Also published as:

園 US2003030146 (A

SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND ITS MANUFACTURING METHOD

Patent number:

JP2003060030

Publication date:

2003-02-28

Inventor:

TAMARU TAKESHI; OMORI KAZUTOSHI; MIURA

NORIKO; AOKI HIDEO; OSHIMA TAKAFUMI

Applicant:

HITACHI LTD

Classification:

- international:

H01L21/768; H01L21/314; H01L21/316; H01L21/318;

H01L21/8238; H01L27/092

- european:

Application number: JP20010244152 20010810

Priority number(s):

Abstract of **JP2003060030**

PROBLEM TO BE SOLVED: To prevent exfoliation of an interface of an etching stopper layer and an SiOF film which are used when a wiring trench for buried wiring is formed, in a semiconductor integrated circuit device wherein the buried wiring is formed in an interlayer insulating film containing the SiOF film by a damascene method.

SOLUTION: A wiring trench 32 is formed by dryetching the interlayer insulating film containing the SiOF films 26, 29. When Cu wiring 33 is embedded in the trench 32, an oxynitrided silicon film 27 is interposed between a silicon nitride film 28 for forming an etching stopper layer of the dryetching and the SiOF film 26, thereby trapping free F generated in the SiOF film 26 with the oxynitrided silicon film 27.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(E1) Int (17

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-60030 (P2003-60030A)

(43)公開日 平成15年2月28日(2003.2.28)

東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内

(51)Int.Cl.		觀別記号	F 1					テーマコード(参考)		
H01L	21/768			H 0	1 L	21/314		M	5 F O 3 3	
	21/314					21/316		X	5 F O 4 8	
	21/316					21/318		В	5 F O 5 8	
	21/318					21/90		M		
	21/8238					27/08		321F		
•		審:	查請求	未請求	諸求	項の数33	OL	(全 20 頁)	最終頁に続く	
(21)出願番	寻	特顏2001-244152(P2001-244152)	152)	(71)	出願人	-	00005108 :式会社日立製作所			
(22)出願日		平成13年8月10日(2001.8.10)	3. 10)						四丁目6番地	
				(72)発明者		曾 田丸	田丸 剛			
						東京都	青梅市	新町六丁目16	番地の3 株式	
						会社日	立製作	所デバイス開	発センタ内	
				(72)	発明者	子 大森	一稳			

最終頁に続く

(54) 【発明の名称】 半導体集積回路装置およびその製造方法

(57)【要約】

【課題】 SiOF膜を含む層間絶縁膜にダマシン法で 埋め込み配線を形成する半導体集積回路装置において、 埋め込み配線用の配線溝を形成する際に用いるエッチン グストッパ層とSiOF膜との界面剥離を防止する。

【解決手段】 SiOF膜26、29を含む層間絶縁膜 をドライエッチングして形成した配線溝32の内部にダ マシン法でCu配線33を埋め込む際、上記ドライエッ チングのエッチングストッパ層を構成する窒化シリコン 膜28とSiOF膜26との間に酸窒化シリコン膜27 を介在させ、SiOF膜26中で発生した遊離のFを酸 窒化シリコン膜27でトラップする。

(74)代理人 100080001

弁理士 筒井 大和

【特許請求の範囲】

【請求項1】 半導体基板と、前記半導体基板の主面上に形成され、フッ素を含有する酸化シリコンからなる第1絶縁膜と、前記第1絶縁膜の内部に形成された第1配線と、前記第1絶縁膜および前記第1配線のそれぞれの上部に形成された窒化シリコンからなる第2絶縁膜と、前記第1絶縁膜と前記第2絶縁膜との間に介在する、窒素を含有する酸化シリコンからなる第3絶縁膜とを有することを特徴とする半導体集積回路装置。

【請求項2】 前記第3絶縁膜は、酸素および窒素に対するシリコンの割合が化学量論的に過剰となっていることを特徴とする請求項1記載の半導体集積回路装置。

【請求項3】 前記第3絶縁膜の窒素濃度は、5atom% 以下であることを特徴とする請求項1記載の半導体集積 回路装置。

【請求項4】 前記第3絶縁膜の膜厚は、50nm以上であることを特徴とする請求項1記載の半導体集積回路装置。

【請求項5】 前記第1配線は、銅を主成分として含む 導電層からなることを特徴とする請求項1記載の半導体 集積回路装置。

【請求項6】 前記第2絶縁膜の上部には、フッ素を含有する酸化シリコンからなる第4絶縁膜と、窒化シリコンからなる第5絶縁膜と、前記第4絶縁膜と前記第5絶縁膜との間に介在する、窒素を含有する酸化シリコンからなる第6絶縁とを含んだ層間絶縁膜が形成され、前記層間絶縁膜の内部には、前記第1配線と電気的に接続された第2配線が形成され、前記第2配線との接続部を除いた領域の前記第1配線の表面は、窒化シリコンからなる第7絶縁膜で覆われていることを特徴とする請求項1記載の半導体集積回路装置。

【請求項7】 前記第2絶縁膜と前記第4絶縁膜との間には、窒素を含有する酸化シリコンからなる第8絶縁膜が介在していることを特徴とする請求項6記載の半導体集積回路装置。

【請求項8】 半導体基板と、前記半導体基板の主面上に形成され、フッ素を含有する酸化シリコンからなる第1絶縁膜と、前記第1絶縁膜の内部に形成された第1配線と、前記第1絶縁膜および前記第1配線のそれぞれの上部に形成されたSiCまたはSiCNからなる第2絶縁膜と、前記第1絶縁膜と前記第2絶縁膜との間に介在する、窒素を含有する酸化シリコンからなる第3絶縁膜とを有することを特徴とする半導体集積回路装置。

