

Variational Inference for Inverse Reinforcement Learning with Gaussian Processes

Paulius Dilkas (2146879)

10th March 2019

ABSTRACT

1. INTRODUCTION

Inverse reinforcement learning (IRL)—a problem proposed by Russell in 1998 [28]—asks us to find a reward function for a Markov decision process (MDP) that best explains a set of given demonstrations. IRL is important because reward functions can be hard to define manually [1, 2], and rewards are not entirely specific to a given environment, allowing one to reuse the same reward structure in previously unseen environments [2, 12, 17]. Moreover, IRL has seen a wide array of applications in autonomous vehicle control [13, 14] and learning to predict another agent's behaviour [5, 30, 31, 32, 33]. Most approaches in the literature (see Section 2) make a convenient yet unjustified assumption that the reward function can be expressed as a linear combination of features. One proven way to abandon this assumption is by representing the reward function as a Gaussian process (GP) [12, 17, 23]. The original approach used maximum likelihood estimation [17], while the goal of this project is to use variational inference (VI) instead, which learns approximate posterior probability distributions instead of point estimates. This approach can prove useful in three major ways:

- 1. Modelling full posterior distributions for various parameters can result in more precise reward predictions, as the model simply holds more information.
- Having variance estimates for rewards can direct our choice in what data should be collected next.
- 3. An approximate Bayesian treatment of many parameters in the model guards against overfitting [12].

1.1 Statement of the Problem

DEFINITION 1.1 (MDP). A Markov decision process is a set $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, \gamma, \mathbf{r}\}$, where \mathcal{S} and \mathcal{A} are sets of states and actions, respectively; $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0, 1]$ is a function defined so that $\mathcal{T}(s, a, s')$ is the probability of moving to state s' after taking action a in state s; $\gamma \in [0, 1)$ is the discount factor; and $\mathbf{r} \in \mathbb{R}^{|\mathcal{S}|}$ is the reward vector¹.

DEFINITION 1.2 (IRL). Given an MDP without rewards $\mathcal{M}\setminus\{\mathbf{r}\}$, an $|\mathcal{S}|\times d$ feature matrix \mathbf{X} (where d is the number of features), and a set of expert demonstrations $\mathcal{D}=\{\zeta_i\}_{i=1}^N$, where each demonstration $\zeta_i=\{(s_{i,t},a_{i,t})\}_{t=1}^T$ is a multiset of state-action pairs representing optimal actions executed

by an expert, find the reward function that maximises the probability of observing the demonstrations, i.e.,

$$\arg\max_{\mathbf{r}} p(\mathcal{D} \mid \mathbf{r}).$$

The optimal policy $\pi: \mathcal{S} \to \mathcal{A}$ (i.e., a choice of actions for each state that maximises reward over time) is usually constructed by defining a value (utility) function $V_{\mathbf{r}}: \mathcal{S} \to \mathbb{R}$ that measures how good a state is based on the reward \mathbf{r} as well as the structure of the MDP. One can then find $V_{\mathbf{r}}$ by applying the Bellman backup operator until convergence to every $s \in \mathcal{S}$ (the technique is known as value iteration) [29]:

$$V_{\mathbf{r}}(s) \coloneqq r(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{\mathbf{r}}(s').$$

However, we follow previous work on GP IRL [17, 12], and use a *linearly solvable* (or *maximum causal entropy*) MDP with stochastic policy that define probability distributions over actions (instead of suggesting a single action for each state) [31]. This type of MDP can be solved by applying the 'soft' version of the operator [17, 18]:

$$V_{\mathbf{r}}(s) := \log \sum_{a \in \mathcal{A}} \exp \left(r(s) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{\mathbf{r}}(s') \right).$$
 (1)

With this model, we can express the likelihood as [12, 17]

$$p(\mathcal{D} \mid \mathbf{r}) = \prod_{i=1}^{N} \prod_{t=1}^{T} p(a_{i,t} \mid s_{i,t})$$

$$= \exp\left(\sum_{i=1}^{N} \sum_{t=1}^{T} Q_{\mathbf{r}}(s_{i,t}, a_{i,t}) - V_{\mathbf{r}}(s_{i,t})\right),$$
(2)

where

$$Q_{\mathbf{r}}(s, a) = r(s) + \gamma \sum_{s' \in S} \mathcal{T}(s, a, s') V_{\mathbf{r}}(s').$$

However, a reward function learned by maximising this likelihood is not transferable to new situations [12, 17]. One needs to model the reward structure in a way that would allow reward predictions for previously unseen states.

One way to model rewards without assumptions of linearity is with a Gaussian process (GP). A GP is a collection of random variables, any finite combination of which has a joint Gaussian distribution [25]. We write $r \sim \mathcal{GP}(0,k)$ to say that r is a GP with mean 0 and covariance function k. Covariance functions take two state feature vectors as input and quantify how similar the two states are, in a sense that we would expect them to have similar rewards.

¹Depending on the situation, we will sometimes represent rewards as a function $r: \mathcal{S} \to \mathbb{R}$.

As training a GP with n data points has a time complexity of $\mathcal{O}(n^3)$ [25], numerous approximation methods have been suggested, many of which select a subset of data called *inducing points* and focus most of the training effort on them [19]. Let $\mathbf{X}_{\mathbf{u}}$ be the matrix of features at inducing states, \mathbf{u} the rewards at those states. Then the full joint probability distribution can be factorised as

$$p(\mathcal{D}, \mathbf{u}, \mathbf{r}) = p(\mathbf{u}) \times p(\mathbf{r} \mid \mathbf{u}) \times p(\mathcal{D} \mid \mathbf{r}), \tag{3}$$

where

$$p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; \mathbf{0}, \mathbf{K}_{\mathbf{u}, \mathbf{u}})$$

$$= \frac{1}{(2\pi)^{m/2} |\mathbf{K}_{\mathbf{u}, \mathbf{u}}|^{1/2}} \exp\left(-\frac{1}{2} \mathbf{u}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{u}\right)$$

$$= \exp\left(-\frac{1}{2} \mathbf{u}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{u} - \frac{1}{2} \log |\mathbf{K}_{\mathbf{u}, \mathbf{u}}| - \frac{m}{2} \log 2\pi\right)$$

is the GP prior [25], and $m \in \mathbb{N}$ is the number of inducing points. The GP posterior is then a multivariate Gaussian [17]

$$p(\mathbf{r} \mid \mathbf{u}) = \mathcal{N}(\mathbf{r}; \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u}, \mathbf{K}_{\mathbf{r},\mathbf{r}} - \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{K}_{\mathbf{r},\mathbf{u}}), \quad (4)$$

and $p(\mathcal{D} \mid \mathbf{r})$ is as in Equation 2. The matrices such as $\mathbf{K}_{\mathbf{r},\mathbf{u}}$ are called *covariance matrices* and are defined as $[\mathbf{K}_{\mathbf{r},\mathbf{u}}]_{i,j} = k(\mathbf{x}_{\mathbf{r},i},\mathbf{x}_{\mathbf{u},j})$, where $\mathbf{x}_{\mathbf{r},i}$ and $\mathbf{x}_{\mathbf{u},j}$ denote feature vectors for the *i*th state in \mathcal{S} and the *j*th state in $\mathbf{X}_{\mathbf{u}}$, respectively [12].

Given this model, data \mathcal{D} , and inducing feature matrix X_u , our goal is then to find optimal values of parameters λ , inducing rewards u, and the rewards for all relevant states r. While the previous paper to consider this IRL model computed maximum likelihood (ML) estimates for λ and \mathbf{u} , and made an assumption that \mathbf{r} in Equation 4 has zero variance [17], we aim to avoid this assumption and use VI to approximate the full posterior distribution $p(\mathbf{u}, \mathbf{r} \mid \mathcal{D})$. Variational inference is an approximation technique for probability densities [4]. Let $q(\mathbf{u}, \mathbf{r})$ be our approximating family of probability distributions for $p(\mathbf{u}, \mathbf{r} \mid \mathcal{D})$. Then the job of VI is to optimise the parameters of the approximating distribution in order to minimise the Kullback-Leibler (KL) divergence between the original probability distribution and our approximation. KL divergence (asymmetrically) measures how different the two distributions are, and can be defined

$$\begin{aligned} D_{\mathrm{KL}}(q(\mathbf{u}, \mathbf{r}) \parallel p(\mathbf{u}, \mathbf{r} \mid \mathcal{D})) &= \mathbb{E}[\log q(\mathbf{u}, \mathbf{r}) - \log p(\mathbf{u}, \mathbf{r} \mid \mathcal{D})] \\ &= \mathbb{E}[\log q(\mathbf{u}, \mathbf{r}) - \log p(\mathcal{D}, \mathbf{u}, \mathbf{r})] \\ &+ \mathbb{E}[\log p(\mathcal{D})]. \end{aligned}$$

The last term is both hard to compute and constant w.r.t. $q(\mathbf{u}, \mathbf{r})$ [4], so we can remove it from our optimisation objective. The negation of what remains is often called the evidence lower bound (ELBO) and is defined as² [3, 4]

$$\mathcal{L} = \mathbb{E}\left[\log \frac{p(\mathcal{D}, \mathbf{u}, \mathbf{r})}{q(\mathbf{u}, \mathbf{r})}\right]$$

$$= \iiint \log \frac{p(\mathcal{D}, \mathbf{u}, \mathbf{r})}{q(\mathbf{u}, \mathbf{r})} q(\mathbf{u}, \mathbf{r}) d\mathbf{r} d\mathbf{u}.$$
(5)

By considering full probability distributions instead of point estimates—as long as the approximations are able to capture important features of the posterior—our predictions are likely to be more accurate and rely on fewer assumptions. Moreover, we hope to make use of various recent advancements in VI for both time complexity and approximation distribution fit (see Section 2), making the resulting algorithm competitive both in terms of running time and model fit.

