```
3.2%; Score 87.5; DB 7; Length 1197;
  Query Match
Best Local Similarity 22.0%; Pred. No. 73;
RESULT 1413
     ADO19438 standard; protein; 1197 AA.
     Human PRO polypeptide #184.
     WO2004043361-A2.
PN
     27-MAY-2004.
PD
    (GETH ) GENENTECH INC.
  Query Match
                           3.2%;
                                 Score 87.5; DB 8; Length 1197;
  Best Local Similarity 22.0%; Pred. No. 73;
RESULT 1414
     AAM79159 standard; protein; 1452 AA.
     Human protein SEQ ID NO 1821.
PN
     WO200157190-A2.
PD
     09-AUG-2001.
PA
     (HYSE-) HYSEQ INC.
  Query Match
                           3.2%; Score 87.5; DB 4; Length 1452;
  Best Local Similarity 25.9%; Pred. No. 99;
RESULT 1415
     ABR58629 standard; protein; 1452 AA.
     Human cancer related protein SEQ ID NO:286.
     WO2003025138-A2.
PD
     27-MAR-2003.
    (EOSB-) EOS BIOTECHNOLOGY INC.
PA
                          3.2%; Score 87.5; DB 6; Length 1452;
  Query Match
  Best Local Similarity 25.9%; Pred. No. 99;
RESULT 1416
    ADJ68277 standard; protein; 1452 AA.
     Human heat mitochondrial protein as a therapeutic target SeqID83.
     WO2003087768-A2.
PD
     23-OCT-2003.
     (MITO-) MITOKOR.
PA
     (BUCK-) BUCK INST AGE RES.
  Query Match
                          3.2%; Score 87.5; DB 7; Length 1452;
  Best Local Similarity 25.9%; Pred. No. 99;
RESULT 1417
     ADI80761 standard; protein; 1452 AA.
     Human protein tyrosine phosphatase receptor type mu protein sequence.
     US2004014699-A1.
PN
PD
     22-JAN-2004.
     (ISIS-) ISIS PHARM INC.
                          3.2%; Score 87.5; DB 8; Length 1452;
  Query Match
  Best Local Similarity 25.9%; Pred. No. 99;
RESULT 1418
     AAM80143 standard; protein; 1455 AA.
     Human protein SEQ ID NO 3789.
PN
     WO200157190-A2.
PD
     09-AUG-2001.
     (HYSE-) HYSEQ INC.
  Query Match
                           3.2%; Score 87.5; DB 4; Length 1455;
  Best Local Similarity 25.9%; Pred. No. 99;
RESULT 1419
     ABR53450 standard; protein; 1597 AA.
DE
     Protein sequence #SEQ ID 1765.
PN
     EP1258494-A1.
PD
     20-NOV-2002.
PA
     (CELL-) CELLZOME AG.
```

```
3.2%; Score 87.5; DB 6; Length 1597;
 Query Match
 Best Local Similarity 22.1%; Pred. No. 1.1e+02;
RESULT 1420
    ADK64624 standard; protein; 1597 AA.
    Disease treating protein complex-derived protein #1063.
PN
    EP1338608-A2.
PD
    27-AUG-2003.
    (CELL-) CELLZOME AG.
                          3.2%; Score 87.5; DB 7; Length 1597;
 Query Match
 Best Local Similarity 22.1%; Pred. No. 1.1e+02;
RESULT 1421
    ADO44172 standard; protein; 6885 AA.
    Structural and cytoskeleton-associated polypeptide #8.
                         3.2%; Score 87.5; DB 8; Length 6885;
 Query Match
 Best Local Similarity 18.6%; Pred. No. 1.1e+03;
RESULT 1422
    AAM21511 standard; protein; 69 AA.
    Peptide #7945 encoded by probe for measuring cervical gene expression.
PN
    WO200157278-A2.
   09-AUG-2001.
PD
    (MOLE-) MOLECULAR DYNAMICS INC.
                         3.1%; Score 87; DB 4; Length 69;
 Query Match
 Best Local Similarity 29.2%; Pred. No. 0.96;
RESULT 1423
    ABB43855 standard; peptide; 69 AA.
    Peptide #11361 encoded by human foetal liver single exon probe.
    WO200157277-A2.
PN
    09-AUG-2001.
PD
     (MOLE-) MOLECULAR DYNAMICS INC.
                          3.1%; Score 87; DB 4; Length 69;
 Query Match
  Best Local Similarity 29.2%; Pred. No. 0.96;
RESULT 1424
    AAM37766 standard; protein; 69 AA.
    Peptide #11803 encoded by probe for measuring placental gene expression.
    WO200157272-A2.
PN
PD
     09-AUG-2001.
     (MOLE-) MOLECULAR DYNAMICS INC.
                         3.1%; Score 87; DB 4; Length 69;
 Query Match
  Best Local Similarity 29.2%; Pred. No. 0.96;
RESULT 1425
    ABB26783 standard; protein; 69 AA.
     Protein #8782 encoded by probe for measuring heart cell gene expression.
     WO200157274-A2.
PN
     09-AUG-2001.
PD
     (MOLE-) MOLECULAR DYNAMICS INC.
                        3.1%; Score 87; DB 4; Length 69;
  Query Match .....
  Best Local Similarity 29.2%; Pred. No. 0.96;
RESULT 1426
    AAM77581 standard; protein; 69 AA.
     Human bone marrow expressed probe encoded protein SEQ ID NO: 37887.
   W0200157276-A2.
    09-AUG-2001.
PD
     (MOLE-) MOLECULAR DYNAMICS INC.
                          3.1%; Score 87; DB 4; Length 69;
  Query Match
  Best Local Similarity 29.2%; Pred. No. 0.96;
RESULT 1427
    AAM64832 standard; protein; 69 AA.
```

```
Human brain expressed single exon probe encoded protein SEQ ID NO: 36937.
PN . WO200157275-A2.
     09-AUG-2001.
PD
     (MOLE-) MOLECULAR DYNAMICS INC.
                           3.1%; Score 87; DB 4; Length 69;
  Query Match
                         29.2%; Pred. No. 0.96;
  Best Local Similarity
RESULT 1428
     ABG59228 standard; peptide; 69 AA.
     Human liver peptide, SEQ ID No 37876.
DE
     WO200157273-A2.
PN
PΠ
     09-AUG-2001.
     (MOLE-) MOLECULAR DYNAMICS INC.
                          3.1%; Score 87; DB 4; Length 69;
  Query Match
  Best Local Similarity
                         29.2%; Pred. No. 0.96;
RESULT 1429
     ABG46614 standard; peptide; 69 AA.
     Human peptide encoded by genome-derived single exon probe SEQ ID 36279.
     WO200186003-A2.
PN
     15-NOV-2001.
PD
     (MOLE-) MOLECULAR DYNAMICS INC.
PA
                           3.1%; Score 87; DB 5; Length 69;
  Query Match
                          29.2%; Pred. No. 0.96;
  Best Local Similarity
RESULT 1430
     ABP25680 standard; protein; 250 AA.
     Streptococcus polypeptide SEQ ID NO 536.
     WO200234771-A2.
PN
     02-MAY-2002.
PD
     (CHIR-) CHIRON SPA.
     (GENO-) INST GENOMIC RES.
                           3.1%; Score 87; DB 5; Length 250;
  Query Match
  Best Local Similarity 24.7%; Pred. No. 7.1;
RESULT 1431
     AAW72573 standard; protein; 356 AA.
     Human glycosaminoglycan sulphate group transferase.
DΕ
     JP10257896-A.
PN
     29-SEP-1998.
PD
     (SEGK ) SEIKAGAKU KOGYO CO LTD.
PA
                           3.1%; Score 87; DB 2; Length 356;
  Query Match
                          20.2%; Pred. No. 12;
  Best Local Similarity
RESULT 1432
     AAB94514 standard; protein; 356 AA.
     Human protein sequence SEQ ID NO:15229.
     EP1074617-A2.
PD
     07-FEB-2001.
     (HELI-) HELIX RES INST.
                           3.1%; Score 87; DB 4; Length 356;
  Query Match
  Best Local Similarity 20.2%; Pred. No. 12;
RESULT 1433
     ABB82859 standard; protein; 356 AA.
     HS2ST related polypeptide (GenBank Identifier No. GI#6683564).
PN
     WO200299138-A2.
     12-DEC-2002.
PD
     (EXEL-) EXELIXIS INC.
                                  Score 87; DB 6; Length 356;
                           3.1%;
  Query Match
  Best Local Similarity 20.2%; Pred. No. 12;
RESULT 1434
     ABB82860 standard; protein; 356 AA.
```

```
HS2ST related polypeptide (GenBank Identifier No. GI#6912420).
    WO200299138-A2.
PN
PD
    12-DEC-2002.
PΑ
     (EXEL-) EXELIXIS INC.
                           3.1%; Score 87; DB 6; Length 356;
 Query Match
                          20.2%; Pred. No. 12;
 Best Local Similarity
RESULT 1435
    ABU62934 standard; protein; 356 AA.
    Human heparan sulphate 2-O-sulphotransferase HS2ST #1.
DE
    US2003013144-A1.
PN
PD
    16-JAN-2003.
    (FRIE/) FRIEDMAN L.
PA
    (PLOW/) PLOWMAN G D.
     (BELV/) BELVIN M.
     (FRAN/) FRANCIS-LANG H.
PA
     (LIDD/) LI D.
PA
     (FUNK/) FUNKE R P.
PA
                                  Score 87; DB 6; Length 356;
                           3.1%;
  Query Match
                          20.2%; Pred. No. 12;
  Best Local Similarity
RESULT 1436
     ABU62935 standard; protein; 356 AA.
     Human heparan sulphate 2-O-sulphotransferase HS2ST #2.
DΕ
    US2003013144-A1.
PN
    16-JAN-2003.
PD
    (FRIE/) FRIEDMAN L.
PA
    (PLOW/) PLOWMAN G D.
PA
     (BELV/) BELVIN M.
     (FRAN/) FRANCIS-LANG H.
PΑ
     (LIDD/) LI D.
     (FUNK/) FUNKE R P.
                           3.1%; Score 87; DB 6; Length 356;
  Query Match
                          20.2%; Pred. No. 12;
  Best Local Similarity
RESULT 1437
     AAY36994 standard; protein; 431 AA.
     Chlamydia trachomatis lipoprotein sequence.
     WO9928475-A2.
PN
     10-JUN-1999.
PD
     (GEST ) GENSET.
                                  Score 87; DB 2; Length 431;
                           3.1%;
  Query Match
  Best Local Similarity 20.8%; Pred. No. 17;
RESULT 1438
     AAW98588 standard; protein; 488 AA.
     H. pylori GHPO 87 protein.
     WO9843478-A1.
PN
     08-OCT-1998.
PD
     (INMR ) MERIEUX ORAVAX PASTEUR MERIEUX SERUMS.
PA
     (HUMA-) HUMAN GENOME SCI INC.
                           3.1%; Score 87; DB 2; Length 488;
  Query Match
  Best Local Similarity 19.5%; Pred. No. 20;
RESULT 1439
     AAR10378 standard; protein; 514 AA.
     Mutant alpha-amylase gene product.
DΕ
     EP409299-A.
PN
     23-JAN-1991.
     (KONN ) GIST-BROCADES NV.
                           3.1%; Score 87; DB 2; Length 514;
  Query Match
  Best Local Similarity 21.8%; Pred. No. 22;
```

```
RESULT 1440
    .AAB12430 standard; protein; 514 AA.
     Bacillus amyloliquefaciens clone number 22 protein SEQ ID NO:3.
PN
     JP2000135093-A.
PD
    16-MAY-2000.
    (DAIW ) DAIWA KASEI KK.
                           3.1%; Score 87; DB 3; Length 514;
  Query Match
                          22.3%; Pred. No. 22;
  Best Local Similarity
RESULT 1441
     AAB68551 standard; protein; 551 AA.
     Human GTP-binding associated protein #51.
PN W0200105970-A2.
     25-JAN-2001.
     (INCY-) INCYTE GENOMICS INC.
                           3.1%; Score 87; DB 4; Length 551;
Query Match
                        19.7%; Pred. No. 25;
  Best Local Similarity
RESULT 1442
     AAB94384 standard; protein; 551 AA.
     Human protein sequence SEQ ID NO:14939.
     EP1074617-A2.
     07-FEB-2001.
PD
     (HELI-) HELIX RES INST.
PA
                           3.1%; Score 87; DB 4; Length 551;
  Query Match
                        19.7%; Pred. No. 25;
  Best Local Similarity
RESULT 1443
    ADP54518 standard; protein; 551 AA.
     Human PRO protein sequence SEQ ID NO:494.
     WO2004039956-A2.
PD
     13-MAY-2004.
     (GETH ) GENENTECH INC.
                           3.1%; Score 87; DB 8; Length 551;
  Query Match
  Best Local Similarity 19.7%; Pred. No. 25;
RESULT 1444
     AAB14796 standard; protein; 565 AA.
     TGF-beta type II receptor.
     US6093547-A.
PΝ
     25-JUL-2000.
PD
     (CREA-) CREATIVE BIOMOLECULES INC.
                           3.1%; Score 87; DB 3; Length 565;
  Query Match
  Best Local Similarity 23.2%; Pred. No. 25;
RESULT 1445
     ADN61899 standard; protein; 577 AA.
     Human novel protein NOV56a.
     US2004043382-A1.
PN
     04-MAR-2004.
PD
PA
     (PADI/) PADIGARU M.
     (SPYT/) SPYTEK K A.
PA
PΑ
     (SHEN/) SHENOY S G.
PA
     (TAUP/) TAUPIER R J.
     (PENA/) PENA C E A.
PA
     (LILL/) LI L.
PA
     (ZERH/) ZERHUSEN B D.
PA
     (GUSE/) GUSEV V Y.
PA
     (JIWW/) JI W.
PA
     (GORM/) GORMAN L.
PA
PA
     (MILL/) MILLER C E.
     (KEKU/) KEKUDA R.
PA
```

```
(PATT/) PATTURAJAN M.
     (GANG/) GANGOLLI E A.
PA
     (VERN/) VERNET C A M.
PA
     (GUOX/) GUO X S.
PA
     (TCHE/) TCHERNEV V T.
PA
     (FERN/) FERNANDES E R.
PA
PA
     (CASM/) CASMAN S J.
     (MALY/) MALYANKAR U M.
PA
PA
     (GERL/) GERLACH V.
     (LIUY/) LIU Y.
PA
PA
     (ANDE/) ANDERSON D W.
PA
     (SPAD/) SPADERNA S K.
PΑ
     (CATT/) CATTERTON E.
     (LEIT/) LEITE M W.
PA
     (ZHON/) ZHONG H.
PA
     (ALSO/) ALSOBROOK J P.
PΑ
     (LEPL/) LEPLEY D M.
     (RIEG/) RIEGER D K.
PΑ
     (BURG/) BURGESS C E.
                           3.1%; Score 87; DB 8; Length 577;
  Query Match
  Best Local Similarity 19.6%; Pred. No. 26;
RESULT 1446
     AAW83995 standard; protein; 893 AA.
     The DNA polymerase mutant D137A, D323A, R722N, F730Y.
     WO9835060-A1.
PD
     13-AUG-1998.
     (LIFE-) LIFE TECHNOLOGIES INC.
                          3.1%; Score 87; DB 2; Length 893;
  Query Match
  Best Local Similarity 19.7%; Pred. No. 52;
RESULT 1447
    ADC37548 standard; protein; 930 AA.
DE Human nucleic acid associated protein, NAAP-15.
     WO2003046151-A2.
     05-JUN-2003.
PD
     (INCY-) INCYTE GENOMICS INC.
PA
                          3.1%; Score 87; DB 7; Length 930;
  Query Match
  Best Local Similarity 19.9%; Pred. No. 55;
RESULT 1448
     ADC95237 standard; protein; 944 AA.
     E. faecium protein sequence SEQ ID 4864.
PN
     US6583275-B1.
PD
     24-JUN-2003.
     (GENO-) GENOME THERAPEUTICS CORP.
                          3.1%; Score 87; DB 7; Length 944;
  Query Match
  Best Local Similarity 19.1%; Pred. No. 57;
RESULT 1449
     ABP27459 standard; protein; 1034 AA.
     Streptococcus polypeptide SEQ ID NO 4094.
PN
     WO200234771-A2.
PD
     02-MAY-2002.
     (CHIR-) CHIRON SPA.
     (GENO-) INST GENOMIC RES.
                           3.1%; Score 87; DB 5; Length 1034;
  Query Match
  Best Local Similarity
                          18.7%; Pred. No. 65;
RESULT 1450
     AAU35929 standard; protein; 1167 AA.
     Helicobacter pylori cellular proliferation protein #242.
```

```
WO200170955-A2.
PN
    27-SEP-2001.
PD
     (ELIT-) ELITRA PHARM INC.
                          3.1%; Score 87; DB 4; Length 1167;
 Query Match
 Best Local Similarity 18.8%; Pred. No. 79;
RESULT 1451
    ABR53378 standard; protein; 1411 AA.
    Protein sequence #SEQ ID 1621.
PN
    EP1258494-A1.
    20-NOV-2002.
PD
     (CELL-) CELLZOME AG.
 Query Match
                          3.1%; Score 87; DB 6; Length 1411;
  Best Local Similarity 24.5%; Pred. No. 1.1e+02;
RESULT 1452
    ADK63342 standard; protein; 1411 AA.
    Disease treating protein complex-derived protein #982.
    EP1338608-A2.
PN
    27-AUG-2003.
PD
    (CELL-) CELLZOME AG.
                          3.1%; Score 87; DB 7; Length 1411;
 Query Match
  Best Local Similarity 24.5%; Pred. No. 1.1e+02;
RESULT 1453
    ABR47539 standard; protein; 1855 AA.
     Breast cancer associated protein sequence SEQ ID NO:315.
    WO2003004989-A2.
    16-JAN-2003.
PD
     (MILL-) MILLENIUM PHARM INC.
                          3.1%; Score 87; DB 6; Length 1855;
 Query Match
  Best Local Similarity 22.1%; Pred. No. 1.6e+02;
RESULT 1454
    ADNO4056 standard; protein; 1855 AA.
     Antipsoriatic protein sequence #223.
DE
    WO2004028479-A2.
PN
     08-APR-2004.
PD
     (GETH ) GENENTECH INC.
PA
                           3.1%; Score 87; DB 8; Length 1855;
  Query Match
                        22.1%; Pred. No. 1.6e+02;
  Best Local Similarity
RESULT 1455
    ABB67961 standard; protein; 293 AA.
     Drosophila melanogaster polypeptide SEQ ID NO 30675.
PN
     WO200171042-A2.
     27-SEP-2001.
PD
     (PEKE ) PE CORP NY.
PA
                           3.1%; Score 86.5; DB 4; Length 293;
  Query Match
  Best Local Similarity 21.1%; Pred. No. 10;
RESULT 1456 ...
    AAU38041 standard; protein; 352 AA.
     Streptococcus pneumoniae cellular proliferation protein #470.
PN
     WO200170955-A2.
PD
     27-SEP-2001.
     (ELIT-) ELITRA PHARM INC.
                          3.1%; Score 86.5; DB 4; Length 352;
  Query Match
  Best Local Similarity 29.2%; Pred. No. 14;
RESULT 1457
     ABU23929 standard; protein; 359 AA.
     Protein encoded by Prokaryotic essential gene #9456.
DE
     WO200277183-A2.
PN
```

```
03-OCT-2002.
PD
     (ELIT-) ELITRA PHARM INC.
                           3.1%; Score 86.5; DB 6; Length 359;
  Query Match
  Best Local Similarity
                          18.7%; Pred. No. 14;
RESULT 1458
     AAG42135 standard; protein; 369 AA.
     Arabidopsis thaliana protein fragment SEQ ID NO: 52510.
     EP1033405-A2.
PN
     06-SEP-2000.
PD
                           3.1%;
                                  Score 86.5; DB 3; Length 369;
  Query Match
  Best Local Similarity
                          21.8%; Pred. No. 15;
RESULT 1459
    AAB61228 standard; protein; 498 AA.
     Human TANGO 325 extracellular domain.
     WO200100638-A2.
PN
     04-JAN-2001.
PD
     (MILL-) MILLENNIUM PHARM INC.
                           3.1%; Score 86.5; DB 4; Length 498;
  Query Match
                          21.3%; Pred. No. 24;
  Best Local Similarity
RESULT 1460
     ADB90766 standard; protein; 498 AA.
     Human TANGO 325 extracellular domain.
    US2003082586-A1.
PN
     01-MAY-2003.
     (MILL-) MILLENNIUM PHARM INC.
                          3.1%; Score 86.5; DB 7; Length 498;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 24;
RESULT 1461
     ADF71501 standard; protein; 498 AA.
     Human TANGO 325 extracellular domain.
     US2003175733-A1.
PN
PD
     18-SEP-2003.
     (MILL-) MILLENNIUM PHARM INC.
PA
                          3.1%; Score 86.5; DB 7; Length 498;
  Query Match
                          21.3%; Pred. No. 24;
  Best Local Similarity
RESULT 1462
     ADM42026 standard; protein; 498 AA.
     Human TANGO 325 extracellular domain.
DE
     US2003170621-A1.
PN
     11-SEP-2003.
PD
PA
    (MCCA/) MCCARTHY S A.
    (FRAS/) FRASER C C.
PA
PA
     (SHAR/) SHARP J D.
     (BARN/) BARNES T M.
PA
     (KIRS/) KIRST S J.
PA
     (MYER/) MYERS P S. ...
PA
     (WRIG/) WRIGHTON N.
PA
     (GOOD/) GOODEARL A D J.
PA
     (HOLT/) HOLTZMAN D A.
PA
     (KHOD/) KHODADOUST M.
                                  Score 86.5; DB 7; Length 498;
  Query Match
                           3.1%;
                                  Pred. No. 24;
  Best Local Similarity 21.3%;
RESULT 1463
     ADI36908 standard; protein; 498 AA.
DE
     Human LRR protein #3.
     US2003220263-A1.
PN
     27-NOV-2003.
PD
```

```
(FEDE/) FEDER J N.
 PA
      (MINT/) MINTIER G.
 PA
      (RAMA/) RAMANATHAN C S.
                            3.1%; Score 86.5; DB 8; Length 498;
   Query Match
   Best Local Similarity 21.3%; Pred. No. 24;
 RESULT 1464
      AAY35078 standard; protein; 542 AA.
      Chlamydia pneumoniae protein not found in C. trachomatis.
 PN
      WO9927105-A2.
 PD
      03-JUN-1999.
      (GEST ) GENSET.
 PΑ
                        3.1%; Score 86.5; DB 2; Length 542;
   Query Match
   Best Local Similarity 19.9%; Pred. No. 27;
 RESULT 1465
      AAB61227 standard; protein; 591 AA.
      Mature human TANGO 325 protein.
      WO200100638-A2.
 PN
. PD
      04-JAN-2001.
      (MILL-) MILLENNIUM PHARM INC.
                           3.1%; Score 86.5; DB 4; Length 591;
   Best Local Similarity 21.3%; Pred. No. 31;
 RESULT 1466
      ADB90765 standard; protein; 591 AA.
      Human TANGO 325 mature protein.
 PN
      US2003082586-A1.
      01-MAY-2003.
 PD
      (MILL-) MILLENNIUM PHARM INC.
   Query Match
                           3.1%; Score 86.5; DB 7; Length 591;
   Best Local Similarity 21.3%; Pred. No. 31;
 RESULT 1467
      ADF71500 standard; protein; 591 AA.
      Human TANGO 325 mature protein.
      US2003175733-A1.
 PN
 PD
      18-SEP-2003.
      (MILL-) MILLENNIUM PHARM INC.
                           3.1%; Score 86.5; DB 7; Length 591;
   Query Match
   Best Local Similarity 21.3%; Pred. No. 31;
 RESULT 1468
      ADM42025 standard; protein; 591 AA.
      Mature human TANGO 325.
      US2003170621-A1.
 PN
 PD
      11-SEP-2003.
     (MCCA/) MCCARTHY S A.
 PA
      (FRAS/) FRASER C C.
 PA
      (SHAR/) SHARP J D.
 PA
      (BARN/) BARNES T M.
 PA
      (KIRS/) KIRST S J.
 PA
      (MYER/) MYERS P S.
 PA
      (WRIG/) WRIGHTON N.
 PA
 PA
      (GOOD/) GOODEARL A D J.
 PA
      (HOLT/) HOLTZMAN D A.
      (KHOD/) KHODADOUST M.
                            3.1%; Score 86.5; DB 7; Length 591;
   Query Match
   Best Local Similarity 21.3%; Pred. No. 31;
 RESULT 1469
     ADI36907 standard; protein; 591 AA.
      Human LRR protein #2.
 DΕ
```

```
US2003220263-A1.
PD 27-NOV-2003.
     (FEDE/) FEDER J N.
PA
     (MINT/) MINTIER G.
     (RAMA/) RAMANATHAN C S.
                           3.1%; Score 86.5; DB 8; Length 591;
  Query Match
  Best Local Similarity
                          21.3%; Pred. No. 31;
RESULT 1470
    AAE06798 standard; protein; 597 AA.
    Mature human neuronal quidance molecule (NGM)-like protein #1.
    WO200157262-A1.
    09-AUG-2001.
PD
     (HYSE-) HYSEQ INC.
                           3.1%; Score 86.5; DB 4; Length 597;
  Query Match
                         21.3%; Pred. No. 31;
  Best Local Similarity
RESULT 1471
    ADI36910 standard; protein; 597 AA.
    Human LRR protein #5.
DE
PN
    US2003220263-A1.
PD
    27-NOV-2003.
     (FEDE/) FEDER J N.
PA
     (MINT/) MINTIER G.
     (RAMA/) RAMANATHAN C S.
                           3.1%; Score 86.5; DB 8; Length 597;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 31;
RESULT 1472
    ADS23090 standard; protein; 613 AA.
     Bacterial polypeptide #12123.
    US2003233675-A1.
PN
     18-DEC-2003.
PD
     (CAOY/) CAO Y.
PA
     (HINK/) HINKLE G J.
PA
     (SLAT/) SLATER S C.
PA
PA
     (CHEN/) CHEN X.
PA
     (GOLD/) GOLDMAN B S.
                           3.1%; Score 86.5; DB 8; Length 613;
  Query Match
                        18.8%; Pred. No. 33;
  Best Local Similarity
RESULT 1473
     AAB61225 standard; protein; 622 AA.
     Human TANGO 325 protein.
     WO200100638-A2.
ΡN
     04-JAN-2001.
PD
     (MILL-) MILLENNIUM PHARM INC.
PA
                           3.1%; Score 86.5; DB 4; Length 622;
  Query Match
  Best Local Similarity
                        21.3%; Pred. No. 33;
RESULT 1474
ID AAU12261 standard; protein; 622 AA.
     Human PRO4337 polypeptide sequence.
PN
     WO200140466-A2.
     07-JUN-2001.
PD
     (GETH ) GENENTECH INC.
                           3.1%; Score 86.5; DB 4; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1475
     AAU20531 standard; protein; 622 AA.
TD
     Human secreted protein, Seq ID No 523.
DE
PN
     WO200155326-A2.
```

```
ΡD
     02-AUG-2001.
     (HUMA-) HUMAN GENOME SCI INC.
PA
                         3.1%; Score 86.5; DB 4; Length 622;
 Ouery Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1476
    AAB45703 standard; protein; 622 AA.
    Human 7TM clone HDTIE58 protein fragment #1.
    WO200071584-A1.
PN
PD
    30-NOV-2000.
     (HUMA-) HUMAN GENOME SCI INC.
                         3.1%; Score 86.5; DB 4; Length 622;
 Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1477
    AAU19922 standard; protein; 622 AA.
    Novel human calcium-binding protein #31.
    WO200155304-A2.
PN
     02-AUG-2001.
PD
     (HUMA-) HUMAN GENOME SCI INC.
                         3.1%; Score 86.5; DB 4; Length 622;
  Ouery Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1478
    AAE06789 standard; protein; 622 AA.
    Human neuronal guidance molecule (NGM)-like protein #1.
    WO200157262-A1.
PD
    09-AUG-2001.
    (HYSE-) HYSEQ INC.
PA
                          3.1%; Score 86.5; DB 4; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1479
    ABO17705 standard; protein; 622 AA.
     Novel human secreted and transmembrane protein PRO4337.
    US2003032156-A1.
PN
PD
    13-FEB-2003.
    (GETH ) GENENTECH INC.
                          3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1480
    ABU80959 standard; protein; 622 AA.
     Human PRO polypeptide #90.
DE
    US2003004311-A1.
PD
    02-JAN-2003.
    (GETH ) GENENTECH INC.
                         3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1481
    ABU66659 standard; protein; 622 AA.
     Human PRO polypeptide #90.
     US2003036180-A1.
PN
     20-FEB-2003.
PD
     (GETH ) GENENTECH INC.
                          3.1%; Score 86.5; DB 6; Length 622;
  Ouery Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1482
    ABU59740 standard; protein; 622 AA.
     Novel secreted and transmembrane protein PRO4337.
DE
     US2003017563-A1.
PN
     23-JAN-2003.
PD
```

```
(GETH ) GENENTECH INC.
                . 3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1483
     ABO24930 standard; protein; 622 AA.
     Human secreted/transmembrane protein (PRO) #90.
PN
     US2003036179-A1.
ΡD
     20-FEB-2003.
     (GETH ) GENENTECH INC.
PA
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
                        21.3%; Pred. No. 33;
  Best Local Similarity
RESULT 1484
     ABU66935 standard; protein; 622 AA.
     Human secreted/transmembrane, PRO, protein SEQ ID 180.
     US2003032155-A1.
PN
PD
     13-FEB-2003.
     (GETH ) GENENTECH INC.
PA
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1485
     ADA45699 standard; protein; 622 AA.
     Novel human secreted and transmembrane protein PRO4337.
     US2003022328-A1.
     30-JAN-2003.
     (GETH ) GENENTECH INC.
                          3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1486
     ADA76130 standard; protein; 622 AA.
     Human PRO polypeptide #90.
PN
     US2003073212-A1.
     17-APR-2003.
PD
     (GETH ) GENENTECH INC.
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1487
     ADA18780 standard; protein; 622 AA.
     Human PRO polypeptide #90.
     US2003054517-A1.
PD
     20-MAR-2003.
     (GETH ) GENENTECH INC.
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
                        21.3%; Pred. No. 33;
  Best Local Similarity
RESULT 1488
     ADA61403 standard; protein; 622 AA.
     Homo sapiens.
     US2003049816-A1.
PN
PD
     13-MAR-2003.
     (GETH ) GENENTECH INC.
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1489
     ADB19188 standard; protein; 622 AA.
     Novel human secreted and transmembrane protein PRO4337.
PN
     US2003068796-A1.
PD
     10-APR-2003.
PA
     (GETH ) GENENTECH INC.
```

```
3.1%; Score 86.5; DB 6; Length 622;
 Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1490
    ADB27729 standard; protein; 622 AA.
    Human PRO polypeptide #90.
DE
    US2003082704-A1.
PN
    01-MAY-2003.
PD
     (GETH ) GENENTECH INC.
PA
                          3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1491
    ADA86208 standard; protein; 622 AA.
    Novel human secreted and transmembrane protein PRO4337.
    US2003082711-A1.
     01-MAY-2003.
PD
     (GETH ) GENENTECH INC.
                                 Score 86.5; DB 6; Length 622;
                           3.1%;
  Query Match
                         21.3%; Pred. No. 33;
  Best Local Similarity
RESULT 1492
    ADB15772 standard; protein; 622 AA.
    Human PRO polypeptide #90.
    US2003087350-A1.
PN
     08-MAY-2003.
PD
     (GETH ) GENENTECH INC.
                           3.1%;
                                 Score 86.5; DB 6; Length 622;
  Query Match
                         21.3%; Pred. No. 33;
  Best Local Similarity
RESULT 1493
    ADA47558 standard; protein; 622 AA.
     Human PRO polypeptide #90.
    US2003073215-A1.
PN
PD
     17-APR-2003.
     (GETH ) GENENTECH INC.
                           3.1%;
                                 Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1494
     ADA67353 standard; protein; 622 AA.
     Human PRO polypeptide #90.
     US2003068795-A1.
PN
     10-APR-2003.
PD
     (GETH ) GENENTECH INC.
                                 Score 86.5; DB 6; Length 622;
                           3.1%;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1495
     ADB30360 standard; protein; 622 AA.
     Human PRO polypeptide #90.
PN
     US2003068794-A1.
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
                        21.3%; Pred. No. 33;
  Best Local Similarity
RESULT 1496
     ADA85656 standard; protein; 622 AA.
     Novel human secreted and transmembrane protein PRO4337.
     US2003082693-A1.
PD
     01-MAY-2003.
     (GETH ) GENENTECH INC.
PA
                           3.1%; Score 86.5; DB 6; Length 622;
  Query Match
```

```
21.3%; Pred. No. 33;
 Best Local Similarity
RESULT 1497
    ADA96868 standard; protein; 622 AA.
DE
    Human PRO polypeptide #90.
PN
    US2003082705-A1.
    01-MAY-2003.
PD
    (GETH ) GENENTECH INC.
                          3.1%; Score 86.5; DB 6; Length 622;
 Query Match
                         21.3%; Pred. No. 33;
 Best Local Similarity
RESULT 1498
    ADA79172 standard; protein; 622 AA.
    Human PRO polypeptide #90.
    US2003082763-A1.
    01-MAY-2003.
PD
     (GETH ) GENENTECH INC.
PΑ
                          3.1%; Score 86.5; DB 6; Length 622;
 Query Match
                         21.3%; Pred. No. 33;
  Best Local Similarity
RESULT 1499
    ADA87311 standard; protein; 622 AA.
    Novel human secreted and transmembrane protein PRO4337.
    US2003087345-A1.
PN
    08-MAY-2003.
PD
    (GETH ) GENENTECH INC.
                       3.1%; Score 86.5; DB 6; Length 622;
  Query Match
  Best Local Similarity 21.3%; Pred. No. 33;
RESULT 1500
    ADB16513 standard; protein; 622 AA.
    Human PRO polypeptide #90.
    US2003087349-A1.
     08-MAY-2003.
PD
     (GETH ) GENENTECH INC.
                          3.1%;
                                 Score 86.5; DB 6; Length 622;
  Query Match
```

Best Local Similarity 21.3%; Pred. No. 33;

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: February 15, 2005, 09:44:27; Search time 43 Seconds

(without alignments)

907.941 Million cell updates/sec

Title: US-10-017-867A-282

Perfect score: 2768

Sequence: 1 MAGQRVLLLVGFLLPGVLLS.....GKLLGMAVWWLRGARKVKET 523

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 513545 seqs, 74649064 residues

Total number of hits satisfying chosen parameters: 513545

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1500 summaries

Database : Issued Patents AA:*

1: /cgn2 6/ptodata/1/iaa/5A COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		8				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1		24.5	533	 4	US-09-949-016-5947	Sequence 5947, Ap
2	679	24.5	538	4	US-09-949-016-7684	Sequence 7684, Ap
3	674	24.3	533	5	PCT-US92-00282-3	Sequence 3, Appli
4	663.5	24.0	540	4	US-09-949-016-8465	Sequence 8465, Ap
5	663.5	24.0	540	4	US-09-949-016-9052	Sequence 9052, Ap
6	661.5	23.9	528	4	US-09-356-806-8	Sequence 8, Appli
7	658	23.8	531	5	PCT-US92-00282-6	Sequence 6, Appli
8	657	23.7	530	3	US-09-180-852-2	Sequence 2, Appli
9	651.5	23.5	524	4	US-09-356-806-40	Sequence 40, Appl
10	649	23.4	439	4	US-09-949-016-8605	Sequence 8605, Ap
11	649	23.4	530	4	US-09-356-806-113	Sequence 113, App

```
528
                                                             Sequence 6999, Ap
              22.9
                            4.
                               US-09-949-016-6999
12
     632.5
13
              22.7
                      531
                               PCT-US92-00282-5
                                                             Sequence 5, Appli
       629
              21.9
                      534
                            5
                               PCT-US92-00282-4
                                                             Sequence 4, Appli
14
       606
                      529
                            5
                                                             Sequence 7, Appli
       600
              21.7
                               PCT-US92-00282-7
15
16
     592.5
              21.4
                      388
                            4
                               US-09-949-016-8466
                                                             Sequence 8466, Ap
17
     592.5
              21.4
                      388
                            4
                               US-09-949-016-8467
                                                             Sequence 8467, Ap
              19.8
                      440
                            4
18
       548
                               US-09-949-016-8606
                                                             Sequence 8606, Ap
19
       548
              19.8
                      440
                               US-09-949-016-8607
                                                             Sequence 8607, Ap
20
       521
              18.8
                      454
                            3
                               US-09-813-918-2
                                                             Sequence 2, Appli
21
       521
              18.8
                      454
                               US-10-060-311-2
                                                             Sequence 2, Appli
22
     503.5
              18.2
                      288 -
                            3
                               US-09-813-918-3
                                                             Sequence 3, Appli
23
     503.5
              18.2
                      288
                            4
                               US-10-060-311-3
                                                             Sequence 3, Appli
24
       380
              13.7
                      245
                            4
                               US-09-305-856B-18
                                                             Sequence 18, Appl
25
     378.5
              13.7
                      389
                               US-09-270-767-45357
                                                             Sequence 45357, A
26
     360.5
              13.0
                      256
                               US-09-270-767-33692
                                                             Sequence 33692, A
27
     360.5
              13.0
                      256
                            4
                               US-09-270-767-48909
                                                             Sequence 48909, A
28
     346.5
              12.5
                      515
                            3
                               US-08-942-012B-32
                                                             Sequence 32, Appl
29
     342.5
              12.4
                      460
                            3
                               US-08-942-012B-33
                                                             Sequence 33, Appl
30
       321
              11.6
                      515
                            3
                               US-08-942-012B-24
                                                             Sequence 24, Appl
31
     316.5
              11.4
                      488
                            3
                               US-08-942-012B-29
                                                             Sequence 29, Appl
32
                      488
                            3
                               US-08-942-012B-30
                                                             Sequence 30, Appl
     316.5
              11.4
33
       300
              10.8
                      288
                               US-09-305-856B-2
                                                             Sequence 2, Appli
34
       300
              10.8
                      288
                               PCT-US92-00282-19
                                                             Sequence 19, Appl
              10.1
                      339
                               US-09-270-767-42493
                                                             Sequence 42493, A
35
       280
                            4
                      493
36
       272
               9.8
                            3
                               US-08-942-012B-28
                                                             Sequence 28, Appl
37
     259.5
               9.4
                      489
                               US-08-942-012B-31
                                                             Sequence 31, Appl
                            3
38
     258.5
               9.3
                      287
                            4
                               US-09-305-856B-10
                                                             Sequence 10, Appl
               9.2
                      310
39
       256
                            4
                               US-09-305-856B-14
                                                             Sequence 14, Appl
40
       255
               9.2
                      289
                            4
                               US-09-305-856B-8
                                                             Sequence 8, Appli
                               PCT-US92-00282-9
41
       252
               9.1
                      286
                                                             Sequence 9, Appli
       249
               9.0
                      289
                            5
                                                             Sequence 11, Appl
42
                               PCT-US92-00282-11
               9.0
                               US-08-942-012B-26
43
       248
                      506
                            3
                                                             Sequence 26, Appl
44
     246.5
               8.9
                      506
                            3
                               US-08-942-012B-25
                                                             Sequence 25, Appl
45
     246.5
               8.9
                      506
                            6
                               5180581-2
                                                            Patent No. 5180581
46
     246.5
               8.9
                      506
                            6
                               5180581-2
                                                            Patent No. 5180581
               8.8
                      289
                            4
                               US-09-305-856B-4
                                                             Sequence 4, Appli
47
     244.5
48
     244.5
               8.8
                      289
                               PCT-US92-00282-15
                                                             Sequence 15, Appl
49
       242
               8.7
                       491
                            3
                               US-08-942-012B-27
                                                             Sequence 27, Appl
50
               8.6
                      129
                               US-09-370-838-36
                                                             Sequence 36, Appl
       239
                            4
                      129
51
       239
               8.6
                            4
                               US-09-854-133-36
                                                             Sequence 36, Appl
52
       227
               8.2
                       317
                               US-09-305-856B-12
                                                             Sequence 12, Appl
53
       226
               8.2
                       289
                            4
                               US-09-305-856B-6
                                                             Sequence 6, Appli
54
               8.2
                      289
                            5
                               PCT-US92-00282-13
                                                             Sequence 13, Appl
       226
55
       223
              8.1
                       253
                            4
                               US-09-305-856B-16
                                                             Sequence 16, Appl
               7.7
                            2
                                                             Sequence 7, Appli
56
       214
                        52
                               US-08-466-583-7
57
               7.7
                        52
                               US-08-265-427-7
                                                             Sequence 7, Appli
       214
                            4
               7.7
                                                             Sequence 7, Appli
58
       214
                        52
                            5
                               PCT-US95-07820-7
59
     209.5
               7.6
                       134
                            4
                               US-09-270-767-33090
                                                             Sequence 33090, A
60
     209.5
               7.6
                       134
                            4
                               US-09-270-767-48307
                                                             Sequence 48307, A
61
                        58
                            2
                               US-08-466-583-9
                                                             Sequence 9, Appli
       202
               7.3
62
       202
               7.3
                        58
                            4
                               US-08-265-427-9
                                                             Sequence 9, Appli
63
       202
               7.3
                        58
                               PCT-US95-07820-9
                                                             Sequence 9, Appli
                                                             Sequence 42787, A
64
     198.5
               7.2
                       322
                            4
                               US-09-270-767-42787
               7.1
                       287
                               US-09-270-767-33212
                                                             Sequence 33212, A
65
       196
                            4
                               US-09-270-767-45571
66
       192
               6.9
                       135
                            4
                                                             Sequence 45571, A
67
     186.5
               6.7
                       141
                            4
                               US-09-270-767-32085
                                                             Sequence 32085, A
                       463
                            4
                               US-08-311-731A-7
68
       176
               6.4
                                                             Sequence 7, Appli
```

```
69
        175
                         56
                                US-08-466-583-4
                                                             Sequence 4, Appli
                6.3
                             2
 70
        175
                6.3.
                         56
                                US-08-265-427-4
                                                              Sequence 4, Appli
 71
        175
                6.3
                         56
                             5
                                PCT-US95-07820-4
                                                             Sequence 4, Appli
 72
        174
                6.3
                        425
                             4
                                US-09-902-540-11331
                                                             Sequence 11331, A
 73
      173.5
                6.3
                       303
                             4
                                US-09-270-767-41486
                                                             Sequence 41486, A
74
      173.5
                6.3
                       399
                             1
                                US-08-096-623A-20
                                                             Sequence 20, Appl
 75
      173.5
                6.3
                       431
                             1
                                US-07-783-705A-2
                                                             Sequence 2, Appli
 76
      172.5
                6.2
                       154
                                US-09-270-767-32580
                                                             Sequence 32580, A
 77
      172.5
                6.2
                       154
                                US-09-270-767-47797
                                                             Sequence 47797, A
 78
      169.5
                6.1
                       397
                                US-09-902-540-14631
                                                             Sequence 14631, A
                             4
 79
        168
                6.1
                        74
                             5
                                PCT-US92-00282-24
                                                             Sequence 24, Appl
 80
        168
                6.1
                       130
                             4
                                US-09-270-767-57790
                                                             Sequence 57790, A
                                US-09-724-797-26
 81
      167.5
                6.1
                       397
                             4
                                                             Sequence 26, Appl
 82
        164
                5.9
                       471
                                US-08-466-583-2
                                                             Sequence 2, Appli
 83
        164
                5.9
                       471
                                US-08-265-427-2
                                                              Sequence 2, Appli
 84
        164
                5.9
                       471
                             5
                                PCT-US95-07820-2
                                                             Sequence 2, Appli
 85
        162
                5.9
                       459
                             4
                                US-09-679-263-4
                                                              Sequence 4, Appli
 86
        162
                5.9
                       503
                             4
                                US-09-679-263-5
                                                             Sequence 5, Appli
 87
        161
                5.8
                       454
                             4
                                US-09-679-263-12
                                                             Sequence 12, Appl
 88
                5.8
                      1198
                             4
                                US-09-284-768A-10
        161
                                                             Sequence 10, Appl
                        473
 89
        160
                5.8
                             4
                                US-09-284-768A-24
                                                             Sequence 24, Appl
 90
        159
                5.7
                         63
                                US-08-466-583-8
                                                              Sequence 8, Appli
 91
        159
                5.7
                         63
                             4
                                US-08-265-427-8
                                                             Sequence 8, Appli
        159
                5.7
                             5
                                PCT-US95-07820-8
                                                             Sequence 8, Appli
 92
                         63
 93
        159
                5.7
                        131
                             2
                                US-08-466-583-5
                                                             Sequence 5, Appli
                                US-08-265-427-5
 94
        159
                5.7
                       131
                             4
                                                              Sequence 5, Appli
 95
                       131
                             5
                                PCT-US95-07820-5
        159
                5.7
                                                              Sequence 5, Appli
                       190
                             4
                                                            U Sequence 301, App
 96
        158
                5.7
                                US-09-615-192A-301
 97
      157.5
                5.7
                       131
                             2
                                US-08-466-583-6
                                                              Sequence 6, Appli
 98
      157.5
                5.7
                       131
                                US-08-265-427-6
                                                              Sequence 6, Appli
 99
      157.5
                5.7
                             5
                                                             Sequence 6, Appli
                       131
                                PCT-US95-07820-6
                                US-09-889-738-21
                                                              Sequence 21, Appl
100
        154
                5.6
                       452
                             4
101
      153.5
                5.5
                        452
                             4
                                US-08-311-731A-6
                                                              Sequence 6, Appli
102
      149.5
                5.4
                        414
                             1
                                US-09-337-913-1
                                                              Sequence 1, Appli
                5.4
                        414
                             2
                                US-08-750-524-1
                                                              Sequence 1, Appli
103
      149.5
                                US-09-270-767-56708
104
        147
                5.3
                       185
                                                              Sequence 56708, A
                5.3
                        471
                             3
                                US-09-106-464-2
                                                              Sequence 2, Appli
105
      145.5
106
        142
                5.1
                        78
                                US-09-513-999C-7361
                                                              Sequence 7361, Ap
                5.0
                        476
                                US-09-673-300-10
107
        139
                                                              Sequence 10, Appl
                             4
108
        137
                4.9
                        128
                             4
                                US-09-270-767-32549
                                                              Sequence 32549, A
                4.9
                        488
                             2
                                US-08-797-226-2
109
      136.5
                                                              Sequence 2, Appli
                4.8
                        283
                             4
                                US-09-270-767-44687
                                                              Sequence 44687, A
110
        134
                        488
                             4
111
        134
                4.8
                                US-09-673-300-8
                                                              Sequence 8, Appli
112
      132.5
                4.8
                        337
                                US-09-270-767-46773
                                                              Sequence 46773, A
113
      131.5
                4.8
                        419
                                US-09-724-797-95
                                                              Sequence 95, Appl
114
      126.5
                4.6
                        481
                             4
                                US-09-673-300-2
                                                              Sequence 2, Appli
115
                        422
                             4
                                US-09-679-279-17
                                                              Sequence 17, Appl
      120.5
                4.4
116
      116.5
                4.2
                       1114
                             2
                                US-08-576-626A-31
                                                              Sequence 31, Appl
                                                              Sequence 32, Appl
                4.1
                      2544
                             2
                                US-08-576-626A-32
117
        114
                        415
                             2
118
        113
                4.1
                                US-08-576-626A-52
                                                              Sequence 52, Appl
119
        113
                4.1
                        419
                             4
                                US-09-107-532A-4894
                                                              Sequence 4894, Ap
120
      112.5
                4.1
                        448
                                US-09-284-768A-23
                                                              Sequence 23, Appl
121
      112.5
                4.1
                        637
                                US-09-284-768A-20
                             4
                                                              Sequence 20, Appl
122
                        674
      112.5
                4.1
                             4
                                US-09-284-768A-21
                                                              Sequence 21, Appl
123
                        443
                             1
                                US-08-660-765A-4
        111
                4.0
                                                              Sequence 4, Appli
124
      110.5
                4.0
                        378
                             4
                                US-09-724-797-40
                                                              Sequence 40, Appl
125
      109.5
                4.0
                        652
                                US-09-489-039A-12461
                                                              Sequence 12461, A
```

```
109
                        408
                                US-08-924-847A-2
                                                              Sequence 2, Appli
126
                3.9
                             2
127
        109
                3.9
                        408
                             3
                                US-09-120-052-2
                                                              Sequence 2, Appli
                                                              Sequence 4, Appli
128
        108
                3.9
                       3079
                                PCT-US94-00198-4
                                                              Sequence 33, Appl
129
        107
                3.9
                             1
                        372
                                US-08-196-218-33
                                                              Sequence 33, Appl
130
        107
                3.9
                        372
                             1
                                US-08-681-953-33
                             2
131
      106.5
                3.8
                        421
                                US-08-576-626A-53
                                                              Sequence 53, Appl
                             5
                3.8
                         98
                                PCT-US92-00282-26
                                                              Sequence 26, Appl
132
        106
133
        105
                3.8
                        408
                             2
                                US-08-926-258-2
                                                              Sequence 2, Appli
134
        105
                3.8
                        408
                             2
                                US-09-120-053-2
                                                              Sequence 2, Appli
135
        105
                3.8
                        408
                                US-09-198-212-2
                                                              Sequence 2, Appli
136
        105
                3.8
                        408
                             4
                                US-09-789-261-2
                                                              Sequence 2, Appli
                                                              Sequence 11, Appl
137
        104
                3.8
                        417
                             4
                                US-09-679-279-11
138
      103.5
                3.7
                        426
                             4
                                US-09-540-236-2053
                                                              Sequence 2053, Ap
139
        103
                3.7
                        967
                            . 3
                                US-09-139-802-201
                                                              Sequence 201, App
140
        103
                3.7
                        967
                                US-09-659-786-201
                                                              Sequence 201, App
141
      101.5
                3.7
                        436
                             4
                                US-09-679-279-4
                                                              Sequence 4, Appli
142
                3.6
                        101
                             4
                                US-09-270-767-58100
                                                              Sequence 58100, A
        100
143
        100
                3.6
                        388
                             4
                                US-09-602-787A-180
                                                              Sequence 180, App
                                                              Sequence 17, Appl
144
        100
                3.6
                        455
                             3
                                US-09-036-987A-17
        100
                3.6
                        455
                             3
                                US-09-370-700-17
                                                              Sequence 17, Appl
145
                        455
                             4
                                US-09-603-207-17
                                                              Sequence 17, Appl
146
        100
                3.6
       98.5
                3.6
                        391
                                US-09-134-001C-3952
                                                              Sequence 3952, Ap
147
148
       98.5
                3.6
                        834
                                US-07-977-434-8
                                                              Sequence 8, Appli
                             1
                        834
                                US-08-458-819-8
                                                              Sequence 8, Appli
       98.5
                3.6
                             1
149
                        834
150
       98.5
                3.6
                             5
                                PCT-US91-07035-8
                                                              Sequence 8, Appli
                        528
                                US-09-489-039A-13077
                                                              Sequence 13077, 'A
151
         98
                3.5
                             4
       97.5
                3.5
                        616
                             4
                                US-09-873-404-4
                                                              Sequence 4, Appli
152
                             4
                                                              Sequence 4, Appli
       97.5
                3.5
                        616
                                US-10-243-735-4
153
154
       97.5
                3.5
                        639
                             4
                                US-09-328-352-7786
                                                              Sequence 7786, Ap
155
       96.5
                3.5
                        608
                                US-09-284-768A-4
                                                              Sequence 4, Appli
       96.5
                3.5
                        991
                             4
                                US-09-248-796A-15239
                                                              Sequence 15239, A
156
157
       96.5
                3.5
                       1175
                             4
                                US-09-792-024-75
                                                              Sequence 75, Appl
158
       95.5
                3.5
                       1006
                             4
                                US-09-949-016-10730
                                                              Sequence 10730, A
159
         95
                3.4
                         72
                             4
                                 US-09-270-767-61084
                                                              Sequence 61084, A
       94.5
                3.4
                        187
                             4
                                US-09-270-767-41857
                                                              Sequence 41857, A
160
                        605
                             .4
                                US-09-248-796A-19205
                                                              Sequence 19205, A
161
       94.5
                3.4
       94.5
                3.4
                        705
                                US-09-198-452A-68
                                                              Sequence 68, Appl
162
163
       94.5
                3.4
                        705
                                 US-09-438-185A-50
                                                              Sequence 50, Appl
                3.4
                        838
                                 US-09-758-282B-265
                                                              Sequence 265, App
164
       94.5
                        838
                                                              Sequence 265, App
165
       94.5
                3.4
                             4
                                 US-09-577-304A-265
                       1199
                                 US-09-134-000C-5542
                                                              Sequence 5542, Ap
166
         94
                3.4
       93.5
                3.4
                        491
                             4
                                 US-09-489-039A-12234
                                                              Sequence 12234, A
167
       93.5
                3.4
                        669
                             4
                                 US-09-252-991A-31488
                                                              Sequence 31488, A
168
169
       93.5
                3.4
                       1837
                             4
                                 US-09-438-185A-98
                                                              Sequence 98, Appl
170
       92.5
                3.3
                        460
                             1
                                 US-08-351-981-4
                                                              Sequence 4, Appli
                3.3
                        452
                                                              Sequence 22, Appl
171
         92
                             4
                                 US-09-284-768A-22
                3.3
                             3
                                                              Sequence 4, Appli
172
          92
                        480
                                 US-09-182-859-4
173
          92
                3.3
                        480
                             3
                                 US-09-170-670-5
                                                              Sequence 5, Appli
174
          92
                3.3
                        480
                             3
                                 US-09-193-068-5
                                                              Sequence 5, Appli
                                                              Sequence 5, Appli
          92
                        480
                             3
175
                3.3
                                 US-09-183-412-5
176
          92
                3.3
                        480
                             3
                                 US-09-290-734-5
                                                              Sequencé 5, Appli
177
          92
                3.3
                        480
                                 US-09-672-459-4
                                                              Sequence 4, Appli
178
          92
                3.3
                        480
                             4
                                 US-09-545-586-5
                                                              Sequence 5, Appli
179
          92
                3.3
                        480
                                                              Sequence 4, Appli
                             4
                                 US-10-186-042-4
180
          92
                3.3
                        480
                             4
                                 US-09-769-864-5
                                                              Sequence 5, Appli
181
          92
                3.3
                        483
                             2
                                 US-08-600-908A-13
                                                              Sequence 13, Appl
                        483
                             3
                                 US-08-683-838A-13
182
          92
                3.3
                                                              Sequence 13, Appl
```

```
92
                        483
183
                3.3
                             3 US-09-291-023A-16
                                                              Sequence 16, Appl
184
         92
                3.3
                        483
                                US-09-537-168-6
                                                              Sequence 6, Appli
         92
185
                3.3
                        483
                             4
                                US-09-636-252A-13
                                                              Sequence 13, Appl
         92
                3.3
                        483
186
                             4
                                US-09-381-687-6
                                                              Sequence 6, Appli
                3.3
187
         92
                        483
                             4
                                US-09-540-715A-16
                                                              Sequence 16, Appl
188
         92
                3.3
                       514
                             1
                                US-08-720-899-4
                                                              Sequence 4, Appli
         92
                3.3
                        514
                             1
189
                                US-08-459-610-4
                                                              Sequence 4, Appli
                                                              Sequence 4, Appli
190
         92
                3.3
                        514
                                US-08-343-804-4
191
         92
                3.3
                        514
                             2
                                US-08-687-399-4
                                                              Sequence 4, Appli
192
         92
                3.3
                        514
                             2
                                US-08-600-908A-4
                                                              Sequence 4, Appli
193
         92
                3.3
                        514
                             3
                                US-08-683-838A-4
                                                              Sequence 4, Appli
194
         92
                3.3
                        514
                             3
                                US-09-264-097-4
                                                              Sequence 4, Appli
195
         92
                3.3
                        514
                             4
                                US-09-636-252A-4
                                                              Sequence 4, Appli
196
         92
                3.3
                        520
                             1
                                US-08-468-700-36
                                                              Sequence 36, Appl
197
         92
                3.3
                        520
                             1
                                US-08-645-971-4
                                                              Sequence 4, Appli
198
         92
                3.3
                        520
                             2
                                US-08-468-220-34
                                                              Sequence 34, Appl
199
         92
                3.3
                        520
                             2
                                US-08-468-698-34
                                                              Sequence 34, Appl
200
         92
                3.3
                        520
                             2
                                US-08-704-706A-36
                                                              Sequence 36, Appl
201
         92
                3.3
                        520
                             3
                                US-08-890-383-5
                                                              Sequence 5, Appli
202
         92
                3.3
                        520
                             3
                                US-08-914-679A-5
                                                              Sequence 5, Appli
203
         92
                3.3
                        520
                             3
                                US-08-985-659-37
                                                              Sequence 37, Appl
204
         92
                3.3
                        520
                                US-08-194-664A-34
                                                              Sequence 34, Appl
205
         92
                3.3
                        520
                                PCT-US94-01553A-34
                                                              Sequence 34, Appl
206
         92
                3.3
                        520
                             5
                                PCT-US95-10426-34
                                                              Sequence 34, Appl
         92
                3.3
                        657
207
                             4
                                US-09-284-768A-7
                                                              Sequence 7, Appli
208
         92
                3.3
                        817 .
                                US-09-248-796A-17089
                             4
                                                              Sequence 17089, A
209
       91.5
                3.3
                       143
                             4
                                US-09-270-767-62394
                                                              Sequence 62394, A
                3.3
                       1826
                             4
210
         91
                                US-09-198-452A-113
                                                              Sequence 113, App
211
       90.5
                3.3
                       727
                             4
                                US-09-543-681A-6690
                                                              Sequence 6690, Ap
       90.5
212
                3.3
                       1153
                             1
                                US-08-097-997A-14
                                                              Sequence 14, Appl
213
         90
                3.3
                       272
                                US-09-902-540-14018
                             4
                                                              Sequence 14018, A
214
         90
                3.3
                       366
                             3
                                US-09-134-001C-3198
                                                              Sequence 3198, Ap
215
         90
                3.3
                        620
                             4
                                US-09-861-451A-34
                                                              Sequence 34, Appl
216
       89.5
                3.2
                        471
                             4
                                US-09-051-961-7
                                                              Sequence 7, Appli
217
         89
                3.2
                        313
                             4
                                US-09-710-279-1216
                                                              Sequence 1216, Ap
218
         89
                3.2
                        357
                             4
                                US-09-710-279-410
                                                              Sequence 410, App
219
         89
                3.2
                        372
                                US-09-710-279-182
                                                              Sequence 182, App
220
       88.5
                3.2
                       197
                                US-09-270-767-32922
                                                              Sequence 32922, A
221
       88.5
                3.2
                       197
                                US-09-270-767-48139
                                                              Sequence 48139, A
222
       88.5
                3.2
                        726
                             3
                                US-09-126-980-2
                                                              Sequence 2, Appli
223
       88.5
                3.2
                        726
                             3
                                US-09-476-482-2
                                                              Sequence 2, Appli
224
       88.5
                3.2
                        726
                             3
                                US-09-517-605-6
                                                              Sequence 6, Appli
225
         88
                3.2
                        388
                             4
                                US-10-138-701-57
                                                              Sequence 57, Appl
                3.2
226
         88
                        540
                             4
                                US-09-248-796A-15935
                                                              Sequence 15935, A
         88
                3.2
                        745
227
                                US-09-543-681A-4267
                                                              Sequence 4267, Ap
228
         88
                3.2
                       8.38.
                             4
                                US-09-758-282B-261
                                                              Sequence 261, App.....
229
                3.2
         88
                       838
                             4
                                US-09-577-304A-261
                                                              Sequence 261, App
230
         88
                3.2
                       1153
                             3
                                US-08-665-574C-14
                                                              Sequence 14, Appl
231
         88
                3.2
                       1153
                             3
                                US-08-946-994-14
                                                              Sequence 14, Appl
                                US-09-963-137-202
232
         88
                3.2
                       1153
                             4
                                                              Sequence 202, App
233
       87.5
                3.2
                        460
                             1
                                US-08-351-981-9
                                                              Sequence 9, Appli
234
       87.5
                3.2
                       729
                                US-09-949-016-10790
                                                              Sequence 10790, A
235
       87.5
                3.2
                       729
                                US-09-949-016-10791
                                                              Sequence 10791, A
236
       87.5
                3.2
                       1075
                             4
                                US-09-949-016-8308
                                                              Sequence 8308, Ap
237
       87.5
                3.2
                       1452
                             2
                                US-08-449-644-8
                                                              Sequence 8, Appli
238
       87.5
                3.2
                       1452
                             2
                                US-08-087-244A-8
                                                              Sequence 8, Appli
239
                             2
                        565
                                US-08-357-533A-9
         87
                3.1
                                                              Sequence 9, Appli
```

					_		
	240	87	3.1	565	2	US-08-459-009-9	Sequence 9, Appli
.	241	87	3.1	565	3	US-08-459-951-9 .	Sequence 9, Appli
	242	87	3.1	944	4	US-09-107-532A-4864	Sequence 4864, Ap
,	243	86.5	3.1	542	4	US-09-198-452A-496	Sequence 496, App
	244	86.5	3.1	696	4	US-09-438-185A-464	Sequence 464, App
	245	86.5	3.1	908	4	US-09-623-326-9	Sequence 9, Appli
	246	86.5	3.1	1022	1	US-08-271-364A-8	Sequence 8, Appli
	247	86.5	3.1	1022	2	US-08-222-715B-27	Sequence 27, Appl
	248	86.5	3.1	1060	4	US-09-248-796A-16624	Sequence 16624, A
	249	86.5	3.1	2777	4	US-09-543-681A-6124	Sequence 6124, Ap
	250	86	3.1	197	3	US-09-813-918-4	Sequence 4, Appli
	251	86	3.1	197	4	US-10-060-311-4	Sequence 4, Appli
	252 ⁻	86	3.1	268	4	US-09-371-338-21	Sequence 21, Appl
	253	86	3.1	355	4	US-09-501-115-12	Sequence 12, Appl
	254	86		364		US-09-583-110-5235	
			3.1		4		Sequence 5235, Ap
	255	86	3.1	690	4	US-09-371-338-19	Sequence 19, Appl
	256	85.5	3.1	308	4	US-09-248-796A-14227	Sequence 14227, A
	257	85.5	3.1	352	2	US-08-751-474-2	Sequence 2, Appli
	258	85.5	3.1	352	4	US-09-583-110-2857	Sequence 2857, Ap
	259	85.5	3.1	355	4	US-09-107-433-4605	Sequence 4605, Ap
	260	85.5	3.1 (4	US-09-134-000C-5382	Sequence 5382, Ap
	261	85.5	3.1	493	4	US-09-925-637-24	Sequence 24, Appl
	262	85.5	3.1	494	3	US-08-988-251-2	Sequence 2, Appli
	263	85.5	3.1	494	3	US-09-386-048-2	Sequence 2, Appli
	264	85.5	3.1	617	4	US-09-252-991A-29507	Sequence 29507, A
	265	85.5	3.1	658	3	US-08-953-040-9	Sequence 9, Appli
•	266	85.5	3.1	898 .		US-09-489-039A-10322	Sequence 10322, A
	267	85.5	3.1	930	3	US-08-953-040-2	Sequence 2, Appli
	268	85.5	3.1	930	4	US-09-583-110-3208	Sequence 3208, Ap
	269	85.5	3.1	939	4	US-09-107-433-4543	Sequence 4543, Ap
	270	85	3.1	893	1	US-07-977-434-4	Sequence 4, Appli
	271	85	3.1	893	1	US-08-458-819-4	Sequence 4, Appli
	272	85	3.1	893	3	US-09-105-697-10	Sequence 10, Appl
	273	85	3.1	893	3	US-09-514-302-4	Sequence 4, Appli
	274	85	3.1	893	4	US-09-623-326-18	Sequence 18, Appl
	275	85	3.1	893	4	US-10-014-436-4	Sequence 4, Appli
	276	85	3.1	893	5	PCT-US91-07035-4	Sequence 4, Appli
	277	85	3.1	1247	4		Sequence 4968, Ap
	278	85	3.1	1540	4	US-09-949-016-11382	Sequence 11382, A
	279	85	3.1	1540	4	US-09-949-016-11383	Sequence 11383, A
	280	85	3.1	1719	2	US-08-459-568-4	Sequence 4, Appli
	281	85	3.1	1719	2	US-08-399-411-4	Sequence 4, Appli
	282 ⁻	85	3.1	1719	3	US-08-516-859A-4	Sequence 4, Appli
	283	85	3.1	1719	3	US-09-586-472-4	Sequence 4, Appli
	284	85	3.1	1719	4	US-09-528-706-4	Sequence 4, Appli
pa aprile	285	85	3.1	1938	3	US-09-514-302-2	Sequence 2, Appli
	286	85	3.1	1938	4	US-10-014-436-2	Sequence 2, Appli
	287	84.5	3.1	319	1	US-08-597-236-7	Sequence 7, Appli
	288	84.5	3.1	319	1	US-08-746-682A-7	Sequence 7, Appli
	289	84.5	3.1	447	3	US-09-305-001-2	Sequence 2, Appli
	290	84.5	3.1	447	4	US-09-583-110-3287	Sequence 3287, Ap
	291	84.5	3.1	451	4	US-09-107-433-3636	Sequence 3636, Ap
	292	84.5	3.1	471	4	US-09-538-092-938	Sequence 938, App
	293	84.5	3.1	481	4	US-09-673-395A-277	Sequence 277, App
	294	84.5	3.1	489	4	US-09-949-016-7030	Sequence 7030, Ap
	295	84.5	3.1	492	3	US-08-984-618-2	Sequence 2, Appli
	296	84.5	3.1	635	4	US-10-101-464A-932	Sequence 932, App

	007	0.4 5		076	^	HG 00 F10 01F2 0	Company 2 Appli	
	297	84.5	3.1	876	2	US-08-510-215A-2	Sequence 2, Appli	
•	298	84.5	3.1		4	US-09-517-871-20	Sequence 20, Appl	
	299	84.5	3.1	1452	2	US-08-652-971-4	Sequence 4, Appli	
	300	84.5	3.1	1452	2	US-08-991-258A-4	Sequence 4, Appli	
	301	84.5	3.1	1452	2	US-08-769-399-4	Sequence 4, Appli	
	302	84.5	3.1	1452	3	US-08-991-953A-4	Sequence 4, Appli	
	303	84	3.0	446	3	US-09-306 - 593-11	Sequence 11, Appl	
	304	84	3.0	528	4	US-09-248-796A-20729	Sequence 20729, A	
	305	84	3.0	587	4	US-09-107-532A-6405	Sequence 6405, Ap	
	306	83.5	3.0	431	2	US-08-576-626A-54	Sequence 54, Appl	
	307	83.5	3.0	460	4	US-09-248-796A-14306	Sequence 14306, A	
	308	83.5	3.0	499	4	US-09-270-767-57610	Sequence 57610, A	
	309	83.5	3.0	644	4	US-09-198-452A-785	Sequence 785, App	
	310	83.5	3.0	716	4	US-09-270-767-42322	Sequence 42322, A	
	311	83.5	3.0	717	4	US-09-949-016-5999	Sequence 5999, Ap	
	312	83.5	3.0	2644	4	US-09-029-047C-2	Sequence 2, Appli	
	313	83	3.0	271	4	US-09-252-991A-21522	Sequence 21522, A	
	314	83	3.0	318	4	US-09-328-352-7247	Sequence 7247, Ap	
	315	83	3.0	360	4	US-09-501-115-4	Sequence 4, Appli	
•	316	83	3.0	418	3	US-08-855-910-11	Sequence 11, Appl	
	317	83	3.0	433	4	US-09-134-000C-3686	Sequence 3686, Ap	
	318	83	3.0	607	4	US-09-344-882-18	Sequence 18, Appl	
	319	83(3.0	842	4	US-09-758-282B-241	Sequence 241, App	
	320	83	3.0	842	4	US-09-577-304A-241	Sequence 241, App	
	321	83	3.0	3169	2	US-08-477-451-6	Sequence 6, Appli	
	322	82.5	3.0	415	4	US-09-949-016-10838	Sequence 10838, A	
	323.	82.5	3.0	445	4	US-09-252-991A-17629	Sequence 17629, A	
	324	82.5	3.0	471	4	US-09-670-216-31	Sequence 31, Appl	
<u>-</u>	325	82.5	3.0	472	4	US-09-270-767-58032	Sequence 58032, A	
	326	82.5	3.0	573	3	US-09-134-001C-4942	Sequence 4942, Ap	
	327	82.5	3.0	604	4	US-09-508-213-3	Sequence 3, Appli	
	328	82.5	3.0	625	4	US-09-270-767-42712	Sequence 42712, A	
	329	82.5	3.0	704	4	US-09-543-681A-7274	Sequence 7274, Ap	
	330	82.5	3.0	819	3	US-09-511-625B-4	Sequence 4, Appli	
	331	82.5	3.0	832	4	US-09-758-282B-268	Sequence 268, App	
		82.5	3.0	832	4	US-09-77-304A-268	Sequence 268, App	
	332			847	1	US-08-276-099A-2	Sequence 2, Appli	
	333	82.5	3.0	847	1	US-08-781-890-2	Sequence 2, Appli	
	334	82.5	3.0				Sequence 12, Appl	
	335	82.5	3.0	847	3	US-09-087-465-12		
	336	82.5	3.0	847	4	US-09-972-800A-10	Sequence 10, Appl	
	337	82.5	3.0	1226	4	US-09-601-537-7	Sequence 7, Appli	
	338	82.5	3.0	1227	.2	US-08-760-075A-18	Sequence 18, Appl	
	339	82.5	3.0	1227	3	US-09-338-546-18	Sequence 18, Appl	
	340	82.5	3.0	1227	4	US-09-659-084-18	Sequence 18, Appl	
	341	82.5	3.0	1256	4	US-09-949-016-9991	Sequence 9991, Ap	
	342	82.5	3.0	1534	4	US=0.9-543-681A-5182	Sequence 5182, Ap	w4· •
	343	82.5	3.0	3782	3	US-09-105-537-4	Sequence 4, Appli	
	344	82	3.0	312	4	US-09-107-532A-4376	Sequence 4376, Ap	
	345	82	3.0	390	4	US-09-543-681A-7466	Sequence 7466, Ap	
	346	02	3.0	397	4	US-09-660-107-1	Sequence 1, Appli	
	347	82	3.0	397	6	5457090-2	Patent No. 5457090	
	348	82	3.0	397	6	5495001-7	Patent No. 5495001	
	349	82	3.0	397	6	5457090-2	Patent No. 5457090	
	350	82	3.0	397	6	5495001-7	Patent No. 5495001	
	351	82	3.0	457	4	US-09-583-110-3967	Sequence 3967, Ap	
	352	82	3.0	545	4	US-09-801-774-1	Sequence 1, Appli	
	353	82	3.0	589	4	US-09-543-681A-4194	Sequence 4194, Ap	
		•					•	

•

				004	4	*** 00 224 0107 2	Coguengo 2 Annli
	354	82	3.0	834	4	US-09-334-818A-2	Sequence 2, Appli
	355	82	3.0		4	US-09-758-282B-77	Sequence 77, Appl
	356	82	3.0	842	4	US-09-758-282B-93	Sequence 93, Appl
	357	82	3.0	842	4	US-09-577-304A-77	Sequence 77, Appl
	358	82	3.0	842	4	US-09-577-304A-93	Sequence 93, Appl
	359	82	3.0	884	4	US-09-543-681A-5437	Sequence 5437, Ap
	360	82	3.0	912	4	US-09-248-796A-20032	Sequence 20032, A
	361	82	3.0	959	4	US-09-107-433-4334	Sequence 4334, Ap
	362	82	3.0	1032	4	US-09-583-110-3366	Sequence 3366, Ap
•	363	82	3.0	1096	4	US-09-438-185A-739	Sequence 739, App
	364	81.5	2.9	492	1	US-10-095-946-2	Sequence 2, Appli
	365	81.5	2.9	492	3	US-09-183-959-2	Sequence 2, Appli
			2.9	492	4	US-09-347-650-14	Sequence 14, Appl
	366	81.5		492	4	US-09-535-315-2	Sequence 2, Appli
	367	81.5	2.9				Sequence 24628, A
	368	81.5	2.9	648	4	US-09-252-991A-24628	-
	369	81.5	2.9	717	4	US-09-710-279-3022	Sequence 3022, Ap
	370	81.5	2.9	901	4	US-09-710-279-342	Sequence 342, App
	371	81	2.9	380	4	US-09-252-991A-28929	Sequence 28929, A
-	372	81	2.9	503	4	US-09-144-367-2	Sequence 2, Appli
	373	81	2.9	536	4	US-09-248-796A-19182	Sequence 19182, A
	374	81	2.9	610	3	US-08-656-664-54	Sequence 54, Appl
	375	81	2.9	610	5	PCT-US96-09641-54	Sequence 54, Appl
	376	81	2.9	694	4	US-09-583-110-4272	Sequence 4272, Ap
	377	81	2.9	805	4	US-09-598-401C-77	Sequence 77, Appl
	378	81	2.9	807	4	US-09-538-092-574	Sequence 574, App
	379	81	2.9	834	3	US-08-539-205A-6	Sequence 6, Appli
	380	81	2.9	834	4	US-09-392-163A-6	Sequence 6, Appli
	381	81	2.9	1024	3	US-09-091-117-5	Sequence 5, Appli
	382	81	2.9	1042	4	US-09-512-250C-32	Sequence 32, Appl
	383	80.5	2.9	499	3	US-09-457-040B-13	Sequence 13, Appl
•	384	80.5	2.9	813	4	US-09-328-352-7421	Sequence 7421, Ap
	385	80.5	2.9	832	4	US-09-758-282B-251	Sequence 251, App
			2.9	832	4	US-09-577-304A-251	Sequence 251, App
	386	80.5		1072	4	US-09-248-796A-16400	Sequence 16400, A
	387 .	80.5	2.9		4	US-09-248-796A-16400 US-09-328-352-6668	Sequence 6668, Ap
	388	80	2.9	298	4	US-09-328-332-6666 US-09-248-796A-16595	Sequence 16595, A
	389	80	2.9	342			Sequence 6756, Ap
	390	80	2.9	378	4	US-09-107-532A-6756	-
	391	80	2.9	512	4	US-09-107-532A-5262	Sequence 5262, Ap
	392	80	2.9	789	3	US-08-727-308-1	Sequence 1, Appli
	393	80	2.9	1627	4	US-09-252-991A-28697	Sequence 28697, A
	394	80	2.9	2108	4	US-09-538-092-87	Sequence 87, Appl
	. 395	79.5	2.9	337	4	US-09-252-991A-25798	Sequence 25798, A
	396	79.5	2.9	353	4	US-09-248-796A-15118	Sequence 15118, A
	397	79.5	2.9	366	4	US-09-359-268A-27	Sequence 27, Appl
	398	79.5	2.9	369	2	US-08-951-148-8	Sequence 8, Appli
a come o	399	79.5	2.9	369	2	US-09-165-234-8	Sequence 8, Appli
	400	79.5	2.9	369	3	US-09-274-570-8	Sequence 8, Appli
	401	79.5	2.9	418	4	US-09-248-796A-17723	Sequence 17723, A
	402	79.5	2.9	446	2	US-08-874-138-6	Sequence 6, Appli
	403	79.5	2.9	446	3	US-08-879-941-2	Sequence 2, Appli
	404	79.5	2.9	446	3	US-09-747-116-2	Sequence 2, Appli
	405	79.5	2.9	463	4	US-09-107-433-3506	Sequence 3506, Ap
	405	79.5	2.9	499	4	US-09-905-999-21	Sequence 21, Appl
	400	79.5	2.9	519	4	US-09-252-991A-16737	Sequence 16737, A
					1	US-08-077-939-15	Sequence 15, Appl
	408	79.5	2.9	525			Sequence 15, Appl
	409	79.5 79.5	2.9	525	1	US-08-461-599-15	Sequence 15, Appl Sequence 15, Appl
	410	·/ () E	2.9	525	1	US-08-461-621-15	Seducince IS, Whit

```
Sequence 15, Appl
411
       79.5
                2.9
                        525
                             .1
                                 US-08-465-334-15
                                                              Sequence 6028, Ap
412
       79.5
                2.9
                        676
                             4
                                 US-09-107-532A-6028
                                                              Sequence 16801, A
       79.5
                2.9
                        800
                             4
                                 US-09-248-796A-16801
413
                                                              Sequence 4612, Ap
414
       79.5
                2.9
                        827
                             4
                                 US-09-134-000C-4612
415
                             2
                                                              Sequence 2, Appli
       79.5
                2.9
                        885
                                 US-08-310-912A-2
                                                              Sequence 2, Appli
       79.5
                2.9
                        885
                             3
                                 US-08-841-089-2
416
417
       79.5
                2.9
                        885
                             3
                                 US-09-301-085-2
                                                              Sequence 2, Appli
418
       79.5
                2.9
                        885
                             5
                                 PCT-US95-04570-2
                                                              Sequence 2, Appli
       79.5
                2.9
                        885
                             5
                                 PCT-US95-04589-2
                                                              Sequence 2, Appli
419
                        907
                                                              Sequence 7, Appli
420
       79.5
                2.9
                             3
                                 US-08-930-996A-7
421
       79.5
                2.9
                        909
                             2
                                 US-08-310-912A-142
                                                              Sequence 142, App
       79.5
                2.9
                        909
                             3
                                 US-09-301-085-142
                                                              Sequence 142, App
422
                2.9
                        909
                             5
                                 PCT-US95-04589-142
                                                              Sequence 142, App
423
       79.5
       79.5
                2.9
                        942
                             4
                                 US-09-657-931A-9
                                                              Sequence 9, Appli
424
         79
                2.9
                        233
                             4
                                 US-09-248-796A-14148
                                                              Sequence 14148, A
425
         79
                2.9
                             4
                                 US-09-949-016-6747
                                                              Sequence 6747, Ap
                        432
426
                        490
                                                              Sequence 23, Appl
427
         79
                2.9
                             4
                                 US-09-800-170-23
         79
                2.9
                        494
                             3
                                 US-08-484-661A-39
                                                              Sequence 39, Appl
428
         79
                2.9
                        494
                             3
                                 US-08-656-664-39
                                                              Sequence 39, Appl
429
                             5
                                                              Sequence 39, Appl
         79
                2.9
                        494
                                 PCT-US96-09641-39
430
         79
                2.9
                        571
                             3
                                 US-08-484-661A-37
                                                              Sequence 37, Appl
431
                        571
                                 US-08-656-664-37
                                                              Sequence 37, Appl
432
         79
                2.9
                             3
                        571
                                 PCT-US96-09641-37
                                                              Sequence 37, Appl
         79
                2.9
                             5
433
                        578
                                                              Sequence 11, Appl
                2.9
                             3
                                 US-08-484-661A-11
434
          79
         79
                2.9
                        578
                                 US-08-656-664-11
                                                              Sequence 11, Appl
435
                                                              Sequence 11, Appl
          79
                2.9
                        578
                             5
                                 PCT-US96-09641-11
436
                                 US-09-248-796A-20657
                                                              Sequence 20657, A
          79
                2.9
                        581
                             4
437
                        607
                             4
                                 US-09-344-882-16
                                                              Sequence 16, Appl
438
          79
                2.9
                2.9
                        610
                                 US-08-484-661A-8
                                                              Sequence 8, Appli
439
          79
                                                               Sequence 16, Appl
440
          79
                2.9
                        610
                             3
                                 US-08-484-661A-16
                                                              Sequence 19, Appl
          79
                2.9
                        610
                             3
                                 US-08-484-661A-19
441
                                                              Sequence 23, Appl
442
          79
                2.9
                        610
                             3
                                 US-08-484-661A-23
          79
                2.9
                        610
                             3
                                 US-08-484-661A-26
                                                               Sequence 26, Appl
443
                                                               Sequence 29, Appl
          79
                2.9
                        610
                             3
                                 US-08-484-661A-29
444
          79
                2.9
                             3
                                 US-08-484-661A-33
                                                               Sequence 33, Appl
                        610
445
                                                               Sequence 35, Appl
446
          79
                2.9
                        610
                             3
                                 US-08-484-661A-35
                2.9
                        610
                                 US-08-656-664-8
                                                               Sequence 8, Appli
447
          79
          79
                2.9
                        610
                                 US-08-656-664-16
                                                               Sequence 16, Appl
448
                             3
          79
                        610
                                 US-08-656-664-19
                                                               Sequence 19, Appl
                2.9
                             3
449
                                                               Sequence 23, Appl
450
          79
                2.9
                        610
                             3
                                 US-08-656-664-23
                        610
                                 US-08-656-664-26
                                                               Sequence 26, Appl
451
          79
                2.9
                             3
          79
                2.9
                        610
                             3
                                 US-08-656-664-29
                                                               Sequence 29, Appl
452
                             3
                                 US-08-656-664-33
                                                               Sequence 33, Appl
          79
                2.9
                        610
453
                                                               Sequence 35, Appl
          79
                2.9
                        610
                             3
                                 US-08-656-664-35
454
                                 US-09-019-160-4
                                                               Sequence 4, Appli
455
          79
                2.9
                        610
                              3
                              5
                                 PCT-US96-09641-8
                                                             .. Sequence 8, Appli
          79
                2.9
                        610
456
                              5
                                                               Sequence 16, Appl
          79
                2.9
                                 PCT-US96-09641-16
457
                        610
                                                               Sequence 19, Appl
          79
                2.9
                        610
                              5
                                 PCT-US96-09641-19
458
                                                               Sequence 23, Appl
          79
                2.9
                        610
                              5
                                 PCT-US96-09641-23
459
                              5
                2.9
                        610
                                 PCT-US96-09641-26
                                                               Sequence 26, Appl
460
          79
                                                               Sequence 29, Appl
                              5
                                 PCT-US96-09641-29
461
          79
                2.9
                        610
462
          79
                2.9
                        610
                                 PCT-US96-09641-33
                                                               Sequence 33, Appl
          79
                2.9
                        610
                              5
                                 PCT-US96-09641-35
                                                               Sequence 35, Appl
463
          79
                2.9
                        677
                              3
                                 US-09-019-160-3
                                                               Sequence 3, Appli
464
          79
                2.9
                        684
                              4
                                 US-09-489-039A-13496
                                                               Sequence 13496, A
465
466
          79
                2.9
                        699
                              4
                                 US-09-438-185A-506
                                                               Sequence 506, App
                                                               Sequence 5, Appli
                        708
                              3
                                 US-09-019-160-5
467
          79
                2.9
```

```
Sequence 67, Appl
468
         79
                        861
                                US-08-346-455B-67
                2.9
                             1
         79
                2.9
                       861
                             3
                                US-08-977-221-67
                                                              Sequence 67, Appl
469
                                                              Sequence 67, Appl
         79
                2.9
                        861
                             4
                                US-09-483-831B-67
470
                                                              Sequence 67, Appl
                             5
         79
                2.9
                        861
                                 PCT-US95-06613-67
471
                                                              Sequence 2, Appli
         79
                2.9
                        893
                             3
                                US-08-484-661A-2
472
         79
                2.9
                        893
                             3
                                 US-08-656-664-2
                                                              Sequence 2, Appli
473
                        893
                             3
                                                              Sequence 2, Appli
474
         79
                2.9
                                US-09-019-160-2
475
         79
                2.9
                        893
                             3
                                US-09-019-160-6
                                                              Sequence 6, Appli
                                                              Sequence 7, Appli
476
         79
                2.9
                        893
                             3
                                US-09-019-160-7
         79
                2.9
                        893
                             3
                                US-09-019-160-8
                                                              Sequence 8, Appli
477
                                                              Sequence 9, Appli
478
         79
                2.9
                        893
                             3
                                US-09-019-160-9
479
         79
                2.9
                        893
                             5
                                 PCT-US96-09641-2
                                                              Sequence 2, Appli
         79
                2.9
                        928
                             4
                                 US-09-134-000C-5307
                                                              Sequence 5307, Ap
480
         79
                2.9
                        986
                             4
                                US-08-311-731A-2
                                                              Sequence 2, Appli
481
482
         79
                2.9
                       1271
                             1
                                 US-08-095-734-2
                                                              Sequence 2, Appli
         79
                2.9
                      1271
                             2
                                US-08-444-623-2
                                                              Sequence 2, Appli
483
         79
                2.9
                       1271
                             3
                                US-08-471-869-2
                                                              Sequence 2, Appli
484
         79
                2.9
                       1271
                             3
                                US-09-342-563-2
                                                              Sequence 2, Appli
485
                                                              Sequence 2, Appli
         79
                2.9
                       1271
                             5
                                 PCT-US94-08267-2
486
         79
                2.9
                       2080
                             4
                                                              Sequence 2, Appli
                                 US-09-382-552-2
487
                                                              Sequence 20569, A
488
       78.5
                2.8
                        388
                             4
                                 US-09-248-796A-20569
                2.8
                        467
                                 US-08-805-118-3
                                                              Sequence 3, Appli
489
       78.5
                             2
                2.8
                        467
                                 US-09-391-958-3
                                                              Sequence 3, Appli
490
       78.5
                             3
                                                              Sequence 9, Appli
                2.8
                        480
                             2
                                 US-08-724-394A-9
491
       78.5
       78.5
                2.8
                        500
                             3
                                 US-09-134-001C-3990
                                                              Sequence 3990, Ap
492
                                                              Sequence 2, Appli
493
       78.5
                2.8
                        515
                             4
                                 US-09-869-433-2
                             4
                                 US-09-543-681A-5673
                                                              Sequence 5673, Ap
       78.5
                2.8
                        567
494
                                                              Sequence 31897, A
       78.5
                        682
                             4
                                 US-09-252-991A-31897
495
                2.8
       78.5
                2.8
                        770
                                 US-09-248-796A-17215
                                                              Sequence 17215, A
496
                                                              Sequence 7118, Ap
497
       78.5
                2.8
                        816
                                 US-09-543-681A-7118
                                                              Sequence 1171, Ap
498
       78.5
                2.8
                       1586
                             4
                                 US-09-538-092-1171
                                                              Sequence 11062, A
499
       78.5
                2.8
                       1587
                             4
                                 US-09-949-016-11062
500
                2.8
                        218
                             4
                                 US-09-327-983-6
                                                              Sequence 6, Appli
          78
          78
                2.8
                        336
                             4
                                 US-09-134-000C-6236
                                                              Sequence 6236, Ap
501
          78
                2.8
                        388
                             Δ
                                 US-09-489-039A-7745
                                                              Sequence 7745, Ap
502
                                                              Sequence 6554, Ap
503
         78
                2.8
                        400
                             4
                                 US-09-543-681A-6554
                2.8
                        416
                                 US-09-574-141A-61
                                                              Sequence 61, Appl
504
          78
          78
                2.8
                        416
                                 US-09-568-189A-61
                                                              Sequence 61, Appl
505
                             4
          78
                        424
                                                              Sequence 4187, Ap
                2.8
                                 US-09-328-352-4187
506
507
          78
                2.8
                        426
                             3
                                 US-09-320-878-8
                                                              Sequence 8, Appli
                                                              Sequence 20, Appl
508
          78
                2.8
                        426
                             3
                                 US-09-105-537-20
                        426
                             4
                                 US-09-141-908-8
                                                               Sequence 8, Appli
          78
                2.8
509
                                                              Sequence 8, Appli
          78
                2.8
                        426
                             4
                                 US-09-657-440-8
510
          78
                2.8
                        457
                                 US-09-248-796A-14536
                                                               Sequence 14536, A
511
                                                               Sequence 12, Appl
          78
                2.8
                        473
                             3
                                 US-09-377-557-12
512
                2.8
                                                               Sequence 2, Appli
                        474
                              3
                                 US-09-058-692-2
513
          78. ...
          78
                2.8
                             3
                                                               Sequence 2, Appli
514
                        474
                                 US-09-584-628-2
          78
                2.8
                        477
                              3
                                 US-08-772-270A-13
                                                               Sequence 13, Appl
515
                        508
                              4
                                 US-09-949-016-7092
                                                               Sequence 7092, Ap
516
          78
                2.8
                        508
                                                               Sequence 8562, Ap
517
          78
                2.8
                              4
                                 US-09-949-016-8562
518
          78
                2.8
                        532
                              4
                                 US-09-270-767-46234
                                                               Sequence 46234, A
519
          78
                2.8
                        554
                              3
                                 US-09-564-805-236
                                                               Sequence 236, App
520
          78
                        654
                             3
                                 US-09-134-001C-3261
                                                               Sequence 3261, Ap
                2.8
                        700
                             2
                                                               Sequence 10, Appl
521
          78
                2.8
                                 US-08-568-459A-10
                        700
                              2
                                 US-08-487-826B-10
                                                               Sequence 10, Appl
522
          78
                2.8
                        700
                              3
                                 US-09-210-288-10
                                                               Sequence 10, Appl
523
          78
                2.8
                        784
                              3
                                 US-09-004-838-12
                                                               Sequence 12, Appl
524
          78
                2.8
```

```
Sequence 3534, Ap
         78
                        856
                                US-09-107-433-3534
525
                2.8
                             4
                        876
                                                              Sequence 2, Appli
526
        . 78
                2.8
                             1
                                US-08-785-071A-2 .
                        876
                                                              Sequence 2, Appli
527
         78
                2.8
                             3
                                US-09-012-872-2
                                                              Sequence 222, App
         78
                2.8
                       919
                                US-09-919-039-222
528
                             4
                                                             Sequence 921, App
529
         78
                2.8
                       974
                             4
                                US-10-101-464A-921
                                                              Sequence 24, Appl
                      1077
530
         78
                2.8
                             4
                                US-09-397-550-24
         78
                2.8
                      1091
                             4
                                US-10-162-012-18
                                                             Sequence 18, Appl
531
                                                             Sequence 451, App
532
         78
                2.8
                      1122
                             4
                                US-09-711-164-451
533
         78
                2.8
                      1467
                             4
                                US-09-134-000C-6740
                                                              Sequence 6740, Ap
                                                             Sequence 2, Appli
534
         78
                2.8
                      1706
                             2
                                US-08-459-568-2
535
         78
                2.8
                      1706
                                US-08-399-411-2
                                                             Sequence 2, Appli
536
         78
                2.8
                      1706
                             3
                                US-08-516-859A-2
                                                              Sequence 2, Appli
537
         78
                2.8
                      1706
                             3
                                US-09-586-472-2
                                                              Sequence 2, Appli
538
         78
                2.8
                      1706
                             4
                                US-09-528-706-2
                                                              Sequence 2, Appli
539
         78
                2.8
                      2182
                             2
                                US-08-487-826B-16
                                                              Sequence 16, Appl
540
         78
                2.8
                      2216
                             4
                                US-09-902-540-12221
                                                              Sequence 12221, A
541
         78
                2.8
                      2470
                             4
                                US-08-265-967C-2
                                                              Sequence 2, Appli
542
         78
                2.8
                      2470
                             4
                                US-08-305-790B-3
                                                              Sequence 3, Appli
543
         78
                2.8
                      2987
                             2
                                US-08-970-269A-29
                                                              Sequence 29, Appl
544
         78
                2.8
                      2987
                             3
                                US-09-407-562-29
                                                              Sequence 29, Appl
                2.8
                      3959
                             2
                                US-08-970-269A-30
                                                              Sequence 30, Appl
545
         78
         78
                2.8
                      3959
                                US-09-407-562-30
                                                              Sequence 30, Appl
546
547
       77.5
                2.8
                       182
                                US-09-267-963D-30
                                                              Sequence 30, Appl
                             4
       77.5
                2.8
                       245
                                US-09-270-767-46576
                                                              Sequence 46576, A
548
                             4
549
       77.5
                2.8
                        356
                             4
                                US-09-302-626B-56
                                                              Sequence 56, Appl
       77.5
                        398
                                5495001-9
                                                             Patent No. 5495001
550
                2.8
                             6
       77.5
                2.8
                        398
                             6
                                5495001-9
                                                             Patent No. 5495001
551
                        481
                             4
                                US-09-252-991A-29416
                                                              Sequence 29416, A
552
       77.5
                2.8
553
       77.5
                2.8
                        498
                             4
                                US-09-328-352-5006
                                                              Sequence 5006, Ap
                                                              Sequence 66, Appl
554
       77.5
                2.8
                        512
                             4
                                US-10-142-231-66
       77.5
                       576
                                                              Sequence 22, Appl
555
                2.8
                             1
                                US-08-221-817-22
       77.5
                        576
                                                              Sequence 22, Appl
556
                2.8 .
                             1
                                US-08-454-439-22
557
       77.5
                2.8
                        576
                             5
                                PCT-US94-10487-22
                                                              Sequence 22, Appl
558
       77.5
                2.8
                        589
                             4
                                US-09-248-796A-19246
                                                              Sequence 19246, A
                2.8
                        628
                             4
                                US-09-345-473E-48
                                                              Sequence 48, Appl
559
       77.5
                        659
                             4
                                US-09-583-110-3110
                                                              Sequence 3110, Ap
560
       77.5
                2.8
                2.8
                        751·
                                US-09-252-991A-25481
                                                              Sequence 25481, A
561
       77.5
562
       77.5
                2.8
                        765
                             3
                                US-09-134-001C-3681
                                                              Sequence 3681, Ap
       77.5
                2.8
                        810
                                US-09-328-352-7181
                                                              Sequence 7181, Ap
563
                        893
564
       77.5
                2.8
                             2
                                US-08-706-702-3
                                                              Sequence 3, Appli
       77.5
                        893
                                US-08-706-706-3
                                                              Sequence 3, Appli
565
                2.8
                             3
566
       77.5
                2.8
                       893
                             4
                                US-09-238-471-3
                                                              Sequence 3, Appli
                        920
                             1
567
       77.5
                2.8
                                US-08-451-715A-2
                                                              Sequence 2, Appli
568.
       77.5
                2.8
                      1278
                                US-09-462-136-2
                                                              Sequence 2, Appli
                                                              Sequence 10152, A
569
       77.5
                2.8
                      1318
                                US-09-949-016-10152
570
       77.5
                      .3635
                                                              Sequence 2, Appli.
                2.8
                            • 4
                                US-09-845-583A-2
571
          77
                2.8
                        294
                                US-09-583-110-3740
                                                              Sequence 3740, Ap
                             4
572
          77
                2.8
                        307
                             4
                                US-09-710-279-2668
                                                              Sequence 2668, Ap
573
          77
                2.8
                        315
                             4
                                US-09-107-433-3121
                                                              Sequence 3121, Ap
                                US-09-134-001C-5553
                2.8
                        319
                             3
                                                              Sequence 5553, Ap
574
         77
575
         77
                2.8
                        358
                             4
                                US-09-710-279-2136
                                                              Sequence 2136, Ap
576
          77
                2.8
                        365
                                US-09-710-279-470
                                                              Sequence 470, App
577
         77
                2.8
                        366
                             3
                                US-09-134-001C-5502
                                                              Sequence 5502, Ap
          77
                2.8
                        390
                             3
                                US-09-036-987A-8
578
                                                              Sequence 8, Appli
                                                              Sequence 8, Appli
579
          77
                2.8
                        390
                             3
                                US-09-370-700-8
580
          77
                2.8
                        390
                             4
                                US-09-603-207-8
                                                              Sequence 8, Appli
          77
                                US-09-489-039A-11256
581
                2.8
                        392
                                                              Sequence 11256, A
```

```
Sequence 2, Appli
         77
                2.8
                        449
                             4
                                US-09-530-836-2
582
                                                              Sequence 6, Appli
                        449
                             4
                                US-09-530-838-6
583 .
         77
                2:.8
         77
                2.8
                        480
                                                              Sequence 4532, Ap
584
                             4
                                US-09-543-681A-4532
                                                              Sequence 8609, Ap
         77
                2.8
                        593
                             4
                                US-09-489-039A-8609
585
                                                              Sequence 10, Appl
         77
586
                2.8
                        610
                             3
                                US-09-019-160-10
                                                              Sequence 5476, Ap
         77
                                US-09-328-352-5476
587
                2.8
                        614
                             4
                                                              Sequence 1, Appli
                             4
         77
                2.8
                        635
                                US-09-538-092-1
588
                                                              Sequence 20617, A
                        646
                                US-09-248-796A-20617
589
         77
                2.8
                             4
                                US-09-583-110-3943
                                                              Sequence 3943, Ap
590
         77
                2.8
                        651
                                                              Sequence 4766, Ap
                        663
                                US-09-107-433-4766
591
         77
                2.8
                             4
                                                              Sequence 6, Appli
                                US-09-591-095-6
592
         77
                2.8
                        683
                             4
                                                              Sequence 3507, Ap
593
         77
                2.8
                        690
                             4
                                US-09-540-236-3507
                2.8
                                                              Sequence 15523, A
594
         77
                        743
                             4
                                US-09-248-796A-15523
                                                              Sequence 3, Appli
595
         77
                2.8
                        793
                             1
                                US-08-015-985-3
596
         77
                2.8
                        793
                             4
                                US-09-280-597-3
                                                              Sequence 3, Appli
597
         77
                2.8
                        988
                             4
                                US-09-252-991A-27246
                                                              Sequence 27246, A
                                                              Sequence 10397, A
598
         77
                2.8
                       1441
                             4
                                US-09-949-016-10397
                                                              Sequence 7, Appli
599
         77
                2.8
                      2210
                             4
                                US-09-309-572-7
                                                              Sequence 7, Appli
600
         77
                2.8
                       2210
                             4
                                US-09-718-096-7
                                                              Sequence 15, Appl
         77
                2.8
                       2787
                             3
                                US-09-245-041-15
601
                                                              Sequence 15, Appl
                2.8
                       2787
                             4
                                US-09-358-055B-15
602
         77
                                                              Sequence 15, Appl
         77
                2.8
                       2787
                             4
                                US-09-893-238-15
603
       76.5
                2.8
                        355
                                US-09-248-796A-16878
                                                              Sequence 16878, A
604
                                                              Sequence 1049, Ap
       76.5
                2.8
                        358
                                US-09-198-452A-1049
                             4
605
                                                              Sequence 978, App
                        358
                                US-09-438-185A-978
606
       76.5
                2.8
                             4
       76.5
                2.8
                        372
                             2
                                US-08-884-681-1
                                                              Sequence 1, Appli
607
       76.5
                2.8
                        372
                             3
                                US-09-258-643-1
                                                              Sequence 1, Appli
608
                2.8
                        426
                             1
                                US-08-455-550-21
                                                              Sequence 21, Appl
       76.5
609
                                                              Sequence 17, Appl
                             1
                                US-08-077-939-17
       76.5
                2.8
                        525
610
                        525
                                US-08-461-599-17
                                                              Sequence 17, Appl
611
       76.5
                2.8
                             1
                2.8
                        525
                             1
                                US-08-461-621-17
                                                              Sequence 17, Appl
612
       76.5
                        525
                             1
                                US-08-465-334-17
                                                              Sequence 17, Appl
613
       76.5
                2.8
                                                              Sequence 18204, A
614
       76.5
                2.8
                        547
                             4
                                US-09-248-796A-18204
       76.5
                2.8
                        619
                             3
                                US-09-156-253-48
                                                              Sequence 48, Appl
615
       76.5
                2.8
                        619
                             5
                                 PCT-US93-03027-6
                                                              Sequence 6, Appli
616
                2.8
                        630
                             4
                                 US-09-248-796A-19619
                                                              Sequence 19619, A
617
       76.5
       76.5
                2.8
                        681
                                 US-09-248-796A-17348
                                                              Sequence 17348, A
618
       76.5
                2.8
                        828
                             1
                                 US-08-261-304-2
                                                              Sequence 2, Appli
619
                                                              Sequence 12, Appl
       76.5
                2.8
                        892
                                US-07-977-434-12
620
                             1
                                                              Sequence 12, Appl
                        892
                                 US-08-458-819-12
621
       76.5
                2.8
                             1
                                                              Sequence 12, Appl
       76.5
                2.8
                        892
                             5
                                 PCT-US91-07035-12
622
       76.5
                2.8
                       1019
                             4
                                 US-09-252-991A-24417
                                                              Sequence 24417, A
623
                2.8
                       1030
                             3
                                 US-09-091-117-2
                                                              Sequence 2, Appli
       76.5
624
                             3
                                 US-09-268-140-3
                                                              Sequence 3, Appli
        76.5
                2.8
                       1286
625
                       1447
                                 US-09-376-330-17
                                                              Sequence 17, Appl
626
        76.5
                2.8
                2.7 .
                        206
                              4 ...
                                _US-09-328-352-4683
                                                              Sequence 4683, Ap
627
          76
                        279
                                 US-09-134-000C-6430
                                                              Sequence 6430, Ap
          76
                2.7
                              4
628
                                                              Sequence 20, Appl
          76
                2.7
                        389
                              4
                                 US-10-138-701-20
629
                                                             Patent No. 5187089
                                 5187089-10
          76
                2.7
                        397
                              6
630
                2.7
                        397
                              6
                                 5187089-10
                                                             Patent No. 5187089
          76
631
                                                              Sequence 2, Appli
                              2
                                 US-08-959-749-2
632
          76
                2.7
                        448
633
          76
                2.7
                        448
                              3
                                 US-09-351-497-2
                                                              Sequence 2, Appli
                                                               Sequence 42145, A
          76
                2.7
                        448
                              4
                                 US-09-270-767-42145
634
                                                               Sequence 4, Appli
          76
                2.7
                        482
                                 US-10-196-927-4
635
                              4
                                                               Sequence 19257, A
          76
                2.7
                        553
                              4
                                 US-09-248-796A-19257
636
                                                               Sequence 2, Appli
          76
                2.7
                        645
                              4
                                 US-10-196-927-2
637
                                 US-09-248-796A-20699
                                                               Sequence 20699, A
                        675
638
          76
                2.7
```

