深圳大学期末考试试卷

开/闭卷	闭 	_			A/B 卷	Α
课程编号		课程名称	高等数学 B(1)		学分	4
命题人 (签字	롣)	· 审	『题人 (签字)	2006	一 年 <u>_12</u> _月	10日

基本题 题号 兀 五 六 七 十 附加题 八 九 总分

得分 评卷人

高等数学 B(1)21试卷

一.选择与填空题 (每题 3 分, 共 18 分)

1.当 x 0 时 , x(x sinx)与 x² 比较是()

- A. 同阶但不等价无穷小 B. 等价无穷小

- C. 高阶无穷小
- D. 低阶无穷小

2.曲线 y x³ 3x 上切线平行于 x 轴的点有()

. . . 线

...

. . .

封

题

答 ...

不 …

内 …

封 ...

(...

. . .

. . .

. . .

业专

- A .(0,0) B .(1,2) C .(-1,2) D .(1,-2)

3.若 $f(x)dx x^2 e^{-x} c 则 f(x) ()$

A. xe^{x} B. $x^{2}e^{x}$ C. $2xe^{x}$ D. $e^{-x}(2x - x^{2})$

5.设 e^x 是 f (x) 的原函数 , 则 xf (x)dx 。

6.曲线 y $\frac{2x-1}{(x-1)^2}$ 的铅垂渐近线是 ______。

二.计算题:(每题 6分,共 48分)

- 1.求极限 $\lim_{x \to 2} \frac{x^2 + 3x + 2}{x^2 + 4}$
- $2. 求极限 \lim_{x \to 0} (\frac{1}{\sin x} + \frac{1}{x})$

8. 求
$$x^2 e^{x^3} dx$$

$$\frac{1}{x}\sin x$$
 x 0
 三.设 $f(x)=k(常数)$ x 0 问当 k 为何值时,函数在 x=0 处连续?为什 $x\sin\frac{1}{x}$ x 0

么?(7分)

四、 利用拉格朗日中值定理证明不等式
$$\frac{x}{1-x}$$
 $\ln(1-x)$ x 对一切 x O成立 \dots . $(7分)$

五. 判定曲线 y xe^{x} 的单调性、极值、凹向及拐点 (10)

六. 某厂每批生产某种商品 x 单位的费用为

得到的收益是

$$R(x)$$
 10x 0.01 x^2 (元)

求:1.生产 10 个单位时的边际成本和边际收益 ...

2.每批应生产多少单位时才能使利润最大。 (10分)

附加题: ((每题 10分共 30分)

1.
$$\lim_{x} \frac{e^{x}}{(1 + \frac{1}{x})^{x^{2}}}$$
 (10分)

- 2. 求1,²√2, ³√3, L √n, L 中的最大值.
- 3. 若 f(x) 的一个原函数是 $ln(x \sqrt{x^2 + 1})$, 求 xf(x)dx

高等数学 B(1)21 试卷解答及评分标准

- 一、选择与填空题 (每题 3分,共 18分)
- 1.当 x 0 时 , x(x sinx)与 x² 比较是 (A)
 - A. 同阶但不等价无穷小 B. 等价无穷小

- C. 高阶无穷小
- D. 低阶无穷小
- 2. 曲线 y x³ 3x 上切线平行于 x 轴的点有(D)

- A.(0,0) B.(1,2) C.(-1,2) D.(1,-2)
- 3.若 $f(x)dx x^2e^{-x} c 则 f(x) (D)$
 - A. xe^{x} B. $x^{2}e^{x}$ C. $2xe^{x}$ D. $e^{-x}(2x-x^{2})$
- 4.求极限 $\lim_{x \to 1} (\frac{x-3}{x-1})^x = e^4$
- 5. 设 e^x 是 f(x) 的原函数 , 则 xf(x)dx xe^x e^x c
- 6.曲线 y $\frac{2x-1}{(x-1)^2}$ 的铅垂渐近线是 <u>x=1</u> 。
- 二 计算题:(每题 6分,共 48分)
- 1.求极限 $\lim_{x \to 2} \frac{x^2 + 3x + 2}{x^2 + 4}$

$$2. \bar{x}$$
极限 $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$

解:原式 = $\lim_{x \to 2} \frac{2x - 3}{2x}$ (4分) 解:原式 = $\lim_{x \to 0} \frac{x - \sin x}{x \sin x}$ (1分)

(6分)

用作、原式 =
$$\lim_{x \to 0} \frac{1}{x \sin x}$$
 (1万)
$$= \lim_{x \to 0} \frac{1 \cos x}{x \sin x}$$
 (3)

分)

$$= \lim_{x \to 0} \frac{\sin x}{2\cos x - x\sin x}$$
 (4

分)

分)

3.y $e^x \sin x \tan x \frac{dy}{dx}$

4. 设 xy e^{x y} y 是 x 的函数 , 求 y

解: y e^xsinx e^xcosx sec²x (6分)解: 两边求导: y xy e^{x y}(1 y) (4 3文档来源为:从网络收集整理 .word 版本可编辑 .欢迎下载支持 .