The project is primarily concerned with investigating how a VI formulation of the GP IRL model compares against the original ML approach. Most importantly, we aim to compare how the two algorithms converge both over time and as the number of demonstrations increases. It would also be interesting to see how close the approximation of the posterior distribution is to the real thing. Finally, it is reasonable to conjecture that VI can outperform point estimates when dealing with more uncertainty, e.g., when experts make mistakes. We can easily investigate this by adapting how the evaluation data is generated.

2. BACKGROUND

2.1 Linear Algebra and Analysis

DEFINITION 2.1 (NORMS). For any finite-dimensional vector $\mathbf{x} = (x_1, \dots, x_n)^{\mathsf{T}}$, its maximum norm is

$$\|\mathbf{x}\|_{\infty} = \max_{i} |x_i|$$

whereas its taxicab (or Manhattan) norm is

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Let **A** be a matrix. For any vector norm $\|\cdot\|_p$, we can also define its induced norm for matrices as

$$\|\mathbf{A}\|_p = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}.$$

In particular, for $p = \infty$, we have

$$\|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j} |A_{i,j}|.$$

LEMMA 2.2 (PERTURBATION LEMMA [16]). Let $\|\cdot\|$ be any matrix norm, and let \mathbf{A} and \mathbf{E} be matrices such that \mathbf{A} is invertible and $\|\mathbf{A}^{-1}\|\|\mathbf{E}\| < 1$, then $\mathbf{A} + \mathbf{E}$ is invertible, and

$$\|(\mathbf{A} + \mathbf{E})^{-1}\| \le \frac{\|\mathbf{A}^{-1}\|}{1 - \|\mathbf{A}^{-1}\|\|\mathbf{E}\|}.$$

Theorem 2.3 (Dominated Convergence Theorem [26]). Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions on X for which $\{f_n\} \to f$ pointwise a.e. on X and the function f is measurable. Assume there is a non-negative function g that is integrable over X and dominates the sequence $\{f_n\}$ on X in the sense that

$$|f_n| \leq g$$
 a.e. on X for all n .

Then f is integrable over X and

$$\lim_{n \to \infty} \int_{\mathcal{X}} f_n \, d\mu = \int_{\mathcal{X}} f \, d\mu.$$

3. SOLUTION

²Throughout the proposal, all integrals should be interpreted as definite integrals over the entire sample space.

3.1 Notation

We use $tr(\mathbf{A})$ to denote its *trace* and $adj(\mathbf{A})$ for its *adjugate* (or *classical adjoint*).

For any vector \mathbf{x} , we write $\mathbb{R}_d[\mathbf{x}]$ to denote a vector space of polynomials with degree at most d, where variables are elements of \mathbf{x} , and coefficients are in \mathbb{R} .

3.2 Preliminaries

In this paper, all references to measurability are with respect to the Lebesgue measure. Similarly, whenever we consider the existence of an integral, we use the Lebesgue definition of integration.

As recently suggested by Ong et al. [21], we use a decomposition $\Sigma = \mathbf{B}\mathbf{B}^{\intercal} + \mathbf{D}^{2}$, where \mathbf{B} is a lower triangular $m \times p$ matrix with positive diagonal entries, and $\mathbf{D} = \mathrm{diag}(d_{1},\ldots,d_{m})$. Typically, we would set p so that $p \ll m$ to get an efficient approximation, but it is also worth pointing out that we can retain full accuracy by setting p = m and $\mathbf{D} = \mathbf{O}$. Moreover, we define a few variables that will simplify expressions for the derivatives:

$$\mathbf{U} = (\mathbf{u} - \boldsymbol{\mu})(\mathbf{u} - \boldsymbol{\mu})^{\mathsf{T}}$$

$$\mathbf{S} = \mathbf{K}_{\mathbf{r},\mathbf{u}}^\intercal \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1},$$

$$\Gamma = \mathbf{K_{r,r}} - \mathbf{SK_{r,u}},$$

$$\mathbf{R} = \mathbf{S} \frac{\partial \mathbf{K_{r,u}}}{\partial \lambda_i} - \frac{\partial \mathbf{K_{r,r}}}{\partial \lambda_i} + \left(\frac{\partial \mathbf{K_{r,u}^{T}}}{\partial \lambda_i} - \mathbf{S} \frac{\partial \mathbf{K_{u,u}}}{\partial \lambda_i} \right) \mathbf{K_{u,u}^{-1} K_{r,u}},$$

$$Q = (\mathbf{u} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{u} - \boldsymbol{\mu}).$$

Lemma 3.1 (Derivatives of PDFs).

1.
$$\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}} = \frac{1}{2}q(\mathbf{u})(\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal})(\mathbf{u} - \boldsymbol{\mu}).$$

2. (a)
$$\frac{\partial q(\mathbf{u})}{\partial \mathbf{\Sigma}} = \frac{1}{2}q(\mathbf{u})(\mathbf{\Sigma}^{-\intercal}\mathbf{U}\mathbf{\Sigma}^{-\intercal} - \mathbf{\Sigma}^{-\intercal}).$$

(b) $\frac{\partial q(\mathbf{u})}{\partial \mathbf{B}} = q(\mathbf{u})(\mathbf{\Sigma}^{-1}\mathbf{U}\mathbf{\Sigma}^{-1} - |\mathbf{\Sigma}|^{-1}\operatorname{adj}(\mathbf{\Sigma}))\mathbf{B}.$

3. For
$$i = 0, ..., d$$
,

(a)

$$\frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial \lambda_i} = \frac{1}{2} q(\mathbf{r} \mid \mathbf{u}) (|\mathbf{\Gamma}|^{-1} \operatorname{tr}(\mathbf{R} \operatorname{adj}(\mathbf{\Gamma})) - (\mathbf{r} - \mathbf{S}\mathbf{u})^{\mathsf{T}} \mathbf{\Gamma}^{-1} \mathbf{R} \mathbf{\Gamma}^{-1} (\mathbf{r} - \mathbf{S}\mathbf{u})).$$

(b) For any covariance matrix K,

$$\frac{\partial \mathbf{K}}{\partial \lambda_i} = \begin{cases} \frac{1}{\lambda_i} \mathbf{K} & if \ i = 0, \\ \mathbf{L} & otherwise, \end{cases}$$

where

$$L_{j,k} = k(\mathbf{x}_j, \mathbf{x}_k) \left(-\frac{1}{2} (x_{j,i} - x_{k,i})^2 - \mathbb{1}[j \neq k] \sigma^2 \right).$$

3.3 Details of the Model

In order to properly investigate the difference between variational inference and ML estimation, we keep other parts of the model the same. Namely, we set the covariance function to a version of the automatic relevance detection kernel [17, 20]

$$k(\mathbf{x}_i, \mathbf{x}_j) = \lambda_0 \exp\left(-\frac{1}{2}(\mathbf{x}_i - \mathbf{x}_j)^\mathsf{T} \mathbf{\Lambda} (\mathbf{x}_i - \mathbf{x}_j) - \mathbb{1}[i \neq j] \sigma^2 \operatorname{tr}(\mathbf{\Lambda})\right),$$

where λ_0 is the overall 'scale' factor for how similar or distant the states are, $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ is a diagonal matrix that determines the relevance of each feature (where d denotes the number of features), $\mathbb{1}$ is defined as

$$\mathbb{1}[b] = \begin{cases} 1 & \text{if } b \text{ is true} \\ 0 & \text{otherwise,} \end{cases}$$

and σ^2 is set to $10^{-2}/2$ (as the original paper noted that the value makes little difference to the performance of the algorithm [17]). Our vector of parameters for the covariance function is then $\lambda = (\lambda_0, \dots, \lambda_d)^{\mathsf{T}}$.

