		NOU	C
Name Vorname	1	I	II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
Fakultät für Mathematik	6		
Klausur MA9202 Mathematik für Physiker 2	7		
(Analysis 1)	8		
Prof. Dr. R. König	\sum		
23. Februar 2018, $8:00 - 9:30$ Uhr			
Hörsaal: Reihe: Platz:	I	 Erstkorrel	ktur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	IIZweitkorrektur		
Bearbeitungszeit: $90 ext{min}$ Erlaubte Hilfsmittel: \mathbf{ein} selbsterstelltes DIN A4 Blatt			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen:	_		
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

Musterlösung (mit Bewertung)

Besondere Bemerkungen:

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n-1} k^3 = \frac{(n-1)^2 n^2}{4}.$$

LÖSUNG:

Induktions an fang:
$$(n=1)$$
: $\sum_{k=0}^{1-1} k^3 = 0^3 = 0 = \frac{(1-1)^2 \cdot 1^2}{4}$ [2]

 $Induktions schritt: (n \rightarrow n+1):$

$$\sum_{k=0}^{(n+1)-1} k^3 \stackrel{\text{[1]}}{=} \sum_{k=0}^{n-1} k^3 + n^3$$

$$\stackrel{\text{I.V.}[2]}{=} \frac{(n-1)^2 n^2}{4} + n^3 \stackrel{\text{[1]}}{=} \frac{n^2}{4} \left((n-1)^2 + 4n \right)$$

$$\stackrel{\text{[1]}}{=} \frac{n^2}{4} (n+1)^2 \stackrel{\text{[1]}}{=} \frac{((n+1)-1)^2 (n+1)^2}{4}.$$

2. Maximum/Minimum, Infimum/Supremum einer Menge Gegeben sei $M:=\{\cos(\pi\frac{k}{n})\mid k,n\in\mathbb{N},k\leq n\}\subset\mathbb{R}$						[12 Punkte]
(a) Kreuzen Sie gena	u die wahre	n Aussager	ı an.			[2]
\Box -2	$2 \in M$	$1-1 \in M$	$\boxtimes 0 \in \Lambda$	$I \qquad \Box \ 1 \in$	$\equiv M \qquad \Box \ 2$	$\in M$
(b) Geben Sie, wenn	möglich, eir	ne Folge an	, die in M	enthalten is	st und gegen	-1 konvergiert.
	$-1 = \cos$	$s(\pi) \in M$, s	$x_n := -1 \rightarrow$	$\rightarrow -1$ $(n \rightarrow$	→ ∞) [2	1]
(c) Geben Sie, wenn	möglich, eir	ne Folge an	, die in M	enthalten is	st und gegen	1 konvergiert.
	$M \ni \cos($	$(\frac{\pi}{n}) =: x_n -$	$\rightarrow 1 \ (n \rightarrow \infty)$	0)	[2	2]
(d) Wie lauten jeweil	s Minimum,	/Maximum	und Infim	um/Suprem	num der Men	age M ?
$\bullet \min M$						[1]
$\Box = -\infty$	$\square = -1$	$\Box = 0$	$\square = 1$	$\square = 2$	$\square = \infty$	\square ist nicht definiert
ullet inf M						[1]
$\Box = -\infty$	$\square = -1$	$\Box = 0$	$\square = 1$	$\square = 2$	$\square = \infty$	\Box ist nicht definiert
$\bullet \max M$						[1]
$\Box = -\infty$	$\square = -1$	$\Box = 0$	$\square = 1$	$\square = 2$	$\square = \infty$	\boxtimes ist nicht definiert
$\bullet \sup M$						[1]
$\square = -\infty$	$\Box = -1$	$\Box = 0$	X = 1	$\square = 2$	$\square = \infty$	\Box ist nicht definiert
(e) Entscheiden Sie n	nit kurzer B	segründung	, ob die fol	gende Auss	age wahr ist	:
Für jede stetig	e Funktion	$f: \mathbb{R} \to \mathbb{R}$	nimmt die	Funktion f	$f _M:M\to\mathbb{R}$	ihr Supremum an.
Die Aussage $f: M \to \mathbb{R}$ 1 sup $f(M) =$ Lösung:	mit f(x) = 3					[1] [1] [1]

s.o.

