# 2 **乘除** 从九九乘法到矩阵乘法

## Multiplication and Division



大自然只使用最长的线来编织她的图景;因此,每根织线都能洞见整个大自然的锦绣图景。

Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the organization of the entire tapestry.

理查德·费曼 (Richard P. Feynman) | 美国理论物理学家 | 1918 ~ 1988



- input() 函数接受一个标准输入数据,返回为字符串 str 类型
- int() 将输入转化为整数
- math.factorial() 计算阶乘
- numpy.cumprod() 计算累计乘积
- numpy.inner() 计算行向量的内积, 函数输入为两个列向量时得到的结果为张量积
- numpy.linalg.inv() 计算方阵的逆
- numpy.linspace() 在指定的间隔内,返回固定步长的数组
- numpy.math.factorial() 计算阶乘
- numpy.random.seed() 固定随机数发生器种子
- numpy.random.uniform() 产生满足连续均匀分布的随机数
- numpy.sum() 求和
- scipy.special.factorial() 计算阶乘
- seaborn.heatmap() 绘制热图





本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成权归有平人字面版在所有,有勿向用,引用有压切面处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

## 2. 算术乘除: 先乘除,后加减,括号内先算

本节回顾算术乘除法。

#### 乘法

**乘法** (multiplication) 算式等号左端是被乘数 (multiplicand) 和乘数 (multiplier),右端是乘积 (product)。乘法运算符读作乘 (times 或 multiplied by)。乘法表 (multiplication table 或 times table) 是数字乘法运算的基础。



图 1. 乘法运算

图 2 所示为数轴上可视化 2×3=6。



介绍几个常用乘法符号。乘法符号×用于数字相乘,一般不用在两个变量相乘。在线性代数中, $\times$ 则表示 $\sqrt{2}$  (cross product 或 vector product),完全另外一回事。

在代数中,两个变量 a 和 b 相乘,可以写成 ab; 这种记法被称作**隐含乘法** (implied multiplication)。ab 也可以写成  $a \cdot b$ 。

通常,圆点·不用在数字相乘,因为它容易和**小数点** (decimal point) 混淆。线性代数中, $a \cdot b$  表示  $a \cap b$  两个向量的标量积 (scalar product),这是本章后续要介绍的内容。

多提一嘴,乘法计算时,请大家多留意数值单位。举个例子,正方形的边长为  $1 \, \text{m}$ ,其面积数值可以通过乘法运算  $1 \times 1 = 1$  获得,而结果单位为平方米  $m^2$ 。有一些数值本身**无单位** 

(unitless),比如个数、z 分数。z 分数也叫<mark>标准分数</mark> (standard score),是概率统计中的一个概念,z 分数是一个数与平均数的差再除以标准差的结果。

→本系列丛书会在《概率统计》一册详细介绍 z 分数这个概念。

表1给出和乘法相关的常用英文表达。

表 1. 乘法相关英文表达

| 数学表达            | 英文表达                                       |
|-----------------|--------------------------------------------|
| 2 × 3 = 6       | Two times three equals six.                |
|                 | Two multiplied by three equals six.        |
|                 | Two cross three equals six.                |
|                 | The product of two and three is six.       |
|                 | If you multiply two by three, you get six. |
| $a \cdot b = c$ | $a 	ext{ times } b 	ext{ equals } c.$      |
|                 | a multiplied by $b$ equals $c$ .           |
|                 | $a 	ext{ dot } b 	ext{ equals } c.$        |
|                 | The product of $a$ and $b$ is $c$ .        |



Bk3\_Ch2\_01.py 完成两个数乘法。Python 中两个数字相乘用 \* (asterisk 或 star)。

#### 阶乘

某个正整数的阶乘 (factorial) 是所有小于及等于该数的正整数的积。比如,5 的阶乘记做 5!,对应的运算为:

$$5! = 5 \times 4 \times 3 \times 2 \times 1 \tag{1}$$

特别地,定义 0 的阶乘为 0!=1。本书有两个重要的数学概念需要用到阶乘——排列组合和泰勒展开。



Python 中可以用 math.factorial()、scipy.special.factorial()、numpy.math.factorial() 计算阶乘。为了帮助大家理解,Bk3\_Ch2\_02.py 自定义函数求解阶乘。

