The CYK Algorithm

- J. Cocke
- D. Younger,
- T. Kasami

The CYK Algorithm

- Il problema dell'appartenenza:
 - Problema:
 - Data una grammatica grammar G e una stringa w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ dove
 - » V insieme finito di variabili
 - » ∑ (alfabeto) insieme finito di simboli terminali-
 - » P insieme finito di produzioni
 - » S simbolo iniziale (elemento distintivo di V)
 - » V e ∑ sono insiemi disgiunti
 - G genera un linguaggio, L(G),
 - Domanda :
 - w appartiene al L(G)?

The CYK Algorithm

- La grammatica è scritta in Chomsky Normal Form
- Viene usata una tecnica chiamata "dynamic programming" o "table-filling algorithm"

Chomsky Normal Form

- Normal Form è descritta da un insieme di condizioni che ogni regola della grammatica deve soddisfare.
- Context-free grammar è in CNF, ogni regola ha la seguente forma:

```
-A \rightarrow BC al massimo due simboli sul lato destro
```

 $-A \rightarrow a$ a simbolo terminale

 $-S \rightarrow \lambda$ stringa vuota

Dove B, C \in V – {S}

Costruire una Triangular Table

X _{5, 1}				
X _{4, 1}	X _{4, 2}			
X _{3,1}	X _{3, 2}	X _{3,3}		,
X _{2, 1}	X _{2, 2}	X _{2, 3}	X _{2, 4}	
X _{1, 1}	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5}
w_1	w ₂	w ₃	w ₄	w ₅

Tavola per una stringa 'w' che ha lunghezza 5

Esempio CYK Algorithm

- Prendiamo la seguente grammatica:
 - CNF grammatica G
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - B \rightarrow CC | b
 - C → AB | a
 - w sia baaba
 - E' baaba in L(G)?

Constructing The Triangular Table

Calcolare la riga più bassa

Costruire la Triangular Table

- $X_{2,1} = (X_{1,1}, X_{1,2})$
- → {B}{A,C} = {BA, BC}
- Step:
 - Trovare, se esistono, le regole che producono BA or BC
 - Sono due : S e A
 - $-X_{2,1} = \{S, A\}$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

		1		
			I	
{S, A}				
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	а	b	а

Constructing The Triangular Table

- $X_{2,2} = (X_{1,2}, X_{1,3})$
- → {A, C}{A,C} = {AA, AC, CA, CC} = Y
- Step:
 - Trovare, se esistono, le regole che producono Y
 - Esiste una: B

$$-X_{2,2} = \{B\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

]		
{S, A}	{B}			
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{2,3} = (X_{1,3}, X_{1,4})$$

•
$$\rightarrow$$
 {A, C}{B} = {AB, CB} = Y

• Steps:

- Trovare, se esistono, le regole che producono Y
- sono: S e C

$$-X_{2,3} = \{S, C\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

		_		
			1	
				l
{S, A}	{B}	{S, C}		
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	a	b	а

- $X_{2,4} = (X_{1,4}, X_{1,5})$
- → {B}{A, C} = {BA, BC} = Y
- Steps:
 - Trovare, se esistono, le regole che producono Y
 - Cono: S and A

$$-X_{2,4} = \{S, A\}$$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

Constructing The Triangular Table

•
$$X_{3,1} = (X_{1,1}, X_{2,2}), (X_{2,1}, X_{1,3})$$

- → {B}{B} U {S, A}{A, C}= {BB, SA, SC, AA, AC} = Y
- Steps:
 - Trovare, se esistono, le regole che producono Y
 - Nessuna

$$-X_{3,1} = \emptyset$$
- Nessun elemento in questo insieme
$$\begin{array}{c}
S \to AB \mid BC \\
A \to BA \mid a \\
B \to CC \mid b \\
C \to AB \mid a
\end{array}$$

		_		
			1	
Ø				_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

- $X_{3,2} = (X_{1,2}, X_{2,3}), (X_{2,2}, X_{1,3})$
- → {A, C}{S, C} U {B}{B}= {AS, AC, CS, CC, BB} = Y
- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{2,4} = \{B\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

		_		
Ø	{B}			
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	a

•
$$X_{3,3} = (X_{1,3}, X_{2,4}), (X_{2,3}, X_{1,5})$$

- → {A,C}{S,A} U {S,C}{A,C}
 = {AS, AA, CS, CA, SA, SC, CA, CC} = Y
- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{3,5} = \{B\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

