第一章 线性空间与线性变换

题 1.1. (P98.3) 在 ℝ³中,取

$$m{F}_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, m{F}_2 = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, m{F}_3 = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}$$

- (1) 证明: F_1, F_2, F_3 构成 \mathbb{R}^3 的一组基。
- (2) 已知 \mathbb{R}^3 中元素 \boldsymbol{A} 在基 $\boldsymbol{F}_1, \boldsymbol{F}_2, \boldsymbol{F}_3$ 下的坐标为 $(1,2,3)^T$, 求 \boldsymbol{A} 。
- (3) 求 $\mathbf{B} = (1, 2, 3)^T$ 在基 $\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3$ 下的坐标。

 $m{R}$. (1) 令 $m{F} = (m{F}_1, m{F}_2, m{F}_3)$,此时 $|m{F}| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$,这构成了 \mathbb{R}^3 下的一组基。

- (2) $\mathbf{A} = \mathbf{F}\mathbf{x} = (6,5,3)^T$, 其中 $\mathbf{x} = (1,2,3)^T$ 。
- (3) $\mathbf{B} = \mathbf{F} \mathbf{x}$, $\mathbb{M} \mathbf{x} = \mathbf{F}^{-1} \mathbf{B} = (-1, -1, 3)^T$.

题 1.2. (p98.4) 验证

$$\boldsymbol{\nu}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \boldsymbol{\nu}_2 = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}, \boldsymbol{\nu}_3 = \begin{pmatrix} 3 \\ 7 \\ 10 \end{pmatrix}$$

与

$$\boldsymbol{\omega}_1 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}, \boldsymbol{\omega}_2 = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}, \boldsymbol{\omega}_3 = \begin{pmatrix} 1 \\ 1 \\ -6 \end{pmatrix}$$

都可作为 \mathbb{R}^3 的基,并求 $\boldsymbol{\nu}_1,\boldsymbol{\nu}_2,\boldsymbol{\nu}_3$ 到 $\boldsymbol{\omega}_1,\boldsymbol{\omega}_2,\boldsymbol{\omega}_3$ 的过渡矩阵。

 $m{R}$. 令 $m{V} = (m{\nu}_1, m{\nu}_2, m{\nu}_3)$, $m{W} = (m{\omega}_1, m{\omega}_2, m{\omega}_3)$, 此时有 $|m{V}| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 1 & 3 & 10 \end{vmatrix} \neq 0$, $|m{W}| = \begin{vmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & -6 \end{vmatrix} \neq 0$, 这说明了 $m{\nu}_1, m{\nu}_2, m{\nu}_3$ 与 $m{\omega}_1, m{\omega}_2, m{\omega}_3$ 都可作为 \mathbb{R}^3 的一组基。

记过渡矩阵为
$$\boldsymbol{A}$$
,则 $\boldsymbol{W} = \boldsymbol{V}\boldsymbol{A}$,则 $\boldsymbol{A} = \boldsymbol{V}^{-1}\boldsymbol{W}$, $\boldsymbol{A} = \begin{pmatrix} -\frac{9}{2} & -\frac{7}{2} & 4\\ \frac{9}{2} & \frac{13}{2} & 0\\ -\frac{1}{2} & -\frac{3}{2} & -1 \end{pmatrix}$

题 1.3. (P99.10) 设 V_1, V_2, V_3 为线性空间 V 的子空间,且 $V_1 \cap V_2 \cap V_3 = \{0\}$,试问 $V_1 + V_2 + V_3$ 是否为直和?

证明. 结论: 不构成直和。下面通过举反例给出证明:

取线性空间 $V = \mathbb{R}^3$,并令 e_1 , e_2 , e_3 分别为 V 子空间 V_1 , V_2 , V_3 上的一组基,其中 $V_i = \{ke_i | k \in \mathbb{R}\}i = 1, 2, 3$ (此时 V_i 为三维空间中的一条直线),则 $\dim(V_i) = 1$ 。

容易验证子空间
$$V_i$$
 满足题设要求,并且 $A=(\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3)=\begin{pmatrix}1&-1&1\\1&1&2\\0&0&0\end{pmatrix}$, $\mathbf{r}(A)=2$,

 $\dim(V_1+V_2+V_3)=2$,所以 $V_1+V_2+V_3$ 构成了 \mathbb{R}^2 。此时 $\dim(V_1)+\dim(V_2)+\dim(V_3)=1+1+1=3\neq\dim(V_1+V_2+V_3)$,这便说明了 $V_1+V_2+V_3$ 不构成直和。

