TRAVAUX DIRIGÉS: Isométries vectorielles

Exercice 1: (Solution)

Soit $E = \mathbb{R}^3$ muni de son produit scalaire usuel.

- 1. On considère F le sous-espace de E défini par le système d'équations $\begin{cases} x - y + z = 0 \\ x + y + 2z = 0 \end{cases}$
 - (a) Déterminer F^{\perp} .
 - (b) Soit s la symétrie orthogonale par rapport à F. Déterminer la matrice de s dans la base canonique.
- 2. Soit s la réflexion par rapport au plan d'équation $\Pi: x + 2y + z = 0$.
 - (a) Déterminer la projection orthogonale sur Π de tout vecteur $u \in \mathbb{R}^3$.
 - (b) En déduire la matrice de s dans la base canonique.
 - (c) Autre méthode : Déterminer une base orthonormée adaptée à la somme directe $\mathbb{R}^3 = \Pi^{\perp} \oplus \Pi$ et retrouver la matrice de s dans la base canonique.

Exercice 2: (Solution)

On munit \mathbb{R}^4 de son produit scalaire canonique.

Soit p la projection orthogonale sur $F = \{(x, y, z, t) \in \mathbb{R}^4 : x - y - z + t = 0\}.$

Déterminer la matrice de p dans la base canonique.

Déterminer la distance de (1,0,1,1) à F.

Exercice 3: (Solution)

On munit \mathbb{R}^3 de son produit scalaire usuel. Soit s la symétrie orthogonale par rapport à $F = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0, 2x - y = 0\}.$

Déterminer la matrice de s dans la base canonique.

Exercice 4: (Solution)

Soit E un espace euclidien orienté de dimension 2.

- 1. Que peut-on dire de la composée de deux rotations?
- 2. Que peut-on dire de la composée de deux réflexions?
- 3. Que peut-on dire de la composée d'une rotation et d'une réflexion?
- 4. Montrer que toute rotation peut s'écrire comme la composée de deux réflexions.

5. Montrer que le résultat précédent est vrai si dim E=3.

Exercice 5: (Solution)

Déterminer la nature géométrique et préciser les caractéristiques géométriques des endomorphismes canoniquement associés aux matrices :

1.
$$A = \frac{1}{25} \begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix}$$
 4. $D = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

1.
$$A = \frac{1}{25} \begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix}$$
 4. $D = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
2. $B = \frac{1}{16} \begin{pmatrix} -11 & 9 & 3\sqrt{6} \\ 9 & 13 & -\sqrt{6} \\ 3\sqrt{6} & -\sqrt{6} & 14 \end{pmatrix}$ 5. $E = \frac{1}{4} \begin{pmatrix} -2 & -\sqrt{6} & \sqrt{6} \\ \sqrt{6} & 1 & 3 \\ -\sqrt{6} & 3 & 1 \end{pmatrix}$

3.
$$C = \frac{1}{9} \begin{pmatrix} -1 & 4 & -8 \\ 4 & -7 & -4 \\ -8 & -4 & -1 \end{pmatrix}$$
 6. $F = \frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}$

Pour la matrice F, on pourra montrer que l'endomorphisme canoniquement associé est la composée d'une rotation et d'une réflexion.

Exercice 6: (Solution)

Soit $\mathscr{B}_c = (i, j, k)$ la base canonique de \mathbb{R}^3 orientant l'espace.

- 1. Déterminer la matrice de la rotation d'axe orienté par i-2j et d'angle de mesure $\frac{\pi}{6}$ dans la base \mathscr{B}_c .
- 2. Déterminer la matrice de la rotation d'axe orienté par i+j+k et d'angle de mesure $\frac{\pi}{4}$ dans la base \mathscr{B}_c .

Exercice 7: (Solution)

Soient
$$(a,b) \in \mathbb{R}^2$$
 et $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$.

- 1. Pour quelles valeurs de a et b a-t-on $A \in O(3)$?
- 2. Préciser alors la nature et éléments caractéristiques de l'endomorphisme canoniquement associé à A.

Exercice 8: (Solution)

Soit E un espace euclidien et $a \in E$ un vecteur unitaire.

Pour tout $\alpha \in \mathbb{R}$, on définit φ_{α} sur E par :

$$\forall x \in E, \varphi_{\alpha}(x) = x + \alpha(x|a)a.$$

A quelle(s) condition(s) l'endomorphisme φ_{α} est-il orthogonal? Caractériser alors géométriquement φ_{α} .

Exercice 9: (Solution)

Soit E un espace euclidien orienté de dimension 3 et soit $f \in \mathcal{L}(E)$ non nul. Montrer que f est une rotation si et seulement si,

$$\forall (u, v) \in E^2 : f(u) \land f(v) = f(u \land v).$$

Exercice 10: (Solution)

Soit E un espace euclidien orienté de dimension 3.

1. Soit r la rotation d'axe D dirigé et orienté par un vecteur unitaire ω et d'angle $\theta.$

Montrer que pour tout $x \in E$,

$$r(x) = \cos \theta x + \sin \theta \omega \wedge x + (1 - \cos \theta)(x|\omega)\omega.$$

Pour cela, on pourra :

- écrire $x = \alpha \omega + y$ avec $\alpha \in \mathbb{R}$ et $y \in D^{\perp}$
- Si $y \neq 0$, on pourra considérer la B.O.N. directe $\left(\omega, \frac{y}{||y||}, \omega \wedge \frac{y}{||y||}\right)$.
- 2. Soit $\mathscr{B}=(i,j,k)$ une base orthonormée directe de E. Déterminer la matrice dans la base canonique de la rotation d'axe D dirigé et orienté par i+j+k et d'angle $\frac{\pi}{4}$.

Exercice 11: (Solution)

Soient E un espace vectoriel euclidien et $u \in E$ non nul.

On considère $g \in O(E)$ une isométrie de E et on note s la réflexion par rapport à l'hyperplan $\mathrm{Vect}(u)^{\perp}$. Décrire $g \circ s \circ g^{-1}$.

Exercice 12: (Solution)

Soit E un espace euclidien de dimension $n \ge 2$ et $f \in O(E)$.

Pour tout $n \in \mathbb{N}^*$, on pose $p_n = \frac{1}{n} (id_E + f + f^2 + \dots + f^{n-1}) = \frac{1}{n} \sum_{k=0}^{n-1} f^k$.

- 1. Montrer que $\ker(f \mathrm{id}_E)$ et $\mathrm{Im}(f \mathrm{id}_E)$ sont supplémentaires dans E.
- 2. Calculer $p_n(x)$ pour tout $x \in \ker(f \mathrm{id}_E)$.
- 3. Calculer $p_n(x)$ pour tout $x \in \text{Im}(f \text{id}_E)$.
- 4. Soit p la projection orthogonale sur $\ker(f \mathrm{id}_E)$. Montrer que $\lim_{n \to +\infty} ||p(x) - p_n(x)|| = 0$ pour tout $x \in E$.

SOLUTIONS TRAVAUX DIRIGÉS: Isoméries vectorielles

Solution Exercice 1. Soit $E = \mathbb{R}^3$ muni de son produit scalaire usuel. On considère F le sous-espace de E défini par le système d'équations

$$\begin{cases} x - y + z = 0 \\ x + y + 2z = 0 \end{cases}$$

1. (a) Déterminons F^{\perp} .

On commence par déterminer une base de F. On échelonne le système d'équations :

$$\begin{cases} x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \iff \begin{cases} x - y + z = 0 \\ 2y + z = 0 \end{cases}$$
$$\iff \begin{cases} x = -\frac{3z}{2} \\ y = -\frac{z}{2} \end{cases}$$

Ainsi, $\mathcal{B}_F = ((-3, -1, 2))$ est une base de F et dim F = 1.

