# LCE0216 Introdução à Bioestatística Florestal 8. Distribuições amostrais

Profa. Dra. Clarice Garcia Borges Demétrio Monitor: Eduardo E. R. Junior

Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Piracicaba, 15 de maio de 2018

- Estimadores são funções de variáveis aleatórias, portanto também são variáveis aleatórias;
- Sendo assim, estimadores também são variáveis aleatórias que seguem algum modelo de probabilidades;
- Nesse tópico, serão apresentadas as distribuições de alguns dos principais estimadores.

**Exemplo**: Seja uma população composta por quatro árvores dada na tabela a seguir:

| Árvore | Diâmetro (cm) |
|--------|---------------|
| A      | 8,0           |
| В      | 20,0          |
| C      | 24,0          |
| D      | 27,0          |

A proporção de árvores com diâmetro inferior a 20cm,

$$\pi = \frac{1}{4} = 0,25.$$

O diâmetro médio ( $\mu$ ):

$$\mu = \frac{\sum_{i=1}^{4} x_i}{4} = 19,75 \text{ cm}.$$

**Exemplo**: Seja uma população composta por quatro árvores dada na tabela a seguir:

| Árvore | Diâmetro (cm) |
|--------|---------------|
| A      | 8,0           |
| В      | 20,0          |
| C      | 24,0          |
| D      | 27,0          |

A variância ( $\sigma^2$ ):

$$\sigma^2 = \frac{\sum_{i=1}^4 (x_i - \mu)^2}{4} = \frac{208,75}{4} = 52,1875 \text{ cm}^2.$$

O desvio padrão ( $\sigma$ ):

$$\sigma = \sqrt{\sigma^2} = \sqrt{52,1875} = 7,2241 \text{ cm}.$$

| Amostra | Elementos | $\hat{\pi}$ | $\hat{\mu}$ | $\hat{\sigma^2}$ |
|---------|-----------|-------------|-------------|------------------|
| 1       | A,B       | 0,50        | 14,0        | 72,0             |
| 2       | A,C       | 0,50        | 16,0        | 128,0            |
| 3       | A,D       | 0,50        | 17,5        | 180,5            |
| 4       | B,C       | 0,00        | 22,0        | 8,0              |
| 5       | B,D       | 0,00        | 23,5        | 24,5             |
| 6       | C,D       | 0,00        | 25,5        | 4,5              |
| 7       | B,A       | 0,50        | 14,0        | 72,0             |
| 8       | C,A       | 0,50        | 16,0        | 128,5            |
| 9       | D,A       | 0,50        | 17,5        | 180,0            |
| 10      | C,B       | 0,00        | 22,0        | 8,0              |
| 11      | D,B       | 0,00        | 23,5        | 24,5             |
| 12      | D,C       | 0,00        | 25,5        | 4,5              |
| 13      | A,A       | 1,00        | 8,0         | 0,0              |
| 14      | B,B       | 0,00        | 20,0        | 0,0              |
| 15      | C,C       | 0,00        | 24,0        | 0,0              |
| 16      | D,D       | 0,00        | 27,0        | 0,0              |

#### Distribuição amostral do estimador *P*

Vamos supor que uma árvore com menos de 20 cm de diâmetro não seja interessante para o mercado.

- Existe apenas uma árvore na população com determinada característica  $\Rightarrow \pi = 1/4 = 0,25$ .
- Estimar tal proporção observando árvores dessa população



Observar uma amostra de tamanho dois, com reposição



Estimar  $\pi$  por meio da estatística

$$P = \frac{\text{número de casos favoráveis (sucessos)}}{\text{tamanho da amostra}}$$

#### Distribuição amostral do estimador P

#### Perguntas:

- 1 Quais proporções amostrais podem ser obtidas?
- 2 Qual a probabilidade associada a cada uma?
- 3 Qual a forma da distribuição das proporções amostrais?
- Qual a média da distribuição amostral dessas proporções?
- 5 Qual a variância da distribuição amostral dessas proporções?

Distribuição amostral da proporção:

| $\overline{y_i}$  | 0           | 1           | 2           |
|-------------------|-------------|-------------|-------------|
| $\hat{p} = y_i/2$ | 0           | 0,5         | 1           |
| $P(P = \hat{p})$  | 9/16=0,5625 | 6/16=0,3750 | 1/16=0,0625 |



#### Distribuição amostral da proporção:

| $y_i$             | 0           | 1           | 2           |
|-------------------|-------------|-------------|-------------|
| $\hat{p} = y_i/2$ | 0           | 0,5         | 1           |
| $P(P = \hat{p})$  | 9/16=0,5625 | 6/16=0,3750 | 1/16=0,0625 |

Média:

$$\mu_P = 0 \times 0,5625 + 0,50 \times 0,3750 + 1 \times 0,0625 = 0,25 = \pi$$

Variância:

$$\sigma_P^2 = (0 - 0.25)^2 \times 0.5625 + (0.50 - 0.25)^2 \times 0.3750 + + (1 - 0.25)^2 \times 0.0625$$
$$= 0.09375 = \pi (1 - \pi)/n$$

Y: número de árvores com diâmetro inferior a 20 cm

Se 
$$Y \sim Bin(n, \pi)$$
.

Então,

$$\mu_{Y} = E(Y) = n\pi$$
 e  $\sigma_{Y}^{2} = Var(Y) = n\pi(1 - \pi)$ .

