This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

		•		
		·		
				٠
		•		
•				
	,			
	,			
		•	·	
	•			
•	•		·	

```
XP-002256332
       - 1993:496438 CAPLUS
       - 119:96438
       - Method of producing opaque methacrylate block polymer
       - Arzhakov, Sergej A.; Kabanov, Viktor A.; Sorokin, Aleksandr I.; Traskin,
         Petr M.; Arulin, Vyacheslav I.; Kucheryavaya, Valentina I.; Beshenova,
         Evgeniya P.
       - Nii khimii tekhnologii polimerov im.akad.v.a.kargina s o zavodom, USSR
   PA
         From: Izobreteniya 1992, (16), 117.
         CODEN: URXXAF
   חת
       - Patent
   LA
      - Russian
   FAN. CNT 1
         PATENT NO.
                     KIND
                           DATE
                                     APPLICATION NO. DATE
   PN
      - SU1730091
                           19920430 SU 1990-4857131 19900806
       - SU 1990-4857131
                                19900806
      - Me methacrylate undergoes block polymn. in the presence of a radical
        initiator and 10-40 parts (based on reactants) tris(methacryloyloxyethyl)
        borate, followed by treatment with H2O (vapor) to degree of swelling 2-5%.
  IT
     - 106946-70-7
        RL: USES (Uses)
          (opaque)
      - 106946-70-7
                     CAPLUS
     - 2-Propenoic acid, 2-methyl-, borylidynetris(oxy-2,1-ethanediyl) ester,
        polymer with methyl 2-methyl-2-propenoate (9CI) (CA INDEX NAME)
          1
     CM :
     CRN
          42175-72-4
     CMF
          C18 H27 B 09
           H2C
        Me....C ...C ....O....CH2.....CH2 ....O.
              .C ...O ....CH2.....O ...B....O...CH2.....CH2 .....O
       CH2
Page 1-A
        CH2
   0
   .C....C....Me
Page 1-B
    CM
    CRN
         80-62-6
    CMF
         C5 H8 O2
```

H2C:

_				•
				٤
		: •		
	,			
•				

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(19) <u>SU (11)</u> 1730091 A1

(51)5 C 08 F 120/14, 2/44, 6/26

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4857131/05

(22) 06.08.90

(46) 15.04.92. Бюл. № 16

(71) Научно-исследовательский институт химии и технологии полимеров им. акад. В. А. Каргина с опытным заводом

(72) С. А. Аржаков, В. А. Кабанов, А. И. Сорокин, П. М. Траскин, В. И. Арулин, В. И. Кучерявая и Е. П. Бешенова

(53) 678.764.32(088.8)

(56) Патент Великобритании № 1080549, кл. С 3Р, 1968.

Патент Японии № 16848/68, кл. 25H 411.1.

Авторское свидетельство СССР № 371255, кл. С 08 L 27/06, 1973.

Авторское свидетельство СССР № 560891, кл. С 08 F 220/10, 1977.

Авторское свидетельство СССР № 912730, кл. С 08 F 2/44, 1981.

Патент Японии № 61-215610, кл. С 08 F 230/06, опулик, 1981.

(54) СПОСОБ ПОЛУЧЕНИЯ ЗАМУТНЕННЫХ МАТЕРИАЛОВ

(57) Использование: оргстекло. Сущность способа заключается в том, что метилметакрилат полимеризуют в присутствии радикального инициатора и 10−40 мас.ч. от реакционной смеси трис(метакрилоилоксиэтил)бора и полученный материал подвергают обработке водой или паром до степени набухания 2−5%. Температура размягчения материала 125-140°С, прочность при разрыве 85−89 МПа, модуль упругости 5000−6000 МПа, относительное удлинение 4−7%. 1 табл.

Изобретение относится к химии полимеров, в частности к способу получения замутненных материалов на основе органических стекол, которые могут быть использованы как в светотехнической промышленности, так и в строительстве в качестве декоративных материалов.

Замутненные полимеры светотехнического назначения должны удовлетворять требованиям ГОСТа 9787-75, согласно которому существует 5 светотехнических групп стекла. Они должны хорошо формоваться и иметь достаточно высокий уровень физикомеханических свойств: температура размягчения не ниже 125°С; прочность при разрыве не ниже 85 МПа; модуль упругости не ниже 5000 МПа.

Известны способы получения замутненных материалов, получаемых при введении в исходную реакционную систему на основе акрилатов неорганических соединений или совместно неорганических пигментов и полимеров.

