Metody numeryczne

Wrocław, 27 stycznia 2022

1. Iteracyjne rozwiązywanie równań nieliniowych

1.1. Metoda bisekcji

1.1.1. Zasada kontrakcji Banacha

Definicja 1.1 (Odwzorowanie zwężające). Niech (X, ρ) będzie przestrzenią metryczną. Mówimy, że odwzorowanie $\Phi: X \to X$ jest zwężające, jeśli istnieje stała $k \in (0;1)$ taka, że dla dowolnych $x,y \in X$ zachodzi nierówność $\rho(\Phi(x), \Phi(y)) \leq k\rho(x,y)$.

Definicja 1.2 (Zasada kontrakcji Banacha). Niech (X, ρ) będzie przestrzenią metryczną zupełną i niech $\Phi: X \to X$ będzie kontrakcją. Wtedy:

- 1. Odwzorowanie Φ jest ciagłe.
- 2. Odwzorowanie Φ ma dokładnie jeden punkt stały $x^* \in X$, $x^* = \Phi(x^*)$.
- 3. Ciąg iteracji $x_{n+1} = \Phi(x_n)$, dla każdego $x_0 \in X$, jest zbieżny do x^* , gdy $n \to \infty$.

1.1.2. Twierdzenie Darboux

Twierdzenie 1.1 (Darboux). Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ciągłą. Jeśli f(a)f(b) < 0, to istnieje taki punkt $c \in (a,b)$, dla którego f(c) = 0.

1.1.3. Algorytm

- 1. Przyjmujemy $a_0 = a, b_0 = b, c_n = \frac{a_n + b_n}{2}, n \ge 0.$
- 2. Wyznaczamy wartości $f(a_n)$ i $f(c_n)$.

Jeśli
$$f(a_n)f(c_n) > 0$$
 to przyjmujemy $a_{n+1} = c_n$ i $b_{n+1} = b_n$.
Jeśli $f(a_n)f(c_n) < 0$ to przyjmujemy $a_{n+1} = a_n$ i $b_{n+1} = c_n$.

Jako warunek zakończenia algorytmu możemy przyjąć jedno z kryteriów: $|b_n - a_n| < \delta$ lub $|f(c_n)| < \varepsilon$, gdzie $\delta > 0$ i $\varepsilon > 0$ są ustalonymi na początku wielkościami zapewniającymi oczekiwaną dokładność aproksymacji.

1.1.4. Twierdzenie o zbieżności

Twierdzenie 1.2 (o zbieżności metody bisekcji). Niech $[a_0, b_0], [a_1, b_1], \ldots, [a_n, b_n]$ będzie ciągiem przedziałów skonstruowanych przy pomocy metody bisekcji. Wówczas ciągi $\{a_n\}$ i $\{b_n\}$ są zbieżne i

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x^*,$$

gdzie
$$f(x^*) = 0$$
. Jeśli $c_n = \frac{a_n + b_n}{2}$, to $x^* = \lim_{n \to \infty} c_n$ oraz $|c_n - x^*| \le \frac{1}{2^{n+1}} (b_0 - a_0)$.

1.2. Metoda Newtona

1.2.1. Algorytm

Aby skonstruować metodę Newtona, rozważmy rozwinięcie Taylora funkcji f(x) w otoczeniu punktu x_n ,

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + O((x - x_n)^2).$$

Przyjmując $x = x_{n+1}$ otrzymujemy przybliżenie:

$$f(x_{n+1}) \approx f(x_n) + f'(x_n)(x_{n+1} - x_n),$$

 $x_{n+1} \approx x_n - \frac{f(x_n)}{f'(x_n)},$

dla $n \ge 0$, gdzie x_0 jest zadanym punktem początkowym.

Jako warunek zakończenia algorytmu możemy przyjąć jedno z kryteriów: $|x_{n+1} - x_n| < \delta$ lub $|f(x_{n+1})| < \varepsilon$, gdzie $\delta > 0$ i $\varepsilon > 0$ są ustalonymi na początku wielkościami zapewniającymi oczekiwaną dokładność aproksymacji.

Metoda ta nie zawsze jest zbieżna (zbieżność lokalna).

1.2.2. Twierdzenie o lokalnej zbieżności

Twierdzenie 1.3 (o lokalnej zbieżności metody Newtona). Zakładamy, że $f \in C^2([a,b])$ oraz $f(x^*) = 0$ i $f'(x^*) \neq 0$ (x^* jest pierwiastkiem jednokrotnym). Wtedy istnieje otoczenie punktu x^* i stała C > 0 takie, że jeśli x_0 należy do otoczenia x^* , to ciąg konstruowanych przez metodę Newtona przybliżeń $\{x_n\}$ spełnia nierówność

$$|x_{n+1} - x^*| \le C|x_n - x^*|^2$$

oraz $\lim_{n\to\infty} x_n = x^*$.

Uwaga Niech x^* będzie podwójnym zerem funkcji f, tzn. $f(x^*) = f'(x^*) = 0$ i $f''(x^*) \neq 0$. Jeśli f''(x) jest ciągła, to metoda Newtona jest zbieżna liniowo.

