Zu beziehen durch Beuth Verlag GmbH, 10772 Berlin – Alle Rechte vorbehalten © Verein Deutscher Ingenieure e.V., Düsseldorf 20##

ICS ##.### VDI-RICHTLINIEN Mai 2017

VEREIN DEUTSCHER INGENIEURE

Automatisierungstechnisches Engineering modularer Anlagen in der Prozessindustrie -Basisbibliothek

VDI/VDE/NAMUR 2658

Blatt 3 *Entwurf*

Vervielfältigung – auch für innerbetriebliche Zwecke – nicht gestattet

Internes Arbeitspapier

Automation engineering of modular systems in the process industry – Basic Library

Einsprüche bis 20##-##-##

- vorzugsweise über das VDI-Richtlinien-Einspruchsportal http://www.vdi.de/einspruchsportal
- in Papierform an
 #####
 #####
 Postfach 10 11 39
 40002 Düsseldorf

	ıalt rbem	erkungS	eite 3					
Eir	nleitu	ng	4					
1.	Anw	endungsbereich	5					
	Abkürzungen							
3.	Grur	ndkonzepte der Schnittstellendefinitionen	7					
	3.1	Richtlinien-Konformität						
	3.2	Beschreibung der Interpretation von Schnittstellendefinitionen	7					
	3.3	Datentypen	7					
	3.4	Default Values						
4.	Allge	emeine Definitionen	9					
	4.1	TagName	9					
	4.2	TagDescription	9					
	4.3	OSLevel	9					
	4.4	WQC	. 10					
	4.5	ScaleSettings	. 11					
	4.6	UnitSettings	. 12					
	4.7	ValueLimitation	. 14					
	4.8	OperationModes	. 15					
	4.9	Handshake Verfahren	. 23					
	4.10	Interlocks	. 24					
	4.11	Feedback Monitoring	. 25					
	4.12	Reset	. 26					
	4.13	Limit Monitoring	. 27					
5.	Schr	nittstellendefinitionen	.29					
	5.1	DataAssembly	. 30					
	5.2	Analogwertanzeigen	. 31					
	5.3	Analogoperationen	. 33					
	5.4	Digitalwertanzeigen	. 36					
	5.5	Digitaloperationen						
	5.6	Binäranzeigen	. 42					
	5.7	Binäroperation	. 44					
	5 0	Pagalungan	17					

Anhang	70
5.14 Zeichenkettenanzeigen	69
5.13 Verriegelungsanzeige	64
5.12 Analoge Antriebe	59
5.11 Bistabile Antriebe	56
5.10 Analoge Ventile	52
5.9 Bistabile Ventile	49

Vorbemerkung

Der Inhalt dieser Richtlinie ist entstanden unter Beachtung der Vorgaben und Empfehlungen der Richtlinie VDI 1000. Alle Rechte, insbesondere die des Nachdrucks, der Fotokopie, der elektronischen Verwendung und der Übersetzung, jeweils auszugsweise oder vollständig, sind vorbehalten.

Die Nutzung dieser VDI-Richtlinie ist unter Wahrung des Urheberrechts und unter Beachtung der Lizenzbedingungen (www.vdi-richtlinien.de), die in den VDI-Merkblättern geregelt sind, möglich.

An der Erarbeitung dieser VDI-Richtlinie waren beteiligt:

Andreas Stutz, Siemens AG Karlsruhe
Mathias Maurmaier, Siemens AG Karlsruhe
Mario Hoernicke, ABB Ladenburg
Katharina Stark, ABB Ladenburg
Christian Schäfer, Merck Darmstadt
Polyana Santos, Evonik Marl
Henry Bloch, HSU / Universität der Bundeswehr Hamburg
Leon Urbas, TU Dresden (Vorsitz)
Stephan Hensel, TU Dresden
Markus Graube, TU Dresden
Alexander Kehl, Festo Esslingen

Thomas Holm, Wago Minden Simon Löpler, Wago Minden

Claus Vothknecht, PHOENIX CONTACT Electronics, Bad Pyrmont

Thilo Glas, PHOENIX CONTACT Electronics, Bad Pyrmont

Oleg Makarov, PHOENIX CONTACT Electronics, Bad Pyrmont

Roland Gauweiler, HIMA Brühl

Simon Kronemeier, BASF Ludwigshafen

Klaus Erni, Emerson Wesseling

Allen, die ehrenamtlich an der Erarbeitung dieser VDI-Richtlinie mitgewirkt haben, sei gedankt.

Eine Liste der aktuell verfügbaren Blätter dieser Richtlinienreihe ist im Internet abrufbar unter www.vdi.de/2658.

Einleitung

Der Fachausschuss "Zukünftige Architekturen der Automatisierungstechnik" der VDI-Gesellschaft für Messund Automatisierungstechnik hat sich zusammen mit der NAMUR und dem ZVEI mit der Erstellung dieser Richtlinie der Aufgabe angenommen, die Spezifikation von Datenschnittstellen, zur Verwendung in modularen Anlagen, zu definieren und syntaktisch, semantisch und pragmatisch zu beschreiben.

Modulare Anlagen werden in der Fertigungs- und Verfahrenstechnik vermehrt eingesetzt. Das Ziel hierbei ist die Planungszeit neuer Anlagen deutlich zu verkürzen und Umbauarbeiten an Anlagen zeitlich zu verkürzen. Hierdurch reduziert sich die Stillstandzeit, bzw. die Time-To-Market wird bei Neuanlagen deutlich verkürzt.

Da die Domänen Fertigungstechnik und Verfahrenstechnik hierbei sehr unterschiedliche Anforderungen an die Modularität stellen, wird in dieser Richtlinie vornehmlich die Verfahrenstechnik betrachtet.

Ausgehend von abgeschlossenen Projekten, wie F3 Factory, und bestehenden Empfehlungen und Anforderungen, veröffentlicht in der NE148, an verfahrenstechnische Module wird in dieser Richtlinie das Engineering der Automatisierungstechnik modularer Anlagen beschrieben. Hierbei wird sowohl das Modulengineering, als auch das Anlagenengineering der Automatisierungstechnik betrachtet.

Zur Beschreibung der Modultypen wird das Module-Type-Package (MTP) verwendet, welches die Schnittstellen und Funktionen der Automatisierungstechnik von Modulen definiert, beschreibt und letztlich die Integration von Modulen in eine Prozessführungsebene (PFE) ermöglicht.

Hierbei werden folgende Aspekte in Blatt 3 der vorliegenden Richtlinie fokussiert:

- 1. Syntaktische und semantische Definition von Datenschnittstellen für Sensoren
- 2. Syntaktische und semantische Definition von Datenschnittstellen für Aktoren
- 3. Syntaktische und semantische Definition von Datenschnittstellen für Wertevorgaben
- 4. Syntaktische und semantische Definition von Datenschnittstellen für Interlock-Logiken

Weitere (geplante) Blätter der Richtlinie greifen folgende Aspekte des automatisierungstechnischen Engineerings modularer Anlagen auf:

- Blatt 1: Allgemeines Konzept und Schnittstellen
- Blatt 2: Modellierung von Bedienbildern
- Blatt 4: Modellierung von Moduldiensten
- Blatt 5: Laufzeit- und Kommunikationsaspekte
- Blatt 6: Konzept Alarmmanagement
- Hinzu kommen Blätter zu den Themen: Diagnose, Alarmmanagement, funktionale Sicherheit sowie Validieren von MTP und Modulen.

Durch die zunehmende Vernetzung der Module werden weitere Themen hinzukommen, wie z.B. modulübergreifende funktionale Sicherheit, sichere Kommunikation zwischen Modulen.

1. Anwendungsbereich

Diese Richtlinie definiert Schnittstellen, die die auszutauschenden Daten eines Moduls definieren. Das vorliegende Richtliniendokument definiert für unterschiedliche Schnittstellenfamilien entsprechende Schnittstellen, die ausgehend von einer Basis-Schnittstelle weitere Erweiterungen mit Hilfe von Ableitungen enthalten. Zielgruppen, Anwendungsfälle, Definitionen und Richtlinienfokus sind die gleichen wie in VDI/VDE/NAMUR 2658 Blatt 1 definiert.

2 Ahkiirzungan	20##				
2. Abkürzungen Neben den Abkürzungen aus VDI/VDE/NAMUR 2658 Blatt 1 und Blatt 2 werden keine Abkürzungen ver-					

wendet.

3. Grundkonzepte der Schnittstellendefinitionen

Die in diesem Blatt definierten Schnittstellen stellen einen integralen Bestandteil des MTP Konzepts dar. Zur Integration von Modulen in eine PFE werden die in diesem Blatt syntaktisch und semantisch definierten Schnittstellen verwendet, die sowohl auf Modulseite als auch auf PFE Seite bekannt sein müssen. Im Folgenden werden die Allgemeinen Definitionen und die Schnittstellen näher erläutert.

3.1 Richtlinien-Konformität

Konformität für die Modulautomatisierung

Ein Modulautomatisierungssystem gilt als richtlinien-konform, wenn <u>für alle Schnittstellenfamilien mindes</u>tens eine Schnittstellendefinition, unabhängig dessen Ableitungsstufe, realisierbar ist.

Konformität für die Prozessführungssysteme

Ein Prozessführungssystem gilt als richtlinien-konform, wenn <u>für alle Schnittstellenfamilien mindestens die</u> <u>Basistyp-Definition</u> realisierbar ist.

