

1.1 SISTEMAS DIGITALES

Elena Valderrama

Universidad Autónoma de Barcelona

1. SISTEMA FÍSICO

Conjunto de objetos o elementos interconectados que realizan una cierta función

- Un conjunto de señales de entrada,
- un conjunto de señales de salida,

- TIPO (tensión, fuerza, temperatura, posición de un interruptor, etc.),
- RANGO
- una relación entre señales de entrada y de salida.

1.1 SISTEMA FÍSICO: Control de una caldera

Señales de entrada y de salida

pos: posición del selector;

temp: temperatura medida por el sensor;

onoff: señal binaria (dos valores: ON or OFF)

1.1 SISTEMA FÍSICO: Control de una caldera

Tipo y rango de las señales de entrada y de salida

 pos representa la posición de un selector entre dos posiciones extremas (10 y 30). Puede tomar cualquier valor dentro de dicho intervalo (rango)

$$pos_{10} \le pos \le pos_{30}$$
;

1.1 SISTEMA FÍSICO : Control de una caldera

Tipo y rango de las señales de entrada y de salida

• **temp** representa la temperatura ambiente. Si el sensor es capaz de medir las temperaturas entre 0 y 50 grados, su valor (rango) puede ser cualquier temperatura dentro del intervalo 0-50°C

$$temp_0 \le temp \le temp_{50}$$
;

onoff sólo tiene dos valores: ON (encendido) y OFF (apagado).

1.1 SISTEMA FÍSICO : Control de una caldera

loop

end loop;

Relación entre las entradas y salidas

```
if temp < pos - medio_grado then onoff <= on;
elsif temp > pos + medio_grado then onoff <= off;
end if;
wait for 10 s;</pre>
```


Las señales como **pos** y **temp** que pueden tomar cualquier valor dentro de un conjunto continuo (y por tanto infinito) de valores reciben el nombre de ...

SEÑALES ANALÓGICAS

Las señales como *onoff* que solo pueden tomar un conjunto finito de valores (en este caso dos: ON, OFF), reciben el nombre de ...

SEÑALES DIGITALES O SEÑALES DISCRETAS

1.2 SISTEMA FÍSICO: Cronómetro

Señales de entrada y de salida

reset, start, stop: posición de tres pulsadores; ref: onda cuadrada con un período de 0,1 segundos (frec. 10Hz), V_L =0 volts, V_H =1 volt; h: entero entre 0 y 23; m y s: enteros entre 0 y 59; t: entero entre 0 y 9.

1.2 SISTEMA FÍSICO: Cronómetro

Relación entre las entradas y salidas (lenguaje natural)

- cuando se pulsa **reset**, h = m = s = t = 0;
- cuando se pulsa start, el cronómetro empieza a contar; h, m, s y t representan el tiempo transcurrido en décimas de segundos;
- cuando se pulsa stop, el cronómetro deja de contar; h, m, s y t representan el último tiempo transcurrido.

(quiz)

Supongamos que el estado actual del cronómetro es:

17 horas, 22 minutes, 59 segundos, 9 décimas

¿Cuál será el estado del cronómetro tras la llegada de un nuevo pulso de reloj?

- 1. 17 horas, 23 minutos, 60 segundos, 10 décimas;
- 2. 18 horas, 22 minutos, 59 segundos, 9 décimas;
- 3. 17 horas, 23 minutos, 0 segundos, 0 décimas;
- 4. 17 horas, 22 minutos, 59 segundos, 8 décimas;

1.2 SISTEMA FÍSICO: Cronómetro

reset HORAS MINUTOS SEGUNDOS DÉCIMAS del start start stop timpo t

Tipo y rango de las señales de entrada y salida

- reset, start, stop: señales binarias (ON, OFF);
- ref: señal binaria (0 volts, 1 volt);
- h : puede tomar 24 valores (0, 1, 2, ..., 23);
- m and s: pueden tomar 60 valores (0, 1, 2, \cdots , 59);
- *t*: puede tomar 10 valores (0, 1, 2, …, 9)

Todas las señales de entrada y de salida son digitales (o discretas)

Aquellos sistemas en los que todas las señales de entrada y salida son digitales reciben el nombre de ...

SISTEMAS DIGITALES

(Ejercicio)

Describe de una manera formal (pseudo-código) la relación entre entradas y salidas del cronómetro.

