

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PO Box 1430 Alexandra, Virginia 22313-1450 www.upub.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/753,524	01/09/2004	Shunpei Yamazaki	07977-218003 / US3531/361	7877
26171 7590 04/17/2009 FISH & RICHARDSON P.C.			EXAMINER	
P.O. BOX 1022 MINNEAPOLIS, MN 55440-1022			MONDT, JOHANNES P	
			ART UNIT	PAPER NUMBER
			3663	
			NOTIFICATION DATE	DELIVERY MODE
			04/17/2009	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

PATDOCTC@fr.com

Application No. Applicant(s) 10/753 524 YAMAZAKI ET AL. Office Action Summary Examiner Art Unit JOHANNES P. MONDT 3663 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 03 April 2009. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 21-23.25.42-64 and 68-70 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 21-23,25,42-64 and 68-70 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 10 May 2004 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413)

 Notice of Informal Patent Application 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date _ 6) Other: PTOL-326 (Rev. 08-06) Office Action Summary

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Paper No(s)/Mail Date.

Art Unit: 3663

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 4/3/09 has been entered.

Response to Amendment

2. Amendment filed with said Request for Continued Examination on 4/3/09 forms the basis for this Office action. In said Amendment independent claims 21, 47 and 56 are substantially amended. Claims 21-23, 25, 42-64 and 68-70 are in the application and are being examined. Comments on "Remarks" submitted with said Amendment are included below under "Response to Arguments".

Drawings

3. Figures 17C and 17D should be designated by a legend such as --Prior Art-because only that which is old is illustrated. See MPEP § 608.02(g). Corrected
drawings in compliance with 37 CFR 1.121(d) are required in reply to the Office action
to avoid abandonment of the application. The replacement sheet(s) should be labeled
"Replacement Sheet" in the page header (as per 37 CFR 1.84(c)) so as not to obstruct
any portion of the drawing figures. If the changes are not accepted by the examiner, the

Art Unit: 3663

applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abevance.

Specification

4. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

5. The Specification is objected to for <u>failing to provide</u> adequate <u>written support</u> for the claimed invention and for failing to provide <u>enablement</u>, because Figure 17A shows a photograph, and 17B is a schematic representation thereof. However, the lattice constant (= distance along a lattice direction between two neighboring atoms in the lattice) is 0.54 nm. Therefore, a distance of 5 nm perpendicularly across the lattice should contain no more than about ten silicon atoms. Yet said photograph shows more than twice as many dark spots across a 5 nm distance. Therefore, either the HRTEM photograph does not show a silicon lattice in which case it fails to support the claim by failing to connect to the remainder of the topic in the specification, or the HRTEM photograph is on a sub-lattice scale, showing features irrelevant to the claimed subject matter. Therefore, the concept of "continuously connected" lattices having "different directions" is not provided with the requisite definition of the level of coarse-graining needed to provide operational meaning to it. Therefore, one of ordinary skill in the art would not know at which precise level lattices need to be continuously connected.

Claim Rejections - 35 USC § 112

6. The following is a quotation of the first paragraph of 35 U.S.C. 112:

Art Unit: 3663

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

- 7. Claims 21-23, 25, 42-64 and 68-70 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the <u>written description</u> requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. The reason for this rejection is the same as the reason for the objection to the specification for lack of an adequate written description (see section 5).
- 8. Claims 21-23, 25, 42-64 and 68-70 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the <u>enablement</u> requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. The reason for the rejection is the same as the reason for the objection to the specification for failing to provide enablement (see section 5 above).
- The following is a quotation of the second paragraph of 35 U.S.C. 112:
 The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.
- 10. Claims 21-23, 25, 42-64 and 68-70 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The metes and bounds of the

Page 5

Application/Control Number: 10/753,524

Art Unit: 3663

claimed invention are vague and ill-defined due to the lack of an adequate written description, thus rendering the claims indefinite (see section 7 above).

11. Claims 21-23, 25, 42-64 and 68-70 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The metes and bounds of the claimed invention are vague and ill-defined due to the lack of enablement, thus rendering the claims indefinite (see section 8 above).

