CS 2209 Assignment 1 Ian Borwick – 250950449 October 5, 2019

1.

a. prove that $p \rightarrow (q \rightarrow r)$ and $(p \rightarrow q) \rightarrow r$ is not equivalent

	$p \rightarrow (q \rightarrow r)$	(p→q)→r	
Cond Identity	¬ p∨(q→r)	$\neg (p \rightarrow q) \lor r$	Cond Identity
•	' '' '	" "	•
Cond Identity	¬ p∨(¬q∨r)	¬(¬p∨q)∨r	Cond Identity
Associative	(¬p∨¬q)∨r	¬¬p∧¬q∨r	DeMorgans
DeMorgans	¬(p∧q)∨r	p∧¬q∨r	Double Negation

Р	Q	R	¬р	¬q	(p∨q)	¬(p∧q)	¬(p∧q)∨r	p∧¬q	p∧¬q∨r
Т	Т	Т	F	F	Т	F	T	F	T
Т	Т	F	F	F	Т	F	F	F	F
Т	F	T	F	T	Т	F	T	Т	T
Т	F	F	F	T	Т	F	F	t	T
F	Т	Т	T	F	T	F	T	F	T
F	Т	F	T	F	T	F	F	F	F
F	F	T	T	T	F	T	T	F	T
f	f	f	t	t	f	t	t	f	f

The two columns are not the exact same and as such the statements are not equivalents Not equivalent when p=q=r=F

2.

a. $(p \land q) \lor (\neg p \lor \neg q)$

P	Q	¬p	¬q	(P∧q)	(¬p∨¬q)	(p∧q)∨(¬p∨¬q)
T	T	F	F	T	F	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
f	f	t	t	f	t	Т

The truth table shows it is always true therefore it is a tautology

b. $(p \rightarrow \neg q) \rightarrow (p \rightarrow q)$

11 1/ 1	! !/				
Р	Q	¬q	p→¬q	p→q	$(p \rightarrow \neg q) \rightarrow (p \rightarrow q)$
T	T	F	F	Т	Т
T	F	T	Т	F	F
F	T	F	Т	Т	Т
f	f	t	t	t	Т

The truth table shows that is it neither a tautology or a contradiction as there is both true and false values

c. $(p\rightarrow q)\rightarrow (\neg q\rightarrow \neg p)$

Р	Q	¬р	¬q	p→q	$\neg q \rightarrow \neg p$	$(p\rightarrow q)\rightarrow (\neg q\rightarrow \neg p)$
Т	T	F	F	T	T	T
Т	F	F	T	F	f	T
F	T	T	F	T	Т	Т
f	f	t	t	t	t	Т

The truth table shows it is a tautology as the expression is true for all values of p and q

d. $(p\rightarrow q)\land (q\rightarrow r)\rightarrow (p\rightarrow r)$

Р	Q	R	p→q	q→r	$(p\rightarrow q)\land (q\rightarrow r)$	p→r	$(p\rightarrow q)\land (q\rightarrow r)\rightarrow (p\rightarrow r)$
Т	Т	T	Т	Т	Т	Т	Т
Т	Т	F	T	F	F	F	Т
Т	F	T	F	Т	F	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	T	T	Т	Т	Т	Т
F	Т	F	T	F	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
f	f	f	t	t	t	t	Т

This is a tautology as the expression evaluated to true for all values of p, q and r

e. $(p\rightarrow q)\land (p\land \neg q)$

<u> </u>	- ''				
P	Q	p→q	⊸q	p∧¬q	(p→q)∧(p∧¬q)
T	Т	Т	F	F	F
T	F	F	Т	Т	F
F	Т	Т	F	F	F
f	f	t	t	f	F

This is a contradiction as the truth table shows that for all values of p and q the expression is false

3.

a. (p∨p)∧p≡p

	1.	(p∨p)∧p	
2	2.	p∧p	Idempotent Law 1
	3.	р	Idempotent Law 2

b. $(p\rightarrow (q\lor r))\equiv p\land \neg q\rightarrow r$

1.	p∧¬q→r	
2.	¬(p∧¬q)∨r	Conditional Identity 1
3.	$\neg p \lor \neg \neg q \lor r$	DeMorgans Law 2
4.	¬p∨q∨r	Double Negation Law 3
5.	p→(q∨r)	Conditional Identity 4

c. $p \equiv \neg p \rightarrow (p \land q)$

1.	¬p→(p∧q)	
2.	¬¬p∨(p∧q)	Conditional Identity 1
3.	p∨(p∧q)	Double Negation law 2
4.	Р	Absorption Law 3

d. $(\neg p \land \neg q) \rightarrow r \equiv \neg p \rightarrow (q \lor r)$

1.	(¬p∧¬q)→r	
2.	¬(¬p∧¬q)∨r	Conditional Identity 1
3.	¬¬p∨¬¬q∨r	DeMorgans Law 2
4.	¬¬p∨q∨r	Double Negation Law 3
5.	¬p→(q∨r)	Conditional Identity 4

4.

a.

1	$p \rightarrow (q \land r)$	hypothesis
2	¬p∨(q∧r)	Conditional Identity 1
3	(¬p∨q)∧(¬p∨r)	Distributive law 2
4	$(p\rightarrow q) \land (p\rightarrow r)$	Conditional Identity 3
5	p→r	Hypothetical Syllogism 4
6	¬r	Hypothesis
7	¬р	Modus Tollens 5,6

b.

