

International Conference on Robotics and Mechatronics 2024

Dynamic Modeling of Double Segment Redundant Gough-Stewart Hybrid Manipulator based on the Principle of Virtual Work

- Alireza Kamali Ardakani
- Hossein Akbari
- Parsa Namazian
- Mehdi Tale Masouleh
- Arash Bahrami

- Taar Lab School of Mechanical Engineering, University of Tehran
- Taar Lab School of Mechanical Engineering, University of Tehran
- Taar Lab School of Mechanical Engineering, University of Tehran
- Taar Lab School of Electrical & Computer Engineering, University of Tehran
- School of Mechanical Engineering, University of Tehran

Introduction

Previews Works

Methodology

Results

3

Gough-Stewart (GS) Parallel Robot

Configuration (UPS)

- **Moving Platforms**
- 6 Limbs (Cylinder Pistons)
- Joints (Spherical Prismatic Universal)

Redundant Hybrid Serial-Parallel Manipulators

Introduction

Gough-Stewart (GS) Parallel Robot

Configuration (UPS)

- Moving Platforms
- 6 Limbs (Cylinder Pistons)
- Joints (Spherical Prismatic Universal)

Redundant Hybrid Serial-Parallel Manipulators

Previews Works

⁽¹⁾ M. B. M. Damnab, M. T. Masouleh and M. R. H. Yazdi, "Designing and Developing a 6-DOF Calibration Setup Based on the Gough-Stewart Platform Equipped by Potentiometer Sensors," ICROM 2023

- Previews Works
- 3 Methodology
- Results
- Conclusion
- Future Works

Literature Review

- Redundancy Obstacle Avoidance Kinematic Modeling
- **Applications: Bio-Inspired Flight Simulator**

Serial-Parallel Anthropomorphic Robotic Leg

⁽²⁾ P. Namazian, M. Masouleh, and M. R. Zakerzadeh, "SPAR-Leg," IEEE, 2023.

Literature Review

- Redundancy Obstacle Avoidance Kinematic Modeling
- Applications: Bio-Inspired Flight Simulator

trajectory tracking control octopus-inspired hyper-redundant robot

Elephant't Trunk Manipulator

Future Works

⁽³⁾ Hannan, Michael W. and Walker, Ian D. Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots. Journal of Robotic Systems, 2003.

⁽⁴⁾ A. S. Lafmejani, B. Danaei, A. Kalhor, and M. T. Masouleh, "Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot,"

Kinematic Modeling

Introduction

 Forward/Inverse Kinematic Problem (FKP/IKP) **GS Manipulator**

Jacobian Matrix
$$\mathbf{J} = egin{bmatrix} \mathbf{V}_1^{\mathrm{G}} \mathbf{J}_1^{-1} & \mathbf{W}_1^{1} \mathbf{J}_2^{-1} \end{bmatrix}_{6 imes 12}$$

$$\mathbf{V}_1 = \begin{bmatrix} 1_{3\times3} & -[^{\mathrm{G}}\mathbf{p}_2]_{\times} \\ 0_{3\times3} & 1_{3\times3} \end{bmatrix}_{6\times6} \quad \mathbf{W}_1 = \begin{bmatrix} ^{\mathrm{G}}\mathbf{R}_1 & 0_{3\times3} \\ 0_{3\times3} & ^{\mathrm{G}}\mathbf{R}_1 \end{bmatrix}_{6\times6}$$

$$\mathbf{J} = egin{bmatrix} \mathbf{\hat{s}}_1^{\mathrm{T}} & (\mathbf{b}_1 imes \mathbf{\hat{s}}_1)^{\mathrm{T}} \ \mathbf{\hat{s}}_2^{\mathrm{T}} & (\mathbf{b}_2 imes \mathbf{\hat{s}}_2)^{\mathrm{T}} \ dots & dots \ \mathbf{\hat{s}}_6^{\mathrm{T}} & (\mathbf{b}_6 imes \mathbf{\hat{s}}_6)^{\mathrm{T}} \end{bmatrix}_{6 imes 6}$$

⁽⁵⁾ P. Namazian, M. T. Masouleh, and M. R. Zakerzadeh, "A general formulation for kinematic analysis and redundancy resolution of hyper-redundant Gough-Stewart hybrid platforms," Technical Report, 2023...

Approach Selection

Name: Virtual Work

Advantage: <u>Fast Computational Algorithm</u>

Dynamic Equation

Static Equation Fictitious Wrench

?

