HUDM5124: Introduction to Multidimensional Scaling, Clustering, and Related Methods

Session 4:

- nonmetric MDS
 - -Kruskal's algorithm
 - -Some Issues in MDS

Nonmetric MDS: the problem

GIVEN: a matrix Δ of proximities among n objects, that are assumed to be of at least ORDINAL measurement level

<u>CONSTRUCT</u>: an N x R matrix X (= the configuration of N points in a geometric space of R dimensions), such that the distances in the geometric space, D, (= the "model distances") are <u>monotonically</u> related to the proximities (increasing for dissim; decreasing for sim)

TWO MAIN GOALS:

- Find the configuration matrix X representing the positions of the N stimuli on R dimensions
- 2) Find the shape of the function relating the model distances to the proximities ("optimal scaling" problem)
- Issues to be assumed or investigated: find the best Minkowski distance metric; determine the "true" number of dimensions; etc.

Approximately linear functions relating proximities to distances (but derived from <u>nonmetric</u> MDS)

(source: Kruskal & Wish, 1977)

Figure 5A: Scatter Diagram Associated with Configuration in Figure 1(c)

Figure 5B: Scatter Diagram for Some Color Data from Indow and Kanazawa (not discussed in text)

A nonlinear function relating proximities to distances (nonmetric MDS of Rothkopf's Morse code data)

Derived 2D configuration for Rothkopf's Morse code data

HUDM5124 - MDSC

Kruskal's (1964) algorithm for nonmetric MDS

BASIC OUTLINE OF ITERATIVE ALGORITHM:

 specify dimensionality & Minkowski metric; select initial configuration (X) matrix (→ use random configuration, or metric MDS solution, as starting configuration)

ITERATE:

- 1. Compute interobject distances using X matrix
- 2. Find optimal scaling transformation of Δ (= "least-squares monotonic transformation")
- 3. Test for convergence: if yes, terminate; if no, continue
- 4. Adjust entries in configuration (X) matrix in direction of steepest descent (the negative gradient) of loss function (STRESS)[return to Step 1]

Kruskal's least-squares monotonic transformation (= "monotonic regression")

Problem: find a monotonic transformation of the proximities, $f(\delta)$, that is closest (in a least-squares sense) to the model distances

→ this is really trying to determine how closely the model distances correspond to the <u>rank-order information</u> in the data

Method: given model distances D and dissimilarities Δ , expressed as vectors of length n(n-1)/2:

- 1. Order the distances according to the rank order of the proximities these values are the initial estimate of $f(\delta)$.
- 2. Put the entries of $f(\delta)$ into nondecreasing order ("primary approach" = ties in data may be broken; "secondary approach" = tied entries must remain tied)

Stress(1) =
$$\frac{\sum_{i < j} (f(\delta_{ij}) - d_{ij})^2}{\sum_{i < j} d_{ij}^2}$$

Example: Kruskal's Least Squares Monotonic Transform

Assume rank(Δ) = (δ_{AB} =1, δ_{AC} =3.5, δ_{BC} =3.5, δ_{AD} =5, δ_{BD} =2, δ_{CD} =6) From config. above, D = (d_{AB} =1, d_{AC} =1.2, d_{BC} =1.8, d_{AD} =1.7, d_{BD} =1.1, d_{CD} =1.3)

LSMT: First, rewrite model distances in order of the proximities:

$$\rightarrow$$
D = (d_{AB}=1, d_{BD}=1.1, [d_{AC}=1.2, d_{BC}=1.8], d_{AD}=1.7, d_{CD}=1.3)

Transform proximities: (Note tie in dissim's)

$$f(\delta) = (1 \ 1.1 \ 1.2 \ \underline{1.75 \ 1.75 \ 1.3})$$

$$\underline{f}(\delta) = (1 \ 1.1 \ 1.2 \ 1.6 \ 1.6 \ 1.6)$$

$$D = (1 1.1 1.5 1.5 1.7 1.3)$$
 (secondary approach to ties: tie = constraint)

$$f(\delta) = (1 \ 1.1 \ \underline{1.5} \ 1.5 \ \underline{1.7} \ 1.3)$$

This one is the free approach

$$f(\delta) = (1 \ 1.1 \ \underline{1.5} \ 1.5 \ 1.5)$$

$$SSE = \sum_{i < j} (f(\delta_{ij}) - d_{ij})^{2} \rightarrow Stress(1) = \left[\frac{\sum_{i < j} (f(\delta_{ij}) - d_{ij})^{2}}{\sum_{i < j} d_{ij}^{2}} \right]^{1/2}$$

Graph of a least-squares monotonic transformation (from Kruskal, 1964)

(numeric labels for points in the graph below identify specific object pairs)

HUDM5124 - MDSC

Kruskal's (1964) algorithm - detail

OUTLINE OF ITERATIVE ALGORITHM:

0. Select dimensionality; select initial configuration (X₀) matrix (use random configuration, or metric MDS solution)

ITERATE:

- 1. Normalize the configuration matrix X_i
- 2. Compute interpoint distances D using X_i matrix
- 3. Find optimal scaling transformation of Δ (= least-squares monotonic transformation)
- 4. Calculate the (negative) gradient of Stress w.r.t. X (= direction of steepest descent of loss function, Stress)
- 5. Test for convergence: if yes, terminate; if no, continue
- 6. Calculate new value for step size, α_i
- 7. Adjust entries in configuration (X_i) matrix in direction of gradient (by some step size)

[return to Step 1]

Note: missing data requires no special solution – just run algorithm on non-missing data entries.