【請求項9】 前記第3絶縁膜は、酸素および窒素に対するシリコンの割合が化学量論的に過剰となっていることを特徴とする請求項8記載の半導体集積回路装置。

【請求項10】 前記第3絶縁膜の窒素濃度は、5 atom %以下であることを特徴とする請求項8記載の半導体集積回路装置。

【請求項11】 前記第3絶縁膜の膜厚は、50mm以

上であることを特徴とする請求項8記載の半導体集積回 路装置。

【請求項12】 前記第1配線は、銅を主成分として含む導電層からなることを特徴とする請求項8記載の半導体集積回路装置。

【請求項13】 前記第2絶縁膜の上部には、フッ素を含有する酸化シリコンからなる第4絶縁膜と、SiCまたはSiCNからなる第5絶縁膜と、前記第4絶縁膜と前記第5絶縁膜との間に介在する、窒素を含有する酸化シリコンからなる第6絶縁膜とを含んだ層間絶縁膜が形成され、前記層間絶縁膜の内部には、前記第1配線と電気的に接続された第2配線が形成され、前記第2配線との接続部を除いた領域の前記第1配線の表面は、SiCまたはSiCNからなる第7絶縁膜で覆われていることを特徴とする請求項8記載の半導体集積回路装置。

【請求項14】 前記第2絶縁膜と前記第4絶縁膜との間には、SiCまたはSiCNからなる第8絶縁膜が介在していることを特徴とする請求項13記載の半導体集積回路装置。

【請求項15】 半導体基板と、前記半導体基板の主面上に形成され、フッ素を含有する酸化シリコンからなる第1絶縁膜と、前記第1絶縁膜の内部に形成された第1配線と、前記第1絶縁膜および前記第1配線のそれぞれの上部に形成されたSiCまたはSiCNからなる第2絶縁膜とを有することを特徴とする半導体集積回路装置。

【請求項16】 前記第1配線は、銅を主成分として含む導電層からなることを特徴とする請求項15記載の半導体集積回路装置。

【請求項17】 前記第1絶縁膜の上層には、フッ素を含有する酸化シリコンからなる第3絶縁膜と、SiCまたはSiCNからなる第4絶縁膜とを含んだ層間絶縁膜が形成され、前記層間絶縁膜の内部には、前記第1配線と電気的に接続された第2配線が形成され、前記第2埋配線との接続部を除いた領域の前記第1配線の表面は、SiCまたはSiCNを主成分とする第5絶縁膜で覆われていることを特徴とする請求項15記載の半導体集積回路装置。

【請求項18】 以下の工程を含む半導体集積回路装置の製造方法: (a) 半導体基板の主面上に、第1室化シリコン膜と、フッ素を含有する酸化シリコンからなる第1絶縁膜と、窒素を含有する酸化シリコンからなる第2絶縁膜と、第2窒化シリコン膜と、フッ素を含有する酸化シリコンからなる第3絶縁膜と、窒素を含有する酸化シリコンからなる第4絶縁膜と、第3窒化シリコン膜とからなる第1層間絶縁膜を形成する工程、(b)第1フォトレジスト膜をマスクに用いたドライエッチングで、配線溝形成領域の前記第3窒化シリコン膜を除去する工程、(c)第2フォトレジスト膜をマスクに用いたドライエッチングで、前記配線溝形成領域の一部の前記第4

絶縁膜、前記第3絶縁膜、前記第2窒化シリコン膜、前 記第2絶縁膜および前記第1絶縁膜を除去する工程、

(d) 前記第3室化シリコン膜をマスクに用いたドライエッチングで、前記配線溝形成領域の前記第4絶縁膜および前記第3絶縁膜を除去する工程、(e) 前記第3窒化シリコン膜をドライエッチングで除去し、さらに前記第1窒化シリコン膜をドライエッチングで除去することにより、前記配線溝形成領域の前記第1層間絶縁膜に第1配線溝を形成する工程、(f) 前記配線溝の内部を埋め込むように第1導電層を形成した後、前記配線溝の外部の前記第1導電層を化学機械研磨法によって除去することにより、前記配線溝の内部に前記第1導電層からなる第1配線を形成する工程。

【請求項19】 前記第2絶縁膜および前記第4絶縁膜は、酸素および窒素に対するシリコンの割合が化学量論的に過剰となっていることを特徴とする請求項18記載の半導体集積回路装置の製造方法。

【請求項20】 前記第2絶縁膜および前記第4絶縁膜の窒素濃度は、5atom%以下であることを特徴とする請求項18記載の半導体集積回路装置の製造方法。

【請求項21】 前記第2絶縁膜および前記第4絶縁膜の膜厚は、50nm以上であることを特徴とする請求項18記載の半導体集積回路装置の製造方法。

【請求項22】 前記第1配線は、銅を主成分として含む導電層からなることを特徴とする請求項18記載の半導体集積回路装置の製造方法。

【請求項23】 前記工程(a)において、前記第1絶 縁膜を形成した後、前記第2絶縁膜を形成する工程に先 立って、前記第1絶縁膜の表面を化学機械研磨法で平坦 化することを特徴とする請求項18記載の半導体集積回 路装置の製造方法。

【請求項24】 前記工程(a)において、前記第2絶 縁膜を形成した後、前記第2窒化シリコン膜を形成する 工程に先立って、前記第2絶縁膜の表面を化学機械研磨 法で平坦化することを特徴とする請求項18記載の半導 体集積回路装置の製造方法。

【請求項25】 以下の工程を含む半導体集積回路装置の製造方法:

(a) 半導体基板の主面上に、第1SiC膜または第1SiCN膜と、フッ素を含有する酸化シリコンからなる第1絶縁膜と、窒素を含有する酸化シリコンからなる第2絶縁膜と、第2SiCN膜または第2SiCN膜と、フッ素を含有する酸化シリコンからなる第3絶縁膜と、空素を含有する酸化シリコンからなる第4絶縁膜と、SiC、SiCNまたは窒化シリコンからなる第5絶縁膜とからなる第1層間絶縁膜を形成する工程、(b)第1フォトレジスト膜をマスクに用いたドライエッチングで、配線溝形成領域の前記第5絶縁膜を除去する工程、

