Generative modelling

Intro to ML
Olga Mineeva
omineeva@student.ethz.ch

Conjugate prior

Definition

• When do we need it?

Conjugate prior

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$igg lpha + \sum_{i=1}^n x_i, \ eta + n - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$
Binomial	p (probability)	Beta	α, β	$lpha + \sum_{i=1}^n x_i, \ eta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$\operatorname{BetaBin}(ilde{x} lpha',eta')$ (beta-binomial)
Negative binomial with known failure number, <i>r</i>	p (probability)	Beta	α, eta	$\alpha + \sum_{i=1}^n x_i, \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{\text{[note 1]}} \text{ (i.e., } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
Poisson	λ (rate)	Gamma	k, θ	$k+\sum_{i=1}^n x_i,\;rac{ heta}{n heta+1}$	k total occurrences in $\frac{1}{ heta}$ intervals	$\mathrm{NB}(ilde{x} \mid k', heta')$ (negative binomial)
			$\alpha, \beta^{[\text{note 3}]}$	$\alpha + \sum_{i=1}^n x_i, \ \beta + n$	α total occurrences in eta intervals	$\operatorname{NB}\!\left(ilde{x}\mid lpha', rac{1}{1+eta'} ight)$ (negative binomial)
Categorical	p (probability vector), k(number of categories;i.e., size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{Inote 1}}$	$p(ilde{x} = i) = rac{lpha_i{'}}{\sum_i lpha_i{'}} = rac{lpha_i{'}}{\sum_i lpha_i + n}$
Multinomial	p (probability vector), k(number of categories;i.e., size of p)	Dirichlet	α	$oldsymbol{lpha} + \sum_{i=1}^n \mathbf{x}_i$	$lpha_i - 1$ occurrences of category $i^{ ext{[note 1]}}$	$\operatorname{DirMult}(\tilde{\mathbf{x}} \mid \boldsymbol{lpha}')$ (Dirichlet-multinomial)
Hypergeometric with known total population size, <i>N</i>	M (number of target members)	Beta- binomial ^[4]	n=N,lpha,eta	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	
Geometric	p ₀ (probability)	Beta	α , β	$\alpha+n,\beta+\sum_{i=1}^n x_i-n$	lpha-1 experiments, $eta-1$ total failures ^[note 1]	

Multinomial distribution

A discrete distribution has a finite set of outcomes 1,...,m. It is parameterized by a vector $\boldsymbol{\theta}=(\theta_1,...,\theta_m), \quad \sum_j \theta_j=1, \quad P(X=j|\boldsymbol{\theta})=\theta_j$

Suppose $X_i \sim Discrete(\pmb{\theta})$ for i=1,...,n and N_j is the number of times j occurs in \pmb{X}

Then $N|n, \theta \sim Multi(\theta, n)$

$$P(\boldsymbol{N}|n,\boldsymbol{\theta}) = \frac{n!}{\prod_{j=1}^{m} N_j!} \prod_{j=1}^{m} \theta_j^{N_j}$$

Dirichlet distribution

$$P(\boldsymbol{\theta}|\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{j=1}^{m} \alpha_j)}{\prod_{j=1}^{m} \Gamma(\alpha_j)} \prod_{k=1}^{m} \theta_k^{\alpha_k - 1}$$

$$\alpha = (\alpha_1, ..., \alpha_m), \quad where \quad \alpha_j > 0$$

Inference for θ with Dirichlet priors

By Bayes Rule, posterior is:

$$P(\boldsymbol{\theta}|\boldsymbol{X}) \propto P(\boldsymbol{X}|\boldsymbol{\theta})P(\boldsymbol{\theta})$$

$$\propto \left(\prod_{j=1}^{m} \theta_{j}^{N_{j}}\right) \left(\prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}\right)$$

$$= \prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1}, \quad so$$

$$P(\boldsymbol{\theta}|\boldsymbol{X}) = Dir(\boldsymbol{N}+\boldsymbol{\alpha})$$

Inference for θ with Dirichlet priors

By Bayes Rule, posterior is:

$$P(\boldsymbol{\theta}|\boldsymbol{X}) = Dir(\boldsymbol{N} + \boldsymbol{\alpha})$$

So if prior is Dirichlet with parameters α , posterior is Dirichlet with parameters $N+\alpha$ \Rightarrow can regard Dirichlet parameters α as "pseudo-counts" from "pseudo-data"

Normalising constant?

Point estimates from Bayesian posterior

MLE

$$oldsymbol{ heta}_j^* = rac{N_j}{n}$$

MAP

$$\theta_j^* = \frac{N_j + \alpha_j - 1}{n + \sum_{j'=1}^m (\alpha_{j'} - 1)}$$

Connection between them https://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/

Regularisation

Degeneracy in GMM or GBC

 Wishart distribution – is a family of probability distributions for symmetric positive definite matrices

Can be priors harmful?

https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

EM for the Mixture of Distributions

$$x_i \in \{1, 2, 3\}, where \quad i = 1, ..., N$$

$$p(x) = \gamma p_1(x) + (1 - \gamma)p_2(x)$$

$$p_1(x) = \begin{cases} \alpha, & if \ x = 1 \\ 1 - \alpha, & if \ x = 2 \\ 0, & if \ x = 3 \end{cases} \qquad p_2(x) = \begin{cases} 0, & if \ x = 1 \\ 1 - \beta, & if \ x = 2 \\ \beta, & if \ x = 3 \end{cases}$$

$$k_1=30, k_2=20, k_3=60$$
 – observations $\alpha_0=\beta_0=\gamma_0=\frac{1}{2}$ – starting point for EM

To do:

- 1. Write joint distribution over observed and latent variables governed by parameters $\theta = (\alpha, \beta, \gamma)$.
- 2. E step. Evaluate the responsibilities using the current parameter values.
- 3. M step. Re-estimate the parameters using the current responsibilities.
- 4. Using given numbers calculate E and M steps until convergence.

Solution

$$p(X,Z) = \gamma^{k_1} \alpha^{k_1} (1-\gamma)^{k_3} \beta^{k_3} \prod_{i=1}^{k_2} (\gamma(1-\alpha))^{[z_i=1]} ((1-\gamma)(1-\beta))^{[z_i=2]}$$

$$p(z_i = 1|X, \theta) = \frac{\gamma(1-\alpha)}{1-\beta+\gamma(\beta-\alpha)} = \sigma \qquad p(z_i = 2|X, \theta) = \frac{(1-\gamma)(1-\beta)}{1-\beta+\gamma(\beta-\alpha)}$$

$$\alpha = \frac{k_1}{k_1 + k_2 \sigma}$$
 $\beta = \frac{k_3}{k_3 + k_2 \sigma}$ $\gamma = \frac{k_1 + k_2 \sigma}{k_1 + k_2 + k_3}$

$$\alpha = \frac{3}{4}, \beta = \frac{6}{7}, \gamma = \frac{4}{11}$$