题 1.4. (P99.12) 设 V_1, V_2, \ldots, V_n 为线性空间 V 的子空间,举例说明,即使 V_1, V_2, \ldots, V_n 两两的交空间均为零空间,其和 $V_1+V_2+\cdots+V_n$ 也未必是直和。

证明. 与例1.3有类似的证明过程,不妨令 $V = \mathbb{R}^n$,则 $\dim(V) = n$,取 n 个向量 e_1, \dots, e_n ,其中 $e_1 = (1, 0, \dots, 0)^T$, $e_2 = (\cos \frac{\pi}{n}, \sin \frac{\pi}{n}, 0, \dots, 0)^T$, $e_k = (\cos \frac{k\pi}{n}, \sin \frac{\pi}{n}, 0, \dots, 0)^T$, $e_n = (\cos \frac{(n-1)\pi}{n}, \sin \frac{(n-1)\pi}{n}, 0, \dots, 0)^T$,并且 $||e_i||_2^2 = 1$ 。

令 $\mathbf{V}_i = \{k\mathbf{e}_i | k \in \mathbb{R}, i = 1, \dots, n\}$,则 $\dim(\mathbf{V}_i) = 1$, $\sum_{i=1}^n \mathbf{V}_i = \{\sum_{i=1}^n \boldsymbol{\alpha}_i | \boldsymbol{\alpha}_i \in \mathbf{V}_1\}$ 构成了 \mathbb{R}^2 ,所以 $\dim(\sum_{i=1}^n \mathbf{V}_i) = 2$ 。而 $\sum_{i=1}^n \dim(\mathbf{V}_i) = n \neq \dim(\sum_{i=1}^n \mathbf{V}_i)$,这便说明了不构成直和。

下面验证 V_1 , V_2 , ..., V_n 两两的交空间均为零空间。任取 $V_i = \{k_i e_i\}$, $V_j = \{k_j e_j\}$, 其中 i < j。要验证其交空间为零空间,只需验证前两个维度的交为 0。即满足如下等式:

$$k_i \cos \frac{(i-1)\pi}{n} = k_j \cos \frac{(j-1)\pi}{n} \tag{1.1}$$

$$k_i \sin \frac{(i-1)\pi}{n} = k_j \sin \frac{(j-1)\pi}{n} \tag{1.2}$$

• <math><math>i = 1, $k_i = k_j = 0$

- \ddot{a} i, j > 1, $k_i = 0$, $\dot{a} = \frac{(i-1)\pi}{n} \in (0, \pi)$, $\dot{b} = 0$,
- \ddot{a} i, j > 1, $i = 1 + \frac{n}{2}$, 根据式 1.1 得 $k_j = 0$, 根据式 1.2 得 $k_i = 0$ 。同理: 若 $j = 1 + \frac{n}{2}$, 则 $k_i = k_j = 0$ 。
- 若 i, j > 1,且 $k_i \neq 0$, $k_j \neq 0$, $i \neq 1 + \frac{n}{2}$, $j \neq 1 + \frac{n}{2}$ 。此时 $k_i \cos \frac{(i-1)\pi}{n} \neq 0$, $k_j \cos \frac{(i-1)\pi}{n} \neq 0$,用式 1.2 除以式 1.1,得 $\tan \frac{(i-1)\pi}{n} = \tan \frac{(i-1)\pi}{n}$,此时 i = j,这与 $i \neq j$ 矛盾。

则
$$k_1 = k_2 = 0$$
, $V_i \cap V_j = \{0\}$, 这便完成了证明。

- 题 1.5. (P100.14) 考虑关于函数的集合 $\mathbf{V} = \{(a_2x^2 + a_1x + a_0)e^x : a_0, a_1, a_2 \in \mathbb{R}\}$ 。
 - (1) 证明该集合关于函数的线性运算构成 3 维实线性空间。
 - (2) 证明求导算子 $\mathcal{D}: f \to f'$ 为 V 上的线性变换,并给出 \mathcal{D} 在基 $\alpha_1 = x^2 e^x$, $\alpha_2 = x e^x$, $\alpha_3 = e^x$ 下的矩阵。
- 解. (1) 由于函数的本质是 $\mathbb{R}^3 \to V$ 的映射,其中 $V \subset \mathbb{R}$ 。所以 V 显然满足加法和乘法的 八条运算法则。接下来一一验证八条法则:

任取
$$a,b,c \in V$$
, $k,l \in \mathbb{R}$, 则 $a = (a_2x^2 + a_1x + a_0)e^x$, $a = (b_2x^2 + b_1x + b_0)e^x$, $c = (c_2x^2 + c_1x + c_0)e^x$

加法:

$$a+b=b+a$$
, $(a+b)+c=a+(b+c)$, $a+0=a \Leftrightarrow 0=(0x^2+0x+0)e^x$, $a+b=0 \Leftrightarrow b=(-a_2x^2-a_1x-a_0)e^x$

乘法:

$$k(a + b) = ka + kb$$
, $(k + l)a = ka + la$, $(kl)a = k(la)$, $1a = a$

(2) 只需验证其对加法和乘法封闭,任取 $a, b \in V$, $k \in \mathbb{R}$, $\mathcal{D}(a) = (a_2x^2 + (2a_2 + a_1)x + a_1 + a_0)e^x$, $\mathcal{D}(b) = (b_2x^2 + (2b_2 + b_1)x + b_1 + b_0)e^x$ 。则 $\mathcal{D}(a) + \mathcal{D}(b) = ((a_2 + b_2)x^2 + (2a_2 + a_1 + 2b_2 + b_1)x + a_1 + a_0 + b_1 + b_0)e^x = \mathcal{D}(a + b)$, $\mathcal{D}(ka) = k(a_2x^2 + (2a_2 + a_1)x + a_1 + a_0)e^x = k\mathcal{D}(a)$ 。又由于 $\mathcal{D}(\alpha_1) = (x^2 + 2x)e^x$, $\mathcal{D}(\alpha_2) = (x + 1)e^x$, $\mathcal{D}(\alpha_3) = e^x$ 。所以 $\mathcal{D}(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

题 1.6. (p100.17) 设 A 是线性空间 V 上的线性变换,且 $\text{Im} A^2 = \text{Im} A$,则 $A^2 = A$ 是否成立? 说明理由。

解. 结论:不一定成立。下面通过举反例说明,即若 $A^2 = nA$, $ImA^2 = ImA$ 仍然成立。

先证 $\operatorname{Im} \mathcal{A}^2 \subset \operatorname{Im} \mathcal{A}$,显然 $\operatorname{Im} \mathcal{A} \subset V$,所以 $\operatorname{Im} \mathcal{A}^2 \subset \operatorname{Im} \mathcal{A}$;再证 $\operatorname{Im} \mathcal{A} \subset \operatorname{Im} \mathcal{A}^2$,任取 $\alpha \in V$,若存在 β ,使 $\mathcal{A}^2(\beta) = \mathcal{A}(\alpha)$,则 $\operatorname{Im} \mathcal{A} \subset \operatorname{Im} \mathcal{A}^2$ 。因为 $\mathcal{A}(\alpha) = \frac{1}{n} \mathcal{A}^2(\alpha) = \mathcal{A}^2(\frac{1}{n}\alpha)$,而线性空间数乘封闭,令 $\frac{1}{n}\alpha = \beta$ 便说明了 $\operatorname{Im} \mathcal{A} \subset \operatorname{Im} \mathcal{A}^2$ 。综上, $\operatorname{Im} \mathcal{A}^2 = \operatorname{Im} \mathcal{A}$ 。

题 1.7. (p100.18)设 \mathcal{A} 是线性空间 V 上的线性变换,且 $V = \ker \mathcal{A} \oplus \operatorname{Im} \mathcal{A}$,证明 $\operatorname{Im} \mathcal{A}^2 = \operatorname{Im} \mathcal{A}$ 。 举例说明一般情况下 $\ker \mathcal{A}$ 和 $\operatorname{Im} \mathcal{A}$ 不构成直和关系?

