

Network Layer: Logical Addressing

IPv4 ADDRESSES

An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router) to the Internet.

An IPv4 address is 32 bits long.

The IPv4 addresses are unique and universal.

The address space of IPv4 is 2³² or 4,294,967,296.

Figure Dotted-decimal notation and binary notation for an IPv4 address

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- **b.** 11000001 10000011 00011011 11111111

Solution

We replace each group of 8 bits with its equivalent decimal number and add dots for separation.

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- **b.** 11000001 10000011 00011011 11111111

Solution

We replace each group of 8 bits with its equivalent decimal number and add dots for separation.

- a. 129.11.11.239
- b. 193.131.27.255

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

- a. 111.56.45.78
- **b.** 221.34.7.82

Solution

We replace each decimal number with its binary equivalent

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

- a. 111.56.45.78
- **b.** 221.34.7.82

Solution

We replace each decimal number with its binary equivalent

- a. 01101111 00111000 00101101 01001110
- **b.** 11011101 00100010 00000111 01010010

Find the error, if any, in the following IPv4 addresses.

- a. 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- **d.** 11100010.23.14.67

Find the error, if any, in the following IPv4 addresses.

- a. 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- **d.** 11100010.23.14.67

Solution

- a. There must be no leading zero (045).
- b. There can be no more than four numbers.
- c. Each number needs to be less than or equal to 255.
- d. A mixture of binary notation and dotted-decimal notation is not allowed.

In classful addressing, the address space is divided into five classes: A, B, C, D, and E.

Figure Finding the classes in binary and dotted-decimal notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

a. Binary notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0–127			
Class B	128–191			
Class C	192–223			
Class D	224–239			
Class E	240–255			

b. Dotted-decimal notation

- **1.Network ID** represents the IP Address of the network and is used to identify the network.
- 2.Host ID represents the IP Address of the host and is used to identify the host within the network.

Format of an IP Address

Find the class of each address.

- 00000001 00001011 00001011 11101111
- <u>110</u>00001 10000011 00011011 11111111
- 14.23.120.8
- *d.* 252.5.15.111

Find the class of each address.

- *a.* 00000001 00001011 00001011 11101111
- *b*. <u>110</u>000001 10000011 00011011 11111111
- *c.* 14.23.120.8
- *d.* 252.5.15.111

Solution

- a. The first bit is 0. This is a class A address.
- b. The first 2 bits are 1; the third bit is 0. This is a class C address.
- c. The first byte is 14; the class is A.
- d. The first byte is 252; the class is E.

Table Number of blocks and block size in classful IPv4 addressing

Class	Number of Blocks	Block Size	Application
A	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

Class of IP Address	Total Number of IP Addresses	1st Octet Decimal Range	Number of Networks available	Hosts per network	Default Subnet Mask
Class A	2 ³¹	1 – 126	2 ⁷ – 2	2 ²⁴ – 2	255.0.0.0
Class B	2 ³⁰	128 – 191	2 ¹⁴	2 ¹⁶ – 2	255.255.0.0
Class C	2 ²⁹	192 – 223	2 ²¹	2 ⁸ – 2	255.255.255.0
Class D	2 ²⁸	224 – 239	Not defined	Not defined	Not defined
Class E	2 ²⁸	240 – 254	Not defined	Not defined	Not defined

In class A, total number of IP Addresses available for networks are 2 less.

- •This is to account for the two reserved network IP Addresses 0.xxx.xxx.xxx and 127.xxx.xxx.xxx.
- •IP Address 0.0.0.0 is reserved for broadcasting requirements.
- •IP Address 127.0.0.1 is reserved for loopback address used for software testing.

- •This is to account for the two reserved IP addresses in which all the bits for host ID are either zero or one.
- •When all Host ID bits are 0, it represents the Network ID for the network(NID).
- •When all Host ID bits are 1, it represents the Broadcast Address(DBA).

In classful addressing, a large part of the available addresses were wasted.

IPv6 - Address

IPv6 Address format, we shall look into Hexadecimal Number System. Hexadecimal is a positional number system that uses radix (base) of 16. To represent the values in readable format, this system uses 0-9 symbols to represent values from zero to nine and A-F to represent values from ten to fifteen. Every digit in Hexadecimal can represent values from 0 to 15.

Address Structure

An IPv6 address is made of 128 bits divided into eight 16-bits blocks. Each block is then converted into 4-digit Hexadecimal numbers separated by colon symbols.

Each block is then col 2001:0000:3238:DFE1:0063:0000:0000:FEFB by ':' symbol:

IPv6 looks different than IPv4 but there are some similarities. For example we have unicast addresses and we still have a "public" and "private" range. We use different names for these but the idea is the same.