

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

N80-13770

(NASA-CR-160402) ANALYSIS OF METABOLIC
ENERGY UTILIZATION IN THE SKYLAB ASTRONAUTS
(General Electric Co.) 97 p HC A05/MF A01
CSCL 05H

G3/54 Unclas 46340

160402

GENERAL ELECTRIC

HOUSTON, TEXAS

TECHNICAL INFORMATION RELEASE

TIR 741-MED-7018

FROM	J. I. Leonard		TO	J. A. Rummel, Ph.D./SE2	
DATE	12/19/77	WORK ORDER REF:	WORK STATEMENT PARA:	NAS9-14523	REFERENCE:
SUBJECT	ANALYSIS OF METABOLIC ENERGY UTILIZATION IN THE SKYLAB ASTRONAUTS				

This analysis was performed in support of the metabolic and biochemical Skylab experimental program. It is part of a larger integrated metabolic balance analysis which includes analysis of Skylab water balance, electrolyte balance, evaporative water loss and body composition. Results of those studies have been previously transmitted by Technical Information Releases.

The purpose of this report is to assemble and process the metabolic data from which estimates of energy utilization can be inferred as a function of mission length. A theoretical treatment of energy balance has been included. A manuscript based on this analysis has been written (Amer. J. Physiol., in press) by NASA Principal Investigators (Rambaut, P., Leach, C., Leonard, J.). Its objective was to determine whether changes in metabolic energy utilization occur during prolonged spaceflight.

J. I. Leonard, Ph. D.

CONCURRENCES

Counterpart:

D. G. Fitzjerrall
Life Sciences Projects
Unit Manager:

C. W. Fischer
Engineering & Advanced Programs
Subsection Mgr.

DISTRIBUTION

NASA/JSC:

C. S. Leach, Ph. D./SD7
S. L. Kimzey, Ph. D./SD7
P. C. Rambaut, ScD/SD

Page No.
1 of 1

ASD 4028

**ANALYSIS OF METABOLIC ENERGY
UTILIZATION IN THE SKYLAB ASTRONAUTS**

CONTRACT NAS9-14523

**J. I. Leonard, Ph. D.
Senior Biomedical Research Engineer
General Electric Company
Houston, Texas**

December 19, 1977

Prepared for

**C. S. Leach, Ph. D.
Chief, Metabolism and Biochemistry Branch
NASA/Johnson Space Center
Houston, Texas**

METABOLIC ENERGY ANALYSIS OF SKYLAB ASTRONAUTS

TABLE OF CONTENTS

	<u>PAGE</u>
1. 0 <u>INTRODUCTION</u>	1
2. 0 <u>THEORETICAL ANALYSIS</u>	4
3. 0 <u>DATA ANALYSIS PROCEDURE, FORMAT AND REQUIREMENTS</u>	19
4. 0 <u>ENERGY BALANCE ANALYSIS RESULTS</u>	26

APPENDICES

- A. METHOD AND ANALYSIS FOR CORRECTING POTASSIUM
BALANCE FOR SKIN LOSSES
- B. CREW DATA: BODY MASS, WATER AND TISSUE CHANGES
- C. CREW DATA: ENERGY DERIVED FROM CATABOLISM OF
BODY TISSUE
- D. CREW DATA: ENERGY DERIVED FROM FOOD AND EXCRETED
IN FECES AND URINE
- E. CREW DATA: NET METABOLIC BALANCES FOR NITROGEN,
POTASSIUM, CALCIUM, MAGNESIUM AND PHOSPHORUS
- F. CREW DATA: DIET, URINE AND FECAL DATA FOR
METABOLIC BALANCES

1.0 INTRODUCTION

The objective of this analysis was to determine whether changes in metabolic energy utilization occurs during spaceflight. The Skylab biomedical experiments represented the most outstanding attempt to gather information regarding man's metabolic processes for extended periods of weightlessness. Overall energy utilization was not measured directly but could be inferred from an energy balance (Figure 1-1) based on caloric intake, excreted energy and metabolism of body tissues. The purpose of this report is to assemble the data which was processed in support of the analysis. A result of the analysis was a manuscript soon to be published in the American Journal of Physiology: "Changes in Metabolic Energy Utilization in Man during Spaceflight" (Rambaut, P. C., Leach, C. S. and Leonard, J. I.). No additional interpretation of the data is presented here. This work is part of a larger integrated metabolic balance analysis (Figure 1-2) which included analysis of Skylab water balance, electrolyte balance, evaporative water loss and body composition.

Section 2.0 is a theoretical analysis of energy utilization in man. The procedures for data processing, format of processed data and data requirements were based on this analysis and are shown in Section 3.0. The results of the analysis are presented in Section 4.0 in tabular and graphic format. These results are given as mean values for one or more flights combined. Individual crew subject data is presented in the appendix along with some further description of analytical techniques used in the study.

ENERGY BALANCE

$$\text{ENERGY REQUIRED} = \text{WORK} + \text{HEAT} = (E_{Food} - E_{Excreta}) + \Delta E_{Tissue}$$

$$\Delta E_{Tissue} = \Delta E_{Protein} + \Delta E_{Fat}$$

FIG. 1-1

FIG. 1-2

2.0 THEORETICAL ANALYSIS

- A) From whole-body energy balance for a specified time interval, Δt

$$E_{\text{food}} = E_{\text{excreta}} + E_{\text{work}} + E_{\text{heat}} + \Delta E_{\text{tissue stored}} \quad (1)**$$

where E_{food} = chemical energy derived from food consumed during Δt

E_{excreta} = chemical energy excreted in urine, feces, sweat, etc. during Δt

E_{work} = mechanical work energy performed during Δt

E_{heat} = heat energy lost to environment during Δt

$\Delta E_{\text{tissue stored}}$ = chemical energy stored in tissues during Δt

- B) Food energy can be obtained from known diet constituents (protein, carbohydrates, fats) and values for energy produced by 1 gm. of each constituent.

$$E_{\text{food}} = a_1 \times \text{CHO} + a_2 \times \text{FAT} + a_3 \times \text{PRO} \quad (2)$$

where* a_1 = 4.182 Kcal/gm carbohydrate consumed

a_2 = 9.461 Kcal/gm fat consumed

a_3 = 4.316 Kcal/gm protein consumed

(* values from MacHattie, JAP (1960) pp. 677)

(** See Section 2.0, Part H for Deviation of Energy Equation)

Values for E_{excreta} are not available at present time.

E_{excreta} may be estimated by assuming that a small fraction, γ , of the consumed diet food is not metabolized and is excreted.

$$\gamma = \frac{E_{\text{excreted}}}{E_{\text{food}}} \approx \frac{\text{mass dry feces}}{\text{mass dry solid food}} \quad (3)$$

Define η = efficiency of digestion and metabolism of consumed diet food

$$= 1 - \gamma \approx 1 - \frac{\text{mass dry feces}}{\text{mass dry solid food}} \quad (4)$$

Then $E_{\text{excreta}} = \gamma E_{\text{food}}$ (5)

and

$$\begin{aligned} E_{\text{food net}} &= E_{\text{food}} - E_{\text{excreta}} = E_{\text{food}} - \gamma E_{\text{food}} \\ &= (1 - \gamma) (E_{\text{food}}) = \eta E_{\text{food}} \end{aligned} \quad (6)$$

or

$$E_{\text{food net}} = \eta (\alpha_1 * \text{CHO} + \alpha_2 * \text{FAT} + \alpha_3 * \text{PRO}) \quad (7)$$

- C) Chemical energy in the form of stored tissue may be determined from a mass balance in which body mass (WGT) is a sum of the weight of water of the body (TBW) and the weight of dry tissue elements (TIS):

$$WGT = TBW + TIS \quad (8)$$

For changes in these quantities over a time interval, Δt :

$$\Delta TIS = \Delta WGT - \Delta TBW \quad (9)$$

where $\Delta = (\text{value at end of } \Delta t) - (\text{value at start of } \Delta t)$

Assume dry tissue weight is composed of the weights of three elements: Fat tissue (FTIS), protein tissue (PTIS) and major minerals (MIN).

$$TIS = FTIS + PTIS + MIN \quad (10)$$

and further that the minerals of major concern are the heavy minerals, Phosphate (PHOS), Calcium (CAL) and magnesium (MAG), so that

$$MIN = PHOS + CAL + MAG \quad (11)$$

The changes in these quantities over the time interval, Δt , is given by combining (10) and (11)

$$\Delta TIS = \Delta FTIS + \Delta PTIS + \Delta PHOS + \Delta CAL + \Delta MAG \quad (12)$$

Combining (9) and (12)

$$\Delta TIS = \Delta WGT - \Delta TBW = \Delta FTIS + \Delta PTIS + \Delta PHOS + \Delta CAL + \Delta MAG \quad (13)$$

Each of the quantities on the right side of (13) can be estimated from a balance equation (except for FTIS) in which

$$\Delta X = X_{\text{diet}} - X_{\text{urine}} - X_{\text{fecal}} \quad (14)$$

= Change in body stores (mass) of X over the interval Δt .
where

$$X = \text{PHOS, CAL, or MAG} \quad (15)$$

$\Delta PTIS$ (Protein balance) is obtained from diet, urine and fecal nitrogen using the relationship

$$PTIS = NIT * 6.25$$

and

$$\Delta PTIS = 6.25 (NIT_{\text{diet}} - NIT_{\text{urine}} - N_{\text{fecal}}) \quad (16)$$

$\Delta FTIS$ (fat balance) is not known directly but may be obtained indirectly from (13):

$$\Delta FTIS = \Delta TIS - \Delta PTIS - \Delta PHOS - \Delta CAL - \Delta MAG \quad (17)$$

Finally, the energy stored in (consumed by) body tissue can be found by assuming energy deposits are located in only fat and protein tissues:

$$\begin{aligned} \Delta E_{\text{tissue stored}} &= \Delta E_{\text{Fat}} + \Delta E_{\text{Protein}} \\ &= \Delta FTIS \times 9.461 \frac{\text{Kcal}}{\text{gm fat}} + \Delta PTIS \times 4.316 \frac{\text{Kcal}}{\text{gm Protein}} \end{aligned} \quad (18)$$

D) Analysis of Caloric Requirement

From (1) and (6)

$$E_{\text{work}} + E_{\text{heat}} = E_{\text{food net}} - \Delta E_{\text{tissue stored}}$$

or

$$E_{\text{Req}} = \text{Energy Required by daily activity} = E_{\text{food net}} + \Delta E_{\text{tissue consumed}} \quad (19)$$

The components of E_{Req} should be compared between Preflight and Inflight periods.

In order to make conclusions regarding the caloric requirement of weightless space flight, it will be necessary to assume that the work performed and heat lost by the crew in space was similar to that of the preflight control period. Unfortunately the data supporting this assumption is somewhat equivocal.

In addition, since work generating tissue (mainly muscle) may be decreasing during flight, the caloric requirement may be less merely for this reason.

The values of E_{req} should therefore be normalized on the basis of lean body mass; i.e.,

$$E'_{\text{req}} = E_{\text{req}} / \text{Lean Body Mass} \quad (20)$$

E) Estimation of Lean Body Mass

Estimations of lean body mass changes will be needed for the three one-month inflight intervals. This data were not measured directly inflight. However, there are three alternative methods for estimating lean body mass (LBM) during the flight phases:

- a) From total body water (TBW)

(Ref: Johnson, et al., Nutr. Metabol. (1974).

$$LBM_i = TBW_i / 0.73 \quad (21)$$

where

$$TBW_i = TBW_0 + \sum_{i=1}^3 TBW_i \quad (22)$$

i refers to the mean value during any of the specified one-month inflight intervals, ($i = 1, 2, 3$)

o refers to the directly measured TBW during preflight control.

TBW_i is the average total body water change during each of the inflight periods. It can be estimated from the water balance analysis in which the mass balance equation has been adjusted for skin losses to obtain agreement with directly measured TBW (preflight) — TBW (postflight) changes. (See Section F.)

b) From total body potassium (TBK)

(Ref.: Edmonds, et al, Clinical Science and Mol. Med. (1975))

$$\Delta LBM_i = \Delta TBK_i / KF \quad (23)$$

where

$$TBK_i = TBK_0 + \sum_i^3 \Delta TBK_i \quad (24)$$

KF = average Meg K⁺/Kg Fat Free Mass

and can be determined during preflight period from

$$TBD_0 \text{ and } LBM_0 = TBW_0 / 0.73.$$

Edmonds uses value of 65 and preliminary Skylab calculations show KF = 57.8 ± 2.26 (sd)

ΔTBK_i = average TBK loss during each of the inflight periods.

