Chap 7. Infinite series (무한급수)

7.1 Series and sequences

An infinite series is a special kind of (limit of) sequence.

$$s_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}, \quad s_n \to 2;$$
 geometric sum $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \quad s_n \to e(\text{later});$ exponetial sum $(s_n \text{ is obviously} \uparrow \& s_n \le 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3 \pmod{\text{bdd above by 3}}$ $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \quad s_n \to \infty;$ harmonic sum

 \bullet A special property of the above sequences: $s_{n+1} = s_n + \text{simple expression}$

$$s_{n+1} = s_n + \frac{1}{2^{n+1}}, \quad s_{n+1} = s_n + \frac{1}{(n+1)!}, \quad s_{n+1} = s_n + \frac{1}{n+1}$$

Def. An infinite series is an expression of the form

$$a_0 + a_1 + a_2 + \dots + a_n + \dots$$
 (a_n is called the n-th term)

The sequence (s_n) defined by

$$s_n = a_0 + a_1 + a_2 + \dots + a_n$$
 (or $s_0 = a_0$; $s_{n+1} = s_n + a_{n+1}$ for $n = 0, 1, 2, \dots$)

is called the **n-th partial sum**

If the seq (s_n) converges, with $\lim_{n\to\infty} s_n = S$, we write symbolically

$$a_0 + a_1 + a_2 + \dots + a_n + \dots = S$$

and we say the series converges to the sum S; If not, we say the series diverges

We write
$$a_0+a_1+a_2+\cdots+a_n+\cdots$$
 as $\sum_{n=0}^{\infty}a_n, \sum_{n=0}^{\infty}a_n,$ or $\sum_{n=0}^{\infty}a_n$

ExaA.
$$\sum_{0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} + \dots = 2; \quad \text{geometric series}$$
$$\sum_{0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots = e; \quad \text{exponetial series}$$
$$\sum_{1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots \text{diverges}; \quad \text{harmonic series}$$

ExaB. (geometric series)
$$\sum_{0}^{\infty} r^{n} = \begin{cases} \frac{1}{1-r} & \text{if } |r| < 1\\ \text{diverges otherwise} \end{cases}$$

$$\begin{array}{lll} \text{ExaC.} & s_0 = 0; & s_{n+1} = s_n + (-1)^n \frac{1}{2^n} \ (n \geq 0) & \lim_{n \to \infty} s_n = ? \\ & \text{(i.e., } (s_n)_0^\infty : \ 0, \ 1, \ 1 \ / \ 2, \ 3 \ / \ 4, \ 5 \ / \ 8, \ 11 \ / \ 16, \ \cdots ; \lim_{n \to \infty} s_n = ?) \end{array}$$

Sol. s_n are the partial sums of the infinite series

$$0+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots+(-1)^n\frac{1}{2^n}+\cdots$$

$$\therefore \lim_{n \to \infty} s_n = \frac{1}{1 - (-\frac{1}{2})} = \frac{2}{3}$$

• Turning sequences (or limits of sequences) into infinite series

Goal: Given a sequence $s_n (n \ge 0)$, want to convert $\lim_{n \to \infty} s_n$ into an infinite series

Idea:
$$s_n = s_0 + (s_1 - s_0) + (s_2 - s_1) + \dots + (s_n - s_{n-1}) = s_0 + \sum_{1}^{n} (s_k - s_{k-1})$$
(RHS is called a telescoping sum)

$$\therefore \lim_{n \to \infty} s_n = s_0 + \lim_{n \to \infty} \sum_{1}^{n} (s_k - s_{k-1}) = s_0 + \sum_{1}^{\infty} (s_k - s_{k-1}) = \underbrace{s_0 + \sum_{1}^{\infty} (s_n - s_{n-1})}_{\text{telescoping series}}$$

$$= a_0 + \sum_{1}^{\infty} a_n$$

Conclusion: Given a sequence $s_n (n \ge 0)$, we let

$$a_0 = s_0, \quad \& \quad a_n = s_n - s_{n-1} \quad \text{for } n \ge 1$$

$$\Rightarrow \quad \lim_{n \to \infty} s_n = \sum_{n=0}^{\infty} a_n$$

Remark. This converted form will be useful when s_n-s_{n-1} has a simple expression in $\ n$

ExaD. Let
$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1)$$
 for $n \ge 1$.

Convert the sequence into an infinite series.

$$a_n = s_n - s_{n-1} = \frac{1}{n} - \ln(n+1) + \ln n$$

= $\frac{1}{n} - \ln \frac{n+1}{n}$, for $n \ge 1$

Sol.

Let $s_0 = 0$.

$$\therefore \quad s_n \to \sum_{1}^{\infty} a_n = \sum_{1}^{\infty} (\frac{1}{n} - \ln \frac{n+1}{n}) = \gamma(\text{Euler's constant}) \ (\leftarrow \text{ we know } \lim_{n \to \infty} s_n = \gamma)$$

Remark.

$$s_n = T_1 + T_2 + \dots + T_n$$
 $\therefore a_n = s_n - s_{n-1} = T_n$

 $a_n =$ the area of the "triangle-like" region T_n

Ex. Convert
$$\sum_{1}^{\infty} \frac{1}{n(n+1)}$$
 & $\sum_{1}^{\infty} \ln \frac{n}{n+1}$ into **telescoping series**, respectively

Ans:
$$\sum_{1}^{\infty} \frac{1}{n(n+1)} = \sum_{1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
 & $\sum_{1}^{\infty} \ln \frac{n}{n+1} = \sum_{1}^{\infty} (\ln n - \ln(n+1))$

7.2 Elementary convergence test

Theorem 7.2A The n-th term **test for divergence**

$$\sum a_n$$
 converges $\Rightarrow \lim_{n \to \infty} a_n = 0$

Pf. Let
$$s_n$$
 be the partial sums and $S = \sum a_n = \lim_{n \to \infty} s_n$

Then
$$a_n = s_n - s_{n-1}$$
 for $n \ge 1$

$$\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = S - S = 0$$

Remark (contrapositive statement(대우명제) of Theorem 7.2A):

$$\begin{vmatrix} \lim_{n \to \infty} a_n \neq 0 \\ \text{or} & \Rightarrow & \sum a_n \text{ diverges} \\ \lim_{n \to \infty} a_n \text{ does not exist} \end{vmatrix}$$

Exa Are the series
$$\sum \frac{n}{n+1}$$
 & $\sum (-1)^n$ convergent?

