BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

3rd June 2021

Introduction

- K_SKK double tag yields for $\delta_D^{K\pi}$ measurement
- Selected $K_{S,L}KK$ events tagged with $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$ and $Ke\nu$
- Peaking background subtraction

Partially reconstructed double tags

- K_LKK vs $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$
- More peaking backgrounds
- More sophisticated sideband subtraction (from K_SKK MEMO):
- S: Signal region, L: Lower sideband, H: Upper sideband

$$Y_S = \frac{(N_S - N_S^P) - \delta(N_L - N_L^P) - \gamma(N_H - N_H^P)}{1 - \delta\alpha - \gamma\beta}$$

$$\delta, \gamma = \frac{\text{Flat background in S}}{\text{Flat background in L, H}}, \quad \alpha, \beta = \frac{\text{Signal in S}}{\text{Signal in L, H}}$$

Peaking backgrounds

- Peaking backgrounds fixed from inclusive MC
- Correct outdated branching fractions

Mode	Branching fraction correction
$K_{S,L}$	1.44
$KK\pi\pi$	1.14
$K\pi\pi\pi$	1.03
$K_SK\pi$	0.68
$K\pi\pi^0$	1.04

- K_SKK backgrounds in K_LKK:
 - Get fraction of K_LKK to K_SKK from signal MC
 - Scale the corresponding double tag yield of K_SKK

K_SKK vs Keν

Figure 1: U_{miss} for K_SKK vs $Ke\nu$

K_LKK vs $K\pi$

Figure 2: M_{miss}^2 for $K_L K K$ vs $K \pi$

$K_L K K$ vs $K \pi \pi^0$

Figure 3: M_{miss}^2 for $K_L K K$ vs $K \pi \pi^0$

K_LKK vs $K\pi\pi\pi$

Figure 4: M_{miss}^2 for $K_L K K$ vs $K \pi \pi \pi$

K_SKK double tag yields

Bin	1	2	-1	-2
K_SKK vs $K\pi$ raw yield	89	72	94	69
K_SKK vs $K\pi$ corrected yield	641.0	641.0	683.3	628.9
K_SKK vs $K\pi$ normalized yield	0.247	0.247	0.263	0.242
K_SKK vs $K\pi\pi^0$ raw yield	156	101	201	140
K_SKK vs $K\pi\pi^0$ corrected yield	2840.7	2139.3	3565.0	3138.6
K_SKK vs $K\pi\pi^0$ normalized yield	0.243	0.183	0.305	0.269
K_SKK vs $K\pi\pi\pi$ raw yield	117	68	135	88
K_SKK vs $K\pi\pi\pi$ corrected yield	1674.6	1103.9	1858.9	1444.8
K_SKK vs $K\pi\pi\pi$ normalized yield	0.275	0.181	0.306	0.238
K_SKK vs $Ke\nu$ raw yield	51	46	63	53
K_SKK vs $Ke\nu$ corrected yield	442.2	579.7	542.1	671.5
K_SKK vs $Ke\nu$ normalized yield	0.198	0.259	0.243	0.300

K_SKK double tag yields

Bin	1	2	-1	-2
K_LKK vs $K\pi$ raw yield	148	102	144	130
K_LKK vs $K\pi$ corrected yield	957.6	811.6	995.9	1194.3
K_LKK vs $K\pi$ normalized yield	0.242	0.205	0.252	0.302
$K_L K K$ vs $K \pi \pi^0$ raw yield	302	234	319	264
$K_L K K$ vs $K \pi \pi^0$ corrected yield	3541.7	3612.4	3588.9	4475.6
$K_L K K$ vs $K \pi \pi^0$ normalized yield	0.233	0.237	0.236	0.294
$K_L K K$ vs $K \pi \pi \pi$ raw yield	182	134	175	136
$K_L K K$ vs $K \pi \pi \pi$ corrected yield	2444.8	2326.8	2553.2	2641.8
K_LKK vs $K\pi\pi\pi$ normalized yield	0.253	0.231	0.254	0.262

Next steps

• Errors!