12/10/2024

Final Project: Motion Capture Hand Postures Statistical Analysis

This goal of this project is to demonstrate concepts learned from the STAT 330 course at University of Wisconsin – Stout and apply them to analyzing a big data set. For this project, I used the Motion Capture Hand Postures Dataset .CSV from the UC Irvine Machine Learning Repository. This dataset was created after recording 12 users with a Vicon Motion Capture system performing 5 different postures with 12 markers on the left-hand. After the data was chosen, I used the following technologies to create this project:

- Python3 (Matplotlib, Pandas, and Sklearn)
- Visual Studio Code
- Microsoft Excel

The reason I chose the Motion Capture Hand Postures dataset was because my career path after UW Stout is Motion Capture / Virtual Production. Therefore, what better way to take career path and apply the concepts I learned from the course into something that I am passionate about.

For this project, I only analyzed the first 3 users' postures and the first 3 markers out of the 12. This was done to due to consistency of the data being tracked and reduction of null data. Therefore, this leads me into the research questions and my findings for this project.

Research Questions:

- 1. Does each user's hand posture produce the same data for each marker?
- 2. Which marker values are similar across all 3 users?
- 3. Which marker values are different across all 3 users?

Data Visualization for Marker 1:

User 1:

User 2

User 3

Mean / Median / Variance:

User 1:	User 2:	<u>User 3:</u>
Mean:	Mean:	Mean:
X0 56.911445	X0 38.297834	X0 62.912399
Y0 66.483680	Y0 95.054968	Y0 78.428093
Z0 -50.060325	Z0 -36.337004	Z0 -45.085385
Variance:	Variance:	Variance:
X0 709.532968	X0 796.395049	X0 1069.699770
Y0 1591.847755	Y0 1428.144664	Y0 869.611520
Z0 1249.190054	Z0 440.213076	Z0 735.031493
Median:	Median:	Median:
X0 59.698655	X0 43.624402	X0 66.477217
Y0 72.573015	Y0 84.494543	Y0 74.951750
Z0 -66.325850	Z0 -42.856146	Z0 -53.231795

Data Visualization for Marker 2:

User 1

User 2

User 3

Mean / Median / Variance:

User 1:	User 2:	User 3:
Mean:	Mean:	Mean:
X1 56.374910	X1 40.083709	X1 62.172070
Y1 73.632549	Y1 88.082662	Y1 81.315361
Z1 -46.208712	Z1 -38.161702	Z1 -43.252467
Variance:	Variance:	Variance:
X1 633.989906	X1 856.533257	X1 956.910245
Y1 1724.663762	Y1 1287.831326	Y1 1055.501970
Z1 1346.884845	Z1 464.874732	Z1 883.260861
Median:	Median:	Median:
X1 59.123175	X1 49.297404	X1 67.098144
Y1 79.784698	Y1 83.269481	Y1 75.689442
Z1 -57.133381	Z1 -44.246276	Z1 -52.154551

Data Visualization for Marker 3:

User 1

User 2

User 3

Mean / Median / Variance:

User 1:	User 2:	<u>User 3:</u>
Mean:	Mean:	Mean:
X2 57.926243	X2 43.189058	X2 58.972240
Y2 74.989953	Y2 82.968124	Y2 80.568448
Z2 -44.968430	Z2 -40.241015	Z2 -41.771573
Variance:	Variance:	Variance:
X2 620.052847	X2 844.994023	X2 971.150402
Y2 1685.421273	Y2 1320.399382	Y2 1060.415524
Z2 1441.738260	Z2 509.919524	Z2 911.338396
Median:	Median:	Median:
X2 59.501355	X2 51.513193	X2 66.398059
Y2 78.571885	Y2 82.292364	Y2 76.750799
Z2 -58.091407	Z2 -46.434468	Z2 -51.431179

Linear Regression for Marker 1:

User 1

User 2

User 1: Coefficients: [-0.5949293 0.44510671] Intercept: -45.77599154193584 R-Squared:

0.6083378333700067

User 2: Coefficients: [-0.0975721 0.34855353] Intercept: -65.73358140575358 R-Squared: 0.40554585685644295 User 3: Coefficients: [0.16215888 0.75560854] Intercept: -114.58861678341506 R-Squared: 0.5979863897462455

Linear Regression for Marker 2:

User 1

User 2

User 3

User 1: Coefficients: [-0.57546458 0.45916079] Intercept: -47.68384859701907 R-Squared:

0.46874506221915

User 2: Coefficients: [-0.11714421 0.37185085] Intercept: -66.30584130098926

R-Squared: 0.4764662896719628

User 3:

Coefficients: [0.19023321

0.7215145] Intercept: -

113.54146964148215

R-Squared:

0.5840228136518861

Linear Regression for Marker 3:

User 1

User 2

User 3

User 1: Coefficients: [-0.56007384

0.51865178] Intercept: -

51.228574732421976

R-Squared:

0.5982539088868244

User 2:

Coefficients: [-0.15179448

0.37328328] Intercept: -

64.80616199978033

R-Squared:

0.45849671917566137

User 3:

Coefficients: [0.19061914

0.73827113] Intercept: -

112.23778826236631

R-Squared:

0.6403356009955976

Conclusion:

After using Matplotlib to graph the dataset and Sklearn to graph the linear regression, the result has determined that there are similarities between Marker values and each user. When the user switches posture the results can start off the same. However, due the data provided and lack of knowledge about user body size, different movement motions, and motion speeds this can cause the data to exhibit differences and variances.

In the first Users marker set, there are more frames from the Vicon system recording for each posture. Therefore, the data is more consistent. Due to the amount of recording frames decreasing for both user 2 and 3, the data becomes less consistent and produces variance in values.

In conclusion, each user's hand posture produces similar data with variances for each marker due to body size, movement speed, and motion speeds.