Ans.
$$\frac{n}{n+1} \to 1 \neq 0 \implies \sum \frac{n}{n+1}$$
 diverges by the n-th term test

$$\lim_{n\to\infty} (-1)^n$$
 does not exist $\therefore \sum_{n\to\infty} (-1)^n$ diverges

Caution: The statement
$$a_n \to 0 \implies \sum a_n$$
 converges is *false*

For example,
$$\frac{1}{n} \to 0$$
, but $\sum \frac{1}{n}$ diverges

Remark

$$\sum_{n=0}^{\infty} a_n \text{ converges} \quad \Leftrightarrow \quad \text{given } \varepsilon > 0, \quad | \sum_{n=0}^{\infty} a_n \mid < \varepsilon \quad \text{for} \quad m,n \gg 1 \quad \stackrel{\text{often}}{\Leftrightarrow} \quad \sum_{n=0}^{\infty} a_n \rightarrow 0 \text{ as } m,n \rightarrow \infty$$

$$\sum_{n=0}^{\infty} a_n \text{ converges} \quad \Leftrightarrow \quad \text{ given } \varepsilon > 0, \quad |\sum_{n=0}^{\infty} a_k| < \varepsilon \quad \text{for} \quad n \gg 1 \quad \Leftrightarrow \quad \sum_{n=0}^{\infty} a_k \to 0 \text{ as } n \to \infty$$

Pf. Let s_n be the partial sums (i.e., $s_n = \sum_{k=0}^n a_k$). Then

$$\begin{split} \sum_{n=0}^{\infty} a_n \text{ converges} & \Leftrightarrow \quad (s_n) \text{ is a Cauchy sequence} \\ & \Leftrightarrow \quad \text{given } \varepsilon > 0, \quad \mid s_m - s_n \mid < \varepsilon \quad \text{for } \ m, n \gg 1 \\ & \Leftrightarrow \quad \text{given } \varepsilon > 0, \quad \mid \sum_{n+1}^m a_k \mid < \varepsilon \quad \text{for } \ m, n \gg 1 \\ & \Leftrightarrow \quad \text{given } \varepsilon > 0, \quad \mid \sum_n^m a_k \mid < \varepsilon \quad \text{for } \ m, n \gg 1 \\ & \Leftrightarrow \quad \sum_n^m a_k \rightarrow 0 \ \text{(or, } \mid \sum_n^m a_k \mid \to 0) \ \text{as } \ m, n \rightarrow \infty \end{split}$$

Roughly,

$$\begin{split} \sum_{n=0}^{\infty} a_n \text{ converges} & \Leftrightarrow & \sum_{k=0}^n a_k \to \sum_{n=0}^{\infty} a_n [\in \mathbb{R}] & \Leftrightarrow & |\sum_{n=0}^{\infty} a_n - \sum_{k=0}^n a_k| \to 0 \text{ (as } n \to \infty) \\ & \Leftrightarrow & |\sum_{k=n+1}^{\infty} a_k| \to 0 & \Leftrightarrow & \sum_{k=n+1}^{\infty} a_k \to 0 \text{ (as } n \to \infty) \end{split}$$

Theorem 7.2B **Tail- convergence theorem**

$$\sum_{N_0}^{\infty} a_n \quad \text{converges for some} \quad N_0 \quad \overset{\text{(i)}}{\Rightarrow} \quad \sum_0^{\infty} a_n \quad \text{converges} \quad \overset{\text{(ii)}}{\Rightarrow} \quad \sum_N^{\infty} a_n \quad \text{converges for every} \quad N_0 \quad \overset{\text{(ii)}}{\Rightarrow} \quad \sum_N^{\infty} a_n \quad \overset{\text{(ii)}}{\Rightarrow} \quad \overset{\text{(ii$$

Basic idea:

$$\sum_{0}^{\infty} a_n = \sum_{\substack{0 \ ext{it is a fixed number}}}^{N_0-1} a_n + \sum_{N_0}^{\infty} a_n$$

Pf. (i) Let s_k' be the k-th partial sum of $\sum_{N_0}^{\infty} a_n$ (i.e., $s_k' = a_{N_0} + a_{N_0+1} + \cdots + a_{N_0+k}$), and

let $\,\, s_k \,\,$ be the k-th partial sum of the series $\,\, \sum_0^\infty a_n \,.$

Then by hypo, $\lim_{k\to\infty} s'_k$ exists. Note that

$$s_{N_0+k} = (a_0 + a_1 + \dots + a_{N_0-1}) + a_{N_0} + a_{N_0+1} + \dots + a_{N_0+k} = s_{N_0-1} + s'_k$$

Hence $\lim_{k \to \infty} s_{N_0 + k} = s_{N_0 - 1} + \lim_{k \to \infty} s_k'$ exists; and thus $\lim_{k \to \infty} s_{N_0 + k} \left(\stackrel{\text{i.e.}}{=} \lim_{k \to \infty} s_k \right)$ exists

$$\therefore \sum_{n=0}^{\infty} a_n$$
 converges

(ii) Let
$$s_k'$$
 be the k-th partial sum of the series $\sum_{N=0}^{\infty} a_n$

(that is,
$$s'_k = a_N + a_{N+1} + \dots + a_{N+k}$$
)

& let s_k be the k-th partial sum of the series $\sum_{n=0}^{\infty} a_n$

Then $\lim_{k\to\infty} s_k$ exists by hypothesis.

