Bipolar Junction Transistors - III (BJT-III)

Analyzing Transistor Amplifiers

Transistor as an Amplifier

- Choose a proper Q-point
- Make sure that the input is such that the transistor does not get driven outside its active region

To Analyze a BJT Amplifier -

- Short all the bypass capacitors and connect power supplies (i.e. V_{CC} , V_{BB} etc.) to ground. From the point of view of AC signals, capacitors are SHORT-CIRCUITS and the power supply points are equivalent to GROUND.
- Replace transistor with its small signal equivalent model

Basic BJT Amplifier

C₁, C₂, C₃ values are chosen high enough so that under ac these act as a short circuit.

The coupling capacitor (C_1,C_2) is used to pass the ac input signal and block the dc voltage from the preceding circuit. (AC-Coupled Amplifier)

This prevents dc in the circuitry on the left of the coupling capacitor from affecting the bias.

The coupling capacitor also blocks the bias of the transistor from affecting the input signal source.

Special DC-Coupled Amplifiers needed if you want to amplify a signal which has a DC component!

The emitter bypass capacitor (C_3) is used to bypass the R_E and short circuits the ac signal through C_3 since voltage gain decreases because of presence of R_E

A.C. Equivalent Circuit is obtained by :

- 1. Setting all D.C. sources to 0 and replacing them by a short circuit equivalent
- 2. Replacing all capacitors by a short circuit equivalent
- 3. Removing all elements bypassed by the short circuit equivalents introduced in steps 1 and 2
- 4. Redrawing the network in a more convenient and logical form

Basic BJT Amplifier

A.C. Equivalent Circuit

Simplify circuit by replacing R_1 and R_2 with $R_B = R_1 || R_2$

We now replace the transistor with its *small signal equivalent circuit*.

The details of this would be available from the manufacturer's specifications for the transistor.

Small Signal AC Equivalent Model for an NPN Transistor used in the Common Emitter Configuration

(Reverse the current and diode directions for PNP)

Replace BE diode by its equivalent resistance r_e

$$r_e = \frac{V_T}{I_F} = \frac{26 \text{ mV}}{I_F}$$

I_E is the DC Emitter Current

Small Signal AC Equivalent Model for an NPN Transistor used in the Common Emitter Configuration

Add r_o to represent the output impedance of the transistor

This is known as the r_e
Model for the Common
Emitter configuration

 r_o large (typically 40-50 K Ω and may be ignored in simplified analysis! (When can we ignore it?)

Using the r_e small signal model (for AC signal analysis)

(Without Source and Load Resistances)

$$i_b = \frac{v_i}{(\beta + 1)r_e}$$

$$\frac{v_o}{r_o \parallel R_C} = -\beta i_b$$

$$i_b = \frac{v_i}{(\beta + 1)r_e}$$

$$A_v = \frac{v_o}{v_i} = -\left(\frac{\beta}{\beta + 1}\right) \frac{R_C \parallel r_o}{r_e}$$

$$\frac{v_o}{r_o \parallel R_C} = -\beta i_b$$
For $r_o >> R_C$ and $\beta >> 1$ $A_v = -\frac{R_C}{r_e}$

For
$$r_0 >> R_C$$
 and $\beta >> 1$ $A_v = -\frac{R_0}{r_0}$

Note the phase reversal between input and output

(Without Source and Load Resistances)

$$Z_O = R_C \parallel r_o$$

$$i_i = \frac{v_i}{[R_B \parallel (\beta + 1)r_e]} \implies \text{Input Impedance} \quad Z_i = \frac{v_i}{i_i} = R_B \parallel (\beta + 1)r_e$$

$$i_b = i_i \frac{R_B}{R_B + (\beta + 1)r_e}$$

$$i_o = \beta i_b \frac{r_o}{r_o + R_C}$$

$$i_b = i_i \frac{R_B}{R_B + (\beta + 1)r_e}$$

$$i_o = \beta i_b \frac{r_o}{r_o + R_C}$$
Current Gain $A_i = \frac{i_o}{i_i} = \beta \left(\frac{R_B}{R_B + (\beta + 1)r_e}\right) \left(\frac{r_o}{r_o + R_C}\right)$

Basic BJT Amplifier (with source resistance R_S and load

Note that the circuit between the dotted lines is what we have analyzed before

Finding A_V Voltage Gain

- R_1 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_6 R_6 R_6 R_6 R_6 R_6 R_7 R_8 R_8 R_8 R_9 R_9
- Use the same procedure as before except you now have to add R_S and R_L to the circuit Try this approach yourself!
- Use the results we got for A_v, Z_i and Z_o for the earlier case. This approach is given below.

