O Exercice 01:

⇒ Soit f la fonction définie sur R+ par:

$$f(2) = \frac{-1}{2} \text{ et } f(x) = \frac{x^2 - 2x}{|x^2 - 5| - 1}; \text{ si } x \neq 2$$
.

- 1)- Déterminer D_f , puis calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.
- 2)- Montrer que f est continue en $x_0 = 2$.

O Exercice 02:

⇒ On considère la fonction f définie par :

$$f(2)=4$$
 et $f(x)=\frac{x^3-8}{x^2-x-2}$, si $x \neq 2$.

- 1)- Déterminer D_f .
- 2)- Montrer que f est continue en $x_0 = 2$.
- 3)- a)- Vérifier que : $(\forall x \in \mathbb{R} \{-1\}), f(x) = \frac{x^2 + 2x + 4}{x + 1}$.
 - 6)- Justifier que f est continue sur chacun des intervalles $]-\infty,-1[$ et $]-1,+\infty[$.

O Exercice 03:

⇒ On considère la fonction f définie par :

$$f(-1) = \frac{-1}{2} \text{ et } f(x) = \frac{2}{1-x^2} - \frac{3}{1+x^3}, \text{ si } x \neq -1$$
.

- 1)- a)- Déterminer D_f .
 - 6)- Calculer $\lim_{x\to 1^-} f(x)$ et $\lim_{x\to 1^-} f(x)$.
- 2)- a)- Vérifier que : $(\forall x \in D_f)$, $f(x) \approx \frac{2x-1}{(1-x)(1-x+x^2)}$.
 - 6)- En déduire que f est continue en $x_0 = -1$.

O Exercice 04:

⇒ On considère la fonction f définie par :

$$f(1) = a \text{ et } f(x) = \frac{x^2 \sqrt{x + 3} - 2}{1 - x^2}, \text{ si } x \neq 1 \text{ Où } a \in \mathbb{R}.$$

- 1)- Déterminer D_f , puis calculer $\lim_{x \to \infty} f(x)$.
- 2)- Pour quelle valeur de a la fonction f est-elle continue en $x_0 = 1$?

O Exercice 05:

⇒ Soit f la fonction définie par :

$$f(1) = \frac{4}{3}$$
 et $f(x) = \frac{x^2 - 1}{x + \sqrt{x} - 2}$; si $x \ne 1$.

- 1)- a)- Justifier que $D_f = \mathbb{R}^+$.
 - 6)- Montrer que f est continue en $x_0 = 1$.
- 2)- a)- Justifier que f est continue sur chacun des intervalles [0;1[et $]1;+\infty[$.
 - 6)- En utilisant ce qui précède , montrer que f est continue sur \mathbb{R}^+ .

O Exercice 06:

⇒ Soit f la fonction définie par :

$$f(x) = \begin{cases} x - \sqrt{x - 2}; & x \ge 2 \\ \frac{3}{3 - x}; & x < 2 \end{cases}.$$

- 1)- a)- Justifier que $D_f = \mathbb{R}$.
 - 6)- Montrer que f est continue en $x_0 = 2$.
- 2)- a)- Justifier que f est continue sur $]-\infty; 2[$ et $[2;+\infty[$.
 - 6)- En utilisant ce qui précède , montrer que f est continue sur $\mathbb R$.

O Exercice 07:

 \Rightarrow On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} \frac{\sqrt{3 + \sin x + \cos x} - 2}{x}; & x > 0 \\ ax + \sqrt{x^2 + x + 1}; & x \le 0 \end{cases}; Ou \ a \in \mathbb{R}.$$

- 1)- Calculer $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$.
- 2)- Montrer que f est continue à droite en 0.
- 3)- a)- Montrer que f est continue sur $]-\infty;0]$ et $]0;+\infty[$.
 - 6)- La fonction f est-elle continue sur $\mathbb R$? Justifier votre réponse .

O Exercice 08:

⇒ Soit f la fonction définie sur R+ par:

$$f(1) = a \text{ et } f(x) = \frac{x^2 + x - 6\sqrt{x} + 4}{(x-1)^2}; \text{si } x \neq 1 ; Où a \in \mathbb{R}$$
.

 \checkmark Déterminer la valeur de a pour laquelle f est continue sur \mathbb{R}^+ .

O Exercice 09:

✓ Montrer que l'équation (E): $\frac{1}{x-1} = \sqrt{x}$ admet une solution unique α dans L'intervalle]1;2[.

