Inhaltsverzeichnis

IV.)	ANHANG	8
b.) (AC-Analysis, Frequenzbereich 1 Hz – 100 kHz)	7
a.)	• • •	6
1.)	Arbeitspunktanalyse	6
III.)	SIMULATION MIT LT SPICE	6
4.)	Messwerte der Schaltungen	5
3.)	Schaltung ohne R _{E1} , mit C _E	5
2.)	Schaltung mit R _{E1} und C _E	4
1.)	Schaltung ohne R _{E1} und C _E	4
II.)	KLEINSIGNALVERSTÄRKUNG	4
3.)	Messaufbau	2
2.)	Berechnung der Schaltung	2
1.)	Schaltungsaufbau	2
l.)	ARBEITSPUNKTEINSTELLUNG	2

I.) Arbeitspunkteinstellung

1.) Schaltungsaufbau

Um den Transistor ordnungsgemäß zu betreiben ist die Einstellung des Arbeitspunktes notwendig. Durch Vorgabe des benötigten Stromes I_C und der Eingangsspannung U ist ein Einstellen der Widerstände möglich. Die Gleichstromverstärkung (B, β) ermöglicht die Ermittlung des Stromes I_B . Durch den Spannungsteiler R_1/R_2 , $11*I_B/10*I_B$ erfolgt die Einstellung des Basisstroms.

INFORMATION:

Bei einer falschen Bestimmung des Kollektorwiderstandes R_C bzw. des Emitterwiderstandes R_E kommt es zu einer Vergrößerung bzw. Verkleinerung von U_{CE} . Dies führt dazu, dass das später eingeleitete Sinussignal in der oberen oder unteren Halbwelle teilweise abgeschnitten wird. Die Spannung U_{CE} sollte ungefähr die halbe Betriebsspannung aufweisen.

Abbildung 1: Grundschaltung

2.) Berechnung der Schaltung

 $U_C=4 \text{ V}$; $U_{CE}=4 \text{ V}$; $U_{RE}=2 \text{ V}$; $U_D=0.7 \text{ V}$; $I_C=10 \text{ mA}$; $B_c\beta=100$;

$$R_C = \frac{U_C}{I_C} = \frac{4V}{0.01A} = 400\Omega \approx 390\Omega$$

$$R_E = \frac{U_{RE}}{I_C + I_R} = \frac{2V}{10.1mA} = 200\Omega \approx 180\Omega$$

$$I_{R1} = 11 * I_R = 11 * 0,1 mA = 1,1 mA$$

$$U_{R1} = U - (U_{RE} + U_D) = 10V - (2V + 0.7V) = 7.3V$$

$$I_{R2} = 10 * I_{R} = 10 * 0.1 mA = 1.0 mA$$

$$U_{R2} = U_{RE} + U_D = 2V + 0.7V = 2.7V$$

$$B = \frac{I_C}{I_B} = I_B = \frac{I_C}{B} = \frac{10mA}{100} = 0.1mA$$

$$R_1 = \frac{U_{R1}}{I_{P1}} = \frac{7.3V}{1.1mA} = 6,\overline{63} \approx 6k8$$

$$R_2 = \frac{U_{R2}}{I_{R2}} = \frac{2.7V}{1mA} = 2.7k \approx 2k7$$

3.) Messaufbau

WICHTIG Vor Beginn der Messung ist dem Datenblatt des Transistors der max. zulässige Strom bzw. die max. zulässige Leistung P_{tot} zu ermitteln, da bei zu hohem Strom der Transistor thermisch zerstört wird.