TODO: introductory sentence for the following assumption:

$$q(\mathbf{u}, \mathbf{r}) = q(\mathbf{u}) \times q(\mathbf{r} \mid \mathbf{u}), \tag{6}$$

where

$$q(\mathbf{u}) = \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}),$$
 (7)

where $\mu \in \mathbb{R}^m$ is the mean vector and the $m \times m$ positive semi-definite matrix Σ is the covariance matrix [7, 9, 11].

This gives us our variational parameters $\nu = (\mu, \mathbf{B}, \lambda)^{\mathsf{T}}$. TODO: reference the figure

3.4 Evidence Lower Bound

In this section we derive and simplify the ELBO for this (now fully specified) model. In order to derive the ELBO, let us go back to Equation 5 and write³

$$\mathcal{L} = \mathbb{E}[\log p(\mathcal{D}, \mathbf{u}, \mathbf{r})] - \mathbb{E}[\log q(\mathbf{u}, \mathbf{r})].$$

By substituting in Equations 3 and 6, we get

$$\mathcal{L} = \mathbb{E}[\log p(\mathbf{u}) + \log p(\mathbf{r} \mid \mathbf{u}) + \log p(\mathcal{D} \mid \mathbf{r})] - \mathbb{E}[\log q(\mathbf{u}) + \log q(\mathbf{r} \mid \mathbf{u})].$$

Since $q(\mathbf{r} \mid \mathbf{u}) = p(\mathbf{r} \mid \mathbf{u})$, they cancel each other out. Also notice that

$$\mathbb{E}[\log p(\mathbf{u}) - \log q(\mathbf{u})] = -D_{\mathrm{KL}}(q(\mathbf{u}) \parallel p(\mathbf{u}))$$

$$= -\frac{1}{2}(\mathrm{tr}(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\boldsymbol{\mu} - m + \log |\mathbf{K}_{\mathbf{u},\mathbf{u}}| - \log |\boldsymbol{\Sigma}|),$$

by the definition of KL divergence between two multivariate normal distributions [8]. Hence,

$$\begin{split} \mathcal{L} &= \mathbb{E}\left[\sum_{i=1}^{N} \sum_{t=1}^{T} Q_{\mathbf{r}}(s_{i,t}, a_{i,t}) - V_{\mathbf{r}}(s_{i,t})\right] \\ &- \frac{1}{2} \left(\operatorname{tr}\left(\mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{\Sigma}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \boldsymbol{\mu} + \log |\mathbf{K}_{\mathbf{u}, \mathbf{u}}| - \log |\mathbf{\Sigma}| \right). \end{split}$$

³At this point, we will drop the subscript denoting which variables the expectation is taken over. Also note that throughout the derivation equality is taken to mean 'equality up to an additive constant'.

Using the expressions for $Q_{\mathbf{r}}$ we get

$$\mathcal{L} = \mathbb{E}\left[\sum_{i=1}^{N} \sum_{t=1}^{T} r(s_{i,t}) - V_{\mathbf{r}}(s_{i,t}) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') V_{\mathbf{r}}(s')\right] - \frac{1}{2} \left(\operatorname{tr}\left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{\Sigma}\right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\mu} + \log |\mathbf{K}_{\mathbf{u},\mathbf{u}}| - \log |\mathbf{\Sigma}| \right).$$

We can simplify $\sum_{i=1}^{N} \sum_{t=1}^{T} r(s_{i,t})$ by defining a new vector $\mathbf{t} = (t_1, \dots, t_{|\mathcal{S}|})^{\mathsf{T}}$, where t_i is the number of times the state associated with the reward r_i has been visited across all demonstrations. Then

$$\mathbb{E}\left[\sum_{i=1}^{N}\sum_{t=1}^{T}r(s_{i,t})\right] = \mathbb{E}[\mathbf{t}^{\mathsf{T}}\mathbf{r}] = \mathbf{t}^{\mathsf{T}}\mathbb{E}[\mathbf{r}]$$
$$= \mathbf{t}^{\mathsf{T}}\mathbb{E}\left[\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{u}\right] = \mathbf{t}^{\mathsf{T}}\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\boldsymbol{\mu}.$$

This allows us to simplify \mathcal{L} to

$$\begin{split} \mathcal{L} &= \mathbf{t}^{\mathsf{T}} \mathbf{K}_{\mathbf{r}, \mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \boldsymbol{\mu} - \mathbb{E}[v] \\ &- \frac{1}{2} \left(\operatorname{tr} \left(\mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \boldsymbol{\Sigma} \right) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \boldsymbol{\mu} + \log |\mathbf{K}_{\mathbf{u}, \mathbf{u}}| - \log |\boldsymbol{\Sigma}| \right), \end{split}$$

where

$$v = \sum_{i=1}^{N} \sum_{t=1}^{T} V_{\mathbf{r}}(s_{i,t}) - \gamma \sum_{s' \in S} \mathcal{T}(s_{i,t}, a_{i,t}, s') V_{\mathbf{r}}(s').$$

3.5 Variational Inference

The typical way to optimise a quantity (the ELBO, in this case) involves computing its gradient [4]. Unfortunately, some of the terms in \mathcal{L} are still left as expected values. Black box variational inference (BBVI) [24] suggests a way to express the gradient as an expectation without having to take the gradient of the posterior:

$$\nabla_{\nu} \mathcal{L} = \mathbb{E}[\nabla_{\nu} \log q(\mathbf{u}, \mathbf{r})(\log p(\mathcal{D}, \mathbf{u}, \mathbf{r}) - \log q(\mathbf{u}, \mathbf{r}))].$$

The gradient of the ELBO then has a unbiased estimate

$$\nabla_{\boldsymbol{\nu}} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\boldsymbol{\nu}} \log q(\mathbf{u}_{s}, \mathbf{r}_{s}) (\log p(\mathcal{D}, \mathbf{u}_{s}, \mathbf{r}_{s}) - \log q(\mathbf{u}_{s}, \mathbf{r}_{s})),$$

computed by drawing S Monte Carlo samples $(\mathbf{u}_s, \mathbf{r}_s) \sim q(\mathbf{u}, \mathbf{r})$.

The main theorem behind the BBVI trick is the Lebesgue's dominated convergence theorem [27], which—under some conditions—allows one to claim that:

$$\lim_{n \to \infty} \int_E f_n \, d\mu = \int_E \lim_{n \to \infty} f_n \, d\mu.$$

We can use the same idea on parts of \mathcal{L} , derivatives of which cannot be taken otherwise. In our case, we want a gradient instead of a limit, and the integral represents an expected value.

3.6 Theoretical Justification

MDP values are characterised by both a state and a reward function/vector. In order to prove the next theorem, we think of the value function as $V: \mathcal{S} \to \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}$, i.e., V takes a state $s \in \mathcal{S}$ and returns a function $V(s): \mathbb{R}^{\mathcal{S}} \to \mathbb{R}$ that takes a reward vector $\mathbf{r} \in \mathbb{R}^{|\mathcal{S}|}$ and returns a value of the state $s, V_{\mathbf{r}}(s) \in \mathbb{R}$. The function V(s) computes the values of all states and returns the value of state s.

PROPOSITION 3.2 (MEASURABILITY). MDP value functions $V(s): \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}$ (for $s \in \mathcal{S}$) are Lebesgue measurable.

Figure 1: A graphical representation of dependencies between our theoretical results. An arrow from A to B means that A was used to prove B. Results from the literature are in gray.

PROOF. For any reward vector $\mathbf{r} \in \mathbb{R}^{|\mathcal{S}|}$, the collection of converged value functions $\{V_{\mathbf{r}}(s) \mid s \in \mathcal{S}\}$ satisfy

$$V_{\mathbf{r}}(s) = \log \sum_{a \in \mathcal{A}} \exp \left(r(s) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{\mathbf{r}}(s') \right)$$
 (8)

for all $s \in \mathcal{S}$. Let $s_0 \in \mathcal{S}$ be an arbitrary state. In order to prove that $V(s_0)$ is measurable, it is enough to show that for any $\alpha \in \mathbb{R}$, the set

$$\left\{ \mathbf{r} \in \mathbb{R}^{|\mathcal{S}|} \middle| \begin{array}{l} V_{\mathbf{r}}(s_0) \in (-\infty, \alpha); \\ V_{\mathbf{r}}(s) \in \mathbb{R} \text{ for all } s \in \mathcal{S} \setminus \{s_0\}; \\ \text{Equation 8 is satisfied by all } s \in \mathcal{S} \end{array} \right\}$$

is measurable. Since this set can be constructed in Zermelo-Fraenkel set theory without the axiom of choice, it is measurable [10], which proves that V(s) is a measurable function for any $s \in \mathcal{S}$. \square

