MAP0214 - Cálculo Numérico com Aplicações em Física ${\rm EP02}$

Guilherme Pacheco Paredes N°USP: 12693754 Instituto de Física, Universidade de São Paulo - SP $\frac{28/09/2024}{}$

Os exercícios computacionais deste Ep foram escritos em código Python.

1

a) Aplicando as leis de Kirchhoff, nós obtemos, para as duas malhas:

$$U_3 - U_2 - R_4 I_3 + R_3 I_2 = 0$$

$$U_2 + R_2 I_1 - U_1 + R_1 I_1 + R_4 I_3 = 0$$

$$\implies U_2 + (R_1 + R_2)I_1 + R_4 I_3 - U_1 = 0$$
(2)

Aplicando a Lei dos Nós, temos a seguinte relação:

$$I_1 - I_2 - I_3 = 0. (3)$$

Portanto, obtemos as três equações lineares são

$$\begin{cases} 0.0I_1 + 5.3I_2 - 1.8I_3 &= 3.1\\ 11.9I_1 + 0.0I_2 + 1.8I_3 &= 15.0\\ I_1 - I_2 - I_3 &= 0 \end{cases}$$

$$(4)$$

que na forma matricial é dado por

$$\begin{bmatrix} 0.0 & 5.3 & -1.8 \\ 11.9 & 0.0 & 1.8 \\ 1.0 & -1.0 & -1.0 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 3.1 \\ 15.0 \\ 0.0 \end{bmatrix}$$
 (5)

b) Pelo método da Eliminação de Gauss e utilizando do pivotamento parcial, foi criado o seguinte programa:

```
def eliminacao_gauss(A, b):
   n = len(b)
    # Criar a matriz aumentada
    Ab = [linha + [b[i]] for i, linha in enumerate(A)]
   print("Matriz aumentada inicial:")
    for linha in Ab:
       print(" ".join(f"{elem:8.1f}" for elem in linha))
   print()
    # Etapa 1: Eliminacao para forma escalonada com pivotamento parcial
    for i in range(n):
        # Encontrar o pivo e trocar linhas se necessario
       max linha = i
       for k in range(i + 1, n):
            if abs(Ab[k][i]) > abs(Ab[max_linha][i]):
               max_linha = k
        if i != max_linha:
            Ab[i], Ab[max_linha] = Ab[max_linha], Ab[i]
            print(f"\nTrocando linha {i + 1} com linha {max_linha + 1}:")
            for linha in Ab:
                print(" ".join(f"{elem:8.1f}" for elem in linha))
            print()
        # Zerar elementos abaixo do pivo
        for j in range(i + 1, n):
            if Ab[j][i] != 0: # Verifica se o elemento abaixo do pivo nao e zero
                fator = Ab[j][i] / Ab[i][i]
                print(f'' nEliminando elemento na linha {j + 1}, coluna {i + 1}"
                      f"com fator {fator:.7f}:")
                for k in range(i, n + 1):
                    Ab[j][k] = fator * Ab[i][k]
                for linha in Ab:
                    print(" ".join(f"{elem:8.1f}" for elem in linha))
                print()
    # Etapa 2: Substituicao reversa para resolver as variaveis
    x = [0] * n
    for i in reversed(range(n)):
       x[i] = Ab[i][n] / Ab[i][i]
        print(f"\nCalculando x{i + 1} = {Ab[i][n]:.4f} / {Ab[i][i]:.4f} = {x[i]:.7f}")
        for j in range(i + 1, n):
            x[i] = Ab[i][j] * x[j] / Ab[i][i]
            print(f"\nAjustando x{i + 1} com x{j + 1} = \{x[j]:.7f\}")
        print()
   return x
A = [[0.0, 5.3, -1.8], [11.9, 0.0, 1.8], [1, -1, -1]]
b = [3.1, 15.0, 0]
# Resolve o sistema
solucao = eliminacao_gauss(A, b)
print("Solucao:")
print(f"I1 = {solucao[0]:.7f}")
print(f"I2 = {solucao[1]:.7f}")
print(f"I3 = {solucao[2]:.7f}")
```

