Roland Locke

5/7/24

Econ210

Professor Dorian Owen

Computing Assignment

1)

$$Sleep = 3836.766 - .162 totwrk - 9.94 educ - 6.566 age + 0.102 agesq + 87.972 male - 2.014 spwrk 75 - 67.506 gdhlth$$
 (235.667) (0.018) (6.033) (11.333) (0.136) (34.619) (32.263) (53.127)
$$n = 706 \qquad R^2 = 0.1248 \qquad Adj - R^2 = 0.1160$$

Stata output:

. . reg sleep totwrk educ age agesq male spwrk75 gdhlth

Source	SS	df	MS	Number of obs	5 =	706
+				F(7, 698)	=	14.22
Model	17378940.6	7	2482705.79	Prob > F	=	0.0000
Residual	121860895	698	174585.81	R-squared	=	0.1248
+				Adj R-squared	d =	0.1160
Total	139239836	705	197503.313	Root MSE	=	417.83
sleep	Coefficient	Std. err.	t F	P> t [95% d	conf.	interval]
+						
totwrk	1619808	.0182252	-8.89	0.00019776	536	126198
educ	-9.940112	6.032809	-1.65	0.100 -21.784	174	1.904515
age	-6.565807	11.33305	-0.58	0.563 -28.816	577	15.68515
agesq	.1019037	.1355199	0.75	0.45216417	719	.3679793
male	87.97167	34.61854	2.54 (0.011 20.002	272	155.9406
spwrk75	-2.014303	32.26267	-0.06	0.950 -65.357	782	61.32921
gdhlth	-67.50613	53.12671	-1.27	0.204 -171.81	L34	36.80118
_cons	3836.766	235.6672	16.28	0.000 3374.0)64	4299.467

2) The question: Do men Sleep more than women can be answered by examining the *male* dummy variable. Consider the following:

 H_0 : $\beta_5 = 0$ (no difference in the minutes of sleep for men) vs H_1 : $\beta_5 > 0$ (Positive difference in sleep for men) Where β_5 is the coefficient on the *male* dummy variable. Performing a one-tailed test with 706-7-1=698 *df*, the critical value at a 1% significance level is 2.32. The t-statistic for the *male* dummy variable is 2.54. Therefore, we reject H_0 at the 1% significance level in favor of the alternative. That is, men on average, other factors equal sleep more than women.

3) According to this data, on average for every minute worked per week, an individual will lose .162 minutes of sleep per week, holding all other things equal. That's 0.023 minutes of sleep lost each day per minute spent working, other factors equal. To determine if this is statistically significant tradeoff, consider:

 H_0 : $\beta_1 = 0$ (No tradeoff between working and sleeping) vs H_1 : $\beta_1 < 0$ (There is tradeoff of sleep for total hours worked). Where β_1 is the coefficient on the *totwrk* variable (total mins spent working per week). When performing a one-tailed test with 06-7-1=698 *df*, at a 0.05% significance level, the critical value is -3.307. The t-statistic for the *totwrk* variable is -8.89. Therefore, we reject H_0 at the 0.05% significance level in favor of the alternative. That is, 0.023 minutes of sleep lost each day per minute spent working or .162 minutes of sleep per week is a statistically significant amount.

4) Consider the following:

 H_0 : $\beta_3 = \beta_4 = 0$ (age and agesq have no effect on sleep time) vs H_1 : $\beta_3 = \beta_4 \neq 0$ (age and agesq have an effect on sleep time). Running this test in Stata requires the following commands:

