Trust Aware Recommendation Systems

Problem

(a) Social Network Graph

	i_1	i_2	i ₃	i ₄	i ₅	i ₆	i_7	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

(b) User-Item Matrix

	i_1	i_2	i ₃	i ₄	i ₅	i ₆	i,	i ₈
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
u_3	4	1.7	2	3.2	3.9	3.0	2	4
u_4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5	5	1	2	3.4	4	3	1.5	4.6
u_6	4	3	2.9	2	4	3.4	3	5

(c) Predicted User-Item Matrix

Sorec

$$\min \sum_{i=1}^n \sum_{u_k \in \mathcal{F}_i} (\mathbf{S}_{ik} - \mathbf{U}_i^{\mathsf{T}} \mathbf{Z}_k)^2,$$

$$\begin{aligned} \min_{\mathbf{U}, \mathbf{V}, \mathbf{Z}} \| \mathbf{W} \odot (\mathbf{R} - \mathbf{U}^{\top} \mathbf{V}) \|_{F}^{2} + \alpha \sum_{i=1}^{n} \sum_{u_{k} \in \mathcal{F}_{i}} (\mathbf{S}_{ik} - \mathbf{U}_{i}^{\top} \mathbf{Z}_{k})^{2} \\ + \lambda (\| \mathbf{U} \|_{F}^{2} + \| \mathbf{V} \|_{F}^{2} + \| \mathbf{Z} \|_{F}^{2}), \end{aligned}$$

Testing

$$c_{ik}^* = \sqrt{\frac{d^-(v_k)}{d^+(v_i) + d^-(v_k)}} \times c_{ik}, \tag{4}$$

where $d^+(v_i)$ represents the outdegree of node v_i , while $d^-(v_k)$ indicates the indegree of node v_k .

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \widehat{r}_{i,j}|}{N},$$

- 80% Train, 20% Test
- With weight : MAE: 0.93
- Without weight: MAE: 0.87

Testing

• 80% Train, 20% Test

$$f(x) = (x-1)/(R_{max}-1)$$
. : 0.87

$$f(x) = x/R_{max} 0.83$$

Time and Efficiency

User/Items	Time: Initially	Time: After
7000/21000	10-12 Hours	20 Sec

Time and Efficiency

Users/Items	Run Time	Mean Absolute Error	MAE in paper	Training Data
49290/139738	29 min	0.82	0.90	99%
49290/139738	26 min	0.83	0.932	80%
7000/21000	20 sec	0.93	0.932	80%
3000/9000	5 sec	0.90	0.932	80%
7000/21000	20 sec	0.88	0.90	99%
3000/9000	4 sec	0.87	0.90	99%

$$\hat{\mathbf{R}}_{ij} = \mathbf{u}_i^{\mathsf{T}} \mathbf{v}_j + \beta \sum_{u_k \in \mathcal{F}_i} \mathbf{S}_{ik} \mathbf{U}_k^{\mathsf{T}} \mathbf{V}_j,$$

$$\min_{\mathbf{U},\mathbf{V}}\|\mathbf{W}\odot((\mathbf{R}-\mathbf{U}^{\top}\mathbf{V})-\beta\mathbf{S}\mathbf{U}^{\top}\mathbf{V}))\|_F^2+\lambda(\|\mathbf{U}\|_F^2+\|\mathbf{V}\|_F^2).$$

$$\mathcal{L}(R, S, U, V)$$

$$= \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}))^{2}$$

$$+ \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}, \qquad (13)$$

$$\frac{\partial \mathcal{L}}{\partial U_{i}} = \alpha \sum_{j=1}^{n} I_{ij}^{R} g'(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) V_{j}
\times (g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) - R_{ij})
+ (1 - \alpha) \sum_{p \in \mathcal{B}(i)} \sum_{j=1}^{n} I_{pj}^{R} g'(\alpha U_{p}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(p)} S_{pk} U_{k}^{T} V_{j})
\times (g(\alpha U_{p}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(p)} S_{pk} U_{k}^{T} V_{j}) - R_{pj}) S_{pi} V_{j} + \lambda_{U} U_{i},
\frac{\partial \mathcal{L}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij}^{R} g'(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j})
\times (g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) - R_{ij})
\times (\alpha U_{i} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T}) + \lambda_{V} V_{j}, \tag{14}$$

Users/Items	Run Time	Mean Absolute Error	MAE in paper	Training Data
7000/21000	19m	0.93	0.859	80%
3000/9000	10m	0.93	0.859	80%
7000/21000	18m	0.90	0.837	90%
3000/9000	11 m	0.89	0.837	90%

Thanks!

Student Info:

P. Rishith Reddy 201401159

rishith.reddy@students.iiit.ac.in

