现代数值计算方法

第四章 插值法与最小二乘拟合

第四章 插值法与最小二乘拟合

§4.1.4 Hermite 插值

拉格朗日插值仅考虑节点的函数值约束,而一些插值问题还需要在某些节点具有插值函数与被插值函数的导数值的一致性. 具有节点的导数值约束的插值称为 Hermite 插值. 下面我们采取与拉格朗日插值完全平行的过程讨论一种特殊的 3 阶 Hermite 插值多项式的构造及其余项, 它与样条插值有密切联系.

已知 x_0 , x_1 , $y_0 = f(x_0)$, $y_1 = f(x_1)$ 及 $y_0' = f'(x_0)$, $y_1' = f'(x_1)$, 求不超过 3 次的多项式 $H_3(x)$ 使满足

$$H_3(x_0) = y_0, \quad H_3(x_1) = y_1, \quad H_3'(x_0) = y_0', \quad H_3'(x_1) = y_1'.$$
 (4.14)

Back

首先, 当 $x_0 \neq x_1$, 不难证明, $H_3(x)$ 存在唯一.

其次, 用基函数法导出 $H_3(x)$ 的计算公式. 记 $h=x_1-x_0$, 引入 变量代换

$$\bar{x} = \frac{x - x_0}{h},$$

并令 $\bar{f}(\bar{x}) = f(x)$, 则 $\bar{f}(0) = y_0$, $\bar{f}(1) = y_1$ 及 $\bar{f}'(0) = y_0'$, $\bar{f}'(1) = y_1'$.

参照
$$n$$
 阶拉格朗日插值多项式的"基函数法",令

$$H_3(x) = \alpha_0(\bar{x})y_0 + \alpha_1(\bar{x})y_1 + h\beta_0(\bar{x})y_0' + h\beta_1(\bar{x})y_1',$$

其中 $\alpha_0(\bar{x})$, $\alpha_1(\bar{x})$, $\beta_0(\bar{x})$, $\beta_1(\bar{x})$ 均为 3 次多项式, 且满足

$$\alpha_0(0) = 1, \qquad \alpha_1(0) = 0, \qquad \beta_0(0) = 0, \qquad \beta_1(0) = 0,
\alpha_0(1) = 0, \qquad \alpha_1(1) = 1, \qquad \beta_0(1) = 0, \qquad \beta_1(1) = 0,
\alpha'_0(0) = 0, \qquad \alpha'_1(0) = 0, \qquad \beta'_0(0) = 1, \qquad \beta'_1(0) = 0,
\alpha'_0(1) = 0, \qquad \alpha'_1(1) = 0, \qquad \beta'_0(1) = 0, \qquad \beta'_1(1) = 1.$$

(4.15)

由 $\alpha_0(\bar{x})$ 的第 2 和第 4 个约束条件, 可设 $\alpha_0(\bar{x}) = (a\bar{x}+b)(\bar{x}-1)^2$, 再利用

第1和第3个约束条件可得a=2, b=1. 这样, $\alpha_0(\bar{x})=(2\bar{x}+1)(\bar{x}-1)^2$. 类似可求出 $\alpha_1(\bar{x})$, $\beta_0(\bar{x})$, $\beta_1(\bar{x})$ 的表达式. 我们有

 $\alpha_0(\bar{x}) = 2\bar{x}^3 - 3\bar{x}^2 + 1, \ \alpha_1(\bar{x}) = -2\bar{x}^3 + 3\bar{x}^2,$ (4.16) $\beta_0(\bar{x}) = \bar{x}^3 - 2\bar{x}^2 + \bar{x}, \quad \beta_1(\bar{x}) = \bar{x}^3 - \bar{x}^2.$

故所求的 3 阶 Hermite 插值多项式 $H_3(x)$ 为

$$H_{3}(x) = \alpha_{0} \left(\frac{x - x_{0}}{h}\right) y_{0} + \alpha_{1} \left(\frac{x - x_{0}}{h}\right) y_{1} + h \beta_{0} \left(\frac{x - x_{0}}{h}\right) y_{0}' + h \beta_{1} \left(\frac{x - x_{0}}{h}\right) y_{1}'.$$

$$(4.17)$$

最后, 导出
$$H_3(x)$$
 的余项 $R_3(x) = f(x) - H_3(x)$. 构造辅助函数:

$$\varphi(t) = R_3(t) - \frac{R_3(x)}{\pi(x)}\pi(t), \quad \pi(t) = (t - x_0)^2(t - x_1)^2.$$

类似于拉格朗日插值余项的推导过程, 并注意到 $\varphi'(x_0) = \varphi'(x_1) = 0$,

Back

可导出

 x_0, x_1 之间.

