# 第四章 量化

## 主要内容

- 4.1 标量量化
  - ▶ 4.1.1 量化器的描述
  - > 4.1.2 均匀量化
  - ▶ 4.1.3 Lloyd-Max算法
  - > 4.1.4 熵约束量化\*
  - ▶ 4.1.5 Deadzone Midtread 量化器
  - > 4.1.6 嵌入式量化器
- 4.2 矢量量化
  - > 4.2.1 矢量量化的基本思想
  - > 4.2.2 LBG算法

## 4.1 标量量化

- 4.1.1 量化器的描述
- 4.1.2 均匀量化
- 4.1.3 Lloyd-Max算法
- 4.1.4 熵约束量化\*
- 4.1.5 Deadzone Midtread 量化器
- 4.1.6 嵌入式量化器

- 量化:用一个很小的集合表示一个大集合(可能是无限大)的值
  - > 如A/D转换
- 量化是有失真压缩的一个有效工具



> 对模拟信号,量化还包括A/D转换中的一次量化



■ 将实数线分成M个不相连的区间

$$I_i = [b_i, b_{i+1}), i = 0, 1, ..., M-1$$

$$b_0 < b_1 < ... < b_M$$

 $I_i$ : 量化区间 (bin)

i: 量化区间的索引

 $b_i$ : 决策边界

 $y_i$ : 重构(重建)水平

- 编码器将每个区间/bin的索引发给解码器
- 解码器用重构水平表示该区间内所有的值

■ 标量量化器的输入输出:





- ■量化: q = A(x), 将输入 x用索引 q 表示
- 反量化: $\hat{x} = B(q)$ , 将索引 q 映射为输入重构
  - ▶ 通常 B(x) 不是 A(x)的反函数,  $\hat{x} \neq x$
- 量化误差:  $e(x) = x \hat{x}$



例:量化后的波形图

- 失真的度量 量化误差  $e(x) = x \hat{x}$  量化的均方误差 (Mean Squared Error, MSE)
  - > 所有输入值的平均量化误差
  - > 需要知道输入的概率分布



- 量化区间的数目: *M*
- 决策边界:  $b_i$ , i = 0,1,...,M
- 重构水平:  $y_i, i = 0, 1, ..., M$
- 重构:  $\hat{x} = y_i$ , if  $b_{i-1} < x \le b_i$
- 失真:  $D = MSE = \int_{-\infty}^{\infty} (x \hat{x})^2 f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x y_i)^2 f(x) dx$

#### ■需要决定的参数

- ▶量化区间的数目
- >决策边界(判决门限)
- > 重构水平
- >量化区间索引的码字(量化码字)
- 量化器的设计是码率与失真之间的折中
  - 为了降低编码的比特数,需要减低量化区间 的数目→更大的误差
- ■性能受率失真理论控制
  - >给定允许失真, 求最小码率的量化器
  - > 给定码率,求最小失真的量化器

#### 码率—失真折中



## 4.1.2 均匀量化 (Midrise,中升型)

■ 均匀:每个量化区间的大小相同,除了最外面两个区间

**-X**max

- $b_i, y_i$  在空间上均匀分布,空间均为  $\Delta$
- > 对内部区间,  $y_i = 1/2(b_{i-1} + b_i)$

Uniform Midrise Quantizer

 $3.5\Delta$ Reconstruction  $2.5\Delta$   $1.5\Delta$   $0.5\Delta$   $-3\Delta$   $-2\Delta$   $-\Delta$   $0.5\Delta$   $\Delta$   $\Delta$   $\Delta$   $\Delta$  Input  $-1.5\Delta$   $-2.5\Delta$   $-2.5\Delta$   $-3.5\Delta$ 

共有<mark>偶数</mark>个重构水平 **0不是**一个重构水平 For finite Xmax and Xmin:



6 bins

颗粒噪声

Xmax

For infinite Xmax and Xmin:



最外部的两个重构水平离内部仍是一个步长大小

### 4.1.2 均匀量化(Midtread)

Uniform Midtread Quantizer



- Odd number of recon levels
- 0 is a recon level
- Desired in image/video coding

For finite Xmax and Xmin:



For infinite Xmax and Xmin:



#### 4.1.2 均匀量化(Midtread)



■ 量化映射: 输出索引

$$q = A(x) = sign(x) \lfloor |x|/\Delta + 0.5 \rfloor$$

- 例:  $x = 1.8 \Delta, q = 2$
- 反量化映射:

$$\hat{x} = B(q) = q\Delta$$

$$ightharpoonup$$
 例:  $q=2,\hat{x}=2\Delta$ 



## 4.1.2 均匀量化(Midrise,失真分析)

- 假设输入信源为<u>均匀分布</u>:  $[-X_{max}, X_{max}]$ :  $f(x) = 1/2X_{max}$
- 量化区间的数目为*M*(对Midrise量化,*M*为偶数)
- 歩长:  $\Delta = 2X_{\text{max}}/M$



■ 量化误差:  $e = x - \hat{x}$  在区间  $\left[-\Delta/2, \Delta/2\right]$  上均匀分布



## 4.1.2 均匀量化(Midrise,失真分析)

$$D = MSE = \int_{-\infty}^{\infty} (x - \hat{x})^2 f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x - y_i)^2 f(x) dx$$

证明: pdf为 
$$f(x) = \frac{1}{M\Delta}$$
  
 $D = M \frac{1}{M\Delta} \int_0^{\Delta} (x - \Delta/2)^2 dx = \frac{1}{\Delta} \frac{1}{12} \Delta^3 = \frac{1}{12} \Delta^2$   
 $D = MSE = \frac{1}{12} \Delta^2$ 

■ 选择量化区间的数目*M*,使得失真小于允许的水平*D* 

$$\frac{1}{12}\Delta^2 \le D \implies \frac{1}{12} \left(\frac{2X_{\text{max}}}{M}\right)^2 \le D \implies M \ge X_{\text{max}} \sqrt{\frac{1}{3D}}$$

## 4.1.2 均匀量化(Midrise,失真分析)

均匀分布在区间  $[-X_{\text{max}}, X_{\text{max}}]$  的随机变量的方差:

$$\sigma_X^2 = \int_{-X_{\text{max}}}^{X_{\text{max}}} (x - 0)^2 \frac{1}{2X_{\text{max}}} dx = \frac{1}{3} X_{\text{max}}^2$$

■ 令 $M = 2^n$ ,即每个量化区间的索引用n个比特表示,则信噪比为

$$SNR = 10\log_{10} \frac{\sigma_X^2}{D(R)} = 10\log_{10} \frac{\sigma_X^2}{\Delta^2/12} = 10\log_{10} \frac{X_{\text{max}}^2/3}{4X_{\text{max}}^2/12M^2}$$
$$= 10\log_{10} M^2 = 10\log_{10} 2^{2n} = (20\log_{10} 2)n = 6.02n \ dB$$

■ 若*n*—>*n*+1,则步长减为一半,噪声方差减为1/4,SNR增加6 dB。

- 均匀量化器只对均匀分布信源是最佳的
- 对给定的M,为了减小MSE,我们应该在概率f(x) 较大时缩小量化区间,而在f(x) 较小时增大量化区间

$$D = \int_{-\infty}^{\infty} (x - \hat{x})^2 f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x - y_i)^2 f(x) dx$$



亦称为pdf-最佳量化器

$$D = \int_{-\infty}^{\infty} (x - \hat{x})^2 f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x - y_i)^2 f(x) dx$$

■ 给定M,求最佳 $b_i$ , $y_i$  使得MSE最小,满足

$$\frac{\partial D}{\partial y_i} = 0, \quad \frac{\partial D}{\partial b_i} = 0$$

$$\frac{\partial D}{\partial y_i} = 0 \implies y_i = E(X \mid X \in I_i) = \frac{\int_{b_{i-1}}^b x f(x) dx}{\int_{b_{i-1}}^b f(x) dx}$$



$$\frac{\partial D}{\partial b_i} = 0 \implies b_i = \frac{y_i + y_{i+1}}{2}$$

- 即  $b_i$  为  $y_i$  和  $y_{i+1}$  的中点  $\rightarrow$  最近邻量化器
- Lloyd-Max条件总结:

$$y_i = \frac{\int_{b_{i-1}}^{b_i} xf(x)dx}{\int_{b_{i-1}}^{b_i} f(x)dx}, b_i = \frac{y_i + y_{i+1}}{2}$$
 出电平的中点 第二个结果表明,量化电平 (重建电平) 应取在量化间隔的质心上

