Chapter 3

Vectors

Scalars and vectors quantities:

• Scalars and vectors:

A scalar: is a quantity that has magnitude only. Mass, time, speed, distance, pressure, Temperature and volume are all examples of scalar quantities.

Note: Magnitude – A numerical value with units.

A vector: is a quantity that has a magnitude and a direction. One example of a vector is velocity. The velocity of an object is determined by the magnitude (speed) and direction of travel. Other examples of vectors are force, displacement and acceleration.

Note: Vectors are typically illustrated by drawing an ARROW above the symbol. The arrow is used to convey direction and magnitude.

Scalar Quantities and Vector Quantities

Scalar Quantities	Examples	Vector Quantities	Examples
Distance Length without direction	20 m	Displacement Length with direction	20 m [North]
Speed How Fast an object moves without direction	80 km/h	Velocity How Fast an object moves with direction	80 km/h [280°]
Mass How much Stuff is IN an object	56 <i>kg</i>	Force $= Mass \times acceleration$	60 N downward
Energy Emits in All directions	500 <i>kj</i>	Weight Force due to gravity	500 N Always downward
Temperature Average Kinetic Energy of an object	25 °C	Friction Resistance force due to the Surface conditions	15 N Against the direction of motion
Time	40 minutes	Acceleration How Fast Velocity Changes over Time	$6 \frac{m}{s^2} [NW]$

- The simplest example is a displacement vector
- If a particle changes position from A to B, we represent this by a vector arrow pointing from A to B

- In (a) we see that all three arrows have the same magnitude and direction: they are identical displacement vectors.
- In (b) we see that all three paths correspond to the same displacement vector. The vector tells us nothing about the actual path that was taken between A and B.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

- The vector sum, or resultant
 - Is the result of performing vector addition
 - Represents the net displacement of two or more displacement vectors

$$\vec{s} = \vec{a} + \vec{b}$$
, Eq. (3-1)

Can be added graphically as shown:

- Vector addition is **commutative**
 - We can add vectors in any order

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (commutative law). Eq. (3-2)

You get the same vector result for either order of adding vectors.

Figure (3-3)

- Vector addition is associative
 - We can group vector addition however we like

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (associative law).

Eq. (3-3)

A negative sign reverses vector direction

$$\vec{b} + (-\vec{b}) = 0.$$

• We use this to define vector subtraction

$$\vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Eq. (3-4)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

- These rules hold for all vectors, whether they represent displacement, velocity, etc.
- Only vectors of the same kind can be added
 - (distance) + (distance) makes sense
 - o (distance) + (velocity) does not

- Rather than using a graphical method, vectors can be added by components
 - A component is the projection of a vector on an axis
- The process of finding components is called **resolving the**vector
- The components of a vector can be positive or negative.
- They are unchanged if the vector is shifted in any direction (but not rotated).

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

• Components in two dimensions can be found by:

$$a_x = a \cos \theta$$
 and $a_y = a \sin \theta$, Eq. (3-5)

- Where θ is the angle the vector makes with the positive x axis, and a is the vector length
- The length and angle can also be found if the components are known

$$a = \sqrt{a_x^2 + a_y^2}$$
 and $\tan \theta = \frac{a_y}{a_x}$ Eq. (3-6)

• Therefore, components fully define a vector

• In the three dimensional case we need more components to specify a vector

$$(a,\theta,\varphi)$$
 or (a_x,a_y,a_z)

- Angles may be measured in degrees or radians
- Recall that a full circle is 360° , or 2π rad

$$40^{\circ} \frac{2\pi \,\text{rad}}{360^{\circ}} = 0.70 \,\text{rad}.$$

Know the three basic trigonometric functions

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

A unit vector

- Has magnitude 1
- Has a particular direction
- Lacks both dimension and unit
- Is labeled with a hat: ^

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} \quad \mathbf{Eq. (3-7)}$$

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} \quad \text{Eq. (3-7)}$$

$$\vec{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}}. \quad \text{Eq. (3-8)}$$

We use a right-handed coordinate system

Remains right-handed when rotated

The unit vectors point along axes.

Figure (3-13)

• The quantities a_x **i** and a_y **j** are vector components

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}}$$

$$\vec{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}}.$$
Eq. (3-8)

- The quantities a_x and a_y alone are scalar components
 - Or just "components" as before
- Vectors can be added using components

Eq. (3-9)
$$\vec{r} = \vec{a} + \vec{b}$$
, \longrightarrow $r_x = a_x + b_x$ Eq. (3-10) $r_y = a_y + b_y$ Eq. (3-11) $r_z = a_z + b_z$.

