Computer Vision

Lecture 2 Filtering and interest points

Lecturer:

Dr. Jan van Gemert (tud.computervision@gmail.com)

Recap of last time

- Course logistics
- Pinhole
- Reflection

Questions?

Image Filtering

A bit of Image processing

How to get rid of noisy pixels?

Simple solution: replace pixel by neighbourhood average

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x,y]

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x,y]

2 pixels lost to boundary (1 on each side)

10 pixels

How to prevent?

Source: S. Seitz

Smoothing by averaging

original

filtered

Averaging kernel

• Lets generalize to a kernel:

multiply weights per pixel and sum

Which values in kernel H for the moving average example?

Averaging kernel

Lets generalize to a kernel:

multiply weights per pixel and sum

Which values in kernel H for the moving average example?

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform weight Loop over all pixels in neighborhood around to each pixel image pixel F[i,j]

Why 1/(2k+1)?

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
Non-uniform weights

What happened to the 1/(2k+1)?

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted

$$G = H \otimes F$$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

Questions?

Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Smoothing with a Gaussian

The Gaussian is the only function that does not introduce artifacts [koenderink, "The structure of images", 1984]

Gaussian filters

- What parameters matter here? $h(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{\sigma^2}}$
- **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

- What parameters matter here? $h(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{\sigma^2}}$
- **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

• Variance of Gaussian: determines extent of smoothing

• Rule of thumb: set extent to 3 σ

\cap	ri Ti	gi	ทว	1
U	П	gi.	Ha	l

0	0	0
0	1	0
0	0	0

?

Original

0	0	0
0	1	0
0	0	0

100

Filtered (no change)

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	1
0	0	0

Shifted left by 1 pixel with correlation

Original

1	1	1	1
) -	1	1	1
9	1	1	1

?

Original

1	1	1	1
9	1	1	1
	1	1	1

Blur (with a box filter)

0	0	0	
0	2	0	
0	0	0	

?

Original

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

How different from cross-correlation?

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

Filtering an impulse signal

What is the result of convolving the impulse signal (image) *F* with the arbitrary kernel *H*?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	а	b	С	0	0
0	0	d	е	f	0	0
0	0	g	h	i	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$

For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Properties of convolution

- Linear & shift invariant
- Commutative:

$$f * g = g * f$$

Associative

$$(f * g) * h = f * (g * h)$$

• Identity:

unit impulse
$$e = [..., 0, 0, 1, 0, 0, ...]$$
. $f * e = f$

• Differentiation:

$$\frac{\partial}{\partial x}(f*g) = \frac{\partial f}{\partial x}*g$$

Questions?

Images are functions

• Edges look like steep cliffs

Source: S. Seitz

Images as functions

- We can think of an image as a function, f, from R² to R:
 - f(x, y) gives the intensity at position (x, y)
 - How does reality differ from this definition?
 - Only defined over a rectangle, with finite range:

$$f: [a,b] \times [c,d] \rightarrow [0, 1.0]$$

How about color?

• "Vector valued" function
$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge?

Look for peaks in

 $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Differentiation property of convolution.

Derivative of Gaussian filters

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal θ) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Example

original image (Lena)

Compute Gradients

Derivative of Gaussian

Derivative of Gaussian

• Which one is the gradient in the x-direction (resp. y-direction)?

Gradient Orientation

Orientation of the gradient theta = atan2(gy, gx)

Gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

• Do you see a problem here?

Edge detection, Take 2

Questions?

Next topic: interest point detection

Applications

- Feature points (blobs) are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Edge detection, Take 2

From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the <u>scale</u> of the Laplacian is "matched" to the scale of the blob

Scale selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Why does this happen?

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization

Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:
$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Characteristic scale

• We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example

Questions?

A feature detector example: Harris corner detector

The Basic Idea

- We should easily localize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

Harris Detector: Basic Idea

"flat" region:
no change as shift
window in all
directions

"edge": no change as shift window along the edge direction

"corner":
significant change as
shift window in all
directions

Harris Detector: Mathematics

Window-averaged change of intensity induced by shifting the image data by [*u,v*]:

Window function
$$W(X, Y) = 0$$

1 in window, 0 outside Gaussian

Taylor series approx to shifted image

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$E(u,v) \approx \sum_{x,y} w(x,y) [I(x,y) + uI_x + vI_y - I(x,y)]^2$$

$$= \sum_{x,y} w(x,y) [uI_x + vI_y]^2$$

$$= \sum_{x,y} w(x,y)(u \quad v) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

Harris Detector: Mathematics

Expanding I(x,y) in a Taylor series expansion, we have, for small shifts [U,V], a bilinear approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

M is also called "structure tensor" or "second moment matrix"

Harris Detector: Mathematics

Intensity change in shifting window:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u \\ v \end{bmatrix}$$

Where is the largest change?

Selecting Good Features

How large is each of the two eigenvalues?

small λ_1 , small λ_2

Selecting Good Features

How large is each of the two eigenvalues?

large λ_1 , small λ_2

Selecting Good Features

How large is each of the two eigenvalues?

 λ_1 and λ_2 are large

Harris Detector: Mathematics

"Edge" $\lambda_2 >> \lambda_1$ Classification of image "Corner" points using λ_1 and λ_2 are large, eigenvalues of *M*: $\lambda_1 \sim \lambda_2$; E increases in all directions λ_1 and λ_2 are small; "Edge" E is almost "Flat" constant in all region directions

 λ_1

Harris Detector: Mathematics

No need to compute eigenvalues:

 λ_1

Harris Detector: Mathematics

No need to compute eigenvalues:

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

(k - empirical constant, k = 0.04-0.06)

- R depends only on eigenvalues of M
- R is large for a corner
- R is negative with large magnitude for an edge
- |R| is small for a flat region

 λ_1

Harris Detector

• The Algorithm:

- Compute each element of the structure tensor on the image level
- Find points with large corner response function R (R > threshold)
- Take the points of local maxima of R

Harris Detector: Steps

Harris Detector: Steps Compute corner response *R*

Harris Detector: Steps
Find points with large corner response: *R*>threshold

Harris Detector: Steps Take only the points of local maxima of R

Harris Detector: Steps

Invariance and covariance

- We want features to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and features do not change
 - Covariance: if we have two transformed versions of the same image,
 features should be detected in corresponding locations

Harris Detector: Summary

• Average intensity change in direction [u, v] can be expressed as a bilinear form:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u \\ v \end{bmatrix}$$

• Describe a point in terms of eigenvalues of *M*: measure of corner response

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2 \right)^2$$

• A good (corner) point should have a *large intensity change* in *all directions*, i.e. *R* should be large positive

Ideal feature detector

- Would always find the same point on an object, regardless of changes to the image.
- Ie, insensitive to changes in:
 - Scale
 - Lighting
 - Perspective imaging
 - Partial occlusion

• Rotation covariance?

• Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

• Invariance to image intensity change?

- Invariance to image intensity change?
- Partial invariance to additive and multiplicative intensity changes
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$ Because of fixed intensity threshold on local maxima, only partial invariance to multiplicative intensity changes.

• Invariant to image scale?

• Not invariant to *image scale*!

All points will be classified as edges

Corner!

Questions?

• Scale invariant Harris detector?

Summary

- Filtering
- Convolution and cross-correlation
- Gaussian filtering
- Gradients
- Laplacian for blob detection
- Laplacian for scale selection
- Harris detector