

(1) Publication number: 0 555 989 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 93300809.6

(51) Int. CI.5: C12N 15/12, C07K 15/00

(22) Date of filing: 04.02.93

(30) Priority: 05.02.92 US 833835

(43) Date of publication of application : 18.08.93 Bulletin 93/33

(A) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

(7) Applicant: Bristol-Myers Squibb Company 345 Park Avenue New York, N.Y. 10154 (US) (2) Inventor: Purchio, Anthony F. 801 33rd Avenue East Seattle, Washington 98112 (US) Inventor: Neubauer, Michael G. 2109 Second Avenue N. Seattle, Washington 98109 (US) Inventor: Skonier, John E. 6749 25th Avenue N.W. Seattle, Washington 98117 (US)

(74) Representative: Jones, Alan John et al CARPMAELS & RANSFORD 43 Bloomsbury Square London, WC1A 2RA (GB)

54) TGF-beta induced gene and protein.

A new TGF-β induced gene and protein is described. Treatment of TGF-β growth arrested cells induces the production of a novel gene which encodes a 683 amino acid protein, designated BIG-H3, that contains four homologous repeat regions and which may represent a cell surface recognition molecule. This gene and protein is induced in mammalian cells, and specifically human cells, upon treatment with TGF-β.

The present invention describes a novel TGF-β induced gene, βig-h3, and the protein encoded by this induced gene, βIG-H3, produced in response to TGF-β mediated growth inhibition of specific human cell lines.

BACKGROUND OF THE INVENTION

5

40

Transforming growth factor-β1 (TGF-β1) is a multifunctional regulator of cell growth and differentiation. It is capable of causing diverse effects such as inhibition of the growth of monkey kidney cells, (Tucker, R.F., G.D. Shipley, H.L. Moses & R.W. Holley (1984) Science 226:705-707) inhibition of growth of several human cancer cell lines, (Roberts, A.B., M.A. Anzano, L.M. Wakefiled, N.S. Roches, D.F. Stern & M.B. Sporn (1985) Proc. Natl. Acad. Sci. USA 82: 119-123; Ranchalis, J.E., L.E. Gentry, Y. Agawa, S.M. Seyedin, J. McPherson, A. Purchio & D.R. Twardzik (1987) Biochem. Biophys. Res. Commun. 148:783-789) inhibition of mouse keratinocytes, (Coffey, R.J., N.J. Sipes, C.C. Bascum, R. Gravesdeal, C. Pennington, B.E. Weissman & H.L. Moses (1988) Cancer Res. 48:1596-1602; Reiss, M. & C.L. Dibble (1988 In Vitro Cell. Dev. Biol. 24:537-544) stimulation of growth of AKR-2B fibroblasts (Tucker, R.F., M.E. Olkenant, E.L. Branum & H.L. Moses (1988) Cancer Res. 43:1581-1586) and normal rat kidney fibroblasts, (Roberts, A.B., M.A. Anzano, L.C. Lamb, J.M. Smith & M.B. Sporn (1981) Proc. Natl. Acad. Sci. USA 78:5339-5343) stimulation of synthesis and secretion of fibronectin and collagen, (Ignotz, R.A. & J. Massague (1986) J. Biol. Chem. 261:4337-4345; Centrella, M., T.L. McCarthy & E. Canalis (1987) J. Biol. Chem. 262:2869-2874) induction of cartilage-specific macromolecule production in muscle mesenchymal cells, (Seyedin, S.M., A.Y. Thompson, H. Bentz, D.M. Rosen, J. McPherson, A. Contin, N.R. Siegel, G.R. Galluppi & K.A. Piez (1986) J. Biol. Chem. 261:5693-5695) and growth inhibition of T and B lymphocytes. (Kehrl, J.H., L.M. Wakefiled, A.B. Roberts, S. Jakeoview, M. Alvarez-Mon, R. Derynck, M.B. Sporn & A.S. Fauci (1986) J. Exp. Med. 163:1037-1050; Kehrl, J.H., A.B. Roberts, L.M. Wakefield, S. Jakoview, M.B. Sporn & A.S. Fauci (1987) J. Immunol. 137:3855-3860; Kasid, A., G.I. Bell & E.P. Director (1988) J. Immunol. 141:690-698; Wahl, S.M., D.A. Hunt, H.L. Wong, S. Dougherty, N. McCartney-Francis, L.M. Wahl, L. Ellingsworth, J.A. Schmidt, G. Hall, A.B. Roberts & M.B. Sporn (1988) J. Immunol. 140:3026-3032)

Recent investigations have indicated that TGF-β1 is a member of a family of closely related growth-modulating proteins including TGF-β2, (Seyedin, S.M., P.R. Segarini, D.M. Rosen, A.Y. Thompson, H. Bentz & J. Graycar (1987) J. Biol. Chem. 262:1946-1949; Cheifetz, S., J.A. Weatherbee, M.L.-S. Tsang, J.K. Anderson, J.E. Mole, R. Lucas & J. Massague (1987) Cell 48:409-415; Ikeda, T., M.M. Lioubin & H. Marquardt (1987) Biochemistry 26:2406-2410) TGF-β3, (TenDijke, P., P. Hansen, K. Iwata, C. Pieler & J.G. Foulkes (1988) Proc. Natl. Acad. Sci. USA 85:4715-4719; Derynck, R., P. Lindquist, A. Lee, D. Wen, J. Tamm, J.L. Graycar, L. Rhee, A.J. Mason, D.A. Miller, R.J. Coffey, H.L. Moses & E.Y. Chen (1988) EMBO J. 7:3737-3743; Jakowlew, S.B., P.J. Dillard, P. Kondaiah, M.B. Sporn & A.B. Roberts (1988) Mol. Endocrinology. 2:747-755) TGF-β4, (Jakowlew, S.B., P.J. Dillard, M.B. Sporn & A.B. Roberts (1988) Mol. Endocrinology. 2:7186-1195) Mullerian inhibitory substance, (Cate, R.L., R.J. Mattaliano, C. Hession, R. Tizard, N.M. Faber, A. Cheung, E.G. Ninfa, A.Z. Frey, D.J. Dash, E.P. Chow, R.A. Fisher, J.M. Bertonis, G. Torres, B.P. Wallner, K.L. Ramachandran, R.C. Ragin, T.F. Manganaro, D.T. Maclaughlin & P.K, Donahoe (1986) Cell 45:685-698) and the inhibins. (Mason, A. J., J.S. Hayflick, N. Ling, F. Esch, N. Ueno, S.-Y. Ying, R. Guillemin, H. Niall & P.H. Seeburg (1985) Nature 318:659-663)

TGF-β1 is a 24-kDa protein consisting of two identical disulfide-bonded 12 kD subunits. (Assoian, R.K., A. Komoriya, C.A. Meyers, D.M. Miller & M.B. Sporn (1983) J. Biol. Chem. <u>258</u>:7155-7160; Frolik, C.A., L.L. Dart, C.A. Meyers, D.M. Miller & M.B. Sporn (1983) Proc. Natl. Acad. Sci. USA <u>80</u>:3676-3680; Frolik, C.A., L.M. Wakefiled, D.M. Smith & M.B. Sporn (1984) J. Biol. Chem. <u>259</u>:10995-11000) Analysis of cDNA clones coding for human, (Derynck, R., J.A. Jarrett, E.Y. Chem, D.H. Eaton, J.R. Bell, R.K. Assoian, A.B. Roberts, M.B. Sporn & D.V. Goeddel (1985) Nature <u>316</u>:701-705) murine, (Derynck, R., J.A. Jarrett, E.Y. Chem, & D.V. Goeddel (1986) J. Biol. Chem. <u>261</u>:4377-4379) and simian (Sharples, K., G.D. Plowman, T.M. Rose, D.R. Twardzik & A.F. Purchio (1987) DNA <u>6</u>:239-244) TGF-β1 indicates that this protein is synthesized as a larger 390 amino acid pre-pro-TGF-β1 precursor; the carboxyl terminal 112 amino acid portion is then proteolytically cleaved to yield the TGF-β1 monomer.