#### 累计乘积

对于一组数字,**累计乘积** (cumulative product) 也叫**累积乘积**,得到的结果不仅仅是一个乘积,而是从左向右每乘一个数值得到的分步结果。比如,自然数 1 到 10 求累计求积结果为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 (2)

## (2) 对应的累计乘积过程如下:

```
\begin{array}{c}
1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720 \\
\hline
1 \times 2 \times 3 \times 4 \times 5 = 120 \\
\hline
1 \times 2 \times 3 \times 4 = 24 \\
\hline
1 \times 2 \times 3 = 6 \\
\hline
1 \times 2 = 2
\end{array}

1
1, 2, 3, 4, 5, 6, 7, 8, ... (3)
```



Bk3\_Ch2\_03.py 利用 numpy.linspace(1, 10, 10) 产生  $1 \sim 10$  这 10 个自然数,然后利用 numpy.cumprod() 函数来求累计乘积。此外,请大家自行研究如何使用 numpy.arange(),并用这个函数生成  $1 \sim 10$ 。

#### 除法

**除法** (division) 是**乘法的逆运**算 (reverse operation of multiplication)。被除数 (dividend 或 numerator) **除以** (over 或 divided by) **除数** (divisor 或 denominator) 得到商 (quotient)。



图 3. 除法运算

除法运算有时可以除尽 (divisible),比如,6 可以被 3 除尽 (six is divisible by three)。除法有时也得到余数 (remainder),比如 7 除 2 余 1。此外,除法的结果一般用分数 (fraction) 或小数 (decimal) 来表达。

表 2. 除法英文表达

| 数学表达             | 英文表达                                                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 ÷ 3 = 2        | Six divided by three equals two.  If you divide six by three you get two.                                                                                                  |
| $7 \div 2 = 3R1$ | Seven over two is three and the remainder is one.  Seven divided by two equals three with a remainder of one.  Seven divided by two equals three and the remainder is one. |

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com



Bk3 Ch2 04.py 完成两个数的除法运算, 除法运算符为正斜杠/。

Bk3 Ch2 05.py 介绍如何求余, 求余数的运算符为%。

#### 分数

最常见的分数 (fraction) 是普通分数 (common fraction 或 simple fraction),由分母 (denominator) 和分子 (numerator) 组成,分隔两者的是分数线 (fraction bar) 或正斜杠 (forward slash) /。

非零整数 (nonzero integer) a 的倒数 (reciprocal) 是 1/a。分数 b/a 的倒数是 a/b。

表3总结常用分数英文表达。

表 3. 分数相关英文表达

| 数学表达                  | 英文表达                                                                                                    |
|-----------------------|---------------------------------------------------------------------------------------------------------|
| $\frac{1}{2}$ , 1/2   | One half<br>A half<br>One over two                                                                      |
| 1:2                   | One to two                                                                                              |
| $-\frac{3}{2}$        | Minus three-halves<br>Negative three-halves                                                             |
| $\frac{1}{3}$ , 1/3   | One over three<br>One third                                                                             |
| $\frac{1}{4}$ , 1/4   | One over four One fourth One quarter One divided by four                                                |
| $1\frac{1}{4}$        | One and one fourth                                                                                      |
| 1/5                   | One fifth                                                                                               |
| 3/5                   | Three fifths                                                                                            |
| $\frac{1}{n}$ , $1/n$ | One over n                                                                                              |
| $\frac{a}{b}$ , $a/b$ | a over $b$ $a$ divided by $b$ The ratio of $a$ to $b$ The numerator is $a$ while the denominator is $b$ |

# 向量乘法:标量乘法、向量内积、逐项积

这一节介绍三种重要的向量乘法: (1) 标量乘法 (scalar multiplication); (2) 向量内积 (inner product); (3) 逐项积 (piecewise product)。

#### 标量乘法

标量乘法运算中,标量乘向量结果还是向量,相当于缩放。

标量乘法运算规则很简单,向量a乘以k,a的每一个元素均与k相乘,比如下例标量2乘行 向量[1,2,3]:

$$2 \times [1 \ 2 \ 3] = [2 \times 1 \ 2 \times 2 \ 2 \times 3] = [2 \ 4 \ 6]$$
 (4)

再如, 标量乘列向量:

$$2 \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \times 1 \\ 2 \times 2 \\ 2 \times 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
 (5)

