XP-002245280

AN - 1972-78582T [50]

CPY - RHWE

DC - E31 L03

FS - CPI

IC - C01G53/04

MC - E35-W L03-E01B

M3 - [01] A428 A940 C730 C101 C108 C802 C807 C805 C804 C801 C550 A400 N050 Q334 Q451 Q454 M720 M411 M902

PA - (RHWE) RHEINISCH-WESTFALISCHES E

PN - DE2122165 A 00000000 DW197250 000pp

- DE2122165 B 00000000 DW197324 000pp

PR - DE19712122165 19710505

XIC - C01G-053/04

AB - DE2122165 Finely powdered nickel-II-hydroxide is suspended in moisture-free satd. fluoro-hydrocarbon, esp. CCI3CF3, and a vigorous stream of ozone or ozonised gas is passed through the suspension, which is at the same time mechanically or ultrasonically agitated, at room temp. in a vessel fitted with a brine-cooled reflux condenser. The ratio liq-solid is approx 3:1 by wt. Complete oxidation to nickel-III-hydroxide takes place within a few hrs. The product is filtered off and suction dried.

IW - OXIDATION NICKEL NICKEL HYDROXIDE ALKALINE BATTERY PASS OZONE THROUGH SUSPENSION NICKEL

IKW - OXIDATION NICKEL NICKEL HYDROXIDE ALKALINE BATTERY PASS OZONE THROUGH SUSPENSION NICKEL

NC - 001

OPD - 1971-05-05

ORD - 1900-00-00

PAW - (RHWE) RHEINISCH-WESTFALISCHES E

TI - Oxidation of nickel-ii-to nickel-iii (hydroxide) for use in alkaline - batteries - by passing ozone through a suspension of nickel-ii-hydrox

(a) Int. Cl.: C 01 g, 53/04

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Deutsche Kl.: 12 n, 53/04

11	Onemegungsschrift		2 1 2 2 1 0 7	
Ø		Aktenzeichen:	P 21 22 165.8-41	
2	•	Anmeldetag:	5. Mai 1971	
43		Offenlegungstag:	30. November 1972	
	Ausstellungspriorität:	-		
<u></u>	Unionspriorität			
32	Datum:			
33	Land:	_		
③	Aktenzeichen:	-		
6 4	Bezeichnung:	Verfahren zur Oxydation von Nickel-II-hydroxid zu		
	•	Nickel-III-hydroxid, insbeso	ndere für alkalische Akkumulatoren	
(ii)	Zusatz zu:	_		
@	Ausscheidung aus:	-		
10	Anmelder:	Rheinisch-Westfälisches Ele	ktrizitätswerk AG, 4300 Essen	
	Vertreter gem. § 16 PatG:			
•	, or manay Borne 2 as y mice			
	Als Erfinder benannt:	Faber, Peter, DiplChem., 8	1752 Großwelzheim	
@	Als Ethilder behannt:	rauer, reter, DipiClient, c	· · · · · · · · · · · · · · · · · · ·	

Prüfungsantrag gemäß § 28b PatG ist gestellt

Andr jewski, H nk & G sthuys n

Pat ntanwält

Dipl m-Physiker
Dr. Walt r Andrej wski
Diplom-Ingenieur
Dr.-Ing. Manfred Honk
Diplom-Ingenieur
Hans Dieter Gesthuysen

Anwaltsakte: 36 575/Sch=

4300 Essen, den 1. April 1971 Theaterplatz 3

Patentanmeldung der Firma Rheinisch-Westfälisches Elektrizitätswerk AG. 43 Essen, Kruppstr. 5

> Verfahren zur Oxidation on Nickel-II-hydroxid zu Nickel-III-hydroxid, insbesondere für alkalische Akkumulatoren

In neuerer Zeit bekanntgewordene poröse Elektrodengerüste für alkalische Akkumulatoren geben bekanntlich die Möglichkeit, die elektrochemisch aktive Masse mechanisch in das Elektrodengerüst einzubringen. Dazu werden insbesondere pulver- und faserporöse Elektrodengerüste mit Poren Meiten bis zu ca. 100 mü

- 2 -

durch Einschütteln, Einschlämmen oder Einpasten der elektrochemisch aktiven Massen gefüllt.

Als in alkalischen Akkumulatoren wirksame elektrochemisch aktive Massen kommen für die positiven Elektroden hauptsächlich Nickel-II-hydroxid und Nickel-III-hydroxid in Frage. Einerseits kann man nämlich das grüne Nickel-II-hydroxid direkt verwenden und nach dem Einfüllen des Nickel-II-hydroxids in das Elektrodengerüst die Elektrode naß formieren, d.h. elektrochemisch oxidieren. Andererseits kann man aber auch das grüne Nickel-II-hydroxid vor dem Einbringen in das Elektrodengerüst zu schwarzem Nickel-III-hydroxid oxidieren.

