MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D)

June 8, 2009

1.	What is the stunt value needed to make a 50 Ω
	0-1 mA meter into a 0-50 mA meter?

- 1Ω а
- b. 1.01 Ω
- 5.55 Ω C.
- 1.11 Ω
- 2. What are the two methods of expressing the Sensitivity of a meter?
 - a. Ω/V
 - b. full scale deflection
 - C. full scale current
 - a and c only
- 3. What do pointers or underdamped meters do?
 - a. Oscillate above and below the value
 - b. Move too fast to indicate value
 - c. Move to the correct reading rapidly but does not overshoot
 - d. Move slowly and will not indicate rapid variations adequately
- 4. What do pointers on overdamped meters do?
 - a. Oscillate above and below the value
 - b. Move too fast to indicate value
 - c. Move to the correct reading rapidly but does not overshoot
 - d. Move slowly and will not indicate rapid variations adequately
- 5. Indicate which is not a way producing damping in meters.
 - a. shunt coil
 - b. multiplier
 - c. aluminum coil form
 - d. air paddle
- 6. Which is the most sensitive meter from among the choices?
 - a. 0-50 μA
 - b. 0-10 mA
 - c. 0-1 mA
 - d. 0-100 mA
- 7. What is the Ω/V sensitivity of a 0-2 mA meter?
 - a. 500 Ω/V
 - b. 40 k Ω/V
 - c. 50 Ω/V
 - d. 5 k Ω/V
- 8. What is the Ω/V sensitivity of a 0-25 μ A meter?
 - a. 500 Ω/V
 - b. 40 kΩ/V
 - c. 50 Ω/V
 - d. $5 k\Omega/V$
- 9. What would be the value of the multiplier used with a 50-µA movement, 300-V meter?

- a. none of these
- $b.~~20~k\Omega$
- c. 0.015Ω
- d. $6 \, m\Omega$
- 10. If a 20 k Ω /V meter with 5k Ω internal resistance is used in an ohmmeter with 3V battery, what internal resistance is required in the meter to produce proper zeroing?
 - a. 60 kΩ
 - b. $20 \text{ k}\Omega$
 - c. 16.67 Ω
 - d. none of these
- 11. On most ohmmeters where is the $0-\Omega$ graduation?
 - a. far left
 - b. far right
 - c. both left and right
 - d. none of these
- 12. On what range on multirange ohmmeters is the meter most likely to be dangerous to equipment being tested?
 - a. High R
 - b. Mid R
 - c. none of these d. Low R
- 13. What does VOM mean?
 - a. Volt-ohm-milliammeter
 - b. Volt-ohm-milliampere meter
 - c. Volt-ohm-meterd. none of these
- 14. What is required to convent a dc EVM to an acreading EVM?
 - a. DC to AC converter
 - b. AC probe
 - both AC probe and DC to AC converter
 - d. none of these
- 15. The time interval that a waveform is high (or low) of the signal. is the
 - a. pulse width
 - b. pulse length
 - pulse position
 - d. duty cycle
- 16. A Wheatstone bridge is balanced if
 - a. the ratio of resistors on one side of the bridge is one while the ratio of resistors on the other side is infinity
 - b. the ratio of resistors on one side of the bridge is greater than the

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D)

