Machine Learning Linear Regression

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 6, 8.11.2013

Linear methods

Linear methods: most simple regression and classification techniques.

- easy interpretation: feature has a high influence if it has a large weight.
- linear methods: have possibly high bias but low variance ⇒ can be fit already with only a few training points.
- often competitive with non-linear methods in high dimensions,
- Using transformations of the input features (basis functions) one can easily generate non-linear functions in the input space.

Important: Linear methods are *linear* in the parameters, but not necessarily linear in the original input features.

Least squares regression I

Risk of squared loss:

$$\mathbb{E}[(Y - f(X))^2] = \mathbb{E}\left[\mathbb{E}\left[(Y - f(X))^2 \mid X\right]\right].$$

Bayes optimal function:

$$f(x) = \mathbb{E}[Y|X = x].$$

Definition

Given a training sample $T_n=(X_i,Y_i)_{i=1}^n$ with $X_i\in\mathcal{X}$ and $Y_i\in\mathbb{R}$ and a function space \mathcal{F} we define **least squares regression** as the mapping $\mathcal{A}:T_n\to\mathcal{F}$ with,

$$T_n \mapsto f_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

Least squares regression II

Linear least squares regression: used Function class:

$$\mathcal{F} = \Big\{ f \ \Big| \ f(x) = \sum_{i=1}^d w_i x_i + b = \langle w, x \rangle + b, \quad w \in \mathbb{R}^d, \ b \in \mathbb{R} \Big\}.$$

Notation:

- w is the weight vector,
- summarize the outputs $(Y_i)_{i=1}^n$ into a column vector $Y \in \mathbb{R}^n$ and the inputs vectors $(X_i)_{i=1}^n$ into a matrix $X \in \mathbb{R}^{n \times d}$,

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \qquad X = \begin{pmatrix} X_{11} & \dots & X_{1d} \\ \vdots & & \vdots \\ X_{n1} & \dots & X_{nd} \end{pmatrix},$$

where X is called the **design matrix**.

• Convention in the lecture: vectors are always column vectors!

Least squares regression III

Constant term in the function class \mathcal{F} :

 Add extra dimension to input vector to integrate constant term in the function class,

$$X_i' = \left(X_{i1}, \dots, X_{id}, 1\right) \qquad \text{or} \qquad X_{i(d+1)}' = 1, \ \forall i.$$

An affine function is characterized by the weight vector w,

$$w \in \mathbb{R}^{d+1}, \ f(X_i') = \langle w, X_i' \rangle = \sum_{j=1}^{d+1} w_j X_{ij}' = \sum_{j=1}^{d} w_j X_{ij} + w_{d+1}.$$

Linear least squares regression:

$$w_n = \underset{w \in \mathbb{R}^{d+1}}{\min} \quad \frac{1}{n} \sum_{i=1}^n (Y_i - \langle X_i, w \rangle)^2$$

Convention: we make the constant b explicit in the lecture

Least squares regression IV

Proposition

Let $X \in \mathbb{R}^{n \times d}$. The solution w_n of linear least squares regression is given by

$$w_n = (X^T X)^{-1} X^T Y,$$

where the inverse $(X^TX)^{-1}$ exists if X has rank d. If X has not rank d, then $(X^TX)^{-1}$ has to be understood in the sense of a generalized inverse. In this case the solution is not unique but if w_n^1, w_n^2 are two solutions, then the predictions agree on the training data

$$f_{w_n^1}(X_i) = \langle w_n^1, X_i \rangle = \langle w_n^2, X_i \rangle = f_{w_n^2}(X_i), \quad \text{for all } i = 1, \dots, n.$$

Least squares regression V

Proof: Objective function of the optimization problem with $w \in \mathbb{R}^d$,

$$O_{LLSR}(w) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \langle w, X_i \rangle)^2 = \frac{1}{n} \|Y - Xw\|^2.$$

Taking the derivative with respect to w,

$$\nabla_w O_{LLSR} = -\frac{2}{n} X^T (Y - Xw).$$

The necessary condition for an extremum of O_{LLSR} is therefore

$$\frac{2}{n}X^{T}(Y-Xw)=0 \qquad \Longrightarrow \qquad X^{T}Y=(X^{T}X)w \qquad w_{n}=(X^{T}X)^{-1}X^{T}Y$$

Hessian of the objective function $\frac{2}{n}X^TX \Rightarrow$ positive-definite if X has rank d. If X has rank smaller than d, then w_n defined using the generalized inverse is a solution and every $w = w_n + v$ where v is orthogonal to the subspace $\mathrm{Span}\{X_1,\ldots,X_n\}$ is another solution.

