```
In [1]: from fastai.vision.all import *
         from fastai.data.all import *
         from fastai.tabular.all import *
         from fastai.vision.all import *
         from fastai.metrics import error_rate
         from fastai.imports import *
In [2]: print(torch.cuda.device(0))
         print(torch.cuda.get device name(0))
         <torch.cuda.device object at 0x000001E471D84640>
         NVIDIA GeForce GTX 1650
In [3]:
         origin = Path("C:/Development/meteor detector/dataset/v7 adjusted/dataset/")
In [4]:
In [5]:
         rows values = []
         for dataset in ["test_set", "training_set"]:
    for meteor in ["meteor", "no-meteor"]:
                  for fn in (origin/f"{dataset}/{meteor}").glob("*/"):
                       rows values += [(str(fn)[len(str(origin)):], dataset, meteor)]
         df = pd.DataFrame(rows_values, columns=["fn", "dataset", "meteor"])
         df
Out[5]:
                                                       fn
                                                              dataset
                                                                        meteor
              0
                      \test set\meteor\image-20210219194325.jpg
                                                              test set
                                                                        meteor
              1
                      \test set\meteor\image-20210219195726.jpg
                                                                        meteor
                                                             test set
              2
                      \test set\meteor\image-20210220000355.jpg
                                                             test set
                                                                        meteor
              3
                      \test set\meteor\image-20210220061647.jpg
                                                              test_set
                                                                        meteor
                      \test set\meteor\image-20210220063819.jpg
                                                              test set
                                                                        meteor
          57165
                 \training set\no-meteor\image-20210413064838.jpg
                                                          training set no-meteor
          57166
                 \training set\no-meteor\image-20210413064908.jpg
                                                           training set no-meteor
          57167
                 \training_set\no-meteor\image-20210413064938.jpg
                                                           training_set no-meteor
          57168
                \training_set\no-meteor\image-20210413065008.jpg
                                                           training_set no-meteor
          57169
                \training_set\no-meteor\image-20210413065038.jpg
                                                           training_set no-meteor
         57170 rows × 3 columns
         df.groupby(["dataset", "meteor"]).size()
In [6]:
Out[6]: dataset
                         meteor
         test_set
                         meteor
                                         300
                                        5008
                         no-meteor
         training_set
                        meteor
                                        1567
                                       50295
                         no-meteor
         dtype: int64
In [7]:
        df.to_csv("C:/Development/meteor_detector/dataset/index.csv", index=False)
```

```
In [8]:
          df[df.dataset=="training set"]
 Out[8]:
                                                          fn
                                                                 dataset
                                                                           meteor
             5308
                     \training_set\meteor\image-20210219194125.jpg
                                                             training_set
                                                                           meteor
             5309
                     \training set\meteor\image-20210219194155.jpg
                                                              training set
                                                                           meteor
             5310
                     \training set\meteor\image-20210219194225.jpg
                                                             training set
                                                                           meteor
             5311
                     \training set\meteor\image-20210219194255.jpg
                                                              training set
                                                                           meteor
             5312
                     \training set\meteor\image-20210219195756.jpg
                                                             training set
                                                                           meteor
           57165
                  \training set\no-meteor\image-20210413064838.jpg
                                                             training set no-meteor
                  \training set\no-meteor\image-20210413064908.jpg
           57166
                                                              training set no-meteor
           57167
                  \training set\no-meteor\image-20210413064938.jpg
                                                             training set no-meteor
           57168
                  \training set\no-meteor\image-20210413065008.jpg
                                                             training set no-meteor
                  \training_set\no-meteor\image-20210413065038.jpg
           57169
                                                             training set no-meteor
          51862 rows × 3 columns
 In [9]:
          #Train Dataset Balancing
           df_no_meteor_train = df[(df["meteor"]=="no-meteor") & (df["dataset"]=="training_set"
           )].sample(n=1567)
           df no meteor test = df[(df["meteor"]=="no-meteor") & (df["dataset"]=="test set")].sa
           mple(n=1000)
                                = df[(df["meteor"]=="meteor")
           df meteor train
                                                                      & (df["dataset"]=="training set"
           )]
                                = df[(df["meteor"]=="meteor")
                                                                      & (df["dataset"]=="test set")]
           df meteor test
           df=pd.concat([df no meteor train,df no meteor test,df meteor train,df meteor test])
In [10]:
          df.groupby(["dataset","meteor"]).size()
Out[10]:
          dataset
                          meteor
          test set
                           meteor
                                           300
                          no-meteor
                                          1000
          training_set
                                          1567
                          meteor
                                          1567
                          no-meteor
          dtype: int64
In [40]:
          dls = ImageDataLoaders.from df(df[df["dataset"]!="test set"],
                                              folder=origin ,
                                              bs = 32,
                                              batch tfms=aug transforms(max rotate=180,max warp=0,ma
           x_zoom=0),
                                              item tfms=[Resize(224)],
                                              fn col=0,
                                              label_col=2,
                                              shuffle_train=True,
                                              drop_last=True,
                                              valid pct=0.2,
```

