REMARKS

The specification has been amended to correct errors of a typographical and grammatical nature. Due to the large number of corrections thereto, applicants submit herewith a Substitute Specification, along with a marked-up copy of the original specification for the Examiner's convenience. Applicants submit that the substitute specification includes no new matter. Therefore, entry of the Substitute Specification is respectfully requested.

The claims and abstract have also been amended to correct errors of a grammatical nature and to more clearly describe the features of the present invention.

Entry of the preliminary amendments and examination of the application is respectfully requested.

To the extent necessary, applicant's petition for an extension of time under 37 CFR 1.136. Please charge any shortage in the fees due in connection with the filing of this paper, including extension of time fees, to Deposit Account No. 01-2135 (501.43011X00) and please credit any excess fees to such deposit account.

Respectfully submitted,

Melvin Kraus

Registration No. 22,466

ANTONELLI, TERRY, STOUT & KRAUS, LLP

MK/DRA/cee Attachments (703) 312-6600 od human

501.43011X00 tild 8/26/03 Wideci+asogr

A SEMICONDUCTOR DEVICE AND A METHOD OF MANUFACTURING THE SAME

BACKGROUND OF THE INVENTION

The present invention relates to a semiconductor device and a method of manufacturing the same.

Particularly, the invention is concerned with a technique which is effective particularly applicable to a connection of wirings between different layers.

A semiconductor element and wiring, or wirings of different layers, are interconnected through a conductive film formed within a connecting hole.

However, with microstructurization of semiconductor devices, studies are being made about, a technique in which a portion called reservoir is provided in an upper-layer wiring which overlies a connection. This is for the following reason.

The reservoir indicates, a projecting portion (a surplus portion, a marginal portion) which is a part of wiring and which projects from a wiring portion serving as a main current path.

Although the reservoir portion is An unnecessary portion as a current path, it is formed for the improvement, electromigration (EM) resistance.

The Electromigration means, a phenomenon, such that when

an electric current flows between upper- and lower-layer wirings through a connection, metal atoms which constitute the wirings and the connection migrate. As a result of this phenomenon, voids are formed within the wirings and the connection, causing a defective connection such as breaking of wire or a rise of connection resistance.

However, if a reservoir is present, the reservoir serves as a metal atom supply source, whereby it is possible to decrease the rate of generation of voids and improve the electromigration resistance.

Moreover, if a reservoir is present, it is possible to ensure a margin for pattern matching between wiring and a connection, and even in the event of occurrence of mask displacement, it is possible to effect conduction between wiring and acconnection.

For example, in the following Patent Literature 1

(Japanese Unexamined Patent Publication No. 2001-44196)
there is disclosed a technique in which a metallic reservoir 5a is provided above or below wiring to suppress the generation of voids caused by electromigration.

(Japanese Unexamined Patent Publication No. Hei 11(1999)
186433) there is a description on a reservoir portion

which improves Aelectromigration (EM) resistance.

[Patent Literature 1]

Japanese Unexamined Patent Publication [Patent Literature 2]

Japanese Unexamined Patent Publication No. 11 (1999) - 186433 -

SUMMARY OF THE INVENTION

The inventors in the present case are lengaged in the research and development of semiconductor devices and are studying the provision of a reservoir portion for improving EM resistance.

Patterns of wirings of various layers and of connections located therebetween are arranged (layout) using automatic wiring tools [CAD (computer aided design) system] for example. At this time, optimization is made so that the wiring and connection patterns are arranged in high density. —

However, in a layout which does not cause wiring error in the absence of a reservoir, there occurs a wiring rule error (violation) in the presence of a reservoir, thus giving rise to the problem that the wiring efficiency (wiring mounting efficiency) is deteriorated, as will be described in detail later.

It is an object of the present invention to improve the wiring mounting efficiency and also improve the connection accuracy between wirings.

It is another object of the present invention to attain microstructurization or high density a semiconductor device and also attain high performance the semiconductor device.

The above and other objects and novel features of the present invention will become apparent from the following description and the accompanying drawings.

Typical modes of the invention disclosed herein will be outlined below.

- (1) In a method of manufacturing a semiconductor device type of performance according to the present invention, (a) a first wiring extending in a first direction and (b) a second wiring connected to the first wiring through a connection and extending in a second direction orthogonal to the first direction, the second wiring having a surplus portion projecting from the connection in a direction opposite to the second direction, are disposed in such a manner that (c) a center of the connection is offset in the second direction from a center of the first wiring and that (d) a projecting portion of the first wiring is disposed under the connection.
- (2) A semiconductor device according to the present invention comprises (a) a first wiring extending in a first direction and (b) a second wiring connected to the first wiring through a connection and extending in a second

direction orthogonal to the first direction, the second wiring having a first surplus portion projecting in a direction opposite to the second direction, wherein (c) the connection is formed such that a center thereof is offset in the second direction from a center of the first wiring, and (d) a projecting portion of the first wiring is formed under the connection.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a plan view showing planar patterns of wirings (MO, M1) of various layers and those of connections formed between the wirings in a first embodiment of the present invention;

present invention;

in a default plan view which

Fig. 2 pillustrates planar patterns of 0th layer

wirings in the layout of Fig. 1;

Fig. 3 is a sectional view of principal portions taken on line A-A' in Fig. 1;

Fig. 4 is a plan view showing planar patterns of wirings (MO, M1) of various layers and those of connections formed between the wirings, which plan view is for showing the effect of the first embodiment;

Fig. 5 illustrates planar patterns of 0th layer wirings in the layout of Fig. 4;

Fig. 6 is a sectional view of principal portions taken on line C-C' in Fig. 4;

Fig. 7 is a sectional view, showing a relation among wirings (M0, M1) of various layers, connections formed therebetween, and gate electrodes, in the first embodiment;

Fig. 8 is a plan view showing planar patterns of Oth wirings agate electrode in the first embodiment;

Fig. 9 is a diagram showing a relation between reservoir length Lres and a percent layout of connections TH;

Fig. 10 is a flow chart showing a method for disposing wirings, etc. in a second embodiment of the present invention;

Fig. 11 is a flow chart showing another method for disposing wirings, etc. in the second embodiment;

Fig. 12 is a plan view showing planar patterns of wirings (M0, M1) of various layers and those of connections formed between the wirings in a third embodiment of the

Fig. 13 illustrates planar patterns of 0th layer wirings in the layout of Fig. 12;

Fig. 14 is a sectional view of principal portions taken on line D-D' in Fig. 12;

Fig. 15 is a plan view showing planar patterns of Oth layer wirings and a gate electrode in the third embodiment;

Fig. 16 is a sectional view showing a relation among wirings (MO, M1) of various layers, connections

therebetween, and gate electrodes, in the third embodiment;

Fig. 17 is a flow chart showing a method for disposing wirings, etc. in a fourth embodiment of the present invention;

Fig. 18 is a flow chart showing another method for disposing wirings, etc. in the fourth embodiment;

Fig. 19 is a plan view showing virtual 0th layer wiring patterns with notches formed on both sides of each intersecting point of grids;

Fig. 20 is a plan view showing planar patterns of wirings (M0, M1) of other various layers and those of connections formed between the wirings in the fourth embodiment;

Fig. 21 is a sectional view of principal portions taken on line F-F' in Fig. 20;

Fig. 22 is a circuit diagram of a two-input NAND cell;

Fig. 23 is a plan view showing a pattern layout of various layers which constitute a two-input NAND cell in a fifth embodiment of the present invention;