Proposition 3.3 (Boundedness). If the initial values of the MDP value function satisfy the following bound, then the bound remains satisfied throughout value iteration:

$$|V_{\mathbf{r}}(s)| \le \frac{\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|}{1 - \gamma}.$$
 (9)

PROOF. We begin by considering Equation 9 without taking the absolute value of $V_{\mathbf{r}}(s)$, i.e.,

$$V_{\mathbf{r}}(s) \le \frac{\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|}{1 - \gamma},\tag{10}$$

and assuming that the initial values of $\{V_{\mathbf{r}}(s) \mid s \in \mathcal{S}\}$ already satisfy Equation 10. Recall that for each $s \in \mathcal{S}$, the value of $V_{\mathbf{r}}(s)$ is updated by applying Equation 1. Note that both log and exp are increasing functions, $\gamma > 0$, and the \mathcal{T} function gives a probability (a non-negative number). Thus

$$V_{\mathbf{r}}(s) \leq \log \sum_{a \in \mathcal{A}} \exp \left(r(s) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \frac{\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|}{1 - \gamma} \right)$$

$$= \log \sum_{a \in \mathcal{A}} \exp \left(r(s) + \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|)}{1 - \gamma} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \right)$$

$$= \log \sum_{a \in \mathcal{A}} \exp \left(r(s) + \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|)}{1 - \gamma} \right)$$

by the definition of \mathcal{T} . Then

$$V_{\mathbf{r}}(s) \leq \log \left(|\mathcal{A}| \exp\left(r(s) + \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|)}{1 - \gamma}\right) \right)$$

$$= \log \left(\exp\left(\log|\mathcal{A}| + r(s) + \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|)}{1 - \gamma}\right) \right)$$

$$= \log|\mathcal{A}| + r(s) + \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|)}{1 - \gamma}$$

$$= \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|) + (1 - \gamma)(\log|\mathcal{A}| + r(s))}{1 - \gamma}$$

$$\leq \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|) + (1 - \gamma)(\log|\mathcal{A}| + \|\mathbf{r}\|_{\infty})}{1 - \gamma}$$

$$= \frac{\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|}{1 - \gamma}$$

by the definition of $\|\mathbf{r}\|_{\infty}$.

The proof for

$$V_{\mathbf{r}}(s) \ge \frac{\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|}{\gamma - 1} \tag{11}$$

follows the same argument until we get to

$$V_{\mathbf{r}}(s) \ge \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|) + (\gamma - 1)(\log|\mathcal{A}| + r(s))}{\gamma - 1}$$
$$\ge \frac{\gamma(\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|) + (\gamma - 1)(-\log|\mathcal{A}| - \|\mathbf{r}\|_{\infty})}{\gamma - 1}$$
$$= \frac{\|\mathbf{r}\|_{\infty} + \log|\mathcal{A}|}{\gamma - 1},$$

where we use the fact that $r(s) \ge -\|\mathbf{r}\|_{\infty} - 2\log|\mathcal{A}|$. Combining Equations 10 and 11 gives Equation 9. $\hfill\Box$

LEMMA 3.4. Let $c: \mathbb{R}^{|\mathcal{S}|} \times \mathbb{R}^m \to (a,b) \subset \mathbb{R}$ be an arbitrary bounded function. Then, for i = 0, ..., d,

$$\left. \frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial \lambda_i} \right|_{\lambda_i = c(\mathbf{r}, \mathbf{u})}$$

has upper and lower bounds of the form $q(\mathbf{r} \mid \mathbf{u})d(\mathbf{u})$, where $d(\mathbf{u}) \in \mathbb{R}_2[\mathbf{u}].$

PROOF. Remember that

$$\frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial \lambda_i} = \frac{1}{2} q(\mathbf{r} \mid \mathbf{u}) (|\mathbf{\Gamma}|^{-1} \operatorname{tr}(\mathbf{R} \operatorname{adj}(\mathbf{\Gamma})) - (\mathbf{r} - \mathbf{S}\mathbf{u})^{\mathsf{T}} \mathbf{\Gamma}^{-1} \mathbf{R} \mathbf{\Gamma}^{-1} (\mathbf{r} - \mathbf{S}\mathbf{u})).$$

by Lemma 3.1. We begin by producing constant upper and lower bounds for the elements of

$$\left. \frac{\partial \mathbf{K}}{\partial \lambda_i} \right|_{\lambda_i = c(\mathbf{r}, \mathbf{u})}$$

where **K** is any covariance matrix. If i = 0, then each element of $\frac{\partial \mathbf{K}}{\partial \lambda_0}$ is of the form

$$\exp\left(-\frac{1}{2}(\mathbf{x}_j - \mathbf{x}_k)^{\mathsf{T}} \mathbf{\Lambda} (\mathbf{x}_j - \mathbf{x}_k) - \mathbb{1}[j \neq k] \sigma^2 \operatorname{tr}(\mathbf{\Lambda})\right),\,$$

i.e., without λ_0 , so

$$\left. \frac{\partial \mathbf{K}}{\partial \lambda_0} \right|_{\lambda_0 = c(\mathbf{r}, \mathbf{u})} = \frac{\partial \mathbf{K}}{\partial \lambda_0}$$

is already independent of \mathbf{r} and \mathbf{u} —there is no need for any bounds.

If i>0, then each element of $\frac{\partial \mathbf{K}}{\partial \lambda_i}$ is a constant multiple of $k(\mathbf{x}_i, \mathbf{x}_k)$, for some \mathbf{x}_i and \mathbf{x}_k . Since $k(\mathbf{x}_i, \mathbf{x}_k)$ is a decreasing function of λ_i , and $c(\mathbf{r}, \mathbf{u}) > a$,

$$k(\mathbf{x}_{j}, \mathbf{x}_{k})|_{\lambda_{i}=c(\mathbf{r}, \mathbf{u})} = \lambda_{0} \exp\left(-\frac{1}{2}c(\mathbf{r}, \mathbf{u})(x_{j,i} - x_{k,i})^{2} - \mathbb{1}[j \neq k]\sigma^{2}c(\mathbf{r}, \mathbf{u}) - S\right)$$
$$< \lambda_{0} \exp\left(-\frac{1}{2}a(x_{j,i} - x_{k,i})^{2} - \mathbb{1}[j \neq k]\sigma^{2}a - S\right),$$

where

$$S = \sum_{n \in \{1, ..., d\} \setminus \{i\}} \frac{\lambda_n}{2} (x_{j,n} - x_{k,n})^2 + \mathbb{1}[j \neq k] \sigma^2 \lambda_n,$$

which gives an upper bound on each element of

$$\left. \frac{\partial \mathbf{K}}{\partial \lambda_i} \right|_{\lambda_i = c(\mathbf{r}, \mathbf{u})}$$

A similar line of reasoning establishes lower bounds as well. Combining the bounds with the observation that every element of $\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{u}\mathbf{u}^{\intercal}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-\intercal}$ is in $\mathbb{R}_{2}[\mathbf{u}]$ gives the required res-

Remark 3.5. In order to find $\frac{\partial q(\mathbf{u})}{\partial t}$, where t is the ith element of the vector $\boldsymbol{\mu}$, we can find $\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}}$ and simply take the ith element. A similar line of reasoning applies to matrices as well. Thus, we only need to consider derivatives with respect to μ and Σ .

Lemma 3.6. Let $c: \mathbb{R}^{|\mathcal{S}|} \times \mathbb{R}^m \to (a,b) \subset \mathbb{R}$ be an arbitrary bounded function. Then, for $i=1,\ldots,m$, every element of

$$\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}}\bigg|_{\mu_i = c(\mathbf{r}, \mathbf{u})}$$

has upper and lower bounds of the form $q(\mathbf{u})d(\mathbf{u})$, where $d(\mathbf{u}) \in \mathbb{R}_1[\mathbf{u}].$

PROOF. Using Lemma 3.1,

$$\left.\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}}\right|_{\mu_i = c(\mathbf{r}, \mathbf{u})} = \frac{1}{2}q(\mathbf{u})(\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal})(\mathbf{u} - \mathbf{c}(\mathbf{r}, \mathbf{u})),$$

where $\mathbf{c}(\mathbf{r}, \mathbf{u}) = (\mu_1, \dots, \mu_{i-1}, c(\mathbf{r}, \mathbf{u}), \mu_{i+1}, \dots, \mu_m)^{\mathsf{T}}$. Since $c(\mathbf{r}, \mathbf{u})$ is bounded and $\mathbf{\Sigma}^{-1} + \mathbf{\Sigma}^{-\mathsf{T}}$ is a constant matrix, we can use the bounds on $c(\mathbf{r}, \mathbf{u})$ to manufacture both upper and lower bounds on

$$\left.\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}}\right|_{\mu_i=c(\mathbf{r},\mathbf{u})}$$

of the required form. \square

LEMMA 3.7. Let i, j = 1, ..., m, and let $\epsilon > 0$ be arbitrary. Furthermore, let

$$c: \mathbb{R}^{|\mathcal{S}|} \times \mathbb{R}^m \to (\Sigma_{i,j} - \epsilon, \Sigma_{i,j} + \epsilon) \subset \mathbb{R}$$

be a function with a codomain arbitrarily close to $\Sigma_{i,j}$. Then every element of

$$\left.\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\Sigma}}\right|_{\boldsymbol{\Sigma}_{i,j}=\boldsymbol{c}(\mathbf{r},\mathbf{u})}$$

has upper and lower bounds of the form $q(\mathbf{u})d(\mathbf{u})$, where $d(\mathbf{u}) \in \mathbb{R}_2[\mathbf{u}]$.

