1 Préparation

1.1 Calcul du gradient $\nabla f(x,y)$

La fonction de Rosenbrock considérée est

$$f(x,y) = (1-x)^2 + a^2(x-y^2)^2$$
.

Pour tout $(x,y) \in \mathbb{R}^2$, on calcule les dérivées partielles :

$$\frac{\partial f}{\partial x}(x,y) = -2(1-x) + 2a^{2}(x-y^{2}), \qquad \frac{\partial f}{\partial y}(x,y) = -4a^{2}y(x-y^{2}).$$

Le gradient est donc

$$\nabla f(x,y) = \begin{pmatrix} -2(1-x) + 2a^{2}(x-y^{2}) \\ -4a^{2}y(x-y^{2}) \end{pmatrix}.$$

1.2 Points critiques : résolution de $\nabla f(x,y) = 0$

Le système $\nabla f(x,y) = 0$ s'écrit :

$$\begin{cases}
-2(1-x) + 2a^{2}(x-y^{2}) = 0, \\
-4a^{2}y(x-y^{2}) = 0.
\end{cases}$$

• Cas 1 : y = 0. De la première équation, on obtient :

$$-2(1-x) + 2a^2x = 0 \implies x(1+a^2) = 1 \implies x = \frac{1}{1+a^2}.$$

D'où le point critique $a_1 = \left(\frac{1}{1+a^2}, 0\right)$.

• Cas 2 : $x - y^2 = 0$. Ici, $x = y^2$. On remplace dans la première équation :

$$-2(1-y^2) + 2a^2(y^2 - y^2) = -2(1-y^2) = 0 \implies y^2 = 1.$$

Donc $y = \pm 1$ et x = 1. On obtient deux autres points critiques : $a_2 = (1, 1)$, $a_3 = (1, -1)$.

1.3 Matrice Hessienne $\operatorname{Hess}_f(x,y)$

En dérivant une seconde fois :

$$\nabla f(x,y) = \begin{pmatrix} -2(1-x) + 2a^{2}(x-y^{2}) \\ -4a^{2}y(x-y^{2}) \end{pmatrix}.$$

on trouve:

$$\frac{\partial^2 f}{\partial x^2} = 2\left(1+a^2\right), \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -4\,a^2\,y, \qquad \frac{\partial^2 f}{\partial y^2} = -4\,a^2\,x + 12\,a^2\,y^2.$$

Ainsi,

$$\operatorname{Hess}_{f}(x,y) = \begin{pmatrix} 2(1+a^{2}) & -4a^{2}y \\ -4a^{2}y & -4a^{2}x + 12a^{2}y^{2} \end{pmatrix}.$$

1.4 Nature des points critiques (a_1, a_2, a_3)

Pour chaque point, on évalue Hess_f :

- $a_1 = \left(\frac{1}{1+a^2}, 0\right)$. La hessienne devient alors diagonale avec $2(1+a^2)$ et $-4a^2\left(\frac{1}{1+a^2}\right)$ sur la diagonale, donc l'une est positive et l'autre négative. Hess_f (a_1) est par conséquent indéfinie : a_1 est un **point selle**.
- $a_2 = (1, 1)$. Dans ce cas,

$$\operatorname{Hess}_{f}(a_{2}) = \begin{pmatrix} 2(1+a^{2}) & -4a^{2} \\ -4a^{2} & 8a^{2} \end{pmatrix}.$$

Le déterminant est strictement positif et la trace est positive ; les valeurs propres sont toutes positives : a_2 est donc un **minimum local**.

• $a_3 = (1, -1)$. On obtient de même

$$\operatorname{Hess}_{f}(a_{3}) = \begin{pmatrix} 2(1+a^{2}) & 4a^{2} \\ 4a^{2} & 8a^{2} \end{pmatrix},$$

dont le déterminant et la trace sont aussi positifs : on a deux valeurs propres positives ; a_3 est un **minimum local**.

Par ailleurs, on vérifie que $f(a_2) = f(a_3) = 0$, correspondant à la valeur minimale (globale) de la fonction.

Conclusion

On a donc identifié trois points critiques :

$$a_1 = \left(\frac{1}{1+a^2}, 0\right)$$
 (point selle), $a_2 = (1, 1)$, $a_3 = (1, -1)$ (minima).