## Arithmétique dans $\mathbb{Z}$

### 1 Divisibilité, division euclidienne

- **Exercice 1** Combien 15! admet-il de diviseurs?
- **Exercice 2** Trouver le reste de la division par 13 du nombre  $100^{1000}$ .
- **Exercice 3** Sachant que l'on a  $96842 = 256 \times 375 + 842$ , déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.
- **Exercice 4** Démontrer que le nombre  $7^n + 1$  est divisible par 8 si n est impair; dans le cas n pair, donner le reste de sa division par 8.
- **Exercice 5** Montrer que  $\forall n \in \mathbb{N}$ :

$$n(n+1)(n+2)(n+3)$$
 est divisible par 24,  
 $n(n+1)(n+2)(n+3)(n+4)$  est divisible par 120.

- **Exercice 6** Montrer que si n est un entier naturel somme de deux carrés d'entiers alors le reste de la division euclidienne de n par 4 n'est jamais égal à 3.
  - Exercice 7 1. Pour tout couple de nombres réels (x, y) montrer, par récurrence, que pour tout  $n \in \mathbb{N}^*$  on a la relation

$$(*)^n x^n - y^n = (x - y) \cdot \sum_{k=0}^{n-1} x^k y^{n-1-k}.$$

Indication : on pourra écrire de deux manières différentes la quantité  $y(x^n-y^n)+(x-y)x^n$ .

- $\nearrow$  2. Soit (a, b, p) des entiers éléments de  $\mathbb{N}$ . En utilisant la formule (\*), montrer que s'il existe un entier  $l \in \mathbb{N}$  tel que b = a + pl, alors pour tout  $n \in \mathbb{N}^*$ , il existe un entier  $m \in \mathbb{N}$  tel que  $b^n = a^n + pm$ .
  - 3. Soient a, b, p des entiers éléments de  $\mathbb{N}$ , en utilisant la question 2, montrer que si a-b est divisible par p,

$$\sum_{k=0}^{p-1} a^k b^{p-k-1}$$

est aussi divisible par p. En déduire, à l'aide de la question 2 et de la formule (\*), que si a-b est divisible par  $p^n$  i.e. il existe un entier  $l \in \mathbb{N}$  tel que  $a-b=l.p^n$ , alors  $a^p-b^p$  est divisible par  $p^{n+1}$ .

- Exercice 8 1. Montrer que le reste de la division euclidienne par 8 du carré de tout nombre impair est 1.
  - 2. Montrer de même que tout nombre pair vérifie  $x^2 = 0[8]$  ou  $x^2 = 4[8]$ .
  - 3. Soient a, b, c trois entiers impairs. Déterminer le reste modulo 8 de  $a^2 + b^2 + c^2$  et celui de 2(ab + bc + ca).
  - 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab + bc + ca non plus.

### pgcd, ppcm, algorithme d'Euclide 2

Exercice 9 Calculer le pgcd des nombres suivants :

- 1. 126, 230.
- 2. 390, 720, 450.
- 3. 180, 606, 750.

Exercice 10 Déterminer les couples d'entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Exercice 11 Calculer par l'algorithme d'Euclide : 18480 \(\Lambda\) 9828. En déduire une écriture de 84 comme combinaison linéaire de 18480 et 9828.

**Exercice 12** Notons  $a = 1 \ 111 \ 111 \ 111 \ et \ b = 123 \ 456 \ 789.$ 

- 1. Calculer le quotient et le reste de la division euclidienne de a par b.
- 2. Calculer  $p = \operatorname{pgcd}(a, b)$ .
- 3. Déterminer deux entiers relatifs u et v tels que au + bv = p.

Exercice 13 Résoudre dans  $\mathbb{Z}$ : 1665x + 1035y = 45.



#### 3 Nombres premiers, nombres premiers entre eux

Exercice 14 Soient a, b des entiers supérieurs ou égaux à 1. Montrer :

- 1.  $(2^a 1)|(2^{ab} 1)$ ;
- 2.  $(2^a 1) \wedge (2^b 1) = (2^{a \wedge b} 1)$ ;
- 3.  $(2^a 1 \text{ premier}) \Rightarrow (a \text{ premier})$ .

Exercice 15 Démontrer que, si a et b sont des entiers premiers entre eux, il en est de même des entiers a + b et ab.