分)

$$y \frac{e^{x} y}{x e^{x+y}} \qquad (6 \%)$$

5.设 y e^{f (x)} 求 y

6. 设 y 2^{3x} sin² x , 求dy ;

解: y $e^{f(x)}f(x)$ 2分

y $(2^{3x}) \sin^2 x \ 2^{3x} (\sin^2 x) \ 4 \ 分$

 $y = e^{f(x)}(f^{2}(x) f(x)) (5 分)$ $dy=2^{3x}(3ln 2sin^{2}x 2sin x cos x) dx 6$

分

7. 求 $ln(x^2 1) dx$

9. 求 $x^2e^{x^3}dx$

解:原式 = $x \ln (1 \ x^2)$ $x d \ln (1 \ x^2)$ (2分) 解:原式 = $\frac{1}{3} e^{x^3} dx^3$ (3分)

 $= x \ln (1 \ x^2) \quad \frac{2x^2}{1 \ x^2} dx \qquad (4 \%) \qquad = -\frac{1}{3} e^{x^3} c \qquad (6 \%)$

 $= x \ln (1 x^2)$ 2x arctanx c (6分)

 $\frac{1}{-}\sin x$ x 0

三.设 f(x)=k(常数) x 0 问当 k 为何值时,函数在其定义域内连续? (7 $x\sin\frac{1}{x}+1 \quad x \quad 0$

分)

解: $Q \lim_{x \to 0} f(x) \lim_{x \to 0} \frac{1}{x} \sin x$ 1

2分

 $\lim_{x \to 0} f(x) \quad \lim_{x \to 0} (x \sin \frac{1}{x} + 1) = 1$

 $\lim_{x \to 0} f(x) \quad \lim_{x \to 0} f(x) \quad 1 \quad \lim_{x \to 0} f(x) \qquad 6 \text{ }$

当 [im f (x) f (0) k 时函数连续,即 k=0 时,f(x) 在 x=0 处连续。 7

分

利用拉格朗日中值定理证明不等式 $\frac{x}{1-x}$ $\ln(1-x)$ x 对一切 x 0成立 $\frac{1}{x}$ $\frac{7}{x}$ 四、

设 f(x) $\ln(1 x)$, 则f(x) $\frac{1}{1 x}$

分

显然对一切 x = 0, f(x)在[0,1]上满足拉格朗日定理条件

分

存在
$$(0,1)$$
 使得 $\frac{\ln(1+x) - \ln(1-0)}{x-0}$ f() $\frac{1}{1}$ 4 分

Q 0< \frac{1}{1}
$$\frac{1}{1}$$
 1 即有 $\frac{x}{1}$ In(1 x) x 成立 7 分

五. 判定曲线 y xe *的单调性、极值、凹向及拐点 (10分)

解: y xe *的定义域为 (,), (1分)

$$y e^x xe^x e^x(1 x)$$
 令 $y'0,得 x=1$ (3分)

y
$$2e^{x} xe^{x} e^{x}(x 2)$$
 令 y 0 有 $x 2$ (5分)

X		1	(1,2)	2	
	+	0	_		+
	_		_	0	+
У		极大值		拐点	

8分 当 x=1 时,有极大值 f(1) e¹, (9分);

当 x=2 时, (2, 2e²),拐点为 (10分)。

六. 某厂每批生产某种商品 x 单位的费用为 C(x) 5x 200 (元)

得到的收益是 R(x) 10x 0.01x² (元)

求:1.生产 10 个单位是的边际成本和边际收益

2.每批应生产多少单位时才能使利润最大 (10分)

解: 1. C(x) 5 (1分)

R(x) 10 0.02x (2分)

生产 10 个单位时,边际成本 C(10) 5 边际收益 R(10) 10 0.02 10 9.8 (5分)

2.利润 L(x) 10x 0.01x² 5x 200

 $=5x \quad 0.01x^2 \quad 200$ (7分)

令 L(x) 0 有 x 250 (9分)

5文档来源为:从网络收集整理 .word 版本可编辑 .欢迎下载支持 .

当每批生产 250 个单位时,能使利润最大。 (10分)

附加题:

1,
$$\frac{e^{x}}{(1 + \frac{1}{x})^{x^{2}}}$$

解

$$\lim_{x} \frac{e^{x}}{(1 - \frac{1}{x})^{x^{2}}} \quad \lim_{x} e^{x - x^{2} \ln(1 - \frac{1}{x})} \quad \lim_{x} e^{x - 1 - x \ln(1 - \frac{1}{x})}$$

4分

因为
$$\lim_{x \to \infty} x + 1 = x \ln(1 - \frac{1}{x})$$
 $\lim_{t \to 0} \frac{1 - \frac{\ln(1 - t)}{t}}{t} = \lim_{t \to 0} \frac{t - \ln(1 - t)}{t^2}$
$$\lim_{t \to 0} \frac{1 - \frac{1}{1 - t}}{2t} = \lim_{t \to 0} \frac{t}{2t(1 - t)} = \frac{1}{2} \qquad \qquad 9 分$$

$$\lim_{x \to \infty} \frac{e^x}{\left(1 - \frac{1}{x}\right)^{x^2}} = e^{\frac{1}{2}}$$

10 分

2. 求 1,⅔2, ⅓3, L ∜n, L 中的最大值.

解 设
$$f(x)$$
 $x^{\frac{1}{x}}(x + 1)$, 则
$$f(x) x^{\frac{1}{x}} \frac{1 \ln x}{x^2}$$
 5

令 f (x) 0得唯一驻点 x e , 且 1 x e时 , f (x) 0; x e时 , f (x) 0;

$$f_{max}$$
 f_{Wb} $f(e)$ $\sqrt[6]{e}$ 7 分

最大值可能是 √2 或 ¾3。由于

3、 若 f(x) 的一个原函数是 $ln(x \sqrt{x^2 1})$, 求 xf(x)dx

3

分

分

f(x)
$$\ln(x \sqrt{x^2 1})$$
 $\frac{1}{\sqrt{x^2 1}}$ 7 分

$$f(x) = \frac{x}{\sqrt{(x^2 + 1)^3}}$$

xf (x)dx
$$\frac{x^2}{\sqrt{(x^2 + 1)^3}} \frac{1}{\sqrt{x^2 + 1}}$$
 C 10 分

名姓

. . .