- □ 第一个结果表明,门限(判 决)电平应取在相邻量化输 出电平的中点

- 与均匀量化器的关系:
  - $\triangleright$  当量化器的输入为均匀分布时,f(x)=c ,Lloyd-Max量化器变为均匀量化器

$$y_{i} = \frac{\int_{b_{i-1}}^{b_{i}} xf(x)dx}{\int_{b_{i-1}}^{b_{i}} f(x)dx} = \frac{c\int_{b_{i-1}}^{b_{i}} xdx}{c(b_{i} - b_{i-1})} = \frac{\frac{1}{2}(b_{i}^{2} - b_{i-1}^{2})}{(b_{i} - b_{i-1})} = \frac{1}{2}(b_{i} + b_{i-1})$$

■ 最佳量化器的条件:

$$y_{i} = \frac{\int_{b_{i-1}}^{b_{i}} xf(x)dx}{\int_{b_{i-1}}^{b_{i}} f(x)dx}, b_{i} = \frac{y_{i} + y_{i+1}}{2}$$

- 给定 $b_i$ ,可以计算对应的最佳 $y_i$
- 给定  $y_i$  可以计算对应的最佳  $b_i$
- 问题:如何同时计算最佳的 $b_i$ 和  $y_i$ ?
- 答案: 迭代方法

#### 迭代Lloyd-Max算法(已知f(x))

- **1.** 初始化所有的  $y_i$ , j=1,  $D_0=\infty$
- **2.** 更新所有的决策边界:  $b_i = \frac{y_i + y_{i+1}}{2}$

3. 更新所有的 
$$y_i$$
:
$$y_i = \frac{\int_{b_{i-1}}^{b_i} xf(x)dx}{\int_{b_{i-1}}^{b_i} f(x)dx}$$

- 4. 计算*MSE*:  $D_{j} = \sum_{k=1}^{M} \int_{b_{i-1}}^{b_{i}} (x y_{k})^{2} f(x) dx$
- 5. 如果  $(D_{j-1}-D_j)/D_{j-1}<\varepsilon$  停止;否则 j=j+1
- ,转第2步

#### 例: Lloyd-Max算法的应用(I)

- X为0均值,1方差的高斯分布,即 $X \sim N(0,1)$
- 设计一个4个索引的量化器,使得期望失真 $D^*$ 最小
- 用Lloyd-Max算法得到最佳量化器
  - > 决策边界: -0.98, 0, 0.98
  - ▶ 重构水平: -1.51, -0.45, 0.45, 1.51
  - D = 0.111775SNR = 9.30dB



## 例: Lloyd-Max算法的应用(I)

#### ■收敛

初始化A: 决策边界为: -3,0,3



初始化A: 决策边界为: -1/2, 0, 1/2



■ 在两种情况下,经过6次迭代后, $(D-D^*)/D^* < 1\%$ 

## 例: Lloyd-Max算法的应用(II)

- X为0均值,1方差的Laplacian分布
- 设计一个4个索引的量化器,使得期望失真 $D^*$ 最小
- 用Lioyd-Max算法得到最佳量化器
  - ▶ 决策边界: -1.13, 0, 1.13
  - ▶ 重构水平: -1.83, -0.42, 0.42, 1.83
    - D = 0.18

SNR = 7.54dB

一个好的预测器输出的预测误差通常满足0周围高峰值的分布,如Laplacian分布



## 例: Lloyd-Max算法的应用(II)

#### ■收敛

初始化A: 决策边界为: -3,0,3

The state of the s



初始化A: 决策边界为: -1/2, 0, 1/2



<sup>5</sup>Iteration Number 10

15

lack 在两种情况下,经过eta次迭代后, $\left(D-D^*\right)\!\!/D^*$ <1%

## 高码率近似

■ 假设码率很高(R很大), Lloyd-Max量化器的MSE为  $D(R) \cong \varepsilon^2 \sigma_X^2 2^{-2R}$ 

其中 
$$\varepsilon^2 \sigma_X^2 = \frac{1}{12} \left[ \int \sqrt[3]{f(x)} dx \right]^3$$

- $\varepsilon^2$ 依赖于分布,对均匀分布、Laplacian分布和高斯分布,分别为  $\varepsilon^2=1,\ 9/2,\ \sqrt{3\pi}/2=2.721$
- 信噪比**SNR:** $10\log_{10}\frac{\sigma_X^2}{D(R)} = 6.02R 10\log_{10}\varepsilon^2 dB$ 
  - 》对均匀分布、Laplacian分布和高斯分布, $10\log_{10} \varepsilon^2$  分别为:  $10\log_{10} \varepsilon^2 = 0, 6.53, 4.35 dB$

