Algebraic Algorithms

mykyta.narusevych@matfyz.cuni.cz

November 2022

1 Theoretical part

- 1. Find a normal reduced Gröbner basis of the ideal $< x^2y^2+y-1, x^2y+x> \le \mathbb{Q}[x,y]$ for $<_{GLEX}, x < y$. Does polynomial $x^2y^3-2xy+3y$ belong to the given ideal?
- 2. Find a normal reduced Gröbner basis of the ideal $< x^2 2y^2, xy 3 > \le \mathbb{Q}[x,y]$ for any (admissible) ordering. Does polynomial $2y^3 x + 3$ belong to the given ideal?
- 3. * Is it true that $IJ = I \cap J$ in general, where I, J are some ideals over an integral domain?
- 4. Let $I = \langle f_1, ..., f_n \rangle$, $J = \langle g_1, ..., g_m \rangle$ be ideals from $T[x_1, ..., x_k]$. Prove that:
 - (a) $I + J = \langle f_1, ..., f_n, g_1, ..., g_m \rangle$,
 - (b) $IJ = \langle f_i g_i | i \leq n, j \leq m \rangle$,
 - (c) * $I \cap J = (zI + (1-z)J) \cap T[x_1, ..., x_k]$, where z is a new variable.
- 5. Let I, J be ideals. Prove that :
 - (a) $V(I) \cap V(J) = V(I+J)$,
 - (b) $V(I) \cup V(J) = V(IJ)$.

Using these two observations design an algorithm which given two algebraic sets $A = V(f_1, ..., f_n)$ and $B = V(g_1, ..., g_m)$ computes $A \cap B$ and $A \cup B$.

6. How many solutions does the following system have in \mathbb{Q} and in \mathbb{C} :

$$1 + 2x^2 + y^2 + 4x^2y^2 + 2x^2y^4 = 0, xy^2 + xy^4 = 0.$$

7. How many solutions does the following system have in \mathbb{Q} and in \mathbb{C} :

$$x^2 - 2xy^2 + 1 = 0, xy - 2y^2 + x = 0.$$

8. ** Prove Heron's formula using Gröbner basis method. To recall, Heron's formula states that the area of a triangle with lengths a,b and c equals:

$$\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}.$$

2 Computational part

- 1. Verify 1 using sage.
- 2. Verify 2 using sage.