(c) 第2フォトレジスト膜をマスクに用いたドライエッチングで、前記配線溝形成領域の一部の前記第4絶縁

膜、前記第3絶縁膜、前記第2SiC膜または第2SiCN膜、前記第2絶縁膜および前記第1絶縁膜を除去する工程、(d)前記第5絶縁膜をマスクに用いたドライエッチングで、前記配線溝形成領域の前記第4絶縁膜および前記第3絶縁膜を除去する工程、(e)前記第5絶縁膜をドライエッチングで除去し、さらに前記第1SiC膜または第1SiCN膜をドライエッチングで除去することにより、前記配線溝形成領域の前記第1層間絶縁膜に第1配線溝を形成する工程、(f)前記配線溝の内部を埋め込むように第1導電層を形成した後、前記配線溝の外部の前記第1導電層を化学機械研磨法によって除去することにより、前記配線溝の内部に前記第1導電層からなる第1配線を形成する工程。

【請求項26】 前記第2絶縁膜および前記第4絶縁膜は、酸素および窒素に対するシリコンの割合が化学量論的に過剰となっていることを特徴とする請求項25記載の半導体集積回路装置の製造方法。

【請求項27】 前記第2絶縁膜および前記第4絶縁膜の窒素濃度は、5atom%以下であることを特徴とする請求項25記載の半導体集積回路装置の製造方法。

【請求項28】 前記第2絶縁膜および前記第4絶縁膜の膜厚は、50nm以上であることを特徴とする請求項25記載の半導体集積回路装置の製造方法。

【請求項29】 前記第1配線は、銅を主成分として含む導電層からなることを特徴とする請求項25記載の半導体集積回路装置の製造方法。

【請求項30】 前記工程(a)において、前記第1絶 縁膜を形成した後、前記第2絶縁膜を形成する工程に先 立って、前記第1絶縁膜の表面を化学機械研磨法で平坦 化することを特徴とする請求項25記載の半導体集積回 路装置の製造方法。

【請求項31】 前記工程(a)において、前記第2絶縁膜を形成した後、前記第2SiC膜または第2SiC N膜を形成する工程に先立って、前記第2絶縁膜の表面を化学機械研磨法で平坦化することを特徴とする請求項25記載の半導体集積回路装置の製造方法。

【請求項32】 以下の工程を含む半導体集積回路装置の製造方法:

(a) 半導体基板の主面上に、第1SiC膜または第1SiCN膜と、フッ素を含有する酸化シリコンからなる第1絶縁膜と、第2SiC膜または第2SiCN膜と、フッ素を含有する酸化シリコンからなる第2絶縁膜と、SiC、SiCNまたは窒化シリコンからなる第3絶縁膜とからなる第1層間絶縁膜を形成する工程、(b) 第1フォトレジスト膜をマスクに用いたドライエッチングで、配線構形成領域の前記第3絶縁膜を除去する工程、

(c) 第2フォトレジスト膜をマスクに用いたドライエッチングで、前記配線溝形成領域の一部の前記第2絶縁膜、前記第2SiCN膜および前記第1絶縁膜を除去する工程、(d) 前記第3絶縁膜をマ

スクに用いたドライエッチングで、前記配線溝形成領域の前記第2絶縁膜を除去する工程、(e)前記第3絶縁膜をドライエッチングし、さらに前記第1SiC膜または第1SiCN膜をドライエッチングで除去することにより、前記配線溝形成領域の前記第1層間絶縁膜に第1配線溝を形成する工程、(f)前記配線溝の内部を埋め込むように第1導電層を形成した後、前記配線溝の外部の前記第1導電層を化学機械研磨法によって除去することにより、前記配線溝の内部に前記第1導電層からなる第1配線を形成する工程。

【請求項33】 前記第1埋め込み配線は、銅を主成分として含む導電膜からなることを特徴とする請求項32 記載の半導体集積回路装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体集積回路装置およびその製造技術に関し、特に、ダマシン(Damasce ne)法を用いた銅(Cu)配線の形成に適用して有効な技術に関する。

[0002]

【従来の技術】近年、LSIの髙集積化による配線の微細化に伴って配線抵抗の増大が顕著となり、特に高性能なロジックLSIにおいては、配線抵抗の増大がさらなる高性能化を阻害する大きな要因となっている。

【0003】その対策として、シリコン基板上の層間絶縁膜に配線溝を形成し、次いで配線溝の内部を含む層間絶縁膜上にCu膜を堆積した後、配線溝の外部の不要なCu膜を化学機械研磨(Chemical Mechanical Polishing; CMP)法で除去する、いわゆるダマシン(Damascene)法を用いた埋め込みCu配線の導入が進められている。また、上記Cu配線の導入による配線抵抗の低減と並行して、配線容量を低減する観点から、酸化シリコン膜に比べて誘電率が低いSiOFなどを使った層間絶縁膜の導入が進められている。

【0004】特開2000-277520号公報は、SiOFからなる層間絶縁膜に形成した配線溝の内部にダマシン法を用いて埋め込みCu配線を形成する技術を開示しており、その概要は次の通りである。

【0005】まず、トランジスタが形成されたシリコン基板上に酸化シリコン膜を堆積し、続いて酸化シリコン膜上にエッチングストッパ膜を介してSiOF膜を堆積する。酸化シリコン膜上のエッチングストッパ膜は、SiOF膜をドライエッチングして配線溝を形成する際に、下層の酸化シリコン膜がエッチングされるのを防ぐためのもので、SiOF膜をエッチングするガスによってエッチングされ難い材料、例えば窒化シリコン膜または酸窒化シリコン膜(SiON)膜で構成される。