1.3. Metoda siecznych

Zakładamy, że $f \in C^2([a, b])$ oraz $f(x^*) = 0$ i $f'(x^*) \neq 0$ (x^* jest pierwiastkiem jednokrotnym). W konstrukcji metody siecznych korzystamy z przybliżenia pochodnej funkcji f w punkcie x_n ilorazem różnicowym, tzn.,

$$f'(x_n) = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}},$$

$$x_{n+1} \approx x_n - \frac{f(x_n)}{f'(x_n)} \approx x_n - \frac{f(x_n)}{\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}},$$

dla $n \ge 1$, gdzie x_0 i x_1 są zadanymi punktami początkowymi.

Jako warunek zakończenia algorytmu możemy przyjąć jedno z kryteriów: $|b_n - a_n| < \delta$ lub $|f(c_n)| < \varepsilon$, gdzie $\delta > 0$ i $\varepsilon > 0$ są ustalonymi na początku wielkościami zapewniającymi oczekiwaną dokładność aproksymacji.

1.3.1. Twierdzenie o lokalnej zbieżności

Twierdzenie 1.4 (o lokalnej zbieżności metody siecznych). Niech $f \in C^2([a,b])$ oraz $f(x^*) = 0$ i $f'(x^*) \neq 0$ (x^* jest pierwiastkiem jednokrotnym). Wtedy istnieje otoczenie U punktu x^* i stała K takie, że jeśli przybliżenia początkowe $x_0, x_1 \in U$, to ciąg $\{x_n\}$ skonstruowany za pomocą metody siecznych spełnia nierówność

$$|x_{n+1} - x^*| \le K|x_n - x^*|^{\frac{1+\sqrt{5}}{2}}$$

 $oraz \lim_{n \to \infty} x_n = x^*.$

2. Interpolacja za pomocą wielomianów i funkcji sklejanych

2.1. Powiązane twierdzenia

2.1.1. Twierdzenie o istnieniu i jednoznaczności wielomianu interpolacyjnego

Twierdzenie 2.1 (o istnieniu i jednoznaczności wielomianu interpolacyjnego). Niech dany będzie zbiór n+1 punktów $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$ Wówczas istnieje dokładnie jeden wielomian $p_n(x)$ stopnia n, taki że $p_n(x_i) = y_i$ dla $i = 0, \ldots, n$.

2.1.2. Twierdzenie Rolle'a

Twierdzenie 2.2 (Rolle'a). Niech $f \in C([a,b])$ oraz $f \in C^1((a,b))$. Wówczas jeśli f(a) = f(b), to istnieje taki punkt $c \in (a,b)$, że f'(c) = 0.

2.1.3. Twierdzenie o błędzie interpolacji

Twierdzenie 2.3. Niech $f \in C^{n+1}([a,b])$ i niech $p_n(x)$ będzie wielomianem interpolacyjnym stopnia n-tego spełniającym warunki interpolacji w węzłach $a \le x_0 < x_1 < \ldots < x_n \le b$. Wtedy istnieje $\xi_x \in (a,b)$ taki, że

$$f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i).$$

2.2. Interpolacja wielomianami Vandermonde'a

Rozważmy wielomian interpolacyjny w postaci naturalnej

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n,$$

spełniający warunki interpolacji $p_n(x_i) = y_i$ dla i = 0, 1, ..., n. Wówczas wyznaczenie n+1 współczynników $a_0, a_1, ..., a_n$ polega na rozwiązaniu układu równań

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Macierz powyższego układu nazywa się macierzą Vandermonde'a.

2.3. Interpolacja wielomianami Lagrange'a

Wielomian interpolacyjny Lagrange'a ma postać

$$p_n(x) = \sum_{i=0}^n y_i l_i(x),$$

gdzie wielomiany $l_i(x)$ są dane wzorem

$$l_i = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}.$$

2.4. Wzór interpolacyjny Newtona

2.4.1. Wzór interpolacyjny

Wielomian interpolacyjny Newtona ma postać

$$p_n(x) = \sum_{j=0}^n f[x_0, x_1, \dots, x_j] q_j(x),$$

gdzie $q_0(x) \equiv 1, q_j(x) = \prod_{i=0}^{j-1} (x-x_i) \text{ dla } j = 1, \dots, n.$ Natomiast $f[x_0, x_1, \dots, x_j]$ to iloraz różnicowy zdefiniowany następująco

Definicja 2.1 (Iloraz różnicowy).

$$f[x_i] := y_i$$

$$f[x_i, x_{i+1}, \dots, x_{i+j}] := \frac{f[x_{i+1}, \dots, x_{i+j} - f[x_i, x_{i+1}, \dots, x_{i+j-1}]}{x_{i+j} - x_i}.$$

2.4.2. Tablica trójkatna

Przykładowo dla wielomianu 3-go stopnia tablica trójkątna ilorazów różnicowych ma postać

$$x_0$$
 $f[x_0]$ $f[x_0, x_1]$ $f[x_0, x_1, x_2]$ $f[x_0, x_1, x_2, x_3]$
 x_1 $f[x_1]$ $f[x_1, x_2]$ $f[x_1, x_2, x_3]$
 x_2 $f[x_2]$ $f[x_2, x_3]$
 x_3 $f[x_3]$

Zauważmy, że wartości w pierwszym wierszu są szukanymi współczynnikami.