Since
$$s_k' = s_{N+k} - s_{N-1}$$
, $\lim_{k \to \infty} s_k' = \lim_{k \to \infty} s_{N+k} - s_{N-1} \left(\stackrel{\text{i.e.}}{=} \lim_{k \to \infty} s_k - s_{N-1} \right)$ exists.

$$\therefore \sum_{N=1}^{\infty} a_n \text{ converges}$$

Since N is an arbitrary natural number, $\sum_{N}^{\infty} a_n$ converges for every N.

Remark.
$$\sum_{N_0}^{\infty} a_n$$
 diverges for some $N_0 \Rightarrow \sum_{N}^{\infty} a_n$ diverges for every N

Theorem 7.2C Linearity theorem Let p & q be real numbers. Then

$$\sum a_n$$
 & $\sum b_n : \text{conv} \Rightarrow \left\langle \sum (pa_n + qb_n) \text{ converges, and} \right\rangle$
 $\sum (pa_n + qb_n) = p\sum a_n + q\sum b_n$

Pf. Let
$$s_k' = \sum_{0}^k a_n$$
 & $s_k'' = \sum_{0}^k b_n$. Then by hypo

$$\lim_{k\to\infty} s_k' \quad \& \quad \lim_{k\to\infty} s_k'' \text{ exist} \quad \text{and} \quad \lim_{k\to\infty} s_k' = \sum_0^\infty a_n \quad \& \quad \lim_{k\to\infty} s_k'' = \sum_0^\infty b_n$$

The sequence of partial sums of $\sum (pa_n + qb_n)$ is

$$s_k \equiv \sum_{0}^{k} (pa_n + qb_n) = p \sum_{0}^{k} a_n + q \sum_{0}^{k} b_n = ps'_k + qs''_k$$

$$\lim_{k \to \infty} s_k = \lim_{k \to \infty} (ps'_k + qs''_k) = p \lim_{k \to \infty} s'_k + q \lim_{k \to \infty} s''_k = p \sum_{k \to \infty}^{\infty} a_k + q \sum_{k \to \infty}^{\infty} b_k$$
$$\sum_{k \to \infty}^{\infty} (pa_k + qb_k)$$

$$\text{Cor. } \sum a_n \ \& \ \sum b_n : \text{conv} \ \Rightarrow \left\langle \sum (a_n \, \pm \, b_n) \text{ conv } \ \& \ \sum (a_n \, \pm \, b_n) = \sum a_n \, \pm \, \sum b_n \right\rangle = \sum a_n \, + \, \sum b_n \, + \, \sum b$$

$$\text{Note:} \quad \sum a_n \quad \& \quad \sum b_n : \text{conv} \quad \begin{cases} \not = & \sum a_n b_n : \text{conv} \\ \not = & \sum \frac{a_n}{b_n} : \text{conv} \end{cases}$$

For example, take
$$a_n = b_n = \frac{(-1)^n}{\sqrt{n}} \quad \Rightarrow \quad$$

$$\sum a_n \ (\& \ \sum b_n) : \text{conv, but} \ \sum a_n b_n = \sum \frac{1}{n} : \text{div} \ \& \ \sum \frac{a_n}{b_n} = \sum 1 : \text{div}$$

Theorem 7.2D Comparison theorem for positive terms (: the most basic theorem)

Assume that $0 \le a_n \le a'_n$ for all n. Then

Pf. Let
$$s_k = \sum_{0}^{k} a_n$$
 & $s'_k = \sum_{0}^{k} a'_n$.

Since $a_n \geq 0$ and $a_n' \geq 0$ for all $n, s_k \& s_k'$ are increasing

By hypo, $\lim_{k\to\infty} s_k'$ exists, call this limit S'

Since s'_k is \uparrow & $S' = \lim_{k \to \infty} s'_k$, we see $s'_k \leq S'$ for all k (by Theorem 3.2B)

Since $a_n \leq a_n'$ for all n, it follows that $s_k \leq s_k'$ for all k

$$\therefore$$
 $s_k \leq S'$ for all k Thus (s_k) is \uparrow & bounded above(by S')

By the Completeness Property, $\lim_{k \to \infty} s_k$ exists.

Now by LLT,
$$S \equiv \lim_{k \to \infty} s_k \leq S'$$

This shows that $\sum a_n$ converges, and that $\sum a_n \leq \sum a_n'$

Caution. Non-negativity assumption $0 \le a_n \le a'_n \ \forall n$ is essential:

$$a_n \coloneqq -1 \: / \: n \le 1 \: / \: n^2 \: \eqqcolon \: a_n' \: \Rightarrow \: \sum a_n' \: : \: \text{conv, but } \sum a_n \: : \: \text{diverges}$$

Exa. Is $\sum \frac{1}{\sqrt{n}}$ convergent?

$$\text{Sol.} \qquad 0 \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}} \ \ \text{for all} \ \ n \geq 1$$

$$\sum \frac{1}{n}$$
 diverges $\therefore \sum \frac{1}{\sqrt{n}}$ diverges

7.3 Convergence of series with negative terms

Def $\sum a_n$ is said to be <u>absolutely convergent</u> if $\sum |a_n|$ converges

$$\sum a_n$$
 is called conditionally convergent if $\sum a_n$ converges, but $\sum \mid a_n \mid$ diverges

Cf (in some texts): $\sum a_n$ is called <u>unconditionally convergent</u> if every rearrangement of $\sum a_n$ converges (to the same limit); the notion of a rearrangement of $\sum a_n$ will be introduced in section 7.7

Exa • $\sum \frac{(-1)^n}{2^n}$ & $\sum \frac{(-1)^n}{n!}$ are absolutely convergent

•
$$a_n \ge 0$$
 for all n & $\sum a_n$ conv \Rightarrow $\sum a_n$: absolutely conv.

•
$$\sum \frac{(-1)^n}{n}$$
 is conditionally convergent

Theorem Absolute convergence theorem

$$\sum \mid a_n \mid \text{ converges } \Rightarrow \sum a_n \text{ converges}$$

• We will illustrate the idea on the series $\sum \frac{(-1)^n}{n!}$ (this series is clearly absolutely convergent).