Proof. Using Lemma 3.1,

$$\left. \frac{\partial q(\mathbf{u})}{\partial \mathbf{\Sigma}} \right|_{\Sigma_{i,j} = c(\mathbf{r}, \mathbf{u})} = \frac{1}{2} q(\mathbf{u}) (\mathbf{C}(\mathbf{r}, \mathbf{u})^{-\intercal} \mathbf{U} \mathbf{C}(\mathbf{r}, \mathbf{u})^{-\intercal} - \mathbf{C}(\mathbf{r}, \mathbf{u})^{-\intercal}),$$

where

$$[\mathbf{C}(\mathbf{r}, \mathbf{u})]_{k,l} = \begin{cases} c(\mathbf{r}, \mathbf{u}) & \text{if } (k, l) = (i, j), \\ \Sigma_{k, l} & \text{otherwise.} \end{cases}$$

We can also express $C(\mathbf{r}, \mathbf{u})$ as $C(\mathbf{r}, \mathbf{u}) = \Sigma + \mathbf{E}(\mathbf{r}, \mathbf{u})$, where

$$[\mathbf{E}(\mathbf{r}, \mathbf{u})]_{k,l} = \begin{cases} c(\mathbf{r}, \mathbf{u}) - \Sigma_{i,j} & \text{if } (k, l) = (i, j), \\ 0 & \text{otherwise.} \end{cases}$$

We begin by establishing upper and lower bounds on $\mathbf{C}(\mathbf{r}, \mathbf{u})^{-1}$. For this, we use the maximum norm $\|\cdot\|_{\infty}$ on both vectors and matrices. We can apply Lemma 2.2 to Σ and $\mathbf{E}(\mathbf{r}, \mathbf{u})$ since

$$\|\mathbf{E}(\mathbf{r}, \mathbf{u})\|_{\infty} = \max_{k} \sum_{l} |[\mathbf{E}(\mathbf{r}, \mathbf{u})]_{k, l}| = |c(\mathbf{r}, \mathbf{u}) - \Sigma_{i, j}| < \epsilon$$

can be made arbitrarily small so that $\|\mathbf{\Sigma}^{-1}\|_{\infty} \|\mathbf{E}(\mathbf{r}, \mathbf{u})\|_{\infty} < 1$. Then $\mathbf{C}(\mathbf{r}, \mathbf{u})$ is invertible, and

$$\|\mathbf{C}(\mathbf{r},\mathbf{u})^{-1}\|_{\infty} \leq \frac{\|\mathbf{\Sigma}^{-1}\|_{\infty}}{1-\|\mathbf{\Sigma}^{-1}\|_{\infty}\|\mathbf{E}(\mathbf{r},\mathbf{u})\|_{\infty}} < \frac{\|\mathbf{\Sigma}^{-1}\|_{\infty}}{1-\|\mathbf{\Sigma}^{-1}\|_{\infty}\epsilon},$$

which means that

$$\max_k \sum_l \left| \left[\mathbf{C}(\mathbf{r}, \mathbf{u})^{-1} \right]_{k,l} \right| < \frac{\| \mathbf{\Sigma}^{-1} \|_{\infty}}{1 - \| \mathbf{\Sigma}^{-1} \|_{\infty} \epsilon},$$

i.e., for any row k and column l,

$$\left|\left[\mathbf{C}(\mathbf{r},\mathbf{u})^{-1}\right]_{k,l}\right| < \frac{\|\boldsymbol{\Sigma}^{-1}\|_{\infty}}{1 - \|\boldsymbol{\Sigma}^{-1}\|_{\infty}\epsilon},$$

which bounds all elements of $\mathbf{C}(\mathbf{r}, \mathbf{u})^{-1}$ as required. Since every element of $\mathbf{U} = (\mathbf{u} - \boldsymbol{\mu})(\mathbf{u} - \boldsymbol{\mu})^{\mathsf{T}}$ is in $\mathbb{R}_2[\mathbf{u}]$, and the elements of $\mathbf{C}(\mathbf{r}, \mathbf{u})^{-1}$ are bounded, the desired result follows. \square

Lemma 3.8.

$$\int \|\mathbf{r}\|_{\infty} q(\mathbf{r} \mid \mathbf{u}) d\mathbf{r} \le a + \|\mathbf{K}_{\mathbf{r}, \mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{u}\|_{1},$$

where a is a constant independent of \mathbf{u} .

PROOF. Since $\|\mathbf{r}\|_{\infty} \leq \|\mathbf{r}\|_{1}$,

$$\int \|\mathbf{r}\|_{\infty} q(\mathbf{r} \mid \mathbf{u}) d\mathbf{r} \le \int \|\mathbf{r}\|_{1} q(\mathbf{r} \mid \mathbf{u}) d\mathbf{r} = \sum_{i=1}^{|\mathcal{S}|} \mathbb{E}[|r_{i}|].$$

As each $\mathbb{E}[|r_i|]$ is a mean of a folded Gaussian distribution,

$$\mathbb{E}[|r_i|] = \sigma_i \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\xi_i^2}{2\sigma_i^2}\right) + \xi_i \left(1 - 2\Phi\left(-\frac{\xi_1}{\sigma_1}\right)\right),$$

where $\xi_i = \left[\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u} \right]_i$, $\sigma_i = \sqrt{\left[\mathbf{K}_{\mathbf{r},\mathbf{r}} - \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{K}_{\mathbf{r},\mathbf{u}} \right]_{i,i}^4}$, and Φ is the cumulative distribution function of the standard

normal distribution. Furthermore,

$$\mathbb{E}[|r_i|] \le \sigma_i \sqrt{\frac{2}{\pi}} + |\xi_i|,$$

as σ_i is non-negative, and $\Phi(x) \in [0,1]$ for all x. Since

$$\sum_{i=1}^{|\mathcal{S}|} |\xi_i| = \|\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u}\|_1,$$

we can set

$$a = \sum_{i=1}^{|\mathcal{S}|} \sigma_i \sqrt{\frac{2}{\pi}}$$

to get the desired result.

Our main theorem is a specialised version of an integral differentiation result by Chen [6].

Theorem 3.9. Whenever the derivative exists,

$$\frac{\partial}{\partial t} \iint V_{\mathbf{r}}(s) q(\mathbf{r} \mid \mathbf{u}) q(\mathbf{u}) \, d\mathbf{r} \, d\mathbf{u} = \iint \frac{\partial}{\partial t} [V_{\mathbf{r}}(s) q(\mathbf{r} \mid \mathbf{u}) q(\mathbf{u})] \, d\mathbf{r} \, d\mathbf{u},$$

where t is any scalar part of μ , Σ , or λ .

PROOF. Let

$$\begin{split} f(\mathbf{r}, \mathbf{u}, t) &= V_{\mathbf{r}}(s) q(\mathbf{r} \mid \mathbf{u}) q(\mathbf{u}), \\ F(t) &= \iint f(\mathbf{r}, \mathbf{u}, t) \, d\mathbf{r} \, d\mathbf{u}, \end{split}$$

and fix the value of t. Let $(t_n)_{n=1}^{\infty}$ be any sequence such that $\lim_{n\to\infty} t_n = t$, but $t_n \neq t$ for all n. We want to show that

$$F'(t) = \lim_{n \to \infty} \frac{F(t_n) - F(t)}{t_n - t} = \iint \left. \frac{\partial f}{\partial t} \right|_{(\mathbf{r}, \mathbf{u}, t)} d\mathbf{r} d\mathbf{u}. \quad (12)$$

We have

$$\frac{F(t_n) - F(t)}{t_n - t} = \iint \frac{f(\mathbf{r}, \mathbf{u}, t_n) - f(\mathbf{r}, \mathbf{u}, t)}{t_n - t} d\mathbf{r} d\mathbf{u}$$
$$= \iint f_n(\mathbf{r}, \mathbf{u}) d\mathbf{r} d\mathbf{u},$$

where

$$f_n(\mathbf{r}, \mathbf{u}) = \frac{f(\mathbf{r}, \mathbf{u}, t_n) - f(\mathbf{r}, \mathbf{u}, t)}{t_n - t}$$

Since

$$\lim_{n\to\infty} f_n(\mathbf{r}, \mathbf{u}) = \left. \frac{\partial f}{\partial t} \right|_{(\mathbf{r}, \mathbf{u}, t)},$$

Equation 12 follows from Theorem 2.3 as soon as we show that both f and f_n are measurable and find a non-negative integrable function g such that for all n, \mathbf{r} , \mathbf{u} ,

$$|f_n(\mathbf{r}, \mathbf{u})| \le g(\mathbf{r}, \mathbf{u}).$$

The MDP value function is measurable by Proposition 3.2. The result of multiplying or adding measurable functions (e.g., probability density functions) to a measurable function is still measurable. Thus, both f and f_n are measurable.

