Physics based animation

Grégory Leplâtre

Introductio

System of particles

Rigid bodies

Summary

Physics based animation Lecture 07 - Rigid bodies - Part 2

Grégory Leplâtre

g.leplatre@napier.ac.uk, room D32 School of Computing Edinburgh Napier University

Semester 1 - 2016/2017

Summary

Objectives

► From one particle to a system of particles

Summar

Objectives

- ► From one particle to a system of particles
- ► Force & torque ⇒ Position & rotation of rigid body

Summary

Outline

- 1 Introduction
- 2 System of particles
- 3 Rigid bodies
- 4 Summary

Introduction

System o

Rigid bodies

Summary

Angular velocity

$$\omega = rac{ extstyle d heta}{ extstyle dt}$$

Angular acceleration

$$\alpha = \frac{d\omega}{dt}$$

Angular momentum

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{I} \cdot \boldsymbol{\omega}$$

torque

$$\tau = \frac{d\mathbf{L}}{dt} = \mathbf{r} \times \mathbf{f}$$

System of particles

Rigid bodies

Summary

Outline

- 1 Introduction
- 2 System of particles
- 3 Rigid bodies
- 4 Summary

Summary

Particle system

► Total mass of all particles:

$$m_{total} = \sum_{i=1}^{n} m_i$$

Summary

Particle system

Total mass of all particles:

$$m_{total} = \sum_{i=1}^{n} m_i$$

position of center of mass (CoM or cm)

$$\mathbf{x}_{cm} = \frac{\sum_{i=1}^{n} m_i \mathbf{x_i}}{\sum_{i=1}^{n} m_i}$$

Summary

Particle system

► Total mass of all particles:

$$m_{total} = \sum_{i=1}^{n} m_i$$

position of center of mass (CoM or cm)

$$\mathbf{x}_{cm} = \frac{\sum_{i=1}^{n} m_i \mathbf{x_i}}{\sum_{i=1}^{n} m_i}$$

total momentum:

$$\boldsymbol{p}_{cm} = \sum_{i=1}^{n} \boldsymbol{p_i} = \sum_{i=1}^{n} m_i \boldsymbol{v_i}$$

Summa

Velocity of center of mass

$$\mathbf{v}_{cm} = \frac{d\mathbf{x}_{cm}}{dt}$$

$$\mathbf{v}_{cm} = \frac{d}{dt} \frac{\sum_{i=1}^{n} m_i \mathbf{x}_i}{\sum_{i=1}^{n} m_i}$$

$$\mathbf{v}_{cm} = \frac{\sum_{i=1}^{n} m_i \frac{d\mathbf{x}_i}{dt}}{\sum_{i=1}^{n} m_i}$$

$$\mathbf{v}_{cm} = \frac{\sum_{i=1}^{n} m_i \mathbf{v}_i}{\sum_{i=1}^{n} m_i}$$

$$oldsymbol{v}_{cm} = rac{oldsymbol{
ho}_{cm}}{m_{tota}}$$

$$oldsymbol{p}_{cm} = m_{total} oldsymbol{v}_{cm}$$

Introductio

System of particles

Rigid bodies

C.

$$m{p}_{cm} = \sum m{p}_i$$
 $rac{dm{p}_{cm}}{dt} = rac{\sum m{p}_i}{dt} = \sum rac{m{p}_i}{dt} = \sum m{f}_i$

► The change of momentum of the CoM is equal to the change of momentum of all particles:

$$oldsymbol{p}_{cm} = \sum oldsymbol{p}_i$$

► Therefore the resulting change in the total momentum is independent from the location of the applied force

