

A Performance Tuning Methodology: From the System Down to the Hardware - Introduction

Jackson Marusarz Intel Corporation ATPESC 2014

Why performance profiling?

Project performance tuning for:

Reducing direct compute time costs

Better user/customer experience

If you are not in that business, don't bother

Project development cycle and performance analysis

Optimization: A Top-down Approach

System

Application

Processor

OS, System

Expertise

SW/uArch

H/W tuning: BIOS (TB, HT)

Memory

Network I/O

Disk I/O

OS tuning:

Page size Swap file RAM Disk Power settings

Network protocols

Better application design:

Parallelization

Fast algorithms / data bases

Programming language and RT libs

Performance libraries

Driver tuning

Tuning for Microarchitecture:

Compiler settings/Vectorization Memory/Cache usage CPU pitfalls

https://software.intel.com/en-us/articles/de-mystifying-software-performance-optimization

Performance profiling tools Level wise selection

System	System profiler	<u>OS embedded</u>
--------	-----------------	--------------------

Universal (for OS, HW) Windows: Perf mon, Proc mon

Proprietary (OS+HW) Linux: top, vmstat, OProfile

Application

IDE based

Command Line

Supported languages

.Net/C#, Java

Python, Java Script, HTML

C, C++, Fortran

Windows: WPT, Xperf, VTune

Managed: .Net, Java tools, VTune

Linux: gprof, Valgrind, Google

perftools, Crxprof, VTune

Microarchitcture

Provided by CPU/Platform manufacturer

Performance profiling tools Level wise selection

Syst	System profiler	<u>OS embedded</u>
------	-----------------	--------------------

Universal (for OS, HW) Windows: Perf mon, Proc mon

Proprietary (OS+HW) Linux: top, vmstat, OProfile

Application

IDE based

Command Line

Supported languages

.Net/C#, Java

Python, Java Script, HTML

C, C++, Fortran

Windows: WPT, Xperf, VTune

Managed: .Net, Java tools, VTune

Linux: gprof, Valgrind, Google

perftools, Crxprof, VTune

Microarchitcture

Provided by CPU/Platform manufacturer

Tools are essential for efficient performance analysis.

Optimization: A Top-down Approach

System Tuning

Who: System Administrators, Performance Engineers, Machine Owners, etc...

How:

- Benchmarks
 - Stream: <u>www.cs.virginia.edu/stream/</u>
 - Numerous FLOPS benchmarks
 - Network/MPI Benchmarks: <u>www.intel.com/go/imb</u>
 - <insert your favorite here>
- Tools
 - vmstat, top, sysprof, iostat, sar, Task Manager, etc...
 - Many vendor/platform specific tools

- Fixes
 - Upgrade Hardware \$\$\$
 - Check BIOS and OS configurations
 - Prefetchers, NUMA, Memory Configuration, Power Management, SMT

System Tuning

Who: System Administrators, Performance Engineers, Machine Owners, etc...

How:

- Benchmarks
 - Stream: <u>www.cs.virginia.edu/stream/</u>
 - Numerous FLOPS benchmarks
 - Network/MPI Benchmarks: <u>www.intel.com/go/imb</u>
 - <insert your favorite here>
- Tools
 - vmstat, top, sysprof, iostat, sar, Task Manager, etc...
 - Many vendor/platform specific tools

- Fixes
 - Upgrade Hardware \$\$\$
 - Check BIOS and OS configurations
 - Prefetchers, NUMA, Memory Configuration, Power Management, SMT

This is often outside the capabilities of most users

OS, System

Expertise

Optimization

Notice 🕮

Application Tuning

Who: Software Developers, Performance Engineers, Domain Experts

How:

- Workload selection
 - Repeatable results
 - Steady state
- Define Metrics and Collect Baseline
 - Wall-clock time, FLOPS, FPS
 - <insert your metric here>
- Identify Hotspots
 - Focus effort where it counts
 - Use Tools

- Determine inefficiencies
 - Is there parallelism?
 - Are you memory bound?
 - Will better algorithms or programming languages help?

