RO202 - Initiation à la Recherche Opérationnelle

Zacharie Ales, Nidhal Gammoudi 2019 - 2020

EXERCICES 4 - Programmation linéaire en nombres entiers

Exercise 1 Méthode de Dakin

La méthode de Dakin est un algorithme de branch-and-bound dans lequel le branchement est effectué sur la variable qui a la plus grande partie fractionnaire dans la solution en cours.

Utiliser cette méthode pour trouver la solution optimale de l'exemple suivant :

$$\max z = 3x +2y$$
s.c.
$$-2x +2y \leq 7$$

$$2x +3y \leq 18$$

$$9x -2y \leq 36$$

$$x, y \in \mathbb{N}$$

Précisions :

- En chaque noeud de l'arborescence, vous aurez besoin de déterminer les solutions d'un programme linéaire continu. Vous les trouverez de façon géométrique grâce à la figure suivante.
- Pour chaque programme linéaire continu résolu, vous indiquerez quelle est la solution correspondante ainsi que le noeud de l'arborescence associé et la valeur de l'objectif.
- Afin de gagner du temps, voici une liste de coordonnées à considérer lors de la résolution (pas nécessairement dans cet ordre):

$$-(4;3+\frac{1}{3}) z = 18 + \frac{2}{3}$$

$$-(4+\frac{4}{9};2) z = 17 + \frac{1}{3}$$

$$-(4+\frac{1}{2};3) z = 19 + \frac{1}{2}$$

$$-(4+\frac{20}{31};2+\frac{28}{31}) z = 19 + \frac{23}{31}$$

$$-(3;4) z = 17$$

Answer of exercise 1

Exercise 2 Le problème du sac-à-dos

Pour embarquer dans l'avion, votre valise ne doit pas peser plus de K kg. Il ne va pas être possible d'emporter les n objets que vous vouliez y placer et vous devez faire des choix. Vous avez pesé chaque objet et vous notez p_i le poids de l'objet $i \in \{1, ..., n\}$. Pour optimiser le contenu de la valise, vous avez attribué à chaque objet i une note d'utilité c_i entre 1 et 20. Vous voulez maximiser l'utilité globale de la valise, égale à la somme des utilités des objets emportés.

- 1. Pour chaque objet i, on définit la variable x_i égale à 1 si l'objet i est mis dans la valise et 0 sinon. Ecrire le programme mathématique P à résoudre.
- 2. Ecrire le programme obtenu si K = 17 et que vous avez 4 objets de poids respectifs 3, 7, 9 et 6 kg et d'utilités respectives 8, 18, 20 et 11.
- 3. On suppose maintenant que les objets sont fractionnables. Soit P_R le programme P dans lequel on a remplacé $x_i \in \{0,1\}$ par $x_i \in [0,1]$, pour tout $i \in \{1,...,n\}$. Le programme P_R (relaxation continue de P) peut se résoudre de la façon suivante :
 - a Trier les ratios $\frac{c_i}{p_i}$ par valeur décroissante.
 - b Mettre les objets dans le sac dans cet ordre jusqu'à ce qu'on dépasse K.
 - c Mettre une fraction du premier objet qui dépasse *K* dans le sac de façon à compléter le poids de la valise (jusqu'à *K*).

Soit imax l'indice du dernier objet mis complètement dans le sac (*i.e.*, $\sum_{i=1}^{imax} p_i \leq K$ et $\sum_{i=1}^{imax+1} p_i > K$). On a donc :

- les objets 1 à *imax* sont entièrement dans le sac ($x_i = 1$ pour $i \in \{1, ..., imax\}$);
- l'objet imax + 1 est partiellement dans le sac ($x_{imax+1} = \frac{K \sum_{i=1}^{imax} p_i}{p_{imax+1}}$);
- les autres objets ne sont pas dans le sac ($x_i = 0$ pour $i \in \{imax + 2, ..., n\}$).

Quelle est la solution de P_R pour l'instance mentionnée dans la question précédente?

