

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl 2-acetamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate

Asma Mukhtar,^a M. Nawaz Tahir,^b* Misbahul Ain Khan,^a Abdul Qayyum Ather^c and Muhammad Naeem Khan^c

^aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 3 June 2012; accepted 3 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 14.5.

In the title compound, $C_{13}H_{17}NO_3S$, the dihedral angles between the thiophene ring and the ethyl ester and acetamide groups are 5.21 (13) and 10.06 (16)°, respectively. The cyclohezene ring adopts a half-chair conformation. An S(6) ring is formed due to an intramolecular $N-H\cdots O$ hydrogen bond. In the crystal, molecules are linked by $C-H\cdots O$ interactions between the tetrahydro-1-benzothiophene unit and the ethyl ester group, forming C(7) chains propagating along the b-axis direction.

Related literature

For related structures, see: Mukhtar et al. (2010a,b).

Experimental

Crystal data C₁₃H₁₇NO₃S

 $M_r = 267.34$

Monoclinic, $P2_1/c$ Z=4 Mo $K\alpha$ radiation b=16.6554 (7) Å $\mu=0.24~{\rm mm}^{-1}$ c=8.0961 (3) Å $T=296~{\rm K}$ $\beta=109.610$ (1)° $0.28\times0.20\times0.18~{\rm mm}$ V=1324.43 (9) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer 2389 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.953, \ T_{\max} = 0.958$ 9994 measured reflections 2389 independent reflections 1831 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.040 & 165 \ {\rm parameters} \\ WR(F^2) = 0.105 & {\rm H-atom\ parameters\ constrained} \\ S = 1.05 & {\Delta \rho_{\rm max}} = 0.27\ {\rm e\ \mathring{A}^{-3}} \\ 2389\ {\rm reflections} & {\Delta \rho_{\rm min}} = -0.16\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N1−H1···O3	0.86	2.03	2.674 (2)	131
C7−H7 <i>B</i> ···O3 ⁱ	0.97	2.50	3.392 (3)	153

Symmetry code: (i) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6836).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010a). Acta Cryst. E66, o2652.

Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010b). *Acta Cryst*. E66, o3171.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, o2042 [doi:10.1107/S160053681202524X]

Ethyl 2-acetamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate

Asma Mukhtar, M. Nawaz Tahir, Misbahul Ain Khan, Abdul Qayyum Ather and Muhammad Naeem Khan

Comment

We reported the crystal structures of ethyl 2-benzamido-4,5,6,7-tetrahydro-1- benzothiophene-3-carboxylate (Mukhtar *et al.*, 2010*a*) and diethyl 5-acetamido-3-methylthiophene-2,4-dicarboxylate (Mukhtar *et al.*, 2010*b*) which are related to the tile compound (I), (Fig. 1).

In (I), the thiophene ring A (S1/C8/C3/C2/C9), ethyl ester group B (O1/C1/O3/C10/C11) and acetamide moiety C (N1/C12/O2/C13) are planar with r. m. s. deviation of 0.0034, 0.0560 and 0.0029 Å, respectively. The dihedral angle between A/B, A/C and B/C is 5.21 (13), 5.17 (14) and 10.06 (16)°, respectively. In the title compound an S(6) ring motif is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). The molecules are linked in the form of C(7) chains extending along the [010] direction due to C—H···O type of H-bonding.

Experimental

Ethyl 2-amino-4,5,6,7-tetrahydrobenzothiophene-3-carboxylate (0.3 g, 1 mmol) was dissolved in chloroform and in this solution 1 ml of acetyl chloride was added. The reaction mixture was refluxed for 8 h. The solvent was removed and the residue was recrystallized by ethanol to get colorless prisms of (I). m.p. 383 K, yield: 0.24 g, 85%.

Refinement

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.96–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line show intramolecular H-bonding.

Figure 2 The partial packing, which shows that molecules form C(7) chains extending along the b axis.