2.5. Interpolacja wielomianami Czebyszewa

2.5.1. Wielomiany Czebyszewa pierwszego rodzaju

Definicja 2.2 (Wielomiany Czebyszewa pierwszego rodzaju). Wielomiany Czebyszewa pierwszego rodzaju $T_n(x)$ definiujemy rekurencyjnie:

$$\begin{cases} T_0(x) = 1, T_1(x) = x, \\ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) & dla \ n \ge 1. \end{cases}$$

 $Dla \ x \in [-1,1] \ wielomiany \ Czebyszewa \ można \ przedstawić \ w \ postaci$

$$T_n(x) = \cos(n \arccos x)$$
 dla $n \ge 1$.

Wielomian $T_n(x)$ dla $n \ge 1$ ma jednokrotne, rzeczywiste miejsca zerowe x_i^* leżące w przedziałe [-1,1] i równe

$$x_j^* = \cos \frac{(2j+1)\pi}{2n}$$
 dla $j = 0, 1, \dots, n-1$.

Wielomian $T_n(x)$ ma n+1 punktów ekstremalnych y_i w przedziale [-1,1], qdzie

$$y_j = \cos \frac{j\pi}{n}$$
 dla $j = 0, 1, \dots, n$.

2.5.2. Błąd interpolacji

Jeśli węzłami x_i , $i=0,\ldots,n$, są zera wielomianu Czebyszewa T_{n+1} , to dla $|x| \leq 1$ mamy następujące oszacowanie błędu interpolacji

$$\max_{x \in [-1;1]} |f(x) - p_n(x)| \le \frac{1}{2^n (n+1)!} \max_{x \in [-1;1]} |f^{(n+1)}(x)|.$$

2.6. Interpolacja funkcjami sklejanymi 3-go stopnia

2.6.1. Definicja funkcji sklejanej 3-go stopnia

Definicja 2.3. Niech dana będzie funkcja $f:[a,b] \to \mathbb{R}$ i zbiór węzłów $a = x_0 < x_1 < \ldots < x_n = b$. Funkcją sklejaną 3-go stopnia dla funkcji fspełnia następujące warunki:

- 1. $funkcja\ s\ jest\ wielomianem\ 3-go\ stopnia\ oznaczonym\ przez\ s_i\ na\ prze$ $dziale [x_j, x_j + 1] dla j = 0, 1, ..., n - 1;$
- 2. $s_i(x_i) = f(x_i)$ i $s_i(x_{i+1}) = f(x_{i+1})$ dla $j = 0, 1, \dots, n-1$;
- 3. $s_j(x_{j+1}) = s_{j+1}(x_{j+1})$ dla j = 0, 1, ..., n-2;4. $s'_j(x_{j+1}) = s'_{j+1}(x_{j+1})$ dla j = 0, 1, ..., n-2;5. $s''_j(x_{j+1}) = s''_{j+1}(x_{j+1})$ dla j = 0, 1, ..., n-2;

- 6. spełniony jest jeden z warunków brzegowych

$$s''(x_0) = s''(x_n) = 0,$$

 $s'(x_0) = f'(x_0) i s'(x_n) = f'(x_n).$

2.6.2. Konstrukcja

Niech

$$s_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

dla j = 0, 1, ..., n - 1. Dodatkowo wprowadzamy $h_j = x_{j+1} - x_j$ dla j = 0 $0,1,\dots,n-1.$ Współczynniki wielomianu s_j można wtedy obliczyć z następujących wzorów:

$$a_{j} = f(x_{j}),$$

$$b_{j} = \frac{1}{h_{j}}(a_{j+1} - a_{j}) - \frac{h_{j}}{3}(2c_{j} + c_{j+1}),$$

$$d_{j} = \frac{1}{3h_{j}}(c_{j+1} - c_{j}),$$

a c_i rozwiązując równanie macierzowe:

$$A\vec{x} = \vec{b}$$
,

gdzie macierz A

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & \dots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & \dots & 0 & 0 & 1 \end{bmatrix},$$

natomiast wektory \vec{x} i \vec{b}

$$\vec{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}.$$

3. Aproksymacja metodą najmniejszych kwadratów

3.1. Definicja

[metody najmniejszych kwadratów]