**Exercice 16** Soit p un nombre premier.

1. Montrer que  $\forall i \in \mathbb{N}, 0 < i < p$  on a :

 $C_p^i$  est divisible par p.

2. Montrer par récurence que :

 $\forall p \text{ premier}, \forall a \in \mathbb{N}^*, \text{ on a } a^p - a \text{ est divisible par } p.$ 

Exercice 17 (Nombres de Fermat) 1. Montrer par récurrence que  $\forall n \in \mathbb{N}, \forall k \geq 1$  on a :

$$2^{2^{n+k}} - 1 = (2^{2^n} - 1) \times \prod_{i=0}^{k-1} (2^{2^{n+i}} + 1).$$

2. On pose  $F_n = 2^{2^n} + 1$ . Montrer que pour  $m \neq n$ ,  $F_n$  et  $F_m$  sont premiers entre eux.

2

3. En déduire qu'il y a une infinité de nombres premiers.

**Exercice 18** Soit X l'ensemble des nombres premiers de la forme 4k + 3 avec  $k \in \mathbb{N}$ .

- 1. Montrer que X est non vide.
- 2. Montrer que le produit de nombres de la forme 4k + 1 est encore de cette forme.
- 3. On suppose que X est fini et on l'écrit alors  $X = \{p_1, \ldots, p_n\}$ . Soit  $a = 4p_1p_2 \ldots p_n - 1$ . Montrer par l'absurde que a admet un diviseur premier de la forme 4k + 3.
- 4. Montrer que ceci est impossible et donc que X est infini.

**Exercice 19** Soit  $a \in \mathbb{N}$  tel que  $a^n + 1$  soit premier, montrer que  $\exists k \in \mathbb{N}, n = 2^k$ . Que penser de la conjecture :  $\forall n \in \mathbb{N}, 2^{2^n} + 1$  est premier?

## Arithmétique dans $\mathbb{Z}$

**Indication 1** Il ne faut surtout pas chercher à calculer  $15! = 1 \times 2 \times 3 \times 4 \times \cdots \times 15$ , mais profiter du fait qu'il est déjà "presque" factorisé.

**Indication 2** Il faut travailler modulo 13, tout d'abord réduire 100 modulo 13. Se souvenir que si  $a \equiv b[13]$  alors  $a^k \equiv b^k[13]$ . Enfin calculer ce que cela donne pour les exposants  $k = 1, 2, 3, \ldots$  en essayant de trouver une règle générale.

Indication 3 Attention le reste d'une division euclidienne est plus petit que le quotient!

**Indication 4** Utiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo 8. Ici vous pouvez commencer par calculer  $7^n[8]$ .

**Indication 8** 1. Écrire n = 2p + 1.

- 2. Écrire n = 2p et discuter selon que p est pair ou impair.
- 3. Utiliser la première question.
- 4. Par l'absurde supposer que cela s'écrive comme un carré, par exemple  $a^2 + b^2 + c^2 = n^2$  puis discuter selon que n est pair ou impair.

Indication 14 Pour 1. et 3. utiliser l'égalité

$$x^{b} - 1 = (x - 1)(x^{b-1} + \dots + x + 1).$$

Indication 15 Raisonner par l'absurde et utiliser le théorème de Gauss.

**Indication 16** 1. Écrire

$$C_p^i = \frac{p(p-1)(p-2)\dots(p-(i+1))}{i!}$$

et utiliser le théorème de Gauss.

2. Raisonner avec les modulos, c'est-à-dire prouver  $a^p \equiv a[p]$ .

**Indication 17** 1. Il faut être très soigneux : n est fixé une fois pour toute, la récurrence se fait sur  $k \in \mathbb{N}$ .

- 2. Utiliser la question précédente avec m = n + k.
- 3. Par l'absurde, supposer qu'il y a seulement N nombres premiers, considérer N+1 nombres du type  $F_i$ . Appliquer le "principe du tiroir" : si vous avez N+1 chaussettes rangées dans N tiroirs alors il existe (au moins) un tiroir contenant (plus de) deux chaussettes.

**Indication 19** Raisonner par contraposition (ou par l'absurde) : supposer que n n'est pas de la forme  $2^k$ , alors n admet un facteur irréductible p > 2. Utiliser aussi  $x^p + 1 = (x+1)(1-x+x^2-x^3+\ldots+x^{p-1})$  avec x bien choisi.

