

FCC PART 22H FCC PART 27

MEASUREMENT AND TEST REPORT

For

Shanghai Rising Digital Co., Ltd.

No 318 , Chuanda Road , Pudong New District Shanghai China

FCC ID: 2AJONSEED-10IA-01

Report Type:		Product Type:
Original Report		SEED-10IA-01 display screen
Test Engineer:	Hope Zhang	Hope Zhang
Report Number:	RSHA18120700	02-00B
Report Date:	2019-03-24	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Prepared By:	•	88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Report No.: RSHA181207002-00B

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
CHANNEL LIST	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	1
APPLICABLE STANDARD	
CALCULATED FORMULARY:	
CALCULATED DATA:	
FCC §2.1047 - MODULATION CHARACTERISTIC	1
§2.1046; § 22.913 (A); §27.50 (H) - RF OUTPUT POWER	
Applicable Standards	
TEST PROCEDURE TEST DATA	
FCC §2.1049 & §22.917, §22.905& §27.53 - OCCUPIED BANDWIDTH	
Applicable Standards	
TEST PROCEDURE TEST DATA	
§ 2.1051 & § 22.917 (A) & §27.53 (M) SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARDS	
TEST PROCEDURE	
Test Data	
FCC § 2.1053 & § 22.917 (A) & §27.53 (M) - SPURIOUS RADIATED EMISSIONS	4
APPLICABLE STANDARDS	
TEST PROCEDURE	40
TEST DATA	4
FCC §22.917 (A) & §27.53 (M) - BAND EDGES	4
APPLICABLE STANDARDS	43
TEST PROCEDURE	
TEST DATA	
FCC §2.1055 & §22.355 & §27.54 - FREQUENCY STABILITY	6
APPLICABLE STANDARDS	
TEST PROCEDURE	
TEST DATA	6

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Shanghai Rising Digital Co.,Ltd.
Tested Model	SEED-10IA-01
Series Model	SEED-10IA-01 (L)
Product Type	SEED-10IA-01 display screen
Dimension	274mm(L)*212mm(W)*47.9mm(H)
Power Supply	DC 12- 24V

^{*}All measurement and test data in this report was gathered from production sample serial number: 20181207002. (Assigned by the BACL. The EUT supplied by the applicant was received on 2018-12-07)

Objective

This type approval report is prepared on behalf of *Shanghai Rising Digital Co.,Ltd.* in accordance with Part 2, Part 22-Subpart H and Part 27 of the Federal Communication Commission's rules.

The objective is to determine the compliance of EUT with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability, and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS and Part 15.407 NII submissions with FCC ID: 2AJONSEED-10IA-01.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-Part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services Part 27 – Miscellaneous wireless communications services

Applicable Standards: TIA/EIA 603-D.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

	Item	Uncertainty
RF conducte	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.05dB
Radiated emission	1GHz~6GHz	4.48dB
	6GHz~18GHz	5.22dB
Occupied Bandwidth		0.5kHz
Frequ	nency Stability	1Hz
Te	emperature	1.0℃
]	Humidity	6%

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D.

The final qualification test was performed with the EUT operating at normal mode.

Channel List

M	ode	Chann	el	Frequency (MHz)
		Low	20407	824.7
	1.4M	Middle	20525	836.5
		High	20643	848.3
		Low	20415	825.5
	3M	Middle	20525	836.5
LTE Band 5		High	20635	847.5
LIE Band 5		Low	20425	826.5
	5M	Middle	20525	836.5
		High	20625	846.5
	10M	Low	20450	829.0
		Middle	20525	836.5
		High	20600	844.0
		Low	40265	2518.5
	5M	Middle	40740	2593.0
		High	41215	2667.5
		Low	40290	2521.0
LTE Band 41 –	10M	Middle	40740	2593.0
		High	41190	2665.0
		Low	40315	2523.5
	15M	Middle	40740	2593.0
		High	41165	2662.5
		Low	40340	2526.0
	20M	Middle	40740	2593.0
		High	41140	2660.0

Equipment Modifications

No modifications were made to the EUT.

