Marches aléatoires

On considère un point mobile qui se déplace sur une droite. Il part du point d'abscisse 0 en t=0 et on choisit à chaque instant, t=1,2,3,... de se déplacer de +1 (vers la droite) avec une probabilité égale à p ou de -1 (vers la gauche) avec la probabilité q=1-p. On suppose que le choix d'aller vers la droite ou vers la gauche à l'instant t = n est indépendant de tous les choix précédents.

On modélise cette marche aléatoire par une suite de variables aléatoires (X_n) définies sur un espace probabilisé (Ω, \mathcal{A}, P) . la variable aléatoire X_n est égale à la position du mobile à l'instant t=n. Lorsque $p=\frac{1}{2}$ la marche aléatoire est dite symétrique.

I. Loi de X_n

- 1. On écrit $X_n = Z_1 + ... + Z_n$, où chaque Z_i représente le saut fait à l'instant i. Préciser la loi de la variable aléatoire Z_n . En déduire que $\frac{1+Z_n}{2}$ suit une loi de Bernoulli dont on précisera le paramètre.
- 2. (a) Préciser la loi de $\frac{n+X_n}{2}$.
 - (b) En déduire l'ensemble $X_n(\Omega)$ et la loi de X_n .
 - (c) Calculer l'espérance et la variance de X_n
- 3. Calculer selon n et en fonction de p, la probabilité, notée π_n dans tout le problème, pour que X_n soit égale à zéro. On distinguera selon que n est pair ou non.
- 4. Donner un équivalent de π_n quand n tend vers l'infini.

II. Etude du retour en zéro

On note S la variable aléatoire égale au premier retour en zéro.

Autrement dit l'événement "S = n" est $X_n = 0, X_{n-1} \neq 0, ..., X_1 \neq 0$.

On pose
$$\Pi(s)=\sum_0^\infty\pi_ns^n$$
 et $F(s)=\sum_1^\infty P(S=n)s^n$ (F est donc la fonction génératrice de S)

Ce sont deux séries entières de rayon au moins égal à 1.

- (a) Soit A_1 l'événement $\exists n > 0, X_n = 0$. Etablir l'égalité $F(1) = \mathbb{P}(A_1)$
 - (b) En déduire que la série F est normalement convergente sur le segment [0,1]
- (a) Préciser le rayon de convergence de la série $\Pi(s)$ en fonction de p.
 - (b) En utilisant les résultats classiques sur les séries entières, vérifier qu'on a

$$\Pi(s) = (1 - 4pqs^2)^{\frac{-1}{2}}$$

pour tout $s \in [0,1[$

- (c) En étudiant les variation de l'application $p \mapsto p(1-p)$ préciser pour quelles valeurs de p l'égalité de la question précédente reste vraie lorsque s = 1.
- 3. Montrer pour tout $s \in [0, 1]$ on a l'égalité

$$\Pi(s) = 1 + \Pi(s)F(s)$$

1

indication : établir
$$\pi_n = \sum_{1}^{n} \pi_{n-k} P(S=k)$$
 pour $n > 1$

4. En déduire la fonction F, puis démontrer que

$$P(A_1) = 2\min(p, q)$$

Préciser à quelle condition sur p l'événement A_1 est presque sûr.

- 5. Déterminer la probabilité de l'événement Soit $A_n = [$ on revient n fois en zéro]. (On pourra justifier par un argument qualitatif que $P(A_n|A_1) = P(A_{n-1})$).
- 6. Soit A l'événement : on revient une infinité de fois en zéro. Montrer que A est presque sur ou négligeable selon la valeur de p.

Dans le premier cas, on dira que 0 est un état <u>récurrent</u> de la marche aléatoire. Dans le second cas, on dira que c'est un état transient.

7. Soit R la variable aléatoire égale au nombre de retour en zéro. Lorsque p n'est pas égal à $\frac{1}{2}$ reconnaître la loi de cette variable et donner son espérance.

III. Etude du passage en 1

Soit T_1 la variable aléatoire égale au premier instant n pour lequel $X_n = 1$. Soit F_1 sa fonction génératrice.

- 1. Calculer $F_1(0)$ et $F'_1(0)$.
- 2. On note T_2 la variable aléatoire égale au premier instant n tel que $X_n=2$.
 - (a) Prouver l'égalité

$$\mathbb{P}(T_2 = n) = \sum_{k=1}^{n} \mathbb{P}(T_1 = k) \mathbb{P}(T_1 = n - k)$$

- (b) Exprimer $\mathbb{P}(T_1 = n + 1)$ en fonction de $\mathbb{P}(T_2 = n)$
- (c) Etablir enfin que $F_1(s) = qsF_1^2(s) + ps$.
- 3. En déduire que $F_1(s) = \frac{F(s)}{2qs}$
- 4. Montrer finalement que la probabilité de l'événement : $\exists n, X_n = 1$ est égale à : $\min(1, \frac{p}{a})$
- 5. A quelle condition sur, p, q la marche aléatoire prend elle presque sûrement :
 - i toutes les valeurs positives?
 - ii toutes les valeurs de \mathbb{Z} ?
 - iii toutes les valeurs un nombre (nul ou) fini de fois ? (tous les états sont transients)
 - iv toutes les valeurs de $\mathbb Z$ une infinité de fois ?(tous les états sont récurrents).

IV. Estimation asymptotique des marches aléatoires symétriques

Dans ce paragraphe, $p = \frac{1}{2}$. On sait donc que $X_n = \sum_{k=1}^{n} Z_k$ où Z_k prend les valeurs 1 et -1 avec équiprobabilité.

