OpenCFD-SCU控制文件与参数说明

Edited by Dang Guanlin, 2022-01, dangguanlin@imech.ac.cn

OpenCFD-SCU参数定义模块

- OpenCFD-SCU中所有可输入的参数都定义在变量类型为configItem的结构体数组configList中。
- 每个控制参数即为configList数组中的一项。

configItem类型定义如下:

```
typedef struct configItem_
{
    char name[1000]; //变量名
    char value[1000]; //变量值
} configItem;
```

OpenCFD-SCU目前主计算部分可输入的控制参数为28个:

```
configItem configList[27] = {
                                //x、y、z三个方向的网格数
  {"GRID_3D", 0},
   {"PARALLEL_3D", 0},
                              //x、y、z三个方向并行分割数目
   {"MSG_BLOCK_SIZE", 0}, //重叠区宽度
{"STREAM", 0}, //总LWY
                                //计算通讯重叠
   {"TEST", 0},
                               //是否开启节点测试
                         //周期性边界条件
//计算Jacobian时的边界格式
   {"IPERIODIC", 0},
   {"JAC_BOUND", 0},
                              //差分计算时的边界格式
   {"DIF_BOUND", 0},
   {"NON_REFLETION", 0},
{"SCHEME_INVIS", 0},
                              //无反射边界条件
//无粘项计算格式
   {"SCHEME_VIS", 0},
                              //粘性项计算格式
                              //雷诺数
   {"RE", 0},
                              //马赫数
   {"AMA", 0},
                             //气体绝热指数
//普朗特数
   {"GAMMA", 0},
   {"PR", 0},
                            //无量纲参考温度
//S-W分裂中的稳定系数
   {"T_REF", 0},
   {"EPSL_SW", 0},
                              //时间步长
   {"DT", 0},
                               //计算结束时间
   {"END_TIME", 0},
   {"KSTEP_SHOW", 0},
{"KSTEP_SAVE", 0},
                               //显示步数
                              //流场保存步数
   {"INIT_STAT", 0},
                              //流场初始化
                              //边界类型
   {"IBC", 0},
                              //边界参数(整型变量)
   {"BC_NPARA", 0},
{"BC_RPARA", 0},
                               //边界参数(浮点型变量)
   {"CHARTERIC", 0}
                                //特征重构
```

滤波模块部分可输入的控制参数为2个:

```
FILTER_NPARA&//滤波参数(整型变量)FILTER_RPARA&//滤波参数(浮点型变量)//此处&代指从0开始的自然数,若程序调用一个滤波,控制参数名只有FILTER_NPARAO、FILTER_RPARAO,若程序同时调用多个滤波,则参数名应为FILTER_NPARAO、FILTER_RPARAO、FILTER_RPARA1、FILTER_RPARA1、FILTER_RPARA2、FILTER_RPARA2 . . . .
```

流场分析与后处理部分可输入的控制参数为3个:

```
ANA_EVENT& //分析事件
ANA_NPARA& //事件参数(整型变量)
ANA_RPARA& //事件参数(浮点型变量)
//此处&代指从0开始的自然数,若程序调用一个分析,控制参数名只有ANA_EVENTO、ANA_NPARAO、ANA_RPARAO,若程序同时调用多个分析,则参数名应为ANA_EVENTO、ANA_NPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO、ANA_RPARAO ANA_RPARAO ANA_RPARAO ANA_RPARAO ANA_RPARAO ANA_RPARAO ANA_RPARAO AN
```

混合格式相关参数为5个:

```
      HY_STYLE
      //混合格式类型

      HY_DP_INTV
      //阈值

      HY_SMOOTH_DP
      //光滑性处理

      HY_PATCH_ZONE
      //指定判别值的范围个数

      HY_ZONE&
      //指定判别值的范围与指定的判别值
```

OpenCFD-SCU参数读取模块

- OpenCFD-SCU通过遍历文本 opencfd-scu.in 获取以上定义的参数值。
- 在并行计算时,只有my_id为0的进程读取文本 opencfd-scu.in 获取参数值,后广播到其他进程。