图 4 所示为标量乘法示意图。



图 4. 标量乘法

同理,标量 k 乘矩阵 A 结果是 k 与矩阵 A 每一个元素相乘,比如下例:

$$2 \times \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}_{2 \times 3} = \begin{bmatrix} 2 \times 1 & 2 \times 2 & 2 \times 3 \\ 2 \times 4 & 2 \times 5 & 2 \times 6 \end{bmatrix}_{2 \times 3} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}_{2 \times 3}$$
 (6)



Bk3 Ch2 06.py 完成向量和矩阵标量乘法。

#### 向量内积

向量内积 (inner product) 结果为标量。向量内积又叫标量积 (scalar product) 或点积 (dot product)<sub>o</sub>

向量内积的运算规则是,两个形状相同向量,对应位置元素——相乘,再求和。比如下例计 算两个行向量内积:

$$[1 \ 2 \ 3] \cdot [4 \ 3 \ 2] = 1 \times 4 + 2 \times 3 + 3 \times 2 = 4 + 6 + 6 = 16$$
(7)

计算两个列向量内积, 比如:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com



图 5 所示为向量内积规则示意图。



图 5. 向量内积示意图

显然,向量内积满足交换律 (commutative),即:

$$a \cdot b = b \cdot a \tag{9}$$

向量内积对向量加法满足分配律 (distributive over vector addition):

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \tag{10}$$

显然, 向量内积不满足结合律 (associative):

$$(a \cdot b) \cdot c \neq a \cdot (b \cdot c) \tag{11}$$



Bk3\_Ch2\_07.py 代码用 numpy.inner() 计算行向量的内积; 但是, numpy.inner() 函数输入为两个列向量时得到的结果为张量积 (tensor product)。

一机器学习和深度学习中,张量积是非常重要的向量运算,本系列丛书将在《矩阵力量》一册 会详细介绍。



下面举几个例子, 让大家管窥标量积的用途。

给定如下五个数字,

这五个数字求和,可以用如下标量积计算得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^{T} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^{T} = 1 \times 1 + 2 \times 1 + 3 \times 1 + 4 \times 1 + 5 \times 1 = 15$$
 (13)

前文提过, [1,1,1,1,1] 叫做全1向量。

这五个数字的平均值, 也可以通过标量积得到:

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^{T} \cdot \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}^{T} = 1 \times 1/5 + 2 \times 1/5 + 3 \times 1/5 + 4 \times 1/5 + 5 \times 1/5 = 3$$
 (14)

计算五个数字的平方和:

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^{T} \cdot \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^{T} = 1 \times 1 + 2 \times 2 + 3 \times 3 + 4 \times 4 + 5 \times 5 = 55$$
 (15)

此外, 标量积还有重要的几何意义。本书后续将介绍这方面内容。

#### 逐项积

**逐项积** (piecewise product),也叫**阿达玛乘积** (Hadamard product)。两个形状相同向量的逐项积为对应位置元素分别相乘,结果为相同形状的向量。

逐项积的运算符为 ⊙。逐项积相当于算术乘法的批量运算。

举个例子,两个行向量逐项积:

$$[1 \ 2 \ 3] \odot [4 \ 5 \ 6] = [1 \times 4 \ 2 \times 5 \ 3 \times 6] = [4 \ 10 \ 18]$$
 (16)

图 6 所示为向量逐项积运算示意图。



图 6. 向量逐项积

同理,两个矩阵逐项积的运算前提——矩阵形状相同。矩阵逐项积运算规则为对应元素相乘,结果形状不变:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 3 & 4 & 5 \end{bmatrix} \odot \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 \times 1 & 2 \times 2 & 3 \times 3 \\ 4 \times (-1) & 5 \times 0 & 6 \times 1 \\ 3 & 2 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 9 \\ -4 & 0 & 6 \\ 3 & 2 & 4 & 4 \end{bmatrix}$$
(17)



Python 中,对于 numpy.array() 定义的形状相同的向量或矩阵,逐项积可以通过\* 计算得到。请大家参考 Bk3\_Ch2\_08.py。

## 2.3 矩阵乘法: 最重要的线性代数运算规则

矩阵乘法是最重要线性代数运算,没有之一——这句话并不夸张。

矩阵乘法规则可以视作算术"九九乘法表"的进阶版。

#### 矩阵乘法规则

A 和 B 两个矩阵相乘的前提是矩阵 A 的列数和矩阵 B 的行数相同。A 和 B 的乘积一般写作 AB。

lacktriangle注意,A 在左边,B 在右边,不能随意改变顺序。也就是说,矩阵乘法一般情况下不满足交换律,即 $AB \neq BA$ 。

A 和 B 两个矩阵相乘 AB 读作"matrix boldface capital A times matrix boldface capital B"或"the matrix product boldface capital A and boldface capital B"。