num_workers=0)

In [32]:

ImageDataLoaders.from_df??

In [42]: dls.show_batch()


```
In [44]:
          print(learn.dls.train.after batch)
          print(learn.dls.valid.after_batch)
          Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} -> Flip -- {'size': Non
          e, 'mode': 'bilinear', 'pad_mode': 'reflection', 'mode_mask': 'nearest', 'align_corn ers': True, 'p': 0.5} -> Brightness -- {'max_lighting': 0.2, 'p': 1.0, 'draw': None,
          'batch': False} -> Normalize -- {'mean': tensor([[[[0.4850]],
                    [[0.4560]],
                    [[0.4060]]]], device='cuda:0'), 'std': tensor([[[[0.2290]],
                    [[0.2240]],
                    [[0.2250]]]], device='cuda:0'), 'axes': (0, 2, 3)}
          Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} -> Flip -- {'size': Non
          e, 'mode': 'bilinear', 'pad_mode': 'reflection', 'mode_mask': 'nearest', 'align_corn
          ers': True, 'p': 0.5} -> Brightness -- {'max_lighting': 0.2, 'p': 1.0, 'draw': None,
          'batch': False} -> Normalize -- {'mean': tensor([[[[0.4850]],
                    [[0.4560]],
                    [[0.4060]]]], device='cuda:0'), 'std': tensor([[[[0.2290]],
                    [[0.2240]],
                    [[0.2250]]]], device='cuda:0'), 'axes': (0, 2, 3)}
In [45]: learn.loss_func
Out[45]: FlattenedLoss of CrossEntropyLoss()
          learn.lr_find(end_lr=0.1)
In [50]:
Out[50]: SuggestedLRs(1r min=0.00023988329339772463, 1r steep=5.248074330665986e-07)
```


In [51]: learn.fine_tune(35,1*1e-3)