Fig. 24 is a plan view showing a pattern layout of various layers which constitute the two-input NAND cell in the fifth embodiment;

Fig. 25 is a plan view showing a pattern layout of various layers which constitute the two-input NAND cell in the fifth embodiment;

Fig. 26 is a plan view showing a pattern layout of various layers which constitute the two-input NAND cell in the fifth embodiment;

Fig. 27 is a plan view showing a pattern layout of various layers which constitute the two-input NAND cell in the fifth embodiment;

Fig. 28 is a sectional view taken on line G-G' in Fig. 27;

Fig. 29 is a circuit diagram of a four-input NAND cell;

Fig. 30 is a plan view showing a pattern layout of various layers which constitute a four-input NAND cell in a sixth embodiment of the present invention;

Fig. 31 is a plan view showing a pattern layout of various layers which constitute the four-input NAND cell in the sixth embodiment;

Fig. 32 is a plan view showing a pattern layout of various layers which constitute the four-input NAND cell in the sixth embodiment;

Fig. 33 is a plan view showing a pattern layout of various layers which constitute the four-input NAND cell in the sixth embodiment;

Fig. 34 is a plan view showing a pattern layout of various layers which constitute the four-input NAND cell in the sixth embodiment;

Fig. 35 is a plan view showing a pattern layout of various layers which constitute the four-input NAND cell in the sixth embodiment;

Fig. 36 is a plan view showing a state of connection in plural basic cells;

Fig. 37 is an example of a wiring layout among plural basic cells; and

Fig. 38 is a plan view showing planar patterns of 0th layer wirings and gate electrodes according to a modification of the first embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described in detail hereinunder with reference to the accompanying drawings. In all of the drawings for illustration of the embodiments, components having the same functions are identified by the same reference numerals, and repeated explanations thereof will be omitted.

(First Embodiment)

With reference to the drawings, a description will be given below of a method for disposing wirings, etc. in a semiconductor device of this first embodiment.

Fig. 1 is a plan view showing planar patterns 0th layer wirings M0a, M0b, first layer wirings M1a~M1e, and connections TH0a, TH0b between the 0th and the first layer

wirings Fig. 2 illustrates planar patterns of the 0th wirings MOa and MOb in the layout of Fig. 1 and Fig. 3 is a sectional view of principal portions taken on line A-A' in Fig. 1. An interlayer insulating film is present between wirings.

The following description is new provided about in what state wirings, etc., are disposed in the semiconductor device of this embodiment.

Oth layer wirings MOa and MOb are disposed along grids

(layout lines, channels) yl and y2 which extend in Y

direction. The grids indicate lines which are defined at

equal intervals in X or Y direction and which define a

minimum wiring spacing between layers.

The first layer wirings M1a and M1b are electrically connected to the Oth layer wirings M0a and M0b through connections THOa and THOb. The first layer wirings M1a and M1b are disposed along a grid x1 which extends in X direction.

The first layer wiring Mla has a reservoir (a surplus portion or a marginal portion) Ra projecting rightwards in

the figure from above the connection THOa, while the first layer wiring Mlb has a reservoir Rb projecting leftwards in the figure from above the connection THOb.

mistance PO (diffusion pitch) is the distance between grids y1 and y2, i.e., the sum of a space SO between Oth layer wirings and the width WO of such Oth wiring. The distance P1 is the distance between grids x2 and x3 (x1 and wirings and the width W1 of such first layer wirings and the width W1 of such first layer wiring. The distances PO and P1 are in a relation of P1<PO.

Fig. 7 is a sectional view of principal portions in which MISFET (Metal Insulator Semiconductor Field Effect Transistor) is formed below each 0th layer wiring MO, and Fig. 8 is a priview showing a relation of patterns of the 0th layer wirings MO and a gate electrode FG of each MISFET. A section taken on line B-B' in Fig. 8 corresponds to Fig. 7.

For example, as shown in Figs. 7 and 8, MISFETs are formed below the 0th layer wirings, a gate electrode FG is disposed in NY direction between the 0th layer wirings MO, and a source-drain region S/D is connected to a 0th layer wiring MO through a connection LCNT. In this case, it is necessary to provide a certain margin between the gate electrode FG and the connection LCNT in order to prevent shorting between the two. There is a growing tendency

microstructurization of MISFET, but in many cases the spacing between 0th layer wirigns cannot be made, a minimum machining size (wiring width = wiring spacing = F). On the other hand, the first layer wirings M1 can be disposed at a minimum machining size because they are not influenced by the layout of underlying elements, etc.

Thus, in many cases, the spacing between 0th layer wirings (between grids y) is larger than that between first layer wirings (between grids x), (P1<P0):

Fig. 7 shows an example of sizes of various portions. As shown in the \longrightarrow figure, PO is 0.42 μ m, SO is 0.24 μ m, WO is 0.18 μm, and reservoir length Lres is 0.06 μm. 14 eservoir length indicates the distance from a reservoirside end portion of a connection THO to an end portion of the reservoir. S1 $\frac{1}{4}$ W1 are each, for example, 0.18 μ m, and Pl is 0.36 µm. As shown in Fig. 7, Isecond layer wirings M2 which extend in the same direction (Y direction) as the 0th layer wirings M0 may be disposed above the first layer wirings M1 through an interlayer insulating film. For example, the width of each second layer wiring M2 and the spacing between adjacent second layer wirings M2 are each 0.18 µm, which value corresponds to a minimum size allowable between wirings. A first layer wiring M1 and a second layer wiring M2 are connected with each other through a connection TH1, for example.

In Fig. 7, the source-drain region D/S of each MISFET and a 0th layer wiring M0 are connected with each other through a connection LCNT, but, as shown in Fig. 38, a gate electrode FG may be connected to a 0th layer wiring M0 through a connection LCNT. In some case, the connection above the gate electrode is designated FCNT, but for convenience' sake it is here designated LCNT.

On the left-hand side of Fig. 38 there is illustrated a case where gate electrodes FG are each provided with a projecting portion (wiring portion), and the projecting portion is connected to a 0th layer wiring MO through a connection LCNT. On the right-had side of Fig. 38 there is illustrated a case where a connection is provided on each gate electrode FG, and further a 0th layer wiring MO is disposed thereon.

Thus, as the case may be, the 0th layer wirings MO are disposed not only on the source-drain regions S/D of MISFETs but also on gate electrodes FG, whereby it is possible to shorten the path for the supply of electric current to each gate electrodes FG.

As shown in Fig. 1, etc., the center of the connection THOb on the Oth layer wiring MOb is offset, a distance L1 (0.06 μ m in Fig. 7) rightwards from an intersecting point of grids y2 and x1. On the other hand, the center of the connection THOa on the Oth layer wiring MOa lies on an

intersecting point of grids x1 and y1 (Fig. 1).

Further, a notch (a projecting portion or a wide portion) of the 0th layer wiring M0b is formed below the connection TH0b on the 0th layer wiring M0b (see Fig. 2). That is, the connection TH0b is formed so as to be positioned on both 0th layer wiring M0b and notch Nb and connected to the first layer wiring M1b. It is preferable that the length of the notch Nb in X direction be set equal to the distance L1, which is, for example, 0.06 µm in Fig. 7. Since the 0th layer wirings M0 are spaced a distance of not less than a minimum size which is allowed between wirings, a required wiring spacing can be ensured even if the notch is provided.