Ethyl 2-acetamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate

Crystal data	
$C_{13}H_{17}NO_3S$	F(000) = 568
$M_r = 267.34$	$D_{\rm x} = 1.341 \; {\rm Mg \; m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2ybc	Cell parameters from 1831 reflections
a = 10.4267 (4) Å	$\theta = 2.4-25.3^{\circ}$
b = 16.6554 (7) Å	$\mu = 0.24 \; \mathrm{mm}^{-1}$
c = 8.0961 (3) Å	T = 296 K
$\beta = 109.610 (1)^{\circ}$	Prism, colorless
$V = 1324.43 (9) \text{ Å}^3$	$0.28 \times 0.20 \times 0.18 \text{ mm}$
7 – 1	

Data collection

Bruker Kappa APEXII CCD

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 8.10 pixels mm⁻¹

ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2005)

 $T_{\min} = 0.953, T_{\max} = 0.958$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$

 $wR(F^2) = 0.105$

S = 1.05

2389 reflections

165 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

9994 measured reflections 2389 independent reflections 1831 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.032$

 $\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

 $h = -12 \rightarrow 12$

 $k = -19 \rightarrow 19$

 $l = -9 \rightarrow 9$

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0403P)^2 + 0.4757P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\rm max} = 0.27 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.16 \text{ e Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	-0.07735 (6)	0.14705 (4)	0.26031 (7)	0.0539 (2)
O1	0.22774 (14)	-0.08502 (9)	0.4124(2)	0.0570 (5)
O2	-0.31724 (17)	0.09817 (13)	0.0095 (2)	0.0848 (8)
O3	0.03140 (16)	-0.11247 (10)	0.2017 (2)	0.0646 (6)
N1	-0.15117 (16)	0.00537 (11)	0.0871 (2)	0.0514 (6)
C1	0.1049 (2)	-0.06486 (13)	0.3047 (3)	0.0471 (7)
C2	0.06878 (18)	0.01882 (12)	0.3219 (2)	0.0408 (6)
C3	0.14704 (19)	0.07906 (12)	0.4432 (2)	0.0414 (6)
C4	0.2851 (2)	0.06876 (13)	0.5811 (3)	0.0488 (7)
C5	0.3212 (3)	0.13991 (14)	0.7081 (3)	0.0653 (8)
C6	0.2832 (3)	0.21870 (14)	0.6192(3)	0.0690 (9)
C7	0.1317 (2)	0.22493 (13)	0.5254(3)	0.0591 (8)
C8	0.0810(2)	0.14974 (12)	0.4223 (3)	0.0459 (7)
C9	-0.05484 (19)	0.04848 (13)	0.2159 (3)	0.0444 (7)
C10	0.2653 (3)	-0.16924 (14)	0.4095 (4)	0.0742 (10)
C11	0.3917 (3)	-0.18249 (18)	0.5583 (4)	0.0926 (13)
C12	-0.2783 (2)	0.03142 (17)	-0.0096 (3)	0.0592 (9)

