

TwinTorque

The Humanoid Project

Details Team Members

Sr. No.	Name	Degree program	Year	Institution
1	Hanish Dhanwalkar	Btech-Mechanical	4	IIT Bombay
2	Siddhesh Choudari	Btech-Mechanical	4	IIT Bombay
3	Sahil Ravindra Patil	Btech-Aerospace	2	IIT Bombay
4	Haris Narrendran R	Btech-Engineering Physics	2	IIT Bombay

Problem Statement and Scope

Addressing the problem of efficient manufacturing with Autonomous Systems:

- Increased efficiency and flexibility of manufacturing processes
- Autonomous navigation and safe operation
- Environment perception and collaboration with human workers

Market Size Estimations & Indicators

- Target Market:
 - Manufacturing: useful in industries like automotive, electronics, etc. for repetitive tasks
 - Logistics: useful in warehouse for increased efficiency and reduced labor costs.
- Market Size Indicators:
 - Global Industrial Robot Market: The International Federation of Robotics (IFR) forecasts the global industrial robot market to reach \$110.3 billion by 2025
 - Collaborative Robots (Cobots): Cobots are designed to work safely alongside humans. This market is expected to reach \$16.6 billion by 2025
 - Mobile Robotics Market: Expanding rapidly due to the growing automation. This market is projected to reach \$114.4 billion by 2025

Target Market & Opportunity

User Segment:

- Manufacturing and Production:
 - Automotive: Assembly lines, parts handling, quality inspection
 - Electronics: Circuit board assembly, component placement
- Warehousing and Logistics:
 - E-commerce: Order picking, packing, palletizing
 - Distribution Centers: Material handling, inventory management, sorting

Value Addition:

- Increased Productivity
- Improved Efficiency
- Enhanced Safety

Work Progress

- Literature reviews on Dual arm robotics
 - Links to Papers in References slide
- Designed CAD models for robotic arms.
 - Researched about problem specifications and finalised the dimensions for the bot
 - Done topology optimisation and stress strain analysis

PLA 3D printed prototype

Work Progress

Mechanical Subdivision:

 Manufacturing robotic arm using 3D printing (in progress)

*video for 3d printing progress

Electronics Subdivision:

 Motor drivers, differential drive on ESP32

Work Progress

Controls and navigation:

- ROS 2 and gazebo simulations using turtle bot
- SLAM implementation (in progress)

Al and Perception:

- Using Stereo Camera for Perception
- Powered on Jetson Nano Developer kit for GPU acceleration for AI task load -> Object detection

Future Work

In next 2 Months:

- Completion of manufacturing robot parts
 - · Wheel Base, Torso manufacturing
- Hardware Software Integration
 - ROS setup on Jetson Nano kit with Object detection model
- Electronics
 - PCB designing (in progress)
 - Servos controls implementation
- Test trials and fine tuning

After the competition:

- Make market ready dual arm cargo bot (industry level)
 - Enhance performance using robust motors and industry grade electronics
 - perception using more sensors like Lidars
 - Using better material eg., Aluminium
- Explore Bipedal robotics for manufacturing industries

Challenges

- Precision manufacturing: Achieving the required precision while manufacturing the mechanical components, especially for intricate parts
- Strength and Durability issues with materials: PLA 3D printing is chosen due to its low costs but compromising on strength in turn compromising on the bot's structural integrity to handle the intended loads
- Electrical system integrations: PCB designing, wiring & connections, power management
- **Software development:** integration with hardware (jetson, arduinos) with software base (ROS2, python scripting)

References

- ROS Robots
 - JetAuto ROS Robot NVIDIA Developer
 - JetAuto Pro ROS Robot Car
- Papers on dual arm robots
 - <u>Dual-Arm Collaborative Robot for Future Smart Factories</u>
 - Robotized Assembly Using Dual Arm Robots
 - A Collaborative Control of Dual-Arm Robots via Deep Reinforcement Learning
- SLAM implementation
 - Implement SLAM with Lidar Scans MATLAB
 - Path Planning Using Potential Field Algorithm
 - SLAMbook-goaxiang
- 3D depth analysis
 - OpenCV- Stereo-camera construction and testing