Generative Models

(Many figures adapted from Stanford CS231n, MIT 6.S191, and Illinois CS 498)

Outline

Introduction

Variational Autoencoders (VAEs)

Autoencoders

Generative Adversarial Networks (GANs)

Summary

Introduction (1/3)

Supervised vs unsupervised learning

Supervised Learning

Data: (x, y)x is data, y is label

Goal: Learn function to map $x \to y$

Examples: Classification, regression, object detection, semantic segmentation, etc.

Unsupervised Learning

Data: x x is data, no labels!

Goal: Learn some hidden or underlying structure of the data

Examples: Clustering, feature or dimensionality reduction, etc.

Introduction (2/3)

- What are Generative Models?
 - Generative models are an Unsupervised Learning approach
 - Given training data, generate new samples from same distribution

We want to learn p_{model} that matches p_{data}

Introduction (3/3)

- Why generative models?
 - Debiasing
 - Outlier detection
 - and more...
- Introduce two most popular types of generative models today
 - Variational Autoencoders (VAEs)
 - Generative Adversarial Networks (GANs)

Autoencoders: Background (1/7)

我沒有告訴他怎麼編碼, 只是要求他從高維度變 成低維度

Unsupervised approach for learning a **lower-dimensional** feature representation from unlabeled training data

latent 隱藏、潛在

"Encoder" learns mapping from the data, x, to a low-dimensional latent space, z

Autoencoders: Background (2/7)

How can we learn this latent space?

Train the model to use these features to **reconstruct the original data**

''Decoder'' learns mapping back from latent, z, to a reconstructed observation, \widehat{x}

Autoencoders: Background (3/7)

How can we learn this latent space?

Train the model to use these features to reconstruct the original data

$$\mathcal{L}(x,\hat{x}) = \|x - \hat{x}\|^2$$

Loss function doesn't use any labels!!

Autoencoders: Background (4/7)

Example 1: A 8 x 3 x 8 network was trained to learn the identity function

A target function:

Input	Output
10000000 →	10000000
01000000 →	01000000
00100000 →	00100000
00010000 →	00010000
00001000 →	00001000
00000100 →	00000100
00000010 →	00000010
00000001 →	00000001

Can this be learned??

Autoencoders: Background (5/7)

Example 1: A 8 x 3 x 8 network was trained to learn the identity function

Input	Hidden				Output			
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Notice that if the encoded values are rounded to zero or one, the result is the standard binary encoding for eight distinct values.

⇒ Eight input features reduce to three, and the low dimension features can reconstruct the original data.

Autoencoders: Background (6/7)

Example 2: MNIST dataset

Dimensionality of latent space > reconstruction quality

Autoencoding is a form of compression!

Smaller latent space will force a larger training bottleneck

2D latent space 5D latent space Ground Truth

72 1 0 4 1 4 9 9 9 0 6 9 0 1 5 9 7 8 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7 2 7 1 2 1 1 7 4 4 3 5 1 2 4 4 6 3 5 5 6 0 4 1 9 5 7 8 9 3 7 4 6 4 3 0 7 2 9 1 7 3 2 9 7 9 6 2 9 5 4 7 3 6 1 3 6 9 3 1 4 1 7 6 9

Autoencoders: Background (7/7)

Autoencoders Summary

- Autoencoder = Encoder + Decoder (編碼器+解碼器)
- Bottleneck hidden layer forces network to learn a compressed latent representation
- Reconstruction loss forces the latent representation to capture (or encode) as much "information" about the data as possible
- Training:
 - Inputs: original input X
 - Targets: original input X (X are Not Labels)
- Application: Dimensionality reduction

Variational Autoencoders (VAEs)

VAEs: key difference with traditional autoencoder

Variational autoencoders are a probabilistic twist on autoencoders!

Sample from the mean and standard dev. to compute latent sample

Variational Autoencoders (VAEs)

Variational Autoencoders: Generating Data!