4. Résoudre le problème *P* pour cette instance par une méthode arborescente. En chaque nœud on obtient un majorant en résolvant la relaxation linéaire du problème en ce nœud.

 $Pr\'{e}cisions$: la séparation (en 2 sous-arbres) doit être faite sur la variable x_i non entière qui a la plus grande utilité: $x_i = 1$ ou $x_i = 0$. On déduit éventuellement des implications consécutives à chaque choix (c'est-à-dire qu'on fixe à 0 les variables associées à des objets qui ne pourront plus entrer dans la valise une fois que ce choix est fait).

Answer of exercise 2

$$1. \begin{cases} \max z = & \sum_{i=1}^{n} c_{i}x_{i} \\ \text{s.c.} & \sum_{i=1}^{n} p_{i}x_{i} \leq K \\ & x_{i} \in \{0,1\} \end{cases}$$

$$2. \begin{cases} \max z = & 8x_{1} + 18x_{2} + 20x_{3} + 11x_{4} \\ \text{s.c.} & 3x_{1} + 7x_{2} + 9x_{3} + 6x_{4} \leq 17 \\ & x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \in \{0,1\} \end{cases}$$

$$3. \frac{c_{i}}{p_{i}} \text{ triés} : \frac{8}{3} > \frac{18}{7} > \frac{20}{9} > \frac{11}{6} : \\ - x_{1} = x_{2} = 1 \\ - x_{3} = \frac{17 - (3+7)}{9} = \frac{7}{9} \\ - x_{4} = 0 \\ z_{0} = \frac{374}{9} = 41,5 \end{cases}$$

Exercise 3 Implémentation du branch-and-bound

La classe ${\tt BBTree}$ représente une arborescence d'un algorithme de $\it branch-and-bound$. Les noeuds d'un ${\tt BBTree}$ sont représentés par la classe ${\tt BBNode}$.

Attributs de BBNode

- Tableau tableau: tableau représentant le sous-problème d'optimisation associé au noeud;
- int depth: profondeur du sommet dans l'arbre (utilisé pour effectuer les affichages écran).

Méthodes de BBNode

- BBNode (double[][] A, double[] rhs, double[] obj, boolean isMinimisation)
 Constructeur d'un noeud racine;
- BBNode (BBNode parent, double[] newA, double newRhs)
 Constructeur d'un noeud qui n'est pas une racine
 (newA et newRhs correspondent à la dernière contrainte de branchement ajoutée);
- void branch (BBTree tree)
 Effectue la résolution de la relaxation linéaire du problème associé au sommet et branchement si une solution fractionnaire est obtenue (vous devrez implémenter cette méthode).

Attributs de BBTree

- double[] bestSolution: meilleure solution entière actuellement trouvée dans l'arbre (ou null si aucune solution entière n'a été trouvée jusqu'ici);
- double bestObjective: valeur de l'objectif de bestSolution;
- BBNode root: noeud racine de l'arborescence.

Méthodes de BBTree

— BBTree (BBNode)

Constructeur d'un arbre dont la racine est passée en argument;

— void solve()

Résolution du PLNE associé à la racine;

— displaySolution()

Affiche la solution obtenue après résolution.

1. Compléter la méthode BBNode.branch() en implémentant l'algorithme représenté en Figure 1 (pensez à prendre en compte l'attribut isMinimization).

```
Indications: Utilise votre méthode Tableau.pivot() du TP précédent
```

- Tableau.applySimplexPhase1And2(): résout la relaxation linéaire d'un tableau (même lorsque la base initiale n'est pas réalisable);
- t.bestSolution sera null après t.applySimplexPhase1And2() si le programme linéaire est infaisable;
- Utility.isFractional(double): teste si un réel est entier;
- Math.ceil (double): renvoie la partie supérieure d'un réel;
- Math.floor (double) : renvoie la partie inférieure d'un réel.
- 2. Ajouter un affichage graphique permettant de visualiser les étapes de l'algorithme. Afin de visualiser la structure de l'arbre, la marge de gauche d'un sommet sera proportionnelle à sa profondeur comme dans l'exemple ci-dessous :