Support Equipment List and Details

Manufacturer	Description Model		Serial Number
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	104478
ZHAOXIN	DC Power Supply	RXN-605D	DC002
Aihuaxin Technology	Antenna	/	/

External Cable List and Details

Cable Description	Length (m)	m) From Port	
DC Cable	1.0	EUT	DC Power Supply
Antenna Cable	1.8	Antenna	CMW500

Block Diagram of Test Setup

For Radiated Emissions

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310& §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliance
§2.1046; §22.913 (a); §27.50 (h)	RF Output Power	Compliance
§2.1047	Modulation Characteristics	Not Applicable
\$2.1049; \$22.905; \$22.917; \$27.53	Occupied Bandwidth	Compliance
§2.1051; §22.917 (a); §27.53 (m)	Spurious Emissions at Antenna Terminal	Compliance
§2.1053; §22.917 (a); §27.53 (m)	Spurious Radiated Emissions	Compliance
§22.917 (a); §27.53 (m)	Band Edge	Compliance
§2.1055; §22.355; §27.54;	Frequency stability	Compliance

TEST EQUIPMENT LIST

Manufacturer	nfacturer Description Model Serial Number		17 7 7	Calibration Date	Calibration Due Date			
Radiated Emission Test (Chamber 1#)								
HP	Signal Generator	HP 8341B	2624A00116	2018-11-12	2019-11-11			
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2018-11-12	2019-11-11			
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25			
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2019-01-09	2022-01-08			
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-15	2019-08-14			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14			
R & S	R & S Wideband Radio Communication Tester		104478	2018-07-21	2019-07-20			
	Radiated	Emission Test (C	hamber 2#)					
HP	Signal Generator	HP 8341B	2624A00116	2018-11-12	2019-11-11			
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26			
ETS-LINDGREN	Horn Antenna	3115	9311-4159	2019-01-11	2022-01-10			
ETS-LINDGREN	Horn Antenna	3115	6229	2019-01-11	2022-01-10			
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17			
ETS-LINDGREN	Horn Antenna	3116	2516	2016-12-12	2019-12-12			
A.H.Systems, inc	Amplifier	2641-1	466	2018-09-11	2019-09-10			
EM Electronics Corporation	Amplifier	EM18G40G	060726	2018-03-22	2019-03-21			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-16	016	2018-08-15	2019-08-14			
R & S	Wideband Radio Communication Tester	CMW500	104478	2018-07-21	2019-07-20			

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
RF Conducted Test						
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2018-11-12	2019-11-11	
R & S	Wideband Radio Communication Tester	CMW500	104478	2018-07-21	2019-07-20	
BACL	Temperature & Humidity Chamber	BTH-150	30023	2018-10-10	2019-10-09	
ZHAOXIN	DC Power Supply	RXN-605D	DC002	2018-10-10	2019-10-09	
Rising	RF Cable	Rising01	C01	Each	/	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Report No.: RSHA181207002-00B

Limits for General Population/Uncontrolled Exposure								
Frequency Range Electric Field Magnetic Field Power Density Averaging Tim (MHz) Strength (V/m) Strength (A/m) (mW/cm²) (minutes)								
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/		f/1500	30				
1500-100,000	/		1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Calculated Data:

For LTE mode:

Mode	Frequency Range	Max A	ntenna Gain	_	Output wer	Evaluation Distance	Power Density	MPE Limit
3.30.00	(MHz)		(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)	
Band 5	824-849	2.70	1.86	22	158.49	20	0.0587	0.55
Band 41	2516-2670	3.70	2.34	23	199.53	20	0.0930	1.00

Report No.: RSHA181207002-00B

For Wi-Fi mode:

Mode	Frequency Range	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit (mW/cm²)
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(, , , , , , ,
802.11b		2.20	1.66	17.00	50.12	20	0.0165	1.00
802.11g	2412-2462	2.20	1.66	16.00	39.81	20	0.0131	1.00
802.11n-HT20		2.20	1.66	15.00	31.62	20	0.0104	1.00
802.11n-HT40	2422-2452	2.20	1.66	15.00	31.62	20	0.0104	1.00

Mode Frequency		Antenna Gain		Conducted output power		Evaluation Distance	Power Density	MPE Limit
Noue	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)
802.11a		2.20	1.66	14.00	25.12	20	0.0083	1.00
802.11n-HT20	5150-5250	2.20	1.66	15.00	31.62	20	0.0104	1.00
802.11n-HT40		2.20	1.66	15.00	31.62	20	0.0104	1.00
802.11a		2.20	1.66	14.00	25.12	20	0.0083	1.00
802.11n-HT20	5725-5850	2.20	1.66	15.00	31.62	20	0.0104	1.00
802.11n-HT40		2.20	1.66	16.00	39.81	20	0.0131	1.00

