Disclaimer

- The material provided in this document is not my original work and is a summary of some one else's work(s).
- A simple Google search of the title of the document will direct you to the original source of the material.
- I do not guarantee the accuracy, completeness, timeliness, validity, non-omission, merchantability or fitness of the contents of this document for any particular purpose.
- Downloaded from najeebkhan.github.io

FLEXRAY SCHEDULE OPTIMIZATION OF THE STATIC SEGMENT

Presented By Najeeb 2013 – 5 – 16

OUTLINE

Problem Definition
Schedule Optimization
Results
Conclusions

✓ A schedule optimization that minimizes the number of used slots is necessary to allow a high flexibility for incremental schedule changes and for future automotive networks with a higher data volume

- A schedule optimization that minimizes the number of used slots is necessary to allow a high flexibility for incremental schedule changes and for future automotive networks with a higher data volume
- ✓ Cycle multiplexing is used to increase the utilization of the FlexRay bus

- A schedule optimization that minimizes the number of used slots is necessary to allow a high flexibility for incremental schedule changes and for future automotive networks with a higher data volume
- ✓ Cycle multiplexing is used to increase the utilization of the FlexRay bus
- ✓ The cycle multiplexing of PDUs is defined by the base cycle and the cycle repetition

- A schedule optimization that minimizes the number of used slots is necessary to allow a high flexibility for incremental schedule changes and for future automotive networks with a higher data volume
- ✓ Cycle multiplexing is used to increase the utilization of the FlexRay bus
- ✓ The cycle multiplexing of PDUs is defined by the base cycle and the cycle repetition
- The base cycle defines the offset in cycles for the first occurrence of the respective PDU

- A schedule optimization that minimizes the number of used slots is necessary to allow a high flexibility for incremental schedule changes and for future automotive networks with a higher data volume
- ✓ Cycle multiplexing is used to increase the utilization of the FlexRay bus
- ✓ The cycle multiplexing of PDUs is defined by the base cycle and the cycle repetition
- The base cycle defines the offset in cycles for the first occurrence of the respective PDU
- ✓ The cycle repetition denotes the frequency of a PDU in the multiplexing and is always a power of two 2ⁿ

For a given base cycle b and repetition r, a PDU is existent in each communication cycle CC_i with

✓ For a given base cycle b and repetition r, a PDU is existent in each communication cycle CC_i with

$$i = (b + r \cdot n)\%64$$
 with $n \in \mathbb{N}_0$.

✓ For a given base cycle b and repetition r, a PDU is existent in each communication cycle CC_i with

$$i = (b + r \cdot n)\%64$$
 with $n \in \mathbb{N}_0$.

✓ The goal is to minimize the number of slots to maximize the utilization.

SCHEDULE OPTIMIZATION

✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem

- ✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem
- ✓ Each slot corresponds to one bin

- ✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem
- ✓ Each slot corresponds to one bin
- ✓ Each slot is defined by the payload size W and the number of cycles H which is 64 for the FlexRay bus

- ✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem
- ✓ Each slot corresponds to one bin
- ✓ Each slot is defined by the payload size W and the number of cycles H which is 64 for the FlexRay bus
- ✓ The set of PDUs is denoted M

- ✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem
- ✓ Each slot corresponds to one bin
- ✓ Each slot is defined by the payload size W and the number of cycles H which is 64 for the FlexRay bus
- ✓ The set of PDUs is denoted M
- ✓ Each PDU m is defined by

- ✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem
- ✓ Each slot corresponds to one bin
- ✓ Each slot is defined by the payload size W and the number of cycles H which is 64 for the FlexRay bus
- ✓ The set of PDUs is denoted M
- ✓ Each PDU m is defined by
- $\sqrt{w_m}$: length in bytes

- ✓ A one-to-one transformation between the slot packing problem that arises from the FlexRay cycle multiplexing and a special form of a two dimensional bin packing problem
- ✓ Each slot corresponds to one bin
- ✓ Each slot is defined by the payload size W and the number of cycles H which is 64 for the FlexRay bus
- ✓ The set of PDUs is denoted M
- ✓ Each PDU m is defined by
- \checkmark w_m: length in bytes
- \checkmark r_m: repetitions in the powers of two

- ✓ For a feasible slot packing, two values for each PDU have to be determined
- \checkmark x_m : Offset in bytes on the x-axis
- \checkmark b_m: The base cycle that defines the offset on the y-axis. It holds that b_m < r_m
- ✓ The task of the transformation of the slot packing into a bin packing is to convert each PDU into a rectangle element and determine its position such that each feasible slot packing results in a feasible bin packing and vice versa
- ✓ The bin size is the same as the slot size with width W and height H