Première variable fractionnaire

```
root: x[2] = 0,77

Sommet coupé car solution entière obtenue

x2 <= 0.0: Integer solution: z = 4,00, (x1) = (2)

x2 >= 1.0: x[3] = 1,25

Variable(s) non nulle(s) de la solution entière

x3 <= 1.0: x[2] = 1,20

x2 <= 1.0: x[1] = 0,33

x1 <= 0.0: Integer solution: z = 10,00, (x2, x3) = (1, 1)

x1 >= 1.0: Node cut: relaxation worst than bound (node relaxation: 9.00, best integer solution: 10.0)

x2 >= 2.0: Node cut: relaxation worst than bound (node relaxation: 8.00, best integer solution: 10.0)

x3 >= 2.0: Node cut: infeasible solution
```

Optimal solution : z = 10,00, (x2, x3) = (1, 1)

3. Vérifier que la méthode fonctionne en résolvant les PLNE des précédents exercices.

Answer of exercise 3

```
1. public void branch(BBTree tree) {
    tableau.applySimplexPhase1And2();
    /* If the linear relaxation has a solution */
```

Cette variable contient une solution et sa valeur de l'objectif

Données:

```
if(tableau.bestSolution != null) {
  /st If there is no feasible integer solution known
   \star or if the relaxation of the leaf is better than this solution \star/
  if (tree.bestSolution == null
      || (tableau.bestObjective < tree.bestObjective && tableau.isMinimization)
      || (tableau.bestObjective > tree.bestObjective && !tableau.isMinimization)) {
    int fractionalId = firstFractionalVariableId();
    if(fractionalId != -1) {
      /** Add the left node */
      double[] leftConstraint = new double[tableau.n];
      leftConstraint[fractionalId] = 1.0;
      double leftRHS = Math.floor(tableau.bestSolution[fractionalId]);
      BBNode leftNode = new BBNode(this, leftConstraint, leftRHS);
      leftNode.branch(tree);
      /** Add the right node */
      double[] rightConstraint = new double[tableau.n];
      rightConstraint[fractionalId] = -1.0;
      double rightRHS = -Math.ceil(tableau.bestSolution[fractionalId]);
      BBNode rightNode = new BBNode(this, rightConstraint, rightRHS);
      rightNode.branch(tree);
    /* If an integer solution is found */
    else {
      tableau.displaySolution();
      tree.bestSolution = tableau.bestSolution;
      tree.bestObjective = tableau.bestObjective;
}
```

Exercise 4 Problème de séparation par l'inégalité de couverture

On considère le problème du sac-à-dos en 0-1 défini par le problème *P* obtenu en première question de l'exercice 2.

On définit une *couverture* C comme un ensemble d'objets ne tenant pas dans le sac (*i.e.*, $C \subseteq \{1,...,n\}$ tel que $\sum_{i\in C} p_i > K$). L'inégalité $\sum_{i\in C} x_i \leq |C|-1$ est appelée *inégalité de couverture*. On note \hat{x} une solution optimale fractionnaire de P.

- 1. Prouver que l'inégalité $\sum_{i \in C} x_i \leq |C| 1$ est une coupe pour $P(\forall C)$.
- 2. Le problème de séparation consiste à chercher C telle que l'inégalité associée soit violée par la solution actuelle \hat{x} (*i.e.*, trouver C tel que l'inégalité suivante ne soit pas vérifiée : $\sum_{i \in C} \hat{x} \le |C| 1$). Afin d'identifier une inégalité qui soit la plus violée, nous cherchons à maximiser $\sum_{i \in C} \hat{x} |C|$.
 - a) Modéliser le problème de séparation par un programme linéaire en variables 0-1 avec $z_i = 1$ si et seulement si $i \in C$.

Indication : ici \hat{x} est une donnée, pas une variable.

