Human activity recognition using accelerometer data from wearable sensors

CS 6200 Project Presentation By:

Binod Thapa Chhetry

Lijo Daniel

Meera Udani

Sanjiv Kumar

(KClosestNeighbors)

Outline

- Introduction
- Motivation & Goals
- Problem Definition
- Data Mining Steps
- Results and Evaluation
- Conclusion

- What is human activity recognition?
 - Recognizing multiple sets of daily human activities under real-world condition.
- What devices are being used to collect data for human activities recognition?
 - Smartphones
 - Wearable devices
- Each of these devices have built in accelerometer (biaxial/triaxial) that keeps track of human body movement in x,y,z axes.
- Device we are using?
 - Wocket accelerometer (+- 4g, sampling rate=90Hz)

- Wocket accelerometer contains a triaxial accelerometer, a microprocessor, a Bluetooth transmitter and a rechargeable battery.
- These are sufficiently small and can be comfortably worn on all body locations at the same time.

• Raw accelerometer data is acquired and sent using the bluetooth to a

smartphone.

Wocket connected to a charger

• Analyze and understand the process of commercial wearable devices

Commercially available physical activity recognition system like Fitbit, Nike+ FuelBand etc.
 are widely used but their algorithm has not been validated i.e. it's still a black hox system.

 In this project, we report our efforts to recognize human activities by working on similar raw accelerometer data.

By doing so, we gain in-depth understanding of the activity classification system, and provide recommendation based on our findings.

- Applications of these devices in industries such as:[Lockhart et al. 2012]
 - Health: Fitness Tracking, Health monitoring, fall detection
 - Social: Share your fitness activities on social networking sites like Facebook etc.
 - Lifestyle : Context-aware behaviours
 - Targeted Advertising: Advertisement based on user activities.
 - Corporate Management and Accounting.

Goals:

- Classifying user's daily activities by analyzing and processing raw data from wocket accelerometer.
- Suggest best possible position for sensor placement based on the accuracy.
- Suggest best combination of sensor placement sites to classify activities.

- We are working on this project to recognize few of the most important everyday human activities:
 - Walking
 - Cycling
 - Lying on back
 - Sitting
- Accelerometer are placed at five body locations at the same time.
 - Dominant Upper-Arm
 - Dominant Wrist
 - Dominant Hip
 - Dominant Thigh
 - Dominant Ankle
- These placement sites were selected because of their relevance in exercise monitoring research.[Mannini et al. 2013]

- Dataset: We have raw data set from 33 participants. For each participant we have following files:
 - Annotations.csv
 - Wocket.csv (A total of 5 files for each sensor location)
- Demographics: 33 participants
 - 11 Male, 22 Female, age :18-75, height: 168.5 +/- 9.3cm, weight: 70.0 +/- 15.6 kg

STARTTIME	ENDTIME	activity
12-02-2009 10:38	12-02-2009 10:39	sitting
12-02-2009 10:39	12-02-2009 10:40	cycling:-70-rpm50-watts7-kg
12-02-2009 10:40	12-02-2009 10:43	walking:-natural
12-02-2009 10:43	12-02-2009 10:45	lying

Time Stamp	X	Υ	Z
1.25975E+12	427	434	434
1.25975E+12	486	510	420
1.25975E+12	481	477	423
1.25975E+12	475	490	422

Plotting x,y,z acceleration values for sitting and lying activities for sensor position at upper-arm

We have data from 33 participants. Let's consider the preprocessing process for one subject

Features Extraction Methodology

[Mannini et al. 2013]

FirsDomFre_per_TotPow

Mean Signal Magnitude for each sensor site

[Mannini et al. 2013]

- As the last step of processing the data, we formed following datasets to meet our goal:
 - Grouped the entire dataset of 33 participants as per the sensor positions.
 - A separate dataset having 33 files, where each file corresponds to a participant.
- Univariate feature selection based on ANOVA : removed features related to SMV percentile

- Algorithms used:
 - Random Forest [Ho. et al. 1995]
 - Random Forests are ensemble learning algorithms for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes.
 - k-Nearest Neighbors (k-NN) [Keller, J.M et al. 1985]
 - The k-NN algorithm is among the simplest of all machine learning algorithms. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small).
- We employed "grid-search" to identify the best parameters suited for above mentioned algorithms.
 - For Random Forest: Number of Trees ranges from numOfTrees(50-200), InfoGain (entropy), all features used
 - For k-NearestNeighbors: Value of k varied from 9 11, uniform weight, euclidean distance

Evaluation:

- We used the following methods to evaluate our model
 - 10-Fold Cross Validation
 - Leave-One-Subject-Out (LOSO): simulating a real-life situation
- Outcome measures included Accuracy, Precision, Recall, and F1-score.