Note:

 The target output power was declared by the Manufacturer.
 2.4GWi-Fi and 5GWi-Fi cannot transmit simultaneously.
 Wi-Fi and LTE can transmit simultaneously, The worst condition is 802.11b of 2.4G Wi-Fi and LTE Band 5, as below:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.0165/1.00 + 0.0587/0.55 = 0.0165 + 0.1067 = 0.1232 < 1.0$$

Result: The device meet FCC MPE at 20 cm distance.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H, Part 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

§2.1046; § 22.913 (a); §27.50 (h) - RF OUTPUT POWER

Applicable Standards

According to FCC $\S 2.1046$ and $\S 22.913$ (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

Report No.: RSHA181207002-00B

According to §27.50(h), the maximum transmitter output power not exceed 2Watts (33dBm) The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the CMW500 through sufficient attenuation.

Test Data

Environmental Conditions

Temperature:	23.4°C
Relative Humidity:	50 %
ATM Pressure:	101.2kPa

The testing was performed by Hope Zhang on 2019-01-22.

Conducted Power:

LTE Band 5

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)	Limit (dBm)
		1#0	21.51	21.51	21.42	
		1#3	21.64	21.54	21.48	
		1#5	21.56	21.67	21.40	
	QPSK	3#0	21.69	21.66	21.54	
		3#1	21.67	21.56	21.54	
		3#3	21.47	21.40	21.47	
1.43.5		6#0	21.07	21.43	21.58	20.45
1.4M		1#0	21.48	21.25	21.56	38.45
		1#3	21.59	21.49	21.48	
		1#5	21.53	21.24	21.65	
	16-QAM	3#0	21.51	21.44	21.17	
		3#1	21.48	21.83	21.65	
		3#3	21.67	21.23	21.50	
		6#0	21.09	21.58	21.22	
		1#0	21.68	21.40	21.50	
		1#7	21.47	21.62	21.62	
		1#14	21.47	21.47	21.55	
	QPSK	8#0	21.56	21.35	21.49	
		8#4	21.68	21.30	21.75	
		8#7	21.61	21.18	21.49	
214		15#0	21.11	21.37	21.66	29.45
3M		1#0	21.53	21.52	21.43	38.45
		1#7	21.48	21.39	21.70	
		1#14	21.58	21.30	21.56	
	16-QAM	8#0	21.07	21.58	21.70	
		8#4	21.72	21.88	21.32	
		8#7	21.42	21.36	21.35	
		15#0	21.32	21.51	21.36	

50#0

21.50

21.66

21.44

LTE Band 41

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)	Limit (dBm)
		1#0	21.84	21.63	22.04	
		1#12	21.59	21.48	21.66	
		1#24	21.80	21.75	21.91	
	QPSK	12#0	21.54	21.62	21.86	
		12#6	21.81	21.66	21.57	
		12#11	21.79	21.70	21.93	
53.4		25#0	21.87	21.76	21.84	22
5M		1#0	21.93	21.89	21.54	33
		1#12	22.00	21.84	22.00	
		1#24	21.33	21.60	21.76	
	16-QAM	12#0	21.68	21.73	21.43	
		12#6	21.37	21.74	21.34	
		12#11	21.75	21.73	21.85	
		25#0	21.86	21.25	21.73	
		1#0	21.69	21.56	21.64	
		1#24	21.89	21.38	21.31	
		1#49	21.98	21.56	21.68	
	QPSK	25#0	21.65	21.68	21.50	
		25#12	21.42	21.96	21.81	
		25#24	21.27	21.59	21.74	
1034		50#0	21.57	21.51	21.74	22
10M		1#0	21.43	21.89	21.58	33
		1#24	21.54	21.51	22.02	
		1#49	21.70	21.67	21.58	
	16-QAM	25#0	21.69	21.57	21.95	
		25#12	21.61	21.49	21.84	
		25#24	21.62	21.63	21.70	
		50#0	22.05	21.74	21.70	

50#49

100#0

21.98

21.70

21.74

21.98

21.56

21.82

Radiated Power:

ERP:

LTE Band 5

		Receiver	Sub	stituted Met	hod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Submitted Level (dBm)	Cable loss (dB)	Antenna Gain (dBd)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK 1.4M	BW Middl	e Channel			
836.5	Н	86.7	23.13	0.63	-1.14	21.36	38.45	17.09
836.5	V	90.34	23.31	0.63	-1.14	21.54	38.45	16.91
			16-QAM 1.4	M BW Mid	dle Channel			
836.5	Н	86.7	23.13	0.63	-1.14	21.36	38.45	17.09
836.5	V	90.35	23.32	0.63	-1.14	21.55	38.45	16.9
QPSK 3M BW Middle Channel								
836.5	Н	86.97	23.4	0.63	-1.14	21.63	38.45	16.82
836.5	V	90.15	23.12	0.63	-1.14	21.35	38.45	17.1
	16-QAM 3M BW Middle Channel							
836.5	Н	86.9	23.33	0.63	-1.14	21.56	38.45	16.89
836.5	V	90.43	23.4	0.63	-1.14	21.63	38.45	16.82
			QPSK 5M	BW Middle	e Channel			
836.5	Н	87	23.43	0.63	-1.14	21.66	38.45	16.79
836.5	V	90.25	23.22	0.63	-1.14	21.45	38.45	17
	•	•	16-QAM 5N	A BW Midd	lle Channel	-		
836.5	Н	86.9	23.33	0.63	-1.14	21.56	38.45	16.89
836.5	V	90.43	23.4	0.63	-1.14	21.63	38.45	16.82
			QPSK 10M	BW Middl	e Channel			
836.5	Н	86.86	23.29	0.63	-1.14	21.52	38.45	16.93
836.5	V	90.25	23.22	0.63	-1.14	21.45	38.45	17
			16-QAM 10N	M BW Mide	lle Channel			
836.5	Н	86.8	23.23	0.63	-1.14	21.46	38.45	16.99
836.5	V	90.36	23.33	0.63	-1.14	21.56	38.45	16.89

LTE Band 41

Report No.: RSHA181207002-00B

			Sub	stituted Met	hod			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Submitted Level (dBm)	Cable loss (dB)	Antenna Gain (dBi)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK 5M	BW Middle	e Channel			
2593	Н	83.88	11.91	0.89	10.1	21.12	33	11.88
2593	V	83.86	11.9	0.89	10.1	21.11	33	11.89
			16-QAM 5N	A BW Midd	lle Channel			
2593	Н	83.79	11.82	0.89	10.1	21.03	33	11.97
2593	V	83.81	11.85	0.89	10.1	21.06	33	11.94
QPSK 10M BW Middle Channel								
2593	Н	83.92	11.95	0.89	10.1	21.16	33	11.84
2593	V	83.96	12	0.89	10.1	21.21	33	11.79
16-QAM 10M BW Middle Channel								
2593	Н	83.88	11.91	0.89	10.1	21.12	33	11.88
2593	V	83.94	11.98	0.89	10.1	21.19	33	11.81
			QPSK 15M	BW Middl	e Channel			•
2593	Н	83.82	11.85	0.89	10.1	21.06	33	11.94
2593	V	83.83	11.87	0.89	10.1	21.08	33	11.92
		•	16-QAM 15	M BW Mid	dle Channel		•	•
2593	Н	84.12	12.15	0.89	10.1	21.36	33	11.64
2593	V	83.96	12	0.89	10.1	21.21	33	11.79
	QPSK 20M BW Middle Channel							
2593	Н	84.04	12.07	0.89	10.1	21.28	33	11.72
2593	V	83.88	11.92	0.89	10.1	21.13	33	11.87
	-		16-QAM 201	M BW Mid	dle Channel			
2593	Н	83.97	12	0.89	10.1	21.21	33	11.79
2593	V	83.78	11.82	0.89	10.1	21.03	33	11.97

Note:

All above data were tested without amplifier.

 $Absolute\ Level\ (dBm) = Submitted\ Level\ (dBm)\ -\ Cable\ loss\ (dB)\ +\ Antenna\ Gain\ (dBd/dBi)$

 $Margin \ (dB) = Limit \ (dBm) - Absolute \ Level \ (dBm)$

FCC §2.1049 & §22.917, §22.905& §27.53 - OCCUPIED BANDWIDTH

Applicable Standards

FCC 47 §2.1049, §22.917, §22.905 and §27.53.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0kPa

The testing was performed by Hope Zhang on 2019-01-21.

