

Figure 9

The relationship between one social group and the perceived problems.

Figure 10

The relationship between one problem and its possible solutions.

Some relevant social groups, problems, and solutions in the developmental process of the Penny Farthing bicycle. Because of lack of space, not all artifacts, relevant social groups, problems, and solutions are shown.

Figure 12
A solution to the women's dressing problem with respect to the high-wheeled
Ordinary. This solution obviously has technical and athletic aspects. Probably,
the athletic aspects prevented the solution from stabilizing. The set-up character
of the photograph suggests a rather limited practical use. Photograph courtesy of the
Trustees of the Science Museum, London.

Figure 13
Lawson's Bicyclette (1879). Photograph courtesy of the Trustees of the Science Museum, London.

only technological ones but also judicial or even moral ones (for example, changing attitudes toward women wearing trousers).

Following the developmental process in this way, we see growing and diminishing degrees of stabilization of the different artifacts.³³ In principle, the degree of stabilization is different in different social groups. By using the concept of stabilization, we see that the "invention" of the safety bicycle was not an isolated event (1884), but a nineteen-year process (1879–98). For example, at the beginning of this period the relevant groups did not see the "safety bicycle" but a wide range of bi- and tricycles—and, among those, a rather ugly crocodilelike bicycle with a relatively low front wheel and rear chain drive (Lawson's Bicyclette; figure 13). By the end of the period, the phrase "safety bicycle" denoted a low-wheeled bicycle with rear chain drive, diamond frame, and air tires. As a result of the stabilization of the artifact after 1898, one did not need to specify these details: They were taken for granted as the essential "ingredients" of the safety bicycle.

We want to stress that our model is not used as a mold into which the empirical data have to be forced, *coûte que coûte*. The model has been developed from a series of case studies and not from purely philosophical or theoretical analysis. Its function is primarily heuristic—to bring out all the aspects relevant to our purposes. This is not to say that there are no explanatory and theoretical aims,

analogous to the different stages of the EPOR (Bijker 1984 and this volume). And indeed, as we have shown, this model already does more than merely describe technological development: It highlights its multidirectional character. Also, as will be indicated, it brings out the interpretative flexibility of technological artifacts and the role that different closure mechanisms may play in the stabilization of artifacts.

The Social Construction of Facts and Artifacts

Having described the two approaches to the study of science and technology we wish to draw on, we now discuss in more detail the parallels between them. As a way of putting some flesh on our discussion we give, where appropriate, empirical illustrations drawn from our own research.

Interpretative Flexibility

The first stage of the EPOR involves the demonstration of the interpretative flexibility of scientific findings. In other words, it must be shown that different interpretations of nature are available to scientists and hence that nature alone does not provide a determinant outcome to scientific debate.³⁴

In SCOT, the equivalent of the first stage of the EPOR would seem to be the demonstration that technological artifacts are culturally constructed and interpreted; in other words, the interpretative flexibility of a technological artifact must be shown. By this we mean not only that there is flexibility in how people think of or interpret artifacts but also that there is flexibility in how artifacts are designed. There is not just one possible way or one best way of designing an artifact. In principle, this could be demonstrated in the same way as for the science case, that is, by interviews with technologists who are engaged in a contemporary technological controversy. For example, we can imagine that, if interviews had been carried out in 1890 with the cycle engineers, we would have been able to show the interpretative flexibility of the artifact "air tyre." For some, this artifact was a solution to the vibration problem of small-wheeled vehicles:

[The air tire was] devised with a view to afford increased facilities for the passage of wheeled vehicles—chiefly of the lighter class such for instance as velocipedes, invalid chairs, ambulances—over roadways and paths, especially when these latter are of rough or uneven character. (Dunlop 1888, p. 1)

For others, the air tire was a way of going faster (this is outlined in

more detail later). For yet another group of engineers, it was an ugly looking way of making the low-wheeler even less safe (because of side-slipping) than it already was. For instance, the following comment, describing the Stanley Exhibition of Cycles, is revealing:

The most conspicuous innovation in the cycle construction is the use of pneumatic tires. These tires are hollow, about 2 in. diameter, and are inflated by the use of a small air pump. They are said to afford most luxurious riding, the roughest macadam and cobbles being reduced to the smoothest asphalte. Not having had the opportunity of testing these tires, we are unable to speak of them from practical experience; but looking at them from a theoretical point of view, we opine that considerable difficulty will be experienced in keeping the tires thoroughly inflated. Air under pressure is a troublesome thing to deal with. From the reports of those who have used these tires, it seems that they are prone to slip on muddy roads. If this is so, we fear their use on rear-driving safeties—which are all more or less addicted to sideslipping—is out of the question, as any improvement in this line should be to prevent side slip and not to increase it. Apart from these defects, the appearance of the tires destroys the symmetry and graceful appearance of a cycle, and this alone is, we think, sufficient to prevent their coming into general use. (Stanley Exhibition of Cycles, 1890, p. 107)

And indeed, other artifacts were seen as providing a solution for the vibration problem, as the following comment reveals:

With the introduction of the rear-driving safety bicycle has arisen a demand for anti-vibration devices, as the small wheels of these machines are conductive to considerable vibration, even on the best roads. Nearly every exhibitor of this type of machine has some appliance to suppress vibration. (Stanley Exhibition of Cycles, 1889, pp. 157–158)

Most solutions used various spring constructions in the frame, the saddle, and the steering-bar (figure 14). In 1896, even after the safety bicycle (and the air tire with it) achieved a high degree of stabilization, "spring frames" were still being marketed.

It is important to realize that this demonstration of interpretative flexibility by interviews and historical sources is only one of a set of possible methods. At least in the study of technology, another method is applicable and has actually been used. It can be shown that different social groups have radically different interpretations of one technological artifact. We call these differences "radical" because the content of the artifact seems to be involved. It is something more than what Mulkay rightly claims to be rather easy—"to show that the social meaning of television varies with and depends upon the social

Figure 14 Whippet spring frame (1885). Photograph courtesy of the Trustees of the Science Museum, London.

context in which it is employed." As Mulkay notes: "It is much more difficult to show what is to count as a 'working television set' is similarly context-dependent in any significant respect" (Mulkay 1979a, p. 80).

We think that our account—in which the different interpretations by social groups of the content of artifacts lead by means of different chains of problems and solutions to different further developments involves the content of the artifact itself. Our earlier example of the development of the safety bicycle is of this kind. Another example is variations within the high-wheeler. The high-wheeler's meaning as a virile, high-speed bicycle led to the development of larger front wheels-for with a fixed angular velocity one way of getting a higher translational velocity over the ground was by enlarging the radius. One of the last bicycles resulting from this strand of development was the Rudge Ordinary of 1892, which had a 56-inch wheel and air tire. But groups of women and of elderly men gave quite another meaning to the high-wheeler. For them, its most important

Figure 15 Singer Xtraordinary bicycle (1878), Photograph courtesy of the Trustees of the Science Museum, London.

characteristic was its lack of safety:

Owing to the disparity in wheel diameters and the small weight of the backbone and trailing wheel, also to the rider's position practically over the centre of the wheel, if the large front wheel hit a brick or large stone on the road, and the rider was unprepared, the sudden check to the wheel usually threw him over the handlebar. For this reason the machine was regarded as dangerous, and however enthusiastic one may have been about the ordinary—and I was an enthusiastic rider of it once—there is no denying that it was only possible for comparatively young and athletic men. (Grew 1921, p. 8)

This meaning gave rise to lowering the front wheel, moving back the saddle, and giving the front fork a less upright position. Via another chain of problems and solutions (see figure 7), this resulted in artifacts such as Lawson's Bicyclette (1879) and the Xtraordinary (1878; figure 15). Thus there was not one high-wheeler; there was the macho machine, leading to new designs of bicycles with even higher front wheels, and there was the *unsafe* machine, leading to new designs of bicycle with lower front wheels, saddles moved backward, or reversed order of small and high wheel. Thus the interpretative flexibility of the artifact Penny-farthing is materialized in quite different design lines.