It can be estimated from a K⁺ balance corrected for measured K⁺ changes; i.e.,

$$\Delta TBK_i = K_{\text{diet}}^+ - K_{\text{urine}}^+ - K_{\text{fecal}}^+ - K_{\text{skin}}^+$$

where

K_{skin}^+ is estimated by comparing ΔTBK (inflight) from

balance equation with that measured directly; i.e.,

$$K_{\text{skin}}^+ = K_{\text{diet}}^+ - K_{\text{urine}}^+ - K_{\text{fecal}}^+ - \Delta TBK \text{ (inflight, direct)} \quad (25)$$

c) From Nitrogen Balance

(Ref. Hegsted, Jr. Nutrition (1976))

$$LBM_i = LBM_0 + \sum_i \Delta PTIS_i / 0.18 \quad (26)$$

where

$\Delta PTIS$ is the average monthly changes in body protein and given by equation (16).

LBM_0 = Preflight LBM measured by methods (A) or (B) above.

The nitrogen balance can be corrected for skin losses as was done for potassium above by using

$$N_{skin} = N_{diet} - N_{urine} - N_{feces} - \Delta LBM(\text{Inflight}) \times 0.18 / 6.26 \quad (27)$$

where

ΔLBM (Inflight) can be obtained from method (A) or (B) above.

F) Estimation and Correction of Errors in Metabolic Balances

The most important information in this analysis is represented in Equations (16) - (19). The errors associated with estimating inflight energy requirements (E_{req}) are those associated with determining protein loss ($\Delta PTIS$, Eq. 16) and fat loss ($\Delta FTIS$, Eq. 17). As Hegsted has noted, in any metabolic balance analysis the errors become more severe and more apparent when average daily losses or gains are extrapolated over long periods of time. These errors can be corrected to some extent, however, when independent measurements are performed to determine changes in body composition. In Skylab, some of these independent measurements have been accomplished. With regard to the present analysis the following table lists the independent measurements associated with each metabolic balance and it is suggested these data be used to correct the metabolic balances whenever possible.

Metabolic Quantity Used in Daily Balance	Independent Data (Pre/Postflight)
Water (ΔTBW)	Total Body Water Biostriometric Analysis Leg Volume LBNP data
Potassium (ΔTBK)	Total Body Potassium Intracellular Water
Nitrogen ($\Delta PTIS$)	Total Body Potassium Total Body Water
Phosphorus ($\Delta PHOS$)	None
Calcium (ΔCAL)	Bone Mineral Measurement
Magnesium (ΔMAG)	None

The basic assumption in such a correction is that there is a systematic error in the balance equation which represents unmeasured losses from the skin. Thus, for a daily balance on arbitrary element X,

$$\Delta X = X_{\text{diet}} - X_{\text{excreta}} - X_{\text{skin}} \quad (28)$$

Only the first two terms on the right have been measured on a day-to-day basis. However, if the change in total body quantity of X is known from direct preflight and postflight measurements (i.e., call this quantity ΔX (Inflight,direct)), then we may write

$$\Sigma X_{\text{skin}} = \Sigma X_{\text{diet}} - \Sigma X_{\text{excreta}} - \Delta X \text{ (inflight,direct)} \quad (29)$$

where

$$\begin{aligned} \Sigma X &= \text{the sum of all daily inflight values} \\ &= (\text{average daily value}) \times (\text{days of mission}) \\ &= \bar{X} \times N \end{aligned}$$

Having computed ΣX_{skin} the average daily value can be found:

$$\bar{X}_{\text{skin}} = \overline{\Sigma X}_{\text{skin}} / N$$

which can be used as a linear estimation of X_{skin} in equation (28).

Since values of ΔX are required only on a monthly basis it is recommended that monthly average values be computed for each term on the right side of Equation (28), rather than using daily values and averaging the resultant ΔX_i 's.

G) Estimation of Errors in Computing Dry Tissue Weight

Calculation of the change in total dry tissue weight, ΔTIS can be found from Equation (9). This involves using the quantities that compose the water balance (i.e., water intake, urine, evaporative loss, etc.). A more fundamental equation can be found by combining mass and fluid balances as follows:

Gain in body water is given by:

$$\Delta TBW = H_2O(\text{intake}) + H_2O(\text{met}) - \text{Urine} - H_2O(\text{fecal}) - \text{Evap} \quad (28)$$

Gain in body mass is given by:

$$\begin{aligned} \Delta WGT = & \text{Food(dry)} + H_2O(\text{intake}) - \text{Urine} - \text{Urine(solids)} \\ & - H_2O(\text{fecal}) - \text{Feces(dry)} - \text{Evap} + O_2(\text{intake}) \\ & - CO_2(\text{out}) \end{aligned} \quad (29)$$

Subtracting and substituting into Equation (9)

$$\begin{aligned} \Delta TIS &= \Delta WGT - \Delta TBW \\ &= \text{Food(dry)} - \text{Urine(solids)} - \text{Feces(dry)} + O_2(\text{intake}) \\ &\quad - CO_2(\text{out}) - H_2O(\text{met}) \end{aligned} \quad (30)$$

$O_2(\text{intake})$, $CO_2(\text{out})$ and $H_2O(\text{met})$ can be expressed in terms of weights of carbohydrate, fat, and protein eaten according to well accepted stoichiometric relationships:

$$\begin{aligned} O_2(\text{intake}), \text{gms} &= 1.429 (.829 \text{ CHO} + 2.019 \text{ FAT} + 0.965 \text{ PRO}) \\ CO_2(\text{out}), \text{gms} &= 1.977 (.829 \text{ CHO} + 1.427 \text{ FAT} + 0.781 \text{ PRO}) \\ H_2O(\text{met}), \text{gms} &= (0.6 \text{ CHO} + 1.07 \text{ FAT} + 0.41 \text{ PRO}) \end{aligned} \quad (31)$$

These can be substituted into Equation (20) and combined to give

$$\Delta TIS = \text{Food (dry)} - \text{Urine (solids)} - \text{Feces (dry)} \\ - \eta (1.054 \text{ CHO} + 1.006 \text{ FAT} + 0.575 \text{ PRO}) \quad (32)$$

The digestion efficiency, η , is included to better estimate the metabolized food components from the diet food values.

This equation demonstrates that the change in dry tissue weight does not need to be associated with the random errors involved in measuring body mass, water intake, urine volume, and evaporative water loss (as suggested by Equation (9)). The random errors in each of the terms amounts to no more than several grams/day at most. Thus, ΔTIS should also be accurate to a few grams/day. However, there is a systematic error involved in Equation (32) that may be much more serious than any random error. This is the failure to account for the solids excreted from the skin (sweat solids, sebaceous residues and desquamated skin) which, if known, should be subtracted to the right side of Equation (32). Indications from Skylab and other sources are that this error is of the order of 10-40 gm/day which is extremely large compared to the expected value of zero for ΔTIS under steady-state conditions.

An equation for estimating this total dry skin loss (M_{skin}) can be obtained as follows:

Subtract M_{skin} from the right side of Equation (32) and solve for its value in terms of ΔWGT and ΔTBW as suggested in Equation (30).

$$M_{\text{skin}} = \Delta TBW - \Delta WGT + \text{Food (dry)} - \text{Urine (solids)} \\ - \text{Feces (dry)} - \eta(1.054 \text{ CHO} + 1.006 \text{ FAT} + 0.575 \text{ PRO}) \quad (33)$$

Using the value of ΔTBW (inflight, direct) from isotope, dilution studies and using total accumulative inflight values for all the other quantities for each man, the resultant value of M_{skin} represents the subject's total skin

losses for the entire mission. This value can then be divided by the appropriate number of days to obtain a linear approximation of the daily or monthly average skin loss.

H) DERIVATION OF HUMAN WHOLE-BODY ENERGY BALANCE

From First Law of Thermodynamics

$$dU = \delta Q - \delta W$$

internal heat work
energy of added to performed
system system by system

or

$$U_2 - U_1 = Q_{\text{added}} - W_{\text{performed}} \quad (1)$$

where U_1 = internal energy of system at start of process (i.e. beginning of day (1))

$$= E_{\text{food}} + E_{\text{stored}} \quad (\text{Assumes all food is presented at time (1)})$$

U_2 = internal energy of system at end of process (i.e., beginning of day (2))

$$= E_{\text{excreta}} + E_{\text{stored}(2)} \quad (\text{Assumes all food is consumed and all excreta released by time (2)})$$

Thus

$$W_{\text{performed}} - Q_{\text{added}} = E_{\text{food}} - E_{\text{excreta}} + E_{\text{stored}(1)} - E_{\text{stored}(2)}$$

$$\begin{aligned} \text{Let } \Delta E_{\text{stored}} &= E_{\text{stored}(1)} - E_{\text{stored}(2)} \\ &= \text{Net Catabolism if } > 0 \\ &= \text{Net Anabolism if } < 0 \end{aligned}$$

$$W_{\text{performed}} - Q_{\text{added}} = (E_{\text{food}} - E_{\text{excreta}}) + \Delta E_{\text{stored}} \quad (2)$$

$$\begin{aligned}
 \text{that } E_{\text{stored}} &= \text{storage of many forms of energy} \\
 &= \text{heat energy } (\text{mass} \times C_p \times \text{Temp}) \\
 &+ \text{kinetic energy } (\text{Mass} \times \text{Vel.}^2/2) \\
 &+ \text{static electric energy } (\text{Cap.} \times \text{Volt}^2/2) \\
 &+ \text{potential gravitational energy } (\text{mass} \times g) \\
 &+ \text{potential chemical energy stored in high energy} \\
 &\quad \text{bonds of tissue } (\Delta F = -RT \ln k) \tag{3}
 \end{aligned}$$

It is assumed that all except the last term (potential chemical energy of tissues) is either negligible (i.e., static electric energy or kinetic energy) or does not change significantly (i.e., true of heat energy if body temperature or mass does not change). In addition, it is not necessary to have knowledge of the total stored energy in tissue since the term in Equation (2), ΔE_{stored} , refers to a change in tissue composition and energy.

It may also be assumed the most important storage depot of chemical energy exists in fat and protein molecules of tissues; i.e.,

$$\Delta E_{\text{store}} = \Delta E_{\text{fat}} + \Delta E_{\text{protein}} \tag{4}$$

where $\Delta E_{\text{fat}} =$ energy derived from fat catabolism

$\Delta E_{\text{protein}} =$ energy derived from protein catabolism

Equation (2) can be rewritten

$$E_{\text{food}} = E_{\text{excreta}} + W_{\text{performed}} - Q_{\substack{\text{added} \\ \text{consumed}}} - \frac{\Delta E_{\text{fat}}}{\text{consumed}} - \frac{\Delta E_{\text{protein}}}{\text{consumed}} \tag{5}$$

or

$$E_{\text{food}} = E_{\text{excreta}} + W_{\text{performed}} + Q_{\substack{\text{lost to} \\ \text{environment}}} + \frac{\Delta E_{\text{fat}}}{\text{stored}} + \frac{\Delta E_{\text{protein}}}{\text{stored}} \tag{6}$$

This form of the energy balance illustrates that the chemical energy of food provides all the energy needs of the body.

3.0

DATA ANALYSIS PROCEDURE, FORMAT AND REQUIREMENTS

This analysis includes all nine Skylab crewmen, representing 3 crews of 3 men each, who occupied the orbiting workshop between May 1973 and February 1974. The first crew (SL-2) remained onboard for 28 days, the second (SL-3) for 59 days, and the third (SL-4) for 84 days. In this analysis of the data the missions have been divided into 28-day periods. (Figure 3-1). The first mission has only one such period, the second has two and the third has three. Data obtained on the last 3 days of the SL-3 mission is not included. The length of the preflight period for the SL-2, SL-3 and SL-4 missions was 30, 20 and 26 days respectively. Data from the first day of the preflight period is not included. The julian days used to segment these periods are given in Table 3-1.

