

SEQUENCE LISTING

<110> AGENT/REPRESENTATIVE: Greenlee, Winner and Sullivan, P.C.
 APPLICANT: Emory University
 CHAIKOF, Elliot L.
 CAZALIS, Chrystelle S.
 HALLER, Carolyn A.

<120> Thrombomodulin Conjugates

<130> 11-04 WO

<140> PCT/US TO BE ASSIGNED
 <141> 2005-02-22

<150> US 60/546,436

<151> 2004-02-20

<160> 6

<170> PatentIn version 3.3

<210> 1

<211> 459

<212> DNA

<213> Artificial

<220>

<221> CDS

<222> (8)..(451)

<400> 1

ggatccc	gac	ccg	tgc	ttc	aga	gcc	aac	tgc	gag	tac	cag	tgc	cag	ccc	49
	Asp	Pro	Cys	Phe	Arg	Ala	Asn	Cys	Glu	Tyr	Gln	Cys	Gln	Pro	
1															
							5					10			

ctg	aac	caa	act	agc	tac	ctc	tgc	gtc	tgc	gcc	gag	ggc	ttc	gcg	ccc	97
Leu	Asn	Gln	Thr	Ser	Tyr	Leu	Cys	Val	Cys	Ala	Glu	Gly	Phe	Ala	Pro	
15																
							20				25				30	

att	ccc	cac	gag	ccg	cac	agg	tgc	cag	ctg	ttt	tgc	aac	cag	act	gcc	145
Ile	Pro	His	Glu	Pro	His	Arg	Cys	Gln	Leu	Phe	Cys	Asn	Gln	Thr	Ala	
35									40				45			

tgt	cca	gcc	gac	tgc	gac	ccc	aac	acc	cag	gct	agc	tgt	gag	tgc	cct	193
Cys	Pro	Ala	Asp	Cys	Asp	Pro	Asn	Thr	Gln	Ala	Ser	Cys	Glu	Cys	Pro	
50								55				60				

gaa	ggc	tac	atc	ctg	gac	gac	ggt	ttc	atc	tgc	acg	gac	atc	gac	gag	241
Glu	Gly	Tyr	Ile	Leu	Asp	Asp	Gly	Phe	Ile	Cys	Thr	Asp	Ile	Asp	Glu	
65								70				75				

tgc	gaa	aac	ggc	ggc	ttc	tgc	tcc	ggg	gtg	tgc	cac	aac	ctc	ccc	ggt	289
Cys	Glu	Asn	Gly	Gly	Phe	Cys	Ser	Gly	Val	Cys	His	Asn	Leu	Pro	Gly	
80									85			90				

acc	ttc	gag	tgc	atc	tgc	ggg	ccc	gac	tgc	gcc	ctt	gcc	cgc	cac	att	337
Thr	Phe	Glu	Cys	Ile	Cys	Gly	Pro	Asp	Ser	Ala	Leu	Ala	Arg	His	Ile	
95									100			105			110	

ggc	acc	gac	tgt	gac	tcc	ggc	aag	gtg	gac	ggt	ggc	gac	agc	ggc	tct	385
Gly	Thr	Asp	Cys	Asp	Ser	Gly	Lys	Val	Asp	Gly	Gly	Asp	Ser	Gly	Ser	
115									120				125			

ggc	gag	ccc	ccg	ccc	agc	ccg	ccc	ggc	tcc	acc	ttg	act	cct	ccg	433

2/6

Gly Glu Pro Pro Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro
 130 135 140

gcc gtg ggg ggt atg taa tcggatcc 459
 Ala Val Gly Gly Met
 145

<210> 2
 <211> 147
 <212> PRT
 <213> Artificial

<220>
 <223> Synthetic Construct

<400> 2

Asp Pro Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro Leu Asn
 1 5 10 15

Gln Thr Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro Ile Pro
 20 25 30

His Glu Pro His Arg Cys Gln Leu Phe Cys Asn Gln Thr Ala Cys Pro
 35 40 45

Ala Asp Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro Glu Gly
 50 55 60

Tyr Ile Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu Cys Glu
 65 70 75 80

Asn Gly Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly Thr Phe
 85 90 95

Glu Cys Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile Gly Thr
 100 105 110

Asp Cys Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu
 115 120 125

Pro Pro Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val
 130 135 140

Gly Gly Met
 145

<210> 3
 <211> 147
 <212> PRT
 <213> Artificial

<220>
 <223> Synthetic construct

<220>
 <221> MISC_FEATURE

<222> (40)..(40)

<223> Met-388-Leu substitution; position 40

<400> 3

Asp Pro Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro Leu Asn
1 5 10 15

Gln Thr Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro Ile Pro
20 25 30

His Glu Pro His Arg Cys Gln Leu Phe Cys Asn Gln Thr Ala Cys Pro
35 40 45

Ala Asp Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro Glu Gly
50 55 60

Tyr Ile Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu Cys Glu
65 70 75 80

