PVSYST V6.81 14/12/20 Sayfa 1/6

ebekeye ba lı sistem: Simülasyon parametreleri

Proje: ACAROGLU OTOMAT V

Co rafi konum ACARO LU OTOMAT V Ülke Turkey

KonumEnlem37.90° NBoylam32.53° EZaman türüYasal zamanUT Saat dilimi+3Rakım1008 m

Albedo 0.20

Hava durumu verileri: DERYA SOLAR B Meteonorm 7.2 (2003-2011) - Sentetik

Simülasyon varyantı: Yeni simülasyon varyantı

Simülasyon tarihi 14/12/20 15h59

Simülasyon parametreleri Sistem tipi Do u batı kubbe sıra

2 yönlendirme e im/azimut 15°/63° ve 15°/-117°

Kullanılan modeller Transpozisyon Perez Difüz Perez, Meteonorm

Ufuk Ufuk tanımlanmadı

Yakın gölgelemeler Modül dizilerine göre Elektrik etki 100 %

Kullanıcı ihtiyaçları : Sınırsız yükleme (ebeke)

Kolektör alanlarının özellikleri (2 tanımlanmı alanların türü)

PV modül Si-mono Model END-60-330P

Kullanıcı tarafından belirlenen parametreler Üretici 2h Energy(Endüstriyel Elektrik)

Alt alan "Alt alan #1"Yönlendirme#1E im/Azimut15°/63°PV modül sayısıSeri20 modülParalel2 diziToplam PV modül sayısıModül sayısı40birim gücü330 Wp

Alan global gücü Nominal (STC) 13.20 kWp letme artlarında 12.28 kWp (50°C)

Alan çalı ma özellikleri (50°C) U mpp 626 V I mpp 20 A

Alt alan "Alt alan #2"Yönlendirme#2E im/Azimut15°/-117°PV modül sayısıSeri20 modülParalel2 diziToplam PV modül sayısıModül sayısı40birim gücü330 Wp

Alan global gücü Nominal (STC) 13.20 kWp letme artlarında 12.28 kWp (50°C)

Alan çalı ma özellikleri (50°C) U mpp 626 V I mpp 20 A

ToplamAlanların global gücüNominal (STC)26 kWpToplam80 modülModül yüzeyi134 m²Hücre yüzeyi118 m²

Alt alan "Alt alan #1": nvertör Model SUN2000-40KTL-480Vac-JP

Orijinal PVsyst veritabanı Üretici Huawei Technologies

Özellikler Çalı ma voltajı 200-1000 V birim gücü 40.0 kWac

Maks güç (=>45°C) 46.0 kWac

nvertör paketi nvertör sayısı 2 * MPPT 25 % Toplam güç 20 kWac

Nom. güç oranı 0.66

Alt alan "Alt alan #2": nvertör Model SUN2000-40KTL-440Vac-JP

Orijinal PVsyst veritabanı Üretici Huawei Technologies

Özellikler Çalı ma voltajı 200-1000 V birim gücü 40.0 kWac

Maks güç (=>45°C) 46.0 kWac

nvertör paketi nvertör sayısı 2 * MPPT 25 % Toplam güç 20 kWac

Nom. güç oranı 0.66

Toplam nvertör sayısı 1 Toplam güç 40 kWac

PV alanı kayıp faktörleri

Termal kayıp faktörü Uc (sabit) 20.0 W/m²K Uv (rüzgar) 0.0 W/m²K / m/s

PVSYST V6.81						14/12/20	Sayfa 2/6
	ebek	keye ba lı s	sistem: \$	Simülasyon pa	rametrele	i	
Ohmik kablolama Modül kalite kayb			Alan#1 Alan#2 Global	524 mOhm 524 mOhm	Kayıp oran Kayıp oran Kayıp oran Kayıp oran	ı 1.5 STC ı 1.5 STC	'de%
Modül uyumsuzlu Dizi uyumsuzluk Yansıma etkisi, A	ık kaybı kaybı	etrele tirmesi	IAM =	1 - bo (1/cos i - 1)	Kayıp oran Kayıp oran bo param	ı 1.0 MPF ı 0.10 %	P'de%

PVSYST V6.81 14/12/20 Sayfa 3/6

ebekeye ba lı sistem: Yakın gölgelemelerin tanımlanması

Proje : ACAROGLU OTOMAT V Simülasyon varyantı : Yeni simülasyon varyantı

Yakın gölgelemeler Modül dizilerine göre Elektrik etki 100 %

Kolektör düzleminin yönlendirmesi 2 yönlendirme E im/Azimut = 15°/63° ve 15°/-117°

PV modül END-60-330P Model Pnom 330 Wp PV dizisi Modül sayısı 80 Toplam nom. güç 26.40 kWp nvertör Model SUN2000-40KTL-480Vac-JP Pnom 40.0 kW ac SUN2000-40KTL-440Vac-JP Pnom nvertör Model 40.0 kW ac

Kullanıcı ihtiyaçları Sınırsız yükleme (ebeke)

