Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)

Классификация задач распознавания эмоций из звучащей речи и способов их решения

Студент: Казаева Татьяна Алексеевна ИУ7-76Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи

Цель: классификация способов решения задачи разпознавания эмоций из звучащей речи.

Для достижения поставленной цели потребуется решить ряд задач:

- сформировать классификацию эмоциональных состояний;
- описать информативные признаки, характеризующие речь;
- описать формальную постановку задачи;
- описать существующие решения задачи.

Задача распознавания эмоций из звучащей речи

Качественное улучшение при взаимодействии между субъектами в системах взаимодействия «человек-компьютер» и «человек-человек»

«человек-компьютер» - голосовые помощники, автоматизированные колл-центры, системы виртуальной реальности и.т.д

«человек-человек» - автоматизированный перевод, системы детектирования лжи, медицина, мониторинг настроения толпы и.т.д

Классификация эмоций (1/3)

Дискретный подход: выделение базовых эмоций (от 2 до 10), сочетания которых порождают разнообразие эмоциональных явлений.

Базовый набор эмоций определяется эмпирически.

Классификация эмоций (2/3)

Многомерная модель: эмоции в координатном многомерном пространстве.

Такие измерения охватывают все разнообразие эмоциональных состояний.

Классификация эмоций (3/3)

Гибридная модель: комбинация дискретной и многомерной модели.

В отдельной области *п-мерного* пространства различия между эмоциями могут определяться в терминах измерений, имеющих отношение к этой области.

Информативные признаки, характеризующие речь

Условно характеристики речи можно разбить на два основных класса – акустические и лингвистические.

Акустические признаки можно разделить на пять категорий:

- просодические: частота основного тона, темп речи;
- динамические: фонетическая функция;
- фонационные: отношение гармоник основного тона к шуму;
- спектральные: линейные спектральные частоты, мел-шкалы частот;
- *энергетические*: отношение мощностей в спектральных полосах, оценка мощности сигнала.

Просодические характеристики

Совокупность темпорального, артикуляционного и интонационного компонентов речи.

параметры	высокое значение	низкое значение
изменчивость частоты основного тона	радость, гнев, страх	печаль, безразличие
уровень частоты основного тона	радость, гнев, страх, чувство приподнятости и уверенности в себе	печаль, презрение, скука, безразличие
интенсивность	радость, гнев, презрение, чувство приподнятости, уверенности в себе	печаль, презрение, скука, безразличие
темп	радость, гнев, страх, чувство приподнятости, уверенности в себе, безразличия	печаль, презрение, скука

Спектральные характеристики

Основана на преобразовании Фурье. В частности, мел-частотный анализ.

Перевод частоты из герц в мел:

$$Mel(f) = 2595 \cdot \log_{10} \left(1 + rac{f}{700}
ight),$$

где f – частота (Гц), Mel – частота (мел)

Представляет частоты речи с позиции *высоты тона* - насколько высоким или низким кажется тон слушателю.

Динамические характеристики

Звонкость (основной тон) - величина, выражающая насколько периоическим является речевой сигнал в момент времени t. Для измерения используют автокорелляционную функцию.

Сонорность - степень участия шумовых составляющих. Для измерения используют использовать производную спектра в частотной области:

$$S_t^{(i)} = \log \left(\sum_{n=0}^{N/2} \left| a_t^{(i)}[n]
ight|
ight),$$

где $a_t^{(i)}[n]$ – производная спектра i-го порядка нормализованного спектра $\hat{X}_t[n]$.

Система распознавания речевых эмоций

Система соотносит исходные данные - речевой сигнал, к виду эмоции - выходные данные.

Классификация – заключительный этап работы системы распознавания эмоций.

Точность классификации в значительной мере зависит от выбранного классификатора.

Классификация систем извлечения эмоций

Заключение

Цель работы достигнута: способы решения задачи разпознавания эмоций из звучащей речи классифицированы.

- сформирована классификация эмоциональных состояний;
- описаны информативные признаки, характеризующие речь;
- описана формальная постановка задачи;
- описаны существующие решения задачи.

Предложена классификация систем распознавания эмоционального состояния на основе индивидуальных характеристик речи.