. reg sleep totwrk educ male spwrk gdhlth

Source	SS	df	MS	Numb	er of obs	=	706
+				F(5,	700)	=	19.45
Model	16983690.4	5	3396738.07	Prob) > F	=	0.0000
Residual	122256145	700	174651.636	R-so	juared	=	0.1220
+				Adj	R-squared	=	0.1157
Total	139239836	705	197503.313	Root	MSE	=	417.91
sleep	Coefficient			P> t	-		interval]
totwrk	1652087	.0180488		0.000	200644		1297725
educ	-11.76178	5.843448	-2.01	0.045	-23.2345	6	288991
male	90.65388	34.57151	2.62	0.009	22.777	6	158.5302
spwrk75	-4.989384	32.19909	-0.15	0.877	-68.2077	4	58.22897
gdhlth	-75.54146	52.50475	-1.44	0.151	-178.627	1	27.5442
_cons	3785.738	85.57317	44.24	0.000	3617.72	7	3953.749

In this example, *agesq* and *age* have been omitted from the regression, which effectively holds all other factors constant omitting the effect of *age* on *sleep*. Next, using the formula for the F-test we get the result:

$$F(2, 698) = \frac{(122256145 - 121860895)/2}{121860895/698} = 1.13$$

Checking this result against the Stata test command, we get the same results:

- . test age agesq
- (1) age = 0
- (2) agesq = 0

$$F(2, 698) = 1.13$$

 $Prob > F = 0.3230$

To find the critical values of this F-test, we use 2 degrees of freedom in the numerator and 698 degrees of freedom in the denominator. With a %5 significance level the critical value is 3.00. Meaning, with a F-value of 1.13 these results don't pass at the %5 significance level so, we don't reject the null hypothesis. Therefore, age does have a statistically significant effect on sleep time according to this model.

5) a) Using the above model, consider the hypothesis H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$. That is, β_1 through β_7 all have no effect on sleep time. The alternative hypothesis is: H_1 : at least one of β_1 through β_7 has a non-zero effect on sleep time. Running this test in Stata requires the following input:

. reg sleep

Source	SS	df	MS	Number of obs	=	706
				- F(0, 705)	=	0.00
Model	0	0		. Prob > F	=	-
Residual	139239836	705	197503.313	3 R-squared	=	0.0000
				- Adj R-squared	=	0.0000
Total	139239836	705	197503.313	Root MSE	=	444.41
sleep	Coefficient	Std. err.	t	P> t [95% co	onf.	interval]

All independent variables have been omitted from the regression. For the F-test we get the result:

$$F(7, 698) = \frac{0.1248/7}{(1-.1248)/698} = 14.22$$

Comparing to the Stata test command:

- . test totwrk educ age agesq male spwrk75 gdhlth
- (1) totwrk = 0
- (2) educ = 0
- (3) age = 0
- (4) agesq = 0
- (5) male = 0
- (6) spwrk75 = 0
- (7) qdh1th = 0

$$F(7, 698) = 14.22$$

 $Prob > F = 0.0000$

To find the critical values of this F-test, we use 7 degrees of freedom in the numerator and 698 degrees of freedom in the denominator. With a %5 significance level the critical value is 2.01. Meaning, with an F-value of 14.22 the result far exceeds the critical value. We reject the null hypothesis in favor of the alternative. Therefore, β_1 through β_7 have a statistically significant non-zero effect on *sleep*.

5) b) Consider the hypothesis H_0 : $\beta_1 = -0.15$, $\beta_2 = -10$, $\beta_3 = \beta_4$, $\beta_7 = 0$. That is, each unit of β_1 (totwrk) has on average a -0.15 effect on sleep time, β_2 (educ) has on average -10 effect on sleep time. The effects of β_3 and β_4 are on average equal, and β_7 has no statistically significant effect on sleep time. The alternative hypothesis is: H_1 : $\beta_1 \neq -0.15$, $\beta_2 \neq -10$, $\beta_3 \neq \beta_4$, β_7 has a non-zero effect on sleep time. Running this test in Stata requires the following input:

