

SECPH Session 2023/2024

SECI1013-02 (Discrete Structure)

Assignment 2

Name	Matric No
Muhammad Syahmi Faris bin Rusli	A23CS0138
Muhammad Afiq Danish bin Mohd Hazni	A23CS0118
Ahmad Ziyaad bin Mohd Abbas	A23CS0206

Lecturer's Name: Dr Noorfa Haszlinna binti Mustaffa

Date of Submission: 29 November 2023

SECI1013 : DISCRETE STRUCTURES

ASSIGNMENT 2 (CHAPTER 2)

Q1. Relation

 $R = \{(5,2),(6,3),(7,4),(8,5),(2,5),(3,6),(4,7),(5,8),(8,2),(2,8)\}$

2.a) $R = \{(1, 9), (1, 7), (2, 8), (3, 9), (3, 7)\}$ $R^{-1} = \{(9, 1), (7, 1), (8, 2), (9, 3), (7, 3)\}$

c) R-1 is the opposite of R. For (x,y) ER, (y,x) & R-1

3. R= {(1,1),(2,2),(3,2),(3,3),(3,4),(4,1),(4,4),(4,5),(5,4),(5,5)}

	1	2	3	4	5
In-degree	2	2	١	3	2
Out-degree	1	١	3	3	2

$$\begin{cases}
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1
\end{cases} = \begin{bmatrix}
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$M_R = M_R^T$$

$$\begin{pmatrix}
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1
\end{pmatrix}
\otimes
\begin{pmatrix}
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}$$

- Reflexive
- Symmetric
- Not transitive

5. R = {(1,3), (2,6), (3,9), (4,12)}

- a. The relation is irreflexive because (x,x) & R for every x & A
- b. The relation is antisymmetric because for all (x,y) & R, (y,x) & R
- c. The relation is not transitive because (1,3) $\in \mathbb{R}$ and (3,9) $\in \mathbb{R}$ but (1,9) $\notin \mathbb{R}$

_	No,: Date:
8	(i) Function. Because it is one-to-one function
	(ii) Function. Becouse it is onto function.
	(iii) Not a function. Because f(x) and f(3) durit have any element assigned to them in A.
	Civ) Not a function. Because there is an element in A is not assigned to a unique value. It is assigned to two different values in A that are 2 and 3.
٩	$R = \{(n,y) y = n+5, n \text{ is } Z^{t} \text{ less than } 6 \}$
	R={(1,6),(2,7),(3,8),(4,9),(5,10)}
	Domain = {1,2,3,4,5} Range = {6,7,8,9,10}
_	
_	

Date...

(v)	$f=R\rightarrow R$, $f(x)=(-2x)$	(47) 47 m = 2-(1) g (20) = 20 a				
		f(x) = 1-2x				
	f(a) = f(b)	f(x) = y				
	1-29 = 1-26	1-22 = 4				
	-29 = -2b	-22 = 9-1				
	a=b ← one to one #	22=1-9				
		2 = 1 - 9				
	This is a bijective function	2				
	since it is one-to-one	this proves that for every y in				
	and onto #	the coolomain, there exists an x				
	#	in the domain which f(x) =y.				
		This proves that this function is				
		onto.				
(vi)	$f=R\rightarrow R$, $f(x)=5x^2-1$					
	f(x) = f(y)	f(x) = 5x2-1				
	$5x^2 - 1 = 5y^2 - 1$	f(2) = 9				
	52² = y²	5x2-1= 9				
	$z^2 = y^2$	5x2 = y+1				
	The same to the	22 = 9 +1				
	$x = \pm y$ to not one-to-					
	#	2 = ±-√ <u>y+1</u>				
		# 7				
		This proves for every y in the codomain, there exist on				
		a in the domain in which				
		f(x) = y . This shows that				
		this is an onto function.				
process		CAMPAR				

	subject	Date						
(vīr)	$f = R \rightarrow R / f(x) = x^{4}$	@n e, je, ,e, ,e						
Car	7.50							
	f(z) = f(y) # # # # # # # # # # # # # # # # # # #							
	24 = 44	som flag ry						
	(De Just	ore# Warn						
	x=ty < not one+o-one#							
	let y to.							
	No 2 values can map onto regative	e values of y.						
	The fourth power of any number	is always positive.						
	Hence, this function is not sujective. #							
(viii)	$f = R \rightarrow R$, $f(x)$, $\frac{x-2}{x-3}$							
	(2-3) 8-09-4861+							
	f(x) = f(y)							
	2-2 = y-2							
	2-3 y-3							
	(x-2)(y-3) = (y-2)(x-3)							
	29-32-29 +6 = 29-34-22+6							
	-z=-y							
	z=y ← one-to	-one #						
	/et x = 3							
	1(3) = 3-2							
	8-3							
	= undefined							
	there exist an a value that does not							
	map to its codomain. Therefore this							
	function is not surjective. #							