Claim Rejections - 35 USC § 102

12. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (e) the invention was described in (1) an application for patent, published under section 122(b), by another filled in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filled in the United States before the invention by the applicant for patent, except that an international application filled under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filled in the United States only if the international application designated the United States and was published under Article 21(2) of such treatly in the English language.
- 13. N.B.: The rejections under 35 U.S.C. 102(e) and 103(a) are provided subject to the aforementioned indefiniteness under 35 U.S.C. 112, second paragraph, and are made to the best of examiner's understanding.
- 14. Claim 21, 42-43, 47 and 51-52 are rejected under 35 U.S.C. 102(e) as being anticipated by Iwasaki (JP 08-288515 A) (previously cited, with family member Iwasaki (USPAT 5,759,879) serving again as translation), or, in an alternative rejection, by the prior art as admitted by applicant in the specification (especially the juxtaposition of the

Art Unit: 3663

inventive lattices of Figure 17A and the lattices with grain boundaries affected by dangling bonds as illustrated by Figure 17C; see specification, page 16, lines 5-22).

Iwasaki teaches (whole document, especially title, abstract, "Field of the Invention", column 1, lines 7-20, and Examples 1-2, columns 7-12; Figures 2-4) a semiconductor film 22 (column 10, lines 45-48) over a substrate 16 (loc.cit.) and comprising a source region and drain region (both 26N; see column 10, line 50) and a channel formation region 26i (column 10, lines 49-50) provided between said source and drain regions; and a gate electrode 25 (column 10, line 55) provided adjacent to said channel formation region with a gate insulating film 24 (column 10, line 54) therebetween; wherein lattices are continuously connected to each other at a grain boundary 23 (Figure 3F and column 12, lines 17-18) of said semiconductor film. inherently so, because a grain boundary is a boundary, i.e., a line, point or plane that indicates or fixes a limit or extent, between two grains, i.e., crystal grains; said crystal grains inherently having spatial extent, as otherwise their defining property, i.e., spatial periodicity, could not possibly exist; the lines denoting the grain boundaries in Figure 3F and 4B thus denote the limits on either side of the crystal grains connected by their common grain boundaries, implying continuity across said grain boundaries; hence the lattices of said grains, extending by definition of the grains over their entire spatial domain, are continuously connected to each other at the grain boundaries of said semiconductor film. Furthermore, at least in the case of Figure 4B directions of the lattices are different from each other: regions A and B have different crystal orientations and hence different directions (Figure 4B and col. 11. I. 30-61).

Art Unit: 3663

In the alternative rejection over applicant's admission of prior art, the only difference with the conventional art is, according to disclosure, the characterization by applicant of Figure 17C as conventional art in context is noted, while Figure 17C clearly shows that despite the dangling bonds 1701 and 1702, lattices are continuously connected at a grain boundary, just not at as many as in the inventive Figure 17C.

Furthermore, the lattices have different directions also in the lattices of Figure 17C.

With regard to claim 42, the direction of movements of any of the (charge) carriers has inherently two components, a random component and a component in response to the local (mainly electric) field. While the direction of said random component by its very nature is not subject to control, the component in response to the local field is a result of the operation of the device, and hence is not a limitation of the device as such.

Therefore, the limitation on the direction of movement of a carrier in said channel formation region is a statement of intended use not serving to patently distinguish the claimed structure over that of the reference as long as the structure of the cited reference is capable of performing the intended use. See MPEP 2111-2115. See also MPEP 2114 that states:

"A claim that contains a "recitation with respect to the manner in which a claimed apparatus is intended to be employed does not differentiate the claimed apparatus from a prior art apparatus" if the prior art apparatus teaches all of the structural limitations of the claim Ex parte Masham, 2 USPQd 1647.".

Art Unit: 3663

"Claims directed to apparatus must be distinguished from the prior art in terms of structure rather than function. In re Danly, 263 F.2d 844, 847, 120 USPQ 528, 531."

"Apparatus claims cover what is device is, not what a device does" Hewlett-Packard versus Bausch & Lomb Inc., 15 USPQ2d 1525, 1528."

In the underlying case, direction of movement of at least one carrier, in particular during the ON state, in said channel formation region coincides with, i.e., is parallel to, the direction of extension of said grain boundary, i.e., the direction along which said grain boundary is extended (see, for instance Figures 2B and 3F (grain boundary extended along 23, which has portions parallel to the channel between source and drain 26N (see Figure 3I, e.g.). Therefore, the device of the prior art is capable of performing the intended use.

