2/19/3

003695559

WPI Acc No: 1983-55541K/ 198323

XRAM Acc No: C83-054083 XRPX Acc No: N83-099966

Alkyl-aromatic polyimide(s) prodn. - by polycondensation of tetracarboxylic acid dianhydride and silylated aliphatic diamine

Patent Assignee: ALEKSEEVA S G (ALEK-I)
Inventor: VINOGRADOV S V; VYGODSKII Y A S

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
SU 790725 B 19830209 198323 B

Priority Applications (No Type Date): SU 2804848 A 19790727

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

SU 790725 . B 3

Abstract (Basic): SU 790725 B

Alkylaromatic-polyimides with an increased mol mass and regulated micro-structure are synthesised by two-stage polycondensation of tetracarboxylic dianhydride with silylated aliphatic diamines (II) in an equimolar relation. These polymers when pressed or cast under pressure produce strong rpds. which retain their high electrical and mechanical properties under high temp. conditions. They are used in the electrical and radiotechnical industries. An example of (II) is N,N-bis-(trimethyl-silyl)- hexamethylene- diamine.

Homogenous and mixed alkylaromatic polymides are prepd. in two stages: first, at 0-25 deg. C tetracarboxylic- dianhydride is added to a soln. of silylated diamine and another diamine dissolved in dimethyl-formamide, dimethyl-acetamide; N-methyl-pyrrolidone; hexamethyl-phospho-triamide or another solvent. As the polyamido acid is formed in the soln. it is cyclicised by the action, at 20-100 deg. C. of a mixt. of carboxylic acid anhydride or chloranhydride and bases e.g. amines, alkali metal formates or acetates or silazones or mixts. of tri:alkyl-halide-silanes of tertiary amines. Bul.3/23.1.83. (3pp)

Title Terms: ALKYL; AROMATIC; POLYIMIDE; PRODUCE; POLYCONDENSATION; TETRA;

CARBOXYLIC; ACID; DI; ANHYDRIDE; SILYLATED; ALIPHATIC; DI; AMINE

Derwent Class: A26; X12

International Patent Class (Additional): C08G-073/10

File Segment: CPI; EPI

Manual Codes (CPI/A-N): A05-J01; A06-A00A

Manual Codes (EPI/S-X): X12-E02B

Plasdoc Codes (KS): 0004 0016 0020 0034 0038 0202 0204 0205 0224 0040 0043 0046 0049 0052 0226 0230 1285 1479 1485 1487 1727 2043 2064 2152 2155 2172 2318 2441 2459 2545 2548 2585 2600 2629 2669 2737

Polymer Fragment Codes (PF):

001 013 02& 038 04& 05- 06- 09& 09- 10& 10- 106 141 15& 151 16& 163 168 17& 206 208 228 229 262 27- 273 293 316 331 344 346 355 357 431 44& 456 476 504 506 541 551 567 575 583 589 623 627 684 687 689 725

THIS PAGE BLANK (USPTO)

Союз Советских Социалистических Республик

Государственный комитет CCCP делям изобретений N STRDLING

BEST AVAILABLE COPY

ОПИСАНИЕ (11)790725 **ИЗОБРЕТЕНИЯ**

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву

(22) Заявлено 27.07.79.(21) 2804848/23-05

с присоединением заявки №

(23) Приоритет -

Опубликовано 23.01.83. Бюллетень № 3

Дата опубликования описания 09:02.83

(51)M. Ka.

C 08G 73/10

(53) УДК 678. .675(088.8)

(72) Авторы изобретения С.Г.Алексеева, С.В.Виноградова, Я.С.Выгодский, В.Д.Воробьёв. Р.Д.Кацарава, Е.И.Кисунько, В.В.Коршак, И.Я.Слоним, П.М.Танунина и Я.Г.Урман

(71) Заявитель

(54) СПОСОБ ПОЛУЧЕНИЯ АЛКИЛАРОМАТИЧЕСКИХ ПОЛИИМИДОВ

Изобретение относится к области синтеза полиимидов, а именно, к синтезу алкилароматических полиимидов. Эти полимеры перерабатываются прессованием, литьем под давлением и другими способами и дают прочные изделия, сохраняющие высокие механические и электрические харах теристики в условиях высоких температур. Полимеры находят применение в электро- в редиотехнической промышленности.

Известен способ получения алкилароматических полижмидов [1] реакцией диангидридов 3,31, 4,47 - дифенилоксидтетракаобрновой, 3,3', 4,4' - дифенилсульфонтетракарбоновой, пиромеллитовой н других тетракарбоновых кислот и диаминов, таких как гексаметвлендиамин, октометилендиамии, декаметилендиамии, ксилилендиамин, 9,9 био-(4-аминофенил)-флуорен и других, одностадийной высокотемпературной поликонденсацией. Следует, однако, отметить, что при по-

лучение поличмедов этим способом кз-эв происходящих при высоких температу: рах обменных реакций между аминогруппами и имидными циклами загруднено регулирование михроструктуры сополимеров, г. е. практически исключается создание блоксополизмидов.

Известен также способ получения алкилароматических полиимидов [2] на основе диангидридов тетрахарбоновых кислог и алифатических диаминов, таких как гехсаметилендиамин, октаметилендиамин и других, двухстадийной поликон-: денсацией через промежуточное образование полиамидокислоты с ее последующей гермической или химической шиклизацией. Недостатком этого способа является го, что полиимиды, полученные таким образом, имеют низкую молекулярную массу, что обусловлено побочной реахиней солеобразования между аминами и карбоксильными группами полнамидокислог. Из-за низкой молекулярной мас-

790725

сы такие полиимиды характеризуются недостаточным уровнем прочности и термических свойств.

