Exercícios R-3 (3.5)

1: Crie o seguinte Data Frame

```
df <- data.frame(letras=letters[1:10], numeros=21:30,
valores=rnorm(10))</pre>
```

```
In [1]: df <- data.frame(letras=letters[1:10], numeros = 21:30, valores = rnorm(10))
    df</pre>
```

letras	numeros	valores
а	21	0.6103636
b	22	0.8341710
С	23	1.1485543
d	24	1.3460415
е	25	-1.1520862
f	26	-1.5482375
g	27	-0.7731389
h	28	0.4416557
i	29	-0.2946660
j	30	-0.6180128

Faça as seguintes pesquisas

a) Retorne a linha 5

```
In [2]: df[5,]
```

	letras	numeros	valores	
5	е	25	-1.152086	

b) Retorna a coluna 2 (como vetor e como data frame - drop=FALSE)

```
In [3]: df[,2]
```

```
1. 21
2. 22
3. 23
4. 24
5. 25
6. 26
7. 27
8. 28
9. 29
10. 30
```

In [5]: df[,2, drop=FALSE]

numeros
21
22
23
24
25
26
27
28
29
30

c) Retorne as colunas 2 e 3

In [6]: df[,2:3]

numeros	valores
21	0.6103636
22	0.8341710
23	1.1485543
24	1.3460415
25	-1.1520862
26	-1.5482375
27	-0.7731389
28	0.4416557
29	-0.2946660
30	-0.6180128

d) Retorne os elementos da linha 6, mas somente as colunas 1 e 3

```
In [7]: df[6,c(1,3)]
```

	letras	valores
6	f	-1.548237

e) Retorne os elementos que possuem na coluna "valores" um valor maior que zero

```
In [9]: df[df$valores>0,]
```

	letras	numeros	valores
1	а	21	0.6103636
2	b	22	0.8341710
3	С	23	1.1485543
4	d	24	1.3460415
8	h	28	0.4416557

f) Retorne os elementos que possuem na coluna "numeros" um valor ímpar

```
In [11]: df[df$numero%2 == 1,]
```

	letras	numeros	valores
1	а	21	0.6103636
3	С	23	1.1485543
5	е	25	-1.1520862
7	g	27	-0.7731389
9	i	29	-0.2946660

g) Retorne os elementos que possuem na coluna "valores" um valor maior que zero e na coluna "numeros" um valor par

```
In [12]: df[df$valores>0 & df$numeros%2 ==0,]
```

	letras	numeros	valores
2	b	22	0.8341710
4	d	24	1.3460415
8	h	28	0.4416557

h) Retorne os elementos que possuemna coluna letras os seguintes valores "b", "g", "h"

```
In [22]: df[df$letras %in% c("b", "g", "h"),]
```

	letras	numeros	valores
2	b	22	0.8341710
7	g	27	-0.7731389
8	h	28	0.4416557

2: Criar os data frames df1 e cidades

```
df1 <- data.frame(nome=c("Razer", "Anthom", "Nizer", "Rojas",
"Montaño"), cidadeId=c(3, 10, 2, 3, 1))

cidades <- data.frame(cidadeId=c(1, 2, 3, 4), cidade=c("Curitiba",
"SJP", "Pinhais", "Colombo"))</pre>
```

```
In [27]: df1 <- data.frame(nome=c("Razer", "Anthom", "Nizer", "Rojas", "Montaño"), cidadeId
    cidades <- data.frame(cidadeId=c(1, 2, 3, 4), cidade=c("Curitiba", "SJP", "Pinhais")</pre>
```

In [28]: **df1**

nome	cidadeld
Razer	3
Anthom	10
Nizer	2
Rojas	3
Montaño	1

In [29]: cidades

cidade	cidadeld	
Curitiba	1	
SJP	2	
Pinhais	3	
Colombo	4	

Executar os merges apresentados

a) Cross Join

```
In [30]: merge(df1,cidades, by=NULL)
```

nome	cidadeld.x	cidadeld.y	cidade
Razer	3	1	Curitiba
Anthom	10	1	Curitiba
Nizer	2	1	Curitiba
Rojas	3	1	Curitiba
Montaño	1	1	Curitiba
Razer	3	2	SJP
Anthom	10	2	SJP
Nizer	2	2	SJP
Rojas	3	2	SJP
Montaño	1	2	SJP
Razer	3	3	Pinhais
Anthom	10	3	Pinhais
Nizer	2	3	Pinhais
Rojas	3	3	Pinhais
Montaño	1	3	Pinhais
Razer	3	4	Colombo
Anthom	10	4	Colombo
Nizer	2	4	Colombo
Rojas	3	4	Colombo
Montaño	1	4	Colombo