On en déduit que dim $F^{\perp} = 2$. Soit $(a, b, c) \in \mathbb{R}^3$.

On a $(a, b, c) \in F^{\perp} \iff ((a, b, c) | (-3, -1, 2)) = 0.$

Ainsi, $(a, b, c) \in F^{\perp}$ si et seulement si (a, b, c) est solution de l'équation : $-3a - b + 2c = 0 \iff 3a = -b + 2c$.

Finalement, $F^{\perp} = \text{Vect}((-1,3,0),(2,0,3))$ et $\mathcal{B}_{F^{\perp}} = ((-1,3,0),(2,0,3))$ est une base de F^{\perp} .

(b) On a dim F = 1 et dim $F^{\perp} = 2$ donc la symétrie orthogonale s par rapport à F et parallèlement à F^{\perp} est un retournement (ou demi-tour).

Dans la base $\mathscr{B} = \mathscr{B}_F \cup \mathscr{B}_{F^{\perp}}$ adaptée à $\mathbb{R}^3 = F \oplus F^{\perp}$ on a

$$Mat_{\mathscr{B}}(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Soit \mathscr{B}_c la base canonique et P la matrice de passage de \mathscr{B}_c à \mathscr{B} .

Alors
$$Mat_{\mathscr{B}_c}(s) = PMat_{\mathscr{B}}(s)P^{-1} = \begin{pmatrix} \frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & -\frac{2}{7} \\ -\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \end{pmatrix}$$
.

Notons (comme prévu par le cours) que la matrice de la symétrie orthogonale $s\in O(\mathbb{R}^3)$ dans la base canonique (qui est orthonormée) est symétrique.

Remarques

Le calcul de P^{-1} n'est pas immédiat.

On peut utiliser l'algorithme de Gram-Schmidt pour orthonormaliser la base ${\mathscr B}$:

- On pose $\varepsilon_1 = \frac{1}{\sqrt{14}}(-3, -1, 2)$.
- Les espaces F et F^{\perp} étant orthogonaux (!), il suffit d'orthonormaliser la base $\mathscr{B}_{F^{\perp}}$.

On pose $\varepsilon_2 = \frac{1}{\sqrt{10}}(-1,3,0)$ puis on pose :

$$\begin{split} e_3 &= (2,0,3) - ((2,0,3)|\varepsilon_2)\varepsilon_2 \\ &= (2,0,3) - \frac{1}{10} (-2) (-1,3,0) \\ &= \left(\frac{9}{5},\frac{3}{5},3\right) \text{ et enfin } \varepsilon_3 = \frac{e_3}{||e_3||} = \sqrt{\frac{5}{63}} e_3 \end{split}$$

On obtient une base orthonormée $\mathscr{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de \mathbb{R}^3 . La matrice de passage Q de \mathscr{B}_c à \mathscr{B}' (entre deux b.o.n.) est donc orthogonale et $Q^{-1} = {}^tQ$. Ainsi,

$$Mat_{\mathcal{B}_c}(s) = Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} {}^tQ = \begin{pmatrix} \frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & -\frac{2}{7} \\ -\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \end{pmatrix}.$$

Dans ce cas l'inverse de la matrice de passage est simple à obtenir par transposition, mais l'orthonormalisation est couteuse en calculs.

Remarques

On peut également poser $\varepsilon_3 = \varepsilon_1 \wedge \varepsilon_2 = \frac{1}{\sqrt{35}}(-3, -1, -5)$.

Remarques

Pour déterminer $Mat_{\mathscr{B}_c}(s)$ on peut également procéder comme suit.

Pour tout $x=x_F+x_{F^{\perp}}=p_F(x)+(x-p_F(x))\in F\oplus F^{\perp}$ on a $s(x)=x_F-x_{F^{\perp}}=2p_F(x)-x$ où p_F est la projection orthogonale sur la droite F.

Il suffit donc de calculer l'image des vecteurs de la base canonique :

$$s(e_i) = 2p_F(e_i) - e_i = 2(e_i|\varepsilon)\varepsilon - e_i$$

avec $\varepsilon = \frac{1}{14}(-3, -1, 2)$ vecteur unitaire dirigeant F.

2. (a) Pour déterminer la projection orthogonale sur Π , il suffit de remarquer que $\mathbb{R}^3=\Pi\oplus\Pi^\perp$.

Soit $u \in \mathbb{R}^3$: $u = u_{\Pi} + u_{\Pi^{\perp}} = p_{\Pi}(u) + p_{\Pi^{\perp}}(u)$.

L'espace Π^{\perp} est une droite dirigée par le vecteur unitaire $n = \frac{1}{\sqrt{6}}(1,2,1)$.

Ainsi, pour tout $u \in \mathbb{R}^3$, la projection orthogonale sur la droite Π^\perp est donnée par

$$p_{\Pi^{\perp}}(u) = (u|n)n.$$

On en déduit que $p_{\Pi}(u) = u_{\Pi} = u - u_{\pi^{\perp}} = u - (u|n)n$.

La symétrie orthogonale s est donnée pour tout $u \in \mathbb{R}^3$ par

$$s(u) = s(u_{\Pi} + u_{\Pi^{\perp}}) = u_{\Pi} - y_{\Pi^{\perp}} = u - 2u_{\Pi^{\perp}} = u - 2(u|n)n$$

(b) On calcule s(1,0,0), s(0,1,0), s(0,0,1) avec la formule précédente et on trouve :

$$Mat_{\mathscr{B}_c}(s) = \frac{1}{3} \begin{pmatrix} 2 & -2 & -1 \\ -2 & -1 & -2 \\ -1 & -2 & 2 \end{pmatrix}.$$

(c) Autre méthode : Déterminer une base orthonormée adaptée à la somme directe $\mathbb{R}^3 = \Pi^\perp \oplus \Pi$ et retrouver la matrice de s dans la base canonique.

Solution Exercice 2. On munit \mathbb{R}^4 de son produit scalaire canonique.

Soit p la projection orthogonale sur $F = \{(x, y, z, t) \in \mathbb{R}^4 : x - y - z + t = 0\}$. Déterminons la matrice de p dans la base canonique.

Pour cela on calcule $p(e_i)$ pour tout vecteur e_i , $i \in [1, 4]$ de la base canonique. On utilise la caractérisation suivante :

$$\begin{cases} \forall i \in [1, 4], p(e_i) \in F \\ \forall i \in [1, 4], e_i - p(e_i) \in F^{\perp} \end{cases}$$

Déterminons une base de $F:(x,y,z,t)\in F\Longleftrightarrow x=y+z-t.$

Ainsi, F = Vect((1, 1, 0, 0), (1, 0, 1, 0), (-1, 0, 0, 1)).

