In this project, I have implemented 3 heuristics. The reasons of choosing these three heuristics are shown below:

- 1. Number of my moves 2*number of my opponent's' moves
 - Returns the difference between the number of available moves of computer player and twice the number of available moves to opponent.
 The multiplier of 2 is to add a penalty for having more moves of opponents.
 - Align with the goal of this game, which is to maximize the number of moves of computer player while minimize the number of moves of opponents.
- 2. Number of my moves number of my opponent's moves
 - Is the difference between the number of available moves of computer player and the number of available moves to opponent.
 - The penalty to number of moves of opponent is less than the first one, but it captures the goal of the game as well
- 3. Number of my moves
 - Only measure the number of moves of computer player without any penalty of moves of opponent.
 - Have consistent performance of this game even though it seems not as good as previous two heuristics.

The output of running tournament.py is as follows:

Playing Matches

Match	n # Opponent	AB_Improv	ed AB_Cus	stom AB_Cu	ustom_2 AE	Custom_3
		Won Lost	Won Lost	Won Lost	Won Lost	
1	Random	9 1	7 3	6 4	9 1	
2	MM_Open	6 4	7 3	7 3	5 5	
3	MM_Center	7 3	7 3	6 4	6 4	
4	MM_Improved	4 6	6 4	6 4	8 2	
5	AB_Open	4 6	7 3	4 6	3 7	
6	AB_Center	6 4	5 5	6 4	5 5	
7	AB_Improved	5 5	5 5	4 6	6 4	
	 Win Rate:	58.6%	62.9%	 55.7%	60.0%	

Finally, I chose AB_Custom because its performance is the best among all evaluation functions.