June 8, 2009

	0	ratio of resistors on the other side the ratio of resistors on one side	,		peak to peak average
		of the bridge equals the ratio of resistors on the other side	24.	An element in protection agai	
	d.	the bridge uses identical resistors		a. b.	Resistor Transistor
17.	The pointer of a	an indicating instrument is in the			Semiconductor Fuse
	final deflected	position, the is zero.			
	b.	deflecting torque controlling torque	25.	lead is connect	hmmeter behave if its positive ted to the cathode of a diode
		damping torque		while negative	
1Ω		frictional m force in analog instruments			Has infinite high resistance Has unstable resistance
10.		he moving system to deflect from			Has very low resistance
	its zero position				Has decreasing resistance
		Deflecting force		ű.	That accreasing recipitation
		Damping force	26.	. As you increas	e the doping level of a crystal
		Return-to-zero force		diode its voltag	
	d.	Controlling force			destabilizers
		-		b.	decreases
19.	A moving syste	m force in analog instruments		C.	increases
		that the deflection of the pointer		d.	stabilizers
		e of measured quantity always			
	has the same v		27.		three terminals of a bipolar
		Damping force		transistor?	
		Controlling force			cathode, plate and grid
		NRZ force			base, collector and emitter
	d.	Deflecting force			input, output and ground
20.	All voltmeters e	except one of the following are		d.	gate, source and sink
		e passage of current.	28.	. How do zener	diodes widely used?
	a.	Moving-iron		a.	Current limiters
	b.	Dynamometer		b.	Variable resistors
		Electrostatic			Voltage regulators
	d.	Permanent-magnet moving coil		d.	Power collectors
21.	Disc is made of damping?	f what material in eddy current	29.		in electronic transistor that is nd very thin is referred to the
		Conductor and non-magnetic		lightly doped a	nd very tilli is referred to the
	u.	material			collector-base
	b.	Conductor and magnetic			collector
		material			base
	C.	Non-conductor and non-			emitter
		magnetic material			
	d.	Non-conductor and magnetic	30.	A transistor ac	ts as when saturated.
		material		a.	open circuit
					very low resistance
22.	The time interv	al between pulses is called		C.	very high resistance
		pulse frequency		d.	variable resistance
	b.	pulse delay			
	C.		31.		tor technology, the characteristic
	d.	pulse period			n cut-off refers to a condition
00	A			when	
23.		e provides easy measurement of		a.	the transistor is at its operating
	valu			point	no ourrent floure frame amittente
		Instantaneous		collector	no current flows from emitter to
	υ.	Rms		CONCCIO	

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D)

June 8, 2009

- c. there is no base current
- d. maximum current flows from emitter to collector
- 32. Which is the principal characteristic of a tunnel diode?
 - a. A very high PIV
 - b. A high forward current rating
 - c. A high forward resistance
 - d. A negative resistance region
- 33. A type of servo whose goal is to control the position of the load.
 - a. Control servo
 - b. Position servo
 - c. Load servo
 - d. None of these
- 34. Thermocouple an electrical temperature sensing device which is composed of a pair of different kinds of metal wires joined together in three complete loops.
 - a. Thermocouple
 - b. Thermowire
 - c. Thermopair
 - d. Thermodynamics
- 35. One of the most common mechanical configuration in robotics.
 - a. Hydraulic
 - b. Hydropneumatic
 - c. Pneumodraulic
 - d. Pneumatic
- 36. A basic requirement of a closed-loop system (not present in open-loops) that present load position to be sensed.
 - a. Ground
 - b. Short
 - c. Feedback
 - d. None of these
- 37. A French scientist in 1852 who first coined the word gyroscope.
 - a. Leon Gyronel
 - b. Leon Foucault
 - c. Francois LeFolt
 - d. None of these
- One advantage of hydraulic actuator in industrial robots.
 - a. great force capacity handling heavy loads
 - b. light loads
 - c. fast reaction
 - d. none of these
- 39. Two actuator types used in industrial robots.
 - a. Pneumatic and hydraulic arm
 - b. Pneumatic and jointed arm

- c. Hydraulic and jointed arm
- d. None of these
- 40. A servo characteristic which is the time it takes between input signal and actual movement of the load.
 - a. Precision timing
 - b. Resolution period
 - c. Time lag
 - d. None of these
- 41. A servo characteristic that is undesirable and is reduced through the use of high gain amplifiers.
 - a. None of these
 - b. Resolution period
 - c. Precision timing
 - d. Time lag
- 42. A type of synchro used in systems requiring large amounts of power and a high degree of accuracy.
 - a. Tri-speed synchro
 - b. System synchro
 - c. Accurate synchro
 - d. Differential synchro
- Tri-speed Synchro system a type of synchro system that is used to transmit very large quantities of data.
 - a. Tri-speed synchro system
 - b. System synchro system
 - c. Accurate synchro system
 - d. Differential synchro system
- 44. The special requirement of the pulse-counting accelerometer is designed for .
 - a. Analog data
 - b. Digital data
 - c. Special data
 - d. None of these
- 45. Open-loop it is a control system that is controlled directly, and only, by an input signal.
 - a. Closed-loop
 - b. Open-loop
 - c. Directly-controlled
 - d. Signal-controlled
- 46. The heart of any normal computer
 - a. Microcontroller
 - b. electronic heart
 - c. microprocessor
 - d. computer heart
- 47. Powered one of the first portable electronic calculators
 - a. 8088
 - b. 4004
 - c. 80386

