

Process Control: Part II- Model Predictive Control (EE6225, AY2019/20, S1)

Dr Xin Zhang

Assistant Professor

Office: NTU S2-B2c-95, Tel: 67905419

Lab: S2.2-B4-03

Email: Jackzhang@ntu.edu.sg

BASIC THEORY OF THE MODEL PREDICTIVE CONTROL (MPC): PART I

[17/10/2019]

- Main components of MPC
- Modelling of MPC
- MPC with state space model
- MPC with Carima model

BASIC THEORY OF THE MODEL PREDICTIVE CONTROL (MPC): PART I

[17/10/2019]

- Main components of MPC
- > Modelling of MPC
- > MPC with state space model
- > MPC with Carima model

- ➤ Using prediction and/or anticipation within control is logical-humans do this, naturally.
- ➤ Please consider how such concepts can be embedded into a MPC.

- Prediction
- Receding horizon
- > Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- ➤ Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

- Prediction
- > Receding horizon
- > Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- > Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

- ➤ How far should we predict?
- ➤ Consequences of not predicting?
- ➤ How do we predict?

WHY PREDICTION IS IMPORTANT?

We know prediction when we are kids

Parent will tell their children to think of possible consequences before act.

The results without prediction

Jumped of roof of shed Broken ankle

Used knife incorrectly Finger badly cut

HOW FAR SHOULD WE PREDICT?

How far should we predict? (Drive)

- Prediction horizon is always asked in MPC,
- For human behavior, we all know how far for prediction.

1. Driving -- How far?

Beyond the safe braking distance, or a crash or accident happened.

How far should we predict? (Heating)

2. Heating a house -- How far?

Turn the heating on far enough in advance – beyond the settling time.

How far should we predict? (Moving item)

3. Moving heavy item -- How far?

Consider the whole trajectory, lifting, carrying and putting down again. Or, drop the item and cause damage.

The recommended predicting horizon

 T_{settling} :Time it takes for the error $|y(t)-y_{\text{final}}|$ to fall to within 2% of y_{final}

$$\frac{T_r}{20} \le T_s \le \frac{T_r}{10}$$
 , T_s : Sample time

CONSEQUENCES OF NOT PREDICTING?

Consequences of not predicting

- We must predict beyond the key dynamics of a process;
- The missed issue could come back and bite us!

Driving

Heating

Moving item

16

How do we predict?

Recall: the recommended predicting horizon

 T_{settling} : Time it takes for the error $|y(t)-y_{\text{final}}|$ to fall to within 2% of y_{final}

$$\frac{T_r}{20} \le T_s \le \frac{T_r}{10}$$
 , T_s : Sample time

$$p.T_s \ge T_{settling}$$

- \rightarrow Prediction \rightarrow make decision \rightarrow prediction $\rightarrow \dots$
- Prediction horizon > settling time;

The more accurate predictive the better.

(a) Lane changing

Entering a bend

Evaluation index: steady-state error, fast transients, response, ...

- > Prediction
- > Receding horizon
- > Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- > Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

- > Continually updating predictions and decision.
- Prediction horizon is relative to current position.

- ☐ The more accurate the better:
- a) Measurement is a core part of a feedback loop.
- b) Decisions via measurement is also important.

- > Prediction
- > Receding horizon
- **➤** Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- > Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

- Motivation: modelling system (human) behavior.
- Task: How to define or determine an appropriate prediction model?

Easy to use --- linear.

Easy to identify parameters.

> Accurate predictions.

Unacceptable Unacceptable

One-step prediction is usually used

Most model are based on one-step ahead prediction errors!

- Black box
- One-step ahead prediction
- Simple and faster

- > The simplest model with accurate predictions is best.
- Practical accurate:
 - a) 10%-20% error with the steady-state
 - b) Can capture the key dynamic changes during transients.
- Rarely beneficial to improve accuracy with high order model.
- Feedback can correct small modelling errors.
- Long range prediction ability is required for MPC.

- > Prediction
- > Receding horizon
- ➤ Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- > Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

Good or bad: rarely be quantitative

THOUGHT FEELING

- > Slow =
- Oscillatory —
- Unstable —
- > Ideal ==

➤ What is the performance index used for?

