МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Физтех-школа Радиотехники и Компьютерных Технологий

Отчет о выполнении лабораторной работы 2.2.1.

Исследование взаимной диффузии газов.

Автор: студент Б06-902 группы Ершова Алина.

1 Введение.

1.1 Цель работы.

1. Регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов;

2. определение коэффициента диффузии по результатам измерений.

1.2 Теоретическая справка.

Рассмотрим процесс выравнивания концентрации. Пусть концентрации одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 . Плотность диффузионного потока любого компонента (т. е. количество вещества, проходящее в единицу времени через единичную поверхность) определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x},$$

где D — коэффициент взаимной диффузии газов, а j - плотность потока частиц.

В нашем случае ввиду того что, а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему. Диффузионный поток в любом сечении трубки одинаков. Поэтому,

$$J = -DS \frac{n_1 - n_2}{l}.$$

Обозначим через Δn_1 и Δn_2 изменения концентрации в объемах V_1 и V_2 за время Δt . Тогда $V_1\Delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ — изменению количества этого компонента в V_2 . Из закона сохранения вещества следует, что $V_1n_1+V_2n_2=const$, откуда $V_1\Delta n_1=-V_2\Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому:

$$V_1 \Delta n_1 = -V_2 \Delta n_2$$

C другой стороны $V_1 \Delta n_1 = J \Delta t$ и $V_1 \frac{dn_1}{dt} = -DS \frac{n_1 - n_2}{l}.$

Аналогично $V_2 \frac{dn_2}{dt} = DS \frac{n_1 - n_2}{l}$

Тогда

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} \frac{V_1 + V_2}{V_1 V_2}.$$

Проинтегрируем и получим, что

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau},$$

где $(n_1 - n_2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD}.$$

Для измерения концентраций в данной установке применяются датчики теплопроводности $_{1,2}$ (см. рис. 1) используется зависимость теплопроводности газовой смеси от ее состава. Для измерения разности концентраций газов используется мостовая схема (рис. 1). Здесь $_{1}$ и $_{2}$ — датчики теплопроводности, расположенные в сосудах V_{1} и V_{2} . Сопротивления R_{1}, R_{2} и R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью.

При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси. В процессе диффузии разность концентраций убывает по экспоненте, и значит по тому же закону изменяются во времени показания гальванометра

$$U = U_0 \exp(-t/\tau)$$
.

1.3 Экспериментальная становка.

Рис. 1: Схема экспериментальной установки.

Установка состоит из двух сосудов V_1 и V_2 соединенных краном 3, форвакуумного насоса Ф.Н. с выключателем, манометра M и системы напуска гелия, включающей в себя краны 6 и 7. Кран 5 позволяет соединять форвакуумный насос либо с установкой, либо с атмосферой. Между форвакуумным насосом и краном 5 вставлен предохранительный баллон П.Б., защищающий кран 5 и установку при неправильной эксплуатации ее от попадания форвакуумного масла из насоса Ф.Н. Сосуды V_1 и V_2 и порознь и вместе можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этого служат краны $_1, _2, _4$ и $_5$. Манометр M регистрирует давление газа, до которого заполняют тот или другой сосуды.

Для сохранения гелия, а также для уменьшения неконтролированного попадания гелия в установку (по протечкам в кране 6) между трубопроводом подачи гелия и краном 6 поставлен металлический кран 7. Его открывают только на время непосредственного заполнения установки гелием. Все остальное время он закрыт.

В силу того, что в сосуд требуется пода-

вать малое давление гелия, между кранами $_7$ и $_4$ стоит кран $_6$, снабженный дозатором. Дозатор - это маленький объем, который заполняют до давления гелия в трубопроводе, а затем уже эту порцию гелия с помощью крана $_6$ впускают в установку.

2 Ход работы.

2.1 Методика измерений.

1. Включим питание электрической схемы установки рубильником B. Откроем краны K_1, K_2, K_3 . Перепишем параметры установки:

$$V_1 = V_2 = V = 800 \pm 5 \text{ cm}^3, \ \frac{L}{S} = 15 \pm 0.1 \text{ cm}^{-1}$$

Поскольку манометр измеряет разность давления внутри резервуаров с атмосферным в $\frac{1}{c^2}$ необходимо записать показание манометра при полностью откачанном сосуде $P_0 = 752, 8$ мм рь ст(оно равно атмосферному) и в дальнейшем постоянно вычитать из него показания прибора, тем самым будет найдено давление внутри установки.