A seguir, a saída do código:

```
Matriz aumentada inicial:
    0.0 5.3 -1.8
                             3.1
   11.9
           0.0
                   1.8
                            15.0
    1.0
           -1.0
                   -1.0
                             0.0
Trocando linha 1 com linha 2:
   11.9
         0.0 1.8
                            15.0
    0.0
            5.3
                    -1.8
                             3.1
    1.0
           -1.0
                   -1.0
                             0.0
Eliminando elemento na linha 3, coluna 1 com fator 0.0840336:
                         15.0
   11.9 0.0 1.8
    0.0
           5.3
                   -1.8
                            3.1
    0.0
                            -1.3
           -1.0
                 -1.2
Eliminando elemento na linha 3, coluna 2 com fator -0.1886792:
   11.9 0.0 1.8 15.0
    0.0
           5.3
                   -1.8
                            3.1
    0.0
           0.0 -1.5
                            -0.7
Calculando x3 = -0.6755985 / -1.4908831 = 0.4531532
Calculando x2 = 3.1000000 / 5.3000000 = 0.5849057
Ajustando x2 com x3 = 0.4531532
Calculando x1 = 15.0000000 / 11.9000000 = 1.2605042
Ajustando x1 com x2 = 0.7388068
Ajustando x1 com x3 = 0.4531532
Solução:
I1 = 1.1919600
I2 = 0.7388068
I3 = 0.4531532
```

O sistema requereu a troca das linhas 1 e 2 por pivotamento parcial e duas operações. Uma entre as linhas 1 e 2 e outra entre as linhas 1 e 3. As soluções obtidas por esse método foram $I_1=1.1919600\mathrm{A},\ I_2=0.7388068\mathrm{A}$ e $I_3=0.4531532\mathrm{A}$, limitadas a 7 decimais.

c) Pelo método de Jacobi definindo o critério de parada como $\max |x_i^{k+1} - x_i^k| < \epsilon$ e $\epsilon = 10^{-3}$ o seguinte programa foi implementado:

```
def jacobi(A, b, x0, epsilon=1e-3):
    n = len(A)
    x = x0[:]
    dados_iteracao = []
    while True:
        # Zerando o vetor
        x_novo = [0.0] * n
        # Armazena todas as n atualizações antes de substituir o vetor x original
        for i in range(n):
            # Soma dos elementos anteriores
            s1 = sum(A[i][j] * x[j] for j in range(i))
            # Soma dos elementos seguintes
            s2 = sum(A[i][j] * x[j] for j in range(i + 1, n))
            # Atualização de x_novo[i]
            x_novo[i] = (b[i] - s1 - s2) / A[i][i]
        # Critério de parada baseado na diferença máxima
        max_dif = max(abs(x_novo[i] - x[i]) for i in range(n))
        dados_iteracao.append((len(dados_iteracao) + 1, x_novo[0], x_novo[1],
                                x_novo[2], max_diff))
        if max_dif < epsilon:</pre>
            break
        # x se torna o x mais recente
        x = x_novo[:]
    return x_novo, dados_iteracao
# Matriz A e vetor b fornecidos
A = [[11.9, 0.0, 1.8], [0.0, 5.3, -1.8], [1.0, -1.0, -1.0]]
b = [15.0, 3.1, 0.0]
# Vetor inicial
x0 = [1.0, 1.0, 1.0]
# Resolução do sistema
solucao, dados_iteracao = jacobi(A, b, x0)
# Imprimir a tabela de iterações
print(f"\n|{'Iteração':^10}|{'I1':^10}|{'I2':^10}|{'I3':^10}|{'Erro':^10}|")
print("-" * 56)
for dado in dados_iteracao:
    print(f"|\{dado[0]: \cap 10\}|\{dado[1]: \cap 10.7f\}|\{dado[2]: \cap 10.7f\}|\{dado[3]: \cap 10.7f\}|"
          f"{dado[4]:^10.7f}|")
# Imprimir a solução
print("\nSolução:")
print(f"I1 = {solucao[0]:.7f}")
print(f"I2 = {solucao[1]:.7f}")
print(f"I3 = {solucao[2]:.7f}")
```

