

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A

AD-A142 179

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
ngport number Measurement Series-84-2	AD-A 142	3. RECIPIENT'S CATALOG NUMBER 179
A Statistical Procedure for Assessing Test Dimensionality		5. Type of Report & Period Covered Technical Report
		6. PERFORMING ORG. REPORT NUMBER
У Ацтной(») William Stout		NOO014-79C-0752 NOO014-83K-0397
PERFORMING ORGANIZATION NAME AND ADDRESS Model Based Measurement Laboratory University of Illinois Urbana, IL 61820		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N RR042-04 NR 154-445 NR 150-518
Personnel and Training Research Programs Office of Naval Research (Code 442PT) Arlington, VA 22217 MONITORING AGENCY NAME & ADDRESS(II dillerent trees Controlling Office)		12. REPORT DATE 13. NUMBER OF PAGES 8
		18. SECURITY CLASS. (of this report)
		184. DECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited.

JUN 1 9 1984

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

1

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

latent trait theory, item response theory, formula score, quantal response, test dimensionality, statistical test

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

An important problem in psychological test theory is the development of a sound method for determining whether a test which purports to measure the level of a certain ability is, in reality, significantly contaminated by one or more other abilities displayed by persons taking the test. Because of the large number of private and governmental organizations routinely using tests to screen people for the levels of various abilities, this problem of assessing the dimensionality of a test is of great importance. The

DD 1 JAN 73 1473 EDITION OF 1 NOV 85 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Briefed)

solution will be useful in settings other than psychological testing, since the problem is one of general interest and should, hence, be an important addition to statistical methodology literature. Described in this paper is an approach to the problem of finding a theoretically sound and useful procedure for making inferences about the dimensionality of the distribution of parameter), or more precisely, the dimensionality of the distribution of parameter.

this ability
parameter

A STATISTICAL PROCEDURE FOR ASSESSING TEST DIMENSIONALITY

WILLIAM STOUT University of Illinois

An important statistical problem in psychological test theory is the development of a sound method for determining whether a test which purports to measure the level of a certain ability is, in reality, significantly contaminated by the varying levels of one or more other abilities displayed by persons taking the test. For example, is a test of mathematical ability contaminated by varying levels of verbal ability displayed by persons taking the test or is a test of reading ability contaminated by varying levels of familiarity with middle-class American culture displayed by persons taking the test? Because of the large number of private and governmental organizations routinely using tests to screen people for the levels of various abilities, this problem of assessing the dimensionality of a test is of great importance.

The solution will be useful in settings other than psychological testing, since the problem is one of general interest and should, hence, be an important addition to the statistical methodology literature. Thus, it seems appropriate now to give a careful abstract statement of the problem, independent of its psychometric context.

Consider sampling units from a population and applying several treatments to each sampled unit. Suppose that the outcome of each unit-treatment combination is either success or failure. Suppose that associated with each unit is a parameter, θ (the ability parameter), which determines the likelihood of each treatment being successful for that unit. Assume that the dimensionality of θ is unknown (the precise mathematical definition of the dimensionality of θ will be given below). Thus, for each unit, dichotomous random variables $\{U_i\}$ are observed, where i is the treatment index. Let "treatment characteristic curves" $\{P_i(\cdot)\}$ be defined by

$$P_{i}(\theta) = P[U_{i} = 1 | \theta = \theta] = 1 - P[U_{i} = 0 | \theta = \theta],$$
 [1]

the probability of treatment \underline{i} being successful, given that the sampled unit has ability θ . It is assumed that the process of random sampling units induces a probability distribution on the population of units with associated random variable $\underline{\theta}$.

Purpose

Described in this paper is an approach to the problem of finding a theoret-

ically sound and useful procedure for making inferences about the dimensionality of θ , that is, more precisely, the dimensionality of the distribution of θ . In order that this problem be well formulated mathematically, the dimensionality of θ needs to be defined precisely. The definition (Levine, 1981) that is used depends on the asymptotic behavior of "formula sequences." To define a linear formula sequence, a linear formula score must first be defined.

Definition of a Linear Formula Score

Given the outcomes (U_1, U_2, \ldots, U_n) of <u>n</u> treatments resulting from a sampled unit, a linear formula score is a score of the form

$$\alpha_{\mathbf{n}} = \sum_{i=1}^{\mathbf{n}} \mathbf{a}_{i}^{(\mathbf{n})} \mathbf{v}_{i}$$
 [2]

provided that

$$a_{i}^{(n)} \geq 0, \quad \sum_{i=1}^{n} a_{i}^{(n)} = 1.$$
 [3]