— $p(e_1) = p(1, 0, 0, 0) = (a + b - c, a, b, c) \in F$ avec $(a, b, c) \in \mathbb{R}^3$ à déterminer. De plus $e_1 - p(e_1) \in F^{\perp}$ donc

$$\begin{cases} (e_1 - p(e_1)|(1, 1, 0, 0)) = 0 \\ (e_1 - p(e_1)|(1, 0, 1, 0)) = 0 \\ (e_1 - p(e_1)|(-1, 0, 0, 1)) = 0 \end{cases}$$

$$\iff \begin{cases} ((1 - a - b + c, -a, -b, -c)|(1, 1, 0, 0)) = 0 \\ ((1 - a - b + c, -a, -b, -c)|(1, 0, 1, 0)) = 0 \\ ((1 - a - b + c, -a, -b, -c)|(-1, 0, 0, 1)) = 0 \end{cases}$$

On en déduit que $e_1 - p(e_1) \in F^{\perp}$ si et seulement si

$$\begin{cases} 2a + b - c = 1 \\ a + 2b - c = 1 \\ a + b - 2c = 1 \end{cases} \iff \begin{cases} 2a + b - c = 1 \\ 3b - c = 1 \\ b - 3c = 1 \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 1 \\ 3b - c = 1 \\ c = -\frac{2}{8} \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 1 \\ b = \frac{1}{4} \\ c = -\frac{1}{4} \end{cases}$$

Ainsi, $p(e_1) = (\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{1}{4}) = \frac{1}{4}(3, 1, 1, -1).$ — $p(e_2) = p(0, 1, 0, 0) = (a + b - c, a, b, c) \in F$ avec $(a, b, c) \in \mathbb{R}^3$ à déterminer. De plus $e_2 - p(e_2) \in F^{\perp}$:

$$\begin{cases} (e_2 - p(e_2)|(1, 1, 0, 0)) = 0 \\ (e_2 - p(e_2)|(1, 0, 1, 0)) = 0 \\ (e_2 - p(e_2)|(-1, 0, 0, 1)) = 0 \end{cases}$$

$$\iff \begin{cases} ((-a - b + c, 1 - a, -b, -c)|(1, 1, 0, 0)) = 0 \\ ((-a - b + c, 1 - a, -b, -c)|(1, 0, 1, 0)) = 0 \\ ((-a - b + c, 1 - a, -b, -c)|(-1, 0, 0, 1)) = 0 \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 1 \\ a + 2b - c = 0 \\ a + b - 2c = 0 \end{cases}$$

On en déduit que $e_2 - p(e_2) \in F^{\perp}$ si et seulement si

$$\begin{cases} 2a + b - c = 1 \\ a + 2b - c = 0 \\ a + b - 2c = 0 \end{cases} \iff \begin{cases} 2a + b - c = 1 \\ 3b - c = -1 \\ b - 3c = -1 \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 1 \\ 3b - c = -1 \\ c = \frac{2}{8} \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 1 \\ b = -\frac{1}{4} \\ c = \frac{1}{4} \end{cases}$$

$$\iff \begin{cases} a = \frac{3}{4} \\ b = -\frac{1}{4} \\ c = \frac{1}{4} \end{cases}$$

Ainsi, $p(e_2)=(\frac{1}{4},\frac{3}{4},-\frac{1}{4},\frac{1}{4})=\frac{1}{4}(1,3,-1,1).$ — $p(e_3)=p(0,0,1,0)=(a+b-c,a,b,c)\in F$ avec $(a,b,c)\in \mathbb{R}^3$ à déterminer. De plus $e_3 - p(e_3) \in F^{\perp}$:

$$\begin{cases} (e_3 - p(e_3)|(1, 1, 0, 0)) = 0\\ (e_3 - p(e_3)|(1, 0, 1, 0)) = 0\\ (e_3 - p(e_3)|(-1, 0, 0, 1)) = 0 \end{cases}$$

$$\iff \begin{cases} ((-a - b + c, -a, 1 - b, -c)|(1, 1, 0, 0)) = 0\\ ((-a - b + c, -a, 1 - b, -c)|(1, 0, 1, 0)) = 0\\ ((-a - b + c, -a, 1 - b, -c)|(-1, 0, 0, 1)) = 0 \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 0\\ a + 2b - c = 1\\ a + b - 2c = 0 \end{cases}$$

On en déduit que $e_3 - p(e_3) \in F^{\perp}$ si et seulement si

$$\begin{cases} 2a + b - c = 0 \\ a + 2b - c = 1 \\ a + b - 2c = 0 \end{cases} \iff \begin{cases} 2a + b - c = 0 \\ 3b - c = 2 \\ b - 3c = 0 \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 0 \\ 3b - c = 2 \\ c = \frac{2}{8} \end{cases}$$

$$\iff \begin{cases} 2a + b - c = 0 \\ b = \frac{3}{4} \\ c = \frac{1}{4} \end{cases}$$

$$\iff \begin{cases} a = -\frac{1}{4} \\ b = \frac{3}{4} \\ c = \frac{1}{4} \end{cases}$$

Ainsi, $p(e_3) = (\frac{1}{4}, -\frac{1}{4}, \frac{3}{4}, \frac{1}{4}) = \frac{1}{4}(1, -1, 3, 1).$

— On obtient de manière analogue $p(e_4) = \frac{1}{4}(-1, 1, 1, 3)$.

Finalement, la matrice de la projection orthogonale sur F dans la base canonique \mathscr{B} est:

$$Mat_{\mathscr{B}}(p) = rac{1}{4} \left(egin{array}{ccccc} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{array}
ight)$$

Solution Exercice 3. On munit \mathbb{R}^3 de son produit scalaire usuel et on l'oriente par le choix de la base canonique.

Soit s la symétrie orthogonale par rapport à

$$F = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0, 2x - y = 0\}.$$

Déterminons la matrice de s dans la base canonique.

— On commence par déterminer une base de F.

$$(x,y,z) \in F \iff \begin{cases} x + 2y - z = 0 \\ 2x - y = 0 \end{cases}$$

$$\iff \begin{cases} z = 5x \\ y = 2x \end{cases}$$

Ainsi, F = Vect((1,2,5)) et la symétrie s est un retournement c'est à dire une rotation d'angle π autour de la droite F = Vect((1, 2, 5)).

Déterminons une base orthonormée de F et de F^{\perp} .

On pose $v = (2, -1, 0) \in F^{\perp}$ et on normalise les vecteurs u, v.

On pose $\varepsilon_1 = \frac{1}{\sqrt{30}}(1,2,5)$ et $\varepsilon_2 = \frac{1}{\sqrt{5}}(2,-1,0)$.

On calcule alors $\varepsilon_3 = \varepsilon_1 \wedge \varepsilon_2 = \frac{1}{5\sqrt{6}}(5, 10, -5) = \frac{1}{\sqrt{6}}(1, 2, -1).$

- On en déduit que $\mathscr{B} = \left(\underbrace{\varepsilon_1}_{\mathscr{B}_F}, \underbrace{\varepsilon_2, \varepsilon_3}_{\mathscr{B}_F}\right)$ est une base orthonormée de \mathbb{R}^3 .
- La matrice de s dans \mathscr{B} est donc

$$Mat_{\mathscr{B}}(s) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

— La matrice de passage P de la base canonique \mathscr{B}_c de \mathbb{R}^3 à \mathscr{B} est orthogonale (car \mathscr{B}_c et \mathscr{B} sont des b.o.n.) donc $P^{-1} = {}^tP$. On obtient donc la formule du changement de base :

$$Mat_{\mathscr{B}_c}(s) = PMat_{\mathscr{B}}(s)P^{-1} = PMat_{\mathscr{B}}(s)^{t}P = \frac{1}{15} \begin{pmatrix} -14 & 2 & 5\\ 2 & -11 & 10\\ 5 & 10 & 10 \end{pmatrix}.$$

Solution Exercice 4.

