Напоминание: линейные модели классификации и регрессии

Обучающая выборка: $X^\ell=(x_i,y_i)_{i=1}^\ell$, объекты $x_i\in\mathbb{R}^n$, ответы y_i

Задача регрессии: $Y = \mathbb{R}$ $a(x, w) = \langle w, x_i \rangle$ — линейная модель регрессии

$$Q(w;X^{\ell}) = \sum_{i=1}^{\ell} (\sigma(\langle w, x_i \rangle) - y_i)^2 \to \min_{w};$$

Задача классификации с двумя классами: $Y=\{\pm 1\}$ $a(x,w)=\mathrm{sign}\langle w,x_i\rangle$ — линейная модель классификации $\mathscr{L}(M)$ — невозрастающая функция отступа, например, $\mathscr{L}(M)=\ln(1+e^{-M}),\;\;(1-M)_+,\;\;e^{-M},\;\;\frac{1}{1+e^M},\;$ и др.

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(\underbrace{\langle w, x_i \rangle y_i}_{M_i(w)}) o \min_{w};$$

Напоминание: линейная модель нейрона МакКаллока-Питтса

$$f_j \colon X o \mathbb{R}$$
, $j = 1, \dots, n$ — числовые признаки;

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right),$$

 w_j — веса признаков, $\sigma(z)$ — функция активации, $x^j \equiv f_j(x)$

Насколько богатый класс функций реализуется нейроном? А сетью (суперпозицией) нейронов?

Нейронная реализация логических функций

Функции И, ИЛИ, НЕ бинарных переменных (признаков) x^1 , x^2 :

$$x^{1} \wedge x^{2} = \left[x^{1} + x^{2} - \frac{3}{2} > 0\right];$$

 $x^{1} \vee x^{2} = \left[x^{1} + x^{2} - \frac{1}{2} > 0\right];$
 $\neg x^{1} = \left[-x^{1} + \frac{1}{2} > 0\right];$

Логическая функция XOR (исключающее ИЛИ)

Функция $x^1 \oplus x^2 = [x^1 \neq x^2]$ не реализуема одним нейроном. Два способа реализации:

• Добавлением нелинейного признака:

$$x^1 \oplus x^2 = \left[x^1 + x^2 - 2x^1x^2 - \frac{1}{2} > 0 \right];$$

• Сетью (двухслойной суперпозицией) функций И, ИЛИ, НЕ: $x^1 \oplus x^2 = \left[(x^1 \lor x^2) - (x^1 \land x^2) - \frac{1}{2} > 0 \right].$

Любую ли функцию можно представить нейросетью?

- Двухслойная сеть в $\{0,1\}^n$ позволяет реализовать произвольную булеву функцию (ДНФ).
- Линейный нейрон в \mathbb{R}^n позволяет отделить полупространство гиперплоскостью. Двухслойная сеть в \mathbb{R}^n позволяет отделить многогранную область, не обязательно выпуклую и связную.
- С помощью линейных операций и одной нелинейной функции активации σ можно приблизить любую непрерывную функцию с любой желаемой точностью (теорема Горбаня, 1998).

Практические рекомендации:

- Двух слоёв достаточно для аппроксимации функций.
- Глубокие сети обучаются преобразованию признаков.

Двухслойные сети — аппроксиматоры непрерывных функций

Функция
$$\sigma(z)$$
 — *сигмоида*, если $\lim_{z \to -\infty} \sigma(z) = 0$ и $\lim_{z \to +\infty} \sigma(z) = 1$.

Теорема Цыбенко (1989)

Если $\sigma(z)$ — непрерывная сигмоида, то для любой непрерывной на $[0,1]^n$ функции f(x) существуют такие значения параметров $H, \ \alpha_h \in \mathbb{R}, \ w_h \in \mathbb{R}^n, \ w_0 \in \mathbb{R}, \ что двухслойная сеть$

$$a(x) = \sum_{h=1}^{H} \alpha_h \sigma(\langle x, w_h \rangle - w_0)$$

равномерно приближает f(x) с любой точностью ε :

$$|a(x)-f(x)| для всех $x\in[0,1]^n.$$$

George Cybenko. Approximation by Superpositions of a Sigmoidal function. Mathematics of Control, Signals, and Systems. 1989.