With regard to claim 43: the semiconductor film by Iwasaki comprises silicon (see Figure 3J and discussion, especially col. 10, I. 51 and Example 2).

With regard to claim 47: the only limitation additional to those of claim 21 is "a thermal oxidation film provided between the semiconductor film and the gate electrode". First it is observed that "thermal oxidation film" does not patentably distinguish from "oxide film", because the difference is one of manufacture, not necessarily of structure. Applicant is reminded that the limitation in the present product claim is only of patentable weight in as much as the method steps distinguish the final structure, and to the extent not impacting final structure are taken to be product-by-process limitations and non-limiting. A product by process claim is directed to the product per se, no matter how they are actually made. See In

Art Unit: 3663

re Fessman, 180 USPQ 324, 326 (CCPA 1974); In re Marosi et al, 218 USPQ 289, 292 (Fed. Cir. 1983), and In re Thorpe, 227 USPQ 964, 966 (Fed. Cir. 1985), all of which make clear that it is the patentability of the final structure of the product "gleaned" from the process steps that must be determined in a "product-by-process" claim, and not the patentability of the process. See also MPEP 2113. Moreover, an old or obvious product produced by a new method is not a patentable product, whether claimed in "product by process" claims or not. Second, Iwasaki teaches a silicon oxide gate insulating film 10 (col. 10, I. 14-18), and hence the limitation is met

With regard to claim 51, the direction of movements of any of the (charge) carriers has inherently two components, a random component and a component in response to the local (mainly electric) field. While the direction of said random component by its very nature is not subject to control, the component in response to the local field is a result of the operation of the device, and hence is not a limitation of the device as such.

Therefore, the limitation on the direction of movement of a carrier in said channel formation region is a statement of intended use not serving to patently distinguish the claimed structure over that of the reference as long as the structure of the cited reference is capable of performing the intended use. See MPEP 2111-2115. See also MPEP 2114 that states:

"A claim that contains a "recitation with respect to the manner in which a claimed apparatus is intended to be employed does not differentiate the claimed apparatus from

Art Unit: 3663

a prior art apparatus" if the prior art apparatus teaches all of the structural limitations of the claim Ex parte Masham, 2 USPQd 1647.".

"Claims directed to apparatus must be distinguished from the prior art in terms of structure rather than function. In re Danly, 263 F.2d 844, 847, 120 USPQ 528, 531."

"Apparatus claims cover what is device is, not what a device does" Hewlett-Packard versus Bausch & Lomb Inc., 15 USPQ2d 1525, 1528."

In the underlying case, direction of movement of at least one carrier, in particular during the ON state, in said channel formation region coincides with, i.e., is parallel to, the direction of extension of said grain boundary, i.e., the direction along which said grain boundary is extended (see, for instance Figures 2B and 3F (grain boundary extended along 23, which has portions parallel to the channel between source and drain 26N (see Figure 3I, e.g.). Therefore, the device of the prior art is capable of performing the intended use.

With regard to claim 52: the semiconductor film by Iwasaki comprises silicon (see Figure 3J and discussion, especially col. 10, I. 51 and Example 2).

Claim Rejections - 35 USC § 103

15. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

N.B.: This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was

Art Unit: 3663

commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

 Claims 22 and 48 are rejected under 35 U.S.C. 103(a) as being unpatentable over Iwasaki in view of Erhart et al. (USPAT 5,572,211) (previously cited).

As detailed above, claim 21 and claim 47 are anticipated by Iwasaki. Iwasaki does not teach the further limitation defined by claims 22 and 48. Iwasaki does teach the inclusion of TFTs in active matrix LCD displays for computers (column 1, lines 7-20).