Widerstände (E-Reihe),	R_{C}	390 Ω	3,9,10	orange	weiß	braun
der gesamten Schaltungen	R_{E}	180 Ω	1,8,10	braun	grau	braun
	R_{E1}	47 Ω	4,7,1	gelb	violett	schwarz
	R_1	6,8 kΩ	6,8,100	blau	grau	rot
	R_2	2,7 kΩ	2,7,100	rot	violett	rot
Spannungsteiler	R_1	10 kΩ	1,0,10k	braun	schwarz	gelb
Spannungsteiler	R_2	1 kΩ	1,0,100	braun	schwarz	rot

Die Schaltung wurde wie oben dargestellt aufgebaut. Die Messung wurde an 10 Transistoren desselben Typs durchgeführt. Dabei wurde U_{RC} , U_{CE} , U_{RE} , R_C und R_E messtechnisch ermittelt und die Werte I_C , I_B und I_E sowie I_C , I_B berechnet und auf der nachfolgenden Seite dokumentiert.

II.) Kleinsignalverstärkung

1.) Schaltung ohne R_{E1} und C_E

An der Basis des Transistors erfolgt die Einspeisung eines Sinussignals mit der Frequenz 10 kHz. Die Messwerte werden im Abschnitt Messwerte der Schaltungen, weiter unten angeführt. Zu beachten ist das das Sinussignal am Ausgang Phasenverschoben und mit einem DC Offset beaufschlagt ist. Um diesen zu kompensieren, ist am Ausgang ein Kondensator in Serie angebracht. Durch Einstellung der AC-Kopplung am Oszilloskop, kann dieser auch weggelassen werden. Des Weiteren ist bei allen Schaltungen die Abschwächung (0-45Hz) sowie die Verstärkung von (45-200Hz) ident.

Abbildung 2:Kleinsignalschaltbild ohne RE1 und CE

Berechnung mit berechneten Werten	Berechnung mit tatsächlichen Werten			
R_C =390 Ω; R_e =180 Ω;	R_C =388,10 Ω; R_E =177,56 Ω;			
$R_{c} = 390\Omega = 3.17$	R_C 388,1 Ω			
$A_U = \frac{R_C}{R_{Eges}} = \frac{390\Omega}{180\Omega} = 2,1\overline{6}$	$A_U = \frac{R_C}{R_{Eges}} = \frac{388,1\Omega}{177,56\Omega} = 2,186$			
$A_U/dB = 20 * \log(2,1\overline{6}) = 6,72$	$A_U/dB = 20 * \log(2,186) = 6,79$			
Berechnungsmethode mit der Steilheit (S) des Transistors.				
$S = \frac{I_{C0}}{U_T} = \frac{10mA}{25mV} = 0.4 \ mho$	$S = \frac{I_{C0}}{U_T} = \frac{10mA}{25mV} = 0.4 \ mho$			
	-			
$A_U = \frac{S * R_{Cges}}{1 + G_{Cges}} = \frac{0.45 * 3900}{1 + 0.46 * 1000} = 2.14$	$A_{ii} = \frac{S * K_{Cges}}{M_{ii}} = \frac{0.4S * 388.1\Omega}{M_{ii}} = 2.16$			
$1 + 3 * R_{Eges}$ $1 + 0.43 * 10012$	$A_U = \frac{S * R_{Cges}}{1 + S * R_{Eges}} = \frac{0.4S * 388.1\Omega}{1 + 0.4S * 177.56\Omega} = 2.16$			
$A_U/dB = 20 * \log(2.14) = 6.59$	$A_U/dB = 20 * \log(2.16) = 6.67$			

2.) Schaltung mit R_{E1} und C_E

Durch die Parallelschaltung von (C_E+R_{E1}) zu R_E fließt bei niedrigen Frequenzen der Emitter Strom weiterhin über R_E , da der Kondensator hochohmig ist. Somit ist die Verstärkung im unteren Bereich identisch wie in der Schaltung ohne R_{E1} und C_E . Wird die Frequenz erhöht so wird der Widerstand des Kondensators kleiner und somit sinkt der Gesamtwiderstand auf $R_E//R_{E1ges}$. Dies hat zur Folge das U_{CE} ab einer bestimmten Frequenz größer wird und somit die Verstärkung weiter ansteigt. Dies ist abhängig von der Kapazität des Kondensators.