1. Soit f la composée de deux rotations r_{θ} , $r_{\theta'}$. Dans toute base orthonormée \mathcal{B} directe de E on a

$$Mat_{\mathscr{B}}(f) = Mat_{\mathscr{B}}(r_{\theta})Mat_{\mathscr{B}}(r'_{\theta}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta' & -\sin\theta' \\ \sin\theta' & \cos\theta' \end{pmatrix}$$
$$= \begin{pmatrix} \cos\theta + \theta' & -\sin\theta + \theta' \\ \sin\theta + \theta' & \cos\theta + \theta' \end{pmatrix}$$
$$= Mat_{\mathscr{B}}(r'_{\theta})Mat_{\mathscr{B}}(r_{\theta})$$

On a montré que la composée $f = r_{\theta} \circ r_{\theta'} = r_{\theta'} \circ r_{\theta}$ de deux rotations est une rotation (d'angle $\theta + \theta'$).

Remarques

Le résultat est compatible avec le calcul du déterminant : $\det(r_{\theta} \circ r_{\theta'}) = \det(r_{\theta}) \det(r_{\theta'}) = 1$: $f = r_{\theta} \circ r_{\theta'}$ est une isométrie positive.

2. Soit f la composée de deux réflexions s_1, s_2 .

Soit \mathcal{B} une base orthonormée de E.

Il existe $\theta, \theta' \in]-\pi;\pi]$ tels que

$$Mat_{\mathscr{B}}(f) = Mat_{\mathscr{B}}(s_1)Mat_{\mathscr{B}}(s_2) = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta' & \sin\theta' \\ \sin\theta' & -\cos\theta' \end{pmatrix}$$
$$= \begin{pmatrix} \cos\theta - \theta' & -\sin\theta - \theta' \\ \sin\theta - \theta' & \cos\theta - \theta' \end{pmatrix}$$

Remarques

Le résultat est compatible avec le calcul du déterminant : $\det(s_1 \circ s_2) = \det(s_1) \det(s_2) = (-1)^2 = 1 : f = s_1 \circ s_2$ est une isométrie positive.

3. Soit $f = r_{\theta} \circ s$ la composée d'une rotation r_{θ} et d'une réflexion s.

Soit \mathcal{B} une base orthonormée directe de E.

Alors il existe $\theta' \in]-\pi;\pi]$ tel que

$$Mat_{\mathscr{B}}(f) = Mat_{\mathscr{B}}(r_{\theta})Mat_{\mathscr{B}}(s) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta' & \sin \theta' \\ \sin \theta' & -\cos \theta' \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta + \theta' & \sin \theta + \theta' \\ \sin \theta + \theta' & -\cos \theta + \theta' \end{pmatrix}$$

Ainsi, $f = r_{\theta} \circ s$ est une réflexion d'axe $F = \text{Vect}\left(\cos\frac{\theta - \theta'}{2}, \sin\frac{\theta - \theta'}{2}\right)$.

4. Soit $\mathscr{B} = (u, v)$ une base orthonormée directe de E et r_{θ} la rotation d'angle $\theta \in]-\pi;\pi].$

Dans \mathcal{B} (comme dans toute base orthonormée de E) la matrice de r_{θ} est

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

On en déduit que r_{θ} est la composée des réflexions d'axes respectifs : $\operatorname{Vect}(\cos\frac{\theta}{2}u+\sin\frac{\theta}{2}v)$ et $\operatorname{Vect}(u)$.

5. Soit r_{θ} une rotation de E avec dim E = 3.

Il existe une base orthonormée $\mathscr{B}=(u,v,w)$ de E dans laquelle la matrice de r_{θ} est

$$Mat_{\mathscr{B}}(r_{\theta}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

- La matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ est la matrice de la réflexion d'hyperplan P = Vect(u, v) (parallèlement à D = Vect(w)).
- La matrice $S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & \sin \theta & -\cos \theta \end{pmatrix}$ est également la matrice d'une
- En effet, $\chi_S(X) = (X-1)^2(X+1)$ et $E_1 = \text{Vect}\left(u, \cos\frac{\theta}{2}v + \sin\frac{\theta}{2}w\right)$ est de dimension 2.

S est donc la matrice de la réflexion d'hyperplan P' = Vect $\left(u, \cos \frac{\theta}{2} v + \sin \frac{\theta}{2} w\right)$ (parallèlement à $D' = P'^{\perp}$).

Solution Exercice 5. On notera toujours f l'endomorphisme canoniquement associé aux matrices étudiées dans cet exercice.

On suppose les espaces $\mathbb{R}^2, \mathbb{R}^3$ orientés par le choix d'une base orthonormée directe.

- 1. La matrice $A = \frac{1}{25} \begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix}$ est :
 - symétrique : ${}^{t}A = A$.
 - orthogonale : ${}^{t}AA = I_{2}$.

Par conséquent A est la matrice d'une symétrie orthogonale.

De plus $\det(A) = -1$ (il suffit de constater qu'il est négatif car A étant orthogonale, on a : $\det(A) \in \{-1, 1\}$).

L'endomorphisme f canoniquement associé à A est donc une réflexion orthogonale c'est-à-dire une symétrie par rapport à $E_1 = \ker(f - \mathrm{id}) = \mathrm{Vect}(3,4)$

de dimension 1 :
$$A - I_2 = \frac{1}{25} \begin{pmatrix} -32 & 24 \\ 24 & -18 \end{pmatrix}$$
.

(parallèlement à $E_{-1} = E_1^{\perp} = \ker(f + id) = \text{Vect}(-4, 3)$).

Dans la base ((3,4)(-4,3)) la matrice de s est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- 2. La matrice $B = \frac{1}{16} \begin{pmatrix} -11 & 9 & 3\sqrt{6} \\ 9 & 13 & -\sqrt{6} \\ 3\sqrt{6} & -\sqrt{6} & 14 \end{pmatrix}$ est:
 - symétrique : ${}^{t}B = B$

— orthogonale : ${}^{t}BB = I_{3}$.

De plus det(B) = -1.

Par conséquent $f \neq -id_{\mathbb{R}^3}$ est une réflexion c'est à dire une symétrie orthogonale par rapport au plan $P = \ker(f - \mathrm{id}_{\mathbb{R}^3}) = \mathrm{Vect}((\sqrt{6}, 0, 9), (1, 3, 0)).$ (parallèlement à la droite $P^{\perp} = \ker(f + \mathrm{id}_{\mathbb{R}^3})$).

Dans la base $\mathscr{B} = ((\sqrt{6}, 0, 9), (1, 3, 0), (3, -1, -\frac{\sqrt{6}}{3}))$ la matrice de f est

$$Mat_{\mathscr{B}}(f) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right).$$

- 3. La matrice $C = \frac{1}{9} \begin{pmatrix} -1 & 4 & -8 \\ 4 & -7 & -4 \\ -8 & -4 & -1 \end{pmatrix}$ est:
 - symétrique : ${}^tC = C$
 - orthogonale : ${}^{t}CC = I_3$.

De plus det(C) = 1.

Par conséquent $f \neq id_{\mathbb{R}^3}$ est un retournement c'est-à-dire une rotation d'angle π autour d'un axe, en l'occurence $D = \ker(f - \mathrm{id}) = \mathrm{Vect}(-2, -1, 2)$.

Dans la base $\mathcal{B} = ((-2, -1, 2), (1, -2, 0), (1, 0, 1))$ la matrice de f est

$$Mat_{\mathscr{B}}(f) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right).$$

4. La matrice $D = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est orthogonale car ses colonnes (ou ses lignes)

constituent clairement une base orthonormée de $\mathcal{M}_{3,1}(\mathbb{R})$ (de $\mathcal{M}_{1,3}(\mathbb{R})$ pour les lignes).

De plus det(D) = 1 donc D est la matrice d'une rotation $f = r_{\theta}$.