Thus, in this first embodiment, when first layer wirings extending in mutually opposite directions on the same line are disposed on the 0th layer wirings disposed on adjacent grids, the connections on the 0th layer wirings are offset in the extending direction of the overlying first layer wirings, and the 0th layer wirings which underlie the thus-offset connections are each formed with a notch.

As a result, even in the case where the first layer wirings are provided with reservoirs, it is possible to ensure a required spacing between adjacent reservoirs bike A between reservoirs Ra and Rb or between reservoirs Rd and

Re. That is, since it is possible to ensure a required spacing in X direction between the first layer wirings disposed on the same grid, it becomes possible to increase the wiring density and hence possible to improve the wiring mounting efficiency.

For example, when the center of the connection THOb on the Oth layer wiring is disposed at an intersecting point between grids y2 and x1, as shown in Fig. 4, the spacing between first layer wirings in X direction becomes smaller than in Fig. 1 and if it becomes smaller than a predetermined distance, this state is regarded as a wiring rule error (space error). Fig. 5 illustrates planar patterns of the Oth layer wirings MOa and MOb in the layout of Fig. 4, and Fig. 6 is a sectional view of principal portions taken on line C-C' in Fig. 4.

In the event of occurrence of a space error, the first layer wiring Mlb is compelled to move onto another grid, e.g., grid x2 (Fig. 4). This results in that the first layer wiring Mlc is compelled to be disposed so as to keep off from the grid x2 and that therefore, the wiring freedom is greatly impaired. In ease, for example, hit is necessary to adopt such means as moving onto another grid (e.g. grid x3), with the result that the number of grids necessary for laying the wirings in question (Mla-Mlc) increases and effective area becomes larger, that is, the wiring mounting

efficiency is deteriorated.

On the other hand, according to the wiring method of this embodiment, as noted earlier, the region of the first layer wiring M1c can be ensured on the grid x2 even in the That is, since it is case where a reservoir is provided. possible to ensure a required spacing in X direction between adjacent first layer wirings disposed on the same grid, it becomes possible to dispose another net like the first layer wiring Mlc on grids which are adjacent to each other inly direction, whereby it is possible to improve the wiring freedom and also improve the wiring density and mounting efficiency. As a result, it is possible to effect microstructurization (reduction of chip size) and high integration of the semiconductor device. The first layer wiring M1c (another net) is not connected to the Oth layer wirings MOa and MOb, but is electrically connected, for example, to another 0th layer wiring MO which is isolated in X direction or to a second layer wiring M2 which overlies the first layer wirings M1 at a position isolated in X direction.

In the semiconductor device, although the details will be described later, plural elements are connected together through multiple layers of wirings. For example, even with a one-grid reduction of cell area per unit cell, it is possible to obtain a great effect as a whole in the

semiconductor device.

Besides, it is possible to shorten the length of each wiring for connection between elements, and, hence possible to realize a high-speed drive of the semiconductor device. Moreover, by shortening the wiring length, it is possible to diminish the wiring resistance and reduce the power consumption of the semiconductor device. Thus, it is possible to improve the reliability of the semiconductor device.

Further, as shown in Fig. 1, etc., since the reservoirs And Rb are provided in the first layer wirings M1a and M1b on the connections TH0a and TH0b, even upon migration of metal atoms which constitute the wirings and the connections, the reservoirs serve as a metal atom supply source to diminish the generation rate of voids and improve the electromigration (EM) resistance. Moreover, it is possible to ensure a margin for pattern matching of the wirings and the connections; and, even in the event of occurrence of mask displacement, it is possible to ensure conduction between the wirings and the connections. Thus, it is possible to improve the connection accuracy between wirings, and hence possible to improve the reliability of the semiconductor device.

Reference will now be made to the reservoir length

Lres. For the improvement of AEM resistance, the larger the

reservoir length, the better. However, a too large length thereof will result in a lowering of the wiring mounting efficiency. Fig. 9 is a diagram showing a relation between the reservoir length Lres and a percent layout of the connections TH.

For example, as shown in Fig. 9, consideration is here given to the case where the first layer wirings M1 are disposed through connections TH onto six 0th layer wirings M0, which extend side by side in Y direction.

As shown in Case 1, in the case where the reservoir length Lres is set at one half or less of the difference between the distances PO and P1, [Lres≤(PO-P1)/2], it is possible to dispose connections TH side by side on the same grid x. That is, the percent layout of connections (percent TH layout) becomes 100%. The Oth layer wirings MO, the first layer wirings M1, and the connections TH are equal in width, and this width and the spacing between adjacent first layer wirings M1 are each assumed to be a minimum machining size.

As shown in Case 2, if the reservoir length Lres is set larger than one half of the difference between the distances PO and Pl and not larger than the difference,

[(PO-P1)/2<Lres \le (PO-P1)], it is only three connections TH that can be disposed continuously at intersecting points of one grid x with grids y thereon, with no TH capable of

being disposed on the next grid y. The percent layout of connections (percent TH layout) in Case 2 is 75% of that in Case 1. In this case, it is necessary that the 0th layer wirings MO and the connections TH be offset from each other with respect to the centers thereof. However, since the reservoir length can be made larger than in Case 1, it is possible to improve the EM resistance and hence, improve the wiring reliability.

As shown in Case 3, if the reservoir length Lres is set larger than the difference between the distances PO and Pl and not larger than twice the difference, [(PO-P1)<Lres \leq 2(PO-P1)], it is possible to improve the Em resistance of wirings, but it only two connections TH that can be disposed continuously at intersecting points of one grid x with grids y thereon, with no grid capable of being disposed on the next grid y. As a result, the percent layout of connections becomes 66.7% as compared with that in Case 1. Also in this case it is necessary that the Oth layer wirings MO and the connections TH be offset from each other with respect to the centers thereof.

If the reservoir length Lres is set larger than one half of the difference between the distances PO and P1, [(PO-P1)/2<Lres], and if the Oth layer wirings MO and the connections TH are not centrally offset from each other, the percent layout of connections becomes 50%.

 \mathcal{M}

Thus, in all of Cases 1 to 3, the percent layout of connections is improved, but in Case 1 the EM resistance is deteriorated due to a relatively short reservoir length.

In Case 3, the offset between the wiring center and each connection becomes larger, so that the notch becomes larger and the freedom of wiring layout is greatly impaired. As a result, it becomes necessary to dispose the first layer wirings M1 so as to keep off from the same grid x, and thus there is a fear that the effective area of wiring may be deteriorated. Further, the wiring route becomes complicated, with a consequent likelihood of delay in the transfer of a signal.

Accordingly, it is considered preferable to set the reservoir length Lres as in Case 2, i.e., larger than one half of the difference between the distances PO and P1 and not larger than the difference, $[(PO-P1)/2 < Lres \le (PO-P1)]$.

Also when the reservoir length Lres is defined as in Case 1, a notch N may be formed in each Oth layer wiring MO, and each connection TH may be offset from the center of the Oth layer wiring MO. That is, it is possible to form a notch N as in Case 2 and Case 3 and form a connection TH on the notch N. Likewise, even when the reservoir length Lres is defined as in Case 2, a connection TH can be formed on such a long notch N as in Case 3.

The Cases 1 to 3 may be combined according to the

degree of wiring density of each wiring layer. More particularly, when it is not necessary to dispose, wiring closely or when it is desired to ensure the reliability of wiring, there may be a wiring area where wiring is disposed in accordance with the method of Case 3. Conversely, when wiring must be made at a high wiring density, the method of Case 1 (definition of reservoir length and wiring method) may be adopted.