Abbildung 3:Kleinsignalersatzschaltbild mit R_{E1} und C_E

Berechnung mit berechneten Werten	Berechnung mit tatsächlichen Werten		
R_C =390 Ω; R_e =180 Ω; R_{E1} =47 Ω (Vorgabe); C_E =1 μ F	R_C =388,10 Ω; R_E =177,56 Ω; R_{E1} =47 Ω (Vorgabe); C_E =1 μF		
R_C 390 Ω	R_C 388,1 Ω - 0.02		
$A_U = \frac{c}{ R_{Eges} } = \frac{c}{180\Omega * (47 - j15,92)\Omega} = 9,94$	$A_U = \frac{c}{ R_{Eges} } = \frac{c}{177,56\Omega * (47 - \mathbf{j}15,92)\Omega} = 9,92$		
$\frac{180\Omega + (47 - \mathbf{j}15,92)\Omega}{180\Omega + (47 - \mathbf{j}15,92)\Omega}$	$177,56\Omega + (47 - \mathbf{j}15,92)\Omega$		
$A_U/dB = 20 * \log(9.94) = 19.94$	$A_U/dB = 20 * \log(9.92) = 19.93$		
Berechnungsmethode mit d	der Steilheit (S) des Transistors.		
$A_{} - \frac{S * R_{Cges}}{1} - \frac{0.4S * 390\Omega}{1} - 9.34$	$S * R_{Cges} = 0.4S * 388,10$		
$A_U = \frac{S + R_{cges}}{1 + S * R_{Eges}} = \frac{6,18 + 39622}{1 + 0,4S * 39,25\Omega} = 9,34$	$A_U = \frac{s \cdot sc_{ges}}{1 + S \cdot R_{Eges}} = \frac{s, 1s \cdot sc_{ges}}{1 + 0, 4S \cdot 39, 14\Omega} = 9,37$		
$A_U/dB = 20 * \log(9.34) = 19.41$	$A_U/dB = 20 * \log(9.37) = 19.43$		

GÄCHTER Raffael

3.) Schaltung ohne R_{E1}, mit C_E

Durch Entfernen des Widerstandes R_{E1} kommt es zu einem Anstieg wie bei der Schaltung mit R_{E1} und C_E jedoch mit dem Unterschied das bei hohen Frequenzen bei welchen der Kondensator einen kleinen Widerstand aufweist, bzw. als Kurzschluss wirkt, die Spannung U_{CE} größer wird als wie bei den vorherigen Schaltungen da am Widerstand R_E keine Spannung mehr abfällt. Dies führt abermals zu einer Vergrößerung von U_{CE} und hat eine weitere Erhöhung der Verstärkung zur Folge.

INFORMATION:

Ein 10:1 Spannungsteiler wurde am Eingang angebracht, da die Erzeugung einer ausreichend kleinen Spannung, zur Vermeidung, dass das Sinus Signal abgeschnitten wird. Die Frequenz wurde auf 30kHz erhöht um den erneuten Anstieg der Verstärkung zu zeigen.

Abbildung 4: Kleinsignalersatzschaltbild ohne R_{E1},mit C_E

Berechnung mit berechneten Werten	Berechnung mit tatsächlichen Werten				
R_C =390 Ω; R_e =180 Ω; C_E =1 μ F	R_C =388,10 Ω; R_E =177,56 Ω; C_E =1 μ F				
$A_U = \frac{R_C}{ R_{Eges} } = \frac{390\Omega}{\frac{180\Omega * 5,31\Omega}{180\Omega + 5,31\Omega}} = 75,68$	$A_U = \frac{R_C}{ R_{Eges} } = \frac{388,1\Omega}{\frac{177,56\Omega * 5,31\Omega}{177,56\Omega + 5,31\Omega}} = 75,34$				
$A_U/dB = 20 * \log(75,68) = 37,58$	$A_U/dB = 20 * \log(75,34) = 37,54$				
Berechnungsmethode mit der Steilheit (S) des Transistors.					
$A_U = \frac{S * R_{Cges}}{1 + S * R_{Eges}} = \frac{0.4S * 390\Omega}{1 + 0.4S * 5.15\Omega} = 50.95$	$A_U = \frac{S * R_{Cges}}{1 + S * R_{Eges}} = \frac{0.4S * 388.1\Omega}{1 + 0.4S * 5.15\Omega} = 50.72$				
$A_U/dB = 20 * \log(50,95) = 34,1$	$A_U/dB = 20 * \log(50,72) = 34,1$				