The simian TGF-β1 cDNA clone has been expressed to high levels in Chinese hamster ovary (CHO) cells. Analysis of the proteins secreted by these cells using site-specific antipeptide antibodies, peptide mapping, and protein sequencing revealed that both mature and precursor forms of TGF-β were produced and were held together, in part, by a complex array of disulfide bonds. (Gentry, L.E., N.R. Webb, J. Lim, A.M. Brunner, J.E. Ranchalis, D.R. Twardzik, M.N. Lioubin, H. Marquardt & A.F. Purchio (1987) Mol. Cell Biol. 7:3418-3427; Gentry, L.E., M.N. Lioubin, A.F. Purchio & H. Marquardt (1988) Mol. Cell. Biol. 8:4162-4168) Upon purification away from the 24kD mature rTGF-β1, the 90 to 110 kD precursor complex was found to consist of three species: pro-TGFβ1, the pro-region of the TGF-β1 precursor, and mature TGF-β1. (Gentry, L.E., N.R. Webb, J. Lim, A.M. Brunner, J.E. Ranchalis, D.R. Twardzik, M.N. Lioubin, H. Marquardt & A.F. Purchio (1987) Mol. Cell Biol.

7:3418-3427; Gentry, L.E., M.N. Lioubin, A.F. Purchio & H. Marquardt (1988) Mol. Cell. Biol. 8:4162-4168) Detection of optimal biological activity required acidification before analysis, indicating that rTGF-β1 was secreted in a latent form.

The pro-region of the TGF-β1 precursor was found to be glycosylated at three sites (Asn 82, Asn 136, and Asn 176) and the first two of these (Asn 82 and Asn 136) contain mannose-6-phosphate residues. (Brunner, A.M., L.E. Gentry, J.A. Cooper & A.F. Purchio (1988) Mol. Cell Biol. 8:2229-2232; Purchio, A.F., J.A. Cooper, A.M. Brunner, M.N. Lioubin, L.E. Gentry, K.S. Kovacina, R.A. Roth & H. Marquardt (1988) J. Biol. Chem. 263:14211-14215) In addition, the rTGF-β1 precursor is capable of binding to the mannose-6-phosphate receptor and may imply a mechanism for delivery to lysomes where proteolytic processing can occur. (Kornfeld, S. (1986) J. Clin. Invest. 77:1-6)

TGF-β2 is also a 24-kD homodimer of identical disulfide-bonded 112 amino acid subunits (Marquardt, H., M.N. Lioubin & T. Ikeda (1987) J. Biol. Chem. <u>262</u>:12127-12131). Analysis of cDNA clones coding for human (Madisen, L., N.R. Webb, T.M. Rose, H. Marquardt, T. Ikeda, D. Twardzik, S. Seyedin & A.F. Purchio (1988) DNA <u>7</u>:1-8; DeMartin, R., B. Plaendler, R. Hoefer-Warbinek, H. Gaugitsch, M. Wrann, H. Schlusener, J.M. Selfert, S. Bodmer, A. Fontana & E. Hoefer. EMBO J. <u>6</u>:3673-3677) and simian (Hanks, S.K., R. Armour, J.H. Baldwin, F. Maldonado, J. Spiess & R.W. Holley (1988) Proc. Natl. Acad. Sci. USA <u>85</u>:79-82) TGF-β2 showed that it, too, is synthesized as a larger precursor protein. The mature regions of TGF-β1 and TGF-β2 show 70 % homology, whereas 30 % homology occurs in the pro-region of the precursor. In the case of simian and human TGF-β2 precursor proteins differing by a 28 amino acid insertion in the pro-region; mRNA coding for these two proteins is thought to occur via differential splicing (Webb, N.R., L. Madisen, T.M. Rose & A.F. Purchio (1988) DNA 7:493-497).

The effects of TGF-β are thought to be mediated by the binding to specific receptors present on the surface of most cells (Massague, J. et al. (1985) J. Biol. Chem. 260:2636-2645; Segarini, P.R. et al. (1989) Mol. Endocrino. 3:261-272; Tucker, R.F., et al. (1984) Proc. Natl. Acad. Sci. USA 81:6757-6761; Wakefield, L.M., et al. (1987) J. Cell Biol. 105:965-975). Chemical crosslinking of [¹251]-labeled TGF-β to cell surface components has identified three receptor size classes having molecule weights of 53-70 kDA (type I receptor), 80-120 kDa (type II receptor) and 250-350 kDa (type III receptor). The type I and II receptors have been implicated in signal transduction (Boyd, F.T. et al. (1989) J. Biol. Chem. 264:2272-2278; Laiho, M., et al. (1990) J. Biol. Chem. 265:18518-18524) while the type III receptor has been suggested to act as a storage protein (Segarini, P.R. et al. (1989) Mol. Endocrino. 3:261-272). Little is known concerning signal transduction mechanisms which occur after receptor-ligand interaction.

The pleiotrophic effects of TGF-β may be due to its ability to affect the transcription of other genes. TGF-β has been shown to induce fos, myc and sis in AKR-2B cells (Leof, E.B., et al. (1986) Proc. Natl. Acad. Sci. USA 83:1453-1458):1453-1458) enhance expression of c-jun B in A549 cells (Pertovaara, L., et al. (1989) Molecular and Cellular Biology 9:1255-1264), increase the mRNA for matrix proteins (Penttinen, R.P., et al. (1988) Proc. Natl. Acad. Sci. USA 85: 1105-1110), IL-6 (Elias, J.A., et al. (1991) J. Immunol. 146:3437-3446) and EGF-receptors (Thompson, K.L. et al. (1988) J. Biol. Chem. 263:19519-19528) and decrease expression of PDGF receptor a subunits (Battegay, E. J., et al. (1990) Cell 63: 515-524). It alters the pattern of integrin expression in osteosarcoma cells (Heino, J., et al. (1989) J. Biol. Chem. 264:21806-21813) and decreases the express of c-myc in keratinocytes (Coffey, R.J. et al. (1988b) Cancer Res. 48:1596-1602). TGF-β induces expression of Il-1β, TNF-α, PDGF and bFGF in human peripheral blood monocytes (McCartney-Francis, N., et al. (1991) DNA and Cell Biology 10:293-300).

SUMMARY OF THE INVENTION

The present invention is directed to a novel protein and gene induced by transforming growth factor beta (TGF-β) in mammalian cells.

In order to identify novel genes that encode protein products which might be involved in mediating some of the effects of TGF-β, a cDNA library was constructed from mRNA isolated from mammalian cells, such as human lung adenocarcinoma cells, which had been growth arrested by exposure to TGF-β. Several clones were isolated. One clone, termed TGF-β induced gene-h3 (βig-h3) encoded a novel protein, βIG-H3, containing 683 amino acid residues.

In the present invention a TGF- β induced protein is produced in growth arrested mammalian cells and preferably contains about 683 amino acid residues. The TGF- β induced protein preferably contains four homologous repeat regions of approximately 140 amino acids each and has an Arg-Gly-Asp sequence near its carboxy terminus. Treatment of mammalian cells such as human adenocarcinoma cells and embryonic mesenchymal cells with TGF- β produces a 10 to 20 fold increase in these cells of a 3.4 kb RNA construct that encodes a protein of this invention.

The present invention is further directed to the protein βIG-H3 which contains a 683 amino acid residue sequence corresponding to Sequence ID Number 2 and which contains an Arg-Gly-Asp at residues 642-644 of the amino acid sequence depicted in FIGURE 5. βIG-H3 contains four homologous repeat regions that share at least 16% homology with each other.

The present invention is also directed to a nucleotide sequence that encodes a gene whose expression is strongly induced by TGF-β. The nucleotide sequence of the present invention can induce the production of a RNA transcript of about 3.4 kb, and preferably encodes the expression of βIG-H3.

DESCRIPTION OF THE FIGURES

In the drawings:

10

FIGURE 1 illustrates the expression βIG-H3 in A549 cells after treatment with TGF-β1 and TGF-β2. Confluent dishes of A549 cells grown in DMEM + 10% FBS were split 1:10. Twenty hours later, they were treated with 20 ng/ml rTGF-β1 (Aand C) or rTGF-β2 [D] for 72 hours. Total RNA was isolated and 25 μg was fractionated on an agarose-formaldehyde gel and analyzed by Northern blotting using [32P]-labeled βIG-H3 probe. Lane 1, RNA from untreated cells; lane 2, RNA from TGF-β treated cells. Exposure time for A and D, 10 hours; exposure time for C, 3 days. Panel B is a photograph of the gel in panel A stain with methylene blue. Bands were quantitated using a Molecular Dynamics Phosphoimager.

FIGURE 2 illustrates the time course for induction of βIG-H3 mRNA by TGF-β1. Confluent dishes of A549 cells were split 1:10. Twenty hours later, they were treated with TGF-β1 (20 ng/ml) for 6 hours (lane 2), 24 hours (lane 3), 48 hours (lane 4), 72 hours (lane 5), or 96 hours (lane 6): RNA was isolated and hybridized to [32-P]-labeled βig-h3 probe. Lane 1 contains RNA from untreated cells.