线

封

答 ...

不 …

(...

少专

深圳大学期末考试试卷

题号		=	四	五	六	七	八	九	+	基本题 总分	附加题
得分											
评卷人											

高等数学 B(2)25 试卷

一、 单项选择题(本题共 5 小题,每小题 4 分,满分 20 分)

1. 两曲线 y=f(x), y=g(x)相交于点 (x_1, y_1) , (x_2, y_2) , $x_1 = x_2$, 且 f(x) = 0, g(x) = 0,它们所围成的 平面图形绕 x 轴旋转一周所得的旋转体的体积 V=(

(A)
$$\int_{x_1}^{x_2} f(x) g(x)^2 dx$$

(B)
$$\int_{x_1}^{x_2} f(x) g(x)^2 dx$$

(C)
$$\int_{x_1}^{x_2} |f^2(x)| dx$$

(D)
$$\int_{x_1}^{x_2} f(x)^2 dx \int_{x_1}^{x_2} g(x)^2 dx$$

(A)
$$1^{n-1} \frac{1}{\sqrt{2n^3 + 6}}$$
 (B) $1^{n-1} \frac{2}{3}$

... (C)
$$1^{n-1} \frac{1}{n^2}$$
 (D) $1^{n-1} \frac{1}{n2^n}$

(A)
$$\frac{{}^2g}{v^2} \frac{v}{y} \frac{g}{v} \frac{{}^2v}{v}$$
 (B) $\frac{g}{v} \frac{{}^2v}{y^2}$

... 4.
$$\frac{1}{1} \frac{2}{x^2} dx$$
 (

(A)
$$y = \frac{e^{2x}}{4} + c_1 x + c_2 + c_3 + c_4 + c_4 + c_5 + c_4 + c_5 + c_5$$

(C)
$$y = \frac{e^{2x}}{4} + c$$
 (D) $y = \frac{e^{2x}}{4} + c_1 x^2 + c_2$

二、 填空(本题共 5小题,每小题 4分,满分 20分)

1. 若 f(x)
$$\int_{0}^{x^{2}} 2x \sin t^{2} dt$$
 ,则 f(x)=_______

2. 设
$$f(x,y)$$
是连续函数,交换积分次序: $\int_{0}^{1} dx \int_{1-x^{2}}^{1-x} f(x,y) dy \int_{1-x}^{e} dx \int_{1-x}^{1-x} f(x,y) dy = 1$

1.
$$z \left(\ln x \right)^{\sin y}$$
 , 求 dz 。

2. 求
$$(\ln x)^2 dx$$
。

3. 设
$$z = z(x,y)$$
由方程 y 2x z xyz 所确定 , 求 $z = xyz$

4. 计算二重积分
$$3\sqrt{x^2 + y^2} \, dxdy$$
, 其中 D: $a^2 + x^2 + y^2 + b^2$ (b> a > 0)。

四、解答下列各题(本题共 4小题,每小题 10分,满分 40分)

3. 试求函数
$$\begin{bmatrix} f & x & \arctan x \end{bmatrix}$$
在点 $\begin{bmatrix} x_0 & 0 \end{bmatrix}$ 的泰勒级数展开式,并求 $\begin{bmatrix} 1 & 3 & 1 \\ 1 & 2n & 1 \end{bmatrix}$ 之值。

- 4. 求微分方程 y 2y 2y 0 的一条积分曲线,使其在点 (0,1) 处有水平切线。
- 五、 附加题(本题共 3小题,每小题 10分,满分 30分)

1. 设 I
$$\frac{2}{0} \frac{\sin^{10} x \cos^{10} x}{4 \sin x \cos x} dx$$
,求 I。

2. 求
$$\lim_{n \to \infty} \frac{1}{n+1} \frac{1}{n+2} L \frac{1}{n+n}$$

3. 设 f x $x \ln(1 x^2)$, (1) 将 f x 展成 x 的幂级数, 并求收敛域; (2) 求 f $\frac{101}{2}$ 0。

高等数学 B(2)25试卷解答及评分标准

六、 单项选择题(本题共 5小题,每小题 4分,满分 20分)

C A C D A

七、 填空(本题共 5小题,每小题 4分,满分 20分)

1. 16

八、 计算下列各题(本题共 4小题,每小题 5分,满分 20分)

5. 解: dz
$$\frac{\sin y}{x \ln x} (\ln x)^{\sin y} dx \cos y (\ln x)^{\sin y} \ln(\ln x) dy$$

6. 解:原式 $x(\ln x)^2\Big|_1^e$ 2 $\ln x dx$ e 2.

7. 解: dy 2dx dz yzdx xzdy xydz

8. 解:原式 = 3_0^2 d a^b r 2 dr 2 (b³ a³)

九、解答下列各题(本题共 4小题,每小题 10分,满分 40分)

$$\begin{bmatrix} x^2 & 2 & 0, & x & \sqrt{2}, \\ 6 & x^2 & 0, & x & \sqrt{6}, \end{bmatrix}$$
 $\begin{bmatrix} y & x^2 & 2, \\ y & 6 & x^2, \end{bmatrix}$ $\begin{bmatrix} y & x^2 & 2, \\ y & 6 & x^2, \end{bmatrix}$ 4分

S 2
$$_{0}^{2}$$
 (x^{2} 2)dx $_{2}^{2}$ (x^{2} 2)dx $_{2}^{6}$ (6 x^{2})dx

$$2(\frac{8}{3}\sqrt{2} \quad 4\sqrt{6} \quad \frac{32}{3}) \quad \frac{16}{3}\sqrt{2} \quad 8\sqrt{6} \quad \frac{64}{3}$$
.