Then, a formula sequence is a sequence of linear formula scores $(\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots)$ such that, referring to Equation 2,

$$a_{i}^{(n)} a_{i}^{(n+1)} = a_{i}^{(n+1)} a_{i}^{(n)}$$
 [4]

for all i' $\leq n$, $i \leq n$, and $n \geq 1$. The content of Equation 4 is that the contribution of a treatment, say, \underline{i} , relative to another treatment, say, \underline{i} ', is the same for all linear formula scores α_n for which $n \geq i$, $n \geq i$ '. The prototype of a linear formula score and a formula sequence is the proportion-correct

$$\sum_{i=1}^{n} v_{i}/n$$
 [5]

and

$$\{v_1, (v_1 + v_2)/2, \dots, \sum_{i=1}^{n} v_i/n, \dots\}$$
 [6]

respectively. Levine's (1981) definition can now be stated (below, Var [X|Y] denotes the variance of X, given Y):

A sequence of dichotomous random variables $\{U_1, U_2, \ldots, U_n, \ldots\}$ is <u>d</u> dimensional if there exist <u>d</u> formula sequences $\{h_1^{(n)}\}, \{h_2^{(n)}\}, \ldots, \{h_d^{(n)}\}$ such that for every formula sequence $\{h^{(n)}\}, \{h_2^{(n)}\}, \ldots, \{h_d^{(n)}\}$

Var
$$\{h^{(n)}|h_1^{(n)}, \ldots, h_d^{(n)}\} + 0$$
 [7]

as n + "; and, moreover, no smaller d works.

Note that it is the set of observables $\{U_1,\ U_2,\ \dots,\ U_n,\ \dots\}$ that is \underline{d} dimensional. The ability θ is not observable and is known only by inference. Nonetheless, let it be said that θ is d dimensional, meaning that a \underline{d} -dimensional random vector θ and treatment characteristic curves $\{P_i(\cdot)\}$ (the conditional distributions of the U_i 's given θ) can be constructed to specify the joint probability law of the \underline{d} -dimensional U_i 's.

Assessment of Test Dimensionality

As stated above, the dimensionality problem is of particular importance in the field of psychological testing. In this case, the units are persons and the treatments are test items. The function $P_1(\cdot)$ is called the item characteristic curve for the ith item. The administration of a psychological test is modeled as a two-stage experiment, the first stage yielding J randomly sampled persons and the second stage consisting of the administration of I fixed test items (the test) to each sampled person. In this manner, dichotomous random variables $\{U_{ij}\}$; $i=1,2,\ldots,I$; $j=1,2,\ldots,J$ are generated. The basic statistical assumptions made are as follows:

- 1. Experimental independence of persons. The appropriate assumptions are made concerning the joint distribution of the {U_{ij}} that correspond to the psychometric assumption that persons are randomly sampled from a very large population and that sampled persons respond to items independently of one another.
- 2. Local independence of items. The appropriate probabilistic assumptions are made concerning the joint distribution of the {U_{ij}} and θ that correspond to the psychometric assumption that for each person, his or her responses to different items are independent.

Consider again the example of the introductory paragraph, that of a "mathematics" test. It might be that while θ is assumed to be a one-dimensional random variable measuring mathematical ability, in reality θ is two dimensional with the first dimension being mathematical ability and the second dimension being verbal ability. In the case of psychological testing, the most important statistical problem concerning dimensionality is to test H: d=1 vs. A: d>1. Recently, this author has constructed a statistic to test this hypothesis and to be further used as an index that estimates the amount of regularity in the data attributable to the multidimensionality of θ .

Illustration

It is rather easy to imagine applications in other fields. As an illustration, suppose that medical subjects (the units) undergo allergy sensitivity tests to various environmental substances (each such test is a treatment). Suppose that the result of each test is scored 1 or 0, depending on whether an al-

lergic reaction is observed or not. Let different values of the parameter θ be assigned to subjects according to each subject's sensitivity. Then, inferences about the dimensionality of θ become meaningful in attempting to develop a classification scheme for allergies.

Description of the Statistic

A description of the constructed statistic can now be given. In doing so, the psychological testing language of items, persons, and so forth, will be used.

- The test being administered is split into two subtests of lengths M and n, respectively. Here, n should be considered as large and M as possibly not large. Let f denote the proportion correct on the second subtest of items M + 1, M + 2, ..., M + n.
- 2. [0,1) is partitioned into intervals

$$\bigcup_{k} A_{n}^{(k)} = [0,1)$$
 [8]

such that

$$\max_{k} \{ \text{width } (A_n^{(k)}) \} + 0 \text{ as } n \to \infty.$$
 [9]

For example, let

$$A_{n}^{(k)} = \left[\frac{k-1}{[n^{\frac{1}{2}}]}, \frac{k}{[n^{\frac{1}{2}}]}\right] \qquad k = 1, 2, \dots, [n^{\frac{1}{2}}]$$
 [10]

where [x] denotes the integer m such that m < x.

