PAT-NO:

JP406230263A

DOCUMENT-IDENTIFIER:

JP 06230263 A

TITLE:

LENS MOVING DEVICE

PUBN-DATE:

August 19, 1994

INVENTOR-INFORMATION:

NAME

MORIZUMI, MASAAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FUJI PHOTO OPTICAL CO LTD

N/A

APPL-NO:

JP05032764

APPL-DATE:

January 28, 1993

INT-CL (IPC): G02B007/04, H04N005/232

ABSTRACT:

PURPOSE: To attain the miniaturization of a camera by concentrically and efficiently arranging each member such as a coil and a magnet, etc., on the outer periphery of a lens.

CONSTITUTION: The coil 12, the magnet 22 and a fixed frame(yoke) 23 are

concentrically arranged on the outer periphery of the lens 10, and the lens 10

is moved in an optical axis direction by performing the energizing control of

the coil 12. And also, position detecting means 30 and 31 are installed

between the lens frame 11 for the lens 10 and a fixing part so as to detect the

moving amount of the lens 10. Further, mounting position adjusting means 25

and 26 are installed on the mounting part of the supporting part for the lens

frame 11 and members on the main body side.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-230263

(43)公開日 平成6年(1994)8月19日

(51)Int.Cl.*		識別記号	广内整理番号	FI		技術表示	箇所
G 0 2 B	7/04				~		
H04N	5/232	A				•	
				G02B 17/	na	E	

審査請求 未請求 請求項の数3 FD (全 4 頁)

(21)出顯番号	特顏平5一32764	(71)出顧人 000005430
(22)出願日	平成5年(1993)1月28日	富士写真光機株式会社 埼玉県大宮市植竹町 1 丁目324番地
		(72)発明者 森住 雅明 埼玉県大宮市植竹町1丁目324番地 宮士
		写真光機株式会社内 (74)代理人 弁理士 絡方 保人

(54) 【発明の名称】 レンズ移動装置

(57)【要約】

【目的】 コイル、マグネット等の各部材をレンズの外 周に同心状に効率よく配置し、カメラの小型化が可能となるようにする。

【構成】 レンズ10の外周に同心状にコイル12、マグネット22、固定枠(ヨーク)23を配置し、このコイル12への通電制御によってレンズ10を光軸方向へ移動させる構成とする。また、上記レンズ10のレンズ枠11と固定部との間に位置検出手段30,31を設け、レンズ10の移動量を検出する。更に、上記レンズ枠11の支持部と本体側部材との取付け部に、取付け位置調整手段25,26を設ける。

1

【特許請求の範囲】

【請求項1】 レンズの外間に同心状にコイル及びマグネットを配置し、このコイルへの通電制御によってレンズを光軸方向へ移動させるようにしたレンズ移動装置。

【請求項2】 上記レンズ枠と固定部との間に位置検出 手段を設け、レンズの移動量を検出するようにしたこと を特徴とする上記第1請求項記載のレンズ移動装置。

【請求項3】 上記レンズ枠の支持部と本体側部材との取付け部に、取付け位置調整手段を設けたことを特徴とする上記第1請求項記載のレンズ移動装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ビデオカメラ、その他 の各種カメラにおいてフォーカス制御のためにレンズを 移動させるレンズ移動装置の構造に関する。

[0002]

【従来の技術】ビデオカメラ等の各種のカメラにおいては、フォーカス制御に際して例えばインナーレンズの移動制御が行われており、このレンズ移動は、例えば図5のような構造にて行われている。図5において、レンズ 201を保持するレンズ枠2は、光軸方向に配置されたガイド軸(棒)3に沿って移動可能とされており、このレンズ枠2の上部に円筒形のコイル(マグネットコイル)4が取り付けられる。一方、円筒形のマグネット5を内包する固定円筒(ヨーク)6が取り付けられ、このマグネット5と固定円筒6との間に上記コイル4が同軸上に配置される。

【0003】上記の構成によれば、コイル4に所定の方向で電流を流すと、このコイル4で発生する磁力と、上記マグネット5及び固定筒6によって生じる磁界との相 30 互作用により、レンズ枠2がガイド軸3に沿って移動する。この場合、移動方向は電流を流す向きによって決定される。このようにして、レンズ1は電流量に比例した移動量だけ光軸方向に移動させられることになり、この移動するレンズ1と固定レンズ群によりフォーカス制御が可能となる。

