Machine Learning and Applications

Assignment 4

1. (2) Given a set of data points $\{\mathbf{x}_n\}$, we can define the convex hull to be the set of all points \mathbf{x} given by

$$\mathbf{x} = \sum_{n} \alpha_n \mathbf{x}_n$$

where $\alpha_n \geq 0$ and $\sum_n \alpha_n = 1$. Consider a second set of points $\{\mathbf{y}_n\}$ together with their corresponding convex hull. By definition, the two sets of points will be linearly separable if there exists a vector $\hat{\mathbf{w}}$ and a scalar w_0 such that $\hat{\mathbf{w}} \cdot \mathbf{x}_n + w_0 > 0$ for all \mathbf{x}_n , and $\hat{\mathbf{w}} \cdot \mathbf{y}_n + w_0 < 0$ for all \mathbf{y}_n . Show that if their convex hulls intersect, the two sets of points cannot be linearly separable, and conversely that if they are linearly separable, their convex hulls do not intersect.

- 2. (2) Show that for a linearly separable data set, the maximum likelihood solution for the logistic regression model is obtained by finding a vector \mathbf{w} whose decision boundary $\mathbf{w}^T \phi(\mathbf{x}) = 0$ separates the classes $(\phi(x))$ is transformation of the input vectors), and then taking the magnitude of \mathbf{w} to infinity.
- 3. (2) Show that the Hessian matrix **H** for the logistic regression model, given by

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi},$$

is positive definite. Here $E(\mathbf{w})$ is an error function:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} (t_n \ln y_n + (1 - t_n) \ln(1 - y_n))$$

 t_n is the actual class label, y_n is the output of the logistic regression model for input vector \mathbf{x}_n :

$$y_n = \sigma(\mathbf{w}^T \phi(\mathbf{x}_n)),$$

R is a diagonal matrix with elements $y_n(1-y_n)$ and Φ is a matrix whose *n*-th row is given by $\phi(\mathbf{x}_n)^T$

Hence show that the error function is a concave function of $\mathbf w$ and that it has a unique minimum.