

AIR UNIVERSITY

DEPARTMENT OF MECHATRONICS ENGINEERING

LAB NO 2

Lab Title	Belt Roller Assembly				
Student Name: Muhai	mmad Abdullah	n Khan	Reg. <u>No</u> : 221748		
LAB ASSESSMENT:					
Attributes	Excellent (5)	Good (4)	Average (3)	Satisfactory (2)	Unsatisfactory (1)
Ability to Conduct Experiment	,				()
Ability to assimilate the results					
Effective use of lab equipment and follows the lab safety rules					
Гotal Marks:			Obtaine	ed Marks:	
_AB REPORT ASSESSM	IENT:	Good	Average	Satisfactory	Unsatisfactory
Attributes	(5)	(4)	(3)	(2)	(1)
Data presentation					
Experimental results					
Conclusion					
otal Marks:			Obtaine	ed Marks:	
Date: 04-Oct-2023		Signature:			

INTRODUCTION TO BELT ROLLER:

Belt Roller or belt driven roller conveyor systems we mean a series of rollers supported by a structure, suitable for unit handling loads which are driven by a belt. In the latter case they can be fit to friction rollers to carry out conveyors with load accumulation.

DIMENSIONS:

ASSEMBLY:

PARTS

BASE:

The list of features used is given on the left but the main different features used were tapered holes with threads in the making of this part

Page 3 of 11

BRACKET:

The list of features used is given on the left but the main features used for making this wear rib and I used convert entities feature instead of extrude cutting the new circle again.

ROLLER:

The main feature used is revolve boss base around our sketch to make it perfect

BUSH:

Page 5 of 11

The main feature used is revolve boss base around our sketch to make it perfect

SHAFT:

The features used are on the left but others are listed below

Sketch for revolving boss/base

Chamber feature used at edges similar to filet

6 Diameter Hole Till Midpoint

ASSEMBLY

Concentric Relation

SOLIDMODELING AND MANUFACTURING PROCESSES

Coinciding Faces

Mirroring Bracket

SOLIDMODELING AND MANUFACTURING PROCESSES

Using Width Feature On Selected Faces

Again Width On Specified Faces

This completes our assembly as all parts are now fixed in there specific positions and now we can use motion study to give and record its motion

CONCLUSION:

To conclude, we learned many new features including Dynamic Mirror and width feature got our hands set on mate feature and mirror feature.