FIGURE 3 illustrates the removal of TGF- β 1 from the culture media of A549 cells leads to a decrease in synthesis of βig-h3 RNA. A549 cells were treated with TGF- β 1 (20 ng/ml) for 3 days. Cells were then washed and grown in complete medium without TGF- β 1 for 24 hours (lane 2), 48 hours (lane 3), 72 hours (lane 4) or 3 weeks (lane 5). RNA was extracted and analyzed by Northern blotting using [32-P]-labeled βig-h3 probe. Lane 1 contains RNA from A549 cells treated for 3 days with TGF- β 1.

FIGURE 4 illustrates the determination of βig-h3 mRNA half-life. A549 cells were treated with TGF-β (20 ng/ml) for 48 hours. Actinomycin D (10 ng/ml) was then added and RNA was extracted at the indicated times and analyzed by Northern blotting with [32-P]-labeled βig-h3 probe. Bands were quantitated using a Molecular Dynamics Phosphoimager and are plotted as percentage of cpm remaining in the 3.4 kb βig-h3 RNA band. Ο——Ο, untreated cells; Ο——Ο, TGF-β treated cells.

FIGURE 5 illustrates the nucleotide and deduced amino acid sequence of βIG-H3. Sequencing was performed as described (Sanger, F., et al. (1977) Proc. Natl. Acad. Sci. USA <u>74</u>:5463-5467) and two dependent clones were sequenced for each region. The signal sequence is overlined and arrows mark predicted cleavage sites: the RGD sequence is boxed. Repeats 1 through 4 are bracketed and a polyadenylation signal at nucleotide 2625 is indicated (horizontal bracket).

FIGURE 6A illustrates the 4 homologous domains of βIG-H3 compared with the third repeats from drosophila fasciclin-I (DrF-3), grasshopper fasciclin-I (GrF-3), and the carboxy terminal half of the Mycobacterium bovus protein Mpb70. Boxed amino acids are identical to at least 2 others at that same position.

FIGURE 6B illustrates the 4 repeats of βIG-H3 directly compared. Boxed amino acids are identical with at least 1 other at that same position. Multiple alignments were generated using the program Pileup of UW/GCG software.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is directed to a nucleotide sequence and a protein that is induced in mammalian cells in response to $TGF-\beta$.

The arrest of the growth of specific mammalian cells, such as human lung adenocarcinoma cells, by treatment with TGF- β resulted in the increased induction of a novel gene product. TGF- β refers to a family of highly-related dimeric proteins which are known to regulate the growth and differentiation of many cell type. As used herein, the term "TGF- β " refers to any member of the family of transforming growth factor beta which include TGF- β 1, TGF- β 2, TGF- β 3, TGF- β 4, TGF- β 5 as well as the TGF- β 1/ β 2 hybrid molecules, designated 5- β .

TGF- β is known to regulate the transcription of several genes, such as the genes encoding c-myc, c-sis, and the platelet-derived growth factor receptor. In the present invention, an attempt was made to identify novel genes whose protein products could be involved in mediating some of the pleiotropic effects of TGF- β . As a result of the present invention a new gene product has been identified in mammalian cells that have been growth arrested by TGF- β .

All amino acid residues identified herein are in the natural of L-configuration. In keeping with standard polypeptide nomenclature, abbreviations for amino acid residues are as follows:

5		CV3	/BOL
	AMINO ACID	3-Letter	I-Letter
	Alanine	Ala	A
10	Arginine	Arg	R
	Asparagine	Asn	N
	Aspartic acid	Asp	D
	Aspartic acid or Asparagine	Asx	B
15	Cysteine	Cys	Č
	Glutamine	Gln	Q
	Glutamic acid	Glu	E
	Glycine	Gly	G
00	Glutamic acid or Glutamine	Glx	ž
20	Histidine	His	H
	Isoleucine	Ile	I
	Leucine	Leu	Ĺ
	Lysine	Lys	ĸ
25	Methionine	Met	M
	Phenylalanine	Phe	F
	Proline	Pro	P
	Serine	Ser	S
30	Threonine	Thr	T
	Tryptophan	Trp	w
	Tyrosine	Tyr	Ÿ
	Valine	Val	v
35			•

In the present invention, a substantially pure protein is isolated. This protein is produced in a mammalian cell in response to contacting the cells with sufficient TGF-β to arrest the growth of the mammalian cell.

As used herein the term "mammalian cell" refers to cells derived from a mammal, or mammalian tumor, including human cells such as human lung adenocarcinoma cells, human embryonic palatal mesenchymal cells and human prostatic adenocarcinoma cells.

As used herein the term "induced" refers to the stimulation, promotion and/or amplification of transcription or translation in a target cell. In a preferred embodiment of the present invention either RNA or protein production can be induced by TGF- β in a mammalian cell.

In a particularly preferred embodiment, TGF- β induced protein of the present invention has an amino acid residue sequence of about 683 amino acid residues.

45

50

When mammalian cells, such as human lung adenocarcinoma are treated with TGF-β1, growth inhibition of the cells resulted. A cDNA library was constructed and screened in order to isolate a clone which displayed increased hybridization to a cDNA probe prepared from TGF-β1 treated cells. One clone was isolated and designated βig-h3.

It was found that TGF-β1 and TGF-β2 each induced βig-h3 in cells. The induction was reversible and resulted from an increase in transcription. Analysis of the induced βig-h3 DNA revealed an open reading frame that encoded a novel 683 amino acid protein, βIG-H3, which contained a secretory leader signal sequence and an Arg-Gly-Asp sequence. βIG-H3 contained four internal repeat regions. These repeat regions display limited homology with short regions of grasshopper and drosophila fasciclin-I and Mpb70 from mycobacterium bovus. Fasciclin-I is a surface recognition glycoprotein expressed on subsets of axon bundles in insect embryos. Fasciclin-I contains four homologous 150 amino acid domains and has approximately 40% homology between grasshopper and drosophila (Zimm et al. (1988) Cell 53:577-583). It is thus considered in this inven-

tion that βig-h3 may encode a novel surface recognition protein. As such, and as proposed for fasciclin-I, the four homologous repeats could suggest a tetrameric structure with two binding sites, one at each intrachain dimer. This structure allows one βIG-H3 molecule to bind to a surface protein on two different cells. Additionally, the Arg-Gly-Asp sequence in βIG-H3, which is not present in fasciclin-I, may allow for interactions with various integrins.

 β IG-H3 represents a new gene product induced by TGF- β and may illumimate the pleiotropic effects of TGF- β as, partly, being due to its ability to regulate gene transcription. It has recently been shown that growth inhibition by TGF- β is linked to inhibition of phosphorylation of pRB, the product of the retinoblastoma susceptibility gene (Pietenpol, et al. (1990) Cell <u>61</u>:777-75; Laiko et al. (1990) Cell <u>62</u>:175-185). If β IG-H3 is involved in cell surface recognition, it may participate in cell-cell communication and in the transmission of intracellular signals that are involved in negative growth control.

The present invention is further described by the following Examples which are intended to be illustrative and not limiting.

EXAMPLE 1

5

20

40

45

50

Identification of βig-h3 and Induction By TGF-β

Several human cell lines were cultured and used in these studies. A549 and H2981 (both human lung adenocarcinoma) cells, and the human breast carcinoma cell lines (MDA 453, MDA468 and 293) were grown in Dulbecco's Modified Eagle's medium (DMEM) plus 10 % fetal bovine serum (FBS). The human breast carcinoma line MCF-7 was grown in DMEM + 10% FBS containing 60 ng/ml of insulin, and human prostatic adenocarcinoma cells (PC-3) were grown in a mixture of DMEM and Hank's F-12 medium (1:1) containing 10% FBS. Several routine and general methological procedures were utilized and are described in the articles cited herein, all of which are incorporated by reference.

Confluent dishes of A549 cells were split 1:10. Twenty hours later, they were treated with 20 ng/ml recombinant TGF- β 1 in complete medium for 72 hours. This resulted in an 80-90 % inhibition of DNA synthesis. A549 cells which were not treated with TGF- β 1 were used as controls. Poly (A) containing RNA was extracted and a cDNA library was constructed in λ gt-10 by the method described in Webb et al. (1987) DNA $\underline{6}$:71-78, which is incorporated herein by reference. Duplicate filters were screened with [32-P]-labeled cDNA from treated and untreated cells. Plaques showing increased hybridization to the treated probe were purified through the tertiary stage and the cDNA inserts were subcloned into pEMBL, as described in Dente et al. (1983) Nucleic Acids Res. $\underline{11}$: 1645-1654. Several clones were isolated and one clone, $p\beta$ ig-h3a, was chosen for further study.

