MapReduce Pattern

Por:

Anderson Barrientos Parra

C.c: 1017242181

Stiven Guerra Chaverra

C.c: 1037672655

Sebastián Gómez Ramírez

C.c: 1045026756

Hermen Esteban Theran Martínez

C.c: 1035875072

Robinson Coronado García

Profesor

Arquitectura de Software - Ingeniería de Sistemas Universidad De Antioquia

Medellín 2020

Introducción

Los patrones arquitectónicos ofrecen soluciones a problemas de arquitectura de software en ingeniería de software. Dan una descripción de los elementos y el tipo de relación que tienen junto con un conjunto de restricciones sobre cómo pueden ser usados. Es una solución general y reutilizable a un problema común en la arquitectura de software dentro de un contexto dado. Los patrones arquitectónicos son similares al patrón de diseño de software pero tienen un alcance más amplio.

Definición

MapReduce es una técnica de procesamiento y un programa de modelo de computación distribuida basada en java. El algoritmo MapReduce contiene dos tareas importantes: Map y Reduce. Map toma un conjunto de datos y lo convierte en otro conjunto de datos, en el que los elementos se dividen en tuplas (pares clave/valor). En segundo lugar, Reduce toma la salida de un Map como entrada y combina los datos tuplas en un conjunto más pequeño de tuplas dependiendo de la lógica y las necesidades del programador. Como el nombre MapReduce implica, la reducción se realiza siempre después del mapa.

Contexto

Las empresas tienen la necesidad urgente de analizar rápidamente enormes volúmenes de los datos que generan o a los que acceden, a escala de petabytes. Los ejemplos incluyen registros de interacciones en un sitio de red social, depósitos masivos de documentos o datos, y pares de <fuente, objetivo> enlaces web para un motor de búsqueda. Programas para el análisis de estos datos deben ser fáciles de escribir, ejecutados eficientemente y ser resistentes con respecto a fallos de hardware.

Problema

Para muchas aplicaciones con conjuntos de datos ultra grandes, la clasificación de los datos y entonces el análisis de los datos agrupados es suficiente. El problema que resuelve el patrón de reducción del mapa es realizar eficientemente un tipo de datos distribuidos y paralelos y proporcionar un medio simple para que el programador especifique el análisis a ser hecho.

Solución

El patrón *Map-Reduce* requiere tres partes: primero, una infraestructura especializada se encargada de asignar software a los nodos de Hardware en un entorno informático masivamente paralelo y se encarga de clasificar los datos según sea necesario. Un nodo puede ser un procesador independiente o un núcleo en un chip de múltiples núcleos. La segundo y la tercera parte son dos funciones codificadas por el programador llamadas *Map* y *Reduce*.

Ventajas de MapReduce

- La principal **ventaja** de **MapReduce** es que es fácil de escalar procesamiento de datos en múltiples nodos.
- Permite paralelizar y distribuir el procesamiento de grandes volúmenes de información.
- Al estar ubicada en el mismo servidor esta permite un procesamiento más rápido de los datos.

Desventajas de MapReduce

- Si no se tiene un conjunto de datos grande, el sobrecalentamiento que produce el *Map-Reduce*.
- Si no se puede dividir la información en subconjuntos de tamaño similar, las ventajas del paralelismo se pierden.
- Operaciones que requieran múltiples *Reduces* son muy complejas de orquestar.

Ejemplo de MapReduce

Escenario	Contar el total del salario de los empleados basándose en su género
Map(Clave, Valor)	Clave: Género, Valor: Salario del empleado
Reduce	Agrupar por clave (género), entonces tomar la suma del valor (salario) de cada grupo.

Conjunto de la información

Nombre del empleado	Género	Salario en millones
Anderson	Masculino	8
Susana	Femenino	7
Nicolás	Masculino	10
Jhin	Masculino	4

María	Femenino	5
Fernanda	Femenino	9

Output de la función map

Al contar el salario por género:

(Masculino, 8), (Femenino, 7), (Masculino, 10), (Masculino, 4), (Femenino, 5), (Femenino, 9)

Y el Input para la función Reduce será el siguiente:

(Masculino, <8, 10, 4>), (Femenino, <7, 5, 9>)

Output de la función Reduce

Finalmente, el Output de la función Reduce será el siguiente:

(Masculino, 22), (Femenino, 21)

Lo cual corresponde a la suma del salario de los empleados según su género.

Conclusión

Map-Reduce es una arquitectura muy útil y eficaz sólo cuando de manejo de grandes volúmenes de datos se trata, ya que es en esas circunstancias que se aprovecha al máximo la computación paralela.

Bibliografía

- Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd Reviseded.) [Libro electrónico]. Addison-Wesley Professional. Tomado de: http://jz81.github.io/course/sa/Software%20Architecture%20in%20Practice%20(3rd).pdf
- Kat, S. (2019, 10 julio). *MapReduce Design Patterns*. dzone.com. Tomado de: https://dzone.com/articles/mapreduce-design-patterns-1