

Global United Technology Services Co., Ltd.

Report No.: GTS201608000197E05

FCC REPORT

Applicant: SHENZHEN FCAR TECHNOLOGY CO.,LTD

Address of Applicant: 8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan,

Shenzhen, Guangdong, China 518060

Equipment Under Test (EUT)

Product Name: AUTO DIAGNOSTIC SYSTEM

Model No.: F7S-W, F7S-D, F7S-G, F7S-E, F7S-R, F7S-M, F7S-P, F7S-N

Trade Mark: FCAR

FCC ID: 2AJDD-IDIAGSF7S

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2015

Date of sample receipt: August 24, 2016

Date of Test: August 25-September 02, 2016

Date of report issued: September 05, 2016

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	September 05, 2016	Original

Prepared By:	Your Liu	Date:	September 05, 2016	
	Project Engineer			•
Check By:	Reviewer	Date:	September 05, 2016	_

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
-	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	IERAL INFORMATION	5
	5.1 5.2 5.3	CLIENT INFORMATIONGENERAL DESCRIPTION OF EUTTEST MODE	5
	5.4 5.5 5.6	DESCRIPTION OF SUPPORT UNITS TEST FACILITY TEST LOCATION	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4 7.5	CHANNEL BANDWIDTHPOWER SPECTRAL DENSITY	
	7.5 7.6	BAND EDGES	_
	7.6.1		
	7.0. h	SPURIOUS EMISSION	
		1 Radiated Emission Method	
	7.8	FREQUENCY STABILITY	
8	TES	T SETUP PHOTO	33
9	EUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209/15.407(b)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

5 General Information

5.1 Client Information

Applicant:	SHENZHEN FCAR TECHNOLOGY CO.,LTD
Address of Applicant:	8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan, Shenzhen, Guangdong, China 518060
Manufacturer/ Factory:	SHENZHEN FCAR TECHNOLOGY CO.,LTD
Address of Manufacturer/ Factory:	8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan, Shenzhen, Guangdong, China 518060

5.2 General Description of EUT

Product Name:	AUTO DIAGNOSTIC SYSTEM		
Model No.:	F7S-W, F7S-D, F7S-G, F7S-E, F7S-R, F7S-M, F7S-P, F7S-N		
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5745MHz ~ 5825MHz		
Channel numbers:	5		
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz		
Modulation technology:	802.11a/802.11n(H20) /802.11ac(HT20):		
	Orthogonal Frequency Division Multiplexing (OFDM)		
Antenna Type:	Integral Antenna		
Antenna gain:	2.0dBi (declare by Applicant)		
Power supply:	SWITCHING POWER ADAPTER		
	Model No.:GME36A-120300FDS		
	Input: AC 100~240V, 50/60Hz, 1.2A		
	Output: DC 12V, 3A		
	Or		
	DC 3.7V, 10000mAh, 37Wh		

Operation Frequency each of channel @ 5.8G Band							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745MHz	153	5765MHz	155	5775MHz	157	5785MHz
161	5805MHz	165	5825MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	5.8G Band
	802.11a 802.11n(HT20) 802.11ac(HT20)
Lowest channel	5745
Middle channel	5785
Highest channel	5825

