Lecture 16: Decidable Languages

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

Descriptions of Turing Machines

Formal Description:

Fully describes TM's states, transition function, etc.

Implementation Description:

- Use English prose to describe how TM moves tapes head(s) and the way that it stores data on its tape(s)
- No details of states or transition function

High-level Description

- Use English prose to describe TM like an algorithm, ignoring implementation details
- No need to describe how TM manages tape or tape head

Encoding of TM Inputs

- The input to a TM is always an **input string** on the tape
- TM's can take **objects** as inputs, which need to be represented as a string

- In high-level descriptions, we use the notation $\langle \mathbf{0} \rangle$ to denote the **encoding of** object $\mathbf{0}$ as a string
- O can be any object such as a graph or even a DFA, PDA, or TM
- Encodings of several objects $o_1, o_2, ..., o_k$ is denoted $\langle o_1, o_2, ..., o_k \rangle$

Encoding of TM Inputs

Example 1: High level TM

$$M =$$
 "On input $\langle G \rangle$, where G is a graph, ... "

Example 2: Language description

- L: language consisting of all strings representing undirected graphs that are connected
- We write $L = \{\langle \textbf{\textit{G}} \rangle \mid \textbf{\textit{G}} \text{ is a connected undirected graph}\}$ Encoding of $\textbf{\textit{G}}$ as a string

Decision Problem Languages

Recall:

- A decision problem is a problem with a yes or no answer
- Languages can be used to represent decision problems, where strings in the language are all yes-instances of the problem

Decision problem: Is the given undirected graph connected?

- Input: An undirected graph ${\it G}$
- Language: $L = \{\langle G \rangle \mid G \text{ is a connected undirected graph } \}$

Decision problem: Does the given undirected, weighted graph have a spanning tree with weight at most k

- Input: An undirected, weighted graph ${\it G}$ and positive integer ${\it k}$
- Language: $L = \{ \langle G = (V, E), k \rangle \mid k \text{ is a positive integer and } G \text{ is an undirected, weighted graph which has a spanning tree of weight at most } k \}$

Encoding of Graph Inputs

To construct a TM which recognizes / decides languages such as

 $L = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}$

we need to **encode graphs as strings** to input into a TM.

• We can encode a graph as follows:

- ullet Tape head can move between $oldsymbol{\emph{V}}$ and $oldsymbol{\emph{E}}$ to "traverse" the graph
- TM can immediately **reject** if input is not in the correct format

High-level Description of Decider

Construct a **decider** for the following language:

$$L = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}$$

 $M = "On input \langle G \rangle$:

- 1. Select first node of G; mark it
- 2. Repeat the following until no new nodes are marked:
 - For each node $m{v}$ in $m{G}$, $m{mark}\ m{v}$ if it's incident to an edge whose other endpoint is already marked
- 3. Scan all nodes of *G*
 - If all nodes are marked, accept
 - Otherwise, reject

High-level Description of Decider

Construct a **decider** for the following language:

$$L = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}$$

 $M = "On input \langle G \rangle$:

- 1. Select first node of G; mark it
- 2. Repeat the following until no new nodes are marked:
 - For each node $m{v}$ in $m{G}$, $m{mark}\ m{v}$ if it's incident to an edge whose other endpoint is already marked
- 3. Scan all nodes of *G*
 - If all nodes are marked, accept
 - Otherwise, reject

More Decidable Languages / Problems

- $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } w\}$
 - Decider takes as input the encoding of a DFA D and a string w and accepts if the DFA D accepts the string w, or rejects otherwise

- $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input string } w\}$
- $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}$
- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B)\}$

Encoding of DFAs, NFAs, PDAs, and TMs

 Certain Turing machines take DFAs, NFAs, PDAs, or TMs as input for the language that they recognize / decide

• Example: $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } w\}$

 We will show how to encode a **DFA as a binary string**, and PDAs / TMs can be encoded in a similar way

•
$$D = (Q, \Sigma, \delta, q_0, F)$$

 $= (\{q_0, p_1, p_2\}, \{0, 1\},$
 $\delta(q_0, 0) = p_1, \delta(q_0, 1) = p_1, \delta(p_1, 0) = p_2, \delta(p_1, 1) = p_2, \delta(p_2, 0) = p_2, \delta(p_2, 1) = p_2,$
 $q_0, \{p_2\})$

- States will be represented using unary notation: $q_0 \coloneqq 1$, $p_1 \coloneqq 11$, $p_2 \coloneqq 111$
- Alphabet will be represented using unary notation: 0 = 1, 1 = 11
- Items within Q, Σ, δ, F separated by $\mathbf{0}$

$$Q:q_0\coloneqq 1,\, p_1\coloneqq 11,\, p_2\coloneqq 111$$
 $\Sigma:0\coloneqq 1,\, 1\coloneqq 11$

- Each transition in δ can be encoded using 3 unary encodings (separated by 0's)
 - $\delta(q_0,0)=p_1$ is encoded as 101011 q_0 0 p_1
- All encoded transitions separated by $\mathbf{0}$'s (TM knows to read transition format)

•
$$\delta(q_0,0)=p_1$$
, $\delta(q_0,1)=p_1$, $\delta(p_1,0)=p_2$ encoded **101011_0101101101101111**
$$\delta(q_0,0)=p_1$$

- 5-tuple sections separated by **00**
 - E.g. $(Q,\Sigma,...)\coloneqq 10110111_001011_00$...