Dans une base orthonormée $\mathcal{B} = (u, v, w)$ directe avec u dirigeant l'axe de la rotation, la matrice de f est de la forme :

$$Mat_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

On détermine l'axe $E_1(f)$ de la rotation :

$$AX = X \Longleftrightarrow X \in \operatorname{Vect} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) : E_1(f) = \operatorname{Vect}(1, 1, 1).$$

- On détermine l'angle $\theta \in]-\pi;\pi]$ de la rotation :
 - $0 = \operatorname{Tr}(D) = \operatorname{Tr}(f) = 1 + 2\cos\theta \iff \cos\theta = -\frac{1}{2} \iff \theta = \pm \frac{2\pi}{2}.$
- On détermine le signe de $\sin\theta$ en déterminant une base orthonormée $\mathscr{B} = \mathscr{B}_{E_1} \cup \mathscr{B}_{E_+} de \mathbb{R}^3$.

On pose $u = \frac{1}{\sqrt{3}}(1, 1, 1)$ puis $v = \frac{1}{\sqrt{2}}(1, -1, 0) \in \text{Vect}(u)^{\perp}$.

Alors
$$\underbrace{\begin{pmatrix} u \\ \mathscr{B}_{E_1}, \underbrace{v, u \wedge v} \\ \mathscr{B}_{E_1^{\perp}} \end{pmatrix}}$$
 est une base orthonormée directe de \mathbb{R}^3 .

Le calcul classique suivant donne $\sin \theta$:

$$[u, v, f(v)] = \det(u, v, f(v)) = (u \wedge v | \cos \theta v + \sin \theta u \wedge v) = \sin \theta ||w||^2 = \sin \theta$$

car $u \wedge v \perp v$ et $w = u \wedge v$ est unitaire.

On calcule donc $\det(u, v, f(v))$ avec $f(v) = (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$: (on développe par rapport à la première ligne)

$$\begin{vmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{2\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{2} = \sin \theta.$$

On en déduit que $\theta = \frac{2\pi}{3}$.

L'isométrie f est donc une rotation d'angle $\theta = \frac{2\pi}{3}$ et d'axe $E_1(f) =$ Vect(1, 1, 1).

5. La matrice $E = \frac{1}{4} \begin{pmatrix} -2 & -\sqrt{6} & \sqrt{6} \\ \sqrt{6} & 1 & 3 \\ -\sqrt{6} & 3 & 1 \end{pmatrix}$ est orthogonale car ses lignes

De plus det(F) = 1 donc l'endomorphisme f est une rotation.

— On détermine l'axe $E_1(f) = \ker(f - \mathrm{id})$ de la rotation :

$$EX = X \iff X \in \operatorname{Vect} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} : E_1(f) = \operatorname{Vect}(0, 1, 1).$$

On détermine l'angle $\theta \in]-\pi;\pi]$ de la rotation :

constituent une base orthonormée de $\mathcal{M}_{13}(\mathbb{R})$.

 $0 = \text{Tr}(E) = \text{Tr}(f) = 1 + 2\cos\theta \iff \theta = \pm \frac{2\pi}{3}$. On note $u = \frac{1}{\sqrt{2}}(0, 1, 1)$ un vecteur unitaire dirigeant l'axe $E_1(f)$ de la

Soit $v = (1,0,0) \in \text{Vect}(u) \perp \text{vecteur unitaire orthogonal à } u$.

On obtient $\sin \theta$ en calculant le produit mixte :

$$\begin{vmatrix} 0 & 1 & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & \frac{\sqrt{6}}{4} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{\sqrt{6}}{4} \end{vmatrix} = -\frac{\sqrt{3}}{2} = \sin \theta.$$

Par conséquent $\theta=-\frac{2\pi}{3}$: f est la rotation d'angle $\theta=-\frac{2\pi}{3}$ et d'axe $E_1(f)={\rm Vect}(0,1,1).$

6. La matrice $F = \frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}$ est orthogonale car ses lignes consti-

tuent une base orthonormée de $\mathcal{M}_{13}(\mathbb{R})$.

De plus, det(F) = -1 donc l'isométrie f est négative.

Notons que $f \neq -\mathrm{id}_{\mathbb{R}^3}$ donc f est la composée d'une rotation r_θ d'axe $E_{-1}(f) = \mathrm{Vect}(u)$ et d'une réflexion s par rapport au plan $\mathrm{Vect}(u)^{\perp}$:

$$f = r_{\theta} \circ s = s \circ r_{\theta}$$
.

Dans une base orthonormée $\mathscr{B} = (u, v, w)$ avec u dirigeant la droite $E_{-1}(f)$ (l'axe de la rotation dans la composée $f = r_{\theta} \circ s$) la matrice de f est :

$$Mat_{\mathscr{B}}(f) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

— On détermine l'axe $E_{-1}(f)$ de la rotation :

$$FX = -X \iff X \in \text{Vect} \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} : E_{-1}(f) = \text{Vect}(3, -2, 1).$$

— On détermine l'angle $\theta \in]-\pi;\pi]$ de la rotation dans la composée $f=r_{\theta}\circ s$. On a $1=\operatorname{Tr}(F)=\operatorname{Tr}(f)=-1+2\cos\theta \Longleftrightarrow \cos\theta=1 \Longleftrightarrow \theta=0$. Il vient directement que $f=r_{0}\circ s=s:s$ est donc la réflexion par rapport au plan $\operatorname{Vect}(u)^{\perp}$ parallèlement à la droite $\operatorname{Vect}(u)$ avec u=(3,-2,1).

Solution Exercice 6.

1. Déterminons une base orthonormée directe $\mathscr{B} = \mathscr{B}_D \cup \mathscr{B}_{D^{\perp}}$ de \mathbb{R}^3 avec $D = \operatorname{Vect}(i-2j)$ l'axe de la rotation $r_{\frac{\pi}{6}}$ étudiée. On note $u = \frac{1}{\sqrt{5}}(i-2j) = \frac{1}{\sqrt{5}}(1,-2,0)$. On pose ensuite $v = (0, 0, 1) \in D^{\perp}$ puis $w = u \wedge v = \frac{1}{\sqrt{5}}(-2, -1, 0)$.

Ainsi, $\mathscr{B} = \left(\underbrace{v, v, w}_{\mathscr{B}_D}, \underbrace{v, w}_{\mathscr{B}_{D^{\perp}}}\right)$ est une base orthonormée directe de \mathbb{R}^3 dans laquelle la matrice de x_z est :

$$Mat_{\mathscr{B}}(r_{\frac{\pi}{6}}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

La matrice de passage de la base canonique \mathscr{B}_c à \mathscr{B} est une matrice orthogonale (car \mathscr{B}_c et \mathscr{B} sont orthonormées) donc P est inversible et $P^{-1} = {}^tP$. On obtient :

$$Mat_{\mathscr{B}_c}(r_{\frac{\pi}{6}}) = PMat_{\mathscr{B}}(r_{\frac{\pi}{6}})^{t}P = \begin{pmatrix} \frac{1+2\sqrt{3}}{5} & \frac{-2+\sqrt{3}}{5} & -\frac{\sqrt{5}}{5} \\ \frac{-2+\sqrt{3}}{5} & \frac{8+\sqrt{3}}{10} & -\frac{\sqrt{5}}{10} \\ \frac{\sqrt{5}}{5} & \frac{\sqrt{5}}{10} & \frac{\sqrt{5}}{2} \end{pmatrix}.$$

2. Déterminons une base orthonormée directe $\mathscr{B} = \mathscr{B}_D \cup \mathscr{B}_{D^{\perp}}$ de \mathbb{R}^3 avec $D = \operatorname{Vect}(i+j+k)$ l'axe de la rotation $r_{\frac{\pi}{4}}$ étudiée.

