Математическая статистика

Матвеев Сергей М3338

5 семестр

1 Введение

Пусть у нас есть генеральная совокупность, но мы хотим ее как-то изучать, тогда мы можем взять ее часть - выборку.

Мы хотим по выборке сделать содержательные вероятностные выводы о генеральной совокупности.

Примеры задач, которые могут быть решены таким способом:

- 1. Бросок монеты (оценить вероятность орла, честно нечестно)
- 2. Замеры показателя: какие типичные значения для показателя
- 3. Как учатся мальчики и девочки (одинаково или по разному)
- 4. Цена на недвижимость, расстояние до метро (оценка зависимости)

Репрезентативность: на основе выборки можно сделать выводы о генеративной совокупности.

2 Простейшая модель выборки. Эмпирическая функция распределения.

Простейшая модель выборки - X_1, X_2, \dots, X_n - i.d.d., F - функция распределения (теоретическая функция).

 $X_1,\ldots,X_n \sim F$ (F мы не знаем априори)

 x_1,\ldots,x_n - реализация выборки

Цель: оценить из реализации x_1, \ldots, x_n теор F.

Эмпирическая фукнция распределения:

$$\mu_n(t) = \sum_{i=1}^n \mathbb{1}(X_i \le t)$$

$$F_n(t) = \frac{\mu_n(t)}{n}$$
 - эмпирическая функция распределения.

Замечение: Описывает эмпирическое распределениею.

$$x_1, \dots, x_n; P(U = x_i = \frac{\#\{X_j : X_j = x_i\}}{n} = F_n(x_i + 0) - F_n(x_i)$$

$$\mathbb{1}(\mathbb{X}_{\hat{\mathbf{i}}} \leq \mathbb{t}) \sim Bern(F(t))$$

 $\mathbb{E}(F_n(t)) = F(t)$ (это называется несмещенность)

$$Var(F_n(t)) = \frac{F(t)(1 - F(t))}{n}$$

ЗБЧ: $F_n(t) \xrightarrow{P} F(t)$ - это называется состоятельность

ЗБЧ:
$$F_n(t) \to F(t)$$
 - это называется состоятельность
ЦПТ: $\frac{\mu_n(t) - nF(t)}{\sqrt{F(t)(1 - F(t))}n} \stackrel{d}{\to} U \sim N(0, 1) =$

$$= \sqrt{n} \frac{F_n(t) - F(t)}{\sqrt{F(t)(1 - F(t))}} \text{ (ассимптотическая нормальность)}$$
Теорема Гливенко-Кантелли
$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \stackrel{a.s.}{\xrightarrow{n \to \infty}} 0$$

$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \xrightarrow[n \to \infty]{a.s.} 0$$

Теорема Колмогорова

$$D_n = \sup_{x} |F_n(x) - F(x)| \Rightarrow P(\sqrt{n}D_n \le t) \xrightarrow[n \to \infty]{} K(t) = \sum_{j = -\infty}^{+\infty} (-1)^j e^{-2j^2 t^2}$$

$$F \in C(\mathbb{R})$$

Такая функция называется функцией Колмогорова

Теорема Смирнова

 $X_1,\dots,X_n,\,Y_1,\dots,Y_n$ - независимы Обе распределены по $F\in C(\mathbb{R})$

$$D_{n,m} = \sup_{x} |F_n(x) - F_m(x)| \Rightarrow P(\sqrt{\frac{mn}{m+n}} D_{n,m} \le t) \xrightarrow[n \to \infty, m \to \infty]{} K(t)$$

Стоит отметить, что обе теоремы имеют смысл при t > 0

Выборочные моменты

 $lpha_k = EX_1^k$ - к-ый теоретический момент. $eta_k = E(X_1 - EX_1)^k$ - к-ый центральный момент.

$$\overline{g(X)} = \frac{1}{n} \sum_{k=1}^{n} g(X_k), g : \mathbb{R} \to \mathbb{R}$$

$$\widehat{lpha_k} = \overline{X^k} = \frac{1}{n} \sum_{j=1}^n X_j^k$$
 - к-ый выборочный момент.

 $E\widehat{\alpha_k}=\alpha_k$ (несмещенность, мы просто воспользовались линейностью математического ожидания)

матического ожидания)
$$\operatorname{Var}\widehat{\alpha_k} = \frac{1}{n}\operatorname{Var}(X_1^k) = \frac{1}{n}(EX_1^{2k} - (EX_1^k)^2)$$
 По ЦПТ получаем:

$$\sqrt{n} \frac{\widehat{\alpha_k} - \alpha_k}{\alpha_{2k} - \alpha_k^2} \approx N(0, 1)$$

$$\sqrt{n}\frac{\widehat{\alpha_k}-\alpha_k}{\widehat{\alpha_{2k}}-\widehat{\alpha_k}^2}=\sqrt{n}\frac{\widehat{\alpha_k}-\alpha_k}{\alpha_{2k}-\alpha_k^2}\cdot\frac{\alpha_{2k}-\alpha_k^2}{\widehat{\alpha_{2k}}-\widehat{\alpha_k}}$$
 - первый множитель по ЦПТ схо-

Давайте посмотрим что будет со вторым множителем. Он будет сходиться к 1 по вероятности.

Таким обрбазом:

$$\sqrt{n}\frac{\widehat{\alpha_k}-\alpha_k}{\alpha_{2k}-\alpha_k^2}\cdot\frac{\alpha_{2k}-\alpha_k^2}{\widehat{\alpha_{2k}}-\widehat{\alpha_k}}\xrightarrow{d}N(0,1)$$
 А почему вторая дробь сходится к единице?

 $\widehat{\alpha_k} \xrightarrow{P} \alpha_k$ (по ЗБЦ, это называется состоятельность)

$$\widehat{\alpha_{2k}} - \widehat{\alpha_k}^2 \xrightarrow{P} \alpha_{2k} - \alpha_k^2$$
 — выборочное среднее.

$$\widehat{eta_k}=\overline{(X-\overline{X})^k}=rac{1}{n}\sum_{j=1}^n(X_j-\overline{X})^k$$
 - к-ый выборочный момент.

 $\widehat{eta_2}=S_*^2$ - выборочная дисперсия. S_* - выборочное стандартное отклонение (выборочное среднеквадратичное отклонение).

Note: выборочные моменты есть ничто иное как моменты посчитанные относительно эмпирического распределения.

$$S_* = \overline{X^2} - (\overline{X}^2)$$

$$\widehat{\beta_k} = Poly(\widehat{\alpha_k}, \dots, \widehat{\alpha_1})$$

 $\widehat{\beta_k} = Poly(\widehat{\alpha_k}, \dots, \widehat{\alpha_1})$ $\widehat{\alpha_1}, \dots, \widehat{\alpha_k}$ - состоятельные оценки (имеет место сходимость по вероятности)

Так как полином это непрерывная функция, то $\widehat{\beta_k} \xrightarrow{P} \beta_k$

TODO

Небольшое отступление

Пусть ξ_n - последовательность случайных векторов.

$$\sqrt{n}(\xi_n - \mu) \xrightarrow{P} N(0, \Sigma)$$

 $\xi_n \xrightarrow{P} \mu$??? Давайте убедимся в этом

$$(\xi_n - \mu)\sqrt{n} \cdot \frac{1}{\sqrt{n}} \xrightarrow{d} 0$$
 (Первое сходится к нормальному многомерному закону,

а второе к нулю)

Мы знаем, что для вырожденных величин сходимость по распределению и вероятности равносильны.