NumPy 中,两个矩阵相乘的运算符为 @,本系列丛书一部分矩阵乘法也会采用 @。比如,AB 也记做 A@B:

$$C_{\mathbf{q} \times \mathbf{n}} = A_{\mathbf{q} \times \mathbf{p}} B_{\mathbf{p} \times \mathbf{n}} = A_{\mathbf{q} \times \mathbf{p}} @ B_{\mathbf{p} \times \mathbf{n}}$$

$$\tag{18}$$

如图 7 所示,矩阵 A 的形状为 m 行、p 列,矩阵 B 的形状为 p 行、n 列。



图 7. 矩阵乘法规则

如图 7 所示, A 和 B 相乘得到矩阵 C, C 的形状为 m 行、n 列,相当于消去了 p。

再次强调, 矩阵乘法不满足交换律。也就是说, 一般情况下式不成立:

$$\boldsymbol{A}_{m \times p} \boldsymbol{B}_{p \times n} \neq \boldsymbol{B}_{p \times n} \boldsymbol{A}_{m \times p} \tag{19}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

首先, B 的列数和 A 的行数很可能不匹配。即便 m=n, 也就是 B 的列数等于 A 的行数, BA结果很可能不等于 AB。

#### 两个 2×2 矩阵相乘

下面, 用两个2×2矩阵相乘讲解矩阵乘法运算规则。

下式中, 矩阵 A 和 B 相乘结果为矩阵 C:

$$C = AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} @ \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$$

$$(20)$$

图 8 所示为两个  $2 \times 2$  矩阵相乘如何得到矩阵 C 的每一个元素。

矩阵 A 的第一行元素和矩阵 B 第一列对应元素分别相乘,再相加,结果为矩阵 C 的第一行、 第一列元素  $c_{1,1}$ 。

矩阵 A 的第一行元素和矩阵 B 第二列对应元素分别相乘,再相加,得到  $c_{1,2}$ 。



图 8. 矩阵乘法规则,两个 2×2 矩阵相乘为例

同理,依次获得矩阵 C 的  $c_{2,1}$  和  $c_{2,2}$  两个元素。

总结来说,A 和 B 乘积 C 的第 i 行第 j 列的元素  $c_{ij}$  等于矩阵 A 的第 i 行的元素与矩阵 B 的第 j列对应元素乘积再求和。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

▲ 注意,这个矩阵运算规则既是一种发明创造,也是一种约定成俗。也就是说,这种乘法规则在被法国数学家雅克·菲利普·玛丽·比内 (Jacques Philippe Marie Binet, 1786~1856) 提出之后,在长期的数学实践中被广为接受。矩阵乘法可谓"成人版九九乘法表"。就像大家儿时背诵九九乘法表时,这里建议大家先把矩阵乘法规则背下来。熟能生巧,慢慢地大家就会通过不断学习认识到这个乘法规则的精妙之处。



Bk3 Ch2 09.py 展示如何完成 (20) 矩阵乘法运算。

#### 矩阵乘法形态

图 9 给出了常见的多种矩阵乘法形态,每一种形态对应一类线性代数问题。图 9 特别高亮矩阵乘法中左侧矩阵的"列"和右侧矩阵的"行"。本系列丛书《矩阵力量》一册将会详细介绍图 9 每一种乘法形态。

这里格外提醒大家,初学者对矩阵乘法会产生一种错误印象,认为这些千奇百怪的矩阵乘法 形态就是"奇技淫巧"。这是极其错误的想法! 在不断学习中,大家会逐渐领略到每种矩阵乘法形 态的力量所在。



图 9. 矩阵乘法形态多样性

#### 两个向量相乘

本节最后着重讲一下图 9 最顶上两种向量乘积。这两种特殊形态的矩阵乘法正是理解矩阵乘 法规则的两个重要视角。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

向量 a 和 b 为等长列向量,a 转置 ( $a^{T}$ ) 乘 b 为标量,等价于 a 和 b 的标量积:

$$\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b} = \boldsymbol{a} \cdot \boldsymbol{b} \tag{21}$$