Closure and Stabilization

The second stage of the EPOR concerns the mapping of mechanisms for the closure of debate—or, in SCOT, for the stabilization of an artifact. We now illustrate what we mean by a closure mechanism by giving examples of two types that seem to have played a role in cases with which we are familiar. We refer to the particular mechanisms on which we focus as rhetorical closure and closure by redefinition of problem.

Rhetorical Closure Closure in technology involves the stabilization of an artifact and the "disappearance" of problems. To close a technological "controversy," one need not solve the problems in the common sense of that word. The key point is whether the relevant social groups see the problem as being solved. In technology, advertising can play an important role in shaping the meaning that a social group gives to an artifact. Thus, for instance, an attempt was made to "close" the "safety controversy" around the high-wheeler by simply claiming that the artifact was perfectly safe. An advertisement for the "Facile" (sic!) Bicycle (figure 16) reads:

Bicyclists! Why risk your limbs and lives on high Machines when for road work a 40 inch or 42 inch "Facile" gives all the advantages of the other, together with almost absolute safety. (*Illustrated London News*, 1880; cited in Woodforde 1970, p. 60)

This claim of "almost absolute safety" was a rhetorical move, considering the height of the bicycle and the forward position of the rider, which were well known to engineers at the time to present problems of safety.

Closure by Redefinition of the Problem We have already mentioned the controversy around the air tire. For most of the engineers it was a theoretical and practical monstrosity. For the general public, in the beginning it meant an aesthetically awful accessory:

Messenger boys guffawed at the sausage tyre, factory ladies squirmed with merriment, while even sober citizens were sadly moved to mirth at a comic-

Figure 16
Geared Facile bicycle (1888). Photograph courtesy of the Trustees of the Science Museum, London.

ality obviously designed solely to lighten the gloom of their daily routine. (Woodforde 1970, p. 89)

For Dunlop and the other protagonists of the air tire, originally the air tire meant a solution to the vibration problem. However, the group of sporting cyclists riding their high-wheelers did not accept that as a problem at all. Vibration presented a problem only to the (potential) users of the low-wheeled bicycle. Three important social groups were therefore opposed to the air tire. But then the air tire was mounted on a racing bicycle. When, for the first time, the tire was used at the racing track, its entry was hailed with derisive laughter. This was, however, quickly silenced by the high speed achieved, and there was only astonishment left when it outpaced all rivals (Croon 1939). Soon handicappers had to give racing cyclists on high-wheelers a considerable start if riders on air-tire low-wheelers were entered. After a short period no racer of any pretensions troubled to compete on anything else (Grew 1921).

What had happened? With respect to two important groups, the sporting cyclists and the general public, closure had been reached, but not by convincing those two groups of the feasibility of the air tire in its meaning as an antivibration device. One can say, we think, that

the meaning of the air tire was translated36 to constitute a solution to quite another problem: the problem of how to go as fast as possible. And thus, by redefining the key problem with respect to which the artifact should have the meaning of a solution, closure was reached for two of the relevant social groups. How the third group, the engineers, came to accept the air tire is another story and need not be told here. Of course, there is nothing "natural" or logically necessary about this form of closure. It could be argued that speed is not the most important characteristic of the bicycle or that existing cycle races were not appropriate tests of a cycle's "real" speed (after all, the idealized world of the race track may not match everyday road conditions, any more than the Formula-1 racing car bears on the performance requirements of the average family sedan). Still, bicycle races have played an important role in the development of the bicycle, and because racing can be viewed as a specific form of testing, this observation is much in line with Constant's recent plea to pay more attention to testing procedures in studying technology (Constant 1983).