Fixed Bias Transistor Amplifier

Fixed Bias Transistor Amplifier

$$Z_{i} = R_{B} \parallel (\beta + 1)r_{e}$$

$$Z_{o} = R_{C} \parallel r_{o} \cong R_{C} \quad \text{if } r_{o} >> R_{C}$$

Fixed Bias Transistor Amplifier

$$i_b = \left(\frac{v_S}{R_S + R_B \parallel (\beta + 1)r_e}\right) \left(\frac{R_B}{R_B + (\beta + 1)r_e}\right)$$

$$v_o = -\beta i_b(R_C \parallel r_o \parallel R_L) \cong -\beta i_b(R_C \parallel R_L)$$

$$A_{V} = \frac{v_{o}}{v_{s}} = -\left(\frac{\beta(R_{C} \parallel R_{L})}{R_{S} + R_{B} \parallel (\beta + 1)r_{e}}\right) \left(\frac{R_{B} \parallel (\beta + 1)r_{e}}{(\beta + 1)r_{e}}\right)$$

$$\approx -\frac{R_{C} \parallel R_{L}}{r} \quad \text{for} \quad R_{B} \parallel (\beta + 1)r_{e} >> R_{S}$$

Voltage Gain Calculation

$$i_b = \frac{v_i}{(\beta + 1)r_e}$$

$$\frac{v_{i} - v_{o}}{R_{F}} - \frac{v_{o}}{r_{o} \parallel R_{C}} = \beta i_{b} = \frac{\beta}{\beta + 1} \frac{v_{i}}{r_{e}}$$

We can of course solve this to get the exact gain $A_V = v_o/v_i$

Assuming $\beta >>1$ and $r_o >> R_C$, we get

$$-v_o \left[\frac{1}{R_F} + \frac{1}{R_C} \right] = v_i \left[\frac{1}{r_e} - \frac{1}{R_F} \right]$$

Since typically, r_e<<R_F

$$A_{v} = \frac{v_{o}}{v_{i}} \cong -\frac{R_{F} \parallel R_{C}}{r_{e}} \cong -\frac{R_{C}}{r_{e}}$$
 For $R_{F} >> R_{C}$

Calculating the Input Impedance

$$i_i = \frac{v_i}{(\beta + 1)r_e} + \frac{v_i - v_o}{R_F}$$

$$\cong v_i \left[\frac{1}{\beta r_e} + \frac{1}{R_F} + \frac{R_C}{R_F r_e} \right]$$

Input Impedance

$$Z_i = \frac{v_i}{i_i} \cong \frac{1}{\left[\frac{1}{\beta r_e} + \frac{1}{R_F} + \frac{R_C}{R_F r_e}\right]} \cong \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_F}}$$

Calculating the Output Impedance

We do this as $Z_0 = V_{OC}/I_{SC}$

$$V_{OC} = v_o = A_V v_i$$
 and then use the following circuit to get I_{SC} Ignore r_o

$$\begin{split} I_{SC} &= \frac{v_i}{R_F} - \beta i_b = \frac{v_i}{R_F} - \frac{\beta}{\beta + 1} \frac{v_i}{r_e} \\ &\cong -\frac{v_i}{r_e} \end{split}$$

Using
$$A_v = -\frac{R_C || R_F}{r_e}$$
 we get

Output Impedance
$$Z_o = R_C \parallel R_F$$

or
$$Z_o = R_c \parallel r_o \parallel R_F$$
 if we take r_o into account

Amplifier with Un-bypassed Emitter Resistance

Amplifier with Un-bypassed Emitter Resistance

$$v_i = (\beta + 1)i_b r_e + (\beta + 1)i_b R_E$$
 $v_o = -\beta i_b R_C$ Neglecting r_o

$$v_o = -\beta i_b R_C$$

$$\text{Voltage Gain} \qquad A_{\!\scriptscriptstyle V} = \! \frac{v_{\scriptscriptstyle o}}{v_{\scriptscriptstyle i}} = - \! \left(\frac{\beta}{\beta + 1} \right) \! \frac{R_{\scriptscriptstyle C}}{r_{\!\scriptscriptstyle e} + R_{\scriptscriptstyle E}} \cong - \frac{R_{\scriptscriptstyle C}}{r_{\!\scriptscriptstyle e} + R_{\scriptscriptstyle E}} \cong - \frac{R_{\scriptscriptstyle C}}{R_{\scriptscriptstyle E}} \cong - \frac{R_{\scriptscriptstyle C}}{R_{\scriptscriptstyle E}} = - \frac{R_{\scriptscriptstyle C}}{R_{\scriptscriptstyle C}} = -$$

Note that voltage gain reduces compared to the circuit where the emitter resistance has been bypassed using a capacitor!

