Concepts:

- -Linear equations and inequalities
- -Absolute value equations and inequalities
- -Rational exponents
- -Radical equations
- -Add, Subtract, Multiply, Divide Functions
- -Composition of Functions
- -Inverses

Solve each equation.

1.
$$4(x+2)-7=13$$

 $4x+8-7=13$
 $4x+1=13$
 $4x=12$
 $x=3$

2.
$$\frac{3x-6}{8}+9=$$
 $\frac{3x-6}{8}=3$
 $3x-6=24$
 $3x=30$
 $x=10$

3.
$$7x + 8 = 71 - 2x$$
 $9x = 63$
 $x = 7$

- 4. (a) Write the formula for the perimeter of a rectangle: P = 2l + 2w
 - (b) Re-arrange the formula and solve for w (width): $W = \frac{P-2!}{2}$ or $W = \frac{1}{2}P-1$

Solve each inequality.

5.
$$\frac{8x+10}{-7} > 2$$

$$\frac{-7}{8x+10^{2}-14}$$

$$\frac{8x^{2}-24}{x^{2}-3}$$

6.
$$-24 < 3x - 9 \le 12$$

 $-15 \le 3x \le 21$
 $-5 \le x \le 7$

7.
$$7x - 12 \le 24 - 2x$$

 $9x \le 36$
 $x \le 4$

Solve each absolute value equation or inequality. (Make sure to check for extraneous solutions)

8.
$$|-4+5x|=16$$

 $-4+5x=16$ $-4+5x=-16$
 $5x=20$ $5x=-12$
 $x=4$ $x=-\frac{12}{5}$
Check: $|-4+20|=16$ $|-4+(-12)|=16$

9.
$$3|-8x|+8=80$$

 $|-8x|=24$
 $-8x=24$ $-8x=-24$
 $x=-3$ $x=3$
Check: $3|24|+8=80$ $3|-24|+8=80$
 $72+8=80$ $72+8=60$

10.
$$\frac{|7x+4|}{8} = 3$$

$$|7x+4| = 24$$

$$7x+4 = 24$$

$$7x = 20$$

$$x = 20$$

$$x = -4$$

$$20+41 = 3$$

$$\frac{|24|}{8} = 3$$

$$\frac{|24|}{8} = 3$$

11.
$$|x-2| < 8$$

 $x-2<8$ and $x-2>-8$
 $x=10$ and $x>-6$
 $-66<0$

12.
$$|x+5|-6 \le -5$$

 $|x+5| \le 1$
 $x+5 \le 1$ and $x+5 \ge -1$
 $x \le -4$ and $x \ge -6$
 $-6 \le x \le -4$

13.
$$9|3x-2|+6>51$$

 $|3x-2|>5$
 $3x-2>5$ or $3x-2<-5$
 $3x>7$
 $x>7$
 $x>7$
or $x<-1$

Simplify using the properties of exponents.

14.
$$(x^2x^4)^{\frac{1}{2}}$$

$$15. (2^{3}3)^{2}$$
= $(8.3)^{2}$
= 24^{2}

$$16.\frac{x^{\frac{3}{2}}}{x^{\frac{3}{4}}} = x^{\frac{3}{2} - \frac{3}{4}} = x^{\frac{3}{4}}$$

Re-write the following expressions using rational exponents.

17.
$$\sqrt[5]{10} = 10^{1/5}$$

18.
$$\sqrt[4]{x^7} = x^{\frac{7}{4}}$$

Write the expression in simplest form.

19.
$$\sqrt{48} = 4\sqrt{3}$$

20.
$$\sqrt[3]{27x^4} = 3 \times \sqrt[3]{x}$$

21.
$$\sqrt{72x^2} = 6 \times \sqrt{2}$$

Solve each radical equation. Check for extraneous solutions.

24.
$$10 + \sqrt{10m - 1} = 13$$

 $\sqrt{10m - 1} = 3$
 $10m - 1 = 9$
 $10m = 10$
 $m = 1$
 $m = 1$
 $10 + \sqrt{9} = 13$
 $13 = 13$

25.
$$1 = \sqrt{x-5}$$

 $1 = x-5$
 $1 = x-5$

26.
$$\sqrt[3]{x^2 - 1} = 2$$
 $x^2 - 1 = 8$
 $x^2 = 9$
 $x = \pm 3$

Check: $x = 3$ $\sqrt[3]{9 - 1} = 2$
 $x = -3$ $\sqrt[3]{9 - 1} = 2$
 $\sqrt[3]{8} = 2\sqrt{2}$

27.
$$x = \sqrt{-70 + 17x}$$

 $x^2 = -70 + 17x$ Check: $x = 10$ $10 = \sqrt{-70 + 170}$
 $x^2 - 17x + 70 = 0$ $10 = \sqrt{100}$
 $(x - 10)(x - 7) = 0$ $10 = 10$
 $x = 10$, $x = 7$

28. Find the inverse of the function y=3x-2.

$$x=3y-2$$
 $x+2=3y$
 $y=\frac{x+2}{3}$

19. Let
$$f(x)=4x-2$$
 and $g(x)=\frac{x+2}{4}$.
$$\frac{f(g(x))=4\left(\frac{x+2}{4}\right)-2}{2\left(\frac{x+2-2}{4}\right)}$$
Are $f(x)$ and $g(x)$ inverses of each other?