In the foregoing example, of the connections THOa and THOb on the grid x1, the THOb is offset its center to the right side, the center of THOa may be displaced to the left side.

A description will be given below of the case where a connection which underlies any of the first layer wirings disposed on one and same grid y is offset, its center to the left side. Reference will be made to a first layer wiring M1d as an example (see Fig. 1).

First layer wirings M1d and M1e are disposed along the grid x3 and are electrically connected to the 0th layer wirings M0a and M0b respectively through connections TH0d and TH0e.

The first layer wiring Mld extends leftwards in the figure from above the connection THOd, while the first layer wiring Mle extends rightwards in the figure from above the connection THOe.

The first layer wiring Mld has a reservoir Rd projecting rightwards in the figure from above the connection THOd, while the first layer wiring Mle has a reservoir Re projecting leftwards in the figure from above the connection THOe. The distances PO and P1 are in a relation of P1<PO.

The center of the connection That on the 0th layer wiring MOD, is offset, a distance L1 leftwards from an intersecting point of grids T and x3. On the other hand, the center of the connection Thoe on the 0th layer wiring MOD.

MOD NOT THE OTHER POINT OF GRIDS Y2 and x3.

A notch Nd of the 0th layer wiring M0a is formed below the connection TH0d on the 0th layer wiring M0a (see Fig. 2). The 0th layer wiring M0 is not disposed at a minimum machining size, so even if the notch is provided, it is possible to ensure the required wiring spacing.

Thus, the center of the connection THOd is offset

leftwards and the notch Nd is formed in the Oth layer

wiring MOa, so even in the case where reservoirs Rd and Re

are provided in the first layer wirings (Mld, Mle), it is

possible to ensure their spacing in X direction and hence possible to improve the wiring mounting efficiency.

(Second Embodiment)

A semiconductor device is designed by utilizing a computer (CAD). CAD is essential for a short-period

development of LSI (Large Scale Integrated Circuit).

A computer system (CAD system) used for CAP is constituted by a group of CAD tools, which are used according to various design steps. In other words, the CAD tools are software programs developed for a specific purpose.

Thus, the wirings described in the first embodiment can also be laid automatically using a CAD tool.

The following description is new provided about a CAD tool (automatic wiring tool) for realizing the wiring layout described in the first embodiment. The shape, etc. of wirings laid using CAD tools in this second embodiment are the same as in the layout which has been described above with reference to Fig. 1, etc. in the first embodiment, so the details thereof will here be omitted.

As described in the first embodiment, there are various conditions for the layout of wiring. a) The Oth layer wirings MO are disposed on grid y. b) The first layer wirings M1 are disposed on grid x. c) The connections THO between the Oth and the first layer wirings are disposed at intersecting points of grids x and y. d) Reservoirs are provided on the first layer wirings M1.

(1) First, with reference to Fig. 10, a description will be given of a model (M0 model) in which connections THO and first layer wirings M1 are disposed on 0th layer wirings M0.

It is assumed that 0th layer wirings M0a and M0b have

been disposed optimally in a step which precedes the step using the CAD tool.

First layer wirings M1a and M1b are disposed optimally on the 0th layer wirings M0a and M0b. Here the reservoir length is not taken into account.

Next, connections THOa and THOb are disposed at intersecting points of the Oth layer wirings MO and the first layer wirings M1.

Then, reservoirs Ra and Rb are added to the first layer wirings M1 and a check is made to see if the spacing between the two in X direction is a predetermined length or more. The predetermined length indicates, for example, a minimum size which is allowed between wirings.

If the spacing is below the predetermined length, one of the connections THO underlying the first layer wirings M1 is displaced in the extending direction of the first layer wirings. In Fig. 10, the connection THOb is displaced a distance L1 rightwards.

Further, a notch N of a first layer wiring MO is added to below the thus-displaced connection. In Fig. 10, a notch Nb is added to the Oth layer wiring MOb.

Without going through these steps, the first layer wirings M1 and the connections THO may be disposed using a program which permits the connections THO underlying the first layer wirings M1, including Areservoirs, to be offset

in the extending directions of the fist layer wirings M1

from intersecting points of Agrids.

(2) Next, with reference to Fig. 11, the following description is new provided about a model (M1 model) in which connections THO disposed offsetwise on the Oth layer wirings M0 and terminals T (part of the first layer wirings M1) formed thereon are defined and the first layer wirings are disposed with the terminals T as origins.

That is, one of the connections THO at points of intersection with grid x1 on the Oth layer wirings MOa and MOb which are disposed optimally on grids y1 and y2 is disposed in such a manner that the center thereof is offset in X direction from the intersecting point. In Fig. 11, the connection THOb is displaced a distance L1 rightwards. A terminal Tb having a reservoir Rb is disposed on the connection THOb in a direction opposite to the offset direction of the connection THOb. Further, a notch Nb is formed in the Oth layer wiring MOb which underlies the displaced terminal Tb.

The other connection THOa is disposed on a point of Ta intersection with grid x1, and a terminal that having a reservoir Ra is disposed on the connection THOa on the right-hand side of the connection THOa.

On the basis of position information of the terminals

Ta

#1, and Tb the first layer wirings M1 are disposed

automatically so as to extend from the terminals T in directions opposite to the reservoirs R. In other words, the first layer wirings M1 are disposed optimally with the terminals T as origins.

In this M1 model, the positions of the connections THO (terminals T) are limited in advance, so there is a fear that the wiring mounting efficiency may become lower than in the foregoing M0 model.

In this M1 model, however, there are less conditions for disposing the first layer wirings M1, and, therefore, it is possible to shorten the TAT (turn around time) of wiring design.

That is, in the MO model, it is necessary to make, wiring design (mounting) while making comprehensively a layout combination of the connections THO and overlying the first layer wirings M1 with the Oth layer wirings M0.

For example, also in the example shown in Fig. 1, it is possible to dispose connections THO at three intersecting points on the Oth layer wirings MO, and in proportion to the large design freedom, it takes a longer time for establishing an optimal layout. Particularly, in the MO model, if the condition that the connections THO should be disposed at intersecting points of grids is removed, and if it is allowed, to dispose them at positions, deviated from such intersecting points, it takes still

more time for establishing an optimal layout.

Fig. 1 there merely is illustrated an area of 2 x 3 grids, but actually plural elements (cells) are interconnected by multi-layer wirings, etc., and for the design of wiring under a comprehensive combination of such interconnections, it is necessary to improve the computer calculation capacity and the time required for calculation becomes longer.

On the other hand, in the M1 model, it is possible to shorten the TAT of wiring design, and a conventional CAD system is employable.

(Third Embodiment)

Although in the first embodiment only the connection THOb THOO of the connections THOa and THOb adjacent to each other is disposed offsetwise (see Fig. 1), the adjacent connections THOa and THOb may be displaced in directions opposite to each other (away from each other).

With reference to the drawings, a description will be given below of a method for disposing wirings, etc. in the semiconductor device of this embodiment. This third embodiment is the same as the first embodiment except layout positions of connections and first layer wirings, so corresponding portions are identified by the same reference numerals, and only different portions will be described in detail below.

