Import Required Libraries

Importing necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

Configure plots
%matplotlib inline
sns.set(style="whitegrid")

Upload and Load Dataset

Upload the dataset file manually in Colab from google.colab import files uploaded = files.upload()

Choose Files No file chosen
Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving Dataset .csv to Dataset .csv

Load the CSV file (change the name if your file is different)
df = pd.read_csv('Dataset .csv')

Preview the data
df.head()

∑	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	Curren	cy Has Tabl bookin	e Has Online g delivery	Is delivering now	Switch to order menu	Price range	Aggregate rating	Rating color	Rating , text	Votes
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts	Botswa Pula		s No	No	No	3	4.8	Dark Green	Excellent	314
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese	Botswa ··· Pula	na Ye P)	s No	No	No	3	4.5	Dark Green	Excellent	591
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831	14.581404	Seafood, Asian, Filipino, Indian	Botswa Pula		s No	No	No	4	4.4	Green	Very Good	270
	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.585318	Japanese, Sushi	Botswa ··· Pula						4.9	Dark Green	Excellent	365
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.584450	Japanese, Korean	Botswa Pula		s No	No	No	4	4.8	Dark Green	Excellent	229

5 rows × 21 columns

Basic Information and Structure # Check the structure of the dataset df.info() # Check data types and null values df.isnull().sum() # Summary statistics df.describe(include='all') 17 Aggregate rating **count** 9.551000e+03 9551 9551.000000 9551 9551 9551 9551 9551.000000 9551.000000 9542 9551 9551 9551 9551 9551 9551.000000 9551.000000 9551 9551 9551.000000 Cafe Coffee Dilli Haat, INA, Connaught Connaught Place, North Indian Orange NaN NaN NaN NaN No No No No NaN NaN NaN top Average Day Delhi New Delhi Place New Delhi Indian Rupees(Rs.) mean 9.051128e+06 NaN 18.365616 NaN NaN NaN NaN 64.126574 25.854381 NaN NaN NaN NaN NaN NaN 1.804837 2.666370 NaN NaN 156.909748 min 5.300000e+01 NaN 1.000000 NaN NaN NaN NaN -157.948486 -41.330428 NaN NaN NaN NaN NaN NaN 1.000000 0.000000 NaN NaN 0.000000

11 rows × 21 columns

max

6.004089e+06

1.850065e+07

Data Cleaning

Drop duplicate records
df.drop_duplicates(inplace=True)

Handle missing values (example: fill numeric with median)
numeric_cols = df.select_dtypes(include=np.number).columns
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())

NaN

NaN

1.000000

216.000000

NaN

NaN

NaN

NaN

NaN

NaN

77.191964

174.832089

NaN

NaN

28.570469

55.976980

NaN

2.000000

4.000000

3.200000

4.900000

NaN

NaN

NaN

31.000000

NaN 10934.000000

Exploratory Data Analysis (EDA)

Correlation Heatmap (Numerical Features)

plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
plt.show()

Distribution of Categorical Columns

Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Configure plots
%matplotlib inline
sns.set(style="whitegrid")

The following cell attempts to load the data using pd.read_csv

Ensure the cell above with the import statement is run first.

Load the CSV file (change the name if your file is different)

df = pd.read_csv('Dataset .csv')

```
import matplotlib.pyplot as plt
import seaborn as sns

categorical_cols = df.select_dtypes(include='object').columns

for col in categorical_cols:
    if df[col].nunique() <= 15:  # limit to avoid overplotting
        plt.figure(figsize=(10, 4))
        sns.countplot(data=df, x=col, order=df[col].value_counts().index)
        plt.title(f"Distribution of {col}")
        plt.xticks(rotation=45)
        plt.tight_layout()
        plt.show()
    else:
        print(f"Skipped '{col}' due to too many unique categories: {df[col].nunique()}")</pre>
```

... rest of the code


```
top_n = 10
col = 'Restaurant Name'

plt.figure(figsize=(10, 4))
top_vals = df[col].value_counts().nlargest(top_n)
sns.barplot(x=top_vals.index, y=top_vals.values)
plt.title(f"Top {top_n} Most Frequent {col}")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
Top 10 Most Frequent Restaurant Name
```

```
Top 10 Most Frequent Restaurant Name

80
60
40
20
Cate Coffee Day Doning Spills Sulphal Creen Chilk Chop Micropada's Verenter's Parket Grant Bearing Androne Bearing Doning Spills Sulphal Creen Chilk Chop Micropada's Verenter's Parket Grant Bearing Doning Spills Bearing Doning Spills Sulphal Creen Chilk Chop Micropada's Verenter's Parket Grant Bearing Doning Spills Bearing Doning Spills S
```

```
# If your dataset has a 'Date' column
# First, check the column names to ensure 'Date' exists
print(df.columns)
\mbox{\tt\#} If 'Date' exists and you want to proceed with datetime conversion and plotting:
# df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
# plt.figure(figsize=(12,6))
# sns.lineplot(data=df, x='Date', y=df.columns[-1]) # Change y column accordingly
# plt.title("Trend Over Time")
# plt.xlabel("Date")
# plt.ylabel("Value")
# plt.tight_layout()
# plt.show()
Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address', 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
              'Average Cost for two', 'Currency', 'Has Table booking', 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
              'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
             dtype='object')
```

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

sns.set(style="whitegrid")

.

