MATH 232 Lecture 1 pre-lecture comments

Key points for today:

- 1. What are scalars? Vectors?
- 2. How do we represent vectors algebraically? geometrically?
- 3. How do we manipulate vectors algebraically? geometrically?
- 4. What are matrices?

Terminology:

- 1. scalar
- 2. vector
- 3. linear combination
- 4. matrix

A scalar is an object that can be described entirely by a number.

A vector is an object that the described entirely by a number.

A vector is an object that can be described by a number value for its length (magnitude) and the direction it points. 2 units north-east

Example

scalars:

temperature, price, speed, weight

vectors:

Notation

a,b,c,k,l,m,u,v,w

normal letter (not bold (no arrow)

a,b,c,k,l,m,u,v,w

hold in print

or = alrow on top

Geometrically, a vector points from one point place to another: $\mathbf{v} = \vec{AB}$.

Terminal point ("head")

Initial point ("tail")

magnitude

length

Two vectors are equal if they have the same magnitude and direction.

Geometrically we add vectors "head" to "tail".

i 7

10+V 10

Coordinates In 2-space (2D) R^2 , given a vector \mathbf{v} , place the initial point of the vector at (0,0). The coordinates (x,y) of the terminal points are called *components* or *coordinates* of \mathbf{v} .

The zero vector
$$\overrightarrow{0} = (0, 0, \dots, 0)$$

Equality of vectors When are the vectors $\vec{\mathbf{u}} = (u_1, u_2, ..., u_n)$ and $\vec{\mathbf{v}} = (v_1, v_2, ..., v_n)$ equal? $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are equal if: $u_1 = v_1$ $v_2 = v_2$ $v_3 = v_3$

(at components the same)

Addition in R²

$$\vec{u} = (1,3)$$
 $\vec{\tau} = (-2,1)$

$$\vec{U} + \vec{V} = (1 + (-2), 3 + 1)$$

$$= (-1, 4)$$

Algebraic operation examples

Algebraic operations in Rⁿ Given two vectors $\mathbf{u} = (u_1, ..., u_n)$ and $\mathbf{v} = (v_1, ..., v_n)$ and a real number (scalar) $c \in R$:

$$cu = (cu_1, cu_2, \ldots, cu_n) = 0$$

$$\mathbf{u} - \mathbf{v} = \overrightarrow{\mathbf{u}} + (-\overrightarrow{\mathbf{v}}) = (\mathbf{u}_1 - \mathbf{v}_1, \mathbf{v}_2 - \mathbf{v}_2, \dots, \mathbf{v}_n - \mathbf{v}_n)$$

Properties (Theorems 1.1.5 and 1.1.6)

$$\mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$\blacktriangleright (u+v)+w=u+(v+w)$$

$$\triangleright u + 0 = u$$

$$(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$$

$$\triangleright k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

$$\blacktriangleright$$
 $(kl)\mathbf{u} = k(l\mathbf{u})$

$$ightharpoonup 1\mathbf{u} = \mathbf{u}$$

$$(-1)\mathbf{u} = -\mathbf{u}$$

$$\rightarrow k0 = 0$$

Parallel vectors

$$\vec{u}, \vec{v} \text{ same direction}$$
 $\vec{u} = (1,2)$
 $\vec{v} = (2,4)$
 $\vec{v} = (-3,-6)$
 $\vec{v} = 2\vec{u}$

Linear dependence

$$\vec{w}$$
 is a linear combination of \vec{u} and \vec{v} if

 $\vec{w} = c\vec{u} + d\vec{v}$ for some $c, d \in \mathbb{R}$, scalars

Example

 $\vec{u} = (1, 4)$
 $\vec{v} = (1, 5)$
 $\vec{v} = (1, 5)$
 $\vec{v} = (1, 5)$
 $\vec{v} = (2, 5) - 2(1, 4)$
 $\vec{v} = (2, 10) - (2, 8)$
 $\vec{v} = (2, 2)$

Matrix A **matrix** is a rectangular array of numbers. Matrix with m rows and n columns has **size** $m \times n$. An example of a **matrix** with **size** 3×4 :

$$M = \begin{bmatrix} 1 & 2 & -1 & 5 \\ -2 & 0 & 1 & 0 \\ -3 & 3 & 0 & 2 \end{bmatrix}$$

Matrix examples 27 2 rous of size 3: [232] 7] (117] 2×3 (2 rous, 3 columns) 3 columns of size 2 i Ex2: [2]
3 size 3×1

Digraphs and the adjacency matrix

