

AD-A115 428      NAVAL POSTGRADUATE SCHOOL, MONTEREY CA  
OFFSHORE TRANSPORT AND DISPERSION IN THE CALIFORNIA COASTAL REG—ETC(U)  
MAY 82   S E SCHACHER, D E SPIEL, C A LEONARD

UNCLASSIFIED   NPS61-82-004

F/B 4/2

NL

2





AD A 115 428

NPS61-82-004

NAVAL POSTGRADUATE SCHOOL  
Monterey, California



DTIC  
ELECTED  
S JUN 10 1982 D

B

OFFSHORE TRANSPORT AND DISPERSION IN THE  
CALIFORNIA COASTAL REGION -- BLM III  
NPS DATA SUMMARY

G.E. Schacher, D.E. Spiel and C.A. Leonard

Environmental Physics Group

Naval Postgraduate School

Monterey, California

1 May  
1982

DTIC FILE COPY

Approved for public release; distribution unlimited

Prepared for: Outer Continental Shelf Office  
Bureau of Land Management  
Los Angeles, California 90017

NAVAL POSTGRADUATE SCHOOL  
Monterey, California

Rear Admiral J. J. Ekelund  
Superintendent

D. A. Schrady  
Acting Provost

The work reported herein was supported in part by the Bureau of Land Management, Outer Continental Shelf Division, Los Angeles, California 90017.

Reproduction of all or part of this report is authorized.

This report was prepared by:

  
G. E. Schacher  
Professor of Physics

  
D. E. Spiel  
BDM Corporation

  
C. A. Leonard  
Department of Meteorology

Reviewed by:

  
J. N. Dyer, Chairman  
Department of Physics

Released by:

  
William M. Tolles  
Dean of Research

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                       |                                     | READ INSTRUCTIONS BEFORE COMPLETING FORM                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>NPS61-82-004                                                                                                                                                                                                                                                                                                                                                | 2. GOVT ACCESSION NO.<br>AD-A115428 | 3. RECIPIENT'S CATALOG NUMBER                                           |
| 4. TITLE (and Subtitle)<br>OFFSHORE TRANSPORT AND DISPERSION IN THE CALIFORNIA COASTAL REGION - BLM III, NPS DATA SUMMARY                                                                                                                                                                                                                                                       |                                     | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical Report                  |
| 7. AUTHOR(s)<br>G.E. Schacher, D.E. Spiel* and C.A. Leonard                                                                                                                                                                                                                                                                                                                     |                                     | 8. CONTRACT OR GRANT NUMBER(s)<br>Interagency Agreement No. AA851-IA2-1 |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Naval Postgraduate School<br>Monterey, California 93940                                                                                                                                                                                                                                                                          |                                     | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS             |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Outer Continental Shelf Office<br>Bureau of Land Management<br>Los Angeles, California 90017                                                                                                                                                                                                                                         |                                     | 12. REPORT DATE                                                         |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                     |                                     | 13. NUMBER OF PAGES<br>91                                               |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 15. SECURITY CLASS. (of this report)<br>Unclassified                    |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 16a. DECLASSIFICATION/DOWNGRADING SCHEDULE                              |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release; distribution unlimited                                                                                                                                                                                                                                                                          |                                     |                                                                         |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                      |                                     |                                                                         |
| 18. SUPPLEMENTARY NOTES<br>* Contract employee with BDM Corp.                                                                                                                                                                                                                                                                                                                   |                                     |                                                                         |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Overwater Transport<br>Diffusion<br>Marine Boundary Layer                                                                                                                                                                                                                                 |                                     |                                                                         |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>The third in a series of tracer measurements of overwater transport and diffusion has been completed. This report includes the meteorological data obtained aboard the RV/Acania. Analyses of radiosonde data to yield mixed layer parameters for mixed layer assessment is also included. |                                     |                                                                         |

## Table of Contents

|                                                   | Page No. |
|---------------------------------------------------|----------|
| I. Introduction                                   | 1        |
| II. Operations Outline                            | 3        |
| III. Meteorological Measurements and Calculations | 6        |
| IV. Tracer Release Data                           | 8        |
| V. Wind Histories                                 | 10       |
| VI. Meteorological Data and Calculated Parameters | 20       |
| VII. Radiosonde Results                           | 37       |
| VIII. Acoustic Sounder Results                    | 80       |

|                                                |                         |
|------------------------------------------------|-------------------------|
| Accession For                                  |                         |
| NTIS GRA&I <input checked="" type="checkbox"/> |                         |
| DTIC TAB <input type="checkbox"/>              |                         |
| Unannounced <input type="checkbox"/>           |                         |
| Justification<br><i>PER CALL AAC</i>           |                         |
| By _____                                       |                         |
| Distribution/ _____                            |                         |
| Availability Codes                             |                         |
| Dist                                           | Avail and/or<br>Special |
| <i>A</i>                                       |                         |



## List of Tables

|                                                                                                                                                           | Page |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 1. Locations and start and end times for tracer gas releases. Times are Pacific Standard.                                                           | 8    |
| Table 2. SF <sub>6</sub> bottle weights before and after the releases and total weights of SF <sub>6</sub> used. Weights are accurate to <u>±0.5</u> lbs. | 9    |
| Table 3. Average flow rates (lbs/hr) for the five tracer gas releases.                                                                                    | 9    |
| Table 4. Meteorological data and calculated boundary layer parameters.                                                                                    | 22   |
| Table 5. Heights of acoustic echo return from the acoustic sounder.                                                                                       | 81   |

## List of Figures

|                                                                                                                                                                | Page |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Figures 1.</b> Wind histories: true wind direction versus time, wind speed indicated by length of the vertical bars. Data is mainly one-half hour averages. | 11   |
| <b>Figures 2.</b> There are two groups of figures                                                                                                              | 40   |
| a) Temperature (solid line) and relative humidity profiles (broken line) determined from each radiosonde release.                                              |      |
| b) Mixed layer parameters; potential temperature and specific humidity. Plots for a given day are on facing pages.                                             |      |
| <b>Figures 3.</b> Acoustic sounder strip charts. The sounder was located on the RV/Acania.                                                                     | 88   |

## I. Introduction

During December of 1981 the Environmental Physics Group of the Naval Postgraduate School (NPS) and Stanford Research International, (SRI), supported by the Bureau of Land Management (BLM), conducted the third of a series of transport and dispersion experiments in the California coastal region. The first two experiments were in the Santa Barbara Channel. The third and fourth experiments are being conducted near Pismo Beach, CA, which is representative of an open coastal location. The purpose of these operations is to perform offshore tracer experiments in order to parameterize dispersion models for the offshore regime and to build a data base for future model development. The purpose of this and previous data reports is to present the pertinent meteorological and source data for use by those who will be involved in the modeling effort.

Although the data gathered in these experiments have much wider application, they were collected for the specific purpose of parameterizing models that will be used to assess the onshore impact of offshore oil exploration and production sites. Such impact currently has great importance since many coastal areas are near the legal air pollution limit and any significant additional loading could push them over the limit. Air pollution models in current use have not been adequately validated for the overwater regime. Thus, BLM has undertaken this series of experiments to provide the data base needed for coastal overwater modeling.

During the tracer experiments, SF<sub>6</sub> gas was released from the ship RV/Acania and tracked by an aircraft and mobile and fixed stations on shore. Meteorological data was gathered on the ship and on the shore. This report contains shipboard meteorological data and gas source strength. Shore meteorological data and tracer results can be found in a report by SRI.

## II. Operations Outline

The California coastal region experiences a strong land-sea breeze cycle during December. If the gradient wind is weak the cycle controls the local wind and the wind will be highly variable in the morning and evening hours. This means that care is required to place the ship in order to correctly target the tracer gas on the shoreline measurement network.

Beginning at 0800 of each day, the shipboard measured value of the wind was radioed to the shore command post every half-hour. These winds were compared to those on shore and when the wind began to come around to westerly the ship was moved to the proposed release location, usually about 1100. Wind reporting then occurred on a more frequent schedule, usually every 10 min. When the sea-breeze was established the ship was moved the short distance required to be at the proper position and the tracer gas release began as soon as the anchor was down.

Approximately one-half hour after the release began the aircraft arrived at the ship's position and made a sounding, spiraling upward. When the spiral was complete, smoke would be released at the ship to aid the initial positioning of the aircraft for plume transects.

Once the gas release began there was no way to reposition the ship if the wind changed. Pulling the anchor, moving, and reanchoring require approximately one hour. The loss of time, the need to restart shoreline one-hour average samples, and the definite possibility that the wind direction would change again in a variable wind situation preclude moving the ship.

There were times when shipboard operations interfered with collecting meteorological data. In order to indicate when such periods occurred, a list of shipboard events is presented below:  
(Times are +5 min)

12/6 0830 Underway from Monterey, sea-surface temperature sensor failed shortly after  
12/8 1100 Finish repair of sea-surface temperature sensor  
1200 Start SF<sub>6</sub> release  
1700 Stop SF<sub>6</sub> release, remain at anchor  
12/10 0915 Move ship to new location  
1400 Release scrubbed, drift, ship perpendicular to wind  
1645 Move ship and anchor  
12/11 1200 Raise anchor, move ship to release position  
1225 Drop anchor  
1230 Start SF<sub>6</sub> release  
1850 Stop SF<sub>6</sub> release  
2010 Turn off all equipment  
12/12 0900 Go to shore  
12/13 0730 Back on station near release point, drift  
1135 Move ship to release point  
1150 Drop anchor  
1155 Start SF<sub>6</sub> release  
1855 Stop SF<sub>6</sub> release

12/15 1010 Move ship all over the place  
1040 Drop anchor and start SF<sub>6</sub> release  
1800 Stop SF<sub>6</sub> release  
12/15 0735 Go to shore to get radiosonde balloons  
0855 Underway to release position area  
1055 Move ship to release position  
1115 Drop anchor and start SF<sub>6</sub> release  
1905 Stop SF<sub>6</sub> release  
2000 Go to shore  
2230 Begin obtaining background meteorological data, drift  
12/16 0250 Move ship farther to sea, obtain data on wind  
structure  
12/17 1400 Turn ship north  
1920 Stop ship off Pt. Sur to wait for fog, drift  
12/18 0035 Turn ship into wind  
0310 Full speed to Monterey Bay  
0610 Turn ship into wind  
0700 All equipment off, head for home

### III. Meteorological Measurements and Calculations

Extensive meteorological measurements were made on the RV/Acania in order to obtain as complete a characterization of the boundary layer as possible. Detailed descriptions of the equipment and calibration procedures can be obtained from NPS.

A mast on the bow held a measurement station at 7 m above mean sea level; a second station at 20.5 m was on a mast placed 5 m behind the bow. The lower level experiences some ship influence while the upper is relatively uninfluenced. For this reason only data from the upper station is used, lower station data being used only in the event of the failure of a sensor on the upper. At each station the following parameters were measured:

relative wind speed

relative wind direction (upper level only)

air temperature ( $T$ )

dew point temperature ( $T_D$ )

wind speed fluctuation

Other parameters which were measured or observed were:

sea surface temperature ( $T_S$ )

ship roll

ship pitch

ship location

inversion height ( $Z_i$ )

temperature and humidity profiles to 500 mb

sky cloud cover

The temperature and humidity profiles were obtained by shipboard radiosonde launch and were taken every 12 hours. The temperature inversion height was determined by an acoustic sounder which gave a continuous strip chart record. Most data listed above was averaged for one half hour intervals. The exceptions were relative wind speed and direction and ship's pitch and roll, for which 10 sec averages were obtained and recorded for the full period of a gas release.

Data acquisition is computer controlled, and the computer calculates a number of boundary layer properties at the end of each one-half hour period. These parameters are:

Friction velocity ( $U_*$ )

Scaling temperature ( $T_*$ )

Scaling water vapor mixing ration ( $q_*$ )

Stability parameter ( $Z/L$ )

Virtual potential temperature flux ( $Q_o$ )

Convective mixing velocity ( $w_*$ )

Convective mixing time ( $t$ )

Relative humidity (RH)

True wind speed and direction ( $U$ , WD)

Horizontal wind direction standard deviation ( $\sigma_\theta$ )

Turbulence kinetic energy dissipation rate ( $\epsilon$ )

All of these parameters are one-half hour averages. Shorter term averages of the wind speed and direction and their variances are obtained by calculations that are made subsequent to the experiment.

#### IV Tracer Release Data

In all cases, the tracer gas was released at ambient temperature from a height of 13m above mean sea level. Three SF<sub>6</sub> bottles were attached to a heated manifold and gas from two of the bottles was released simultaneously. Releasing from two bottles decreases the expansion rate and prevents the cylinders from icing. The output of the manifold went to a rotometer and a valve which was used for flow setting and coarse monitoring. A calibrated mass flow meter which was supplied and monitored by SRI was used to accurately determine the flow rate.

The dates, times, and locations of the tracer experiments are found in Table 1. Bottle weights and weights of gas used are found in Table 2. Flow rates are found in Table 3.

| <u>Release</u> | <u>Date</u> | <u>Latitude</u> | <u>Longitude</u> | <u>Start Time</u> | <u>End Time</u> |
|----------------|-------------|-----------------|------------------|-------------------|-----------------|
| 1              | 12/8        | 35°2.6'N        | 120°42.1'W       | 1158              | 1658            |
| 2              | 12/11       | 35°4.0'N        | 120°41.9'W       | 1229              | 1849            |
| 3              | 12/13       | 35°2.9'N        | 120°42.0'W       | 1152              | 1852            |
| 4              | 12/14       | 35°3.3'N        | 120°41.8'W       | 1038              | 1858            |
| 5              | 12/15       | 35°3.5'N        | 120°41.8'W       | 1117              | 1902            |

Table 1. Location and start and end times for tracer gas releases. Times are Pacific Standard.

| <u>Bottle Number</u>  | <u>Initial Weight</u> | Weight (lbs) after release |           |           | <u>Number</u> |           |
|-----------------------|-----------------------|----------------------------|-----------|-----------|---------------|-----------|
|                       |                       | <u>#1</u>                  | <u>#2</u> | <u>#3</u> | <u>#4</u>     | <u>#5</u> |
| 3                     | 255                   | 161                        |           |           |               |           |
| 11                    | 252.5                 |                            |           | 147.5     |               |           |
| 12                    | 259                   | 166                        |           |           |               |           |
| 13                    | 260                   |                            | 164.5     |           |               |           |
| 14                    | 254                   | 144                        |           |           |               |           |
| 15                    | 259                   |                            |           | 137       |               |           |
| 16                    | 258                   |                            |           |           | 143           |           |
| 17                    | 252                   |                            |           | 148       |               |           |
| 18                    | 256                   |                            | 161       |           |               |           |
| 19                    | 256                   |                            |           |           | 143.5         |           |
| 20                    | 254                   | —                          | —         | —         | <u>134</u>    | —         |
| Total Weight Released | 297                   | 190.5                      | 209       | 242       | 227.5         |           |

Table 2. SF<sub>6</sub> bottle weights before and after the releases and total weight used. Weights are accurate to  $\pm$  0.5 lbs.

| <u>Release Number</u> | <u>Weight Used (lbs)</u> | <u>Total Time (hrs)</u> | <u>Flow Rate (lbs/hr)</u> |
|-----------------------|--------------------------|-------------------------|---------------------------|
| 1                     | 297                      | 5.00                    | 59.40                     |
| 2                     | 190.5                    | 6.33                    | 30.09                     |
| 3                     | 209                      | 7.00                    | 29.88                     |
| 4                     | 242                      | 8.33                    | 29.05                     |
| 5                     | 227.5                    | 7.75                    | 29.25                     |

Table 3. Average flow rates (lbs/hr) for the five tracer gas releases. Rates are determined from total weight used and elapsed time.

## V. Wind Histories

Winds were recorded on the RV/Acania in two ways: 1) Before and during each tracer release, instantaneous wind readings were obtained and reported every 10 min. These were recorded every hour on the weather observation log; 2) Average winds, usually over one-half hour periods, were acquired by the data acquisition computer. The instantaneous determinations were plotted on shipboard and used to aid in the go/no-go decisions for a tracer release.

The wind histories are plotted in Figures 1. The wind directions are plotted on the figures and the speed is indicated by the length of the bar. These data are mainly one-half hour computer averages, supplemented by instantaneous observations when the averages were not available (such as when moving the ship to the release point).

The figures show clearly the land/sea-breeze changeover that occurred during the late morning. On days when the change occurred the window for testing (during times of westerly winds) was from approximately 1200 to 2000. Note that the wind direction axis is not the same on all graphs. This was done so that each graph could be a continuous plot.

### Following Pages

Figures 1 - Wind histories: true wind direction versus time, wind speed indicated by length of the vertical bars. Data is mainly one-half hour averages.



















## VI. Meteorological Data and Calculated Parameters

The mean meteorological data and calculated boundary layer parameters are listed in Table 4. The symbols used are defined in Section II.

Wind speed, relative humidity, and air temperature values are those measured at the upper level (20.5 m). All calculated parameters were determined using the bulk aerodynamic method. Most of the data is one-half hour averages. Shorter averaging times are readily apparent where they occur in the data; longer times were not used. All times are the end of an averaging period.