4分

3. 解: 因为
$$f x = \frac{1}{1 + x^2} + \frac{1}{1 + x^2$$

所以 f x
$$\int_{0}^{x} \frac{1}{1 + x^{2}} dx$$
 $\int_{0}^{x} \frac{1}{2n + 1} x$ 1, 1 7分

所以
$$\frac{1}{2n}$$
 $\frac{1}{4}$ $\frac{3}{2n}$ $\frac{1}{4}$ $\frac{1}{2n}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{\sqrt{3}}{2}$ f $\frac{\sqrt{3}}{2}$ arctan $\frac{\sqrt{3}}{2}$ 10 分

通解:
$$y e^x(c_1 \sin x c_2 \cos x)$$
 6分

十、 附加题(本题共 3小题,每小题 10分,满分 30分)

$$1. \quad \text{$M: 2I$} \quad \frac{-\frac{1}{2}}{0} \frac{\sin^{10} x \cos^{10} x}{4 \sin x \cos x} dx \quad \frac{-\frac{1}{2}}{0} \frac{\cos^{10} x \sin^{10} x}{4 \cos x \sin x} dx \quad 0 \quad \quad I \quad 0$$

2. 解:原式
$$\lim_{n \to 1} \frac{1}{1 + \frac{1}{n}} \frac{1}{n} = \frac{1}{1 +$$

3.
$$\Re : (1)$$
 f x $x \ln(1 x^2)$ x $1^n \frac{x^{2^{n-1}}}{n \ 1}$ $\frac{x^{2^{n-1}}}{n \ 1}$

... 线

. . .

. . .

| 号 | | |

名姓

封

答 ...

不 …

院

 开/闭卷
 闭卷

 课程编号
 05

A/B 卷
B
A/B 卷
A/B 卷
A/B 卷
A/B 卷
B
4
A/B 卷
A/B 巻
A/B ◆
A/B

题号	_	1	四	五	六	七	八	九	+	基本题 总分	附加题
得分											
评卷人											

高等数学 B(2)24 试卷

十一、 单项选择题(本题共 5小题,每小题 4分,满分 20分)

- 1. 由 [a,b] 上连续曲线 y = g(x), 直线 x = a, x = b, a = b, 和 x 轴围成图形的面积 s = c.
 - (A) $\int_{a}^{b} g(x)dx$
- (B) $\int_a^b g(x)dx$
- (C) $\int_{a}^{b} |g(x)| dx$
- (D) $\frac{[g(b) \ g(a)](b \ a)}{2}$
- 2. 下列级数中,绝对收敛的是(
 - (A) $_{n \ 1}$ $\frac{2n}{3n \ 1}$ (B) $_{n \ 1}$ $\frac{1}{3\ln(n \ 1)}$
 - (C) $1^{n} \frac{1}{\sqrt{n^2} 9}$ (D) $\frac{1^{n} \frac{1}{n^2}}{n^2}$
- 3. 设 z f (x,v), v v(x, y) 其中 f , v 具有二阶连续偏导数 . 则 ² z / y ²
 - (A) $\frac{{}^2 f}{v y} \frac{v}{y} \frac{f}{v} \frac{{}^2 v}{v^2}$ (B) $\frac{f}{v} \frac{{}^2 v}{y^2}$
 - (C) $\frac{{}^{2} f}{v^{2}} (\frac{v}{y})^{2} \frac{f}{v} \frac{{}^{2} v}{y^{2}}$ (D) $\frac{{}^{2} f}{v^{2}} \frac{v}{y} \frac{f}{v} \frac{{}^{2} v}{y^{2}}$
- 4. $\int_{1}^{1} \frac{1}{x^2} dx$ ()

5. 求微分方程 y x²的通解 ()

(A)
$$y = \frac{x^4}{12} c_1 x c_2$$
 (B) $y = \frac{x^4}{12} cx$ (C) $y = \frac{x^4}{12} c$ (D) $y = \frac{x^4}{12} c_1 x^2 c_2$

十二、 填空(本题共 5小题,每小题 4分,满分 20分)

5. 若 f(x)
$$\int_{0}^{x^{2}} 3x \sin t^{2} dt$$
 , 则 f (x)=______

十三、 计算下列各题(本题共 4小题,每小题 5分,满分 20分)

9.
$$z$$
 $(ln y)^{cosx}$, 求 dz 。

10. 求
$$\int_{0}^{1} 15x\sqrt{2} x dx$$
。

11. 设
$$z z(x,y)$$
由方程 $\frac{x}{z}$ In $\frac{z}{y}$ 所确定,求 z_x,z_y 。

12. 计算二重积分
$$15xy^2dxdy$$
,其中 D 为 $x = \sqrt{4 + y^2}$ 与 y 轴所围成的区域。

十四、 解答下列各题(本题共 4小题,每小题 10分,满分 40分)

- 1. 求由曲线 y=sinx, y=cosx, (0 x /4) 及直线 x=0 所围成的平面图形绕 x 轴旋转而成的立体的体积。
- 2. 已知两种商品的需求函数为 Q_1 8 p_1 p_2 ; Q_2 10 $2p_1$ $5p_2$, 其中 p_1 , p_2 为两种商品的价格,总成本函数为 C $3Q_1$ $2Q_2$,问如何定价可使利润最大?