3. Persons are now grouped into categories according to the following rule: Assign a person to category (k,n) if for that person

$$f_n \in A_n^{(k)}$$
 $k = 1, 2, ..., K_n$. [11]

(Here, K_n denotes the number of categories.) Thus, persons are assigned to the same category if they all get about the same proportion correct. This categorization of persons is the only use made of the second subtest. Let $J_n^{(k)}$ denote the number of persons in category (k,n).

- 4. To construct the test statistic, take the ratio of two variance estimators, the denominator estimating a variance that is uninfluenced by the "amount" of multidimensionality present and the numerator estimating a variance that is inflated by the amount of multidimensionality present. The variance estimators are each based upon the first subtest, i.e., on Items 1, 2, ..., M.
- 5. Now, fix (k,n). That is, look at the persons in cell k of the

nth partition $\{A_n^{(1)}, A_n^{(2)}, \dots, A_n^{(K_n)}\}$, K_n denoting the number of partition cells.

6. The denominator can now be constructed. Consider item m (of the first subtest, hence, $1 \le m \le M$. Let

$$\hat{P}_{m}^{(k)} = \sum_{j=1}^{n} U_{mj}/J_{n}^{(k)}, \qquad [12]$$

where Uni indicates that correctness of the response of the 1th person of cell k to item m. Let

$$\hat{\sigma}_{Pk}^2 = \sum_{m=1}^{M} \hat{P}_m^{(k)} (1 - \hat{P}_m^{(k)}) / M^2 , \qquad [13]$$

the denominator estimator of variance. Note that persons have been

summed over first, forming $\hat{p}^{(k)}$ and then items, forming $\hat{\sigma}_{pk}^2$.

7. For the numerator, let $g_j^{(k)}$ be the proportion correct for person jon the first subtest, i.e.,

$$g_{j}^{(k)} = \sum_{m=1}^{M} v_{mj}/M. \qquad [14]$$

Let

$$\bar{g}^{(k)} = \sum_{j=1}^{J} g_j^{(k)} / J_n^{(k)}$$
 [15]

and

$$\hat{\sigma}_{gk}^{2} = \sum_{j=1}^{n} (g_{j}^{(k)} - \overline{g}^{(k)}^{2})/J_{n}^{(k)}, \qquad [16]$$

the numerator estimator of variance. Note that items have been summed over first, forming $g_1^{(k)}$ and then persons, forming $\hat{\sigma}_{gk}^2$.

8. For the estimator let

$$\mathbf{F}_{\mathbf{k}} = \hat{\sigma}_{\mathbf{g}\mathbf{k}}^2 / \hat{\sigma}_{\mathbf{P}\mathbf{k}}^2 . \tag{17}$$

Thus, for each cell k, a statistic P_k is obtained. The $\{P_k\}$ are independent random variables.

The Asymptotic Distribution of {F, }

In order to use the $\{P_k\}$ to make inferences about dimensionality, their asymptotic distribution is needed. To this end, the author has shown that for any K cells indexed by 1, 2, ..., K there exists $c_k > 0$ such that

$$\sum_{k=1}^{K} \frac{F_k^{-1}}{c_k} / \sqrt{K}$$
 [18]

is asymptotically normal with mean zero and variance one [notationally N(0,1)] when d = 1 and, moreover, estimators \hat{c}_k of c_k exist such that

$$\frac{K}{\Sigma} \frac{F_k^{-1}}{\hat{c}_k} / \sqrt{K}$$
[19]

is asymptotically N(0,1) when d=1. Further, it has been shown that there exists a number C>0 and numbers $A_{M,k}\geq CM$ such that $F_k\to A_{M,k}$ in probability for $k=1,\ 2,\ \ldots,\ K$ when d>1. Hence, there exists a valid large sample level α procedure for testing H:d=1 vs. A:d>1.

It also follows that this procedure (even in the extreme case of K=1) for an appropriate choice of M has asymptotic power one for any fixed alternative, i.e., any distribution of Q for which d > 1. The procedure is to reject H if

$$\frac{K}{\Sigma} \frac{F_k - 1}{\hat{C}_k} / \sqrt{K} > Z_{\alpha} , \qquad [20]$$

where $\frac{z}{\alpha}$ is the 100 (1 - α) percentile of a standard normal distribution.

Discussion

There remain several important theoretical and practical questions that should be investigated. First, there are clearly several plausible ways of combining the F_k 's into a single test statistic and of obtaining the asymptotic distribution of this test statistic. Three such possibilities are

1.
$$\Sigma_k \frac{F_k-1}{\hat{c}_k} / \sqrt{K}$$

as was shown above;

2.
$$z_k \left(I \left[\frac{y_k - 1}{\hat{c}_k} > z_{\alpha} \right] - \alpha \right) / \sqrt{\kappa}$$

where I[A] denotes the indicator of the event A; and 3. A chi-square like statistic $[\Sigma_k(O_k - F_k)^2/E_k]$ based upon the number of k's such that

$$\frac{F_{k}-1}{\hat{c}_{k}} > Z_{\alpha}.$$

The author plans to investigate the asymptotic distributions of the second and third of these statistics as well.