This step often requires some knowledge of the application and its algorithms

- This could be at the module, function, or source code level
- Determine your own granularity

```
$ opreport --exclude-dependent --demangle=smart --symbols `which lyx`
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU CLK UNHALTED events (clocks processor is not halted) with a unit mask of 0x00 (No unit mask)
vma
         samples %
                              symbol name
                              Rb tree<unsigned short, pair<unsigned short const, int>, unsigned short
081ec974 5016
                   8.5096
0810c4ec 3323
                   5.6375
                              Paragraph::getFontSettings(BufferParams const&, int) const
                              LyXText::getFont(Buffer const*, Paragraph*, int) const
081319d8 3220
                   5.4627
                   5.1082
                              LvXFont::realize(LvXFont const&)
080e45d8 3011
                   4.4499
                              LyXFont::LyXFont()
080e3d78 2623
                              LyXText::singleWidth(BufferView*, Paragraph*, int, char) const
081255a4 1823
                   3.0927
                              operator == (LyXFont::FontBits const&, LyXFont::FontBits const&)
080e3cf0 1804
                   3.0605
081128e0 1729
                   2.9332
                              Paragraph::Pimpl::getChar(int) const
                              font metrics::width(char const*, unsigned, LyXFont const&)
081ed020 1380
                   2.3412
                              Paragraph::getChar(int) const
08110d60 1310
                   2,2224
                              gfont loader::getfontinfo(LyXFont const&)
081ebc94 1227
                   2.0816
```

oprofile: http://oprofile.sourceforge.net/

- This could be at the module, function, or source code level
- Determine your own granularity

sysprof: http://sysprof.com

- This could be at the module, function, or source code level
- Determine your own granularity

Intel® VTune™ Amplifier XE: http://intel.ly/vtune-amplifier-xe

- This could be at the module, function, or source code level
- Determine your own granularity

Intel® VTune™ Amplifier XE: http://intel.ly/vtune-amplifier-xe

- This could be at the module, function, or source code level
- Determine your own granularity

This may reinforce your understanding of the application but often reveals surprises

Application Tuning

Resource Utilization

- Is the application parallel?
- Multi-thread vs. Multi-process
- Memory Bound?

last pid: 86494; load averages: 0.83, 0.65, 0.69 up 67+22:48:43 14:44:15 227 processes: 1 running, 224 sleeping, 2 zombie CPU: 20.2% user, 0.0% nice, 6.5% system, 0.2% interrupt, 73.1% idle Mem: 1657M Active, 1868M Inact, 273M Wired, 190M Cache, 112M Buf, 11M Free Swap: 4500M Total, 249M Used, 4251M Free, 5% Inuse PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND 86460 www 1 4 0 150M 30204K accept 1 0:02 11.18% php-cgi 86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
CPU: 20.2% user, 0.0% nice, 6.5% system, 0.2% interrupt, 73.1% idle Mem: 1657M Active, 1868M Inact, 273M Wired, 190M Cache, 112M Buf, 11M Free Swap: 4500M Total, 249M Used, 4251M Free, 5% Inuse PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND 86460 www 1 4 0 150M 30204K accept 1 0:02 11.18% php-cgi 86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
Swap: 4500M Total, 249M Used, 4251M Free, 5% Inuse PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND 86460 www 1 4 0 150M 30204K accept 1 0:02 11.18% php-cgi 86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND 86460 www 1 4 0 150M 30204K accept 1 0:02 11.18% php-cgi 86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
86460 www 1 4 0 150M 30204K accept 1 0:02 11.18% php-cgi 86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
86460 www 1 4 0 150M 30204K accept 1 0:02 11.18% php-cgi 86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
86458 www 1 4 0 150M 29912K accept 0 0:02 8.98% php-cgi 86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
86463 pgsql 1 4 0 949M 99M sbwait 1 0:01 7.96% postgres 85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
85885 www 1 4 0 150M 35204K accept 2 0:07 7.57% php-cgi 85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
85274 www 1 4 0 149M 40868K sbwait 3 0:27 5.18% php-cgi 85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
85267 www 1 4 0 151M 40044K sbwait 2 0:33 4.59% php-cgi 85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
85884 www 1 4 0 150M 41584K accept 2 0:14 4.59% php-cgi 85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
85887 pgsql 1 4 0 951M 128M sbwait 1 0:04 4.20% postgres 85886 pgsql 1 4 0 949M 161M sbwait 0 0:08 3.37% postgres
85886 pgsql
86459 pgsql
85279 pgsql
85269 pgsql
85268 พพพ 1 4 0 152M 44356K sbwait 2 0:32 1.17% php-cgi
85273 pgsql
97082 pgsql
892 root 1 4 0 3160K 8K - 2 13:33 0.00% nfsd
1796 root

