

Methods classification and regression analysis areas on indicators of agriculture (on the example of Tula region)

Iuliia Chtcheva and Telman Mahmudov and Marina Podzorova

Russian State Agrarian University - Moscow Timiryazev
Agricultural Academy

25 August 2018

Online at https://mpra.ub.uni-muenchen.de/88657/1 MPRA Paper No. 88657, posted 25 August 2018 19:09 UTO П

МЕТОДИКА КЛАССИФИКАЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА РАЙОНОВ ПО ПОКАЗАТЕЛЯМ СЕЛЬСКОГО ХОЗЯЙСТВА (НА ПРИМЕРЕ ТУЛЬСКОЙ ОБЛАСТИ)

Чутчева Юлия Васильевна, зав. кафедрой экономики и кооперации Российского государственного аграрного университета — МСХА имени К.А. Тимирязева, доктор экономических наук, доцент; e-mail: chutcheva@timacad.ru

Махмулов Тельман Силулаевич, аспирант кафедры экономики и кооперации Российского государственного аграрного университета — MCXA имени К.А. Тимирязева; e-mail: chutcheva@timacad.ru

Подзорова Марина Ивановна, доцент кафедры прикладной математики Российского государственного социального университета, кандидат педагогических наук, доцент; e-mail: marinatichomirova@hotmail.com

В статье предлагается комплексный подход к анализу сельского хозяйства на мезоуровне. Рамки данного подхода предусматривают выполнение двух основных этапов: классификацию районов на несколько однородных групп и предельный анализ факторов, определяющих принадлежность того или иного района к определенному классу. Первый этап предусматривает построение классификационной регрессии, а второй — построение логит-модели множественного выбора. Такой комплексный подход повышает надежность результатов анализа, способствую тем самым усилению обоснованность принимаемых на его основе результатов. Методика прошла апробацию на данных, характеризующих сельское хозяйство Тульской области.

Ключевые слова: классификационно-регрессионный анализ, предельный анализ факторов, сельское хозяйство, Тульская область

METHODS CLASSIFICATION AND REGRESSION ANALYSIS AREAS ON INDICATORS OF AGRICULTURE (ON THE EXAMPLE OF TULA REGION)

П

The article offers a comprehensive approach to the analysis of agriculture at the meso level. This approach envisages implementation of two main stages: the classification of areas into several homogeneous groups and limiting the analysis of the factors determining the membership of an area to a certain class. The first stage envisages the construction of classification regression, and the second - the construction of the logit model multiple choice. This comprehensive approach increases the reliability of the analysis results, thereby contributing to

strengthening the grounding of its results-based. The technique has been tested on data characterizing agriculture Tula region.

Keywords: classification, regression analysis, analysis of the factors limiting agriculture, Tula region

Γ

Сельское хозяйство является одним из важнейших секторов экономики России. На мезоуровне его состояние и уровень развития во многом предопределяет социально-экономическую ситуацию в регионах. На макроуровне развитие сельского хозяйства укреплению экономической и продовольственной безопасности государства, росту экспортного потенциала страны. Необходимость постоянного внимания к данному сектору экономики обусловлена также большой зависимостью от погодно-климатических условий, что делает сельское хозяйство чрезвычайно рискованным бизнесом. Кроме того, тяжесть сельскохозяйственного труда требует дополнительных усилий по его стимулированию [4].

Анализ показателей сельского хозяйства на мезоуровне архи важен при разработке разнообразных стратегий и программ, определяющих условия деятельности сельскохозяйственных предприятий. Объективность результатов такого анализа во многом зависит от используемого для этих целей аппарата [3]. Преследуя цель повышения объективности и надежности получаемых результатов, ниже предлагается методика анализа сельского хозяйства, предусматривающая комплексное использование аппарата многомерной классификации (дискриминантного и компонентного анализа) и эконометрического моделирования множественного выбора.