Тогда мы можем написать $(\xi_n - \mu)\sqrt{n} \cdot \frac{1}{\sqrt{n}} \xrightarrow{P} 0$

$$\sqrt{n}(\varphi(\xi_n) - \varphi(\mu)) \to ??$$

 $\varphi \in C^1(\mathbb{R}^m), \ \varphi : \mathbb{R}^m \to \mathbb{R}$

По Тейлору:

По Темлору.
$$\varphi(\xi_n) \approx \varphi(\mu) + \nabla \varphi(\widetilde{\mu})(\xi_n - \mu) \text{ (Остаток в форме Лагранжа)}$$

$$\nabla \varphi(\widetilde{\mu}) \xrightarrow[n \to \infty]{} \nabla \varphi(\mu)$$

$$\varphi(\xi_n) - \varphi(\mu) \approx \nabla \varphi(\mu)(\xi_n - \mu)$$

$$\nabla \varphi(\widetilde{\mu}) \xrightarrow{\gamma} \nabla \varphi(\mu)$$

$$\varphi(\xi_n) - \varphi(\mu) \approx \nabla \varphi(\mu)(\xi_n - \mu)$$

$$\operatorname{Var}(\dots) \approx \operatorname{Var}(\nabla \varphi(\mu)(\xi_n - \mu)) = \operatorname{Var}(\nabla \varphi(\mu)\xi_n) = \nabla \varphi \operatorname{Var}(\xi_n(\nabla \xi_n)^T)$$

Вернемся к следующему равентву:

$$\varphi(\underline{\xi}_n) - \varphi(\mu) \approx \nabla \varphi(\mu)(\underline{\xi}_n - \mu)$$

$$\sqrt{n}(\varphi(\xi_n) - \varphi(\mu)) \approx \sqrt{n}\nabla\varphi(\mu)(\xi_n - \mu)$$

 $\sqrt{n}(\xi_n - \mu) \to N(0, \Sigma)$ (Как мы и говорили выше)

А мы домножаем вектор на градиент, поэтому:

$$\sqrt{n}\nabla\varphi(\mu)(\xi_n-\mu)\to N(0,\nabla\varphi(\mu)\Sigma(\nabla\varphi(\mu))^T)$$

Это называется дельта метод.

Теорема

Пусть
$$\xi_n = (\overline{X}, \dots, \overline{X^k})$$

Многомерная версия ЦПТ

$$\sqrt{n}(\xi_n - \alpha) \xrightarrow{d} N(0, \Sigma)$$

$$\alpha = (\alpha_1, \ldots, \alpha_k)$$

$$\alpha = (\alpha_1, \dots, \alpha_k)$$

$$\Sigma = \text{Var}(X_1, \dots, X_1^k)$$

$$\varphi: \mathbb{R}^k \to \mathbb{R}$$

$$\varphi \in C^1(\mathbb{R}^k)$$

$$\varphi \in C^{1}(\mathbb{R}^{k})$$

$$\sigma^{2} = \nabla \varphi(\alpha)(\nabla \varphi(\alpha))^{T} > 0$$

Тогда (продолжение теоремы):

$$\sqrt{n}\frac{\varphi(\xi_n)-\varphi(\alpha)}{\sigma}\xrightarrow{d}N(0,1)$$
 Кроме того:

$$\sigma = \sigma(\alpha) \in C^1(\mathbb{R}^k) \Rightarrow \sqrt{n} \frac{\varphi(\xi_n) - \varphi(\alpha)}{\sigma(\xi_n)} \xrightarrow{d} N(0, 1)$$

Коэффициент аассиметрии:
$$\frac{E(X-EX)^3}{\sigma^3}=\gamma$$

$$\frac{\widehat{\beta_3}}{S^3} = \widehat{\gamma}$$

Коэффициент эксцесса:
$$\frac{E(X-EX)^4}{\sigma^4}-3$$

$$\frac{\widehat{\beta_4}}{S_*^4} - 3$$

Пусть у нас есть две выборки:

$$X_1, \ldots, X_n$$

$$Y_1, \ldots, Y_n$$

$$Cov(X, Y) = EXY - EX \cdot EY = E(X - EX)(Y - EY)$$

$$Cov(X,Y) = EXY - EX \cdot EY = E(X - EX)(Y - EY)$$

$$S_{*XY} = \frac{1}{n} \sum_{j} (X_j - \overline{X})(Y_j - \overline{Y}) = \frac{1}{n} \sum_{j} X_j Y_j - \overline{XY}$$

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{VarX \cdot VarY}}$$

$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sqrt{VarX\cdot VarY}}$$

$$\rho = \frac{S_{*XY}}{S_{*X}\cdot S_{*Y}}$$
 - Выборочный коэффициент корреляции (коэффициент корреляции Пирсона)

5 Порядковые статистики

Определение. Вариационный ряд

 $X_{(1)} \leq X_{(3)} \leq \cdots \leq X_{(n)}$ - вариационный ряд

Определение. Порядковая статистика

 $X_{(k)}$ - к-я порядковая статистика.

Квантиль порядка α

$$P(X \ge q_{\alpha}) \ge 1 - \alpha$$

$$P(X \le \alpha) \ge \alpha$$

Это общее определение

Если F строго возрастает:

$$F(q_{\alpha}) = \alpha \Leftrightarrow q_{\alpha} = F^{-1}(\alpha)$$

$$F^{-1}(\alpha) : \sup\{x : F(x) \le \alpha\}, \inf\{x : F(x) \ge \alpha\}$$

Определение. Выборочный квантиль порядка α

 $\alpha \in (0,1)$

$$\exists 0 \leq k \leq n-1: \frac{k}{n} \leq \alpha < \frac{k+1}{n}$$
 $X_{(k+1)}$ - выборочный квантиль порядка α $\alpha=0 \, \min(X)$ - нулевой квартиль

$$F^{-1} = \sum \{x \in \mathbb{R}F_n(x) \le \alpha\}$$

$$\alpha = \frac{1}{4}$$
 - первый вартиль (нижний квартиль)

$$\alpha = \frac{1}{2}$$
 - второй квартиль (выборочная медиана)

$$\alpha = \frac{\overline{3}}{4}$$
 - третий квартиль (верхний квартиль)

$$lpha=1$$
 - $\max(X)$ (четвертый квартиль)
$$n=2m\Rightarrow=med(X)=\frac{X_(m)+X_(m+1)}{2}$$
 $n=2m+1\Rightarrow med(X)=X_(m+1)$

$$n = 2m + 1 \Rightarrow med(X) = X_{\ell}m + 1$$

 $IQR = \Delta$ между верхним и нижним квартилем.

$$P(X_{(k)} \le t) = P(\mu_n(t) \ge k) = \sum_{j=k}^n C_n^j F^j(t) (1 - F(t))^{n-j}$$

$$B(z,a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^z t^{a-1} (1-t)^{b-1} dt = B(F(t),k,n-k+1)$$

$$0 < z < 1$$

Пусть p() - теоретическая плотность, то есть p=F'

$$(P(X_(k) \le t))_t' = \frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} \cdot F^{k-1}(t)(1-F(t))^{n-k} \cdot p(t)$$
 - плотность

к-й порядковой статистики

Рассуждая аналогично можно получить плотность для двухмерного случая:

$$g(x_1,x_2)=rac{n!}{(k-1)!(r-k-1)!(n-k)!}\cdot F^{k-1}(x_1)(F(x_2)-F(x_1))^{r-k-1}(1-F(x_2))^{n=r}p(x_1)p(x_2)$$
 - плотность для $(X_{(k)},X_{(r)}),\ l< r$

$$g(x_1,\ldots,x_n)=n!p(x_1)\cdot\cdots\cdot p(x_n)$$
 - плотность для $(X_{(1)},\ldots,X_{(n)})$

Средний член вариационного ряда: $\frac{K(n)}{n} \to const \in (0,1)$

Крайний член вариационного ряда:

$$X_{(r)}, r$$
 - orp.

$$X_{(n+1-s)}, s$$
 - огр.

Теорема об ассимптотике среднего члена вариационного ряда

 $0<\alpha<1$ - теоретическая плотность.

 q_{α} - теоретический квантиль порядка α

$$p \in C^1$$
 (окр-сть q_α)

$$p(q_{\alpha}) > 0$$

Тогда:

$$\sqrt{n} \cdot f(q_{\alpha}) \frac{X_{(\lfloor n\alpha \rfloor)} - q_{\alpha}}{\sqrt{\alpha(1-\alpha)}} \xrightarrow{d} N(0,1)$$

Пусть $|n\alpha| = k$

Мы умеем писать плотность для $X_{(k)}$

Затем у нас идет преобразование:

$$g(x) = \sqrt{n}p(q_{\alpha}) \frac{x - q_{\alpha}}{\sqrt{\alpha(1 - \alpha)}} \leadsto p_{g(X_{(k)})}(t) = p_{X_{(k)}}(g^{-1}(t))|g^{-1}(t)'_t|$$
 (теорема из

Там вылезут факториалы, от них мы умеем избавляться по Стирлингу Затем надо будет воспользоваться непрерывной дифференцируемостью:

$$p \in C^1$$
 (окр-сть q_α)

$$p(q_{\alpha}) > 0$$

Тогда в пределе наша новая плотность будет стремиться к плотности нормального стандартного закона.