Notas:

- Utiliza una variable ref_flanco_positivo que tome el valor TRUE (cierto) cuando se produce un flanco positivo en la señal ref, e igual a FALSE (falso) en caso contrario.
- Previamente se ha definido un procedimiento update(h, m, s, t) que cada vez que se llama suma una décima de segundo al tiempo transcurrido.
- Podéis utilizar pseudo-instrucciones del tipo:

```
If ... then ... else ...
While ... then ...
Loop ...
```


(Resolución del ejercicio)

```
UAB
Universitat Autònoma
de Barcelona
```

```
if reset = ON then h <= 0; m <= 0; s <= 0; t <= 0;
elsif start = ON then
    while stop = OFF loop
    if ref_flanco_positivo = TRUE then
        update(h, m, s, t);

    end if;
    end loop;
end if;
end loop;</pre>
```


RESUMEN

- Concepto de señales digitales y de sistema digital
- Sistema como "caja negra" con entradas y salidas, y con una relación entre entradas y salidas que definen el comportamiento del mismo
- Ejemplos en los que hemos descrito dicha relación utilizando un pseudo-código

UAB Universitat Autònoma de Barcelona 16

1.2 DESCRIPCIÓN DE LOS SISTEMAS DIGITALES

Elena Valderrama

Universidad Autónoma de Barcelona

1. Descripción funcional

Descripción de la relación entre Entradas y Salidas, sin información acerca de la estructura interna.

- 1.1 Descripción funcional explícita
- 1.2 Descripción funcional implícita: Descripción algorítmica

de Barcelona

1.a. Descripción funcional explícita

Ejemplo: Controlado de caldera (simplificado)

Supongamos que ...

- la temperatura deseada (pos) es de 20°C;
- la temperatura medida (*temp*) se ha discretizado y sólo puede tomar valores dentro del conjunto {0, 1, 2, ··· , 49, 50}.

de Barcelona

1.a. Descripción funcional explícita

temp	onoff	1.2	
0	ON		UAB Universitat Autònoma
1	ON		de Barcelona
•••			
18	ON		
19	ON		
20	sin cambio		
21	OFF		
22	OFF		
•••			
49	OFF		
50	OFF		
			20

1.b. Descripción funcional implícita (algoritmo)

UAB
Universitat Autònoma
de Barcelona

El ejemplo anterior puede ser descrito por el algoritmo siguiente:

temp	onoff	if temp < 20 then onoff <= ON;
0	ON	•
1	ON	elsif temp > 20 then onoff <= OFF;
		end if;
18	ON	end if;
19	ON	·
20	sin cambio	
21	OFF	
22	OFF	
49	OFF	
50	OFF	

1.b. Descripción funcional implícita (algoritmo)

Un segundo ejemplo: Sumador de números decimales de dos dígitos.

 $X = x_1 x_0$ e $Y = y_1 y_0$ son números decimales de dos dígitos; la suma Z=X+Y es un número $Z=z_2 z_1 z_0$ de tres dígitos. de Barcelona

Algoritmo "a mano":


```
acarreo <= 0;

s_0 <= x_0 + y_0 + acarreo;

if s_0 > 9 then z_0 <= s_0 - 10; acarreo <= 1;

else z_0 <= s_0; acarreo <= 0;

end if;

s_1 <= x_1 + y_1 + acarreo;

if s_1 > 9 then z_1 <= s_1 - 10; acarreo <= 1;

else z_1 <= s_1; acarreo <= 0;

end if;

z_2 <= acarreo;
```

UAB Universitat Autònoma de Barcelona

2. Descripción estructural

- Describe la estructura interna del sistema
- Basada en el uso de subsistemas digitales previamente definidos, es decir, de COMPONENTES.

2. Descripción estructural: Sumador de nºs de 2 dígitos

UAB
Universitat Autònoma
de Barcelona

Supongamos que se ha definido previamente un sumador de números de 1 dígito (decimal) como el siguiente:

 $acarreo_{IN}$, $acarreo_{OUT} \in \{0, 1\}$,

x, y, z: dígitos decimales $\in \{0, 1, 2, \dots, 9\}$,

función: $x + y + acarreo_{IN} = acarreo_{OUT}.10 + z$

2. Descripción estructural: Sumador de nºs de 2 dígitos

1 - 4

2. Descripción estructural: Sumador de nºs de 4 dígitos

UAB
Universitat Autònom
de Barcelona

El sistema siguiente es un sumador de 4 dígitos decimales compuesto por cuatro sumadores de 1 dígito:

