

Robotics

Analog Input

School of Computing, Gachon University
Youngmin Oh

Basics

- Photoresistor (Ambient Light Sensor)
 - o A **photoresistor** (or **LDR**, or **photocell**) is a light-controlled variable resistor, which we can read into the Arduino board as an analog value between 0 and 1023.

Basics [cont.]

- In the dark environment, a photoresistor has high resistance, whereas in the light environment, a photoresistor has low resistance.
- A photoresistor can be applied in light-sensitive detector circuits, and lightand dark-activated switching circuits.

Basics [cont.]

POTENTIOMETER

 A potentiometer is a simple **knob** that provides a variable resistance with a sliding or rotating, which we can read into the Arduino board as an analog value between 0 and 1023.

G DEPARTMENT OF SOFTWARE

Basics [cont.]

■ Temperature sensor [LM35]

 LM35 is an integrated circuit sensor that can be used to measure temperature with an electrical output proportional to the temperature in Celsius.

Functions

analogRead()

Reads the value from the specified analog pin. The Arduino board contains a 6 channel (8 channels on the Mini and Nano, 16 on the Mega), 10-bit analog to digital converter. This means that it will map input voltages between 0 and 5 volts into integer values between 0 and 1023.

Syntax

- analogRead(pin)
 - pin: the number of the analog input pin to read from
 - (0 to 5 on most boards, 0 to 7 on the Mini and Nano, 0 to 15 on the Mega)

G DEPARTMENT OF SOFTWARE

Functions [cont.]

o Example

```
void loop()
{
  val = analogRead(A0); // read the input pin
  Serial.println(val);
}
```

Functions

map()

 Re-maps a number from one range to another. That is, a value of fromLow would get mapped to toLow, a value of fromHigh to toHigh, values in-between to values in-between, etc.

Syntax

- map(value, fromLow, fromHigh, toLow, toHigh)
 - value: the number to map
 - fromLow: the lower bound of the value's current range
 - fromHigh: the upper bound of the value's current range
 - toLow: the lower bound of the value's target range
 - toHigh: the upper bound of the value's target range

G DEPARTMENT OF SOFTWARE

Functions [cont.]

Example

```
void loop()
{
  int val = analogRead(A0);
  val = map(val, 0, 1023, 0, 255);
  analogWrite(9, val);
}
```

- To control on each LED depending on the value obtained by analog sensors
 - The brightness of the LED is set a number between 0 to 255.
 - The potentiometer/ambient light sensor reading is a number from 0 to 1023.

Lab. 1 - Ambient Light sensor I

 Using an ambient light sensor, turn on an LED when it is dark and turn it off when it is light. Determine light/dark condition by a threshold (an integer of

Lab. 2 - Ambient Light Sensor II

● Control the brightness (0-255) of the LED depending on the value (0-1023) obtained by Ambient Light Sensor. Make the LED brighter when the

- •An analog value controls the rate at which an LED blinks.
 - o turns on and off a LED. The frequency of the LED blinks will be controlled by the

Use three potentiometers for controlling the brightness of each LED color.

Lab. 5 - Temperature Sensor I

• Measure surrounding temperature.

