Computer Science Fundamentals: Intro to Algorithms, Systems, & Data Structures

Christian J. Rudder

October 2024

Contents

C	ontents	1
1	Building a Computer	5
2	Computational Algorithms 2.1 Information Theory	
В	ibliography	10

Preface

Big thanks to Christine Papadakis-Kanaris

for teaching Intro. to Computer Science II,

Dora Erdos and Adam Smith

for teaching BU CS330: Introduction to Analysis of Algorithms With contributions from:

S. Raskhodnikova, E. Demaine, C. Leiserson, A. Smith, and K. Wayne, at Boston University

Please note: These are my personal notes, and while I strive for accuracy, there may be errors. I encourage you to refer to the original slides for precise information.

Comments and suggestions for improvement are always welcome.

Prerequisites

Building a Computer

Computational Algorithms

2.1 Information Theory

Defining Information

The following sections **heavily** reference Chris Terman's "Computation Structures" from the MIT OpenCourseWare, and Victor Shoup's "A Computational Introduction to Number Theory and Algebra" [2, 1].

Definition 1.1: Information

Information measures the amount of uncertainty about a given fact provided some data.

Example 1.1: Playing Deck of Cards

Given a 52-card deck, a card is drawn at random. One of the following data points is revealed:

- a) The card is a heart (13 possibilities).
- b) The card is not the Ace of Spades (51 possibilities).
- c) The card is the "Suicide King," i.e., King of Hearts (1 possibility).

Definition 1.2: Quantifying Information

Given a discrete (finite) random variable X with n possible outcomes $(x_1, x_2, ..., x_n)$ and a probability $P(X) = p_i$ for each outcome x_i , the **information content** of X is defined as:

$$I(X_i) := \log_2\left(\frac{1}{p_i}\right)$$

Where $1/p_i$ is the probability of x_i , while Log base 2 measures how many bits (0 or 1) are needed to represent the outcome.

Example 1.2: Generalizing Information Content

A heart drawn from a 52-card deck may be represented as follows:

$$I(\text{heart}) = \log_2\left(\frac{1}{13/52}\right) \approx 2 \text{ bits}$$

More generally, we may redefine the information content as follows:

$$I(\text{data}) = \log_2\left(\frac{1}{M \cdot (1/N)}\right) = \log_2\left(\frac{N}{M}\right)$$

Where N is the total number of possible outcomes (e.g., 52 cards in a deck), and M is the number of outcomes that match the data (e.g., 13 hearts in a deck). Hence, $M \cdot (1/N)$ is the amount of information received from the data. Consider two more examples:

- Information in one coin flip: $\log_2(2/1) = 1$ bit (N := 2, M := 1).
- Rolling 2 dice: $\log_2(36/1) \approx 5.17$ or 6 bits (N := 36, M := 1).

Definition 1.3: Entropy

The **entropy** of a discrete random variable X is the average amount of information contained in all possible outcomes of X. It is defined as:

$$H(X) := E(I(X)) = \sum_{i=1}^{N} p_i \cdot \log_2\left(\frac{1}{p_i}\right)$$

Where function E is the expected value (i.e., average) of the information content I(X) across all outcomes of X. This conveys how many bits b are needed to represent the outcomes of X:

- b < H(X): Information is lost (i.e., not all outcomes can be represented).
- b = H(X): An optimal representation.
- b > H(X): Redundancy (i.e., not an efficient use of resources.).

Tip: For refreshers on \sum consider our other text: Concise Works: Discrete Math.

Example 1.3: The Entropy of Four Choices

Consider a discrete random variable and it's possible outcomes $X := \{A, B, C, D\}$:

$choice_i$	p_i	$\log_2(1/p_i)$
A	1/3	$1.58\mathrm{bits}$
В	1/2	$1\mathrm{bit}$
\mathbf{C}	1/12	$3.58\mathrm{bits}$
D	1/12	$3.58\mathrm{bits}$

Hence, the entropy of X is:

$$\begin{split} H(X) := \sum_{i=1}^4 p_i \cdot \log_2 \left(\frac{1}{p_i}\right) &= \left(\frac{1}{3} \cdot 1.58\right) + \\ &\qquad \left(\frac{1}{2} \cdot 1\right) + \\ &\qquad \left(\frac{1}{12} \cdot 3.58\right) + \\ &\qquad \left(\frac{1}{12} \cdot 3.58\right) + \\ &\approx 1.626 \, \mathrm{bits} \end{split}$$

The entropy of X is approximately 1.626 bits, meaning that on average, we should be able to represent the outcomes of X using less than 2 bits per outcome.

Let's discuss how we might go about representing our outcomes:

Definition 1.4: Encoding

An **encoding** is an unambiguous mapping from a set of symbols to a set of bit strings:

- Fixed-length encoding: Uses a fixed number of bits to represent each symbol.
- Variable-length encoding: Uses a different number of bits for each symbol.

Example 1.4: Encoding Four Symbols

Consider the four symbols A, B, C, D and each possible encoding for them:

	En	coding fo	Encoding for,		
	A	В	\mathbf{C}	D	"ABBA"
1.)	00	01	10	11	00 01 01 00
2.)	01	1	000	001	01 1 1 01
3.)	0	1	10	11	0 1 1 0

(1) Is a fixed-length encoding, (2) is a variable-length encoding, and (3) is also a variable-length encoding and uses fewer bits; **However**, it is ambiguous. Depending on how our program reads the string, it may group and misinterpret the bits.

E.g., (3) could be, "0 11 0" (A D A) or "0 1 10" (A B C). Hence, an invalid encoding.

Theorem 1.1: Binary Tree Encoding

Binary trees may represent unambiguous encodings, where each symbol is a leaf node, and each edge represents the next bit. Since each path is unique, the encoding is unambiguous.

Figure 2.1: Encodings start at the root, each edge taken writes the next bit.

Bibliography

- [1] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, version 2 edition, 2008. Electronic version distributed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0.
- [2] Chris Terman. 6.004 computation structures, 2017. Undergraduate course, Spring 2017.