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11ac(HT20)	6.5Mbps

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 29 2016	June. 28 2017		
4	Spectrum analyzer	Agilent	E4447A	GTS516	June. 29 2016	June. 28 2017		
5	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 29 2016	June. 28 2017		
6	BiConiLog Antenna	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS214	June. 29 2016	June. 28 2017		
7	Double -ridged waveguide horn	SCHWARZBECK MESS- ELEKTRONIK	9120D-829	GTS208	June. 29 2016	June. 28 2017		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 29 2016	June. 28 2017		
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
10	Coaxial Cable	GTS	N/A	GTS213	June. 29 2016	June. 28 2017		
11	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017		
12	Coaxial cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017		
13	Coaxial Cable	GTS	N/A	GTS212	June. 29 2016	June. 28 2017		
14	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 29 2016	June. 28 2017		
15	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June. 29 2016	June. 28 2017		
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000-29- 8P	GTS534	June. 29 2016	June. 28 2017		
17	Band filter	Amindeon	82346	GTS219	June. 29 2016	June. 28 2017		
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	June. 29 2016	June. 28 2017		
19	D.C. Power Supply	Instek	PS-3030	GTS232	June. 29 2016	June. 28 2017		
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	June. 29 2016	June. 28 2017		
21	Splitter	Agilent	11636B	GTS237	June. 29 2016	June. 28 2017		
22	Power Meter	Anritsu	ML2495A	GTS540	June. 29 2016	June. 28 2017		
23	Power Sensor	Anritsu	MA2411B	GTS541	June. 29 2016	June. 28 2017		

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 29 2016	June 28 2017		
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 29 2016	June 28 2017		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017		
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 29 2016	June 28 2017		
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Thermo meter	KTJ	TA328	GTS233	June 29 2016	June 28 2017		

Gen	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integral antenna. The best case gain of the antenna is 2dBi.

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:	Fraguerou ranga (MIII-)	Limit (c	dBuV)				
	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Toot octupy	* Decreases with the logarithm	i or the frequency.					
Test setup:	Reference Plane		-				
	AUX Equipment E.U.T EMI Receiver Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0197 Test Mode : Wifi mode Test Engineer: Boy

LISN Cable Limit Over Read Freq Level Factor Loss Leve1 Line Limit Remark dBuV dBuV dBuV MHz dΒ d₿ dΒ 0.153 50.90 0.15 0.12 51.17 65.82 -14.65 QP 1 2 3 4 0.153 34.62 0.15 0.12 34.89 55.82 -20.93 Average 0.452 37.75 0.12 0.11 37.98 56.85 -18.87 QP 0.452 0.12 29.30 0.11 29.53 46.85 -17.32 Average 5 56.00 -22.53 QP 0.627 33.22 33.47 0.13 0.12 6 7 46.00 -19.73 Average 0.627 26.02 0.13 0.12 26.27 56.00 -23.63 QP 0.716 32.10 0.14 0.13 32.37 8 46.00 -21.22 Average 0.71624.51 0.140.13 24.78 60.00 -29.82 QP 9 0.22 5.653 29.81 0.15 30.18 0.22 50.00 -28.45 Average 10 5.653 21.18 0.15 21.55 0.31 0.21 60.00 -25.36 QP 11 13.551 34.12 34.64 12 13, 551 28.93 0.31 0.21 29.45 50.00 -20.55 Average

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0197 Test mode : Wifi mode Test Engineer: Boy

	Freq	Read Leve1	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	₫B	dBuV	dBuV	dB	
1	0.317	36. 19	0.06	0.10	36.35	59.80	-23.45	QP
2	0.317	28.73	0.06	0.10	28.89	49.80	-20.91	Average
3	0.452	33.87	0.06	0.11	34.04	56.85	-22.81	QP
4 5	0.452	24. 27	0.06	0.11	24.44	46.85	-22.41	Average
5	0.627	33.85	0.07	0.12	34.04	56.00	-21.96	QP
6	0.627	26.86	0.07	0.12	27.05	46.00	-18.95	Average
7	0.716	32.99	0.07	0.13	33.19	56.00	-22.81	QP
8	0.716	25.51	0.07	0.13	25.71	46.00	-20.29	Average
9	5.594	31.33	0.16	0.15	31.64	60.00	-28.36	QP
10	5.594	20.49	0.16	0.15	20.80	50.00	-29.20	Average
11	14. 213	3 4. 18	0.33	0.22	3 4. 73	60.00	-25.27	QP _
12	14. 213	29. 18	0.33	0.22	29.73	50.00	-20.27	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Conducted Peak Output Power