Пример. Распределение Коши.

$$Couchy(\mu, 1) \ \alpha = \frac{1}{2}$$

$$2f(\mu)\sqrt{n}(X_{(\lfloor \frac{n}{2} \rfloor)}) = \frac{1}{\pi} \cdot \frac{1}{1 + (\mu - \mu)^2} \cdot 2\sqrt{n}(X_{(\lfloor \frac{n}{2} \rfloor)} - \mu)$$

Теорема об ассимптотике крайних членов вариационного ряда

$$r, s, F, x, p()$$
 - плотность

Тогда:

$$nF(X_{(r)}) \xrightarrow{d} \Gamma(r,1)$$

$$nF(X_{(n+1-s)}) \xrightarrow{d} \Gamma(s,1)$$

И оба распределения независимы.

Идея доказательства

У нас есть совместная плотность и какое-то преобразование, тогда мы можем написать плотность после преобразования

Затем берем предел и мы получим плотность равная произведению двух этих двух законов.

6 Постановка задачи точечного оценивания параметров

 $X_1, \ldots, X_n \sim F_\theta \in \Theta \subset \mathbb{R}^d$

 θ - некий фиксированный неизвестный вектор.

Наша цель оценит θ в виде $\widehat{\theta} = \widehat{\theta}(X_1, \dots, X_n)$

Замечание:

- 1. $\widehat{\theta}(X_1,\ldots,X_n)$ статистика (измеримая функция от выборки)
- 2. Байесовская постановка: θ случайная величина из известного апреорного распределения

Определение. Состоятельность

 $\widehat{\theta}$ - состоятельная оценка $\theta \Leftrightarrow \widehat{\theta} \xrightarrow{P} \theta$

Определение. Несмещенность

 $b.as(\widehat{\theta}) \stackrel{def}{=} E\widehat{\theta} - \theta$ - смещение

 $b.as(\widehat{\theta}) = 0 \Leftrightarrow$ несмещенная

Определение. Ассимптотическая нормальность

$$\sqrt{n}(\widehat{\theta} - \theta) \to N(0, \Sigma_{\theta})$$

Пример

1.
$$X_1, \dots, X_n \sim Bern(p)$$

$$\widehat{\theta} = \overline{X}$$
3BY $\overline{X} \to p$

$$E\widehat{\theta} = E\overline{X} = p \text{ (Hecm)}$$

$$\text{ЦПТ } \sqrt{n} \frac{\overline{X} - p}{\sqrt{p(1-p)}} \to N(0,1)$$

2.
$$N(\mu, \sigma^2), \mu$$
 - известна $\theta = S_*^2$ $S_*^2 \to \sigma^2$ $ES_*^2 = \frac{n-1}{n} \sigma^2 \neq \sigma^2$ (несмещенность) $\sqrt{n} \frac{S_*^2 - \sigma^2}{\sqrt{\beta_4 - \sigma^4}} \xrightarrow{d} N(0, 1)$

Определение. Эффективность (оптимальность)

$$\widehat{ heta}_1$$
 эффективнее $\widehat{ heta}_2 \Leftrightarrow MSE\widehat{ heta}_1 < MSE\widehat{ heta}_2$ $MSE\widehat{ heta} = E \left\| \widehat{ heta} - heta
ight\|^2 = E(\widehat{ heta} - heta)^T (\widehat{ heta} - heta)$ Утверждение

$$MSE\widehat{\theta} = tr(\operatorname{Var}\widehat{\theta}) + \left\|b.as\widehat{\theta}\right\|^2$$

Доказательство
$$MSE = E(\widehat{\theta} - \theta)^{T}(\widehat{\theta} - \theta) = E(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta)^{T}(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta) = E(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta)^{T}(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta) = E(\widehat{\theta} - E\widehat{\theta})^{T}(\widehat{\theta} - E\widehat{\theta}) = \sum_{i} \operatorname{Var} \widehat{\theta}_{i} + \|b.as\widehat{\theta}\|^{2}$$

1. Ассимптотическая нормальность ⇒ состоятельность

$$\widehat{\theta} - \theta = \frac{1}{\sqrt{n}} (\widehat{\theta} - \theta) \xrightarrow{P} 0$$

2. Ассимптотическая нормальность $\Rightarrow b.as \hat{\theta} \to 0$

Пусть d=1

$$P(|\theta - E\widehat{\theta}| > \varepsilon) = P(\frac{\sqrt{n}|\theta - E\widehat{\theta}|}{\sigma} > \frac{\varepsilon\sqrt{n}}{\sigma}) = 1 - P(\dots < \frac{\varepsilon\sqrt{n}}{\sigma}) \approx 1 - (2\Phi(\frac{\varepsilon\sqrt{n}}{\sigma}) - 1) = 2(1 - \Phi(\frac{\varepsilon\sqrt{n}}{\sigma})) \to 0$$

3. Состоятельность $\Rightarrow b.as \hat{\theta} \rightarrow 0$

Следует из усиленного закона больших чисел $\overline{X} \xrightarrow{a.s} \mu \Rightarrow E\overline{X} \to \mu$ (По теореме Лебега о мажорируемой сходимости)

4. $\prod \text{VCTL} \ d = 1, \ b. as \widehat{\theta} \to 0, \text{Var} \ \widehat{\theta} \to 0 \Rightarrow \widehat{\theta} - \text{coct.}$

7 Метод моментов

Рассмотрим g_1, \ldots, g_d

$$\exists E g_1(X_1) = m_1(\theta_1, \dots, \theta_d)$$

$$\exists Eg_2(X_2) = m_2(\theta_1, \dots, \theta_d)$$

$$\exists Eg_d(X_d) = m_d(\theta_1, \dots, \theta_d)$$

$$\begin{cases} \exists E g_d(X_d) = m_d(\theta_1, \dots, \theta_d) \\ \overline{g_1(X)} = m_1(\widehat{\theta}_1, \dots, \widehat{\theta}_d) \\ \vdots \\ \overline{g_d(X)} = m_d(\widehat{\theta}_1, \dots, \widehat{\theta}_d) \end{cases}$$

$$\text{Пусть } \exists ! \text{ решение:}$$

$$\begin{cases} \widehat{\theta}_1 = \alpha_1(\overline{g_1(X)}, \dots, \overline{g_d(X)}) \\ \vdots \\ \widehat{\theta}_d = \alpha_d(\overline{g_1(X)}, \dots, \overline{g_d(X)}) \end{cases}$$

Тогда это будет оценка методов моментов.

По умолчанию $g_i(x) = x^j$

Пример

$$U[\theta_1, \theta_2], \, \theta_1 < \theta_2$$

$$g_1(x) = x, g_2(x) = x^2$$

$$Eg_1(X_1) = EX_1 = \frac{\theta_1 + \theta_2}{2}$$

$$Eg_2(X_1) = EX_1 = \frac{(\theta_2 - \theta_1)^2}{12} + \frac{(\theta_1 + \theta_2)^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta$$

$$\frac{\theta_1^2 + \theta_1\theta_2 + \theta_2^2}{3}$$

Далее составим уравнения:

$$\begin{cases} \overline{X} = \frac{\widehat{\theta_1} + \widehat{\theta_2}}{2} \\ \overline{X^2} = \frac{\widehat{\theta_1^2} + -\widehat{\theta_1}\widehat{\theta_2} + \widehat{\theta_2^2}}{3} \end{cases} \Leftrightarrow \begin{cases} \widehat{\theta_2} = 2\overline{X} - \widehat{\theta_1} \\ 3\overline{X^2} = \widehat{\theta_1^2} + -\widehat{\theta_1}\widehat{\theta_2} + \widehat{\theta_2^2} \end{cases}$$

$$3\overline{X^2} = \widehat{\theta_1^2} + \widehat{\theta_1}(2\overline{X} - \widehat{\theta_1}) + (2\overline{X} - \widehat{\theta_1})^2$$

$$\widehat{\theta_1^2} - 2\overline{X}\widehat{\theta_1} + 4(\overline{X}^2 - 3\overline{X^2}) = 0$$
 Считаем дискриминант деленный на четыре:
$$\frac{D}{4} = (\overline{X})^2 - 4(\overline{X})^2 + 3\overline{X^2} = 3(\overline{X^2} - (\overline{X})^2) = 3S_*^2$$
 У нас будет два случая:

1.
$$\begin{cases} \widehat{\theta}_1 = \overline{X} + \sqrt{3}S_* \\ \widehat{\theta}_2 = \overline{X} - \sqrt{3}S_* \end{cases}$$

2.
$$\begin{cases} \widehat{\theta}_1 = \overline{X} - \sqrt{3}S_* \\ \widehat{\theta}_2 = \overline{X} + \sqrt{3}S_* \end{cases}$$

Первый не возможен, потому что $\theta_1 < \theta_2$

- 1. если $(\overline{g_1(X)},\ldots,\overline{g_d(X)})$ состоятельаня оценка
- 2. если $(\overline{g_1(X)},\dots,\overline{g_d(X)})$ ассимптотически нормальные и g_1,\dots,g_d гладкие, то каждая из оценок ассимтотичесик нормальные.