- . gen newdepvar = sleep + 0.15*totwrk + 10*educ
- . gen agecomb = age + agesq

. reg newdepvar agecomb male spwrk75

Source	ss	df	MS	Numb	per of obs	=	706
				- F(3	, 702)	=	2.95
Model	1541681.74	3	513893.913	3 Prol) > F	=	0.0322
Residual	122387661	702	174341.397	7 R-sc	quared	=	0.0124
				- Adj	R-squared	=	0.0082
Total	123929343	705	175786.302	2 Root	t MSE	=	417.54
•	Coefficient				[95% c	onf.	interval]
							
agecomb	.0272646	.0164226	1.66	0.097	00497	87	.0595079
male	75.62578	32.13031	2.35	0.019	12.542	76	138.7088
spwrk75	-4.512802	31.98306	-0.14	0.888	-67.306	72	58.28112
_cons	3626.278	41.45892	87.47	0.000	3544.8	79	3707.676

The Sum of square residuals from this regression as well as the original, are used to calculate the F-test for these restrictions:

$$F(4,701) = \frac{(122387661 - 121860895)/4}{(121860895)/701} = 0.75$$

Comparing to the Stata test command:

test (totwrk=-0.15) (educ=-10) (age-agesq=0) (gdhlth=0)

- (1) totwrk = -.15
- (2) educ = -10
- (3) age agesq = 0
- (4) gdh1th = 0

$$F(4, 698) = 0.75$$

 $Prob > F = 0.5553$

The critical values of this F-test, we use 4 degrees of freedom in the numerator and 701 degrees of freedom in the denominator. With a %5 significance level, the critical value is 2.37. With an F-test result of 0.75 the result doesn't exceed the critical value. We do not reject the null hypothesis. Therefore, each unit of β_1 (totwrk) has on average a -0.15 effect on sleep time, β_2 (educ) has on average -10 effect on sleep time. The effects of β_3 and β_4 are on average equal, and β_7 has no statistically significant effect on sleep time.

6) Stata output for testing this equation separately for both men and women:

. reg sleep totwrk educ age agesq spwrk75 gdhlth yngkid if male == 1

	ie == 1	yngkiu ii ma	5 ganren	e agesq spw	otwik educ age	. reg steep to
	obs =	Number of	MS	df	SS	Source
10.85	=	F(7, 392)				
	=		752848.1			Model
	=	•	51480.112			Residual
0.1474	red =					
401.85	=	Root MSE	39398.849	399	75570140.6	Total
interval]	% conf.	P> t [95	t	Std. err.	Coefficient	sleep
129327	60486	0.00022	-7.22	.0245981	1776878	totwrk
4.793038	11775	0.182 -25.	-1.34	7.606884		educ
38.58363	51884	0.490 -18.	0.69	14.52225	10.0324	age
.2583333	23313	0.65241	-0.45	.1705628		agesq
56.25429	.5378	0.550 -105	-0.60	41.14681	-24.64174	spwrk75
29.97699	.0714	0.122 -252	-1.55	71.7303	-111.0472	gdhlth
174.5589	53258	0.322 -57.	0.99	59.02528	58.51314	yngkid
4264.055	9.894	0.000 303	11.73	311.3274	3651.975	_cons
		مد که کارو در	75 adblab			
	re == 0	yngkia it ma	5 ganitn	e agesq spw	otwrk educ age	. reg sleep to
		Number of	MS	df	SS	Source
		F(7, 298)				
	=		.0654.601		6374582.21	
	=	•	1662.986		57115569.9	Residual
		, ta.j .t 5 qui				
437.79	=	Root MSE	08164.433	305	63490152.1	Total
interval]	conf.	P> t [95	t	Std. err.	Coefficient	sleep
0787154	90151	0.0001	-4.75	.0283125	1344332	totwrk
9.243167	44888	0.305 -29.	-1.03	9.830513	-10.10285	educ
5.791746	89941	0.097 -68.	-1.66	18.97683	-31.55383	age
.8362127	68579	0.0960	1.67	.229881	.3838169	agesq
152.3404	09511	0.364 -56.	0.91	52.95735	48.12266	spwrk75
400 00:						

-0.36 0.719

11.00 0.000

0.206

-1.27

-188.2065

-302.3127

3486.69

129.994

65.52934

5005.942

gdhlth | -29.10627 80.8454

yngkid | -118.3917 93.45786

_cons | 4246.316 385.9974

Based on these results alone, the coefficient on *yngkid, age,* and *spwrks* are vastly different in the two models. The *yngkid* coefficient specifically implies all things equal, men gain sleep in a relationship when a child under three is present, while women, all things equal, loses sleep when a child under three is present. Important to note here is the sample size in between the different models (400 in the male model 306 for women). The R squared values are also very low meaning the given variables don't predict the dependent variable. According to the F statistic, the variance in the women's model is much lower than that of the men's, however both have very high Probability greater than F stats, indicating both models are highly statistically significant.

