Bachelier en informatique et Systèmes Informatique industrielle 3ème année

Catégorie technique

Laboratoire de réseaux

SSH

2015 - 2016

Lievens Benjamin

Table des matières

1	Ser	veur SSH	4
2	Ficl	hier et dossier important	4
3	Ins	taller serveur SSH	4
4	Lan	ncer SSH en mode debug	4
5	Géi	nérer une paire de clé SSH	4
6	Se	connecter à une autre machine/exécuter une commande/copier un fichier	5
7	Géi	nérer/Vérifier une empreinte	5
8	Vér	rifier la clé publique	5
9	Rég	générer une paire de clé SSH pour des machines clonés	5
10	١	Visualisez les portes d'écoutes d'une connexion	5
11	F	Fichier de configuration SSH	6
12	(Connexion par mot de passe	7
:	12.1	Vérifiez qu'aucun coupe-feu ne tourne sur la machine	7
	12.2	Vérifiez sur la machine qu'un trousseau de clés existe	7
:	12.3	Démarrer et configurer le service	7
:	12.4	Se connecter d'une machine à l'autre	7
	12.5	Visualiser les ports d'écoutés	7
	12.6	Utilisez ssh et scp	7
13	(Connexion par clés	8
:	13.1	Vérifier les clauses PubkeyAuthentication	8
:	13.2	Générer un trousseau de clé et copier sa clé publique	8
	13.3	Attention aux permissions	8
14	F	Port forwarding	9
	14.1	- vérifiez qu'aucun coupe-feu ne tourne sur aucune machine	9
:	14.2	-N'oubliez pas d'activer l'ip forwarding sur MV2	9
:	14.3	Stopper les services sshd sur MV1 et MV2 (s'ils tournent)	9

	14.4	Configurez un service sshd sur MV3 et relancez le service	9
	14.5	Vérifiez sur MV3 qu'un trousseau de clés existe	. 10
	14.6	Créez user3 sur MV3	. 10
	14.7	Configurez et testez un forwarding de port de MV1 vers MV3 en passant par MV2	. 10
1!	5	Clé du serveur	. 11
1(6	Clé du client	. 11

1 Serveur SSH

Daemon du serveur DHCP: sshd

Fichier de configuration : /etc/ssh/sshd_config

Lancement/arrêt/redémarrage : service sshd start/stop/restart

Logs: /var/log/message /var/log/secure

2 Fichier et dossier important

Clés publiques des serveurs consultés: /home/jean/.ssh/known_hosts

La clé publique du serveur: /etc/ssh/ssh_host_(rsa ou dsa)_key.pub

La clé privée du serveur: /etc/ssh/ssh_host_(rsa ou dsa)_key

La clé publique du client: ~/.ssh/id_rsa

La clé privée du client: ~/.ssh/id_rsa.pub

Fichier contenant la liste clés autorisée: ~/.ssh/authorized_keys

3 <u>Installer serveur SSH</u>

Dans CentOS c'est déjà préinstaller .

4 <u>Lancer SSH en mode debug</u>

/usr/sbin/sshd -d

5 Générer une paire de clé SSH

ssh-keygen -t rsa -b 1024

6 <u>Se connecter à une autre machine/exécuter une commande/copier</u> un fichier

ssh user2@10.0.0.2
ssh user2@10.0.0.2 'cat /etc/passwd'
scp /root/install.log user2@10.0.0.2:/tmp

7 Générer/Vérifier une empreinte

sha1sum f1.txt > f1.txt.sha1 ou md5sum f1.txt > f1.txt.md5

sha1sum –c f1.txt.md5 ou md5sum -c f1.txt.md5

8 <u>Vérifier la clé publique</u>

L'administrateur du serveur génère un 'fingerprint' (chaîne générée lors de la génération de la clé publique du serveur.

La commande 'sshkeygen –lf /etc/ssh/ssh_host_rsa_key.pub' permet d'afficher cette empreinte.