The pseudo-inverse

 $(X^TX)^{-1}X^T$ is the Moore-Penrose **pseudo inverse** of X if X has rank d.

Definition

Let $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then the **pseudo-inverse** A^+ of A is defined as

$$A^{+} = \operatorname*{arg\,min}_{B \in \mathbb{R}^{n \times m}} \|AB - \mathbb{1}_{m}\|_{F}^{2},$$

where $\|\cdot\|_F$ is the **Frobenius norm** $(\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2})$ and \mathbb{I}_m the identity matrix in \mathbb{R}^m .

Let A be a square matrix which is invertible, then

$$(A^T A)^{-1} A^T = A^{-1} (A^T)^{-1} A^T = A^{-1}.$$

The pseudo-inverse II

The singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$A = U\Sigma V^T$$
,

- U is an orthogonal matrix $U=(u_1,\ldots,u_m)\in\mathbb{R}^{m\times m}$, that is $U^TU=\mathbb{1}_m$.
- V is an orthogonal matrix $V = (v_1, \dots, v_n) \in \mathbb{R}^{n \times n}$, that is $V^T V = \mathbb{1}_n$,
- $\Sigma \in \mathbb{R}^{m \times n}$ with $\Sigma_{ij} = \left\{ egin{array}{ll} \sigma_i & \text{if } i = j \text{ and } i \leq r, \\ 0 & \text{otherwise} \end{array} \right.$ The $\sigma_i > 0$, $i = 1, \ldots, r$ are the singular values of A.

The **pseudo inverse** A^+ is then given by

$$A^+ = V \Sigma^+ U^T,$$

where $\Sigma^+ \in \mathbb{R}^{n \times m}$ is defined as $\Sigma_{ij}^+ = \left\{ egin{array}{ll} 1/\sigma_i & \mbox{if } i=j \mbox{ and } i \leq r, \\ 0 & \mbox{otherwise} \end{array} \right.$

The pseudo-inverse III

The **pseudo inverse** A^+ is then given by

$$A^+ = V \Sigma^+ U^T$$

where $\Sigma^+ \in \mathbb{R}^{n \times m}$ is given by $\Sigma_{ij}^+ = \left\{ egin{array}{ll} 1/\sigma_i & \mbox{if } i=j \mbox{ and } i \leq r, \\ 0 & \mbox{otherwise} \end{array} \right.$

Let $A \in \mathbb{R}^{n \times m}$. Given that $m \le n$ and $\operatorname{ran}(A) = m$, one can write the pseudo inverse A^+ as $A^+ = (A^T A)^{-1} A^T$,

$$(A^T A)^{-1} A^T = (V \Sigma^T U^T U \Sigma V^T)^{-1} V \Sigma^T U^T = (V \Sigma^T \Sigma V^T)^{-1} V \Sigma^T U^T$$

= $V (\Sigma^T \Sigma)^{-1} V^T V \Sigma^T U^T = V (\Sigma^T \Sigma)^{-1} \Sigma^T U^T = V \Sigma^+ U^T.$

Basis functions

Basis functions/Feature maps:

• map the input $x \to \phi(x)$,

$$\mathcal{X} = \mathbb{R}$$
: x, x^2, x^3, \dots (polynomials),

$$\mathcal{X} = [0, 2\pi]$$
: $\sin(x), \cos(x), \sin(2x), \cos(2x), \dots$ (Fourier basis).

Fixed, pre-defined set of D basis functions, $\phi_i : \mathbb{R}^d \to \mathbb{R}$, we define the function space

$$\mathcal{F} = \Big\{ f : \mathbb{R}^d \to \mathbb{R}, \ f(x) = \sum_{i=1}^D w_i \, \phi_i(x) \, | \, w \in \mathbb{R}^D \Big\}.$$

Advantage: explicit integration of prior knowledge possible.