Gradient method for minimizing Stress

BASIC IDEA: iteratively adjust the entries in X (the coordinates), to move in the direction of the negative gradient (direction of steepest descent of the loss function, S=stress(1)) or stress(2)

$$-\mathbf{G} = -\frac{\partial S}{\partial X} = \left[-\partial S/\partial x_{11}, -\partial S/\partial x_{11}, ..., -\partial S/\partial x_{NR}\right]$$

For Minkowski p-metric (Kruskal, 1964b):

$$g_{kl} = \sum_{i,j} (\delta^{ki} - \delta^{kj}) \left[\frac{d_{ij} - \hat{d}_{ij}}{S^*} - \frac{d_{ij}}{T^*} \right] \frac{|x_{il} - x_{jl}|^{p-1}}{d_{il}^{p-1}} signum(x_{il} - x_{jl})$$

ISSUE: How far to move in this direction? ("step-size" issue)

SOLUTION: Use dynamic step-size adjustment:

if multiple moves in same direction → increase step size;

if successive steps in "opposite" directions → decrease step size

Kruskal's (1964) algorithm (cont): Adjusting the step size, α

Initial value: α =.2 (for random config), smaller for "rational" start

```
On step i,  \alpha_{i} = \alpha_{(i\text{-}1)} \text{ (angle)(relax)(good\text{-luck)}}  where  \text{"angle"} = 4.0^{\cos(\theta)^{**3}}   \theta = \text{angle between present gradient (step i) and previous gradient (i-1)}   \text{"relax"} = \frac{1.3}{1 + (5 - \text{step-ratio})^{5}}   \text{"5-step-ratio"} = \text{MIN[1,(stress_{i} / stress_{(i\text{-}5)})]}   \text{"good-luck"} = \text{MIN[1,(stress_{i} / stress_{(i\text{-}1)})]}
```

Note: $cos(\theta)$ may be calculated as $r(G_i, G_{i-1})$

Two versions of stress

Stress(1) =
$$\left[\frac{\sum_{i < j} (f(\delta_{ij}) - d_{ij})^{2}}{\sum_{i < j} d_{ij}^{2}} \right]^{1/2}$$
Stress(2) =
$$\left[\frac{\sum_{i < j} (f(\delta_{ij}) - d_{ij})^{2}}{\sum_{i < j} (d_{ij} - \overline{d})^{2}} \right]^{1/2}$$

Use of Stress(1) can result in degenerate configurations (i.e., points collapsing into a few clumps, a simplex, a ring).

Thus Stress(2) is generally recommended.

Degeneracy may also be affected by normalization of X (step 2).

Availability of software for nonmetric MDS:

The Kruskal (1964) algorithm:

program	Author	source	distributed as:
MDSCALE	Kruskal	NETLIB	FORTRAN source
KYST-2A	Young	NETLIB	FORTRAN source
SYSTAT	Wilkinson	SPSS	commercial package
isoMDS		R	public domain package

Other algorithms/software for nonmetric MDS:

program	Author	source	distributed as:
ALSCAL	Young	SPSS, SAS	commercial package
PROXSCAL	Leiden	SPSS	commercial package
SMACOF	DeLeeuw	PROXSCAL,R	commercial,public

Some practical issues:

- **Choosing the dimensionality**. The problem of determining the dimensionality R of the solution space must be addressed. Often the dimensionality is selected *a priori* based on theory or *post-hoc* based on interpretability or on perception of an "elbow" in stress function.
- **How much data?** Because in nonmetric MDS we are using *only the ordinal information* in the proximities, we must have a higher ratio of # of data points (obs) to # of estimated parameters, the (n-1)R coordinates of X (rule of thumb: at least 7 stimuli per dimension).
- **Degenerate solutions.** Rings, clumps of multiple stimuli, etc. are often signs of a degenerate solution. **Fixes:** increase # of data points, decrease dimensionality, use secondary approach to ties, try a metric solution.
- **Interpreting solutions by eye.** Remember that the orientation of the solution w.r.t. the axes is arbitrary. High-dimensional graphical rotation software may be useful if R>2.
- **Interpreting solutions "objectively".** Is there a relatively objective way to interpret dimensions? \rightarrow regression of single "attributes" into the space: $A = b0 + b1X_1 + b2X_2 + ...$ Then plot regression coeff's.
- **Recovery of metric information:** even though this technique is "nonmetric", Young (1980) showed that good recovery of metric information is achieved.

2D config, Morse code data - interpreting via attribute regression

2D config, Morse code data - interpreting via attribute regression

METHOD:

1) Define attribute vectors on stimuli:

A1 = # components of signal A2 = proportion of dashes

2) Regress each vector into config. space (X1 = horiz, X2 = vert)

$$A1 = 3.5 + 0.22 X1 + 1.10 X2$$

$$A2 = 0.5 + 0.92 X1 - 0.01 X2$$

3) For each attribute, plot the regression coefficients as a vector in the configuration space, through (0,0)

2D config, Morse code data - interpreting via attribute regression

METHOD:

1) Define attribute vectors on stimuli:

 A_1 = # components in signal A_2 = proportion of dashes

2) Regress each vector into config. space (X1 = horiz dim, X2 = vertical)

$$A_1 = 3.5 + 0.22 \times 1 + 1.10 \times 2$$

$$A_2 = 0.5 + 0.92 \times 1 - 0.01 \times 2$$

3) For each attribute, plot the regression coefficients as a vector in the configuration space, through the origin (0,0)

Example: plot of 2D Morse code solution (SPSS) interpretation via attribute regression

