

Institute of Theoretical Computer Science Chair for Automata Theory

CONTEXT REASONING FOR ROLE-BASED MODELS

Stephan Böhme

What is a Role?

- Modelling concept from OOP introduced by Bachman in 1973
- Classification of roles with 26
 Features including identity,
 behaviour, relationships,
 players, . . . and about Contexts
 and Constraints (Kühn, Leuthäuser,
 et al. 2014: Steimann 2000)

What is a Role?

- Modelling concept from OOP introduced by Bachman in 1973
- Classification of roles with 26
 Features including identity,
 behaviour, relationships,
 players, . . . and about Contexts
 and Constraints (Kühn, Leuthäuser,
 et al. 2014: Steimann 2000)

What is a Role?

- Modelling concept from OOP introduced by Bachman in 1973
- Classification of roles with 26
 Features including identity,
 behaviour, relationships,
 players, . . . and about Contexts
 and Constraints (Kühn, Leuthäuser,
 et al. 2014: Steimann 2000)

What is a Role?

- Modelling concept from OOP introduced by Bachman in 1973
- Classification of roles with 26
 Features including identity,
 behaviour, relationships,
 players, . . . and about Contexts
 and Constraints (Kühn, Leuthäuser,
 et al. 2014: Steimann 2000)

Requirements for modern Software Systems:

- Adaptability
- High expressiveness
- Longevity

What is a Role?

- Modelling concept from OOP introduced by Bachman in 1973
- Classification of roles with 26 Features including identity, behaviour, relationships, players, . . . and about Contexts and Constraints (Kühn, Leuthäuser, et al. 2014; Steimann 2000)

Requirements for modern Software Systems:

- Adaptability → Roles allow for dynamic changes of the system.
- High expressiveness → Roles increase separation of concerns.
- Longevity → Roles enable updating running applications.

- Software systems that use the notion of roles
- Focus on: Compartment Role Object Model (CROM), (Kühn, Leuthäuser, et al. 2014)
 - Well-defined semantical foundation (Kühn, Böhme, et al. 2015)

- Software systems that use the notion of roles
- Focus on: Compartment Role Object Model (CROM), (Kühn, Leuthäuser, et al. 2014)
 - Well-defined semantical foundation (Kühn, Böhme, et al. 2015)

Key properties of roles:

- Roles depend on the context.
- Contexts, 'players' and roles themselves have each their own identity.
- Roles change over time.

- Software systems that use the notion of roles
- Focus on: Compartment Role Object Model (CROM), (Kühn, Leuthäuser, et al. 2014)
 - Well-defined semantical foundation (Kühn, Böhme, et al. 2015)

Key properties of roles:

- · Roles depend on the context.
- Contexts, 'players' and roles themselves have each their own identity.
- Roles change over time.

Problems:

- Large systems/models hard to comprehend
- Modelling errors stay undetected

- Software systems that use the notion of roles
- Focus on: Compartment Role Object Model (CROM), (Kühn, Leuthäuser, et al. 2014)
 - Well-defined semantical foundation (Kühn, Böhme, et al. 2015)

Key properties of roles:

- Roles depend on the context.
- Contexts, 'players' and roles themselves have each their own identity.
- Roles change over time.

Problems:

- Large systems/models hard to comprehend
- Modelling errors stay undetected → Logic-based formalisms

- Software systems that use the notion of roles
- Focus on: Compartment Role Object Model (CROM), (Kühn, Leuthäuser, et al. 2014)
 - Well-defined semantical foundation (Kühn, Böhme, et al. 2015)

Key properties of roles:

- Roles depend on the context.
- Contexts, 'players' and roles themselves have each their own identity.
- Roles change over time.

Requirements on logical formalism

- Decidable reasoning tasks
- Express contexts, 'players' and roles as formal objects
- Model contexts and ternary relation of role-playing
- Ability to handle rigid, i.e. context-independent, knowledge

Problems:

- Large systems/models hard to comprehend
- Modelling errors stay undetected

Graphical notation of a CROM and its formal representation

Graphical notation of a CROM and its formal representation

Person
name
age
profession

Company

Company

Every consultant advises customers who own an checking account.

