# ГУАП

# КАФЕДРА № 44

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕН<br>ПРЕПОДАВАТЕЛЬ |                |                         |                                 |
|------------------------------------------|----------------|-------------------------|---------------------------------|
| доцент, канд. техн.<br>доцент            | наук,          |                         | А. А. Востриков                 |
| должность, уч. степень,                  | звание         | подпись, дата           | инициалы, фамилия               |
| ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №4           |                |                         |                                 |
| Лабораторная работа №4                   |                |                         |                                 |
| по курсу: 1                              | Проектирование | систем обработки и пере | дачи информации                 |
| РАБОТУ ВЫПОЛНИ                           | Л              |                         |                                 |
| СТУДЕНТ ГР. №                            | 4143           | подпись, дата           | Д.В.Пономарев инициалы, фамилия |
|                                          |                |                         |                                 |

Санкт-Петербург 2024

- 1. Цель работы: проверка работоспособности разработанных в предыдущих лабораторных работах цифровых узлов на макетной плате с установленной PLD Altera, изучение средств среды Quartus по созданию программных образов для PLD и программированию PLD, отладка созданной схемотехники.
- 2. Задание: выбрать один из вариантов реализации своего цифрового узла и провести необходимую модификацию для использования в макете, с использованием ПО Quartus назначить портам разработанного проекта фактические выводы PLD, создать программный образ (конфигурацию) для PLD, запрограммировать PLD на макетной плате. Проверить работоспособность схемы и, при необходимости, отладить.

#### 3. Вариант задания:

11. Измеритель скорости реакции (определяет время, прошедшее между включением светодиода и нажатием кнопки, и отображает его на двухпозиционном семисегментном индикаторе двух десятичных цифр).

### Рисунок 1 - задание

### 4. Ход работы

Для проверки работоспособности цифрового узла была выбрана блоксхема. Т.к. частота тактового генератора на макете  $\approx 25$  Мгц (40 нс), чо блоксхему надо подготовить к данной частоте. Для этого был добавлен счетчик. Поскольку один такт в моей работе должен быть равен 1 мс счетчик считает до 25000, а при значениях больше 12500 компаратор выдает 1. Обновлённая блок-схема показана на рисунке 2.



Рисунок 2 – Блок-схема



Рисунок 3 – Назначение пинов

На рисунках 3-6 показана работа на плате.

a)





Рисунок 3 (а, б) – Работа на плате

Также в ходе проверки на аппаратуре выяснилось, что есть проблема с дребезгом кнопок. Проблема продемонстрирована на рисунке 4.



Рисунок 4— Дребезг кнопки

В качестве решения был разработан модуль, после того как кнопка будет отпущена произойдет задержка в 50мс. Модуль был разработан на языке Verilog, после чего добавлен на схему(рисунок 2). Листинг модуля избегания дребезга.

#### Листинг кода

```
module flag_controller (
input wire clk, // Сигнал тактового генератора (1 мс)
input wire button, // Вход от кнопки
output reg flag out // Выходное значение флага
```

```
);
  reg flag;
                   // Флаг, активируется при отпускании кнопки
  reg [5:0] counter;
                      // Счетчик для отсчета 50 тактов
  reg button prev;
                       // Предыдущее состояние кнопки
  always @(posedge clk) begin
    // Обновляем предыдущее состояние кнопки
    button prev <= button;
    // Проверяем переход из 1 в 0 (отпускание кнопки)
    if (!button && button prev && !flag) begin
       flag \le 1'b1;
                      // Устанавливаем флаг
       counter <= 6'd50; // Устанавливаем счетчик на 50 тактов
    end else if (flag) begin
      if (counter > 0) begin
         counter <= counter - 1; // Уменьшаем счетчик
       end else begin
         flag <= 1'b0; // Сбрасываем флаг, если счетчик достиг нуля
       end
    end
```

#### endmodule

end

Далее будет приведен результат. Стоит отметить, что пример будет смоделирован на небольших числах из-за чего задержка в 50мс будет казаться большой, но при настоящей работе 50 мс будет достаточно чтобы избежать

flag out <= flag; // Выводим значение флага

дребезг но не сильно влиять на результат.

В переменной kn нажатие кнопки, а test показывает что передается на все входы в схеме.



Рисунок 5— Результат исправления

**Вывод:** в результате выполнения лабораторной работы была проверена работоспособность разработанных в предыдущих лабораторных работах цифровых узлов на макетной плате с установленной PLD Altera, были изучены средства среды Quartus по созданию программных образов для PLD и программированию PLD, отладке созданной схемотехники.