

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. – 4. (Canceled)

5. (Currently Amended) A camshaft adjuster (1, 1') for adjusting and fixing a position of the angle of rotation of a camshaft (8) relative to a crankshaft of a reciprocating-piston internal-combustion engine comprising:

a high transmission and friction-reduced adjusting gear mechanism (2) comprising a drive shaft rotationally fixed to the crankshaft;

a driven shaft rotationally fixed to the camshaft (8); and

an adjusting shaft (9) connected to an adjusting motor shaft (10) of an adjusting motor,

wherein the adjusting gear mechanism (2) and the adjusting motor (3) are formed as separate units and are connected to each other by a rotational backlash-free, disengaging coupling (4, 4', 4"; 32, 32'; 46; 51),

the adjusting motor is preferably an electric adjusting motor (3),

the coupling (4, 4', 4"; 32, 32'; 46, 51) has two parts, which can be joined together and of which one is rotationally fixed to the adjusting motor shaft (10) and

the other is rotationally fixed to the adjusting shaft (9) or are formed integrally with the shafts (9, 10),

one of the two parts is formed as the outer part (19, 19'; 33, 33') and the other is formed as the inner part (18, 18'; 34, 34'), and the two parts can be inserted one into the other in a rotational backlash-free way, and

~~Camshaft adjuster according to Claim 4, characterized in that~~ the coupling is formed as a profiled shaft coupling, preferably as a two-side shaft coupling (4, 4', 4''), which has two coupling surfaces (21, 21') on the outer part (19, 19') and two coupling surfaces (20, 20') on the inner part (18, 18'), ~~wherein~~ and preferably rotational backlash-reducing means are provided on the latter.

6. (Currently Amended) The [[C]]camshaft adjuster according to Claim 5, wherein a minimal, tightly toleranced play is provided as the rotational backlash-reducing means between the coupling surfaces (20, 21) of the inner and outer parts (18, 19).

7. (Currently Amended) The [[C]]camshaft adjuster according to Claim 5, wherein biased metal or plastic springs, which bridge the play between the coupling surfaces (20', 21'), are provided as the rotational backlash-reducing means.

8. (Currently Amended) The [[C]]camshaft adjuster according to Claim 7, wherein the springs are metal and are formed as flat bending or plate springs (23).

9. (Currently Amended) The [[C]]camshaft adjuster according to Claim 8, wherein the flat bending or plate springs (23) are formed as one-piece spring clasps (25), which engage at corners (26) of the inner part (18').

10. (Currently Amended) A camshaft adjuster (1, 1') for adjusting and fixing a position of the angle of rotation of a camshaft (8) relative to a crankshaft of a reciprocating-piston internal-combustion engine comprising:

a high transmission and friction-reduced adjusting gear mechanism (2) comprising a drive shaft rotationally fixed to the crankshaft;

a driven shaft rotationally fixed to the camshaft (8); and

an adjusting shaft (9) connected to an adjusting motor shaft (10) of an adjusting motor,

wherein the adjusting gear mechanism (2) and the adjusting motor (3) are formed as separate units and are connected to each other by a rotational backlash-free, disengaging coupling (4, 4', 4"; 32, 32'; 46; 51),

the adjusting motor is preferably an electric adjusting motor (3),

the coupling (4, 4', 4"; 32, 32'; 46, 51) has two parts, which can be joined

together and of which one is rotationally fixed to the adjusting motor shaft (10) and the other is rotationally fixed to the adjusting shaft (9) or are formed integrally with the shafts (9, 10),

one of the two parts is formed as the outer part (19, 19'; 33, 33') and the other is formed as the inner part (18, 18'; 34, 34'), and the two parts can be inserted one into the other in a rotational backlash-free way, and

~~Camshaft adjuster according to Claim 4, wherein the coupling is formed as a tubular shaft coupling (32, 32') comprising a hollow cylindrical outer part (33, 33') and a coaxial, cylindrical inner part (34, 34'), which is arranged with play in the outer part (33, 33') and which preferably has the rotational backlash-reducing means.~~

11. (Currently Amended) ~~The [[C]]camshaft adjuster according to Claim 10, wherein an elastically deformable, metal tolerance ring (44) is provided as the rotational backlash-reducing means, which is arranged in a radial groove (45) on a periphery of the coaxial, cylindrical inner part (34') and projects beyond the groove by a certain extent in a radial direction.~~

12. (Currently Amended) The [[C]]camshaft adjuster according to Claim 10,
wherein at least one locking ball (37) or one cylindrical locking pin (41) with a
conical end (42) is provided as the rotational backlash-reducing means, which are
guided in radial or through bore holes (35, 39) of the coaxial, cylindrical inner part
(34) with play and which can be moved into other radial bore holes (38, 38') of
smaller diameter, which are aligned with the through bore holes, in the hollow
cylindrical outer part (33) under the force of a compression or through spring (36,
36'; 40, 40') by an extent limited by a smaller diameter.

13. (Currently Amended) The [[C]]camshaft adjuster according to Claim 12,
wherein the other radial bore holes (38, 38') are formed as elongated holes aligned
in an axial direction.

