Московский физико-технический институт Факультет молекулярной и химической физики

Лабораторная работа N2.1.3 «Определение C_p/C_v по скорости звука в газе»

Выполнил: студент 1 курса 642 группы ФМХФ Демьянов Георгий Сергеевич

Аннотация

В этом отчёте изложены результаты выполнения лабораторной работы «Определение C_p/C_v по скорости звука в газе». Меняя длину выдвижной трубы, находят смещения, при которых возникают стоячие волны в трубе на данной частоте, задаваемой генератором. Отсюда определяют значения скорости звука в среде. Далее получают значения показателя адиабаты. Также находят частоты, при которых возникают стоячие волны при фиксированной длине трубы. Отсюда аналогично определяется скорость звука в среде и показатель адиабаты.

Цель работы: измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; определение показателя адиабаты с помощью уравнения состояния идеального газа.

1. Теоретическое введение

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой (1):

$$v_{\rm 3B} = \sqrt{\gamma \frac{RT}{\mu}},\tag{1}$$

где R — универсальная газовая постоянная, T — температура газа, μ — молярная масса газа. Отсюда можно найти:

$$\gamma = \frac{\mu}{RT} v_{\rm 3B}^2. \tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2},\tag{3}$$

где λ — длина звука в трубе, n — любое целое число. Т.о. при условии (3) в трубе возникает резонанс и появляется стоячая волна.

Скорость звука $v_{\scriptscriptstyle 3B}$ связана с его частотой f и длиной волны λ соотношением

$$v_{\rm 3B} = \lambda f. \tag{4}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \qquad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2}, \tag{5}$$

т.е. $\lambda/2$ есть угловой коэффициент графика $L(k),\,k$ — номер резонанса.

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L_n = n\frac{\lambda}{2} = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (6)

Из (4) и (6) имеем

$$f_1 = \frac{v_{\text{3B}}}{\lambda_1} = \frac{v_{\text{3B}}}{2L}n, \qquad f_{k+1} = f_1 + \frac{v_{\text{3B}}}{2L}k$$
 (7)

Скорость звука, делённая на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

В этом отчёте представлен первый метод подбора резонанса.

Теория взята из [1] – c. 74-76.

2. Экспериментальная установка

В установке звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО. Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчётах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Установка содержит раздвижную трубу с миллиметровой шкалой. Через патрубок труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 .

Описание взято из [1] – c. 76.

Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы

3. Обработка результатов измерений

 $L=(0.700\pm0.005)$ м — начальная длина трубы, $T=(297.5\pm0.1)$ К — температура в комнате. Табличные значения скоростей звука при данной температуре: $v_{\scriptscriptstyle \mathrm{3B}}^{\scriptscriptstyle \mathrm{BO3Д}}=345.5~\mathrm{m/c}$ и $v_{\scriptscriptstyle \mathrm{3B}}^{\scriptscriptstyle \mathrm{CO2}}=270.4~\mathrm{m/c}$.

3.1. Измерения при переменной длине трубы

Найдём, при каких смещениях x_k от начальной длины трубы происходит резонанс при данной частоте. Эксперимент проведём на увеличение и уменьшение длины трубы для воздуха и только на уменьшение для CO_2 . Полученные данные занесём в таблицы 1, 2, 3.

Таблица 1. Уменьшение трубы: воздух

	x_1 , M	x_2	x_3	x_4
$f_1 = (1.72 \pm 0.01) \ \mathrm{к}\Gamma \mathrm{I}$	(0.217 ± 0.001)	(0.118 ± 0.001)	(0.015 ± 0.001)	
$f_2 = (2.50 \pm 0.01) \ \mathrm{к}\Gamma\mathrm{I}$	(0.198 ± 0.001)	(0.129 ± 0.001)	(0.062 ± 0.001)	
$f_3 = (3.00 \pm 0.01)$ к Γ ц	(0.227 ± 0.001)	(0.169 ± 0.001)	(0.112 ± 0.001)	(0.053 ± 0.001)
$f_4 = (4.00 \pm 0.01) \ \mathrm{к}\Gamma\mathrm{I}$	(0.168 ± 0.001)	(0.122 ± 0.001)	(0.081 ± 0.001)	(0.043 ± 0.001)