Прикладные аспекты реализации методики рассмотрим на примере анализа показателей сельского хозяйства районов Тульской области. Исходные данные представлены в табл. 1.

Таблица 1 — Динамика показателей развития сельского хозяйства в районах Тульской области (2013 г.)

<u>No</u>	Район	Наличие тракторов, шт.	Наличие зерноуборочных комбайнов, шт.	Посевная площадь всего, га	Посевная площадь под зерновыми и зернобобовыми, га	Валовой сбор зерновых и зернобобовых, ц	Численность сельского населения трудоспособного возраста, чел.
		X1	X2	X3	X4	X5	X6
1	Алексинский	27	3	17634,3	8417,2	145703	4977
2	Арсеньевский	32	9	23598	16112	390503,13	3007
3	Белевский	54	13	9442	6030	112294	3770
4	Богородицкий	132	44	38991	27423	680589	7064
5	Веневский	96	17	22164,5	10852	180312,75	6801
6	Воловский	103	31	48376	35282	920549	5583

7	Дубенский	22	3	5279,2	1850	21087	5159
8	Ефремовский	229	72	78680	50753	1524091,38	12871
9	Заокский	73	7	11869	3213	24486	8964
10	Каменский	128	53	43489,5	30550	1119028	5420
11	Кимовский	94	52	42204	30241	692853	7321
12	Киреевский	70	19	24606,5	16939	321713	11493
13	Куркинский	133	47	41178	34501	979764	2884
14	Ленинский	95	20	16040,3	4308	105626	28762
15	Одоевский	75	19	28957,8	20085	378899	4160
16	Плавский	143	67	47870	32812	869173	6864
17	Суворовский	59	7	9921,4	2200,1	17545,9	9155
18	Тепло-Огаревский	55	24	36469	27513	659309	4396
19	Узловский	85	25	19915	14287	322294	9973
20	Чернский	113	15	49756,8	39655	805604	7176
21	Щекинский	176	68	55369,7	33219	985786	17379
22	Ясногорский	14	2	18150	5364,5	44049,49	6540

По определению классификация представляет собой процедуру, с помощью которой из некоторой совокупности выделяются группы что к объектам однородной однородных групп Считается применимы идентичные подходы к оценке их эффективности, идентичные нормативы, идентичные стратегии управления и т.д. Возможность выделения однородных групп предусматривает специальную подготовку данных, описывающих состояние классифицируемых объектов. Прежде всего эта подготовка предусматривает такое преобразование показателей, которая делает их сравнимыми. Осуществляется это преобразование путем использования нормирования. Способов нормирования достаточно много, их выбор зависит от конкретной задачи, для решения которой необходимо проводит классификацию. В рассматриваемой задаче, предусматривающей выделение однородных групп с целью применения к объектам этих групп единой экономической политики, нормирующая процедура предусматривала переход к относительным показателям путем деления соответствующих показателей на численность трудоспособного населения соответствующего района.

 Таблица 2 – Значения показателей в расчете на одного работающего

<u>No</u>	Районы	X1	X2	Х3	X4	X5
1	Алексинский	0,0054	0,0006	3,5432	1,6912	29,2753
2	Арсеньевский	0,0106	0,0030	7,8477	5,3582	129,8647
3	Белевский	0,0143	0,0034	2,5045	1,5995	29,7862
4	Богородицкий	0,0187	0,0062	5,5197	3,8821	96,3461
5	Веневский	0,0141	0,0025	3,2590	1,5956	26,5127
6	Воловский	0,0184	0,0056	8,6649	6,3195	164,8843
7	Дубенский	0,0043	0,0006	1,0233	0,3586	4,0874