7) a) If we consider that the being a man or a woman may influence sleep time. We need to determine whether a model pooling data collected from both men and women is adequate specification. To do so we will perform a Chow Test. Chow test for the given model performed in Stata:

. reg sleep totwrk educ age agesq spwrk75 gdhlth yngkid

Source		SS	df	MS	١	Number of obs	=	706
	+-				- F	(7, 698)	=	13.19
Model		16270817.8	7	2324402.5	4 F	Prob > F	=	0.0000
Residual		122969018	698	176173.37	8 F	R-squared	=	0.1169
	+-				- 4	Adj R-squared	=	0.1080
Total		139239836	705	197503.31	3 F	Root MSE	=	419.73
sleep						t [95% coi	nf.	interval]
	+-							
totwrk		145276	.0170752	-8.51	0.00	001788009	9	1117511
educ		-9.323139	6.056106	-1.54	0.12	24 -21.2135	1	2.567228
age		-6.050771	11.49615	-0.53	0.59	99 -28.6219	6	16.52041
agesq		.1000146	.1368081	0.73	0.46	16859	9	.3686192
spwrk75		-11.9582	32.17956	-0.37	0.71	LO -75.1385	3	51.22213
gdh1th		-64.71073	53.35679	-1.21	0.22	26 -169.469	8	40.04831
yngkid		16.56249	50.07271	0.33	0.74	-81.7486	8	114.8737
_cons		3826.507	240.9338	15.88	0.00	3353.46	5	4299.549

. reg sleep totwrk educ age agesq spwrk75 gdhlth yngkid if male == 1

Source	SS	df	MS			= 400 = 10.85
•	12269936.7					= 0.0000
	63300203.9				uared =	
						= 0.1474
Total					•	= 401.85
sleep	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
•						
	1776878			0.000		
	-10.16235			0.182	-25.11775	
_	10.0324	14.52225	0.69	0.490	-18.51884	
agesq	076999	.1705628	-0.45	0.652	4123313	.2583333
spwrk75	-24.64174	41.14681	-0.60	0.550	-105.5378	56.25429
gdhlth	-111.0472	71.7303	-1.55	0.122	-252.0714	29.97699
yngkid	58.51314	59.02528	0.99	0.322	-57.53258	174.5589
_cons	3651.975	311.3274	11.73	0.000	3039.894	4264.055
. reg sleep to	_		rk75 gdhlth MS			306
					/	= 4.75
Model	6374582.21	7	910654.601	L Prob	> F =	= 0.0000
	57115569.9				uared =	= 0.1004
				- Adj	R-squared =	= 0.0793
Total	63490152.1	305	208164.433	3 Root	MSE =	= 437.79
	 Coefficient 				[95% conf	. interval]
•	1344332				190151	0787154
educ		9.830513	-1.03	0.305	-29.44888	9.243167
age		18.97683	-1.66	0.097	-68.89941	5.791746
agesq		.229881	1.67	0.096	068579	.8362127
spwrk75		52.95735	0.91	0.364	-56.09511	152.3404
gdhlth		80.8454	-0.36	0.719	-188.2065	129.994
=						
yngkid						65 57074
_cons		93.45786 385.9974	-1.27 11.00	0.206	-302.3127 3486.69	65.52934 5005.942

Performing the math for the Chow test result:

$$F(8,690) = \frac{(122969018 - (63300203.9 + 57115569.9))/8}{(63300203.9 + 57115569.9)/690} = \ 1.83$$