EUT operation mode: Transmitting

Test Result: Compliance.

LTE Band 5:

Test Modulation	Test Bandwidth	Test Channel	26 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
QPSK	1.4M		1.29	1.09
	3M	Middle	2.96	2.71
	5M	Middle	4.93	4.49
	10M		9.86	8.98
	1.4M		1.27	1.11
16-QAM	3M	Middle	2.96	2.71
	5M	Middle	4.95	4.51
	10M		9.86	8.98

LTE Band 41:

Test Modulation	Test Bandwidth	Test Channel	26 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
QPSK	5M		4.93	4.47
	10M	Middle	10.10	8.98
	15M	Middle	16.35	13.47
	20M		19.08	17.96
	5M		4.93	4.47
16-QAM	10M	Middle	10.02	8.98
	15M	wiiddie	15.99	13.47
	20M		19.08	17.96

LTE Band 5:

QPSK (1.4 MHz) - Middle channel

Report No.: RSHA181207002-00B

QPSK (3 MHz) - Middle channel

QPSK (5MHz) - Middle channel

QPSK (10 MHz) - Middle channel

16-QAM (1.4 MHz) - Middle channel

16-QAM (3 MHz) - Middle channel

16-QAM (5 MHz) - Middle channel

16-QAM (10 MHz) - Middle channel

LTE Band 41

QPSK (5MHz) - Middle channel

Report No.: RSHA181207002-00B

QPSK (10 MHz) - Middle channel

QPSK (15 MHz) - Middle channel

QPSK (20 MHz) - Middle channel

16-QAM (5 MHz) - Middle channel

16-QAM (10 MHz) - Middle channel

16-QAM (15 MHz) - Middle channel

16-QAM (20 MHz) - Middle channel

§ 2.1051 & § 22.917 (a) & §27.53 (m) SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RSHA181207002-00B

Applicable Standards

FCC §2.1051, §22.917(a) and §27.53(m).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

According to \$22.917(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$27.53(m),for mobile digital stations, any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P) dB$.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz & 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	23.2 ℃~23.5 ℃
Relative Humidity:	50 %~52 %
ATM Pressure:	101.1kPa~101.2kPa

The testing was performed by Hope Zhang on 2019-01-21&2019-03-24

EUT operation mode: Transmitting

LTE Band 5:

30 MHz - 1 GHz 1.4 MHz, Middle Channel)

Report No.: RSHA181207002-00B

1 GHz – 10 GHz (1.4 MHz, Middle Channel)

30 MHz - 1 GHz (3MHz, Middle Channel)

1 GHz – 10 GHz (3 MHz, Middle Channel)

30 MHz - 1 GHz (5 MHz, Middle Channel)

1 GHz – 10 GHz (5MHz, Middle Channel)

30 MHz - 1 GHz (10 MHz, Middle Channel)

1 GHz – 10 GHz (10 MHz, Middle Channel)

LTE Band 41:

30 MHz - 1 GHz (5 MHz, Middle Channel)

Report No.: RSHA181207002-00B

1 GHz - 26.5 GHz (5 MHz, Middle Channel)

30 MHz - 1 GHz (10 MHz, Middle Channel)

Report No.: RSHA181207002-00B

1 GHz -26.5 GHz (10 MHz, Middle Channel)

30 MHz - 1 GHz (15 MHz, Middle Channel)

Report No.: RSHA181207002-00B

1 GHz – 26.5 GHz (15MHz, Middle Channel)

FCC Part 22H, FCC Part 27

Page 38 of 63

30 MHz - 1 GHz (20 MHz, Middle Channel)

Report No.: RSHA181207002-00B

1 GHz – 26.5 GHz (20 MHz, Middle Channel)

FCC § 2.1053 & § 22.917 (a) & §27.53 (m) - SPURIOUS RADIATED EMISSIONS

Applicable Standards

FCC § 2.1053, §22.917(a) and § 27.53(m)

For fixed user stations, any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TX \text{ pwr in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Data

Environmental Conditions

Temperature:	23.3 ℃
Relative Humidity:	50 %
ATM Pressure:	101.2kPa

The testing was performed by Hope Zhang on 2019-01-21.