• To subtract two vectors, we subtract components

$$d_x = a_x - b_x$$
, $d_y = a_y - b_y$, and $d_z = a_z - b_z$,
 $\vec{d} = d_x \hat{i} + d_y \hat{j} + d_z \hat{k}$.

- Vectors are independent of the coordinate system used to measure them
- We can rotate the coordinate system, without rotating the vector, and the vector remains the same
- All such coordinate systems are equally valid

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{a_x'^2 + a_y'^2}$$
 Eq. (3-14)

$$\theta = \theta' + \phi$$
. Eq. (3-15)

Rotating the axes changes the components but not the vector.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Figure (3-15)

Example 3: if
$$\vec{A} = 5\hat{i} + 3\hat{j} - 6\hat{k}$$
 $\vec{B} = 8\hat{i} + \hat{j} - 4\hat{k}$, Find

$$\vec{B} = 8\hat{\imath} + \hat{\jmath} - 4\hat{k}$$
, Find

$$1. \vec{A} + \vec{B} = 13\hat{\imath} + 4\hat{\jmath} - 10\hat{k}$$

$$2. \vec{A} - \vec{B} = -3\hat{\imath} + 2\hat{\jmath} - 2\hat{k}$$

3.
$$\vec{C}$$
 where $\vec{C} = 2A - 3\vec{B} = -14\hat{i} + 3\hat{j}$

4. The Magnitude and direction for \vec{C} .

The magnitude of \vec{C} is:

$$|\vec{C}| = \sqrt{(C_x)^2 + (C_y)^2 + (C_z)^2} = \sqrt{(-14)^2 + (3)^2 + (0)^2} = \sqrt{205} = 14.32$$

The angle (direction) that \vec{C} makes with the x-axis is :

$$\theta = \tan^{-1} \left[\frac{C_y}{C_x} \right] = \tan^{-1} \left[\frac{3}{-14} \right] = H.W.^{\circ}$$

- Multiplying a vector z by a scalar c
 - Results in a new vector
 - Its magnitude is the magnitude of vector z times |c|
 - $_{\circ}$ Its direction is the same as vector z, or opposite if c is negative
 - To achieve this, we can simply multiply each of the components of vector z by c
- To divide a vector by a scalar we multiply by 1/c

Example: Multiply vector z by 5

$$z = -3 \mathbf{i} + 5 \mathbf{j}$$

$$5 z = -15 i + 25 j$$

- Multiplying two vectors: the scalar product
 - Also called the dot product
 - Results in a scalar, where a and b are magnitudes and ϕ is the angle between the directions of the two vectors:

$$\vec{a} \cdot \vec{b} = ab \cos \phi,$$
 Eq. (3-20)

• The commutative law applies, and we can do the dot product in component form

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}),$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}. \qquad \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z.$$

• A dot product is: the product of the magnitude of one vector times the scalar component of the other vector in the direction of the first vector

$$\overrightarrow{a} \cdot \overrightarrow{b} = (a \cos \phi)(b) = (a)(b \cos \phi).$$
 Eq. (3-21)

- Either projection of one vector onto the other can be used
- To multiply a vector by the projection, multiply the magnitudes

If the angle ϕ between two vectors is 0° , the component of one vector along the other is maximum, and so also is the dot product of the vectors. If, instead, ϕ is 90° , the component of one vector along the other is zero, and so is the dot product.

Dot product

Example: two vectors are defined as:

$$\vec{A} = 3\hat{\imath} - 4\hat{\jmath} + 4\hat{k}$$
 and $\vec{B} = 2\hat{\imath} + 3\hat{\jmath} - 7\hat{k}$

Find the following:

- 1) $\vec{A} \cdot \vec{B}$
- **2)** The angle θ between \vec{A} and B.