7) b) Another way to find the define the difference in sleep time between men and women through terms in the model is using interaction terms and a dummy variable. The following is a Stata test using the *male* dummy variable and a set of interaction terms involving the *male* term:

. reg sleep totwrk educ age agesq spwrk75 gdhlth yngkid male

Source	SS	df	MS	Number o	f obs =	706
+				F(8, 697) =	12.43
Model	17378940.8	8	2172367.6	Prob > F	=	0.0000
Residual	121860895	697	174836.291	. R-square	d =	0.1248
+				Adj R-sq	uared =	0.1148
Total	139239836	705	197503.313	Root MSE	=	418.13
sleep	Coefficient					_
+						
totwrk	1619798	.0182585	-8.87	0.000 -	.197828	1261316
educ	-9.94024	6.038058	-1.65	0.100 -	21.7952	1.914721
age	-6.56386	11.45426	-0.57	0.567 -2	9.05284	15.92512
agesq	.1018873	.1362899	0.75	0.455	1657008	.3694753
spwrk75	-2.013155	32.29968	-0.06	0.950 -6	5.42949	61.40318
gdhlth	-67.50647	53.16552	-1.27	0.205 -1	71.8902	36.8773
yngkid	.0610275	50.31112	0.00	0.999 -9	8.71849	98.84055
male	87.96615	34.94117	2.52	0.012	19.3636	156.5687
cons	3836.711	240.052	15.98	0.000	3365.4	4308.023

- . gen malegdhlth = male*gdhlth
- . gen maleyngkid = male*yngkid

[.] gen maletotwrk = male*totwrk

[.] gen maleeduc = male*educ

[.] gen maleage = male*age

[.] gen maleagesq = male*agesq

[.] gen malespwrk75 = male*spwrk75

. reg sleep male maletotwrk totwrk maleeduc educ maleage age maleagesq agesq malespwrk75 spwrk75 malegdhlth gdhlth maleyngkid yngkid

Source	I	SS	df	MS		Numl	per of obs	=	706
	+-					F(1	5, 690)	=	7.19
Model		18824062	15	1254937.4	47	Prob) > F	=	0.0000
Residual		120415774	690	174515.62	14	R-so	quared	=	0.1352
	+-					Adj	R-squared	=	0.1164
Total		139239836	705	197503.33	13	Root	t MSE	=	417.75
sleen	. - -	 Coefficient	Std. err.	 t	 D\	 t	Γ95% cor	 nf	interval]
31ccp	' -⊥-							· · ·	
male	İ	-594.341	490.3194	-1.21	0.	226	-1557.038	3	368.356
maletotwrk		0432546	.0371994	-1.16	0.	245	1162922	2	.029783
totwrk	1	1344332	.0270163	-4.98	0.	000	1874773	3	0813891
maleeduc	1	0595001	12.26902	-0.00	0.	996	-24.14859)	24.02959
educ	1	-10.10285	9.380461	-1.08	0.	282	-28.52053	3	8.314818
maleage	Ī	41.58623	23.57587	1.76	0.	078	-4.702832	2	87.87529
age	1	-31.55383	18.10805	-1.74	0.	082	-67.10732	2	3.99966
maleagesq	Ī	4608159	.2820594	-1.63	0.	103	-1.014614	1	.0929819
agesq	Ι	.3838169	.2193568	1.75	0.	081	0468701	L	.8145038
malespwrk75	Ī	-72.76439	66.20655	-1.10	0.	272	-202.7549	9	57.22607
spwrk75	Ī	48.12266	50.53291	0.95	0.	341	-51.09406	5	147.3394
malegdhlth	Ī	-81.94095	107.2931	-0.76	0.	445	-292.6011	L	128.7192
gdh1th	Ī	-29.10627	77.14421	-0.38	0.	706	-180.5718	3	122.3593
maleyngkid	Ī	176.9048	108.2505	1.63	0.	103	-35.63508	3	389.4447
yngkid	Ī	-118.3917	89.17926	-1.33	0.	185	-293.4869	9	56.7036
_cons	I	4246.316	368.326	11.53	0.	000	3523.141	L	4969.49