Basis functions II

Generalized design matrix: $\Phi \in \mathbb{R}^{n \times D}$,

$$\Phi = \left(\begin{array}{ccc} \phi_1(X_1) & \dots & \phi_D(X_1) \\ \vdots & & \vdots \\ \phi_1(X_n) & \dots & \phi_D(X_n) \end{array}\right),$$

Least squares regression problem:

$$w_n = \underset{w \in \mathbb{R}^D}{\min} \frac{1}{n} \sum_{i=1}^n (Y_i - \langle w, \phi(X_i) \rangle)^2 = \frac{1}{n} \|Y - \Phi w\|^2,$$

with solution

$$w_n = (\Phi^T \Phi)^{-1} \Phi^T Y,$$

where the matrix $(\Phi^T \Phi)^{-1} \Phi^T \in \mathbb{R}^{D \times n}$ is the pseudo-inverse of Φ .

Basis functions III

Properties:

- The final function, $f(x) = \langle w_n, \phi(x) \rangle = \sum_{i=1}^D w_i \phi_i(x)$, is linear in the parameter w,
- allows direct modeling of prior knowledge,
- function space $\mathcal{F} = \left\{ f(x) = \sum_{i=1}^D w_i \, \phi_i(x) \, | \, w \in \mathbb{R}^D \right\}$ is D-dimensional,
- Problem: want to model all polynomials in \mathbb{R}^d , d polynomials of degree one (linear functions), $\frac{d(d+1)}{2}$ polynomials of degree two, Set of basis functions increases rapidly with the dimension $d \Rightarrow$ not practical.

Ridge Regression - Least Squares with L_2 -Regularization

Ridge regression:

- Motivation: originally: add small ridge to the solution so that it becomes unique, today: regularized version of the least squares problem.
- Function space: $\mathcal{F} = \left\{ f(x) = \sum_{i=1}^{D} w_i \, \phi_i(x) \, | \, w \in \mathbb{R}^D \right\}$
- Loss: squared loss
- Regularizer: $\Omega(w) = \sum_{i=1}^{D} w_i^2 = ||w||_2^2$.

Definition

Given sample $T_n = (X_i, Y_i)_{i=1}^n$, **ridge regression** is defined as the mapping $A: T_n \to \mathcal{F}$ with,

$$T_n \mapsto f_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (Y_i - \langle w, \phi_i(x) \rangle)^2 + \lambda \sum_{i=1}^D w_i^2.$$

Figure : Linear least squares regression versus linear ridge regression. The regression function is linear.

Figure : Comparison of least squares and ridge regression using a set of periodic basis functions

Ridge Regression - Least Squares with L2-Regularization II

Solution of ridge regression:

$$w_{n,\lambda} = (\Phi^T \Phi + \lambda \mathbb{1}_D)^{-1} \Phi^T Y.$$

Properties:

- solution $w_{n,\lambda}$ exists and is unique,
- regularizer $\Omega(w) = \|w\|^2$ corresponds to

$$p(w) \propto e^{-\Omega(w)} = e^{-\|w\|^2}.$$

as a prior for maximum a posteriori (MAP) estimation

Geometric interpretation

Linear least squares regression: use SVD of X, $X = U\Sigma V^T$, where rank $\Sigma = r$,

$$Xw_n = X(X^TX)^{-1}X^TY = U\Sigma V^TV^T(\Sigma^+)^2V^TV\Sigma^TU^TY = \sum_{i=1}^r u_i \langle u_i, Y \rangle.$$

Ridge regression:

$$Xw_{n,\lambda} = X(X^TX + \lambda \mathbb{1}_d)^{-1}X^TY = UF(\Sigma)U^TY = \sum_{i=1}^r u_i \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \langle u_i, Y \rangle,$$

where
$$F(\Sigma) = \left\{ \begin{array}{ll} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} & \text{if } i = j \text{ and } i \leq r, \\ 0 & \text{otherwise} \end{array} \right.$$
, σ_i are singular values of X .

- ullet outputs are projected on the basis spanned by U,
- The directions $u_i = \frac{1}{\sigma_i} X v_i$ correspond to the (mapped) eigenvectors v_i of the covariance matrix $C_{ij} = X^T X$ if X is centered.