14. (Currently Amended) A camshaft adjuster (1, 1') for adjusting and fixing a
position of the angle of rotation of a camshaft (8) relative to a crankshaft of a
reciprocating-piston internal-combustion engine comprising:
a high transmission and friction-reduced adjusting gear mechanism (2)
comprising a drive shaft rotationally fixed to the crankshaft;
a driven shaft rotationally fixed to the camshaft (8); and
an adjusting shaft (9) connected to an adjusting motor shaft (10) of an

adjusting motor,

wherein the adjusting gear mechanism (2) and the adjusting motor (3) are formed as separate units and are connected to each other by a rotational backlash-free, disengaging coupling (4, 4', 4"; 32, 32'; 46; 51),

the adjusting motor is preferably an electric adjusting motor (3),

the coupling (4, 4', 4"; 32, 32'; 46, 51) has two parts, which can be joined together and of which one is rotationally fixed to the adjusting motor shaft (10) and the other is rotationally fixed to the adjusting shaft (9) or are formed integrally with the shafts (9, 10), and

~~Camshaft adjuster according to Claim 3, characterized in that~~ the coupling is formed as a clutch coupling (46), whose two parts have axial claws (47, 48), which are arranged at the same diameter and which engage in each other, wherein and between the claws (47, 48) there are spaces, which are bridged in a rotational backlash-free way by tooth elements (50) of an elastic, biased polymer collar (49).

15. (Currently Amended) A camshaft adjuster (1, 1') for adjusting and fixing a position of the angle of rotation of a camshaft (8) relative to a crankshaft of a reciprocating-piston internal-combustion engine comprising:

a high transmission and friction-reduced adjusting gear mechanism (2) comprising a drive shaft rotationally fixed to the crankshaft;

a driven shaft rotationally fixed to the camshaft (8); and
an adjusting shaft (9) connected to an adjusting motor shaft (10) of an
adjusting motor,
wherein the adjusting gear mechanism (2) and the adjusting motor (3) are
formed as separate units and are connected to each other by a rotational backlash-
free, disengaging coupling (4, 4', 4"; 32, 32'; 46; 51),
the adjusting motor is preferably an electric adjusting motor (3),
the coupling (4, 4', 4"; 32, 32'; 46, 51) has two parts, which can be joined
together and of which one is rotationally fixed to the adjusting motor shaft (10) and
the other is rotationally fixed to the adjusting shaft (9) or are formed integrally with
the shafts (9, 10),
one of the two parts is formed as the outer part (19, 19'; 33, 33') and the other
is formed as the inner part (18, 18'; 34, 34'), and the two parts can be inserted one
into the other in a rotational backlash-free way, and
~~Camshaft adjuster according to Claim 4, wherein~~ the coupling is formed as a
profiled shaft coupling comprising a toothed shaft coupling, whose outer or inner
part (55, 65) includes internal or external gearing (56, 63), that is formed from
elastic plastics.

16. (Currently Amended) The [[C]]camshaft adjuster according to Claim 15,
wherein the plastic external gearing (56, 63) is preferably molded directly on
corresponding parts of the toothed shaft coupling or on a correspondingly formed,
metallic intermediate bushing (58) and the intermediate bushing (58) is connected
to the toothed shaft coupling preferably by a force-fit connection.

17. (Currently Amended) The [[C]]camshaft adjuster according to Claim 5 [[3]],
wherein the coupling is formed as a magnetic shaft coupling (51), whose two parts
have opposing permanent magnets (52, 53), which transfer a driving moment of the
adjusting motor (3) through magnetic forces in a contact-less and rotational
backlash-free way from the adjusting motor shaft (10') to the adjusting shaft (9).

18. (Currently Amended) A camshaft adjuster (1, 1') for adjusting and fixing a
position of the angle of rotation of a camshaft (8) relative to a crankshaft of a
reciprocating-piston internal-combustion engine comprising:
a high transmission and friction-reduced adjusting gear mechanism (2)
comprising a drive shaft rotationally fixed to the crankshaft;
a driven shaft rotationally fixed to the camshaft (8); and
an adjusting shaft (9) connected to an adjusting motor shaft (10) of an
adjusting motor,

wherein the adjusting gear mechanism (2) and the adjusting motor (3) are formed as separate units and are connected to each other by a rotational backlash-free, disengaging coupling (4, 4', 4"; 32, 32'; 46; 51),
the adjusting motor is preferably an electric adjusting motor (3),
the coupling (4, 4', 4"; 32, 32'; 46, 51) has two parts, which can be joined together and of which one is rotationally fixed to the adjusting motor shaft (10) and the other is rotationally fixed to the adjusting shaft (9) or are formed integrally with the shafts (9, 10),

the coupling is formed as a magnetic shaft coupling (51), whose two parts have opposing permanent magnets (52, 53), which transfer a driving moment of the adjusting motor (3) through magnetic forces in a contact-less and rotational backlash-free way from the adjusting motor shaft (10') to the adjusting shaft (9), and

~~Camshaft adjuster according to Claim 17, wherein~~ the permanent magnets (52, 53) are arranged in an axial direction and that between the magnets there is a non-magnetic membrane (54) with two-sided play, which seals the adjusting motor (3) in an oil-tight manner.

19. (Canceled)

Applicants: Schäfer et al.
Application No.: 10/531,787

20. (Currently Amended) The [[C]]camshaft adjuster of Claim 7, wherein the
springs are plastic and are formed as a polymer band (28) or as a polymer O-ring
(29) and are ~~preferably~~ arranged in grooves (22) or a circular groove (30, 31) of the
coupling surfaces (20') of the inner part (18').