Sample Solution to Quiz 1

1. (2+2+1 = 5 points) Stable Matching

For the 3 men m1, m2, m3 and the 3 women w1, w2, w3 the following lists of preferences are given:

man	first	second	third
m1	w1	w2	w3
m2	w2	w1	w3
m3	w1	w3	w_2

woman	first	second	third
w1	m2	m1	m3
w2	m3	m2	m1
w3	m1	m2	m3

(a) List the stable matching returned by the Gale-Shapley algorithm for the above lists of preferences assuming the **men** propose to the **women**.

Answer:

$$\{(m1, w1), (m2, w2), (m3, w3)\}$$

(b) List the stable matching returned by the Gale-Shapley algorithm for the above lists of preferences assuming the **women** propose to the **men**.

Answer:

$$\{(m2, w1), (m3, w2), (m1, w3)\}$$

(c) Does there exist a man that got a better result in part (a) than in part (b)? If so, indicate which man.

Answer:

All of the men got a better result in part (a) than in part (b).

- m1 prefers w1, his partner in part (a) to w3, his partner in part(b).
- m2 prefers w2, his partner in part (a) to w1, his partner in part(b).
- m3 prefers w3, his partner in part (a) to w2, his partner in part(b).

2. (5 points) Asymptotic Notation

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Answer:

In order to prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$, we need to prove that \exists constants $c_1, c_2 > 0$ and integer $n_0 \ge 0$, such that:

$$c_1(f(n) + g(n)) \le \max(f(n), g(n)) \le c_2(f(n) + g(n)), \forall n \ge n_0$$
(1)

We will prove each inequality in turn.

<u>Part 1</u>:

By definition of maximum,

$$f(n) \le \max(f(n), g(n)), \forall n \tag{2}$$

$$g(n) \le \max(f(n), g(n)), \forall n \tag{3}$$

Adding (2) and (3) we get:

$$f(n) + g(n) \le 2(max(f(n), g(n))), \forall n$$

or

$$\frac{1}{2}(f(n) + g(n)) \le \max(f(n), g(n)), \forall n$$

This proves the left hand side inequality of (1) above with $c_1 = \frac{1}{2}$ and $n \ge 0$.

Part 2:

Functions f(n) and g(n) are given to be asymptotically non-negative. This implies that $\exists n_0 \ge 0$ such that both f(n) and g(n) are $\ge 0, \forall n \ge n_0$

By the definition of maximum,

$$max(f(n), g(n)) = f(n) \text{ or } g(n), \forall n$$
(4)

and specifically for $n \geq n_0$.

Also,

$$f(n) \le f(n) + g(n), \ \forall n \ge n_0 \tag{5}$$

and

$$g(n) \le f(n) + g(n), \ \forall n \ge n_0 \tag{6}$$

From (4), (5) and (6), we can infer that:

$$max(f(n), g(n)) \le f(n) + g(n), \ \forall n \ge n_0$$

This proves the right hand side inequality of (1) above with $c_2 = 1$ and $n \ge n_0$.

Combining the results from Parts 1 and 2 above, we have:

$$\frac{1}{2}((f(n) + g(n)) \le \max(f(n), g(n)) \le (f(n) + g(n)), \ \forall n \ge n_0$$

which proves $max(f(n), g(n)) = \Theta(f(n) + g(n)).$