3. Konvergenz von Folgen und Reihen

[8 Punkte]

- (a) Bestimmen Sie den Grenzwert: $\lim_{n\to\infty} \left(n^2 \sqrt{n^4 n^2}\right)$ [2]
 - $\square = -\infty$ $\square = -\frac{1}{2}$ $\square = 0$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square ist nicht definiert
- (b) Schreiben Sie die Reihe $\frac{5}{6} + \left(\frac{5}{6}\right)^2 + \left(\frac{5}{6}\right)^3 + \cdots$ mit dem Summenzeichen und bestimmen Sie gegebenenfalls ihren Wert.

$$\sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n = 5$$
 [3]

(c) Die Reihe
$$\sum_{n=1}^{\infty} \frac{1 + n(-1)^n}{n^2}$$
 ist [3]

- ullet bestimmt divergent: \square Ja \square Nein
- konvergent: \square Ja \square Nein
- absolut konvergent: \Box Ja \Box Nein

LÖSUNG:

(a)
$$\lim_{n \to \infty} \left(n^2 - \sqrt{n^4 - n^2} \right) = \lim_{n \to \infty} \frac{n^4 - (n^4 - n^2)}{n^2 + \sqrt{n^4 - n^2}} = \lim_{n \to \infty} \frac{n^2}{n^2 \left(1 + \sqrt{1 - \frac{1}{n^2}} \right)} = \frac{1}{2}.$$

- (b) Dies ist eine geometrische Reihe, die Basis des Summanden $\frac{5}{6}$ ist vom Betrag kleiner als eins. Die Reihe ist also absolut konvergent mit Grenzwert $\sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n = \frac{\frac{5}{6}}{1-\frac{5}{6}} = 5$.
- (c) Die Reihe ist konvergent als Summe zweier konvergenter Reihen, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ und der alternierenden harmonischen Reihe, also nicht bestimmt divergent. Da Summen und Differenzen absolut konvergenter Reihen wieder absolut konvergent sind, gilt: wäre die Reihe absolut konvergent, dann müsste auch die alternierende harmonische Reihe absolut konvergent sein. Widerspruch.

4. Potenzreihen [12 Punkte]

Geben Sie mit Begründung alle $x \in \mathbb{R}$ an, für die die Potenzreihe $p(x) = \sum_{n=1}^{\infty} \frac{3^n}{n^4} x^{2n}$ konvergiert.

$$\sum_{n=0}^{\infty} \frac{3^n}{n^4} x^{2n} = \sum_{k=0}^{\infty} a_k x^k \text{ mit } a_k = \begin{cases} \frac{3^{k/2}}{(k/2)^4} & \text{für } k \text{ gerade,} \\ 0 & \text{für } k \text{ ungerade.} \end{cases}$$
 [3]

$$\sum_{n=0}^{\infty} \frac{3^n}{n^4} x^{2n} = \sum_{k=0}^{\infty} a_k x^k \text{ mit } a_k = \begin{cases} \frac{3^{k/2}}{(k/2)^4} & \text{für } k \text{ gerade,} \\ 0 & \text{für } k \text{ ungerade.} \end{cases}$$
Somit ist $\sqrt[k]{|a_k|} = \begin{cases} \frac{3^{1/2}}{\sqrt[k]{(k/2)^4}} & \text{für } k \text{ gerade,} \\ 0 & \text{für } k \text{ ungerade.} \end{cases}$

$$(2)$$

Wegen
$$\lim_{k\to\infty} \frac{3^{1/2}}{\sqrt[k]{(k/2)^4}} = \sqrt{3} \lim_{k\to\infty} \frac{(\sqrt[k]{2})^4}{(\sqrt[k]{k})^4} = \sqrt{3} \text{ hat } \sqrt[k]{|a_k|} \text{ die Häufungspunkte 0 und } \sqrt{3}.$$

[2]
Also ist $\limsup_{k\to\infty} \sqrt[k]{|a_k|} = \sqrt{3}.$

[1]
Der Konvergenzradius ist also $\frac{1}{k}$

Also ist
$$\limsup_{k \to \infty} \sqrt[k]{|a_k|} = \sqrt{3}$$
. [1]

Der Konvergenzradius ist also
$$\frac{1}{\sqrt{3}}$$
. [1]

Der Konvergenzradius ist also
$$\frac{1}{\sqrt{3}}$$
. [1]
Somit konvergiert die Potenzreihe für alle $x \in (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ und divergiert für $|x| > \frac{1}{\sqrt{3}}$. [1]

Für $x=\pm\frac{1}{\sqrt{3}}$ lautet die Reihe $p(\pm\frac{1}{\sqrt{3}})=\sum_{n=1}^{\infty}\frac{1}{n^4}$. Diese Reihe konvergiert (sogar absolut), da der Exponent im Nenner 4>1 ist. Insgesamt erhalten wir: Die Potenzreihe konvergiert genau dann, wenn $x \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ gilt. [2]

5. Grenzwerte von Funktionen

[5 Punkte]

(a) Welchen Wert hat
$$\lim_{x\to 1} \frac{x^2-1}{\log x}$$
?

