A Hybrid Grouping Genetic Algorithm for Bin Packing Emanuel Falkenauer

Simon Bartels, Matteo Pallocca, David Reijnders

Information and Computing Science Institute
Utrecht University,
The Netherlands

January 23, 2012

Motivation

Problem Definition

Naive Approach

Falkenauer's
Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness Function

Experimental Results Experiment

Setup Summary Critique

- moving goods of certain weight with least lorries as possible
- assort commercial clips to advertisement breaks
- efficiently cutting cables/pipes of standardized length according to demand

${\sf Motivation}$

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness
Function

Experimental Results Experiment

Setup Summary Critique

Problem Definition (informal)

- number of items of certain weight
- ▶ infinite amount of boxes/bins
 - · have a maximum weight to hold
- trying to fit ALL items in as LEAST as possible bins

Motivation

Problem Definition

Naive Approach

alken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Function

Experimental Results

Experiment

Set up Summary

Critique

Problem Definition (one-dimensional)

given

O a finite multi-set of item sizes

C a constant describing bin's capacity

N a number of bin's

Is it possible to find a partitioning of O into N partitions such that the sum of elements in each partition does not exceed C?

$$P_j \subseteq O, \qquad j=1,...,N$$

- $1. \cup_{j=1,\ldots,N} P_j = O$
- $2. \ \forall j,k: j \neq k \Rightarrow P_j \cap P_k = \emptyset$
- 3. $\forall j: \sum_{o \in P_j} o \leq C$

Interest is on corresponding optimization problem.

Motivation

Problem Definition

Naive Approach

Falkenauer's Approach

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Experimental Results Experiment Setup

Naive Approach

Instance example:

123456 ADBCEB

 $Groups\ interpretation:$

$$A=\{1\}$$
 $B=\{3,6\}$ $C=\{4\}$ $D=\{2\}$ $E=\{5\}$

Problems:

- High (exponential) degree of redundancy
- Larger research space

Motivation

Problem Definition

Naive Approach

Falkenauer's Approach

Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Experimenta Results Experiment Setup

Crossover

Note that ABCADD == CADCBB

Standard two-point crossover:

A | B C | A D D C | A D | C B B

would yield CBCCBB

Problems:

- Two identical parents, different solutions
- ► Schema disruption

Motivation

Problem Definition

Naive Approach

Falkenauer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness
Function

Experimenta Results Experiment Setup

Summary Critique

Mutation

$\mathsf{A}\;\mathsf{B}\;\mathsf{D}\;\mathsf{B}\;\mathsf{A}\;\mathsf{C}\to\mathsf{A}\;\mathsf{B}\;\mathsf{D}\;\mathop{\hbox{\bf E}}\nolimits\;\mathsf{A}\;\mathsf{C}$

 $A A A B B B \rightarrow A A C B B B$

Problems

- ► High chance to destroy a good solution
- ▶ The new solution is gonna be discarded soon

Motivation

Problem Definition

Naive Approach

Falkenauer's
Approach
Encoding
Mutation
Inversion

operator Crossover Local Search Fitness Function

Experimental Results Experiment Setup

Falkenauer's Approach

New encoding structure

item part: group part ADBCEB: BECDA

Strong points

- Order/Names of the groups is irrilevant to the GGA
- Genetic operators work only on group parts

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach

Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness Function

Results
Experiment
Setup

Mutation

Choose between:

- ► Create new group
- Eliminate existing group
- ► Shuffle a small number of items among groups

Motivation

Definition

Naive Approach

Falkenauer's Approach

Encoding Mutation Inversion

operator Crossover Local Search Fitness

Fitness Function Experimenta

Results
Experiment
Setup

Inversion operator

ADBCEB: BECDA

 \rightarrow

ADBCEB: CEBDA

Aim:

- Shield good groups from destruction
- ▶ Make the proliferation of good schematas easier

Encoding Mutation Inversion operator

Crossover

Local Search Fitness Function

Experiment

Setup Critique

Crossover

p1 = itemsP1 : ABCDEF

p2 = itemsP2 : abcd

Algorithm:

- Random selection of two crossing sites
- Content injection
- Eliminate duplicates from the 'old memberships'
- Apply previous points with inverted roles.

