線形代数学・同演習 B

演習問題 13

$$\begin{array}{lll} 1. & (1) \ P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}. \\ (2) \ P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}. \\ (3) \ P = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix}. \\ (4) \ P = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}. \\ (5) \ P = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}. \\ (7) \ P = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \\ (2) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} -2 & 0 & \sqrt{2} \\ 1 & -\sqrt{3} & \sqrt{2} \\ 1 & \sqrt{3} & \sqrt{2} \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ (3) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & -\sqrt{3} & \sqrt{2} \\ -2 & 0 & \sqrt{2} \\ 1 & \sqrt{3} & \sqrt{2} \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}. \\ (4) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} -2 & \sqrt{2} & 0 \\ -1 & -\sqrt{2} & \sqrt{3} \\ 1 & \sqrt{2} & \sqrt{3} \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 7 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ (5) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{2} & 1 & -\sqrt{3} \\ -\sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & 2 & 0 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ (6) \ P = \frac{1}{\sqrt{30}} \begin{pmatrix} -2\sqrt{5} & \sqrt{6} & 2 \\ \sqrt{5} & 0 & 5 \\ \sqrt{5} & 2\sqrt{6} & -1 \end{pmatrix} \text{ ICLUP} P^{-1}AP = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \end{array}$$

- 3* (1) $A=(a'_{ij}),$ $a'_{jj}=a_{jj}$ $(j=1,\ldots,n),$ $a'_{ij}=(a_{ij}+a_{ji})/2$ $(i\neq j)$ とすれば A は 対称行列であって $f(x)={}^txAx$ となる.(2) $f(x)={}^txAx$ において y=Sx を代入 すれば $f(y)={}^t(Sy)ASy={}^ty{}^tSASy$ となることより.(3) 対称行列は直交行列により対角化できることと((2) より.
- 4.* $A=\left(egin{array}{c} a&b\\b&c \end{array}
 ight)$ とおく.(1) A は対称行列なのである直交行列 P により $A=P\left(egin{array}{c} \lambda&0\\0&\mu \end{array}
 ight)$ tP とかける.ここで λ,μ は A の固有値である.ここで $\lambda,\mu>0$ であることと $\det A=\lambda\mu$ であることに注意.さて

$$ax^{2} + 2by + cy^{2} = (x, y)A\begin{pmatrix} x \\ y \end{pmatrix} = {}^{t}[{}^{t}P\begin{pmatrix} x \\ y \end{pmatrix}]\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}[{}^{t}P\begin{pmatrix} x \\ y \end{pmatrix}]$$

なので $\binom{u}{v}={}^t\!P\binom{x}{y}$ という変数変換を考える. ${}^t\!P$ は正則な行列であり (x,y) に関する積分領域は \mathbb{R}^2 全体なので,(u,v) に関する積分領域も \mathbb{R}^2 全体である.また変数変換に伴う Jacobian は 1 であるので,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2 + 2bxy + cy^2)} dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(\lambda u^2 + \mu v^2)} du dv$$
$$= \int_{-\infty}^{\infty} e^{-\lambda u^2} du \int_{-\infty}^{\infty} e^{-\mu v^2} dv$$
$$= \sqrt{\frac{\pi}{\lambda}} \cdot \sqrt{\frac{\pi}{\mu}} = \frac{\pi}{\sqrt{\det A}}$$

(2) $A=L^tL$ とおけば,1 月 24 日の演習問題 5 より $L=\begin{pmatrix} \sqrt{a} & 0 \\ b/\sqrt{a} & \sqrt{(\det A)/a} \end{pmatrix}$ である.さて

$$ax^{2} + 2by + cy^{2} = (x, y)A\begin{pmatrix} x \\ y \end{pmatrix} = {}^{t}\begin{bmatrix} {}^{t}L\begin{pmatrix} x \\ y \end{pmatrix}\end{bmatrix} {}^{t}L\begin{pmatrix} x \\ y \end{pmatrix}$$

なので $\binom{u}{v}={}^tL\binom{x}{y}$ という変数変換を考える. tL は正則な行列であり (x,y) に関する積分領域は \mathbb{R}^2 全体なので,(u,v) に関する積分領域も \mathbb{R}^2 全体である.また変数変換に伴う Jacobian は 1 月 24 化の演習問題 8 により $\det L^{-1}=1/\sqrt{\det A}$ であることがわかっている.よって

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2 + 2bxy + cy^2)} dx dy = \frac{1}{\sqrt{\det A}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(u^2 + v^2)} du dv = \frac{\pi}{\sqrt{\det A}}.$$

5.* (1)
$$\begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$$
 (2) $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ (3) $\begin{pmatrix} \cosh x & \sinh x \\ \sinh x & \cosh x \end{pmatrix}$