AT#05: Feixes de radiação

Bartolomeu Joaquim Ubisse

Instituto Superior de Ciências de Saúde (ISCISA)

(Aulas preparadas para estudantes de Radiologia)

30 de Março de 2022

Conteúdos

- 1 Interacção da radiação com a matéria
 - Interacção da radiação com a matéria
 - Detecção e medição da radiação

Quando a radiação interagem com a matéria, transfere parte ou toda a sua energia para as moléculas ou átomos dessa matéria. Na sequência, pode ocorrer os seguintes fenômenos:

- Excitação atômico-molecular e
- Ionização

Excitação atômico-molecular

Neste fenômeno corre a transferência da energia (total ou parcial) da radiação para um electrão do corpo alvo. Porém, essa energia não é suficiente para lançar o electrão fora do átomo e ionização.

O fóton emitido pode ser na faixa do visível (cintilação), ou na faixa de raios X (R_X carac_{3/}terísticos).

Ionização

Neste fenômeno, os electrões são removidos dos seus orbitais, e torna-se em electrões lívres de alta energia (Fig.2)

Figura 2: Ionização

A ionização é muito mais nociva aos seres vivos do que a excitação

- Partículas α , β podem ionizar átomos directamente e as não carregadas (R_X , γ e neutões) ionizam indirectamente

Radiação - α

As partículas α emitidas por núcleos radioactivos tem energia na ordem de 5 a 6 MeV e, sabendo que ao colidir com electrão perde 33 eV , sofrem $5 {\rm MeV}/33 {\rm eV} = 151000$ colisões antes de parar.

Uma vez que cada colisão pode resultar em ionização, partículas α ionizam mais. O seu alcance varia em função da energia e da densidade do material com que interage, conforme a Tabela:1.

Radiação - β

As partículas α são electrões muito velozes e, por serem leves, facilmente são desviados depois das colisões. As partículas β quando travadas, emitem uma radiação electromagnética $(R_X{}^1)$.

Os electrões, por serem menores, transferem menor energia por unidade de comprimento percorrido, dai que, o seu alcance é relativamente maior.

¹bremsstrahlung

Tabela 1: Alcance de partículas α e β de várias energias em diferentes materiais [Cromer, 2007]

	Alcance (cm)		
Energia (MeV)	Ar	Tecido corporal	Alumínio
Partículas - α			
2.0	1.04	0.63×10^{-2}	0.61×10^{-3}
3.0	1.67	1.00×10^{-2}	0.98×10^{-3}
4.0	2.58	1.55×10^{-2}	1.50×10^{-3}
5.0	3.50	2.10×10^{-2}	2.06×10^{-3}
Partículas - β			
0.10	12.0	0.0151	0.0043
0.50	150.0	0.18	0.0590
1.00	420.0	0.50	0.1500
2.00	840.0	1.00	0.3400
3.00	1260.0	1.50	0.5600

Quanto à radiação β^+ (positron), esta tem tempo de vida curto, pois, logo que interage com um electrão, surge uma aniquilação resultando na emissão de uma radiação electromagnética de dois fótons.

O processo de aniquilação é muito usado na Tomografia de emissão de positrons (PET^2)

 \leadsto A blindagem das partículas β pode ser feita com folhas plásticas (lucite, acrílico ou PVC) de 1-2 cm. Porém, se as partículas β tiverem energia próxima ou maior que 2 MeV, deve-se ter em consideração a radiação de frenagem (ou *bremsstrahlung*) para prover a blindagem adequada.

 $^{^2}$ É um exame médico em que se utiliza radionuclídeos que emitem um positrão no momento da sua desintegração, o qual é detectado para formar imagens. Para tal, injecta-se no paciente uma mistura de glucose e um elemento radiactivo (normalmente o $^{18}{\rm F}$) (mistura denominada *Desoxiglicose marcada com flúor-18*) e avalia-se as regiões do paciente (vendo as imagens) onde o metabolismo é excessivo [Wikipédia. Acesso em 30/03/2022. Clique aqui!]

