Тренировочная олимпиада

Задача 1. Дано простое число p такое, что 16p+1 — куб натурального числа. Найдите все возможные значения p.

Задача 2. Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD, проходящие через точки C и D соответственно, пересекаются в точке Q. Докажите, что прямые AB и PQ перпендикулярны.

Задача 3. Множество клеток таблицы $n \times n$ назовем удобным, если в каждой строке и каждом столбце таблице есть по крайне мере две клетки этого множества. При каждом $n \ge 5$ найдите наибольшее m, для которого найдется удобное множество из m клеток, которое перестаёт быть удобным при удалении любой из его клеток.

Задача 4. Даны вещественные числа a_1, a_2, \ldots, a_n , сумма которых равна нулю. Найдите наибольшее возможное значение выражения $a_1x_1 + a_2x_2 + \ldots + a_nx_n$, где числа x_1, x_2, \ldots, x_n принимают все возможные вещественные значения, удовлетворяющие равенству

$$(x_1 - x_2)^2 + (x_2 - x_3)^2 + \dots + (x_{n-1} - x_n)^2 = 1.$$

Задача 5. Назовём множество A отрезков на вещественной прямой *интересным*, если оно удовлетворяет следующим условиям

- множество A состоит ровно из 2024 отрезков;
- каждый отрезок множества A содержится внутри отрезка $\left[0,1\right]$;
- любая точка вещественной прямой принадлежит не более чем 1012 отрезкам множества A.

Для двух интересных множеств отрезков A_1 и A_2 обозначим $n(A_1,A_2)$ число пар (α_1,α_2) , где α_1 — отрезок, принадлежащий множеству A_1 , α_2 — отрезок, принадлежащий множеству A_2 , причём отрезки α_1 и α_2 имеют общую точку. Найдите наибольшее возможное значение $n(A_1,A_2)$.