The boundary layer depth,  $Z_i$ , was very difficult to determine during much of the experiment. Zeroes in the table show those times where no well defined boundary layer existed. The heights were determined using both radiosonde and acoustic sounder results. The acoustic sounder was often of limited use because of multiple echos.

The stability parameter,  $Z/L$ , and the scaling parameters,  $U_*$  and  $T_*$ , were determined using the bulk aerodynamic method. For a stable surface layer, the iterative method used to perform the calculation will not converge if  $Z/L$  is too large. For these cases  $Z/L$  is arbitrarily set to 999 in the table.

The method used to calculate the convective mixing velocity,  $w_*$ , and the mixing time,  $t$ , are valid only for an unstable surface layer. For the stable case, these parameters are set to zero.

The data presented in Table 4 are of two types. The first is the data obtained during the tracer gas releases. The second is the complete data set from the cruise.

Following Page

Table 4 - Meteorological data and calculated boundary layer parameters.

BLM III-81  
Release #1

| Date/Time                | U<br>(m/sec) | RH<br>(%) | T<br>(C) | T <sub>S</sub><br>(C) | z <sub>i</sub><br>(m) | U*<br>(m/sec) | T*<br>(C) | 10 <sup>4</sup> 3*Q <sub>O</sub><br>(m/secK) | z/L<br>(m/sec) | w*<br>(m/sec) | t<br>(min) |
|--------------------------|--------------|-----------|----------|-----------------------|-----------------------|---------------|-----------|----------------------------------------------|----------------|---------------|------------|
| 12/08 1159               | 2.8          | 34        | 17.4     | 12.7                  | 80                    | 0.005         | -0.010    | -8.2                                         | 3.39E 01       | 0.0           | 0.0        |
| 12/08 1209               | 2.5          | 51        | 15.2     | 12.5                  | 80                    | 0.023         | -0.028    | -22.8                                        | 5.12E 00       | 0.0           | 0.0        |
| 12/08 1219               | 2.0          | 63        | 13.9     | 12.5                  | 80                    | 0.028         | -0.023    | -16.7                                        | 2.64E 00       | 0.0           | 0.0        |
| 12/08 1252               | 1.0          | 69        | 13.6     | 12.8                  | 80                    | 0.001         | -0.001    | -0.4                                         | 9.99E 02       | 0.0           | 0.0        |
| 12/08 1352               | 2.0          | 64        | 14.3     | 13.2                  | 80                    | 0.035         | -0.024    | -15.5                                        | 1.56E 00       | 0.0           | 0.0        |
| 12/08 1422               | 1.9          | 62        | 14.7     | 13.0                  | 80                    | 0.014         | -0.015    | -11.8                                        | 6.34E 00       | 0.0           | 0.0        |
| 12/08 1452               | 0.9          | 60        | 14.4     | 12.9                  | 80                    | 0.000         | -0.001    | -0.5                                         | 0.99E 02       | 0.0           | 0.0        |
| 12/08 1522               | 1.3          | 75        | 14.2     | 13.1                  | 80                    | 0.004         | -0.004    | -2.9                                         | 1.92E 01       | 0.0           | 0.0        |
| 12/08 1552               | 0.9          | 75        | 14.4     | 13.3                  | 130                   | 0.000         | -0.000    | -0.3                                         | 9.99E 02       | 0.0           | 0.0        |
| 12/08 1622               | 1.1          | 73        | 14.5     | 13.1                  | 130                   | 0.000         | 0.000     | 0.0                                          | 9.99E 02       | 0.0           | 0.0        |
| 12/08 1652               | 0.8          | 69        | 14.6     | 13.0                  | 130                   | 0.000         | 0.000     | 0.0                                          | 9.99E 02       | 0.0           | 0.0        |
| 12/08 1722               | 0.8          | 71        | 14.4     | 13.0                  | 130                   | 0.000         | 0.000     | 0.0                                          | 9.99E 02       | 0.0           | 0.0        |
| BLM III-81<br>Release #2 |              |           |          |                       |                       |               |           |                                              |                |               |            |
| 12/11 1200               | 2.4          | 75        | 12.0     | 12.7                  | 0                     | 0.076         | 0.023     | 41.8                                         | -8.45E-01      | 0.0           | 0.0        |
| 12/11 1300               | 4.6          | 75        | 12.1     | 12.7                  | 0                     | 0.151         | 0.016     | 32.8                                         | -1.69E-01      | 0.0           | 0.0        |
| 12/11 1330               | 4.0          | 75        | 12.4     | 12.7                  | 0                     | 0.127         | 0.009     | 25.0                                         | -1.81E-01      | 0.0           | 0.0        |
| 12/11 1400               | 3.9          | 72        | 12.7     | 12.8                  | 0                     | 0.125         | 0.003     | 20.1                                         | -1.49E-01      | 0.0           | 0.0        |
| 12/11 1430               | 4.3          | 70        | 12.9     | 12.9                  | 0                     | 0.136         | -0.004    | 14.0                                         | -8.63E-02      | 0.0           | 0.0        |
| 12/11 1500               | 5.9          | 77        | 13.0     | 12.8                  | 0                     | 0.194         | -0.010    | 1.7                                          | -4.25E-03      | 0.0           | 0.0        |
| 12/11 1530               | 7.0          | 79        | 13.1     | 12.8                  | 0                     | 0.234         | -0.013    | -2.1                                         | 5.34E-03       | 0.0           | 0.0        |
| 12/11 1600               | 7.4          | 86        | 12.8     | 12.8                  | 0                     | 0.254         | -0.004    | 4.1                                          | -7.01E-03      | 0.0           | 0.0        |
| 12/11 1630               | 7.7          | 84        | 12.8     | 12.8                  | 0                     | 0.267         | -0.004    | 4.9                                          | -7.70E-03      | 0.0           | 0.0        |
| 12/11 1657               | 7.7          | 82        | 12.9     | 12.7                  | 0                     | 0.266         | -0.007    | 3.2                                          | -4.92E-03      | 0.0           | 0.0        |
| 12/11 1724               | 8.4          | 81        | 12.8     | 12.7                  | 0                     | 0.293         | -0.007    | 3.6                                          | -4.52E-03      | 0.0           | 0.0        |
| 12/11 1751               | 7.7          | 80        | 12.8     | 12.7                  | 0                     | 0.263         | -0.008    | 2.9                                          | -4.34E-03      | 0.0           | 0.0        |
| 12/11 1818               | 6.8          | 80        | 12.8     | 12.7                  | 0                     | 0.230         | -0.008    | 2.8                                          | -5.52E-03      | 0.0           | 0.0        |
| 12/11 1845               | 5.8          | 81        | 12.9     | 12.6                  | 0                     | 0.188         | -0.010    | -0.5                                         | 2.79E-03       | 0.0           | 0.0        |
| 12/11 1912               | 4.6          | 81        | 12.9     | 12.7                  | 0                     | 0.144         | -0.011    | -1.2                                         | 8.78E-03       | 0.0           | 0.0        |

RIN 111-81  
Release #3

| Date/Time  | V       | Pn  | T    | Tg   | zi  | t*      | T*     | $10^4 * Q_0$ | z/L       | w*    | t    |
|------------|---------|-----|------|------|-----|---------|--------|--------------|-----------|-------|------|
|            | (m/sec) | (%) | (C)  | (C)  | (%) | (m/sec) | (C)    | (m/sec)      | (m/sec)   | (min) |      |
| 12/13 1230 | 1.8     | 80  | 12.7 | 13.0 | 160 | 0.057   | 0.007  | 14.8         | -5.40E-01 | 0.1   | 20.8 |
| 12/13 1300 | 3.7     | 92  | 12.6 | 13.1 | 160 | 0.120   | 0.019  | 26.4         | -2.18E-01 | 0.2   | 11.6 |
| 12/13 1330 | 5.0     | 98  | 11.8 | 13.0 | 180 | 0.169   | 0.040  | 46.3         | -1.93E-01 | 0.3   | 8.7  |
| 12/13 1400 | 5.0     | 96  | 12.3 | 12.9 | 120 | 0.166   | 0.016  | 20.5         | -8.85E-02 | 0.2   | 9.1  |
| 12/13 1430 | 5.5     | 97  | 11.9 | 12.9 | 60  | 0.184   | 0.032  | 37.1         | -1.30E-01 | 0.2   | 4.4  |
| 12/13 1500 | 6.4     | 98  | 12.2 | 12.9 | 60  | 0.217   | 0.019  | 22.8         | -5.75E-02 | 0.2   | 4.9  |
| 12/13 1530 | 6.8     | 96  | 12.3 | 12.8 | 60  | 0.233   | 0.013  | 17.6         | -3.85E-02 | 0.2   | 5.4  |
| 12/13 1600 | 7.1     | 92  | 12.7 | 12.7 | 60  | 0.240   | -0.003 | 1.4          | -2.61E-03 | 0.1   | 8.5  |
| 12/13 1630 | 7.0     | 91  | 13.1 | 12.7 | 60  | 0.234   | -0.013 | -9.0         | 1.98E-02  | 0.0   | 0.0  |
| 12/13 1700 | 6.4     | 93  | 13.1 | 12.7 | 60  | 0.208   | -0.015 | -11.0        | 3.08E-02  | 0.0   | 0.0  |
| 12/13 1730 | 5.4     | 89  | 13.3 | 12.7 | 60  | 0.166   | -0.022 | -18.1        | 7.85E-02  | 0.0   | 0.0  |
| 12/13 1800 | 5.5     | 90  | 13.3 | 12.7 | 60  | 0.172   | -0.021 | -17.1        | 6.95E-02  | 0.0   | 0.0  |
| 12/13 1830 | 6.0     | 90  | 13.3 | 12.7 | 60  | 0.192   | -0.023 | -19.2        | 6.24E-02  | 0.0   | 0.0  |
| 12/13 1900 | 4.9     | 89  | 13.3 | 12.7 | 60  | 0.150   | -0.024 | -19.6        | 1.04E-01  | 0.0   | 0.0  |
| 12/13 1930 | 2.9     | 90  | 13.3 | 12.7 | 60  | 0.074   | -0.020 | -16.4        | 3.55E-01  | 0.0   | 0.0  |

RLM III-81  
Release #4

| date/time  | U<br>(m/sec) | PH<br>(%) | T<br>(C) | TS<br>(C) | Zi<br>(m) | U*<br>(m/sec) | T*<br>(C) | $10^{4}3^{\star}00$<br>(m/secK) | z/L<br>(m) | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|---------------------------------|------------|---------------|------------|
| 12/14 1000 | 1.0          | 79        | 13.0     | 12.7      | 60        | 0.032         | -0.010    | 1.6                             | -1.49E-01  | 0.1           | 11.5       |
| 12/14 1100 | 4.2          | 77        | 13.9     | 12.8      | 60        | 0.118         | -0.031    | -22.0                           | 1.90E-01   | 0.0           | 0.0        |
| 12/14 1130 | 5.1          | 76        | 14.3     | 12.7      | 60        | 0.149         | -0.044    | -35.7                           | 1.94E-01   | 0.0           | 0.0        |
| 12/14 1200 | 5.8          | 75        | 14.5     | 12.7      | 60        | 0.176         | -0.051    | -43.2                           | 1.66E-01   | 0.0           | 0.0        |
| 12/14 1230 | 6.5          | 79        | 13.9     | 12.7      | 60        | 0.206         | -0.041    | -33.2                           | 9.35E-02   | 0.0           | 0.0        |
| 12/14 1300 | 6.3          | 84        | 13.7     | 12.7      | 60        | 0.201         | -0.032    | -26.2                           | 7.77E-02   | 0.0           | 0.0        |
| 12/14 1330 | 7.1          | 87        | 13.5     | 12.7      | 60        | 0.235         | -0.026    | -20.8                           | 4.51E-02   | 0.0           | 0.0        |
| 12/14 1400 | 8.7          | 88        | 13.4     | 12.7      | 60        | 0.314         | -0.024    | -18.6                           | 2.26E-02   | 0.0           | 0.0        |
| 12/14 1430 | 9.7          | 90        | 13.1     | 12.7      | 60        | 0.354         | -0.018    | -12.9                           | 1.24E-02   | 0.0           | 0.0        |
| 12/14 1500 | 9.8          | 91        | 13.0     | 12.7      | 60        | 0.358         | -0.010    | -5.1                            | 4.84E-03   | 0.0           | 0.0        |
| 12/14 1530 | 9.5          | 91        | 13.1     | 12.7      | 60        | 0.348         | -0.018    | -13.3                           | 1.32E-02   | 0.0           | 0.0        |
| 12/14 1559 | 7.7          | 84        | 14.3     | 12.7      | 60        | 0.249         | -0.054    | -49.8                           | 9.55E-02   | 0.0           | 0.0        |
| 12/14 1612 | 7.5          | 85        | 14.1     | 12.7      | 60        | 0.243         | -0.047    | -42.7                           | 8.61E-02   | 0.0           | 0.0        |
| 12/14 1625 | 7.5          | 88        | 13.5     | 12.7      | 60        | 0.249         | -0.027    | -23.3                           | 4.51E-02   | 0.0           | 0.0        |
| 12/14 1638 | 7.6          | 90        | 13.2     | 12.7      | 60        | 0.255         | -0.021    | -16.3                           | 3.02E-02   | 0.0           | 0.0        |
| 12/14 1651 | 7.8          | 91        | 13.2     | 12.7      | 60        | 0.264         | -0.020    | -15.8                           | 2.71E-02   | 0.0           | 0.0        |
| 12/14 1704 | 7.8          | 91        | 13.2     | 12.7      | 60        | 0.263         | -0.020    | -16.2                           | 2.81E-02   | 0.0           | 0.0        |
| 12/14 1717 | 6.8          | 90        | 13.3     | 12.7      | 60        | 0.223         | -0.024    | -20.1                           | 4.82E-02   | 0.0           | 0.0        |
| 12/14 1730 | 6.7          | 87        | 13.7     | 12.7      | 60        | 0.215         | -0.035    | -31.5                           | 8.18E-02   | 0.0           | 0.0        |
| 12/14 1743 | 6.6          | 85        | 14.1     | 12.7      | 60        | 0.206         | -0.047    | -43.4                           | 1.22E-01   | 0.0           | 0.0        |
| 12/14 1756 | 6.1          | 86        | 13.9     | 12.6      | 60        | 0.190         | -0.040    | -35.7                           | 1.18E-01   | 0.0           | 0.0        |
| 12/14 1809 | 5.9          | 87        | 13.6     | 12.6      | 60        | 0.183         | -0.031    | -27.3                           | 9.74E-02   | 0.0           | 0.0        |
| 12/14 1822 | 5.1          | 88        | 13.4     | 12.6      | 60        | 0.153         | -0.025    | -20.8                           | 1.06E-01   | 0.0           | 0.0        |
| 12/14 1835 | 4.9          | 89        | 13.1     | 12.6      | 60        | 0.150         | -0.017    | -12.5                           | 6.70E-02   | 0.0           | 0.0        |
| 12/14 1848 | 6.9          | 93        | 12.7     | 12.6      | 60        | 0.233         | -0.004    | -4.05E-04                       | 0.1        | 8.2           | 15.6       |
| 12/14 1901 | 5.6          | 92        | 12.5     | 60        | 0.183     | 0.001         | -2.03E-02 | 5.8                             |            |               |            |