【0006】次に、フォトレジスト膜をマスクにしたドライエッチングで上記SiOF膜に配線溝を形成し、続いて、配線溝の内部を含むSiOF膜上に薄いバリア膜

とスパッターCu膜とを形成した後、その上部に電解メッキ法などによって厚いCu膜を堆積する。上記バリア膜は、配線溝内のCuがSiOF膜中に拡散して素子特性に悪影響を及ぼすの防ぐために形成するが、この公報では、SiOF膜との界面で剥離が生じるのを防ぐために、SiOF膜に対して接着性のよい材料、例えば窒素含量30~60%の窒化タンタル(TaN)で構成される。また、スパッターCu膜は、電解メッキ法でCu膜を成長させる際のシード(種)膜として機能する。次に、SiOF膜上の不要なCu膜、スパッターCu膜およびバリア膜を化学機械研磨法で除去することによって、配線溝の内部にCu配線を形成する。

[0007]

【発明が解決しようとする課題】本発明者らは、層間絶縁膜にSiOF膜を、エッチングストッパ膜に窒化シリコン膜をそれぞれ用い、この層間絶縁膜に形成した配線溝にCu配線を形成するプロセスを検討していたところ、層間絶縁膜(SiOF膜)とエッチングストッパ膜(窒化シリコン膜)との界面で剥離が生じるという現象を見出した。

【0008】前述した公報(特開2000-277520号公報)は、配線溝の内部に形成するバリア膜と層間絶縁膜(SiOF膜)との界面剥離の問題について言及しているが、層間絶縁膜(SiOF膜)とエッチングストッパ膜(窒化シリコン膜)との界面剥離については言及しておらず、この現象は新規なものである。

【0009】SiOF膜と窒化シリコン膜との界面で剥離が生じるメカニズムについては、未だ明確にされていないが、例えばSiOF膜中のSi-F結合が一部で切断されて遊離のFが生じると、このFがSiN膜とSiOF膜との界面に移行してそこにトラップされ、大気中から層間絶縁膜内に取り込まれた水と反応してHFが生成する。そして、その後の熱処理工程で基板が400℃を超えるような高温雰囲気に曝されるとこのHFが膨張し、界面剥離を引き起こすのではないかと、本発明者らは推測している。

【0010】本発明の目的は、SiOF膜を含む層間絶縁膜に埋め込み配線を形成する半導体集積回路装置において、SiOF膜をドライエッチングして埋め込み配線用の配線溝を形成する際に用いるエッチングストッパ層とSiOF膜との界面剥離を有効に防止することのできる技術を提供することにある。

【0011】本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。

[0012]

【課題を解決するための手段】本願において開示される 発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。

【0013】本発明の半導体集積回路装置は、半導体基

板の主面上に形成され、フッ素を含有する酸化シリコンからなる第1絶縁膜と、前記第1絶縁膜の内部に形成された第1配線と、前記第1絶縁膜および前記第1配線のそれぞれの上部に形成された窒化シリコンからなる第2絶縁膜と、前記第1絶縁膜と前記第2絶縁膜との間に介在する、窒素を含有する酸化シリコンからなる第3絶縁膜とを有するものである。

【0014】本発明の半導体集積回路装置の製造方法 は、以下の工程を含んでいる。

(a) 半導体基板の主面上に、第1窒化シリコン膜と、 フッ素を含有する酸化シリコンからなる第1絶縁膜と、 窒素を含有する酸化シリコンからなる第2絶縁膜と、第 2 窒化シリコン膜と、フッ素を含有する酸化シリコンか らなる第3絶縁膜と、窒素を含有する酸化シリコンから なる第4絶縁膜と、第3窒化シリコン膜とからなる第1 層間絶縁膜を形成する工程、(b) 第1フォトレジスト 膜をマスクに用いたドライエッチングで、配線溝形成領 域の前記第3窒化シリコン膜を除去する工程、(c)第 2フォトレジスト膜をマスクに用いたドライエッチング で、前記配線溝形成領域の一部の前記第4絶縁膜、前記 第3絶縁膜、前記第2窒化シリコン膜、前記第2絶縁膜 および前記第1絶縁膜を除去する工程、(d)前記第3 窒化シリコン膜をマスクに用いたドライエッチングで、 前記配線溝形成領域の前記第4絶縁膜および前記第3絶 縁膜を除去する工程、(e)前記第3窒化シリコン膜を ドライエッチングで除去し、さらに前記第1窒化シリコ ン膜をドライエッチングで除去することにより、前記配 線溝形成領域の前記第1層間絶縁膜に第1配線溝を形成 する工程、(f)前記配線溝の内部を埋め込むように第 1 導電層を形成した後、前記配線溝の外部の前記第1導 電層を化学機械研磨法によって除去することにより、前 記配線溝の内部に前記第1導電層からなる第1配線を形 成する工程。

[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には同一の符号を付し、その繰り返しの説明は省略する。

【0016】(実施の形態1)本発明の実施の形態であるCMOS-LSIの製造方法を図1~図14を用いて工程順に説明する。

【0017】まず、図1に示すように、例えば1~10 Ωcm程度の比抵抗を有するp型の単結晶シリコンからなる半導体基板(以下、基板またはウエハという)1に素子分離溝2を形成する。素子分離溝2を形成するには、素子分離領域の基板1をエッチングして溝を形成した後、溝の内部を含む基板1上にCVD法で酸化シリコン膜3を堆積し、続いて溝の外部の酸化シリコン膜3を化学機械的に研磨することによって除去する。

【0018】次に、基板1の一部にホウ素をイオン注入

し、他の一部にリンをイオン注入することによって、p型ウエル4およびn型ウエル5を形成した後、基板1をスチーム酸化することによって、p型ウエル4およびn型ウエル5のそれぞれの表面にゲート酸化膜6を形成する。