On se propose de démontrer un cas de la loi des grandes déviations qui estime la "vitesse de divergence" de la suite X_n .

1. En comparant les développements en série entière de ces deux fonctions, démontrer l'inégalité valable pour tout réel t:

$$\operatorname{ch} t < e^{\frac{t^2}{2}}$$

2

- 2. Soit a un réel positif.
 - (a) Démontrer pour tout réel positif u l'inégalité $\mathbb{P}(e^{uX_n} > e^{ua}) \leq \frac{(\operatorname{ch} u)^n}{e^{ua}}$
 - (b) En déduire, par un choix judicieux de u que l'on a $P(X_n > a) \le e^{\frac{-a^2}{2n}}$.

- 3. Soit c un nombre réel strictement supérieur à 1. Démontrer que la série de terme général $P(X_n > c\sqrt{2n \ln n})$ est convergente.
- 4. En déduire que l'événement " $X_n \le c\sqrt{2n\ln n}$ à partir d'un certain rang" est de probabilité 1. on pourra utiliser le lemme de Borel Cantelli
- 5. Terminer cette partie en dessinant un graphe plausible pour une marche aléatoire symétrique.

Le sujet se termine ici : la partie suivante est optionnelle et plus difficile.

V. Extension aux marches aléatoires symétriques sur \mathbb{Z}^d

Soit d un entier supérieur ou égal à 1. Soit \mathbb{Z}^d l'ensemble des d-uplets d'entiers relatifs.

On note, pour tout i, e_i l'élément (0, ..., 1, ..., 0) de \mathbb{Z}^d dont toutes les coordonnées sont nulles sauf celle en ième place.

On donne une suite de variables aléatoires indépendantes $(Z_n)_n$ à valeurs dans \mathbb{Z}^d prenant les 2d valeurs $\pm e_i$ avec équiprobabilité. Enfin on pose $X_n = Z_1 + \ldots + Z_n$.

Ainsi X_n modélise la position après n sauts d'un point mobile se situant initialement à l'origine, et se déplacant de façon équiprobable d'un point à l'un de ses voisins directs.

On cherche à répondre à la question suivante : l'origine est elle un point récurrent de la marche aléatoire X_n ?

Résultats admis :

- si x désigne un vecteur variable $x=(x_1,...,x_n)$ et f une fonction sur $[0,2\pi]^d$, on notera $\int_{[0,2\pi]^d} f(x)dx$ pour l'intégrale multiple $\int (\int ... \int f(x_1,..,x_d)dx_1)dx_2)....)dx_d$. Aucune difficulté ne sera soulevée sur l'existence de ces intégrales.
- les théorèmes classiques du cours (continuité des séries de fonctions, $\sum \int ||....|$, convergence dominée.....) sont valables pour les familles sommables et les intégrales multiples.
- l'intégrale $\int_{[0,2\pi]^d} \frac{1}{||x||^a} dx$ est convergente si et seulement si a < d (intégrale de Riemann en zéro)
- 1. Transformée de Fourier.

Soit f une fonction de \mathbb{Z}^d dans \mathbb{C} . On suppose que f est sommable, c'est à dire que $\sum_{x \in Z^d} |f(x)| < +\infty$. Pour $t = (t_1, t_2, ..., t_n)$ on pose $\widehat{f}(t) = \sum_{Z^d} f(x) e^{i < t, x >}$, où par définition, $< t, x > = \sum t_i x_i$

Montrer que cette formule définit une fonction continue et bornée sur \mathbb{R}^d .

- 2. Pour f et g sommables, on pose $f*g(x)=\sum_{y\in\mathbb{Z}^d}f(y)g(x-y)$. Montrer que f*g est sommable, et que $\widehat{f*g}=\widehat{f}\widehat{g}$
- 3. Démontrer la formule d'inversion de Fourier, pour tout $x \in \mathbb{Z}^d$:

$$f(x) = \frac{1}{(2\pi)^d} \int_{[0,2\pi]^d} \widehat{f}(t) e^{-i < t,x > dt}$$

3

- 4. Soit μ la fonction qui vaut $\frac{1}{2d}$ pour $\pm e_i$ et zéro sinon.
 - (a) Montrer que $\widehat{\mu}(t) = \frac{1}{d} \sum_{1}^{d} \cos t_k$
 - (b) En déduire que l'on a $1-\widehat{\mu}(t)\sim \frac{||t||^2}{2d}$ quand t tend vers 0 dans \mathbb{R}^d
- 5. Pour $|\lambda| < 1$, et $x \in \mathbb{Z}^d$, on pose $u_{\lambda}(x) = \sum_{0}^{\infty} \lambda^n P(X_n = x)$.

- (a) Expliquer pourquoi ceci est bien défini
- (b) Montrer que $u_{\lambda}(x)$ tend vers $u_1(x) = \sum_{0}^{\infty} P(X_n = x)$ quand λ tend vers 1. Cette limite étant aussi valable si cette dernière somme est infinie.
- (c) Démontrer que $\sum_{n=0}^{\infty} P(X_n = x)$ est aussi égal à l'espérance du nombre de passage au point x de la marche aléatoire X_n .
- 6. Montrer que si $|\lambda| < 1$, alors u_{λ} est sommable sur \mathbb{Z}^d et montrer qu'alors $\widehat{u_{\lambda}}(t) = \frac{1}{1 \lambda \widehat{\mu}(t)}$ (on commencera par interpréter la fonction μ^{*n} à l'aide de la variable aléatoire X_n)
- 7. En déduire la condition sur d pour que $u_1(0)$ soit fini. Interpreter le résultat trouvé.