Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 **Curso 2018**

PRÁCTICO 3: Números primos, Teorema fundamental de la Aritmética.

Ejercicio 1. Se consideran los siguientes números:

9000

 $15^4 \cdot 42^3 \cdot 56^5$ $10^n \cdot 11^{n+1}$

- a. Halllar la descomposición factorial de esos números.
- **b**. ¿Cuántos divisores tienen?
- **c**. ¿Es alguno de ellos cuadrado perfecto?

Ejercicio 2. Hallar el menor número natural n tal que $6552 \cdot n$ sea un cuadrado.

Ejercicio 3. Decidir si existen enteros a y b que satisfagan

a. $a^2 = 8b^2$.

b. $a^2 = 3b^3$.

c. $7a^2 = 11b^2$.

Ejercicio 4.

- a. Sea (p_n) la sucesión de los números primos, $p_1=2$, $p_2=3$, etc. Probar que para todo $n\in\mathbb{N}$ se tiene que $p_1p_2 \dots p_n + 1 \ge p_{n+1}$. ¿Es cierto que $p_1p_2 \dots p_n + 1$ es primo para todo $n \in \mathbb{N}$?
- **b.** Hallar la factorización en producto de primos de 148500, 7114800, 7882875, 8!, 10! y 15!.
- **c**. Si la factorización en producto de factores primos de $m\in\mathbb{N}$ es $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$, hallar la factorización en producto de números primos de m^2 y de m^3 .

Ejercicio 5. Sea $A = \{4n+1 : n = 0, 1, 2, ...\} = \{1, 5, 9, ...\}$. Un elemento $x \in A$, $x \neq 1$ se llama A-primo si los únicos divisores en A son 1 y x. Por ejemplo 9 es A-primo ya que 5 no divide a 9. Los elementos restantes de A, mayores que 1, se llaman A-compuestos.

- a. Probar que todo número A-compuesto se descompone en producto de factores A-primos.
- b. ¿La descomposición anterior es única? Sugerencia: Observe que el producto de dos primos de la forma 4k + 3 es un A-primo.

Ejercicio 6.

- **a**. Demostrar que \sqrt{p} es irracional para cualquier primo p.
- **b**. Demostrar que $\log_{10} 2$ es irracional y que cuando p es primo $\log_{10} p$ es también irracional.

Ejercicio 7.

- **a**. Determinar el menor cuadrado perfecto que es divisible entre 7!.
- **b**. Demostrar que $n \in \mathbb{N}$ es un cuadrado perfecto si y solamente si n tiene un número impar de divisores positivos.

c. Hallar el menor número natural n para el cual $1260 \times n$ es un cubo perfecto.

Ejercicio 8. En un manicomio hay 2014 habitaciones numeradas con los números $1,2,3,\ldots,2014$. En un principio están todas las puertas cerradas. Cuando pasa el primer paciente abre la puerta de cada habitación, luego pasa el segundo paciente y cierra las puertas $2,4,6,8,\ldots$ Pasa el tercer paciente y cambia de estado las puertas $3,6,9,12,\ldots$ (es decir, la cierra si estaba abierta y la abre si estaba cerrada) y así hasta que pasa el paciente 2014 que cambia de estado la puerta 2014. ¿Cuántas puertas abiertas quedan luego de pasar los 2014 pacientes?

Ejercicio 9. Hallar los números naturales menores o iguales a 1000 que tienen exactamente 3 divisores positivos distintos.

Ejercicio 10. Hallar los números naturales a y b que cumplen que el resto de dividir a entre b es 5 y que $mcm(a,b) = 12 \times mcd(a,b)$.

Ejercicio 11. ¿Cuántas parejas de números naturales coprimos (a, b) verifican que a + b = 1000?

Ejercicio 12. Hallar los números naturales a y b sabiendo que mcd(a,b)=18, que a tiene 21 divisores y que b tiene 10.

Ejercicio 13.

- **a**. Sean a y b naturales primos entre sí. Probar las siguientes afirmaciones.
 - i) a^2 y b^2 son primos entre sí.
 - ii) a + b y ab son primos entre sí.
- **b**. Determinar las parejas de números naturales (a,b) que verifican $5 \times (a+b)^2 = 147 \times \text{mcm}(a,b)$.

Ejercicio 14.

- **a**. Probar que si p>2 es primo, entonces es de la forma $4k\pm 1$, para algún $k\in\mathbb{Z}$.
- **b**. Probar que si p > 3 es primo, entonces es de la forma $6k \pm 1$, para algún $k \in \mathbb{Z}$.
- **c**. Probar que existen infinitos primos de la forma 4k-1. Sugerencia: imitar la prueba de Euclides sobre la infinitud de primos.

Ejercicio 15. Sea $n = p^{\alpha}q^{\beta}$ la descomposición en producto de factores primos de un natural n. Si n no es un cuadrado perfecto calcular el producto de los divisores de n.

Ejercicio 16.

- **a**. Diremos que un par de enteros coprimos (x_1, x_2) es reducible si existe $n_1 \in \mathbb{Z}$ tal que $x_1 + n_1x_2 = 1$.
 - i) Dar un ejemplo de un par de coprimos reducible.
 - ii) Dar un ejemplo de un par de coprimos no reducible (justificar).
- **b**. Diremos que una terna de enteros (x_1, x_2, x_3) son coprimos si existen $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z}$ tal que $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 1$.
 - i) Dar un ejemplo de una terna de coprimos tal que cada par de enteros (x_i, x_j) , con $1 \le i, j \le 3$, no sean coprimos.

ii) Demostrar que (x_1, x_2, x_3) son coprimos si y solamente si no existe un primo p que divida a x_i para i=1,2,3.

Ejercicio 17. Sea p primo y supongamos que $p^2|ab$. Demostrar que si mcd(a,b)=1, entonces $p^2|a$ or $p^2|b$.

Ejercicio 18.

- **a**. Demostrar que $mcd(a^2, b^2) = mcd(a, b)^2$.
- **b**. Demostrar que si $n \ge 1$, entonces $\operatorname{mcd}(a^n,b^n) = \operatorname{mcd}(a,b)^n$.

Ejercicio 19.

- **a**. Probar que si p es primo, entonces $p|\binom{p}{i}$ para todo 0 < i < p (donde $\binom{p}{i}$ son las combinaciones de p en i).
- **b**. ¿Es cierto lo anterior si p no es primo?