DNA sequence analysis of pβig-h3 detects a major transcript of 3.4 kb which is induced about 10-fold in A549 cells after a 72 hours with TGF-β1 (FIGURE 1A). A longer exposure of FIGURE 1A demonstrates that the βig-h3 transcript can be detected at low levels in untreated cells (FIGURE 1C) βig-h3 is also induced by TGF-β2, as shown in FIGURE 1D, and thus appears to be a TGF-β induced gene. A time course induction is presented in FIGURE 2 and indicated that maximal stimulation of βig-h3 by TGF-β1 in A549 cells occurred after 48 hours of TGF-β1 treatment (a 20-fold increase above untreated cells).

Noticeable morphological changes of A459 cells occur upon TGF- β treatment. The cells appear larger, more spread out and assume a flattened morphology. These phenotypic changes are reversed upon removal of TGF- β and regrowth of the cells in complete media.

Removal of TGF- β 1 from the culture medium resulted in a decrease in the expression of β ig- β 3 to the levels found in untreated cells (FIGURE 3) This finding is consistent with the reversible growth inhibition of those cells.

Total RNA was extracted from both untreated cells and from cells treated with TGF-β, as described above. The RNA was fractionated on a 1 %, agarose-formaldehyde gel, according to the method of Lehrach et al. (1977) Biochemistry 16:4743-4751, transferred to a nylon membrane (Hybond N, Amersham) and hybridized to [32-P]-labeled probe, according to the method described in Madisen et al. (1988) DNA 7:1-8. The bands were quantitated using a Molecular Dynamics Phosphoimager.

The increase in β ig-h3 RNA could be due to either an increase in transcription or an increase in half-life. The half-life of the β ig-h3 transcripts was determined in untreated and TGF- β 1 treated A549 cells. The results shown in Figure 4, illustrate that the half-life for β ig-h3 RNA in untreated cells was about 5 hours, and is only slightly increased to 7 hours in TGF- β 1 treated, transcriptionally inhibited (actinomycin D-treated) cells. The major increase in β ig-h3 RNA thus appears to be due to an increase in transcription, rather than an increase in half-life. As shown in Figure 2, the kinetics of β ig-h3 message accumulation implies a half-life of 7-11 hours, which is the same range observed in the actinomycin D studies. This suggests that message stability is not grossly altered by actinomycin D in these studies.

Several human normal and cancer cell lines were examined for induction of β ig-h3. TGF- β 1 treatment of HEPM (human embryonic palatal mesenchymal) cells, H2981 cells resulted in an increase in β ig-h3 mRNA. β ig-h3 message was not induced by TGF- β 1 in 293 cells nor in the breast cancer cell lines MCF-7, MDA453 or MDA468. The fact that β ig-h3 is not induced in all cell types is not a unique finding, as the induction of other genes by TGF- β have been known to vary in different cell lines. For example, c-myc is reported to be stimulated in AKR-2B fibroblasts (Leof et al. (1986) Proc. Natl. Acad. Sci. USA 83:1453-1458), but down regulated in keratonicytes (Coffey et al. (1988) Cancer Res. 48:1596-1602).

EXAMPLE 2

10

15

35

Sequence Analysis

DNA sequence analysis was performed by the method of Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74:5463-54679.

Nucleotide sequence analysis of pβig-h3a revealed that it contained a partial open reading frame. The cDNA library was therefore rescreened with [32-P]-labeled βig-h3a probe until several overlapping clones encoding the entire open reading frame were obtained. The nucleotide and deduced amino acid sequence of βIG-H3 is shown in FIGURE 5 and is described in Sequence I.D. Number 1 and 2. The cDNA contains a single open reading frame encoding a 683 amino acid protein, βIG-H3. βIG-H3 contains an amino terminal signal peptide and an RGD sequence located at the carboxy terminus (residues 642-644). This motif has previously been shown to serve as a ligand recognition sequence for several integrins (Ruoslahti, E. (1989) J. Biol Chem. 264:13369-13371). There are no predicted sites of N-linked glycosylation. A polyadenylation signal is present at nucleotide residue 2624.

A Tfasta search of the Genebank and EMBL databases with the βig-h3 open reading frame indicated that the protein was unique. Short regions with homology to grasshopper and drosophila fasciclin-I and Mpb70 from Mycobacterium bovus were identified. FIGURE 6/A shows multiple alignments of regions from these proteins.

Upon dot matrix analysis of βIG-H3 four homologous domains of approximately 140 amino acids were revealed. A comparison of these repeats is shown in FIGURE 6B and illustrate interdomain homologies ranging from 31 % (between domains 2 and 4) to 16% (between domains 1 and 3), with domain 3 the most divergent. These interdomain homologies are similar to those found in fasciclin-I, wherein repeat 2 appears to be the most divergent. The domains of βIG-H3 and fasciclin-I share 3 highly conserved amino acid stretches. One stretch contains 9 of 10 amino acids conserved at the amino end (T X F A P S N E A W). A second stretch has 6 of 8 amino acids conserved about 30 residues from the amino end (R X I L N X H I); and a third region near the carboxy end has 12 of 16 amino acids conserved (A T N G V V H X I D X V L X X P). These comparisons are illustrated in FIGURE 6A.

Mpb70 in the major secreted protein from Mycobacterium bovus, the causal agent of bovine tuberculosis. Mpb70 occurs as a dimer of a 163 amino acid monomer with 33 % homology to the βIG-H3 domains in the carboxy terminal 97 amino acids. The amino terminal 66 amino acids carry mycobacterium specific epitopes (Redford et al. (1990) J. of Gen. Microbiol. 136:265-272).

The foregoing description and Examples are intended as illustrative of the present invention, but not as limiting. Numerous variations and modifications may be effected without departing from the true spirit and scope of the present invention.

7

45

SEQUENCE LISTING

	(1)	GEN!	ERAL	INFORMATION
5		(i)	APP	LICANT:
			(A)	NAME: BRISTOL-MYERS SQUIBB COMPANY
			(B)	STREET: 345 PARK AVENUE
10			(C)	CITY: NEW YORK
			(D)	STATE: NEW YORK
			(E)	COUNTRY: USA
15			(F)	POSTAL CODE: 10154
,0		(ii)	TIT	LE OF INVENTION: TGF-BETA INDUCED GENE AND
			PRO'	TEIN
		(iii	.) אטו	MBER OF SEQUENCES: 2
20		(iv)	COM	PUTER READABLE FORM:
			(A)	MEDIUM TYPE: Floppy disk
			(B)	COMPUTER: IBM PC compatible
25			(C)	OPERATING SYSTEM: PC-DOS/MS-DOS
			(D)	SOFTWARE: PatentIn Release #1.0, Version
				#1.25
20		(v)	CUR	RENT APPLICATION DATA:
30			(A)	APPLICATION NUMBER:
			(B)	FILING DATE:
			(C)	CLASSIFICATION:
35	(2)	INFO	RMATI	ON FOR SEQ ID NO:1:
		(i)		ENCE CHARACTERISTICS:
			(A)	LENGTH: 2691 base pairs
40			(B)	
			(C)	STRANDEDNESS: double
				TOPOLOGY: linear
				CULE TYPE: cDNA
45				THETICAL: NO
		(vi)		INAL SOURCE:
				ORGANISM: Homo Sapiens
50			(F)	
				CELL TYPE: ADENOCARCINOMA
			(H)	CELL LINE: A549