Changes in body composition and energy utilization in any particular period is expressed as the mean value for all crewmen who contributed to that period. (Tables 3-2 and 3-3). Thus a total of 9 crewmen were involved in the preflight period as well as in the first inflight period, six in the second inflight period and three in the third inflight period. The means are expressed together with their standard deviation and tests of significance (using Student t-test) involve a comparison between inflight period and that preflight period involving the same group of crew members.

The data required for this analysis is shown in part in Table 3-4. Food energy was measured directly by bomb calorimetry as well as computed from the carbohydrates, fat and proteins in the diet. Fecal calories were also measured directly. Caloric value of urine excreted was obtained from the energy content of measured urinary nitrogen.

These data permitted a calculation of metabolic efficiency as well as net energy derived from food. The water balance data was taken directly from the water balance analysis which has been previously reported. This analysis required much additional data not shown here such as urine volume, water in food, water drunk, fecal water, dry fecal weight, etc.

GROUPING OF DATA FOR ENERGY BALANCE ANALYSIS

FIG. 3-1

ENERGY BALANCE DATA ANALYSIS

TABLE 3-1: PERIODS OF ANALYSIS

(INCLUDES ALL DATA
EXCEPT 1st DAY PREFLIGHT)

<u>PERIOD</u>	<u>FLIGHT</u>	<u>START DAY</u>	<u>END DAY</u>	<u>14 DAYS</u>
PREFLIGHT	SL-2	115	144	30
	SL-3	189	208	20
	SL-4	294	319	26
INFLIGHT I	SL-2	145	172	28
	SL-3	209	236	28
	SL-4	320	347	28
INFLIGHT II	SL-2	-	-	0
	SL-3	237	264	28
	SL-4	348	375	28
INFLIGHT III	SL-2	-	-	0
	SL-3	-	-	0
	SL-4	376	403	28

ENERGY BALANCE DATA ANALYSIS

TABLE 3-2 : DATA FORMAT

MAN	PERIODS			
	PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
1	-	-	0	0
2	-	-	0	0
3	-	-	0	0
4	$\bar{x} \pm sd$	-	-	0
5	-	-	-	0
6	-	-	-	0
7	-	-	-	-
8	-	-	-	-
9	-	-	-	-
AVG:	\bar{x}	-	-	-
SEM:	$S\bar{x}$	-	-	-

Each Element ($9 \times 4 = 36$ elements) in table above bottom line represents the mean \pm sd of a data quantity (See Table III) for the specified period. Each period represents a series of consecutive days (See Table I) each day of which is associated with a data value for every quantity shown in Table III. Values below the bottom line in table above represent the grand mean \pm 1 SEM for each column.

ENERGY BALANCE DATA ANALYSIS

TABLE 3-3 : DOY USED FOR ANALYSIS
 (N = No. of days per subject in each period)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1				
	2	115 - 144	145 - 172		
	3	N = 30	N = 28		
SL-3	4				
	5	189 - 208	209 - 236	237 - 264	
	6	N = 20	N = 28	N = 28	
SL-4	7				
	8	294 - 319	320 - 347	348 - 375	376 - 403
	9	N = 26	N = 28	N = 28	N = 28
AVG:					
SEM:					

ENERGY BALANCE DATA ANALYSIS

TABLE 3-4 : DATA REQUIRED

Raw data listed below will be averaged according to format shown in Table II:

<u>Data Element</u>	<u>Source</u>
1 Calcium diet	SMEDEP data base (43)*
2 Calcium urine	" " (7)
3 Calcium fecal	Whedon data book
4 Phosphorus diet	SMEDEP data base (44)
5 Phosphorus urine	" " " (6)
6 Phosphorus fecal	Whedon data book
7 Magnesium diet	SMEDEP data base (46)
8 Magnesium urine	" " " (5)
9 Magnesium fecal	Whedon data book
10 Potassium diet	SMEDEP data base (47)
11 Potassium urine	" " " (4)
12 Potassium fecal	Whedon data book
13 Nitrogen diet	Whedon data book
14 Nitrogen urine	" " "
15 Nitrogen fecal	" " "
16 Daily body mass change	Water balance analysis using Whittle data base
17 Daily water balance (adjusted for agreement with TBW direct measurements)	
18 Daily energy derived from food	

* (No. in parenthesis refers to SMEDEP data base index)

4.0 ENERGY BALANCE ANALYSIS RESULTS

The analysis proceeded according to the theoretical treatment of Section 2.0 and the format shown in Section 3.0. The sequence of analysis was as follows:

- a.) Assembleage of bomb calorimetry data (diet and feces) averaged for each crewman in each flight period. Computation of caloric value of food from known amounts of food constituents. Computation of caloric value excreted in urine from known amounts of urinary nitrogen. (See Appendix D.)
- b.) Computation of metabolic efficiency from food and fecal calories and mass. (See Tables 4-3 and 4-4.) Computation of net caloric intake (diet - excreta). (See Appendix D.) Computation of oxygen consumption and respiratory quotient (RQ) from dietary constituents. (See Table 4-5.)
- c.) Assemblage of mass balance data (body weight changes, body water changes) obtained from mass and water balance analysis for each crewman in each flight period (Appendix B). Computation of solid tissue losses (protein plus fat) for each crewman. (Appendix B). Summarize partitional changes in total body mass for all crewmen (Table 4-1).
- d.) Computation of body protein changes from nitrogen balance. Computation of body fat changes. Computation of caloric content of these metabolic changes (Appendix C).
- e. Assemblage of metabolic balance data (diet, urine, feces,) averaged for each crewman in each preflight or flight period. This was performed for nitrogen, potassium, calcium, magnesium and phosphorus. The SMEDEP data base was used extensively

for this purpose as well as additional data from Dr. Whedon's data base which was subsequently added to the SMEDEP data base. (See Appendix F.)

- f.) Computation of net metabolic balance (intake - excreta) for each of these body constituents as a function of mission length. (See Appendix E and Table 4-2.)
- g.) Computation of potassium balance corrected for skin losses. This analysis uses potassium balance and total body potassium data. These values were used as an index of lean body mass changes during flight and to normalize energy utilization with respect to changes in body composition (Appendix A).
- h. Summarize components of energy balance (food, excreta, protein catabolism, fat catabolism) and net energy utilized (Tables 4-6, 4-7, and 4-8 and Figure 4-1).
- i.) Hard copy microfilm plots of net energy utilization on a continuous daily basis for each Skylab crew and for all crews combined (Figures 4-2 to 4-6). This analysis was performed subsequent to the rest of the study and used the software associated with the water balance analysis.

TABLE 4-1

PARTITIONAL CHANGES IN TOTAL BODY MASS DURING 3-MONTH SPACEFLIGHT

	Inflight Period	n	Average Daily Changes			Total Period Change	Cumulative ^a Shift from Preflight
			Preflight	Inflight	Shift from Preflight		
Total Body Mass (gm)	I	9	- 9.26 +43.39	- 79.37 + 33.63	-70.11	-1963	-1963
	II	6	8.33 +42.73	- 2.38 + 11.22	-10.71	-300	-2263
	III	3	0.00 +30.77	15.48 + 4.13	15.48	433	-1830
Body Water (gm)	I	9	10.72 +35.62	- 48.59 + 27.10	-59.31	-1661	-1661
	II	6	19.12 +36.16	16.67 + 24.75	-2.45	-69	-1730
	III	3	- 5.82 +19.07	15.51 + 10.22	21.33	597	-1133
Body Tissue, dry (gm)	I	9	- 19.98 +30.53	- 30.77 + 31.63	-10.79	-302	-302
	II	6	- 10.79 +25.84	- 19.05 + 27.01	-8.26	-231	-533
	III	3	5.82 +12.25	- 0.032 + 8.883	-5.85	-163	-697

TABLE 4-2

METABOLIC BALANCES AND CUMULATIVE LOSSES

Crew Averages and SEM

Inflight Monthly Period	n	Daily Preflight Control Balance	Daily Inflight Balance	Shift from Preflight Balance *	Total Monthly Change **	Cumulative Shift from Preflight ***
Nitrogen (gm)						
I	9	3.19 ±0.53	-1.74 ±0.67	-4.93	-138.00	-138.00
II	6	3.14 ±0.62	0.21 ±0.52	-2.93	-82.00	-220.00
III	3	2.77 ±0.56	0.17 1.32	-2.60	-72.8	-292.8
Potassium (meq)						
I	9	16.95 ±2.80	4.03 ±2.67	-12.92	-361.8	-361.8
II	6	15.96 ±2.70	9.26 ±7.65	-6.70	-187.6	-549.4
III	3	14.90 ±2.60	8.66 ±5.86	-6.24	-174.7	-724.1
Phosphorus (mg)						
I	9	179.62 ±112.80	-23.78 ±18.00	-203.4	-5695	-5695
II	6	210.00 ±97.6	64.04 ±68.65	-146.0	-4087	-9782
III	3	151.14 ±65.03	19.65 ±67.45	-131.5	-3682	-13464
Calcium (mg)						
I	9	7.47 ±193.07	-18.41 ±78.00	-25.88	-725	-725
II	6	-55.06 ±202.60	-169.58 ±131.32	-114.52	-3207	-3931
III	3	-230.97 ±79.24	-167.91 ±80.14	63.06	+1766	-2165

TABLE 4-2 (Continued)

Magnesium (mg)	Inflight Monthly Period	n	Daily Preflight Control Balance	Daily Inflight Balance	Shift from Preflight Balance *	Total Monthly Change **	Cumulative Shift from Preflight ***
	I	9	25.53 ±32.29	16.15 ±14.06	- 9.38	-263	-263
	II	6	9.64 ±24.53	24.92 ±25.55	15.28	428	165
	III	3	-9.65 ±17.55	14.87 ±11.64	24.63	690	855

* Shift from Control, $\Delta = \text{Inflight Balance} - \text{Control Balance}$

** Total Monthly Change, $L_i = \Delta \times 28$ days

*** Cumulative Shift = $\sum L_i$

TABLE 4-3

METABOLIC EFFICIENCY FROM FOOD AND FECAL (BOMB) CALORIES*

<u>Man</u>	<u>Preflight</u>		<u>Inflight</u>	
	<u>Mean</u>	<u>sd</u>	<u>Mean</u>	<u>sd</u>
1	0.946	+ 0.046	0.958	
2	0.950		0.959	
3	0.950		0.958	
4	0.957		0.959	
5	0.954		0.948	
6	0.954		0.948	
7	0.949		0.950	
8	0.953		0.967	
9	0.960		0.955	
	<hr/>		<hr/>	
	.952		.956	
	+ .004		+ .006	

$$\text{*Efficiency} = 1 - \frac{\text{fecal calories (bomb)}}{\text{food calories (bomb)}}$$

$$\text{Std. deviation of each value, } S_{\text{eff}} = \sqrt{(1 - \text{Eff}) \left[\left(\frac{S_x}{X} \right)^2 + \left(\frac{S_y}{Y} \right)^2 \right]}$$

X = food calories

Y = fecal calories

TABLE 4-4

METABOLIC EFFICIENCY FROM FOOD AND FECAL SOLIDS*

<u>Man</u>	<u>Preflight</u>		<u>Inflight</u>	<u>Postflight</u>
	<u>Mean</u>	<u>sd</u>		
1	0.967		0.966	0.968
2	0.954		0.966	0.947
3	0.961		0.965	0.972
4	0.967		0.965	0.982
5	0.958		0.960	0.953
6	0.959		0.959	0.967
7	0.950		0.955	0.948
8	0.960		0.969	0.973
9	0.963		0.961	0.959
AVG.	0.959		0.963	0.963
SEM	\pm 0.006		\pm .004	\pm .012

*Efficiency = $1 - \frac{\text{fecal solids}}{\text{food solids}}$

TABLE 4-5

ENERGY BALANCE
(O_2 Consumption and RQ Calculated from Diet)

