Tangent Lines and Tangent Circles

Tangent Line: a line in the plane of the circle that intersects the circle at exactly one point

Point of Tangency: the point of intersection

Tangent Circles: two circles whose intersection is exactly one point

Common Tangent: a line which is tangent to two circles

Common Internal Tangent: a common tangent which intersects the segment joining the centers of two circles

Common External Tangent: a common tangent which does not intersect the segment joining the centers of two circles

Internally Tangent Circles: circles that are coplanar, share a common point of tangency, and with centers that lie on the same side of their common tangent

Externally Tangent Circles: circles that are coplanar, share a common point of tangency, and with centers that lie on the opposite sides of their common tangent

Tangent Line Theorem: If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Converse of the Tangent Line Theorem: In a plane, if a line is perpendicular to a radius of a circle at the endpoint, then it is drawn to the point of tangency.

Tangent Segments Theorem: If two tangent segments are drawn to a circle from an external point, then

- a. the two tangent segments are congruent, and
- b. the angles between the tangent segments and the line joining the external point to the center of the circle are congruent

Tangent Circles Theorem: If two circles are tangent internally or externally, then their line of centers pass through the point of contact.

Practice Exercises

A. Give the appropriate term for each figure below.

Tangent Lines and Tangent Circles

Tangent Line: a line in the plane of the circle that intersects the circle at exactly one point

Point of Tangency: the point of intersection

Tangent Circles: two circles whose intersection is exactly one point

Common Tangent: a line which is tangent to two circles

Common Internal Tangent: a common tangent which intersects the segment joining the centers of two circles

Common External Tangent: a common tangent which does not intersect the segment joining the centers of two circles

Internally Tangent Circles: circles that are coplanar, share a common point of tangency, and with centers that lie on the same side of their common tangent

Externally Tangent Circles: circles that are coplanar, share a common point of tangency, and with centers that lie on the opposite sides of their common tangent

Tangent Line Theorem: If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Converse of the Tangent Line Theorem: In a plane, if a line is perpendicular to a radius of a circle at the endpoint, then it is drawn to the point of tangency.

Tangent Segments Theorem: If two tangent segments are drawn to a circle from an external point, then

- a. the two tangent segments are congruent, and
- b. the angles between the tangent segments and the line joining the external point to the center of the circle are congruent

Tangent Circles Theorem: If two circles are tangent internally or externally, then their line of centers pass through the point of contact.

Practice Exercises

A. Give the appropriate term for each figure below.

B. In $\odot O$, \overline{CT} , \overline{ET} are tangent segments and m is tangent to $\odot O$ at S.

- m∠OCT = ____.
- 2. *m∠OSI* = ____.
- 3. If $\overline{SN} = 24$ units, then $\overline{OE} = \underline{}$
- 4. If $\overline{OS} = 5$ units and $\overline{SI} = 12$ units, then $\overline{OI} = \underline{\hspace{1cm}}$.
- 5. If $\overline{CT} = 15$ units, then $\overline{ET} = \underline{}$
- 6. If $\overline{OC} = 8$ units and $\overline{ET} = 15$ units, then $\overline{OT} = \underline{\hspace{1cm}}$.
- 7. If $\overline{OE} = 11$ units, then $\overline{NS} = \underline{\hspace{1cm}}$
- 8. If $\overline{OS} = 7$ units and $\overline{OT} = 25$ units, then $\overline{CT} = \underline{\hspace{1cm}}$.

Problem Set

Use the given figures to find the values of x and y.

B. In $\odot O$, \overline{CT} , \overline{ET} are tangent segments and m is tangent to $\odot O$ at S.

- 1. *m∠OCT* = ____
- m∠OSI = ____
- 3. If $\overline{SN} = 24$ units, then $\overline{OE} = \underline{}$
- 4. If $\overline{OS} = 5$ units and $\overline{SI} = 12$ units, then $\overline{OI} = \underline{\hspace{1cm}}$.
- 5. If $\overline{CT} = 15$ units, then $\overline{ET} = \underline{}$
- 6. If $\overline{OC} = 8$ units and $\overline{ET} = 15$ units, then $\overline{OT} = \underline{\qquad}$
- 7. If $\overline{OE} = 11$ units, then $\overline{NS} =$
- 8. If $\overline{OS} = 7$ units and $\overline{OT} = 25$ units, then $\overline{CT} =$

Problem Set

Use the given figures to find the values of x and y.