- b) Quelle condition doit vérifier la valeur optimale de ce programme pour que l'inégalité de couverture obtenue soit violée par la solution fractionnaire \hat{x} ?
- 3. Considérons l'instance de la question 2 de l'exercice 2. Soit \hat{x} la solution de sa relaxation linéaire. Résoudre le problème de séparation et donner l'inégalité de couverture la plus violée par \hat{x} .

Remarque : Le problème étant ici très simple, il n'est pas demandé d'utiliser le simplexe pour le résoudre.

4. Implémentation

Nous allons ici ajouter des coupes de couvertures dans l'algorithme de *branch-and-bound* pour la résolution de problèmes de sac-à-dos. Pour ce faire, nous définissons une nouvelle classe KnapsackBBNode héritant de BBNode.

Cette classe contient deux attributs supplémentaires par rapport à BBNode :

- double[] p:poids des objets;
- double K: capacité du sac à dos.
- a) La méthode branch () de KnapsackBBNode sera identique à celle de BBNode à l'exception des deux points suivants :
 - on essaiera de générer une coupe lorsque la relaxation fournie une solution non entière en appellant simplement la méthode KnapsackBBNode.generateCut() (que vous implanterez dans la question suivante);
 - on branche sur des noeuds de type KnapsackBBNode plutôt que sur des noeuds de type BBNode.

Définir cette méthode.

b) Les problèmes de séparation étant résolus à chaque sommet non terminal, il est déconseillé de les résoudre par des programmes linéaires en nombres entiers, qui peuvent être coûteux en temps de calculs. Pour cet exercice, nous utiliserons l'algorithme polynomial approché représenté en Figure 2.

Implémenter cet algorithme dans la méthode KnapsackBBNode.generateCut().

Indication: Vous pourrez utiliser la méthode addCoverCutToTableau (ArrayList) afin d'ajouter la contrainte de couverture au tableau. Pour ce faire, il faudra mettre les sommets de la couverture dans une ArrayList.

Remarque : l'algorithme a pour avantage d'être polynomial mais a comme désavantage de ne pas garantir l'obtention de la coupe la plus violée. Il est également possible que l'algorithme ne trouve aucune couverture bien qu'il en existe.

c) Ajouter un affichage similaire à celui ci-dessous lorsqu'une coupe est générée :

```
Found cover [1, 2, 3] Relaxation before the cut: 39,83, (x2, x3, x4) = (1, 1, 0.17) Relaxation after the cut: 38,50, (x1, x2, x3, x4) = (0.50, 0.50, 1, 0.50)
```

Données:

n: nombre d'objets

 \hat{x} : solution optimale fractionnaire

p: poids des objets

K : capacité du sac-à-dos

couverture $\leftarrow \emptyset$

poidsCouverture $\leftarrow 0$

indice $\leftarrow 0$ Tant qu'une couverture n'a pas été trouvée et que tous les sommets n'ont pas été testés

tant que poidsCouverture < K et indice < n faire

```
si \hat{x}[indice] est non nul alors
                                                                                               couverture \leftarrow couverture \cup \{indice\}
                                                                                        poidsCouverture \leftarrow poidsCouverture + p[indice]
                                             indice \leftarrow indice + 1 \\ \text{ } \\
\textbf{si } \underline{poidsCouverture} > \overset{\star}{K} \textbf{ alors } \qquad \quad \\ - \textbf{ Utiliser la m\'ethode } \texttt{addCoverCutToTableau} \textbf{ (List)}
                                                 Ajouter la coupe aux contraintes
```

Résoudre la relaxation linéaire

FIGURE 2 – Algorithme polynomial de séparation des coupes de couvertures.

- d) Comparer le nombre de sommets de l'arborescence avec et sans coupes.
- e) Considérer une instance de plus grande taille et évaluer l'amélioration du temps de résolution apportée par l'utilisation de ces coupes.