3. 利用
$$y = \frac{1}{1 - x^2}$$
 的展开式, 求级数 $x = 1^n = \frac{4}{2n - 1}$ 的和。

十五、 附加题(本题共 3小题,每小题 10分,满分 30分)

1. 设 I
$$\frac{7}{0}$$
 $\frac{f \sin x}{f \sin x} dx$, 求 I。

2. 求
$$\lim_{n \to \infty} \frac{1}{n + 1} \frac{1}{n + 2} L \frac{1}{n + 2n}$$

3. 设 f x
$$x^{100}e^{x^2}$$
,(1)将 f x 展成 x 的幂级数,(2)求 f x^{200} 0

高等数学 B(2)24试卷解答及评分标准

十六、 单项选择题(本题共 5小题,每小题 4分,满分 20分)

C D C D A

十七、 填空(本题共 5小题,每小题 4分,满分 20分)

1. 8

十八、 计算下列各题(本题共 4小题,每小题 5分,满分 20分)

13.
$$\mathbf{m}$$
: $dz = \frac{\cos x}{y \ln y} (\ln y)^{\cos x} dy = \sin x (\ln y)^{\cos x} \ln(\ln y) dx$

14. 解: 令
$$\sqrt{2}$$
 x t,原式 15 $\sqrt{3}$ (t² 2) t 2tdt 15 ($\frac{2}{5}$ t⁵ $\frac{4}{3}$ t³) $\sqrt{3}$ 16 $\sqrt{2}$ 6 $\sqrt{3}$.

15.
$$\mathbf{m}: \frac{1}{z} dx \quad \frac{x}{z^2} dz \quad \frac{dz}{z} \quad \frac{dy}{y}$$

16. 解: 原式 =
$$15 \int_{2}^{2} y^{2} dy \int_{0}^{\sqrt{4 + y^{2}}} x dx$$
 $\int_{0}^{2} y^{2} (4 + y^{2}) dy$ 64

十九、 解答下列各题(本题共 4小题,每小题 10分,满分 40分)

$$\frac{-\sin 2x}{2} \Big|_{0}^{4}$$

$$\frac{10 分}{2}$$

6. $\mathbf{R} : \mathbf{R} \quad \mathbf{p_1} \mathbf{Q_1} \quad \mathbf{p_2} \mathbf{Q_2}$

L R C
$$(p_1 \ 3)(8 \ p_1 \ p_2) \ (p_2 \ 2)(10 \ 2p_1 \ 5p_2)$$
 4分

$$_{\odot}$$
 L_{p_1} 7 $2p_1$ $3p_2$ 0 p_1 11 p_2 5 $(唯一驻点)$ 7分 L_{p_2} 17 $3p_1$ $10p_2$ 0

7. 解: 因为
$$\frac{1}{1 \ x^2} \ _{n \ 0} \ 1^n x^{2n}$$
 x 1, 1 4分

15文档来源为:从网络收集整理 .word 版本可编辑 .欢迎下载支持 .

所以
$$1^{n} \frac{4}{2n \ 1}$$
 10 分

通解:
$$y e^{x}(c_1 c_2 x)$$
 $y e^{x}(c_2 c_1 c_2 x)$ 6分

二十、 附加题(本题共 3小题,每小题 10分,满分 30分)

2.
$$\mathbf{m} : \mathbb{R} : \mathbb{R}$$

3.
$$\mathbf{M}$$
: (1) \mathbf{f} \mathbf{x} $\mathbf{x}^{100}\mathbf{e}^{\mathbf{x}^2}$ \mathbf{x}^{100} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n}

(2)取 n 50,对上式两边求 x 0处的 200 阶导数得 f $\frac{200}{50!}$

深圳大学期末考试试卷

答案及评分标准

线

. . .

名姓

封

答 ...

不 …

封 ...

密

. . .

院学

A/B 卷 开/闭卷 闭卷 课程编号 课程名称 线性代数 学分 01-10 01-03

命题人(签字)

题号	_	=	Ξ	四	五	六	七	八	九	+	基本题 总分	附加题
得分												
评卷人												

·、选择(每题 4分,共 20分)

- 设 A ji (i,j=1,2,3,4)是四阶行列式 D (D 0)中元素 aji 代数余子式,则当(B)时, 有 a1kA12+a2kA22+a3kA32+a4kA42 0.
 - (A) K=1
- (B) K=2
- (C) K=3
- (D) K=4
- 设 A 是 n 阶可逆矩阵 , A^{i} 是 A 的伴随矩阵 ,则下面命题正确的是 (A)

- (A) $|A^*| = |A^{n-1}|$ (B) $|A^*| = |A|$ (C) $|A^*| = |A|^n$ (D) $|A^*| = |A|^1$
- 设 A、B 为 n 阶可逆矩阵,下列(B)正确。
 - $(A) (2A)^{-1} = 2A^{-1}$

- (B) $(2A)^{T} = 2A^{T}$
- (C) $(A+B)^{-1}=A^{-1}+B^{-1}$
- (D) $[(A^{T})^{T}]^{-1} = [(A^{-1})^{-1}]^{T}$
- 线性方程组 Ax=b , 其中 A 为 $t \times s$ 阶矩阵 , 则(A)
 - (A) 当 R(A)=t 时,必有解
- (B) t=s 时,有唯一解

