Housing Prices

DS 6373 Time Series Final Project Aaron Abromowitz and Alex Thibeaux

Video Presentation of this Deck: https://youtu.be/YI1-x-Ha8Xw

INTRODUCTION

Accurate prediction of housing prices is important for homeowners, potential homeowners, and investors

OUR TEAM

AARON ABROMOWITZSystems Engineer, Raytheon

ALEXANDRA THIBEAUXData Analyst, Southern Methodist University

TABLE OF CONTENTS

Median Housing Price

04NEURAL NET MODEL

Univariate MLP

02

UNIVARIATE MODELS

ARIMA Signal Plus Noise MULTIVARIATE MODEL
MLR

ENSEMBLE MODEL

MLR + Signal Plus Noise

06
FINAL MODEL

Variable of Interest: Median Housing Sale Price

- Data points are for quarter year
- Realization plot shows that Median housing price increasing
- ACF shows slowly dampening autocorrelations
- Parzen Window shows a frequency at 0

- Evidence of non-stationarity
- Median housing prices changes with time
- Variation of median housing price changes with time

Log of Mean Housing Price

- Log smoothed out variation
- Used log Median Housing Price in models

Median US Housing Price from 1965

Year

Housing price (in thousands of dollars) 100 200 300 4 400 100 1980 1990 2000 2010 2020

Evaluation Metrics

- rwRMSE (rolling window root mean squared error, log Median Housing Price)
- ASE (average square error, Median Housing Price)
- Short term forecast (1 year / 4 quarters)
- Long term forecast (5 years / 20 quarters)

Short term rwRMSE	
Long term rwRMSE	
Short term ASE	
Long term ASE	

ARIMA Model Selection

- Difference Filter removes the low frequency
- ARIMA(1,1,2) model is chosen

$$(1 - 0.69B) * (1-B) * (log(X(t)) - 0.012) = (1 - 0.92B + 0.4B^2) * a(t)$$

 $var(a(t)) = 0.0007$

ARIMA Model Metrics

Short term rwRMSE	0.037
Long term rwRMSE	0.133
Short term ASE	84.4 M
Long term ASE	7.61 B

ARIMA(1,1,2) Short Term Forecast

ARIMA(1,1,2) Long Term Forecast

ARIMA Model further Evaluation

True ACF vs Generated Data

Lag

ARIMA Model Forecasts

Signal Plus Noise Model Selection

- Use Line with AR noise
- Noise is modeled to be an AR(6)

Five Smallest Values of aic Method= mle

p aic 6 -7.203842 5 -7.198616 7 -7.194018

8 -7.188880

4 -7.180527

Linear fit to log Median House Price

$$log(X(t)) = 10.871 + 0.111 * t + Z(t)$$

$$Z(t) = (1 - 0.71B - 0.367B^2 - 0.137B^3 + 0.062B^4 + 0.76B^5 + 0.118B^6) * a(t)$$

$$var(a(t)) = 0.0007$$

Signal Plus Noise Model Metrics

Short term rwRMSE	0.033
Long term rwRMSE	0.076
Short term ASE	50.9 M
Long term ASE	1.10 B

Linear Signal with AR(6) Noise Short Term Forecast

Linear Signal with AR(6) Noise Long Term Forecast

Signal Plus Noise Model further Evaluation

True Spectral Density vs Generated Data

Signal Plus Noise Model Forecasts

220

Exogenous Variables for Multivariate Model

MLR Model Selection

- Linear combination of Exogenous variables
- Used forecasted values for Exogenous variables
- Variables can be lagged
- AR(2) used to model residuals

Median Sales Price & Supply of New Houses

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.108e+01	3.039e-02	364.541	< 2e-16	***
x\$Housing_Units_Completed_121	5.310e-05	1.679e-05	3.163	0.00185	* *
x\$Supply_New_Houses_19	-2.821e-02	3.303e-03	-8.541	6.84e-15	***
x\$Housing_Price_Index	2.695e-04	1.055e-04	2.554	0.01151	ŵ
t	9.341e-03	2.925e-04	31.935	< 2e-16	***

Five Smallest Values of aic

p	q	aic	
2	0	-6.610677	
1	1	-6.608485	
3	0	-6.599501	
2	1	-6.599466	
1	2	-6.595973	

MLR Model Metrics

Short term ASE	558.7 M
Long term ASE	1.43 B

MLR Long Term Forecast

MLR Model Forecasts

Univariate MLP Model Selection

- MLP = Multilayer Perceptron
- 5 Hidden Nodes were used
- Median of 20 forecasts was used

Univariate MLP Model Metrics

Short term rwRMSE	0.029
Long term rwRMSE	0.072
Short term ASE	61.0 M
Long term ASE	1.72 B

Univariate MLP Short Term Forecast

Univariate MLP Long Term Forecast

Univariate MLP Model Forecasts

Ensemble Metrics

Short term ASE	207 M
Long term ASE	653 M

Ensemble Model, MLR & SPN Short Term Forecast

The ensemble model (red) is the average of the MLR (orange) and the SPN (green) forecasts

Ensemble Model, MLR & SPN Long Term Forecast

The ensemble model (red) is the average of the MLR (orange) and the SPN (green) forecasts

Ensemble Forecasts

Ensemble Model, MLR & SPN Short Term Forecast

The ensemble model (red) is the average of the MLR (orange) and the SPN (green) forecasts