8	Ефремовский	0,0178	0,0056	6,1130	3,9432	118,4128
9	Заокский	0,0081	0,0008	1,3241	0,3584	2,7316
10	Каменский	0,0236	0,0098	8,0239	5,6365	206,4627
11	Кимовский	0,0128	0,0071	5,7648	4,1307	94,6391
12	Киреевский	0,0061	0,0017	2,1410	1,4739	27,9921
13	Куркинский	0,0461	0,0163	14,2781	11,9629	339,7240
14	Ленинский	0,0033	0,0007	0,5577	0,1498	3,6724
15	Одоевский	0,0180	0,0046	6,9610	4,8281	91,0815
16	Плавский	0,0208	0,0098	6,9741	4,7803	126,6278
17	Суворовский	0,0064	0,0008	1,0837	0,2403	1,9165
18	Тепло-Огаревский	0,0125	0,0055	8,2960	6,2586	149,9793
19	У зловский	0,0085	0,0025	1,9969	1,4326	32,3167
20	Чернский	0,0157	0,0021	6,9338	5,5261	112,2637
21	Щекинский	0,0101	0,0039	3,1860	1,9114	56,7228
22	22 Ясногорский		0,0003	2,7752	0,8203	6,7354
	Средние значения	0,0136	0,0042	4,9442	3,3754	84,1834

В качестве метода классификации использовался классификационнорегрессионный метод [2]. Смысл этого метода в следующем. Выбирается показатель, который понимается как зависимая переменная. Далее выбирается фактор наиболее тесно связанный с зависимой переменной и вычисляется его среднее значение, которое принимается за критерий деления всей совокупности объектов на две части. Для каждой из так полученных групп выбирается соответствующий фактор, рассчитывается значение критерия в виде среднего и деление на подгруппы продолжается. Наглядно процедура классификации изображена на рис. 1

Tree 4 graph for Var5 Num. of non-terminal nodes: 3. Num. of terminal nodes: 4 ID=1 N=22 Mu=84,183412 Var=6611,256738 Var3 <= 4.531418 > 4,531418 ID=2 N=11 ID=3 N=11 Mu=20,159007 Mu=148,207817 Var=282,639647 Var=4741,625041 Var2 <= 0,013038 > 0,013038 N=10 ID=9 N=1 Mu=129,056199 Mu=339,723994 Var=1181.158445 Var=0.000000 Var4 <= 5.581295 > 5,581295 ID=10 N=7 ID=11 Mu=109.890810 Mu=173.775441 Var=218,171414 Var=571,255933

Рисунок 1 – Классификационная регрессия районов в системе STATISTICA

<u>Результаты классификации приведены в табл. 3. В четвертый классо</u> отнесен только один объект, Куркинский район, который из дальнейшего анализа был исключен.

Таблица 3 – Результаты классификации районов

0.0	D-X	Йомер	Зависимая	Среднее	Среднеквадратическое
Ѻ	Районы	класса	переменная	класса	значение
	Алексинский	1	29,2753	20,1590	16,8119
2	Арсеньевский	2	129,8647	109,8908	14,7706
3	Белевский	1	29,7862	20,1590	16,8119
4	Богородицкий	2	96,3461	109,8908	14,7706
5	Веневский	1	26,5127	20,1590	16,8119
6	Воловский	3	164,8843	173,7754	23,9010
7	Дубенский	1	4,0874	20,1590	16,8119
8	Ефремовский	2	118,4128	109,8908	14,7706
9	Заокский	1	2,7316	20,1590	16,8119
10	Каменский	3	206,4627	173,7754	23,9010
Ϊİ	Кимовский	2	94,6391	109,8908	14,7706
12	Киреевский	1	27,9921	20,1590	16,8119
13	Куркинский	4	339,7240	339,7240	0,0000
14	Ленинский	1	3,6724	20,1590	16,8119
15	Одоевский	2	91,0815	109,8908	14,7706

16	Плавский	2.	126,6278	109,8908	14,7706
17	Суворовский	1	1,9165	20,1590	16,8119
18	Тепло-Огаревский	3	149,9793	173,7754	23,9010
19	<u> Узловский</u>	1	32,3167	20,1590	16,8119
20	Чернский	2	112,2637	109,8908	14,7706
21	Щекинский	1	56,7228	20,1590	16,8119
22	Ясногорский	1	6,7354	20,1590	16,8119

Чтобы понять, как реагируют хозяйства районов на изменение основных показателей хозяйствования, проведем предельный анализ их экономического состояния. Для этого построим логит-модель множественного выбора. Детали построения такой модели изложены в [1].