It remains to find g. For notational simplicity and without loss of generality, we will temporarily assume that t is a parameter of $q(\mathbf{r} \mid \mathbf{u})$. Then

$$|f_n(\mathbf{r}, \mathbf{u})| = |V_\mathbf{r}(s)| \left| \frac{q(\mathbf{r} \mid \mathbf{u})|_{t=t_n} - q(\mathbf{r} \mid \mathbf{u})}{t_n - t} \right| q(\mathbf{u})$$

⁴The expression under the square root sign is non-negative because $\mathbf{K_{r,r}} - \mathbf{K_{r,u}^{\intercal}} \mathbf{K_{u,u}^{-1}} \mathbf{K_{r,u}}$ is a covariance matrix of a Gaussian distribution, hence also positive semi-definite, which means that its diagonal entries are non-negative.

since PDFs are non-negative. An upper bound for $|V_{\mathbf{r}}(s)|$ is given by Proposition 3.3, while

$$\frac{q(\mathbf{r}\mid\mathbf{u})|_{t=t_n}-q(\mathbf{r}\mid\mathbf{u})}{t_n-t}=\left.\frac{\partial q(\mathbf{r}\mid\mathbf{u})}{\partial t}\right|_{t=c(\mathbf{r},\mathbf{u})}$$

for some function $c: \mathbb{R}^{|S|} \times \mathbb{R}^m \to (\min\{t, t_n\}, \max\{t, t_n\})$ due to the mean value theorem (since q is a continuous and differentiable function of t, regardless of the specific choices of q and t).

We then have that

$$|f_n(\mathbf{r}, \mathbf{u})| \le \frac{\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|}{1 - \gamma} \left| \frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial t} \right|_{t = c(\mathbf{r}, \mathbf{u})} q(\mathbf{u}).$$

The bound is clearly non-negative and measurable. It remains to show that it is also integrable. Depending on what t represents, we can use one of the Lemmas 3.4, 3.6, and 3.7, which gives us two polynomials $p_1(\mathbf{u}), p_2(\mathbf{u}) \in \mathbb{R}_2[\mathbf{u}]$ such that

$$p_1(\mathbf{u})q(\mathbf{r} \mid \mathbf{u}) < \left. \frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial t} \right|_{t=c(\mathbf{r},\mathbf{u})} < p_2(\mathbf{u})q(\mathbf{r} \mid \mathbf{u}).$$

Then

$$\left| \frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial t} \right|_{t=c(\mathbf{r},\mathbf{u})} \right| < q(\mathbf{r} \mid \mathbf{u}) \max\{|p_1(\mathbf{u})|, |p_2(\mathbf{u})|\}.$$

We can now apply Lemma 3.8, which allows us to integrate out \mathbf{r} , and we are left with showing the existence of

$$\int \left(a + \|\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{u}\|_{1}\right) \max\{|p_{1}(\mathbf{u})|,|p_{2}(\mathbf{u})|\}q(\mathbf{u}) d\mathbf{u},$$
(13)

where a is a constant. The integral

$$\int \max \left\{ \begin{aligned} &|p_1(\mathbf{u})|, \\ &|p_2(\mathbf{u})| \end{aligned} \right\} q(\mathbf{u}) \, d\mathbf{u} = \int \max \left\{ \begin{aligned} &|p_1(\mathbf{u})q(\mathbf{u})|, \\ &|p_2(\mathbf{u})q(\mathbf{u})| \end{aligned} \right\} \, d\mathbf{u}$$

exists because $p_1(\mathbf{u})q(\mathbf{u})$ and $p_2(\mathbf{u})q(\mathbf{u})$ are both integrable, hence their absolute values are integrable, and the maximum of two integrable functions is also integrable. Since $\|\mathbf{K}_{\mathbf{I},\mathbf{u}}^{\mathbf{I}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{u}\|_1 \in \mathbb{R}_1[\mathbf{u}]$, a similar argument can be applied to the rest of Equation 13 as well. \square

4. EVALUATION

5. CONCLUSIONS

5.1 Future Work

6. REFERENCES

- P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In C. E. Brodley, editor, Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM International Conference Proceeding Series. ACM, 2004.
- [2] S. Arora and P. Doshi. A survey of inverse reinforcement learning: Challenges, methods and progress. CoRR, abs/1806.06877, 2018.

- [3] C. M. Bishop. Pattern recognition and machine learning, 5th Edition. Information science and statistics. Springer, 2007.
- [4] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.
- [5] K. D. Bogert and P. Doshi. Multi-robot inverse reinforcement learning under occlusion with estimation of state transitions. Artif. Intell., 263:46–73, 2018.
- [6] R. Chen. The dominated convergence theorem and applications. National Cheng Kung University, 2016.
- [7] C. Cheng and B. Boots. Variational inference for Gaussian process models with linear complexity. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 5190-5200, 2017.
- [8] J. Duchi. Derivations for linear algebra and optimization. Stanford University.
- [9] J. Hensman, N. Durrande, and A. Solin. Variational Fourier features for Gaussian processes. *Journal of Machine Learning Research*, 18:151:1–151:52, 2017.
- [10] H. Herrlich. Axiom of choice. Springer, 2006.
- [11] Q. M. Hoang, T. N. Hoang, and K. H. Low. A generalized stochastic variational Bayesian hyperparameter learning framework for sparse spectrum Gaussian process regression. In S. P. Singh and S. Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages 2007–2014. AAAI Press, 2017.
- [12] M. Jin, A. C. Damianou, P. Abbeel, and C. J. Spanos. Inverse reinforcement learning via deep Gaussian process. In G. Elidan, K. Kersting, and A. T. Ihler, editors, Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.
- [13] B. Kim and J. Pineau. Socially adaptive path planning in human environments using inverse reinforcement learning. I. J. Social Robotics, 8(1):51–66, 2016.
- [14] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. Socially compliant mobile robot navigation via inverse reinforcement learning. I. J. Robotics Res., 35(11):1289–1307, 2016.
- [15] S. Laue, M. Mitterreiter, and J. Giesen. Computing higher order derivatives of matrix and tensor expressions. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pages 2755-2764, 2018.
- [16] W. Layton and M. Sussman. Numerical linear algebra. Lulu.com, 2014.
- [17] S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning with Gaussian processes. In J. Shawe-Taylor, R. S. Zemel, P. L.

Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain., pages 19–27, 2011.

- [18] S. Levine, Z. Popovic, and V. Koltun. Supplementary material: Nonlinear inverse reinforcement learning with Gaussian processes. http://graphics.stanford. edu/projects/gpirl/gpirl_supplement.pdf, December 2011.
- [19] H. Liu, Y. Ong, X. Shen, and J. Cai. When Gaussian process meets big data: A review of scalable GPs. CoRR, abs/1807.01065, 2018.
- [20] R. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer New York, 2012.
- [21] V. M.-H. Ong, D. J. Nott, and M. S. Smith. Gaussian variational approximation with a factor covariance structure. *Journal of Computational and Graphical Statistics*, 27(3):465–478, 2018.
- [22] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. *Technical University of Denmark*, 7(15):510, 2008.
- [23] Q. Qiao and P. A. Beling. Inverse reinforcement learning with Gaussian process. CoRR, abs/1208.2112, 2012
- [24] R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014, volume 33 of JMLR Workshop and Conference Proceedings, pages 814–822. JMLR.org, 2014.
- [25] C. E. Rasmussen and C. K. I. Williams. *Gaussian* processes for machine learning. Adaptive computation

- and machine learning. MIT Press, 2006.
- [26] H. Royden and P. Fitzpatrick. Real Analysis. Prentice Hall, 2010.
- [27] H. L. Royden and P. Fitzpatrick. Real analysis, volume 32. Macmillan New York, 1988.
- [28] S. J. Russell. Learning agents for uncertain environments (extended abstract). In P. L. Bartlett and Y. Mansour, editors, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24-26, 1998., pages 101-103. ACM, 1998.
- [29] S. J. Russell and P. Norvig. Artificial Intelligence A Modern Approach (3. internat. ed.). Pearson Education, 2010.
- [30] A. Vogel, D. Ramachandran, R. Gupta, and A. Raux. Improving hybrid vehicle fuel efficiency using inverse reinforcement learning. In J. Hoffmann and B. Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press, 2012.
- [31] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.
- [32] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell. Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In H. Y. Youn and W. Cho, editors, UbiComp 2008: Ubiquitous Computing, 10th International Conference, UbiComp 2008, Seoul, Korea, September 21-24, 2008, Proceedings, volume 344 of ACM International Conference Proceeding Series, pages 322-331. ACM, 2008.
- [33] B. D. Ziebart, N. D. Ratliff, G. Gallagher, C. Mertz, K. M. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey,

and S. S. Srinivasa. Planning-based prediction for pedestrians. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 11-15, 2009, St. Louis, MO, USA, pages 3931–3936. IEEE, 2009.

