1)

الف)

شکل مربوط به زمانبندی خواندن از حافظه و یافتن پارامترهای زمانی یک تراشه ی ۴ Ram کیلوبایتی را از دیتا شیت آن استخراج کنید.

IDT7134SA/LA نام تراشه

FUNCTIONAL BLOCK DIAGRAM

زمانبندی خواندن از حافظه و پارامترهای زمانی:

TIMING WAVEFORM OF READ CYCLE NO. 1, EITHER SIDE(1,2,4)

NOTES:

- Timing depends on which signal is asserted last, \overline{OE} or \overline{CE} .
 Timing depends on which signal is de-asserted first, \overline{OE} or \overline{CE} .
- 3. R/W = VIH.

TIMING WAVEFORM OF READ CYCLE NO. 2, EITHER SIDE(1,3)

NOTES:

- 1. Timing depends on which signal is asserted last, OE or CE.
- Timing depends on which signal is de-asserted first, OE or CE.
 RW = VIH.
- 4. Start of valid data depends on which timing becomes effective, tage, tage or tag
- 5. taa for RAM Address Access and tsaa for Semaphore Address Access.

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE(3,4)

Symbol	Parameter	7134X20 Com'l Only		7134X25 Com'l & Military		7134X35 Com'l & Military		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE	***************************************					-	
trc	Read Cycle Time	20		25		35		ns
taa	Address Access Time		20	js 	25	12	35	ns
tace	Chip Enable Access Time		20		25	\$ <u>—</u> 8	35	ns
tAOE	Output Enable Access Time		15	25-24	15	5 7 - 59	20	ns
tон	Output Hold from Address Change	0	8-8	0	-	0	-	ns
tız	Output Low-Z Time ^(1,2)	0		0	=	0	-	ns
tHZ	Output High-Z Time ^(1,2)		15	-	15		20	ns
tpu	Chip Enable to Power Up Time(2)	0	*	0	-	0	8_5	ns
tPD	Chip Disable to Power Down Time ⁽²⁾	_	20	~	25	2-5	35	ns

2720 tbl 09a

Symbol	Parameter	7134X45 Com'l & Military		7134X55 Com'l, Ind & Military		7134X70 Com'l & Military		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE	88 0		7				
trc	Read Cycle Time	45		55		70		ns
taa	Address Access Time		45	200	55	100 PM	70	ns
tace	Chip Enable Access Time	_	45	-	55	2-5	70	ns
tage	Output Enable Access Time		25	_	30		40	ns
tон	Output Hold from Address Change	0		0		0	_	ns
tız	Output Low-Z Time ^(1,2)	5	-	5	=	5	-	ns
tHZ	Output High-Z Time(1,2)	<u> </u>	20	_	25	==:	30	ns
tru	Chip Enable to Power Up Time ⁽²⁾	0	2-8	0	-	0	_	ns
tPD	Chip Disable to Power Down Time(2)		45		50	7000	50	ns

2720 tbl 09b NOTES:

دیکودر پیشنهادی باید یک دیکودر ۳ به ۸ باشد که در اینجا مدل MC74VHCT138A را انتخاب کردیم.

Transition is measured ±500mV from Low or High-impedance voltage with the Output Test Load (Figures 1 and 2).
 This parameter is guaranteed by device characterization, but is not production tested.
 "X" in part number indicates power rating (SA or LA).
 Industrial temperature: for other speeds, packages and powers contact your sales office.

Yasaman Mirmohammad 9431022

2)

در خصوص انواع و حجم حافظه های موجود در میکروکنترلر STMF32 توضیح دهید.

حافظه ی داخلی:

Memories:

- Up to 1 Mbyte of Flash memory
- Up to 192+4 Kbytes of SRAM including 64-Kbyte of CCM (core coupled memory) data RAM
- Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories

۱. تا حجم ۲ مگابایت حافظه ی فلش داخلی دارد که در دوبلوک طراحی شده است که قابلیت خواندن و نوشتن دارند.

۵۱۲ کیلوبایت حافظه است که شامل ۱۲۸ کیلوبایت حافظه ی داده +:TCM RAM است SRAM ۲ (برای داده های REAL TIME)

۴+ critical real-time routines برای TCM RAM کیلوبایت دستورات کیلوبایت کیلوبایت

حافظه ی خارجی کنترلر همراه ۳۲ بیت دیتاباس

+

SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories

۴. حافظه ی اصلی و حافظه ی کش که دسترسی سریع دارند.

Internal Memories:

- •Up to 2 Mbytes of Flash memory organized into two banks allowing read-while-write
- •SRAM: 512 Kbytes (including 128 Kbytes of data TCM RAM for critical real-time data)
- •+ 16 Kbytes of instruction TCM RAM (for critical real-time routines) + 4 Kbytes of backup SRAM
- •Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories
- •Tightly Coupled Memory and cache memory are both fast access memories. TCM: Tightly Coupled Memory interface PSRAM: Pseudo-static random-access memory SDRAM:

(১

; Read Data from Address 0500 H, SRAM with 20 nst AVQV (Address Access Time), Resultin R0

;Propagationdelayof74138decoder:tpd(74ls138)=0ns.

LDIR16,00H;Address:LowByte LDIR17,07H;Address:HighByte

:CALLMemRead

MemRead:LDIR18,FFH
OUTDDRA,R18;PORTAisOutput
OUTDDRB,R18;PORTBisOutput
LDIR18,00H
OUTDDRC,R18;PORTCisINPUT
OUTPORTA,R16
ANDIR17,BFH;

Yasaman Mirmohammad 9431022

;SRAM#1Enabled;OtherSRAMsareDisabled, ;OutputEnabled

ORIR17,80H;;WritePin=1;ReadEnabled OUTPORTB.R17

NOP

NOP;2NOP=2Clocks=2*62.5ns>tAVQV+1.5Clocks=20ns+1.5*62.5ns

 $INR0,\!PINC;\!ReadData from PortC$

RET

;WriteDatatoAddress3900H,SRAMwith20nstWLWH(WritePulsewidth),

;12nstDVWH(DataValidToEndofWrite),and0nstWHDX(DataHoldTime),DatainR20

;Propagationdelayof74138decoder:tpd(74ls138)=0ns.

LDIR16,00H;Address:LowByte LDIR17,40H;Address:HighByte LDIR20,60H

____,

CALLMemWrite

MemWrite:

LDIR18,FFH

OUTDDRA,R18; PORTAisOutput OUTDDRB,R18; PORTBisOutput OUTDDRC,R18; PORTCisOutput

OUTPORTC,R20 OUTPORTA,R16

ANDIR17,7FH;;SRAM#3Enabled;OtherSRAMsareDisabled,

;PinWrite=0 ;WriteEnabled ORIR17,40H; ;OutputDisabled

OUTPORTB,R17

NOP;1NOP=1Clock=62.5ns>tWLWH=20ns

SBIPORTB,07;WritePin=1

NOP;1NOP=1Clock=62.5ns>tDVWH=12ns

RET