Supplement to "Screening Sinkhorn Algorithm via **Dual Projections**"

Anonymous Author(s)

Affiliation Address email

Proof of Lemma 1

- Introducing two dual variables $\lambda \in \mathbb{R}^n_+$ and $\beta \in \mathbb{R}^m_+$ for each constraint, the Lagrangian of problem (5)

$$\mathscr{L}(u,v,\lambda,\beta) = \frac{\varepsilon}{\kappa} \langle \lambda, \mathbf{1}_n \rangle + \varepsilon \kappa \langle \beta, \mathbf{1}_m \rangle + \mathbf{1}_n^\top B(u,v) \mathbf{1}_m - \langle \kappa u, \mu \rangle - \langle \frac{v}{\kappa}, \nu \rangle - \langle \lambda, e^u \rangle - \langle \beta, e^v \rangle$$

First order conditions then yield that the Lagrangian multiplicators solutions λ^* and β^* satisfy

$$\nabla_{u} \mathcal{L}(u^*, v^*, \lambda^*, \beta^*) = e^{u^*} \odot (Ke^{v^*} - \lambda^*) - \kappa \mu = \mathbf{0}_n,$$
 and
$$\nabla_{v} \mathcal{L}(u^*, v^*, \lambda^*, \beta^*) = e^{v^*} \odot (K^\top e^{u^*} - \beta) - \frac{\nu}{\kappa} = \mathbf{0}_m$$

which leads to

$$\lambda^* = K e^{v^*} - \kappa \mu \oslash e^{u^*} \text{ and } \beta^* = K^\top e^{u^*} - \nu \oslash \kappa e^{v^*}$$

- For all $i=1,\ldots,n$ we have that $e^{u_i^*}\geq \varepsilon\kappa^{-1}$. Further, the condition on the dual variable $\lambda_i^*>0$ ensures that $e^{u_i^*}=\varepsilon\kappa^{-1}$ and hence $i\in I_{\varepsilon,\kappa}^{\complement}$. We have that $\lambda_i^*>0$ is equivalent to $e^{u_i^*}r_i(K)e^{v_j^*}>0$
- $\kappa \mu_i$ which is satisfied when $\varepsilon^2 r_i(K) > \kappa \mu_i$. In a symmetric way we can prove the same statement
- for e^{v_j} .

11

10

Proof of Lemma 2

- We prove only the first statement (9) and symmetrically we can prove the second statement (10). For
- all $i \in I_{\varepsilon,\kappa}$, we have $e^{u_i^{\text{sc}}} > \frac{\varepsilon}{\kappa}$ or $e^{u_i^{\text{sc}}} = \frac{\varepsilon}{\kappa}$. In one hand, if $e^{u_i^{\text{sc}}} > \frac{\varepsilon}{\kappa}$ then according to the optimality conditions $\lambda_i^{\text{sc}} = 0$. Then $e^{u_i^{\text{sc}}} \sum_{j=1}^m K_{ij} e^{v_j^{\text{sc}}} = \kappa \mu_i$. In another hand, we have

$$e^{u_i^{\text{sc}}} \min_{i,j} K_{ij} \sum_{j=1}^m e^{v_j^{\text{sc}}} \le e^{u_i^{\text{sc}}} \sum_{j=1}^m K_{ij} e^{v_j^{\text{sc}}} = \kappa \mu_i.$$

- We further observe that $\sum_{j=1}^m e^{v_j^{\rm sc}} = \sum_{j \in J_{\varepsilon,\kappa}} e^{v_j^{\rm sc}} + \sum_{j \in J_{\varepsilon,\kappa}^{\rm C}} e^{v_j^{\rm sc}} \ge \varepsilon \kappa |J_{\varepsilon,\kappa}| + \varepsilon \kappa |J_{\varepsilon,\kappa}^{\rm C}| = \varepsilon \kappa m$.
- Then 16

$$\max_{i \in I_{\varepsilon,\kappa}} e^{u_i^{\text{sc}}} \leq \frac{\varepsilon}{\kappa} \vee \frac{\max_{i \in I_{\varepsilon,\kappa}} \mu_i}{m\varepsilon \min_{i,j} K_{ij}}.$$