Однако матрица коэффициентов парной корреляции (рис. 2) свидетельствует о сильной корреляционной связи между показателями.

	X1	X2	Х3	X4
X1	1			
X2	0,9302	I		
X3	0,8598	0,8406	1	
X4	0,8817	0,8539	0,9906	Ι

Рисунок 2 – Матрица парных коэффициентов корреляции

Сильная корреляционная связь между показателями в силу мультиколлинеарности не позволяет построить модель множественного выбора в зависимости от показателей, характеризующих их производственную деятельность. Поэтому было предложено все четыре показателя, по которым осуществлялась классификация заменить единым интегральным показателем в виде первой главной компоненты:

$$u_1 = 0.0019x_1 + 0.0008x_2 + 0.7912x_3 + 0.6116x_4$$

Введение главной компоненты позволило сохранить все факторы, несмотря на их высокую взаимную коррелируемость [2].

Данные для построения логит-модели представлены в табл. 4. Заметим, что кодировка зависимой переменной соответствует нумерацией классов (0 – первый класс; 1 – второй класс; 2 – третий класс).

Таблица 4 — Исходные данные для построения логит-модели множественного выбора

	Районы	Зависимая	Нецентрированные значения
		переменная	главной компоненты
	Алексинский	()	19100,271
2	Арсеньевский	1	28524,905
3	Белевский	0	11158,571
4	Богородицкий	1	47621,872
5	Веневский	0	24173,832
6	Воловский	2	59853,783

7	Дубенский	0	5308,4072
8	Ефремовский	1	93292,644
9	Заокский	0	11355,968
10	Каменский	2	53093,558
П	Кимовский	1	51887,421
12	Киреевский	0	29828,703
13	Ленинский	Û	15326,055
14	Одоевский	1	35195,555
15	Плавский	1	57942,889
16	Суворовский	Û	9195,5105
17	Тепло-Огаревский	2.	45681,347
18	Узловский	Û	24494,859
19	Чернский	1	63620,805
20	Щекинский	Û	64125,636
21	Ясногорский	Û	17641,236

Оценки коэффициентов логит-модели множественного выбора в табл. 5.

Таблица 5 – Оценки коэффициентов и характеристики их качества в системе **STATISTICA**

Номер	Оценки	Стандартные	Критерий	Вероятност
класса	коэффициентов	ошибки	Вальда	Ь
0	5,1325	0,0677	5739,2714	0,0000
O	-0,0001	0,0000	4811,2889	0,0000
I	0,6772	0,0653	107,4945	0,0000
Ĺ	0,0000	0,0000	7,5677	0,0059

п

Расчет вероятностей принадлежности объектам своим классам приведен в табл. 6.

Таблица 6 — Расчет вероятностей принадлежности классам

<u>No</u>	Районы	Линейная форма 1	Линейная форма 2	Значения экспоненты 1	Значения экспоненты 2	Вероятность принадлежност и 1-му классу	Вероятность принадлежност и 2-му классу	Вероятность принадлежност и 3-му классу
1	Алексинский	3,0518	0,7380	21,1531	2,0918	0,8725	0,0863	0,0412

