DSA Midterm Study Guide

Contents

The midterm will cover chapter 18-23

- 18. Recursion
- 19. Generics
- 20. Lists, Stacks, Queues, and Priority Queues
- 21. Sets and Maps
- 22. Developing Efficient Algorithms
- 23. Sorting

Suggested Study Methods

- 1. Review Quiz and Assignment Topics
- 2. Review "Key Point" notes from textbook
- 3. Review lecture slides and lecture notes
- 4. Review the suggested topic outline below
- 5. Study textbook examples

Suggested Topic Outline

- 1. Recursion
 - 1. Definition
 - 2. Fibonacci and Factorial Algorithms
 - 3. Know what tail recursion is
 - 4. Know what types of problems are served well by recursion
 - 5. Be able to compare and contrast recursion and iteration
 - 6. Know the benefits of recursion
- 2. Generics
 - 1. Understand the motivation and benefits of generics
 - 2. Be able to identify a generic method, generic class, interface, etc.
 - 3. Understand type erasure and its implications
- 3. Lists, Stacks, Queues, and Priority Queues
 - 1. Understand the purpose, benefits, and properties of each type of data structure
 - 1. Understand of any sorting properties of each data structure
 - 2. Understand how elements are added and removed from each data structure
 - 2. Be familiar with the methods
 - 3. Be familiar with the concrete types within each interface, e.g. ArrayList and LinkedList, and their properties and differences
 - 4. Be familiar with the interfaces for each data structure

- 4. Sets and Maps
 - 1. Be familiar with the Set interface and its three concrete implementations
 - 1. HashSet
 - 2. LinkedHashSet
 - 3. TreeSet
 - 2. Be prepared to compare and contrast the various Set types
 - 3. Understand the benefits and limitations of Sets compared to other data structures
 - 4. Be familiar with the Map interface and its three concrete implementations
 - 1. HashMap
 - 2. LinkedHashMap
 - 3. TreeMap
 - 5. Be prepared to compare and contrast the various Set types
 - 6. Understand the benefits and limitations of Maps compared to other data structures
- 5. Developing Efficient Algorithms
 - 1. Understand what efficiency is and why it is important
 - 2. Understand Big O Notation
 - 3. Understand time complexity and space complexity, and their difference
 - 4. Understand types of algorithm analysis
 - 1. best-case input/analysis
 - 2. worst-case input/analysis
 - 3. average-case analysis
 - 5. Understand and be ready to match up the Big O measurement with its name, and their order
 - O(1) "Constant time"
 - O(log n) "Logarithmic time"
 - O(n) "Linear time"
 - O(n log n) "Log-Linear time"
 - O(n2) "Quadratic"
 - O(n3) "Cubic"
 - O(2n) "Exponential"
- 6. Sorting Be familiar with the following algorithms, their implementation, and their time complexity
 - 1. Insertion Sort
 - 2. Bubble Sort
 - 3. Merge Sort
 - 4. Quick Sort
 - 5. Heap Sort