[2]

$$\square - \infty \qquad \square - 2 \qquad \square - 1 \qquad \square - \frac{1}{2} \qquad \square \ 0 \qquad \square \ \frac{1}{2} \qquad \square \ 1$$

$$\Box -2$$

$$\Box -1$$

$$\Box -\frac{1}{2}$$

$$\Box 0$$

$$\frac{1}{2}$$

$$1 \quad \mathbb{X} \ 2$$

$$\square \infty$$

$$\square$$
 existiert nicht

(b) Welchen Wert hat
$$\lim_{x \to 1} \left(\frac{x^2 - 1}{\log x} \right)^2$$
? $\lim_{x \to 1} \left(\frac{x^2 - 1}{\log x} \right)^2 = 4$

$$\lim_{x \to 1} \left(\frac{x^2 - 1}{\log x}\right)^2 = 4 \qquad [1]$$

(c) Geben Sie an, für welches
$$c \in \mathbb{R}$$
 die Funktion $f:(0,\infty) \to \mathbb{R}$ stetig ist, wobei

[2]

$$f(x) = \begin{cases} c & \text{für } x = 1, \\ \frac{x^2 - x}{x^2 + x - 2} & \text{für } x \neq 1. \end{cases}$$

$$\square \ c = -3 \quad \square \ c = -1 \quad \square \ c = -\frac{1}{3} \quad \square \ c = 0 \quad \boxtimes \ c = \frac{1}{3} \quad \square \ c = 1 \quad \square \ c = 3 \quad \square \ \text{für kein} \ c \in \mathbb{R}$$

LÖSUNG:

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{\log x} \stackrel{\text{l'H}}{=} \lim_{x \to 1} \frac{2x}{\frac{1}{x}} = 2.$$

(b)
$$\lim_{x \to 1} \left(\frac{x^2 - 1}{\log x} \right)^2 = \left(\lim_{x \to 1} \frac{x^2 - 1}{\log x} \right)^2 = 2^2 = 4.$$

(c) Zähler und Nenner sind als Polynome stetig differenzierbar und haben bei x=1 den Wert 0. Die l'Hospitalsche Regel ergibt

$$\lim_{x \to 1} \frac{x^2 - x}{x^2 + x - 2} \stackrel{\text{l'H}}{=} \lim_{x \to 1} \frac{2x - 1}{2x + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3}.$$

6. Taylorentwicklung

[11 Punkte]

Wir betrachten die Funktion $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$.

(a) Wie lautet das Taylorpolynom sechster Ordnung von f im Entwicklungspunkt 0?

[3]

$$T_0^6 f)(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

(b) Zeigen Sie, dass für alle $x \in [-2, 2]$ gilt:

$$|f(x) - (T_0^6 f)(x)| \le \frac{1}{5}.$$

LÖSUNG:

(a) Es ist für alle $x \in \mathbb{R}$

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \cdots$$

die Taylorreihe von f(x). Das Taylorpolynom erhält man durch Abschneiden.

(b) Nach dem Satz von Taylor (f ist sogar unendlich oft differenzierbar) gilt für das Restglied der Taylorentwicklung, dass $(R_0^6 f)(x) = f(x) - (T_0^6 f)(x) = \frac{x^7}{7!} f^{(7)}(\xi)$ für

ein ξ zwischen 0 und x. [2]

Wegen
$$f^{(7)}(x) = f'''(x) = -\cos(x)$$
 gilt immer $|f^{(7)}(x)| \le 1$. [2] Somit gilt für $x \in [-2, 2]$, dass

$$|(R_0^6 f)(x)| \le \frac{|x|^7}{7!} \sup_{\xi \in [-2,2]} |f^{(7)}(\xi)| \le \frac{2^7}{7!} = \frac{2^7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} = \frac{8}{3 \cdot 5 \cdot 3 \cdot 7} = \frac{8}{315} \le \frac{8}{40} = \frac{1}{5}.$$

[3]

7. Integration [11 Punkte]

- (a) Bestimmen Sie die Ableitung von $x \mapsto e^{-x^2}$.
- (b) Geben Sie eine Stammfunktion von $x \mapsto xe^{-x^2}$ an.
- (c) Berechnen Sie $I_1 := \int_0^\infty x e^{-x^2} dx$.
- (d) Berechnen Sie $I_2 := \int_0^\infty x^2 e^{-x^2} dx$ unter Verwendung von $I_0 := \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

HINWEIS: In (d) partielle Integration mit Hinblick auf (b).