Motivation

Definition

Naive Approach

> Falkenauer's Approach

Encoding Mutation Inversion operator

Crossover
Local Search
Fitness
Function

Experimental Results Experiment

Setup Summary Critique

Local Search

- reason why algorithm is called hybrid
- two operators
 - Martello and Toth
 - First Fit
- ► Silvano Martello and Paolo Toth Lower Bounds and Reduction Procedures for the Bin Packing Problem, in Discrete Applied Mathematics, vol. 22, North-Holland, Elsevier Science Publishers B.V., pp.59-70.

Motivation

Definition Definition

Naive Approach

Falkenauer's Approach

Encoding Mutation Inversion operator Crossover

Local Search Fitness

Function

Experimental

Results

Results Experiment Setup

Local Search

- ► look at each bin
- ▶ try to replace 1,2 or 3 items
- ▶ with 1 or 2 unassigned items
- such that bin is filled better

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator

Crossover Local Search

Local Search Fitness Function

Experimental Results Experiment

Setup Summary Critique

Local Search

- ▶ bin is filled better
- easier to find bin for unassigned items

Motivation

Problem Definition

Naive Approach

Falkenauer's

Approach
Encoding
Mutation
Inversion
operator

Crossover Local Search

Fitness Function

Experimental Results Experiment

Summary

Critique

naive fitness function (number of bins) has large plateaus

$$f(s) := \frac{\sum_{j=1}^{n} (F_j/C)^k}{n}$$

s a solution

k a constant > 1

 F_j sum of item weights in bin j

C bin capacity

n the number of used bins

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness Function

Experimental Results Experiment Setup

$$f(s) := \frac{\sum_{j=1}^{n} (F_j/C)^k}{n}$$

- ▶ larger k promotes fuller bins
- ▶ larger k punishes less filled bins
- perfect solution (all bins full)
 - f(s) = 1
- bad solution (bins nearly empty)
 - $f(s) \rightarrow 0$

Motivation

Definition

Naive Approach

Falken auer's

Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness Function

Experimenta Results Experiment Setup

$$f(s) := \frac{\sum_{j=1}^{n} (F_j/C)^k}{n}$$

$$vs.$$

$$g(s) := n$$

Motivation

Problem Definition

Naive Approach

Falkenauer's
Approach
Encoding
Mutation
Inversion
operator
Crossover

Local Search Fitness Function

Experimental Results
Experiment

Setup Summary Critique

$$f(s) := \frac{\sum_{j=1}^{n} (F_j/C)^k}{n}$$
 vs. $g(s) := n$

Motivation

Problem Definition

Naive Approach

Approach
Encoding
Mutation
Inversion
operator

Crossover Local Search Fitness

Function Experimenta

Results
Experiment
Setup

Summary Critique

$$f(s) := \frac{\sum_{j=1}^{n} (F_j/C)^k}{n}$$
 vs. $g(s) := n$

- ▶ $k \le 2$ no problem
- according to Falkenauer
- ▶ no proof

Motivation

Definition

Naive Approach

Falkenauer's

Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness Function

Experimenta Results Experiment Setup

Summary Critique

Experiment Setup

- ► HGGA versus MTP (Martello and Toth Procedure)
- MTP:
 - · Best method yet
 - Enumerative / Branch-and-bound heuristic
- ► HGGA:
 - 100 individuals, tournament size 2
 - 50 crossover, 33 mutation, 25 inversion
- ► First population: First Fit

Motivation

Definition Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness

Function Experimental

Experiment Setup

Experimental Setup

► Two experiments designed

• First: MTP's turf

Second: Most difficult BPP

Shared BPP instances

▶ Notable: C++ versus FORTRAN on two similar PC's

► Computation limit

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search

Function Experimental

Fitness

Results Experiment

Setup

Experiment 1: Uniform Item Size Distribution

- ► Taken over from Martello and Toth [1990]
- ► MTP's most difficult setting
 - bin capacity: 150
 - item range: between 20 and 100
- ▶ Number of items: 120, 250, 500, 1000
- 20 instances each, 80 total

