

2E102 - Source d'énergie électrique et capteurs

ER1 - 1 HEURE - le 09/10/2014

Sans document ni calculatrice

N° étudiant :
Prénom:
Nom :

Le principe de notation associé à ce QCM consiste à attribuer deux points à une réponse juste et à soustraire un point pour une réponse fausse. L'absence de réponse se traduit par zéro. Une seule réponse par question. Certaines réponses peuvent dépendre des réponses précédentes, les questions alors sont regroupées par exercice et portent le même numéro.

Exe	rcice	1	:

Exercice 1 :		
1.a. La piézoélectrici	té pro ☑ □	oduit de l'électricité grâce à : une contrainte mécanique une différence de température un alternateur
1.b. Une céramique avec un condensate	ur C_0 .	oélectrique peut être modélisée par une source de courant $\left(\frac{Ae}{L}\frac{d(\delta L)}{dt}\right)^1$ en parallèle L'unité de e est : A/m² C/m² sans unité
1.c. La thermoélectr		produit de l'électricité grâce à : une contrainte mécanique une différence de température un alternateur
1.d. L'effet Peltier se	prod	duit lors de l'application d'une tension aux bornes : d'une jonction entre un semi-conducteur et un métal d'une jonction entre un isolant électrique et un métal d'une jonction entre deux métaux
1.e. Un aérogénérat	eur p	roduit de l'électricité grâce : au vent à la lumière du soleil à la chaleur du soleil
1.f. La limite de Betz	dit q □ □ ⊠	ue la vitesse du vent, en sortie de l'éolienne, est : nulle trois fois plus grande qu'en entrée trois fois plus petite qu'en entrée
1.g. Un générateur p	hoto	voltaïque produit de l'électricité grâce : au vent à la lumière du soleil à la chaleur du soleil

 $\delta \text{L/L}$: élongation du matériau piézoélectrique

¹ A : surface du matériau piézoélectrique

2E102 - Source d'énergie électrique et capteurs

ER1 - 1 HEURE - le 09/10/2014 Sans document ni calculatrice

EXERCICE 2.	
2.a. La production mondi	ale d'énergie primaire en 2013 était de : 13 ktep 13 Mtep 13 Gtep
2.b. La consommation d'e	électricité, en France, en 2011, était de : 540 TWh 540 MWh 540 Wh
2.c. Le rendement typiqu	e d'une centrale thermique à flamme est : 15% 30% 85%
2.d. Le rendement typiqu	e d'une centrale hydraulique est : 15% 30% 85%
2.e. Le rendement typiqu	e d'une éolienne est : 15% 30% 85%
Exercice 3:	
	capacité d'une piscine quasi-olympique ($50m \times 10m \times 2m$) se vide complètement en 1 onduite forcée dont le dénivelé est de $10~m$. Le rendement global est de 90% .
3.a. L'énergie potentielle	² en réserve dans la retenue est de : 98,1 MJ 98,1 kJ 10,0 MJ
3.b. L'énergie stockée da	ns la réserve est de 27,25 kWh. La puissance utile de la turbine est : 27,25 kW 2,5 kW 24,525 kW
3.c. On pourrait allumer o	une lampe à incandescence de 200 W pendant : 136 heures et 15 minutes 13 heures et 54 minutes 122 heures et 37 minutes

 $^{^{2} \}rho$ (eau) = 1 kg/l

2E102 - Source d'énergie électrique et capteurs

ER1 - 1 HEURE - le 09/10/2014

Sans document ni calculatrice

N° étudiant :
Prénom :
Nom :

Exercice 4:

Nous allons vérifier que l'installation photovoltaïque d'un chalet de montagne isolé est bien dimensionnée par rapport aux besoins du site en basse saison. A cette époque de l'année, les panneaux photovoltaïques couplés à des batteries assurent à eux seuls la production d'énergie électrique nécessaire au fonctionnement du radiotéléphone et de l'éclairage minimum.

fonctionnement. L'appareil e L'hiver, le refuge sert d'abri	uipement sont alimentés en 24 V continu et consomment 1 A en veille et 5 A en st utilisé en moyenne 4 heures par jour et donc il est en veille le reste du temps. Pour le confort des utilisateurs un circuit d'éclairage en 24 V a été installé. Il W. Cet éclairage est utilisé en moyenne 6 heures par jour.
□ 570 ☑ 960	otidiennement par le radiotéléphone est : 5 Wh 0 Wh 18 kWh
⊠ 600 □ 120	ootidiennement par l'éclairage minimum est : 0 Wh 0 Wh - kWh
alors que les besoins en éne stocker de l'énergie avec pou Pour des raisons liées à la te être utilisée entièrement. Le	panneaux photovoltaïques ne peut se faire que dans la journée et par beau temps rgie restent bien présents la nuit ou par mauvais temps. Il est donc nécessaire de r contrainte imposée de pouvoir fonctionner environ quatre jours sur la réserve. Echnologie des accumulateurs, l'énergie emmagasinée dans une batterie ne peut e modèle de batterie présent sur le site est caractérisé par une profondeur de de l'énergie emmagasinée peuvent être restitués).
qui doit être accumulée dans □ 4,8 区 6,4	ie stockée nécessaire au bon fonctionnement du chalet est de 4,8 kWh, l'énergie la batterie pour garantir le fonctionnement souhaité est : kWh kWh kWh
	s choisie est réalisée par l'assemblage en série de plusieurs monoblocs. Un ccumulateur de 12,7 kg, présentant une tension de 6 V à ses bornes et dont la
4.d. Le nombre de monobloc 24 4 1	s à associer est :
	·
□ 1,8	dispose dans cette batterie est : kWh kWh

4,8 kWh

d A environ.	
	e est débitée l'énergie stockée dans la batterie, en fonctionnement maximum, est : 120 W 24 W 144 W
× ×	uel la batterie sera complètement déchargée, en fonctionnement maximum, est : 2 jours et 2 heures 4 jours et 4 heures 1 jour et 1 heure
4.i. La batterie convient-e ☑ ☐	lle tout de même : oui non
	atteries dure 5h30. La durée de vie de la batterie correspond à 1 500 cycles de charge e qu'en fonctionnement nominal, la batterie peut se décharger en 30 min.
par jour est :	ine photovoltaïque, le nombre maximal de cycles de charge et de décharge possible 4 cycles par jour 1 cycle par jour 2 cycles par jour
	patterie est : 1 500 jours 375 jours 182 jours
placés sur un mur, à la ver Les documents du constr pour un flux solaire nor géographique du refuge,	t important, les panneaux ne peuvent pas être installés sur le toit du refuge. Ils sont ticale, à l'abri d'un avant-toit. Les pertes associées à cette installation sont de 20%. ucteur indiquent pour chaque panneau une puissance électrique produite de 250 W mal maximal. Le refuge possède 10 panneaux. En tenant compte de la situation on estime que l'ensoleillement total, sur une journée d'hiver, peut être modélisé par de flux solaire maximal et 20,75 h de non éclairement.
	fournie par un panneau par jour de beau temps est : 250 Wh 500 Wh 650 Wh
	e d'origine photovoltaïque que l'installation produit par jour de beau temps est : 5 kWh 4,8 kWh 6,5 kWh
fonctionnement correspond	temps peut persister pendant plusieurs jours. Le nombre de jours d'autonomie de ndant à l'énergie produite lors d'un fonctionnement quotidien par beau temps est : 1 jour 2 jours 4 jours

Lorsque le radiotéléphone et les lumières sont en fonctionnement, l'installation absorbe un courant continu de