3.2 Beschreibung der Interpretation von Schnittstellendefinitionen

Jede Schnittstellendefinition besteht aus einem einleitenden Erklärungstext und einer detaillierten Tabelle mit einer Auflistung der für die Schnittstelle spezifizierten Informations-Variablen.

Kursiv gesetzte Variablen sind bereits in einer allgemeineren Definition vorhanden und werden in der entsprechenden Ableitung mit einer erweiterten Funktion belegt.

Im Folgenden werden die einzelnen Spalten der Tabellen erläutert:

Spalte	Definition
Alias	Name des Informationselements
Access	Definition der Richtung des Informationsfluss
	PFE ← MOD
	Information geht von Modul zur PFE (readonly)
	PFE → MOD
	Information geht von der PFE zum Modul (read/write)
	PFE ←→ MOD
	Informationselement ist bitgranular und beinhaltet Bits, die sowohl readonly als auch read/write sind. Das Element selbst muss hierfür als read/write deklariert werden.
DataType	Datentyp des Informationselements, siehe 3.3 Datentypen
Description	Beschreibung/Definition der Interpretation für das Informationselement. Hier können auch Hinweise zu Abhängigkeiten anderer Variablen der Schnittstelle beschrieben sein.

3.3 Datentypen

In der AML-Datei und der Steuerung werden teilweise verschiedene Datentypen für dieselbe Variable verwendet. Dies begründet sich darin, dass einige Datenformate nicht in AML unterstützt werden und deshalb Intern

durch andere, vergleichbare Datentypen ersetzt werden müssen. Die folgende Tabelle stellt die verwendeten Datentypen übersichtlich dar. In den weiteren Kapiteln dieser Dokumentation werden die Variablen mit den Datentypen der SPS deklariert.

SPS (Datentypen der IEC 61131-3)	AML
REAL	xs:double
DWORD	xs:unsignedLong
DINT	xs:long
BYTE	xs:byte
BOOL	xs:boolean
INT	xs:integer

3.4 Default Values

Default Values werden im Merkmal *DefaultValue* des betreffenden Attributes der Schnittstellenvariable definiert und sind somit bereits mit dem MTP in der Planungsphase einer modularen Anlage verfügbar.

Das Merkmal *DefaultValue* muss mit dem Wert versehen werden, mit dem die PEA ausgeliefert wird. Wenn kein sinnvoller Default angegeben werden kann, beispielsweise für den Wert einer Prozessvariablen, ist dieses Merkmal leer zu lassen.

Wenn der Wert zur Laufzeit geändert werden kann, muss das Merkmal *AttributeDataType* den Wert xs:IDREF haben und das Merkmal *Value* verweist auf eine mindestens lesbare Variable (Link Mechanismus, definiert in Blatt 1). Bei unveränderlichen Werten müssen die Merkmale *Value* und *DefaultValue* auf den gleichen Wert gesetzt sein.

Grafik: Abbildung eines AML-Attribut aus einem Beispiel-MTP zur dynamischen Übertragung einer Temperatureinheit mit dem Offline-verfügbaren DefaultValue "1001" für Grad Celsius.

4. Allgemeine Definitionen

Dieser Absatz definiert gewisse Bestandteile der Schnittstellen, die in mehreren Schnittstellenfamilien Anwendung finden und somit dokumentenweit Geltung haben.

4.1 TagName

Die Variable TagName beinhaltet den Identifier für die hier realisierte PLT-Stelle innerhalb des Moduls. Der Wert dieser Variable ist im Normalfall statisch auszuführen.

Variable Definition			
Alias	Access	Type	Description
TagName	PFE ← MOD	STRING	Name of the represented Entity – i.e. TIC111

4.2 TagDescription

Die Variable TagDescription beinhaltet die Beschreibung für die hier realisierte PLT-Stelle. Der Wert dieser Variable ist im Normalfall statisch auszuführen.

Variable Definition				
Alias	Access	Type	Description	
TagDescription	PFE ← MOD	STRING	Description of the represented Entity – i.e. Reactor Temperature Inside	

4.3 OSLevel

Die Variable OSLevel ermöglicht einen einfachen Mechanismus, mit dem das Schreiben mehrerer Bedienungsebenen überwacht werden kann. Jede Bedienerebene (z.b. lokaler Leitstand / zentraler Leitstand) wird einer entsprechenden Zahl zugeordnet. Wenn die Zahl der Bedienungsebene und die Zahl dieser Variable übereinstimmen, sollen die Bedienelemente der Bedienungseinrichtung den Schreibbefehl zulassen, andernfalls, sollen die Eingabefelder inaktiv sein. Somit werden konfligierende Schreibzugriffe verhindert.

Die Variable wird im Modul keinerlei Funktionalität auslösen, sondern dient lediglich einem zentralen Ort der Persistierung, damit alle Bedienungsstationen auf ein und denselben Wert zugreifen können. Für Lieferanten der Modulautomatisierung ist lediglich die Variable in der Schnittstelle vorzusehen.

Die Modulautomatisierung hat in diesen einfachen Mechanismus keine Möglichkeit zu prüfen, wer aktuell auf die Variablen schreibt. Die Überprüfung ist Aufgabe des Bildbausteins einer jeden Bedienebene selbst und fällt somit in den Realisierungsumfang der Lieferanten eines Prozessführungssystems.

Variable Definition			
Alias	Access	Type	Description
OSLevel	PFE → MOD	BYTE	Allowed Values 1255 – Plant-wide Level Definitions must be defined

4.4 WQC

Der Worst Quality Code beinhaltet einen verarbeiteten, zusammenfassenden Quality Code, der den schlechtesten Quality Code aller eingehenden Quality Codes beinhaltet. Der schlechteste Quality Code mit der höchsten Priorität wird als Worst Quality Code ausgegeben. Jede Datenstruktur besitzt immer nur eine Instanz dieser Variable.

Variable D	/ariable Definition				
Alias	Access	Type	Description		
WQC	PFE ← MOD	BYTE	Worst Quality code – contains the worst quality code		

Jeder Prozess- und/oder Steuerwert besitzt, neben dem eigentlichen Wert, einen Parameter zur Übermittlung der Prozesswertqualität. Die Prozesswertqualität gibt Aufschluss darüber, unter welchen Bedingungen ein Wert ermittelt wurde. Dieser Qualitätswert wird meist von den Sensoren oder den Eingangsbaugruppen des Automatisierungssystems gebildet und beschreibt, unter welchen Bedingungen der Wert erfasst wurde und ob diesem Wert vertraut werden kann. Die höchste Priorität entspricht 0, die niedrigste Priorität entspricht 7.

Quality	Quality Code Enumeration					
Byte	Prio.	Description				
16#60	0	Simulation Value				
16#00	1	Bad, conditioned by device				
16#28	2	Bad, conditioned by process				
16#68	3	Uncertain, conditioned by device				
16#78	4	Uncertain, conditioned by process				
16#A4	5	Maintenance Request				
16#80	6	Good				
16#FF	7	No QC available (default)				

4.5 ScaleSettings

Zum Festlegen der Anzeigegrenzen eines Analogwerts werden jeweils eine Min und eine Max Variable verwendet. Diese bietet die Möglichkeit den Wertebereich eines Analogwerts zu beschreiben.

Variable Definition					
Alias	Access	Type	Description		
SclMin	PFE ← MOD	REAL/DINT	Low Limit Value e.g. for the Bar Graph		
SclMax	PFE ← MOD	REAL/DINT	High Limit Value e.g. for the Bar Graph		

4.6 UnitSettings

Die Einheit eines Wertes wird mit Hilfe einer Unit Variable beschrieben. Die Einheiten werden nach IEC61158 beschrieben.

Variable Definition			
Alias	Access	Type	Description
Unit	PFE ← MOD	INT	Enumeration Value of the Unit List

Folgende Auflistung beinhaltet die meistgenutzten Einheiten nach IEC61158.

Kommentiert [AS1]: Den Verweis auf die Norm mit der Version und dem Jahr.

Identifier	Einheit-Kürzel	Einheit
1000	K	Kelvin
1001	°C	Grad Celsius
1002	°F	Grad Fahrenheit
1005	۰	Grad
1006		Minute
1007	··	Sekunde
1010	m	Meter
1013	mm	Millimeter
1018	ft	Fuß
1023	m2	Quadratmeter
1038	L	Liter
1041	hl	Hektoliter
1054	s	Sekunde
1058	min	Minute
1059	h	Stunde
1060	d	Tag
1061	m/s	Meter pro Sekunde
1077	Hz	Hertz
1081	kHz	Kilohertz
1082	1/s	Pro Sekunde
1083	1/min	Pro Minute
1088	kg	Kilogramm
1092	t	Metrische Tonne
1100	g/cm3	Gramm pro Kubikzentimeter
1105	g/L	Gramm pro Liter
1120	N	Newton
1123	mN	Millinewton
1130	Pa	Pascal
1133	kPa	Kilopascal
1137	bar	Bar
1138	mbar	Millibar
1149	mmH2O	Millimeter Wassersäule
1175	W·h	Wattstunde
1179	kW⋅h	Kilowattstunde
1181	kcalth	Kilokalorien

1190	kW	Kilowatt
1209	Α	Ampere
1211	mA	Milliampere
1221	A·h	Amperestunde
1240	V	Volt
1342	%	Prozent
1349	m3/h	Kubikmeter pro Stunde
1353	L/h	Liter pro Stunde
1384	mol	Mol
1422	pН	pH-Wert

4.7 ValueLimitation

Diese Variablen beschreiben eine Sollwertbegrenzung für Analogwerte. Werte außerhalb dieser Variablen werden nicht akzeptiert und eine Werteänderung muss verhindert werden. Die Interpretation des Wertes ergibt sich bei der Kombination aus dieser Standard-Funktion in Zusammenhang mit der Standard-Funktion Unit.

