2018-2019

Junior Division Short Round Solutions

All-Star Contest

1. Boolean Algebra

$$\overline{AB} \ \overline{B} + \overline{C} \ \overline{A}(B+C)$$

$$= (\overline{A} + \overline{B})(\overline{BC})(\overline{A} + (\overline{B} + \overline{C}))$$

$$= (\overline{A} + B)(\overline{BC})(A + \overline{BC}) = (\overline{ABC} + B\overline{BC})(A + \overline{BC})$$

$$= (\overline{ABC} + 0)(A + \overline{BC}) = \overline{ABC}(A + \overline{BC})$$

$$= \overline{ABCA} + \overline{ABCBC} = 0 + 0 = 0$$
Since the expression is always FALSE, there are no

A. 0

 $\overline{ABB} + \overline{CA}(B+C)$

Ordered triples that make it TRUE.

2. Bit-String Flicking

$$x = 110101$$

(LSHIFT-1 x) OR (RCIRC-2 x) AND (RSHIFT-3 x)

= (LSHIFT-1 110101) OR (RCIRC-2 110101)

AND (RSHIFT-3 110101)

- = 101010 OR (011101 AND 000110)
- = 101010 OR 000100
- = 101110

D. 101110

3. Recursive Functions

$$f(14) = f(f(12) - 2) = f(10 - 2) = f(8) = 9$$

$$f(12) = f(f(10) - 2) = f(11 - 2) = f(9) = 10$$

$$f(10) = 10 + 1 = 11$$

$$f(9) = 9 + 1 = 10$$

$$f(8) = 8 + 1 = 9$$

$$f(11) = 11 = 1 = 12$$
Therefore: $f(f(f(f(14)))) = f(f(f(9)))$

$$= f(f(10))$$

$$= f(11)$$

D. 12

4. Digital Electronics

The square gate receives three inputs.

They are: \overline{A} , $(\overline{AB} + B) C$, and \overline{C} .

The middle input simplifies as follows:

$$(\overline{AB} + B) C = (\overline{A} + \overline{B} + B) C = (\overline{A} + 1) C = C$$

= 12

A	C	\overline{A}	\overline{C}	Gate Result
0	0	1	1	0
0	1	1	0	0
1	0	0	1	1
1	1	0	0	1

C. 4

Since B = *, there are 4 ordered triples that make the expression true: (1, *, 0) and (1, *, 1)

5. Prefix-Infix-Postfix

$$/ + ^ / + 4 6 - 7 5 2 * 7 - 5 4 ^ / + 1 7 - 5 1 4$$

= $/ + ^ / (+ 4 6) (- 7 5) 2 * 7 (- 5 4) ^ / (+ 1 7) (- 5 1) 4$
= $/ + ^ (/ 10 2) 2 (* 7 1) ^ (/ 8 4) 4$
= $/ + (^ 5 2) 7 (^ 2 4) = / (+ 25 7) (^ 2 4)$
= $/ 32 16 = 2$

B 2

6. Computer Number Systems

$$1978_{10} = 3672_8$$

$$2019_{10} = 3743_{8}$$

The string "2" appears 14 time in the octal numbers: 3672, 3702, 3712, 3720, 3721, 3722, 3723, 3724, 3725, 3726, 3727, 3732, 3742

C. 14

7. What Does This Program Do?

The table shows the values x and y have:

X	-4	-3	-2	-1	0	1	2	3	4
y	-3	3	1	-1	-2	-6	-6	-6	-5

B. -5

-5 is the output for this program.

8. Data Structures

The following is the binary search for:

LILYOFTHEVALLEY

C. 4

The nodes with only a left child are: Y, L, L, E