【0019】次に、図2に示すように、p型ウエル4およびn型ウエル5のそれぞれの上部にゲート電極7を形成する。ゲート電極7を形成するには、例えばゲート酸化膜6の上部にCVD法で多結晶シリコン膜を堆積した後、p型ウエル4の上部の多結晶シリコン膜にリンをイオン注入し、n型ウエル5の上部の多結晶シリコン膜にホウ素をイオン注入した後、フォトレジスト膜をマスクにしたドライエッチングで多結晶シリコン膜をパターニングする。

【0020】次に、p型ウエル4にリンまたはヒ素をイオン注入することによって低不純物濃度のn-型半導体領域8を形成し、n型ウエル5にホウ素をイオン注入することによって低不純物濃度のp-型半導体領域9を形成する。

【0021】次に、図3に示すように、基板1上にCV D法で窒化シリコン膜を堆積し、続いてこの窒化シリコン膜を異方的にエッチングすることによって、ゲート電極7の側壁にサイドウォールスペーサ10を形成した後、p型ウエル4にリンまたはヒ素をイオン注入することによって高不純物濃度のn*型半導体領域11(ソース、ドレイン)を形成し、n型ウエル5にホウ素をイオン注入することによって高不純物濃度のp*型半導体領域12(ソース、ドレイン)を形成する。

【0022】次に、基板1の表面を洗浄した後、ゲート電極7、n*型半導体領域11 (ソース、ドレイン) およびp*型半導体領域12 (ソース、ドレイン) のそれぞれの表面にシリサイド層13を形成する。シリサイド層13を形成するには、基板1上にスパッタリング法でCo(コバルト) 膜を堆積し、次いで窒素ガス雰囲気中で熱処理を行って基板1およびゲート電極7とCo膜とを反応させた後、未反応のCo膜をウェットエッチングで除去する。ここまでの工程で、nチャネル型MISFETQnおよびpチャネル型MISFETQpが完成する。

【0023】次に、図4に示すように、基板1上にCV D法で窒化シリコン膜15 および酸化シリコン膜16を 堆積し、続いてn+型半導体領域11 (ソース、ドレイン) およびp+型半導体領域12 (ソース、ドレイン) のそれぞれの上部の酸化シリコン膜16 および窒化シリコン膜15 をドライエッチングしてコンタクトホール17 を形成した後、コンタクトホール17 の内部にメタルプラグ18を形成する。酸化シリコン膜16をエッチングするときは、下層の窒化シリコン膜15のエッチング速度を小さくするために、CF4、CHF3、C4F8などのハイドロフルオロカーボン系ガスまたはフルオロカー

ボン系ガスを使用する。また、窒化シリコン膜15をエッチングするときは、ハイドロフルオロカーボン系ガス(CHF_3 や CH_2F_2 など)に酸素とArとを加えた混合ガスを使用する。メタルプラグ18を形成するには、コンタクトホール17の内部を含む酸化シリコン膜16上にCVD法でTiN(窒化チタン)膜とW(タングステン)膜とを堆積し、続いて酸化シリコン膜16の上部の不要なTiN膜およびW膜を化学機械研磨(CMP)法またはエッチバック法によって除去する。なお、酸化シリコン膜16は、モノシラン(SiH)をソースガスに用いた通常のCVD法で形成する酸化シリコン膜の他、BPSG(Boron-doped Phospho Silicate Glass)膜、スピン塗布法によって形成されるSOG(Spin On Glass)膜あるいはこれらの積層膜などによって構成してもよい。

【0024】次に、図5に示すように、酸化シリコン膜16の上部に窒化シリコン膜19、SiOF膜20、酸窒化シリコン (SiON) 膜21を順次堆積する。窒化シリコン膜19は、次の工程でSiOF膜20に配線溝を形成する際に下層の酸化シリコン膜16がエッチングされるのを防ぐためのエッチングストッパ膜として機能するもので、例えばモノシラン (SiH_4)、ジシラン (Si_2H_6) などのシラン系ガスと、アンモニア (NH_3) または窒素との混合ガスを用いたCVD法で堆積する。

【0025】 SiOF膜20は、例えば SiH_4 と SiF_4 と酸素との混合ガス、またはテトラエトキシシラン ($(C_2H_5O)_4Si$) と SiF_4 と酸素との混合ガスを 用いたプラズマCVD法で堆積する。SiOF膜2.0 は、酸化シリコン(比誘電率=4.1)よりも比誘電率 が小さく(約 $3.5\sim3.7$)、後の工程で形成される Cu配線の配線間における層間絶縁膜容量を低減することができる。

【0026】酸窒化シリコン膜21は、SiOF膜20 と後の工程でその上部に形成する窒化シリコン膜(25)との界面の剥離を防止するために形成する。酸窒化シリコン膜21は、例えばモノシラン(SiH_4)、ジシラン(Si_2H_6)などのシラン系ガスと、酸素、亜酸化窒素(N_2O)、オゾン(O_3)などの酸素含有ガスと、窒素、 NH_3 などの窒素含有ガスとの混合ガスを用いたCVD法で堆積する。

【0027】SiOF膜20とその上部に形成される窒化シリコン膜(25)との間に酸窒化シリコン膜21を形成すると、SiOF膜20と窒化シリコン膜(25)の界面での剥離が防止される理由は、次のようなものであると推測される。

【0028】上記酸窒化シリコン膜21は、膜中にシリコン(Si)の未結合手(ダングリングボンド)が存在しているため、SiOF膜20中のSi-F結合が一部で切断されて遊離のFが生じると、このFが窒化シリコ

ン膜(25)との界面に達する前に酸窒化シリコン膜21中の未結合手にトラップされる。このとき、未結合手の数が少ないと、遊離のFの一部が窒化シリコン膜(25)との界面に達し、そこでトラップされるため、酸窒化シリコン膜21と窒化シリコン膜(25)との界面の接着力が低下してしまう。すなわち、酸窒化シリコン膜21中に存在する未結合手の数は、遊離のFの数と同等以上であることが望ましい。

