X선회절분석법에 의한 나노결정의 립도분석에서 기구반치폭자료기지의 구축 및 리용

허철 학

나노립도분석법에는 X선회절분석법, 레이자립도분석법, 전자현미경법, 비겉면적법, 침 강법 등 여러가지가 있으나 결정립자크기를 측정할수 있는 유일한 방법은 X선회절분석법 뿐이고 기타 방법들로는 2차응집립자의 크기를 측정할수 있다.

론문에서는 X선회절분석법으로 나노결정립자들의 크기를 결정하는데서 나서는 기구반 치폭자료기지의 구축 및 리용에 대한 문제를 고찰하였다.

1. 기구반치폭결정방법

X선회절분석에서 립도분석의 정확성을 보장하자면 회절선의 기구반치폭을 정확히 결정하여야 한다.

기구반치폭결정방법에는 미크로급시료를 리용하는 방법과 기구반치폭곡선을 리용하는 방법이 있다.

미크로급시료를 리용하는 방법[1] 결정립자의 크기가 매우 큰 경우 기구반치폭 (B_S) 은 회절각에만 관계되고 시료종류에는 관계없이 거의 일정하므로 B_S 를 결정할 때 분석시료와 꼭같은 시료를 쓰지 않아도 된다. 즉 결정립자의 크기가 1μ m이상이고 회절선의 위치가 분석시료와 비슷한 임의의 시료를 쓰면 된다.

이 방법은 정확도가 매우 높으나 매 분석시료마다 회절선의 위치가 비슷한 미크로 급시료를 선택해야 하며 그런 미크로급시료가 없으면 결정립도를 분석할수 없는 부족점이 있다.

기구반치폭곡선을 리용하는 방법[2] 기구반치폭(미크로급표준시료의 회절도형에서 얻은 매회절선의 실측반치폭)으로부터 다음식을 리용하여 최소두제곱근사법으로 기구반치폭곡선(그림)을 얻은 다음 임의의 2 θ 위치에서의 기구반치폭을 결정하는 방법이다.

$$B_S = A + B \cdot 2\theta + C \cdot 2\theta^2$$

이 방법은 회절선의 위치가 분석시료와 비슷한 미크로급시료가 없어도 임의의 2 θ 위치에 대한 기구반치폭을 결정할수 있는 방법이지만 이 방법으로 결정한 기구반치폭이 근사법으로 얻은 기구반치폭곡선으로부터 얻어지는것으로 하여 정확도가 보장되지 않는 부족점이 있다.

실례로 그림에서 2θ =30°인 회절선의 기구반 치폭(B_{S1})은 기구반치폭곡선에서 얻은 값(근사값 B_{S1}')보다 작으므로 실측반치폭(B_M)이 B_{S1} 과

그림. 최소두제곱근사법으로 얻은 기구반치폭곡선

B'c1 사이에 있는 나노시료도 나노시료가 아닌것으로 판단된다.

반대로 2heta=110°인 회절선의 기구반치폭($B_{\Sigma 2}$)은 기구반치폭곡선에서 얻은 값(근사값 $B_{S 2}'$) 보다 크므로 실측반치폭이 B_{Σ} 와 B_{S2}' 사이에 있는 미크로급시료도 나노시료인것으로 판단 된다.

2. 기구반치폭자료기지의 구축 및 리용

기구반치폭결정에서 미크로급시료를 리용하는 방법은 정확도가 높지만 만능적이지 못 하고 기구반치폭곡선을 리용하는 방법은 만능적이지만 정확도가 높지 못하다.

론문에서는 두 방법을 효과적으로 결합하여 기구반치폭결정에서 만능성과 정확성을 동 시에 보장할수 있는 기구반치폭자료기지를 설계하고 자료기지의 구축과 관리 및 리용방법 을 제안하였다.

기구반치폭자료기지의 구조 기구반치폭자료기지의 구조는 표 1과 같다.

표 1. 자료기지의 구조

2θ/(°)	$B_S/($ $^{\circ}$ $)$	Q
3.00	0.427	0
3.02	0.427	0
3.04	0.426	0
•••	•••	•••
129.96	1.904	0
129.98	1.905	0
130.00	1.906	0

기구반치폭자료기지의 구조는 표 1에서 보는바와 같 이 $n \times 3$ 형 행렬구조이며 매 행은 2θ 와 B_S 및 O로 구성 되여있다.

 2θ 는 회절선의 위치이고 B_S 는 2θ 위치에서의 기구반 치폭, Q는 B_S 의 분류표식으로서 B_S 가 근사값이면 O, 실 측값으로서 자동교체된 값이면 1, 강제교체된 값이면 2 이다.

행간격 $(2\theta$ 간격)은 0.02°이며 2θ 범위는 $3\sim130$ °로서 행수는 (130-3)×50+1=6 351개이다.