Fig. 12 is a plan view showing planar patterns of 0th layer wirings M0a, M0b, first layer wirings M1a to M1e, and connections TH0a and TH0b between the 0th and the first layer wirings. Fig. 13 illustrates planar patterns of the 0th layer wirings M0a and M0b in the layout of Fig. 12, and Fig. 14 is a sectional view of principal portions taken on line D-D' in Fig. 12.

The state of layout of wirings, etc. in the semiconductor device of this embodiment will be described below with reference to Figs. 12 to 14.

The 0th layer wirings M0a and M0b are disposed along grids y1 and y2, and lare electrically connected through connections TH0a and TH0b to the first layer wirings M1, and M1b, which are disposed along grid x1.

More specifically, the first layer wiring Mla extends leftwards in the figures from above the connection THOa, while the first layer wiring Mlb extends leftwards in the figures from above the connection THOb.

The first layer wiring Mla has a reservoir Ra projecting rightwards in the figures from above the connection THOa, while the first layer wiring Mlb has a reservoir Rb projecting leftwards in the figures from above the connection THOb.

Distance PO is the distance between grids y1 and y2, corresponding to the sum of a space SO between the Oth

layer wirings and the width WO of each Oth layer wiring.

Distance P1 is the distance between grids x1 and x2,

corresponding to the sum of a space S1 between the first

layer wirings and the width W1 of each first layer wiring.

P1 and PO are in a relation of P1<PO.

If gate electrodes FG underlie the 0th layer wirings in Y direction, as described in the first embodiment, the relation of P1<P0 is satisfied in many cases.

Fig. 15 shows a relation of pattern between the first aper wirings MO and a gate electrode FG of MISFET, and Fig. 16 is a sectional view of principal portions with MISFETs underlying the 0th layer wirings MO. A section taken on line E-E' in Fig. 15 corresponds to Fig. 16.

For example, as shown in Fig. 16, P0 is 0.42 µm, S0 is 0.24 µm, W0 is 0.18 µm, and reservoir length Lres is 0.06 µm. S1 and W1 are each 0.18 µm and P1 is 0.36 µm. The width of each second layer wiring M2 and the spacing between adjacent second layer wirings M2 are each 0.18 µm.

As shown in Fig. 12, etc., the center of the connection THOb on the Oth layer wiring MOb is offset a distance L2 rightwards from intersecting point of grids y2 and x1. As to the connection THOa on the Oth layer wiring MOa, its center is offset a distance L2 leftwards from intersecting point of y1 and x1. The distance L2 is, for example, 0.03 µm (Fig. 16).

A notch Na of the Oth layer wiring MOa is formed below the connection THOa on the Oth layer wiring MOa, and a notch Nb of the Oth layer wiring MOb is formed below the connection THOb on the Oth layer wiring MOb (see Fig. 13). It is preferable that the length of each of the notches Na and Nb be set equal to the distance L2. In Fig. 16, the notch length is, for example, 0.03 µm. The Oth layer wirings are spaced an allowable minimum wiring-to-wiring size or more, so even if the notches are provided, it is possible to ensure a required wiring spacing.

Thus, in this embodiment, when the first layer wirings extending in mutually opposite directions on the same grid are disposed on the 0th layer wirings dispose den adjacent grids, the two connections on the 0th layer wirings are displaced respectively in the extending directions of the overlying first layer wirings, and notches are formed in the 0th layer wirings which underlie the thus-displaced connections.

As a result, even if reservoirs are provided in the first layer wirings, it is possible to ensure a required spacing between the first layer wirings in X direction, and hence possible to improve the wiring mounting efficiency.

Besides, since it is possible to ensure a required spacing in X direction between the first layer wirings disposed on the same grid, it becomes possible to dispose

which are adjacent to each other in NY direction, whereby it is possible to improve the wiring freedom and hence improve the wiring density and mounting efficiency.

Moreover, the length of wiring for connection between elements can be shortened, and it is possible to attain the speed-up in driving the semiconductor device, reduce the power consumption of the semiconductor device and improve the reliability thereof.

Further, by the provision of reservoirs, it is possible to improve the EM resistance and ensure a margin for pattern matching between wirings and connections. Thus, it is possible to improve the reliability of semiconductor device.

Also in this embodiment, as in the first embodiment, the Cases 1 to 3 shown in Fig. 9 may be combined according to the degree of wiring density in each wiring layer.

Although an additional explanation will be given in paragraph (3-3) of a fourth embodiment of the present invention to be described later, it is preferable, for the optimization of wiring layout, that the reservoir length Lres be set larger than one half of the difference between distances PO and Pl and not larger than the difference, [(PO-Pl)/2<Lres≤(PO-Pl)].

The first layer wirings Mld and Mle are electrically

connected to the Oth layer wirings MOa and MOb respectively, through connections THOd and THOd, which connections, like the connections THOa and THOb, are also disposed in mutually opposite directions (away from each other) (Fig. 12).

(Fourth Embodiment)

In this embodiment, a description will be given of a

CAD tool for realizing the wiring layout described in the
third embodiment. The shape, etc. of wiring disposed using
the CAD tool according to this embodiment is the same as
the layout which has been explained with reference to Fig.

12, etc. in the third embodiment, and therefore the details
thereof will here be omitted.

(1) With reference to Fig. 17, the following description is provided about a model (M0 model) in which connections THO and first layer wirings M1 are disposed on 0th layer wirings M0.

It is assumed that 0th layer wirings M0a and M0b have been disposed optimally in a step which precedes the step using the CAD tool.

First layer wirings Mla and Mlb are disposed optimally on the 0th layer wirings M0a and M0b. Here the reservoir length is not taken into account.

Next, connections THOa and THOb are disposed at intersecting points of the Oth layer wirings MO and the

first layer wirings M1.

Then, reservoirs Ra and Rb are added to the first layer wirings M1 and a check is made to see if the spacing between the two in XX direction is a predetermined length (a minimum size allowed between wirings) or more.

If the spacing is below the predetermined length, both connections THOa and THOb which underlie the first layer wiring M1 are displaced a distance L2 respectively in extending directions of the first layer wirings M1 which overlie the connections. That is, adjacent connections are displaced a distance L2 in mutually opposite directions (away from each other).

Further, notches Na and Nb are added to the 0th layer wirings MO which underlie the thus-displaced connections.

Without going through these steps, the first layer wirings M1 and the connections THO may be disposed using a program which permits the connections THO underlying the first layer wirings M1, including reservoirs, to be offset in the extending directions of the first layer wirings M1 from intersecting points of Agrids.

(2) Next, with reference to Fig. 18, the following description is now provided about a model (M1 model) in which connections THO disposed offsetwise on the Oth layer wirings and terminals T (part of the first layer wirings M1) formed thereon are defined and the first layer wirings

are disposed with the terminals T as origins.

That is, the connections THOa and THOb at points of intersection with grid xl on the Oth layer wirings MOa and MOb, which are disposed optimally on grids yl and y2 are disposed in such a manner that their centers are offset leftwards and rightwards, respectively, from the intersecting points. Terminals Ta and Tb having reservoirs Ra and Rb are disposed on the connections THO in directions opposite to the offset directions of the connections THO.

Further, notches Na and Nb are formed in the Oth layer wirings MOa and MOb, which underlie the displaced terminals Ta and Tb.

On the basis of positional information of the terminals Ta and Tb) the first layer wirings M1 are disposed automatically so as to extend from the terminals T in directions opposite to the reservoirs R. In other words, the first layer wirings are disposed optimally with the terminals T as origins.