Lösung:

(a) Die Ableitung ist
$$\frac{d}{dx}e^{-x^2} = -2xe^{-x^2}$$
 [1]

(b) Wegen (a) ist eine Stammfunktion von $x\mapsto x\mathrm{e}^{-x^2}$ gegeben durch $x\mapsto -\frac{1}{2}\mathrm{e}^{-x^2}$. [2]

(c)
$$\int_{0}^{\infty} x e^{-x^{2}} dx \stackrel{[1]}{=} \lim_{b \to \infty} \int_{0}^{b} x e^{-x^{2}} dx \stackrel{[b]}{=} \lim_{b \to \infty} \left[-\frac{1}{2} e^{-x^{2}} \right]_{0}^{b} = \frac{1}{2} - \lim_{b \to \infty} \frac{1}{2} e^{-b^{2}} \stackrel{[1]}{=} \frac{1}{2}.$$

(d) Durch geeignetes aufspalten des Integranden kann man (b) verwenden

$$\int_{0}^{\infty} x^{2} e^{-x^{2}} dx \stackrel{[1]}{=} \lim_{b \to \infty} \int_{0}^{b} \underbrace{x}_{f(x)} \underbrace{x e^{-x^{2}}}_{g'(x)} dx \stackrel{[2]}{=} \lim_{b \to \infty} \left(\left[x(-\frac{1}{2}e^{-x^{2}}) \right]_{0}^{b} - \int_{0}^{b} 1 \cdot (-\frac{1}{2}e^{-x^{2}}) dx \right)$$

$$\stackrel{[1]}{=} 0 + \frac{1}{2} \lim_{b \to \infty} \int_{0}^{b} e^{-x^{2}} dx \stackrel{[1]}{=} \frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{4}$$

8. Matrixexponential

[11 Punkte]

Gegeben ist die Matrix $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

(a) Berechnen Sie die Matrix A^n für $n \in \mathbb{N}_0$.

[3]

$$A^n = \begin{pmatrix} & 1 & & -n \\ & & & \\ & 0 & & 1 \end{pmatrix}$$

(b) Berechnen Sie die Matrix $B(t) = \exp(tA)$ für $t \in \mathbb{R}$.

[5]

$$\begin{pmatrix} B_{11}(t) B_{12}(t) \\ B_{21}(t) B_{22}(t) \end{pmatrix} = \begin{pmatrix} e^t & -te^t \\ 0 & e^t \end{pmatrix}$$

(c) Berechnen Sie die Lösung x(t) des Anfangswertproblems $\dot{x} = Ax$, $x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. [3]

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} B_{11}(t) - B_{12}(t) \\ B_{21}(t) - B_{22}(t) \end{pmatrix} = \begin{pmatrix} (1+t)e^t \\ -e^t \end{pmatrix}$$

LÖSUNG:

(a)
$$A^0 = I_2$$
, $A^1 = A$, $A^2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$, $A^3 = AA^2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$, ..., $A^n = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$.

(b)
$$e^{tA} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{t^n}{n!} & \sum_{n=0}^{\infty} (-n) \frac{t^n}{n!} \\ 0 & \sum_{n=0}^{\infty} \frac{t^n}{n!} \end{pmatrix} = \begin{pmatrix} e^t - te^t \\ 0 & e^t \end{pmatrix},$$

$$da \sum_{n=0}^{\infty} (-n) \frac{t^n}{n!} = -\sum_{n=1}^{\infty} \frac{t^n}{(n-1)!} = -t \sum_{n=1}^{\infty} \frac{t^{n-1}}{(n-1)!} = -te^t \text{ ist.}$$

(c) Eine Lösung ist
$$x(t) = e^{tA}x(0) = \begin{pmatrix} B_{11}(t) B_{12}(t) \\ B_{21}(t) B_{22}(t) \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.