✓ The position on the x-axis x_m and the width w_m for each element m correspond to the position and width of the PDU in the slot packing

- ✓ The position on the x-axis x_m and the width w_m for each element m correspond to the position and width of the PDU in the slot packing
- ✓ The main task is to find a transformation that obtains the following two values for each element

- ✓ The position on the x-axis x_m and the width w_m for each element m correspond to the position and width of the PDU in the slot packing
- ✓ The main task is to find a transformation that obtains the following two values for each element
- $\sqrt{y_m}$: The offset on the y-axis

- ✓ The position on the x-axis x_m and the width w_m for each element m correspond to the position and width of the PDU in the slot packing
- ✓ The main task is to find a transformation that obtains the following two values for each element
- $\sqrt{y_m}$: The offset on the y-axis
- ✓ h_m: The height of an element

- ✓ The position on the x-axis x_m and the width w_m for each element m correspond to the position and width of the PDU in the slot packing
- ✓ The main task is to find a transformation that obtains the following two values for each element
- \checkmark y_m: The offset on the y-axis
- \checkmark h_m: The height of an element
- \checkmark The transformation for the height h_m is related to the repetition r_m

- The position on the x-axis x_m and the width w_m for each element m correspond to the position and width of the PDU in the slot packing
- ✓ The main task is to find a transformation that obtains the following two values for each element
- \checkmark y_m: The offset on the y-axis
- \checkmark h_m: The height of an element
- \checkmark The transformation for the height h_m is related to the repetition r_m

$$h_m = rac{H}{r_m}$$
 $r_m = rac{H}{h_m}$

✓ The level of an element in the bin is $l_m = y_m/h_m$

- ✓ The level of an element in the bin is $l_m = y_m/h_m$
- \checkmark A transformation function t is defined which directly transforms the level of an element l_m to base b_m and vice versa such that the following holds

- ✓ The level of an element in the bin is $l_m = y_m/h_m$
- \checkmark A transformation function t is defined which directly transforms the level of an element l_m to base b_m and vice versa such that the following holds

$$l_m = t(b_m, r_m)$$
 and $b_m = t(l_m, r_m)$
 $y_m = l_m \cdot h_m = t(b_m, r_m) \cdot \frac{H}{r_m}$
 $b_m = t(\frac{y_m}{h_m}, r_m) = t(\frac{y_m}{h_m}, \frac{H}{h_m}).$

PROBLEM TRANSFORMATION

Transformation to Bin Problem:

$$l_m = t(b_m, r_m)$$
 and $b_m = t(l_m, r_m)$
 $y_m = l_m \cdot h_m = t(b_m, r_m) \cdot \frac{H}{r_m}$

Transformation to Slot Problem:

$$b_m = t(\frac{y_m}{h_m}, r_m) = t(\frac{y_m}{h_m}, \frac{H}{h_m}).$$

$$h_m = \frac{H}{r_m}$$

PROBLEM TRANSFORMATION

✓ The task of a two-dimensional bin packing problem is to pack rectangular elements of different sizes defined by an individual width w and height h into a minimal number of fixed size rectangular bins without any intersection

- ✓ The task of a two-dimensional bin packing problem is to pack rectangular elements of different sizes defined by an individual width w and height h into a minimal number of fixed size rectangular bins without any intersection
- ✓ The transformed problem has two constraints

- ✓ The task of a two-dimensional bin packing problem is to pack rectangular elements of different sizes defined by an individual width w and height h into a minimal number of fixed size rectangular bins without any intersection
- ✓ The transformed problem has two constraints
- ✓ Each element m has a height h_m that is a power of two

- ✓ The task of a two-dimensional bin packing problem is to pack rectangular elements of different sizes defined by an individual width w and height h into a minimal number of fixed size rectangular bins without any intersection
- ✓ The transformed problem has two constraints
- ✓ Each element m has a height h_m that is a power of two
- ✓ Each element m can be placed everywhere on the x-axis but only on a multiple of its height on the y-axis, i.e., $y_m = 1 \cdot h_m$

FAST GREEDY HEURISTIC

✓ The presented bin packing problem can be solved by a fast greedy heuristic

FAST GREEDY HEURISTIC

✓ The presented bin packing problem can be solved by a fast greedy heuristic

Algorithm 1 Fast greedy heuristic for bin packing.

