

ETC3550/ETC5550 Applied forecasting

Week 7: Seasonal exponential smoothing

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

General notation ETS: ExponenTial Smoothing

→ ↑

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

```
General notation ETS: ExponenTial Smoothing

→ ↑ 

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

3

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

ETS(A,A,A): Holt-Winters additive method

State equations
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

$$s_t = s_{t-m} + \gamma \varepsilon_t$$
 Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$
- \blacksquare *k* is integer part of (h-1)/m.

ETS(A,N,A): No trend, additive seasonal model

State equations
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

$$s_t = s_{t-m} + \gamma \varepsilon_t$$
 Observation equation
$$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + s_{t+h-m(k+1)}$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$
- \blacksquare *k* is integer part of (h-1)/m.

Models so far

Addi	Additive Error		Seasonal Component	
	Trend	N	Α	
	Component	(None)	(Additive)	
N	(None)	A,N,N	A,N,A	
Α	(Additive)	A,A,N	A,A,A	

All ETS models we will use

Add	litive Error	Seasonal Component			
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	A,N,N	A,N,A	A,N,M	
Α	(Additive)	A,A,N	A,A,A	A,A,M	
A_d	(Additive damped)	A,A _d ,N	A,A _d ,A	A,A _d ,M	

All ETS models we will use

Additive Error		Seasonal Component			
Trend N A M			M		
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	A,N,N	A,N,A	A,N,M	
Α	(Additive)	A,A,N	A,A,A	A,A,M	
A_{d}	(Additive damped)	A,A _d ,N	A,A _d ,A	A,A _d ,M	

Mul	tiplicative Error	Seasonal Component				
	Trend	N	Α	M		
	Component	(None)	(Additive)	(Multiplicative)		
Ν	(None)	M,N,N	M,N,A	M,N,M		
Α	(Additive)	M,A,N	M,A,A	M,A,M		
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A _d ,M		

ETS(M,N,N): SES with multiplicative errors.

State equation
$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$
Observation equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Same point forecasts as ETS(A,N,N) with additive errors and same α .
- Different prediction intervals from ETS(A,N,N).

ETS(M,A,N): Holt's method with multiplicative errors.

State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$
 Observation equation
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Same point forecasts as ETS(A,A,N) with additive errors and same α and β
- Different prediction intervals from ETS(A,A,N).

ETS(M,A,M): Holt-Winters multiplicative method

State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$

$$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$$
 Observation equation
$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$$
 Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- \blacksquare *k* is integer part of (h-1)/m.

Add	litive Error	Seasonal Component			
	Trend	N A M			
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	A,N,N	A,N,A	A,N,M	
Α	(Additive)	A,A,N	A,A,A	A,A,M	
A_d	(Additive damped)	A,A_d,N	A,A_d,A	A,A _d ,M	

Mul	tiplicative Error	Seasonal Component				
	Trend	N	Α	М		
	Component	(None)	(Additive)	(Multiplicative)		
Ν	(None)	M,N,N	M,N,A	M,N,M		
Α	(Additive)	M,A,N	M,A,A	M,A,M		
A_d	(Additive damped)	M,A _d ,N	M,A _d ,A	M,A _d ,M		

Additive error models

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
Α	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$

Multiplicative error models

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
A	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \\ b_t &= b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \\ s_t &= s_{t-m} + \gamma(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1}) (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{aligned}$
A _d	$y_{t} = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_{t})$ $b_{t} = \phi b_{t-1} + \beta(\ell_{t-1} + \phi b_{t-1})\varepsilon_{t}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_{t})$ $\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha(\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$ $b_{t} = \phi b_{t-1} + \beta(\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$ $s_{t} = s_{t-m} + \gamma(\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + \phi b_{t-1}) (1 + \alpha \varepsilon_{t})$ $b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_{t}$ $s_{t} = s_{t-m} (1 + \gamma \varepsilon_{t})$

Additive Error		Seasonal Component			
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	A,N,N	A,N,A	A,N,M	
Α	(Additive)	A,A,N	A,A,A	A,A,M	
A_d	(Additive damped)	A,A_d,N	A,A_d,A	A,A _d ,M	

Mul	tiplicative Error	Seasonal Component				
	Trend	N	Α	M		
	Component	(None)	(Additive)	(Multiplicative)		
Ν	(None)	M,N,N	M,N,A	M,N,M		
Α	(Additive)	M,A,N	M,A,A	M,A,M		
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M		

Additive Error Seasonal Component				
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	<u> </u>
Α	(Additive)	A,A,N	A,A,A	Λ , Λ , Λ
A_d	(Additive damped)	A,A _d ,N	A,A _d ,A	^,^ _d ,M

Mul	tiplicative Error	Seasonal Component				
	Trend	N	Α	M		
	Component	(None)	(Additive)	(Multiplicative)		
N	(None)	M,N,N	M,N,A	M,N,M		
Α	(Additive)	M,A,N	M,A,A	M,A,M		
A_{d}	(Additive damped)	M,A _d ,N	M,A _d ,A	M,A _d ,M		

AIC and cross-validation

Minimizing the AIC assuming Gaussian residuals is asymptotically equivalent to minimizing one-step time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Residuals

Response residuals

$$\hat{\boldsymbol{e}}_t$$
 = $y_t - \hat{y}_{t|t-1}$

Innovation residuals

Additive error model:

$$\hat{\varepsilon}_t = y_t - \hat{y}_{t|t-1}$$

Multiplicative error model:

$$\hat{\varepsilon}_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$