[0004]

【発明が解決しようとする課題】しかしながら、上記レンズ移動装置では、レンズ枠2の上部にガイド軸3を設け、このガイド軸3に同軸となるようにレンズ移動のための各部材、コイル4、マグネット5、固定円筒6を配置する構造となっており、これらの部材を配置する空間を必要とすることから、カメラの小型化が図れないという問題があった。

【0005】本発明は上記問題点に鑑みてなされたものであり、その目的は、各部材をレンズの外間に同心状に効率よく配置し、カメラの小型化が可能となるレンズ移動装置を提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するため 50

に、本発明に係るレンズ移動装置は、レンズの外周に同 心状(レンズを囲む状態であり、略同心も含む)にコイ ル及びマグネットを配置し、このコイルへの通電制御に よってレンズを光軸方向へ移動させるようにしたことを 特徴とする。第2請求項記載の発明は、上記レンズ枠と 固定部との間に位置検出手段を設け、レンズの移動量を 検出するようにしたことを特徴とする。第3 請求項記載 の発明は、上記レンズ枠の支持部と本体側部材との取付 け部に、取付け位置調整手段を設けたことを特徴とす る。

2

[0007]

【作用】上記の構成によれば、レンズ枠の外周において、例えば円筒状のコイルがレンズ枠側に、このコイルと同心円となる円筒状のマグネットが固定枠(ヨーク)側に配置される。従って、ガイド軸に対して同軸上に配置された従来の構造に比べて、各部材を効率よく配置することができる。

【0008】また、上記レンズ枠の移動は位置検出手段によって検出され、これ検出値をフィードバックすることにより、正確な位置制御が行われる。更に、レンズ枠を取り付ける際には、支持部が例えばネジとコイルバネからなる位置調整手段を用いて本体側に取り付けられており、この位置調整手段によってレンズは光軸上に正確に位置決めされる。

[0009]

【実施例】図1には、実施例に係るレンズ移動装置の断面図が示され、図2には図1の装置の分解斜視図が示されている。図において、移動レンズ(レンズ群)10は、レンズ枠11で保持され、このレンズ枠11の外周にはコイル(マグネットコイル)12が巻回されている。このレンズ枠11の下側には、図示のようにエの字型のマウントカプラー13が一体に設けられている。一方、支持枠14側に上記マウントカプラー13が嵌合する開口を有する支持側カプラー15が取り付けられ、この支持側カプラー15へマウントカプラー13を嵌合することによって、レンズ枠11が支持枠14側へ連結固定される。

【0010】この支持枠14においては、図2又は図3に示されるように、上部の支持端17と上記支持側カプラー15との間に、左右でそれぞれ平行リンク機構となるように4本の腕18が設けられており、これらの腕18は支持端17及び支持側カプラー15に対し、逆三角形の切込みにて形成されるとンジ部20を介して接続される。従って、上記支持側カプラー15へ連結されたレンズ10及びレンズ枠11は、支持端17(支持枠14)に対して、所定長さの腕18の平行運動により揺動可能に支持された形となり、レンズ10は支持端17を固定端として光軸方向へ数mm程度移動できることになる。なお、上記とンジ部20は平行運動を可能とすると共に、レンズ10の揺動の際にレンズ10が傾くことを

防止しており、レンズ10は常に光軸に対する垂直位置 を維持できることになる。

【0011】そして、実施例では円筒状のマグネット (永久磁石)22及び金属製の固定枠23が上記レンズ 枠11と同心円状態となるように配置される。即ち、上 記固定枠23の外周面は上記支持枠14の内周面に嵌合 する大きさとされ、マグネット22の外周面は固定枠2 3の後端部の内周面に嵌合する大きさとされ、これらの 部材の嵌合によって各部材はしっかり固定される。これ により、マグネット22と固定枠23との間には、磁路 10 が形成されることになり、この磁路内へ上記レンズ枠1 1のコイル12が配置される。