【0029】従って、酸窒化シリコン膜21を成膜する 際は、窒素含有ガスや酸素含有ガスに対するシラン系ガ スの割合を過剰にして未結合手の数を増やすことが望ま しい。また、酸窒化シリコン膜21の膜厚が薄い場合 も、遊離のFの一部が窒化シリコン膜(25)との界面 に達してしまうため、ある程度以上の膜厚を確保するこ とが望ましい。酸窒化シリコン膜21の望ましい膜厚 は、SiOF膜20中で生成する遊離のFの量が成膜条 件や膜厚によって異なるので、一概には規定できない が、本発明者らの実験では、少なくとも50mm以上と することによって剥離を防止することができた。また、 酸窒化シリコン膜21の窒素含有率は、5atom%を超え ない範囲が望ましいという実験結果も得られた。窒素含 有率が高くなると、酸窒化シリコン膜21の膜質が窒化 シリコン膜に近づくため、SiOF膜20と酸窒化シリ コン膜21との界面の接着力が低下するようになる。

【0030】次に、図6に示すように、フォトレジスト 膜50をマスクにして酸窒化シリコン膜21、SiOF 膜20、窒化シリコン膜19を順次ドライエッチングすることによって、コンタクトホール17の上部に配線溝22を形成する。酸窒化シリコン膜21およびSiOF 膜20をエッチングするときは、下層の窒化シリコン膜19のエッチング速度を小さくするために、 CF_4 、 CHF_3 、 C_4F_8 などのハイドロフルオロカーボン系ガスまたはフルオロカーボン系ガスを使用する。また、窒化シリコン膜19をエッチングするときは、下層の酸化シリコン膜19をエッチングするときは、下層の酸化シリコン膜10のエッチング速度を小さくするために、ハイドロフルオロカーボン系ガスに酸素とArとを加えた混合ガスを使用する。

【0031】次に、フォトレジスト膜50を除去した後、図7に示すように、配線溝22の内部に第1層目のCu配線24を形成する。Cu配線24は、バリアメタル膜とCu膜との積層膜で構成し、次のような方法で形成する。まず、配線溝22の内部を含む酸窒化シリコン膜21上にバリアメタル膜とCu膜とを堆積し、続いて非酸化性雰囲気(例えば水素雰囲気)中で熱処理(リフロー)を施してCu膜を配線溝22の内部に隙間なく埋め込んだ後、配線溝22の外部の不要なCu膜とバリアメタル膜とを化学機械研磨法で除去する。Cu膜とバリアメタル膜とを研磨するには、例えばアルミナなどの砥粒と過酸化水素水または硝酸第二鉄水溶液などの酸化剤とを主成分とし、これらを水に分散または溶解させた研

磨スラリを使用する。

【0032】上記バリアメタル膜は、Cu配線24中のCuがSiOF膜20中に拡散するのを防止する機能と共に、Cu配線24とSiOF膜20中との接着性を向上させる機能および上記Cu膜をリフローする際の濡れ性を向上させる機能を有している。このような機能を持ったバリアメタル膜としては、例えばスパッタリング法で堆積したTiN膜、WN(窒化タングステン)膜、TaN(窒化タンタル)などの高融点金属窒化物からなる膜や、これらの積層膜あるいはTiNとTiの積層膜、TaとTaNの積層膜などが例示される。

【0033】Cu配線24を構成するCu膜は、スパッタリング法、CVD法、メッキ法(電解メッキ法または無電解メッキ法)のいずれかの方法で形成する。メッキ法でCu膜を形成する場合は、あらかじめバリアメタル膜の表面にスパッタリング法などを用いて薄いCu膜からなるシード層を形成し、次に、このシード層の表面にCu膜を成長させる。また、スパッタリング法でCu膜を形成する場合は、ロングスロースパッタリング法やコリメートスパッタリング法のような指向性の高いスパッタリング法を用いることが好ましい。Cu膜は、単体のCuの他、Cuを主成分として含むCu合金で構成してもよい。

【0034】次に、図8に示すように、Cu配線24の 上部にCVD法で窒化シリコン膜25、SiOF膜2 6、酸窒化シリコン膜27を順次堆積し、続いて化学機 械研磨法で酸窒化シリコン膜27を薄く研磨してその表 面を平坦化する。酸窒化シリコン膜27の化学機械研磨 を行う際、ウエハ面内での研磨量のばらつきによって、 下層のSiOF膜26の一部が露出する虞れがある場合 は、SiOF膜26を堆積した後にその表面を研磨し、 その後、SiOF膜26の上部に酸窒化シリコン膜27 を堆積してもよい。窒化シリコン膜25は、Cu配線2 4中のCuがSiOF膜26中に拡散するのを防止する 拡散バリア層として機能するものであるが、前述したよ うに、窒化シリコン膜25と下層のSiOF膜20との 間に酸窒化シリコン膜21を形成したことにより、窒化 シリコン膜25と下層のSiOF膜20との界面での剥 離を防止することができる。

【0035】次に、図9に示すように、酸窒化シリコン膜27の上部にCVD法で窒化シリコン膜28、SiOF膜29、酸窒化シリコン膜30、窒化シリコン膜31を順次堆積する。窒化シリコン31は次の工程で配線溝(32)を形成する際のマスクとして機能し、窒化シリコン28はエッチングストッパ層として機能するものであるが、窒化シリコン膜28と下層のSiOF膜26との間に酸窒化シリコン膜27を形成し、窒化シリコン膜31と下層のSiOF膜29との間に酸窒化シリコン膜30を形成したことにより、窒化シリコン膜28とSiOF膜26との界面での剥離や、窒化シリコン膜31と