Measurement Data

Test CH	Р	eak Output Power (d	Limit(dBm)	Result		
	802.11a	802.11n(HT20)	802.11ac(HT20)	Limit(dDin)	resuit	
Lowest	17.59	11.34	17.75			
Middle	16.39	12.57	16.82	30.00	Pass	
Highest	15.33	14.45	15.22			

7.4 Channel Bandwidth

Measurement Data

5.8G Band										
Test CH	Cha	Limit	Result							
Test Cn	802.11a	802.11n(HT20)	802.11ac(HT20)	(KHz)	Result					
Lowest	16.446	17.611	17.743		Pass					
Middle	16.399	17.630	17.752	>500						
Highest	15.094	17.586	17.778							

Test plot as follows:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Middle channel

Highest channel

Test mode: 802.11ac(HT20)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Measurement Data

	5.8G Band									
	Powe	Limit								
Test CH	est CH 802.11a 802.11n(HT20) 802.11ac		802.11ac(HT20)	(dBm/500k Hz)	Result					
Lowest	7.41	4.82	9.08		Pass					
Middle	6.03	5.86	7.95	30						
Highest	4.18	7.43	6.28							

Test plot as follows:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Project No.: GTS201608000197

Page 20 of 34

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Middle channel

Highest channel

Test mode: 802.11ac(HT20)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2	013						
Test Frequency Range:	30MHz to 40GH		case is repo	rted				
Test site:	Measurement D		•					
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
'		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			
Limit:	Freque	Value						
			Limit (dBuV) 54.0		Average			
	Above 1GHz 74.00 Peak							
	Tum Table	? # 1 #		Test Antenna-	mplifier+			
Test Procedure:	the ground at determine the 2. The EUT was antenna, whit tower. 3. The antenna ground to det horizontal an measuremen 4. For each sus and then the and the rotal the maximum 5. The test-rece Specified Bail 6. If the emission the limit specified Full whave 10dB meak or avera sheet.	t a 3 meter can be position of the set 3 meters of was mount theight is varied termine the modern of	mber. The tall he highest race away from the ed on the toped from one naximum value rizations of the ed from 0 de as set to Peadaximum Hole EUT in peak ting could be ted. Otherwise re-tested or specified ar	ble was rotadiation. The interference of a variable of the field the antenna was arrang was at the emission was arrang wa	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find unction and			

Lowest

	And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test channel:

Measurement data:

Test mode:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

802.11a

Peak value	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	50.00	32.68	9.97	23.86	51.15	68.2	-17.05	Horizontal
5725.00	51.71	32.68	9.97	23.86	52.86	68.2	-15.34	Vertical
Average va	lue:				•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	37.37	32.68	9.97	23.86	38.52	54.00	-15.48	Horizontal
5725.00	34.41	32.68	9.97	23.86	35.56	54.00	-18.44	Vertical
					•			
Test mode:		802.1	1a	Te	st channel:	F	Highest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	46.38	32.70	9.99	23.87	47.54	68.2	-20.66	Horizontal
5850.00	48.26	32.70	9.99	23.87	49.42	68.2	-18.78	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
		I			1			

5850.00 Remark:

5850.00

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

9.99

9.99

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

23.87

23.87

35.29

37.21

54.00

54.00

34.13

36.05

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

32.70

32.70

Project No.: GTS201608000197

-18.71

-16.79

Horizontal

Vertical

Test mode: 802.11n(HT20) @ 5.8G Band Test channel: Lowest								
Peak value:		, , ,						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	40.58	32.68	9.97	23.86	41.73	68.2	-26.47	Horizontal
5725.00	42.82	32.68	9.97	23.86	43.97	68.2	-24.23	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	31.75	32.68	9.97	23.86	32.90	54.00	-21.10	Horizontal
5725.00	32.46	32.68	9.97	23.86	33.61	54.00	-20.39	Vertical
Test mode:	802.1	1n(HT20) @	5.8G Band	d Tes	t channel:	I	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	40.14	32.70	9.99	23.87	41.30	68.2	-26.9	Horizontal
5850.00	41.61	32.70	9.99	23.87	42.77	68.2	-25.43	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	29.98	32.70	9.99	23.87	31.14	54.00	-22.86	Horizontal
5850.00	30.25	32.70	9.99	23.87	31.41	54.00	-22.59	Vertical
Remark:								<u></u> _