639	76	2.7	676	4	US-09-543-681A-5943	Sequence 5943, Ap
640	76	2.7	714	4.	US-09-198-452A-300	Sequence 300, App
641		2.7	714	4	US-09-438-185A-289	Sequence 289, App
642	76	2.7	741	4	US-09-328-352-5898	Sequence 5898, Ap
643	76	2.7	1083	3	US-08-895-601-5	Sequence 5, Appli
644	76	2.7	1240	3	US-08-930-996A-4	Sequence 4, Appli
645	76	2.7	2008	4	US-09-270-767-43754	Sequence 43754, A
646	76	2.7	2008	4	us-09-270-767-46774	Sequence 46774, A
647	75.5	2.7	249	2	US-08-685-992-8	Sequence 8, Appli
648	75.5	2.7	249	2	US-09-144-925-8	Sequence 8, Appli
649	75.5	2.7	289	4	US-09-270-767-36626	Sequence 36626, A
650	75.5	2.7	289	4	US-09-270-767-51843	Sequence 51843, A
651	75.5	2.7	407	4	US-10-067-977-4	Sequence 4, Appli
652	75.5	2.7	414	2	US-08-845-161A-2	Sequence 2, Appli
653	75.5	2.7	414	3	US-09-270-751-2	Sequence 2, Appli
654	75.5	2.7	414	4	US-09-168-218B-4	Sequence 4, Appli
655	75.5	2.7	445	4	US-10-067-977-2	Sequence 2, Appli
656	75.5	2.7	. 490	4	US-09-134-000C-5122	Sequence 5122, Ap
657	75.5	2.7	502	4	US-09-417-704-1	Sequence 1, Appli
658	75.5	2.7	509	4	US-09-494-297A-5	Sequence 5, Appli
659	75.5	2.7	510	4	US-10-029-180-94	Sequence 94, Appl
660	75.5	2.7	519	4	US-09-198-452A-561	Sequence 561, App
661	75.5	2.7	521		US-09-438-185A-523	Sequence 523, App Sequence 369, App
662	75.5	2.7	524	4	US-09-198-452A-369	Sequence 353, App
663	75.5 75.5	2.7 2.7	524 543	4	US-09-438-185A-353 US-09-107-532A-5041	Sequence 533, App
664	75.5 75.5	2.7	739	4	US-09-107-332A-3041 US-09-248-796A-19328	Sequence 19328, A
665 666	75.5 75.5	2.7	834	1	US-07-977-434-10	Sequence 10, Appl
667	75.5 75.5	2.7	834	1	US-08-073-384C-6	Sequence 6, Appli
668	75.5 75.5	2.7	834	1	US-08-254-359A-6	Sequence 6, Appli
669	75.5	2.7	834	1	US-08-384-490-31	Sequence 31, Appl
670	75.5	2.7	834	1	US-08-483-043-6	Sequence 6, Appli
671	75.5	2.7	834	1	US-08-459-383-31	Sequence 31, Appl
672	75.5	2.7	834	1		Sequence 10, Appl
673	75.5	2.7	834	1	US-08-481-238-6	Sequence 6, Appli
674	75.5	2.7	834	2	US-08-471-066B-6	Sequence 6, Appli
675	75.5	2.7	834	2	US-08-484-956-6	Sequence 6, Appli
676	75.5	2.7	834	2	US-08-757-653-6	Sequence 6, Appli
677	75.5	2.7	834	2	US-08-599-491-6	Sequence 6, Appli
678	75.5	2.7	834	2	us-08-756 - 386-6	Sequence 6, Appli
679	75.5	2.7	834	2	US-08-823-516-6	Sequence 6, Appli
680	75.5	2.7	834	3	US-08-682-853A-6	Sequence 6, Appli
681	75.5	2.7	834	3	US-08-759-038-6	Sequence 6, Appli
682	75.5	2.7	834	3	US-08-758-314-6	Sequence 6, Appli
683	75.5	2.7	834	3	US-09-350-309-6	Sequence 6, Appli
684	75.5	2.7	834	3	US-08-520-946-6	Sequence 6, Appli
685	75.5	2.7	834	4	US-09-684-938-6	Sequence 6, Appli
686	75.5	2.7	834	4	US-09-308-825A-6	Sequence 6, Appli
687	75.5	2.7	834	4	US-09-758-282B-267	Sequence 267, App
688	75.5	2.7	834	4	US-09-655-378A-6	Sequence 6, Appli
689	75.5	2.7	834	4	US-09-940-244-6	Sequence 6, Appli
690	75.5	2.7	834	4	US-09-333-145-6	Sequence 6, Appli
691	75.5	2.7	834	4	US-09-577-304A-267	Sequence 267, App
692	75.5	2.7	834	5	PCT-US91-07035-10	Sequence 10, Appl
693	75.5	2.7	838	3	US-09-235-451-2	Sequence 2, Appli
694	75.5	2.7	838	4	US-09-132-316-3	Sequence 3, Appli
695	75.5	2.7	838	4	US-09-667-422-9	Sequence 9, Appli

```
2.7
                                  US-09-978-303-2
                                                               Sequence 2, Appli
 696
                         838
                              4
        75.5
 697
         75.5
                 2.7
                         842.
                                  US-09-758-282B-72
                                                               Sequence 72, Appl
         75.5
                 2.7
                         842
                               4
                                  US-09-758-282B-91
                                                               Sequence 91, Appl
 698
                                                               Sequence 160, App
         75.5
                 2.7
                         842
                               4
                                  US-09-758-282B-160
 699
         75.5
                         842
                               4
                                  US-09-758-282B-163
                                                               Sequence 163, App
 700
                 2.7
                         842
                               4
                                  US-09-758-282B-166
                                                               Sequence 166, App
 701
         75.5
                 2.7
                                                               Sequence 212, App
 702
         75.5
                 2.7
                         842
                               4
                                  US-09-758-282B-212
 703
         75.5
                 2.7
                         842
                                  US-09-758-282B-214
                                                               Sequence 214, App
 704
         75.5
                 2.7
                         842
                               4
                                  US-09-758-282B-216
                                                               Sequence 216, App
                                                               Sequence 72, Appl
         75.5
                 2.7
                         842
                                  US-09-577-304A-72
 705
                               4
 706
         75.5
                 2.7
                         842
                              4
                                  US-09-577-304A-91
                                                               Sequence 91, Appl
 707
         75.5
                 2.7
                         842
                              4
                                  US-09-577-304A-160
                                                               Sequence 160, App
         75.5
                 2.7
                         842
                              4
                                  US-09-577-304A-163
                                                               Sequence 163, App
 708
         75.5
                 2.7
                         842
                               4
                                  US-09-577-304A-166
                                                               Sequence 166, App
 709
         75.5
                 2.7
                         842
                               4
                                  US-09-577-304A-212
                                                               Sequence 212, App
 710
         75.5
                 2.7
                         842
                               4
                                  US-09-577-304A-214
                                                               Sequence 214, App
 711
         75.5
                 2.7
                         842
                               4
                                  US-09-577-304A-216
                                                               Sequence 216, App
 712
         75.5
                 2.7
                         842
                               4
                                  US-09-777-430C-20
                                                               Sequence 20, Appl
 713
                                                               Sequence 23, Appl
         75.5
                 2.7
                         842
                               4
                                  US-09-777-430C-23
 714
                                                               Sequence 26, Appl
                         842
                               4
                                  US-09-777-430C-26
         75.5
                 2.7
 715
                                                               Sequence 69, Appl
         75.5
                 2.7
                         915
                               1
                                  US-08-346-455B-69
 716
                         915
                                  US-08-977-221-69
                                                               Sequence 69, Appl
 717
         75.5
                 2.7
                 2.7
                         915
                                  US-09-483-831B-69
                                                               Sequence 69, Appl
 718
         75.5
                               4
                 2.7
                         915
                                                               Sequence 69, Appl
         75.5
                               5
                                  PCT-US95-06613-69
 719
                                                               Sequence 4, Appli
         75.5
                 2:7
                        1207
                               4
                                  US-09-976-594-4
 720
                                  US-09-535-008-67
                                                               Sequence 67, Appl
         75.5
                 2.7
                        1646
                               4
 721
                 2.7
                                  US-09-535-008-2
                                                               Sequence 2, Appli
         75.5
                        1647
                               4
 722
                                                               Sequence 4, Appli
         75.5
                        1647
                                  US-09-824-574-4
 723
                 2.7
                               4
         75.5
                 2.7
                        1647
                                  US-09-538-092-1172
                                                               Sequence 1172, Ap
 724
                                                               Sequence 75, Appl
 725
         75.5
                 2.7
                        1649
                               4
                                  US-09-535-008-75
                                                               Sequence 71, Appl
 726
         75.5
                 2.7
                        1650
                               4
                                  US-09-535-008-71
                                                               Sequence 9752, Ap
 727
         75.5
                 2.7
                        1659
                               4
                                  US-09-949-016-9752
         75.5
                  2.7
                        1678
                               4
                                  US-09-535-008-69
                                                               Sequence 69, Appl
 728
         75.5
                  2.7
                        1679
                               4
                                  US-09-535-008-65
                                                                Sequence 65, Appl
 729
                        1681
                               4
                                  US-09-535-008-77
                                                               Sequence 77, Appl
 730
         75.5
                  2.7
                                  US-09-535-008-73
                                                                Sequence 73, Appl
 731
         75.5
                  2.7
                        1682
         75.5
                  2.7
                        2057
                                  US-09-499-203-2
                                                                Sequence 2, Appli
 732
 733
           75
                  2.7
                         205
                                  US-09-248-796A-22069
                                                                Sequence 22069, A
                  2.7
                         326
                                  US-09-302-626B-54
                                                                Sequence 54, Appl
 734
           75
                               4
                                  US-09-198-452A-977
                                                                Sequence 977, App
 735
           75
                  2.7
                         357
                               4
                  2.7
                         359
                                  US-09-438-185A-906
                                                                Sequence 906, App
 736
           75
                               4
           75
                         362
                               4
                                  US-09-248-796A-20514
                                                                Sequence 20514, A
 737
                  2.7
                         372
                               4
                                  US-09-538-092-1035
                                                                Sequence 1035, Ap
 738
           75
                  2.7
                                                                Sequence 4310, Ap
 739
           75
                  2.7
                         414
                               4
                                  US-09-583-110-4310
                                                                Sequence 3943, Ap
 740
           75
                  2.7
                         415
                                  US-09-107-433-3943
           75 .
                  2.7
                                  US-09-248-796A-18314....
                                                                Sequence 18314, A
                         418
                               4
...7.41
                  2.7
                                                                Sequence 3749, Ap
           75
                         453
                               3
                                  US-09-134-001C-3749
 742
                                                                Sequence 19036, A
 743
           75
                  2.7
                         459
                               4
                                  US-09-248-796A-19036
                                                                Sequence 9854, Ap
 744
           75
                  2.7
                         473
                               4
                                  US-09-489-039A-9854
                                                                Sequence 9590, Ap
           75
                         489
                               4
                                  US-09-949-016-9590
 745
                  2.7
                                                                Sequence 2808, Ap
 746 .
           75
                  2.7
                         491
                               4
                                  US-09-710-279-2808
 747
           75
                  2.7
                         522
                               1
                                  US-08-680-726A-58
                                                                Sequence 58, Appl
 748
           75
                  2.7
                         522
                               3
                                  US-09-092-409-58
                                                                Sequence 58, Appl
           75
                         525
                               3
                                  US-08-984-618-17
                                                                Sequence 17, Appl
 749
                  2.7
           75
                         540
                               3
                                  US-08-964-268-6
                                                                Sequence 6, Appli
 750
                  2.7
           75
                         540
                               4
                                  US-09-105-254-6
                                                                Sequence 6, Appli
 751
                  2.7
                                                                Sequence 10279, A
                         585
                                  US-09-489-039A-10279
 752
           75
                  2.7
```

```
753
                        776
                                US-08-021-601-2
                                                              Sequence 2, Appli
         75
                2.7
                             1
754
         75 ...
                        776
                                US-08-082-849B-2
                                                              Sequence 2, Appli
                2.7
                             .1.
                       776
755
         75
                             5
                                                              Sequence 2, Appli
                2.7
                                PCT-US94-01624-2
                                                              Sequence 5, Appli
         75
756
                2.7
                        831
                             1
                                US-08-073-384C-5
         75
                        831
                             1
                                US-08-254-359A-5
                                                              Sequence 5, Appli
757
                2.7
                             1
                                                              Sequence 5, Appli
758
         75
                2.7
                        831
                                US-08-483-043-5
759
         75
                2.7
                        831
                             1
                                US-08-481-238-5
                                                              Sequence 5, Appli
760
         75
                2.7
                        831
                                US-08-471-066B-5
                                                              Sequence 5, Appli
761
         75
                2.7
                        831
                             2
                                US-08-484-956-5
                                                              Sequence 5, Appli
         75
                2.7
                        831
                             2
                                US-08-757-653-5
                                                              Sequence 5, Appli
762
763
         75
                2.7
                        831
                             2
                                US-08-599-491-5
                                                              Sequence 5, Appli
764
         75
                2.7
                        831
                             2
                                US-08-756-386-5
                                                              Sequence 5, Appli
765
         75
                2.7
                        831
                             2
                                US-08-823-516-5
                                                              Sequence 5, Appli
766
         75
                2.7
                        831
                             3
                                US-08-682-853A-5
                                                              Sequence 5, Appli
767
         75
                2.7
                        831
                             3
                                US-08-759-038-5
                                                              Sequence 5, Appli
         75
                2.7
                        831
                             3
                                US-08-758-314-5
                                                              Sequence 5, Appli
768
         75
                2.7
                             3
                                                              Sequence 5, Appli
769
                        831
                                US-09-350-309-5
770
         75
                2.7
                        831
                             3
                                US-08-520-946-5
                                                              Sequence 5, Appli
771
         75
                        831
                             4
                                US-09-684-938-5
                                                              Sequence 5, Appli
                2.7
772
         75
                2.7
                        831
                             4
                                US-09-308-825A-5
                                                              Sequence 5, Appli
773
         75
                2.7
                        831
                                US-09-758-282B-5
                                                              Sequence 5, Appli
                                US-09-655-378A-5
774
         75
                2.7
                        831
                                                              Sequence 5, Appli
775
         75
                2.7
                        831
                                US-09-940-244-5
                                                              Sequence 5, Appli
776
         75
                2.7
                        831
                                US-09-333-145-5
                                                              Sequence 5, Appli
                             4
777
         75
                2.7
                        831
                                US-09-577-304A-5
                                                              Sequence 5, Appli
                             4
778
         75
                2.7
                        871
                             4
                                US-09-792-024-81
                                                              Sequence 81, Appl
                        894
779
         75
                             1
                                US-08-117-362-4
                                                              Sequence 4, Appli
                2.7
                                                              Sequence 4, Appli
         75
                        894
                             1
780
                2.7
                                US-08-486-924-4
         75
                2.7
                        894
                                US-08-486-929A-4
                                                              Sequence 4, Appli
781
782
         75
                2.7
                        990
                             2
                                US-08-645-193B-15
                                                              Sequence 15, Appl
         75
                                US-09-457-708-2
783
                2.7
                      1164
                             3
                                                              Sequence 2, Appli
784
         75
                2.7
                       1164
                             4
                                US-09-950-046A-2
                                                              Sequence 2, Appli
785
         75
                2.7
                      1164
                             4
                                US-09-976-594-989
                                                              Sequence 989, App
         75
                2.7
                      1228
                             4
                                US-09-949-016-6805
                                                              Sequence 6805, Ap
786
          75
                                                              Sequence 5675, Ap
787
                2.7
                      1729
                             4
                                US-09-134-000C-5675
788
         75
                2.7
                      1990
                                US-09-902-540-11251
                                                              Sequence 11251, A
                        183
                                US-09-270-767-32353
                                                              Sequence 32353, A
789
       74.5
                2.7
790
       74.5
                2.7
                        183
                                US-09-270-767-47570
                                                              Sequence 47570, A
                             4
       74.5
                2.7
                        311
                                US-09-148-545-191
                                                              Sequence 191, App
791
                             4.
792
       74.5
                2.7
                        312
                             3
                                US-09-424-349A-5
                                                              Sequence 5, Appli
                        359
793
       74.5
                2.7
                             4
                                US-10-029-180-68
                                                              Sequence 68, Appl
       74.5
                        366
794
                2.7
                             4
                                US-09-501-115-10
                                                              Sequence 10, Appl
                             4
       74.5
                        380
                                                              Sequence 626, App
795
                2.7
                                US-09-198-452A-626
       74.5
                2.7
                        380
                                US-09-438-185A-586
                                                              Sequence 586, App
796
797
       74.5
                2.7
                       386
                             4
                                US-09-198-452A-1046
                                                              Sequence 1046, Ap
       74.5
798...
                2.7
                        394
                             4
                                US-09-438-185A-974
                                                              Sequence 974, App
                2.7
                        398
                                                              Sequence 12305, A
799
       74.5
                             4
                                US-09-902-540-12305
800
       74.5
                        398
                             6
                                 5187089-7
                                                             Patent No. 5187089
                2.7
                        398
                             6
                                 5187089-7
                                                             Patent No. 5187089
801
       74.5
                2.7
802
       74.5
                2.7
                        399
                             3
                                US-09-347-801-14
                                                              Sequence 14, Appl
803
       74.5
                2.7
                        399
                             4
                                 US-09-854-731-14
                                                              Sequence 14, Appl
804
       74.5
                2.7
                        409
                             2
                                 US-08-924-254-2
                                                              Sequence 2, Appli
       74.5
                2.7
                        409
                             3
                                US-09-120-249-2
                                                              Sequence 2, Appli
805
806
       74.5
                2.7
                        411
                             3
                                 US-09-347-801-22
                                                              Sequence 22, Appl
                                                              Sequence 22, Appl
807
       74.5
                2.7
                        411
                             4
                                 US-09-854-731-22
808
       74.5
                             3
                                 US-09-347-801-21
                                                              Sequence 21, Appl
                2.7
                        412
809
       74.5
                        412
                             4
                                 US-09-854-731-21
                                                              Sequence 21, Appl
                2.7
```

```
74.5
                2.7
                        431
                             2
                                US-08-712-709-5
                                                              Sequence 5, Appli
810
                       431
811
       74.5
                2.7
                             3
                                US-09-111-444-5
                                                              Sequence 5, Appli
                2.7
                        431
                                                              Sequence 5, Appli
812
       74.5
                             3
                                US-09-541-228-5
                2.7
       74.5
                        431
                             3
                                US-09-031-295-2
                                                              Sequence 2, Appli
813
                2.7
814
       74.5
                        434
                             4
                                US-09-543-681A-4577
                                                              Sequence 4577, Ap
                                                              Sequence 124, App
       74.5
                        440
815
                2.7
                             4
                                US-10-029-180-124
                        451
                             4
       74.5
                2.7
                                US-10-029-180-123
                                                              Sequence 123, App
816
                        458
                                                              Sequence 5167, Ap
817
       74.5
                2.7
                             4
                                US-09-583-110-5167
                                                              Sequence 2, Appli
818
       74.5
                2.7
                        554
                             1
                                US-08-106-761-2
                                                              Sequence 7, Appli
                2.7
                        554
819
       74.5
                             4
                                US-08-909-125-7
                                                              Sequence 5171, Ap
820
       74.5
                2.7
                        591
                             4
                                US-09-543-681A-5171
821
       74.5
                2.7
                        612
                             4
                                US-09-248-796A-18848
                                                              Sequence 18848, A
822
       74.5
                2.7
                        656
                             4
                                US-09-489-039A-8212
                                                              Sequence 8212, Ap
823
       74.5
                2.7
                        720
                             4
                                US-09-583-110-2940
                                                              Sequence 2940, Ap
824
       74.5
                2.7
                        720
                             4
                                US-09-107-433-4193
                                                              Sequence 4193, Ap
825
       74.5
                2.7
                        726
                             4
                                US-09-417-197-71
                                                              Sequence 71, Appl
       74.5
                             2
826
                2.7
                        790
                                US-08-359-705B-9
                                                              Sequence 9, Appli
                             2
827
       74.5
                2.7
                        790
                                US-08-286-846A-9
                                                              Sequence 9, Appli
828
       74.5
                2.7
                        790
                             2
                                US-08-457-880A-9
                                                              Sequence 9, Appli
829
       74.5
                2.7
                        790
                             3
                                US-08-444-622A-9
                                                              Sequence 9, Appli
830
       74.5
                2.7
                        790
                             3
                                US-08-942-562-9
                                                              Sequence 9, Appli
831
       74.5
                2.7
                        790
                             3
                                US-09-156-923-9
                                                              Sequence 9, Appli
832
       74.5
                2.7
                        814
                             1
                                US-08-286-305A-3
                                                              Sequence 3, Appli
       74.5
                2.7
                        814
                             2
                                US-08-441-104A-3
                                                              Sequence 3, Appli
833
       74.5
                2.7
                        814
                             2
                                                              Sequence 3, Appli
834
                                US-08-440-816A-3
835
       74.5
                2.7
                        814
                             3
                                US-09-417-381A-3
                                                              Sequence 3, Appli
836
       74.5
                2.7
                        834
                             3
                                US-09-143-571-29
                                                              Sequence 29, Appl
       74.5
                        834
                             4
                                US-09-470-276-2
                                                              Sequence 2, Appli
837
                2.7
                        855
838
       74.5
                2.7
                             4
                                US-09-949-016-11016
                                                              Sequence 11016, A
       74.5
                2.7
                        859
                                US-09-538-092-206
                                                              Sequence 206, App
839
840
       74.5.
                2.7
                       1071
                             2
                                US-08-975-527-1
                                                              Sequence 1, Appli
       74.5
                2.7 .
                      1489
                             4
                                US-09-538-092-304
                                                              Sequence 304, App
841
842
       74.5
                2.7
                       2262
                             4
                                US-09-949-016-8849
                                                              Sequence 8849, Ap
843
         74
                2.7
                        397
                             6
                                 5187089-9
                                                             Patent No. 5187089
844
         74
                2.7
                        397
                             6
                                 5457090-4
                                                             Patent No. 5457090
845
         74
                2.7
                        397
                             6
                                5187089-9
                                                             Patent No. 5187089
846
         74
                2.7
                        397
                             6
                                 5457090-4
                                                             Patent No. 5457090
847
         74
                2.7
                        427
                                US-09-134-001C-5397
                                                              Sequence 5397, Ap
         74
                2.7
                        430
                                US-09-198-452A-497
                                                              Sequence 497, App
848
         74
                2.7
                        430
                                                              Sequence 465, App
849
                             4
                                US-09-438-185A-465
850
         74
                2.7
                        443
                                US-09-134-000C-4800
                                                              Sequence 4800, Ap
851
          74
                2.7
                        453
                             4
                                US-09-769-863-14
                                                              Sequence 14, Appl
          74
                2.7
                        467
                             4
                                US-09-107-532A-6186
                                                              Sequence 6186, Ap
852
          74
                2.7
                        474
                             4
853
                                US-09-248-796A-15747
                                                              Sequence 15747, A
          74
                2.7
                        481
                             2
                                US-08-477-451-19
                                                              Sequence 19, Appl
854
          74....
855
                2.7
                        501
                             4
                                US-09-538-092-692
                                                              Sequence 692, App
         74
                2.7
                        528
                             4
                                US-09-710-279-1930
                                                              Sequence 1930, Ap
856
         74
                2.7
857
                        557
                             4
                                 US-09-583-110-4748
                                                              Sequence 4748, Ap
                        573
                                                              Sequence 3736, Ap
858
          74
                2.7
                             4
                                 US-09-107-433-3736
                             4
                                                              Sequence 6, Appli
859
          74
                2.7
                        584
                                 US-09-604-957-6
         74
                        610
                             4
                                 US-09-248-796A-18471
                                                              Sequence 18471, A
860
                2.7
861
          74
                2.7
                        615
                                 US-09-388-743-2
                                                              Sequence 2, Appli
862
          74
                2.7
                        615
                             4
                                 US-10-044-543-2
                                                              Sequence 2, Appli
          74
                2.7
                        794
                             4
                                 US-09-248-796A-20245
                                                              Sequence 20245, A
863
864
          74
                2.7
                        830
                             1
                                 US-07-977-434-6
                                                              Sequence 6, Appli
865
          74
                2.7
                        830
                             1
                                 US-08-458-819-6
                                                              Sequence 6, Appli
                             5
                                 PCT-US91-07035-6
          74
                        830
                                                              Sequence 6, Appli
866
                2.7
```

```
867
         74
                       925
                                US-09-328-352-5244
                                                              Sequence 5244, Ap
                2.7
                             4
         74
                      1102
                                US-09-902-540-11735
                                                              Sequence 11735, A
868
                2.7
869
         74
                2.7
                      1124
                             3
                                US-09-191-786-1
                                                              Sequence 1, Appli
         74
                      1125
                                US-09-949-016-10089
                                                              Sequence 10089, A
870
                2.7
                             4
                       159
                                US-09-543-681A-5111
871
       73.5
                2.7
                             4
                                                              Sequence 5111, Ap
                       177
                             4
                                US-09-543-681A-4212
872
       73.5
                2.7
                                                              Sequence 4212, Ap
873·
       73.5
                2.7
                       185
                             4
                                US-09-270-767-41635
                                                              Sequence 41635, A
874
       73.5
                2.7
                       212
                                US-09-710-279-1128
                                                              Sequence 1128, Ap
875
       73.5
                2.7
                       239
                                US-09-543-681A-6297
                                                              Sequence 6297, Ap
                2.7
                        268
                                US-09-371-338-9
876
       73.5
                             4
                                                              Sequence 9, Appli
877
       73.5
                2.7
                        277
                             4
                                US-09-803-671B-6
                                                              Sequence 6, Appli
878
       73.5
                2.7
                        277
                             4
                                US-09-803-671B-7
                                                              Sequence 7, Appli
       73.5
                2.7
                        277
                             4
                                US-10-274-409-6
                                                              Sequence 6, Appli
879
       73.5
                2.7
                        277
                                US-10-274-409-7
                                                              Sequence 7, Appli
880
       73.5
                2.7
                        305
                                US-09-583-110-3421
                                                              Sequence 3421, Ap
881
       73.5
                2.7
                        313
                                US-09-107-433-4516
                                                              Sequence 4516, Ap
882
                2.7
                        320
                             3
                                                              Sequence 1, Appli
883
       73.5
                                US-08-793-666-1
                2.7
                        392
                             4
                                US-09-491-577-76
                                                              Sequence 76, Appl
884
       73.5
                        410
                             4
                                US-09-949-016-9327
                                                              Sequence 9327, Ap
885
       73.5
                2.7
       73.5
                        422
                             4
                                US-09-489-039A-12443
                                                              Sequence 12443, A
886
                2.7
887
       73.5
                2.7
                        441
                             3
                                US-09-045-632-37
                                                              Sequence 37, Appl
                                US-09-248-796A-14389
888
       73.5
                2.7
                        449
                                                              Sequence 14389, A
                2.7
                        455
                                US-09-949-016-8345
       73.5
                                                              Sequence 8345, Ap
889
                             4
                2.7
                        508
890
       73.5
                             4
                                US-09-949-016-8561
                                                              Sequence 8561, Ap
       73.5
                2.7
                        516
                             2
                                US-08-676-166A-7
                                                              Sequence 7, Appli
891
892
       73.5
                2.7
                        520
                             4
                                US-09-949-016-8026
                                                              Sequence 8026, Ap
       73.5
                        524
                             3
                                US-09-126-420A-24
                                                              Sequence 24, Appl
893
                2.7
                        541
894
       73.5
                2.7
                             3
                                US-09-045-632-36
                                                              Sequence 36, Appl
       73.5
                        547
                                US-09-134-000C-5974
                                                              Sequence 5974, Ap
895
                2.7
896
       73.5
                2.7
                        566
                             4
                                US-09-252-991A-17972
                                                              Sequence 17972, A
897
       73.5
                2.7
                        596
                             4
                                US-09-949-016-9814
                                                              Sequence 9814, Ap
898
       73.5
                2.7
                        598
                             4
                                US-09-134-000C-4957
                                                              Sequence 4957, Ap
899
                        599
                                US-09-949-016-6008
                                                              Sequence 6008, Ap
       73.5
                2.7
                            . 4
                        642
                             3
                                US-09-045-632-35
                                                              Sequence 35, Appl
900
       73.5
                2.7
       73.5
                2.7
                        659
                             3
                                US-09-134-001C-5537
                                                              Sequence 5537, Ap
901
902
       73.5
                2.7
                        661
                             4
                                US-09-371-338-7
                                                              Sequence 7, Appli
                                US-09-134-000C-6050
903
       73.5
                2.7
                        676
                                                              Sequence 6050, Ap
                2.7
                        740
                                US-09-328-352-8006
                                                              Sequence 8006, Ap
904
       73.5
                             4
       73.5
                2.7
                        861
                                US-09-045-632-34
                                                              Sequence 34, Appl
905
                             3
906
       73.5
                2.7
                        871
                                US-09-107-532A-6227
                                                              Sequence 6227, Ap
                             4
907
       73.5
                2.7
                        908
                             4
                                US-09-623-326-10
                                                              Sequence 10, Appl
                        961
                                US-09-045-632-33
908
       73.5
                2.7
                             3
                                                              Sequence 33, Appl
       73.5
                        997
                             1
909
                2.7
                                US-08-232-540-1
                                                              Sequence 1, Appli
       73.5
                2.7
                        997
                             1
                                US-08-428-949A-1
                                                              Sequence 1, Appli
910
       73.5
                2.7
                        997
                             1
                                US-08-428-948A-1
                                                              Sequence 1, Appli
911
       73.5
                2.7
                        997....2
                                                              Sequence 1, Appli
912
                                US-08-428-946-1
                        997
                             5
                                                              Sequence 1, Appli
913
       73.5
                2.7
                                PCT-US95-04656-1
                2.7
                        998
                             1
                                US-08-233-008A-6
914
       73.5
                                                              Sequence 6, Appli
                       1005
                             3
915
       73.5
                2.7
                                US-09-770-170-4
                                                              Sequence 4, Appli
916
       73.5
                2.7
                       1021
                             1
                                US-08-233-008A-2
                                                              Sequence 2, Appli
917
       73.5
                2.7
                       1061
                             3
                                US-09-045-632-32
                                                              Sequence 32, Appl
918
       73.5
                2.7
                       1112
                             3
                                US-09-045-632-2
                                                              Sequence 2, Appli
       73.5
                       1112
919
                2.7
                             3
                                US-09-045-632-3
                                                              Sequence 3, Appli
920
       73.5
                2.7
                       1116
                             4
                                US-09-583-110-5094
                                                              Sequence 5094, Ap
921
       73.5
                2.7
                       1120
                             4
                                US-09-107-433-3602
                                                              Sequence 3602, Ap
                             4
922
       73.5
                2.7
                       1252
                                US-10-012-762-20
                                                              Sequence 20, Appl
923
       73.5
                       1252
                             4
                                 US-09-704-036B-20
                                                              Sequence 20, Appl
                2.7
```

```
1403
                                US-09-252-991A-21319
                                                             Sequence 21319, A
924
       73.5
                2.7
                             4
925
       73.5
                2.7
                      1500
                             3
                                US-09-323-472A-2
                                                             Sequence 2, Appli
                                                             Sequence 12, Appl
926
       73.5
                2.7
                      1500
                             3
                                US-09-323-472A-12
                                                             Sequence 14, Appl
       73.5
                2.7
                      1500
                                US-09-323-472A-14
927
                             3
                2.7
                                                             Sequence 2, Appli
928
       73.5
                      1500
                             4
                                US-09-585-077C-2
                                                             Sequence 12, Appl
929
       73.5
                2.7
                      1500
                             4
                                US-09-585-077C-12
                2.7
       73.5
                      1500
                             4
                                US-09-585-077C-14
                                                             Sequence 14, Appl
930
                                                             Sequence 7835, Ap
931
       73.5
                2.7
                      1747
                             4
                                US-09-949-016-7835
                                                             Sequence 6206, Ap
932
       73.5
                2.7
                      1927
                                US-09-949-016-6206
                2.7
                                                             Sequence 5243, Ap
933
       73.5
                      1963
                             4
                                US-09-583-110-5243
934
       73.5
                2.7
                      1967
                             4
                                US-09-107-433-4883
                                                             Sequence 4883, Ap
935
       73.5
                2.7
                      4536
                             4
                                US-09-180-422B-27
                                                             Sequence 27, Appl
936
       73.5
                2.7
                      4563
                             4
                                US-09-108-006C-1
                                                             Sequence 1, Appli
937
       73.5
                2.7
                      4563
                             4
                                US-09-538-092-842
                                                             Sequence 842, App
938
         73
                2.6
                       200
                             4
                                US-09-248-796A-25873
                                                             Sequence 25873, A
939
         73
                2.6
                       216
                             4
                                US-09-710-279-2624
                                                             Sequence 2624, Ap
940
         73
                2.6
                       268
                             4
                                US-09-371-338-13
                                                             Sequence 13, Appl
941
         73
                2.6
                       274
                             3
                                US-09-134-001C-5279
                                                             Sequence 5279, Ap
942
         73
                2.6
                       291
                             4
                                US-09-583-110-5130
                                                             Sequence 5130, Ap
943
         73
                2.6
                       294
                             4
                                US-09-107-433-4874
                                                             Sequence 4874, Ap
         73
                2.6
                       351
                             1
                                                             Sequence 2, Appli
944
                                US-08-324-483-2
         73
                2.6
                       378
                             3
                                US-08-158-735A-11
                                                             Sequence 11, Appl
945
946
         73
                2.6
                       383
                             4
                                US-09-578-063-40
                                                             Sequence 40, Appl
                2.6
                       399
                                US-09-540-236-3640
                                                             Sequence 3640, Ap
947
         73
                             4
                       427
                                                             Sequence 11442, A
948
         73
                2.6
                             4
                                US-09-489-039A-11442
         73
                2.6
                       429
                             2
                                US-08-748-485-7
                                                             Sequence 7, Appli
949
950
         73
                2.6
                       429
                             4
                                US-09-919-039-6
                                                             Sequence 6, Appli
                2.6
                       451
                             3
                                                             Sequence 10, Appl
951
         73
                                US-09-342-647-10
952
         73
                2.6
                       466
                             1
                                US-08-722-001-12
                                                             Sequence 12, Appl
                                                             Sequence 11, Appl
953
         73
                2.6
                       466
                             2
                                US-08-467-568-11
         73
                       466
                             2
                                                             Sequence 11, Appl
954
                2.6
                                US-09-030-582-11
         73
                                US-09-134-000C-6170
                                                             Sequence 6170, Ap
955
                2.6
                       506
                             4
956
         73
                2.6
                       517
                             4
                                US-09-902-540-15269
                                                             Sequence 15269, A
957
         73
                2.6
                       534
                             4
                                US-09-489-039A-8550
                                                             Sequence 8550, Ap
958
         73
                2.6
                       577
                             1
                                US-08-484-105-24
                                                             Sequence 24, Appl
                2.6
                       577
                             1
                                                             Sequence 24, Appl
959
         73
                                US-08-484-106-24
960
         73
                2.6
                       577
                                US-09-538-092-1306
                                                             Sequence 1306, Ap
961
         73
                2.6
                       579
                             1
                                US-08-126-564A-31
                                                             Sequence 31, Appl
         73
                2.6
                       579
                                PCT-US94-09143-31
                                                             Sequence 31, Appl
962
                             5
                       584
                                                             Sequence 4564, Ap
963
         73
                2.6
                             4
                                US-09-107-532A-4564
         73
                       584
                                US-09-949-016-11406
                                                             Sequence 11406, A
964
                2.6
                             4
         73
                2.6
                       642
                             4
                                US-09-371-338-11
                                                              Sequence 11, Appl
965
         73
                2.6
                       669
                             2
                                US-08-357-533A-8
                                                              Sequence 8, Appli
966
                             2
967
         73
                2.6
                        669
                                US-08-459-009-8
                                                              Sequence 8, Appli
                                                              Sequence 8, Appli
968
         73
                2.6
                        669
                             3
                                US-08-459-951-8
         73
                2.6
                        675
                             4
                                                              Sequence 9046, Ap
969
                                US-09-489-039A-9046
         73
                                                             Sequence 7677, Ap
970
                2.6
                        689
                             4
                                US-09-489-039A-7677
971
         73
                2.6
                       815
                             4
                                US-09-177-165A-24
                                                              Sequence 24, Appl
972
         73
                2.6
                        854
                             2
                                US-08-928-692-17
                                                              Sequence 17, Appl
         73
                2.6
                       854
                             3
                                                              Sequence 17, Appl
973
                                US-09-339-972-17
                                                              Sequence 3, Appli
974
         73
                2.6
                      1113
                             3
                                US-09-629-616-3
975
         73
                2.6
                      1139
                                US-09-902-540-16085
                                                              Sequence 16085, A
976
         73
                2.6
                      1182
                                US-09-326-529-4
                                                              Sequence 4, Appli
977
         73
                      1299
                                                              Sequence 62, Appl
                2.6
                             3
                                US-08-460-900C-62
978
         73
                      1299
                             3
                                US-08-674-509B-48
                                                              Sequence 48, Appl
                2.6
                                                              Sequence 48, Appl
979
         73
                2.6
                      1299
                             3
                                US-08-954-698-48
                      1299
                                US-09-639-695-62
980
         73
                2.6
                                                              Sequence 62, Appl
```

```
US-09-448-188-48
                                                              Sequence 48, Appl
 981
          73
                 2.6
                       1299
                              4
                                 US-08-954-128-48
                                                              Sequence 48, Appl .
982
          73 .
                 2.6
                       1299
                                 US-08-954-740-48
                                                              Sequence 48, Appl
 983
          73
                 2.6
                       1299
                              4
                                                              Sequence 4, Appli
 984
          73
                 2.6
                       1319
                              4
                                 US-09-462-136-4
                                                              Sequence 2, Appli
                                 US-08-588-985-2
985
          73
                 2.6
                       1865
                              1
                              1
                                 US-08-971-988-2
                                                              Sequence 2, Appli
986
          73
                 2.6
                       1865
                                                              Sequence 6069, Ap
 987
          73
                 2.6
                       1865
                              4
                                 US-09-949-016-6069
 988
          73
                 2.6
                       2037
                                 US-09-543-681A-5538
                                                              Sequence 5538, Ap
          73
                 2.6
                       2749
                                 US-09-385-222A-4
                                                              Sequence 4, Appli
 989
                                                             Patent No. 5223423
                       3080
                                 5223423-4
 990
          73
                 2.6
                              6
                                                             Patent No. 5223423
 991
          73
                 2.6
                       3080
                              6
                                 5223423-4
        72.5
                 2.6
                        148
                              4
                                 US-09-248-796A-15527
                                                              Sequence 15527, A
 992
        72.5
                 2.6
                        298
                              4
                                 US-09-248-796A-19087
                                                              Sequence 19087, A
 993
        72.5
                 2.6
                        323
                              4
                                 US-09-248-796A-15432
                                                              Sequence 15432, A
 994
        72.5
                 2.6
                        346
                              2
                                 US-08-476-254-2
                                                              Sequence 2, Appli
 995
        72.5
                 2.6
                        346
                              2
                                 US-08-476-254-10
                                                              Sequence 10, Appl
 996
        72.5
                                 US-09-153-599A-10
                                                              Sequence 10, Appl
 997
                 2.6
                        346
                              4
        72.5
                 2.6
                        346
                              4
                                 US-09-248-796A-26283
                                                              Sequence 26283, A
 998
                 2.6
                        346
                              6
                                 5474933-2
                                                             Patent No. 5474933
        72.5
999
                              6
                                 5474933-7
                                                             Patent No. 5474933
        72.5
                 2.6
                        346
1000
                                                             Patent No. 5474933
        72.5
                 2.6
                        346
                              6
                                 5474933-2
1001
                                                             Patent No. 5474933
        72.5
                 2.6
                        346
                              6
                                 5474933-7
1002
                        368
                                 US-09-248-796A-17354
                                                              Sequence 17354, A
        72.5
                 2.6
                              4
1003
                                                             Patent No. 5187089
                        398
                                 5187089-6
1004
        72.5
                 2.6
                              6
                                                             Patent No. 5187089
        72.5
                 2.6
                         398
                                 5187089-6
1005
                              6
                                                              Sequence 10102, A
        72.5
                 2.6
                        441
                              4
                                 US-09-949-016-10102
1006
                 2.6
                                 US-09-107-532A-5087
                                                              Sequence 5087, Ap
        72.5
                        445
                              4
1007
                                                              Sequence 7447, Ap
                                 US-09-949-016-7447
1008
        72.5
                 2.6
                         473
                 2.6
                        480
                                 US-09-252-991A-29224
                                                              Sequence 29224, A
1009
        72.5
                                                              Sequence 15908, A
        72.5
                 2.6
                         493
                                 US-09-248-796A-15908
1010
                                                              Sequence 10638, A
        72.5
                 2.6
                         502
                                 US-09-489-039A-10638
1011
                                                              Sequence 5564, Ap
1012
        72.5
                 2.6
                         550
                              4
                                 US-09-107-532A-5564
        72.5
                 2.6
                         564
                                 US-09-380-287A-28
                                                              Sequence 28, Appl
1013
                              4
                 2.6
                        575
                              4
                                 US-09-543-681A-7562
                                                              Sequence 7562, Ap
        72.5
1014
                         578
                                 US-09-248-796A-20936
                                                              Sequence 20936, A
        72.5
                 2.6
1015
                                                              Sequence 861, App
        72.5
                 2.6
                         593
                                 US-09-198-452A-861
1016
                         603
                                 US-09-134-001C-5226
                                                              Sequence 5226, Ap
1017
        72.5
                 2.6
                         603
                                 US-09-710-279-1684
                                                              Sequence 1684, Ap
        72.5
                 2.6
1018
                         627
                                                              Sequence 47, Appl
        72.5
                 2.6
                                 US-09-345-473E-47
1019
                              4
        72.5
                 2.6
                         650
                                 US-09-438-185A-808
                                                              Sequence 808, App
1020
                                 US-07-766-351-5
                                                               Sequence 5, Appli
1021
        72.5
                 2.6
                         689
                              1
                         689
                              1
                                 US-08-059-032-5
                                                               Sequence 5, Appli
        72.5
                 2.6
1022
                              5
                                                               Sequence 5, Appli
                 2.6
                         689
                                 PCT-US91-07290-5
1023
        72.5
                 2.6
                         736
                                 US-09-949-016-8076
                                                               Sequence 8076, Ap
1024
        72.5
                                                               Sequence 54, Appl
        72.5
                 2.6
                         833
                              4
                                 US-09-470-276-54
1025
                                                               Sequence 2, Appli
                 2.6
                         834
                              5
                                 PCT-US95-14418-2
        72.5
1026
                                                               Sequence 2, Appli
                         834
                              5
                                 PCT-US95-15327-2
1027
        72.5
                 2.6
                                                               Sequence 2, Appli
                         876
                                 US-09-517-871-2
1028
        72.5
                 2.6
                              4
                         876
                              4
                                 US-09-517-439-2
                                                               Sequence 2, Appli
1029
        72.5
                 2.6
                                                               Sequence 4724, Ap
1030
        72.5
                 2.6
                         894
                              Δ
                                 US-09-543-681A-4724
                                                               Sequence 24038, A
1031
        72.5
                 2.6
                         965
                                 US-09-252-991A-24038
        72.5
                 2.6
                         976
                              4
                                 US-09-538-092-1027
                                                               Sequence 1027, Ap
1032
        72.5
                 2.6
                         993
                                 US-08-468-557-2
                                                               Sequence 2, Appli
1033
                              1
                                                               Sequence 2, Appli
1034
        72.5
                 2.6
                        1064
                              1
                                 US-08-357-598-2
                              2
                                 US-09-003-289-2
                                                               Sequence 2, Appli
1035
        72.5
                 2.6
                        1064
        72.5
                        1064
                              5
                                 PCT-US95-16435-2
                                                               Sequence 2, Appli
                 2.6
1036
                                 US-08-357-598-5
                                                               Sequence 5, Appli
        72.5
                        1082
                              1
1037
                 2.6
```

```
US-08-357-598-10
                                                              Sequence 10, Appl
                       1082
1038
        72.5
                 2.6
                             1
1039 '
                                                              Sequence 5, Appli
        72.5
                 2.6
                       1082.
                             2
                                 US-09-003-289-5
                                                              Sequence 10, Appl
1040
        72.5
                 2.6
                       1082
                              2
                                 US-09-003-289-10
                                                              Sequence 5, Appli
                              5
        72.5
                 2.6
                       1082
                                 PCT-US95-16435-5
1041
                                                              Sequence 10, Appl
                              5
        72.5
                 2.6
                       1082
                                 PCT-US95-16435-10
1042
        72.5
                                                              Sequence 5493, Ap
                 2.6
                       1083
                              4
                                 US-09-328-352-5493
1043
                                                              Sequence 10109, A
                       2317
                              4
1044
        72.5
                 2.6
                                 US-09-949-016-10109
                                                              Sequence 2, Appli
1045
        72.5
                 2.6
                       2860
                                 US-08-826-267-2
                                                              Sequence 5, Appli
1046
        72.5
                 2.6
                       3170
                                 US-07-642-734C-5
                                                              Sequence 5, Appli
        72.5
                 2.6
                       3170
                             3
                                 US-08-439-009A-5
1047
1048
          72
                 2.6
                        287
                              4
                                 US-09-134-000C-4696
                                                              Sequence 4696, Ap
1049
          72
                 2.6
                        311
                              4
                                 US-09-543-681A-5563
                                                              Sequence 5563, Ap
1050
          72
                 2.6
                        328
                             4
                                 US-09-107-532A-6015
                                                              Sequence 6015, Ap
1051
          72
                 2.6
                        346
                              4
                                 US-09-215-569B-8
                                                              Sequence 8, Appli
1052.
          72
                 2.6
                        351
                              4
                                 US-09-538-092-670
                                                              Sequence 670, App
          72
                 2.6
                        355
                              4
                                 US-09-248-796A-16911
                                                              Sequence 16911, A
1053
          72
                 2.6
                        378
                              4
                                 US-09-543-681A-5534
                                                              Sequence 5534, Ap
1054
          72
                 2.6
                        391
                              3
                                 US-08-984-618-11
                                                              Sequence 11, Appl
1055
          72
                 2.6
                        391
                              4
                                 US-09-668-788-4
                                                              Sequence 4, Appli
1056
          72
                 2.6
                        407
                              4
                                 US-09-248-796A-14871
                                                              Sequence 14871, A
1057
                 2.6
                        408
                                 US-09-902-540-11314
                                                              Sequence 11314, A
1058
          72
                              4
                 2.6
                        425
                                 US-09-489-039A-12899
                                                              Sequence 12899, A
1059
          72
          72
                 2.6
                        435
                                 US-09-912-628-5
                                                              Sequence 5, Appli
1060
                              4
                 2.6
                        436
                                 US-09-270-767-46198
                                                              Sequence 46198, A
          72
                              4
1061
                        443
                                                              Sequence 22172, A
          72
                 2.6
                              4
                                 US-09-252-991A-22172
1062
                        466
                                 US-09-270-767-43929
                                                              Sequence 43929, A
1063
          72
                 2.6
                              4
                 2.6
                        506
                              4
                                 US-09-538-092-117
                                                              Sequence 117, App
          72
1064
                 2.6
                        510
                              2
                                 US-08-300-584-4
                                                              Sequence 4, Appli
          72
1065
                                                              Sequence 4, Appli
          72
                 2.6
                        510
                              3
                                 US-08-476-123-4
1066
                 2.6
                                 US-09-742-684A-4
                                                              Sequence 4, Appli
1067
          72
                        510
                 2.6
                        516
                                 US-09-328-352-6726
                                                              Sequence 6726, Ap
1068
          72
                              4
                                                              Sequence 6562, Ap
                        527
                                 US-09-107-532A-6562
1069
           72
                 2.6
                              4
1070
           72
                 2.6
                        569
                              4
                                 US-09-602-787A-20
                                                              Sequence 20, Appl
           72
                 2.6
                        600
                              4
                                 US-08-836-687B-31
                                                              Sequence 31, Appl
1071
           72
                 2.6
                        625
                              3
                                 US-09-134-001C-4504
                                                              Sequence 4504, Ap
1072
                 2.6
                        633
                              3
                                 US-08-557-006C-43
                                                              Sequence 43, Appl
1073
           72
           72
                 2.6
                        633
                                 US-09-538-092-212
                                                              Sequence 212, App
1074
           72
                 2.6
                        633
                                 US-09-633-328B-3
                                                              Sequence 3, Appli
1075
           72
                 2.6
                        633
                                 US-09-824-735-3
                                                              Sequence 3, Appli
1076
                                                              Sequence 7, Appli
                        696
                                 US-08-933-711B-7
1077
           72
                 2.6
                              4
                 2.6
                        726
                                 US-09-248-796A-17362
                                                              Sequence 17362, A
1078
           72
           72
                 2.6
                        779
                              3
                                 US-09-564-805-235
                                                              Sequence 235, App
1079
                 2.6
                        802
                              1
                                 US-08-015-985-1
                                                              Sequence 1, Appli
1080
           72
108.1
                        802
                              4
                                                              Sequence 1, Appli
           72
                 2.6
                                 US-09-280-597-1
                        807
                                 US-09-949-016-7356
                                                              Sequence 7356, Ap
1082
           72
                 2.6
           72
                 2.6
                        847
                              4
                                 US-09-808-701A-19
                                                              Sequence 19, Appl
.1.0.83
                 2.6
                                 US-09-949-016-10418
                                                              Sequence 10418, A
           72
                        861
                              4
1084
                                                              Sequence 602, App
           72
                 2.6
                        997
                              4
                                 US-09-198-452A-602
1085
                       1405
                                                              Sequence 566, App
           72
                 2.6
                              4
                                 US-09-438-185A-566
1086
                 2.6
                                                              Sequence 48, Appl
                       1512
                              3
                                 US-09-443-184-48
1087
           72
                                 US-09-345-473E-40
                                                              Sequence 40, Appl
1088
           72
                 2.6
                       1601
                              4
                 2.6
1089
           72
                       2713
                                 PCT-US96-01735-1
                                                              Sequence 1, Appli
           72
                 2.6
                       2938
                              5
                                 PCT-US94-00198-3
                                                              Sequence 3, Appli
1090
           72
                 2.6
                        3169
                              3
                                 US-09-453-702B-257
                                                              Sequence 257, App
1091
1092
        71.5
                        259
                              4
                                 US-09-328-352-8034
                                                              Sequence 8034, Ap
                 2.6
        71.5
                                                              Sequence 6369, Ap
1093
                         264
                              4
                                 US-09-543-681A-6369
                 2.6
                                 US-08-844-085-6
                                                              Sequence 6, Appli
        71.5
                         305
                              1
1094
                 2.6
```

```
1095
        71.5
                 2.6
                         351
                              3
                                 US-08-984-618-15
                                                               Sequence 15, Appl
                                                               Sequence 17812, A
        71.5
                 2.6
                         355
                              4
                                 US-09-248-796A-17812
1096
                                                               Sequence 26052, A
        71.5
                 2.6
                         360
                              4
                                 US-09-252-991A-26052
1097
                         398
1098
        71.5
                 2.6
                              3
                                 US-09-045-632-31
                                                               Sequence 31, Appl
                         398
1099
        71.5
                 2.6
                              4
                                 US-09-489-039A-14177
                                                               Sequence 14177, A
        71.5
                 2.6
                         404
                              4
                                 US-09-107-532A-6741
                                                               Sequence 6741, Ap
1100
                                                               Sequence 20, Appl
1101
        71.5
                 2.6
                         405
                              3
                                 US-09-347-801-20
1102
        71.5
                 2.6
                         405
                              4
                                 US-09-854-731-20
                                                               Sequence 20, Appl
                                                               Sequence 2, Appli
                 2.6
                         410
                                 US-09-238-480-2
1103
        71.5
                              3
                                 US-09-902-540-15635
                                                               Sequence 15635, A
1104
        71.5
                 2.6
                         425
                              4
1105
        71.5
                 2.6
                         495
                              4
                                 US-09-328-352-7210
                                                               Sequence 7210, Ap
        71.5
                 2.6
                         498
                              3
                                 US-09-045-632-30
                                                               Sequence 30, Appl
1106
        71.5
                 2.6
                         529
                              4
                                 US-09-504-393-5
                                                               Sequence 5, Appli
1107
        71.5
                 2.6
                         533
                              4
                                 US-09-672-494-2
                                                               Sequence 2, Appli
1108
        71.5
                 2.6
                         534
                              4
                                 US-09-134-000C-5087
                                                               Sequence 5087, Ap
1109
        71.5
                 2.6
                         547
                                 US-09-543-681A-6530
                                                               Sequence 6530, Ap
                              4
1110
                         578
1111
        71.5
                 2.6
                              4
                                 US-09-690-942-10
                                                               Sequence 10, Appl
                         599
                              3
                                 US-09-045-632-28
                                                               Sequence 28, Appl
1112
        71.5
                 2.6
                         627
                              4
                                 US-09-328-352-7705
                                                               Sequence 7705, Ap
        71.5
                 2.6
1113
                 2.6
                         641
                                 US-09-167-206-4
                                                               Sequence 4, Appli
1114
        71.5
        71.5
                 2.6
                         641
                                 US-09-687-538B-8
                                                               Sequence 8, Appli
1115
1116
        71.5
                 2.6
                         641
                                 US-10-309-437-8
                                                               Sequence 8, Appli
                         657
        71.5
                 2.6
                                 US-09-653-465B-2
                                                               Sequence 2, Appli
1117
                              4
                                                               Sequence 70, Appl
                         664
                                 US-09-377-497-70
1118
        71.5
                 2.6
                              4
        71.5
                 2.6
                         680
                                 US-09-591-095-20
                                                               Sequence 20, Appl
1119
                              4
        71.5
                 2.6
                         690
                              3
                                  US-09-422-869-28
                                                               Sequence 28, Appl
1120
        71.5
                         695
                                  US-09-248-796A-14135
                                                               Sequence 14135, A
1121
                 2.6
                              4
                                                               Sequence 10710, A
1122
        71.5
                 2.6
                         715
                              4
                                  US-09-489-039A-10710
        71.5
                                  US-09-902-540-9801
                                                               Sequence 9801, Ap
1123
                 2.6
                         739
                              4
1124
        71.5
                 2.6
                         790
                              4
                                  US-09-543-681A-5459
                                                               Sequence 5459, Ap
                 2.6
1125
        71.5
                         797
                              4
                                  US-09-248-796A-16517
                                                               Sequence 16517, A
1126
        71.5
                 2.6
                         797
                              4
                                  US-09-949-016-7147
                                                               Sequence 7147, Ap
                 2.6
                         818
                              3
                                  US-09-045-632-25
                                                               Sequence 25, Appl
1127
        71.5
        71.5
                 2.6
                         829
                              1
                                  US-08-346-455B-34
                                                               Sequence 34, Appl
1128
                                                               Sequence 34, Appl
        71.5
                 2.6
                         829
                              3
                                  US-08-977-221-34
1129
1130
        71.5
                 2.6
                         829
                              4
                                  US-09-483-831B-34
                                                               Sequence 34, Appl
                         829
                                  PCT-US95-06613-34
                                                               Sequence 34, Appl
1131
        71.5
                 2.6
                 2.6
                         834
                                  US-09-684-938-160
                                                               Sequence 160, App
1132
        71.5
                              4
        71.5
                 2.6
                         834
                                  US-09-308-825A-160
                                                               Sequence 160, App
1133
1134
         71.5
                 2.6
                         836
                                  US-09-684-938-162
                                                               Sequence 162, App
1135
         71.5
                 2.6
                         836
                              4
                                  US-09-684-938-164
                                                               Sequence 164, App
                         836
                              4
1136
        71.5
                 2.6
                                  US-09-308-825A-162
                                                               Sequence 162, App
        71.5
                         836
                              4
                                  US-09-308-825A-164
                                                               Sequence 164, App
1137
                 2.6
        71.5
                 2.6
                         836
                                  US-09-758-282B-6
                                                               Sequence 6, Appli
1138
1139
         71.5
                 2.6
                         836
                              4
                                  US-09-758-282B-58
                                                               Sequence 58, Appl
                 2.6
                                                               Sequence 259, App
                         836
                                  US-09-940-244-259
1140
         71.5....
                              4
                                  US-09-577-304A-6
                 2.6
                                                               Sequence 6, Appli
1141
         71.5
                         836
                              4
                 2.6
                         836
                              4
                                  US-09-577-304A-58
                                                               Sequence 58, Appl
1142
         71.5
                 2.6
                         836
                              4
                                  US-09-777-430C-8
                                                               Sequence 8, Appli
1143
         71.5
                         836
                                                               Sequence 11, Appl
1144
         71.5
                 2.6
                              4
                                  US-09-777-430C-11
1145
         71.5
                 2.6
                         842
                              4
                                  US-09-758-282B-65
                                                               Sequence 65, Appl
1146
         71.5
                 2.6
                         842
                              4
                                  US-09-758-282B-157
                                                               Sequence 157, App
1147
         71.5
                 2.6
                         842
                              4
                                  US-09-577-304A-65
                                                               Sequence 65, Appl
                         842
                                                               Sequence 157, App
1148
         71.5
                 2.6
                              4
                                  US-09-577-304A-157
                         842
                              4
                                  US-09-777-430C-15
                                                               Sequence 15, Appl
1149
         71.5
                 2.6
1150
                         846
                              4
                                  US-09-270-767-42096
                                                               Sequence 42096, A
         71.5
                 2.6
                                  US-09-248-796A-16660
         71.5
                         868
                               4
                                                               Sequence 16660, A
1151
                 2.6
```

```
914
                                 US-09-134-001C-5208
                                                              Sequence 5208, Ap
                              3
1152
        71.5
                 2.6
                            ..3
                                                              Sequence 21, Appl
        71.5
                 2.6
                        918
                                 US-09-045-632-21
1153
                                                              Sequence 16, Appl
        71.5
                 2.6
                        1018
                              3
                                 US-09-045-632-16
1154
                        1065
                                 US-09-328-352-8064
                                                              Sequence 8064, Ap
        71.5
                 2.6
                              4
1155
        71.5
                 2.6
                        1080
                              4
                                 US-09-538-092-390
                                                              Sequence 390, App
1156
                                                              Sequence 8, Appli
        71.5
                 2.6
                       1138
                              1
                                 US-08-323-474-8
1157
                                                              Sequence 98, Appl
                       1138
                              2
                                 US-08-469-537A-98
1158
        71.5
                 2.6
                                                              Sequence 2, Appli
1159
        71.5
                 2.6
                       1285
                              1
                                 US-07-582-945-2
                                                              Sequence 2, Appli
        71.5
                 2.6
                       1285
                              2
                                 US-08-453-141-2
1160
                                                              Sequence 2, Appli
        71.5
                 2.6
                       1285
                                 US-08-293-314-2
1161
1162
        71.5
                 2.6
                       2471
                              3
                                 US-09-112-450-4
                                                              Sequence 4, Appli
1163
        71.5
                 2.6
                        2471
                              4
                                 US-09-419-291A-4
                                                              Sequence 4, Appli
1164
        71.5
                 2.6
                       2471
                              4
                                 US-10-116-048-4
                                                              Sequence 4, Appli
1165
        71.5
                 2.6
                        4536
                              4
                                 US-09-079-030-1
                                                              Sequence 1, Appli
1166
        71.5
                 2.6
                        4872
                                 US-09-424-783-3
                                                              Sequence 3, Appli
1167
           71
                 2.6
                        222
                              4
                                 US-09-248-796A-17091
                                                              Sequence 17091, A
           71
                 2.6
                        249
                              3
                                 US-09-134-001C-3910
                                                              Sequence 3910, Ap
1168
           71
                 2.6
                        271
                              4
                                 US-09-270-767-43414
                                                              Sequence 43414, A
1169
           71
                 2.6
                         295
                              4
                                 US-09-248-796A-16714
                                                              Sequence 16714, A
1170
           71
                 2.6
                        299
                              4
                                 US-09-328-352-4695
                                                              Sequence 4695, Ap
1171
                 2.6
                         323
                                 US-08-948-276-5
                                                              Sequence 5, Appli
1172
           71
                 2.6
                         323
                                 US-09-949-016-6593
                                                              Sequence 6593, Ap
1173
           71
           71
                 2.6
                         333
                                 US-09-248-796A-27331
                                                              Sequence 27331, A
1174
                 2.6
                         334
                                 US-09-949-016-7952
                                                              Sequence 7952, Ap
           71
1175
                                                              Sequence 32, Appl
1176
           71
                 2.6
                         340
                              1
                                 US-08-307-499-32
                         340
                                 US-09-299-268-32
                                                              Sequence 32, Appl
1177
           71
                 2.6
                 2.6
                         342
                              4
                                 US-09-328-352-6378
                                                              Sequence 6378, Ap
           71
1178
                         351
                              4
                                 US-09-107-532A-4896
                                                              Sequence 4896, Ap
           71
                 2.6
1179
                                                              Sequence 16881, A
           71
                 2.6
                         354
                                 US-09-248-796A-16881
1180
                                                              Sequence 10, Appl
1181
           71
                 2.6
                         364
                              2
                                 US-08-458-970A-10
                 2.6
                         373
                              4
                                 US-09-248-796A-18227
                                                              Sequence 18227, A
1182
           71
                 2.6
                                 US-09-248-796A-20364
                                                              Sequence 20364, A
1183
           71
                         380
                              4
           71
                 2.6
                         395
                              4
                                 US-09-543-681A-7425
                                                               Sequence 7425, Ap
1184
           71
                 2.6
                         397
                              6
                                 5187089-11
                                                              Patent No. 5187089
1185
                 2.6
                         397
                              6
                                 5187089-11
                                                              Patent No. 5187089
1186
           71
                         427
                              3
                                 US-08-121-446-2
                                                              Sequence 2, Appli
1187
           71
                 2.6
           71
                 2.6
                         427
                                 US-09-919-497-62
                                                              Sequence 62, Appl
1188
           71
                 2.6
                         430
                              2
                                 US-08-712-709-9
                                                              Sequence 9, Appli
1189.
           71
                 2.6
                         430
                                 US-09-111-444-9
                                                              Sequence 9, Appli
                              3
1190
                         430
                                 US-09-541-228-9
                                                               Sequence 9, Appli
1191
           71
                 2.6
                              3
                         437
                                 US-09-328-352-7401
                                                               Sequence 7401, Ap
1192
           71
                 2.6
           71
                 2.6
                         447
                              4
                                 US-09-583-110-2779
                                                               Sequence 2779, Ap
1193
                 2.6
                         467
                              4
                                 US-09-107-433-3431
                                                               Sequence 3431, Ap
1194
           71
                         478
                                                               Sequence 2631, Ap
1195
           71
                 2.6
                              4
                                 US-09-540-236-2631
                         497
                                 US-09-538-092-473
                                                               Sequence 473, App
1196
           71
                 2.6
           71
                         514
                              4
                                 US-09-134-000C-5471
                                                               Sequence 54.71, Ap
1197
                 2...6.
                                 US-09-248-796A-14702
                                                               Sequence 14702, A
           71
                 2.6
                         543
                              4
1198
1199
           71
                 2.6
                         554
                              1
                                 US-07-839-433-2
                                                               Sequence 2, Appli
1200
           71
                 2.6
                         581
                              4
                                 US-09-902-540-12279
                                                               Sequence 12279, A
                 2.6
                         598
                              4
                                 US-09-583-110-3070
                                                               Sequence 3070, Ap
1201
           71
                                                               Sequence 4348, Ap
1202
           71
                 2.6
                         604
                              4
                                 US-09-107-433-4348
1203
           71
                 2.6
                         656
                                 US-09-949-016-7320
                                                               Sequence 7320, Ap
1204
           71
                 2.6
                         709
                              1
                                 US-07-814-964-7
                                                               Sequence 7, Appli
           71
                 2.6
                         709
                                 US-08-258-442-7
                                                               Sequence 7, Appli
1205
                              1
                                                               Sequence 2, Appli
1206
                 2.6
                         709
                              1
                                 US-08-328-809-2
           71
1207
                 2.6
                         709
                              3
                                 US-09-015-003-2
                                                               Sequence 2, Appli
           71
                 2.6
                         709
                              4
                                 US-08-866-840-2
                                                               Sequence 2, Appli
1208
           71
```

1209	71	2.6	709	4	US-09-489-039A-11018	Sequence	11018, A
1210	71	2.6	709	4	US-09-538-092-1287	Sequence	1287, Ap
1211		2.6	709	5	PCT-US92-11107-7	Sequence	7, Appli
1212		2.6	714	4	US-09-543-681A-6809		6809, Ap
1213		2.6	719	4	US-09-949-016-9561	_	9561, Ap
1214		2.6	749	4	US-09-949-016-10583	_	10583, A
1215		2.6	785	4	US-09-079-030-216	_	216, App
1216		2.6	803	2	US-08-907-166-4	_	4, Appli
1217		2.6	803	4	US-09-391-340-4	_	4, Appli
1218		2.6	839	4	US-09-758-282B-234	_	234, App
1210		2.6	839	4	US-09-577-304A-234		234, App
1213		2.6	917	4	US-09-248-796A-19347	_	19347, A
1220		2.6	1132	4	US-09-528-784A-87	_	87, Appl
			1132	4	US-09-569-098A-87	Sequence	
1222		2.6 2.6	1285	2	US-08-540-406-6	Sequence	
1223				3		_	
1224		2.6	1285		US-08-656-055-6	Sequence	
1225		2.6	1285	3	US-08-954-668-6	_	6, Appli
1226		2.6	1285	4	US-08-918-658-6	_	6, Appli
1227		2.6	1285	4	US-09-724-631-6	Sequence	
1228		2.6	1285	4	US-08-954-701A-6	-	6, Appli
1229		2.6	1285	5 -	PCT-US95-13233-6		6, Appli
1230		2.6	1440	3	US-09-357-251-37		37, Appl
1231		2.6	2516	4	US-09-949-016-10280		10280, A
1232		2.6	3056	1	US-08-508-836A-8		8, Appli
1233		2.6	3056	2	US-08-629-001A-3	_	3, Appli
1234		2.6	3056	2	US-08-874-266-2	_	2, Appli
1235		2.6	3056	3	US-08-642-274D-3		3, Appli
1236		2.6	3056	3	US-08-952-127-3		3, Appli
1237		2.6	3056	3	US-08-952-014C-3		3, Appli
1238		2.6	3056	4	US-09-360-416-2		2, Appli
1239		2.6	3056	4	US-08-984-090-2		2, Appli
1240		2.6	3057	4	US-09-360-416-3		3, Appli
1241	L 71	2.6	3340	4	US-09-252-991A-23568		23568, A
1242	2 71	2.6	3559	4	US-09-693-205A-10		10, Appl
1243		2.6	15281	2	US-08-471-119A-2	Sequence	2, Appli
1244	70.5	2.5	211	4	US-09-322-409-78	Sequence	78, Appl
1245	70.5	2.5	211	4	US-09-451-527-78	Sequence	78, Appl
1246	5 70.5	2.5	260	4	US-09-322-409-73		73, Appl
1247	70.5	2.5	260	4	US-09-451-527-73	Sequence	73, Appl
1248	3 70.5	2.5	273	4	US-09-328-352-5843	Sequence	5843, Ap
1249	70.5	2.5	273	4	US-08-956-171E-5196	Sequence	5196, Ap
1250	70.5	2.5	273	4	US-09-710-279-752	Sequence	752, App
1251	1 70.5	2.5	273	4	US-08-781-986A-5196	Sequence	5196, Ap
1252	2 70.5	2.5	279	4	US-09-328-352-5581	Sequence	5581, Ap
1253		2.5	291	4	US-09-107-532A-6097		6097, Ap
1254		2.5	296	4.	U.S-09-540-236-2650		2650, Ap
1255		2.5	325	4	US-09-710-279-3296	-	3296, Ap
1256		2.5	332	4	US-09-561-763-5		5, Appli
125		2.5	332	4	US-09-431-367B-5		5, Appli
1258			333	3	US-09-134-001C-5204		5204, Ap
1259		2.5	333	4	US-09-583-110-3052		3052, Ap
126		2.5	375	4	US-09-107-532A-5089		5089, Ap
126		2.5	390	3	US-08-460-576-2	_	2, Appli
1262		2.5	390	4.	US-09-134-000C-6192	_	6192, Ap
1263		2.5	393	4	US-09-270-767-42793		42793, A
126		2.5	421	4	US-09-470-175-2		2, Appli
126		2.5	429	4	US-09-252-991A-22564		22564, A
12.0.	, , , , ,	2.5	367	-1	13 03 202 33IR 22301	·	, n

,

.