Also in this M1 model, like the M1 model described in the second embodiment, conditions for the layout of the first layer wirings M1 are diminished and it is possible to shorten the TAT of wiring design. Further, a conventional CAD system is employable.

(3) In the MO model according to this embodiment, as shown in Fig. 19, Oth layer wirings MO extending along grids y,

with notches formed on both sides of intersecting points with grids x, may be disposed virtually and connections THO and first layer wirings M1 may be disposed so as to overlie the Oth layer wirings. That is, the patterns shown in Fig. 19 are set as library (data base) in the CAD tool.

(3-1) Then, using for example the M0 model described above in (1), first layer wirings and THO are disposed.

More specifically, first the first layer wirings are disposed on the patterns of the virtual Oth layer wirings MO. Here the reservoir length is not taken into account.

Next, the connections THO are disposed at intersecting points of the Oth layer wirings MO and the first layer wirings M1.

Then, reservoirs are added to the first layer wirings M1 and a check is made to see if the distance between the first layer wirings M1 in X direction is a predetermined length (a minimum size allowed between wirings) or more.

If the distance is below the predetermined length, the two connections which underlie the first layer wirings M1 are displaced in directions away from each other.

Next, there are determined patterns of 0th layer wirings having notches at overlapped pattern portions of the connections and the virtual 0th layer wirings MO. In other words, out of the notches of the virtual 0th layer wirings MO, only those that underlie the connections are

determined to be normal (actual) notches.

(3-2) When disposing the first layer wirings M1 on the patterns of the 0th layer wirings virtually provided with notches, if extending directions of the first layer wirings M1 and positions of grids xy at which the connections THO are to be disposed, are determined beforehand, the connections THO will be disposed while being displaced onto the notches automatically.

in Fig. 12 which has been described the previous third embodiment, is to be adopted, and if the first layer wirings M1a and M1b are connected respectively to the connection TH0a disposed at an intersecting point of grids x1 and y1 and to the connection TH0b disposed at an intersecting point of grids x1 and y2 from the left-hand side of the connection TH0a and from the right-hand side of the connection TH0b, respectively, the connection TH0a is formed while being offset in the extending direction of the first layer wiring M1a and the connection TH0b is formed while being offset in the extending direction of the first layer wiring M1b.

Then, reservoirs Ra and Rb are added to the first layer wirings M1. In this case, since the connections THOa and THOb are formed offsetwise as described above, a required wiring spacing is ensured between the reservoirs

Ra and Rb.

Thus, if a rule (algorithm) for layout is established, then at the time of making layout with use of an automatic wiring tool, there is no wiring error and it is possible to ensure a required spacing between the first layer wirings disposed on the same grid.

layout using Case 2 shown in Fig. 9. If Case 3 is used, the width of displacement of the connections THO becomes larger, so that the length of the notches N formed on both sides of each Oth layer wiring MO also becomes larger, with consequent occurrence of a wiring error in the Oth layer wirings MO. That is, if Case 3 is used, it is impossible to provide virtual notches N on both sides of each Oth layer wiring MO, and therefore the wiring freedom is lost. On the other hand, in Case 2, even if virtual notches N are formed on both sides of each Oth layer wiring MO, there is no fear of occurrence of a wiring error, so that it is possible to enhance the freedom in wiring layout.

Thus, by virtually disposing the 0th layer wirings having notches at all the intersecting points of grids, it is possible to use an automatic wiring tool which satisfies the general condition of "disposing connections THO on the 0th layer wirings MO."

That is, in an existing automatic wiring tool, there

are not a few cases where if it is impossible to dispose connections on underlying wiring patterns, an error results.

However, if such a library as described above is provided, even if connections are displaced to any grid intersecting points, there is no fear that an error may occur, and hence it becomes possible to select a suitable automatic wiring tool in a wider range.

of course, the patterns shown in Fig. 19 may be used as the patterns of the Oth layer wirings MO irrespective of whether connections THO are formed thereon. In this connection, Fig. 20 is a plan view showing planar patterns of the Oth layer wirings MOa, MOb, the first layer wirings M1a to M1e, and the connections THOa, EHOb between there there there wirings of principal portions taken on line F-F' in Fig. 20.

In this case, however, the patterns of the 0th layer wirings MO become complicated and it becomes difficult to resolve a resist film in the formation of wiring patterns. Besides, wiring area becomes larger, with a consequent increase of wiring capacitance.

Therefore, it is preferable that the notches of the Oth layer wirings be provided only under the connections THO.

base) there may be used the wiring method described in the

second embodiment.

(Fifth Embodiment)

wiring method described in the first or the second embodiment is applied to a specularly disposed two-input NAND cell (hereinafter referred to as "2NAND cell").

(1) First, reference will be made to a circuit diagram of a 2NAND cell. Pig. 22 is a circuit diagram of a 2NAND cell. As shown in the same figure, an input terminal al is connected to gate electrodes of a p-channel MISFET Qp1 and

an n-channel MISFET Qn1, while an input terminal a2 is

an n-channel MISFET Qn2. Between an output terminal zn and a supply voltage (Vdd) are connected the p-channel MISFETs Qp1 and Qp2 in parallel, while the n-channel MISFETs Qn2 and Qn1 are successively connected in series between an output terminal zn and an earth voltage (reference voltage Vss).

(2) Next, a description will be given below of the structure of the specularly disposed 2NAND cell, as well as a method for fabricating the same.

Figs. 23 to 27 are plan views each showing a pattern layout of various layers which constitute the 2NAND cell and Fig. 28 is a sectional view taken on line G-G' of the plan views. As shown in Fig. 27, the 2NAND cell is formed

with respect to a line which defines the cell areas and which extend in AY direction.

As shown in Figs. 23 and 28, for example, a silicon oxide film as an insulating film is buried into a trench formed in a semiconductor substrate 1 to form isolation 3. Then, n and p type impurities are implanted and diffused into the semiconductor substrate 1 to form an n type well 5 and a p type well. An exposed area of the n type well 5 and that of the p type well are assumed to be active AcN and AcP, respectively.

Next, for example an impurity-doped polycrystalline silicon film as a conductive film is deposited on the semiconductor substrate 1, followed by patterning, to form gate electrodes FG. Of the gate electrodes FG, FG1 and FG2 extend in Y direction on active AcN, and FG3 and FG4 extend in Y direction on active AcP. FG1 is a gate electrode of Qp1, FG2 is a gate electrode of Qp2, FG3 is a gate electrode of Qp1, and FG4 is a gate electrode of Qp2. FG1 and FG3 are interconnected through a wiring portion formed by the aforesaid polycrystalline silicon film and FG2 and FG4 are also connected in the same manner.

Next, an n type impurity is implanted into the semiconductor substrate (p type well) on both sides of each gate electrode FG to form n type semiconductor regions.

Likewise, a p type impurity is implanted into the semiconductor substrate 1 (n type well) on both sides of each gate electrode to form p type semiconductor regions 11.

Then, a silicon nitride film as an insulating film is deposited onto each gate electrode FG, followed by anisotropic etching, to form side wall films SW on side walls of each gate electrode FG.

Next, with the gate electrode and the side wall films as mask, an n type impurity is implanted into the semiconductor substrate 1 (p type well) on both sides of the gate electrode to form an n⁺ type semiconductor region serving as a source-drain region of n-channel type MISFET. Likewise, a p type impurity is implanted into the semiconductor substrate (n type well) on both sides of the gate electrode to form a p⁺ type semiconductor region 15 serving as a source-drain region of p-channel type MISFET.