Asn Gly Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly Thr Phe
85 90 95

Glu Cys Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile Gly Thr
100 105 110

Asp Cys Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu
115 120 125

Pro Pro Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val
130 135 140

Gly Gly Met
145

<210> 4

<211> 575

<212> PRT

<213> Homo sapiens

<400> 4

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly
1 5 10 15

Phe Pro Ala Pro Ala Glu Pro Gln Pro Gly Gly Ser Gln Cys Val Glu
20 25 30

His Asp Cys Phe Ala Leu Tyr Pro Gly Pro Ala Thr Phe Leu Asn Ala
35 40 45

Ser Gln Ile Cys Asp Gly Leu Arg Gly His Leu Met Thr Val Arg Ser
50 55 60

Ser Val Ala Ala Asp Val Ile Ser Leu Leu Leu Asn Gly Asp Gly Gly
Page 3

4/6

65	70	75	80
Val Gly Arg Arg Arg Leu Trp Ile Gly Leu Gln Leu Pro Pro Gly Cys 85 90 95			
Gly Asp Pro Lys Arg Leu Gly Pro Leu Arg Gly Phe Gln Trp Val Thr 100 105 110			
Gly Asp Asn Asn Thr Ser Tyr Ser Arg Trp Ala Arg Leu Asp Leu Asn 115 120 125			
Gly Ala Pro Leu Cys Gly Pro Leu Cys Val Ala val Ser Ala Ala Glu 130 135 140			
Ala Thr Val Pro Ser Glu Pro Ile Trp Glu Glu Gln Gln Cys Glu Val 145 150 155 160			
Lys Ala Asp Gly Phe Leu Cys Glu Phe His Phe Pro Ala Thr Cys Arg 165 170 175			
Pro Leu Ala Val Glu Pro Gly Ala Ala Ala Ala Val Ser Ile Thr 180 185 190			
Tyr Gly Thr Pro Phe Ala Ala Arg Gly Ala Asp Phe Gln Ala Leu Pro 195 200 205			
Val Gly Ser Ser Ala Ala Val Ala Pro Leu Gly Leu Gln Leu Met Cys 210 215 220			
Thr Ala Pro Pro Gly Ala Val Gln Gly His Trp Ala Arg Glu Ala Pro 225 230 235 240			
Gly Ala Trp Asp Cys Ser Val Glu Asn Gly Gly Cys Glu His Ala Cys 245 250 255			
Asn Ala Ile Pro Gly Ala Pro Arg Cys Gln Cys Pro Ala Gly Ala Ala 260 265 270			
Leu Gln Ala Asp Gly Arg Ser Cys Thr Ala Ser Ala Thr Gln Ser Cys 275 280 285			
Asn Asp Leu Cys Glu His Phe Cys Val Pro Asn Pro Asp Gln Pro Gly 290 295 300			
Ser Tyr Ser Cys Met Cys Glu Thr Gly Tyr Arg Leu Ala Ala Asp Gln 305 310 315 320			
His Arg Cys Glu Asp Val Asp Asp Cys Ile Leu Glu Pro Ser Pro Cys 325 330 335			
Pro Gln Arg Cys Val Asn Thr Gln Gly Gly Phe Glu Cys His Cys Tyr 340 345 350			

Pro Asn Tyr Asp Leu Val Asp Gly Glu Cys Val Glu Pro Val Asp Pro
355 360 365

Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro Leu Asn Gln Thr
370 375 380

Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro Ile Pro His Glu
385 390 395 400

Pro His Arg Cys Gln Met Phe Cys Asn Gln Thr Ala Cys Pro Ala Asp
405 410 415

Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro Glu Gly Tyr Ile
420 425 430

Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu Cys Glu Asn Gly
435 440 445

Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly Thr Phe Glu Cys
450 455 460

Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile Gly Thr Asp Cys
465 470 475 480

Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu Pro Pro
485 490 495

Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val Gly Leu
500 505 510

Val His Ser Gly Leu Leu Ile Gly Ile Ser Ile Ala Ser Leu Cys Leu
515 520 525

Val Val Ala Leu Leu Ala Leu Leu Cys His Leu Arg Lys Lys Gln Gly
530 535 540

Ala Ala Arg Ala Lys Met Glu Tyr Lys Cys Ala Ala Pro Ser Lys Glu
545 550 555 560

Val Val Leu Gln His Val Arg Thr Glu Arg Thr Pro Gln Arg Leu
565 570 575

<210> 5
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 5
taccctaact acgacacctgggt g

<210> 6
<211> 18
<212> DNA
<213> Artificial

<220>
<223> Synthetic construct

<400> 6 tatgagcaag cccgaatg 18