Second, it is essential to carry out some carefully designed monte carlo studies to see for what range of test lengths and sample sizes of examinees the actual distribution of the F_k 's is well approximated by the asymptotic distribution of the F_k 's. This is essential because asymptotic distribution theory cannot by itself guarantee the accuracy of the approximation that it suggests.

Third, the meaningful and practical question is not whether d = 1 but, rather, whether taking d = 1 accounts for most of the explainable regularity in the data. Thus, what is called for is a reformulation of the hypothesis that d = 1 and possibly an estimation approach in order to estimate how much of the explainable regularity is accounted for by taking d = 1. This important practical concern needs to be dealt with by some combination of a theoretical analysis and a monte carlo study.

Fourth, some combination of a theoretical analysis and a monte carlo study is also needed so that some quantitative information is available about the power of the tests constructed from the F_k 's.

Fifth, the "regularity" conditions that were needed on the rate of growth of the $\{J_n^{(k)}\}$ (numbers of persons per cell) as $n\to\infty$ in order to establish the asymptotic normality of the F_k 's—and, hence, the asymptotic distribution of the statistics described above—can undoubtedly be improved upon. This would further strengthen the case for using the F_k 's in actual testing situations. Moreover, it is quite possible that the methods of proof used or the results obtained when abstracted from the present situation involving the F_k 's may add to the general body of knowledge in mathematical statistics.

Sixth, the procedures that are obtained from carrying out the above should be pilot tested on actual tests and populations.

Seventh, a thorough comparison between these procedures based on the $\mathbf{F_k}$'s and on any other approaches (such as factor analytic) in the literature must be made.

Finally, procedures should also be developed for testing H: d=k vs. A: d>k for fixed $k\geq 2$. Although the derivation of the distribution of the F_k 's under the assumption d=1 was surprisingly delicate, it seems clear that an analogous procedure for this hypothesis testing situation can be found and its properties studied.

The author plans to investigate these questions with the goal of producing a theoretically sound and practically important statistical approach to the problem of making inferences about the underlying dimensionality.

REFERENCES

Levine, M. V. Item-item curves and consistent mental test parameter est ates (ETS RB-76-36). Princeton NJ: Educational Testing Service, 1976.

Levine, M. V. Personal communication, 1981.

ACKNOWLEDGMENTS

This work was partially supported by the Office of Naval Research (NO0014-79-C-0752; NR 150-445) and by the National Science Foundation.

Navy

- 1 Dr. Ed Aiten Navy Personnel RED Center San Diego, CA 92152
- 1 Dr. Nick Bond Office of Naval Research Liaison Office, Far East APO San Francisco, CA 96503
- 1 Lt. Alexander Bory Applied Psychology Measurement Division NAMRL MAS Pensacola, FL 32508
- 1 Dr. Robert Carroll NAVOP 115 Washington , DC 20370
- 1 Dr. Stanley Collyer Office of Naval Technology 800 M. Quincy Street Arlington, VA 22217
- 1 CDR Mike Curran Office of Naval Research 800 N. Quincy St. Code 270 Arlington, VA 22217
- 1 Dr. John Ellis Navy Personnel R&D Center San Diego, CA 92252
- 1 DR. PAT FEDERICO Code P13 MPRDC San Diego, CA 92152
- 1 Dr. Cathy Fernandes Navy Personnel R&D Center San Biego, CA 92152
- 1 Dr. Norman J. Kerr Chief of Naval Technical Training Naval Air Station Hemphis (75) Millington, TN 38054
- 1 Dr. Leonard Kroeker Navy Personnel R&D Center San Biego, CA 92152

Navy

- 1 Dr. William L. Maloy (02)
 Chief of Naval Education and Training
 Maval Air Station
 Pensacola, FL 32508
- 1 Dr. Kneale Marshall Chairman, Operations Research Dept. Naval Post Graduate School Monterey, CA 93940
- 1 Dr. James McBride Navy Personnel R&D Center San Diego, CA 92152
- 1 Cdr Ralph McCumber
 Director, Research & Analysis Division
 Navy Recruiting Command
 4015 Wilson Boulevard
 Arlington, VA 22203
- 1 Dr. George Moeller Birector, Behavioral Sciences Dept. Naval Submarine Medical Research Lab Maval Submarine Base Groton, CT 06349
- 1 Dr William Montague MPRDC Code 13 San Diego, CA 92152
- 1 Library, Code P201L Navy Personnel R&D Center San Biego, CA 92152
- 1 Technical Director Navy Personnel RMD Center San Diego, CA 92152
- 6 Commanding Officer
 Naval Research Laboratory
 Code 2627
 Washington, DC 20390
- 6 Personnel & Training Research Group Code 442PT Office of Naval Research Arlington, VA 22217
- 1 LT Frank C. Petho, MSC, USN (Ph.D) CMET (N-432) MAS Pensacola, FL 32508