G12	0.2644.(2)	0.00000 (17)	0.1262 (2)	0.0720 (0)
C13	-0.3644(2)	-0.02882(17)	-0.1363(3)	0.0729 (9)
H1	-0.12894	-0.04227	0.06581	0.0616*
H4A	0.35340	0.06365	0.52467	0.0585*
H4B	0.28594	0.01977	0.64624	0.0585*
H5A	0.27501	0.13359	0.79324	0.0783*
H5B	0.41841	0.13940	0.77120	0.0783*
H6A	0.33036	0.22575	0.53537	0.0828*
H6B	0.31193	0.26133	0.70545	0.0828*
H7A	0.08553	0.23261	0.61017	0.0709*
H7B	0.11222	0.27086	0.44724	0.0709*
H10A	0.27966	-0.18170	0.29995	0.0889*
H10B	0.19331	-0.20356	0.42015	0.0889*
H11A	0.37805	-0.16655	0.66514	0.1389*
H11B	0.46381	-0.15119	0.54198	0.1389*
H11C	0.41548	-0.23836	0.56466	0.1389*
H13A	-0.41082	-0.00295	-0.24610	0.1095*
H13B	-0.43007	-0.05116	-0.08977	0.1095*
H13C	-0.30755	-0.07092	-0.15408	0.1095*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0487 (3)	0.0506 (4)	0.0574 (4)	0.0098 (3)	0.0112 (3)	0.0046 (3)
O1	0.0475 (8)	0.0389 (9)	0.0741 (10)	0.0041 (7)	0.0066 (7)	-0.0051 (7)
O2	0.0593 (11)	0.0900 (15)	0.0849 (13)	0.0170 (10)	-0.0024(9)	-0.0038 (11)
O3	0.0608 (10)	0.0489 (10)	0.0724 (10)	-0.0073(8)	0.0068 (8)	-0.0142(8)
N1	0.0423 (10)	0.0563 (12)	0.0496 (10)	-0.0041(8)	0.0077 (8)	-0.0017(9)
C1	0.0448 (12)	0.0451 (13)	0.0505 (12)	-0.0040 (10)	0.0148 (10)	-0.0003 (10)
C2	0.0381 (10)	0.0407 (12)	0.0439 (11)	-0.0022(9)	0.0142 (8)	0.0012 (9)
C3	0.0441 (11)	0.0401 (12)	0.0407 (10)	-0.0008(9)	0.0152 (9)	0.0028 (9)
C4	0.0471 (12)	0.0443 (12)	0.0481 (12)	-0.0007(9)	0.0069 (9)	0.0002 (10)
C5	0.0655 (15)	0.0544 (15)	0.0590 (14)	-0.0056 (12)	-0.0015 (12)	-0.0052 (12)
C6	0.0776 (17)	0.0502 (15)	0.0660 (15)	-0.0082(12)	0.0067 (13)	-0.0079(12)
C7	0.0723 (16)	0.0418 (14)	0.0577 (13)	0.0061 (11)	0.0147 (12)	-0.0016 (10)
C8	0.0488 (12)	0.0424 (12)	0.0461 (11)	0.0033 (9)	0.0154 (9)	0.0028 (10)
C9	0.0428 (11)	0.0465 (12)	0.0448 (11)	-0.0016 (9)	0.0159 (9)	0.0035 (9)
C10	0.0717 (17)	0.0403 (14)	0.103(2)	0.0095 (12)	0.0192 (15)	-0.0085 (13)
C11	0.0626 (17)	0.0620 (18)	0.139(3)	0.0162 (14)	0.0149 (18)	0.0113 (18)
C12	0.0469 (13)	0.0751 (18)	0.0500 (13)	-0.0002 (12)	0.0087 (10)	0.0071 (12)
C13	0.0527 (14)	0.096(2)	0.0562 (14)	-0.0106(14)	0.0001 (11)	0.0007 (14)

Geometric parameters (Å, °)

S1—C8	1.731 (2)	C10—C11	1.474 (4)
S1—C9	1.714 (2)	C12—C13	1.499 (4)
O1—C1	1.328 (3)	C4—H4A	0.9700
O1—C10	1.459 (3)	C4—H4B	0.9700
O2—C12	1.211 (3)	C5—H5A	0.9700
O3—C1	1.218 (3)	C5—H5B	0.9700
N1—C9	1.382 (3)	C6—H6A	0.9700