Then, for example a cobalt film as a refractory metal film is deposited on the semiconductor substrate 1 and is heat-treated for reaction with the silicon which constitutes the semiconductor substrate, to form a cobalt silicide film 17 at contact portions of the cobalt film with the semiconductor substrate 1 and the gate electrodes FG.

Next, unreacted cobalt film is removed, and, for example,

a silicon oxide film 19 has an insulating film is deposited on the semiconductor substrate 1.

Then, as shown in Figs. 24 and 28, the silicon oxide film 19 is removed selectively to form contact holes 21 on the source-drain regions of MISFETs or on the gate electrodes.

Next, for example, a TiN (titanium nitride) film as a barrier film is deposited thin on the silicon oxide film 19, including the interiors of the contact holes 21, and a W (tungsten) film as a conductive film is deposited thereon to such an extent as fill up the contact holes 21.

Then, the TiN film and the W film present outside the contact holes 21 are removed by a CMP (Chemical Mechanical Polishing) method) for example) to form connections (plugs) LCNT.

Next, as shown in Figs. 25 and 28, for example, a silicon nitride film is deposited on the silicon oxide film 19 and a silicon oxide film is further deposited thereon to form an insulating film 23 for wiring trenches constituted by the thus-deposited laminate film. The silicon nitride film serves as an etching stopper at the time of forming wiring trenches.

Then, the insulating film 23 is removed selectively to form wiring trenches 25. Subsequently, a single layer film, such as TiN film, Ta film, or TaN film, as a barrier film,

or a laminate film of those films, is deposited on the insulating film 23, including the interiors of the wiring trenches 25, and further a W or copper (Cu) film as a conductive film is deposited thereon to such an extent as fill up the wiring trenches 25.

Next, the barrier film and the conductive film present outside the wiring trenches 25 are removed by CMP, for example to form 0th layer wirings MO.

The 0th layer wirings M0 are formed in Y direction along grids y, provided they include portion extending in X direction. Further, gate electrodes FG are positioned between the 0th layer wirings M0. Grids are represented by broken lines in plan. It is assumed that grids located in X direction are grids x and those located in Y direction are grids y.

Then, an insulating film 27 constituted, for example, by a laminate film of a silicon nitride film and a silicon oxide film is deposited on the insulating film 23.

Next, as shown in Figs. 26 and 28, the insulating film

27 is removed selectively to form contact holes CO.

Subsequently, for example, a TiN film as a barrier film is deposited thin on the insulating film 27, including the interiors of the contact holes CO, and further a W film as a conductive film is deposited thereon to such an extent as fill up the contact holes CO. Thereafter, like the

connections LCNT, connections THO are formed by burying a TiN film and a W film into the contact holes CO.

Then, as shown in Figs. 27 and 28, an insulating film 29 constituted, for example, by a laminate film of a silicon nitride film and a silicon oxide film is deposited on the insulating film 27 and wiring trenches 31 are formed like the wiring trenches 25.

Next, for example, a TiN film as a barrier film is deposited thin on the insulating film 29, including the interiors of the wiring trenches 31, and a Cu (copper) film as a conductive film is formed thereon to such an extent as fill up the wiring trenches 31 by, for example, a plating method or a sputtering method. Subsequently, the TiN film and Cu film present outside the wiring trenches 31 are removed by CMP, for example, to form first layer wirings M1.

As shown in Fig. 27, the first layer wirings M1 are formed on grids x in X direction.

Of the first layer wirings M1, M1a corresponds to the input terminal a1, M1b corresponds to the input terminal a2, M1c corresponds to the output terminal zn, M1d is supplied with the supply voltage (Vdd), and M1e is supplied with the earth voltage (Vss). Of the Oth layer wirings M0, M0h is connected to a power supply portion of the n type well (AcN), while M0g is connected to a power supply portion of the p type well (AcP).

The first layer wiring M1a in the cell area CA2 extends rightwards, i.e., in a direction away from a cell boundary region, from above the connection TH0a on the 0th layer wiring M0a, while the first layer wiring M1a in the cell area CA1 extends leftwards from above the connection TH0a on the 0th layer wiring M0a. Both wirings are disposed so as to be positioned on the same grid.

More specifically, the connection THO which underlies the first layer wiring Mla in the cell area CA2 is displaced rightwards (rightward displacement) from the center of the Oth layer wiring MOa, i.e., in a direction away from the cell boundary region, while the connection THOa which underlies the first layer wiring Mla in the cell area CA1 is displaced leftwards (leftward displacement) from the center of the Oth layer wiring MOa. The other connections THO are disposed centrally of the Oth layer wirings MO.

By thus setting the layout of the cell area CA2, the specularly disposed cell area CA1 assumes a layout corresponding to a folded-back layout of the cell area CA2 with respect to the cell boundary region. The connection THOa in the cell area CA1 is offset from the center of the Oth layer wiring MOa in a direction away from the cell boundary region and therefore the connection THOa in the cell area CA2 is also offset from the center of the Oth

layer wiring M0a in a direction away from the cell boundary region.

With such a layout, it is possible to ensure a $\underbrace{\hspace{1cm}}_{\text{top}}$ required wiring spacing in X direction.

Thereafter, as shown in Fig. 28, insulating films 33 and 35 are deposited to form second layer wirings M2 in wiring trenches 37.

realized, for example, by the automatic wiring layout of M1 model described in the second embodiment, etc.

That is, the connection THOa in the cell area CA2 is offset rightwards beforehand, while the connection THOa in the cell area CA1 is beforehand offset leftwards, and on these connections are provided terminals Ta with reservoirs R set in directions opposite to the offset directions of the connections. The cell area CA1 is disposed specularly, then with this as an origin, the first layer wirings M1 are disposed optimally (see Fig. 27).

In the case where, using the MO model, the connections

THOa which underlie the first layer wirings M1 are disposed

In adjacency to each other on the same grid x at cell ends,

it is possible to dispose them so as to be offset in

mutually opposite directions (away from each other),

thereby ensuring reservoir regions R.

(Sixth Embodiment)

The following description is new provided example in which the wiring method described in the first to the fourth embodiments is applied to a four-input NAND cell (hereinafter referred to as "4NAND cell"). (1) A description in directed first to a sircuit diagram of a 4NAND cell. Fig. 29 is a circuit diagram of a 4NAND cell. As shown in the same figure, an input terminal al is connected to gate electrodes of a p-channel MISFET Qp1 and that of an n-channel MISFET Qn1. Likewise, input terminals a2 to a4 are connected respectively to gate electrodes of p-channel MIISFETs Qp2 to Qp4 and also to gate electrodes of n-channel MISFETs Qn2 to Qn4. Between an output terminal zn and a supply voltage (Vdd), ara connected pchannel MISFETs Qp1 to Qp4 in parallel, while n-channel MISFETs Qn1 to Qn4 are successively connected in series between the output terminal zn and an earth voltage (Vss). (2) Wirings, etc. which constitute the 4NAND cell can be formed in the same way as in the fifth embodiment, although their patterns are different, so a detailed description

Figs. 30 to 35 are plan views showing pattern layouts of various layers which constitute the 4NAND cell.

will here be given about patterns of various layers.

As shown in Fig. 30, the gate electrodes FG1 to FG4 extend in Y direction on active AcN, while gate electrodes FG5 to FG8 extend in Y direction on active AcP.

