MỤC LỤC

1.1. Mô phỏng các cổng luận lý và thiết bị lưu trữ	1
1.1.1. Mô phỏng chức năng của các cổng luận lý	1
1.1.2. Mô phỏng các thiết bị lưu trữ	4
1.2. Mô phỏng mạch	7
1.2.1. Mô phỏng mạch tổ hợp	7
1.2.2. Mô phỏng mạch tuần tự	9

1.1. Mô phỏng các cổng luận lý và thiết bị lưu trữ

1.1.1. Mô phỏng chức năng của các cổng luận lý

Tên cổng	Chức năng	Tính chất	Biểu thức logic	Ký hiệu	Bảng chân lý
AND	Cổng AND là một cổng logic dùng để thực hiện biểu thức logic hàm AND cho hai hay nhiều biến.	 Số ngõ vào tuỳ thuộc vào số biến và có một ngõ ra là kết quả thực hiện hàm AND của các biến. Giá trị của ngõ ra có thể là giá trị thấp/sai/false (0) hoặc cao/đúng/true (1) phụ thuộc vào các giá trị ngõ vào. Ngõ ra là 1 khi tất cả giá trị ngõ vào là 1 và 0 khi có một ngõ vào là 0, bất chấp giá trị của các ngõ vào còn lại. 	F = A . B F = A & B	Hình 1: Cổng AND Ký hiệu theo chuẩn ANSI Ngõ vào 0 AND 1, cho ra kết quả 0	Input Output A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	Cống OR là một cổng logic dùng để thực biểu thức logic hàm OR cho hai hay nhiều biến.	 Số ngõ vào tuỳ thuộc vào số biến và có một ngõ ra là kết quả thực hiện hàm OR của các biến. Giá trị của ngõ ra có thể là giá trị thấp/sai/false (0) hoặc cao/đúng/true (1) phụ thuộc vào các giá trị ngõ vào. Ngõ ra là 0 khi tất cả giá trị ngõ vào là 0 và 1 khi có một 		Hình 2: Cổng OR Ký hiệu theo chuẩn ANSI Ngõ vào 0 OR 1, ngõ ra trả kết quả l	Input Output A B F 0 0 0 0 1 1 1 0 1 1 1 1

		ngõ vào là 1, bất chấp giá trị					
		của các ngõ vào còn lại.					
	Cổng	Cổng XOR chỉ có 2 ngõ					
	XNOR là				In	put	Output
	một cổng			□ 17/1 × 2 × 1 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×		В	
	logic dùng		_		A		F
	để thực	cao/đúng/true (1) phụ thuộc	$F = A \oplus B$		0	0	0
XOR	biểu thức	$\mathcal{E} \cdot \mathcal{E}$			0	1	1
	logic hàm	\mathcal{E}		Hình 3: Cổng XOR	1	0	1
	XNOR	ngõ vào cùng là 0 hoặc cùng		Ký hiệu theo chuẩn ANSI	1	1	0
	cho hai	· · ·		Ngõ vào 1 XOR 1, ngõ ra trả kết quả		1	U
	hay nhiều			0			
	biến.	còn lại.					
		Cổng XNOR là sự kết hợp					
	Cổng	của cổng XOR và NOT. Cổng XNOR chỉ có 2 ngõ			In	put	Output
	XNOR, là	vào và 1 ngõ ra.			A	В	F
	một cổng	Giá trị của ngõ ra có thể là			0	0	1
	logic dùng để thực	giá trị thấp/sai/false (0) hoặc			0	1	0
XNOR	để thực biểu thức	cao/đúng/true (1) phụ thuộc				0	0
ANOK	logic hàm	vào các giá trị ngõ vào.	$F = A \odot B$		1	0	
	XNOR	■ Ngược lại với cổng		Hình 4: Cổng XNOR	1	1	1
	cho hai	XNOR, ngõ ra là 1 khi tất cả		Ký hiệu theo chuẩn ANSI			
	hay nhiều	giá trị ngõ vào cùng là 0		Ngõ vào 0 XNOR 1, ngõ ra trả kết			
	biến.	hoặc cùng là 1; và là 0 khi có		quả 0			
		một giá trị ngõ vào khác các					
		giá trị còn lại.					