Таблица 2. Увеличение трубы: воздух

	x_1 , M	x_2	x_3	x_4
$f_1 = (1.72 \pm 0.01) \ \mathrm{к}\Gamma \mathrm{ц}$	(0.016 ± 0.001)	(0.119 ± 0.001)	(0.218 ± 0.001)	
$f_2 = (2.50 \pm 0.01) \ \mathrm{к} \Gamma \mathrm{I} \mathrm{I}$	(0.061 ± 0.001)	(0.130 ± 0.001)	(0.199 ± 0.001)	
$f_3 = (3.00 \pm 0.01) \ \mathrm{к}\Gamma\mathrm{I}$	(0.053 ± 0.001)	(0.111 ± 0.001)	(0.170 ± 0.001)	(0.228 ± 0.001)
$f_4 = (4.00 \pm 0.01) \ \mathrm{к}\Gamma$ ц	(0.046 ± 0.001)	(0.082 ± 0.001)	(0.120 ± 0.001)	(0.169 ± 0.001)

Таблица 3. Уменьшение трубы: CO₂

	x_1 , M	x_2 , M	x_3 , M
$f_1 = (1.70 \pm 0.01) \ \mathrm{к}\Gamma$ ц	(0.174 ± 0.001)	(0.096 ± 0.001)	(0.017 ± 0.001)
$f_2 = (2.03 \pm 0.01) \ \mathrm{к} \Gamma \mathrm{I} \mathrm{I}$	(0.228 ± 0.001)	(0.162 ± 0.001)	(0.097 ± 0.001)
$f_3 = (3.06 \pm 0.01) \ \mathrm{к}\Gamma$ ц	(0.227 ± 0.001)	(0.185 ± 0.001)	(0.141 ± 0.001)
$f_4 = (4.05 \pm 0.01) \ \mathrm{к}\Gamma\mathrm{I}$	(0.217 ± 0.001)	(0.182 ± 0.001)	(0.155 ± 0.001)

x_4 , M	x_5 , M	x_6 , M	x_7 , M
(0.003 ± 0.001)			
(0.097 ± 0.001)	(0.053 ± 0.001)	(0.008 ± 0.001)	
(0.122 ± 0.001)	(0.088 ± 0.001)	(0.055 ± 0.001)	(0.021 ± 0.001)

Нанесём на график экспериментальные точки x(k) и проведём по ним прямую методом наименьших квадратов (МНК, рис. 2, 3, 4). Тогда $\lambda/2$ есть модуль углового коэффициента графика x(k).

Из МНК, получим результаты и занесём их в таблицы 4, 5, 6.

В таблице 5 для частоты $f=(2.50\pm0.01)$ к Г
ц погрешность для $\lambda/2$ из МНК получилась ровно 0 м.

Теперь для каждого случая найдём скорость звука в данной среде по формуле

$$v_{\scriptscriptstyle 3B} = 2 \cdot \lambda / 2 \cdot f,$$

а погрешность по формуле:

$$\left(\frac{\sigma_{v_{^{3\mathrm{B}}}}}{v_{^{3\mathrm{B}}}}\right)^{\!\!2}\!=\!\left(\frac{\sigma_{\lambda}}{\lambda}\right)^{\!\!2}\!+\!\left(\frac{\sigma_{f}}{f}\right)^{\!\!2}\!,$$

Зависимость х(k) для воздуха на уменьшение длины трубы 0,30 Экспериментальные точки, $f=1.72~\mbox{к}\Gamma\mbox{ц}$ Экспериментальные точки, f = 2.50 к Γ ц 0,25 Экспериментальные точки, $f = 3.00 \ к\Gamma ц$ Экспериментальные точки, $f = 4.00 \ \mbox{к} \Gamma \mbox{ц}$ x(k), f = 1.72 к Γ ц (МНК) x(k), f = 2.50 кГц (МНК)0,20 x(k), f = 3.00 κΓμ (MHK) x(k), f = 4.00 κΓμ (MHK) ≥ 0,15 × 0,10 0,05 0,00 2 3 \mathbf{k}

