# Методы оптимизации. Семинар 2. Выпуклые множества.

#### Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

12 сентября 2016 г.

### Напоминание

- Предмет и задача курса
- Общая постановка задачи математического программирования
- Примеры задач оптимизации:
  - линейное программирование
  - метод наименьших квадратов
  - выпуклая оптимизация
- Чем хороши выпуклые задачи?

### Аффинное множество

#### Аффинное множество

Множество A называется аффинным, если для любых  $x_1$ ,  $x_2 \in A$  и  $\theta \in \mathbb{R}$  точка  $\theta x_1 + (1-\theta)x_2 \in A$ .

Примеры:  $\mathbb{R}^n$ , гиперплоскость, точка.

#### Аффинная комбинация точек

Пусть  $x_1, \dots, x_k \in G$ , тогда точка  $\theta_1 x_1 + \dots + \theta_k x_k$  при  $\sum_{i=1}^k \theta_i = 1$  называется аффинной комбинацией точек  $x_1, \dots, x_k$ .

#### Аффинная оболочка точек

Множество  $\left\{\sum\limits_{i=1}^k \theta_i x_i \mid x_i \in G, \sum\limits_{i=1}^k \theta_i = 1\right\}$  называется аффинной оболочкой множества G и обозначается  $\operatorname{aff}(G)$ .

## Утверждения

#### Утверждение 1

Множество является аффинным тогда и только тогда, когда в него входят все аффинные комбинации его точек.

### Утверждение 2

Множество является аффинным тогда и только тогда, когда его можно представить в виде  $\{x|Ax=b\}$ .

### Выпуклое множество

#### Выпуклое множество

Множество C называется выпуклым, если

$$\forall x_1, x_2 \in C, \theta \in [0,1] \rightarrow \theta x_1 + (1-\theta)x_2 \in C.$$

 $\emptyset$  и  $\{x_0\}$  также считаются выпуклыми.

Примеры:  $\mathbb{R}^n$ , афинное множество, луч, отрезок.

#### Выпуклая комбинация точек

Пусть  $x_1,\dots,x_k\in G$ , тогда точка  $\theta_1x_1+\dots+\theta_kx_k$  при  $\sum_{i=1}^k \theta_i=1,\; \theta_i\geq 0$  называется выпуклой комбинацией точек

#### Выпуклая оболочка точек

 $X_1, \ldots, X_k$ 

Множество  $\left\{\sum\limits_{i=1}^k \theta_i x_i \mid x_i \in G, \sum\limits_{i=1}^k \theta_i = 1, \theta_i \geq 0\right\}$  называется выпуклой оболочкой множества G и обозначается  $\operatorname{conv}(G)$ .

## Операции, сохраняющие выпуклость

- Пересечение любого (конечного или бесконечного)
  числа выпуклых множеств выпуклое множество
- Образ аффинного отображения выпуклого множества — выпуклое множество
- Линейная комбинация выпуклых множеств выпуклое множество
- Декартово произведение выпуклых множеств выпуклое множество

### Примеры

Проверьте на аффинность и выпуклость следующие множества:

- Полупространство:  $\{\mathbf{x}|\mathbf{a}^{\mathsf{T}}\mathbf{x} \leq c\}$
- Многоугольник:  $\{x | Ax \leq b, Cx = 0\}$
- ullet Шар по норме в  $\mathbb{R}^n$ :  $B(r,x_c) = \{x \mid \|x x_c\| \leq r\}$
- Элипсоид:  $\mathcal{E}(x_c, \mathsf{P}, r) = \{x \mid (x x_c)^\mathsf{T} \mathsf{P}^{-1} (x x_c) \le r\}$
- Множество симметричных положительно-определённых матриц:  $\mathbf{S}_{+}^{n} = \{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X}^{\mathsf{T}} = \mathbf{X}, \ \mathbf{X} \succeq 0\}$
- $\{X \in \mathbb{R}^{n \times n} \mid \operatorname{Tr}(X) = const\}$
- Гиперболическое множество:  $\{\mathbf{x} \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \geq 1\}$



## Конус

#### Конус (выпуклый)

Множество C называется конусом (выпуклым конусом), если  $\forall x \in C, \theta \geq 0 \to \theta x \in C$   $(\forall x_1, x_2 \in C, \theta_1, \theta_2 \geq 0 \to \theta_1 x_1 + \theta_2 x_2 \in C)$ 

Примеры:  $\mathbb{R}^n$ , афинное множество, проходящее через 0, луч.

#### Коническая (неотрицательная) комбинация точек

Пусть  $x_1,\ldots,x_k\in G$ , тогда точка  $\theta_1x_1+\ldots+\theta_kx_k$  при  $\theta_i\geq 0$  называется конической (неотрицательной) комбинацией точек  $x_1,\ldots,x_k$ .

#### Коническая оболочка точек

Множество  $\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in G, \theta_{i} \geq 0\right\}$  называется конической оболочкой множества G и обозначается cone(G).

## Примеры конусов

- S<sub>+</sub>
- Нормальный конус:  $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\| \leq t\}$  Для  $\ell_2$ -нормы называется конусом второго порядка или Лоренцевым конусом
- Конкретные примеры с числами

### Резюме

- Аффинное множество
- Выпуклое множество
- Конус
- Методы проверки свойств конкретных множеств