#### 4.1.4 熵约束标量量化器 (Entropy-constrained scalar quantizer, ECSQ) \*

- Lloyd-Max量化器:
  - ▶ 对索引用固定码率编码: log<sub>2</sub> M (R)比特
- ■熵约束标量量化器
  - > 对量化索引用变长码编码:
    - ■对量化索引用熵编码技术编码
    - 平均码率~重构水平的熵  $\leq \log_2 M$

$$H(\hat{X}) = -\sum_{k=1}^{M} p_k \log p_k \le R$$

■ 比Llyod-Max量化器的性能更好

P. A. Chou, T. Lookabaugh, R. M. Gray, "Entropy-constrained vector quantization," IEEE Trans. Signal Processing, vol. 37, no. 1, pp. 31-42, Jan 1989

#### 4.1.4 熵约束标量量化器

#### (Entropy-constrained scalar quantizer, ECSQ) \*

■ 问题的形式化描述:

最小化 
$$D = E\left(\left(X - \hat{X}\right)^2\right) = \sum_{k=1}^{M} \int_{b_{k-1}}^{b_k} (x - y_k)^2 f(x) dx$$
  
满足  $H(\hat{X}) = -\sum_{k=1}^{M} p_k \log p_k \le R$   
其中  $p_k = \int_{b_{k-1}}^{b_k} f(x) dx$ 

■ 用Lagrange费用函数:

$$J(\lambda) = E((X - \hat{X})^{2}) + \lambda H(\hat{X})$$

- > 太复杂,不能直接求解
- > 用迭代法求解

### 例: ECSQ算法的应用(I)

- X为0均值,1方差的高斯分布,即  $X \sim N(0,1)$
- 设计一个  $R \cong 2$  的**ECSQ**,使得期望失真  $D^*$ 最小
  - ▶ 11个区间([-6, 6]内): 几乎是均匀
  - $D^* = 0.09 = 10.53dB, R = 2.0035$ 
    - 定长编码:

$$D^* = 0.12 = 9.30 \ dB$$



### 例: ECSQ算法的应用(II)

- X为0均值,1方差的Laplacian分布
- 设计一个  $R \cong 2$  的ECSQ ,使得期望失真  $D^*$ 最小
  - ▶ 21个区间([-10, 10]内), 几乎是均匀的
  - $D^* = 0.07 = 11.38dB$



#### 高码率下各种标量量化器的性能比较

■ 高码率下的失真-码率函数:  $D(R) \cong \varepsilon^2 \sigma_X^2 2^{-2R}$ 

#### ■ 缩放因子 $\varepsilon^2$

|           | Shannon LowBd                 | Lloyd-Max                           | Entropy-coded                 |
|-----------|-------------------------------|-------------------------------------|-------------------------------|
| Uniform   | $\frac{6}{\pi e} \cong 0.703$ | 1                                   | 1                             |
| Laplacian | $\frac{e}{\pi} \cong 0.865$   | $\frac{9}{2} = 4.5$                 | $\frac{e^2}{6} \cong 1.232$   |
| Gaussian  | 1                             | $\frac{\sqrt{3}\pi}{2} \cong 2.721$ | $\frac{\pi e}{6} \cong 1.423$ |

相同码率R下,ECSQ的失真比Lloyd-Max量化器更小

#### 4.1.5 Deadzone Midtread Quantizer

- **0**附近的量化区间大小为其余量 化区间的两倍,其他量化区间 仍是均匀的
- 产生更多的0
- 对图像/视频很有用



□量化映射:

$$q = A(x) = sign(x) \lfloor |x|/\Delta \rfloor$$

□ 反量化映射:

#### 4.1.6 嵌入式量化器

- 动机:可伸缩(scalable)解码
  - > 随着比特流的解码, 渐近地精化重构数据
  - > 对低带宽连接有用
  - ▶是JPEG2000的一个关键特征
- 嵌套量化: 低码率器的区间被再分割,以产生更高码率的量化器
- ■可以通过截断量化索引获得较粗燥的量化

### 例1:均匀量化器



#### 例2: Deadzone quantizer

- 假设deadzone量化器的量化区间的索引用4个比特表示
- 如果收到了所有4个比特→步长为△



■ 如果只收到了前3个比特→步长为2∆



■ 如果只收到了前2个比特→步长为4∆



### 标量量化总结

- 对于已知概率模型及其数字特征的随机过程,比较容易根据概率分布安排量化器的决策边界,以得到最小量化失真的优化量化器。
- 如果概率分布是均匀的,则采用均匀量化比较理想
- 对于分布概率模型未知的随机过程,其优化量化器的设计较为困难,可以采用Lloyd-Max算法来解决,但实现时还有一定困难,不宜硬件实现,执行时间也因初始值选取的不同而不同
- 考虑视觉特性的量化器设计:如何根据主观评定规则,设 法令压缩编码中产生的各类量化误差在主观上难以察觉