$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)^2 (x - x_1)^2, \tag{4.18}$$

其中, x_0 , x_1 , $x \in [a, b]$, $f(x)$ 在 $[a, b]$ 上有 4 阶连续导数, ξ 介于 x 及

5/17

例 4.4 设 $f(x) = \ln x$, 给定 f(1) = 0, f(2) = 0.69315, f'(1) = 1, f'(2) = 0.5. 用 3 次 Hermite 插值多项式 $H_3(x)$ 来计算 f(1.5) 的近似

值. $\textbf{解 这里 } x_0 = 1, \ x_1 = 2, \ h = x_1 - x_0 = 1. \ \textbf{则由} \ (4.16) \ \textbf{和} \ (4.17) \ \textbf{得}$

$$H_3(1.5) = \alpha_0 \left(\frac{1.5 - 1}{1}\right) \times 0 + \alpha_1 \left(\frac{1.5 - 1}{1}\right) \times 0.69315$$
$$+ 1 \times \beta_0 \left(\frac{1.5 - 1}{1}\right) \times 1 + 1 \times \beta_1 \left(\frac{1.5 - 1}{1}\right) \times 0.5$$
$$= 0.69315 \times \alpha_1(0.5) + \beta_0(0.5) + 0.5 \times \beta_1(0.5).$$

注意到

$$\alpha_1(0.5) = -2 \times 0.5^3 + 3 \times 0.5^2 = 0.5,$$

 $\beta_0(0.5) = 0.5^3 - 2 \times 0.5^2 + 0.5 = 0.125,$
 $\beta_1(0.5) = 0.5^3 - 0.5^2 = -0.125,$

故

 $f(1.5) \approx H_3(1.5) = 0.69315 \times 0.5 + 0.125 - 0.5 \times 0.125 = 0.409075.$

Back

§4.2 牛顿插值法

由于拉格朗日插值公式计算缺少递推关系,每次新增加节点需要重新计算,高次插值无法利用低次插值的结果.通过引进差商的概念,可以给出一种在增加节点时可对拉格朗日插值多项式进行递推计算的方法.该方法称为牛顿插值法.

我们首先给出差商的定义.

定义 **4.1** 设已知 $x_0, x_1, \dots, x_n,$ 称

$$f[x_0, x_k] = \frac{f(x_k) - f(x_0)}{x_k - x_0}, \quad k = 1, 2, \dots, n,$$

Back

为 f(x) 关于节点 x_0, x_k 的 1 阶差商. 称

$$f[x_0, x_1, x_k] = \frac{f[x_0, x_k] - f[x_0, x_1]}{x_k - x_1}, \quad k = 2, \dots, n,$$

为 f(x) 关于节点 x_0, x_1, x_k 的 2 阶差商. 一般地, 若定义了 k-1 阶

差商,则称

 $f[x_0, x_1, \cdots, x_k] = \frac{f[x_0, \cdots, x_{k-2}, x_k] - f[x_0, \cdots, x_{k-2}, x_{k-1}]}{x_k - x_{k-1}}, \quad k \le n$

为 f(x) 关于节点 x_0, x_1, \dots, x_k 的 k 阶差商.

和 f[-1,2,0].