Results for the interaction term test were found using the test command in Stata. The results are shown below:

. test male maletotwrk maleeduc maleage maleagesq malespwrk75 malegdhlth maleyngkid

```
(1) male = 0
```

$$(8)$$
 maleyngkid = 0

$$F(8, 690) = 1.83$$

 $Prob > F = 0.0687$

⁽²⁾ maletotwrk = 0

⁽³⁾ maleeduc = 0

⁽⁴⁾ maleage = 0

⁽⁵⁾ maleagesq = 0

⁽⁶⁾ malespwrk75 = 0

⁽⁷⁾ malegdhlth = 0

Both tests produced a result of 1.83. For the critical values of this F-test, we use 8 degrees of freedom in the numerator and 690 degrees of freedom in the denominator. With a %5 significance level the critical value is 1.88. With an F-test result of 1.83 the result doesn't exceed the critical value. Therefore, the pooled function is an adequate specification, and we don't need to run separate specifications for men and women. However, including the interaction terms and dummy variables may allow more insight into the variables effecting sleep time for men and women.

- 8) Testing whether, the interaction terms are jointly significant using the test command in Stata:
- . test maletotwrk maleeduc maleage maleagesq malespwrk75 malegdhlth maleyngkid

```
( 1) maletotwrk = 0
( 2) maleeduc = 0
( 3) maleage = 0
( 4) maleagesq = 0
( 5) malespwrk75 = 0
( 6) malegdhlth = 0
( 7) maleyngkid = 0
F( 7, 690) = 1.18
```

Prob > F =

0.3101

Again, the f-statistic doesn't exceed the critical value of a 5% significance level and therefore, including the *male* interaction terms in the model is not jointly statistically significant with the interaction terms.

9) Given the three models in 8 and 7a and 7b, the preferred model is number 8 that with a dummy variable allows for a different intercept for males and females. None of the models exceed the 5% critical value in the F-test and therefore, don't require separate specifications for men and women. However, in the original regression model with a dummy variable and without the interaction terms, the male variable was one of only two independent variables with a statistical significance of five percent. Therefore, with a high statistical significance, including it in the model allows the intercepts for men and women to be different.

10) Breusch-pagan LM test is performed to detect heteroscedasticity as with it present the OLS estimator (the modern standard estimator) is no longer the best linear unbiased estimator or BLUE. In the first step, we assume that MLR.1 through MLR.4 holds true and run the OLS estimator on the model. Then using the square of the residuals, as the dependent variable the model is run again. An LM Statistic used on a Chi-Squared distribution to determine the statistical significance. The second regression reveals whether the variance of the residuals matches the variance of the independent variables.

Performing a Breusch-pagan LM test for heteroskedasticity:

. reg sleep totwrk educ age agesq spwrk75 gdhlth yngkid male

Source	SS	df	MS		er of obs	=	706
+-				٠,	697)	=	12.43
Model	17378940.8	8	2172367.6	5 Prob	> F	=	0.0000
Residual	121860895	697	174836.291	. R-sq	uared	=	0.1248
+-				Adj	R-squared	=	0.1148
Total	139239836	705	197503.313	Root	MSE	=	418.13
,							
sleep	Coefficient	Std. err.	t	P> t	[95% con ⁻	f.	interval]
+-							
totwrk	1619798	.0182585	-8.87	0.000	197828		1261316
educ	-9.94024	6.038058	-1.65	0.100	-21.7952		1.914721
age	-6.56386	11.45426	-0.57	0.567	-29.05284		15.92512
agesq	.1018873	.1362899	0.75	0.455	1657008		.3694753
spwrk75	-2.013155	32.29968	-0.06	0.950	-65.42949		61.40318
gdhlth	-67.50647	53.16552	-1.27	0.205	-171.8902		36.8773
yngkid	.0610275	50.31112	0.00	0.999	-98.71849		98.84055
male	87.96615	34.94117	2.52	0.012	19.3636		156.5687
_cons	3836.711	240.052	15.98	0.000	3365.4		4308.023