- ➤ How should the performance index be designed?
- ➤ How can-do trade offs between optimal & safe/robust performance?

WHAT IS THE PERFORMANCE INDEX USED FOR?

The performance index is a numeric definition for best.

HOW SHOULD THE PERFORMANCE INDEX BE DESIGNED?

- Simpler definitions are better.
- Quadratic performance indices is preferred.

$$J = \frac{1}{2} \int_{0}^{\infty} \left(x^{\mathrm{T}} Q x + u^{\mathrm{T}} R u \right) \mathrm{d}t$$

$$\min_{u_k, x_k} \sum_{k} 0.5x_k^2 + 2u_k^2$$

HOW CAN-DO TRADE OFFS BETWEEN OPTIMAL & SAFE/ROBUST PERFORMANCE? (FROM HUMAN BEHAVIOR POINT OF VIEW)

Beginner:

- Simple strategy, - Get the ball back, - Anywhere & anyhow!

- Middle player
 - More complicated, Get the ball back, some methods of control and direction.

Expert has:

- Very complex; - Get the ball back; - Very precise on how (sometimes several shots ahead to create an opening)

Discussion on the tennis strategy selection

- Very complex strategy:
 - Get the ball back;
 - Very precise on how, i.e., hit the lines

- Simple strategy:
 - Only keeping the ball in play,
 - Aiming for the middle.

Who is more likely to <u>make a mistake</u>? [Assume the opponent is passive].

Same issues to driving (think of racing), cooking, robotics, etc.

Little experience or low-quality model

Cautious performance index is realistic

Lots of experience **or** high-quality model

Ambitious performance index is possible, but no need

☐ High performance demands are not cost free:

High performance implies high risk

Low performance with means (low risk)

Safe and robust to uncertainty

42

- > Prediction
- > Receding horizon
- > Modeling
- > Performance index
- Degrees of freedom
- > Constraint handling
- > Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

The concept of degrees of freedom (DOF)

Degree of freedom (DOF) determines Prediction & control complexity

DOF = 3

- Bad model does not need high performance index
- Bad model does not need high numbers of degrees

2019/10/17 EE6225/PG/LT22 44

Hitting point

Cannot ask Snooker beginners play the master level!

Simple DOF needs simple performance index

- ☐ Example:
 - Performance index: Model a sine wave
 - DOF: 1st order polynomial

Model a sine wave with a 1st order polynomial!

DOF optimization needs long prediction horizon

- **Example:**
 - Performance index: Take a corner for the car in 51 yds.
 - DOF: Control speed and direction
 - Prediction horizon: 50 yds.

• Take a corner for the car in 51 yds with 50 yds prediction horizon!

- > Prediction
- > Receding horizon
- > Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- > Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

More typical control strategies treat constraints as an after thought.

- MPC treat constraints as a before thought:
 - Embedded constraints into the strategy development.
 - The control action is optimal while satisfying constraints

Constrains is one of the advantage of MPC

- ☐ PI control design: allow up to <u>a 25% overshoot</u>.
- □ Nuclear reactor: maximal permission is 110%.

MPC can fix the constrains problem

- Input flow of MPC: Not allow the tank to overflow. May result in slightly slower transients rise times, but <u>safe</u>.
- ☐ Input flow of MPC: Limited to 100% and avoid the instability problem cased by <u>earlier input</u> choices.

Embedding constrains can ensure the proposed MPC <u>are optimized</u> and safe for different operating points.

- > Prediction
- > Receding horizon
- > Modeling
- > Performance index
- > Degrees of freedom
- > Constraint handling
- ➤ Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

- Example car:
 - Inputs: throttle and steering
 - Outputs: speed and direction

Multivariable processes: changing one input changes <u>all</u> the outputs

Effective control law has to consider all inputs and outputs

- Example airplane:
 - Inputs: numerous control surfaces
 - Outputs: moves in 3D space.

Multivariable processes: changing one input changes all the outputs

Effective control law has to consider all inputs and outputs

Multivariable: Chemical reaction

- Example chemical reaction:
 - Inputs: Flow rates, heat supply, pressure, etc.
 - Outputs: Speed of reaction (production rate), quality, purity, etc.

