Math 101 HW 25

Jeff Carney

April 7, 2017

1

 \mathbf{Q} : Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function whose range is contained in \mathbb{Q} . Prove that f is a constant function.

Assume f is not a constant function. Then there are at least two distinct rationals, p and q, s.t. $\exists x,y \in \mathbb{R}$ s.t. f(x)=p and f(y)=q. WLOG p q. By the density of the irrationals, $\exists w \in (\mathbb{R} - \mathbb{Q})$ s.t. p < w < q. By the Intermediate Value Theorem $\exists z \in \mathbb{R}$ s.t. f(z)=w. But $w \notin \mathbb{Q} \Rightarrow \Leftarrow$. Thus, f is a constant function.

2

Q: Let $f: A \to \mathbb{R}$ and let $c \in A$. Suppose that for every $\{x_n\} \subset \mathbb{Q} \cap A$ such that $x_n \to c$, $f(x_n) \to f(c)$; and for every $\{x_n\} \subset (\mathbb{R} - \mathbb{Q}) \cap A$ such that $x_n \to c$, $f(x_n) \to f(c)$. Prove that f is continuous at c.

Let $c \in A$. Let $\{x_n\} \subset A$ s.t. $x_n \to c$. There are three possibilities for $\{x_n\}$: $\{x_n\}$ has infinitely many rationals and infinitely many rationals, $\{x_n\}$ has infinitely many rationals and finitely many irrationals, or $\{x_n\}$ has finitely many rationals and infinitely many irrationals.

<u>Case 1:</u> $\{x_n\}$ has infinitely many rationals and infinitely many rationals Let $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ that contains all the rationals of $\{x_n\}$. Let $\{x_{m_j}\}$ be a subsequence of $\{x_n\}$ that contains all the irrationals of $\{x_n\}$. Since $\{x_{n_k}\}$ and $\{x_{m_j}\}$ are subsequences of $\{x_n\}$ we know $\{x_{n_k}\} \rightarrow c$ and $\{x_{m_j}\} \rightarrow c$. Since $\{x_{n_k}\}$ is contained in $\mathbb{Q} \cap A$ we know $f(x_{n_k}) \to f(c)$ and since $\{x_{m_j}\}$ is contained in $(\mathbb{R} - \mathbb{Q}) \cap A$ we know $f(x_{m_j}) \to f(c)$. Since $\{x_{n_k}\}$ and $\{x_{m_j}\}$ divide $\{x_n\}$ into two, we know $f(x_n) \to f(c)$.

√

Case 2: $\{x_n\}$ has infinitely many rationals and finitely many irrationals Then $\exists N \in \mathbb{N} \text{ s.t. } \{x_{n+N}\} \in \mathbb{Q}.$ Since $x_{n+N} \to c$ and $\{x_{n+N}\} \in \mathbb{Q}$ we know $f(x_{n+N}) \to f(c)$. We know $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(c)$. And so $f(x_n) \to f(c)$.

✓

<u>Case 3:</u> $\{x_n\}$ has finitely many rationals and infinitely many irrationals. Then $\exists N \in \mathbb{N} \text{ s.t. } \{x_{n+N}\} \in \mathbb{R} - \mathbb{Q}.$ Since $x_{n+N} \to c$ and $\{x_{n+N}\} \in \mathbb{R} - \mathbb{Q}$ we know $f(x_{n+N}) \to f(c)$. We know $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n) = \lim$

3

 $\mathbf{Q}:$ Let $f:[a,b]\to\mathbb{R}$ and $g:[b,c]\to\mathbb{R}$ be continuous. Let

$$h(x) = \begin{cases} f(x) & \text{if } x \in [a, b] \\ g(x) & \text{if } x \in (b, c] \end{cases}$$

Prove that h(x) is continuous iff f(b) = g(b).

 (\Rightarrow)

Assume that h(x) is continuous. WTS f(b) = g(b). Suppose that $f(b) \neq g(b)$. Since g is continuous $\exists \{x_n\} \subset [b,c] \text{ s.t. } x_n \to b \text{ and } g(x_n) \to g(b)$. Note that since $\{x_n\} \subset [b,c] \subset [a,c], \{x_n\} \subset [a,c]$. And we have $x_n \to b$ and $g(x_n) \to g(b)$. But $\Rightarrow \Leftarrow b/c$ since h is continuous, $\forall \{y_n\} \subset [a,c] \text{ s.t. } y_n \to b$ we have $h(y_n) \to h(b) = f(b) \neq g(b)$.

 \checkmark

 (\Leftarrow)

Assume f(b) = g(b). We can see that if $d \in [a, b)$ then $\forall \{x_n\} \subseteq [a, c]$ s.t. $x_n \to d$ we have $h(x_n) = f(x_n) \to f(d) = h(d)$ since f is continuous. It is also obvious that if $d \in (b, c]$ then $\forall \{x_n\} \subseteq [a, c]$ s.t. $x_n \to d$ we have $h(x_n) = g(x_n) \to g(d) = h(d)$ since g is continuous. Now let $\{x_n\} \subset [a, c]$ s.t. $x_n \to b$. Either $\{x_n\}$ has infinitely many elements in [a, b] and infinitely many elements in (b, c], $\{x_n\}$ has infinitely many elements in [a, b] and infinitely many elements in (b, c], or $\{x_n\}$ has finitely many elements in [a, b] and infinitely many elements in (b, c]. By problem 2, we know $h(x_n) \to h(b)$. And so h is continuous.

4

Q: Prove that the following function is continuous at just one point.

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 1 - x & \text{if } x \notin \mathbb{Q} \end{cases}$$

WTS that f is only continuous at $\frac{1}{2}$. Let $\varepsilon > 0$. Let $\delta = \varepsilon$. Let $x \in \mathbb{R}$ s.t. $|x - \frac{1}{2}| < \delta$. Either $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$.

Case 1: $x \in \mathbb{Q}$

Then we have $|f(x) - f(\frac{1}{2})| = |x - \frac{1}{2}| < \delta = \varepsilon \Rightarrow |f(x) - f(\frac{1}{2})| < \varepsilon$. Thus, f is continuous at $\frac{1}{2}$.

Case 2: $x \notin \mathbb{Q}$

Then we have $|f(x) - f(\frac{1}{2})| = |1 - x - \frac{1}{2}| = |\frac{1}{2} - x| = |x - \frac{1}{2}| < \delta = \varepsilon \Rightarrow |f(x) - f(\frac{1}{2})| < \varepsilon$. Thus f is continuous at $\frac{1}{2}$.

Now Let $p \in \mathbb{R}$ s.t. $p \neq \frac{1}{2}$. Let $\{x_n\}$ be a sequence of rationals s.t. $x_n \to p$. Then $f(x_n) = x_n \to p$ so $f(x_n) \to p$. Let $\{y_n\}$ be a sequence of irrationals s.t. $y_n \to p$. Then $f(y_n) = 1 - y_n \to 1 - p$ so $f(y_n) \to 1 - p$. In order for f to be continuous we require that $1 - p = p \Rightarrow 1 = 2p \Rightarrow p = \frac{1}{2}$ but $p \neq \frac{1}{2}$. Thus, f is not continuous at p.