Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.4.5

Петля гистерезиса (динамический метод)

Студент: Павел СЕВЕРИЛОВ 671 группа

1 Цель работы

Исследование петель гистерезиса ферромагнитных материалов с помощью осциллографа.

В работе используются: понижающий трансформатор, реостат, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллограф, тороидальные образцы с двумя обмотками.

2 Теоретическая часть

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Φ в катушке, намотанной на образец: $\mathscr{E} = -\frac{d\Phi}{dt}$.

Пусть катушка плотно обхватывает образец, и индукция ${\bf B}$ в образце однородна. Тогда $\Phi=BSN$, где N - число витков в измерительной катушке, а S – число витков. Подставим Φ в формулу ЭДС, после интегрирования найдем:

$$|B| = \frac{1}{SN} \int \mathcal{E}dt$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведенный меняющимся магнитным полем на измерительную катушку, намотанную на образец.

Для интегрирования сигнала применяют интегрирующие схемы. На рис.1 изображена простейшая из них. При этом сопротивление R заметно превышает сопротивление конденсатора $(U_{\text{вых}} \ll U_{\text{вх}})$.

В данном случае $I \approx U_{\text{вх}}/R,$ а напряжение на емкости

$$U_{\text{\tiny BMX}} = \frac{q}{C} = \frac{1}{C} \int I dt \approx \frac{1}{RC} \int U_{\text{\tiny BX}} dt$$

Чем больше постоянная времени $\tau=RC$ превосходит характерное время процесса, тем этот вывод ближе к истине. Для синусоидальных напряжений $U_{\text{вых}}=U_{\text{вх}}/RC\Omega$, где Ω -частота сигнала.

Обозначив параметры интегрирующей ячейки через $R_{\rm u}, C_{\rm u}, N_{\rm u}$, получим:

$$|B| = \frac{R_{\rm \tiny H} C_{\rm \tiny H}}{S N_{\rm \tiny H}} U_{\rm \tiny BMX}$$

3 Экспериментальная установка

Ток в обмотке N_0 измеряется мультиметром А. Напряжение с сопротивления R_0 , включенного последовательно с обмоткой N_0 , подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно, и напряженности H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки N_i на вход интегрирующей NC-цепочки подается напряжение U_{BX} , пропорциональное производной B, а с выхода снимается напряжение $U_{EX} = U_C$, пропорциональное B и подается на вход Y.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для X и Y) петлю гистерезиса. Необходимо провести калибровку каналов X и Y ЭО и установить масштабы изображения. Для этого надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и каким значениям B и H соответствуют напряжения (или токи).

Для измерения напряжения с помощью осциллографа:

$$2U_{X,0} = 2x \cdot K_X; \qquad 2U_{Y,0} = 2y \cdot K_Y; \qquad H = \frac{IN_0}{2\pi R}$$
$$|B| = \frac{R_u C_u}{SN_u} U_{ex}$$

Проверка калибровки горизонтальной оси 90 с помощью амперметра: (при закороченной обмотке N_0)

 $m_X = 2R_0\sqrt{2}I_{ef}/(2x)$

Проверка калибровки вертикальной оси ЭО с помощью вольтметра: (при отключенном тороиде)

 $m_Y = 2\sqrt{2}U_{ef}/(2y)$

Для измерения постоянной времени RC-цепочки:

$$\tau = RC = \frac{U_{in}}{\Omega U_{ex}}$$

4 Работа и измерения

1. Петля гистерезиса на экране ЭО

Соберем схему согласно рисунку выше, подготовим приборы к работе и включим схему в сеть. Подберем ток питания в намагничивающей обмотке и коэффициенты усиления ЭО, так, чтобы предельная петля гистерезиса занимала большую часть экрана, но при этом исчезли "усы". Проверим центровку вертикальных и горизонтальных лучей.

Для каждого материала зафиксируем предельную петлю и снимем начальную кривую намагничивания, плавно уменьшая ток до нуля и отмечая вершины наблюдаемых частных петель. Затем восстановим предельную петлю, измерим на экране двойные амплитуды для коэрцитивной силы [2x(c)] и индукции насыщения [2y(s)]. Запишем соответствующие значения K_x и K_y .