Navy

- 1 Dr. Bernard Rieland (OIC) Mavy Personnel R&D Center San Biego, CA 92152
- 1 Dr. Carl Ross CMET-PBCD Building 90 Great Lakes MTC, IL 60088
- 1 Mr. Brew Sands MPRDC Code 62 San Diego, CA 92152
- 1 Br. Robert G. Smith
 Office of Chief of Naval Operations
 OP-987H
 Mashington, DC 20350
- 1 Br. Richard Snow Liaison Scientist Office of Naval Research Branch Office, London Box 39 FPO New York, NY 09510

e de la composition della comp

- 1 Dr. Richard Sorensen Mavy Personnel R&D Center San Diego, CA 92152
- 1 Dr. Frederick Steinheiser CNO - OP115 Mavy Annex Arlington, VA 20370
- 1 Mr. Brad Sympson Navy Personnel R&D Center San Biego, CA 92152
- 1 Dr. James Tweeddale Technical Director Mavy Personnel R&D Center San Diego, CA 92152
- 1 Dr. Edward Megsan Office of Maval Research (Code 411S&P) 800 North Quincy Street Arlington, VA 22217
- 1 Br. Bouglas Netzel Code 12 Navy Personnel R&D Center San Biego, CA 92152

Navy

- 1 DR. MARTIN F. WISKOFF MANY PERSONNEL R& D CENTER SAN DIEBU, CA 92152
- 1 Mr John H. Wolfe Navy Personnel R&D Center San Diego, CA 92152

Marine Corps

- 1 H. William Greenup Education Advisor (E031) Education Center, MCDEC Quantico, VA 22134
- 1 Jerry Lehnus CAT Project Office H0 Marine Corps Washington , DC 20380
- 1 Director, Office of Manpower Utilizatio HQ, Marine Corps (MPU) BCB, Bldg. 2009 Quantico, VA 22134
- 1 Headquarters, U. S. Harine Corps Code MPI-20 Washington, DC 20380
- 1 Special Assistant for Marine Corps Matters Code 100M Office of Naval Research 800 N. Quincy St. Arlington, VA 22217
- 1 BR. A.L. SLAFKOSKY
 SCIENTIFIC ADVISOR (CODE RD-1)
 H9, U.S. MARINE CORPS
 MASHINGTON, DC 20380
- 1 Major Frank Yohannan, USMC Headquarters, Marine Corps (Code MPI-20) Washington, BC 20380

Aray

- 1 Technical Director
 U. S. Aray Research Institute for the
 Behavioral and Social Sciences
 5001 Eiser Ther Avenue
 Alexandria, VA 22333
- 1 Dr. Kent Eaton Army Research Institute 5001 Eisenhouer Blvd. Alexandria , VA 22333
- 1 Dr. Myron Fischl U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Pr. Milton S. Katz Training Technical Area U.S. Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Clessen Martin Army Research Institute 5001 Eisenhower Blvd. Alexandria, VA 22333
- 1 Dr. William E. Nordbrock FNC-ADCO Box 25 APO, NY 09710
- 1 Mr. Robert Ross U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Robert Sasaor
 U. S. Army Research Institute for the
 Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Joyce Shields
 Army Research Institute for the
 Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Hilda Wing Aray Research Institute 5001 Eisenhower Ave. Alexandria, VA 22333

Air Force

- 1 Technical Documents Center Air Force Human Resources Laboratory MPAFB, OH 45433
- 1 U.S. Air Force Office of Scientific Research Life Sciences Directorate, ML Bolling Air Force Base Washington, DC 20332
- 1 Air University Library AUL/LSE 76/443 Maxwell AFB, AL 36112
- 1 Dr. Earl A. Alluisi HG, AFHRL (AFSC) Brooks AFB, TI 78235
- 1 Mr. Raymond E. Christal AFHRL/MOE Brooks AFB, TX 78235
- 1 Dr. Alfred R. Fregly AFOSR/NL Bolling AFB, DC 20332
- 1 Dr. Patrick Kyllonen AFHRL/MOE

Brooks AFB, TI 78235

- 1 Dr. Roger Pennell Air Force Human Resources Laboratory Lowry AFB, CD 80230
- 1 Br. Malcolm Ree AFHRL/MP Brooks AFB, TX 78235