Results

Methodology

$$\sum f_{\rm ext} - m \, a_c = \mathbf{0}$$

$$\sum_{c} f_{\text{ext}} - m a_c = 0$$
$$\sum_{c} f_{\text{ext}} - (f_{\text{ext}} - f_{\text{ext}} - f_{\text{$$

$$\sum_{i} \hat{f}_{\text{ext}} = \mathbf{0}$$
$$\sum_{i} \hat{n}_{\text{ext}} = \mathbf{0},$$

$$\sum{}^{c}\hat{n}_{\rm ext}=0$$

Future Works

Conclusion

(c)

Single Gough-Stewart Simulation

Results - Helical Motion

$$\mathbf{J}^{\mathrm{T}}\hat{\boldsymbol{f}} + \mathbf{f}_{p} + \sum_{i=1}^{3} \left(\mathbf{J}_{i,\mathrm{cyl}}^{\mathrm{T}} \mathbf{f}_{\mathrm{cyl}} + \mathbf{J}_{i,\mathrm{pis}}^{\mathrm{T}} \mathbf{f}_{\mathrm{pis}} \right) = 0$$

Previews Works

? Methodology

Results

Conclusion

Future Works

Dynamic Model of the Redundant Manipulator

Double Gough-Stewart

Solving IDP for the upper segment

Transferring Actuator Forces to C.M. of the lower segment

Solving IDP for the lower segment – Finding Actuator Forces

Introduction

Dynamic Modeling

Generated Trajectory

IKP

$${}^{1}\mathbf{J}_{2}^{\mathrm{T}}\mathbf{\hat{f}}_{2} + \mathbf{f}_{b_{2}} + \mathbf{f}_{e_{2}} + \sum_{i=7}^{12} \left(\mathbf{J}_{i,\mathrm{cyl}}^{\mathrm{T}} \mathbf{f}_{\mathrm{cyl}} + \mathbf{J}_{i,\mathrm{pis}}^{\mathrm{T}} \mathbf{f}_{\mathrm{pis}} \right) = 0$$

Transferring Outputs | IDP for Lower Segment

Future Works

Conclusion

$$\mathbf{f}_{\mathrm{Tr}} = \begin{bmatrix} \hat{\boldsymbol{f}}_2 + m_{\mathrm{cyl}}\mathbf{g} \\ -\mathbf{a}_{\mathrm{i}_{\times}} \hat{\boldsymbol{f}}_2 + m_{\mathrm{cyl}}(\mathbf{d}_{\mathrm{i}_{\times}}\mathbf{g}) \end{bmatrix}$$

$$\mathbf{f}_{\mathrm{Tr}} = \begin{bmatrix} \hat{\boldsymbol{f}}_{2} + m_{\mathrm{cyl}}\mathbf{g} \\ -\mathbf{a}_{\mathrm{i}_{\times}}\hat{\boldsymbol{f}}_{2} + m_{\mathrm{cyl}}(\mathbf{d}_{\mathrm{i}_{\times}}\mathbf{g}) \end{bmatrix} \quad {}^{G}\mathbf{J}_{1}^{\mathrm{T}}\hat{\boldsymbol{f}}_{1} + \mathbf{f}_{\mathrm{Tr}} + \mathbf{f}_{e_{1}} + \sum_{i=1}^{6} \left(\mathbf{J}_{\mathrm{i,cyl}}^{\mathrm{T}}\mathbf{f}_{\mathrm{cyl}} + \mathbf{J}_{\mathrm{i,pis}}^{\mathrm{T}}\mathbf{f}_{\mathrm{pis}}\right) = 0$$

$$\mathbf{g}_{\mathrm{uble Segment Redundant Gough-Stewart Hybrid Manipulator based on the Principle of Virtual Work}$$

$$\hat{m{f}} = egin{bmatrix} m{f_1} \ m{\hat{f_2}} \end{bmatrix}$$

Solving IDP for Upper Segment (N=2)

$${}^{1}\mathbf{J}_{2}^{\mathrm{T}}\hat{\boldsymbol{f}}_{2} + \mathbf{f}_{b_{2}} + \mathbf{f}_{e_{2}} + \sum_{i=7}^{12} \left(\mathbf{J}_{i,\mathrm{cyl}}^{\mathrm{T}} \, \mathbf{f}_{\mathrm{cyl}} + \mathbf{J}_{i,\mathrm{pis}}^{\mathrm{T}} \, \mathbf{f}_{\mathrm{pis}} \right) = 0$$

$$\mathbf{f}_p = egin{bmatrix} \mathbf{f}_p = \mathbf{f}_\mathrm{d} + M(\mathbf{g} - \mathbf{a}_\mathrm{p}) \ \mathbf{n}_\mathrm{d} - \mathbf{I}_\mathrm{p}^\mathrm{A} \dot{oldsymbol{\omega}}_\mathrm{p} - oldsymbol{\omega}_\mathrm{p} imes \mathbf{I}_\mathrm{p}^\mathrm{A} oldsymbol{\omega}_\mathrm{p} \end{bmatrix}$$

