

Redes de Computadores $(3^{\circ} \text{ ano LEI})$

Trabalho Prático 4

Relatório de Desenvolvimento

Grupo 4

a
93241 Francisco Reis Izquierdo a
89526 Duarte Augusto Rodrigues Lucas a
96277 Diogo Miguel Serra Silva

3 de Maio de 2022

Conteúdo

1	Ace	so Rádio 3		
	1.1	Pergunta 1		
	1.2	Resposta 1		
	1.3	Pergunta 2		
	1.4	Resposta 2		
	1.5	Pergunta 3		
	1.6	Resposta 3		
2	Scanning Passivo e Scanning Ativo 4			
	2.1	Pergunta 4		
	2.2	Resposta 4		
	2.3	Pergunta 5		
	2.4	Resposta 5		
	2.5	Pergunta 6		
	2.6	Resposta 6		
	2.7	Pergunta 7		
	2.8	Resposta 7		
	2.9	Pergunta 8		
	2.10	Resposta 8		
	2.11	Pergunta 9		
	2.12	Resposta 9		
	2.13	Pergunta 10		
	2.14	Resposta 10		
	2.15	Pergunta 11		
	2.16	Resposta 11		
3	Processo de Associação 9			
_	3.1	Pergunta 12		
	3.2	Resposta 12		
	3.3	Pergunta 13		
	3.4	Resposta 13		
4	Trai	sferência de Dados 11		
-	4.1	Pergunta 14		
	4.2	Resposta 14		
	4.3	Pergunta 15		
	4.4	Resposta 15		
	4.5	Pergunta 16		
	4.6	Resposta 16		
	4.7	Pergunta 17		
	4.8	Resposta 17		
	4.9	Pergunta 18		
		Resports 18		

5 Conclusão 14

Listings

Lista de Figuras

1	Trama 134
2	Trama 264
3	IEEE 802.11 Wireless Management
4	Secção de captura
5	Probe request.
6	Probe response
7	Tramas de autenticação
8	Sequência de tramas relativas ao processo de associação 9
9	Sequência de tramas trocadas
10	Frame Control da Trama 431
11	IEEE 802.11 da Trama 431
12	IEEE 802.11 da Trama 433
13	RTS/CTS

1 Acesso Rádio

Como pode ser observado, a sequência de bytes capturada inclui informação do nível físico (radiotap header, radio information), para além dos bytes correspondentes a tramas 802.11. Selecione a trama de ordem XX correspondente ao seu identificador de grupo (TurnoGrupo, e.g., 11).

```
> Frame 134: 296 bytes on wire (2368 bits), 296 bytes captured (2368 bits)
> Radiotap Header v0, Length 25
> 802.11 radio information
PHY type: 802.11g (ERP) (6)
Short preamble: False
Proprietary mode: None (0)
Data rate: 1,0 Mb/s
Channel: 12
Frequency: 2467MHZ
Signal strength (dBm): -65dBm
Noise level (dBm): -88dBm
Signal/noise ratio (dB): 23dB
TSF timestamp: 25022449
> [Duration: 2360µs]
```

Figura 1: Trama 134

1.1 Pergunta 1

Identifique em que frequência do espectro está a operar a rede sem fios, e o canal que corresponde essa frequência.

1.2 Resposta 1

Ao analisar o cabeçalho da trama 134, através dos campos Frequency e Channel conseguimos perceber que a rede sem fios opera sobre a frequência 2467 MHz no canal 12.

1.3 Pergunta 2

Identifique a versão da norma IEEE 802.11 que está a ser usada.

1.4 Resposta 2

De forma alusiva, através do cabeçalho da trama 134, no campo $PHY\ type$ conseguimos verificar que a norma $IEEE\ 802.11g$ que está a ser usada corresponde à 802.11g

1.5 Pergunta 3

Qual o débito a que foi enviada a trama escolhida? Será que esse débito corresponde ao débito máximo a que a interface Wi-Fi pode operar? Justifique.

