Comparação de Desempenho de Redes Aplicado a Reconhecimento de Dígitos Desenhados à Mão

José Geraldo Fernandes

Escola de Engenharia Universidade Federal de Minas Gerais Belo Horizonte, Brasil josegeraldof@ufmg.br

Resumo—Este trabalho avalia a performance de diferentes classificadores para o reconhecimento de dígitos desenhados à mão de um subconjunto do MNIST. Utilizou-se redes SVM, extração de características com PCA e CNN.

I. Introdução

O MNIST [1] é um extenso conjunto de imagens de dígitos desenhados à mão, comumente utilizado em aplicações de *machine learning*. Cada imagem corresponde a um quadrado de 28 *pixels* de uma escala de cinza. O subconjunto utilizado neste trabalho contém apenas os dígitos 1, 5, 6 e 7, como ilustra a Figura 1, e 13017 amostras.

Figura 1. Amostras do subconjunto utilizado.

Cada amostra é portanto tratada como um vetor único de 784 dimensões, um atributo corresponde a um pixel da imagem orientado horizontalmente. A base é quase equilibrada, sua distribuição é como na Figura 2.

Para validação também utilizou-se um conjunto de 4000 amostras sem classificação para propósito de uma competição.

II. IMPLEMENTAÇÃO

Para a implementação dos modelos utilizou-se pacotes do R e Python de interesse.

O *kernlab* [2] é um pacote de *machine learning* baseado em *kernel* com vários métodos de classificação, regressão e *clustering*, foi utilizado para a implementação do SVM.

A rede CNN foi implementada em Python por conta da biblioteca Keras [3], que oferece uma interface poderosa e intuitiva para o desenvolvimento de redes neurais artificiais.

A implementação de todos os modelos deste trabalho está disponível no nosso repositório [4] no *GitHub*.

Figura 2. Distribuição dos dígitos.

SVM

SVM - Support Vector Machines é uma forma eficiente e econômica de representar curvas complexas em espaços de alta dimensão [5]. São baseados nos limites das classes no espaço a partir da máxima separação das observações mais próximas.

Para um problema binário, e seu conjunto de dados $D = \{(\boldsymbol{x_i}, y_i) | x_i \in \mathbb{R}^m, y_i\}_i$, a regra de decisão é como na Equação 1 [6].

$$\hat{y}(\boldsymbol{x}) = sign(\sum \hat{\alpha} y_i K(\boldsymbol{x}_i, \boldsymbol{x}) + \hat{b})$$
 (1)

Sendo $K(x_i, x)$ a função de *kernel*. Neste trabalho utilizouse a função de base radial gaussiana, RBF.

PCA

PCA - *Principal Component Analysis* é uma forma não supervisionada de extração de características importantes a partir da variância dos dados, reduzindo também a complexidade espacial [7].

O método é simples, basta transformar o espaço na direção dos autovetores calculados das amostras. Cada autovalor carrega uma parcela da variância e pode-se selecionar apenas um subconjunto representativo.

CNN

Redes convolucionais têm o poder de treinar redes de múltiplas camadas capturando mapeamentos complexos, não lineares e de alta dimensão [8]. Por esse motivo, são candidatas naturais para a solução deste tipo de problema, e, em verdade, estado da arte no tópico, uma simples inspeção nos classificadores referenciados pela equipe do MNIST [1] afirma esse ponto.

Neste trabalho, foi utilizada uma arquitetura não tão moderna mas suficiente para o problema, a LeNet-5, adaptada para quatro classes, utilizada também no artigo do MNIST [8].

A arquitetura LeNet-5 corresponde de sete camadas: duas convolucionais; duas de subamostragem; e, duas totalmente conectadas.

A primeira camada, de convolução, corresponde de 6 filtros 3x3 com ativação ReLU, aqui a entrada de 28x28 foi preenchida com zeros para corresponder a entrada 32x32 da arquitetura.

Segundo, uma camada de subamostragem com valor médio e tamanho 2x2. A terceira e quarta são uma repetição das primeiras, com exceção de 16 filtros de convolução em vez de 6.

Finalmente, as últimas camadas totalmente conectadas com 120 e 84 unidades com, também, ativação ReLU. A saída é *one-hot* nas quatro classes. A Figura 3 [8] mostra um esquema da arquitetura.

Figura 3. Arquitetura LeNet-5, apenas quatro saídas.

III. EXPERIMENTOS

Os experimentos seguiram o padrão para treinamento de redes artificiais. Para cada modelo selecionou-se os parâmetros pelo método *k-fold* de validação cruzada, utilizando dez partições.