APPENDIX

A. PROOFS

Lemma 3.1 (Derivatives of PDFs).

1.
$$\frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}} = \frac{1}{2}q(\mathbf{u})(\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal})(\mathbf{u} - \boldsymbol{\mu})$$

2.
$$(a) \frac{\partial q(\mathbf{u})}{\partial \Sigma} = \frac{1}{2} q(\mathbf{u}) (\Sigma^{-\intercal} \mathbf{U} \Sigma^{-\intercal} - \Sigma^{-\intercal}).$$

(b)
$$\frac{\partial q(\mathbf{u})}{\partial \mathbf{B}} = q(\mathbf{u})(\mathbf{\Sigma}^{-1}\mathbf{U}\mathbf{\Sigma}^{-1} - |\mathbf{\Sigma}|^{-1}\operatorname{adj}(\mathbf{\Sigma}))\mathbf{B}.$$

3. For i = 0, ..., d,

(a)

$$\begin{split} \frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial \lambda_i} &= \frac{1}{2} q(\mathbf{r} \mid \mathbf{u}) (|\mathbf{\Gamma}|^{-1} \operatorname{tr}(\mathbf{R} \operatorname{adj}(\mathbf{\Gamma})) \\ &- (\mathbf{r} - \mathbf{S} \mathbf{u})^{\mathsf{T}} \mathbf{\Gamma}^{-1} \mathbf{R} \mathbf{\Gamma}^{-1} (\mathbf{r} - \mathbf{S} \mathbf{u})). \end{split}$$

(b) For any covariance matrix **K**,

$$\frac{\partial \mathbf{K}}{\partial \lambda_i} = \begin{cases} \frac{1}{\lambda_i} \mathbf{K} & \text{if } i = 0, \\ \mathbf{L} & \text{otherwise,} \end{cases}$$

where

$$L_{j,k} = k(\mathbf{x}_j, \mathbf{x}_k) \left(-\frac{1}{2} (x_{j,i} - x_{k,i})^2 - \mathbb{1}[j \neq k] \sigma^2 \right).$$

Proof.

1.

$$\begin{split} \frac{\partial q(\mathbf{u})}{\partial m} &= q(\mathbf{u}) \frac{\partial}{\partial \boldsymbol{\mu}} \left[-\frac{Q}{2} \right] \\ &= -\frac{1}{2} q(\mathbf{u}) (\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal}) (\mathbf{u} - \boldsymbol{\mu}) \frac{\partial}{\partial \boldsymbol{\mu}} [\mathbf{u} - \boldsymbol{\mu}] \\ &= \frac{1}{2} q(\mathbf{u}) (\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal}) (\mathbf{u} - \boldsymbol{\mu}). \end{split}$$

2.

$$\frac{\partial q(\mathbf{u})}{\partial \mathbf{B}} = \frac{\partial}{\partial \mathbf{B}} \left[\frac{1}{(2\pi)^{m/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{Q}{2}\right) \right]
= \frac{\partial}{\partial \mathbf{B}} \left[\frac{1}{(2\pi)^{m/2} |\mathbf{\Sigma}|^{1/2}} \right] \exp\left(-\frac{Q}{2}\right)
+ \frac{1}{(2\pi)^{m/2} |\mathbf{\Sigma}|^{1/2}} \frac{\partial}{\partial \mathbf{B}} \left[\exp\left(-\frac{Q}{2}\right) \right]
= -\frac{1}{2} q(\mathbf{u}) \left(|\mathbf{\Sigma}|^{-3/2} \frac{\partial |\mathbf{\Sigma}|}{\partial \mathbf{B}} + \frac{\partial Q}{\partial \mathbf{B}} \right).$$
(14)

For derivatives with respect to Σ , we can refer to Petersen and Pedersen [22]:

$$\frac{\partial |\Sigma|}{\partial \Sigma} = |\Sigma| \Sigma^{-\intercal}, \quad \frac{\partial Q}{\partial \mathbf{R}} = -\Sigma^{-\intercal} \mathbf{U} \Sigma^{-\intercal}, \quad (15)$$

while we can use an online tool by Laue et al. 5 [15] for

the remaining ones:

$$\begin{split} \frac{\partial |\mathbf{\Sigma}|}{\partial \mathbf{B}} &= (\mathrm{adj}(\mathbf{T}) + \mathrm{adj}(\mathbf{\Sigma}))\mathbf{B}, \\ \frac{\partial}{\partial \mathbf{B}} [(\mathbf{u} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{u} - \boldsymbol{\mu})] &= -(\mathbf{T} \mathbf{U} \mathbf{T} + \mathbf{\Sigma}^{-1} \mathbf{U} \mathbf{\Sigma}^{-1})\mathbf{B}. \end{split} \tag{16}$$

Substituting results from Equations 15 and 16 back into Equation 14 gives:

$$\begin{split} \frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\Sigma}} &= \frac{1}{2} q(\mathbf{u}) (\boldsymbol{\Sigma}^{-\intercal} \mathbf{U} \boldsymbol{\Sigma}^{-\intercal} - \boldsymbol{\Sigma}^{-\intercal}), \\ \frac{\partial q(\mathbf{u})}{\partial \mathbf{B}} &= \frac{1}{2} q(\mathbf{u}) \{ |\boldsymbol{\Sigma}|^{-3/2} (\mathrm{adj}(\mathbf{T}) + \mathrm{adj}(\boldsymbol{\Sigma})) \\ &+ \mathbf{T} \mathbf{U} \mathbf{T} + \boldsymbol{\Sigma}^{-1} \mathbf{U} \boldsymbol{\Sigma}^{-1} \} \mathbf{B}. \end{split}$$

3. (a) Since

$$q(\mathbf{r} \mid \mathbf{u}) = \mathcal{N}(\mathbf{r}; \mathbf{K}_{\mathbf{r}, \mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{u}, \mathbf{K}_{\mathbf{r}, \mathbf{r}} - \mathbf{K}_{\mathbf{r}, \mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{K}_{\mathbf{r}, \mathbf{u}})$$
$$= \mathcal{N}(\mathbf{r}; \mathbf{S}\mathbf{u}, \mathbf{\Gamma}),$$

we have

$$\frac{\partial q(\mathbf{r}\mid\mathbf{u})}{\partial\lambda_i} = -\frac{1}{2}q(\mathbf{r}\mid\mathbf{u})\frac{\partial}{\partial\lambda_i}[(\mathbf{r}-\mathbf{S}\mathbf{u})^\intercal\boldsymbol{\Gamma}^{-1}(\mathbf{r}-\mathbf{S}\mathbf{u}) + \log|\boldsymbol{\Gamma}|].$$

The same online tool can be used to show that

$$\frac{\partial}{\partial \lambda_i} \log |\mathbf{\Gamma}| = -|\mathbf{\Gamma}|^{-1} \operatorname{tr}(\mathbf{R} \operatorname{adj}(\mathbf{\Gamma})),$$

and

$$\frac{\partial}{\partial \lambda_i} \mathbf{\Gamma}^{-1} = \mathbf{\Gamma}^{-1} \mathbf{R} \mathbf{\Gamma}^{-1}.$$