Remark.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: GTS201608000197E05

Test mode: 802.11ac(HT20) Test channel: Lowest								
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	49.24	32.68	9.97	23.86	50.39	68.2	-17.81	Horizontal
5725.00	50.83	32.68	9.97	23.86	51.98	68.2	-16.22	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	28.24	32.68	9.97	23.86	29.39	54.00	-24.61	Horizontal
5725.00	29.31	32.68	9.97	23.86	30.46	54.00	-23.54	Vertical
Test mode:	802.1	1ac(HT20)		Tes	t channel:		Highest	
Peak value	•			1	1	1	1	,
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	48.67	32.74	10.04	23.87	49.84	68.2	-18.36	Horizontal
5850.00	50.67	32.74	10.04	23.87	51.84	68.2	-16.36	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	28.57	32.74	10.04	23.87	29.74	54.00	-24.26	Horizontal
5850.00	29.20	32.74	10.04	23.87	30.37	54.00	-23.63	Vertical
Remark:								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

EIRP = -27dBm/MHz

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)							
Test Method:	ANSI C63.10:20	13						
Test Frequency Range:	30MHz to 40GHz	7						
Test site:	Measurement Di	stance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 4011-	Peak	1MHz	3MHz	Peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Average Value			
Limit:	Frequer		Limit (dBuV	/m @3m)	Remark			
	30MHz-88		40.0		Quasi-peak Value			
	88MHz-210		43.5		Quasi-peak Value			
	216MHz-96		46.0		Quasi-peak Value			
	960MHz-1	GHz	54.0	54.0 Quasi-peak Va				
	**************************************	EUT	Tum Table+	Test Antenna				
	Above 1GHz		Rece	iver → Pres	amplifier. √			
	Above 1GHZ							

	Tum Table < lm 4m > 0 Receiver Preamplifier <
Test Procedure:	The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

■ Below 1GHz

Only the data of worst case at each channel plan (nominal bandwidth =20MHz) is reported.

Only the data of worst case at each charmer plan (nonlinar bandwidth = 20min2) is reported.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
34.52	48.18	14.30	0.60	30.07	33.01	40.00	-6.99	Vertical
42.60	43.28	15.56	0.69	30.03	29.50	40.00	-10.50	Vertical
87.42	47.14	13.18	1.09	29.76	31.65	40.00	-8.35	Vertical
125.01	45.31	11.70	1.40	29.54	28.87	43.50	-14.63	Vertical
167.82	43.99	10.90	1.67	29.33	27.23	43.50	-16.27	Vertical
375.94	37.08	16.56	2.75	29.61	26.78	46.00	-19.22	Vertical
56.00	33.30	14.95	0.83	29.95	19.13	40.00	-20.87	Horizontal
79.80	40.59	10.54	1.03	29.80	22.36	40.00	-17.64	Horizontal
150.54	42.08	10.29	1.57	29.41	24.53	43.50	-18.97	Horizontal
167.82	41.53	10.90	1.67	29.33	24.77	43.50	-18.73	Horizontal
262.90	39.18	14.17	2.19	29.74	25.80	46.00	-20.20	Horizontal
750.11	32.86	21.43	4.28	29.20	29.37	46.00	-16.63	Horizontal

■ Above 1GHz

Test mode:		802.11a	802.11a		channel:	lowest	
Antenna Pol.	Frequenc y (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector
V	11510.00	28.52	21.64	50.16	54(Note3)	-3.84	PK
V	17265.00	26.25	21.80	48.05	54(Note3)	-5.95	PK
Н	11510.00	26.32	21.83	48.15	54(Note3)	-5.85	PK
Н	17265.00	25.12	21.67	46.79	54(Note3)	-7.21	PK

