

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS FIZYCZNY DLA KLAS IV-VIII UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP SZKOLNY 2020/2021

Zgodnie z harmonogramem termin ogłoszenia wyników w szkole mija 18 listopada 2020.

Do 26 listopada 2020 należy bezwzględnie wprowadzić wyniki wszystkich uczniów na Platformę Konkursów Przedmiotowych. Zgłoszenie uczestników po wyznaczonym terminie nie będzie przyjęte i skutkuje ich dyskwalifikacją.

03 grudnia 2020 należy zapoznać się z listą uczniów zakwalifikowanych do etapu rejonowego oraz przekazać informację o ewentualnym zakwalifikowaniu się do kolejnego etapu konkursu uczniom i ich rodzicom/opiekunom prawnym.

ZASADY OCENIANIA PRAC KONKURSOWYCH

- 1. Każdy poprawny sposób rozwiązania przez ucznia zadań nie ujęty w modelu odpowiedzi powinien być uznawany za prawidłowy i uczeń otrzymuje maksymalną liczbę punktów.
- 2. Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- 3. Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- 4. Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- 5. Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- 6. Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

Uczeń uczestniczący w etapie szkolnym konkursu przedmiotowego musi osiągnąć

co najmniej 80% wszystkich punktów, aby zakwalifikować się do etapu rejonowego. Maksymalna liczba punktów za ten arkusz jest równa **40**.

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Poprawna odpowiedź	С	В	С	D	D	С	A	C	A	В	D	В	D	В	С
Liczba pkt.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Zadanie 16. (0 - 5 pkt.)

Jeśli a = 1m/s², l = 12,5 m, $t_2 = 15$ s, S = 20 m, to:

1 pkt - obliczenie czasu trwania ruchu na pierwszym odcinku $t_1 = (2l/a)^{1/2} = 5$ s,

1 pkt - obliczenie prędkości ciała na drugim odcinku $v_2 = at_1 = 5$ m/s,

1 pkt - obliczenie prędkości średniej na trzecim odcinku $v_{3\text{śr}} = (v_2 + 0)/2 = 2,5 \text{ m/s},$

1 pkt - obliczenie czasu ruchu na trzecim odcinku $t_3 = S/v_{3\pm r} = 8$ s,

1 pkt - obliczenie całkowitego czasu ruchu $t = t_1 + t_2 + t_3 = 28$ s.

Zadanie 17. (0 - 5 pkt.)

1 pkt - zauważenie, że rozmiary liniowe dużego okonia stanowią 5/4=1,25 rozmiarów liniowych małego okonia,

1 pkt - zauważenie (np. na przykładzie sześcianów), że jeżeli rozmiary liniowe brył podobnych (a takimi są duży okoń i mały okoń) pozostają w pewnym stosunku, nazywanym skalą podobieństwa, to ich objętości pozostają w stosunku będącym sześcianem tej skali,

1 pkt - obliczenie stosunku objętości dużego i małego okonia; $(5/4)^3 = 125/64 = (1,25)^3 \approx 1,95$,

1 pkt - zauważenie, że na podstawie podobieństwa ryb, można założyć ich zbliżoną gęstość, a więc masy dużego i małego okonia powinny pozostawać w tym samym stosunku co ich objętości, czyli $1.95 \approx 2$,

1 pkt - oszacowanie, na tej podstawie, zgodnie z poleceniem, masy dużego okonia na około 2 kg.

Zadanie 18. (0 - 5 pkt.)

1 pkt - sformułowanie założenia o stałej szybkości dopływu ciepła do zamrażarki po jej otwarciu (założenie dopuszczalne, skoro chodzi o oszacowanie),

1 pkt - obliczenie ciepła, jakie otrzymał każdy 1 kg lodu w zamrażarce, by osiągnąć temperaturę topnienia. $Q_1 = 2.1 \text{ kJ/(kg }^{\circ}\text{C}) \times 1 \text{ kg} \times 3 \text{ }^{\circ}\text{C} = 6.3 \text{ kJ}$

1 pkt - zauważenie, że ciepło potrzebne do stopienia (po osiągnięciu temperatury topnienia przez lód) 1 kg lodu z zamrażarki jest liczbowo równe jego ciepłu topnienia, czyli $Q_2 = 0.33$ MJ,

1 pkt - obliczenie $Q_2/Q_1 = 0.33$ MJ/6,3 kJ = 52,

1 pkt - skonstatowanie, że przy założeniu stałej szybkości dopływu ciepła do zamrażarki jest to jednocześnie stosunek czasów topnienia, zawartego w niej lodu, po osiągnięciu temperatury topnienia, do czasu osiągania przezeń tej temperatury (5 min), oraz obliczenie dzięki temu czasu, po którym lód stopi się całkowicie $t_2 = 5$ min x 52 = 260 min = 4,33 h.

Zadanie 19. (0 - 5 pkt.)

1 pkt - oznaczenie długości całego odcinka trasy statku w jedną stronę jako S,

1 pkt - obliczenie czasów ruchu statku w górę i w dół rzeki $t_1 = S/v_1$ i $t_2 = S/v_2$,

1 pkt - obliczenie całkowitego czasu ruchu statku $t = t_1 + t_2 = S[(v_1 + v_2)/(v_1v_2)],$

1 pkt - zauważenie, że całkowita droga statku w podróży wyniosła 2S,

1 pkt - obliczenie poszukiwanej prędkości średniej $v_{\text{śr}} = 2S/t = 2 v_1 v_2/(v_1 + v_2)$.

Zadanie 20. (0 - 5 pkt.)

1 pkt - obliczenie energii mechanicznej spadochroniarza w chwili początkowej (przyjmując poziom odniesienia energii potencjalnej na powierzchni ziemi) $E_1 = mv_1^2/2 + mgH = 120 \text{ kJ}$,

1 pkt - obliczenie energii końcowej spadochroniarza tuż przed lądowaniem

$$E_2 = mv_2^2/2 = 1,25 \text{ kJ},$$

1 pkt - obliczenie wartości straty energii spadochroniarza $\Delta E = E_1 - E_2 = 118,75 \text{ kJ}$,

1 pkt - skonstatowanie, że wartość tej straty energii jest jednocześnie równa wartości *W* pracy poszukiwanej średniej siły oporu powietrza *T*,

1 pkt - wykorzystanie faktu, że $\Delta E = W = TH$ i obliczenie stąd $T = \Delta E/H = 1,1875$ kN $\approx 1,2$ kN.