b) Inner Join

In [32]: merge(df1, cidades, by="cidadeId")

cidade	nome	cidadeld
Curitiba	Montaño	1
SJP	Nizer	2
Pinhais	Razer	3
Pinhais	Rojas	3

c) Outer Join

```
In [33]: merge(df1, cidades, by="cidadeId", all=TRUE)
```

cidadeld	nome	cidade
1	Montaño	Curitiba
2	Nizer	SJP
3	Razer	Pinhais
3	Rojas	Pinhais
4	NA	Colombo
10	Anthom	NA

d) Left Outer Join

```
In [34]: merge(df1, cidades, by="cidadeId", all.x=TRUE)
```

cidadeld	nome	cidade
1	Montaño	Curitiba
2	Nizer	SJP
3	Razer	Pinhais
3	Rojas	Pinhais
10	Anthom	NA

e) Right Outer Join

```
In [35]: merge(df1, cidades, by="cidadeId", all.y=TRUE)
```

cidadeld	nome	cidade
1	Montaño	Curitiba
2	Nizer	SJP
3	Razer	Pinhais
3	Rojas	Pinhais
4	NA	Colombo

3: Crie o data frama

```
n <- 10
sexo <- sample( c("masculino", "feminino"), n, replace=TRUE)
idade <- sample( 14:102, n, replace=TRUE)
peso <- sample( 50:90, n, replace=TRUE)
menor <- idade<18
pessoas <- data.frame(sexo=sexo, idade=idade, peso=peso,
menor=menor)</pre>
```

```
In [36]: 
    n <- 10
    sexo <- sample(c("masculino", "feminino"), n, replace=TRUE)
    idade <- sample(14:102, n, replace=TRUE)
    peso <- sample(50:90, n, replace=TRUE)
    menor <- idade<18</pre>
```

pessoas <- data.frame(sexo=sexo, idade=idade, peso=peso, menor=menor)
pessoas</pre>

sexo	idade	peso	menor
feminino	68	59	FALSE
feminino	23	70	FALSE
masculino	15	57	TRUE
feminino	35	64	FALSE
masculino	65	65	FALSE
feminino	58	76	FALSE
feminino	14	82	TRUE
masculino	43	66	FALSE
feminino	82	74	FALSE
masculino	17	67	TRUE

a) ordene o data frame por peso

In [37]: pessoas[order(pessoas\$peso),]

	sexo	idade	peso	menor
3	masculino	15	57	TRUE
1	feminino	68	59	FALSE
4	feminino	35	64	FALSE
5	masculino	65	65	FALSE
8	masculino	43	66	FALSE
10	masculino	17	67	TRUE
2	feminino	23	70	FALSE
9	feminino	82	74	FALSE
6	feminino	58	76	FALSE
7	feminino	14	82	TRUE

b) Ordene o data frame por sexo e peso, decrescente

```
In [40]: pessoas[order(pessoas$sexo,-pessoas$peso),]
```

	sexo	idade	peso	menor
7	feminino	14	82	TRUE
6	feminino	58	76	FALSE
9	feminino	82	74	FALSE
2	feminino	23	70	FALSE
4	feminino	35	64	FALSE
1	feminino	68	59	FALSE
10	masculino	17	67	TRUE
8	masculino	43	66	FALSE
5	masculino	65	65	FALSE
3	masculino	15	57	TRUE

c) Dê a maior idade dos dados (max)

In [67]: max(pessoas\$idade)

82

d) Dê a média dos pesos

In [70]: mean(pessoas\$peso)

68

e) Mostrar as pessoas do sexo feminino que estão na base

In [71]: pessoas[pessoas\$sexo %in% "feminino",]

	sexo	idade	peso	menor
1	feminino	68	59	FALSE
2	feminino	23	70	FALSE
4	feminino	35	64	FALSE
6	feminino	58	76	FALSE
7	feminino	14	82	TRUE
9	feminino	82	74	FALSE

f) Contar as pessoas do sexo feminino (nrow)

In [74]: nrow(pessoas[pessoas\$sexo %in% "feminino",])