 $Q:q_0\coloneqq 1,\, p_1\coloneqq 11,\, p_2\coloneqq 111$ $\Sigma:0\coloneqq 1,\, 1\coloneqq 11$

•
$$\mathbf{D} = (\mathbf{Q}, \mathbf{\Sigma}, \boldsymbol{\delta}, \mathbf{q_0}, \mathbf{F})$$

= $(\{q_0, p_1, p_2\}, \{0, 1\},$
 $\boldsymbol{\delta}(q_0, 0) = p_1, \boldsymbol{\delta}(q_0, 1) = p_1, \boldsymbol{\delta}(p_1, 0) = p_2, \boldsymbol{\delta}(p_1, 1) = p_2, \boldsymbol{\delta}(p_2, 0) = p_2, \boldsymbol{\delta}(p_2, 1) = p_2,$
 $q_0, \{p_2\})$

• Encoding:

More Decidable Languages / Problems

- $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } \mathbf{w} \}$
 - Decider takes as input the encoding of a DFA D and a string w and accepts if the DFA D accepts the string w, or rejects otherwise

- $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input string } w\}$
- $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}$
- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B)\}$

Show that the language

 $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } \mathbf{w} \}$ is decidable by constructing a TM M_1 that decides A_{DFA}

What the decider M_1 must do:

- M_1 takes as input the encoding of a DFA D and string w
- M₁ accepts if D accepts w
- M_1 rejects if D does not accept w
- M₁ must not infinitely loop

Show that the language

 $A_{DFA}=\{\langle D,w\rangle\mid D \text{ is a DFA that accepts input string } w\}$ is decidable by constructing a TM M_1 that decides A_{DFA}

High level description:

 $M_1 = \text{"On input } \langle D, w \rangle$, where **D** is a DFA and **w** is a string:

- Simulate DFA **D** on input **w**
 - If simulation ends in an accept state, accept
 - If simulation ends in a non-accepting state, reject

Note: Simulating a DFA on an input will always halt

High level description:

 $M_1 = \text{"On input } \langle D, w \rangle$, where D is a DFA and w is a string:

- Simulate DFA \boldsymbol{D} on input \boldsymbol{w}
 - If simulation ends in an accept state, accept
 - If simulation ends in a non-accepting state, reject

High level description:

 $M_1 = \text{"On input } \langle D, w \rangle$, where D is a DFA and w is a string:

- Simulate DFA \boldsymbol{D} on input \boldsymbol{w}
 - If simulation ends in an accept state, accept
 - If simulation ends in a non-accepting state, reject

More Decidable Languages / Problems

- $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } w\}$
 - Decider takes as input the encoding of a DFA D and a string w and accepts if the DFA D accepts the string w, or rejects otherwise
- $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input string } \mathbf{w} \}$
- $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}$
- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B)\}$

Show that the language

 $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input string } \mathbf{w} \}$

is decidable by constructing a TM M_2 that decides A_{NFA}

High level description:

 M_2 = "On input $\langle N, w \rangle$, where N is an NFA and w is a string:

- Convert NFA N to an equivalent DFA N'
- Run previous decider M_1 on $\langle N', w \rangle$
 - If M₁ accepts, accept
 - If M₁ rejects, reject

Note: NFA to DFA conversion is a known (halting) algorithm, and M_1 is a decider so will always halt

High level description:

 M_2 = "On input $\langle N, w \rangle$, where N is an NFA and w is a string:

- Convert NFA N to an equivalent DFA N'
- Run previous decider M_1 on $\langle N', w \rangle$
 - If M₁ accepts, accept
 - If M₁ rejects, reject

High level description:

 M_2 = "On input $\langle N, w \rangle$, where N is an NFA and w is a string:

- Convert NFA N to an equivalent DFA N'
- Run previous decider M_1 on $\langle N', w \rangle$
 - If M₁ accepts, accept
 - If M₁ rejects, reject

More Decidable Languages / Problems

- $A_{DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input string } w\}$
 - Decider takes as input the encoding of a DFA D and a string w and accepts if the DFA D accepts the string w, or rejects otherwise
- $A_{NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input string } \mathbf{w} \}$
- $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}$
- $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B)\}$

A_{REX} is Decidable

Show that the language

 $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates string } w\}$

is decidable by constructing a TM M_3 that decides A_{NFA}

High level description:

 M_3 = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

- Convert regular expression R to an equivalent NFA R'
- Run previous decider M_2 on $\langle R', w \rangle$
 - If M₂ accepts, accept
 - If M₂ rejects, reject

Question: Is every language Turing-recognizable?

Are all languages Turing-recognizable?

Recall:

- The set of all languages over Σ is $\mathcal{P}(\Sigma^*)$, which is **uncountably infinite**
- Σ^* is countably infinite

How many Turing machines are there?

- TMs can be encoded over some alphabet Σ
- We can **enumerate TM's** by enumerating all strings in Σ^* and omitting strings that don't any TM
- Hence, the number of Turing-machines and Turing-recognizable languages is countably infinite

Therefore, **not all languages are Turing-recognizable** because there are more languages than Turing machines