1.6 Resposta 3

Ao analisar o campo $Data\ rate$, vemos que o débito a que foi enviada é 1.0 Mb/s. Após analisar as especificações da versão que está a ser usada, vemos que o debito máximo corresponde a 54 Mb/s

2 Scanning Passivo e Scanning Ativo

Como referido, as tramas beacon permitem efetuar scanning passivo em redes IEEE 802.11 (Wi-Fi). Para a captura de tramas disponibilizada, e considerando XX o seu no de grupo, responda às seguintes questões:

Figura 2: Trama 264

2.1 Pergunta 4

Selecione a trama beacon de ordem (260 + XX). Esta trama pertence a que tipo de tramas 802.11? Indique o valor dos seus identificadores de tipo e de subtipo. Em que parte concreta do cabeçalho da trama estão especificados (ver anexo)?

2.2 Resposta 4

Ao analisar o campo Frame Control Field da trama 264, percebemos que pertence ao tipo Managment Frame cujo identificador é o 0 e o subtipo é Beacon, cujo identificador é o 8.

2.3 Pergunta 5

Para a trama acima, identifique todos os endereços MAC em uso. Que conclui quanto à sua origem e destino?

2.4 Resposta 5

Pelo MAC destino (ff:ff:ff:ff:ff), endereço de broadcast, concluímos que esta trama vai ser enviada para todos os dispositivos conectados ao *Accesss Point*(AP), isto implica que o MAC de origem seja do AP.

2.5 Pergunta 6

Uma trama beacon anuncia que o AP pode suportar vários débitos de base, assim como vários débitos adicionais (extended supported rates). Indique quais são esses débitos?

2.6 Resposta 6

Os dados abaixo estão contidos na figura 3.

Os débitos suportados pela trama:

- 1 Mb/s (Básico)
- 2 Mb/s (Básico)
- 5.5 Mb/s (Básico)
- 11 Mb/s (Básico)

Débitos adicionas suportados:

- -9 Mb/s
- -18 Mb/s
- -36 Mb/s
- -54 Mb/s

2.7 Pergunta 7

Qual o intervalo de tempo previsto entre tramas beacon consecutivas (este valor é anunciado na própria trama beacon)? Na prática, a periodicidade de tramas beacon provenientes do mesmo AP é verificada com precisão? Justifique.

2.8 Resposta 7

O intervalo de tempo previsto entre tramas beacon consecutivas é de 0.102400 segundos (figura 3).

Na prática, a periodicidade entre tramas não se verifica. O fato do próprio AP, no momento ocupado por outra tarefa, não conseguir enviar uma trama beacon no tempo preciso.

```
- IEEE 802.11 Wireless Management
  Fixed parameters (12 bytes)
     Timestamp: 1149680438034
     Beacon Interval: 0,102400 [Seconds]
   Capabilities Information: 0x0c21
   Tagged parameters (140 bytes)
   Tag: SSID parameter set: NOS_WIFI_Fon
   Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 9, 18, 36, 54, [Mbit/sec]
   Tag: DS Parameter set: Current Channel: 12
Tag: Extended Supported Rates 6(B), 12(B), 24(B), 48, [Mbit/sec]
   → Tag: Traffic Indication Map (TIM): DTIM 1 of 0 bitmap
   → Tag: ERP Information
   Tag: HT Capabilities (802.11n D1.10)
   → Tag: HT Information (802.11n D1.10)
   Tag: Extended Capabilities (1 octet)
   → Tag: Vendor Specific: Microsoft Corp.: WMM/WME: Parameter Element
   → Tag: QBSS Load Element 802.11e CCA Version
   → Tag: Vendor Specific: Ralink Technology, Corp.
```

Figura 3: IEEE 802.11 Wireless Management

2.9 Pergunta 8

Identifique e liste os SSIDs dos APs que estão a operar na vizinhança da STA de captura? Explicite o modo como obteve essa informação (por exemplo, se usou algum filtro para o efeito).