BLM III-81  
Release #5

| Date/time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | Ts<br>(C) | Zi<br>(m) | U*<br>(m/sec) | T*<br>(C) | 10^3*Qo<br>(m/sec) | Z/L<br>(pi/sec) | w*<br>(r/m) | t    |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|--------------------|-----------------|-------------|------|
| 12/15 1049 | 2.2          | 95        | 10.8     | 12.7      | 60        | 0.073         | 0.075     | 84.5               | -1.90E-00       | 0.2         | 4.5  |
| 12/15 1149 | 4.0          | 96        | 12.9     | 12.6      | 60        | 0.120         | -0.012    | -6.0               | 5.12E-02        | 0.0         | 0.0  |
| 12/15 1208 | 3.5          | 84        | 13.1     | 12.6      | 60        | 0.103         | -0.018    | -11.3              | 1.30E-01        | 0.0         | 0.0  |
| 12/15 1228 | 2.2          | 88        | 12.6     | 12.7      | 60        | 0.067         | 0.001     | 7.2                | -1.83E-01       | 0.0         | 20.5 |
| 12/15 1248 | 6.8          | 91        | 12.9     | 12.7      | 60        | 0.225         | -0.009    | -4.9               | 1.18E-02        | 0.0         | 0.0  |
| 12/15 1308 | 8.3          | 90        | 13.2     | 12.7      | 60        | 0.284         | -0.020    | -15.6              | 2.31E-02        | 0.0         | 0.0  |
| 12/15 1328 | 6.8          | 88        | 13.6     | 12.7      | 60        | 0.220         | -0.031    | -27.5              | 6.78E-02        | 0.0         | 0.0  |
| 12/15 1348 | 4.3          | 77        | 14.6     | 12.7      | 60        | 0.113         | -0.049    | -43.3              | 4.03E-01        | 0.0         | 0.0  |
| 12/15 1408 | 4.3          | 68        | 16.9     | 12.8      | 60        | 0.081         | -0.081    | -77.6              | 1.40E-00        | 0.0         | 0.0  |
| 12/15 1428 | 2.5          | 63        | 17.0     | 12.8      | 60        | 0.002         | -0.003    | -2.6               | 9.99E-02        | 0.0         | 0.0  |
| 12/15 1448 | 2.8          | 60        | 17.7     | 12.9      | 60        | 0.003         | -0.005    | -5.1               | 5.88E-01        | 0.0         | 0.0  |
| 12/15 1530 | 6.2          | 77        | 14.4     | 12.9      | 60        | 0.192         | -0.047    | -40.8              | 1.32E-01        | 0.0         | 0.0  |
| 12/15 1600 | 6.7          | 77        | 15.2     | 12.9      | 60        | 0.206         | -0.066    | -61.2              | 1.71E-01        | 0.0         | 0.0  |
| 12/15 1630 | 7.7          | 78        | 14.9     | 12.8      | 60        | 0.248         | -0.064    | -59.1              | 1.15E-01        | 0.0         | 0.0  |
| 12/15 1700 | 7.4          | 77        | 15.1     | 12.8      | 60        | 0.234         | -0.068    | -63.3              | 1.38E-01        | 0.0         | 0.0  |
| 12/15 1730 | 6.2          | 79        | 14.9     | 12.8      | 60        | 0.187         | -0.062    | -58.0              | 1.99E-01        | 0.0         | 0.0  |
| 12/15 1800 | 3.0          | 75        | 15.5     | 12.8      | 60        | 0.048         | -0.041    | -38.8              | 2.02E-00        | 0.0         | 0.0  |
| 12/15 1830 | 1.6          | 68        | 16.5     | 12.8      | 60        | 0.001         | -0.002    | -1.9               | 9.99E-02        | 0.0         | 0.0  |
| 12/15 1900 | 2.8          | 68        | 16.5     | 12.8      | 60        | 0.024         | -0.030    | -28.5              | 5.69E-00        | 0.0         | 0.0  |
| 12/15 1930 | 5.9          | 82        | 14.2     | 12.8      | 60        | 0.182         | -0.042    | -37.5              | 1.35E-01        | 0.0         | 0.0  |

PLM IIR-81  
All Data

| date/time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | TS<br>(C) | Zi<br>(m) | U*<br>(m/sec) | T*<br>(C) | 10^3*Q0<br>(m/sec) | z/L<br>(m) | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|--------------------|------------|---------------|------------|
| 12/08 1109 | 3.4          | 34        | 14.9     | 12.9      | 80        | 0.000         | -0.000    | -0.0               | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1119 | 3.8          | 34        | 15.0     | 12.8      | 80        | 0.091         | -0.053    | -40.9              | 6.00E-01   | 0.0           | 0.0        |
| 12/08 1129 | 3.5          | 33        | 15.3     | 12.8      | 80        | 0.079         | -0.067    | -45.8              | 8.76E-01   | 0.0           | 0.0        |
| 12/08 1139 | 6.0          | 33        | 15.8     | 12.8      | 80        | 0.020         | -0.028    | -20.0              | 5.98E 00   | 0.0           | 0.0        |
| 12/08 1149 | 5.2          | 29        | 17.2     | 12.9      | 80        | 0.001         | -0.003    | -2.1               | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1159 | 2.9          | 34        | 17.4     | 12.7      | 80        | 0.005         | -0.010    | -8.2               | 3.39E 01   | 0.0           | 0.0        |
| 12/08 1209 | 2.5          | 51        | 15.2     | 12.5      | 80        | 0.023         | -0.028    | -22.8              | 5.12E 00   | 0.0           | 0.0        |
| 12/08 1219 | 2.0          | 63        | 13.9     | 12.5      | 80        | 0.028         | -0.023    | -16.7              | 2.64E 00   | 0.0           | 0.0        |
| 12/08 1259 | 1.0          | 60        | 13.6     | 12.3      | 91        | 0.001         | -0.001    | -0.4               | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1352 | 2.0          | 64        | 14.3     | 13.2      | 80        | 0.035         | -0.024    | -15.5              | 1.56E 00   | 0.0           | 0.0        |
| 12/08 1422 | 1.9          | 62        | 14.7     | 13.0      | 80        | 0.014         | -0.015    | -11.8              | 6.84E 00   | 0.0           | 0.0        |
| 12/08 1452 | 0.9          | 60        | 14.4     | 12.9      | 80        | 0.000         | -0.001    | -0.5               | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1522 | 1.3          | 75        | 14.2     | 13.1      | 80        | 0.004         | -0.004    | -2.9               | 1.92E 01   | 0.0           | 0.0        |
| 12/08 1552 | 0.8          | 75        | 14.4     | 13.3      | 130       | 0.000         | -0.000    | -0.3               | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1622 | 1.1          | 73        | 14.5     | 13.1      | 130       | 0.000         | 0.000     | 0.0                | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1652 | 0.8          | 69        | 14.6     | 13.0      | 130       | 0.000         | 0.000     | 0.0                | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1722 | 0.8          | 71        | 14.4     | 13.0      | 130       | 0.000         | 0.000     | 0.0                | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1752 | 0.9          | 72        | 14.3     | 12.9      | 130       | 0.000         | 0.000     | 0.0                | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1822 | 1.5          | 75        | 14.3     | 12.8      | 130       | 0.000         | 0.000     | 0.0                | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1852 | 1.3          | 74        | 14.2     | 12.6      | 130       | 0.000         | 0.000     | 0.0                | 9.99E 02   | 0.0           | 0.0        |
| 12/08 1922 | 2.0          | 78        | 13.5     | 12.5      | 130       | 0.033         | -0.021    | -16.4              | 1.85E 00   | 0.0           | 0.0        |
| 12/08 1952 | 2.1          | 80        | 12.7     | 12.6      | 130       | 0.061         | -0.009    | 1.0                | -2.12E-02  | 0.1           | 16.3       |
| 12/08 2022 | 2.8          | 80        | 12.4     | 12.7      | 130       | 0.087         | 0.007     | 19.8               | -3.03E-01  | 0.1           | 15.6       |
| 12/08 2052 | 2.6          | 75        | 12.6     | 12.6      | 130       | 0.079         | -0.002    | 12.7               | -2.37E-01  | 0.1           | 24.1       |
| 12/08 2122 | 1.6          | 74        | 12.4     | 12.4      | 130       | 0.053         | -0.000    | 14.8               | -6.05E-01  | 0.0           | 45.0       |
| 12/08 2152 | 1.3          | 77        | 12.2     | 12.5      | 80        | 0.046         | 0.008     | 23.8               | -1.31E 00  | 0.1           | 13.5       |
| 12/08 2222 | 2.1          | 84        | 11.7     | 12.5      | 125       | 0.067         | 0.029     | 41.0               | -1.07E 00  | 0.2           | 10.3       |
| 12/08 2252 | 1.9          | 96        | 10.9     | 12.7      | 110       | 0.065         | 0.071     | 79.8               | -2.23E 00  | 0.3           | 7.1        |
| 12/08 2322 | 1.3          | 100       | 10.7     | 12.7      | 120       | 0.047         | 0.088     | 97.3               | -5.22E 00  | 0.3           | 7.8        |
| 12/08 2352 | 1.9          | 207       | 10.3     | 12.6      | 200       | 0.067         | 0.094     | 103.5              | -2.77E 00  | 0.3           | 9.5        |
| 12/09 0022 | 3.8          | 100       | 10.2     | 12.6      | 290       | 0.128         | 0.088     | 97.4               | -7.06E-01  | 0.5           | 10.0       |
| 12/09 0052 | 3.4          | 99        | 10.3     | 12.6      | 280       | 0.112         | 0.088     | 97.4               | -9.17E-01  | 0.5           | 10.3       |
| 12/09 0122 | 1.5          | 98        | 10.3     | 12.6      | 240       | 0.054         | 0.098     | 109.5              | -4.40E 00  | 0.4           | 11.4       |
| 12/09 0152 | 1.1          | 97        | 10.3     | 12.6      | 290       | 0.044         | 0.103     | 116.6              | -7.25E 00  | 0.4           | 13.6       |
| 12/09 0222 | 1.1          | 94        | 10.3     | 12.6      | 270       | 0.043         | 0.104     | 118.4              | -7.73E 00  | 0.3           | 13.1       |
| 12/09 0252 | 1.4          | 95        | 10.2     | 12.6      | 280       | 0.051         | 0.107     | 121.0              | -5.42E 00  | 0.4           | 12.5       |

BLM III-81  
All Data

| Date/Time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | Ts<br>(C) | Z1<br>(m) | U*<br>(m/sec) | T*<br>(C) | 10^4 Qo<br>(m/secK) | Z/L<br>(m) | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|---------------------|------------|---------------|------------|
| 12/09 0322 | 1.6          | 95        | 10.2     | 12.6      | 310       | 0.058         | 0.101     | 114.3               | -3.96E 00  | 0.4           | 13.0       |
| 12/09 0352 | 1.7          | 94        | 10.2     | 12.6      | 290       | 0.060         | 0.100     | 114.2               | -3.73E 00  | 0.4           | 12.4       |
| 12/09 0422 | 2.6          | 95        | 10.2     | 12.6      | 250       | 0.087         | 0.097     | 109.9               | -1.73E 00  | 0.4           | 10.0       |
| 12/09 0452 | 1.8          | 96        | 9.7      | 12.6      | 200       | 0.065         | 0.123     | 137.4               | -3.84E 00  | 0.4           | 8.8        |
| 12/09 0522 | 1.1          | 96        | 9.7      | 12.5      | 220       | 0.044         | 0.128     | 143.9               | -8.89E 00  | 0.3           | 10.5       |
| 12/09 0552 | 0.9          | 94        | 10.0     | 12.5      | 240       | 0.036         | 0.117     | 133.4               | -1.19E 01  | 0.3           | 12.2       |
| 12/09 0622 | 2.1          | 94        | 10.1     | 12.5      | 310       | 0.071         | 0.101     | 114.8               | -2.72E 00  | 0.4           | 12.3       |
| 12/09 0652 | 1.8          | 93        | 10.3     | 12.5      | 350       | 0.062         | 0.094     | 108.3               | -3.32E 00  | 0.4           | 14.2       |
| 12/09 0722 | 2.0          | 91        | 10.3     | 12.5      | 330       | 0.069         | 0.091     | 105.5               | -2.62E 00  | 0.4           | 13.3       |
| 12/09 0752 | 1.9          | 92        | 10.2     | 12.5      | 320       | 0.065         | 0.099     | 114.5               | -3.22E 00  | 0.4           | 12.9       |
| 12/09 0822 | 1.7          | 92        | 10.1     | 12.5      | 310       | 0.060         | 0.107     | 122.9               | -4.02E 00  | 0.4           | 12.7       |
| 12/09 0852 | 1.6          | 93        | 10.0     | 12.5      | 330       | 0.059         | 0.110     | 125.3               | -4.32E 00  | 0.4           | 13.2       |
| 12/09 0922 | 2.4          | 94        | 9.8      | 12.5      | 360       | 0.091         | 0.113     | 127.2               | -2.29E 00  | 0.5           | 12.5       |
| 12/09 0952 | 0.7          | 95        | 9.7      | 12.3      | 410       | 0.031         | 0.128     | 144.9               | -1.78E 01  | 0.4           | 17.9       |
| 12/09 1022 | 1.7          | 94        | 10.2     | 12.3      | 540       | 0.059         | 0.088     | 101.4               | -3.41E 00  | 0.5           | 19.6       |
| 12/09 1052 | 4.0          | 90        | 11.3     | 12.4      | 600       | 0.130         | 0.035     | 44.4                | -3.12E-01  | 0.5           | 22.2       |
| 12/09 1122 | 4.4          | 88        | 11.4     | 12.4      | 540       | 0.146         | 0.033     | 43.9                | -2.42E-01  | 0.4           | 20.1       |
| 12/09 1152 | 3.1          | 88        | 11.4     | 12.4      | 640       | 0.101         | 0.033     | 44.2                | -5.09E-01  | 0.4           | 25.4       |
| 12/09 1222 | 3.9          | 87        | 11.6     | 12.4      | 660       | 0.126         | 0.027     | 37.6                | -2.78E-01  | 0.4           | 25.8       |
| 12/09 1252 | 3.5          | 85        | 11.8     | 12.4      | 680       | 0.113         | 0.020     | 31.2                | -2.88E-01  | 0.4           | 30.1       |
| 12/09 1322 | 3.6          | 85        | 11.8     | 12.4      | 680       | 0.116         | 0.021     | 32.2                | -2.80E-01  | 0.4           | 29.5       |
| 12/09 1352 | 3.5          | 85        | 11.8     | 12.4      | 720       | 0.112         | 0.022     | 33.3                | -3.13E-01  | 0.4           | 30.6       |
| 12/09 1422 | 3.4          | 86        | 11.8     | 12.4      | 700       | 0.107         | 0.019     | 29.4                | -3.04E-01  | 0.4           | 32.2       |
| 12/09 1452 | 2.6          | 85        | 12.1     | 12.4      | 780       | 0.081         | 0.010     | 19.7                | -3.55E-01  | 0.3           | 47.4       |
| 12/09 1522 | 0.7          | 83        | 12.3     | 12.4      | 0.025     | 0.001         | 12.4      | -2.36E 00           | 0.0        | 0.0           |            |
| 12/09 1552 | 1.5          | 82        | 12.5     | 12.4      | 0.048     | -0.006        | 3.7       | -1.74E-01           | 0.0        | 0.0           |            |
| 12/09 1622 | 1.9          | 81        | 12.7     | 12.4      | 0.054     | -0.011        | -2.5      | 1.12E-01            | 0.0        | 0.0           |            |
| 12/09 1652 | 2.1          | 81        | 12.8     | 12.4      | 0.053     | -0.015        | -7.3      | 3.24E-01            | 0.0        | 0.0           |            |
| 12/09 1722 | 3.2          | 80        | 12.7     | 12.4      | 0.093     | -0.015        | -6.1      | 8.84E-02            | 0.0        | 0.0           |            |
| 12/09 1752 | 5.3          | 83        | 12.5     | 12.4      | 0.171     | -0.006        | 3.2       | -1.19E-02           | 0.0        | 0.0           |            |
| 12/09 1822 | 2.9          | 82        | 12.5     | 12.4      | 0.086     | -0.007        | 2.6       | -3.71E-02           | 0.0        | 0.0           |            |
| 12/09 1852 | 2.4          | 82        | 12.6     | 12.4      | 0.071     | -0.009        | 0.2       | 1.56E-03            | 0.0        | 0.0           |            |
| 12/09 1922 | 3.2          | 78        | 13.0     | 12.4      | 0.088     | -0.024        | -14.6     | 2.31E-01            | 0.0        | 0.0           |            |
| 12/09 1952 | 2.2          | 84        | 12.5     | 12.4      | 0.065     | -0.007        | 0.9       | -1.75E-02           | 0.0        | 0.0           |            |
| 12/09 2022 | 1.4          | 81        | 12.6     | 12.3      | 0.037     | -0.011        | -4.0      | 3.72E-01            | 0.0        | 0.0           |            |
| 12/09 2052 | 0.9          | 96        | 12.5     | 12.4      | 0.020     | -0.007        | -1.8      | 5.82E-01            | 0.0        | 0.0           |            |