1266	70.5	2.5	433	4	US-09-252-991A-31231	Sequence 31231, A
₋ 1267	70.5	2.5		.3	US-08-660-347-2	Sequence 2, Appli
1268	70.5	2.5	444	4	US-09-252-991A-31017	Sequence 31017, A
1269	70.5	2.5	471	4	US-09-949-016-8344	Sequence 8344, Ap
1270	70.5	2.5	484	4	US-09-710-279-2498	Sequence 2498, Ap
1271	70.5	2.5	485	2	US-08-749-391-2	Sequence 2, Appli
1272	70.5	2.5	485	3	US-09-390-200-2	Sequence 2, Appli
1273	70.5	2.5	509	4	US-09-902-540-12233	Sequence 12233, A
1274	70.5	2.5	513	4	US-09-248-796A-20548	Sequence 20548, A
1275	70.5	2.5	524	3	US-08-957-302A-2	Sequence 2, Appli
1276	70.5	2.5	524	3	US-09-542-403-2	Sequence 2, Appli
1277	70.5	2.5	529	1	US-08-548-509-2	Sequence 2, Appli
1278	70.5	2.5	533	4	US-09-328-352-8174	Sequence 8174, Ap
1279	70.5	2.5	538	4	US-09-710-279-260	Sequence 260, App
1279	70.5	2.5	542	4	US-09-107-532A-4858	Sequence 4858, Ap
		2.5	551	3	US-08-699-103B-25	Sequence 25, Appl
1281 1282	70.5 70.5	2.5	551 551	3	US-09-229-059-25	Sequence 25, Appl
1282	70.5 70.5	2.5	551 551	3 4	US-09-229-039-23 US-09-628-133-25	Sequence 25, Appl
			560	2	US-09-628-133-25 US-08-756-317-11	Sequence 11, Appl
1284	70.5	2.5		_	US-08-756-317-11 US-09-134-001C-5646	Sequence 11, Appl Sequence 5646, Ap
1285	70.5	2.5	567	3 4	US-09-134-001C-3646 US-09-134-000C-6175	Sequence 5646, Ap
1286	70.5	2.5	631 661	4	US-09-134-000C-6175 US-09-438-185A-803	Sequence 803, App
1287	70.5	2.5		4		Sequence 4034, App Sequence 46242, A
1288	70.5	2.5	672	-	US-09-270-767-46242	
1289	70.5	2.5	681	4	US-09-252-991A-25690	Sequence 25690, A
1290	70.5	2.5	686	3	US-09-245-041-13	Sequence 13, Appl
1291	70.5	2.5	686 686	4	US-09-358-055B-13	Sequence 13, Appl
1292	70.5	2.5	686 765	4	US-09-893-238-13	Sequence 13, Appl
1293	70.5	2.5	765	4	US-09-975-326-4	Sequence 4, Appli
1294	70.5	2.5	765	4	US-10-217-357-4	Sequence 4, Appli
1295	70.5	2.5	766 766	4	US-09-975-326-2	Sequence 2, Appli
1296	70.5	2.5	766	4	US-10-217-357-2	Sequence 2, Appli
1297	70.5	2.5	818	4	US-09-134-000C-5599	Sequence 5599, Ap
1298	70.5	2.5	839	4	US-09-538-092-274	Sequence 274, App
1299	70.5	2.5	888	4	US-09-252-991A-17967	Sequence 17967, A
1300	70.5	2.5	1027	4	US-09-902-540-11750	Sequence 11750, A
1301	70.5	2.5	1065	4	US-09-710-279-1212	Sequence 1212, Ap
1302	70.5	2.5	1067	3	US-09-134-001C-3800	Sequence 3800, Ap
1303	70.5	2.5	1068	3	US-09-085-199B-11	Sequence 11, Appl
1304	70.5	2.5	1181	4	US-09-000-004A-4	Sequence 4, Appli
1305	70.5	2.5	1181	4	US-09-949-016-6189	Sequence 6189, Ap
1306	70.5	2.5	1195	4	US-09-538-092-517	Sequence 517, App
1307	70.5	2.5	1195	4	US-09-949-016-10747	Sequence 10747, A
1308	70.5	2.5	1429	3	US-09-245-041-130	Sequence 130, App
1309	70.5	2.5	1429	4	US-09-358-055B-131	Sequence 131, App
1310	70.5	2.5	1433	4	US-09-543-681A-7342	Sequence 7342, Ap
1311	70.5	2.5	1500	3	US-09-323-472A-4	Sequence 4, Appli
1312	70.5	2.5	1500	4	US-09-585-077C-4	Sequence 4, Appli
1313	70.5	2.5	1500	4	US-09-538-092-1051	Sequence 1051, Ap
1314	70.5	2.5	1909	4	US-09-590-968B-2	Sequence 2, Appli
1315	70.5	2.5	2257	4	US-09-839-477-8	Sequence 8, Appli
1316	70	2.5	218	4	US-09-543-681A-7848	Sequence 7848, Ap
1317	70	2.5	224	4	US-09-902-540-11622	Sequence 11622, A
1318	70	2.5	230	4	US-09-090-672B-33	Sequence 33, Appl
1319	70	2.5	258	4	US-09-248-796A-17206	Sequence 17206, A
1320	70	2.5	262	4	US-09-248-796A-15819	Sequence 15819, A
1321	70	2.5	267	4	US-09-134-000C-6273	Sequence 6273, Ap
1322	70	2.5	267	4	US-09-902-540-14651	Sequence 14651, A

1323	70	2.5	270	4	US-09-328-352-6533	Sequence 6533, Ap
1324	70	2.5	. 283	4	US-09-328-352-5031	Sequence 5031, Ap
1325	70	2.5	321	4	US-09-489-039A-9590	Sequence 9590, Ap
1326	70	2.5	332	4	US-09-489-039A-12580	Sequence 12580, A
1327	70	2.5	340	4	US-09-538-092-1103	Sequence 1103, Ap
1328	70	2.5	343	4	US-09-252-991A-16742	Sequence 16742, A
1329	70	2.5	349	4	US-09-252-991A-28248	Sequence 28248, A
1330	70	2.5	369	4	US-09-949-016-7624	Sequence 7624, Ap
1331	70	2.5	376	4	US-09-270-767-35078	Sequence 35078, A
		2.5	376			
1332	70 70			4	US-09-270-767-50295	Sequence 50295, A
1333	70	2.5	385	3	US-09-134-001C-5166	Sequence 5166, Ap
1334	70	2.5	427	4	US-09-826-509-495	Sequence 495, App
1335	70	2.5	458	4	US-09-673-395A-226	Sequence 226, App
1336	70	2.5	466	1	US-08-334-698-6	Sequence 6, Appli
1337	70	2.5	466	1	US-08-228-932-6	Sequence 6, Appli
1338	70	2.5	466	1	US-08-468-939-6	Sequence 6, Appli
1339	70	2.5	466	1	US-08-722-001-28	Sequence 28, Appl
1340	70	2.5	466	2	US-08-406-855A-6	Sequence 6, Appli
1341	70	2.5	466	2	US-08-722-190-6	Sequence 6, Appli
1342	70	2.5	466	3	US-08-244-354-6	Sequence 6, Appli
1343	70	2.5	466	3	US-09-206-899-6	Sequence 6, Appli
1344	70	2.5	466	4	US-09-444-783-6	Sequence 6, Appli
1345	70	2.5	466	4	US-09-688-415-6	Sequence 6, Appli
1346	70	2.5	466	4	US-09-444-783-6	Sequence 6, Appli
1347	70	2.5	466	5	PCT-US95-04203-6	Sequence 6, Appli
1348	70	2.5	472	4	US-09-540-236-3760	Sequence 3760, Ap
1349	70	2.5	484	4	US-09-328-352-6041	Sequence 6041, Ap
1350	70	2.5	562	4	US-09-489-039A-8049	Sequence 8049, Ap
1351	70	2.5	565	4	US-09-252-991A-17458	Sequence 17458, A
1352	70	2.5	574	4	US-10-023-515-4	Sequence 4, Appli
1353	70	2.5	575	4	US-09-543-681A-6584	Sequence 6584, Ap
1354	70	2.5	585	4	US-09-248-796A-17511	Sequence 17511, A
1354	70	2.5	606	4	US-09-489-039A-7827	Sequence 7827, Ap
					US-08-752-307B-12	Sequence 12, Appl
1356	70	2.5	607	2		
1357	70	2.5	607	3	US-09-707-802-12	Sequence 12, Appl
1358	70	2.5	607	3	US-09-991-326-12	Sequence 12, Appl
1359	70	2.5	612	4	US-09-248-796A-18040	Sequence 18040, A
1360	70	2.5	636			Sequence 45245, A
1361	70	2.5	682	4	US-09-538-092-223	Sequence 223, App
1362	70	2.5	704	4	US-09-107-532A-5612	Sequence 5612, Ap
1363	70	2.5	723	4	US-09-252-991A-18279	Sequence 18279, A
1364	70	2.5	767	4	US-09-328-352-4613	Sequence 4613, Ap
1365	70	2.5	817	4	US-09-543-681A-4637	Sequence 4637, Ap
1366	70	2.5	818	4	US-09-949-016-8579	Sequence 8579, Ap
1367	70	2.5	820	4	US-09-949-016-6134	Sequence 6134, Ap
 1368	70	2.5	846	1	US-08-357-598-12	Sequence 12, Appl
1369	70	2.5	846	2	US-09-003-289-12	Sequence 12, Appl
1370	70	2.5	846	5	PCT-US95-16435-12	Sequence 12, Appl
1371	70	2.5	868	4	US-09-538-092-787	Sequence 787, App
1372	70	2.5	952	4	US-09-248-796A-20878	Sequence 20878, A
1373	70	2.5	987	1	US-08-436-044-6	Sequence 6, Appli
1374	70	2.5	987	2	US-08-436-054-6	Sequence 6, Appli
1375	70	2.5	987	5	PCT-US95-08812-6	Sequence 6, Appli
1376	70	2.5	989	3	US-09-110-517-4	Sequence 4, Appli
1377	70	2.5	989	4	US-09-710-279-2594	Sequence 2594, Ap
	70	2.5		4	US-09-949-016-7235	Sequence 7235, Ap
1378 1379	70 70	2.5	990 998	4	US-09-949-016-7235 US-09-949-016-8326	Sequence 8326, Ap
			~~~	4	ひらーひラーラ4ラーひより=0320	SEGUENCE OSCO, AD

·

							*
	1380	70	2.5	1145	4	US-09-438-185A-191	Sequence 191, App
	1381	70	2.5	1257	2	US-08-750-152A-2.	Sequence 2, Appli
	1382	70	2.5	1276	1	US-08-222-616-24	Sequence 24, Appl
	1383	70	2.5	1276	3	US-08-446-648-24	Sequence 24, Appl
	1384	70	2.5	1276	4	US-09-982-610-24	Sequence 24, Appl
	1385	70	2.5	1276	5	PCT-US95-04228-24	Sequence 24, Appl
	1386	70	2.5	1967	4	US-09-849-602-16	Sequence 16, Appl
	1387	70	2.5	3174	2	US-08-477-451-3	Sequence 3, Appli
	1388	69.5	2.5	145	4	US-09-107-532A-6302	Sequence 6302, Ap
	1389	69.5	2.5	215	4	US-09-711-164-361	Sequence 361, App
	1390	69.5	2.5	220	1	US-07-820-154A-4	Sequence 4, Appli
	1391	69.5	2.5	220	2	US-08-097-554A-4	Sequence 4, Appli
	1392	69.5	2.5	220	3	US-08-480-640A-4	Sequence 4, Appli
	1393	69.5	2.5	220	3	US-08-295-802-4	Sequence 4, Appli
	1394	69.5	2.5	220	3	US-08-488-237A-4	Sequence 4, Appli
	1395	69.5	2.5	220	3	US-08-375-992A-4	Sequence 4, Appli
	1396	69.5	2.5	220	4	US-08-472-679H-4	Sequence 4, Appli
	1397	69.5	2.5	220	5	PCT-US93-00324-4	Sequence 4, Appli
	1398	69.5	2.5	230	2	US-08-537-400-16	Sequence 16, Appl
	1399	69.5	2.5	230	2	US-08-706-702-18	Sequence 18, Appl
	1400	69.5	2.5	230	3	US-08-706-706-18	Sequence 18, Appl
	1400	69.5	2.5	230	4	US-09-238-471-18	Sequence 18, Appl
		69.5	2.5	262	4	US-09-710-279-876	Sequence 876, App
	1402						Sequence 5231, Ap
	1403	69.5	2.5	263	3	US-09-134-001C-5231	Sequence 7924, Ap
	1404	69.5	2.5	303	4	US-09-543-681A-7924	
	1405	69.5	2.5	320	3	US-08-793-666-10	Sequence 10, Appl
	1406	69.5	2.5	331	4	US-09-107-433-3138	Sequence 3138, Ap
	1407	69.5	2.5	337	4	US-09-198-452A-630	Sequence 630, App
	1408	69.5	2.5	338	4	US-09-328-352-4723	Sequence 4723, Ap
,	1409	69.5	2.5	338	4	US-09-248-796A-19784	Sequence 19784, A
	1410	69.5	2.5	342	4	US-09-248-796A-19527	Sequence 19527, A
	1411	69.5	2.5	344	1	US-08-403-866-9	Sequence 9, Appli
	1412	69.5	2.5	345	3	US-09-173-581-6	Sequence 6, Appli
	1413	69.5	2.5	345	3	US-09-420-915-6	Sequence 6, Appli
	1414	69.5	2.5	355	4	US-09-175-684A-9	Sequence 9, Appli
	1415	69.5	2.5	361	4	US-09-175-684A-10	Sequence 10, Appl
	1416	69.5	2.5	370	3	US-09-134-001C-3769	Sequence 3769, Ap
	1417	69.5	2.5	372	4	US-09-248-796A-15166	Sequence 15166, A
	1418	69.5	2.5	379	4	US-09-248-796A-15312	Sequence 15312, A
	1419	69.5	2.5	382	3	US-09-134-001C-3447	Sequence 3447, Ap
	1420	69.5	2.5	397	4	US-09-438-185A-588	Sequence 588, App
	1421	69.5	2.5	398	6	5187089-5	Patent No. 5187089
	1422	69.5	2.5	398	6	5187089-5	Patent No. 5187089
	1423	69.5	2.5	454	4	US-09-248-796A-20204	Sequence 20204, A
	1424	69.5	2.5	476	4	US-09-198-452A-1021	· Sequence 1021, Ap
	1425	69.5	2.5	477	4	US-09-583-110-3555	Sequence 3555, Ap
	1426	69.5	2.5	478	4	US-09-248-796A-20836	Sequence 20836, A
	1427	69.5	2.5	479	4	US-09-438-185A-950	Sequence 950, App
	1428	69.5	2.5	502	4	US-09-134-000C-4863	Sequence 4863, Ap
	1429	69.5	2.5	502	4	US-09-248-796A-14780	Sequence 14780, A
	1430	69.5	2.5	503	4	US-09-248-796A-18992	Sequence 18992, A
	1431	69.5	2.5	505	3	US-08-627-907A-2	Sequence 2, Appli
	1432	69.5	2.5	506	4	US-09-902-540-15114	Sequence 15114, A
	1433	69.5	2.5	528	4	US-09-543-681A-4418	Sequence 4418, Ap
	1434	69.5	2.5	550	4	US-09-489-039A-13969	Sequence 13969, A
	1435	69.5	2.5	560	4	US-09-821-016-3	Sequence 3, Appli
	1436	69.5	2.5	560	4	US-10-266-787-3	Sequence 3, Appli
		55.0	2.0		-		

```
US-09-117-415B-22
                                                               Sequence 22, Appl
                         613
                              4
1437
        69.5
                 2.5
                                                               Sequence 18, Appl
        69.5
                 2.5
                         631
                                 US-09-117-415B-18
1438
                                 US-09-117-415B-20
                                                               Sequence 20, Appl
        69.5
                 2.5
                         631
                              4
1439
                                                               Sequence 13, Appl
                         633
                                 US-09-919-060-13
        69.5
                 2.5
                              4
1440
                                                               Sequence 16, Appl
                 2.5
                         649
                              4
                                 US-09-117-415B-16
1441
        69.5
                                                               Sequence 115, App
                                 US-08-480-640A-115
                 2.5
                         677
                              3
1442
        69.5
                                                               Sequence 193, App
                         677
                              3
                                 US-08-480-640A-193
1443
        69.5
                 2.5
                                                               Sequence 115, App
                              3
                                 US-08-295-802-115
1444
        69.5
                 2.5
                         677
                                                               Sequence 58, Appl
                                 US-08-686-968C-58
        69.5
                 2.5
                         677
1445
                                                               Sequence 193, App
                                 US-08-686-968C-193
        69.5
                 2.5
                         677
                              3
1446
                                                               Sequence 115, App
1447
        69.5
                 2.5
                         677
                              3
                                 US-08-488-237A-115
                                                               Sequence 193, App
1448
        69.5
                 2.5
                         677
                              3
                                 US-08-488-237A-193
                         677
                                                               Sequence 115, App
        69.5
                 2.5
                              3
                                 US-08-375-992A-115
1449
                                                               Sequence 193, App
        69.5
                 2.5
                         677
                              3
                                 US-08-375-992A-193
1450
        69.5
                 2.5
                         677
                                 US-08-472-679H-115
                                                               Sequence 115, App
1451
        69.5
                 2.5
                         677
                              4
                                 US-08-472-679H-193
                                                               Sequence 193, App
1452
                                                               Sequence 2, Appli
        69.5
                 2.5
                         721
                              4
                                 US-08-851-435-2
1453
                                                               Sequence 6, Appli
        69.5
                 2.5
                         746
                              4
                                 US-08-851-435-6
1454
                                                               Sequence 19294, A
        69.5
                 2.5
                         789
                              4
                                 US-09-248-796A-19294
1455
                                                               Sequence 45282, A
                 2.5
                         800
                              4
                                 US-09-270-767-45282
        69.5
1456
                                                               Sequence 20939, A
                 2.5
                         816
                              4
                                 US-09-248-796A-20939
1457
        69.5
                                                               Sequence 230, App
                 2.5
                         839
                                 US-09-758-282B-230
1458
        69.5
                 2.5
                         839
                              4
                                 US-09-577-304A-230
                                                               Sequence 230, App
        69.5
1459
                         864
                                 US-09-489-039A-12869
                                                               Sequence 12869, A
        69.5
                 2.5
1460
                         864
                                 US-09-751-687-18
                                                               Sequence 18, Appl
        69.5
                 2.5
                              4
1461
                         959
                                 US-09-248-796A-20776
                                                               Sequence 20776, A
         69.5
                 2.5
                              4
1462
                 2.5
                        1024
                              4
                                 US-09-562-737-42
                                                               Sequence 42, Appl
         69.5
1463
                        1050
                              4
                                 US-09-902-540-16666
                                                               Sequence 16666, A
         69.5
                 2.5
1464
                                                               Sequence 961, App
         69.5
                 2.5
                        1085
                              4
                                 US-09-198-452A-961
1465
                                 US-09-438-185A-893
                                                               Sequence 893, App
1466
         69.5
                 2.5
                        1087
                              4
                              4
                                 US-10-162-012-15
                                                               Sequence 15, Appl
1467
         69.5
                 2.5
                        1091
                                                               Sequence 7967, Ap
                                 US-09-328-352-7967
1468
         69.5
                 2.5
                        1211
                              4
                                                               Sequence 2, Appli
         69.5
                 2.5
                        1260
                              3
                                 US-09-245-041-2
1469
         69.5
                 2.5
                        1260
                              4
                                 US-09-358-055B-2
                                                               Sequence 2, Appli
1470
                 2.5
                        1260
                              4
                                  US-09-893-238-2
                                                               Sequence 2, Appli
         69.5
1471
                 2.5
                        1724
                              3
                                 US-08-857-076-12
                                                               Sequence 12, Appl
1472
         69.5
                 2.5
                        4866
                                  US-09-424-783-2
                                                               Sequence 2, Appli
1473
        69.5
         69.5
                 2.5
                        6095
                                  US-09-144-085-2
                                                               Sequence 2, Appli
1474
                                                               Sequence 5207, Ap
                 2.5
                         203
                                  US-08-956-171E-5207
           69
1475
                                                               Sequence 5207, Ap
                         203
                                  US-08-781-986A-5207
1476
           69
                 2.5
                              4
                                                               Sequence 6464, Ap
                 2.5
                         285
                                  US-09-328-352-6464
1477
           69
                                                               Sequence 3992, Ap
           69
                 2.5
                         314
                              4
                                  US-09-583-110-3992
1478
                                                               Sequence 4625, Ap
                 2.5
                         315
                              4
                                  US-09-107-433-4625
           69
1479
                                  US-09-248-796A-15902
                                                               Sequence 15902, A
           69
                 2.5
                         342
                              4
1480
                                  US-09-198-452A-188
                                                               Sequence 188, App
           69
                 2.5
                         358
1481
                ....2.5
                         358
                               4
                                  US-09-438-185A-172
                                                               Sequence_1.72, App
           69
1482
                                  US-09-710-279-1390
                                                               Sequence 1390, Ap
                 2.5
                         369
                               4
1483
           69
                                                               Sequence 1610, Ap
           69
                 2.5
                         369
                               4
                                  US-09-710-279-1610
1484
                                  US-09-270-767-46648
                                                               Sequence 46648, A
           69
                 2.5
                         372
                               4
1485
                                                               Sequence 14832, A
                               4
                                  US-09-248-796A-14832
                  2.5
                         373
1486
           69
                                                               Sequence 333, App
                               4
                                  US-09-538-092-333
1487
           69
                  2.5
                         385
                                                               Sequence 2, Appli
           69
                  2.5
                         389
                               3
                                  US-09-307-621-2
1488
                                  US-09-248-796A-19608
                                                               Sequence 19608, A
           69
                  2.5
                         393
                               4
1489
                                                              Patent No. 5187089
                  2.5
                         397
                               6
                                  5187089-2
1490
           69
                                                              Patent No. 5187089
           69
                  2.5
                         397
                               6
                                  5187089-2
1491
                                  US-09-270-767-43872
                                                               Sequence 43872, A
           69
                  2.5
                         407
                               4
1492
                                  US-08-933-750C-30
                                                               Sequence 30, Appl
                         419
           69
                  2.5
1493
```

1494	69	2.5	419	3	US-09-234-613-30	Sequence 30, Appl
1495	69 -	2.5	452	4	US-09 <del>-</del> 248-796A-16171	Sequence 16171, A
1496	69	2.5	455	3	US-09-038-217A-18	Sequence 18, Appl
1497	69	2.5	455	4	US-09-447-034-18	Sequence 18, Appl
1498	69	2.5	467	4	US-09-198-452A-1218	Sequence 1218, Ap
1499	69	2.5	475	3	US-09-212-247C-4	Sequence 4, Appli
1500	69	2.5	484	6	5171673-8	Patent No. 5171673

## ALIGNMENTS

```
RESULT 1
US-09-949-016-5947
; Sequence 5947, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
  APPLICANT: VENTER, J. Craig et al.
  TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
  TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES
THEREOF
; FILE REFERENCE: CL001307
  CURRENT APPLICATION NUMBER: US/09/949,016
  CURRENT FILING DATE: 2000-04-14
  PRIOR APPLICATION NUMBER: 60/241,755
; PRIOR FILING DATE: 2000-10-20
  PRIOR APPLICATION NUMBER: 60/237,768
  PRIOR FILING DATE: 2000-10-03
  PRIOR APPLICATION NUMBER: 60/231,498
 PRIOR FILING DATE: 2000-09-08
  NUMBER OF SEQ ID NOS: 207012
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 5947
   LENGTH: 533
   TYPE: PRT
   ORGANISM: Human
US-09-949-016-5947
                      24.5%; Score 679; DB 4; Length 533;
 Query Match
 Best Local Similarity 33.8%; Pred. No. 2.4e-63;
 Matches 175; Conservative 93; Mismatches 211; Indels
                                                        38; Gaps
                                                                  13;
          8 LLVGFIL--PGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP 65
Qy
            11 LVLGLLLCVLGPVVSHAGKILLI-PVDGSHWLSMLGAIQQLQQRGHEIVVL-
Db
         66 D---FKKEEKSYQVISWLAPEDHQRE-FKKSF-----DFFLEETLGGRGKFENLL 111
Qу
               63 DASLYIRDGAFYTLKTY--PVPFQREDVKESFVSLGHNVFENDSFLQRVI---KTYKKIK 117
Db
         112 NVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG 171
Qу
                118 KDSAMLLSGCSHLLHNKELMASLAESSFDVMLTDPFLPCSPIVAQYLSLPTVFFLHALPC 177
Db
         172 SLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEH 228
Qу
                : 1 : 1:
         178 SLEFEATQCPNPFSYVPRPLSSHSDHMTFLQRVKNMLIAFSQNFLCDVVYSPY-ATLASE 236
Db
```

```
229 FTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIA 288 .
Qу
                               : || |:|
                                                        1: 1: 1:1
            |:
        237 FLQ-REVTVQDLLSSASVWLFRSDFVKDYPRPIMPNMVFVGGINCLHQNPLSQEFEAYIN 295
Db
        289 KFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKI 348
Qy
              296 ASGEHGIVVFSLGSMVSEIPEKKAM-AIADALGKIPQTVLWRYTGT---RPSNLANNTIL 351
         349 VDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGV 408
Qу
            Db
         352 VKWLPONDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGV 411
         409 SIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGA 468
Qу
            :: : :: :| | :| :: || || : | : : |: |
         412 TLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGA 471
Db
         469 THLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
Qу
                     |:::: || ||| : | :: |
         472 PHLRPAAHDLTWYQYHSLDVIGFLLAVVLTVAFITFK 508
Db
RESULT 2
US-09-949-016-7684
; Sequence 7684, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
 TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
; TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES
THEREOF
  FILE REFERENCE: CL001307
  CURRENT APPLICATION NUMBER: US/09/949,016
  CURRENT FILING DATE: 2000-04-14
  PRIOR APPLICATION NUMBER: 60/241,755
  PRIOR FILING DATE: 2000-10-20
  PRIOR APPLICATION NUMBER: 60/237,768
; PRIOR FILING DATE: 2000-10-03
  PRIOR APPLICATION NUMBER: 60/231,498
  PRIOR FILING DATE: 2000-09-08
; NUMBER OF SEQ ID NOS: 207012
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 7684
   LENGTH: 538
   TYPE: PRT
   ORGANISM: Human
US-09-949-016-7684
                       24.5%; Score 679; DB 4; Length 538;
  Query Match
  Best Local Similarity 33.8%; Pred. No. 2.4e-63;
 Matches 175; Conservative 93; Mismatches 211; Indels 38; Gaps
                                                                    13;
          8 LLVGFLL--PGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP 65
Qу
            16 LVLGLLLCVLGPVVSHAGKILLI-PVDGSHWLSMLGAIQQLQQRGHEIVVL-----AP 67
          66 D---FKKEEKSYQVISWLAPEDHQRE-FKKSF-----DFFLEETLGGRGKFENLL 111
Qу
```

```
1 11: :
            1 ::: | ::: | | | | | | | | | | | | |
         68 DASLYIRDGAFYTLKTY--PVPFQREDVKESFVSLGHNVFENDSFLQRVI---KTYKKIK 122
Db
         112 NVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG 171
Qy
                 123 KDSAMLLSGCSHLLHNKELMASLAESSFDVMLTDPFLPCSPIVAQYLSLPTVFFLHALPC 182
Db
         172 SLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEH 228
Qу
                 183 SLEFEATOCPNPFSYVPRPLSSHSDHMTFLQRVKNMLIAFSQNFLCDVVYSPY-ATLASE 241
Db
         229 FTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIA 288
Qу
            1: : || |:| || || |: ||::|| |:||:
                                                       1: 1: 1:1
         242 FLQ-REVTVQDLLSSASVWLFRSDFVKDYPRPIMPNMVFVGGINCLHQNPLSQEFEAYIN 300
Db
         289 KFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKI 348
Qу
              1: | |: :|||||| : : : : :|| :|| |:|: : : : :|| | : :
         301 ASGEHGIVVFSLGSMVSEIPEKKAM-AIADALGKIPQTVLWRYTGT---RPSNLANNTIL 356
Db
         349 VDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGV 408
Ov
            357 VKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGV 416
Db
         409 SIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGA 468
Qу
            417 TLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGA 476
Db
         469 THLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
Qv
                      1:::: | | | | | | | | | |
         477 PHLRPAAHDLTWYOYHSLDVIGFLLAVVLTVAFITFK 513
Dh
RESULT 3
PCT-US92-00282-3
; Sequence 3, Application PC/TUS9200282
  GENERAL INFORMATION:
    APPLICANT: OWENS, IDA S.
   APPLICANT: RITTER, JOSEPH K.
    TITLE OF INVENTION: THE GENETIC LOCUS UGT1 AND A MUTATION
    TITLE OF INVENTION: THEREIN.
    NUMBER OF SEQUENCES: 40
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: CUSHMAN DARBY & CUSHMAN
      STREET: 1615 L STREET, N.W.
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 20036-5601
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: PCT/US92/00282
      FILING DATE: 19920110
      CLASSIFICATION: 435
```

```
ATTORNEY/AGENT INFORMATION:
     NAME: SCOTT, WATSON T.
     REGISTRATION NUMBER: 26581
     REFERENCE/DOCKET NUMBER: 91532-PCT
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 202-861-3000
     TELEFAX: 202-822-0944
     TELEX: 6714627 CUSH
  INFORMATION FOR SEQ ID NO: 3:
;
    SEQUENCE CHARACTERISTICS:
     LENGTH: 533 amino acids
      TYPE: AMINO ACID
     STRANDEDNESS: single
     TOPOLOGY: linear
    MOLECULE TYPE: protein
PCT-US92-00282-3
                      24.3%; Score 674; DB 5; Length 533;
 Query Match
 Best Local Similarity 33.8%; Pred. No. 8.2e-63;
 Matches 175; Conservative 92; Mismatches 212; Indels 38; Gaps
                                                                  13;
          8 LLVGFLL--PGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP 65
Qу
            11 LVLGLLLCVLGPVVSHAGKILLI-PVDGSHWLSMLGAIQQLQQRGHEIVVL-----AP 62
Db
         66 D---FKKEEKSYQVISWLAPEDHQRE-FKKSF-----DFFLEETLGGRGKFENLL 111
Qу
               ::: |::: | || || || ||
                                               | ||: :
         63 DASLYIRDGAFYTLKTY--PVPFQREDVKESFVSLGHNVFENDSFLQRVI---KTYKKIK 117
Db
        112 NVLEYLALOCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG 171
Qу
                   1
        118 KDSAMLLSGCSHLLHNKELMASLAESSFDVMLTDPFLPCSPIVAQYLSLPTVFFLHALPC 177
Db
        172 SLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEH 228
Qу
                   : | : |:
        178 SLEFEATQCPNPFSYVPRPLSSHSDHMTFLQRVKNMLIAFSQNFLCDVVYSPY-ATLASE 236
Db
        229 FTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIA 288
Qу
                 1: 1: 1:1
        237 FLQ-REVTVQDLLSSASVWLFRSDFVKDYPRPIMPNMVFVGGINCLHQNPLSQEFEAYIN 295
Db
        289 KFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKI 348
Qу
                             1: | |: :||||:
        296 ASGEHGIVVFSLGSMVSEIPEKKAM-AIADALGKNPQTVLWRYTGT---RPSNLANNTIL 351
Db
     .... 349 VDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGV 408
Qу
            352 VKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGV 411
Db
        409 SIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGA 468
Qу
            :: : :: :| | :| :: || || : | : | : |
                                                    | | |:: |:: ||
        412 TLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGA 471
Db
        469 THLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
Qу
                     1:::: | | | | | | | | |
             11:1
        472 PHLRPAAHDLTWYQYHSLDVIGFLLAVVLTVAFITFK 508
Db
```

```
RESULT 4
US-09-949-016-8465
; Sequence 8465, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
  APPLICANT: VENTER, J. Craig et al.
  TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
  TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES
THEREOF
  FILE REFERENCE: CL001307
;
  CURRENT APPLICATION NUMBER: US/09/949,016
  CURRENT FILING DATE: 2000-04-14
  PRIOR APPLICATION NUMBER: 60/241,755
  PRIOR FILING DATE: 2000-10-20
  PRIOR APPLICATION NUMBER: 60/237,768
  PRIOR FILING DATE: 2000-10-03
  PRIOR APPLICATION NUMBER: 60/231,498
  PRIOR FILING DATE: 2000-09-08
 NUMBER OF SEQ ID NOS: 207012
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 8465
   LENGTH: 540
   TYPE: PRT
   ORGANISM: Human
US-09-949-016-8465
                      24.0%; Score 663.5; DB 4; Length 540;
 Query Match
 Best Local Similarity 34.2%; Pred. No. 1.1e-61;
 Matches 173; Conservative 88; Mismatches 214;
                                              Indels
                                                      31; Gaps
         34 SHYLLMDRVSQILQDHGHNVTMLNHKRG----PFMPDFKKEEKSYQVISWLAPEDHQREF 89
Qy
            | | | | :: || ::
         46 SHWMNIKTILDELVQRGHEVTVLASSASISFDPNSPSTLKFEVYPVSLTKTEFEDIIKQL 105
Db
         90 KKSFDFFLEETLGGRGKFENLLNVL----EYLALQCSHFLNRKDIMDSLKNENFDMVIVE 145
Qу
                       106 VKRWAELPKDTFW--SYFSQVQEIMWTFNDILRKFCKDIVSNKKLMKKLQESRFDVVLAD 163
Db
        146 TFDYCPF--LIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWG 199
Qу
                164 A--VFFFGELLAELLKIPFVYSLRFSPGYAIEKHSGGLLFPPSYVPVVMSELSDQMTFIE 221
Db
        200 RVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDF 257
Qу
            |||| ::::| | : |: :|
                                   1
                                       1
                                            222 RVKNMIYYLYFEFWFQIFDMKK-WDQFYSE--VLGRPTTLSETMAKADIWLIRNYWDFQF 278
Db
        258 ARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMV-NTCQNPEIFKEM 316
Qу
              279 PHPLLPNVEFVGGLHCKPAKPLPKEMEEFVQSSGENGVVVFSLGSMVSNTSE--ERANVI 336
Db
        317 NNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIM 376
Qу
             337 ASALAKIPOKVLWRFDGN---KPDTLGLNTRLYKWIPONDLLGHPKTRAFITHGGANGIY 393
Db
        377 EAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSA 436
Qу
```

```
394 EAIYHGIPMVGVPLFADQPDNIAHMKAKGAAVSLDFHTMSSTDLLNALKTVINDPLYKEN 45,3
Db
        437 AVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT 496
Qу
            1::11:111
        454 AMKLSRIHHDOPVKPLERAVFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVTGFLLACV 513
Db
        497 LGTLWLCGKLLGMAVW-WLRGARKVK 521
Qv
              ::: | | | | | | | | | |
Db
        514 ATVIFIITKCL-FCVWKFVRTGKKGK 538
RESULT 5
US-09-949-016-9052
; Sequence 9052, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
  TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
  TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES
THEREOF
  FILE REFERENCE: CL001307
  CURRENT APPLICATION NUMBER: US/09/949,016
 CURRENT FILING DATE: 2000-04-14
  PRIOR APPLICATION NUMBER: 60/241,755
; PRIOR FILING DATE: 2000-10-20
; PRIOR APPLICATION NUMBER: 60/237,768
; PRIOR FILING DATE: 2000-10-03
; PRIOR APPLICATION NUMBER: 60/231,498
; PRIOR FILING DATE: 2000-09-08
; NUMBER OF SEQ ID NOS: 207012
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 9052
   LENGTH: 540
   TYPE: PRT
   ORGANISM: Human
US-09-949-016-9052
                      24.0%; Score 663.5; DB 4; Length 540;
 Query Match
 Best Local Similarity 34.2%; Pred. No. 1.1e-61;
 Matches 173; Conservative 88; Mismatches 214; Indels 31; Gaps
         34 SHYLLMDRVSQILQDHGHNVTMLNHKRG----PFMPDFKKEEKSYQVISWLAPEDHQREF 89
Qу
            46 SHWMNIKTILDELVORGHEVTVLASSASISFDPNSPSTLKFEVYPVSLTKTEFEDIIKQL 105
         90 KKSFDFFLEETLGGRGKFENLLNVL----EYLALQCSHFLNRKDIMDSLKNENFDMVIVE 145......
QУ
             106 VKRWAELPKDTFW--SYFSOVQEIMWTFNDILRKFCKDIVSNKKLMKKLQESRFDVVLAD 163
        146 TFDYCPF--LIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWG 199
Qу
                Db
        164 A--VFPFGELLAELLKIPFVYSLRFSPGYAIEKHSGGLLFPPSYVPVVMSELSDOMTFIE 221
        200 RVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDF 257
Qy
            222 RVKNMIYVLYFEFWFQIFDMKK-WDQFYSE--VLGRPTTLSETMAKADIWLIRNYWDFQF 278
Db
```

```
258 ARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMV-NTCQNPEIFKEM 316
Qу
              279 PHPLLPNVEFVGGLHCKPAKPLPKEMEEFVQSSGENGVVVFSLGSMVSNTSE--ERANVI 336
Db
         317 NNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIM 376
             337 ASALAKIPQKVLWRFDGN---KPDTLGLNTRLYKWIPQNDLLGHPKTRAFITHGGANGIY 393
         377 EAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSA 436
Qy
            394 EAIYHGIPMVGVPLFADQPDNIAHMKAKGAAVSLDFHTMSSTDLLNALKTVINDPLYKEN 453
Dh
         437 AVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT 496
Qу
                      1: | :| | | | :: | | | | | ::
                                                  1:: 11 111
            1: | |
         454 AMKLSRIHHDQPVKPLERAVFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVTGFLLACV 513
Db
         497 LGTLWLCGKLLGMAVW-WLRGARKVK 521
Qy
                       11::1:1
               ::: 1 1
         514 ATVIFIITKCL-FCVWKFVRTGKKGK 538
Db
RESULT 6
US-09-356-806-8
; Sequence 8, Application US/09356806
; Patent No. 6586175
; GENERAL INFORMATION:
; APPLICANT: Penny, Laura
  APPLICANT: Galvin, Margaret
 APPLICANT: Miller, Andrew
  APPLICANT: Reidy, Michael
   TITLE OF INVENTION: Genotyping Human
  TITLE OF INVENTION: UDP-Glucuronosyltransferase 2B4 (UGT2B4), 2B7 (UGT2B7)
and
  TITLE OF INVENTION: 2B15 (UGT2B15) Genes
  FILE REFERENCE: SEQ-22PRV2
  CURRENT APPLICATION NUMBER: US/09/356,806
  CURRENT FILING DATE: 1999-07-20
  NUMBER OF SEQ ID NOS: 164
   SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 8
   LENGTH: 528
   TYPE: PRT
   ORGANISM: H. sapiens
US-09-356-806-8
                       23.9%; Score 661.5; DB 4; Length 528;
  Query Match
  Best Local Similarity 34.2%; Pred. No. 1.7e-61;
  Matches 173; Conservative 87; Mismatches 215; Indels
                                                         31; Gaps
                                                                    15;
          34 SHYLLMDRVSQILQDHGHNVTMLNHKRG----PFMPDFKKEEKSYQVISWLAPEDHQREF 89
Qу
             ::
          34 SHWMNIKTILDELVQRGHEVTVLASSASISFDPNSPSTLKFEVYPVSLTKTEFEDIIKQL 93
Db
          90 KKSFDFFLEETLGGRGKFENLLNVL----EYLALQCSHFLNRKDIMDSLKNENFDMVIVE 145
Qу
                           1 : :: : | | | :: | :| |:
                   ::1
             1:
          94 VKRWAELPKDTFW--SYFSQVQEIMWTFNDILRKFCKDIVSNKKLMKKLQESRFDVVLAD 151
Db
```

```
146 TFDYCPF--LIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWG 199
Qу
                 152 A--VFPFGELLAELLKIPFVYSLRFSPGYAIEKHSGGLLFPPSYVPVVMSELSDQMTFIE 209
Db
         200 RVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDF 257
             1||| ::::| | : |: :| | | | || : ||::| | : : | |
         210 RVKNMIYVLYFEFWFQIFDMKK-WDQFYSE--VLGRPTTLSETMAKADIWLIRNYWDFQF 266
         258 ARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMV-NTCQNPEIFKEM 316
Qу
              267 PHPLLPNVEFVGGLHCKPAKPLPKEMEEFVOSSGENGVVVFSLGSMVSNTSE--ERANVI 324
Db
         317 NNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIM 376
Qy
             325 ASALAKIPQKVLWRFDGN---KPDTLGLNTRLYKWIPQNDLLGHPKTRAFITHGGANGIY 381
Db
         377 EAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSA 436
Qу
             382 EAIYHGIPMVGVPLFADQPDNIAHMKAKGAAVSLDFHTMSSTDLLNALKTVINDPLYKEN 441
Db
         437 AVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT 496
Qу
            442 AMKLSRIHHDOPVKPLDRAVFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVTGFLLACV 501
Db
         497 LGTLWLCGKLLGMAVW-WLRGARKVK 521
Qу
               ::: | | | | | | | | | | | | | | |
         502 ATVIFIITKCL-FCVWKFVRTGKKGK 526
Db
RESULT 7
 PCT-US92-00282-6
 ; Sequence 6, Application PC/TUS9200282
   GENERAL INFORMATION:
     APPLICANT: OWENS, IDA S.
     APPLICANT: RITTER, JOSEPH K.
     TITLE OF INVENTION: THE GENETIC LOCUS UGT1 AND A MUTATION
    TITLE OF INVENTION: THEREIN.
     NUMBER OF SEQUENCES: 40
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: CUSHMAN DARBY & CUSHMAN
      STREET: 1615 L STREET, N.W.
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
       ZIP: 20036-5601
     COMPUTER READABLE FORM:
.. ...
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: PCT/US92/00282
       FILING DATE: 19920110
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
      NAME: SCOTT, WATSON T.
       REGISTRATION NUMBER: 26581
```

```
REFERENCE/DOCKET NUMBER: 91532-PCT
   TELECOMMUNICATION INFORMATION:
     TELEPHONE: 202-861-3000
     TELEFAX: 202-822-0944
     TELEX: 6714627 CUSH
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 531 amino acids
     TYPE: AMINO ACID
     STRANDEDNESS: single
     TOPOLOGY: linear
   MOLECULE TYPE: protein
PCT-US92-00282-6
                     23.8%; Score 658; DB 5; Length 531;
 Query Match
 Best Local Similarity 30.9%; Pred. No. 4.2e-61;
 Matches 171; Conservative 106; Mismatches 211; Indels
                                                     66; Gaps
                                                              17;
         1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
           7 LRGLSGLLLLLCALP---WAEGGKVL-VFPMEGSHWLSMRDVVRELHARGHQAVVL---- 58
Db
         61 GPFMPDFKKEEKSYQVISWLAP---EDHQREF----KKSFD-----FFLEETLGGRGK 106
Qу
                | | | : : :: | |::||| || || || ||
                                                  59 APEVTVHMKGEDFFTLQTYAFPYTKEEYQREILGNAKKGFEPQHFVKTFF--ETMASIKK 116
Dh
        107 FENLLNVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAIL 166
Qy
                   117 FFDL----YANSCAALLHNKTLIQQLNSSSFDVVLTDPVFPCGALLAKYLQIPAVFFL 170
Db
        167 STSFGSLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFS---FCRRQQHMQST 220
Qy
               171 RSVPCGIDYEATQCPKPSSYIPNLLTMLSDHMTFLQRVKNMLYPLTLKYIC----HLSIT 226
Db
        221 FDNTIKEHFTEGSR---PVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIK 277
Qу
                          227 PYESLASELLOREMSLVEVLSH----ASVWLFRGDFVFDYPRPIMPNMVFIGGINCVIKK 282
Db
        278 PVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWP 337
Qy
           283 PLSQEFEAYVNASGEHGIVVFSLGSMVSEIPEKKAM-EIAEALGRIPQTLLWRYTGT--- 338
Db
        338 KDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPEN 397
Qν
           339 RPSNLAKNTILVKWLPQNDLLGHPKARAFITHSGSHGIYEGICNGVPMVMMPLFGDQMDN 398
Db
        398 MVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVG 457
Qу
             399 AKRMETRGAGVTLNVLEMTADDLENALKTVINNKSYKENIMRLSSLHKDRPIEPLDLAVF 458
Db
        458 WIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWL-----CGKLLGM 509
Qу
                             1:::: | | | | | | | :::
           |:::|:: || ||:|
        459 WVEYVMRHKGAPHLRPAAHDLTWYQYHSLDVIGFLLAIVLTVVFIVYKSCAYGCRKCFG- 517
Db
        510 AVWWLRGARKVKET 523
Qу
                | :||::
        518 -----GKGRVKKS 525
Db
```

```
RESULT 8
US-09-180-852-2
; Sequence 2, Application US/09180852
; Patent No. 6287834
; GENERAL INFORMATION:
 APPLICANT: BELANGER, Alain
  APPLICANT: HUM, Dean W.
  APPLICANT: BEAULIEU, Martin
; APPLICANT: LEVESQUE, Eric
  TITLE OF INVENTION: CHARACTERIZATION AND USE OF AN ISOLATED URIDINE
  TITLE OF INVENTION: DIPHOSPHO-GLUCURONOSYLTRANSFERASE
 FILE REFERENCE: 1259-449
  CURRENT APPLICATION NUMBER: US/09/180,852
  CURRENT FILING DATE: 1999-02-08
  EARLIER APPLICATION NUMBER: PCT/CA97/00328
 EARLIER FILING DATE: 1997-05-16
  EARLIER APPLICATION NUMBER: US 08/649,319
  EARLIER FILING DATE: 1996-05-17
  NUMBER OF SEQ ID NOS: 2
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 2
   LENGTH: 530
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-180-852-2
                      23.7%; Score 657; DB 3; Length 530;
  Query Match
  Best Local Similarity 32.6%; Pred. No. 5.3e-61;
 Matches 159; Conservative 92; Mismatches 211; Indels
                                                       26; Gaps
         34 SHYLLMDRVSQILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVI-SWLAPEDHQREFKKS 92
Qу
            34 SHWINMKTILEELVQRGHEVIVLTSSASILVNASKSSAIKLEVYPTSLTKNDLEDFFMKM 93
         93 FDFFLEETLGGRGKFENLLNVLEYLALQCSHF-----LNRKDIMDSLKNENFDMVI 143
Qу
                    : |: : |: | : |:
                                               11:1:1:1:
         94 FDRWTYSI--SKNTFWSYFSQLQELCWEYSDYNIKLCEDAVLNKK-LMRKLQESKFDVLL 150
         144 VETFDYCPFLIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWG 199
Qy
             151 ADAVNPCGELLAELLNIPFLYSLRFSVGYTVEKNGGGFLFPPSYVPVVMSELSDQMIFME 210
Db
         200 RVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDF 257
QУ
            211 RIKNMIYMLYFDFWFQAYDLKK-WDQFYSE--VLGRPTTLFETMGKAEMWLIRTYWDFEF 267
         258 ARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMN 317
Qу
             : 1
         268 PRPFLPNVDFVGGLHCKPAKPLPKEMEEFVQSSGENGIVVFSLGSMISN-MSEESANMIA 326
Db
         318 NAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIME 377
Qу
            327 SALAQIPQKVLWRFD---GKKPNTLGSNTRLYKWLPQNDLLGHPKTKAFITHGGTNGIYE 383
Db
         378 AIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAA 437
Qу
```

```
384 AIYHGIPMVGIPLFADQHDNIAHMKAKGAALSVDIRTMSSRDLLNALKSVINDPIYKENI 443
Db
        438 VAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTL 497
Qy
           444 MKLSRIHHDQPVKPLDRAVFWIEFVMRHKGAKHLRVAAHNLTWIQYHSLDVIAFLLACVA 503
Db
        498 GTLWLCGK 505
Qу
            ::: |
        504 TMIFMITK 511
Db
RESULT 9
US-09-356-806-40
; Sequence 40, Application US/09356806
; Patent No. 6586175
; GENERAL INFORMATION:
; APPLICANT: Penny, Laura
; APPLICANT: Galvin, Margaret
; APPLICANT: Miller, Andrew
; APPLICANT: Reidy, Michael
 TITLE OF INVENTION: Genotyping Human
  TITLE OF INVENTION: UDP-Glucuronosyltransferase 2B4 (UGT2B4), 2B7 (UGT2B7)
and
; TITLE OF INVENTION: 2B15 (UGT2B15) Genes
 FILE REFERENCE: SEQ-22PRV2
; CURRENT APPLICATION NUMBER: US/09/356,806
; CURRENT FILING DATE: 1999-07-20
; NUMBER OF SEQ ID NOS: 164
 SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 40
   LENGTH: 524
   TYPE: PRT
   ORGANISM: H. sapiens
US-09-356-806-40
                    23.5%; Score 651.5; DB 4; Length 524;
 Query Match
 Best Local Similarity 31.5%; Pred. No. 2e-60;
 Matches 163; Conservative 87; Mismatches 212; Indels 55; Gaps 14;
         34 SHYLLMDRVSQILQDHGHNVTMLNHKRG-PFMPD-----FKKEEKSY---Q 75
Qу
           | | :::
        34 SHWMNIKTILDELIQRGHEVTVLASSASILFDPNNSSALKIEIYPTSLTKTELENFIMQQ 93
Db
         76 VISWL-APEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ-CSHFLNRKDIMDS 133
Qу
           94 IKRWSDLPKD-----TFWLYFSQV-----QEIMSIFGDITRKFCKDVVSNKKFMKK 139
Db
        134 LKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTS----FGSLEFGLPIPLSYVPVFRS 189
Qy
           140 VQESRFDVIFADAIFPCSELLAELFNIPFVYSLSFSPGYTFEKHSGGFIFPPSYVPVVMS 199
Db
        190 LLTDHMDFWGRVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTE---GSRPVLSHLLKA 244
Qу
            200 ELTDQMTFMERVKNMIYVLYFDF-----WFEIFDMKKWDQFYSEVLGRPTTLSETMGKA 253
Db
        245 ELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMV 304
Qу
```

```
254 DVWLIRNSWNFQFPYPLLPNVDFVGGLHCKPAKPLPKEMEDFVQSSGENGVVVFSLGSMV.313
Db
        305 NTCONPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIR 364
Qу
           314 SN-MTEERANVIASALAQIPQKVLWRFDGN---KPDTLGLNTRLYKWIPQNDLLGHPKTR 369
Db
        365 LFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKM 424
Qу
            370 AFITHGGANGIYEAIYHGIPMVGIPLFADQPDNIAHMKARGAAVRVDFNTMSSTDLLNAL 429
Db
        425 KQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQY 484
Qу
                     430 KRVINDPSYKENVMKLSRIQHDQPVKPLDRAVFWIEFVMRHKGAKHLRVAAHDLTWFQYH 489
Dh
        485 LFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVK 521
Qy
             490 SLDVIGFLLVCVATVIFIVTKCCLFCFW--KFARKAK 524
Dh
RESULT 10
US-09-949-016-8605
; Sequence 8605, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
 TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
; TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES
THEREOF
; FILE REFERENCE: CL001307
  CURRENT APPLICATION NUMBER: US/09/949,016
  CURRENT FILING DATE: 2000-04-14
; PRIOR APPLICATION NUMBER: 60/241,755
; PRIOR FILING DATE: 2000-10-20
 PRIOR APPLICATION NUMBER: 60/237,768
 PRIOR FILING DATE: 2000-10-03
  PRIOR APPLICATION NUMBER: 60/231,498
  PRIOR FILING DATE: 2000-09-08
  NUMBER OF SEQ ID NOS: 207012
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 8605
   LENGTH: 439
   TYPE: PRT
   ORGANISM: Human
   FEATURE:
   NAME/KEY: VARIANT
   LOCATION: (1)...(439)
   OTHER INFORMATION: Xaa = Any Amino Acid
US-09-949-016-8605
                      23.4%; Score 649; DB 4; Length 439;
  Query Match
  Best Local Similarity 34.4%; Pred. No. 2.8e-60;
 Matches 147; Conservative 74; Mismatches 184; Indels 22; Gaps
        106 KFENLLNVLEYLALQ-CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVA 164
Qy ·
            21 KYREIMSIFGDITRKFCKDVVSNKKFMKKVQESRFDVIFADAIFPCSELLAELFNIPFVY 80
```

```
165 ILSTS----FGSLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKN--FLMFFSFCRRQQHMQ 218
Qу
            81 SLSFSPGYTFEKHSGGFIFPPSYVPVVMSELTDQMTFMERVKNMIYVLYFDF-----WF 134
Db
        219 STFDNTIKEHFTE---GSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKP 275
Qy
             135 EIFDMKKWDOFYSEVLGRPTTLSETMGKADVWLIRNSWNFQFPYPLLPNVDFVGGLHCKP 194
        276 IKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSH 335
Qу
            Db
        195 AKPLPKEMEDFVQSSGENGVVVFSLGSMVSN-MTEERANVIASALAQIPQKVLWRFDGN- 252
        336 WPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQP 395
Qу
             253 --KPDTLGLNTRLYKWIPQNDLLGHPKTRAFITHGGANGIYEAIYHGIPMVGIPLFADQP 310
Db
        396 ENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRL 455
Qy
           311 DNIAHMKARGAAVRVDFNTMSSTDLLNALKRVINDPSYKENVMKLSRIQHDQPVKPLDRA 370
Db
        456 VGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLR 515
Qу
            371 VFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVIGFLLVCVATVIFIVTKCCLFCFW--K 428
Db
        516 GARKVKE 522
Qу
            111 1:
        429 FARKAKK 435
Db
RESULT 11
US-09-356-806-113
; Sequence 113, Application US/09356806
; Patent No. 6586175
; GENERAL INFORMATION:
; APPLICANT: Penny, Laura
; APPLICANT: Galvin, Margaret
; APPLICANT: Miller, Andrew
; APPLICANT: Reidy, Michael
  TITLE OF INVENTION: Genotyping Human
; TITLE OF INVENTION: UDP-Glucuronosyltransferase 2B4 (UGT2B4), 2B7 (UGT2B7)
and
; TITLE OF INVENTION: 2B15 (UGT2B15) Genes
; FILE REFERENCE: SEO-22PRV2
; CURRENT APPLICATION NUMBER: US/09/356,806
; CURRENT FILING DATE: 1999-07-20
  NUMBER OF SEQ ID NOS: 164
; SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 113
   LENGTH: 530
   TYPE: PRT
   ORGANISM: H. sapiens
US-09-356-806-113
                     23.4%; Score 649; DB 4; Length 530;
  Query Match
  Best Local Similarity 31.8%; Pred. No. 3.8e-60;
 Matches 155; Conservative 90; Mismatches 218; Indels 24; Gaps
                                                               10;
```

```
34 SHYLLMDRVSQILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVI-SWLAPEDHQREFKKS 92
Qу
            : | : | | :
         34 SHWINMKTILEELVQRGHEVTVLTSSASTLVNASKSSAIKLEVYPTSLTKNDLEDSLLKI 93
Db
         93 FDFFLEETLGGRGKFENLLNVLEYLALO-----CSHFLNRKDIMDSLKNENFDMVIV 144
Qу
                    : |: : |: | : | : | : | : | :: | :: |
         94 LDRWIYGV--SKNTFWSYFSQLQELCWEYYDYSNKLCKDAVLNKKLMMKLQESKFDVILA 151
Db
        145 ETFDYCPFLIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWGR 200
Qу
           Db
        152 DALNPCGELLAELFNIPFLYSLRFSVGYTFEKNGGGFLFPPSYVPVVMSELSDOMIFMER 211
        201 VKNF--LMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFA 258
Qy
           Db
        212 IKNMIHMLYFDFWFQIYDLKK-WDQFYSE--VLGRPTTLFETMGKAEMWLIRTYWDFEFP 268
        259 RPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNN 318
Qу
            269 RPFLPNVDFVGGLHCKPAKPLPKEMEEFVQSSGENGIVVFSLGSMISN-MSEESANMIAS 327
Dh
        319 AFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEA 378
Qγ
            | | :|| |:|:
                        328 ALAQIPQKVLWRFD---GKKPNTLGSNTRLYKWLPQNDLLGHPKTKAFITHGGTNGIYEA 384
Db
        379 IOHGVPMVGIPLFGDOPENMVRVEAKKFGVSIOLKKLKAETLALKMKOIMEDKRYKSAAV 438
Qу
            385 IYHGIPMVGIPLFADQHDNIAHMKAKGAALSVDIRTMSSRDLLNALKSVINDPVYKENVM 444
Db
        439 AASVILRSHPLSPTORLVGWIDHVLOTGGATHLKPYVFOOPWHEOYLFDVFVFLLGLTLG 498
Qу
                  445 KLSRIHHDQPMKPLDRAVFWIEFVMRHKGAKHLRVAAHNLTWIQYHSLDVIAFLLACVAT 504
Dh
Qу
        499 TLWLCGK 505
            ::: |
        505 VIFIITK 511
Db
RESULT 12
US-09-949-016-6999
; Sequence 6999, Application US/09949016
; Patent No. 6812339
; GENERAL INFORMATION:
 APPLICANT: VENTER, J. Craig et al.
  TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
  TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES
THEREOF
  FILE REFERENCE: CL001307
  CURRENT APPLICATION NUMBER: US/09/949,016
  CURRENT FILING DATE: 2000-04-14
  PRIOR APPLICATION NUMBER: 60/241,755
  PRIOR FILING DATE: 2000-10-20
  PRIOR APPLICATION NUMBER: 60/237,768
  PRIOR FILING DATE: 2000-10-03
  PRIOR APPLICATION NUMBER: 60/231,498
; PRIOR FILING DATE: 2000-09-08
```

; NUMBER OF SEQ ID NOS: 207012

```
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 6999
   LENGTH: 528
   TYPE: PRT
   ORGANISM: Human
US-09-949-016-6999
                     22.9%; Score 632.5; DB 4; Length 528;
  Query Match
  Best Local Similarity 33.4%; Pred. No. 2.2e-58;
  Matches 169; Conservative 88; Mismatches 218; Indels 31; Gaps 15;
         34 SHYLLMDRVSQILQDHGHNVTMLNHKRG----PFMPDFKKEEKSYQVISWLAPEDHQREF 89
Qу
           34 SHWMNIKTILDELVORGHEVTVLASSASISFDPNSPSTLKFEVYPVSLTKTEFEDIIKQL 93
Db
         90 KKSFDFFLEETLGGRGKFENLLNVL----EYLALQCSHFLNRKDIMDSLKNENFDMVIVE 145
Qу
            ]: ::| | | : :: : | | :: | :| |: |:| :: |:| :|
         94 VKRWAELPKDTFW--SYFSQVQEIMWTFNDILRKFCKDIVSNKKLMKKLQESRFDVVLAD 151
Db
        146 TFDYCPF--LIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWG 199
Ov
               152 A--VFPFGELLAELLKIPFVYRPRFSPGYAIEKHSGGLLFPPSYVPVVMSELSDQMTFIE 209
Db
        200 RVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDF 257
Qy
            210 RVKNMIYVLYFEFWFQIFDMKK-WDQFYSE--VLGRPTTLSETMAKADIWLIRNYWDFQF 266
Db
        258 ARPLLPNTVYVGGLMEKPIKPVPODLENFIAKFGDSGFVLVTLGSMV-NTCQNPEIFKEM 316
Qу
             267 PHPLLPNVEFVGGLHCKPAKPLPKEMEEFVQSSGENGVVVFSLGSMVSNTSE--ERANVI 324
Db
        317 NNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIM 376
Qу
            325 ASALAKIPOKVLWRFDGN---KPDTLGLNTRLYKWIPONDLLGHPKTRAFITHGGANGIY 381
Db
        377 EAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSA 436
Qу
            382 KAISPRIPMVGVPLFADQPDNIAHMKAKGAAVSLDFHTMSSTDLLNALKTVINDPLYKEN 441
Db
        437 AVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT 496
Qу
           442 AMKLSRIHHDQPVKPLDRAVFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVTGFLLACV 501
Db
        497 LGTLWLCGKLLGMAVW-WLRGARKVK 521
Qу
              502. ATVIFIITKCL-FCVWKFVRTGKKGK 526
Db
RESULT 13
PCT-US92-00282-5
; Sequence 5, Application PC/TUS9200282
   GENERAL INFORMATION:
    APPLICANT: OWENS, IDA S.
    APPLICANT: RITTER, JOSEPH K.
    TITLE OF INVENTION: THE GENETIC LOCUS UGT1 AND A MUTATION TITLE OF INVENTION: THEREIN.
    NUMBER OF SEQUENCES: 40
```

```
CORRESPONDENCE ADDRESS:
     ADDRESSEE: CUSHMAN DARBY & CUSHMAN
     STREET: 1615 L STREET, N.W.
     CITY: WASHINGTON
     STATE: D.C.
     COUNTRY: U.S.A.
     ZIP: 20036-5601
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
     COMPUTER: IBM PC compatible
     OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: PCT/US92/00282
     FILING DATE: 19920110
     CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
     NAME: SCOTT, WATSON T.
     REGISTRATION NUMBER: 26581
     REFERENCE/DOCKET NUMBER: 91532-PCT
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 202-861-3000
     TELEFAX: 202-822-0944
     TELEX: 6714627 CUSH
  INFORMATION FOR SEQ ID NO: 5:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 531 amino acids
     TYPE: AMINO ACID
     STRANDEDNESS: single
     TOPOLOGY: linear
    MOLECULE TYPE: protein
PCT-US92-00282-5
                     22.7%; Score 629; DB 5; Length 531;
 Query Match
 Best Local Similarity 30.4%; Pred. No. 5.3e-58;
 Matches 159; Conservative 100; Mismatches 218; Indels 46; Gaps 13;
        4 QRVLLLVGFL-LPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP 62
Qу
            9 QRISAGVFFLALWGMVVGD--KLLVVPQ-DGSHWLSMKDIVEVLSDRGHEIVVV----- 59
         63 FMPDFK---KEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRG-----KFENLLN 112
Qу
            :: | :
        -60 -VPEVNLLLKEYKYYTRKIYPVPYD-QEELKNRYQSFGNNHFAERSFLTAPQTEYRNNMI 117
        113 VLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGS 172
QУ
            118 VIGLYFINCOSLLODROTLNFFKESKFDALFTDPALPCGVILAEYLGLPSVYLFRGFPCS 177
        173 LEFGL---PIPLSYVPVFRSLLTDHMDFWGRVKNFL------MFFSFCRRQQHMQSTFD 222
Qy
                  Dh
        178 LEHTFSRSPDPVSYIPRCYTKFSDHMTFSQRVANFLVNLLEPYLFYCLFSKYEKLASA-- 235
        223 NTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQD 282
Qу
                    : |
        236 -VLK-----RDVDIITLSEVSVWLLRYDFVLEYPRPVMPNMVFIGGINCKKRKDLSQE 287
Db
```

```
283 LENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHL 342
QУ
            | | | | : | :
                                                           : : : | •
         288 FEAYINASGEHGIVVFSLGSMVSEIPEKKAM-AIADALGKNPQTVLWRYTGT---RPSNL 343
Db
         343 AANVKIVDWLPOSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVE 402
Qy
             344 ANNTILVKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRME 403
Db
         403 AKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHV 462
Qy
                ||::::::|| :|::|| :|::|
                                                             1 1:: 1
         404 TKGAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFV 463
         463 LQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
Qу
                            1:::: | | | | | | | | | |
                                              :: 1
             :: || ||:|
         464 MRHKGAPHLRPAAHDLTWYOYHSLDVIGFLLAVVLTVAFITFK 506
Db
RESULT 14
PCT-US92-00282-4
; Sequence 4, Application PC/TUS9200282
  GENERAL INFORMATION:
    APPLICANT: OWENS, IDA S.
    APPLICANT: RITTER, JOSEPH K.
    TITLE OF INVENTION: THE GENETIC LOCUS UGT1 AND A MUTATION
    TITLE OF INVENTION: THEREIN.
    NUMBER OF SEQUENCES: 40
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: CUSHMAN DARBY & CUSHMAN
      STREET: 1615 L STREET, N.W.
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 20036-5601
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: PCT/US92/00282
      FILING DATE: 19920110
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: SCOTT, WATSON T.
      REGISTRATION NUMBER: 26581
      REFERENCE/DOCKET NUMBER:
                               91532-PCT
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 202-861-3000
      TELEFAX: 202-822-0944
      TELEX: 6714627 CUSH
   INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 534 amino acids
      TYPE: AMINO ACID
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
```

```
21.9%; Score 606; DB 5; Length 534;
 Query Match
 Best Local Similarity 31.3%; Pred. No. 1.5e-55;
 Matches 163; Conservative 94; Mismatches 218; Indels
                                                                 13;
                                                       46; Gaps
          8 LLVGFLLPGVLLS----EAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP 62
Qу
                   111
                          12 LATGLLL---LLSVQPWAESGKVLVVPT-DGSPWLSMREALRELHARGHQAVVLT----P 63
Db
         63 FMPDFKKEEKSYOVISWLAPEDHOREFKKSFDFFLEETLG---GRGKFENLL----- 111
Qу
                 1111 : : :: 1 |:|| :
                                           1 : 1:11
         64 EVNMHIKEEKFFTLTAYAVPWT-QKEFDR------VTLGYTQGFFETEHLLKRYSRSMA 115
Db
        112 ---NVLEYLALOCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILST 168
Qу
               116 IMNNVSLALHRCCVELLHNEALIRHLNATSFDVVLTDPVNLCGAVLAKYLSIPAVFFWRY 175
        169 SFGSLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTI 225
Qу
                      176 IPCDLDFKGTQCPNPSSYIPKLLTTNSDHMTFLQRVKNMLYPLALSYICHTFSAPYASLA 235
Db
        226 KEHFTEGSRPV-LSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLE 284
Qу
             236 SELF---OREVSVVDLVSYASVWLFRGDFVMDYPRPIMPNMVFIGGINCANGKPLSQEFE 292
Db
        285 NFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAA 344
Qу
                1: | |: :|||||: :
                                     ::| :|| |:|:
                                                     : : :||
        293 AYINASGEHGIVVFSLGSMVSEIPEKKAM-AIADALGKIPOTVLWRYTGT---RPSNLAN 348 ·
Db
        345 NVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAK 404
Qу
            349 NTILVKWLPONDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETK 408
Db
        405 KFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQ 464
Qу
              409 GAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMR 468
Db
        465 TGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
Qу
                         1:::: | | | | | | | | |
              11 ||:1
        469 HKGAPHLRPAAHDLTWYQYHSLDVIGFLLAVVLTVAFITFK 509
Db
RESULT 15
PCT-US92-00282-7
; Sequence 7, Application PC/TUS9200282
  GENERAL INFORMATION:
    APPLICANT: OWENS, IDA S.
    APPLICANT: RITTER, JOSEPH K.
    TITLE OF INVENTION: THE GENETIC LOCUS UGT1 AND A MUTATION
    TITLE OF INVENTION: THEREIN.
    NUMBER OF SEQUENCES: 40
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: CUSHMAN DARBY & CUSHMAN
      STREET: 1615 L STREET, N.W.
      CITY: WASHINGTON
      STATE: D.C.
```