Analogously, one can obtain for all $j \in J_{\varepsilon,\kappa}$

$$\max_{j \in J_{\varepsilon,\kappa}} e^{v_j^{sc}} \le \varepsilon \kappa \vee \frac{\max_{j \in J_{\varepsilon,\kappa}} \nu_j}{n\varepsilon \min_{i,j} K_{ij}}.$$
 (1)

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Now, since $K_{ij} \leq 1$, we have

$$e^{u_i^{\text{sc}}} \sum_{j=1}^m e^{v_j^{\text{sc}}} \ge e^{u_i^{\text{sc}}} \sum_{j=1}^m K_{ij} e^{v_j^{\text{sc}}} = \kappa \mu_i.$$

Using (1), we get

$$\sum_{j=1}^m e^{v_j^{\text{sc}}} = \sum_{j \in J_{\varepsilon,\kappa}} e^{v_j^{\text{sc}}} + \sum_{j \in J_{\varepsilon,\kappa}^{\complement}} e^{v_j^{\text{sc}}} \leq \varepsilon \kappa |J_{\varepsilon,\kappa}^{\complement}| + \varepsilon \kappa \vee \frac{\max_{j \in J_{\varepsilon,\kappa}} \nu_j}{n \varepsilon \min_{i,j} K_{ij}} |J_{\varepsilon,\kappa}|.$$

20 Therefore,

$$\min_{i \in I_{\varepsilon,\kappa}} e^{u_i^{\text{sc}}} \geq \frac{\varepsilon}{\kappa} \vee \frac{\kappa \min_{I_{\varepsilon,\kappa}} \mu_i}{\varepsilon \kappa (m - m_b) + \varepsilon \kappa \vee \frac{\max_{j \in J_{\varepsilon,\kappa}} \nu_j}{n\varepsilon \min_{i,j} K_{ij}} m_b}.$$

21

22 3 Proof of Lemma 3

The optimality condition for (u^{sc}, v^{sc}) entails

$$\mu_{i}^{\text{sc}} = \begin{cases} e^{u_{i}^{\text{sc}}} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\text{sc}}}, & \text{if } i \in I_{\varepsilon,\kappa}, \\ \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\text{sc}}}, & \text{if } i \in I_{\varepsilon,\kappa}^{\complement} \end{cases} = \begin{cases} \kappa \mu_{i}, & \text{if } i \in I_{\varepsilon,\kappa}, \\ \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\text{sc}}}, & \text{if } i \in I_{\varepsilon,\kappa}^{\complement}. \end{cases}$$
(2)

24 Using Inequality (10), we obtain

$$\|\mu^{\text{sc}}\|_{1} = \sum_{i \in I_{\varepsilon,\kappa}} \mu_{i}^{\text{sc}} + \sum_{i \in I_{\varepsilon,\kappa}^{0}} \mu_{i}^{\text{sc}}$$

$$\stackrel{(2)}{=} \kappa \|\mu_{I_{\varepsilon,\kappa}}^{\text{sc}}\|_{1} + \frac{\varepsilon}{\kappa} \sum_{i \in I^{0}} \left(\sum_{j \in J_{\varepsilon,\kappa}} K_{ij} e^{v_{j}^{\text{sc}}} + \varepsilon \kappa \sum_{j \in J_{\varepsilon,\kappa}^{0}} K_{ij} \right)$$

$$\stackrel{(10)}{\leq} \kappa \|\mu_{I_{\varepsilon,\kappa}}^{\text{sc}}\|_{1} + (n - n_{b}) \left(\frac{m_{b} \max_{j \in J_{\varepsilon,\kappa}} \nu_{j}}{n\kappa \min_{i,j} K_{ij}} + (m - m_{b}) \varepsilon^{2} \right)$$

Similarly, we can prove the same statement for $\|\nu^{\rm sc}\|_1$.

26

4 Proof of Proposition 1

We define the distance function $\varrho: \mathbb{R}_+ \times \mathbb{R}_+ \mapsto [0, \infty]$ by $\varrho(a, b) = b - a + a \log(\frac{a}{b})$. While ϱ is

not a metric, it is easy to see that ϱ is not nonnegative and satisfies $\varrho(a,b)=0$ iff a=b.