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

5	GCTTGCCCGT CGGTCGCTAG CTCGCTCGGT GCGCGTCGTC CCGCTCCATG GCGCTCTTCG	60
	TECCGCTGCT GGCTCTCGCC CTGGCTCTGG CCCTGGGCCC CGCCGCGACC CTGGCGGGTC	120
	CCGCCAAGTC GCCCTACCAG CTGGTGCTGC AGCACAGCAG GCTCCGGGGC CGCCAGCACG	180
10	GCCCCAACGT GTGTGCTGTG CAGAAGGTTA TTGGCACTAA TAGGAAGTAC TTCACCAACT	240
	GCAAGCAGTG GTACCAAAGG AAAATCTGTG GCAAATCAAC AGTCATCAGC TACGAGTGCT	300
	GTCCTGGATA TGAAAAGGTC CCTGGGGAGA AGGGCTGTCC AGCAGCCCTA CCACTCTCAA	360
	ACCTTTACGA GACCCTGGGA GTCGTTGGAT CCACCACCAC TCAGCTGTAC ACGGACCGCA	420
15	CGGAGAAGCT GAGGCCTGAG ATGGAGGGGC CCGGCAGCTT CACCATCTTC GCCCCTAGCA	480
	ACGAGGCCTG GGCCTCCTTG CCAGCTGAAG TGCTGGACTC CCTGGTCAGC AATGTCAACA	540
	TTGAGCTGCT CAATGCCCTC CGCTACCATA TGGTGGGCAG GCGAGTCCTG ACTGATGAGC	600
20	TGAAACACGG CATGACCCTC ACCTCTATGT ACCAGAATTC CAACATCCAG ATCCACCACT	660
	ATCCTAATGG GATTGTAACT GTGAACTGTG CCCGGCTCCT GAAAGCCGAC CACCATGCAA	720
	CCAACGGGGT GGTGCACCTC ATCGATAAGG TCATCTCCAC CATCACCAAC AACATCCAGC	780
25	AGATCATTGA GATCGAGGAC ACCTTTGAGA CCCTTCGGGC TGCTGTGGCT GCATCAGGGC	840
	TCAACACGAT GCTTGAAGGT AACGGCCAGT ACACGCTTTT GGCCCCGACC AATGAGGCCT	900
	TCGAGAAGAT CCCTAGTGAG ACTTTGAACC GTATCCTGGG CGACCCAGAA GCCCTGAGAG	960
30	ACCTGCTGAA CAACCACATC TTGAAGTCAG CTATGTGTGC TGAAGCCATC GTTGCGGGGC	1020
	TGTCTGTAGA GACCCTGGAG GGCACGACAC TGGAGGTGGG CTGCAGCGGG GACATGCTCA	1080
	CTATCAACGG GAAGGCGATC ATCTCCAATA AAGACATCCT AGCCACCAAC GGGGTGATCC	1140
35	ACTACATTGA TGAGCTACTC ATCCCAGACT CAGCCAAGAC ACTATTTGAA TTGGCTGCAG	1200
	AGTCTGATGT GTCCACAGCC ATTGACCTTT TCAGACAAGC CGGCCTCGGC AATCATCTCT	1260
	CTGGAAGTGA GCGGTTGACC CTCCTGGCTC CCCTGAATTC TGTATTCAAA GATGGAACCC	1320
	CTCCAATTGA TGCCCATACA AGGAATTTGC TTCGGAACCA CATAATTAAA GACCAGCTGG	1380
40	CCTCTAAGTA TCTGTACCAT GGACAGACCC TGGAAACTCT GGGCGGCAAA AAACTGAGAG	1440
	TTTTTGTTTA TCGTAATAGC CTCTGCATTG AGAACAGCTG CATCGCGGCC CACGACAAGA	1500
	GGGGGAGGTA CGGGACCCTG TTCACGATGG ACCGGGTGCT GACCCCCCCA ATGGGGACTG	1560
45	TCATGGATGT CCTGAAGGGA GACAATCGCT TTAGCATGCT GGTAGCTGCC ATCCAGTCTG	1620
	CAGGACTGAC GGAGACCCTC AACCGGGAAG GAGTCTACAC AGTCTTTGCT CCCACAAATG	1680
	AAGCCTTCCG AGCCCTGCCA CCAAGAGAAC GGAGCAGACT CTTGGGAGAT GCCAAGGAAC	1740
50	TTGCCAACAT CCTGAAATAC CACATTGGTG ATGAAATCCT GGTTAGCGGA GGCATCGGGG	1800
	CCCTGGTGCG GCTAAAGTCT CTCCAAGGTG ACAAGCTGGA AGTCAGCTTG AAAAACAATG	1860
	TGGTGAGTGT CAACAAGGAG CCTGTTGCCG AGCCTGACAT CATGGCCACA AATGGCGTGG	1920
55	TCCATGTCAT CACCAATGTT CTGCAGCCTC CAGCCAACAG ACCTCAGGAA AGAGGGGATG	1980
	·	

	AACTTG	CAGA	CTCI	recec	TT (GAGA	CTTC	A A	ACAAC	CATO	AGC	GTT1	TCC	AGG	CTTC	CCC	2040
5	AGAGGTO	CTGT	GCGZ	CTAG	icc (CCTG1	CTAI	C A	AAGI	TATI	' AGF	LGAGG	ATG	AAGO	ATTA	rec	2100
	TTGAAGO	CACT	ACAG	GAGG	AA !	rgcac	CACG	G C	GCTC	TCCG	CCA	LATTT	CTC	TCAC	:ATTI	cc	2160
	ACAGAGA	CTG	TTTG	AATG	TT 1	PTCAR	AACC	A AC	TATO	ACAC	TTI	AATG	TAC	ATGG	GCCG	CA	2220
10	CCATAAT	GAG	ATGI	GAGC	CT 1	rgtgo	ATGT	G GG	GGAG	GAGG	GAG	AGAG	ATG	TACI	TTTT	'AA	2280
10	ATCATGT	TCC	CCCT	'AAAC	AT C	GCTG	TTAA	c co	ACTG	CATG	CAG	AAAC	TTG	GATG	TCAC	TG	2340
	CCTGACA	TTC	ACTT	CCAG	AG A	AGGAC	CTAT	c co	TAAA	GTGG	AAT	TGAC	TGC	CTAT	GCCA	AG	2400
	TCCCTGG	AAA .	AGGA	GCTT	CA G	TATT	GTGG	G GC	TCAT	AAAA	CAT	GAAT	CAA	GCAA	TCCA	GC	2460
15	CTCATGG	GAA (GTCC	TGGC	AC A	GTTT	TTGT.	A AA	GCCC	TTGC	ACA	GCTG	GAG	AAAT	GGCA	TC	2520
	ATTATAA	GCT 2	ATGA	GTTG.	AA A	TGTT	CTGT	C AA	ATGT	GTCT	CAC	ATCT	ACA	CGTG	GCTT	GG	2580
	AGGCTTT	TAT	GGGG	CCCT	GT C	CAGG	TAGA	A AA	GAAA	TGGT	ATG	TAGA	GCT	TAGA	TTTC	cc	2640
20	TATTGTG.	ACA (GAGC	CATG	GT G	TGTT	TGTA	A TA	ATAA	AACC	AAA	GAAA	CAT .	A			2691
	(2) INF	ORMA:	TION	FOR	SEO	ID 1	NO:2:	•									
						CTER:											
25	•	(2	A) LI	engti	i: 6	83 ar	nino		ds								
		(E) T	OPOLO	GY:	line	ear										
	(ii)	MOI	ECUI	LE TY	PE:	prot	ein										
30	(111)	HYP	POTHE	STICA	L:	YES											
	(v)	FRA	GMEN	TY TY	PE:	inte	rnal										
	(vi)	ORI (A				: Homo	вар	iens	,								
35		(G) CE	LL T	YPE:	PE: L : ADE	NOCA	RCIN	OMA								
		(H) CE	LL L	INE	A54	9										
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:2:							
40	Met	Ala	Leu	Phe	Val	. Arg	Leu	Leu	Ala	Leu	Ala	Leu	Ala	Leu	Ala	Leu	
	. 1				5					10				-	15		
	Gly	PIO	ATE	20	Thr	Leu	Ala	GLY	Pro 25	Ala	Lys	Ser	Pro	Tyr 30	Gln	Leu	
45	Val	Leu	Gln 35	His	Ser	Arg	Leu	Arg	Gly	Arg	Gln	His		Pro	Asn	Val	
		50	33					40					45				
	Crea		61 -	M			55	_				60					
50	65	-10	4111	Trb	ıyr	Gln 70	arg	rAs	тте	Сув	Gly 75	Lys	Ser	Thr	Val	Ile 80	
50	Ser	Tyr	Glu	СУВ	Сув 85	Pro	Gly	Tyr	Glu	Lys 90	Val	Pro	Gly	Glu	Lys 95	Gly	
	Сув	Pro	Ala	Ala	Leu	Pro	Leu	Ser	Asn	Leu	Tyr	Glu	Thr	Leu	Gly	Val	
55	-			100	,				105	•				110			

