Teoremas previos

Si a ∈ G, b es inverso por izquierda y b' por derecha entonces b = b'.
(G no necesariamente grupo sino que alcanza con que cumpla la asociatividad y tener neutro).

Observaciones:

No necesariamente si es inverso por izquierda es inverso por derecha

Grupos

 $< G, *, e_G >$ es un grupo si cumple:

- 1) Cierre $\forall a, b \in G$, $a * b \in G$ y es único
- 2) Asociativa: $\forall a, b, c \in G$, a * (b * c) = (a * b) * c
- 3) Neutro: Existe y es único algún elemento $e_G \in G/e_G*a=a*e_G=a \ \forall a \in G$
- 4) Opuesto al inverso: $\forall a \in G$, $\exists a' \in G/a * a' = a' * a = e_G$

Propiedades:

- 1) El e_G es único
- 2) El inverso de g es único
- 3) $(a*b)^{-1} = b^{-1}a^{-1} \ \forall a,b \in G$
- 4) Cancelativas:
 - a) $x * g = x * h \Leftrightarrow g = h$
 - b) $g * x = h * x \Leftrightarrow g = h$
- 5) $(a^n)^{-1} = (a^{-1})^n \ \forall a \in G$

Grupo abeliano

Un grupo $(G, *, e_G)$ es abeliano si $a * b = b * a \forall a, b \in G$

Propiedades:

- 1) $(a*b)^{-1} = a^{-1}*b^{-1} \forall a,b \in G \Leftrightarrow G$ abeliano
- 2) $(a*b)^n = a^n * b^n \ \forall a,b \in G \Leftrightarrow G$ abeliano
- 3) Si G es un grupo con 4 elementos, es abeliano
- 4) Si G es abeliano $\sigma(a) = n$ y $\sigma(b) = m \Rightarrow \sigma(ab) = mcm(n, m)$ (si no es abeliano esto es falso)

Tabla de Cayley

En los casilleros se coloca el resultado de a * b

- 1) Se cumple el SUDOKU
- 2) En cada fila y en cada columna aparecen todos los elementos de G
- 3) Si la tabla es simétrica (en la diagonal de esquina superior derecha a la esquina inferior izquierda) *G* es abeliano
- 4) Para llenar la tabla mirar los inversos

Enteros módulo n

Son los
$$Z_n = \{\overline{1}, \overline{2}, \overline{3}, \dots \overline{n}\}$$

Invertibles módulo n

Los invertibles módulo n son un grupo abeliano con el producto:

$$U_n = \{ [x] : mcd(x, n) = 1 \}$$

Propiedades:

1) $a \in U_n \Rightarrow \sigma(a)$ divide a $|U_n| = \varphi(n)$ (Por Teorema de Lagrange)

Subgrupo

Sea $(G,*,e_G)$ un grupo, $H \leq G$, $(H,*,e_G)$ es un subgrupo de $(G,*,e_G)$ si:

- 1) $H \subseteq G, H \neq \emptyset$
- 2) El neutro de G pertenece a H
- 3) $\forall a, b \in H, a * b \in H$
- 4) $\forall a \in H, a^{-1} \in G \text{ y } a^{-1} \in H$

Observaciones:

- 1) $(H,*,e_G)$ es un grupo en sí mismo
- 2) Si G es un grupo finito \Rightarrow no es necesario chequear la (4)

Intersección de grupos

Sea $(G, *, e_G)$ un grupo, H_1 y H_2 son subgrupos de G

- 1) $H_1 \cap H_2 < G$
- **2)** $H_1 \cap H_2 < H_1$
- 3) $H_1 \cap H_2 < H_2$

Propiedades:

1) $mcd(|H|, |K|) = 1 \Rightarrow H \cap K = \{e\}$

Orden de un grupo

Es la cantidad de elementos que hay en el grupo.

Ejemplos:

- 1) $|Z_n| = n$
- 2) $|S_n| = n!$
- 3) $|U_n| = \varphi(n)$ (Por definición de φ)
- **4)** $\sigma(e_G) = 1$

Propiedades:

- 1) $\sigma(ab) = \sigma(ba) \ \forall a, b \in G$
- 2) Si $a \in G$ y $\sigma(a) = 1 \Rightarrow a = e_G$
- 3) Si G finito y $a \in G \Rightarrow \sigma(a)$ divide a |G|
- 4) Si el orden de G es p **primo** todos los elementos no triviales tienen orden p. En particular, es **cíclico**
- 5) Si G es finito y $g \in G \Rightarrow g^{|G|} = e_G$ (Esto generaliza el **Teorema de Euler**)
- 6) Si $a^n = e_G \implies \sigma(a)$ divide a n
- 7) Si $a^n \neq e_G \implies \sigma(a)$ no divide a n

Notas:

- 1) Si G finito, todo elemento suyo tiene orden finito
- 2) Un ejemplo de grupo de orden infinito donde todos sus elementos salvo el neutro tienen orden infinito es (Z,+)
- 3) Un grupo de orden infinito donde todos los elementos tienen orden finito es Z_2xZ_2

Potencia de elementos de un grupo

```
Sea (G,*,e_G) un grupo y sea a\in G: a^0=e_G \text{ Por definición.} a^1=a a^2=a*a a^n=a*....*a \ (n \text{ veces}) a^{-1}=\text{ inverso de } a \text{ en } (G,*,e_G) a^{-n}=(a^{-1})*(a^{-1})*(a^{-1})*....*(a^{-1}) \ (n \text{ veces})
```

Orden de un elemento de G

Sea $(G, *, e_G)$ un grupo, $a \in G$:

- 1) Se $\exists n \in N / a^n = e_G$ Se llama $\sigma(a)$ al mínimo natural que lo cumple
- 2) Si no existe $n \in N$ tal que $a^n = e_G \ \sigma(a) = \infty$

Propiedades:

Sea *G* un grupo:

- 1) $a^n = e_G \Leftrightarrow \sigma(a)$ divide a $n \forall a \in G \text{ y } n \in N$
- 2) $\sigma(x * y) = \sigma(y * x) \quad \forall x, y \in G$

Teorema de Lagrange

(H)
$$G$$
 es un grupo finito y $H \le G \Rightarrow$ **(T)** $|H|$ divide a $|G|$

Corolarios:

- 1) Todo grupo de orden primo es cíclico
- 2) Para todo grupo G finito, $\forall a \in G \ \sigma(a)$ divide a |G|
- 3) Para todo grupo G finito, $\forall a \in G \ a^{|G|} = e_G$

Subgrupo generado

Dado $(G, *, e_G)$ un grupo y $a \in G$:

- El conjunto $\langle a \rangle = \{a^n \ tal \ que \ n \in Z\}$ se llama subgrupo de G generado por a $\langle a \rangle \leq G$
- $\langle a \rangle$ es un grupo

Propiedades:

- 1) $\langle a \rangle$ es un subgrupo de G que contiene a a
- 2) $\langle a \rangle$ es el menor de los subgrupos de G que contiene a a

Teorema

- **(H)** Si $\sigma(a)$ es finito y $\sigma(a) = m_o \implies$
- **(T)** El conjunto $H=\{e_G,a,a^2,...,a^{m_o-1}\}$ es el subgrupo generado por a , $H=\ < a > \$ y $\ |< a >| = \sigma(a)$

Grupo cíclico

Un grupo G lo es si:

- 1) |G| es finito
- 2) $G = \langle a \rangle$ para algún $a \in G$
- 3) $|G| = |\langle a \rangle| = \sigma(a)$

Propiedades:

- 1) Si G es cíclico \Rightarrow todo subgrupo de G también lo es
- 2) Si G solo tiene subgrupos triviales $(H = \{e_G\} \land H = G) \Rightarrow G$ es cíclico, finito y |G| es **primo**
- 3) Todo grupo de orden primo es cíclico
- 4) Si G es cíclico ⇒ es abelianoEs falso que si G es abeliano ⇒ es cíclico

Clases en el grupo

Dado $(G,*,e_G)$ un grupo. $H \le G$ $a \in G$ fijo. Se llama "Coclase" de a con respecto al subgrupo H al conjunto:

"
$$a * H$$
" = { $g \in G / g = a * h \text{ para alg\'un } h \in H$ }

Observaciones:

$$a \in H$$
 pues $e_G \in H$ y $a = a * e_G$

Teorema

(H) H finito \Rightarrow **(T)** Toda coclase tiene igual cantidad de elementos que H

Teorema

- **(H)** $(G,*,e_G)$ un grupo cualquiera y $H \le G$
- **(T)** Sean a * H y b * H dos coclases cualquiera respecto de H, se cumple:
 - O bien son disjuntas
 - O bien coinciden

Relación

Sean $a, b \in G$ decimos que $a \sim b$ cuando a * H = b * H

Esta es una relación de equivalencia

- Reflexiva
- Simétrica
- Transitiva

Homomorfismo de grupos (morfismo)

 $f:G_1\to G_2$ se llama homomorfismo de grupos si:

- 1) $f:G_1\to G_2$ con $(G,*,e_{G_1})$ y $\left(G_2,\,x,e_{G_2}\right)$ grupos
- 2) $\forall a, b \in G_1 \ f(a * b) = f(a) x f(b)$