2	Арсеньевский	2,0251	0,7680	7,5769	2,1554	0,7060	0,2008	0,0932
3	Белевский	3,9169	0,7127	50,2456	2,0395	0,9430	0,0383	0,0188
4	Богородицкий	-0,0552	0,8288	0,9463	2,2905	0,2233	0,5406	0,2360
5	Веневский	2,4991	0,7541	12,1715	2,1258	0,7957	0,1390	0,0654
6	Воловский	-1,3877	0,8677	0,2496	2,3814	0,0688	0,6558	0,2754
7	Дубенский	4,5542	0,6941	95,0321	2,0019	0,9694	0,0204	0,0102
8	Ефремовский	-5,0304	0,9741	0,0065	2,6488	0,0018	0,7246	0,2736
9	Заокский	3,8954	0,7134	49,1767	2,0408	0,9418	0,0391	0,0192
10	Каменский	-0,6513	0,8462	0,5214	2,3307	0,1353	0,6051	0,2596
11	Кимовский	-0,5199	0,8423	0,5946	2,3218	0,1518	0,5928	0,2553
12	Киреевский	1,8831	0,7721	6,5737	2,1644	0,6750	0,2223	0,1027
13	Ленинский	3,4629	0,7260	31,9105	2,0668	0,9123	0,0591	0,0286
14	Одоевский	1,2984	0,7892	3,6636	2,2017	0,5336	0,3207	0,1457
15	Плавский	-1,1796	0,8616	0,3074	2,3670	0,0837	0,6442	0,2722
16	Суворовский	4,1308	0,7065	62,2258	2,0268	0,9536	0,0311	0,0153
17	Тепло-							
	Огаревский	0,1562	0,8226	1,1690	2,2764	0,2630	0,5121	0,2250
18	Узловский	2,4641	0,7552	11,7532	2,1280	0,7898	0,1430	0,0672
19	Чернский	-1,7981	0,8797	0,1656	2,4101	0,0463	0,6740	0,2797
20	Щекинский	-1,8531	0,8813	0,1568	2,4140	0,0439	0,6760	0,2801
21	Ясногорский	3,2107	0,7334	24,7971	2,0821	0,8894	0,0747	0,0359

п

В табл. 6 полужирным курсивом выделены районы Тульской области, которые сработали выше своих возможностей, а полужирным шрифтом — ниже своих возможностей. Такой район один — Щекинский. На этом основании можно сделать вывод, что, в целом, сельскохозяйственные предприятия всех районов Тульской области работали вполне удовлетворительно.

Расчеты предельной эффективность комплексного показателя (главной компоненты) представлены в табл. 7.

Ц

Таблица 7 — Предельная эффективность комплексного показателя

<u>No</u>	Районы	Математич	Предельный эффект изменения		
		еское	вероятности принадлежности:		
		ожидание			
		коэффицие Коэффицие	1-му классу	2-му классу	3-му классу
		НТОВ			
Í	Алексинский	-0,000095	-0,000012	0,000008	0,000004
2	Арсеньевский	-0,000076	-0,000023	0,000016	0,000007
3	Белевский	-0,000103	-0,000006	0,000004	0,000002
4	Богородицкий	-0,000023	-0,000019	0,000014	0,000005
5	Веневский	-0,000086	-0,000018	0,000012	0,000006
6	Воловский	-0,000005	-0,000007	0,000006	0,000001
7	Дубенский	-0,000106	-0,000003	0,000002	0,000001
8	Ефремовский	0,000002	0,000000	0,000001	-0,000001
9	Заокский	-0,000102	-0,000006	0,000004	0,000002

10 Ka	менский	-0,000013	-0,000013	0,000010	0,000003
11 Ки	мовский	-0,000015	-0,000014	0,000011	0,000004
12 Ки	реевский	-0,000073	-0,000024	0,000017	0,000007
13 Ле	нинский	-0,000099	-0,000009	0,000006	0,000003
14 Ол	оевский	-0,000057	-0,000028	0,000019	0,000008
15 Пл	авский	-0,000007	-0,000009	0,000007	0,000002
16 Cy	воровский	-0,000104	-0,000005	0,000003	0,000002
17 Te	пло-Огаревский	-0,000027	-0,000022	0,000015	0,000006
18 Уз	ловский	-0,000086	-0,000018	0,000013	0,000006
<u>19</u> Че	рнский	-0,000003	-0,000005	0,000004	0,000001
20 Щ	екинский	-0,000003	-0,000005	0,000004	0,000001
21 Яс	ногорский	-0,000097	-0,000011	0,000007	0,000003