Nêutrons (n)

Os nêutrons são partículas sem carga, pelo que, ionizam indirectamente a matéria. Os nêutrons tem maior poder de penetração e, por isso, conseguem atingir núcleos de átomos alvos, modicando assim a sua natureza (criar transmutações). Assim, os nêutrons constituem uma radiação mais nociva à saúde e o seu uso médico ainda é muito restrito.

A blindagem dos nêutrons é geralmente feita com materiais ricos em hidrogênio (ex. água ou parafina).

Radiação - γ e R_X

Os $R_{\rm X}$ são fótons que tem origem na electrosfera do átomo enquanto que R_{γ} tem origem no núcleo. Todas estas radiações são muito penetrante.

Quando um feixe de R_X ou R_γ atravessa um objecto vários tipos de interações podem ter lugar, a saber:

- Penetrar na matéria sem interagir com a mesma;
- Interagir com a matéria e ser completamente absorvido, transferindo toda sua energia para o meio;
- Interagir com a matéria e ser espalhado ou defletido de sua dirrecção original, perdendo parte de sua energia.

Assim, no caso de a radiação $(R_X \ e \ R_\gamma)$ interagir com a matéria, vários fenómenos podem ocorrer, porém, os mais importantes são:

- Efeito fotoeléctrico;
- Efeito Compton
- Produção de pares (electrão-positrão)

Efeito fotoeléctrico

O efeito fotoeléctrico ocorre quandotoda a energia da radiação $(R_X \ e \ R_\gamma)$ é transferida para o eléctrão e, este por sua vez é lançado para fora do átomo com energia cinética suficiente.

A lacuna deixada pelo electrão é preenchida por electrões de camadas mais energéticas, e o excesso de energia é liberado na forma de $R_{\rm X}$ característico.

Efeito Compton

Ocorre quando o fóton $(R_X \text{ ou } R_\gamma)$ cede parte de sua energia para o electrão do alvo. Este efeito contribui significativamente para o aumento da radiação que é espalhada pelo corpo do paciente e que atinge o filme radiográfico, deteriorando a qualidade da imagem.

A sua ocorrência é diretamente ligada à densidade electrônica do material, e é inversamente relacionada à energia do fóton incidente

Produção de pares (electrão-positrão)

Ocorre quando fótons de energia superior a 1.022 MeV passam perto de núcleos de número atômico elevado, interagindo com o forte campo eléctrico nuclear

Um fóton $(R_X \text{ ou } R_\gamma)$, pode perder toda ou parte de sua energia numa única interação, porém, é muito difícil prever o seu alcance. O que é previsível é a distância em que existe 50% de chance de interagir. Esta distância denomina-se *camada semi-redutora*.

Tabela 2: Camada semi-redutora[Okuno, 1986]

	Camada semi-redutora (cm)	
Energia (MeV)	Tecido corporal	Alumínio
Raios X ou γ		
0.01	0.13	4.5×10^{-4}
0.05	3.24	0.8×10^{-2}
0.10	4.15	1.1×10^{-2}
0.50	7.23	0.38
1.00	9.91	0.86
5.00	23.10	1.44

Detecção e medição da radiação

A radiação nuclear é detectada pela ionização que produz.

-TPC

Formem grupos de 4 estudantes e cada grupo deve descrever o principio físico de funcionamento dos seguintes detectores.

O trabalho deve ser entregue (depositado no link a ser fornecido pelo docente no repositório) no dia 08/04/2022.

- Oetectores gasosos (Geiger-Muller), de cintilação e de estado sólido.
- ② Detectores termoluminescentes e opticamente activos. Badge detector.
- Fotomultiplicadores e APDs.

O trabalho deve ocupar no máximo dez (10) páginas. Não é permitido o plágio, pelo que, é crucial que informação de otrem seja bém referenciada.