C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	16
pointer	4	8	8

X & Y	Intersection
-------	--------------

 $X \mid Y$ Union

Symmetric difference

Complement

Examples (char data type)

- $!0x41 \rightarrow 0x00$
- $!0x00 \rightarrow 0x01$
- $!!0x41 \rightarrow 0x01$
- 0x69 && 0x55 → 0x01
- $0x69 \parallel 0x55 \rightarrow 0x01$

Argument x	10100010
<< 3	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Numeric Ranges

■ Two's Complement Values Unsigned Values

- **■** *UMin* = 0 000...0
- 111...1
- -2^{w-1} TMin =
 - 100...0 $2^{w-1}-1$ TMax = 011...1
- Other Values
 - Minus 1 111...1

Values for W = 16

	Decimal	Hex	Binary		
UMax	65535	FF FF	11111111 11111111		
TMax	32767	7F FF	01111111 11111111		
TMin	-32768	80 00	10000000 000000000		
-1	-1	FF FF	11111111 11111111		
0	0	00 00	00000000 00000000		

Conversion Visualized

■ Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2147483648, TMAX = 2147483647

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Unsigned Addition

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

 $s = UAdd_w(u, v) = u + v \mod 2^w$

Two's Complement Addition (for Signed)

Unsigned Multiplication in C

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:
 int s, t, u, v;
 s = (int) ((unsigned) u + (unsigned) v);
 t = u + v
 - Will give s == t

Standard Multiplication Function

True Product: 2^*w bits $u \cdot v$

Ignores high order w bits

Operands: w bits

Implements Modular Arithmetic

 $UMult_w(u, v) = u \cdot v \mod 2^w$

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
- u << k gives u * 2^k
- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Both signed and unsigned
- Uses logical shift

在

•••

 $\neg \neg \neg$

没有现有的1损失的情况下

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

 $-x = \sim x + 1$

Learn to use masks in C programming

unsigned int x = 0x89ABCDEF; unsigned int y = 0x76543210; result = (x & 0x0000FFFF) | (y & 0xFFFF0000);

 Write a C expression that will yield a word consisting of the lowest two bytes of x and the highest two bytes of y. For operands x = 0x89ABCDEF and y = 0x76543210, this would give 0x7654CDEF.

0x89ABCDEF

& 0x0000FFFF

0x0000CDEF

0x76543210 & 0xFFFF0000 0x76540000 0x0000CDEF 0x76540000 0x7654CDEF

- Guess the output of the following C-language code. Note that short in C is 2-bytes on both 32-bit machine and 64-bit machine.
 - int x=100000;
 - short y = (short) x;
 - printf("%d\n",y);
- Explain your answer.
- x = 0x 0001 86A0, 4 bytes
- Casting a 4-byte int to a 2-byte short, the highest two bytes are lost by truncating, so y = 0x86A0
- 0x86A0 will be -31072, a signed integer

■ Single precision: 32 bits

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0 ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

Normalized Encoding Example

```
v = (-1)^s M 2^E
E = Exp - Bias
```

```
include <stdio.h>
ypedef unsigned char *pointer;
oid show_bytes(pointer start, size_t len){
size_t i;
for (j = 0; j < len; j++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
printf("\n");</pre>
                                                         Result on x86 (little Endian):
                                                          0x7ffcc3ce673c 0x00
nt main() {
float a=15213;
                                                          0x7ffcc3ce673d 0xb4
                                                          0x7ffcc3ce673 0x6d
   show_bytes((pointer)&a.sizeof(float));
                                                          0x7ffcc3ee673f 0x46
   return 0:
               10001100 110110110110100000000000
```

从十六进制数据直接转化为 normalized,十六进制就是按 normalized 储存的

在 denormalized 中,E 和 Exp 没有关系,从 denormalized 转换为数字时,数字的 E=1-Bias,

Special Values

Interesting Numbers

Description

{single,double}

Numeric Value

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - E.g., the result of 1.0/0.0
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., the results of sqrt(-1), ∞ ∞ , $\infty \times 0$

Zero	0000	0000	0.0			
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$			
■ Single $\approx 1.4 \times 10^{-45}$						
Double ≈ 4.9 x 10 ⁻³²⁴						
 Largest Denormalized 	0000	1111	(1.0 – ϵ) x 2 ^{-{126,1022}}			
Single ≈ 1.18 x 10 ⁻³⁸						
Double ≈ 2.2 x 10 ⁻³⁰⁸						
Smallest Pos. Normalized	0001	0000	1.0 x 2 ^{-{126,1022}}			
 Just larger than largest denormalized 						
One	0111	0000	1.0			
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$			
Single ≈ 3.4 x 10 ³⁸	そ可労川	II. IHX	Special Num			
 Double ≈ 1.8 x 10³⁰⁸ 	1 -3/3 11.	v =C3	There I will			

frac

Roun

63

1.BBGRXXX

111 Y

Postnormalize

Issue

63

Guard bit: LSB of result >

Round bit: 1st bit removed

1.1111100

Sticky bit: OR of remaining bits

Rounding may have caused overflow

10.000

Handle by shifting right once & incrementing exponent

Result

128

15

16

20

134

64

1.000/6

Round	up conditions				Value	Rounded	Exp	Adjusted	1
Round	= 1, Sticky = 1 \rightarrow >	0.5			128	1.000	7	-	
Guard	= 1, Round = 1, Stic	ky = 0 →	Round to	even					
Value	Fraction	GRS	Incr?	Rounded	15	1.101	3		
128	1.0000000	000	N	1.000	17	1.000	4		
15	1.1010000	100	N	1.101	19	1.010	4		
17	1.0001000	010	N	1.000			•		
19	1.0011000	110	Y	1.010	138	1.001	7) :
138	1.0001010	011	Y	1.001	63	10 000		1 000/6	

Default Rounding Mode

10.000

- Other rounding modes may produce statistically biased results
 - E.g., sum of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999 (Less than half way) 7.89 7.8950001 7.90 (Greater than half way) 7.8950000 7.90 (Half way—round up) 7.8850000 7.88 (Half way-round down)

7.885. 最近的偶数是 7.88; 7.895. 最近的偶数是 7.90

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \mathbf{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \mathbf{Round}(\mathbf{x} \times \mathbf{y})$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
- \blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E

frac1 Sign s: s1 ^ s2 exp1 Significand M: M1 x M2 exp2 frac2 Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

The biggest task is multiplying significands

Multiplication Commutative?

Yes

Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

1 is multiplicative identity?

Yes

Multiplication distributes over addition?

No

Possibility of overflow, inexactness of rounding

1e20*(1e20-1e20) = 0.0,
1e20*1e20 - 1e20*1e20 = NaN

Floating Point Addition

Get binary points lined up

Assume *E1* > *E2*

■ Exact Result: (-1)^s M 2^E

- ■Sign s, significand M:
 - Result of signed align & add
- ■Exponent *E*: *E1*

- Fixing
 - ■If $M \ge 2$, shift M right, increment E
 - •if M < 1, shift M left k positions, decrement E by k
 - ■Overflow if *E* out of range
 - Round M to fit frac precision

Mathematical Properties of FP Add

Commutative?

Yes

Associative?

No

- Overflow and inexactness of rounding
- (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity?

Yes

Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

• A number that can be exactly represented in binary form will be written in the form $x/2^n$, where $x < 2^n$