解

因

 $f[0,-1] = \frac{f(-1) - f(0)}{1 - 0} = -4, \ f[0,2] = \frac{f(2) - f(0)}{2 - 0} = -1,$

例 4.5 设已知 f(0) = 1, f(-1) = 5, f(2) = -1, 分别求 f[0, -1, 2]

故

$$f[0, -1, 2] = \frac{f[0, 2] - f[0, -1]}{2 - (-1)} = \frac{(-1) - (-4)}{3} = 1.$$

$$\mathcal{I}$$

$$f[-1,2] = \frac{f(2) - f(-1)}{2 - (-1)} = -2, \quad f[-1,0] = \frac{f(0) - f(-1)}{0 - (-1)} = -4,$$

所以

$$f[-1,2,0] = \frac{f[-1,0] - f[-1,2]}{0-2} = \frac{(-4) - (-2)}{-2} = 1.$$

由本例可知, f[0,-1,2] = f[-1,2,0], 这不是偶然的. 事实上, 差

定理 4.1 (差商的性质)

商具有下列性质:

(1) 成立

$$f[x_0, x_1, \cdots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0, j \neq i}^k (x_i - x_j)} = \sum_{i=0}^k \frac{f(x_i)}{\omega'(x_i)}, \tag{4.19}$$

其中 $\omega(x) = \prod_{i=0}^{n} (x - x_i)$.

(2) 差商与节点的排列次序无关.

证 性质(2)由(4.19)式的对称性立即可得. 我们用数学归纳法证 明性质 (1). 当 k=1 时,

$$\sum_{i=0}^{1} \frac{f(x_i)}{\prod_{i=0}^{1} \frac{f(x_i)}{\sum_{i\neq i} (x_i - x_i)}} = \frac{f(x_0)}{x_0 - x_1} + \frac{f(x_1)}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_0, x_1],$$

知 (4.19) 成立. 设对 k-1 阶差商 (4.19) 式成立. 对 $i=0,\dots,k-2$,

记 $y_i = x_i$ 及 $y_{k-1} = x_k$, 得

$$f[x_0, \cdots, x_{k-1}, x_k] = \frac{f[x_0, \cdots, x_{k-2}, x_k] - f[x_0, \cdots, x_{k-2}, x_{k-1}]}{x_k - x_{k-1}}$$

$$= \frac{1}{x_k - x_{k-1}} \left\{ \sum_{i=0}^{k-1} \frac{f(y_i)}{\prod_{j=0, j \neq i}^{k-1} (y_i - y_j)} - \sum_{i=0}^{k-1} \frac{f(x_i)}{\prod_{j=0, j \neq i}^{k-1} (x_i - x_j)} \right\}$$

$$= \frac{1}{x_k - x_{k-1}} \left\{ \sum_{i=0}^{k-2} f(x_i) \left[\frac{1}{\left(\prod_{j=0, j \neq i}^{k-1} (x_i - x_j) \right) (x_i - x_k)} - \frac{1}{\prod_{j=0, i \neq i}^{k-1} (x_i - x_j)} \right] + \frac{f(x_k)}{\prod_{j=0}^{k-2} (x_k - x_j)} - \frac{f(x_{k-1})}{\prod_{j=0}^{k-2} (x_{k-1} - x_j)} \right\}$$

$$\frac{1}{\prod_{j=0,j\neq i}^{k-1}(x_i-x_j)} + \frac{1}{\prod_{j=0}^{k-2}(x_k-x_j)} - \frac{1}{\prod_{j=0}^{k-2}(x_{k-1}-x_j)} \\
= \sum_{i=0}^{k-2} \frac{f(x_i)}{\prod_{j=0,i\neq i}^{k}(x_i-x_j)} + \frac{f(x_{k-1})}{\prod_{j=0,i\neq k-1}^{k}(x_{k-1}-x_j)} + \frac{f(x_k)}{\prod_{j=0,i\neq k}^{k}(x_k-x_j)}$$

$$= \sum_{i=0}^{k} \frac{f(x_i)}{\prod_{i=0}^{k} \frac{f(x_i)}{i \neq i} (x_i - x_i)} = \sum_{i=0}^{k} \frac{f(x_i)}{\omega'(x_i)}.$$

Back

由数学归纳法知(4.19)式成立.

