List 02. Intro to Time series with Python

Nikita V. Artamonov

October 31, 2024

Python package: pandas, numpy, yfinance, pandas-datareader¹

Contents

1	Import, visualization, data processing	1
2	Sample ACF & PACF	3

1 Import, visualization, data processing

#1. From FRED database load quarterly data on US GDP from 1990 Q1 up to now (series gdp)

- 1. set a right time index
- 2. visualize the series gdp
- 3. visualize the series $\log(qdp)$
- 4. visualize the series $\Delta \log(qdp)$
- 5. visualize the series $\Delta^2 \log(gdp)$
- 6. draw a histogram for $\log(gdp)$, $\Delta \log(gdp)$
- 7. draw a scatter plot $\log(gdp_t)$ vs $\log(gdp_{t-1})$

 $^{^{1}}$ conda install -c conda-forge yfinance pandas-datareader pip install yfinance pandas-datareader

- 8. draw a scatter plot $\Delta \log(gdp_t)$ vs $\Delta \log(gdp_{t-1})$
- 9. calculate

$$\operatorname{corr}(\log(gdp_t), \log(gdp_{t-1}))$$

and test its significance (formally!)

10. calculate

$$\operatorname{corr}(\Delta \log(gdp_t), \Delta \log(gdp_{t-1}))$$

and test its significance (formally!)

- #2. From FRED database load monthly data on US M2 from 1990-01 up to now (series m2)
 - 1. set a right time index
 - 2. visualize the series m2
 - 3. visualize the series $\log(m2)$
 - 4. visualize the series $\Delta \log(m2)$
 - 5. visualize the series $\Delta^2 \log(m2)$
 - 6. draw a histogram for $\log(m2)$, $\Delta \log(m2)$
 - 7. draw a scatter plot $\log(m2_t)$ vs $\log(m2_{t-1})$
 - 8. draw a scatter plot $\Delta \log(m2_t)$ vs $\Delta \log(m2_{t-1})$
 - 9. calculate

$$\operatorname{corr}(\log(m2_t), \log(m2_{t-1}))$$

and test its significance (formally!)

10. calculate

$$\operatorname{corr}(\Delta \log(m2_t), \Delta \log(m2_{t-1}))$$

and test its significance (formally!)

- #3. From FRED database load daily data on 3-month rate (rate1) and 10-year rate (rate2) for US stock from 1990-01-01 up to now
 - 1. aggregate into monthly multivariate time series rates

- 2. visualize the series rates in two ways
 - as subplots
 - on the same plot
- 3. visualize the series $\Delta \log(rates)$ in two ways
- 4. visualize the series $\Delta^2 \log(rates)$ in two ways
- 5. draw a histogram for rates, $\Delta rates$, $\Delta^2 rates$ in two ways
- 6. draw a histogram for rate1 vs rate2
- 7. draw a scatter plot $\Delta rate1$ vs $\Delta rate2$
- 8. calculate corr(rate1, rate2) and test its significance (formally!)
- 9. calculate $corr(\Delta rate1, \Delta rate2)$ and test its significance (formally!)
- #4. From finance.yahoo.com database load daily data on S&P500 (series y_t) from 2000-01-01 up to now
 - 1. visualize the series y
 - 2. visualize the series $\Delta \log(y)$
 - 3. visualize the series $\Delta^2 \log(y)$
 - 4. draw a histogram for $y, \Delta y, \Delta^2 y$

2 Sample ACF & PACF

The default significant level is 5%

- #1. From FRED database load quarterly data on US GDP from 1990 Q1 up to now (series gdp_t) and let $y_t = \log(gdp_t)$
 - Draw ACF and PACF for $y_t, \Delta y_t, \Delta^2 y_t$
 - Report $\{r(h)\}_{h=1^3}$ and $\{r_{part}(h)\}_{h=1^3}$
 - Test the significance of $r(3), r_{part}(3)$

#2. From FRED database load monthly data on US M2 from 1990-01 up to now (series m2) and let $y_t = \log(m2_t)$

- Draw ACF and PACF for $y_t, \Delta y_t, \Delta^2 y_t$
- Report $\{r(h)\}_{h=1^4}$ and $\{r_{part}(h)\}_{h=1^4}$
- Test the significance of r(4), $r_{part}(4)$

#3. From FRED database load weekly data on 3-month rate for US stock from 1990-01-01 up to now (series y_t)

- Draw ACF and PACF for $y_t, \Delta y_t, \Delta^2 y_t$
- Report $\{r(h)\}_{h=1^3}$ and $\{r_{part}(h)\}_{h=1^3}$
- Test the significance of r(3), $r_{part}(3)$

#4. From FRED database load weekly data on 10-year rate for US stock from 1990-01-01 up to now (series y_t)

- Draw ACF and PACF for $y_t, \Delta y_t, \Delta^2 y_t$
- Report $\{r(h)\}_{h=1^3}$ and $\{r_{part}(h)\}_{h=1^3}$
- Test the significance of $r(3), r_{part}(3)$

#5. From finance.yahoo.com database load daily data on S&P500 (series sp500) from 2000-01-01 up to now and let $y_t = \log(sp500)$

- Draw ACF and PACF for $y_t, \Delta y_t, \Delta^2 y_t$
- Report $\{r(h)\}_{h=1^3}$ and $\{r_{part}(h)\}_{h=1^3}$
- Test the significance of $r(3), r_{part}(3)$