Prediksi Harga Mobil Bekas Menggunakan Regresi Linear

Wildan Mufti Brawijaya - 2310631170121

TABLE OF CONTENTS

O1 Pendahuluan

02 Data Profiling

O3 Pre - processing Data

Modelling + Evaluasi

05 Kesimpulan

Pendahuluan

Tujuan

 Membangun model machine learning untuk memprediksi variabel Price (harga) berdasarkan fitur-fitur yang paling relevan dari mobil bekas.

Metode

- Feature Selection : Forward Selection
- Regresi Linear

Data Profiling & EDA

Dataset memiliki 6019 baris dengan 12 kolom

Heatmap Korelasi

Pre - Processing

Pre - Processing

Pre - Processing

0	# Cek df_en	dataset se	etelah	di-label encoder								
} ₹		Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	Price
	0	9	2010	72000.0	0	1	0	26.60	998.0	58.16	5.0	1.75
	1	10	2015	41000.0	1	1	0	19.67	1582.0	126.20	5.0	12.50
	2	2	2011	46000.0	3	1	0	18.20	1199.0	88.70	5.0	4.50
	4	3	2013	40670.0	1	0	2	15.20	1968.0	140.80	5.0	17.74
	5	5	2012	75000.0	2	1	0	21.10	814.0	55.20	5.0	2.35
	6013	3	2015	70602.0	1	1	0	25.80	1498.0	98.60	5.0	4.83
	6014	4	2014	27365.0	1	1	0	28.40	1248.0	74.00	5.0	4.75
	6015	6	2015	100000.0	1	1	0	24.40	1120.0	71.00	5.0	4.00
	6017	8	2013	46000.0	3	1	0	18.90	998.0	67.10	5.0	2.65
	6018	5	2011	47000.0	1	1	0	25.44	936.0	57.60	5.0	2.50
3976 rows × 11 columns												


```
# Split dataset ke data latih dan data uji
X_train, X_test, y_train, y_test = train_test_split(X_final, y_final, test_size=0.2, random_state=42)
# Cek data masing-masing
print("Jumlah data latih:", X_train.shape)
print("Jumlah data uji:", X_test.shape)

Jumlah data latih: (3180, 5)
Jumlah data uji: (796, 5)
```

```
# Menggunakan z-score atau standard scaler
   scaler = StandardScaler()
   # fit transform data latih
   X_train_scaled = scaler.fit_transform(X_train)
   # transform data uji
   X_test_scaled = scaler.transform(X_test)
   # Cek scaling
   print("data latih :")
   print(X train scaled)
   print("\ndata uji :")
   print(X test scaled)
  data latih :
    [[-0.25005286 -1.242861 -2.11139349 0.49360399 -0.0538009 ]
    [-1.61985146 -0.18910221 0.87226729 0.49360399 -0.29706607]
    [-0.93495216 1.56716245 0.87226729 -2.02591556 -0.38020733]
    [ 0.43484644  0.51340365  0.87226729  0.49360399 -0.13386285]
    [ 1.4621954 -0.54035514 -1.1168399  0.49360399  0.2510504 ]]
   data uji :
   [[-0.25005286 -0.54035514 -1.1168399 0.49360399 -0.66350349]
    [ 1.11974575 -0.89160807  0.87226729 -2.02591556 -0.50953819]
    [ 1.11974575 -0.89160807 -1.1168399 -2.02591556 3.31188056]
    [-0.59250251 -0.18910221 0.87226729 0.49360399 -0.26627301]
    [-0.93495216 1.21590952 -1.1168399 0.49360399 0.94697355]]
```

```
# Modelling dengan model Linear Regression
model_lr = LinearRegression()
model_lr.fit(X_train_scaled, y_train)

LinearRegression © ©
LinearRegression()
```



```
# Evaluasi model dengan metrik evaluasi regresi (R2, MAE, MSE, RMSE)
    # y pred train = model lr.predict(X train)
    y pred test = model lr.predict(X test scaled)
    # Membuat dataframe untuk membandingkan nilai aktual dan prediksi
    comparison_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred_test})
    # Mengurutkan index
    comparison_df = comparison_df.sort_index()
    # Mereset index
    comparison_df = comparison_df.reset_index(drop=True)
    # Tampilkan hasil
    comparison df
         Actual Predicted
            5.20
                  5.804988
                  7.892101
                  5.292677
                  6.826319
            4.25 5.234823
                  8.551788
     792
           3.25 3.773451
            2.75 3.236097
     793
            3.20 4.253828
            4.00 5.058982
    796 rows × 2 columns
```

```
# Hitung metrik evaluasi
    r2_test = r2_score(y_test, y_pred_test)
    mae_test = mean_absolute_error(y_test, y_pred_test)
    mse_test = mean_squared_error(y_test, y_pred_test)
    rmse_test = math.sqrt(mse_test)
    # Membuat dataframe nilai evaluasi
    score = pd.DataFrame({
        'Metrik': ['R2', 'MAE', 'MSE', 'RMSE'],
         'Nilai': [r2 test, mae_test, mse_test, rmse_test]
    })
    score
₹
                           屈
                  Nilai
        Metrik
           R2 0.740383
                           ılı
          MAE 1.378174
          MSE 3.788785
         RMSE 1.946480
```


Kesimpulan

- Model Regresi Linear dengan 5 fitur terpilih berhasil dibuat dan mampu memprediksi harga mobil bekas dengan tingkat akurasi yang baik (R² = 74%).
- Performa model dapat ditingkatkan dengan mencoba algoritma lain atau menggunakan teknik feature engineering yang lebih kompleks.

THANKS!

