

Universidad de **@UCLM** Castilla~La Mancha

Valoración genética

ASIGNATURA: MEJORA GENÉTICA VEGETAL Y ANIMAL GRADO EN BIOTECNOLOGÍA

Manuel Ramón Fernández – Manuel Ramon@uclm.es

Fenotipo, genotipo y ambiente

Modelo animal

$$y = Xb + Zu + e$$

In the Mixed Model Equation form:

$$\begin{bmatrix} \mathbf{X^TX} & \mathbf{X^TZ} \\ \mathbf{Z^TX} & \mathbf{Z^TZ} + \mathbf{A^{-1}}\alpha \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X^Ty} \\ \mathbf{Z^Ty} \end{bmatrix}$$

where 'A' is an additive relationship matrix and alpha is a ratio of the variance components. It can also be written as:

$$LHS \cdot B = RHS$$

Modelo animal

Escuela Técnica Superior de Ingenieros Agrónomos y de Montes

Ejercicio Actividades

3.2 A Model for an Animal Evaluation (Animal Model)

Example 3.1

Consider the following data set (Table 3.1) for the pre-weaning gain (WWG) of beef calves.

The objective is to estimate the effects of sex and predict breeding values for all animals. Assume that $\sigma_a^2 = 20$ and $\sigma_e^2 = 40$; therefore $\alpha = \frac{40}{20} = 2$.

Table 3.1. Pre-weaning gain (kg) for five beef calves.

Calf	Sex	Sire	Dam	WWG (kg)
4	Male	1	Unknown	4.5
5	Female	3	2	2.9
6	Female	1	2	3.9
7	Male	4	5	3.5
8	Male	3	6	5.0

The model to describe the observations is:

$$y_{ij} = p_i + a_j + e_{ij}$$

where: y_{ij} = the WWG of the jth calf of the ith sex, p_i = the fixed effect of the ith sex, a_j = random effect of the jth calf, and e_{ij} = random error effect. In matrix notation the model is the same as that described in equation [3.1].