# 4.2 矢量量化 (Vector Quantization, VQ)

- 压缩符号串比压缩单独符号在原理上可产 生更好的效果
  - > 如图像和声音的相邻数据项都是相关的

- ■矢量量化的思路:
  - ▶量化时不是处理单个符号,而是一次处理一 组符号(矢量)

## 4.2.1 矢量量化的基本思想

■以图像编码为例

搜索距离最近的码字



#### 4.2.1 矢量量化的基本思想

- 假设块大小为  $a \times b$  , 码书中共有M个码字(码字也是长度为  $a \times b$  的矢量)
- 则码率  $R = \frac{\log M}{a \times b} bpp$
- |a| = b = 4, M = 1024
  - ightharpoonup 则码率为  $R = 10/16 = 0.63 \ bpp$
  - ▶ 压缩比为: 8:0.63 = 128:1
- 可以通过对索引用熵编码技术得到更高的压缩比

# 4.2.1 矢量量化的基本思想



## 4.2.2 LBG算法

■ 将Lloyd 算法推广到矢量量化,所以亦称为推广的Lloyd 算法(Generalized Lloyd Algorithm, GLA) [Linde, Buzo, Gray, 1980]

- 给定训练集:
  - 》 收集的训练集 需有代表性



### 4.2.2 LBG算法

给定训练集:  $T = \{x_1, x_2, ..., x_N\}$ 

- 1. 初始化所有的  $y_i$ , i = 1,...,M
- 2. 对训练集中所有的训练样本 $x_n$ , n = 1, 2, ..., N ,找到 距离最近的码字:

$$Q(\mathbf{x}_n) = \mathbf{y}_i$$
, iff  $d(\mathbf{x} - \mathbf{y}_i) \le d(\mathbf{x} - \mathbf{y}_k)$ , for all  $k \ne i$ 

- 3. 计算平均失真
- 4. 如果平均失真足够小,停止; 否则转第5步
- 5. 用每个量化区域内所有矢量的平均值替代 Y<sub>i</sub> , 转第2步

同聚类中的K-means聚类

# LBG用于图像压缩

- 每块大小为L=4\*4,用K=16,64,256,1024个码字的码书对图 像进行矢量量化
- 码率*R*=?
- Sinan图像训练得到码书



原始图像









### 4.2.2 LBG算法

- ■优化过程中可能限于局部最小值
  - > 依赖于初始码书的选取
- ■初始码书的选取
  - > 随机选择: 重复多次, 取失真最小的结果
  - 》分裂:从一个类开始,每次将失真最大/数量最 多的类分裂成两个
  - ▶ 合并: 从*N*个类开始,每次将两个失真最小的类合并

#### ■码字中缺少结构

- >编码复杂性高:需要全搜索
- > 存储要求高,码书指数增长

### 矢量量化的改进

- ■产生码书—矢量编码—矢量解码
  - ➤ 在矢量编码阶段,编码器将输入图像划分成图像块,并在码书中搜索同输入图像块最接近的码字,用该码字在码书中的索引号表示该图像块. 在解码端,解码器可以根据收到的索引号恢复图像.
- 如何快速准确的找到最佳匹配码字是矢量量 化中的一个重要问题
  - 》 穷尽搜索法计算输入矢量同所有码字的欧氏距离,找出其中最小的即为最佳匹配码字,这是一种能保证精度但最耗时的方法

# 矢量量化的改进

- ■树结构的矢量量化
  - > 降低搜索复杂性
  - ▶但需要更多存储



#### 矢量量化的改进

- ■结构化的矢量量化
  - ▶金字塔VQ
  - Lattice VQ
- Trellis VQ
- ■自适应矢量量化
  - > 矢量大小可变
  - > 码书项的数目可变

#### Reading

- J. Max, "Quantizing for Minimum Distortion," IEEE Trans. Information Theory, vol. 6, no. 1, pp. 7-12, March 1960.
- S. P. Lloyd, "Least Squares Quantization in PCM," IEEE Trans. Information Theory, vol. 28, no. 2, pp. 129-137, March 1982.
- P. A. Chou, T. Lookabaugh, R. M. Gray, "Entropy-constrained vector quantization," IEEE Trans. Signal Processing, vol. 37, no. 1, pp. 31-42, January 1989.