8. From Geometry to Pixels

Outline

- Rendering Overview
- Clipping
- Polygon Rendering
- Rasterization
- Display Issues

Rendering Overview

Objectives

- Examine what happens between the vertex shader and the fragment shader
- Introduce basic implementation strategies
- Clipping
- Rendering
 - lines
 - polygons
- Give a sample algorithm for each

Overview

- At end of the geometric pipeline, vertices have been assembled into primitives
- Must clip out primitives that are outside the view frustum
 - Algorithms based on representing primitives by lists of vertices
- Must find which pixels can be affected by each primitive
 - Fragment generation
 - Rasterization or scan conversion

Required Tasks

- Clipping
- Rasterization or scan conversion
- Transformations
- Some tasks deferred until fragment processing
 - Hidden surface removal
 - Antialiasing

Rasterization Meta Algorithms

- Any rendering method process every object and must assign a color to every pixel
- Think of rendering algorithms as two loops
 - over objects
 - over pixels
- The order of these loops defines two strategies
 - image oriented
 - object oriented

Object Space Approach

- For every object, determine which pixels it covers and shade these pixels
 - Pipeline approach
 - Must keep track of depths for HSR
 - Cannot handle most global lighting calculations
 - Need entire framebuffer available at all times

Image Space Approach

- For every pixel, determine which object that projects on the pixel is closest to the viewer and compute the shade of this pixel
 - Ray tracing paradigm
 - Need all objects available
- Patch Renderers
 - Divide framebuffer into small patches
 - Determine which objects affect each patch
 - Used in limited power devices such as cell phones

Algorithm Experimentation

 Create a framebuffer object and use render-to-texture to create a virtual framebuffer into which you can write individual pixels

Clipping

Objectives

- Clipping lines
- First of implementation algorithms
- Clipping polygons
- Focus on pipeline plus a few classic algorithms

Clipping

- 2D against clipping window
- 3D against clipping volume
- Easy for line segments polygons
- Hard for curves and text
 - Convert to lines and polygons first

Clipping 2D Line Segments

- Brute force approach: compute intersections with all sides of clipping window
 - Inefficient: one division per intersection

Cohen-Sutherland Algorithm

- Idea: eliminate as many cases as possible without computing intersections
- Start with four lines that determine the sides of the clipping window

The Cases

- Case 1: both endpoints of line segment inside all four lines
 - Draw (accept) line segment as is

- Case 2: both endpoints outside all lines and on same side of a line
 - Discard (reject) the line segment

The Cases

- Case 3: One endpoint inside, one outside
 - Must do at least one intersection
- Case 4: Both outside
 - May have part inside
 - Must do at least one intersection

Defining Outcodes

For each endpoint, define an outcode

$$b_0b_1b_2b_3$$

$$b_0 = 1 \text{ if } y > y_{\text{max}}, \text{ 0 otherwise}$$

$$b_1 = 1 \text{ if } y < y_{\text{min}}, \text{ 0 otherwise}$$

$$b_2 = 1 \text{ if } x > x_{\text{max}}, \text{ 0 otherwise}$$

$$b_3 = 1 \text{ if } x < x_{\text{min}}, \text{ 0 otherwise}$$

	1001	1000	1010	V = V
•	0001	0000	0010	$y = y_{\text{max}}$
	0101	0100	0110	$y = y_{\min}$
$x = x_{\min} x = x_{\max}$				

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 subtractions

- Consider the 5 cases below
- AB: outcode(A) = outcode(B) = 0
 - Accept line segment

- CD: outcode (C) = 0, outcode(D) \neq 0
 - Compute intersection
 - Location of 1 in outcode(D) determines which edge to intersect with
 - Note if there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two interesections

- EF: outcode(E) logically ANDed with outcode(F) (bitwise)≠ 0
 - Both outcodes have a 1 bit in the same place
 - Line segment is outside of corresponding side of clipping window
 - reject

- GH and IJ: same outcodes, neither zero but logical AND yields zero
- Shorten line segment by intersecting with one of sides of window
- Compute outcode of intersection (new endpoint of shortened line segment)
- Reexecute algorithm

Efficiency

- In many applications, the clipping window is small relative to the size of the entire data base
 - Most line segments are outside one or more side of the window and can be eliminated based on their outcodes
- Inefficiency when code has to be reexecuted for line segments that must be shortened in more than one step

Cohen Sutherland in 3D

- Use 6-bit outcodes
- When needed, clip line segment against planes

Clipping and Normalization

- General clipping in 3D requires intersection of line segments against arbitrary plane
- Example: oblique view

Plane-Line Intersections

$$a = \frac{n \bullet (p_o - p_1)}{n \bullet (p_2 - p_1)}$$

Normalized Form

before normalization

after normalization

Normalization is part of viewing (pre clipping) but after normalization, we clip against sides of right parallelepiped

Typical intersection calculation now requires only a floating point subtraction, e.g. is $x > x_{max}$?