To show it converges, write the series as

$$1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \cdots$$
formally
= need to prove
$$\left[1 + 0 + \frac{1}{2!} + 0 + \frac{1}{4!} + \cdots \right]$$

$$- \left[0 + \frac{1}{1!} + 0 + \frac{1}{3!} + 0 \cdots \right]$$
write
=
$$\sum b_n - \sum c_n$$

Note that

$$0 \le b_n \le \frac{1}{n!}$$
 & $\sum \frac{1}{n!}$ conv $\therefore \sum b_n$ conv $0 \le c_n \le \frac{1}{n!}$ & $\sum \frac{1}{n!}$ conv $\therefore \sum c_n$ conv

Thus $\sum (b_n-c_n)$ conv by Linearity theorem, and $\sum (b_n-c_n)=\sum b_n-\sum c_n$

Consequently, $\sum \frac{(-1)^n}{n!}$ converges.

Pf of (the Absolute convergence) theorem. For every n, we let

$$a_n^+ = \begin{cases} a_n & \text{if } a_n > 0 \\ 0 & \text{if } a_n \le 0 \end{cases}$$

$$= \begin{cases} |a_n| & \text{if } a_n > 0 \\ -a_n & \text{if } a_n \le 0 \end{cases}$$

$$= \begin{cases} |a_n| & \text{if } a_n > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} |a_n| & \text{if } a_n < 0 \\ 0 & \text{otherwise} \end{cases}$$

Then for every n,

$$a_n^+ - a_n^- = \begin{cases} a_n & \text{if } a_n > 0 \\ a_n & \text{if } a_n \le 0 \end{cases} = a_n$$

$$\therefore \sum a_n = \sum (a_n^+ - a_n^-)$$

And according to their definitions,

$$0 \le a_n^+ \le |a_n|$$
 & $0 \le a_n^- \le |a_n|$ for all n

Since by hypo $\left. \sum \right| \, a_n \, \left| \right.$ converges, the Comparison test shows that

$$\sum a_n^+$$
 & $\sum a_n^-$: are convergent

$$\therefore \sum (a_n^+ - a_n^-) = \sum a_n \text{ is convergent}$$

Moreover,
$$\sum a_n = \sum (a_n^+ - a_n^-) = \sum a_n^+ - \sum a_n^-$$

Another popular pf.

Suppose
$$\sum_{0}^{\infty} |\ a_n\ |\ ext{converges}.$$
 Let $s_n = \sum_{k=0}^n a_k$ and $\sigma_n = \sum_{k=0}^n |\ a_k\ |$. Then

 $\left(\sigma_{\scriptscriptstyle n}\right)\,$ is convergent, and hence $\,\left(\sigma_{\scriptscriptstyle n}\right)\,$ is a Cauchy sequence. Thus, for given $\,\,\varepsilon>0\,$

$$\left|s_{\scriptscriptstyle m}-s_{\scriptscriptstyle n}\right| = \left|\sum_{k=n+1}^m a_k\right| \leq \sum_{k=n+1}^m \left|a_k\right| = \sigma_{\scriptscriptstyle m} - \sigma_{\scriptscriptstyle n} = \left|\sigma_{\scriptscriptstyle m}-\sigma_{\scriptscriptstyle n}\right| < \varepsilon \quad \text{for } m>n \geq \text{(some)}\, N$$

This shows the sequence (s_n) is also Cauchy; so (s_n) is convergent, and hence the series

$$\sum_{n=0}^{\infty} a_n$$
 is convergent.

Example. Show that $\sum_{n=0}^{\infty} \frac{\sin n}{2^n}$ is convergent

Sol.
$$\sum_{n=0}^{\infty} \left| \frac{\sin n}{2^n} \right| \le \sum_{n=0}^{\infty} \frac{1}{2^n} \quad \& \quad \sum_{n=0}^{\infty} \frac{1}{2^n} \quad \text{is convergent}$$

So $\sum_{n=0}^{\infty} \frac{\sin n}{2^n}$ is absolutely convergent

$$\therefore \sum_{n=0}^{\infty} \frac{\sin n}{2^n}$$
 convergent by **Absolute convergence theorem**

7.4 Convergence tests: ratio and n-th root tests

Theorem A The ratio test

Suppose
$$a_n \neq 0$$
 for $n \gg 1$, and $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$. Then $L < 1 \implies \sum a_n$ conv (absolutely)

$$L > 1 \implies \sum a_n \text{ diverges}$$

If L=1 or there is no limit, the test fails and there is no conclusion.

Pf. Case 1. L < 1

Choose a number $\,M\,$ so that $\,L < M < 1$. Then by SLT,

$$\lim_{n \to \infty} \mid \frac{a_{n+1}}{a_n} \mid = L \quad \Rightarrow \quad \mid \frac{a_{n+1}}{a_n} \mid < M \quad \text{ for } n \gg 1, \text{ say for } n \geq N$$

On the other hand,

$$\left| \begin{array}{c} \frac{a_{n+1}}{a_n} \right| < M \quad \text{ for } n \ge N \quad \Rightarrow \quad \left| \begin{array}{c} a_{n+1} \end{array} \right| < \left| \begin{array}{c} a_n \mid M \end{array} \right| \quad \text{ for } n \ge N$$

$$\therefore \quad \left| \begin{array}{c} a_{N+1} \mid < \mid a_N \mid M \end{array} \right|$$

$$\left| \begin{array}{c} a_{N+2} \mid < \mid a_{N+1} \mid M < \mid a_N \mid M^2 \end{array} \right|$$

$$\vdots$$

$$\vdots$$

$$|a_{N+k}| < |a_N| M^k$$
 for $k \ge 1$

Since
$$M < 1$$
, $\sum_{k=1}^{\infty} M^k$ converges $\therefore \sum_{k=1}^{\infty} |a_N| M^k$ converges (by Linearity theorem)

Thus by the Comparison theorem,
$$\sum_{k=1}^{\infty} |\; a_{N+k} \; | \; \left(= \sum_{N+1}^{\infty} |\; a_n \; | \; \; \right) \; \; \text{converges}$$