A seguir, a saída do código:

Ι	Iteração	I1	I2		13	1	Erro	
1	1	1.1092437	10.92452	83	-0.0000000	1.	0000000	1
	2	1.2605042	10.58490	57	0.1847154	10.	3396226	
	3	1.2325641	10.64763	92	0.6755985	10.	4908831	
	4	1.1583128	0.81435	42	0.5849249	10.	1667150	
	5	11.1720282	0.78355	94	0.3439586	10.	2409663	
	6	1.2084768	0.70172	18	0.3884688	10.	0818376	
	7	1.2017442	0.71683	85	0.5067551	10.	1182863	
	8	1.1838522	10.75701	12	0.4849058	10.	0401727	
	9	1.1871571	10.74959	06	0.4268410	10.	0580647	
	10	1.1959400	0.72987	05	0.4375665	10.	0197201	
	11	1.1943177	0.73351	31	0.4660695	10.	0285030	
	12	1.1900063	0.74319	34	0.4608045	10.	0096803	
	13	1.1908027	0.74140	53	0.4468129	10.	0139916	
	14	1.1929191	10.73665	34	0.4493974	10.	0047519	
	15	1.1925281	10.73753	12	0.4562656	10.	0068683	
	16	1.1914892	0.73986	38	0.4549970	10.	0023326	
	17	1.1916811	10.73943	29	0.4516254	10.	0033715	
	18	1.1921911	10.73828	79	0.4522482	10.	0011450	
	19	1.1920969	10.73849	94	0.4539032	10.	0016550	
	20	1.1918466	10.73906	15	0.4535975	10.	0005621	
Solução:								
Ι1	I1 = 1.1918466							
12	I2 = 0.7390615							
13	3 = 0.4535975							

Por este método foram realizadas 20 iterações e foram obtidos os valores $I_1=1.1918466\mathrm{A},\ I_2=0.7390615\mathrm{A}$ e $I_3=0.4535975\mathrm{A}$ como soluções do sistema, limitadas novamente a 7 decimais.

d) A matriz J é dada pela relação

$$\mathbb{J} = -D^{-1}(\mathbb{L} + \mathbb{U}) = -\begin{bmatrix}
0 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \cdots & \frac{a_{1n}}{a_{11}} \\
\frac{a_{21}}{a_{22}} & 0 & \frac{a_{23}}{a_{22}} & \cdots & \frac{a_{2n}}{a_{22}} \\
\frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & 0 & \cdots & \frac{a_{3n}}{a_{33}} \\
\vdots & \vdots & \ddots & 0 & \vdots \\
\frac{a_{n1}}{a_{nn}} & \frac{a_{n2}}{a_{nn}} & \cdots & \frac{a_{n,n-1}}{a_{nn}} & 0
\end{bmatrix}$$
(6)

tal que

$$A = \mathbb{L} + D + \mathbb{U},\tag{7}$$

em que $\mathbb L$ é a matriz triangular inferior sem diagonal, $\mathbb U$ é a matriz triangular superior sem diagonal, D é a matriz diagonal e A é a matriz do sistema em questão. Assim, seja

$$A = \begin{bmatrix} 11.9 & 0.0 & 1.8 \\ 0.0 & 5.3 & -1.8 \\ 1.0 & 1.0 & -1.0 \end{bmatrix}$$
 (8)

temos que D será:

$$D = \begin{bmatrix} 11.9 & 0.0 & 0.0 \\ 0.0 & 5.3 & 0.0 \\ 0.0 & 0.0 & -1.0 \end{bmatrix} \implies D^{-1} = \begin{bmatrix} \frac{1.0}{11.9} & 0.0 & 0.0 \\ 0.0 & \frac{1.0}{5.3} & 0.0 \\ 0.0 & 0.0 & -\frac{1.0}{1.0} \end{bmatrix}$$
(9)

Para L:

$$\mathbb{L} = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 1.0 & -1.0 & 0.0 \end{bmatrix}$$
 (10)