举个例子:

$$\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3\mathsf{d}}^{\mathrm{T}} & \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}_{3\mathsf{d}} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{1\times 3} & \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}_{3\mathsf{d}} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 & 2 \end{bmatrix} = 16$$
 (22)

列向量  $a \neq b$  转置  $(b^T)$ ,乘积结果  $ab^T$  为方阵,也就是行数和列数相同的矩阵:

$$ab^{\mathrm{T}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3\times 1} & \begin{pmatrix} 4 \\ 3 \\ 2 \end{bmatrix}_{3\times 1} & = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3\times 1} & \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}_{3\times 1} & = \begin{bmatrix} 4 & 3 & 2 \\ 8 & 6 & 4 \\ 12 & 9 & 6 \end{bmatrix}_{3\times 3}$$
 (23)

如果 a 和 b 分别为,请大家自行计算  $ab^{T}$  的结果:

$$\boldsymbol{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{2 \times 1}, \quad \boldsymbol{b} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}_{3 \times 1} \tag{24}$$

▲ 再次强调,使用 numpy.array() 构造向量时,np.array([1,2]) 构造的是一维数组,不能算是 矩阵。而 np.array([[1,2]]) 构造得到的是 1×2 行向量, 是一个特殊矩阵。

→np.array([[1],[2]]) 构造的是一个2×1列向量,也是个矩阵。本系列丛书会在《矩阵力 量》一册介绍更多构造行向量和列向量的办法。

这一节探讨矩阵乘法的第一视角。

#### 两个 2×2 矩阵相乘

上一节最后介绍,a 和 b 均是形状为  $n \times 1$  的列向量, $a^{\mathsf{T}}b$  结果标量,相当于标量积  $a \cdot b$ 。我们 可以把 (20) 中 A 写成两个行向量  $a^{(1)}$  和  $a^{(2)}$ , 把 B 写成两个列向量  $b_1$  和  $b_2$ , 即,

$$\boldsymbol{A} = \begin{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \\ \begin{bmatrix} a^{(1)} \\ \end{bmatrix} \\ \begin{bmatrix} 3 & 4 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ b_1 & b_2 \end{bmatrix}$$
 (25)

这样 AB 矩阵乘积可以写成:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\mathbf{A} @ \mathbf{B} = \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ \begin{bmatrix} 3 & 4 \\ a^{(2)} \end{bmatrix} \end{bmatrix} @ \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} @ \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} @ \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 & 4 \\ 24 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \end{bmatrix} @ \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} @ \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 & 4 \\ 24 & 10 \end{bmatrix}$$

$$(26)$$

也就是说,将位于矩阵乘法左侧的 A 写成行向量,右侧的 B 写成列向量。然后,行向量和列向量逐步相乘,得到乘积每个位置的元素。

用符号代替具体数字, (26) 可以写成:

$$\mathbf{A} @ \mathbf{B} = \begin{bmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}_{1 \times 2} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} b_{1,1} \\ b_{2,1} \end{bmatrix}_{2 \times 1} & \begin{bmatrix} b_{1,2} \\ b_{2,2} \end{bmatrix}_{2 \times 1} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{a}^{(1)} \\ \mathbf{a}^{(2)} \end{bmatrix}_{2 \times 1} \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} \end{bmatrix}_{1 \times 2} = \begin{bmatrix} \mathbf{a}^{(1)} \mathbf{b}_{1} & \mathbf{a}^{(1)} \mathbf{b}_{2} \\ \mathbf{a}^{(2)} \mathbf{b}_{1} & \mathbf{a}^{(2)} \mathbf{b}_{2} \end{bmatrix}_{2 \times 2} = \begin{bmatrix} \begin{pmatrix} \mathbf{a}^{(1)} \end{pmatrix}^{\mathsf{T}} \cdot \mathbf{b}_{1} & \begin{pmatrix} \mathbf{a}^{(1)} \end{pmatrix}^{\mathsf{T}} \cdot \mathbf{b}_{2} \\ \begin{pmatrix} \mathbf{a}^{(2)} \end{pmatrix}^{\mathsf{T}} \cdot \mathbf{b}_{1} & \begin{pmatrix} \mathbf{a}^{(2)} \end{pmatrix}^{\mathsf{T}} \cdot \mathbf{b}_{2} \end{bmatrix}_{2 \times 2}$$

$$(27)$$

lack 再次强调, $a^{(1)}$ 是行向量, $b_1$ 是列向量。

(27) 展示的是矩阵乘法的基本视角,它直接体现的是矩阵乘法规则。

#### 更一般情况

矩阵乘积 AB 中,左侧矩阵 A 的形状为  $m \times p$ ,将矩阵 A 写成一组上下叠放的行向量  $a^{(i)}$ :

$$\mathbf{A}_{m \times p} = \begin{bmatrix} \mathbf{a}^{(1)} \\ \mathbf{a}^{(2)} \\ \vdots \\ \mathbf{a}^{(m)} \end{bmatrix}_{m \times 1}$$
 (28)