- . predict uh, resid
- . gen uhsq = uh^2
- . reg uhsq totwrk educ age agesq spwrk75 gdhlth yngkid male

	Source	SS	df	MS	Number of obs	=	706
-	+-				F(8, 697)	=	1.62
	Model	1.6553e+12	8	2.0691e+11	Prob > F	=	0.1163
	Residual	8.9178e+13	697	1.2794e+11	R-squared	=	0.0182
-	+-				Adj R-squared	=	0.0070
	Total	9.0833e+13	705	1.2884e+11	Root MSE	=	3.6e+05

uhsq	Coefficient		t	P> t	[95% conf.	interval]
totwrk	17.09085	15.61925	1.09	0.274	-13.57557	47.75727
educ	-9030.051	5165.27	-1.75	0.081	-19171.4	1111.302
age	-8175.251	9798.57	-0.83	0.404	-27413.5	11063
agesq	59.24164	116.5895	0.51	0.612	-169.6671	288.1504
spwrk75	-29976.39	27630.83	-1.08	0.278	-84226.03	24273.26
gdhlth	-21977.36	45480.56	-0.48	0.629	-111272.7	67317.96
yngkid	1702.656	43038.76	0.04	0.968	-82798.5	86203.81
male	-41564.23	29890.5	-1.39	0.165	-100250.4	17121.97
_cons	529497.8	205353	2.58	0.010	126313.1	932682.4

Using the result from the second regression using the square of the residuals we calculate the LM statistic:

$$LM = nR_{Uhat^2}^2 = 706 * 0.0182 \approx 12.85$$

The test included eight terms making this test's null hypothesis: H_0 : $\delta_2 = \delta_1 = \delta_2 = \delta_3 = \delta_4 = \delta_5 = \delta_6 = \delta_7 = 0$. That is, the model is homoscedastic. While the alternative hypothesis was: The model is heteroscedastic. At a 5% significance level with 8 degrees of freedom the Chi-Squared distribution has a critical value at 15.5. The test's LM statistic is under that value and therefore we do not reject the null and instead assume the alternative; the model is homoscedastic.

11) Performing the same test with hetero-robust standard errors in Stata:

. reg sleep totwrk educ age agesq spwrk75 gdhlth yngkid male, robust

Linear regression					Number of obs =			706
					F(8, 697))	=	11.09
					Prob > F		=	0.0000
					R-square	d	=	0.1248
					Root MSE		=	418.13
	- 1		Robust					
	sleep	Coefficient	std. err.	t	P> t	[95%	conf.	interval]
	+							
t	otwrk	1619798	.020483	-7.91	0.000	202	1955	1217641

educ	-9.94024	5.776834	-1.72	0.086	-21.28232	1.401842
age	-6.56386	11.9462	-0.55	0.583	-30.01871	16.89099
agesq	.1018873	.1380079	0.74	0.461	1690738	.3728484
spwrk75	-2.013155	31.85884	-0.06	0.950	-64.56396	60.53765
gdhlth	-67.50647	57.94971	-1.16	0.244	-181.2834	46.27046
yngkid	.0610275	54.07073	0.00	0.999	-106.1	106.2221
male	87.96615	35.92353	2.45	0.015	17.43486	158.4974
_cons	3836.711	261.1577	14.69	0.000	3323.961	4349.461

This regression displays values that are heteroscedasticity-robust standard errors, if there was heteroscedasticity in the model the statistical significance of the variables would be preserved. However, as was discovered in result of question 10, the model was already homoscedastic. Moreover, when comparing this result to the non-hetero robust function, we see that the model displays statistical significance at the five-percent level for only the *totwrk* and *male* coefficients which matches the results we see in the non-hetero robust model. Therefore, there is no reason to compute the model with hetero robust standard errors.