REF. TABLE

ALL DATA

| Date/Time  | H   | T <sub>in</sub> | T <sub>o</sub> | T <sub>in</sub> | T <sub>in</sub> | Z <sub>i</sub> | T <sup>*</sup> | 10 <sup>4</sup> * <sup>(C)</sup> | Z/I.      | $\omega^*$ | t   |
|------------|-----|-----------------|----------------|-----------------|-----------------|----------------|----------------|----------------------------------|-----------|------------|-----|
| (hr/sec)   | (°) | (°C)            | (°C)           | (m)             | (m/sec)         | (C)            | (n/sec)        | (n/sec)                          | (min)     | (sec)      |     |
| 12/09 2122 | 1.4 | 93              | 12.0           | 12.4            | 0               | 0.047          | 0.014          | 20.2                             | -1.08E 00 | 0.0        | 0.0 |
| 12/09 2152 | 1.1 | 94              | 11.9           | 12.4            | 0               | 0.038          | 0.018          | 23.6                             | -1.89E 00 | 0.0        | 0.0 |
| 12/09 2222 | 1.0 | 96              | 11.7           | 12.5            | 0               | 0.038          | 0.027          | 32.6                             | -2.68E 00 | 0.0        | 0.0 |
| 12/09 2252 | 1.9 | 98              | 11.7           | 12.5            | 0               | 0.062          | 0.027          | 31.0                             | -9.64E-01 | 0.0        | 0.0 |
| 12/09 2322 | 1.2 | 98              | 11.7           | 12.5            | 0               | 0.043          | 0.028          | 32.7                             | -2.13E 00 | 0.0        | 0.0 |
| 12/09 2352 | 0.9 | 98              | 11.6           | 12.5            | 0               | 0.035          | 0.035          | 39.9                             | -3.77E 00 | 0.0        | 0.0 |
| 12/10 0022 | 1.2 | 98              | 11.6           | 12.5            | 0               | 0.044          | 0.035          | 39.9                             | -2.50E 00 | 0.0        | 0.0 |
| 12/10 0052 | 2.0 | 98              | 11.6           | 12.5            | 0               | 0.065          | 0.034          | 38.3                             | -1.06E 00 | 0.0        | 0.0 |
| 12/10 0122 | 2.2 | 96              | 11.5           | 12.5            | 0               | 0.072          | 0.035          | 40.7                             | -9.29E-01 | 0.0        | 0.0 |
| 12/10 0152 | 1.8 | 95              | 11.6           | 12.5            | 0               | 0.059          | 0.035          | 40.7                             | -1.37E 00 | 0.0        | 0.0 |
| 12/10 0222 | 2.4 | 94              | 11.6           | 12.5            | 0               | 0.076          | 0.031          | 37.9                             | -7.68E-01 | 0.0        | 0.0 |
| 12/10 0252 | 1.3 | 94              | 11.5           | 12.5            | 0               | 0.047          | 0.038          | 45.1                             | -2.43E 00 | 0.0        | 0.0 |
| 12/10 0322 | 1.4 | 94              | 11.6           | 12.5            | 0               | 0.049          | 0.033          | 39.9                             | -1.94E 00 | 0.2        | 9.4 |
| 12/10 0352 | 1.1 | 95              | 11.7           | 12.5            | 0               | 0.039          | 0.028          | 33.7                             | -2.60E 00 | 0.0        | 0.0 |
| 12/10 0422 | 1.3 | 96              | 11.8           | 12.5            | 0               | 0.046          | 0.025          | 29.9                             | -1.66E 00 | 0.0        | 0.0 |
| 12/10 0452 | 1.8 | 96              | 11.8           | 12.5            | 0               | 0.059          | 0.024          | 28.6                             | -9.76E-01 | 0.0        | 0.0 |
| 12/10 0522 | 2.2 | 93              | 12.3           | 12.5            | 0               | 0.067          | 0.005          | 8.9                              | -2.31E-01 | 0.0        | 0.0 |
| 12/10 0552 | 3.2 | 92              | 12.4           | 12.5            | 0               | 0.098          | -0.001         | 3.2                              | -3.83E-02 | 0.0        | 0.0 |
| 12/10 0622 | 4.1 | 91              | 12.6           | 12.5            | 0               | 0.125          | -0.008         | -4.1                             | 3.24E-02  | 0.0        | 0.0 |
| 12/10 0652 | 3.8 | 92              | 12.3           | 12.5            | 0               | 0.118          | 0.003          | 7.4                              | -6.24E-02 | 0.0        | 0.0 |
| 12/10 0722 | 4.2 | 89              | 12.6           | 12.5            | 0               | 0.127          | -0.008         | -3.1                             | 2.35E-02  | 0.0        | 0.0 |
| 12/10 0752 | 4.3 | 90              | 12.8           | 12.5            | 0               | 0.129          | -0.015         | -10.6                            | 7.68E-02  | 0.0        | 0.0 |
| 12/10 0822 | 3.6 | 91              | 12.7           | 12.5            | 0               | 0.106          | -0.009         | -5.3                             | 5.72E-02  | 0.0        | 0.0 |
| 12/10 0852 | 2.0 | 92              | 11.3           | 12.5            | 0               | 0.066          | 0.049          | 58.6                             | -1.59E 00 | 0.0        | 0.0 |
| 12/10 1022 | 2.3 | 96              | 10.8           | 12.5            | 0               | 0.076          | 0.066          | 75.3                             | -1.55E 00 | 0.0        | 0.0 |
| 12/10 1052 | 2.2 | 94              | 11.2           | 12.6            | 0               | 0.072          | 0.052          | 61.1                             | -1.39E 00 | 0.0        | 0.0 |
| 12/10 1122 | 2.5 | 94              | 11.6           | 12.6            | 0               | 0.079          | 0.039          | 46.5                             | -8.79E-01 | 0.0        | 0.0 |
| 12/10 1152 | 3.0 | 95              | 11.7           | 12.7            | 0               | 0.096          | 0.034          | 40.5                             | -5.20E-01 | 0.0        | 0.0 |
| 12/10 1222 | 1.2 | 95              | 11.9           | 12.6            | 0               | 0.043          | 0.027          | 32.0                             | -2.06E 00 | 0.0        | 0.0 |
| 12/10 1252 | 1.1 | 92              | 12.3           | 12.7            | 0               | 0.039          | 0.012          | 17.5                             | -1.38E 00 | 0.0        | 0.0 |
| 12/10 1352 | 1.4 | 88              | 12.8           | 12.7            | 0               | 0.041          | -0.007         | -1.1                             | 8.62E-02  | 0.0        | 0.0 |
| 12/10 1422 | 1.0 | 86              | 12.9           | 12.7            | 0               | 0.027          | -0.008         | -2.0                             | 3.38E-01  | 0.0        | 0.0 |
| 12/10 1452 | 2.6 | 84              | 13.3           | 12.7            | 0               | 0.064          | -0.020         | -14.8                            | 4.30E-01  | 0.0        | 0.0 |
| 12/10 1522 | 4.0 | 71              | 14.7           | 12.7            | 0               | 0.095          | -0.058         | -50.6                            | 6.75E-01  | 0.0        | 0.0 |
| 12/10 1552 | 3.5 | 66              | 15.3           | 12.7            | 0               | 0.066          | -0.057         | 1.37E 00                         | 0.0       | 0.0        | 0.0 |

BLM III-81  
All Data

| Date/Time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | T <sub>S</sub><br>(C) | Z <sub>1</sub><br>(m) | 0*<br>(m/sec) | T*<br>(C) | 10 <sup>4</sup> 3*Q <sub>O</sub><br>(m/secK) | z/L<br>(m) | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------------------|-----------------------|---------------|-----------|----------------------------------------------|------------|---------------|------------|
| 12/10 1622 | 1.7          | 74        | 14.3     | 12.7                  | 0                     | 0.002         | -0.002    | -1.4                                         | 7.48E 01   | 0.0           | 0.0        |
| 12/10 1857 | 2.6          | 62        | 14.3     | 12.6                  | 100                   | 0.045         | -0.036    | -26.7                                        | 1.55E 00   | 0.0           | 0.0        |
| 12/10 1946 | 3.9          | 60        | 14.1     | 12.6                  | 0                     | 0.103         | -0.048    | -32.1                                        | 3.67E-01   | 0.0           | 0.0        |
| 12/10 2016 | 3.9          | 58        | 14.2     | 12.6                  | 0                     | 0.100         | -0.051    | -35.9                                        | 4.34E-01   | 0.0           | 0.0        |
| 12/10 2046 | 4.5          | 55        | 14.3     | 12.5                  | 0                     | 0.122         | -0.059    | -41.4                                        | 3.32E-01   | 0.0           | 0.0        |
| 12/10 2130 | 2.4          | 59        | 13.4     | 12.5                  | 0                     | 0.056         | -0.029    | -12.5                                        | 4.87E-01   | 0.0           | 0.0        |
| 12/10 2200 | 3.2          | 56        | 13.6     | 12.5                  | 0                     | 0.085         | -0.037    | -17.1                                        | 2.89E-01   | 0.0           | 0.0        |
| 12/10 2230 | 4.4          | 54        | 13.8     | 12.5                  | 0                     | 0.124         | -0.048    | -26.7                                        | 2.11E-01   | 0.0           | 0.0        |
| 12/10 2300 | 3.7          | 55        | 13.6     | 12.5                  | 0                     | 0.104         | -0.038    | -18.5                                        | 2.11E-01   | 0.0           | 0.0        |
| 12/10 2330 | 4.7          | 54        | 13.5     | 12.5                  | 0                     | 0.144         | -0.037    | -15.2                                        | 9.13E-02   | 0.0           | 0.0        |
| 12/11 0000 | 4.0          | 57        | 13.4     | 12.5                  | 0                     | 0.117         | -0.032    | -11.9                                        | 1.08E-01   | 0.0           | 0.0        |
| 12/11 0030 | 5.3          | 56        | 12.8     | 12.5                  | 0                     | 0.174         | -0.014    | 11.0                                         | -3.99E-02  | 0.0           | 0.0        |
| 12/11 0100 | 4.2          | 62        | 12.4     | 12.5                  | 0                     | 0.137         | 0.002     | 23.9                                         | -1.47E-01  | 0.0           | 0.0        |
| 12/11 0130 | 4.3          | 63        | 12.2     | 12.5                  | 0                     | 0.139         | 0.008     | 29.9                                         | -1.79E-01  | 0.0           | 0.0        |
| 12/11 0200 | 4.6          | 65        | 12.0     | 12.5                  | 0                     | 0.151         | 0.016     | 37.2                                         | -1.90E-01  | 0.0           | 0.0        |
| 12/11 0230 | 5.3          | 65        | 11.6     | 12.5                  | 0                     | 0.178         | 0.029     | 51.4                                         | -1.91E-01  | 0.0           | 0.0        |
| 12/11 0300 | 5.0          | 66        | 11.5     | 12.5                  | 0                     | 0.167         | 0.032     | 54.4                                         | -2.29E-01  | 0.0           | 0.0        |
| 12/11 0330 | 4.5          | 63        | 12.1     | 12.5                  | 0                     | 0.148         | 0.009     | 32.4                                         | -1.71E-01  | 0.0           | 0.0        |
| 12/11 0400 | 3.1          | 65        | 12.0     | 12.5                  | 0                     | 0.097         | -0.003    | 19.9                                         | -2.44E-01  | 0.0           | 0.0        |
| 12/11 0430 | 2.5          | 62        | 12.5     | 12.5                  | 0                     | 0.079         | -0.003    | 20.2                                         | -3.73E-01  | 0.0           | 0.0        |
| 12/11 0500 | 3.8          | 66        | 12.0     | 12.5                  | 0                     | 0.124         | 0.016     | 37.0                                         | -2.83E-01  | 0.0           | 0.0        |
| 12/11 0530 | 4.3          | 67        | 12.0     | 12.5                  | 0                     | 0.141         | 0.015     | 34.8                                         | -2.05E-01  | 0.0           | 0.0        |
| 12/11 0600 | 6.3          | 67        | 11.4     | 12.5                  | 0                     | 0.216         | 0.038     | 59.5                                         | -1.49E-01  | 0.0           | 0.0        |
| 12/11 0630 | 5.5          | 67        | 11.5     | 12.5                  | 0                     | 0.186         | 0.032     | 53.7                                         | -1.82E-01  | 0.0           | 0.0        |
| 12/11 0700 | 6.0          | 68        | 11.3     | 12.5                  | 0                     | 0.208         | 0.041     | 63.6                                         | -1.72E-01  | 0.0           | 0.0        |
| 12/11 0730 | 5.1          | 69        | 11.3     | 12.5                  | 0                     | 0.174         | 0.039     | 61.0                                         | -2.38E-01  | 0.0           | 0.0        |
| 12/11 0800 | 3.4          | 72        | 11.0     | 12.5                  | 0                     | 0.114         | 0.055     | 77.0                                         | -7.00E-01  | 0.0           | 0.0        |
| 12/11 0830 | 2.0          | 73        | 10.6     | 12.5                  | 0                     | 0.068         | 0.077     | 100.9                                        | -2.55E 00  | 0.0           | 0.0        |
| 12/11 0900 | 2.0          | 70        | 11.3     | 12.5                  | 0                     | 0.068         | 0.045     | 68.2                                         | -1.72E 00  | 0.0           | 0.0        |
| 12/11 0930 | 2.1          | 71        | 11.2     | 12.5                  | 0                     | 0.070         | 0.044     | 67.5                                         | -1.61E 00  | 0.0           | 0.0        |
| 12/11 1000 | 1.9          | 72        | 11.3     | 12.6                  | 0                     | 0.065         | 0.049     | 71.7                                         | -1.98E 00  | 0.0           | 0.0        |
| 12/11 1030 | 1.6          | 73        | 11.5     | 12.6                  | 0                     | 0.056         | 0.042     | 64.3                                         | -2.37E 00  | 0.0           | 0.0        |
| 12/11 1100 | 1.1          | 72        | 11.7     | 12.6                  | 0                     | 0.040         | 0.037     | 60.5                                         | -4.35E 00  | 0.0           | 0.0        |
| 12/11 1130 | 1.5          | 72        | 11.9     | 12.7                  | 0                     | 0.053         | 0.031     | 53.0                                         | -2.24E 00  | 0.0           | 0.0        |
| 12/11 1200 | 2.4          | 75        | 0        | 0.076                 | 0.023                 | 41.8          | -8.45E-01 | 0.0                                          | 0.0        | 0.0           | 0.0        |
| 12/11 1300 | 4.6          | 75        | 0        | 0.151                 | 0.016                 | 32.8          | -1.69E-01 | 0.0                                          | 0.0        | 0.0           | 0.0        |

BLM III-81  
A11 Data

| date/time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | T <sub>S</sub><br>(C) | Z <sub>i</sub><br>(m) | U*<br>(m/sec) | T*<br>(C) | 10 <sup>4</sup> *Q <sub>O</sub><br>(m/secK) | z/L       | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------------------|-----------------------|---------------|-----------|---------------------------------------------|-----------|---------------|------------|
| 12/11 1330 | 4.0          | 75        | 12.4     | 12.7                  | 0                     | 0.127         | 0.009     | 25.0                                        | -1.81E-01 | 0.0           | 0.0        |
| 12/11 1400 | 3.9          | 72        | 12.7     | 12.8                  | 0                     | 0.125         | 0.003     | 20.1                                        | -1.49E-01 | 0.0           | 0.0        |
| 12/11 1430 | 4.3          | 70        | 12.9     | 12.9                  | 0                     | 0.136         | -0.004    | 14.0                                        | -8.63E-02 | 0.0           | 0.0        |
| 12/11 1500 | 5.9          | 77        | 13.0     | 12.8                  | 0                     | 0.194         | -0.010    | 1.7                                         | -4.25E-03 | 0.0           | 0.0        |
| 12/11 1530 | 7.0          | 79        | 13.1     | 12.8                  | 0                     | 0.234         | -0.013    | -2.1                                        | 5.34E-03  | 0.0           | 0.0        |
| 12/11 1600 | 7.4          | 86        | 12.8     | 12.8                  | 0                     | 0.254         | -0.004    | 4.1                                         | -7.01E-03 | 0.0           | 0.0        |
| 12/11 1630 | 7.7          | 84        | 12.8     | 12.8                  | 0                     | 0.267         | -0.004    | 4.9                                         | -7.70E-03 | 0.0           | 0.0        |
| 12/11 1657 | 7.7          | 82        | 12.9     | 12.7                  | 0                     | 0.266         | -0.007    | 3.2                                         | -4.92E-03 | 0.0           | 0.0        |
| 12/11 1724 | 8.4          | 81        | 12.8     | 12.7                  | 0                     | 0.293         | -0.007    | 3.6                                         | -4.52E-03 | 0.0           | 0.0        |
| 12/11 1751 | 7.7          | 80        | 12.8     | 12.7                  | 0                     | 0.263         | -0.008    | 2.9                                         | -4.34E-03 | 0.0           | 0.0        |
| 12/11 1818 | 6.3          | 80        | 12.8     | 12.7                  | 0                     | 0.230         | -0.008    | 2.8                                         | -5.52E-03 | 0.0           | 0.0        |
| 12/11 1845 | 5.8          | 81        | 12.9     | 12.6                  | 0                     | 0.188         | -0.010    | -0.5                                        | 2.79E-03  | 0.0           | 0.0        |
| 12/11 1912 | 4.6          | 81        | 12.9     | 12.7                  | 0                     | 0.144         | -0.011    | -1.2                                        | 8.78E-03  | 0.0           | 0.0        |
| 12/11 1939 | 2.6          | 84        | 12.7     | 12.6                  | 0                     | 0.080         | -0.002    | 7.0                                         | -1.26E-01 | 0.0           | 0.0        |
| 12/11 2006 | 2.5          | 90        | 11.4     | 12.6                  | 0                     | 0.080         | 0.048     | 59.0                                        | -1.08E-00 | 0.0           | 0.0        |
| 12/13 0730 | 2.0          | 88        | 12.6     | 12.7                  | 380                   | 0.063         | 0.000     | 8.1                                         | -2.39E-01 | 0.1           | 122.3      |
| 12/13 0801 | 0.8          | 88        | 12.6     | 12.7                  | 400                   | 0.029         | 0.001     | 9.8                                         | -1.39E-00 | 0.1           | 93.1       |
| 12/13 0831 | 1.2          | 89        | 12.4     | 12.7                  | 380                   | 0.040         | 0.010     | 18.0                                        | -1.30E-00 | 0.2           | 37.0       |
| 12/13 0900 | 1.5          | 90        | 12.2     | 12.8                  | 350                   | 0.052         | 0.017     | 25.5                                        | -1.12E-00 | 0.2           | 26.9       |
| 12/13 0928 | 2.4          | 90        | 12.3     | 12.8                  | 320                   | 0.073         | 0.015     | 23.3                                        | -5.10E-01 | 0.2           | 23.3       |
| 12/13 1000 | 1.9          | 89        | 12.4     | 12.8                  | 280                   | 0.061         | 0.010     | 18.1                                        | -5.62E-01 | 0.2           | 26.2       |
| 12/13 1030 | 1.6          | 89        | 12.4     | 12.8                  | 160                   | 0.053         | 0.011     | 20.0                                        | -8.45E-01 | 0.1           | 18.1       |
| 12/13 1100 | 0.8          | 88        | 12.6     | 12.9                  | 130                   | 0.030         | 0.009     | 18.8                                        | -2.38E-00 | 0.1           | 20.4       |
| 12/13 1230 | 1.8          | 90        | 12.7     | 13.0                  | 160                   | 0.057         | 0.007     | 14.8                                        | -5.40E-01 | 0.1           | 20.8       |
| 12/13 1300 | 3.7          | 92        | 12.6     | 13.1                  | 160                   | 0.120         | 0.019     | 26.4                                        | -2.18E-01 | 0.2           | 11.6       |
| 12/13 1330 | 5.0          | 98        | 11.8     | 13.0                  | 180                   | 0.169         | 0.040     | 46.3                                        | -1.93E-01 | 0.3           | 8.7        |
| 12/13 1400 | 5.0          | 96        | 12.3     | 12.9                  | 120                   | 0.166         | 0.016     | 20.5                                        | -8.85E-02 | 0.2           | 9.1        |
| 12/13 1430 | 5.5          | 97        | 11.9     | 12.9                  | 60                    | 0.184         | 0.032     | 37.1                                        | -1.30E-01 | 0.2           | 4.4        |
| 12/13 1500 | 6.4          | 98        | 12.2     | 12.9                  | 60                    | 0.217         | 0.019     | 22.8                                        | -5.75E-02 | 0.2           | 4.9        |
| 12/13 1530 | 6.8          | 96        | 12.3     | 12.8                  | 0.233                 | 0.013         | 17.6      | -3.85E-02                                   | 0.2       | 5.4           |            |
| 12/13 1600 | 7.1          | 92        | 12.7     | 12.7                  | 0.240                 | -0.003        | 1.4       | -2.61E-03                                   | 0.1       | 8.5           |            |
| 12/13 1630 | 7.0          | 91        | 13.1     | 12.7                  | 60                    | 0.234         | -0.013    | -9.0                                        | 1.98E-02  | 0.0           | 0.0        |
| 12/13 1700 | 6.4          | 93        | 12.7     | 60                    | 0.208                 | -0.015        | -11.0     | 3.08E-02                                    | 0.0       | 0.0           |            |
| 12/13 1730 | 5.4          | 89        | 13.3     | 12.7                  | 0.166                 | -0.022        | -18.1     | 7.85E-02                                    | 0.0       | 0.0           |            |
| 12/13 1800 | 5.5          | 90        | 13.3     | 12.7                  | 0.172                 | -0.021        | -17.1     | 6.95E-02                                    | 0.0       | 0.0           |            |
| 12/13 1830 | 6.0          | 90        | 13.3     | 12.7                  | 0.192                 | -0.023        | -19.2     | 6.24E-02                                    | 0.0       | 0.0           |            |

