rgpvonline.com

MA-110

B.E. (All Branches), I Year I Semester

Examination, December 2015

Choice Based Credit System (CBCS) **Mathematics - I**

Time: Three Hours

Maximum Marks: 60

PTO

Note: Attempt any five questions. All questions carry equal marks.

1. a) If $y = \sin(m \sin^{-1} x)$, prove that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + m^2y = 0$.

- The equation of the tangent at the point (2, 3) of the curve $y^2 = ax^3 + b$ is y = 4x - 5. Find the values of a and b. 4
- c) Evaluate $\int_0^{\pi/2} \frac{\sin 2x}{\sin 4x + \cos 4x} dx$. 5
- Expand by Maclaurin's theorem $e^{x\cos x}$ as far as the term x^3 .
 - Prove that the curvature at the point (x, y) of the catenary

 $y = c \cosh\left(\frac{x}{c}\right) is \frac{y^2}{c}.$ Locate the stationary points of $x^4 + y^4 - 2x^2 + 4xy - 2y^2$

- and determine their nature.
- 3. a) If $u = \sec^{-1} \left(\frac{x^3 y^3}{x + y} \right)$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\cot u$. 3
 - The radius of a sphere is found to be 10cm with a possible error of 0.02cm. What is the relative error in computing the volume?

- c) If $x = r \sin\theta \cos \varphi$, $y = r \sin\theta \sin \varphi$, $z = r \cos\theta$, then show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \alpha)} = r^2 \sin \theta$. 5
- 4. a) Evaluate $\lim_{n\to\infty} \left(\frac{1}{1+n^3} + \frac{4}{8+n^3} + \frac{9}{27+n^3} + \dots + \frac{1}{2n} \right)$ 3
 - b) Prove that $\int_{-\infty}^{\infty} e^{-a^2 x^2} dx = \frac{\sqrt{\pi}}{a}, a > 0.$
 - c) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Beta functions and hence evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$. 5
- 5. a) Evaluate $\iint y \, dx \, dy$ over the part of the plane bounded by the line y = x and the parabola $y = 4x - x^2$. 3
 - b) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} xyz \, dz \, dy dx$. 4
 - c) Find the area enclosed by the parabolas $v^2 = 4ax$ and $x^2 = 4ay$. 5
- 6. a) Evaluate $\int_{a}^{b} e^{x} dx$ as limit of sum. rgpvonline.com
 - b) Express in terms of the Gamma function: $\int_0^\infty x^n e^{-a^2x^2} dx$. 4
 - c) Change the order of integration in $\int_0^1 \int_{r^2}^{2-x} xy \, dx \, dy$ and hence evaluate the same.
- 7. a) Verify Rolle's theorem, where $f(x) = 2x^3 + x^2 4x 2$. 3
 - b) If u = f(y + z, z x, x y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. 4
 - c) Trace the curve $y^2(2a-x)=x^3$.

MA-110 rgpvonline.com