Summary

Rotational momentum

The total moment of momentum (or rotational momentum) around the CoM is:

$$oldsymbol{L}_{cm} = \sum oldsymbol{r}_i imes oldsymbol{p}_i$$

$$m{L}_{cm} = \sum (m{x}_i - m{x}_{cm}) imes m{p}_i$$

Introduction

System of particles

Rigid bodies

Summary

$$egin{aligned} oldsymbol{\mathcal{L}}_{cm} &= \sum oldsymbol{r}_i imes oldsymbol{
ho}_i \\ oldsymbol{ au}_{cm} &= rac{doldsymbol{\mathcal{L}}_{cm}}{dt} = drac{\sum oldsymbol{r}_i imes oldsymbol{
ho}_i}{dt} \ oldsymbol{ au}_{cm} &= \sum oldsymbol{r}_i imes oldsymbol{f}_i \ oldsymbol{ au}_{cm} &= \sum oldsymbol{r}_i imes oldsymbol{ au}_i \end{aligned}$$

Introductio

System of particles

Rigid bodies

Summary

- Newton's third law (action has equal reaction) means that internal forces cancel each other out
- → no incidence on the total momentum of the system.

Introduction

System of particles

Rigid bodies

Summary

- A system of particles behaves a lot like a single particle
- ▶ It has a mass, position (CoM), velocity, momentum and acceleration
- ▶ It responds to **forces**:

$$f_{cm} = \sum f_i$$

Its torque (or change in the system's angular momentum) relates to the forces applied to particles of the system:

$$m{ au}_{\mathit{cm}} = \sum (m{r}_i imes m{f}_i)$$

System of particles

Rigid bodies

kinematics
Rigid bodies

dynamics

Summary

Outline

- 1 Introduction
- 2 System of particles
- 3 Rigid bodies
- 4 Summary

Physics based animation

Grégory Leplâtre

Introductio

System o

Rigid bodies

Rigid bodies kinematics

Rigid bodies

Summary

Rigid body kinematics

dynamics

Summai

rigid body kinematics

position:

velocity

$$\mathbf{v}_{cm} = \frac{d\mathbf{x}_{cm}}{dt}$$

acceleration:

$$\boldsymbol{a}_{cm} = \frac{d\boldsymbol{v}_{cm}}{dt} = \frac{d^2\boldsymbol{x}_{cm}}{dt^2}$$

rigid body kinematics

Orientation of the rigid body:

3x3 orientation matrix

A

Angular velocity

 ω

Angular acceleration:

$$\alpha = \frac{d\omega}{dt}$$

kinematics Rigid bodie

dynamics

Summar

Offset position

- Let's consider a point on a rigid body
- ▶ If *r* is the offset of the point relatice to the CoM of the rigid body, the position *x* of that point is:

$$\mathbf{x} = \mathbf{x}_{cm} + \mathbf{r}$$

dynamics

Summary

Offset velocity

Velocity v of the offset point:

$$\mathbf{v} = \frac{d\mathbf{x}}{dt} = \frac{d\mathbf{x}_{cm}}{dt} + \frac{d\mathbf{r}}{dt}$$

$$extbf{\emph{v}} = extbf{\emph{v}}_{ extit{cm}} + oldsymbol{\omega} imes extbf{\emph{r}}$$

Rigid bodies kinematics

Rigid bodie

dynamics

Summary

Offset acceleration

Acceleration a of the offset point:

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

$$\mathbf{a} = \frac{d\mathbf{v}_{cm}}{dt} + \frac{d\omega}{dt} \times \mathbf{r} + \omega \times \frac{d\mathbf{r}}{dt}$$

$$\mathbf{a} = \mathbf{a}_{cm} + \alpha \times \mathbf{r} + \omega \times (\omega \times \mathbf{r})$$

dvnamics

Summar

Offset acceleration

Acceleration a of the offset point:

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

$$\mathbf{a} = \frac{d\mathbf{v}_{cm}}{dt} + \frac{d\omega}{dt} \times \mathbf{r} + \omega \times \frac{d\mathbf{r}}{dt}$$

$$\mathbf{a} = \mathbf{a}_{cm} + \alpha \times \mathbf{r} + \omega \times (\omega \times \mathbf{r})$$

$$a = a_{cm} + a_{tan} + a_{cen}$$

Where:

- $a_{tan} = \alpha \times r$: tangential acceleration
- $a_{cen} = \omega \times (\omega \times r)$: centripetal acceleration

dynamics

Summa

Offset point kinematics

Recap:

Position:

$$\mathbf{x} = \mathbf{x}_{cm} + \mathbf{r}$$

Velocity:

$$\mathbf{v} = \mathbf{v}_{cm} + \boldsymbol{\omega} \times \mathbf{r}$$

acceleration:

$$oldsymbol{a} = oldsymbol{a}_{cm} + lpha imes oldsymbol{r} + \omega imes (\omega imes oldsymbol{r})$$

Physics based animation

Grégory Leplâtre

Introductio

System o particles

Rigid bodies

Rigid bodies kinematics

Rigid bodies dynamics

Summary

Rigid body dynamics

Rigid body mass

In the physical world:

$$m = \int_{V} \rho dV$$

If the density is uniform:

$$m = \rho * V$$

In the digital world:

$$m=\sum_{i=1}^n m_i$$

5....

Rigid bodies dynamics

_

Center of mass

In the physical world:

$$x_{cm} = \frac{\int_{V} \rho \mathbf{x} dV}{\int_{V} \rho dV}$$

► In the digital world:

$$m = \frac{1}{m} \sum_{i=1}^{n} m_i \boldsymbol{x}_i$$

System o

Rigid bodies

Distribution

Rigid bodies dynamics

Summar

Center of mass

Easy to determine for primitive shapes

rigia boales

kinematics

Rigid bodies

dynamics

Summary

Center of mass

Easy to determine for primitive shapes System of particles

Rigid bodies

i ligia boales

Rigid bodies

dynamics

Summary

Center of mass

- Easy to determine for primitive shapes
- Complex models can be simplified

Physics based animation

Grégory Leplâtre

Introduction

System o

Rigid bodie

Digid bodies

Rigid bodies

dynamics

Summary

riigia boalot

Rigid bodies dynamics

Summar

$$\mathbf{I} = \begin{bmatrix}
\int \rho(r_y^2 + r_z^2) dV & -\int \rho r_x r_y dV & -\int \rho r_x r_z dV \\
-\int \rho r_x r_y dV & \int \rho(r_x^2 + r_z^2) dV & -\int \rho r_y r_z dV \\
-\int \rho r_x r_z dV & -\int \rho r_y r_z dV & \int \rho(r_x^2 - r_y^2) dV
\end{bmatrix}$$

Rigid bodies

Rigid bodies dynamics

Summar

$$\mathbf{I} = \begin{bmatrix} \int \rho(r_y^2 + r_z^2) dV & -\int \rho r_x r_y dV & -\int \rho r_x r_z dV \\ -\int \rho r_x r_y dV & \int \rho(r_x^2 + r_z^2) dV & -\int \rho r_y r_z dV \\ -\int \rho r_x r_z dV & -\int \rho r_y r_z dV & \int \rho(r_x^2 - r_y^2) dV \end{bmatrix}$$

$$\mathbf{I} = \int_{V} \rho(x, y, z) \begin{bmatrix} (x^2 + z^2) & xy & xz \\ xy & (x^2 + z^2) & yz \\ xz & yz & (x^2 - y^2) \end{bmatrix} dxdydz$$

Rigid bodies dynamics

Summar

$$\mathbf{I} = \begin{bmatrix}
\int \rho(r_y^2 + r_z^2) dV & -\int \rho r_x r_y dV & -\int \rho r_x r_z dV \\
-\int \rho r_x r_y dV & \int \rho(r_x^2 + r_z^2) dV & -\int \rho r_y r_z dV \\
-\int \rho r_x r_z dV & -\int \rho r_y r_z dV & \int \rho(r_x^2 - r_y^2) dV
\end{bmatrix}$$

$$\mathbf{I} = \int_{V} \rho(x, y, z) \begin{bmatrix} (x^2 + z^2) & xy & xz \\ xy & (x^2 + z^2) & yz \\ xz & yz & (x^2 - y^2) \end{bmatrix} dxdydz$$

- ▶ Diagonal elements: Distances to the **principal axes**
- Non-diagonal elements: products of the perpendicular distances to the respective planes