(C) R(A) =s 时,必有解

- (D) R(A) <s 时,有无穷多解
- 设 A、B 为 n 阶矩阵,且 A 与 B 相似, E 为 n 阶单位矩阵,则(C)
 - E-A= E-B (A)

- (B) A 与 B 有相同的特征值和特征向量
- (C) 对任意常数 t, tE-A 与 tE-B 相似 (D) A 与 B 都相似于一个对角矩阵
- L、填空(每题 4分,共 20分)

当 K= ____1 ____时,A= _{6 5 4} 不可逆。 3 2 1

5 已知三阶矩阵 A 的特征值为 1,-2,3 ,则(3A) ⁻¹的特征值为 ___1/3,-1/6,1/9__。

三、计算(每题 10分,共 40分)

解:因为

显然 A 「 E , 因此 A可逆 , 且

还可有第二种解法 , 先求出
$$A^{1}$$
 $\frac{1}{5}$ 0 1 1 $(5分)$ 5 7 3

$$(2)x_1 2x_2 2x_3 1$$
 2 有方程组 $2x_1 (5)x_2 4x_3 2$,讨论 取值与方程组解的关系。 $2x_1 4x_2 (5)x_3 1$

解:两种途径可以对本题进行求解,一是以系数行列式非零性求解,一是构造增广矩阵求解,下面以系数行列式出发求解。

以方程组的系数矩阵为 A,其行列式为:

- (1)由此可知,当 1且 10时,方程组有惟一解;
- (2)而当 =1时,方程组的增广矩阵 B为

由此可知 R(A) R(B) 1, 方程组有无穷多解, (2分)

(3)当 =10时,方程组的增广矩阵 B为

由此可知 R(A) 2 R(B) 3,方程组无解。 (2分)

3 已知 ₁ 4,2,6 ^T, ₂ 1,2,1 ^T, ₃ 5,1,6 ^T, ₄ 3,0,4 ^T, 求该向量组的一个极大无关

组,并把其他向量用该极大无关组线性表示。

解:考察由该向量组构成的矩阵

知 R(1,2,3,4) 3,并由以上结果可以得出该向量组的一个极大无关组为

4 求一个正交变换,把二次型 f $3x_1^2$ $2x_2^2$ $2x_3^2$ $2x_1x_2$ $2x_1x_3$ 化为标准型。

解:该二次型所对应的矩阵

当 1时,解特征方程(A E)x 0,可得特征向量为(1,1,1)^T; (1分)

当 2时,解特征方程(A 2E)x 0,可得特征向量为(0,1,1)^T; (1分)

当 4时,解特征方程(A 4E)x 0,可得特征向量为 $(2,1,1)^{T}$; (1分)将以上所得特征向量单位化,即得正交矩阵

P
$$\frac{1}{\sqrt{3}}$$
 0 $\frac{2}{\sqrt{6}}$ (2分) $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{6}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{6}}$

在正交变换 $(x_1, x_2, x_3)^{\mathsf{T}} P(x_1', x_2', x_3')^{\mathsf{T}} \mathsf{F}$,原二次型化为标准形

f
$$x_1^{12} 2x_2^{12} 4x_3^{12}$$
 (1分)

四、证明(每题 10分,共 20分)

1 设 $A \setminus B$ 均为 n 阶方阵,且有 $B \setminus B^2$, $A \setminus E \setminus B$,证明 $A \cap D$ 可逆,并求出其逆 $A \cap B$ 证明:

$$A E B B A E B^2 (A E)^2 A^2 2A E (2分)$$

由 B
$$B^2$$
 , 有 B^2 A^2 $2A$ E B A E $(2分)$

则
$$A^2$$
 2A E A E A^2 3A 2E A(A 3E) 2E (2分)

所以 A可逆 , 且有
$$A^{1} \frac{A 3E}{2} \qquad \qquad (4 分)$$

2 设向量 _{1, 2, 3,..., s}是齐次线性方程组 AX 0的一个基础解系,向量 不是方程组 AX 0的解,即 A 0。证明:向量组 , _{1, 2, 3,..., s}线性无关。

证明:设存在系数 $k_0, k_1, ..., k_s$, 使得

$$k_0 k_1(_1) k_2(_2) k_3(_3) ... k_s(_s) 0 ,$$

整理可得
$$(k_0 \quad k_1 \quad k_2 \quad ... \quad k_s) \quad k_{1\ 1} \quad k_{2\ 2} \quad ... \quad k_{s\ s} \quad 0 \ , (1) \qquad \qquad (4分)$$

两边左乘 A 并知道 A $_j$ 0,(1 $_j$ s) , A 0 ,可以得到 $_0$ $_1$ $_1$ $_2$... $_1$ $_2$... $_2$ $_3$... $_3$ $_4$...

则
$$(1)$$
 式化为 $k_{1\ 1}$ $k_{2\ 2}$... $k_{s\ s}$ 0 $(4分)$

而由题可知 $_{1,~2,~3,...,~s}$ 线性无关,则 $_{k_1,k_2,...,k_s}$ 都为 $_{0}$,因此可以得出 $_{k_0,\,k_1,...,\,k_s}$

全为 0, 因此向量组 , 1, 2, 3, ..., s线性无关。 (2分)

五、附加题(共 30分)

 a_1 b_1 c_1

1 (18分)设3阶方阵 A a₂ b₂ c₂ 是满秩矩阵,证明: a₃ b₃ c₃

直线 $I_1: \frac{x-a_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$ 与直线 $I_2: \frac{x-a_1}{a_2-a_3} = \frac{y-b_1}{b_2-b_3} = \frac{z-c_1}{c_2-c_3}$ 相交于一点。