参数读取模块代码如下:

```
FILE * file = fopen("opencfd-scu.in","r");//打开文件opencfd-scu.in
     int nk.nr:
      if(file == NULL){
            printf("\033[31mopencfd-scu.in is not find!\033[0m\n");
     }//如果没有发现文件opencfd-scu.in则退出
      SearchItem(file, configList, configNum);//遍历文件opencfd-scu.in, 找到控制文件中参数名对应的参数值
      sscanf(configList[0].value,"%d%d%d",&NX_GLOBAL,&NY_GLOBAL,&NZ_GLOBAL);//将网格数参数GRID_3D的值写入
NX_GLOBAL, NY_GLOBAL, NZ_GLOBAL
      sscanf(configList[1].value,"%d%d%d",&NPXO,&NPYO,&NPZO);//将并行分割块数对应的参数PARALLEL_3D的值写入
NPX0, NPY0, NPZ0
     sscanf(configList[2].value,"%d",&dummy_i);//目前版本程序LAP参数程序默认值为4,即使读取LAP值也不生效,并将值写入到变量
     sscanf(configList[3].value,"%d",&MSG_BLOCK_SIZE);//读取通讯方式,目前程序只有阻塞式MPI通讯一种,即使读取
MSG_BLOCK_SIZE值也不生效,并将值写入到无效变量MSG_BLOCK_SIZE中
      sscanf(configList[4].value,"%d",&stream_MODE);//读取控制计算通讯重叠的参数STREAM,并将值写入到变量Stream_MODE中
      sscanf(configList[5].value,"%d",&TEST);//读取控制节点测试的参数TEST,并将值写入到变量TEST中
     sscanf(configList[6].value,"%d%d%d",&Iperiodic[0],&Iperiodic[1],&Iperiodic[2]);//读取控制周期性边条的参数
IPERIODIC, 并将值写入到数组变量Iperiodic[3]中
      sscanf(configList[7].value,"%d%d%d",&Jacbound[0],&Jacbound[1],&Jacbound[2]);//读取控制Jacob计算边界格式的参数
JAC_BOUND, 并将值写入到数组变量Jacbound[3]中
 0_bound[5]);//读取控制差分计算边界格式的参数DIF_BOUND,并将值写入到数组变量D0_bound[6]中
 sscanf(configList[9].value, "%d%d%d%d%d", &Non_ref[0], &Non_ref[1], &Non_ref[2], &Non_ref[3], &Non_ref[4], 
f[5]);//读取控制无反射边界条件的参数NON_REFLETION,并将值写入到数组变量Non_ref[6]中
      sscanf(configList[10].value,"%s", Scheme_invis);//读取控制无粘项计算格式的参数SCHEME_INVIS, 并将值写入到变量
Scheme_invis中
      sscanf(configList[11].value,"%s", Scheme_vis);//读取控制粘性项计算格式的参数SCHEME_VIS, 并将值写入到变量Scheme_vis
      SCHEME_CHOOSE scheme = {Scheme_invis, Scheme_vis};//将格式信息传递到结构体变量scheme中
      Schemes_Choose_ID(&scheme);//判断选择的格式与对应的编号
      if(strcmp(Scheme_invis, "SCHEME_HYBRIDAUTO") == 0) IFLAG_HybridAuto = 1;//判断是否是混合格式
      HybridAuto.Num_Patch_zones = 0;
      HybridAuto.IF_Smooth_dp = 0;
      HybridAuto.P_intvs = (REAL *)malloc((HybridA_Stage - 1)*sizeof(REAL));
      HybridAuto.zones = (int *)malloc(6*Patch_max*sizeof(int));
      HybridAuto.Pa_zones = (REAL *)malloc(Patch_max*sizeof(REAL));
      if(IFLAG_HybridAuto == 1){//如何启用混合格式则读取以下对应参数
            int (*HybridAuto_zones)[6] = (int(*)[6])HybridAuto.zones;
            configItem Hybridbuff = {"HY_DP_INTV", 0};
            SearchItem(file, &Hybridbuff, 1);
            tmp = PartItem(Hybridbuff.value, Part_buff);
            for(int i=0;i<(HybridA_Stage-1);i++) sscanf(Part_buff[i],"%1f",&HybridAuto.P_intvs[i]);//读取控制混合格式
阈值的参数HY_STYLE,对应变量写入到HybridAuto.Style中,目前默认HybridA_Stage为3,即只有2个阈值