```
COUNTRY: U.S.A.
      ZIP: 20036-5601
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
     OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: PCT/US92/00282
      FILING DATE: 19920110
     CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
     NAME: SCOTT, WATSON T.
     REGISTRATION NUMBER: 26581
     REFERENCE/DOCKET NUMBER: 91532-PCT
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 202-861-3000
      TELEFAX: 202-822-0944
      TELEX: 6714627 CUSH
 INFORMATION FOR SEQ ID NO: 7:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 529 amino acids
      TYPE: AMINO ACID
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
PCT-US92-00282-7
                      21.7%; Score 600; DB 5; Length 529;
 Query Match
 Best Local Similarity 28.3%; Pred. No. 6.6e-55;
 Matches 155; Conservative 105; Mismatches 222; Indels 66; Gaps 14;
          8 LLVGFL---LPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFM 64
Qу
            | ||| || || :| : ||:| : |||:| || : : || : ||:| :||
         10 LPAGFLFLVLWGSVLGD--KLLVVPQ-DGSHWLSMKEIVEHLSERGHDIVVL------ 59
         65 PDFK---KEEKSYOVISWLAP-----EDHQREFKKSFDFFLEETLGGRGKFENLLNVLE 115
Qy .
                  60 PEVNLLLGESKYYRRKSFPVPYNLEELRTRYRSFGNNHFAASSPLMAPLREYRNNMIVID 119
Db
         116 YLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEF 175
Qy
                120 MCFFSCQSLLKDSATLSFLRENQFDALFTDPAMPCGVILAEYLKLPSIYLFRGFPCSLEH 179
         176 --GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGS 233
Qу
                1 1:111 1 : :111 1 1: 11: ..... : :1 : 1
         180 IGQSPSPVSYVPRFYTKFSDHMTFPQRLANFI-----ANILENYL-YHCLYSK 226
Db
         234 RPVLSHLLLKAE-----LWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDL 283
Qу
              :1: ||| : || : || ::|| ::|| | ::||
         227 YEILASDLLKRDVSLPALHQNSLWLLRYDFVFEYPRPVMPNMIFIGGTNCKKKGNLSQEF 286
Db
         284 ENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLA 343
Qy
            287 EAYVNASGEHGIVVFSLGSMVSEIPEKKAM-EIAEALGRIPQTLLWRYTGT---RPSNLA 342
Db
        344 ANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEA 403
Qv
```

Db	343	:     :           :    :      :    :
Qу	404	KKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVL 463 :   ::::: : : :::: : :::: :
Db	403	RGAGVTLNVLEMTADDLENALKTVINNKSYKENIMRLSSLHKDRPIEPLDLAVFWVEYVM 462
Qу	464	QTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLR 515:
Db	463	RHKGAPHLRPAAHDLTWYQYHSLDVIGFLLAIVLTVVFIVYKSCAYGCRKCFG 515
QУ	516	GARKVKET 523
Db	516	GKGRVKKS 523

Search completed: February 15, 2005, 12:54:31 Job time : 57 secs

## GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: February 15, 2005, 12:26:43; Search time 40 Seconds

(without alignments)

1258.034 Million cell updates/sec

Title: US-10-017-867A-282

Perfect score: 2768

Sequence: 1 MAGQRVLLLVGFLLPGVLLS.....GKLLGMAVWWLRGARKVKET 523

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1500 summaries

Database: PIR 79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

## SUMMARIES

	·	ક					•
Result		Query					
No.	Score	Match	Length	DB	ID	 	Description
1	700	25.3	541	2	JC5423		2-hydroxyacylsphin
. 2	684	24.7	541	2	A48801		2-hydroxyacylsphin
3	679	24.5	533	2	A39092		glucuronosyltransf
4	674.5	24.4	530	2	A40467		glucuronosyltransf
5	671	24.2	529	2	A42233		glucuronosyltransf
6	670	24.2	531	2	B47113		glucuronosyltransf
7	662.5	23.9	530	2	C47113		glucuronosyltransf
8	658	23.8	531	2	A35343		glucuronosyltransf
9	658	23.8	535	2	157961		glucuronosyltransf
10	656.5	23.7	528	2	JN0619		glucuronosyltransf
11	654.5	23.6	529	2	A35366		glucuronosyltransf
12	650	23.5	527	2	S15089		glucuronosyltransf
13	649	23.4	530	2	A48633		glucuronosyltransf

14	642	23.2	528	2	JN0620
			530	2	507390
15	640	23.1			
16	639	23.1	530	2	A36276
	637.5			2	S00163
17		23.0	530		
18	632.5	22.9	530	2	S68200
19	632	22.8	523	2	S11309
20	629	22.7	531	2	A31340
21	623	22.5	530	2	JC5656
22	622.5	22.5	529	2	JE0200
23	612.5	22.1	531	2	A55788
				2	
24	610	22.0	530		S17512
25	600	21.7	529	2	A24600
26	596.5	21.5	531	2	B55788
27	513	18.5	485	2	T13694
28	471	17.0	949	2	.T18591
			534	2	
29	455.5	16.5			T34455
30	449	16.2	531	2	Т33980
31	448	16.2	573	2	T27578
32	447	16.1	531	2	Т23835
33	441.5	16.0	508	2	T03910
34	438	15.8	534	2	T19944
35	427	15.4	586	2	T19075
36	424	15.3	534	2	T19951
37	419	15.1	533	2	T34458
38	412.5	14.9	475	2	т33979
39	412.5	14.9	537	2	T25536
40	411	14.8	745	2	T23893
41	409.5	14.8	661	2	T32518
42	408	14.7	533	2	T34457
43	405.5	14.6	520	2	Т19661
44	405	14.6	530	2	T18596
45	398.5	14.4	526	2	T25535
46	398	14.4	534	2	T27588
47	392.5	14.2	529	2	т33738
48	391.5	14.1	530	2	T19365
	391	14.1	537	2	T21823
49					
50	389	14.1	531	2	T15329
51	387.5	14.0	504	2	T34106
52	386.5	14.0	542	2	T20457
53	384	13.9	417	2	T34459
54		13.9	567		T25771
	383.5			2	
55	382.5	13.8	574	2	T19738
56	380.5	13.7	535	2	T24309
57	379.5	13.7	535	2	T27582
58	377	13.6	540	2	T33982
59	375.5	13.6	525	2	T24647
60	375	13.5	522	2	T31893
61	374	13.5	526	2	T27581
					T03890
62	373	13.5	611	2	
63	364.5	13.2	1003	2	T19638
64	362	13.1	529	2	T18595
65	361.5	13.1	533	2	T27589
66	361.5	13.1	581	2	Т33737
67	361	13.0	531	2	T25537
68	360.5	13.0	531	2	T33981
69	357	12.9	174	2	A47113
70	354.5	12.8	540	2	T20456

UDP-glucuronosyltr glucuronosyltransf glucuronosyltransf glucuronosyltransf qlucuronosyltransf glucuronosyltransf glucuronosyltransf UDP glucuronosyltr orphan UDP-glucuro glucuronosyltransf glucuronosyltransf glucuronosyltransf glucuronosyltransf glucuronosyltransf hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote UDP-glucuronosyltr hypothetical prote glucuronosyltransf hypothetical prote

71 72 73 74 75 76 77 78 79 80 81 82	349.5 346.5 344 339 333 328 326 322 317 317 309.5 309	12.6 12.5 12.4 12.2 12.0 11.8 11.6 11.5 11.5	502 515 710 558 506 560 515 540 514 593 579 523	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T25263 S52453 B89252 T15939 H88809 T30475 T32217 T15573 T25534 T32485 H88632 T28727
83	305.5	11.0	440	2	T24478
84	300.5	10.9	542	2	T28719
85	292	10.5	435	2	T24477
86	288.5	10.4	572	2	T32303
87	280	10.1	523	2 2 2	T28721
88	274.5	9.9	580		T28725
89	272	9.8	534		T28720
90	270	9.8	405		G89075
91	264.5	9.6	501	2	T31754
92	259.5	9.4	489	2	T10283
93	257.5	9.3	495	2	T28722
94	257.5	9.3	703	2	S40710
95	256	9.2	310	2	G02309
96	256	9.2	506	2	T33770
97	255	9.2	289	2	B42586
98	248	9.0	506	2	T41760
99	246.5	8.9	506	1	XUNVAC
100 101 102 103	245.5 244.5 244 242.5	8.9 8.8 8.8 8.8	457 289 581 795		H89251 D42586 B87768 T20609 C42586
104 105 106 107 108	226 224.5 197.5 186 185.5	8.2 8.1 7.1 6.7 6.7	289 285 488 419 484	2 2 2 1 2	G02240 T49903 S74500 D71419
109	185	6.7 ·	433	2	S51767
110	184.5	6.7	453	2	A86191
111	182	6.6	413	2	S52980
112	181.5	6.6	449	2	H84870
113	181.5	6.6	479	2	E71419
114	180.5	6.5	260	2	T31894
115	178	6.4	428	2	C70670
116	177	6.4	457	2	B84725
117	176.5	6.4	1184	2	H86190
118 119 120 121	175.5 173.5 172 171	6.3 6.2 6.2	480 431 476 452	2 2 2 2	B85014 B37802 H86207 T00981
122 123 124 125 126 127	171 169.5 169.5 169 168.5 167.5	6.2 6.1 6.1 6.1 6.1	467 459 487 456 456 475	2 2 2 2 2 2	H84699 T51558 C86356 T00506 F84724 F71419

hypothetical prote ecdysteroid UDP-gl protein ZC455.4 [i hypothetical prote protein R11A8.3 [i probable phenol be hypothetical prote hypothetical prote hypothetical prote hypothetical prote protein F56B3.7 [i hypothetical prote protein K04A8.10 [ hypothetical prote ecdysteroid UDPqlu hypothetical prote hypothetical prote UDP-glucuronosyltr hypothetical prote glucuronosyltransf UDP-glucosyl trans ecdysteroid UDPqlu protein ZC455.6 [i glucuronosyltransf protein F54C1.1 [i hypothetical prote glucuronosyltransf UDP-glucuronosyltr glucosyltransferas zeaxanthin glucosy probable indole-3glycosyl transfera hypothetical prote zeaxanthin glucosy probable glucosylt probable indole-3hypothetical prote probable glycosylprobable glucosylt hypothetical prote probable flavonol crtX protein - Erw hypothetical prote probable glucosylt probable flavonol probable flavonol UDP-glucose glucos indole-3-acetate b probable glucosylt probable indole-3-

			460	_	<b>-00600</b>
128	166	6.0	460	2	т00639
129	165.5	6.0	407	2	T37104.
130	165.5	6.0	462	2	T01732
131	164.5	5.9	449	2	B84871
132	164.5	5.9	472	2	T51559
133	164	5.9	471	2	A54739
134	164	5.9	478	2	T08395
135	163.5	5.9	457	2	C85434
136	163.5	5.9	471	2	S01052
137	162.5	5.9	420	2	T08005
138	162.5	5.9	453	2	T45603
139	162	5.9	464	2	T47710
	161			2	A84700
140		5.8	474		
141	161	5.8	1198	2	S51434
142	159.5	5.8	478	2	A71417
143	159	5.7	287	2	S41953
144	159	5.7	460	2	T51560
145	158.5	5.7	471	1	S08325
146	158	5.7	496	2	E84784
147	157.5	5.7	435	2	H86924
148	157.5	5.7	467	2	F84699
149	157.5	5.7	471	2	S01037
150	157	5.7	317	2	T31897
151	156.5	5.7	442	2	F84618
152	155.5	5.6	392	1	C69851
153	155	5.6	470	2	D84614
154	154.5	5.6	431	2	S52583
155	154	5.6	495	2	Н84784
156	153.5	5.5	487	2	S41951
157	153	5.5	451	2	T45604
158	153	5.5	496	2	F84784
159	152.5	5.5	495	2	G84784
160	151.5	5.5	438	2	E86924
161	151.5	5.5	478	2	E84545
162	151	5.5	453	2	D86430
163	149.5	5.4	449	2	G70670
164	149.5	5.4	466	2	T07404
		5.4	489	2	н86356
165	149.5				
166	149	5.4	507	2	T46161
167	148.5	5.4	347	2	T06371
168	148.5	5.4	438	2	T45602
169	147.5	5.3	442	2	Н85096
170	147.5	5.3	479	2	F86356
171	147.5	5.3	481	2	B84700
172	146.5	5.3	452	2	T12981
173	146.5	5.3	458	2	C71420
174	146.5	5.3	476	2	T03745
175	146.5	5.3	496	2	D84784
176	146	5.3	452	2	G71416
177	146	5.3	491	2	C84784
178	145.5	5.3	481	2	G86144
179	145	5.2	453	2	T00511
180	144	5.2	407	2	C97234
181	143.5	5.2	479	2	G86207
182	143	5.2	469	2	D86144
183	143	5.2	481	2	E86356
184	142.5	5.1	472	2	S39507
		_	=		

hypothetical prote probable glycosyl UTP-glucose glucos probable glucosylt probable flavonol indole-3-acetate b UTP-glucose glucos glucosyltransferas flavonol 3-0-gluco flavonol 3-0-gluco glucosyltransferas glucuronosyl trans probable flavonol hypothetical prote hypothetical prote UTP-glucose glucos probable flavonol flavonol 3-0-gluco probable glucosyl probable glycosyl probable flavonol flavonol 3-0-gluco hypothetical prote probable flavonol macrolide glycosyl hypothetical prote crtX protein - Erw probable glucosyl UTP-glucose glucos glucosyltransferas probable glucosyl probable glucosyl probable glycosyl probable glucosylt probable UDP-gulco hypothetical prote probable glucosylt probable UDP-gluco glucosyltransferas probable UDP-glucu glucosyltransferas hypothetical prote T16E15.2 protein probable flavonol hypothetical prote hypothetical prote glucosyltransferas probable glucosyl probable glucosylt probable glucosyl hypothetical prote indole-3-acetate b probable glycosyl hypothetical prote protein probable U hypothetical prote glucuronosyl trans

				_	
185	142	5.1	424	2	T51110
186	141.5	5.1	449	2	T45605
187	141.5	5.1	476	2	T03747
188	141	5.1	394	2	S41952
189	141	5.1	481	2	T01850
190	140.5	5.1	346	2	S41954
191	140.5	5.1	486	2	T51431
192	140	5.1	480	2	F86207
193	139.5	5.0	452	2	F96672
194	138.5	5.0	444	2	G84565
195	138.5	5.0	449	2	S41950
196	138.5	5.0	450	2	D86356
		5.0	460	2	T47709
197	138.5				
198	138	5.0	385	2	T12980
199	138	5.0	438	2	T00507
200	138	5.0	455	2	T00584
201	137.5	5.0	467	2	T02238
202	136.5	4.9	488	2	T07786
203	135	4.9	470	2	н84565
204	135	4.9	490	2	T46162
205	134	4.8	455	2	T05861
206	134	4.8	456	2	C71402
207	133.5	4.8	398	2	A97146
208	132.5	4.8	447	2	T12978
209	132.5	4.8	447	2	E96672
210	131.5	4.8	287	2	н69906
		4.7		2	G86356
211	130.5		170		
212	130	4.7	455	1	XUBHFG
213	129.5	4.7	400	2	C97147
214	128.5	4.6	398	2	F64456
215	128.5	.4.6	430	1	S33184
216	126	4.6	440	2	т00583
217	125.5	4.5	381	1	A69784
218	120.5	4.4	490	2	Н84786
219	120	4.3	418	2	F75587
220	118.5	4.3	418	2	JS0636
221	118.5	4.3	453	2	Т05862
222	115.5	4.2	433	2	Н96549
223	115	4.2	615	2	D96499
224	114	4.1	1274	2	JN0015
225	113.5	4.1	460	2	F84529
	113.5	4.1	473	2	S60290
226					
227	113	4.1	478	2	T05423
228	112.5	4.1	281	2	T29825
229	112.5	4.1	732	2	T14233
					_C85609
230	111.5	4.0	374	2	
231	111.5	4.0	374	2	в90800
232	111.5	4.0	465	2	T48374
233	111.5	4.0	471	2	s36655
					S56819
234	111	4.0	842	2	
235	110.5	4.0	445	2	s75596
236	109.5	4.0	598	2	C97273
237	109.5	4.0	1221	2	T25005
238	109	3.9	408	2	T44859
239	108.5	3.9	1232	2	D64413
240	108	3.9	3079	1	RGBYI2
241	107	3.9	427	2	G81260
~ 1 T	107	J. 9	761	ے	JJ 12 00

glycosyltransferas glucosyltransferas glucosyltransferas UTP-glucose glucos UTP-glucose glucos UTP-glucose glucos glucosyltransferas hypothetical prote Similar to Flavono probable flavonol UTP-glucose glucos hypothetical prote glucuronosyl trans hypothetical prote indole-3-acetate b indole-3-acetate b glucosyl transfera UDP-glucose glucos probable flavonol glucosyltransferas hypothetical prote probable glucosylt probable glycosylt hypothetical prote Similar to Flavono macrolide glycosyl hypothetical prote flavonol 3-0-gluco probable glycosylt hypothetical prote glycosyltransferas probable indole-3macrolide glycosyl probable glucosylt probable glycosylt glycosyl transfera hypothetical prote hypothetical prote probable UDP-gluco trp protein - frui probable glucosylt anthocyanin rhamno probable glucosylt hypothetical prote NADH2 dehydrogenas probable glucosylt probable glucosyl-UDPG glucosyltrans UDP rhamnose-antho hypothetical prote hypothetical prote mutS-like mismatch hypothetical prote glycosyltransferas cobalamin biosynth probable GTPase-ac UDP-N-acetylmuramo

242	106	3.8	388	2	B70878
243	106	3.8.	482	2	E84680
244	105.5	3.8	484	2	E84529
245	105.5	3.8	556	2	S51858
246	105.5	3.8	570	2	D96766
	105.5			2	
247		3.8	732		T13814
248	105	3.8	408	. 2	T44860
249	103.5	3.7	371	2	AC0837
250	103.5	3.7	371	2	T30292
251	103.5	3.7	448	2	C96542
252	103.5	3.7	469	1	RGKBCP
253	103.5	3.7	622	2	A45746
254	103	3.7	395	2	AB0242
255	103	3.7	508	2	S12640
256	103	3.7	967	2	A30325
257	102.5	3.7	435	2	A86195
258	102.5	3.7	663	2	F90291
259	102.5	3.7	706	2	D90124
260	102.5	3.7	1275	2	JU0092
261	102	3.7	334	2	н75362
262	102	3.7	1655	2	S47446
263	101.5	3.7	385	2	C71699
264	101.5	3.7	728	2	T13794
265	101	3.6	511	2	S43685
266	101	3.6	693	2	T13175
267	101	3.6	697	2	T13754
268	100.5	3.6	370	2	E96929
269	100.5	3.6	740	2	T12753
270	100.5	3.6	858	2	A44919
271	. 100	3.6	1058	2	D82654
272	99.5	3.6	396	2	B69325
273	99	3.6	190	2	T24652
274	99	3.6	686	2	T13561
275	99	3.6	738	2	T12192
		3.6		2	T12220
276	98.5		733		
277	98.5	3.6	942	2	s75598
278	98.5	3.6	1049	2	S67613
279	98	3.5	382	2	T46519
280	98	3.5	622	1	QYCHGC
281	98	3.5	1271	2	T43269
282	97.5	3.5	387	2	A81324
283	97.5	3.5	514	1	A44405
284	97.5	3.5	774	2	S25284
285	97.5	3.5	1830	2	E82909
286	97	3.5	392	2	S72936
287	97	3.5	664	2	A72215
288	96.5	3.5	358	2	D95041
289	96.5	3.5	383	2	AG2894
290	96.5	3.5	388	2	в97670
291	96.5	3.5	521	2	D75581
292	96.5	3.5	612	2	G83307
293	96	3.5	336	2	C71154
294	96	3.5	544	2	S54531
295	95.5	3.5	469	2	s53024
296	95.5	3.5	505	2	T00400
297	95.5	3.5	698	2	T12586
298	95.5	3.5	741	2	T12707

probable transfera probable glucosylt probable glucosylt probable membrane protein glucosyltr NADH2 dehydrogenas glycosyltransferas probable glycosylt glucosyl-transfera hypothetical prote nitrogen regulatio phosphoenolpyruvat probable glycosyl transposition prot membrane alanyl am hypothetical prote . hypothetical prote hypothetical prote trp protein - frui hypothetical prote nucleoporin Np188 murg protein (murG NADH2 dehydrogenas monoamine transpor NADH2 dehydrogenas NADH2 dehydrogenas probable permease NADH2 dehydrogenas GCR3 protein - yea ankyrin-like prote LPS biosynthesis p hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas poly(A) polymerase vacuolar carboxype probable glycosyl phosphoenolpyruvat microcystin synthe cyclopropane-fatty tyrosine decarboxy protein kinase nek conserved hypothet UDP-glucuronosyltr excinuclease ABC c hypothetical prote conserved hypothet hypothetical prote malate synthase hypothetical prote hypothetical prote hypothetical prote nitrogen regulatio hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas

299 300	95 95	3.4 3.4	204 470	2 2	E85660 AG0003
301	95	3.4	535	2	E86334
302	. 95	3.4	707	2	T12665
303	95	3.4	707	2	T12751
304	95	3.4	707	2	T12752
305	94.5	3.4	282	2	AF2432
306	94.5	3.4	333	2	E97257
307	94.5	3.4	427	2	G72278
308	94.5	3.4	705	2	T34477
309	94.5	3.4	705	2	A86497
310	94.5	3.4	705	2	F72125
311	94.5	3.4	741	2	T13791
312	94.3	3.4	296	2	D48327
313	94	3.4	531	2	F70415
314	94 .	3.4	707	2	T12759
315	94	3.4	707	2	T12658
316	94	3.4	707	2	T12664
317	93.5	3.4	411	2	T46681
318	93.5	3.4	681	2	T39814
319	93.5	3.4	731	2	T14231
320	93.5	3.4	734	2	T13685
321	93.5	3.4	763	2	H70145
322	93.5	3.4	1032	2	D95177
323	93.5	3.4	1169	2	н70178
324	93.5	3.4	1203	2	T28895
325	93.5	3.4	1826	2	H86502
326	93.5	3.4	1826	2	D72120
327	93	3.4	700	2	T12589
328	93	3.4	707	2	T12668
329	93	3.4	707	2	T12671
330	93	3.4	707	2	T13036
331	93	3.4	707	2	T13032
332	93	3.4	737	2	T14232
333	92.5	3.3	460	2	B48057
334	92.5	3.3	460	2	T40581
335	92.5	3.3	469	2	AC0950
336	92.5	3.3	562	2	T34319
337	92.5	3.3	622	1	QYRTGP
338	92.5	3.3	727	2	T12221
339	92.5	3.3	828	2	JC5807
340	92	3.3	402	2	AE2894
341	92	3.3	405	2	н97669
342	92	3.3	468	1	RGECGG
343	92	3.3	514	1	ALBSN
344	92	3.3	586	2	JC5618
345	92	3.3	697	2	T13662
346	92	3.3	1442	2	C82898
347	91.5	3.3	550	2	B82330
348	91.5	3.3	593	2	S17433
349	91.5	3.3	602	2	S69198
350	91.5	3.3	645	2	T12159
351	91.5	3.3	661	2	T13761
352	91.5	3.3	696	2	T12160
353	91.5	3.3	732	2	T12194
354	91.5	3.3	737	2	T12193 T13485
355	91.5	3.3	744	2	112402

hypothetical prote nitrogen regulatio hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote spore coat protein hypothetical prote hypothetical prote conserved hypothet conserved hypothet NADH2 dehydrogenas COI intron i3 prot CTP synthetase - A NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas probable glycosylt hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas ATP-dependent Clp Snf2 family protei exodeoxyribonuclea hypothetical prote excinuclease ABC s excinuclease ABC, NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas farnesyl-diphospha farnesyl-diphospha Two-component syst hypothetical prote phosphoenolpyruvat NADH2 dehydrogenas trp3 protein - rat conserved hypothet hypothetical prote nitrogen regulatio alpha-amylase (EC beta-galactosidase NADH2 dehydrogenas DNA polymerase III glucose-6-phosphat auxin-regulated pr prostaglandin G/H NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas

356 357 358 359 360 361 362 363 364 365	91.5 91.5 91.5 91 91 91 91 91	3.3 3.3 3.3 3.3 3.3 3.3 3.3	1032 1121 1199 364 364 688 698 733 736 755	2 2 2 2 2 2 2 2	F98043 C82120 G69698 D95116 B97986 T13248 T12563 T12213 T12218 T15791
366 367 368	91 90.5 90.5	3.3 3.3 3.3	757 346 381	2 2 2	T34362 G69325 F71196
369	90.5	3.3	602	2	A35564
370	90.5	3.3	734	2	T12602
371 372	90.5 90.5	3.3	741 749	2	T12642 T13034
373	90.5	3.3	2783	2	T34416
374	90	3.3	356	2	G72386
375 376	90 90	3.3 3.3	479 480	2 2	C75099 T34294
377	90	3.3	557	2	H72400
378	90	3.3	665	2	T13488
379	90	3.3	683	2	T12153
380 381	90 90	3.3 3.3	688 699	2	T13249 T12667
382	90	3.3	699	2	T12673
383	90	3.3	702	2	T13058
384	90	3.3	817	2	D86217
385	90	3.3	1157	2	A55152
386 387	90 89.5	3.3 3.2	1953 274	2 1	S63244 D70378
388	89.5	3.2	289	2	T34454
389	89.5	3.2	422	2	C71930
390	89.5	3.2	468	2	F84686
391 392	89.5 89.5	3.2 3.2	500 580	2 2	I56601 T31529
393	89.5	3.2	657	2	E81119
394	89.5	3.2	657	2	E81901
395	89.5	3.2	744	2	T12758
396	89.5	3.2	930	2	E98059
397 398	89.5 89	3.2 3.2	3268 276	2 2	S69625 B86710
399	89	3.2	298	2	A75119
400	89	3.2	377	2	T46149
401	. 89.	3.2	431	2	140898
402 403	89 89	3.2 3.2	686 686	2 2	T13234 T13252
404	89	3.2	686	2	T13768
405	89	3.2	686	2	T13490
406	89	3.2	686	2	T13766
407 408	89 89	3.2	688	2 2	T13282 T13278
409	89	3.2 3.2	688 688	2	T13276
410	89	3.2	688	2	T13373
411	89	3.2	688	2	T13243
412	89	3.2	688	2	т13253

SWF/SNF family ATP transcription regu RNA polymerase (be ferrochelatase [im ferrochelatase (EC NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote hypothetical prote LPS glycosyltransf probable hexosyltr prostaglandin-endo NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote conserved hypothet hypothetical prote hypothetical prote excinuclease ABC c NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas protein T27G7.8 [i PAS1 protein - yea BNI1 protein - yea conserved hypothet hypothetical prote udp-n-acetylmuramo hypothetical prote cytochrome P450 al hypothetical prote tail fibre protein probable phage tai NADH2 dehydrogenas isoleucine-tRNA li hypothetical prote intercellular adhe hypothetical prote protein kinase ATN 3-deoxy-manno-octu NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas. NADH2 dehydrogenas NADH2 dehydrogenas

413 414 415 416 417 418 419 420 421 422 423 424	89 89 89 89 88.5 88.5 88.5 88.5 88.5	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	688 696 990 1058 3147 252 396 425 500 647 721 737	2 2 2 2 2 2 2 2 1 1 2 2	T12670 T12659 D83706 T19282 T21328 S50806 A59226 H90415 DCJAAP QYFFGM T12212 T13504
425 426 427 428 429 430 431	88.5 88.5 88.5 88.5 88.5 88.5	3.2 3.2 3.2 3.2 3.2 3.2 3.2	741 741 899 1435 1561 1640 405	2 2 2 1 2 2	T13361 T13774 H96617 D96693 C69145 H88094 D82542
432 433 434 435 436 437 438	88 88 88 88 88	3.2 3.2 3.2 3.2 3.2 3.2 3.2	431 431 628 694 694 698 699	2 2 2 2 2 2 2	S41168 I40897 S51422 T12712 T12675 T12588 T17119
439 440 441 442 443 444 445	88 88 88 87.5 87.5	3.2 3.2 3.2 3.2 3.2 3.2 3.2	729 731 1244 5138 399 412 432	2 2 2 2 2 2 2	T12227 T12226 C96584 B96695 G70328 JC1452 A64602
446 447 448 449 450 451 452	87.5 87.5 87.5 87.5 87.5 87.5	3.2 3.2 3.2 3.2 3.2 3.2 3.2	447 472 509 578 635 673 744	2 2 2 2 2 2 2	B98052 G81293 T00793 D89772 T46407 T20936 T13040
453 454 455 456 457 458 459	87.5 87.5 87.5 87.5 87.5 87.5	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	749 995 1377 1452 1597 1830 141	2 2 2 1 2 1 2	JC7729 T27327 T19214 S17669 S55144 S19188 T10306
460 461 462 463 464 465 466	87 87 87 87 87 87	3.1 3.1 3.1 3.1 3.1 3.1	214 333 412 430 431 500 511	2 2 2 2 2 2 2	T49174 AF2124 T47321 F81698 I40894 T33279 S43686
467 468 469	87 87 87	3.1 3.1 3.1	512 551 661	2 2 2	C64599 T50663 F90360

NADH2 dehydrogenas NADH2 dehydrogenas lantibiotic mersac hypothetical prote hypothetical prote hypothetical prote tauropine dehydrog hypothetical prote aromatic-L-amino-a phosphoenolpyruvat NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas probable disease r protein Putative A protoporphyrin IX protein F39E9.2 [i two-component syst 3-deoxy-manno-octu 3-deoxy-manno-octu probable membrane NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote hypothetical prote chromosome replica translation initia processing protein conserved hypothet probable type II p hypothetical prote hypothetical prote probable RNA helic hypothetical prote NADH2 dehydrogenas replication protei hypothetical prote UDP-glucose-glycop protein-tyrosine-p RLR1 protein - yea myosin-V - chicken _ hypothetical prote hypothetical prote hypothetical prote hypothetical prote 3-deoxy-manno-octu 3-deoxy-manno-octu hypothetical prote monoamine transpor hypothetical prote RCC1-like G exchan hypothetical prote

470	87	3.1	684	2	T12151
471	87 ء	3.1	694	2	T13573
472	87	3.1	698	2	Т12562
473	87	3.1	734	1	DERZN5
474	87	3.1	736	2	T12217
475	87	3.1	839	2	S73548
476	87	3.1	1037	2	T18365
477	87	3.1	1037	2	T18368
478	87	3.1	1167	2	F71909
479	87	3.1	1411	2	s55123
480	87	3.1	1581	2	Т30832
481	87	3.1	1828	2	B59254
482	87	3.1	1853	1	A46761
483	87	3.1	1855	2	A59254
484	87	3.1	4717	2	T41581
485	86.5	3.1	316	2	C96020
486	86.5	3.1	358	2	AB2041
487	86.5	3.1	359	2	A97175
488	86.5	3.1	376	2	AG2227
489	86.5	3.1	409	2	F71956
490	86.5	3.1	413	2	D72279
491	86.5	3.1	417	2	F96607
492	86.5	3.1	469	2	E86074
493	86.5	3.1	469	2	F91227
494	86.5	3.1	495	2	T46700
495	86.5	3.1	563	2	T44214
496	86.5	3.1	617	2	s37744
497	86.5	3.1	622	2	JC7973
498	86.5	3.1	682	2	T12715
499	86.5	3.1	733	2	T22011
500	86.5	3.1	741	2	T12691
501	86.5	3.1	741	2	T12762
502	86.5	3.1	741	2	T13372
503	86.5	3.1	741	2	T13509
504	86.5	3.1	741	2	T13765
505	86.5	3.1	744	2	T12627
506	86.5	3.1	744	2	T13585
507	86.5	3.1	747	2	T13683
508	86.5	3.1	892	2	AE0650
509	86.5	3.1	1076	2	A69409
510	86.5	3.1	1575	2	S68448
511	86.5	3.1	1702	2	S42459
512	86	3.1	342	2	T48045
513	86	3.1	410	2	A64234
514	86	3.1	649	1	TVVPMK
51 <b>5</b>	86	3.1	684	2	T13491
516	86	3.1	700	2	T13763
517	86	3.1	703	2	T13074
518	86	3.1	706	2	A48084
519	86	3.1	713	2	JC2534
520	86	3.1	746	2	S08494
521	86	3.1	881	2	s67026
522	86	3.1	891	1	DEEC
523	86	3.1	891	2	D85704
524	86	3.1	891	2	E90846
525	86	3.1	1025	2	Н81751
526	86	3.1	3194	2	D71917

NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas MG422 homolog C12 polysialyltransfer polysialyltransfer hypothetical prote hypothetical prote pentafunctional en mysoin heavy chain myosin heavy chain mysoin heavy chain hypothetical coile probable sugar upt hypothetical prote undecaprenyl-PP-Mu DNA repair and gen hypothetical prote conserved hypothet probable clathrinhypothetical prote response regulator hypothetical prote probable phosphotr endo-exonuclease y synleurin - human NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas alcohol dehydrogen carbamoyl-phosphat synaptojanin, 170K DNA-directed DNA p hypothetical prote ATP-dependent RNA large T antigen -NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas STEll protein kina RVLG protein - rat NADH2 dehydrogenas probable membrane acetaldehyde dehyd hypothetical prote acetaldehyde dehyd exodeoxyribonuclea toxin-like outer m

527	86	3.1	5175	2	T20992
528	86	3.1 -	5198	2	T43290
529	85.5	3.1	332	2	T32852
530	85.5	3.1	338	2	G97771
531	85.5	3.1	352	2	D97947
532	85.5	3.1	356	2	н81800
533	85.5	3.1	356	2	F81068
534	85.5	3.1	406	2	C72340
535	85.5	3.1	467	2	AG0546
536	85.5	3.1	469	2	B70486
537	85.5	3.1	491	2	C86781
538	85.5	3.1	492	2	S32491
539	85.5	3.1	494	2	B89870
540	85.5	3.1	506	2	F83545
541	85.5	3.1	546	2	D89813
542	85.5	3.1	557	2	E83744
543	85.5	3.1	677	2	F64139
544	85.5	3.1	681	2	T13566
545	85.5	3.1	702	2	T13708
546	85.5	3.1	731	2	T16524
547	85.5	3.1	740	1	DENTN5
548	85.5	3.1	741	2	T12711
549	85.5	3.1	741	2	T13054
	85.5	3.1	741	2	T13508
550 551	85.5	3.1	741	2	T13776
		3.1	741	2	T12692
552	85.5				
553	85.5	3.1	741	2	T12706
554	85.5	3.1	741	2	T13042
555	85.5	3.1	741	2	T13247
556	85.5	3.1	741	2	T13398
557	85.5	3.1	743	2	T12626
558	85.5	3.1	743	2	T13238
559	85.5	3.1	744	2	T12603
560	85.5	3.1	744	2	T13755
561	85.5	3.1	749	2	T12623
562	85.5	3.1	891	2	AG0265
563	85.5	3.1	1173	2	T42719
564	. 85	3.1	180	2	AF1175
565	85	3.1	185	2	A82569
566	85	3.1	217	2	H90143
567	85	3.1	283	2	T27423
568	85	3.1	418	2	G75496
569	85	3.1	458	2	F84746
570	85	3.1	542	2	JN0438
571	85	3.1	584	2	T14631
572	85	3.1	614	2	T29937
573	85	3.1	656	2	A96724
574	85	3.1	696	2	T12663
575	85	3.1	698	2	T12560
576	85	3.1	699	2	T12163
.577	85	3.1	699	2	T12169
578	85	3.1	699	2	T12167
579	85	3.1	699	2	T12172
580	85	3.1	699	2	T12164
581	. 85	3.1	699	2	T12168
582	85	3.1	700	2	T13668
583	85	3.1	700	2	T13702

hypothetical prote hemicentin precurs hypothetical prote capM protein [impo UDP-N-acetylglucos conserved hypothet conserved hypothet probable hexosyltr probable terminal hypothetical prote alpha-amylase [imp testosterone 7alph hypothetical prote hypothetical prote alpha-glucosidase hypothetical prote guanosine-3',5'-bi NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas alcohol dehydrogen TPR-containing/SH2 transcription regu hypoxanthine-guani hypothetical prote hypothetical prote UDP-N-acetylglucos probable serine ca carboxylesterase ( glucose-6-phosphat hypothetical prote hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas

584	85	3.1	701	2	T13056
585	85	3.1	.705	2	T13494
	85	3.1	721	2	T14229
586					
587	85	3.1	736	2	T12225
588	85	3.1	752	2	н86770
589	85	3.1	756	2	T05829
590	85	3.1	779	2	B81287
591	85	3.1	824	2	B38423
592	85	3.1	893	2	E72232
593	85	3.1	988	2	E96621
594	85	3.1·	1039	2	T28644
595	85	3.1	1045	2	E90705
596	85	3.1	1045	2	н85555
597	85	3.1	1058	2	S08436
598	85	3.1	1238	2	T15824
599	85	3.1	1721	1	I38902
		3.1	221	2	D70243
600	84.5				
601	84.5	3.1	352	2	A95080
602	84.5	3.1	409	2	C64553
603	84.5	3.1	428	2	A30108
604	84.5	3.1	447	2	B95185
			471	1	A44872
605	84.5	3.1			
606	84.5	3.1	471	1	S1,2732
607	84.5	3.1	558	2	C88996
608	84.5	3.1	563	2	T44029
609	84.5	3.1	580	2	C81352
	84.5	3.1	738	2	S58612
610					
611	84.5	3.1	741	2	T13760
612	84.5	3.1	741	2	Т13658
613	84.5	3.1	741	2	T13677
614	84.5	3.1	742	2	T13245
615	84.5	3.1	742	2	T13369
616	84.5	3.1	743	2	T12690
617	84.5	3.1	744	2	Т13063
618	84.5	3.1	744	2	T12694
619	84.5	3.1	744	2	T12611
620	84.5	3.1	744	2	T12761
621		3.1	745	2	T12189
	84.5				
622	84.5	3.1	822	2	В97839
623	84.5	3.1	850	2	A84685
624	84.5	3.1	940	2	B81852
625	84.5	3.1	941	2	Т49136 .
626	84.5	3.1	1452	1	S17670
627	84.5	3.1	1939	2	T18372
628	84.5	3.1	3071	2	T50345
629	84	3.0	292	2	н70313
630	84	3.0	345	2	B83260
631	84	3.0	446	2	s34570
632	84	3.0	504	2	AC1740
633	84	3.0	525	2	T25550
634	84	3.0	600	2	T24626
635	84	3.0	621	2	T47843
636	84	3.0	686	2	T13680
				2	T13235
637	84	3.0	686		
638	84.	3.0	688	2	T13237
639	84	3.0	689	2	T13771
640	84	3.0	692	2	T12587

NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote hypothetical prote hypothetical prote protein-glutamine DNA-directed DNA p hypothetical prote Y4jQ protein - Rhi hypothetical prote hypothetical prote pol polyprotein hypothetical prote retinoblastoma bin hypothetical prote hypothetical prote chlorohydrolase cyclin B - Atlanti Mur ligase family 6-phosphofructo-2-6-phosphofructo-2protein C17B7.8 [i ganciclovir kinase lipid export ABC t NADH2 dehydrogenas ATP-dependent heli probable RNA methy probable type III protein kinase-lik protein-tyrosine-p repeat organellar vacuolar protein s cobalamin synthesi probable transcrip beta-glucosidase ( S. pyogenes RofA r hypothetical prote hypothetical prote dynamin-like prote NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas

641	84	3.0	696	2	T13767	
642	84	3.0	698	2	T12556.	
643	84	3.0	741	2	T13086	
644	84	3.0	778	2	D72421	
645	84	3.0	805	2	s07099	
646	84	3.0	950	2	A71655	
647	84	3.0	1122	2	S64443	
648	84	3.0	1171	2	G97174	
649	84	3.0	1219	2	H84464	
650	84	3.0	1254	2	S46636	
651	84	3.0	1311	2	T08986	
652	84	3.0	1630	2	S64403	
653	84	3.0	1683	2	S56811	
654	. 84	3.0	1966	2	Т08991	
655	83.5	3.0	261	2	F71693	
656	83.5	3.0	275	2	C81700	
657	83.5	3.0	305	2	D97169	
658	83.5	3.0	365	2	S54049	
659	83.5	3.0	393	2	G83749	
660 ´	83.5	3.0	395	2	D89986	
661	83.5	3.0	411	2	G75150	
662	83.5	3.0	429	2	B97500	
663	83.5	3.0	544	2	AI3266	
664	83.5	3.0	554	1	ZABPG4	
665	83.5	3.0	574	2	S45754	•
666	83.5	3.0	585	2	G86200	
667	83.5	3.0	602	2	s71557	
668	83.5	3.0	685	2	T12145	
669	83.5	3.0	697	2	T13370	
670	83.5	3.0~	702	2	T13409	
					T13696 (	
671	83.5	3.0	703	2		
672	83.5	3.0	. 717	2	S23098	
673	83.5	3.0	738	2	T13406	
674	83.5	3.0	741	2	T13251	
675	83.5	3.0	741	2	T13697	
676	83.5	3.0	741	2	T13377	
				2	T13706	
677	83.5	3.0	741			
678	83.5	3.0	743	2	T12760	
679	83.5	3.0	744	2	T13043	
680	83.5	3.0	744	2	T13682	
681	83.5	3.0	930	2	A95193	
682	83.5	3.0	1115	2	S57726	
683	83.5	3.0	1127	2	T03105	
						•
684	83.5	3.0	1133	2	JT0665	
685	83.5	3.0	1157	2	AD1728	
686	83.5	3.0	1181	2	T20386	* * * * * * * *
687	83.5	3.0	1502	2	S45429	
688	83.5	3.0	2265	2	T26183	
689	83	3.0	180	2	AD1532	
690	83	3.0	357	2	A65163	
691	83	3.0	431	2	F96764	
692	83	3.0	450	2	T39088	
693	83	3.0	499	2	T45946	
694	83	3.0	516	2	T27092	
695	83	3.0	577	2	T43207	
				2		
696	83	3.0	590		T48625	
697	83	3.0	592	2	T48155	

NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas xylosidase - Therm membrane alanyl am hypothetical prote probable membrane pyruvate: ferredoxi probable helicase hypothetical prote hypothetical prote ESP1 protein - yea probable membrane hypothetical prote probable enoyl-[ac 3-deoxy-manno-octu uncharacterized pr hypothetical prote methionine gamma 1 hypothetical prote 3-hydroxy-3-methyl ribonuclease D (PA integral membranè replication initia probable membrane protein F12K11.15 pyruvate decarboxy NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas guanylate cyclase NADH2 dehydrogenas isoleucyl-tRNA syn PAT1 protein - sli major single-stran helicase II-like p ATP-dependent deox hypothetical prote probable membrane hypothetical prote transcription regu lipopolysaccharide hypothetical prote probable vacuolar probable protein-k hypothetical prote nuclear fusion pro pescadillo-like pr pyruvate decarboxy

698 699 700 701 702 703 704 705 706 707	83 83 83 83 83 83 83 83	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	604 652 688 688 689 691 698 699 700	2 2 2 2 2 2 2 2 2	F89453 T38704 T09604 T09836 T13762 T12293 T12565 T12170 T12173 T12162
708 709 710 711 712 713 714 715 716	83 83 83 83 83 83 83	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	731 736 746 774 774 864 893 1328 1357	2 2 2 2 2 2 2 2 2 2	T31914 T12222 S71892 D97527 AE2746 D70183 F86476 S78457 S57052
717 718 719 720 721 722 723 724	83 82.5 82.5 82.5 82.5 82.5 82.5 82.5	3.0 3.0 3.0 3.0 3.0 3.0 3.0	4924 297 335 356 385 426 426 443	2 2 2 2 2 2 2 2	T50176 AC1494 A70128 B89919 S49111 C83212 B53652 T21598
725 726 727 728 729 730 731 732 733	82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	456 506 540 603 625 684 724 729 730	2 2 2 2 2 2 2 1 2	C48572 T29968 A82083 T03295 F81287 T12124 C83706 VCLJKX T13792
734 735 736 737 738 739 740 741	82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5	3.0 3.0 3.0 3.0 3.0 3.0 3.0	732 738 741 741 741 744 848 861	2 2 2 2 2 2 2 1	T17469 T13396 T13404 T12757 T13378 T13493 A54740 VCLJKB
742 743 744 745 746 747 748 749 750	82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	926 968 975 1097 1098 1120 1124 1291 1335	2 2 2 2 2 2 2 2 2 2	AG1860 B64385 A86258 A29943 JQ2209 H71664 S06856 T22382 T18289
751 752 753 754	82.5 82 82 82 82	3.0 3.0 3.0 3.0	4452 54 319 321	1 2 2 2	YGBSG2 A46292 S74012 E97584

protein F35H12.4 [ glycyl tRNA synthe NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas RNA-directed DNA p ompl protein precu group 1 outer memb chemotaxis histidi protein F1504.39 [ exonuclease II - f hypothetical prote probable peptide s transcription regu conserved hypothet hypothetical prote peptide synthetase rhamnosyltransfera rhamnosyltransfera hypothetical prote rhoptry protein ho hypothetical prote conserved hypothet pyruvate decarboxy probable sugar tra NADH2 dehydrogenas lantibiotic mersac env polyprotein pr NADH2 dehydrogenas interleukin-4-indu env polyprotein pr hypothetical prote malT-glpR intergen protein F5011.4 [i Toll protein precu helicase homolog g transcription-repa phytochrome - gard hypothetical prote racGAP protein - s gramicidin S synth zeaxanthin glucosy hypothetical prote hypothetical prote

755	82	3.0	388	2	F89 <b>7</b> 73
756	82	3.0	413	2	S52020
757	82	3.0	436	2	T38812
758	82	3.0	437	2	T48035
759	82	3.0	437	2	Т39592
760	82	3.0	442	2	D72498
761	82	3.0	462	2	JC7805
762	82	3.0	517	2	F64560
763	82	3.0	535	2	A71319
764	82	3.0	539	2	T32052
		3.0	553	2	
765	82				C81024
766	82	3.0	574	2	A86255
767	82	3.0	602	2	S72513
768	82	3.0	646	2	B70396
769	82	3.0	683	2	T12295
770	82	3.0	684	2	T13695
771	82	3.0	690	2	T12763
772	82	3.0	710	2	T12143
773	82	3.0	714	2	G86844
774	82	3.0	741	2	T12422
775	82	3.0	883	2	T23948
776	82	3.0	913	2	Т31497
-777	82	3.0	964	2	G96662
778	82	3.0	1005	2	F90099
779	82	3.0	1022	2	S50534
780	82	3.0	1024	2	G72041
781	82	3.0	1024	2	F86582
782	82	3.0	1024	2	D81624
783	82	3.0	1047	2	E64790
784	82	3.0	1526	2	T41522
785	82	3.0	1957	2	T38077
786	82	3.0	3005	1	GNVSTV
787	81.5	2.9	305	2	T32235
788	81.5	2.9	306	2	G96935
789	81.5	2.9	341	2	E71191
790	81.5	2.9	360	2	C72356
791	81.5	2.9	370	2	D83793
792	81.5	2.9	418	2	B72245
793	81.5	2.9	421	2	s73010
794	81.5	2.9	426	2	F70723
795	81.5	2.9	429	2	E84952
796	81.5	2.9	473	2	T24686
797	81.5	2.9	479	1	A59380
798	81.5	2.9	525	2	T41427
					T51162
799	81.5	2.9	544	2	
800	81.5	2.9	572	2	Т51525
801	81.5	2.9	602	2	s39782
802	81.5	2.9	623	2	G72412
803	81.5	2.9	638	2	Н83905
804	81.5	2.9	697	2	T39512
805	81.5	2.9	698	2	т13657
806	81.5	2.9	715	2	s77439
807	81.5	2.9	717	1	VGBE11
808	81.5	2.9	739	2	JS0675
				2	T12610
809	81.5	2.9	741		
810	81.5	2.9	741	2	T13085
811	81.5	2.9	741	2	Т12699

hypothetical prote translation initia hypothetical prote hypothetical prote phosphatidylserine probable serine hy toxin-A - Chiropsa CMP-N-acetylneuram probable glucose-6 hypothetical prote hypothetical prote hypothetical prote FOG2 protein - yea histidine kinase s NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas hypothetical prote hypothetical prote probable aminopept hypothetical prote hypothetical prote exodeoxyribonuclea exodeoxyribonuclea exodeoxyribonuclea ybdE protein - Esc myosin ii - fissio hypothetical coile genome polyprotein hypothetical prote mccF-like protein probable 3-hydroxy hypothetical prote hypothetical prote conserved hypothet hypothetical prote probable transfera threonine synthase hypothetical prote protein kinase (EC membrane transport aminoglycoside ace hypothetical prote cyclooxygenase 1 hypothetical prote hypothetical prote hypothetical prote NADH2 dehydrogenas hypothetical prote glycoprotein H pre vascular cell adhe NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas

812	81.5	2.9	741	2	T13051
813	81.5	2.9	741	2	T13233
			741	2	T13569
814	81.5	2.9			
815	81.5	2.9	741	2	T13777
816	81.5	2.9	744	2	G90124
817	81.5	2.9	794	2	S64362
818	81.5	2.9	825	2	T23612
819	81.5	2.9	836	2	A54269
820	81.5	2.9	1161	2	B86368
821	81.5	2.9	1522	2	S48904
822	81.5	2.9	1545	1	S71841
823	81	2.9	296	2	E71118
824	81	2.9	299	2	н90033
825	81	2.9	355	2	S52022
826	81	2.9	364	2	S44899
827	81	2.9	413	2	S52017
828	81	2.9	473	2	A56377
		2.9	492	2	T38093
829	81				
830	81	2.9	503	2	S14275
831	81	2.9	509	2	T37587
832	81	2.9	532	2	S54571
833	81	2.9	541	2	A70141
834	81	2.9	554	2	T13500
835	81	2.9	649	2	T45102
836	81	2.9	688	2	T48796
837	81	2.9	689	2	T13280
838	81	2.9	698	2	T30948
839	81	2.9	700	2	T13726
840	81	2.9	701	2	T12296
841	81	2.9	704	2	T13581
842	81	2.9	726	2	T12215
843	81	2.9	797	2	A70453
844	81	2.9	807	2	S51460
845	81	2.9	820	2	T46412
846	81	2.9	894	2	D82127
847	81	2.9	906	2	T28034
848	81	2.9	920	2	F64697
849	81	2.9	964	2	s57379
850	81	2.9	1024	2	C64208
851	81	2.9	1122	2	A97814
852	81	2.9	1124	2	F71719
853	81	2.9	1126	1	WMFM12
854	81	2.9	1253	2	S62544
	81	2.9	1544	2	G96904
855 856				2	
	81	2.9	1678		S52588
857	81	2.9	1986		"S28353
858	81	2.9	3084	1	MMMSA
859	80.5	2.9	339	2	B72402
860	80.5	2.9	345	2	D70564
861	80.5	2.9	360	2	G64686
862	80.5	2.9	375	2	S63442
863	80.5	2.9	398	2	A37274
864	80.5	2.9	403	2	A71484
865	80.5	2.9	423	2	AD2455
866	80.5	2.9	430	2	s77279
867	80.5	2.9	435	2	A81416
868	80.5	2.9	435	2	Н71910

NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote probable membrane hypothetical prote protein-glutamine protein F28C11.9 [ probable purine nu multidrug resistan hypothetical prote hypothetical prote translation initia ZK1236.4 protein translation initia rubber particle cy probable protein d steroid 6beta-mono hypothetical trp-a probable membrane oligopeptide ABC t NADH2 dehydrogenas H+-transporting tw probable ATP-depen NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas glutamate ammonia hypothetical prote ubiquitin-protein alcohol dehydrogen hypothetical prote isoleucine-tRNA li MSH2 protein - yea hypothetical prote transcription-repa hypothetical prote 125K protein - alf hypothetical prote DNA segregation AT clathrin heavy cha probable polyketid laminin alpha-1 ch UDP-N-acetylglucos hypothetical prote conserved hypothet probable protein k glia-derived nexin probable phosphogl hypothetical prote hypothetical prote probable integral probable processin

869	80.5	2.9	439	2	A83363	
870	80.5	2.9	446	2	н97929	
871	80.5	2.9	453	2	AF2401	
872	80.5	2.9	461	2	T47782	
873	80.5	2.9	488	1	QXASM4	
874	80.5	2.9	491	2	AC1499	
875	80.5	2.9	492	2	A34272	
876	80.5	2.9	499	2	s53637	
877	80.5	2.9	562	2	T29858	
878	80.5	2.9	583	2 .		
879	80.5	2.9	595	2	E82934	
880	80.5	2.9	642	2	S64348	
881	80.5	2.9	652	2	H86221	
882	80.5	2.9	698	2	T12629	
883	80.5	2.9	698	2	T12625	
884	80.5	2.9	702	2	T12624	
885	80.5	2.9	719	2	T13793	
	80.5	2.9	741	2	T13764	
886		2.9	741	2	T13663	
887	80.5		741	2	T12714	
888	80.5	2.9	826	2	T33796	
889	80.5	2.9		2	D70461	
890	80.5	2.9	984	2	I59331	
891	80.5	2.9	1025			
892	80.5	2.9 2.9	1032 1042	2	S12153	
893	80.5			2	H75112	
894	80.5	2.9	1301	2	T07321	
895	80.5	2.9	1568	2	T41013	
896	80	2.9	217	2	E97310	
897	80	2.9	285	2	D69632	
898	80	2.9	318	2	D71501	
899	80	2.9	324	2	E91186	
900	80	2.9	324	2	D86033	
901	80	2.9	333	2	S77222	
902	80	2.9	366	2	C81336	
903	80	2.9	394	2	B70411	
904	80	2.9	397	2	I48717	
905	80	2.9	404	2	Н95937	
906	80	2.9	404	2	T44600	
907	80	2.9	413	2	S52018	
908	80	2.9	420	1	S34379	
909	80	2.9	426	2	A4.0440	
910	80	2.9	466	2	Н84971	
911	80	2.9	486	2	E96757	
912	80	2.9	. 494	2	JC5320	
913	80	2.9	510	1	A56926	
914	80	2.9	545	2	Т40207	٠.,
915	80	2.9	567	2	E72156	
916	80	2.9	567	2	136841	
917	80	2.9	567	2	T28485	
918	80	2.9	610	1	DCZMP	
919	80	2.9	640	2	F71527	
920	80	2.9	663	2	Т41963	
921	80	2.9	685	2	AF0850	
922	80	2.9	686	2	т12607	
923	80	2.9	686	2	T12128	
924	80	2.9	697	2	т13670	
925	80	2.9	698	2	T12713	

probable cytochrom histidine kinase (cytochrome P450 [i hypothetical prote NADH2 dehydrogenas transmembrane prot testosterone 7alph protein kinase clk hypothetical prote probable glycosyl hypothetical prote hypothetical prote hypothetical prote NADH2 dehydrogenas hypothetical prote preprotein translo thyrotropin-releas pol polyprotein molybdenum cofacto DNA-directed RNA p hypothetical prote uncharacterized co transcription anti hypothetical prote probable transcrip probable transcrip hypothetical prote RodA protein homol fimbrial assembly proteinase inhibit hypothetical prote hypothetical prote translation initia glycine hydroxymet endothelin 1 and 2 asparagine-tRNA li protein glycosyl t cytochrome P450 mo activin receptor I hypothetical prote C6R protein - vari E6R protein - vari hypothetical prote pyruvate decarboxy probable transketo hypothetical prote hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas

926 927 928	80 . 80 80	2.9 2.9 2.9	698 - 700 741	2 2 2	T12567 T13661 T13705
929	80	2.9	744	2	T13399
930	80	2.9	760	2	T34414
931	80	2.9	775	2	E70320
932	80 80	2.9 2.9	789	2 1	T09672 T02753
933 934	80	2.9	826 906	2	B96901
935	80	2.9	920	2	T10052
936	80	2.9	950	2	T09076
937	80	2.9	1183	2	F90559
938	80	2.9	1356	2	S51389
939 940	80 80	2.9 2.9	1620 2108	2 2	E83261 S28417
941	80	2.9	2178	2	S55805
942	80	2.9	3744	2	S46715
943	80	2.9	5232	2	A45086
944	80	2.9	7962	2	138346
945 946	79.5 79.5	2.9 2.9	271 292	2 2	G84030 S57107
947	79.5	2.9	295	2	F83356
948	79.5	2.9	328	2	H64554
949	79.5	2.9	336	2	E96814
950	79.5	2.9	351	2	B86261
951 952	79.5 79.5	2.9 2.9	369 389	2	Н82357 В71865
953	79.5	2.9	407	2	D71862
954	79.5	2.9	423	2	164063
955	79.5	2.9	449	2	JU0154
956	79.5	2.9	471	1	KIRTFB
957 958	79.5 79.5	2.9 2.9	480 511	2	G71664 T39884
959	79.5	2.9	512	2	F71915
960	79.5	2.9	525	2	S67289
961	79.5	2.9	526	2	A75581
962	79.5	2.9	542	1	T02074
963	79.5	2.9	557 562	2	A99702
964 965	79.5 79.5	2.9 2.9	562 603	2	S01312 T48154
966	79.5	2.9	608	2	D72306
967	79.5	2.9	625	2	н70330
968	79.5	2.9	631	2	T38167
969	79.5	2.9	642	2	A75062
970 971	79.5 79.5	2.9 2.9	739 741	2 2	T13770 T12701
972	79.5	2.9	741	2	T12702
973	79.5	2.9	767	2	A46361
974	79.5	2.9	860	2	Т37768
975	79.5	2.9	867	2	AC2140
976 977	79.5 79.5	2.9 2.9	880 909	2 1	T21538 A54809
978	79.5	2.9	956	2	B83200
979	79.5	2.9	973	2	A75135
980	79.5	2.9	1021	2	E64576
981	79.5	2.9	1026	2	T03179
982	79.5	2.9	1035	2	C87373

NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote polyribonucleotide ent-kaurene syntha S-receptor kinase uncharacterized co aminopeptidase (EC hypothetical prote conserved hypothet ROM2 protein - yea conserved hypothet CDC39 protein - ye alpha-toxin - Clos hypothetical prote HC-toxin synthetas elastic titin - hu hemA concentration hypothetical prote hypothetical prote heat shock protein hypothetical prote UDPglucose 4-epime tRNA (uracil-5-)-m cyclopropane-fatty probable zinc-meta histidine-tRNA lig tubulin alpha chai 6-phosphofructo-2-UDP-n-acetylmuramo hypothetical prote hypothetical prote alcohol O-acetyltr flavin monoamine o 4-coumarate-CoA li conserved hypothet alpha-amylase (EC pyruvate decarboxy hypothetical prote hypothetical prote electron transfer hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas P element homolog probable vacuolar ferrichrome-iron r hypothetical prote disease resistance probable phosphotr probable DEAH ATPhypothetical prote probable DNA-direc TonB-dependent rec

983 984 985 986 987 988 989 990 991 992 993 994 995 996	79.5 79.5 79.5 79.5 79.5 79.5 79.79 79 79	2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	1061 1146 1152 1274 1367 2342 4131 4450 224 238 252 262 330 331 337	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C88690B70376 T21853 T02636 T21913 T18200 T21085 JX0340 F81744 B64313 A99976 D89968 G75007 E86638 S28045
998 999	79 79 79	2.9	345 409	2 2 2	B42604 S73724 G64637
1000 1001 1002	79 79 79	2.9 2.9 2.9	410 413 413	2 2	\$22578 \$52023
1003 1004	79 79	2.9	413 413	2	S52019 S55898
1005 1006	79 79	2.9 2.9	422 437	2 2	C75631 G91067
1007 1008	79 79	2.9	441 452	2	H85911 T39693
1009	79 79	2.9	460 466	2	T16307 S29247
1011 1012 1013	79 79 79	2.9 2.9 2.9	470 477 501	2 2 2	S57902 D90112 C49930
1014 1015	79 79	2.9	531 540	2	H81137 G96716
1016 1017	79 79	2.9 2.9	556 557	2 2	С72204 Н95237
1018 1019	79 79	2.9 2.9	559 567	2 2	E90288 T30799
1020 1021	79 79	2.9 2.9	567 567	2 2	E35928 A42509
1022 1023	79 79	2.9	583 607	2	A82430 T05315
1024 1025	79 79	2.9	635 676	2	A71620 B72071
1026 1027	79 79 79	2.9 2.9 2.9	676 679	2 2 2	D86553 S64258 S43250
1028 1029 1030	79 79 79	2.9 2.9 2.9	687 688 689	2 2	T13672 T13681
1030 1031 1032	79 79	2.9	690 694	2 2	T13786 T13572
1033 1034	79 79	2.9	698 698	2	T13492 T12568
1035 1036	79 79	2.9	698 702	2	T13769 T12141
1037 1038 1039	79 79 79	2.9 2.9 2.9	736 758 937	2 2 2	T12214 D71072 C97168

protein F41H10.4 [ reverse gyrase - A hypothetical prote D1 protein homolog hypothetical prote fatty-acid synthas hypothetical prote gramicidin S synth conserved hypothet probable 3-isoprop cyclase-like prote hypothetical prote lps biosynthesis r hypothetical prote cinnamyl-alcohol d ORF2 complementary ATP-dependent RNA D-amino acid dehyd translation initia translation initia translation initia translation initia probable Na+/H+ an hypothetical prote hypothetical prote hypothetical prote hypothetical prote argininosuccinate peptidase V - Lact hypothetical prote hypothetical prote funZ protein NMB09 hypothetical prote alpha-amylase - Th transcription regu restriction endonu hypothetical prote hypothetical prote E6R protein - vacc nitrate/nitrite se pyruvate decarboxy hypothetical prote ribonuclease famil ribonuclease famil hypothetical prote ...thimet oligopeptid NADH2 dehydrogenas hypothetical prote glycosyltransferas

1040	79	2.9	1002	2	I56963
1041	79	2.9	1036	2	E96682
1042	79	2.9	1061	1	DJAD12
1043	79	2.9	1261	2	S75130
1044	79	2.9	1441	2	T39636
1045	79 70	2.9	1549	2	T13940
1046 1047	79 78.5	2.9	1616 246	2 2	G70668 T14772
1047	78.5	2.8 2.8	254	2	A56447
1046	78.5	2.8	299	2	A50447 AE0461
1049	78.5	2.8	315	2	S58689
1051	78.5	2.8	328	2	H71954
1052	78.5	2.8	406	2	D71905
1053	78.5	2.8	457	1	G70116
1054	78.5	2.8	463	2	AI1744
1055	78.5	2.8	467	2	A48916
1056	78.5	2.8	489	2	T13026
1057	78.5	2.8	506	2	н83396
1058	78.5	2.8	506	2	F83142
1059	78.5	2.8	524	2	F84511
1060	78.5	2.8	562	1	QQBEH5
1061	78.5	2.8	579	2	AE1855
1062	78.5	2.8	585	2	T28884
1063	78.5	2.8	610	2	C96732
1064	78.5	2.8	735	2	AE1858
1065	78.5	2.8	740	2	T12223
1066	78.5	2.8	741	2	T12605
1067	78.5	2.8	741	2	T12614
1068	78.5	2.8	744	2	T12705
1069 1070	78.5 78.5	2.8 2.8	744 744	2 2	T13502 T13570
1070	78.5	2.8	771	2	T01315
1071	78.5	2.8	823	. 2	G83905
1073	78.5	2.8	889	2	T29590
1074	78.5	2.8	937	2	B86210
1075	78.5	2.8	943	2	F69543
1076	78.5	2.8	1030	2	S73944
1077	78.5	2.8	1035	1	GNFFG1
1078	78.5	2.8	1039	2	S76747
1079	78.5	2.8	1042	2	G64514
1080	78.5	2.8	1084	2	S23319
1081	78.5	2.8	1120	2	н88449
1082	78.5	2.8	1131	2	T16217
1083	78.5	2.8	1199	.2	T18348
1084	78.5	2.8	1572	2	S45251
1085	78.5	.2.8	1586	2	S39580
1086	78.5 78.5	2.8 2.8	1663 1799	1 1	C3RT
1087 1088	78.5	2.8	2166	2	S44920 G70163
1088	78.3	2.8	146	2	G75215
1090	78	2.8	208	2	A38202
1091	78	2.8	230	2	T15381
1092	78	2.8	252	2	T03140
1093	78	2.8	256	2	AI1204
1094	78	2.8	297	2	AI1135
1095	78	2.8	319	2	Н90321
1096	78	2.8	365	2	A30891

transposase - Esch hypothetical prote ... DNA-directed DNA p sensory transducti probable cleavage ankyrin - fruit fl polyketide synthas hypothetical prote CMP-2-keto-3-deoxy probable membrane hypothetical prote probable lipid A b hypothetical prote histidine-tRNA lig B. subtilis YunD p sodium phosphate t hypothetical prote probable aldehyde probable aldehyde hypothetical prote phosphotransferase hypothetical prote hypothetical prote hypothetical prote anthranilate synth NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote hypothetical prote hypothetical prote protein F22G5.6 [i ATP-dependent RNA hypothetical prote HIV-1 retropepsin hypothetical prote type I restriction hypothetical prote protein F54D8.1 [i hypothetical prote probable pol polyp SNF2alpha protein HBRM protein - hum complement C3 prec ZK688.5 protein hypothetical prote methylmalonyl-coa GTP-binding protei hypothetical prote uracil-DNA glucosi molybdate ABC tran transcription regu transposase ISC123 regulatory protein

1097	78	2.8	366	2	E72355
1098	78	2.8	374	2	B72285.
	78	2.8	394	2	A64713
1099			394		
1100	78	2.8	398	2	B70752
1101	78	2.8	403	2	G82831
1102	78	2.8	415	2	A54126
1103	`78	2.8	422	2	F64581
1104	78	2.8	424	2	139506
1105	78	2.8	431	2	Н81981
1106	78	2.8	431	2	A81037
1107	78	2.8	467	2	T04540
					E95043
1108	78	2.8	474	2	
1109	78	2.8	474	2	G97913
1110	78	2.8	500	2	JC4709
1111	78	2.8	503	2	A29815
1112	78	2.8	552	2	s69032
1113	78	2.8	554	2	s75969
1114	78	2.8	558	2	F81967
1115	78	2.8	596	2	AD1876
1116	78	2.8	606	2	E90536
	78				
1117	78	2.8	607	2	Т39823
1118	78	2.8	612	2	B81246
1119	78	2.8	633	2	T52506
1120	78	2.8	691	2	T13567
1121	78	2.8	701	2	T13568
1122	78	2.8	786	2	S71091
1123	78	2.8	805	2	т03896
1124	78	2.8	808	2	T49233
1125	78	2.8	833	2	T28385
1126	78	2.8	855	2	T47534
1127	78	2.8	857	2	Т37459
1128	78	2.8	865	2	Т30998
1129	78	2.8	870	2	в71698
1130	78	2.8	876	2	A89944
1131	78	2.8	877	2	H71647
1132	78	2.8	878	2	G97865
1133	78	2.8	887	2	S70642
1134	78	2.8	901	1	RGECMT
1135	78	2.8	901	2	D91161
1136	78	2.8	901	2	D86007
1137	78	2.8	913	2	D82885
1138	78	2.8	920	2	F71823
1139	78	2.8	987	2	<b>I48953</b>
1140	78	2.8	993	2	F97717
1141	78	2.8	1091	2	Т30256
1142	78	2.8	1122	1.	NCECXV
1143	78	2.8	1122	2	G91088
1144	78	2.8	1122	2	A85934
1145	78	2.8	1138	2	S64484
1146	78	2.8	1237	2	S64385
1147	78	2.8	1680	2	Т41628
1148	78	2.8	1706	2	184499
1149	78	2.8	1928	2	JS0610
1150	78	2.8	2049	2	T29227
1151	78	2.8	2182	2	T28634
1152	78	2.8	2242	2	A57541
1757	78	2.8	2535	2	T02646
1153	, 0	2.0	2000	_	102010

hypothetical prote hypothetical prote folylpolyglutamate hypothetical prote queuine tRNA-ribos endothelin recepto UDP-N-acetylmuramo citrate (si)-synth probable tyrosinetyrosyl-tRNA synth adenylosuccinate 1 hypothetical prote phosphogluconate d steroid 11beta-mon cytochrome P450 3A hypothetical prote hypothetical prote probable inner mem hypothetical prote hypothetical prote hypothetical prote glutamine-fructose hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas acetyl-CoA carboxy hypothetical prote sucrose synthase-l ORF MSV224 probabl hypothetical prote ribonucleotide red hypothetical prote hypothetical prote alanyl-tRNA synthe alanine-tRNA ligas alanine-tRNA ligas ubiquitin ligase N regulatory protein positive regulator positive regulator multiple banded an isoleucine-tRNA li eph-related recept hypothetical prote calcium channel al exodeoxyribonuclea DNA helicase RecC DNA helicase RecC phosphatidylserine probable membrane probable transcrip zinc finger protei beta-galactosidase hypothetical prote variant-specific s pyrimidine synthes hypothetical prote

1154	78	2.8	2555	2	C69681
1155	78	2.8	2787	2	S45416
1156	77.5	2.8	235	2	H81451
1157	77.5	2.8	258	2	T41212
1158	77.5	2.8	260	2	F97761
1159	77.5	2.8	263	2	H71495
1160	77.5	2.8	269	2	G90261
1161	77.5	2.8	317	1	C70356
1162 1163 1164 1165	77.5 77.5 77.5 77.5	2.8 2.8 2.8 2.8	320 325 342 346	1 2 2 2	H69308 B89909 T25143 AH1603 S60244
1166 1167 1168 1169 1170	77.5 77.5 77.5 77.5 77.5	2.8 2.8 2.8 2.8 2.8	413 448 450 497 517	2 2 2 2 2	T28089 A56622 F90471 S36712
1171	77.5	2.8	540	2	T32230
1172	77.5	2.8	552	2	AD1824
1173	77.5	2.8	566	2	C97019
1174	77.5	2.8	622	1	H69480
1175	77.5	2.8	636	2 2 2	JC4960
1176	77.5	2.8	659		G95201
1177	77.5	2.8	659		G98068
1178	77.5	2.8	706		T12748
1179 1180 1181 1182 1183	77.5 77.5 77.5 77.5 77.5	2.8 2.8 2.8 2.8	736 741 744 746 784	2 2 2 2 2	T12716 T13403 T13048 T29661 T26585
1184	77.5	2.8	860	2 2 2 2	A96717
1185	77.5	2.8	901		F89910
1186	77.5	2.8	929		S75098
1187	77.5	2.8	967		D96573
1188	77.5	2.8	978	2 2 2	H81311
1189	77.5	2.8	994		B82843
1190	77.5	2.8	1052		T00067
1191	77.5	2.8	1178		S54073
1192	77.5	2.8	1186	2	H88869
1193	77.5	2.8	1212	2	A96971
1194	77.5	2.8	1242	2	T39453
1195	77.5	2.8	2514	2	T37320
1196	77.5	2.8	2619	2	T24588
1197 1198 1199 1200	77.5 77.5 77.5 77.5	2.8 2.8 2.8 2.8	2819 3635 4767 295	2 2	A90551 T10053 T31345 F70936
1201	77	2.8	297	2	AE2805
1202	77	2.8	319	2	D90344
1203	77	2.8	319	2	D90350
1204	77	2.8	319	2	E90466
1205	77	2.8	319	2	G90428
1206	77	2.8	324	2	S47806
1207	77	2.8	376	2	AE1786
1208	77	2.8	387	2	T31748
1209	77	2.8	393	2	AD2219
1210	77	2.8	407	2	F64567

peptide synthetase TEL1 protein - yea ubiquinone/menaqui hypothetical wtf6 hypothetical prote probable chltr pla serine/threonine p conserved hypothet conserved hypothet GMP reductase (EC hypothetical prote conserved hypothet translation initia hypothetical prote tubulin alpha chai hypothetical prote FUN26 protein - ye hypothetical prote periplasmic oligop probable membrane carbon-monoxide de DNA topoisomerase serine/threonine p eukaryotic-type se NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote hypothetical prote unknown protein, 4 aconitate hydratas hypothetical prote protein F12M16.21 transcription-repa valyl-tRNA synthet hypothetical prote probable membrane protein unc-31 [im cobalamine-depende probable mrna stab ataxia telangiecta hypothetical prote conserved hypothet laminin alpha 5 ch hypothetical prote hypothetical prote permease [imported transposase ISC123 transposase ISC123 transposase ISC123 transposase ISC123 probable transcrip cell division prot hypothetical prote hypothetical prote zinc metalloprotei

1211	77	2.8	412	2	JC1453
1212	77	2.8	420 .	_	149708
1213	77	2.8	429	2	T29711
1214	77	2.8	449	2	JC6560
1215	77	2.8	487	2	AE0310
1216	77	2.8	503	2	S59698
1217	77	2.8	513	2	T38044
1218	77	2.8	534	2	T23425
1219	77	2.8	545	2	D75208
1220	77	2.8	601	2	Т37979
1221	77	2.8	608	2	G82137
1222	7 <b>7</b>	2.8	612	2	JC7101
1223	77	2.8	635	2	S36718
1224	77	2.8	665	2	S70706
1225	77	2.8	685	2	T19968
1226	77	2.8	687	2	T12126
1227	77	2.8	692	2	T52120
1228	77	2.8	698	2	T12161
1229	77	2.8	701	2	T13587
			702		T13655
1230	77	2.8		2	
1231	77	2.8	712	2	T16338
1232	77	2.8	713	2	H83684
1233	77	2.8	734	2	T13785
1234	77	2.8	755	2	T48553
1235	77	2.8	756	2	н75016
1236	77	2.8	798	2	AE1263
1237	77	2.8	805	2	C88037
1238	77	2.8	829	1	A47373
1239	77	2.8	838	2	T08423
1240		2.8			B82732
	77		870	2	
1241	77	2.8	891	2	B48642
1242	77	2.8	903	2	C83044
1243	77	2.8	932	2	T32417
1244	77	2.8	978	2	T00336
1245	77	2.8	995	2	AE1773
1246	77	2.8	1035	1	GNLJGG
	77				A88855
1247		2.8	1086	2	
1248	77	2.8	1134	2	T23798
1249	77	2.8	1188	2	G72734
1250		2.8	1217		
	77			2	D88996
1251	77	2.8	1441	1	GNVUSV
1252	77	2.8	1442	2	S72441
1253	77	2.8	1751	2	A45604
1254	77	2.8	2027	2	S60123
1255	77 [.]	2.8	2056	2	G88564
1256	· 77	2.8	2109	1	ZLVNNJ
		2.8	2210		RRXPLC
1257	77			1	
1258	77	2.8	2470	2	s57085
1259	77	2.8	4572	2	S57908
1260	76.5	2.8	183	1	D64430
1261	76.5	2.8	251	2	C70238
1262	76.5	2.8	257	2	AH1561
1263	76.5	2.8	334	2	E95869
1264.	76.5	2.8	338	2	T06336
1265	76.5	2.8	381	2	н83985
1266	76.5	2.8	389	2	S75454
1267	76.5	2.8	389	2	H64571
1201	10.5	4.0	303	2	1104217

translation initia GTP-binding protei hypothetical prote UDP-N-acetylmuramo NADH2 dehydrogenas HST1 protein - yea hypothetical prote hypothetical prote sugar abc transpor hypothetical prote pvcA protein VC194 carnitine O-octano phosphoprotein pho probable protein k hypothetical prote NADH2 dehydrogenas acyl-CoA oxidase ( NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote hypothetical prote NADH2 dehydrogenas subtilisin-like pr hypothetical prote exodeoxyribonuclea protein K02E7.3 [i protein-tyrosine-p Axin homolog Axil glycerol-3-phospha aconitate hydratas Mg(2+) transport A hypothetical prote hypothetical prote formate dehydrogen HIV-1 retropepsin protein M18.5 [imp hypothetical prote hypothetical prote protein C17B7.7 [i M polyprotein prec protein-tyrosine-p major blood-stage hypothetical prote protein R10E11.1 [ genome polyprotein genome polyprotein 1-phosphatidylinos hypothetical 527K probable transcrip conserved hypothet molybdate ABC tran probable smc22-r p proline-rich prote alpha-D-mannose-al hypothetical prote cyclopropane-fatty

1268 1269	76.5 76.5	2.8 2.8	390 398	2	E69272 G81451
1270	76.5	2.8	406	2	G64608
1271	76.5	2.8	409	2	C95041
1272	76.5	2.8	411	2	T47406
1273	76.5	2.8	417	2	A64380
1274	76.5	2.8	421	2	AE2473
1275	76.5	2.8	426	2	JH0690
1276	76.5	2.8	462	2	AH1130
1277	76.5	2.8	465	2	139473
1278	76.5	2.8	524	1	O4MSM1
1279	76.5	2.8	525	2	S69991
1280	76.5	2.8	533	2	т07970
1281	76.5	2.8	537	2	C64432
1282	76.5	2.8	562	2	E64412.
1283	76.5	2.8	567	2	T08405
1284	76.5	2.8	569	2	A45624
1285	76.5	2.8	569	2	T19128
1286	76.5	2.8	595	2	AI0042
1287	76.5	2.8	600	2	C69371
1288	76.5	2.8	619	2	A60646 .
1289	76.5	2.8	636	2	A45949 T13584
1290 1291	76.5	2.8 2.8	666 676	2	AF1153
1291	76.5 76.5	2.8	677	2	T18231
1292	76.5	2.8	682	2	D90946
1293	76.5	2.8	682	2	H85794
1295	76.5	2.8	682	2	A41798
1296	76.5	2.8	683	2	T12127
1297	76.5	2.8	699	2	T13730
1298	76.5	2.8	704	2	T13729
1299	76.5	2.8	726	2	T31287
1300	76.5	2.8	746	2	T13698
1301	76.5	2.8	746	2	T13678
1302	76.5	2.8	753	2	C96668
1303	76.5	2.8	753	2	T32844
1304	76.5	2.8	756	2	A88679
1305	76.5	2.8	885	1	A55453
1306	76.5	2.8	889	2	C72565
1307	76.5	2.8	899	2	F84477
1308	76.5	2.8	900	2	T14277
1309	76.5	2.8	904	2	T46170
1310	76.5	2.8	962	2	S67385
1311	76.5	2.8	990	2	S42586
1312	76.5	2.8	1018	2	E83099
1313	76.5	2.8 2.8	1054	2	G82934
1314	76.5	2.8	1125	1 2	JH0771 T04890
1315 1316	76.5 76.5	2.8	1134 1212	2	A84500
1317	76.5	2.8	1217	2	H89863
1317	76.5	2.8	1333	2	s30356
1319	76.5	2.8	1384	2	S78132
1320	76.5	2.8	1434	2	C90109
1321	76.5	2.8	1447	2	S63669
1322	76.5	2.8	1497	2	s72250
1323	76.5	2.8	1613	2	s39059
1324	76.5	2.8	1726	2	A39401

conserved hypothet hypothetical prote hypothetical prote hypothetical prote hypothetical prote phosphoglycerate k hypothetical prote bone morphogenetic glutamate decarbox Na+-dependent phos aryl hydrocarbon ( alcohol O-acetyltr aromatic-L-amino-a hypothetical prote hypothetical prote hypothetical prote trophozoite cystei hypothetical prote thiol, disulfide in conserved hypothet transforming prote merozoite surface NADH2 dehydrogenas transcription anti transketolase I hypothetical prote hypothetical prote carboxy-terminal p NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas NADH2 dehydrogenas unknown protein F1 hypothetical prote protein H06H21.10 nucleotide diphosp probable valyl-tRN probable retroelem myosin-like protei disease resistance hypothetical prote transposase - Rhiz probable RND efflu hypothetical prote protein-tyrosine k hypothetical prote probable retroelem hypothetical prote CDC25 protein homo DNA-directed RNA p DNA-directed RNA p UDPglucose-glycopr sex-determining tr protein BRG1 - hum merozoite surface

1325 1326 1327 1328 1329 1330	76.5 76.5 76.5 76 76 76	2.8 2.8 2.7 2.7 2.7	1827 2025 2216 147 279 294	2 2 2 2 2 2	A35694 JC5020 S78398 D71452 T03830 G95120
1331	76	2.7	301	2 2 2	AB1679
1332	76	2.7	319		D90342
1333	76	2.7	331		B70336
1334	76	2.7	401	2	T25031
1335	76	2.7	402	2	T43603
1336	76	2.7	409	2	T47754
1337	76	2.7	416	2	S77027
1338	76	2.7	445	2	AE1590
1339	76	2.7	450	2	F69371
1340	76	2.7	452	2 2	S41717
1341	76	2.7	454		PC4237
1342	76	2.7	500		JX0252
1343	76	2.7	502	2	G87433
1344	76	2.7	510	2	A35342
1345	76	2.7	519	2	C90085
1346	76	2.7	527	2	G71557
1347	76	2.7	537	2 2 2	T38015
1348	76	2.7	545		H86322
1349	76	2.7	550		D88099
1350	76	2.7	593	2	A72221
1351	76	2.7	646	2	T38212
1352	76	2.7	658	2	A64584
1353	76	2.7	666	2	T44207
1354	76	2.7	672	2	A72076
1355	76	2.7	672	2	B86548
1356	76	2.7	675	2	A35743
1357 1358 1359	76 76 76	2.7 2.7 2.7 2.7	682 682 698	2 2 2	T12294 AE0728 H71535
1360	76	2.7	702	2	T12677
1361	76	2.7	711	2	G86526
1362	76	2.7	711	2	A72098
1363	76	2.7	744	2	T13757
1364	76	2.7	788	2	B84857
1365	76	2.7	789	2	S49240
1366	76	2.7	791	2	E35216
1367 1368 1369	76 76 76 76	2.7 2.7 2.7 2.7	813 815 821	2 2 2	T40622 G82417 H71475
1370	76	2.7	830	2	S54547
1371	76	2.7	867	2	E86815
1372	76	2.7	882	2	T39789
1373	76	2.7	891	2	T38195
1374	76	2.7	902	2	AG2989
1375	76	2.7	907	1	A57429
1376	76	2.7	919	2	B98294
1377 1378 1379	76 76 76 76	2.7 2.7 2.7 2.7	987 1013 1058	2 2 1	I48652 B96544 GNFF17
1380 1381	76 76	2.7	1083 1146	2	A38919 E70204

cutl protein - fis tetratricopeptide hypothetical prote probable methylmal probable myb facto conserved hypothet dehydogenases and transposase ISC123 heterodisulfide re hypothetical prote transcription repr leucine zipper-con hypothetical prote hypothetical prote bile acid-inducibl aspartic hemoglobi trans-cinnamate 4aldosterone syntha conserved hypothet steroid 11beta-mon hypothetical prote probable glucanotr hypothetical prote calcium-dependent protein F18A12.5 [ conserved hypothet hypothetical prote hypothetical prote DNA-packaging prot hypothetical prote hypothetical prote creatine kinase (E NADH2 dehydrogenas tail-specific prot hypothetical prote NADH2 dehydrogenas hypothetical prote hypothetical prote NADH2 dehydrogenas hypothetical prote hypothetical prote FPD5 protein - fow translation elonga conserved hypothet probable chltr pho PAM1 protein - yea ClpB protein [impo aminopeptidase - f probable alpha, alp preprotein translo aldehyde oxidase ( preprotein translo mouse developmenta hypothetical prote retrovirus-related hypothetical prote hypothetical prote

1431 /5.5 2.7 682 2 D/2158	1382 1383 1384 1385 1386 1387 1388 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1421 1422 1423 1424 1425 1426 1427 1428 1430	76667667677777777777777777777777777777	2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	1187 11940 1476 1777 2124 3144 477 246 339 431 447 449 449 449 449 449 449 449 449 449	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C84568 T43735 T06404 JC5143 T00490 T44178 T01526 T19997 A44357 D64232 F75453 T29242 S74862 C82070 AF1274 T32694 A26488 E71672 S60902 T30012 E64432 T23502 T03774 D70579 G81598 C70446 E86534 E72089 E86555 H72067 S70581 S34945 G90192 T03789 T41092 C82698 JC4112 A96773 T04545 NUUTB A64432 G89836 S69546 T37345 D42511 F36843 T28500
	1426	75.5	2.7	640	2	S69546
	1427	75.5	2.7	676	2	T37345
	1428	75.5	2.7	676	2	D42511
	1429	75.5	2.7	676	2	F36843

hypothetical prote pyruvate carboxyla resistance complex alpha-macroglobuli nonstructural prot large tegument pro hypothetical prote hypothetical prote dynein heavy chain glycerophosphoryl 5,10-methylenetetr hypothetical prote hypothetical prote conserved hypothet tyrosyl-tRNA synth hypothetical prote tubulin alpha-1 ch fumarate hydratase CDP-ribitol pyroph hypothetical prote spore coat polysac hypothetical prote probable histidine probable murC prot serine hydroxymeth hypothetical prote ADP/ATP translocas ADP, ATP carrier p serine hydroxymeth glycine hydroxymet dihydropyrimidinas nitrogenase (EC 1. conserved hypothet 4-coumarate-CoA li hypothetical prote electron transfer P-methyltransferas hypothetical prote probable laccase [ auxin-regulated pr protein cs/ch-42, glucose-6-phosphat nodulation factor ABC transporter pe phosphoenolpyruvat NPH-II, helicase -I8R protein - vacc ATP/GTP-binding pr hypothetical prote L8R protein - vari NADH2 dehydrogenas hypothetical prote probable transmemb NADH2 dehydrogenas relA/SpoT protein, NADH2 dehydrogenas NADH2 dehydrogenas

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451	75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5	2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	744 751 756 782 787 838 848 875 915 928 949 971 975	2 2 2 2 2 1 2 2 2 2	T13376 S38101 T12697 D81281 S72725 T09054 B84107 D81651 A55144 T52292 H97322 A70179 AC2517
1452	75.5	2.7	1022	2	153078
1453	75.5	2.7	1031	2	T06130
1454	75.5	2.7	1155	2	H71456
1455	75.5	2.7	1178	2	S44142
1456	75.5	2.7	1225	2	T39255
1457	75.5	2.7	1285	2	B72420
1458 1459 1460 1461 1462 1463	75.5 75.5 75.5 75.5 75.5	2.7 2.7 2.7 2.7 2.7 2.7	1318 1430 1450 1605 1647 1657	1 2 2 2 2 2	HIBPD7 S50596 A84780 T31435 S45252 T25421
1464	75.5	2.7	1764	2	S37827
1465	75.5	2.7	1874	1	JQ0533
1466	75.5	2.7	2022	2	A59256
1467	75.5	2.7	2136	2	A05037
1468	75.5	2.7	2471	2	T03820
1469	75.5	2.7	2748	2	S57976
1470	75.5	2.7	8243	2	T31307
1471	75	2.7	249	2	E69298
1472	75	2.7	263	2	F45734
1473	75	2.7	288	2	G86223
1474	75	2.7	295	1	H70031
1475	75	2.7	295	2	G85042
1476	75	2.7	312	2	D90198
1477	75	2.7	314	2	S75872
1478	75	2.7	325	2	F91024
1479	75	2.7	325	2	G85868
1480	75	2.7	325	2	H64999
1481	75	2.7	327	2	D82090
1482 1483 1484 1485 1486 1487	75 75 75 75 75 75	2.7 2.7 2.7 2.7 2.7 2.7	333 350 350 357 357 357	2 2 2 2 2 2	AG2121 AH3043
1488	75	2.7	376	2	AE1878
1489	75	2.7	391	2	A89870
1490	75	2.7	392	1	SYPJCB
1491	75	2.7	400	1	F69142
1492	75	2.7	404	2	T19445
1493	75	2.7	404	2	C64332
1494 1495	75 75	2.7	408 411	2	D95392 G97802

NADH2 dehydrogenas hypothetical prote NADH2 dehydrogenas probable nucleotid guanosine-3',5'bis capsaicin receptor hypothetical prote conserved hypothet autotaxin precurso endopeptidase Clp DNA/RNA helicase, exodeoxyribonuclea hypothetical prote homeotic gene regu hypothetical prote probable pyrolysin VLA-2 protein homo probable C2 domain hypothetical prote internal virion pr hypothetical prote probable ABC trans DNA-directed RNA p SNF2beta protein hypothetical prote hypothetical prote genome polyprotein myosin-IXb [simila hypothetical prote probable histidine nuclear migration type I fatty acid conserved hypothet orf6 3' to hisD hypothetical prote conserved hypothet hypothetical prote transposase ISC123 hypothetical prote NADH dehydrogenase NADH dehydrogenase NADH2 dehydrogenas conserved hypothet luciferase-alpha c dehydrogenase Atu3 lipopolysaccharide UDP-N-acetylglucos peptidoglycan tran single-stranded DN phospho-2-dehydrohypothetical prote naringenin-chalcon probable hexosyltr hypothetical prote hypothetical prote protein [imported tyrosine-tRNA liga

1496	75	2.7	414	2	D70723	probable transfera
1497	75	2.7	416	2	F81337	RNA polymerase sig
1498	75	2.7	419	2	E64526	hypothetical prote
1499	75	2.7	432	2	G97224	ATP-dependent prot
1500	75	2.7	448	2	T43624	beta tubulin, temp

## ALIGNMENTS

```
RESULT 1
JC5423
2-hydroxyacylsphingosine 1-beta-galactosyltransferase (EC 2.4.1.45) - human
N; Alternate names: UDP-galactose: ceramide galactosyltransferase
C; Species: Homo sapiens (man)
C;Date: 10-Jun-1997 #sequence revision 18-Jul-1997 #text change 26-Aug-1999
C; Accession: JC5423
R; Kapitonov, D.; Yu, R.K.
Biochem. Biophys. Res. Commun. 232, 449-453, 1997
A; Title: Cloning, characterization, and expression of human ceramide
galactosyltransferase cDNA.
A; Reference number: JC5423; MUID: 97242209; PMID: 9125199
A; Accession: JC5423
A; Molecule type: mRNA
A; Residues: 1-541 <KAP>
A; Cross-references: GB:U62899
A; Experimental source: fetal glioma cell
C; Comment: This enzyme catalyzes the final step of galactosylceramide synthesis.
C; Genetics:
A; Gene: cqt
C; Superfamily: glucuronosyltransferase
C; Keywords: glycoprotein; glycosyltransferase; hexosyltransferase
F;472-492/Domain: hydrophobic #status predicted <HYD>
F;538-540/Region: endoplasmic reticulum retention signal #status atypical
F;78,333,442/Binding site: carbohydrate (Asn) (covalent) #status predicted
  Query Match
                        25.3%; Score 700; DB 2; Length 541;
 Best Local Similarity
                        32.2%; Pred. No. 8.7e-47;
  Matches 166; Conservative 95; Mismatches 185; Indels
                                                           70; Gaps
                                                                       12;
          13 LLPGVLLSEAAKILTISTV-GGSHYLLMDRVSQILQDHGHN-VTMLNHKRGPFMPDFKKE 70
Qу
                Db
          11 LWSAVGIAKAAKIIIVPPIMFESHMYIFKTLASALHERGHHTVFLLSEGRD----- 61
          71 EKSYQVISWLAPEDHQ--REFKKSF----DFFLEETL---GGRGKFENLLNVLEYLAL 119
Qу
                     62 ----IAPSNHYSLQRYPGIFNSTTSDAFLQSKMRNIFSGRLTAIELFDILDHYTK 112
Db
         120 OCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPI 179
Qу
              113 NCDMMVGNHALIQGLKKEKFDLLLVDPNDMCGFVIAHLLGVKYAVFSTGLWYPAEVGAPA 172
Db
         180 PLSYVPVFRSLLTDHMDFWGRVKN------FLMFFSFCRRQQHM-----QSTFD 222
Qу
                                              11: : | | : | : |
             11:111 | 11111 |: 1:11
         173 PLAYVPEFNSLLTDRMNLLQRMKNTGVYLISRLGVSFLVLPKYERIMQKYNLLPEKSMYD 232
Db
         223 NTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQD 282
Qу
```

```
-----LVHGSSLWMLCTDVALEFPRPTLPNVVYVGGILTKPASPLPED 275
Db
         283 LENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHL 342
Qy
             1: ::
                     : |||||: |: |
                                     ::1 :: 1
                                                    111 111:
                                                                 11 : 1
         276 LQRWVNGANEHGFVLVSFGAGVKYL-SEDIANKLAGALGRLPQKVIWRFS---GPKPKNL 331
Db
         343 AANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVE 402
Qу
               332 GNNTKLIEWLPQNDLLGHSKIKAFVSHGGLNSIFETMYHGVPVVGIPVFGDHYDTMTRVQ 391
Db
         403 AKKFGVSIOLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHV 462
Qу
                1: :: | : : |
                                392 AKGMGILLEWKTVTEKELYEALVKVINNPSYRQRAQKLSEIHKDQPGHPVNRTIYWIDYI 451
Db
         463 LQTGGATHLKPYVFQQPWHEQYLFDV-FVFLLGLTL 497
Qу
             :: || ||: | | : : :| |: || || |
Db
         452 IRHNGAHHLRAAVHQISFCQYFLLDIAFVLLLGAAL 487
RESULT 2
A48801
2-hydroxyacylsphingosine 1-beta-galactosyltransferase (EC 2.4.1.45) precursor -
N; Alternate names: UDP galactose-ceramide galactosyltransferase
C; Species: Rattus norvegicus (Norway rat)
C;Date: 07-Apr-1994 #sequence revision 18-Nov-1994 #text change 09-Jul-2004
C; Accession: A48801; I56576; S63480
R; Schulte, S.; Stoffel, W.
Proc. Natl. Acad. Sci. U.S.A. 90, 10265-10269, 1993
A: Title: Ceramide UDPgalactosyltransferase from myelinating rat brain:
purification, cloning, and expression.
A; Reference number: A48801; MUID: 94052143; PMID: 7694285
A; Accession: A48801
A; Status: preliminary
A; Molecule type: mRNA; protein
A; Residues: 1-541 <SCH>
A; Cross-references: UNIPROT: Q09426; GB: L21698; NID: g437665; PIDN: AAA16108.1;
PID:g437666
A; Experimental source: brain
A; Note: sequence extracted from NCBI backbone (NCBIN:139520, NCBIP:139522)
R;Stahl, N.; Jurevics, H.; Morell, P.; Suzuki, K.; Popko, B.
J. Neurosci. Res. 38, 234-242, 1994
A; Title: Isolation, characterization, and expression of cDNA clones that encode
rat UDP-galactose:ceramide galactosyltransferase.
A; Reference number: I56576; MUID: 94358923; PMID: 7521399
A; Accession: I56576
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-541 < RES>
A;Cross-references: EMBL:U07683; NID:g464025; PIDN:AAA50212.1; PID:g464026
R; Schulte, S.; Stoffel, W.
Eur. J. Biochem. 233, 947-953, 1995
A; Title: UDP galactose: ceramide galactosyltransferase and glutamate/aspartate
transporter: copurification, separation and characterization of the two
glycoproteins.
A; Reference number: S63480; MUID: 96085162; PMID: 8521863
```

```
A; Accession: S63480
A; Molecule type: protein
A; Residues: 21-28, 'A', 30-31, 'Q', 33-39; 73-77, 'X', 79-87; 155-166, 'Q', 168-173; 315-
322;330-331,'EX',334-338,'Q',340-353;416-423;510-515 <SUL>
A; Experimental source: brain
C; Function:
A; Description: transfers galactose from UDP-galactose to ceramide
C; Superfamily: glucuronosyltransferase
C; Keywords: glycoprotein; glycosyltransferase; hexosyltransferase
F;1-20/Domain: signal sequence #status predicted <SIG>
F;21-541/Product: 2-hydroxyacylsphingosine 1-beta-galactosyltransferase #status
experimental <MAT>
F;78,333/Binding site: carbohydrate (Asn) (covalent) #status experimental
                      24.7%; Score 684; DB 2; Length 541;
  Query Match
  Best Local Similarity 32.2%; Pred. No. 1.6e-45;
  Matches 165; Conservative 94; Mismatches 184; Indels 70; Gaps
                                                                 12:
          13 LLPGVLLSEAAKILTISTV-GGSHYLLMDRVSQILQDHGHN-VTMLNHKRGPFMPDFKKE 70
Qу
               11 LWSAVGIARAAKIIIVPPIMFESHLYIFKTLASALHERGHHTVFLLSEGRD------ 61
Db
          71 EKSYOVISWLAPEDHO--REFKKSF----DFFLEETL----GGRGKFENLLNVLEYLAL 119
Qу
                   1:::1::
          62 -----IDPSNHYSLQRYPGIFNSTTSDAFLQSKMRNIFSGRLTAVELVDILDHYTK 112
Db
         120 QCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPI 179
Qу
             113 NCDMMVGNQALIQGLKKEKFDLLLVDPNDMCGFVIAHLLGVKYAVFSTGLWYPAEVGAPA 172
Db
         180 PLSYVPVFRSLLTDHMDFWGRVKN------FLMFFSFCRRQQH-----MQSTFD 222
Qу
            ||:||| | ||||| |:| |:||
                                           | | | : | | |
         173 PLAYVPEFNSLLTDRMNFLERMKNTGVYLISRMGVSFLVLPKYERIMQKYNLLPAKSMYD 232
Db
         223 NTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPOD 282
Qу
                           ----LVHGSSLWMLCTDVALEFPRPTLPNVVYVGGILTKPASPLPED 275
Db
         283 LENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHL 342
Qу
            276 LORWVDGAQEHGFVLVSFGAGVKYL-SEDIANKLAGALGRLPQKVIWRFSGT---KPKNL 331
Db
         343 AANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVE 402
Qy
              332 GNNTKLIEWLPONDLLGHSNIRAFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTRVQ 391
Db
         403 AKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHV 462
Qy
            392 AKGMGILLEWNTVTEGELYDALVKVINNPSYRQRAQKLSEIHKDQPGHPVNRTTYWIDYI 451
Db
         463 LQTGGATHLKPYVFQQPWHEQYLFDV-FVFLLG 494
Qу
            1: || ||: | | : : :| |: || |||
Db
         452 LRHDGAHHLRSAVHQISFCQYFLLDIAFVLLLG 484
```

```
glucuronosyltransferase (EC 2.4.1.17) 1 precursor, bilirubin-specific - human
N; Alternate names: bilirubin UDP-glucuronosyltransferase
C; Species: Homo sapiens (man)
C; Date: 17-Jul-1992 #sequence revision 17-Jul-1992 #text change 09-Jul-2004
C; Accession: A39092; E42586; A48887
R; Ritter, J.K.; Crawford, J.M.; Owens, I.S.
J. Biol. Chem. 266, 1043-1047, 1991
A; Title: Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs
with expression in COS-1 cells.
A; Reference number: A39092; MUID: 91093210; PMID: 1898728
A; Accession: A39092
A; Molecule type: mRNA
A; Residues: 1-533 <RIT>
A; Cross-references: UNIPROT: P22309; GB: M57899; NID: g184472; PIDN: AAA63195.1;
PID:g184473
R; Ritter, J.K.; Chen, F.; Sheen, Y.Y.; Tran, H.M.; Kimura, S.; Yeatman, M.T.;
Owens, I.S.
J. Biol. Chem. 267, 3257-3261, 1992
A; Title: A novel complex locus UGT1 encodes human bilirubin, phenol, and other
UDP-glucuronosyltransferase isozymes with identical carboxyl termini.
A; Reference number: A42586; MUID: 92147680; PMID: 1339448
A: Accession: E42586
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: nucleic acid
A; Residues: 1-288 <RI2>
A;Cross-references: GB:M84125; NID:g340131; PIDN:AAA61248.1; PID:g340132
A; Note: sequence extracted from NCBI backbone (NCBIP:81433)
R; Ritter, J.K.; Yeatman, M.T.; Kaiser, C.; Gridelli, B.; Owens, I.S.
J. Biol. Chem. 268, 23573-23579, 1993
A; Title: A phenylalanine codon deletion at the UGT1 gene complex locus of a
Crigler-Najjar type I patient generates a pH-sensitive bilirubin UDP-
glucuronosyltransferase.
A; Reference number: A48887; MUID: 94043159; PMID: 8226884
A; Accession: A48887
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: DNA
A; Residues: 161-170, 172-180 <RI3>
A; Experimental source: liver, Crigler-Najjar type I patient
A; Note: sequence extracted from NCBI backbone (NCBIP:138934)
C; Genetics:
A; Gene: GDB: UGT1A1; UGT1
A; Cross-references: GDB:120007; OMIM:191740
A; Map position: 2q37-2q37
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
                          24.5%; Score 679; DB 2; Length 533;
  Query Match
  Best Local Similarity 33.8%; Pred. No. 3.8e-45;
                               93; Mismatches 211; Indels 38; Gaps
  Matches 175; Conservative
                                                                             13;
            8 LLVGFLL--PGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP 65
Qу
                       | | ::| | | | | | | | | | | | | | |
                                                     1 11 11 : : 1
Db
           11 LVLGLLLCVLGPVVSHAGKILLI-PVDGSHWLSMLGAIQQLQQRGHEIVVL-----AP 62
           66 D---FKKEEKSYQVISWLAPEDHQRE-FKKSF-----DFFLEETLGGRGKFENLL 111
Qу
                                    111 1:11
                                                         1 11: :
                        1::: 1
                : ::
           63 DASLYIRDGAFYTLKTY--PVPFQREDVKESFVSLGHNVFENDSFLQRVI---KTYKKIK 117
Db
```

```
112 NVLEYLALOCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG 171
Qу
                      111 1: 1::1 11
                                      :||:::::| | ::|: | | | |
         118 KDSAMLLSGCSHLLHNKELMASLAESSFDVMLTDPFLPCSPIVAQYLSLPTVFFLHALPC 177
Db
         172 SLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEH 228
Qу
                      1 1 1111
                               : | : |:
Db
         178 SLEFEATOCPNPFSYVPRPLSSHSDHMTFLORVKNMLIAFSONFLCDVVYSPY-ATLASE 236
         229 FTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIA 288
Qу
                     1: 1: 1:1
Db
         237 FLO-REVTVODLLSSASVWLFRSDFVKDYPRPIMPNMVFVGGINCLHQNPLSQEFEAYIN 295
         289 KFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKI 348
Qу
               |: | |: :|||||:
                                 :
                                       : :|
                                             :|| |:|:
                                                       :
                                                            : :|| | :
         · 296 ASGEHGIVVFSLGSMVSEIPEKKAM-AIADALGKIPQTVLWRYTGT---RPSNLANNTIL 351
Db
         349 VDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGV 408
Qу
             352 VKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGV 411
Db
         409 SIOLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGA 468
Qy
             :: :: :| | :| :: || || : | : |
                                                          | | |:: |:: ||
         412 TLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGA 471
Db
         469 THLKPYVFOOPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
QУ
                        1:::: | | | | | | | | |
                                           :: 1
         472 PHLRPAAHDLTWYQYHSLDVIGFLLAVVLTVAFITFK 508
Db
RESULT 4
A40467
glucuronosyltransferase (EC 2.4.1.17) precursor - rat
N; Alternate names: UDP-glucuronosyltransferase isoform 53K
C; Species: Rattus norvegicus (Norway rat)
C;Date: 07-Feb-1992 #sequence revision 07-Feb-1992 #text change 09-Jul-2004
C; Accession: A40467; A23520; S59627; A26064; I55247
R; Haque, S.J.; Petersen, D.D.; Nebert, D.W.; Mackenzie, P.I.
DNA Cell Biol. 10, 515-524, 1991
A; Title: Isolation, sequence, and developmental expression of rat UGT2B2: the
gene encoding a constitutive UDP glucuronosyltransferase that metabolizes
etiocholanolone and androsterone.
A; Reference number: A40467; MUID: 91369480; PMID: 1909872
A; Accession: A40467
A; Status: preliminary
A; Molecule type: DNA ....
A; Residues: 1-530 <HAQ>
A; Cross-references: UNIPROT: P08541
R; Jackson, M.R.; Burchell, B.
Nucleic Acids Res. 14, 779-795, 1986
A; Title: The full length coding sequence of rat liver androsterone UDP-
qlucuronyltransferase cDNA and comparison with other members of this gene
family.
A; Reference number: A23520; MUID: 86120371; PMID: 3003696
A; Accession: A23520
A; Molecule type: mRNA
```

```
A; Residues: 31-158, 'E', 160-285, 'S', 287-350, 'I', 352-362, 'I', 364-430, 'E', 432-530
A; Cross-references: GB: X03478; NID: g57452; PIDN: CAA27198.1; PID: g57453
A; Note: the authors translated the codon ATT for residue 321 as Asn
R; Yamashita, A.; Watanabe, M.; Tonegawa, T.; Sugiura, T.; Waku, K.
Biochem. J. 312, 301-308, 1995
A; Title: Acyl-CoA binding and acylation of UDP-glucuronosyltransferase isoforms
of rat liver: their effect on enzyme activity.
A; Reference number: S59626; MUID: 96077159; PMID: 7492328
A; Accession: S59627
A; Molecule type: protein
A; Residues: 24-44 < YAM>
R; Mackenzie, P.I.
J. Biol. Chem. 261, 14112-14117, 1986
A; Title: Rat liver UDP-glucuronosyltransferase. cDNA sequence and expression of
a form glucuronidating 3-hydroxyandrogens.
A; Reference number: A26064; MUID: 87033594; PMID: 2429951
A; Accession: A26064
A; Molecule type: mRNA
A; Residues: 1-430, 'E', 432-530 <MAC>
A;Cross-references: GB:J02589; NID:g207582; PIDN:AAA42314.1; PID:g207583
A; Experimental source: hepatic
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
F:1-23/Domain: signal sequence #status predicted <SIG>
F;24-530/Product: glucuronosyltransferase #status experimental <MAT>
                        24.4%; Score 674.5; DB 2; Length 530;
  Query Match
  Best Local Similarity 33.5%; Pred. No. 8.4e-45;
 Matches 170; Conservative 86; Mismatches 219; Indels
          34 SHYLLMDRVSQILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVISW-LAPEDHQREFKKS 92
Qу
                       34 SHWMNIKIILDELVQRGHEVTVLKPSAYFFLDPKKSSDLKFEIFSTSISKDELQNHFIKL 93
Db
          93 FDFFLEE----TLGGRGKFENLLNVLEYLALQ-CSHFLNRKDIMDSLKNENFDMVIVET 146
Qу
                                      |: |
                        - 1
                               :||:
          94 LDVWTYELPRDTCLSYSPILQNLVYEFSYFYLSICKDAVSNKQLMTKLQESKFDVLFADP 153
Db
         147 FDYCPFLIAEKLGKPFVAILSTSFG-SLEFGLP---IPLSYVPVFRSLLTDHMDFWGRVK 202
Qу
                                             : | | | | | | | |
                | |||| | ||: || | | | : |
                                                             154 VASCGDLIAELLHIPFLYSLSFSPGHKLEKSIGKFILPPSYVPVILSGLAGKMTFIDRVK 213
Db
         203 NF--LMFFSF-CRROOHMO-STFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFA 258
Qу
                :::| |
                        | :| : || : |
                                                   : | |:| | :
                                           - 1
                                               :
         214 NMICMLYFDFWFERLRHKEWDTFYSEIL----GRPTTVDETMSKVEIWLIRSYWDLKFP 268
Db
         259 RPLLPNTVYVGGLMEKPIKPVPODLENFIAKFGDSGFVLVTLGSMVNTCONPEIFKEMNN 318
Qу
              269 HPTLPNVDYIGGLHCKPAKPLPKDMEEFVQSSGEHGVVVFSLGSMVS----NMTEEKAN 323
Db
         319 ----AFAHLPOGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNS 374
Qу
                                      | | :|| |:||
         324 AIAWALAQIPQKVLWKFD---GKTPATLGPNTRVYKWLPQNDLLGHPKTKAFVTHGGANG 380
Db
         375 IMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK 434
Qу
                                                         : ::::: ||
```

```
381 LYEAIYHGIPMIGIPLFGDQPDNIAHMVAKGAAVSLNIRTMSKLDFLSALVEVIDNPFYK 440
Db
          435 SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLG 494
Qу
                          |: | | | ||: ::: || ||:|
                 : | |
                                                        441 KNVMLLSTIHHDQPMKPLDRAVFWIEFIMRHKGAKHLRPLGHNLPWYQYHSLDVIGFLLT 500
. Db
          495 LTLGTLWLCGK-LLGMAVWWLRGARKVK 521
Qу
                     | | | | | :::: : : | : |
          501 CFAVIAALTVKCLLFMYRFFVKKEKKMK 528
RESULT 5
A42233
glucuronosyltransferase (EC 2.4.1.17) 2 - rat
C; Species: Rattus norvegicus (Norway rat)
C;Date: 19-Jun-1992 #sequence revision 18-Sep-1992 #text change 09-Jul-2004
C; Accession: A42233; A24324
R; Mackenzie, P.I.; Rodbourn, L.
 J. Biol. Chem. 265, 11328-11332, 1990
A; Title: Organization of the rat UDP-glucuronosyltransferase, UDPGTr-2, gene and
characterization of its promoter.
A; Reference number: A42233; MUID: 90293083; PMID: 2113533
A; Accession: A42233
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-529 <MAC>
A; Cross-references: UNIPROT: P09875; GB: J05482
A; Note: the authors translated the codon GTA for residue 57 as B, and GTC for
 residue 116 as B
R; Mackenzie, P.I.
J. Biol. Chem. 261, 6119-6125, 1986
A; Title: Rat liver UDP-glucuronosyltransferase. Sequence and expression of a
 cDNA encoding a phenobarbital-inducible form.
A; Reference number: A24324; MUID: 86196018; PMID: 3084479
A; Accession: A24324
A; Molecule type: mRNA
A; Residues: 1-407, 'V', 409-529 <MA2>
A; Cross-references: GB: M13506; NID: g207580; PIDN: AAA42313.1; PID: g207581
A; Experimental source: liver
 C; Superfamily: glucuronosyltransferase
 C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
                          24.2%; Score 671; DB 2; Length 529;
  Query Match
  Best Local Similarity 32.2%; Pred. No. 1.6e-44;
                                90; Mismatches 228; Indels
  Matches 175; Conservative
            6 VLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP 65
 Qy
               :: 1: : 11
                                11 LIQLICYFRPGA----CGKVLVWPT-EYSHWINIKIILNELAQRGHEVTVLVSSASILIE 65
 Db
           66 DFKKEEKSYQVISW-LAPEDHQREFKKSFDFFLE--ETLG---GRGKFENLLN----VLE 115
 Qу
                     :::: | |: |: | |: |
                                                 \perp:: \perp
 Dh
           66 PTKESSINFEIYSVPLSKSDLEYSFAKWIDEWTRDFETLSIWTYYSKMQKVFNEYSDVVE 125
          116 YLALOCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG---- 171
 QУ
                      : | :| |: ||::: :
                                              | |:|| | | |
           126 NL---CKALIWNKSLMKKLQGSQFDVILADAVGPCGELLAELLKTPLVYSLRFCPGYRCE 182
 Db
```

```
172 SLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKNFL--MFFSFCRRQQHMQSTFDNTIKEHF 229
Qу
                - 1
                                                        : : : :
        183 KFSGGLPLPPSYVPVVLSELSDRMTFVERVKNMLQMLYFDF-----WFQPFKEKSWSQFY 237
Db
        230 TE--GSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFI 287
Qу
                   238 SDVLGRPTTLTEMMGKADIWLIRTFWDLEFPHPFLPNFDFVGGLHCKPAKPLPREMEEFV 297
Db
        288 AKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVK 347
Qy
               Db
        298 QSSGEHGVVVFSLGSMVKNL-TEEKANVVASALAQIPQKVVWRFD---GKKPDTLGSNTR 353
        348 IVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFG 407
Qу
            Db
        354 LYKWIPONDLLGHPKTKAFVAHGGTNGIYEAIYHGIPIVGIPLFADOPDNINHMBAKGAA 413
        408 VSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGG 467
Qy
            1: 1
                    Db
        414 VRVDFSILSTTGLLTALKIVMNDPSYKENAMRLSRIHHDQPVKPLDRAVFWIEYVMRHKG 473
        468 ATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGT-----LWLCGKLLGMAVWWLRGARK 519
Qу
            Db
        474 AKHLRSTLHDLSWFQYHSLDVIGFLLLCVVGVVFIITKFCLFCCRKTANM-----GKK 526
        520 VKE 522
Qy .
             527 KKE 529
Db
RESULT 6
B47113
qlucuronosyltransferase (EC 2.4.1.17) UGT2B13 precursor - rabbit
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 03-May-1994 #sequence revision 03-May-1994 #text change 09-Jul-2004
C; Accession: B47113
R; Tukey, R.H.; Pendurthi, U.R.; Nguyen, N.T.; Green, M.D.; Tephly, T.R.
J. Biol. Chem. 268, 15260-15266, 1993
A; Title: Cloning and characterization of rabbit liver UDP-
glucuronosyltransferase cDNAs. Developmental and inducible expression of 4-
hydroxybiphenyl UGT2B13.
A; Reference number: A47113; MUID: 93315511; PMID: 8325897
A; Accession: B47113
A; Status: preliminary
A; Molecule type: mRNA
A; Residues: 1-531 <TUK>
A; Cross-references: UNIPROT: P36512; GB: L01081; NID: q165796; PIDN: AAA18020.1;
PID:q165797
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
                      24.2%; Score 670; DB 2; Length 531;
 Query Match
 Best Local Similarity 32.6%; Pred. No. 1.9e-44;
 Matches 169; Conservative 90; Mismatches 206; Indels
         34 SHYLLMDRVSQILQDHGHNVTML------NHKRG----PFMPDFKKEEKSYQVISW 79
Qу
            ||::| : | || || ||:|
                                        |::|
                                                - 1
                                                   ::|:|
```

```
35 SHWMNMKTILDALVQQGHEVTVLRSSASIVIGSNNESGIKFETFHTSYRKDEIENFFMDW 94
Db
          80 LAPEDHQREFKKSFDFFLE---ETLGGRGKFENLLNVLEYLAL---QCSHFLNRKDIMDS 133
Qу
                     :1 :: :1 11
                                            :: |: | : | : | : |
          95 F----YKMIYNVSIESYWETFS----LTKMVILKYSDICEDICKEVILNKKLMTK 141
Db
         134 LKNENFDMVIVETFDYCPFLIAEKLGKP----FVAILSTSFGSLEFGLPIPLSYVPV 186
QУ
                              1:11 | 1
                                            11:
         142 LQESRFDVVLADPVSPGGELLAELLKIPLVYSLRGFVGYMLQKHGG---GLLLPPSYVPV 198
Db
Qу
         187 FRSLLTDHMDFWGRVKNFL--MFFSFCRRQQHMQSTFDNTIKEHFTEGSRPV-LSHLLLK 243
                    1 1 11:1 1 ::1 1
                                       : : :|
                                                   \mathbf{I}
Db
         199 MMSGLGSOMTFMERVQNLLCVLYFDFW-FPKFNEKRWDQFYSEVL---GRPVTFLELMGK 254
Qу
         244 AELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSM 303
             1: | |: :||||
         255 ADMWLIRSYWDLEFPRPLLPNFDFIGGLHCKPAKPLPQEMEDFVQSSGEEGVVVFSLGSM 314
Db
         304 VNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSI 363
Qу
                        315 ISNL-TEERANVIASALAQLPQKVLWRFE---GKKPDMLGSNTRLYKWIPQNDLLGHPKT 370
Db
         364 RLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALK 423
Qу
             371 KAFITHGGANGVFEAIYHGIPMVGLPLFGDQLDNIVYMKAKGAAVKLNLKTMSSADLLNA 430
Db
         424 MKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQ 483
Qу
             431 LKTVINDPSYKENAMTLSRIHHDQPMKPLDRAVFWIEYVMRHKGAKHLRVAAHDLTWYQY 490
Db
         484 YLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qу
                       | :| | : :: || | ::
             : 11 111
Db
         491 HSLDVIGFLLACVAITTYLIVKCCLLVYRYVLGAGKKKK 529
RESULT 7
C47113
glucuronosyltransferase (EC 2.4.1.17) UGT2B14 precursor - rabbit
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 03-May-1994 #sequence revision 03-May-1994 #text change 09-Jul-2004
C; Accession: C47113
R; Tukey, R.H.; Pendurthi, U.R.; Nguyen, N.T.; Green, M.D.; Tephly, T.R.
J. Biol. Chem. 268, 15260-15266, 1993
A:Title: Cloning and characterization of rabbit liver UDP-
glucuronosyltransferase cDNAs. Developmental and inducible expression of 4-
hydroxybiphenyl UGT2B13.
A; Reference number: A47113; MUID: 93315511; PMID: 8325897
A; Accession: C47113
A; Status: preliminary
A; Molecule type: mRNA
A; Residues: 1-530 <TUK>
A; Cross-references: UNIPROT: P36513; GB: L01082; NID: g165798; PIDN: AAA18021.1;
PID:g165799
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
                      23.9%; Score 662.5; DB 2; Length 530;
  Query Match
```

```
Best Local Similarity 34.5%; Pred. No. 7.3e-44;
 Matches 161; Conservative
                             75; Mismatches 209;
                                                  Indels
                                                          21; Gaps 10;
          50 GHNVTMLNHKRGPFMPDFKKEEKSYQVISWLAPEDHQRE-FKKSFDFFLEETLGGRGKFE 108
Qу
                                ::
                                        |\cdot|\cdot|\cdot|
             11 1 :1 :
                       1: 1:
                                                     :
          51 GHEVIVLRNSASIFIDPSKQANIKFETFPIAATKDDLEDLFVHYVSTWTNARQNSQWKYF 110
Db
         109 NLLNVL--EY---LALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFV 163
Qу
            | |:|| | |||
         111 SLLQKLFSEYSDSCENACKEVVFNKTLMTKLQESRFDILLSDAIGPCGELLAELLKIPFV 170
Db
         164 AILSTSFG----SLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKNFL--MFFSFCRRQQHM 217
Qу
                           171 YSLRFTPGYTMEKYSGGLSVPPSYVPIILSDLSGKMTFMERVNNMLCMLYFDFW-FQMFN 229
Db
         218 QSTFDNTIKEHFTEGSRPV-LSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPI 276
Qу
                           ı
         230 KKRWDQFYSEVL---GRPVTFSELVGKADMWLIRSYWDLEFPRPTLPNIQFVGGLHCKPA 286
Db
         277 KPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHW 336
Qγ
                        |: | |: :||||:
                                          - 1
                                               ::||| ||| |||
         287 KPLPKEMEEFVQSSGEEGVVVFSLGSMVSN-MTEERANLIASAFAQLPQKVIWRFD---G 342
Db
         337 PKDVHLAANVKIVDWLPOSDLLAHPSIRLFVTHGGONSIMEAIQHGVPMVGIPLFGDQPE 396
Qy
                 343 OKPETLGPNTRIYDWIPONDLLGHPKTKAFVTHGGANGIYEAIHHGIPMVGLPLFGEQPD 402
Db
         397 NMVRVEAKKFGVSIOLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLV 456
QУ
                     403 NIAHMTAKGAAIRLNWKTMSSEDLLNALKTVINDPSYKENVMTLSSIHHDQPMKPLDRAV 462
Db
         457 GWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWL 502
Qy
                                 1:: || ||:
              ||::|:: || ||:
         463 FWIEYVMRHKGAKHLRVAAHDLTWFQYHSLDVVGFLVSCAAFLIFL 508
Dh
RESULT 8
A35343
glucuronosyltransferase (EC 2.4.1.17) - rat
C; Species: Rattus norvegicus (Norway rat)
C; Date: 14-Sep-1990 #sequence revision 14-Sep-1990 #text_change 09-Jul-2004
C; Accession: A35343
R; Sato, H.; Koiwai, O.; Tanabe, K.; Kashiwamata, S.
Biochem. Biophys. Res. Commun. 169, 260-264, 1990
A; Title: Isolation and sequencing of rat liver bilirubin UDP-
qlucuronosyltransferase cDNA: possible alternate splicing of a common primary
A; Reference number: A35343; MUID: 90274676; PMID: 2112380
A; Accession: A35343
A; Status: preliminary
A; Molecule type: mRNA
A; Residues: 1-531 <SAT>
A;Cross-references: UNIPROT:P20720; GB:M34007; NID:g207578; PIDN:AAA42312.1;
PID:q207579
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
```

```
23.8%; Score 658; DB 2; Length 531;
 Query Match
 Best Local Similarity 30.9%; Pred. No. 1.6e-43;
 Matches 171; Conservative 106; Mismatches 211; Indels
           1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
                            :| |:| : : |||:| | | : |
                       - 11
           7 LRGLSGLLLLLCALP---WAEGGKVL-VFPMEGSHWLSMRDVVRELHARGHQAVVL---- 58
Db
          61 GPFMPDFKKEEKSYQVISWLAP---EDHQREF----KKSFD-----FFLEETLGGRGK 106
Qу
                    | | : : :: | | ::|||
                                             || |:
                                                        11
Db
          59 APEVTVHMKGEDFFTLQTYAFPYTKEEYQREILGNAKKGFEPQHFVKTFF--ETMASIKK 116
         107 FENLLNVLEYLALOCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAIL 166
Qу
                      | |: |: | :: | :: ||:|:
                                                   | | |:|: | | | |
         117 FFDL----YANSCAALLHNKTLIQQLNSSSFDVVLTDPVFPCGALLAKYLQIPAVFFL 170
Db
         167 STSFGSLEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFS---FCRRQQHMQST 220
Qу
                                  171 RSVPCGIDYEATQCPKPSSYIPNLLTMLSDHMTFLQRVKNMLYPLTLKYIC----HLSIT 226
Db
         221 FDNTIKEHFTEGSR---PVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIK 277
Qу
                             | :|
                                            Db
         227 PYESLASELLQREMSLVEVLSH----ASVWLFRGDFVFDYPRPIMPNMVFIGGINCVIKK 282
         278 PVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWP 337
Qу
             : 1: | :|| ::|:
         283 PLSQEFEAYVNASGEHGIVVFSLGSMVSEIPEKKAM-EIAEALGRIPQTLLWRYTGT--- 338
Db
         338 KDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPEN 397
Qу
             339 RPSNLAKNTILVKWLPQNDLLGHPKARAFITHSGSHGIYEGICNGVPMVMMPLFGDQMDN 398
Db
         398 MVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVG 457
Qу
               1:|: ||::::|:| :| :| :| || :| ||
         399 AKRMETRGAGVTLNVLEMTADDLENALKTVINNKSYKENIMRLSSLHKDRPIEPLDLAVF 458
Db
         458 WIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWL-----CGKLLGM 509
Qу
                                1:::1:: | | | | | | | |
         459 WVEYVMRHKGAPHLRPAAHDLTWYQYHSLDVIGFLLAIVLTVVFIVYKSCAYGCRKCFG- 517
Db
         510 AVWWLRGARKVKET 523
Qу
                  | :||::
         518 -----GKGRVKKS 525
Db
RESULT 9
I57961
glucuronosyltransferase (EC 2.4.1.17) precursor - rat
N; Alternate names: glucuronosyltransferase 1 B1; morphine UGT
C; Species: Rattus norvegicus (Norway rat)
C;Date: 12-Aug-1996 #sequence revision 12-Aug-1996 #text change 09-Jul-2004
C; Accession: I57961; S51197; S68333
R; Coffman, B.L.; Green, M.D.; King, C.D.; Tephly, T.R.
Mol. Pharmacol. 47, 1101-1105, 1995
A; Title: Cloning and stable expression of a cDNA encoding a rat liver UDP-
glucuronosyltransferase (UDP-glucuronosyltransferase 1.1) that catalyzes the
```

glucuronidation of opioids and bilirubin.