Definicja 3.1. Niech $f \in L^2_w([a,b])$, czyli f jest funkcją na przedziale [a,b] w przestrzeni z normą

$$||f||_{2,w} = \left(\int_a^b |f(x)|^2 w(x) dx\right)^{\frac{1}{2}},$$

gdzie $w(x) \ge 0$ nazywamy wagą. Problem aproksymacji średniokwadratowej definiujemy jako znalezienie $\bar{a}^* = (a_1^*, \dots, a_n^*)$, takie że

$$||f - \Phi(\cdot; \bar{a}^*)||_{2,w} = \min_{\bar{a}} ||f - \Phi(\cdot; \bar{a})||_{2,w},$$

co można zapisać jako

$$\int_a^b |f(x) - \sum_{k=1}^n a_k^* \phi_k(x)|^2 w(x) \, \mathrm{d} \, x = \min_{\bar{a}} \int_a^b |f(x) - \sum_{k=1}^n a_k \phi_k(x)|^2 w(x) \, \mathrm{d} \, x.$$

3.2. Rozwiązanie

Warunek konieczny istnienia minimum przyjmuje postać

$$\frac{\partial}{\partial a_j} \int_a^b |f(x) - \sum_{k=1}^n a_k \phi_k(x)|^2 w(x) \, \mathrm{d} \, x = 2 \sum_{k=1}^n \alpha_{k,j} a_k - 2\beta_j = 0,$$

gdzie $\alpha_{k,j} = \langle \phi_k, \phi_j \rangle_w$ oraz $\beta_j = \langle f, \phi_k \rangle_w$, gdzie $\langle f, g \rangle_w$ to iloczyn skalarny zdefiniowany jako $\langle f, g \rangle_w = \int_a^b f(x)g(x)w(x) \, \mathrm{d} x$.

W postaci macierzowej powyższy układ równań przyjmuje postać

$$\begin{bmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

Rozwiązując powyższy układ otrzymujemy optymalny wektor współczynników $\bar{a}^* = \bar{a}$.

3.3. Ortogonalizacja Grama-Schmidta

Niech dany będzie układ wektorów $\{\phi_1(x), \ldots, \phi_n(x)\}$. Wówczas proces ortogonalizacji Gramma-Schmidta przebiega następująco:

$$\psi_{1} = \phi_{1},$$

$$\psi_{2} = \phi_{2} - \frac{\langle \phi_{2}, \phi_{1} \rangle}{\langle \psi_{1}, \psi_{1} \rangle} \phi_{2},$$

$$\psi_{3} = \phi_{3} - \frac{\langle \phi_{3}, \psi_{1} \rangle}{\langle \psi_{1}, \psi_{1} \rangle} \phi_{3} - \frac{\langle \phi_{3}, \psi_{2} \rangle}{\langle \psi_{2}, \psi_{2} \rangle} \phi_{3},$$

$$\vdots$$

$$\psi_{n} = \phi_{n} - \sum_{k=1}^{n-1} \frac{\langle \phi_{n}, \psi_{k} \rangle}{\langle \psi_{k}, \psi_{k} \rangle} \phi_{n}.$$

Otrzymany zbiór $\{\psi_1, \psi_2, \dots, \psi_n\}$ jest zbiorem wektorów ortogonalnych.

Aby zbudować w ten sposób zbiór ortonormalny, każdy wektor należy podzielić przez jego normę:

$$\psi_k = \frac{\psi_k}{||\psi_k||}$$

dla k = 1, 2, ..., n.

3.4. W bazie ortonormalnej

Dla bazy ortonormalnej $\{\psi_1(x), \psi_2(x), \dots, \psi_n(x)\}$

$$\frac{\partial}{\partial a_j} \int_a^b |f(x) - \sum_{k=1}^n a_k \psi_k(x)|^2 w(x) \, \mathrm{d} x = 2a_j - 2\beta_j = 0.$$

W postaci macierzowej powyższy układ równań przyjmuje postać

$$\begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}.$$

3.5. Wielomiany Legendre'a

Dla bazy wielomianów o współczynnikach rzeczywistych $\{1, x, x^2, \ldots\}$ iloczyn skalarny można zdefiniować jako

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, \mathrm{d} x.$$

Przeprowadzając proces ortogonalizacji Gramma-Schmidta dostaniemy wielomiany Legendre'a dane wzorem

$$L_j(x) = \frac{1}{2^j j!} \frac{\mathrm{d}^j}{\mathrm{d} x^j} (x^2 - 1)^j$$

dla j = 0, 1, ...

3.6. Aproksymacja dyskretna

Zakładamy, że wartości funkcji $f:[a,b] \to \mathbb{R}$ są znane na danym zbiorze m punktów $a \leq x_1 < x_2 < \ldots < x_m \leq b$. Określamy normę

$$||f||_{w,p} = \left(\sum_{j=1}^{m} |f(x_j)|^p w_j\right)^{\frac{1}{p}},$$

gdzie $w_j \geqslant 0$ dla $j=1,\ldots,m$ są wagami. Zadanie aproksymacji dyskretnej formułujemy w następujący sposób: Znaleźć \bar{a}^* takie, że

$$||f - \Phi(\cdot; \bar{a}^*)||_{w,p} = \min_{\bar{a}} \left(\sum_{j=1}^m ||f(x_j) - \Phi(x_j; \bar{a})||^p w_j \right)^{\frac{1}{p}}$$

4. Przybliżone całkowanie

4.1. Ogólny wzór

Definicja 4.1 (Kwadratura). Niech $f \in C((a,b))$. Ogólny wzór określający kwadraturę ma postać

$$S(f) = \sum_{i=1}^{n} f(x_i)w_i,$$

gdzie $a = x_0 < x_1 < \ldots < x_n = b$ są węzłami kwadratury, a wartości w_0, w_1, \ldots, w_n są wagami kwadratury.