NAND	Cổng NAND là một cổng logic dùng để thực biểu thức logic hàm NAND cho hai hay nhiều biến.	 Cổng NAND là sự kết hợp của cổng AND và NOT. Số ngõ vào tuỳ thuộc vào số biến và có một ngõ ra là kết quả thực hiện hàm OR của các biến. Giá trị của ngõ ra có thể là giá trị thấp/sai/false (0) hoặc cao/đúng/true (1) phụ thuộc vào các giá trị ngõ vào. Ngược lại với cổng AND, ngõ ra của NAND là 0 khi tất cả giá trị ngõ vào là 1 và 1 khi có một ngõ vào là 0, bất chấp giá trị của các ngõ vào còn lại. 	$F = \overline{A \cdot B}$	Hình 5: Cổng NAND Ký hiệu theo chuẩn ANSI Ngõ vào 0 NAND 0, ngõ ra trả kết quả 1	Inj A 0 0 1	B 0 1 0 1	Output F 1 1 0
NOR	Cổng NOR là một cổng logic dùng để thực biểu thức logic hàm NOR cho hai hay nhiều biến.	kết quả thực hiện hàm OR của các biến. Giá trị của ngõ ra có thể là giá trị thấp/sai/false (0) hoặc	$F = \overline{A + B}$	Hình 6: Cổng NOR Ký hiệu theo chuẩn ANSI Ngõ vào 1 NOR 1, ngõ ra trả kết quả 0	Inj A 0 0 1 1	B 0 1 0 1	Output F 1 0 0 0

khi có một ngõ vào là 1, bất	
chấp giá trị của các ngõ vào còn lại.	

1.1.1. Mô phỏng các thiết bị lưu trữ

Tên thiết bị	Chức năng	Tính chất	Ký hiệu		Bản	g châr	ı lý
D Latch	Thiết bị lưu trữ thông tin, dữ liệu, thiết kế các mạch tuần tự (chủ yếu với dữ liệu thấp).	 Có khả năng lưu trữ 1 bit thông tin. Lưu trữ thông tin trạng thái tích cực (active) theo mức (level) (cao/thấp tuỳ thiết lập, thường là mức cao). Ngõ ra mang giá trị mà nó lưu trữ (thuận là Q và đảo là Q) và ngõ vào để thu nhận dữ liệu hoặc điều khiển (D). Có một ngõ nạp để điều khiển việc nhập giá trị (E/Enable) (có thể là Clock/CLK hoặc cổng Logic). Bất cứ khi nào E ở trạng thái tích cực (mức cao/high level (1)) hoặc ở trạng thái tích cực (mức cao (1)) cuối cùng thì ngõ ra là giá trị ngõ vào D. Khi thay đổi giá trị ngõ vào thì ngõ ra có thể thay đổi ngay lập tức miễn là E ở trạng thái tích cực. Do đó, Latch không có tính đồng bộ. D Latch không thể được sử dụng như một thanh ghi/register. 	Hình 7: D Latch (Trigger: High level, sử dụng CLK) E tích cực (1), ngỗ ra trả kết quả theo D (0), ngỗ ra Q trả kết quả ngược lại (1) Hình 8: D Latch (Trigger: High level, sử dụng Cổng AND)	E 0 0 0 1 1 1	D	Q 0 1 0 1 0 1	