	Va	1 G	ly 50	er Th 15	ır Th	r Th	r Gli	12		r Th	r Aøş	, Ar	g Th 12		u Ly	s Leu
5	Ar	g P:	ro G1 30	lu Me	t Gl	u Gl	y Pro 135	G1;	y Se	r Pho	e Thr	110 140		e Al	a Pr	o Ser
	As 14	n G	lu Al	la Tr	p Ala	150	r Leu D	ı Pro	o Ala	a Glu	ı Val 155		u As	p Se	r Le	u Val 160
	Se	r As	an Va	al Ae	n Ile 16	e Glu	ı Leu	Le	ı Ası	n Ala 170		Arg	ту:	r Hi	8 Me	t Val
10	СУ	s Al	la Va	ıl Gl			llle	Gly	Thi	r Aer	Arg	Lye	Ту	c Phe	Th:	r Asn
	G1	y Ar	g Ar	g Va 18	l Lei O	ı Thr	Asp	Glu	18:		His	Gly	y Met	Thr 190		u Thr
15	Se	r Me	19	r Gl	n Ası	n Ser	Asn	11e 200	Glr	ı Ile	His	His	205		Ası	n Gly
		21	.0			•	215					220)			a Ala
20	22:	5				230	•				235				-	240
					n Gln 245	i				250					255	5
25				260					265					270	,	
			21	5	. Leu			280					285			
30		290	J		: Leu		295					300				_
	305				Asn	310					315					320
35					Leu 325					330	Ç				335	
				340					345					350		
40			355	•	Ile			360					365			_
		370	•		Pro		375					380				
45	. 202				Ser	390					395					400
					Ser 405					410					415	
50				420	Lys				425					430		
			435		Asn		4	140				•	445			_
55	rea	450	HIS	GTÀ	Gln	Thr 1	Leu (455	elu '	Thr :	Leu (160	Lys	Lye :	Leu	Arg

	Va) 465	l Phe	e Val	l Tyr	Arg	470	ser	Leu	Сув	Ile	475	Asn	Ser	Сув	Ile	Ala 480
5	Ala	His	a Ası	Lys	Arg 485	Gly	Arg	Tyr	Gly	7 Thr 490		Phe	Thr	. Xet	Авр 495	
	Va]	. Lev	Thr	9ro 500	Pro	Met	Gly	Thr	Val 505	Met	Asp	Val	Leu	Lys 510		Asj
10	Äsn	Arg	Phe 515	Ser	Met	Leu	Val	Ala 520	Ala	Ile	Gln	Ser	Ala 525		Leu	Thr
	Glu	Thr 530	Leu	Asn	Arg	Glu	Gly 535	Val	Tyr	Thr	Val	Phe 540	Ala	Pro	Thr	Asn
15	Glu 545	Ala	Phe	Arg	Ala	Leu 550	Pro	Pro	Arg	Glu	Arg 555	Ser	Arg	Leu	Leu	Gly 560
	Asp	Ala	Lys	Glu	Leu 565	Ala	Asn	Ile	Leu	Lys 570	Tyr	His	Ile	Gly	Asp 575	Glu
20	Ile	Leu	Val	Ser 580	Gly	Gly	Ile	Gly	Ala 585	Leu	Val	Arg	Leu	Lys 590	Ser	Leu
	Gln	Gly	Авр 595	Lys	Leu	Glu	Val	Ser 600	Leu	Lys	Asn	Asn	Val 605	Val	Ser	Val
25		910		Pro			615					620			_	
	Val 625	His	Val	Ile	Thr	Asn 630	Val	Leu	Gln	Pro	Pro 635	Ala	Asn	Arg	Pro	Gln 640
30	Glu	Arg	Gly	Asp	Glu 645	Leu	Ala	Asp	Ser	Ala 650	Leu	Glu	Ile	Phe	Lys 655	Gln
				Phe 660					665			Val	Arg	Leu 670	Ala	Pro
15	Val	Tyr	Gln 675	Lys	Leu	Leu		Arg 680	Met	Lys	His					

40 Claims

- A substantially pure protein comprising a protein having a sequence of about 683 amino acid residues in length and substantially corresponding to Sequence I.D. 2, wherein said protein is induced by contacting mammalian cells with transforming growth factor beta to growth arrest said cells.
- 2. The protein according to Claim 1, wherein said transforming growth factor beta is selected from the group consisting of TGF-β1, TGF-β2, TGF-β3, a TGF-β1/β2 hybrid molecule and fragments thereof.
 - 3. The protein according to Claim 1, wherein said protein is βIG-H3.
- 4. The protein according to Claim 1, wherein said protein contains four homologous repeating regions.
 - 5. The protein according to Claim 1, wherein said mammalian cells are human cells.
- 6. The protein according to Claim 1, wherein said human cells are selected from the group consisting of lung adenocarcinoma cells, embryonic palatal mesenchymal cells and prostatic adenocarcinoma cells.
 - βIG-H3, a substantially pure protein comprising an amino acid residue sequence of about 683 amino acid residues substantially corresponding to Sequence I.D. 2 and FIGURE 5, wherein said protein contains an

Arg-Gly-Asp sequence in the carboxy terminal amino acids corresponding to amino acid residues 642-644 in FIGURE 5.

- βIG-H3 according to Claim 7, wherein said protein contains four homologous repeating regions as depicted in FIGURE 6.
 - βIG-H3 according to Claim 8, wherein said repeating regions have a homology of at least 16% with each other.
- 10. A substantially pure nucleotide sequence encoding a gene whose expression is induced by contacting mammalian cells with transforming growth factor beta, comprising a nucleotide sequence substantially corresponding to Sequence I.D. 1 and FIGURE 5.
 - 11. The nucleotide sequence according to Claim 10, wherein said transforming growth factor beta induces the production of a 3.4 kilobase RNA transcript from said gene.
 - 12. The nucleotide sequence according to Claim 10, wherein said transforming growth factor beta is selected from the group consisting of TGF-β1, TGF-β2, TGF-β3, a TGF-β1/β2 hybrid molecule and fragments thereof.
- 20 13. The nucleotide sequence according to Claim 10, wherein said gene encodes the expression of βIG-H3.
 - 14. A process for the production of a protein according to any one of Claims 1 to 9, comprising the steps of: i) inserting the nucleotide sequence of any one of Claims 10 to 13 into an expression system;
 - ii) inducing the expression system to express the nucleotide sequence to form a protein product; and iii) isolating the protein product.
 - 15. A process for identifying a protein whose expression is induced by TGF- β comprising the steps of:
 - i) growing a cell in the presence of TGF-β;

5

15

25

30

35

40

45

50

- ii) constructing a cDNA library from the cell;
- iii) comparing the cDNA library with another cDNA library constructed from a cell grown in the absence of TGF- β and identifying the TGF- β -specific clones; and
- iv) further characterising the TGF-β-specific clones to identify the proteins thereby encoded.