Multivariable processes: changing one input changes <u>all</u> the outputs

Effective control law has to consider all inputs and outputs

Handing interaction between multivariables

- ☐ We can cope up to 2-3 inputs/outputs
- ☐ Beyond that a human is not an ideal controller!

- **Prediction**
- > Receding horizon
- > Modeling
- > Performance index
- Degrees of freedom
- > Constraint handling
- ➤ Multivariable

Should <u>not</u> attempt MPC design <u>before</u> we have the required understanding

BASIC THEORY OF THE MODEL PREDICTIVE CONTROL (MPC): PART I

[17/10/2019]

- > Main components of MPC
- Modelling of MPC
- MPC with state space model
- > MPC with Carima model

These slides do not discuss non-linear models

- ☐ Manipulation and algebra requires linear models as superposition can be used.
- ☐ Linear models are enough for MPC.
- Typical linear models:
 - Transfer function
 - State-space
 - Step response models (subset of transfer functions).

60

- ☐ Processes operate in <u>continuous time</u>.
- ☐ MPC's Decision requires processing time and cannot instantaneous.

MPC laws are implemented in discrete time.

MPC needs suitable sample rate

Sample Time, T.: Controller execution rate

$$\frac{T_r}{20} \le T_s \le \frac{T_r}{10}$$

High sample rate is pointless: System cannot respond to it

STATE SPACE MODEL

Discrete state space model:

In this slides, D=0 and add disturbance d_k .

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + d_k$$

Application of state space model

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k + d_k$$

TRANSFER FUNCTION MODEL

68

☐ Transfer function model with MPC is so called CARIMA Model.

- Uncertainty is included
- > Slowly varying disturbances is considered.

Application of transfer function model

STEP RESPONSE MODEL

☐ Step response model is transfer function model.

- **Popular**: available characteristic for many process systems.
- **Disturbance**: difference between model output & measured output.

- > MPC model is linear model.
- > MPC is discrete model
- Faster sample rate or slow sample rate are not good
- State space model
- > Transfer function model
- Step response model

BASIC THEORY OF THE MODEL PREDICTIVE CONTROL (MPC): PART I

[17/10/2019]

- > Main components of MPC
- > Modelling of MPC
- MPC with state space model
- > MPC with Carima model

Discrete state space model:

- \square Assume 1: D=0.
- Assume 2:
 - n_x states for x;
 - m_{ν} inputs for ν
 - m_{ν} outputs for y.

We need these assumes

- One-step ahead prediction models,
 - Given data at sample k,
 - Determine data at sample k+1.

$$y_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + d_k$$

$$y_{k+1} = Cx_{k+1} + d_{k+1}$$

$$y_{k+1} = CAx_k + CBu_k + d_{k+1}$$

☐ Assume of disturbance:

$$d_{k} = d_{k+1}$$

$$\downarrow \downarrow$$

$$y_{k+1} = CAx_{k} + CBu_{k} + d_{k}$$

 \square One-step prediction can find <u>n-step</u> prediction <u>recursively</u>:

Expanding prediction of *x*

$$x_{k+1} = Ax_k + Bu_k$$

$$x_{k+2} = A(Ax_k + Bu_k) + Bu_{k+1}$$

$$x_{k+3} = A[(Ax_k + Bu_k) + Bu_{k+1}] + Bu_{k+2}$$

$$x_{k+4} = A\{ [(Ax_k + Bu_k) + Bu_{k+1}] + Bu_{k+2}\} + Bu_{k+3}$$

☐ Expanding the out:

$$x_{k+1} = Ax_k + Bu_k$$

$$x_{k+2} = A^2 x_k + AB u_k + B u_{k+1}$$

$$x_{k+3} = A^3 x_k + A^2 B u_k + A B u_{k+1} + B u_{k+2}$$

$$x_{k+4} = A^{4}x_{k} + A^{3}Bu_{k} + A^{2}Bu_{k+1} + ABu_{k+2} + Bu_{k+3}$$

The pattern is obvious.

