⑩ 日本国特許庁(JP)

11)特許出願公開

[®] 公開特許公報(A) 平2-141501

⑤Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成2年(1990)5月30日

B 22 F 1/00 H 01 F 1/06

Y 7511-4K

7354-5E. H 01 F 1/06

Α

審査請求 未請求 請求項の数 1 (全4頁)

図発明の名称 永久磁石用合金粉末

②特 願 昭63-295153

20出 願 昭63(1988)11月22日

個発明者 井内

秀貴

東京都中央区日本橋1丁目13番1号 テイーディーケイ株

式会社内

伽発明者 塚田

岳夫

東京都中央区日本橋1丁目13番1号 テイーデイーケイ株

式会社内

⑩出 願 人 テイーディーケィ株式

東京都中央区日本橋1丁目13番1号

会社

個代 理 人 弁理士 石井 陽一

明 細 雷

発明の名称
永久磁石用合金粉末

2. 特許請求の範囲

(1) R (ただし、R は Y を含む希土類元素の 1 種以上)、F e および B を含有し、平均粒径 が 3~10 m であり、実質的に38 m以上の粒 径の粒子が存在しないことを特徴とする永久磁 石用合金粉末。

3. 発明の詳細な説明

<産業上の利用分野>

本発明は、R(ただし、RはYを含む希土類元素の1種以上)、FeおよびBを含有する永久磁石用合金粉末に関する。

<従来の技術>

高性能を有する永久磁石としては、粉末冶金法によるSm-Co系磁石でエネルギー積として、32MGOeのものが量産されている。

しかし、このものは、Sm、Coの原料価格が高いという欠点を有する。 希土類の中では原子盤の小さい希土類元素、たとえばセリウムやブラセオジム、ネオジムは、サマリウムよりも豊富にあり価格が安い。 また、Feは安価である。

そこで、近年Nd-Fe-B系磁石が開発され、特開昭59-46008号公報では、 焼結磁石が開示されている。

Nd-Fe-B系焼結磁石は、通常以下の様に製造される。

原料を溶解し、所定の組成を有する合金を鋳造し、インゴットを得る。

得られたインゴットを所定の平均粒径に粗粉砕し、次いでシェットミル等で微粉砕し、永久

磁石用合金粉末を得る。

そして、得られた合金粉末に、成形、焼結、 熱処理を行い磁石を製造する。

く発明が解決しようとする課題>

このような場合、ジェットミル等による粉砕では、3m程度より小さい粒径とすると、酸化をうけやすく、この合金粉末を用いて製造した磁石は磁気特性が低いものとなる。

これに対し、平均粒径が3μ4程度以上の台金粉末中には、38μ以上の粗大粒子が存在し、この合金粉末を用いて製造した磁石は、保磁力が小さい等の欠点があることが判明した。

本発明の目的は、保磁力が大きく、良好な磁気特性を有するNd-Fe-B系永久磁石の製造に用いる合金粉末を提供することにある。

<課題を解決するための手段>

このような目的は、下記の本発明(1)によって違成される。

3

希士類元素 R としては、 N d、 P r 、 H o 、 T b の うち少なくとも 1 種、 あるいはさらに、 L a、 S m、 C e、 G d、 E r、 E u、 P m、 T m、 D y、 Y b、 Y のうち 1 種以上を含むも のが好ましい。

なお、 R として 2 種以上の元素を用いる場合、原料としてミッシュメタル等の混合物を用いることもできる。

R の含有量は、 8 ~ 3 0 at% であることが 好ましい。

この合金粉末を用いて磁石を製造した場合、8 at% 未満では、結晶構造が α - 鉄と同一構造の立方晶組織となるため、高い保磁力(i H c)が得られず、3 0 at%を超えると、R リッチな非磁性相が多くなり、残留磁束密度(B r)が低下する。

Feの含有量は 4 2 ~ 9 0 at % であることが 好ましい。

F e が 4 2 at% 未満であると B r が 低下し、 9 0 at% を超えると i H c が低下する。 (1) R (ただし、 R は Y を含む希土類元素の 1 極以上) 、 F e および B を含有し、 平均粒径 が 3~10 岬であり、 実質的に 38 岬以上の粒 径の粒子が存在しないことを特徴とする永久磁 石用合金粉末。

< 作用 >

本発明の合金粉末を用いて製造したNdー Fe-B系永久磁石は、保磁力が大きく、良好な磁気特性を有する。

<発明の具体的構成>

本発明の合金粉末は、R(ただし、RはYを含む希土類元素のI種以上)、FeおよびBを含有するものである。

R、FeおよびBの含有量は、

5. $5 \text{ at} \% \leq R \leq 3 \text{ 0 at} \%$

4 2 at% ≤ F e ≤ 9 0 at%

2 at% ≤ B ≤ 2 8 at% であることが好ましい。

4

B の含有量は、 2 ~ 2 8 at % であることが 好ましい。

B が 2 at% 未満であると菱面体組織となるため i H c が不十分であり、 2 8 at%を超えると B リッチな非磁性相が多くなるため、 B r が低下する。

なお、Feの一部をCoで置換することにより、磁気特性を損うことなく温度特性を改善することができる。 この場合、Co置換量がFeの50%を超えると磁気特性が劣化するため、Co置換量は50%以下とすることが好ましい。

また、 R、 F e および B の他、 不可避的 不純物として N i、 S i、 A & 、 C u、 C a 等 が全体の 3 a t % 以下含有されていてもよい。

さらに、Bの一部を、C、P、S、Cuのうちの1種以上で置換することにより、生産性の向上および低コスト化が実現できる。 この場合、置換量は全体の4 at%以下であることが好ましい。

