Метод PERT

Метод PERT

Метод PERT (Program Evaluation and Review Technique - метод оценки и анализа проекта)

 – анализ проектов, длительность отдельных стадий в которых известна лишь с определенной вероятностью.

Прежде всего речь идет о проектировании и внедрении новых систем. В таких проектах многие работы не имеют аналогов. В результате возникает неопределенность в сроках выполнения проекта в целом.

PERT разработан корпорацией "Локхид" и консалтинговой фирмой "Буз, Аллен энд Гамильтон" для реализации крупного проекта разработки ракетной системы "Поларис".

Применение метода PERT позволяет получить ответы на следующие вопросы:

- 1. Чему равно ожидаемое время выполнения работы?
- 2. Чему равно ожидаемое время выполнения проекта?
- 3. С какой вероятностью проект может быть выполнен за указанное время?

Основные понятия:

- оптимистическое и пессимистическое время выполнения работы;
- наиболее вероятное и ожидаемое время выполнения работы;
- вариация времени выполнения работы, проекта.

- і номер работы, время выполнения которой является случайной величиной;
- a_i оптимистическое время (время выполнения работы i в наиболее благоприятных условиях);
- m_i наиболее вероятное (нормальное) время (время выполнения работы i в нормальных условиях);
- b_i пессимистическое время (время выполнения работы i в неблагоприятных условиях).

Время выполнения работы статистически описывается бета-распределением, для которого среднее (ожидаемое) время $\boldsymbol{t_i}$ выполнения работы \boldsymbol{i} может быть оценено по формуле

$$t_i = (a_i + 4m_i + b_i)/6.$$

Если время выполнения работы i известно точно и равно d_i , то $t_i = a_i = m_i = b_i = d_i$.

Располагая указанными тремя оценками времени выполнения работы, можно рассчитать общепринятую статистическую меру неопределенности — дисперсию или вариацию времени выполнения работы *i*:

$$\sigma_i^2 = \text{var}_i = \left(\frac{b_i - a_i}{6}\right)^2$$

Если время выполнения работы *i* известно точно, то $\sigma_1^2 = \text{var}_i = 0$.

Пусть *T* — время, необходимое для выполнения проекта. Если в проекте есть работы с неопределенным временем выполнения, то время *T* является случайной величиной.

Математическое ожидание (ожидаемое значение) времени выполнения проекта $\mathbf{E}(T)$ равно сумме ожидаемых значений времени выполнения работ, лежащих на критическом пути.

Для определения критического пути проекта может быть использован метод CPM. На этом этапе анализа проекта время выполнения работы полагается равным ожидаемому времени t_i .

Вариация (дисперсия) $\sigma^2(T)$ общего времени, требуемого для завершения проекта, в предположении о независимости времени выполнения работ равна сумме вариаций (дисперсий) времени выполнения работ критического пути. Если же две или более работы взаимозависимы, то указанная сумма дает приближенное представление о вариации времени завершения проекта.

Распределение времени T завершения проекта является асимптотически нормальным со средним $\mathbf{E}(T)$ и дисперсией $\sigma^2(T)$.

С учетом этого можно рассчитать вероятность завершения проекта в установленный срок T_0 .

Для определения вероятности того, что $T \leq T_0$, следует использовать таблицу распределения величины

$$z = \frac{T_0 - E(T)}{\sigma(T)} \quad ,$$

которая имеет стандартное нормальное распределение.

ПРИМЕР. Исходные данные проекта

Ра- бо- та	Содержание	Предшес т работы	Оптим. время, а _і	Наиболее вероятное время, m _i	Пессим. время, b _i	Ожидаемое время t _i = (a _i + 4m _i + b _i)/6	Дисперсия $\sigma_i^2 = (\frac{b_i - a_i}{6})^2$
Α	Подготовить констр. проект	-	4	5	12	6	1,78
В	Разработать маркетинг. план	-	1	1.5	5	2	0,44
С	Подготовить маршрут. карты	Α	2	3	4	3	0,11
D	Создать опытный образец	Α	3	4	11	5	1,78
E	Выпустить рекл. брошюру	Α	2	3	4	3	0,11
F	Подготовить оценки затрат	С	1.5	2	2.5	2	0,03
G	Провести предв. тестирование	D	1.5	3	4.5	3	0,25
Н	Выполнить исследов. рынка	B, E	2.5	3.5	7.5	4	0,69
ı	Подготовить доклад о ценах	Н	1.5	2	2.5	2	0,03
J	Подготовить заключит. доклад	F,G,I	1	2	3	2	0,11