CONSULTANT ☐ ∃ advises.(CUSTOMER □ ∃ own_ca.CHECKINGACCOUNT)

Peter is a consultant. Consultant(Peter)

Every consultant advises customers who own an checking account. Consultant ☐ ∃advises.(Customer ☐ ∃own_ca.CheckingAccount)

Peter is a consultant. Consultant(Peter)

N_C ... concept names Consultant, Customer, CheckingAccount

N_R ... DL role names advises, own_ca

N_I ... individual names Peter

Every consultant advises customers who own an checking account. Consultant $\sqsubseteq \exists$ advises.(Customer $\sqcap \exists$ own_ca.CheckingAccount)

Peter is a consultant. Consultant(Peter)

N_C ... concept names Consultant, Customer, CheckingAccount

N_R ... DL role names advises, own_ca

N_I ... individual names Peter

concept constructors: $C_1 \sqcap C_2, C_1 \sqcup C_2, \neg C_1, \exists r.C, \forall r.C$

set of \mathcal{ALC} concepts: smallest set that is closed under N_C and the

concept constructors of \mathcal{ALC}

General concept inclusion (GCI): $C \sqsubseteq D$ assertion: C(a), r(a, b)

ALC-axiom: a GCI or an assertion

Every consultant advises customers who own an checking account. CONSULTANT

∃ advises.(CUSTOMER □ ∃ own_ca.CHECKINGACCOUNT)

Peter is a consultant. CONSULTANT(Peter)

A DL interpretation \mathcal{I} has a domain $\Delta^{\mathcal{I}}$ and maps

- concept names A to sets $A^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$,
- DL role names r to binary relations r^T ⊆ Δ^T × Δ^T, and
 individual names a to elements a^T ∈ Δ^T.

Every consultant advises customers who own an checking account. CONSULTANT ☐ ∃advises.(CUSTOMER ☐ ∃own ca.CHECKINGACCOUNT)

Peter is a consultant. CONSULTANT(Peter)

A DL interpretation \mathcal{I} has a domain $\Delta^{\mathcal{I}}$ and maps

- concept names A to sets $A^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$,
- DL role names r to binary relations r^T ⊆ Δ^T × Δ^T, and
 individual names a to elements a^T ∈ Δ^T.

The semantics of the constructors is defined as

- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$,
- $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$, and $(\exists r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} \mid \exists e.(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$

Every consultant advises customers who own an checking account. CONSULTANT ☐ ∃advises.(CUSTOMER ☐ ∃own ca.CHECKINGACCOUNT)

Peter is a consultant. CONSULTANT(Peter)

A DL interpretation \mathcal{I} has a domain $\Delta^{\mathcal{I}}$ and maps

- concept names A to sets $A^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$,
- DL role names r to binary relations r^T ⊆ Δ^T × Δ^T, and
 individual names a to elements a^T ∈ Δ^T

The semantics of the constructors is defined as

- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$, and
- $(\exists r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} \mid \exists e.(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$

Interpretation \mathcal{I} is a model of

- the GCI $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$, and
- the assertion C(a) (r(a,b)) iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ $((a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}})$.

Every consultant advises customers who own an checking account. CONSULTANT

∃ advises.(CUSTOMER □ ∃ own_ca.CHECKINGACCOUNT)

Peter is a consultant. CONSULTANT(Peter)

A DL interpretation \mathcal{I} has a domain $\Delta^{\mathcal{I}}$ and maps

- concept names A to sets $A^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$,
- DL role names r to binary relations r^T ⊆ Δ^T × Δ^T, and
 individual names a to elements a^T ∈ Δ^T

The semantics of the constructors is defined as

- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$,
- $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$, and
- $(\exists r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} \mid \exists e.(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$

Interpretation \mathcal{I} is a model of

- the GCI $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$, and
- the assertion C(a) (r(a,b)) iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ $((a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}})$.

Intuition of Contextualized DL \mathcal{L}_M [\mathcal{L}_O]

- Two-dimensional, two-sorted description logic
- \mathcal{L}_M to describe knowledge *about* contexts (meta level)
- \mathcal{L}_O to describe knowledge *within* contexts (object level)
- Concepts, axioms of object logic are usual $\mathcal{L}_{\mathcal{O}}$ concepts, axioms
- Object axioms used as meta concepts
 - $\underbrace{ \mathbb{C} \sqsubseteq D \mathbb{D}}_{\text{meta concept}} \text{ describes set of worlds where } \underbrace{C \sqsubseteq D}_{\text{object axiom}} \text{ holds}$

Intuition of Contextualized DL \mathcal{L}_M [\mathcal{L}_O]