Uma etapa adicional foi realizada por motivo da competição, a classificação das amostras sem rótulo. Para tanto, selecionou-se o melhor modelo das dez partições, digase, aquele com maior acurácia de teste, para inferência.

Sobre esse conjunto, é importante destacar algumas hipóteses não comprovadas que foram aproveitadas neste trabalho.

Número um, as amostras estão em ordem de classificação, isto é, o primeiro quarto delas são da classe 1 e assim por diante. Assim sendo, é possível avaliar a acurácia da inferência.

Número dois, as amostras são representativas do conjunto rotulado. Em outras palavras, ambos conjuntos têm a mesma distribuição e diversidade. Com exceção, é claro, do equilíbrio total das classes, por consequência da hipótese número um.

Essas hipóteses foram levantadas por uma inspeção manual e superficial das amostras não rotuladas.

IV. RESULTADOS

Segue a acurácia média e da validação dos modelos, como na Tabela I.

Utilizou-se uma SVM com *kernel* RBF a partir dos dados puros e, também, de um pré-processamento por PCA, com 40 atributos. A CNN utilizada foi a arquitetura LeNet-5.

Tabela I ACURÁCIA

Modelo	k-folds	Validação*
SVM	0.992 ± 0.002	0.992
SVM-PCA	0.992 ± 0.002	0.151
LeNet-5	0.995 ± 0.002	0.995

V. DISCUSSÃO

Como esperado, o desempenho da CNN foi superior. Mesmo assim, é surpreendente o quanto a SVM não perde por muito, apesar de a inclusão de novas classes (dígitos que foram suprimidos) poder aumentar essa diferença. A equipe do MNIST mantém uma tabela de referência [1] de acurácia, os valores encontrados não foram distoantes.

Apesar disso, o que salta os olhos é a acurácia de validação do modelo SVM com PCA. É possível uma inspeção visual das duas primeiras componentes do PCA, como na Figura 4 e 5.

Figura 4. Amostras rotuladas, em preto 1, em azul 5, em rosa 6 e em amarelo 7.

Este resultado ameaça as hipóteses levantadas já que a distribuição das classes é muito diferente na representação em duas dimensões.

Mesmo assim, ainda há motivos para manter a confiança. Primeiro, os números dos outros modelos não mostraram o mesmo fenômeno e estão de acordo com a acurácia de teste. Segundo, a distribuição de classes pode variar a representação em componentes PCA.

Para aprofundar no problema, um novo PCA foi calculado com a união dos dois conjuntos. De fato, a distribuição dos dados não rotulados foi impactada, como na Figura 6.

Conjunto de Validação

Figura 5. Amostras não rotuladas.

Conjunto de Validação

Figura 6. Amostras não rotuladas, PCA inclusivo.

Contudo, independente, a acurácia de validação não alcançou o esperado pela baixo acerto dos dígitos 5 e 6, como na Tabela II.

Tabela II ACURÁCIA POR CLASSE

	Geral	1	5	6	7
ĺ	0.58	0.86	0.10	0.54	0.83

VI. CONCLUSÕES

Demonstrou-se a superioridade das redes CNN para o problema de classificação de manuscritos, em especial pelo seu poder de generalização espacial. Mesmo assim, o modelo SVM se mostrou muito eficiente, apesar de tratado com um conjunto reduzido do problema.

Sobre a representação PCA, partindo apenas dos resultados no conjunto rotulado é muito proveitosa, já que mantém o desempenho, reduz a dimensionalidade e o tempo de treinamento.

Sobre as hipóteses do conjunto não rotulado é particularmente perigoso o tratamento, já que as evidências são fracas e conflitantes. De forma forçada, pode-se comentar que caso a hipótese número dois seja falsa, ou seja, o conjunto não rotulado seja, entre outros, de baixa qualidade, caligrafia ruim, ou sofrido alguma variação espacial, o método PCA não é capaz de generalizar a informação como fez o SVM e CNN.

REFERÊNCIAS

- [1] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/
- [2] Alexandros Karatzoglou (2019). Kernel-Based Machine Learning Lab. https://CRAN.R-project.org/package=kernlab
- [3] F. Chollet e outros (2015). Keras. https://github.com/keras-team/keras
- [4] José Geraldo Fernandes. MNIST. https://github.com/josegfer/mnist/
- [5] V. N. Vapnik (1995). The Nature of Statistical Learning Theory.
- [6] B. Clarke, E. Fokoué e H. Zhang (2009). Principals and Theory for Data Mining and Machine Learning. http://dx.doi.org/10.1007/978-0-387-98135-2
- [7] R. Duda, P. Hart e D. Stork (2000). Pattern Classification.
- [8] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner (1998). Gradient-based learning applied to document recognition. https://doi.org/10.1109/5.726791