ПРИМЕР. Диаграмма и сетевой график

Работа	Предш. работы	Ожид. время		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Α	-	6	A																	
В	-	2	В																	
С	Α	3	С																	
D	Α	5	D																	
E	Α	3	E																	
F	С	2	F																	
G	D	3	G																	
Н	B, E	4	Н																	
1	Н	2	•																	
J	F,G,I	2	J																	

ПРИМЕР. Расчет сетевого графика

Критический путь с учетом среднего ожидаемого времени включает работы A, E, H, I, J.

Длина критического пути – 17 недель

ПРИМЕР. С какой вероятностью проект может быть выполнен за 20 недель?

Работа	Ожид. время	Дисперсия		
Α	6	1,78		
В	2	0,44		
С	3	0,11		
D	5	1,78		
E	3	0,11		
F	2	0,03		
G	3	0,25		
Н	4	0,69		
I	2	0,03		
J	2	0,11		
Сум	има			
дисперс	ий работ	2 72		
критич	еского	2,72		
пу	ти			

Определим вероятность того, что $T \le T_0$ (T < 20). Используем статистическую таблицу распределения величины

$$z = \frac{T_0 - E(T)}{\sigma(T)} = \frac{20 - 17}{\sqrt{2,72}} = \frac{3}{1,65} = 1,82$$

Таблица нормального распределения (фрагмент)

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0000	0040	0080	0120	0160	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2257	2291	2324	2357	2389	2422	2454	2486	2518	2549
0,7	2580	2612	2642	2673	2704	2734	2764	2794	2823	2852
0,8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3438	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4699	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2,0	4772	.4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857

ПРИМЕР. С какой вероятностью проект может быть выполнен за 20 недель?

Используя таблицу нормального распределения, находим вероятность того, что время T выполнения проекта находится в интервале $\mathbf{E}(T) \leq T \leq T_0$.

На пересечении строки «1,8» и столбца «0,02» таблицы находим значение 0,4656.

Искомая вероятность того, что время T выполнения проекта удовлетворяет условию $T \le 20$, т.е. вероятность того, что проект будет выполнен за 20 недель при ожидаемом времени его выполнения 17 недель, равна

$$p = 0.5 + 0.4656 = 0.9656 \approx 96\%$$
.

Алгоритм применения метода PERT

- Шаг 1. Определяем оптимистическое (a_i) , наиболее вероятное (m_i) и пессимистическое (b_i) время выполнения для каждой работы.
- Шаг 2. Рассчитываем ожидаемое время:

$$t_i = (a_i + 4m_i + b_i)/6.$$
 Шаг 3. Рассчитываем дисперсию: $\sigma_i^2 = (\frac{b_i - a_i}{6})^2$

- Шаг 4. Строим сетевой график по ожидаемому времени t_i .
- Шаг 5. Рассчитываем раннее время начала и позднее время окончания каждой работы по методу СРМ.

Алгоритм применения метода PERT

- Шаг 6. Находим критический путь по методу СРМ и определяем ожидаемое время выполнения проекта E(T).
- Шаг 7. Находим сумму дисперсий работ, входящих в критический путь σ^2 .
- Шаг 8. Находим значение величины z по формуле:

$$z = \frac{T_0 - E(T)}{\sigma(T)}$$

Шаг 9. По таблице нормального распределения находим вероятность того, что $T \le T_0$

Разновидности задач сетевого планирования проектов

- ✓ Обеспечение заданных сроков за счет сверхурочных.
- ✓ Предел еженедельного финансирования проекта.
- ✓ Возможный срыв сроков начала работ субподрядчиком.

√ ...

ПРИМЕР. Обеспечение заданных сроков за счет сверхурочных

В таблице приведены «макро» стадии проекта опытноконструкторской разработки с привлечением субподрядчика. Заданы нормальные сроки и затраты, исходя из хорошо известных по опыту норм трудозатрат и тарифов, а также сроки и затраты при максимально возможном использовании сверхурочной работы.

Проект должен быть завершен за 16 недель.

- Возможно ли это? Какие минимальные затраты при этом необходимы?
- Если бюджет проекта не может превышать 80 у.е., какова будет минимальная длительность проекта?