- Two-dimensional, two-sorted description logic
- \mathcal{L}_M to describe knowledge *about* contexts (meta level)
- \mathcal{L}_O to describe knowledge *within* contexts (object level)
- Concepts, axioms of object logic are usual $\mathcal{L}_{\mathcal{O}}$ concepts, axioms
- Object axioms used as meta concepts
 - $-\underbrace{ \mathbb{[} C \sqsubseteq D \mathbb{]} }_{\text{meta concept}} \text{ describes set of worlds where } \underbrace{C \sqsubseteq D}_{\text{object axiom}} \text{ holds}$


```
\begin{split} \mathbf{O} &= (\mathbf{O}_{\mathsf{C}}, \mathbf{O}_{\mathsf{R}}, \mathbf{O}_{\mathsf{I}}) & \mathbf{M} = (\mathsf{M}_{\mathsf{C}}, \mathsf{M}_{\mathsf{R}}, \mathsf{M}_{\mathsf{I}}) \\ \mathbf{O}_{\mathsf{Crig}} \subseteq \mathbf{O}_{\mathsf{C}} & \\ \mathbf{O}_{\mathsf{Brig}} \subseteq \mathsf{O}_{\mathsf{R}} & \\ & \text{object concept name } & A \in \mathsf{O}_{\mathsf{C}} \\ & \text{object concept } & \mathcal{C} \text{ (using constructors of } \mathcal{L}_{\mathcal{O}}) \\ & \\ & \text{object axioms } & \frac{\mathcal{C} \sqsubseteq \mathcal{D}}{\mathcal{C}(a)} & \\ \end{split}
```



```
\begin{split} \mathbf{O} &= (\mathsf{O}_{\mathsf{C}}, \mathsf{O}_{\mathsf{R}}, \mathsf{O}_{\mathsf{I}}) & \mathsf{M} = (\mathsf{M}_{\mathsf{C}}, \mathsf{M}_{\mathsf{R}}, \mathsf{M}_{\mathsf{I}}) \\ \mathsf{O}_{\mathsf{Crig}} \subseteq \mathsf{O}_{\mathsf{C}} & \\ \mathsf{O}_{\mathsf{Brig}} \subseteq \mathsf{O}_{\mathsf{R}} & \\ \end{split} \\ \text{object concept name } & A \in \mathsf{O}_{\mathsf{C}} \\ \text{object concept } & \mathcal{C} \text{ (using constructors of } \mathcal{L}_{\mathcal{O}}) \\ \\ \text{meta concepts } & \begin{bmatrix} \mathcal{C} \sqsubseteq \mathcal{D} \end{bmatrix} \\ & \mathbb{C}(a) \end{bmatrix} \\ \text{meta concept name } & B \in \mathsf{M}_{\mathsf{C}} \\ \text{meta concept } & \mathcal{E} \text{ (using constructors of } \mathcal{L}_{\mathcal{M}}) \\ \\ & \mathsf{meta axioms} & \mathcal{E} \sqsubseteq \mathcal{F} \\ & \mathcal{E}(c) & \\ \end{split}
```



```
O = (O_C, O_R, O_I)
                                                            M = (M_C, M_B, M_I)
    O_{Crig} \subseteq O_{C}
    O_{Rrig} \subseteq O_R
   object concept name A \in O_C
            object concept C (using constructors of \mathcal{L}_{\Omega})
           meta concepts [C \sqsubseteq D]
     meta concept name B \in M_C
             meta concept E (using constructors of \mathcal{L}_{M})
              meta axioms E \sqsubseteq F
E(c)
        \mathcal{L}_{M} \llbracket \mathcal{L}_{O} \rrbracket ontology \mathcal{B} ... conjunction of m-axioms
```


Syntax and Semantics of \mathcal{L}_M [\mathcal{L}_O]

 $\mathcal{L}_{M} \llbracket \mathcal{L}_{\Omega} \rrbracket$ ontology \mathcal{B}

```
Nested interpretation \mathcal{J} = (\mathbb{C}, \mathcal{I}, \Delta^{\mathcal{J}}, (\mathcal{I}_c)_{c \in \mathbb{C}})
        • (\mathbb{C}, \cdot^{\mathcal{J}}) DL interpretation on meta level
       • (\Delta, \cdot^{\mathcal{I}_c}) DL interpretation on object level for each possible world
       • x^{\mathcal{I}_c} = x^{\mathcal{I}_d} for all c, d \in \mathbb{C}, x \in O_{Crig} \cup O_{Brig} \cup O_1
              object concept name A^{\mathcal{I}_c} \subseteq \Delta
                         object concept C
                         meta concepts \begin{bmatrix} C \sqsubseteq D \end{bmatrix} \begin{bmatrix} C(a) \end{bmatrix}
                meta concept name B^{\mathcal{J}} \subseteq \mathbb{C}
                           meta concept E
                             meta axioms E \sqsubseteq F
E(c)
```


