スモールワールドネットワーク上の結合位相振 動子系における同期転移の臨界指数

京都大学大学院情報学研究科先端数理科学専攻博士1回 米田亮介

日本物理学会 2020 年秋季大会 2020/09/09

Joint work with Y. Y. Yamaguchi and K. Harada arXiv:2007.04539

結合位相振動子系

同期現象を示す代表的なモデル

大域結合位相振動子モデル

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \Gamma(\theta_j - \theta_i), \ i = 1, \cdots, N$$

- $\theta_i \in [0, 2\pi)$: i番目の振動子の位相
- ω_i : 分布 $g(\omega)$ からランダムに選んだ自然振動数
- K: 結合定数
- Γ(θ): 結合関数 (周期 2π)

秩序変数(同期の強さを表すパラメータ)

$$z = \frac{1}{N} \sum_{i=1}^{N} e^{i\theta_j} =: re^{i\psi}$$

分岐図と臨界指数

- ullet $N o \infty$ での連続転移の臨界点近傍での立ち上がり: 臨界指数 eta
 - 臨界指数は統計力学でよく研究されている
 - 分布関数 $g(\omega)$ 、結合関数 $\Gamma(\theta)$ による依存性

臨界指数

$$\begin{split} \Gamma(\theta) &= \sin \theta + a \sin 2\theta \\ g_{n}(\omega) &= \frac{ne^{-(\omega/\Delta)^{2n}}}{\Gamma(1/2n)\Delta} \end{split}$$

	all-to-all				
	a < 0	a = 0	a > 0		
$n = 1$ $n \ge 2$ $n = \infty$	1 (Chiba 2011)	1/2 (Kuramoto 1975) $1/(2n)$ (Basanarkov 2007) (不連続) (Pazo 2005)	(不連続) (Chiba 2011)		

- 理論的な導出はモデルの全結合性に強く依存
- ネットワーク上だとどうなる??

スモールワールドネットワーク

- スモールワールドネットワーク
 - 平均ノード間距離 $\langle l \rangle$ がノード数 N に対して $\langle l \rangle \ll N$
 - 平均クラスター係数がノード数 N に依存しない
- Watts-Strogatz model: スモールワールド性を記述する代表的なモデル [Watts and Strogatz, 1998]
 - \bullet O(N) 本の枝を持つ (全結合グラフは $O(N^2)$)

全結合

スモールワールドネットワーク

スモールワールドネットワーク上の結合振動子モデル

スモールワールドネットワーク上の結合振動子モデル

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega_i + \frac{K}{2k} \sum_{j \in \Lambda_i} \left[\sin(\theta_j - \theta_i) + a \sin 2(\theta_j - \theta_i) \right]$$

- Λ_i : i 番目の振動子に接続する振動子の index 集合。Watts-Strogatz モデルに従って生成したネットワークによって定まる。
- k: (ネットワークの平均次数)/2

	all-to-all $\left(rac{O(N^2)}{} ight)$			$small\text{-}world\big(O(N)\big)$		
	a < 0	a = 0	a > 0	a < 0	a = 0	a > 0
n = 1	1	1/2	(不連続)	?	(1/2) (Hong 2001)	?
$n \ge 2$	1	1/(2n)	(不連続)	?	?	?
$n = \infty$	1	(不連続)	(不連続)	?	?	? / 10

有限サイズスケーリング

$$r_N(K)N^{\beta/\bar{\nu}} = F((K - K_c)N^{1/\bar{\nu}})$$

- 連続転移する系が臨界点近傍でスケーリング関数 F に従う、という 仮定
- 有限サイズ N のときの $r_N(K)$ のデータをもとに K_c , β , $\bar{\nu}$ を推定
 - Bayesian scaling analysis(ガウス過程回帰を用いる) によって推定 [Harada 2011]
- a = 0, n = 1

数值計算結果

$$\Gamma(\theta) = \sin \theta + a \sin 2\theta, \quad g_n(\omega) = \frac{ne^{-(\omega/\Delta)^{2n}}}{\Gamma(1/2n)\Delta}$$