Variable Definition						
Alias	Access	Type	Description			
Min	PFE ← MOD	REAL/DINT	Low Limit Value for Value Input			
Max	PFE ← MOD	REAL/DINT	High Limit Value for Value Input			

4.8 OperationModes

BaseOperationMode

Die Variablen des BaseOperationMode realisieren einen Zustandsautomat mit zwei Zuständen, der festlegt, ob eine Datenstruktur im Online oder Offline Modus ist. Anwendung findet diese Schnittstelle zur Zustandssteuerung von passiven Entitäten, wie zum Beispiel Messstellen oder Wertevorgaben. In den Zustand Offline kann der Automat sowohl vom Operator mit Hilfe der Op-Variablen, als auch modulintern, mit Hilfe der Li-Variablen gesetzt werden. In den Zustand Online kann nur der Operator schalten Der aktuelle Zustand wird über die beiden Statusausgänge signalisiert. In dieser Schnittstelle sind die Variablen des Operators und der internen Logik gleichberechtigt. Einen Default-Wert gibt es als globale Festlegung nicht, da er je nach Anwendungsfall der BaseOperationMode Schnittstelle unterschiedlich sein kann. Demnach ist in der konkreten Schnittstelle zu prüfen, ob dort ein Default-Zustand definiert wird. Grundsätzlich kann es aber auch sinnvoll sein, dass der Default-Wert des Zustandes durch den Modulautomatisierer definiert wird.

Die Variablen werden in eine Operation Mode Variable, kurz OpMode, zusammengefasst (siehe OpMode). Der BaseOperationMode darf nur eingesetzt werden, wenn ExtendedOperationMode nicht verwendet wird.

Grafik: Zustandsautomat der BaseOperationMode Schnittstelle

Variable Definition				
Alias	Access	Type	Description	Mapping to OpMode
StateOffLi	PFE ← MOD	BOOL	Set Operation Mode to Offline by internal interaction 1:Operation Mode is set to Offline 0: no operation	Bit 1
StateOffOp	PFE → MOD	BOOL	Set Operation Mode to Offline by operator interaction 0→1: request to set Operation Mode to Offline 1→0: acknowledge by Module	Bit 2
StateOnOp	PFE → MOD	BOOL	Set Operation Mode to Online by operator interaction 0→1: request to set Operation Mode is to Online 1→0: acknowledge by Module	Bit 4
StateOnAct	PFE ← MOD	BOOL	Current State is Online 1:State is Online 0: State is not Online	Bit 7 (1:on)
StateOffAct	PFE ← MOD	BOOL	Current State is Offline 1: State is Offline 0: State is not Offline	Bit 7 (0:off)

Kommentiert [AS2]: In manchen Descriptions ist die Bedeutung für 0: und 1: nicht immer beides vorhanden.

Hier bitte beide Definitionen hinzufügen.

ExtendedOperationMode

Die Variablen des ExtendedOperationMode realisieren einen Zustandsautomaten mit drei Zuständen, der festlegt, ob eine Schnittstelle im Offline, Manual oder Automatic Mode sich befindet. Diese Variante findet Anwendung bei aktiven Entitäten, wie zum Beispiel Antriebe oder Regler. Ein Zustandswechsel kann immer nur zwischen Offline und Manual oder Manual und Automatic durchgeführt werden. Ein direkter Übergang von Offline in Automatic ist nicht erlaubt. Die Modullogik definiert, ob der Operator oder eine weitere Modullogik die Betriebsarten-Umschaltung durchführen darf, hierzu dient die Variable StateLiOp. In Abhängigkeit dieser Variable sind entweder die Operator-Signale (*Op-Variablen) oder die modul-internen Variablen (*Li-Variablen) ausschlaggebend. Mit Hilfe der StateLiOp Variable kann der Zustand bzw. die Gegebenheiten im Modul berücksichtigt werden, wann das Modul den Operator-Zugriff erlaubt und wann dieser verboten wird. Die aktuellen Zustände werden über entsprechende Signale ausgegeben. Auch hier ist es je nach Anwendungsfall und Verwendung innerhalb einer konkreten Schnittstelle abhängig, welcher der drei Zustände als Default-Wert definiert wird, aus diesem Grund wird auf die Schnittstellen spezifischen Beschreibungen verwiesen. Die Variablen werden in eine Operation Mode Variable, kurz OpMode, zusammengefasst (siehe OpMode).

Der ExtendedOperationMode darf nur eingesetzt werden, wenn BaseOperationMode nicht verwendet wird. Weitere Besonderheiten im Zusammenhang mit dem Extended Operation Mode sind in den einzelnen Schnittstellenbeschreibungen ergänzt, da diese anwendungsspezifisch sind.

Grafik: Zustandsautomat der ExtendedOperationMode Schnittstelle

Variable De	Variable Definition				
Alias	Access	Type	Description	Mapping to OpMode	
StateLiOp	PFE ← MOD	BOOL	Selection of the active Operation Mode interaction channel 0: the operator switches (*Op) shall be used 1: the internal switches (*Li) shall be used	Bit 0	
StateOffLi	PFE ← MOD	BOOL	Set Operation Mode to Offline by internal interaction (relevant, if StateLiOp is true) 1: Operation Mode is set to Offline 0: no operation	Bit 1	
StateManLi	PFE ← MOD	BOOL	Set Operation Mode to Manual by internal interaction (relevant, if StateLiOp is true) 1: Operation Mode is set to Manual 0: no operation	Bit 3	
StateAutLi	PFE ← MOD	BOOL	Set OperationMode to Automatic by internal interaction	Bit 5	

			(relevant, if StateLiOp is true)	
			1: Operation Mode is set to Automatic	
			0: no operation	
StateOffOp	PFE → MOD	BOOL	Set Operation Mode to Offline by operator interaction (relevant, if StateLiOp is false) 0→1: request to set Operation Mode to Offline	Bit 2
			1→0: acknowledge by Module	
StateManOp	PFE → MOD	BOOL	Set OperationMode to manual by operator interaction (relevant, if StateLiOp is false)	Bit 4
			0→1: request to set Operation Mode to Manual 1→0: acknowledge by Module	
StateAutOp	PFE → MOD	BOOL	Set OperationMode to Automatic by operator interaction (active, if StateLiOp is false) 0→1: request to set Operation Mode is to Automatic 1→0: acknowledge by Module	Bit 6
StateManAct	PFE ← MOD	BOOL	1: current mode is Manual 0: current mode is not Manual	Bit 7 (1:manual)
StateAutAct	PFE ← MOD	BOOL	current mode is Automatic current mode is not Automatic	Bit 8 (1:automatic)
StateOffAct	PFE ← MOD	BOOL	current mode is Offline current mode is not Offline	Bit 7/8 (0:off)

SourceMode

Die Variablen der SourceMode-Schnittstelle realisieren einen Zustandsautomaten zur Auswahl einer Quelle bei Schnittstellen die von zwei unterschiedlichen Quellen beeinflusst werden können. Es wird hierbei unterschieden zwischen Intern (modul-intern) und Extern (modul-extern). Die Modullogik definiert mit Hilfe der SrcLiOp-Variable, ob die Auswahl durch eine weitere Modul-Logik oder durch die Operator-Variablen vorgenommen werden darf. In Abhängigkeit dieser Variable sind entweder die Operator-Signale (*Op-Variablen) oder die modul-internen Variablen (*Li-Variablen) ausschlaggebend. Der Zeitpunkt, in dem umgeschaltet werden darf kann mit Hilfe der SrcLiOp-Variable durch das Modul definiert werden. Die aktuelle Quelle wird über entsprechende Signale ausgegeben. Die Default-Quelle kann je nach Anwendung in einer konkreten Schnittstelle unterschiedlich sinnvoll sein, demnach ist die Default-Definition in den Beschreibungen der konkreten Schnittstellen zu entnehmen.

Die Variablen werden in eine Operation Mode Variable, kurz OpMode, zusammengefasst (siehe OpMode). Weitere Besonderheiten im Zusammenhang mit dem Source Mode sind in den einzelnen Schnittstellenbeschreibungen ergänzt, da diese anwendungsspezifisch sind.

Grafik: Zustandsautomat der SourceMode Schnittstelle

Variable D				
Alias	Access	Type	Description	Mapping to OpMode
SrcLiOp	PFE ← MOD	BOOL	Selection of the active Source Mode interaction channel 0: the operator switches (*Op) shall be used 1: the internal switches (*Li) shall be used	Bit 9
SrcExtLi	PFE ← MOD	BOOL	Set SourceMode to external by internal interaction (relevant, if SrcLiOp is true) 1 :SourceMode is set to external 0: no operation	Bit 10
SrcIntLi	PFE ← MOD	BOOL	Set SourceMode to internal by internal interaction (relevant, if SrcLiOp is true) 1 : SourceMode is set to internal 0: no operation	Bit 11
SrcIntOp	PFE → MOD	BOOL	Set SourceMode to internal by operator interaction (relevant, if SrcLiOp is false) 0→1: request to set Operation Mode to Internal 1→0: acknowledge by Module	Bit 12
SrcExtOp	PFE → MOD	BOOL	Set SourceMode to external by operator interaction (relevant, if SrcLiOp is false) 0→1: request to set Operation Mode to External 1→0: acknowledge by Module	Bit 13
SrcIntAct	PFE ← MOD	BOOL	1: current mode is Intern 0: current mode is not Intern	Bit 14 (1:intern)

SrcExtAct	PFE ← MOD	BOOL	1: current mode is Extern	Bit 14 (0:extern)
			0: current mode is not Intern	

CollectiveSystemFault

Die Collective System Fault Variable dient zur Übertragung eines intern aufgetretenen Fehlers, der sowohl von der Logik der Datenstruktur selbst kommen kann, oder aber auch durch andere in Abhängigkeit stehende Datenstrukturen.