- 1: $S = \{\}$ //set of bins
- 2: for $m \in M$ do
- 3: for $s \in S$ do
- 4: if place(m, s) then
- 5: continue with next m
- 6: end if
- 7: end for
- 8: create new s and add it to S
- 9: place(m, s)
- 10: end for

✓ The ILP formulation relies on the following binary variables

- ✓ The ILP formulation relies on the following binary variables
- $\sqrt{m_{s,l}}$: element m is placed at level l in bin s

- ✓ The ILP formulation relies on the following binary variables
- \checkmark m_{s,l}: element m is placed at level l in bin s
- \checkmark s bin s is allocated

- ✓ The ILP formulation relies on the following binary variables
- \checkmark m_{s,l}: element m is placed at level l in bin s
- \sqrt{s} bin s is allocated
- ✓ The ILP is formulated as follows

$$min \sum_{s \in S} \mathbf{s}$$

$$\forall m \in M : \sum_{s \in S} \sum_{l=0}^{\frac{H}{h_m} - 1} \mathbf{m_{s,l}} = 1$$

$$\forall s \in S, \{y = 0, ..., H - 1\} : \sum_{m \in M} w_m \cdot \mathbf{m}_{\mathbf{s}, \left\lfloor \frac{\mathbf{y}}{\mathbf{h}_m} \right\rfloor} \leq W$$

$$\forall m \in M, s \in S, \{l = 0, ..., \frac{H}{h_m} - 1\} : \mathbf{s} - \mathbf{m_{s,l}} \ge 0$$

✓ Solving the ILP provides a bin s and level l for each element m

- ✓ Solving the ILP provides a bin s and level l for each element m
- ✓ The complexity of an ILP is exponential in general

- ✓ Solving the ILP provides a bin s and level l for each element m
- ✓ The complexity of an ILP is exponential in general
- ✓ In contrast to the heuristic approach, the presented ILP cannot be used incrementally, i.e., an already allocated bin cannot be filled with additional elements without moving the old elements

$$lb(M) = \frac{\sum_{m \in M} w_m \cdot h_m}{W \cdot H}.$$
$$\sum_{s \in S} \mathbf{s} \ge \lceil lb(M) \rceil$$

✓ The stated ILP can be further improved by reducing the search space by applying domain-specific knowledge

$$lb(M) = \frac{\sum_{m \in M} w_m \cdot h_m}{W \cdot H}.$$
$$\sum_{s \in S} \mathbf{s} \ge \lceil lb(M) \rceil$$

- ✓ The stated ILP can be further improved by reducing the search space by applying domain-specific knowledge
- ✓ The set of S is reduced by one bin, simplifying the ILP by omitting several variables and constraints

$$lb(M) = \frac{\sum_{m \in M} w_m \cdot h_m}{W \cdot H}$$
$$\sum_{s \in S} \mathbf{s} \ge \lceil lb(M) \rceil$$

- ✓ The stated ILP can be further improved by reducing the search space by applying domain-specific knowledge
- ✓ The set of S is reduced by one bin, simplifying the ILP by omitting several variables and constraints
- In case there exists no feasible solution of this simplified ILP the reference solution obtained by the heuristic is already optimal

$$lb(M) = \frac{\sum_{m \in M} w_m \cdot h_m}{W \cdot H}$$
$$\sum_{s \in S} \mathbf{s} \ge \lceil lb(M) \rceil$$

- ✓ The stated ILP can be further improved by reducing the search space by applying domain-specific knowledge
- ✓ The set of S is reduced by one bin, simplifying the ILP by omitting several variables and constraints
- ✓ In case there exists no feasible solution of this simplified ILP the reference solution obtained by the heuristic is already optimal
- ✓ A lower bound for the objective is deduced by domain-specific knowledge to improve the runtime of the ILP

$$lb(M) = \frac{\sum_{m \in M} w_m \cdot h_m}{W \cdot H}.$$
$$\sum_{s \in S} \mathbf{s} \ge \lceil lb(M) \rceil$$

MUTEX PACKING

✓ In some cases, it becomes necessary to add mutual exclusion (mutex) to the bin packing, i.e., two elements are not allowed to be packed into the same bin

MUTEX PACKING

- ✓ In some cases, it becomes necessary to add mutual exclusion (mutex) to the bin packing, i.e., two elements are not allowed to be packed into the same bin
- ✓ This requirement arises if the scheduling problem uses the in-cycle repetition of PDUs