Die Oxidation des grünen Nickel-II-hydroxids zum schwarzen Nickel-III-hydroxid geschieht nach einem älteren nassen Verfahren in alkalischer Lösung mit Bromwasser oder Chlorgasstrom. Dieses Verfahren ist umständlich und zeitraubend. Insbesondere muß das zunächst gewonnene Reaktionsprodukt bis zur alkalifreien Reaktion ausgewaschen werden, das schwierig ist.

Es ist deshalb bereits ein anderes Verfahren zur Oxidation des grünen Nickel-II-hydroxids zum schwarzen Nickel-III-hydroxid bekanntgeworden (vgl. die deutsche Auslegeschrift 1 240 056), bei dem das Nickel-II-hydroxid im trockenen Zustand mit einem Ozongasstrom - Ozon, ozonhaltiger Sauerstoff, ozonhaltiges Inertgas - behandelt wird, vorzugsweise bei Temperaturen zwischen 200 und 1100 C. Dieses Verfahren führt

- 3 -

weder zur Bildung von wiederauszuwaschenden Nebenprodukten noch werden andere Chemikalien benötigt; bei dem zuvor beschriebenen nassen Verfahren, Behandlung in Chlorgasstrom, wird z.B. ständig Kalilauge verbraucht. Behandelt man jedoch Nickel-II-hydroxid in wässriger Lösung im Ozongasstrom, so finden überraschenderweise die gewünschte Oxidation zum Nickel-III-hydroxid praktisch nicht statt.

Da bei dem zuletzt beschriebenen Verfahren der Oxidation von Nickel-II-hydroxid zu Nickel-III-hydroxid vorzugsweise feinpulvriges Nickel-II-hydroxid verwendet wird - um nämlich einen schnellen und vollständigen Umsatz zu erzielen - , tritt ein besonderes technologisches Problem auf. Es muß nämlich verhindert werden, daß das feinpulvrige Nickel-II-und/oder Nickel-III-hydroxid durch den Ozongasstrom weggetragen wird. Da die Behandlung des Nickel-II-hydroxids mit dem Ozongasstrom in wässriger Lösung nicht zum angestrebten Erfolg - Umsetzung in Nickel-III-hydroxid - führt, muß zur Vermeidung des Wegtragens des feinpulvrigen Nickel-II-und/oder Nickel-III-hydroxid mit einem Ozongasstrom geringer Strömungsgeschwindigkeit gearbeitet werden; es ergibt sich folglich eine geringe Reaktionsgeschwindigkeit.

Der Erfindung liegt die Aufgabe zugrunde, das zuletzt beschriebene Verfahren zur Oxidation von Nickel-II-hydroxid zu Nickel-III-hydroxid, bei dem also das Nickel-II-hydroxid mit einem Ozongasstrom behandelt wird, so auszugestalten, daß einerseits das Wegtragen des feinpulvrigen Nickel-II-und/oder Nickel-III-hydroxid wirksam verhindert, andererseits die

_ 4 _

erreichbare Reaktionsgeschwindigkeit beachtlich erhöht werden kann.

Diese Aufgabe ist erfindungsgemäß bei einem Verfahren zur Oxidation von Nickel-II-hydroxid zu Nickel-III-hydroxid, insbesondere für alkalische Akkumulatoren, bei dem das feinpulvrige Nickel-II-hydroxid mit einem Ozongasstrom -Ozon, ozonhaltiger Sauerstoff, ozonhaltiges Inertgas - behandelt wird, dadurch gelöst, daß das Nickel-II-hydroxid vor der Behandlung mit dem Ozongasstrom in einer wasserfreien, bindungsgesättigten, organischen Flüssigkeit dispergiert wird, - wobei zweckmäßigerweise eine Flüssigkeit genommen wird, die einen möglichst hohen Siedepunkt hat. Das Nickel-II-hydroxid wird vorzugsweise in einem bei Zimmertemperatur flüssigen Halogenwasserstoff, insbesondere in einem Fluorkohlenwasserstoff, dispergiert. Fluorkohlenwasserstoffe eignen sich deswegen besonders gut für das erfindungsgemäße Verfahren, weil sie im Gegensatz zu vielen anderen organischen Flüssigkeiten nicht brennbar sind und sich mit Ozon selbst nicht umsetzen; besonders geeignet ist Trichlortrifluoräthan.

Bei dem erfindungsgemäßen Verfahren verhindert die vorliegende, aus der Flüssigkeit und dem Nickel-II-hydroxid bestehende Dispersion, daß das feinpulvrige Nickel-II-hydroxid durch den Ozongasstrom weggetragen wird. Der Ozongasstrom kann also mit relativ großer Strömungsgeschwindigkeit durch die Dispersion geleitet werden, so daß im Ergebnis auch eine gegenüber dem bekannten Verfahren, von dem die

Andr j wski, H nke & G sthuys n, Patentanwält , 4300 Ess n, Th aterplatz 3

- 5 -

Erfindung ausgeht, beachtlich höhere Reaktionsgeschwindigkeit und damit eine relativ geringe Reaktionszeit erreicht wird.