Subject	<u>Preflight</u>		<u>Inflight</u>		<u>Postflight</u>	
	<u>VO_2</u> (l/min)	<u>RQ</u>	<u>VO_2</u>	<u>RQ</u>	<u>VO_2</u>	<u>RQ</u>
SL-2/CDR	.36	.86	.36	.89	.42	.86
SPT	.39	.88	.37	.90	.37	.88
PLT	.39	.87	.35	.90	.42	.88
SL-3/CDR	.36	.87	.35	.91	.38	.87
SPT	.37	.86	.35	.90	.40	.85
PLT	.52	.88	.48	.92	.53	.89
SL-4/CDR	.40	.87	.41	.88	.39	.88
SPT	.39	.87	.39	.89	.42	.88
PLT	.41	.86	.42	.87	.44	.86
AVG. + SD	$\pm .40$ $\pm .05$	$\pm .87$ $\pm .008$	$\pm .39$ $\pm .04$	$\pm .90$ $\pm .015$	$\pm .42$ $\pm .05$	$\pm .87$ $\pm .01$

$$RQ = \frac{CO_2 \text{ produced from non-protein diet (liters)}}{O_2 \text{ consumed for non-protein diet (liters)}}$$

$$= (.829 \text{ CHO} + 1.427 \text{ FAT}) / (.829 \text{ CHO} + 2.019 \text{ FAT})$$

$$VO_2 = .95 (.829 \text{ CHO} + 2.019 \text{ FAT} + 0.965 \text{ PRO})$$

TABLE 4-6

34

Components of Energy Balance - Skylab Average
(Kcal/day)

	<u>Inflight Period</u>		
<u>Energy Source or Sink</u>	<u>I (n=9)</u>	<u>II (n=6)</u>	<u>III (n=3)</u>
<u>Food Ingested</u>			
Control	2979 \pm 358	3067 \pm 411	3145 \pm 54
Inflight	2770 \pm 371	3115 \pm 389	3281 \pm 111
Shift from Control	-209	48	137
<u>Feces</u>			
Control	143 \pm 19	140 \pm 23	145
Inflight	119 \pm 26	145 \pm 33	147 \pm 29
Shift from Control	- 24	5	3
<u>Urine</u>			
Control	126 \pm 25	127 \pm 26	128 \pm 11
Inflight	152 \pm 22	151 \pm 29	153 \pm 5
Shift from Control	26	24	25
<u>Protein Catabolism</u>			
Control	- 86 \pm 14	- 85 \pm 17	- 75 \pm 15
Inflight	47 \pm 18	- 6 \pm 14	- 5 \pm 36
Shift from Control	133	79	70
<u>Fat Catabolism</u>			
Control	378 \pm 297	288 \pm 250	109 \pm 84
Inflight	188 \pm 303	193 \pm 276	11 \pm 132
Shift from Control	-190	-95	-98
<u>Net Energy Utilized +</u>			
Control	3002 \pm 312	3003 \pm 268	2906 \pm 69
Inflight	2734 \pm 201	3006 \pm 248	2988 \pm 167
Shift from Control	-268 \pm 161**	3 \pm 76	81 \pm 114
Δ%	-8.9%	0.1%	2.8%
<u>Net Energy Utilized / Eq. TBK⁺</u>			
Control	834 \pm 78	844 \pm 85	831 \pm 39
Inflight	807 \pm 61	895 \pm 78	932 \pm 49
Shift from Control	-27 \pm 41*	51 \pm 46**	101 \pm 76
%	-3.0%	6.3%	12.4%

+ Net Energy Utilized = Food Ingested - Feces - Urine + Protein Catabolism + Fat Catabolism

* p < 0.1

** p < .05

TABLE 4-7

Net Energy Utilized
(Kcal)

Inflight Period

<u>Preflight Control</u>	<u>I (n=9)</u>	<u>II (n=6)</u>	<u>III (n=3)</u>
SL-2	3001 \pm 457	-	-
SL-3	3099 \pm 383	3099 \pm 383	-
SL-4	2906 \pm 69	2906 \pm 69	2906 \pm 69
Skylab Mean	3002 \pm 312	3003 \pm 268	2906 \pm 69
<u>Inflight</u>			
SL-2	2724 \pm 321	-	-
SL-3	2721 \pm 229	3139 \pm 307	-
SL-4	2756 \pm 66	2872 \pm 76	2988 \pm 167
Skylab Mean	2734 \pm 201	3006 \pm 248	2988 \pm 167
<u>Shift from Control</u>			
SL-2	-278 \pm 146*	40 -	-
SL-3	-378 \pm 207*	40 \pm .94	-
SL-4	-150 \pm 31**	-33 \pm 39	82 \pm 114
Skylab Mean	-268 \pm 161***	3 \pm 76	82 \pm 114
<u>$\Delta\%$</u>			
SL-2	-8.92 \pm 3.71*	-	-
SL-3	-11.83 \pm 5.84*	1.52 \pm 3.36	-
SL-4	-5.15 \pm 1.01 **	-1.15 \pm 1.34	2.79 \pm 3.91
Skylab Mean	-8.72 \pm 4.47 ***	-0.55 \pm 3.23	2.79 \pm 3.91

* p < .1

** p < .02

*** p < .01

TABLE 4-8

Net Energy Utilized/Body K⁺
(Kcal/day-Eq. body K⁺)

Inflight Period

<u>Preflight Control</u>	<u>I (n=9)</u>	<u>II (n=6)</u>	<u>III (n=3)</u>
SL-2	813 \pm 73	-	-
SL-3	857 \pm 126	857 \pm 126	-
SL-4	831 \pm 39	831 \pm 39	831 \pm 39
Skylab Mean	834 \pm 78	844 \pm 85	831 \pm 39
 <u>Inflight</u>			
SL-2	802 \pm 55	-	-
SL-3	806 \pm 106	900 \pm 116	-
SL-4	814 \pm 23	891 \pm 40	932 \pm 49
Skylab Mean	807 \pm 61	895 \pm 78	932 \pm 49
 <u>Shift from Control</u>			
SL-2	-11.8 \pm 42.5	-	-
SL-3	-51.4 \pm 57.3	42.3 \pm 46.9	-
SL-4	-16.7 \pm 17.0	59.6 \pm 53.6	100.8 \pm 75.9
Skylab Mean	-26.6 \pm 41.2*	51.0 \pm 46.1**	100.8 \pm 75.9
 <u>$\Delta\%$</u>			
SL-2	- 1.27 \pm 4.97	-	-
SL-3	- 5.76 \pm 6.24	5.18 \pm 5.74	-
SL-4	- 1.95 \pm 1.91	7.32 \pm 6.69	12.38 \pm 9.48
Skylab Mean	- 2.99 \pm 4.61*	6.25 \pm 5.70**	12.38 \pm 9.48

* p < .1

** p < .05

MONTHLY ENERGY EXPENDITURE
CHANGES DUE TO SPACEFLIGHT FOR EACH SKYLAB MISSION

FIG. 4-1

AVERAGE NET ENERGY UTILIZATION DURING 1ST SKYLAB MISSION

FIG. 4-2

AVERAGE NET ENERGY UTILIZATION DURING 2ND SKYLAB MISSION

FIG. 4-3

AVERAGE NET ENERGY UTILIZATION DURING 3RD SKYLAB MISSION

FIG. 4-4

AVERAGE NET ENERGY UTILIZATION FOR ENTIRE
SKYLAB CREW (N = 9) DURING
PREFLIGHT AND 1ST MONTH INFLIGHT

FIG. 4-5

AVERAGE NET ENERGY UTILIZATION FOR ENTIRE SKYLAB
CREW (N = 9) DURING LAST MONTH INFLIGHT
AND POSTFLIGHT PERIOD

FIG. 4-6

APPENDIX A:
METHOD AND ANALYSIS FOR CORRECTING
POTASSIUM BALANCE FOR SKIN LOSSES

APPENDIX A

METHOD AND ANALYSIS FOR CORRECTING POTASSIUM BALANCE FOR SKIN LOSSES

Object: Correction of Potassium Balance for Skin Losses Based on Comparison of Metabolic Balance with Directly Measured Total Body Potassium Changes.

Background: The original uncorrected K^+ balance (KBal) predicts that after 84 days there was a total shift (i.e., loss) of total body K^+ (TBK) of 724 meq from average preflight values. (See Table A-1). However, direct TBK measurements reveal that average inflight shift from control was only 230 meq K^+ .

The discrepancy between these two measurements, one direct and the other indirect, is thought to be caused by skin losses of K^+ which were not accounted for in the metabolic balance. However, if the daily K^+ skin losses during the preflight period were identical to inflight skin losses the prediction of mean K^+ shift (i.e., (inflight balance - preflight balance) \times no. of days) would not be altered (i.e., 724 meq loss) by including skin losses in the balance since the same value would be subtracted and then added in the calculation of K^+ shift.

Thus, an obvious conclusion one is left with to explain the discrepancy mentioned above is that K^+ skin losses were greater preflight than inflight. Failure to account for this in the metabolic balance will result in over estimation of the total K^+ loss.

Calculation of K^+ Skin Losses

To test this hypothesis, it is necessary to estimate preflight and inflight skin losses separately by comparison of the indirect metabolic K^+ balance and direct preflight and postflight TBK measurements.

The relationship relating these is derived below:

$$\begin{aligned}\Delta \text{TBK}(\text{direct}) &= K(\text{diet}) - K(\text{urine}) - K(\text{fecal}) - K(\text{skin}) \\ &= \text{KBal (uncorrected)} - K(\text{skin})\end{aligned}\quad (1)$$

or

$$K(\text{skin}) = \text{KBal (uncorrected)} - \Delta \text{TBK}(\text{direct}) \quad (2)$$

Table A-2 lists the preflight TBK measurements from which the individual values of Δ TBK (preflight) may be computed. Table A-3 shows the calculations of Δ TBK (inflight). Table A-4 shows the average values of KBal (Uncorrected).

equation (2)

Each term in / refers to meq K⁺ during the period defined by the first and last TBK measurement. Thus,

For Preflight K(skin), $\Delta = 20$ -day period between earliest and latest preflight measurements.

For Inflight K(skin), $\Delta = 28, 56, \text{ or } 84$ -day period between last preflight measurement and earliest post-flight measurement.

The average daily value of K⁺ skin loss, $\bar{K}(\text{skin})$, meq/day, is determined by dividing K(skin) by the appropriate number of days in the time interval of concern.

Table A-5 summarizes the calculations for preflight and inflight K⁺ skin losses.

The magnitude of the increase of Preflight K⁺ skin losses above inflight ($17.21 - 11.62 = 5.59$ meq/day) when extrapolated over the longest mission ($5.59 \times 84 \text{ days} = 470$ meq) is great enough to account for almost the entire discrepancy of $724 - 230 = 494$ meq between the uncorrected metabolic balance method and the direct TBK measurements.

Calculation of
corrected K⁺
Balance:

Using the inflight $\bar{K}(\text{skin})$ values in Table A-5, it is possible to obtain a corrected daily average K⁺ balance

$$\bar{K}\text{Bal (corrected)} = \bar{K}\text{Bal (uncorrected)} - \bar{K}(\text{skin}) \quad (3)$$

These are presented in Table A-6. From these values the monthly loss and total accumulative losses, ΔK^+ , at the end of each month of the mission can be easily obtained as follows:

$$\Delta K_i^+, \text{meg} = \text{total accumulative loss (or gain) at end of inflight period } i, \\ (i = I, II, III) \\ = \sum_i^m (\bar{K}_{\text{Bal}}(\text{corrected})) \times N_i$$

These are given in Table A-7.

Absolute values of TBK can be determined by subtracting the monthly losses from the directly measured TBK(preflight mean) which have been tabulated in Table III. These values of TBK during the flight are shown in Table VIII. It might be desirable to use the values of TBK at the midpoint of each flight period. The method of calculating these is outlined on the attached "Sample Calculations" which also gives the details of all the computations performed in this analysis.