Application Tuning Resource Utilization

Is the application parallel?

Application Tuning Resource Utilization

Memory Bound?

Know your max theoretical memory bandwidth

Application Tuning Resource Utilization

MPI applications have added communication complexity

Intel® Trace Analyzer and Collector: http://intel.ly/traceanalyzer-collector

Application Tuning

What's Next?

- If your Hotspots are common algorithms:
 - Look for optimized libraries
- If your Hotspots are uncommon:
 - Compiler optimizations
 - Expert analysis and refactoring of an algorithm
 - The opposite of "low-hanging fruit"
 - Deeper analysis of hardware performance
 - More on this later
- If the system is underutilized:
 - Add parallelism multi-thread or multi-process
 - OpenMP, TBB, Cilk, MPI, etc...
- Tools can help you determine where to look and may identify some issues.
- Some tools may provide suggestions for fixes.
- In the end the developer and/or expert has to make the changes and decisions there is no sliver bullet.

Optimization: A Top-down Approach

OS, System

Expertise

SW/uArch

Memory Network I/O

Disk I/O

OS tuning:

Page size Swap file RAM Disk Power settings Network protocols

Better application design:

Parallelization Fast algorithms / data bases

Programming language and RT libs

Performance libraries

Driver tuning

Tuning for Microarchitecture:

Compiler settings/Vectorization Memory/Cache usage CPU pitfalls

System

Application

Processor

Microarchitecture Tuning

Who: Architecture Experts

Software Developers, Performance Engineers, Domain Experts

How:

- Use architecture specific hardware events
- Use predefined metrics and best known methods
 - Often hardware specific
 - (Hopefully) provided by the vendor
- Tools make this possible for the non-expert
 - Linux perf
 - Intel® VTune™ Amplifier XE

- Follow the Top-Down Characterization
 - Locate the hardware bottlenecks
 - Whitepaper here: https://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

Now we're getting into Intel specific tuning

Introduction to Performance Monitoring Unit (PMU)

- Registers on Intel CPUs to count architectural events
 - E.g. Instructions, Cache Misses, Branch Mispredict
- Events can be counted or sampled
 - Sampled events include Instruction Pointer
- Raw event counts are difficult to interpret
 - Use a tool like VTune or Perf with predefined metrics