また、保磁力の向上、生産性の向上、低コスト化のために、A&、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、H f 等の 1 種以上を添加してもよい。 この場合、添加量は総計で1 Oat%以下とすることが好ましい。

本発明の合金粉末は、例えば、以下のように製造する。

まず、所定の組成の合金を一般的な合金製造法、例えば、アークメルト法、高周波溶解法等により鋳造し、インゴットを得る。

得 ら れ た イ ン ゴ ッ ト を 、 ス タ ン ブ ル ミ 、 ジョークラッシャーミル 、 ブ ラ ウ ン ミ ル 等 で 2 0 ~ i 0 0 メッシュ以下に 粗 粉 砕 す る。

次いで、ジェットミルにより乾式の微粉砕を 行い、分級し、所定の平均粒径の合金粉末を得る。

湿式の微粉砕では、合金粉末粒子の磁化が強いため凝集が生じ、適用が困難である。

上記合金粉末の平均粒径は、3~10μm、好

7

ここで、実質的に存在しないとは、使用する合金粉末を38畑開口のふるいにかけたとき、ふるいに残留する粉末が0~0.2重量%、好ましくは0~0.15重量%程度のことである。

なお、本発明では、38 m 開口のふるいにかけたとき、ふるい上に残留する粉末が0.2重量%であればよいので、前記の38 m 開口のふるいによる分級にかえ風力分級を行ってもよい。

本発明の合金粉末は、焼結磁石用の原料に用いられる。

磁石を製造するには、まず、合金粉末を、好ましくは磁場中にて成形する。 この場合、磁場強度は7k0e以上、成形圧力は1~5t/cm[®] 程度であることが好ましい。

得られた成形体を、 1 0 0 0 0 ~ 1 2 0 0 ℃ で 0 . 5 ~ 5 時間焼結し、急冷する。 なお、 焼結雰囲気は、 A r ガス等の不活性ガス雰囲気 であることが好ましい。 ましくは、3~6畑とする。

3 加以下では、合金粉末は酸化しやすく、・ 磁気特性が減少する。 10 加以上とすると下記に説明する38 加以上の粒径の粒子のふるのによる分級が困難となる。 平均粒径は、空気を過法により合金粉末の表面積を測定し、それから計算により求める。 測定には、例えば、サブシーブサイザー(フィッシャー社製)を用いる。

ジェットミルによる微粉砕後は風力分級により微粉を排除する。

また、微粉砕と風力分級をいっしょに行うため、風力分級機構付のジェットミルを用いてもよい。

次に、38 m以上の粒径の粒子を排除するため、38 m 開口のふるいにより分級を行う。従って、38 m以上の粒径の粒子は実質的に存在しなくなり、この合金粉末を用いて製造した永久磁石は、大きい保磁力を得ることができる。

8

この後、好ましくは不活性ガス雰囲気中で、 500~900℃にて1~5時間時効処理を 行なう。

最後に、所定の着磁器により着磁を行う。

このように本発明の合金分体を用いて製造された磁石のグレインサイズは、平均グレイン径3~20 m 程度である。

測定は、走査型電子顕微鏡を用いる。

<実施例>

実施例1~5、比較例1、2

N d 1.4 - D y 2 - B e - F e 7 e の組成を有する合金を鋳造し、ジョークラッシャーミル、ブラウンミルで32メッシュ以下に粗粉砕した。

次いで、分級機構が付属したジェットミルを用い微粉砕し、ふるいで分級をし、あるいは風力分級し、平均粒径が5.0 m、38 mの開口ふるいに残留する粒子が、下記表1に示される割合である合金粉末を得た。

保持力iffc

18.7

17.9

17.5

17.7

17.5

i 5 . 0

14.8

14.2

(k0e)

表 1

38 皿以上の粒径粒子

0.02

0.08

0.11

0.14

0.44

0.82

2.00

の割合(重量%)

0

磁石

No.

1 (本発明)

2(本発明)

3 (本発明)

4 (本発明)

5(本発明)

6 (比較)

7(比較)

8(比較)

この場合、平均粒径は、空気透過法により求め、測定には、サブシーブサイザー (フィッシャー社製) を用いた。

また、 磁石 N o . 1 の 粉末が 3 8 μ 開口のふるいで分級したもの、 N o . 2 ~ N o . 7 のものが 分級したもの、 N o . 8 のものが分級しないものである。

これらの各合金粉末に形成、焼結、熱処理を 行い、磁石No.1~8を製造した。

これら各磁石 1 ~ 8 について保磁力; H c を 測定し、結果を表 1 に示す。

なお保磁力の測定には、直流自己磁束計を使用した。

また、成形は磁場中成形を行い、加圧圧力 2 t/cm²、印加磁場 1 0 k0e とした。 そして、焼結および熱処理は、Arガス中にて行い、焼結温度 1 1 0 0 ℃、焼結時間 1 時間、熱処理温度 6 0 0 ℃、熱処理時間 2 時間とした。

表1より本発明の合金粉末を用いて製造した 磁石は、比較例にくらべ大きな保磁力を有する ことがわかる。

なお、上記において、ジェットミルの粉砕により、平均粒径 2 . 8 m としたところ、 3 8 m 間口のふるいに残留する粒子は 0 重量%であった。

このものを上記と全く同一の条件にて磁石としたところ、保磁力iHcは14.2k0eで

1 1

あった。

<発明の効果>

本 発明 の 永 久 磁 石 用 合 金 粉 末 を 用 い る と 、 保 磁 力 が 大 き く 、 良 好 な 磁 気 特 性 を 有 す る 永 久 磁 石 を 製 造 す る こ と が で き る。

特許出願人 ティーディーケイ株式会社 代 理 人 弁理士 石 井 陽 - 円井 別談当 1 2