Calcula: Z = X + Y

donde
$$X = x_3 x_2 x_1 x_0$$
 e $Y = y_3 y_2 y_1 y_0$ tienen 4 dígitos y $Z = z_4 z_3 z_2 z_1 z_0$ tiene 5 dígitos,
$$z_4 \in \{0,1\} \text{ y}$$

$$z_3 z_2 z_1 z_0 \in \{0,1,2,3,4,5,6,7,8,9\}$$

3. Descripción jerárquica

En el ejemplo anterior (sumador de números de 4 dígitos decimales) se utilizan 4 sumadores de 1 dígito. Cada sumador de 1 dígito puede ser definido, a su vez, por su estructura o por su función.

```
Ejemplo (función):
```

```
s \le x + y + acarreo_{IN};

if s > 9 then z \le s - 10; acarreo_{OUT} \le 1;

else z \le s; acarreo_{OUT} \le 0;

end if;
```


Descripción jerárquica de dos niveles

UAB
Universitat Autònoma
de Barcelona

Ejemplo de descripción jerárquica de tres niveles

El sistema siguiente (descripción estructural) calcula

$$z = w + x + y$$

donde w, x e y son números de 4 dígitos decimales y z tiene 5 dígitos (9999 + 9999 + 9999 = 29.997)

1r NIVEL DE JERARQUÍA

UAB
Universitat Autònoma
de Barcelona

Los sumadores de 4 y 5 dígitos se descomponen en sumadores de 1 dígito cuya descripción funcional es:

3r NIVEL DE JERARQUÍA

UAB Universitat Autònoma de Barcelona

3. Descripción jerárquica

En resumen, una descripción jerárquica:

- Es un conjunto de bloques interconectados,
- Donde cada bloque puede, a su vez, ser descrito por su función o por un nuevo conjunto de bloques interconectados, y así sucesivamente.
- Los bloques finales corresponden a componentes electrónicos disponibles, definidos por su función.

(quiz)

Consideremos un nivel intermedio (cualquier nivel salvo el último) de una descripción jerárquica. Marca las afirmaciones correctas:

- 1. Todos los bloques **DEBEN** describirse estructuralmente
- 2. Algunos bloque **PUEDEN** describirse estructuralmente
- 3. Algunos bloque **PUEDEN** describirse funcionalmente
- 4. Todos los bloques **DEBEN** describirse funcionalmente

RESUMEN

- Descripción funcional
- Descripción estructural
- Descripción jerárquica

1.3 SISTEMAS ELECTRÓNICOS DIGITALES

Elena Valderrama

Universidad Autónoma de Barcelona

1. Algunas observaciones previas ...

Los sistemas digitales incluyen:

- dispositivos de entrada (sensores, teclados, micrófonos, …),
- dispositivos de salida (altavoces, visualizadores, motores, ···),
- conversores de entrada que traducen las informaciones generadas por los dispositivos de entrada a señales eléctricas discretas,
- conversores de salida que traducen datos eléctricos discretos a señales que controlan los dispositivos de salida,
- un circuito electrónico digital (el núcleo del sistema) que genera los datos de salida en función de los datos de entrada.

de Barcelona

Éste es un curso sobre

Sistemas Electrónicos Digitales

113
UAB
Universitat Autònoma
de Barcelona

Las **entradas y salidas** de un Sistema Electrónico Digital son datos codificados en binario.

Ejemplos:

- números (código binario),
- datos alfanuméricos (códigos ASCII),
- otros

UAB Universitat Autònoma de Barcelona

2. Componentes digitales

2.1 Codificación binaria

- Se definen dos niveles de tensión V_L y V_H
- 0 es representado por V_L , 1 es representado por V_H
 - ✓ Ejemplo: $V_L = 0$ voltios, $V_H = 1$ voltio.

2.2 Transistores MOS

UAB
Universitat Autònoma
de Barcelona

La mayoría de los circuitos digitales están compuestos de transistores MOS

Transistor MOS: dispositivo con 3 conexiones.

Dos tipos:

1 .3 UA

de Barcelona

2.3 Transistores MOS como interruptores

El circuitería digital, los transistores MOS se utilizan como "interruptores"

... pero:

El transistor MOS no es un interruptor "bueno" para cualquier valor de V_{IN} .