Syntax and Semantics of \mathcal{L}_M [\mathcal{L}_O]

```
Nested interpretation \mathcal{J} = (\mathbb{C}, \mathcal{I}, \Delta^{\mathcal{J}}, (\mathcal{I}_c)_{c \in \mathbb{C}})
        • (\mathbb{C}, \cdot^{\mathcal{J}}) DL interpretation on meta level
        • (\Delta, \cdot^{\mathcal{I}_c}) DL interpretation on object level for each possible world
        • x^{\mathcal{I}_c} = x^{\mathcal{I}_d} for all c, d \in \mathbb{C}, x \in O_{Crig} \cup O_{Rrig} \cup O_I
               object concept name A^{\mathcal{I}_c} \subset \Delta
                            object concept C^{\mathcal{I}_c} \subseteq \Delta (acc. to semantics of \mathcal{L}_Q)
                           meta concepts  \begin{bmatrix} C \sqsubseteq D \end{bmatrix}^{\mathcal{J}} := \{ c \in \mathbb{C} \mid \mathcal{I}_c \models C \sqsubseteq D \}  \begin{bmatrix} C(a) \end{bmatrix}^{\mathcal{J}} := \{ c \in \mathbb{C} \mid \mathcal{I}_c \models C(a) \} 
                 meta concept name B^{\mathcal{J}} \subseteq \mathbb{C}
                              meta concept E^{\mathcal{J}} \subseteq \mathbb{C} (acc. to semantics of \mathcal{L}_M)
                    \mathcal{L}_{\mathcal{M}} \llbracket \mathcal{L}_{\mathcal{O}} \rrbracket ontology \mathcal{J} \models \mathcal{B}
```


Example of Contextualized DL \mathcal{L}_M [\mathcal{L}_O]

Example of Contextualized DL \mathcal{L}_M [\mathcal{L}_O]

Complexity of Consistency Problem

	$\mathcal{L}_{\mathcal{O}}$	\mathcal{EL}	ALC – SHOQ	SHOIQ
no rigid names	EL ALC – SHOQ SHOIQ	constant	Exp-complete	NExp-complete
only rigid concepts	EL ALC – SHOQ SHOIQ	constant	IExp-complete	NEXP-hard and in 2NEXP
with rigid roles	EL ALC – SHOQ SHOIQ	constant NExp- complete	2Exp- complete	2Exp-hard and in 2NExp

Upper Bounds for \mathcal{L}_{M} $[\mathcal{L}_{O}]$

Idea: Split consistency problem into two separate decision problems

- Outer consistency with \mathcal{X}
- Admissibility of X

Check whether meta level is consistent

$$\mathcal{B}_{ex} = C \sqsubseteq \llbracket A(a) \rrbracket$$

$$\wedge (C \sqcap \llbracket A \sqsubseteq \bot \rrbracket)(d)$$

$$\wedge (\exists r. \llbracket A \sqsubseteq \bot \rrbracket)(d)$$

$$\mathcal{X} = \{\emptyset, \{\llbracket A(a) \rrbracket\}, \{\llbracket A \sqsubseteq \bot \rrbracket\}\}$$

Upper Bounds for \mathcal{L}_M [\mathcal{L}_O]

Idea: Split consistency problem into two separate decision problems

- Outer consistency with X
- Admissibility of \mathcal{X}

Check whether meta level is consistent

Check whether the induced o-axioms are consistent.

$$\mathcal{B}_{ex} = C \sqsubseteq \llbracket A(a) \rrbracket$$

$$\wedge (C \sqcap \llbracket A \sqsubseteq \bot \rrbracket)(d)$$

$$\wedge (\exists r. \llbracket A \sqsubseteq \bot \rrbracket)(d)$$

$$\mathcal{X} = \{\varnothing, \{\llbracket A(a) \rrbracket\}, \{\llbracket A \sqsubseteq \bot \rrbracket\}\}$$

Upper Bounds for \mathcal{L}_M [\mathcal{L}_O]

Idea: Split consistency problem into two separate decision problems

- Outer consistency with X
- Admissibility of \mathcal{X}

Lemma

The \mathcal{L}_M [$\mathcal{L}_{\mathcal{O}}$] ontology \mathcal{B} is consistent iff there is a set \mathcal{X} such that

- 1. \mathcal{X} is admissible, and
- 2. the outer abstraction of \mathcal{B} is outer consistent w.r.t. \mathcal{X} .

