WHAT IS CLAIMED IS:

1	1. A torsion module of a torque detection device for a steering		
2	system of a motor vehicle, the torsion module comprising:		
3	a first ring attachable to a steering wheel;		
4	a second ring;		
5	a spoked wheel attached on a top side to the first ring and attached		
6	on a bottom side to the second ring, the spoked wheel having a hub, a rim, and		
7	bending spokes which join the rim to the hub, the bending spokes being bendable		
8	in the event of a rotation angle offset between the hub and the rim in response to a		
9	torque applied to the steering wheel; and		
10	a measuring sensor placed on at least one of the bending spokes, the		
11	measuring sensor being operable for generating a signal as a function of a bending		
12	force experienced by the at least one of the bending spokes as the at least one of the		
13	bending spokes bends in response to a rotation angle offset between the hub and the		
14	rim;		
15	the spoked wheel further having bending-resistant limit stop spokes		
16	placed alternately between the bending spokes, each bending-resistant limit stop		
17	spoke having a free end that protrudes radially from the hub towards the rim, the		
18	free ends of the bending-resistant limit stop spokes being engaged with respective		
19	regions of the rim in such a manner as to permit a rotational angle offset between		
20	the hub and the rim while limiting the maximum rotation angle offset between the		
21	hub and the rim;		
22	the hub, the rim, the bending spokes, and the bending-resistant limit		
23	stop spokes of the spoked wheel being concentric to one another;		
24	the first and second rings having inward-pointing projections adjacent		
25	to the regions of the rim engaged with the bending-resistant limit stop spokes to		
26	form axially separated limit stops which enclose the free ends of the bending-		
27	resistant limit stop spokes on the top and bottom sides of the spoked wheel in order		
28	to prevent axial movement between the hub and the rim.		
1	2. The torsion module of claim 1 wherein:		
2	the measuring sensors include strip strain gauges.		

1	3. The torsion module of claim 2 wherein:		
2	the strip strain gauges are placed on different sides of different ones		
3	of the bending spokes.		
1	4. The torsion module of claim 1 wherein:		
2	the rim and the bending-resistant limit stop spokes are	placed such	
3	that they are located in one plane and have the same extent in the axial direction.		
1	5. The torsion module of claim 4 wherein:		
2	the first ring is a spacer ring.		
	6. The torsion module of claim 4 wherein:		
1		heel	
2	the second ring is part of a base plate of the steering w	icci.	
1	7. The torsion module of claim 1 wherein:		
2	each region of the rim engaged with a free end of a bend	ing-resistant	
3	limit stop spoke includes a limit stop arrangement having two bulges that project		
4	inward from the rim.		
1	8. The torsion module of claim 7 wherein:		
2	the bulges of each limit stop arrangement are separated	at a distance	
3	from each other leaving a limit stop gap.		
1			
2	the spoked wheel is insertable into a recess of the steering	ng wheel, the	
3	recess having an inward-directed projection forming a torque su	pport which	
4	positively engages into the rim of the spoked wheel.		