CS & IT ENGINEERING

Digital Logic

Number system

Lecture No. 1

By- CHANDAN SIR

Synchronous counter pesign

© Besign a Synchronous counter by using T-FF?

0→2→3→0 {00→10→11→00}

Method

Q_{L}	Q°	Q [†]		Tı	
0	0	1	0	J	0
		X	X	X	×
J	0	1	1 ×	6	1
1	Ţ	1.6	0	1	1

~	~	~
(T. =	0	60+
£ :-	41	1908
	^	

Method
(2)

		at	00+	7,	To
0	0	1	O		0
1	0	J	1	0	1
1	1	0	0	1	1

0-2-3-5-1-6-0

Q ₂	\mathcal{O}^{T}	Qo	92+	q†	90	J ₂	K ₂	J ₁	k ₁	J.	Ko
0	0	0	0	1	0	0,	X	1	X	0	X
0	0	-1	1	1	0	1	X	1	X	X	
0	1	Ö	0	L	-t	0	X	X	Ø	1	X
0	,1	ļ	L	-0	J	1	X	X	1	×	ď
1	0	ο	X	X	×	×	×	×	×	×	X
L	٥	7	0	0	Ţ	X	1	0	X	X	Ō
1	.1	0	0	0	0	X	4	X	1	δ	7
1	1	j	X	×	0	X	+	×	+	×	+

Q	1 gt	1K
0	0	OXZ
0	0	×I
1		XO

Q ₂	G^{T}	.Qo				J ₂ K ₂				
0	0	0	0	1	0.	Ø. X	1	X	0	X
0.	0	-J:	1	1	0	t X	1	X	X	1
0	Ţ	Ò	0	L	-1.	OX	X	O	1	X
Ó.	,1	Į		ó		1 X.			×	
1	0	0	X	X	×	××			×	×
·L	0	Ţ	0	0.	1	X 1	0	×	X	O
	1			0		X 1	X	1	ō	7
1	1	j	×	×	×	xx	×	+	×	4

NUMBER SYSTEM

- 1) Base conversion
- 2 Magnitude Representation

$$\begin{array}{c} (2) \\ \text{Binary} \rightarrow \{0,1\} \end{array}$$

Total number of digit used in the system

Decimal Number System

... 104

 10^{3}

 10^{2}

 10^{1}

 10^{0}

10-1

 10^{-2}

10-3...

... a₄

 a_3

 a_2

 a_1

 a_0

a₋₁

a_2

a_3 ...

ai → Coefficient of decimal number system

10_i → Weight of decimal number system

Example:

 $(501.23)_{10}$

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

5

0

1

2

K

Base	Digit
_ 2	0, 1
3	0, 1, 2
4.	0, 1, 2, 3
5	0, 1, 2, 3, 4
6	0, 1, 2, 3,4,5
7	0, 1, 2, 3, 4, 5, 6
8	0, 1, 2, 3, 4, 5, 6, 7
9	0, 1, 2, 3, 4, 5, 6, 7, 8
10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A
12	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
(13)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C
14	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D
(15)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E
16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Binary Number System (Base (Radix) = 2)

22

 2^1

20

2-1

2-2

cofficient a4

 a_3

 a_2

a₁

 a_0

a₋₁

 a_{-2}

a_3 ...

2i → Weight of Binary number system

 $a_i \rightarrow \text{Coefficient of Binary number system } \{0, 1\}$

3, 3, 50, 5-1 110.1

Example:-

22222- $(101.11)_2$

22

21

20

0

Octal Number System (Base (Radix) = 8)

... 83

82

 8^1

 8^{0}

8-1

8-2

8-3...

... a₃

 a_2

 a_1

 a_0

a_1

a_2

a_3...

8i → Weight of Octal number system

a_i → Coefficient of Octal number system {0 -7}

82

81

80

8-1

8-2

7

2

8

6

4

16²

 16^{1}

16° 16° 16° 16° 16° ...

 a_2

 a_1

 a_0

a_1

a_2

a_3...