Answer of exercise 4

- 1. Il faut prouver que tous les points admissibles de P vérifient l'inégalité (ou de manière équivalente qu'un point qui ne la vérifie pas n'est pas admissible pour P). Soit \overline{x} ne vérifiant pas l'inégalité. $\sum_{i \in C} \overline{x}_i \ge |C| \Rightarrow \overline{x}_i = 1 \forall i \in C \Rightarrow \sum_{i \in C} \overline{x}_i p_i > K$ par définition de $C \Rightarrow \overline{x}$ n'est pas
- 2. On cherche la couverture C qui maximise $\sum_{i \in C} \hat{x}_i |C|$ $\Rightarrow \max \sum_{i=1}^n z_i \hat{x}_i \sum_{i=1}^n z_i$ tel que z_i définit une couverture

$$\begin{cases}
\max z = \sum_{i=1}^{n} (\hat{x}_i - 1) z_i \\
\text{s.c.} \qquad \sum_{i=1}^{n} p_i z_i \ge K + 1 \\
z_i \in \{0, 1\} \quad \forall i \in \{1, ..., n\}
\end{cases}$$

Si $z^* > -1$ alors z^* correspond à une contrainte de couverture violée (car on veut $\sum_{i \in C} \hat{x}_i > -1$ |C|-1, qui correspond à $\sum_{i\in C} (\hat{x}_i-1) > -1$).

3.
$$\begin{cases} \max z = 0 & +0 & -\frac{2}{9}z_3 & -z_4 \\ \text{s.c.} & 3z_1 & +7z_2 & +9z_3 & +6z_4 & \ge 18 \\ & z_1, & z_2, & z_3, & z_4, & \in \{0,1\} & \forall i \in \{1,...,4\} \end{cases}$$

$$\text{Optimum}: z_1 = z_2 = z_3 = 1, z_4 = 0, z^* = -\frac{2}{9} > -1$$

Remarque : Ajouter $x_1 + x_2 + x_3 \le 2$ permet d'obtenir une solution optimale à la racine de l'arborescence.

Exercise 5 Problème de stable

Soit G = (V, E) un graphe non orienté. On appelle *stable* un ensemble de sommets $S \subseteq V$ non adjacents (i.e., un ensemble tel qu'il n'existe aucune arête du graphe reliant deux sommets de S).

1. Proposer une modélisation du problème de stable sous la forme d'un programme linéaire en nombres entiers.

FIGURE 3 – Instances de problème de stable maximal.

2. Résoudre les deux problèmes de stables représentés en Figure 3 en utilisant votre implémentation de l'algorithme de *branch-and-bound*.

Answer of exercise 5

1.
$$\begin{cases} \max & \sum_{i \in V} x_i \\ \text{s.c.} & x_i + x_j \le 1 \quad ij \in E \\ & x_i \in \{0, 1\} \quad i \in V \end{cases}$$

Exercise 6 Problème de production

Vous êtes un fournisseur de voitures qui doit satisfaire chaque jour la demande de ses clients. Pour simplifier, supposons que vous ne produisez qu'un seul type de voitures.

Chaque jour $t \in \{1, 2, ..., T\}$, vous devez fournir d_t voitures à vos clients. Pour satisfaire la demande du jour t, vous avez la possibilité :

- de produire p_t voitures le jour même (sachant que vous ne pouvez pas en produire plus de 10 par jour); et/ou
- d'utiliser une partie des voitures que vous avez en stock (le stock en fin de journée t, noté s_t , correspond aux voitures que vous avez produits au cours des jours 1 à t et qui n'ont pas encore été livrées pour satisfaire les demandes d_1 à d_t).

Remarque : Vous êtes obligé chaque jour de totalement satisfaire la demande de vos clients.

- 1. Pour tout t > 1, déterminer une équation traduisant le lien entre s_t , p_t , d_t et s_{t-1} .
- 2. Supposons maintenant que vos entrepôts de stockage soient peu sécurisés et que vous perdiez chaque jour 60% de vos stocks. Adapter l'équation de la question précédente en conséquence.
- 3. La production et le stockage d'une voiture ont un coût qui varie d'un jour à l'autre. On note :
 - c_t^p le coût de production d'une voiture le jour t;
 - c_t^s le coût de stockage d'une voiture entre le jour t et le jour t+1.

