Maximum Likelihood Estimation and Bayesian Statistics

Rebecca C. Steorts

Agenda

- Maximum Likelihood Esimation
- Unbiased Estimators
- ► Invariance Proptery of MLEs
- ► Mean Squared Error
- Practice Exercises

Traditional inference

You are given data X and there is an unknown parameter you wish to estimate θ

How would you estimate θ ?

- \triangleright Find an unbiased estimator of θ .
- ▶ Find the maximum likelihood estimate (MLE) of θ by looking at the likelihood of the data.
- ▶ Suppose that $\hat{\theta}$ estimates θ .

Note: $\hat{\theta}$ may depend on the data $x_{1:n} = x_1, \dots x_n$.

Unbiased Estimator

Recall that $\hat{\theta}$ is an **unbiased estimator** of θ if

$$E[\hat{\theta}] = \theta. \tag{1}$$

.

Maximum Likelihood Estimation

Assume sample points $x_{1:n}$.

Let $\hat{\theta}$ be a parameter value at which $p(x_{1:n} \mid \theta)$ attains its maximum as a function of θ , with $x_{1:n}$ held fixed.

A maximum likelihood esimator (MLE) of the parameter θ based on a sample $x_{1:n}$ is denoted by $\hat{\theta}$.

Finding the MLE

The solution to the MLE are the possible candidates (θ) that solve

$$\frac{\partial p(x_{1:n} \mid \theta)}{\partial \theta} = 0. \tag{2}$$

The solution to equation 2 are only **possible candidates** for the MLE.

Our job is to find a **global maximum**, and make sure that we have not found a **local maximum**.

Consider

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Normal}(\theta, 1).$$

Show that the MLE is $\hat{\theta} = \bar{x}$.

Proof:

$$p(x_{1:n} \mid \theta) = (2\pi)^{-n/2} \times \exp\{\frac{-1}{2} \sum_{i=1}^{n} (x_i - \theta)^2\}$$
 (3)

Consider

$$\log p(x_{1:n}) = -n/2\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \theta)^2$$
 (4)

$$\frac{\partial p(x_{1:n} \mid \theta)}{\partial \theta} = \sum_{i=1}^{n} (x_i - \theta)$$
 (5)

This implies that

$$\sum_{i}(x_{i}-\theta)=0 \implies \hat{\theta}=\bar{x}.$$

Consider

$$\frac{\partial^2 p(x_{1:n} \mid \theta)}{\partial \theta^2} = -n < 0.$$

Thus, our solution is unique (and a global solution).

Invariance property of MLE's

If $\hat{\theta}$ is the MLE of θ , then for any function $g(\theta)$, the MLE of $g(\theta)$ is the MLE of $g(\hat{\theta})$.

Proof: Theorem 7.2.10, Casella and Berger, page 318.

Evaluation of Estimators

How do we evaluate estimators? We often use the mean squared error.

$$\mathsf{MSE}(\hat{\theta}) = E_{\theta}[(\hat{\theta} - \theta)^2].$$

Observe that

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{Var}_{\theta}(\hat{\theta}) + \mathsf{E}_{\theta}[(\hat{\theta} - \theta)^2] = \mathsf{Var}_{\theta}(\hat{\theta}) + \mathsf{Bias}_{\theta}(\hat{\theta}),$$

where the

$$\mathsf{Bias}_{ heta}(\hat{ heta}) = \mathsf{E}_{ heta}(\hat{ heta}) - heta.$$

For a more in depth treatment of MSE and bias, see Section 7.3.1, Casella and Berger, p. 330 - 334.

Exercise 1

Show that

$$\hat{\theta} = \bar{x}$$

is an unbiased estimator for θ .

Solution to Exercise 1

Proof.

$$E[\hat{\theta}] = E[\bar{x}] = \frac{1}{n} \sum_{i} E[x_i] = \frac{1}{n} \sum_{i} \theta = \theta.$$

Thus, we have showed that the MLE is an unbiased estimator for θ .

Exercise 2

Consider

$$X_1, \dots, X_n \stackrel{iid}{\sim} \text{Normal}(\theta, 1)$$
 (6)
 $\theta \stackrel{ind}{\sim} \text{Normal}(\mu, \tau^2)$ (7)

Write the posterior mean as a function of the MLE and the prior mean $\mu.$

Solution to Exercise 2

Let
$$\lambda = 1$$
 and $\lambda_o = 1/\tau^2$.

Recall that from module 3,

$$\theta \mid x_{1:n} \sim N(M, L^{-1}),$$

where

$$L = n\lambda + \lambda_o$$

and

$$M = \frac{n\lambda \bar{x} + \lambda_o \mu}{n\lambda + \lambda_o}.$$

Solution to Exercise 2

Observe that

$$M = \frac{n\lambda\bar{x} + \lambda_o\mu}{n\lambda + \lambda_o} = \frac{n\lambda\hat{\theta} + \lambda_o\mu}{n\lambda + \lambda_o} = \frac{n\lambda}{n\lambda + \lambda_o}\hat{\theta} + \frac{\lambda_o}{n\lambda + \lambda_o}\mu.$$

Thus, we can write the posterior mean as a function of the MLE and the prior mean $\mu.$

Exercise 3

$$X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(\theta).$$
 (8)

$$\theta \sim \text{Beta}(a, b)$$
 (9)

Observe that $Y = \sum_i X_i \sim \text{Binomial}(n, \theta)$.

It can be shown that the MLE for θ is $\bar{x} = y/n$.

Recall that

$$\theta \mid y \sim \text{Beta}(y+a, n-y+b).$$

Exercise 3

Show that the posterior mean can be written as

$$E[\theta \mid y] = \mathsf{MLE} \times \frac{n}{a+b+n} + \mathsf{priorMean} \times \frac{a+b}{a+b+n},$$
 where $\mathsf{MLE} = \bar{x}$ and $\mathsf{priorMean} = \frac{a}{a+b}.$

Solution to Exercise 3

Proof:

$$E[\theta \mid y] = \frac{y+a}{y+a+n-y+b} = \frac{y+a}{a+n+b}$$

$$= \frac{y}{a+b+n} + \frac{a}{a+b+n}$$

$$= \frac{y}{n} \times \frac{n}{a+b+n} + \frac{a}{a+b} \times \frac{a+b}{a+b+n}$$

$$= MLE \times \frac{n}{a+b+n} + \text{priorMean} \times \frac{a+b}{a+b+n}$$

Thus, we have written the posterior mean as a linear comboination of the MLE and prior mean with weights being determined by a,b, and n.

Binomial MLE Exercise

Let

$$X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(\theta).$$

Show that the MLE is $\hat{\theta} = \bar{x}$.

Proof: Casella and Berger, Example 7.2.7, page 317-318.

Normal-Normal model Exercise

Suppose that

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Normal}(\theta, \sigma^2),$$

where θ, σ^2 are both unknown.

Show that $(\bar{x}, n^{-1} \sum_{i} (x_i - \bar{x})^2))$ are the MLE's for (θ, σ^2) .

Proof: Casella and Berger, Example 7.2.7, page 317-318.

Summary

- ► Maximum Likelihood Estimators (MLEs)
- Invariance of MLEs
- ► Mean squared errors
- Unbiased Estimator
- Practice exercises