Modeliranje rasti snežink

Jon Vehovar, Domen Vilar

CUDA: Odvisnost od začetnih pogojev

CUDA: širina bloka

Deljeni pomnilnik in dodatni rob širine 2

CUDA: primerjava z deljenim pomnilnikom

Čas kopiranja na GPU in čas k-tega pisanja

MPI: Pretok podatkov

MPI: Odvisnost od začetnih pogojev

MPI: Dodatni robovi

MPI: Učinkovitost

MPI: Komunikacija

MPI: Vpliv shranjevanja

Primerjava: CUDA - MPI

Teoretična raztegljivost

$$T_s(N) = \chi N \ge C \left[(p-1) \, \sigma(N) + p \kappa(N, p) \right]$$

$$\sigma(N) \equiv 0, \qquad \kappa(p, N) = \lambda + 4 \frac{b \sqrt{N}}{\beta \sqrt{p}}$$

$$\chi N \ge C p \left(\lambda + 4 \frac{b \sqrt{N}}{\beta \sqrt{p}} \right)$$

$$\chi N \ge 4 C \frac{b \sqrt{N}}{\beta \sqrt{p}} p \qquad C' \equiv \left(4 C \frac{b}{\beta \chi} \right)^2$$

$$N \ge C' p$$

$$M(N) = C'' N, \qquad \frac{M(N)}{p} = \frac{C'' N}{p} \ge \frac{C'' C' p}{p} = C'''$$