```
A; Reference number: I57961; MUID: 95327065; PMID: 7603447
A; Accession: I57961
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-535 < RES>
A; Cross-references: UNIPROT: Q64550; EMBL: U20551; NID: q695161; PIDN: AAC52219.1;
PID:q695162
R; Ishii, Y.; Tsuruda, K.; Tanaka, M.; Oguri, K.
Arch. Biochem. Biophys. 315, 345-351, 1994
A; Title: Purification of a phenobarbital-inducible morphine UDP-
glucuronyltransferase isoform, absent from gunn rat liver.
A; Reference number: S51197; MUID: 95077409; PMID: 7986077
A; Accession: S51197
A; Molecule type: protein
A; Residues: 30-41 <ISH>
R; Ikushiro, S.; Emi, Y.; Iyanagi, T.
Arch. Biochem. Biophys. 324, 267-272, 1995
A; Title: Identification and analysis of drug-responsive expression of UDP-
glucuronosyltransferase family 1 (UGT1) isozyme in rat hepatic microsomes using
anti-peptide antibodies.
A; Reference number: S68333; MUID: 96132654; PMID: 8554318
A; Accession: S68333
A; Molecule type: protein
A; Residues: 30-37 < IKU>
C; Genetics:
A; Gene: UGT1.1
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase
                         23.8%; Score 658; DB 2; Length 535;
  Ouery Match
  Best Local Similarity 31.4%; Pred. No. 1.7e-43;
  Matches 171; Conservative 97; Mismatches 215; Indels 62; Gaps
          13 LLPGVLL----SEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP 65
Qу
                           13 LLPCLLLCVLGPSASHAGKLLVI-PIDGSHWLSMLGVIQQLQQKGHEVVVI----APEAS 67
Db
          66 DFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFEN---LLNVLE----- 115
QУ
                                                          || |::
                                         1:1
                                                 || |:
                    | : : | ::
          68 IHIKEGSFYTMRKYPVPFQNENVTAA----FVEL---GRSVFDQDPFLLRVVKTYNKVKR 120
Db
         116 ---YLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGS 172
Qу
                 | ||| |: : | ||: :|| :: : | | ::|: | | | ::
         121 DSSMLLSGCSHLLHNAEFMASLEQSHFDALLTDPFLPCGSIVAQYLSLPAVYFLNALPCS 180
Db
         173 LEF---GLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFS---FCRRQQHMQSTFDNTIK 226
Qν
                     181 LDLEATQCPAPLSYVPKSLSSNTDRMNFLQRVKNMIIALTENFLCRVVYSPYGSLATEIL 240
Db
         227 EHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENF 286
Qу
                       : || | :| : :|| |: ||::|| |::||:
         241 Q----KEVTVKDLLSPASIWLMRNDFVKDYPRPIMPNMVFIGGINCLQKKALSQEFEAY 295
Db
         287 IAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANV 346
Qy
                 1: | |: :|||||: : |: |
                                              :|| |:|: : :|| |
         296 VNASGEHGIVVFSLGSMVSEIPEKKAM-EIAEALGRIPQTVLWRYTGT---RPSNLAKNT 351
Db
```

```
347 KIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKF 406
Qу
            352 ILVKWLPQNDLLGHPKARAFITHSGSHGIYEGICNGVPMVMMPLFGDQMDNAKRMETRGA 411
Db
         407 GVSIOLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTG 466
Qу
             1 1:::1::
         412 GVTLNVLEMTADDLENALKTVINNKSYKENIMRLSSLHKDRPIEPLDLAVFWVEYVMRHK 471
Db
         467 GATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWL-----CGKLLGMAVWWLRGAR 518
Qy
                          1:::: || || || || :::
                                                        Db
         472 GAPHLRPAAHDLTWYQYHSLDVIGFLLAIVLTVVFIVYKSCAYGCRKCFG-----GKG 524
         519 KVKET 523
Qу
             : | | : :
         525 RVKKS 529
Db
RESULT 10
JN0619
glucuronosyltransferase (EC 2.4.1.17) 2B-4 precursor - human
N; Alternate names: UDP-glucuronosyltransferase 2B-11
C; Species: Homo sapiens (man)
C;Date: 31-Dec-1993 #sequence_revision 31-Dec-1993 #text change 09-Jul-2004
C; Accession: JN0619; A27878
R; Jin, C.J.; Miners, J.O.; Lillywhite, K.J.; Mackenzie, P.I.
Biochem. Biophys. Res. Commun. 194, 496-503, 1993
A; Title: cDNA cloning and expression of two new members of the human liver UDP-
glucuronosyltransferase 2B subfamily.
A; Reference number: JN0619; MUID: 93326164; PMID: 8333863
A; Accession: JN0619
A; Molecule type: mRNA
A; Residues: 1-528 <JIN>
A;Cross-references: UNIPROT:P06133; GB:AF081793; NID:g3426331
A; Experimental source: liver
R; Jackson, M.R.; McCarthy, L.R.; Harding, D.; Wilson, S.; Coughtrie, M.W.H.;
Burchell, B.
Biochem. J. 242, 581-588, 1987
A; Title: Cloning of a human liver microsomal UDP-glucuronosyltransferase cDNA.
A; Reference number: A27878; MUID: 87241362; PMID: 3109396
A; Accession: A27878
A; Molecule type: mRNA
A; Residues: 1-108, 'F', 110-170, 'RP', 173-381, 'K', 383-384, 'SPR', 388-395, 'F', 397-528
A; Cross-references: GB: Y00317; NID: g37588; PIDN: CAA68415.1; PID: g37589
C; Genetics:
A; Gene: GDB: UGT2B4; UGT2B11
A; Cross-references: GDB:5891331; OMIM:600067
A; Map position: 4q13-4q13
C; Superfamily: glucuronosyltransferase
C; Keywords: glycoprotein; glycosyltransferase; hexosyltransferase; transmembrane
F;1-23/Domain: signal sequence #status predicted <SIG>
F;24-528/Product: glucuronosyltransferase 2B-11 #status predicted <MET>
F;492-509/Domain: transmembrane #status predicted <TMM>
F;315/Binding site: carbohydrate (Asn) (covalent) #status predicted
                         23.7%; Score 656.5; DB 2; Length 528;
  Query Match
```

```
Best Local Similarity 33.9%; Pred. No. 2.1e-43;
     Matches 173; Conservative 85; Mismatches 213; Indels
                                                                                                              39; Gaps
                    34 SHYLLMDRVSQILQDHGHNVTMLNHKRG----PFMPDFKKEEKSYQVISWLAPEDHQREF 89
 Qy
                          1 1 1 1
                    34 SHWMNIKTILDELVQRGHEVTVLASSASISFDPNSPSTLKFEVYPVSLTKTEFEDIIKQL 93
 Db
                    90 -----KKSFDFFLEETLGGRGKFENLLNVLEYLALOCSHFLNRKDIMDSLKNENFDM 141
 Qу
                                     94 VKRWAELPKDTFWSYLSQVQEIMWTFNDILRKF-----CKDIVSNKKLMKKLQESRFDV 147
 Db
                  142 VIVETFDYCPF--LIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHM 195
 Qy ·
                                  148 VLADA--VFPFGELLAELLKIPFVYSLRFSPGYAIEKHSGGLLFPPSYVPVVMSELSDQM 205
 Db
                  196 DFWGRVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDF 253
 Qу
                           | | | | | | ::::| | : | : | | | | |
                                                                                                206 TFIERVKNMIYVLYFEFWFQIFDMKK-WDQFYSE--VLGRPTTLSETMAKADIWLIRNYW 262
 Db
                  254 AFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMV-NTCQNPEI 312
 Qy
                           263 DFOFPHPLLPNVEFVGGLHCKPAKPLPKEMEEFVQSSGENGVVVFSLGSMVSNTSE--ER 320
 Db
                  313 FKEMNNAFAHLPOGVIWKCOCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQ 372
 QV
                               ::| | :| | :| | :| : | :| | :| | :| | :| | :| | :| | :| | :| | | | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | :| | 
                   321 ANVIASALAKIPOKVLWRFDGN---KPDTLGLNTRLYKWIPQNDLLGHPKTRAFITHGGA 377
  Db
                   373 NSIMEAIOHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKR 432
 Qy
                          11:
                                                                                               :: | :| :: |
                   378 NGIYEAIYHGIPMVGVPLLADQPDNIAHMKAKGAAVSLDFHTMSSTDLLNALKTVINDPL 437
 Db
                   433 YKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFL 492
 Qv
                                                  I::IIIII
                          11 1: 1 1
                   438 YKENAMKLSRIHHDOPVKPLDRAVFWIEFVMRHKGAKHLRVAAHDLTWFQYHSLDVTGFL 497
  Db
                   493 LGLTLGTLWLCGKLLGMAVW-WLRGARKVK 521
  Qу
                                    ::: | | | | ::| :| |
                   498 LACVATVIFIITKCL-FCVWKFVRTGKKGK 526
  Dh
  RESULT 11
 A35366
 glucuronosyltransferase (EC 2.4.1.17) UDPGTh-2 precursor - human
 C: Species: Homo sapiens (man)
  C; Date: 17-Aug-1990 #sequence revision 17-Aug-1990 #text change 09-Jul-2004
..C; Accession: A35366
  R; Ritter, J.K.; Sheen, Y.Y.; Owens, I.S.
  J. Biol. Chem. 265, 7900-7906, 1990
 A; Title: Cloning and expression of human liver UDP-glucuronosyltransferase in
  COS-1 cells. 3,4-Catechol estrogens and estriol as primary substrates.
  A; Reference number: A35366; MUID: 90243659; PMID: 2159463
  A; Accession: A35366
  A; Status: preliminary
  A; Molecule type: mRNA
  A; Residues: 1-529 <RIT>
  A; Cross-references: UNIPROT: P16662; GB: J05428; NID: q340079; PIDN: AAA36793.1;
  PID:g340080
```

```
C; Genetics:
A; Gene: GDB: UGT2B7; UGT2B9
A; Cross-references: GDB:5892203; OMIM:600218
A; Map position: 4q13-4q13
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
                      23.6%; Score 654.5; DB 2; Length 529;
 Best Local Similarity 31.5%; Pred. No. 3.1e-43;
 Matches 163; Conservative 88; Mismatches 212; Indels 55; Gaps
         34 SHYLLMDRVSQILQDHGHNVTMLNHKRG-PFMPD-----FKKEEKSY---Q 75
Qу
            1 1 :::
         34 SHWMNIKTILDELIQRGHEVTVLASSASILFDPNNSSALKIEIYPTSLTKTELENFIMQQ 93
Db
         76 VISWL-APEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ-CSHFLNRKDIMDS 133
Qу
                      -, :| : :
                                        ::::: : : | :: | |
            : | |:1
         94 IKRWSDLPKD-----TFWLYFSQV-----QEIMSIFGDITRKFCKDVVSNKKFMKK 139
Db
        134 LKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTS----FGSLEFGLPIPLSYVPVFRS 189
QУ
                                   | |:||
                                                   11:: :
        140 VQESRFDVIFADAIFPCSELLAELFNIPFVYSLSFSPGYTFEKHSGGFIFPPSYVPVVMS 199
Db
        190 LLTDHMDFWGRVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTE---GSRPVLSHLLLKA 244
Qγ
             ||| | | | ||| ::::| | | | | | | |
                                             -:-1
                                                    \Pi: \Pi
        200 ELTDOMTFMERVKNMIYVLYFDF-----WFEIFDMKKWDQFYSEVLGRPTTLSETMGKA 253
Db
        245 ELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMV 304
Qy
            1::1 1: :11111
        254 DVWLIRNSWNFQFPHPLLPNVDFVGGLHCKPAKPLPKEMEDFVQSSGENGVVVFSLGSMV 313
Dh
        305 NTCONPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIR 364
Qy
               314 SN-MTEERANVIASALAQIPQKVLWRFDGN---KPDTLGLNTRLYKWIPQNDLLGHPKTR 369
Db
        365 LFVTHGGONSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKM 424
Qу
             :: |
        370 AFITHGGANGIYEAIYHGIPMVGIPLFADQPDNIAHMKARGAAVRVDFNTMSSTDLLNAL 429
Db
        425 KQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQY 484
Qу
            1::
        430 KRVINDPSYKENVMKLSRIQHDQPVKPLDRAVFWIEFVMRHKGAKHLRVAAHDLTWFQYH 489
Db
        485 LFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qу
              11 111
                         ::: .1
                                   490 SLDVIGFLLVCVATVIFIVTKCCLFCFW--KFARKAKK 525
Db
RESULT 12
S15089
glucuronosyltransferase (EC 2.4.1.17) - rat
C; Species: Rattus norvegicus (Norway rat)
C;Date: 21-Nov-1993 #sequence_revision 10-Nov-1995 #text_change 20-Jun-2000
C; Accession: S15089
R; Lazard, D.; Zupko, K.; Poria, Y.; Nef, P.; Lazarovits, J.; Horn, S.; Khen, M.;
Lancet, D.
Nature 349, 790-793, 1991
```

```
A; Title: Odorant signal termination by olfactory UDP glucuronosyl transferase.
A; Reference number: S15089; MUID: 91156050; PMID: 1900353
A; Accession: S15089
A; Molecule type: mRNA
A; Residues: 1-527 <LAZ>
A;Cross-references: GB:X57565; NID:g57762; PIDN:CAA40797.1; PID:g3980217
C; Superfamily: glucuronosyltransferase
C; Keywords: qlycosyltransferase; hexosyltransferase
 Query Match 23.5%; Score 650; DB 2; Length 527; Best Local Similarity 31.2%; Pred. No. 6.9e-43;
 Matches 166; Conservative 87; Mismatches 205; Indels 74; Gaps
           7 LLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMP- 65
Qу
             1 1:1 1 :1
                          1111:1
          12 LSLLGMSLGGNVL-----IWPMEGSHWLNVKIIIDELLRKEHNVTVLVASGALFITP 63
Db
          66 -----DFKKEE----KSYQVISWL----APEDHQREFKKSFDFFLEETLGG 103
Qу
                         | ||:
                                  | : |::||
                                             : |
                                                  :1:
                                                             64 SVSPSLTFEIYPVPFGKEKIESVIKDF-VLTWLENRPSPSTIWTFYKEMAKVIEEFHLVS 122
Db
         104 RGKFENLLNVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFV 163
Qу
                           | | | : :| |: |:::: | ::| ||| ||:
         123 RG-----ICDGVLKNEKLMTKLQRGKFEVLLSDPVFPCGDIVALKLGIPFI 168
Db
         164 AILSTSFGSLEFG-----LPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCR 212
Qу
                                  169 Y----SLRFSPASTVEKHCGKVPFPPSYVPAILSELTDQMSFADRVRNFISY----R 217
Db
         213 RQQHMQSTFDNTIKEHFTE--GSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGG 270
Qу
              218 MQDYMFETLWKQWDSYYSKALGRPTTLCETMGKAEIWLMRTYWDFEFPRPYLPNFEFVGG 277
Db
         271 LMEKPIKPVPODLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWK 330
Qу
             | || || ||:|:::| |: |: | |: :|||||
                                                    ::||:||:|:
         278 LHCKPAKPLPKEMEEFVQTSGEHGVVVFSLGSMVKNL-TEEKANLIASALAQIPQKVLWR 336
Db
         331 CQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPL 390
Qу
                      | :| :: ||:||:|| || | | |:|||| | | ||:||||
         337 YK---GKIPATLGSNTRLFDWIPQNDLLGHPKTRAFITHGGTNGIYEAIYHGIPMVGVPM 393
Db
         391 FGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLS 450
Qу
             394 FADOPDNIAHMKAKGAAVEVNMNTMTSADLLSAVRAVINEPFYKENAMRLSRIHHDQPVK 453
Db
         451 PTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWL 502 ....
Qу
             | | | | | : | : : | | | | | :
                                       454 PLDRAVFWIEFVMRHKGAKHLRVAAHDLSWFQYHSLDVIGFLLACMASAILL 505
RESULT 13
A48633
glucuronosyltransferase (EC 2.4.1.17) precursor - human
N; Alternate names: dihydrotestosterone/androstanediol UDP-
glucuronosyltransferase isoform 3, udpgth-3; UDP glucuronosyltransferase 2
family, protein B15
C; Species: Homo sapiens (man)
```

```
C;Date: 07-Apr-1994 #sequence revision 18-Nov-1994 #text change 09-Jul-2004
C; Accession: A48633; I38559
R; Chen, F.; Ritter, J.K.; Wang, M.G.; McBride, O.W.; Lubet, R.A.; Owens, I.S.
Biochemistry 32, 10648-10657, 1993
A; Title: Characterization of a cloned human dihydrotestosterone/androstanediol
UDP-glucuronosyltransferase and its comparison to other steroid isoforms.
A; Reference number: A48633; MUID: 94002056; PMID: 8399210
A; Accession: A48633
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: nucleic acid
A; Residues: 1-530 < CHE>
A; Cross-references: UNIPROT: P54855
A; Experimental source: liver
A; Note: sequence extracted from NCBI backbone (NCBIP:138786)
R; Green, M.D.; Oturu, E.M.; Tephly, T.R.
Drug Metab. Dispos. 22, 799-805, 1994
A; Title: Stable expression of a human liver UDP-glucuronosyltransferase
(UGT2B15) with activity toward steroid and xenobiotic substrates.
A; Reference number: I38559; MUID: 95136867; PMID: 7835232
A; Accession: I38559
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-530 < RES>
A; Cross-references: EMBL: U08854; NID: g475758; PIDN: AAC50077.1; PID: g475759
C:Genetics:
A; Gene: GDB: UGT2B15; UGT2B8
A; Cross-references: GDB:5892418; OMIM:600219
A; Map position: 4q13-4q13
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase
                        23.4%; Score 649; DB 2; Length 530;
 Best Local Similarity 31.8%; Pred. No. 8.3e-43;
 Matches 155; Conservative 90; Mismatches 218; Indels
                                                           24; Gaps
                                                                      10;
          34 SHYLLMDRVSQILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVI-SWLAPEDHQREFKKS 92
Qу
             34 SHWINMKTILEELVQRGHEVTVLTSSASTLVNASKSSAIKLEVYPTSLTKNDLEDSLLKI 93
Db
          93 FDFFLEETLGGRGKFENLLNVLEYLALQ-----CSHFLNRKDIMDSLKNENFDMVIV 144
Qу
                      : |: : |: |:
                                             1 : 1:1 1:
              1 ::
          94 LDRWIYGV--SKNTFWSYFSQLQELCWEYYDYSNKLCKDAVLNKKLMMKLQESKFDVILA 151
Db
         145 ETFDYCPFLIAEKLGKPFVAILSTSFG-SLE---FGLPIPLSYVPVFRSLLTDHMDFWGR 200
Qу
                           : : | |:||
         152 DALNPCGELLAELFNIPFLYSLRFSVGYTFEKNGGGFLFPPSYVPVVMSELSDQMIFMER..211
Db
         201 VKNF--LMFFSFCRROOHMOSTFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFA 258
Qу
                  :::| | : :: :| | | | : ||||:| | : :|:|
         212 IKNMIHMLYFDFWFQIYDLKK-WDQFYSE--VLGRPTTLFETMGKAEMWLIRTYWDFEFP 268
Db
         259 RPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNN 318
Qу
             269 RPFLPNVDFVGGLHCKPAKPLPKEMEEFVQSSGENGIVVFSLGSMISN-MSEESANMIAS 327
Db
         319 AFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEA 378
Qу
                             | | :|| |:|:
```

```
328 ALAOIPOKVLWRFD---GKKPNTLGSNTRLYKWLPQNDLLGHPKTKAFITHGGTNGIYEA 384
Db
         379 IQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAV 438
Qу
             385 IYHGIPMVGIPLFADQHDNIAHMKAKGAALSVDIRTMSSRDLLNALKSVINDPVYKENVM 444
Db
         439 AASVILRSHPLSPTORLVGWIDHVLOTGGATHLKPYVFQOPWHEQYLFDVFVFLLGLTLG 498
Qy
                     I::IIIIII
Db
         445 KLSRIHHDQPMKPLDRAVFWIEFVMRHKGAKHLRVAAHNLTWIQYHSLDVIAFLLACVAT 504
Qy.
         499 TLWLCGK 505
             ::: |
Db
         505 VIFIITK 511
RESULT 14
JN0620
UDP-glucuronosyltransferase (EC 2.4.1.-) 2B-10 precursor - human
C; Species: Homo sapiens (man)
C;Date: 31-Dec-1993 #sequence revision 31-Dec-1993 #text change 09-Jul-2004
C; Accession: JN0620
R; Jin, C.J.; Miners, J.O.; Lillywhite, K.J.; Mackenzie, P.I.
Biochem. Biophys. Res. Commun. 194, 496-503, 1993
A; Title: cDNA cloning and expression of two new members of the human liver UDP-
glucuronosyltransferase 2B subfamily.
A; Reference number: JN0619; MUID: 93326164; PMID: 8333863
A; Accession: JN0620
A; Molecule type: mRNA
A; Residues: 1-528 <JIN>
A; Cross-references: UNIPROT: P36537; GB: X63359; NID: g516149; PIDN: CAA44961.1;
PID:g516150
A; Experimental source: liver
C; Superfamily: glucuronosyltransferase
C; Keywords: qlycoprotein; qlycosyltransferase; hexosyltransferase; transmembrane
protein
F;1-23/Domain: signal sequence #status predicted <SIG>
F;24-528/Product: UDP-glucuronosyltransferase 2B-10 #status predicted <MET>
F;491-508/Domain: transmembrane #status predicted <TMM>
F;66,314,481/Binding site: carbohydrate (Asn) (covalent) #status predicted
                        23.2%; Score 642; DB 2; Length 528;
 Query Match
 Best Local Similarity 31.6%; Pred. No. 2.9e-42;
 Matches 167; Conservative 82; Mismatches 213; Indels 66; Gaps
          31 VGGSHYLLMDRVSQILQD---HGHNVTMLNHKRGPFMPDFKKEEKSYQVISWLAPEDHQR 87
Qу
             1 ::
                                                              27 VWAAEYSLWMNMKTILKELVQRGHEVTVL-----ASSASIL--FDPNDSST 70
Db
          88 EFKKSFDFFLEETLGGRGKFENLLNVL------EYLALO 120
Qу
                             :|||:: |
                :: |:|
          71 LKLEVYPTSLTKT----EFENIIMQLVKRLSEIQKDTFWLPFSQEQEILWAINDIIRNF 125
Db
         121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG-SLE---FG 176
Qу
                :: | :| |: | |: | |: ||
                                                 Db
         126 CKDVVSNKKLMKKLQESRFDIVFADAYLPCGELLAELFNIPFVYSHSFSPGYSFERHSGG 185
         177 LPIPLSYVPVFRSLLTDHMDFWGRVKN--FLMFFSFCRRQQHMQSTFDNTIKEHFTEGSR 234
Qу
```

```
186 FIFPPSYVPVVMSKLSDQMTFMERVKNMLYVLYFDFWFQIFNMKK-WDQFYSE--VLGRP 242
Db
         235 PVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSG 294
Qy
               243 TTLSETMRKADIWLMRNSWNFKFPHPFLPNVDFVGGLHCKPAKPLPKEMEEFVQSSGENG 302
Db
         295 FVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQ 354
Qy
              1:::|||||:
                            : | | ; | | | ; | : | : |
                                                     | | | :: |:||
         303 VVVFSLGSMVSN-MTEERANVIATALAKIPQKVLWRFDGN---KPDALGLNTRLYKWIPQ 358
Db
         355 SDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKK 414
Qу
             359 NDLLGHPKTRAFITHGGANGIYEAIYHGIPMVGIPLFFDQPDNIAHMKAKGAAVRVDFNT 418
Db
         415 LKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPY 474
Qу
             :: | :| :: | || : | |
                                            |: | | | ||: |:: || ||:
         419 MSSTDLLNALKTVINDPSYKENIMKLSRIQHDQPVKPLDRAVFWIEFVMRHKGAKHLRVA 478
         475 VFQQPWHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qγ
                  | \cdot \cdot \cdot |
                                     1:: |
                                                | : ||| |:
         479 AHNLTWFOYHSLDVIGFLLACVATVLFIITKCCLFCFW--KFARKGKK 524
Db
RESULT 15
S07390
qlucuronosyltransferase (EC 2.4.1.17) 3 precursor - rat
N; Alternate names: 17beta-hydroxysteroid UDP-glucuronosyltransferase; UDP-
glucuronosyltransferase isoform 50K
C; Species: Rattus norvegicus (Norway rat)
C;Date: 30-Sep-1991 #sequence revision 30-Sep-1991 #text change 07-May-1999
C; Accession: S07390; A33236; A28460; S59626
R; Harding, D.; Wilson, S.M.; Jackson, M.R.; Burchell, B.; Green, M.D.; Tephly,
T.R.
Nucleic Acids Res. 15, 3936, 1987
A; Title: Nucleotide and deduced amino acid sequence of rat liver 17beta--
hydroxysteroid UDP-glucuronosyltransferase.
A; Reference number: S07390; MUID: 87231096; PMID: 3108864
A; Accession: S07390
A; Molecule type: mRNA
A; Residues: 1-530 <HAR>
A; Cross-references: EMBL: Y00156
A; Experimental source: liver
A:Accession: A33236
A; Molecule type: protein
A; Residues: 24-61 <HAR2>
A; Experimental source: liver
R; Mackenzie, P.I.
J. Biol. Chem. 262, 9744-9749, 1987
A; Title: Rat liver UDP-glucuronosyltransferase. Identification of cDNAs encoding
two enzymes which glucuronidate testosterone, dihydrotestosterone, and beta-
estradiol.
A; Reference number: A28460; MUID: 87250645; PMID: 3110162
A; Accession: A28460
A; Molecule type: mRNA
A; Residues: 1-118, 'G', 120-240, 'L', 242-423, 'S', 425-499, 'T', 501-530 <MAC>
A; Experimental source: liver
```

```
R; Yamashita, A.; Watanabe, M.; Tonegawa, T.; Sugiura, T.; Waku, K.
Biochem. J. 312, 301-308, 1995
A; Title: Acyl-CoA binding and acylation of UDP-glucuronosyltransferase isoforms
of rat liver: their effect on enzyme activity.
A; Reference number: S59626; MUID: 96077159; PMID: 7492328
A; Accession: S59626
A; Molecule type: protein
A; Residues: 24-44 < YAM>
A; Experimental source: liver
C; Superfamily: glucuronosyltransferase
C; Keywords: glycosyltransferase; hexosyltransferase; transmembrane protein
F;1-23/Domain: signal sequence #status predicted <SIG>
F;24-530/Product: glucuronosyltransferase #status experimental <MAT>
F;494-510/Domain: transmembrane #status predicted <TMM>
  Query Match
                       23.1%; Score 640; DB 2; Length 530;
  Best Local Similarity 34.2%; Pred. No. 4.2e-42;
 Matches 167; Conservative 81; Mismatches 189; Indels
                                                          52; Gaps
                                                                     15;
          34 SHYLLMDRVSQILQDHGHNVT-----MLNHKRGPFMPDFKKEEKSYQVISWLAPEDH 85
QУ
                                       :|: |:
                                               -11+1
             1
          34 SHWMNIKTILDELVQRGHEVTVLKPSAYYVLDPKKS---PDLKFETFPTSV----SKDEL 86
Db
          86 QREFKKSFDFFLEE----TLGGRGKFENLLNVLE--YLALQCSHFLNRKDIMDSLKNEN 138
QУ
             : | | | : |
                              - 1
                                     :1:::
                                              87 ENYFIKLVDVWTYELORDTCLSYSPLLONMIDEFSDYYLSL-CKDTVSNKOLMAKLOESK 145
Db
         139 FDMVIVETFDYCPFLIAEKLGKPFVAILSTSFG----SLEFGLPIPLSYVPVFRSLLT 192
Qу
                      146 FDVLLSDPVAACGELIAEVLHIPFLYSLRFSPGYKIEKSSGRFIL--PPSYVPVILSGMG 203
Db
         193 DHMDFWGRVKNFL--MFFSFCRRQQHM--QSTFDNTIKEHFTEGSRPVLSHLLLKAELWF 248
Qy
               :| | | | | | : : |||:|
         204 GPMTFIDRVKNMICTLYFDF---WFHMFNAKKWDPFYSEIF--GRPTTLAETMGKAEMWL 258
Db
         249 INSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQ 308
Qу
             259 IRSYWDLEFPHPTLPNVDYIGGLQCRPPKPLPKDMEDFVQSSGEHGVVVFSLGSMVSS-- 316
Db
         309 NPEIFKEMNN----AFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIR 364
Qу
                         | | :|| |:||
                                              | | :: | | | | | | | | |
               ::1 1
         317 ---MTEEKANAIAWALAQIPQKVLWKFD---GKTPATLGPNTRVYKWLPQNDLLGHPKTK 370
Db
         365 LFVTHGGONSIMEAIOHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKM 424
Qy
              1:: :: :
         371 AFVTHGGANGVYEAIYHGIPMVGIPMFGEOHDNIAHMVAKGAAVTLNIRTMSKTDLFNAL 430
.Db
         425 KOIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQY 484
Qy
                                 |: | : | ||: |:: || ||:|
             1:1: : || || || |
         431 KEIINNPFYKKNAVWLSTIHHDQPMKPLDKAVFWIEFVMRHKGAKHLRPLGHDLPWYQYH 490
Db
         485 LFDVFVFLL 493
Qу
               11 111
         491 SLDVIGFLL 499
Db
```

Search completed: February 15, 2005, 12:55:30

Job time : 61 secs

## GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: February 15, 2005, 07:50:18; Search time 95 Seconds

(without alignments)

1798.840 Million cell updates/sec

Title: US-10-017-867A-282

Perfect score: 2768

Sequence: 1 MAGQRVLLLVGFLLPGVLLS.....GKLLGMAVWWLRGARKVKET 523

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1376875 seqs, 326749119 residues

Total number of hits satisfying chosen parameters: 1376875

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1500 summaries

Database : Published Applications AA:*

1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US06 NEW PUB.pep:*

: /cgn2_6/ptodata/1/pubpaa/US06_PUBCOMB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US07 NEW PUB.pep:*

/cgiiz_6/pcodaca/1/pubpaa/050/_NEW_POB.pep:*

6: /cgn2_6/ptodata/1/pubpaa/PCTUS_PUBCOMB.pep:*

7: /cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

8: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

9: /cgn2_6/ptodata/1/pubpaa/US09A PUBCOMB.pep:*

10: /cgn2_6/ptodata/1/pubpaa/US09B PUBCOMB.pep:*

11: /cgn2_6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:*

12: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*

13: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*

14: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*

15: /cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*

16: /cgn2_6/ptodata/1/pubpaa/US10D_PUBCOMB.pep:*

17: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*

18: /cgn2_6/ptodata/1/pubpaa/US11_NEW_PUB.pep:*

19: /cgn2_6/ptodata/1/pubpaa/US60 NEW PUB.pep:*

20: /cgn2_6/ptodata/1/pubpaa/US60_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

37 2768 100.0 523 14 US-10-013-909A-282 Sequence 282, App 66 2547 92.0 489 15 US-10-468-125-1 Sequence 1, App11 68 2144 87.2 523 15 US-10-288-080-2 Sequence 2, App11 79 22 193 79.2 523 15 US-10-988-728-2 Sequence 2, App11 70 2193 79.2 523 15 US-10-947-479-2927 Sequence 2, App11 2191 79.2 523 9 US-09-740-029-2 Sequence 2, App11 71 2191 79.2 523 9 US-09-740-029-2 Sequence 2, App11 72 1142 41.3 318 15 US-10-276-774-2663 Sequence 283, App 74 748-5 27.0 477 9 US-09-740-029-4 Sequence 2, App11 75 716.5 25.9 527 9 US-09-981-353-166 Sequence 27, App11 76 716.5 25.9 527 9 US-09-981-353-166 Sequence 27, App11 77 714.5 25.8 527 14 US-10-174-587-522 Sequence 27, App11 77 714.5 25.8 527 15 US-10-144-270-52 Sequence 27, App11 77 714.5 25.8 527 15 US-10-144-587-522 Sequence 27, App11 77 714.5 25.8 527 15 US-10-114-270-52 Sequence 166, App 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 166, App 17 714.5 25.8 527 15 US-10-114-270-52 Sequence 17, App11 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 17, App11 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 18, App1 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 19, App1 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 19, App1 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, App1 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, App1 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 61, App1 71 714.5 25.8 527 15 US-10-114-270-52 Sequence 61, App1 71 714.5 25.8 527 15 US-10-012-865-148 Sequence 14, App1 71 714.5 25.8 527 15 US-10-012-865-148 Sequence 14, App1 71 714.5 25.8 527 15 US-10-012-865-148 Sequence 14, App1 71 714.5 25.8 527 15 US-10-012-865-148 Sequence 14, App1 71 714.5 25.8 527 15 US-10-012-805-148 Sequence 14, App1 71 714.5 25.8 528 15 US-10-072-012-505 Sequence 149, App 71 714.5 25.8 528 15 US-10-072-012-505 Sequence 61, App1 71 714.5 25.8 528 15 US-10-072-012-505 Sequence 61, App1 71 714.5 25.8 528 15 US-10-072-012-505 Sequence 61, App1 71 714.5 714.5 715 715 715 715 715 715 715 715 715 71	Result No.	Score	Query Match	Length	DB	ID ·	Description
66					- <b>-</b> -		
67							
68 2198 79.4 523 9 US-09-895-728-2 69 2194 79.3 523 15 US-10-2258-080-2 70 2193 79.2 523 15 US-10-094-749-2927 71 2191 79.2 523 9 US-09-740-029-2 72 1142 41.3 318 15 US-10-276-774-2663 73 963 34.8 221 15 US-10-104-047-2781 74 748.5 27.0 477 9 US-09-740-029-4 75 716.5 25.9 527 9 US-09-962-678-2 76 716.5 25.9 527 9 US-09-981-353-166 77 716.5 25.8 527 9 US-09-981-353-166 77 714.5 25.8 527 9 US-09-981-353-166 77 714.5 25.8 527 14 US-10-174-587-522 8equence 2, Appli 8equence 2, Appli 8equence 2, Appli 9equence 166, App 8equence 166, App 8equence 166, App 9equence 166, App 113.5 25.8 527 15 US-10-128-080-1 8equence 2, Appli 9equence 166, App 8equence 166, App 8equence 166, App 9equence 166, App 113.5 25.8 527 15 US-10-114-270-52 8equence 22, Appli 9equence 17, Appli 9equence 186, App 9equence 186, App 114.5 25.8 527 15 US-10-114-270-50 8equence 2, Appli 9equence 2, Appli 9equence 32, Appli 9equence 4, Appli 9equence 6, Appli 9equence 6, Appli 9equence 6, Appli 9equence 152, App 9equence 153, App 9equence 154, App 9equence 154, App 9equence 155, App 9equence 156, App 9equence 156, App 9equence 156, App 9equence 166, App 9equence 176, App 9equence 176, App 9equence 187, App 9equence 187, App 9equence 197, App 9equence 1							
69 2194 79.3 523 15 US-10-288-080-2 Sequence 2, Appli 70 2193 79.2 523 9 US-09-740-029-2 Sequence 2781, Appli 73 2191 79.2 523 9 US-09-740-029-2 Sequence 2781, Appli 73 96.3 34.8 221 15 US-10-104-047-2781 Sequence 2781, Appli 75 716.5 25.9 527 9 US-09-962-678-2 Sequence 2781, Appli 76 716.5 25.9 527 15 US-10-184-648-39 Sequence 2781, Appli 77 714.5 25.8 527 15 US-10-184-648-39 Sequence 39, Appl 77 714.5 25.8 527 15 US-10-184-648-39 Sequence 252, Appl 591 714.5 25.8 527 15 US-10-114-270-52 Sequence 522, Appl 601 685.5 24.8 529 15 US-10-114-270-52 Sequence 522, Appl 603 685.5 24.8 529 15 US-10-042-865-148 Sequence 148, Appl 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 39, Appl 604 683.5 24.7 501 15 US-10-042-865-149 Sequence 506, Appl 606 662 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 607 622 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 604, Appli 606 662 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 607 662 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 608 675.5 24.8 529 15 US-10-042-865-149 Sequence 4, Appli 608 675.5 24.9 539 US-09-895-728-4 Sequence 604, Appli 606 662 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 607 622 24.6 507 9 US-09-981-353-152 Sequence 6, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 6, Appli 610 663.5 24.0 528 15 US-10-042-865-147 Sequence 4, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 4, Appli 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 6, Appli 613 661.5 23.9 528 15 US-10-042-865-147 Sequence 6, Appli 614 661.5 23.9 528 15 US-10-042-865-147 Sequence 6, Appli 615 661.5 23.9 528 15 US-10-042-865-147 Sequence 6, Appli 616 665.5 23.7 528 15 US-10-042-865-147 Sequence 6, Appli 617 656.5 23.7 528 15 US-10-042-865-147 Sequence 6, Appli 618 655.5 23.7 528 15 US-10-042-865-147 Sequence 6, Appli 626 634.5 23.6 529 15 US-10-042-865-147 Sequence 6, Appli 626 634.5 23.6 529 15 US-10-042-865-147 Sequence 6, Appli 626 634.5 23.6 529 15 US-10-042-865-147 Sequence 6, Appli 626 634.5 23.6 529 15 US-10-042-865-147 Sequence 6, Appli							
70 2193 79.2 523 15 US-10-094-749-2927 71 2191 79.2 523 9 US-09-740-029-2 Sequence 2977, Appli 79.2 1142 41.3 318 15 US-10-276-774-2663 73 963 34.8 221 15 US-10-104-047-2781 Sequence 2663, Appli 74 748.5 27.0 477 9 US-09-740-029-4 Sequence 2781, Ap Sequence 2781,							
71 2191 79.2 523 9 US-09-740-029-2 Sequence 2, Appli 72 1142 41.3 318 15 US-10-104-047-2781 Sequence 263, Ap 74 748.5 27.0 477 9 US-09-740-029-4 Sequence 2781, Ap 74 74 748.5 27.0 477 9 US-09-740-029-4 Sequence 2781, Ap 75 716.5 25.9 527 9 US-09-962-678-2 Sequence 2, Appli 76 716.5 25.9 527 9 US-09-981-353-166 Sequence 2, Appli 77 714.5 25.8 527 15 US-10-114-587-522 Sequence 2, Appli 77 714.5 25.8 527 15 US-10-124-587-522 Sequence 252, Appli 77 714.5 25.8 527 15 US-10-124-587-522 Sequence 52, Appli 600 713.5 25.8 527 15 US-10-124-580-1 Sequence 52, Appli 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 52, Appli 602 685.5 24.8 529 15 US-10-042-865-149 Sequence 50, Appl 603 683.5 24.7 501 15 US-10-072-012-506 Sequence 50, Appl 604 683.5 24.7 501 15 US-10-072-012-855 Sequence 4, Appli 606 682 24.6 507 9 US-09-962-678-4 Sequence 4, Appli 607 682 24.6 507 9 US-09-962-678-4 Sequence 4, Appli 608 679 24.5 533 9 US-09-962-678-4 Sequence 4, Appli 609 675.5 24.4 527 15 US-10-042-865-149 Sequence 4, Appli 609 675.5 24.4 527 15 US-10-042-865-149 Sequence 4, Appli 609 675.5 24.4 527 15 US-10-072-012-505 Sequence 6, Appli 610 663.5 24.0 528 15 US-10-042-865-147 Sequence 4, Appli 610 663.5 23.9 528 14 US-10-020-012-505 Sequence 6, Appli 614 663.5 23.9 528 15 US-10-042-865-145 Sequence 146, Appli 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 147, Appl 616 666.5 23.9 528 15 US-10-042-865-145 Sequence 6, Appli 616 666.5 23.9 528 15 US-10-042-865-145 Sequence 6, Appli 616 666.5 23.7 528 15 US-10-042-865-144 Sequence 145, Appl 616 666.5 23.7 528 15 US-10-042-865-145 Sequence 6, Appli 626 664.5 23.6 529 15 US-10-042-865-145 Sequence 145, Appl 616 666.5 23.7 528 15 US-10-042-865-145 Sequence 145, Appl 616 666.5 23.7 528 15 US-10-042-865-145 Sequence 145, Appl 617 654.5 23.6 529 15 US-10-042-865-145 Sequence 145, Appl 617 654.5 23.6 529 15 US-10-042-865-145 Sequence 145, Appl 618 654.5 23.6 529 15 US-10-042-865-145 Sequence 145, Appl 618 664.5 23.6 529 15 US-10-042-865-145 Sequence 146, Appl 626 664.5 23.6 529 15 US-10-042-865-14							
72 1142 41.3 318 15 US-10-276-774-2663 73 963 34.8 221 15 US-10-104-047-2781 74 748.5 27.0 477 9 US-09-740-029-4 75 716.5 25.9 527 9 US-09-962-678-2 76 716.5 25.9 527 9 US-09-962-678-2 77 714.5 25.8 527 14 US-10-114-648-39 78 714.5 25.8 527 15 US-10-184-648-39 79 714.5 25.8 527 15 US-10-184-648-39 714.5 25.8 527 15 US-10-184-70-52 Sequence 1, Appli 593 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, Appl 600 713.5 25.8 527 15 US-10-114-270-52 Sequence 50, Appl 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 50, Appl 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.6 507 9 US-09-985-728-4 Sequence 41, Appli 607 682 24.6 507 9 US-09-985-728-4 Sequence 335, App 608 679 24.5 533 9 US-09-981-353-162 Sequence 414, Appl 608 679 24.5 533 9 US-09-981-353-162 Sequence 52, Appli 609 675.5 24.4 527 15 US-10-184-648-41 Sequence 41, Appl 610 660.5 24.0 528 15 US-10-042-865-147 Sequence 41, Appl 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 41, Appl 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 41, Appl 613 661.5 23.9 528 15 US-10-042-865-147 Sequence 152, App 614 661.5 23.9 528 15 US-10-042-865-147 Sequence 149, App 615 661.5 23.9 528 15 US-10-042-865-147 Sequence 41, Appl 616 656.5 23.7 528 15 US-10-042-865-144 Sequence 141, App 617 656.5 23.7 528 15 US-10-042-865-144 Sequence 141, App 618 655 23.7 528 15 US-10-042-865-144 Sequence 141, App 619 654.5 23.6 529 14 US-10-057-834A-2 Sequence 504, App 610 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 620 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 621 664.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-145 Sequence 808, Appl 626 669 22.7 530 16 US-10-250-508-15 Sequence 908, Appl 627 629 22.7 531 15 US-10-042-865-144 Sequence 144, App 628 649 23.4 530 14 US-10-250-508-15 Sequence 144, App 629 612 22.1							
73 963 34.8 221 15 US-10-104-047-2781 Sequence 2781, Appl 74 748.5 27.0 477 9 US-09-740-029-4 Sequence 2.781, Appl 75 716.5 25.9 527 15 US-10-184-648-39 Sequence 2.781, Appl 76 716.5 25.9 527 15 US-10-184-648-39 Sequence 2.781, Appl 77 714.5 25.8 527 9 US-09-981-353-166 Sequence 39, Appl 77 714.5 25.8 527 14 US-10-174-587-522 Sequence 39, Appl 591 714.5 25.8 527 15 US-10-184-648-39 Sequence 522, Appl 591 714.5 25.8 527 15 US-10-184-70-50 Sequence 52, Appl 600 713.5 25.8 527 15 US-10-114-270-50 Sequence 52, Appl 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 50, Appl 603 685.5 24.8 529 15 US-10-042-865-149 Sequence 50, Appl 604 683.5 24.7 501 15 US-10-072-012-506 Sequence 37, Appl 605 682 24.6 507 9 US-09-895-728-4 Sequence 419, Appl 606 682 24.6 507 9 US-09-895-728-4 Sequence 419, Appl 608 679 24.5 533 9 US-09-981-353-152 Sequence 419, Appl 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 41, Appl 610 663.5 24.0 528 15 US-10-042-865-147 Sequence 419, Appl 610 663.5 24.0 528 15 US-10-042-865-147 Sequence 419, Appl 610 663.5 24.0 528 15 US-10-042-865-147 Sequence 6147, Appl 613 661.5 23.9 528 15 US-10-042-865-145 Sequence 6147, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6147, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6147, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6149, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6147, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 6140, Appl 616 665.5 23.7 528 15 US-10-05-522-8 Sequence 602, Appl 617 665.5 23.7 528 15 US-10-05-525-8 Sequence 602, Appl 618 664.5 23.6 529 15 US-10-05-525-40 Sequence 604, Appl 626 664.5 23.6 529 15 US-10-05-525-40 Sequence 604, Appl 626 664.5							
74 748.5 27.0 477 9 US-09-740-029-4 Sequence 4, Appli 75 716.5 25.9 527 9 US-09-981-353-166 Sequence 2, Appli 76 716.5 25.9 527 15 US-10-184-648-39 Sequence 39, Appl 77 714.5 25.8 527 14 US-10-258-080-1 Sequence 522, Appli 714.5 25.8 527 15 US-10-1284-648-39 Sequence 522, Appli 714.5 25.8 527 15 US-10-1288-080-1 Sequence 522, Appli 714.5 25.8 527 15 US-10-1258-080-1 Sequence 52, Appli 600 713.5 25.8 527 15 US-10-1258-080-1 Sequence 52, Appli 600 713.5 25.8 527 15 US-10-142-70-52 Sequence 52, Appli 600 685.5 24.8 529 15 US-10-042-865-148 Sequence 148, App 602 685.5 24.8 529 15 US-10-042-865-149 Sequence 149, App 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.6 507 9 US-09-895-728-4 Sequence 385, App 1606 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-991-353-152 Sequence 189, App 610 670 24.2 529 15 US-10-042-865-147 Sequence 118, App 610 670 24.2 529 15 US-10-042-865-147 Sequence 118, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 118, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 505, App 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 145, App 617 656.5 23.7 528 15 US-10-042-865-146 Sequence 145, App 618 655 33.7 528 15 US-10-042-865-146 Sequence 145, App 618 655 33.7 528 15 US-10-042-865-146 Sequence 146, App 618 655 33.7 528 15 US-10-042-865-146 Sequence 503, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 504, App 618 655 32.7 528 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 504, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 619 654.5 23.6 529 15 US-10-438-929-1 Sequence 6, App 619 626 654.5 23.6 529 15 U							
75 716.5 25.9 527 9 US-09-962-678-2 Sequence 2, Appli 76 716.5 25.9 527 15 US-10-184-648-39 Sequence 39, Appli 77 714.5 25.8 527 15 US-10-184-648-39 Sequence 39, Appli 51 714.5 25.8 527 15 US-10-258-080-1 Sequence 1.66, App 51 714.5 25.8 527 15 US-10-258-080-1 Sequence 522, App 51 714.5 25.8 527 15 US-10-114-270-52 Sequence 522, App 600 713.5 25.8 527 15 US-10-114-270-50 Sequence 50, Appl 601 685.5 24.8 529 15 US-10-042-865-149 Sequence 148, App 602 685.5 24.8 529 15 US-10-042-865-149 Sequence 149, App 603 683.5 24.7 501 15 US-10-012-012-008 Sequence 506, Appl 604 683.5 24.6 507 9 US-09-995-728-4 Sequence 41, Appl 605 682 24.6 507 9 US-09-9962-678-4 Sequence 41, Appl 608 679 24.5 533 9 US-09-9961-353-152 Sequence 52, Appl 609 675.5 24.4 527 15 US-10-042-865-147 Sequence 118, App 610 670 24.2 529 15 US-10-042-865-147 Sequence 118, App 610 663.5 24.0 528 15 US-10-042-865-147 Sequence 118, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 117, App 613 661.5 23.9 528 15 US-10-042-865-145 Sequence 6, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 117, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 147, App 616 656.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 617 656.5 23.7 528 15 US-10-042-865-145 Sequence 505, App 618 655.5 23.7 528 15 US-10-042-865-145 Sequence 505, App 619 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 619 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 619 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 620 654.5 23.6 529 15 US-10-042-865-146 Sequence 146, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 503, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 504, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 504, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 6, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 6, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 6, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 6, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 6, App 620 654.5 23.6 529 15 US-10-032-012-500 Sequence 6							
76 716.5 25.9 527 15 US-10-184-648-39 Sequence 39, App1 77 714.5 25.8 527 9 US-09-981-353-166 Sequence 39, App1 71 714.5 25.8 527 14 US-10-174-587-522 Sequence 522, App 591 714.5 25.8 527 15 US-10-124-270-52 Sequence 522, App 591 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, App1 593 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, App1 600 713.5 25.8 527 15 US-10-114-270-50 Sequence 50, App1 602 685.5 24.8 529 15 US-10-014-2865-148 Sequence 148, App 602 685.5 24.8 529 15 US-10-0142-865-149 Sequence 148, App 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, App11 606 682 24.6 507 9 US-09-895-728-4 Sequence 4, App11 607 682 24.6 507 15 US-10-307-817-118 Sequence 118, App 608 679 24.5 533 9 US-09-981-353-152 Sequence 18, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, App11 613 663.5 24.0 528 15 US-10-042-865-147 Sequence 118, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 117, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 504, App 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.7 528 15 US-10-042-865-145 Sequence 145, App 616 656.5 23.7 528 15 US-10-042-865-145 Sequence 145, App 617 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-042-865-145 Sequence 504, App 617 656.5 23.7 528 15 US-10-042-865-145 Sequence 504, App 617 656.5 23.6 529 15 US-10-042-865-144 Sequence 6, App11 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App11 624 654.5 23.6 529 15 US-10-042-865-145 Seque							
77 714.5 25.8 527 9 US-09-961-353-166 Sequence 166, App 591 714.5 25.8 527 15 US-10-174-587-522 Sequence 522, App 1 593 714.5 25.8 527 15 US-10-174-587-522 Sequence 522, App 1 600 713.5 25.8 527 15 US-10-114-270-52 Sequence 52, App 1 601 685.5 24.8 529 15 US-10-0142-865-148 Sequence 168, App 602 685.5 24.8 529 15 US-10-072-012-506 Sequence 50, App 1 603 683.5 24.7 501 15 US-10-072-012-506 Sequence 506, App 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 335, App 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, App 11 607 682 24.6 507 9 US-09-985-728-4 Sequence 4, App 11 607 682 24.6 507 9 US-09-985-728-4 Sequence 4, App 11 607 682 24.6 507 15 US-10-042-865-148 Sequence 4, App 11 607 682 24.6 507 9 US-09-981-353-152 Sequence 506, App 610 670 24.2 529 15 US-10-084-648-41 Sequence 4, App 11 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 152, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 152, App 613 661.5 23.9 528 15 US-10-072-012-505 Sequence 6, App 11 613 661.5 23.9 528 15 US-10-072-012-505 Sequence 505, App 615 661.5 23.9 528 15 US-10-072-012-505 Sequence 505, App 616 666.5 23.7 528 15 US-10-072-012-503 Sequence 505, App 616 666.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 616 661.5 23.9 528 15 US-10-042-865-145 Sequence 147, App 617 656.5 23.7 528 15 US-10-042-865-145 Sequence 6, App 11 619 654.5 23.6 529 14 US-10-072-012-503 Sequence 503, App 616 656.5 23.7 528 15 US-10-042-865-145 Sequence 6, App 161 656.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 620 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App 161 656.5 23.7 528 15 US-10-042-865-146 Sequence 144, App 620 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, App 161 656.5 23.7 528 15 US-10-042-865-146 Sequence 6, App 161 656.5 23.7 530 15 US-10-042-865-145 Sequence 6, App 161 656.5 23.7 528 15 US-10-042-865-146 Sequence 6, App 161 656.5 23.7 530 16 US-10-250-582-14 Sequence 144, App 162 654.5 23.6 529 15 US-10-042-865-145 Sequence 6, App 161 656.5 23.6 529 15 US-10-042-865-146 Sequence 144, App 162 654.5 23.6 529 15 US-10-042-865-146 Seq							
541 714.5 25.8 527 14 US-10-174-587-522 Sequence 1522, App 591 714.5 25.8 527 15 US-10-258-080-1 Sequence 522, App1 600 713.5 25.8 527 15 US-10-114-270-52 Sequence 522, App1 600 713.5 25.8 527 15 US-10-114-270-50 Sequence 50, App1 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 148, App 602 685.5 24.8 529 15 US-10-042-865-149 Sequence 148, App 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 835, App 1606 682 24.6 507 9 US-09-982-678-4 Sequence 4, App11 607 682 24.6 507 9 US-09-982-678-4 Sequence 4, App11 608 679 24.5 533 9 US-09-982-678-4 Sequence 4, App1 610 670 24.2 529 15 US-10-037-817-118 Sequence 152, App 610 670 24.2 529 15 US-10-037-817-118 Sequence 118, App 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 118, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 613 661.5 23.9 528 14 US-10-042-865-145 Sequence 505, App 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 505, App 616 665.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 617 656.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 618 665.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 618 665.5 23.7 528 15 US-10-042-865-145 Sequence 147, App 619 666.5 523.7 528 15 US-10-072-012-503 Sequence 503, App 616 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 6, App11 619 654.5 23.6 529 15 US-10-072-012-504 Sequence 504, App 616 656.5 23.7 530 15 US-10-072-012-504 Sequence 6, App11 624 663.5 23.6 529 15 US-10-072-012-504 Sequence 504, App 624 653 23.6 529 15 US-10-072-012-504 Sequence 6, App11 626 634.5 23.6 529 15 US-10-072-012-504 Sequence 6, App11 626 634.5 23.6 529 15 US-10-072-012-504 Sequence 6, App11 626 634.5 23.6 529 15 US-10-072-012-504 Sequence 6, App11 626 634.5 23.6 529 15 US-10-072-012-504 Sequence 6, App11 626 634.5 23.6 529 15 US-10-072-012-504 Sequence 6, App11 626 634.5 23.6 529 15 US-10-072-012-504 Sequence 14, App 624 653 23.6 529 15 US-10-072-012-504 Sequence 14, App 626 634.5 23.6 529 15 US-10-072-012-504 S							
591 714.5 25.8 527 15 US-10-258-080-1 Sequence 1, Appli 593 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, Appl 600 713.5 25.8 527 15 US-10-114-270-50 Sequence 50, Appl 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 148, App 602 685.5 24.8 529 15 US-10-042-865-149 Sequence 506, Appl 604 683.5 24.7 501 15 US-10-072-012-506 Sequence 4, Appli 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 4, Appli 606 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 607 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 148, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 172, App 610 638 524.0 528 15 US-10-468-125-6 Sequence 6, Appli 616 663.5 24.0 528 15 US-10-042-865-147 Sequence 172, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 172, App 613 661.5 23.9 528 15 US-10-042-865-145 Sequence 8, Appli 616 661.5 23.9 528 15 US-10-042-865-145 Sequence 183, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 665.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-042-865-146 Sequence 503, App 618 656.5 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 656.5 23.7 528 15 US-10-042-865-146 Sequence 504, App 619 654.5 23.6 529 14 US-10-072-012-504 Sequence 504, App 619 654.5 23.6 529 15 US-10-042-865-146 Sequence 504, App 624 653 23.6 529 14 US-10-057-834A-2 Sequence 504, App 624 654.5 23.6 529 15 US-10-042-865-146 Sequence 6, Appli 626 654.5 23.6 529 15 US-10-042-865-146 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-146 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-146 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-146 Sequence 2, Appli 626 654.5 23.6 529 15 US-10-042-865-146 Sequence 17, App1 626 634.5 23.6 529 15 US-10-042-865-146 Sequence 2, Appli 626 634.5 23.6 529 15 US-10-042-865-146 Sequence 2, Appli 626 634.5 23.6 529 15 US-10-042-865-146 Sequence 2, Appli 626 634.5 23.6 529 15 US-10-042-865-146 Sequence 2, Appli 626 634.5 23.6 529 15 US-10-042-865-144 Sequ							
593 714.5 25.8 527 15 US-10-114-270-52 Sequence 52, Appl 600 713.5 25.8 527 15 US-10-114-270-50 Sequence 50, Appl 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 506, Appl 602 685.5 24.8 529 15 US-10-042-865-148 Sequence 188, Appl 602 685.5 24.8 529 15 US-10-072-012-506 Sequence 506, Appl 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 355, Appl 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-962-678-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 610 670 24.2 529 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 661.5 23.9 528 15 US-10-042-865-146 Sequence 146, App 618 655. 23.7 528 15 US-10-042-865-146 Sequence 146, App 618 655. 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 655. 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 655. 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 655. 23.6 529 14 US-10-072-012-504 Sequence 504, App 618 655. 23.6 529 14 US-10-072-012-504 Sequence 504, App 624 653. 23.6 529 14 US-10-072-012-504 Sequence 504, App 624 653. 23.6 529 15 US-10-042-865-144 Sequence 504, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 504, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 654.5 23.6 529 15 US-10-072-012-504 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 653. 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 654.5 23.6 529 15 US-10-072-012-504 Sequence 194, App 624 653.5 23.6 529 15 US-10-072-012-504 Sequence 194,							
600 713.5 25.8 527 15 US-10-114-270-50 Sequence 50, Appl 601 685.5 24.8 529 15 US-10-042-865-148 Sequence 148, App 602 685.5 24.8 529 15 US-10-072-012-506 Sequence 149, App 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 355, App 605 682 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-985-728-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 612 663.5 24.0 528 15 US-10-022-612-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-022-612-505 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-072-012-505 Sequence 8, Appli 615 661.5 23.9 528 15 US-10-072-012-503 Sequence 145, App 615 661.5 23.9 528 15 US-10-072-012-503 Sequence 145, App 617 656.5 23.7 528 15 US-10-072-012-504 Sequence 146, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 146, App 619 654.5 23.6 529 1 US-09-981-353-194 Sequence 144, App 620 654.5 23.6 529 15 US-10-038-98-6 Sequence 6, Appli 620 654.5 23.6 529 15 US-10-038-994-28 Sequence 144, App 623 654.5 23.6 529 15 US-10-038-92-2 Sequence 144, App 624 653 23.6 529 15 US-10-038-92-2 Sequence 144, App 625 651.5 23.5 524 14 US-10-205-522-113 Sequence 144, App 626 649 23.4 530 14 US-10-235-994-28 Sequence 2, Appli 626 649 23.4 530 14 US-10-235-994-28 Sequence 40, Appl 627 629 22.7 531 15 US-10-408-765A-808 Sequence 113, App 627 629 22.7 531 15 US-10-408-765A-808 Sequence 14, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-14 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 16, Appl 636 636 551 845 13 US-10-606-311-2 Sequence 16, Appl 636 556 50.1 132 10 US-09-764-891-4355 Sequence 2, Appli 636 556 50.1 132 10 U							
601 685.5 24.8 529 15 US-10-042-865-148 Sequence 148, Appl 603 683.5 24.7 501 15 US-10-072-012-506 Sequence 506, App 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 835, App 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 607 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 607 682 24.6 507 9 US-09-982-678-4 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 182, App 610 670 24.2 529 15 US-10-048-125-6 Sequence 182, App 610 670 24.2 529 15 US-10-048-125-6 Sequence 152, App 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 1747, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 1747, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 8, Appli 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 1845, App 618 655.5 23.7 528 15 US-10-042-865-146 Sequence 1846, App 618 655.5 23.7 528 15 US-10-042-865-146 Sequence 144, App 618 655.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 618 655.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 618 655.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 618 655.5 23.7 528 15 US-10-072-012-503 Sequence 504, App 618 655.5 23.7 528 15 US-10-072-012-503 Sequence 146, App 618 655.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 618 655.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 624 653.5 23.6 529 15 US-10-0384-2 Sequence 2, Appli 624 654.5 23.6 529 15 US-10-0384-2 Sequence 194, App 624 654.5 23.6 529 15 US-10-038-929-2 Sequence 2, Appli 624 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-144 Sequence 144, App 625 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 626 649 23.4 530 14 US-10-255-522-113 Sequence 2, Appli 626 649 23.4 530 14 US-10-255-522-113 Sequence 2, Appli 626 649 23.4 530 14 US-10-255-522-113 Sequence 15, Appl 627 629 22.7 531 15 US-10-381-898-6 Sequence 4, Appl 626 649 22.1 530 9 US-09-835-082-2 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-17 Sequence 16, Appl 634 603 21.8 530							
602 685.5 24.8 529 15 US-10-072-012-506 Sequence 506, App 603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-982-678-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-184-648-41 Sequence 118, App 610 670 24.2 529 15 US-10-042-865-147 Sequence 118, App 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 118, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 505, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 618 655.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 619 654.5 23.6 529 14 US-10-072-012-504 Sequence 504, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 504, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 504, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 604, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 604, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 604, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 604, App 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 604, App 620 654.5 23.6 529 15 US-10-042-865-144 Sequence 194, App 620 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-144 Sequence 144, App 626 649 23.4 530 14 US-10-235-994-28 Sequence 808, App 627 629 22.7 531 15 US-10-042-865-144 Sequence 144, App 627 629 22.7 531 15 US-10-042-865-144 Sequence 144, App 626 649 23.4 530 14 US-10-250-5508-15 Sequence 808, App 627 629 22.7 531 15 US-10-648-765A-808 Sequence 40, App 1636 640 22.1 530 9 US-09-835-082-4 Sequence 808, App 627 629 22.7 531 15 US-10-648-765A-808 Sequence 17, App 1633 606 21.9 530 16 US-10-250-508-14 Sequence 17, App 1							
603 683.5 24.7 501 15 US-10-042-865-149 Sequence 149, App 604 683.5 24.7 501 15 US-10-072-012-835 Sequence 835, App 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-962-678-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 129, App 610 670 24.2 529 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 127, App 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 612 663.5 24.0 528 15 US-10-072-012-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 505, App 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 665.5 23.7 528 15 US-10-042-865-146 Sequence 145, App 617 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 618 655 23.7 528 15 US-10-072-012-503 Sequence 504, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 146, App 620 654.5 23.6 529 9 US-09-981-353-194 Sequence 144, App 620 654.5 23.6 529 14 US-10-257-834A-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-144 Sequence 144, App 625 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 626 649 23.4 530 14 US-10-235-994-28 Sequence 502, App 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 2, Appli 626 649 23.4 530 14 US-10-235-994-28 Sequence 808, App 626 649 23.4 530 14 US-10-235-994-28 Sequence 113, App 627 629 22.7 531 15 US-10-488-765A-808 Sequence 113, App 627 629 22.7 531 15 US-10-488-765A-808 Sequence 113, App 628 623 623 22.5 530 16 US-10-458-765A-808 Sequence 14, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 14, Appli 633 606 21.9 530 16 US-10-250-508-17 Sequence 17, Appli 633 606 21.9 530 16 US-10-250-508-16 Sequence 17, Appli 635							
604 683.5 24.7 501 15 US-10-072-012-835 Sequence 835, App 605 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 152, App 611 663.5 24.0 528 15 US-10-428-65-147 Sequence 117, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 505, App 613 661.5 23.9 528 14 US-10-072-012-505 Sequence 505, App 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 505, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 503, App 616 656.5 23.7 528 15 US-10-042-865-145 Sequence 503, App 617 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 618 655. 23.7 528 15 US-10-072-012-504 Sequence 503, App 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 6, Appli 620 654.5 23.6 529 15 US-10-072-012-504 Sequence 6, Appli 620 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 124, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 124, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 624 653 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 624 653 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 20, App 626 649 23.4 530 14 US-10-205-522-40 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 11, App 627 629 22.7 531 15 US-10-488-29-1 Sequence 11, App 1628 623 664 22.1 530 9 US-09-835-082-4 Sequence 13, App 1633 606 21.9 530 16 US-10-250-508-15 Sequence 15, App 1633 606 21.9 530 16 US-10-250-508-15 Sequence 15, App 1633 606 21.9 530 16 US-10-250-508-15 Sequence 17, App 1633 606 21.9 530 16 US-10-250-508-15 Sequence 17, App 1633 606 21.9 530 16 US-10-250-508-15 Sequence 17, App 1635 556 20.1 18.8 454 13 US-10-060-311-2 Sequence 2, App 11							
605 682 24.6 507 9 US-09-895-728-4 Sequence 4, Appli 606 682 24.6 507 9 US-09-962-678-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 4, Appli 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 6, Appli 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 1747, App 612 663.5 24.0 528 15 US-10-042-865-147 Sequence 8, Appli 613 661.5 23.9 528 15 US-10-042-865-145 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 8, Appli 615 661.5 23.9 528 15 US-10-042-865-146 Sequence 145, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 655.2 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 655.2 23.7 528 15 US-10-042-865-146 Sequence 146, App 618 655.2 23.7 528 15 US-10-042-865-144 Sequence 2, Appli 619 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 626 649 23.4 530 14 US-10-250-522-40 Sequence 28, Appl 627 629 22.7 531 15 US-10-048-7658-808 Sequence 28, Appl 628 629 612 22.1 530 9 US-09-835-082-2 Sequence 113, App 627 629 22.7 531 15 US-10-488-929-1 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 633 606 21.9 530 16 US-10-250-508-15 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-15 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-15 Sequence 17, Appl 635 556 20.1 18.8 454 13 US-10-060-311-2 Sequence 16, Appl 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
606 682 24.6 507 9 US-09-962-678-4 Sequence 4, Appli 607 682 24.6 507 15 US-10-184-648-41 Sequence 41, Appl 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 18, Appl 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 503, App 617 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 504, Appl 619 654.5 23.6 529 US-09-981-353-194 Sequence 504, Appl 620 654.5 23.6 529 15 US-10-032-865-144 Sequence 194, App 620 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-057-834A-2 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 602, Appl 624 653 23.6 529 15 US-10-072-012-502 Sequence 24, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 144, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 144, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-40 Sequence 24, Appl 627 629 22.7 531 15 US-10-408-765A-808 Sequence 24, Appl 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appl 633 606 21.9 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-17 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10							
607 682 24.6 507 15 US-10-184-648-41 Sequence 41, Appl 608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 152, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 612 663.5 24.0 528 15 US-10-072-012-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 503, App 617 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 620 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 40, App 624 653 23.6 527 14 US-10-255-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-40 Sequence 40, Appl 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
608 679 24.5 533 9 US-09-981-353-152 Sequence 152, App 609 675.5 24.4 527 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 612 663.5 24.0 528 15 US-10-072-012-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 617 656.5 23.7 528 15 US-10-072-012-504 Sequence 146, App 617 656.5 23.7 530 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-072-012-504 Sequence 504, App 620 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 194, App 620 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 20, App 624 653 23.6 529 15 US-10-072-012-502 Sequence 20, App 625 651.5 23.5 524 14 US-10-205-522-113 Sequence 114, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 14, App 628 629 22.7 531 15 US-10-438-929-1 Sequence 14, App 1628 629 22.7 531 15 US-10-438-929-1 Sequence 14, App 1628 629 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 15, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appli 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-14 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
609 675.5 24.4 527 15 US-10-307-817-118 Sequence 118, App 610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 612 663.5 24.0 528 15 US-10-072-012-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 503, App 616 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 617 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-381-898-6 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 624 653 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 625 651.5 23.5 524 14 US-10-225-994-28 Sequence 2, Appli 626 649 23.4 530 14 US-10-225-994-28 Sequence 28, Appli 626 649 23.4 530 14 US-10-205-522-40 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 627 629 22.7 531 15 US-10-488-7658-808 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 17, Appl 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 636 521 18.8 454 13 US-00-060-311-2 Sequence 2, Appli	608	679	24.5				
610 670 24.2 529 15 US-10-468-125-6 Sequence 6, Appli 611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 505, App 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-072-012-503 Sequence 503, App 616 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 616 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-381-898-6 Sequence 504, App 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-057-834A-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 218, Appl 626 649 23.4 530 14 US-10-205-522-40 Sequence 218, Appl 627 629 22.7 531 15 US-10-488-929-1 Sequence 113, App 627 629 22.7 531 15 US-10-488-929-1 Sequence 113, App 627 629 22.7 531 15 US-10-488-929-1 Sequence 113, App 627 629 22.7 531 15 US-10-488-929-1 Sequence 113, App 628 623 22.5 530 16 US-10-408-765A-808 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-4 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 17, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 16, Appl 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli	609	675.5	24.4	527	15		
611 663.5 24.0 528 15 US-10-042-865-147 Sequence 147, App 612 663.5 24.0 528 15 US-10-072-012-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-072-012-503 Sequence 503, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 504, App 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 6, Appli 619 654.5 23.6 529 14 US-10-057-834A-2 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-42-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-072-012-502 Sequence 28, Appl 624 653 23.6 529 15 US-10-072-012-502 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-40 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 17, Appl 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli	610		24.2	529	15		
612 663.5 24.0 528 15 US-10-072-012-505 Sequence 505, App 613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-042-865-145 Sequence 503, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 503, App 617 656.5 23.7 528 15 US-10-042-865-146 Sequence 504, App 618 655 23.7 528 15 US-10-072-012-504 Sequence 504, App 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 6, Appli 620 654.5 23.6 529 9 US-09-981-353-194 Sequence 2, Appli 621 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 624 653 23.6 529 15 US-10-042-865-144 Sequence 144, App 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-408-765A-808 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli		663.5	24.0	528	15		
613 661.5 23.9 528 14 US-10-205-522-8 Sequence 8, Appli 614 661.5 23.9 528 15 US-10-042-865-145 Sequence 145, App 615 661.5 23.9 528 15 US-10-072-012-503 Sequence 503, App 616 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 617 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-381-898-6 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 2, Appli 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 529 15 US-10-072-012-502 Sequence 502, App 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 628 623 22.5 530 16 US-10-408-765A-808 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-4 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 2, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, App 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli				528	15	US-10-072-012-505	
615 661.5 23.9 528 15 US-10-072-012-503 Sequence 503, App 616 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-381-898-6 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 529 15 US-10-072-012-502 Sequence 502, App 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 627 629 22.7 531 15 US-10-408-765A-808 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 4, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-15 Sequence 15, Appl 634 603 21.8 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli					14		
616 656.5 23.7 528 15 US-10-042-865-146 Sequence 146, App 617 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-381-898-6 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, Appli 624 653 23.6 529 15 US-10-072-012-502 Sequence 502, Appli 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli						US-10-042-865-145	Sequence 145, App
617 656.5 23.7 528 15 US-10-072-012-504 Sequence 504, App 618 655 23.7 530 15 US-10-381-898-6 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-042-865-144 Sequence 502, App 624 653 23.6 529 15 US-10-072-012-502 Sequence 502, App 625 651.5 23.5 524 14 US-10-235-994-28 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 627 629 22.7 531 15 US-10-408-765A-808 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							Sequence 503, App
618 655 23.7 530 15 US-10-381-898-6 Sequence 6, Appli 619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 9 US-09-835-082-4 Sequence 15, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
619 654.5 23.6 529 9 US-09-981-353-194 Sequence 194, App 620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 1, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 5636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
620 654.5 23.6 529 14 US-10-057-834A-2 Sequence 2, Appli 621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 113, App 628 623 22.5 530 16 US-10-408-765A-808 Sequence 1, Appli 628 623 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-17 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
621 654.5 23.6 529 15 US-10-438-929-2 Sequence 2, Appli 622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 9 US-09-835-082-4 Sequence 2, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-17 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli Sequence 2, Appli Sequence 16, Appl 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
622 654.5 23.6 529 15 US-10-042-865-144 Sequence 144, App 623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 28, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 9 US-09-835-082-4 Sequence 1, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 15, Appl 633 606 21.9 530 16 US-10-250-508-17 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
623 654.5 23.6 529 15 US-10-072-012-502 Sequence 502, App 624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
624 653 23.6 527 14 US-10-235-994-28 Sequence 28, Appl 625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-15 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
625 651.5 23.5 524 14 US-10-205-522-40 Sequence 40, Appl 626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 631 611 22.1 530 9 US-09-835-082-4 Sequence 4, Appli 632 608 22.0 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
626 649 23.4 530 14 US-10-205-522-113 Sequence 113, App 627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-4 Sequence 4, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
627 629 22.7 531 15 US-10-438-929-1 Sequence 1, Appli 628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-4 Sequence 4, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 17, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 2, Appli							
628 623 22.5 530 16 US-10-408-765A-808 Sequence 808, App 629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-4 Sequence 4, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
629 612 22.1 530 9 US-09-835-082-2 Sequence 2, Appli 630 612 22.1 530 9 US-09-835-082-4 Sequence 4, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 14, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
630 612 22.1 530 9 US-09-835-082-4 Sequence 4, Appli 631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
631 611 22.1 530 16 US-10-250-508-15 Sequence 15, Appl 632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
632 608 22.0 530 16 US-10-250-508-17 Sequence 17, Appl 633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
633 606 21.9 530 16 US-10-250-508-14 Sequence 14, Appl 634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli							
634 603 21.8 530 16 US-10-250-508-16 Sequence 16, Appl 635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli	633						
635 556 20.1 132 10 US-09-764-891-4355 Sequence 4355, Ap 636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli			21.8				
636 521 18.8 454 13 US-10-060-311-2 Sequence 2, Appli			20.1	132	10	US-09-764-891-4355	
	637	521	18.8	454	16	US-10-778-300-2	Sequence 2, Appli

```
638
      503.5
               18.2
                        288
                             13
                                 US-10-060-311-3
                                                               Sequence 3, Appli
639
      503.5
                        288
               18.2
                             16
                                 US-10-778-300-3
                                                               Sequence 3, Appli
640
      450.5
                        353
               16.3
                             15
                                 US-10-381-898-14
                                                               Sequence 14, Appl
641
      437.5
               15.8
                        533
                             15
                                 US-10-042-865-28
                                                               Sequence 28, Appl
642
      437.5
                        533
               15.8
                             15
                                 US-10-072-012-152
                                                               Sequence 152, App
643
         427
               15.4
                         91
                             9
                                US-09-864-761-46435
                                                              Sequence 46435, A
644
         380
               13.7
                        245
                             9
                                US-09-305-856B-18
                                                              Sequence 18, Appl
645
         380
               13.7
                        245
                             14
                                 US-10-247-159-18
                                                               Sequence 18, Appl
646
         300
               10.8
                        288
                             9
                                US-09-305-856B-2
                                                              Sequence 2, Appli
647
        300
               10.8
                        288
                             14
                                 US-10-247-159-2
                                                               Sequence 2, Appli
648
      263.5
                9.5
                        112
                                 US-09-864-408A-942
                                                               Sequence 942, App
649
      258.5
                9.3
                        173
                             9
                                US-09-895-728-5
                                                             Sequence 5, Appli
650
      258.5
                9.3
                        287
                             9
                                US-09-305-856B-10
                                                             Sequence 10, Appl
651
      258.5
                9.3
                        287
                             14
                                US-10-247-159-10
                                                               Sequence 10, Appl
652
         256
                9.2
                        310
                             9
                                US-09-305-856B-14
                                                             Sequence 14, Appl
653
         256
                9.2
                        310
                             14
                                US-10-247-159-14
                                                               Sequence 14, Appl
654
         255
                9.2
                        289
                             9
                                US-09-305-856B-8
                                                             Sequence 8, Appli
655
         255
                9.2
                        289
                             14
                                US-10-247-159-8
                                                              Sequence 8, Appli
656
      244.5
                8.8
                        289
                             9
                                US-09-305-856B-4
                                                             Sequence 4, Appli
657
      244.5
                8.8
                        289
                             14
                                 US-10-247-159-4
                                                               Sequence 4, Appli
658
        239
                8.6
                        129
                             9
                                US-09-738-973-36
                                                             Sequence 36, Appl
659
        239
                8.6
                        129
                             9
                                US-09-854-133-36
                                                             Sequence 36, Appl
660
        239
                8.6
                        129
                             14
                                 US-10-144-649A-36
                                                               Sequence 36, Appl
661
        227
                8.2
                        317
                             9
                                US-09-305-856B-12
                                                             Sequence 12, Appl
662
        227
                8.2
                        317
                             14
                                 US-10-247-159-12
                                                               Sequence 12, Appl
663
        226
                8.2
                        289
                             9
                                US-09-305-856B-6
                                                             Sequence 6, Appli
664
        226
                8.2
                        289
                             14
                                 US-10-247-159-6
                                                               Sequence 6, Appli
665
        223
                8.1
                        253
                             9
                                US-09-305-856B-16
                                                             Sequence 16, Appl
666
                             14
        223
                8.1
                        253
                                 US-10-247-159-16
                                                               Sequence 16, Appl
667
      221.5
                8.0
                        454
                             16
                                 US-10-437-963-185147
                                                               Sequence 185147,
668
      213.5
                7.7
                        131
                             9
                                US-09-895-728-6
                                                             Sequence 6, Appli
669
      213.5
                7.7
                        454
                             14
                                 US-10-167-547C-18
                                                               Sequence 18, Appl
670
        213
                7.7
                        454
                             14
                                 US-10-167-547C-20
                                                              Sequence 20, Appl
671
      210.5
                7.6
                        446
                             15
                                 US-10-424-599-282136
                                                              Sequence 282136,
672
      203.5
                7.4
                        448
                             16
                                 US-10-437-963-201110
                                                              Sequence 201110,
673
      202.5
                7.3
                        480
                             15
                                 US-10-424-599-192321
                                                              Sequence 192321,
674
      198.5
                7.2
                        503
                             15
                                 US-10-425-114-49497
                                                               Sequence 49497, A
675
        198
                7.2
                        444
                             15
                                 US-10-424-599-271469
                                                              Sequence 271469,
676
        198
                7.2
                        482
                             16
                                 US-10-437-963-136009
                                                              Sequence 136009,
677
      197.5
                7.1
                        446
                             15
                                 US-10-424-599-151497
                                                              Sequence 151497,
678
                7.0
        194
                        496
                             15
                                 US-10-425-114-67279
                                                              Sequence 67279, A
679
      190.5
                6.9
                        511
                             9
                                US-09-773-882-11
                                                             Sequence 11, Appl
680
        190
                6.9
                        511
                             9
                                US-09-773-882-2
                                                             Sequence 2, Appli
681
        189
                6.8
                        72
                                US-09-864-761-41831
                                                             Sequence 41831, A
682
      188.5
                6.8
                       490
                             15
                                 US-10-425-114-66823
                                                              Sequence 66823, A
683
      188.5
                6.8
                       506
                             16
                                 US-10-203-295-4
                                                              Sequence 4, Appli
684
      188.5
                6.8
                       519
                             15
                                 US-10-359-369-34
                                                              Sequence 34, Appl
      187.5
685
                6.8
                       504
                             15
                                 US-10-359-369-31
                                                              Sequence 31, Appl
686
        186
                                 US-10-437-963-129470
                6.7
                       470
                             16
                                                              Sequence 129470,
687
      185.5
                6.7
                       478
                             15
                                 US-10-359-369-18
                                                              Sequence 18, Appl
688
      185.5
                6.7
                       484
                             15
                                 US-10-359-369-8
                                                              Sequence 8, Appli
689
      185.5
                6.7
                       484
                             15
                                 US-10-203-319A-8
                                                              Sequence 8, Appli
690
      183.5
                6.6
                       321
                             15
                                 US-10-425-114-49951
                                                              Sequence 49951, A
691
        183
                6.6
                                 US-10-424-599-218783
                       482
                             15
                                                              Sequence 218783,
692
      182.5
                6.6
                       478
                             15
                                 US-10-424-599-274039
                                                              Sequence 274039,
693
      181.5
                6.6
                       479
                             15
                                 US-10-359-369-12
                                                              Sequence 12, Appl
694
      181.5
                6.6
                       479
                             15
                                 US-10-203-319A-11
                                                              Sequence 11, Appl
```