 \square n-step ahead prediction of x is:

$$x_{k+n} = A^{n}x_{k} + A^{n-1}Bu_{k} + A^{n-2}Bu_{k+1} + \dots + A^{1}Bu_{k+n-2} + A^{0}Bu_{k+n-1}$$

 \square n-step ahead prediction of y is:

$$y_{k+n} = Cx_{k+n} + d_{k+n}$$

$$d_k = d_{k+n}$$

$$y_{k+n} = C\left(A^n x_k + A^{n-1}Bu_k + A^{n-2}Bu_{k+1} + \dots + A^1Bu_{k+n-2} + A^0Bu_{k+n-1}\right) + d_{k+n}$$

$$y_{k+n} = CA^n x_k + C\left(A^{n-1}Bu_k + A^{n-2}Bu_{k+1} + \dots + A^1Bu_{k+n-2} + A^0Bu_{k+n-1}\right) + d_k$$

- Mixed up **past** and **future** data;
- > Be careful with **notation**;
- ➤ Be careful with **predictions** construction;

SIMPLIFICATION 1: DOUBLE SUBSCRIPT

Prediction notation: Double subscript

- ☐ Double subscript:
- the 1st term: sample of the prediction (how many steps ahead);
- the 2nd term: sample at which the prediction was made.

Example:

Prediction of *x* at sample (*k*+4) where prediction was made at sample (*k*)

$$y_{k+6|k+2}$$

Prediction of y at sample (k+6) where prediction was made at sample (k+2)

Application of the double subscript

 \square Expression of the *n*-step ahead prediction is:

$$x_{k+n} = A^{n}x_{k} + A^{n-1}Bu_{k} + A^{n-2}Bu_{k+1} + \dots + A^{1}Bu_{k+n-2} + A^{0}Bu_{k+n-1}$$

$$\bigcup_{k=0}^{n} \text{Double subscript}$$

$$x_{k+n|k} = A^n x_{k|k} + A^{n-1} B u_{k|k} + A^{n-2} B u_{k+1|k} + \dots + A B u_{k+n-2|k} + B u_{k+n-1|k}$$

$$y_{k+n|k} = CA^{n}x_{k|k} + C\left(A^{n-1}Bu_{k|k} + A^{n-2}Bu_{k+1|k} + \ldots + ABu_{k+n-2|k} + Bu_{k+n-1|k}\right) + d_{k}$$

Double subscript: a value is 'in the future' as opposed to known.

Splitting unknown and known parts

☐ Separate predictions into known and unknown parts (convenient).

$$y_{k+n|k} = CA^{n}x_{k|k} + C\left(A^{n-1}Bu_{k|k} + A^{n-2}Bu_{k+1|k} + \dots + ABu_{k+n-2|k} + Bu_{k+n-1|k}\right) + d_{k}$$

$$y_{k+n|k} = \left(CA^{n} x_{k|k} + d_{k} \right) + \left[C \left(A^{n-1} B u_{k|k} + A^{n-2} B u_{k+1|k} + \ldots + A B u_{k+n-2|k} + B u_{k+n-1|k} \right) \right]$$

Known based on the current and past measurement

<u>Unknown</u> as based on the **future** input choices which remain to be decided

Aim: choose 'unknown' inputs to ensure prediction is satisfactory.

SIMPLIFICATION 2: VECTOR OF VECTORS

☐ Vector of vectors: A simple arrow notation captures a set of predictions.

Applications of vector of vectors

☐ Using the 'arrow' notation:

$$\underline{x}_{k+1} = \begin{bmatrix} x_{k+1|k} \\ x_{k+2|k} \\ \vdots \\ x_{k+n|k} \end{bmatrix} = \begin{bmatrix} Ax_k + Bu_{k|k} \\ A^2x_k + ABu_{k|k} + Bu_{k+1|k} \\ \vdots \\ A^nx_k + A^{n-1}Bu_{k|k} + A^{n-2}Bu_{k+1|k} + \dots + ABu_{k+n-2|k} + Bu_{k+n-1|k} \end{bmatrix}$$

☐ Separating into past and decision variables gives:

$$\underline{x}_{k+1} = \begin{bmatrix} Ax_k \\ A^2x_k \\ \vdots \\ A^nx_k \end{bmatrix} + \begin{bmatrix} Bu_{k|k} \\ ABu_{k|k} + Bu_{k+1|k} \\ \vdots \\ A^{n-1}Bu_{k|k} + A^{n-2}Bu_{k+1|k} + \dots + ABu_{k+n-2|k} + Bu_{k+n-1|k} \end{bmatrix}$$

