**5 2.3.9 Let V be a vector space over a subfield F of the complex numbers. Suppose α , β , and γ are linearly independent vectors in V. Prove that $(\alpha + \beta)$, $(\beta + \gamma)$, and $(\gamma + \alpha)$ are linearly independent.

Solution We wish to show that if

$$c_1(\alpha + \beta) + c_2(\beta + \gamma) + c_3(\gamma + \alpha) = 0$$

then $c_1 = c_2 = c_3 = 0$.

$$c_1(\alpha + \beta) + c_2(\beta + \gamma) + c_3(\gamma + \alpha) = 0$$

$$c_1\alpha + c_1\beta + c_2\beta + c_2\gamma + c_3\gamma + c_3\alpha = 0$$

$$(c_1 + c_3)\alpha + (c_1 + c_2)\beta + (c_2 + c_3)\gamma = 0$$

Since α , β , and γ are linearly independent, $c_1+c_3=c_1+c_2=c_2+c_3=0$. Then $c_1+c_3=c_1+c_2 \implies c_2=c_3$, so $c_2+c_3=2c_2=0 \implies c_2=c_3=0$. Thus, $c_1+c_2=c_2+c_3 \implies c_1=0$. Thus, $c_1=c_2=c_3=0$, which means $(\alpha+\beta)$, $(\beta+\gamma)$, and $(\gamma+\alpha)$ are linearly independent.

**6 V is a vector space. Suppose $S \subset V$ and that

$$S = S_1 \cup S_2$$

and that

$$S_1 \cap S_2 = \emptyset$$

and that S is linearly independent. Prove:

$$\operatorname{span} S_1 \cap \operatorname{span} S_2 = \{0\}.$$

You can assume S is finite.

Solution Let $S_1 = \{\alpha_1, \ldots, \alpha_n\}$ and $S_2 = \{\beta_1, \ldots, \beta_m\}$. Since $S_1 \cap S_2 = \emptyset$, $S = \{\alpha_1, \ldots, \alpha_n, \beta, \ldots, \beta_m\}$. Suppose $\gamma \in \text{span } S_1 \cap \text{span } S_2$. Then for c_1, \ldots, c_n and d_1, \ldots, d_m , we have

$$\gamma = c_1 \alpha_1 + \dots + c_n \alpha_n = d_1 \beta_1 + \dots + d_m \beta_m$$

$$\implies c_1 \alpha_1 + \dots + c_n \alpha_n + (-d_1) \beta_1 + \dots + (-d_m) \beta_m = 0$$

Since S is linearly independent, we must have by definition $c_1 = \cdots = c_n = d_1 = \cdots = d_m = 0$. Thus, if $\gamma \in \operatorname{span} S_1 \cap \operatorname{span} S_2$, γ must be equal to 0. Hence, $\operatorname{span} S_1 \cap \operatorname{span} S_2 = \{0\}$.

**7 2.3.14 Let V be the set of real numbers. Regard V as a vector space over the field of rational numbers, with the usual operations. Prove that this vector space is not finite-dimensional.

Solution Let $\alpha \in \mathbb{R}$ be non-algebraic; that is, given $n \in \mathbb{Z}$, there does not exist $c_0, \ldots, c_{n-1} \in \mathbb{Q}$ such that

$$\alpha^{n} + c_{n-1}\alpha^{n-1} + \dots + c_{1}\alpha + c_{0} = 0$$

Consider the set $A(n) = \{1, \alpha, \alpha^2, \dots, \alpha^n\}$. We will prove by induction that A(n) is linearly independent for $n \geq 0$ over \mathbb{Q} . (In this proof, all spans refer to spans over the field \mathbb{Q} .)

Base step:

 $A(0) = \{1\}$ is obviously linearly independent.

Inductive step:

Suppose A(n) is linearly independent. Then we wish to show that A(n+1) is also linearly independent. We can do this by showing that $\alpha^{n+1} \notin \operatorname{span} A(n)$. Suppose otherwise, and that $\alpha^{n+1} \in \operatorname{span} A(n)$. Then there are $c_0, \ldots, c_n \in \mathbb{Q}$ such that

$$c_n \alpha^n + \dots + c_0 = \alpha^{n+1}$$
$$\alpha^{n+1} + (-c_n)\alpha^n + \dots + (-c_0) = 0,$$

but α is non-algebraic. Thus, there are no values in $c_0, \ldots, c_n \in \mathbb{Q}$ such that the equation holds. Hence, α^{n+1} is not in the span of A(n), so A(n+1) must be linearly independent.

Since both steps hold, we use the principle of induction to conclude that A(n) is linearly independent for all natural numbers $n \geq 0$. There is no upper bound on n, so meaning we can find infinitely many vectors in \mathbb{R} that are linearly independent over \mathbb{Q} . Hence, dim $\mathbb{R} = \infty$ over the field of rational numbers.