Finally, by the Tail-convergence theorem, $\quad \sum \mid a_n \mid \text{ converges}$

Case 2. L > 1

By the SLT,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| (=L) > 1 \quad \Rightarrow \quad \left| \frac{a_{n+1}}{a_n} \right| > 1 \quad \text{for } n \gg 1, \text{ say for } n \geq N$$

$$\Rightarrow \quad \left| a_{n+1} \right| > \left| a_n \right| \quad \text{for } n \geq N$$

Since $a_n \neq 0$ for $n \gg 1$, we can assume that

$$|a_{n+1}| > |a_n|$$
 & $a_n \neq 0$ for $n \geq N$

$$0 < |a_N| < |a_{N+1}| < |a_{N+2}| \cdots$$

$$\therefore$$
 | a_n | is (strictly) \uparrow for $n \geq N$

$$\therefore \text{ either } \lim_{n \to \infty} |a_n| = \infty \text{ or } \lim_{n \to \infty} |a_n| \ge |a_N| > 0 \text{ (by LLT) if the } \lim_{n \to \infty} |a_n| \text{ exists}$$

$$\lim_{n \to \infty} |a_n| = \infty \text{ or } \lim_{n \to \infty} |a_n| \ge |a_n| > 0$$

In any case, $\sum a_n$ diverges.

Case 3. L=1

$$\sum \frac{1}{n^2} \text{ conv} \quad \text{with } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1; \quad \text{whereas} \quad \sum \frac{1}{n} \quad \text{div} \quad \text{with } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

Theorem B The **n-th root test**

Suppose $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$. Then

$$L < 1 \implies \sum a_n \text{ conv (absolutely)}$$

$$L > 1 \quad \Rightarrow \quad \sum a_n \quad \text{diverges}$$

If L=1 or there is no limit, the test fails and there is no conclusion

Pf. Case1. L < 1

Choose a number $\,M\,$ so that $\,L < M < 1.\,$ Then by SLT,

$$\lim_{n \to \infty} \sqrt[n]{\mid a_n \mid} = L \quad \Rightarrow \quad \sqrt[n]{\mid a_n \mid} < M \quad \text{ for } n \gg 1, \text{ say for } n \geq N$$
 i.e., $\mid a_n \mid < M^n \quad \text{ for } n \geq N$

$$\sum_{N}^{\infty} M^n \quad \text{converges since} \quad M < 1 \qquad \quad \therefore \quad \sum_{N}^{\infty} |\ a_n \ | \quad \text{conv} \quad \text{(by the Comparison thm)}$$

Finally, by the Tail-convergence theorem, $\;\sum \mid \, a_n \mid \;$ converges

Case 2. L > 1: Exercise. Case 3. L = 1: Give examples

Exa. Test for convergence: (a)
$$\sum \frac{(-1)^n n}{2^n}$$
 (b) $\sum \frac{1}{n^2}$

$$\text{Sol.} \quad (a) \quad \left| \frac{a_{n+1}}{a_n} \right| = \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{n+1}{2n} \to \frac{1}{2} = L < 1$$

Thus by Ratio test, the series conv absolutely : conv

$$\begin{vmatrix} a_{n+1} \\ \hline a_n \end{vmatrix} = \frac{n^2}{(n+1)^2} \to 1 = L \qquad \therefore \text{ the Ratio test fails.}$$

$$\sqrt[n]{|a_n|} = n^{-2/n} = (n^{\frac{1}{n}})^{-2} \to 1^{-2} = 1 = L \qquad \therefore \text{ the n-th root test also fails.}$$

However,
$$\sum_{1}^{\infty} \frac{1}{n^2} = 1 + \sum_{2}^{\infty} \frac{1}{n^2} \le 1 + \sum_{2}^{\infty} \frac{1}{(n-1)n}$$

(*) converges since its partial sums
$$\sum_{n=0}^{\infty} \frac{1}{(n-1)n} = \sum_{n=0}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{N} \to 1$$

Thus, by Comparison test, $\sum_{1}^{\infty} \frac{1}{n^2}$ converges $\therefore \sum_{1}^{\infty} \frac{1}{n^2}$ converges.

7.5 The integral and asymptotic comparison tests (: very useful)

These tests are shown to be useful for series like $\sum \frac{1}{n^2}$

(Seen that the Ratio and the n-th root test fail for the series)

Theorem A The integral test

Suppose $f(x) \geq 0$ and decreasing, for $x \geq$ some positive integer N. Then

$$\sum f(n)$$
 converges if the area under $f(x)$ and over $[N,\infty)$ is finite, i.e., $\int_N^\infty f(x)\,dx < \infty$ &

$$\sum f(n)$$
 diverges if the area under $f(x)$ and over $[N,\infty)$ is infinite, i.e., $\int_N^\infty f(x)\,dx=\infty$

Case1. the area is finite

From the picture, we see that

$$0 \le \underbrace{f(n+1)}_{\text{area of shaded rectangle}} \le A_n \equiv \text{the area under } f(x) \& \text{over } [n,n+1] \text{ for } n \ge N$$

Hypo
$$\Rightarrow \sum_{N}^{\infty} A_n$$
 converges

(:·)
$$s_k = \sum_{N}^{N+k} A_n \text{ (= the seq of partial sums of } \sum_{N}^{\infty} A_n \text{)}$$
$$= \text{area under } f(x) \text{ \& over } [N, N+k+1]$$

$$\therefore$$
 $\lim_{k\to\infty} s_k$ = the area over $[N,\infty)<\infty$ by assumption

Thus by Comparison theorem

$$\sum_{N}^{\infty} f(n+1)$$
 converges *i.e.*, $\sum_{N+1}^{\infty} f(n)$ converges

 \therefore $\sum f(n)$ converges as well (by Tail-convergence theorem)