            sprintf(Hybridbuff.name, "HY_STYLE");
            SearchItem(file, &Hybridbuff, 1);
```

```
sscanf(Hybridbuff.value,"%d",&HybridAuto.Style);//读取控制混合类型的参数HY_STYLE,对应值写入到
HybridAuto.Style中
           if(HybridAuto.Style != 1 && HybridAuto.Style != 2){
                 printf("\033[31mHYBRID SCHEMES CHOOSE IS WRONG! !! \033[0m\n");
                 exit(0);
           }
           sprintf(Hybridbuff.name, "HY_SMOOTH_DP");
           SearchItem(file, &Hybridbuff, 1);
           sscanf(Hybridbuff.value,"%d",&HybridAuto.IF_Smooth_dp);//读取是否做光滑性处理的参数HY_SMOOTH_DP,对应值写入到
HybridAuto.IF_Smooth_dp中
           sprintf(Hybridbuff.name, "HY_PATCH_ZONE");
           SearchItem(file, &Hybridbuff, 1);
           sscanf(Hybridbuff.value,"%d",&HybridAuto.Num_Patch_zones);//读取patch区数量的变量
           for(int i=0; i<HybridAuto.Num_Patch_zones; i++){</pre>
                 sprintf(Hybridbuff.name, "HY_ZONE%d", i);
                 SearchItem(file, &Hybridbuff, 1);
                 sscanf(Hybridbuff.value, "%d%d%d%d%d%d%d%d%d%f", \&HybridAuto\_zones[i][0], \&HybridAuto\_zones[i][0], \&HybridAuto\_zones[i][0], &HybridAuto\_zones[i][0], &HybridAuto\_zones[i]
[1],&HybridAuto_zones[i][2],
                 &HybridAuto_zones[i][3],&HybridAuto_zones[i][4],&HybridAuto_zones[i]
[5],&HybridAuto.Pa_zones[i]);//读取patch区对应的区域,将参数HY_ZONE&的值写入到数组HybridAuto_zones对应的行和列中,行表示
patch区域起止的范围,列表示第几个patch区。
           }
     }
     sscanf(configList[12].value,"%lf",&Re);//读取控制雷诺数的参数RE,并将值写入到变量Re中
     sscanf(configList[13].value,"%lf",&Ama);//读取控制马赫数的参数AMA,并将值写入到变量Ama中
     sscanf(configList[14].value,"%lf",&Gamma);//读取控制气体绝热指数的参数GAMMA,并将值写入到变量Gamma中
     sscanf(configList[15].value,"%lf",&Pr);//读取控制普朗特数的参数PR,并将值写入到变量Pr中
     sscanf(configList[16].value,"%lf",&Ref_T);//读取控制无量纲参考温度的参数T_REF, 并将值写入到变量Ref_T中
     sscanf(configList[17].value,"%1f",&epsl_SW);//读取控制S-w分裂中的稳定系数的参数EPSL_SW,并将值写入到变量epsl_SW中
     sscanf(configList[18].value,"%1f",&dt);//读取控制时间步长的参数DT,并将值写入到变量dt中
     sscanf(configList[19].value,"%1f",&end_time)//读取控制计算结束时间的参数END_TIME,并将值写入到变量end_time中;
     sscanf(configList[20].value,"%d",&Kstep_show);//读取控制显示步数的参数KSTEP_SHOW, 并将值写入到变量Kstep_show中
     sscanf(configList[21].va]ue,"%d",\&Kstep\_save);//读取控制流场保存步数的参数KSTEP\_SHOW,并将值写入到变量Kstep\_save中
     sscanf(configList[22].value,"%d",&Init_stat);//读取控制流场初始化的参数INIT_STAT,并将值写入到变量Init_stat中
     sscanf(configList[23].value,"%d",&IBC_USER);//读取控制边界类型的参数IBC,并将值写入到变量IBC_USER中
     BC_npara = (int*)malloc(sizeof(int)*100);
     BC_rpara = (REAL*)malloc(sizeof(REAL)*100);
     nk = PartItem(configList[24].value, Part_buff);//统计边界参数(整形变量)BC_NPARA具有几个变量值,并写入到数组