BIM III-81  
All Data

| Date/Time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | Ts<br>(C) | zi<br>(m) | U*<br>(m/sec) | T*<br>(C) | 10^4 3*00<br>(m/secK) | z/L<br>(m/sec) | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|-----------------------|----------------|---------------|------------|
| 12/13 1900 | 4.9          | 89        | 13.3     | 12.7      | 60        | 0.150         | -0.024    | -19.6                 | 1.04E-01       | 0.0           | 0.0        |
| 12/13 1930 | 2.9          | 90        | 13.3     | 12.7      | 60        | 0.074         | -0.020    | -16.4                 | 3.55E-01       | 0.0           | 0.0        |
| 12/13 2000 | 2.2          | 84        | 13.9     | 12.7      | 60        | 0.039         | -0.022    | -18.7                 | 1.49E-00       | 0.0           | 0.0        |
| 12/13 2030 | 1.2          | 83        | 13.7     | 12.7      | 60        | 0.000         | -0.000    | -0.0                  | 9.99E-02       | 0.0           | 0.0        |
| 12/13 2103 | 0.9          | 87        | 12.7     | 12.7      | 60        | 0.029         | -0.006    | 1.4                   | -1.71E-01      | 0.1           | 14.6       |
| 12/13 2130 | 1.4          | 87        | 12.6     | 12.6      | 60        | 0.044         | -0.002    | 6.2                   | -3.60E-01      | 0.1           | 19.2       |
| 12/13 2200 | 1.1          | 87        | 12.7     | 12.6      | 60        | 0.035         | -0.003    | 5.3                   | -4.85E-01      | 0.1           | 17.0       |
| 12/13 2230 | 1.2          | 87        | 12.7     | 12.6      | 60        | 0.038         | -0.003    | 4.2                   | -3.26E-01      | 0.1           | 15.5       |
| 12/13 2300 | 1.1          | 88        | 12.7     | 12.6      | 60        | 0.035         | -0.001    | 6.2                   | -5.78E-01      | 0.0           | 22.3       |
| 12/13 2330 | 0.9          | 88        | 12.6     | 12.6      | 60        | 0.031         | 0.009     | 17.0                  | -2.06E-00      | 0.1           | 12.1       |
| 12/14 0000 | 0.7          | 87        | 12.5     | 12.6      | 60        | 0.026         | 0.010     | 19.0                  | -3.36E-00      | 0.1           | 12.4       |
| 12/14 0029 | 1.0          | 90        | 12.0     | 12.6      | 60        | 0.036         | 0.023     | 31.8                  | -2.94E-00      | 0.1           | 8.4        |
| 12/14 0058 | 1.1          | 88        | 12.2     | 12.6      | 60        | 0.039         | 0.016     | 25.9                  | -1.96E-00      | 0.1           | 9.2        |
| 12/14 0127 | 1.6          | 85        | 12.3     | 12.6      | 60        | 0.053         | 0.010     | 20.6                  | -8.45E-01      | 0.1           | 9.8        |
| 12/14 0156 | 3.0          | 81        | 13.0     | 12.6      | 60        | 0.089         | -0.008    | 1.7                   | -2.17E-02      | 0.1           | 8.9        |
| 12/14 0225 | 1.1          | 95        | 12.4     | 12.6      | 60        | 0.094         | 0.007     | 16.3                  | -2.00E-01      | 0.1           | 9.0        |
| 12/14 0254 | 3.2          | 99        | 12.2     | 12.6      | 60        | 0.099         | 0.013     | 21.6                  | -2.57E-01      | 0.1           | 7.3        |
| 12/14 0323 | 2.3          | 91        | 12.4     | 12.6      | 60        | 0.071         | 0.008     | 14.3                  | -3.29E-01      | 0.1           | 9.6        |
| 12/14 0352 | 4.0          | 94        | 12.2     | 12.6      | 60        | 0.128         | 0.011     | 16.3                  | -1.18E-01      | 0.1           | 7.0        |
| 12/14 0421 | 4.1          | 94        | 12.3     | 12.6      | 60        | 0.131         | 0.006     | 11.0                  | -7.53E-02      | 0.1           | 8.5        |
| 12/14 0450 | 3.0          | 91        | 12.4     | 12.6      | 60        | 0.094         | 0.004     | 10.4                  | -1.39E-01      | 0.1           | 10.6       |
| 12/14 0519 | 1.3          | 87        | 12.0     | 12.6      | 60        | 0.044         | 0.021     | 32.6                  | -1.95E-00      | 0.1           | 8.1        |
| 12/14 0548 | 1.2          | 82        | 11.9     | 12.6      | 60        | 0.043         | 0.027     | 42.2                  | -2.71E-00      | 0.1           | 7.5        |
| 12/14 0617 | 0.8          | 81        | 11.8     | 12.6      | 60        | 0.033         | 0.02      | 48.3                  | -5.22E-00      | 0.1           | 7.8        |
| 12/14 0646 | 0.8          | 83        | 11.9     | 12.6      | 60        | 0.030         | 0.027     | 42.2                  | -5.39E-00      | 0.1           | 8.4        |
| 12/14 0728 | 1.4          | 87        | 11.8     | 12.6      | 60        | 0.049         | 0.033     | 45.2                  | -2.23E-00      | 0.1           | 6.7        |
| 12/14 0800 | 2.0          | 79        | 11.9     | 12.6      | 60        | 0.064         | 0.025     | 39.4                  | -1.11E-00      | 0.1           | 6.8        |
| 12/14 0830 | 1.7          | 78        | 12.3     | 12.6      | 60        | 0.056         | 0.013     | 27.5                  | -1.02E-00      | 0.1           | 8.8        |
| 12/14 0900 | 1.4          | 72        | 13.4     | 12.6      | 60        | 0.038         | -0.016    | -2.1                  | 2.04E-01       | 0.0           | 0.0        |
| 12/14 0930 | 1.4          | 72        | 13.2     | 12.6      | 60        | 0.042         | -0.015    | 0.1                   | 2.38E-02       | 0.0           | 0.0        |
| 12/14 1000 | 1.0          | 79        | 13.0     | 12.7      | 60        | 0.032         | -0.010    | 1.6                   | -1.49E-01      | 0.1           | 11.5       |
| 12/14 1100 | 4.2          | 77        | 13.9     | 12.8      | 60        | 0.118         | -0.031    | -22.0                 | 1.90E-01       | 0.0           | 0.0        |
| 12/14 1130 | 5.1          | 76        | 12.7     | 60        | 0.149     | -0.044        | -35.7     | 1.94E-01              | 0.0            | 0.0           |            |
| 12/14 1200 | 5.8          | 75        | 14.5     | 12.7      | 60        | 0.176         | -0.051    | -43.2                 | 1.66E-01       | 0.0           | 0.0        |
| 12/14 1230 | 6.5          | 79        | 13.9     | 12.7      | 60        | 0.206         | -0.041    | -33.2                 | 9.35E-02       | 0.0           | 0.0        |
| 12/14 1300 | 6.3          | 84        | 12.7     | 60        | 0.201     | -0.032        | -26.2     | 7.77E-02              | 0.0            | 0.0           |            |

REF ID: A11 Data

| Date/Time  | H<br>(r/sec) | RH<br>(%) | T<br>(C) | T <sub>S</sub><br>(C) | t <sup>*</sup><br>(m/sec) | T <sup>*</sup><br>(C) | 10 <sup>4</sup> *Q <sub>0</sub><br>(m/sec <sup>2</sup> ) | z/L<br>(r/sec) | w <sup>*</sup><br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------------------|---------------------------|-----------------------|----------------------------------------------------------|----------------|---------------------------|------------|
| 12/14 1330 | 7.1          | 87        | 13.5     | 12.7                  | 60                        | 0.235                 | -0.026                                                   | -20.8          | 4.51E-02                  | 0.0        |
| 12/14 1400 | 8.7          | 88        | 13.4     | 12.7                  | 60                        | 0.314                 | -0.024                                                   | -18.6          | 2.26E-02                  | 0.0        |
| 12/14 1430 | 9.7          | 90        | 13.1     | 12.7                  | 60                        | 0.354                 | -0.018                                                   | -12.9          | 1.24E-02                  | 0.0        |
| 12/14 1500 | 9.9          | 91        | 13.0     | 12.7                  | 60                        | 0.358                 | -0.010                                                   | -5.1           | 4.84E-03                  | 0.0        |
| 12/14 1530 | 9.5          | 91        | 13.1     | 12.7                  | 60                        | 0.348                 | -0.018                                                   | -13.3          | 1.32E-02                  | 0.0        |
| 12/14 1559 | 7.7          | 84        | 14.3     | 12.7                  | 60                        | 0.249                 | -0.054                                                   | -49.8          | 9.55E-02                  | 0.0        |
| 12/14 1612 | 7.5          | 85        | 14.1     | 12.7                  | 60                        | 0.243                 | -0.047                                                   | -42.7          | 8.61E-02                  | 0.0        |
| 12/14 1625 | 7.5          | 88        | 13.5     | 12.7                  | 60                        | 0.249                 | -0.027                                                   | -23.3          | 4.51E-02                  | 0.0        |
| 12/14 1638 | 7.6          | 90        | 13.2     | 12.7                  | 60                        | 0.255                 | -0.021                                                   | -16.3          | 3.02E-02                  | 0.0        |
| 12/14 1651 | 7.8          | 91        | 13.2     | 12.7                  | 60                        | 0.264                 | -0.020                                                   | -15.8          | 2.71E-02                  | 0.0        |
| 12/14 1704 | 7.8          | 91        | 13.2     | 12.7                  | 60                        | 0.263                 | -0.020                                                   | -16.2          | 2.81E-02                  | 0.0        |
| 12/14 1717 | 6.8          | 90        | 13.3     | 12.7                  | 60                        | 0.223                 | -0.024                                                   | -20.1          | 4.82E-02                  | 0.0        |
| 12/14 1730 | 6.7          | 87        | 13.7     | 12.7                  | 60                        | 0.215                 | -0.035                                                   | -31.5          | 8.18E-02                  | 0.0        |
| 12/14 1743 | 6.6          | 85        | 14.1     | 12.7                  | 60                        | 0.206                 | -0.047                                                   | -43.4          | 1.22E-01                  | 0.0        |
| 12/14 1756 | 6.1          | 86        | 13.9     | 12.6                  | 60                        | 0.190                 | -0.040                                                   | -35.7          | 1.18E-01                  | 0.0        |
| 12/14 1809 | 5.9          | 87        | 13.6     | 12.6                  | 60                        | 0.183                 | -0.031                                                   | -27.3          | 9.74E-02                  | 0.0        |
| 12/14 1822 | 5.1          | 88        | 13.4     | 12.6                  | 60                        | 0.153                 | -0.025                                                   | -20.8          | 1.06E-01                  | 0.0        |
| 12/14 1835 | 4.9          | 89        | 13.1     | 12.6                  | 60                        | 0.150                 | -0.017                                                   | -12.5          | 6.70E-02                  | 0.0        |
| 12/14 1848 | 6.9          | 93        | 12.7     | 12.6                  | 60                        | 0.233                 | -0.004                                                   | 0.3            | -4.05E-04                 | 0.1        |
| 12/14 1901 | 5.6          | 92        | 12.5     | 12.6                  | 60                        | 0.183                 | 0.001                                                    | 5.8            | -2.03E-02                 | 0.1        |
| 12/14 1929 | 5.6          | 92        | 12.7     | 12.6                  | 60                        | 0.181                 | -0.004                                                   | 0.2            | -1.62E-04                 | 0.1        |
| 12/14 1958 | 7.7          | 96        | 12.2     | 12.6                  | 60                        | 0.267                 | 0.013                                                    | 17.4           | -2.89E-02                 | 0.2        |
| 12/14 2030 | 9.4          | 97        | 11.7     | 12.6                  | 60                        | 0.352                 | 0.032                                                    | 37.3           | -3.56E-02                 | 0.3        |
| 12/14 2100 | 10.1         | 98        | 11.9     | 12.6                  | 60                        | 0.379                 | 0.022                                                    | 26.6           | -2.20E-02                 | 0.3        |
| 12/14 2300 | 4.2          | 93        | 11.8     | 12.6                  | 60                        | 0.137                 | 0.030                                                    | 35.9           | -2.25E-01                 | 0.2        |
| 12/14 2330 | 5.3          | 96        | 11.5     | 12.6                  | 60                        | 0.177                 | 0.040                                                    | 46.5           | -1.76E-01                 | 0.2        |
| 12/15 0000 | 3.5          | 95        | 12.0     | 12.6                  | 60                        | 0.113                 | 0.021                                                    | 25.7           | -2.40E-01                 | 0.2        |
| 12/15 0030 | 4.3          | 93        | 10.8     | 12.6                  | 60                        | 0.145                 | 0.070                                                    | 79.5           | -4.46E-01                 | 0.3        |
| 12/15 0100 | 4.2          | 95        | 9.8      | 12.6                  | 60                        | 0.143                 | 0.108                                                    | 120.2          | -6.95E-01                 | 0.3        |
| 12/15 0130 | 3.8          | 96        | 9.8      | 12.6                  | 60                        | 0.128                 | 0.111                                                    | 123.4          | -8.91E-01                 | 0.3        |
| 12/15 0200 | 4.1          | 97        | 9.5      | 12.6                  | 60                        | 0.141                 | 0.117                                                    | 130.3          | -7.78E-01                 | 0.3        |
| 12/15 0230 | 4.0          | 96        | 9.8      | 12.6                  | 60                        | 0.135                 | 0.108                                                    | 119.9          | -7.81E-01                 | 0.3        |
| 12/15 0300 | 3.4          | 95        | 9.7      | 12.5                  | 60                        | 0.115                 | 0.111                                                    | 123.9          | -1.12E-00                 | 0.3        |
| 12/15 0330 | 2.2          | 95        | 9.3      | 12.5                  | 60                        | 0.075                 | 0.138                                                    | 153.1          | -3.20E-00                 | 0.3        |
| 12/15 0400 | 2.1          | 95        | 9.7      | 12.5                  | 60                        | 0.073                 | 0.119                                                    | 132.8          | -2.96E-00                 | 0.3        |
| 12/15 0430 | 1.3          | 90        |          |                       | 60                        | 0.049                 | 0.110                                                    | 126.0          | -6.26E-00                 | 0.2        |

