编译原理 - 作业(4):语义分析

Q1: (P309, Exercise 5.1.1) For the SDD below, give annotated parse trees for the following expressions:

PRODUCTIONS	SEMANTIC RULES
1) $L \rightarrow E \mathbf{n}$	L.val = E.val
2) $E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
3) $E \rightarrow T$	E.val = T.val
4) $T \rightarrow T_1 * F$	$T.val = T_1.val \times F.val$
5) $T \rightarrow F$	T.val = F.val
6) $F \rightarrow (E)$	F.val = E.val
7) $F \rightarrow \text{digit}$	F.val = digit.lexval

(1)
$$(3+4)*(5+6)$$
 n

(2)
$$(9+8*(7+6)+5)*4$$
 n

(1)
$$(3+4)*(5+6)$$
 n (2) $(9+8*(7+6)+5)*4$ n

(1) $(3+4)*(5+6)$ n (2) $(9+8*(7+6)+5)*4$ n

(1) $(3+4)*(5+6)$ n (2) $(9+8*(7+6)+5)*4$ n

(1) $(2+8)*(7+6)+5)*4$ n

(1) $(2+8)*(7+6)+5)*4$ n

(1) $(2+8)*(7+6)+5)*4$ n

(2) $(2+8)*(7+6)+5)*4$ n

(3) $(2+8)*(7+6)+5)*4$ n

(4) $(2+8)*(7+6)+5)*4$ n

(5) $(2+8)*(7+6)+5)*4$ n

(6) $(2+8)*(7+6)+5)*4$ n

(7) $(2+8)*(7+6)+5)*4$ n

(8) $(2+8)*(7+6)+5)*4$ n

(9) $(2+8)*(7+6)+5)*4$ n

(1) $(2+8)*(7+6)+5)*4$ n

(2) $(2+8)*(7+6)+5)*4$ n

(3) $(2+8)*(7+6)+5)*4$ n

(4) $(2+8)*(7+6)+5)*4$ n

(5) $(2+8)*(7+6)+5)*4$ n

(6) $(2+8)*(7+6)+5)*4$ n

(7) $(2+8)*(7+6)+5)*4$ n

(8) $(2+8)*(7+6)+5)*4$ n

(9) $(2+8)*(7+6)+5)*4$ n

(10) $(2+8)*(7+6)+5)*4$ n

(11) $(2+8)*(7+6)+5)*4$ n

(12) $(2+8)*(7+6)+5)*4$ n

(13) $(2+8)*(7+6)+5)*4$ n

(14) $(2+8)*(7+6)+5)*4$ n

(15) $(2+8)*(7+6)+5)*4$ n

(17) $(2+8)*(7+6)+5)*4$ n

(18) $(2+8)*(7+6)+5)*4$ n

(19) $(2+8)*(7+6)+5$ n

Q2: (p323, Exercises 5.3.1) Below is a grammar for expressions involving operator + and integer

of floating-point operands. Floating-point numbers are distinguished by having a decimal point:
$$E \rightarrow E + T \mid T$$

 $L \rightarrow \text{num} \cdot \text{num} \mid \text{num}$

(4) T > num T. type = int

Give an SDD to determine the type of each term
$$T$$
 and expression E .

Production Rules Semantic Rules

(1) $E \rightarrow E + T$ $[E, type = E, type = floot] | T.type = floot? floot: int

(2) $E \rightarrow T$ $[E, type = T, type]$

(3) $T \rightarrow num \cdot num$ $[E, type] = floot$$

Q3: (p317, Exercises 5.2.4) This grammar generates binary numbers with a "decimal" point:

$$S \to L \cdot L \mid L$$
$$L \to L \mid B \mid B$$

 $B \rightarrow 0 \mid 1$

(4) L -> B

(5) B >0

(6) B->1

- (1) Design an L-attributed SDD to compute S.val, the decimal number value of an input string. For example, the translation of string 101.101 should be the decimal number 5.625. Hint: use an inherited attribute L.side that tells which side of the decimal point a bit is on.
- (2) Draw the annotated parse tree of 101.101.

$$L.val = L.side = zleft? Li.val + 2+B.val$$

L. 1en=3

B . val= 1

L.val=0.10 B. val=/ L.side=vight

L.
$$val = |o|$$

L. $val = 0.10|$

L. $side = left$

L. $len = 3$

L. $val = |o|$

L. $val = |o|$

L. $val = |o|$

L. $val = |o|$

B. $val = |o|$

L. $side = vight$

L. $len = 2$

L. $len = 2$

L. $val = |o|$

L. $val = |o$

$$L.val = 1$$

$$L.side = left$$

5:
$$y = x$$
;
6: $z = 0$:

1: int x = 0;

8:
$$z = z + y$$
;
9: $y = y + 1$;

Regarding the semantic analysis of variable type, we consider the following simplified grammar and syntax-directed translation (SDT):

(1) In the above SDT, both T and L have attribute 'type'. The type attribute is synthesized or inherited? Please explain.

(2) For Line 4 of the code snippet: int y, z; Construct the annotated parse tree based on the above SDT.

(2)

T. type = int L. type = int

int L. type = int

id. entry =
$$Z$$

id. type = int

id. type = int

(3) For Lines 3, 7 and 11 of the code snippet, list the valid variables (name and type) in symbol table.