     for(int i=0;i<nk;i++) sscanf(Part_buff[i],"%d",BC_npara+i);//将数组Part_buff的值赋于数组BC_npara
     nr = PartItem(configList[25].value, Part_buff);//统计边界参数(浮点型变量)BC_RPARA具有几个变量值,并写入到数组
Part buff中
     for(int i=0;i<nr;i++) sscanf(Part_buff[i],"%]f",BC_rpara+i);//将数组Part_buff的值赋于数组BC_rpara
     sscanf(configList[26].value,"%d", &IF_CHARTERIC);//读取控制特征重构的参数CHARTERIC, 并将值写入到变量IF_CHARTERIC
     int NameNUM[1000];
     //滤波功能的参数读取
     NFiltering = ItemNUM(file, "FILTER_NPARA", &NameNUM[0]);//判断调用滤波的次数
     Filter_para = (int(*)[11])malloc(sizeof(int)*(NFiltering+1)*11);
     Filter_rpara = (REAL(*)[3])malloc(sizeof(REAL)*(NFiltering+1)*3);
      for(int i=0;i<NFiltering;i++){</pre>
           configItem Hybridbuff;
           //ntime, Filter_X, Filter_Y, Filter_Z, ib, ie, jb, je, kb, ke, Filter_scheme
           sprintf(Hybridbuff.name, "FILTER_NPARA%d", NameNUM[i]);
           SearchItem(file, &Hybridbuff, 1);
           tmp = PartItem(Hybridbuff.value, Part_buff);
           for(int n=0;n<11;n++) sscanf(Part_buff[n],"%d",&Filter_para[i][n]);//读取FILTER_NPARA&(滤波整形参数) 对应
的值写入数组Filter_para[&][11]中
           sprintf(Hybridbuff.name, "FILTER_RPARA%d", NameNUM[i]);
           SearchItem(file, &Hybridbuff, 1);
           tmp = PartItem(Hybridbuff.value, Part_buff);
```

```
for(int n=0;n<3;n++) sscanf(Part_buff[n],"%1f",&Filter_rpara[i][n]);//读取FILTER_RPARA&(滤波浮点型参数)
对应的值写入数组Filter_rpara[&][3]中
   //后处理和分析功能的参数读取
   N_ana = ItemNUM(file, "ANA_EVENT", &NameNUM[0]);//判断开启了几个分析功能
   ANA_npara = (int(*)[100])malloc(sizeof(int)*100*N_ana);
   ANA_rpara = (REAL(*)[100])malloc(sizeof(REAL)*100*N_ana);
   K_ana = (int*)malloc(sizeof(int)*N_ana);
   Kstep_ana = (int*)malloc(sizeof(int)*N_ana);
   for(int i=0;i<N_ana;i++){</pre>
       configItem Hybridbuff;
       sprintf(Hybridbuff.name, "ANA_EVENT%d", NameNUM[i]);
       SearchItem(file, &Hybridbuff, 1);//按顺序查找ANA_EVENT开头的变量,并获取值
       sscanf(Hybridbuff.value,"%d%d",K_ana+i,Kstep_ana+i);//将分析类型与分析步数写入数组K_ana和Kstep_ana
       sprintf(Hybridbuff.name, "ANA_NPARA%d", NameNUM[i]);
       SearchItem(file, &Hybridbuff, 1);//查找分析所需的整形参数ANA_NPARA&
       nk = PartItem(Hybridbuff.value, Part_buff);//分析参数个数
       for(int n=0;n<nk;n++) sscanf(Part_buff[n],"%d",&ANA_npara[i][n]);//将参数写入到数组ANA_npara中
       sprintf(Hybridbuff.name, "ANA_RPARA%d", NameNUM[i]);
       SearchItem(file, &Hybridbuff, 1);//查找分析所需的浮点型参数ANA_RPARA
       nr = PartItem(Hybridbuff.value, Part_buff);
       for(int n=0;n<nr;n++) sscanf(Part_buff[n],"%1f",&ANA_rpara[i][n]);//将参数写入到数组ANA_rpara中
   fclose(file):
```