Ex. 2048 fe:91:17:91:c1:bd:ab:ae:5e:05:8b:70:40:1b:e8:c2 (RSA)

- Le client demande le 'fingerprint' à l'administrateur.
- Le client compare le 'fingerprint' présenté lors du téléchargement à celui reçu de l'administrateur.

9 Régénérer une paire de clé SSH pour des machines clonés

rm -f /etc/ssh_host*

service sshd restart

10 Visualisez les portes d'écoutes d'une connexion

netstat -tn

11 Fichier de configuration SSH

Port 22	Port d'écoute de sshd				
Protocol 2	Protocoles à supporter (ssh2)				
ListenAddress 0.0.0.0 →	Adresse Ip de l'interface d'écoute (ici toutes les interfaces)				
HostKey /etc/ssh/ssh_host_key HostKey /etc/ssh/ssh_host_rsa_key HostKey /etc/ssh/ssh_host_dsa_key					
KeyRegenerationInterval 3600 ServerKeyBits 1024	Regénération d'une clé de session de 1024 bits après 3600 sec. de connexion				
LoginGraceTime 120 ────►	Temps accordé à la procédure de login				
RSAAuthentication yes ──→	Authentification par paire de clés SSH1 acceptée.				
-	Authentification par paire de clés SSH2 rsa ou dsa acceptée.				
	Pour empêcher les authentifications de ype remote (car non-sécurisées).				
(Authentification par mot de passe rabattage possible en cas d'échec à l'authentification par clés).				
PermitEmptyPasswords no M	ais pas pour les comptes sans mdp.				
le serveur coupe la d	onnexion reste ouverte si le client disparaît. connexion s'il ne reçoit plus du client un n vie» envoyé régulièrement par celui-ci.				
	riser les deux utilisateurs (test et in) et aucun autre à se connecter.				
Voir	aussi les directives AllowGroups/DenyGroups				
PermitRootLogin yes ——— Le ro	oot peut-il se connecter ?				
PermitRootLogin without-password					
Le root ne peut se conne	cter que par paire de clés. Cela évite les				
tentatives d'attaque ssh par force brute sur le compte root.					

12 Connexion par mot de passe

12.1 Vérifiez qu'aucun coupe-feu ne tourne sur la machine

```
# iptables –L
```

service iptables stop

chkconfig --level 35 iptables off

12.2 Vérifiez sur la machine qu'un trousseau de clés existe

#ls -l /etc/ssh

Régénérer une paire de clé SSH pour des machines clonées:

rm -f /etc/ssh_host*

service sshd restart

12.3 Démarrer et configurer le service

Vérifiez que la directive PasswordAuthentication est à yes:

cat /etc/ssh/sshd_config | grep Password

Redémarrer le service et vérifier qu'il est bien relancé:

service sshd restart

ps ax | grep sshd

12.4 Se connecter d'une machine à l'autre

ssh user@10.0.0.1

12.5 Visualiser les ports d'écoutés

netstat -tn

12.6 <u>Utilisez ssh et scp</u>

root@MV1# ssh user2@10.0.0.2 'cat /etc/passwd'

root@MV1# scp /root/install.log user2@10.0.0.2:/tmp

13 Connexion par clés

13.1 <u>Vérifier les clauses PubkeyAuthentication</u>

grep PubkeyAuthentication /etc/ssh/sshd_config

13.2 Générer un trousseau de clé et copier sa clé publique

```
user1@MV1$ ssh-keygen -t rsa
user1@MV1$ cd ~/.ssh
user1@MV1 .ssh$ ssh-copy-id -i id_rsa.pub <u>user3@10.0.0.3</u>
```

13.3 Attention aux permissions

Permissions	
/home/user3 /home/user3/.ssh /home/user3/.ssh/authorized_keys	→ 700→ 700→ 600