Polygon Rendering

Objectives

- Introduce clipping algorithms for polygons
- Survey hidden-surface algorithms

Polygon Clipping

- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a polygon can yield multiple polygons

 However, clipping a convex polygon can yield at most one other polygon

Tessellation and Convexity

- One strategy is to replace nonconvex (concave) polygons with a set of triangular polygons (a tessellation)
- Also makes fill easier
- Tessellation through tesselllation shaders

Clipping as a Black Box

 Can consider line segment clipping as a process that takes in two vertices and produces either no vertices or the vertices of a clipped line segment

Pipeline Clipping of Line Segments

- Clipping against each side of window is independent of other sides
 - Can use four independent clippers in a pipeline

Pipeline Clipping of Polygons

- Three dimensions: add front and back clippers
- Strategy used in SGI Geometry Engine
- Small increase in latency

Bounding Boxes

- Rather than doing clipping on a complex polygon, we can use an axis-aligned bounding box or extent
 - Smallest rectangle aligned with axes that encloses the polygon
 - Simple to compute: max and min of x and y

Bounding boxes

Can usually determine accept/reject based only on bounding box

Clipping and Visibility

- Clipping has much in common with hidden-surface removal
- In both cases, we are trying to remove objects that are not visible to the camera
- Often we can use visibility or occlusion testing early in the process to eliminate as many polygons as possible before going through the entire pipeline

Hidden Surface Removal

 Object-space approach: use pairwise testing between polygons (objects)

Worst case complexity O(n²) for n polygons

Painter's Algorithm

 Render polygons a back to front order so that polygons behind others are simply painted over

Depth Sort

- Requires ordering of polygons first
 - O(n log n) calculation for ordering
 - Not every polygon is either in front or behind all other polygons

 Order polygons and deal with easy cases first, harder later

Polygons sorted by distance from COP

Easy Cases

- A lies behind all other polygons
 - Can render

- Polygons overlap in z but not in either x or y
 - Can render independently

Hard Cases

Overlap in all directions but can one is fully on one side of the other

cyclic overlap

penetration

Back-Face Removal (Culling)

•face is visible iff $90 \ge \theta \ge -90$ equivalently $\cos \theta \ge 0$ or $\mathbf{v} \cdot \mathbf{n} \ge 0$

•plane of face has form ax + by +cz +d =0 but after normalization $\mathbf{n} = (\ 0\ 0\ 1\ 0)^T$

- •need only test the sign of c
- •In OpenGL we can simply enable culling but may not work correctly if we have nonconvex objects

Image Space Approach

- Look at each projector (nm for an n x m frame buffer) and find closest of k polygons
- Complexity O(nmk)
- Ray tracing
- z-buffer

z-Buffer Algorithm

- Use a buffer called the z or depth buffer to store the depth of the closest object at each pixel found so far
- As we render each polygon, compare the depth of each pixel to depth in z buffer
- If less, place shade of pixel in color buffer and update z buffer

Efficiency

• If we work scan line by scan line as we move across a scan line, the depth changes satisfy $a\Delta x + b\Delta y + c\Delta z = 0$

Along scan line
$$\Delta y = 0$$
 $\Delta z = -\frac{a}{2} \Delta x$

In screen space $\Delta x = 1$

Scan-Line Algorithm

Can combine shading and hsr through scan line algorithm

scan line i: no need for depth information, can only be in no or one polygon

scan line j: need depth information only when in more than one polygon

Implementation

- Need a data structure to store
 - Flag for each polygon (inside/outside)
 - Incremental structure for scan lines that stores which edges are encountered
 - Parameters for planes

Visibility Testing

- In many realtime applications, such as games, we want to eliminate as many objects as possible within the application
 - Reduce burden on pipeline
 - Reduce traffic on bus
- Partition space with Binary Spatial Partition (BSP) Tree

Simple Example

The plane of A separates B and C from D, E and F

BSP Tree

- Can continue recursively
 - Plane of C separates B from A
 - Plane of D separates E and F
- Can put this information in a BSP tree
 - Use for visibility and occlusion testing

Rasterization

Objectives

- Survey Line Drawing Algorithms
 - DDA
 - Bresenham's Algorithm
- Aliasing and Antialiasing

Rasterization

- Rasterization (scan conversion)
 - Determine which pixels that are inside primitive specified by a set of vertices
 - Produces a set of fragments
 - Fragments have a location (pixel location) and other attributes such color and texture coordinates that are determined by interpolating values at vertices
- Pixel colors determined later using color, texture, and other vertex properties