On note
$$u = \frac{1}{\sqrt{3}}(i+j+k) = \frac{1}{\sqrt{3}}(1,1,1)$$
.

On pose ensuite $v = \frac{1}{\sqrt{2}}(1, -1, 0) \in D^{\perp}$ puis $w = u \wedge v = \frac{1}{\sqrt{6}}(1, 1, -2)$.

Ainsi, $\mathscr{B}=\left(\underbrace{u}_{\mathscr{B}_D},\underbrace{v,w}_{\mathscr{B}_{D^\perp}}\right)$ est une base orthonormée directe de \mathbb{R}^3 dans la-

quelle la matrice de $r_{\frac{\pi}{4}}$ est :

$$Mat_{\mathscr{B}}(r_{\frac{\pi}{4}}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

La matrice de passage de la base canonique \mathscr{B}_c à \mathscr{B} est une matrice orthogonale (car \mathscr{B}_c et \mathscr{B} sont orthonormées) donc P est inversible et $P^{-1} = {}^tP$. On obtient :

$$Mat_{\mathscr{B}_c}(r_{\frac{\pi}{4}}) = PMat_{\mathscr{B}}(r_{\frac{\pi}{4}})^{t}P = \begin{pmatrix} \frac{1+\sqrt{2}}{3} & \frac{2-\sqrt{2}-\sqrt{6}}{6} & \frac{2-\sqrt{2}+\sqrt{6}}{6} \\ \frac{2-\sqrt{2}+\sqrt{6}}{6} & \frac{1+\sqrt{2}}{3} & \frac{2-\sqrt{2}-\sqrt{6}}{6} \\ \frac{2-\sqrt{2}-\sqrt{6}}{6} & \frac{2-\sqrt{2}+\sqrt{6}}{6} & \frac{1+\sqrt{2}}{3} \end{pmatrix}.$$

Solution Exercice 7. Soient
$$(a,b) \in \mathbb{R}^2$$
 et $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$.

1.
$$A \in O(3) \iff {}^{t}AA = I_{3} \iff \begin{pmatrix} a^{2} + 2b^{2} & 2ab + b^{2} & 2ab + b^{2} \\ 2ab + b^{2} & a^{2} + 2b^{2} & 2ab + b^{2} \\ 2ab + b^{2} & 2ab + b^{2} & a^{2} + 2b^{2} \end{pmatrix} = I_{3}.$$

Ainsi
$$A \in O(3)$$
 si et seulement si
$$\begin{cases} a^2 + 2b^2 = 1 \\ 2ab + b^2 = 0 \end{cases}$$

Ainsi:

- Soit b=0 auquel cas $a=\pm 1$: alors $A=I_2$ ou $A=-I_2$ qui sont bien des matrices orthogonales canoniquement associées aux isométries $\pm id_{\mathbb{R}^3}$.
- Soit $b \neq 0$. Dans ce cas la seconde équation donne 2a + b = 0 i.e. b = -2a. La première équation donne alors $9a^2 = 1 \iff a = \pm \frac{1}{3}$. On obtient

$$A = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \text{ ou } A = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

Ces deux matrices sont effectivement orthogonales : ${}^{t}AA = I_{3}$.

2. On se limite à traiter le cas des deux matrices orthogonales obtenues ci-dessus

$$S = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \text{ et } R = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

(les isométries $id_{\mathbb{R}^3}$ et $-id_{\mathbb{R}^3}$ ne demandent pas d'étude particulière).

On remarque que les matrices S et R sont orthogonales **et symétriques**.

Les endomorphismes s,r canoniquement associés sont donc des symétries orthogonales.

Le calcul donne det(S) = -1 et $det(R) = det(-S) = (-1)^3 det(S) = 1$.

Par conséquent :

- s est une réflexion par rapport au plan $E_1(s) = \ker(s \mathrm{id}_{\mathbb{R}^3})$ (parallèlement à la droite $E_1(s)^{\perp} = E_{-1}(s)$).
- r est un retournement autour de l'axe $E_1(r) = \ker(r \mathrm{id}_{\mathbb{R}^3})$ (parallèlement au plan $E_1(r)^{\perp} = E_{-1}(r)$).

On trouve $E_1(r) = \text{Vect}(1, 1, 1)$ et $E_{-1}(r) = \text{Vect}((-1, 0, 1), (-1, 1, 0))$

Puisque s = -r alors :

- $--s(x) = x \Longleftrightarrow -r(x) = x \Longleftrightarrow r(x) = -x$
- $--s(x) = -x \Longleftrightarrow -r(x) = -x \Longleftrightarrow r(x) = x.$

Par conséquent $E_1(s) = E_{-1}(r) = \text{Vect}((-1,0,1),(-1,1,0))$ et $E_{-1}(s) = \text{Vect}((1,1,1))$.

Solution Exercice 8. Soit E un espace euclidien et $a \in E$ un vecteur unitaire.

Pour tout $\alpha \in \mathbb{R}$, on définit φ_{α} sur E par :

$$\forall x \in E, \varphi_{\alpha}(x) = x + \alpha(x|a)a.$$

1. Il est clair que φ_{α} est linéaire (vérifiez-le).

De plus φ_{α} est orthogonal si et seulement si pour tout $x \in E$, $||\varphi_{\alpha}(x)|| = ||x||$. Avec $x = \alpha$ cette condition donne

$$||a|| = ||\varphi_{\alpha}(a)|| = ||(\alpha + 1)a|| = |\alpha + 1| ||a||.$$

Si φ_{α} est orthogonal alors nécessairement $\alpha = 0$ ou $\alpha = -2$.

- Si $\alpha = 0$ alors $\varphi_0 = \mathrm{id}_E$ est bien sûr orthogonal.
- Si $\alpha = -2$ alors φ_{-2} est l'application $x \mapsto x 2(x|a)a$. Pour tout $(x, y) \in E^2$:

$$(\varphi_{-2}(x)|\varphi_{-2}(y)) = (x - 2(x|a)a|y - 2(y|a)a)$$

$$= (x|y) - 2(y|a)(x|a) - 2(x|a)(y|a) + 4(x|a)(y|a) \underbrace{(a|a)}_{||a||^2 = 1}$$

$$= (x|y).$$

Par conséquent φ_{-2} conserve le produit scalaire donc φ_{-2} est une isométrie vectorielle.

2. On traite le cas $\alpha = -2$; le cas $\alpha = 0$ ($\varphi_0 = \mathrm{id}_E$ ne nécessite pas d'étude particulière).

Déterminons $\ker(\varphi_{-2} - \mathrm{id}_E)$:

$$\varphi_{-2}(x) = x \iff x - 2(x|a)a = x \iff (x|a) = 0 \iff x \in \operatorname{Vect}(a)^{\perp}.$$

On en déduit que $E_1(\varphi_{-2})$ est de dimension $\dim \operatorname{Vect}(a)^{\perp} = \dim E - \dim \operatorname{Vect}(a) = n-1 : E_1(\varphi_{-2})$ est un hyperplan de E.

D'autre part $E_{-1}(\varphi_{-2}) = \text{Vect}(a)$:

$$\varphi_{-2}(x) = -x \iff x - 2(x|a)a = -x \iff x = (x|a)a \in \operatorname{Vect}(a)^{\perp}.$$

Par conséquent φ_{-2} est une réflexion par rapport à l'hyperplan $\operatorname{Vect}(a)^{\perp}$ parallèlement à $\operatorname{Vect}(a)$.