其中,行向量  $a^{(i)}$  列数为 p,即有 p 个元素。

矩阵乘积 AB 中,右侧矩阵 B 的形状为  $p \times n$  列,将矩阵 B 写成左右排列的列向量:

$$\boldsymbol{B}_{p\times n} = \begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 & \cdots & \boldsymbol{b}_n \end{bmatrix}_{\text{lon}} \tag{29}$$

其中,列向量 $\mathbf{b}_{i}$ 行数为p,也有p个元素。

A 和 B 相乘, 可以展开写成:

$$\boldsymbol{A}_{m\times p} @ \boldsymbol{B}_{p\times n} = \begin{bmatrix} \boldsymbol{a}^{(1)} \\ \boldsymbol{a}^{(2)} \\ \vdots \\ \boldsymbol{a}^{(m)} \end{bmatrix}_{m\times 1} \begin{bmatrix} \boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \cdots & \boldsymbol{b}_{n} \end{bmatrix}_{1\times n} = \begin{bmatrix} \boldsymbol{a}^{(1)}\boldsymbol{b}_{1} & \boldsymbol{a}^{(1)}\boldsymbol{b}_{2} & \cdots & \boldsymbol{a}^{(1)}\boldsymbol{b}_{n} \\ \boldsymbol{a}^{(2)}\boldsymbol{b}_{1} & \boldsymbol{a}^{(2)}\boldsymbol{b}_{2} & \cdots & \boldsymbol{a}^{(2)}\boldsymbol{b}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{a}^{(m)}\boldsymbol{b}_{1} & \boldsymbol{a}^{(m)}\boldsymbol{b}_{2} & \cdots & \boldsymbol{a}^{(m)}\boldsymbol{b}_{n} \end{bmatrix}_{m\times n} = \boldsymbol{C}_{m\times n}$$
(30)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

#### 热图

图 10 所示为热图 (heatmap) 可视化矩阵乘法。



图 10. 矩阵乘法热图展示

具体如图 11 所示,A 中的第 i 行向量  $a^{(i)}$  乘以 B 中第 j 列向量  $b_j$ ,得到标量  $a^{(i)}b_j$ ,对应乘积矩阵 C 中第 i 行、第 j 列元素  $c_{i,j}$ :

$$c_{i,j} = \boldsymbol{a}^{(i)} \boldsymbol{b}_j \tag{31}$$

这就是矩阵乘法的第一视角。



图 11. 矩阵乘法第一视角



代码文件 Bk3\_Ch2\_10.py 中 Bk3\_Ch2\_10\_A 部分代码绘制图 10。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

代码用 numpy.random.uniform() 函数产生满足连续均匀分布的随机数, 并用 seaborn.heatmap() 绘制热图。热图采用的 colormap 为'RdBu\_r', 'Rd'是红色的意思,'Bu'是蓝色,'\_r'代表"翻转"。



此外,我们还用 Streamlit 制作了展示矩阵乘法运算规则的 App,请大家参考代码文件 Streamlit Bk3 Ch2 10.py。文件中还展示如何使用 try-except。

# 2.5 矩阵乘法第二视角

下面,我们聊一聊矩阵乘法的第二视角。

#### 两个 2×2 矩阵相乘

还是以 (20) 为例, A 和 B 相乘, 左侧矩阵 A 写成两个列向量  $a_1$  和  $a_2$ , 把 B 写成两个行向量  $b^{(1)}$ 和  $b^{(2)}$ :

$$\boldsymbol{A} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} \underline{4} & 2 \\ \underline{b}^{(1)} \\ 3 & 1 \end{bmatrix}_{b^{(2)}}$$
(32)

这样 AB 乘积可以展开写成:

$$\mathbf{A} @ \mathbf{B} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} @ \begin{bmatrix} 4 & 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} @ \begin{bmatrix} 4 & 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} @ \underbrace{4 & 2}_{b^{(1)}} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} @ \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 12 & 6 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 12 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 4 \\ 24 & 10 \end{bmatrix}$$
(33)

在这个视角下。我们惊奇发现矩阵乘法竟然变成了"加法"!