2.10 Resposta 8

Os SSIDs dos APs que estão a operar na vizinhança da STA de captura são, NOS_WIFI_Fon e FlyingNet (figura 4). Para tal usamos o filtro wlan.ssid.

Figura 4: Secção de captura.

2.11 Pergunta 9

Verifique se está a ser usado o método de deteção de erros (CRC). Sugestão: Use o filtro: (wlan.fc.type_subtype == 0x08) && (wlan.fcs.status == bad) Que conclui?

Justifique o porquê de ser necessário usar deteção de erros em redes sem fios.

2.12 Resposta 9

Ao aplicar o filtro (wlan.fc.type_subtype == 0x08) && (wlan.fcs.status == bad) não foram apresentadas nenhumas tramas, assim concluímos que o CRC não está a ser usado.

Deteção de erros em redes sem fios é necessário para verificar se houve alguma trama que sofreu interferência, levando à mal formação de pacotes de dados.

2.13 Pergunta 10

Estabeleça um filtro Wireshark apropriado que lhe permita visualizar todas as tramas probing request ou probing response, simultaneamente.

2.14 Resposta 10

Filtro estabelecido, wlan.fc.type_subtype == 0x04 || wlan.fc.type_subtype == 0x05

2.15 Pergunta 11

Identifique um probing request para o qual tenha havido um probing response. Face ao endereçamento usado, indique a que sistemas são endereçadas estas tramas e explique qual o propósito das mesmas?

2.16 Resposta 11

A STA envia um $probe\ request\ em\ broadcast\ para\ descobrir\ redes\ com\ protocolo\ 802.11.$

O AP envia um probe response para a STA, com informações relativas ao AP.

Figura 5: Probe request.

Figura 6: Probe response.

3 Processo de Associação

Numa rede Wi-FI estruturada, um host deve associar-se a um ponto de acesso antes de enviar dados. O processo de associação nas redes IEEE 802.11 é executada enviando a trama association request do host para o AP e a trama association response enviada pelo AP para o host, em resposta ao pedido de associação recebido. Este processo é antecedido por uma fase de autenticação. Para a sequência de tramas capturada:

3.1 Pergunta 12

Identifique uma sequência de tramas que corresponda a um processo de associação completo entre a STA e o AP, incluindo a fase de autenticação.

3.2 Resposta 12

Utilizando o comando wlan.fc.type_subtype == 11, conseguimos filtrar apenas as tramas de autenticação:

Figura 7: Tramas de autenticação

Após a análise das tramas e retirando o filtro anteriormente mencionado, bastou irmos a uma das tramas e verificarmos a exitencia de troca de tramas entre a STA e o AP de modo a que se realize um processo de associação completo, onde se inclui a fase de autenticação:

Figura 8: Sequência de tramas relativas ao processo de associação.

3.3 Pergunta 13

Efetue um diagrama que ilustre a sequência de todas as tramas trocadas no processo.

3.4 Resposta 13

Figura 9: Sequência de tramas trocadas

4 Transferência de Dados

O trace disponibilizado, para além de tramas de gestão da ligação de dados, inclui tramas de dados e tramas de controlo da transferência desses mesmos dados.

4.1 Pergunta 14

Considere a trama de dados no 431. Sabendo que o campo Frame Control contido no cabeçalho das tramas 802.11 permite especificar a direccionalidade das tramas, o que pode concluir face à direccionalidade dessa trama, será local à WLAN?

4.2 Resposta 14

Através do campo DS status é possível verificar as flags presentes de To SD e From SD que por sua vez, permitem concluir a direccionalidade dessa trama. Deste modo, através da figura a baixo é possível concluir que a flag de To DS está a 0 e a do From DS está a 1, o que significa que o pacote não é local à WLAN.

```
V IEEE 802.11 QoS Data, Flags: .p...F.C
   Type/Subtype: QoS Data (0x0028)

V Frame Control Field: 0x8842
.....00 = Version: 0
....10... = Type: Data frame (2)
1000 .... = Subtype: 8

V Flags: 0x42
.....10 = DS status: Frame from DS to a STA via AP(To DS: 0 From DS: 1) (0x2)
.....0... = More Fragments: This is the last fragment
....0... = Retry: Frame is not being retransmitted
...0 ... = PWR MGT: STA will stay up
...0 .... = More Data: No data buffered
.1.... = Protected flag: Data is protected
0..... = HTC/Order flag: Not strictly ordered
```

Figura 10: Frame Control da Trama 431.