$$\mathbf{J}_{2} = \begin{bmatrix} \mathbf{\hat{s}}_{1}^{\mathrm{T}} & (\mathbf{b}_{1} \times \mathbf{\hat{s}}_{1})^{\mathrm{T}} \\ \mathbf{\hat{s}}_{2}^{\mathrm{T}} & (\mathbf{b}_{2} \times \mathbf{\hat{s}}_{2})^{\mathrm{T}} \\ \vdots & \vdots \\ \mathbf{\hat{s}}_{6}^{\mathrm{T}} & (\mathbf{b}_{6} \times \mathbf{\hat{s}}_{6})^{\mathrm{T}} \end{bmatrix}_{6 \times 6}$$

Previews Works

Conclusion

Future Works

Solving IDP for Upper Segment (N=2)

Introduction

Previews Works

Methodology

Results

Conclusion

Future Works

Jacobian

Fictitious Wrenches

Jacobian for Limbs

 \mathbf{J}_2

$$\mathbf{F}_{b_2}$$

$$\mathbf{F}_{e_2}$$

$$\mathbf{J}_{i,cyl} = \frac{1}{l_i} \begin{bmatrix} -c_{i,cyl} \mathbf{s}_{i\times}^2 & c_{i,cyl} \mathbf{s}_{i\times}^2 \mathbf{b}_{i\times} \\ \mathbf{s}_{i\times} & -\mathbf{s}_{i\times} \mathbf{b}_{i\times} \end{bmatrix}$$

$$\mathbf{J}_{i,pis} = \frac{1}{l_i} \begin{bmatrix} -c_{i,pis} \mathbf{s}_{i\times}^2 + l_i \mathbf{s}_i \mathbf{s}_i^T & c_{i,pis} \mathbf{s}_{i\times}^2 \mathbf{b}_{i\times} - l_i \mathbf{s}_i \mathbf{s}_i^T \mathbf{b}_{i\times} \\ \mathbf{s}_{i\times} & -\mathbf{s}_{i\times} \mathbf{b}_{i\times} \end{bmatrix}$$

Transferring Actuator Forces to C.M. of the lower segment

Lower Segment

$$\mathbf{f}_{\mathrm{Tr}} = egin{bmatrix} \hat{m{f}}_2 + m_{\mathrm{cyl}} \mathbf{g} \ -\mathbf{a}_{\mathrm{i}_{ imes}} \hat{m{f}}_2 + m_{\mathrm{cyl}} (\mathbf{d}_{\mathrm{i}_{ imes}} \mathbf{g}) \end{bmatrix}$$
 $\mathbf{d}_{\mathbf{i}} = -\mathbf{a}_{\mathbf{i}} + c_{\mathrm{i,cyl}} \mathbf{s}_{\mathbf{i}}$

Solving IDP for Lower Segment (N=1)

$${}^{G}\mathbf{J}_{1}^{T}\hat{\mathbf{f}}_{1} + \mathbf{f}_{Tr} + \mathbf{f}_{e_{1}} + \sum_{i=1}^{6} \left(\mathbf{J}_{i,cyl}^{T} \mathbf{f}_{cyl} + \mathbf{J}_{i,pis}^{T} \mathbf{f}_{pis}\right) = 0$$

$$\mathbf{f}_p = egin{bmatrix} \mathbf{f}_p = \mathbf{f}_\mathrm{d} + M(\mathbf{g} - \mathbf{a}_\mathrm{p}) \ \mathbf{n}_\mathrm{d} - \mathbf{I}_\mathrm{p}^\mathrm{A} \dot{oldsymbol{\omega}}_\mathrm{p} - oldsymbol{\omega}_\mathrm{p} imes \mathbf{I}_\mathrm{p}^\mathrm{A} oldsymbol{\omega}_\mathrm{p} \end{bmatrix}$$

$${}^{G}\mathbf{J}_{1} = \begin{bmatrix} \mathbf{\hat{s}}_{1}^{\mathrm{T}} & (\mathbf{b}_{1} \times \mathbf{\hat{s}}_{1})^{\mathrm{T}} \\ \mathbf{\hat{s}}_{2}^{\mathrm{T}} & (\mathbf{b}_{2} \times \mathbf{\hat{s}}_{2})^{\mathrm{T}} \\ \vdots & \vdots \\ \mathbf{\hat{s}}_{6}^{\mathrm{T}} & (\mathbf{b}_{6} \times \mathbf{\hat{s}}_{6})^{\mathrm{T}} \end{bmatrix}_{6 \times 6}$$

$$\mathbf{f}_{\mathrm{Tr}} = \begin{bmatrix} \hat{f}_2 + m_{\mathrm{cyl}}\mathbf{g} \\ -\mathbf{a}_{\mathrm{i}} & \hat{f}_2 + m_{\mathrm{cyl}}(\mathbf{d}_{\mathrm{i}} & \mathbf{g}) \end{bmatrix}$$