16ⁱ → Weight of Hexadecimal number system

 $a_i \rightarrow \text{Coefficient of Hexadecimal number system } \{0 - 9, A - F\}$

Example: $(A2C.F)_{16}$

 16^{2}

 16^{1}

 16^{0}

 16^{-1}

A

F

In base conversion 2 key points are there:

Pw

- (A) Any base to Decimal conversion ~
- (B) Decimal to any other base conversion

(A) Any base to Decimal conversion:

$$\begin{pmatrix} a_3 & a_2 & a_1 & a_0 & a_{-1} & a_{-2} \\ a_3 & a_2 & a_1 & a_0 & a_{-1} & a_{-2} \end{pmatrix} = \begin{pmatrix} a_{-1} & a_{-2} \\ a_{-2} & a_{-1} & a_{-2} \end{pmatrix}$$

$$\left(a_{3}\times r^{3}+a_{2}\times r^{2}+a_{1}\times r^{1}+a_{0}\times r^{0}+a_{-1}\times r^{-1}+a_{-2}\times r^{-2}\right)_{10}$$

Case (1): Binary to Decimal conversion

Ex.
$$(1011.11)_2 = ()_{10} \checkmark$$

$$\Rightarrow \left[(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2}) \right]$$

$$\Rightarrow$$
 $[8+0+2+1+0.5+0.25]_{10}$

$$\Rightarrow (11.75)_{10}$$

Case (2): Octal to Decimal conversion

Ex.
$$(721.4)_8 = ()_{10}$$

$$\Rightarrow \left[(7 \times 8^2) + (2 \times 8^1) + (1 \times 8^0) + (4 \times 8^{-1}) \right]_{10}$$

$$\Rightarrow$$
 $[448+16+1+0.5]_{10}$

$$\Rightarrow (465.5)_{10}$$

Case (3): Hexadecimal to Decimal conversion

Ex.
$$(A2B.C)_{16} = ()_{16}$$

$$\Rightarrow \left[(A \times 16^{2}) + (2 \times 16^{1}) + (B \times 16^{0}) + (C \times 16^{-1}) \right]_{10}$$

$$\Rightarrow \left[(10 \times 256) + (2 \times 16) + (11 \times 1) + (12 \times 16^{-1}) \right]_{10}$$

$$\Rightarrow$$
 [2560+32+11+0.75]₁₀

$$\Rightarrow$$
 (2603.75)₁₀

Case (4): Base 5 to Decimal conversion

Ex.
$$(432.22)_5 = ()_{10}$$

$$\Rightarrow \left[(4 \times 5^2) + (3 \times 5^1) + (2 \times 5^0) + (2 \times 5^{-1}) + (2 \times 5^{-2}) \right]_{10}$$

$$\Rightarrow [100+15+2+0.4+0.08]_{10}$$

$$\Rightarrow$$
 (117.48)₁₀

$$\frac{q^{1}q^{0}q^{-1}}{(3+2)_{q}} = ()_{10}$$

$$\frac{(3\times q) + (1\times q^{0}) + (2\times q^{-1})}{(2\times q^{-1})_{10}}$$

$$27+7+2q$$

$$(34-22)_{10}$$
AP

$$() \longrightarrow ()_{0}$$

(B) Decimal to any other Base conversion

$$(a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} a_{-3})_{10} = (b_3 b_2 b_1 b_0 \cdot x_0 x_1 x_2)_r$$

Case (1): Decimal to Binary Base conversion.

$$0.75 \times 2 = 1.5$$
 1
 $0.5 \times 2 = 1.0$

$$(19.75) = (1001.11)_{2}$$

$$(19.75)_{10}$$
 = $(10011.11)_2$

Case (2): Decimal to Octal Base conversion.

$$0.23 \times 8 = 1.84$$

$$0.84 \times 8 = 6.72$$

$$0.72 \times 8 = 5.76$$

$$0.72 \times 8 = 5.76$$

$$0.84 \times 8 = 6.72$$

$$0.72 \times 8 = 5.76$$

$$(210.23)_{10}$$
 = $(322.165)_8$

Pw

Case (3): Decimal to Hexadecimal Base conversion.

Ex.

16 1228 12 (C)
16 76 12 (C)
4 4
$$\frac{1}{4}$$
 $\frac{12 (C)}{4}$
0.55×16 = 8.8 8 0.8 × 16 = 12.8 12(C)

$$(1228.56)_{10} = (4CC.8C)_{16}$$

Some Special Case

Case (1): Binary to Octal base conversion

Ex.
$$(10110111)_2 = ()_8$$

Octal → means base 8

$$8 = 2^3$$

Every three digits of binary represent one digit of octal

Hence
$$(10110111)_2 = (267)_8$$

Some Special Case

Case (2): Binary to Hexadecimal base conversion

Ex.
$$(1011011)_2 = ()_{16}$$

Hexadecimal → means base 16

$$16 = 2^4$$

Every four digits of binary represent one digit of Hexadecimal.

Hence
$$(1011011)_2 = (5B)_{16}$$