2.3.1 El transistor nMOS como interruptor

El transistor nMOS

- transmite bien V_L (0 V), pero ...
- no transmite tan bien V_H (1 V).

2.3.2 El transistor pMOS como interruptor

El transistor *p*MOS

- transmite bien V_H (1 V), pero ...
- no transmite tan bien V_L (0 V).

Universitat Autònoma de Barcelona

2.4 El inversor CMOS

V _{IN}	V _{OUT}
0 v.	1 v.
1 v.	0 v.

2.5 La puerta NAND

- $(V_{IN1} = 1V)$ AND $(V_{IN2} = 1V)$: $V_{OUT} = 0V$ (los dos interruptores nMOS conectados en serie transmiten 0V);
- (V_{IN1} = 0V) OR (V_{IN2} = 0V): V_{OUT} = 1V
 (por lo menos uno de los interruptores pMOS conectados en paralelo transmite 1V)

2.5 La puerta NAND

V _{IN1}	V _{IN2}	V _{OUT}
0 v.	0 v.	1 v.
0 v.	1 v.	1 v.
1 v.	0 v.	1 v.
1 v.	1 v.	0 v.

UAB
Universitat Autònoma
de Barcelona

(quiz)

1.3

UAB
Universitat Autònoma
de Barcelona

¿Qué valor o valores de V_{IN1} y V_{IN2} generan una salida V_{OUT} = 1?

1.
$$V_{IN1} = 0$$
, $V_{IN2} = 0$,

2.
$$V_{IN1} = 0$$
, $V_{IN2} = 1$,

3.
$$V_{IN1} = 1$$
, $V_{IN2} = 0$,

4.
$$V_{IN1} = 1$$
, $V_{IN2} = 1$.

(quiz)

1.3

UAB
Universitat Autònoma
de Barcelona

¿Cuál es la tabla que refleja el comportamiento del circuito de la figura?

- - $egin{array}{c|cccc} V_{INI} & V_{IN2} & V_{OUT} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$

2.6 Otros componentes

NOR_2
$$V_{IN1}$$
 \sim V_{OUT}

$$V_{OUT}$$
 = 0 ssi (si y sólo si)
 V_{IN1} = 1 OR V_{IN2} = 1

NAND_3
$$V_{IN2}$$
 V_{IN3} V_{IN3} $V_{OUT} = 0$ ssi $V_{IN1} = V_{IN2} = V_{IN3} = 1$

AND_2
$$V_{IN1} - V_{OUT} = 1 \text{ ssi } V_{IN1} = V_{IN2} = 1$$

$$V_{IN1}$$
 V_{IN2} V_{OUT}

2.6 Otros componentes

 $V_{OUT} = 1 \text{ ssi } V_{IN1} = 1 \text{ OR } V_{IN2} = 1$

AND_3
$$V_{IN1} = V_{OUT}$$

$$V_{OUT} = 1 \text{ ssi } V_{IN1} = V_{IN2} = V_{IN3} = 1$$

de Barcelona

2.6 Otros componentes

BUFFER

$$V_{OUT} = V_{IN}$$

3-STATE BUFFER

Vcontrol

$$V_{control} = 1 \text{ V: } V_{OUT} = V_{IN}$$

$$V_{control} = 1 \text{ V: } V_{OUT} = V_{IN}$$
 $V_{control} = 0 \text{ V: } V_{OUT} : \text{circuito abierto}$

2.6 Otros componentes

ROM (Read Only Memory)

UAB
Universitat Autònoma
de Barcelona

de Barcelona

2.6 Otros componentes

ROM (Read Only Memory)

ROM de 2²=4 palabras de 6 bits por palabra

a_1	a_0	$d_5 d_4 d_3 d_2 d_1 d_0$						
0	0	0	1	1	0	0	1	
0	1	0	1	0	0	0	0	
1	0	0	0	1	1	1	1	
1	1	0	0	1	0	0	0	

En general: ROM de 2^n palabras, m bits por palabra (dirección: n bits)

... a lo largo del curso definiremos otros componentes como los multiplexores, codificadores, decodificadores, latches, flip flops, etc.

UAB Universitat Autònoma de Barcelona

RESUMEN

- Qué entendemos por un sistema electrónico digital
- Codificación binaria (1s y 0s como valores altos y bajos de tensión)
- Catálogo de componentes
- Objetivo de la síntesis de sistemas electrónicos digitales