SESI 1 SOAL NO 1

Kode 1.1.1

Sebuah loop berbentuk lingkaran berjari-jari R = 1 cm dialiri arus $i_2 = 1$ A searah jarum jam seperti pada gambar. Pada jarak d = 4 cm dari pusat loop terdapat kawat lurus sangat panjang berarus i_1 . Tentukan:

- a. Induksi magnetik oleh loop berbentuk lingkaran berarus *i*² pada pusatnya
- **b.** Besar dan arah arus i_I supaya induksi magnetik di pusat loop bernilai no

Kode 1.1.2

Sebuah kawat berarus $i_1 = 5 A$ dibengkokkan membentuk bagian lingkaran dengan jari-jari R = 3 cm. Didekat kawat tersebut terdapat kawat sangat panjang berarus $i_2 = 3 A$ seperti pada gambar. Tentukan:

- a. Induksi magnetik di titik P oleh kawat berarus i1
- b. Induksi magnetik di titik P oleh kawat berarus i2
- c. Induksi magnetik total di titik P

Kode 1.1.3

Sebuah kawat persegi dengan panjang sisi $a = 10 \, cm$ dan berarus $i_3 = 2 \, A$ terletak **ditengah-tengah** dua buah kawat lurus sangat panjang masing-masing berarus $i_1 = 10 \, A$ dan $i_2 = 4 \, A$ dan terpisah sejauh $d = 26 \, cm$ seperti pada gambar.

- a. Gambarkan arah gaya Lorentz pada setiap sisi kawat persegi akibat medan magnet oleh kawat i_1 dan i_2
- b. Gaya Lorentz pada sisi PQ
- c. Gaya Lorentz pada sisi QR

i_1 Q i_3 R a a b i_2 d

Kode 1.1.4

Kawat lurus tak berhingga panjang mengalirkan arus listrik $I_1 = 2$ A ke arah kiri, kawat seperempat lingkaran dengan radius 4 cm terletak sebidang dengan kawat lurus mengalirkan arus listrik $I_2 = 10$ A ke arah kiri (lihat gambar). Jarak titik O (pusat seperempat lingkaran) dengan kawat lurus adalah a = 2 cm. Tentukan:

a. Besar dan arah induksi magnet oleh kawat lurus dan seperempat lingkaran tersebut di titik O.

b. Besar dan arah gaya Lorentz yang bekerja bila di titik O terdapat sebuah elektron yang bergerak horizontal dengan kecepatan 5.10^{-5} m/s ke arah kanan.

$$F = q[v(i)xB(-k)]$$

F = 6.24 x 10⁻³⁰(j) N

SOAL No 2

Kode 2.1.1

Sebuah loop persegi panjang PQRS memiliki panjang a=4 cm dan lebar b=1 cm bergerak sebidang dengan kawat sangat panjang berarus i dengan kecepatan v=3 mm/s seperti pada gambar. Jika kawat sangat panjang ini dialiri arus i=2 A dan berjarak c=1 cm terhadap sisi RS, maka tentukan:

- a. Fluks magnet yang ditangkap *loop* persegi panjang PQRS.
- b. Besar dan arah arus induksi pada loop persegi panjang PQRS, bila diketahui resistansi $loop\ R = 0.4\ m\Omega$.

Kode 2.1.2

Sebuah solenoida sangat panjang memiliki jumlah lilitan per satuan panjang 200 lilitan/cm dan berjari-jari 2 cm. Sebuah kumparan kecil (koil) yang berjari-jari 5 mm terdiri dari 40 lilitan diletakkan di tengah-tengah dan sesumbu dengan solenoida seperti pada gambar. Jika arus yang mengalir pada solenoida berubah terhadap waktu dengan persamaan $i(t) = (2t^2 - t)$ A, maka tentukan:

- a. Induktansi saling antara kedua kumparan ini.
- b. GGL yang diinduksikan pada kumparan kecil saat t = 1 s.
- c. Besar dan arah arus induksi pada kumparan kecil saat t=1 s, bila resistansi koil R=0,1 Ω .
- d. Rapat energi pada selenoida saat t = 1 s.

Kode 2.1.3

Sebuah magnet batang permanen digerakkan menjauhi loop berbentuk lingkaran berjari-jari 2 cm dengan kecepatan konstan v seperti pada gambar. Akibatnya besar medan magnet yang menembus loop berubah terhadap waktu yang memenuhi persamaan $B(t) = (4 + 3t - 2t^2)$ Wb/m². Jika *loop* tersebut dihubungkan dengan resistor $R = 1 \text{ m}\Omega$, maka hitunglah:

- a. GGL induksi yang menembus *loop* pada saat t = 1 sekon.
- b. Besar arus induksi yang terjadi pada *loop* saat t = 1 sekon.
- c. Arah arus induksi induksi pada *loop*.

Kode 2.1.4

Sebuah *loop* berbentuk persegi panjang berada dalam suatu daerah yang mempunyai medan magnet B serbasama dan berarah tegak lurus masuk bidang gambar. Loop ini digerakkan menjauh dari daerah medan B dengan kecepatan

konstan v seperti pada gambar. Jika *loop* tersebut dihubungkan dengan hambatan R, maka tentukan

- a. Besar ggl induksi pada loop Ketika digerakkan menjauhi daerah medan magnet, bertanda positif atau negatifkah? Jelaskan!
- b. Arah medan induksi dan besar arus induksi pada *loop*? Jelaskan!

SOAL No 3

KODE: 3.1.1

Suatu rangkaian RLC seri dengan $R = 25 \Omega$, L = 30 mH, dan $C = 12 \mu\text{F}$ dihubungkan dengan sumber tegangan bolak-balik yang memiliki tegangan efektif 90 Volt dan frekuensi 500 Hz. Hitunglah:

- a. Impedansi rangkaian
- b. Tegangan efektif pada resistor, induktor dan kapasitor
- c. Faktor daya dalam rangkaian

KODE: 3.1.2

Sebuah resistor, induktor dan kapasitor masing-masing $R=200~\Omega$, $L=0.4~\rm H,~C=6~\mu F$, dihubungkan seri dan diberi sumber tegangan bolak-balik $V=30\sin 200t$ seperti pada gambar. Tentukan:

- a. Impedansi rangkaian
- b. Daya yang terdisipasi pada rangkaian
- c. Tegangan yang terbaca pada V_1 , V_2 , V_3 , V_4 dan V_5 ,

KODE: 3.1.3

Sebuah rangkaian terdiri dari resistor 30 ohm, induktor $\frac{0.1}{\pi}$ Henry dan kapasitor $\frac{200}{\pi} \mu F$ dirangakai secara seri dan dihubungkan dengan tegangan AC dengan persamaan $V = 100\sqrt{2} \sin{(100\pi t)}$, V dalam volt dan t dalam sekon, Tentukan:

- (a) Impedansi rangkaian dan sifat rangkaian
- (b) Kuat arus efektif pada rangkaian
- (c) Daya rata-rata yang terdisipasi pada rangkaian
- (d) Persamaan arus pada rangkaian

KODE: 3.1.4

Sebuah rangkaian terdiri dari resistor 30 ohm, induktor 0,09H dan kapasitor 20 μ F dirangkai seri, kemudian kedua ujungnya diberi tegangan AC dengan persamaan $V = 100\sqrt{2}$ sin (1000t), V dalam volt dan t dalam sekon, Tentukan:

- (a) Impedansi rangkaian dan sifat rangkaian
- (b) Kuat arus efektif pada rangkaian
- (c) Daya rata-rata yang terdisipasi pada rangkaian
- (d) Persamaan arus pada rangkaian