ПРИМЕР. Обеспечение заданных сроков за счет сверхурочных

		Норма	льные	Со сверхурочными			
Столия	Предшест-	Время	Издержки	Время	Издержки		
Стадия	венник	(недель)	(y.e.)	(недель)	(y.e.)		
A	-	6	12	4	22		
В	A	3	4	2	5		
<i>C</i>	В	3	5	3	5		
D	\boldsymbol{A}	2	10	1,5	12		
E	D	7	10	4	19		
F	B , D	8	20	5	32		
\boldsymbol{G}	\boldsymbol{E}	8	12	4,5	26		
H	D	3	1	2	2		

ПРИМЕР. Предел еженедельного финансирования проекта

В таблице приведены данные о крупных стадиях кампании продвижения нового продукта фирмы на рынок.

- 1) Каков минимальный срок окончания проекта?
- 2) Каково должно быть еженедельное финансирование проекта для расписаний, когда при сохранении минимальной длительности проекта:
- все стадии начинаются «так рано, как только возможно»;
- все стадии начинаются «так поздно, как только возможно»?
- 3) Финансовый департамент фирмы уведомляет руководителей проекта, что еженедельное финансирование не может превышать 25 у.е. Как изменится срок выполнения проекта?

ПРИМЕР. Предел еженедельного финансирования проекта

Стадия	Предшественник	ественник Продолжительность				
		(недель)	(y.e.)			
\boldsymbol{A}	-	6	24			
В	\boldsymbol{A}	4	30			
C	\boldsymbol{A}	3	15			
D	В	3	54			
E	B , C	10	90			
F	D,E	2	30			
G	$oldsymbol{F}$	6	135			
H	В	6	45			
I	F, H	8	105			

ПРИМЕР. Возможный срыв сроков начала работ субподрядчиком.

В таблице приведены данные о стадиях работ строительного проекта.

Стадия **H** должна выполняться субподрядчиком. Стоимость работ - **\$8000**.

Однако, субподрядчик может начать работы только на 6 недель позже запланированного в проекте «раннего» старта. Каждая неделя отсрочки окончания проекта стоит организаторам \$5000.

Работа	A	В	C	D	E	F	G	Н	I	J
Предшест венник	-	-	A	A	C	B, C	B, C	D, E, F	B, C	D, E, F
Время (недель)	11	16	4	6	6	8	10	6	20	10

ПРИМЕР. Возможный срыв сроков начала работ субподрядчиком.

Рассматриваются <u>три возможных альтернативы</u> разрешения проблемы.

- > Ждать пока субподрядчик сможет приступить к выполнению работ.
- ➤ Нанять другого субподрядчика, который может приступить к выполнению работ в запланированный по проекту день, выполнит работы по стадии *H* за 8 недель, но запрашивает сумму \$15000.
- ightharpoonup Использовать собственных инженеров и рабочих, которые сейчас работают по стадии ightharpoonup, для выполнения стадии ightharpoonup H. Это приведет к удлинению стадии ightharpoonup на ightharpoonup (за счет отвлечения инженеров и рабочих на подготовку проекта, подготовительные работы и закупку материалов и оборудования для стадии ightharpoonup H). Работы по стадии ightharpoonup H, в этом случае, могут быть начаты в срок, но будут выполнены за ightharpoonup 10 недель, и будут стоить ightharpoonup 9000.

Какую альтернативу Вы бы рекомендовали предпочесть?

ПРИМЕР. Возможный срыв сроков начала работ субподрядчиком.

Управляющий проекта склоняется ко второй альтернативе на основании следующего рассуждения о дополнительных издержках:

- ▶ Если ждать 1-го субподрядчика, то задержка составит 6 недель. Соответственно дополнительные издержки 6х\$5000 плюс стоимость работ \$8000. Итого - \$38000
- ▶ Если нанять другого субподрядчика, то задержка лишь 2 недели. Соответственно дополнительные издержки 2х\$5000 плюс стоимость работ \$15000. Итого - \$25000
- ▶ Если использовать собственные силы, то выигрыша во времени, по сравнению с первым вариантом, нет. Суммарное время работ 12 недель, то есть задержка 6 недель. Соответственно дополнительные издержки 6х\$5000 плюс стоимость работ \$14000. Итого \$44000.

Правильно ли это рассуждение?