Предельные эффекты комплексного показателя трудно интерпретировать, поэтому с учетом того, что главная компонента есть линейная комбинация факторов, были рассчитаны предельные эффекты для каждого класса по всем факторам (табл. 8 – табл. 10).

Таблица 8 — Предельный анализ факторов, влияющих на вероятносты принадлежности 1-му классу

Ѻ	Районы	X1	X2	X3	X4
	Алексинский	-0,00000002	-0,00000001	-0,00000978	-0,00000756
2	Арсеньевский	-0,00000004	-0,00000002	-0,00001825	-0,00001411
3	Белевский	-0,00000001	0,00000000	-0,00000473	-0,00000365
4	Богородицкий	-0,00000004	-0,00000002	-0,00001525	-0,00001179
5	Веневский	-0,00000003	-0,00000001	-0,00001429	-0,00001105
6	Воловский	-0,00000001	-0,00000001	-0,00000563	-0,00000435
7	Дубенский	-0,00000001	0,0000000	-0,00000261	-0,00000202
8	Ефремовский	0,00000000	0,00000000	-0,00000016	-0,00000012
9	Заокский	-0,00000001	0,00000000	-0,00000482	-0,00000373
10	Каменский	-0,00000002	-0,00000001	-0,00001029	-0,00000796
[11]	Кимовский	-0,00000003	-0,00000001	-0,00001133	-0,00000875
12	Киреевский	-0,00000005	-0,00000002	-0,00001928	-0,00001491
13	Ленинский	-0,00000002	-0,00000001	-0,00000703	-0,00000543
14	Одоевский	-0,00000005	-0,00000002	-0,00002188	-0,00001691
15	Плавский	-0,00000002	-0,00000001	-0,00000674	-0,00000521
16	Суворовский	-0,00000001	0,00000000	-0,00000389	-0,00000300
17	Тепло-Огаревский	-0,00000004	-0,00000002	-0,00001704	-0,00001318
18	Узловский	-0,00000004	-0,00000001	-0,00001459	-0,00001128
19	Чернский	-0,00000001	0,00000000	-0,00000389	-0,00000300
20	Щекинский	-0,00000001	0,00000000	-0,00000369	-0,00000285
21	Ясногорский	-0,00000002	-0,00000001	-0,00000864	-0,00000668

 Таблица 9 – Предельный анализ факторов, влияющих на вероятность принадлежности 2-му классу

Ѻ	Районы	X1	X2	Х3	X4
1	Алексинский	0,00000002	0,00000001	0,00000669	0,00000517
2	Арсеньевский	0,00000003	0,00000001	0,00001262	0,00000976
3	Белевский	0,0000001	0,00000000	0,00000320	0,00000248
4	Богородицкий	0,00000003	0,00000001	0,00001103	0,00000853
5	Веневский	0,00000002	0,00000001	0,00000983	0,00000760
6	Воловский	0,0000001	0,00000000	0,00000445	0,00000344
7	Дубенский	0,0000000	0,00000000	0,00000176	0,00000136
8	Ефремовский	0,0000000	0,00000000	0,00000061	0,00000047
9	Заокский	0,00000001	0,00000000	0,00000327	0,00000253
10	Каменский	0,00000002	0,00000001	0,00000766	0,00000592
П	Кимовский	0,00000002	0,00000001	0,00000837	0,00000647
12	Киреевский	0,00000003	0,00000001	0,00001337	0,00001033
13	Ленинский	0,0000001	0,00000000	0,00000479	0,00000370
14	Одоевский	0,00000004	0,000000002	0,00001530	0,00001183
15	Плавский	0,0000001	0,00000001	0,00000522	0,00000404
16	Суворовский	0,00000001	0,00000000	0,00000263	0,00000203
17	Тепло-Огаревский	0,00000003	0,00000001	0,00001224	0,00000946
18	Узловский	0,00000002	0,00000001	0,00001004	0,00000776
19	Чернский	0,00000001	0,00000000	0,00000324	0,00000251
20	Щекинский	0,00000001	0,00000000	0,00000311	0,00000240
21	Ясногорский	0,00000001	0,00000001	0,00000590	0,00000456

