Что есть свет?

- Видимая глазом часть спектра электромагнитного излучения (? /!)

Поток частиц-фотонов

Волны (электромагнитного) излучения

И.Ньютон 1643-1727

О.Френель 1788-1827

Свет – поток частиц-фотонов!

Что такое электромагнитное поле?

... «Электромагнитное поле есть вид материи и характеризуется тем, что действует на находящиеся в нем неподвижные и движущиеся заряды с некоторыми силами»

Описание света в виде ВОЛН электромагнитного излучения
- удобная МАТЕМАТИЧЕСКАЯ МОДЕЛЬ
описания оптических явлений

В квантовой электродинамике: электромагнитное поле — волновая функция частиц-фотонов

Шкала электро-магнитных волн

Шкала электро-магнитных волн

Д.Максвелл, 1864

Существование поперечных электромагнитных волн

Скорость распространения

$$c = 1/\sqrt{\varepsilon_0 \mu_0}$$

Свет – это электромагнитные волны

c = 299792458 m/c

 $\approx 3.10^8$ m/c

Уравнения Максвелла:

• •

. . .

. . .

. .

O.Хэвисайд 1850-1925

- «Уравнения Максвелла»
- применение комплексных чисел

Уравнения Максвелла

Е – напряженность электрического поля

В – магнитная индукция (напряженность магнитного поля!)

 ρ — плотность электрических зарядов

 $\mathbf{j} = \rho \mathbf{v}$ – распределение токов

$$\operatorname{div} \mathbf{E} = 4\pi\rho$$

$$\mathbf{div}\,\mathbf{B}=0$$

$$\operatorname{rot} \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{j} \qquad \operatorname{rot} \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\operatorname{rot} \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$$

следствие (сохранение зарядов):

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \mathbf{j} = 0$$

Поле в вакууме, $\rho = 0$, **j** = 0

$$\operatorname{div} \mathbf{E} = 0$$

$$\operatorname{div} \mathbf{B} = 0$$

$$\operatorname{rot} \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = 0$$

$$\operatorname{rot} \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = 0 \qquad \operatorname{rot} \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$$

Однонаправленная монохроматическая волна, $\mathbf{E} = \mathbf{E}_0 e^{-i\omega t + i\mathbf{k}\mathbf{r}}$

$$(\mathbf{E} \cdot \mathbf{k}) = 0$$

$$(\mathbf{B} \cdot \mathbf{k}) = 0$$

$$\mathbf{E} = -\mathbf{k} \times \mathbf{B}$$

$$\mathbf{B} = \mathbf{k} \times \mathbf{E}$$

Действительные числа

$$\mathcal{E}_{x} = A_{0} \cos(\omega t - kz + \varphi)$$
$$\mathcal{H}_{y} = A_{0} \cos(\omega t - kz + \varphi)$$

Комплексные числа

$$E_{x} = Ae^{-i\omega t + ikz}$$

$$A = A_{0}e^{-i\varphi}$$

$$H_{y} = Ae^{-i\omega t + ikz}$$

$$\mathcal{E}_{x} = \frac{1}{2} \left(E_{x} + E_{x}^{*} \right) = \frac{1}{2} \left(A e^{-i\omega t + ikz} + \kappa.c. \right)$$
$$\mathcal{H}_{x} = \frac{1}{2} \left(H_{x} + H_{x}^{*} \right) = \frac{1}{2} \left(A e^{-i\omega t + ikz} + \kappa.c. \right)$$

Интенсивность излучения

$$I=\overline{\mathcal{E}_x^2}+\overline{\mathcal{H}_x^2}=2A_0^2\overline{\cos^2(\omega t-kz+arphi)}=A_0^2$$
 $I=E_xE_x^*=|A|^2=A_0^2$ комплексные числа

+ удобство в описании отклика сред на поле излучения

Две основные характеристики среды в оптике:

показатель преломления n и поглощение lpha

$$E(t,z) = Ae^{-\alpha L/2}e^{iknL}e^{-i\omega t + ik(z-L)}$$

 $e^{-\alpha L/2}$ - поглощение части фотонов атомами среды

 e^{iknL} -? (размер атомов ~ 10^{-10} м, площадь ~ 10^{-20} м²)

Картина Г.Х.Лоренца формирования показателя преломления сред

Падающее поле

↓
Наведенный диполь атома

↓
Испускание атомом вторичной волны
(диполь Герца)

↓
Интерференция вторичных волн с падающей

Х.Лоренц 1853-1928

1892 - ... г.

