Limit Order Execution Optimization with Reinforcement Learning

Mid-term thesis presentation

Marc Juchli

Table of contents

- 1. Motivation
- 2. Background
 - a. Order book
 - b. Match engine
 - c. Execution behaviour
- 3. Research objectives
- 4. Reinforcement Learning setup
- 5. Q-Learning approach
- 6. Feature engineering
 - a. Difficulties
 - b. Bids and Asks
- 7. Deep Q-Learning approach
- 8. Outlook

Motivation

Financial institutions buy or sell assets based on various reasons:

- Customer request
- Fundamental analysis
- Technical analysis
- ...
- → Invariable outcome is the decision to buy or sell assets.

But how?

Background – Order book

Terminology

Bid: price in a buy order
Ask: price in a sell order
Spread: gap between the best
bid and the ask price.

<u>Order</u>

side :: buy | sell

type :: limit | market

amount :: float price :: float

-1 -2 -3 -4

COUNT	AMOUNT	TOTAL	PRICE	PRICE	TOTAL	AMOUNT	COUNT
1	4.7	4.7	14,910	14,930	3.9	3.9	3
2	2.2	7.0	14,900	14,940	3.9	0.0	1
2	1.9	9.0	14,880	14,950	7.8	3.8	3
1	0.1	9.1	14,870	14,960	9.0	1.2	1
2	0.1	9.2	14,860	14,970	13.2	4.1	5
1	0.2	9.4	14,840	14,980	14.8	1.6	3
1	0.0	9.4	14,830	14,990	16.1	1.2	2
2	1.5	11.0	14,820	15,000	39.5	23.4	7
37	28.2	39.2	14,800	15,010	43.1	3.5	3
4	1.9	41.1	14,790	15,040	43.1	0.0	1
8	2.9	44.0	14,780	15,060	44.3	1.1	5
5	1.0	45.1	14,770	15,070	46.0	1.7	1
2	3.1	48.3	14,760	15,080	50.7	4.7	4
13	4.5	52.8	14,750	15,090	51.4	0.7	1
8	1.6	54.5	14,740	15,100	53.6	2.1	2
6	0.0	54.6	14,730	15,110	54.1	0.5	1
7	2.5	57.1	14,720	15,120	56.8	2.6	3
9	3.2	60.3	14,710	15,130	56.8	0.0	1
31	4.8	65.2	14,700	15,150	56.8	0.0	1
5	0.1	65.3	14,690	15,160	57.9	1.0	1
7	20.2	85.5	14,680	15,180	59.8	1.9	4
4	15.0	100.5	14,670	15,190	59.9	0.0	1
6	6.7	107.3	14,660	15,200	104.2	44.3	10
19	4.5	111.8	14,650	15,220	105.6	1.3	2

Action

+1 +2

https://www.bitfinex.com/t/BTC:USD

Background – Match Engine

Action

Order Types:

- 1. Limit(price, amount)
- 2. Market(amount)

Action:

Order at limit level

Result:

Execution (e.g. Trade)

COUNT	AMOUNT	TOTAL	PRICE	PRICE	TOTAL	AMOUNT	COUNT	Acti
	4.7	4.7	14,910	14,930	3.9	3.9	3	+1
2	2.2	7.0	14,900	14,940	3.9	0.0	1	+2
2	1.9	9.0	14,880	14,950	7.8	3.8	3	+3
	0.1	9.1	14,870	14,960	9.0	1.2	11	+4
2	0.1	9.2	14,860	14,970	13.2	4.1	5	
	0.2	9.4	14,840	14,980	14.8	1.6	3	
	0.0	9.4	14,830	14,990	16.1	1.2	2	
2	1.5	11.0	14,820	15,000	39.5	23.4	7	
37	28.2	39.2	14,800	15,010	43.1	3.5	3	
4	1.9	41.1	14,790	15,040	43.1	0.0	1	
8	2.9	44.0	14,780	15,060	44.3	1.1	5	
5	1.0	45.1	14,770	15,070	46.0	1.7	1	
2	3.1	48.3	14,760	15,080	50.7	4.7	4	
13	4.5	52.8	14,750	15,090	51.4	0.7	1	
8	1.6	54.5	14,740	15,100	53.6	2.1	2	
6	0.0	54.6	14,730	15,110	54.1	0.5	1	
	2.5	57.1	14,720	15,120	56.8	2.6	3	
9	3.2	60.3	14,710	15,130	56.8	0.0	1	
31	4.8	65.2	14,700	15,150	56.8	0.0	1	
	0.1	65.3	14,690	15,160	57.9	1.0	1	
	20.2	85.5	14,680	15,180	59.8	1.9	4	
4	15.0	100.5	14,670	15,190	59.9	0.0	1	
6	6.7	107.3	14,660	15,200	104.2	44.3	10	
19	4.5	111.8	14,650	15,220	105.6	1.3	2	