8 Метод максимального правдоподобия

рговаbility must function: $p(x,\theta)=p(x|\theta)$ рговаbility identity function: $p(x,\theta)=p(x|\theta)$ Будем называть оба случая плотностью. Пусть у нас есть выборка $X_1,\ldots,X_n\sim p(x|\theta)$ $L(x|\theta)=\prod_{\widehat{\theta}}p(x_i|\theta)$ - функция правдоподобия $\theta^*=argmax(L(x,\theta))$ - оценка максимума правдоподобия $\theta\in\Theta$ - открыто $\theta_1\neq\theta_2\Rightarrow L(x,\theta_1)\neq L(x,\theta_2)$ Доказательство

- 1. Посмотреть и подумать
- 2. Рассмотреть $\ln L(x|\theta); \frac{\partial \ln L(x,\theta)}{\partial \theta}$

3.
$$\frac{\partial \ln L(x,\theta)}{\partial \theta} = 0$$

4. Проверить достаточные условия максимума

Пример

1.
$$N(\theta_1,\theta_2)$$

$$L(x,\theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta_2}} \exp\left(-\frac{(x_i-\theta_1)^2}{2\theta_2}\right)$$

$$\ln L(x,\theta) = \sum_{i=1}^n \left[-\frac{1}{2}\ln 2\pi - \frac{1}{2}\theta_2 - \frac{(x_i-\theta_1)^2}{2\theta_2}\right]$$

$$\frac{\partial \ln L(x,\theta_1)}{\partial 1} = \sum_{i=1}^n \frac{2(x_i-\theta_1)}{2\theta_2} = \sum_{i=1}^n \frac{x_i-\theta_1}{\theta_2}$$

$$\frac{\partial \ln L(x,\theta)}{\partial \theta_2} = \sum_{i=1}^n \left[-\frac{1}{2\theta_2} + \frac{(x-i-\theta_1)^2}{2\theta_2^2}\right]$$

$$\sum_{i=1}^n \frac{(x_i-\widehat{\theta_1})}{\widehat{\theta_2}} = 0 \Rightarrow \widehat{\theta_1} = \overline{X}$$

$$\sum_{i=1}^n \left[-\frac{1}{2\widehat{\theta_2}} + \frac{(x_i-\widehat{\theta_1})^2}{2\widehat{\theta_2}^2}\right] = 0 \Rightarrow \widehat{\theta_2} = S_*^2$$
2. $U[0,\theta]: L(X,\theta) = \frac{1}{\theta^n} \mathbb{1}(X_i \in [0,\theta], \forall 1 \leq i \leq n)$

$$X_1, \dots, X_n: p(X_i,\theta)$$

$$L(X_1, \dots, X_n, \theta) = \prod_{i=1}^n p(x_i,\theta)$$

$$L(X,\theta) = \theta^{\Sigma X_i} (1-\theta)^{n-\Sigma X_i}$$
Вернемся к нашему примеру:
Если $\widehat{\theta} < \max(X)$, то $L(x,\theta) = 0$
Чем меньше θ , тем больше $\frac{1}{\theta}$

$$\Rightarrow \widehat{\theta} = \max(X)$$

$$Poly(1,p): p = (p_1, \dots, p_m)$$
Рассмотрим частоты:
$$\nu_1 < \text{- кол-во наблюдений типа } n$$
Суммируем и смотрим на функцию правдоподобия $L(X,p) = p_1 \dots p_m$

$$\ln L(X,p) = \sum_{j=1}^{m-1} \nu_j \ln p_j + \nu_m \ln (1-P_1 - \dots - p_{m-1})$$

$$\frac{\partial \ln L \dots}{\partial p_j} = \frac{\nu_j}{p_j} - \frac{\nu_m}{1-p_1 - \dots - p_{m-1}} = 0$$

$$\sum_{j=1}^{m} \text{уравнения: } \nu_j (1-\widehat{p_1} - \dots - \widehat{p_{m-1}}) = \widehat{p_j} \cdot \nu_m$$

$$\widehat{p_m} (n-\nu_m) = \nu_m (1-\widehat{p_m})$$

$$\widehat{p_m} n - \widehat{p_m} \nu_m = \nu_m$$

$$\widehat{p_m} = \frac{\nu_m}{n}$$

$$\widehat{p_j} = \frac{\nu_j \widehat{p_m}}{\nu_m} = \frac{\nu_j}{n}$$

Информация Фишера

$$d=1:L(X,\theta)=\prod p(X_j,\theta)$$

$$\ln L(X,\theta)=\sum \ln p(x_j,\theta)$$

$$V(X,\theta)=\frac{\partial \ln L\dots}{\partial \theta}=\sum \frac{\partial \ln p\dots}{\partial \theta}$$
 - вклад выборки $\theta\in\Theta$ - открыто $\theta_1\neq\theta_2\Rightarrow p(X,\theta_1)\neq p(X,\theta_2)$ Регулярность:

$$1. \ \, \frac{\partial}{\partial \theta} \int_X T(X) L(X_i,\theta) dX = \int \frac{\partial}{\partial \theta} L(X,\theta) \cdot T(X) dX$$
 Необходимое условие $\sup p_x$ не зависит от θ
$$U[0,\theta] \int_0^\theta \frac{1}{\theta} dt = 1$$

$$(\int_0^\theta \frac{1}{\theta} dt)'_\theta = (\frac{1}{\theta} \int_0^\theta dt)'_\theta = -\frac{1}{\theta^2} \int_0^\theta dt + \frac{1}{\theta} = 0 \neq \int_0^\theta (\frac{1}{\theta})'_\theta dt$$

2.
$$EV^2(X,\theta) < \infty$$

$$\begin{split} \int_X L(X,\theta) dX &= 1 \xrightarrow{\frac{\partial}{\partial \theta}} \int_X \frac{\partial L(.)}{\partial \theta} dX = \int_X \frac{\frac{\partial L(...)}{\partial \theta}}{L(...)} \cdot L(...) dX = \int_X V(X,\theta) L(X,\theta) dX = \\ EV(X,\theta) &= 0 \\ I(\theta) &= \mathrm{Var}(V(X_i,\theta)) = E(V^2(X_i,\theta)) \text{ - информация Фишера для всей выбор-} \\ \mathrm{KM} \\ V(X,\theta) &= \sum_i \frac{\partial \ln p(x,\theta)}{\partial \theta} \Rightarrow \mathrm{Var}(V(X,\theta)) = n \cdot \mathrm{Var} \, \frac{\partial \ln p(x,\theta)}{\partial \theta} \end{split}$$

$$i(\theta) \text{ - информация Фишера для 1 наблюдения}$$

$$i(\theta) = E(\frac{\partial \ln p(x_j, \theta)}{\partial \theta})^2$$

$$\frac{\partial}{\partial \theta} \int_{\mathbb{R}} \frac{\partial \ln P(x, \theta)}{\partial \theta} \cdot p(x, \theta) dx = \int_{\mathbb{R}} \frac{\partial^2 \ln p(x, \theta)}{\theta} dx + \int_{\mathbb{R}} \frac{\partial \ln \dots}{\partial \theta} \frac{\partial p \dots}{\partial \theta} dx = E \frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} + E \frac{\partial^2 \ln p(x, \theta)}{\partial \theta} dx$$

$$E(\frac{\partial \ln o(x,\theta)}{\partial \theta})^2 = 0$$

$$E(\frac{\partial \ln o(x,\theta)}{\partial \theta})^2 = 0$$

$$E(\frac{\partial \ln o(x,\theta)}{\partial \theta})^2 = 0$$

$$i(\theta) = E(\frac{\partial \ln p(x_j, \theta)}{\partial \theta})^2 = -E\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2}$$
Uppergrow were disconnected as

$$i(\theta) = -\left(E \frac{\partial^2 \ln p(X, \theta)}{\partial \theta_i \partial \theta_j}\right)_{1 \le i, j \le d}$$

$$I(\theta) = ni(\theta)$$

$$N(\theta_1, \theta_2)$$

$$p(x, \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} \cdot \exp(-\frac{(x - \theta_1)^2}{2\theta_2})$$

$$\ln p(x, \theta_1, \theta_2) = -\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \theta_2 - \frac{(x - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial \ln p(x, \theta_1, \theta_2)}{\partial \theta_1} = \frac{x - \theta_1}{\theta_2}$$

$$\frac{\partial \dots}{\partial \theta_2} = -\frac{1}{2\theta_2} + \frac{(x - \theta)}{\theta_2} \text{ TODO:}$$