B.I.M III-81  
All Data

| Date/Time  | H<br>(m/sec) | RH<br>(%) | T<br>(C) | Ts<br>(m) | Zi<br>(m) | U*<br>(m/sec) | T*<br>(C) | $10^{4}3^*Q_0$<br>(m/secK) | z/L<br>(m) | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|----------------------------|------------|---------------|------------|
| 12/15 0500 | 2.4          | 90        | 10.7     | 12.5      | 60        | 0.078         | 0.074     | 86.2                       | -1.69E 00  | 0.2           | 4.4        |
| 12/15 0530 | 4.0          | 97        | 11.2     | 12.6      | 60        | 0.132         | 0.051     | 57.6                       | -3.95E-01  | 0.2           | 4.2        |
| 12/15 0600 | 7.9          | 95        | 11.6     | 12.6      | 60        | 0.280         | 0.033     | 37.7                       | -5.69E-02  | 0.3           | 3.8        |
| 12/15 0630 | 5.0          | 92        | 11.3     | 12.5      | 60        | 0.168         | 0.045     | 53.0                       | -2.23E-01  | 0.2           | 4.0        |
| 12/15 0700 | 2.2          | 76        | 10.5     | 12.5      | 60        | 0.073         | 0.084     | 94.0                       | -2.06E 00  | 0.2           | 4.3        |
| 12/15 0730 | 1.9          | 94        | 10.6     | 12.5      | 60        | 0.065         | 0.078     | 88.8                       | -2.46E 00  | 0.2           | 4.6        |
| 12/15 1007 | 1.9          | 94        | 10.9     | 12.6      | 60        | 0.064         | 0.073     | 33.6                       | -2.42E 00  | 0.2           | 4.7        |
| 12/15 1023 | 1.7          | 95        | 10.8     | 12.6      | 60        | 0.059         | 0.078     | 88.4                       | -3.00E 00  | 0.2           | 4.7        |
| 12/15 1048 | 2.2          | 75        | 10.8     | 12.7      | 60        | 0.073         | 0.075     | 84.5                       | -1.90E 00  | 0.2           | 4.5        |
| 12/15 1148 | 4.0          | 86        | 12.9     | 12.6      | 60        | 0.120         | -0.012    | -6.0                       | 5.12E-02   | 0.0           | 0.0        |
| 12/15 1208 | 3.6          | 84        | 13.1     | 12.6      | 60        | 0.103         | -0.018    | -11.3                      | 1.30E-01   | 0.0           | 0.0        |
| 12/15 1228 | 2.2          | 88        | 12.6     | 12.7      | 60        | 0.067         | 0.001     | 7.2                        | -1.83E-01  | 0.0           | 20.5       |
| 12/15 1248 | 6.8          | 91        | 12.9     | 12.7      | 60        | 0.225         | -0.009    | -4.9                       | 1.18E-02   | 0.0           | 0.0        |
| 12/15 1308 | 8.3          | 90        | 13.2     | 12.7      | 60        | 0.284         | -0.020    | -15.6                      | 2.31E-02   | 0.0           | 0.0        |
| 12/15 1328 | 6.8          | 88        | 13.6     | 12.7      | 60        | 0.220         | -0.031    | -27.5                      | 6.78E-02   | 0.0           | 0.0        |
| 12/15 1348 | 4.3          | 77        | 14.6     | 12.7      | 60        | 0.113         | -0.049    | -43.3                      | 4.03E-01   | 0.0           | 0.0        |
| 12/15 1408 | 4.3          | 69        | 16.9     | 12.8      | 60        | 0.081         | -0.081    | -77.6                      | 1.40E 00   | 0.0           | 0.0        |
| 12/15 1428 | 2.5          | 63        | 17.0     | 12.8      | 60        | 0.002         | -0.003    | -2.6                       | 9.99E 02   | 0.0           | 0.0        |
| 12/15 1448 | 2.8          | 60        | 17.7     | 12.9      | 60        | 0.003         | -0.005    | -5.1                       | 5.88E 01   | 0.0           | 0.0        |
| 12/15 1530 | 6.2          | 77        | 14.4     | 12.9      | 60        | 0.192         | -0.047    | -40.8                      | 1.32E-01   | 0.0           | 0.0        |
| 12/15 1600 | 6.7          | 77        | 15.2     | 12.9      | 60        | 0.206         | -0.066    | -61.2                      | 1.71E-01   | 0.0           | 0.0        |
| 12/15 1630 | 7.7          | 78        | 14.9     | 12.8      | 60        | 0.248         | -0.064    | -59.1                      | 1.15E-01   | 0.0           | 0.0        |
| 12/15 1700 | 7.4          | 77        | 15.1     | 12.8      | 60        | 0.234         | -0.068    | -63.3                      | 1.38E-01   | 0.0           | 0.0        |
| 12/15 1730 | 6.2          | 79        | 14.9     | 12.8      | 60        | 0.187         | -0.062    | -58.0                      | 1.99E-01   | 0.0           | 0.0        |
| 12/15 1800 | 3.0          | 75        | 15.5     | 12.8      | 60        | 0.048         | -0.041    | -38.8                      | 2.02E 00   | 0.0           | 0.0        |
| 12/15 1830 | 1.6          | 68        | 16.5     | 12.8      | 60        | 0.001         | -0.002    | -1.9                       | 9.99E 02   | 0.0           | 0.0        |
| 12/15 1900 | 2.8          | 68        | 16.5     | 12.8      | 60        | 0.024         | -0.030    | -28.5                      | 5.69E 00   | 0.0           | 0.0        |
| 12/15 1930 | 5.9          | 82        | 14.2     | 12.8      | 60        | 0.182         | -0.042    | -37.5                      | 1.35E-01   | 0.0           | 0.0        |
| 12/15 2000 | 4.4          | 67        | 16.6     | 12.8      | 60        | 0.104         | -0.068    | -63.0                      | 6.98E-01   | 0.0           | 0.0        |
| 12/15 2300 | 5.5          | 92        | 13.0     | 12.5      | 60        | 0.179         | -0.017    | -14.3                      | 5.36E-02   | 0.0           | 0.0        |
| 12/15 2330 | 5.8          | 90        | 13.0     | 12.5      | 60        | 0.186         | -0.017    | -13.0                      | 4.52E-02   | 0.0           | 0.0        |
| 12/16 0000 | 5.9          | 90        | 12.9     | 12.6      | 60        | 0.187         | -0.013    | -9.5                       | 3.26E-02   | 0.0           | 0.0        |
| 12/16 0030 | 4.5          | 89        | 12.9     | 12.6      | 60        | 0.139         | -0.013    | -8.6                       | 5.39E-02   | 0.0           | 0.0        |
| 12/16 0100 | 2.3          | 87        | 13.1     | 12.6      | 60        | 0.056         | -0.014    | -10.5                      | 4.06E-01   | 0.0           | 0.0        |
| 12/16 0130 | 1.8          | 75        | 14.0     | 12.6      | 60        | 0.026         | -0.018    | -14.1                      | 2.48E 00   | 0.0           | 0.0        |
| 12/16 0200 | 3.2          | 69        | 14.8     | 12.5      | 60        | 0.063         | -0.046    | -39.1                      | 1.17E 00   | 0.0           | 0.0        |

RLM III-81  
 All Data

| date/time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | T <sub>s</sub><br>(C) | Z <sub>i</sub><br>(m) | U*<br>(m/sec) | T*<br>(C) | 10 <sup>4</sup> 3*Q00<br>(m/secK) | Z/L<br>(m) | W*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------------------|-----------------------|---------------|-----------|-----------------------------------|------------|---------------|------------|
| 12/16 0230 | 2.1          | 72        | 14.4     | 12.5                  | 60                    | 0.022         | -0.020    | -17.3                             | 4.10E 00   | 0.0           | 0.0        |
| 12/16 0251 | 2.6          | 72        | 14.4     | 12.5                  | 60                    | 0.043         | -0.033    | -28.5                             | 1.81E 00   | 0.0           | 0.0        |
| 12/16 0313 | 4.2          | 73        | 14.5     | 12.5                  | 60                    | 0.032         | -0.029    | -25.1                             | 2.87E 00   | 0.0           | 0.0        |
| 12/16 0326 | 2.9          | 73        | 14.6     | 12.5                  | 60                    | 0.073         | -0.048    | -42.5                             | 9.50E -01  | 0.0           | 0.0        |
| 12/16 0401 | 1.0          | 75        | 14.2     | 12.6                  | 60                    | 0.000         | -0.001    | -0.6                              | 9.99E 02   | 0.0           | 0.0        |
| 12/16 0421 | 1.1          | 74        | 14.5     | 12.6                  | 60                    | 0.001         | -0.001    | -1.0                              | 9.99E 02   | 0.0           | 0.0        |
| 12/16 0441 | 1.4          | 72        | 14.7     | 12.5                  | 60                    | 0.001         | -0.001    | -0.9                              | 9.99E 02   | 0.0           | 0.0        |
| 12/16 1929 | 5.6          | 92        | 12.7     | 12.6                  | 60                    | 0.181         | -0.004    | 0.2                               | -1.62E -04 | 0.1           | 8.5        |
| 12/16 1958 | 7.7          | 96        | 12.2     | 12.6                  | 60                    | 0.267         | 0.013     | 17.4                              | -2.89E -02 | 0.2           | 5.2        |
| 12/14 2030 | 9.4          | 97        | 11.7     | 12.6                  | 60                    | 0.352         | 0.032     | 37.3                              | -3.56E -02 | 0.3           | 3.5        |
| 12/14 2100 | 10.1         | 98        | 11.9     | 12.6                  | 60                    | 0.379         | 0.022     | 26.6                              | -2.20E -02 | 0.3           | 3.9        |
| 12/16 0501 | 2.2          | 72        | 14.4     | 12.5                  | 60                    | 0.024         | -0.022    | -19.3                             | 4.05E 00   | 0.0           | 0.0        |
| 12/16 0521 | 2.4          | 74        | 14.2     | 12.5                  | 60                    | 0.038         | -0.028    | -23.3                             | 1.92E 00   | 0.0           | 0.0        |
| 12/16 0541 | 2.4          | 72        | 14.5     | 12.6                  | 60                    | 0.041         | -0.029    | -23.8                             | 1.73E 00   | 0.0           | 0.0        |
| 12/16 0601 | 2.0          | 75        | 13.9     | 12.6                  | 60                    | 0.036         | -0.022    | -16.6                             | 1.54E 00   | 0.0           | 0.0        |
| 12/16 0621 | 2.7          | 72        | 13.9     | 12.6                  | 60                    | 0.059         | -0.031    | -22.7                             | 7.73E -01  | 0.0           | 0.0        |
| 12/16 0641 | 3.6          | 68        | 14.0     | 12.6                  | 60                    | 0.095         | -0.037    | -25.6                             | 3.44E -01  | 0.0           | 0.0        |
| 12/16 0701 | 3.4          | 67        | 13.9     | 12.6                  | 60                    | 0.087         | -0.036    | -24.5                             | 3.89E -01  | 0.0           | 0.0        |
| 12/16 0721 | 4.7          | 63        | 14.5     | 12.6                  | 60                    | 0.132         | -0.052    | -38.4                             | 2.63E -01  | 0.0           | 0.0        |
| 12/16 0741 | 8.0          | 66        | 14.2     | 12.5                  | 60                    | 0.139         | -0.050    | -37.7                             | 2.35E -01  | 0.0           | 0.0        |
| 12/16 0801 | 8.9          | 66        | 14.3     | 12.6                  | 60                    | 0.171         | -0.049    | -35.5                             | 1.46E -01  | 0.0           | 0.0        |
| 12/16 0841 | 4.1          | 62        | 14.1     | 12.6                  | 60                    | 0.114         | -0.042    | -28.2                             | 2.64E -01  | 0.0           | 0.0        |
| 12/16 0901 | 4.6          | 61        | 14.6     | 12.6                  | 60                    | 0.128         | -0.051    | -36.9                             | 2.73E -01  | 0.0           | 0.0        |
| 12/16 0921 | 4.1          | 62        | 14.5     | 12.6                  | 60                    | 0.112         | -0.047    | -33.8                             | 3.27E -01  | 0.0           | 0.0        |
| 12/16 0941 | 4.6          | 58        | 15.5     | 12.6                  | 60                    | 0.121         | -0.065    | -52.0                             | 4.23E -01  | 0.0           | 0.0        |
| 12/16 1001 | 4.5          | 54        | 15.8     | 12.6                  | 60                    | 0.115         | -0.072    | -58.5                             | 5.32E -01  | 0.0           | 0.0        |
| 12/16 1021 | 4.5          | 50        | 16.4     | 12.7                  | 60                    | 0.104         | -0.081    | -67.4                             | 7.39E -01  | 0.0           | 0.0        |
| 12/16 1144 | 6.2          | 51        | 15.9     | 12.8                  | 60                    | 0.106         | -0.059    | -45.9                             | 4.88E -01  | 0.0           | 0.0        |
| 12/16 1159 | 5.6          | 48        | 15.9     | 12.8                  | 60                    | 0.058         | -0.045    | -34.9                             | 1.25E 00   | 0.0           | 0.0        |
| 12/16 1214 | 3.7          | 59        | 14.8     | 12.8                  | 60                    | 0.092         | -0.045    | -32.6                             | 4.64E -01  | 0.0           | 0.0        |
| 12/16 1229 | 6.5          | 55        | 15.2     | 12.7                  | 60                    | 0.124         | -0.055    | -41.9                             | 3.25E -01  | 0.0           | 0.0        |
| 12/16 1244 | 6.1          | 66        | 14.7     | 12.9                  | 60                    | 0.090         | -0.041    | -32.1                             | 4.72E -01  | 0.0           | 0.0        |
| 12/16 1259 | 6.7          | 73        | 14.5     | 13.0                  | 60                    | 0.113         | -0.042    | -33.4                             | 3.11E -01  | 0.0           | 0.0        |