§4.2.2 牛顿插值公式

设已知
$$x_0, x_1, \dots, x_n$$
 及 $y_i = f(x_i) (i = 0, 1, \dots, n)$, 由差商的定

义, 当
$$x \neq x_i (i = 0, 1, \dots, n)$$
 时, 由

$$f[x_0, x] = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow f(x) = f(x_0) + f[x_0, x](x - x_0),$$

$$f[x_0, x_1, x] = \frac{f[x_0, x] - f[x_0, x_1]}{x - x_1}$$

$$\Rightarrow f[x_0, x] = f[x_0, x_1] + f[x_0, x_1, x](x - x_1),$$

从而

 $f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x](x - x_0)(x - x_1).$

依此类推、得到

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$+ f[x_0, \dots, x_n, x](x - x_0) \dots (x - x_{n-1})(x - x_n)$$

$$= N_n(x) + R_n(x),$$

其中

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \dots + f[x_0, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$(4.20)$$

及

 $R_n(x) = f[x_0, \cdots, x_n, x]\omega(x), \quad \omega(x) = \prod (x - x_j).$ (4.21) 由于 $N_n(x)$ 为不超过 n 次的多项式, 且满足

$$N_n(x_i) = f(x_i) - R_n(x_i) = f(x_i) = y_i, \quad i = 0, 1, \dots, n,$$

故由插值多项式的唯一性知, $N_n(x) = L_n(x)$ 恰为 f(x) 关于节点 x_0, x_1, \dots, x_n 的拉格朗日插值多项式. 再由

$$R_n(x) = f(x) - N_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x),$$

结合 (4.21) 即得

$$f[x_0, \dots, x_n, x] = \frac{f^{(n+1)}(\xi)}{(n+1)!}, \ \xi \ \mathbf{\Lambda} + x_0, \dots, x_n \ \mathbf{Z} \ x \ge \mathbf{i} \mathbf{i}.$$

从而有

由 (4.20) 给出的 $N_n(x)$ 称为 f(x) 关于节点 x_0, x_1, \dots, x_n 的牛顿插值多项式. 这种方法在增加节点时可方便地进行递推计算.

1/17

Back

例 4.6 用牛顿插值求解例 4.2. 若进一步利用 $\sin \frac{\pi}{2} = 1$ 应如何计算?

x_k	$f(x_k)$	$f[x_0, x_k]$	$f[x_0, x_1, x_k]$
$\pi/6$	0.5000		
$\pi/4$	0.7071	0.7911	
$\pi/3$	0.8660	0.6990	-0.3518
	0.0000	0.0000	0.0010

从而由牛顿插值公式 (4.20) 得

线性插值:

$$\sin\frac{2\pi}{9} \approx N_1(\frac{2\pi}{9}) = 0.5000 + 0.7911 \times \left(\frac{2\pi}{9} - \frac{\pi}{6}\right) = 0.6381.$$

15/17

Back

抛物插值:

$$\sin \frac{2\pi}{9} \approx N_2(\frac{2\pi}{9}) = N_1(\frac{2\pi}{9}) - 0.3518 \times (\frac{2\pi}{9} - \frac{\pi}{6}) \times (\frac{2\pi}{9} - \frac{\pi}{4})$$
$$= 0.6381 + 0.3518 \times \frac{\pi}{18} \times \frac{\pi}{36} = 0.6434.$$

进一步利用 $\sin \frac{\pi}{2}$ 得 3 阶差商如下

\overline{x}	c_k	$f(x_k)$	$f[x_0, x_k]$	$f[x_0, x_1, x_k]$	$f[x_0, x_1, x_2, x_k]$
π	/6	0.5000			
π	/4	0.7071	0.7911		
π	/3	0.8660	0.6990	-0.3518	
π	/2	1.0000	0.4775	-0.3993	-0.09072

Back

可得

$$\sin \frac{2\pi}{9} \approx N_3(\frac{2\pi}{9})$$

$$= N_2(\frac{2\pi}{9}) - 0.09072 \times (\frac{2\pi}{9} - \frac{\pi}{6}) \times (\frac{2\pi}{9} - \frac{\pi}{4}) \times (\frac{2\pi}{9} - \frac{\pi}{3})$$

$$= 0.6434 - 0.09072 \times \frac{\pi}{18} \times \frac{\pi}{36} \times \frac{\pi}{9} = 0.6429.$$

对照例 4.2 的运算过程可见,使用牛顿插值各阶插值之间有递推关系,当增加节点时计算要方便得多.

作业:P91: 4.14; 4.15.

Back