Morfismo trivial

$$f: G \to G'$$
 lo es si $f(a) = e_{G'} \ \forall a \in G \ (Ker(f) = G)$

Núcleo de f

$$Ker(f) = \{a \in G / f(a) = e_{G'}\}$$

<u>Propiedades</u>

f es homomorfismo $f: G \rightarrow G'$

- 1) Ker(f) es subgrupo de G
- 2) $f(e_G) = e_{G'}$
- 3) $\forall a \in G \ f(a^{-1}) = [f(a)]^{-1}$
- 4) $\forall a \in G \ f(a^n) = [f(a)]^n \ \forall n \in Z$
- 5) $\forall a \in G$, si $\sigma(a)$ es finito $\Rightarrow \sigma(f(a))$ divide a $\sigma(a)$
- 6) |Ker(f)| divide a |G|

Teorema: Homomorfismos inyectivos

Un homomorfismo de grupos $f: G \to G'$ es invectivo $\leftrightarrow Ker(f) = \{e_G\}$

Corolarios:

- 1) |G| = p primo, $f: G \to G'$ homomorfismo entonces:
 - a) O bien f es trivial (Ker(f) = G)
 - b) O bien f es inyectiva $(Ker(f) = \{e_G\})$
- 2) $f: G \to G'$ homomorfismo, |G| = p primo, $|G| > |G'| \implies f$ es trivial (Ker(f) = G)

Propiedades:

Si $f: G \rightarrow G'$ homomorfismo

- 1) Si |G'| es finito y si $a \in G / \sigma(a)$ finito $\Rightarrow \sigma(f(a))$ divide a $mcd(\sigma(a), |G'|)$
- 2) Si |G| y |G'| es finito y $mcd(|G|, |G'|) = 1 \Rightarrow$ su morfismo f es trivial (Ker(f) = G)

Ejemplos:

1) Una Transformación Lineal es un morfismo de grupos

Imágen de f

$$Im(f) = \{ h \in G' / \exists g \in G, f(g) = h \}$$

Propiedades:

 $f:G\to G'$ es homomorfismo de grupos

- 1) Im(f) es subgrupo de G'
- 2) |Im(f)| divide a |G'|
- 3) Si $g \in G \Rightarrow \sigma(f(g))$ divide a mcd(|G|, Im(f))

Afirmación:

Sean
$$(G,*,e_G)$$
 y $(G',\otimes,e_{G'})$ grupos. $\forall a,b\in G$, $f:G\to G'$ homomorfismo: La coclase de a coincide con la coclase de $b\Leftrightarrow f(a)=f(b)$

Consecuencia:

coclases differentes = |Im(f)|

Teorema de los órdenes para morfismos de grupos

(H)
$$f:G\to G'$$
 homomorfismo de grupos, $|G|$ es finito
 (T) $|G|=|Ker(f)|\cdot|Im(f)|$

Isomorfismos:

 $f: G \to G'$ es un isomorfismo de grupos si es:

- 1) f un homomorfismo
- 2) f biyectiva

Notación: G = G'

Isomorfos

2 grupos G y G' son "isomorfos" si existe algún isomorfismo $f:G\to G'$

Propiedades:

- 1) Si G y G' son isomorfos $\Rightarrow |G| = |G'|$
- 2) Si G es cíclico $\Rightarrow G = Z$
- 3) Si G es cíclico y no es finito $\Rightarrow G = Z$
- 4) Si G es cíclico y $|G| = n \implies G = Z_n$
- 5) Dado $x \in G$, $x = g^k \implies \varphi(x) = k$ y φ es un isomorfismo
- 6) Si f es un isomorfismo $\Rightarrow \sigma(f(g))$ divide a $\sigma(g)$
- 7) Si $g_1 \neq g_2$ antes no triviales $\Rightarrow g_1g_2 = g_3$ con g_3 el otro orden de 2
- 8) G, H cíclicos:

$$G = H \Leftrightarrow |G| = |H|$$

- 9) $f: G \rightarrow G'$ es isomorfismo
 - \Leftrightarrow f morfismo, f invectiva $(Ker(f) = \{e_G\})$
 - \Leftrightarrow f morfismo, f sobreyectiva (Im(f) = G')

Observaciones:

Si $f: G \to G'$ es biyectiva \Rightarrow Existe otra función f^{-1} biyectiva tal que:

$$f^{-1}:G'\to G:$$

- $\forall a \in G : f^{-1}(f(a)) = a$ $\forall x \in G' : f(f^{-1}(x)) = x$

Eiemplos:

- 1) Z_4 no es isomorfo con Z_2xZ_2
- 2) G grupo tal que $|G| = 4 \implies G = Z_4$ o $G = Z_2xZ_2$

Proposición

Si $f: G \to G'$ es un isomorfismo $\Rightarrow f^{-1}: G' \to G$ también lo es.

Propiedades:

Sea $f: G \rightarrow G'$ isomorfismo:

- 1) $\forall a \in G$, si $\sigma(a)$ es finito $\Rightarrow \sigma(a) = \sigma(f(a))$
- 2) G es cíclico \Leftrightarrow G' es cíclico
- 3) G es abeliano \Leftrightarrow G' es abeliano