CS 529 - Assignment 1, Theory Solutions

1 Problem 1: Background

1.1 Part 1

- Generalization. Generalization refers to the ability of a machine learning model to achieve good performance when being applied to new, previously unseen data.
- Overfitting and underfitting. Overfitting refers to the situation where a machine learning model models the training data very well but perform badly on previously unseen testing data. Overfitting typically occurs when a model is very complex (i.e., has high variance) but the training data is limited. Underfitting refers to the situation where a model cannot model the training data well and also fails to generalize to new unseen data. Underfitting typically occurs when the model is too simple and so it cannot capture the nuances of the dataset of interest.
- Regularization. Regularization refers to a broad range of techniques to make learning algorithms favor more simpler models (i.e., it tries to combat the overfitting problem). For example, L1 and L2 regularization methods are commonly used to penalize models that have large weights.
- No free lunch theorem. The theorem states that there is no one single machine learning model that works best for every problem. For example, in a supervised learning problem where there are a lot of labeled examples, complex deep learning models may perform better than simple logistic regression model. On the other hand, when the data is limited, using deep learning models may result in overfitting and it may be better to use simpler models.
- Occam's razor. Occam's razor is a principle stating that given all other things being equal, simpler models should be favored over a more complex model.
- Independent and identically distributed data points. Independent and identically distributed data points are data points that (1) come from

the same distribution (2) and were sampled independently. In many supervised learning settings, it is typically assumed that the training / test examples are independent and identically distributed.

- Cross-validation. Cross-validation is a method for estimating a model performance on new dataset that it has not been trained on. There are several popular variants of cross-validation such as leave-one-out cross-validation or k-fold cross-validation. Cross-validation is also frequently used for hyper-parameter tuning.
- Degrees of freedom. Roughly speaking, the degrees of freedom refers to the number of values involved in some calculation that have the freedom to vary. In the context of supervised learning, typically, the more variables a model uses to predict a target, the more degrees of freedom the model has.

1.2 Part 2

Before tackling the main question, let's consider a related problem.

MLE of a coin flip. Suppose you have a coin whose probability of landing head is θ . You toss the coin N times in total and you observe N_H heads and N_T tails $(N = N_H + N_T)$. Assume that the coin tosses are i.i.d. random variables. What is the Maximum Likelihood Estimate (MLE) of θ ?

Let X_i denotes the outcome of the i-th toss. We set X_i to be 1 if the outcome is head (and 0 otherwise). Let's start by calculating the likelihood:

$$\mathcal{L} = \prod_{i=1}^{N} \theta^{X_i} (1 - \theta)^{(1 - X_i)}$$
 (The coin tosses are i.i.d)
$$\mathcal{L} = \theta^{N_H} (1 - \theta)^{N_T}$$

$$\log(\mathcal{L}) = N_H \log(\theta) + N_T \log(1 - \theta)$$
 (Taking log on both sides)
$$\frac{\partial \log(\mathcal{L})}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta}$$
 (Taking derivative w.r.t θ)

In Maximum Likelihood Estimation (MLE), we basically need to find an estimate of the parameter θ that can maximize the (log) likelihood. Therefore, we can try setting $\frac{\partial \log(\mathcal{L})}{\partial \theta}$ to be 0. In other words:

$$\frac{\partial \log(\mathcal{L})}{\partial \theta} = 0 \Rightarrow \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} = 0$$

$$\Rightarrow N_H (1 - \theta) = N_T \theta$$

$$\Rightarrow N_H = (N_H + N_T) \theta$$

$$\Rightarrow \hat{\theta} = \frac{N_H}{N_H + N_T} = \frac{N_H}{N}$$

In conclusion, in order to find the MLE for θ , we basically just need to count the number of heads and then divide it by the total number of coin tosses.

Now let's get back to the main question.

- For the first coin, we have 12 heads out of 17 tosses. So the MLE for the probability of landing head for the first coin is 12/17 = 0.706.
- For the second coin, we have 6 heads out of 17 tosses. So the MLE for the second coin is 6/17 = 0.353.

So my guess for the first coin's next toss is H. And my guess for the second coin's next toss is T.

1.3 Part 3

Let's define the following matrix A:

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^M \\ 1 & x_2 & x_2^2 & \dots & x_2^M \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^M \end{bmatrix}$$

Basically, the i-th row of A contains the bias term and input feature values for the i-th example in the dataset. In addition, let \mathbf{w} be the column vector containing the weights of the model. In other word, $\mathbf{w} = \begin{bmatrix} w_0 & w_1 & \dots & w_M \end{bmatrix}^T$. Finally, let $\mathbf{t} = \begin{bmatrix} t_1 & t_2 & \dots & t_N \end{bmatrix}^T$ (i.e., \mathbf{t} contains the true/target values for the examples).

With the newly defined vectors and matrix, we can rewrite the error function

 $E(\mathbf{w})$ as follow:

$$E(\mathbf{w}) = \frac{1}{2} \|A\mathbf{w} - \mathbf{t}\|^2 = \frac{1}{2} (A\mathbf{w} - \mathbf{t})^T (A\mathbf{w} - \mathbf{t})$$

$$E(\mathbf{w}) = \frac{1}{2} \left(\left\| A \mathbf{w} \right\|^2 + \left\| \mathbf{t} \right\|^2 - 2 \mathbf{w}^T A^T t \right)$$

Because we are interested in minimizing $E(\mathbf{w})$, let's take the derivative of $E(\mathbf{w})$ with respect to \mathbf{w} (note that \mathbf{w} is a vector so we need to use some basic matrix calculus knowledge). We have:

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{2} \left(\frac{\partial}{\partial \mathbf{w}} \|A\mathbf{w}\|^2 - 2 \frac{\partial}{\partial \mathbf{w}} \mathbf{w}^T A^T t \right)$$
$$= \frac{1}{2} (2A^T A \mathbf{w} - 2A^T \mathbf{t}) = A^T A \mathbf{w} - A^T \mathbf{t}$$

If we equate the derivative to 0, we can solve for \mathbf{w}^* :

$$A^{T}A\mathbf{w}^{*} - A^{T}\mathbf{t} = 0$$

$$\Rightarrow A^{T}A\mathbf{w}^{*} = A^{T}\mathbf{t}$$

$$\Rightarrow \mathbf{w}^{*} = (A^{T}A)^{-1}A^{T}\mathbf{t}$$

Thus we have found a closed-form solution \mathbf{w}^{\star} for minimizing the error function. In fact, the above equation is commonly known as the normal equation ¹.

Suppose in the future we are given an input x, then we can first construct the vector $\mathbf{x} = \begin{bmatrix} 1 & x & x^2 & \dots & x^M \end{bmatrix}^T$. And then the prediction of the model will be:

$$y(x, \mathbf{w}^*) = \mathbf{x}^T \mathbf{w}^* = \mathbf{x}^T \left((A^T A)^{-1} A^T \mathbf{t} \right)$$

¹Note that sometimes A^TA may not be invertible. In that case, the system $A^TA\mathbf{w}^* = A^T\mathbf{t}$ has more than one solution.

1 Question 2

1. How many men and women (sex feature) are represented in this dataset?

Number of men in this dataset is: 21790 Number of women in this dataset is: 10771

2. What is the average age (age feature) of women?

The average age of women is: 36.86

3. What is the percentage of German citizens (native-country feature)?

Percentage of German citizens: 0.42%

4. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

For people who earn less than 50K per year, the mean of age is 36.78 and the standard deviation of age is 14.02

For people who earn more than $50 \mathrm{K}$ per year, the mean of age is 44.25 and the standard deviation of age is 10.52

- 5. Is it true that people who earn more than 50K have at least high school education? (education Bachelors, Prof-school, Assocacdm, Assoc-voc, Masters or Doctorate feature)
 False
- 6. Display age statistics for each race (race feature) and each gender (sex feature).

Refer to Figure 1.

7. What is the maximum number of hours a person works per week (hours-per-week feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (;50K) among them?

Maximum number of hours a person works per week is: 99 Number of people work such a number of hours is: 85

The percentage of those who earn a lot (£50K) among them is: 29.41%

8. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) for each country (native-country). What will these be for Japan?

For Japan

Average time of work for those who earn a little: 41.00 Average time of work for those who earn a lot: 47.96

race	count		mean		st	d min	25%	50%	75%	١
Amer-Indian-Eskimo	311.0	37.17	3633	12	44713	0 17.0	28.0	35.0	45.5	
Asian-Pac-Islander	1039.0				82513		28.0	36.0		
Black	3124.0						28.0	36.0		
Other	271.0						25.0	31.0	41.0	
White	27816.0				78230		28.0	37.0	48.0	
mizee	2701010	50170	5001	13.	,0250		20.0	37.0	40.0	
race	max									
Amer-Indian-Eskimo	82.0									
Asian-Pac-Islander	90.0									
Black	90.0									
0ther	77.0									
White	90.0									
ge statistics for e		er is s								
count	mean		std	min	25	% 50%	75%	max		
sex Female 10771.0 36	.858230	14.013	607	17.0	25.	0 35.0	46.0	90.0		
	.433547	13.370					48.0			
nate 21/90.0 39	.433347	13.3/6	030	17.0	29.	0 30.0	40.0	90.0		
ge staistics for ea		gender coun			on is ean	shown b		n 25	% 50)%
race	sex						_	_		
Amer-Indian-Eskimo	Female	119.		7.1176		13.11499				
Asian-Pac-Islander	Male	192.		2083		12.04956				
ASIAN-Pac-Istander	Female Male	346. 693.		0895		12.30084 12.88394				
Black Other	Female	1555.		7.8540		12.63719				
	Male	1569.		7.6820		12.88261				
	Female	109.		1.6788		11.63159				
	Male	162.		1.6543		11.35553				
White	Female	8642.		.8116		14.32909				
	Male	19174.		652		13.43602				
		75%	max	,						
race	sex									
Amer-Indian-Eskimo	Female	46.00	80.0)						
	Male	45.00	82.0)						
	Female	43.75	75.0							
Asian-Pac-Islander	Male	46.00	90.)						
		46.00	90.0							
Asian-Pac-Islander Black	Female		90.0)						
Black	Male	46.00								
Black	Male Female	39.00	74.)						
Black Other	Male Female Male	39.00 42.00	74.0)						
Black	Male Female Male Female	39.00 42.00 46.00	74.0 77.0 90.0))						
Black Other	Male Female Male	39.00 42.00	74.0))						

Figure 1: Solution for Problem 2 Question 6

2 Question 3

Plot the errorbar (i.e., the mean and std/sqrt(10)) of training and validation errors (you can use errorbar function, (Hint: x axis = 1,..., 4 (hypothesis class), y axis = mean error over 10 folds)). Refer to Figure 2.

Plot the training input and outputs and the minimum training error hypothesis outputs for each hypothesis class above (4 plots, 10 hypotheses on each plot).

Figure 2: Solution for Problem 3 Question 4(a)

Refer to Figure 3.

Figure 3: Solution for Problem 3 Question 4(b)

Which hypothesis class would you choose among (a),. . . , (d) and why

By Occam's razor principle, we can choose the relatively simple model from hypothesis 2/3.