14 Port forwarding

14.1 - vérifiez qu'aucun coupe-feu ne tourne sur aucune machine

Sur chaque station:

iptables -L

service iptables stop

chkconfig --level 35 iptables off

14.2 -N'oubliez pas d'activer l'ip forwarding sur MV2

mcedit /etc/sysctl.conf

Ip_forward=1

#sysctl-p

14.3 Stopper les services sshd sur MV1 et MV2 (s'ils tournent)

MV1# service sshd stop

MV2# service sshd stop

14.4 Configurez un service sshd sur MV3 et relancez le service

(bien vérifiez que la directive 'PasswordAuthentication' est à yes)

cat /etc/ssh/sshd_config | grep Password

service sshd restart

ps ax | grep sshd

14.5 Vérifiez sur MV3 qu'un trousseau de clés existe

MV3# Is -I /etc/ssh

14.6 Créez user3 sur MV3

root@MV3# adduser user3

root@MV3# passwd user3

14.7 Configurez et testez un forwarding de port de MV1 vers MV3 en passant par MV2.

15 Clé du serveur

Rem. ssh-keygen -t rsa -b 1024 → pour générer une clé de 1024 bits ...

16 Clé du client

ssh-copy-id username@adresse

copie sa clé publique dans l'authorized_keys de l'autre user.

Exercices: Gestion d'un parc Linux

```
/root/admin/initvar.sh
#! /bin/bash
PUBKEYDIR="/root/.ssh"
SHDIR="/root/admin/sh"
LOGDIR="/root/admin/log"
IPFILE="/root/admin/ip.txt"
NAMELOG=`basename $0`

/root/admin/ip.txt

10.0.0.2
10.0.0.3
```

Exercice 1:

Ecrivez et testez un script (pushkey.sh) qui déploie la clé publique de root de la machine d'administration (MV1) vers toutes les stations du parc.

```
/root/admin/sh/pushkey.sh
```

```
#! /bin/bash
. /root/admin/initvar.sh
cd $SHDIR
date > $LOGDIR/$NAMELOG.log
date > $LOGDIR/$NAMELOG.errors.log
for IP in `cat $IPFILE`
do
  if ping -c 2 $IP >/dev/null 2>&1
  then
     ssh-copy-id -i $PUBKEYDIR/id rsa.pub root@$IP
     echo "Copie vers $IP... OK" >> $LOGDIR/$NAMELOG.log
  else
     echo "$0: $IP ne repond pas" >> $LOGDIR/$NAMELOG.errors.log
  fi
done
exit 0
```

Exercice 2:

Ecrivez et testez un script (haltall.sh) qui éteint toutes les stations du parc encore « on-line ».

Programmez l'exécution de ce script à 21h00 tous les jours. Pour ce faire le package crontab doit être installé...

```
# ps ax | grep crond
# yum install crontab (si nécessaire)
# crontab -e
00 21 * * * sh /root/admin/sh/haltall.sh
/root/admin/sh/haltall.sh
#! /bin/bash
. /root/admin/initvar.sh
cd $SHDIR
date > $LOGDIR/$NAMELOG.log
date > $LOGDIR/$NAMELOG.errors.log
for IP in `cat $IPFILE`
do
  if ping -c 2 $IP >/dev/null 2>&1
  then
     ssh root@$IP "shutdown -h now"
     echo "Arret de $IP... OK" >> $LOGDIR/$NAMELOG.log
  else
     echo "$0: $IP ne repond pas" >> $LOGDIR/$NAMELOG.errors.log
  fi
done
exit 0
```

Exercice 3:

Ecrivez et testez un script (chpwdroot.sh) qui change mot de passe de root sur toutes les stations du parc. Le nouveau de passe est passé en argument au script.

```
/root/admin/sh/chpwdroot.sh
```

```
#! /bin/bash
. /root/admin/initvar.sh
if [ $# -eq 1 ]
then
  cd $SHDIR
  date > $LOGDIR/$NAMELOG.log
  date > $LOGDIR/$NAMELOG.errors.log
  for IP in `cat $IPFILE`
  do
    if ping -c 2 $IP >/dev/null 2>&1
    then
       ssh root@$IP "echo $1 | passwd --stdin root > /dev/null
                                                             2>&1"
       echo "Changement du mdp de root sur $IP... OK"
                                          >> $LOGDIR/$NAMELOG.log
    else
       echo "$0: $IP ne repond pas"
                                   >> $LOGDIR/$NAMELOG.errors.log
    fi
  done
else
  echo "Erreur: Un et un seul argument"
  exit 1
fi
exit 0
```

Exercice 4:

Ecrivez et testez un script (alladduser.sh) qui ajoute un compte utilisateur à chaque station du parc.