Solving IDP for Lower Segment (N=1)

Introduction

Previews Works

Results

Conclusion

Future Works

Fictitious Wrenches

Jacobian

$$\mathbf{f}_p = egin{bmatrix} \mathbf{f}_p = \mathbf{f}_\mathbf{n} \end{bmatrix} = egin{bmatrix} \mathbf{f}_\mathrm{d} + M(\mathbf{g} - \mathbf{a}_\mathrm{p}) \ \mathbf{n}_\mathrm{d} - \mathbf{I}_\mathrm{p}^\mathrm{A} \dot{oldsymbol{\omega}}_\mathrm{p} - oldsymbol{\omega}_\mathrm{p} imes \mathbf{I}_\mathrm{p}^\mathrm{A} oldsymbol{\omega}_\mathrm{p} \end{bmatrix}$$

$$\mathbf{J}_{i,cyl} = \frac{1}{l_i} \begin{bmatrix} -c_{i,cyl} \mathbf{s}_{i\times}^2 & c_{i,cyl} \mathbf{s}_{i\times}^2 \mathbf{b}_{i\times} \\ \mathbf{s}_{i\times} & -\mathbf{s}_{i\times} \mathbf{b}_{i\times} \end{bmatrix}$$

$$\mathbf{J_{i,pis}} = \frac{1}{l_{i}} \begin{bmatrix} -c_{i,pis}\mathbf{s_{i\times}^{2}} + l_{i}\mathbf{s_{i}}\mathbf{s_{i}^{T}} & c_{i,pis}\mathbf{s_{i\times}^{2}}\mathbf{b_{i_{\times}}} - l_{i}\mathbf{s_{i}}\mathbf{s_{i}^{T}}\mathbf{b_{i_{\times}}} \\ \mathbf{s_{i\times}} & -\mathbf{s_{i\times}}\mathbf{b_{i_{\times}}} \end{bmatrix}$$

Overview of Methodology

Generated Trajectory

IKP

IDP

$$\hat{m{f}} = egin{bmatrix} m{f_1} \ m{\hat{f_2}} \end{bmatrix}$$

Previews Works

? Methodology

Contraction of the second

Conclusion

Simulation for Double GSM

Introduction

Previews Works

Methodology

Results

r(t) = 0.125 - 0.01t $\omega = \pi$

Conclusion

Future Works

Results for Double GSM

Results for Double GSM

Introduction

? Methodology

Conclusion

Future Works

Trajectory	RMSE (%)	Max Error (%)
Helical	2.13	3.30
Infinity	0.943	1.5

$${}^{1}\mathbf{J}_{2}^{\mathrm{T}}\hat{\boldsymbol{f}}_{2} + \mathbf{f}_{b_{2}} + \mathbf{f}_{e_{2}} + \sum_{i=7}^{12} \left(\mathbf{J}_{i,\mathrm{cyl}}^{\mathrm{T}} \mathbf{f}_{\mathrm{cyl}} + \mathbf{J}_{i,\mathrm{pis}}^{\mathrm{T}} \mathbf{f}_{\mathrm{pis}} \right) = 0$$

$${}^{G}\mathbf{J}_{1}^{T}\hat{f}_{1} + \mathbf{f}_{Tr} + \mathbf{f}_{e_{1}} + \sum_{i=1}^{S} \left(\mathbf{J}_{i,cyl}^{T} \mathbf{f}_{cyl} + \mathbf{J}_{i,pis}^{T} \mathbf{f}_{pis}\right) = 0$$

Conclusion

Review on Kinematics

Verification of Dynamics for Single GSM

Develop method for redundant Double GSM.

Validation of Model with SimScape

Minimal Dynamic Error

Future Works

Minimal Set Parameters

Dynamic Modeling of Hyper-Redundant GS Manipulator

Segment N-1

End-Effector

Segment N

Introduction

? Methodology

Contraction of the second Conclusion

THANK YOU

Any Question?

- Alireza Kamali Ardakani
- Hossein Akbari
- Parsa Namazian
- Mehdi Tale Masouleh
- Arash Bahrami

alirezakamali@ut.ac.ir akbari.hossein@ut.ac.ir pnamazian@ut.ac.ir m.t.masouleh@ut.ac.ir arash.bahrami@ut.ac.ir