Workflow of Automated Analysis of Role-Based Models

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

General idea: Compartment types → meta concepts

> Natural types

Fields of natural types

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

General idea:
• Compartment types
→ meta concepts

Natural types

√ (rigid) object concepts

Fields of natural types

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

General idea:
• Compartment types
→ meta concepts

Natural types

Fields of natural types

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

General idea:
• Compartment types
→ meta concepts

Natural types

√ (rigid) object concepts

Fields of natural types

→ (rigid) object DL roles

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

General idea: • Compartment types

Natural types

Fields of natural types

Role Typesplays-relation

Relationship types

Occurrence constraints

→ meta concepts

/rigid) abject concepts

 \leadsto (non-rigid) object concepts

ightharpoonup object individual δ , DL role

'counting'

Objective: Given a CROM \mathcal{M} , construct an ontology $\mathcal{O}_{\mathcal{M}}$ s.t.

 $\mathcal{O}_{\mathcal{M}}$ consistent iff \mathcal{M} satisfiable

General idea: Compartment types

Natural types

Fields of natural types

 Role Types plays-relation

Relationship types

Occurrence constraints

 \rightarrow object individual δ , DL role

'counting'

→ meta concepts

→ (non-rigid) object concepts

Constraints: without constraints

with occurrence constraints

full

current version of CROM

 additional constraints based on fields of natural type

 $\rightsquigarrow \mathcal{ALC} \llbracket \mathcal{ALCIQ} \rrbracket$ $\rightsquigarrow ALC [ALCOIQ]$

~ ALC [SHOIQ]

→ no rigid DL roles needed

→ rigid roles needed!

Complexity of Consistency Problem

	\mathcal{L}_{O}	\mathcal{EL}	ALC – SHOQ	SHOIQ
no rigid names	EL ALC – SHOQ SHOIQ	constant	Exp-complete	CROM NEXP-complete
only rigid concepts	EL ALC – SHOQ SHOIQ	constant	NEXP-complete	NEXP-hard and in 2NEXP
with rigid roles	EL ALC – SHOQ SHOTQ	constant NExp- complete	2Exp- complete	2Exp-hard and in 2NExp


```
\mathsf{T}\sqsubseteq \llbracket \mathsf{CONSULTANT} \sqcup \mathsf{CUSTOMER} \sqsubseteq =_1 \mathsf{counting}^-.\{\delta\} \rrbracket \mathsf{BANK}\sqsubseteq \llbracket (\geqslant_1 \mathsf{counting}.\mathsf{CONSULTANT})(\delta) \rrbracket
```



```
T \sqsubseteq \llbracket \mathsf{CONSULTANT} \sqcup \mathsf{CUSTOMER} \sqsubseteq =_1 \mathsf{counting}^-.\{\delta\} \rrbracket \mathsf{BANK} \sqsubseteq \llbracket (\geqslant_1 \mathsf{counting}.\mathsf{CONSULTANT})(\delta) \rrbracket \mathsf{BANK} \sqsubseteq \llbracket \mathsf{T} \sqsubseteq \forall. advises.\mathsf{CUSTOMER} \rrbracket \mathsf{BANK} \sqsubseteq \llbracket \mathsf{CONSULTANT} \sqsubseteq \geqslant_1 \mathsf{advises}.\mathsf{T} \rrbracket
```



```
\top \sqsubseteq \llbracket \mathsf{CONSULTANT} \sqcup \mathsf{CUSTOMER} \sqsubseteq =_1 \mathsf{counting}^-.\{\delta\} \rrbracket \mathsf{BANK} \sqsubseteq \llbracket (\geqslant_1 \mathsf{counting}.\mathsf{CONSULTANT})(\delta) \rrbracket \mathsf{BANK} \sqsubseteq \llbracket \top \sqsubseteq \forall .advises.\mathsf{CUSTOMER} \rrbracket \mathsf{BANK} \sqsubseteq \llbracket \mathsf{CONSULTANT} \sqsubseteq \geqslant_1 \mathsf{advises}.\top \rrbracket
```



```
\top \sqsubseteq \llbracket \mathsf{CONSULTANT} \sqcup \mathsf{CUSTOMER} \sqsubseteq =_1 \mathsf{counting}^{-}.\{\delta\} \rrbracket
BANK \square [(\geqslant_1counting.Consultant)(\delta)]
BANK ☐ [T ☐ ∀.advises.Customer]
BANK □ [CONSULTANT □ ≥ 1 advises. T]
Bank \sqsubseteq [(\geqslant_1 counting.CUSTOMER)(\delta)]
                    c_1, BANK
                                    advises
```