证明. 给出如下两种解法:

(1) 直接利用题目条件证明

$$\operatorname{Im}(\mathcal{A}) = \operatorname{Im}(\mathbf{V}) = \operatorname{Im}(\ker \mathcal{A} \oplus \operatorname{Im} \mathcal{A}) = \operatorname{Im}(\ker \mathcal{A}) + \operatorname{Im}(\operatorname{Im} \mathcal{A}) = \mathbf{0} + \operatorname{Im}^2 \mathcal{A} = \operatorname{Im}^2 \mathcal{A}$$

(2) 先证 $\operatorname{Im} \mathcal{A}^2 \subset \operatorname{Im} \mathcal{A}$,显然 $\operatorname{Im} \mathcal{A} \subset V$,所以 $\operatorname{Im} \mathcal{A}^2 \subset \operatorname{Im} \mathcal{A}$;再证 $\operatorname{Im} \mathcal{A} \subset \operatorname{Im} \mathcal{A}^2$,任取 $\alpha \in V$,一定存在 β, γ ,使 $\alpha = \beta + \gamma$,其中 $\mathcal{A}(\beta) = 0, \gamma = \mathcal{A}(\eta) \in \operatorname{Im}(\mathcal{A})$,

$$\mathcal{A}(oldsymbol{lpha}) = \mathcal{A}(oldsymbol{eta} + oldsymbol{\gamma}) = \mathcal{A}(oldsymbol{eta}) + \mathcal{A}(oldsymbol{\gamma}) = \mathcal{A}(oldsymbol{\gamma}) = \mathcal{A}(oldsymbol{A}(oldsymbol{\eta})) = \mathcal{A}^2(oldsymbol{\eta})$$

则 $\operatorname{Im} \mathcal{A} \subset \operatorname{Im} \mathcal{A}^2$ 。综上, $\operatorname{Im}(\mathcal{A}^2) = \operatorname{Im}(\mathcal{A})$

题 1.8. (p100.19) 定义映射 $\mathcal{T}: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ 为

$$\mathcal{T}(\boldsymbol{A}) = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \boldsymbol{A}, \quad \boldsymbol{A} \in \mathbb{R}^{2 \times 2}$$

- (1) 证明: \mathcal{T} 是 $\mathbb{R}^{2\times 2}$ 上的线性变换。
- (2) 求 T 在基

$$m{E}_1 = egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, m{E}_2 = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, m{E}_3 = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, m{E}_4 = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$$

下的矩阵。

(3) 已知 $\mathbb{R}^{2\times 2}$ 中元素 \boldsymbol{A} 在基 $\boldsymbol{E}_1, \boldsymbol{E}_2, \boldsymbol{E}_3, \boldsymbol{E}_4$ 下的坐标为 $(1, 2, 3, 4)^T$, 求 $\mathcal{T}(\boldsymbol{A})$ 。

- (4) 求 $\ker \mathcal{T}$ 和 $\operatorname{Im} \mathcal{T}$ 。
- (5) 求 \mathcal{T} 的不变因子和最小多项式。
- (6) 是否存在一组基,使得 τ 在这组基下的矩阵为对角矩阵? 如存在,求出这组基和相应的对角阵。
- \mathbf{H} . (1) 任取 $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2 \times 2}$, $k \in \mathbb{R}$, 显然 $\mathcal{T}(\mathbf{A} + \mathbf{B}) = \mathcal{T}(\mathbf{A}) + \mathcal{T}(\mathbf{A})$, $k\mathcal{T}(\mathbf{A}) = \mathcal{T}(k\mathbf{A})$, 这 便说明了 \mathcal{T} 是 $\mathbb{R}^{2 \times 2}$ 上的线性变换。

(2)

$$\mathcal{T}(\boldsymbol{E}_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathcal{T}(\boldsymbol{E}_2) = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \mathcal{T}(\boldsymbol{E}_3) = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}, \mathcal{T}(\boldsymbol{E}_4) = \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}$$

所以 $\mathcal{T}(\boldsymbol{E}_1) = \boldsymbol{E}_1$, $\mathcal{T}(\boldsymbol{E}_2) = \boldsymbol{E}_1 + \boldsymbol{E}_3 + \boldsymbol{E}_4$, $\mathcal{T}(\boldsymbol{E}_3) = 2\boldsymbol{E}_1 + \frac{1}{2}\boldsymbol{E}_3 + \frac{1}{2}\boldsymbol{E}_4$, $\mathcal{T}(\boldsymbol{E}_4) = -2\boldsymbol{E}_1 + \frac{1}{2}\boldsymbol{E}_3 + \frac{1}{2}\boldsymbol{E}_4$ 所以

$$\mathcal{T}(m{E}_1,m{E}_2,m{E}_3,m{E}_4) = (m{E}_1,m{E}_2,m{E}_3,m{E}_4) egin{pmatrix} 1 & 1 & 2 & -2 \ 0 & 0 & 0 & 0 \ 0 & 1 & rac{1}{2} & rac{1}{2} \ 0 & 1 & rac{1}{2} & rac{1}{2} \end{pmatrix}$$