Vlotivation

Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search

Local Searc Fitness Function

Experimental Results

Experiment Setup

Run	Theo		HGGA					MTP		
		Bins	Evals	Time	В	ins	Loss	Loss%	Backs	Time
1	48	48	201	15.2		48	0	0.0	56	0.1
2	49	49	0	0.0		49	0	0.0	0	0.1
3	46	46	67	5.8		46	0	0.0	124935	29.0
4	49	49	804	50.4		49	0	0.0	74	0.0
5	50	50	0	0.0		50	0	0.0	0	0.0
6	48	48	268	19.4		48	0	0.0	43	0.1
7	48	48	268	19.0		48	0	0.0	69	0.0
8	49	49	335	21.7		49	0	0.0	54	0.0
9	50	51	134000	3668.7		51	0	0.0	10000000	3681.4
10	46	46	603	39.5		46	0	0.0	103	0.1
11	52	52	0	0.0		52	0	0.0	0	0.1
12	49	49	335	23.7		49	0	0.0	64	0.1
13	48	48	402	25.7		48	0	0.0	88	0.0
14	49	49	0	0.0		49	0	0.0	0	0.0
15	50	50	0	0.0		50	0	0.0	0	0.0
16	48	48	134	11.1		48	0	0.0	36	0.1
17	52	52	0	0.0		52	0	0.0	0	0.0
18	52	52	1340	76.1		52	0	0.0	48	0.0
19	49	49	201	14.3		49	0	0.0	24	0.0
20	49	50	134000	3634.7		50	0	0.0	7500000	3679.4
Avei	rages			381			0	0.0		370
	_			6min						6min

Table 1 Uniform, 120 items.

Problem Definition

Naive Approach

Falkenauer's Approach Encoding Mutation

Inversion operator Crossover Local Search Fitness Function

Experimental Results

Experiment Setup

Procedure HGGA MTP

Problem Definition

Naive Approach

Approach
Encoding
Mutation
Inversion
operator

operator Crossover Local Search Fitness Function

Experimental Results

Experiment Setup

Summary Critique

Amount of items in each run

Definition

Naive Approach

Falkenauer's
Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Experimental Results

Experiment Setup

Function

Summary Critique

Experiment 2: Triplets

- Practical limits of HGGA
- ► Triplets
 - bin capacity: 1
 - item range: between 0.25 and 0.5
- ► Optimal: (0.4, 0.3, 0.3)
- ► Suboptimal: (0.4, 0.4) or (0.3, 0.3, 0.3)

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search

Fitness Function Experimenta

Results Experiment

Setup

Experiment 2: Triplets

- ► The experiment:construct known optima
 - bin capacity: 1000
 - One big between 380 and 490
 - Two small (with minimum 250) complete the bin
- ▶ Number of items: 60, 120, 249, 501
- ▶ 20 instances each, 80 total

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Function

Experimental

Results

Experiment Setup

Problem Definition

Naive Approach

Falkenauer's Approach

Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness
Function

Experimental Results

Experiment Setup

Summary Critique

Motivation

Problem Definition

Naive Approach

Falkenauer's
Approach
Encoding
Mutation

Mutation
Inversion
operator
Crossover
Local Search
Fitness
Function

Experimental Results

Experiment Setup

Summary Critique

Experiment: Conclusion

- ► HGGA performs better than MTP
- ► What if:
 - optimal solution != theoretical bound

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Function Experimental

Results Experiment

Setup

Summary Critique

Summary

- ▶ genetic algorithm for bin packing
 - encoding
 - crossover, mutation, inversion
 - local search operator
 - fitness function
- ► applicable to other grouping problems (e.g. graph colouring)

Motivation

Problem Definition

Naive Approach

Falken auer's

Encoding
Mutation
Inversion
operator

Crossover Local Search Fitness Function

Experimental Results

Experiment Setup

Critique

- careful with fitness function
 - behaviour for larger k unknown
- experiments are not as significant as they seem
 - MTP is faster in easier scenarios
 - stops automatically after finding global optima
- which algorithm to use depends on what you want

Motivation

Problem Definition

Naive Approach

Falken auer's

Approach
Encoding
Mutation
Inversion
operator
Crossover
Local Search
Fitness

Experimental Results Experiment

Setup

Function

