SMPC for Decentralized Distributed Systems

Frederic Klein – Final Talk

Institute of Medical Informatics
Uniklinik RWTH Aachen

Overview

- Motivation
 - Gamification
 - Secure Multi-Party Computation
 - Hygiene Games
- Design
 - SPAN on Android
 - Distributed system: coordinator election, clock synchronization, database consistency
 - Decentralized system: decentralized SMPC, distributed database
- Evaluation
 - Simulation
 - Android Integration (demonstration)
- Discussion
- Outlook

Gamification

- Generate intrinsic motivation
 - Among other motivators: competition and social comparison
- Examples
 - Stackoverflow, Amazon, runtastic, etc.

Privacy Concerns

- Sensitive data
 - Sharing might result in disadvantage
- Example: Hygiene Games
 - Gamification approach for hand-hygiene compliance
 - Targeting health-care professionals
 - High privacy demands
 - Independent from Internet access

Privacy Protection

- Personal data on own device
- Modest value without comparison

Privacy Protection

Exchange data for comparison

Privacy Protection

- Subfield of cryptography:
 - compute function over inputs of multiple parties
 - keep the inputs private

- Three parties
- Score as input

Secret sharing: n shares for n parties

• Each player: set of n shares

- Computation on shares
- Broadcasting of result

- Each party:
 - Complete information for computation
 - Other inputs remain secret

Existing Frameworks

- Existing frameworks
 - Rely on the Internet
 - Clinical environment: EMI
 - Powerful but complex

	MpcLib	SEPIA	SPDZ	Sharemind	Enigma	
Active Project	✓	×	√	✓	√	
Open Source	✓	✓	✓	×	×	
TCP/IP based	undocumented	✓	✓	✓	√	
Cloud/Application Server/	undocumented	×	1	√	√	
Dedicated Server			•	,		
Distributed System	undocumented	×	X	×	√	
API/SDK	×	✓	×	✓	✓	
C/embedded	×	×	×	×	×	

Requirements

- Framework
 - System-wide statistics using SMPC
 - Infrastructure-less, self-forming Mobile ad-hoc network
 - Feasible algorithms for acceptance

Design: MANETs

- MANET/SPAN
 - Mesh networks with moving nodes
 - Infrastructure-less, self-forming, self-healing

TODO: FIGURE

Design: MANETs

- MANET/SPAN on Android
 - Not included in API
 - Abilities of Bluetooth modules vary
 - Sequential communication
 - Pairing-less connection
 - Insecure RFCOMM
 - Encryption layer

Design: Coordinator Election

- Coordinator election
 - Event driven
 - Timer based

Design: Clock Synchronization

- Internal synchronization of clocks
 - Berkeley Algorithm

Design: Clock Synchronization

- Internal synchronization of clocks
 - Berkeley Algorithm

Design: Distributed Database

- Node maintains copy of database
 - Callback for framework to query database
 - Database comparison with neighboring nodes
 - Hash-tree for finding differences

- Based on Shamir's secret sharing
 - Defines function for shares
 - Lagrange interpolation for recombination

- Secure Sum
 - Sum over secrets equals Lagrange interpolation over sum of shares

- Secure Maximum
 - Bit decomposition
 - Secure sum for each bit position from MSB
 - Self disqualification

Decimal $s_{i,10}$	Binary $s_{i,2}$								
13	0	0	1	1	0	1			
27	0	1	1	0	1	1			
17	0	1	0	0	0	1			

- Secure Minimum
 - Bit decomposition
 - Inverting
 - Secure sum for each bit position from MSB
 - Self disqualification
 - Inverting result

Decimal $s_{i,10}$	Binary $s_{i,2}$					Negated $\bar{s}_{i,2}$						
13	0	0	1	1	0	1	1	1	0	0	1	0
27	0	1	1	0	1	1	1	0	0	1	0	0
17	0	1	0	0	0	1	1	0	1	1	1	0

Design: framework

- C library for compatibility
- All parameters in Configuration
- Interfacing through Node Module

Evaluation

- Performance of online phase
- Android integration
- Implementation of core system
 - Node module, SMPC module, integration of crypto library WolfCrypt

Evaluation: Simulation

- Linux script creating nodes
- Adjustable number of nodes
- Delayed named pipes to simulate wireless connection
- Restriction of CPU through power management

Evaluation: Android Integration

- NDK/JNI wrapper
- Demonstration

TODO: Smartphone Demo

Discussion: Simulation Results

- Discovery bottle neck
- Computation fast

Discussion: Simulation Results

- Number of messages squared
- Larger computation groups: high risk of network partition

Discussion: Simulation Results

 Influence of computation power low compared to message overhead

Discussion: Android Results

- Discovery and transmission expensive
- But:
 - discovery << display</p>
 - Discovery << capacity

Discussion: Problems

- Leftovers
- Strong coupling with Bluetooth
- Different behavior on different Android versions

Outlook

- Implementation of missing features
 - Distributed Database
 - Timeout Callbacks

Outlook: Improvements

- Separate MANET features into standalone library
- Extend with other wireless technologies
- Use BLE advertisement instead of Bluetooth Classic discovery
- Leftovers:
 - Minimum/Maximum: compute with previous results
 - Sum: TODO

Outlook: Usage

- Host as open source project
- Write paper on combination on secure multi-party gamification to gain attention
- Extend simulation script
- Implement into Hygiene Games for a study