Dans une base \mathscr{B} adaptée à $E = \operatorname{Vect}(a) \oplus \operatorname{Vect}(a)^{\perp}$ la matrice de φ_{-2} est :

$$\begin{pmatrix}
-1 & & & (0) \\
& 1 & & \\
& & \ddots & \\
(0) & & 1
\end{pmatrix}$$

Solution Exercice 9. Soit E un espace euclidien orienté de dimension 3 et soit $f \in \mathcal{L}(E)$ non nul.

Montrons que f est une rotation si et seulement si,

$$\forall (u, v) \in E^2 : f(u) \land f(v) = f(u \land v).$$

 \implies On suppose que f est une rotation et on fixe \mathscr{B} une base orthonormée directe de E. Puisque f est une rotation on a $\det(f) = 1$.

Soient $u, v \in E$ et $w \in E$ quelconques. On a :

$$(f(u) \wedge f(v)|f(w)) = [f(u), f(v), f(w)] = \det(f(u), f(v), f(w))$$

$$= \det\left(\begin{array}{c|c} f(u) & f(v) & f(w) \end{array}\right)$$

$$= \det Mat_{\mathscr{B}}(f(u), f(v), f(w))$$

$$= \det(Mat_{\mathscr{B}}(f)Mat_{\mathscr{B}}(u, v, w))$$

$$= \det(f) \det(u, v, w)$$

$$= \det(u, v, w) \text{ car } f \text{ est une rotation.}$$

$$= [u, v, w]$$

$$= (u \wedge v|w)$$

$$= (f(u \wedge v)|f(w))$$

car f est une isométrie donc conserve le produit scalaire.

Par conséquent, pour tout $w \in E$, $(f(u) \land f(v) - f(u \land v)|f(w)) = 0$.

Puisque f est bijective, on en déduit que le vecteur $f(u) \wedge f(v) - f(u \wedge v) \in$ $E^{\perp} = \{0_E\}$ est nul.

Ainsi, $f(u \wedge v) = f(u) \wedge f(v)$.

Réciproquement on suppose que

$$\forall (u,v) \in E^2, f(u \wedge v) = f(u) \wedge f(v).$$

Soit (i, j, k) une base orthonormée directe de E.

On a $i \wedge j = k$ donc $f(i \wedge j) = f(k)$ i.e. $f(i) \wedge f(j) = f(k)$.

De même $f(k) \wedge f(i) = f(i)$.

Par conséquent, les vecteurs f(i), f(j), f(k) sont orthogonaux deux à deux.

La famille (f(i), f(j), f(k)) est donc orthogonale.

On a également $||f(i \wedge j)|| = ||f(k)||$ i.e. $||f(i) \wedge f(j)|| = ||f(k)||$ donc

$$||f(i)|| ||f(j)|| \underbrace{\sin(f(i), f(j))}_{\sin \frac{\pi}{2} = 1} = ||f(k)|| \quad (*)$$

On montre également que ||f(k)|| ||f(i)|| = ||f(j)|| (**).

Il vient : $||f(i)||^2 ||f(k)|| = ||f(k)||$.

Si f(k) = 0 alors par (**) il vient f(i) = 0.

Puisque $f(i) \wedge f(k) = f(i)$ on obtiendrait aussi f(i) = 0.

Dans ce cas f serait l'application nulle ce qui n'est pas.

Ainsi, $f(k) \neq 0$ et par conséquent, on obtient ||f(i)|| = 1.

On montre de manière analogue que ||f(i)|| = ||f(k)|| = 1.

Par conséquent (f(i), f(j), f(k)) est une base orthonormée.

L'endomorphisme f transforme donc toute base orthonormée \mathscr{B} en une base orthonormée $f(\mathcal{B})$: f est une isométrie.

La base \mathcal{B} est directe par hypothèse.

La base $f(\mathcal{B})$ est également directe car

$$f(i) \wedge f(j) = f(k), \quad f(j) \wedge f(k) = f(i) \text{ et } f(k) \wedge f(i) = f(j).$$

La matrice de f dans \mathscr{B} est donc la matrice de passage

$$P:(i,j,k)\to (f(i),f(j),f(k))$$

entre deux base orthonormées directes : $Mat_{\mathscr{B}}(f) \in SO_3(\mathbb{R})$: $\det(f) = 1$. En conclusion f est une isométrie directe de E: f est une rotation.

Solution Exercice 10.

1. Soit r la rotation d'axe D dirigé et orienté par un vecteur unitaire ω et d'angle

Montrons que pour tout $x \in E$,

$$r(x) = \cos \theta x + \sin \theta \omega \wedge x + (1 - \cos \theta)(x|\omega)\omega.$$

— Si $x \in D = E_1(r)$ alors r(x) = x et il existe $\lambda \in \mathbb{R}$, $x = \lambda \omega$. On calcule:

$$\cos\theta\lambda\omega + \sin\theta\underbrace{\omega\wedge\lambda\omega}_{=0_E} + (1-\cos\theta)\underbrace{(\lambda\omega|\omega)}_{\lambda||\omega||^2=\lambda}\omega = \lambda\omega = x.$$

La formule est donc vérifiée pour les vecteurs de D.

— Soit $x \in E = D \oplus D^{\perp}$ tel que $x \notin D : x = x_D + x_{D^{\perp}}$ avec $x_D = p_D(x)$ la projection orthogonale de x sur D et $x_{D^{\perp}} = x - x_D \neq 0_E$. Alors $r(x) = r(x_D) + r(x_{D^{\perp}}) = x_D + r(x_{D^{\perp}})$ car $x_D \in D = E_1(r)$.

Pour déterminer $f(x_{D^{\perp}})$ on travaille dans la base orthonormée directe de $E:\left(\omega,\tfrac{x_{D^\perp}}{||x_{D^\perp}||},\omega\wedge\tfrac{x_{D^\perp}}{||x_{D^\perp}||}\right) \text{(notons que } ||x_{D^\perp}||\neq 0 \text{ car } x_{D^\perp}\neq 0_E).$

L'orientation de D par ω induit alors une orientation sur le plan D^{\perp} : $\mathscr{B}_{D^\perp} = \left(\tfrac{x_{D^\perp}}{||x_{D^\perp}||}, \omega \wedge \tfrac{x_{D^\perp}}{||x_{D^\perp}||} \right) \text{ est une base orthonormée directe de } D^\perp.$

Dans cette base la matrice de la rotation plane restreinte $r_{|_{D^{\perp}}}$ (D est stable et donc D^{\perp} est stable par r) est :

$$Mat_{\mathscr{B}^{\perp}}(r_{|_{D^{\perp}}}) = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right).$$

Ainsi:

$$\begin{split} r(x_{D^{\perp}}) &= ||x_{D^{\perp}}|| r\left(\frac{x_{D^{\perp}}}{||x_{D^{\perp}}||}\right) \\ &= ||x_{D^{\perp}}|| \left(\cos\theta \frac{x_{D^{\perp}}}{||x_{D^{\perp}}||} + \sin\theta\omega \wedge \frac{x_{D^{\perp}}}{||x_{D^{\perp}}||}\right) \\ &= \cos\theta x_{D^{\perp}} + \sin\theta\omega \wedge x_{D^{\perp}} \end{split}$$

On obtient:

$$r(x) = x_D + r(x_{D^{\perp}})$$

$$= (x|\omega)\omega + \cos\theta(x - (x|\omega)\omega) + \sin\theta\omega \wedge (x - (x|\omega)\omega)$$

$$= (x|\omega)\omega(1 - \cos\theta) + \cos\theta x + \sin\theta\omega \wedge x$$

2. Soit $\mathcal{B} = (i, j, k)$ une base orthonormée directe de E.

Déterminons la matrice dans la base canonique de la rotation r d'axe D dirigé et orienté par i+j+k et d'angle $\frac{\pi}{4}$.

