- Teoría de Números 5
 - Temas
 - Ejercicios
 - Problema 1
 - Solución
 - Problema 2
 - Solución
 - Problema 3
 - Solución
 - Problema 4
 - Solución
 - Problema 5
 - Solución
 - Problema 6
 - Solución

Teoría de Números 5

Temas

Ejercicios

Problema 1

Demuestre o refute

- $37621 + 2^{30} + 471 + 59603 * 25$ es divisible por 12
- $375121*4^{105}-35^{91}$ es primo relativo con 6 y el número $9^{1684}-7^{52688}$ es divisible por 10
- $2^{70} + 3^{70}$ es divisible por 13
- 3⁴⁷ deja resto 4 cuando se divide por 23

Solución

Problema 2

Prueba que es finita la cantidad de números k tal que $\sum_{k=1}^{\infty} k!$ es un cuadrado perfecto.

Solución

Sea $S(t) = \sum_{k=1}^{t}$. Nótese que para los siguientes casos:

- S(1) = 1 cumple
- S(2) = 3 no cumple
- S(3) = 9 cumple
- S(4) = 33 no cumple
- S(5) = 153 no cumple
- S(6) = 873 tampoco

Para $t \geq 7$ tenemos que los terminos i! en la sumatoria a partir de 7! serán divisibles entre 7, entonces la congruencia de S(t) módulo 7 no va a variar. Como los cuadrados perfectos solo dejan resto 1, 4, 2, 0 módulo 7 y S(6) deja resto 5, se cumple que para $t \ge 6$ no existe t tal que S(t) sea un cuadrado perfecto.

Problema 3

Prueba que las siguientes ecuaciones no tienen solución:

- $3x^2 + 5 + 9xy = y^2$ $x^4 5x^3 + 30x^2 = 18$ $x^2 + y^2 8z = 6$

Solución

1.
$$3x^2 + 5 + 9xy = y^2$$

La ecuación puede transformarse en $3x(x+3y)=y^2-5$. Nótese que $3x(x+3y)\equiv$ $0 \mod(3)$, por tanto $y^2 - 5 \equiv 0 \mod(3) \implies y^2 \equiv 5 \mod(3) \implies y^2 \equiv -1 \mod(3)$ lo cual es imposible porque los cuadrados son congruentes con 0 o 1 módulo 3.

$$x^4 - 5x^3 + 30x^2 = 18$$

La ecuacion puede transformarse en $x^2(x^2 - 5x + 30) = 18$. Nótese que $18 \equiv 3 \mod(5)$ y como todo cuadrado es congruente con 0, 1 0 -1 módulo 5 entonces $x^2(x^2 - 5x + 30) \equiv x^2(x^2) \mod(5)$ y $x^4 \equiv 0, 1 \mod(5)$ lo cual genera una contradicción.

3.
$$x^2 + y^2 - 8z = 6$$

Esta ecuacion no es necesario ni transformarla, $6 \equiv 6 \ mod(8)$, $8z \equiv 0 \ mod(8)$ y como los cuadrados son congruentes con 0,1,4 módulo 8 entonces $x^2 + y^2 \equiv 0,2$ mod(8) contradicción.

Problema 4

Demuestre que dados 3 números cualesquiera enteros siempre es posible seleccionar dos tal que $a^3 * b - a * b^3$ es divisible por 10.

Solución

Nótese que $a^3*b-a*b^3=ab(a^2-b^2)$, y que cualquier número $x^2\equiv 0,1,-1$ mod(5). Hagamos el siguiente análisis:

- Para que sea divisible entre 10 debe ser divisible por 2 y 5 simultáneamente, y la expresión $ab(a^2 b^2)$ es evidente que para cualquier a, b es par (supongamos que al menos uno de los dos en par \implies el producto es par, en caso contrario, ambos son impares \implies su diferencia es par).
- Si tomamos como uno de los tres números a seleccionar $x \equiv 0 \mod(5)$ es trivial que el resultado será divisile por 5, luego, seleccionando los otros 2 restos distintos de cero para los cuadrados de los números tenemos las posibilidades 1,-1 para tres números, de los cuales por Principio de las Casillas dos tendrán el mismo resto y su diferencia será cero módulo 5, lo cual demuestra la orden del ejercicio.

Problema 5

Un número es de Fermat si es $2^{2^n} + 1$ para todo $n \ge 0$.

- Prueba que todos los números de Fermat son primos relativos dos a dos.
- Prueba que hay infinitos primos con esta demostración. *

Solución

Tenemos los números $2^{2^r}+1$ y $2^{2^s}+1$. Supongamos que existe un número p que divide a ambos, entonces $2^{2^r}\equiv -1 \ mod(p)$, sin pérdida de generalidad s>r, luego al elevar 2^{2^r} al cuadrado s-r veces resulta que $2^{2^s}\equiv 1 \ mod(p)$, lo cual es una contradicción porque $2^{2^s}\equiv -1 \ mod(p)$, en cuyo caso p debería ser 2, lo cual es absurdo.

Problema 6

Halla a, b, c tal que $2^{a} + 2^{b} = c!$

Solución

Nótese que $2^a+2^b=2^b(2^{b_1}+1)$ suponiendo que $a=b+b_1$ con $b_1>0$, o sea a>b, luego para $c\geq 7$ tenemos que $c!\equiv 0\ mod(7)$ y cualquier potencia de 2 es congruente con 1,2,4 módulo 7, luego no existe ninguna distribucion de esos restos que cumpla que $2^b(2^b_1+1)\equiv 0\ mod(7)$. Para c<7 probando llegamos a que son soluciones (0,0,2), (1,2,3) y (4,3,4)