控制文件参数填写注意事项与说明

- 为防止由于大小写容易混淆造成的错误,控制文件中所有参数均为大写,具体参数见参数定义模块说明。
- 参数名前后可加空格, 但不可以加其他特殊字符(添加特殊字符会使此行参数无效)。
- 参数填写没有顺序要求,只要在控制文件任意行中填写参数名与对应参数值,程序可自动查找识别。
- 一行只能填一个参数名与对应值, 其后加注释等其他文字不会造成错误。
- 控制文件中参数赋值时,参数名与参数值以等号隔开,参数具有多个输入值时,输入值以空格隔开,空格个数无限制。
- 对于滤波模块,程序支持计算时启用多个滤波。若程序只调用一个滤波,滤波控制参数名应为FILTER_NPARA0、FILTER_RPARA0,若程序同时调用多个滤波,则参数名未尾以自然数排列,如FILTER_NPARA0、FILTER_RPARA0、FILTER_NPARA1、FILTER_RPARA1、FILTER_RPARA1、FILTER_NPARA2、FILTER_RPARA2、...,程序可根据参数名自动判断调用了几个滤波。
- 对于流场分析与后处理模块,程序支持计算时启用多个分析与后处理。与滤波类似,参数名末尾以自然数排列,程序可自动识别调用了几个分析与后处理。如调用三个分析与后处理时,参数名应为ANA_EVENTO、ANA_NPARAO、ANA_RPARAO,ANA_EVENT1、ANA_NPARA1、ANA_RPARA1,ANA_EVENT2、ANA_NPARA2、ANA_RPARA2。
- 混合格式相关参数与分析只有在混合格式启用时才生效。
- 控制文件目前可读入但无用的参数有(存入废变量中,以便后续扩展功能使用):

MSG BLOCK SIZE

		参数说明	参数值					
GRID_3D	三个方向的网格数							
PARALLEL_3D	三个方向的并行分割数目(三维剖分时,应保证每个进程的数据块三个维度网格数目接近)							
	1.00.28版本程序当单进程网格规模设置为280*280*280时,DCU显存(16G)占比70%							
LAP	重叠区宽度(此参数目前版本不生效,重叠区默认为4)							
MSG_BLOCK_SIZE	MPI通讯类型(此参数目前版本不生效,只包含一种MPI通讯方式阻塞式)							
	是否开启计算通讯重叠(建议开启,开启后每个进程的每个方向网格数应大于 24 ,否则会造成程序卡死)							
STREAM	0	- 不开启计算通讯重叠	1					
	1	- 开启计算通讯重叠						
	是否开启特征重构(特征重构可使计算鲁棒性大幅提升,但计算速度有0.5倍到1倍的减慢)							
CHARTERIC	0	- 不启用特征重构	1					
	1	- 启用特征重构						
	是否进行节点测试(每个MPI进程各自执行单独的任务,打印各进程计算机名与计算时间,可用来筛选 慢节点)							
TEST	0	- 不进行测试	1					
	1	- 进行测试						
	是否是周期边界条件							
IPERIODIC	0 - 不是周期边界条件							
	1	1 - 周期边界条件						
	计算Jacobian系数时是否调用边界格式(只有当网格的两侧物理坐标相连接时,如顿锥展向,可以不调用边界格式计算Jacobian系数)							
JAC_BOUND	0 - 不调用边界格式							
	1	- 调用边界格式						
	进行差分计算时是否调用边界格式(只有周期性边界条件时可以不调用边界格式)							
DIF_BOUND	0	- 不调用边界格式	6					
	1 - 调用边界格式							
	是否是无反射边界条件							
NON_REFLETION	0 - 不是无反射边界条件							
	1	1 - 无反射边界条件						
	无粘项差分格式							
	UP7	- 7阶迎风						
SCHEME_INVIS	WENO5	- 5阶WENO						
	WENO7	- 7阶WENO						
	WENO7_SYMBO	- WENO SYMBO格式						
	WENO7_SYMBO_LIM - 加了限制器的WENO SYMBO格式							
	NND2	- 2阶NND格式						
	OMP6_HR	- 6阶高鲁棒优化保单调格式						
	OMP6_LD	- 6阶低耗散优化保单调格式						
	OMP6_CD8 - 6阶中心型优化保单调格式							
	SCHEME_HYBRIDAUTO	YBRIDAUTO - 混合格式						
SCHEME_INVIS	粘性项差分格式		1					
	CD6	- 6阶中心格式						

