# Session 6 bis: Markov Chains and PageRank

Optimization and Computational Linear Algebra for Data Science

#### **Contents**

- 1. Markov chains
- 2. Perron-Frobenius Theorem
- 3. Application: PageRank
- 4. A first look at the Spectral theorem.

### **Markov chains**

Markov chains 1/25

### An example

Markov chains

|  |  |  |  |  |  |  |  |  |  |  |  | I |
|--|--|--|--|--|--|--|--|--|--|--|--|---|
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  | I |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |

#### **Stochastic matrices**

#### Definition

A matrix  $P \in \mathbb{R}^{n \times n}$  is said to be *stochastic* if:

- 1.  $P_{i,j} \ge 0$  for all  $1 \le i, j \le n$ .
- 2.  $\sum_{i=1}^{n} P_{i,j} = 1$ , for all  $1 \le j \le n$ .

Markov chains

## Drobability voctors

| r | 10 | )D | a | 9L | U. | ty | V | e | Cl | .0 | rs |  |  |  |  |  |
|---|----|----|---|----|----|----|---|---|----|----|----|--|--|--|--|--|
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |
|   |    |    |   |    |    |    |   |   |    |    |    |  |  |  |  |  |

### The key equation

#### Proposition

For all 
$$t \geq 0$$

$$x^{(t+1)} = Px^{(t)}$$
 and consequently,  $x^{(t)} = P^t x^{(0)}$ .

Markov chains

| L | or | 18 | 9 | e | rr | n | D | er | 1a | V | 10 | r |  |  |  |  |  |
|---|----|----|---|---|----|---|---|----|----|---|----|---|--|--|--|--|--|
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |
|   |    |    |   |   |    |   |   |    |    |   |    |   |  |  |  |  |  |



Markov chains

### **Perron-Frobenius Theorem**

Perron-Frobenius Theorem 7/25

#### **Invariant** measure

#### Definition

A vector  $\mu \in \Delta_n$  is called an invariant measure for the transition matrix P if  $\mu = P\mu$ , i.e. if  $\mu$  is an eigenvector of P associated with the eigenvalue 1.

#### **Perron-Frobenius Theorem**

#### Theorem

Let P be a stochastic matrix such that there exists  $k \ge 1$  such that all the entries of  $P^k$  are strictly positive. Then the following holds:

- 1. 1 is an eigenvalue of P and there exists an eigenvector  $\mu \in \Delta_n$  associated to 1.
- 2. The eigenvalue 1 has multiplicity 1:  $Ker(P Id) = Span(\mu)$ .
- 3. For all  $x \in \Delta_n$ ,  $P^t x \xrightarrow[t \to \infty]{} \mu$ .

Perron-Frobenius Theorem 9/25

#### Consequence

#### Corollary

Let P be a stochastic matrix such that there exists  $k \ge 1$  such that all the entries of  $P^k$  are strictly positive.

Then there exists a unique invariant measure  $\mu$  and for all initial condition  $x^{(0)}\in\Delta_n$  ,

$$x^{(t)} = P^t x^{(0)} \xrightarrow[t \to \infty]{} \mu.$$

Perron-Frobenius Theorem

| Proof: | Geomet | rical observations |  |
|--------|--------|--------------------|--|
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |
|        |        |                    |  |

Perron-Frobenius Theorem

#### **Proof: contraction**

We will prove the theorem in the case where  $P_{i,j} > 0$  for all i, j. Lemma

The mapping

$$\varphi: \quad \Delta_n \quad \to \quad \Delta_n$$

$$x \quad \mapsto \quad Px$$

is a contraction mapping for the  $\ell_1$ -norm: there exists  $c \in (0,1)$  such that for all  $x,y \in \Delta_n$ :

$$||Px - Py||_1 \le c||x - y||_1.$$

## **Geometric picture**

13/25

Perron-Frobenius Theorem

## **End of the proof**

Perron-Frobenius Theorem

## **End of the proof**

Perron-Frobenius Theorem

## **End of the proof**

Perron-Frobenius Theorem

## **PageRank**

PageRank 15/25

## Ordering the Web

|  |  |  |  |  |  |  |  |  |  |  |  | ļ |
|--|--|--|--|--|--|--|--|--|--|--|--|---|
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  | ı |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |
|  |  |  |  |  |  |  |  |  |  |  |  |   |

16/25

### The random surfer

17/25

### The random surfer

17/25

## **PageRank Algorithm**

18/25

### **Application: ranking Tennis players**

#### Goal: ranking the following players

Federer, Nadal, Djokovic, Murray, Del Potro, Roddick, Coria, Zverev, Ferrer, Soderling, Tsonga, Nishikori, Raonic, Nalbandian, Wawrinka, Berdych, Hewitt, Tsitsipas, Monfils, Gonzalez, Thiem, Ljubicic, Davydenko, Cilic, Pouille, Safin, Isner, Dimitrov, Medvedev, Ferrero, Goffin, Bautista Agut, Sock, Gasquet, Simon, Blake, Monaco, Coric, Stepanek, Khachanov, Almagro, Robredo, Verdasco, Anderson, Youzhny, Baghdatis, Dolgopolov, Kohlschreiber, Fognini, Melzer, Paire, Querrey, Tomic, Basilashvili.

**Data: Head-to Head records** (number of times that player x has defeated player y)

PageRank 19/2

## Ranking by % of victories

| 0 | 10               | 20 | 30 | 40 | 50 | 60 | 70 | 80    |
|---|------------------|----|----|----|----|----|----|-------|
| I | Federer          |    |    |    |    | *  |    |       |
| I | Vadal            |    |    |    |    |    |    |       |
| I | Djokovic         |    |    |    |    |    |    |       |
|   | Murray           |    |    |    |    |    |    |       |
|   | DelPotro         |    |    |    |    |    |    |       |
| I | Roddick          |    |    |    |    |    |    |       |
|   | Coria            |    |    |    |    |    |    |       |
|   | Zverev           |    |    |    |    |    |    |       |
|   | Ferrer           |    |    |    |    |    |    |       |
|   | Soderling        |    |    |    |    |    |    |       |
|   | Tsonga           |    |    |    |    |    |    |       |
|   | Vishikori        |    |    |    |    |    |    |       |
|   | Raonic           |    |    |    |    |    |    |       |
|   | Valbandian       |    |    |    |    |    |    |       |
|   | <i>W</i> awrinka |    |    |    |    |    |    |       |
| _ | <u>Berdych</u>   |    |    |    |    |    |    |       |
| I | Hewitt           |    |    |    |    |    |    | 20/25 |

### The random spectator

21/25

### Naive ranking vs PageRank



## The Spectral Theorem

The Spectral Theorem 23/25

### The spectral theorem

#### Theorem

Let  $A \in \mathbb{R}^{n \times n}$  be a **symmetric** matrix. Then there is a orthonormal basis of  $\mathbb{R}^n$  composed of eigenvectors of A.

The Spectral Theorem

#### **Matrix formulation**

#### Theorem

Let  $A\in\mathbb{R}^{n\times n}$  be a **symmetric** matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes  $n\times n$  such that

$$A = PDP^{\mathsf{T}}.$$

## **Questions?**



## **Questions?**