4.2. Kwadratura Newtona-Cotesa

4.2.1. Wzór

Węzły równo rozłożone otrzymujemy w wyniku równomiernego podziału odcinak [a,b], tzn. $x_0=a,x_i=a+ih,h=\frac{b-a}{n}$. Wagi kwadratury Newtona-Cotes'a dane są wzorem

$$w_i = \int_a^b l_i(x) \, \mathrm{d} \, x$$

gdzie $l_i(x)$ jest wielomianem Lagrange'a (patrz rozdział 2.3.).

4.2.2. Oszacowanie błędu

Zdefiniujmy E(f) jako błąd kwadratury. Dla kwadratury Newtona-Cotesa:

$$E(f) \le \frac{b-a}{(n+1)!} \max_{x \in (a,b)} |f^{(n+1)(x)}| \max_{x \in (a,b)} \prod_{i=0}^{n} (x-x_i).$$

4.3. Kwaratura trapezu

4.3.1. Wzór

Węzły zadane jako $x_0 = a, x_1 = b, h = x_1 - x_0$. Wzór kwadratury

$$S(f) = \frac{h}{2}(f(a) + f(b)),$$

czyli wagi $w_0 = w_1 = \frac{h}{2}$.

4.3.2. Oszacowanie błędu

Zdefiniujmy E(f) jako błąd kwadratury. Dla kwadratury trapezu:

$$E(f) \le \frac{1}{12} h^3 \max_{x \in (a,b)} |f''(x)|.$$

4.4. Kwadratura Simpsona

4.4.1. Wzór

Węzły zadane jako $x_0=a, x_1=\frac{a+b}{2}, x_2=b, h=x_1-x_0=x_2-x_1.$ Wzór kwadratury

$$S(f) = \frac{h}{3} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right),$$

czyli wagi $w_0 = w_2 = \frac{h}{3}$ i $w_1 = \frac{4h}{3}$.

4.4.2. Oszacowanie błędu

Zdefiniujmy E(f) jako błąd kwadratury. Dla kwadratury Simpsona:

$$E(f) \le \frac{1}{90} h^5 \max_{x \in (a,b)} |f^{(4)}(x)|.$$

4.5. Kwadratury złożone

4.5.1. Wzór ogólny

Dokonujemy równomiernego podziału odcinka [a, b], tak że

$$a = c_0 < c_1 < \ldots < c_N = b.$$

Ogólny wzór ma postać

$$S(f) = \sum_{j=0}^{N-1} \left(\sum_{i=1}^{n} f(x_i) w_i \right).$$

4.5.2. Oszacowanie błędu

Zdefiniujmy E(f) jako błąd kwadratury. Ogólnie dla kwadratury złożonej:

$$E(f) \leqslant C(f) \frac{b-a}{n} h^{r-1},$$

gdzie C(f) jest stałą zależną tylko od funkcji f (związaną z kwadraturą prostą), $h=\frac{b-a}{nN}$, gdzie n+1 to liczba węzłów kwadratury prostej, a N liczba podprzedziałów odcinka [a,b], natomiast r to rząd zbieżności danej kwadratury prostej.

4.5.3. Wzory

Kwadratura złożona prostokąta:

$$S(f) = \sum_{j=0}^{N-1} f(c_j)h \quad \text{lub} \quad S(f) = \sum_{j=0}^{N-1} f\left(\frac{c_j + c_{j+1}}{2}\right)h \quad \text{lub} \quad S(f) = \sum_{j=0}^{N-1} f(c_{j+1})h.$$

Kwadratura złożona trapezu:

$$S(f) = \frac{h}{2} \sum_{j=0}^{N-1} (f(c_j) + f(c_{j+1})) \quad \text{lub} \quad S(f) = h \sum_{j=0}^{N-1} f(c_j) - \frac{h}{2} (f(c_0) + f(c_N)).$$

Kwadratura złożona Simpsona:

$$S(f) = \frac{h}{3} \sum_{i=0}^{N-1} \left(f(c_j) + 4f(c_{j+\frac{1}{2}}) + f(c_{j+1}) \right).$$

4.5.4. Ekstrapolacja Richardsona

Ekstrapolacja Richardsona to metoda poprawiania dokładności wyników otrzymanych przez zastosowanie kwadratur złożonych.

Dla danej funkcji f
 dalej będziemy oznaczać kwadraturę S(h):=S(f;h)jako funkcję parametru h. Nowa kwadratura ma postać

$$T(h) = \frac{1}{3} \left(4S\left(\frac{h}{2}\right) - S(h) \right).$$

4.5.5. Oszacowanie błędu ekstrapolacji prostej Richardsona

Zdefiniujmy E(f) jako błąd ekstrapolacji Richardsona. Wtedy

$$E(f) \leqslant Ch^3$$
.