	CD8	- 8阶中心格式				
RE	雷诺数				1	
AMA	马赫数				1	
GAMMA	气体绝热指数				1	
PR	普朗特数				1	
T_REF	无量纲参考温度				1	
EPSL_SW	S-W分裂中的稳定系数				1	
DT	时间步长				1	
END_TIME	计算结束时间				1	
KSTEP_SHOW	显示步数				1	
KSTEP_SAVE	流场保存步数				1	
	如何进行流场初始化					
INIT_STAT	0	- 程序内部生成原始变	量全为1的流	5场,不读入外部网格和初始场	1	
	1	- 需要读入外部网格和	初始场			
		边界条件	相关参数			
	边界条件类型(目前程序中	集成了2种边界条件)				
IBC	108	针对平板、压缩折角等	等算例的边界	条件	1	
	124	针对顿锥、升力体等算				
			整型的边界	早条件参数		
		BC_NPARA[0]	空间上叠加的扰动波数量 MZMAX		4	
		BC_NPARA[1]	时间上叠加的扰动波数量 MTMAX			
			是否读取入口边界条件 INLET_BOUNDARY			
	108边界条件对应的整型 参数	BC_NPARA[2]	0 - 不读取			
			1	- 读取		
		BC_NPARA[3]	是否读壁面条件(当前版本程序此参数不生效) IFLAG_WALL_NOT_NORMAL			
			展向是	展向是否是对称边界条件 IF_SYMMETRY		
		BC_NPARA[0]	0	- 不采取对称边界条件		
BC_NPARA			1	- 采取对称边界条件		
		BC_NPARA[1]		是否包含头部(是否读入口边条文件) INLET_BOUNDARY		
			0	- 包含头部	5	
	124 边界条件对应的整型 参数		1	- 不包含头部(读文件)		
		BC_NPARA[2]		是否包含激波(是否读外边条文件) IFLAG_UPPERBOUNDARY		
			0	- 包含激波		
			1	- 不包含激波(读文件)		
		BC_NPARA[3]	空间	上叠加的扰动波数量 MZMAX		
		BC_NPARA[4]	时间_			
BC_RPARA			浮点型的边	界条件参数		
	108边界条件对应的浮点	BC_RPARA[0]	壁温 TW		8	
	型参数	BC_RPARA[1]	扰动强度(幅值) EPSL			
		BC_RPARA[2]	扰动起			