Variable Def				
Alias	Access	Type	Description	Mapping to OpMode
CSF	PFE ← MOD		an internal fault logic recognizes a problem no internal fault recognized	Bit 15

OperationMode

Die Variable Operation Mode, kurz OpMode, ist eine Zusammenfassung der Definitionen aus "BaseOperationMode", "ExtendedOperationMode, "SourceMode" und "Collective System Fault".

Variable Definition						
Alias	Access	Type	Description			
OpMode	PFE ←→ MOD	DWORD	See OpMode Mapping Definition			

Оре	eration Mode Ma	pping Table	
Bit	Name	Description	Elementary Structure
0	StateLiOp	0: the operator switches (*Op) shall be used 1: the internal switches (*Li) shall be used	ExtendedOperationMode
	StateOffLi	1: Operation Mode is set to Offline 0: no operation	BaseOperationMode
1		(relevant, if StateLiOp is true) 1: Operation Mode is set to Offline 0: no operation	ExtendedOperationMode
	StateOffOp	0→1: request to set Operation Mode to Offline 1→0: acknowledge by Module	BaseOperationMode
2		(relevant, if StateLiOp is false) 0→1: request to set Operation Mode to Offline 1→0: acknowledge by Module	ExtendedOperationMode
3	StateManLi	(relevant, if StateLiOp is true) 1: Operation Mode is set to Manual 0: no operation	ExtendedOperationMode
	StateManOp / StateOnOp	0→1: request to set Operation Mode to Online 1→0: acknowledge by Module	BaseOperationMode
4		(relevant, if StateLiOp is false) 0→1: request to set Operation Mode to Manual 1→0: acknowledge by Module	ExtendedOperationMode
5	StateAutLi	(relevant, if StateLiOp is true) 1: Operation Mode is set to Automatic 0: no operation	ExtendedOperationMode
6	StateAutOp	(relevant, if StateLiOp is false) 0→1: request to set Operation Mode to Automatic 1→0: acknowledge by Module	ExtendedOperationMode
	StateOffAct	Bit 7 = 0: current mode is Offline.	BaseOperationMode
	StateOnAct	Bit 7 = 1: current mode is Online.	BaseOperationMode
7/8	StateOffAct	Bit 7 = 0, Bit 8 = 0: current mode is Offline.	ExtendedOperationMode
	StateManAct	Bit 7 = 1, Bit 8=0: current mode is Manual.	ExtendedOperationMode
	StateAutAct	Bit 7 =0, bit 8 =1, current mode is Automatic	ExtendedOperationMode
9	SrcLiOp	0: the operator switches (*Op) shall be used 1: the internal switches (*Li) shall be used	SourceMode
10	SrcExtLi	(relevant, if SrcLiOp is true) 1 :SourceMode is set to external 0: no operation	SourceMode

-22 - VDI #### Blatt # Entwurf Internes Arbeitspapier Alle Rechte vorbehalten © Verein Deutscher Ingenieure e.V., Düsseldorf 20##

Ope	Operation Mode Mapping Table								
Bit	Name	Description	Elementary Structure						
11	SrcIntLi	(relevant, if SrcLiOp is true) 1 : SourceMode is set to internal 0: no operation	SourceMode						
12	SrcIntOp	(relevant, if SrcLiOp is false) 1: Source Mode is set to internal	SourceMode						
13	SrcExtOp	(relevant, if SrcLiOp is false) 1: Source Mode is set to external	SourceMode						
14	SrcExtAct / SrcIn- tAct	current mode is internal current mode is external.	SourceMode						
15	CSF	a system fault has been detected no system fault has been detected	SystemFault						
16+		Reserve							

4.9 Handshake Verfahren

Bei einigen Variablen wird eine Information zwischen dem Bildbaustein des Operators und der Schnittstelle ausgetauscht. Die dahinter liegende Implementierung der Funktion wird somit angesprochen. Der Transport der Information wird mit Hilfe eines Handshake-Verfahrens realisiert. Der Bildbaustein schreibt einen Wert, z.B. logisch "1", auf die Variable und die Schnittstelle bzw. deren Realisierung setzt diesen nach Bearbeitung wieder auf eine logische "0". Bearbeitung heißt in diesem Fall aber nicht, dass die Funktion, wie durch den Operator angefordert, erfolgreich ausgeführt wurde, sondern lediglich, dass die Funktion die Anforderung vernommen hat. Die erfolgreiche Ausführung wird mit Hilfe der vorhandenen zustandsbeschreibenden Variablen realisiert

Das Handshake-Verfahren kommt immer dann zur Anwendung, wenn in der Variablen-Beschreibung die entsprechende Flankenwechsel-Notation beschrieben ist $(0\rightarrow1:$ do something, $1\rightarrow0$ acknowledge).

Grafik: Sequenzdiagramm der Interaktion im Handshake-Verfahren am Beispiel eines einfachen RS-Glieds

4.10 Interlocks

Die Standard-Funktion Interlocks beinhaltet ein dreistufiges System bestehend aus einem Permit, einem Interlock und einem Protect.

Permit realisiert eine Einschaltverriegelung verhindert bei verriegeltem Zustand das aktivieren.

Interlock realisiert eine Verriegelung, die das Einschalten verhindert, als auch eine Entität in deren Sicherheitsposition versetzt. Ein aktiver Interlock muss nicht zurückgesetzt werden.

Protect realisiert eine Verriegelung, vergleichbar zum Interlock, mit dem Unterschied, dass die Protection zurückgesetzt werden muss.

Variable D	Variable Definition					
Alias	Access	Type	Description			
PermEn	PFE ← MOD	BOOL	Enables the Permission Lock			
			1:enabled			
			0:disabled			
Permit	PFE ← MOD	BOOL	Permit locks the Entity to be activated			
			1:permission is given			
			0:permission is not given			
IntlEn	PFE ← MOD	BOOL	Enables the Interlock Lock			
			1:enabled			
			0:disabled			
Interlock	PFE ← MOD	BOOL	Interlock locks the Entity to the safe state			
			1: interlock is not active			
			0: interlocking is active, must not be reset (see Reset)			
ProtEn	PFE ← MOD	BOOL	Enables the Protection Lock			
			1:enabled			
			0:disabled			
Protect	PFE ← MOD	BOOL	Protect locks the Entity to the safe state – a reset is required			
			1: protection is not active			
			0: protection is active, must be reset (see Reset)			

4.11 Feedback Monitoring

Die Standard-Funktion Feedback-Monitoring unterscheidet in eine statische und eine dynamische Fehlfunktion

Eine statische Fehlfunktion liegt vor, wenn eine Datenstruktur den Zustand ändert ohne dass eine Änderung der Ansteuerung erfolgte. Ein Beispiel wäre eine Änderung des Ventilzustands ohne dass das Ansteuersignal geändert wurde. Dieser Fehler deutet zum Beispiel auf den Verlust der Versorgungsenergie hin.

Eine dynamische Fehlfunktion liegt vor, wenn eine Datenstruktur den Zustand nicht ändert, obwohl eine Änderung der Ansteuerung erfolgte. Ein Beispiel wäre die Änderung der Ansteuerung eines Ventils, jedoch ändert sich das entsprechende Rückführsignal des Zustands nicht. Dieser Fehler deutet zum Beispiel auf einen mechanischen Fehler des Ventils hin.

Über die Variable MonSafePos wird angezeigt, ob eine Datenstruktur in ihre Sicherheitsposition geht, wenn ein Fehler erkannt wurde. Bei Antrieben ist diese immer "true", was bedeutet, dass Antriebe immer in die Sicherheitsposition gehen, wenn ein Fehler erkannt wird.

Über die beiden Zeiten MonTiStat und MonTiDyn wird eingestellt, wie lange gewartet wird, bis der geforderte Zustand der Ansteuerung, sich an der entsprechenden Datenstruktur eingestellt hat. Falls sich der geforderte Zustand an der Datenstruktur einstellt, bevor die Zeit abgelaufen ist, liegt keine Fehlfunktion vor.

Variable Definition					
Alias	Access	Type	Specific Description		
MonEn	PFE ← MOD	BOOL	Enables the Monitoring Feature		
			1:enabled		
			0:disabled		
MonSafePos	PFE ← MOD	BOOL	Set the Error Behaviour, if an error occurs		
			1: after an error occurs, the safe pos will be set		
			0: after an error occurs, the entity holds the state		
MonStatErr	PFE ← MOD	BOOL	Static Error occured		
			1:error occurred		
			0: no error occured		
MonDynErr	PFE ← MOD	BOOL	Dynamic Error occured		
			1:error occurred		
			0: no error occured		
MonStatTi	PFE → MOD	REAL	Monitor Time for uncontrolled changes [s]		
MonDynTi	PFE → MOD	REAL	Monitor Time for controlled changes [s]		

4.12 Reset

Die Standard-Funktion Reset beinhaltet zwei Variablen die ein Rücksetzen von Fehlervariablen und dem Protection-Lock ermöglicht. Rücksetzen kann sowohl von einer internen Logik im Modulautomatisierungssystem als auch vom Operator ausgeführt werden. Beide Reset-Kanäle sind gleichberechtigt.

