

Universidad Nacional de Colombia Facultad de Ciencias Análisis Numérico I

X

Ejercicio 1.

Sea $A \in \mathbb{R}^{m \times n}$. Entonces se satisface:

(a)
$$||A||_2 = ||A^T||_2 \le ||A||_F = ||A^T||_F$$
,

(b)
$$||A||_{\infty} \leq \sqrt{n} ||A||_2$$
,

(c)
$$||A||_2 \le \sqrt{m} ||A||_{\infty}$$
,

(d)
$$||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$$
.

Ejercicio 2.

Sea $\|\cdot\|$ una norma en \mathbb{R}^n y A una matriz invertible de tamaño $n \times n$. Pruebe que:

Si Ax = b, $(A + \delta A)(x + \delta x) = b + \delta b$ y $||A^{-1}|| ||\delta A|| < 1$, entonces $A + \delta A$ es invertible y se cumple que:

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\text{cond}(A)}{1 - \|A^{-1}\| \|\delta A\|} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|} \right).$$

Ejercicio 3.

Sea

$$A = \begin{pmatrix} \alpha & \alpha \\ \alpha & \alpha + \delta \end{pmatrix},$$

a > 0 fijo, $\delta > 0$ variable.

- (a) Obtenga el número de condición de A. Para valores de δ muy pequeños o muy grandes, ¿podemos afirmar que el sistema Ax = b está mal condicionado? Justifique su respuesta.
- (b) ¿Existe algún valor de δ que haga óptimo el número de condición de A? ¿Cuál es este número de condición?

Ejercicio 4.

Al aproximar una función continua $f:[0,1]\to\mathbb{R}$ mediante un polinomio $p(t)=a_nt^n+\cdots+a_1t+a_0$, el error de aproximación E se mide en la norma L^2 , es decir:

$$E^2 := \|p - f\|_{L^2}^2 = \int_0^1 [p(t) - f(t)]^2 dt.$$

(a) Muestre que la minimización del error $E = E(\alpha_0, ..., \alpha_n)$ conduce a un sistema de ecuaciones lineales $H_n \alpha = b$, donde:

$$b = [b_0, \dots, b_n]^T \in \mathbb{R}^{n+1}, \quad b_i = \int_0^1 f(t)t^i dt, \quad i = 0, \dots, n,$$

y H_n es la matriz de Hilbert de orden n, definida como:

$$(H_n)_{i,j} = \frac{1}{i+j+1}, \quad i,j = 0, \dots, n.$$

El vector a representa los coeficientes del polinomio p.

Demostración. Sea
$$p(t) = \sum_{j=0}^{n} a_j t^j$$
, note que

$$\begin{split} E^2(\alpha_0,\dots,\alpha_n) &= \int_0^1 \left(p(t)-f(t)\right)^2 dt \\ &= \int_0^1 \left(\sum_{j=0}^n \alpha_j t^j - f(t)\right)^2 dt \\ &= \int_0^1 \left(\sum_{j=0}^n \alpha_j t^j\right)^2 dt - 2 \int_0^1 f(t) \sum_{j=0}^n \alpha_j t^j dt + \|f\|_{L^2}^2. \end{split}$$

Note que esta función depende de los coneficientes, por lo tanto para minimizar el error podemos derivar parcialmente con respecto a a_k , $0 \le k \le n$ e igualar a 0. Derivando obtenemos que

$$\frac{\partial E^2}{\partial a_k} = 2 \int_0^1 \left(\sum_{j=0}^n a_j t^{k+j} \right) dt - 2 \int_0^1 f(t) t^k dt = 0,$$

despejando de esta ecuación obtenemos que

$$\int_0^1 \sum_{j=0}^n \alpha_j t^{j+k} dt = \sum_{j=0}^n \alpha_j \int_0^1 t^{j+k} dt = \int_0^1 f(t) t^k dt,$$

más aún, como
$$\int_0^1 t^{k+j} dt = \frac{1}{k+j+1} = (H_n)_{k,j}$$
, obtenemos

$$\sum_{j=0}^n a_j(H_n)_{k,j} = (H_n)_k \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \int_0^1 f(t)t^k dt = b_k,$$

donde $(H_n)_k$ denota la k-ésima fila de la matriz (H_n) , que es lo mismo que $H_n\alpha = b$.

(b) Muestre que H_n es simétrica y definida positiva.

- (c) Solucione el sistema $H_nx = b$, donde b tiene componentes $b_i = 1/(n+i-1)$, para $i = 1, \ldots, n$. Para esto, use las factorizaciones LU ([L, U] = lu(H)) y Cholesky (L = chol(H)). Luego resuelva los dos sistemas triangulares.
- (d) Para ambos métodos, ¿qué tan precisas son las soluciones numéricas \hat{x}_{approx} ? Tabule los errores de la solución:

$$e(n) = \|\hat{x}_{approx} - x_{exact}\|$$

como una función de $n=2,\ldots,15$. Note que $x_{exact}=(0,\ldots,1)^T$. Puede graficar los errores en función de n utilizando la función semilogy de Matlab. Explique en detalle los resultados.

Ejercicio 5.

- (a) Simplifique el algoritmo de eliminación de Gauss para resolver un sistema lineal Ax = b donde A es una matriz tridiagonal.
- (b) Considere la ecuación de Poisson con término fuente f en el intervalo (0, 1):

$$-T''(x) = f(x), x \in (0,1),$$

con condiciones de frontera $\mathsf{T}(0) = \mathsf{T}(1) = 0$. Aproximando la segunda derivada por diferencias finitas:

$$\mathsf{T}''(\mathsf{x}) \approx \frac{\mathsf{T}(\mathsf{x}-\mathsf{h}) - 2\mathsf{T}(\mathsf{x}) + \mathsf{T}(\mathsf{x}+\mathsf{h})}{\mathsf{h}^2},$$

y discretizando en $x_i = ih$, i = 0, 1, ..., n, con n = 1/h, obtenemos el sistema:

$$-T_{i-1} + 2T_i - T_{i+1} = h^2 f(x_i), \quad i = 1, \dots, n-1.$$

Escriba este sistema en la forma AT = f, donde A es una matriz tridiagonal. Resuelva el sistema para n = 1000 y $f(x) = \sin(2\pi x)$. Compare su solución con $T(x) = \sin(2\pi x)/(4\pi^2)$.