Так при полимеризации метилметакрилата (ММА) в качестве замутнителя вводят окиси металлов (Al₂O₃; TiO₂; ZnO; CaO) и ряд других неорганических соединений или ММА полимеризуют в присутствии сополимера этилена с винилацетатом и окиси титана.

Недостатки данных способов получения заключаются в трудностях приготовления однородных устойчивых к седиментации и коагуляции дисперсий указанных добавок в мономере, а также в том, что получаемые таким образом материалы в значительной степени неоднородны как по светотехническим, так и физико-механическим характеристикам.

Известен способ получения замутненных материалов путем радикальной блочной полимеризации метилметакрилата в присутствии поливинилхлорида.

Недостатками указанного способа являются плохая формуемость получаемого замутненного материала, определяемая малым относительным удлинением (2-3%), и низкая теплостойкость (Тразм=90-110°С).

Известен способ получения замутненных материалов путем сополимеризации форполимера ММА с 5-20 мас. % от массы мономера диакрилатов или диметакрилатов бисфенолов. При использовании известного способа увеличивается теплостойкость органических стекол (T_{разм}=117-130°C).

Недостатки способа заключаются в сложности, обусловленной необходимостью выбора форполимера ММА различной конверсии, обеспечивающего получение частиц ММА необходимой степени дисперсдеформационной низкой ности. способности стекол (относительное удлинение 2-3%), затрудняющей, а часто делаювообще невозможной переработку (формование), и возможности получения светотехнического материала только 3-4 групп.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения замутненных материалов полимеризацией метилметакрилата в блоке в присутствии радикального инициатора и модифицирующей добавки, в качестве которого используют 0,15-10,0 мас.% от мономера олигодиметилсилоксана с кинематической вязкостью 25-100 сСт.

Способ позволяет получить замутненные материалы любой светотехнической группы, способные формоваться в изделия различной конфигурации.

Недостатками известного способа являются недостаточный уровень физико-механических свойств: теплостойкость составляет 117-120°С; прочность - 66-70 МПа; модуль упругости - 3000-3500 МПа и сложность процесса, заключающаяся в необходимости подбора олигодиметилсилоксанов с определенной кинематической вязкостью для получения материала различных светотехнических групп.

Цель изобретения - улучшение физикомеханических свойств при сохранении формуемости материала и упрощение процесса.

Поставленная цель достигается тем, что в способе получения замутненных материалов полимеризацией метилметакрилата в массе в присутствии радикального инициатора и модифицирующей добавки, в качестве модифицирующей добавки используют 10-40 мас.ч. от массы реакционной смеси трис-(метакрилоилоксиэтил)бора и полученный материал подвергают обработке водой или паром до степени набухания 2-5%.

Трис-(метакрилоилоксиэтил)бор известен в качестве мономера для получения нейтронопоглощающего прозрачного пол-15 имерного материала.

Способ осуществляют следующим образом.

Пример 1. К 70 мас.ч. метилметакрилата добавляют 30 мас.ч. трис-(метакрилои-20 локсиэтил)бора (ТБОМ) и 0.3 мас.ч. инициатора дициклогексилпероксидикарболата (ЦПК). Реакционную смесь заливают в формы из силикатного стекла и проводят полимеризацию в водяной бане при 20°С до готовности. Дополимеризацию осуществляют в сушильном шкафу с воздушным обогревателем при 135°C в течение 1 ч. Поверхность полученного листа оргстекла обрабатывают водой до степени набухания 2%.

Степень набухания определяют путем взвешивания образца до и после набухания. Получают материал І-й светотехнической группы.

Пример 2. Готовят реакционную смесь, содержащую 60 мас.ч. ММА, 40 мас.ч. ТБОМ и 0,3 мас.ч. ЦПК. Полимеризацию проводят по примеру 1, обрабатывают поверхность стекла паром до степени набухания 2%. Получают материал II-й светотехнической группы.

Пример 3. Полимеризацию проводят по примеру 1, но используют 20 мас. ч. ТБОМ и 0,1 мас.ч. инициатора – азодинитрила изомасляной кислоты (АДН). Степень набухания стекла 4%. Получают материал IV-й светотехнической группы.

Пример 4. Полимеризацию проводят по примеру 1, но используют 25 мас.ч. ТБОМ и 0,15 мас.ч. АДН.

Полученное стекло обрабатывают паром до степени набухания 3%.

Получают материал IV-й светотехнической группы.

Пример 5. Полимеризацию проводят по примеру 1, но используют 10 мас.ч. ТБОМ 55 и 0,2 мас.ч. ЦПК. Степень набухания 2%. Получают материал І-й светотехнической группы.

Пример 6. Полимеризацию проводят по примеру 5. Степень набухания 3%. Пол- !