```
695
         178
                6.4
                                  US-10-424-599-258507
                        483
                              15
                                                               Sequence 258507,
696
       177.5
                6.4
                        313
                              15
                                  US-10-424-599-193825
                                                               Sequence 193825,
697
       177.5
                6.4
                        511
                              15
                                  US-10-359-369-22
                                                               Sequence 22, Appl
698
       177.5
                6.4
                        524
                              15
                                  US-10-359-369-27
                                                               Sequence 27, Appl
699
         177
                6.4
                        447
                              15
                                  US-10-424-599-215698
                                                               Sequence 215698,
700
         177
                6.4
                        481
                              16
                                  US-10-437-963-155254
                                                               Sequence 155254,
701
         175
                6.3
                        468
                              15
                                  US-10-425-114-43202
                                                               Sequence 43202, A
702
       174.5
                        475
                6.3
                              16'
                                 US-10-437-963-150992
                                                               Sequence 150992,
703
       174.5
                6.3
                        490
                              16
                                  US-10-437-963-150172
                                                               Sequence 150172,
704
      173.5
                6.3
                        493
                              15
                                  US-10-425-114-60890
                                                               Sequence 60890, A
705
       173.5
                6.3
                        508
                             16
                                  US-10-437-963-138914
                                                               Sequence 138914,
706
         173
                6.2
                        430
                             15
                                  US-10-229-148B-37
                                                               Sequence 37, Appl
707
         171
                6.2
                        218
                             15
                                  US-10-424-599-280090
                                                               Sequence 280090,
708
         171
                6.2
                        478
                             16
                                  US-10-437-963-198957
                                                               Sequence 198957,
709
      170.5
                6.2
                        443
                             15
                                  US-10-424-599-232416
                                                               Sequence 232416,
710
      170.5
                6.2
                        506
                             15
                                  US-10-425-114-65006
                                                               Sequence 65006, A
711
         170
                6.1
                        265
                             15
                                  US-10-424-599-271530
                                                               Sequence 271530,
712
         170
                6.1
                        476
                             16
                                  US-10-437-963-105696
                                                               Sequence 105696,
713
      169.5
                6.1
                        527
                             15
                                 US-10-424-599-269826
                                                               Sequence 269826,
714
      169.5
                6.1
                        843
                             16
                                 US-10-437-963-182746
                                                               Sequence 182746,
715
         169
                6.1
                         67
                             9
                                US-09-864-761-47517
                                                              Sequence 47517, A
                6.1
716
         169
                        456
                             15
                                 US-10-203-319A-17
                                                               Sequence 17, Appl
717
         169
                6.1
                        457
                             16
                                 US-10-437-963-200116
                                                               Sequence 200116,
718
      168.5
                6.1
                        503
                             15
                                 US-10-425-114-67261
                                                               Sequence 67261, A
719
      167.5
                6.1
                        475
                             15
                                 US-10-359-369-16
                                                               Sequence 16, Appl
720
      167.5
                6.1
                        475
                             15
                                 US-10-203-319A-14
                                                               Sequence 14, Appl
721
         167
                6.0
                        167
                             16
                                 US-10-767-701-34905
                                                               Sequence 34905, A
722 ,
         167
                6.0
                        428
                             16
                                 US-10-437-963-185859
                                                               Sequence 185859,
723
         167
                6.0
                        432
                             15
                                 US-10-424-599-208386
                                                               Sequence 208386,
724
        167
                6.0
                        482
                             16
                                 US-10-437-963-201695
                                                               Sequence 201695,
725
      166.5
                6.0
                        421
                             15
                                 US-10-425-114-60441
                                                               Sequence 60441, A
726
      166.5
                        425
                6.0
                             16
                                                               Sequence 29, Appl
                                 US-10-647-196-29
727
      166.5
                        774
                6.0
                             16
                                 US-10-437-963-191360
                                                               Sequence 191360,
728
      166.5
                6.0
                       1598
                                 US-10-437-963-112315
                             16
                                                               Sequence 112315,
729
        166
                6.0
                        518
                             16
                                 US-10-437-963-121016
                                                               Sequence 121016,
730
        165
                6.0
                        422
                             15
                                 US-10-424-599-242895
                                                               Sequence 242895,
731
        165
                6.0
                        429
                             17
                                 US-10-810-733-6
                                                               Sequence 6, Appli
732
        165
                6.0
                        559
                             16
                                 US-10-437-963-140683
                                                               Sequence 140683,
733
      164.5
                5.9
                        462
                             15
                                 US-10-424-599-249348
                                                               Sequence 249348,
734
        164
                5.9
                        458
                             16
                                 US-10-437-963-104496
                                                               Sequence 104496,
735
        164
                5.9
                        496
                             16
                                 US-10-437-963-180632
                                                               Sequence 180632,
736
      163.5
                5.9
                        228
                             15
                                 US-10-424-599-186311
                                                               Sequence 186311,
737
      163.5
                5.9
                        388
                             15
                                 US-10-425-114-42304
                                                               Sequence 42304, A
738
      163.5
                5.9
                        459
                             14
                                 US-10-167-547C-24
                                                               Sequence 24, Appl
739
      163.5
                5.9
                        520
                             15
                                 US-10-425-114-63886
                                                               Sequence 63886, A
740
        163
                5.9
                        196
                             15
                                 US-10-424-599-186524
                                                               Sequence 186524,
741
        163
                5.9
                        295
                             15
                                 US-10-425-114-50700
                                                               Sequence 50700, A
742
        163
                5.9
                        308
                                 US-10-767-701-38041
                             16
                                                               Sequence 38041, A
743
        163
                5.9
                        459
                             15
                                 US-10-275-782-2
                                                               Sequence 2, Appli
744
        163
                5.9
                        484
                             15
                                 US-10-424-599-185569
                                                               Sequence 185569,
745
                5.9
        163
                        486
                             15
                                 US-10-425-114-50225
                                                               Sequence 50225, A
746
        163
                5.9
                                 US-10-437-963-173247
                       490
                             16
                                                               Sequence 173247,
      162.5
747
                5.9
                       383
                             14
                                 US-10-259-165-202
                                                               Sequence 202, App
      162.5
748
                5.9
                       473
                             15
                                 US-10-424-599-282475
                                                               Sequence 282475,
749
        162
                5.9
                       416
                             16
                                 US-10-437-963-142949
                                                               Sequence 142949,
750
        162
                5.9
                       482
                             16
                                 US-10-437-963-133942
                                                               Sequence 133942,
751
        162
                5.9
                       485
                             16
                                 US-10-437-963-117560
                                                               Sequence 117560,
```

```
752
        162
                5.9
                        485
                             16
                                 US-10-437-963-118960
                                                               Sequence 118960,
753
        162
                5.9
                        489
                             15
                                 US-10-425-114-69280
                                                               Sequence 69280, A
754
        162
                5.9
                        497
                             15
                                 US-10-425-114-53308
                                                               Sequence 53308, A
755
      161.5
                5.8
                        211
                             16
                                 US-10-767-701-50958
                                                               Sequence 50958, A
756
      161.5
                5.8
                        264
                             15
                                 US-10-424-599-177518
                                                               Sequence 177518,
757
        161
                5.8
                        144
                             15
                                 US-10-424-599-284487
                                                               Sequence 284487,
758
        161
                5.8
                        167
                             15
                                 US-10-424-599-197195
                                                               Sequence 197195,
759
        161
                5.8
                        395
                                 US-10-437-963-203791
                             16
                                                               Sequence 203791,
760
        161
                5.8
                        464
                             16
                                 US-10-437-963-203793
                                                               Sequence 203793,
761
        161
                5.8
                        474
                             15
                                 US-10-203-319A-32
                                                               Sequence 32, Appl
762
        161
                5.8
                        479
                             15
                                 US-10-424-599-272051
                                                               Sequence 272051,
763
      160.5
                5.8
                        353
                             15
                                 US-10-425-114-68208
                                                               Sequence 68208, A
764
      160.5
                5.8
                        484
                             15
                                 US-10-424-599-232096
                                                               Sequence 232096,
765
        160
                5.8
                        451
                             15
                                 US-10-424-599-265555
                                                               Sequence 265555,
766
        160
                5.8
                        506
                             15
                                 US-10-425-114-63980
                                                               Sequence 63980, A
767
      159.5
                5.8
                        482
                             15
                                 US-10-424-599-205041
                                                               Sequence 205041,
768
      159.5
                5.8
                        487
                             16
                                 US-10-437-963-164198
                                                               Sequence 164198,
769
      159.5
                5.8
                        488
                             16
                                 US-10-437-963-178827
                                                               Sequence 178827,
770
                5.8
      159.5
                        493
                             15
                                 US-10-425-114-59811
                                                               Sequence 59811, A
771
      159.5
                5.8
                        497
                             15
                                 US-10-359-369-4
                                                               Sequence 4, Appli
772
      159.5
                5.8
                        506
                             15
                                 US-10-425-114-49468
                                                               Sequence 49468, A
                5.8
773
      159.5
                      1249
                             16
                                 US-10-437-963-155626
                                                               Sequence 155626,
774
        159
                5.7
                        298
                             16
                                 US-10-767-701-40847
                                                               Sequence 40847, A
775
        159
                5.7
                        474
                             16
                                 US-10-437-963-184773
                                                               Sequence 184773,
                        519
776
        159
                5.7
                             15
                                 US-10-425-114-59999
                                                               Sequence 59999, A
777
        159
                5.7
                        536
                             15
                                 US-10-425-114-65018
                                                               Sequence 65018, A
778
      158.5
                5.7
                        486
                             16
                                 US-10-437-963-183456
                                                               Sequence 183456,
779
      158.5
                5.7
                        492
                             15
                                 US-10-424-599-276421
                                                               Sequence 276421,
780
      158.5
                5.7
                        497
                             16
                                 US-10-767-701-45030
                                                               Sequence 45030, A
781
        158
                5.7
                        145
                             15
                                 US-10-424-599-186308
                                                               Sequence 186308,
782
        158
                5.7
                       190
                             14
                                 US-10-174-693-301
                                                               Sequence 301, App
783
        158
                       359
                5.7
                             15
                                 US-10-425-114-49044
                                                               Sequence 49044, A
784
                5.7
        158
                        483
                             15
                                 US-10-425-114-67442
                                                               Sequence 67442, A
785
        158
                5.7
                        491
                             16
                                 US-10-437-963-195742
                                                               Sequence 195742,
786
        158
                5.7
                       510
                             15
                                 US-10-425-114-63396
                                                               Sequence 63396, A
787
      157.5
                5.7
                        463
                             15
                                 US-10-425-114-49953
                                                               Sequence 49953, A
788
      157.5
                5.7
                       501
                             15
                                 US-10-425-114-58070
                                                               Sequence 58070, A
789
      157.5
                5.7
                       504
                             16
                                 US-10-437-963-200261
                                                               Sequence 200261,
790
        157
                5.7
                       159
                             15
                                 US-10-424-599-221906
                                                               Sequence 221906,
791
        157
                5.7
                       322
                             16
                                 US-10-437-963-133567
                                                               Sequence 133567,
792
        157
                5.7
                       486
                             16
                                 US-10-437-963-182029
                                                               Sequence 182029,
793
        157
                5.7
                       510
                             15
                                 US-10-425-114-65459
                                                               Sequence 65459, A
794
        157
                5.7
                       511
                             15
                                 US-10-425-114-58985
                                                               Sequence 58985, A
795
      156.5
                5.7
                       503
                                 US-10-437-963-153537
                             16
                                                               Sequence 153537,
796
        156
                       142
                5.6
                             16
                                 US-10-767-701-33564
                                                               Sequence 33564, A
797
        156
                       220
                5.6
                             15
                                 US-10-424-599-174823
                                                               Sequence 174823,
798
        156
                5.6
                       298
                             15
                                 US-10-425-114-36921
                                                               Sequence 36921, A
799
        156
                5.6
                       340
                             15
                                 US-10-424-599-167326
                                                               Sequence 167326,
800
        156
                5.6
                       450
                             16
                                 US-10-437-963-150170
                                                               Sequence 150170,
801
        156
                5.6
                       466
                             16
                                 US-10-437-963-159400
                                                               Sequence 159400,
802
        156
                5.6
                       511
                             15
                                 US-10-425-114-64176
                                                               Sequence 64176, A
                5.6
803
      155.5
                       292
                             15
                                 US-10-424-599-236059
                                                               Sequence 236059,
804
      155.5
                5.6
                       440
                             16
                                 US-10-437-963-108501
                                                               Sequence 108501,
805
      155.5
                5.6
                       475
                             15
                                 US-10-424-599-276725
                                                               Sequence 276725,
806
      155.5
                5.6
                       496
                             15
                                 US-10-203-319A-5
                                                               Sequence 5, Appli
807
        155
                5.6
                       152
                             16
                                 US-10-767-701-36217
                                                               Sequence 36217, A
808
        155
                5.6
                       470
                             16
                                 US-10-437-963-190458
                                                              Sequence 190458,
```

```
809
       154.5
                5.6
                        215
                             16
                                  US-10-767-701-35357
                                                               Sequence 35357, A
810
       154.5
                5.6
                        478
                             16
                                  US-10-437-963-109909
                                                               Sequence 109909,
811
       154.5
                        492
                             16
                5.6
                                  US-10-437-963-199867
                                                               Sequence 199867,
812
         154
                                  US-10-767-701-53192
                5.6
                        135
                             16
                                                               Sequence 53192, A
813
         154
                             16
                5.6
                        214
                                  US-10-767-701-33387
                                                               Sequence 33387, A
814
                5.6
         154
                        466
                             16
                                  US-10-437-963-190938
                                                               Sequence 190938,
815
         154
                5.6
                        475
                             16
                                  US-10-437-963-180633
                                                               Sequence 180633,
816
       153.5
                5.5
                        189
                             16
                                  US-10-767-701-33973
                                                               Sequence 33973, A
817
       153.5
                5.5
                        195
                             16
                                  US-10-767-701-38667
                                                               Sequence 38667, A
818
      153.5
                5.5
                        255
                             15
                                  US-10-424-599-166209
                                                               Sequence 166209,
819
       153.5
                5.5
                        315
                             15
                                  US-10-424-599-246420
                                                               Sequence 246420,
820
      153.5
                5.5
                        469
                             15
                                  US-10-203-319A-2
                                                               Sequence 2, Appli
821
      153.5
                5.5
                        475
                             15
                                  US-10-424-599-229077
                                                               Sequence 229077,
822
       153.5
                5.5
                        478
                             16
                                  US-10-437-963-107663
                                                               Sequence 107663,
823
         153
                5.5
                        312
                             16
                                  US-10-767-701-38351
                                                               Sequence 38351, A
824
         153
                5.5
                        399
                             15
                                  US-10-425-114-54085
                                                               Sequence 54085, A
825
         153
                5.5
                        460
                             16
                                  US-10-437-963-192925
                                                               Sequence 192925,
826
         153
                5.5
                        476
                             15
                                  US-10-424-599-207411
                                                               Sequence 207411,
827
      152.5
                5.5
                        325
                             15
                                  US-10-424-599-232458
                                                               Sequence 232458,
828
      152.5
                5.5
                        387
                             15
                                  US-10-424-599-267453
                                                               Sequence 267453,
                                  US-10-437-963-188457
829
      152.5
                5.5
                        468
                             16
                                                               Sequence 188457,
830
      152.5
                5.5
                        469
                             16
                                 US-10-437-963-199537
                                                               Sequence 199537,
831
      152.5
                5.5
                        494
                             16
                                  US-10-437-963-146523
                                                               Sequence 146523,
832
         152
                5.5
                        461
                             15
                                  US-10-424-599-263812
                                                               Sequence 263812,
833
         152
                5.5
                        462
                             15
                                  US-10-424-599-207627
                                                               Sequence 207627,
834
         152
                5.5
                        476
                             15
                                  US-10-424-599-247474
                                                               Sequence 247474,
835
         152
                5.5
                        491
                             15
                                  US-10-424-599-221212
                                                               Sequence 221212,
836
      151.5
                5.5
                        459
                             14
                                  US-10-167-547C-22
                                                               Sequence 22, Appl
837
      151.5
                5.5
                        491
                             16
                                 US-10-437-963-169485
                                                               Sequence 169485,
838
      151.5
                5.5
                        497
                             14
                                 US-10-340-811-3
                                                               Sequence 3, Appli
839
      151.5
                5.5
                        519
                                 US-10-437-963-158257
                             16
                                                               Sequence 158257,
840
        151
                5.5
                        145
                             16
                                 US-10-767-701-38621
                                                               Sequence 38621, A
841
        151
                5.5
                        480
                             15
                                 US-10-424-599-206634
                                                               Sequence 206634,
842
        151
                5.5
                        484
                             16
                                 US-10-437-963-110844
                                                               Sequence 110844,
843
      150.5
                             15
                5.4
                        460
                                 US-10-425-114-66345
                                                               Sequence 66345, A
844
      150.5
                5.4
                        516
                             15
                                 US-10-424-599-178191
                                                               Sequence 178191,
845
                5.4
        150
                        160
                             16
                                 US-10-767-701-46116
                                                               Sequence 46116, A
                5.4
846
        150
                        315
                             15
                                 US-10-425-114-49470
                                                               Sequence 49470, A
847
        150
                5.4
                        434
                             15
                                 US-10-425-114-65241
                                                               Sequence 65241, A
848
      149.5
                5.4
                        168
                             16
                                 US-10-767-701-39806
                                                               Sequence 39806, A
849
      149.5
                5.4
                        259
                             15
                                 US-10-424-599-282476
                                                               Sequence 282476,
850
      149.5
                5.4
                        499
                             15
                                 US-10-425-114-48855
                                                               Sequence 48855, A
851
      149.5
                5.4
                        515
                             15
                                 US-10-425-114-64772
                                                               Sequence 64772, A
852
        149
                5.4
                        16.9
                             16
                                 US-10-767-701-32170
                                                               Sequence 32170, A
853
        149
                5.4
                                 US-10-259-165-136
                        208
                             14
                                                               Sequence 136, App
854
        149
                5.4
                        306
                             15
                                 US-10-424-599-151890
                                                               Sequence 151890,
855
        149
                5.4
                        468
                             15
                                 US-10-425-114-61789
                                                               Sequence 61789, A
856
        149
                5.4
                        488
                             15
                                 US-10-425-114-63545
                                                               Sequence 63545, A
857
      148.5
                5.4
                        412
                                 US-10-156-761-8483
                             14
                                                               Sequence 8483, Ap
858
      148.5
                5.4
                        471
                             16
                                 US-10-437-963-176451
                                                               Sequence 176451,
859
      148.5
                5.4
                        499
                             16
                                 US-10-437-963-134291
                                                               Sequence 134291,
860
        148
                5.3
                                 US-10-437-963-199834
                        157
                             16
                                                               Sequence 199834,
861
        148
                5.3
                       474
                             16
                                 US-10-437-963-129098
                                                               Sequence 129098,
862
        148
                5.3
                       490
                             15
                                 US-10-425-114-63036
                                                               Sequence 63036, A
863
        148
                5.3
                       815
                             16
                                 US-10-437-963-112487
                                                               Sequence 112487,
864
      147.5
                5.3
                       457
                             16
                                 US-10-437-963-115904
                                                               Sequence 115904,
865
      147.5
                5.3
                       481
                             15
                                 US-10-203-319A-29
                                                               Sequence 29, Appl
```

```
866
      147.5
                5.3
                        496
                             16
                                  US-10-437-963-115905
                                                               Sequence 115905,
867
        147
                5.3
                        160
                             16
                                  US-10-767-701-32439
                                                               Sequence 32439, A
868
        147
                        201
                             15
                5.3
                                  US-10-424-599-220306
                                                               Sequence 220306,
869
        147
                5.3
                        471
                             16
                                 US-10-437-963-183277
                                                               Sequence 183277,
870
         147
                5.3
                        477
                             16
                                 US-10-437-963-110144
                                                               Sequence 110144,
871
                5.3
      146.5
                        460
                             15
                                 US-10-424-599-183281
                                                               Sequence 183281,
872
        146
                5.3
                        131
                             15
                                 US-10-425-114-37668
                                                               Sequence 37668, A
873
        146
                5.3
                        152
                             15
                                 US-10-424-599-237942
                                                               Sequence 237942,
874
        146
                5.3
                        207
                             15
                                 US-10-425-114-52522
                                                               Sequence 52522, A
875
        146
                5.3
                        250
                             15
                                 US-10-424-599-246825
                                                               Sequence 246825,
876
        146
                5.3
                        480
                             16
                                 US-10-437-963-145094
                                                               Sequence 145094,
877
        146
                5.3
                        504
                             16
                                 US-10-437-963-173950
                                                               Sequence 173950,
878
        146
                5.3
                        772
                             16
                                 US-10-437-963-152635
                                                               Sequence 152635,
879
      145.5
                5.3
                        154
                             16
                                 US-10-767-701-61107
                                                               Sequence 61107, A
880
      145.5
                5.3
                        250
                             15
                                 US-10-424-599-170837
                                                               Sequence 170837,
881
      145.5
                5.3
                        259
                             16
                                 US-10-437-963-139413
                                                               Sequence 139413,
882
      145.5
                5.3
                        451
                             15
                                 US-10-424-599-243159
                                                               Sequence 243159,
883
      145.5
                5.3
                        478
                             15
                                 US-10-424-599-183283
                                                               Sequence 183283,
884
        145
                5.2
                        173
                             16
                                 US-10-767-701-41782
                                                               Sequence 41782, A
885
        145
                5.2
                        174
                             16
                                 US-10-437-963-123223
                                                               Sequence 123223,
                                 US-10-437-963-124366
886
        145
                5.2
                        505
                             16
                                                               Sequence 124366,
887
      144.5
                5.2
                        396
                             15
                                 US-10-424-599-266283
                                                               Sequence 266283,
888
      144.5
                5.2
                        495
                             16
                                 US-10-437-963-103172
                                                               Sequence 103172,
889
        144
                5.2
                        172
                             15
                                 US-10-424-599-240150
                                                               Sequence 240150,
890
        144
                5.2
                        188
                             16
                                 US-10-437-963-155724
                                                               Sequence 155724,
891
        144
                5.2
                        454
                             16
                                 US-10-437-963-133789
                                                               Sequence 133789,
892
        144
                5.2
                        498
                             16
                                 US-10-437-963-134359
                                                               Sequence 134359,
893
        144
                5.2
                        656
                             15
                                 US-10-424-599-179108
                                                               Sequence 179108,
894
      143.5
                5.2
                        492
                             16
                                 US-10-437-963-135339
                                                               Sequence 135339,
895
      143.5
                5.2
                        493
                             16
                                 US-10-437-963-197508
                                                               Sequence 197508,
896
      143.5
                5.2
                        502
                             16
                                 US-10-437-963-177680
                                                               Sequence 177680,
897
        143
                        477
                5.2
                             16
                                 US-10-437-963-144974
                                                               Sequence 144974,
898
        143
                5.2
                        477
                             16
                                 US-10-437-963-161540
                                                               Sequence 161540,
899
      142.5
                        127
                                 US-10-425-114-44763
                5.1
                             15
                                                               Sequence 44763, A
900
      142.5
                5.1
                        186
                             15
                                 US-10-424-599-223692
                                                               Sequence 223692,
901
      142.5
                5.1
                        214
                             15
                                 US-10-425-114-52556
                                                               Sequence 52556, A
902
      142.5
                5.1
                        395
                                 US-10-437-963-151335
                                                               Sequence 151335,
903
      142.5
                5.1
                        415
                             15
                                 US-10-424-599-229360
                                                               Sequence 229360,
904
      142.5
                5.1
                        642
                             16
                                 US-10-437-963-113272
                                                               Sequence 113272,
905
        142
                5.1
                        128
                             16
                                 US-10-767-701-61371
                                                               Sequence 61371, A
906
        142
                5.1
                        482
                             16
                                 US-10-048-866D-2
                                                               Sequence 2, Appli
907
        142
                5.1
                        506
                             15
                                 US-10-424-599-201183
                                                               Sequence 201183,
908
      141.5
                5.1
                        148
                             16
                                 US-10-767-701-41481
                                                               Sequence 41481, A
909
      141.5
                5.1
                        183
                             15
                                 US-10-424-599-240509
                                                               Sequence 240509,
910
      141.5
                5.1
                        476
                                US-09-777-207-11
                             9
                                                              Sequence 11, Appl
911
      141.5
                5.1
                        476
                             13
                                 US-10-078-929-201
                                                               Sequence 201, App
912
      141.5
                5.1
                        487
                             15
                                 US-10-424-599-147435
                                                               Sequence 147435,
913
      141.5
                5.1
                        492
                             16
                                 US-10-437-963-113541
                                                               Sequence 113541,
914
        141
                5.1
                        381
                             15
                                 US-10-203-319A-26
                                                               Sequence 26, Appl
915
        141
                5.1
                        440
                             16
                                 US-10-437-963-166155
                                                               Sequence 166155,
                                 US-10-437-963-178329
916
        141
                5.1
                        472
                             16
                                                               Sequence 178329,
917
        141
                5.1
                        480
                             16
                                 US-10-437-963-194135
                                                               Sequence 194135,
918
        141
                5.1
                        650
                             16
                                 US-10-437-963-187658
                                                               Sequence 187658,
919
      140.5
                5.1
                        385
                             15
                                 US-10-425-114-56422
                                                               Sequence 56422, A
920
      140.5
                5.1
                        466
                             16
                                 US-10-437-963-126671
                                                               Sequence 126671,
921
      140.5
                5.1
                        481
                             15
                                 US-10-424-599-214805
                                                               Sequence 214805,
922
      140.5
                5.1
                        506
                             15
                                 US-10-425-114-59294
                                                               Sequence 59294, A
```

```
923
      140.5
                        507
                                 US-10-437-963-143260
                5.1
                             16
                                                               Sequence 143260,
924
        140
                        466
                             15
                5.1
                                 US-10-425-114-63653
                                                               Sequence 63653, A
925
      139.5
                5.0
                        397
                             14
                                 US-10-156-761-14886
                                                               Sequence 14886, A
926
                                 US-10-203-319A-20
      139.5
                5.0
                        481
                             15
                                                               Sequence 20, Appl
927
                5.0
      139.5
                        706
                             16
                                 US-10-437-963-155249
                                                               Sequence 155249,
928
        139
                5.0
                        175
                             15
                                 US-10-424-599-246860
                                                               Sequence 246860,
929
        139
                5.0
                        421
                             15
                                 US-10-229-148B-9
                                                               Sequence 9, Appli
930
        139
                5.0
                        435
                             16
                                 US-10-437-963-156531
                                                               Sequence 156531,
931
        139
                5.0
                        474
                             16
                                 US-10-437-963-184377
                                                               Sequence 184377,
932
        139
                5.0
                        492
                             16
                                 US-10-767-701-45333
                                                               Sequence 45333, A
933
        139
                5.0
                        510
                             13
                                 US-10-078-929-80
                                                               Sequence 80, Appl
934
      138.5
                5.0
                        202
                             16
                                 US-10-767-701-55580
                                                               Sequence 55580, A
935
      138.5
                5.0
                        446
                             16
                                 US-10-437-963-194612
                                                               Sequence 194612,
936
        138
                5.0
                        444
                             15
                                 US-10-424-599-180140
                                                               Sequence 180140,
937
        138
                5.0
                        476
                             16
                                 US-10-437-963-199239
                                                               Sequence 199239.
938
        138
                5.0
                        481
                             15
                                 US-10-425-114-57332
                                                               Sequence 57332, A
939
        138
                5.0
                        521
                             16
                                 US-10-437-963-108520
                                                               Sequence 108520,
940
      137.5
                5.0
                       181
                             16
                                 US-10-437-963-120613
                                                               Sequence 120613,
941
      137.5
                5.0
                       214
                             13
                                 US-10-078-929-66
                                                               Sequence 66, Appl
942
      137.5
                5.0
                        431
                             10
                                 US-09-941-947A-28
                                                               Sequence 28, Appl
943
      137.5
                5.0
                        431
                             14
                                 US-10-218-118-4
                                                               Sequence 4, Appli
944
      137.5
                5.0
                       431
                             15
                                 US-10-363-567-28
                                                               Sequence 28, Appl
945
      137.5
                5.0
                       431
                             15
                                 US-10-466-656-2
                                                               Sequence 2, Appli
946
      137.5
                5.0
                       431
                             16
                                 US-10-735-019-4
                                                               Sequence 4, Appli
947
      137.5
                5.0
                       431
                             16
                                 US-10-848-307-2
                                                               Sequence 2, Appli
948
      137.5
                5.0
                       431
                             17
                                 US-10-886-906-4
                                                               Sequence 4, Appli
949
      137.5
                5.0
                       503
                                 US-10-437-963-163316
                             16
                                                               Sequence 163316,
950
        137
                4.9
                       246
                             16
                                 US-10-437-963-163143
                                                               Sequence 163143,
951
        137
                4.9
                       491
                             16
                                 US-10-437-963-204586
                                                               Sequence 204586,
952
      136.5
                4.9
                       177
                             15
                                 US-10-424-599-163926
                                                               Sequence 163926,
953
      136.5
                4.9
                       482
                             15
                                 US-10-424-599-206080
                                                               Sequence 206080,
954
        136
                4.9
                       138
                             15
                                 US-10-424-599-271290
                                                               Sequence 271290,
955
        136
                4.9
                       156
                             16
                                 US-10-767-701-44248
                                                               Sequence 44248, A
956
        136
                4.9
                       469
                             15
                                 US-10-425-114-50691
                                                               Sequence 50691, A
                4.9
957
      135.5
                       478
                             16
                                 US-10-437-963-176560
                                                               Sequence 176560,
958
      135.5
                4.9
                       521
                             15
                                 US-10-425-114-64305
                                                               Sequence 64305, A
959
      135.5
                4.9
                       526
                             15
                                 US-10-425-114-67078
                                                               Sequence 67078, A
960
        135
                4.9
                       211
                             15
                                 US-10-424-599-175602
                                                               Sequence 175602,
961
        135
                4.9
                       387
                             15
                                 US-10-424-599-254558
                                                               Sequence 254558,
962
      134.5
                4.9
                       163
                             15
                                 US-10-424-599-246422
                                                               Sequence 246422,
963
      134.5
                4.9
                       165
                             16
                                 US-10-767-701-32093
                                                               Sequence 32093, A
964
      134.5
                4.9
                       429
                             14
                                 US-10-205-032-22
                                                               Sequence 22, Appl
965
      134.5
                4.9
                       464
                             15
                                 US-10-424-599-156101
                                                               Sequence 156101,
966
        134
               .4.8
                       191
                                 US-10-424-599-157356
                             15
                                                               Sequence 157356,
967
        134
                4.8
                       419
                             15
                                 US-10-378-083-4
                                                               Sequence 4, Appli
968
        134
                4.8
                       485
                             15
                                 US-10-425-114-63696
                                                               Sequence 63696, A
969
        134
                4.8
                       510
                             16
                                 US-10-437-963-126038
                                                               Sequence 126038,
970
      133.5
                4.8
                       213
                             15
                                 US-10-424-599-164820
                                                               Sequence 164820,
971
      133.5
                4.8
                       496
                                 US-10-437-963-154771
                             16
                                                               Sequence 154771,
972
        133
                4.8
                       433
                             16
                                 US-10-437-963-146479
                                                               Sequence 146479,
973
      132.5
                4.8
                        74
                             13
                                 US-10-078-929-68
                                                               Sequence 68, Appl
974
      132.5
                4.8
                       455
                             15
                                 US-10-424-599-196784
                                                               Sequence 196784,
975
      132.5
                4.8
                       469
                             15
                                 US-10-424-599-219522
                                                               Sequence 219522,
976
      132.5
                4.8
                       703
                             16
                                 US-10-437-963-172007
                                                               Sequence 172007,
977
        132
                4.8
                       497
                             16
                                 US-10-437-963-108518
                                                               Sequence 108518,
978
      131.5
                4.8
                       200
                             15
                                 US-10-424-599-147454
                                                               Sequence 147454,
979
        131
                4.7
                       145
                             15
                                 US-10-425-114-45302
                                                              Sequence 45302, A
```

```
980
          131
                 4.7
                         300
                               16
                                   US-10-437-963-135922
                                                                Sequence 135922,
 981
          131
                 4.7
                         508
                               15
                                   US-10-425-114-63695
                                                                Sequence 63695, A
 982
          130
                 4.7
                         490
                              16
                                   US-10-437-963-187597
                                                                Sequence 187597,
 983
        129.5
                         202
                               15
                 4.7
                                   US-10-424-599-282356
                                                                Sequence 282356,
 984
        129.5
                 4.7
                         480
                               16
                                   US-10-048-866D-14
                                                                Sequence 14, Appl
 985
        129.5
                 4.7
                         509
                               15
                                   US-10-425-114-64323
                                                                Sequence 64323, A
 986
          129
                 4.7
                         139
                               16
                                   US-10-437-963-168456
                                                                Sequence 168456,
 987
          129
                 4.7
                         167
                               15
                                   US-10-424-599-189908
                                                                Sequence 189908,
 988
          129
                 4.7
                         244
                               15
                                   US-10-424-599-265174
                                                                Sequence 265174,
 989
          129
                 4.7
                         384
                               15
                                   US-10-424-599-183279
                                                                Sequence 183279,
 990
          129
                 4.7
                         470
                               16
                                   US-10-437-963-160016
                                                                Sequence 160016,
 991
          129
                 4.7
                         497
                              15
                                   US-10-425-114-49061
                                                                Sequence 49061, A
 992
          129
                 4.7
                         497
                              15
                                   US-10-425-114-59329
                                                                Sequence 59329, A
 993
        128.5
                 4.6
                         465
                               15
                                   US-10-425-114-52314
                                                                Sequence 52314, A
 994
        128.5
                 4.6
                         483
                              16
                                   US-10-437-963-144211
                                                                Sequence 144211,
 995
        128.5
                 4.6
                         490
                              15
                                   US-10-425-114-49936
                                                                Sequence 49936, A
 996
        128.5
                 4.6
                         493
                              15
                                   US-10-425-114-64578
                                                                Sequence 64578, A
 997
          128
                 4.6
                         431
                              15
                                   US-10-424-599-148084
                                                                Sequence 148084,
 998
       127.5
                 4.6
                         149
                              15
                                   US-10-424-599-258041
                                                                Sequence 258041,
       127.5
 999
                         150
                 4.6
                              15
                                   US-10-424-599-242715
                                                                Sequence 242715,
1000
       127.5
                 4.6
                         286
                              16
                                   US-10-437-963-204419
                                                                Sequence 204419,
1001
       127.5
                 4.6
                         470
                              16
                                   US-10-437-963-116117
                                                                Sequence 116117,
1002
          127
                 4.6
                         470
                              16
                                   US-10-437-963-175675
                                                                Sequence 175675,
1003
          127
                 4.6
                         528
                               16
                                   US-10-437-963-108223
                                                                Sequence 108223,
1004
       126.5
                 4.6
                         235
                              16
                                   US-10-767-701-36906
                                                                Sequence 36906, A
1005
       126.5
                 4.6
                         498
                              15
                                   US-10-425-114-64493
                                                                Sequence 64493, A
1006
          126
                 4.6
                         158
                              16
                                   US-10-767-701-53520
                                                                Sequence 53520, A
1007
          126
                 4.6
                         216
                              15
                                   US-10-424-599-217324
                                                                Sequence 217324,
1008
          126
                 4.6
                         253
                              15
                                   US-10-424-599-248934
                                                                Sequence 248934,
1009
          126
                 4.6
                         484
                              16
                                   US-10-437-963-169320
                                                                Sequence 169320,
1010
          126
                 4.6
                         511
                              16
                                   US-10-437-963-156801
                                                                Sequence 156801,
1011
          125
                 4.5
                         152
                              16
                                   US-10-767-701-61791
                                                                Sequence 61791, A
1012
          125
                 4.5
                         182
                              15
                                   US-10-425-114-36940
                                                                Sequence 36940, A
1013
          125
                         258
                 4.5
                              15
                                   US-10-424-599-240009
                                                                Sequence 240009,
1014
          125
                 4.5
                         369
                                  US-10-259-165-306
                              14
                                                                Sequence 306, App
1015
          125
                 4.5
                         527
                              15
                                   US-10-425-114-63888
                                                                Sequence 63888, A
1016
       124.5
                 4.5
                         475
                              15
                                   US-10-424-599-267504
                                                                Sequence 267504,
1017
       124.5
                 4.5
                         483
                              16
                                   US-10-437-963-110469
                                                                Sequence 110469,
1018
       124.5
                 4.5
                         495
                              15
                                  US-10-424-599-255704
                                                                Sequence 255704,
1019
          124
                 4.5
                         198
                              15
                                   US-10-425-114-48536
                                                                Sequence 48536, A
1020
       123.5
                 4.5
                         158
                              15
                                  US-10-425-114-52503
                                                                Sequence 52503, A
1021
       123.5
                 4.5
                         466
                              15
                                  US-10-424-599-170054
                                                                Sequence 170054,
1022
       123.5
                 4.5
                         475
                              16
                                  US-10-437-963-108517
                                                                Sequence 108517,
1023
       123.5
                 4.5
                         503
                              16
                                  US-10-437-963-136453
                                                                Sequence 136453,
1024
         123
                 4.4
                         209
                                  US-10-437-963-156797
                              16
                                                                Sequence 156797,
1025
         123
                 4.4
                         219
                              15
                                  US-10-424-599-268353
                                                                Sequence 268353,
1026
         123
                         222
                 4.4
                              15
                                  US-10-424-599-226907
                                                                Sequence 226907,
1027
          123
                 4.4
                         464
                              16
                                  US-10-437-963-199656
                                                                Sequence 199656,
1028
         123
                 4.4
                         467
                              15
                                  US-10-275-782-8
                                                                Sequence 8, Appli
1029
         123
                 4.4
                         469
                              16
                                  US-10-437-963-126692
                                                                Sequence 126692,
1030
         123
                 4.4
                         481
                              13
                                  US-10-078-929-76
                                                                Sequence 76, Appl
1031
       122.5
                 4.4
                         106
                                  US-10-424-599-253520
                                                                Sequence 253520,
1032
       122.5
                                  US-10-424-599-227255
                 4.4
                         143
                              15
                                                                Sequence 227255,
1033
       122.5
                 4.4
                         455
                              14
                                  US-10-338-777-51
                                                                Sequence 51, Appl
1034
       122.5
                 4.4
                         465
                              15
                                  US-10-425-114-63136
                                                                Sequence 63136, A
1035
       122.5
                 4.4
                         477
                              16
                                  US-10-437-963-170646
                                                                Sequence 170646,
1036
                 4.4
       122.5
                         493
                              16
                                  US-10-437-963-170486
                                                                Sequence 170486,
```

```
1037
         122
                         380
                                                                Sequence 26, Appl
                 4.4
                              10
                                  US-09-769-734-26
1038
         122
                 4.4
                         380
                              15
                                  US-10-107-431-221
                                                                Sequence 221, App
1039
         122
                 4.4
                         473
                              15
                                  US-10-424-599-172386
                                                                Sequence 172386,
1040
         122
                 4.4
                        1046
                              16
                                  US-10-437-963-121342
                                                                Sequence 121342,
1041
       121.5
                         157
                 4.4
                              16
                                  US-10-437-963-104408
                                                                Sequence 104408,
1042
       121.5
                 4.4
                         161
                              16
                                  US-10-767-701-55236
                                                                Sequence 55236, A
1043
       121.5
                 4.4
                         481
                              16
                                  US-10-437-963-152752
                                                                Sequence 152752,
1044
       121.5
                 4.4
                         485
                              16
                                  US-10-437-963-145149
                                                                Sequence 145149,
1045
         121
                 4.4
                         153
                              16
                                  US-10-767-701-40501
                                                                Sequence 40501, A
1046
         121
                 4.4
                         161
                              16
                                  US-10-437-963-122198
                                                                Sequence 122198,
1047
         121
                 4.4
                         205
                              15
                                  US-10-424-599-229443
                                                                Sequence 229443,
1048
       120.5
                 4.4
                         177
                              16
                                  US-10-437-963-156799
                                                                Sequence 156799,
1049
       120.5
                 4.4
                         311
                              16
                                  US-10-437-963-185160
                                                                Sequence 185160,
1050
       120.5
                 4.4
                         491
                              13
                                  US-10-078-929-72
                                                                Sequence 72, Appl
1051
       119.5
                 4.3
                         270
                              16
                                  US-10-437-963-129189
                                                                Sequence 129189,
1052
         119
                 4.3
                          94
                              9
                                 US-09-925-299-1261
                                                               Sequence 1261, Ap
1053
         119
                 4.3
                          94
                              10
                                  US-09-925-299-1261
                                                                Sequence 1261, Ap
1054
       118.5
                 4.3
                         486
                              16
                                  US-10-048-866D-12
                                                                Sequence 12, Appl
1055
         118
                         182
                 4.3
                              15
                                  US-10-424-599-204962
                                                                Sequence 204962,
1056
         118
                 4.3
                         507
                              16
                                  US-10-437-963-125744
                                                                Sequence 125744,
1057
       117.5
                 4.2
                         142
                              15
                                  US-10-424-599-235141
                                                                Sequence 235141,
                              15
1058
         117
                 4.2
                         435
                                  US-10-425-114-48716
                                                                Sequence 48716, A
1059
         117
                 4.2
                         455
                              15
                                  US-10-424-599-164669
                                                                Sequence 164669,
1060
         117
                 4.2
                         481
                              15
                                  US-10-203-319A-23
                                                                Sequence 23, Appl
1061
       116.5
                 4.2
                         602
                              16
                                  US-10-437-963-195456
                                                                Sequence 195456,
1062
         116
                 4.2
                         463
                              16
                                  US-10-437-963-109952
                                                                Sequence 109952,
1063
         116
                 4.2
                         476
                              16
                                  US-10-437-963-194859
                                                                Sequence 194859,
1064
         116
                 4.2
                         488
                              16
                                  US-10-437-963-132460
                                                                Sequence 132460,
1065
       115.5
                 4.2
                         501
                              15
                                  US-10-424-599-176275
                                                                Sequence 176275,
1066
       114.5
                 4.1
                         494
                              16
                                  US-10-437-963-129713
                                                                Sequence 129713,
1067
         114
                         134
                 4.1
                              15
                                  US-10-424-599-264963
                                                                Sequence 264963,
1068
       113.5
                         112
                 4.1
                              15
                                  US-10-424-599-201975
                                                                Sequence 201975,
       113.5
                         469
1069
                 4.1
                              15
                                  US-10-425-114-70563
                                                                Sequence 70563, A
1070
       113.5
                         505
                 4.1
                              15
                                  US-10-425-114-67480
                                                                Sequence 67480, A
1071
       113.5
                         706
                 4.1
                              16
                                  US-10-437-963-175099
                                                                Sequence 175099,
1072
         113
                         225
                              16
                 4.1
                                  US-10-437-963-194133
                                                                Sequence 194133,
1073
         113
                 4.1
                         472
                                  US-10-424-599-238530
                                                                Sequence 238530,
1074
         112
                 4.0
                         419
                                  US-10-437-963-126672
                              16
                                                                Sequence 126672,
1075
         111
                 4.0
                         124
                              16
                                  US-10-767-701-35499
                                                                Sequence 35499, A
                         475
1076
         111
                 4.0
                              15
                                  US-10-424-599-249784
                                                                Sequence 249784,
1077
       110.5
                         180
                 4.0
                              15
                                  US-10-424-599-265054
                                                                Sequence 265054,
1078
       110.5
                 4.0
                         283
                              16
                                  US-10-437-963-190628
                                                                Sequence 190628,
1079
         110
                 4.0
                         146
                              16
                                  US-10-767-701-61438
                                                                Sequence 61438, A
1080
         110
                 4.0
                         179
                              15
                                  US-10-424-599-223670
                                                                Sequence 223670,
1081
         109
                 3.9
                         471
                              15
                                  US-10-424-599-224402
                                                                Sequence 224402,
1082
         109
                         475
                 3.9
                              15
                                  US-10-425-114-58078
                                                                Sequence 58078, A
1083
         109
                 3.9
                         693
                              16
                                  US-10-437-963-164331
                                                                Sequence 164331,
1084
       108.5
                 3.9
                         473
                              15
                                  US-10-424-599-145625
                                                                Sequence 145625,
1085
       108.5
                 3.9
                              16
                         527
                                  US-10-437-963-112814
                                                                Sequence 112814,
1086
       108.5
                 3.9
                        1232
                              15
                                  US-10-369-493-21495
                                                                Sequence 21495, A
1087
         108
                 3.9
                       3079
                              15
                                  US-10-369-493-2024
                                                                Sequence 2024, Ap
1088
       107.5
                 3.9
                         179
                              16
                                  US-10-437-963-175086
                                                                Sequence 175086,
1089
         107
                 3.9
                          98
                              15
                                  US-10-424-599-172741
                                                                Sequence 172741,
1090
         107
                 3.9
                         427
                              15
                                  US-10-282-122A-54637
                                                                Sequence 54637, A
1091
       106.5
                 3.8
                         102
                              15
                                  US-10-424-599-241946
                                                                Sequence 241946,
1092
       106.5
                 3.8
                         389
                              11
                                  US-09-758-759-9
                                                                Sequence 9, Appli
1093
       106.5
                 3.8
                         389
                              15
                                  US-10-107-431-223
                                                                Sequence 223, App
```

```
1094
        105.5
                 3.8
                         118
                              16
                                   US-10-437-963-169987
                                                                Sequence 169987,
1095
        105.5
                 3.8
                         216
                              16
                                   US-10-767-701-35822
                                                                Sequence 35822, A
1096
        105.5
                 3.8
                         890
                              16
                                   US-10-437-963-153817
                                                                Sequence 153817,
1097
          105
                 3.8
                         132
                              16
                                   US-10-437-963-118214
                                                                Sequence 118214,
                                   US-10-437-963-126236
1098
          105
                 3.8
                         363
                              16
                                                                Sequence 126236,
1099
          105
                 3.8
                         408
                              9
                                  US-09-789-261-2
                                                               Sequence 2, Appli
1100
          105
                 3.8
                         408
                              15
                                   US-10-401-271-2
                                                                Sequence 2, Appli
1101
          105
                 3.8
                         494
                              16
                                   US-10-437-963-176342
                                                                Sequence 176342,
1102
        104.5
                 3.8
                         449
                              16
                                   US-10-437-963-148728
                                                                Sequence 148728,
1103
        104.5
                 3.8
                         460
                              15
                                   US-10-424-599-245996
                                                                Sequence 245996,
1104
          104
                 3.8
                         969
                              9
                                  US-09-981-353-122
                                                               Sequence 122, App
1105
          104
                         977
                 3.8
                              9
                                  US-09-925-297-797
                                                               Sequence 797, App
1106
        103.5
                 3.7
                         113
                              16
                                   US-10-767-701-42027
                                                                Sequence 42027, A
1107
        103.5
                 3.7
                         183
                              16
                                   US-10-767-701-33267
                                                                Sequence 33267, A
1108
        103.5
                 3.7
                         479
                              16
                                   US-10-437-963-204938
                                                                Sequence 204938,
1109
          103
                 3.7
                         967
                              14
                                   US-10-205-823-32
                                                                Sequence 32, Appl
1110
          103
                         967
                 3.7
                              14
                                   US-10-264-374-201
                                                                Sequence 201, App
1111
          103
                 3.7
                         967
                              14
                                   US-10-281-904-2
                                                                Sequence 2, Appli
1112
          103
                 3.7
                         967
                              15
                                   US-10-099-322-74
                                                                Sequence 74, Appl
1113
          103
                 3.7
                         967
                              15
                                   US-10-044-564-74
                                                                Sequence 74, Appl
1114
          103
                 3.7
                         967
                              15
                                   US-10-264-374-201
                                                                Sequence 201, App
1115
       102.5
                 3.7
                         143
                              16
                                   US-10-437-963-132037
                                                                Sequence 132037,
1116
       102.5
                 3.7
                         622
                              9
                                  US-09-981-353-129
                                                               Sequence 129, App
1117
        102.5
                 3.7
                         816
                              16
                                   US-10-437-963-198301
                                                                Sequence 198301,
1118
        101.5
                 3.7
                         114
                              16
                                   US-10-767-701-53084
                                                                Sequence 53084, A
1119
        101.5
                 3.7
                         174
                              15
                                   US-10-424-599-242822
                                                                Sequence 242822,
1120
        101.5
                 3.7
                         385
                              10
                                   US-09-829-275-6
                                                                Sequence 6; Appli
1121
          101
                 3.6
                         340
                              16
                                   US-10-437-963-189996
                                                                Sequence 189996,
1122
       100.5
                 3.6
                         603
                              11
                                   US-09-972-211-102
                                                                Sequence 102, App
1123
        100.5
                 3.6
                         603
                              15
                                   US-10-096-625-102
                                                                Sequence 102, App
1124
        100.5
                 3.6
                         842
                              14
                                   US-10-084-839-2774
                                                                Sequence 2774, Ap
1125
          100
                 3.6
                          63
                              16
                                   US-10-437-963-114703
                                                                Sequence 114703,
1126
          100
                 3.6
                         108
                              16
                                   US-10-767-701-58390
                                                                Sequence 58390, A
1127
          100
                         354
                 3.6
                              15
                                   US-10-282-122A-52804
                                                                Sequence 52804, A
1128
          100
                         388
                 3.6
                              15
                                   US-10-627-476-180
                                                                Sequence 180, App
1129
          100
                         455
                 3.6
                              15
                                   US-10-329-148A-17
                                                                Sequence 17, Appl
1130
          100
                 3.6
                         464
                              15
                                   US-10-424-599-164129
                                                                Sequence 164129,
1131
          100
                 3.6
                         967
                              15
                                   US-10-099-322-14
                                                                Sequence 14, Appl
1132
          100
                 3.6
                         967
                              15
                                   US-10-099-322-75
                                                                Sequence 75, Appl
1133
          100
                         967
                 3.6
                              15
                                                                Sequence 14, Appl
                                   US-10-044-564-14
1134
          100
                 3.6
                         967
                              15
                                   US-10-044-564-75
                                                                Sequence 75, Appl
1135
          100
                 3.6
                        2192
                              14
                                   US-10-128-714-3135
                                                                Sequence 3135, Ap
1136
          100
                 3.6
                        2209
                              14
                                  US-10-128-714-8135
                                                                Sequence 8135, Ap
1137
        99.5
                 3.6
                         118
                              15
                                   US-10-424-599-258039
                                                                Sequence 258039,
1138
        99.5
                 3.6
                         128
                              16
                                   US-10-437-963-181738
                                                                Sequence 181738,
        99.5
1139
                 3.6
                         842
                              14
                                   US-10-084-839-2768
                                                                Sequence 2768, Ap
1140
           99
                 3.6
                         343
                              16
                                   US-10-437-963-110143
                                                                Sequence 110143,
1141
           99
                 3.6
                         639
                              16
                                  US-10-437-963-107428
                                                                Sequence 107428,
1142
           99
                                  US-10-128-714-3060
                 3.6
                        1116
                              14
                                                                Sequence 3060, Ap
1143
           99
                 3.6
                        1116
                              14
                                  US-10-128-714-8060
                                                                Sequence 8060, Ap
        98.5
1144
                 3.6
                         127
                              15
                                   US-10-424-599-258576
                                                                Sequence 258576,
1145
        98.5
                 3.6
                         834
                              15
                                  US-10-190-967-17
                                                                Sequence 17, Appl
          98
1146
                 3.5
                          74
                              9
                                 US-09-864-761-47514
                                                               Sequence 47514, A
1147
          98
                 3.5
                         174
                              16
                                  US-10-437-963-145083
                                                                Sequence 145083,
1148
           98
                 3.5
                         379
                              9
                                 US-09-738-626-6655
                                                               Sequence 6655, Ap
1149
           98
                 3.5
                         838
                              14
                                  US-10-084-839-2782
                                                                Sequence 2782, Ap
1150
        97.5
                 3.5
                         137
                              16
                                  US-10-437-963-105479
                                                                Sequence 105479,
```

```
1151
         97.5
                 3.5
                         174
                              16
                                   US-10-767-701-39169
                                                                Sequence 39169, A
1152
         97.5
                 3.5
                         616
                              14
                                   US-10-243-735-4
                                                                Sequence 4, Appli
1153
         97.5
                 3.5
                         616
                              16
                                   US-10-730-010-4
                                                                Sequence 4, Appli
1154
         97.5
                 3.5
                         774
                              14
                                   US-10-162-706-5
                                                                Sequence 5, Appli
1155
         97.5
                 3.5
                        5125
                              16
                                   US-10-437-963-107204
                                                                Sequence 107204,
1156
           97
                 3.5
                         613
                              15
                                   US-10-282-122A-67911
                                                                Sequence 67911, A
           97
1157
                 3.5
                        1008
                              16
                                   US-10-437-963-155460
                                                                Sequence 155460,
1158
         96.5
                 3.5
                         211
                              15
                                   US-10-425-114-50197
                                                                Sequence 50197, A
1159
         96.5
                 3.5
                         358
                              17
                                   US-10-472-928-536
                                                                Sequence 536, App
        96.5
1160
                 3.5
                         454
                              16
                                   US-10-437-963-159396
                                                                Sequence 159396,
         96.5
1161
                 3.5
                         493
                              15
                                   US-10-424-599-155298
                                                                Sequence 155298,
1162
         96.5
                 3.5
                         842
                              10
                                   US-09-864-636A-472
                                                                Sequence 472, App
1163
         96.5
                 3.5
                         842
                              11
                                   US-09-864-426A-472
                                                                Sequence 472, App
1164
         96.5
                 3.5
                         842
                              14
                                   US-10-084-839-472
                                                                Sequence 472, App
1165
         96.5
                 3.5
                         842
                              14
                                   US-10-084-839-2766
                                                                Sequence 2766, Ap
                 3.5
1166
         96.5
                        1175
                              14
                                   US-10-032-585-7014
                                                                Sequence 7014, Ap
1167
           96
                 3.5
                         336
                              15
                                   US-10-369-493-20308
                                                                Sequence 20308, A
1168
           96
                 3.5
                        1085
                              15
                                   US-10-282-122A-61051
                                                                Sequence 61051, A
1169
        95.5
                         124
                 3.5
                              15
                                   US-10-424-599-279343
                                                                Sequence 279343,
1170
        95.5
                 3.5
                         842
                              10
                                   US-09-864-636A-460
                                                                Sequence 460, App
1171
         95.5
                 3.5
                         842
                              11
                                   US-09-864-426A-460
                                                                Sequence 460, App
1172
         95.5
                 3.5
                         842
                              14
                                   US-10-084-839-460
                                                                Sequence 460, App
1173
        95.5
                 3.5
                        1462
                              16
                                   US-10-437-963-158098
                                                                Sequence 158098,
1174
           95
                 3.4
                         107
                              16
                                   US-10-437-963-193945
                                                                Sequence 193945,
1175
           95
                 3.4
                         400
                              16
                                   US-10-437-963-161797
                                                                Sequence 161797,
1176
           95
                 3.4
                         479
                              16
                                   US-10-437-963-178832
                                                                Sequence 178832,
1177
           95
                 3.4
                         484
                              15
                                   US-10-425-114-56866
                                                                Sequence 56866, A
1178
           95
                 3.4
                        1030
                              16
                                   US-10-437-963-130211
                                                                Sequence 130211,
1179
        94.5
                 3.4
                         636
                              15
                                   US-10-282-122A-45233
                                                                Sequence 45233, A
1180
        94.5
                 3.4
                         705
                              15
                                   US-10-289-762-68
                                                                Sequence 68, Appl
1181
         94.5
                         838
                 3.4
                              10
                                   US-09-864-636A-68
                                                                Sequence 68, Appl
1182
        94.5
                 3.4
                         838
                              10
                                   US-09-758-282-265
                                                                Sequence 265, App
1183
        94.5
                 3.4
                         838
                              11
                                   US-09-864-426A-68
                                                                Sequence 68, Appl
1184
        94.5
                 3.4
                         838
                              14
                                   US-10-084-839-68
                                                                Sequence 68, Appl
1185
        94.5
                 3.4
                         873
                              14
                                   US-10-132-350-2
                                                                Sequence 2, Appli
        94.5
1186
                 3.4
                         873
                              14
                                   US-10-132-350-4
                                                                Sequence 4, Appli
1187
        94.5
                 3.4
                         891
                              15
                                   US-10-425-114-62915
                                                                Sequence 62915, A
1188
        94.5
                 3.4
                        1634
                              17
                                   US-10-741-849-7198
                                                                Sequence 7198, Ap
1189
           94
                 3.4
                         838
                              10
                                                                Sequence 491, App
                                   US-09-864-636A-491
1190
           94
                 3.4
                         838
                              11
                                   US-09-864-426A-491
                                                                Sequence 491, App
1191
           94
                 3.4
                         838
                              14
                                   US-10-084-839-491
                                                                Sequence 491, App
        93.5
1192
                 3.4
                         381
                              15
                                   US-10-369-493-18233
                                                                Sequence 18233, A
        93.5
1193
                 3.4
                        1032
                              17
                                   US-10-472-928-3116
                                                                Sequence 3116, Ap
1194
        93.5
                 3.4
                        1169
                              15
                                   US-10-282-122A-47218
                                                                Sequence 47218, A
        93.5
1195
                 3.4
                        1826
                              15
                                   US-10-282-122A-54869
                                                                Sequence 54869, A
1196
           93
                 3.4
                         418
                              16
                                   US-10-647-196-21
                                                                Sequence 21, Appl
1197
           93
                 3.4
                         633
                              15
                                   US-10-389-566-656
                                                                Sequence 656, App
1198
           93
                                   US-10-369-493-9250
                 3.4
                         837
                              15
                                                                Sequence 9250, Ap
1199
           93
                 3.4
                        1066
                              16
                                   US-10-437-963-198081
                                                                Sequence 198081,
1200
        92.5
                 3.3
                         460
                              15
                                   US-10-369-493-2381
                                                                Sequence 2381, Ap
1201
        92.5
                 3.3
                         842
                              10
                                   US-09-864-636A-456
                                                                Sequence 456, App
1202
        92.5
                 3.3
                         842
                              11
                                   US-09-864-426A-456
                                                                Sequence 456, App
1203
        92.5
                 3.3
                         842
                              14
                                  US-10-084-839-456
                                                                Sequence 456, App
1204
        92.5
                 3.3
                         977
                              9
                                  US-09-771-161A-183
                                                               Sequence 183, App
1205
        92.5
                 3.3
                        1439
                              15
                                  US-10-282-122A-61196
                                                                Sequence 61196, A
1206
           92
                 3.3
                          78
                              15
                                  US-10-424-599-238315
                                                                Sequence 238315,
1207
           92
                 3.3
                              15
                         430
                                  US-10-107-431-45
                                                                Sequence 45, Appl
```

```
1208
           92
                 3.3
                         480
                              9
                                  US-09-769-864-5
                                                               Sequence 5, Appli
1209
           92
                 3.3
                         480
                              14
                                  US-10-186-042-4
                                                                Sequence 4, Appli
1210
           92
                 3.3
                         480
                              15
                                   US-10-327-837-5
                                                                Sequence 5, Appli
1211
           92
                 3.3
                         480
                              15
                                                                Sequence 5, Appli
                                   US-10-665-667-5
1212
           92
                 3.3
                         480
                              15
                                   US-10-644-187-4
                                                                Sequence 4, Appli
1213
           92
                 3.3
                         483
                              9
                                  US-09-854-346-10
                                                               Sequence 10, Appl
1214
           92
                 3.3
                         483
                              9
                                  US-09-918-543-10
                                                               Sequence 10, Appl
1215
           92
                 3.3
                         483
                              10
                                  US-09-925-576C-10
                                                                Sequence 10, Appl
1216
           92
                 3.3
                         483
                              14
                                  US-10-146-327-6
                                                                Sequence 6, Appli
1217
           92
                 3.3
                         483
                              14
                                  US-10-184-771-13
                                                                Sequence 13, Appl
1218
           92
                 3.3
                         483
                              15
                                   US-10-477-725-10
                                                                Sequence 10, Appl
           92
1219
                 3.3
                         483
                              17
                                   US-10-926-720-13
                                                                Sequence 13, Appl
1220
           92
                 3.3
                         514
                              14
                                   US-10-184-771-4
                                                                Sequence 4, Appli
           92
1221
                 3.3
                         514
                              17
                                   US-10-926-720-4
                                                               Sequence 4, Appli
1222
           92
                 3.3
                         542
                              15
                                   US-10-282-122A-56173
                                                                Sequence 56173, A
1223
           92
                 3.3
                         719
                              16
                                  US-10-437-963-117476
                                                                Sequence 117476,
1224
           92
                 3.3
                         838
                              14
                                  US-10-084-839-2674
                                                                Sequence 2674, Ap
           92
1225
                 3.3
                         838
                              14
                                  US-10-084-839-2851
                                                                Sequence 2851, Ap
1226
           92
                         877
                 3.3
                              9
                                 US-09-815-242-4901
                                                               Sequence 4901, Ap
1227
           92
                 3.3
                         880
                              9
                                 US-09-815-242-10491
                                                               Sequence 10491, A
1228
           92
                 3.3
                         880
                              15
                                  US-10-282-122A-42492
                                                                Sequence 42492, A
1229
           92
                 3.3
                        1249
                              15
                                  US-10-282-122A-72390
                                                                Sequence 72390, A
1230
           92
                              15
                 3.3
                        1442
                                  US-10-282-122A-76829
                                                                Sequence 76829, A
        91.5
1231
                 3.3
                         280
                              15
                                  US-10-425-114-55214
                                                                Sequence 55214, A
1232
        91.5
                 3.3
                         535
                              16
                                   US-10-437-963-137610
                                                                Sequence 137610,
1233
        91.5
                 3.3
                         540
                              15
                                  US-10-369-493-21289
                                                                Sequence 21289, A
1234
                 3.3
        91.5
                         550
                              15
                                  US-10-282-122A-77028
                                                                Sequence 77028, A
1235
        91.5
                 3.3
                         602
                              15
                                  US-10-260-937-52
                                                                Sequence 52, Appl
1236
        91.5
                 3.3
                         946
                              15
                                  US-10-424-599-157979
                                                                Sequence 157979,
1237
        91.5
                 3.3
                        1499
                              16
                                  US-10-437-963-110618
                                                                Sequence 110618,
1238
           91
                 3.3
                         360
                              15
                                  US-10-424-599-152604
                                                                Sequence 152604,
1239
           91
                 3.3
                         364
                              17
                                  US-10-472-928-1998
                                                                Sequence 1998, Ap
1240
           91
                 3.3
                         366
                              15
                                  US-10-425-114-44445
                                                                Sequence 44445, A
1241
           91
                 3.3
                         599
                              15
                                  US-10-424-599-266797
                                                                Sequence 266797,
1242
           91
                 3.3
                         600
                              15
                                  US-10-425-114-55322
                                                                Sequence 55322, A
1243
           91
                 3.3
                         686
                              15
                                  US-10-282-122A-74764
                                                                Sequence 74764, A
1244
           91
                 3.3
                        1397
                              17
                                  US-10-473-451-6
                                                                Sequence 6, Appli
1245
           91
                 3.3
                        1826
                              15
                                  US-10-289-762-113
                                                                Sequence 113, App
1246
        90.5
                 3.3
                          99
                                  US-10-767-701-55235
                              16
                                                                Sequence 55235, A
1247
        90.5
                 3.3
                         364
                              15
                                  US-10-369-493-11180
                                                                Sequence 11180, A
1248
        90.5
                 3.3
                         381
                              15
                                  US-10-369-493-1334
                                                                Sequence 1334, Ap
1249
        90.5
                 3.3
                         602
                              10
                                  US-09-953-067A-7
                                                                Sequence 7, Appli
1250
        90.5
                 3.3
                         602
                              15
                                  US-10-260-937-51
                                                                Sequence 51, Appl
1251
        90.5
                 3.3
                        2111
                              16
                                  US-10-437-963-112998
                                                                Sequence 112998,
1252
        90.5
                 3.3
                        2783
                              15
                                  US-10-369-493-6344
                                                                Sequence 6344, Ap
1253
          90
                 3.3
                         106
                              16
                                  US-10-767-701-55687
                                                                Sequence 55687, A
1254
          90
                 3.3
                         304
                              15
                                  US-10-424-599-183691
                                                                Sequence 183691,
1255
          90
                 3.3
                         357
                              15
                                  US-10-282-122A-61260
                                                                Sequence 61260, A
1256
          90
                                  US-10-282-122A-70571
                 3.3
                         357
                              15
                                                                Sequence 70571, A
1257
          90
                 3.3
                         511
                              16
                                  US-10-686-947-166
                                                                Sequence 166, App
1258
          90
                 3.3
                         511
                              16
                                  US-10-686-947-168
                                                                Sequence 168, App
          90
1259
                 3.3
                         620
                                 US-09-861-451A-34
                                                               Sequence 34, Appl
1260
          90
                 3.3
                         838
                              14
                                  US-10-084-839-2789
                                                                Sequence 2789, Ap
          90
1261
                 3.3
                       1953
                              15
                                  US-10-369-493-1945
                                                                Sequence 1945, Ap
        89.5
1262
                 3.2
                         265
                              16
                                  US-10-767-701-44289
                                                                Sequence 44289, A
1263
        89.5
                 3.2
                         302
                              15
                                  US-10-424-599-212485
                                                                Sequence 212485,
1264
        89.5
                 3.2
                         422
                              15
                                  US-10-335-977-7596
                                                                Sequence 7596, Ap
```

