

UCB008 - APPLIED CHEMISTRY

Atomic Spectroscopy

Electromagnetic Spectrum

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry

Thapar Institute of Engineering and Technology

Patiala -147004, India

Ranjana Prakash

Learning Outcomes

At the end of this session participants should be able to:

• Illustrate electromagnetic spectrum

What is Spectroscopy?

To study changes in the property of <u>light</u> when it interacts with the matter.

- Electromagnetic radiation: consists of distinct energy packets termed as photons.
- A photon consists two fields namely an oscillating electric field (E) & an oscillating magnetic field (M), perpendicular to each other

- Frequency (ν):
 - Number of waves which can pass through a point in one second.
 - Unit: Hertz (Hz).

1 Hz = 1 cycle per second

- Wavelength (λ):
 - Distance between two adjacent crests or troughs in a wave
 - Unit: Angstrom/nano-meter/milli-micron
- Wave number (\bar{v}) :
 - Reciprocal of wavelength
 - Expressed in per centimeter

- Relationship between wavelength & frequency : $c = v \lambda$
- Therefore, energy of photon is

$$E = hv = hc / \lambda$$

Electromagnetic Spectrum

 Arrangement of all types of the electromagnetic radiations in the order of their increasing wavelengths or decreasing frequencies

Ranjana Prakash

How do we study changes in the property of light when it interacts with the matter?

In the next session.....

Atomic emission spectroscopy