The lasso - Least Squares with L_1 -Regularization I

Other regularization functionals: $\Omega(w) = \sum_{i=1}^{n} |w_i|^p = ||w||_p^p$. $\Rightarrow L_2$ -norm is the only **isotropic** norm in the family of *p*-norms!

Figure : The level set $\|w\|_p = 1$ of the *p*-norms. Note that the $\|\cdot\|_p$ is only a norm for $p \ge 1$, in which case the unit-ball is a convex set. Clearly for p = 0.5 the "unit-ball" is not convex.

The lasso - Least Squares with L_1 -Regularization II

Definition

Given a training sample $T_n = (X_i, Y_i)_{i=1}^n$ with $X_i \in \mathcal{X}$ and $Y_i \in \mathbb{R}$ and the function space $\mathcal{F} = \{\sum_{j=1}^D w_j \phi_j(x) \mid w \in \mathbb{R}^D\}$ we define **the lasso** as the mapping $\mathcal{A}: T_n \to \mathcal{F}$ with,

$$T_n \mapsto w_n = \underset{w \in \mathbb{R}^D}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n (Y_i - \langle w, \Phi(X_i) \rangle)^2 + \lambda \sum_{i=1}^D |w_i|.$$

The lasso - Least Squares with L_1 -Regularization III

Motivation:

• L_1 -norm induces **sparsity** (a lot of components w_i of w are zero). Why? The "zero norm" (not really a norm) enforces directly sparsity:

$$\|w\|_0 = \sum_{i=1}^D \mathbb{1}_{w_i \neq 0}.$$

 L_1 -norm is the norm which is "closest" to the "zero norm" ! **Sparsity is good**: less storage, faster evalution $f(x) = \langle w, x \rangle$, feature selection

The lasso - Least Squares with L_1 -Regularization III

Motivation:

• L_1 -norm induces **sparsity** (a lot of components w_i of w are zero). Why? The "zero norm" (not really a norm) enforces directly sparsity:

$$\|w\|_0 = \sum_{i=1}^D \mathbb{1}_{w_i \neq 0}.$$

 L_1 -norm is the norm which is "closest" to the "zero norm" ! **Sparsity is good**: less storage, faster evalution $f(x) = \langle w, x \rangle$, feature selection

||w||₂|² penalizes large weights heavily ⇒ preference for small weights in all directions. (regularizer is **isotropic**)
 ||w||₁ penalizes large and small weights "equally" ⇒ produces often large weights in few directions.

Comparison: lasso and ridge regression

Figure: Left: Perturbed training data and regression function in black, we show the solution of ridge regression in blue and of Lasso in red for $\lambda=1$, Right: Behavior of training and test error and number of non-zero components of the weight vector as a function of the regularization parameter λ .

Bias and variance of estimators

Solutions w_n of least squares or ridge regression are estimators for the optimal parameter w^* (Bayes optimal **linear** function for the squared loss),

$$w^* = \arg\min_{w \in \mathbb{R}^d} \mathbb{E}[(Y - \langle w, X \rangle)^2] = \mathbb{E}[(Y - \sum_{i=1}^d w_i X_i)^2],$$

The solution can be derived as (X is a row vector !):

$$w^* = \left(\mathbb{E}[X^T X]\right)^{-1} \mathbb{E}[X^T Y].$$

The empirical solutions w_n depend on the training sample $T = (X_i, Y_i)$. Questions:

- Is the average estimator w_n over training samples of size n equal to the optimal w^* ?
- How much does the estimator w_n fluctuate around its average value over all possible training samples from P of size n?

Bias and variance of estimators II

Definition

Given a sample $T=(X_i)_{i=1}^n$ and an estimate (also called statistics) $f_n: T \to \mathbb{R}$ of a quantity $f \in \mathbb{R}$ the bias of f_n is defined as

$$\operatorname{Bias} f_n = \mathbb{E}_T[f_n] - f,$$

the difference of the expectation of f_n over all training sets T (all possible i.i.d. training sets of size n) and the true quantity f.