Department of Befense

- 12 Defense Technical Information Center Cameron Station, Bldg 5 Alexandria, VA 22314 Attn: TC
- 1 Military Assistant for Training and Personnel Technology Office of the Under Secretary of Befens for Research & Engineering Room 3D129, The Pentagon Mashington, BC 20301
- 1 Dr. W. Steve Sellman
 Office of the Assistant Secretary
 of Defense (MRA & L)
 28269 The Pentagon
 Washington, DC 20301
- 1 Major Jack Thorpe DARPA 1400 Wilson Blvd. Arlington, VA 22209
- 1 Dr. Robert A. Wisher DUSDRE (ELS) The Pentagon, Room 3D129 Washington, DC 20301

Civilian Agencies

- 1 Dr. Vern W. Urry
 Personnel R&D Center
 Office of Personnel Hanagement
 1900 E Street NM
 Washington, BC 20415
- 1 Mr. Thomas A. Warm
 U. S. Coast Guard Institute
 P. O. Substation 18
 Otlahoma City, OK 73169
- 1 Dr. Frank Withrow
 U. S. Office of Education
 400 Maryland Ave. SW
 Washington, DC 20202
- 1 Dr. Joseph L. Young, Director Memory & Cognitive Processes National Science Foundation Washington, DC 20550

- 1 Dr. James Algina University of Florida Bainesville, FL 326
- 1 Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DENMARK
- 1 1 Psychological Research Unit NBH-3-44 Attn Morthbourne House Turner ACT 2601 AUSTRALIA
- 1 Dr. Alan Baddeley
 Medical Research Council
 Applied Psychology Unit
 15 Chaucer Road
 Cambridge CB2 2EF
 ENGLAND
- 1 Dr. Isaac Bejar Educational Testing Service Princeton, NJ 08450
- 1 Dr. Menucha Birenbaum School of Education Tel Aviv University Tel Aviv, Ramat Aviv 69978 Israel
- 1 Dr. R. Darrell Bock Department of Education University of Chicago Chicago, IL 60637
- 1 Dr. Robert Brennan American College Testing Programs P. O. Box 168 Iowa City, 1A 52243
- 1 Dr. Glenn Bryan 6208 Pce Road Bethesda, MD 20817
- 1 Bundainisterium der Verteidigung
 -Referat P II 4Psychological Service
 Postfach 1328
 D-5300 Bonn 1
 F. R. of Germany

- 1 Dr. Ernest R. Cadotte 307 Stokely University of Tennessee Knoxville, TN 37916
- 1 Br. John B. Carroll 409 Elliott Rd. Chamel Hill, NC 27514
- 1 Dr. Norman Cliff
 Dept. of Psychology
 Univ. of So. California
 University Park
 Les Angeles, CA 90007
- 1 Dr. Allan M. Collins
 Bolt Beranek & Newman, Inc.
 50 Moulton Street
 Cambridge, MA 02138
- 1 Dr. Lynn A. Cooper LRDC University of Pittsburgh 3939 D'Hara Street Pittsburgh, PA 15213
- 1 Dr. Hans Crombag Education Research Center University of Leyden Boerhaavelaan 2 2334 EN Leyden The NETHERLANDS
- 1 CTB/McGraw-Hill Library 2500 Garden Road Monterey, CA 93940
- 1 Br. Dattpradad Divgi Syracuse University Department of Psychology Syracuse, NE 33210
- 1 Dr. Hei-Ki Dong Ball Foundation Room 314, Building B 800 Roomevelt Road Slem Ellyn, IL 60137
- 1 Br. Fritz Brasgow Department of Psychology University of Illinois 603 E. Daniel St. Champaign, IL 61920

- 1 Dr. Susan Embertson PSYCHOLOGY DEPARTMENT UNIVERSITY OF KANSAS Lawrence, KS 66045
- 1 ERIC Facility-Acquisitions 4833 Rugby Avenue Bethesda, MD 20014
- 1 Dr. Benjamin A. Fairbank, Jr. McFann-Gray & Associates, Inc. 5825 Callaghan Suite 225 San Antonio, TX 78228
- 1 Dr. Leonard Feldt Lindquist Center for Measurment University of Iowa Iowa City, IA 52242
- 1 Dr. Richard L. Ferguson
 The American College Testing Program
 P.O. Box 168
 Iowa City, IA 52240
- 1 Univ. Prof. Dr. Gerhard Fischer Liebiggasse 5/3 A 1010 Vienna AUSTRIA
- 1 Professor Donald Fitzgerald University of New England Armidale, New South Wales 2351 AUSTRALIA
- 1 Dr. Dexter Fletcher
 University of Oregon
 Department of Computer Science
 Eugene, DR 97403
- 1 Dr. John R. Frederiksen Bolt Beranet & Newman 50 Moulton Street Cambridge, MA 02138
- 1 Br. Janice Gifford University of Massachusetts School of Education Amberst, MA 01002

