

Intensity Transforms & Histogram Operations

EE551

Week 2 – Intensity Transforms & Histogram Operations

Ref. chapters 3 – Gonzalez & Woods

2023

In this section...

- Pixel-level operations
- Intensity adjustment (thresholding, contrast adjustment, histogram processing)

Pixel-Level Operations

- Addition and subtraction
- Multiplication and division
 - Watch for overflow or underflow!
- Use the correct function
- Logical operations useful for processing binary images (1 or 0)

Intensity Transformations

- There are a number of ways in which we can process the greylevels of the pixels in an image to achieve desired effects.
- The goal may be to get a processed image which is visually better, or it may be used as a step in a sequence of operations designed to extract information from an image.

Grey-scale transformations

• Input grey-scale $r \longrightarrow s$, the output grey-scale

$$s = T(r)$$

Log transformation – enhances contrast in darker regions.

$$s = clog(1+r)$$

Exponential

$$s = c[(1+\alpha)^r - 1]$$

Power law transformation

$$s = cr^{\gamma}$$

A value γ < 1 assigns more grey-scale values to the lower input values, thus increasing the contrast in the darker parts of the image. Conversely, a value γ > 1 increases the contrast of the brighter regions of the image

Power Law transformation

Power Law transformation

Original

gamma = 1/3

Contrast enhancement of the darker regions. Note the increased detail visible in the coat.

Image Histograms

- For a variety of reasons, images sometimes don't have sufficient contrast (e.g. poor quality image sensors, under/over exposure)
- The simplest way to ascertain this is by visual examination of the image and/or its histogram – this gives the relative population of all the grey levels in the image

Image Histograms

 We can consider the histogram as a discrete probability density function determining the likelihood that each grey level is occupied.

Thresholding

- Useful to produce a binary image to delineate objects in a scene (e.g. for segmentation)
- Histogram can be used to select a threshold for producing a binary image
- Automatic threshold
- Adaptive threshold
 - Based on "local statistics" in the region of the pixel of interest

Thresholding

Thresholding example – fixed threshold

original image

binary image with threshold=100

binary image with threshold=150 binary image with threshold=200

Half-toning

- In the previous slide, you may have noticed that the binary images obtained with different gray-level thresholds are not shaded properly –resulting in an artifact known as false contours
- False contours are a problem in printing e.g. a black and white newspaper print is a binary image, generated with black dots on a white background. False contours would not be acceptable for black and white printing
- One way to limit the impact of contouring is to add uniformly distributed white noise to the image prior to quantization. This is called half-toning

Half-toning

original image (with noise)

binary image with threshold=100 binary image with threshold=150 binary image with threshold=200

Contrast stretching

- A simple technique that effectively assigns all the permissible grey levels to the dominant region of the histogram.
- Makes the image use more of the dynamic range of the image.
- In simple terms, this involves scaling pixel values according to the actual and desired dynamic ranges
- Simple approach just looks at the max and min pixel values of the input image – but this is sensitive to outliers
- Better to look at some statistics of the input image

Contrast Stretching

Before Contrast Stretch

4000 - Jon 150 200 250 pixel value

After Contrast Stretch

Histogram Equalisation

- This is a more sophisticated technique which attempts to transform the distribution of input grey levels to an output distribution which conforms to a flat profile
- The probability of all grey levels being occupied is equal.
- This increases the global contrast.

Histogram Equalisation

after histogram equalization

Histogram Equalisation

- Although a powerful and useful technique, it is limited.
- Histogram equalisation takes no account of the nature of the image (a car, a desert scene,), or any specific "areas of interest" in the image
- Often it is local contrast that we want to improve
- This is where adaptive histogram equalization has advantages

Show adjustment curve

Show Iridix local adjustments

NUI Galway OÉ Gaillimh

Adaptive Histogram Equalisation

after histogram equalization

after adaptive histogram equalization

Adaptive Histogram Equalisation

Histogram Matching

- Given the original (input) image and its corresponding histogram, we seek to effect a transformation on the input intensity values such that the transformed (output) image has a desired histogram.
- Sometimes the desired histogram profile is taken from another ("reference") image, or other use case constraints e.g. biometric application where there is a known uneven illumination that must be compensated for

Histogram matching

Handling Colour Images

- We need to focus on the intensity (brightness) of the image, not its colour
- Transform an RGB image to an alternative colour space where we can isolate the intensity
- Transform from RGB to (e.g.) HSV space
- Perform histogram equalisation on the V dimension of the HSV image
- Transform back to the RGB colour space
- This topic will be covered in more detail during the Colour Image Processing section of this module

Questions?