- The estimator f_n is said to be **unbiased** if the bias is zero.
- It is asymptotically unbiased if $\lim_{n\to\infty} \operatorname{Bias} f_n = 0$.

The **variance** of f_n is defined as,

$$\operatorname{Var} f_n = \mathbb{E}_T [(f_n - \mathbb{E}_T [f_n])^2].$$

Bias and variance of estimators II

Examples for bias and variance:

• The empirical mean $\mathbb{E}_{P_n}[X] = \frac{1}{n} \sum_{i=1}^n X_i$ is an estimator of the true mean $\mathbb{E}[X] = \mathbb{E}_P[X]$.

$$\mathbb{E}_T\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}_{X_i}\left[X_i\right] = \frac{1}{n}n\mathbb{E}[X] = \mathbb{E}[X] \implies \text{unbiased}!$$

• empirical variance $\operatorname{Var}_{\operatorname{P}_n}[X] = \frac{1}{n} \sum_{i=1}^n (X_i - \mathbb{E}_{\operatorname{P}_n}[X])^2$ as an estimator of the **true variance** $\operatorname{Var}_{\operatorname{P}}[X] = \operatorname{Var}[X]$.

$$\mathbb{E}_T[\operatorname{Var}_n[X]] = \frac{n-1}{n} \operatorname{Var}[X] \implies \text{biased! underestimation!}$$

The estimator $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\mathbb{E}_{P_n}[X])^2$ for the variance of X is unbiased.

Bias and variance of estimators III

The risk $R(f_n)$, the expected squared loss, of the estimator f_n :

$$R(f_n) = \mathbb{E}[(Y - f_n(X))^2] = \mathbb{E}\left[\mathbb{E}[(Y - f_n(X))^2|X]\right]$$

$$= \mathbb{E}\left[\mathbb{E}[(Y - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - f_n(X))^2|X]\right]$$

$$= \mathbb{E}\left[\mathbb{E}[(Y - \mathbb{E}[Y|X])^2|X]\right] + \mathbb{E}\left[\mathbb{E}[(\mathbb{E}[Y|X] - f_n(X))^2|X]\right]$$

$$+ 2\mathbb{E}\left[\mathbb{E}[(Y - \mathbb{E}[Y|X])(\mathbb{E}[Y|X] - f_n(X))|X]\right],$$

$$= \mathbb{E}[(Y - \mathbb{E}[Y|X])^2] + \mathbb{E}\left[(\mathbb{E}[Y|X] - f_n(X))^2\right]$$

Interpretation:

- The first term is the **Bayes optimal risk** (often also called noise term),
 - $\eta(x) = \mathbb{E}[Y|X=x]$ is the Bayes optimal function for the squared loss.
- The second term measures the **deviation of** f_n **from the Bayes optimal function**. It is a random quantity since f_n depends on the training data!

Bias and variance of estimators IV

Expected risk $\mathbb{E}_T[R(f_n)]$ over all possible training sets T:

$$\mathbb{E}_{T}[R(f_n)] = \mathbb{E}[(Y - \eta(X))^2] + \mathbb{E}_{T}[\mathbb{E}_{X}[(\eta(X) - f_n(X))^2]],$$

The first term is constant!

$$\begin{split} \mathbb{E}_{T} \big[(f_{n}(x) - \eta(x))^{2} \big] &= \mathbb{E}_{T} \Big[\big(f_{n}(x) - \mathbb{E}_{T} f_{n}(x) + \mathbb{E}_{T} f_{n}(x) - \eta(x) \big)^{2} \Big] \\ &= \mathbb{E}_{T} \Big[\big(f_{n}(x) - \mathbb{E}_{T} [f_{n}(x)] \big)^{2} \Big] + \mathbb{E}_{T} \Big[\big(\mathbb{E}_{T} [f_{n}(x)] - \eta(x) \big) \\ &+ 2 \mathbb{E}_{T} \Big[\big(f_{n}(x) - \mathbb{E}_{T} f_{n}(x) \big) \big(\mathbb{E}_{T} f_{n}(x) - \eta(x) \big) \Big] \\ &= \mathbb{E}_{T} \Big[\big(f_{n}(x) - \mathbb{E}_{T} [f_{n}(x)] \big)^{2} \Big] + \big(\mathbb{E}_{T} [f_{n}(x)] - \eta(x) \big)^{2} \\ &= \operatorname{Var} f_{n}(x) + (\operatorname{Bias} f_{n}(x))^{2}, \end{split}$$

