

Aufgabe 1:

Erstelle für die Funktion $f(x) = -0.5(x+1)^2 + 2.5$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.

	Scheitelpunkt	Symmetrieachse	Nullstellen	Öffnung	Form
f_1					
f_2					
f_3					

Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = (x-1)^2 - 1$$

Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.

$$f_1(x) = -\frac{1}{2}(x-1)^2 - 2$$

$$f_2(x) = -\frac{1}{2}(x-2)^2 - 1$$

$$f_3(x) = (x-1)^2 + 2$$

$$f_3(x) = (x-1)^2 + 2$$

$$f_4(x) = -3(x-2)^2 + 1$$

Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a)
$$f_1(x) = (x-1)^2 + 1$$

a)
$$f_1(x) = (x-1)^2 + 1$$

 c) $f_3(x) = -(x-1)^2 - 2$
 e) $f_5(x) = x^2$

e)
$$f_5(x) = x^2$$

b)
$$f_2(x) = -2(x-2)^2 - 1$$

b)
$$f_2(x) = -2(x-2)^2 - 1$$
 d) $f_4(x) = -2(x-1)^2 - 1$ f) $f_6(x) = 2(x+2)^2 - 1$

f)
$$f_6(x) = 2(x+2)^2 - 1$$

Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a)
$$f_1(x) = 2x^2 - 4x - 1$$

c)
$$f_3(x) = -2x^2 - 8x - 7$$

e)
$$f_5(x) = -x^2 + 4x - 4$$

b)
$$f_2(x) = x^2 + 6x + 12$$
 d) $f_2(x) = x^2 + 4x + 6$

1)
$$f_*(x) = x^2 + 4x + 6$$

f)
$$f(x) = 2x^2 + 4x$$

Aufgabe 1:

Erstelle für die Funktion $f(x) = -0.5(x+1)^2 + 2.5$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

-3	-2	-1	0	1	2	3
0.5	2.0	2.5	2.0	0.5	-2.0	-5.5

Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.

	Scheitelpunkt	Symmetrieachse	Nullstellen	Öffnung	Form
f_1	S(-1 2)	x = -1	Keine Nullstelle	oben	gestauch
f_2	S(0 -1)	x = 0	$x_1 \approx -1,41 x_2 \approx 1,41$	oben	gestauch
f_3	S(0 -2)	x = 0	$x_1 \approx -0.82 x_2 \approx 0.82$	oben	gestreck

Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = (x-1)^2 - 1$$

Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.

$$f_1(x) = -3(x-2)^2 + 1$$

$$f_1(x) = -3(x-2)^2 + 1$$

$$f_2(x) = -\frac{1}{2}(x-2)^2 - 1$$

$$f_3(x) = -\frac{1}{2}(x-1)^2 - 2$$

$$f_3(x) = -\frac{1}{2}(x-1)^2 - 2$$

$$f_4(x) = (x-1)^2 + 2$$

Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a)
$$f_1(x) = (x-1)^2 + 1$$

 $f_1(x) = x^2 - 2x + 2$

c)
$$f_3(x) = -(x-1)^2 - 2$$

 $f_3(x) = -x^2 + 2x - 3$

e)
$$f_5(x) = x^2$$

 $f_5(x) = x^2$

b)
$$f_2(x) = -2(x-2)^2 - 1$$

 $f_2(x) = -2x^2 + 8x - 9$

d)
$$f_4(x) = -2(x-1)^2 - 1$$

 $f_4(x) = -2x^2 + 4x - 3$

f)
$$f_6(x) = 2(x+2)^2 - 1$$

 $f_6(x) = 2x^2 + 8x + 7$

Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a)
$$f_1(x) = 2x^2 - 4x - 1$$

 $f_1(x) = 2(x-1)^2 - 3$

c)
$$f_3(x) = -2x^2 - 8x - 7$$

 $f_3(x) = -2(x+2)^2 + 1$

e)
$$f_5(x) = -x^2 + 4x - 4$$

 $f_5(x) = -(x-2)^2$

b)
$$f_2(x) = x^2 + 6x + 12$$

 $f_2(x) = (x+3)^2 + 3$

d)
$$f_4(x) = x^2 + 4x + 6$$

 $f_4(x) = (x+2)^2 + 2$

f)
$$f_6(x) = -2x^2 + 4x$$

 $f_6(x) = -2(x-1)^2 + 2$