Proposer une modélisation de problème permettant de minimiser les coûts sous la forme d'un programme linéaire en nombres entiers.

4. Résoudre l'instance suivante en utilisant votre implémentation de l'algorithme de *branch-and-bound* :

$$-t = 5;$$

$$-d_t = \{2, 11, 3, 1, 11\};$$

$$-c_t^p = \{5, 3, 9, 5, 8\};$$

$$-c_t^s = \{7, 1, 9, 4, 3\}.$$

Remarque: Vos stocks sont initialement vides.

5. Résoudre à nouveau cette instance en supposant cette fois que vous avez amélioré la sécurité de vos entrepôts et qu'il n'y a plus de perte de stock d'un jour à l'autre. Qu'observer vous et à quoi cela est-il dû?

Exercise 7

On veut montrer que tout programme quadratique en variables 0-1 peut se ramener à un programme linéaire en 0-1. Pour cela, on va "linéariser" le programme en remplaçant chaque terme quadratique $x_i x_j$ par une seule variable 0-1 : z_{ij} .

- 1. Donner les contraintes à ajouter pour que le programme linéaire obtenu soit équivalent au programme quadratique initial, c'est-à-dire qu'on a bien $z_{ij} = x_i x_j$ pour tout i et tout j.
- 2. Une telle transformation est-elle possible si les variables sont continues (dans $\mathbb R$)?

Answer of exercise 7

- 1. $z_{ij} \le x_i z_{ij} \le x_j \text{ et } x_i + x_j z_{ij} \le 1$
- 2. Impossible (en 0-1 on a $x \times x = x$)

Remarque : une linéarisation est également possible si les variables sont entières et bornées (plus compliqué, décomposition en binaire) ou si on a un produit d'une variable continue bornée x par une variable 0-1 y (car on a xy=x ou xy=0).

Exercise 8

On rappelle le modèle du problème de localisation vu en cours :

$$\begin{cases} \min z = \sum_{j=1}^{n} f_{j} y_{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \text{s.c.} \qquad \sum_{j=1}^{n} x_{ij} = 1 \quad \forall i \ (1) \\ x_{ij} \leq y_{j} \ \forall i, j \ (2) \\ y_{i}, x_{ij} \in \{0, 1\} \ \forall i, j \end{cases}$$

comprenant les variables

$$-x_{ij} = \begin{cases} 1 & \text{si le client } i \text{ est approvisionn\'e par le centre } j \\ 0 & \text{sinon} \end{cases}$$
$$-y_j = \begin{cases} 1 & \text{si le centre } j \text{ est construit} \\ 0 & \text{sinon} \end{cases}$$

- 1. Donner un modèle équivalent mais plus compact du problème (avec moins de contraintes). *Remarque*: Un modèle est dit équivalent s'il contient les mêmes solutions. Dans le cas d'un programme linéaire en nombre entiers, cela signifie que les deux modèles possèdent les mêmes solutions entières (mais pas nécessairement les mêmes solutions continues).
- 2. On effectue une relaxation continue de ces deux programmes linéaires afin d'obtenir des bornes sur la solution optimale entière. L'une des deux relaxations fournit-elle une meilleure borne que l'autre ? Pourquoi ?

Answer of exercise 8

- 1. Remplacer (2) par $\sum_{i=1}^{n} x_{ij} \leq ny_i(2')$
- 2. Toute solution vérifiant (2) vérifie également (2') mais la réciproque n'est pas vraie. Par exemple si on prend n=4, $y_2=0$, 8 $x_{11}=0$, 6 $x_{12}=0$, 8 $x_{13}=0$, 9 $x_{14}=0$, 8 alors, les contraintes (2') sont vérifiées ($\sum_{i=1}^4 x_{1i}=3$, $1\le ny_1=4*0$, 8=3, 2) mais pas les contraintes (2) ($x_{13}=0$, $9\ge y_1=0$, 8).

