

UNIVERSITY OF EDUCATION, WINNEBA COLLEGE OF TECHNOLOGY EDUCATION, KUMASI FACULTY OF TECHNICAL EDUCATION

DEPARTMENT OF CONSTRUCTION AND WOOD TECHNOLOGY EDUCATION END OF SECOND SEMESTER SUPPLEMENTARY EXAMINATION- JANUARY, 2020

PROGRAMME: BSC CONSTRUCTION TECHNOLOGY EDUCATION

YEAR ONE

COURSE TITLE	STRENGTH OF MATERIALS	
COURSE CODE	FTE 121 (CONSTRUCTION TECH. EDU.)	******
DURATION:	TWO HOURS	
NAME OF LECTURERS	PAA-KOFI YALLEY	
INSTRUCTIONS	1. Answer all questions	
	2. Do not give help	
	3. Do not accept help	

Question one.

Sketch the stress-strain curve of a mild steel and indicate the following:

- i. Te Elastic limit, yield point and ultimate stress
- ii. Use the curve to determine the toughness and modulus of elasticity

Question two.

A steel beam spanning 12 m, supports reinforced concrete slab with uniformly distributed load of 24 kN/m and two point loads as shown in Figure 1.z

- i. Determine the reactions
- ii. Determine shear forces and bending moments along the beam.
- iii. Sketch the bending moment and the shear force diagrams

Figure 1

Question three.

A cantilevered steel beam spanning 10 m, supports uniformly distributed load of 30 kN/m at shown in the figure 2.

- i. Determine the reactions.
- ii. Determine shear forces and bending moments along the beam.
- iii. Sketch the bending moment and the shear force diagrams

Figure 2