The Wider Context

Finally, we come to the third stage of our research program. The task here in the area of technology would seem to be the same as for science—to relate the content of a technological artifact to the wider sociopolitical milieu. This aspect has not yet been demonstrated for the science case,³⁷ at least not in contemporaneous sociological studies.³⁸ However, the SCOT method of describing technological artifacts by focusing on the meanings given to them by relevant social groups seems to suggest a way forward. Obviously, the sociocultural and political situation of a social group shapes its norms and values, which in turn influence the meaning given to an artifact. Because we have shown how different meanings can constitute different lines of development, SCOT's descriptive model seems to offer an operationalization of the relationship between the wider milieu and the actual content of technology. To follow this line of analysis, see Bijker (this volume).

Conclusion

In this chapter we have been concerned with outlining an integrated social constructivist approach to the empirical study of science and technology. We reviewed several relevant bodies of literature and strands of argument. We indicated that the social constructivist approach is a flourishing tradition within the sociology of science and that it shows every promise of wider application. We reviewed the literature on the science-technology relationship and showed that here, too, the social constructivist approach is starting to bear fruit. And we reviewed some of the main traditions in technology studies. We argued that innovation studies and much of the history of technology are unsuitable for our sociological purposes. We discussed some recent work in the sociology of technology and noted encouraging signs that a new wave of social constructivist case studies is beginning to emerge.

We then outlined in more detail the two approaches—one in the sociology of scientific knowledge (EPOR) and one in the field of sociology of technology (SCOT)—on which we base our integrated perspective. Finally, we indicated the similarity of the explanatory goals of the two approaches and illustrated these goals with some examples drawn from technology. In particular, we have seen that the concepts of interpretative flexibility and closure mechanism and the notion of social group can be given empirical reference in the social study of technology.

As we have noted throughout this chapter, the sociology of technology is still underdeveloped, in comparison with the sociology of scientific knowledge. It would be a shame if the advances made in the latter field could not be used to throw light on the study of technology. On the other hand, in our studies of technology it appeared to be fruitful to include several social groups in the analysis, and there are some indications that this method may also bear fruit in studies of science. Thus our integrated approach to the social study of science and technology indicates how the sociology of science and the sociology of technology might benefit each other.

But there is another reason, and perhaps an even more important one, to argue for such an integrated approach. And this brings us to a question that some readers might have expected to be dealt with in the first paragraph of this chapter, namely, the question of how to distinguish science from technology. We think that it is rather unfruitful to make such an a priori distinction. Instead, it seems worthwhile to start with commonsense notions of science and technology and to study them in an integrated way, as we have proposed. Whatever interesting differences may exist will gain contrast within such a program. This would constitute another concrete result of the integrated study of the social construction of facts and artifacts.

This chapter is a shortened and updated version of Pinch and Bijker (1984).

We are grateful to Henk van den Belt, Ernst Homburg, Donald MacKenzic, and Steve Woolgar for comments on an earlier draft of this chapter. We would like to thank the Stiftung Volkswagen, Federal Republic of Germany, the Twente University of Technology, The Netherlands, and the UK SSRC (under grant G/00123/0072/1) for financial support.