Le nom de l'utilisateur (ex. toto) sera passé en argument. Son mot de passe sera identique à son nom.

```
/root/admin/sh/alladduser.sh
```

```
#! /bin/bash
. /root/admin/initvar.sh
if [ $# -eq 1 ]
then
  echo $LOGDIR/$NAMELOG
  cd $SHDIR
  date > $LOGDIR/$NAMELOG.log
  date > $LOGDIR/$NAMELOG.errors.log
  for IP in `cat $IPFILE`
  do
    if ping -c 2 $IP >/dev/null 2>&1
    then
       ssh root@$IP "adduser $1 > /dev/null 2>&1"
       ssh root@$IP "echo $1 | passwd --stdin $1 > /dev/null
                                                            2>&1"
       echo "Ajout de l'utilisateur $1 sur $IP... OK"
                                         >> $LOGDIR/$NAMELOG.log
    else
       echo "$0: $IP ne repond pas"
                                 >> $LOGDIR/$NAMELOG.errors.log
    fi
  done
else
  echo "Erreur: Un et un seul argument"
  exit 1
fi
exit 0
```

Exercice 5:

Ecrivez et testez un script (chgrub.sh) qui permet de changer le 'timeout' du multi-boot de chaque machine à 5 secondes.

```
/root/admin/sh/chgrub.sh
```

```
#! /bin/bash
. /root/admin/initvar.sh
cd $SHDIR
date > $LOGDIR/$NAMELOG.log
date > $LOGDIR/$NAMELOG.errors.log
for IP in `cat $IPFILE`
do
  if ping -c 2 $IP >/dev/null 2>&1
  then
     ssh root@$IP "/bin/sed -i -e \"s/timeout=5/timeout=0/g\"
                                            /boot/grub/grub.conf"
     echo "Change timeout on $IP... OK" >> $LOGDIR/$NAMELOG.log
  else
     echo "$0: $IP ne repond pas" >> $LOGDIR/$NAMELOG.errors.log
  fi
done
exit 0
```

Exercice 6:

Ecrivez et testez un script (chnetwork.sh) qui change la configuration ip de chaque station du parc afin de les disposer sur le réseau d'adresse 192.168.0.0/24.

/root/admin/sh/chnetwork.sh

```
#! /bin/bash
. /root/admin/initvar.sh
 cd $SHDIR
  date > $LOGDIR/$NAMELOG.log
  date > $LOGDIR/$NAMELOG.errors.log
  cpt=2
  for IP in `cat $IPFILE`
    if ping -c 2 $IP >/dev/null 2>&1
    then
      echo "DEVICE=eth0" > /tmp/ifcfg-eth0
       echo "BOOTPROTO=static" >> /tmp/ifcfg-eth0
       echo "IPADDR=192.168.0.$cpt" >> /tmp/ifcfg-eth0
       echo "NETMASK=255.255.255.0" >> /tmp/ifcfq-eth0
       echo "ONBOOT=yes" >> /tmp/ifcfg-eth0
       ssh root@$IP "cp /etc/sysconfig/network-scripts/
                                ifcfg-eth0 /root/ifcfg-eth0.bak"
       scp /tmp/ifcfg-eth0 root@$IP:/etc/sysconfig/network-
                             scripts/ifcfg-eth0 > /dev/null 2>&1
       echo "Changement de la configuration de $IP en
                   192.168.0.$cpt... OK" >> $LOGDIR/$NAMELOG.log
       cpt=`expr $cpt + 1`
    else
       echo "$0: $IP ne repond pas"
                                  >> $LOGDIR/$NAMELOG.errors.log
    fi
 done
rm -f /tmp/ifcfg-eth0
exit 0
```