Short pf: Figure shows
$$\sum_{N+1}^n f(k) \le \int_N^n f(x) \, dx \le \int_N^\infty f(x) \, dx \stackrel{\mathrm{Hypo}}{<} \infty$$

$$\therefore \sum_{N+1}^{n} f(k) \uparrow \& \text{ bounded above (by } \int_{N}^{\infty} f(x) dx) \quad \therefore \sum_{N}^{\infty} f(k) : \text{ converges}$$

 \therefore $\sum f(n)$ converges (by Tail-convergence theorem)

Case2. the area is infinite

From the picture, we see that

$$0 \le \underbrace{A_n}_{\text{area under } f(x) \text{ \& over } [n,n+1]} \le \underbrace{f(n)}_{\text{area of rectangle}} \text{ for } n \ge N$$

$$\text{Hypo} \quad \Rightarrow \quad \sum_{N}^{\infty} A_{n} \quad \text{diverges}$$

(:)
$$s_k = \sum_{N=1}^{N+k} A_n = \text{area under } f(x) \& \text{over } [N, N+k+1]$$

$$\therefore$$
 $\lim_{k\to\infty} s_k$ = the area over $[N,\infty)=\infty$ by assumption

Thus by Comparison theorem, $\sum_{N}^{\infty} f(n)$ diverges

 \therefore $\sum f(n)$ diverges as well (by Tail-convergence theorem)

$$\textbf{Short pf}: \text{Figure} \ \Rightarrow \ \sum_{N}^{\infty} f(k) \Biggl(= \lim_{n \to \infty} \sum_{N}^{n} f(k) \geq \lim_{n \to \infty} \int_{N}^{n+1} f(x) \, dx \Biggr) = \int_{N}^{\infty} f(x) \, dx \stackrel{\text{Hypo}}{=} \infty$$

$$\therefore \sum_{N}^{\infty} f(k)$$
 diverges $\therefore \sum f(n)$ diverges (by Tail-convergence theorem)

Summary of the key idea of the integral test:

Suppose $f(x) \ge 0$ and decreasing, on the interval $[N, \infty)$ (N = some positive integer)

$$\Rightarrow \sum_{n=N+1}^\ell f(n) \leq \int_N^\ell f(x) dx \leq \sum_{n=N}^{\ell-1} f(n)$$
 (draw the picture)

Important: If $f(x) \geq 0$ and decreasing, on the interval $[1,\infty)$ & if $\int_1^\infty f(x)\,dx < \infty$, then

$$\sum_{n=2}^{\ell} f(n) \le \int_{1}^{\ell} f(x) dx \le \sum_{n=1}^{\ell-1} f(n)$$

By letting $\ \ell o \infty$, we obtain

$$\sum_{n=2}^{\infty} f(n) \le \int_{1}^{\infty} f(x) dx \le \sum_{n=1}^{\infty} f(n)$$

$$\therefore \int_{1}^{\infty} f(x)dx \le \sum_{n=1}^{\infty} f(n) \le f(1) + \int_{1}^{\infty} f(x)dx$$

 $\left| \sum_{n=1}^{\infty} f(n) - \int_{1}^{\infty} f(x) dx \right| \le f(1) \quad \left(\int_{1}^{\infty} f(x) dx \text{ is an approximation of } \sum_{n=1}^{\infty} f(n) \right)$

Ex. By the same way, we have

$$\int_{k}^{\infty} f(x)dx \le \sum_{i=1}^{\infty} f(i) \le f(i) + \int_{k}^{\infty} f(i)dx \quad \forall k \ge 1$$

So
$$\sum_{n=1}^{k-1} f(n) + \int_{k}^{\infty} f(x) dx \le \sum_{n=1}^{\infty} f(n) = \sum_{n=1}^{k-1} f(n) + \sum_{n=k}^{\infty} f(n) \le \sum_{n=1}^{k-1} f(n) + f(k) + \int_{k}^{\infty} f(x) dx$$

This gives
$$|\sum_{n=1}^{\infty} f(n) - \left(\sum_{n=1}^{k-1} f(n) + \int_{k}^{\infty} f(x) dx\right)| \le f(k)$$

Application:
$$\sum_{1}^{\infty} n^{-4} \approx 1^{-4} + 2^{-4} + \dots + 9^{-4} + \underbrace{\int_{10}^{\infty} x^{-4} dx}_{=\frac{1}{3}10^{-3}},$$

where $f(x) = x^{-4}$, so $f(10) = 10^{-4} = 0.0001$

Home study: Use integral test to show

(i)
$$\sum \frac{1}{n^p}$$
 & $\sum \frac{1}{n(\ln n)^p}$: $\begin{cases} \text{conv} & \text{if } p > 1 \\ \text{div} & \text{if } p \le 1 \end{cases}$ (ii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^p}$ converges if $p > 1$

Asymptotic (or limit) comparison test * Theorem B

If
$$|a_n| \sim |b_n|$$
 (meaning : $\lim_{n \to \infty} \frac{|a_n|}{|b_n|} = 1$), then

$$\sum |a_n|$$
 converges \Leftrightarrow $\sum |b_n|$ converges

Pf. By the hypo & SLT,

$$\left|\frac{1}{2} < \left|\frac{a_n}{b_n}\right| < \frac{3}{2} \quad \text{for } n \gg 1, \text{ say for } n \geq N$$

$$\therefore \frac{1}{2} |b_n| < |a_n| < \frac{3}{2} |b_n| \text{ for } n \ge N \quad ---(*)$$

On the other hand,

Exa. Do these converge or diverge?

(a)
$$\sum_{2}^{\infty} \frac{1}{n^3 - 2n + 1}$$
 (b) $\sum \sqrt{\frac{4n}{n^2 + 1}}$

Sol. (a)
$$\frac{1}{n^3 - 2n + 1} \sim \frac{1}{n^3}$$
 & $\sum_{n=1}^{\infty} \frac{1}{n^3}$ conv $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^3 - 2n + 1}$ conv

$$(b) \qquad \sqrt{\frac{4n}{n^2+1}} \sim \sqrt{\frac{4n}{n^2}} = \frac{2}{\sqrt{n}} \& \sum \frac{2}{\sqrt{n}} \text{ div } \Rightarrow \sum \sqrt{\frac{4n}{n^2+1}} \text{ div}$$

Ex. Is
$$\sum_{1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$
 convergent?

