ReadME

- ullet Viral Invasion Threshold R_i vs Morphine Effects and Pharmacodynamic parameters
 - If $R_i < 1$, the infection dies out or is controlled.
 - If $R_i>1$, the infection will persist.
- The blue curve is the solution curve.
- The red-dashed line is when $R_i = 1$.

Parameters:

Morphine Effect

morphine influences affects the Target T cells susceptiblity by changing the expression of the coreptors

- ullet r \equiv morphine transition rate of $T_L
 ightarrow T_H$
- ullet q \equiv morphine transition rate of $T_H
 ightarrow T_L$

Note: T_L T cells with low susceptibility to infections; T_H T cells with high susceptibility to infections.

Pharmacodynamics of ART

- $m_i \equiv$ drug slope inhibition (of infectivity)
- ullet $n=rac{D_{max}^{i}}{ED50}\equiv$ Drug maximum concentration ratio of inhibitory to reach 50% effect
- $t_{\frac{1}{2}} \equiv \text{drug half-life}$
- $\tau \equiv$ drug intake interval

Viral Invasion Threshold R_i vs. Morphine Effect

• As r is varied, the higher the morphine level, the solution curve of R_i is above the reddashed line. This implies the quantity of the second generation of the infection increses 8/25/25, 1:38 PM Research_Ri_vs

and leads to persistence in the infection.

• As q is varied, the infection of the R_i will eventually be controlled as the solution curve will be $R_i < 1$.

Viral Invasion Threshold R_i vs. Pharmacodynamic parameters

- ullet As $m_i, t_{rac{1}{2}},$ and n are varied, the infection will eventually die out where $R_i < 1.$
- Since τ is dosing interval, increasing means skipping or missing dosage intervals, thus the infection will persist. Frequent intakes will control the infection.