Variable De	Variable Definitions					
Alias	Access	Type	Description			
ResetOp	PFE → MOD	BOOL	Reset by Operator (Handshake)			
			0→1: request from PFE			
			1→0: acknowledge from Module			
ResetLi	PFE ← MOD	BOOL	Reset by internal link			
			1: Reset executed			
			0: no operation			

4.13 Limit Monitoring

Die Standard-Funktion Limit Monitoring überwacht einen Analogwert auf bis zu 6 Grenzen. Die Grenzen unterteilen sich einmal in Ober- und Untergrenzen und einmal in Toleranz-, Warnungs- und Alarmgrenzen. Mit Hilfe der Enable Variablen, kann eine Grenzwertüberwachung aktiviert oder deaktiviert werden. Mit den entsprechenden Limit Variablen wird der Grenzwert festgelegt. Sowohl die Enable- als auch die Limit-Variablen können durch den Operator verändert werden. Die Active Variablen signalisieren eine Verletzung der Grenzwerte.

Variable D	Variable Definition					
Alias	Access	Type	Specific Description			
AHEn	PFE ← MOD	BOOL	Enables Alarm High Limit 1:enabled 0:disabled			
AHLim	PFE → MOD	REAL/DINT	Limit Value for Alarm High			
AHAct	PFE ← MOD	BOOL	Alarm High active 1:active 0:inactive			
WHEn	PFE ← MOD	BOOL	Enables Warning High Limit 1:enabled 0:disabled			
WHLim	PFE → MOD	REAL/DINT	Limit Value for Warning High			
WHAct	PFE ← MOD	BOOL	Warning High active 1:active 0:inactive			
THEn	PFE ← MOD	BOOL	Enables Tolerance High Limit 1:enabled 0:disabled			
THLim	PFE → MOD	REAL/DINT	Limit Value for Tolerance High			
THAct	PFE ← MOD	BOOL	Tolerance High active 1:active 0:inactive			
TLEn	PFE ← MOD	BOOL	Enables Tolerance Low Limit 1:enabled 0:disabled			
TLLim	PFE → MOD	REAL/DINT	Limit Value for Tolerance Low			
TLAct	PFE ← MOD	BOOL	Tolerance Low active 1:active 0:inactive			
WLEn	PFE ← MOD	BOOL	Enables Warning Low Limit 1:enabled 0:disabled			
WLLim	PFE → MOD	REAL/DINT	Limit Value for Warning Low			
WLAct	PFE ← MOD	BOOL	Warning Low active 1:active 0:inactive			
ALEn	PFE ← MOD	BOOL	Enables Alarm Low Limit 1:enabled 0:disabled			
ALLim	PFE → MOD	REAL/DINT	Limit Value for Alarm Low			

-28 - VDI #### Blatt # Entwurf Internes Arbeitspapier Alle Rechte vorbehalten © Verein Deutscher Ingenieure e. V., Düsseldorf 20##

ALAct	PFE ← MOD	BOOL	Alarm Low active
			1:active
			0:inactive

5. Schnittstellendefinitionen

Dieser Absatz definiert die Schnittstellen, die in entsprechenden Schnittstellenfamilien organisiert werden. Diese Schnittstellen legen den zwischen Prozessführungssystem und Modulautomatisierungssystem auszutauschenden Datenumfang, sowohl syntaktisch als auch semantisch fest.

Die in der Richtlinie definierten Schnittstellenfamilien, sowie deren Basis- und Erweiterungsschnittstellen sind in Tabelle X aufgelistet.

Schnittstellenfamilie Basis-Schnittstelle, (Erweiterungen), (...)

Analogwertanzeigen AnaView, (AnaMon)

Analogwertoperationen ExtAnaOp, (ExtIntAnaOp), (AdvAnaOp)

Binärwertanzeigen BinView, (BinMon)

Binäroperationen ExtBinOp, (ExtIntBinOp), (AdvBinOp)

Zeichenkettenanzeige StrView Regelungen PIDCtrl

Bistabile Ventile BinVlv, (MonBinVlv)
Regelbare Ventile AnaVlv, (MonAnaVlv)
Bistabile Antriebe BinDrv, (MonBinDrv)
Regelbare Antriebe AnaDrv, (MonAnaDrv)

Verriegelungsanzeigen LockView4, (LockView8), (LockView16)

Abbildung 1: Ableitungshierarchie der SystemUnitClass-Definitionen der in Blatt 3 definierten Schnittstellen

Die Schnittstellendefinitionen dieser Richtlinie werden in Form einer AutomationML SystemUnitClassLibrary, mit dem Namen *MTPDataObjectSUCLib*, modelliert. Jede Basis-Schnittstelle wird von der DataAssembly SystemUnitClass abgeleitet. Die erweiterten Schnittstellen leiten von der SystemUnitClass der Eltern-Schnittstelle ab und erweitern die Attribute der SystemUnitClass.

5.1 DataAssembly

Das DataAssembly ist das Root-Objekt eines jeden Datensatz-Elements im ModuleTypePackage. Alle weiteren Datenpakete müssen von diesem Element erben.

Interface Definition						
MTPDataObjec	MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description			
TagName	PFE ← MOD	STRING	TagName Field (see TagName)			
TagDescription	PFE ← MOD	STRING	TagDescription Field (see TagDescription)			
OSLevel	PFE → MOD	BYTE	OSLevel Variable (see OSLevel)			
WQC	PFE ← MOD	BYTE	Worst Quality Code Variable (see WQC)			

5.2 Analogwertanzeigen

Analoganzeigen werden zum einen verwendet um gemessene Werte in der PFE zu visualisieren und zum anderen um einfache analoge Werte von der Modulautomatisierung an die PFE zu übertragen.

AnaView

AnaView dient zur Anzeige eines analogen Wertes der Modulautomation (beispielsweise Prozesswerte und Parameter). Dazu gehören neben dem aktuellen Wert, die Einheit, der minimale und maximale Skalenwert, sowie die Qualität des Wertes.

Interface D	Interface Definition					
Parent Inte	Parent Interface					
MTPDataO	MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description			
V	PFE ← MOD	REAL	Value			
VSclMin	PFE ← MOD	REAL	Value Scale Low Limit (see ScaleSettings)			
VSclMax	PFE ← MOD	REAL	Value Scale High Limit (see ScaleSettings)			
VUnit	PFE ← MOD	INT	Value Unit (see UnitSettings)			

AnaMon

 $An a Mon\ erweitert\ die\ Schnittstelle\ An a View\ um\ die\ Grenzwertpr\"ufung\ entsprechend\ der\ Standard-Funktion\ "Limit\ Monitoring".$

Interface	Definition					
Parent Int	erface					
MTPDataObjectSUCLib/DataAssembly/AnaView						
Alias	Access	Type	Specific Description			
VAHEn	PFE ← MOD	BOOL	Enable Alarm High Limit			
			1:enabled			
			0:disabled			
VAHLim	PFE → MOD	REAL	Limit Value for Alarm High			
VAHAct	PFE ← MOD	BOOL	Alarm High Active			
			1:active			
			0:inactive			
VWHEn	PFE ← MOD	BOOL	Enable Warning High Limit			
			1:enabled			
			0:disabled			
VWHLim	PFE → MOD	REAL	Limit Value for Warning High			
VWHAct	PFE ← MOD	BOOL	Warning High Active			
			1:active			
			0:inactive			
VTHEn	PFE ← MOD	BOOL	Enables Tolerance High Limit			
			1:enabled			
			0:disabled			
VTHLim	PFE → MOD	REAL	Limit Value for Tolerance High			
VTHAct	PFE ← MOD	BOOL	Tolerance High Active			
			1:active			
			0:inactive			
VTLEn	PFE ← MOD	BOOL	Enables Tolerance Low Limit 1:enabled			
			0:disabled			
VTLLim	PFE → MOD	REAL	Limit Value for Tolerance Low			
VTLAct	PFE ← MOD	BOOL	Tolerance Low Active			
VILACI	Pre ~ MOD	BOOL	1:active			
			0:inactive			
VWLEn	PFE ← MOD	BOOL	Enables Warning Low Limit			
V WEELI	TTE C MOD	BOOL	1:enabled			
			0:disabled			
VWLLim	PFE → MOD	REAL	Limit Value for Warning Low			
VWLAct	PFE ← MOD	BOOL	Warning Low Active			
	112 (05	2002	1:active			
			0:inactive			
VALEn	PFE ← MOD	BOOL	Enables Alarm Low Limit			
			1:enabled; 0:disabled			
VALLim	PFE → MOD	REAL	Limit Value for Alarm Low			
VALAct	PFE ← MOD	BOOL	Alarm Low Active			
			1:active			
			0:inactive			

5.3 Analogoperationen

Analogoperationen werden verwendet um analoge Werte an die Modulautomatisierung zu übertragen.

ExtAnaOp

ExtAnaOp ist eine Schnittstelle zum Übertragen eines analogen Wertes durch die PFE in die Modulautomatisierung. Der übertragene Wert enthält einen minimalen und maximalen Skalenwert. Informationen wie die Einheit, sowie minimaler und maximaler Eingabewert werden in dem Modul selbst definiert. Zur Überprüfung der Eingabe, werden alle Werte als Rückgabewert zur Verfügung gestellt. Zudem verfügt die Schnittstelle über die Standard-Funktionen OSLevel und Worst Quality Code.