2019/10/17

SIMPLIFICATION EXAMPLE

Combine predictions and notation

Using matrix multiplication:

$$\underline{x}_{k+1} = \begin{bmatrix} Ax_k \\ A^2x_k \\ \vdots \\ A^nx_k \end{bmatrix} + \begin{bmatrix} Bu_{k|k} \\ ABu_{k|k} + Bu_{k+1|k} \\ \vdots \\ A^{n-1}Bu_{k|k} + A^{n-2}Bu_{k+1|k} + \dots + ABu_{k+n-2|k} + Bu_{k+n-1|k} \end{bmatrix}$$

A, B are model / prediction parameters

$$\underline{x}_{k+1} = \begin{bmatrix} A \\ A^{2} \\ \vdots \\ A^{n} \end{bmatrix} \cdot x_{k} + \begin{bmatrix} B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A^{n-1}B & A^{n-2}B & \dots & B \end{bmatrix} \cdot \begin{bmatrix} u_{k|k} \\ u_{k+1|k} \\ \vdots \\ k+n-1|k \end{bmatrix}$$

Decision variables

Giving compact names:

Compact output prediction notation

Output predictions follow a similar method.

$$y_{k+n|k} = \left(CA^n x_{k|k} + d_k \right) + \left[C \left(A^{n-1} B u_{k|k} + A^{n-2} B u_{k+1|k} + \ldots + A B u_{k+n-2|k} + B u_{k+n-1|k} \right) \right]$$

$$\underline{y}_{k+1} = \begin{bmatrix} CA \\ CA^{2} \\ \vdots \\ CA^{n} \end{bmatrix} \cdot x_{k} + \begin{bmatrix} CB & 0 & \dots & 0 \\ CAB & CB & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ CA^{n-1}B & CA^{n-2}B & \dots & CB \end{bmatrix} \cdot \begin{bmatrix} u_{k|k} \\ u_{k+1|k} \\ \vdots \\ u_{k+n-1|k} \end{bmatrix} + \begin{bmatrix} d_{k} \\ d_{k} \\ \vdots \\ d_{k} \end{bmatrix}$$

$$\underbrace{Ld_{k}}$$

$$\underline{y}_{k+1} = (P \cdot x_k + Ld_k) + H \cdot \underline{u}_k$$

Depends on **past**

Depends upon decision variables

☐ The overall prediction is expressed in a simple way

- State space model can use a compact form for all prediction horizons.
- Predictions separate into a known and decision variables parts.

BASIC THEORY OF THE MODEL PREDICTIVE CONTROL (MPC): PART I

[17/10/2019]

- > Main components of MPC
- > Modelling of MPC
- > MPC with state space model
- > MPC with Carima model

2019/10/17

- Carima model is transfer function model.
- Only SISO system is considered

☐ Transfer function model with MPC is so called CARIMA Model.

- Uncertainty is included
- Slowly varying disturbances is considered
- \succ T(z) is treated as a design parameters

One-step ahead prediction models: Given data at sample k, Determine data at sample k+1.

$$a(z)y_{k+1} = b(z)u_{k+1} + T(z)\frac{\varsigma_k}{\Delta} = b(z)u_{k+1} + d_k$$

$$a(z) = 1 + a_1z^{-1} + a_2z^{-2} + \dots + a_nz^{-n}$$

$$b(z) = b_1z^{-1} + b_2z^{-2} + \dots + b_mz^{-m}$$

$$y_{k+1} + a_1y_k + \dots + a_ny_{k-n+1} = b_1u_k + b_2u_{k-1} + \dots + b_mu_{k-m+1} + d_k$$

$$y_{k+1} = b_1u_k + b_2u_{k-1} + \dots + b_mu_{k-m+1} + d_k - a_1y_k - \dots - a_ny_{k-n+1}$$

This slides will not use the double subscript notation of $y_{\underline{k+1}|\underline{k}}$ as the meaning is already clear

Significance of CARIMA model

□ CARIMA model incorporates a disturbance estimate → can give unbiased predictions.

$$a(z)y_{k} = b(z)u_{k} + T(z)\frac{\varsigma_{k}}{\Delta}$$

$$\downarrow \qquad \qquad \downarrow$$

$$a(z)\Delta y_{k} = b(z)\Delta u_{k} + T(z)\varsigma_{k}$$

The incremental form is used for predictions

Based on changes rather than absolute values

Simplification of CARIMA model

☐ Simply: <u>assumes</u> that the future <u>'random' term is zero</u>.