5. Przybliżone rozwiązywanie równań różniczkowych

5.1. Przybliżone rozwiązywanie równań różniczkowych pierwszego rzędu

5.1.1. Twierdzenie Picarda-Lindelöfa

Twierdzenie 5.1 (Picarda-Lindelöfa). Niech $f: P \to R$ będzie funkcją spełniającą na prostokącie $P := [x_0 - \delta, x_0 + \delta] \times [y_0 - \epsilon, y_0 + \epsilon]$, gdzie $\delta > 0$, warunek Lipschitza względem y, tzn., istnieje stała L > 0 taka, że

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

dla wszystkich $x \in [x_0 - \delta, x_0 + \delta]$ i wszystkich $y_1, y_2 \in [y_0 - \epsilon, y_0 + \epsilon]$. Wówczas istnieje dokładnie jedno rozwiązanie $y : [x_0 - \eta, x_0 + \eta] \to \mathbb{R}$ zagadnienia początkowego

$$\begin{cases} y'(x) = f(x, y(x)), & x \in (a, b), \\ y(x_0) = y_0, & \end{cases}$$

gdzie $f: [a, b] \times \mathbb{R} \to \mathbb{R}, \eta = \min\{\delta, \frac{\epsilon}{M}\}, M = \sup\{|f(x, y)| : (x, y) \in P\}.$

5.1.2. Metoda Eulera

Metoda Eulera polega na konstrukcji rozwiązań przybliżonych na podstawie zależności:

- 1. Metoda Eulera jawna (w przód): $y_{n+1} = y_n + hf(x_n, y_n)$,
- 2. Metoda Eulera niejawna (w tył): $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$, gdzie y_0 jest dane.

Dla n = 0, 1, ..., N, wprowadzamy definicję błędu $e_n := y(x_n) - y_n$. Błąd metody jawnej Eulera szacujemy jako:

$$|e_{n+1}| \leqslant \frac{M}{L} \left(e^{(b-a)L} - 1 \right) h,$$

gdzie stała M>0 spełnia warunek $M\geqslant \frac{O(h^2)}{h^2},$ a stała L wynika z warunku Lipschitza (patrz rozdział 5.1.1.).

Uwaga Metoda jawna nie zawsze jest stabilna. Przykładowo dla zagadnienia:

$$\begin{cases} y'(x) &= -ky(x), \quad x > 0, \\ y(0) &= 1, \end{cases}$$

gdzie k > 0, rozwiązanie jest stabilne o ile kh < 1.

Uwaga Metoda niejawna jest absolutnie stabilna.

5.1.3. Metoda Rungego-Kutty

Schemat Rungego-Kutty rzędu drugiego ma postać

$$\begin{cases} k_1 = f(x_n, y_n)h, \\ k_2 = f(x_n + h, y_n + k_1)h, \\ y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2). \end{cases}$$

W podobny sposób konstruujemy metodę Rungego-Kutty rzędu czwartego

$$\begin{cases} k_1 = f(x_n, y_n)h, \\ k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)h, \\ k_3 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)h, \\ k_4 = f(x_n + h, y_n + k_3)h, \\ y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4). \end{cases}$$

5.2. Przybliżone rozwiązywanie równań różniczkowych drugiego rzędu

5.2.1. Metoda różnic skończonych

Rozważmy zagadnienie brzegowe dla równania różniczkowego drugiego rzędu

$$\begin{cases} -y'' + q(x)y = g(x), & x \in (a, b), \\ y(a) = \alpha, \\ y(b) = \beta, \end{cases}$$

gdzie $q(x) \in C([a, b]), q(x) \ge 0.$

Przybliżone rozwiązanie można otrzymać z równania macierzowego

$$\begin{bmatrix} 2+q_1h^2 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2+q_2h^2 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 2+q_{N-1}h^2 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} g_1h^2 \\ g_2h^2 \\ \vdots \\ g_Nh^2 \end{bmatrix}.$$

Oszacowanie błędu przy założeniu $y \in C^4([a, b])$ to

$$|y(x_i) - y_i| \le \frac{Mh^2}{24}(x_i - a)(x_i - b).$$

Do rozwiązywania równań różnicowych można wykrozystać metodę przeganiania. W ogólnym schemacie rozważa się układ równań

$$\begin{cases} a_i y_{i-1} + b_i y_i + c_i y_{i+1} = f_i, \\ y_0 = \alpha, \\ y_N = \beta. \end{cases}$$

Na początku konstruujemy ciągi

$$L_1 = \frac{-c_1}{b_1}, K_1 = \frac{f_1 - a_1 \alpha}{b_1},$$

$$L_{i+1} = \frac{-c_{i+1}}{a_{i+1}L_i + b_{i+1}}, K_{i+1} = \frac{f_{i+1} - a_{i+1}K_i}{a_{i+1}L_i + b_{i+1}}, i = 1, 2, \dots, N - 2$$

Dalej idziemy od końca

$$y_N = \beta,$$

 $y_{N-1} = L_{N-1}y_N + K_{N-1},$
 \vdots
 $y_i = L_i y_{i+1} + K_i,$
 \vdots
 $y_1 = L_1 y_2 + K_1.$

5.2.2. Metoda elementów skończonych (Ritza-Galerkina)

Rozważamy zagadnienie brzegowe dla równania różniczkowego drugiego rzedu postaci

$$\begin{cases} -(p(x)y'(x))' + q(x)y(x) = f(x), & x \in (a,b), \\ y(a) = y(b) = 0, \end{cases}$$

gdzie $p, q, f : [a, b] \to \mathbb{R}$ są danymi funkcjami.

