Self-Supervised Viewpoint Learning From Image Collections SK Mustikovela, CVPR 2020

VI Lab 2021 Summer Seminar Jisu Kim

Abstract

Object viewpoint estimation

: Requires large labeled training dataset

Many unlabeled images from the internet

Abstract

Viewpoint estimation from self-supervised learning

Reconstruct images in a viewpoint aware manner

Introduction

Object Viewpoint

Object viewpoint

: Link between 2D to 3D

Viewpoint estimation

: Requires large-scale human annotated datasets

â: Azimuth

 \hat{e} : Elevation

 \hat{t} : In-plane rotation

Introduction

Self-supervised learning

No GT image

No human annotation

- => Viewpoint estimation network with self-supervise learning
- => Constraints to use only image collection
- => Comparison to fully-supervised approaches

Related Works

Viewpoint estimation

- : Requires object viewpoint annotations during training
- : Uses large annotated datasets
- : Data augmentation with synthetic images

Self-supervised object attribute discovery

- : Heavy reliance on differentiable rendering
- : No prior works propose to learn viewpoint in self-supervised manner

Self-Supervised Viewpoint Learning

 $\{I\}$: Image collection without annotation

V : Viewpoint estimation network

 \hat{v} : Object viewpoint

Self-Supervised Viewpoint Learning

Learn the viewpoint network *V* with self-supervised manner
Use synthetic image as pseudo-GT (Cyclic structure)

Generative Consistency

- (a) Ensure that V generalizes well to real images as well
- (b) Learns correct viewpoints for synthetic images

Discriminator Loss & Symmetry Constraint

Discriminator

: Predicts a score \hat{c} indicating whether an input image is real or synthetic

Symmetry Constraint

: Strong prior observed in many commonplace object categories

$$\hat{v} = (\hat{a}, \hat{e}, \hat{t}) \mid \hat{v}^* = (\hat{a}^*, \hat{e}^*, \hat{t}^*) \mid \hat{v}_f^{'} = (-\hat{a}^*, \hat{e}^*, -\hat{t}^*)$$

$$\left\| \mathcal{L}_{sym} = \mathcal{D}(\hat{oldsymbol{v}}, \hat{oldsymbol{v}}_f^*) + \left\| \hat{oldsymbol{z}} - \hat{oldsymbol{z}}^*
ight\|_2^2$$

: Enforces that the style of the flipped image pair is consistent

Viewpoint-Aware Synthesis Network

Loss functions

$$\mathcal{L}_{adv} = -\mathbb{E}_{\hat{x} \sim p_{ ext{synth}}}[\hat{c}]$$

Wasserstein GAN Loss

$$\mathcal{L}_{sv} = \left\|oldsymbol{z}_s - \hat{oldsymbol{z}}_s
ight\|_2^2 + \mathcal{L}_v(oldsymbol{v}_s, \hat{oldsymbol{v}}_s)$$

Viewpoint & Style Consistency Loss

$$\mathcal{L}_{sym} = \mathcal{D}(\hat{oldsymbol{v}}, \hat{oldsymbol{v}}_f^*) + \left\|\hat{oldsymbol{z}} - \hat{oldsymbol{z}}^*
ight\|_2^2$$

Flip Consistency Loss

Experiments

	Method	Azimuth	Elevation	Tilt	MAE
Self-Supervised	LMDIS [76] + PnP	16.8	26.1	5.6	16.1
	IMM [24] + PnP	14.8	22.4	5.5	14.2
	SCOPS [22] + PnP	15.7	13.8	7.3	12.3
	HoloGAN [42]	8.9	15.5	5.0	9.8
	HoloGAN [42] with v	7.0	15.1	_5.1_	9.0
	SSV w/o \mathcal{L}_{sym} + \mathcal{L}_{imc}	6.8	13.0	5.2	8.3
	SSV w/o \mathcal{L}_{imc}	6.9	10.3	4.4	7.2
	SSV-Full	6.0	9.8	4.4	6.7
Supervised	3DDFA [79]	36.2	12.3	8.7	19.1
	KEPLER [33]	8.8	17.3	16.2	13.9
	DLib [29]	16.8	13.8	6.1	12.2
	FAN [4]	8.5	7.4	7.6	7.8
	Hopenet [51]	5.1	6.9	3.3	5.1
	FSA [70]	4.2	4.9	2.7	4.0

300W-LP Dataset without GT viewpoint annotation

Calculate absolute error between prediction and GT

Conclusion

Viewpoint estimation of unannotated object images with self-supervised learning

Viewpoint-aware synthesis network and additional constraints

Self-supervised techniques that performs competitively to fully-supervised ones