One step predication with simplified model

One-step ahead prediction models: Given data at sample k, Determine data at sample k+1.

$$A(z) y_{k} = b(z)\Delta u_{k}$$

$$A(z) = a(z)\Delta$$

$$A(z) = 1 + A_{1}z^{-1} + \dots + A_{n}Z^{-n}$$

$$b(z) = b_{1}z^{-1} + b_{2}z^{-2} + \dots + b_{m}z^{-m}$$

$$y_{k+1} + A_{1}y_{k} + \dots + A_{n}y_{k-n+1} = b_{1}\Delta u_{k} + b_{2}\Delta u_{k-1} + \dots + b_{m}\Delta u_{k-m+1}$$

$$y_{k+1} = b_{1}\Delta u_{k} + b_{2}\Delta u_{k-1} + \dots + b_{m}\Delta u_{k-m+1} - A_{1}y_{k} - \dots - A_{n}y_{k-n+1}$$

No need for a disturbance estimate in this prediction model as within the use of increments

n step predication with simplified model

n-step ahead prediction can be obtained by one-step ahead prediction with recursively:

$$\underbrace{y_{k+1}} + A_1 y_k + \dots + A_n y_{k-n+1} = b_1 \Delta u_k + b_2 \Delta u_{k-1} + \dots + b_m \Delta u_{k-m+1}$$

$$(v_{k+2}) + A_1 v_{k+1} + \dots + A_n y_{k-n+2} = b_1 \Delta u_{k+1} + b_2 \Delta u_k + \dots + b_m \Delta u_{k-m+2}$$

$$y_{k+3} + A_1 y_{k+2} + \dots + A_n y_{k-n+3} = b_1 \Delta u_{k+2} + b_2 \Delta u_{k+1} + \dots + b_m \Delta u_{k-m+3}$$

$$y_{k+3} + A_1 y_{k+2} + \dots + A_n y_{k-n+3} = b_1 \Delta u_{k+2} + b_2 \Delta u_{k+1} + \dots + b_m \Delta u_{k-m+3}$$

$$y_{k+4} + A_1 y_{k+3} + \dots + A_n y_{k-n+4} = b_1 \Delta u_{k+3} + b_2 \Delta u_{k+2} + \dots + b_m \Delta u_{k-m+4}$$

- \square Use the one step ahead to find y_{k+1} ,
- \square Substitute y_{k+1} into the next equation to find y_{k+2} ,
- \square Use y_{k+1} and y_{k+2} to find y_{k+3} ,
- \square Keep iterating through to y_{k+n} .

98

$$y_{k+1} + A_1 y_k + \dots + A_n y_{k-n+1} = b_1 \Delta u_k + b_2 \Delta u_{k-1} + \dots + b_m \Delta u_{k-m+1}$$

$$y_{k+2} + A_1 y_{k+1} + \dots + A_n y_{k-n+2} = b_1 \Delta u_{k+1} + b_2 \Delta u_k + \dots + b_m \Delta u_{k-m+2}$$

$$y_{k+3} + A_1 y_{k+2} + \dots + A_n y_{k-n+3} = b_1 \Delta u_{k+2} + b_2 \Delta u_{k+1} + \dots + b_m \Delta u_{k-m+3}$$

$$y_{k+4} + A_1 y_{k+3} + \dots + A_n y_{k-n+4} = b_1 \Delta u_{k+3} + b_2 \Delta u_{k+2} + \dots + b_m \Delta u_{k-m+4}$$

There are 4 unknowns and $4 \text{ equations} \rightarrow \text{can solve}$.