Interface De	Interface Definition					
Parent Inter	Parent Interface					
MTPData(ObjectSUCLi	b/Data	Assembly			
Alias	Access	Type	Specific Description			
VOut	PFE ← MOD	REAL	Value Output			
VSclMin	PFE ← MOD	REAL	Value Scale Low Limit (see ScaleSettings)			
VSclMax	PFE ← MOD	REAL	Value Scale High Limit (see ScaleSettings)			
VUnit	PFE ← MOD	INT	Value Unit (see UnitSettings)			
VExt	PFE → MOD	REAL	External Value			
VMin	PFE ← MOD	REAL	Value Low Limit (see ValueLimitation)			
VMax	PFE ← MOD	REAL	Value High Limit (see ValueLimitation)			
VRbk	PFE ← MOD	REAL	Readback Value			

ExtIntAnaOp

ExtIntAnaOp wird zur Vorgabe eines analogen Wertes von einem externen System, als auch von der Modulautomatisierung selbst kommend, verwendet. Die Schnittstelle ExtAnaOp wird hier um die interne Wertevorgabe und einen Operation Mode erweitert. Wird der Baustein auf den externen Wert geschaltet, so wird anstelle der internen Sollwertvorgabe der externe Sollwert verwendet. Hierdurch kann ein analoger Sollwert in die Modulautomatisierung geschrieben werden.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface De	Interface Definition					
Parent Inter	Parent Interface					
MTPData(ObjectSUCLib/E	DataAsse	mbly/ExtAnaOp			
Alias	Access	Type	Specific Description			
VExt	PFE → MOD	REAL	(relevant, if external source is active, see OperationMode) External Value			
VInt	PFE ← MOD	REAL	(relevant, if internal source is active, see OperationMode) Internal Value			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see OperationMode, only Source Mode used)			

AdvAnaOp

AdvAnaOp ist eine Erweiterung zu ExtIntAnaOp und besitzt grundsätzlich keine anderen Variablen, im Vergleich zum ExtIntAnaOp. Diese Schnittstelle besitzt einen um die BaseOperationMode erweiterten Funktionsumfang.

Interface De	Interface Definition				
Parent Inter	Parent Interface				
MTPData(ObjectSUCLib/E	DataAsse	mbly/ExtAnaOp/ExtIntAnaOp		
Alias	Access	Type	Specific Description		
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see OperationMode, BaseOperation and Source Mode used)		

5.4 Digitalwertanzeigen

Digitalwertanzeigen werden zum einen verwendet um ganzzahlige Werte in der PFE zu visualisieren und zum anderen um einfache digitale Werte von der Modulautomatisierung an die PFE zu übertragen.

DigView

DigView dient zur Anzeige eines digitalen Wertes der Modulautomation (beispielsweise ganzzahlige Prozesswerte und Parameter). Dazu gehören neben dem aktuellen Wert, die Einheit, der minimale und maximale Skalenwert, sowie die Qualität des Wertes.

Interface D	Interface Definition					
Parent Inte	Parent Interface					
MTPDataObjectSUCLib/DataAssembly						
Alias	Access	Type	Specific Description			
V	PFE ← MOD	DINT	Value			
VSclMin	PFE ← MOD	DINT	Value Scale Low Limit (see ScaleSettings)			
VSclMax	PFE ← MOD	DINT	Value Scale High Limit (see ScaleSettings)			
VUnit	PFE ← MOD	INT	Value Unit (see UnitSettings)			

DigMon

DigMon erweitert die Schnittstelle DigView um die Grenzwertprüfung entsprechend der Standard-Funktion "Limit Monitoring".

Interface Definition						
Parent Interface						
MTPDataObjectSUCLib/DataAssembly/DigView						
Alias	Access	Type	Specific Description			
VAHEn	PFE ← MOD	BOOL	Enable Alarm High Limit			
			1:enabled			
			0:disabled			
VAHLim	PFE → MOD	DINT	Limit Value for Alarm High			
VAHAct	PFE ← MOD	BOOL	Alarm High Active			
			1:active			
			0:inactive			
VWHEn	PFE ← MOD	BOOL	Enable Warning High Limit			
			1:enabled			
			0:disabled			
VWHLim	PFE → MOD	DINT	Limit Value for Warning High			
VWHAct	PFE ← MOD	BOOL	Warning High Active			
			1:active			
			0:inactive			
VTHEn	PFE ← MOD	BOOL	Enables Tolerance High Limit			
			1:enabled			
			0:disabled			
VTHLim	PFE → MOD	DINT	Limit Value for Tolerance High			
VTHAct	PFE ← MOD	BOOL	Tolerance High Active			
			1:active			
			0:inactive			
VTLEn	PFE ← MOD	BOOL	Enables Tolerance Low Limit			
			1:enabled			
			0:disabled			
VTLLim	PFE → MOD	DINT	Limit Value for Tolerance Low			
VTLAct	PFE ← MOD	BOOL	Tolerance Low Active			
			1:active			
			0:inactive			
VWLEn	PFE ← MOD	BOOL	Enables Warning Low Limit			
			1:enabled			
			0:disabled			
VWLLim	PFE → MOD	DINT	Limit Value for Warning Low			
VWLAct	PFE ← MOD	BOOL	Warning Low Active			
, II LAU	TIL C WOD	DOOL	1:active			
			0:inactive			
VALEn	PFE ← MOD	BOOL	Enables Alarm Low Limit			
+ 1 LLLII	TIL C WOD	DOOL	1:enabled			
			0:disabled			
VALLim	PFE → MOD	DINT	Limit Value for Alarm Low			
		BOOL				
VALAct	PFE ← MOD	BOOL	Alarm Low Active			

- 38 –	VDI #### Blatt # Entwurf	Internes Arbeitspapier	Alle Rechte vorbehalten © Verein Deutscher Ingenieure e. V., Düssel	dorf 20##
--------	--------------------------	------------------------	---	-----------

	1:active	
	0:inactive	

5.5 Digitaloperationen

Digitaloperationen werden verwendet um ganzzahlige Werte an die Modulautomatisierung zu übertragen.

ExtDiaOp

ExtDigOp ist eine Schnittstelle zum Übertragen eines ganzzahligen Wertes durch die PFE in die Modulautomatisierung. Der übertragene Wert enthält einen minimalen und maximalen Skalenwert. Informationen wie die Einheit, sowie minimaler und maximaler Eingabewert werden in dem Modul selbst definiert. Zur Überprüfung der Eingabe, werden alle Werte als Rückgabewert zur Verfügung gestellt. Zudem verfügt die Schnittstelle über die Standard-Funktionen OSLevel und Worst Quality Code.

Interface De	Interface Definition					
Parent Inter	Parent Interface					
MTPData(ObjectSUCLi	b/Data	Assembly			
Alias	Access	Type	Specific Description			
VOut	PFE ← MOD	DINT	Value Output			
VSclMin	PFE ← MOD	DINT	Value Scale Low Limit (see ScaleSettings)			
VSclMax	PFE ← MOD	DINT	Value Scale High Limit (see ScaleSettings)			
VUnit	PFE ← MOD	INT	Value Unit (see UnitSettings)			
VExt	PFE → MOD	DINT	External Value			
VMin	PFE ← MOD	DINT	Value Low Limit (see ValueLimitation)			
VMax	PFE ← MOD	DINT	Value High Limit (see ValueLimitation			
VRbk	PFE ← MOD	DINT	Readback Value			

ExtIntDigOp

ExtIntDigOp wird zur Vorgabe eines ganzzahligen Wertes von einem externen System, als auch von der Modulautomatisierung selbst kommend, verwendet. Die Schnittstelle ExtDigOp wird hier um die interne Wertevorgabe und einen Operation Mode erweitert. Wird der Baustein auf den externen Wert geschaltet, so wird anstelle der internen Sollwertvorgabe der externe Sollwert verwendet. Hierdurch kann ein ganzzahliger Sollwert in die Modulautomatisierung geschrieben werden.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface De	Interface Definition					
Parent Inter	Parent Interface					
MTPData(MTPDataObjectSUCLib/DataAssembly/ExtDigOp					
Alias	Access	Type	Specific Description			
VExt	PFE → MOD	DINT	(relevant, if external source is active, see OperationMode) External Value			
VInt	PFE ← MOD	DINT	(relevant, if internal source is active, see OperationMode) Internal Value			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see Operation Mode, only Source Mode used)			

AdvDigOp

AdvDigOp ist eine Erweiterung zu ExtIntDigOp und besitzt grundsätzlich keine anderen Variablen, im Vergleich zum ExtIntDigOp. Diese Schnittstelle besitzt einen um die BaseOperationMode erweiterten Funktionsumfang.

Interface De	Interface Definition					
Parent Inter	Parent Interface					
MTPData(MTPDataObjectSUCLib/DataAssembly/ExtDigOp/ExtIntDigOp					
Alias	Access	Type	Specific Description			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see Operation Mode, BaseOperation- and Source Mode used)			

5.6 Binäranzeigen

Binäranzeigen werden verwendet, um einen erfassten Wert in der PFE zu visualisieren.

BinView

BinView dient der Anzeige eines einfachen binären Werts. Zusätzlich zum Wert können Statustexte für den Wert 0 und 1 mitgeliefert werden. Die Schnittstelle besitzt die Standard-Funktionen OSLevel und Worst Quality Code.

Interface De	Interface Definition					
Parent Inter	Parent Interface					
MTPDataOb	jectSUCLib/Da	taAssembl	y/BinView			
Alias	Access	Type	Specific Description			
V	PFE ← MOD	BOOL	Binary Value			
VState0	PFE ← MOD	STRING	Text Replacement for false			
VState1	PFE ← MOD	STRING	Text Replacement for true			

BinMon

BinMon erweitert die Schnittstelle BinView um die Überwachung eines flatternden Signals.

