Outline

- Creating Input Data Microdata Metadata
- From primary to secondary suppression Specifying tables Avoiding Primary suppression Computing secondary suppression Audit
- Outputs
 Format SBS
 Excel Formatting
- 4. Three special cases
 Linked tables management
 Controlled rounding
 Tabulated data

Outline

Creating Input Data Microdata Metadata

 From primary to secondary suppression Specifying tables Avoiding Primary suppression Computing secondary suppression Audit

3. Outputs Format SBS Excel Formatting

4. Three special cases
Linked tables management
Controlled rounding
Tabulated data

Microdata – from a SAS table

	ape	TREFF	dep	poids_sondage	export
1	P8559	tr1	01	1	26
2	M7010	tr2	01	1	96781.3
3	L6820	tr1	01	1	484.8
4	L6820	tr1	01	1	0.
5	L6820	tr1	01	1	0.
6	C1712	tr3	01	1	17808.
7	C2030	tr3	01	1	1506
8	G4674	tr3	01	1	13808.
9	L6820	tr1	01	1	54.
10	L6820	tr1	01	1	0.
11	L6820	tr1	01	1	0.
12	H5210	tr1	01	1	2866.
13	H4939	tr3	01	1	122.
14	C1013	tr1	01	3.3	466.
15	C1011	tr3	01	1	2309.
16	L6820	tr1	01	1	0.
17	L6820	tr1	01	1	0.
18	Q8610	tr3	01	1	11075.
19	C2573	tr3	01	1	2377.
20	F4110	tr1	01	11.1	37.
21	C2599	tr4	01	1	65422.
22	1.0000	. 4	04	4	0

Input variable types:

- ventilation variables
- weigh
- response variables
- *holding* variable (not shown here)

Microdata – converting a SAS table to ascii file (.asc)

```
/** Étape 1 : conversion en caractère **/
data microDonnees;
            set demo.Donnees demo;
/* 2 variables numériques avec un chiffre après la virgule que l'on convertit en variable caractère */
                                put(poids Sondage, 6.1);
            poids
            exportt =
                                  put(export, 10.1);
run;
/** Étape 2 : création du fichier plat **/
filename asc "D:\dossier de travail\Donnees demo.asc";
data NULL;
            set microdonnees;
            file asc;
            put
                        treff
                                                             1 - 4
                        APE
                                                             6-11
                                                            13-14
                        dep
                                                            16-21
                        poids
                                                            23-32 ;
                        exportt
run;
```


Tau-Argus: Exploring the menu

Metadata - variables specification

Outline

- Creating Input Data
 Microdata
 Metadata
- From primary to secondary suppression Specifying tables Avoiding Primary suppression Computing secondary suppression Audit
- Outputs
 Format SBS
 Excel Formatting
- 4. Three special cases
 Linked tables management
 Controlled rounding
 Tabulated data

Specifying tables - selecting variables

Variable on which the primary secret will be calculated

Specifying tables - choosing the cost variable

Avoiding primary secrecy - dominance, frequency and P%

Dom Rule P%-rule Req. rule ✓ <u>Minimum frequency</u> Frequency rule or manually Dominance Rule of dominance secured box: rule Ind. 10 or P% - the width of the interval Interval P%-rule must be defined Hold. calculated - relative to the total of the Request Manual Zero unsafe automatically safety box nge: 10 So as not to be range: - symmetrical protection 10 % Hold-2 able to retrieve the interval sensitive - can be defined more individual data precisely by using an *a priori* Dom Rule P%-rule Reg. rule (first contributors file Dominance to the total of the rule box) Ind-1 P%-rule Possibility to hide the boxes equal to 0 ☐ Request Definition of a minimum protection Hold-1 interval Hold-2 Defined absolutely

Avoiding Primary Secrets - Weight and Holding

Calculate the secondary secret - selection of the work table

Calculate the secondary secret - view the table: *cell information*

Information on a given box:

- *status* : *safe/unsafe* (box in black/red)
- *contributions* : number of contributors
- *top n of shadow* : value of the first contributor of the box, to be compared with the value of the box
- protection interval: limits of the protection interval defined for the primary secret boxes

Calculate the secondary secret - view the table: change status

Changing the status of a box manually:

- -set to safe/unsafe: Force the broadcast / non-broadcast of a box
- -- set to protected: The box can not be chosen for secondary secrecy (infinite cost)
- *set cost* : Change in cost for secondary secrecy
- *a priori info*: from a flat file (.hst), you change the status of a list of boxes

Calculate the secondary secret - view the table: recode

Calculate the secondary secret - view the table: a priori

Calculate secondary secret - view table: change view

Changing the display of the table on the screen (this does not modify the actual structure of the table).

Calculate Secondary Secret - What Secondary Secret Method?

Hypercube

Sequential treatment of cells under primary secret (search for the least expensive suppression scheme). Free and fast method.

cost of hiding boxes Under the constraint of respecting the protection intervals. Method sometimes very

slow.

Modular

For hierarchical tables, the problem is split: the optimal method is applied on the different sub-tables. Faster to process than the optimal method.