- 1 Dr. Robert Blaser
 Learning Research & Development Center
 University of Pittsburgh
 3939 D'Hara Street
 PITTSBURGH, PA 15260
- 1 Dr. Bert Green
 Johns Hopkins University
 Department of Psychology
 Charles & 34th Street
 Baltimore, MD 21218
- 1 DR. JAMES G. GREENO LRDC LMIVERSITY OF PITTSBURGH 3939 D'HARA STREET PITTSBURGH, PA 15213
- 1 Dr. Rom Hambleton School of Education University of Massachusetts Amberst, MA 01002
- 1 Dr. Delwyn Harnisch University of Illinois 242b Education Urbana, IL 61801
- 1 Dr. Paul Horst 677 & Street, \$184 Chula Vista, CA 90010
- 1 Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 603 East Daniel Street
 Champaign, IL 61820
- 1 Dr. Steven Hunka
 Department of Education
 University of Alberta
 Edmonton, Alberta
 CAMADA
- 1 Dr. Earl Hunt Dept. of Psychology University of Washington Seattle, WA 98105
- 1 Dr. Jack Hunter 2122 Coolidge St. Lansing, MI 48906

- 1 Br. Huynh Huynh College of Education University of South Carolina Columbia, SC 29208
- 1 Dr. Bouglas H. Jones
 Advanced Statistical Technologies
 Corporation
 10 Trafalgar Court
 Lawrenceville, NJ 08148
- I Professor John A. Keats
 Department of Psychology
 The University of Newcastle
 N.S.W. 2300
 AUSTRALIA
- 1 Dr. Scott Kelso Maskins Laboratories, Inc 270 Crown Street New Haven, CT 06510
- 1 CDR Robert S. Kennedy Canyon Research Group 1040 Wcodcock Road Suite 227 Orlando, FL 32803
- 1 Dr. William Koch
 University of Texas-Austin
 Heasurement and Evaluation Center
 Austin, TX 78703
- 1 Dr. Stephen Kosslyn 1236 William James Hall 33 Kirkland St. Cambridge, MA 02138
- 1 Dr. Alan Lesgold Learning R&D Center University of Pittsburgh 3939 O'Hara Street Pittsburgh, PA 15260
- 1 Dr. Michael Levine

 Department of Educational Psychology
 210 Education Bldg.

 University of Illinois

 Champaign, IL 61801

- 1 Dr. Charles Lewis
 Faculteit Sociale Metenschappen
 Rijksuniversiteit Groningen
 Oude Boteringestraat 23
 97126C Groningen
 Netherlands
- 1 Dr. Robert Linn College of Education University of Illinois Urbana, IL 61801
- 1 Mr. Phillip Livingston
 Systems and Applied Sciences Corporatio
 6811 Kenilworth Avenue
 Riverdale, MD 20840
- 1 Dr. Robert Lockman Center for Maval Analysis 200 North Beauregard St. Alexandria, VA 22311
- 1 Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08541
- 1 Dr. James Lumsden
 Department of Psychology
 University of Mestern Australia
 Medlands W.A. 6009
 AUSTRALIA
- 1 Dr. Don Lyon P. D. Box 44 Higley , AZ 85236
- 1 Dr. Gary Marco Stop 31-E Educational Testing Service Princeton, NJ 08451
- 1 Dr. Scott Maxwell
 Department of Psychology
 University of Notre Dame
 Notre Dame, IN 46556
- 1 Dr. Samuel T. Mayo Loyola University of Chicago B20 Morth Michigan Avenue Chicago, IL 60611

- 1 Mr. Robert McKinley
 American College Testing Programs
 P.O. Bcx 168
 Iowa City, IA 52243
- 1 Dr. Barbara Means Muman Resources Research Organization 300 North Washington Alexandria, VA 22314
- Professor Jason Millman Department of Education Stone Hall Cornell University Ithaca, NY 14853
- 1 Dr. Allen Munro Behavioral Technology Laboratories 1845 Elena Ave., Fourth Floor Redondc Beach, CA 90277
- 1 Dr. W. Alan Nicewander University of Oklahoma Department of Psychology Oklahoma City, DK 73069
- 1 Dr. Donald A Norman Cognitive Science, C-015 Univ. of California, San Diego La Jolla, CA 92093
- 1 Dr. Helvin R. Novick 356 Lindquist Center for Measurment University of Iowa Iowa City, IA 52242
- 1 Br. James Dison WICAT, Inc. 1875 Scuth State Street Orea, UT 84057
- 1 Dr. Jesse Orlansky Institute for Defense Analyses 1801 N. Beauregard St. Alexandria, VA 22311
- 1 Mayne M. Patience
 American Council on Education
 GED Testing Service, Suite 20
 One Dupont Cirle, NM
 Mashington, DC 20036