Figure 1

Figure 2

Figure 3

Figure 4

			-4	7 GC	TTGC	CCGT	CGGT	CGCT	AGCT	CGCT	CGGT	CCC	GTCG	TCCC	GCTCC	-1
									10					T		
Met	λla	Len	Dha	Val	Ara	TAIL	T.Oll	Ala	LON	Ala	LAN	Ala	Tou	Y 31a	Lon	
ATC	GCG	CTC	THE	GTG	ccc	CTC	CTC	GCT	CTC	CCC	CTC	COM	CEC.	CCC	COLC	40
AIG	GCG	CIC	110	G1 G	CGG	CIG	CIG	GCI	CIC	GCC	CIG	GCT	CIG	GCC	CIG	48
			20													
~1	D				•		†		••-	-	_	_	_		_	
GTA	Pro	Ala	Ala	Thr	Leu	AIA	GIA	Pro	Ala	Lys	ser	Pro	Tyr	GIn	Leu	
GGC	CCC	GCC	GCG	ACC	CIG	GCG	GGT	CCC	GCC	AAG	TCG	CCC	TAC	CAG	CTG	96
	-															
	_	_35	•	_		_	_		_			45				
Val	Leu	GIN	His	ser	Arg	Leu	Arg	Gly	Arg	Gln	His	Gly	Pro	Asn	Val	
GTG	CTG	CAG	CAC	AGC	AGG	CTC	CGG	GGČ	CGC	CAG	CAC	GGC	CCC	AAC	GTG	144
											60					
Cys	Ala	Val	Gln	Lys	Val	Ile	Gly	Thr	Asn	Arg	Lys	Tyr	Phe	Thr	Asn	
TGT	GCT	GTG	CAG	AAG	GTT	ATT	GGC	ACT	AAT	AGG	AAG	TAC	TTC	ACC	AAC	192
					70											
Cys	Lys	Gln	Trp	Tyr	Gln	Arg	Lys	Ile	Cys	Gly	Lys	Ser	Thr	Val	Ile	
TGC	AAG	CAG	TGG	TAC	CAA	AGG	AAA	ATC	TGT	GGC	AĀA	TCA	ACA	GTC	ATC	240
				85										95		
Ser	Tyr	Glu	Cys	Cys	Pro	Gly	Tyr	Glu	Lvs	Val	Pro	Glv	Glu	Lvs	Glv	
AGC	TAC	GAG	TGC	TGT	CCT	GGÂ	TAT	GAA	AAG	GTC	CCT	GGG	GAG	AAG	GGC	288
													110			
Cvs	Pro	Ala	Ala	Leu	Pro	Len	Ser	Asn	Ten	TVr	Glu	Thr		Gly	Va 1	
TGT	CCA	GCA	GCC	CTA	CCA	CTC	TCA	AAC	CTT	TAC.	GAG	ACC.	CTC	CCA	CTC	336
		0011	-	CIA	CCA	CIC	IUA	AAC	CII	IAC	GAG	ACC	CIG	GGA	GIC	336
							120									
17-1	C3	C	mb	mъ-	m	C1-		FFI	m		.	mb	~ 3	*	•	
vai	GIA	Ser	The	Thr	inr	GIN	Leu	Tyr	Thr	ASP	Arg	Thr	GIU	Lys	Leu	
GTT	GGA	TCC	ACC	ACC	ACT	CAG	CIG	TAC	ACG	GAC	CGC	ACG	GAG	AAG	CIG	384
													_			
•						135		_				PEAT			_	
Arg	Pro	GIU	Met	Glu	GIĀ	Pro	GIA	Ser	Phe	Thr	Ile	Phe	Ala	Pro	Ser	
AGG	CCT	GAG	ATG	GAG	GGG	CCC	GGC	AGC	TTC	ACC	ATC	TTC	GCC	CCT	AGC	432
										Щ_						
145															160	
Asn	Glu	Ala	Trp	Ala	Ser	Leu	Pro	Ala	Glu	Val	Leu	Asp	Ser	Leu	Val	
AAC	GAG	GCC	TGG	GCC	TCC	TTG	CCA	GCT	GAA	GTG	CTG	GAC	TCC	CTG	GTC	480
									170							
Ser	Asn	Val	Asn	Ile	Glu	Leu	Leu	Asn	Ala	Leu	Arg	Tyr	His	Met	Val	
AGC	AAT	GTC	AAC	ATT	GAG	CTG	CTC	AAT	GCC	CTC	CGČ	TĀC	CAT	ATG	GTG	528
								185								
Gly	Arg	Arg	Val	Leu	Thr	Asp	Glu	Leu	Lys	His	Gly	Met	Thr	Leu	Thr	
GGC	AGG	CGÁ	GTC	CTG	ACT	GAT	GAG	CTG	AĀA	CAC	GGĈ	ATG	ACC	CTC	ACC	576
					_	_	_	_	_	_						
		195														
Ser	Met		Gln	Asn	Ser	Agn	Ile	Gln	Ile	His	Hia	Tvr	Pro	Agn	Glv	
								CAG								624

Figure 5 (i)

Ile ATT	210 Val GTA	Thr ACT	Val GTG	Asn AAC	Сув TGT	Ala GCC	Arg CGG	Leu CTC	Leu CTG	Lys AAA	220 Ala GCC	Asp GAC	His CAC	His CAT	Ala GCA	672
						Leu CTC										720
				Gln		Ile ATT										768
Arg CGG	Ala GCT	Ala GCT	Val GTG	GCT	GCA	Ser TCA	Gly GGG	Leu CTC	Asn AAC	Thr ACG	Met ATG	CTT	Glu	Gly GGT	Asn AAC	816
			Thr		Leu	Ala GCC										864
Pro CCT	Ser AGT	Glu GAG	Thr ACT	Leu TTG	AAC	295 Arg CGT	Ile ATC	Leu CTG	Gly GGC	Asp GAC	Pro CCA	Glu GAA	Ala GCC	Leu CTG	AGĀ	912
Asp GAC	Leu CTG	Leu CTG	Asn AAC	Asn AAC	310 His CAC	Ile ATC	Leu TTG	Lys AAG	Ser TCA	Ala GCT	Met ATG	Cys TGT	Ala GCT	GAA	320 Ala GCC	960
						Val GTA		ACC								1008
Val GTG	Gly GGC	Cys TGC	Ser AGC	Gly GGG	Asp GAC	Met ATG	CTC	345 Thr ACT	Ile ATC	Asn AAC	Gly GGG	Lys Aag	Ala GCG	Ile ATC	Ile ATC	1056
	AAT					Ala GCC										1104
						Ser TCA										1152
385 Glu GAG	Ser TCT	Asp GAT	Val GTG	Ser TCC	Thr ACA	Ala GCC	Ile ATT	Asp GAC	CTT	395 Phe TTC	Arg AGA	CAA	GCC	GGC	Leu CTC	1200
Gly GGC	Asn AAT	His CAT	Leu CTC	Ser TCT	Gly GGA	Ser AGT	Glu GAG	Arg CGG	410 Leu TTG	Thr ACC	Leu CTC	Leu	Ala GCT	Pro	Leu CTG	1248

Figure 5 (ii)

AAT TCT GTA TTC AAA GAT GGA ACC CCT CCA ATT GAT GCC CAT ACA AGG 1296 435 Asn Leu Leu Arg Asn His Ile Ile Lys Asp Gln Leu Ala Ser Lys Tyr AAT TTG CTT CGG AAC CAC ATA ATT AAA GAC CAG CTG GCC TCT AAG TAT 1344 Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg CTG TAC CAT GGA CAC CTG GAA ACT CTG GGC GGC AAA AAA CTG AGA 1392 Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala GTT TTT GTT TAT CGT AAT AGC CTC TGC ATT GAG AAC AGC TGC ATC GCG 1446 Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG ACC TTC ACG ATG GAC CGG 1488 Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG CTG ACC CCC CAA ATG GGG ACT GTC ATG GAT GTC TTC ACG GAT GAC CTG TTC ACG GAT GTC TTC ACG GAT GAC CTG ACG GAC AAC GAC CTG TTC ACG GAT GTC TTC GAC GAC CTG ACG GAC ACG ACC CTG TTC ACG GAT GTC CTG AAG GGA GAC 1536 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn 1632 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn 1632 Glu Thr Leu Asn Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CCG AGA CTC TTG GGA 1680 Asp Ala Lys Glu Leu Ala Asn Ile Leu Lys Tyr His Ile Gly Asp Glu
Asn Leu Leu Arg Asn His Ile Ile Lys Asp Gln Leu Ala Ser Lys Tyr AAT TTG CTT CGG AAC CAC ATA ATT AAA GAC CAG CTG GCC TCT AAG TAT 1344 Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg CTG TAC CAT GGA CAG ACC CTG GAA ACT CTG GGC GGC AAA AAA CTG AGA 1392 Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala GTT TTT GTT TAT CGT AAT AGC CTC TGC ATT GAG AAC AGC TGC ATC GCG 1446 Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG 1488 Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG CTG ACC CCC CAA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC 1536 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG GCT GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACG AGA AAT 1632 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC CAA CGG GAA GGA GTC TAC ACG AGA CTC TTG GCA ACA AAT 1632 S45 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA AGA GAA CTC TTG GGA 1680
Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg CTG TAC CAT GGA CAG ACC CTG GAA ACT CTG GGC GGC AAA AAA CTG AGA 470 Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala GTT TTT GTT TAT CGT AAT AGC CTC TGC ATT GAG AAC AGC TGC ATC GCG Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 632 634 635 636 637 638 646 647 648 648 649 648 649 649 648 650 660 670 670 670 670 670 670
Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg CTG TAC CAT GGA CAG ACC CTG GAA ACT CTG GGC GGC AAA AAA CTG AGA 470 Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala GTT TTT GTT TAT CGT AAT AGC CTC TGC ATT GAG AAC AGC TGC ATC GCG Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CAG CTC TTG GGA 570
Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala GTT TTT GTT TAT CGT AAT AGC CTC TGC ATT GAG AAC AGC TGC ATC GCG Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 1632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC CTC TTG GGA 570
Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala GTT TTT GTT TAT CGT AAT AGC CTC TGC ATT GAG AAC AGC TGC ATC GCG 485 Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGA 570
Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG 1488 Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC 1536 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 1632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GGC ACC CCA AGA GAA CGG AGC AGA CTC TTG GGA 1680
Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG 1488 Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC 1536 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 1632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGA 1680
Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg GCC CAC GAC AAG AGG GGG AGG TAC GGG ACC CTG TTC ACG ATG GAC CGG 1488 Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC 1536 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 1632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CAA AGA GAA CGG AGC AGA CTC TTG GGA 1680
Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC 1536 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 1632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA AGA GAA CGG AGC AGA CTC TTG GGA 1680
Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp GTG CTG ACC CCC CCA ATG GGG ACT GTC ATG GAT GTC CTG AAG GGA GAC S20 Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT S45 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CCA AGA GAA CGG AGC AGA CTC TTG GGA 560 570
ASH ARG PHE SER MET LEU VAI Ala Ala Ile GIN SER ALA GIY LEU THR AAT CGC TTT AGC ATG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG S20 ASH ARG PHE SER MET LEU VAI Ala Ala Ile GIN SER ALA GIY LEU THR AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG S35 Glu Thr Leu Ash Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Ash GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT S45 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CCA CAA AGA GAA CGG AGC AGA CTC TTG GGA 570
Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG 1584 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGA 570
AAT CGC TTT AGC ATG CTG GTA GCT GCC ATC CAG TCT GCA GGA CTG ACG 535 REPEAT 4 Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CA AGA GAA CGG AGC AGA CTC TTG GGA 570
Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn GAG ACC CTC AAC CGG GAA GGA GTC TAC ACA GTC TTT GCT CCC ACA AAT 1632 545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CAA AGA GAA CGG AGC AGA CTC TTG GGA 1680
545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGA 570
545 Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGA 1680
Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGA 1680
GAA GCC TTC CGA GCC CTG CCA CCA AGA GAA CGG AGC AGA CTC TTG GGĀ 1680
ASD Ala Lvs Glu Leu Ala Asn Tle Leu Lvs Tvr Kis Tle Clu Ass Clu
GAT GCC AAG GAA CTT GCC AAC ATC CTG AAA TAC CAC ATT GGT GAT GAA 1728
585
Ile Leu Val Ser Gly Gly Ile Gly Ala Leu Val Arg Leu Lys Ser Leu ATC CTG GTT AGC GGA GGC ATC GGG GCC CTG GTG CGG CTA AAG TCT CTC 1776
595
Gln Gly Asp Lys Leu Glu Val Ser Leu Lys Asn Asn Val Val Ser Val
CAA GGT GAC AAG CTG GAA GTC AGC TTG AAA AAC AAT GTG GTG AGT GTC 1824
610 Asn Lys Glu Pro Val Ala Glu Pro Asp Ile Met Ala Thr Asn Gly Val
AAC AAG GAG CCT GTT GCC GAG CCT GAC ATC ATG GCC ACA AAT GGC GTG 1872