Confusion matrix after LOSO CV based on Dominant Wrist data:

18

Confusion matrix after LOSO CV based on Dominant Upper arm data:

k-NN

Confusion matrix after LOSO CV based on Dominant Thigh data:

k-NN

Confusion matrix after LOSO CV based on Dominant Ankle data:

21

Confusion matrix after LOSO CV based on Dominant Hip data:

Evaluation Results:

Classifier	CV	Sensor Position	Walking	Cycling	Sitting	Lying
Random LOSO Forest	LOSO	Dominant- Wrist	88.76%	80.24%	91.89%	50.83%
		Dominant- Hip	93.95%	88.47%	95.47%	80.45%
		Dominant- Thigh	95.52%	96.36%	93.01%	23.93%
		Dominant- Ankle	92.95%	88.86%	97.46%	75.90%
		Dominant- Upper-Arm	92.95%	91.37%	94.29%	65.32%
kNN	3	Dominant- Wrist	85.58%	56.68%	85.36%	41.12%
		Dominant- Hip	93.69%	89.48%	95.50%	40.29%
		Dominant- Thigh	95.20%	90.84%	94.93%	11.96%
		Dominant- Ankle	93.26%	91.32%	97.67%	51.40%
		Dominant- Upper-Arm	91.37%	77.59%	94.22%	39.05%

Evaluation Results:

Classifier	CV	Sensor Position	Walking	Cycling	Sitting	Lying
Random Forest	10-Fold	Dominant- Wrist	87.93%	78.04%	90.98%	47.73%
		Dominant- Hip	94.97%	91.39%	95.45%	80.46%
		Dominant- Thigh	95.55%	98.19%	91.18%	25.69%
		Dominant- Ankle	95.07%	86.26%	98.07%	75.44%
		Dominant- Upper-Arm	94.14%	94.53%	94.78%	60.73%
kNN		Dominant- Wrist	83.27%	60.44%	83.58%	36.93%
		Dominant- Hip	94.17%	89.87%	95.74%	45.86%
		Dominant- Thigh	95.54%	92.40%	92.54%	16.02%
		Dominant- Ankle	93.85%	90.63%	96.58%	53.65%
		Dominant- Upper-Arm	90.78%	79.52%	92.93%	39.78%

 Combining data from the top two placement sites, Dominant-Hip and Dominant-Ankle

	Walking	Cycling	Sitting	Lying
Precision	0.95429058	0.899217	0.956576	0.879931
Recall	0.9537383	0.887182	0.979197	0.874007
F1	0.95011728	0.887496	0.966129	0.862288
Accuracy	0.953738298	0.887182	0.979197	0.90132

 Thus, we can see in the above table that combining data from Dominant-Hip and Dominant-Ankle improved overall outcome measures.

- Predictive features: Mean, St. deviation, Median, along with Frequency domain features extracted from signal magnitude vector.
- For both LOSO and 10-fold CV, RF performed better than k-NN.
- Data from dominant-hip was the most discriminative in classification, followed by dominant-ankle.
- We recommend combination of both sites for improved classification.

References cited:

- Lockhart, J.W.; Pulickal, T.; Weiss, G.M. Applications of mobile activity recognition. Proceedings of the 14th ACM
 International Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1054–1058
- Mannini A, Intille S S, Rosenberger M, Sabatini A M and Haskell W. Activity recognition using a single accelerometer placed at the wrist or ankle Med. Sci. Sports Exerc. 2013 45 2193–203
- Ho, T.K. Random *Decision Forests*. Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–282.
- Keller,J.M, Gray,M.R, Givens,J.A k-NearestNeighbor. IEEE Transactions on Systems Man and Cybernetics 07/1985; SMC-15(4). DOI: 10.1109/TSMC.1985.6313426

Thank You

Questions?