PSTAT 131/231: Introduction to Statistical Machine Learning

Guo Yu

Lecture 3
Bias-Variance Tradeoff cont'd, k-Nearest Neighbors

ISL Chapter 2, 2.3 Introduction to R
ESL (for 231 students) Chapter 2, Chapter 7.1 - 7.3

Homework 1 out

Due Monday, Oct 11, 2021 at 23:59

Data processing / analysis in R

Start early

Before we start...

Cloud based Rstudio Service https://pstat131.lsit.ucsb.edu/

Log in with your UCSB NetID

After several hours of inactivity, you will be logged out automatically

Save your work if you are not going to work for a while

All R packages needed in this class have been installed

Please post on Piazza if you notice any issues, or want any package that is not installed

Occasionally it takes 1~2 mins to log in

Before we start...

Cloud based Rstudio Service https://pstat131.lsit.ucsb.edu/

This could occur when logging in. Don't worry about it.

Last time...

Machine Learning vs Statistical Machine Learning

Supervised Learning vs Unsupervised Learning

Regression vs Classification

Model flexibility vs interpretability

Training MSE vs Test MSE

Bias-variance decomposition —> Bias-variance tradeoff

Bias-variance decomposition

$$Y = f(X) + \varepsilon$$
non-random zero-mean noise

$$E\left[\left(y_0 - \hat{f}(\mathbf{x}_0)\right)^2\right] = Var(\hat{f}(\mathbf{x}_0)) + \left[Bias(\hat{f}(\mathbf{x}_0))\right]^2 + Var(\varepsilon),$$

Bias² + Irreducible error Expected test MSE = Variance

$$= \mathbf{E} \left[\left(\hat{f}(\mathbf{x}_0) - \mathbf{E} \hat{f}(\mathbf{x}_0) \right)^2 \right] + \left[\mathbf{E} \left[\hat{f}(\mathbf{x}_0) \right] - f(\mathbf{x}_0) \right]^2 + \mathbf{Var}(\varepsilon)$$

If we take

$$\hat{f}(\mathbf{x}_0) = \mathbf{E} \left[Y | X = \mathbf{x}_0 \right]$$

$$\left[\left(\hat{f}(\mathbf{x}_0) - \mathbf{E}\hat{f}(\mathbf{x}_0) \right)^2 \right] = 0 \quad \text{and} \quad \left[\mathbf{E} \left[\hat{f}(\mathbf{x}_0) \right] - f(\mathbf{x}_0) \right]^2 = 0$$

Bias-variance decomposition

 $Y = f(X) + \varepsilon$ non-random zero-mean noise

If we take

$$\hat{f}(\mathbf{x}_0) = \mathbf{E} \left[Y | X = \mathbf{x}_0 \right]$$

$$E\left[\left(y_0 - \hat{f}(\mathbf{x}_0)\right)^2\right] = Var(\hat{f}(\mathbf{x}_0)) + \left[Bias(\hat{f}(\mathbf{x}_0))\right]^2 + Var(\varepsilon),$$

Expected test MSE = Variance + Bias² + Irreducible error

$$= \mathbf{E}\left[\left(\hat{f}(\mathbf{x}_0) - \mathbf{E}\hat{f}(\mathbf{x}_0)\right)^2\right] + \left[\mathbf{E}\left[\hat{f}(\mathbf{x}_0)\right] - f(\mathbf{x}_0)\right]^2 + \mathbf{Var}(\varepsilon)$$

minimized!

$$= Var(\varepsilon)$$

Irreducible error

Bias-variance decomposition

$$Y = f(X) + \varepsilon$$
 non-random zero-mean noise

The "best" we can do

$$\hat{f}(\mathbf{x}_0) = \mathbf{E} \left[Y | X = \mathbf{x}_0 \right]$$

Unknown in practice!!

Because the joint distribution of (X, Y) is unknown in practice

Today...

Machine Learning vs Statistical Machine Learning

Supervised Learning vs Unsupervised Learning

Regression vs Classification

Training error rate vs Test error rate

Bias-variance tradeoff

kNN methods

Classification setting

$$y_1, ..., y_n$$
: class label (qualitative), i.e., $y_1 = \deg, y_2 = \cot, y_3 = \cot, ..., y_n = \deg$

$$\hat{y}_1,...,\hat{y}_n$$
: predicted class label using \hat{f} , i.e., $\hat{y}_1=\deg,\hat{y}_2=\deg,\hat{y}_3=\cot,...,\hat{y}_n=\cot$

$$\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ip})$$

Training error rate

Training set
$$\{(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),...,(\mathbf{x}_n,y_n)\}$$

how well does \hat{f} learn?