(1x)	f(x)=3x-1; g(x)=x2-1
	$f(g(x)) = 3(x^2 - 1) - 1$
	= 322 -3 -1
	= 322-4

when
$$x = 0$$

 $fgl f(g(0)) = 3(0)^2 - 4$
 $= -4$

when
$$x = 1$$

Feger $f(5(1)) = 3(1)^{2} - 4$

when
$$x = 2$$

$$f(g(2)) = 3(2)^2 - 4$$
= 8

when
$$x = 3$$

$$f(9(3)) = 3(3)^{2} - 4$$

$$= 23$$

No....

Subject.

(x)
$$f(x) = x^2$$
; $g(x) = 5x - 6$
 $f(g(x)) = (5x - 6)^2$

$$= 25x^2 - 60x + 36$$

when
$$x = 0$$

$$f(g(0)) = 25(0)^{2} - 69(0) + 36$$

$$= 36$$

when
$$x = 1$$

$$f(g(1)) = 25(1)^2 - 60(1) + 36$$
= 26

when
$$x=2$$

$$f(g(2)) = 25(2)^2 - 60(2) + 36$$

$$= 16$$

when
$$x = 3$$

$$f(9(3)) = 25(3)^2 - 60(3) + 36$$

+(9(3)) = 3(3) = 4

		Ala
		No
	Subject	Date
(XT)	$f(x) = x - 1$ $f(x) = x^{2} + 1$	45-1-(4) x 1-2-2-1 (4) 6
	$f(g(x))=(x^3+1)-1$	
	= 23	
	when z = 0	
	f(g(o)) = 03	
	when 2=1	
	f(g(1)) = 13	
	(a) we know at we it	
	white the second section with the section with the second section with the second section with the section with the second section with the second section with the second section with the second section with the	
	when x=2	
	f(9(2)) = 23	
	= 8	
	- The state of the	
	when $x = 3$	
	PC5(3)) = 33	
	= 27	
	3 9-0-3	
	in him a	
	may and saying the every	
	Shart Carellan and	
	of microb sub m	
	2007 STAT - 6- CEST	
	-A =+na ~a 37 3246	

CAMPAP

9, = 6a, -99, -2; 9, =1 and 0, =6 (2) (XTT) first few sequence are: 9/=/696-4501 +19/9 A 9= 69 2-1=1 -99 2-2=0 = 69, -90, = 6(6)-9(1) = 27 93 = 693-1=2 - 993-2=1 = 69 - 99 =6(27)-9(6) = 108 9 = 69 4-1=3 - 99 4-2=2 = 693 -992 =6(108)-9(27) = 405 1,6,27,108,405 ...

(xtri) a = 60 - 119 - 2 + 60 - 3; a = 2, a = 5, a = 15 first tem sequence are: 93 = 69 3-1=2 - 119 3-2=1 + 69 3-3=0 =692 - 119, +69. (1)8-(2)8 =6(15) -11(5) +6(2) = 47 94 = 694-1=3 - 1194-2=2 + 694-3=1 = 693 - 1192 + 69,000- (190) = 6(47) - 11(15) + 6(5) = 147 95 = 69 5-1=4 - 119 5-2=3 + 69 5-3=2 = 6a4 - 1193 + 692 - (80) 3-= 6(147) -11(47) +6(15) = 455 2,5,15,47,147,455 ...

No.

Subject

Date.....

(XIV)	$a_n = -3a_{n-1} - 3a_{n-2} + a_{n-3}$; $a_n = 1$, $a_1 = -2$, $a_2 = -1$					
	the first few sequence are:					
	$q_3 = -3q_{3-1=2} - 3q_{3-2=1} + q_{3-3=0}$					
	= -39, +9.					
	= -3(-1) -3(-2) +(1)					
	= 10					
	$a_4 = -3a_{4-1} = 3 - 3a_{4-2} = 2 + a_{4-3=1}$					
	= -393 - 392 + 9,					
	=-3(10) $-3(-1)$ $+(-2)$					
	= -29					
	$9_5 = -30_{5-1=4} - 39_{5-2=3} + 9_{5-3=2}$					
	= -39, -39, +9,					
	= -3(-29) -3(10) + (-1)					
	= 56					

No

Date.....

(i)	9,	, 9,		, a, ,		a,			
		9,	+1 =	59		3	;	9	2 K

$$Q_3 = Q_{2+1} = 5Q_2 - 3$$

$$=5(25k-18)-3$$

100 = 125 k

CAMPAP