PC900V/PC900VQ

Digital Output Type OPIC Photocoupler

* Lead forming type (I type) and taping reel type (P type) are also available. (PC900VI/PC900VP) ** TÜV (DIN-VDE0884) approved type is also available as an option.

■ Features

- 1. High reliability type (**PC900VQ**)
- 2. Normal OFF operation, open collector output
- 3. TTL and LSTTL compatible output
- 4. Operating supply voltage V_{CC} : 3 to 15V
- 5. High isolation voltage between input and output (V_{iso}: 5 000V_{rms})
- 6. Recognized by UL, file No. E64380

■ Applications

- 1. Isolation between logic circuits
- 2. Logic level shifters
- 3. Line receivers
- 4. Replacements for relays and pulse transformers
- Noise reduction

■ Outline Dimensions

(Unit: mm)

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

 $(Ta = 25^{\circ}C)$

■ Absolute Maximum Ratings

- / \DOO! \d	io maximum ratingo		(1u- 25 C)
	Parameter	Symbol	Rating	Unit
	Forward current	I_F	50	mA
T	*1Peak forward current	I_{FM}	1	A
Input	Reverse voltage	V _R	V _R 6	
	Power dissipation	P	70	mW
	Supply voltage	V _{CC}	16	V
0	High level output voltage	age V _{OH} 16		V
Output	Low level output current	I _{OL}	50	mA
	Power dissipation	Po	150	mW
Total power dissipation		P tot	170	mW
*2Isolation voltage		V iso	5 000	V _{rms}
Operating temperature		T opr	- 25 to + 85	°C
Storage temperature		T stg	- 40 to + 125	°C
*3Soldering temperature		T sol	260	°C

^{*1} Pulse width<=100 \mu s, Duty ratio: 0.001

^{*2 40} to 60% RH, AC for 1 minute

^{*3} For 10 seconds

■ Electro-optical Characteristics

($Ta = 0 \text{ to} + 70^{\circ}\text{C} \text{ unless specified}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		V _F	$I_F = 4mA$	-	1.1	1.4	V
				$I_F = 0.3 \text{mA}$	0.7	1.0	-	
	Reverse current		I_R	$Ta = 25^{\circ}C, V_R = 3V$	-	-	10	μΑ
	Terminal capacitance		C_{t}	$Ta = 25^{\circ}C, V = 0, f = 1kHz$	-	30	250	pF
Output	Operating supply voltage		V _{CC}		3	-	15	V
	Low level output voltage		V _{OL}	$I_{OL} = 16mA$, $V_{CC} = 5V$, $I_F = 4mA$	-	0.2	0.4	V
	High level output current		Іон	$V_0 = V_{CC} = 15V, I_F = 0$	-	1	100	μΑ
	Low level supply current		I_{CCL}	$V_{CC} = 5V$, $I_F = 4mA$	-	2.5	5.0	mA
	High level supply current		I_{CCH}	$V_{CC} = 5V, I_{F} = 0$	-	1.0	5.0	mA
Transfer charac- teristics	*4"High→Low" threshold		I _{FHL}	$Ta = 25^{\circ}C$, $V_{CC} = 5V$, $R_L = 280 \Omega$	-	1.1	2.0	mA
	input current			$V_{CC} = 5V$, $R_L = 280 \Omega$	-	-	4.0	
	*5"Low→High" threshold		l _{FLH}	$Ta = 25^{\circ}C$, $V_{CC} = 5V$, $R_{L} = 280 \Omega$	0.4	0.8	-	mA
	input current			$V_{CC} = 5V$, $R_L = 280 \Omega$	0.3	-	-	
	*6Hysteresis		I FLH /I FHL	$V_{CC} = 5V$, $R_L = 280 \Omega$	0.5	0.7	0.9	-
	Isolation resistance		R _{ISO}	Ta = 25°C, DC500V, 40 to 60% RH	5 x 10 ¹⁰	10^{11}	-	Ω
	*7 Response time	"High→Low" propagation delay time	t PHL t PLH tf	$Ta=25^{\circ}C$ $V_{CC}=5V, I_{F}=4mA$ $R_{L}=280\Omega$	_	1	3	μs
		"Low→High" propagation delay time			-	2	6	
		Fall time			-	0.05	0.5	
		Rise time	t _r		-	0.1	0.5	

^{*4} I FHL represents forward current when output goes from high to low.

<Pre><Pre>cautions for Use>

Connect a capacitior of more than 0.1 μ F between V_{CC} and GND.

Test Circuit for Response Time

^{*5} I FLH represents forward current when output goes from low to high.

^{*6} Hysteresis stands for I $_{FLH}$ /I $_{FHL}$. *7 Test circuit for response time is shown below.

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 3 Forward Current vs. Forward Voltage

Fig. 5 Relative Threshold Input Current vs. Ambient Temperature

Fig. 2 Power Dissipation vs. Ambient Temperature

Fig. 4 Relative Threshold Input Current vs. Supply Voltage

Fig. 6 Low Level Output Voltage vs. Low Level Output Current

Fig. 7 Low Level Output Voltage vs. Ambient Temperature

Fig. 9 Propagation Delay Time vs. Forward Current

Fig. 8 Supply Current vs. Supply Voltage

Fig.10 Rise Time, Fall Time vs. Load Resistance

■ Precautions for Use

- (1) It is recommended that a by-pass capacitor of more than 0.01μ F is added between V_{CC} and GND near the device in order to stabilize power supply line.
- (2) Handle this product the same as with other integrated circuits against static electricity.
- Please refrain from soldering under preheating and refrain from soldering by reflow.
- Please refer to the chapter "Precautions for Use."

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.