			1	
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	а

•
$$X_{4,1} = (X_{1,1}, X_{3,2}), (X_{2,1}, X_{2,3})$$

• $(X_{3,1}, X_{1,4})$

- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{4,1} = \{?\}$$

$$A \rightarrow BA \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

 $C \rightarrow AB \mid a$

•
$$X_{4,2} = (X_{1,2}, X_{3,3}), (X_{2,2}, X_{2,4})$$

• $(X_{3,2}, X_{1,5})$

- Step:
 - Trovare, se esistono, le regole che producono Y
 - una: B

$$-X_{4,1} = \{?\}$$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

Finale Triangular Table

{S, A, C}	$\leftarrow X_{5,1}$			
Ø	{S, A, C}			
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	b	a

- Tavola per la stringa 'w' ha lunghezza 5
- The algorithm popola la triangular table

domanda

- sia G la grammatical CNF
 - $S \rightarrow AB \mid BC$
 - A → BA | a
 - B \rightarrow CC | b
 - C → AB | a
- w is ababa
- Domanda: ababa è in L(G)?

E' baaba in L(G)?

Si

Possiamo vedere che S è nell'insieme X_{1n} dove 'n'= 5

la cella $X_{51} = (S, A, C)$ allora

 $S \in X_{15}$ allora baaba $\in L(G)$

Construire una Triangular Table

- Ogni riga corrisponde a una lunghezza delle sottostringhe.
 - La riga più in basso Stringhe di Ing 1
 - Seconda riga Stringhe di Ing 2

•

Riga più in alto – la stringa 'w'

Costruire una Triangular Table

- X_{i, i} è l'insieme delle variabili tale che A è
 A → w_i una produzione di G
- Comparare al massimo n coppie di insieme calcolati in precedenza

$$(X_{i,i}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}) ... (X_{i,j-1}, X_{j,j})$$

teorema

- The CYK Algorithm calcola correttamente X_{ij} per tutti i e j; allora w è in L(G) iff S è in X_{1n} .
- Perchè? Spiegazione, esercizio scrivere la dimostrazione.
- Complessità O(n³).

- **let** the input be a string L consisting of n characters: $a_1 \dots a_n$.
- **let** the grammar contain r nonterminal symbols $R_1 \dots R_r$, with start symbol R_1 .
- **let** P[n,n,r] be an array of booleans. Initialize all elements of P to false.
- **for each** *s* = 1 to *n*
- **for each** unit production $R_v \rightarrow a_s$
- set P[1,s,v] = true ; Generata la prima riga-
- **for each** *L* = 2 to *n*
- **for each** *s* = 1 to *n-L*+1
- **for each** p = 1 to L-1
- **for each** production $R_a \rightarrow R_b R_c$
- if P[p,s,b] and P[L-p,s+p,c] then set P[L,s,a] = true
- **if** P[n,1,1] is true **then** L is member of language
- **else** *L* is not member of language

{S, A, C}	$\leftarrow X_{5,1}$			
Ø	{S, A, C}			
Ø	{B}	{B}		_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

а

b

a

b

а

X _{5, 1}	(5)n- L+1=s			
X _{4, 1}	X _{4, 2}	(4)n- L+1=s		
X _{3, 1}	X _{3, 2}	X _{3, 3}	(3)n-L+1 =s	
X _{2, 1}	X _{2, 2}	X _{2, 3}	X _{2, 4}	(2)n- L+1=s
X _{1, 1}	X _{1, 2}	X _{1, 3}	X _{1, 4}	X _{1,5}

w3

 w_4

w₅

32

4/10/2021 **W1**

w₂

```
for each L = 2 to n

for each s = 1 to n-L+1

for each p = 1 to L-1

for each production R_a \rightarrow R_b R_c

if P[p,s,b] and P[L-p,s+p,c] then set P[L,s,a] = true
```

X _{5,1}				
X _{4, 1}	X _{4, 2}			
X _{3,1}	X _{3, 2}	X _{3,3}	L=3, s=1	
X _{2,1}	X _{2,2}	X _{2, 3}	X _{2,4}	
X _{1, 1}	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5}
w ₁	w ₂	w ₃	w ₄	w ₅

Tavola per una stringa 'w' che ha lunghezza 5

```
for each L = 2 to n

for each s = 1 to n-L+1

for each p = 1 to L-1

for each production R_a \rightarrow R_b R_c

if P[p,s,b] and P[L-p,s+p,c] then set P[L,s,a] = true
```

X _{5,1}				
X _{4, 1}	X _{4, 2} ^	L=4, s=2		
X _{3,1}	X _{3, 2} Δ	X _{3,3}		
X _{2, 1}	X _{2,2}	X _{2, 3}	X _{2,4} •	
X _{1, 1}	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1, 5} ▲
w_1	w ₂	w ₃	w ₄	w ₅

Tavola per una stringa 'w' che ha lunghezza 5

Tavola per una stringa 'w' che ha lunghezza 5