MUTEX PACKING

$$U(s) = \sum_{m \in s} \frac{w_m}{W} \cdot \frac{h_m}{H}$$

✓ The void space in partially used slots is exploited to schedule new PDUs

$$U(s) = \sum_{m \in s} \frac{w_m}{W} \cdot \frac{h_m}{H}$$

- ✓ The void space in partially used slots is exploited to schedule new PDUs
- ✓ The extensibility of a slot describes its capability to allow scheduling additional PDUs

$$U(s) = \sum_{m \in s} \frac{w_m}{W} \cdot \frac{h_m}{H}$$

- ✓ The void space in partially used slots is exploited to schedule new PDUs
- ✓ The extensibility of a slot describes its capability to allow scheduling additional PDUs
- The utilization of a bin is defined as

$$U(s) = \sum_{m \in s} \frac{w_m}{W} \cdot \frac{h_m}{H}$$

- ✓ The void space in partially used slots is exploited to schedule new PDUs
- ✓ The extensibility of a slot describes its capability to allow scheduling additional PDUs
- The utilization of a bin is defined as

$$U(s) = \sum_{m \in s} \frac{w_m}{W} \cdot \frac{h_m}{H}$$

✓ In general, a lower utilization leads to a higher extensibility of a bin

- ✓ The void space in partially used slots is exploited to schedule new PDUs
- ✓ The extensibility of a slot describes its capability to allow scheduling additional PDUs
- ✓ The utilization of a bin is defined as

$$U(s) = \sum_{m \in s} \frac{w_m}{W} \cdot \frac{h_m}{H}$$

- ✓ In general, a lower utilization leads to a higher extensibility of a bin
- ✓ The void space of a bin should be connected to enable the placement of large elements as well as several small elements

$$E(s) = 1 - U(s) - \frac{w_{max}}{W} \cdot \frac{h_{max}}{H}$$

✓ The goal is to re-order the elements in a bin in order to maximize a maximal rectangle over the void space

$$E(s) = 1 - U(s) - \frac{w_{max}}{W} \cdot \frac{h_{max}}{H}$$

- ✓ The goal is to re-order the elements in a bin in order to maximize a maximal rectangle over the void space
- ✓ As a measure of extensibility, the following formula is proposed

$$E(s) = 1 - U(s) - \frac{w_{max}}{W} \cdot \frac{h_{max}}{H}$$

- ✓ The goal is to re-order the elements in a bin in order to maximize a maximal rectangle over the void space
- ✓ As a measure of extensibility, the following formula is proposed

$$E(s) = 1 - U(s) - \frac{w_{max}}{W} \cdot \frac{h_{max}}{H}$$

Reordering the elements in a bin with the proposed metric is not possible with a complete method like an ILP since the objective function is not linear

- ✓ The goal is to re-order the elements in a bin in order to maximize a maximal rectangle over the void space
- ✓ As a measure of extensibility, the following formula is proposed

$$E(s) = 1 - U(s) - \frac{w_{max}}{W} \cdot \frac{h_{max}}{H}$$

- ✓ Reordering the elements in a bin with the proposed metric is not possible with a complete method like an ILP since the objective function is not linear
- ✓ An approach based on Simulated Annealing is used

RESULTS

✓ PDU size and period distribution

RESULTS

✓ PDU size and period distribution

(b) Distribution of the PDU periods in milliseconds.

SCHEDULE OPTIMIZATION

Method	$\operatorname{runtime}$	slots	avg. $E(s)$
Heuristic	0.065s	27	0.029
+ Reordering	+42.5s	27	0.016
ILP* (CPLEX)	25.7s	27	0.028
ILP (CPLEX)	$0.080 \mathrm{s}$	27	0.028
+ Reordering	+48.0s	27	0.019
TTX Plan	360s	29	0.043

INCREMENTAL SCHEDULING

Method	runtime	slots	avg. $E(s)$
ILP $(0.028) \rightarrow \text{Heuristic}$	0.022s	38	0.036
ILP $(0.019) \rightarrow \text{Heuristic}$	0.020 s	37	0.035
ILP (CPLEX)	12.2s	35	0.033

SCALABILITY

(a) Number of allocated slots depending on the number of scheduled PDUs.

(b) Runtime of the scheduling approaches depending on the number of scheduled PDUs.

THE END

THANK YOU