O Exercice 10:

⇒ On considère la fonction f définie sur R par:

$$f(x) = x^3 - x^2 + 3x + 1$$
.

- 1)- Montrer que f est strictement croissante sur $\mathbb R$.
- 2)- Montrer que l'équation f(x) = 0 admet une solution unique a dans $\left| \frac{-1}{2}; 0 \right|$.
- 3)- Calculer $f\left(\frac{-1}{4}\right)$, puis en déduire un encadrement de a d'amplitude 0,25.
- 4)- Montrer que $\sqrt{a+1} = \frac{-2a}{a+1}$, puis en déduire que $a < \frac{-1}{\sqrt{2}}$.

O Exercice 11:

- \Rightarrow On considère la fonction f définie par : $f(x) = \frac{x^2}{x+1}$.
- 1)- Déterminer D_f , puis calculer les limites de f aux bornes de D_f .
- 2)- a)- Montrer que: $(\forall x \in D_f), f'(x) = \frac{x(x+2)}{(x+1)^2}$.
 - 6)- Dresser le tableau de variation de f (en justifiant votre réponse).
- 3)- Déterminer $f(]-\infty,-2]$), f([-2;-1[),f(]-1;0]) et $f([0;+\infty[),-1]$
- 4)- On désigne par g la restriction de à l'intervalle $I =]-\infty; -2]$.
 - a)- Montrer que g admet une fonction réciproque g-1 définie sur un intervalle J que l'on déterminera.
 - 6)- Montrer que: $(\forall x \in J), g^{-1}(x) = \frac{x \sqrt{x^2 + 4x}}{2}$.

O Exercice 12:

- \Rightarrow Soit f la fonction définie sur $I =]-\infty;3]$ par : $f(x) = x^2 6x + 8$.
- 1)- Calculer $\lim f(x)$, puis montrer que f est strictement décroissante sur I.
- 2)- Montrer que f admet une bijection réciproque f^{-1} définie sur $J = [-1; +\infty[$.
- 3)- Montrer que : $(\forall x \in J), f^{-1}(x) = 3 \sqrt{x+1}$.

Ş

O Exercice 13:

- \Rightarrow Soit f la fonction définie par : $f(x) = \frac{1}{x} 2\sqrt{x+1}$.
- 1)- Justifier que $D_f = [-1; 0[\cup]0; +\infty[$.
- 2)- Calculer les limites de f aux bornes de D_f .
- 3)- Montrer que f est continue et strictement décroissante sur $]0;+\infty[$.
- 4)- a)- Montrer que l'équation f(x) = 0 admet une solution unique α dans $\left| \frac{1}{4}; 1 \right|$.

 6)- Vérifier que : $4\alpha^3 + 4\alpha^2 1 = 0$.

O Exercice 14:

- \Rightarrow Soit f la fonction définie sur $I =]-\infty; -1]$ par : $f(x) = \frac{2x}{1+x^2}$.
- 1)- Calculer $\lim_{x\to\infty} f(x)$; puis montrer que f est continue sur I.
- 2)- Montrer que : $(\forall x \in I)$, $f'(x) = \frac{2(1-x^2)}{(1+x^2)^2}$; puis déduire que f est strictement Décroissante sur I.
- 3)- a)- Montrer que f admet une fonction réciproque f^{-1} définie sur J = [-1; 0[. b)- Calculer $f^{-1}(x)$ pour tout $x \in J$.

O Exercice 15:

 \Rightarrow Soit f la fonction définie sur $I = [4; +\infty[$ par :

$$f(x) = \frac{-x^2}{4} + x\sqrt{x} - x + 1$$
.

- 1)- a)- Vérifier que : $(\forall x \in I), f(x) = 1 \frac{1}{4} (x 2\sqrt{x})^2$.
 - 6)- Montrer que $\lim_{x \to +\infty} f(x) = -\infty$.
- 2)- a)- Montrer que : $(\forall x \in I)$, $f'(x) = \frac{-1}{2}(\sqrt{x}-1)(\sqrt{x}-2)$, puis en déduire Que f est strictement décroissante sur I.
 - 6)- Montrer que l'équation f(x) = 0 admet une solution unique α dans I, puis Vérifier que $\frac{64}{9} < \alpha < \frac{121}{16}$.
- 3)- a)- Montrer que f admet une fonction réciproque f^{-1} définie sur $J =]-\infty;1]$.
 - 6)- Déterminer $f^{-1}(x)$ pour tout $x \in J$.
 - c)- En déduire que $\alpha = 4 + 2\sqrt{3}$.

