and the second second

1)
$$T(n) = 3T(n/2) + m^2$$

Ans: $a = 3, b = 2$ $f(n) = m^2$
 $m \log_b^a = m \log_1^3$
 $m^2 > m \log_2^3$
 $T(n) = O(n^2)$
2) $T(n) = 4T(m/2) + m^2$

2)
$$T(m) = 4T(m/2) + m^2$$

 $a = 4 \cdot b = 2 \cdot f(m) = m^2$
 $m \log^2 = m \log^2 = m^2 = f(m)$
 $T(m) = O(m^2 \log_m)$

3)
$$T(m)=T(m/2)+2^{m}$$

 $a=1,b=2$
 $m^{\log \frac{1}{2}}=m^{0}=1$
 $1 < m \cdot 2^{m}$
 $T(m)=O(2^{m})$.

4)
$$T(n) = 2^n T(n/2) + m^n$$

Not applicable.

5)
$$T(m) = 16T(m/4) + m$$

 $m \log \beta = m \log i^6$
 $= m^2$
 $m^2 > f(m)$
 $T(m) = O(m^2)$

T(n)= O(n)

18)
$$T(n) = 6T(n)_{3} + n^{2}logn$$

$$T(n) = 6T(n)_{3} + n^{2}logn$$

$$T(n) = 0(n^{2}logn)$$

$$T(n) = 0(n^{2}logn)$$

$$T(n) = 0(n^{2}logn)$$

19)
$$T(m) = 4T(m_{12}) + m/\log m$$

 $m^{2} > m/\log m$
 $m^{2} > m/\log m$
 $T(m) = O(m^{2})$

21)
$$T(m) = 7T(m/3) + m^2$$

 $m \log_3^7 = m^{1.7}$
 $m^{1.7} < m^2$
 $T(m) = O(m^2)$