до открытия электрона в 1897 (Томсон) и планетарной модели атома в 1911 (Резерфорд)

^{*} эфир

Интерференция вторичных волн с падающей

Фаза вторичной волны должна быть сдвинута на $\pi/2$!

Колебания наведенного диполя атома

Уравнение возмущенного движения электрона в атоме: (грузик на пружинке)

Стационарное решение,
$$x \propto e^{-i\omega t}$$
: $x = -\frac{e/m}{\omega_0^2 - \omega^2 - 2i\gamma\omega}Ae^{-i\omega t}$

Испускание атомом вторичной волны (диполь Герца)

Суммирование вторичных волн

Интерферируя, вторичные волны воспроизводят падающую волну!

Где сдвиг фазы $\pi/2$?

Интегрирование волн диполей в тонком плоском слое

волны диполей Герца, вертикальные компоненты

$$\begin{split} E_{\text{BTOp}} & \propto e^{-i\omega t} \int_{0}^{\rho^{*}} \int_{0}^{2\pi} \frac{e^{ik\sqrt{R^{2}+\rho^{2}}}}{\sqrt{R^{2}+\rho^{2}}} \sin^{2}\theta(\rho,\varphi) d\varphi \, \rho d\rho = \\ & \sin^{2}\theta(\rho,\varphi) = \frac{R^{2}+\rho^{2}\cos^{2}\varphi}{R^{2}+\rho^{2}} \qquad \int_{0}^{2\pi} \sin^{2}\theta(\rho,\varphi) d\varphi = 2\pi \frac{R^{2}+\rho^{2}/2}{R^{2}+\rho^{2}} \\ & = \pi e^{-i\omega t} \int_{R}^{\rho^{*}} \frac{e^{iks}}{s^{2}} (R^{2}+s^{2}) ds = \frac{\pi}{ik} e^{-i\omega t} \int_{R}^{\rho^{*}} \frac{R^{2}+s^{2}}{s^{2}} d(e^{iks}) = \\ & s = \sqrt{R^{2}+\rho^{2}} \\ & = \frac{\pi}{ik} e^{-i\omega t} \left\{ \left[\frac{R^{2}+s^{2}}{s^{2}} e^{iks} \right]_{R}^{\rho^{*}} - \int_{R}^{\rho^{*}} e^{iks} d\left(\frac{R^{2}+s^{2}}{s^{2}} \right) \right\} = \\ & = \frac{\pi}{ik} e^{-i\omega t} \left\{ \left(e^{ik\rho^{*}} \right)_{\rho^{*}\to\infty} - 2e^{ikR} + 2R^{2} \int_{R}^{\infty} e^{ikx} \frac{ds}{s^{3}} \right\} \to i \frac{2\pi}{k} e^{-i\omega t + ikR} \\ & \to 0 \qquad \sim \lambda/R \end{split}$$

выводы:

Показатель преломления вещества возникает как отклик атомарной/молекулярной среды в виде излучения диполей, наведенных падающим излучением. Суммарное излучение диполей (= вторичных волн) воспроизводит падающую волну со сдвигом по фазе на $\pi/2$ в прозрачных средах.

В поглощающей/усиливающей среде сдвиг фазы вторичной волны составляет π (поглощающая среда) и 0 (усиливающая среда). Тогда амплитуда падающей волны либо убывает, либо растет.

Материал:

М.Борн, Э.Вольф. Основы оптики. М., «Наука», 1970 (раздел 10.4.2, стр. 551)

Темы для самостоятельного повторения/изучения:

- Дельта-функция, интеграл от экспоненты, обобщенные функции;

- Преобразование Фурье, примеры взаимосвязи ширин;
- и др.

Основная характеристика электромагнитной волны:

- частота, или число колебаний электрического и магнитного полей в секунду, ν [Гц];
- длина волны, или расстояние, преодолеваемое светом за время одной осцилляции, $\lambda = c \, / \, \nu$ [м];
- волновое число $\tilde{v} = 1/\lambda$ [см⁻¹] (в спектроскопии);
- круговая частота $\omega = 2\pi \nu$ [1/сек] (в теории);
- волновой вектор ${\bf k}, |k| = 2\pi / \lambda$ (в теории).

Интеграл = сумма вкладов кольцевых зон Френеля; приближенно:

$$\sqrt{R^2 + \rho_m^2} = R + m \frac{\lambda}{2}$$

Круг $m=0\pm\frac{1}{2}$, дистанция $s\approx R$, вклад $\approx \pi R\lambda/2$

Кольцо $m=1\pm\frac{1}{2}$, дистанция $spprox R+\frac{\lambda}{2}$, вклад $pprox \pi R\lambda$