- 1. The science technology divorce seems to have resulted not so much from the lack of overall analytical goals within "science studies" but more from the contingent demands of carrying out empirical work in these areas. To give an example, the new sociology of scientific knowledge, which attempts to take into account the actual content of scientific knowledge, can best be carried out by researchers who have some training in the science they study, or at least by those who are familiar with an extensive body of technical literature (indeed, many researchers are ex-natural scientists). Having gained such expertise, the researchers tend to stay within the domain where that expertise can best be deployed. Similarly, R&D studies and innovation studies, in which the analysis centers on the firm and the marketplace. have tended to demand the specialized competence of economists. Such disparate bodies of work do not easily lead to a more integrated conception of science and technology. One notable exception is Ravetz (1971). This is one of the few works of recent science studies in which both science and technology and their differences are explored within a common framework.
- 2. A comprehensive review can be found in Mulkay and Milič (1980).
- 3. For a recent review of the sociology of scientific knowledge, see Collins (1983c).
- 4. For a discussion of the earlier work (largely associated with Robert Merton and his students), see Whitley (1972).
- 5. For more discussion, see Barnes (1974), Mulkay (1979b), Collins (1983c), and Barnes and Edge (1982). The origins of this approach can be found in Fleck (1935).
- 6. See, for example, Latour and Woolgar (1979), Knorr-Cetina (1981), Lynch (1985a), and Woolgar (1982).
- 7. See, for example, Collins (1975), Wynne (1976), Pinch (1977, 1986), Pickering (1984), and the studies by Pickering, Harvey, Collins, Travis, and Pinch in Collins (1981a).
- 8. Collins and Pinch (1979, 1982).
- 9. Robbins and Johnston (1976). For a similar analysis of public science controversies, see Gillespie et al. (1979) and McCrea and Markle (1984).
- 10. Some of the most recent debates can be found in Knorr-Cetina and Mulkay (1983).
- 11. The locus classicus is the study by Hessen (1931).
- 12. Sec, for example, de Solla Price (1969), Jevons (1976), and Mayr (1976).
- 13. See, for example, Schumpeter (1928, 1942), Schmookler (1966, 1972), Freeman (1974, 1977), and Scholz (1976).
- 14. See, for example, Rosenberg (1982), Nelson and Winter (1977, 1982), and Dosi (1982, 1984). A study that preceded these is Rosenberg and Vincenti (1978).

- 15. Adapted from Uhlmann (1978), p. 45.
- 16. For another critique of these linear models, see Kline (1985).
- 17. Shapin writes that "a proper perspective of the uses of science might reveal that sociology of knowledge and history of technology have more in common than is usually thought" (1980, p. 132). Although we are sympathetic to Shapin's argument, we think the time is now ripe for asking more searching questions of historical studies.
- 18. Manuals describing resinous materials do mention Bakelite but not with the amount of attention that, retrospectively, we would think to be justified. Professor Max Bottler, for example, devotes only one page to Bakelite in his 228-page book on resins and the resin industry (Bottler 1924). Even when Bottler concentrates in another book on the synthetic resinous materials, Bakelite does not receive an indisputable "first place." Only half of the book is devoted to phenol/formaldehyde condensation products, and roughly half of that part is devoted to Bakelite (Bottler 1919). See also Matthis (1920).
- 19. For an account of other aspects of Bakelite's success, see Bijker (this volume).
- 20. See, for example, Constant (1980), Hughes (1983), and Hanieski (1973).
- 21. See, for example, Noble (1979), Smith (1977), and Lazonick (1979).
- 22. See, for example, Vincenti (1986).
- 23. There is an American tradition in the sociology of technology. See, for example, Gilfillan (1935), Ogburn (1945), Ogburn and Meyers Nimkoff (1955), and Westrum (1983). A fairly comprehensive view of the present state of the art in German sociology of technology can be obtained from Jokisch (1982). Several studies in the sociology of technology that attempt to break with the traditional approach can be found in Krohn et al. (1978).
- 24. Dosi uses the concept of technological trajectory, developed by Nelson and Winter (1977); see also Van den Belt and Rip (this volume). Other approaches to technology based on Kuhn's idea of the community structure of science are mentioned by Bijker (this volume). See also Constant (this volume) and the collection edited by Laudan (1984a).
- 25. One is reminded of the first blush of Kuhnian studies in the sociology of science. It was hoped that Kuhn's "paradigm" concept might be straightforwardly employed by sociologists in their studies of science. Indeed there were a number of studies in which attempts were made to identify phases in science, such as preparadigmatic, normal, and revolutionary. It soon became apparent, however, that Kuhn's terms were loosely formulated, could be subject to a variety of interpretations, and did not lend themselves to operationalization in any straightforward manner. See, for example, the inconclusive discussion over whether a Kuhnian analysis applies to psychology in Palermo (1973). A notable exception is Barnes's contribution to the discussion of Kuhn's work (Barnes 1982b).
- 26. For a valuable review of Marxist work in this area, see MacKenzie (1984).
- 27. For a provisional report of this study, see Bijker et al. (1984). The five artifacts that are studied are Bakelite, fluorescent lighting, the safety bicycle, the Sulzer loom, and the transistor. See also Bijker (this volume).
- 28. Work that might be classified as falling within the EPOR has been carried out primarily by Collins, Pinch, and Travis at the Science Studies Centre, University of