CONSULTANT

CUSTOMER

Workflow of Automated Analysis of Role-Based Models

- Java implemented Contextualized description logic reasoner based on HermiT/HyperTableau
- First reasoner capable of processing contextualized DL ontologies
- Utilize Lemma about separation of reasoning tasks
 - 1. Check consistency of meta level
 - 2. Check whether induced object axioms consistent
- Reuse existing, highly optimized reasoners
 - Model-construction based reasoner necessary
 - Implemented in Java
 - Good performance on DL Consistency

- Java implemented Contextualized description logic reasoner based on HermiT/HyperTableau
- First reasoner capable of processing contextualized DL ontologies
- Utilize Lemma about separation of reasoning tasks
 - 1. Check consistency of meta level
 - 2. Check whether induced object axioms consistent
- Reuse existing, highly optimized reasoners
 - Model-construction based reasoner necessary
 - Implemented in Java
 - Good performance on DL Consistency

- Java implemented Contextualized description logic reasoner based on HermiT/HyperTableau
- First reasoner capable of processing contextualized DL ontologies
- Utilize Lemma about separation of reasoning tasks
 - 1. Check consistency of meta level
 - 2. Check whether induced object axioms consistent
- Reuse existing, highly optimized reasoners
 - Model-construction based reasoner necessary
 - Implemented in Java
 - Good performance on DL Consistency

- Java implemented Contextualized description logic reasoner based on HermiT/HyperTableau
- First reasoner capable of processing contextualized DL ontologies
- Utilize Lemma about separation of reasoning tasks
 - 1. Check consistency of meta level
 - 2. Check whether induced object axioms consistent
- Reuse existing, highly optimized reasoners
 - Model-construction based reasoner necessary
 - Implemented in Java
 - Good performance on DL Consistency
 - → HermiT as core reasoner

Algorithm for Checking Consistency

```
Input : SHOIQ [SHOIQ]-ontology O
Output: true if \mathcal{O} is consistent, false otherwise
Preprocessing (results in (C, A)):
   1. Elimination of transitivity axioms, normalization, clausification
   2. Repletion of DL-clauses
Let (T, \lambda) be any derivation for (C, A).
\mathfrak{A} := \{ \mathcal{A}' \mid \text{there exists a leaf node in } (\mathcal{T}, \lambda) \text{ that is labelled with } \mathcal{A}' \}
for A' \in \mathfrak{A} do
      if A' is clash-free then
            if O contains rigid names then
                   if \mathcal{K}_{rig} := (\mathcal{O}_{A'}, \mathcal{R}_{O}') is consistent then
                     I return true
            else
                   Let \{c_1, \ldots, c_k\} be the individuals occurring in \mathcal{A}'
                   if K_i := (\mathcal{O}_{c_i}, \mathcal{R}_{O}) is consistent for all 1 \leq i \leq k then
                    L return true
```


$$\mathcal{B}_{\mathsf{ex}} \coloneqq \neg C(s)$$

$$\wedge \llbracket \neg B(a) \rrbracket \sqsubseteq C$$

$$\wedge \neg C \sqsubseteq \llbracket B \sqsubseteq \bot \rrbracket$$

$$\begin{split} \mathcal{B}_{\text{ex}} &:= \neg C(s) \\ & \wedge \left[\!\!\left[\neg B(a) \right]\!\!\right] \sqsubseteq C \\ & \wedge \neg C \sqsubseteq \left[\!\!\left[B \sqsubseteq \bot \right]\!\!\right] \end{split} \qquad \mathcal{A}_{\text{ex}} := \left\{\!\!\left[\neg C(s) \right]\!\!\right\} \\ & \mathcal{C}_{\text{ex}} := \left\{\!\!\left[\neg B(a) \right]\!\!\right]\!\!\right]\!\!\left(x \right) \to C(x), \\ & \wedge \neg C \sqsubseteq \left[\!\!\left[B \sqsubseteq \bot \right]\!\!\right] \end{split}$$