Теорема. Йеравенство Рао-Крамера

Модель регулярная, d = 1

au(heta) - оцениваемая функция

$$\tau \in C^1$$
 (как правило $\tau(\theta) = \theta$)

$$\widehat{\tau(\theta)} = \theta \Rightarrow \operatorname{Var}\widehat{\tau(\theta)} \ge \frac{[\tau'(\theta)]^2}{ni(\theta)}$$

$$\tau'(\theta) = \widehat{\int \widehat{\tau(\theta)}} \frac{\partial L(X, \theta)}{\partial \theta} dX = \widehat{\int \widehat{\tau(\theta)}} V(X, \theta) dX - EV(X, \theta) \cdot \widehat{E\tau(\theta)} = \operatorname{Cov}(V(X, \theta), \widehat{\tau(\theta)})$$

$$\operatorname{Cov}^{2}(V(X,\theta),\widehat{\tau(\theta)}) \leq \operatorname{Var}(V(X,\theta)) \cdot \operatorname{Var}(\widehat{\tau(\theta)})$$

Замечания

1.
$$\widehat{E\tau(\tau)} - \tau(\theta) = bias(\theta) \neq 0$$

$$\widehat{E\tau(\theta)} = \tau(\theta) + bias(\theta)$$

$$\widehat{Var \tau(\theta)} \geq \frac{[\tau'(\theta) + bias'(\theta)]^2}{ni(\theta)}$$

2.

Многомерный случай

$$\tau(\theta): \mathbb{R}^d \to \mathbb{R}$$

$$\tau \in C^1$$

$$\widehat{E\tau\theta} = \tau\theta \Rightarrow \operatorname{Var}\widehat{\tau(\theta)} \ge \frac{\nabla \tau(\theta)i^{-1}(\theta)\nabla^T \tau(\theta)}{n}$$

Пример

$$N(\theta_1, \theta_2)$$

$$\tau(\theta_1, \theta_2) = \theta_1$$

$$E\widehat{\theta_1} = \theta_1 \Rightarrow \operatorname{Var}\widehat{\theta_1} \ge \frac{(1,0)\begin{pmatrix} \theta_2 & 0\\ 0 & 2\theta_2^2 \end{pmatrix} \cdot (1,0)^T}{n} = \frac{\theta_2}{n}$$

1. Если ∃ несмещенная оптимальная оценка в регулярном случае то она совподает с оценкой максимальног правдоподобия (ОМП)

$$\tau(\theta) = \theta$$

$$V(X, \theta) = \frac{1}{a(\theta)} (\widehat{\theta} - \theta)$$

10 Состоятельность ОМП

Пусть
$$\theta_0$$
 - реальный параметр $\Rightarrow p_{\theta_0}(L(X,\theta_0) > L(X,\theta)) \to 1$ $\frac{L(X,\theta)}{L(X,\theta_0)} < 1$ $\frac{1}{n} \sum \ln \frac{p(X_j,\theta)}{p(X_j,\theta)} < 0$ По ЗБЧ $\Rightarrow E_{\theta_0} \ln \frac{p(x_j,\theta)}{p(x_j,\theta_0)} \le E_{\theta_0} [\frac{p(X_j,\theta)}{p(X_j,\theta_0)} - 1] = \int_X p(X,\theta) dX - \int p(X,\theta_0) dX = 0$ Давайте введем события: $S_n = \{X : \ln L(X,\theta_0) > \ln L(X,\theta_0 - a)\} \cap \{X : \ln L(X,\theta_0) > \ln L(X_i\theta_0 + a)\}$ $P_{\theta_0}(S_n) \to 1$ $A_n = \{X : |\widehat{\theta} - \theta_0| < a\}$ $B_n = \{X : \frac{\partial \ln L(X,\theta)}{\partial \theta}|_{\theta = \widehat{\theta}} = 0\}$ $S_n \subset A_n B_n \subset A_n \Rightarrow P(A_n) \to 1$

Давайте поговорим про свойства метода максимального правдоподобия

1. Принцип инвариантности
$$\theta \in \Theta \xrightarrow{biection} \gamma \in \Gamma$$

$$\theta = \varphi^{-1}(\theta) \Leftrightarrow \gamma = \varphi(\theta)$$

$$\sup_{\theta} L(X, \varphi(\gamma)) = \sup_{\gamma} L(x, \gamma)$$

$$\gamma * = \varphi(\theta *)$$

Пример

Пусть у нас есть $Exp(\lambda)$ и есть две параметризации

•
$$\lambda e^{-\lambda x} \to \frac{1}{\overline{X}}$$

• $\frac{1}{\lambda} \exp(-\frac{x}{\lambda}) \to \overline{X}$

Теорема Ассимптотическая нормальность ОМП

Пусть наша модель регулярная, так же пусть:

$$|rac{\mathring{\partial}^3 \ln f(x, heta)}{\partial heta_i \partial heta_j \partial heta_k}| \leq M$$
 $heta_*$ - ОПМ для $heta$

Уравнение $\nabla \ln L(X,\theta) = 0$ имеет еддинственное решение. Тогда:

1.
$$\sqrt{n}(\theta_* - \theta) \to N(0, i^{-1}(\theta))$$

2.
$$\tau(\theta)$$
 - оцениваемая функция от θ $\tau \in C^1$
$$\sqrt{n}(\tau(\theta_*) - \tau(\theta)) \to N(0, \sigma^2)$$
 $\sigma^2 = \nabla \tau(\theta) i^{-1}(\theta) \nabla^T \tau(\theta)$

3.
$$\sigma^2$$
 - непрерывная функция от $\theta \Rightarrow \sqrt{\frac{\tau(\theta_*) - \tau(\theta)}{\sigma(\theta_*)}} \to N(0,1)$

В прошлый раз мы ввели функцию

$$V(X, \theta) = rac{\partial \ln L(X, \theta)}{\partial heta}$$
 $heta_0$ - реальный параметр

Давайте напишемя ряд Тейлора

$$V(X,\theta)=V(X,\theta_0)+V_{ heta}'(X,\theta)(heta- heta_0)+V_{ heta}''(X, ilde{ heta})rac{(heta- heta_0)^2}{2},\, ilde{ heta}$$
 между $heta_0$ и $heta$

Выполним подстановку $\theta=\theta_*$

$$0 = V(X, \theta_0) + V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) + V''_{\theta}(X, \tilde{\theta}) \frac{(\theta_* - \theta_0)^2}{2}$$

$$V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) = -V(X, \theta_0) - V'(X, \tilde{\theta}) \frac{(\theta_* - \theta_0)^2}{2}$$

$$\sqrt{n}V_{\theta}'(X,\theta_0)(\theta_* - \theta_0) = -\sqrt{n}V(X,\theta_0) - \sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_* - \theta_0)^2}{2}$$

$$A_n := -\sqrt{n}V(X, \theta_0)$$

По ЦПТ:

$$A_n \to N(0, i(\theta_0))$$

$$\sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_* - \theta_0)^2}{2} = n^{\frac{3}{2}} - \frac{V_{\theta}''(X,\tilde{\theta})}{n}\frac{(\theta_* - \theta_0)^2}{2}$$

$$\frac{V_{\theta}''(X,\tilde{\theta})}{\pi}$$
 - огр по ЗБЧ

$$\sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_*-\theta_0)^2}{2} \to N(0,i(\theta_0))$$