Yakın gölgeleme sahnesinin perspektifi Ruzey Başucu Doğu Güney

PVSYST V6.81 14/12/20 Sayfa 4/6

ebekeye ba lı sistem: Genel sonuçlar

ACAROGLU OTOMAT V Proje: Simülasyon varyantı: Yeni simülasyon varyantı

Sistemin genel parametreleri Do u batı kubbe sıra Sistem tipi

Yakın gölgelemeler Modül dizilerine göre Elektrik etki 100 %

Kolektör düzleminin yönlendirmesi 2 yönlendirme E im/Azimut = $15^{\circ}/63^{\circ}$ ve $15^{\circ}/-117^{\circ}$

PV modül END-60-330P Model Pnom 330 Wp PV dizisi Modül sayısı 80 Toplam nom. güç 26.40 kWp nvertör Model SUN2000-40KTL-480Vac-JP Pnom 40.0 kW ac nvertör Model SUN2000-40KTL-440Vac-JP Pnom 40.0 kW ac

Kullanıcı ihtiyaçları Sınırsız yükleme (ebeke)

Simülasyonun genel sonuçları

Sistem üretimi Üretilen enerji 40.59 MWh/yıl Üretilebilir 1538 kWh/kWp/yıl

> Performans orani PR 88.54 %

Normalize üretim (kWp ba ı): Nominal güç 26.40 kWp

Yeni simülasyon varyantı Bilanço ve genel sonuçlar

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	
Ocak	67.9	22.47	-0.72	67.0	62.9	1.651	1.622	0.917
ubat	88.0	38.17	0.66	87.1	83.0	2.174	2.141	0.931
Mart	134.7	47.83	6.74	132.7	127.3	3.235	3.188	0.910
Nisan	158.5	66.25	10.93	155.8	150.3	3.767	3.714	0.903
Mayıs	203.5	76.17	16.05	200.4	193.9	4.760	4.694	0.887
Haziran	223.0	68.25	20.94	219.8	213.1	5.124	5.053	0.871
Temmuz	236.1	62.73	24.69	232.9	225.9	5.347	5.272	0.857
A ustos	216.1	55.65	24.43	212.3	205.9	4.893	4.823	0.861
Eylül	168.8	44.37	18.82	166.3	160.2	3.904	3.849	0.877
Ekim	119.7	36.92	13.59	118.3	112.8	2.820	2.778	0.889
Kasım	83.0	28.64	6.36	82.0	77.2	1.991	1.961	0.905
Aralık	62.5	27.34	1.16	62.0	58.0	1.525	1.499	0.916
Yıl	1761.9	574.78	12.04	1736.6	1670.3	41.191	40.593	0.885

Açıklama:

GlobHor

GlobInc

Global yatay ı ınlama

Kolektöre yansıyan global

DiffHor Yatay difüz ı ınlama T_Amb Çevre sıcaklı ı

GlobEff EArray

PR

IAM ve gölgeleme için düzeltilmi etkin Global

Dizinin çıkı ında etkin enerji E_Grid ebekeye enjekte edilen enerji

Performans orani

PVSYST V6.81 14/12/20 Sayfa 5/6

ebekeye ba lı sistem: Özel grafikler

Proje : ACAROGLU OTOMAT V Simülasyon varyantı : Yeni simülasyon varyantı

Sistemin gene	l parametreleri	Sistem ti	pi Do	u batı kubbe sıra

Yakın gölgelemeler Modül dizilerine göre Elektrik etki 100 %

Kolektör düzleminin yönlendirmesi 2 yönlendirme E im/Azimut = 15°/63° ve 15°/-117°

PV modül END-60-330P Model Pnom 330 Wp PV dizisi Modül sayısı 80 Toplam nom. güç 26.40 kWp SUN2000-40KTL-480Vac-JP Pnom nvertör Model 40.0 kW ac nvertör SUN2000-40KTL-440Vac-JP Pnom 40.0 kW ac

Kullanıcı ihtiyaçları Sınırsız yükleme (ebeke)

Günlük giri / çıkı diyagramı

Sistem çıkı gücü da ılımı

PVSYST V6.81 14/12/20 Sayfa 6/6

ebekeye ba lı sistem: Kayıplar diyagramı

Proje : ACAROGLU OTOMAT V Simülasyon varyantı : Yeni simülasyon varyantı

Sistemin genel parametreleri Sistem tipi Do u batı kubbe sıra

Yakın gölgelemeler Modül dizilerine göre Elektrik etki 100 %

Kolektör düzleminin yönlendirmesi 2 yönlendirme E im/Azimut = 15°/63° ve 15°/-117°

PV modül Model END-60-330P Pnom 330 Wp PV dizisi Modül sayısı 80 Toplam nom. güç 26.40 kWp nvertör Model SUN2000-40KTL-480Vac-JP Pnom 40.0 kW ac nvertör Model SUN2000-40KTL-440Vac-JP Pnom 40.0 kW ac

Kullanıcı ihtiyaçları Sınırsız yükleme (ebeke)

Yıl boyu kayıplar diyagramı