# Arithmétique dans $\mathbb{Z}$

**Correction 1** Écrivons la décomposition de 15! = 1.2.3.4...15 en facteurs premiers.  $15! = 2^{11}.3^6.5^3.7^2.11.13$ . Un diviseur de 15! s'écrit  $d = 2^{\alpha}.3^{\beta}.5^{\gamma}.7^{\delta}.11^{\varepsilon}.13^{\eta}$  avec  $0 \le \alpha \le 11$ ,  $0 \le \beta \le 6$ ,  $0 \le \gamma \le 3$ ,  $0 \le \delta \le 2$ ,  $0 \le \varepsilon \le 1$ ,  $0 \le \eta \le 1$ . De plus tout nombre d de cette forme est un diviseur de 15!. Le nombre de diviseurs est donc (11+1)(6+1)(3+1)(2+1)(1+1)(1+1) = 4032.

**Correction 2** Il sagit de calculer  $100^{1000}$  modulo 13. Tout d'abord  $100 \equiv 9[13]$  donc  $100^{1000} \equiv 9^{1000}[13]$ . Or  $9^2 \equiv 81 \equiv 3[13]$ ,  $9^3 \equiv 9^2.9 \equiv 3.9 \equiv 1[13]$ , Or  $9^4 \equiv 9^3.9 \equiv 9[13]$ ,  $9^5 \equiv 9^4.9 \equiv 9.9 \equiv 3[13]$ . Donc  $100^{1000} \equiv 9^{1000} \equiv 9^{3.333+1} \equiv (9^3)^{333}.9 \equiv 1^{333}.9 \equiv 9[13]$ .

**Correction 3** La seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les divisions euclidiennes s'écrivent :  $96842 = 256 \times 378 + 74$  et  $96842 = 258 \times 375 + 92$ .

Correction 4 Raisonnons modulo 8:

$$7 \equiv -1 \pmod{8}$$
.

Donc

$$7^n + 1 \equiv (-1)^n + 1 \pmod{8}$$
.

Le reste de la division euclidienne de  $7^n + 1$  par 8 est donc  $(-1)^n + 1$  donc Si n est impair alors  $7^n + 1$  est divisible par 8. Et si n est pair  $7^n + 1$  n'est pas divisible par 8.

**Correction 5** Il suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un diviseur de 2, un diviseur de 3, un diviseur de 4 (tous distincts). Donc le produit de 4 nombres consécutifs est divisible par  $2 \times 3 \times 4 = 24$ .

**Correction 6** Ecrire  $n = p^2 + q^2$  et étudier le reste de la division euclidienne de n par 4 en distinguant les différents cas de parité de p et q.

**Correction 7** Pour 2. Si p divise b-a alors p divise aussi  $b^n-a^n$  d'après la formule (\*). Pour 3. On utilise le résultat de la question précédente avec n=p-k-1 pour écrire  $b^{p-k-1}$  en fonction de  $a^{p-k-1}$  modulo p dans

$$\sum_{k=0}^{p-1} a^k b^{p-k-1}.$$

On peut alors conclure.

**Correction 8** 1. Soit n un nombre impair, alors il s'écrit n=2p+1 avec  $p \in \mathbb{N}$ . Maintenant  $n^2=(2p+1)^2=4p^2+4p+1=4p(p+1)+1$ . Donc  $n^2\equiv 1[8]$ .

- 2. Si n est pair alors il existe  $p \in \mathbb{N}$  tel que n = 2p. Et  $n^2 = 4p^2$ . Si p est pair alors  $p^2$  est pair et donc  $n^2 = 4p^2$  est divisible par 8, donc  $n^2 \equiv 0$ [8]. Si p est impair alors  $p^2$  est impair et donc  $n^2 = 4p^2$  est divisible par 4 mais pas par 8, donc  $n^2 \equiv 4$ [8].
- 3. Comme a est impair alors d'après la première question  $a^2 \equiv 1[8]$ , et de même  $c^2 \equiv 1[8]$ ,  $c^2 \equiv 1[8]$ . Donc  $a^2 + b^2 + c^2 \equiv 1 + 1 + 1 \equiv 3[8]$ . Pour l'autre reste, écrivons a = 2p + 1 et b = 2q + 1, c = 2r + 1, alors 2ab = 2(2p + 1)(2q + 1) = 8pq + 4(p + q) + 2. Alors 2(ab + bc + ca) = 8pq + 8qr + 8pr + 8(p + q + r) + 6, donc  $2(ab + bc + ca) \equiv 6[8]$ .
- 4. Montrons par l'absurde que le nombre  $a^2 + b^2 + c^2$  n'est pas le carré d'un nombre entier. Supposons qu'il existe  $n \in \mathbb{N}$  tel que  $a^2 + b^2 + c^2 = n^2$ . Nous savons que  $a^2 + b^2 + c^2 \equiv 3[8]$ . Si n est impair alors  $n^2 \equiv 1[8]$  et si n est pair alors  $n^2 \equiv 0[8]$  ou  $n^2 \equiv 4[8]$ . Dans tous les cas  $n^2$  n'est pas congru à 3 modulo 8. Donc il y a une contradiction. La conclusion est que l'hypothèse de départ est fausse donc  $a^2 + b^2 + c^2$  n'est pas un carré. Le même type de raisonnement est valide pour 2(ab + bc + ca).