Interface D	Interface Definition					
Parent Inte	Parent Interface					
MTPData	ObjectSUCLib	/DataAs	ssembly/BinView			
Alias	Access	Type	Specific Description			
VFlutEn	PFE ← MOD	BOOL	Enable Fluttering Recognition			
			1:enabled; 0:disabled			
VFlutTi	PFE ←→ MOD	REAL	Period of an active signal before it will be recognized as flutter-free [s]			
VFlutCnt	PFE ←→ MOD	INT	Counts of the allowed fluttering signals in the defined period VFlutTi			
VFlutAct	PFE ← MOD	BOOL	Fluttering Signal recognized			
			1:Fluttering Signal recognized			

5.7 Binäroperation

ExtBinOp

Diese Schnittstelle ermöglicht es einen binären Wert im Modulautomatisierungssystem zu setzen oder rückzusetzen. Der Binärwert besitzt zusätzliche Statustexte. Zudem verfügt die Schnittstelle über die Standard-Funktionen OSLevel und Worst Quality Code.

Interface D	Interface Definition					
Parent Inte	Parent Interface					
MTPData	ObjectSUCLib	/DataAss	sembly			
Alias	Access	Type	Specific Description			
VState0	PFE ← MOD	STRING	Text Replacement for false			
VState1	PFE ← MOD	STRING	Text Replacement for true			
VExt	PFE → MOD	BOOL	Value from Operator			
VOut	PFE ← MOD	BOOL	Binary Value Output			
VRbk	PFE ← MOD	BOOL	Binary Value Readback			

ExtIntBinOp

Diese Schnittstelle erweitert ExtBinOp um zusätzliche Variablen für die Anzeige einer internen Wertevorgabe und der dazugehörigen Operation Mode (SourceMode) Funktionalität zur Auswahl der Quelle.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface [Interface Definition					
Parent Inte	Parent Interface					
MTPData	ObjectSUCLib/Da	taAssemb	ly/ExtBinOp			
Alias	Access	Type	Specific Description			
VExt	PFE → MOD	BOOL	(relevant, if external source is active, see OperationMode) Value from Operator			
VInt	PFE ← MOD	BOOL	(relevant, if internal source is active, see OperationMode) Value from Internal Link			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see OperationMode, only Source Mode used)			

AdvBinOp

AdvBinOp ist eine Erweiterung des ExtIntBinOp und besitzt grundsätzlich keine anderen Variablen, im Vergleich zum ExtIntBinOp. Diese Schnittstelle besitzt einen um BaseOperationMode erweiterten Funktionsumfang.

Interface Definition					
Parent Inter	Parent Interface				
MTPDataO	MTPDataObjectSUCLib/DataAssembly/ExtBinOp/ExtIntBinOp				
Alias	Access	Type	Specific Description		
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask		
			(see Operation Mode, BaseOperation- and Source Mode used)		

5.8 Regelungen

PIDCtrl

Die Schnittstelle PIDCtrl stellt die Informationen für einen kontinuierlichen PID Regler bereit, der die typischen Größen (Prozesswert PV, Sollwert SP, Regelgröße MV) entsprechend verarbeitet. Die Schnittstelle beinhaltet für den Sollwert eine Umschaltung, um sowohl einen intern vorgegebenen, als auch einen extern vorgegebenen Sollwert zu verwenden. Hierbei kommt die Schnittstelle Source Mode zum Einsatz. Der Regler selbst besitzt drei Zustände – Offline, Manual und Automatic. Im Zustand Manual, wird die Regelgröße MV über die Variable MVOp durch den Operator vorgegeben. Im Zustand Automatic ist der Regelungsalgorithmus in Kraft und kann entsprechend des internen oder externen Sollwerts eine manuelle Sollwertvorgabe oder eine Kaskaden-Schaltung realisieren. Mit Hilfe der Min- und Max-Variablen werden Begrenzungsfunktionen für Sollwerte und Stellgröße dargestellt. Der Regelungsalgorithmus kann über die drei Variablen P, TI und TD parametriert werden. Darüber hinaus besitzt die Schnittstelle die Standard-Funktionen OSLevel, WQC und Operation Mode.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Zustände für Operation Mode und Source Mode werden im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface Definition						
Parent Interface						
MTPData(MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask			
			(see OeprationModes, ExtendedOperation- and SourceMode used)			
PV	PFE ← MOD	REAL	Process Value			
PVSclMin	PFE ← MOD	REAL	Process Value Scale Low Limit (see ScaleSettings)			
PVSclMax	PFE ← MOD	REAL	Process Value Scale High Limit (see ScaleSettings)			
PVUnit	PFE ← MOD	INT	Process Value Unit (see UnitSettings)			
SPExt	PFE → MOD	REAL	(relevant, if external source and automatic mode is active)			
			External Setpoint			
SPInt	PFE ← MOD	REAL	(relevant, if internal source and automatic mode is active)			
			Internal Setpoint			
SPSclMin	PFE ← MOD	REAL	Setpoint Scale Low Limit (see ScaleSettings)			
SPSclMax	PFE ← MOD	REAL	Setpoint Scale High Limit (see ScaleSettings)			
SPUnit	PFE ← MOD	INT	Setpoint Unit (see UnitSettings)			
SPIntMin	PFE ← MOD	REAL	Internal Setpoint Low Limit (see ValueLimitation)			
SPIntMax	PFE ← MOD	REAL	Internal Setpoint High Limit (see ValueLimitation)			
SPExtMin	PFE ← MOD	REAL	External Setpoint Low Limit (see ValueLimitation)			
SPExtMax	PFE ← MOD	REAL	External Setpoint High Limit (see ValueLimitation)			
SP	PFE ← MOD	REAL	(depends on the active selected source)			
			Setpoint			
MVOp	PFE → MOD	REAL	(relevant, if manual mode is active)			
			Manipulated Value from Operator (only in manual mode used)			
MV	PFE ← MOD	REAL	Manipulated Value			
MVMin	PFE ← MOD	REAL	Minimal Manipulated Value (see ValueLimitation)			
MVMax	PFE ← MOD	REAL	Maximal Manipulated Value (see ValueLimitation)			
MVUnit	PFE ← MOD	INT	Manipulated Value Unit (see UnitSettings)			
Intorn	1	I.				

$-48- \quad VDI \; \#\#\# \; Blatt \; \# \; \; Entwurf \; \\ \hline {\it Internes Arbeitspapier} \; \; {\it Alle Rechte vorbehalten @ Verein Deutscher Ingenieure e. V., \; Düsseldorf \; 20\#\# } \\ \hline$

MVSclMin	PFE ← MOD	REAL	Manipulated Value Scale Low Limit (see ScaleSettings)
MVSclMax	PFE ← MOD	REAL	Manipulated Value Scale High Limit (see ScaleSettings)
P	PFE ←→ MOD	REAL	(relevant, if automatic mode is active)
			Proportional Parameter
Ts	PFE ←→ MOD	REAL	(relevant, if automatic mode is active)
			Integration Parameter
Td	PFE ←→ MOD	REAL	(relevant, if automatic mode is active)
			Derivation Parameter

5.9 Bistabile Ventile

Bistabile Ventile können nur geöffnet bzw. geschlossen werden.

BinVlv

Die Schnittstelle BinVlv beschreibt ein bistabiles Ventil mit der Möglichkeit aus dem Modul oder durch den Operator gesteuert werden zu können. Zusätzlich beinhaltet er entsprechende Feedback-Signale mit denen der tatsächliche Ventilzustand angezeigt werden kann. Darüber hinaus enthält die Schnittstelle die Standard-Funktion ExtendedOperationMode.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface Definition					
Parent Interface					
MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description		
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask		
			(see OeprationModes, only ExtendedOperationMode used)		
SafePos	PFE ← MOD	BOOL	Safe Position		
			1:open; 0:close		
OpenOp	$PFE \rightarrow MOD$	BOOL	(relevant, if manual mode is active, see OperationMode)		
			Open Command from Operator		
			0→1: request from PFE		
			1→0: acknowledge from Module (see Handshake)		
CloseOp	$PFE \rightarrow MOD$	BOOL	(relevant, if manual mode is active, see OperationMode)		
			Close Command from Operator		
			0→1: request from PFE		
			1→0: acknowledge from Module (see Handshake)		
OpenLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active, see OperationMode)		
			Open Command from Internal Link		
			1: set open		
			0: no operation		
CloseLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active)		
			Close Command from Internal Link		
			1: set close		
			0: no operation		
Ctrl	PFE ← MOD	BOOL	Valve Control		
			1:active		
			0:inactive		
OpenFbkEn	PFE ← MOD	BOOL	Open Feedback Enable		
			1:enabled		
			0:disabled		
CloseFbkEn	PFE ← MOD	BOOL	Close Feedback Enable		
			1:enabled		
			0:disabled		
OpenFbk	PFE ← MOD	BOOL	Open Feedback Signal		
			1: Open , if OpenFbkEn = false, Fbk will be calculated from Ctrl and SafePos		
			0: is not opened		

-50 - VDI #### Blatt # Entwurf Internes Arbeitspapier Alle Rechte vorbehalten © Verein Deutscher Ingenieure e.V., Düsseldorf 20##