记
$$m{C} = egin{pmatrix} 1 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
,则 $m{C}$ 为所求。

(3)

$$\mathcal{T}(\boldsymbol{A}) = \mathcal{T}[(\boldsymbol{E}_1, \boldsymbol{E}_2, \boldsymbol{E}_3, \boldsymbol{E}_4)\boldsymbol{x}]$$

$$= \mathcal{T}(\boldsymbol{E}_1, \boldsymbol{E}_2, \boldsymbol{E}_3, \boldsymbol{E}_4)\boldsymbol{x}$$

$$= \boldsymbol{E}_1 + \frac{11}{2}\boldsymbol{E}_3 + \frac{11}{2}\boldsymbol{E}_4$$

$$= \begin{pmatrix} 1 & 11 \\ 0 & 0 \end{pmatrix}$$

其中
$$\mathbf{x} = (1, 2, 3, 4)^T$$

(4) 将
$$C$$
 化为行阶梯形式矩阵
$$\begin{pmatrix} 1 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 可知 $\mathbf{r}(C) = 2$, 则选取第一和第二列作为极大无关组,则 $\mathrm{Im} \mathcal{T} = (E_1, E_1 + E_3 + E_4)$; $\ker(\mathcal{T})$ 则为矩阵 C 的化零空间,即

为极大无关组,则 $\text{Im}\mathcal{T} = (\vec{E}_1, E_1 + E_3 + E_4)$; $\text{ker}(\mathcal{T})$ 则为矩阵 C 的化零空间,即 $\text{ker}(\mathcal{T}) = (-3E_1 - E_2 + 2E_3, 5E_1 - E_2 + 2E_4)$

- (5) 矩阵 C 的特征值为 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = \lambda_4 = 1$, 行列式因子为 $D_1 = 1$, $D_2 = 1$, $D_3 = \lambda(\lambda - 1)$, $D_4 = \lambda^2(\lambda - 1)^2$, 则不变因子为 $d_1 = 1$, $d_2 = 1$, $d_3 = \lambda(\lambda - 1)$, $d_3 = \lambda(\lambda - 1)$, 最小多项式为 $m_A(\lambda) = \lambda(\lambda - 1)$ 。
- (6) 一定存在,这是由于最小多项式不同项的最高系数为1。

求出属于 $\lambda = 0$ 的特征向量 $\boldsymbol{p}_1 = (-3, -1, 2, 0)^T$, $\boldsymbol{p}_2 = (5, -1, 0, 2)^T$ 。

求出属于 $\lambda = 1$ 的特征向量 $p_3 = (1,0,0,0)^T$, $p_4 = (0,0,1,1)^T$ 。

接着设新基底为 (Y_1, Y_2, Y_3, Y_4) , 令 $P = (p_1, p_2, p_3, p_4)$, 则 $(Y_1, Y_2, Y_3, Y_4) = (E_1, E_2, E_3, E_4)P = (-3E_1 - E_2 + 2E_3, 5E_1 - E_2 + 2E_4, E_1, E_3 + E_4)$

题 1.9. (p100.21)复数集 $\mathbb C$ 上的共轭变换 $z \to \bar z$ 是否是 $\mathbb C$ 作为复线性空间上的线性变换? 是否是 C 作为实线性空间上的线性变换?

解. 定义变换 $\mathcal{T}(z) = \bar{z}$ 。任取 $z_1 = a + bi, z_2 = c + di \in \mathbb{C}$, $k = k_1 + k_2 i \in \mathbb{C}$,其中 $a, b, c, d, k_1, k_2 \in \mathbb{R}$ 。

若选取的是复线性空间。 $\mathcal{T}(z_1+z_2) = \overline{z_1+z_2} = \overline{(a+c)+(b+d)i} = (a-bi)+(c-di) = \overline{z_1}+\overline{z_2} = \mathcal{T}(z_1)+\mathcal{T}(z_2)$,对加法封闭; $\mathcal{T}(kz_1) = (k_1a-k_2b)+(-k_1b-k_2a)i$, $k\mathcal{T}(z_1) = (k_1+k_2i)(a-bi) = (k_1a+k_2b)+(-k_1b+k_2a)i$, $\mathcal{T}(kz_1) \neq k\mathcal{T}(z_1)$,对数乘不封闭,不构成线性变换。