Solution:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = (3\hat{\imath} - 4\hat{\jmath} + 4\hat{k}) \cdot (2\hat{\imath} + 3\hat{\jmath} - 7\hat{k}) = -34$$

$$\theta = \cos^{-1}\left[\frac{\vec{A}.\vec{B}}{|\vec{A}|.|\vec{B}|}\right]$$

$$|\vec{A}| = \sqrt{(A_x)^2 + (A_y)^2 + (A_z)^2} = \sqrt{(3)^2 + (-4)^2 + (4)^2} = 6.4$$

$$|\vec{B}| = \sqrt{(B_x)^2 + (B_y)^2 + (B_z)^2} = \sqrt{(2)^2 + (3)^2 + (7)^2} = 7.9$$

So the angle between the vectors \overrightarrow{A} and \overrightarrow{B} is

$$\theta = \cos^{-1}\left[\frac{\vec{A}.\vec{B}}{|\vec{A}|.|\vec{B}|}\right] = \cos^{-1}\left[\frac{-34}{6.4 \times 7.9}\right] = 132^{\circ}$$

Multiplying Vectors (Vector product or cross product)

- Multiplying two vectors: the **vector product**
 - The **cross product** of two vectors with magnitudes a & b, separated by angle φ , produces a vector with magnitude:

$$c = ab \sin \phi$$
,

Eq. (3-24)

- And a direction perpendicular to both original vectors
- Direction is determined by the right-hand rule
- Place vectors tail-to-tail, sweep fingers from the first to the second, and thumb points in the direction of the resultant vector

If \vec{a} and \vec{b} are parallel or antiparallel, $\vec{a} \times \vec{b} = 0$. The magnitude of $\vec{a} \times \vec{b}$, which can be written as $|\vec{a} \times \vec{b}|$, is maximum when \vec{a} and \vec{b} are perpendicular to each other.

Cross product of Unit Vectors:

$$\hat{\imath}_{k}\hat{\imath}=\hat{\jmath}_{k}\hat{\jmath}=\hat{k}.\hat{k}=0$$

$$\hat{i}_{\chi}\hat{j} = \hat{k} \quad 9^{-90} \quad \hat{j}_{\chi}\hat{k} = \hat{i}$$

$$\hat{j}_{\chi}\hat{i} = -\hat{k} \quad 9^{-240} \quad \hat{k}_{\chi}\hat{j} = -\hat{i}$$

$$\hat{j}_{\gamma}\hat{k} = \hat{\imath}$$
 $\hat{k}_{\gamma}\hat{\jmath} = -\hat{\imath}$

$$\widehat{k}_{\chi}\widehat{i} = \widehat{j}$$

$$\widehat{i}_{\chi}\widehat{k} = -\widehat{j}$$

$$A \times B = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} \hat{i} - \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} \hat{j} + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} \hat{k}$$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Figure (3-19)

The upper shows vector a cross vector b, the lower shows vector b cross vector a

• The cross product is not commutative

$$\overrightarrow{b} \times \overrightarrow{a} = -(\overrightarrow{a} \times \overrightarrow{b}).$$
 Eq. (3-25)

• To evaluate, we distribute over components:

$$\vec{a} \times \vec{b} = (a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}) \times (b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}), \qquad \text{Eq. (3-26)}$$

$$a_x \hat{\mathbf{i}} \times b_x \hat{\mathbf{i}} = a_x b_x (\hat{\mathbf{i}} \times \hat{\mathbf{i}}) = 0,$$

$$a_x \hat{\mathbf{i}} \times b_y \hat{\mathbf{j}} = a_x b_y (\hat{\mathbf{i}} \times \hat{\mathbf{j}}) = a_x b_y \hat{\mathbf{k}}.$$

Therefore, by expanding (3-26):

$$\vec{a} \times \vec{b} = (a_y b_z - b_y a_z)\hat{i} + (a_z b_x - b_z a_x)\hat{j} + (a_x b_y - b_x a_y)\hat{k}.$$
Eq. (3-27)

Example: three vectors are defined as:

$$\vec{A} = 3\hat{\imath} - 4\hat{\jmath} + 4\hat{k}$$
 , $\vec{B} = 2\hat{\imath} + 3\hat{\jmath} - 7\hat{k}$ and $\vec{C} = -4\hat{\imath} + 2\hat{\jmath} + 5\hat{k}$

Determine:

1)
$$\vec{A} \times \vec{B}$$

2)
$$\vec{A} \times \vec{B} \cdot \vec{C}$$

Solution:

1)
$$\vec{A} \times \vec{B}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & -4 & 4 \\ 2 & 3 & -7 \end{vmatrix} = 16\hat{i} + 29\hat{j} + 17\hat{k}$$

2)
$$(\vec{A} \times \vec{B}) \cdot \vec{C} = (16\hat{i} + 29\hat{j} + 17\hat{k}) \cdot (-4\hat{i} + 2\hat{j} + 5\hat{k})$$