Figure 5 (iii)

										635						
Val GTC	His CAT	Val GTC	Ile ATC	Thr ACC	Asn AAT	Val GTT	Leu CTG	Gln CAG	Pro CCT	Pro CCA	Ala GCC	Asn AAC	Arg AGA	Pro CCT	Gln CAG	1920
				645		_										
Glu GAA	Arg AGA	Gly GGG	Asp GAT	Glu GAA	Leu CTT	Ala GCA	Asp GAC	Ser TCT	Ala GCG	Leu CTT	Glu GAG	Ile ATC	Phe TTC	Lys AAA	Gln CAA	1968
,			660										670			
Ala GCA	Ser	Ala GCG	Phe TTT	Ser TCC	Arg AGG	Ala GCT	Ser TCC	Gln CAG	Arg AGG	Ser TCT	Val GTG	Arg CGA	Leu CTA	Ala GCC	Pro CCT	2016
Val	Tyr	Gln	Lys	Leu	Leu	Glu	Arg	Met	Lys	His	***					
GTC	TAT	CAA	AAG	TTA	TTA	GAG	AGG	ATG	AAG	CAT	TAG	CTTC	AAG	CACT	ACAG	2067
GAGG	TAA	CAC	CACGO	CAGO	CTCT	CCCC	CAATT	TCT	CTCAC	SATTI	CCAC	CAGAG	CACTO	STTTC	SAATG	2131
TTTI	CAAA	ACC	AGTA	ATCAC	CACT	CAAT	GTAC	CATGO	GCCG	CAC	SATA :	ATGA (ATG	rgago	CCTTG	2195
TGC	TGT	GGGG	AGG	AGGGA	\GAG!	AGATO	TACI	TTT	raaa:	CATO	TTC	ccci	'AAA'	CATGO	CTGT	2259
TAAC	CCAC	TGC	ATGC?	\GAA#	CTTC	GATO	TCAC	TGCC	TGAC	CATTO	ACTI	CCA	AGAG	GACC	TATC	2323
CCAA	ATGI	'GGAZ	\TTG#	ACTGO	CTAT	GCCA	AGTO	CCTC	GAAA	\AGG#	AGCTT	CAGI	ATTO	STGGG	GCTC	2387
ATAA	AACA	TGAZ	ALC'Y1	GCAA	ATCC#	GCCI	CATO	GGAZ	GTC	CTGGC	CACAC	TTTI	TGT	AAGC	CCTT	2451
GCAC	AGCI	'GGÀ	raaa:	'GGCA	TCAT	ATAT?	AGCI	TATGA	GTT	CAAA	'GTTO	TGT	CAAA	'GTG1	CTCA	2515
CATO	TACA	CGT	GCTI	rggag	GCTT	ratt?	GGGG	CCCI	GTC	CAGGI	AGA	AAGA	OTAAL	GTAT	GTAG	2579
AGCT	TAGA	TTTC	CCTA	\TTG1	GACA	GAGC	CATG	GTGI	GTTI	GTAA	TAAT.	AAA	CCAA	AGAA	ACAT	2643
A																2644

Figure 5 (iv)

.

Figure 6

EUROPEAN SEARCH REPORT

Application Number

EP 93 30 0809

Category	Citation of document with of relevant p	indication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL5)
A	Dialog Information Se	rvices. File 5:		C12N15/12
	Biosis 1969 to the pre			C07K15/00
	8563529. A Brunner et			
	tion of a gene family			Į
i	forming growth factor-			
	Biology, vol. 10, no.			
	(1991), pages 293-300	•		
ı	(1331), pages 233-300		ļ	1
, l	THE EMBO JOURNAL		1	
``	vol. 7, no. 10, 1988.	TRI DRESS LTD		
1	OXFORD, UK	IRL PRESS LIU.,	Ì	
ŀ	•		ľ	i
	pages 2977 - 2981			
ļ	C.A. PEARSON ET AL. '1			1
1	cloning and induction	by IGF-beta'		
				1.
D,A	CELL			1
- 1	vol. 53, 1988, USA			
	pages 577 - 587			
1	K, ZINN ET AL. 'Sequen			
i	neuronal expression of			
	grasshopper and Drosop	hfla'		TECHNICAL FIELDS
	•••	-	- 1	SEARCHED (Int. Cl.5)
A	MOLECULAR AND CELLULAR	BIOLOGY		
1	vol. 11, no. 10, 1991,	NEW YORK, USA	į	C12N
Í	pages 5338 - 5345		1	CO7K
1	B. KALLIN ET AL. 'Clon	ing of a growth		
1	arrest-specific and tr			
- 1	factor-beta-regulated			
	epithelial cell line			
P,X	Dialog Information Ser	 vices, File 5:	1-15	
[Biosis 1969 to the pre-	sent, Accession No.		
į.	10004348, J. Skonter e			
	and sequence analysis		İ	
	novel gene induced in a		ļ	
i	adenocarcinoma cell li		j	
	with transforming grow		Ì	
	DNA Cell Biology, Vol.		i	
	pages 511-522	11, 80. / (1992).	1	
	hedas 211-255			
1			-	
	The present search report has b			
<u>-</u>	Place of saurch	Date of completion of the sourch		Production 1
•	UNICH -	13 MAY 1993	YEAT	SS.
X : parti Y : sarti	ATEGORY OF CITED DOCUME cutarly relevant if taken alone cutarly relevant if combined with an ment of the same category	E : cartier patent after the filip other D : document cit	ciple underlying the document, but public g date as in the application of for other reasons	ished on, or

SPO PORM 1505 01.52 @

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.