用符号代替数字, (33) 可以写成:

$$\mathbf{A} @ \mathbf{B} = \begin{bmatrix} \begin{bmatrix} a_{1,1} \\ a_{2,1} \end{bmatrix}_{2\times 1} & \begin{bmatrix} a_{1,2} \\ a_{2,2} \end{bmatrix}_{2\times 1} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} \end{bmatrix}_{1\times 2} \\ \begin{bmatrix} b_{2,1} & b_{2,2} \end{bmatrix}_{1\times 2} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}_{1\times 2} \begin{bmatrix} \mathbf{b}^{(1)} \\ \mathbf{b}^{(2)} \end{bmatrix}_{2\times 1} = \mathbf{a}_1 \mathbf{b}^{(1)} + \mathbf{a}_2 \mathbf{b}^{(2)}$$

$$(34)$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

#### 更一般情况

将矩阵 $A_{m \times p}$ 写成一系列左右排列的列向量:

$$\boldsymbol{A}_{m \times p} = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_p \end{bmatrix}_{1 \times p} \tag{35}$$

其中, 列向量  $a_i$  元素数量为 m, 即行数为 m。

将矩阵  $B_{p\times n}$  写成上下叠放的行向量:

$$\boldsymbol{B}_{p\times n} = \begin{bmatrix} \boldsymbol{b}^{(1)} \\ \boldsymbol{b}^{(2)} \\ \vdots \\ \boldsymbol{b}^{(p)} \end{bmatrix}_{p\times 1}$$
(36)

其中,行向量  $b^{(i)}$  元素数量为 m,即列数为 m:

矩阵 A 和矩阵 B 相乘,可以展开写成  $p \land m \times n$  矩阵相加,

$$\mathbf{A}_{m \times p} @ \mathbf{B}_{p \times n} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{p} \end{bmatrix}_{1 \times p} \begin{bmatrix} \mathbf{b}^{(1)} \\ \mathbf{b}^{(2)} \\ \vdots \\ \mathbf{b}^{(p)} \end{bmatrix}_{p \times 1} = \underbrace{\mathbf{a}_{1} \mathbf{b}^{(1)} + \mathbf{a}_{2} \mathbf{b}^{(2)} + \cdots + \mathbf{a}_{p} \mathbf{b}^{(p)}}_{p \text{ matrices with shape of } m \times n} = \mathbf{C}_{m \times n}$$
(37)

我们可以把  $a_k b^{(k)}$  结果矩阵写成  $C_k$ , 这样 A 和 B 乘积 C 可以写成  $C_k$  (k = 1, 2, ..., p) 之和,

$$a_1 b^{(1)} + a_2 b^{(2)} + \cdots + a_p b^{(p)} = C_1 + C_2 + \cdots + C_p = C$$
 (38)

在这个视角下,矩阵的乘法变成若干矩阵的叠加。这是一个非常重要的视角,数学科学和机器学习很多算法都会离不开它。

#### 热图

图 12 给出的是图 11 所示矩阵乘法第二视角的热图。图中三个形状相同矩阵  $C_1$ 、 $C_2$ 、 $C_3$ 相加得 到  $C_0$ 



图 12. 矩阵乘法第二视角

如图 13 所示,从图像角度来看,(38) 好比若干形状相同的图片,经过层层叠加,最后获得一幅完整热图。



图 13. 三幅图像叠加得到矩阵 C 热图

图 14、图 15、图 16分别展示如何获得图 12 中矩阵  $C_1$ 、 $C_2$ 、 $C_3$ 热图。

观察热图可以发现一个有意思的现象,列向量乘行向量好像张起了一幅平面。张量积用的就是类似图 14、图 15、图 16 的运算思路。

本系列丛书《矩阵力量》一册会讲解张量积。



图 14. 获得 C1

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com



图 15. 获得 C2



图 16. 获得 C3



代码文件 Bk3 Ch2 10.py 中 Bk3 Ch2 10 B 部分绘制图 12。



主成分分析 (Principal Component Analysis, PCA) 是机器学习中重要的降维算法。这种算法可以把可能存在线性相关的数据转化成线性不相关的数据,并提取数据中的主要特征。