- огр по ЗВЧ
$$\sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_*-\theta_0)^2}{2} \to N(0,i(\theta_0))$$

$$V'(X,\theta_0) = n\frac{V'(X,\theta_0)}{n} \xrightarrow{\text{ЗВЧ}} -i(\theta)$$

$$\text{Var } \widehat{\theta} \geq \frac{[\tau'(\theta)]^2}{ni(\theta)}$$
 Рассмотрим показатель:

$$\operatorname{Var} \widehat{\theta} \ge \frac{[\tau'(\theta)]^2}{ni(\theta)}$$

Рассмотрим показатель:
$$\frac{[\tau'(\theta)]^2}{ni(\theta)\cdot \mathrm{Var}\,\widehat{\tau(\theta)}} - \Im \varphi \varphi$$
ективность

Ассимптотическая Эффективность: Пусть $\sqrt{n}(\widehat{\theta}-\theta_0) \to N(0,\frac{\sigma^2}{n})$

 $\frac{1}{i(\theta)\sigma^2}$ - показатель состоятельной эффективности

11Экспоненциальное семество распределений

Пусть наше распределение относится к экспоненциальному семейству распределений если:

$$p(x,\theta) = \exp(A(\theta)B(x) + C(\theta) + D(x))$$

K таким распределениям относятся: $N(), \Gamma(), Pois(), Bin, NB$

$$\ln p(x,\theta) = A(\theta)B(x) + C(\theta) + D(x)$$

$$\begin{split} \frac{\partial \ln p(x,\theta)}{\partial \theta} &= A'(\theta)B(x) + C'(\theta) \\ V(X,\theta) &= A'(\theta) \sum B(X_i) + nC'(\theta) \\ V(X,\theta) &= n(A'(\theta)\overline{B(X)} + C''(\theta)) \\ \frac{V(X,\theta)}{n} &- C'(\theta) = A'(\theta)\overline{B(X)} \\ \overline{B(X)} &= \frac{V(X,\theta)}{nA'(\theta)} - \frac{C'(\theta)}{A'(\theta)} \\ \overline{B(X)} &- \text{ оптимальная оценка для } (-\frac{C'(\theta)}{A'(\theta)}) \end{split}$$

12 Байесовская постановка

$$X_1,\dots,X_n\sim F_\theta$$
 $\theta\sim\pi(\theta)$ - prior $l(\widehat{\theta},\theta)$ - функция потерь $l(\widehat{\theta},\theta)=(\widehat{\theta}-\theta)^2$ (default) $R(\widehat{\theta},\theta)=El(\widehat{\theta},\theta)$ - риск $r(\widehat{\theta})=E_{\pi(\theta)}R(\widehat{\theta},\theta)$ - байесовский риск $\widehat{\theta}_B=argminr(\widehat{\theta})$ $r(\widehat{\theta})=El(\widehat{\theta},\theta)$ Давайте вспомним теорему Байеса: $P(A|B)=\frac{P(B|A)P(A)}{P(B)}$ $P(\theta|X)=\frac{L(X|\theta)\pi(\theta)}{\int L(X|\theta)\pi(\theta)d\theta}$ pisterior = likelihoox × prior $\widehat{\theta}_B=argminE[l(\widehat{\theta})|X]$ $r(\theta_*)\leq r(\widehat{\theta})$ TODO: как будет не лень я допишу пример 1:05 лекция 6 $l(\widehat{\theta},\theta)$ - loss function $R(\widehat{\theta},\theta)=E_{\pi(\theta)}R(\widehat{\theta},\theta)$ $\widehat{\theta}_B=argminE(l(\widehat{\theta},\theta)|X)$ $\widehat{\theta}_B=argminE(l(\widehat{\theta},\theta)|X)$ $l(\widehat{\theta},\theta)=(\widehat{\theta}-\theta)^2$ $\widehat{\theta}_B=E(\theta|X)$

13 Минимаксные оценки

$$\begin{split} \widehat{m(\theta)} &= \sup_{\theta} R(\widehat{\theta}, \theta) \\ \widehat{\Theta_{WC}} &= \operatorname{argminm}(\widehat{\theta}) \text{ - минимаксная оценка} \\ \widehat{r(\theta)} &\leq m(\widehat{\theta}) \\ \mathbf{Утверждениe} \\ \exists \pi(\theta) \text{ - prior : } R(\widehat{\theta_B}, \theta) = \operatorname{const} \Rightarrow \widehat{\theta}_{WC} = \widehat{\theta_B} \\ \text{Рассмотрим пример:} \\ Bern(p) \text{ : prior: } B(a, b) \\ \widehat{p}_B &= \frac{a+X}{a+b+n}, X = \sum_{k=1}^n X_k \\ R(\widehat{p}_B, p) &= MSE\widehat{p}_B = E(\widehat{p}_B - p)^2 = \operatorname{Var}\widehat{p}_B + bias^2\widehat{p}_B \\ bias\widehat{p}_B &= E\frac{a+X}{a+b+n} - p = \frac{a=np}{a+b+n} - p = \frac{a-ap-bp}{a+b+n} \\ \operatorname{Var}\widehat{p}_B &= \frac{1}{(a+b+n)^2} \operatorname{Var} X = \frac{npq}{(a+b+n)^2} \\ R(\widehat{p}_B, p) &= \frac{(a-ap-bp)^2 + npq}{(a+b+n)^2} = \frac{(a-p(a+b))^2 + bp(1-p)}{(a+b+n)^2} = \frac{p^2((a+b)^2 - n) + p(-2a(a+b) + n) + a^2}{(a+b+n)^2} \\ \left\{ (a+b)^2 = n \\ 2a(a+b) &= n \end{array} \right. \\ \left. \begin{cases} a+b &= \sqrt{n} \\ a &= \frac{\sqrt{n}}{2} \end{cases} \Rightarrow b = \frac{\sqrt{n}}{2} \end{split}$$

- Достаточность и полные статистики
- Робастность (устойчивость относительно выборосов, устойчивость относительно изменения параметров распределения)

14 Интервальное оценивание

Определение. Доверительный интервал

 $p(-\ln U \le t) = p(U > e^{-t}) = 1 - e^{-t}$

Х1,...,
$$X_n \sim F_\theta, \theta \in \Theta \subset \mathbb{R}$$
 $1-\alpha=\gamma \in (0,1)$ - уровень доверия default: $0.9,\,0.95,\,0.99$ $(T_l(X),T_r(X))$ - доверительный интервал уровня $\gamma=1-\alpha$ если $p(\theta\in (T_l(X),T_r(X))\geq \gamma)$ Пусть $T(X,\theta)\sim G$ - не зависит от θ Рассмторим $p(q_1< T(X,\theta)< q_2)=1-\alpha$ $q_1=q_{\frac{\alpha}{2}}$ Универсальный рецепт (нет) a) $F_\theta(X_k)$ $P(F_\theta(X_k)\leq t)=P(X_k\leq F_\theta^{-1}(t))=F_\theta(F_\theta^{-1}(t))=t$ 6) $-\ln F_\theta(X_k)\sim Exp(1)$

$$_{\mathrm{B}}) - \sum \ln F_{\theta}(X_k) \sim \Gamma(n,1)$$

в) — $\sum \ln F_{\theta}(X_k) \sim \Gamma(n,1)$ Доверительные интервалы нормального закона. Теорема Фишера

Лемма о независимотси линейной и квадратичной статистик

$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$

$$T = AX, X = (X_1, \dots, X_n)^T A \in M_{m \times n}(\mathbb{R})$$
$$Q = X^T BX, B \in M_n(\mathbb{R}), B = B^T$$

$$Q = X^T B X, B \in M_n(\mathbb{R}), B = B^T$$

Тогда Т, Q - независимы

$$AB = 0$$

Доказательство

$$\Lambda = U^T B U$$

$$\Lambda = diag(\lambda_1, \dots, \lambda_m, 0, 0)$$

 λ_k - собственное число не 0

 $U=(u_1,\ldots,u_n)$ - собственные векторы ортонормированного базиса $\Leftrightarrow B=$

$$U\Lambda U^T = \sum_{j=1}^m \lambda_j u_j u j^T \Rightarrow Q = \sum_{j=1}^M \lambda_j (X^T U_j) (U_j^T X) = \sum_j \lambda_j (U_j^T X)^2$$

$$A(\sum_{j=1}^{m} \lambda_j u_j u_j^T) = 0$$

$$\sum_{i=1}^{m} \lambda_j A U_j u_j^T = 0$$

Зафиксируем $1 \le k \le m$ домножим справа на u_k

$$Au_k = 0 \Rightarrow \forall i A[i, *] u_k = 0$$

Нам надо доказать, что
$$\forall i, kA[i,*]X$$
 и u_k^TX - нез $\mathrm{Cov}(A[i,*]X,u_k^TX) = \mathrm{Cov}(A[0,*]X,X^Tu_k) = A[i,*]\,\mathrm{Var}\,Xu_k = \sigma^2A[i,*]u_k = 0$

