东南大学学生会 Students' Union of Southeast University

02-03-2高数AB期末试卷

一 填空题

1.
$$\lim_{x \to 0} (1 - \tan x)^{3\cot x} = \underline{\hspace{1cm}}$$

2、曲线 $y = e^{2x}$ 上点_____出的切线通过原点。

3、若
$$y = (x+1)^{\sin 2x}$$
,则 $y' =$ ______

$$5, \int_{-2}^{2} \frac{\sin^5 x + x^2}{x^2 + 1} dx = \underline{\hspace{1cm}}$$

6、微分方程 $xy'=y\ln y$ 满足条件 $y|_{x=1}=e$ 的特解是

二 选择题

1、若 $\lim_{x \to +\infty} (\sqrt{x^2 - x + 1} + ax - b) = 0$,则(

$$(A) \begin{cases} a = -1 \\ b = -\frac{1}{2} \end{cases}$$

$$(B)\begin{cases} a = -1\\ b = \frac{1}{2} \end{cases}$$

$$(C) \begin{cases} a = 1 \\ b = \frac{1}{2} \end{cases}$$

(A)
$$\begin{cases} a = -1 \\ b = -\frac{1}{2} \end{cases}$$
 (B) $\begin{cases} a = -1 \\ b = \frac{1}{2} \end{cases}$ (C) $\begin{cases} a = 1 \\ b = \frac{1}{2} \end{cases}$ (D) $\begin{cases} a = 1 \\ b = -\frac{1}{2} \end{cases}$

2、已知 f(x) 的一个原函数为 $\sin 2x$,则 $\int xf'(x)dx = ($

(A)
$$2x\sin 2x - \cos 2x + C$$

(B)
$$2x\sin 2x + \cos 2x + C$$

$$C (x)2c o 2s - s i 2l x + C$$

(D)
$$x \sin 2x - \cos 2x + C$$

3、设 f'(x) 连续, $f(0) = 0, f'(0) \neq 0, F(x) = \int_0^x (x^2 - t^2) f(t) dt$,若当 $x \to 0$ 时, F'(x) 与 x^k

是同阶的无穷小,则 k = (

4、圆 $r = \sqrt{2} \sin \theta$ 与双纽线 $r^2 = \cos 2\theta$ $(0 \le \theta \le \frac{\pi}{2})$ 所围成的平面图形的面积可表示为()

$$(A) \frac{1}{2} \int_0^{\frac{\pi}{2}} (\sqrt{\cos 2\theta} - \sqrt{2}\sin \theta)^2 d\theta \qquad (B) \frac{1}{2} \int_0^{\frac{\pi}{2}} (\cos 2\theta - 2\sin^2 \theta) d\theta$$

$$(B) \frac{1}{2} \int_0^{\frac{\pi}{2}} (\cos 2\theta - 2\sin^2 \theta) d\theta$$

东南大学学生会

Students' Union of Southeast University

$$(C) \frac{1}{2} \int_0^{\frac{\pi}{4}} (\sqrt{\cos 2\theta} - \sqrt{2} \sin \theta)^2 d\theta$$

$$(C) \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\sqrt{\cos 2\theta} - \sqrt{2}\sin \theta)^{2} d\theta \qquad (D) \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (\sqrt{2}\sin \theta)^{2} d\theta + \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos 2\theta d\theta$$

三、计算题

$$1 \cdot \lim_{x \to 0} \frac{\int_0^x (e^{t^2} - 1) dt}{x^2 \sin x}$$

$$2 \cdot \int \frac{\ln x}{(x+1)^2} dx$$

3、设
$$\begin{cases} x = \ln(1+t^2) \\ y = \int_0^t \frac{u^2}{1+u^2} du \end{cases}, \quad \stackrel{?}{x} \frac{dy}{dx} \ \not D \frac{d^2y}{dx^2} \ .$$

- 4、设 f(x) 具有二阶连续导数,且满足关系式 $f'(x) + \int_0^x f(x-t)dt = e^t$,又 $f(0) = \frac{1}{2}$,求 f(x)。
- 5、计算积分 $\int_0^{\frac{1}{\sqrt{2}}} \frac{x^3}{\sqrt{1-x^2}} dx$

6、计算积分
$$\int_0^{+\infty} \frac{dx}{x^2 + 4x + 8}$$

四、求微分方程 $yy''+(y')^2=0$ 满足初始条件 $y|_{x=0}=1, y'|_{x=0}=1$ 的特解。

五、设f(x)连续,且 $\lim_{x\to 0} \frac{f(x)}{x} = 4$, $\Rightarrow \varphi(x) = \int_0^1 f(xt)dt$ 。

- (2) 讨论 $\varphi'(x)$ 在x=0处的连续性。

六、已知抛物线过三点A(-a,0),B(0,b),C(a,0),又a+b=3,问a、b取何值时,图中阴影部分绕 Ox轴旋转所的旋转体的体积最大。

七、设f(x)在 $[0,+\infty)$ 上可导,且 $f'(x) = \frac{1}{e^x + |f(x)|} (x \ge 0)$,又f(0) = 1, $\lim_{x \to +\infty} f(x) = A$, 试证: $1 \le A \le 1 + \ln 2$