International Risk Expert

SAAD AHMED JAMAL
STUDENT
COPERNICUS MASTER IN DIGITAL EARTH

(1) country-wide (natural) risk potential

- Floods Biggest Risk,
 Likelihood: Most Frequent Impact: Highest
- Earthquake Major Risk,
 Likelihood: Highly Frequent Impact: High
- Forest Fire Medium Risk,
 Likelihood: Highly Frequent Impact: Medium
- Tsunami Minor Risk,Likelihood: Less Frequent Impact: High
- Volcanos Minor Risk,
 Likelihood: Least Frequent Impact: Lowest

Rafique, Sidra & Khan, M. (2015). Flood disaster management - A review FLOOD DISASTER MANAGEMENT FOR CULTIVATION AND POWER GENERATION – A REVIEW. 10.13140/RG.2.1.4109.9608.

https://seismic.pmd.gov.pk/hazard-map.php

Flood 2010

Causalities: 1,200 to 2,200,
Houses Damaged 1.6 million leaving an estimated 14 million people without homes. (Source: Britannica)

UN Flood Map

Tools:

- ► HEC RAS
- ArcGIS with Geo-HEC RAS Extension
- ► ERDAS IMAGINE
- Google Earth Pro
- Global Mapper

Data:

- Landsat 7 and 8
- Pakistan Meteorological Department Inflow and Outflow Data
- Boundary Shapefiles from Diva GIS
- Manning roughness coefficients data from Reports

Dera Ismail Khan District Map

Study Area Map

Landsat Imagery

Exported kmz to shapefile using Global Mapper

Processing Steps

Results

Blue area shows inundated area.

Tectonic Map

https://en.wikipedia.org/wiki/Indian_Plate#/media/File:IndianPlate.png

(2) overview on available data

▶ Floods

Daily Discharge data

Daily Precipitation data

River Geospatial data

Inflows and outflows

Head/Levels data

(Dams, Major Barrages)

Remotely Sensed Data

(Imagery, Atmospheric Products)

Earthquake

Event based

Richter scale measurement

Epicenter

Depth

Tsunami

Event Based

Mean Sea Level

Coastal Cities Elevation

Forest Fires

Yearly Data for canopy cover and carbon emissions

% Area loss due to Forest Fires

Volcanos

Event Based

No known measurements

(3) recommended next steps

- Effective mitigation and response to natural hazards
- Increased focus towards sustainable development.
- Collection of real world data including geospatial information
- Using Machine Learning time series analysis for prediction of disasters and mitigation of potential hazards
- Following Sustainable Development Goals
- Alternatives for Climate Change causing Human Activities

(4) your lessons learned

- ► Climate Change is one the biggest Hazard of 21st Century for the Globe
- Natural Disasters can be mitigated or vulnerability can be reduced with by proactive planning.
- Digital technology is significantly useful for Disaster Risk Management
- ► Geo-statistics adds more meaning or (contextual) information for better analysis of Real World Events.
- Increasing amount of data cannot be coped with traditional approaches therefore, big data
- Awareness among masses about challenges can lead to innovative ideas,

Thank You!