Separates future and past variables for the outputs.

$$y_{k+1} + A_1 y_k + \dots + A_n y_{k-n+1}$$

$$y_{k+2} + A_1 y_{k+1} + \dots + A_n y_{k-n+2}$$

$$y_{k+3} + A_1 y_{k+2} + \dots + A_n y_{k-n+3}$$

$$y_{k+4} + A_1 y_{k+3} + \dots + A_n y_{k-n+4}$$

$$= C_A \begin{bmatrix} y_{k+1} \\ y_{k+2} \\ y_{k+3} \\ y_{k+4} \end{bmatrix} + H_A \begin{bmatrix} y_k \\ y_{k-1} \\ \vdots \\ y_{k-n+1} \end{bmatrix}$$
Future

Past

$$C_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ A_{1} & 1 & 0 & 0 \\ A_{2} & A_{1} & 1 & 0 \\ A_{3} & A_{2} & A_{1} & 1 \end{bmatrix} \qquad H_{A} = \begin{bmatrix} A_{1} & A_{2} & \cdots & A_{n-4} & A_{n-3} & A_{n-2} & A_{n-1} & A_{n} \\ A_{2} & A_{3} & \cdots & A_{n-3} & A_{n-2} & A_{n-1} & A_{n} & 0 \\ A_{3} & A_{4} & \cdots & A_{n-2} & A_{n-1} & A_{n} & 0 & 0 \\ A_{4} & A_{5} & \cdots & A_{n-1} & A_{n} & 0 & 0 \end{bmatrix}$$

$$y_{k+1} + A_1 y_k + \dots + A_n y_{k-n+1} = b_1 \Delta u_k + b_2 \Delta u_{k-1} + \dots + b_m \Delta u_{k-m+1}$$

$$y_{k+2} + A_1 y_{k+1} + \dots + A_n y_{k-n+2} = b_1 \Delta u_{k+1} + b_2 \Delta u_k + \dots + b_m \Delta u_{k-m+2}$$

$$y_{k+3} + A_1 y_{k+2} + \dots + A_n y_{k-n+3} = b_1 \Delta u_{k+2} + b_2 \Delta u_{k+1} + \dots + b_m \Delta u_{k-m+3}$$

$$y_{k+4} + A_1 y_{k+3} + \dots + A_n y_{k-n+4} = b_1 \Delta u_{k+3} + b_2 \Delta u_{k+2} + \dots + b_m \Delta u_{k-m+4}$$

There are 4 unknowns and $4 \text{ equations} \rightarrow \text{can solve}$.

Reshape the control variables expression

☐ Separates future and past control variables.

$$b_{1}\Delta u_{k} + b_{2}\Delta u_{k-1} + \dots + b_{m}\Delta u_{k-m+1}$$

$$b_{1}\Delta u_{k+1} + b_{2}\Delta u_{k} + \dots + b_{m}\Delta u_{k-m+2}$$

$$b_{1}\Delta u_{k+2} + b_{2}\Delta u_{k+1} + \dots + b_{m}\Delta u_{k-m+3}$$

$$b_{1}\Delta u_{k+3} + b_{2}\Delta u_{k+2} + \dots + b_{m}\Delta u_{k-m+4}$$
Future
$$C_{b}\begin{bmatrix} \Delta u_{k} \\ \Delta u_{k+1} \\ \Delta u_{k+2} \\ \Delta u_{k+3} \end{bmatrix} + H_{b}\begin{bmatrix} \Delta u_{k-1} \\ \Delta u_{k-2} \\ \vdots \\ \Delta u_{k-m+1} \end{bmatrix}$$
Future
Past

$$C_{b} = \begin{bmatrix} b_{1} & 0 & 0 & 0 \\ b_{2} & b_{1} & 0 & 0 \\ b_{3} & b_{2} & b_{1} & 0 \\ b_{4} & b_{3} & b_{2} & b_{1} \end{bmatrix} \qquad H_{b} = \begin{bmatrix} b_{2} & b_{3} & \cdots & b_{m-4} & b_{m-3} & b_{m-2} & b_{m-1} & b_{m} \\ b_{3} & b_{4} & \cdots & b_{m-3} & b_{m-2} & b_{m-1} & b_{m} & 0 \\ b_{4} & b_{5} & \cdots & b_{m-2} & b_{m-1} & b_{m} & 0 & 0 \\ b_{5} & b_{6} & \cdots & b_{m-1} & b_{m} & 0 & 0 & 0 \end{bmatrix}$$

☐ Compact description of the entire predictions.

