Algorithm 2 Symbolic LU Factorization.	
1: Require: A $m \times n$ matrix A. 2: procedure LU(A, k) 3: $\mathbf{M} \leftarrow \mathbf{A}$ 4: $rnk \leftarrow \min(m, n)$ 5: for k from 1 to rnk do 6: $p, q, l \leftarrow \text{SymbolicPivoting}(\mathbf{M}, k)$ 7: if $p = 0$ then	 Symbolic full-pivoting LU procedure Initialize the matrix M Initialize the rank of M Perform Gaussian elimination Find the best pivot for the k-th step Check for null pivot
8: $rnk \leftarrow k - 1$	\triangleright The rank of M is $k-1$
9: break	
10: end if	
11: $\mathbf{r}_{k}, \mathbf{c}_{k} \leftarrow q, l$ 12: $\mathbf{M} \leftarrow \operatorname{SwapRows}(\mathbf{M}, k, q)$ 13: $\mathbf{M} \leftarrow \operatorname{SwapColumns}(\mathbf{M}, k, l)$ 14: $\operatorname{for} i \operatorname{from} k + 1 \operatorname{to} m \operatorname{do}$ 15: $M_{kk} \leftarrow \operatorname{Veil}(M_{kk})$ 16: $M_{lk} \leftarrow \operatorname{Veil}(\operatorname{Normalizer}(M_{ik}/M_{kk}))$ 17: $\operatorname{for} i \operatorname{from} k + 1 \operatorname{to} n \operatorname{do}$	 Store the pivot row and column indices Swap the k-th and q-th rows Swap the k-th and l-th columns Compute the k-th column of L Veil the k-th pivot Normalize the k-th pivot Compute the k-th row of U
18: $M_{ij} \leftarrow \text{Veil}(\text{Normalizer}(M_{ij} - M_{ik}M_{kj}))$	▷ Finalize the Schur complement
19: end for 20: end for	
21: end for	
21: P, Q \leftarrow PermutationMatrices(r, c) 22: P, Q \leftarrow PermutationMatrices(r, c) 23: L \leftarrow LowerTriangular(M) 24: U \leftarrow UpperTriangular(M) 25: return L, U, P, Q, r, c, rnk 26: end procedure	$\begin{tabular}{l} \triangleright Compute the permutation matrices \\ \triangleright Extract the lower-triangular part of M \\ \triangleright Extract the upper-triangular part of M \\ \triangleright Return the factors and the rank of A \\ \end{tabular}$