图 17 中,X 为原始数据, $X_1$ 、 $X_2$ 、 $X_3$ 给出的是第一、第二、第三主成分。根据热图颜色色差可以看出来,第一主成分解释了原始数据中最大的差异。第二成分则进一步解释剩余数据中最大的差异,以此类推。

图17实际上就是本节介绍的矩阵乘法第二视角。本系列丛书会在《矩阵力量》、《概率统计》、《数据科学》三本中从不同视角介绍主成分分析。

《矩阵力量》将从矩阵分解、空间、优化等视角讲解 PCA。《概率统计》将从数据、中心化数据、z分数、协方差矩阵、相关性系数矩阵这些统计视角来讨论 PCA 不同技术路线之间的差异。《数据科学》则侧重讲解如何在实践中使用 PCA 分析数据,并使用 PCA 结果进行回归分析。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com



图 17. 用数据热图叠加看主成分分析

实际上,并不存在所谓的矩阵除法。所谓矩阵 B 除以矩阵 A,实际上将矩阵 A 先转化逆矩阵  $A^{-1}$ . 然后计算 **B** 和逆矩阵  $A^{-1}$  乘积. 即:

$$\mathbf{B}\mathbf{A}^{-1} = \mathbf{B} \otimes \mathbf{A}^{-1} \tag{39}$$

A 如果**可逆** (invertible),仅当 A 为方阵且存在矩阵  $A^{-1}$  使得下式成立,

$$AA^{-1} = A^{-1}A = I \tag{40}$$

 $A^{-1}$  叫做**矩阵** A **的逆** (the inverse of matrix A)。

(40) 中的 **I** 就是前文介绍过的**单位阵** (identity matrix)。 **n** 阶单位矩阵 (*n*-square identity matrix 或 n-square unit matrix) 的特点是对角线上的元素为 1,其他为 0,

$$I_{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (41)

可以用 numpy.linalg.inv() 计算方阵的逆。

图 18 所示为方阵 A 和逆矩阵  $A^{-1}$  相乘得到单位矩阵 I 的热图。

▲ 注意图中数值仅保留小数点后两位,按图中数值相乘不能准确得到单位矩阵。



图 18. 方阵 A 和逆矩阵  $A^{-1}$  相乘

#### 一般情况,

$$\left(\boldsymbol{A} + \boldsymbol{B}\right)^{-1} \neq \boldsymbol{A}^{-1} + \boldsymbol{B}^{-1} \tag{42}$$

请大家注意以下和矩阵逆有关的运算规则:

$$(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$$

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(k\mathbf{A})^{-1} = \frac{1}{k}\mathbf{A}^{-1}$$
(43)

其中,假设 $A \setminus B \setminus C \setminus AB$ 和ABC逆运算存在。

表4总结常见矩阵逆相关的英文表达。

表 4. 和矩阵逆相关的英文表达

| 数学表达           | 英文表达                                                                                                               |
|----------------|--------------------------------------------------------------------------------------------------------------------|
| $A^{-1}$       | Inverse of the matrix boldface capital $\boldsymbol{A}$                                                            |
| A              | Matrix boldface capital A inverse                                                                                  |
| $(A + B)^{-1}$ | Left parenthesis bold face capital A plus boldface capital B right parenthesis superscript minus one               |
| (A+B)          | Inverse of the matrix sum boldface capital $\boldsymbol{A}$ plus boldface capital $\boldsymbol{B}$                 |
| $(AB)^{-1}$    | Left parenthesis boldface capital <b>A</b> times boldface capital <b>B</b> right parenthesis superscript minus one |
| (AB)           | Inverse of the matrix product boldface capital $\boldsymbol{A}$ and boldface capital $\boldsymbol{B}$              |
| $ABC^{-1}$     | The product boldface capital $A$ boldface capital $B$ and boldface capital $C$ inverse                             |



本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

### Bk3\_Ch2\_11.py 计算并绘制图 18。



如果学完这一章,大家对矩阵乘法规则还是一头雾水,我只有一个建议——死记硬背!

先别问为什么。就像背诵九九乘法表一样,把矩阵乘法规则背下来。此外,再次强调矩阵乘 法等运算不是"奇技淫巧"。后面,大家会逐步意识到矩阵乘法的洪荒伟力。