• a=0,-0.2,0.5 と $n=1,2,3,\infty$ でそれぞれ臨界指数 $\beta,\bar{\nu}$ を計算

$g_{\mathbf{n}}(\omega)$	β		$\bar{\nu}$	
n = 1	0.51(4)		2.40(6)	
$n = 2 \mid 0.49(2)$	0.49(2)	1	2.43(4)	$pprox rac{5}{2}$
n = 3	0.47(2)	$\approx \frac{\pi}{2}$	2.46(4)	
$n = \infty$	0.46(2)		2.46(4)	
n = 1	0.48(6)		2.36(8)	
n = 2	0.51(4)	$pprox rac{1}{2}$	2.41(6)	$pprox rac{5}{2}$
n = 3	0.55(4)		2.50(6)	
$n = \infty$	0.49(4)		2.49(6)	
	$n = 2$ $n = 3$ $n = \infty$ $n = 1$ $n = 2$ $n = 3$	$\begin{array}{ll} n = 2 & 0.49(2) \\ n = 3 & 0.47(2) \\ n = \infty & 0.46(2) \\ \hline n = 1 & 0.48(6) \\ n = 2 & 0.51(4) \\ n = 3 & 0.55(4) \\ \end{array}$	$\begin{array}{c ccc} n=2 & 0.49(2) \\ n=3 & 0.47(2) \\ n=\infty & 0.46(2) \\ \hline n=1 & 0.48(6) \\ n=2 & 0.51(4) \\ n=3 & 0.55(4) \end{array} \approx \frac{1}{2}$	$\begin{array}{cccc} n=2 & 0.49(2) \\ n=3 & 0.47(2) \\ n=\infty & 0.46(2) \\ \hline n=1 & 0.48(6) & 2.46(4) \\ n=2 & 0.51(4) \\ n=3 & 0.55(4) \\ \end{array} \approx \begin{array}{c} \frac{1}{2} & 2.43(4) \\ 2.46(4) \\ 2.36(8) \\ 2.36(8) \\ 2.250(6) \\ \end{array}$

n によらず

$$\beta \approx \frac{1}{2}, \quad \bar{\nu} \approx \frac{5}{2}$$

• a = 0.5 では?

a = 0.5

- a = 0.5 ではヒステリシスが起こることが確認された。
- 不連続転移(1次相転移)が起こることを示唆している。
- \bullet (a,n) = (0.5,1) でシステムサイズ N = 25600 におけるヒステリシス

まとめと展望

$$\Gamma(\theta) = \sin \theta + a \sin 2\theta, \quad g_n(\omega) = \frac{n}{\Gamma(1/2n)\Delta} e^{-(\omega/\Delta)^{2n}}$$

	all-to-all $\left({O(N^2)} ight)$			small-world $(O(N))$		
	a < 0	a = 0	0 < a < 1	a = -0.2	a = 0	a = 0.5
n=1	1	$\frac{1}{2}$	(不連続)	$\frac{1}{2}$	$\frac{1}{2}$	(不連続)
$n \ge 2$	1	$\frac{1}{2n}$	(不連続)	$\frac{1}{2}$	$\frac{1}{2}$	(不連続)
$n = \infty$	1	(不連続)	(不連続)	$\frac{1}{2}$	$\frac{1}{2}$	(不連続)

- 全結合とスモールワールドネットワークで β が異なることがわかった。
 - 枝の本数の違い? (O(N)) か $O(N^2)$ かで変わっている?)
 - 枝の本数が $O(N^{\alpha}), 1 < \alpha < 2$ だと??
- 理論的に臨界指数を求めたい。
 - 連続極限をどう取る?? (graphon を用いた解析はできない)

 ${\it appendix}$

$n=\infty$

$$r - r_{\rm c} \propto (K - K_{\rm c})^{2/3}$$

- 臨界点で jump が見られる
- $\beta = \frac{2}{3}$

$\sin 2\theta$ を付け加える

$$\frac{\mathrm{d}\theta_{i}}{\mathrm{d}t} = \omega_{i} + \frac{K}{N} \sum_{j=1}^{N} [\sin(\theta_{j} - \theta_{i}) + a \sin 2(\theta_{j} - \theta_{i})]$$

$$\uparrow r$$

$$\downarrow a < 0 \quad K$$

$$\downarrow 0 < a < 1 \quad K$$

• 中心多様体縮約を用いて $\beta=1$ であることが示されている [Crawford 1995,Chiba 2011]。

$$r \sim \frac{2(1-a)}{K_c^3 C a} (K - K_c)^{1} + \cdots$$
$$C = \mathcal{PV} \int_{\mathbb{R}} d\omega \frac{g'(\omega)}{\omega}$$

• a < 0 で一山対称の $g(\omega)$ のとき

$$\beta = 1$$

スモールワールドネットワーク

- 現実のネットワークに関する研究
 - "6 次の隔たり"
 - 強いクラスター化

スモールワールド性

- 平均ノード間距離 $\langle l \rangle$ がノード数 N に対して $\langle l \rangle \ll N$
- 平均クラスター係数がノード数 N に依存しない
- Watts-Strogatz model: スモールワールド性を記述する代表的なモデル [Watts and Strogatz 1998]
- O(N)本の枝を持つ (全結合グラフは $O(N^2)$)

Watts-Strogatz model

アルゴリズム

- 1 N 個の頂点を持つ k-隣接グラフを生成する。
- 2kN 本の枝のそれぞれに対して、確率 p でエッジの一方 (ランダムに選ぶ) の結合を切り離し、N 頂点の中からランダムに選ばれた頂点につなぎ替える。ただし、自己ループや多重エッジができないようにする。

$O(N^2)$ small-world との違い

[Chiba et al. 2018] の中でスモールワールドネットワーク上の蔵本モデルの計算をしているが、彼らは $k = \lfloor rN \rfloor, r \in (0,0.5)$ としている。

rの立ち上がりが

$$r \sim \frac{C}{\sqrt{-g''(0)}} (K - K_c)^{1/2} + \cdots$$

• この設定だと β が $g(\omega)$ に依存することを示唆している。(全結合と変わらない結果になりうる。)

16 / 10