Test mode: Transmitting (Pre-scan with Low, Middle, High channel, and the worse case data as below)

LTE Band 5 (30 MHz ~ 10 GHz):

	Receiver	Turntable	Rx An	tenna	Sı	ubstitute	d	Absolute			
Frequency (MHz)	Reading (dBµV)	Reading Angle	Angle	Height (cm)	Polar (H/V)	Submitted Level (dBm)	Cable Loss (dB)	Antenna Gain (dBd/dBi)	Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK	5MHz B	andwidth Mid	dle Chan	inel				
715.0	58.58	246	232	Н	-42.07	0.62	-1.67	-44.36	-13	31.36	
715.0	58.80	137	120	V	-39.87	0.62	-1.67	-42.16	-13	29.16	
1673.0	43.66	344	180	Н	-59.98	0.84	8.41	-43.26	-13	30.26	
1673.0	44.15	151	228	V	-60.86	0.84	8.41	-40.25	-13	27.25	
2509.5	42.78	281	153	Н	-58.16	0.89	10.09	-39.25	-13	26.25	
2509.5	43.06	151	186	V	-57.89	0.89	10.09	-36.56	-13	23.56	
			16-QAN	1 5MHz 1	Bandwidth M	iddle Cha	nnel				
715.0	58.68	63	233	Н	-41.97	0.62	-1.67	-44.26	-13	31.26	
715.0	58.80	327	239	V	-39.87	0.62	-1.67	-42.16	-13	29.16	
1673.0	49.99	156	207	Н	-53.65	0.84	8.41	-44.26	-13	31.26	
1673.0	48.67	80	236	V	-56.34	0.84	8.41	-41.36	-13	28.36	
2509.5	44.74	116	213	Н	-56.20	0.89	10.09	-38.25	-13	25.25	
2509.5	44.11	85	213	V	-56.84	0.89	10.09	-35.54	-13	22.54	

Note: The limit is base on EIRP.

LTE Band 41 (30 MHz ~ 26.5 GHz):

Receive		Turntable	Rx An	tenna	Si	ubstitute	d	Absolute		
Frequency (MHz)	Reading (dBµV)	Reading Angle	Height (cm)	Polar (H/V)	Submitted Level (dBm)	Cable Loss (dB)	Antenna Gain (dBd/dBi)	Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK	5MHz B	andwidth Mid	ldle Chan	inel			
716.52	60.37	246	232	Н	-40.28	0.62	-1.67	-45.56	-25	20.56
716.52	61.29	137	120	V	-37.38	0.62	-1.67	-43.21	-25	18.21
5190.00	45.73	344	180	Н	-49.16	1.10	10.30	-44.25	-25	19.25
5190.00	46.52	151	228	V	-48.67	1.10	10.30	-40.26	-25	15.26
7785.00	43.87	281	153	Н	-45.63	1.85	10.04	-39.26	-25	14.26
7785.00	42.15	151	186	V	-47.45	1.85	10.04	-35.87	-25	10.87
			16-QAM	1 5MHz 1	Bandwidth M	iddle Cha	nnel			
716.52	62.03	63	233	Н	-38.62	0.62	-1.67	-46.18	-25	21.18
716.52	61.72	327	239	V	-36.95	0.62	-1.67	-42.16	-25	17.16
5190.00	49.99	156	207	Н	-44.90	1.10	10.30	-45.11	-25	20.11
5190.00	48.67	80	236	V	-46.52	1.10	10.30	-42.14	-25	17.14
7785.00	44.74	116	213	Н	-44.76	1.85	10.04	-38.16	-25	13.16
7785.00	43.12	85	213	V	-46.48	1.85	10.04	-35.10	-25	10.10

Note: The limit is base on EIRP.

FCC §22.917 (a) & §27.53 (m) - BAND EDGES

Applicable Standards

For fixed user stations, any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency

Test Data

Environmental Conditions

Temperature:	23.3 ℃
Relative Humidity:	50 %
ATM Pressure:	101.2kPa

The testing was performed by Hope Zhang on 2019-01-22.