Scan Conversion of Line Segments

- Start with line segment in window coordinates with integer values for endpoints
- Assume implementation has a write_pixel function

DDA Algorithm

- <u>Digital Differential Analyzer</u>
 - DDA was a mechanical device for numerical solution of differential equations
 - Line y=mx+ h satisfies differential equation $dy/dx = m = \Delta y/\Delta x = y_2-y_1/x_2-x_1$
- Along scan line $\Delta x = 1$

```
For(x=x1; x<=x2,ix++) {
   y+=m;
   write_pixel(x, round(y), line_color)
}</pre>
```

Problem

- DDA = for each x plot pixel at closest y
 - Problems for steep lines

Using Symmetry

- Use for $1 \ge m \ge 0$
- For m > 1, swap role of x and y
 - For each y, plot closest x

Bresenham's Algorithm

- DDA requires one floating point addition per step
- We can eliminate all fp through Bresenham's algorithm
- Consider only $1 \ge m \ge 0$
 - Other cases by symmetry
- Assume pixel centers are at half integers
- If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer

Candidate Pixels

 $1 \ge m \ge 0$ y = mx + hcandidates last pixel Note that line could have passed through any part of this pixel

Decision Variable

$$d = \Delta x(b-a)$$

d is an integerd > 0 use upper pixeld < 0 use lower pixel

Incremental Form

• More efficient if we look at d_k , the value of the decision variable at x=k

$$d_{k+1} = d_k - 2\Delta y$$
, if $d_k < 0$
 $d_{k+1} = d_k - 2(\Delta y - \Delta x)$, otherwise

- •For each x, we need do only an integer addition and a test
- Single instruction on graphics chips

Polygon Scan Conversion

- Scan Conversion = Fill
- How to tell inside from outside
 - Convex easy
 - Nonsimple difficult
 - Odd even test
 - Count edge crossings
 - Winding number

odd-even fill

Winding Number

Count clockwise encirclements of point

Alternate definition of inside: inside if winding number ≠ 0

Filling in the Frame Buffer

- Fill at end of pipeline
 - Convex Polygons only
 - Nonconvex polygons assumed to have been tessellated
 - Shades (colors) have been computed for vertices (Gouraud shading)
 - Combine with z-buffer algorithm
 - March across scan lines interpolating shades
 - Incremental work small

Using Interpolation

 $C_1 C_2 C_3$ specified by **glColor** or by vertex shading C_4 determined by interpolating between C_1 and C_2 C_5 determined by interpolating between C_2 and C_3 interpolate between C_4 and C_5 along span

Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```
flood_fill(int x, int y) {
    if(read_pixel(x,y) = = WHITE) {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
}
```

Scan Line Fill

- Can also fill by maintaining a data structure of all intersections of polygons with scan lines
 - Sort by scan line
 - Fill each span

vertex order generated by vertex list

desired order

Data Structure

Aliasing

Ideal rasterized line should be 1 pixel wide

Choosing best y for each x (or visa versa)
 produces aliased raster lines

Antialiasing by Area Averaging

 Color multiple pixels for each x depending on coverage by ideal line

Polygon Aliasing

- Aliasing problems can be serious for polygons
 - Jaggedness of edges
 - Small polygons neglected
 - Need compositing so color of one polygon does not totally determine color of pixel

All three polygons should contribute to color

Display Issues

Objectives

- Consider perceptual issues related to displays
- Introduce chromaticity space
 - Color systems
 - Color transformations
- Standard Color Systems

No Display Can Be Perfect

- An analog display device such as a CRT takes digital input (pixels) and outputs a small spot of color
- A Digital display such as a LCD display outputs discrete spots
- The eye merges (filters) these spots
- Sampling theory shows this process cannot be done perfectly

Perception Review

- Light is the part of the electromagnetic spectrum between ~350-750 nm
- A color $C(\lambda)$ is a distribution of energies within this range
- The human visual system has three types of cones on the retina, each with its own spectral sensitivity
- Consequently, only three values, the tristimulus values, are "seen" by the brain

Tristimulus Values

- The human visual center has three cones with sensitivity curves $S_1(\lambda)$, $S_2(\lambda)$, and $S_3(\lambda)$
- For a color C(λ), the cones output the tristimulus values

$$T_{1} = \int S_{1}(\lambda)C(\lambda)d\lambda$$

$$T_{2} = \int S_{2}(\lambda)C(\lambda)d\lambda$$

$$T_{3} = \int S_{3}(\lambda)C(\lambda)d\lambda$$

Three Color Theory

- Any two colors with the same tristimulus values are perceived to be identical
- Thus a display (CRT, LCD, film) must only produce the correct tristimulus values to match a color
- Is this possible? Not always
 - Different primaries (different sensitivity curves) in different systems

The Problem

- The sensitivity curves of the human are not the same as those of physical devices
- Human: curves centered in blue, green, and greenyellow
- CRT: RGB
- Print media: CMY or CMYK
- Which colors can we match and, if we cannot match, how close can we come?

Representing Colors

- Consider a color C(λ)
- It generates tristimulus values T₁, T₂, T₃
 - Write $C = (T_1, T_2, T_3)$
 - Conventionally,we assume $1 \ge T_1$, T_2 , $T_3 \ge 0$ because there is a maximum brightness we can produce and energy is nonnegative
 - C is a point in color solid

Producing Colors

 Consider a device such as a CRT with RGB primaries and sensitivity curves

Tristimulus values

$$T_1 = \int R(\lambda)C(\lambda)d\lambda$$

$$T_2 = \int G(\lambda)C(\lambda)d\lambda$$
$$T_3 = \int B(\lambda)C(\lambda)d\lambda$$

Matching

- This T₁, T₂, T₃ is dependent on the particular device
- If we use another device, we will get different values and these values will not match those of the human cone curves
- Need a way of matching and a way of normalizing

Color Systems

- Various color systems are used
 - Based on real primaries:
 - NTSC RGB
 - UVW
 - CMYK
 - HLS
 - Theoretical
 - XYZ
- Prefer to separate brightness (luminance) from color (chromatic) information
 - Reduce to two dimensions

Tristimulus Coordinates

For any set of primaries, define

$$t_{1} = \frac{T_{1}}{T_{1} + T_{2} + T_{3}}$$

$$t_{2} = \frac{T_{2}}{T_{1} + T_{2} + T_{3}}$$

$$t_{3} = \frac{T_{3}}{T_{1} + T_{2} + T_{3}}$$

Note

$$\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 = 1$$
 $1 \ge \mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3 \ge 0$

Maxwell Triangle

Project onto 2D: chromaticity space

NTSC RGB

Producing Other Colors

- However colors producible on one system (its color gamut) is not necessarily producible on any other
- Not that if we produce all the pure spectral colors in the 350-750 nm range, we can produce all others by adding spectral colors
- With real systems (CRT, film), we cannot produce the pure spectral colors
- We can project the color solid of each system into chromaticity space (of some system) to see how close we can get

Color Gamuts

XYZ

- Reference system in which all visible pure spectral colors can be produced
- Theoretical systems as there are no corresponding physical primaries
- Standard reference system

Color Systems

- Most correspond to real primaries
 - National Television Systems Committee (NTSC) RGB matches phosphors in CRTs
- Film both additive (RGB) and subtractive (CMY) for positive and negative film
- Print industry CMYK (K = black)
 - K used to produce sharp crisp blacks
 - Example: ink jet printers

Color Transformations

 Each additive color system is a linear transformation of another

RGB, CMY, CMYK

Assuming 1 is max of a primary

$$C = 1 - R$$

$$M = 1 - G$$

$$Y = 1 - B$$

Convert CMY to CMYK by

$$K = min(C, M, Y)$$

$$C' = C - K$$

$$M' = M - K$$

$$Y' = Y - K$$

Color Matrix

 Exists a 3 x 3 matrix to convert from representation in one system to representation in another

$$\begin{bmatrix} \mathbf{T'}_1 \\ \mathbf{T'}_2 \\ \mathbf{T'}_3 \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{T}_1 \\ \mathbf{T}_2 \\ \mathbf{T}_3 \end{bmatrix}$$

- Example: XYZ to NTSC RGB
 - find in colorimetry references
- Can take a color in XYZ and find out if it is producible by transforming and then checking if resulting tristimulus values lie in (0,1)

YIQ

- NTSC Transmission Colors
- Here Y is the luminance
 - Arose from need to separate brightness from chromatic information in TV broadcasting

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Note luminance shows high green sensitivity

Other Color Systems

- UVW: equal numerical errors are closer to equal perceptual errors
- HLS: perceptual color (hue, saturation, lightness)
 - Polar representation of color space
 - Single and double cone versions

Gamma

Intensity vs CRT voltage is nonlinear

$$I = cV^{\gamma}$$

- Can use a lookup table to correct
- Human brightness response is logarithmic
 - Equal steps in gray levels are not perceived equally
 - Can use lookup table
- CRTs cannot produce a full black
 - Limits contrast ratio

sRGB

- Standard for Internet
- Adjust colors to match standard gamma of panels
 - match gamma over most of the range
 - enhance less bright colors
- OpenGL (soon WebGL?) can input sRGB and convert to RGB for processing and then back to sRGB