Pour ab+bc+ca il faut rafiner un peut l'argument. Si  $ab+bc+ca=n^2$  alors selon la parité de n nous avons  $2(ab+bc+ca)\equiv 2n^2\equiv 2[8]$  ou à 0[8]. Nous remarquons enfin que ab, bc, ca sont trois nombres impairs, et donc leur somme est impaire. Par conséquent n est impair (sinon  $n^2$  serait pair), donc  $ab+bc+ca=n^2\equiv 1[8]$ . Ce qui aboutit à une contradiction. Nous avons montrer que ab+bc+ca n'est pas un carré.

Correction 9 Il s'agit ici d'utiliser la décomposition des nombres en facteurs premiers.

- 1.  $126 = 2.3^2.7$  et 230 = 2.5.23 donc le pgcd de 126 et 230 est 2.
- 2. 390 = 2.3.5.13,  $720 = 2^4.3^2.5$ ,  $450 = 2.3^2.5^2$  et donc le pgcd de ces trois nombres est 2.3.5 = 30.
- 3.  $\operatorname{pgcd}(180, 606, 750) = 6$ .

**Correction 10** Soient a, b deux entiers de pgcd 18 et de somme 360. Soit a', b' tel que a = 18a' et b = 18b'. Alors a' et b' sont premiers entre eux, et leur somme est 360/18 = 20. Nous pouvons facilement énumérer tous les couples d'entiers naturels (a', b')  $(a' \le b')$  qui vérifient cette condition, ce sont les couples :

$$(1, 20), (3, 17), (6, 14), (7, 13), (8, 12), (9, 11).$$

Pour obtenir les couples (a,b) recherchés  $(a\leqslant b)$ , il suffit de multiplier les couples précédents par 18 :

$$(18, 360), (54, 306), (108, 252), (126, 234), (144, 216), (162, 198).$$

**Correction 11** 1. pgcd(18480, 9828) = 84;

2.  $25 \times 18480 + (-47) \times 9828 = 84$ .

**Correction 12** 1. a = 9b + 10.

- 2. Calculons le pgcd par l'algorithme d'Euclide.  $a=9b+10,\ b=12345678\times 10+9,\ 10=1\times 9+1.$  Donc le pgcd vaut 1;
- 3. Nous reprenons les équations précédentes en partant de la fin : 1=10-9, puis nous remplaçons 9 grâce à la deuxième équation de l'algorithme d'Euclide :  $1=10-(b-12345678\times 10)=-b+1234679\times 10$ . Maintenant nous remplaçons 10 grâce à la première équation : 1=-b+12345679(a-9b)=1234579a-111111112b.

Correction 13 En divisant par 45 nous obtenons l'équation équivalente : 37x + 83y = 1. Comme le pgcd de 37 et 83 est 1, donc d'après le théorème de Bézout cette équation a des solutions. Par exemple une solution particulière est  $(x_0, y_0) = (9, -4)$ . Les solutions sont exactement les couples  $(x, y) = (x_0 - 83k, y_0 + 37k)$ , pour  $k \in \mathbb{Z}$ .

**Correction 14** Pour 3. Montrons plutôt la contraposée. Soit p = ab un entier avec  $a, b \in \mathbb{N}^*$ . Montrons que  $2^p - 1$  n'est pas premier.