Uwaga Ogólny warunek brzegowy $y(a) = \alpha, y(b) = \beta$ można łatwo zmienić na jednorodny, wprowadzając nową funkcję

$$\bar{y}(x) = y(x) - \frac{\beta - \alpha}{b - a}(x - a) - \alpha,$$

która spełnia zagadnienie brzegowe z nieco zmienioną prawą stroną równania.

Przybliżone rozwiązanie $y_h(x)$ zadane jest wzorem

$$y_h(x) = \sum_{i=1}^{N-1} y_i \phi_i(x),$$

gdzie funkcje $\phi_i(x)$ mają postać

$$\phi_i(x) = \begin{cases} 0 & \text{dla } x \notin (x_{i-1}, x_{i+1}), \\ 1 - \frac{|x - x_i|}{h} & \text{dla } x \in (x_{i-1}, x_{i+1}), \end{cases}$$

natomiast y_i wyznacza się z równania macierzowego $A\vec{y} = \vec{f}$, gdzie

$$a_{ij} = \int_a^b p(x)\phi_i'(x)\phi_j'(x) dx + \int_a^b q(x)\phi_i(x)\phi_j(x) dx,$$

$$f_j = \int_a^b f(x)\phi_j(x) dx.$$

Dla stałych współczynników p i q:

$$a_{ij} = \begin{cases} \frac{2p}{h} + \frac{4qh}{6} & \text{dla } j = i, \\ -\frac{p}{h} + \frac{qh}{6} & \text{dla } j \in i - 1, i + 1, \\ 0 & \text{dla } j \notin i - 1, i, i + 1. \end{cases}$$

Dla zmiennych współczynników p i q:

1. j = i

$$a_{ij} = \frac{1}{h^2} \int_{x_{i-1}}^{x_{i+1}} p(x) \, \mathrm{d} \, x + \int_{x_{i-1}}^{x_i} q(x) \left(1 + \frac{x - x_i}{h} \right)^2 \, \mathrm{d} \, x + \int_{x_i}^{x_{i+1}} q(x) \left(1 - \frac{x - x_i}{h} \right)^2 \, \mathrm{d} \, x,$$

2. j = i + 1

$$a_{ij} = -\frac{1}{h^2} \int_{x_i}^{x_{i+1}} p(x) dx + \int_{x_i}^{x_{i+1}} q(x) \left(1 - \frac{x - x_i}{h}\right) \left(1 + \frac{x - x_{i+1}}{h}\right) dx,$$

3. j = i - 1

$$a_{ij} = -\frac{1}{h^2} \int_{x_{i-1}}^{x_i} p(x) dx + \int_{x_{i-1}}^{x_i} q(x) \left(1 + \frac{x - x_i}{h}\right) \left(1 - \frac{x - x_{i-1}}{h}\right) dx.$$

5.3. Przybliżone rozwiązywanie równania ciepła

5.3.1. Metoda różnic skończonych

Rozważamy jedonwymiarowe równanie ciepła (dyfuzji)

$$\frac{\partial u}{\partial t}(x,t) = c \frac{\partial^2 u}{\partial x^2}(x,t)$$

określone dla $0 < x < L, \, 0 < t < T.$ Ponadto zakładamy, że spełnione są warunki brzegowe

$$u(0,t) = \alpha, \quad u(L,t) = \beta$$

dla 0 < t < T oraz warunek początkowy

$$u(x,0) = f(x)$$

dla 0 < x < L, gdzie f jest daną funkcją rzeczywistą. Stała c > 0 nazywa się współczynnikiem przewodzenia ciepła (dyfuzji).

W celu konstrukcji przybliżonego rozwiązania zagadnienia początkowobrzegowego, w pierwszym kroku dokonujemy równomiernego podziału przedziałów [0,L] i [0,T]:

$$0 = x_0 < x_1 < \dots < x_n = L, \quad h = x_{i+1} - x_i,$$

$$0 = t_0 < t_1 < \dots < t_m = T, \quad \Delta t = t_{k+1} - t_k.$$

Wprowadźmy oznaczenie $u_i^k \approx u(x_i, t_k)$, gdzie u jest rozwiązaniem zagadnienia początkowo-brzegowego dla równania ciepła. Dodatkowo definiujemy wektor $\vec{u}^k = (u_1^k, u_2^k, \dots, u_{n-1}^k)^T$.