Целью данного изобретения является увеличение молекулирной массы полиимида 5 и регулирование микроструктуры конечно-го продукта.

Это достигается тем, что в реакции полихонденсации диангидрида тетрахарбоновой кислоты используется силилирован— 10 ный алифатический диамин при эквимолярном соотношении исходных веществ.

В качестве силилированных алифатических шіаминов применяют N, N' -бис (триметилсилил)-гексаметилендиамин, 15 N, N' - бис(триметилсилил)-ок гаметилендиамин, N, N' -бис(триметилсилил)декаметилендиамин, N'Nt -бис(триметилсилил)- DS -лизин, N, N' -бис(триметилсилил)- с/ -лизин, N, N' -бис(триметилсилил)- с/ -пистин и др.

Гомо-и смешанные алкилароматические полишмиды получают в две стадии путем прибавления при температуре 0-25° С диангидрида тетракорбоновой кислоты к раствору силилированного диамина и другого диамина в диметилформамиде, диметиланетамиде, N-метиллирролидоне, гексаметинфосфортриамида и других растворителях с никлизанией образовавшейся полиамидокислоты, без ее предваритель. ного выделения, при температуре 20-100° С в растворе под действием смеси ангидридов или хлорангидридов карбоновых кислот и оснований, например, третичных аминов, формиатов или ацетатов щелочных металлов, в также силазанов, смесей триалкилгалондосиланов третичных аминов.

Пример 1. К раствору 1,59г (0,005 моля) этилового эфира N^{td} , N^{t} бис(триметилсилил)- ДЅ -лизина в гексаметилфосфортриамиде при постоянном перемешивания добавляют 1,09 г (0,005 моля) пиромеллитового диангидрида в твердом виде. Перемешивание продолжают в течение 6 ч. К образовавшемуся густому раствору добавляют 1.58 r (0.05 моля) пиридина и 2.04 r (0,02 моля) уксусного ангидрида и нагревают при 150 °C в течение 1 ч. Реак- 50 4 ционный раствор охлаждают до комнатной температуры и выливают в воду. Выпавший полимер отфильтровывают, тщательно промивают водой и сущат. Выход 94% $\eta_{np} = 0.67$ дл/г (в ГМФА, с=0.5 г/дл, 55 ± 25 °C).

П р и м е р 2. Синтез полимера осуществляют аналогично методике, приведенной в примере 1, с той разницей, что вместо этилового эфира N^d , N^E —бис (триметилсилил)— D5 — лизина используют этиловый эфир N^d , N^E —бис (триметил—силил)— N^d —лизина. Выход 95%. N^d = 0,72 дл/ Γ в Γ МФА, C = 0,5 Γ /дл, V = 25 V С.

Пример 3. Синтез полимера осуществляют аналогично методике, приведенной в примере 1, с той разницей, что вместо этилового эфира Not, NE -бис (триметилсилил)- DS -лизина используют диэтиловый эфир N, N'-бис(триметилсилил)- об-иистина. Выход полимера 15 95%, Пр. = 0,68 дл/г в ГМФА, с = 0,5 г/дл, Т = 25°С.

Пример 4. При постоянном перемешивании в 10,2 г N -метилпирролидона растворяют 0,87 г (0,0025 моля) 9,96ио-(4-аминофенил)-флуорена и 0,65 г (0,0025 моля) N , N' -бис(триметилсилил)-гексаметилендиамина. В полученный раствор при t=+5° C вводят 1.55 г (0,005 моля) диангидрида 3,3' 4,4' дифенилоксидтетракарбоновой кислоты. При этой температуре перемешивают реакционную смесь до полного растворения днангидрида. Перемешивание продолжают 5 ч при комнатной температуре. К образовавшемуся густому раствору добавля-. ют 2,04 г уксусного ангидрида и 1.36 г пиридина. Реакционный раствор перемешьвают при комнатной температуре в течение 10 ч и осаждают в воду. Выпавший полимер отфильтровывают, тшательно промывают водой и сущат. Выход полимера количественный. 7 лог. = 0,62 дл/г в тетрахлорэтане, $c = 0.5 \text{ г/дл}, t = 25^{\circ}\text{C}.$ По данным ЯМР С13 - спектроскопин полученный сополимер имеет блочное строение.

Полученное изобретение позволяет путем использования силилированного алифатического диамина исключить побочную реакцию солеобразования, регулировать микроструктуру смешанных полимилов. т. е. дает возможность получать блокоополнимиды и соответствующие статистические сополнимиды, что поэволяет пеленаправленно регупировать их тепло- и термостойкость, а также растворимость полимеров и обеспечивает получение высокомолекулярных полиимидов - η лог. = 0,6-1,0 nn/r (npu t = 25°C n c = = 0,5 г/дл), в то время как для полиме ров, синтезированных с использованием весилилированных диаминов η_{AOT} превышает 0,2-0,3 лл/г.

ормула взобретенвя

Способ получения алкилароматических полимидов поликонденсацией диангидрида тетракарбоновой кислоты и алифетического 5 принятые во внимание при экспертизе Днамина, отличаю щийся тем, что, с пелью увеличения молекулярной массы и регулирования микроструктуры конечного продукта, в качестве алифаги-

ческого двамина вспользуют свлилированвый алифатический диамин.

Источники информации, 1. Авторское свидетельство СССР № 565045, KJL C 08 G 73/10, 1977. 2. Английский патент N: 898651, кл С З В , опублик. 1962 (прототип).

Составитель Л. Платонова Редактор Е. Зубиетова Техред Т. Маточка Корректор У. Пономаренко

Захаз 10778/7

Тираж 492

Подписное

ВНИИПИ Государственного комитета СССР по делам взобретений и открытий 113035, Москва, Ж-35, Раушская ваб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

THIS PAGE BLANK (USPTO)