RIM III-81  
λ11 Data

| rate/time<br>(m/sec) | U<br>(°) | RH<br>(%) | T<br>(°C) | Ts<br>(°C) | zi<br>(m) | tr*<br>(m/sec) | Tr*<br>(°C) | 10^4 * Q00<br>(m/sec) | Z/I.<br>(π/sec) | w*<br>(m/min) | t    |
|----------------------|----------|-----------|-----------|------------|-----------|----------------|-------------|-----------------------|-----------------|---------------|------|
| 12/15 1314           | 0.0      | 76        | 14.5      | 13.1       | 60        | 0.204          | -0.045      | -35.7                 | 1.03E-01        | 0.0           | 0.0  |
| 12/16 1329           | 10.6     | 77        | 14.4      | 13.1       | 60        | 0.261          | -0.045      | -36.4                 | 6.40E-02        | 0.0           | 0.0  |
| 12/16 1400           | 10.0     | 90        | 13.8      | 13.2       | 60        | 0.240          | -0.024      | -15.5                 | 3.25E-02        | 0.0           | 0.0  |
| 12/16 1430           | 9.6      | 81        | 13.8      | 13.3       | 60        | 0.226          | -0.020      | -11.2                 | 2.69E-02        | 0.0           | 0.0  |
| 12/16 1500           | 8.9      | 83        | 13.7      | 13.3       | 60        | 0.211          | -0.018      | -10.0                 | 2.72E-02        | 0.0           | 0.0  |
| 12/16 1530           | 8.4      | 84        | 13.7      | 13.3       | 60        | 0.201          | -0.017      | -10.1                 | 3.04E-02        | 0.0           | 0.0  |
| 12/16 1600           | 8.3      | 86        | 13.6      | 13.2       | 60        | 0.200          | -0.016      | -9.6                  | 2.89E-02        | 0.0           | 0.0  |
| 12/16 1700           | 6.0      | 85        | 13.6      | 13.2       | 60        | 0.214          | -0.017      | -10.2                 | 2.69E-02        | 0.0           | 0.0  |
| 12/16 1730           | 5.8      | 84        | 13.7      | 13.2       | 60        | 0.213          | -0.020      | -12.9                 | 3.44E-02        | 0.0           | 0.0  |
| 12/16 1800           | 6.7      | 83        | 13.8      | 13.4       | 60        | 0.239          | -0.016      | -7.8                  | 1.67E-02        | 0.0           | 0.0  |
| 12/16 1830           | 7.2      | 81        | 14.0      | 13.4       | 60        | 0.253          | -0.023      | -14.6                 | 2.76E-02        | 0.0           | 0.0  |
| 12/16 1900           | 9.4      | 79        | 14.2      | 13.3       | 60        | 0.329          | -0.034      | -25.4                 | 2.81E-02        | 0.0           | 0.0  |
| 12/16 1930           | 6.9      | 76        | 14.2      | 13.2       | 60        | 0.224          | -0.036      | -25.5                 | 6.12E-02        | 0.0           | 0.0  |
| 12/16 2000           | 6.1      | 71        | 14.4      | 13.2       | 60        | 0.191          | -0.040      | -27.3                 | 9.01E-02        | 0.0           | 0.0  |
| 12/16 2030           | 4.7      | 70        | 14.0      | 13.2       | 60        | 0.141          | -0.030      | -17.1                 | 1.05E-01        | 0.0           | 0.0  |
| 12/16 2060           | 3.6      | 66        | 13.1      | 13.2       | 60        | 0.105          | 0.001       | 21.6                  | -2.28E-01       | 0.1           | 16.4 |
| 12/17 0830           | 3.3      | 72        | 13.1      | 13.6       | 60        | 0.245          | 0.014       | 31.5                  | -6.13E-02       | 0.2           | 5.3  |
| 12/17 0900           | 2.8      | 75        | 13.2      | 13.6       | 60        | 0.064          | 0.012       | 30.3                  | -8.52E-01       | 0.1           | 8.5  |
| 12/17 0930           | 2.8      | 75        | 13.2      | 13.6       | 60        | 0.083          | -0.001      | 13.0                  | -2.18E-01       | 0.1           | 19.2 |
| 12/17 1000           | 2.2      | 77        | 13.4      | 13.4       | 60        | 0.101          | -0.004      | 10.6                  | -1.19E-01       | 0.1           | 10.9 |
| 12/17 1030           | 2.1      | 75        | 13.5      | 13.5       | 60        | 0.092          | -0.009      | 3.7                   | -6.03E-02       | 0.1           | 8.9  |
| 12/17 1100           | 1.9      | 77        | 13.6      | 13.4       | 60        | 0.080          | -0.006      | 6.3                   | -1.11E-01       | 0.1           | 14.5 |
| 12/17 1130           | 2.2      | 79        | 13.5      | 13.5       | 100       | 0.030          | -0.006      | 12.8                  | -2.74E-01       | 0.1           | 27.3 |
| 12/17 1200           | 2.9      | 82        | 13.5      | 13.7       | 120       | 0.074          | 0.001       | 17.8                  | -2.90E-00       | 0.1           | 32.9 |
| 12/17 1230           | 4.4      | 82        | 13.6      | 13.6       | 170       | 0.027          | 0.004       | 28.8                  | -1.37E-00       | 0.2           | 20.1 |
| 12/17 1300           | 5.0      | 84        | 13.4      | 13.9       | 220       | 0.050          | 0.016       | 35.5                  | -9.31E-01       | 0.2           | 16.9 |
| 12/17 1330           | 4.7      | 82        | 13.4      | 14.0       | 220       | 0.067          | 0.021       | 38.9                  | -3.68E-01       | 0.3           | 14.1 |
| 12/17 1400           | 3.3      | 80        | 13.5      | 14.2       | 230       | 0.112          | 0.023       | 26.5                  | -3.43E-01       | 0.2           | 15.0 |
| 12/17 1430           | 6.6      | 83        | 13.5      | 14.0       | 180       | 0.095          | 0.014       | 17.9                  | -2.61E-01       | 0.2           | 18.8 |
| 12/17 1500           | 6.1      | 85        | 13.5      | 13.8       | 180       | 0.090          | 0.007       | 4.3                   | -1.51E-01       | 0.1           | 20.7 |
| 12/17 1530           | 5.3      | 76        | 13.8      | 13.6       | 180       | 0.056          | -0.009      | 1.1                   | -4.05E-02       | 0.1           | 9.7  |
| 12/17 1600           | 5.1      | 76        | 14.0      | 13.7       | 60        | 0.048          | -0.011      | 3.9                   | -6.50E-02       | 0.1           | 13.0 |
| 12/17 1630           | 4.9      | 82        | 13.7      | 13.5       | 80        | 0.082          | -0.005      | 9.4                   | -2.12E-01       | 0.1           | 26.4 |
| 12/17 1700           | 4.6      | 84        | 13.6      | 13.6       | 90        | 0.072          | 0.001       | 15.1                  | -1.73E-00       | 0.1           | 20.1 |
| 12/17 1730           | 4.8      | 89        | 13.4      | 13.6       | 120       | 0.032          | 0.008       | 14.0                  | -1.01E-00       | 0.1           | 18.4 |
| 12/17 1800           | 4.8      | 91        | 13.2      | 13.4       | 120       | 0.040          | 0.008       | 7.6                   | -6.08E-01       | 0.1           | 50.1 |
| 12/17 1830           | 3.9      | 88        | 13.3      | 13.4       | 160       | 0.038          | 0.001       |                       |                 |               |      |

BLW III-81  
A11 Data

| Date/Time  | U<br>(m/sec) | RH<br>(%) | T<br>(C) | Ts<br>(C) | Zi<br>(m) | U*<br>(m/sec) | T*<br>(C) | $10^{4}3^{*}00$<br>(m/seck) | z/L       | w*<br>(m/sec) | t<br>(min) |
|------------|--------------|-----------|----------|-----------|-----------|---------------|-----------|-----------------------------|-----------|---------------|------------|
| 12/17 1900 | 4.7          | 85        | 13.5     | 13.5      | 240       | 0.027         | 0.003     | 12.0                        | -1.98E 00 | 0.1           | 47.1       |
| 12/17 1930 | 1.8          | 83        | 13.4     | 12.7      | 280       | 0.040         | -0.014    | -9.8                        | 7.25E-01  | 0.0           | 0.0        |
| 12/17 2000 | 1.0          | 77        | 13.6     | 12.9      | 200       | 0.024         | -0.010    | -3.0                        | 6.83E-01  | 0.0           | 0.0        |
| 12/17 2030 | 1.5          | 75        | 13.8     | 12.7      | 160       | 0.025         | -0.015    | -9.6                        | 1.78E 00  | 0.0           | 0.0        |
| 12/17 2100 | 4.3          | 78        | 13.8     | 13.0      | 140       | 0.126         | -0.023    | -13.4                       | 1.03E-01  | 0.0           | 0.0        |
| 12/17 2130 | 5.2          | 77        | 14.0     | 13.1      | 140       | 0.159         | -0.028    | -18.6                       | 8.84E-02  | 0.0           | 0.0        |
| 12/17 2200 | 6.2          | 80        | 13.9     | 13.1      | 60        | 0.197         | -0.027    | -18.6                       | 5.76E-02  | 0.0           | 0.0        |
| 12/17 2230 | 6.5          | 84        | 13.6     | 13.1      | 200       | 0.213         | -0.017    | -9.7                        | 2.60E-02  | 0.0           | 0.0        |
| 12/17 2300 | 7.0          | 89        | 13.3     | 13.1      | 300       | 0.233         | -0.010    | -4.5                        | 1.02E-02  | 0.0           | 0.0        |
| 12/17 2330 | 8.8          | 92        | 12.5     | 13.1      | 170       | 0.327         | 0.017     | 22.4                        | -2.48E-02 | 0.3           | 9.0        |
| 12/18 0000 | 8.6          | 93        | 11.9     | 13.0      | 170       | 0.306         | 0.036     | 43.8                        | -5.52E-02 | 0.4           | 7.1        |
| 12/18 0030 | 9.4          | 94        | 11.7     | 13.0      | 170       | 0.352         | 0.041     | 49.0                        | -4.68E-02 | 0.4           | 6.5        |
| 12/18 0100 | 11.1         | 97        | 11.6     | 13.0      | 150       | 0.379         | 0.045     | 51.6                        | -4.25E-02 | 0.4           | 5.7        |
| 12/18 0130 | 10.1         | 95        | 11.5     | 12.9      | 150       | 0.343         | 0.046     | 53.0                        | -5.35E-02 | 0.4           | 5.8        |
| 12/18 0200 | 9.2          | 95        | 11.6     | 13.0      | 250       | 0.270         | 0.045     | 52.4                        | -7.97E-02 | 0.5           | 8.8        |
| 12/18 0230 | 8.7          | 95        | 11.6     | 13.4      | 250       | 0.261         | 0.060     | 69.7                        | -1.22E-01 | 0.5           | 8.1        |
| 12/18 0300 | 8.8          | 94        | 11.6     | 13.5      | 250       | 0.267         | 0.064     | 74.4                        | -1.23E-01 | 0.5           | 7.9        |
| 12/18 0330 | 2.2          | 93        | 11.7     | 13.4      | 250       | 0.228         | 0.056     | 65.4                        | -1.49E-01 | 0.5           | 8.8        |
| 12/18 0400 | 1.9          | 92        | 11.9     | 12.8      | 250       | 0.234         | 0.027     | 34.0                        | -7.35E-02 | 0.4           | 11.1       |
| 12/18 0430 | 2.3          | 92        | 12.0     | 12.8      | 250       | 0.250         | 0.025     | 31.3                        | -5.91E-02 | 0.4           | 11.1       |
| 12/18 0500 | 2.7          | 91        | 12.1     | 13.2      | 250       | 0.228         | 0.034     | 42.9                        | -9.74E-02 | 0.4           | 10.3       |
| 12/18 0530 | 2.2          | 89        | 12.4     | 13.1      | 250       | 0.243         | 0.018     | 26.3                        | -5.26E-02 | 0.3           | 12.4       |
| 12/18 0600 | 3.4          | 90        | 12.4     | 12.8      | 250       | 0.250         | 0.012     | 18.6                        | -3.49E-02 | 0.3           | 14.3       |
| 12/18 0630 | 7.0          | 89        | 12.5     | 13.1      | 250       | 0.202         | 0.019     | 27.3                        | -7.86E-02 | 0.3           | 13.1       |
| 12/18 0700 | 7.1          | 87        | 12.5     | 13.1      | 250       | 0.213         | 0.020     | 29.3                        | -7.62E-02 | 0.3           | 12.7       |

## VII. Radiosonde Results

Radiosondes were released from the ship twice in each 24-hour period, generally at 0500 and 1700 PST. Releases were made and interpreted by a Navy radiosonde team. Temperature and humidity were determined by them at standard levels and significant points. Since we are interested in the detailed structure of the boundary layer such a treatment is too coarse. Thus, the original strip chart output and the met team determined calibration points were used to construct finer scale graphs, which are presented in Figures 2.

There are two apparent sources of error in these radiosonde results. The lowest height reading, which is obtained at the ship, is subject to ship's influence and should not be used. Thus, it is not possible to use the radiosonde to determine properties of the surface layer. The radiosonde humidity system was not capable of measuring a relative humidity below 20%.

It is very important in understanding transport and dispersion to determine whether the boundary layer is well mixed. We do this by examining the potential temperature and specific humidity. These parameters will be well mixed, constant with height, in a well-mixed boundary layer. The two parameters have been determined from the radiosonde results and are also shown in Figures 2. Again, note that the lowest point for each sounding is not reliable.

The specific humidity and potential temperature plots have been processed to obtain information needed for boundary layer modeling. The well-mixed values, jump in the values at the

inversion (for a zeroth-order jump) and the gradient above the inversion are all given. These have been obtained by digitizing the plots; the digitizing is shown by the broken lines in the figures. It is readily apparent that the boundary layer was not well mixed, nor its height well defined for many days of these experiments.

Following Pages

Figures 2 - There are two groups of figures

- a) Temperature (solid line) and relative humidity profiles (broken line) determined from each radiosonde release.
- b) Mixed layer parameters: potential temperature and specific humidity. Plots for a given day are on facing pages.

**BLANK PAGE**

REL HUMIDITY (%)



TEMP (CENT)

BLM-3 6 DEC 81 1615



REL HUMIDITY (%)



BLM-3 7 DEC 81 450



REL HUMIDITY (%)



BLM-3 7 DEC 81 1645



REL HUMIDITY (%)





REL HUMIDITY (%)



TEMP (CENT)

BLM-3 8 DEC 81 1445



REL HUMIDITY (%)



TEMP (CENT)

BLM-3 8 DEC 81 1825



REL HUMIDITY (%)



BLM-3 9 DEC 81 435



REL HUMIDITY (%)



TEMP (CENT)

BLM-3 9 DEC 81 1635



REL HUMIDITY (%)



BLM-3 10 DEC 81 435



REL HUMIDITY (%)



BLM-3 10 DEC 81 1640



REL HUMIDITY (%)



BLM-3 11 DEC 81 500



REL HUMIDITY (%)

0 20 40 60 80 100



TEMP (CENT)

BLM-3 11 DEC 81 1445



REL HUMIDITY (%)



TEMP (CENT)

BLM-3 11 DEC 81 1851



REL HUMIDITY (%)



TEMP (CENT)

BLM-3 13 DEC 81 507



REL HUMIDITY (%)



BLM-3 13 DEC 81 1455



REL HUMIDITY (%)



BLM-3 13 DEC 81 1620



REL HUMIDITY (%)



BLM-3 14 DEC 81 2030



REL HUMIDITY (%)



BLM-3 15 DEC 81 1253



REL HUMIDITY (%)



TEMP (CENT)

BLM-3 15 DEC 81 2007



REL HUMIDITY (%)



BLM-3 16 DEC 81 1610



## VII. Acoustic Sounder Results

The acoustic sounder was operated continuously throughout the cruise. Figures 3 are photographs of the strip chart output. As can be seen there was seldom a well defined return that would allow one to easily determine the boundary layer depth. In Table 5 we list the heights of detectable acoustic returns for every half-hour. In many cases the returns were weak, in others there were multiple returns, so that it is not certain if they indicate the height of the base of the inversion.

The difficulty in determining the inversion height is confirmed by the radiosonde results. As discussed in the previous section, there was not a well defined mixed layer for much of the operation.

Table 5 - Heights of acoustic echo return from the acoustic sounder.

| DATE    | TIME | Z <sub>1</sub> | Z <sub>2</sub> | DATE    | TIME | Z <sub>1</sub> | Z <sub>2</sub> |
|---------|------|----------------|----------------|---------|------|----------------|----------------|
| 12-6-81 | 0900 |                |                |         | 1230 | 300            |                |
|         | 0930 |                |                |         | 1300 | 350            |                |
|         | 1000 |                |                |         | 1330 | 290            |                |
|         | 1030 |                |                |         | 1400 | 245            |                |
|         | 1100 |                |                |         | 1430 | 200            |                |
|         | 1130 | 480            |                |         | 1500 | 190            |                |
|         | 1200 | 420            |                |         | 1530 | 160            |                |
|         | 1230 | 360            | 70             |         | 1600 |                |                |
|         | 1300 | 350            | 90             |         | 1630 |                |                |
|         | 1330 | 320            | 100            |         | 1700 |                |                |
|         | 1400 |                | 100            |         | 1730 |                |                |
|         | 1430 |                | 110            |         | 1800 |                |                |
|         | 1500 |                | 110            |         | 1830 | 170            |                |
|         | 1530 |                | 100            |         | 1900 | 180            |                |
|         | 1600 |                | 120            |         | 1930 | 160            |                |
|         | 1630 |                | 130            |         | 2000 | 150            |                |
|         | 1700 | 360            |                |         | 2030 | 170            |                |
|         | 1730 | 320            |                |         | 2100 | 160            |                |
|         | 1800 | 330            |                |         | 2130 | 170            |                |
|         | 1830 | 360            |                |         | 2200 | 190            |                |
|         | 1900 | 380            |                |         | 2230 | 190            |                |
|         | 1930 | 350            |                |         | 2300 | 250            |                |
|         | 2000 | 240            |                |         | 2330 |                |                |
|         | 2030 | 180            |                |         | 2400 |                |                |
|         | 2100 | 140            |                | 12-8-81 | 0030 | 120            |                |
|         | 2130 | 250            |                |         | 0100 | 130            | 230            |
|         | 2200 | 220            |                |         | 0130 | 110            | 170            |
|         | 2230 | 180            |                |         | 0200 | 130            |                |
|         | 2300 | 150            |                |         | 0230 | 160            |                |
|         | 2330 | 140            |                |         | 0300 | 180            |                |
| 12-7-81 | 0000 | 160            |                |         | 0330 | 150            |                |
|         | 0030 | 160            |                |         | 0400 | 130            |                |
|         | 0200 | 200            |                |         | 0430 | 150            |                |
|         | 0230 | 230            |                |         | 0500 | 160            |                |
|         | 0300 | 170            |                |         | 0530 | 150            |                |
|         | 0330 | 220            |                |         | 0600 | 120            |                |
|         | 0400 | 180            |                |         | 0630 | 150            |                |
|         | 0430 | 140            |                |         | 0700 | 130            |                |
|         | 0500 |                |                |         | 0730 |                |                |
|         | 0530 | 260            |                |         | 0800 |                |                |
|         | 0600 | 220            |                |         | 0830 |                |                |
|         | 0630 | 240            |                |         | 0900 |                |                |
|         | 0700 | 210            |                |         | 0930 | 340            |                |
|         | 0730 | 170            |                |         | 1000 | 350            |                |
|         | 0800 | 160            |                |         | 1030 | 330            |                |
|         | 0830 | 210            |                |         | 1100 |                |                |
|         | 0900 | 250            |                |         | 1130 |                |                |
|         | 0930 | 280            |                |         | 1200 | 300            |                |
|         | 1000 | 240            |                |         | 1230 | 260            |                |
|         | 1030 | 200            |                |         | 1300 | 210            |                |
|         | 1100 |                |                |         | 1330 | 220            |                |
|         | 1130 | 225            |                |         | 1400 | 220            |                |
|         | 1200 | 240            |                |         | 1430 | 230            |                |

