"ASSIGNMENT NO 1"

Muhammad Ali

Registration No: 19PWCSE1801

Class Section: A

Submitted To Sir Rehmat Ullah

Date:(27, 11, 2020)

Digital Logic Design

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

2. (10 pts.) Convert (1278.875)10 to its equivalent representation in the following bases:

I. Base 16 _____

II. Base 8 _____

Convert
$$(4278.875)_{10} = (1$$

III. Base 2 _____

IV. Base 7 _____

(1278.875)₁₆ = ()₂

$$\frac{2}{639-6}$$

$$\frac{2}{319-1}$$

$$\frac{319-1}{279-1}$$

$$\frac{2}{79-1}$$

$$\frac{2}{159-1}$$

$$\frac{2}{159-1}$$

$$\frac{2}{159-1}$$

$$\frac{2}{159-1}$$

$$\frac{2}{159-1}$$

$$\frac{2}{199-1}$$

$$\frac{3}{199-1}$$

$$\frac$$

V. Base 3 _____

V) (1278.875),	= ()3
3 1278 3 426-0 3 142-0 3 17-1 3 13-1	$0.875 \times 3 = 2.625$ $0.62 \times 3 = 1.86$ $0.86 \times 3 = 2.58$ $0.58 \times 3 = 1.68$
3 5-0	(1258.875) ₁₀ = (1201100.2121)

- 3. (10 pts.) Find the Base 10 equivalents of the following numbers:
- I. (3F1B.25)16 _____
- II. (456723.75)8 _____
- III. (1011110001110101.10011)2 _____

IV. (31242.2314)5 _____

v. (31242.60)7 _____

4. (5 pts.) Convert the following numbers directly to binary without using an intermediary base: I. (3E89.AC27)16 _____ Convert each digit to binary in four bits group: 3₁₆=0011₂ $E_{16} = 1110_2$ 8₁₆=1000₂ 9_{16} =1001₂ $A_{16} = 1010_2$ $C_{16} = 1100_2$ 2₁₆=0010₂ 7₁₆=0111 Hence $(3E89.AC27)_{16} = (11111010001001.10101100001)_2$ II. (22144.3561)8 _____ Convert each digit to binary in three bits group: 28=0102 2₈=010₂ 18=0012 4₈=100₂

(22144.3561)8=10010001100100.011101110001

4₈=100₂

3₈=011₂

5₈=101₂

 $6_8 = 110_2$

18=0012

Hence

I. Octal _____ (001100110111001010.1011101)2 Convert each three bits to octal from right to left at point: $010_2 = 2_8$ $001_2 = 1_8$ **111**₂= **7**₁₆ $110_2 = 6_8$ 1002=48 $001_2 = 1_8$ For fraction: 1012=58 $110_2 = 6_8$ 1002=48 Hence $(001100110111001010.1011101)_2 = (146712.564)_8$ Hexadecimal _____ II. $A_{16} = 1010_2$ $C_{16} = 1100_2$ D_{16} =1101₂ $C_{16} = 1100_2$ For fraction: $B_{16} = 1011_2$ A₁₆=1010₂ Hence $(001100110111001010.1011101)_2 = (CDCA.BA)_{16}$

Don't use an intermediary base.

5. (5 pts.) Convert (1100110111001010.1011101)2 to:

6. (10 pts.) Write the first 20 decimal numbers in base 2 (binary).

Decimal	Binary
1	01
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000
17	10001
18	10010
19	10011
20	10100