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D) June 8, 2009

d. 80486	 A situation or a term used where instruction execution overlap.
48. MIPS is related to	a. overflow
a. clock speed	b. pipelined architecture
b. the process done by the	c. overlapped instructions
microprocessor	d. execution overlap
c. wire velocity	u. execution overlap
•	EG Which of the following is not a basis type of
d. memory	56. Which of the following is not a basic type of
40. Canda adduses to magnetic	circuit?
49. Sends address to memory	a. the R-circuit
a. data bus	b. the C-circuit
b. control bus	c. the L-circuit
c. address bus	d. the R-L-C-circuit
d. USB	
	57. In each case of the basic type of circuit, current
50. The simplest ALU	will depend upon
a. 8-bit adder	 magnitude of emf
b. 8-bit divider	II. Multiplying factors
c. 8-bit multiplier	III. corresponding ohmic values
d. 8-bit logic	IV. Corresponding inductance values
ŭ	a. I and II
51. Allows multiple outputs to connect a wire, but	b. III and IV
only one of them actually drive a 1 or a 0 onto	c. II and III
the line	d. I and III
a. disconnector	a. Fana in
b. tri-state buffer	58. What is the unit of inductance?
c. connector	a. Farad
d. register	b. Ohm
EQ. Which is not a function of a control buo?	c. Henry
52. Which is not a function of a control bus?	d. Mho
a. tell the input/output	FO 11-10 of a constitution
registers to latch the	59. Unit of capacitance.
value currently on the	a. Farad
data bus	b. Ohm
b. tell the instruction	c. Henry
register to latch the	d. Mho
value currently on the	
data bus	60. Unit of reactance.
 c. tell the program counter 	a. Farad
to increment	b. Ohm
d. tell the program counter	c. Henry
to reset to zero	d. Mho
53. Contains bytes of information, and the	
microprocessor can read or write to those bytes	61. Unit of admittance.
depending on whether the RD or WR line is	a. Farad
signaled.	b. Ohm
a. ROM	c. Henry
b. PROM	d. Mho
c. RAM	d. Willo
d. DRAM	62. There are possible series combinations of
d. DIVAIN	R, L, and C.
54. When the microprocessor starts, it begins	a. 3
executing instructions it finds in the	a. 5 b. 5
a. DOS	c. 4
b. BIOS	d. 6
c. AUTOEXEC.BAT	62. The helpevior of a name resistant and a series in
d. SYSTEM.INI	63. The behavior of a pure resistor in an a-c circuit
	is to that in d-c circuit.
	a. not similar