若选取的是实线性空间。加法封闭同上,下面验证数乘封闭,此时 $k_2=0$, $\mathcal{T}(kz_1)=ka-k_1b=k\mathcal{T}(z_1)$,则构成线性变换。

题 1.10. (p100.22) 设矩阵 \boldsymbol{A} 可以相似对角化,证明: \boldsymbol{A} 可以表示为矩阵 \boldsymbol{P}_1 , …, \boldsymbol{P}_n 的 线性组合,其中 P_1 , ..., P_n 满足

- (1) 对一切 i,有 $\mathbf{P}_i^2 = \mathbf{P}_i$;
- (2) 对一切 $i \neq j$, 有 $P_i P_i = 0$;
- (3) $\boldsymbol{E} = \boldsymbol{P}_1 + \cdots + \boldsymbol{P}_n$

给出具体的构造方法,并讨论该分解的唯一性。

 \mathbf{H} . 由于矩阵 \mathbf{A} 可相似对角化,则存在 \mathbf{Q} 使得 $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ 不妨令

$$m{E}_{ii} = egin{pmatrix} 0 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$
,这表明了矩阵第 i 行第 i 列为 1 ,其他元素全为 0 。则 $\mathbf{\Lambda} = \sum_{i=1}^n \lambda_i \mathbf{E}_{ii}$, $\mathbf{A} = \sum_{i=1}^n \lambda_i \mathbf{E}_{ii}$

 $\sum_{i=1}^n \lambda_i \mathbf{Q} \mathbf{E}_{ii} \mathbf{Q}^{-1}$,令 $\mathbf{P}_i = \mathbf{Q} \mathbf{E}_{ii} \mathbf{Q}^{-1}$,便满足了线性组合的要求,并且容易验证 $\mathbf{P}_i, \dots, \mathbf{P}_n$ 满足三个约束条件。

下面验证该分解的唯一性,假设存在其他符合题意的分解,记 $A = \sum_{i=1}^{n} \nu_i H_i$ 。则 $AH_j =$ $\sum_{i=1}^{n} \boldsymbol{\nu}_i \boldsymbol{H}_i \boldsymbol{H}_j = \boldsymbol{\nu}_i \boldsymbol{H}_j$

若
$$H_i = O$$
,

题 1.11. (p100.23) 已知 A 为线性空间 V 上的线性变换, $\nu \in V$, $k \ge 1$ 为正整数,满足 $\mathcal{A}^k oldsymbol{
u} = oldsymbol{0}, \ \ oldsymbol{\mathbb{H}} \ \mathcal{A}^{k-1} oldsymbol{
u}
eq oldsymbol{0}$

- (1) 证明: ν , $A\nu$, ..., $A^{k-1}\nu$ 线性无关,特别 $k < \dim V$ 。
- (2) 证明: $\mathbf{W} = \operatorname{span}\{\boldsymbol{\nu}, \mathcal{A}\boldsymbol{\nu}, \dots, \mathcal{A}^{k-1}\boldsymbol{\nu}\}$ 为 \mathcal{A} 的不变子空间。
- (3) 求 A 在 W 上的限制 $A|_W$ 在基 $\nu, A\nu, \dots, A^{k-1}\nu$ 下的矩阵。
- (1) 只需验证对于实数 l_1, \ldots, l_k , 当 $l_1 \nu + l_2 A \nu + \cdots + l_k A^{k-1} \nu = \mathbf{0}$ 时, 有 $l_1 = \cdots = l_k = 0$ 解. 对等式两边进行 $A^m, m = k - 1, \ldots, 1$ 的线性变换,由于 $A^k \mathbf{v} = \mathbf{0}$,则 $A^{k+d} \mathbf{v} = \mathbf{0}$,其 中 $d \geq 0$ 。

$$l_1 \mathcal{A}^{k-1} \boldsymbol{\nu} + l_2 \mathcal{A}^k \boldsymbol{\nu} + \dots + l_k \mathcal{A}^{2k-2} \boldsymbol{\nu} = \mathbf{0}$$
 (1)

$$l_1 \mathcal{A}^{k-2} \boldsymbol{\nu} + l_2 \mathcal{A}^{k-1} \boldsymbol{\nu} + \dots + l_k \mathcal{A}^{2k-1} \boldsymbol{\nu} = \mathbf{0}$$
 (2)

$$l_1 \mathcal{A} \boldsymbol{\nu} + l_2 \mathcal{A}^2 \boldsymbol{\nu} + \dots + l_k \mathcal{A}^k \boldsymbol{\nu} = \mathbf{0}$$
 (n)