Test mode:		802.11a		Test	channel:	Middle	
Antenna Pol.	Frequenc y (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector
V	11570.00	26.35	21.64	47.99	54(Note3)	-6.01	PK
V	17355.00	25.04	21.80	46.84	54(Note3)	-7.16	PK
Н	11570.00	22.70	21.83	44.53	54(Note3)	-9.47	PK
Н	17355.00	23.36	21.67	45.03	54(Note3)	-8.97	PK

Test mode:		802.11a		Test	channel:	Highest	
Antenna Pol.	Frequenc y (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector
V	11650.00	26.52	21.64	48.16	54(Note3)	-5.84	PK
V	17475.00	24.13	21.80	45.93	54(Note3)	-8.07	PK
Н	11650.00	24.36	21.83	46.19	54(Note3)	-7.81	PK
Н	17475.00	22.42	21.67	44.09	54(Note3)	-9.91	PK

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement data:

	Frequency stability versus Temp.								
	Power Supply: DC 3.7V								
Tomp	Operating	0 minute	2 minute	5 minute	10 minute				
Temp.	Frequency	Measured	Measured	Measured	Measured				
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5744.9831	5744.9839	5744.9852	5744.9859				
-30	5785	5784.9836	5784.9844	5784.9856	5784.9864				
	5825	5824.9841	5824.9849	5824.9860	5824.9868				
	5745	5744.9850	5744.9857	5744.9868	5744.9875				
-20	5785	5784.9854	5784.9861	5784.9872	5784.9879				
	5825	5824.9859	5824.9865	5824.9876	5824.9882				
	5745	5744.9867	5744.9873	5744.9883	5744.9889				
-10	5785	5784.9871	5784.9877	5784.9887	5784.9892				
	5825	5824.9874	5824.9880	5824.9890	5824.9895				
	5745	5744.9836	5744.9844	5744.9856	5744.9863				
0	5785	5784.9841	5784.9848	5784.9860	5784.9867				
	5825	5824.9845	5824.9853	5824.9864	5824.9871				
	5745	5744.9854	5744.9861	5744.9872	5744.9879				
10	5785	5784.9859	5784.9865	5784.9876	5784.9882				
	5825	5824.9863	5824.9869	5824.9880	5824.9886				
	5745	5744.9871	5744.9877	5744.9886	5744.9892				
20	5785	5784.9874	5784.9880	5784.9890	5784.9895				
	5825	5824.9878	5824.9884	5824.9893	5824.9898				
	5745	5744.9830	5744.9838	5744.9851	5744.9858				
30	5785	5784.9835	5784.9842	5784.9855	5784.9862				
	5825	5824.9839	5824.9847	5824.9859	5824.9866				
	5745	5744.9849	5744.9856	5744.9867	5744.9874				
40	5785	5784.9853	5784.9860	5784.9871	5784.9878				
	5825	5824.9857	5824.9864	5824.9875	5824.9881				
	5745	5744.9865	5744.9872	5744.9882	5744.9888				
50	5785	5784.9869	5784.9876	5784.9885	5784.9891				
	5825	5824.9873	5824.9879	5824.9889	5824.9894				

	Frequency stability versus Voltage								
	Temperature: 25°C								
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5744.9849	5744.9856	5744.9868	5744.9874				
3.3	5785	5784.9854	5784.9861	5784.9872	5784.9878				
	5825	5824.9858	5824.9865	5824.9875	5824.9882				
	5745	5744.9866	5744.9872	5744.9882	5744.9888				
3.7	5785	5784.9870	5784.9876	5784.9886	5784.9892				
	5825	5824.9874	5824.9880	5824.9889	5824.9895				
	5745	5744.9881	5744.9887	5744.9896	5744.9901				
4.1	5785	5784.9884	5784.9890	5784.9899	5784.9904				
I	5825	5824.9888	5824.9893	5824.9902	5824.9907				

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201608000197E01

-----END-----