Seja P = proporção das árvores com diâmetro inferior a 20 cm. A distribuição amostral de P poderá ser aproximada por uma distribuição normal com parâmetros:

$$\mu_P = \mathrm{E}(P) = \frac{\mu_Y}{n} = \pi$$
 e  $\sigma_P^2 = \mathrm{Var}(P) = \frac{\sigma_y}{n} = \frac{\pi(1-\pi)}{n}$ .

$$P \sim N(\mu_P, \sigma_P^2) \implies Z = \frac{p - \mu_P}{\sigma_P} \sim N(0, 1)$$

**Observação**: Quando são utilizadas amostras sem reposição, deve-se fazer uma correção na variância.

**Exemplo**: Uma proporção de 37% dos visitantes de um parque favorecem a cobrança de taxas de entrada. Uma amostra aleatória de 200 visitantes foi tomada.

- (a) Qual é a probabilidade que na amostra de 200 visitantes pelo menos 40% favoreçam a cobrança de taxas?
- (b) Qual é a probabilidade que na amostra de 200 visitantes, a proporção dos que favorecem a cobrança de taxas fique entre 35% e 39%?
- (c) Uma nova amostra de 10 visitantes foi tomada. Qual a probabilidade de que pelo menos 50% dos visitantes na amostra favoreçam a cobrança de taxas? É válido utilizar o mesmo método utilizado anteriormente? Qual método deveria ser utilizado nesse caso?

#### Estimador $\bar{X}$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Sem dúvidas, o estimador mais utilizado na estatística aplicada.

Considerando-se o exemplo de diâmetro das árvores. Agora o interesse é estimar o diâmetro médio  $(\mu)$ .

| Amostra | Elementos | π̂   | û    | $\hat{\sigma}^2$ |
|---------|-----------|------|------|------------------|
| 1       |           |      |      |                  |
| -       | A,B       | 0,50 | 14,0 | 72,0             |
| 2       | A,C       | 0,50 | 16,0 | 128,0            |
| 3       | A,D       | 0,50 | 17,5 | 180,5            |
| 4       | B,C       | 0,00 | 22,0 | 8,0              |
| 5       | B,D       | 0,00 | 23,5 | 24,5             |
| 6       | C,D       | 0,00 | 25,5 | 4,5              |
| 7       | B,A       | 0,50 | 14,0 | 72,0             |
| 8       | C,A       | 0,50 | 16,0 | 128,5            |
| 9       | D,A       | 0,50 | 17,5 | 180,0            |
| 10      | C,B       | 0,00 | 22,0 | 8,0              |
| 11      | D,B       | 0,00 | 23,5 | 24,5             |
| 12      | D,C       | 0,00 | 25,5 | 4,5              |
| 13      | A,A       | 1,00 | 8,0  | 0,0              |
| 14      | B,B       | 0,00 | 20,0 | 0,0              |
| 15      | C,C       | 0,00 | 24,  | 0,0              |
| 16      | D,D       | 0,00 | 27,0 | 0,0              |

- 1 Qual a forma da distribuição das médias amostrais?
- 2 Qual a média da distribuição amostral dessas médias?
- 3 Qual a variância da distribuição amostral dessas médias?



- Forma: distribuição simétrica
- ► Média:

$$\frac{14,0+16,0+\ldots+27,0}{16}=19,75\text{cm}=\mu$$

Variância:

$$\frac{(14-19,75)^2+(16-19,75)^2+\ldots+(27-19,75)^2}{16}=26,09 \text{ kg}^2=\frac{\sigma^2}{n}.$$

Y: média do diâmetro das árvores (cm)

Se 
$$X \sim N(\mu, \sigma^2)$$
.

Seja  $\bar{X}=$ a média amostral do diâmetro de n árvores. A distribuição amostral de  $\bar{X}$  terá distribuição normal com parâmetros:

$$\mu_{\bar{x}} = \mathrm{E}(\bar{X}) = \mu$$
 e  $\sigma_{\bar{x}}^2 = \mathrm{Var}(\bar{X}) = \frac{\sigma^2}{n}$ .

$$\bar{X} \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2) \implies Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} \sim N(0, 1)$$

**Observação**: Quando são utilizadas amostras sem reposição, deve-se fazer uma correção na variância.

#### Teorema Central do Limite

#### Teorema Central do Limite

Se a população original tem uma distribuição qualquer com média  $\mu$  e variância  $\sigma^2$ , para n "suficientemente grande" (na prática, quando  $n \geq 30$ ),  $\bar{X}$  tem distribuição **aproximadamente** normal:

$$E(X) = \mu$$
  
 $Var(X) = \sigma^2$   $\Rightarrow$   $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ .

#### Teorema Central do Limite



**Exemplo**: Seja *X* a produção anual de resina de árvores de *Pinus elliotti*. Suponha que *X* segue uma distribuição normal com média 2,3 kg e desvio padrão 0,7 kg.

- (a) Faça um esboço da distribuição de X.
- (b) Foi tomada uma amostra aleatória de 16 árvores. Qual é a probabilidade de que a produção média das 16 árvores amostradas seja maior do que 2,8 kg?
- (c) Uma amostra aleatória de 49 árvores foi tomada. Qual é a probabilidade de que a produção média das 49 árvores amostradas seja maior do que 2,8 kg?
- (d) Uma amostra aleatória de 25 árvores foi tomada. Obter  $\bar{x}$  tal que:
  - ►  $P(\bar{X} < \bar{x}) = 0.985$
  - $P(\bar{X} < \bar{x}) = 0.975$