4.3 Pergunta **15**

Para a trama de dados no431, transcreva os endereços MAC em uso, identificando qual o endereço MAC correspondente ao host sem fios (STA), ao AP e ao router de acesso ao sistema de distribuição?

4.4 Resposta 15

```
Endereço STA \rightarrow (64:9a:be:10: 6a: f5) - Receiver Address
Endereço AP \rightarrow (bc:14:0l:af:b1:98) - Transmitter Address
Endereço router de acesso \rightarrow (64:9a:be:10:6a:f5) - Destination Address
```

Figura 11: IEEE 802.11 da Trama 431.

4.5 Pergunta 16

Como interpreta a trama no
º433 face à sua direccionalidade e endereçamento MAC?

4.6 Resposta 16

Novamente, verificando a figura a baixo facilmente vemos que a flag
 To DS é 1 e flag From DS é 0, deste modo concluímos que a trama vem de STA para DS.
 Sobre o endereçamento :

Endereço STA \rightarrow (64:9a:be:10:6a: f5) - Receiver Address Endereço AP \rightarrow (bc:14:0l:af:b1:98) - Transmitter Address Endereço router de acesso \rightarrow (bc:14:01:af:61:98) - Destination Address Concluimos então que esta trama vai no sentido contrário da trama 431, da STA para DS.

```
\[
\times \time
```

Figura 12: IEEE 802.11 da Trama 433.

4.7 Pergunta 17

Que subtipo de tramas de controlo são transmitidas ao longo da transferência de dados a cima mencionada? Tente explicar porque razão têm de existir (contrariamente ao que acontece numa rede Ethernet.)

4.8 Resposta 17

O subtipo de tramas de controlo transmitidas ao longo da transferência de dados a cima mencionada são tramas de controlo ACK, acknowledge. Estas tramas revelam uma grande importância ao longo de uma transferência pois são elas que dão a conhecer ao *sender* que o dados a serem transmitidos chegaram com sucesso ao destino. Caso o *sender* não receba uma trama de controlo ACK de volta a cerca de um pacote, ele saberá que algo aconteceu negativamente em relativamente ao pacote em questão e reenviará de novo.

4.9 Pergunta 18

O uso de tramas Request To Send e Clear To Send, apesar de opcional, é comum para efetuar "pré-reserva" do acesso ao meio quando se pretende enviar tramas de dados, com o intuito de reduzir o número de colisões resultante maioritariamente de STAs escondidas. Para o exemplo acima, verifique se está a ser usada a opção RTS/CTS na troca de dados entre a STA e o AP/Router da WLAN, identificando a direccionalidade das tramas e os sistemas envolvidos. Dê um exemplo de uma transferência de dados em que é usada a opção RTC/CTS e um outro em que não é usada.

4.10 Resposta 18

De modo a analisar as tramas que usaram a opção RTS/CTS usamos o comando: wlan.fc.type_subtype==27 || wlan.fc.type_subtype==28.

Através da figura a baixo podemos verificar que no exemplo a cima não está a ser usada a opção RTS/CTS.

Figura 13: RTS/CTS.

5 Conclusão

Este trabalho revelou-se bastante útil e educativo na medida em que permitiu a consolidação dos temas abordados nas aulas teóricas relativas às redes Wireless, por outro lado, foi possível um melhor contacto com o wireshark, tendo sido utilizados filtros de pesquisa para restringir certas tramas. Se salientar também a aprendizagem sobre novos temas tais como endereçamento de tramas Wi-Fi e mecanismos de controlo de acesso.