Лемма о независимости двух квадратичных статистик

$$Q_1 = X^T B_1 x$$

$$Q_2 = X^T B_2 X$$

Тогда
$$Q_1, Q_2$$
 - нез

$$B_1 B_2 = B_2 B_1 = 0$$

Определение X_n - квадратичная

$$X_1,\ldots,X_n \sim N(0,1)$$

$$\sum_{k=1}^{n} X_k^2 \sim \Xi^2(n) \text{ (распределение)}$$

хи-кквадрат с n степенями свободы

Лемма о распределении квадратичной статистики

$$X_1,\ldots,X_n \sim N(0,1)$$

$$Q = X^T B X$$

$$B = B^2$$

Тогда
$$Q \sim \Xi^2(r), r = rank(B = tr(B))$$

Тогда
$$Q \sim \Xi^2(r), r = rank(B = tr(B))$$

$$Q = \sum_{k=1}^n (u_k^T X)^2 \sim \Xi^2(r)$$

$$u_k^T \sim N(u_k^T E X, u_k^T I_n u_k) = N(0, 1)$$

1.
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

2.
$$\frac{nS_*^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim X^2(n-1)$$

$$3. S^2, \overline{X}$$
 - нез

$$Y_{j} = \frac{X_{j} - M}{\sigma}$$

$$\overline{X} \frac{1}{\sigma} (\overline{X} - M)$$

$$S_{*}^{2}(Y) = \frac{1}{n} \sum_{j=1}^{n} (Y_{j} - \overline{Y})^{2} = \frac{S_{*}^{2}(X)}{\sigma^{2}}$$

$$\overline{Y} = \frac{\sum Y_{j}}{n} = \frac{(\frac{1}{n}, \dots, \frac{1}{n})}{b} (Y_{1}, \dots, Y_{n})^{T} = bY$$

$$nS_{*}^{2}(Y) = (Y - BY)^{T} (Y - BY) = Y^{T} (I - B)^{T} (I - B)Y \sum \Xi^{2} (tr(I - B))$$

Для того чтобы доказать третье утверждение

$$b(I - B) = b - b = 0$$

Тогда мы пользуемся первой леммой

Таким образом теорема Фишера доказана.

Мы доказали теорему Фишера давайте теперь с помощью теоремы мы рассмотрим задачу построения доверительных интервалов нормального закона

•
$$\sigma^2$$
 - известно, $\mu=?$ Рассмотрим два варианта: $\frac{X_1-\mu}{\sigma}\sim N(0,1)$
$$\sqrt{n}\frac{\overline{X}-\mu}{\sigma}\sim N(0,1)$$
 Доверительный интервал уровня $1-\alpha$ $[\overline{X}-\frac{q_{1-\frac{\alpha}{2}\sigma}}{\sqrt{n}},\overline{X}+\frac{q_{1-\frac{\alpha}{2}\sigma}}{\sqrt{n}}]$

•
$$\mu$$
 - известно, $\sigma^2 = ?$

$$-q \le \sqrt{n} \frac{(\overline{X} - \mu)}{\sigma} \le q$$

$$-q\sigma \le \sqrt{n} (\overline{X} - \mu) \le q\sigma$$

$$\frac{\sqrt{n}(\overline{X} - \mu)}{q} \le \sigma$$

$$-\frac{\sqrt{n}(\overline{X} - \mu)}{q} \le \sigma$$

Рассмотрим следующую статистику:

$$\sum \frac{(X_i - \mu)^2}{\sigma^2} \sim \Xi^2(n)$$

$$P(q_{\frac{\alpha}{2}} \le \sum \frac{(X_i - \mu)^2}{\sigma^2} \le q_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Рассмотрим следующую статистику:
$$\sum \frac{(X_i - \mu)^2}{\sigma^2} \sim \Xi^2(n)$$

$$P(q_{\frac{\alpha}{2}} \leq \sum \frac{(X_i - \mu)^2}{\sigma^2} \leq q_{1 - \frac{\alpha}{2}}) = 1 - \alpha$$
 Доверительный интервал:
$$\frac{\sum (X_i - \mu)^2}{q_{1 - \frac{\alpha}{2}}} \leq \sigma^2 \leq \frac{\sum (X_i - \mu)^2}{q_{\frac{\alpha}{2}}}$$

Давайте теперь рассмотрим задачу построения доверительного интревала

Воспользуемся теоремой Фишера:

$$\frac{nS_*^2}{\sigma^2} \sim \Xi^2(n-1)$$

Доверительный интервал: $\frac{nS_*^2}{q_{1-\frac{\alpha}{2}}} \le \sigma^2 \le \frac{nS_*^2}{q_{\frac{\alpha}{2}}}$

Определение. Распреление Стьюдента

$$X_0, X_1, \dots, X_n$$
 - нез, $N(0, 1)$

$$X_0, X_1, \dots, X_n - \text{He3}, N(0, 1)$$

$$\frac{X_0}{\sqrt{\frac{1}{n} \sum_{k=1}^{n} X_k^2}} \sim T(n)$$

n - степени свободы (deg of freedom)

Давайте выведем статистику:

давайте выведем статистику:
$$\frac{\sqrt{n}\frac{\overline{X}-\mu}{\sigma}}{\sqrt{\frac{1}{n-1}\frac{ns_*^2}{\sigma^2}}} = \sqrt{n-1}\frac{\overline{X}-\mu}{S_*} \sim T(n-1)$$

$$\frac{\sqrt{\frac{1}{n-1}}\frac{n\sigma^2}{\sigma^2}}{\sqrt{n}\frac{\overline{X}-\mu}{\sigma}} = \sqrt{n}\frac{\overline{X}-\mu}{S}$$

$$\frac{\sqrt{n}\frac{\overline{X}-\mu}{\sigma}}{\sqrt{\frac{1}{n-1}}\frac{(n-1)S^2}{\sigma^2}} = \sqrt{n}\frac{\overline{X}-\mu}{S}$$
 Доверительный интервал:
$$\overline{X} - \frac{q_{1-\frac{\alpha}{2}S}}{\sqrt{n}}, \overline{X} + \frac{q_{1-\frac{\alpha}{2}S}}{\sqrt{n}}$$
 Определение. Распределение Фишера
$$\Xi_n^2 \sim \Xi^2(n)$$

$$\Xi_m^2 \sim \Xi^2(m)$$
 Они независимы
$$\Xi_n^2(n) \sim F(n,m)$$

$$\overline{X} - \frac{q_{1-\frac{\alpha}{2}S}}{\sqrt{n}}, \overline{X} + \frac{q_{1-\frac{\alpha}{2}S}}{\sqrt{n}}$$

$$\Xi_n^2 \sim \Xi^2(n)$$

$$\Xi_m^2 \sim \Xi^2(m)$$

$$\frac{\Xi_n^2(n)}{\Xi_m^2(m)} \sim F(n,m)$$

15 Ассимптотические доверительные интерва-ЛЫ

Раньше мы говорили $P(\theta \in (l_n, r_n)) \ge 1 - \alpha$ Таперь же мы будем говорить $\lim_{n \to \infty} P(\theta \in (l_n, r_n)) \ge 1 - \alpha$ $T(X,\theta) \xrightarrow{d} G$ не зависит от θ

1. ЦПТ и ее следствия

$$\sqrt{n} \frac{\overline{X} - \mu}{\sqrt{n}} \to N(0, 1)$$

$$\sqrt{n} \frac{\overline{X} - \mu}{S} \to N(0, 1)$$

Доверительный интервал: $\overline{X} \pm \frac{q_{1-\frac{\alpha}{2}}S}{\sqrt{n}}$

$$\sqrt{n} \frac{S_*^2 - \sigma^2}{\sqrt{\widehat{\beta_4} - S_*^4}} \to N(0, 1)$$