```
1265
          89.5
                  3.2
                          422
                               15
                                   US-10-335-977-7597
                                                                 Sequence 7597, Ap
 1266
          89.5
                  3.2
                          426
                               15
                                   US-10-335-977-7598
                                                                 Sequence 7598, Ap
 1267
          89.5
                  3.2
                          596
                               15
                                   US-10-112-944-404
                                                                 Sequence 404, App
 1268
          89.5
                  3.2
                          665
                               15
                                   US-10-108-260A-3396
                                                                 Sequence 3396, Ap
 1269
          89.5
                                  US-09-815-242-13481
                  3.2
                          930
                               9
                                                                Sequence 13481, A
 1270
          89.5
                  3.2
                          930
                               15
                                   US-10-282-122A-74109
                                                                 Sequence 74109, A
 1271
          89.5
                  3.2
                         1403
                               16
                                   US-10-475-711-6
                                                                 Sequence 6, Appli
 1272
         89.5
                  3.2
                         1420
                               16
                                   US-10-475-711-8
                                                                 Sequence 8, Appli
 1273
         89.5
                  3.2
                         1428
                               16
                                   US-10-475-711-2
                                                                 Sequence 2, Appli
 1274
         89.5
                  3.2
                         1445
                               16
                                   US-10-475-711-4
                                                                 Sequence 4, Appli
 1275
           89
                  3.2
                          678
                               15
                                   US-10-282-122A-69719
                                                                 Sequence 69719, A
           89
 1276
                  3.2
                          866
                               14
                                   US-10-205-219-1
                                                                 Sequence 1, Appli
 1277
         88.5
                  3.2
                          113
                               15
                                   US-10-424-599-219817
                                                                Sequence 219817,
 1278
         88.5
                  3.2
                          198
                               15
                                   US-10-424-599-250468
                                                                Sequence 250468,
 1279
         88.5
                  3.2
                          616
                               16
                                   US-10-437-963-115230
                                                                Sequence 115230,
 1280
         88.5
                  3.2
                          620
                               16
                                   US-10-408-765A-2886
                                                                Sequence 2886, Ap
 1281
         88.5
                  3.2
                          722
                               15
                                   US-10-282-122A-71737
                                                                Sequence 71737, A
 1282
         88.5
                  3.2
                          726
                               10
                                   US-09-932-257A-19
                                                                Sequence 19, Appl
 1283
         88.5
                  3.2
                          726
                               14
                                   US-10-151-274-6
                                                                Sequence 6, Appli
 1284
         88.5
                  3.2
                         1561
                               15
                                   US-10-369-493-1131
                                                                Sequence 1131, Ap
 1285
           88
                  3.2
                          374
                               15
                                   US-10-369-493-13548
                                                                Sequence 13548, A
 1286
           88
                  3.2
                          388
                               14
                                   US-10-138-701-57
                                                                Sequence 57, Appl
 1287
                               15
           88
                  3.2
                          430
                                   US-10-084-846A-62
                                                                Sequence 62, Appl
 1288
           88
                  3.2
                          500
                               9
                                  US-09-731-872-466
                                                                Sequence 466, App
 1289
           88
                  3.2
                          500
                               10
                                   US-09-876-997-466
                                                                Sequence 466, App
 1290
           88
                  3.2
                          638
                               15
                                   US-10-425-114-70558
                                                                Sequence 70558, A
 1291
           88
                  3.2
                          708
                               15
                                   US-10-282-122A-68462
                                                                Sequence 68462, A
 1292
                  3.2
           88
                          838
                               10
                                   US-09-864-636A-66
                                                                Sequence 66, Appl
 1293
           88
                  3.2
                          838
                               10
                                   US-09-758-282-261
                                                                Sequence 261, App
 1294
           88
                  3.2
                          838
                               11
                                   US-09-864-426A-66
                                                                Sequence 66, Appl
 1295
           88
                  3.2
                          838
                               14
                                   US-10-084-839-66
                                                                Sequence 66, Appl
 1296
           88
                  3.2
                          979
                               15
                                   US-10-360-522-58
                                                                Sequence 58, Appl
 1297
           88
                  3.2
                        1153
                                  US-09-963-137-202
                                                               Sequence 202, App
 1298
           88
                  3.2
                        1153
                               10
                                   US-09-962-854A-3
                                                                Sequence 3, Appli
 1299
           88
                  3.2
                        1153
                                   US-09-963-131-202
                               10
                                                                Sequence 202, App
 1300
           88
                  3.2
                        1153
                               11
                                   US-09-397-967-14
                                                                Sequence 14, Appl
 1301
           88
                  3.2
                        1948
                               16
                                   US-10-437-963-137866
                                                                Sequence 137866,
 1302
           88
                  3.2
                       19723
                               15
                                   US-10-084-846A-5
                                                                Sequence 5, Appli
 1303
         87.5
                  3.2
                         187
                               15
                                   US-10-425-114-38952
                                                                Sequence 38952, A
 1304
         87.5
                  3.2
                         254
                               15
                                   US-10-424-599-260301
                                                                Sequence 260301,
 1305
         87.5
                  3.2
                         305
                               15
                                   US-10-282-122A-74291
                                                                Sequence 74291, A
1306
         87.5
                  3.2
                         359
                               14
                                   US-10-012-819-164
                                                                Sequence 164, App
1307
         87.5
                  3.2
                         401
                               15
                                   US-10-282-122A-52890
                                                                Sequence 52890, A
1308
         87.5
                  3.2
                         432
                               9
                                  US-09-881-752A-198
                                                               Sequence 198, App
1309
         87.5
                  3.2
                         447
                                  US-09-815-242-13490
                                                               Sequence 13490, A
1310
         87.5
                  3.2
                         447
                                  US-09-815-242-13612
                                                               Sequence 13612, A
1311
         87.5
                  3.2
                         447
                               15
                                   US-10-282-122A-74098
                                                                Sequence 74098, A
1312
         87.5
                  3.2
                         472
                               15
                                   US-10-282-122A-54597
                                                                Sequence 54597, A
1313
         87.5
                  3.2
                         575
                               15
                                   US-10-104-047-3622
                                                                Sequence 3622, Ap
1314
         87.5
                  3.2
                         578
                               15
                                   US-10-282-122A-44135
                                                                Sequence 44135, A
1315
         87.5
                  3.2
                         623
                               15
                                   US-10-296-115-1190
                                                                Sequence 1190, Ap
1316
         87.5
                  3.2
                         824
                               16
                                   US-10-437-963-194650
                                                                Sequence 194650,
1317
         87.5
                  3.2
                         859
                               16
                                   US-10-437-963-186692
                                                                Sequence 186692,
1318
         87.5
                  3.2
                         896
                               16
                                   US-10-437-963-180822
                                                                Sequence 180822,
1319
         87.5
                  3.2
                        1452
                               16
                                   US-10-408-765A-83
                                                                Sequence 83, Appl
1320
           87
                  3.1
                          69
                               9
                                  US-09-864-761-42081
                                                               Sequence 42081, A
1321
           87
                               15
                          92
                                  US-10-424-599-188790
                                                                Sequence 188790,
```

1322	87	3.1	356	14	US-10-161-398-6	Sequence 6, Appli
1323	87	3.1	356	14	US-10-161-398-7	Sequence 7, Appli
1324	87	3.1	356	15	US-10-424-599-152603	Sequence 152603,
1325	87	3.1	365	15	US-10-425-114-36617	Sequence 36617, A
1326	87	3.1	365	15	US-10-425-114-54709	Sequence 54709, A
1327	87	3.1	488	10	US-09-882-227-42	Sequence 42, Appl
1328	87	3.1	709	15	US-10-424-599-269773	Sequence 269773,
1329	87	3.1	735	16	US-10-437-963-162148	Sequence 162148,
1330	87	3.1	960	16	US-10-437-963-107065	Sequence 107065,
1331	87	3.1	1160	15	US-10-335-977-6136	Sequence 6136, Ap
1332	87	3.1	1167	9	US-09-815-242-11522	Sequence 11522, A
1333	87	3.1	1855	14	US-10-177-293-315	Sequence 315, App
1334	86.5	3.1	331	15	US-10-424-599-210688	Sequence 210688,
1335	86.5	3.1	352	9	US-09-815-242-13634	Sequence 13634, A
1336	86.5	3.1	359	15	US-10-282-122A-51853	Sequence 51853, A
1337	86.5	3.1	409	15	US-10-335-977-8277	Sequence 8277, Ap
1338	86.5	3.1	412	15	US-10-335-977-8278	Sequence 8278, Ap
1339	86.5	3.1	430	15	US-10-424-599-277805	Sequence 277805,
1340	86.5	3.1	443	15	US-10-424-599-147939	Sequence 147939,
1341	86.5	3.1	498	10	US-09-766-511B-26	Sequence 26, Appl
1342	86.5	3.1	498	14	US-10-189-123-51	Sequence 51, Appl
1343	86.5	3.1	498	14	US-10-188-495-51	Sequence 51, Appl
1344	86.5	3.1	498	15	US-10-424-233-7	Sequence 7, Appli
1345	86.5	3.1	542	15	US-10-289-762-496	Sequence 496, App
1346	86.5	3.1	591	10	US-09-766-511B-25	Sequence 25, Appl
1347	86.5	3.1	591	14	US-10-189-123-50	Sequence 50, Appl
1348	86.5	3.1	591	14	US-10-188-495-50	Sequence 50, Appl
1349	86.5	3.1	591	15	US-10-424-233-6	Sequence 6, Appli
1350	86.5	3.1	597	15	US-10-424-233-9	Sequence 9, Appli
1351	86.5	3.1	613	15	US-10-369-493-12123	Sequence 12123, A
1352	86.5	3.1	622	9	US-09-764-881-119	Sequence 119, App
1353	86.5	3.1	622	10	US-09-764-881-119	Sequence 119, App
1354	86.5	3.1	622	10	US-09-766-511B-23	Sequence 23, Appl
1363	86.5	3.1	622	14	US-10-116-252-13	Sequence 13, Appl
1423	86.5	3.1	622	14	US-10-189-123-48	Sequence 48, Appl

Search completed: February 15, 2005, 12:53:30 Job time : 102 secs

## GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: February 15, 2005, 12:33:38; Search time 122 Seconds

(without alignments)

2195.225 Million cell updates/sec

Title: US-10-017-867A-282

Perfect score: 2768

Sequence: 1 MAGQRVLLLVGFLLPGVLLS......GKLLGMAVWWLRGARKVKET 523

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1612378 seqs, 512079187 residues

Total number of hits satisfying chosen parameters: 1612378

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1500 summaries

Database: UniProt 03:*

1: uniprot_sprot:*
2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

## SUMMARIES

		용				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	2768	100.0	523	2	Q6UXC4	Q6uxc4 homo sapien
2	2754	99.5	523	2	Q8NBP2	Q8nbp2 homo sapien
3	2198	79.4	523	2	Q6NUS8	Q6nus8 homo sapien
4	2193	79.2	523	2	Q96DM6	Q96dm6 homo sapien.
5	1815	65.6	523	2	Q8R0Y5	Q8r0y5 mus musculu
6	1804	65.2	523	2	Q8JZZ0	Q8jzz0 mus musculu
7	1802	65.1	523	2	Q8VC11	Q8vc11 m hypotheti
8	1145	41.4	523	2	Q63ZR6	Q63zr6 xenopus lae
9	963	34.8	221	2	Q8NAW4	Q8naw4 homo sapien
10	914.5	33.0	252	2	Q8IYS9	Q8iys9 homo sapien
11	792	28.6	302	2	Q8BRY7	Q8bry7 mus musculu
12	748.5	27.0	502	1	UDC1_RABIT	P36514 oryctolagus
13	727	26.3	541	2	Q98TB5	Q98tb5 gallus gall
14	714.5	25.8	527	2	Q6UWM9	Q6uwm9 homo sapien
15	699	25.3	541	1	CGT_HUMAN	Q16880 homo sapien

	•						
						•	
16	698	25.2	541	2	Q91W57	Q91w57	mus musculu
17	697	25.2	541	1	CGT_MOUSE	. Q64676	mus musculu
18	689.5	24.9	529	2	Q9TSL6	Q9tsl6	macaca fasc
19	685.5	24.8	529	2	097951	097951	macaca fasc
20	685.5	24.8	534	2	Q8BWQ1	Q8bwq1	mus musculu
21	684.5	24.7	498	2	Q9BDZ8	Q9bdz8	bos taurus
22	684	24.7	541	1	CGT_RAT	Q09426	rattus norv
23	681	24.6	530	2	Q9R110		cavia porce
24	680.5	24.6	534	2	Q9D811	Q9d811	mus musculu
25	680	24.6	529	2	Q9GLD9	<del>-</del>	macaca mula
26	679	24.5	533	1	UD11_HUMAN		homo sapien
27	677.5	24.5	530	1	UDB2_RAT		rattus norv
28	677.5	24.5	530	2	Q6K1J1		canis famil
29	677.5	24.5	534	2	Q8R129		mus musculu
30	676.5	24.4	533	2	Q6DHD1		brachydanio
31	675.5	24.4	528	2	Q6PDD0		mus musculu
32	674.5	24.4	530	2	Q7TT85		rattus norv
33	673.5	24.3	533	2	046548		felis silve
34	673	24.3	530	1	UDBK_MACFA		macaca fasc
35	672.5	24.3	449	2	Q9H6S4		homo sapien
36	670.5	24.2	528	2	Q80X89		mus musculu
37	670	24.2	527	2	Q9ESE4		mus musculu
38	670	24.2	531	1	UDBD_RABIT		oryctolagus
39	669	24.2	531	2	Q6T5F0		rattus norv
40	669	24.2	535	1	UD11_MOUSE		mus musculu
41	669	24.2	535	2	Q6XL50		mus musculu
42	668 668	24.1	529 529	1	UDB1_RAT		rattus norv mus musculu
43 44	668 667.5	24.1 24.1	529 529	2 2	Q8R084 Q8VIF8		cavia porce
45	667	24.1	533	2	046549		felis silve
46	666.5	24.1	528	2	Q8WN97		macaca fasc
47	665.5	24.0	533	2	046423		felis silve
48	665	24.0	531	1	UD15 RAT		rattus norv
49	665	24.0	533	2	Q9TSL7		macaca fasc
50	664.5	24.0	528	1	UDBJ MACFA		macaca fasc
51	664	24.0	531	2	Q8VD45		rattus norv
52	663.5	24.0	529	1	UDB9 MACFA		macaca fasc
53	662.5	23.9	530	1	UDBE RABIT		oryctolagus
54	662	23.9	533	2	Q95KM4		macaca mula
55	661.5	23.9	528	1	UDB4 HUMAN	P06133	homo sapien
56	661	23.9	528	2	Q8VIF9	Q8vif9	cavia porce
57	661	23.9	533	2	Q6T5F2	Q6t5f2	rattus norv
58	660.5	23.9	529	2	Q9GLE0	Q9gle(	) macaca mula
59	658	23.8	533	1	UD12_RAT	P20720	) rattus nor <b>v</b>
60	658	23.8	533	2	Q9BDG7		macaca mula
61	658	23.8	535	1	UD11_RAT		) rattus norv
62	657	23.7	530	1	UDBH_HUMAN		homo sapien
63	654.5	23.6	529	1	UDB7_HUMAN		? homo sapien
64	654.5	23.6	529	2	Q6XL48		mus musculu
65	651.5	23.5	525	2	Q76K67		mus musculu
66	651	23.5	527	1	UDA1_HUMAN	<del>_</del>	homo sapien
67	651	23.5	529	2	Q6DJ94	_	xenopus tro
68	650.5	23.5	532	2	Q8K154		l mus musculu
69	650	23.5	527	1	UDA1_RAT		) rattus norv
70	649	23.4	523	1	UDBG_RABIT		3 oryctolagus
71	649	23.4	530	1	UDBF_HUMAN		homo sapien
72	648.5	23.4	530	2	Q6XL43	Q6x143	3 mus musculu

7.0	647	22.4	F 2.1	2	O C T E T 1		004561
73	647	23.4	531	2	Q6T5F1		Q6t5fl rattus norv
74	643	23.2	529	. 2	Q8BJL9		Q8bjl9 mus musculu
75	642	23.2	528	1	UDBA HUMAN		P36537 homo sapien
76	642	23.2	531	1	UD13 RAT		Q64637 rattus norv
77	639	23.1	530	1	UDB6 RAT		P19488 rattus norv
7.8	639	23.1	533	1			P70691 mus musculu
					UD12_MOUSE		
79	638.5	23.1	532	1	UD16_HUMAN	•	P19224 homo sapien
80	637.5	23.0	530	1	UDB5_MOUSE		P17717 mus musculu
81	637.5	23.0	530	2	Q91WH2		Q91wh2 m riken cdn
82	637.5	23.0	532	2	Q8WUQ4		Q8wuq4 homo sapien
83	637	23.0	533	2	Q6XL49		Q6x149 mus musculu
	636.5	23.0	529	1	UDBS HUMAN		Q9by64 homo sapien
84							_
85	635.5	23.0	529	2	018736		018736 bos taurus
86	635.5	23.0	530	2	Q8K169		Q8k169 mus musculu
87	635.5	23.0	530	2	Q68G19		Q68g19 rattus norv
88	635	22.9	534	1	UD15 HUMAN		P35504 homo sapien
89	634	22.9	530	1	UDB3 RAT		P08542 rattus norv
90	634	22.9	530	2	Q8VCN3		Q8vcn3 mus musculu
							P36511 rattus norv
91	632.5	22.9	530	1	UDBC_RAT		
92	632	22.8	528	2	Q6XL44	•	Q6x144 mus musculu
93	631	22.8	530	1	UD18_HUMAN		Q9haw9 homo sapien
94	630.5	22.8	531	2	Q6XL45		Q6x145 mus musculu
95	629	22.7	520	1	UD17 MOUSE		Q62452 mus musculu
96	627.5	22.7	531	2	Q6ZQM8		Q6zqm8 mus musculu
97	627	22.7	523	2	Q6DHS5		Q6dhs5 brachydanio
					-		
98	627	22.7	530	2	Q9TSM0		Q9tsm0 macaca fasc
99	625.5	22.6	535	2	Q6XA17		Q6xa17 branchiosto
100	624.5	22.6	532	2	Q9TSL9		Q9tsl9 macaca fasc
101	624.5	22.6	534	1	UD13 HUMAN		P35503 homo sapien
102	624	22.5	531	2	Q6T5 <u>E</u> 8		Q6t5e8 rattus norv
103	624	22.5	543	2	Q68G32		Q68g32 rattus norv
104	623.5	22.5	529	1	UDBB HUMAN		075310 homo sapien
				1			Q64633 rattus norv
105	623	22.5	531		UD17_RAT		
106	622	22.5	530	2	Q6T5E7		Q6t5e7 rattus norv
107	622	22.5	534	2	Q6XA18		Q6xa18 branchiosto
108	621	22.4	530	1	UD1A_HUMAN		Q9haw8 homo sapien
109	621	22.4	530	2	Q6NT91		Q6nt91 homo sapien
110	621	22.4	530	2	Q9TSL8	•	Q9tsl8 macaca fasc
111	620	22.4	531	2	Q8VD43		Q8vd43 rattus norv
				_	· · · · · · · · · · · · · · · · · · ·		Q95m37 canis famil
112	619.5	22.4	528	2	Q95M37		
113	618	22.3	530	2	Q8VD44		Q8vd44 rattus norv
114	617.5	22.3	531	2	Q9XS55		Q9xs55 ovis aries
115	617	22.3	530	1	UD18_RAT		Q64634 rattus norv
116	615.5	22.2	531	2	Q6NSR5		Q6nsr5 mus musculu
117	615.5	22.2	532	1	UD14 RABIT		Q28612 oryctolagus
118	614.5	22.2	530	2	018777		018777 oryctolagus
119	614.5	22.2	531	2	Q8R0P3		Q8r0p3 mus musculu
120	614	22.2	530	1	UD12_HUMAN		P36509 homo sapien
121	614	22.2	530	2	Q6T5F3		Q6t5f3 rattus norv
122	612	22.1	530	1	UD17_HUMAN		Q9haw7 homo sapien
123	612	22.1	530	1	UD19 HUMAN		060656 homo sapien
124	611.5	22.1	531	1	UD16 MOUSE		Q64435 mus musculu
125	611.5	22.1	532	2	Q9XS56		Q9xs56 ovis aries
126	608.5	22.0	530	2	Q6T5E9		Q6t5e9 rattus norv
127	608.5	22.0	531	2	Q6XL46		Q6x146 mus musculu
128	607.5	21.9	530	2	P97886		P97886 rattus norv
129	607	21.9	531	2	Q6XL47		Q6x147 mus musculu

130	606	21.9	534	1	UD14_HUMAN			homo sapien
131	600	21.7	526	2	Q7SXE7			brachydanio
132	600	21.7	529	1	UD16_RAT		P08430	rattus norv
133	596.5	21.5	531	1	UD16 RABIT	•	Q28611	oryctolagus
134	593	21.4	530	2	$Q75X\overline{X}1$		Q75xx1	pleuronecte
135	590.5	21.3	530	1	UDB8 RAT			rattus norv
136	584.5	21.1	530	2	Q9W710			pleuronecte
137	578.5	20.9	530	2	Q9W711			pleuronecte
138	561	20.3	511	2	Q7QC46			anopheles g
	551	19.9	526	2	Q7PTF6			anopheles g
139				2				anopheles g
140	549	19.8	529		Q7Q5T0			
141	539	19.5	529		Q7Q5S9			anopheles g
142	538.5	19.5	472	1	UGT3_PLEPL		-	pleuronecte
143 ·	533	19.3	537	2	Q7QIR0			anopheles g
144	528	19.1	310	2	Q6DFM6			xenopus tro
145	526	19.0	531	2	P70624			rattus norv
146	524	18.9	441	2	Q7Z6H8			homo sapien
147	521.5	18.8	504	2	Q7QGJ3			anopheles g
148	516	18.6	530	2	Q9VJ81			drosophila
149	513	18.5	485	2	096832		096832	drosophila
150	513	18.5	516	2	Q9VGT0		Q9vgt0	drosophila
151	507	18.3	532	2	Q9W2J4		Q9w2j4	drosophila
152	506	18.3	516	2	Q9XYN3		Q9xyn3	drosophila
153	493.5	17.8	523	2	Q9VJI0		Q9vji0	drosophila
154	490.5	17.7	531	2	Q7Q3K0			anopheles g
155	488.5	17.6	493	.2	Q9VDA5			drosophila
156	488	17.6	527	2	Q965X5	1		caenorhabdi
157	480.5	17.4	518	2	Q7PT89			anopheles g
158	476.5	17.2	531	2	Q7Q6N4			anopheles g
159	475	17.2	414	2	Q63662			rattus norv
160	475	17.2	519	2	Q9VGT5			drosophila
		17.2	534	2	Q9U3Q6			caenorhabdi
161	475		537			•		drosophila
162	474.5	17.1		2	Q9VGS9			drosophila
163	474.5	17.1	537	2	Q9XYN4			
164	471	17.0	949	2	Q17399			caenorhabdi
165	470.5	17.0	537	2	Q9VMG1			drosophila
166	469	16.9	524	2	Q8SYL7			drosophila
167	464.5	16.8	543	2	Q8SZD9			drosophila
168	462	16.7	491	2	Q9W2J3			drosophila
169	461	16.7	600	2	Q7Q4H4		-	anopheles g
170	458.5	16.6	543	2	Q9VJH8			drosophila
171	456	16.5	519	2	Q9VJ46			drosophila
172	455.5	16.5	534	2	001614			caenorhabdi
173	454.5	16.4	528	2	Q9VGT3			drosophila
174	454.5	16.4	530	2	016276			caenorhabdi
 . 175	454	16.4	517	2	Q9VJ45			drosophila
176	453.5	16.4	521	2	Q9VGT4		Q9vgt4	drosophila
177	452.5	16.3	525	2	Q7QJN2		Q7qjn2	anopheles g
178	451	16.3	525	2	Q9VJ47		Q9vj47	drosophila
179	451	16.3	559	2	Q9VGT8		Q9vgt8	drosophila
180	450	16.3	500	2	Q7PIN9		Q7pin9	anopheles g
181	449	16.2	531	2	Q9TXZ4			caenorhabdi
182	448	16.2	533	2	Q23323			caenorhabdi
183	447.5	16.2	509	2	Q9VJH9	•		drosophila
184	447	16.1	531	2	Q21603			caenorhabdi
185	445	16.1	487	2	Q9VGT2			drosophila
186	445	16.1	536	2	Q17813			caenorhabdi
100		TO.T	550	-	*			
						•		

.

			507	_	070000			
187	444	16.0	527	2	Q7QBV3			anopheles g
188	442	16.0	435	2	Q7KRQ7			drosophila
189	442	16.0	485	2	Q7Q6N3	4		anopheles g
190	439	15.9	521	2	Q86S61			caenorhabdi
191	438	15.8	534	2	Q18629			caenorhabdi
192	437	15.8	500	2	Q7PPY5		Q7ppy5	anopheles g
193	435	15.7	520	2	Q8WPG4		Q8wpg4	bombyx mori
194	434	15.7	521	2	Q9V9X9		Q9 <b>v</b> 9x9	drosophila
195	433	15.6	512	2	Q9VG29		Q9vg29	drosophila
196	430.5	15.6	527	2	Q9VGT1		Q9vgt1	drosophila
197	429	15.5	530	2	Q9VG30		Q9vq30	drosophila
198	429	15.5	760	2	Q7Q6N5			anopheles g
199	426	15.4	486	2	Q7PVZ4		_	anopheles g
200	425.5	15.4	530	2	27QIC1			anopheles g
201	424	15.3	534	2	Q18636			caenorhabdi
202	420.5	15.2	523	2	Q8MPX8			caenorhabdi
203	419		533	2	001617			caenorhabdi
204	417	15.1	480	2	Q9VIM9	•		drosophila
205	415.5	15.0	531	2	Q17404			caenorhabdi
206	413.3	14.9	533	1	UGT5 CAEEL			caenorhabdi
207	413	14.9	536	2	Q965U2			caenorhabdi
208	412.5	14.9	475	2	Q9TXZ3			caenorhabdi
209	412.5	14.9	527	2	001558			caenorhabdi
210	412.5	14.9	537	2	P91038			caenorhabdi
211	411	14.8	745	2	Q21706			caenorhabdi
212	409.5	14.8	544	2	044149			caenorhabdi
213	409.3	14.7	505	1	UGTF CAEEL			caenorhabdi
214	408	14.7	533	2	001616			caenorhabdi
215	407.5	14.7	522	2	Q18470			caenorhabdi
216	405.5	14.6	520	2	Q18361			caenorhabdi
217	400.5	14.5	498	2	Q7Q3K2			anopheles g
218	398.5	14.4	526	2	P91037			caenorhabdi
219	398	14.4	534	2	Q23336			caenorhabdi
220	395.5	14.3	474	2	Q86S69			caenorhabdi
221	394.5	14.3	468	2	Q7Q3R0			anopheles g
222	392.5	14.2	500	2	Q95XQ5			caenorhabdi
223	392.5	14.2	529	2	Q9TYY4			caenorhabdi
223	391.5	14.2	530	2	Q93242			caenorhabdi
225	390.5	14.1	540	2	Q9VCL3			drosophila
	389	14.1	531		UGTE CAEEL			caenorhabdi
226	386.5	14.1	542	1 2	017757			caenorhabdi
227 228	385		532	2				caenorhabdi
		13.9			Q9TYY5			
229	384	13.9	417	2	001618			caenorhabdi
230	382	13.8	519	2	Q9VCL4			drosophila caenorhabdi
231	382	13.8	532	2	Q9TXZ6			
232	380.5	13.7	535	2	018009			caenorhabdi
233	379.5	13.7	535	2	Q23335	`	_	caenorhabdi
234	379	13.7	322	2	Q8SZE2			drosophila
235	377	13.6	524	. 2	016506			caenorhabdi
236	375.5	13.6	525	1	UGTG_CAEEL			caenorhabdi
237	374	13.5	526	2	Q23333			caenorhabdi
238	370.5	13.4	526	2	Q9VGS7			drosophila
239	368	13.3	539	2	Q9VCL5			drosophila
240	366.5	13.2	594	2	016243			caenorhabdi
241	365	13.2	527	2	Q22770			caenorhabdi
242	364.5	13.2	1003	2	Q18354			caenorhabdi
243	362	13.1	529	2	Q17403		Q1/403	caenorhabdi

					_				
	244	361.5	13.1	533	2	Q23334			caenorhabdi
-	245	. 361	13.0	531	2 ·	. P91039		P91039	caenorhabdi
	246	360.5	13.0	531	2	Q9TXZ5		Q9txz5	caenorhabdi
	247	358.5	13.0	369	2	Q6QQX7		Q6qqx7	homo sapien
	248	354.5	12.8	540	2	017756		017756	caenorhabdi
	249	350.5	12.7	515	2	073553			spodoptera
	250	349.5	12.6	515	2	Q8JPS2			spodoptera
	251	348.5	12.6	509	2	091266			spodoptera
	252	348.5	12.6	522	2	Q91BB3			spodoptera
									spodoptera
	253	346.5	12.5	515	1	UDPE_NPVSL			
	254	346.5	12.5	529	2	P91036	·		caenorhabdi
	255	342.5	12.4	460	1	UDPE_GVLO	•		lacanobia o
	256	341	12.3	529	2	Q9VGS8	-	_	drosophila
	257	339	12.2	558	2	Q19082			caenorhabdi
	258	338.5	12.2	490	2	Q9VM44			drosophila
	259	335.5	12.1	516	2	Q8JMB8			mamestra co
	260	334	12.1	462	2	Q6QXI9		Q6qxi9	agrotis seg
	261	333	12.0	506	2	Q21922		Q21922	caenorhabdi
•	262	332.5	12.0	523	2	Q9J8A8		Q9j8a8	spodoptera
	263	331.5	12.0	528	1	UDPE NPVMB			mamestra br
	264	329	11.9	520	2	Q9WEV9			ecotropis o
	265	328.5	11.9	516	2	Q8QLJ5			mamestra co
	266	328.5	11.9	516	2	Q71AH3			mamestra co
	267	328.5	11.9	525	2	Q6X859			spodoptera
	268	328	11.8	560	2	Q9YMK2			lymantria d
		326 326		515	2	016988		_	caenorhabdi
	269		11.8						
	270	325.5	11.8	512	2	Q80LH4			adoxophyes
	271	325.5	11.8	529	2	Q9W228			drosophila
	272	325	11.7	463	2	Q7T5G5			cryptophleb
	273	325	11.7	515	2	Q9E214			helicoverpa
	274	324.5	11.7	446	2	Q91KX3			epinotia ap
	275	324	11.7	515	2	Q8JYS6			helicoverpa
	276	323	11.7	515	2	Q99GT6			helicoverpa
	277	322.5	11.7.	513	2	011454			buzura supp
	278	322	11.6	515	2	055264			heliothis a
	279	322	11.6	540	2	Q9GYR7		Q9gyr7	caenorhabdi
	280	322	11.6	636	2	Q9VVW2		Q9vvw2	drosophila
	281	321	11.6	515	2	041856		041856	helicoverpa
	282	320	11.6	515	2	Q91BT6		Q91bt6	helicoverpa
	283	318	11.5	527.	2	016922			caenorhabdi
	284	317.5	11.5	541	2	045109			caenorhabdi
	285	317	11.5	593	2	017401			caenorhabdi
	286	316.5	11.4	488	1	UDPE NPVLD			lymantria d
	287	314.5	11.4	507	1	YKT6 CAEEL			caenorhabdi
	288	313.5	11.3	582	2	Q7QCS2			anopheles g
	289	313.3	11.2	524	1	UGTC CAEEL			caenorhabdi
				294					homo sapien
	290	304.5	11.0		2	Q9H3F9			
	291	303.5	11.0	537	2	Q9NBD8			drosophila
	292	300.5	10.9	484	2	Q91ER4			cydia pomon
	293	300.5	10.9	542	2	016914			caenorhabdi
	294	296	10.7	528	2	016915			caenorhabdi
	295	295.5	10.7	383	2	Q9N5N0			caenorhabdi
	296	292	10.5	512	1	UGTB_CAEEL			caenorhabdi
	297	290.5	10.5	583	2	Q9I7T3	•		drosophila
	298	290	10.5	429	2	Q9DVR5			plutella xy
	299	283.5	10.2	527	2	017123		017123	caenorhabdi
	300	281	10.2	448	2	Q999Y7		Q999y7	choristoneu
								_	

.

·

301	280	10.1	290	2	Q9R0A4		Q9r0a4	mus musculu
302	280	10.1	523	2	0169.16		016916.	caenorhabdi
303	279	10.1	493	1	UDPE NPVCD		Q90158	choristoneu
304	278	10.0	493	2	Q993 <u>s</u> 9		Q993s9	anticarsia
305	274.5	9.9	580	2	016920		016920	caenorhabdi
306	273.5	9.9	493	2	Q9VQT0		Q9vqt0	drosophila
307	270	9.8	405	2	Q94260		_	caenorhabdi
308	270	9.8	434	2	Q8JRT0		Q8jrt0	phthorimaea
		9.6	445	2	Q910F9			adoxophyes
				2				adoxophyes
				2	016322			caenorhabdi
				2	Q7QDP0		Q7qdp0	anopheles g
				2				streptococc
								orgyia pseu
								homo sapien
				2				epiphyas po
				2				caenorhabdi
				2				bombyx mori
				2				bombyx mori
								mus sp. udp
								autographa
								caenorhabdi
				2				caenorhabdi
				1		,		choristoneu
				2	_			homo sapien
				2				homo sapien
				2				homo sapien
								homo sapien
								homo sapien
								bacillus ce
								homo sapien
								homo sapien
								homo sapien
					**			homo sapien
								homo sapien
								rachiplusia
				2				bacillus th
								homo sapien
				2				homo sapien
				2				bacillus an
				2			_	bacillus ce
342				2				homo sapien
343				2				rattus norv
				2			Q63c86	bacillus ce
								bacillus ce
								caenorhabdi
				1				rattus norv
				2				mustela put
				2			Q8ia78	caenorhabdi
				2			-	homo sapien
								homo sapien
								homo sapien
								bacillus ce
								amsacta alb
								branchiosto
								streptomyce
				2				oryza sativ
	<del></del>	· · · •		_	-			_
	302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 320 321 322 323 324 325 326 327 328 329 330 331 331 331 331 331 331 331 331 331	302       280         303       279         304       278         305       274.5         306       273.5         307       270         308       270         309       267         310       267         311       264.5         312       260.5         313       260         314       259.5         315       256         316       256         317       256         318       250         319       248         320       247.5         321       246.5         322       244         323       242.5         324       242.5         324       242.5         327       240         328       240.5         329       238.5         330       238         331       237         332       237         333       236         334       234         335       234         336       232.5         341       227.5	302       280       10.1         303       279       10.1         304       278       10.0         305       274.5       9.9         306       273.5       9.9         307       270       9.8         308       270       9.8         309       267       9.6         310       267       9.6         311       264.5       9.6         312       260.5       9.4         313       260       9.4         314       259.5       9.4         315       256       9.2         316       256       9.2         317       256       9.2         318       250       9.0         319       248       9.0         320       247.5       8.9         321       246.5       8.9         322       244       8.8         323       242.5       8.8         324       242       8.7         325       241       8.7         326       240.5       8.7         327       240       8.7         328 <td< td=""><td>302       280       10.1       523         303       279       10.1       493         304       278       10.0       493         305       274.5       9.9       580         306       273.5       9.9       493         307       270       9.8       405         308       270       9.8       405         308       270       9.8       434         309       267       9.6       445         310       267       9.6       445         311       264.5       9.6       501         312       260.5       9.4       389         314       259.5       9.4       489         315       256       9.2       310         316       256       9.2       492         317       256       9.2       506         318       250       9.0       506         319       248       9.0       506         320       247.5       8.9       275         321       246.5       8.9       506         322       244       8.8       581         323</td><td>302         280         10.1         523         2           303         279         10.1         493         1           304         278         10.0         493         2           305         274.5         9.9         580         2           307         270         9.8         405         2           308         270         9.8         405         2           310         267         9.6         445         2           310         267         9.6         445         2           311         264.5         9.6         501         2           312         260.5         9.4         389         2           313         260         9.4         389         2           314         259.5         9.4         489         1           315         256         9.2         310         2           317         256         9.2         310         2           317         256         9.2         306         2           317         256         9.2         306         2           318         250         9.0         &lt;</td><td>302         280         10.1         523         2         016916           303         279         10.1         493         1         UDPE_NPVCD           304         278         10.0         493         2         Q993S9           305         274.5         9.9         580         2         016920           306         273.5         9.9         493         2         Q9VQTO           307         270         9.8         405         2         Q94260           308         270         9.8         434         2         QBJRTO           309         267         9.6         445         2         Q910F9           310         267         9.6         501         2         016322           312         260.5         9.4         389         2         QBDSH9           314         259.5         9.4         489         1         UDPE_NPVOP           315         256         9.2         310         2         Q13460           316         256         9.2         310         2         Q13460           316         256         9.2         310         2         Q13</td><td>  302   280   10.1   523   2   016916   303   279   10.1   493   1   UDPE_NPVCD   306   274.5   9.9   580   2   016920   306   273.5   9.9   493   2   09VQTO   307   270   9.8   405   2   094260   308   270   9.8   434   2   08JRTO   309   267   9.6   445   2   077159   311   264.5   9.6   501   2   016322   312   260.5   9.4   389   2   077159   313   260   9.4   389   2   077159   314   259.5   9.4   489   1   UDPE_NPVOP   315   256   9.2   310   2   013460   316   256   9.2   310   2   038808   317   256   9.2   310   2   038808   317   256   9.2   506   2   093281   318   250   9.0   506   2   093282   320   247.5   8.9   275   2   063841   321   246.5   8.9   506   1   UDPE_NPVOF   321   246.5   8.9   506   2   091326   322   244   8.8   581   2   109222   324   242   8.7   491   1   UDPE_NPVCF   325   241   8.7   285   2   019222   328   324   242   8.7   2491   1   UDPE_NPVCF   325   241   8.7   285   2   019222   328   326   247.5   8.7   287   2   08WX91   327   240   8.7   287   2   08WX91   327   240   8.7   287   2   08WX91   328   240   8.7   287   2   075XT3   330   238   8.6   400   2   0739H3   331   237   8.6   287   2   0943G0   332   237   8.6   287   2   0943G0   332   237   8.6   287   2   0943G0   332   237   8.6   285   2   096PP1   333   236   8.5   287   2   098WX9   334   234   8.5   285   2   0943G1   335   234   8.5   285   2   0943G1   335   234   8.5   285   2   0949FP1   333   236   8.5   287   2   098WX9   334   234   8.5   285   2   0949FP1   333   236   8.5   287   2   098WX9   340   228.5   8.4   402   2   0943G1   335   234   8.5   285   2   0941G1   336   225   8.0   283   2   0980N7   343   226   8.2   285   2   096PP0   346   225   8.0   287   2   08WX87   349   225   8.0   287   2   08WX87   349   225   8.0   287   2   08WX87   352   222   8.0   287   2   08WX87   355   200   7.9   485   2</td><td>  202   280</td></td<>	302       280       10.1       523         303       279       10.1       493         304       278       10.0       493         305       274.5       9.9       580         306       273.5       9.9       493         307       270       9.8       405         308       270       9.8       405         308       270       9.8       434         309       267       9.6       445         310       267       9.6       445         311       264.5       9.6       501         312       260.5       9.4       389         314       259.5       9.4       489         315       256       9.2       310         316       256       9.2       492         317       256       9.2       506         318       250       9.0       506         319       248       9.0       506         320       247.5       8.9       275         321       246.5       8.9       506         322       244       8.8       581         323	302         280         10.1         523         2           303         279         10.1         493         1           304         278         10.0         493         2           305         274.5         9.9         580         2           307         270         9.8         405         2           308         270         9.8         405         2           310         267         9.6         445         2           310         267         9.6         445         2           311         264.5         9.6         501         2           312         260.5         9.4         389         2           313         260         9.4         389         2           314         259.5         9.4         489         1           315         256         9.2         310         2           317         256         9.2         310         2           317         256         9.2         306         2           317         256         9.2         306         2           318         250         9.0         <	302         280         10.1         523         2         016916           303         279         10.1         493         1         UDPE_NPVCD           304         278         10.0         493         2         Q993S9           305         274.5         9.9         580         2         016920           306         273.5         9.9         493         2         Q9VQTO           307         270         9.8         405         2         Q94260           308         270         9.8         434         2         QBJRTO           309         267         9.6         445         2         Q910F9           310         267         9.6         501         2         016322           312         260.5         9.4         389         2         QBDSH9           314         259.5         9.4         489         1         UDPE_NPVOP           315         256         9.2         310         2         Q13460           316         256         9.2         310         2         Q13460           316         256         9.2         310         2         Q13	302   280   10.1   523   2   016916   303   279   10.1   493   1   UDPE_NPVCD   306   274.5   9.9   580   2   016920   306   273.5   9.9   493   2   09VQTO   307   270   9.8   405   2   094260   308   270   9.8   434   2   08JRTO   309   267   9.6   445   2   077159   311   264.5   9.6   501   2   016322   312   260.5   9.4   389   2   077159   313   260   9.4   389   2   077159   314   259.5   9.4   489   1   UDPE_NPVOP   315   256   9.2   310   2   013460   316   256   9.2   310   2   038808   317   256   9.2   310   2   038808   317   256   9.2   506   2   093281   318   250   9.0   506   2   093282   320   247.5   8.9   275   2   063841   321   246.5   8.9   506   1   UDPE_NPVOF   321   246.5   8.9   506   2   091326   322   244   8.8   581   2   109222   324   242   8.7   491   1   UDPE_NPVCF   325   241   8.7   285   2   019222   328   324   242   8.7   2491   1   UDPE_NPVCF   325   241   8.7   285   2   019222   328   326   247.5   8.7   287   2   08WX91   327   240   8.7   287   2   08WX91   327   240   8.7   287   2   08WX91   328   240   8.7   287   2   075XT3   330   238   8.6   400   2   0739H3   331   237   8.6   287   2   0943G0   332   237   8.6   287   2   0943G0   332   237   8.6   287   2   0943G0   332   237   8.6   285   2   096PP1   333   236   8.5   287   2   098WX9   334   234   8.5   285   2   0943G1   335   234   8.5   285   2   0943G1   335   234   8.5   285   2   0949FP1   333   236   8.5   287   2   098WX9   334   234   8.5   285   2   0949FP1   333   236   8.5   287   2   098WX9   340   228.5   8.4   402   2   0943G1   335   234   8.5   285   2   0941G1   336   225   8.0   283   2   0980N7   343   226   8.2   285   2   096PP0   346   225   8.0   287   2   08WX87   349   225   8.0   287   2   08WX87   349   225   8.0   287   2   08WX87   352   222   8.0   287   2   08WX87   355   200   7.9   485   2	202   280

				225	_		-01		
	358	202	7.3	397	2	Q81CG5	-	bacillus ce	
-	359	199	7.2	458	2	Q6W5Q9	_	streptomyce	
	360	198	7.2	482	2	Q6YZQ6	Q6yzq:	oryza sativ	
	361	197.5	7.1	488	2	Q9LXV0	Q91xv	arabidopsis	
	362	192	6.9	458	2	Q9EWA4	Q9ewa	streptomyce	
	363	191.5	6.9	448	2	Q9SBQ3	09sbg	petunia hyb	
	364	190.5	6.9	431	2	Q7N615		photorhabdu	
	365	190	6.9	511	1	LGT CITUN		citrus unsh	
	366	189.5	6.8	446	2	Q83WG5		streptomyce	
	367	188.5	6.8	506	2	Q9L4W6	_	streptomyce	
	368		6.8	447	2	004114		perilla fru	
		187							
	369	187	6.8	461	2	Q8S3B9		glycine max	
	370	187	6.8	462	2	Q9FUJ6		phaseolus v	
	371	187	6.8	480	2	Q7XHR3		oryza sativ	
	372	186.5	6.7	488	2	Q8VZF9		arabidopsis	
	373	186.5	6.7	490	2	Q8H0V7		arabidopsis	
	374	186	6.7	419	2	P72650		synechocyst	
	375	185.5	6.7	455	2	Q9ZWS2		! vigna mungo	
	376	185.5	6.7	484	2	023400		arabidopsis	
	377	185	6.7	143	2	Q98TP0		platichthys	
	378	185	6.7	433	1	UFOG_SOLME		. solanum mel	
	379	184.5	6.7	453	2	Q9SY <del>K</del> 9		arabidopsis	
	380	184	6.6	462	2	Q8S998	Q8s99	phaseolus a	
	381	182.5	6.6	456	2	Q9AR43	Q9ar4	vitis vinif	
,	382	182.5	6.6	456	2	Q9AR45	Q9ar4	vitis vinif	
•	383	. 182	6.6	271	2	Q9N962		leishmania	
	384	182	6.6	413	1	CRTX ERWHE		erwinia her	
	385	182	6.6	449	2	Q8LKT1		. sorghum bic	
	386	182	6.6	453	1	UFOG GENTR		gentiana tr	
	387	181.5	6.6	449	2	022822		de arabidopsis	
	388	181.5	6.6	456	2	Q9AQV0		vitis vinif	
	389	181.5	6.6	460	2	Q6VAA6		stevia reba	
	390	181.5	6.6	479	2	023401		arabidopsis	
	391	181.3	6.5	449	2	Q8LKT3		sorghum bic	
			6.5	555	2	Q66PF4		fragaria an	
	392	181					<u> </u>	caenorhabdi	
	393	180.5	6.5	259	2	016507			
	394	180.5	6.5	288	2	Q8LM15		oryza sativ	
	395	180	6.5	479	2	Q8LB44		arabidopsis	
	396	180	6.5	482	2	Q69JH3		oryza sativ	
	397	180	6.5	483	2	Q93NW9	_	streptomyce	
	398	179	6.5	565	2	Q9LSY5		arabidopsis	
	399	178.5	6.4	456	2	022304		vitis vinif	
	400	178	6.4	428	2	P95134		mycobacteri	
	401	177	6.4	405	2	031853	,	B bacillus su	
	402	177	6.4	457	2	Q9SKC1	Q9skc	. arabidopsis	
m-1/4 ··	403	177	6.4	460	2	Q6X1C0		) crocus sati	
	404	177	6.4	481	2	Q8GS49		oryza sativ	
	405	176.5	6.4	1184	2	Q9SYK8		3 arabidopsis	
	406	176	6.4	463	2	Q50458		3 mycobacteri	
	407	175.5	6.3	396	2	Q65JC2	Q65jc	? bacillus li	
	408	175.5	6.3	452	2	022303	02230	3 vitis vinif	
	409	175.5	6.3	480	1	HQGT_ARATH	Q9m15	arabidopsis	
	410	175	6.3	478	2	Q941F2		nicotiana t	
	411	175	6.3	555	2	Q84UE9		fragaria an	
	412	174.5	6.3	431	2	Q8VUJ7		pantoea agg	
	413	174.5	6.3	456	2	Q9AVK6		vitis labru	
	414	174.5	6.3	456	2	Q9AVK7		vitis labru	
	*** 1	1,1.5	<b>0.</b> 5	100	_	z · · · · ·	ZJUVA		

	415	174 5	<i>c</i> 2	402	2	Q6Z688		063699 07432 52114
	415	174.5	6.3	482	2			Q6z688 oryza sativ
	416	. 174.5	6.3	490	2	Q6AUC5		Q6auc5 oryza sativ
	417	174.5	6.3	496	2	Q6Z481		Q6z481 oryza sativ Q8kuh5 actinosynne
	418	174	6.3	402	2	Q8KUH5		-
	419	173.5	6.3	431	1	CRTX_PANAN		P21686 pantoea ana Q7xi34 oryza sativ
	420	173.5	6.3	458	2	Q7XI34		<del>-</del>
	421	172.5	6.2	390	2	Q8S9A8		Q8s9a8 phaseolus a
	422	172.5	6.2	462	2	Q8S3B5		Q8s3b5 phaseolus 1
	423	172	6.2	394	2	Q62YM9		Q62ym9 bacillus li
	424	172	6.2	468	2	Q9SBQ2		Q9sbq2 petunia hyb
	425	172	6.2	476	2	Q9LML7		Q9lml7 arabidopsis
	426	171.5	6.2	464	2	Q8S3B8		Q8s3b8 glycine max
	427	171	6.2	452	2	048715		048715 arabidopsis
	428	. 171	6.2	467	2	082383		082383 arabidopsis
	429	171	6.2	473	2	Q8LKG3		Q8lkg3 stevia reba
	430	171	6.2	474	2	Q6R129		Q6r129 citrus sine
	431	171	6.2	478	2	Q942C4		Q942c4 oryza sativ
	432	170.5	6.2	450	2	Q89RS0		Q89rs0 bradyrhizob
	433	170.5	6.2	471	2	Q942C3		Q942c3 oryza sativ
	434	170.5	6.2	479	2	Q94IF1		Q94if1 nicotiana t
	435	169.5	6.1	449	2	Q9LS16		Q91s16 arabidopsis
•	436	169.5	6.1	454	2	Q9XF16		Q9xf16 forsythia i
	437	169.5	6.1	456	2	Q8LFR6		Q8lfr6 arabidopsis
	438	169.5	6.1	459	2	Q9LFK0		Q9lfk0 arabidopsis
	439	169.5	6.1	483	2	Q6VAA4		Q6vaa4 stevia reba
	440	169.5	6.1	487	2	Q9LME8		Q9lme8 arabidopsis
	441	169	6.1	395	2	Q65N79		Q65n79 bacillus li
	442	169	6.1	456	2	022182		022182 arabidopsis
	443	169	6.1	457	2	Q9AUV3		Q9auv3 oryza sativ
	444	168.5	6.1	456	2	Q9SKC5		Q9skc5 arabidopsis
	445	168.5	6.1	492	2	Q8LM13		Q8lm13 oryza sativ
	446	168	6.1	470	2	Q8S9A4		Q8s9a4 phaseolus a
	447	168	6.1	478	2	Q66PF3		Q66pf3 fragaria an
	448	167.5	6.1	391	2	Q8L5N2	-	Q815n2 malus domes
	449	167.5	6.1	397	2	Q8KNE0		Q8kne0 micromonosp
	450	167.5	6.1	475	2	023402		023402 arabidopsis
	451	. 167.5	6.1	479	2	Q9LSY6		Q91sy6 arabidopsis
	452	167	6.0	93	2	Q9NS17		Q9ns17 homo sapien
	453	167	6.0	474	2	Q8S9A6		Q8s9a6 phaseolus a
	454	166.5	6.0	462	2	Q7XWK3		Q7xwk3 oryza sativ
	455	166.5	6.0	466	2	Q66PF5		Q66pf5 fragaria an
	456	166.5	6.0	483	2	Q9XES4	•	Q9xes4 malus domes
	457	166.5	6.0	484	2	Q6ER37		Q6er37 oryza sativ
	458	166	6.0	280	2	Q9ZWQ4		Q9zwq4 vigna mungo
	459	166	6.0	460	2	048676		048676 arabidopsis
V- m.F. 44	460	166	6.0	465	2	Q8LKT4	****	Q81kt4 sorghum bic
	461	166	6.0	518	2	Q7XWV5		Q7xwv5 oryza sativ
	462	165.5	6.0	407	2	Q9S1V2		Q9s1v2 streptomyce
	463	165.5	6.0	451	2	Q9SBQ8		Q9sbq8 petunia hyb
	464	165.5	6.0	462	2	004622		004622 arabidopsis
	465	165.5	6.0	477	2	Q9ZWQ5		Q9zwq5 vigna mungo
	466	165	6.0	445	2	Q7XHS6		Q7xhs6 oryza sativ
	467	165	6.0	485	2	Q6VAA8		Q6vaa8 stevia reba
	468	, 165	6.0	493	2	Q6EP59		Q6ep59 oryza sativ
	469	164.5	5.9	435	2	Q98EL2		Q98el2 rhizobium l
	470	164.5	5.9	449	2	022820		022820 arabidopsis
	471	164.5	5.9	461	2	Q9ZR25		Q9zr25 verbena x h

				_		- 0		
472	164.5	5.9	462	2	Q8S3B6			phaseolus l
473	164.5	5.9	472	2	.Q9LFJ9	Q9	}lfj9	arabidopsis
474	164.5	5.9	492	2	Q7XKH9	Q7	/xkh9	oryza sativ
475	164.5	5.9	500	2	Q69JH2	Q6	59jh2	oryza sativ
476	164	5.9	458	2	Q8RU64			oryza sativ
477	164	5.9	471	1	IAAG MAIZE			zea mays (m
			478	2	Q9S7R8			arabidopsis
478	164	5.9						
479	164	5.9	487	2	Q94A84			arabidopsis
480	164	5.9	487	2	Q7XJ52			allium cepa
481	164	5.9	496	2	Q7XTG9			oryza sativ
482	163.5	5.9	457	2	023205	02	23205	arabidopsis
483	163.5	5.9	470	2	Q8RU71	Q8	3ru71	nicotiana t
484	163.5	5.9	471	1	UFO1 MAIZE	P1	16166	zea mays (m
485	163.5	5.9	471	2	Q84XC2			zea mays (m
486	163	5.9	361	2	Q6X3X7			ipomoea pur
487	163	5.9	361	2	Q6X3X8			ipomoea nil
488	163	5.9	452	2	Q76G23			aralia cord
489	163	5.9	459	1	ZOG_PHALU			phaseolus 1
490	163	5.9	486	2	Q84ZEO			oryza sativ
491	163	5.9	490	2	Q7XHS0			oryza sativ
492	162.5	5.9	404	2.	Q62XT4	Q6	52xt4	bacillus li
493	162.5	5.9	406	2	Q65ME1	Qe	55me1	bacillus li
494	162.5	5.9	420.	2	022603	02	22603	ipomoea pur
495	162.5	5.9	453	2	Q9SNB2			arabidopsis
496	162.5	5.9	457	2	Q8LKT6			sorghum bic
497	162.5	5.9	458	2	Q94AB5	<del></del>		arabidopsis
			466	2				brassica na
498	162.5	5.9			Q947K4			
499	162.5	5.9	484	2.	Q8LJ11			oryza sativ
500	162	5.9	464	2	Q9M051			arabidopsis
501	162	5.9	485	2	Q6Z684			oryza sativ
502	161.5	5.8	450	2	Q9FIA0			arabidopsis
503	161.5	5.8	471	2	Q8S995			phaseolus a
504	161.5	5.8	487	2	Q7XSX9			oryza sativ
505	161	5.8	454	1	ZOX_PHAVU	PS	56725	phaseolus v
506	161	5.8	459	2	Q9M6E7	QS	9m6e7	nicotiana t
507	161	5.8	463	2	Q8H3T8	Q	3h3t8	oryza sativ
508	161	5.8	474	2	082382			arabidopsis
509	161	5.8	476	2	Q7XTH0			oryza sativ
510	161	5.8	1198	2	Q06321			saccharomyc
511	160.5	5.8	472	2	Q8LR91			oryza sativ
			495	2	Q8S9A0			phaseolus a
512	160.5	5.8			•			
513	160	5.8	356	2	Q6X3X9			ipomoea tri
514	160	5.8	361	2	Q6X3Y0		_	ipomoea hed
515	160	5.8	383	2	Q9LRE4			ipomoea bat
516	160	5.8	432	2	Q7N614			photorhabdu
517	160	5.8	480	2	Q6F4D6			catharanthu
518	159.5	5.8	277	2	Q7XFQ3	Q	7xfq3	oryza sativ
519	159.5	5.8	286	2	Q8S657	,Q.	8s657	oryza sativ
520	159.5	5.8	286	2	Q7XFW0	Q [*]	7xfw0	oryza sativ
521	159.5	5.8	392	2	Q737I4	<del></del>		bacillus ce
522	159.5	5.8	404	2	Q6W222			rhizobium s
523	159.5	5.8	467	2	Q8LC96			arabidopsis
524	159.5	5.8	469	2	Q69IV0			oryza sativ
								_
525	159.5	5.8	478	2	023382			arabidopsis
526	159	5.7	285	2	Q8T0U7			drosophila
527	159	5.7	287	1	UFO7_MANES			manihot esc
528	159	5.7	445	2	Q69TH5	Q	69th5	oryza sativ

							•			
	529	159	5.7	460	2	Q9LFJ8		∩91 f÷8	arabidopsis	
	530	159	5.7	474	2			_	oryza sativ	
•	531	158.5	5.7	156	2	Q96DH9			homo sapien	•
		158.5				HQGT RAUSE			rauvolfia s	
	532		5.7	470	1	_			zea mays (m	
	533	158.5	5.7	471	1	UFO2_MAIZE			_	
	534	158.5	5.7	471	2	Q8W1D2			zea mays (m	
	535	158.5	5.7	473	2	Q94IP3		_	solanum sog	
	536	158.5	5.7	490	2	Q6Z473			oryza sativ arabidopsis	
	537	158	5.7	301	2	Q705T5			oryza sativ	
	538	158	5.7	485	2 2	Q7X709				,
	539	158	5.7 5.7	487	2	Q7XJ51			allium cepa oryza sativ	
	540	158		491		Q7XV42			arabidopsis	
	541	158	5.7	496	2	Q9ZQ97		_	-	
	542	157.5	5.7 5.7	435 467	2	Q9CD88 082385			mycobacteri arabidopsis	
•	543	157.5	5.7	471	2 1	UFO3 MAIZE			zea mays (m	
	544 545	157.5	5.7	471	2				zea mays (m	
	545 546	157.5 157.5	5.7	504	2	Q851J7			oryza sativ	
	547	157.5	5.7	535	2	Q7XKK4			oryza sativ	
	547 548	157.5	5.7	317	2				caenorhabdi	
		157	5.7	461	2				streptomyce	
	549 550	157	5.7	486	2	Q6Z689			oryza sativ	
	551	157	5.7	496	2	Q7XKI0			oryza sativ	
	552	156.5	5.7	442	2	081010			arabidopsis	
	553	156.5	5.7	463	2	Q8S997			phaseolus a	
	554	156.5	5.7	490	2	Q7XW22			oryza sativ	
	555	156.5	5.7	503	2	Q7F9N6			oryza sativ	
	556	156.5	5.6	406	2	Q97TQ3			clostridium	
	557	156	5.6	466	2	Q7XT97			oryza sativ	
	558	156	5.6	473	2	Q9LSY9			arabidopsis	
	559	156	5.6	479	2	Q942C5			oryza sativ	
	560	155.5	5.6	392	2	034539			bacillus su	
	561	155.5	5.6	464	2	Q8W2B6			zea mays (m	
	562	155.5	5.6	496	2	Q8RX23			arabidopsis	
	563	155.5	5.6	496	2	Q9LVF0			arabidopsis	
	564	155	5.6	301	2				arabidopsis	
	565	155	5.6	470	2	Q9ZQ54			arabidopsis	
	566	154.5	5.6	431	2				pantoea agg	
	567	154.5	5.6	478	2	Q942B8			oryza sativ	
	568	154.5	5.6	485	2	Q8S999			phaseolus a	
	569	154.5	5.6	492	2	Q8S7R8			oryza sativ	
	570	154	5.6	362	2	Q6X3X1			ipomoea alb	
	571	154	5.6	421	2	Q8KHE4		Q8khe4	nocardia ae	
	572	154	5.6	452	2	Q8GVE3		Q8gve3	citrus maxi	
	573	154	5.6	495	2	Q9ZQ94		Q9zq94	arabidopsis	
	574	153.5	. 5,.5	301	2	Q705R8		Q705r8	arabidopsis	
	575	153.5	5.5	301	2	Q705T0		Q705t0	arabidopsis	
	576	153.5	5.5	447	2	Q9C768		Q9c768	arabidopsis	
	577	153.5	5.5	469	2	Q9LR44		Q91r44	arabidopsis	
	578	153.5	5.5	478	2	Q8LED6		Q8led6	arabidopsis	
	579	153.5	5.5	478	2	Q65XD0		Q65xd0	oryza sativ	
	580	153.5	5.5	487	1	UFO5_MANES		Q40287	manihot esc	
•	581	153.5	5.5	487	2	Q6Z4 <del>8</del> 5		Q6z485	oryza sativ	
	582	153	5.5	451	2	Q9SNB1		Q9snb1	arabidopsis	
	583	153	5.5	490	2	Q6I5X0		Q6i5x0	oryza sativ	
	584	153	5.5	496	2	Q9ZQ96		Q9zq96	arabidopsis	
	585	152.5	5.5	301	2	Q705R7		Q705r7	arabidopsis	

586	152.5	5.5	329	2	Q7XWK6	
587	152.5	5.5	401	2	. Q8KNC3	
588	152.5	5.5	459	2	Q8LKT5	
589	152.5	5.5	469	2	Q69UF5	
590	152.5	5.5	470	2	Q9ASY6	
591	152.5	5.5	495	2	Q8GYL0	
592	152.5	5.5	495	2	Q9ZQ95	
593	152	5.5	472	2	Q65X83	
594	152	5.5	495	2	Q7SFJ4	
595	151.5	5.5	301	2	Q705S0	
596	151.5	5.5	301	2	Q705S9	
597	151.5	5.5	438	2	Q9CD91	
598	151.5	5.5	450	2	Q9FI96	
599	151.5	5.5	478	2	Q9ZVX4	
600	151.5	5.5	497	2	Q9FYU7	
601	151.5	5.5	519	2	Q6H7J1	
602	151	5.5	451	2	Q8LFF5	
	151	5.5	451	2		
603					Q9FI98	
604	151	5.5	453	2	Q9S9P6	
605	151	5.5	457	2	Q8LKT2	
606	151	5.5	470	2	Q940V3	
607	151	5.5	489.	2	Q9M9E7	
608	150.5	5.4	301	2	Q705R9	
609	150.5	5.4	301	2	Q705S1	
610	150.5	5.4	301	2	Q705S2	
611	150.5	5.4	301	2	Q705s3	
612	150.5	5.4	423	2	Q7NEX1	
613	150	5.4	478	2	Q8W3P8	
614	149.5	5.4	449	2	P95130	
615	149.5	5.4	449	2	Q7TXJ4	
		5.4		2	Q6VAA7	
616	149.5		461			
617	149.5	5.4	466	2	Q43526	
618	149.5	5.4	470	2	Q7XWK2	
619	149.5	5.4	487	2	Q6F4D5	
620	149.5	5.4	489	2	Q9SK82	
621	149.5	5.4	1574	2	Q6BN88	
622	149	5.4	392	2	Q6HI79	
623	149	5.4	507	2	Q9SCP6	
624	149	5.4	520	2	Q6AT17	
625	148.5	5.4	301	2	Q705R4	
626	148.5	5.4	301	2	Q705U2	
627	148.5	5.4	347	2	Q8L5C7	
628	148.5	5.4	412	2	Q9S0P6	
629	148.5	5.4	417	2	Q84WC5	
630	148.5	5.4	438	2	Q9SNB3	
		5.4			Q95NB3 Q9FI99	
631	148.5			2		
632	148.5	5.4	472	2	Q65X84	
633	148.5	5.4	485	2	Q9LSY8	
634	148	5.3	474	2	Q6Z478	
635	148	5.3	485	2	Q84ZE4	
636	148	5.3	559	2	Q8S996	
637	147.5	5.3	301	2	Q705R3	
638	147.5	5.3	301	2	Q705U1	
639	147.5	5.3	442	2	Q9M0P3	
640	147.5	5.3	455	2	Q9ZVY5	
641	147.5	5.3	460	2	Q9AUV2	
642	147.5	5.3	466	2	Q9LSM0	
012	147.5	3.3	100	_	Z2 70110	

Q7xwk6 oryza sativ Q8knc3 micromonosp Q81kt5 sorghum bic Q69uf5 oryza sativ Q9asy6 arabidopsis Q8gyl0 arabidopsis Q9zq95 arabidopsis O65x83 oryza sativ Q7sfj4 neurospora Q705s0 arabidopsis Q705s9 arabidopsis Q9cd91 mycobacteri Q9fi96 arabidopsis Q9zvx4 arabidopsis Q9fyu7 brassica na Q6h7j1 oryza sativ Q8lff5 arabidopsis Q9fi98 arabidopsis Q9s9p6 arabidopsis Q8lkt2 sorghum bic Q940v3 arabidopsis Q9m9e7 arabidopsis Q705r9 arabidopsis Q705s1 arabidopsis Q705s2 arabidopsis Q705s3 arabidopsis Q7nex1 gloeobacter Q8w3p8 phaseolus a P95130 mycobacteri Q7txj4 mycobacteri Q6vaa7 stevia reba Q43526 lycopersico Q7xwk2 oryza sativ Q6f4d5 catharanthu Q9sk82 arabidopsis Q6bn88 debaryomyce Q6hi79 bacillus th Q9scp6 arabidopsis Q6at17 oryza sativ Q705r4 arabidopsis Q705u2 arabidopsis Q815c7 pisum sativ Q9s0p6 streptomyce Q84wc5 arabidopsis Q9snb3 arabidopsis Q9fi99 arabidopsis Q65x84 oryza sativ Q91sy8 arabidopsis Q6z478 oryza sativ Q84ze4 oryza sativ Q8s996 phaseolus a Q705r3 arabidopsis Q705ul arabidopsis Q9m0p3 arabidopsis Q9zvy5 arabidopsis Q9auv2 oryza sativ Q91sm0 arabidopsis

643	147.5	5.3	474	2	004930
644	147.5	5.3	479	2	Q9LMF0.
645	147.5	5.3	480	2	Q9LSY4
646	147.5	5.3	481	2	082381
647	147	5.3	453	2	Q8LAI9
648	147	5.3	495	2	Q6ESW8
649	146.5	5.3	301	2	Q705T4
650	146.5	5.3	301	2	Q705T9
651	146.5	5.3	418	2	Q93Z19
652	146.5	5.3	424	2	Q6VAB1
653	146.5	5.3	447	2	Q8GWA0
654	146.5	5.3	452	2	Q9STE3
655	146.5	5.3	458	2	023406
656	146.5	5.3	461	2	Q6ER38
657	146.5	5.3	466	2	Q8GX09
658		5.3	476		
65 [.] 9	146.5	5.3	476	2	P93364
	146.5				Q9AT53
660	146.5	5.3	496	2	Q9ZQ98
661	146.5	5.3	504	2	Q6K2W8
662	146	5.3	359	2	Q8GYB0
663	146	5.3	452	2	023380
664	146	5.3	475	2	Q6WFW1
665	146	5.3	480	2	Q9FTW7
666	146	5.3	481	2	Q7XI35
667	146	5.3	491	2	Q9ZQ99
668	146	5.3	772	2	Q75I83
669	145.5	5.3	301	2	Q705T6
670	145.5	5.3	481.	2	Q9LNI1
671	145	5.2	274	2	Q8S9A2
672	145	5.2	428	2	Q6ZHS1
673	145	5.2	453	2	022186
674	145	5.2	468	2	Q69IU8
675	145	5.2	479	2	Q8H3X8
676	145	5.2	480	2	Q6QDB6
677	145	5.2	494	2	Q6K755
678	144.5	5.2	446	2	Q6D1R8
679	144.5	5.2	481	2	Q8W237
680	144.5	5.2	510	2	Q8LJZ7
681	144.5	5.2	571	2	Q8GRS8
682	144	5.2	392	2	Q63AU6
683	144	5.2	407	2	Q97FM0
684	144	5.2	454	2	Q69TJ1
685	144	5.2	460	2	Q9ZR27
686	144	5.2	468	2	Q6VAA5
687	144	5.2	479	2	Q6VAB3
688	144	5.2	481	2	Q8W4G1
689	144	5.2	498	2	Q6ESW3
690	143.5	5.2	287	2	Q8L6L3
691	143.5	5.2	451	2	Q8RXA4
692	143.5	5.2	462	2	Q94BM9
693	143.5	5.2	479	2	Q9LML6
694	143.5	5.2	485	2	Q8S9A7
695	143.5	5.2	493	2	Q69XD3
696	143.5	5.2	502	2	Q67W01
697	143.5	5.2	524	2	Q9LGG2
698	143	5.2	453	2	Q9FN26
699	143	5.2	462	2	Q8L9U9

· 004930 arabidopsis Q91mf0 arabidopsis Q9lsy4 arabidopsis O82381 arabidopsis Q8lai9 arabidopsis Q6esw8 oryza sativ Q705t4 arabidopsis Q705t9 arabidopsis Q93z19 arabidopsis Q6vab1 stevia reba Q8gwa0 arabidopsis Q9ste3 arabidopsis O23406 arabidopsis Q6er38 oryza sativ Q8gx09 arabidopsis P93364 nicotiana t Q9at53 nicotiana t Q9zq98 arabidopsis Q6k2w8 oryza sativ Q8gyb0 arabidopsis O23380 arabidopsis Q6wfwl crocus sati Q9ftw7 oryza sativ Q7xi35 oryza sativ Q9zq99 arabidopsis Q75i83 oryza sativ Q705t6 arabidopsis Q9lni1 arabidopsis Q8s9a2 phaseolus a Q6zhs1 oryza sativ O22186 arabidopsis Q69iu8 oryza sativ Q8h3x8 oryza sativ Q6qdb6 rhodiola sa Q6k755 oryza sativ Q6d1r8 erwinia car Q8w237 dorotheanth Q8ljz7 sorghum bic Q8grs8 oryza sativ Q63au6 bacillus ce Q97fm0 clostridium Q69tjl oryza sativ Q9zr27 perilla fru O6vaa5 stevia reba Q6vab3 stevia reba Q8w4g1 arabidopsis Q6esw3 oryza sativ Q81613 hordeum vul Q8rxa4 lycopersico Q94bm9 arabidopsis Q91ml6 arabidopsis Q8s9a7 phaseolus a Q69xd3 oryza sativ Q67w01 oryza sativ Q9lgg2 oryza sativ Q9fn26 arabidopsis Q819u9 arabidopsis

....

	700	143	5.2	469 2	Q9LNI4		Q9lni4 arabidopsis	
	. 701	143	5.2	480 . 2	Q8W4C2		Q8w4c2 arabidopsis	2
	702	143	5.2	481 2	Q9ZWJ3		Q9zwj3 arabidopsis	
•	703	142.5	5.1	414 2	Q9S595		Q9s595 nocardia ae	
	704	142.5	5.1	452 2	Q8GZ65		Q8gz65 arabidopsis	
	705	142.5	5.1	468 2	Q681W3		Q681w3 arabidopsis	•
	706	142.5	5.1	476 2	Q9AT54		Q9at54 nicotiana t	
	707	142.5	5.1	477 2	Q6Z035		Q6z035 oryza sativ	
	708	142.5	5.1	477 2 1307 2	Q6ZF65 Q6C8M8		Q6zf65 oryza sativ Q6c8m8 yarrowia li	•
	709 710	142.5 142	5.1 5.1	424 2	O68841		O68841 streptomyce	
	710	142	5.1	482 2	Q8H0F2		Q8h0f2 gentiana tr	
	711	141.5	5.1	333 2	Q81CW9		Q81cw9 bacillus ce	
	713	141.5	5.1	449 2	Q9SNB0		Q9snb0 arabidopsis	
	714	141.5	5.1	476 2	P93365		P93365 nicotiana t	
	715	141.5	5.1	489 2	Q9SMG6		Q9smg6 dorotheanth	
	716	141.5	5.1	492 2	Q7XSZ0		Q7xsz0 oryza sativ	
	717	141	5.1	149 2	Q99912	·	Q99912 homo sapien	
	718	141	5.1	394 1	UFO6 MANES		Q40288 manihot esc	
	719	141	5.1	462 2	Q9LK73		Q91k73 arabidopsis	•
	720	141	5.1	472 2	Q75186		Q75i86 oryza sativ	
	721	141	5.1	480 2	Q65X86		Q65x86 oryza sativ	
	722	141	5.1	481 2	081498		O81498 arabidopsis	
,	723	141	5.1	482 2	Q65YR5		Q65yr5 gentiana sc	
	724	141	5.1	515 2	Q69KM1		Q69kml oryza sativ	
	725	140.5	5.1	346 1	UFO2_MANES		Q40285 manihot esc	
	726	140.5	5.1	449 2	Q9LTH2		Q91th2 arabidopsis	
	727	140.5	5.1	459 2	Q8W2B7		Q8w2b7 zea mays (m	
	728	140.5	5.1	463 2	Q767C8		Q767c8 iris hollan Q9leq4 arabidopsis	
	729 730	140.5 140.5	5.1 5.1	486 2 507 2	Q9LEQ4 Q9FTW1		Q9ftwl oryza sativ	1
	731	140.3	5.1	478 2	Q8H0F1		Q8h0fl torenia hyb	
	732	140	5.1	480 2	Q9FE68		Q9fe68 arabidopsis	
	733	140	5.1	515 2	Q69JV3		Q69jv3 oryza sativ	
	734	139.5	5.0	227 2	Q9CAY9		Q9cay9 arabidopsis	
	735	139.5	5.0	241 1	UFO4 MANES		Q40286 manihot esc	
	736	139.5	5.0	379 2	Q93HĪ3		Q93hi3 streptomyce	
	737	139.5	5.0	397 2	Q825U1		Q825u1 streptomyce	
	. 738	139.5	5.0	431 2	Q6YY41		Q6yy41 oryza sativ	
•	739	139.5	5.0	452 2	Q9XIQ4		Q9xiq4 arabidopsis	
	740	139.5	5.0	481 2	Q9LVR1		Q9lvrl arabidopsis	
	741	139	5.0	98 2	Q645Q1		Q645q1 fundulus he	
	742	139	5.0	461 2	Q67XH7		Q67xh7 arabidopsis	
	743	139	5.0	461 2	Q9LHJ2		Q91hj2 arabidopsis	
	744	139	5.0	464 2	Q9SGA8		Q9sga8 arabidopsis	
**** · * C	745	139	5.0	467 2	Q9SY84 Q8H462		Q9sy84 arabidopsis Q8h462 oryza sativ	
	746 747	139 139	5.0 5.0	474 2 492 2	Q8H462 .Q9SBL1	-	Q9sbl1 sorghum bic	
	747 748	139	5.0	492 2	Q9M3H8		Q9m3h8 cicer ariet	
	748 749	138.5	5.0	436 2	Q9M3H8 Q9ZU71		Q9zu71 arabidopsis	
	750	138.5	5.0	444 2	Q8RU65		Q8ru65 oryza sativ	
	751	138.5	5.0	449 1	UFO1 MANES		Q40284 manihot esc	
	752	138.5	5.0	450 2	Q8LAE5		Q8lae5 arabidopsis	
	753	138.5	5.0	450 2	Q9LME9		Q91me9 arabidopsis	
	754	138.5	5.0	460 2	Q9M052		Q9m052 arabidopsis	
	755	138	5.0	154 1	UFOG VITVI		P51094 vitis vinif	
	756	138	5.0	381 2	Q9ZWQ3		Q9zwq3 vigna mungo	
							-	
								•
					•			

	757	138	5.0	385	2	Q9STE4	Q9ste4 arabidopsis
	758	138	5.0.	438	2	022183	O22183 arabidopsis
	759	138	5.0	455	2	064733	064733 arabidopsis
	760	138	5.0	458	2	Q6VAB4	Q6vab4 stevia reba
	761	138	5.0	476	2	Q6AVQ5	Q6avq5 oryza sativ
	762	138	5.0	478	2	Q6Z6F0	Q6z6f0 oryza sativ
	763	138	5.0	482	2	Q65YR6	Q65yr6 gentiana sc
	764	138	5.0	497	2	Q7XTG5	Q7xtg5 oryza sativ
	765	138	5.0	501	2	Q67TS1	Q67ts1 oryza sativ
	766	138	5.0	503	2	Q7XE18	Q7xe18 oryza sativ
	767	137.5	5.0	431	2	Q8GCS3	Q8gcs3 pantoea ste
	768	137.5	5.0	443	2	Q9ZR26	Q9zr26 perilla fru
	769	137.5	5.0	463	2	Q6ZBR2	Q6zbr2 oryza sativ
	770	137.5	5.0	467	2	P93709	P93709 nicotiana t
					2		Q6k2q2 oryza sativ
	771	137.5	5.0	501		Q6K2Q2	
	772	137.5	5.0	512	2	Q6Z381	Q6z381 oryza sativ
	773	137	4.9	476	2	Q9SXF2	Q9sxf2 scutellaria
	774	137	4.9	491	2	Q94CZ1	Q94czl oryza sativ
	775	136.5	4.9	396	2	Q70J67	Q70j67 streptomyce
	776	136.5	4.9	488	2	P93789	P93789 solanum tub
	777	136	4.9	215	2	Q9HCT7	Q9hct7 homo sapien
	778	136	4.9	345	2	Q84RI3	Q84ri3 beta vulgar
	779	136	4.9	452	2	P95747	P95747 streptomyce
	780	136	4.9	465	2	Q65XC9	Q65xc9 oryza sativ
	781	136	4.9	471	2	·Q942B3	Q942b3 oryza sativ
	782	136	4.9	489	2	Q6ESV8	Q6esv8 oryza sativ
	783	135.5	4.9	380	2	Q8GWE5	Q8gwe5 arabidopsis
	784	135.5	4.9	453	2	Q65X85	Q65x85 oryza sátiv
	785	135.5	4.9	478	2	Q8H3V2	Q8h3v2 oryza sativ
	786	135	4.9	267	2	Q8RWA6	Q8rwa6 arabidopsis
	787	135	4.9	470	2	Q9ZU72	Q9zu72 arabidopsis
	788	135	4.9	474	2	Q6VAB2	Q6vab2 stevia reba
	789	135	4.9	490	2	Q9SCP5	Q9scp5 arabidopsis
	790	135	4.9	523	2	Q8S9A1	Q8s9al phaseolus a
					2		052939 calothrix v
	791	134.5	4.9	305		052939	· ·
	792	134.5	4.9	387	2	Q81Q01	Q81q01 bacillus an
	793	134.5	4.9	392	2	Q6HY70	Q6hy70 bacillus an
	794	134.5	4.9	441	2	Q76MR7	Q76mr7 scutellaria
	795	134.5	4.9	447	2		Q9fn28 arabidopsis
	796	134	4.8	174	2	Q9NF29	Q9nf29 caenorhabdi
	797	134	4.8	419	2	Q76KZ6	Q76kz6 streptomyce
	798	134	4.8	446	2	Q8LAB5	Q8lab5 arabidopsis
	799	134	4.8	455	2	Q9T080	Q9t080 arabidopsis
	800	134	4.8	456	2	023270	023270 arabidopsis
	801	134	4.8	466	2	Q8RY86	Q8ry86 arabidopsis
a . ~*	802	134	4.8	510	2	Q943K5	Q943k5 oryza sativ
	803	133.5	4.8	398	2	Q97HL4	Q97h14 clostridium
	804	133.5	4.8	462	2	Q9AUU9	Q9auu9 oryza sativ
	805	133.5	4.8	479	2	Q7XJ50	Q7xj50 allium cepa
	806	133.5	4.8	496	2	Q94CY6	Q94cy6 oryza sativ
	807	133	4.8	365	2	Q8GZ08	Q8gz08 arabidopsis
	808	133	4.8	470	2	Q8S342	Q8s342 capsicum an
	809	133	4.8	481	2	Q6VAB0	Q6vab0 stevia reba
	810	132.5	4.8	447	2	Q9STE6	Q9ste6 arabidopsis
	811	132.5	4.8	447	2	Q9XIQ5	Q9xiq5 arabidopsis
					2		Q9x1q3 arabidopsis Q69x83 oryza sativ
	812 813	132.5	4.8	485		Q69X83	Q69x63 Ofyza Saciv Q6vaa9 stevia reba
	013	132.5	4.8	495	2	Q6VAA9	Qovaay stevia repa

						•		
814	132	4.8	497	2	Q6ZBE1		Q6zbel oryza sativ	
815	131.5	4.8	287.	2	Q7BV94 .		Q7bv94 bacillus su	
816	131.5	4.8	346	2	Q8W1D9		Q8w1d9 jatropha cu	
817	131.5	4.8	392	2	Q8KNF2		Q8knf2 micromonosp	
818	130.5	4.7	170	2	Q9LMF1		Q91mf1 arabidopsis	
819	130.5	4.7	389	2	Q83X61		Q83x61 streptomyce	
820	130.5	4.7	453	2	Q9LTH3		Q9lth3 arabidopsis	
821	130.5	4.7	478	2	Q66PF2		Q66pf2 fragaria an	
822	130	4.7	455	1	UFOG HORVU		P14726 hordeum vul	
823	130	4.7	460	2	Q9LTA3		Q9lta3 arabidopsis	
824	130	4.7	490	2	Q6L4T2		Q614t2 oryza sativ	
825	129.5	4.7	379	2	Q67G38		Q67g38 streptomyce	
826	129.5	4.7	400	2	Q97HK4		Q97hk4 clostridium	
827	129.5	4.7	466	2	Q6JAH0		Q6jah0 sorghum bic	
828	129.5	4.7	472	2	Q8LEG2		Q8leg2 arabidopsis	
829	129.5	4.7	487	2	Q69JV0		Q69jv0 oryza sativ	
830	129.5	4.7	1227	2	Q751Z4		Q751z4 ashbya goss	
831	129.3	4.7	414	2	Q8S9A3		Q8s9a3 phaseolus a	
832	129	4.7	470	2	Q8LR92		Q81r92 oryza sativ	
833	128.5	4.6	394	1	YC55 METJA		Q58652 methanococc	
834	128.5	4.6	396	2	Q939Q6		Q939q6 streptomyce	
835	128.5	4.6	430	1	OLED STRAT		Q53685 streptomyce	
836	128.5	4.6	453	2	Q9LS21		Q91s21 arabidopsis	
837	128.5	4.6	469	2	Q7XJ49		Q7xj49 allium cepa	
838	128.3		309	2	Q94BU0		Q94bu0 arabidopsis	
		4.6 4.6	461	2			Q7nhr8 gloeobacter	
839	128 128		462		Q7NHR8		Q6jag7 sorghum bic	
840 841	127.5	4.6 4.6	470	2 2	Q6JAG7 Q852C2		Q852c2 oryza sativ	
842		4.6	473	2	Q8LJC6		Q81jc6 oryza sativ	
	127.5	4.6		2			Q7f0b2 oryza sativ	
843 844	127.5 127.5	4.6	474 482	2	Q7F0B2 Q8RU72		Q8ru72 nicotiana t	
	127.5			2			Q7xkg0 oryza sativ	
845		4.6 4.6	493	2	Q7XKG0		Q6cuv2 kluyveromyc	
846	127.5	4.6	1209 463	2	Q6CUV2 Q8RXA5		Q8rxa5 zea mays (m	
847	127 127	4.6	470	2	Q9AUV1		Q9auv1 oryza sativ	
848		4.6		_	· · ·		Q8vze9 arabidopsis	
849 850	127 127	4.6	488 528	2 2	Q8VZE9 Q8LNA9		Q8lna9 oryza sativ	
851	126.5	4.6	356	2	Q7S0K9		Q7s0k9 neurospora	
852	126.5	4.6	486	2	Q6AUW7		Q6auw7 oryza sativ	
853	126.5	4.6	440	2	064732		O64732 arabidopsis	
854	126	4.6	444	2	Q8S9A5		Q8s9a5 phaseolus a	
855	126	4.6	484	2	Q6AUW6		Q6auw6 oryza sativ	
856	126	4.6	508	2	Q6H8F6		Q6h8f6 oryza sativ	
857	125.5	4.5	175	2	Q6H8F9		Q6h8f9 oryza sativ	
858	125.5	4.5	381	2	005496		005496 bacillus su	
		4.5	361 461	2	Q93ZG5		Q93zg5 arabidopsis	
859 860	125.5 125.5	4.5	487	2	Q7XSY7		Q7xsy7 oryza sativ	
				2	Q7XU02			
861	125	4.5	463				Q7xu02 oryza sativ Q95gq5 nepenthes s	
862 863	124.5 124	4.5 4.5	504 358	2 2	Q95GQ5 ^		Q7xkm2 oryza sativ	
					Q7XKM2		<del>-</del>	
864 865	123.5	4.5	464	2	Q7XQJ5		Q7xqj5 oryza sativ	
865	123.5	4.5	475	2	Q7XMA8		Q7xma8 oryza sativ	
866 867	123.5	4.5	482	2	Q6Z4C0		Q6z4c0 oryza sativ	
867	123.5	4.5	490	2	Q6JAG5		Q6jag5 sorghum bic	
868	123	4.4	464	2	Q7XQJ9		Q7xqj9 oryza sativ	
869 870	123	4.4	465	2	Q8S465		Q8s465 zea mays (m	
870	123	4.4	467	2	Q93XP7		Q93xp7 zea mays (m	

	871	123	4.4	469	2	Q7XMQ0	Q7xmq0 oryza sativ
	872	123	4.4	637	2	Q8S1P6	° Q8s1p6 oryza sativ
	873	122.5	4.4	455	2	Q9FI97	Q9fi97 arabidopsis
	874	122.5	4.4	487	2	Q75HA1	Q75hal oryza sativ
	875	122.5	4.4	493	2	Q84M46	Q84m46 oryza sativ
	876	122.5	4.4	1211	2	Q9Y751	Q9y751 pichia past
	877	122.5	4.4	2259	1	YCF2 PHYPA	P61243 physcomitre
	878	122	4.4	135	2	Q504 <del>5</del> 6	Q50456 mycobacteri
	879	122	4.4	388	2	Q9RPA1	Q9rpal streptomyce
	880	122	4.4	464	2	Q6JAG9	Q6jag9 sorghum bic
•	881	122	4.4	501	2	Q9FU68	Q9fu68 oryza sativ
	882	122	4.4	1310	2	Q7RZT3	Q7rzt3 neurospora
	883	121.5	4.4	485	2	Q6Z4B7	Q6z4b7 oryza sativ
	884	121	4.4	482	2	Q7XZD0	Q7xzd0 glycyrrhiza
	885	120.5	4.4	422	2	Q9F826	Q9f826 micromonosp
	886	120.5	4.4	490	2	Q9SJL0	Q9sjl0 arabidopsis
	887	120.5	4.4	491	2	Q67TS4	Q67ts4 oryza sativ
	888	120.5	4.4	497	2	Q69X81	Q69x81 oryza sativ
	889	120.5	4.4	498	2	Q9FU69	Q9fu69 oryza sativ
	890	120	4.3	418	2	Q9RYI3	Q9ryi3 deinococcus
	891	119.5	4.3	200	2	Q6AT14	Q6at14 oryza sativ
	892	119.5	4.3	270	2	Q6AUW5	Q6auw5 oryza sativ
	893	119.5	4.3	422	2	070023	070023 streptomyce
	894	119.5	4.3	448	2	Q9LJA6	Q9lja6 arabidopsis
	895	119.5	4.3	504	2		Q94nr5 nepenthes b
	896	119.5	4.3	504	2	Q95GS1	Q95gs1 nepenthes c
	897	119.5	4.3	504	2	Q95GT1	Q95gtl nepenthes v
	898	119.5	4.3	504	2	Q7IGS0	Q7igs0 nepenthes m
	899	119.5	4.3	721	2	Q6BHK6	Q6bhk6 debaryomyce
	900	119	4.3	194	2	Q8GSR1	Q8gsrl triticum ae
	901	119	43	194	2	Q8GSR3	Q8gsr3 triticum ae
	902	119	4.3	196	2		. Q8gsr2 triticum ae
	903	119	4.3	483	2	Q75HJ2	Q75hj2 oryza sativ
	904	118.5	4.3	418	1	MGT STRLI	Q54387 streptomyce
	905	118.5	4.3	418	2	Q9ADH3	Q9adh3 streptomyce
	906	118.5	4.3	453	2	**	Q9t081 arabidopsis
	907	118.5	4.3	463	2	Q7XU03	Q7xu03 oryza sativ
	908	118.5	4.3	497	2	~ Q9FU67	Q9fu67 oryza sativ
,	909	118.5	4.3	504	2		Q95gu2 nepenthes i
	910	118.5	4.3	679	2	Q8J1H4	Q8j1h4 ustilago ma
_	911	118	4.3	464	2	Q6JAG8	Q6jag8 sorghum bic
	912	118	4.3	468	2	Q9LVW3	Q91vw3 arabidopsis
	913	118	4.3	507	2	Q6Z4L0	Q6z4l0 oryza sativ
	914	118	4.3	698	2	Q95AS6	Q95as6 pseudophoen
	915	117.5	4.2	436	2	Q76GS1	Q76qs1 nepenthes v
	916	117.	4.2	256	2	Q7PJA1	Q7pja1 anopheles g
	917	117	4.2	460	2	Q7WTE9	Q7wte9 streptomyce
	918	117	4.2	481	2	Q8W491	Q8w491 arabidopsis
	919	117	4:2	497	2	Q67TS2	Q67ts2 oryza sativ
	920	116.5	4.2	419	2	Q6U868	Q6u868 mycobacteri
	921	116.5	4.2	419	2	Q6U870	Q6u870 mycobacteri
	922	116.5	4.2	428	2	069000	O69000 mycobacteri
	923	116.5	4.2	472	2	Q9FSS3	Q9fss3 oryza sativ
	924	116.5	4.2	504	2	Q95GQ1	Q95gql nepenthes g
	925	116.5	4.2	504	2	Q95GU1	Q95gul nepenthes i
	926	116.5	4.2	169	2	Q8L7D4	Q817d4 arabidopsis
	927	116	4.2	488	2	Q6ZBR9	Q6zbr9 oryza sativ
	721	110	7.4	400	_	2000113	, Zozozo ozyza odczy

	000	115 5	4 0	401	2	007604		00=====================================	-+ von+om::co
	928	115.5	4.2	401	2	Q9ZGB4			streptomyce
	929	115.5	4.2	433	2	Q9SYC4		_	arabidopsis
	930	115.5	4.2	502	2	Q7XKG1			oryza sativ
	931	115.5	4.2	504	2	Q95GS9		Q95gs9	nepenthes m
	932	115.5	4.2	504	2	Q95GT0		Q95gt0	nepenthes t
	933	115.5	4.2	504	2	Q95GU3		Q95gu3	nepenthes r
	934	115.5	4.2	1553	2	Q7S1I0.			neurospora
	935	115	4.2	390	2	Q9ZGB8			streptomyce
	936	115	4.2	483	2	Q94C57			arabidopsis
	937	115	4.2	615	2	Q9XIG1			arabidopsis
	938	115	4.2	1516	2	Q9Y752			candida alb
					2				
	939	114.5	4.1	361		Q6M068			methanococc.
	940	114.5	4.1	417	2	Q9ZGB1			streptomyce
	941	114.5	4.1	494	2	Q7XVP1			oryza sativ
	942	114.5	4.1	504	2	Q94NV9			nepenthes r
	943	114.5	4.1	504	2	Q95GP2			nepenthes s
	944	114.5	4.1	504	2	Q95GR1			nepenthes d
	945	114.5	4.1	504	2	Q95GR4			nepenthes m
	946	114.5	4.1	504	2	Q95GR5			nepenthes p
•	947	114.5	4.1	504	2	Q95GT3		Q95gt3	nepenthes t
	948	114.5	4.1	504	2	Q95GT4			nepenthes h
	949	114.5	4.1	504	2	Q7IGS1			nepenthes a
	950	114	4.1	425	2	Q83X73		_	streptomyce
	951	114	4.1	698	2	Q95AS0			orania tris
	952	113.5	4.1	402	2	Q9F8U7			streptomyce
	953	113.5	4.1	426	2	087831		-	streptomyce
	954	113.5	4.1	460	2	Q9ZQG3			arabidopsis
	955	113.5	4.1	473	1	UFOG PETHY			petunia hyb
					2	Q7Y232			arabidopsis
	956	113.5	4.1	484					
	957	113.5	4.1	504	2	Q95GT5			nepenthes a
	958	113	4.1	380	2	Q67G44			streptomyce
	959	113	4.1	415	2	033939			saccharopol
	960	113	4.1	417	2	086304			streptomyce
	961	113	4.1	463	2	Q6PVW5			fragaria an
	962	113	4.1	478	2	049492			arabidopsis
	963	113	4.1	732	2	Q95D43			magnolia do
	964	113	4.1	732	2	Q95D67			michelia hy
3.00	965	112.5	4.1	281	2	Q18872		Q18872	caenorhabdi
	966	112.5	4.1	379	1	YG36 METMA		Q8pwf3	methanosarc
	967	112.5	4.1	390	2	Q8GHC2		Q8ghc2	streptomyce
	968	112.5	4.1	419	2	Q6U848		Q6u848	mycobacteri
	969	112.5	4.1	504	2	Q95GP7			nepenthes t
	970	112.5	4.1	504	2	Q95GQ2			nepenthes d
	971	112.5	4.1	504	2	Q95GS5			nepenthes t
	972	112.5	4.1	555	2	Q93ZJ2			arabidopsis
	973	112.5	4.1	563	2	Q7MAS9			wolinellas.
	974	112.5	4.1	637	2	023649			arabidopsis
	975	112.5	4.1	637	2	Q9M8Z7			arabidopsis
									codonopsis
	976	112.5	4.1	698	2	Q9TL88	1		
	977	112.5	4.1	732	2	098710			pinckneya p
	978	112.5	4.1	732	2	Q9TJQ2			rustia sple
	979	112.5	4.1	732	2	Q9TJY8			condaminea
	980	112	4.0	431	2	Q9MS86			magnolia st
	981	112	4.0	684	2	Q7YM49		-	liriodendro
	982	112	4.0	684	2	Q7YM51			eupomatia b
	983	112	4.0	698	2	Q95AT8			caryota mit
	984	112	4.0	732	2	Q95D22		Q95d22	magnolia sc

--

•							
	985	112	4.0	732	2	Q95D87	Q95d87 magnolia ko
	986	112	4.0	732	2	Q95DA1	Q95dal magnolia gr
	987	111.5	4.0	267	2	Q7VFR3	Q7vfr3 helicobacte
	988	111.5	4.0	374	2	Q8X5L5	Q8x5l5 escherichia
	989	111.5	4.0	465	2	Q9LZD8	Q91zd8 arabidopsis
	990	111.5	4.0	504	2	Q94PH2	Q94ph2 nepenthes r
	991	111.5	4.0	504	2	Q94Q55	Q94q55 nepenthes g
	992	111.5	4.0	504	2	Q95GQ8	Q95qq8 nepenthes m
	993	111.5	4.0	504	2	Q95GR6	Q95gr6 nepenthes r
	994	111.5	4.0	504	2	Q95GV2	Q95gv2 nepenthes d
	995	111.5	4.0	504	2	295GV5	Q95gv5 nepenthes a
	996	111.5	4.0	504	2	Q7IGR8	Q7igr8 nepenthes m
	997	111.5	4.0	504	2	Q7IGS2	Q7igs2 nepenthes s
	998	111	4.0	403	2	Q8E6C2	Q8e6c2 streptococc
	999	111	4.0	432	2	Q9RN63	Q9rn63 streptomyce
	1000	111	4.0	443	2	P95834	P95834 streptomyce
	1001	111	4.0	504	2	Q95GP6	Q95gp6 nepenthes m
	1002	111	4.0	684	2	Q7YM48	Q7ym48 magnolia tr
	1003	111	4.0	695	2	Q95AS9	Q95as9 chamaedorea
	1004	111	4.0	698	2	Q95AT9	Q95at9 borassus fl
	1005	111	4.0	731	2	Q95D45	Q95d45 liriodendro
	1006	111	4.0	731	2.	Q95DB7	Q95db7 magnolia ma
	1007	111	4.0	731	2	Q95DB8	Q95db8 magnolia ma
	1008	111	4.0	731	2	Q95DC0	Q95dc0 magnolia de
	1009	111	4.0	732	2	Q95D23	Q95d23 magnolia gu
	1010	111	4.0	732	2	Q95D24	Q95d24 magnolia gr
	1011	111	4.0	732	2	Q95D26	Q95d26 magnolia me
	1012	111	4.0	732	-2	Q95D27	Q95d27 magnolia ma
	1013	111	4.0	732	2	Q95D28	Q95d28 magnolia le
	1014	111	4.0	732	2	Q95D30	Q95d30 magnolia sp
	1015	111	4.0	732	2	Q95D33	Q95d33 magnolia fr
	1016	111	4.0	732	2	Q95D35	Q95d35 magnolia po
	1017	111	4.0	732	2	Q95D59	Q95d59 elmerrillia
	1018	111	4.0	732	2	Q95D60	Q95d60 michelia fl
	1019	111	4.0	732	2	Q95D61	Q95d61 michelia ba
	1020	111	4.0	732	2	Q95D62	Q95d62 michelia ba
	1021	111	4.0	732	2	Q95D63	Q95d63 michelia od
	1022	111	4.0	732	2	Q95D64	Q95d64 michelia fi
	1023	111	4.0	732	2	Q95D65	Q95d65 michelia ma
	1024	111	4.0	732	2	Q95D66	Q95d66 michelia ch
	1025	111	4.0	732	2	Q95D68	Q95d68 michelia wi
	1026	111	4.0	732	2	Q95D69	Q95d69 michelia ve
	1027	111	4.0	732	2	Q95D70	Q95d70 michelia sh
	1028	111	4.0	732	2	Q95D71	Q95d71 michelia mo
	1029	111	4.0	732	2	Q95D72	Q95d72 michelia ma
	1030	111	4.0	732		Q95D73	Q95d73 michelia ma
	1031	111	4.0	732	2	Q95D74	Q95d74 michelia ma
	1032	111	4.0	732	2	Q95D75	•
	1033	111	4.0	732	2	Q95D76	
	1034	111	4.0	732	2	Q95D77	Q95d77 michelia fo
	1035	111	4.0	732	2	Q95D78	
	1036	111	4.0	732	2	Q95D79	
	1037	111	4.0	732	2	Q95D80	
	1038	111	4.0	732	2	Q95D85	
	1039	111	4.0	732	2	Q95D86	
	1040	111	4.0	732	2	Q95D88	
	1041	111	4.0	732	2	Q95D89	Q95d89 magnolia ze

	1042	111	4.0	732	2	Q95D90	Ç	295d90	magnolia sp	
	1043	111	4.0	732.	2	Q95D91			magnolia sa	
-	1044	111	4.0	732	2	Q95D93			magnolia da	
	1045	111	4.0	732	2	Q95D94	(	295d94	magnolia ca	
	1046	111	4.0	732	2	Q95D96	Ç	295d96	magnolia ca	
	1047	111	4.0	732	2	Q95D97	Ç	295d97	magnolia gi	
	1048	111	4.0	732	2	Q95DA3			magnolia pe	,
	1049	111	4.0	732	2	Q95DA8			magnolia si	
	1050	111	4.0	732	2	Q95DA9	(	295da9	magnolia si	
	1051	111	4.0	732	2	Q95DB0	(	295db0	magnolia gl	
	1052	111	4.0	732	2	Q95DB1	(	295db1	kmeria sept	
	1053	111	4.0	732	2	Q95DB2	Ç	295db2	kmeria dupe	
	1054	111	4.0	732	2	Q95DB3	. (	295db3	magnolia tr	
	1055	111	4.0	732	2	Q95DB4	(	295db4	magnolia ro	
	1056	111	4.0	732	2	Q95DB5	(	295db5	magnolia of	
	1057	111	4.0	732	2	Q95DB6	(	295db6	magnolia he	
	1058	111	4.0	732	2	Q95DB9	(	295db9	magnolia fr	
	1059	111	4.0	732	2	Q95DC1			magnolia pt	
	1060	111	4.0	732	2	Q95DC2			magnolia li	
	1061	111	4.0	732	2	Q95DC3			magnolia he	
	1062	111	4.0	732	2	Q95DC4			magnolia de	
•	1063	111	4.0	732	2	Q95DC5			magnolia co	
	1064	111	4.0	732	2	Q95DC6			magnolia ch	
	1065	111	4.0	842	1	CUL8_YEAST			saccharomyc	
	1066	110.5	4.0	372	2	Q83ZA2			escherichia	
	1067	110.5	4.0	406	2	Q93MW2			nocardia br	
	1068	110.5	4.0	445	2	P74079			synechocyst	
	1069	110.5	4.0	503	2	Q95GR2			nepenthes h	
	1070	110.5	4.0	504	2	Q95GR8			nepenthes 1	
	1071	110.5	4.0	504	2	Q95GU9			nepenthes o	
	1072	110.5	4.0	504	2	Q95GV6			nepenthes b	
	1073	110.5	4.0	747	2	Q6EW03			nymphaea al	
	1074	110	4.0	300	2	Q7NXT2			chromobacte	
	1075	110	4.0	379	2	Q9L9F5			streptomyce	
	1076	110	4.0	416	2	Q6T1C7			streptomyce	
	1077	110	4.0	448	2	Q8RWP1			arabidopsis galbulimima	
	1078	110	4.0	682	2	Q7YM50			magnolia ka	
	1079	110	4.0	732	2 2	Q95D25			pachylarnax	
	1080	110	4.0	732		Q95D46 Q95D81			magnolia li	
	1081	110	4.0	732 732	2	Q95D81 Q95D84			magnolia cy	
	1082 1083	110 110	4.0 4.0	732	2	Q95D84 Q95D92			magnolia de	
	1083	110	4.0	732	2	Q95D32 Q95DA4			manglietia	
	1085	110	4.0	732	2	Q95DA4 Q95DA5			magnolia ni	
	1085	110	4.0	732	2	Q95DA6			magnolia ni	
	1087	109.5	4.0	372	2	Q83ZB1			escherichia	
	1088	109.5	4.0	403	2	Q8E0Q4			streptococc	
	1089	109.5	4.0	428	2	Q935Z8			streptomyce	•
	1099	109.5	4.0	439	2	Q7NHW5			gloeobacter	
	1091	109.5	4.0	443	2	Q9L4U6			streptomyce	
	1092	109.5	4.0	504,		Q95GT9			nepenthes m	
	1093	109.5	4.0	504	2	Q95GV4			nepenthes e	
	1094	109.5	4.0	598	2	Q97ES3		_	clostridium	
	1095	109.5	4.0	678	2	Q9AM85			riemerella	
	1096	109	3.9	324	2	Q69SI6			oryza sativ	
	1097	109	3.9	408	2	P96564			amycolatops	
	1098	109	3.9	426	2	Q8RS24			streptomyce	
										•

.

•

1099	109	3.9	669	2	Q95AS2	Q95as2 leopoldinia
1100	109	3.9	7.32	2	Q95D95	Q95d95 magnolia am
1101	109	3.9	732	2	Q95DA7	Q95da7 magnolia wi
1102	109	3.9	1684	2	Q7RJC0	Q7rjc0 plasmodium
1103	108.5	3.9	503	,2	Q95GR3	Q95gr3 nepenthes m
1104	108.5	3.9	504	2	Q95GP3	Q95gp3 nepenthes f
1105	108.5	3.9	504	2	Q95GP9	Q95gp9 nepenthes e
1106	108.5	3.9	504	2	Q95GQ0	Q95gq0 nepenthes s
1107	108.5	3.9	504	2	Q95GQ6	Q95qq6 nepenthes s
1108	108.5	3.9	504	2	Q95GQ7	Q95gq7 nepenthes b
1109	108.5	3.9	504	2	Q95GQ9	Q95gq9 nepenthes p
1110	108.5	3.9	504	2	Q95GS0	Q95gs0 nepenthes b
1111	108.5	3.9	504	2	Q95GS3	Q95gs3 nepenthes a
1112	108.5	3.9	504	2	Q95GV0	Q95gv0 nepenthes 1
1113	108.5	3.9	504	2	Q95GV1	Q95qv1 nepenthes i
1113	108.5	3.9	504	2		Q95gv7 nepenthes g
1115	108.5	3.9	697	2	Q716U1	Q716ul elegia fene
1116	108.5	3.9	705	2	•	Q9ghq1 pseudonemac
1117	108.5	3.9	1232	1	Y908 METJA	Q58318 methanococc
1117	108.3	3.9	482	2	Q8LEW0	Q81ew0 arabidopsis
1110	108	3.9	488	2	Q84MN5	Q84mn5 oryza sativ
1119	108	3.9	499	2	Q6Z4K7	Q6z4k7 oryza sativ
1121	108	3.9	525	2	Q67GP6	Q67qp6 japonolirio
1121	108	3.9	688	2	Q6Y1U5	Q6/gp0 japonolillo Q6ylu5 japonolirio
1122	108	3.9	708	2	Q9BAQ6	Q0y1u3 Japono11110 Q9baq6 styloceras
1123	108	3.9	708 732	2	Q95D32	Q95d32 magnolia po
			732 732	2	Q95D32 Q95D34	Q95d32 magnolia po Q95d34 magnolia pa
1125	108	3.9				Q95d34 magnolia pa Q95d98 magnolia ta
1126	108	3.9	732	2	Q95D98	Q95d90 magnolia ta Q95d99 magnolia sh
1127	108	3.9	732	2	Q95D99	Q95d99 magnolia sn Q95da0 magnolia gu
1128	108	3.9	732 732	2 2	Q95DA0	Q95da0 magnolia gu Q95da2 magnolia vi
1129	108	3.9		2	Q95DA2 O13592	Q95daz magnoria vi O13592 saccharomyc
1130	108	3.9	1097			Q8vav7 white spot
1131	108	3.9	1218	2	Q8VAV7	Q8VaV/ White spot Q8qtd0 white spot
1132	108	3.9	1219	2	Q8QTD0	
1133	108	3.9	1219	2	Q91LB1	Q911b1 white spot
1134	108	3.9	3079	1	IRA2_YEAST	P19158 saccharomyc
1135	107.5	3.9	403	2	Q9RPK3	Q9rpk3 streptococc
1136	107.5	3.9	504	2	Q95GP5	Q95gp5 nepenthes m
1137	107.5	3.9	504	2	Q95GQ4	Q95gq4 nepenthes t
1138	107.5	3.9	504	2	Q95GR0	Q95gr0 nepenthes f
1139	107.5	3.9	504			Q95gv3 nepenthes s
1140	107.5	3.9	635	2	Q7YM60	Q7ym60 persea amer
1141	107.5	3.9	690	2	Q8M9S2	Q8m9s2 erica carne
1142	107.5	3.9	724	2	Q9TJZ6	Q9tjz6 alseis lugo
1143	107.5	3.9	732	2	Q9TJP3	Q9tjp3 simira viri
1144	107.5	3.9	732	2	Q9TJS2	Q9tjs2 pentagonia
1145	107	3.9	369	1	MURG_CLOTE	Q893r7 clostridium
1146	107	3.9	379	1	Y452_METAC	Q8ttil methanosarc
1147	107	3.9	427	1	MURE_CAMJE	O69290 campylobact
1148	107	3.9	501	2	Q7YKK6	Q7ykk6 utricularia
1149	107	3.9	691	2	Q95AS8	Q95as8 wendlandiel
1150	107	3.9	694	2	Q95AQ6	Q95aq6 beccariopho
1151	107	3.9	· 695	2	Q95AR8	Q95ar8 reinhardtia
1152	107	3.9	698	2	Q95AR9;	Q95ar9 podococcus
1153	107	3.9	698	2	Q95AS7	Q95as7 hyophorbe l
1154	107	3.9	698	2	Q95AU4	Q95au4 nypa frutic
1155	107	3.9	732	2	Q95D29	Q95d29 magnolia pa

	1156	107	3.9	732	2	Q95D31	Q95d31 magnolia il
	1157	107	3.9	732	2	Q95D47	. Q95d47 manglietia
	1158	107	3.9	732	2	Q95D48	Q95d48 manglietia
	1159	107	3.9	732	2	Q95D49	Q95d49 manglietia
	1160	107	3.9	732	2	Q95D50	Q95d50 manglietia
	1161	107	3.9	732	2	Q95D51	Q95d51 manglietia
	1162	107	3.9	732	2	Q95D52	Q95d52 manglietia
	1163	107	3.9	732	2	Q95D53	Q95d53 manglietia
•	1164	107	3.9	732	2	Q95D54	Q95d54 manglietia
	1165	107	3.9	732	2	Q95D54 Q95D55	Q95d55 manglietia
			3.9	732	2	Q95D55 Q95D56	Q95d56 manglietia
	1166	107		732 732			Q95d50 manglietia
	1167	107	3.9		2	Q95D57	Q95d57 manglietia
	1168	107	3.9	732	2	Q95D58	
	1169	106.5	3.8	376	2	Q8KND7	Q8knd7 micromonosp
	1170	106.5	3.8	391	2	Q9RP99	Q9rp99 streptomyce
	1171	106.5	3.8	419	2	Q6U850	Q6u850 mycobacteri
•	1172	106.5	3.8	421	2	033935	033935 saccharopol
	1173	106.5	3.8	421	2	054224	O54224 saccharopol
	1174	106.5	3.8	428	2	Q83WE1	Q83wel micromonosp
	1175	106.5	3.8	504	2	Q95GQ3	Q95gq3 nepenthes v
	1176	106.5	3.8	504	2	Q95GR9	Q95gr9 nepenthes t
	1177	106.5	3.8	504	2	Q95GT8	Q95gt8 nepenthes p
	1178	106.5	3.8	726	2	Q8M8V3	Q8m8v3 torricellia
	1179	106.5	3.8	732	2	Q9TJT9	Q9tjt9 emmenoptery
	1180	106.5	3.8	1243	2	Q74N29	Q74n29 nanoarchaeu
	1181	106	3.8	388	2	033282	O33282 mycobacteri
	1182	106	3.8	388	2	Q7TY01	Q7ty01 mycobacteri
	1183	106	3.8	414	2	Q7WQ52	Q7wq52 bordetella
	1184	106	3.8	420	2	Q7D6N9	Q7d6n9 mycobacteri
	1185	106	3.8	426	2	087830	O87830 streptomyce
	1186	106 `	3.8	\440	2	Q8VWB7	Q8vwb7 streptomyce
	1187	106	3.8	482	2	Q9ZUV0	Q9zuv0 arabidopsis
	1188	106	3.8	501	2	Q7YKJ2	Q7ykj2 utricularia
	1189	106	3.8	677	2	Q7YM52	Q7ym52 degeneria r
	1190	106	3.8	694	2	Q95AP8	Q95ap8 scheelea bu
	1191	106	3.8	694	2	Q95AP9	Q95ap9 orbignya ba
•	1192	106	3.8	694	2	Q716V2	Q716v2 maianthemum
	1193	106	3.8	695	2	Q95AQ5	Q95aq5 allagoptera
	1194	106	3.8	695	2	Q95AS1	
	1195	106	3.8	696	2	Q95AQ0	Q95aq0 voanioala g
	1196	106	3.8	696	2	Q95AQ4	Q95aq4 butia erios
	1197	106	3.8	697	2	Q95AU3	Q95au3 thrinax rad
	1198	106	3.8	698	2	Q95AQ1	Q95aq1 syagrus gla
	1199	106	3.8	698	2	Q95AQ2	Q95aq2 lytocaryum
	1200	106	3.8	698	2	Q95AQ3	Q95aq3 cocos nucif
	1200	106	3.8	698	2	Q95AQ8	Q95aq8 barcella od
	1201	106	3.8	698	2	Q95AR3	Q95ar3 aiphanes ac
	1202	106	3.8	698	2	Q95AR6	Q95ar6 prestoea ac
	1203	106	3.8	698	2	Q95AR0 Q95AR7	Q95ar7 oenocarpus
	1204	106	3.8	698	2	Q95AT5	Q95at7 denocurpus Q95at5 dypsis last
	1205	106	3.8	698	2	Q95A13	Q95aU0 phoenix dac
			3.8	732	2	Q95DC7	Q95dc7 magnolia al
	1207	106					Q93de7 magnolia ar Q817q5 arabidopsis
	1208	105.5	3.8	372	2	Q8L7Q5	Q017q5 arabidopsis Q712q2 escherichia
	1209	105.5	3.8	372	2	Q712Q2	·
	1210	105.5	3.8	484	2	Q9ZQG4	Q9zqg4 arabidopsis
	1211	105.5	3.8	504	2	Q95GU4	Q95gu4 nepenthes r
	1212	105.5	3.8	504	2	Q95GU6	Q95gu6 nepenthes c

.

1213	105.5	3.8	556	2	Q03899	Q0389	99 saccharomyc
1214	105.5	3.8	570	2	Q9C9B0		o0 arabidopsis
1215	105.5	3.8	624	2	Q95AY9		y9 osmorhiza b
1216	105.5	3.8	648	2	Q95AG6		, 16 osmorhiza l
1217	105.5	3.8	667	2	Q7M9D4		d4 wolinella s
1218	105.5	3.8	695	2	Q8WJZ9		z9 baloskion t
1219	105.5	3.8	697	2	Q659X8		<pre> «8 escherichia</pre>
1220	105.5	3.8	732	2	098707		07 mussaenda e
1221	105.5	3.8	732	2	Q9TJS0		s0 pogonopus s
1222	105.5	3.8	732	2	Q9TJV8		v8 chimarrhis
1223	105.5	3.8	746	2	Q9TL72		72 pittosporum
1224	105.5	3.8	749	2	Q9TL70		70 hedera heli
1225	105.5	3.8	1275	2	Q9VAE1		el drosophila
1225	105.5	3.8	200	.2	Q8GSQ9		q9 triticum ae
			408	2	P96565	<del>-</del>	55 amycolatops
1227	105	3.8	408	2			n3 liriodendro
1228	105	3.8			Q9GFH3	_	90 austrobaile
1229	105	3.8	431	2	Q9MS90		
1230	105	3.8	625	2	Q8WI66		66 cyrtostachy
1231	105	3.8	636	2	Q8WI64		64 howea belmo
1232	105	3.8	666	2	Q6Y1V6		76 ophiopogon
1233	105	3.8	670	2	Q6Y1T4		4 serenoa sp.
1234	105	3.8	671	2	Q8WI77		77 archontopho
1235	105	3.8	674	2	Q6Y1T5		5 dasypogon b
1236	105	3.8	678	2	Q8WI76		76 clinostigma
1237	105	.3.8	680	2	Q8WI67		67 burretioken
1238	105	3.8	681	2	Q6Y1U9		19 aponogeton
1239	105	3.8		2	Q6Y1V5		v5 polygonatum
1240	105	3.8	688	2	Q6Y1V3		v3 cyanella hy
1241	105	3.8	688	2	Q6Y1V4		v4 polygonatum
1242	105	3.8	689	2	Q67GP2		p2 dasypogon h
1243	105	3.8	696	2	Q95AR0		r0 desmoncus o
1244	105	3.8	696	2	Q95AT7		t7 aphandra na
1245	105	3.8	697	2	Q95AS4	~	s4 iriartea de
1246	105	3.8	697	2	Q95AU1		ul livistona s
1247	105	3.8	698	2	Q8WI62		62 oncosperma
1248	105	3.8	698	2	Q8WI63		63 hydriastele
1249	105	3.8	698	2	Q8WI65		65 gronophyllu
1250	105	3.8	698	2	Q8WI68		68 bentinckia
1251	105	3.8	698	2			75 linospadix
1252	105	3.8	. 698	, 2	Q95AR4	Q95a.	r4 acrocomia a
1253	105	3.8	698	2	Q95AS5		s5 ravenea hil
1254	105	3.8	698	2	Q95AT3		t3 chambeyroni
1255	105	3.8	698	2	Q95AU2	Q95a	u2 washingtoni
1256	105	3.8	699	2	Q6A2L5	Q6a2.	15 campylanthu
1257	105	3.8	700	2	Q95AT6	Q95a	t6 phytelephas
1258	105	3 . 8.	732	2	Q95D82	Q95d	82 magnolia ac
1259	105	3.8	732	2	Q95D83	Q95d	83 magnolia ac
1260	104.5	3.8	419	2	Q6U852	Q6u8	52 mycobacteri
1261	104.5	3.8	419	2	Q6U862	Q6u8	62 mycobacteri
1262	104.5	3.8	427	2	Q98EL9		19 rhizobium l
1263	104.5	3.8	428	2	Q8GEA2		a2 mycobacteri
1264	104.5	3.8	435	2	Q8LGD9		d9 arabidopsis
1265	104.5	3.8	454	2	Q6VAA3		a3 stevia reba
1266	104.5	3.8	504	2	Q95GS4		s4 nepenthes t
1267	104.5	3.8	504	2	Q95GU0		u0 nepenthes m
1268	104.5	3.8	504	2	Q95GU8		u8 nepenthes 1
1269	104.5	3.8	640	2	Q71N60		60 stimpsonia
1200	_01.0	5.0	0.0	_	2 :,	£, 111	

	1270	104.5	3.8	671	2	Q85XZ9		Q85xz9	trevesia lo	
	1271	104.5	3.8	681	2	Q85Y02 _		Q85y02	trevesia pa	
	1272	104.5	3.8	682	2	Q85Y07		Q85y07	trevesia ba	
	1273	104.5	3.8	707	2	Q85Y00		Q85y00	trevesia pa	
	1274	104.5	3.8	707	2	Q85Y01		Q85y01	trevesia pa	
	1275	104.5	3.8	707	2	Q85Y03			trevesia su	
	1276	104.5	3.8	732	2	Q9TJP1		-	warszewiczi	
	1277	104.5	3.8	736	2	Q7YU76			drosophila	
	1278	104.5	3.8	749	2	Q9TL66		_	helwingia j	
	1279	104	3.8	417	2	Q9F832			micromonosp	
	1280	104	3.8	695	2	Q95AR1			bactris hum	
	1281	104	3.8	698	2	Q95AR2			astrocaryum	
	1282	104	3.8	698	.2	Q6Q962			uncultured	
	1283	104	3.8	732	2	Q95D44			liriodendro	•
	1284	104	3.8	732	2	Q9TL43			liriodendro	
	1285	104	3.8	795	2	Q6BWH4			debaryomyce	•
	1286	104	3.8	856	2	Q6X9R1			dictyoglomu	
	1287	104	3.8	1026	2	Q86T84			homo sapien	
	1288	103.5	3.7	371	2	Q79ST1			salmonella	
	1289	103.5	3.7	371	2	P96056			salmonella	
		103.5	3.7	371	2	Q8ZMN4			salmonella	
	1290		3.7	422	2	Q9RMP3	•		mycobacteri	
	1291 1292	103.5 103.5	3.7	448	2	Q9LPS8			arabidopsis	
			3.7	446	2	Q8LP23			nierembergi	
	1293	103.5	3.7	469	1	NTRC KLEPN			klebsiella	
	1294 1295	103.5 103.5	3.7	503	2	Q95GP8			nepenthes m	
	1295	103.5	3.7	504	2	Q95GU5			nepenthes c	
	1297	103.5	3.7	642	2	Q8SLR5			clethra bar	
	1298	103.5	3.7	684	2	Q85XZ5			oplopanax h	
	1299	103.5	3.7	695	2	Q9TJS9			mussaenda a	
	1300	103.5	3.7	701	2	Q85XZ8			trevesia bu	
	1300	103.5	3.7	714	2	Q9SC96			melanophyll	•
	1301	103.5	3.7	739	2	Q8FA89			escherichia	
•	1303	103.5	3.7	1489	2	Q6CNY4			kluyveromyc	
	1304	103.3	3.7	395	2	Q66B02			yersinia ps	
	1305	103	3.7	395	2	Q8ZF10			yersinia pe	
	1306	103	3.7	440	2	Q9L555			streptomyce	
	1307	103	3.7	508	1	TNSD ECOLI			escherichia	
	1308	103·	3.7	563	2	Q9FWC1			oryza sativ	
	1309	103	3.7	626	2	Q9XYR4			schistosoma	
	1310	103	3.7	670	2	Q8HUP0		-	convallaria	
	1311	103	3.7	695	2	Q95AT1		_	calyptronom	
	1312	103	3.7	697	2	Q95AU6			calamus cae	
	1313	103	3.7	698	2	Q95AQ9			gastrococos	
	1314	103	3.7	698	2	Q95AS3		-	wettinia hi	
	1315	103	3.7	732					magnolia el	emph (white)
	1316	103	3.7	966	1	AMPN HUMAN			homo sapien	·
	1317	102.5	3.7	389	2	Q6QR18			streptomyce	
	1318	102.5	3.7	435	2	Q9LNE6			arabidopsis	
	1319	102.5	3.7	500	2	Q6BKR3			debaryomyce	
	1320	102.5	3.7	501	2	Q95GP4			nepenthes 1	
	1321	102.5	3.7	504	2	Q95GT7			nepenthes d	
	1322	102.5	3.7	622	1	PPCC HUMAN			homo sapien	
	1323	102.5	3.7	653	2	Q95AY4			anthriscus	
	1324	102.5	3.7	663	2	Q97YG8			sulfolobus	
	1325	102.5	3.7	684	2	Ø8MK00			elegia stip	
	1326	102.5	3.7	688	2	Q716W1			trichopus s	
				·					-	

•

1327	102.5	3.7	700	2	Q85VG8	Q85vg8 brassaiopsi
1328	102.5.	3.7	706	2	Q98S94	Q98s94 guillardia .
1329	102.5	3.7	735	2	Q9TL73	Q9t173 osmorhiza c
1330	102.5	3.7	749	2	Q9TL74	Q9t174 coriandrum
1331	102.5	3.7	816	2	Q7XMH8	Q7xmh8 oryza sativ
1332	102.5	3.7	1275	1	TRP_DROME	P19334 drosophila
1333	102.5	3.7	1456	2	Q8NJS1	Q8njs1 leptosphaer
				2		
1334	102.5	3.7	3001		Q8QXL0	Q8qx10 scallion mo
1335	102	3.7	300	2 .	Q7MFU3	Q7mfu3 vibrio vuln
1336	102	3.7	334	2	Q9RTN6	Q9rtn6 deinococcus
1337	102	3.7	390	2	Q9RN61	Q9rn61 streptomyce
1338	102	3.7	443	2	Q9GFH4	Q9gfh4 lactoris fe
1339	102	3.7	609	2	Q7XRN9	Q7xrn9 oryza sativ
1340	102	3.7	647	2	Q7YM57	Q7ym57 anaxagorea
1341	102	3.7	670	2	Q6JX97	Q6jx97 sparattosyc
1342	102	3.7	676	2	Q9TL41	Q9tl41 ceratophyll
1343	102	3.7	694	2	047210	047210 cyanastrum
1344	102	3.7	718	2	Q7MBD5	Q7mbd5 chromobacte
1345	102	3.7	732	2	Q9TL42	Q9t142 magnolia si
1346	102	3.7	1655	1	N188 YEAST	P52593 saccharomyc
1347	101.5	3.7	291	2	Q6MUK0	Q6muk0 mycoplasma
1348	101.5	3.7	351	2	Q9FKD1	Q9fkd1 arabidopsis
1349	101.5	3.7	371	2	Q6KD92	Q6kd92 escherichia
		3.7	385	1	MURG RICPR	Q9zdc0 rickettsia
1350	101.5			2	<b>—</b>	Q8fiw3 escherichia
1351	101.5	3.7	387		Q8FIW3	
1352	101.5	3.7	436	2	Q9F839	Q9f839 micromonosp
1353	101.5	3.7	454	2	Q8H6A4	Q8h6a4 stevia reba
1354	101.5	3.7	512	2	Q95GU7	Q95gu7 nepenthes 1
1355	101.5	3.7	646	2	Q8SLR6	Q8slr6 clethra arb
1356	101.5	3.7	684	2	Q85Y11	Q85y11 brassaiopsi
1357	101.5	3.7	694	2	Q85Y04	Q85y04 hedera heli
1358	101.5	3.7	695	2	Q85XZ6	Q85xz6 macropanax
1359	101.5	3.7	696	2	Q9TL87	Q9t187 cyananthus
1360	101.5	3.7	698	2	Q85Y12	Q85y12 brassaiopsi
1361	101.5	3.7	700	2	Q85UX5	Q85ux5 brassaiopsi
1362	101.5	3.7	701	2	Q85Y10	Q85y10 brassaiopsi
1363	101.5	3.7	703	2	Q85XZ4	Q85xz4 eleutheroco
1364	101.5	3.7	704	2	Q85Y08	Q85y08 brassaiopsi
1365	101.5	3.7	705	2	Q85Y06	Q85y06 fatsia japo
1366	101.5	3.7	705	2	Q85Y13	Q85y13 brassaiopsi
1367	101.5	3.7	707	2	Q85Y05	Q85y05 brassaiopsi
1368	101.5	.3.7	714	2	Q8MC77	Q8mc77 aralidium p
1369	101.5	3.7	725	2	Q8MC69	Q8mc69 aralia spin
1370	101.5	3.7	728	2	098702	098702 luculia gra
1371	101.5	3.7	732	2	Q9TJS5	Q9tjs5 pseudomussa
1371	101.5	3.7	732	2	Q9TJY6	Q9tjy6 capirona de
1373	101.5	3.7	732	2	Q9TJZ4	Q9tjz4 alberta mag
1373		3.7	734	2	Q9TUZ4 Q9THY8	Q9thy8 gardenia th
	101.5					Q9t171 eleutheroco
1375	101.5	3.7	741	2	Q9TL71	
1376	101.5	3.7	748	2	Q9TL75	Q9t175 angelica gi
1377	101.5	3.7	856	2	Q6MAY5	Q6may5 parachlamyd
1378	101	3.6	290	2	Q8D4B7	Q8d4b7 vibrio vuln
1379	101	3.6	339	2	Q6H8F8	Q6h8f8 oryza sativ
1380	101	3.6	340	2	Q7XW21	Q7xw21 oryza sativ
1381	101	3.6	386	2	Q73W10	Q73w10 mycobacteri
1382	101	3.6	393	2	087480	087480 streptomyce
1383	101	3.6	420	2	Q8MEI2	Q8mei2 malva negle

.

	1004	101		C 1 1	1	MAIN MODMA		001400 tarnoda mar
	1384	101	3.6	511	1	VAT_TORMA		Q91498 torpedo mar
	1385	101	3.6	641	.2	Q7YM34		Q7ym34 zygogynum p
	1386	101	3.6	687	2	Q6Y1X5		Q6y1x5 alania endl
	1387	101	3.6	693	2	Q32231		Q32231 flagellaria
	1388	101	3.6	695	2	Q6Y1U3		Q6y1u3 aletris far
	1389	101	3.6	697	2	003659		003659 tetraclea c
	1390	101	3.6	697	2	Q95AT0		Q95at0 geonoma oxy
	1391	101	3.6	698	2	Q95AQ7		Q95aq7 elaeis olei
	1392	101	3.6	699	2	Q716V5		Q716v5 croomia jap
	1393	101	3.6	742	2	Q9TLC0		Q9tlc0 tetraclea c
	1394	101	3.6	745	2	Q9TLC1		Q9tlc1 clerodendru
	1395	101	3.6	1023	2	Q9XYD4		Q9xyd4 dictyosteli
	1396	100.5	3.6	370	2	Q97MF5		Q97mf5 clostridium
	1397	100.5	3.6	455	2	Q9ALN7		Q9aln7 saccharopol
	1398	100.5	3.6	504	2	Q95GS7		Q95gs7 nepenthes n
	1399	100.5	3.6	647	2	Q9GEU0		Q9geu0 samolus val
	1400	100.5	3.6	717	2	Q8MC98		Q8mc98 apium grave
	1401	100.5	3.6	720	2	Q8M9R5		Q8m9r5 eremosyne p
	1402	100.5	3.6	732	2	Q32055		Q32055 campanula r
•	1403	100.5	3.6	741	2	Q9TL69		Q9t169 panax ginse
	1404	100.5	3.6	861	1	GCR3 YEAST		P34160 saccharomyc
	1405	100.5	3.6	1066	2	Q6CU73		Q6cu73 kluyveromyc
	1406	100.0	3.6	230	2	Q81PS7		Q81ps7 bacillus an
	1407	100	3.6	231	2	Q6HXZ4		Q6hxz4 bacillus an
	1407	100	3.6	338	2	Q9MSP6		Q9msp6 nymphaea od
	1400	100	3.6	415	2	Q7VGY0		Q7vgy0 helicobacte
	1410	100	3.6	507	2	Q85XY9		Q85xy9 peganum har
		100		669	2	Q6JX92		Q6jx92 helicostyli
	1411		3.6	680	2	Q6Y1U7		Q6y1u7 halodule wr
	1412	100	3.6	687	2		•	Q6y1u8 gymnostachy
	1413	100	3.6		2	Q6Y1U8	•	Q6y1v1 xeronema ca
	1414	100	3.6	690	2	Q6Y1V1		Q9bas2 buxus hilde
	1415	100	3.6	690		Q9BAS2		
•	1416	100	3.6	693	2	Q85XZ7		Q85xz7 dendropanax
	1417	100	3.6	694	2	Q67GN4		Q67gn4 blandfordia
	1418	100	3.6	709	2	Q9BAR8		Q9bar8 sarcococca
	1419	100	3.6	1026	2	Q86T76		Q86t76 homo sapien
	1420	100	3.6	1058	2	Q9PCW4		Q9pcw4 xylella fas
	1421	100	3.6	2543	2	Q63CQ7		Q63cq7 bacillus ce
	1422	100	3.6	3392	2	Q7ZA38		Q7za38 ashbya goss
	1423	99.5	3.6	348	2	Q87SS3		Q87ss3 vibrio para
	1424	99.5	3.6	370	2	Q93GK9		Q93gk9 klebsiella
	1425	99.5	3.6	371	2	Q8GH22		Q8gh22 escherichia
	1426	99.5	3.6	392	2	Q86D27		Q86d27 entamoeba h
	1427	99.5	3.6	396	2	029653		029653 archaeoglob
	1428	99.5	3.6	518	2	Q8D366		Q8d366 wiggleswort
	1429	99.5	3.6	622	1	PPCC_MOUSE		Q9z2v4 mus musculu
	1430	99.5	3.6	622	2	Q8BSX3		Q8bsx3 mus musculu
	1431	99.5	3.6	622	2	Q8CI37		Q8ci37 mus musculu
	1432	99.5	3.6	670	2	Q8HUN8		Q8hun8 ipheion dia
	1433	99.5	3.6	679	2	Q8WGU3		Q8wgu3 pennantia c
	1434	99.5	3.6	701	2	Q9SC21		Q9sc21 sollya hete
	1435	99.5	3.6	716	2	Q85UX6		Q85ux6 brassaiopsi
	1436	99.5	3.6	735	2	Q8WGU6		.Q8wgu6 pennantia c
	1437	99.5	3.6	1144	2	Q6MF68		Q6mf68 parachlamyd
	1438	99	3.6	74	2	Q941P3		Q941p3 arachis hyp
	1439	99	3.6	190	2	_ 062371		062371 caenorhabdi
	1440	99	3.6	343	2	Q73CT7		Q73ct7 bacillus ce
			- • •		_	-		-

	1441	99	3.6	371	2	Q6U5X7			klebsiella
	1442	99	3.6	429	2	Q9GFH2		Q9gfh2	saururus ce
	1443	99	3.6	439	2	Q62CH1		Q62ch1	burkholderi
	1444	99	3.6	493	2	Q8CWG5		Q8cwq5	yersinia pe
	1445	99	3.6	504	2	Q95GS2			nepenthes n
	1446	99	3.6	612	2	Q6UQ74			sinningia s
	1447	99	3.6	627	2	Q7YM46			cephalospha
	1448	99	3.6	659	2	Q7YM36			virola sebi
		99	3.6	665	2	Q9GGT9			dulichium a
	1449			676		Q7YM40			knema lauri
	1450	99	3.6		2				
	1451	99	3.6	676	2	Q7YM43			gymnacranth
	1452	99	3.6	680	2	Q8WI61	•		ptychosperm
	1453	99	3.6	680	2	Q7YM38			myristica f
	1454	99	3.6	684	2	Q8HUP1			asparagus f
	1455	99	3.6	686	2	P92299			glechoma he
	1456	99	3.6	686	2	P92329			plectranthu
	1457	99,	3.6	707	2	Q9GHZ4			chaenorhinu
	1458	99	3.6	707	2	Q9MVJ0			heritiera l
	1459	99	3.6	708	2	Q9GHW4		Q9ghw4	gambelia sp
	1460	99	3.6	738	2	019931		019931	tetrachondr
	1461	99	3.6	1058	2	Q9VP94		Q9vp94	drosophila
	1462	99	3.6	2485	2	Q7RRE3		Q7rre3	plasmodium
	1463	99	3.6	3392	2	Q75AD9		Q75ad9	ashbya goss
	1464	98.5	3.6	371	2	Q67DV4		Q67dv4	shigella dy
	1465	98.5	3.6	371	2	Q83WA1			escherichia
	1466	98.5	3.6	383	2	Q7WC49			bordetella
	1467	98.5	3.6	606	2	Q6FRS6	•		candida gla
,	1468	98.5	3.6	700	2	Q9TLF5			globularia
	1469	98.5	3.6	732	2	Q9TJY9			calycophyll
	1470	98.5	3.6	733	2	019941			globularia
	1471	98.5	3.6	942	2	P74081			synechocyst
	1472	98.5	3.6	1049	1	VP39 YEAST			saccharomyc
	1472	98.5	3.6	1656	2	Q7R489			giardia lam
	1474	98.5	3.6	3645	2	Q750B4			ashbya goss
				230	2	Q6KS13			bacillus an
	1475	98	3.5						
	1476	98	3.5	307	2	Q7XXJ7			oryza sativ
	1477	98	3.5	343	2	Q81UI1			bacillus an
	1478	98	3.5	346	2	Q6I2Q8			bacillus an
,	1479	98	3.5	373		Q8KUL2			streptococc
	1480	98	3.5	379	2	Q8NLS7			corynebacte
	1481	98	3.5	382	2	Q9ZA43			streptomyce
, i	1482	98	3.5	391	1	CAPJ_STAAU			staphylococ
	1483	98	3.5	408	2	Q73TF6			mycobacteri
	1484	98	3.5	442	2	Q53881			streptomyce
	1485	98	3.5	444	2	Q8F9G4			leptospira
	1486	. 98	3.5	543	2	Q7YXZ2		-	cryptospori
	1487	98	3.5	622	1	PPCC_CHICK			gallus gall
	1488	98	3.5	623	2	$Q7YM\overline{4}1$			iryanthera
	1489	98	3.5	636	2	Q716U7			stichoneuro
	1490	98	3.5	667	2	Q6JX80		Q6jx80	perebea gui
	1491	98	3.5	669	2	Q8HUN9		Q8hun9	agapanthus
	1492	98	3.5	670	2	Q6JXA8			batocarpus
	1493	98	3.5	671	2	Q8HUN6			narcissus e
	1494	98	3.5	672	2	Q95AT4			areca vesti
	1495	98	3.5	686	2	Q6Y1V2			tecophilaea
	1496	98	3.5	688	2	Q6Y1V9		_	dracaena au
	1497	98	3.5	690	2	Q6Y1W6			hypoxis jun
		, ,	3.5	550	_	2		~-1	·