Inertia of primitive shapes

				y
	I_x	I_y	I_z	
Slender Rod $m = \text{mass}, l =$	0 length of rod	1/12 <i>ml</i> ²	1/12 ml ²	z x
				7
Rectangular Plate $m = \text{mass}, b =$	$1/12 \ m(b^2+c^2)$ height of plate, $c =$		$1/12 \ mb^2$	z y
Thin Disk $m = \text{mass}, r =$		1/4 mr ²	½ mr²	z
Rectangular Prism $m = \text{mass}, a =$	$1/12 \ m(b^2+c^2)$ depth (x), $b = \text{height}$			z x
Circular Cylinder			$1/12 \ m(3r^2+l^2)$	Y
m = mass, l = 1	length of cylinder,	r = radius		z x

Rigid bodies dynamics

Summary

Inertia of primitive shapes

Elliptical Cylinder
$$1/12 \ m(3c^2+l^2) \ 1/12 \ m(3b^2+l^2) \ 1/4 \ m(b^2+c^2)$$

 $m = \text{mass}, \ l = \text{length of cylinder } (x), \ b = \text{height/2 } (y), \ c = \text{width/2 } (z)$

Circular Cone $3/10 \text{ mr}^2$ $3/5 \text{ m}(1/4 \text{ r}^2 + 1/2)$ $3/5 \text{ m}(1/4 \text{ r}^2 + 1/2)$ $3/5 \text{ m}(1/4 \text{ r}^2 + 1/2)$ $3/5 \text{ m}(1/4 \text{ r}^2 + 1/2)$

Sphere $2/5 mr^2$ $2/5 mr^2$ $2/5 mr^2$ $2/5 mr^2$

Ellipsoid $1/5 \ m(b^2+c^2)$ $1/5 \ m(a^2+c^2)$ $1/5 \ m(a^2+b^2)$ $m = \text{mass}, \ a = \text{depth} \ (x), \ b = \text{height} \ (y), \ c = \text{width} \ (z)$

diagonalisation of Rotational Inertia

► I can be expressed as:

$$I = A \cdot I_O \cdot A^T$$

Where:
$$I_O = \begin{bmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{bmatrix}$$

Rigid bodies dynamics

diagonalisation of Rotational Inertia

I can be expressed as:

$$I = A \cdot I_O \cdot A^T$$

kinematics

Rigid bodies dynamics

Summar

diagonalisation of Rotational Inertia

► I can be expressed as:

$$I = A \cdot I_O \cdot A^T$$

► The matrix A rotates the object from an orientation where the principal axes line up with the x, y, and z axes

diagonalisation of Rotational Inertia

► I can be expressed as:

$$I = A \cdot I_O \cdot A^T$$

- ► The matrix **A** rotates the object from an orientation where the principal axes line up with the x, y, and z axes
- ► The three values in I_O, (namely I_x, I_y, and I_z) are the principal inertias. They represent the resistance to torque around the corresponding principal axis (in a similar way that mass represents the resistance to force)

kinematics Rigid bodies

Rigid bodies dynamics

Summary

Derivative of angular momentum

$$\mathbf{L} = \mathbf{I} \cdot \boldsymbol{\omega}$$

$$\boldsymbol{\tau} = \frac{d\mathbf{L}}{dt} = \frac{d\mathbf{I}}{dt} \cdot \boldsymbol{\omega} + \mathbf{I} \times \frac{d\boldsymbol{\omega}}{dt}$$

$$\boldsymbol{\tau} = \boldsymbol{\omega} \times \mathbf{I} \cdot \boldsymbol{\omega} + \mathbf{I} \cdot \boldsymbol{\alpha}$$

$$au = \omega \times \mathbf{I} \cdot \omega + \mathbf{I} \cdot \alpha$$

System o

Rigid bodies

Tilgiu boules

Rigid bodies

dynamics

Summary

Newton-Euler equations

$$f = ma$$

$$au = \omega \times I \cdot \omega + I \cdot \alpha$$

Rigid bodies

dynamics

Summar

Forces and torques

$$\mathbf{f} = m \sum \mathbf{f}_i$$

$$au = \sum (\mathbf{r}_i \times \mathbf{f}_i)$$

This gives us the **linear** and **rotational** accelerations:

$$\boldsymbol{a}=\frac{1}{m}\boldsymbol{f}$$

$$oxed{lpha = oldsymbol{I}^{-1} \cdot (au - \omega imes oldsymbol{I} \cdot \omega)}$$