Двухслойная нейронная сеть с М-мерным выходом

Обобщение: полносвязная нейронная сеть с L слоями

Архитектура сети: H_l — число нейронов в l-м слое, $l=1,\ldots,L$ $x^0=x=(f_j(x))_{j=0}^n$ — вектор признаков на входе сети, $H_0=n$ $x^l=(x_h^l)_{h=0}^{H_l}$ — вектор признаков на выходе l-го слоя, $x_0^l=-1$ $x^L=a(x)=(a_m(x))_{m=1}^M$ — выходной вектор сети, $H_L=M$ $W^l=(w_{kh}^l)$ — матрица весов l-го слоя, размера $(H_{l-1}+1)\times H_l$

Напоминание: алгоритм SG (Stochastic Gradient)

Минимизация средних потерь на обучающей выборке:

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathscr{L}_i(w) \to \min_{w}.$$

```
Вход: выборка (x_i, y_i)_{i=1}^{\ell}; темп обучения \eta; параметр \lambda; Выход: вектор весов всех слоёв w = (W^1, \dots, W^L); инициализировать веса w и текущую оценку Q(w);
```

повторять

```
выбрать объект x_i из X^\ell (например, случайно); вычислить потерю \mathcal{L}_i := \mathcal{L}_i(w); градиентный шаг: w := w - \eta \nabla \mathcal{L}_i(w); оценить значение функционала: Q := (1 - \lambda)Q + \lambda \mathcal{L}_i; пока значение Q и/или веса w не стабилизируются;
```

Задача дифференцирования суперпозиции функций

Вычисление сети по входному вектору x, рекуррентно по слоям:

$$\mathbf{x}_h^l = \sigma_h^l(\Sigma_h^l), \quad \Sigma_h^l = \sum_{k=0}^{H_{l-1}} w_{kh}^l \mathbf{x}_k^{l-1}, \quad l = 1, \dots, L,$$

то же самое в матричной записи: $\mathbf{x}^l = \sigma^l (\mathbf{W}^l \mathbf{x}^{l-1})$.

Функция потерь на объекте x_i (в общем виде и квадратичная):

$$\mathcal{L}_{i}(w) = \sum_{m=1}^{M} \mathcal{L}(a_{m}(x_{i}, w), y_{im}) = \sum_{m=1}^{M} \frac{1}{2} (a_{m}(x_{i}, w) - y_{im})^{2}$$

По формуле дифференцирования суперпозиции функций:

$$\frac{\partial \mathcal{L}_{i}(w)}{\partial w_{kh}} = \frac{\partial \mathcal{L}_{i}(w)}{\partial x_{k}^{l}} \frac{\partial x_{h}^{l}}{\partial w_{kh}}, \quad k = 0, \dots, H_{l-1}, \quad h = 1, \dots, H_{l}$$

Рекуррентное вычисление частных производных

Найдём сначала частные производные $\mathscr{L}_i(w)$ по $x_h^L \equiv a_h(x_i,w)$:

$$\frac{\partial \mathcal{L}_{i}(w)}{\partial x_{h}^{L}} = \frac{\partial \mathcal{L}(x_{h}^{L}, y_{ih})}{\partial x_{h}^{L}} = a_{h}(x_{i}, w) - y_{ih} \equiv \varepsilon_{ih}^{L};$$

для квадратичной функции потерь это ошибка выходного слоя.

Частные производные по x_h^l будем вычислять рекуррентно, по уровням справа налево, $l=L,\ldots,2$:

$$\frac{\partial \mathcal{L}_{i}(w)}{\partial x_{k}^{l-1}} = \sum_{h=0}^{H_{l}} \frac{\partial \mathcal{L}_{i}(w)}{\partial x_{h}^{l}} \underbrace{(\sigma_{h}^{l})'(\Sigma_{ih}^{l})}_{z_{ih}^{l}} w_{kh}^{l} = \sum_{h=0}^{H_{l}} \varepsilon_{ih}^{l} z_{ih}^{l} w_{kh}^{l} = \varepsilon_{ik}^{l-1}$$

— формально назовём это ошибкой скрытого слоя.

