

THE HONG KONG UNIVERSITY OF

SCIENCE AND TECHNOLOGY

Nested-Refinement Metamorphosis: Reflective Evolution for Efficient Optimization of Networking Problems

Shuhan Guo, Nan Yin, James T. Kwok, Quanming Yao THU & HKUST

Interested in future works?

Contact: Quanming Yao (qyaoaa@tsinghua.edu.cn) & Nan Yin (yinnan8911@gmail.com)

2. Current Code Optimization Approaches

- x Continuous tuning is inapplicable to black-box LLM and incurs high costs.
- x Discrete prompt design with predefined templates fails to address algorithmic flaws.
- x Exclusive code evolutions relying on genetic-based refinement lack task prompt optimization and exhaustive evaluation, causing high computational costs and frequent requirement misalignment. Need better guidance & lower cost

3. Methodology

NeRM achieves efficient algorithm optimization through a three-phases bionic-inspired nested framework, integrating iterative MoP/MoA refinement with predictor-assisted candidate filtering.

Phase I - Metamorphosis on Prompts -> Refine the prompts feedback

- \square Phase I Metamorphosis on Prompts. \rightarrow Refine the prompts
- \square Phase II Metamorphosis on Algorithms. \rightarrow Refine the codes guided by the evolved prompt
- □ Phase III Nested evolution. → Predictor assisted code evaluation, filtering low-quality algorithms early

3.1 Bionic-Inspired Three-Stage Strategy

3.2 Nested-Refinement Metamorphosis

- ☐ MoP iteratively refines task descriptions to align with
- problem constraints.

 MoA evolves algorithms via reflection-driven adaptation.
- ☐ "Prompt->k*Code->Prompt->k*Code" manner, each provide feedback to others.

3.3 Predictor-Assisted Code Evaluation

- ☐ Embeds code-data pairs via LLM into shared space
- MLP ranks candidates to prune low-quality trials
- □ Online fine-tuning aligns with target problem constraints
- ☐ Skips actual execution of poor codes

4. Experiments

4.3 Effectiveness of Submodules

Method	Gap (%)	Time (s)
w/o predictor	0.18 _{±0.02}	104
w/o reflection	$0.22_{\pm 0.01}$	63
w/o revolution	$0.24_{\pm 0.04}$	62
w/o MoP	$0.34_{\pm 0.16}$	80
w/o MoA	$0.23_{\pm 0.04}$	72
NeRM	$0.19_{\pm 0.04}$	83

Stronger Performance & Higher Efficiency
Find out more in our paper...

6. Want more?