证明:记向量 $(a_1,b_1,c_1)^T$, $(a_2,b_2,c_2)^T$, $(a_3,b_3,c_3)^T$

则 矩阵 A的秩 R(A) 3 矩阵 A的行向量组线性无关 (3分)

向量组 , , 线性无关 (3分)

, , 不共面 (3分)

的终点且平行于向量 S_1 的直线;直线 $I_2: \frac{x \quad a_1}{a_2 \quad a_3} \quad \frac{y \quad b_1}{b_2 \quad b_3} \quad \frac{z \quad c_1}{c_2 \quad c_3}$ 是在平面 上

过 的终点且平行于向量 S_2 的直线。于是,两直线必定相交于一点。 (9分)

2 (12 分)设 A 是 n 阶对称阵 , P 是 n 阶可逆矩阵。已知 n 维列向量 是 A 的对应于特征值 的特征向量 , 求矩阵 $\left(P^{AP}\right)^{T}$ 对应于特征值 的特征向量。

解:记B (P 1AP) ,则有B (P 1AP) P A (P 1) P A (P 1) A 表明矩阵 B 与 A 相似,从而 是 B 的一个特征值。

设 0是矩阵 B的对应于特征值 的特征向量,则有

B
$$P^{\mathsf{T}}A(P^{\mathsf{T}})^{1}$$
 $A(P^{\mathsf{T}})^{1}$ $(P^{\mathsf{T}})^{1}$ $(5分)$

由上可知 $(P^T)^1$ 是 A 的对应于特征值 的特征向量,于是,令 $(P^T)^1$,

即 P^{T} , 为矩阵 $(P^{\mathsf{T}}AP)^{\mathsf{T}}$ 对应于特征值 的特征向量。 (3分)

大学<u>高等数学</u> A-1 试卷

学院 ______ 班级 _____ 学号 _____ 学号 _____ 姓名

题号		_ <u>=</u> _	四	五	六	七	总分

得分

一、选择题(每小题 3分, 共12分)

1、设 f(x) x arctan
$$\frac{1}{x}$$
,则 x 0是f(x)的()

- (A)可去间断点 (B)跳跃间断点
 - (C) 连续点
- (D)第二

类间断点

2、设 f(x)
$$\sqrt[3]{1 \times x^2}$$
 1, g(x) $\sin 2x$, 则当 x 0时()

(A) f(x)是g(x)的高阶无穷小量

- (B) f(x)是g(x)的低阶无穷小量
- (C) f(x)是g(x)的是同阶但非等价无穷小量 (D) f(x)与g(x)是等价无穷小量

- (A) 有两个极大值点和一个极小值点,曲线 y f(x)有一个拐点
- (B) 有一个极大值点和两个极小值点,曲线
- (C) 有一个极大值点和一个极小值点,曲线
- (D) 有两个极大值点和两个极小值点,曲线 y f(x)有一个拐点
- 4、下列广义积分中收敛的是 ()
- 二、填空题(每空 3分, 共12分, 把答案填在题中横线上)
- 1、设 f (0) 存在 ,则 lim f (0) f (2x)
- 2、 xoy 面内的曲线 C: x² y² 1 绕 x 轴旋转一周所生成的曲面方程为

三、试解下列各题(本大题共 5个小题,每题 6分,计 30分,解答写出推理 、演算步骤)

1、求极限
$$\lim_{x\to 0} \frac{3 \arctan x \quad x^2 \sin \frac{1}{x}}{(1 \cos x) \ln(1 \quad 2x)}$$
。

2、求极限
$$\lim_{x \to \infty} \frac{\int_{0}^{x} (\arctan t)^{2} dt}{\sqrt{x^{2} + 1}}$$
。

- 3、设 y y(x) 是由方程 e^y y sin(xy) 确定的隐函数 , 求 dy 。
- 4、设 f (t) 存在且不为零 , y 与 x 间的函数关系由 x f (t), 所确定 , 求 y tf (t) f (t);

$$\frac{d^2y}{dx^2}$$
 o

- 5、 求过点 (0,2,4) 与两平面 x 2z 1和 y 3z 2平行的直线的方程。
- 四、试解下列各题(本大题共 4个小题,每题 6分,计 24分,解答写出推理 、演算步骤)
- 1、求 $\frac{1}{\sqrt{y-y^2}}dx_o$
- 2, \dot{x} $\frac{x}{\cos^2 x} dx$.
- 3、设 f(x) $\sin^2 x$, x = 0 , 求 $\int_0^1 f(x 1) dx$ 。
- 4、讨论函数 f(x) ln $x \stackrel{x}{\circ}$ k 在 0, 内零点个数 (其中 k 为常数)。
- 五、(本题满分 6分)在曲线 y \sqrt{x} 上求一点 P ,使其到点 M (4,0) 的距离最短 , 并求出这个最短距离。
- 六、(本题满分 8分)设曲线 y ln x,
- (1) 求该曲线过原点的切线;
- (2) 求由上述切线与曲线及 ×轴所围平面图形的面积;
- (3)求(2)中平面图形绕 ×轴旋转一周所成的旋转体的体积。

八、(本题满分 8分)设 f(x) 在 01连续,在 01内可导,且 f(0) f(1) 0, $f(\frac{1}{2})$ 1,

证明:(1)存在 $(\frac{1}{2},1)$, 使 f();

(2) 对任意 R,存在 (0,),使 f () f() 1。

<u>高等数学 A-1</u> 试卷解答

一、选择题(每小题 3分, 共12分)