Замечание: функция активации σ_h^l и её производная $(\sigma_h^l)'$ вычисляются в одной и той же точке $\Sigma_{ih}^l = \sum_{k=0}^{H_{l-1}} w_{kh}^l x_{ik}^{l-1}$

Быстрое вычисление градиента

Рекуррентная формула записана так, будто сеть запускается «задом наперёд», чтобы вычислять ε_{ik}^{l-1} по ε_{ih}^{l} :

$$\varepsilon_{ik}^{l-1} \underbrace{ \begin{array}{c} \varepsilon_{i0}^{l} z_{i0}^{l} \\ \cdots \\ w_{kh} - \varepsilon_{ih}^{l} z_{ih}^{l} \\ \cdots \\ \varepsilon_{iH_{l}}^{l} z_{iH_{l}}^{l} \end{array} }_{w_{kH_{l}}}$$

Теперь, имея частные производные $\mathcal{L}_i(w)$ по всем x_h^l , легко найти градиент $\mathcal{L}_i(w)$ по вектору весов w:

$$\frac{\partial \mathcal{L}_{i}(w)}{\partial w_{kh}} = \frac{\partial \mathcal{L}_{i}(w)}{\partial x_{h}^{l}} \frac{\partial x_{h}^{l}}{\partial w_{kh}} = \varepsilon_{ih}^{l} z_{ih}^{l} x_{ik}^{l-1}$$

Алгоритм обратного распространения ошибки BackProp

Вход: выборка $(x_i,y_i)_{i=1}^\ell$, архитектура $(H_l)_{l=1}^L$, параметры η , λ ; **Выход:** вектор весов всех слоёв $w=(W^1,\ldots,W^L)$; инициализировать веса w; повторять

выбрать объект x_i из X^ℓ (например, случайно); прямой ход: для всех l=1..L, $h=1..H_l$ $\Sigma_{ih}^l:=\sum_{k=0}^{H_{l-1}}w_{kh}^lx_{ik}^{l-1}; \quad x_{ih}^l:=\sigma_h^l(\Sigma_{ih}^l); \quad z_{ih}^l:=(\sigma_h^l)'(\Sigma_{ih}^l);$ $\varepsilon_{hi}^L:=\frac{\partial \mathscr{L}_i(w)}{\partial x_h^L}, \quad h=1..H_L;$ обратный ход: для всех $l=L..2, \quad k=0..H_{l-1}$ $\varepsilon_{ik}^{l-1}=\sum_{h=0}^{H_l}\varepsilon_{ih}^lx_{ih}^lw_{kh}^l;$ градиентный шаг: для всех $l=1..L, \quad k=0..H_{l-1}, \quad h=1..H_l$ $w_{kh}:=w_{kh}-\eta\,\varepsilon_{ih}^lz_{ih}^lx_{ik}^{l-1};$

пока значения Q и/или веса w не стабилизируются;

Алгоритм BackProp: преимущества и недостатки

Преимущества:

- ullet время вычисления градиента $O(\dim w)$ вместо $O(\dim^2 w)$
- ullet обобщение на любые σ , ${\mathscr L}$ и любое число слоёв
- возможность динамического (потокового) обучения
- сублинейное обучение на сверхбольших выборках (когда части объектов х_i уже достаточно для обучения)
- возможно распараллеливание

Недостатки — все те же, свойственные SG:

- медленная сходимость
- застревание в локальных экстремумах
- ullet «паралич сети» из-за горизонтальных асимптот σ
- проблема переобучения
- подбор комплекса эвристик является искусством

Напоминание: метод накопления инерции (momentum)

Momentum — экспоненциальное скользящее среднее градиента по $\approx \frac{1}{1-\gamma}$ последним итерациям [Б.Т.Поляк, 1964]:

$$v := \frac{\gamma}{v} + \frac{(1 - \gamma)\mathcal{L}'_i(w)}{w}$$
$$w := w - \eta v$$

NAG (Nesterov's accelerated gradient) — стохастический градиент с инерцией [Ю.Е.Нестеров, 1983]:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_i(w - \eta \gamma v)$$

$$w := w - \eta v$$

Адаптивные градиенты

RMSProp (running mean square) — выравнивание скоростей изменения весов скользящим средним по $\approx \frac{1}{1-\alpha}$ итерациям, ускоряет обучение по весам, которые пока мало изменялись:

$$G := {\alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w)}$$

$$w := w - \eta \mathcal{L}'_i(w) \oslash (\sqrt{G} + \varepsilon)$$

где \odot и \oslash — покоординатное умножение и деление векторов.