Um die Reaktionsgeschwindigkeit noch zu erhöhen, empfiehlt es sich, die Dispersion, wie an sich bereits bei dem Verfahren, von dem die Erfindung ausgeht, bekannt, während der Behandlung mit dem Ozongasstrom, z.B. durch einen vorzugsweise schnellaufenden Rührer, durch Vibration oder durch Ultraschall, zu durchwirbeln. Dabei kann, wenn man z.B. einen schnellaufenden Schlagrührer verwendet, während des Durchwirbelns das Nickel-II-hydroxid gleichsam noch laufend weiter zerkleinert werden. Auf diese Weise wird die zunächst reagierende äußere "Kruste" des einzelnen Nickel-II-hydroxid-Korns abgetrennt, so daß der verbleibende Rest weiter oxidieren kann. Demgegenüber reibt sich bei dem bekannten Verfahren die "Kruste" des einzelnen Nickel-II-hydroxids-Korns ab und kann leicht mit dem Ozongasstrom verloren gehen.

Bei Anwendung des erfindungsgemäßen Verfärens können auch größere Mengen von Nickel-II-hydroxid in wenigen Stunden voll zu Nickel-III-hydroxid durchoxidieren. Oxidationsäquivalente von 98 %, die bei dem bekannten Verfahren erst nach Tagen und nur mit schwierigen Staubfangmethoden erreicht werden können, lassen sich mit dem erfindungsgemäßen Verfahren ohne weiteres in wenigen Stunden erziehlen.

Um eventuell durch den Ozongasstrom mitgerissene Dämpfe der Flüssigkeit, die Nickel-II-und/oder Nickel-III-hydroxid enthalten können, im Ergebnis zurückzuhalten, empfiehlt es sich,

Andrejewski, Honke & G sthuysen, Patentanwält , 4300 Essen, Th aterplatz 3

- 6 -

solche Dämpfe zu kondensieren und zurückzuführen.

Das nach dem erfindungsgemäßen Verfahren gewonnene Nickel-IIIhydroxid wird abschließend durch einfache Filtration von der Flüssigkeit getrennt und trocken gesaugt. Das Endprodukt liegt feinpulvrig vor, es bildet sich also kein Filterkuchen, wie er normalerweise bei wässriger Filtration entsteht.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und einer schematischen Darstellung erläutert.

Etwa 100 g feinpulvriges Nickel-II-hydroxid werden mit ca. 200 ml wasserfreiem Trichfluoräthan in einem Reaktionsgefäß 1 dispergiert und mit einem Rührer 2 lebhaft durchwirbelt. Gleichzeitig wird über eine Gaszuführungsleitung 3 ein Ozongasstrom in das Reaktionsgefäß 1 geleitet. Das grüne Nickel-II-hydroxid färbt sich schon nach ca. 10 Minuten tiefschwarz, es ist also zu Nickel-III-hydroxid oxidiert worden.

Wegen des relativ niedrigen Siedepunktes des Trichlortrifluoräthans von nur 47,6 °C ist an eine Gasabgangsleitung
4 des Reaktionsgefäßes 1 ein Kondensator 5 mit einem Kühler 6
angeschlossen. Die Kühlseite des Kondensators 5 wird von einer
mit einer Trockeneismischung des Kühlers 6 rückgekühlten Sole
durchflossen.

Nach Abschluß der Umsetzung des Nickel-II-hydroxids in Nickel-III-hydroxid wird das überstehende Trichlortrifluoräthan abdekantiert und das Nickel-III-hydroxid mit einer Andr jewski, Honke & Gesthuysen, Patentanwälte, 4300 Essen, Theaterplatz 3

-7-

Nutsche trockengesaugt.

Patentansprüche:

- 1. Verfahren zur Oxidation von Nickel-II-hydroxid zu Nickel-III-hydroxid, insbesondere für alkalische Akkumulatoren, bei dem das feinpulvrige Nickel-II-hydroxid mit einem Ozongasstrom Ozon, ozonhaltiger Sauerstoff, ozonhaltiges Inertgase behandelt wird, dad urch gekennzeich net, daß das Nickel-II-hydroxid vor der Behandlung mit dem Ozongasstrom in einer wasserfreien, bindungsgesättigten, organischen Flüssigkeit dispergiert wird.
- 2. Verfhren nach Anspruch 1, dadurch gekennzeichnet, daß das Nickel-II-hydroxid in einem bei Zimmertemperatur flüssigen Halogenkohlenwasserstoff dispergiert wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Nickel-II-hydroxid in einem Fluorkohlenwasserstoff dispergiert wird.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Nickel-II-hydroxid in Trichlortrifluoräthan dispergiert wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Dispersion aus der Flüssigkeit und dem Nickel-II-hydroxid während der Behandlung mit dem Ozongasstrom, z.B. durch einen vorzugsweise schnellaufenden Rührer, durch Vibration oder durch Ultraschall, durchwirbelt wird.

6) Ach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,

- 9 -

daß durch den Ozongasstrom mitgerissene Dämpfe der Flüssigkeit, die Nickel-II-und/oder Nickel-III-hydroxid enthalten können, kondensiert und rückgeführt werden. Leerseite

agovern is a wr

_ /1

12 n 53-04 AT: 05.05.1971 OT: 30.11.1972