However, it would have been obvious to include said further limitation in view of Erhart et al, who teach the inclusion of *capacitors*, e.g., 56 and 58 (column 6, line 55 – column 6, line 15), in addition to thin film transistors e.g., 48 and 50 (column 6, lines 55-60) in an active matrix display (column 6, lines 16-55) in a *personal* computer (column 12, lines 45-49). *Motivation* to include the teaching by Erhart in the device by Iwasaki derives at least from the obvious advantage to apply the invention to improvements of existing technology, i.e., to active matrix LCD displays in personal computers wherein capacitors store charge corresponding to the desired shade for the pixel electrode to which said storage capacitor pertains (column 6, line 64 – column 7, line 4). N.B.: said capacitors imply *auxiliary* capacitance because they are not part of the TFT, i.e., not part of the MOS capacitor that is part of the TFT.

Art Unit: 3663

 Claims 23, 25, 46, 49-50 and 55 are rejected under 35 U.S.C. 103(a) as being unpatentable over lwasaki in view of den Boer (USPAT 5.539.219) (previously cited).

On claim 23 and 49: As detailed above, claims 21 and 47 are anticipated by Iwasaki. Iwasaki does not teach the further limitation as defined by claims 23 and 49, although Iwasaki does teach the computer (col. 1, I. 15-20) to further comprise an active matrix type liquid crystal display device (col. 1, I. 7-20). Iwasaki does not specifically recited pixel electrode and opposite electrode, with liquid crystal provided therebetween.

However, said limitation merely conforms to the conventional active matrix liquid crystal display technology, as witnessed for instance by den Boer et al., who teach an active matrix liquid crystal display device (column 1, lines 5-33) to comprise not only TFTs 21 (column 4, line 62 – column 5, line 8) but also pixel electrode 51 (column 5, lines 5-8 and column 8, lines 33-43), common electrode 59 (column 8, lines 37-39) opposite said pixel electrode and hence qualifying as "opposite" electrode (see Figure 5) with liquid crystal 57 between said pixel electrode and said opposite electrode.

Motivation to include said limitation as taught by den Boer in the invention by Iwasaki at least derives from the economy to apply the invention to already existing and hence easily marketable technology.

With regard to claims 25 and 50, Iwasaki does not specifically teach the further limitation on channel length as recited. However, it would have been obvious to include the limitation in view of den Boer, who teaches a channel length of about 2 μ m to 4 μ m (column 8, lines 8-19) so as to achieve a reduction in pixel flickering, image retention and an improvement in gray level uniformity (see abstract). Applicant is reminded A

Art Unit: 3663

prima facie case of obviousness typically exists when the ranges of a claimed composition overlap the ranges disclosed in the prior art or when the ranges of a claimed composition do not overlap but are close enough such that one skilled in the art would have expected them to have the same properties. In re Peterson, 65 USPQ2d 1379 (CA FC 2003). In the underlying case, the range in the prior art (about 2 to 4 μ m) actually overlaps the range as claimed (less than or equal 2 μ m) while motivation immediately derives from the teaching by den Boer that the shortened channel length enables reduction in pixel flickering and image retention and an improvement in grey level uniformity.

With regard to claims 46 and 55: the pixel electrode by den Boer comprises ITO (col. 7, I. 51). Motivation derives at least from the good conductivity and transparency of ITO, both qualities being important for an electrode in the way of light.

18. Claims 44-45 and 53-54 are rejected under 35 U.S.C. 103(a) as being unpatentable over Iwasaki in view of Kobayashi (3,925,803) (previously cited). As detailed above, claims 21 and 47 are anticipated by Iwasaki. Iwasaki does not teach the further limitations of either claim 44 or 45, nor claims 53 or 54. However, it would have been obvious to include said further limitations in view of Kobayashi, who, in a patent on a field effect transistor, - in particular: on the polycrystalline structure of the channel region therein, hence analogous art (TFTs are field effect transistors as well), teach the source/channel/drain region to comprise, within the channel region, rod-shaped silicon crystals 3 (col. 2, I. 30), evidently flattened at the top (Figure 1 and

Art Unit: 3663

discussion in col. 2). *Motivation* derives at least from the noted high trans-conductance (see "Summary of the Invention", col. 1).

19. Claims 56 and 60-61 are rejected under 35 U.S.C. 103(a) as being unpatentable over Iwasaki (JP 08-288515 A) (as cited above, again with Iwasaki (USPAT 5,759,879) used for translation) (previously cited) in view of Inoue et al (6,153,893) (previously cited).

