TABLE 7.2 Laplace Transforms

$f(t), t \geq 0$	F(s)	ROC
1. $\delta(t)$	1	All s
$2. \ u(t)$	$\frac{1}{s}$	Re(s) > 0
3. <i>t</i>	$\frac{1}{s^2}$	Re(s) > 0
4. <i>t</i> ⁿ	$\frac{n!}{s^{n+1}}$	Re(s) > 0
5. e^{-at}	$\frac{1}{s+a}$	Re(s) > -a
6. te^{-at}	$\frac{1}{(s+a)^2}$	Re(s) > -a
7. $t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	Re(s) > -a
8. sin <i>bt</i>	$\frac{b}{s^2+b^2}$	Re(s) > 0
9. cos <i>bt</i>	$\frac{s}{s^2+b^2}$	Re(s) > 0
$10. e^{-at} \sin bt$	$\frac{b}{(s+a)^2+b^2}$	Re(s) > -a
11. $e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$	Re(s) > -a
12. <i>t</i> sin <i>bt</i>	$\frac{2bs}{(s^2+b^2)^2}$	Re(s) > 0
13. <i>t</i> cos <i>bt</i>	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	Re(s) > 0

properties allow additional transform pairs to be derived easily. Also, these properties aid us in solving linear differential equations with constant coefficients.

7.4 LAPLACE TRANSFORM PROPERTIES

In Sections 7.1 through 7.3, two properties were derived for the Laplace transform. These properties are

$$\mathcal{L}[a_1f_1(t) + a_2f_2(t)] = a_1F_1(s) + a_2F_2(s)$$

and

$$[eq(7.20)] \qquad \mathcal{L}[e^{-at}f(t)] = F(s) \bigg|_{s \leftarrow s+a} = F(s+a).$$

Equation (7.10) is the *linearity* property. Equation (7.20) is sometimes called the *complex shifting* property, since multiplication by e^{-at} in the time domain results in