Nous savons que

$$x^{b} - 1 = (x - 1)(x^{b-1} + \dots + x + 1),$$

pour  $x = 2^a$  nous obtenons :

$$2^{p} - 1 = 2^{ab} - 1 = (2^{a})^{b} - 1 = (2^{a} - 1)(2^{a(b-1)} + \dots + 2^{a} + 1).$$

De plus  $2^a - 1$  n'est ni 1 ni  $2^{ab}$  donc nous avons décomposer  $2^p - 1$  en produit d'entier différents de 1. Donc  $2^p - 1$  n'est pas premier.

Par contraposition nous obtenons que si  $2^p - 1$  est premier alors p est premier.

Correction 15 Soit a et b des entiers premiers entre eux. Raisonnons par l'absurde et supposons que ab et a+b ne sont pas premiers entre eux. Il existe alors  $\delta$  un nombre premier divisant ab et a+b. L'entier  $\delta$  ne peut diviser a et b car a et b sont premiers entre eux. Par exemple supposons que  $\delta$  ne divise pas b cela implique que  $\delta$  et b sont premiers entre eux.

D'après le théorème de Gauss, comme  $\delta$  divise ab et  $\delta$  premier avec b alors  $\delta$  divise a.

Maintenant  $\delta$  divise a et divise a+b alors  $\delta$  divise a+b-a=b.  $\delta$  est un facteur premier de a et de b ce qui est absurde.

Correction 16 1. Étant donné 0 < i < p, nous avons

$$C_p^i = \frac{p!}{i!(p-i)!} = \frac{p(p-1)(p-2)\dots(p-(i+1))}{i!}$$

Comme  $C_p^i$  est un entier alors i! divise  $p(p-1)\dots(p-(i+1))$ . Mais i! et p sont premiers entre eux (en utilisant l'hypothèse 0 < i < p). Donc d'après le théorème de Gauss : i! divise  $(p-1)\dots(p-(i+1))$ , autrement dit il existe  $k \in \mathbb{Z}$  tel que  $ki! = (p-1)\dots(p-(i+1))$ . Maintenant nous avons  $C_p^i = pk$  donc p divise  $C_p^i$ .

2. Il s'agit de montrer le petit théorème de Fermat : pour p premier et  $a \in \mathbb{N}^*$ , alors  $a^p \equiv a[p]$ . Fixons p. Soit l'assertion

$$(\mathcal{H}_a)$$
  $a^p \equiv a[p].$ 

Pour a=1 cette assertion est vraie! Étant donné  $a\leqslant 1$  supposons que  $\mathcal{H}_a$  soit vraie. Alors

$$(a+1)^p = \sum_{i=0}^p C_p^i a^i.$$

Mais d'après la question précédente pour 0 < i < p, p divise  $C_p^i$ . En termes de modulo nous obtenons :

$$(a+1)^p \equiv C_p^0 a^0 + C_p^p a^p \equiv 1 + a^p[p].$$

Par l'hypothèse de récurrence nous savons que  $a^p \equiv a[p]$ , donc

$$(a+1)^p \equiv a+1[p].$$

Nous venons de prouver que  $\mathcal{H}_{a+1}$  est vraie. Par le principe de récurrence alors quelque soit  $a \in \mathbb{N}^*$  nous avons :

$$a^p \equiv a[p].$$

Correction 17 1. Fixons n et montrons la récurrence sur  $k \in \mathbb{N}$ . La formule est vraie pour k = 0. Supposons la formule vraie au rang k. Alors

$$(2^{2^{n}} - 1) \times \prod_{i=0}^{k} (2^{2^{n+i}} + 1) = (2^{2^{n}} - 1) \times \prod_{i=0}^{k-1} (2^{2^{n+i}} + 1) \times (2^{2^{n+k}} + 1)$$
$$= (2^{2^{n+k}} - 1) \times (2^{2^{n+k}} + 1) = (2^{2^{n+k}})^{2} - 1 = 2^{2^{n+k+1}} - 1.$$

Nous avons utiliser l'hypothèse de récurrence dans ces égalités. Nous avons ainsi montrer la formule au rang k + 1. Et donc par le principe de récurrence elle est vraie.

2. Écrivons m = n + k, alors l'égalité précédente devient :

$$F_m + 2 = (2^{2^n} - 1) \times \prod_{i=n}^{m-1} F_i.$$

Soit encore:

$$F_n \times (2^{2^n} - 1) \times \prod_{i=n+1}^{m-1} F_i - F_m = 2.$$

Si d est un diviseur de  $F_n$  et  $F_m$  alors d divise 2 (ou alors on peut utiliser le théorème de Bézout). En conséquent d = 1 ou d = 2. Mais  $F_n$  est impair donc d = 1. Nous avons montrer que tous diviseurs de  $F_n$  et  $F_m$  est 1, cela signifie que  $F_n$  et  $F_m$  sont premiers entre eux.

