

ICVGIP 2022

# Quaternion Factorized Simulated Exposure Fusion

Saurabh Saini & P. J. Narayanan



### Low Light Enhancement (LLE): Enhance

a poorly illuminated input image into a well-lit result.





Simulated Exposure Fusion (SEF): Render virtual exposure stack from the single image

 $\rightarrow$  global enhancement  $\rightarrow$  merge using Exposure Fusion (EF) algorithms.







### **QFSEF:** Iterative *Quaternion RPCA factorization* for progressive specularity removal & SEF.



### **Quaternion Image Representation:**

- 4D Hypercomplex universal algebra
- Non-commutative

$$i^{2} = j^{2} = k^{2} = i.j.k = -1$$
  
 $i.j = k;$   $j.k = i;$   $k.i = j$   
 $i.k = -j;$   $j.i = -k;$   $k.j = -i$ 

- Pure Quaternion space (scalar = 0)
- Direct Mapping:
  - $R \rightarrow i \qquad G \rightarrow j \qquad B \rightarrow k$
- **Motivation:** 
  - Geometric color space representation
  - Inter-channel correlation
  - $3D \rightarrow 2D$  matrix (no vector calculus)
  - Spatial and inter-color spectral analysis
  - Complex algorithms
- **Apps:** inpainting, saliency, smoothing, edge detection, segmentation, denoising etc.

### Layer Factorization: Split image into multiple illumination consistent layers.

 $I = I_{\text{specular}} + I_{\text{diffuse}}$ 

**Robust Principle Component Analysis (RPCA):** 

I = E + Awhere A: low-rank & E: sparse  $argmin ||A||^* + \lambda ||E||^1$  s.t. I = A + ESolved by *Quaternion Principle Component Pursuit* 

**Iterative Factorization:** 

$$I = E_1 + A_1 = E_1 + (E_2 + A_2) = E_1 + E_2 + (E_3 + A_3) = \sum_i^K E_i$$







Factors  $(E_i)$ 





Residues  $(E_{i+1} - E_i)$ 



## Stack Simulation: Clean & Combine factors.

- Post Processing:
  - a) Layer Grouping: ( $\tau = 1\%$  of I energy)
  - Outlier Removal: (>99.9 & <0.1 %-ile)
  - Luminance Normalization: (0-mi)
- Combine

$$S_{i+1} = (1 - \alpha).S_i + \alpha.E_i$$
, where  $i \in [0, K] \& S_0 = I$ 

### Exposure Fusion: Fuse simulated stack images.

- Direct  $(I_D)$
- Laplacian Pyramid Fusion  $(I_l)$
- Generalized Random Walk Fusion ( $I_G$ )







18











|       |        |       |      | 1     |    |
|-------|--------|-------|------|-------|----|
| Input | DCENet | LPNet | UNIE | QFSEF | GT |



| Variants<br>→     | real RPCA $v_1$ | w/o Denoise $v_2$ | w/o LNorm.  v <sub>3</sub> | Full $v_4$   |
|-------------------|-----------------|-------------------|----------------------------|--------------|
| $I_D$ $I_L$ $I_G$ | 12.83 - 0.5     | 18.35 - 0.6       | 20.86 - 0.75               | 20.39 - 0.77 |
|                   | 14.54 - 0.56    | 18.14 - 0.59      | 20.11 - 0.76               | 19.28 - 0.75 |
|                   | 12.66 - 0.48    | 15.83 - 0.53      | 17.48 - 0.69               | 17.72 - 0.70 |

Number of Simulated Images

### **Summary:**

- Novel single image exposure fusion method.
- Novel iterative quaternion **RPCA** factorization scheme for exposure stack simulation.
- Qualitative & quantitative SOTA comparisons on multiple datasets.
- Ablation analysis with multiple variants.

## **Future Work:**

- Simulations for LLE self-supervision.
- End-to-end unrolled LLE.
- Beyond LLE: relighting, shadow removal, white balancing, object compositing, image harmonization etc.