		BC_RPARA[4]	扰动频	率 BETA			
			壁面开	· 始位置(应包含全部计算域) LL_BEGIN			
		BC_RPARA[6]		来流条件起始位置 BOUNDARY_BEGIN			
		BC_RPARA[7]	展向计	算域长度 SLZ			
		BC_RPARA[0]	攻角A	OA			
		BC_RPARA[1]	壁温T	W			
		BC_RPARA[2]	壁面拼	动强度(幅值) EPSL_WALL			
	124边界条件对应的浮点 型参数	BC_RPARA[3]	上边界	扰动强度 EPSL_UPPER	7		
	E2W	BC_RPARA[4]	扰动频	率 BETA			
		BC_RPARA[5]	扰动起	始位置 WALL_DIS_BEGIN			
		BC_RPARA[6]	扰动结	束位置 WALL_DIS_END			
		滤波相关参	数				
		整型滤波相关	参数				
	FILTER_NPARA&[0]	滤波步数间隔 Filter_step					
		x方向是否滤波 fiter_judg					
	FILTER_NPARA&[1]	0					
		1					
	FILTER_NPARA&[2]	y方向是否滤波 fiter_judg					
		0					
		1					
		z方向是否滤波 fiter_judg					
FILTER_NPARA&	FILTER_NPARA&[3]	0	- 不开	启滤波	11		
		1					
	FILTER_NPARA&[4]	FILTER_NPARA&[4] x方向滤波区域起始网格点 ib					
	FILTER_NPARA&[5]	x方向滤波区域结束网格点					
	FILTER_NPARA&[6]	y方向滤波区域起始网格点					
	FILTER_NPARA&[7]	y方向滤波区域结束网格点					
	FILTER_NPARA&[8] FILTER_NPARA&[9]		z方向滤波区域起始网格点 kb				
			z方向滤波区域结束网格点 ke				
	FILTER_NPARA&[10] 滤波类型(目前版本不生效,程序只集成了一种滤波,守恒形式) Filter_scheme						
		浮点型滤波相差	关参数				
	FILTER_RPARA&[0]	滤波强度(滤波强度越大对	3				
FILTER_RPARA&	FILTER_RPARA&[1]	滤波的阀值(此值越小接受般为e-5) rth					
FILTER_RPARA&[2]		滤波结束的时刻,当流场时					
		后处理相关	参数				
ANA_EVENT&	ANA_EVENT&[0]	分析或后处理功能模块 选择	100	对流场进行过滤,分析出流场中的 发散点,即nan或出现负温度的点 ana_NAN_and_NT	2		
			101	流场时间平均 ana_time_average			

BC_RPARA[3]

扰动结束位置 X_DIST_END

			102	当无粘项格式为混合格式时方可生效,输出x、y、z各个中截面混合格式的分布情况 HybridAuto_scheme_IO		
			103	输出流场的Q判据文件 get_Q		
			104	保存XY块流场时间序列 ana_saveplaneXY		
			105	保存YZ块流场时间序列 ana_saveplaneYZ		
			106	保存XZ块流场时间序列 ana_saveplaneXZ		
			107	当无粘项格式为混合格式时方可生效,屏幕打印混合格式的格式占比 HybridAuto_scheme_Proportion		
	ANA_EVENT&[1]	进行流场分析或后处理的	步数间隔	Kstep_ana		
		ANA_NPARA[0]	需要係	是存的XY块流场时间序列个数 point		
		ANA_NPARA[1]	需要係	是存的XY块流场宽度 bandwidth		
	104	ANA_NPARA[2]	需要保存的第一个XY块流场起始网格点		2+ANA_NPARA[0]	
	104	ANA_NPARA[2+]	需要保存的第n个XY块流场起始网格点		ZTAINA_INPARA[U]	
		ANA_NPARA[2+point-	需要保存的第point个XY块流场起始网格点			
		ANA_NPARA[0]	需要係	是存的YZ块流场时间序列个数 point		
		ANA_NPARA[1]	需要保存的YZ块流场宽度 bandwidth		2+ANA_NPARA[0]	
ANA_NPARA&	105	ANA_NPARA[2]	需要保存的第一个YZ块流场起始网格点			
7.1.7.1.2.1.2		ANA_NPARA[2+]	需要保存的第n个YZ块流场起始网格点			
		ANA_NPARA[2+point-	需要仍	k存的第point个YZ块流场起始网格点		
		ANA_NPARA[0]	需要係	是存的XZ块流场时间序列个数 point		
		ANA_NPARA[1]	需要保存的XZ块流场宽度 bandwidth			
	106	ANA_NPARA[2]	需要保	只存的第一个XZ块流场起始网格点	2+ANA_NPARA[0]	
		ANA_NPARA[2+]	需要保存的第n个XZ块流场起始网格点		2 ANA_N ANA[V]	
		ANA_NPARA[2+point- 1]	需要保	是存的第point个XZ块流场起始网格点		
		混合格式相关	参数			
	混合格式类型选择					
HY_STYLE	1	利用压力梯度的混合格式 定问题)	(鲁棒性	交强,耗散偏大,只适合存在激波的特	1	
	2	使用Jameson推荐的激波	识别器进	行格式选择的混合格式(推荐)		
HY_DP_INTV	混合格式阈值,1型混合格式	混合格式阈值,1型混合格式推荐18,2型混合格式推荐0.010.2			2	
HY_SMOOTH_DP	是否启用光滑性处理(目前	是否启用光滑性处理(目前只有1型混合格式可用此功能)			1	
HY_PATCH_ZONE	指定判別值的范围个数(目	前只有1型混合格式可用此功	能)		1	
HY_ZONE&	指定判别值的范围与指定的	判别值			7	
	HY_ZONE&[0]	x方向起始网格点				
	HY_ZONE&[1]	x方向结束网格点				
	HY_ZONE&[2]	y方向起始网格点				
	HY_ZONE&[3]	y方向结束网格点				

