1

SERIE D'EXERCICES N° 1 : ELECTROCINETIQUE : CIRCUITS LINEAIRES EN REGIME PERMANENT CONTINU

Diviseur de tension.

Exercice 1.

1. Calculer les tensions $\,U_1\,$ et $\,U_2\,$ en fonction de $\,U_{AB}\,,\,\,R_1\,,\,\,R_2\,.$

2. Calculer le rapport U/E en fonction de R_1 , R_2 , R_c .

 $\text{Exprimer le rapport } U \, / \, E \ \, \text{en fonction de} \ \, x = \frac{R_1}{R_1 + R_2} \, , \ \, R_c \ \, \text{et} \ \, R = R_1 + R_2 \, . \, \text{Etudier le cas} \ \, R_c >> R \, .$

Exercice 2.

- 1. Déterminer U_{BM} en fonction de U_{AM} .
- 2. Déterminer U_{AM} , puis U_{BM} , en fonction de E .

Exercice 3.

Le pont de Wheatstone permet de mesurer une résistance inconnue X. L'équilibre est obtenu lorsque l'intensité I_D du courant dans le détecteur est nulle. On assimilera le détecteur à une résistance $\, r$. On se place à l'équilibre.

- 1. Etablir la relation entre les tensions $\,U_{AM}\,$ et $\,U_{BM}\,$.
- 2. Peut-on appliquer les relations du diviseur de tension pour calculer U_{AM} et U_{BM} ? Exprimer U_{AM} et U_{BM} en fonction des éléments du montage.
- 3. En déduire X en fonction des éléments du montage.

Réseaux résistifs.

Exercice 4.

Chaque segment a une résistance $\,r=1\,\Omega$. Calculer la résistance équivalente entre $\,A\,$ et $\,B\,$.

$Exercice\ 5.$

Chaque segment a une résistance r . Déterminer la résistance équivalente entre les points A et B .

Schémas équivalents, dipôles actifs.

Exercice 6.

Déterminer les paramètres du dipôle équivalent au groupement de générateurs entre les points A et B.

Exercice 7.

Déterminer le générateur de Norton équivalent au dipôle $\,AB$, puis le générateur de Thévenin. En déduire le courant $\,I\,$ dans $\,R\,$ et la tension $\,U\,$ aux bornes de $\,R\,$.

Exercice 8.

En procédant par schémas équivalents, déterminer le générateur de Thévenin équivalent au circuit entre les points A et B. On branche une résistance R de 4 k Ω entre A et B. Calculer le courant qui circule dans cette résistance.

Exercice 9.

Déterminer le générateur de Thévenin équivalent entre A et B. Donner la valeur de E pour laquelle le circuit est équivalent, entre A et B, à une résistance pure.