Ensemble Model, MLR & SPN Long Term Forecast

The ensemble model (red) is the average of the MLR (orange) and the SPN (green) forecasts

Overall Metric Comparisons

Model	Short term rwRMSE	Long term rwRMSE	Short term ASE	Long term ASE
ARIMA(1,1,2)	0.037	0.133	84.4 M	7.61 B
Signal Plus Noise	0.033	0.076	50.9 M	1.10 B
MLR			558 M	1.43 B
Univariate MLP	0.029	0.072	60.9 M	1.72 B
Ensemble MLR & SPN			207 M	653 M

Final Forecasts: Ensemble Model

- Ensemble Model does a good job of continuing the visible trend
- 2030 median prices forecast to be ~600k

THANK YOU

Aaron Abromowitz aabromowitz@smu.edu

Alexandra Thibeaux athibeaux@smu.edu

GitHub Repository for this project: https://github.com/aabromowitz/TimeSeriersProject

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**

Backup Slides

VAR Model Selection

- VAR = Vector Autoregression
- Forecasts multiple variables simultaneously
- Lag 4 had lowest AIC

```
$selection
AIC(n) HQ(n) SC(n) FPE(n)
4 2 1 4
```

\$criteria

```
1 2 3 4 5

AIC(n) 2.330754 1.933777 1.831970 1.690855 1.754028

HQ(n) 2.580534 2.361972 2.438579 2.475879 2.717466

SC(n) 2.946909 2.990043 3.328346 3.627343 4.130626

FPE(n) 10.287646 6.922207 6.263258 5.456431 5.841904
```

	Estimate	Std. Error	t value	Pr(> t)	
Ownership_Rate. 11	-6.003e-03	5.113e-03	-1.174	0.241960	
Housing_Units_Completed. 11	1.114e-05	2.294e-05	0.486	0.627737	
Supply_New_Houses. 11	-7.269e-03	2.119e-03	-3.431	0.000753	***
Housing_Price_Index. 11	1.695e-03	5.347e-04	3.170	0.001806	**
Median_Sales_Price.l1	4.816e-01	7.655e-02	6.291	2.52e-09	***
Ownership_Rate.12	5.273e-03	6.663e-03	0.791	0.429799	
Housing_Units_Completed. 12	-2.239e-05	2.682e-05	-0.835	0.404910	
Supply_New_Houses.12	4.012e-03	2.584e-03	1.553	0.122329	
Housing_Price_Index.12	-3.055e-04	1.013e-03	-0.301	0.763406	
Median_Sales_Price.12	3.289e-01	8.227e-02	3.998	9.46e-05	***
Ownership_Rate.13	-3.138e-04	6.568e-03	-0.048	0.961956	
Housing_Units_Completed. 13	4.574e-05	2.641e-05	1.732	0.085056	-3
Supply_New_Houses.13	-1.031e-03	2.645e-03	-0.390	0.697110	
Housing_Price_Index.13	-1.645e-03	1.046e-03	-1.573	0.117607	
Median_Sales_Price.13	1.478e-01	8.207e-02	1.801	0.073454	•3
Ownership_Rate.14	2.436e-03	5.053e-03	0.482	0.630377	
Housing_Units_Completed. 14	-2.301e-05	2.101e-05	-1.095	0.275009	
Supply_New_Houses.14	3.184e-03	2.376e-03	1.340	0.181943	
Housing_Price_Index.14	9.110e-05	6.411e-04	0.142	0.887170	
Median_Sales_Price.14	-3.937e-02	7.274e-02	-0.541	0.589017	
const	8.113e-01	2.505e-01	3.239	0.001441	**
trend	1.077e-03	3.625e-04	2.972	0.003381	**

VAR Model Metrics

Short term ASE	43.6 M
Long term ASE	3.01 B

VAR Model Forecasts

Univariate MLP Model Bootstrapped Forecasts with Confidence Intervals

Multivariate MLP Model Metrics

Short term ASE	254 M
Long term ASE	8.44 B

Multivariate MLP Short Term Forecast

Multivariate MLP Long Term Forecast

LSTM Model Information

- LSTM = Long Short-Term Memory
- Neural Net that can hold information for an extended period
- Forecasts well on Time Series data

https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/

LSTM Metrics

Short term ASE	81.8 M
Long term ASE	419 M

LSTM Short Term Forecast

LSTM Long Term Forecast

TFT Forecasts

Short term ASE	11.5 B
Long term ASE	15.0 B

Ensemble Models

Short term ASE	67.0 M
Long term ASE	1.45 B

Ensemble Model, VAR & MLP Short Term Forecast

Ensemble Model, SPN & MLP Long Term Forecast

The ensemble model (red) takes the average of the SPN (orange) and the MLP (green) forecast

Overall Metric Comparisons

Model	Short term rwRMSE	Long term rwRMSE	Short term ASE	Long term ASE
ARIMA(1,1,2)	0.037	0.133	84.4 M	7.61 B
Signal Plus Noise	0.033	0.076	50.9 M	1.10 B
MLR			558 M	1.43 B
VAR			46.3 M	3.50 B
Univariate MLP	0.029	0.072	60.9 M	1.72 B
Multivariate MLP			254 M	8.44 B
LSTM			81.8 M	419 M
Ensemble VAR & MLP			34.9 M	
Ensemble SPN & MLP				1.66 B