

Fig. 4 Single-photon ionization of (+)-fenchone with harmonics 3 and 5 of a 400 nm, $\pm 30\%$ ellipticity laser pulse. ARPES (a) and PECD (b); the light propagation axis is horizontal and the radius extends from 0 to 7 eV. (c): b_0 (gray area) and normalized b_1/b_0 (black line) Legendre coefficients as a function of electron kinetic energy; the positions of PES peaks expected from TDDFT calculations are marked by $Hq(i^*)$, which is a shortcut to the $Hq(0 \rightarrow i^*)$ notation employed in the text.

with the experimental one, 8.72 eV. These calculations provide the vertical ionization potentials $I_p^{0 \to i^*}$ from the ground state of fenchone (0) to the ground (0) and excited (i^*) states of the associated cation. These ionization potentials (I_p) are used in Fig. 4 to identify the different ionization channels $0 \to i^*$ opened by the absorption of the q^{th} harmonic according to energy conservation $E = q\hbar\omega_0 - I_p^{0 \to i^*}$. The main and secondary maxima in the PES correspond to the H3(0 \to 0) and H5(0 \to 0) ionizing processes, respectively. The broad bump results from ionization leaving the cation in excited states, H5(0 \to i^*). Within the Koopman's approximation, these processes would be understood as ionization of inner molecular orbitals. However for i > 11 two-hole-one-particle configurations, i.e. ionization + excitation processes, come into play. Interestingly, the excited state contributions vanish in the PECD image which only shows peaks centered at H3(0 \to 0) and H5(0 \to 1*), with respective magnitudes of 10 and 3%. This indicates that the PECD associated to neighbouring 0 \to i^* channels, with i in the range 4–12, alternates between positive and negative values so that their overlap