		 Latch đơn giản hơn. Do đó tốc độ vận hành của D Latch nhanh và cần ít dung lượng để vận hành hơn D Flipflop. Latch dạng D là Latch dạng Data, có một đầu vào duy nhất là dữ liệu. Ngoài ra còn có S-R Latch, J-K Latch, T Latch. 					
		 Có khả năng lưu trữ 1 bit thông tin. Lưu trữ thông tin trạng tích cực 		-			
		(active) theo canh (edge) (canh lên		1	nput	T	Output
		hoặc cạnh xuống tuỳ thiết lập, thường		CLK	D	Q	\mathbf{Q}^{+}
		là cạnh lên).		-	0	0	0
		■ Ngõ ra mang giá trị mà nó lưu trữ		-	0	1	1
	Thiết bị	(thuận là Q và đảo là \overline{Q}) và ngõ vào để		-	1	0	0
	lưu trữ	thu nhận dữ liệu hoặc điều khiển (D). Có một ngõ nạp để điều khiển việc		_	1	1	1
D Elia	thông	nhập giá trị (CLK/clock).	i Ligeno	1	0	0	0
D Flip- flop	tin, dữ liệu,	Bất cứ khi nào CLK ở trạng thái tích	· · · · · · · · · · · · · · NOT·Q · · · ·	1	0	1	0
Пор	truyền dữ	cực (cạnh lên/ rising edge(1)) thì ngõ	Hình 9: D Flip-flop (Trigger:	1	1	0	1
	liệu, bộ		Rising edge)	1	1	1	1
	đếm	 Khi thay đổi giá trị ngõ vào thì ngố ra sẽ không thay đổi cho đến khi thay trạng thái CLK (từ - tới ↑ hoặc từ ↑ tới - tới ↑). Do đó, Flip-flop có tính đồng bộ. D Flip-flop có thể được sử dụng như một thanh ghi/register. 	CLK tích cực (1), ngõ ra Q trả kết quả theo D (1), ngõ ra Q trả kết quả ngược lại (0)		CLK -	Q ⁺ Q D	

_	ı	,		
		Flip-flop phức tạp hơn. Do đó tốc độ		
		vận hành của D Flip-flop chậm và cần		
		nhiều dung lượng để vận hành hơn D		
		Latch.		
		■ Flip-flop dạng D là flip-flop dạng		
		Data, có một đầu vào duy nhất là dữ		
		liệu. Ngoài ra còn có T Flip-flop, J-K		
		Flip-flop, S-R Flip-flop.		
	Thiết bị			
	lưu trữ			
	thông			
	tin, dữ			
	liệu,	■ Được cấu tạo bởi n flip-flop (từ 4		
	truyên dữ	Flin-flon trở lên) nối chung ngỗ vào		
Thanh	liệu, làm	CLK, lưu trữ n bit dữ liệu.		
ghi	tăng	Dữ liệu từ bộ nhớ chính được chuyển	Hình 10: Thanh ghi (Register)	
(Regist	dung	các thanh ghi, tính toán trên chúng, sau	(Trigger: Rising Edge	
er)	lượng	đó chuyển kết quả vào bộ nhớ chính.	Data Bits: 4)	
	lưu trữ,	Có các tính chất tương tự như Flip-	Thanh ghi dạng gộp	
	tăng tốc	flop.	2 2 2 5. b	
	độ xử lý	1		
	của các			
	chuong			
	trình			
	máy tính.			

1.1. Mô phỏng mạch

1.2.1. Mô phỏng mạch tổ hợp

■ Kết quả:

 $Hinh\ 12$: $Mach\ F = A.B+C$

$$A=1, B=0, C=1 => A.B=1 => F=A.B+C=1$$

■ Bảng chân lý:

	Output		
A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0

1	0	1	1
1	1	0	1
1	1	1	1

1.2.2. Mô phỏng mạch tuần tự■ Kết quả

Hình 13: Mạch tuần tự gồm 4 bit ngõ vào truyền dữ liệu qua 1 thanh ghi (dạng gộp).

■Trong đó:

- Bộ tách bus và gộp bus có các thuộc tính Fan Out: 4 và Bit Width In: 4;
- Thanh ghi có thuộc tính Data Bits: 4.
- CLK ở trạng thái tích cực nên ngõ ra là giá trị ngõ vào (A=A_0=1, B=B_0=1, C=C_0=1, D=D_0=0).
- Khi thay đổi giá trị ngõ vào thì ngõ ra sẽ không thay đổi cho đến khi thay trạng thái CLK (từ unactive tới active hoặc từ active-unactive-active).

Có thể thay thanh ghi dạng gộp bằng 4 D Flip-flop và cho kết quả tương tự:

Hình 13: Mạch tuần tự gồm 4 bit ngõ vào truyền dữ liệu qua 4 D Flip-flop.