AdaDelta (adaptive learning rate) — двойная нормировка приращений весов, после которой можно брать $\eta=1$:

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w)$$

$$\delta := \mathcal{L}'_i(w) \odot \frac{\sqrt{\Delta} + \varepsilon}{\sqrt{G} + \varepsilon}$$

$$\Delta := \alpha \Delta + (1 - \alpha) \delta \odot \delta$$

$$w := w - \eta \delta$$

Комбинированные градиентные методы

Adam (adaptive momentum) = инерция + RMSProp:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_i(w) \qquad \hat{v} := v(1 - \gamma^k)^{-1}$$

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w) \qquad \hat{G} := G(1 - \alpha^k)^{-1}$$

$$w := w - \eta \hat{v} \oslash (\sqrt{\hat{G}} + \varepsilon)$$

Калибровка \hat{v} , \hat{G} увеличивает v, G на первых итерациях, где k — номер итерации; $\gamma=0.9$, $\alpha=0.999$, $\varepsilon=10^{-8}$

Nadam (Nesterov-accelerated adaptive momentum): те же формулы для v, \hat{v} , G, \hat{G} ,

$$w := w - \eta \left(\gamma \hat{\mathbf{v}} + \frac{1 - \gamma}{1 - \gamma^k} \mathcal{L}'_i(w) \right) \oslash \left(\sqrt{\hat{G}} + \varepsilon \right)$$

Сравнение сходимости методов

Alec Radford's animation:

https://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Проблема взрыва градиента и эвристика gradient clipping

Проблема взрыва градиента (gradient exploding)

Эвристика Gradient Clipping: если $\|g\| > \theta$ то $g := g\theta/\|g\|$

При грамотном подборе γ проблема взрыва градиента не возникает, и эвристика Gradient Clipping не нужна.

Метод случайных отключений нейронов (Dropout)

Этап обучения: делая градиентный шаг $\mathscr{L}_i(w) o \min_w$, отключаем h-ый нейрон l-го слоя с вероятностью p_l :

$$x_{hi}^l = \xi_h^l \sigma_h^l \left(\sum_k w_{kh}^l x_{ki}^{l-1} \right), \qquad \mathsf{P}(\xi_h^l = 0) = p_l$$

Этап применения: включаем все нейроны, но с поправкой:

$$x_{hi}^l = (1 - p_l)\sigma_h^l \left(\sum_k w_{kh}^l x_{ki}^{l-1}\right)$$

Интерпретации Dropout

- lacktriangledown аппроксимируем простое голосование по 2^N сетям с общим набором из N весов, но с различной архитектурой связей
- регуляризация: из всех сетей выбираем более устойчивую
 к утрате р
 № нейронов, моделируя надёжность мозга
- сокращаем переобучение, заставляя разные части сети решать одну и ту же исходную задачу вместо того, чтобы подстраивать их под компенсацию ошибок друг друга

Обратный Dropout и L_2 -регуляризация

На практике чаще используют не Dropout, a Inverted Dropout.

Этап обучения:

$$\mathbf{x}_{hi}^l = \frac{1}{1-p_l} \xi_h^l \, \sigma_h^l \left(\sum_k \mathbf{w}_{kh}^l \mathbf{x}_{ki}^{l-1} \right), \qquad \mathsf{P}(\xi_h^l = \mathbf{0}) = p_\ell$$

Этап применения не требует ни модификаций, ни знания p_ℓ :

$$x_{hi}^l = \sigma_h^l \left(\sum_k w_{kh}^l x_{ki}^{l-1} \right)$$

 L_2 -регуляризация предотвращает рост параметров на обучении:

$$\mathscr{L}_i(w) + \frac{\lambda}{2} ||w||^2 \to \min_{w}$$

Градиентный шаг с Dropout и L_2 -регуляризацией:

$$w := w(1 - \eta \lambda) - \eta \frac{1}{1 - \rho_{\ell}} \xi_h^{\ell} \mathcal{L}_i'(w)$$

Функции активации ReLU и PReLU (LeakyReLU)

Функции $\sigma(y)=\frac{1}{1+e^{-y}}$ и $\operatorname{th}(y)=\frac{e^y-e^{-y}}{e^y+e^{-y}}$ могут приводить к затуханию градиентов или «параличу сети»

Функция положительной срезки (rectified linear unit)

$$ReLU(y) = \max\{0, y\}; \qquad PReLU(y) = \max\{0, y\} + \alpha \min\{0, y\}$$

Пакетная нормализация данных (Batch Normalization)

 $B = \{x_i\}$ — пакеты (mini-batch) данных.

Усреднение градиентов $\mathscr{L}_i(w)$ по пакету ускоряет сходимость.

 $B^l = \{x_i^l\}$ — векторы объектов x_i на выходе l-го слоя.