TABLE A-1
METABOLIC BALANCES AND CUMULATIVE LOSSES
 Crew Averages and SEM

Inflight Monthly Period	n	Daily Preflight		Shift from Preflight Balance *	Total Monthly Change **	Cumulative Shift from Preflight ***
		Daily Control Balance	Inflight Balance			
Nitrogen (gm)	I	9	3.19 ±0.53	-1.74 ±0.67	-4.93	-138.00
	II	6	3.14 ±0.62	0.21 ±0.52	-2.93	-220.00
	III	3	2.77 ±0.56	0.17 1.32	-2.60	-292.3
Potassium (meq)	I	9	16.95 ±2.80	4.03 ±2.67	-12.92	-361.8
	II	6	15.96 ±2.70	9.26 ±7.65	-6.70	-187.6
	III	3	14.90 ±2.60	8.66 ±5.86	-6.24	-174.7
Phosphorus (mg)	I	9	179.62 ±112.80	-23.78 ±118.00	-203.4	-5695
	II	6	210.00 ±97.6	64.04 ±68.65	-146.0	-4087
	III	3	151.14 ±65.03	19.65 ±67.45	-131.5	-9782
Calcium (mg)	I	9	7.47 ±193.07	-18.41 ±78.00	-25.88	-13464
	II	6	55.06 ±202.60	169.58 ±131.32	-114.52	-5695
	III	3	230.97 ±79.24	167.91 ±80.14	63.06	-3931
						+1766
						-2165

TABLE A-1 (Continued)

Magnesium (mg)	Inflight Monthly Period	n	Daily Preflight Control Balance	Daily Inflight Balance	Shift from Preflight Balance *	Total Monthly Change **	Cumulative Shift from Preflight ***
I		9	+25.53 ±32.29	+16.15 ±14.06	- 9.38	- 263	-263
II		6	+9.64 ±24.53	+24.92 ±25.55	15.28	428	165
III		3	+9.65 ±17.55	+14.87 ±11.64	24.63	690	855

* Shift from Control, $\Delta = \text{Inflight Balance} - \text{Control Balance}$

** Total Monthly Change, $L_i = \Delta \times 28$ days

*** Cumulative Shift = $\sum_{i=1}^n L_i$

TABLE A-2
CHANGES IN TBK FROM PREFLIGHT AVERAGE

<u>Man</u>	<u>n</u>	<u>Preflight</u>		<u>Postflight</u>	<u>ΔTBK</u>
		<u>Mean</u>	<u>sd</u>		
1	5	3269	± 43	2998	-271
2	5	3917	± 52	3678	-239
3	5	3867	± 64	3528	-339
4	4	3339	± 22	3151	-188
5	4	3062	± 30	3029	-33
6	4	4647	± 98	4485	-162
7	3	3228	± 31	3108	-120
8	3	3673	± 100	3348	-325
9	3	3614	± 64	3169	-445
<hr/>					
AVG		3624		3388	-236
SEM		± 484		± 471	± 125

TABLE A-3

TOTAL BODY POTASSIUM, TBK (Meg K⁺)

<u>Man</u>	F-20 & <u>F-21</u>	F-14 & <u>F-16</u>	F-7 & <u>F-8</u>	F-1 & <u>F-2</u>
1	3252	3309	3280	3301
				3202
2	3876	3969	3937	3849
				3952
3	3822	3839	3949	3920
				3803
4	3333	3367	3314	3340
5	3094	3080	3034	3039
6	4536	4602	4687	4760
7	3228	3258		3197
8	3758	3698		3562
9	3612	3678		3551
	—	—		—
AVG	3612	3644		3607
SEM	±448	±463		±521

TABLE A-4

CREW AVERAGES FOR UNCORRECTED POTASSIUM BALANCE (meq/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	19.27	6.24		
	2	20.80	3.18		
	3	16.75	4.20		
SL-3	4	14.66	0.79	9.35	
	5	16.17	0.92	13.17	
	6	20.20	5.16	21.77	
SL-4	7	12.29	1.84	0.83	2.45
	8	14.94	4.95	8.08	9.42
	9	17.48	8.95	2.33	14.10
AVG:		(1-9) 16.95	4.03	9.26	8.66
SEM:		+ 2.80	+ 2.67	+ 7.65	+ 5.86
		(4-9) + 15.96 + 2.70			
		(7-9) + 14.90 + 2.60			

TABLE A-5
ESTIMATION OF PREFLIGHT AND INFLIGHT POTASSIUM SKIN LOSSES*

MAN	PREFLIGHT**			INFLIGHT			
	Direct Δ TBK (meq)	Uncorrected KBal (meq/day)	\bar{K} (Skin) (meq/day)	Direct Δ TBK (meq)	Uncorrected KBal (meq/day)	M days	\bar{K} (Skin) (meq/day)
1	0	19.27	19.27	-271	6.24	28	15.92
2	+25	20.80	19.55	-239	3.18	28	11.72
3	+40	16.75	14.75	-339	4.20	28	16.31
4	+7	14.66	14.31	-188	5.07	56	8.43
5	-55	16.17	18.92	-33	7.05	56	7.63
6	+224	20.20	9.00	-162	13.47	56	16.36
7	-31	12.29	13.84	-120	1.37	84	3.14
8	-196	14.94	24.74	-325	7.48	84	11.35
9	-61	17.48	20.53	-445	8.46	84	13.76
AVG	5	16.95	17.21	-236	6.28		11.62
SEM	± 111	± 2.80	± 4.67	± 125	± 3.50		± 4.55

$$* \bar{K} (\text{Skin}) = \left[\sum_{i=1}^M \text{KBal}_i (\text{Uncorr.}) \times N_i - \Delta \text{ TBK (Direct)} \right] / \sum_{i=1}^M N_i$$

(M = Monthly Period = 1, 2, 3)

** N = 20 Days for All Preflight Measurement

TABLE A-6
CREW AVERAGES FOR Potassium Balance (Corrected for
Skin Losses) meq/day

FLT.	MAN	PERIODS		
		PREFLIGHT	INFLIGHT I	INFLIGHT II
SL-2	I	0.00	-9.68	
	2	1.25	-8.54	
	3	2.0	-12.11	
SL-3	4	0.35	-7.64	0.92
	5	-2.75	-6.71	5.54
	6	11.2	-11.20	5.41
SL-4	7	-1.55	-1.30	-2.31
	8	-9.80	-6.40	-3.27
	9	-3.05	-4.81	-11.43
AVG: 1-9		0.35 +5.54	-7.60 ± 3.32	-0.86 +6.37
SEM: 4-9		-0.02 +6.9		-0.76 +1.14
7-9		- 4.8 + 4.39		

$$K^+ \text{Bal (corrected)} = K^+ \text{Bal (uncorrected)} - K \text{ (skin)}$$

TABLE A-7

CREW AVERAGES FOR Monthly TBK Changes*

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	I	0	-271		
	2	+25	-239		
	3	+40	-339		
SL-3	4	+7	-214	+26	
	5	-55	-188	+155	
	6	+224	-314	+152	
SL-4	7	-31	-36	-65	-19
	8	-196	-179	-92	-54
	9	-61	-135	-320	+10
AVG:		-5	-213	-24	-21
SEM:		<u>+111</u>	<u>+ 93</u>	<u>+179</u>	<u>+32</u>

*TBK Changes = KBal (corrected) x N (days)

TABLE A-8

CREW AVERAGES FOR TOTAL BODY POTASSIUM (meq)*

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	3269	2998		
	2	3917	3678		
	3	3867	3528		
SL-3	4	3339	3125	3151	
	5	3062	2874	3029	
	6	4647	4333	4485	
SL-4	7	3228	3192	3127	3108
	8	3673	3494	3402	3348
	9	3614	3479	3159	3169
AVG:		3624	3411	3392	3208
SEM:		±484	±438	±549	±125

*TBK = TBK(Preflight) - Δ TBK(Inflight)

Inflight Values Refer to end of designated period.

Sample Calculation (Garriot, SL2/SPT) MAN 5:

1.) Preflight Skin Loss

$$\Delta \text{TBK}(\text{direct, Preflight}) = \frac{\text{F-1}}{3039} - \frac{\text{F-20}}{3094} = -55 \text{ meq}$$

$$\bar{K}_{\text{Bal}} \text{ (uncorrected), Preflight} = 16.17 \text{ meq/day}$$

$$\bar{K}(\text{Skin}) = 16.17 - (-55/20 \text{ days}) = 18.92 \text{ meq/day}$$

2.) Inflight Skin Losses

$$\Delta \text{TBK}(\text{direct, inflight}) = -33 \text{ meq}$$

$$\begin{aligned}\bar{K}_{\text{Bal}} \text{ (uncorrected) Inflight I} &= 0.92 \text{ meq/day} \\ " \quad \text{II} &= 13.17 \text{ meq/day}\end{aligned}$$

$$\begin{aligned}\bar{K}(\text{Skin}) &= \frac{.92 \times 28 \text{ days} + 13.17 \times 28 \text{ days} - (-33)}{56 \text{ Days}} \\ &= 7.63 \text{ meq/day}\end{aligned}$$

3.) Corrected K⁺ Balances

$$\bar{K}_{\text{Bal}}(\text{corrected, Preflight}) = 16.17 - 18.92 = -2.75 \text{ meq/day}$$

$$\begin{aligned}\bar{K}_{\text{Bal}} \text{ (corrected, Inflight) I} &= .92 - 7.63 = -6.71 \\ \text{II} - 13.17 - 7.63 &= 5.54\end{aligned}$$

4.) Monthly Inflight Losses

$$\text{Inflight I Loss} = -6.71 \times 28 = -188 \text{ meq}$$

$$\text{Inflight II Gain} = +5.54 \times 28 = +155 \text{ meq}$$

Sample Calculation (continued)

5.) Total Body K+ during Mission

TBK Preflight Mean (direct) = 3062 meq

Inflight I Δ TBK = - 188

TBK at end of Period I = 2874 meq

Inflight II Δ TBK = +155

TBK at end of Period II = 3029

You might want to use value of TBK at midpoint of each inflight period.

In that case

Inflight I (midpoint) = 3062 - 188 - $\frac{2968}{2}$

Inflight II (midpoint) = $2874 + \frac{155}{2} = 2952$

TABLE B-1
ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for	Body Mass Changes
(arm / chest)	

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	-30.90	377.06	28	-39.29	435.78						
	2	30	-46.67	358.62	28	-96.43	484.75						
	3	30	-56.67	330.55	28	-114.29	411.65						
SL-3	4	20	5.00	372.01	28	-96.43	390.14	28	-14.29	308.78			
	5	20	-35.00	531.41	28	-110.71	415.75	28	-3.57	319.12			
	6	20	80.00	548.30	28	-96.43	697.87	28	-10.71	310.72			
SL-4	7	26	30.77	342.66	28	-14.29	309.98	28	-3.57	324.87	28	17.86	320.94
	8	26	-30.77	406.71	28	-67.86	352.82	28	.00	495.91	28	17.86	410.11
	9	26	.00	292.58	28	-78.57	422.61	28	17.86	288.10	28	10.71	314.28
Avg.	(1-9)		-9.26			-79.37			-2.38			15.48	
SEM.			± 43.39			± 33.63			± 11.22			± 4.13	

TABLE B- 2

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Water Balance (adjusted for measured TBW)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	-19.5842	3.93	747	-14.3540	4.56	393					
	2	30	-32.6449	3.50	233	-10.3017	4.78	113					
	3	30	-32.2558	320.267	28	-73.7956	4.13	174					
SL-3	4	20	35.2213	364.934	28	-51.7737	374.051	29	28.1697	286.938			
	5	20	17.1559	520.238	29	-45.3458	410.314	28	57.5770	309.566			
	6	20	79.8672	546.197	28	-76.2848	687.522	28	-79.7178	301.926			
SL-4	7	25	14.6671	345.291	28	-24.0051	313.420	28	-13.0415	315.982	23	9.56059	328.474
	8	26	-23.0413	396.335	28	-58.1999	347.146	28	-9.09277	497.509	23	27.3070	409.937
	9	26	-4.03435	234.755	29	-32.6604	406.303	28	18.3061	268.946	23	9.55750	31.3.640

Avg:	(1-9)	10.72	- 48.59	16.67
S.E.M.:		±35.62	±27.10	±24.75

$$(4-9) \quad \begin{array}{r} -19.12 \\ +36.16 \\ \hline \end{array}$$

$$(7-9) \quad + 10.0 = 5.82$$

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Dry Tissue Weight (Adjusted for Measured TBW)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	-11.41±2	25.14±04	28	-34.32±17	24.66±36						
	2	30	-72.31±6	34.30±64	28	-75.12±62	20.31±34						
	3	30	-24.41±63	37.53±10	28	-40.48±91	15.75±03						
SL-3	4	20	-30.22±3	26.94±50	28	-44.64±3	25.61±35						
	5	20	-52.15±9	16.92±10	28	-45.36±5	24.34±24						
	6	20	.192.77±4	13.22±20	28	-20.14±27	24.70±35						
SL-4	7	26	15.10±21	17.36±22	28	9.71±41	15.31±71						
	8	26	-7.72±98	21.46±62	28	-9.65±18	29.45±4						
	9	26	2.03±435	33.13±75	28	4.03±91	30.50±03						
AVG.			- 19.98		- 30.77		- 19.05						
SEM.	(1-9)		± 30.53		± 31.63		± 27.01						
												- 0.032	
												± 8.883	

