## Adv. Microeconometrics Computer Assignment

A. Schmidt

11/19/2020

## 1 - Size distortions

Simulate data from the following model:

$$Y = X\beta + \varepsilon$$
$$X = Z\Pi + V$$

where: \* Y and X are  $n \times 1$  vectors which contain the endogenous variables; \* Z is a  $n \times k$  matrix of instruments; \*  $\varepsilon$  and V are  $n \times 1$  vectors that contain disturbances. \* The different rows of  $\left(\varepsilon \stackrel{.}{:} V\right)$ , are independently normally distributed, i.e.,

$$\begin{pmatrix} \varepsilon_i \\ V_i \end{pmatrix} \sim \mathcal{N}(0, \Sigma), \qquad \Sigma = \begin{pmatrix} 1 & \vdots & \rho \\ \rho & & 1 \end{pmatrix}$$

\*  $n=100, k=10, \Pi=a\times e_{10}$  with  $e_{10}\in\mathbb{R}^{10}$  whose first element is 1 and the remaining are equal to zero. \* All elements from Z are independently distributed and follows a standard normal distribution. \*  $a\in\{0.3,0.25,0.2,0.15,0.1,0.05,0\}$  \*  $\rho\in\{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95\}$ 

## Item 1

\_For each value of  $\alpha$  make a figure of the rejection frequency as a function of  $\rho$  when testing  $H_0: \beta = 0$  with 95% significance using the 2SLS t-statistic (so five figures which show the rejection frequency as a function of  $\alpha$ ).

Using a package

Graph for Q1