| DATE    | TIME | Z <sub>1</sub> | Z <sub>2</sub> | DATE     | TIME | Z <sub>1</sub> | Z <sub>2</sub> |
|---------|------|----------------|----------------|----------|------|----------------|----------------|
| 12-8-81 | 1500 | 250            |                |          | 1730 | 230            | 360            |
|         | 1530 | 210            |                |          | 1800 | 260            | 360            |
|         | 1600 | 200            |                |          | 1830 | 270            |                |
|         | 1630 | 210            |                |          | 1900 | 250            | 80             |
|         | 1700 | 170            | 300            |          | 1930 | 270            | 200            |
|         | 1730 | 160            | 320            |          | 2000 | 340            | 160            |
|         | 1800 | 150            | 280            |          | 2030 | 300            | 140            |
|         | 1830 | 140            | 290            |          | 2100 | 340            | 580            |
|         | 1900 | 140            | 280            |          | 2130 | 240            | 570            |
|         | 1930 | 310            |                |          | 2200 | 280            | 520            |
|         | 2000 | 290            |                |          | 2230 | 290            | 450            |
|         | 2030 |                |                |          | 2300 | 300            | 200            |
|         | 2100 |                |                |          | 2330 | 310            | 170            |
|         | 2130 |                |                |          | 2400 | 250            | 130            |
|         | 2200 | 80             |                | 12-10-81 | 0030 |                | 140            |
|         | 2230 | 125            |                |          | 0100 |                | 130            |
|         | 2300 | 110            | 260            |          | 0130 | 240            |                |
|         | 2330 | 120            | 280            |          | 0200 | 340            |                |
|         | 2400 | 200            | 350            |          | 0230 | 290            |                |
| 12-9-81 | 0030 | 290            |                |          | 0300 | 270            |                |
|         | 0100 | 280            |                |          | 0330 | 190            |                |
|         | 0130 | 240            |                |          | 0400 |                |                |
|         | 0200 | 290            |                |          | 0430 | 340            |                |
|         | 0230 | 270            |                |          | 0500 | 250            |                |
|         | 0300 | 280            |                |          | 0530 | 190            |                |
|         | 0330 | 310            |                |          | 0600 | 150            |                |
|         | 0400 | 290            |                |          | 0630 | 110            |                |
|         | 0430 | 250            |                |          | 0700 | 120            |                |
|         | 0500 | 200            |                |          | 0730 | 150            |                |
|         | 0530 | 220            |                |          | 0800 | 210            |                |
|         | 0600 | 240            |                |          | 0830 | 200            |                |
|         | 0630 | 310            |                |          | 0900 |                |                |
|         | 0700 | 350            |                |          | 0930 |                |                |
|         | 0730 | 330            |                |          | 1000 |                |                |
|         | 0800 | 320            |                |          | 1030 |                |                |
|         | 0830 | 310            |                |          | 1100 |                |                |
|         | 0900 | 330            |                |          | 1130 |                |                |
|         | 0930 | 360            |                |          | 1200 | 190            |                |
|         | 1000 | 410            |                |          | 1230 | 240            |                |
|         | 1030 | 540            |                |          | 1300 | 230            |                |
|         | 1100 | 600            |                |          | 1330 | 100            |                |
|         | 1130 | 540            |                |          | 1400 |                |                |
|         | 1200 | 640            |                |          | 1430 |                |                |
|         | 1230 | 660            |                |          | 1500 |                |                |
|         | 1300 | 680            |                |          | 1530 |                |                |
|         | 1330 | 500            | 680            |          | 1600 |                |                |
|         | 1400 | 430            | 720            |          | 1630 |                |                |
|         | 1430 | 440            | 700            |          | 1700 |                |                |
|         | 1500 | 430            | 780            |          | 1730 |                |                |
|         | 1530 | 425            | 750            |          | 1800 |                |                |
|         | 1600 | 380            | 500            |          | 1830 | 410            |                |
|         | 1630 | 350            | 440            |          | 1900 | 420            |                |
|         | 1700 | 310            | 460            |          | 1930 | 440            |                |

| DATE     | TIME | Z <sub>1</sub> | Z <sub>2</sub> | DATE     | TIME | Z <sub>1</sub> | Z <sub>2</sub> |
|----------|------|----------------|----------------|----------|------|----------------|----------------|
| 12-10-81 | 2000 | 490            |                |          | 2230 | 400            |                |
|          | 2030 | 510            |                |          | 2300 | 380            |                |
|          | 2100 | 490            |                |          | 2330 | 320            |                |
|          | 2130 | 460            |                |          | 2400 | 340            |                |
|          | 2200 | 430            |                | 12-12-81 | 0030 | 420            | 310            |
|          | 2230 | 440            |                |          | 0100 | 430            | 320            |
|          | 2300 | 380            |                |          | 0130 | 450            | 330            |
|          | 2330 | 390            |                |          | 0200 | 440            | 320            |
|          | 2400 | 340            |                |          | 0230 | 440            | 280            |
| 12-11-81 | 0030 |                |                |          | 0300 | 450            | 260            |
|          | 0100 |                |                |          | 0330 | 430            | 260            |
|          | 0130 |                |                |          | 0400 | 400            | 260            |
|          | 0200 |                |                |          | 0430 | 370            |                |
|          | 0230 |                |                |          | 0500 | 350            |                |
|          | 0300 |                |                |          | 0530 | 330            |                |
|          | 0330 |                |                |          | 0600 | 300            |                |
|          | 0400 |                |                |          | 0630 | 310            |                |
|          | 0430 | 510            |                |          | 0700 | 320            |                |
|          | 0500 | 460            |                |          | 0730 | 280            |                |
|          | 0530 | 460            |                |          | 0800 | 250            |                |
|          | 0600 | 470            |                |          | 0830 | 230            |                |
|          | 0630 | 490            |                |          | 0900 |                |                |
|          | 0700 | 480            |                |          | 0930 | 100            |                |
|          | 0730 | 460            |                |          | 1000 | 120            |                |
|          | 0800 | 480            |                |          | 1030 | 140            |                |
|          | 0830 | 420            |                |          | 1100 | 100            |                |
|          | 0900 | 360            |                |          | 1130 |                |                |
|          | 0930 | 420            |                |          | 1200 | 450            |                |
|          | 1000 | 430            |                |          | 1230 | 200            | 700            |
|          | 1030 | 370            |                |          | 1300 | 140            | 450            |
|          | 1100 | 350            |                |          | 1330 | 200            | 340            |
|          | 1130 | 340            |                |          | 1400 |                |                |
|          | 1200 |                |                |          | 1430 |                |                |
|          | 1230 |                |                |          | 1500 |                |                |
|          | 1300 |                |                |          | 1530 |                |                |
|          | 1330 | 100            |                |          | 1600 |                |                |
|          | 1400 | 160            |                |          | 1630 |                |                |
|          | 1430 | 140            |                |          | 1700 |                |                |
|          | 1500 |                |                |          | 1730 |                |                |
|          | 1530 |                |                |          | 1800 |                |                |
|          | 1600 |                |                |          | 1830 |                |                |
|          | 1630 |                |                |          | 1900 |                |                |
|          | 1700 |                |                |          | 1930 |                |                |
|          | 1730 |                |                |          | 2000 | 420            |                |
|          | 1800 |                |                |          | 2030 | 500            |                |
|          | 1830 | 180            |                |          | 2100 |                |                |
|          | 1900 |                |                |          | 2130 |                |                |
|          | 1930 | 200            |                |          | 2200 | 700            |                |
|          | 2000 | 230            |                |          | 2230 | 650            |                |
|          | 2030 | 210            |                |          | 2300 | 600            |                |
|          | 2100 | 220            |                |          | 2330 | 580            |                |
|          | 2130 | 260            |                |          | 2400 | 580            |                |
|          | 2200 | 350            |                | 12-13-81 | 0030 | 580            |                |

| DATE     | TIME | $Z_1$ | $Z_2$ | DATE | TIME     | $Z_1$ | $Z_2$ |
|----------|------|-------|-------|------|----------|-------|-------|
| 12-13-81 | 0100 | 580   |       |      | 0330     | 200   |       |
|          | 0130 | 580   |       |      | 0400     | 220   | 400   |
|          | 0200 | 540   |       |      | 0430     | 180   |       |
|          | 0230 | 460   |       |      | 0500     | 160   | 250   |
|          | 0300 | 450   |       |      | 0530     |       |       |
|          | 0330 | 580   |       |      | 0600     | 140   |       |
|          | 0400 | 580   |       |      | 0630     |       |       |
|          | 0430 | 540   |       |      | 0700     |       |       |
|          | 0500 | 480   |       |      | 0730     |       |       |
|          | 0530 | 420   |       |      | 0800     |       |       |
|          | 0600 | 430   |       |      | 0830     | 300   |       |
|          | 0630 | 420   |       |      | 0900     |       |       |
|          | 0700 | 390   |       |      | 0930     | 400   |       |
|          | 0730 | 380   |       |      | 1000     |       |       |
|          | 0800 | 400   |       |      | 1030     | 220   |       |
|          | 0830 | 380   |       |      | 1100     | 240   |       |
|          | 0900 | 350   |       |      | 1130     | 300   |       |
|          | 0930 | 320   |       |      | 1200     |       |       |
|          | 1000 | 280   |       |      | 1230     |       |       |
|          | 1030 | 320   | 160   |      | 1300     |       |       |
|          | 1100 | 330   | 130   |      | 1330     |       |       |
|          | 1130 | 300   | 100   |      | 1400     |       |       |
|          | 1200 | 260   | 120   |      | 1430     |       |       |
|          | 1230 | 250   | 160   |      | 1500     |       |       |
|          | 1300 | 200   | 160   |      | 1530     |       |       |
|          | 1330 | 250   | 180   |      | 1600     | 200   |       |
|          | 1400 | 280   | 120   |      | 1630     | 200   |       |
|          | 1430 | 240   | 60    |      | 1700     |       |       |
|          | 1500 | 150   |       |      | 1730     | 200   |       |
|          | 1530 | 120   |       |      | 1800     |       |       |
|          | 1600 | 130   |       |      | 1830     | 230   |       |
|          | 1630 |       |       |      | 1900     | 250   |       |
|          | 1700 | 280   |       |      | 1930     | 320   | 210   |
|          | 1730 |       |       |      | 2000     | 340   |       |
|          | 1800 | 400   |       |      | 2030     | 380   |       |
|          | 1830 |       |       |      | 2100     | 320   |       |
|          | 1900 | 340   |       |      | 2130     | 280   |       |
|          | 1930 | 280   |       |      | 2200     | 320   | 100   |
|          | 2000 | 420   |       |      | 2230     |       | 140   |
|          | 2030 |       |       |      | 2300     | 200   |       |
|          | 2100 |       |       |      | 2330     | 320   |       |
|          | 2130 |       |       |      | 2400     | 340   |       |
|          | 2200 | 240   |       |      | 12-15-81 | 0030  | 310   |
|          | 2230 | 160   |       |      |          | 0100  |       |
|          | 2300 | 140   |       |      |          | 0130  | 330   |
|          | 2330 | 100   |       |      |          | 0200  | 300   |
|          | 2400 |       |       |      |          | 0230  | 240   |
| 12-14-81 | 0030 | 210   |       |      |          | 0300  | 280   |
|          | 0100 | 170   |       |      |          | 0330  | 200   |
|          | 0130 | 140   |       |      |          | 0400  | 300   |
|          | 0200 | 240   |       |      |          | 0430  | 140   |
|          | 0230 |       |       |      |          | 0500  | 220   |
|          | 0300 | 250   |       |      |          | 0530  | 160   |

| DATE     | TIME | $Z_1$ | $Z_2$ | DATE     | TIME | $Z_1$ | $Z_2$ |
|----------|------|-------|-------|----------|------|-------|-------|
| 12-15-81 | 0600 | 140   | 500   |          | 0830 | 240   |       |
|          | 0630 | 120   | 400   |          | 0900 |       |       |
|          | 0700 |       |       |          | 0930 |       |       |
|          | 0730 |       |       |          | 1000 |       |       |
|          | 0800 |       |       |          | 1030 |       |       |
|          | 0830 |       | 90    |          | 1100 |       |       |
|          | 0900 |       | 120   |          | 1130 | 80    |       |
|          | 0930 |       | 160   |          | 1200 | 170   |       |
|          | 1000 | 300   | 140   |          | 1230 | 270   |       |
|          | 1030 | 340   | 100   |          | 1300 |       |       |
|          | 1100 | 360   | 150   |          | 1330 |       |       |
|          | 1130 | 390   | 200   |          | 1400 | 110   |       |
|          | 1200 |       |       |          | 1430 | 150   |       |
|          | 1230 |       |       |          | 1500 | 160   |       |
|          | 1300 |       |       |          | 1530 |       |       |
|          | 1330 |       |       |          | 1600 |       |       |
|          | 1400 | 400   |       |          | 1630 |       |       |
|          | 1430 |       |       |          | 1700 | 140   |       |
|          | 1500 |       |       |          | 1730 | 130   |       |
|          | 1530 |       |       |          | 1800 | 220   |       |
|          | 1600 | 380   |       |          | 1830 |       |       |
|          | 1630 |       |       |          | 1900 | 160   |       |
|          | 1700 |       |       |          | 1930 | 100   |       |
|          | 1730 | 220   |       |          | 2000 |       |       |
|          | 1800 |       |       |          | 2030 | 140   |       |
|          | 1830 |       |       |          | 2100 |       |       |
|          | 1900 | 320   |       |          | 2130 |       |       |
|          | 1930 | 310   |       |          | 2200 | 250   | 130   |
|          | 2000 | 320   |       |          | 2230 | 270   |       |
|          | 2030 |       |       |          | 2300 | 290   |       |
|          | 2100 | 210   |       |          | 2330 |       |       |
|          | 2130 |       |       |          | 2400 |       |       |
|          | 2200 |       |       | 12-17-81 | 0030 |       |       |
|          | 2230 |       |       |          | 0100 |       |       |
|          | 2300 | 250   |       |          | 0130 |       |       |
|          | 2330 |       |       |          | 0200 | 100   |       |
|          | 2400 | 140   |       |          | 0230 | 120   |       |
| 12-16-81 | 0030 |       |       |          | 0300 | 100   | 320   |
|          | 0100 |       |       |          | 0330 |       | 340   |
|          | 0130 |       |       |          | 0400 |       |       |
|          | 0200 | 150   |       |          | 0430 | 140   | 280   |
|          | 0230 |       |       |          | 0500 |       |       |
|          | 0300 |       |       |          | 0530 |       | 380   |
|          | 0330 | 170   |       |          | 0600 | 100   | 270   |
|          | 0400 |       |       |          | 0630 | 120   | 300   |
|          | 0430 | 160   |       |          | 0700 |       |       |
|          | 0500 |       |       |          | 0730 |       |       |
|          | 0530 | 230   |       |          | 0800 |       |       |
|          | 0600 |       |       |          | 0830 |       |       |
|          | 0630 |       |       |          | 0900 | 180   |       |
|          | 0700 |       |       |          | 0930 |       |       |
|          | 0730 |       |       |          | 1000 |       |       |
|          | 0800 | 240   |       |          | 1030 |       |       |



**Following Pages**

**Figures 3 - Acoustic sounder strip charts.**

**The sounder was located on the RV/Acania.**

12/8



12/7



12/6





12/14



12/13



12/12



AD-A115 428      NAVAL POSTGRADUATE SCHOOL, MONTEREY CA      F/8 5/2  
OFFSHORE TRANSPORT AND DISPERSION IN THE CALIFORNIA COASTAL REG—ETC(U)  
MAY 28 1982 E SCHACHER, D E SPIEL, C A LEONARD

UNCLASSIFIED

NPS61-82-004

ML





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A



## DISTRIBUTION LIST

|                                                                                                                                                  | No. of Copies |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. Defense Technical Information Center<br>Cameron Station<br>Alexandria, Virginia 22314                                                         | 2             |
| 2. Library, Code 0142<br>Naval Postgraduate School<br>Monterey, California 93940                                                                 | 2             |
| 3. Dean of Research, Code 012<br>Naval Postgraduate School<br>Monterey, California 93940                                                         | 1             |
| 4. Dr. C.W. Fairall<br>BDM Corporation, 1340 Munras St.<br>Monterey, California 93940                                                            | 4             |
| 5. Professor J. Dyer, Code 61Dy<br>Naval Postgraduate School<br>Monterey, California 93940                                                       | 1             |
| 6. Assoc. Professor K.L. Davidson, Code 63Ds<br>Naval Postgraduate School<br>Monterey, California 93940                                          | 2             |
| 7. Professor G.E. Schacher, Code 61Sq<br>Naval Postgraduate School<br>Monterey, California 93940                                                 | 12            |
| 8. Dr. Warren Johnson<br>SRI International<br>333 Ravenswood Ave.<br>Menlo Park, CA 94025                                                        | 2             |
| 9. Mr. Thomas Rappolt<br>Energy Resources Co., Inc.<br>3344 N. Torrey Pines Ct.<br>La Jolla, CA 92037                                            | 1             |
| 10. Mr. Marty Golden<br>Pacific Outer Continental Shelf Office<br>Bureau of Land Management<br>1340 W. 6th St., Rm. 200<br>Los Angeles, CA 90017 | 2             |

**DATI  
FILME**