SiOF膜29との界面での剥離を防止することができる。

【0036】酸窒化シリコン膜27、30は、前記酸窒化シリコン膜21と同様、シリコンリッチとなるような組成で形成することが望ましい。また、50nm以上の膜厚で堆積し、窒素含有率が5atom%を超えないようにすることが望ましい。

【0037】次に、図10に示すように、フォトレジスト膜51をマスクに用いたドライエッチングで配線溝形成領域の窒化シリコン膜31を除去する。次に、フォトレジスト膜51を除去した後、図11に示すように、フォトレジスト膜52をマスクに用いたドライエッチングで配線溝形成領域の一部の酸窒化シリコン膜30、SiOF膜29、窒化シリコン膜28、酸窒化シリコン膜27、SiOF膜26を除去し、窒化シリコン膜25の表面でエッチングを停止する。

【0038】次に、フォトレジスト膜51を除去した後、図12に示すように、窒化シリコン膜31をマスクに用いたドライエッチングで配線溝形成領域の酸窒化シリコン膜30およびSiOF膜29を除去する。続いて、図13に示すように、窒化シリコン膜31、28、25をドライエッチングすることによって、Cu配線24の上部に配線溝32を形成した後、図14に示すように、配線溝32の内部に第2層目のCu配線33を形成する。第2層目のCu配線33は、前述した第1層目のCu配線24の形成方法(図7参照)に準じて形成すればよい。

【0039】図示は省略するが、その後、前述した工程を繰り返し、第2層目のCu配線33の上部に複数層のCu配線を形成することにより、本実施形態のCMOS-LSIが完成する。

【0040】なお、本実施形態では、SiOF膜20とその上層の窒化シリコン膜25との間に酸窒化シリコン膜21を介在させたが、図15に示すように、SiOF膜20とその下層の窒化シリコン膜19との間に酸窒化シリコン膜34を介在させることにより、SiOF膜20と窒化シリコン膜19との界面における剥離も防止することができる。

【0041】(実施の形態2)本発明の実施の形態であるCMOS-LSIの製造方法を図16~図21を用いて工程順に説明する。

【0042】まず、図16に示すように、前記実施の形態1と同様の方法でnチャネル型MISFETQnおよびpチャネル型MISFETQpを形成した後、n*型半導体領域11 (ソース、ドレイン) およびp*型半導体領域12 (ソース、ドレイン) のそれぞれの上部の酸化シリコン膜16および窒化シリコン膜15をドライエッチングしてコンタクトホール17を形成し、コンタクトホール17の内部にメタルプラグ18を形成する。ここまでの工程は、前記実施の形態1の図1~図4に示し

た工程と同じである。

【0043】次に、図17に示すように、酸化シリコン 膜16の上部にSiC膜37およびSiOF膜20を順 次堆積する。前記実施の形態1では、エッチングストッ パ膜を窒化シリコン膜で構成したが、本実施形態ではS i C膜37で構成する。Si C膜に代えてSi CN膜を 使用することもできる。窒化シリコン膜は、比誘電率が 約7であるのに対し、SiC膜やSiCN膜の比誘電率 は約5である。従って、エッチングストッパ層を窒化シ リコン膜に代えてSiC膜やSiCN膜で構成すること により、配線間の層間絶縁膜容量を低減することができ る。SiC膜は、トリメチルシランとヘリウム(He) との混合ガスを用いたCVD法で堆積し、SiCN膜 は、トリメチルシランとHeとアンモニア(または窒 素) との混合ガスを用いたCVD法で堆積する。 トリメ チルシランに代えてモノ、ジあるいはテトラメチルシラ ンを使用することもできる。

【0044】また、前記実施の形態1では、SiOF膜20の上部に酸窒化シリコン膜(21)を堆積したが、本実施形態では、酸窒化シリコン膜を使用しない。

【0045】次に、図18に示すように、SiOF膜20およびSiC膜37をドライエッチングすることによって、コンタクトホール17の上部に配線溝22を形成し、続いて配線溝22の内部に、前記実施の形態1と同様の方法で第1層目のCu配線24を形成する。

【0046】次に、図19に示すように、Cu配線24 の上部にCVD法でSiC膜38、SiOF膜39、S i C膜40、SiOF膜41およびSiC膜42を順次 堆積する。なお、SiC膜38、40、42は、前述し たSiCN膜で代替してもよい。また、SiC膜40を 堆積した後、SiOF膜41を堆積する工程に先立っ て、化学機械研磨法でSiC膜40を薄く研磨してその 表面を平坦化する。SiC膜40の化学機械研磨を行う 際、ウエハ面内での研磨量のばらつきによって、下層の SiOF膜39の一部が露出する虞れがある場合は、S iOF膜39を堆積した後にその表面を研磨し、その 後、SiOF膜39の上部にSiC膜40を堆積しても よい。SiC膜40あるいはSiOF膜39の表面を平 坦化することにより、SiOF膜41の表面の高さおよ び膜厚がウエハ面内でほぼ均一になるので、後の工程で 形成される配線溝の内部に埋め込まれるCu配線の膜 厚、すなわちCu配線の抵抗値をウエハ面内でほぼ均一 にすることができる。

【0047】上記SiC膜38は、Cu配線24中のCuがSiOF膜39中に拡散するのを防止する拡散バリア層として機能する。また、SiC42は次の工程で配線溝を形成する際のマスクとして機能し、SiC40はエッチングストッパ層として機能する。すなわち、本実施形態では、SiOF膜39、41をドライエッチングして配線溝を形成する際のエッチングストッパ層をSi

C膜またはSiCN膜で構成することによって、SiOF膜39、41とエッチングストッパ層(SiC膜40)、マスク(42)との界面の接着性を向上させる。また、第1層目のCu配線24が形成されたSiOF膜20の上部の拡散バリア層をSiC膜38で構成することによって、SiOF膜20と拡散バリア層(SiC膜38)との界面の接着性を向上させる。

