Exerice 4

$$f_n(x) = \sin(\frac{\pi}{2}e^{-nx})$$

• soit $x \in \mathbb{R}_+$

Si
$$x = 0$$
 $f_n(0) = sin(\frac{\pi}{2}) = 1$
Si $x > 0$ $\frac{\pi}{2}e^{-nx} \underset{n \to \infty}{\longrightarrow} 0$

Si
$$x > 0$$
 $\frac{\pi}{2}e^{-nx} \longrightarrow_{n \to \infty} 0$

Et
$$sin(u) \xrightarrow[u \to 0]{} 0$$
, donc $f_n(x) \xrightarrow[n \to \infty]{} 0$

Donc f_n converge simplement vers la fonction $f := \begin{cases} 0 \text{ si } x > 0 \\ 1 \text{ sinon} \end{cases}$

$$f_n(x)' = -\frac{n\pi}{2}e^{-nx}cos(\frac{\pi}{2}e^{-nx})$$

On a que $0 < e^{-nx} \le 1$ car $-nx \le 0$

Donc
$$0 < \frac{\pi}{2}e^{-nx} \le \frac{\pi}{2}$$

Or
$$cos(x) \ge 0 \ \forall x \in [0, \frac{\pi}{2}]$$

Donc on final on obtient que $f_n(x)'$ est du signe $-\frac{n\pi}{2}e^{-nx}$

$$-\frac{n\pi}{2}e^{-nx} \le 0 \Rightarrow f_n(x)' \le 0$$

$$f_n(0) = 1$$

$$f_n(x) \xrightarrow[r \to \infty]{} = 0$$

$x \to \infty$		
x	0	∞
$f_n(x)'$	_	
$f_n(x)$	1	* 0

On a donc que $||f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{R}_+} |f_n(x) - f(x)|$ <u>Cas 1</u>: x = 0 on $|f_n(0) - f(0)| = 1 - 1 = 0$

Cas 1:
$$x = 0$$
 on $|f_n(0) - f(0)| = 1 - 1 = 0$

Cas 2:
$$x \neq 0$$
 on a $\sup_{x \in \mathbb{R}^*_+} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}^*_+} |f_n(x)|$ Car si $x \neq 0$ on a $f(x) = 0$

Car si
$$x \neq 0$$
 on a $f(x) = 0$

Donc
$$|f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{D}^*} |f_n(x)|$$

Donc
$$|f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{R}_+^*} |f_n(x)|$$

Comme $f_n(x) \xrightarrow[x \to 0]{} 1$, on a que $\sup_{x \in \mathbb{R}_+^*} |f_n(x)| = 1 \neq 0$

Donc f_n ne converge pas uniformement vers f sur \mathbb{R}_+

Soit a > 0

$$|f_n(x) - f(x)||_{\infty,[a,+\infty[} = \sup_{x \in [a,+\infty[]} |f_n(x)| = f_n(a)$$

 $|f_n(x) - f(x)||_{\infty,[a,+\infty[} = \sup_{x \in [a,+\infty[} |f_n(x)| = f_n(a)$ Or $f_n(a) \underset{n \to \infty}{\longrightarrow} 0$ donc f_n converge uniformement vers f sur $[a,+\infty[$