Introduction

System of particles

Rigid bodies

kinematics Rigid bodies

dynamics

Summa

Linear:

m

x

v

a

p = mv

f = ma

Rotational:

1

A

 ω

 α

 $\boldsymbol{L} = \boldsymbol{I} \cdot \boldsymbol{\omega}$

 $au = \omega imes \mathbf{I} \cdot \omega + \mathbf{I} \cdot \alpha$

nigia boales

Rigid bodies

Rigid bodies dynamics

Summary

Rigid body simulation

1 Compute all **forces** and **torques** acting within the system. $\mathbf{f} = \sum_{i} \mathbf{f}_{i}$ $\tau = \sum_{i} \tau_{i}$

- 1 Compute all **forces** and **torques** acting within the system. $\mathbf{f} = \sum_{i} \mathbf{f}_{i}$ $\boldsymbol{\tau} = \sum_{i} \boldsymbol{\tau}_{i}$
- Integrate to calculate:

- Compute all **forces** and **torques** acting within the system. $\mathbf{f} = \sum_{i} \mathbf{f}_{i}$ $\tau = \sum_{i} \tau_{i}$
- Integrate to calculate:
 - 1 the velocity and position of the CoM:

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \frac{1}{m} \mathbf{f} \Delta t$$

 $\mathbf{r}_{n+1} = \mathbf{r}_n + \mathbf{v}_{n+1} \Delta t$

- Compute all **forces** and **torques** acting within the system. $\mathbf{f} = \sum_{i} \mathbf{f}_{i}$ $\tau = \sum_{i} \tau_{i}$
- Integrate to calculate:
 - 1 the velocity and position of the CoM:

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \frac{1}{m} \mathbf{f} \Delta t$$

 $\mathbf{r}_{n+1} = \mathbf{r}_n + \mathbf{v}_{n+1} \Delta t$

the rotational momentum, angular velocity and rotation angle of the rigid body:

$$\mathbf{L}_{n+1} = \mathbf{L}_n + \tau \Delta t$$

$$\boldsymbol{\omega}_{n+1} = \mathbf{I}^{-1} \cdot \mathbf{L}_{n+1}$$

$$\boldsymbol{\theta}_{n+1} = \|\boldsymbol{\omega}_{n+1}\| \Delta t$$

- 1 Compute all **forces** and **torques** acting within the system. $\mathbf{f} = \sum_i \mathbf{f}_i$ $\tau = \sum_i \boldsymbol{\tau}_i$
- Integrate to calculate:
 - 1 the velocity and position of the CoM:

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \frac{1}{m} \mathbf{f} \Delta t$$

 $\mathbf{r}_{n+1} = \mathbf{r}_n + \mathbf{v}_{n+1} \Delta t$

the rotational momentum, angular velocity and rotation angle of the rigid body:

$$\mathbf{L}_{n+1} = \mathbf{L}_n + \tau \Delta t$$

$$\boldsymbol{\omega}_{n+1} = \mathbf{I}^{-1} \cdot \mathbf{L}_{n+1}$$

$$\boldsymbol{\theta}_{n+1} = \|\boldsymbol{\omega}_{n+1}\| \Delta t$$

translate and rotate rigid body

Summary

Outline

- 1 Introduction
- 2 System of particles
- 3 Rigid bodies
- 4 Summary

Introduction

System of particles

Rigid bodies

Summary

- What we have achieved:
 - Simulation of translation and rotation of a rigid body

Summary

Summary

- What we have achieved:
 - Simulation of translation and rotation of a rigid body
- Still to do
 - Collisions (detection and response (impulse))
 - Implementation details/subtleties: see SIGGRAPH 2001 course notes ...
 - Tutorials

Summary

Coming up

Wednesday: Tutorial 5: Centre of Mass

Friday: Pitch

Next week: Collision