APPENDIX C

CREW DATA: ENERGY DERIVED FROM CATABOLISM OF BODY TISSUE

TABLE C-1
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR CHANGES IN BODY PROTEIN MASS
 (gm/day) Δ PTIS*

FLT.	MAN	PERIODS			
		PREFLIGHT	INFILIGHT I	INFILIGHT II	INFILIGHT III
SL-2	1	21.19	- 2.43		
	2	22.19	- 9.88		
	3	17.94	- 7.06		
SL-3	4	19.25	- 14.00	2.01	
	5	21.44	- 13.81	4.11	
	6	25.38	- 14.94	5.24	
SL-4	7	20.81	- 13.25	- 3.17	- 6.75
	8	13.81	- 13.69	1.58	0.290
	9	17.25	- 9.00	- 1.74	9.69
AVG:		19.92	- 10.90	1.34	1.08
SEM:		± 3.33	± 4.17	± 3.26	± 8.25
		(4-9)	19.66		
			± 3.93		
		(7-9)	17.29		
			± 3.50		

* Δ PTIS = 6.25 NBAL = 6.25 ($N_{\text{diet.}} - N_{\text{urine}} - N_{\text{fecal}}$)

TABLE C-2
ENERGY BALANCE DATA ANALYSIS

CREW AVERAGES FOR CHANGES IN BODY FAT, ΔFTIS*
(gm/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	- 32.61	- 21.89		
	2	- 101.50	- 76.25		
	3	- 42.35	- 33.43		
SL-3	4	- 49.47	- 30.65	- 44.47	
	5	- 73.60	- 51.56	- 65.36	
	6	- 25.19	- 5.20	- 15.16	
SL-4	7	- 49.47	22.97	12.64	14.95
	8	- 21.54	4.03	- 10.67	- 9.74
	9	- 8.16	13.09	0.691	- 8.53
AVG:		- 39.90	- 19.88	- 20.39	- 1.11
(1-9)		± 31.39	± 32.01	± 29.19	± 13.92
(4-9)		- 30.45			
		± 26.42			
(7-9)		- 11.47			
		± 8.89			

* $\Delta FTIS = \Delta TIS - \Delta PPTIS$

TABLE C-3
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR ENERGY DERIVED FROM PROTEIN
METABOLISM, ΔE_{Pro} * (gm/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFILIGHT I	INFILIGHT II	INFILIGHT III
SL-2	1	- 91.46	10.49		
	2	- 95.77	42.64		
	3	- 77.43	30.47		
SL-3	4	- 83.08	60.42	- 8.67	
	5	- 92.54	59.60	-17.74	
	6	-109.54	64.48	-22.62	
SL-4	7	- 89.82	57.19	13.68	29.13
	8	- 59.60	59.09	- 6.82	- 1.25
	9	- 74.45	38.84	7.51	-41.82
AVG:		- 85.97	47.02	- 5.78	- 4.65
(1-9)		± 14.36	± 17.98	± 14.08	± 35.60
(4-9)		- 84.84			
		± 16.98			
(7-9)		- 74.62			
		± 15.11			

$$^* \Delta E_{Pro} = - \Delta PTIS * 4.316$$

"+" = energy derived from protein metabolism

"-" = energy stored in protein

TABLE C-4
ENERGY BALANCE DATA ANALYSIS

CREW AVERAGES FOR ΔE_{Fat} , ENERGY DERIVED FROM FAT
METABOLISM; ΔE_{Fat}^* (Kcal/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	308.52	207.10		
	2	960.29	721.40		
	3	400.67	316.28		
SL-3	4	468.04	289.98	420.73	
	5	696.33	487.81	618.37	
	6	238.32	49.20	143.43	
SL-4	7	44.56	- 217.32	- 119.59	- 141.44
	8	203.79	- 38.13	100.95	92.15
	9	77.20	- 123.84	- 6.54	80.70
AVG:		377.52	188.05	192.89	10.47
(1-9)		± 296.94	± 302.81	± 276.14	± 131.68
(4-9)		288.04			
		± 249.96			
(7-9)		108.52			
		± 84.11			

$$* \Delta E_{\text{Fat}} = - \Delta \text{FTIS} \times 9.461 \frac{\text{Kcal}}{\text{gm fat}}$$

+ Value = energy derived from fat catabolism

- Value = energy stored by fat anabolism

TABLE C-5
ENERGY BALANCE DATA ANALYSIS

CREW AVERAGES FOR TOTAL ENERGY DERIVED FROM TISSUE,
 ΔE_{Tis} METABOLISM (Kcal/day) *

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	217.06	217.59		
	2	864.52	764.04		
	3	323.24	346.75		
SL-3	4	384.96	350.40	412.06	
	5	603.79	547.41	600.63	
	6	128.78	113.68	120.81	
SL-4	7	- 45.26	- 160.13	- 105.91	- 112.31
	8	144.19	20.96	94.13	90.90
	9	2.75	- 85.00	0.97	38.88
AVG:		291.56	235.08	187.12	5.82
(1-9)		± 292.86	± 300.55	± 266.51	± 105.56
(4-9)		203.20			
		± 246.76			
(7-9)		33.89			
		± 98.49			

$$^* \Delta E_{Tis} = \Delta E_{Fat} + \Delta E_{Pro}$$

TABLE C-6
ENERGY BALANCE DATA ANALYSIS

CREW AVERAGES FOR NET ENERGY UTILIZED, E_u^*
(Kcal/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	
SL-2	1	2601	2478		
	2	3499	3087		
	3	2904	2606		
SL-3	4	2740	2600	2888	
	5	3056	2578	3049	
	6	3502	2986	3481	
SL-4	7	2828	2682	2788	2804
	8	2961	2779	2892	3029
	9	2928	2807	2937	3131
AVG:		3002	2734	3006	2988
(1-9)		± 312	± 201	± 248	± 167
(4-9)		3003			
		± 268			
(7-9)		2906			
		± 69			

$$^* E_u = E_{\text{Food Net}} + \Delta E_{\text{TIS}} \\ (\text{bomb})$$

TABLE C-7
ENERGY BALANCE DATA ANALYSIS

CREW AVERAGES FOR NET ENERGY UTILIZED/TOTAL BODY
POTASSIUM (Kcal/meg K⁺)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	
SL-2	1	0.7957	0.8266		
	2	0.8933	0.8393		
	3	0.7510	0.7387		
SL-3	4	0.8206	0.8320	0.9165	
	5	0.9980	0.8970	1.0066	
	6	0.7536	0.6891	0.7761	
SL-4	7	0.8761	0.8402	0.8916	0.9022
	8	0.8062	0.7954	0.8501	0.9047
	9	0.8102	0.8068	0.9297	0.9880
AVG:		0.8339	0.8072	0.8951	0.9316
(1-9)		± .0779	± .0612	± .0778	± .0488
SEM:					
(4-9)		0.8441			
		± .0849			
(7-9)		.8308			
		± .0393			

APPENDIX D
CREW DATA: ENERGY DERIVED
FROM FOOD AND EXCRETED IN FECES AND URINE

TABLE D-1
ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Calculate Food Calories
 (Diet) *

FLT.	MAN	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	2775.94	190.27	28	2753.61	229.89	28	2881.32	133.75
	2	30	3021.68	510.77	28	2890.57	264.37			
	3	30	3029.07	295.62	28	2743.62	247.73			
SL-3	4	20	2723.66	155.84	28	2667.59	327.98	28	2965.27	220.61
	5	20	2845.68	202.72	28	2462.17	520.50			
	6	20	3996.99	187.20	28	3413.74	807.74			
SL-4	7	26	3662.81	326.75	28	3071.84	267.19	28	3115.70	261.33
	8	26	2998.38	270.84	28	2939.68	211.31			
	9	26	3099.88	213.68	28	3092.25	333.07			
Avg.			3061.57			2892.79			3168.59	
SD			375.08			279.11			435.86	
										3191.96
										103.77

* Kcal = 4.182 CHO + 9.461 Fat + 4.316 Pro

FLT.	MAN	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	2								
SL-3	4	5								
SL-4	8	9								

Avg.
 SEM.

TABLE D-2
ENERGY BALANCE DATA ANALYSIS

CREW AVERAGES FOR Bomb Calorimetry Food Calories
(SMEDEP Data Base) (kcal/day)

FLT.	MAN	PERIODS											
		PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	Mean	SD		Mean	SD	N	Mean	SD	N	Mean	SD
SL-2	1	22	2632	128	27	2498	180						
	2	20	2901	388	25	2580	197						
	3	26	2881	285	26	2497	216						
SL-3	4	17	2561	155	28	2475	317	28	2697	148			
	5	15	2688	186	28	2288	494	28	2733	203			
	6	16	3716	174	28	3228	752	28	3747	212			
SL-4	7	26	3152	355	28	3165	276	28	3204	271	28	3237	313
	8	25	3088	291	28	3013	233	27	3041	245	28	3199	230
	9	26	3194	211	28	3182	342	28	3266	215	28	3408	270
AVG:			2979			2770			3115			3281	
SEM:			358			371			389			111	

TABLE D-3
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Food Calories, Calculated/ (Bomb x 0.96)

FLT.	MAN	PERIODS							
		PREFLIGHT		INFLIGHT I		INFLIGHT II		INFLIGHT III	
		N	Ratio	N	Ratio	N	Ratio	N	Ratio
SL-2	I	30/22	1.055	28/27	1.102				
	2	30/20	1.042	28/25	1.120				
	3	30/26	1.051	28/26	1.099				
SL-3	4	20/17	1.064	28/28	1.078	28/28	1.068		
	5	20/15	1.059	28/28	1.076	28/28	1.085		
	6	20/16	1.076	28/28	1.057	28/28	1.081		
SL-4	7	26/26	0.972	28/28	0.971	28/28	0.972	28/28	0.975
	8	26/25	0.971	28/28	0.976	28/27	0.970	28/28	0.973
	9	26/26	0.971	28/28	0.972	28/28	0.971	28/28	0.971
AVG:			1.029		1.050		1.025		0.973
SEM:			.044		.061		.059		.002

Note: Calculated Food Calories computed from

$$\text{Kcal Diet} = .96 \left[4.182(\text{CHO}) + 9.461 (\text{Fat}) + 4.316 (\text{PRO}) \right]$$

where factor 0.96 is estimated metabolic efficiency.

The ratio computed above is divided by 0.96 which effectively removes the efficiency factor from calculation (i. e., sets efficiency = 1.0)

TABLE D-4
ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Fecal Calories (Bomib)
(Kcal/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	142.31	182.76	28	105.96	120.57						
	2	30	157.83	147.81	28	107.14	155.91						
	3	30	143.27	217.15	28	104.31	81.47						
SL-3	4	20	109.75	130.00	28	104.11	120.84	28	114.24	147.78			
	5	20	124.81	69.67	28	114.31	112.26	28	144.31	136.95			
	6	20	170.56	101.85	28	165.30	103.41	28	151.31	128.92			
SL-4	7	26	159.51	53.48	28	158.60	103.39	28	158.00	124.48	28	167.26	153.63
	8	26	145.59	142.48	28	92.34	129.60	28	99.94	130.66	28	114.24	134.85
	9	26	129.27	144.71	28	117.90	149.83	28	161.62	210.71	28	159.19	150.35
Avg.			142.54		118.95		144.95				146.90		
SD			18.98		25.62		33.42				28.57		

Monthly Crew Averages for Urine Calories (Derived)*
(Kcal/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	105.52		28	132.10							
	2	30	108.79		28	149.64							
	3	30	156.95		28	134.00							
SL-3	4	20	95.72		28	121.35		28	107.24				
	5	20	111.20		28	143.10		28	141.13				
	6	20	171.57		28	190.40		28	195.13				
SL-4	7	26	119.45		28	164.26		28	152.22		28	153.77	
	8	26	125.39		28	162.54		27	142.85		28	146.54	
	9	26	139.92		28	172.26		28	167.79		28	157.29	
Avg.			126.06		152.18		151.06				152.53		
SD			25.31		22.05		29.36				5.48		

* Kcal = 8.6 Kcal/gm Urine N x Urine N

TABLE D-5

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Net Food Calories*
(Kcal/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	2384	2260		2323	2259							
	2	2634											
	3	2581											
SL-3	4	2355	2250		2031	2072							
	5	2452											
	6	3373											
SL-4	7	2873	2842		2758	2892							
	8	2817											
	9	2925											
AVG.		2710	2499					2819	2982				
SD		325	336					337	96				

* Food (bomb) - Fecal (bomb) - Urine (Est.)