- Bath, and by Harvey and Pickering at the Science Studies Unit, University of Edinburgh. See, for example, the references in note 7.
- 29. See, for example, Bijker and Pinch (1983) and Bijker (1984 and this volume). Studies by Van den Belt (1985), Schot (1985, 1986), Jelsma and Smit (1986), and Elzen (1985, 1986) are also based on SCOT.
- 30. Constant (1980) used a similar evolutionary approach. Both Constant's model and our model seem to arise out of the work in evolutionary epistemology; see, for example, Toulmin (1972) and Campbell (1974). Elster (1983) gives a review of evolutionary models of technical change. See also Van den Belt and Rip (this volume).
- 31. It may be useful to state explicitly that we consider bicycles to be as fully fledged a technology as, for example, automobiles or aircraft. It may be helpful for readers from outside notorious cycle countries such as The Netherlands, France, and Great Britain to point out that both the automobile and the aircraft industries are, in a way, descendants from the bicycle industry. Many names occur in the histories of both the bicycle and the autocar: Triumph, Rover, Humber, and Raleigh, to mention but a few (Caunter 1955, 1957). The Wright brothers both sold and manufactured bicycles before they started to build their flying machines—mostly made out of bicycle parts (Gibbs-Smith 1960).
- 32. There is no cookbook recipe for how to identify a social group. Quantitative instruments using citation data may be of some help in certain cases. More research is needed to develop operationalizations of the notion of "relevant social group" for a variety of historical and sociological research sites. See also Law (this volume) on the demarcation of networks and Bijker (this volume).
- 33. Previously, two concepts have been used that can be understood as two distinctive concepts within the broader idea of stabilization (Bijker et al. 1984). Reification was used to denote social existence—existence in the consciousness of the members of a certain social group. Economic stabilization was used to indicate the economic existence of an artifact—its having a market. Both concepts are used in a continuous and relative way, thus requiring phrases such as "the degree of reification of the high-wheeler is higher in the group of young men of means and nerve than in the group of elderly men."
- 34. The use of the concepts of interpretative flexibility and rhetorical closure in science cases is illustrated by Pinch and Bijker (1984).
- 35. Advertisements seem to constitute a large and potentially fruitful data source for empirical social studies of technology. The considerations that professional advertising designers give to differences among various "consumer groups" obviously fit our use of different relevant groups. See, for example, Schwartz Cowan (1983) and Bijker (this volume).
- 36. The concept of translation is fruitfully used in an extended way by Callon (1980b, 1981b, 1986), Callon and Law (1982), and Latour (1983, 1984).
- 37. A model of such a "stage 3" explanation is offered by Collins (1983a).
- 38. Historical studies that address the third stage may be a useful guide here. See, for example, MacKenzie (1978), Shapin (1979, 1984), and Shapin and Schaffer (1985).

GradBus 14 .5 .86375 1987

© 1987 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

This book was set in Baskerville by Asco Trade Typesetting Ltd., Hong Kong, and printed and bound by Halliday Lithography in the United States of America.

Library of Congress Cataloging-in-Publication Data

The Social construction of technological systems.

Papers of a workshop held at the University of Twente, The Netherlands, in July 1984.

Bibliography; p.

Includes indexes,

- 1. Technology—Social aspects—Congresses.
- I. Bijker, Wiebe E. II. Hughes, Thomas Parke. III. Pinch, T. J. (Trevor J.) 86-27600

T14,5,S6375 1987 303.4'83

ISBN 0-262-02262-1

To the memory of Peter Boskma

The Social Construction of Technological Systems

New Directions in the Sociology and History of Technology

edited by Wiebe E. Bijker, Thomas P. Hughes, and Trevor J. Pinch