O Exercice 16:

- \Rightarrow On considère la fonction : $f: x \mapsto \frac{\sqrt[3]{x^2} x}{x}$.
- \checkmark Déterminer D_f ; puis calculer les limites de f aux bornes de D_f .

O Exercice 17:

$$f(x) \approx x^4 - 6x^2 + x + 1$$
.

- 1)- Montrer que l'équation f'(x) = 0 admet une solution unique α dans]-1;1[.
- 2)- a)- Dresser le tableau de variation de f sur [-1;1].
 - 6)- Montrer que $f(\alpha) > 0$; puis en déduire que l'équation f(x) = 0 admet Exactement deux solutions dans]-1;1[.

O Exercice 18:

 \Rightarrow Soit f la fonction définie sur $I =]-1; +\infty[$ par : $f(x) = \frac{1-x^3}{1+x^3}$.

- 1)- Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to (-1)^*} f(x)$.
- 2)- a)- Montrer que f admet une fonction réciproque f^{-1} définie sur $J =]-1;+\infty[$. 6)- Calculer $f^{-1}(x)$ pour tout $x \in J$.

O Exercice 19:

✓ Calculer chacune des limites suivantes :

$$\lim_{x \to 2} \frac{1 + \sqrt[3]{4x} - \sqrt{4x + 1}}{x - 2} ; \lim_{x \to 1} \frac{x^3 - 1}{x + \sqrt[3]{x} - 2} ; \lim_{x \to 2} \frac{6 - \sqrt[3]{4x} \cdot \sqrt{4x + 1}}{x - 2} .$$

$$\mathcal{E}t \lim_{x \to 1} \frac{1}{2\left(1 - \sqrt{x}\right)} - \frac{1}{3\left(1 - \sqrt[3]{x}\right)} .$$

O Exercice 20:

✓ Calculer chacune des limites suivantes :

$$\lim_{x \to +\infty} \frac{\sqrt[4]{3x^4 + x - 4}}{x} ; \lim_{x \to +\infty} \frac{\sqrt[3]{8x^3 - x} - \sqrt[3]{x^3 + 2x}}{x} ; \lim_{x \to -\infty} \frac{\sqrt[4]{x^4 + x - 3}}{x}$$

$$\lim_{x \to -\infty} \sqrt{1 + x^2} - \sqrt[3]{1 - x^3} et \lim_{x \to +\infty} x \left(\sqrt{x^2 + x + 1} - \sqrt[3]{x^3 + x^2 + 1} \right)$$

Ş

O Exercice 21:

 \Rightarrow Soit a,b,c des nombres réels strictement positifs tel que : $a+b \le c$.

✓ Montrer que: $\sqrt[3]{a} + \sqrt[3]{b} = \sqrt[3]{c} \Rightarrow (a+b-c)^3 + 27abc = 0$.

O Exercice 22:

1)- Dresser le tableau de variation complet de f .

2)- Montrer que l'équation f(x) = 0 admet une solution unique α dans $\mathbb R$ et que $2 < \alpha < 3$.

3)- On pose :
$$a = \frac{\sqrt[3]{12 + 4\sqrt{5}}}{2}$$
 . Montrer que $\alpha = a + \frac{1}{a}$.

O Exercice 23:

 \Rightarrow Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 - 3x + 1$.

1)- Montrer que l'équation f(x) = 0 admet une solution unique a dans $\left[\sqrt[3]{2}; +\infty\right[$.

2)- Montrer que l'équation f(x) = x admet une solution unique b dans $a; +\infty$

3)- Montrer que : $(\exists c \in]0; a[), \sqrt[3]{c+2}.f(c) = 2c-a$.

O Exercice 24:

 \Rightarrow Soit f la fonction définie sur $I = [-1; 0[par : f(x) = \frac{\sqrt{x+1}}{x}]$.

1)- Calculer $\lim_{x\to 0^-} f(x)$, puis montrer que f est continue sur I.

2)- Montrer que : $(\forall x \in]-1;0[), f'(x) = -\frac{x+2}{2x^2\sqrt{x+1}}$, puis en déduire que fEst strictement décroissante sur I.

3)- Montrer que l'équation $f(x) = x^3$ admet une solution unique a dans I et que $\frac{-3}{4} < a < \frac{-1}{2}$.

4)- a)- Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J Que l'on déterminera .

6)- Calculer $f^{-1}(x)$ pour tout $x \in J$.

5)- Résoudre dans \mathbb{R} , l'équation $f^{-1}(x) = f(x)$.

Fin Du Sujet

Bon Courage et Bonne Chance