Assignment #4

Linear Algebra, Fall 2020

Due: December 12, 2022 (15 questions in 3 pages)

1. Suppose S is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find two vectors that span S^{\perp} . This is the same as solving $\mathbf{A}\mathbf{x} = \mathbf{0}$ for which \mathbf{A} ?

2. Fill in the blanks: Suppose V is the whole space \mathbb{R}^4 . Then, V^{\perp} contains only the vector V^{\perp} . Then V^{\perp} is V^{\perp} . So V^{\perp} is the same as V^{\perp} .

3. Project the vector **b** onto the line through **a**. Check that $\mathbf{e} = \mathbf{b} - \mathbf{p}$ is perpendicular to **a**. Find the projection matrix $\mathbf{P} = \mathbf{a}\mathbf{a}^{\mathrm{T}}/\mathbf{a}^{\mathrm{T}}\mathbf{a}$ onto the line through the vector **a**. Verify that $\mathbf{P}^2 = \mathbf{P}$. Multiply $\mathbf{P}\mathbf{b}$ to compute the projection **p**.

(a) $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ and $\mathbf{a} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$.

Solution
(b) $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

4. Project **b** onto the column space of **A** by solving $\mathbf{A}^{\mathrm{T}}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$ and $\mathbf{p} = \mathbf{A}\hat{\mathbf{x}}$. Find $\mathbf{e} = \mathbf{b} - \mathbf{p}$. Find the projection matrix **P** onto the column space of **A**.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$.

5. Suppose **A** is the 4 by 4 identity matrix with its last column removed. **A** is 4 by 3. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of **A**. What shape is the projection matrix **P** and what is **P**?

1

- 6. To find the projection matrix onto the plane x y 2z = 0, choose two vectors in that plane and make them the columns of **A**. The plane should be the column space. Then, compute $\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$.
- 7. Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{\mathbf{x}} = (C, D)$ and draw the closest line.
- 8. Find the best line C + Dt to fit b = 4, 3, 1, 0 at times t = -2, -1, 0, 2.
- 9. Find orthogonal vectors **A**, **B**, **C** by Gram-Schmidt from **a**, **b**, **c**:

$$\mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}.$$

10. Find an orthonormal basis for the column space of **A**:

$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -4 \\ -3 \\ 3 \\ 0 \end{bmatrix}.$$

Then compute the projection of **b** onto that column space.

11. Find $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ (orthonormal) as combinations of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (independent columns). Then write \mathbf{A} as $\mathbf{Q}\mathbf{R}$:

$$\mathbf{A} = \left[\begin{array}{ccc} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right].$$

- 12. If a 3 by 3 matrix **A** has det $\mathbf{A} = -1$, compute the followings:
 - (a) $\det(\frac{1}{2}\mathbf{A})$
 - (b) $\det(-\mathbf{A})$
 - (c) $\det(\mathbf{A}^2)$
 - (d) $\det(\mathbf{A}^{-1})$
- 13. By applying row operations to produce an upper triangular U, compute

$$\det \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 6 & 6 & 1 \\ -1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 7 \end{bmatrix} \quad \text{and} \quad \det \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

2

- 14. We say that **K** is skew-symmetric if $\mathbf{K}^{T} = -\mathbf{K}$. Show that $\det \mathbf{K} = 0$ if **K** is a 3×3 skew-symmetric matrix.
- 15. Compute the determinants of ${\bf A}$ and ${\bf B}$ from the big formula introduced in Section 5.2. Are their columns independent?

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

