Some Clues about how to proceed the block cipher assignment

1. Decide on the structure of the cipher. We have discussed 3 options :

- (1) SPN (like AES)
- (2) Feistel (like DES)
- (3) Generalize Feistel (like CLEFIA)

2. Decide on the s-box type and size.

- (1) Do you want a compression s-box, straight s-box, or expansion s-box
- (2) What is the size of your s-box (m x n mapping, eg. 4X4, 6x4, 8x8, 3x2)
- (3) Do you want 1 s-box mappings in your cipher (like AES) or multiple s-box mapping (like DES)

3. Choose the s-boxes. You have multiple options for this.

- (1) Go with a well established s-box like those in AES and DES
- (2) Choose n random non-linear functions that are balanced and make them satisfy SAC
- (3) Like AES, create a finite field and use the inverse of an element for the s-box mapping
- (4) Look up this paper which lists all possible 4x4 mappings and choose one that has good features (https://eprint.iacr.org/2011/218.pdf)

4. S-box analysis

- (1) Find the non-linearity, SAC, and balancedness
- (2) Find the DDT and LDT tables for the s-boxes
- (3) For Algebraic degree, you need to represent each output bit of the s-box in terms of the input bits. The non-linear equations should have a high degree. If you use first principles to design the s-box, then this should be trivial. If you decide to adopt another s-box, you would need to use a tool like Mathematica, pari, or Sage for this purpose. (This answer is optional)

5. Choose the diffusion layer for the round

- (1) Do you really need one. Depending on your answer to question 1, a diffusion layer may not be required. If you think you don't need one continue to 6
- (2) There are multiple options to choose a diffusion layer. Examples are
 - (a) Some permutations (like DES)
 - (b) MDS matrix (like AES)
 - (c) some diffusion operations like ciruclar shifts, integer additions, linear maps, etc.
- (3) Find the branch number for the design

6. Linear and Differential trails

- (1) Compute the linear and differential trail for the cipher. You would need to write a program that probes every possible trail and finds the trail that has the maximum bias / difference probability. This answers question 12 in the assignment.
- (2) Use this to decide on the number of rounds for your cipher. The number of rounds should be such that the best differential trail (or linear trail) should have a probability (or bias) lesser than that of a brute force.

7. Implementation aspects

Use smart techniques to implement the cipher efficiently. You could use larger tables for instance. Choose operations for sbox and diffusion layer which are easy to implement: for instance see composite fields of AES