【0012】また、この固定枠23の外周には3ヵ所に取付け部24が突出形成され、この取付け部24の取付け孔を通したネジ25を、コイルバネ26を挟みながら本体28のマウント部29へ捩じ込むことによって、固定枠23が本体28へ取り付けられる。この3ヵ所の取付け部24に配置されたコイルバネ26によれば、ネジ25のそれぞれの捩じ込み量を変えることによりレンズ枠11に配置されたレンズ10の光軸方向の位置又は光20軸に対する傾きを調整することができる。従って、レンズ10を含むレンズ移動装置の正確な取付けが容易となる利点がある。

【0013】更に、位置検出手段として、上述したレンズ枠11のマウントカプラー13の後端部に検出用棒30が取り付けられ、この検出用棒30を収納する大きさの検出コイル31が固定枠23に取り付けられている。この検出コイル31は、例えば磁場を発生させると同時に、この磁場内での検出用棒30の移動に応じて変化する電流、電圧等の電気要素量を測定することによって、レンズ10の位置を特定することができる。従って、実施例ではこの検出された位置情報をフィードバックし、レンズ移動の正確な制御を行うようになっている。

【0014】実施例は以上の構成からなり、上記レンズ移動装置を組立てたときの正面図(固定枠を除いてある)が図3に示され、側面図が図4に示されている。図示されるように、実施例ではレンズ枠11の外周の前後左右に設けられた4つの円弧状の腕18で支持枠14(支持端17)を固定端としてレンズ枠11(レンズ10)が支持され、この腕18の平行運動によりレンズ枠4011の揺動が許容されており、これによってレンズ10は光軸方向へ移動させられる。この際には、それぞれの腕18に設けられたヒンジ部20により、レンズ10が垂直状態を維持しながら移動できることになる。

【0015】実際のフォーカス制御においては、まず図-1に示されるコイル12に対して通電制御が行われ、コイル12の所定方向へ電流が供給されると、その電流に応じた破力がコイル12の周囲に発生することになる。そして、この磁力はマグネット22とヨークとしての固定枠23との間に生じている磁路との間で相互作用を

し、これによって光軸方向への力が働いて、レンズ10 は例えば前側へ移動する。一方、コイル12へ上記と反 対の方向へ電流が流されると、レンズ10は後側へ移動 する。また、この移動量は、コイル12へ与えられる電 流量によって制御されることになり、実施例ではコンマ 数mmから数mmの移動ができ、これによりフォーカス のためのレンズ(インナーレンズ)10の所定量の駆動 が実行される。

【0016】上記実施例では、コイル12、マグネット22、固定枠23を円筒形として同心円状に配置したが、これらの部材は角型筒形等の他の形状としてもよく、またコイル12を内側へマグネット22を外側へ配置したり、これらの個々の部材を分割してレンズ枠11の周囲に配置する等の他の構成とすることも可能である。更に、実施例では上記部材が完全な同心円となるように配置されているが、各部材の形状、配置状態に応じて偏心させて配置することもできる。

[0017]

【発明の効果】以上説明したように、第1請求項の発明によれば、レンズの外周に同心状にコイル及びマグネットを配置し、このコイルへの通電制御によってレンズを光軸方向へ移動させるようにしたので、従来のようにガイド軸に対して同軸上に配置する構造と比較して、各部材を効率よく配置することができ、カメラの小型化が可能となる。

【0018】第2請求項記載の発明によれば、位置検出 手段を設けてレンズの移動量を検出するようにしたの で、上記構成においても、移動制御を正確に実行するこ とができる。

) 【0019】第3請求項記載の発明によれば、上記レン ズ枠の取付け部に取付け位置調整手段を設けたので、レ ンズ枠の取付けが容易となる利点がある。

【図面の簡単な説明】

【図1】本発明の実施例に係るレンズ移動装置の構成を 示す断面図である。

【図2】図1の実施例装置の分解斜視図である。

[図3] 実施例装置を固定枠を除いて組立てたときの正面図である。

【図4】実施例装置を組立てたときの側面図である。

【図5】従来のレンズ移動装置を示す斜視図である。 【符号の説明】

1,10 … レンズ、

2.11 … レンズ枠、

4,12 … コイル、

5,22 … マグネット、

6,23 … 固定枠(ヨーク)、

13 … マウントカプラー、

14 … 支持枠、

15 … 支持側カプラー、

50 18 … 腺、

25 … 齐ジ、 26 … コイルバネ、

[図1]

【図2】

[図4]

[図3]

[図5]