- 1 Dr. James A. Paulson Portland State University P.O. Box 751 Portland, OR 97207
- 1 Dr. James W. Pellegrino University of California, Santa Barbara Bept. of Psychology Santa Barabara , CA 93106
- 1 Dr. Mark D. Reckase ACT P. O. Box 168 Iowa City, IA 52243
- 1 Dr. Thomas Reynolds
 University of Texas-Dallas
 Marketing Department
 P. O. Box 688
 Richardson, TX 75080
- 1 Dr. Andrew M. Rose American Institutes for Research 1055 Thomas Jefferson St. NW Washington, DC 20007
- 1 Dr. Ernst Z. Rothkopf Bell Laboratories Murray Hill, NJ 07974
- 1 Dr. Lawrence Rudner 403 Elm Avenue Takoma Park, MD 20012
- 1 Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208
- 1 Frank L. Schmidt
 Department of Psychology
 Bldg. 86
 George Washington University
 Washington, DC 20052
- 1 Dr. Walter Schneider Psychology Department 603 E. Baniel Champaign, IL 61820

- 1 Lowell Schoer
 Psychological & Quantitative
 Foundations
 College of Education
 University of Iowa
 Iowa City, IA 52242
- 1 Dr. Kazuo Shigemasu 7-9-24 Kugenuma-Kaigan Fujusawa 251 JAPAN
- 1 Dr. Edwin Shirkey
 Department of Psychology
 University of Central Florida
 Orlando, FL 32016
- 1 Dr. William Sims Center for Naval Analysis 200 North Beauregard Street Alexandria, VA 22311
- 1 Dr. Robert Sternberg Dept. of Psychology Yale University Box 11A, Yale Station New Haven, CT 06520
- 1 Martha Stocking Educational Testing Service Princeton, NJ 08541
- 1 Dr. Peter Stoloff Center for Naval Analysis 200 North Beauregard Street Alexandria, VA 22311
- 1 David E. Stone, Ph.D. Hazeltine Corporation 7680 Old Springhouse Road McLean, VA 22102
- 1 Dr. William Stout University of Illinois Department of Mathematics Urbana, IL 61801
- 1 DR. PATRICK SUPPES
 INSTITUTE FOR MATHEMATICAL STUDIES IN
 THE SOCIAL SCIENCES
 STANFORD UNIVERSITY
 STANFORD, CA 94305

- 1 Dr. Hariharan Swaminathan Laboratory of Psychometric and Evaluation Research School of Education University of Massachusetts Amberst, MA 01003
- 1 Dr. Kikumi Tatsuoka Computer Based Education Research Lab 252 Engineering Research Laboratory Urbana, 1L 61801
- 1 Dr. Maurice Tatsuoka 220 Education Bldg 1310 S. Sixth St. Champaign, IL 61820
- 1 Dr. David Thissen Department of Psychology University of Kansas Lawrence, KS 66044
- 1 Dr. Douglas Towne
 Univ. of So. California
 Behavioral Technology Labs
 1845 S. Elena Ave.
 Redondo Beach, CA 90277
- 1 Dr. Robert Tsutakawa Department of Statistics University of Missouri Columbia, MO 65201
- 1 Dr. V. R. R. Uppuluri Union Carbide Corporation Muclear Bivision P. O. Box Y Oak Ridge, TN 37830
- 1 Dr. David Vale
 Assessment Systems Corporation
 2233 University Avenue
 Suite 310
 St. Paul, MN 55114
- i Dr. Kurt Van Lehn Ierox PARC 3333 Coyote Hill Road Palo Alto, CA 94304
- 1 Dr. Howard Mainer
 Bivision of Psychological Studies
 Educational Testing Service
 Princeton, NJ 08540

- 1 Dr. Michael T. Waller
 Department of Educational Psychology
 University of Wisconsin--Hilwaukee
 Milwaukee, WI 53201
- 1 Dr. Brian Waters HumRRD 300 North Washington Alexandria, VA 22314
- 1 Dr. David J. Meiss N660 Elliott Hall University of Minnesota 75 E. River Road Minneapolis, NN 55455
- 1 Br. Donald C. Weitzman Mitre Corporation 1820 Dolley Madison Blvd McLean, VA 22102
- 1 Dr. Christopher Wickens Department of Psychology University of Illinois Champaign, IL 61820
- 1 Dr. Rand R. Wilcox University of Southern California Department of Psychology Los Angeles, Cf 90007
- 1 German Military Representative ATTN: Molfgang Mildegrube Streitkraefteamt B-5300 Bonn 2 4000 Brandywine Street, MM Washington , DC 20016
- 1 Dr. Bruce Williams Department of Educational Psychology University of Illinois Urbana, IL 61801
- 1 Dr. Wendy Yen CTB/McGraw Hill Del Honte Research Park Honterey, CA 93940