= $16(-4) + 29(2) + 17(5) = 79$

Vector Calculus

Differentiation of Vectors

$$\mathbf{A} = \mathbf{A}(t) = A_{x}(t)\mathbf{\hat{i}} + A_{y}(t)\mathbf{\hat{j}} + A_{z}(t)\mathbf{\hat{k}}$$

The derivative of **A** with respect to *t* is defined in a manner similar to the derivative of a scalar function. That is,

$$\frac{d\mathbf{A}}{dt} = \lim_{\Delta t \to 0} \frac{\mathbf{A}(t + \Delta t) - \mathbf{A}(t)}{\Delta t}$$

$$\frac{d\mathbf{A}}{dt} = \left(\frac{dA_x}{dt}, \frac{dA_y}{dt}, \frac{dA_z}{dt}\right) = \frac{dA_x}{dt}\mathbf{\hat{i}} + \frac{dA_y}{dt}\mathbf{\hat{j}} + \frac{dA_z}{dt}\mathbf{\hat{k}}$$

$$\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} \qquad \text{Vec.}$$

$$\mathbf{v} = \dot{\mathbf{r}} = \dot{x}\hat{\mathbf{i}} + \dot{y}\hat{\mathbf{j}} + \dot{z}\hat{\mathbf{k}} \qquad \text{Vec.}$$

$$\mathbf{a} = \ddot{\mathbf{r}} = \dot{\mathbf{v}} = \ddot{x}\hat{\mathbf{i}} + \ddot{y}\hat{\mathbf{j}} + \ddot{z}\hat{\mathbf{k}}$$

$$\mathbf{a} = \ddot{\mathbf{r}} = \dot{\mathbf{v}} = \ddot{x}\hat{\mathbf{i}} + \ddot{y}\hat{\mathbf{j}} + \ddot{z}\hat{\mathbf{k}}$$

Vector Calculus

Note that the magnitudes of the velocity and the acceleration are

$$v = |\mathbf{v}| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$
$$a = |\mathbf{a}| = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$$

Thus the differentiation of a vector follows the same procedure used in the differentiation of a scalar function. We can extend these rules to the following particular cases:

$$\frac{d}{ds}(\mathbf{A} \pm \mathbf{B}) = \frac{d\mathbf{A}}{ds} \pm \frac{d\mathbf{B}}{ds}$$

$$\frac{d}{ds}[f(s)\mathbf{A}(s)] = \frac{df}{ds}\mathbf{A} + f\frac{d\mathbf{A}}{ds}$$

$$\frac{d}{ds}(\mathbf{A} \cdot \mathbf{B}) = \frac{d\mathbf{A}}{ds} \cdot \mathbf{B} + \mathbf{A} \cdot \frac{d\mathbf{B}}{ds}$$

$$\frac{d}{ds}(\mathbf{A} \times \mathbf{B}) = \frac{d\mathbf{A}}{ds} \times \mathbf{B} + \mathbf{A} \times \frac{d\mathbf{B}}{ds}$$

Summary

Scalars and Vectors

- Scalars have magnitude only
- Vectors have magnitude and direction
- Both have units!

Vector Components

• Given by

$$a_x = a \cos \theta$$
 and $a_y = a \sin \theta$, Eq. (3-5)

Related back by

$$a = \sqrt{a_x^2 + a_y^2}$$
 and $\tan \theta = \frac{a_y}{a_x}$ **Eq. (3-6)**

Adding Geometrically

Obeys commutative and associative laws

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 Eq. (3-2)

$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$
. Eq. (3-3)

Unit Vector Notation

• We can write vectors in terms of unit vectors

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k},$$
 Eq. (3-7)

Summary

Adding by Components

Add component-by-component

$$r_x = a_x + b_x$$

$$r_y = a_y + b_y$$

Eqs. (3-10) - (3-12)
$$r_z = a_z + b_z$$
.

Scalar Product

• Dot product

$$\vec{a} \cdot \vec{b} = ab \cos \phi,$$

Eq. (3-20)

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}),$$

Eq. (3-22)

Scalar Times a Vector

- Product is a new vector
- Magnitude is multiplied by scalar
- Direction is same or opposite

Cross Product

- Produces a new vector in perpendicular direction
- Direction determined by righthand rule

$$c = ab \sin \phi$$
, Eq. (3-24)