https://www.bitfinex.com/t/BTC:USD

Background – Execution behaviour

"How should one buy (respectively sell) V shares of a given asset over a time horizon H while spending the least (respectively, receiving the most) of the counter asset (e.g. USD)."

$$P_{ ext{VWAP}} = rac{\sum_{j} P_{j} \cdot Q_{j}}{\sum_{j} Q_{j}}$$

Return: Price_t0 - VWAP

Background – Execution behaviour

Research objectives

- How should one build a reinforcement learning environment in order to buy (respectively sell) V shares of a given asset over a time horizon H while spending the least (respectively, receiving the most) of the counter asset?
- How can data, which is derived from a limit order book, be used as features in a reinforcement learning environment in order to contribute to the optimization of order execution?

RL – Setup

State:

(runtime, inventory, features*)

Action:

limit level (basis points relative to spread)

Reward:

- Buy: Price_t0 VWAP_executed
- Sell: VWAP_executed Price_t0

"(Approximately) Markovian nature of trade execution: if our state space is properly defined, the optimal action at any given point in time is (approximately) independent of any previous actions." [Kearns et. al.]

E.g. executions do not affect the market for future executions.

RL – Environment

Q-Learning

<u>Bellman equation:</u> the maximum future reward is the reward the agent received for entering the current state *s* plus the maximum future reward for the next state *s'*.

$$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$$

Q-Learning: we can iteratively approximate Q values using the Bellman equation described above.

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a} Q_t(s_{t+1}, a) - Q_t(s_t, a_t))$$

Q-Table:

State: (runtime, inventory, features*)	Action	Value	

Q-Learning – Results

Buy without market variables.

30 minute training and test set (subsequent)

State: (runtime, inventory)

Inventory segmentation: [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

epsilon=0.4, alpha=0.3, gamma=0.8

Time segmentation:

Q-Learning – Conclusion

- + Fast
- + Capable of optimizing on a clear price trend
- Not able to adapt to unexpected trend changes
- Feature limitations

Feature Engineering – Difficulties

Obvious features:

- Volume
- Price fluctuation

Derived from the order book time series and will most likely not appear in the same constellation more than once.

Approximation is required and therefore the capabilities of <u>value iteration</u> (Q-Learning) are quickly exceeded due to state space.

Possible approach: <u>function approximation</u>.

Feature Engineering – Order Events

Feature Engineering – Order Events

State: (lookbackWindow m, 2*bookSide n, 2)

Deep Q-Learning

State: (lookbackWindow m, 2*bookSide n, 2)

Loss function: $\frac{1}{2} \cdot [r + max_{a_{t+1}}(Q(s_{t+a}, a_{t+1}; \theta_{t-1})) - Q(s, a; \theta)]^2$ prediction

Experience Replay: train on random mini-batches

Conclusion & Outlook

- Building the environment for order execution is hard
- Vast amount of order book data is challenging
- Q-Learning is limited (state space)
- Current results are moderate
- Deep Q-Learning is flexible and promising

- Focus on feature engineering
- Evaluation of Deep Q-Learning
- Define research question more precisely