Sol.
$$\frac{1}{n^{1+1/n}} \sim \frac{1}{n}$$
 because $\lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n^{1+1/n}}} = \lim_{n \to \infty} n^{\frac{1}{n}} = 1$

Since
$$\sum_{1}^{\infty} \frac{1}{n}$$
 diverges, $\sum_{1}^{\infty} \frac{1}{n^{1+1/n}}$ is also divergent.

Another way:
$$\forall n \geq 1, \quad n < 2^n$$
 $\therefore \quad n^{1/n} < 2 \quad \forall n \geq 1; \quad \text{ so } \quad \frac{1}{n^{1+1/n}} > \frac{1}{2n}$

Since
$$\sum_{n=1}^{\infty} \frac{1}{2n}$$
 diverges, $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$ is also divergent.

Ex. Assume
$$a_n \to 0$$
 as $n \to \infty$. Show that $\sum_{1}^{\infty} \sin|a_n|$ converges $\iff \sum_{1}^{\infty} |a_n|$ converges

Pf.
$$\sin |a_n| \sim |a_n|$$
 since $\lim_{n \to \infty} \frac{\sin |a_n|}{|a_n|}$ $\stackrel{a_n \to 0}{=} \lim_{x \to 0^+} \frac{\sin x}{x} = 1$.

7.6 Series with alternating signs: Cauchy's test

Theorem. Cauchy's test for alternating series (or Alternating series test)

$$a_n > 0$$
 for all n & $a_n \downarrow$ strictly, and $\lim_{n \to \infty} a_n = 0$.

(for short, $a_n \downarrow 0$ strictly)

$$\Rightarrow \sum_{n=0}^{\infty} (-1)^n a_n$$
 converges

Moreover, if we let $\sum_{n=0}^{\infty} (-1)^n a_n = S$, then $\left| \sum_{k=0}^n (-1)^k a_k - S \right| \left(= \left| \sum_{n=1}^{\infty} (-1)^k a_k \right| \right) < a_{n+1}$

Pf.

From the figure (←hypothsis), we see that

$$s_{2k-1} < s_{2k+1} < \dots < s_{2k+2} < s_{2k}$$
 for $k \ge 1$ & $s_{2k} - s_{2k-1} = a_{2k}$ and $s_{2k+1} - s_{2k} = -a_{2k+1}$

So
$$\{[s_{2k-1}, s_{2k}]\}_{k\geq 1}$$
 is nested & length $[s_{2k-1}, s_{2k}]$ $\stackrel{\text{hypothsis}}{\to}$ 0 as $k\to\infty$

Thus by NIT, $\ \exists \ \ {\rm a \ unique \ real \ number} \ \ S \ \ {\rm such \ that} \ \ \bigcap_{k=1}^\infty [s_{2k-1},s_{2k}] = \{S\}$

In fact,
$$\lim_{k\to\infty} s_{2k-1} = S = \lim_{k\to\infty} s_{2k}$$

$$\therefore$$
 $s_{2k-1} < s_{2k+1} < \dots < S < \dots < s_{2k+2} < s_{2k}$ for $k \ge 1$

From the figure again, we see that

$$|s_{2k} - S| = s_{2k} - S < s_{2k} - s_{2k+1} = a_{2k+1}$$
 &
$$|s_{2k-1} - S| = S - s_{2k-1} < s_{2k} - s_{2k-1} = a_{2k}$$

Consequently, $\mid s_n - S \mid < a_{n+1}$ for any n. This implies $\lim_{n \to \infty} s_n = S$ since $\lim_{n \to \infty} a_n = 0$

Alternative way of showing

$$a_n \downarrow 0 \implies \sum_{n=0}^{\infty} (-1)^n a_n \left[= a_0 - a_1 + a_2 - \dots + (-1)^n a_n + \dots \right]$$
 converges

Set
$$s_n = \sum_{k=0}^{n} (-1)^k a_k = a_0 - a_1 + a_2 - \dots + (-1)^n a_n$$

Key observation:

$$\begin{split} s_{2n-1} \left(n \ge 1 \right) &= (a_0 - a_1) + (a_2 - a_3) + \dots + (a_{2n-2} - a_{2n-1}) \le s_{2n+1} \quad \left[\leftarrow \text{ each } () \ge 0 \right] \\ s_{2n-1} \left(n \ge 1 \right) &= (a_0 - a_1) + (a_2 - a_3) + \dots + (a_{2n-2} - a_{2n-1}) \\ &= a_0 - \underbrace{(a_1 - a_2)}_{\ge 0} - \underbrace{(a_3 - a_4)}_{\ge 0} - \dots - \underbrace{(a_{2n-3} - a_{2n-2})}_{\ge 0} - \underbrace{a_{2n-1}}_{\ge 0} \\ &\le a_0 \end{split}$$

 $s_{2n-1} \uparrow$ and bounded above by a_0 ; so $s_{2n-1} \uparrow (\text{some}) S (\leq a_0 < \infty)$

Also,

$$s_{2n} = s_{2n-1} + a_{2n} \rightarrow S + 0 = S \quad \left[\leftarrow a_{2n} \rightarrow 0 \right]$$

Consequently, $s_{2n-1} \to S$ & $s_{2n} \to S$ $\therefore s_n \to S$ [\leftarrow Claim below]

Claim: Let $\{a_n\}$ be a sequence of real numbers.