40

30

45

учают материал III-й светотехнической группы.

Пример 7. Полимеризацию проводят по примеру 5. Степень набухания 5%. Получают материал V-й светотехнической группы.

Свойства материалов, полученных по примерам 1-7 приведены в таблице.

Из таблицы видно, что предлагаемый способ по сравнению с прототипом позволяет получить замутненный формуемый материал с повышенным комплексом физико-механических свойств (теплостой-кость выше на 5-20°С; прочность при разрыве больше на 17-19 МПа; модуль упругости выше на 2300-3300 МПа

Кроме того, способ позволяет из одного и того же листа органического стекла путем изменения степени набухания получить замутненный материал любой светотехнической группы (примеры 5–7), что значительно упрощает процесс по сравнению с прототилом, по которому для получения различных светотехнических групп необходим подбор олигодиметилсилоксанов с различной кинематической вязкостью.

При использовании ТБОМ менее предложенного количества (пример 9) снижаются физико-механические свойства и материал не соответствует ГОСТу на светотехническое стекло, при увеличении его содержания (пример 10) получаемый материал не формуется.

При степени набухания меньше 2% (пример 11) материал не соответствует ГОСТу на светотехническое стекло, при степени набухания больше 5% (пример 12) появляются дефекты на поверхности стекла (коробление, сыпь, рябь).

Формула изобретения

15 Способ получения замутненных материалов полимеризацией метилметакрилата в блоке в присутствии радикального инициатора и модифицирующей добавки, о т л ичающий и с я тем, что, с целью улучшения физико-механических свойств материала и упрощения процесса, в качестве модифицирующей добавки используют 10—40 мас.ч. на 100 мас.ч. реакционной смеси трис-(метакрилоилоксиэтил)бора и полученный материал подвергают обработке водой или паром до степени набухания 2–5%.

30

35

40

45

Пример	Состав реакционной смеси, мас.ч.		Степень	Физико-механические показатели		
			набуха- ния, %	Темпе- ратура размяг- чения, С	Проч- ность при разры- ве,МПа	Модуль упру- гости, Mila
1	MWA TEOM UNK	70 30 0,3	2	135	89	5000
2	ММА ТБОМ ЦПК	60 46 0,3	2	140	85	6000
3	ММА 150М АДН	80 20 0,1	4	130	8 9	5500 .
ц	ММА . ТБОМ АДН	75 25 0,15	3	133	88	5500
5	ММА 160М ЦПК	90 10 0,2	2	127	87	5000
6	ИГА ТБОИ ЦПК	30 10 0,2	3	128	88	5000
7	ММА ТБОМ ЦПК	90 10 0,2	5	125	87	5000
8	ММА Олигоди- метилси-	100		117-12	20 66-70	2700
9	локсан ММА ТБОМ ЦПК	92 8 0,1	2	118	80	3000
10	има ТБОМ ЦПК	55 45 0,3	3	145	65	5500
11	ММА ТБОМ ЦПК	90 10 0,2	1	128	86	4500
12	TEOM HMA	90 10 0 2	6	Дефекты (коробл	поверхно ение, сы	ести стекл пь, рябь)

			y		Продој	тжение	таблицы
Пример	Физико-механичес. кие показатели Светотехнические характеристики					Формуемость	
	Относи- тельное удлине- ние, %	Удар- ная вяз- кость, кДж/м ²	Степень рассея- ния	Коэф- сициент пропус- кания	Козфи- циент поглоще- ния	Свото- техни- ческая группа	•
1	5,0	14	0,13	0,75	0,07	I	Формуется
2	4,0	12	0,36	0,65	0,07	11	Формуется
3	5,0	14	0,45	0,55	0,06	III	Формуется
4	5,0	14	0,78	0,45	0,03	1V .	Формуется
5 ·	5,5	14	0,13	0,77	80,0	ı	Формуется
6	5,5	18	0,45	0,55	0,07	111	Формуется
7	7,0	14	0,75	0,3	0,03	v .	Формуется
	7,0	13	0,68	0,57	0,03	1V-V	Формуется
9	6,0	13	0,12	0,7	0,08	Не со- ответ- ствует	-
10	2,0	8	0,75	0,30	0,04	v	Не формуется
	5,3	15	<u>-</u>	0,85	0,09	Не со- ответ- ствует	-
2 .	Дефекты п (коробле	юверхнос ние, сып	ти стекла ь, рябь)				

45

50

Редактор А. Лежнина

Составитель В. Полякова Техред М.Моргентал

Корректор Д. Сычева

Заказ 1486

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5