

Deduction for cheating Salgon International College (36%) Mathematics and Science Department

Year 11 Mathematics Methods (ATAR)

Investigation 2

	Semester 2, 2022
Tim	e Allowed: 60 minutes Name: Chy Minh Dorg.
Que	estion 1 (8 marks)
A lig	tht year (ly) is defined as the distance that light travels in one year (365.25 days).
	$1 \text{ ly} = 9.4607 \times 10^{15} \text{ m}$ $1 \text{ lm} = 100 \text{ cm} = 1000 \text{ cm}$
(a)	Use scientific notation to express 1 ly ln mm, correct to two significant figures. (2)
	9.46 ×1018 mm
(b)	Use the fact that 1 ly is estimated at 9.4607 x 10 ¹⁵ m to determine the number of km travelled in 1 second. Present your answer in standard form correct to the nearest m.
100	11 year ran seconds: 1004; 840410 SCENIS
	9.4607 × 112 29 9791.4924 m xx
	31557600 294791.492 km
(c)	Given that 1 sec = 10^6 µsec (microseconds), determine the number of microseconds that it would take light to travel 1 km. Express your answer to one significant figure. (2)
	1 sec = 1000 das ho
	$1 \text{km} = \frac{1}{299791} 6$
	= 3.335657174 400 × 1000 000

Que	estion 2	(9 marks)
(a)	For what values of m (a real number) does $m^{\frac{1}{5}}$ lie from 1 to 10 inclus	ivə,
	i.e., 1≤ $m^{\frac{1}{5}}$ ≤10?	(2)
	1 1 to 100 000 contake any number from 1 to 1	40 000
(b)	Given m^5 lies between 1000 and 10 000, i.e. $1000 < m^5 < 10000$, where m^5 lies between 1000 and 10 000, i.e. $m^5 < 10000$, where m^5 lies between 1000 and 10 000, i.e. $m^5 < 10000$, where m^5 lies between 1000 and 10 000, i.e. $m^5 < 10000$, where m^5 lies between 1000 and 10 000, i.e. m^5 lies between 1000 and 10 000 and 10	nat values can m
	(i) m is an integer	
	4,5,6	
	(ii) m is any real number Con take conjust send sends from	3.981 to 6.3091
	R 2 3.981 - 6 3096 9 (1)	
(c)	Given $m^{\frac{5}{6}}$ lies between a and b , i.e., $a < m^{\frac{5}{6}} < b$ state the range of variable	alues that m can
	(i) expressing your answer in fractional index form $a = \sqrt{\frac{5}{4}}$	
		3 1
	(ii) expressing your answer in radical form	(3)

Question 3

(9 marks)

(a) Given $a^{\frac{p}{q}} \times a^{\frac{m}{n}} = a^{\frac{np+mq}{qn}}$, simplify $a^{\frac{3}{4}} \times a^{\frac{2}{5}}$

(2)

9¹ 9¹ 4² 4² 4²

(c) Determine a simplified expression for $a^{\frac{p}{q}} \div a^{\frac{m}{n}}$

(d) Use your expression from (c) to simplify $a^{\frac{3}{4}} \div a^{\frac{2}{5}}$

(2)

(e) Given $a^{\frac{3}{k}} \times a^{\frac{1}{w}} = a^{\frac{23}{30}}$, determine k and w.

(2)

3w+k= 23 kw / 30 7 - 30 (3w+k) = 23 kw / 30x 7 - 30x + 30k = 23 kw

0

Exponential functions are to be used to predict the population growth of three different countries.

(a) For the first country the formula is $P = 15 \times 1.03^{t}$ where the current population is 15 million and P represents the population (in millions) after t years.

Determine t when P = 30 million. Describe what this value represents. (2)

	A. A.
Atteresents the population of 30 million	by 23.4 years or 24 years
	(7/)

For the other two countries the graphs provided represent the population growth.

Country A: Current population is 23 million and the growth rate is 1.2% Country B: Current population is 13 million and the growth rate is 4.3%

(b) Which graph represents Country All Por (7)

Give two reasons for your choice.

Because we can see thought to the legention is an uponemual set of 1.2%

There is very not stup so it looks the a line but it's actually a curve.

Y storts out with latital value of 23 mallon.

(c)	The graphs intersect at the point (18.)	9, 28.8). Describe the values represented by this
(U)	The graphs intersect at the point (/ (2)
	point.	. I after 18 9 yours the windarin of
	It ripre super the a to	14 64 04 10 x0 = 3 920 - 1
	a la a laceu of allact	of after 18.9 years the population of
	Central 12 services 16 popul	1 00000
	country reach 28.8 million p	100 de
	country roun to which for	
		(0)
(d)	Write an equation with one variable t	for which the solution is $t = 18.9$ (3)
(4)	Timo an oquation may be a	
	10	I contil
	13 x 1.043 = 23 =	*1,012

End of Investigation questions