Phase lag of an oscillator, scattered wave always in phase with oscillator;

wavelength = λ frequency = ν = c/λ frequency = ω = $2\pi\nu$ energy = $h\nu$ = hc/λ

Refractive index "n" : a measure of the interaction of light with matter : relates a bulk medium property to individual oscillators

$$n = 1 + \frac{Nq^2}{2\varepsilon m(\omega_0^2 - \omega^2)}$$

$$n = 1 + f\left(\frac{1}{\omega_0^2 - \omega^2}\right)$$

N = # charges / unit volume

q = charge of an electron

m = mass of electron

ε = fudge factor to get magnitude and dimensions correct

 ω = frequency of driving wave

 ω_{Δ} = natural frequency of oscillator

fix up equation to avoid $\omega_{_{O}}$ disaster and allow for different types of oscillators

$$n = 1 + \frac{q^2}{2\varepsilon m} \sum_{k} \frac{N_k}{(\omega_k^2 - \omega^2 + i\gamma_k \omega)}$$

k different types of oscillator $i\gamma_k$ = damping factor , allows for real but finite absorption of energy

see: Feynman, vol 1, 31.3,31.4

absorption