

Some Applications of Trigonometry Ex 12.1 Q28

Let OC be the tower of height H m and 7 m high building makes an angle of elevation of top of cable wire is 60° and an angle of depression from the its foot is 45° .

Let BC = x, AD = x and CD = 7, AB = 7 and $\angle OAD = 60^{\circ}$, $\angle ACB = 45^{\circ}$ So we use trigonometric ratios.

$$\Rightarrow \tan C = \frac{AB}{BC}$$

$$\Rightarrow \tan 45^\circ = \frac{7}{x}$$

$$\Rightarrow$$
 1 = $\frac{1}{\lambda}$

$$\Rightarrow$$
 $x = 7$

Again in a triangle OAD,

$$\Rightarrow \tan A = \frac{OD}{AD}$$

$$\Rightarrow$$
 $\tan 60^\circ = \frac{h}{x}$

$$\Rightarrow$$
 $\sqrt{3} = \frac{h}{7}$

$$\Rightarrow h = 7\sqrt{3}$$

$$\Rightarrow$$
 $H = h + 7$

$$\Rightarrow H = 7\sqrt{3} + 7$$

$$\Rightarrow$$
 $H = 7(\sqrt{3} + 1)$

Hence the height of tower is $\left| 7(\sqrt{3}+1) \right|$ m.

Some Applications of Trigonometry Ex 12.1 Q29 Answer:

Let OC be the height of light house 75 m. and A and B the position of two ships and angle of depression are $A = 30^{\circ}$ and $B = 45^{\circ}$. Let OC = 75 and BC = h, AB = xHere we have to find distance between two ships.

The corresponding figure is as follows

So we trigonometric ratios,

In AOBC

$$\Rightarrow \tan 45^\circ = \frac{OC}{BC}$$

$$\Rightarrow \qquad 1 = \frac{75}{h}$$

$$\Rightarrow \qquad h = 75$$

Again in $\triangle OAC$

$$\Rightarrow \tan 30^\circ = \frac{OC}{AB + BC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{75}{x + h}$$

$$\Rightarrow x + h = 75\sqrt{3}$$

$$\Rightarrow x + 75 = 75\sqrt{3}$$

$$\Rightarrow y = 75\left(\sqrt{3} - 1\right)$$

Hence distance between two ships is

Some Applications of Trigonometry Ex 12.1 Q30 Answer:

Let AD be the building of height h m. and an angle of elevation of top of building from the foot of tower is 30° and an angle of the top of tower from the foot of building is 60°.

Let AD = h, AB = x and BC = 50 and $\angle DBA = 30^{\circ}$. $\angle CAB = 60^{\circ}$

So we use trigonometric ratios.

In a triangle ABC

$$\Rightarrow \tan 60^\circ = \frac{50}{x}$$

$$\Rightarrow \sqrt{3} = \frac{50}{x}$$

$$\Rightarrow \qquad x = \frac{50}{\sqrt{3}}$$

Again in a triangle ABD,

$$\Rightarrow$$
 $\tan 30^\circ = \frac{AD}{AB}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x}$$

$$\Rightarrow h = \frac{x}{\sqrt{3}}$$

$$\Rightarrow h = \frac{50}{\sqrt{3} \times \sqrt{3}}$$

$$\Rightarrow h = \frac{50}{3}$$

Hence the height of building is $\left| \frac{50}{3} \right|$ m.

****** END *******