Visual Inference for Graphcial Diagnostic of Linear Mixed Models

Kaiwen Jin

Monash University

2020-09-18

Linguistic Case

Linear Mixed Model

$$y = X\beta + Zb + e$$

where

- $oldsymbol{\cdot}$ $oldsymbol{y}$ is a $oldsymbol{N} imes oldsymbol{1}$ vector of observations, outcome variable
- \mathbf{X} is a $\mathbf{N} \times \mathbf{p}$ matrix
- $oldsymbol{eta}$ is a $\mathbf{p} imes \mathbf{1}$ vector of the fixed effect
- \mathbf{b} is a $\mathbf{N} \times \mathbf{q}$ matrix
- \mathbf{b} is a $\mathbf{q} \times \mathbf{1}$ vector of the random effect
- ullet $E[\mathbf{y}] = oldsymbol{X}oldsymbol{eta}$ and $V(\mathbf{y}) = oldsymbol{\Omega} = oldsymbol{Z}oldsymbol{\Gamma}oldsymbol{Z}^ op + oldsymbol{R}$

How can we implement the LME?

- lmer function from lme4 package
- mmer function from sommer package

Graphical diagnostic on residual analysis

- Types of residuals and corresponding residual diagnostic purpose:
 - \circ Marginal residuals, $\hat{oldsymbol{\xi}} = oldsymbol{y} oldsymbol{X} \hat{oldsymbol{eta}}$
 - Linear of the effects fixed
 - Presence of outlying observations
 - Within-units covariance matrix
 - \circ Conditional residuals, $\hat{m{e}} = m{y} m{X}\hat{m{eta}} m{Z}\hat{m{b}}$
 - Presence of outlying observations
 - Homoskedasticity of conditional errors
 - Normality of conditional errors
 - ullet Random effect residuals, $\mathbf{Z}\hat{\mathbf{b}}$
 - Presence of outlying subjects
 - Normality of the random effects

Linguistic Case

Presence of outlying observations

Subject Scenario

Linguistic Case

Normality of conditional errors

Lineups

Lineups

Lineups