N1—C12	1.364 (3)	C6—H6B	0.9700
N1—H1	0.8600	C7—H7A	0.9700
C1—C2	1.463 (3)	C7—H7B	0.9700
C2—C9	1.378 (3)	C10—H10A	0.9700
C2—C3	1.449 (3)	C10—H10B	0.9700
C3—C4	1.506 (3)	C11—H11A	0.9600
C3—C8	1.346 (3)	C11—H11B	0.9600
C4—C5	1.531 (3)	C11—H11C	0.9600
C5—C6	1.485 (3)	C13—H13A	0.9600
C6—C7	1.509 (4)	C13—H13B	0.9600
C7—C8	1.499 (3)	C13—H13C	0.9600
C8—S1—C9	91.19 (10)	C4—C5—H5A	109.00
C1—O1—C10	115.95 (19)	C4—C5—H5B	109.00
C9—N1—C12	126.0 (2)	C6—C5—H5A	109.00
C9—N1—H1	117.00	C6—C5—H5B	109.00
C12—N1—H1	117.00	H5A—C5—H5B	108.00
O1—C1—O3	122.1 (2)	C5—C6—H6A	109.00
O3—C1—C2	124.3 (2)	C5—C6—H6B	109.00
O1—C1—C2	113.63 (18)	C7—C6—H6A	109.00
C1—C2—C9	119.95 (18)	С7—С6—Н6В	109.00
C1—C2—C3	128.32 (17)	H6A—C6—H6B	108.00
C3—C2—C9	111.72 (18)	C6—C7—H7A	110.00
C2—C3—C8	111.88 (17)	C6—C7—H7B	110.00
C2—C3—C4	127.17 (18)	C8—C7—H7A	110.00
C4—C3—C8	120.95 (18)	C8—C7—H7B	110.00
C3—C4—C5	111.59 (19)	H7A—C7—H7B	108.00
C4—C5—C6	113.14 (19)	O1—C10—H10A	110.00
C5—C6—C7	111.6 (2)	O1—C10—H10B	110.00
C6—C7—C8	109.67 (18)	C11—C10—H10A	110.00
C3—C8—C7	126.2 (2)	C11—C10—H10B	110.00
S1—C8—C3	112.99 (16)	H10A—C10—H10B	108.00
S1—C8—C7	120.80 (16)	C10—C11—H11A	109.00
N1—C9—C2	125.09 (19)	C10—C11—H11B	109.00
S1—C9—N1	122.70 (16)	C10—C11—H11C	109.00
S1—C9—C2	112.22 (16)	H11A—C11—H11B	109.00
01—C10—C11	107.6 (2)	H11A—C11—H11C	109.00
N1—C12—C13	115.0 (2)	H11B—C11—H11C	109.00
O2—C12—C13	121.4 (2)	C12—C13—H13A	109.00
O2—C12—N1 O2—C12—C13	123.5 (2)	C12—C13—H13B	109.00
C3—C4—H4A	109.00	C12—C13—H13C	109.00
	109.00	H13A—C13—H13B	
C3—C4—H4B C5—C4—H4A			109.00
	109.00	H13A—C13—H13C	110.00
C5—C4—H4B	109.00	H13B—C13—H13C	109.00
H4A—C4—H4B	108.00		
C9—S1—C8—C3	-0.74 (18)	C9—C2—C3—C4	178.71 (19)
C9—S1—C8—C7	-179.82 (19)	C9—C2—C3—C8	-0.6(2)
C8—S1—C9—N1	-179.31 (19)	C1—C2—C9—S1	179.01 (15)

Acta Cryst. (2012). E**68**, o2042

C8—S1—C9—C2	0.37 (17)	C1—C2—C9—N1	-1.3 (3)
C10—O1—C1—O3	-4.5 (3)	C3—C2—C9—S1	0.0 (2)
C10—O1—C1—C2	175.9 (2)	C3—C2—C9—N1	179.72 (19)
C1—O1—C10—C11	-169.7(2)	C2—C3—C4—C5	-167.96 (19)
C12—N1—C9—S1	-5.9(3)	C8—C3—C4—C5	11.3 (3)
C12—N1—C9—C2	174.4 (2)	C2—C3—C8—S1	0.9(2)
C9—N1—C12—O2	1.2 (4)	C2—C3—C8—C7	179.9 (2)
C9—N1—C12—C13	-177.8(2)	C4—C3—C8—S1	-178.48 (15)
O1—C1—C2—C3	-2.4(3)	C4—C3—C8—C7	0.6(3)
O1—C1—C2—C9	178.80 (19)	C3—C4—C5—C6	-41.8 (3)
O3—C1—C2—C3	178.0 (2)	C4—C5—C6—C7	61.4 (3)
O3—C1—C2—C9	-0.8(3)	C5—C6—C7—C8	-46.2 (3)
C1—C2—C3—C4	-0.2(3)	C6—C7—C8—S1	-164.26 (17)
C1—C2—C3—C8	-179.5 (2)	C6—C7—C8—C3	16.8 (3)

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N1—H1···O3	0.86	2.03	2.674 (2)	131
C7—H7 <i>B</i> ···O3 ⁱ	0.97	2.50	3.392 (3)	153

Symmetry code: (i) -x, y+1/2, -z+1/2.