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D) June 8, 2009

		C.	may be similar sometimes similar exactly similar	7	1.	parallel a.	OS with series pmos and complementary Inmos is equivalent to logical nand gate nor gate
64.	Current resistor	circuits	Itage phasors are sometimes in phase	_ in			and gate or gate
		b. c. d.	never in phase always in phase out-of-phase		2.	all inpu a.	of the following is the probable output if ts of a TTL gate are binary 1? Interdeterminate Determinable
65.	that		in an a-c circuit takes a cu				Binary 1 Binary 0
	a.		he impressed emf by exactal degrees.		3	Which	is not an advantage of CMOS over TTL
	b.		chind the impressed emf by			logic fa	
			90 electrical degrees.				Lower power dissipation
	C.		he impressed emf by the				Greater fan-out
	ما		ted electrical degrees.	, the			Lower propagation delay
	u.		chind the impressed emf by ted electrical degrees.	/ tile		u.	Greater packing density
		oompa	iod olootilodi doglooo.	7.	4.	Α	is a junction field effect transistor
66.			vith MOS devices, the ma	ain bus			Schottky barrier instead of a normal
	•		s likely to be				nductor junction.
		Resisti Curren					biFET MOSFET
		Capaci					MESFET
		Static					JUGFET
^ -	\	4 4		-40 -7	_	14 ! 4	one of DOM the contents of which can be
07.			ue regarding a CMOS invelially no current flows for lo input			erased	ype of ROM the contents of which can be by exposure to ultraviolet radiation. EPROM
	b.	For de	vices of similar dimension er than nmos	s pmos		b.	PROM EEPROM
	C.	Full log	gical 0 and 1 levels are pre	esented			EAPROM
	Ь	at the o		quency, 70	6	It is a d	lata manipulated by a computer program.
	ű.		ses the power dissipation	adonoy,	٥.		Source program
						b.	Database
68.			s, the oxide is usually				Object program
	a. b.	MnO SiO				d.	Language
		SiO ₂		7	7.	It is	a program written in a language
		H ₂ O		·			tandable by human.
							Source program
69.			used as gate of MOS for	IC.			Database Object program
		Gold	rystalline silicon				Object program Language
		Polysili	con			u.	Languago
		Platinu		7	8.		ram written in machine language.
							Source program
70.			parallel pmos and compler	nentary			Database Object program
		nand g	equivalent to logical				Object program Language
		nor gat				u.	Language
		and ga		7	9.		ram that translates instructions written in
		or gate				asseml	bly language into machine code.
							Assembler
						D.	Interpreter

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D)

June 8, 2009

- c. Compiler
- d. Translator
- 80. Invented computer mouse in 1964.
- a. Douglas Engelbart
- b. R G Sweet
- c. Allen and Gibbons
- d. Bryant Rogers
- 81. Invented fiber optics communications in 1966.
- a. Douglas Engelbart
- b. R G Sweet
- c. Kao and Hockham
- d. Bryant Rogers
- 82. Invented IMPATT diode in 1964.
- a. Douglas Engelbart
- b. Johnson and deLoacn
- c. Kao and Hockham
- d. Bryant Rogers
- 83. Invented TRAPATT diode in 1967.
- a. Douglas Engelbart
- b. Johnson and deLoach
- c. Kao and Hockham
- d. Prager, Chang and Weisbrod
- 84. Invented BARITT diode in 1968.
- a. G T Wright
- b. Johnson and deLoach
- c. Kao and Hockham
- d. Prager, Chang and Weisbrod
- 85. Invented IC in 1958.
- a. G T Wright
- b. Johnson and deLoach
- c. Jack Kilby
- d. Prager, Chang and Wesibrod
- 86. Invented the IC aluminum metallization in 1968.
- a. G T Wright
- b. Robert Noyce
- c. Jack Kilby
- d. Prager, Chang and Weisbrod
- 87. Invented the internet in 1969.
- a. G T Wright
- b. Robert Noyce
- c. Jack Kilby
- d. ARPANET
- 88. Invented the UNIX operating system in 1970.
- a. Bell Labs, University of California
- b. Robert Noyce
- c. Jack Kilby
- d. ARPANET
- 89. Invented the CCD in 1970.
- a. Bell Labs, University of California

- b. Robert Noyce
- c. W S Boyle and G E Smith
- d. ARPANET
- 90. Invented the video games in 1972.
- a. Bell Labs, University of California
- b. Magnavox
- c. W S Boyle and G E Smith
- d. ARPANET
- 91. Invented the I²L integrated circuit in 1972.
- a. Bell Labs, University of California
- b. Magnavox
- c. W S Boyle and G E Smith
- d. Hart and Slob
- 92. Invented CATT in 1974.
- a. Yu, Cady and Tantraporn
- b. Magnavox
- c. W S Boyle and G E Smith
- d. Hart and Slob
- 93. Meters with moving coil are normally used for measuring _____.
 - a. dc only
 - b. ac only
 - c. both ac and dc
 - d. % of value of dc
- 94. Another name of PMMC instrument.
 - a. ferromagnetic
 - b. electrodynamometer
 - c. D' Arsonval
 - d. iron vane
- 95. Find the voltage drop developed across D' Aarsonval meter movement having an internal resistance of 1 k ohm and full deflection current of 150 micro amp.
 - a. 150 micro V
 - b. 150 kV
 - c. 150 V
 - d. 150 mV
- 96. It consists of a permanent magnet, moving coil, and spring and the deflection of the pointer depends upon the interaction of the magnetic fields of the current carrying coil and permanent magnet.
 - a. ferromagnetic
 - b. electrodynamometer
 - c. D' Arsonval
 - d. iron vane
- 97. What is the common type of meter movement?
 - A. Fixed coil
 - b. Digital
 - c. Farad
 - d. D' Arsonval