On claim 56: Iwasaki teaches (whole document, especially title, abstract, "Field of the Invention", column 1, lines 7-20, and Examples 1-2, columns 7-12; Figures 2-4) a semiconductor film 22 (column 10, lines 45-48) over a substrate 16 (loc.cit.) and comprising a source region and drain region (both 26N; see column 10, line 50) and a channel formation region 26i (column 10, lines 49-50) provided between said source and drain regions; and a gate electrode 25 (column 10, line 55) provided adjacent to said channel formation region with a gate insulating film 24 (column 10, line 54) therebetween; wherein lattices are continuously connected to each other at a grain boundary 23 (Figure 3F and column 12, lines 17-18) of said semiconductor film, inherently so, because a grain boundary is a boundary, i.e., a line, point or plane that indicates or fixes a limit or extent, between two grains, i.e., crystal grains; said crystal grains inherently having spatial extent, as otherwise their defining property, i.e., spatial periodicity, could not possibly exist; the lines denoting the grain boundaries in Figure 3F thus denote the limits on either side of the crystal grains connected by their common grain boundaries, implying continuity across said grain boundaries; hence the lattices of said grains, extending by definition of the grains over their entire spatial domain, are

Art Unit: 3663

continuously connected to each other at the grain boundaries of said semiconductor film. Furthermore, at least in the case of Figure 4B directions of the lattices are different from each other: regions A and B have different crystal orientations (Figure 4B and col. 11, I. 30-61).

Iwasaki does not necessarily teach the limitation of "a low concentration impurity region provided between the channel formation region and at least one of the source region and the drain region".

However, it would have been obvious to include said limitation in view of Inoue et al, who, in a patent on a thin film transistor (title, abstract), hence analogous art, teach the manufacture of a lightly doped drain (LDD) structure, known to be beneficial for insulated gate field effect transistors generally, for the specific advantage of prevention of pixel leakage (col. 2, I. 23-28), from which teaching motivation immediately follows.

With regard to claim 60: the direction of movements of any of the (charge) carriers has inherently two components, a random component and a component in response to the local (mainly electric) field. While the direction of said random component by its very nature is not subject to control, the component in response to the local field is a result of the operation of the device, and hence is not a limitation of the device as such. Therefore, the limitation on the direction of movement of a carrier in said channel formation region is a statement of intended use not serving to patently distinguish the claimed structure over that of the reference as long as the structure of the cited reference is capable of performing the intended use. See MPEP 2111-2115.

Art Unit: 3663

"A claim that contains a "recitation with respect to the manner in which a claimed apparatus is intended to be employed does not differentiate the claimed apparatus from a prior art apparatus" if the prior art apparatus teaches all of the structural limitations of the claim Ex parte Masham. 2 USPOd 1647.".

"Claims directed to apparatus must be distinguished from the prior art in terms of structure rather than function. In re Danly, 263 F.2d 844, 847, 120 USPQ 528, 531."

"Apparatus claims cover what is device is, not what a device does" Hewlett-Packard versus Bausch & Lomb Inc., 15 USPQ2d 1525, 1528."

In the underlying case, direction of movement of at least one carrier, in particular during the ON state, in said channel formation region coincides with, i.e., is parallel to, the direction of extension of said grain boundary, i.e., the direction along which said grain boundary is extended (see, for instance Figures 2B and 3F (grain boundary extended along 23, which has portions parallel to the channel between source and drain 26N (see Figure 3I, e.g.). Therefore, the device of the prior art is capable of performing the intended use.

With regard to claim 61: the semiconductor film by Iwasaki comprises silicon (see Figure 3J and discussion, especially col. 10, I. 51 and Example 2).

 Claim 57 is rejected under 35 U.S.C. 103(a) as being unpatentable over Iwasaki and Inoue et al as applied to claim 56, in view of Erhart et al. (USPAT 5,572,211) (previously cited).

As detailed above, claim 56 is unpatentable over Iwasaki in view of Inoue et al.

Neither Iwasaki nor Inoue et al teach the further limitation defined by claim 57, although

Art Unit: 3663

Iwasaki does teach the inclusion of TFTs in active matrix LCD displays for computers (column 1, lines 7-20).