WICHTIG:

Es ist eine Abweichung von $^{\sim}3$ dB zwischen den beiden Berechnungsmethoden zu Erkennen. Wobei die Methode R_{c}/R_{Eges} sich dem simulierten Wert nähert. Die Methode in der A_{u} mit der Steilheit des Transistors berechnet wird, stellt dabei näherungsweise den tatsächlich gemessenen Wert dar. Des Weiteren wurden die Toleranzen des Spannungsteilers am Eingang so wie die der Kapazität nicht berücksichtigt. Somit besteht immer eine gewisse Rechen- und Messungenauigkeit.

4.) Messwerte der Schaltungen

Transistor		2N3904					
		Peak-Peak	RMS	Peak-Peak	RMS	Peak-Peak	RMS
U _{IN}		2,04 V	0,69 V	0,20 V	68,00 mV	10,20 mV	2,97 mV
U _{OUT}		4,32 V	1,45 V	1,86 V	630,00 mV	540,00 mV	182,00 mV
A [11 /11]	A_{u}	2,12	2,10	9,30	9,26	52,94	61,28
$A_u[U_{OUT}/U_{IN}]$	A _u /dB	6,52	6,44	19,37	19,34	34,48	35,75
Schaltung		$C_{Eingang} + R_E$; f=10kHz		$R_E//(C_E+R_{E1})$; f=10kHz		$R_E//C_E$; f=30kHz	

III.) Simulation mit LT Spice

1.) Arbeitspunktanalyse

a.) DC-Analysis, U_B 10V

Operation Point

Name	Wert	Туре	V+	_
VE	2.06	[V]		
V_{V^+}	10.00	[V]		RC
V_{C}	6.00	[V]		R1 390
V_{B}	2.78	[V]		6k8
I_{C}	10.26	[mA]	VDC	Τ —
I_{B}	33.97	[μA]	(+)	_ Q3 C
Ι _Ε	10.30	[mA]		2N3904
I_{R2}	1.03	[mA]	10	E
I_{R1}	1.06	[mA]	<u> </u>	R2
I_{RC}	10.26	[mA]	.op	2k7
I_{RE}	10.30	[mA]		\top
I_{VDC}	11.33	[mA]		RE
				200

In der Simulation (DC Arbeitspunktanalyse) ist der Strom I_B kleiner als wie in der Berechnung, da LT Spice mit einer Gleichstromverstärkung (B, β) von ca. 300 rechnet.

b.) AC-Analysis, Frequenzbereich 1 Hz - 100 kHz

Aus dem Diagramm ist zu entnehmen das bei Schaltung 1 und 2 ein Phasensprung von -90° auf -180° erfolgt. Bei Schaltung 3 ist die Phase stark abhängig von dem Widerstand des Kondensators, die Phase von -180° wird bei ca. 1 MHz erreicht, diese fällt im weiteren Verlauf jedoch weiter ab. Des Weiteren ist dem Diagramm zu entnehmen das von 50-0 Hz eine Abschwächung erfolgt. Ab ca. >50 Hz (0 dB, Verstärkung 1), erfolgt bei allen Schaltungen eine positive Verstärkung (>1). Dabei liefert Schaltung 1 ab ca. 500 Hz die max. Verstärkung von ca. 20 dB und Schaltung 3 liefert ab ca. 500 kHz die max. Verstärkung von ca. 43 dB.

R A N K W F I I

GÄCHTER Raffael

IV.) Anhang