Amplifier with Un-bypassed Emitter Resistance

Output Impedance $Z_o = R_c$ (neglecting r_o)

$$Z_{O} = R_{C}$$

$$v_i = (\beta + 1)i_b r_e + (\beta + 1)i_b R_E \quad \Rightarrow \quad \frac{v_i}{i_b} = (\beta + 1)(r_e + R_E) = Z_{BE} \quad \text{(say)}$$

Input Impedance
$$Z_i = R_B \parallel Z_{BE} = R_B \parallel \left[(\beta + 1)(r_e + R_e) \right]$$
 (higher than before)

Emitter Follower Circuit

Emitter Follower Circuit

Simplified equivalent circuit omitting r_o

$$v_i = i_b(\beta + 1)r_e + (\beta + 1)i_bR_E$$
$$= (\beta + 1)i_b(r_e + R_E)$$
$$v_0 = (\beta + 1)i_bR_E$$

Voltage Gain

$$A_{v} = \frac{v_0}{v_i} = \frac{R_E}{r_e + R_E} < 1$$

Input Impedance
$$Z_i = \frac{v_i}{i_i} = R_B \parallel [(\beta + 1)(r_e + R_E)]$$

$$V_{OC} = v_o = v_i \frac{R_E}{r_e + R_E}$$
 $I_{SC} = (\beta + 1)i_{b,SC}$ $i_{b,SC} = \frac{v_i}{(\beta + 1)r_e}$

$$I_{SC} = (\beta + 1)i_{b,SC}$$

$$i_{b,SC} = \frac{v_i}{(\beta + 1)r_e}$$

Output Impedance
$$Z_o = \frac{V_{OC}}{I_{SC}} = r_e \parallel R_E \cong r_e$$

Why use the Emitter-Follower Configuration?

The Emitter Follower circuit does not provide any voltage gain (Gain ≈ 1) but is useful for impedance matching purposes.

For example, as an interface between a high-output impedance sensor and a low input impedance detection circuit.

This is because it has a high input impedance and a low output impedance – recall that impedances should be matched for maximum power transfer.

Darlington Connection

How can we get very large values of β ?

Darlington Pair

Differential Amplifier

How to amplify differential signals? i.e. $v_0 = A_v(v_1 - v_2)$

Push-Pull Configuration

Matched npn and pnp transistors used to make amplifiers with high efficiency. Typically used as Power Amplifiers.

Current Mirror Circuit

Current Mirror Circuit

Transistor as a Switch

Transistor Inverter

 I_C - V_{CE} Characteristics (β =125)

Assume (a) $I_C=I_{CE0}=0$ mA when $I_B=0$ μ A (b) $V_{CEsat}=0$ V This is more typically 0.1-0.3 V

Transistor as a Switch (Inverter)

(a)
$$V_i=0 \text{ V}$$
 Transistor is OFF, $I_C=0$ and $V_o=V_C=+5 \text{ V}$

(b)
$$V_i = +5 \text{ V}$$
 Transistor is ON, $V_{CEsat} = 0 \text{ V}$

$$I_{B}=(5-0.7)/68=63 \mu A$$

$$I_{Csat} = V_{CC}/R_C = 5/0.82 = 6.1 \text{ mA}$$

Note that $\beta I_B = 7.88 \text{ ma} > I_{Csat} = 6.1 \text{ mA}$ Therefore, the transistor is indeed in saturation

Relationship between A_v, A_i, Z_i and Z_o

$$A_{V} = \frac{v_{Ao}}{v_{Ai}} \quad Z_{i} = \frac{v_{Ai}}{i_{i}}$$

$$i_{O} = \frac{v_{Ao}}{Z_{o} + R_{L}} = \frac{A_{V}v_{Ai}}{Z_{o} + R_{L}} = \frac{A_{V}Z_{i}i_{i}}{Z_{o} + R_{L}}$$

$$\Rightarrow \quad A_{i} = \frac{i_{O}}{i_{i}} = \frac{A_{V}Z_{i}}{Z_{o} + R_{L}}$$

$$A_i = \frac{i_O}{i_i} = \frac{A_V Z_i}{Z_o + R_L}$$