EUT operation mode: Transmitting

LTE Band 5:

QPSK (1.4 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (1.4 MHz, FULL RB) - Right Band Edge

QPSK (3 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (3 MHz, FULL RB) - Right Band Edge

QPSK (5 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (5 MHz, FULL RB) - Right Band Edge

QPSK (10 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (10 MHz, FULL RB) - Right Band Edge

16-QAM (1.4 MHz, FULL RB) - Left Band Edge

16-QAM (1.4 MHz, FULL RB) - Right Band Edge

16-QAM (3 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

16-QAM (3 MHz, FULL RB) - Right Band Edge

16-QAM (5 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

16-QAM (5 MHz, FULL RB) - Right Band Edge

16-QAM (10 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

16-QAM (10 MHz, FULL RB) - Right Band Edge

LTE Band 41:

QPSK (5 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (5 MHz, FULL RB) - Right Band Edge

QPSK (10 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (10 MHz, FULL RB) - Right Band Edge

QPSK (15MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (15 MHz, FULL RB) - Right Band Edge

QPSK (20MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

QPSK (20 MHz, FULL RB) - Right Band Edge

16-QAM (5MHz, FULL RB) - Left Band Edge

16-QAM (5MHz, FULL RB) - Right Band Edge

16-QAM (10 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

16-QAM (10 MHz, FULL RB) - Right Band Edge

16-QAM (15 MHz, FULL RB) - Left Band Edge

16-QAM (15 MHz, FULL RB) - Right Band Edge

16-QAM (20 MHz, FULL RB) - Left Band Edge

Report No.: RSHA181207002-00B

16-QAM (20 MHz, FULL RB) - Right Band Edge

FCC §2.1055 & §22.355 & §27.54 - FREQUENCY STABILITY

Applicable Standards

FCC §2.1055, §22.355 and §27.54.

According to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.2kPa

The testing was performed by Hope Zhang on 2019-01-22.

EUT operation mode: Transmitting(the worst case data as below)

Test Result: Compliance.

LTE Band 5:

	Middle Channel, f _o =836.5 MHz (QPSK)								
Temperature (°C)	Power Supplied (V_{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)					
-25		15	0.0179	2.5					
-20		13	0.0155	2.5					
-10		16	0.0191	2.5					
0		12	0.0143	2.5					
10	24.0	14	0.0167	2.5					
20		3	0.0036	2.5					
30		8	0.0096	2.5					
40		15	0.0179	2.5					
50]	9	0.0108	2.5					
20	V min.= 20.4	8	0.0096	2.5					
20	V max.= 27.6	10	0.0120	2.5					

	Middle Channel, f _o =836.5 MHz (16QAM)								
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)					
-25		8	0.0096	2.5					
-20		11	0.0132	2.5					
-10		10	0.0120	2.5					
0		8	0.0096	2.5					
10	24.0	9	0.0108	2.5					
20		-4	-0.0048	2.5					
30		2	0.0024	2.5					
40		4	0.0048	2.5					
50]	5	0.0060	2.5					
20	V min.= 20.4	6	0.0072	2.5					
20	V max.= 27.6	8	0.0096	2.5					

LTE Band 41:

	Low Channel & High Channel (QPSK)								
Temperature (℃)	Power Supplied (V _{DC})	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)				
-25		2516.0080	2669.0007	2516	2670				
-20		2516.0122	2669.9890	2516	2670				
-10		2516.0201	2669.9971	2516	2670				
0		2516.0620	2669.9962	2516	2670				
10	24.0	2516.0101	2669.9988	2516	2670				
20		2516.0132	2669.9897	2516	2670				
30		2516.0253	2669.9889	2516	2670				
40]	2516.0315	2669.9915	2516	2670				
50]	2516.0151	2669.9893	2516	2670				
20	V min.= 20.4	2516.0638	2669.9952	2516	2670				
20	V max.= 27.6	2516.0746	2669.9970	2516	2670				

Low Channel & High Channel (16QAM)								
Temperature (°C)	Power Supplied (V _{DC})	F _L (MHz)	F _H (MHz)	F _L Limit (MHz)	F _H Limit (MHz)			
-25		2516.0023	2669.0081	2516	2670			
-20		2516.0063	2669.1056	2516	2670			
-10		2516.1089	2669.0035	2516	2670			
0		2516.1066	2669.0275	2516	2670			
10	24.0	2516.0124	2669.1177	2516	2670			
20		2516.1045	2669.1019	2516	2670			
30		2516.0174	2669.0212	2516	2670			
40		2516.0020	2669.0173	2516	2670			
50		2516.0069	2669.0380	2516	2670			
20	V min.= 20.4	2516.2018	2669.0104	2516	2670			
20	V max.= 27.6	2516.0122	2669.0067	2516	2670			

***** END OF REPORT *****