Monthly Crew Averages for Net Food Calories*
(Kcal/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	2528.11	2515.55		2755.06	2633.79							
	2				2728.85	2505.31							
	3												
SL-3	4	2518.19	242.13		2609.67	2204.76							
	5												
	6												
SL-4	7	3654.86	3057.44		2783.85	2748.98							
	8				2727.40	2684.80							
	9					2830.69	2802.09						
AVG.		2792.96	2621.65										
SD		341.59	243.32										

*Food (calc) - Fecal (Bomb) - Urine (Est.)

AVG. 2792.96 2621.65 2892.58
SD 341.59 243.32 87.08

TABLE D-6

DIET FOOD CALORIES (BOMB)
Daily Crew Averages
(Kcal/day)

Man	Preflight			Inflight			Postflight		
	N	Mean	sd	N	Mean	sd	N	Mean	sd
1	22	2632	+ 128	27	2498	- 180			
2	20	2901	+ 388	25	2580	+ 197			
3	26	2881	+ 285	26	2497	+ 216			
4	17	2561	+ 155	56	2586	+ 250			
5	15	2688	+ 186	56	2511	+ 378			
6	16	3716	+ 174	56	3488	+ 553			
7	26	3152	+ 355	84	3202	+ 287			
8	25	3088	+ 291	83	3085	+ 237			
9	26	3194	+ 211	84	3285	+ 281			
							MEAN		
							SEM		

TABLE D-7

FECAL CALORIES (BOMB)
Daily Crew Averages
(Kcal/day)

Man	Preflight			Inflight			Postflight		
	N	Mean	sd	N	Mean	sd	N	Mean	sd
1	30	142.3	± 182.8	28	106.0	± 120.9	14	137.0	± 214.3
2	30	144.5	± 143.1	28	107.1	± 155.9	14	181.5	± 281.8
3	30	143.3	± 217.2	28	104.3	± 81.5	14	100.8	± 141.2
4	20	109.8	± 130.0	59	107.1	± 138.8	17	67.3	± 118.9
5	20	124.8	± 69.7	59	131.8	± 124.5	17	147.6	± 169.5
6	20	170.6	± 101.7	59	180.5	± 117.0	17	178.8	± 111.8
7	26	159.5	± 53.5	84	161.3	± 127.3	18	163.5	± 88.9
8	26	145.6	± 142.5	84	102.2	± 130.5	18	89.4	± 118.2
9	26	129.3	± 144.7	84	146.2	± 171.8	18	151.5	± 166.3
				MEAN			SEM		

APPENDIX E

**CREW DATA: NET METABOLIC BALANCES FOR NITROGEN,
POTASSIUM, CALCIUM, MAGNESIUM AND PHOSPHORUS**

TABLE E-1
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Nitrogen Balance (gm/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	3.39	-0.39		
	2	3.55	-1.58		
	3	2.87	-1.13		
SL-3	4	3.08	-2.24	0.32	
	5	3.43	-2.21	0.66	
	6	4.06	-2.39	0.84	
SL-4	7	3.33	-2.12	-0.51	-1.08
	8	2.21	-2.19	0.25	0.05
	9	2.76	-1.44	-0.28	1.55
AVG:		(1-9) 3.19	-1.74	0.21	0.17
SEM:		± 0.53	± 0.67	± 0.52	± 1.32
		(4-9) 3.14 ± 0.62			
		(7-9) 2.77 0.56			

TABLE E-2
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Potassium Balance (meq/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	19.27	6.24		
	2	20.80	3.18		
	3	16.75	4.20		
SL-3	4	14.66	0.79	9.35	
	5	16.17	0.92	13.17	
	6	20.20	5.16	21.77	
SL-4	7	12.29	1.84	0.83	2.45
	8	14.94	4.95	8.08	9.42
	9	17.48	8.95	2.33	14.10
AVG: (1-9)		16.95	4.03	9.26	8.66
SEM:		+ 2.80	+ 2.67	+ 7.65	+ 5.86
(4-9)		+ 15.96 - 2.70			
(7-9)		+ 14.90 - 2.60			

TABLE E-3
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Calcium Balance (mg/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	I	252.03	43.30		
	2	48.38	114.12		
	3	97.17	- 14.16		
SL-3	4	103.59	- 82.28	-116.49	
	5	72.26	-153.49	-283.76	
	6	186.71	- 77.26	- 49.67	
SL-4	7	-184.61	4.74	- 67.78	- 77.73
	8	-322.47	-12.53	-121.95	-195.03
	9	-185.84	11.90	-377.80	-230.98
AVG:		7.47	-18.41	-169.58	-167.91
(1-9)		± 193.07	± 78.00	± 131.32	± 80.14
(4-9)		$\begin{array}{l} - 55.06 \\ + 202.60 \end{array}$			
(7-9)		$\begin{array}{l} - 230.97 \\ \pm 79.24 \end{array}$			

TABLE E-4
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Phosphorus Balance (mg/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	262.80	- 74.87		
	2	103.65	-132.36		
	3	- 10.06	-256.00		
SL-3	4	247.17	- 37.45	48.70	
	5	186.27	55.84	96.47	
	6	373.58	65.53	177.96	
SL-4	7	199.12	- 10.04	14.7	-55.32
	8	77.06	45.73	65.11	38.84
	9	177.02	129.57	-18.85	75.42
AVG:		179.62	-23.78	64.04	19.65
(1-9)					
SEM:		+112.80	+118.00	+68.65	+67.45
(4-9)		210.00			
		± 97.62			
(7-9)		151.14			
		± 65.03			

TABLE E-5
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Magnesium Balance (mg/day)

FLT.	MAN	PERIODS			
		PREFLIGHT	INFLIGHT I	INFLIGHT II	INFLIGHT III
SL-2	1	80.24	30.83		
	2	46.11	39.97		
	3	45.61	13.32		
SL-3	4	31.54	4.85	45.07	
	5	19.89	17.32	28.17	
	6	35.69	12.46	58.11	
SL-4	7	-3.25	0.24	15.56	13.69
	8	-29.64	-0.58	17.79	3.86
	9	3.61	26.91	-15.18	27.05
AVG:		25.53	16.15	24.92	14.87
SEM:		\pm 32.29	\pm 14.06	\pm 25.55	\pm 11.64
		(4-9) 9.64			
		\pm 24.53			
		(7-9) -9.76			
		\pm 17.55			

APPENDIX F
CREW DATA: DIET, URINE AND FECAL DATA
FOR METABOLIC BALANCES

TABLE F-1
ENERGY BALANCE DATA ANALYSIS

FLT.	MAN	N	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
			MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	
SL-2	1	20	15.7367	1.12583	28	15.1117	1.52712							
	2	30	17.7060	1.399345	23	16.8046	1.16686							
	3	29	17.4759	2.05959	28	15.5536	1.34305							
SL-3	4	20	15.9250	*907793	23	15.6929	2.13493	28	14.0464	1.06405				
	5	20	17.9350	1.05305	23	15.6570	3.7435	23	12.5429	1.03433				
	6	20	17.9200	1.16055	28	21.6750	5.42182	28	25.6226	1.565413				
SL-4	7	26	18.0115	1.95353	23	17.7364	2.34386	28	13.0214	2.37253	28	13.7500	2.43335	
	8	26	18.0115	1.9507	28	17.6814	1.29146	27	17.7630	1.52471	28	13.1321	1.45934	
	9	26	20.2346	1.39526	28	19.5250	2.79187	23	20.5393	2.03173	28	21.2535	2.12352	
AVG.			18.7534			17.2115			19.2843			19.3765		
SEM.			3.0784			2.5505			3.8282			1.6530		

Monthly Crew Averages for Nitrogen Urine (gm/day)									
F.I.	MAN	N	MEAN	SD	N	MEAN	SD	N	MEAN
SL-2	1	30	12.3733	.313038	23	15.3571	.4.84695		
	2	30	12.6567	.25531	23	17.3964	.5.24620		
	3	29	13.2517	.94073	23	15.5736	.4.82642		
SL-3	4	20	11.1309	.879055	23	14.1107	.2.54299	23	12.4679
	5	20	12.9250	.59732	23	15.6429	.4.35365	23	16.4143
	6	20	19.3500	.202921	23	20.1393	.3.88638	23	22.6923
SL-4	7	26	13.3825	1.25262	23	19.0964	.2.52901	23	17.7060
	8	26	14.5312	1.83630	23	18.9000	.2.82699	27	16.6024
	9	26	16.2231	2.61053	23	20.0250	.3.52822	28	19.5102
Avg			14.1032						17.5655
SEM.			2.6354						3.4153

TABLE F-2

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for _____
Nitrogen Fecal
(gm/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	1.08333	1.20175	28	1.13255	1.33623						
	2	30	1.49000	1.46572	28	1.34235	1.45127						
	3	29	1.35172	1.79456	28	1.03214	.349360						
SL-3	4	20	1.03000	1.25539	28	1.22500	1.43235	28	1.25714	1.61522			
	5	20	1.64500	.92136	28	1.21429	1.17635	28	1.47143	1.3405			
	6	20	2.01500	.937115	28	1.32500	1.23876	28	2.16071	1.41595			
SL-4	7	26	2.10759	.731532	28	1.81756	1.15311	23	1.32857	1.37437	28	1.34643	1.75763
	8	26	1.22308	.948613	28	.914286	1.27038	27	.903704	1.22427	28	1.05000	1.22217
	9	26	1.25335	1.43701	28	1.04295	1.35931	28	1.40714	1.34068	28	1.41071	1.32925
Avg.			1.46552		1.26151			1.50478				1.46905	
SEM.			.38862		.36091			.44008				.45105	

Monthly Crew Averages for _____

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	2											
	2	3											
SL-3	4	5											
	6	6											
SL-4	7	8											
	9	9											

AVG.
SEM.