Рис. 2. Зависимость x(k) для воздуха на уменьшение длины трубы

Рис. 3. Зависимость x(k) для воздуха на увеличение длины трубы

Зависимость x(k) для CO_2 , уменьшение длины трубы

Рис. 4. Зависимость x(k) для CO_2 на уменьшение длины трубы

Таблица 4. Значения $\lambda/2$, воздух, уменьшение длины трубы

f , к Γ ц	$\lambda/2$, M
(1.72 ± 0.01)	(0.1010 ± 0.0012)
(2.50 ± 0.01)	(0.0680 ± 0.0006)
(3.00 ± 0.01)	(0.0579 ± 0.0003)
(4.00 ± 0.01)	(0.0416 ± 0.0012)

Таблица 5. Значения $\lambda/2$, воздух, увеличение длины трубы

f , к Γ ц	$\lambda/2$, M
(1.72 ± 0.01)	(0.1010 ± 0.0012)
(2.50 ± 0.01)	0.069
(3.00 ± 0.01)	(0.05840 ± 0.00014)
(4.00 ± 0.01)	(0.041 ± 0.002)

Таблица 6. Значения $\lambda/2$, CO_2 , уменьшение длины трубы

f , к Γ ц	$\lambda/2$, M
(1.70 ± 0.01)	(0.0785 ± 0.0003)
(2.03 ± 0.01)	(0.074 ± 0.005)
(3.06 ± 0.01)	(0.0439 ± 0.0002)
(4.05 ± 0.01)	(0.0326 ± 0.0004)

и результаты занесём в таблицы 7, 8, 9.

Таблица 7. Значения v_{3B} , воздух, уменьшение длины трубы

f , к Γ ц	$v_{\scriptscriptstyle 3B},~{ m M/c}$
(1.72 ± 0.01)	(347 ± 5)
(2.50 ± 0.01)	(340 ± 3)
(3.00 ± 0.01)	(347 ± 2)
(4.00 ± 0.01)	(333 ± 10)

Таблица 8. Значения v_{3B} , воздух, увеличение длины трубы

f , к Γ ц	$v_{\scriptscriptstyle 3B},~{ m M/c}$
(1.72 ± 0.01)	(347 ± 5)
(2.50 ± 0.01)	(345 ± 1)
(3.00 ± 0.01)	(350 ± 1)
(4.00 ± 0.01)	(326 ± 16)

Таблица 9. Значения v_{3B} , CO_2 , уменьшение длины трубы

f , к Γ ц	$v_{\scriptscriptstyle 3B},~{ m M/c}$
(1.70 ± 0.01)	(267 ± 2)
(2.03 ± 0.01)	(300 ± 20)
(3.06 ± 0.01)	(268 ± 2)
(4.05 ± 0.01)	(263 ± 3)

Таким образом, самыми близкими к табличном значениям скорости звука оказались результаты:

$$\begin{array}{l} f = (3.00 \pm 0.01) \ \mbox{к} \Gamma \mbox{ц}, \ v_{\mbox{\tiny 3B}}^{\mbox{\tiny BO3Д УМ}} = (347 \pm 2) \ \mbox{м/c} \\ f = (2.50 \pm 0.01) \ \mbox{к} \Gamma \mbox{ц}, \ v_{\mbox{\tiny 3B}}^{\mbox{\tiny BO3Д УВ}} = (345 \pm 1) \ \mbox{м/c} \\ f = (3.06 \pm 0.01) \ \mbox{к} \Gamma \mbox{ц}, \ v_{\mbox{\tiny 3B}}^{\mbox{\tiny CO2 УМ}} = (268 \pm 2) \ \mbox{м/c} \end{array}$$

Найдём по формуле (2) показатель адиабаты γ для воздуха и углекислого газа. Погрешность вычислим так:

$$\left(\frac{\sigma_{\gamma}}{\gamma}\right)^{2} = \left(\frac{\sigma_{T}}{T}\right)^{2} + 4\left(\frac{\sigma_{v_{3B}}}{v_{3B}}\right)^{2}.$$
(8)

Для воздуха $\mu_{\text{возд}}=0.02898$ кг/моль, а для CO_2 $\mu_{\text{со}_2}=0.04401$ кг/моль, R=8.314 Дж/(моль · К). Получим такие результаты:

Таблица 10. Значения γ

Условие	$v_{\rm 3B},~{ m M/c}$	γ
Воздух, ум.	(347 ± 2)	(1.411 ± 0.016)
Воздух, ув.	(345 ± 1)	(1.394 ± 0.008)
CO_2 , ym.	(268 ± 2)	(1.278 ± 0.019)

Значения находятся в хорошем согласии с табличными данными ($\gamma_{\text{возд}} = 1.40, \, \gamma_{\text{со}_2} = 1.30$).