Доверительный интервал: $S_*^2 \pm \frac{q_{1-\frac{\alpha}{2}}\sqrt{\widehat{\beta_4}-S_*^4}}{\sqrt{n}}$

2. Теорема об ассимтотике среднего члена вариационного ряда

$$\sqrt{n} \frac{X_{(\lfloor np \rfloor)} - q_p}{\sqrt{p(1-p)}} f(q_p) \to N(0,1)$$

Доверительный интервал для медианы: $p = \frac{1}{2}$

$$\sqrt{n}f(q_p) \frac{X_{(\lfloor \frac{n}{2} \rfloor)} - q_p}{\frac{1}{2}}$$
 (зачастую f это константа)

Доверительный интервал: $X_{(\lfloor \frac{n}{2} \rfloor)} \pm \frac{q_{1-\frac{\alpha}{2}}}{\sqrt{n} \cdot const}$

- 3. Доверительный интервалы из ассимтотической нормальности оценок максимального правдоподобия
- 4. Теорема об ассимтотике крайнего члена вариационного ряда $n(1 - F(X_{m+1-s})) \to \Gamma(s, 1)$

$$n(1-I)(\Lambda_m)$$

Пример: $U[0,\theta]$

$$F(x) = \begin{cases} 0, x < 0 \\ \frac{x}{\theta}, 0 \le x \le \theta \\ 1, x > \theta \end{cases}$$
$$\frac{nX_{(r)}}{\theta} \to \Gamma(r, 1)$$

$$\frac{nX_{(r)}}{\rho} \to \Gamma(r,1)$$

$$q_{\frac{\alpha}{2}} \le \frac{nX_{(r)}}{\theta} \le q_{1-\frac{\alpha}{2}} \Rightarrow \frac{nX_{(r)}}{q_{1-\frac{\alpha}{2}}} \le \theta \le \frac{nX_{(r)}}{q_{\frac{\alpha}{2}}}$$

16 Проверка статистических гипотез

Нам надо будет выделить основное предположение (по умолчанию) и альтернативное предположение (наше подозрение или то, что мы хотим доказать)

Давайте рассуждать:

рациональное, с точки зрения инопланетянина (не опираться на жизненный опыт)

В стране Н с континентальное системой права и есть уголовный суд. Какое будет основное предположение для судьи? Не виновен. А альтернативное?

Давайте посмотрим на другой пример

В паспорте у некоторых написана буква М, а у других Ж, посмотрим связаны ли буквы и успеваемость? По умолчанию не связаны, а альтернативное: М и Ж учатся по разному. Пусть мы сидим на филфаке, тогда есть мнение, что девочки учатся лучше, или же мы сидим на программировании и тогда мальчики учатся лучше. Альтернатива не всегда является отрицанием первого.

Еще один пример:

Пусть робот кидает монетку. По умолчанию робот кидает честно, альтернативно робот жулик или он жулик в определенную сторону.

Замеры показателя (температуры человека). По умолчанию 36.6, альтернативно мы можем подозревать, что температура $\neq 36.6$ или же можем рассмотреть перепад в одну из сторон (в зависимости от болезни)

Пусть есть фактор цена на недвижимость и есть фактор расстояние до центра города. Основное предположение: они не зависят, Альтернатива: ближе к центру - больше цена.

Мы можем изготовить некое вещество и посмотрим как оно влияет на здоровье. Основное: не влияет, альтернатива: it depends.

 X_1, \dots, X_n - выборка в широком смысле.

 $(X_1,\ldots,X_n)\sim F$

 H_0 - нулевая гипотеза.

 H_1 - альтернатива.

Так же пусть нам дали уровень значимости

 $\alpha \in (0,1)$ (по умолчанию 0.1, 0.05, 0.01, 0.001)

Статистический тест (критерий)

$$\delta(X,\alpha,H_0,H_1) = \begin{cases} accept H_0 \\ reject H_0(w.\ respect\ {
m to}\ H_1) \end{cases}$$
 То есть в первом случае данные противоречат H_0 , а втором противоречат.

Но это не значит, что мы доказали утверждение.

Пусть у нас есть функция T(X) - статистика критерия

T(X) либо в точности, либо в пределе стремится к G при условии $H_0(\sim$

```
Далее на лекции идет пример с левосторонним, правосторонним и двойным тестом 1. \ \text{left:} \ T_0(\alpha) = [q_\alpha, +\infty) 2. \ \text{right:} \ T_1(\alpha) = (-\infty, q_\alpha) 3. \ \text{two:} \ T_0(\alpha) = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}], T_1(\alpha) = \overline{T_0(\alpha)} p_l = P(U \leq T(x)|H_0) p_r = P(U > T(x)|H_0) p = 2min(p_l, p_r)
```

or \rightarrow)

else: $accept H_0$

 $P(T(X) \in T_0(\alpha)|H_0) = 1 - \alpha$ if $T(x) \in T_1(\alpha)$: reject H_0

 $T_0(\alpha)$ - область принятия $T_1(\alpha)$ - область опровержения

if $p < \alpha$: reject H_0 else: accept H_1

17 Статистические критерии и доверительные интервалы

Когда мы строили доверительные интервалы то мы зажимали статистику между квантилями. Это похоже на двухсторонний тест.

$$X_1, \dots, X_n \sim F_\theta$$
 $T(X, \theta) \to U \sim G$
 $P(q_{\frac{\alpha}{2}} \leq T(X, \theta) \leq q_{1-\frac{\alpha}{2}}) = 1 - \alpha$
 $H_0: \theta = \theta_0$
 $P(T(X, \theta_0) \in T_0(\alpha) | \theta = \theta_0) = 1 - \alpha$
 $H_1 = \theta \neq \theta_0, \theta > \theta_0, \theta < \theta_0$
Пример:

1) $X_1, \dots, X_n \sim F, \mu = EX_1, \exists \operatorname{Var} X$
 $H_0: \mu = \mu_0$
 $T(X) = \sqrt{n} \frac{\overline{X} - \mu_0}{S} \to N(0, 1)$ если $\mu = \mu_0$
При $H_1: \mu \neq \mu_0$ у нас двухсторонняя критическая область При $H_1: \mu > \mu_0$ у нас правосторонняя критическая область При $H_1: \mu < \mu_0$ у нас левосторонняя критическая область При $H_1: \mu < \mu_0$ у нас левосторонняя критическая область Пальше для этого приводится пример с больницей (нам дий

$$P(\sqrt{n}\frac{\overline{X}-\mu_0}{S}\in T_0(\alpha)|\mu\neq\mu_0)=P(\sqrt{n}\frac{\overline{X}-\mu}{S}+\frac{\mu-\mu_0}{S}\sqrt{n}|\mu\neq\mu_0)$$
 Это будет стремиться либо к $\Phi(-\infty)$ либо $1-\Phi(+\infty)$

Критерий Колмогорова 18

$$X_1, \dots, X_n \sim F$$
 $H_0: F = F_0 \ (F_0$ - непр)
 $H_1: F \neq F_0$

Идея основана на теореме Колмогорова (было в начале семестра)

 $D_n = \sqrt{n} \underset{x \in \mathbb{R}}{sum} |F_n(x) - F_0(x)|, \ F_n$ - эмпирическая функция распределения

if $D_n > q_{1-\alpha}$ then reject H_0 else accept H_0

- 1) $n \ge 20$ работает хорошо, при маленьких n есть спец таблицы
- 2) Так же есть приблеженные формулы для D_n
- 3) $H_0: F = F(\theta), H_1: \neg H_0 \Rightarrow D_n = \sqrt{n} \sup |F_n(x) F_0(x, \theta)|$

 $\theta \to \widehat{\theta}$

В пределе будет более сложная формула

Критерий Смирнова 19

 X_1, \dots, X_n Y_1, \dots, Y_m

Они независимы

 $H_0: F_X = F_Y (= F_0)$

 $H_1 :\neq H_0$

Тут идея основана на формуле Смирнова

 $D_{n,m} = \sqrt{n} \sup_{x} |F_n(x) - F_m(x)|$

 $T_1(\alpha) = (q_{1-\alpha}, +\infty)$