1	(¬p)∧q→¬r	Hypothesis
2	¬(¬p∧q)∨¬r	Conditional Identity 1
3	(¬¬p∨¬q)∨¬r	DeMorgans Law 2
4	(p∨¬q)∨¬r	Double Negation Law 3
5	¬r∨(p∨¬q)	Associative law 4
6	r	Hypothesis
7	¬¬r	Double Negation Law 6
8	(p∨¬q)	Disjunctive Syllogism 5, 7
9	¬q∨p	Associative Law, 8
10	q	Hypothesis
11	¬¬q	Double Negation 10
12	р	Disjunctive Syllogism 9, 11

c.

1	p∨q	Hypothesis
2	¬p∨r	Hypothesis

3	q∨r	Resolution 1,2	
4	r∨q	Commutative Law 3	
5	¬q	Hypothesis	
6	r	Disjunctive Syllogism 3,4	
7	¬r∨s	Hypothesis	
8	S	Disjunctive Syllogism 5,6	

5.

a. $p \oplus q \equiv q \oplus p$

1	p⊕q	
2	(p∨q)∧¬(p∧q)	Definition 1
3	(q∨p)∧¬(p∧q)	Commutative Law 2
4	(q∨p)∧¬(q∧p)	Commutative Law 3
5	q⊕p	Definition 4

b. $p \oplus p$ is a contradiction

1	р⊕р	
2	(p∨p)∧¬(p∧p)	Definition 1
3	p∧¬(p∧p)	Idempotent Law 2
4	р∧¬р	Idempotent Law 3
5	False	Complement Law 4

It will always evaluate to false as the expression simplifies to false

c. $\underline{r \land (p \oplus q)} \equiv (r \land p) \oplus (r \land q)$

(r∧p)⊕(r∧q)	
$(r \land p) \lor (r \land q)) \land \neg ((r \land p) \land (r \land q))$	Definition 1
$(r \land (p \lor q)) \land \neg ((r \land p) \land (r \land q))$	Distributive Law 2
$(r\wedge(p\vee q))\wedge(\neg(r\wedge p)\vee\neg(r\wedge q))$	DeMorgans Law 3
$(r\land(p\lor q))\land((\neg r\lor \neg p)\lor \neg (r\land q))$	DeMorgans Law 4
$(r\land(p\lor q))\land((\neg r\lor \neg p)\lor(\neg r\lor \neg q))$	DeMorgans Law 5
$(r\land(p\lor q))\land(\neg r\lor \neg r\lor \neg p\lor \neg q)$	Associative Law 6
$(r \land (p \lor q)) \land (\neg (r \land r) \lor \neg p \lor \neg q)$	DeMorgans Law 7
(r∧(p∨q))∧(¬r∨(¬p∨¬q))	Idempotent Law 8
$(r \land (p \lor q) \land \neg r) \land (r \land (p \lor q) \land \neg p) \lor (r \land (p \lor q) \land \neg q)$	Distributive Law 9
$(r \land \neg r \land (p \lor q)) \land (r \land (p \lor q) \land \neg p) \lor (r \land (p \lor q) \land \neg q)$	Associative Law 10
$(F \land (p \lor q)) \lor ((r \land (p \lor q) \land \neg p) \lor (r \land (p \lor q) \land q))$	Negation Law 11
$F\lor((r\land(p\lorq)\land\neg q)\lor(r\land(p\lorq)\land\neg q))$	Domination Law 12
(r∧(p∨q))∧(¬p∨¬q)	Distributive Law 13
$r \wedge (p \vee q) \wedge \neg (p \wedge q)$	DeMorgans Law 14
r∧(p⊕q)	Definition
	$ \begin{array}{l} (r \wedge p) \oplus (r \wedge q) \\ (r \wedge p) \vee (r \wedge q)) \wedge \neg ((r \wedge p) \wedge (r \wedge q)) \\ (r \wedge (p \vee q)) \wedge \neg ((r \wedge p) \wedge (r \wedge q)) \\ (r \wedge (p \vee q)) \wedge (\neg (r \wedge p) \vee \neg (r \wedge q)) \\ (r \wedge (p \vee q)) \wedge ((\neg r \vee \neg p) \vee \neg (r \wedge q)) \\ (r \wedge (p \vee q)) \wedge ((\neg r \vee \neg p) \vee (\neg r \vee \neg q)) \\ (r \wedge (p \vee q)) \wedge (\neg r \vee \neg r \vee \neg p \vee \neg q) \\ (r \wedge (p \vee q)) \wedge (\neg (r \wedge r) \vee \neg p \vee \neg q) \\ (r \wedge (p \vee q)) \wedge (\neg r \vee (\neg p \vee \neg q)) \\ (r \wedge (p \vee q) \wedge \neg r) \wedge (r \wedge (p \vee q) \wedge \neg p) \vee (r \wedge (p \vee q) \wedge \neg q) \\ (r \wedge \neg r \wedge (p \vee q)) \wedge (r \wedge (p \vee q) \wedge \neg p) \vee (r \wedge (p \vee q) \wedge \neg q) \\ (r \wedge (p \vee q)) \wedge ((r \wedge (p \vee q) \wedge \neg p) \vee (r \wedge (p \vee q) \wedge \neg q)) \\ r \wedge (p \vee q) \wedge \neg (p \wedge q) \\ r \wedge (p \vee q) \wedge \neg (p \wedge q) \end{array} $

- 6. p: The student got an A on the final.
 - q: The student turned in all the homework.
 - r: The student is on academic probation
 - a. The student is not on academic probation and the student got an A on the final or turned in all the homework.

$$\equiv \neg r \land (p \lor q)$$

- b. If the student got an A on the final, then the student is not on academic probation $\equiv n \rightarrow \neg r$
- c. If the student is on academic probation, then the student did not get an A on the final

$$\equiv r \rightarrow \neg p$$