Le modèle (2) est donc plus contraint que le modèle (2') et la borne sera meilleure. Le polyèdre avec (2) est inclus dans celui avec (2') mais il n'y a aucun point entier entre les deux! (faire un dessin)

Remarque : le programme (2') se résout immédiatement. La solution optimale est

$$-x_{ij} = \begin{cases} 1 & \text{si } \frac{f_j}{n} + c_{ij} = \min_l \left(\frac{f_l}{n} + c_{il} \right) \\ 0 & \text{sinon} \end{cases}$$
$$-y_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

Cependant, la borne est très mauvaise. Le programme (2) est plus difficile à résoudre (PL) mais donne une excellente borne.

Exercise 9 Dualité Flot/Coupe

Soit un réseau de transport G=(V,E,C) muni d'une source S et d'un puits T, ayant n sommets et m arcs. On veut prouver l'égalité entre une coupe minimale et un flot maximal à l'aide de la dualité en programmation linéaire. Pour cela on va écrire les deux problèmes sous forme de programmes linéaires duaux. Ces programmes seront obtenus en considérant tous les chemins π_i $i \in \{1, \ldots, p\}$ reliant la source S au puits T; on note f_i le flot routé le long du chemin π_i . Deux chemins sont différents s'ils ont au moins un arc différent. Attention : le nombre de ces chemins peut être très grand. Il est clair que le flot total entre S et T est égal à la somme des flots sur tous les chemins

 $F := \sum_{i=1}^{p} f_i$. Pour le problème du flot maximum, on cherche donc les variables f_i qui maximisent F.

- 1. Ecrire le programme associé à la recherche d'une coupe minimale. On prendra comme variables : $y_e = 1$ si l'arc $e \in E$ est dans la coupe et $y_e = 0$ sinon, $e \in \{1, ..., m\}$.
- 2. Ecrire le programme associé à la recherche d'un flot maximal en considérant les variables f_i et non les flux sur chaque arc comme dans le modèle vu en cours.
- 3. Vérifier que les relaxations continues de ces programmes sont les mêmes. Peut-on en déduire directement l'égalité des valeurs flot max/coupe min?

Answer of exercise 9

1.
$$\begin{cases} \min = \sum_{e \in E} c_e y_e \\ \text{s.c.} \sum_{e \in \pi_i} y_e \ge 1 \quad \forall i \in \{1, ..., p\} \\ y_e \in \{0, 1\} \quad \forall e \in E \end{cases}$$
2.
$$\begin{cases} \max = \sum_{i=1}^p f_i \\ \text{s.c.} \sum_{\pi_i, e \in \pi_i} f_i \le c_i \ \forall e \in E \\ f_i \in \mathbb{N} \qquad \forall i \in \{1, ..., p\} \end{cases}$$

3. Il est facile de voir que les programmes sont duaux et donc les optimum continus sont égaux. Il faut ajouter que la matrice des contraintes est totalement unimodulaire (matrice de chaînes dans le programme de flot) et donc l'optimum continu est entier (cela n'a pas été vu en cours donc en dire un mot). Si une matrice est TU sa transposée est TU et donc l'optimum continu pour la coupe est entier aussi.

Exercise 10 Recherche de plus courts chemins

Soit un graphe orienté G = (V, A) et deux sommets v_0 et v_n de V. On associe une distance d_{ij} à chaque arc (i, j) de A. On cherche un chemin de v_0 à v_n de plus courte distance (distance = somme des valeurs des arcs empruntés par le chemin).

- 1. Définir les variables associées à ce problème et l'écrire sous forme d'un PL0-1.
- 2. On veut maintenant 2 chemins arcs-disjoints (mais pas obligatoirement sommets-disjoints) dont la somme des longueurs est minimale, l'un de v_0 à v_n et l'autre de v_1 à v_{n-1} . Définir les variables et écrire ce nouveau problème sous forme d'un PL0-1.