3. Supposons qu'il y a un nombre fini de nombres premiers. Nous les notons alors  $\{p_1, \ldots, p_N\}$ . Prenons alors N+1 nombres de la famille  $F_i$ , par exemple  $\{F_1, \ldots, F_{N+1}\}$ . Chaque  $F_i$ ,  $i=1,\ldots,N+1$  est divisible par (au moins) un facteur premier  $p_j$ ,  $j=1,\ldots,N$ . Nous avons N+1 nombres  $F_i$  et seulement N facteurs premiers  $p_j$ . Donc par le principe des tiroirs il existe deux nombres distincts  $F_k$  et  $F_{k'}$  (avec  $1 \leq k, k' \leq N+1$ ) qui ont un facteur premier en commun. En conséquent  $F_k$  et  $F_{k'}$  ne sont pas premiers entre eux. Ce qui contredit la question précédente. Il existe donc une infinité de nombres premiers.

**Correction 18** 1. X est non vide car, par exemple pour k = 2, 4k + 3 = 11 est premier.

- 2.  $(4k+1)(4\ell+1) = 16k\ell+4(k+\ell)+1 = 4(4k\ell+k+\ell)+1$ . Si l'on note l'entier  $k' = 4k\ell+k+\ell$  alors  $(4k+1)(4\ell+1) = 4k'+1$ , ce qui est bien de la forme voulue.
- 3. Remarquons que 2 est le seul nombre premier pair, les autres sont de la forme 4k + 1 ou 4k + 3. Ici a n'est pas divisible par 2, supposons –par l'absurde– que a n'a pas de diviseur de la forme 4k + 3, alors tous les diviseurs de a sont de la forme 4k + 1. C'est-à-dire que a s'écrit comme produit de nombre de la forme 4k + 1, et par la question précédente a peut s'écrire a = 4k' + 1. Donc  $a \equiv 1[4]$ . Mais comme  $a = 4p_1p_2 \dots p_n 1$ ,  $a \equiv -1 \equiv 3[4]$ . Nous obtenons une contradiction. Donc a admet une diviseur premier a de la forme a de
- 4. Dans l'ensemble  $X = \{p_1, \ldots, p_n\}$  il y a tous les nombres premiers de la formes 4k + 3. Le nombre p est premier et s'écrit  $p = 4\ell + 3$  donc p est un élément de X, donc il existe  $i \in \{1, \ldots, n\}$  tel que  $p = p_i$ . Raisonnons modulo  $p = p_i : a \equiv 0[p]$  car p divise a. D'autre part  $a = 4p_1 \ldots p_n 1$  donc  $a \equiv -1[p]$ . (car  $p_i$  divise  $p_1 \ldots p_n$ ). Nous obtenons une contradiction donc X est infini : il existe une infinité de nombre premier de la forme 4k + 3. Petite remarque, tous les nombres de la forme 4k + 3 ne sont pas des nombres premiers, par exemple pour k = 3, 4k + 3 = 15 n'est pas premier.

**Correction 19** 1. Supposons que  $a^n+1$  est premier. Nous allons montrer la contraposée. Supposons que n n'est pas de la forme  $2^k$ , c'est-à-dire que  $n=p\times q$  avec p un nombre premier >2 et  $q\in\mathbb{N}$ . Nous utilisons la formule

$$x^{p} + 1 = (x+1)(1-x+x^{2}-x^{3}+\ldots+x^{p-1})$$

avec  $x = a^q$ :

$$a^{n} + 1 = a^{pq} + 1 = (a^{q})^{p} + 1 = (a^{q} + 1)(1 - a^{q} + (a^{q})^{2} \dots + (a^{q})^{p-1}).$$

Ces deux derniers facteurs sont > 1. Et donc  $a^n + 1$  n'est pas premier. Par contraposition si  $a^n + 1$  est premier alor  $n = 2^k$ .

2. Cette conjecture est fausse, mais pas facile à vérifier sans une bonne calculette! En effet pour n=5 nous obtenons :

$$2^{2^5} + 1 = 4294967297 = 641 \times 6700417.$$