TS: Fonction Exponentielle: Exercice 15

Sébastien Harinck

www.cours-futes.com

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = e^x + 2e^{-x} + x$$

1. Etudier les variations de f sur \mathbb{R}

$$f(x) = e^x + 2e^{-x} + x$$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$

$$f(x) = e^x + 2e^{-x} + x$$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$
- 3. Dresser le tableau de variations de f

$$f(x) = e^x + 2e^{-x} + x$$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$
- 3. Dresser le tableau de variations de f

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = e^x + 2e^{-x} + x$$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$
- 3. Dresser le tableau de variations de f

Conseil:

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = e^x + 2e^{-x} + x$$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$
- 3. Dresser le tableau de variations de f

Conseil : Mettez la vidéo en pause, prenez une feuille et un stylo et essayez de le résoudre vous-même :)

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = e^x + 2e^{-x} + x$$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$
- 3. Dresser le tableau de variations de f

Conseil : Mettez la vidéo en pause, prenez une feuille et un stylo et essayez de le résoudre vous-même :)

$$f(x) = e^x + 2e^{-x} + x$$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

 $f(x) = e^x + 2e^{-x} + x$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

$$f'(x) = e^{x} - 2e^{-x} + 1 = e^{x} + 2\frac{1}{e^{x}} + 1$$

$$f(x) = e^x + 2e^{-x} + x$$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

$$f'(x) = e^x - 2e^{-x} + 1 = e^x + 2\frac{1}{e^x} + 1$$

Bien que la fonction exponentielle soit toujours positive sur \mathbb{R} , on ne peut pas déterminer tout de suite le signe de la fonction f'(x).

$$f(x) = e^x + 2e^{-x} + x$$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

$$f'(x) = e^{x} - 2e^{-x} + 1 = e^{x} + 2\frac{1}{e^{x}} + 1$$

Bien que la fonction exponentielle soit toujours positive sur \mathbb{R} , on ne peut pas déterminer tout de suite le signe de la fonction f'(x). Dans cet exercice, nous allons utiliser une technique assez particulière (mais que vous devez connaître :))

$$f(x) = e^x + 2e^{-x} + x$$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

$$f'(x) = e^{x} - 2e^{-x} + 1 = e^{x} + 2\frac{1}{e^{x}} + 1$$

Bien que la fonction exponentielle soit toujours positive sur \mathbb{R} , on ne peut pas déterminer tout de suite le signe de la fonction f'(x). Dans cet exercice, nous allons utiliser une technique assez particulière (mais que vous devez connaître :)) Le but est d'exprimer la fonction avec X où $X=e^x$.

$$f(x) = e^x + 2e^{-x} + x$$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

$$f'(x) = e^{x} - 2e^{-x} + 1 = e^{x} + 2\frac{1}{e^{x}} + 1$$

Bien que la fonction exponentielle soit toujours positive sur \mathbb{R} , on ne peut pas déterminer tout de suite le signe de la fonction f'(x).

Dans cet exercice, nous allons utiliser une technique assez particulière (mais que vous devez connaître :))

Le but est d'exprimer la fonction avec X où $X = e^x$.

Comme ceci par exemple :
$$3X^2 - \frac{7}{3}X - 2$$

$$f(x) = e^x + 2e^{-x} + x$$

Pour étudier les variations d'une fonction, il est conseillé de calculer sa dérivée et d'étudier son signe.

$$f'(x) = e^{x} - 2e^{-x} + 1 = e^{x} + 2\frac{1}{e^{x}} + 1$$

Bien que la fonction exponentielle soit toujours positive sur \mathbb{R} , on ne peut pas déterminer tout de suite le signe de la fonction f'(x).

Dans cet exercice, nous allons utiliser une technique assez particulière (mais que vous devez connaître :))

Le but est d'exprimer la fonction avec X où $X = e^{x}$.

Comme ceci par exemple : $3X^2 - \frac{7}{3}X - 2$

$$f'(x) = e^x + 2\frac{1}{e^x} + 1 =$$

$$f'(x) = e^x + 2\frac{1}{e^x} + 1 = \frac{e^{2x} - 2 + e^x}{e^x} = \frac{e^{2x} + e^x - 2}{e^x}$$

On va commencer par mettre la fonction sous un même dénomitateur.

$$f'(x) = e^x + 2\frac{1}{e^x} + 1 = \frac{e^{2x} - 2 + e^x}{e^x} = \frac{e^{2x} + e^x - 2}{e^x}$$

Si on pose $X = e^x$,

On va commencer par mettre la fonction sous un même dénomitateur.

$$f'(x) = e^x + 2\frac{1}{e^x} + 1 = \frac{e^{2x} - 2 + e^x}{e^x} = \frac{e^{2x} + e^x - 2}{e^x}$$

Si on pose $X = e^x$, on obtient :

$$f'(x) = e^{x} + 2\frac{1}{e^{x}} + 1 = \frac{e^{2x} - 2 + e^{x}}{e^{x}} = \frac{e^{2x} + e^{x} - 2}{e^{x}}$$
Si on pose $X = e^{x}$, on obtient : $f'(x) = \frac{X^{2} + X - 2}{X}$

Si on pose
$$X = e^x$$
, on obtient : $f'(x) = \frac{X^2 + X - 2}{X}$

$$f'(x) = e^{x} + 2\frac{1}{e^{x}} + 1 = \frac{e^{2x} - 2 + e^{x}}{e^{x}} = \frac{e^{2x} + e^{x} - 2}{e^{x}}$$
Si on pose $X = e^{x}$, on obtient : $f'(x) = \frac{X^{2} + X - 2}{X}$
Pourquoi $e^{2x} = X^{2}$?

$$f'(x) = e^{x} + 2\frac{1}{e^{x}} + 1 = \frac{e^{2x} - 2 + e^{x}}{e^{x}} = \frac{e^{2x} + e^{x} - 2}{e^{x}}$$
Si on pose $X = e^{x}$, on obtient : $f'(x) = \frac{X^{2} + X - 2}{X}$
Pourquoi $e^{2x} = X^{2}$? Parce que $e^{2x} = (e^{x})^{2}$

$$f'(x) = e^{x} + 2\frac{1}{e^{x}} + 1 = \frac{e^{2x} - 2 + e^{x}}{e^{x}} = \frac{e^{2x} + e^{x} - 2}{e^{x}}$$

Si on pose
$$X = e^x$$
, on obtient : $f'(x) = \frac{X^2 + X - 2}{X}$
Pourquoi $e^{2x} = X^2$? Parce que $e^{2x} = (e^x)^2$

Si vous ne pensez qu'en terme de X, vous êtes capable de
$$X^2 \perp X = 2$$

déterminer le signe de
$$\frac{X^2 + X - 2}{X}$$
 sur ...

On va commencer par mettre la fonction sous un même dénomitateur.

$$f'(x) = e^{x} + 2\frac{1}{e^{x}} + 1 = \frac{e^{2x} - 2 + e^{x}}{e^{x}} = \frac{e^{2x} + e^{x} - 2}{e^{x}}$$
Si on pose $X = e^{x}$, on obtient : $f'(x) = \frac{X^{2} + X - 2}{X}$

Pourquoi
$$e^{2x} = X^2$$
? Parce que $e^{2x} = (e^x)^2$

Si vous ne pensez qu'en terme de X, vous êtes capable de

déterminer le signe de
$$\frac{X^2 + X - 2}{X}$$
 sur ...

Remarque: Lorsque que l'on parle du signe ou de la variation d'une fonction c'est toujours sur un INTERVALLE