TABLE F-3

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Potassium Diet
(meq/day)

FLT.	MAN	PREFLIGHT				INFLIGHT I				INFLIGHT II				INFLIGHT III			
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	
SL-2	1	22	101.091	3.32246	27	102.143	.15597										
	2	20	103.550	14.1290	25	103.350	6.17613										
	3	26	97.34562	14.2893	26	93.3077	15.7296										
SL-3	4	17	97.1176	13.3469	28	92.3329	11.3732	29	91.0357	13.2651							
	5	15	94.6667	6.65117	28	77.7500	15.4035	23	39.3323	4.31771							
	6	16	146.062	9.90295	28	123.323	39.7323	29	144.143	11.3095							
SL-4	7	26	97.5385	7.04404	23	99.1736	6.02497	23	99.2599	5.54361	23	140.371	9.02231				
	8	25	94.1200	3.91918	23	33.5094	3.30662	27	33.0004	7.45273	23	30.2857	3.47155				
	9	26	108.115	13.7239	23	33.3296	11.1053	23	33.3214	5.67297	23	103.321	10.3604				
Avg.			103.29			96.32			101.69			98.06					
SEM.			17.34			13.26			21.34			6.99					

Monthly Crew Averages for Potassium Urine
(meq/day) *

FLT.	MAN	PREFLIGHT				INFLIGHT I				INFLIGHT II				INFLIGHT III			
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	
SL-2	1	22	71.5000	14.1244	27	95.5667	15.6156										
	2	20	71.7000	17.3886	25	89.1200	17.4268										
	3	26	70.4615	19.3177	26	85.0269	16.9255										
SL-3	4	17	75.6471	23.0026	23	74.2857	15.6628	28	72.1429	12.9635							
	5	15	55.1333	11.5794	23	66.1735	17.4739	23	64.0714	10.2340							
	6	16	105.250	18.3358	23	99.4286	15.7030	23	99.7143	16.1195							
SL-4	7	26	71.1154	15.7438	23	83.3214	17.2198	23	85.0000	9.93124	28	84.3929	10.6743				
	8	25	57.6800	15.3262	23	74.7143	14.9539	27	72.1431	13.9165	28	71.5357	11.2594				
	9	26	81.2692	32.5185	28	76.2143	17.7271	28	86.0357	16.7321	28	79.9286	12.6255				
Avg.			74.4174			81.5563			79.8521			78.6191					
SEM.			13.2660			9.8344			12.8612			6.5279					

* mg - 39.0 meq

TABLE F-4

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for _____ Potassium Fecal
(men/day)

FLT.	MAN	PREFLIGHT			INFIGHT I			INFIGHT II			INFIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	30	1.0	.2216	23	1.0	.2459	23	1.0	.2459	23	1.0	.2735
	2	30	1.1	.0457	23	3.0214	3.0214	23	1.2	.3117	23	1.2	.3117
	3	29	1.0	.1372	23	1.0	.0286	23	1.0	.0286	23	1.0	.0286
SL-3	4	30	6.3106	3.7023	23	7.3142	3.7630	23	7.3464	3.7630	23	7.3464	3.7630
	5	20	1.3	.3650	23	1.0	.5500	23	1.0	.5500	23	1.0	.5500
	6	20	3.0	.8050	23	1.8	.3066	23	1.2	.5350	23	1.2	.5350
SL-4	7	26	1.4	.1252	23	1.4	.0214	23	3.3714	1.4214	23	1.0	.3430
	8	26	11.4	.3622	23	8	.8357	23	12.5573	2.7407	23	12.3344	2.7407
	9	26	3.3622	11.1648	23	8	.7714	23	11.9439	1.0446	23	9.7954	1.0446
AVG.			11.92			10.74			12.58			12.58	
SEM.			3.90			3.59			5.42			5.42	
									10.79			10.79	
									2.13			2.13	

Monthly Crew Averages for

TABLE F-5

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Calcium Diet
(mg/day)

FLT.	MAN	N	PREFLIGHT			INFILIGHT I			INFILIGHT II			INFILIGHT III		
			MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	
SL-2	1	22	793.313	15.0131	27	313.370	31.6437							
	2	20	819.450	92.3725	25	834.340	52.3526							
	3	26	822.346	55.4182	26	811.615	79.5447							
SL-3	4	17	735.824	31.1736	23	711.964	92.1273	28	744.750	45.4065				
	5	15	781.067	37.7992	23	789.607	90.3219	28	836.750	68.3071				
	6	16	1277.12	30.7178	28	1165.07	303.356	23	1278.21	29.7002				
SL-4	7	26	853.462	173.042	28	881.714	175.260	28	894.500	192.314	28	906.679	196.355	
	8	25	879.040	134.718	26	895.393	143.328	27	921.556	135.244	28	952.036	157.737	
	9	26	897.385	139.351	26	928.393	178.337	28	963.721	140.332	28	1063.79	189.529	
Avg.			872.224		872.052			940.681		974.168				
SEM.			159.849		128.064			182.416		80.860				

Monthly Crew Averages for Calcium Urine
(meq/day)*

* mg = meq x 40.08/2

FLT.	MAN	N	PREFLIGHT			INFILIGHT I			INFILIGHT II			INFILIGHT III		
			MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	
SL-2	1	22	11.7793	1.76493	27	20.1630	4.51057							
	2	20	6.84500	1.31488	25	11.1040	2.11078							
	3	26	7.21923	2.11150	26	18.7115	4.04373							
SL-3	4	17	7.032235	1.08180	28	10.4954	2.59807	28	10.7357	2.09058				
	5	15	11.7267	1.75844	28	22.0607	7.48303	28	24.1571	3.50728				
	6	16	10.2000	1.01329	23	14.7821	3.17577	28	14.3393	1.38706				
SL-4	7	26	6.33077	1.59324	28	3.88571	2.05042	28	1.0.4429	1.75372	28	10.2750	1.35225	
	9	25	6.65200	1.39407	28	10.3393	2.6.0213	27	12.4556	2.11284	28	12.7429	2.21958	
	9	26	6.65769	1.86744	28	12.4090	3.07453	28	14.5571	2.39032	28	13.2571	1.34319	
Avg.			8.2838		14.3825			14.5313		12.0917				
SEM.			2.2749		4.7935			5.0632		1.5941				

TABLE F-6
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Calcium Feces
 (mg/day)

FLT.	MAN	PERIODS									
		PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III
		n	means	sd	n	means	sd	n	means	sd	means sd
SL-2	1	30	305.5	343.2	28	371.0	430.9		0		0
	2	30	623.9	750.1	28	498.2	727.0		0		0
	3	30	581.0	789.6	28	450.8	65.3		0		0
SL-3	4	20	490.3	624.3	28	583.9	689.5	28	646.1	825.6	0
	5	20	473.8	270.5	28	501.0	496.8	28	636.4	603.5	0
	6	20	886.0	417.1	28	947.1	596.2	28	1030.5	667.6	0
SL-4	7	26	910.2	347.4	28	698.9	458.0	28	753.0	555.4	28 778.5 703.9
	8	26	1068.2	863.69	28	701.2	955.0	28	793.9	1039.3	28 891.7 1058.0
	9	26	949.8	1168.3	28	668.0	854.2	28	1054.4	1375.8	28 1029.1 974.7
AVG:		698.7			602.2			819.1			899.8
(1-9)		261.6			173.3			183.5			125.5

TABLE F-7

ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Phosphorus Diet
(mg/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	22	1558.36	72.1292	27	1626.11	112.432	28	1457.64	27.6046	28	162.554	122.335
	2	20	1669.50	141.319	25	1660.96	122.335						
	3	26	1650.46	109.161	26	1660.42	188.351						
SL-3	4	17	1526.34	48.9302	23	1339.11	212.179	28	1814.39	108.973	28	173.923	256.629
	5	15	1662.07	74.2443	23	1598.36	256.629						
	6	16	2544.37	169.752	23	2246.95	600.795						
SL-4	7	26	1659.77	96.0726	23	1720.50	135.210	23	1711.36	132.406	28	162.946	125.656
	8	25	1710.60	145.719	23	1744.09	115.154						
	9	26	1757.27	113.057	23	1800.68	246.397						
Avg.		1748.82		1716.34		1861.48		Avg.	1800.94				
SEM.		306.46		230.43		384.43		SEM.	116.62				

Monthly Crew Averages for Phosphorus Urine
(mg/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	22	1000.36	113.135	27	1352.48	165.266	28	932.143	212.351	28	161.68	153.239
	2	20	1083.35	212.337	25	1353.72	224.089						
	3	26	1156.62	162.312	26	1524.88	191.521						
SL-3	4	17	904.471	113.473	29	989.357	278.208	28	1236.82	185.196	28	1462.14	245.546
	5	15	1126.60	120.315	28	1180.32	325.610						
	6	16	1415.19	197.700	28	1364.93	257.329						
SL-4	7	26	327.154	146.622	28	1189.64	1157.89	28	1132.85	155.796	28	162.56	106.353
	8	25	353.840	173.469	28	1210.57	189.390						
	9	26	1022.65	188.379	28	1272.21	279.514						
Avg.		1055.08		1271.45		1201.72		Avg.	1180.06				
SEM.		170.95		152.24		176.59		SEM.	31.13				

TABLE F-8
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Phosphorus Feces
 (mg/day)

FLT.	MAN	PERIODS											
		PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		n	means	sd	n	means	sd	n	means	sd	n	means	sd
SL-2	I	30	294.7	397.6	28	348.5	420.4		0			0	
	2	30	482.5	585.2	28	434.6	620.6		0			0	
	3	30	503.9	857.5	28	391.5	314.2		0			0	
SL-3	4	20	375.3	466.0	28	437.2	523.7	28	476.8	605.6		0	
	5	20	349.2	205.3	28	362.2	362.4	28	481.1	465.4		0	
	6	20	755.6	339.9	28	816.5	547.2	28	954.4	626.9		0	
SL-4	7	26	633.5	211.3	28	540.9	347.1	28	538.7	392.2	588.5	526.9	
	8	26	674.7	570.1	28	487.7	678.5	28	547.2	692.5	580.8	680.14	
	9	26	557.6	669.8	28	398.9	513.1	28	579.1	759.1	634.4	616.7	
AVG:			514.1			468.7			596.2			601.2	
SEM:			156.5			143.8			179.9			29.0	

TABLE F-9
ENERGY BALANCE DATA ANALYSIS

Monthly Crew Averages for Magnesium Diet
 (mg/day)

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	22	293.955	37.3930	27	309.815	44.3587	23	269.393	15.1446	28	301.429	34.5965
	2	20	300.050	33.795	25	300.150	35.3561						
SL-3	3	26	276.269	34.755	26	268.346	40.8933	23	315.607	42.7580	28	290.957	39.5770
	4	17	271.529	26.6250	28	253.357	43.776						
SL-4	5	15	298.200	26.9370	28	374.250	53.1404	23	496.250	39.4154	28	303.736	34.5965
	6	16	443.312	19.3397	28	422.429	115.453						
SL-4	7	26	309.192	34.4477	23	298.214	25.2797	23	282.111	68.5820	28	290.957	67.2583
	8	25	230.920	50.5692	23	282.536	72.670						
SL-4	9	26	330.346	48.3387	23	309.535	53.3233	23	329.071	37.6966	28	332.786	43.3772
AVG.			310.586		301.849			332.703			310.024		
SEM.			52.748		49.276			83.014			24.617		

Monthly Crew Averages for Magnesium Urine
 (meq/day)*

* mg = meq x 24.312/2

FLT.	MAN	PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		N	MEAN	SD	N	MEAN	SD	N	MEAN	SD	N	MEAN	SD
SL-2	1	22	10.2182	1.59004	27	11.2852	1.72776	23	1.03108	1.54624	28	1.44135	2.64886
	2	20	8.94500	1.28492	25	11.4960	1.03108						
SL-3	3	25	9.53845	2.23698	26	11.8731	1.54624	23	2.35563	2.44075	28	2.37500	1.92000
	4	17	.60000	.330662	28	3.35000	2.61320						
SL-4	5	15	9.56000	1.25060	23	16.9929	2.44075	23	2.73571	2.44135	28	2.21139	1.94023
	6	16	9.30625	1.33908	23	9.77857	2.44075						
SL-4	7	26	7.34231	1.42163	28	11.4000	1.63684	23	1.49521	1.43571	28	9.43571	1.92916
	8	25	6.34009	1.17189	28	10.4571	1.39256						
SL-4	9	26	9.35769	1.93167	23	11.9143	1.34865	23	12.7714	2.15404	28	10.4179	3.30107
AVG.			8.956		10.839			9.60290			9.87382		
SEM.			1.176		1.154			2.3188			0.4996		

TABLE F-10
 ENERGY BALANCE DATA ANALYSIS
 CREW AVERAGES FOR Magnesium Feces
 (mg/day)

FLT.	MAN	PERIODS											
		PREFLIGHT			INFLIGHT I			INFLIGHT II			INFLIGHT III		
		n	means	sd	n	means	sd	n	means	sd	n	means	sd
SL-2	I	30	89.5	114.6	28	141.8	157.9		0			0	
	2	30	145.2	151.1	28	120.4	173.5		0			0	
	3	30	113.5	156.7	28	108.7	87.0		0			0	
SL-3	4	20	147.6	179.7	28	147.0	176.9	28	154.6	198.7		0	
	5	20	162.1	89.3	28	123.3	125.0	28	160.1	152.6		0	
	6	20	287.2	133.5	28	291.1	181.5	28	318.1	208.9		0	
SL-4	7	26	206.9	71.2	28	159.4	98.0	28	165.8	127.0	28	169.0	153.1
	8	26	226.2	201.8	28	156.0	224.7	28	158.7	203.2	28	172.3	203.1
	9	26	207.4	231.2	28	137.8	177.3	28	199.0	245.2	28	184.1	173.9
AVG:		176.2			153.9			191.1			175.1		
SEM:		61.4			54.1			63.4			7.94		