Indicator function

$$I(y_i \neq \hat{y}_i) = \begin{cases} 1 & \text{if} \quad y_i \neq \hat{y}_i \\ 0 & \text{if} \quad y_i = \hat{y}_i \end{cases}$$

Training error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

Training Error Rate

predicted class label that \hat{f} gives for the ith training observation

fraction of incorrect classifications in training set

Test error rate

Again, we are less interested in how \hat{f} performs on training set

Consider test set $\{(\tilde{\mathbf{x}}_1, \tilde{y}_1), (\tilde{\mathbf{x}}_2, \tilde{y}_2), ..., (\tilde{\mathbf{x}}_m, \tilde{y}_m)\}$, not seen or used to train \hat{f}

Test error rate
$$=\frac{1}{n}\sum_{i=1}^{n}I\left(\tilde{y}_{i}\neq\hat{\tilde{y}}_{i}\right)$$

Test Error Rate

predicted class label that \hat{f} gives for the ith test observation

fraction of incorrect classifications in test set

Training error rate vs Test error rate

Training set

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$$

Training error rate

$$\frac{1}{n} \sum_{i=1}^{n} I\left(y_i \neq \hat{y}_i\right)$$

predicted class label that \hat{f} gives for the ith training observation

Test set

$$\{(\tilde{\mathbf{x}}_1, \tilde{y}_1), (\tilde{\mathbf{x}}_2, \tilde{y}_2), ..., (\tilde{\mathbf{x}}_m, y_m)\}$$

Test error rate

$$\frac{1}{n} \sum_{i=1}^{n} I\left(\tilde{y}_i \neq \hat{\tilde{y}}_i\right)$$

predicted class label that \hat{f} gives for the ith test observation

 \hat{f} is obtained on the training set!

Same discussion as in the regression setting

A method that has lowest training error rate does NOT necessarily imply that it also has the lowest test error rate

Higher model flexibility → lower training error rate

Higher model flexibility → lower test error rate

Overfitting = Large test error rate + small training error rate

Estimating test error rate

Computing training error rate is easy... computing test error rate is NOT easy!

What should we do when test set is not available?

Cross-validation:

a method for estimating test error rate using only training data!

later in the course...

Bias-variance tradeoff

Still want to simultaneously achieve low variance and low bias

A simple model → high bias + low variance

A flexible model → low bias + high variance

Challenge: find a method for which both the variance and bias are low

The Bayes classifier

In classification setting, the "best" we can do

$$\hat{y}_0 = \operatorname{argmax}_j \left\{ \operatorname{Prob} \left(Y = j \, | \, X = \mathbf{x}_0 \right) \right\}$$

$$\text{conditional probability of } Y = j,$$

$$\text{given the observed predictor } \mathbf{x}_0$$

Bayes classifier: assigns each observation to the most likely class, given its predictor values

For example, we want to classify species of an animal (dog, cat, bird) given its picture

Prob
$$(Y = \text{dog} | X = \mathbf{x}_0) = 0.5$$

Prob $(Y = \text{cat} | X = \mathbf{x}_0) = 0.3$
Prob $(Y = \text{bird} | X = \mathbf{x}_0) = 0.2$

In a two-class (Y = 1 or Y = 2) classification problem,

$$\hat{y}_0 = \begin{cases} 1 & \text{if Prob} (Y = 1 | X = \mathbf{x}_0) > 0.5 \\ 2 & \text{if Prob} (Y = 1 | X = \mathbf{x}_0) \le 0.5 \end{cases}$$

The Bayes classifier

$$\hat{y}_0 = \operatorname{argmax}_j \left\{ \operatorname{Prob} \left(Y = j \mid X = \mathbf{x}_0 \right) \right\}$$

Each circle is an observation

location: predictor X

color: class label Y, Y = 1 vs. Y = 2

Purple dashed line:

Bayesian decision boundary

Prob
$$(Y = 1 | X = \mathbf{x}_0)$$

= Prob $(Y = 2 | X = \mathbf{x}_0) = 50 \%$

Areas:

Prob
$$(Y = 1 | X = \mathbf{x}_0) > 50 \%$$

Prob
$$(Y = 2 | X = \mathbf{x}_0) > 50 \%$$

The Bayes classifier

$$\hat{y}_0 = \operatorname{argmax}_j \left\{ \operatorname{Prob} \left(Y = j \mid X = \mathbf{x}_0 \right) \right\}$$

The Bayes is best in the sense that it produces the

lowest possible test error rate

The Bayes classifier still makes mistakes!!