The gate electrodes FG1 and FG5, FG2 and FG6, FG3 and FG7, and FG4 and FG8, are respectively connected together by wiring portions formed by the same layer of polycrystalline silicon film as the gate electrodes.

Further, connections LCNT are disposed at desired positions on both sides of the gate electrodes FG (Fig. 31).

As shown in Fig. 32, between the gate electrodes FG,

Oth layer wirings MO extend in Y direction along grids y,

provided there are portions extending in X direction.

Connections THO are disposed on the Oth layer wirings MO (Fig. 33) and first layer wirigs MI are disposed on the connections THO in X direction along grids x (Fig. 34).

The first layer wiring Mla corresponds to the input terminal al and Mlb corresponds to the input terminal a2. Likewise, Mlc and Mld correspond to the input terminals a3 and a4, respectively. Further, Mle corresponds to the output terminal zn. A first layer wiring Mlk is supplied with the supply voltage (Vdd) and Mlj is supplied with the earth voltage (Vss). Of the Oth layer wirings, MOk is connected to a power supply portion of n type well and MOj is connected to a power supply portion of p type well.

The first layer wiring Mla extends leftwards from above a connection THOa on a Oth layer wiring MO, while the first layer wiring Mlb extends rightwards from above a connection THOb on a Oth layer wiring MO. These wirings

are positioned on the same grid x.

Therefore, the connection THOa which underlies the first layer wiring M1a is displaced leftwards (leftward displacement) from the center of the associated Oth layer wiring M0, while the connection THOb which underlies the first layer wiring M1b is displaced rightwards (rightward displacement) from the center of the associated Oth layer wiring M0.

The first layer wiring M1c extends leftwards from above a connection THOc on a Oth layer wiring, the first layer wiring M1d is disposed short on a connection THOd on a Oth layer wiring M0, and the first layer wiring M1e extends rightwards from above a connection THOe on a Oth layer wiring M0. These wirings are positioned on the same grid x.

Therefore, the connection THOc which underlies the first layer wiring M1c is displaced leftwards (leftward displacement) from the center of the associated Oth layer wiring M0, while the connection THOe which underlies the first layer wiring M1e is displaced rightwards (rightward displacement) from the center of the associated Oth layer wiring M0. The connection THOd which underlies the first layer wiring M1d is disposed at the center of the associated Oth layer wiring M1d is disposed at the center of the associated Oth layer wiring M0 (central layout). The other connections THO are also positioned centrally of Oth layer

wirings.

With such a layout, it is possible to ensure a required wiring spacing in X direction even if reservoirs are provided in the first layer wirings Mla, Mlb.

Accordingly, it is possible to improve the mounting efficiency of those wirings and dispose another M1 layer wiring (another net) on another grid x.

In Fig. 35 there is shown an example of layout of connections TH1 on first layer wirings M1 and second layer wirings M2 thereon.

(Seventh Embodiment)

renth Embodiment)

Although in the previous fifth and sixth embodiments reference has been made to NAND cells as examples, the present invention may also be applied to a wiring section of a basic cell used as a standard cell, e.g., inverter or AND circuit.

As examples of basic cells there are mentioned, in addition to those described above, 3-input NAND, 2-input NOR, 3-input NOR, 4-input NOR, tri-state inverter, 2-1 selector, exclusive NOR, exclusive OR, 2-1AND-OR-inverter, 2-2AND-OR-inverter, 3-1AND-OR-inverter, 3-2AND-OR-inverter, 2-2-1AND-OR-inverter, 2-1OR-AND-inverter, 2-2OR-ANDinverter, 3-10R-AND-inverter, 2-1-10R-AND-inverter, 2-2-20R-AND-inverter, D-latch, and edge-trigger FF.

The present invention is applicable not only to wiring

in a specular layout of any of these basic cells but also to wiring among various types of basic cells.

Particularly, as described in the fifth embodiment with reference to a 2NAND cell as an example, in many cases, gate electrodes FG of plural MISFETs which constitute a basic cell are arranged side by side in a predetermined certain direction and 0th layer wirings MO are formed between them.

method wherein input terminals (a1, a2, ..., an) or an output terminal (zn) is provided on 0th layer wirings M0 in the outer peripheral portion of the cell. Therefore, in the case where plural basic cells (BC1 to BC6) are disposed as in Fig. 36, it is very likely that reservoirs R of first layer wirings will be disposed close to each other at a boundary portion in the extending directions of the first layer wirings M1 of each cell.

In such an area, therefore, by using such a wiring layout as described in any of the first to the fourth embodiment, it becomes possible to make layout of another wiring (another net) and hence it is possible to improve the wiring mounting efficiency.

Fig. 37 is an example of wiring layout in which the present inventors have wired between plural basic cells. For example, area (a) is an area to which the present

invention is applied (both-offset layout), while area (b) is an area in which connections are not offset.

Thus, it goes without saying that connections need not be offset in an area where there is a margin between connections (wirings) and where a required wiring spacing can be ensured even if reservoirs are provided.

Further, the present invention is applicable to both intra-cell wiring and inter-cell wiring.

Thus, according to this embodiment, it is possible to attain microstructurization (reduction of chip size) and high integration of the semiconductor device. Besides, it is possible to shorten the length of wiring for cell-to-cell connection and attain a high-seed drive of the semiconductor device. Moreover, since the wiring length is shortened, it is possible to diminish the wiring resistance and reduce the power consumption of the semiconductor device. Further, with the reservoirs, it is possible to improve EM resistance and ensure a margin for pattern matching between wirings and connections.

Although the present invention has been described various by way of membodiments thereof, it goes without saying that various changes may be made within the scope not departing from the gist of the invention.

Particularly, although in the fifth and sixth embodiments reference has been made to copper damascene

wiring as an example, there may be used another conductive may be formed by patterning a conductive film.

However, since copper atoms are apt to migrate and cause EM phenomenon, there is a great need for the provision of reservoirs. Therefore, the present invention is effectively applicable to copper wiring.

Although in the above embodiments reference has been made to relatively lower layer wirings such as 0th layer and first layer wirings, the present invention is also applicable to upper layer wirings such as fourth and fifth layer wirings, and is widely applicable to wirings wherein lower layer wirings are laid at intervals of a minimum machining size or more.

Further, this invention is widely applicable to wirings formed on another semiconductor device other than the wirings on the MISFET.

The following is a brief description of typical effects disclosed in the embodiments of the present invention.

The center of a connection between a first wiring and a second wiring (M1) extending in a first direction [X direction] orthogonal to the first wiring is offset from the center of the first wiring, whereby it is possible to ensure a surplus portion [reservoir] in a direction

opposite to the offset direction. Moreover, since a projecting portion [notch] is formed in the first wiring portion located under the connection, it is possible to ensure a required spacing in the aforesaid first direction and hence possible to improve the wiring density.

Further, it is possible to ensure a required spacing in the first direction of first wirings disposed on the same grid, so in a second direction [Y direction] orthogonal to the first direction of the second wiring it is possible to dispose another wiring such as a third wiring [M1] on a grid adjacent thereto. Consequently, it is possible to improve the wiring freedom and wiring density.

The following is a brief description of effects attained by typical modes of the invention disclosed herein.

It is possible to improve the wiring mounting efficiency and improve the connection accuracy between wirings. It is also possible to attain microstructurization and high density of the semiconductor device. Further, it is possible to attain high performance of the semiconductor device.