Bias-Variance Decomposition

(Noise)-Bias-Variance-Decomposition:

$$\mathbb{E}_{T}[R(f_{n})] = \mathbb{E}[(Y - \eta(X))^{2}] + \mathbb{E}[(\operatorname{Bias} f_{n}(X))^{2}] + \mathbb{E}[\operatorname{Var} f_{n}(X)],$$

where

- Noise term at x: $\mathbb{E}[(Y \eta(X))^2 | X = x]$,
- Variance of f_n : $\operatorname{Var} f_n(x) = \mathbb{E}_T [(f_n(x) \mathbb{E}_T [f_n(x)])^2],$
- Bias of f_n : Bias $f_n(x) = \mathbb{E}_T[f_n(x)] \eta(x)$,

Bias-Variance Decomposition

(Noise)-Bias-Variance-Decomposition:

$$\mathbb{E}_{T}[R(f_{n})] = \mathbb{E}[(Y - \eta(X))^{2}] + \mathbb{E}[(\operatorname{Bias} f_{n}(X))^{2}] + \mathbb{E}[\operatorname{Var} f_{n}(X)],$$

where

- Noise term at x: $\mathbb{E}[(Y \eta(X))^2 | X = x]$,
- Variance of f_n : $\operatorname{Var} f_n(x) = \mathbb{E}_T [(f_n(x) \mathbb{E}_T [f_n(x)])^2],$
- Bias of f_n : Bias $f_n(x) = \mathbb{E}_T[f_n(x)] \eta(x)$,

expected loss = noise + variance + squared bias.

Trade-off between bias and variance corresponds to

Trade-off between overfitting and underfitting.

Bias-Variance of Least Squares

Bias-Variance-Decomposition for the Least-Squares estimator:

 $f_n = \langle w_n, x \rangle \Rightarrow$ express bias and variance of f_n via the bias and covariance of w_n ,

Bias
$$f_n(x) = \mathbb{E}_T[f_n(x)] - f^*(x) = \mathbb{E}_T[\langle w_n, x \rangle] - \langle w^*, x \rangle$$

$$= \langle \mathbb{E}_T[w_n] - w^*, x \rangle$$

$$= \langle \text{Bias } w_n, x \rangle,$$

$$\text{Var } f_n(x) = \mathbb{E}_T[(f_n(x) - \mathbb{E}_T[f_n(x)])^2] = \mathbb{E}_T[(\langle w_n, x \rangle - \langle \mathbb{E}_T[w_n], x \rangle)^2]$$

$$= \mathbb{E}_T[\langle w_n - \mathbb{E}_T[w_n], x \rangle^2]$$

$$= \mathbb{E}_T[\sum_{i,j=1}^d ((w_n)_i - \mathbb{E}_T[(w_n)_i])x_ix_j((w_n)_j - \mathbb{E}_T[(w_n)_j])$$

$$= \text{tr}(xx^T \text{Cov } w_n) = \langle x, (\text{Cov } w_n)x \rangle,$$

Gauss-Markov-Theorem

Theorem (Gauss Markov theorem)

Suppose that the data obeys the linear model

$$Y = \langle w, X \rangle + \epsilon,$$

with $\mathbb{E}[\epsilon|X=x]=0$, $\mathrm{Var}[\epsilon|X=x]=\sigma^2$ and errors at different points are uncorrelated.

Then

- the least squares estimator $w_n = (X^T X)^{-1} X^T Y$ is unbiased,
- among all possible unbiased estimators of the weight vector w it has the smallest variance.

Gauss-Markov-Theorem II

The Gauss-Markov-Theorem is only of very limited practical use:

- Model assumption has to be true!
 In reality linearity is not often encountered
- If the model assumption is correct:
 least squares estimator is the best among all possible unbiased
 estimators!
 - ⇒ a slightly biased estimator (e.g. ridge regression or lasso) could have much smaller variance
 - \Rightarrow better expected squared error \Rightarrow Better estimator !