由式(1)可知, $l_1 \mathcal{A}^{k-1} \boldsymbol{\nu} = \mathbf{0}$,而 $\mathcal{A}^{k-1} \boldsymbol{\nu} \neq \mathbf{0}$,所以 $l_1 = 0$ 。同理,观察式(2) 到式(n),可得 $l_1 = \cdots = l_n = 0$ 。

- (2) 验证 W 的基 (e_1,\ldots,e_k) 经过线性变换后仍在 W 中即可。 $\mathcal{A}(e_1)=\mathcal{A}\nu,\ldots,\mathcal{A}(e_k)=\mathcal{A}^k\nu=0$,这表明了经过线性变换后 $\mathcal{A}(e_i)=e_{i+1}\in W$ $(i=1,\ldots,k-1)$,而 $\mathcal{A}(e_k)=0\in W$ 。
- (3) 根据第 (2) 问, $\mathcal{A}(e_1,\ldots,e_k) = (e_1,\ldots,e_k) \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$

题 1.12. (p100.24) 已知 A 为线性空间 V 上的线性变换, $\alpha_i \in V$, $k_i \geq 1$ 为正整数,其中 i = 1, 2, ..., s,满足 $(A - \lambda_i \operatorname{id})^{k_i} \boldsymbol{\nu}_i = \mathbf{0}$ 且 $(A - \lambda_i \operatorname{id})^{k_i - 1} \boldsymbol{\nu}_i \neq \mathbf{0}$,并记

$$\mathbf{W}_i = \operatorname{span}\{\boldsymbol{\nu}_i, (\mathcal{A} - \lambda_i \operatorname{id})\boldsymbol{\nu}_i, \dots, (\mathcal{A} - \lambda_i \operatorname{id})^{k_i - 1}\boldsymbol{\nu}_i\}$$

证明: 若 $\lambda_i \neq \lambda_j$,则 $\mathbf{W} \cap \mathbf{W}_j = \{\mathbf{0}\}$

证明. 由 $(x-\lambda_i)^{k_i}$ 与 $(x-\lambda_j)^{k_j}$ 互素,则存在 f(x),g(x),使 $f(x)(x-\lambda_i)^{k_i}+g(x)(x-\lambda_j)^{k_j}=1$,对应到线性变换 \mathcal{A} 上即为 $f(\mathcal{A})(\mathcal{A}-\lambda_i\mathrm{id})^{k_i}+g(\mathcal{A})(\mathcal{A}-\lambda_j\mathrm{id})^{k_j}=\mathrm{id}$ 。

令 $\boldsymbol{\alpha} \in \boldsymbol{W}_i \cap \boldsymbol{W}_j$,则 $\boldsymbol{\alpha} = l_1 \boldsymbol{\nu}_i + \dots + l_{k_i} (\mathcal{A} - \lambda_i \mathrm{id})^{k_i - 1} \boldsymbol{\nu}_i$, $(\mathcal{A} - \lambda_i \mathrm{id})^{k_i} \boldsymbol{\alpha} = l_1 (\mathcal{A} - \lambda_i \mathrm{id})^{k_i} \boldsymbol{\nu}_i + \dots + l_{k_i} (\mathcal{A} - \lambda_i \mathrm{id})^{2k_i - 1} = \mathbf{0}$;同理, $(\mathcal{A} - \lambda_j \mathrm{id})^{k_j} \boldsymbol{\alpha} = \mathbf{0}$ 。又因为 $\boldsymbol{\alpha} = \mathrm{id}(\boldsymbol{\alpha}) = f(\mathcal{A})(\mathcal{A} - \lambda_i \mathrm{id})^{k_i} \boldsymbol{\alpha} + g(\mathcal{A})(\mathcal{A} - \lambda_j \mathrm{id})^{k_j} \boldsymbol{\alpha}$ 。所以 $\boldsymbol{\alpha} = \mathrm{id}(\boldsymbol{\alpha}) = \mathbf{0} + \mathbf{0} = \mathbf{0}$,即 $\boldsymbol{W} \cap \boldsymbol{W}_j = \{\mathbf{0}\}$ 。 \square