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D)

June 8, 2009

	a. ECG
98. With no added gadget, D' Arsonval meter can be	b. EEG
used to measure.	c. ESC
a. AC	d. ETX
b. AC and DC	

99. An instrument used to measure the voltage b. generated by human body parts in relation to the c.

action of the human heart.

d. dynamic resistance

c. DC

100. How many decibels gain does an amplifier if it produces 40-W output with an input of 0.016 W?

a. 3.398 dBb. 33.9 dBc. 67.959 dBd. -33.9 dB

MOCK BOARD EXAMINATION IN ELECTRONICS ENGINEERING (D) June 8, 2009

Λροινοπι			40		۸
Answer: 1.	В		48. 49.		A C
••		: The meter must handle 1% of the desired	50.		A
	full-scale	e reading.	51.		В
		0.0005 + 0.0495 = 0.05A	52.		A
	For o	E= IR = $(1\text{mA})(50\Omega) = 0.05\text{V}$	53.		C
		full-scale reading of 0.05A, The shunt ce will have to carry a current of 0.0495 A.	54. 55.		B B
	redictari	$R_{SH} = 0.05 / 0.0495 = 1.01\Omega$ or	56.		D
		<u> </u>	57.		D
		00 = 0.5 – meter must handle	58.		C
		100 = 49.5 – shunt must handle	59.		A
	$\frac{50}{49.5} = 2$	1.0112	60. 61.		B D
	10.0		62.		C
2.	D		63.		D
3.	A		64.		C
4. 5.	D B		65.		B capacitive
5. 6.	A			C D	
7.	A	Sensitivity = $1/2mA = 500 \Omega/V$	01.		wer dissipation
8.	В	•	68.	Ċ	SiO ₂
9.	D .	D 01/170 A 0010		C	polysilicon
10. 11.		$R_T = 3V / 50 \mu A = 60 k\Omega$		A	nand gate
11.				B D	nor gate binary 0
13.				C	lower propagation delay
14.				С	MESFET
15.		pulse width		Α	EPROM
16.	C	the ratio of resistors on one side of		В	database
	side	idge equals the ratio of resistors on the other		A C	source program object program
17.		Damping torque		Ä	assembler
18.		Deflecting force	80.		Douglas Engelbart
19.		Controlling force	81.		Kao and Hockham
20. 21.	C A	Electrostatic Conductor and non-magnetic	82. 83.		Johnson and deLoach Prager, Chang and Weisbrod
۷۱.	mater	S .	84.		G T Wright
22.		pulse delay	85.		Jack Kilby
23.		peak to peak	86.		Robert Noyce
24.		Fuse	87.		ARPANET
25. 26.	A B	has infinite high resistance decreases	88. 89.		Bell Labs, University of California W S Boyle and G E Smith
27.		base, collector and emitter	90.		Magnavox
28.	С	Voltage regulators	91.	D	Hart and Slob
29.		base	92.		Yu, Cady and Tantraporn
30. 31.		very low resistance no current flows from emitter to collector	93. 94.		dc only D' Arsonval
32.		A negative resistance region	9 4 . 95.		150 mV
33.			96.		D' Arsonval
34.			97.		D' Arsonval
35.			98.		DC
36. 37.			99. 100		ECG 33.9 dB
38.			100		55.5 42
39.	В				
40.					
41. 42.					
42. 43.					
44.					
45.					
46.					
47.	В				