29) и (2.30) является то, что надо знать априорные вероятности гипотез p_{\flat} , $k = \overline{I : m}$.

2.2.3. Критерий максимального отношения правдоподобия.

Приемник регистрирует сигнал $S_{k}(t)$, если

$$\Lambda_{ko}\left(\overrightarrow{\mathbf{y}_n}\right) = \max_{k} \tag{2.31}$$

Индекс «0» - нулевая гипотеза H₀ о действии только шума.

Если априорные вероятности гипотез H_k равны, т.е. $P(H_k) = \frac{1}{m}$, $k = \overline{1 : m} \Rightarrow$ критерий максимального отношения правдоподобия совпадает с критериям идеального наблюдения.

2.2.4. <u>Оптимальные алгоритмы приема при полностью известных сигналах</u> (когерентный прием) на фоне аддитивного ГБШ.

Рассмотрим модель приходящего сигнала: $y_i = S_{ki} + \eta_i$, $i = \overline{I:n}$, дискретное время, сигналы S_{ki} — известны η_i - шум. Неизвестны реализация помехи η_i и индекс k переданного сигнала, который должна определить решающая схема.

Запишем отношение правдоподобия:
$$A_{kl}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{k}\right)}{w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{l}\right)}$$
, где $w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{k}\right)$ -

многомерная гауссовская ФПВ выборки $\overrightarrow{\mathbf{y}}_n$ при условии действия гипотезы H_k

Т.к. шум η_i - белый \Rightarrow выборка $\overrightarrow{\mathbf{y}_{\mathtt{n}}}$ независимая, тогда $w\left(\overrightarrow{\mathbf{y}_{n}}\,|\,H_k\right)$

факторизуется:
$$w(\overrightarrow{\mathbf{y}_n} \mid H_k) = \prod_{i=1}^n w(y_i \mid H_k) = \frac{1}{\left(\sqrt{2\pi}\sigma_\eta\right)^n} exp\left(-\sum_{i=1}^n \frac{\left(y_i - S_{ki}\right)^2}{2\sigma_\eta^2}\right)$$
. В

этом случае отношение правдоподобия приводится к виду:

$$\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right) = exp\left(-\sum_{i=1}^{n} \frac{\left(y_{i} - S_{ki}\right)^{2}}{2\sigma_{\eta}^{2}} + \sum_{i=1}^{n} \frac{\left(y_{i} - S_{li}\right)^{2}}{2\sigma_{\eta}^{2}}\right).$$

Далее возьмем от левой и правой части данного выражения функцию натурального логарифма:

$$ln \Lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} (-y_{i}^{2} + 2y_{i}S_{ki} - S_{ki}^{2} + y_{i}^{2} - 2y_{l}S_{kl} + S_{li}^{2}) \Rightarrow$$

$$\lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{ki} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{li} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2}\right).$$

По критерию идеального наблюдателя (см. 2.28) $\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right)$ сравнивается с единицей при $p_{l}=\frac{1}{m},\ l=\overline{l:m}$, а $\lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right)$ с «0» т.к. $\ln 1=0 \Rightarrow$

$$\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{ki} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{li} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2} \right) \ge 0.$$

Обозначив $E_k = \sum_{i=1}^n S_{ki}^2$ - энергию сигнала S_{ki} , получим алгоритм различения:

Передается сигнал S_{ki} , если

$$\sum_{i=l}^{n} y_{i} S_{ki} - 0.5 E_{k} \ge \sum_{i=l}^{n} y_{i} S_{li} - 0.5 E_{l}, \text{ при } l = \overline{1:m}, l \ne k$$
 (2.32)

На рисунке 2.9. изображена структурная схема алгоритма (2.32) различения детерминированных сигналов в дискретном и непрерывном времени.

б)

Рисунок 2.9. Оптимальный демодулятор детерминированного сигнала, реализованный на корреляторах в дискретном времени - а, в непрерывном времени - б $E_k = \int\limits_{-T_H}^{T_H} S_k^2(t) \, , \; k = \overline{1,m} \, .$

Достоинством корреляционной схемы приема сигналов является ее простота, недостатком – чувствительность к задержке сигнала.

Задача. Установить связь между параметрами a, b для случайного процесса с одномерной плотностью распределения вероятности

$$w(x) = a(1 - \frac{|x|}{b}), x \in [-b; b].$$

плотностью распределения вероятности
$$w(x) = a(1 - \frac{|x|}{b}), x \in [-b; b].$$

Умимовить вызывния а и в дл $[\Pi]$ с

однацирный пламичения
$$w(x) = a(1 - \frac{|x|}{b}), x \in [-b, b]$$

$$w(x) = a(1 - \frac{|x|}{b}), x \in [-b, b]$$

$$\int_{a(1 - \frac{|x|}{b})} dx = 1 \Rightarrow 2\int_{a(1 - \frac{x}{b})} dx = 1$$

$$2ab - ab = 1$$

$$ab = 1$$

$$ab = 1$$

$$ab = 1$$