Top 10 Cities with Most Restaurants

```
plt.figure(figsize=(10,5))
df['City'].value_counts().nlargest(10).plot(kind='bar', color='skyblue')
plt.title("Top 10 Cities with Most Restaurants")
```

```
plt.xlabel("City")
plt.ylabel("Number of Restaurants")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Distribution of Aggregate Ratings

```
plt.figure(figsize=(8,5))
sns.histplot(df['Aggregate rating'], bins=10, kde=True, color='orange')
plt.title("Distribution of Aggregate Ratings")
plt.xlabel("Rating")
plt.ylabel("Frequency")
plt.tight_layout()
plt.show()
```


Rating Color Distribution

```
plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Rating color', palette='Set2')
plt.title("Rating Color Distribution")
plt.tight_layout()
```

plt.show()

<ipython-input-16-377d9a1c264d>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect

Votes vs Aggregate Rating

```
plt.figure(figsize=(10,5))
sns.scatterplot(data=df, x='Aggregate rating', y='Votes', hue='Rating color')
plt.title("Votes vs Aggregate Rating")
plt.tight_layout()
plt.show()
```


Average Cost for Two Distribution

```
plt.figure(figsize=(10,5))
sns.histplot(df['Average Cost for two'], bins=30, color='green')
plt.title("Distribution of Average Cost for Two")
plt.tight_layout()
plt.show()
```


Top 10 Most Common Cuisines

```
plt.figure(figsize=(10,5))
df['Cuisines'].value_counts().nlargest(10).plot(kind='barh', color='purple')
plt.title("Top 10 Most Common Cuisines")
plt.xlabel("Count")
plt.tight_layout()
plt.show()
```


Price Range Distribution

```
plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Price range', palette='pastel')
plt.title("Distribution of Price Ranges")
plt.tight_layout()
plt.show()
```

<ipython-input-20-3ea1c3d33024>:2: FutureWarning:

Has Table Booking vs Rating

```
plt.figure(figsize=(7,4))
sns.boxplot(data=df, x='Has Table booking', y='Aggregate rating')
plt.title("Rating by Table Booking Availability")
plt.tight_layout()
plt.show()
```


Online Delivery by City (Top 5 Cities)

```
top_cities = df['City'].value_counts().nlargest(5).index
plt.figure(figsize=(10,5))
sns.countplot(data=df[df['City'].isin(top_cities)], x='City', hue='Has Online delivery')
plt.title("Online Delivery Availability in Top 5 Cities")
plt.tight_layout()
plt.show()
```


Number of Restaurants per Country

```
plt.figure(figsize=(10,5))
df['Country Code'].value_counts().plot(kind='bar', color='teal')
plt.title("Restaurants per Country Code")
plt.xlabel("Country Code")
plt.ylabel("Count")
plt.tight_layout()
plt.show()
```


Switch to Order Menu Distribution

plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Switch to order menu')
plt.title("Switch to Order Menu Count")
plt.tight_layout()
plt.show()

Restaurants by Rating Text

```
plt.figure(figsize=(8,5))
sns.countplot(data=df, y='Rating text', order=df['Rating text'].value_counts().index)
plt.title("Restaurants by Rating Text")
plt.tight_layout()
plt.show()
```


Rating vs Price Range

```
plt.figure(figsize=(7,4))
sns.boxplot(data=df, x='Price range', y='Aggregate rating', palette='coolwarm')
plt.title("Rating by Price Range")
plt.tight_layout()
plt.show()
```

<ipython-input-26-6588c665f1a7>:2: FutureWarning:

plt.show()

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect

plt.figure(figsize=(10,6))
sns.heatmap(df.select_dtypes(include=np.number).corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.tight_layout()

Top 10 Most Voted Restaurants

top_voted = df[['Restaurant Name', 'Votes']].sort_values(by='Votes', ascending=False).drop_duplicates().head(10)
plt.figure(figsize=(10,5))
sns.barplot(data=top_voted, x='Votes', y='Restaurant Name', palette='magma')
plt.title("Top 10 Most Voted Restaurants")
plt.tight_layout()
plt.show()

<ipython-input-28-dcbb90a6c971>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `v` variable to `hue` and set `legend=False` for the same effe