X

Bayes error rate

$$1 - E \left[\max_{j} \text{Prob} \left(Y = j \mid X \right) \right]$$

Regression

Classification

 \boldsymbol{X}

X

quantitative Y

qualitative Y

Training/Test

Mean Squared Error (MSE)

Training/Test Error Rate

$$\hat{f}(\mathbf{x}_0) = \mathbf{E}\left[Y|X = \mathbf{x}_0\right]$$

$$\hat{y}_0 = \operatorname{argmax}_j \left\{ \operatorname{Prob} \left(Y = j \mid X = \mathbf{x}_0 \right) \right\}$$

$$Var(\varepsilon)$$

$$1 - E \left[\max_{j} \text{Prob} \left(Y = j \mid X \right) \right]$$

Low

Model Complexity

K-Nearest Neighbors

Regression

Classification

$$\hat{f}(\mathbf{x}_0) = \mathbf{E} \left[Y | X = \mathbf{x}_0 \right]$$

$$\hat{f}(\mathbf{x}_0) = \mathbf{E}\left[Y|X = \mathbf{x}_0\right]$$
 $\hat{y}_0 = \operatorname{argmax}_j \left\{\operatorname{Prob}\left(Y = j|X = \mathbf{x}_0\right)\right\}$

In practice, we never know the conditional distribution of Y given X

Estimate!!

Idea: look at the K-nearest neighbors of \mathbf{x}_0

K-Nearest Regression

$$\hat{f}(\mathbf{x}_0) = \mathbf{E} \left[Y | X = \mathbf{x}_0 \right]$$

Estimation idea: look at the K-nearest neighbors of \mathbf{x}_0

 $\mathcal{N}_0 = \{i : \mathbf{x}_i \text{ is among the K nearest neighbors of } \mathbf{x}_0\}$

$$\hat{f}_K(\mathbf{x}_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} y_i$$

K-Nearest Regression: bias-variance tradeoff

$$\hat{f}_K(\mathbf{x}_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} y_i$$

$$Y = f(X) + \varepsilon$$
 non-random zero-mean noise

For fixed (\mathbf{x}_0, y_0)

$$E\left[\left(y_0 - \hat{f}(\mathbf{x}_0)\right)^2\right] = Var(\hat{f}(\mathbf{x}_0)) + \left[Bias(\hat{f}(\mathbf{x}_0))\right]^2 + Var(\varepsilon),$$

$$= \frac{\operatorname{Var}(\varepsilon)}{k} + \left[f(\mathbf{x}_0) - \frac{1}{k} \sum_{i \in \mathcal{N}_0} f(\mathbf{x}_i) \right]^2 + \operatorname{Var}(\varepsilon),$$

k increase

decrease

increase

k decrease

increase

decrease

beyond our control

K-Nearest Classification

$$\hat{y}_0 = \operatorname{argmax}_j \left\{ \operatorname{Prob} \left(Y = j \mid X = \mathbf{x}_0 \right) \right\}$$

Estimation idea: look at the K-nearest neighbors of \mathbf{x}_0

 $\mathcal{N}_0 = \left\{i : \mathbf{x}_i \text{ is among the K nearest neighbors of } \mathbf{x}_0\right\}$

$$\hat{y}_K = \operatorname{argmax}_j \left\{ \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j) \right\}$$

K-Nearest Classification

$$\hat{y}_K = \operatorname{argmax}_j \left\{ \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j) \right\}$$
 Take K = 3 as an example...

K-Nearest Classification: bias-variance tradeoff

KNN: K=1 KNN: K=100

More wiggly decision boundary
High model complexity/flexibility
Low bias + High variance

Less wiggly decision boundary Low model complexity/flexibility High bias + Low variance

K-Nearest Classification: bias-variance tradeoff

K-Nearest Methods: Limitation

K-nearest neighbors methods can be pretty good for small p (i.e., $p \le 4$) and large n

Many more sophisticated versions of non-parametric methods, e.g., kernel estimators...

Fail when p is very large: there are very few (almost no) data points in the neighbors

Curse of Dimensionality!

In summary

Classification is really not too different from Regression

Bias-variance tradeoff

K-Nearest Neighbor Methods

Next...

End of the general discussion

Linear methods: for regression and for classification