0.649180 0.639315 00:37

0.359425 0.640575

1.4 - train valid 1.2 1.0 0.8 0.6 0.4 0.2 0.0 + 20 30 40 50 60 70

0.721333

1.049252

10

epoch	train_loss	valid_loss	error_rate	accuracy	precision_score	f1_score	time
0	0.838610	0.571901	0.281150	0.718850	0.723393	0.713942	00:41
1	0.803993	0.560540	0.249201	0.750799	0.750238	0.749877	00:41
2	0.782298	0.528214	0.257188	0.742812	0.742992	0.741093	00:41
3	0.698753	0.507604	0.226837	0.773163	0.773163	0.773015	00:41
4	0.654818	0.461071	0.193291	0.806709	0.808311	0.805206	00:41
5	0.628972	0.429607	0.185304	0.814696	0.816974	0.813092	00:41
6	0.584568	0.452043	0.220447	0.779553	0.778983	0.779111	00:43
7	0.552143	0.425085	0.193291	0.806709	0.806176	0.806294	00:41
8	0.504984	0.435844	0.191693	0.808307	0.808307	0.808181	00:41
9	0.447361	0.366071	0.175719	0.824281	0.823795	0.823978	00:41
10	0.437134	0.359059	0.164537	0.835463	0.843530	0.832936	00:44
11	0.398034	0.344151	0.150160	0.849840	0.851551	0.848797	00:44
12	0.400914	0.363281	0.166134	0.833866	0.845921	0.833431	00:41
13	0.378998	0.308167	0.151757	0.848243	0.847817	0.847870	00:40
14	0.356866	0.296856	0.134185	0.865815	0.866439	0.865780	00:41
15	0.335868	0.324765	0.153355	0.846645	0.852948	0.846545	00:43
16	0.329427	0.281342	0.115016	0.884984	0.884582	0.884815	00:41
17	0.293908	0.292421	0.137380	0.862620	0.863808	0.862607	00:41
18	0.284020	0.282753	0.116613	0.883387	0.883129	0.883062	00:43
19	0.294557	0.261082	0.113419	0.886581	0.888582	0.885824	00:45
20	0.283444	0.247845	0.102236	0.897764	0.897943	0.897712	00:44
21	0.280663	0.271215	0.118211	0.881789	0.883700	0.881788	00:42
22	0.258704	0.254404	0.100639	0.899361	0.899153	0.899268	00:45
23	0.262213	0.250810	0.102236	0.897764	0.898987	0.897754	00:43
24	0.245186	0.269664	0.100639	0.899361	0.899153	0.899268	00:41
25	0.249133	0.241461	0.089457	0.910543	0.910431	0.910278	00:40
26	0.247837	0.236015	0.087859	0.912141	0.911933	0.912060	00:40
27	0.226847	0.241507	0.086262	0.913738	0.914132	0.913706	00:41
28	0.221255	0.236792	0.086262	0.913738	0.913355	0.913611	00:40
29	0.227504	0.228003	0.084665	0.915335	0.915619	0.915299	00:41
30	0.215469	0.225727	0.081470	0.918530	0.918324	0.918455	00:42
31	0.219962	0.226292	0.084665	0.915335	0.914950	0.915178	00:45
32	0.218590	0.223887	0.081470	0.918530	0.918168	0.918420	00:48
33	0.226887	0.223008	0.083067	0.916933	0.916842	0.916687	00:41
34	0.220581	0.223404	0.079872	0.920128	0.919792	0.920029	00:41

In [52]: #Load or Save Model
 #learn.export('C:/Development/guaita/guaita/guAIta_latest_version.pkl')
 #learn = load_learner('C:/Development/guaita/guaita/guAIta_latest_version.pkl')

In [53]: interp = ClassificationInterpretation.from_learner(learn, dl=learn.dls.test_dl(df[df[
 "dataset"]=="test_set"], with_labels=True, bs=100))
 interp.print_classification_report()

	precision	recall	f1-score	support
meteor	0.77	0.86	0.81	300
no-meteor	0.96	0.93	0.94	1000
accuracy			0.91	1300
macro avg	0.86	0.89	0.88	1300
weighted avg	0.91	0.91	0.91	1300

In [54]: interp.plot_confusion_matrix(figsize=(4, 4))

Prediction/Actual/Loss/Probability

no-meteor/meteor / 5.18 / 0.99

no-meteor/meteor / 5.03 / 0.99

meteor/no-meteor / 4.55 / 0.99

meteor/no-meteor / 4.13 / 0.98

In [58]: losses,idxs = interp.top_losses(10)
df[df["dataset"]=="test_set"].iloc[idxs]

Out[58]:

	fn	dataset	meteor
283	\test_set\meteor\positive_10.jpg	test_set	meteor
15	\test_set\meteor\image-20210315040525.jpg	test_set	meteor
2734	\test_set\no-meteor\image-20210423045608.jpg	test_set	no-meteor
1152	\test_set\no-meteor\image-20210419041253.jpg	test_set	no-meteor
386	\test_set\no-meteor\image-20210418214034.jpg	test_set	no-meteor
4779	\test_set\no-meteor\image-20210505015234.jpg	test_set	no-meteor
1170	\test_set\no-meteor\image-20210419042324.jpg	test_set	no-meteor
1155	\test_set\no-meteor\image-20210419041423.jpg	test_set	no-meteor
284	\test_set\meteor\positive_11.jpg	test_set	meteor
272	\test_set\meteor\image-20210505041221.jpg	test_set	meteor

```
In [38]:
         #Model Evaluation
In [60]:
         class Hook():
             def __init__(self, m):
                 self.hook = m.register_forward_hook(self.hook_func)
             def hook_func(self, m, i, o): self.stored = o.detach().clone()
             def __enter__(self, *args): return self
             def exit (self, *args): self.hook.remove()
In [61]:
         class HookBwd():
             def init (self, m):
                 self.hook = m.register_backward_hook(self.hook_func)
             def hook_func(self, m, gi, go): self.stored = go[0].detach().clone()
             def __enter__(self, *args): return self
             def __exit__(self, *args): self.hook.remove()
In [84]:
         img = PILImage.create('C:/Development/meteor_detector/dataset/vDef_dia0504/test/my2.j
         pg')
         x, = first(dls.test_dl([img]))
         plt.imshow(img)
```

