COM 5335 Lecture 8 Primality Testing

Scott CH Huang

Definition

- A prime number is a positive integer p having exactly two positive divisors, 1 and p.
- A composite number is a positive integer n > 1 which is not prime.

Primality Test vs Factorization

- Factorization's outputs are non-trivial divisors.
- Primality test's output is binary: either PRIME or COMPOSITE

Naïve Primality Test

```
Input: Integer n > 2
Output: PRIME or COMPOSITE

for (i from 2 to n-1){
    if (i divides n)
        return COMPOSITE;
}
return PRIME;
```

Still Naïve Primality Test

Sieve of Eratosthenes

Input/Output: same as the naïve test

```
Let A be an arry of length n

Set all but the first element of A to TRUE

for (i from 2 to \sqrt{n}){

  if (A[i]=TRUE)

    Set all multiples of i to FALSE

}

if (A[i]=TRUE) return PRIME

else return COMPOSITE
```

Primality Testing

Two categories of primality tests

- Probablistic
 - Miller-Rabin Probabilistic Primality Test
 - Cyclotomic Probabilistic Primality Test
 - Elliptic Curve Probabilistic Primality Test
- Deterministic
 - Miller-Rabin Deterministic Primality Test
 - Cyclotomic Deterministic Primality Test
 - Agrawal-Kayal-Saxena (AKS) Primality Test

Running Time of Primality Tests

- Miller-Rabin Primality Test
 - Polynomial Time
- Cyclotomic Primality Test
 - Exponential Time, but almost poly-time
- Elliptic Curve Primality Test
 - Don't know. Hard to Estimate, but looks like poly-time.
- AKS Primality Test
 - Poly-time, but only asymptotically good.

Fermat's Primality Test

- It's more of a "compositeness test" than a primality test.
- Fermat's Little Theorem: If p is prime and $a \nmid p$, then $a^{p-1} \equiv 1 \pmod{p}$
- If we can find an a s.t. $\gcd(a,n-1),\ a^{n-1}\not\equiv 1\ (\mathrm{mod}\ n)$, then n must be a composite.
- If, for some *a*, *n* passes the test, we cannot conclude *n* is prime. Such n is a *pseudoprime*. If this pseudoprime *n* is not prime, then this *a* is called a **Fermat liar**.
- If, for all $1 \le a \le n-1$, s.t. $\gcd(a,n-1)=1$ we have $a^{n-1} \not\equiv 1 \pmod n$ can we conclude n is prime?
- No. Such n is called a Carmichael number.

Some Small Carmichael Numbers

Carmichael Numbers	Corresponding Factorizations		
561	3*11*17		
41041	7*11*13*14		
825265	5*7*17*19*73		
321197185	5*19*23*29*37*137		

Carmichael numbers < 100,000 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, and 75361.

Pseudocode of Fermat's Primality Test

```
FERMAT(n,t){
INPUT: odd integer n \ge 3, # of repetition t
OUTPUT: PRIME or COMPOSITE
  for (i from 1 to t){
       Choose a random integer a s.t. 2 \le a \le n-2
       Compute r = a^{n-1} \mod n
       if ( r \neq 1 ) return COMPOSITE
  return PRIME
```

Miller-Rabin Probabilistic Primality Test

- It's more of a "compositeness test" than a primality test.
- It does not give proof that a number n is prime, it only tells us that, with high probability, n is prime.
- It's a randomized algorithm of Las Vegas type.

A Motivating Observation

FACT:

- Let ${\it p}$ be an odd prime. $x\in \mathbb{Z}_p^*$. If $x^2=1$ then $x=\pm 1$
- Moreover, if $n-1=m2^k$, and m is odd. Let $a\in\mathbb{N}, \text{ s.t. } \gcd(a,n)=1$. Then either $a^m\equiv 1\pmod n$

or $a^{m2^i} \equiv -1 \pmod{n}$ for some $0 \le i \le k-1$

Miller-Rabin

- If $a^m \not\equiv 1$ and $a^{m2^i} \not\equiv -1 \pmod{n}$, $\forall 0 \le i \le k-1$ Then a is a **strong witness** for the compositeness of n.
- If $a^m \equiv 1 \pmod{n}$ or $a^{m2^i} \equiv -1 \pmod{n}$ for some $0 \le i \le k-1$ then n is called a *pseudoprime w.r.t. base a*, and a is called a **strong liar**.

Miller-Rabin: Algorithm Pseudocode

```
MILLER-RABIN(n,t){
INPUT: odd integer n \ge 3, # of repetition t
   Compute k & odd m s.t. n-1=m2^k
   for ( i from 1 to t ){
          Choose a random integer a s.t. 2 \le a \le n-2
         Compute y = a^m \mod n
         if ( y \neq 1 and y \neq n-1 ){
                   Set j \leftarrow 1
                   while( j \leq k-1 and y \neq n-1 ){
                             Set y \leftarrow y^2 \mod n
                              if ( y=1 ) return COMPOSITE
                             i \leftarrow i + 1
                    if (y \neq n-1) return COMPOSITE
   return PRIME
```

Miller-Rabin: Example

- n = 2465=5*17*29 (a Carmichael number)
- n-1=2464=2⁵*7*11
- a^{m2^i} values shown as below

	i = 0	1	2	3	4	5
a=2	1902	1449	1886	1	1	1
a=3	2018	144	1016	1886	1	1
a=5	2145	1335	30	900	1480	1480
a=7	2437	784	871	1886	1	1
a=11	1061	1681	871	1886	1	1
a=13	608	2379	1	1	1	1
a=47	302	-1	1	1	1	1

Miller-Rabin: Main Theorem

Theorem:

Given n > 9. Let B be the number of strong liars. Then $\frac{B}{\varphi(n)} \le \frac{1}{4}$

If the Generalized Riemann Hypothesis is true, then

Miller-Rabin primality test can be made deterministic by running MILLER-RABIN $(n, 2\log^2 n)$