Para \mathbb{U} :

$$\mathbb{U} = \begin{bmatrix}
0.0 & 0.0 & 1.8 \\
0.0 & 0.0 & -1.8 \\
0.0 & 0.0 & 0.0
\end{bmatrix}$$
(11)

Portanto, a matriz J será:

$$\mathbb{J} = -\begin{bmatrix}
0.0 & 0.0 & \frac{1.8}{11.9} \\
0.0 & 0.0 & \frac{-1.8}{5.3} \\
-\frac{1.0}{1.0} & \frac{-1.0}{-1.0} & 0.0
\end{bmatrix} = \begin{bmatrix}
0.00 & 0.00 & -0.15 \\
0.00 & 0.00 & 0.34 \\
1.00 & -1.00 & 0.00
\end{bmatrix}$$
(12)

é possível obter os autovalores da matriz \mathbb{J} , e foram obtidos $\lambda_1=0.700631i \implies \lambda_1=0.70i$, $\lambda_2=-0.700631i \implies \lambda_2=-0.70i$ e $\lambda_3=0$ e portanto o raio espectral, sendo o módulo do maior autovalor, é $\rho_s=0.70$. Dada a relação

$$\rho_s^k \approx 10^{-p} \tag{13}$$

em que p=3 é a precisão, então $k\approx 19.4161\implies k=19$. De fato, o número de iterações realizado foi 20, portanto a convergência obedece a relação (13).

e) Pelo método de Gauss-Seidel, o seguinte programa foi implementado:

```
def gauss_seidel(A, b, x0, epsilon=1e-3):
   n = len(A)
   x = x0[:]
   dados_iteracao = []
   while True:
       # Vetor anterior recebendo x a cada iteracao
       x_ant = x[:]
       for i in range(n):
           # Soma dos elementos anteriores
           s1 = sum(A[i][j] * x[j] for j in range(i))
           # Soma dos elementos seguintes
           s2 = sum(A[i][j] * x[j] for j in range(i + 1, n))
           \# Atualiza x[i] imediatamente
           x[i] = (b[i] - s1 - s2) / A[i][i]
       # Cálculo do critério de parada baseado na diferença máxima
       max_dif = max(abs(x[i] - x_ant[i]) for i in range(n))
       dados_iteracao.append((len(dados_iteracao) + 1, x[0], x[1], x[2], max_dif))
       if max_dif < epsilon:</pre>
           break
   return x, dados_iteracao
# Matriz A e vetor b fornecidos
A = [[11.9, 0.0, 1.8], [0.0, 5.3, -1.8], [1.0, -1.0, -1.0]]
b = [15.0, 3.1, 0.0]
# Vetor inicial
x0 = [1.0, 1.0, 1.0]
# Resolução do sistema
solucao, dados_iteracao = gauss_seidel(A, b, x0)
# Imprimir a tabela de iterações
print(f"\n|{'Iteração':^10}|{'I1':^10}|{'I2':^10}|{'I3':^10}|{'Erro':^10}|")
print("-" * 56)
for dado in dados_iteracao:
   f"{dado[4]:^10.7f}|")
# Imprimir a solução
print("\nSolução:")
print(f"I1 = {solucao[0]:.7f}")
print(f"I2 = {solucao[1]:.7f}")
print(f"I3 = {solucao[2]:.7f}")
```

A seguir, a saída do código:

```
| Iteração | I1 | I2 | I3 | Erro | |
| 1 | | 1.1092437 | 0.9245283 | 0.1847154 | 0.8152846 |
| 2 | | 1.2325641 | 0.6476392 | 0.5849249 | 0.4002095 |
| 3 | | 1.1720282 | 0.7835594 | 0.3884688 | 0.1964561 |
| 4 | | 1.2017442 | 0.7168385 | 0.4849058 | 0.0964370 |
| 5 | | 1.1871571 | 0.7495906 | 0.4375665 | 0.0473393 |
```

Por esse método, foi obtido os valores $I_1=1.1918928\mathrm{A},\ I_2=0.7389576\mathrm{A}$ e $I_3=0.4529352\mathrm{A}$ como soluções do sistema, limitadas novamente a 7 decimais.