1 Exercice n°25 page 336

1)

Ínternes = I et on tire trois fiches avec remise donc:

$$P(I) = (\frac{10}{100})^3 = \frac{1}{1000}$$

Donc la probabilité de consulter trois fiches d'internes est de $\frac{1}{1000}$

2)

Demi-pensionnaires = D et on tire trois fiches avec remise donc:

$$P(\bar{D}) = (1 - P(D))^3 = (1 - \frac{60}{100})^3 = \frac{8}{125}$$

Donc la probabilité de consulter aucune fiche de demi-pensionnaires est de $\frac{8}{125}$

2 Exercice n°26 page 336

Soit le triangle de Pascal de notre expérience aléatoire ci dessous:

1	$n \setminus k$	0	1	2	3	4	5
	0	1					
	1	1	1				
	2	1	2	1			
	3	1	3	3	1		
	4	1	4	6	4	1	
	5	1	5	10	10	5	1

Et
$$P(Y = K) = C_k^n p^k (1 - p)^{n-k}$$

a)Soit Y la variable aléatoire "obtenir pile":

$$P(Y=5) = (C_5^5)(\ \tfrac{1}{2})^5\ (1-\ \tfrac{1}{2}\)^{5-5} = 1 \times\ (\ \tfrac{1}{32})\ \times\ 1\ =\ \tfrac{1}{32}$$

Donc il y a $\frac{1}{32}$ de chance d'obtenir cinq fois le côté pile et donc aucune fois face.

1

b)Soit X la variable aléatoire "obtenir face":

$$P(X=1) = (C_1^5) \left(\frac{1}{2} \right)^1 \left(1 - \frac{1}{2} \right)^{5-1} = 5 \times \left(\frac{1}{2} \right) \times \left(\frac{1}{16} \right) = \frac{5}{32}$$

Donc il y a $\frac{5}{32}$ de chance d'obtenir une fois le côté face.

Exercice n°40 page336 3

Soit le triangle de Pascal de notre expérience aléatoire ci dessous:

	n k	0	1	2	3		
	0	1					
	1	1	1				
	2	1	2	1			
	3	1	3	3	1		
Et $P(Y = K) = C_k^n p^k (1 - p)^{n - k}$							

Et
$$P(Y = K) = C_k^n p^k (1 - p)^{n-k}$$

Soit X la variable aléatoire "obtenir un as":

$$P(X=3) = (C_3^3)(\ \tfrac{1}{6})^3 \ (1-\ \tfrac{1}{6}\)^{3-3} = 1 \times \ (\ \tfrac{1}{216}) \ \times 1 \ = \ \tfrac{1}{216}$$

Donc il y a $\frac{1}{216}$ de chance d'obtenir trois fois un as.

Exercice n°41 page336 4

Soit le triangle de Pascal de notre expérience aléatoire ci dessous:

$n\setminus$	k	0	1	2	3	4	5
0		1					
1		1	1				
2		1	2	1			
3		1	3	3	1		
4		1	4	6	4	1	
5		1	5	10	10	5	1

Soit X la variable aléatoire "atteindre la cible":

$$P(X=3) = (C_3^5)(\ \tfrac{7}{10})^3 \ (1 - \ \tfrac{7}{10}\)^{5-3} = 10 \times \ (\ \tfrac{343}{1000}) \ \times \ (\ \tfrac{9}{100}) \ = \tfrac{3087}{10000}$$

Donc il y a $\frac{3087}{10000}$ de chance d'atteindre trois fois la cible.