3.2. Измерения при постоянной длине трубы

Также будем искать резонансные частоты при фиксированной длине трубы L для воздуха и ${\rm CO_2}$. Данные занесём в таблицы $11,\ 12.$

Таблица 11. Резонансные частоты при длине трубы L: воздух

f_1 , к Γ ц	_
f_2 , к Γ ц	(0.477 ± 0.001)
f_3 , к Γ ц	(0.760 ± 0.001)
f_4 , к Γ ц	(0.937 ± 0.001)
f_5 , к Γ ц	(1.24 ± 0.01)
f_6 , к Γ ц	(1.41 ± 0.01)

Таблица 12. Резонансные частоты при длине трубы $L: CO_2$

f_1 , к Γ ц	_
f_2 , к Γ ц	(0.395 ± 0.001)
f_3 , к Γ ц	(0.614 ± 0.001)
f_4 , к Γ ц	(0.755 ± 0.001)
f_5 , к Γ ц	(0.998 ± 0.001)
f_6 , к Γ ц	(1.14 ± 0.01)

Зависимость f(k) для воздуха и CO₂, длина трубы фиксирована

Рис. 5. Зависимость f(k) для воздуха и CO_2 , длина трубы фиксирована и равна L

Нанесём на график экспериментальные точки f(k) и проведём по ним прямую методом наименьших квадратов (МНК, через начало координат, рис. 5). Тогда $\frac{v_{3B}}{2L}$ есть модуль углового коэффициента графика f(k).

Из МНК имеем:

$$\frac{v_{\rm 3B}^{\rm BO3, I}}{2L} = (0.240 \pm 0.003) \cdot 10^3 \,\,{\rm c}^{-1}$$

$$\frac{v_{_{3B}}^{\text{co}_2}}{2L} = (0.194 \pm 0.003) \cdot 10^3 \text{ c}^{-1}$$

Отсюда найдём скорости звука:

$$v_{
m 3B}^{
m BOЗД} = (336 \pm 5) \; {\rm m/c}$$

$$v_{\rm 3B}^{\rm co_2} = (272 \pm 4) \text{ m/c}$$

По формулам (2) и (8) найдём значение γ :

$$\gamma_{\text{возд}} = (1.323 \pm 0.039)$$

$$\gamma_{\rm co_2} = (1.316 \pm 0.039)$$

Видим, что значения скорости звука в воздухе и $\gamma_{\text{возд}}$ не совпадают с табличными значениями, а значение скорости звука в угл. газе и значение показателя адиабаты находятся в достаточном согласовании с табличными значениями.

4. Заключение

В данной работе мы исследовали резонанс газа в трубе и появление стоячих волн.

Определив длины трубы, при которых происходит резонанс, на определённых частотах нашли длину волны. Отсюда получили значения показателя адиабаты γ в 3 случаях: $\gamma_{\text{возд}}^{\text{ум}} = (1.411 \pm 0.016)$, $\gamma_{\text{возд}}^{\text{ув}} = (1.394 \pm 0.008)$, $\gamma_{\text{со}_2}^{\text{ум}} = (1.278 \pm 0.019)$, которые находятся в достаточном согласием с табличными данными.

Также определили скорость звука при фиксированной длине трубы, откуда нашли значения показателя адиабаты: $\gamma_{\text{возд}} = (1.323 \pm 0.039), \, \gamma_{\text{со}_2} = (1.316 \pm 0.039).$

Список литературы

[1] Гладун А.Д. Лабораторный практикум по общей физике. Том 1. Термодинамика и молекулярная физика. Москва: МФТИ, 2012.