

Institute of Technology of Cambodia

Department of Applied Mathematics and Statistic

Group: I3-AMS-03

Subject: Advance Probability

Topic: Analyzing the factors that affect customer satisfaction in the airline industry using ordinal logistic regression

Tang Piseth	e20201634
Kry Senghort	e20200706
Sao Samarth	e20200084
Hon Rathana	e20201053
Pheng Sothea	e20201734
Ek Vongpanharith	e20200087

CONTENTS:

- 1. LINEAR REGRESSION ANALYSIS
- 2. FEATURE SELECTION
- 3. CONFOUNDER
- 4. MODEL CREATION
- 5. MODEL SELECTION
- 6. MODEL EVALUATION
- 7. CONCLUSION

1. Linear regression analysis

Linearity

satisfaction ~ Departure_Delay_in_Minutes + Arrival_Delay_in_Minutes

	OLS Regress	sion Results	;			
Dep. Variable:	satisfaction	R-squared:				
Model:	OLS	Adj. R-squared:				
Method:	Least Squares	F-statistic:		241.2		
Date:	Tue, 23 May 2023	Prob (F-statistic):		2.79e-105		
Time:	23:16:39	Log-Likelihood:		-92900.		
No. Observations:	129880	AIC:		1.858e+05		
Df Residuals:	129877	BIC:		1.85	8e+05	
Df Model:	2					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.4454	0.001	301.903	0.000	0.443	0.448
Departure_Delay_in_Mir	nutes 0.0008	0.000	6.455	0.000	0.001	0.001
Arrival_Delay_in_Minut	tes -0.0015	0.000	-12.115	0.000	-0.002	-0.001
Omnibus:	466876.760	Durbin-Watson:		2.006		
Prob(Omnibus):	0.000	Jarque-Bera (JB):		21368.532		
Skew:	0.263	Prob(JB):		0.00		
Kurtosis:	1.084	Cond. No.			61.8	
					=====	

satisfaction ~ Arrival_Delay_in_Minutes

	OLS Regres	sion Resul	ts			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	satisfaction OLS Least Squares Sat, 20 May 2023 17:20:38 129880 129878 1	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic):		0.003 0.003 440.6 1.17e-97 -92920. 1.858e+05 1.859e+05		
	coef	std err	t	P> t	[0.025	0.975]
Intercept Arrival_Delay_in_Mir	0.4458 nutes -0.0008		302.274 -20.990	0.000 0.000	0.443 -0.001	0.449 -0.001
Omnibus: Prob(Omnibus): Skew: Kurtosis:	466538.303 0.000 0.263 1.083	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		2.006 21395.028 0.00 44.3		
Notes: [1] Standard Errors	assume that the co	variance m	atrix of the	errors is	correctly sp	ecified.

satisfaction ~ Departure_Delay_in_Minutes

OLS Regression Results						
Dep. Variable:	satisfaction			0.003		
Model:	OLS			0.003		
Method:	Least Squares			335.2		
Date:		Prob (F-statistic):		8.63e-75		
Time:	17:20:40	Log-Likelihood:		-92973.		
No. Observations:	129880	AIC:		1.859e+05		
Df Residuals:	129878	BIC:		1.860e+05		
Df Model:	1					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.4442	0.001	301.615	0.000	0.441	0.447
Departure_Delay_in_	Minutes -0.0007	3.61e-05	-18.310	0.000	-0.001	-0.001
Omnibus:	465598.855	Durbin-Watson:		2.006		
Prob(Omnibus):	0.000	Jarque-Ber	a (JB):	21462.111		
Skew:	0.263	Prob(JB):		0.00		
Kurtosis:	1.079	Cond. No.			43.8	
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.						

Multicolinearity

Both 'Departure_Delay_in_Minutes' and 'Arrival_Delay_in_Minutes' have relatively high VIF factors of approximately 12.565103. VIF values above 5 or 10 are often considered indicative of significant multicollinearity

NORMALITY

2. Feature selection

Encoding categorical variables

Label encoding is the simplest method of encoding categorical variables. involves replacing each category with a numerical value.

```
Column: Customer_Type
Loyal Customer -> 0
disloyal Customer -> 1

Column: Type_of_Travel
Personal Travel -> 1
Business travel -> 0
```

Method used for feature selection

In feature selection, it measures the dependency between each feature and the target variable using the χ^2 statistic. It selects the k features with the highest χ^2 scores. This method is suitable for categorical features and a categorical target variable.

• The Wrapper Method

The Wrapper method evaluates the model's performance with different subsets of features. Base on this method used a Random Forest model as the base estimator to perform feature selection and we could find the important features such as:

• Feature Permutation Importance

Permutation Importance is a technique that measures the impact of shuffling a feature's values and calculates the importance of each feature by evaluating how much the model's performance decreases when the feature's values are randomly permuted. Higher importance scores indicate more influential features.

Weight Feature 0.1466 ± 0.0008 Inflight_wifi_service 0.1350 ± 0.0016 Type of Travel Customer Type 0.0532 ± 0.0006 Online boarding 0.0411 ± 0.0011 0.0339 ± 0.0005 Class 0.0259 ± 0.0004 Checkin service Seat comfort 0.0186 ± 0.0005 0.0179 ± 0.0003 Baggage_handling Inflight_service 0.0158 ± 0.0002 Cleanliness 0.0151 + 0.0006 0.0146 ± 0.0007 0.0108 ± 0.0004 Age 0.0101 ± 0.0005 On-board_service 0.0084 ± 0.0003 Leg_room_service 0.0082 ± 0.0003 Flight Distance 0.0074 ± 0.0003 Inflight entertainment Arrival Delay_in_Minutes 0.0073 ± 0.0001 0.0060 ± 0.0002 Ease_of_Online_booking 0.0043 ± 0.0003 Gate location 0.0040 ± 0.0002 Departure_Delay_in_Minutes ... 3 more ...

From all above results:

Really Important Featurues:
 Type_of_Travel, Inflight_wifi_service,
 Online_boarding, Seat_comfort

• Important Features:

Class, Flight_Distance,
Inflight_entertainment, On-board_service,
Leg_room_service, Cleanliness,
Checkin_service, Inflight_service,
Baggage_handling

Recursive Feature Elimination

RFE is an recursive feature selection method that starts with all features and progressively eliminates the least important features based on their coefficients or importance scores.

It utilizes the logistic regression model to assess the importance of each feature and recursively prunes the least important features until the desired number of features is reached.

```
['Customer_Type',
'Type_of_Travel',
'Class',
'Inflight_wifi_service',
'Ease_of_Online_booking',
'Online_boarding',
'On-board_service',
'Leg_room_service',
'Checkin_service',
'Cleanliness']
```

3. Confounder

We used multi-variate analysis on the suspected features that we think are confounders: "Age, "Type of Travel" and "Class".

Based on the analysis, Age is not a confounder, while both Type_of_Travel and Class can be considered confounders. Therefore, from now on, we will not include Age in our combined features and it's pretty logical that id should also not be in there.

5. Model selection

We tried all iterative selection methods and found out that most of them resulted in more than 15 features.

6. Model evaluation

As our evaluation metrics, we used the ROC curves, AUC, and confusion matrix. But we believe that the confusion matrices carry less values and decide to only show the ROC curves.

ROC Curve of Simple Logistic regression

ROC Curve of RFC

7. Conclusion

Based on the ROC curve and AUC score, it's clear that random forest classifier perform better than the fit Logistic Model.