RAJSHAHI UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAB FINAL REPORT

COURSE NAME: SESSIONAL BASED ON CSE 2103 COURSE CODE: CSE 2104

SUBMITTED TO-

Prof. Dr. Boshir Ahmed

Professor

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology

Md. Zahirul Islam

Lecturer

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology

SUBMITTED BY-

Srabonti Deb Roll-1803163 Section - C

Department of Computer Science & Engineering

SUBMISSION DATE -25 AUGUST, 2021

1) Experiment Name: F = POS(2, 6, 8, 9, 10, 12, 14)

Objectives:

- To learn about Boolean algebra.
- To understand what are combinational logic circuits.
- To learn about canonical & standard form.
- To learn about using the product-of-sums method to design a logic circuit based on a design truth table.
- To learn about how to simplify Boolean expression.
- To learn about maxterm & minterm & how to findout these.

Theory: Digital circuit operates using digital signals. These signals have discrete binary values: zero and one. Zero signifies the false state while one signifies the true state. Boolean algebra is a type of algebra that helps to represent binary numbers and binary variables. Canonical form is a method of representing Boolean functions of Boolean algebra while standard form is a simplified version of canonical form.

Minterm: A product term in which all the variables appear exactly once, either complemented or uncomplemented. Denoted by m_j , where j is the decimal equivalent of the minterm's corresponding binary combination (b_i) .

Maxterm: A sum term in which all the variables appear exactly once, either complemented or Uncomplemented. Denoted by M_j , where j is the decimal equivalent of the maxterm's corresponding binary combination (b_i) .

Experimental Analysis:

• Circuit Diagram:

1.1- (Drag & drop) F = POS (2, 6, 8, 9, 10, 12, 14):

1.2- (Analyse Circuit) F = POS (2, 6, 8, 9, 10, 12, 14):

1. (Analyse) F = POS(2,6,8,9,10,12,14)

• Truth Table:

				ı
A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

<u>Conclusion:</u> In this experiment, we discussed about canonical form (Product of sums-POS) ,it's characteristics and diagram.

2) Experiment Name: Simplified version of F.

Objectives:

- To learn about how to simplify Boolean expression.
- To learn about karnaugh map.

Theory: In Boolean algebra simplification, a Boolean expression is translated to another form with less number of terms and operations. We use karnaugh map to simplify Boolean algebra.

Karnaugh map simplification:

BA CD	00	01	11	10
00	m ₀	m ₄	m ₁₂	m ₈
01	m ₁	m ₅	m ₁₃	m ₉
11	m ₃	m ₇	m ₁₅	m ₁₁
4.5	m ₂	m ₆	m ₁₄	m ₁₀
10	0	0	0	0

From Karnaugh map solution we get:

$$\mathbf{F} = (\overline{A} + B + C)(\overline{A} + D)(\overline{C} + D)$$

Experimental Analysis:

• Circuit Diagram:

2- Simplified Version of F:

2. Simplified version of F

• Truth Table:

A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Conclusion: We can say that the result of simplified version of F in 1 is verified.

3) Experiment Name: Design a counter that counts 1, 5, 3, 2, 4, 1 by using T flip-flops.

Objectives:

- To know the characteristics of a Counter
- To know how to draw a Counter by using T Flip-Flops.
- To generate the truth table of Counter by using T Flip-Flops.
- To verify the output of Counter.

<u>Theory:</u> A Counter is a device which stores the number of times a particular event or process has occurred, often in relationship to a clock signal. Counters are used in digital electronics for counting purpose, they can count specific event happening in the circuit.

A flip flop is an electronic circuit with two stable states that can be used to store binary data. A T flip-flop is like a JK flip-flop. These are basically a single input version of JK flip-flops. This modified form of JK flip-flop is obtained by connecting both inputs J and K together. It has only one input along with the clock input.

Т	Q	Q (t+1)
0	0	0
1	0	1
0	1	1
1	1	0

For the problem we get from karnaugh map:

 $T_{C:}$

ВА	00	01	11	10	
0	Х	1	0	1	
1	1	1	х	х	

T_B:

ВА	00	01	11	10
0	х	0	0	1
1	0	1	Х	х

T_A:

ВА	00	01	11	10	
O	х	0	1	0	
1	1	o	х	х	

From kmap solution we get-

 T_A : $\bar{B}\bar{A} + AB$

 $T_B: CA + B\bar{A}$

 $T_C: \bar{B} + \bar{A}$

Experimental Analysis:

• Circuit Diagram:

State transition diagram:

3- Design a counter that counts 1, 5, 3, 2, 4, 1 by using T flip-flops:

3.Design a counter that counts 1,5,3,2,4,1 by using T flip-flops

• Circuit Excitation Table:

	QT			Q _{T+1}		Tc	Тв	TA
0	0	1	1	0	1	1	0	0
1	0	1	0	1	1	1	1	0
0	1	1	0	1	0	0	0	1
0	1	0	1	0	0	1	1	0
1	0	0	0	0	1	1	0	1

Conclusion: In this experiment, we discussed about a Counter by using T Flip-Flops.