However, it would have been obvious to include said further limitation in view of Erhart et al, who teach the inclusion of *capacitors*, e.g., 56 and 58 (column 6, line 55 – column 6, line 15), in addition to thin film transistors e.g., 48 and 50 (column 6, lines 55-60) in an active matrix display (column 6, lines 16-55) in a *personal* computer (column 12, lines 45-49). *Motivation* to include the teaching by Erhart in the device by Iwasaki derives at least from the obvious advantage to apply the invention to improvements of existing technology, i.e., to active matrix LCD displays in personal computers wherein capacitors store charge corresponding to the desired shade for the pixel electrode to which said storage capacitor pertains (column 6, line 64 – column 7, line 4). N.B.: said capacitors imply *auxiliary* capacitance because they are not part of the TFT, i.e., not part of the MOS capacitor that is part of the TFT.

Claims 58-59 and 64 are rejected under 35 U.S.C. 103(a) as being unpatentable over Iwasaki and Inoue et al as applied to claim 56, in view of den Boer (USPAT 5,539,219) (previously cited).

As detailed above, claim 56 is unpatentable over Iwasaki in view of Inoue et al.

Neither Iwasaki nor Inoue et al teach the further limitation as defined by claim 58,

although Iwasaki does teach the computer (col. 1, I. 15-20) to further comprise an active

matrix type liquid crystal display device (col. 1, I. 7-20). Iwasaki does not specifically

recited pixel electrode and opposite electrode, with liquid crystal provided therebetween.

Art Unit: 3663

However, said limitation merely conforms to the conventional active matrix liquid crystal display technology, as witnessed for instance by den Boer et al., who teach an active matrix liquid crystal display device (column 1, lines 5-33) to comprise not only TFTs 21 (column 4, line 62 – column 5, line 8) but also pixel electrode 51 (column 5, lines 5-8 and column 8, lines 33-43), common electrode 59 (column 8, lines 37-39) opposite said pixel electrode and hence qualifying as "opposite" electrode (see Figure 5) with liquid crystal 57 between said pixel electrode and said opposite electrode.

Motivation to include said limitation as taught by den Boer in the invention by Iwasaki at least derives from the economy to apply the invention to already existing and hence easily marketable technology.

With regard to claims 59, Iwasaki does not specifically teach the further limitation on channel length as recited. However, it would have been obvious to include the limitation in view of den Boer, who teaches a channel length of about 2 μ m to 4 μ m (column 8, lines 8-19) so as to achieve a reduction in pixel flickering, image retention and an improvement in gray level uniformity (see abstract). Applicant is reminded A *prima facie* case of obviousness typically exists when the ranges of a claimed composition overlap the ranges disclosed in the prior art or when the ranges of a claimed composition do not overlap but are close enough such that one skilled in the art would have expected them to have the same properties. In re Peterson, 65 USPQ2d 1379 (CA FC 2003). In the underlying case, the range in the prior art (about 2 to 4 μ m) actually overlaps the range as claimed (less than or equal 2 μ m) while motivation immediately derives from the

Art Unit: 3663

teaching by den Boer that the shortened channel length enables reduction in pixel flickering and image retention and an improvement in grey level uniformity.

With regard to claim 64: the pixel electrode by den Boer comprises ITO (col. 7, I. 51). Motivation derives at least from the good conductivity and transparency of ITO, both qualities being important for an electrode in the way of light.

- 22. Claims 62-63 are rejected under 35 U.S.C. 103(a) as being unpatentable over lwasaki and Inoue et al as applied to claim 56, in view of Kobayashi (3,925,803). As detailed above, claim 56 is unpatentable over lwasaki in view of Inoue et al. Neither lwasaki nor Inoue et al teach the further limitation of claims 62 or 63. However, it would have been obvious to include said further limitations in view of Kobayashi, who, in a patent on a field effect transistor, in particular: on the polycrystalline structure of the channel region therein, hence analogous art (TFTs are field effect transistors as well), teach the source/channel/drain region to comprise, within the channel region, rod-shaped silicon crystals 3 (col. 2, I. 30), evidently flattened at the top (Figure 1 and discussion in col. 2). Motivation derives at least from the noted high trans-conductance (see "Summary of the Invention", col. 1).
- Claims 68-70 are rejected under 35 U.S.C. 103(a) as being unpatentable over lwasaki in view of Tran et al (5.534.445).

