CS 2305: Discrete Mathematics for Computing I

Lecture 16

- KP Bhat

Increasing and Decreasing Functions

Injections

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Every image has a unique pre-image

Examples of Injections

- f(x) = x + 1, from **R** to **R**
- $f(x) = x^2$, from **Z**⁺ to **Z**⁺
 - If the domain is **Z**, $f(x) = x^2$ is not an injection because, for instance, f(2) = f(-2) = 4

Surjections

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a *surjection* if it is *onto*.

- $\forall y \exists x (f(x) = y)$, where the domain for x is the domain of the function and the domain for y is the codomain of the function
- All elements in the codomain have a preimage in the domain
- Co-domain is the same as the range

Examples of Surjections

- f(x) = x + 1, from **Z** to **Z**
- All enrolled students at a university having an active student ID

Bijections

Definition: A function f is a *one-to-one* correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).

- Every element in the codomain has a unique pre-image
- Co-domain is the same as the range

Examples of Bijections

- $f: \{a, b, c, d\} \rightarrow \{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3
- Let A be a set. The *identity function* on A is the function $\iota_A : A \to A$, where $\iota_A(x) = x$ for all $x \in A$
 - identity function assigns each element to itself

Examples of Different Types of Functions

Showing that f is one-to-one or onto 1

Suppose that $f: A \rightarrow B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.

To show that f is not injective Find particular elements x, $y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

To show that f is bijective Show that it is both injective and surjective.

Showing that f is one-to-one or onto 2

Example 1: Is f(x) = 4x - 1, from **R** to **R**, injective?

Solution:

Let us pick up two arbitrary numbers a and b such that f(a) = f(b)

By the definition of f

$$4a - 1 = 4b - 1$$

$$4a = 4b$$

$$a = b$$

f(x) = 4x - 1, from **R** to **R** is injective

Showing that f is one-to-one or onto₃

Example 2: Is f(x) = 2x - 3, from R to R, surjective?

Solution:

Part 1 (scratch work)

Let us pick an arbitrary number $y \in \mathbf{R}$ in the codomain

If such a number exists,

$$2x - 3 = y$$

$$2x = y + 3$$

$$x = (y + 3)/2$$

Part 2 (actual solution)

Let $y \in \mathbf{R}$ be an arbitrary element from the codomain

Let
$$x = (y + 3)/2$$

$$f(x) = 2((y + 3)/2)-3 = y + 3 - 3 = y$$

An arbitrary element from the codomain has a preimage in the domain

$$f(x) = 2x - 3$$
, from R to R, is surjective

Showing that f is one-to-one or onto₃

Example 3: Is $f(x) = x^2$ from **Z** to **Z** onto?

Solution:

Using counterexample

No, f is not onto because there is no integer x with $x^2 = -1$.

Inverse Functions 1

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y

Inverse Functions 2

Inverse Functions 3

- No inverse function exists unless f is a bijection
 - If f is not a bijection then it is either not an injection or it is not a surjection (or both)
 - If f is not an injection some element in the codomain is the image of more than one element in the domain
 - If f is not a surjection, for some element in the codomain there is no pre-image
- We say that all bijection functions are invertible

Questions₁

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

Questions₂

Example 2: Let $f: \mathbf{Z} \to \mathbf{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence so f^{-1} (y) = y - 1.

Questions₃

Example 3: Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = x^2$ Is f invertible, and if so, what is its inverse?

Solution: The function f is not invertible because it is neither one-to-one [e.g. -2 and +2 both map to 4] nor onto [no preimages for -ve numbers]. In fact f^{-1} is not even a function.

Note:- If we restrict f to be from the set of non-ve real numbers to the set of non-ve real numbers then the function is invertible. In this case $f^{-1}(y) = V(x)$

Composition₁

Definition: Let $f: B \rightarrow C$, $g: A \rightarrow B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

To find $(f \circ g)(a)$ we first apply the function g to a to obtain g(a) and then we apply the function f to the result g(a) to obtain $(f \circ g)(a)$

Composition 2

Function fog(x)

sin osqrt(x) vs sqrt osin(x)


```
public static void main(String[] args) {
  final double DEG_45 = Math.PI/4;

double fogx = Math.sin(Math.sqrt(DEG_45));
  System.out.println("fogx: " + fogx);

double gofx = Math.sqrt(Math.sin(DEG_45));
  System.out.println("gofx: " + gofx);
}
```

fogx: 0.7746914034386123 gofx: 0.8408964152537145

Composition₃

Composition 4

Example: If

$$f(x) = x^{2} \text{ and } g(x) = 2x + 1,$$
then
$$f(g(x)) = (2x + 1)^{2}$$
and
$$g(f(x)) = 2x^{2} + 1$$

Composition Questions 1

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition $f \circ g$ is defined by

$$f \circ g(a) = f(g(a)) = f(b) = 2.$$

$$f \circ g(b) = f(g(b)) = f(c) = 1.$$

$$f \circ g(c) = f(g(c)) = f(a) = 3.$$

Note that $g \circ f$ is not defined, because the range of $f \{1, 2, 3\}$ is not a subset of the domain of $g \{a, b, c\}$.

Composition Questions 2

Example 2: Let f and g be functions from the set of integers to the set of integers defined by

$$f(x) = 2x + 3$$
 and $g(x) = 3x + 2$.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 $(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs

$$\{(a,b) | a \in A \text{ and } f(a) = b\}.$$

Graph of f(n) = 2n + 1 from Z to Z

Graph of $f(x) = x^2$ from Z to Z

Jump to long description

Some Important Functions

The *floor* function, denoted

$$f(x) = \lfloor x \rfloor$$

is the largest integer less than or equal to x. The *ceiling* function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

Floor and Ceiling Functions 1

Graph of (a) Floor and (b) Ceiling Functions