$$\begin{split} \mathcal{B}_{\text{ex}} &:= \neg C(s) & \mathcal{A}_{\text{ex}} &:= \{ \neg C(s) \} \\ & \wedge \left[\!\! \left[\neg B(a) \right] \!\! \right] \sqsubseteq C & \mathcal{C}_{\text{ex}} &:= \{ \left[\!\! \left[\neg B(a) \right] \!\! \right] (x) \to C(x), \\ & \wedge \neg C \sqsubseteq \left[\!\! \left[\!\! B \sqsubseteq \bot \right] \!\! \right] & \top \to C(x) \vee \left[\!\! \left[\!\! B \sqsubseteq \bot \right] \!\! \right] (x) \} \end{split}$$

$$\mathcal{B}_{\mathsf{ex}} \coloneqq \neg C(s)$$

$$\wedge \llbracket \neg B(a) \rrbracket \sqsubseteq C$$

$$\wedge \neg C \sqsubseteq \llbracket B \sqsubseteq \bot \rrbracket$$

$$\begin{split} & \coloneqq \neg C(s) & \mathcal{A}_{\text{ex}} \coloneqq \{ \neg C(s) \} \\ & \land \llbracket \neg B(a) \rrbracket \sqsubseteq C & \mathcal{C}_{\text{ex}} \coloneqq \{ \llbracket \neg B(a) \rrbracket(x) \to C(x), \\ & \land \neg C \sqsubseteq \llbracket B \sqsubseteq \bot \rrbracket & \top \to C(x) \lor \llbracket B \sqsubseteq \bot \rrbracket(x) \} \end{split}$$

Definition (Repletion)

Let \mathcal{C} be a set of DL-clauses. The **repletion** of \mathcal{C} is obtained from $\mathcal C$ by adding the DL-clause $\top \to \llbracket \alpha \rrbracket(x) \lor \llbracket \neg \alpha \rrbracket(x)$ for each o-axiom $\llbracket \alpha \rrbracket$ occurring in C.

$$\mathcal{B}_{ex} := \neg C(s)$$

$$\wedge \llbracket \neg B(a) \rrbracket \sqsubseteq C$$

$$\wedge \neg C \sqsubseteq \llbracket B \sqsubseteq \bot \rrbracket$$

$$\begin{bmatrix} S \\ \bullet \\ \neg C, \\ \llbracket B \sqsubseteq \bot \rrbracket \end{bmatrix} \begin{bmatrix} C \\ S^{\mathcal{I}}, \neg C, C \\ \bullet \\ \vdots \\ B^{\mathcal{I}_{S}} = \emptyset \end{bmatrix}$$

$$\begin{split} \mathcal{A}_{\text{ex}} &:= \{ \neg C(s) \} \\ \mathcal{C}_{\text{ex}} &:= \{ \llbracket \neg B(a) \rrbracket(x) \to C(x), \\ & \top \to C(x) \lor \llbracket B \sqsubseteq \bot \rrbracket(x), \\ & \top \to \llbracket B \sqsubseteq \bot \rrbracket(x) \lor \llbracket \neg (B \sqsubseteq \bot) \rrbracket(x), \\ & \top \to \llbracket B(a) \rrbracket(x) \lor \llbracket \neg B(a) \rrbracket(x) \} \end{split}$$

Definition (Repletion)

Let $\mathcal C$ be a set of DL-clauses. The **repletion** of $\mathcal C$ is obtained from $\mathcal C$ by adding the DL-clause $\top \to \llbracket \alpha \rrbracket(x) \vee \llbracket \neg \alpha \rrbracket(x)$ for each o-axiom $\llbracket \alpha \rrbracket$ occurring in $\mathcal C$.

$$\mathcal{B}_{ex} := \neg C(s)$$

$$\wedge \llbracket \neg B(a) \rrbracket \sqsubseteq C$$

$$\wedge \neg C \sqsubseteq \llbracket B \sqsubseteq \bot \rrbracket$$

$$\begin{array}{c} s \\ \bullet \\ \neg C, \\ \llbracket B \sqsubseteq \bot \rrbracket, \\ \llbracket B(a) \rrbracket \end{array}$$

$$\begin{split} \mathcal{A}_{\text{ex}} &:= \{ \neg C(s) \} \\ \mathcal{C}_{\text{ex}} &:= \{ \llbracket \neg B(a) \rrbracket(x) \to C(x), \\ & \top \to C(x) \vee \llbracket B \sqsubseteq \bot \rrbracket(x), \\ & \top \to \llbracket B \sqsubseteq \bot \rrbracket(x) \vee \llbracket \neg (B \sqsubseteq \bot) \rrbracket(x), \\ & \top \to \llbracket B(a) \rrbracket(x) \vee \llbracket \neg B(a) \rrbracket(x) \} \end{split}$$