Schemat jawny zadany jest równaniem macierzowym

$$\vec{u}^{k+1} = A\vec{u}^k.$$

$$A = \begin{bmatrix} 1 - 2\lambda & \lambda & 0 & \dots & 0 & 0 \\ \lambda & 1 - 2\lambda & 0\lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 - 2\lambda \end{bmatrix}, \quad \lambda = \frac{c\Delta t}{h^2}.$$

Uwaga Aby metoda jawna była stabilna, musi być spełniony warunek Couranta-Friedrichsa-Lewy'ego

$$\lambda < \frac{1}{2}$$
.

Schemat niejawny zadany jest równaniem macierzowym

$$B\vec{u}^k = \vec{u}^{k-1},$$

$$B = \begin{bmatrix} 1 + 2\lambda & -\lambda & 0 & \dots & 0 & 0 \\ -\lambda & 1 + 2\lambda & 0 - \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\lambda & 1 + 2\lambda \end{bmatrix}, \quad \lambda = \frac{c\Delta t}{h^2}.$$

Schemat Cranka-Nicolsona otrzymujemy w wyniku uśrednienia schematu jawnego i niejawnego. Zadany jest równaniem macierzowym

$$A\vec{u}^k = B\vec{u}^{k-1}.$$

6. Iteracyjne rozwiązywanie układów równań algebraicznych

Spis treści

1.	Itera	acyjne	rozwiązywanie równań nieliniowych	1
	1.1.	Metod	a bisekcji	1
		1.1.1.	Zasada kontrakcji Banacha	1
		1.1.2.	Twierdzenie Darboux	1
		1.1.3.	Algorytm	1
		1.1.4.	Twierdzenie o zbieżności	1
	1.2.	Metod	a Newtona	2
		1.2.1.	Algorytm	2
		1.2.2.	Twierdzenie o lokalnej zbieżności	2
	1.3.	Metod	a siecznych	2
		1.3.1.	Twierdzenie o lokalnej zbieżności	3
2.	Inte	rpolacj	a za pomocą wielomianów i funkcji sklejanych	3
	2.1.		zane twierdzenia	3
		2.1.1.	Twierdzenie o istnieniu i jednoznaczności wielomianu	
			interpolacyjnego	3
		2.1.2.	Twierdzenie Rolle'a	3
		2.1.3.	Twierdzenie o błędzie interpolacji	3
	2.2.	Interpo	olacja wielomianami Vandermonde'a	3
	2.3.	Interpo	olacja wielomianami Lagrange'a	4
	2.4.	Wzór i	nterpolacyjny Newtona	4
		2.4.1.	Wzór interpolacyjny	4
		2.4.2.	Tablica trójkątna	4
	2.5.	Interpo	olacja wielomianami Czebyszewa	4
		2.5.1.	Wielomiany Czebyszewa pierwszego rodzaju	4
		2.5.2.	Błąd interpolacji	5
	2.6.	Interpo	olacja funkcjami sklejanymi 3-go stopnia	5
		2.6.1.	Definicja funkcji sklejanej 3-go stopnia	5
		2.6.2.	Konstrukcja	5
3.	Apre	oksyma	acja metodą najmniejszych kwadratów	6
	3.1.	Definic	ja	6
	3.2.	Rozwiązanie		
	3.3.	_	onalizacja Grama-Schmidta	7
	3.4.	W baz	ie ortonormalnej	7

	3.5.	Wielomiany Legendre'a	8
	3.6.	Aproksymacja dyskretna	8
4.	Przy	bliżone całkowanie	8
	4.1.	Ogólny wzór	8
	4.2.	Kwadratura Newtona-Cotesa	8
		4.2.1. Wzór	8
		4.2.2. Oszacowanie błędu	9
	4.3.	Kwaratura trapezu	9
		4.3.1. Wzór	9
		4.3.2. Oszacowanie błędu	9
	4.4.	Kwadratura Simpsona	9
		4.4.1. Wzór	9
		4.4.2. Oszacowanie błędu	9
	4.5.	Kwadratury złożone	9
		4.5.1. Wzór ogólny	9
		4.5.2. Oszacowanie błędu	10
		4.5.3. Wzory	10
		4.5.4. Ekstrapolacja Richardsona	10
		4.5.5. Oszacowanie błędu ekstrapolacji prostej Richardsona	10
5.	Przy	bliżone rozwiązywanie równań różniczkowych	10
	5.1.	Przybliżone rozwiązywanie równań różniczkowych pierwszego rzędu	10
		5.1.1. Twierdzenie Picarda-Lindelöfa	10
		5.1.2. Metoda Eulera	11
		5.1.3. Metoda Rungego-Kutty	11
	5.2.	Przybliżone rozwiązywanie równań różniczkowych drugiego rzędu .	12
		5.2.1. Metoda różnic skończonych	12
		5.2.2. Metoda elementów skończonych (Ritza-Galerkina)	13
	5.3.	Przybliżone rozwiązywanie równania ciepła	14
		5.3.1. Metoda różnic skończonych	14
6.	Itera	acyjne rozwiązywanie układów równań algebraicznych	15