```
      1498
      98
      3.5
      692
      2 Q67GN8
      Q67gn8 roystonea p

      1499
      98
      3.5
      694
      2 O47200
      O47200 narcissus e

      1500
      98
      3.5
      697
      2 Q95AR5
      Q95ar5 roystonea o
```

## ALIGNMENTS

```
RESULT 1
 Q6UXC4
 ID
     Q6UXC4
                 PRELIMINARY;
                                  PRT;
                                         523 AA.
     Q6UXC4;
 AC
     05-JUL-2004 (TrEMBLrel. 27, Created)
 DT
     05-JUL-2004 (TrEMBLrel. 27, Last sequence update)
     05-JUL-2004 (TrEMBLrel. 27, Last annotation update)
 DΤ
     Glucuronosyltransferase.
 DE
     ORFNames=UNQ842;
 GN
     Homo sapiens (Human).
 OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OC
 OX
     NCBI TaxID=9606;
 RN
     [1]
 RP
     SEQUENCE FROM N.A.
     MEDLINE=22887296; PubMed=12975309; DOI=10.1101/gr.1293003;
 RX
     Clark H.F., Gurney A.L., Abaya E., Baker K., Baldwin D., Brush J.,
 RA
     Chen J., Chow B., Chui C., Crowley C., Currell B., Deuel B., Dowd P.,
 RA
     Eaton D., Foster J., Grimaldi C., Gu Q., Hass P.E., Heldens S.,
 RA
     Huang A., Kim H.S., Klimowski L., Jin Y., Johnson S., Lee J.,
 RA
     Lewis L., Liao D., Mark M., Robbie E., Sanchez C., Schoenfeld J.,
 RA
     Seshagiri S., Simmons L., Singh J., Smith V., Stinson J., Vagts A.,
 RA
     Vandlen R., Watanabe C., Wieand D., Woods K., Xie M.H., Yansura D.,
 RA
     Yi S., Yu G., Yuan J., Zhang M., Zhang Z., Goddard A., Wood W.I.,
 RA
      Godowski P.;
 RA
      "The secreted protein discovery initiative (SPDI), a large-scale
 RT
      effort to identify novel human secreted and transmembrane proteins: a
 RT
     bioinformatics assessment.";
 RT
- RL
     Genome Res. 13:2265-2270(2003).
     -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
 CC
      EMBL; AY358416; AAQ88782.1; -.
 DR
      GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
 DR
     GO; GO:0008152; P:metabolism; IEA.
 DR
     InterPro; IPR002213; UDP glucos trans.
 DR
      Pfam; PF00201; UDPGT; 1.
 DR
      PROSITE: PS00375; UDPGT; 1.
 DR
      Glycosyltransferase; Transferase.
 KW
      SEQUENCE . 523 AA; 59580 MW; 5DE9CD92D1FBA18F CRC64;
 SQ
                          100.0%; Score 2768; DB 2; Length 523;
   Query Match
   Best Local Similarity
                          100.0%; Pred. No. 6.7e-210;
                                0; Mismatches
                                                                           0;
   Matches 523; Conservative
                                                  0; Indels
                                                                   Gaps
            1 MAGORVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
 Qу
              1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
 Db
           61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
 Qу
```

```
61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
Db
        121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIP 180
Qy
            121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIP 180
Db
        181 LSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHL 240
Qv
            181 LSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHL 240
Db
        241 LLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTL 300
Qу
            241 LLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTL 300
Db
        301 GSMVNTCONPEIFKEMNNAFAHLPOGVIWKCOCSHWPKDVHLAANVKIVDWLPQSDLLAH 360
Qу
            301 GSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAH 360
Db
        361 PSIRLFVTHGGONSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETL 420
Qy
            361 PSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETL 420
Db
        421 ALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPW 480
Qy
            421 ALKMKOIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPW 480
Db
        481 HEOYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Qy .
            481 HEOYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Db
RESULT 2
O8NBP2
              PRELIMINARY;
                              PRT:
                                    523 AA.
ID
    O8NBP2
AC
    Q8NBP2;
    01-OCT-2002 (TrEMBLrel. 22, Created)
DT
    01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
    01-JUN-2003 (TrEMBLrel. 24, Last annotation update)
DT
    Hypothetical protein PSEC0073.
DΕ
os
    Homo sapiens (Human).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
    NCBI TaxID=9606;
OX
RN
    [1]
RP
    SEOUENCE FROM N.A.
    Ota T., Nishikawa T., Suzuki Y., Kawai-Hio Y., Hayashi K., Ishii S.,
RA
    Saito K., Yamamoto J., Wakamatsu A., Nagai T., Nakamura Y:,
RA
    Nagahari K., Sugano S., Isogai T.;
RA
    Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
RL
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
    EMBL; AK075383; BAC11583.1; -.
DR
DR
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
    GO; GO:0008152; P:metabolism; IEA.
    InterPro; IPR002213; UDP glucos trans.
DR
DR
    Pfam; PF00201; UDPGT; 1.
    PROSITE; PS00375; UDPGT; 1.
DR
KW
    Glycosyltransferase; Transferase.
```

```
89928A26AB9C09F5 CRC64;
                    59618 MW;
SQ
    SEQUENCE
            523 AA;
                    99.5%; Score 2754; DB 2;
                                          Length 523;
 Query Match
                    99.6%; Pred. No. 8.5e-209;
Best Local Similarity
                                                             0;
                          0; Mismatches
                                           Indels
                                                      Gaps
 Matches 521; Conservative
         1 MAGORVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qy
           1 MAGORVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Db
        61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
Qу
           61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
Db
        121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIP 180
Qу
           121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIP 180
Db
        181 LSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHL 240
Qy
           181 LSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHL 240
Db
        241 LLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTL 300
Qy
           241 LLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPODLENFIAKFEDSGFVLVTL 300
Db
        301 GSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAH 360
Qу
           301 GSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAH 360
Db
        361 PSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETL 420
Qу
           361 PSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETL 420
Db
        421 ALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPW 480
Qу
           421 ALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPW 480
Db
        481 HEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Qу
           481 HEQYLLDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Db
RESULT 3
O6NUS8
                            PRT.;
                                 523 AA.
             PRELIMINARY;
ID
    O6NUS8
AC
    O6NUS8;
    05-JUL-2004 (TrEMBLrel. 27, Created)
    05-JUL-2004 (TrEMBLrel. 27, Last sequence update)
DΤ
    05-JUL-2004 (TrEMBLrel. 27, Last annotation update)
DT
    Hypothetical protein FLJ34658.
DE
GN
    Name=FLJ34658;
OS
    Homo sapiens (Human).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
```

OX

RN

[1]

NCBI TaxID=9606;

```
SEQUENCE FROM N.A.
RP
    TISSUE=Testis;
RC
    MEDLINE=22388257; PubMed=12477932; DOI=10.1073/pnas.242603899;
RX
    Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
    Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
    Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
    Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
    Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
    Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
    Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
RA
    Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
    Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
    Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
    Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
    Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
    Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
    Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
    Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.,
RA
    Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E.,
RA
    Jones S.J., Marra M.A.;
RA
    "Generation and initial analysis of more than 15,000 full-length human
RT
    and mouse cDNA sequences.";
RT
    Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
    SEQUENCE FROM N.A.
RP
    TISSUE=Testis;
RC
RA
    Strausberg R.;
    Submitted (APR-2004) to the EMBL/GenBank/DDBJ databases.
RL
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
DR
    EMBL; BC068446; AAH68446.1; -.
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
DR
    GO; GO:0008152; P:metabolism; IEA.
DR
    InterPro; IPR002213; UDP glucos trans.
    Pfam; PF00201; UDPGT; 1.
DR
    PROSITE; PS00375; UDPGT; 1.
DR
KW
    Glycosyltransferase; Hypothetical protein; Transferase.
              523 AA; 59150 MW; 602AE3D75CE986BD CRC64;
SQ
    SEQUENCE
                        79.4%;
                               Score 2198; DB 2; Length 523;
 Query Match
                               Pred. No. 7.1e-165;
 Best Local Similarity
                        78.8%;
                                                                        2;
 Matches 413; Conservative
                             46; Mismatches
                                              63;
                                                   Indels
                                                                Gaps
           1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
             1 MVGQRVLLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSQILQEHGHNVTML-HQS 59
Db
          61 GPFM-PDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLAL 119
Qу
             60 GKFLIPDIKEEEKSYQVIRWFSPEDHQKRIKKHFDSYIETALDGRKESEALVKLMEIFGT 119
Db
         120 OCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPI 179
Qу
             120 QCSYLLSRKDIMDSLKNENYDLVFVEAFDFCSFLIAEKLVKPFVAILPTTFGSLDFGLPS 179
Db
         180 PLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSH 239
Qу
             180 PLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSQWDMQSTFDNTIKEHFPEGSRPVLSH 239
Db
```

```
240 LLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVT 299
Qу
             240 LLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPIKPVPQDLDNFIANFGDAGFVLVA 299
Db
         300 LGSMVNTCONPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLA 359
Qy
             300 FGSMLNTHOSOEVLKKMHNAFAHLPOGVIWTCQSSHWPRDVHLATNVKIVDWLPQSDLLA 359
Db
         360 HPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAET 419
Qy
             Db
         360 HPSIRLFVTHGGQNSVMEAIRHGVPMVGLPVNGDQHGNMVRVVAKNYGVSIRLNQVTADT 419
         420 LALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQP 479
Qу
             420 LTLTMKQVIEDKRYKSAVVAASVILHSQPLSPAQRLVGWIDHILQTGGATHLKPYAFQQP 479
Db
         480 WHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Qу
             480 WHEQYLIDVFVFLLGLTLGTMWLCGKLLGVVARWLRGARKVKKT 523
Db
RESULT 4
096DM6
                                      523 AA.
    Q96DM6
               PRELIMINARY;
                                PRT;
AC
    096DM6;
    01-DEC-2001 (TrEMBLrel. 19, Created)
DT
    01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
    01-JUN-2003 (TrEMBLrel. 24, Last annotation update)
DT
    Hypothetical protein FLJ32504.
DE
    Homo sapiens (Human).
OS
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
    NCBI TaxID=9606;
RN
    [1]
    SEQUENCE FROM N.A.
RP
    TISSUE=Small intestine;
RC
RX
    PubMed=14702039; DOI=10.1038/ng1285;
    Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA
    Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA
    Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA
RA
    Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
    Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA
    Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA
    Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA
    Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA
    Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA
    Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA
    Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA
    Kanehori K., Takahashi-Fujii A., Hara H., Tanase T., Nomura Y.,
RA
    Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA
RA
    Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
    Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA
    Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA
    Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA
    Hishiqaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA
    Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA
```

```
Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA
    Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA
    Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA
    Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA
    Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA
    Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA
    Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA
RA
    Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
    Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RA
    "Complete sequencing and characterization of 21,243 full-length human
RT
RT
    cDNAs.";
RL
    Nat. Genet. 36:40-45(2004).
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
    EMBL; AK057066; BAB71358.1; -.
DR
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
    GO; GO:0008152; P:metabolism; IEA.
DR
DR
    InterPro; IPR002213; UDP_glucos_trans.
    Pfam; PF00201; UDPGT; 1.
DR
    PROSITE; PS00375; UDPGT; 1.
DR
    Glycosyltransferase; Transferase.
KW
    SEQUENCE 523 AA; 59148 MW; 2034D6E90863EA8E CRC64;
SQ
                     79.2%; Score 2193; DB 2; Length 523;
 Query Match
                     78.8%; Pred. No. 1.8e-164;
 Best Local Similarity
 Matches 413; Conservative 45; Mismatches
                                          64; Indels
                                                       2; Gaps
                                                                 2;
          1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
            1 MVGQRVLLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSQILQEHGHNVTML-HQS 59
Db
         61 GPFM-PDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLAL 119
Qу
            60 GKFLIPDIKEEEKSYOVIRWFSPEDHOKRIKKHFDSYIETALDGRKESEALVKLMEIFGT 119
Db
        120 QCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPI 179
Qу
            120 QCSYLLSRKDIMDSLKNENCDLVFVEAFDFCSFLIAEKLVKPFVAILPTTFGSLDFGLPS 179
Db
        180 PLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSH 239
QУ
            180 PLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSQWDMQSTFDNTIKEHFPEGSRPVLSH 239
Db
        240 LLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVT 299
Qν
            240 LLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPIKPVPQDLDNFIANFGDAGFVLVA 299
Db
        300 LGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLA 359
Qу
             300 FGSMLNTHQSQEVLKKMHNAFAHLPQGVIWTCQSSHWPRDVHLATNVKIVDWLPQSDLLA 359
Db
        360 HPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAET 419
Qу
            360 HPSIRLFVTHGGQNSVMETIRHGVPMVGLPVNGDQHGNMVRVVAKNYGVSIRLNQVTADT 419
Db
        420 LALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQP 479
Qу
            420 LTLTMKQVIEDKRYKSAVVAASVILHSQPLSPAQRLVGWIDHILQTGGATHLKPYVFQQP 479
Db
```

```
480 WHEOYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Qу
              480 WHEQYLIDVFVFLLGLTLGTMWLCGKLLGVVARWLRGARKVKKT 523
Db
RESULT 5
08R0Y5
ID
     Q8R0Y5
                 PRELIMINARY;
                                   PRT;
                                          523 AA.
AC
     Q8R0Y5;
DT
     01-JUN-2002 (TrEMBLrel. 21, Created)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last sequence update)
     01-OCT-2003 (TrEMBLrel. 25, Last annotation update)
DT
DE
     Expressed sequence AI746432.
GN
     Name=AI746432;
OS
     Mus musculus (Mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OX
     NCBI TaxID=10090;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=FVB/N; TISSUE=Liver;
RC
RX
     MEDLINE=22388257; PubMed=12477932; DOI=10.1073/pnas.242603899;
     Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
     Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
     Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
RA
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
     Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
RA
     Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
     Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
     Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
     Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
RA
     Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.,
     Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E.,
RA
     Jones S.J., Marra M.A.;
RA
RТ
     "Generation and initial analysis of more than 15,000 full-length human
RT
     and mouse cDNA sequences.";
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
     [2]
RP
     SEOUENCE FROM N.A.
RC
     STRAIN=FVB/N; TISSUE=Liver;
RA
     Strausberg R.;
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
RL
     -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
     EMBL; BC025940; AAH25940.1; -.
DR
     MGD; MGI:2146055; AI746432.
DR
     GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
     GO; GO:0008152; P:metabolism; IEA.
     InterPro; IPR002213; UDP glucos trans.
DR
DR
     Pfam; PF00201; UDPGT; 1.
     PROSITE; PS00375; UDPGT; 1.
DR
```

KW

Glycosyltransferase; Transferase.

```
59742 MW; F2EF34F41C3DEB95 CRC64;
SO
    SEQUENCE
            523 AA;
                     65.6%; Score 1815; DB 2; Length 523;
 Query Match
 Best Local Similarity 65.4%; Pred. No. 1.3e-134;
 Matches 342; Conservative 73; Mismatches 106;
                                                              2;
                                            Indels
                                                    2;
                                                       Gaps
         1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
             1 MAAHRSWLLVSFFLLEVLLLEAAKILTISTLSASHYILMNRVSQILQGGGHDVIKLLYEG 60
Db
Qy
         61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
           61 GD-IPDFRKENSSYQVINWRLPEDQQKTFENRWHRLIDEYAYGRSKYHTLLKIHQYFADL 119
Db
        121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLP-I 179
Qу
           120 CSHLLSRKDIMELLQKENFDLVLLDSMDLCSFLIVEKLGKRFVSFLPFQFSYMDFGLPNA 179
Db
        180 PLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRROOHMOSTFDNTIKEHFTEGSRPVLSH 239
Qу
           180 PLSYAPVYGSGLTDQMDFWGRVKNILMFFHFTKKRRDIFSQYGNTVQEHFAEGSQPVLSD 239
Db
        240 LLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVT 299
Qу
           240 LLLKAELWFVNSDFALDFARPLFPNTVYVGGLLDKPVQPIPQDLEDFISQFGDSGFVLVA 299
Db
        300 LGSMVNTCONPEIFKEMNNAFAHLPOGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLA 359
Qy
           300 LDSVVSMIQSKEIIKEMNSAFAHLPQGVLWTCKSSHWPKDVSLAPNVKIMDWLPQIDLLA 359
Db
        360 HPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAET 419
Qу
           Db
        360 HPSIRLFVTHGGMNSVMEAVHHGVPMVGIPFFGDQPENMVRVEAKNLGVSIQLQTLKAES 419
        420 LALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQP 479
Qy
             420 FLLTMKEVIEDQRYKTAAMASKVIRNSHPLTPAQRLVGWIDHILQTGGAAHLKPYAFQQP 479
Db
        480 WHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qу
           :| :|||:
        480 WHEQYMLDVFLFLLGLTLGTLWLSVKVLVAVTRYLSISRKVKQ 522
Db
RESULT 6
Q8JZZ0
ID
             PRELIMINARY;
                            PRT;
                                  523 AA.
    Q8JZZ0
AC
    Q8JZZ0;
    01-OCT-2002 (TrEMBLrel. 22, Created)
DT
    01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
    01-OCT-2003 (TrEMBLrel. 25, Last annotation update)
DT
    Hypothetical protein AI313915.
DE
GN
    Name=AI313915;
OS
    Mus musculus (Mouse).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
    NCBI TaxID=10090;
```

RN

[1]

```
RP
    SEQUENCE FROM N.A.
    STRAIN=FVB/N; TISSUE=Liver;
RC
    MEDLINE=22388257; PubMed=12477932; DOI=10.1073/pnas.242603899;
RX
    Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
    Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
    Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
    Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
RA
    Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
    Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
    Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
    Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
RA
    Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
    Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
    Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
    Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
    Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
    Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
    Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.,
RA
    Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E.,
RA
    Jones S.J., Marra M.A.;
RA
    "Generation and initial analysis of more than 15,000 full-length human
RT
RT
    and mouse cDNA sequences.";
    Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
    SEOUENCE FROM N.A.
RP
RC
    STRAIN=FVB/N; TISSUE=Liver;
RA
    Strausberg R.;
    Submitted (JUL-2002) to the EMBL/GenBank/DDBJ databases.
RL
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
DR
    EMBL; BC034837; AAH34837.1; -.
    MGD; MGI:2145969; AI313915.
DR
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
    GO; GO:0008152; P:metabolism; IEA.
DR
    InterPro; IPR002213; UDP glucos trans.
DR
    Pfam; PF00201; UDPGT; 1.
DR
DR
    PROSITE; PS00375; UDPGT; 1.
    Glycosyltransferase; Hypothetical protein; Transferase.
KW
              523 AA; 59662 MW; 4F7BD5ACBAFB5127 CRC64;
SQ
    SEQUENCE
                         65.2%; Score 1804; DB 2; Length 523;
  Query Match
                         65.4%; Pred. No. 9.4e-134;
  Best Local Similarity
 Matches 342; Conservative 69; Mismatches 110; Indels
                                                              2;
                                                                  Gaps
                                                                         2;
           1.MAGORVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
                            11 1 11: 11
           1 MAAHRRWLLMSFLFLEVILLEAAKILTISTLSASHYIVISRVSQVLHEGGHNVTKLLYES 60
Db
          61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
Qу
                :|||:||: |||||:|
                                                11
                                                     \Box
                                                            11::1
          61 AN-IPDFRKEKPSYQVINWRPPEDQEKKFADLRHRLTEEITYGRSKHHTLLKIHQYFGDL 119
Db
         121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLP-I 179
Qу
                 | ::|||
         120 CSQLLSRKDIMDFLKNENFDLVLLDSMDLCSLLIVEKLGKRFVSFLPFQFSYMDFGLPSA 179
Db
         180 PLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSH 239
Qу
```

```
180 PLSYAPVYGSGLTDQMDFWGRVKNFLMFLDFSMKQREILSQYDSTIQEHFVEGSQPVLSD 239
Db
         240 LLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVT 299
Qу
             240 LLLKAELWFVNSDFALDFARPLFPNTVYVGGLLDKPVQPIPQDLENFISQFGDSGFVLVA 299
Db
         300 LGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLA 359
QУ
             300 LGSIVSMIQSKEIIKEMNSAFAHLPQGVLWTCKTSHWPKDVSLASNVKIMDWLPQTDLLA 359
Db
Qу
         360 HPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAET 419
             360 HPSIRLFVTHGGMNSVMEAVHHGVPMVGIPFFFDQPENMVRVEAKNLGVSIQLQTLKAES 419
Db
         420 LALKMKOIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQP 479
Qу
              420 FALTMKKIIEDKRYKSAAMASKIIRHSHPLTPAQRLLGWIDHILQTGGAAHLKPYAFQQP 479
Db
         480 WHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qу
             : | | | | | | |
         480 WHEQYMLDVFLFLLGLMLGTLWLSVKVLVAVTRYLSIATKVKE 522
Db
RESULT 7
08VC11
    08VC11
               PRELIMINARY;
                                PRT;
                                      523 AA.
ID
    08VC11;
AC
    01-MAR-2002 (TrEMBLrel. 20, Created)
DT
    01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
DT
    25-OCT-2004 (TrEMBLrel. 28, Last annotation update)
DT
    Hypothetical protein AI313915 (Mus musculus adult male liver tumor
DE
    cDNA, RIKEN full-length enriched library, clone:C730018P11
DE
DE
    product:hypothetical UDP-glucoronosyl and UDP-glucosyl transferase
    containing protein, full insert sequence).
DΕ
GN
    Name=AI313915;
    Mus musculus (Mouse).
OS
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OX
    NCBI TaxID=10090;
RN
    [1]
RP
    SEQUENCE FROM N.A.
RC
    STRAIN=FVB/N; TISSUE=Liver;
    MEDLINE=22388257; PubMed=12477932; DOI=10.1073/pnas.242603899;
RX
    Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
    Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
    Altschul S.F., Zeeberg B., Buetow.K.H., Schaefer C.F., Bhat N.K.,
RA
    Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
    Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
    Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
    Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
     Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
     Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
```

```
Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.,
     Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E.,
RA
     Jones S.J., Marra M.A.;
RA
     "Generation and initial analysis of more than 15,000 full-length human
RT
     and mouse cDNA sequences.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
     [2]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=FVB/N; TISSUE=Liver;
RA
     Strausberg R.;
RL
     Submitted (JAN-2002) to the EMBL/GenBank/DDBJ databases.
RN
     [3]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Liver;
     MEDLINE=99279253; PubMed=10349636; DOI=10.1016/S0076-6879(99)03004-9;
RX
     Carninci P., Hayashizaki Y.;
RA
     "High-efficiency full-length cDNA cloning.";
RT
RL
     Meth. Enzymol. 303:19-44(1999).
RN
     [4]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Liver;
     MEDLINE=21085660; PubMed=11217851; DOI=10.1038/35055500;
RX
RA
     RIKEN FANTOM Consortium;
     "Functional annotation of a full-length mouse cDNA collection.";
RT
RL
     Nature 409:685-690(2001).
RN
     [5]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Liver;
     The FANTOM Consortium,
RA
     the RIKEN Genome Exploration Research Group Phase I & II Team;
RA
     "Analysis of the mouse transcriptome based on functional annotation of
RT
     60,770 full-length cDNAs.";
RT
RL
     Nature 420:563-573(2002).
RN
     [6]
     SEQUENCE FROM N.A.
RP
     STRAIN=C57BL/6J; TISSUE=Liver;
RC
RX
     MEDLINE=20499374; PubMed=11042159; DOI=10.1101/gr.145100;
RA
     Carninci P., Shibata Y., Hayatsu N., Sugahara Y., Shibata K., Itoh M.,
     Konno H., Okazaki Y., Muramatsu M., Hayashizaki Y.;
RA
     "Normalization and subtraction of cap-trapper-selected cDNAs to
RT
     prepare full-length cDNA libraries for rapid discovery of new genes.";
RT
     Genome Res. 10:1617-1630(2000).
RL
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Liver;
     MEDLINE=20530913; PubMed=11076861; DOI=10.1101/gr.152600;
RX
     Shibata K., Itoh M., Aizawa K., Nagaoka S., Sasaki N., Carninci P.,
RA
     Konno H., Akiyama J., Nishi K., Kitsunai T., Tashiro H., Itoh M.,
RA
     Sumi N., Ishii Y., Nakamura S., Hazama M., Nishine T., Harada A.,
RA
     Yamamoto R., Matsumoto H., Sakaguchi S., Ikegami T., Kashiwagi K.,
RA
     Fujiwake S., Inoue K., Togawa Y., Izawa M., Ohara E., Watahiki M.,
RA
     Yoneda Y., Ishikawa T., Ozawa K., Tanaka T., Matsuura S., Kawai J.,
RA
RA
     Okazaki Y., Muramatsu M., Inoue Y., Kira A., Hayashizaki Y.;
     "RIKEN integrated sequence analysis (RISA) system-384-format
RT
RT
     sequencing pipeline with 384 multicapillary sequencer.";
RL
     Genome Res. 10:1757-1771(2000).
RN
     [8]
```

25

```
SEQUENCE FROM N.A.
    STRAIN=C57BL/6J; TISSUE=Liver;
RC
    Adachi J., Aizawa K., Akimura T., Arakawa T., Bono H., Carninci P.,
RA
    Fukuda S., Furuno M., Hanagaki T., Hara A., Hashizume W.,
RA
    Hayashida K., Hayatsu N., Hiramoto K., Hiraoka T., Hirozane T.,
RA
    Hori F., Imotani K., Ishii Y., Itoh M., Kagawa I., Kasukawa T.,
RA
    Katoh H., Kawai J., Kojima Y., Kondo S., Konno H., Kouda M., Koya S.,
RA
RA
    Kurihara C., Matsuyama T., Miyazaki A., Murata M., Nakamura M.,
    Nishi K., Nomura K., Numazaki R., Ohno M., Ohsato N., Okazaki Y.,
RA
    Saito R., Saitoh H., Sakai C., Sakai K., Sakazume N., Sano H.,
RA
    Sasaki D., Shibata K., Shinagawa A., Shiraki T., Sogabe Y., Tagami M.,
RA
RA
    Tagawa A., Takahashi F., Takaku-Akahira S., Takeda Y., Tanaka T.,
    Tomaru A., Toya T., Yasunishi A., Muramatsu M., Hayashizaki Y.;
RA
    Submitted (JUL-2001) to the EMBL/GenBank/DDBJ databases.
RL
CC
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
    EMBL; BC022134; AAH22134.1; -.
DR
    EMBL; AK050128; BAC34080.1; -.
DR
    MGD; MGI:2145969; AI313915.
DR
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
    GO; GO:0008152; P:metabolism; IEA.
DR
    Pfam; PF00201; UDPGT; 1.
DR
    PROSITE; PS00375; UDPGT; 1.
    Glycosyltransferase; Hypothetical protein; Transferase.
KW
            523 AA; . 59672 MW; BC7BD6ADF197ADD9 CRC64;
SQ
                              Score 1802; DB 2; Length 523;
 Query Match
                       65.1%;
                       65.4%;
                              Pred. No. 1.4e-133;
 Best Local Similarity
 Matches 342; Conservative 68; Mismatches 111; Indels
                                                                    2;
                                                         2;
                                                            Gaps
          1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
            1 MAAHRRWLLMSFLFLEVILLEAAKILTISTLSASHYIVISRVSQVLHEGGHNVTKLLYES 60
Db
         61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
Qу
               :|||:||: |||||:| ||||
                                             \Pi
                                                 \Box
                                                       11::1
         61 AN-IPDFRKEKPSYQVINWRPPEDQEKKFADLRHRLTEEITYGRSKHHTLLKIHQYFGDL 119
Db
         121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLP-I 179
Qу
               120 CSQLLSRKDIMDFLKNENFDLVLLDSMDLCSLLIVEKLGKRFVSFLPFQFSYMDFGLPSA 179
Db
         180 PLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSH 239
Qу
            180 PLSYAPVYGSGLTDOMDFWGRVKNFLMFLDFSMKQREILSQYDSTIQEHFVEGSQPVLSD 239
Db
         240 LLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVT 299
Qy . ....
            240 LLLKAELWFVNSDFALDFARPLFPNTVYVGGLLDKPVQPIPQDLENFISQFGDSGFVLVA 299
Db
         300 LGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLA 359
Qy
            300 LGSIVSMIQSKEIIKEMNSAFAHLPQGVLWTCKTSHWPKDVSLAPNVKIMDWLPQTDLLA 359
Db
         360 HPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAET 419
Qy
            360 HPSIRLFVTHGGMNSVMEAVHHGVPMVGIPFFFDQPENMVRVEAKNLGVSIQLQTLKAES 419
Db
```

```
420 LALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQP 479
Qу
               420 FALTMKKIIEDKRYKSAAMASKIIRHSHPLTPAQRLLGWIDHILQTGGAAHLKPYAFQQP 479
Db
          480 WHEQYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qу
              Db
          480 WHEQYMLDVFLFLLGLMLGTLWLSVKVLVAVTRYLSIATKVKE 522
RESULT 8
063ZR6
ID
     Q63ZR6
                PRELIMINARY;
                                  PRT:
                                         523 AA.
AC
     Q63ZR6;
     25-OCT-2004 (TrEMBLrel. 28, Created)
DT
     25-OCT-2004 (TrEMBLrel. 28, Last sequence update)
DT
     25-OCT-2004 (TrEMBLrel. 28, Last annotation update)
     Hypothetical protein.
DE
OS
     Xenopus laevis (African clawed frog).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae;
OC
OC
     Xenopodinae; Xenopus.
     NCBI TaxID=8355;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     TISSUE=Ovary;
     MEDLINE=22341132; PubMed=12454917; DOI=10.1002/dvdy.10174;
RX
     Klein S.L., Strausberg R.L., Wagner L., Pontius J., Clifton S.W.,
RA
RA
     Richardson P.;
     "Genetic and genomic tools for Xenopus research: The NIH Xenopus
RT
RT
     initiative.";
RL
     Dev. Dyn. 225:384-391(2002).
RN
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Ovary;
     PubMed=12477932; DOI=10.1073/pnas.242603899;
RX
     Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
     Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
     Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
     Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
     Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
     Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
     Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
     Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
     Rodriquez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.,
RA
     Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E.,
RA
RA
     Jones S.J., Marra M.A.;
     "Generation and initial analysis of more than 15,000 full-length human
RT
RT
     and mouse cDNA sequences.";
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
RP
     SEQUENCE FROM N.A.
```

```
RC
    TISSUE=Ovary;
RA
    Klein S., Gerhard D.S.;
    Submitted (SEP-2004) to the EMBL/GenBank/DDBJ databases.
RL
    EMBL; BC082844; AAH82844.1; -.
DR
KW
    Hypothetical protein.
             523 AA; 60436 MW; 73B728B7D1CE5CA0 CRC64;
SQ
    SEQUENCE
                      41.4%; Score 1145; DB 2; Length 523;
 Best Local Similarity 42.4%; Pred. No. 1.1e-81;
 Matches 224; Conservative 111; Mismatches 181; Indels
                                                      12; Gaps
Qу
          1 MAGORVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
            Db
          1 MAVGRKSLILSLLIOHFVLLHGAKILTVCFLGGSHYLWMDEISRILHNNGQEVTMFLQIA 60
         61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGR--GKFENLLNVLEYLA 118
Qу
                                      :||: : : : | :: : :
              :||::::| |::|:| :::::||
         61 DGLLPDYQMQESPYRLITWSLDKNYLKEFS---EFFRDSKYNFKDCDELSSYLGLMTHFS 117
Db
        119 LQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAI----LSTSFGSLE 174
Qу
                 1: ||: || | :|: ::::|: | ||:::||| ||:|
        118 RQCKMIFNQTSIMNLLKEEKYDLAVIDSFNPCTFLVSEKLGIPFIATHPFPVKSPWHS-- 175
Db
        175 FGLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSR 234
QУ
             176 -GIPNOLSYMPVYOSOLTDHMDFFERVKNVFMYIASAVLERKIYSLFDDVIEEHFPACSR 234
Db
        235 PVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSG 294
Qу
               235 PSFEELYKKTALWMYLTDFTIEFPHPFFPNVLYIGGVLAKPAKPVSEELEDFIAOSGEHG 294
Db
        295 FVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQ 354
Qу
            295 FIIVTFGSMVPSNPLTEFVKEMNDGFSKIPQKVIWRYRISEWPKVLQLAPNVKIMNWISQ 354
Db
        355 SDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKK 414
Qу
            355 NDLLGHPKARLLVTHGGVNSIQEAIYHGVPMVAIPLFFDQFDNAVRIKAKHLGTFIPKDQ 414
Db
        415 LKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPY 474
Qу
            415 LKAEKLANAIRDVIGGESYKNSAMHLSLIQRSQPFPKDQQIVRWVEHIVKVGGTDHLIPY 474
Db
        475 VFOOPWHEOYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKE 522
Qy
             : | | | : : | | | | | | | | | | | | |
                            :| :| ||| | : |
        475 SYQQPLYQQYLLDVFLFVCVCVIGACYLTVKLLKMFIQKLCSFRKLKQ 522
Db
RESULT 9
Q8NAW4
              PRELIMINARY;
ID
    Q8NAW4
                            PRT; 221 AA.
AC
    08NAW4:
DT
    01-OCT-2002 (TrEMBLrel. 22, Created)
    01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
    01-JUN-2003 (TrEMBLrel. 24, Last annotation update)
DT
    Hypothetical protein FLJ34658.
DE
    Homo sapiens (Human).
OS
```

```
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
    NCBI TaxID=9606;
RN
     [1]
RP
    SEQUENCE FROM N.A.
RC
    TISSUE=Kidney;
    PubMed=14702039; DOI=10.1038/ng1285;
RX
RA
    Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
    Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA
    Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA
    Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA
RA
    Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
    Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA
RA
    Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA
    Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA
    Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
    Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA
    Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA
RA
    Kanehori K., Takahashi-Fujii A., Hara H., Tanase T., Nomura Y.,
    Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA
    Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA
    Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA
    Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA
    Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA
    Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA
    Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA
RA
    Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
    Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA
    Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA
    Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA
    Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA
    Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA
    Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA.
RA
    Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
    Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RA
     "Complete sequencing and characterization of 21,243 full-length human
RT
RT
    cDNAs.";
    Nat. Genet. 36:40-45(2004).
RL
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
    EMBL; AK091977; BAC03783.1; -.
DR
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
DR
    GO; GO:0008152; P:metabolism; IEA.
DR
     InterPro; IPR002213; UDP glucos trans.
DR
     Pfam; PF00201; UDPGT; 1.
DR
     PROSITE; PS00375; UDPGT; 1.
     Glycosyltransferase; Transferase.
KW
               221 AA; 24764 MW; ACB59BEF47ACD458 CRC64;
SQ
     SEQUENCE
                                  Score 963; DB 2; Length 221;
  Query Match
                          34.8%;
  Best Local Similarity
                         79.6%;
                                 Pred. No. 8e-68;
  Matches 176; Conservative
                               21; Mismatches
                                                 24; Indels
                                                                    Gaps
          303 MVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPS 362
Qу
              1 MLNTHQSQEVLKKMHNAFAHLPQGVIWTCQSSHWPRDVHLATNVKIVDWLPQSDLLAHPS 60
Db
          363 IRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLAL 422
Qу
```

```
61 IRLFVTHGGQNSVMEAIRHGVPMVGLPVNGDQHGNMVRVVAKNYGVSIRLNQVTADTLTL 120
Db
         423 KMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHE 482
Qу
              121 TMKQVIEDKRYKSAVVAASVILHSQPLSPAQRLVGWIDHILQTGGATHLKPYAFQQPWHE 180
Db
         483 QYLFDVFVFLLGLTLGTLWLCGKLLGMAVWWLRGARKVKET 523
Qу
             | | | | | | | | | | | | | | | |
         181 QYLIDVFVFLLGLTLGTMWLCGKLLGVVARWLRGARKVKKT 221
Db
RESULT 10
Q8IYS9
                PRELIMINARY;
                                  PRT;
                                        252 AA.
ID
    Q8IYS9
AC
    Q8IYŚ9;
    01-MAR-2003 (TrEMBLrel. 23, Created)
DT
    01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
DT
    01-OCT-2003 (TrEMBLrel. 25, Last annotation update)
    Hypothetical protein.
DΕ
OS
    Homo sapiens (Human).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
    NCBI TaxID=9606;
OX
RN
    [1]
RP
    SEQUENCE FROM N.A.
RC
    TISSUE=Testis;
    MEDLINE=22388257; PubMed=12477932; DOI=10.1073/pnas.242603899;
RX
    Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
    Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
    Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
    Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
    Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
    Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
    Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
    Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
    Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
    Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
    Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
    Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
    Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
    Rodriquez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.,
RA
RA
     Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E.,
RA
     Jones S.J., Marra M.A.;
     "Generation and initial analysis of more than 15,000 full-length human
RT
     and mouse cDNA sequences.";
RT
RL
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RN
     [2]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Testis;
RA
     Strausberg R.;
     Submitted (JUL-2002) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; BC035012; AAH35012.1; -.
     GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
     GO; GO:0008152; P:metabolism; IEA.
DR
DR
     InterPro; IPR002213; UDP glucos trans.
```

```
Pfam; PF00201; UDPGT; 1.
DR
     Hypothetical protein.
KW
               252 AA; 29155 MW; 956CC9F9718B8982 CRC64;
     SEOUENCE
SO
                        33.0%; Score 914.5; DB 2;
                                                  Length 252;
  Query Match
  Best Local Similarity 75.7%; Pred. No. 6.5e-64;
  Matches 171; Conservative 21; Mismatches 33;
                                                           1; Gaps
                                                                      1;
                                                  Indels
          58 HKRGPFM-PDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEY 116
Qу
             3 HQSGKFLIPDIKEEEKSYQVIRWFSPEDHQKRIKKHFDSYIETALDGRKESEALVKLMEI 62
Db
         117 LALOCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFG 176
Qу
                63 FGTQCSYLLSRKDIMDSLKNENYDLVFVEAFDFCSFLIAEKLVKPFVAILPTTFGSLDFG 122
Dh
         177 LPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPV 236
Qу
             123 LPSPLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSQWDMQSTFDNTIKEHFPEGSRPV 182
Db
         237 LSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQD 282
Qу
             183 LSHLLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPIKPVPQN 228
Db
RESULT 11
Q8BRY7
                                      302 AA.
                PRELIMINARY;
                                PRT:
ID
     Q8BRY7
AC
     08BRY7:
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-OCT-2003 (TrEMBLrel. 25, Last annotation update)
DT
     Mus musculus adult male aorta and vein cDNA, RIKEN full-length
DE
     enriched library, clone: A530069C13 product: hypothetical UDP-
DE
     glucoronosyl and UDP-glucosyl transferase containing protein, full
DΕ
DΕ
     insert sequence.
     Name=AI313915;
GN
os
     Mus musculus (Mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=C57BL/6J; TISSUE=Aorta and vein;
RC
     MEDLINE=99279253; PubMed=10349636; DOI=10.1016/S0076-6879(99)03004-9;
RX
     Carninci P., Hayashizaki Y.;
...RA
     "High-efficiency full-length cDNA cloning.";
RT
     Meth. Enzymol. 303:19-44(1999).
RL
RN
     [2]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Aorta and vein;
     MEDLINE=21085660; PubMed=11217851; DOI=10.1038/35055500;
RX
     RIKEN FANTOM Consortium;
RA
     "Functional annotation of a full-length mouse cDNA collection.";
RT
RL
     Nature 409:685-690(2001).
RN
RP
     SEQUENCE FROM N.A.
```

```
STRAIN=C57BL/6J; TISSUE=Aorta and vein;
RC
RA
     The FANTOM Consortium,
     the RIKEN Genome Exploration Research Group Phase I & II Team;
RA
     "Analysis of the mouse transcriptome based on functional annotation of
RT
RT
     60,770 full-length cDNAs.";
RL
     Nature 420:563-573(2002).
RN
     [4]
RP
     SEOUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Aorta and vein;
     MEDLINE=20499374; PubMed=11042159; DOI=10.1101/gr.145100;
RX
RA
     Carninci P., Shibata Y., Hayatsu N., Sugahara Y., Shibata K., Itoh M.,
RA
     Konno H., Okazaki Y., Muramatsu M., Hayashizaki Y.;
RT
     "Normalization and subtraction of cap-trapper-selected cDNAs to
RT
     prepare full-length cDNA libraries for rapid discovery of new genes.";
RL
     Genome Res. 10:1617-1630(2000).
RN
     [5]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Aorta and vein;
RX
     MEDLINE=20530913; PubMed=11076861; DOI=10.1101/gr.152600;
     Shibata K., Itoh M., Aizawa K., Nagaoka S., Sasaki N., Carninci P.,
RA
     Konno H., Akiyama J., Nishi K., Kitsunai T., Tashiro H., Itoh M.,
RA
     Sumi N., Ishii Y., Nakamura S., Hazama M., Nishine T., Harada A.,
RA
     Yamamoto R., Matsumoto H., Sakaguchi S., Ikegami T., Kashiwagi K.,
RA
     Fujiwake S., Inoue K., Togawa Y., Izawa M., Ohara E., Watahiki M.,
RA
     Yoneda Y., Ishikawa T., Ozawa K., Tanaka T., Matsuura S., Kawai J.,
RA
     Okazaki Y., Muramatsu M., Inoue Y., Kira A., Hayashizaki Y.;
RA
     "RIKEN integrated sequence analysis (RISA) system-384-format
RT
     sequencing pipeline with 384 multicapillary sequencer.";
RT
RL
     Genome Res. 10:1757-1771(2000).
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Aorta and vein;
     Adachi J., Aizawa K., Akimura T., Arakawa T., Bono H., Carninci P.,
RA
     Fukuda S., Furuno M., Hanagaki T., Hara A., Hashizume W.,
RA
     Hayashida K., Hayatsu N., Hiramoto K., Hiraoka T., Hirozane T.,
RA
     Hori F., Imotani K., Ishii Y., Itoh M., Kagawa I., Kasukawa T.,
RA
     Katoh H., Kawai J., Kojima Y., Kondo S., Konno H., Kouda M., Koya S.,
RA
     Kurihara C., Matsuyama T., Miyazaki A., Murata M., Nakamura M.,
RA
     Nishi K., Nomura K., Numazaki R., Ohno M., Ohsato N., Okazaki Y.,
RA
     Saito R., Saitoh H., Sakai C., Sakai K., Sakazume N., Sano H.,
RA
     Sasaki D., Shibata K., Shinagawa A., Shiraki T., Sogabe Y., Tagami M.,
RA
     Tagawa A., Takahashi F., Takaku-Akahira S., Takeda Y., Tanaka T.,
RA
     Tomaru A., Toya T., Yasunishi A., Muramatsu M., Hayashizaki Y.;
RA
RL
     Submitted (JUL-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AK041045; BAC30796.1; -.
     MGD; MGI:2145969; AI313915.
,DR
DR
     GO; GO:0016740; F:transferase activity; IEA.
     GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
DR
     GO; GO:0008152; P:metabolism; IEA.
DR
     InterPro; IPR002213; UDP glucos trans.
DR
     Pfam; PF00201; UDPGT; 1.
KW
     Hypothetical protein; Transferase.
                302 AA; 35256 MW; C78A84C1D58987DC CRC64;
SQ
     SEQUENCE
  Query Match
                          28.6%;
                                  Score 792; DB 2; Length 302;
                          57.9%;
                                  Pred. No. 3.9e-54;
  Best Local Similarity
  Matches 157; Conservative 37; Mismatches
                                                  75; Indels
                                                                      Gaps
                                                                              2;
```

```
1 MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKR 60
Qу
                          11 | 11:11
           1 MAAHRRWLLMSFLFLEVILLEAAKILTISTLSASHYIVISRVSQVLHEGGHNVTKLLYES 60
Db
          61 GPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQ 120
Qу
                                                         11::1
               :|||:||: |||||:|
                                              11
                                                  11.1
          61 AN-IPDFRKEKPSYQVINWRPPEDQEKKFADLRHRLTEEITYGRSKHHTLLKIHQYFGDL 119
Db
         121 CSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLP-I 179
Qу
             120 CSQLLSRKDIMDFLKNENFDLVLLDSMDLCSLLIVEKLGKRFVSFLPFQFSYMDFGLPSA 179
Db
         180 PLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSH 239
Qу
             Db
         180 PLSYAPVYGSGLTDQMDFWGRVKNFLMFLDFSMKQREILSQYDSTIQEHFVEGSQPVLSD 239
         240 LLLKAELWFINSDFAFDFARPLLPNTVYVGG 270
Qу
             240 LLLKAELWFVNSDFALDFARPLFPNTVYVGG 270
Db
RESULT 12
UDC1 RABIT
    UDC1 RABIT
                  STANDARD;
                               PRT;
                                      502 AA.
ID
    P36514;
AC
DT
    01-JUN-1994 (Rel. 29, Created)
    01-JUN-1994 (Rel. 29, Last sequence update)
DT
    05-JUL-2004 (Rel. 44, Last annotation update)
    UDP-glucuronosyltransferase 2C1 microsomal (EC 2.4.1.17) (UDPGT)
DE
DE
    (Fragment).
    Name=UGT2C1; Synonyms=UGT2A2;
GN
os
    Oryctolagus cuniculus (Rabbit).
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Lagomorpha; Leporidae; Oryctolagus.
    NCBI TaxID=9986;
OX
RN
    [1]
RP
    SEQUENCE FROM N.A.
RC
    STRAIN=New Zealand white; TISSUE=Liver;
    MEDLINE=93315511; PubMed=8325897;
RX
    Tukey R.H., Pendurthi U.R., Nguyen N.T., Green M.D., Tephly T.R.;
RA
    "Cloning and characterization of rabbit liver UDP-
RT
    qlucuronosyltransferase cDNAs. Developmental and inducible expression
RT
RT
    of 4-hydroxybiphenyl UGT2B13.";
    J. Biol. Chem. 268:15260-15266(1993).
RL
    -!- FUNCTION: UDPGT is of major importance in the conjugation and
CC
        subsequent elimination of potentially toxic xenobiotics and
CC
CC
        endogenous compounds.
    -!- CATALYTIC ACTIVITY: UDP-glucuronate + acceptor = UDP + acceptor
CC
        beta-D-glucuronoside.
CC
CC
    -!- SUBCELLULAR LOCATION: Microsomal.
CC
    -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
```

```
modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
CC
    EMBL; L01083; AAA18023.1; -.
DR
    InterPro; IPR002213; UDP glucos trans.
DR
    Pfam; PF00201; UDPGT; 1.
DR
    PROSITE; PS00375; UDPGT; 1.
    Glycoprotein; Glycosyltransferase; Microsome; Multigene family;
KW
    Transferase; Transmembrane.
KW
FT
   NON TER
              1
FT
   TRANSMEM
             466
                   481
                           Potential.
                           N-linked (GlcNAc. . .) (Potential).
FT
    CARBOHYD 177
                   177
                          N-linked (GlcNAc. . .) (Potential).
FT CARBOHYD 288
                  288
    SEQUENCE 502 AA; 57449 MW; B6E65670BFAE1D35 CRC64;
                    27.0%; Score 748.5; DB 1; Length 502;
 Query Match
 Best Local Similarity 35.4%; Pred. No. 2.1e-50;
 Matches 180; Conservative 82; Mismatches 178; Indels 69; Gaps 14;
         34 SHYLLMDRVSQILQDHGHNVT------MLNHKRGPFMPDFKK-----EE---- 71
Qу
           Db
         7 SHWINLKVILEELQLRGHEITVLVPSPSLLLDHTKIPFNVEVLQLQVTKETLMEELNTVL 66
         72 --KSYOV--ISWLAPEDHOREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQCSHFLNR 127
Qу
             67 YMSSFELPTLSWWKVLGKMVEMGKQFS-----KNLRRV-----CDSAITN 106
Db
        128 KDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLE----FGLPIPLSY 183
Qy
           107 KELLDRLKAAKFDICLADPLAFCGELVAELLNIPFVYSFRFSIGNIIERSCAGLPTPSSY 166
Db
        184 VPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQH-MQSTFDNTIKEHFTE--GSRPVLSHL 240
Qу
           167 VPGSTSGLTDNMSFVQRLKNWLLYLMNDMMFSHFMLSEWD----EYYSKVLGRRTTICEI 222
Db
        241 LLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTL 300
Qу
           223 MGKAEMWLIRSYWDFEFPRPFLPNFEYVGGLHCKPAKPLPEELEEFVQSSGNDGVVVFTL 282
Db
        301 GSMVNTCQNPEIFKEMNN----AFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSD 356
QУ
           283 GSMI---QN--LTEERSNLIASALAQIPQKVLWRYT---GKKPATLGPNTRLFEWIPQND 334
Db
        357 LLAHPSIRLFVTHGGONSIMEAIOHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLK 416
Qу
           335 LLGHPKTRAFITHGGTNGLYEAIYHGVPMVGIPLFGDQPDNIARVKAKGAAVDVDLRIMT 394
Db
        417 AETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVF 476
Qу
             395 TSSLLKALKDVINNPSYKENAMKLSRIHHDQPLKPLDRAVFWIEFVMRHKGARHLRVAAH 454
Db
        477 QQPWHEQYLFDVFVFLLGLTLGTLWLCGK 505
Qу
             | : | || || || || ::| |
        455 DLTWFQYYSLDVVVFLLTCVATIIFLAKK 483
Db
```

```
RESULT 13
Q98TB5
ID
     Q98TB5
                PRELIMINARY;
                                  PRT:
                                         541 AA.
AC
     Q98TB5;
     01-JUN-2001 (TrEMBLrel. 17, Created)
01-JUN-2001 (TrEMBLrel. 17, Last sequence update)
DT
DT
     01-OCT-2003 (TrEMBLrel. 25, Last annotation update)
DT
    UDP-galactose ceramide galactosyltransferase (EC 2.4.1.47).
DE
GN
    Name=CGT;
OS
    Gallus gallus (Chicken).
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
    Gallus.
OX
    NCBI TaxID=9031;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Kapitonov D.;
RT
     "Molecular cloning and expression of ceramide galactosyltransferases.
RT
     Comparison with other glycosyltransferases.";
RL
    Thesis (1997), Medical College of Virginia, Richmond, VA, USA.
RN
RP
     SEQUENCE FROM N.A.
RA
    Kapitonov D.;
    Submitted (FEB-1999) to the EMBL/GenBank/DDBJ databases.
RL
     -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
DR
    EMBL; AF129809; AAK16234.1; -.
DR
    GO; GO:0047263; F:N-acylsphingosine galactosyltransferase act. . .; IEA.
    GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
DR
DR
    GO; GO:0008152; P:metabolism; IEA.
    InterPro; IPR002213; UDP glucos trans.
DR
    Pfam; PF00201; UDPGT; 1.
DR
     PROSITE; PS00375; UDPGT; 1.
DR
KW
     Glycosyltransferase; Transferase.
SQ
     SEQUENCE
              541 AA; 61598 MW; DFF1CA4C69E781CC CRC64;
                         26.3%; Score 727; DB 2; Length 541;
 Query Match
 Best Local Similarity
                         33.3%; Pred. No. 1.2e-48;
 Matches 166; Conservative 99; Mismatches 199; Indels
                                                               34; Gaps
                                                                          10;
          13 LLPGVLLSEAAKILTISTV-GGSHYLLMDRVSQILQDHGHNVTMLNHKRGPFMPDFKKEE 71
Qу
                 | :: | | | | : : : | | | | |
                                                        1 :
Db
          11 LWSAVGIARAAKIVVVPPIMFESHLYIFKTLASALHDQGHQTVFLLSEGREIPPSNHYRL 70
          72 KSYOVISWLAPEDHOREFKKS-FDFFLEETL----GGRGKFENLLNVLEYLALOCSHFLN 126
Qу
                              | | | | | | : :
                                                | ::|:: : - |
          71 KRYPGI----FNSSTSDDFLQSKMRSIFSGRLTALELFDILDHYSKNCDMIVG 119
Db
         127 RKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV 186
Qу
               :::| :|| | | ||:::|: : | |:|| || :
                                                    : : | | | | | | | | | | | | | | | |
         120 NQNLMHALKQEKFDLLLVDPNEMCGFVIAHLLGVKYAVFSTGLWYPAEVGAPAPLSYVPE 179
Db
         187 FRSLLTDHMDFWGRVKNFLMF-----FSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHL 240
Qу
              : ::::
                                                                 |:
         180 FNSLLTDRMNLFERMKNTFVYVISRFGVSFL-----VLPKYERIMQKHKVLPERSMYD-L 233
Db .
         241 LLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTL 300
Qу
```

```
234 VHGSSLWMLCTDIALEFPRPTLPNVVYVGGILTKPASPLPEDLQTWVNGANENGFVLVSF 293
 Db
           301 GSMVNTCONPEIFKEMNNAFAHLPOGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAH 360
 Qу
               294 GAGVKYL-SEDVANKLARALARLPORVIWRFSGN---KPRNLGNNTKLIEWLPONDLLGH 349
 Db
           361 PSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETL 420
 Qy
               350 PNIKAFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTRVQAKGMGILLNWKTVTESEL 409
 Db
           421 ALKMKOIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPW 480
 Qy
                  410 YEALEKVINDPSYRQRAQRLSEIHKDQPGHPVNRTVYWINYILRHNGAQHLRAAVYSISL 469
 Db
           481 HEQYLFDV-FVFLLGLTL 497
 Qy
               :: :| |: || |:| |
           470 YQYFLLDIAFVVLVGAAL 487
 Db
 RESULT 14
 Q6UWM9
                                   PRT;
                                          527 AA.
      O6UWM9
                 PRELIMINARY;
 ID
      06UWM9;
 AC
      05-JUL-2004 (TrEMBLrel. 27, Created)
 DT
      05-JUL-2004 (TrEMBLrel. 27, Last sequence update) 05-JUL-2004 (TrEMBLrel. 27, Last annotation update)
 DT
 DT
      RSDK2559 (UDP-glucuronosyltransferase).
 DE
      Name=UGT2A3; ORFNames=UNQ2559;
 GN
      Homo sapiens (Human).
 OS
      Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC
      Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OC
 OX
      NCBI TaxID=9606;
 RN
      [1]
 RP
      SEQUENCE FROM N.A.
      MEDLINE=22887296; PubMed=12975309; DOI=10.1101/gr.1293003;
 RX
      Clark H.F., Gurney A.L., Abaya E., Baker K., Baldwin D., Brush J.,
      Chen J., Chow B., Chui C., Crowley C., Currell B., Deuel B., Dowd P.,
 RA
      Eaton D., Foster J., Grimaldi C., Gu Q., Hass P.E., Heldens S.,
 RA
      Huang A., Kim H.S., Klimowski L., Jin Y., Johnson S., Lee J.,
 RA
      Lewis L., Liao D., Mark M., Robbie E., Sanchez C., Schoenfeld J.,
 RA
      Seshagiri S., Simmons L., Singh J., Smith V., Stinson J., Vagts A.,
 RA
      Vandlen R., Watanabe C., Wieand D., Woods K., Xie M.H., Yansura D.,
 RA
      Yi S., Yu G., Yuan J., Zhang M., Zhang Z., Goddard A., Wood W.I.,
 RA
      Godowski P.;
 RA
      "The secreted protein discovery initiative (SPDI), a large-scale
 RT
      effort to identify novel human secreted and transmembrane proteins: a
.. RT
 RT
      bioinformatics assessment.";
      Genome Res. 13:2265-2270(2003).
 RL
 RN
 RP
      SEQUENCE FROM N.A.
 RC
      TISSUE=Liver;
      Court M.H.;
 RA
      Submitted (FEB-2004) to the EMBL/GenBank/DDBJ databases.
 RL
 CC
      -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
      EMBL; AY358727; AAQ89089.1; -.
 DR
 DR
      EMBL; AY542891; AAS48425.1; -.
      GO; GO:0016758; F:transferase activity, transferring hexosyl . . .; IEA.
 DR
```

```
GO; GO:0008152; P:metabolism; IEA.
      InterPro; IPR006121; HeavyMe transpt.
  DR
      InterPro; IPR002213; UDP glucos trans.
  DR
      Pfam; PF00201; UDPGT; 1.
  DR
      PROSITE; PS01047; HMA 1; UNKNOWN 1.
  DR
      PROSITE; PS00375; UDPGT; 1.
  DR
  KW
      Glycosyltransferase; Transferase.
              527 AA; 60284 MW; EB6C8F886B4DEC5E CRC64;
  SO
      SEOUENCE
  Query Match 25.8%; Score 714.5; DB 2;
Best Local Similarity 33.9%; Pred. No. 1.1e-47;
                                                 Length 527;
   Matches 172; Conservative 93; Mismatches 208;
                                                 Indels
                                                         35; Gaps
                                                                   13;
           34 SHYLLMDRVSQILQDHGHNVTMLNHKRGPFMPDFKKEEK-SYQVISWLAPEDHQREFKKS 92
  Qу
              ::|:
           34 SHWLNVKVILEELIVRGHEVTVLTHSK-PSLIDYRKPSALKFEVVH--MPQDRTEENEIF 90
  Db
           93 FDFFLEETLGGRGKFENLLNVLEY-----LALQCSHFLNRKDIMDSLKNENFDMVIVE 145
  Qу
               | | | | ::::: :::
                                        | : | |: : : | |: |:|::::
           91 VDLAL-NVLPGLSTWQSVIKLNDFFVEIRGTLKMMCESFIYNQTLMKKLQETNYDVMLID 149
          146 TFDYCPFLIAEKLGKPFVAILSTSF-GSLEFG---LPIPLSYVPVFRSLLTDHMDFWGRV 201
  Qу
                 150 PVIPCGDLMAELLAVPFVLTLRISVGGNMERSCGKLPAPLSYVPVPMTGLTDRMTFLERV 209
  Db
          202 KNFLMFFSFCRRQQHMQSTFDNTIKEHFTE---GSRPVLSHLLLKAELWFINSDFAFDFA 258
  Qy
                                        1
                                             :1 1
                   1
          210 KNSMLSVLF----HFWIQDYDYHFWEEFYSKALGRPTTLCETVGKAEIWLIRTYWDFEFP 265
          259 RPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNN 318
              266 QPYQPNFEFVGGLHCKPAKALPKEMENFVQSSGEDGIVVFSLGSLF---QN--VTEEKAN 320
  Db
          319 ----AFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNS 374
  QУ
                 321 IIASALAQIPQKVLWRYK---GKKPSTLGANTRLYDWIPQNDLLGHPKTKAFITHGGMNG 377
  Db
          375 IMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK 434
  QУ
              378 IYEAIYHGVPMVGVPIFGDQLDNIAHMKAKGAAVEINFKTMTSEDLLRALRTVITDSSYK 437
  Db
          435 SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLG 494
  Qу
                        |: | | | ||: |:: || ||:
                                                    438 ENAMRLSRIHHDQPVKPLDRAVFWIEFVMRHKGAKHLRSAAHDLTWFQHYSIDVIGFLLT 497
  Db
          495 LTLGTLWLCGKLLGMAVWWLRGARKVKE 522
~...Qy
                  ::| | :
          498 CVATAIFLFTKCFLFSCQKFNKTRKIEK 525
  Db
  RESULT 15
  CGT HUMAN
                                PRT;
                                      541 AA.
      CGT HUMAN
                   STANDARD;
      Q16880; 000196;
      01-NOV-1997 (Rel. 35, Created)
  DT
      01-NOV-1997 (Rel. 35, Last sequence update)
  DT
      05-JUL-2004 (Rel. 44, Last annotation update)
```

```
2-hydroxyacylsphingosine 1-beta-galactosyltransferase precursor
DE
     (EC 2.4.1.45) (UDP-galactose-ceramide galactosyltransferase) (Ceramide
    UDP-galactosyltransferase) (Cerebroside synthase).
DE
    Name=UGT8; Synonyms=CGT, UGT4;
GN
os
    Homo sapiens (Human).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
    NCBI TaxID=9606;
RN
     [1]
RP
    SEQUENCE FROM N.A.
    MEDLINE=96299661; PubMed=8661025; DOI=10.1006/geno.1996.0242;
RX
RA
     Bosio A., Binczek E., Lebeau M.M., Fernald A.A., Stoffel W.;
RT
     "The human gene CGT encoding the UDP-galactose ceramide galactosyl
     transferase (cerebroside synthase): cloning, characterization, and
RT
RT
     assignment to human chromosome 4, band q26.";
RL
    Genomics 34:69-75(1996).
RN
RP
     SEQUENCE FROM N.A.
    MEDLINE=97242209; PubMed=9125199; DOI=10.1006/bbrc.1997.6240;
RX
RA
    Kapitonov D.E., Yu R.K.;
     "Cloning, characterization, and expression of human ceramide
RT
    galactosyltransferase cDNA.";
RT
    Biochem. Biophys. Res. Commun. 232:449-453(1997).
RL
    -!- FUNCTION: Catalyzes the transfer of galactose to ceramide, a key
CC
         enzymatic step in the biosynthesis of galactocerebrosides, which
CC
CC
         are abundant sphingolipids of the myelin membrane of the central
         nervous system and peripheral nervous system.
CC
     -!- CATALYTIC ACTIVITY: UDP-galactose + 2-(2-hydroxyacyl)sphingosine =
CC
        UDP + 1-(beta-D-galactosyl)-2-(2-hydroxyacyl)sphingosine.
CC
     -!- PATHWAY: Galactocerebroside biosynthesis.
CC
     -!- SIMILARITY: Belongs to the UDP-glycosyltransferase family.
CC
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
    use by non-profit institutions as long as its content is in no way
CC
CC
    modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
     or send an email to license@isb-sib.ch).
CC
CC
     EMBL; U30930; AAC50565.1; -.
DR
     EMBL; U32370; AAC50815.1; -.
DR
DR
     EMBL; U31353; AAC50815.1; JOINED.
DR
     EMBL; U31461; AAC50815.1; JOINED.
DR
     EMBL; U31658; AAC50815.1; JOINED.
     EMBL; U31861; AAC50815.1; JOINED.
DR
     EMBL; U62899; AAC51187.1; -.
DR
     Genew; HGNC:12555; UGT8.
DR
DR
     MIM; 601291; -.
     GO; GO:0008489; F:UDP-galactose-glucosylceramide beta-1,4-gal. . .; TAS.
DR
     GO; GO:0007417; P:central nervous system development; TAS.
     GO; GO:0007422; P:peripheral nervous system development; TAS.
DR
DR
     InterPro; IPR002213; UDP glucos trans.
DR
     Pfam; PF00201; UDPGT; 1.
DR
     PROSITE; PS00375; UDPGT; 1.
     Glycoprotein; Glycosyltransferase; Microsome; Signal; Transferase;
KW
KW
     Transmembrane.
```

```
SIGNAL
                     20
                             Potential.
FT
               1
    CHAIN .
               21
                    541
                             2-hydroxyacylsphingosine 1-beta-
FT
                             galactosyltransferase.
FT
    TRANSMEM
              472
                    492
                             Potential.
FT
                            N-linked (GlcNAc. . .) (Potential).
    CARBOHYD
              78
                    78
FT
    CARBOHYD
              333
                    333
                             N-linked (GlcNAc. . .) (Potential).
FT
              442
                    442
                            N-linked (GlcNAc. . .) (Potential).
FT
    CARBOHYD
FT
    CONFLICT
               99
                    99
                             T \rightarrow P \text{ (in Ref. 2)}.
FT
    CONFLICT
              116
                    116
                            L \rightarrow M (in Ref. 2).
FT
              356
                    356
                             L \rightarrow V (in Ref. 2).
    CONFLICT
FT
    CONFLICT
              379
                    379
                            L \rightarrow V (in Ref. 2).
             541 AA; 61455 MW; EC532798F7E15834 CRC64;
SO
    SEQUENCE
 Query Match
                      25.3%; Score 699; DB 1; Length 541;
 Best Local Similarity 32.2%; Pred. No. 1.9e-46;
 Matches 166; Conservative 95; Mismatches 185; Indels 70; Gaps 12;
         13 LLPGVLLSEAAKILTISTV-GGSHYLLMDRVSQILQDHGHN-VTMLNHKRGPFMPDFKKE 70
Qу
               11 LWSAVGIAKAAKIIIVPPIMFESHMYIFKTLASALHERGHHTVFLLSEGRD----- 61
Db
         71 EKSYQVISWLAPEDHQ--REFKKSF----DFFLEETL----GGRGKFENLLNVLEYLAL 119
Qу
                   | ::|::
         62 -----IAPSNHYSLQRYPGIFNSTTSDAFLQSKMRNIFSGRLTAIELFDILDHYTK 112
Db
        120 OCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPI 179
Qу
                   113 NCDLMVGNHALIQGLKKEKFDLLLVDPNDMCGFVIAHLLGVKYAVFSTGLWYPAEVGAPA 172
Db
        180 PLSYVPVFRSLLTDHMDFWGRVKN------FLMFFSFCRROOHM----OSTFD 222
Qу
            ||:||| | |||||| ||: ||:||
                                         11: : | |
        173 PLAYVPEFNSLLTDRMNLLQRMKNTGVYLISRLGVSFLVLPKYERIMQKYNLLPEKSMYD 232
Db
        223 NTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQD 282
Qу
                         233 -----LVHGSSLWMLCTDVALEFPRPTLPNVVYVGGILTKPASPLPED 275
Db
        283 LENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHL 342
Qу
            276 LQRWVNGANEHGFVLVSFGAGVKYL-SEDIANKLAGALGRLPQKVIWRFS---GPKPKNL 331
Db
        343 AANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFGDQPENMVRVE 402
Qу
             332 GNNTKLIEWLPONDLLGHSKIKAFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTRVQ 391
Db
        403 AKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLSPTQRLVGWIDHV 462.
Qу
            Db
        392 AKGMGILLEWKTVTEKELYEALVKVINNPSYRQRAQKLSEIHKDQPGHPVNRTIYWIDYI 451
        463 LQTGGATHLKPYVFQQPWHEQYLFDV~FVFLLGLTL 497
Qу
            :: || ||: | | : : : | |: || || |
        452 IRHNGAHHLRAAVHQISFCQYFLLDIAFVLLLGAAL 487
```

Search completed: February 15, 2005, 12:57:51 Job time: 150 secs