Raw PMU Event Counts vs Metrics

Grouping: Function / Call Stack																ب
Function / Call Stack	CPU_CL▼★	CPU_CLK_U	INST_RETIRE	L1D_PEND	OFF	BR_MISP	CPU_CLK_U	CYCLE_AC	CYCLE_AC	DTL	DTLB_LO	DTLB_L	DTL	DTLB_ST	DTLB_S	ICACH.
■ grid_intersect	13,604,020,406	14,118,021,177	12,572,018,858	6,344,009,516	0	52,001,170	14,924,022,386	5,408,008,112	4,264,006,396	0	234,000,351	26,000,039	0	7,800,234	. 0	
⊞ sphere_intersect	8,706,013,059	9,134,013,701	8,494,012,741	4,238,006,357	0	15,600,351	9,464,014,196	3,016,004,524	2,808,004,212	0	104,000,156	26,000,039	0	10,400,312	0	
grid_bounds_intersect	984,001,476	1,004,001,506	672,001,008	104,000,156	0	15,600,351	962,001,443	312,000,468	286,000,429	0	0	0	0	0	0	
<u>■</u> _kmp_end_split_barrier	676,001,014	624,000,936	460,000,690	0	0	0	0	0	0	0	0	0	0	0	0	
<u>■</u> _kmp_x86_pause	228,000,342	224,000,336	122,000,183	0	0	10,400,234	0	0	0	0	0	0	0	0	0	
⊞ shader	216,000,324	242,000,363	142,000,213	104,000,156	0	0	208,000,312	104,000,156	52,000,078	0	0	0	0	2,600,078	0	
⊞ Raypnt	206,000,309	210,000,315	208,000,312	0	0	0	234,000,351	52,000,078	78,000,117	0	0	0	0	0	0	2,600,03
⊕ pos2grid	204,000,306	248,000,372	180,000,270	26,000,039	0	0	390,000,585	26,000,039	52,000,078	0	0	0	0	0	0	
⊞ tri_intersect	168,000,252	208,000,312	180,000,270	0	0	0	104,000,156	78,000,117	52,000,078	0	52,000,078	0	0	0	0	
 VScale	124,000,186	126,000,189	164,000,246	0	0	0	234,000,351	52,000,078	0	0	0	0	0	0	0	
■_kmp_yield	96,000,144	98,000,147	200,000,300	0	0	0	0	0	0	0	0	0	0	0	0	
Selected 1 row(s):	13,604,020,406	14,118,021,177	12,572,018,858	6,344,009,516	Ō	52,001,170	14,924,022,386	5,408,008,112	4,264,006,396	ō	234,000,351	26,000,039	Ō	7,800,234	Ō	
< >	<															

Grouping: Function / Call Stack													
	*				Filled Pipe	eline Slots	Unfilled Pipeline Slots (Stalls)						
Function / Call Stack	Clocktic▼	Instructions Retired	CPI Rate	MUX Reliability	>>	>>	>>	Front-end E	Bound ≪				
					Retiring	Bad Speculation	Back-End Bound	Front-End Latency	Front-End Bandwidth				
■ grid_intersect	14,118,021,177	12,572,018,858	1.123	0.946	0.246	0.033	0.647	0.063	0.012				
⊕ sphere_intersect	9,134,013,701	8,494,012,741	1.075	0.965	0.250	0.065	0.619	0.057	0.009				
grid_bounds_intersect	1,004,001,506	672,001,008	1.494	0.958	0.227	0.000	0.715	0.104	0.000				
<u>■ _kmp_end_split_barrier</u>	624,000,936	460,000,690	1.357	0.000	0.000	0.000	0.792	0.167	0.042				
⊕ pos2grid	248,000,372	180,000,270	1.378	0.636	0.367	0.000	0.633	0.000	0.131				
± shader	242,000,363	142,000,213	1.704	0.860	0.322	0.000	0.946	0.000	0.027				
± _kmp_x86_pause	224,000,336	122,000,183	1.836	0.000	0.000	0.000	0.971	0.000	0.029				
⊞ Raypnt	210,000,315	208,000,312	1.010	0.897	0.093	0.279	0.567	0.000	0.062				
Selected 1 row(s):	14,118,021,177	12,572,018,858	1.123	0.946	0.246	0.033	0.647	0.063	0.012				

Adding Regression Tests for Performance

- Regression testing isn't just for bugs
- 1. Create a baseline performance characterization
- 2. After each change or at a regular interval
 - 1. Compare new results to baseline
 - 2. Compare new results to previous results
 - 3. Evaluate the change
- 3. goto (1)
- Performance tuning is easier if it's always on your mind and integrated into your development

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