(b) If i = 0, then

$$\frac{\partial \mathbf{K}}{\partial \lambda_i} = \frac{1}{\lambda_i} \mathbf{K}$$

by the structure of each element of **K**. If $i \neq 0$, then each element of $\frac{\partial \mathbf{K}}{\partial \lambda_i}$ is

$$L_{j,k} = \frac{\partial k(\mathbf{x}_j, \mathbf{x}_k)}{\partial \lambda_i}$$

$$= k(\mathbf{x}_j, \mathbf{x}_k) \frac{\partial}{\partial \lambda_i} \left[-\frac{1}{2} (\mathbf{x}_j - \mathbf{x}_k)^{\mathsf{T}} \mathbf{\Lambda} (\mathbf{x}_j - \mathbf{x}_k) - \mathbb{I}[j \neq k] \sigma^2 \operatorname{tr}(\mathbf{\Lambda}) \right]$$

$$= k(\mathbf{x}_j, \mathbf{x}_k) \frac{\partial}{\partial \lambda_i} \left[-\frac{1}{2} \sum_{l=1}^d \lambda_l (x_{j,l} - x_{k,l})^2 - \mathbb{I}[j \neq k] \sigma^2 \sum_{l=1}^d \lambda_l \right]$$

$$= k(\mathbf{x}_j, \mathbf{x}_k) \left(-\frac{1}{2} (x_{j,i} - x_{k,i})^2 - \mathbb{I}[j \neq k] \sigma^2 \right).$$

B. DERIVATIVES

B.1 $\partial/\partial\mu$

We begin by removing terms independent of μ :

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}} = \frac{\partial}{\partial \boldsymbol{\mu}} [\mathbf{t}^\intercal \mathbf{K}_{\mathbf{r},\mathbf{u}}^\intercal \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\mu}] - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{\mu}} \left[\boldsymbol{\mu}^\intercal \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\mu} \right] - \frac{\partial}{\partial \boldsymbol{\mu}} \mathbb{E}[v].$$

 $^{^5}$ http://www.matrixcalculus.org/

Here

$$\frac{\partial}{\partial \boldsymbol{\mu}} \left[\boldsymbol{\mu}^\mathsf{T} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \boldsymbol{\mu} \right] = (\mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} + \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-\mathsf{T}}) \boldsymbol{\mu}$$

by Petersen and Pedersen [22], and

$$\frac{\partial}{\partial \boldsymbol{\mu}} \mathbb{E}[V_{\mathbf{r}}(s)] = \frac{\partial}{\partial \boldsymbol{\mu}} \iint V_{\mathbf{r}}(s) q(\mathbf{r} \mid \mathbf{u}) q(\mathbf{u}) \, d\mathbf{r} \, d\mathbf{u}$$

$$= \iint V_{\mathbf{r}}(s) q(\mathbf{r} \mid \mathbf{u}) \frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\mu}} \, d\mathbf{r} \, d\mathbf{u}$$

$$= \frac{1}{2} \mathbb{E}[V_{\mathbf{r}}(s) (\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal}) (\mathbf{u} - \boldsymbol{\mu})]$$

by Theorem 3.9 and Lemma 3.1. Hence

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}} &= \mathbf{t}^\intercal \mathbf{K}_{\mathbf{r},\mathbf{u}}^\intercal \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} - \frac{1}{2} (\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} + \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-\intercal}) \boldsymbol{\mu} \\ &- \frac{1}{2} \mathbb{E} \left[(\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}^{-\intercal}) (\mathbf{u} - \boldsymbol{\mu}) \boldsymbol{v} \right]. \end{split}$$

B.2 $\partial/\partial \mathbf{B}$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{B}} = \frac{1}{2} \left(\frac{\partial}{\partial \mathbf{B}} \log |\mathbf{\Sigma}| - \frac{\partial}{\partial \mathbf{B}} \operatorname{tr} \left(\mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \mathbf{\Sigma} \right) \right) - \frac{\partial}{\partial \mathbf{B}} \mathbb{E}[v].$$

By Theorem 3.9

$$\frac{\partial}{\partial \mathbf{B}} \mathbb{E}[V_{\mathbf{r}}(s)] = \iint V_{\mathbf{r}}(s) q(\mathbf{r} \mid \mathbf{u}) \frac{\partial q(\mathbf{u})}{\partial \mathbf{B}} \, d\mathbf{r} \, d\mathbf{u}.$$

Then, using the aforementioned tool by Laue et al. [15], we get

$$\frac{\partial}{\partial \mathbf{B}} \log |\mathbf{\Sigma}| = 2\mathbf{\Sigma}^{-1}\mathbf{B}, \quad \frac{\partial}{\partial \mathbf{B}} \operatorname{tr} \left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{\Sigma} \right) = 2\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{B},$$

and Lemma 3.1 gives

$$\frac{\partial q(\mathbf{u})}{\partial \mathbf{B}} = q(\mathbf{u})(\mathbf{\Sigma}^{-1}\mathbf{U}\mathbf{\Sigma}^{-1} - |\mathbf{\Sigma}|^{-1}\operatorname{adj}(\mathbf{\Sigma}))\mathbf{B}.$$

Therefore.

$$\frac{\partial \mathcal{L}}{\partial \mathbf{B}} = \left(\mathbf{\Sigma}^{-1} - \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1} \right) \mathbf{B} - \mathbb{E}[\left(\mathbf{\Sigma}^{-1} \mathbf{U} \mathbf{\Sigma}^{-1} - |\mathbf{\Sigma}|^{-1} \operatorname{adj}(\mathbf{\Sigma})\right) \mathbf{B} v].$$

B.3
$$\partial/\partial\lambda_j$$

For $j = 0, \ldots, d$,

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \lambda_{j}} &= \mathbf{t}^{\intercal} \frac{\partial}{\partial \lambda_{j}} \left[\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \right] \boldsymbol{\mu} - \frac{\partial}{\partial \lambda_{j}} \mathbb{E}[v] \\ &- \frac{1}{2} \left(\frac{\partial}{\partial \lambda_{j}} \operatorname{tr} \left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\Sigma} \right) + \boldsymbol{\mu}^{\intercal} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}}{\partial \lambda_{j}} \boldsymbol{\mu} + \frac{\partial}{\partial \lambda_{j}} \log |\mathbf{K}_{\mathbf{u},\mathbf{u}}| \right), \end{split}$$

by Petersen and Pedersen [22], and

$$\begin{split} \frac{\partial}{\partial \lambda_j} \mathbb{E}[V_{\mathbf{r}}(s)] &= \iint V_{\mathbf{r}}(s) \frac{\partial q(\mathbf{r} \mid \mathbf{u})}{\partial \lambda_j} q(\mathbf{u}) \, d\mathbf{r} \, d\mathbf{u} \\ &= \frac{1}{2} \mathbb{E}[V_{\mathbf{r}}(s) (|\mathbf{\Gamma}|^{-1} \operatorname{tr}(\mathbf{R} \operatorname{adj}(\mathbf{\Gamma})) \\ &- (\mathbf{r} - \mathbf{S}\mathbf{u})^{\mathsf{T}} \mathbf{\Gamma}^{-1} \mathbf{R} \mathbf{\Gamma}^{-1} (\mathbf{r} - \mathbf{S}\mathbf{u}))] \end{split}$$

by Theorem 3.9 and Lemma 3.1. Thus,

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \lambda_{j}} &= \mathbf{t}^{\intercal} \left(\frac{\partial \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal}}{\partial \lambda_{j}} - \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \right) \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\mu} \\ &+ \frac{1}{2} \left[\operatorname{tr} \left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\Sigma} \right) + \boldsymbol{\mu}^{\intercal} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \boldsymbol{\mu} \right. \\ &\left. - \operatorname{tr} \left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \right) \right] \\ &\left. - \frac{1}{2} \mathbb{E}[(|\boldsymbol{\Gamma}|^{-1} \operatorname{tr}(\mathbf{R} \operatorname{adj}(\boldsymbol{\Gamma})) \\ &\left. - (\mathbf{r} - \mathbf{S}\mathbf{u})^{\intercal} \boldsymbol{\Gamma}^{-1} \mathbf{R} \boldsymbol{\Gamma}^{-1} (\mathbf{r} - \mathbf{S}\mathbf{u})) \boldsymbol{v}], \end{split}$$

where

$$\begin{split} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}}{\partial \lambda_{j}} &= -\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}, \\ \frac{\partial}{\partial \lambda_{j}} \left[\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \right] &= \frac{\partial \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal}}{\partial \lambda_{j}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} + \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}}{\partial \lambda_{j}} \\ &= \left(\frac{\partial \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal}}{\partial \lambda_{j}} - \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\intercal} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \right) \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}, \\ \frac{\partial}{\partial \lambda_{j}} \operatorname{tr}(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{\Sigma}) &= \operatorname{tr} \left(\frac{\partial}{\partial \lambda_{j}} \left[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{\Sigma} \right] \right) = \operatorname{tr} \left(\frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}}{\partial \lambda_{j}} \mathbf{\Sigma} \right) \\ &= - \operatorname{tr} \left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{\Sigma} \right), \\ \frac{\partial}{\partial \lambda_{j}} \log |\mathbf{K}_{\mathbf{u},\mathbf{u}}| &= \operatorname{tr} \left(\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{u},\mathbf{u}}}{\partial \lambda_{j}} \right) \end{split}$$

where the remaining derivatives can be found in Lemma 3.1.