主専攻実験第1回課題発表

学籍番号: 202011061

氏名: 岡部 純弥

概要

• パズルとして **ボンバーパズル** を選択

パズルのルール

1						1				X	
		2		4			X	2		4	X
	2						2		X	X	
			4				X		4	X	
1				3	2	1			X	3	2
	1						1	X		X	

パズルのルール

- 盤面上の 爆弾の位置 を全て決定する
- 各マスにはただ1つの爆弾があるかないか
- 数字は周囲8マスに埋まっている爆弾の数を表す
- 数字が書かれているマスには爆弾は **ない**

変数の定義

- ullet (n+2) imes (n+2) の盤面 A
- ・ 爆弾がマス (i,j) にある := A(i,j)=1
- ullet マス(i,j)の数字がN := B(i,j)=N
- 数字が書かれているマス全体の集合 $S \coloneqq \{A(i_n,j_n)|A(i_n,j_n)>0\}$

盤面を(n+2) imes (n+2)とする理由は、定式化の際の場合分けをなくすため(後述)

定式化

制約条件

$$egin{aligned} orall A(i_n,j_n) &\in S; \quad A(i_n,j_n) = 0 \ orall A(i_n,j_n) &\in S; \quad \sum_{k=-1}^1 \sum_{l=-1}^1 A(i_{n+k},j_{n+l}) = B(i_n,j_n) \end{aligned}$$

目的関数

minimize 1

実装

- 最適化プログラム
- ランダムな初期盤面を生成するプログラム
- ランダムな 実行可能解の存在する 初期盤面を生成するプログラム

実装

工夫

盤面の境界における場合分けがメンドウであるため、ダミーセルを追加した

ダミー	ダミー	ダミー	ダミー	ダミー
ダミー		X		ダミー
ダミー		X	X	ダミー
ダミー		X		ダミー
ダミー	ダミー	ダミー	ダミー	ダミー

計算機実験の結果

結果

「ランダムな10回のテストを行う」のを10回実行し、正しく動作することを確認

まとめ

ボンバーパズルの「定式化 -> 実装 -> テスト」の一連の流れを行った

10

今後の課題

ゲームルールの拡張

- 1マスに爆弾が2つ埋まっている
- 数字が書かれているマスに爆弾が埋まっている

盤面を画像化するジェネレーターの実装

その他

• GitHub リポジトリ: https://github.com/Okabe-Junya/MajorExperimentsA

12