□ Re-introduce the arrow notation as:

$$C_A \cdot \underline{y}_{k+1} + H_A \cdot \underline{y}_k = C_b \cdot \Delta \underline{u}_k + H_b \cdot \Delta \underline{u}_{k-1}$$

Output predictions can be solved as:

☐ Simplify the expression.

$$A(z)y_k = b(z)\Delta u_k$$
 $a(z) = 1 - 0.8z^{-1}$ $b(z) = 2z^{-1} + z^{-2}$

$$a(z) = 1 - 0.8z^{-1}$$

$$b(z) = 2z^{-1} + z^{-2}$$

Using the definition of the prediction matrices and a horizon of 4.

$$a(z) = 1 - 0.8z^{-1}$$

$$\Delta = 1 - Z^{-1}$$

$$A_2 A_{3,4...} = 0$$

$$A_3 A_{3,4...} = 0$$

$$C_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ A_{1} & 1 & 0 & 0 \\ A_{2} & A_{1} & 1 & 0 \\ A_{3} & A_{2} & A_{1} & 1 \end{bmatrix} \Longrightarrow C_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1.8 & 1 & 0 & 0 \\ 0.8 & -1.8 & 1 & 0 \\ 0 & 0.8 & -1.8 & 1 \end{bmatrix}$$

$$H_{A} = \begin{bmatrix} A_{1} & A_{2} \\ A_{2} & A_{3} \\ A_{3} & A_{4} \\ A_{4} & A_{5} \end{bmatrix} \longrightarrow H_{A} = \begin{bmatrix} -1.8 & 0.8 \\ 0.8 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A(z)y_k = b(z)\Delta u_k$$
 $a(z) = 1 - 0.8z^{-1}$ $b(z) = 2z^{-1} + z^{-2}$

$$a(z) = 1 - 0.8z^{-1}$$

$$b(z) = 2z^{-1} + z^{-2}$$

Using the definition of the prediction matrices and a horizon of 4.

$$b(z) = 2z^{-1} + z^{-2} + 0$$
 $\implies b_1 = 2$ $b_2 = 1$ $b_{3,4...} = 0$

$$C_b = egin{bmatrix} b_1 & 0 & 0 & 0 \ b_2 & b_1 & 0 & 0 \ b_3 & b_2 & b_1 & 0 \ b_4 & b_3 & b_2 & b_1 \end{bmatrix} \qquad igodits C_b = egin{bmatrix} 2 & 0 & 0 & 0 \ 1 & 2 & 0 & 0 \ 0 & 1 & 2 & 0 \ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$H_b = \begin{bmatrix} b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} \qquad \Longrightarrow \qquad H_b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A(z)y_k = b(z)\Delta u_k$$
 $a(z) = 1 - 0.8z^{-1}$ $b(z) = 2z^{-1} + z^{-2}$

$$a(z) = 1 - 0.8z^{-1}$$

$$b(z) = 2z^{-1} + z^{-2}$$

Using the definition of the prediction matrices and a horizon

of 4.

$$\underbrace{y_{k+1} = H \cdot \Delta \underline{u}_{k} + \left(P \cdot \Delta \underline{u}_{k-1} - Q \cdot \underline{y}_{k}\right)}_{H = C_{A}^{-1}C_{b}} + \underbrace{P = C_{A}^{-1}H_{b}}_{P = C_{A}^{-1}H_{b}} \quad Q = C_{A}^{-1}H_{A}$$

$$C_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1.8 & 1 & 0 & 0 \\ 0.8 & -1.8 & 1 & 0 \\ 0 & 0.8 & -1.8 & 1 \end{bmatrix}$$

$$H_A = \begin{bmatrix} -1.8 & 0.8 \\ 0.8 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C_b = egin{bmatrix} 2 & 0 & 0 & 0 \ 1 & 2 & 0 & 0 \ 0 & 1 & 2 & 0 \ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$H_b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

109

- ➤ Understand the concept of the MPC main components and their selection rules
- ➤ Understand the Modelling of the MPC
- ➤ Understand MPC with state space model
- ➤ Understand MPC with Carima model

Thank you!

Jackzhang@ntu.edu.sg