Definition (Repletion)

Let $\mathcal C$ be a set of DL-clauses. The **repletion** of $\mathcal C$ is obtained from $\mathcal C$ by adding the DL-clause $\top \to \llbracket \alpha \rrbracket(x) \vee \llbracket \neg \alpha \rrbracket(x)$ for each o-axiom $\llbracket \alpha \rrbracket$ occurring in $\mathcal C$.

$$\mathcal{B}_{ex} := \neg C(s)$$

$$\wedge \llbracket \neg B(a) \rrbracket \sqsubseteq C$$

$$\wedge \neg C \sqsubseteq \llbracket B \sqsubseteq \bot \rrbracket$$

$$\begin{array}{c} S \\ \bullet \\ \neg C, \\ \llbracket B \sqsubseteq \bot \rrbracket, \\ \llbracket \neg B(a) \rrbracket, \\ C \end{array}$$

$$\begin{split} \mathcal{A}_{\text{ex}} &:= \{ \neg C(s) \} \\ \mathcal{C}_{\text{ex}} &:= \{ \llbracket \neg B(a) \rrbracket(x) \to C(x), \\ & \top \to C(x) \vee \llbracket B \sqsubseteq \bot \rrbracket(x), \\ & \top \to \llbracket B \sqsubseteq \bot \rrbracket(x) \vee \llbracket \neg (B \sqsubseteq \bot) \rrbracket(x), \\ & \top \to \llbracket B(a) \rrbracket(x) \vee \llbracket \neg B(a) \rrbracket(x) \} \end{split}$$

Definition (Repletion)

Let $\mathcal C$ be a set of DL-clauses. The **repletion** of $\mathcal C$ is obtained from $\mathcal C$ by adding the DL-clause $\top \to \llbracket \alpha \rrbracket(x) \vee \llbracket \neg \alpha \rrbracket(x)$ for each o-axiom $\llbracket \alpha \rrbracket$ occurring in $\mathcal C$.

Thank you for your attention! Any questions?

- Pseudo-random domain models of increasing complexity:
 - based on parameter n
 - n natural types, n compartment types, for each compartment type n role types
- 3 different scenarios
 - 1. Number of (constrained) relationship types per compartment type
 - 2. Number of role groups per compartment type
 - 3. Whether or not compartments can play roles.
- Average execution time of JConHT
 - Translation from CROM models into ontologies neglected
 - For each configuration 100 executions
 - Average time needed to decide consistency

- Pseudo-random domain models of increasing complexity:
 - based on parameter n
 - n natural types, n compartment types, for each compartment type n role types
- 3 different scenarios
 - 1. Number of (constrained) relationship types per compartment type
 - 2. Number of role groups per compartment type
 - 3. Whether or not compartments can play roles.
- Average execution time of JConH1
 - Translation from CROM models into ontologies neglected
 - For each configuration 100 executions
 - Average time needed to decide consistency

- Pseudo-random domain models of increasing complexity:
 - based on parameter n
 - n natural types, n compartment types, for each compartment type n role types
- 3 different scenarios
 - 1. Number of (constrained) relationship types per compartment type
 - 2. Number of role groups per compartment type
 - 3. Whether or not compartments can play roles.
- Average execution time of JConHT
 - Translation from CROM models into ontologies neglected
 - For each configuration 100 executions
 - Average time needed to decide consistency

Average execution times of JConHT for benchmark ontologies.

Average execution times of JConHT for benchmark ontologies.

Average execution times of JConHT for benchmark ontologies.

References I

- Kühn, Thomas, Stephan Böhme, et al. (2015). "A combined formal model for relational context-dependent roles". In: *Proc. of the 8th ACM SIGPLAN Int. Conf. on Software Language Engineering (SLE 2015).* (Pittsburgh, PA, USA). Ed. by Richard F. Paige, Davide Di Ruscio, and Markus Völter. ACM, pp. 113–124.
- Kühn, Thomas, Max Leuthäuser, et al. (2014). "A Metamodel Family for Role-Based Modeling and Programming Languages". In: Proc. of the 7th Int. Conf. on Software Language Engineering (SLE 2014). (Västerås, Sweden). Ed. by Benoît Combemale et al. Vol. 8706. Lecture Notes in Computer Science. Springer-Verlag, pp. 141–160.
- Steimann, Friedrich (2000). "On the representation of roles in object-oriented and conceptual modelling". In: Data & Knowledge Engineering 35.1, pp. 83–106.