- 1, (A) 2, (C) 3, (D) 4, (B)
- 二、填空题(每空 3分, 共12分, 把答案填在题中横线上)
- 1, 2f'(0) 2, $x^2 y^2 z^2 1$ 3, $x f(x^2)$ 4, $\frac{1}{2}$
- 三、试解下列各题 (本大题共 5 个小题, 每题 6 分, 计 30 分, 解答写出推理 、演算步骤)
- 1, $\lim_{x \to 0} \frac{3 \arctan x}{(1 \cos x) \ln(1 + 2x)} = \lim_{x \to 0} \frac{1}{1 \cos x} \frac{1}{2} (3 \frac{\arctan x}{x} + x \sin \frac{1}{x})$

$$\frac{1}{4} \lim_{x \to 0} \left(3 \frac{\arctan x}{x} - x \sin \frac{1}{x} \right) = \frac{3}{4}$$

$$2 \cdot \lim_{x \to \infty} \frac{\int_{0}^{x} (\operatorname{arctant})^{2} dt}{\sqrt{x^{2} + 1}} = \lim_{x \to \infty} \frac{(\operatorname{arctanx})^{2}}{\frac{x}{\sqrt{x^{2} + 1}}} = \frac{2}{4}$$

3、方程 e^y y sin(xy) 两边直接微分,得

4.
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{f(t)}{f(t)} = \frac{f(t)}{f(t)} = t$$

5、所求直线的方向向量 s可取为

因此所求直线的方程为 $\frac{x}{2}$ $\frac{y}{3}$ $\frac{z}{1}$

四、试解下列各题 (本大题共 4 个小题, 每题 6 分, 计 24 分, 解答写出推理、演算步骤)

1,
$$\frac{dx}{\sqrt{x(1-x)}}$$
 2 $\frac{d\sqrt{x}}{\sqrt{1-(\sqrt{x})^2}}$ 2 arcsin \sqrt{x} C

或
$$\frac{dx}{\sqrt{x + x^2}}$$
 $\frac{dx}{\sqrt{\frac{1}{4} + (x + \frac{1}{2})^2}}$ $\arcsin \frac{x + \frac{1}{2}}{\frac{1}{2}}$ C $\arcsin(2x + 1)$ C

2,
$$\frac{x}{\cos^2 x}$$
 dx xd tan x x tan x tan xdx

3、 令 x 1 t,则
$$\int_0^1 f(x + 1)dx = \int_1^1 f(t)dt$$

$$= \int_1^0 te^t dt \int_0^1 2 \int_0^2 sin^2 t dt$$

$$= \int_1^0 te^t dt \int_0^1 2 \int_0^2 sin^2 t dt \int_0^1 2 \int_0^2 sin^2 t dt$$

4、因
$$f(x)$$
 $\frac{1}{x}$ $\frac{1}{e}$, 驻点 $x = e$

当 0 x e , f (x) 0 , f (x) 单调递增;当 x e , f (x) 0 , f (x) 单调递减; 故 x e 为 f (x) 的最大值点 , 最大值 M f (e) k。

(1) 当
$$k$$
 0 时 , $f(x)$ $\ln x \stackrel{X}{=} k$ 在 0 , 内无零点;

(2) 当 k 0 时 , f(x)
$$\ln x \stackrel{x}{\underset{e}{\leftarrow}} k$$
 在 0, 内有惟一零点 x e;

所以 f(x) ln $x = \frac{x}{e}$ k 在 0, 内恰有两个零点。

五、(本题满分 6分)

解: 记曲线 y √x 上点 P(x, √x) 到点 M (4,0) 的距离为 d ,则

$$(d^2)^{\frac{1}{2}}$$
 2x 7, 唯一驻点 x $\frac{7}{2}$, $(d^2)^{\frac{1}{2}}$ 0;

故当 x $\frac{7}{2}$ 时, d也最小, 即点 $\frac{7}{2}$ $\frac{\sqrt{14}}{2}$ 到点 M (4,0) 的距离最短,且这个最短距离

为
$$d_{min}$$
 $\frac{\sqrt{15}}{2}$ 。

六、(本题满分 8分)

(1) 设切点为 $(x_0, \ln x_0)$, 由题意及导数几何意义 , 应有 $\frac{1}{x_0}$ $\frac{\ln x_0}{x_0}$,

即 $\ln x_0$ 1,于是切点为 (e,1),切线的方程为 $y = \frac{1}{e}x$;

(2)于是所求面积为

S
$$_{0}^{1} e^{y} e y dy \frac{e}{2} 1;$$

(3) 所求旋转体体积为

$$V = \frac{1}{3} + 1^2 = \int_{1}^{e} \ln^2 x dx = (2 + \frac{2}{3}e) = 0$$

七、略

八、(本题满分 8分)

证明设 f(x) 在 01 连续,在 01 内可导,且 f(0) f(1) 0, $f(\frac{1}{2})$ 1,

证明:(1)存在 $(\frac{1}{2},1)$,使 f();

解:(1)令F(x) f(x) x,则F(x)在01连续,从而在 $\frac{1}{2}$ 1连续,又

$$F(\frac{1}{2})$$
 $\frac{1}{2}$ 0, $F(1)$ 1 0; 由零点定理知:

存在 $(\frac{1}{2},1)$, 使得 F() 0,即 f();

(2) 令 (x) e *[f(x) x], 因 (x) 在 0, 连续,在 0, 内可导,且

(0) f(0) 0, () 0,故由罗尔定理知:

存在 (0,), 使得 '() 0, 即 f '() f() 1。