Show that $a_{2n} \to L$ & $a_{2n+1} \to L$ $\Rightarrow \lim_{n \to \infty} a_n$ exists & $\lim_{n \to \infty} a_n = L$

Pf. Let $\varepsilon > 0$. Then

$$\exists N_1 \text{ such that } |a_{2n} - L| < \varepsilon \text{ for all } n \ge N_1 \text{ (i.e., } 2n \ge 2N_1 \text{)} \quad \left[\leftarrow \lim_{n \to \infty} a_{2n} = L \right] \text{ \& }$$

$$\exists N_2 \text{ such that } |a_{2n+1} - L| < \varepsilon \text{ for all } n \ge N_2 \text{ (i.e., } 2n + 1 \ge 2N_2 + 1) \quad \left[\leftarrow \lim_{n \to \infty} a_{2n+1} = L \right]$$

Now we take $N = \max\{2N_1, 2N_2 + 1\}$ & let $k \ge N$. Then

 $|a_k - L| < \varepsilon$, regardless of whether k is even or odd

$$\therefore |a_k - L| < \varepsilon \text{ for all } k \ge N$$
 i.e., $\lim_{k \to \infty} a_k = L$

Comment: Let $a_n \downarrow 0$. Then

$$\sum_{k=0}^{\infty} (-1)^k a_k =: S \quad \left[\Rightarrow s_{2n-1} \uparrow S \quad \& \quad s_{2n} \downarrow S \right] \Rightarrow \quad \begin{cases} 0 \leq S - s_{2n-1} \leq a_{2n} & \left[\leftarrow s_{2n} = s_{2n-1} + a_{2n} \right] \\ 0 \leq s_{2n} - S \leq a_{2n+1} \end{cases}$$

$$\therefore$$
 $|s_m - S| \le a_{m+1}$ for every $m \ge 0$

Exa. $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$: converges by Alternating series test since $\frac{1}{\sqrt{n}} \downarrow 0$ strictly.

Remark. The alternating series test is still true if

① $a_n \downarrow 0$ (without strictly decreasing assumption)

or

② $a_n \downarrow 0$ (or strictly $\downarrow 0$) for $n \gg 1$

Recall

(i)
$$\sum_{n=0}^{\infty} a_n : \text{conv} \quad \Rightarrow \quad \lim_{n \to \infty} a_n = 0$$

(ii)
$$a_n \downarrow 0 \implies \sum_{0}^{\infty} (-1)^n a_n : \text{conv & } \left| \sum_{n+1}^{\infty} (-1)^k a_k \right| \le a_{n+1}$$

Question1. Suppose $a_n \ge 0$ & $a_n \to 0$ $\stackrel{?}{\Rightarrow}$ $\sum_{0}^{\infty} (-1)^n a_n$: conv

Ans. No; for example,

$$0 - 1 + 0 - \frac{1}{3} + 0 - \frac{1}{5} + \cdots$$
 (i.e., $a_{2n} = 0$, $a_{2n-1} = \frac{1}{2n-1}$): div $2 - 1 + \frac{1}{2^2} - \frac{1}{3} + \frac{1}{4^2} - \frac{1}{5} + \cdots$: div (easy to check)

Question2. $a_n \geq 0$ & $a_n \downarrow \stackrel{?}{\Rightarrow} \sum_{n=0}^{\infty} (-1)^n a_n : \text{conv}$

Ans. No; for example, $\sum_{0}^{\infty} (-1)^n \frac{n+2}{n+1}$ is not convergent.

(: If the series were convergent,

$$\stackrel{\text{n-th term test}}{\Rightarrow} \lim_{n \to \infty} (-1)^n \frac{n+2}{n+1} = 0 \quad \Rightarrow \quad \lim_{n \to \infty} \frac{n+2}{n+1} = 0; \quad \text{absurd})$$

Return to Claim:
$$e = 1 + 1! + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots = \sum_{i=1}^{\infty} \frac{1}{n!}$$

Pf. We first prove
$$e \ge \sum_{n=0}^{\infty} \frac{1}{n!}$$
. Recall that $e \left(= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \right)$

Moreover, we can prove the next result

Ex. Show that
$$e^x \ge 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for every $x \ge 0$.

In particular,
$$e \ge 1 + 1! + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}$$
 --- (\odot)

Pf. We use the trivial fact: $e^x \ge 1$ if $x \ge 0$

Take
$$\int_{0}^{x} dt \implies e^{x} - 1 \ge x$$
 i.e., $e^{x} \ge 1 + x$

Take
$$\int_0^x dt$$
 again \Rightarrow $e^x - 1 \ge x + \frac{x^2}{2}$ i.e., $e^x \ge 1 + x + \frac{x^2}{2}$

Take
$$\int_0^x dt \text{ again} \implies e^x - 1 \ge x + \frac{x^2}{2} + \frac{x^3}{2 \cdot 3}$$
 i.e., $e^x \ge 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$

Continue this process to get
$$e^x \ge 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for every $x \ge 0$

Next we prove $e \leq \sum_{n=0}^{\infty} \frac{1}{n!}$.

We note that

$$(1+\frac{1}{n})^n \stackrel{\text{Binomial theorem}}{=} 1+\binom{n}{1}\frac{1}{n}+\binom{n}{2}\frac{1}{n^2}+\dots+\binom{n}{k}\frac{1}{n^k}+\dots+\binom{n}{n}\frac{1}{n^n}$$

$$=1+n\frac{1}{n}+\frac{n(n-1)}{2!}\frac{1}{n^2}+\frac{n(n-1)(n-2)}{3!}\frac{1}{n^3}\dots+\frac{n(n-1)(n-2)\cdots(n-(k-1))}{k!}\frac{1}{n^k}$$

$$+\dots\dots+\frac{1}{n^n}$$

$$\leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{k!}+\dots+\frac{1}{n!}$$

$$\leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{k!}+\dots+\frac{1}{n!}+\dots=\sum_{n=1}^{\infty}\frac{1}{n!}$$

Letting $n \to \infty$ shows

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \le \sum_{n=0}^{\infty} \frac{1}{n!} \left[\leftarrow \text{LLT} \right] - - - (\oplus)$$

Combining (\odot) & (\oplus) shows that $e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}$

Remark. Seen that $e^x \ge 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$ for every $x \ge 0$.

Later (Chapter 22), we shall prove that

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for every $x \in \mathbb{R}$.