Паблица 10 — Предельный анализ факторов, влияющих на вероятносты принадлежности 3-му классу ■

<u>No</u>	Районы	X1	X2.	Х3	X4
	Алексинский	0,00000001	0,00000000	0,00000309	0,00000239
2	Арсеньевский	0,00000001	0,00000001	0,00000562	0,00000435
3	Белевский	0,0000000	0,00000000	0,00000152	0,00000118
4	Богородицкий	0,00000001	0,00000000	0,00000422	0,00000326
5	Веневский	0,00000001	0,00000000	0,00000446	0,00000345
6	Воловский	0,00000000	0,00000000	0,00000118	0,00000091
7	Дубенский	0,0000000	0,00000000	0,00000085	0,00000066
8	Ефремовский	0,0000000	0,00000000	-0,00000046	-0,00000035
9	Заокский	0,0000000	0,00000000	0,00000155	0,00000120
10	Каменский	0,0000001	0,00000000	0,00000263	0,00000204
П	Кимовский	0,0000001	0,00000000	0,00000296	0,00000229
12	Киреевский	0,00000001	0,00000001	0,00000592	0,00000457
13	Ленинский	0,00000001	0,00000000	0,00000224	0,00000173
14	Одоевский	0,00000002	0,00000001	0,00000658	0,00000509
15	Плавский	0,00000000	0,00000000	0,00000152	0,00000118
16	Суворовский	0,00000000	0,00000000	0,00000126	0,00000097
17	Тепло-Огаревский	0,00000001	0,00000000	0,00000481	0,00000372
18	Ўзловский	0,00000001	0,00000000	0,00000455	0,00000352
19	Чернский	0,00000000	0,00000000	0,00000064	0,00000050
20	Щекинский	0,00000000	0,00000000	0,00000058	0,00000045

21 Ясногорский	0.00000001	0.00000000	0.00000274	0.00000212
1	-,	.,	-,	-,

Таким образом, предельный анализ показал, что для всех классов самым значимым фактором является размер посевной площади. Причем увеличение этого фактора у районов первого класса уменьшает вероятность пребывания в самом малоэффективном классе.

Для второго и третьего классов при увеличении этого фактора вероятность пребывания в эффективных классах увеличивается.

Митересно, что факторы, описывающие технический потенциал районов, оказались мало значимыми. Без достаточных посевных площадей технический потенциал не загружен, поэтому наращивать его не имеет смысла.

Список литературы:

- 1. Давнис В.В., Тинякова В.И. Прогнозные модели экспертных предпочтений. Воронеж: Изд-во Воронеж. гос. ун-та, 2005. 248 с.
- 2. Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. М.: Финансы и статистика, 2003. 352 с.
- 3. Зироян М.А., Тинякова В.И., Харчева И.В. Трендовый дискриминантный анализ производительности труда в аграрном секторе Московской области // Инновации и инвестиции 2015 №7.
- 4. Зироян М.А., Тинякова В.И., Харчева И.В. Эконометрический подход к анализу стабильности взаимосвязи «заработная плата производительность труда» в сфере АПК // Экономика и управление в ХХІвеке: тенденции развития: сборник материалов ХХІІ Междунар. науч.-практ. конф. Новосибирск: ЦРНС, 2015.