【0048】SiOF膜とSiC膜との界面の接着性が良い理由は、CVD法で堆積したSiC膜が多孔性に富んでいるためであると推測される。すなわち、SiOF膜中で生じた遊離のFは、多孔質のSiC膜中を通り抜けて拡散するので、SiOF膜とSiC膜との界面ではトラップされ難いと考えられる。また、SiCN膜も多孔性に富んでいるため、同様の効果が期待できる。

【0049】次に、図20に示すように、フォトレジスト膜(図示せず)およびSiC膜42をマスクに用い、前記実施の形態1に準じた方法でドライエッチングを行うことにより、Cu配線24の上部に配線溝43を形成し、続いて図21に示すように、配線溝43の内部に第2層目のCu配線44を形成する。

【0050】本実施形態では、エッチングストッパ層を SiC膜(またはSiCN)膜で構成することによって SiOF膜との界面の接着性を向上させたが、図22に 示すように、エッチングストッパ層を構成するSiC膜 40とその下層のSiOF膜39との間に、前記実施の 形態1で用いた酸窒化シリコン膜27を介在させてもよい

【0051】以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。

[0052]

【発明の効果】本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。

【0053】SiOF膜を含む層間絶縁膜をドライエッチングして埋め込み配線用の配線溝を形成する際、ドライエッチングのエッチングストッパ層を構成する窒化シリコン膜とSiOF膜との間に酸窒化シリコン膜を介在させることにより、SiOF膜中で生じた遊離のFが酸窒化シリコン膜中でトラップされるので、エッチングストッパ層とSiOF膜との界面の接着性が向上する。

【図面の簡単な説明】

【図1】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図2】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図3】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図4】本発明の一実施の形態である半導体集積回路装 置の製造方法を示す半導体基板の要部断面図である。

【図5】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図6】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図7】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図8】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図9】本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図10】本発明の一実施の形態である半導体集積回路 装置の製造方法を示す半導体基板の要部断面図である。

【図11】本発明の一実施の形態である半導体集積回路 装置の製造方法を示す半導体基板の要部断面図である。

【図12】本発明の一実施の形態である半導体集積回路 装置の製造方法を示す半導体基板の要部断面図である。

【図13】本発明の一実施の形態である半導体集積回路 装置の製造方法を示す半導体基板の要部断面図である。

【図14】本発明の一実施の形態である半導体集積回路 装置の製造方法を示す半導体基板の要部断面図である。

【図15】本発明の一実施の形態である半導体集積回路 装置の製造方法を示す半導体基板の要部断面図である。

【図16】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図17】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図18】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図19】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図20】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図21】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【図22】本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。

【符号の説明】

- 1 半導体基板
- 2 素子分離溝
- 3 酸化シリコン膜
- 4 p型ウエル
- 5 n型ウエル
- 6 ゲート酸化膜
- 7 ゲート電極
- 8 n-型半導体領域
- 9 p型半導体領域
- 10 サイドウォールスペーサ
- 11 n *型半導体領域 (ソース、ドレイン)
- 12 p⁺型半導体領域 (ソース、ドレイン)
- 13 シリサイド層
- 15 窒化シリコン膜
- 16 酸化シリコン膜
- 17 コンタクトホール
- 18 メタルプラグ
- 19 窒化シリコン膜
- 20 SiOF膜
- 21 酸窒化シリコン膜
- 22 配線溝
- 24 Cu配線
- 25 窒化シリコン膜
- 26 SiOF膜
- 27 酸窒化シリコン膜
- 28 窒化シリコン膜
- 29 SiOF膜
- 30 酸窒化シリコン膜
- 31 窒化シリコン膜
- 32 配線溝
- 33 Cu配線
- 34、35、36 酸窒化シリコン膜
- 37 SiC膜
- 38 SiC膜
- 39 SiOF膜
- 40 SiC膜
- 41 SiOF膜
- 42 SiC膜
- 43 配線溝
- 44 Cu配線50~54 フォトレジスト膜
- Qn nチャネル型MISFET
- Qp pチャネル型MISFET

[図1]

Ø 1

【図2】

2 2

[図4]

図 4

[図3]

⊠ 3

【図5】

Ø 5

【図6】

Ø 6

【図7】

图 7

【図8】

Z 8

[図9]

Ø 9

【図10】

2 10

【図11】

. 🗷 11

【図12】

図 12

【図13】

図 13

【図14】

図 14

【図15】

. 🗵 15

【図16】

Ø 16

【図17】

Ø 17

[図18]

Z 18

【図19】

図 19

【図20】

20

【図21】

図 21

【図22】

22

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

H01L 27/092

(72)発明者 三浦 典子

東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内

(72) 発明者 青木 英雄

東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内 (72)発明者 大島 隆文

東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内 Fターム(参考) 5F033 HH04 HH11 HH12 HH32 HH33

нн34 ЈЈ01 ЈЈ11 ЈЈ12 ЈЈ19

JJ32 JJ33 JJ34 KK01 KK11

KK12 KK25 KK32 KK33 KK34

LL04 MM01 MM02 MM12 MM13

NN06 NN07 PP06 PP15 PP27

PP28 QQ09 QQ10 QQ11 QQ21

QQ25 QQ31 QQ37 QQ48 QQ70

QQ73 QQ75 RR01 RR04 RR06

RR08 RR09 RR11 RR15 RR20

SS01 SS02 SS11 TT02 WW02

WW04 XX12

5F048 AC03 BD04 BE03 BF01 BF06

BF07 BF12 BF15 BF16 BG14

5F058 BA10 BD02 BD04 BD06 BD10

BD13 BD18 BF02 BF07 BF23

BF24 BF25 BF27 BF29 BF30

BJ02