Different dimensions of **z** encode interpretable factors of variation

Variational Autoencoders (VAEs)

VAEs Summary

- Reparameterization trick to train end-to-end
- Interpret hidden latent variables using perturbation
 - ⇒ Generating new examples

Samples blurrier and lower quality compared to GANs

Generative Adversarial Networks (GANs) (1/2)

- GANs are an approach to generative modeling using deep learning methods.
- GANs consist of two neural networks that compete against each other during training.
 - -The generator tries to generate realistic samples that have never been seen before.
 - -The discriminator tries to identify whether its inputs are real or fake.

Generative Adversarial Networks (GANs) (2/2)

Train two networks with opposing objectives:

- Generator: tries to fool the discriminator by generating real-looking samples
- **Discriminator:** tries to distinguish between generated and real samples

GAN objective

- The discriminator D(x) should output the probability that the sample x is real
 - That is, we want D(x) to be close to 1 for real data and close to 0 for fake
- Expected conditional log likelihood for real and generated data:

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z))]$$

We seed the generator with noise z drawn from a simple distribution p

GAN objective

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$$

 The discriminator wants to correctly distinguish real and fake samples:

$$D^* = \arg \max_D V(G, D)$$

真鈔的機率是0.5 假鈔的機率是0.5

The generator wants to fool the discriminator:

$$G^* = \operatorname{arg\,min}_G V(G, D)$$

Train the generator and discriminator jointly in a minimax game

GAN Learning Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- · Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{ heta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Training of GAN

Repeat the 2 steps:

- 1. Update the discriminator network;
- 2. Update the generator network.

Phase 1: Update the Discriminator

Train a classifier

- 1. Generate a batch of fake samples by the generator;
- 2. Randomly sample a batch of real samples;
- 3. Inputs: $X = [real_samples, fake_samples];$
- 4. Targets: $y = [True, \dots, True, False, \dots, False];$
- 5. Update the discriminator network using **X** and **y**.

(freeze generator's parameters)

Phase 2: Update the Generator

Connect the generator and discriminator (freeze discriminator's parameters).

GAN: Conceptual picture

- Update discriminator
 - push $D(x_{data})$ close to 1 and D(G(z)) close to 0
 - freeze generator's parameters

GAN: Conceptual picture

- Update generator: increase D(G(z))
 - Requires back-propagating through the composed generatordiscriminator network
 - Freezes discriminator's parameter

GAN: Conceptual picture

• Test time – the discriminator is discarded

2017: Explosion of GANs

See also: https://github.com/soumith/ganhacks for tips and tricks for trainings GANs

"The GAN Zoo"

- GAN Generative Adversarial Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- · AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
- CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- · CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks

- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- DTN Unsupervised Cross-Domain Image Generation
- DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DR-GAN Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- EBGAN Energy-based Generative Adversarial Network
- f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN Towards Large-Pose Face Frontalization in the Wild
- GAWWN Learning What and Where to Draw
- · GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN Geometric GAN
- · GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending
- IAN Neural Photo Editing with Introspective Adversarial Networks
- . iGAN Generative Visual Manipulation on the Natural Image Manifold
- IcGAN Invertible Conditional GANs for image editing
- ID-CGAN Image De-raining Using a Conditional Generative Adversarial Network
- Improved GAN Improved Techniques for Training GANs
- InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
- LAPGAN Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Generative Adversarial Nets: Interpretable Vector Math

Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman Radford et al, **ICLR 2016** Woman with glasses

Which face is fake?

Generative Models: Summary

Autoencoders and Variational Autoencoders (VAEs)

Learn lower-dimensional latent space and sample to generate input reconstructions

VAEs: Explicit density method

Generative Adversarial Networks (GANs) Competing generator and discriminator networks GANs: Implicit density method

Resources

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

MIT 6.S191: Introduction to Deep Learning

Illinois CS 498: Introduction to Deep Learning