Параметры схемы: $R_0=0.3~{
m Om};~R_u=20~{
m кOm}~C_u=20~{
m mk}\Phi$

	Пермаллой	Феррит	Кремнистое железо	
K_X , м B /дел	20	10	20	
K_Y , м B /дел	50	10	50	
I_{ef} , MA	234,5	117	234	
$2\pi R$, cm	24	25	10	
N_0 ,витков	35	40	40	
N_U ,витков	220	400	400	
S, cm^2	3,8	3,0	1,2	
2x(c), делений	6,6	7	10	
2y(s), делений	8	6	5,2	

Таблица 1: Данные для трех ферромагнетиков

Пермаллой

предельная петля

начальная кривая

Феррит

Кремнистое железо

2. Проверка калибровки оси Х ЭО с помощью амперметра

Отключим намагничивающую обмотку N_0 от цепи; подберем такой ток через R_0 (с помощью реостата), при котором горизонтальная прямая занимает большую часть экрана; рассчитаем чувствительность канала m_X по формуле и сравним с K_X . 2x=10 делений.

$$m_x = \frac{2R_0\sqrt{2}I_{ef}}{(2x)}$$

ullet Пермаллой: $m_x=19.0~{
m MB}pprox K_X$

• Феррит: $m_x = 9.93$ мВ $\approx K_X$

• Кремнистое железо: $m_x=19.86~\mathrm{mB} \approx K_X$

3. Проверка калибровки оси У ЭО с помощью вольтметра

Разберем цепь тороида; подберем (с помощью реостата) напряжение, при котором вертикальная прямая занимает большую часть экрана; измерим двойную амплитуду сигнала; определим эффективное значение напряжения. 2y=8 делений.

$$m_y = \frac{2\sqrt{2}U_{ef}}{(2y)}$$

- $K_Y = 20$ мВ/дел; $U_{ef} = 139$ мВ $\Rightarrow m_v = 49.1 \approx K_Y$
- $K_Y=10$ мВ/дел; $U_{ef}=27.3$ мВ $\Rightarrow m_y=9.7 \approx K_Y$

4. Определение au - постоянной времени RC-цепочки

Определим напряжения на входе и выходе интегрирующей ячейки: подключим Y-вход и отключим X-вход; установим чувствительность $K_Y \approx n$ В/дел; подберем такой ток (с помощью реостата), при котором горизонтальная прямая занимает большую часть экрана; определим входное напряжение на RC-цепочке; переключим Y-вход Θ к интегрирующей емкости и определим U_{ex} ; рассчитаем постоянную времени τ

- $K_Y = 50$ мВ/дел; 2y = 8; $U_{in} = 2y \cdot K_Y = 400$ мВ
- $K_Y = 50$ мВ/дел; 2y = 0.4; $U_{ex} = 2y \cdot K_Y = 20$ мВ

Имеем $\Omega = 50\Gamma$ ц; $\tau = R_u C_u = 400$ мс

$$\tau = RC = \frac{U_{in}}{\Omega U_{er}} = 400 \mathrm{mc}$$

5. Дифференциальная магнитная проницаемость

Вычислим максимальные значения дифференциальной магнитной проницаемости для каждого из трех образцов по формуле

$$\mu_{dif} = \frac{1}{\mu_0} \frac{dB}{dH},$$

где μ_0 - магнитная постоянная ($\mu_0 \approx 1,256~H/A^2$), а значение $\frac{dB}{dH}$ определим по графикам (максимальный наклон касательных к петлям гистерезиса, который достигается в точках с B=0, т.к. эти точки находятся наиболее далеко от областей насыщения). Также рассчитаем H_c ; B_s по формулам

$$H = IN_0/(2\pi R); \quad B = R_u C_u U_{ex}/(SN_u); \quad U_{ex} = y \cdot K_Y$$

Результаты занесем в итоговую таблицу.

	Кремнистое железо	Пермаллой	Феррит
H_c , A/M	90.6±8.4	34.2±3.1	18.8±1.7
B_s , Тл	1.09 ± 0.03	0.96 ± 0.03	0.10 ± 0.01
$\mu_{\text{дифф}}^{\text{max}}, 10^3$	9.8	50	2.7

5 Вывод

Провели исследование петель гистерезиса трех ферромагнитных материалов (кремнистое железо, пермаллой и феррит). Для них мы построили начальные кривые гистерезиса для каждой из петель, нашли коэрцитивную силу и индукцию насыщения для каждого образца, оценили максимальные значения дифференциальной магнитной проницаемости для каждого образца, а также произвели калибровку осей Θ и нашли постоянную RC-цепочки. Все экспериментально полученные результаты совпали с табличными кроме H_c и $\mu_{\text{дифф}}^{\text{max}}$ для Пермаллоя — магнитная проницаемость достаточно меньше табличного значения, вследствие чего, скорее всего не совпало и значения для H_c . Такое отклонение можно связать стем, что образец может быть довольно старым и изношенным, из-за чего у него и поменялись стандартные магнитные свойства. Полученные характеристики для данных материалов представляют практический интерес, т.к. часто используются в трансформаторах, дросселях, машинах переменного тока и пр.