Un vecteur unitaire dirigeant D est $\omega = \frac{1}{\sqrt{3}}(i+j+k)$.

$$\begin{split} & - r(i) = (i|\omega)\omega(1-\cos\frac{\pi}{4}) + \cos\frac{\pi}{4}i + \sin\frac{\pi}{4}\omega \wedge i \\ & r(i) = \frac{1}{3}(1-\frac{\sqrt{2}}{2})(i+j+k) + \frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2}\frac{1}{\sqrt{3}}(j-k) \\ & r(i) = \frac{1+\sqrt{2}}{3}i + \frac{2-\sqrt{2}+\sqrt{6}}{6}j + \frac{2-\sqrt{2}-\sqrt{6}}{6}k. \\ & - \text{Les calculs de } r(j) \text{ et } r(k) \text{ sont analogues, on obtient :} \end{split}$$

$$Mat_{(i,j,k)}(r) = \begin{pmatrix} \frac{1+\sqrt{2}}{3} & \frac{2-\sqrt{2}-\sqrt{6}}{6} & \frac{2-\sqrt{2}+\sqrt{6}}{6} \\ \frac{2-\sqrt{2}+\sqrt{6}}{6} & \frac{1+\sqrt{2}}{3} & \frac{2-\sqrt{2}-\sqrt{6}}{6} \\ \frac{2-\sqrt{2}-\sqrt{6}}{6} & \frac{2-\sqrt{2}+\sqrt{6}}{6} & \frac{1+\sqrt{2}}{3} \end{pmatrix}$$

Solution Exercice 11. Soient E un espace vectoriel euclidien et $u \in E$ non nul.

On considère $q \in O(E)$ une isométrie de E et on note s la réflexion par rapport à l'hyperplan $Vect(u)^{\perp}$. Décrivons $q \circ s \circ q^{-1}$.

On a $E_{-1}(s) = \text{Vect}(u)$ et $E_1(s) = \text{Vect}(u)^{\perp}$.

On pose $\varepsilon_1 = \frac{u}{||u||}$.

On se donne $(\varepsilon_2,\ldots,\varepsilon_n)$ une base orthonormée de $E=\mathrm{Vect}(u)^{\perp}$.

On obtient une base orthonormée de $E = \operatorname{Vect}(u) \oplus \operatorname{Vect}(u)^{\perp} : \mathscr{B} =$ $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n).$

L'endomorphisme $s' = g \circ s \circ g^{-1}$ est orthogonal par composition.

 $-x \in E_{-1}(s')$ si et seulement si :

$$g \circ s \circ g^{-1}(x) = -x \iff s(g^{-1}(x)) = -g^{-1}(x) \iff g^{-1}(x) \in E_{-1}(s)$$
$$\iff g^{-1}(x) \in \operatorname{Vect}(\varepsilon_1) \iff x \in \operatorname{Vect}(g(\varepsilon_1))$$

Ainsi, $E_{-1}(s') = \text{Vect}(g(\varepsilon_1)).$

On montre de même que $E_1(s) = \text{Vect}(g(\varepsilon_2), \dots, g(\varepsilon_n))$ est un sous-espace de dimension n-1 (q est bijective).

En conclusion : $s' = g \circ s \circ g^{-1}$ est la réflexion d'hyperplan $\operatorname{Vect}(g(u))^{\perp}$. \square

Solution Exercice 12. Soit E un espace euclidien de dimension $n \ge 2$ et $f \in O(E)$.

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $p_n = \frac{1}{n} (id_E + f + f^2 + \dots + f^{n-1}) = \frac{1}{n} \sum_{k=0}^{n-1} f^k$.

- 1. Montrons que $\ker(f \mathrm{id}_E)$ et $\mathrm{Im}(f \mathrm{id}_E)$ sont supplémentaires dans E.
 - Par le théorème du rang on a dim $\operatorname{Im}(f-\operatorname{id}_E)+\operatorname{dim}\ker(f-\operatorname{id}_E)=\operatorname{dim} E$.
 - D'autre part, si $x \in \ker(f \mathrm{id}_E) \cap \mathrm{Im}(f \mathrm{id}_E)$ alors
 - * $f(x) = x \operatorname{car} x \in \ker(f \operatorname{id}_E)$.
 - * x = f(y) y pour un certain $y \in E$ car $x \in \text{Im}(f id_E)$.

Alors

$$||x||^2 = (x|x) = (x|f(y) - y) = (x|f(y)) - (x|y) = (f(x)|f(y)) - (x|y) = 0$$

car f est une isométrie.

Ainsi, $x = 0_E$ et $\operatorname{Im}(f - \operatorname{id}_E) \cap \ker(f - \operatorname{id}_E) = \{0_E\}.$

On en déduit que $E = \ker(f - \mathrm{id}_E) \oplus \mathrm{Im}(f - \mathrm{id}_E)$.

Remarques

On peut montrer que $\ker(f - \mathrm{id}_E) = \mathrm{Im}(f - \mathrm{id}_E)^{\perp}$. En effet, pour tout $x \in \ker(f - \mathrm{id}_E)$:

$$(x|f(y) - y) = (x|f(y)) - (x|y) = (f(x)|f(y)) - (x|y) = 0.$$

Ainsi, $\ker(f - \mathrm{id}_E) \subset \operatorname{Im}(f - \mathrm{id}_E)^{\perp}$ et on conclut par égalité des dimensions.

2. Soit $x \in \ker(f - \mathrm{id}_E)$.

Alors $id_E(x) = x, f(x) = x, f^2(x) = f(f(x)) = f(x) = x, ..., f^k(x) = x$ pour tout $k \in \mathbb{N}$.

Ainsi,
$$p_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \underbrace{f^k(x)}_{=x} = \frac{1}{n} \times nx = x.$$

3. Soit $x \in \text{Im}(f - \text{id}_E) : x = f(y) - y$ pour un certain $y \in E$.

Alors

$$p_n(x) = p_n(f(y) - y) = p_n(f(y)) - p_n(y) = \frac{1}{n} \sum_{k=0}^{n-1} f^k(f(y)) - \frac{1}{n} \sum_{k=0}^{n-1} f^k(y)$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} f^{k+1}(y) - \frac{1}{n} \sum_{k=0}^{n-1} f^k(y)$$
$$= \frac{1}{n} (f^n(y) - y)$$

4. Soit p la projection orthogonale sur $\ker(f - \mathrm{id}_E)$.

Montrons que $\lim_{n\to+\infty} ||p(x)-p_n(x)||=0$ pour tout $x\in E.$

On décompose $x \in E = \ker(f - \mathrm{id}_E) \oplus \mathrm{Im}(f - \mathrm{id}_E) : x = x_1 + x_2$ avec :

 $-x_1 \in \ker(f - \mathrm{id}_E).$

 $-x_2 \in \operatorname{Im}(f - \operatorname{id}_E).$

Alors $p_n(x) = x_1 + \frac{1}{n}(f^n(x_2) - x_2)$.

Puisque p est la projection sur $\ker(f - \mathrm{id}_E)$, on a $x_1 = p(x_1 + x_2) = p(x)$.

Ainsi, $p(x) - p_n(x) = \frac{1}{n}(x_2 - f^n(x_2)).$

L'inégalité triangulaire et le fait que f^n soit une isométrie donnent :

$$||p(x) - p_n(x)|| \le \frac{1}{n} (||x_2|| + ||f^n(x_2)||) = \frac{2||x_2||}{n} \underset{n \to +\infty}{\longrightarrow} 0.$$