30 Straighforward,

$$\begin{split} \varrho(\mu,\mu^{\mathrm{sc}}) &= \sum_{i=1}^{n} \mu_{i}^{\mathrm{sc}} - \mu_{i} + \mu_{i} \log \left(\frac{\mu_{i}}{\mu_{i}^{\mathrm{sc}}} \right) \\ &= \sum_{i \in I_{\varepsilon,\kappa}} (\kappa - 1) \mu_{i} - \mu_{i} \log(\kappa) + \sum_{i \in I_{\varepsilon,\kappa}^{0}} \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\mathrm{sc}}} - \mu_{i} + \mu_{i} \log \left(\frac{\mu_{i}}{\frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\mathrm{sc}}}} \right) \\ &= \sum_{i \in I_{\varepsilon,\kappa}} (\kappa - \log(\kappa) - 1) \mu_{i} + \sum_{i \in I_{\varepsilon,\kappa}^{0}} \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\mathrm{sc}}} - \mu_{i} + \mu_{i} \log \left(\frac{\mu_{i}}{\frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\mathrm{sc}}}} \right) \\ &\leq \sum_{i \in I_{\varepsilon,\kappa}^{0}} \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\mathrm{sc}}} - \mu_{i} + \mu_{i} \log \left(\frac{\mu_{i}}{\frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\mathrm{sc}}}} \right) \end{split}$$

Using (10), we have in one hand

$$\begin{split} \sum_{i \in I_{\varepsilon,\kappa}^{0}} \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\kappa}} &= \sum_{i \in I_{\varepsilon,\kappa}^{0}} \frac{\varepsilon}{\kappa} \Big(\sum_{j \in J_{\varepsilon,\kappa}} K_{ij} e^{v_{j}^{\kappa}} + \varepsilon \kappa \sum_{j \in J_{\varepsilon,\kappa}^{0}} K_{ij} \Big) \\ &\leq \sum_{i \in I_{\varepsilon,\kappa}^{0}} \frac{\varepsilon}{\kappa} \Big(m_{b} \max_{i,j} K_{ij} \frac{\max_{j \in J_{\varepsilon,\kappa}} \nu_{j}}{n\varepsilon \min_{i,j} K_{ij}} + (m - m_{b}) \varepsilon \kappa \max_{i,j} K_{ij} \Big) \\ &\leq (n - n_{b}) \Big(\frac{m_{b} \max_{j} \nu_{j}}{n\kappa \min_{i,j} K_{ij}} + (m - m_{b}) \varepsilon^{2} \Big). \end{split}$$

32 On the other hand

$$\frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_j^{\kappa}} = \frac{\varepsilon}{\kappa} \left(\sum_{j \in J_{\varepsilon,\kappa}} K_{ij} e^{v_j^{\kappa}} + \varepsilon \kappa \sum_{j \in J_{\varepsilon,\kappa}^{0}} K_{ij} \right)$$

$$\geq m_b \min_{i,j} K_{ij} \frac{m \varepsilon^2 \min_{i,j} K_{ij} \min_{j \in J_{\varepsilon,\kappa}} \nu_j}{\kappa((n - n_b) m \varepsilon^2 \min_{i,j} K_{ij} + m \varepsilon^2 \min_{i,j} K_{ij} + \kappa \max_{i \in I_{\varepsilon,\kappa}} \mu_i)}$$

$$+ \varepsilon^2 (m - m_b) \min_{i,j} K_{ij}$$

$$\geq \frac{m m_b \varepsilon^2 (\min_{i,j} K_{ij})^2 \min_{j \in J_{\varepsilon,\kappa}} \nu_j}{\kappa((n - n_b) m \varepsilon^2 \min_{i,j} K_{ij} + m \varepsilon^2 \min_{i,j} K_{ij} + \kappa \max_{i \in I_{\varepsilon,\kappa}} \mu_i)}$$

$$+ \varepsilon^2 (m - m_b) \min_{i,j} K_{ij}$$

$$\geq \frac{m m_b \varepsilon^2 (\min_{i,j} K_{ij})^2 \min_{j \in J_{\varepsilon,\kappa}} \nu_j}{\kappa((n - n_b) m \varepsilon^2 \min_{i,j} K_{ij} + m \varepsilon^2 \min_{i,j} K_{ij} + \kappa \max_{i \in I_{\varepsilon,\kappa}} \mu_i)}.$$