Out[84]: <matplotlib.image.AxesImage at 0x1e448b9dca0>


```
In [85]: cls = 0
with HookBwd(learn.model[0]) as hookg:
    with Hook(learn.model[0]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [86]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```


Out[89]: <matplotlib.image.AxesImage at 0x1e444340cd0>


```
In [90]: cls = 0
with HookBwd(learn.model[0]) as hookg:
    with Hook(learn.model[0]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [91]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```



```
In [93]: learn.predict(img)
```

```
Out[93]: ('meteor', tensor(0), tensor([9.9991e-01, 9.2871e-05]))
```

Out[94]: <matplotlib.image.AxesImage at 0x1e46ca72790>

Out[97]: <matplotlib.image.AxesImage at 0x1e48ab95640>

Out[100]: <matplotlib.image.AxesImage at 0x1e48aed14c0>


```
In [102]: learn.predict(img)
Out[102]: ('meteor', tensor(0), tensor([0.7870, 0.2130]))
In [103]: img = PILImage.create('C:/Development/meteor_detector/dataset/v7_adjusted/dataset/test_set/no-meteor/image-20210423001200.jpg')
    x, = first(dls.test_dl([img]))
    plt.imshow(img)
```

Out[103]: <matplotlib.image.AxesImage at 0x1e46ca7be80>


```
In [104]: learn.predict(img)
```

Out[104]: ('no-meteor', tensor(1), tensor([0.3139, 0.6861]))

Out[106]: <matplotlib.image.AxesImage at 0x1e4025477f0>


```
In [107]: learn.predict(img)
```

Out[107]: ('meteor', tensor(0), tensor([0.9869, 0.0131]))

```
In [108]: cls = 0
    with HookBwd(learn.model[0][-1]) as hook;
        with Hook(learn.model[0][-1]) as hook:
            output = learn.model.eval()(x.cuda())
            act = hook.stored
            output[0,cls].backward()
            grad = hookg.stored
```

```
In [109]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```


Out[111]: <matplotlib.image.AxesImage at 0x1e4020b4340>


```
In [112]: learn.predict(img)
```

Out[112]: ('meteor', tensor(0), tensor([9.9985e-01, 1.4669e-04]))

```
In [113]: cls = 0
with HookBwd(learn.model[0][-1]) as hookg:
    with Hook(learn.model[0][-1]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [114]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```



```
In [116]: #Detection during pilot in Pujalt
    img = PILImage.create('C:/Development/meteor_detector/dataset/Positius/pilot_detectio
    n.jpg')
    x, = first(dls.test_dl([img]))
    plt.imshow(img)
```

Out[116]: <matplotlib.image.AxesImage at 0x1e48a1c4100>


```
In [117]: learn.predict(img)
```

Out[117]: ('meteor', tensor(0), tensor([0.7496, 0.2504]))

```
In [118]: cls = 0
with HookBwd(learn.model[0][-2]) as hookg:
    with Hook(learn.model[0][-2]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [119]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```


In [122]: print(learn.model)

```
Sequential(
  (0): Sequential(
    (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=Fals
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=T
rue)
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
    (4): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), b
ias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), b
ias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
      (1): BasicBlock(
        (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), b
ias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), b
ias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
      )
    (5): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        (downsample): Sequential(
          (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
    (6): Sequential(
      (0): BasicBlock(
```

```
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        (downsample): Sequential(
          (0): Conv2d(128, 256, kernel size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      )
    (7): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
    )
  (1): Sequential(
    (0): AdaptiveConcatPool2d(
      (ap): AdaptiveAvgPool2d(output size=1)
      (mp): AdaptiveMaxPool2d(output_size=1)
    (1): Flatten(full=False)
```

```
(2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats
=True)
        (3): Dropout(p=0.25, inplace=False)
        (4): Linear(in_features=1024, out_features=512, bias=False)
        (5): ReLU(inplace=True)
        (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=
True)
        (7): Dropout(p=0.5, inplace=False)
        (8): Linear(in_features=512, out_features=2, bias=False)
    )
    )
In []:
```