

## SISTEMA FAESA DE EDUCAÇÃO DESENVOLVIMENTO DA AULA

| Curso:      | ENGENHARIAS          | Ano/Semestre: 2019  |
|-------------|----------------------|---------------------|
| Disciplina: | CÁLCULO III          | Carga Horária: 80 H |
| Professor:  | KENNEDY SCOPEL GOMES | Turma:              |

| Objetivos Específicos                         | Detalhamento dos<br>Conteúdos<br>(Unidades e<br>Subunidades)                                                                                                                                                                        | C.h.<br>Previst<br>Unid. | Procedimentos de<br>Ensino                                                                                                       | Leituras/Atividades<br>Indicadas                                                                                                                    | Formas de Avaliação da<br>Aprendizagem                                                                                                       |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Compreender e aplicar o conceito de limite na | <ul> <li>1.1 Funções de duas ou mais variáveis;</li> <li>1.2 Limite e continuidade;</li> <li>1.3 Derivadas Parciais;</li> <li>1.4 Diferenciabilidade e Regra da Cadeia;</li> <li>1.5 Derivadas Direcionais e Gradientes;</li> </ul> | 22                       | Aulas expositivas interativas; atividades em trios  Utilização de materiais impressos ou postados no AVA;  Listas de exercícios. | Leituras: material<br>depositado no AVA;<br>Texto dos livros<br>constantes na<br>bibliografia;<br>Atividades de resolução<br>de problemas em grupo. | Serão avaliados na primeira prova (C1) os conteúdos de 1.1 a 1.6 e com valor de 0 a 7.  Atividades na plataforma digital AVA Valor de 0 a 3. |



| Objetivos específicos da Unidade 2  Compreender e aplicar conceitos e propriedades relativas às integrais iteradas em diversas situações de cálculo.  Aplicar integrais duplas e triplas em situações de cálculo de volume.  Aplicar integrais duplas e triplas em situações de cálculo de volume.  Compreender a necessidade da mudança de coordenadas cartesianas para outros tipos de coordenadas e aplicar as relações de transformações entre diferentes sistemas de coordenadas.  Aplicar a mudança de sistemas de coordenadas à resolução de problemas de integração.                                                                                | Unidade II - Integrais Múltiplas  2.1 Integração Múltipla;  2.2 Integrais repetidas e área do plano;  2.3 Integrais repetidas e volumes;  2.4 Integrais duplas, triplas e aplicações;  2.5 Mudança de variáveis: coordenadas polares;  2.6 Coordenadas cilíndricas e esféricas;  2.7 Integrais triplas em coordenadas cilíndricas e esféricas. | 22 | Aulas expositivas interativas; atividades em trios  Utilização de material impresso e depositado no AVA;  Listas de exercícios. | Leituras: material depositado no AVA;  Texto dos livros constantes na bibliografia;  Atividades de resolução de problemas em grupo. | Serão avaliados na primeira prova (C2) os conteúdos de 2.1 a 2.7 e com valor de 0 a 7.  Atividades na plataforma digital AVA Valor de 0 a 3. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Objetivos específicos da Unidade 3  • Associar vetores a pontos do espaço bi e tridimensional;  • Representar graficamente campos vetoriais;  • Reconhecer campos escalares e vetoriais e aplicar os conceitos de Cálculo vetorial à resolução de problemas.  • Compreender tópicos de Cálculo Vetorial que têm aplicação à Engenharia e à Física.  • Aplicar conceitos e propriedades da divergência e do rotacional à resolução de problemas;  • Resolver problemas referentes ao operador del;  • Resolver problemas que envolvam integrais de linha;  • Aplicar o teorema de à resolução de problemas  • Resolver problemas de integrais de superfície; | Unidade III – Tópicos de Cálculo Vetorial 3.1 Campos vetoriais; 3.2 Campos escalares; 3.3 Divergência e rotacional; 3.4 Operador del; 3.5 Integrais de linha; 3.6 Teorema de Green; 3.7 Integrais de superfície; 3.8 Teorema se Stokes                                                                                                         | 20 | Aulas expositivas interativas; atividades em trios  Utilização de material impresso e depositado no AVA;  Listas de exercícios. | Leituras: material depositado no AVA;  Texto dos livros constantes na bibliografia;  Atividades de resolução de problemas em grupo. |                                                                                                                                              |

|  | FSA |
|--|-----|
|  |     |

| Aplicar o teorema de Stokes.                                                                                                                                                                                                                                                                                                               |                                                                    |    |                                                                                                                                 |                                                                                                                                     |                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Objetivos específicos da Unidade 4  • Compreender e aplicar conceitos relativos às curvas parametrizadas no espaço bi e tri-dimensional;  • Interpretar a curvatura no espaço bidimensional;  • Desenvolver conceitos relativos às funções vetoriais;  Compreender tópicos de Funções vetoriais que têm aplicação à Engenharia e à Física. | tricas; 4.2 Funções vetoriais; 4.3 Derivadas de funções vetoriais; | 12 | Aulas expositivas interativas; atividades em trios  Utilização de material impresso e depositado no AVA;  Listas de exercícios. | Leituras: material depositado no AVA;  Texto dos livros constantes na bibliografia;  Atividades de resolução de problemas em grupo. | Serão avaliados na primeira prova (C3) os conteúdos de 3.1 a 4.8 e com valor de 0 a 7.  Atividades na plataforma digital AVA Valor de 0 a 3. |