MI-SPOL-6

Význam tříd NP a NPH pro praktické výpočty.

Kombinatorická matematika: konečné a diskrétní problémy, konečný počet proměnných a jejich hodnot

Problém (abstraktní) X instance (konkrétní)

Problém:

- vstupní proměnné
- výstupní proměnné (občas shoda s konfiguračními)
- konfigurační proměnné (to, co nastavuje hrubá sílá -- to, co vyjádří všechny kombinace)
- omezení (věci se musí vejít do baohu)
- optimalizační kritérium (hledá se nejvyší cena)

Typy problémů:

I instance, Y konfigurace, R(I,Y) -- Y je řešením

- rozhodovací: Existuje Y takové, že R(I,Y)? Platí pro všechna Y, že R(I,Y)?
- ullet konstruktivní: Sestrojit nějaké Y takové, že R(I,Y)
- ullet enumerační: Sestrojit všechna Y taková, že R(I,Y)

Optimalizační problémy:

I instance, Y konfigurace, R(I,Y) -- Y je řešením, C(Y) optimalizační kritérium

- ullet optimalizační rozhodovací: Existuje Y takové, že R(I,Y) a C(Y) je aspoň tak dobré jako daná konstanta Q?
- ullet optimalizační konstruktivní: Sestrojit nějaké Y takové, že R(I,Y) a C(Y) je nejlepší možné
- ullet optimalizační enumerační: Sestrojit všechna Y taková, že R(I,Y) a C(Y) je nejlepší možná
- ullet optimalizační evaluační: Zjistit nejlepší možné C(Y) takové, že R(I,Y)

Čas výpočtu: počet kroků jednotného výpočetního modelu

Turingův stroj: neomezená páska s políčky (každé jeden symbol abecedy), čtecí a zapisovací hlava, končné stavové zařízení

- program:
 - \circ množina Γ symbolů pásky
 - $\circ~\Sigma \subset \Gamma$ množina vstupních symbolů
 - \circ množina stavů Q, počáteční stav $q_0 \in Q$, koncové stavy $q_{ano}, q_{ne} \in Q$
 - \circ přechodová funkce $\delta: (Q-\{q_{ano},q_{ne}\}) imes \Gamma o Q imes \Gamma imes \{-1,+1\}$
- ullet inicializace: stav q_0 , políčko 1
- ullet konec: q_{ano}, q_{ne}
- výpočet: $(q\in Q, s\in \Gamma) o (q', s', \Delta)$ (stav, čtený symbol) --> (nový stav, zapsaný symbol, pohyb pásky)

Řešení problému deterministickým TS:

- ullet program M pro DTS řeší **rozhodovací problém** Π , jestliže se výpočet zastaví po konečném počtu kroků pro každou instanci problému Π
- ullet program M pro DTS řeší **rozhodovací problém** Π **v čase** t, jestliže se výpočet zastaví po t krocích pro každou instanci problému Π
- ullet program M pro DTS řeší **rozhodovací problém** Π **s pamětí** m, jestliže počet použitých políček je nejvýše m pro každou instanci problému Π

Třída P

Rozhodovací **problém patří do třídy P**, jestliže pro něj existuje program pro deterministrický TS, který jej řeší v čase $O(n^k)$, kde n je velikost instance a k konečné číslo.

Třída **PSPACE**: DTS, který problém řeší v paměti $O(n^k)$

Třída **EXPTIME**: DTS, který problém řeší v čase $O(2^{P(n)})$, kde P(n) je polynom ve velikosti

instance n

Nedeterministický Turingův stroj:

Místo přechodové funkce **přechodová relace**: $\delta \subset (Q-\{q_{ano},q_{ne}\}) \times \Gamma \times Q \times \Gamma \times \{-1,+1\}$ **Výpočet:** $(q \in Q, s \in \Gamma) \to \{(q',s',\Delta)\}$ (přechází se do množiny stavů)

Řešení problému nedeterministickým TS:

- ullet Π_{ano} množina instancí problému Π , které mají výstup ano
- ullet program M pro NTS řeší **rozhodovací problém** Π **v čase** t, jestliže se výpočet zastaví po t krocích pro každou instanci $I\in\Pi_{ano}$ problému Π

Pokud NTS řeší problém v čase T(n), DTS ho řeší v čase $2^{O(T(n))}$ -- exponential gap

Třída NP

Rozhodovací **problém** Π **patří do třídy NP**, jestliže pro něj existuje program pro nedeterministrický TS, který každou instanci $I \in \Pi_{ano}$ řeší v čase $O(n^k)$, kde n je velikost instance a k konečné číslo.