HY_ZONE&[4]	z方向起始网格点
HY_ZONE&[5]	z方向结束网格点
HY_ZONE&[6]	指定的判別值(处于哪个阈值区间内,此区域将全部使用阈值对应的格 式)

OpenCFD-SCU控制文件示例

```
//此算例的网格规模为8800*640*800
GRID_3D = 8800 640 800
                                    //并行分割方式为24*4*4,共用了384个进程
PARALLEL_3D = 24 	 4 	 4
STREAM = 1
                                    //启用了计算通讯重叠
CHARTERIC = 1
                                    //启用了特征重构
IPERIODIC = 0 0 1
                                   //z方向启用了周期性边界条件

      JAC_BOUND = 1
      1
      1
      //计算Jacobian系数时三个方向都使用了边界格式

      DIF_BOUND = 1
      1
      1
      1
      0
      0
      //x, y的正负方向都使用了边界格式

      NON_REFLETION = 0
      1
      0
      1
      0
      0
      //x+, y+方向使用了无反射边界条件

#SCHEME_INVIS = WENO7_SYMBO
                                    //粘性项计算采用了8阶中心
SCHEME_VIS = CD8
SCHEME_INVIS = SCHEME_HYBRIDAUTO
                                  //无粘性计算采用了混合格式
HY_STYLE = 2
                                    //混合格式类型为2型
                                   //阈值为0.02和0.1
HY_DP_INTV = 0.02 0.1
\#HY\_SMOOTH\_DP = 1
\#HY\_PATCH\_ZONE = 0
#HY_ZONE0 = 10 25 100 240 5 20 20.0
RE = 100000.0
                                    //雷诺数为100000
AMA = 10.0
                                    //马赫数为10.0
GAMMA = 1.40
                                    //气体绝热指数为1.4
                                    //普朗特数为0.7
PR = 0.70
T REF = 79.0
                                    //参考温度为79.0
EPSL_SW = 0.0
                                    //sw分裂时没有添加增强稳定性的系数
                                    //时间步长为0.002
DT = 0.002
END_TIME = 3000
                                    //计算结束的无量纲时间为3000
                                    //每一步进行一次流场显示, 打印计算时间, 平均温度、能量等信息
KSTEP SHOW = 1
KSTEP\_SAVE = 10000
                                    //每10000步保存一次流场
INIT_STAT = 1
                                    //读外部初始场和网格
                                    //边界条件选择为108
IBC = 108
#mzmax, mtmax, Inlet_boundary, If_wall_not_normal
BC_NPARA = -10 	 1 	 1 	 0
                                  //108边界条件对应整型参数
#Tw, eps1, x_dis_begin, x_dis_end, beta, x_wall_begin, x_up_bound_begin, SLZ
BC_RPARA = 3.72  0.1  -320.  -300  0.08  -1000.  1000.  24.
                                                                              //108边界条件对应浮点型参数
#nstep_filter, Filter_X, Filter_Y, Filter_Z, ib, ie, jb, je, kb, ke, Filter_scheme // s0, rth,
#FILTER_RPARA0 = 1.0 1.e-6 310000
ANA_EVENT0 = 107 100
ANA\_EVENT1 = 101 1
ANA_EVENT2 = 105 100
ANA_NPARA2 = 2 5 3000 5000 //启用了三个流场分析和后处理事件,第三个事件有需要输入的整型参数
```