As detailed above, claim 21 is anticipated by Iwasaki. Iwasaki does not teach the further limitation defined by claim 68.

However, with regard to claim 68, it would have been obvious to include said further limitation in view of Tran et al. who. in a patent on polysilicon-based thin film transistors.

Art Unit: 3663

teach to select a silicon wafer for providing a substrate underneath the insulating layer on which the semiconductor film is grown (Figure 1 and col. 4, I. 3-7). *Motivation* to include the teaching by Tran et al derives from the suitability of silicon wafers in the art of integrated circuitry in which the thin film transistors are often used and which is shown by Tran et al to be compatible with very low current leakage (abstract and "Detailed Description of the Invention").

Furthermore, with regard to claim 69, it would have been obvious to include said further limitation in view of Tran et al., who, in a patent on polysilicon-based thin film transistors, teach to select a silicon wafer for providing a substrate underneath the insulating layer on which the semiconductor film is grown (Figure 1 and col. 4, I. 3-7). Motivation to include the teaching by Tran et al derives from the suitability of silicon wafers in the art of integrated circuitry in which the thin film transistors are often used and which is shown by Tran et al to be compatible with very low current leakage (abstract and "Detailed Description of the Invention").

Finally, with regard to claim 70, it would have been obvious to include said further limitation in view of Tran et al, who, in a patent on polysilicon-based thin film transistors, teach to select a silicon wafer for providing a substrate underneath the insulating layer on which the semiconductor film is grown (Figure 1 and col. 4, I. 3-7). Motivation to include the teaching by Tran et al derives from the suitability of silicon wafers in the art of integrated circuitry in which the thin film transistors are often used and which is shown by Tran et al to be compatible with very low current leakage (abstract and "Detailed Description of the Invention").

Art Unit: 3663

Response to Arguments

24. Applicant's arguments filed 4/3/09 have been fully considered but they are not persuasive.

Although the removal of the limitations "wherein first lattice images....in the second crystal" overcomes the ground of rejection under 35 U.S.C. 112, 1st par., provided in the previous Office action, "directions of said lattices" (final line in claims 21, 47 and 56) "being different" while being "continuously connected" raises:

- (a) an issue of written support: the only written support in the specification is the discussion of Figures 17A and 17B. Figure 17A shows a photograph, and 17B is a schematic representation thereof. However, the lattice constant (= distance along a lattice direction between two neighboring atoms in the lattice) is 0.54 nm. Therefore, a distance of 5 nm perpendicularly across the lattice should contain no more than about ten silicon atoms. Yet said photograph shows more than twice as many dark spots across a 5 nm distance. Therefore, either the HRTEM photograph does not show a silicon lattice in which case it fails to support the claim by failing to connect to the remainder of the topic in the specification, or the HRTEM photograph is on a sub-lattice scale, showing features irrelevant to the claimed subject matter.
- (b) an issue of interpretation: "directions" in broadest reasonable interpretation is any direction associated, in the art, with the crystal lattice. Both crystal orientation and growth direction qualify in this regard.

Art Unit: 3663

It is noted that the lattices of Iwasaki have different growth directions, that growth directions are directions of the lattices, and, furthermore, that Figure 4B in Iwasaki provides an example with different orientations of the crystal lattices. It is also noted that the prior art as admitted by applicant (Figures 17C and 17D and discussion) meets the limitations as recited in the newly amended claims, i.e., "wherein lattices are continuously connected to each other at a grain boundary of said semiconductor film, and wherein directions of said lattices are different from each other" (underscore added for emphasis), Figure 17D as a schematic representation of HRTEM photograph of Figure 17A showing the dangling bonds 1701 and 1702 the invention avoids.

The above comments are believed fully responsive to applicants' Remarks because all arguments of traverse set forth in said remarks are predicated upon the newly introduced limitation on the directions of the lattices.

The rejections provided above were prompted by these considerations.

Finally, amendment has removed the ground for double patenting.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JOHANNES P. MONDT whose telephone number is (571)272-1919. The examiner can normally be reached on 7:30 - 17:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jack W. Keith can be reached on 571-272-6878. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 3663

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Johannes P Mondt/ Primary Examiner, Art Unit 3663