Exercice 1 [03760] [Correction]

(a) Déterminer l'ensemble de définition de

$$f(x) = \int_0^1 \frac{\mathrm{d}t}{\sqrt{t(1-t)(1-x^2t)}}.$$

(b) Donner la limite de f en x = 1.

Exercice 2 [03759] [Correction]

Soient p et q deux projecteurs d'un \mathbb{R} -espace vectoriel E vérifiant

$$\operatorname{Im} p \subset \operatorname{Ker} q$$
.

Montrer que $p + q - p \circ q$ est un projecteur et préciser son image et son noyau.

Corrections

Exercice 1 : [énoncé]

(a) Pour que la racine carrée soit définie pour $t\in]0\,;1[$, il est nécessaire que $x\in [-1\,;1].$

Pour $x \in]-1;1[$, l'intégrale définissant f converge par les arguments d'intégrabilité suivant

$$\frac{1}{\sqrt{t(1-t)(1-x^2t)}} \mathop{\sim}_{t\to 0^+} \frac{1}{\sqrt{t}} \text{ et } \frac{1}{\sqrt{t(1-t)(1-x^2t)}} \mathop{\sim}_{t\to 1^-} \frac{C^{te}}{\sqrt{1-t}}.$$

Pour $x = \pm 1$, l'intégrale définissant f diverge car

$$\frac{1}{\sqrt{t(1-t)(1-t)}} \underset{t \to 0^+}{\sim} \frac{1}{1-t} \ge 0.$$

L'ensemble de définition de f est donc]-1;1[.

(b) Sur [0;1[, la fonction f est croissante et admet donc une limite en 1^- . Par l'absurde, si celle-ci est finie égale à $\ell \in \mathbb{R}$ alors

$$\forall a \in [0; 1[, \int_0^a \frac{dt}{\sqrt{t(1-t)(1-x^2t)}} \le \ell.$$

Par intégration sur un segment, la fonction de x déterminée par le premier membre est continue en x=1, on en déduit

$$\int_0^a \frac{\mathrm{d}t}{\sqrt{t}(1-t)} \le \ell.$$

Or ceci est absurde car par non intégrabilité d'une fonction positive

$$\int_0^a \frac{\mathrm{d}t}{\sqrt{t(1-t)}} \xrightarrow{a\to 1^-} +\infty.$$

Exercice 2: [énoncé]

Puisque $\operatorname{Im} p \subset \operatorname{Ker} q,$ on a $q \circ p = 0$ et en développant puis en simplifiant

$$(p+q-p\circ q)^2 = p+q-p\circ q.$$

On peut donc conclure que $r=p+q-p\circ q$ est un projecteur. Montrons

$$\operatorname{Im} r = \operatorname{Im} p + \operatorname{Im} q.$$

L'inclusion ⊂ est immédiate car

$$\forall x \in E, r(x) = p(x - q(x)) + q(x).$$

Inversement, soit $x \in \text{Im } p + \text{Im } q$. On peut écrire x = p(a) + q(b) avec $a, b \in E$. On a alors par le calcul

$$r(x) = r(p(a)) + r(q(b)) = p(a) + q(b) = x$$

et ainsi $x \in \operatorname{Im} r$.

Montrons aussi

$$\operatorname{Ker} r = \operatorname{Ker} p \cap \operatorname{Ker} q$$
.

L'inclusion \supset est immédiate. Inversement, pour $x \in \operatorname{Ker} r$ on a

$$p(x) + q(x) - p \circ q(x) = 0_E.$$

En appliquant q, on obtient $q(x) = 0_E$ puis on en déduit aussi $p(x) = 0_E$ et ainsi $x \in \operatorname{Ker} p \cap \operatorname{Ker} q$.