기구반치폭자료기지의 구축 및 초기값설정 기구반치폭자료기지는 립자크기가 40μm인 Si 표준시료를 15∼90°범위에서 측정하여 얻은 회절도형으로부터 얻어낸 기구반치폭곡선으로 결정한 기구반치폭들을 초기값으로 하여 구축하였다.

이때 O렬의 초기값은 0이며 구축된 자료기지의 크기는 131KB이다.

기구반치폭자료기지의 갱신 및 리용 기구반치폭자료기지의 갱신과 리용은 시료의 결정립 도를 계산할 때 동시에 진행된다.

시료의 결정립도를 계산할 때 시료에서 주목하는 회절선의 실측반치폭이 자료기지의 같 은 2heta위치에서의 기구반치폭보다 크면 자료기지의 값을 그대로 보존하고 그것에 기초하여 결정립도를 계산한다.

만일 주목하는 회절선의 실측반치폭이 자료기지의 같은 2heta위치에서의 기구반치폭보다 작으면 자료기지의 값을 실측반치폭으로 자동교체하고 O값을 1로 설정한 다음 결정립도를 100nm이상인것으로 즉 나노시료가 아닌것으로 판단한다.

이와 같이 기구반치폭자료기지의 기구반치폭은 실측반치폭자료가 자료기지의 원래값 보다 작은 경우에는 실측반치폭을, 실측반치폭자료가 없는 경우에는 기구반치폭곡선에서 계 산한 근사값을 리용하며 시료의 결정립도를 계산할 때마다 보다 정확한 값들로 자동적으 로 부단히 갱신된다.

 B_M 이 미크로급시료의 반치폭값인 경우에는 $B_S{<}B_M$ 이여도 결정립도계산의 정확성을

보장하기 위하여 B_S 를 B_M 으로 강제교체할수 있다. 이때 Q값을 2로 설정한다.

기구반치폭자료기지가 갱신됨에 따라 결정립도계산의 정확도도 더욱더 높아지게 된다.

3. 기구반치폭의 대비결과

현재 X선회절도형해석에서 가장 널리 리용되고있는 Jade법[3]과 론문에서 제안한 방법에서의 기구반치폭을 립자크기가 40μ m인 미크로급Si표준시료의 대표적인 실측반치폭들과 대비한 결과는 표 2와 같다. 이때 B_M 은 미크로급Si표준시료의 실측반치폭이고 B_S 는 기구반치폭곡선으로 계산한 구사값이다.

201(0)	$B_M/($ $^{\circ}$ $)$	B _S /(°)	기구반치폭		
2θ/(°)			Jade	제안방법	Q
20.92	0.292	0.288	B_S	B_M	2
26.76	0.284	0.268	B_S	B_M	2
32.74	_	0.259	B_S	B_S	0
64.18	0.300	0.423	B_S	B_M	1
75.74	0.500	0.572	B_S	B_M	1

표 2. 기구반치폭의 대비결과

표 2에서 보는바와 같이 미크로급Si표준시료의 결정립도를 계산하는 경우 Jade법에서는 64.18, 75.74°에서 $B_M < B_S$ 이므로 시료를 미크로급시료로 보지만 20.92, 26.76°에서는 $B_M > B_S$ 이므로 시료를 나노급시료로 판단한다. 결과 결정립도계산의 정확도가 보장되지 않는다.

그러나 론문에서 제안한 방법에서는 4개의 2θ 위치들에서 다 $B_M=B_S$ 이므로 시료를 미크로 대료로 판단한다. 즉 결정립도계산의 정확도가 보장된다.

맺 는 말

기구반치폭결정에서 만능성과 정확성을 동시에 보장할수 있는 기구반치폭자료기지를 구축함으로써 미크로급시료를 리용하지 않고도 임의의 2θ 위치에서의 기구반치폭을 보다 정확히 결정할수 있게 되였다. 기구반치폭자료기지는 보다 정확한 값들에 의해 자동적으로 부단히 갱신되며 그것에 따라 결정립도계산의 정확도도 더욱더 높아지게 된다.

참고문 헌

- [1] 한상설; 결정구조분석학, **김일성**종합대학출판사, 205~218, 주체89(2000).
- [2] XRD Pattern Processing MDI Jade 6.5, Materials Data Inc., 2012.
- [3] 刘存业; 理学X射线衍射仪用户协会论文选集, 4, 1, 110, 1991.

주체106(2017)년 10월 5일 원고접수

Construction and Use of the Instrument-FWHM Database in Nano-Crystalline Particle Size Analysis by XRD Method

Ho Chol Hak

We constructed the instrument-FWHM database for precise determination of instrument-FWHM on any 2θ angle with no micro-size sample in nano-crystalline particle size analysis using XRD method.

Key words: XRD method, nano, crystalline particle size, FWHM, database