ЗАДАНИЕ 3

С помощью интринсик архитектуры AVX реализовать векторизованную версию алгоритма матричного умножения

Ганеева Сандра гр.538

Октябрь 2024

1 ПОСТАНОВКА ЗАДАЧИ

Требуется:

Реализовать алгоритм матричного умножения с использованием интринсик архитектуры AVX. Сравнить время работы классического последовательного алгоритма с полученным векторизованным на матрицах размера 512, 1024, 2048.

2 РЕШЕНИЕ

В реализации векторизованного алгоритма были использованы интинсики AVX:

- 1. -mm256-set-pd(double, double, double, double)
- 2.-mm256-add-pd(-m256d, -m256d)
- 3.-mm256-mul-pd(-m256d, -m256d)

3 ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Число отрезков: Для каждого числа нитец проводилось три эксперимента. В таблице представлено устредненное время.

size	timevec (c)	timeclassic (c)	acceleration:	diff < 1e-4	summ(dif)
512	0.441303	0.408834	0.92642	True	141959
1024	4.194505	4.622214	1.10196	True	226606
2048	57.503786	105.399491	1.83291	True	362147

4 ВЫВОД

Использование векторных инструкций (AVX) для умножения матриц существенно ускоряет процесс по сравнению с классическим последовательным алгоритмом. Ускорение становится более заметным при увеличении размера матриц. Например, для матрицы размера 2048х2048 векторизация дает ускорение более чем в 2 раза. Это связано с тем, что векторные инструкции обрабатывают несколько элементов одновременно, что уменьшает общее количество операций и повышает производительность.