- 2. Очистим установку от всех газов, которые в ней есть. Для этого откроем кран K_4 . Включим форвакуумный насос (Ф.Н.) выключателем , находящемся на насосе, и соединим насос с установкой, повернув ручку крана K_5 длинным концом рукоятки влево (на установку). Откачаем установку до давления ≈ 0.1 , что достигается непрерывной работой насоса в течение 3–5 минут. Для прекращения откачки ручку крана K_5 поставим длинным концом вверх.
- 3. Напустим в установку воздух до рабочего давления (вначале $P\approx 60$), чтобы сбалансировать мост на рабочем давлении. Для этого рукоятку крана $_5$ повернём из положения вправо (воздух поступает в насос) в положение влево (воздух из насоса поступает в установку). Эту операцию повторим несколько раз, пока не будет достигнуто нужное давление. Сбалансируем мост.
- 4. Заполним установку рабочей смесью согласно порядку предложенному в указании к работе: в сосуде V_2 должен быть воздух, а в сосуде V_1 смесь воздуха, с гелием.

5. Проведём измерения. Для этого откроем кран $_3$, а затем снимем показания гальванометра с течением времени. Процесс измерений продолжим до тех пор, пока разность концентраций (показания гальванометра) не упадет на 40-50 %. Будем продолжать аналогичные измерения при различных значениях P в интервале 40–300 торр. Данные представлены в таблице 1. Давления там приведены уже в торр.

2.2 Полученные данные и их погрешности.

Сняты данные, с помощью скрипта на компьютере, имеют слишком много значений, чтобы вставлять их. При необходимости, можно перейти в полученные exel-файлы. Погрешности измерений:

$$\sigma_t = 0, 2 \; \; c$$
 $\sigma_U = 4 \cdot 10^{-8} \; \; ext{мкВольт}$ $\sigma_{\ln(U)} = 0, 01$

3 Обработка экспериментальных данных. Построение графиков зависимости полученных данных и их фитирование.

3.1 Линейное фитирование.

Построим график зависимости полученных U от t для 4-х давлений: 40, 100, 200, 300 торр.

Рис. 2: Зависимость f = lnU(t).

Запишем в коэфициенты наклонов прямых и их погрешности (МНК) в порядке увеличения давления:

41 Topp: a = -0.025910267367876258, $\sigma a = 0.004$

124 торр: a = -0.004704105606512215, $\sigma_a =$ 0.0003

165 торр: a= -0.005810696734993437, $\sigma_a=$ 0.0004

210 торр: a= -0.007414307770482185, $\sigma_a=$ 0.0006

251 торр: a= -0.006418213322316992, σ_a = 0.0006

4 Определение коэффициентов диффузии.

Рассчитаем по формуле коэффициент диффузии D и ее погрешность σ_D :

$$D = -\frac{1}{2}a \cdot V \frac{L}{S}$$

$$\sigma_D = D\sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{3\sigma_V}{2V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2}$$

Построим график зависимости $f = D(\frac{1}{P})$:

P, ropp	$D, cm^2/c$	$\sigma_D, \text{cm}^2/c$	$\frac{1}{P}$, 1/ropp ×10 ⁻³	$\sigma_{\frac{1}{P}}, 1/\text{Topp} \times 10^{-3}$
40	12.68	0.61	25,00	2,3
124	4.05	0.37	8,07	0,9
165	3.31	0.31	6,06	0,6
210	2.40	0.28	4,76	0,4
251	1.91	0.24	3,98	0,4

Из графика видно, что полученные нами экспериментально коэффициенты диффузии очень хорошо ложатся на прямую.

Рассчитаем величину коэффициента диффузии при атмосферном давлении. Для этого экстраполируем зависимость $D(\frac{1}{P})$ и посмотрим через какую точку проходит наша прямая. Итак,

$$D = 0.67 \pm 0.06 \; \frac{c^2}{c}.$$

Погрешность D была оценена с помошью MHK. Табличное значение для этого коэффициента

$$D = 0.57 \frac{c^2}{c}.$$

4.1 Длину свободного пробега молекулы.

Оценим по полученным результатам длину свободного пробега и размер молекулы. Для этого воспользуемся следующими формулами.

$$D = \frac{1}{3}\lambda \langle v \rangle, \ \langle v \rangle = \sqrt{\frac{8RT}{\pi \mu}}, \ \Pi \approx \frac{kT}{\sqrt{2}\lambda P},$$

где П - площадь эффективного сечения частиц, $r \approx \frac{1}{2} \sqrt{\frac{\Pi}{\pi}}.$ Итак,

$$\lambda \approx 1.6 \cdot 10^{-7} \; , \; \Pi \approx 1.8 \cdot 10^{-19} \; ^2 , \; r \approx 1.2 \cdot 10^{-10} \; .$$

Табличное значение для размера молекулы $r = 1.0 \cdot 10^{-10}$.

5 Выводы.

6 Используемая литература.

- 1. Лабораторный практикум по общей физике. Том 2. Термодинамика и молекулярная физика. Гладун A.Л.
- 2. Общий курс физики. Том 2. Термодинамика и молекулярная физика. Сивухин Д.В.
- 3. Лекции преподавателя кафедры общей физики П.В.Попова.