Batch Normalization:

1. Нормировать каждую h-ю компоненту вектора x_i^l по пакету:

$$\hat{x}_{hi}^{l} = \frac{x_{hi}^{l} - \mu_{h}}{\sqrt{\sigma_{h}^{2} + \varepsilon}}; \quad \mu_{h} = \frac{1}{|B|} \sum_{x_{i} \in B} x_{hi}^{l}; \quad \sigma_{h}^{2} = \frac{1}{|B|} \sum_{x_{i} \in B} (x_{hi}^{l} - \mu_{h})^{2}.$$

2. Добавить линейный слой с настраиваемыми весами:

$$\tilde{\mathbf{x}}_{\mathbf{h}\mathbf{i}}^{l} = \gamma_{\mathbf{h}}^{l} \hat{\mathbf{x}}_{\mathbf{h}\mathbf{i}}^{l} + \beta_{\mathbf{h}}^{l}$$

3. Параметры γ_h^l и β_h^l настраиваются BackProp.

Эвристики для начального приближения

1. Выравнивание дисперсий выходов в разных слоях:

$$w_{kh} := \operatorname{uniform}\left(-\frac{1}{\sqrt{H_l}}, \frac{1}{\sqrt{H_l}}\right)$$

2. Выравнивание дисперсий градиентов в разных слоях:

$$w_{kh} := \operatorname{uniform}\left(-\frac{6}{\sqrt{H_{l-1}+H_l}}, \frac{6}{\sqrt{H_{l-1}+H_l}}\right),$$

где H_{l-1} , H_l — число нейронов в предыдущем и текущем слое

- 3. Послойное обучение нейронов как линейных моделей:
 - ullet либо по случайной подвыборке $X'\subseteq X^\ell$;
 - либо по случайному подмножеству входов;
- либо из различных случайных начальных приближений; тем самым обеспечивается *различность* нейронов.
- 4. Инициализация весами предобученной модели
- 5. Инициализация случайным ортогональным базисом

Прореживание сети (OBD — Optimal Brain Damage)

Пусть w — локальный минимум Q(w), тогда Q(w) можно аппроксимировать квадратичной формой:

$$Q(w + \delta) = Q(w) + \frac{1}{2}\delta^{\mathsf{T}}Q''(w)\delta + o(\|\delta\|^2),$$

где
$$Q''(w) = \left(\frac{\partial^2 Q(w)}{\partial w_{kh} \partial w_{klh'}}\right)$$
 — гессиан, размера $\dim^2(w)$.

Эвристика. Пусть гессиан Q''(w) диагонален, тогда

$$\delta^{\mathsf{T}} \, Q''(w) \delta = \sum_{l=1}^L \sum_{k=0}^{H_{l-1}} \sum_{h=1}^{H_l} \delta_{kh}^2 \frac{\partial^2 Q(w)}{\partial w_{kh}^2}$$

Хотим обнулить вес: $w_{kh} + \delta_{kh} = 0$. Как изменится Q(w)?

Определение. Значимость (salience) веса w_{kh} — это изменение функционала Q(w) при его обнулении: $S_{kh} = w_{kh}^2 \frac{\partial^2 Q(w)}{\partial w^2}$.

Прореживание сети (OBD — Optimal Brain Damage)

- $lacksymbol{0}$ В BackProp вычислять вторые производные $rac{\partial^2 Q}{\partial w_{kh}^2}$.
- $oldsymbol{oldsymbol{arepsilon}}$ Если процесс минимизации Q(w) пришёл в минимум,то
 - ullet упорядочить на каждом уровне веса по убыванию S_{kh} ;
 - удалить N связей с наименьшей значимостью;
 - снова запустить BackProp.
- ullet Если $Q(w,X^\ell)$ или $Q(w,X^k)$ существенно ухудшился, то вернуть последние удалённые связи и выйти.

Отбор признаков с помощью OBD — аналогично.

Суммарная значимость признака:
$$S_j = \sum_{h=1}^{H_1} S_{jh}$$
.

Эмпирический опыт: результат постепенного прореживания обычно лучше, чем BackProp изначально прореженной сети.

- Нейрон = линейная классификация или регрессия.
- Нейронная сеть = суперпозиция нейронов с нелинейной функцией активации. Теоретически двух-трёх слоёв достаточно для решения очень широкого класса задач.
- Глубокие нейросети автоматизируют выделение признаков из сложно структурированных данных (feature extraction)
- BackProp = быстрое дифференцирование суперпозиций.
 Позволяет обучать сети практически любой архитектуры.
- Некоторые меры по улучшению сходимости и качества:
 - адаптивный градиентный шаг
 - функции активации типа ReLU
 - регуляризация и DropOut
 - пакетная нормализация (batch normalization)
 - инициализация нейронов как отдельных алгоритмов