▼ Do Singletons

Do Singleton Multiple

Do Min Frequency

<u>0</u>K

Cancel

Calculating the secondary secret – managing singletons problems in Tau-Argus

Singleton

- → Cell with one contributor, he can know that is the only contributor to the box.
- → Complementary secondary suppression if: two singletons in the same row or column un singleton et une cellule cachée en secret primaire two cells hidden due to a frequency problem whose sum of the number of contributors is still insufficient (this problem does not arise with the rule of three units)

Method	Singleton management	
Hypercube	Yes (automatically)	
Modular	Yes (optional)	
Network	Not offered	
Optimal	Yes (optional)	

Calculate the secondary secret - view the table: *summary*

The most interesting information:

- the primary secret of frequency : *Unsafe(freq)*
- the primary secret of dominance /P%: Unsafe
- manually protected boxes :
- Safe(manual)
- Secondary secrecy : Secondary
- The costs of these different categories of secrecy.

Calculate Secondary Secrecy - Different Methods for Different Results

Method	Number of boxes deleted in secondary secret	Cost of boxes deleted	Required calculation time
Hypercube (free method)	81 (9.47%)	260 182 513 (10.64%)	1 second
Modular (paying method)	64 (7.48%)	26 017 917 (1.06%)	1 minute and 4 seconds
Optimal (paying method)	140 (16.37%)	25 461 484 (1.04%)	10 minutes (not "optimal" solution)

Audit

Audit - Protection Intervals and Audit Intervals

T-ARGUS Audit-report

Table created date: 09-juin-2015, time 15:25:03

Original file:	D:\jk3kh1\formation - 16-17 février 2015\JD01-Données démonstration\Donnees_demo.asc
Meta file:	D:\jk3kh1\formation - 16-17 février 2015\JD01-Données démonstration\Donnees_demo.rda
Table file:	

Table generated from microdata

Table structure

Var	Function	# codes
Response var:	export	
Explanatory var 1:	Activité	585
Explanatory var 2:	dep	45
Shadow variable :	default (=response var)	
Cost variable	default (=response var)	
Weight variable:	Poids	

Overview of not-properly protected cells

Activité	dep	Cell value	Lower PI	Upper PI	Exact
C27	41	9 185 712.1	766 664.6	9 332 884.7	
C271	41	8 411 314.5	0.0	8 566 220.1	
C2710	41	8 411 314.5	0.0	8 566 220.1	
C27100	41	8 411 314.5	0.0	8 566 220.1	
C33	95	1 406 786.8	74 360.1	1 414 023.3	
C332	95	1 326 101.5	0.0	1 339 663.2	
C3320	95	1 326 101.5	0.0	1 339 663.2	
C33200	95	1 326 101.5	0.0	1 339 663.2	

8 cells were not safely protected

T-ARGUS version: 3.5.0; build: (27)

Audit - Protection Intervals and Audit Intervals

Protection interval Limits of the protection interval defined for the primary secret boxes

Audit interval Interval of the possibilities that a user is likely to find thanks to the additivity and positivity relationships of the cells.

Outline

- Creating Input Data
 Microdata
 Metadata
- From primary to secondary suppression Specifying tables Avoiding Primary suppression Computing secondary suppression Audit
- Outputs
 Format SBS
 Excel Formatting
- 4. Three special cases
 Linked tables management
 Controlled rounding
 Tabulated data

Exporting your data: different options

Format requested by Eurostat, which is systematically used in methodology department

Export to the format requested by Eurostat (.sbs): Formatting

Outline

- Creating Input Data
 Microdata
 Metadata
- From primary to secondary suppression Specifying tables Avoiding Primary suppression Computing secondary suppression Audit
- 3. Outputs
 Format SBS
 Excel Formatting
- 4. Three special cases
 Linked tables management
 Controlled rounding
 Tabulated data

Managing linked tables

Controlled rounding - another way to manage secrecy

Controlled rounding - another way to manage secrecy

A method sometimes brutal ...

Tabulated data - construction of a flat file of tabulated data (.tab)

```
/* Étape 1 : création de la tabulation */
/* Au préalable, on crée un variable de comptage "un" pour que la fréquence sous Tau-Arqus prenne en
compte le poids */
proc means data = demo.Donnees demo n sum max noprint ;
            var export ;
            class APE dep ;
            output out= ape dep n=un sum = export max = max export;
run;
data ape dep ;
            set ape dep ;
            if ape="" then ape = "Total";
            if dep="" then dep = "Total";
run:
/* Étape 2 : création du fichier plat */
data null;
File "Z:\19-20 mai 2016\02-TauArgus En Pratique-mai 2016\Données
démonstration\donnees demo tabulees.tab" dsd dlm=';';
Set ape dep (keep=ape dep un export max export);
Put ( all ) (+0);
run;
```

Tabulated data - metadata

Tabulated data - table specification

Tabulated data - linked tables

Confidentiality Management in Aggregate Data Tables

Insee

18 bd Adolphe-Pinard 75675 Paris Cedex 14

Informations statistiques: www.insee.fr / Contacter l'Insee 09 72 72 4000 (coût d'un appel local) du lundi au vendredi de 9h00 à 17h00