зз Then

$$\frac{1}{\frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_j^{\text{sc}}}} \leq \frac{\kappa((n-n_b)m\varepsilon^2 \min_{i,j} K_{ij} + m\varepsilon^2 \min_{i,j} K_{ij} + \kappa \max_{i \in I_{\varepsilon,\kappa}} \mu_i)}{mm_b \varepsilon^2 (\min_{i,j} K_{ij})^2 \min_{j \in J_{\varepsilon,\kappa}} \nu_j} \\
\leq \frac{\kappa(n-n_b+1)}{m_b \min_{i,j} K_{ij} \min_{j \in J_{\varepsilon,\kappa}} \nu_j} + \frac{\kappa^2}{mm_b \varepsilon^2 (\min_{i,j} K_{ij})^2 \min_{j \in J_{\varepsilon,\kappa}} \nu_j}.$$

34 Therefore

$$\begin{split} &\sum_{i \in I_{\varepsilon,\kappa}^{\mathbf{C}}} \frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\text{sc}}} - \mu_{i} + \mu_{i} \log \left(\frac{\mu_{i}}{\frac{\varepsilon}{\kappa} \sum_{j=1}^{m} K_{ij} e^{v_{j}^{\text{sc}}}} \right) \\ &\leq (n - n_{b}) \left(\frac{m_{b}}{n \kappa \min_{i,j} K_{ij}} + (m - m_{b}) \varepsilon^{2} - \min_{i} \mu_{i} \right. \\ &\left. + \max_{i} \mu_{i} \log \left(\frac{\kappa (n - n_{b} + 1) \max_{i} \mu_{i}}{m_{b} \min_{i,j} K_{ij} \min_{j \in J_{\varepsilon,\kappa}} \nu_{j}} + \frac{\kappa^{2} \max_{i} \mu_{i}}{m m_{b} \varepsilon^{2} (\min_{i,j} K_{ij})^{2} \min_{j \in J_{\varepsilon,\kappa}} \nu_{j}} \right) \right) \end{split}$$

35 Therefore

$$\varrho(\mu, \mu^{\text{sc}}) \leq n_b(\kappa - \log(\kappa) - 1) \max_i \mu_i + (n - n_b) \left(\frac{m_b \max_j \nu_j}{n\kappa \min_{i,j} K_{ij}} + (m - m_b)\varepsilon^2 - \min_i \mu_i \right)$$

$$+ \max_i \mu_i \log \left(\frac{\kappa(n - n_b + 1) \max_i \mu_i}{m_b \min_{i,j} K_{ij} \min_{j \in J_{\varepsilon,\kappa}} \nu_j} + \frac{\kappa^2 \max_i \mu_i}{m m_b \varepsilon^2 (\min_{i,j} K_{ij})^2 \min_{j \in J_{\varepsilon,\kappa}} \nu_j} \right)$$

Finally, by Lemma 6 in [1] we get

$$\|\mu^{\star} - \mu^{\text{sc}}\|_{1} \leq \left\{ 7n_{b}(\kappa - \log(\kappa) - 1) \max_{i} \mu_{i} + 7(n - n_{b}) \left(\frac{m_{b} \max_{j} \nu_{j}}{n_{\kappa} \min_{i,j} K_{ij}} + (m - m_{b}) \varepsilon^{2} - \min_{i} \mu_{i} \right) + \max_{i} \mu_{i} \log \left(\frac{\kappa(n - n_{b} + 1) \max_{i} \mu_{i}}{m_{b} \min_{i,j} K_{ij} \min_{j \in J_{\varepsilon,\kappa}} \nu_{j}} + \frac{\kappa^{2} \max_{i} \mu_{i}}{m m_{b} \varepsilon^{2} (\min_{i,j} K_{ij})^{2} \min_{j \in J_{\varepsilon,\kappa}} \nu_{j}} \right) \right\}^{1/2}$$

References

J. Altschuler, J. Weed, and P. Rigollet. Near-linear time approximation algorithms for optimal transport via sinkhorn iteration. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems 30*, pages 1964–1974. Curran Associates, Inc., 2017.