Rozhodovací **problém** Π **patří do třídy NP**, jestliže pro každou instanci $I \in \Pi_{ano}$ existuje konfigurace Y taková, že kontrola, zda Y je řešením, patří do P. Y se potom nazývá **certifikátem.**

$$P \subseteq NP$$

Třída co-NP:

Instance je charakterizována řetězcem q^* symbolů $q \in \Gamma$.

Každý problém je charakterizován množinou řetězců kódujících instance s výstupem ANO, tedy podmnožinou množiny $\{q^*\}$

Problém **komplementární** je charakterizován doplňkkem této podmnožiny do $\{q^*\}$

NP problém:

- $\exists Y, R(I,Y)$?
- Existuje v grafu Hamiltonova kružnice?
- Y je krátký svědek odpovědi ano (\exists -certifikát)
- Odpověď ne nemá krátkého svědka

co-NP problém:

- ullet $\forall Y, R'(I,Y)$?, kde R' je komplement k omezujícím podmínkám
- Je tento graf prost Hamiltonových kružnic?
- Y, pro které neplatí R, je krátký svědek odpovědi ne*ano krátkého svědka nemá (dlouhý \forall -certifikát)

obvykle se polynomiální hierarchie zavádí pomocí Turingových strojů s orákulem

Problém Π je **X-těžký**, jestliže se efektivní řešení všech problému třídy X dá zredukovat na efektivní řešení problému Π .

Problém Π je **X-úplný**, jestliže je X-těžký a sám patří do třídy X.

Karpova redukce: Rozhodovací problém Π_1 je Karp-redukovatelný na Π_2 , jestliže existuje polynomiální program pro DTS, kteerý převede každou instanci I_1 problému Π_1 na instanci I_2 problému Π_2 tak, že výstup obou instancí je shodný.

Tranzitivní

Třída NP-úplný

Problém Π je **NP-těžký**, jestliže pro všechny problémy $\Pi'\in \mathsf{NP}$ platí, že jsou Karp-redukovatelné na Π

Problém Π je **NP-úplný**, jestliže $\Pi\in \mathsf{NP}$ a pro všechny problémy $\Pi'\in \mathsf{NP}$ platí, že jsou Karpredukovatelné na Π

Cookova věta: SAT je NP-úplný

NPC tedy není prázdná množina.

Důkaz, že $\Pi \in \mathsf{NP}$ lze provést převodem Π na SAT.

Třída NPO

Optimalizační problém patří do NPO, pokud splňuje:

- velikost výstupu instance je omezena polynomem ve velikosti instance (výstup lze zapsat v poly čase)
- problém, zda je daná konfigurace řešením, patří do P
- existuje program pro TS, který vypočítá hodnotu optimalizačního kritéria pro každé řešení každé instance v polynomiálním čase

Řešení optimalizačního problému TS:

- program M pro DTS řeší **optimalizační problém** Π **v čase** t, jestliže se výpočet zastaví po t krocích pro každou instanci problému Π , která má řešení, a na pásce je zapsán výstup instance
- program M pro DTS počítá **optimalizační kritérium problému** Π **v čase** t, pro každé řešení každé instance problému Π , zapsané na pásce jako vstupní data, se výpočet zastaví po t krocích a na pásce je zapsána hodnota optimalizačního kritéria.

Turingova redukce:

Rozhodovací problém Π_1 je Turing-redukovatelný na Π_2 , jestliže existuje program pro DTS, který řeší každou instanci I_1 problému Π_1 tak, že používá program M_2 pro problém Π_2 jako podprogram (nevyžaduje polynomiální čas)

Karpova redukce je speciální případ Turingovy redukce.

Třída NP-těžký

Problém Π je NP-těžký, pokud pro všechny problémy $\Pi'\in \mathsf{NP}$ platí, že jsou na Π Turing-redukovatelné v polynomiálním čase.

 $NPC \subset NPH$

Třída NP-intermediate (NPI)

Problémy, které nemohou mít polynomiální algoritmus, ale ani na ně nikdy nemůže bý převeden SAT Např. izomorfismus grafů

6 z 6