CloseFbk	PFE ← MOD	BOOL	Close Feedback Signal
			1: Close, if OpenFbkEn = false, Fbk will be calculated from Ctrl and SafePos
			0: is not closed
PermEn	PFE ← MOD	BOOL	Enables the Permission Lock
			1:enabled
			0:disabled
Permit	PFE ← MOD	BOOL	Permit locks the Entity to be activated
			1:permission is given
			0:permission is not given
IntlEn	PFE ← MOD	BOOL	Enables the Interlock Lock
			1:enabled
			0:disabled
Interlock	PFE ← MOD	BOOL	Interlock locks the Entity to the safe state
			1: interlock is not active
			0: interlocking is active, must not be reset (see Reset)
			In this case deactivation (interlock = 0) means the valve will be set to safe position.
ProtEn	PFE ← MOD	BOOL	Enables the Protection Lock
			1:enabled; 0:disabled
Protect	PFE ← MOD	BOOL	Protect locks the Entity to the safe state – a reset is required
			1: protection is not active; 0: protection is active, must be reset (see Reset)
			In this case deactivation (protect = 0) means the valve will be set to safe position.
ResetOp	PFE → MOD	BOOL	Reset from Operator (see Handshake)
			0→1: request from PFE
			1→0: acknowledge from Module
ResetLi	PFE ← MOD	BOOL	Reset from internal link
			1:Reset executed
			0: no Operation

MonBinVlv

Die Schnittstelle MonBinVlv erweitert die Schnittstelle BinVlv um die Standard-Funktion Feedback Monitoring. Diese definiert übergreifend die Überwachung von gesteuerten (dynamische Fehlfunktion) oder ungesteuerten (statische Fehlfunktion) Zustandsänderungen inklusive deren Parametrierung.

Interface Def	Interface Definition				
Parent Interi	Parent Interface				
MTPDataObjectSUCLib/DataAssembly/BinVlv					
Alias	Access	Type	Specific Description		
MonEn	PFE → MOD	BOOL	Monitor Enable		
			1:enabled		
			0:disabled		
MonSafePos	PFE → MOD	BOOL	Set the Error Behaviour, if an error occurs		
			1: after an error occurs, the safe pos will be set		
			0: after an error occurs, the entity holds the state		
MonStatErr	PFE → MOD	BOOL	Static Error active		
			1:active		
			0:inactive		
MonDynErr	PFE → MOD	BOOL	Dynamic Error active		
			1:active		
			0:inactive		
MonStatTi	PFE ←→ MOD	REAL	Monitor Time for uncontrolled changes [s]		
MonDynTi	PFE ←→ MOD	REAL	Monitor Time for controlled changes [s]		

5.10 Analoge Ventile

Ventile können geöffnet bzw. geschlossen, sowie frei-positionierbar betrieben werden.

AnaVlv

Die Schnittstelle AnaVIv stellt ein frei-positionierbares Analogventil dar. Es bietet die Möglichkeit sowohl den Zustand als auch die Position durch den Operator oder das modul-interne Automatisierungssystem steuern zulassen. Es verfügt über die Standard-Funktionen OSLevel, WQC, Operation Mode (ExtendedOperationMode und SourceMode).

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface De	Interface Definition					
Parent Interface						
MTPData	MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see OeprationModes, ExtendedOperation- and SourceMode used)			
OpenOp	PFE → MOD	BOOL	(relevant, if manual mode is active, see OperationModes) Open Command from Operator 0→1: request from PFE 1→0: acknowledge from Module (see Handshake)			
CloseOp	PFE → MOD	BOOL	(relevant, if manual mode is active, see OperationModes) Close Command from Operator 0→1: request from PFE 1→0: acknowledge from Module (see Handshake)			
OpenLi	PFE ←MOD	BOOL	(relevant, if automatic mode is active, see OperationModes) Open Command from Internal Link 1: Open Command execute 0: no operation			
CloseLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active, see OperationModes) Close Command from Internal Link 1: Close Command execute 0: no operation			
Ctrl	PFE ← MOD	BOOL	Valve Control 1: PosCtrl = PosInt (if SrcIntAct = true) PosExt (if SrcExtAct = true) 0: PosCtrl = 0.0;			
OpenFbkEn	PFE ← MOD	BOOL	Open Feedback Enable 1:enabled 0:disabled			
CloseFbkEn	PFE ← MOD	BOOL	Close Feedback Enable 1:enabled 0:disabled			
OpenFbk	PFE ← MOD	BOOL	Open Feedback Signal 1: Open End Position achieved, if OpenFbkEn = false, OpenFbk = Ctrl 0: Open End Position not achieved			
CloseFbk	PFE ← MOD	BOOL	Close Feedback Signal 1: Close End Position achieved, if CloseFbkEn = false, CloseFbk = !Ctrl 0: Close End Position not achieved			

PosSclMin	PFE ← MOD	REAL	Position Setpoint Scale Low Limit (see ScaleSettings)
PosSclMax	PFE ← MOD	REAL	Position Setpoint Scale High Limit (see ScaleSettings)
PosUnit	PFE ← MOD	INT	Position Setpoint Unit (see UnitSettings)
PosInt	PFE ← MOD	REAL	(relevant, if internal source is active, see OperationModes)
			Position Internal Setpoint (from Module Automation)
PosExt	PFE → MOD	REAL	(relevant, if external source is active, see OperationModes)
			Position External Setpoint (from Process Control Level)
PosMin	PFE ← MOD	REAL	Position Setpoint Low Limit (see ValueLimitation)
PosMax	PFE ← MOD	REAL	Position Setpoint High Limit (see ValueLimitation)
SafePos	PFE ← MOD	BOOL	Safe Position
			1: PosMax
			0: PosMin
PosCtrl	PFE ← MOD	REAL	Position Setpoint
			(see Ctrl Description)
PosFbkEn	PFE ← MOD	BOOL	Position Feedback Enable
			1:enabled
			0:disabled
PosFbk	$PFE \leftarrow MOD$	REAL	Position Feedback Signal
			If PosFbkEn = false, PosFbk = Pos
PermEn	$PFE \leftarrow MOD$	BOOL	Enables the Permission Lock
			1:enabled
			0:disabled
Permit	$PFE \leftarrow MOD$	BOOL	Permit locks the Entity to be activated
			1:permission is given
			0:permission is not given
IntlEn	PFE ← MOD	BOOL	Enables the Interlock Lock
			1:enabled
			0:disabled
Interlock	PFE ← MOD	BOOL	Interlock locks the Entity to the safe state
			1: interlock is not active
			0: interlocking is active, must not be reset (see Reset)
ProtEn	PFE ← MOD	BOOL	Enables the Protection Lock
			1:enabled; 0:disabled
Protect	PFE ← MOD	BOOL	Protect locks the Entity to the safe state – a reset is required
			1: protection is not active
			0: protection is active, must be reset (see Reset)
ResetOp	PFE → MOD	BOOL	Reset from Operator
			0→1: request from PFE
			1→0: acknowledge from Module (see Handshake)
ResetLi	PFE ← MOD	BOOL	Reset from internal link
			1:Reset execute
			0: no operation

MonAnaVIv

Die Schnittstelle MonAnaVlv erweitert die Schnittstelle AnaVlv um die Standard-Funktion Feedback Monitoring. Überwachung von gesteuerten (dynamische Fehlfunktion) oder ungesteuerten (statische Fehlfunktion) Zustandsänderungen inklusive deren Parametrierung, sowie einer Positionsüberwachung.

Das Position Monitoring erweitert die Standard-Funktion Feedback-Monitoring um Variablen zur Überwachung einer Position bei analogen Ventilen. Die Definitionen für eine dynamische oder statische Fehlfunktion bleiben auch hier gültig. Zusätzlich wird überwacht, ob sich ein Ventil öffnet, schließt oder seine Position erreicht hat. Vergleichbar wie bei der Erkennung dynamischer Fehlfunktionen, wird auch hier die Zeit gemessen zwischen der Änderung der Positionsansteuerung bis zu dem Zeitpunkt, an dem die Position erreicht wird. Ist die Zeit MonTiPos vor Erreichung abgelaufen, wird der Fehler MonPosErr ausgelöst.

Die Feedback-Signale für den geöffneten und geschlossenen Zustand werden in dieser Schnittstelle, im Vergleich zu AnaVlv, unterschiedlich ermittelt. Für den Fall, dass es keine binären Endlagesensoren für Offen und Geschlossen gibt, wird das OpenFbk und CloseFbk über die Positionsrückmeldung gebildet.

Interface Defini	tion		
Parent Interfac	e		
MTPDataOb	jectSUCLib/Da	taAsse	mbly/AnaVlv
Alias	Access	Type	Specific Description
MonEn	PFE ←→ MOD	BOOL	Monitor Enable 1:enabled 0:disabled
MonSafePos	PFE ← MOD	BOOL	Set the Error Behaviour, if an error occurs 1: after an error occurs, the safe pos will be set 0: after an error occurs, the entity holds the state
MonStatErr	PFE ← MOD	BOOL	Static Error active 1:active 0:inactive
MonDynErr	PFE ← MOD	BOOL	Dynamic Error active 1:active 0:inactive
MonStatTi	PFE ←→ MOD	REAL	Monitor Time for uncontrolled changes [s]
MonDynTi	PFE ←→ MOD	REAL	Monitor Time for controlled changes [s]
PosOpngFbk	PFE ← MOD	BOOL	Position is changing to open Position is not changing to open
PosClsngFbk	PFE ← MOD	BOOL	1:Position is changing to close 0: Positon is not changing to close
PosReachedFbk	PFE ← MOD	BOOL	Position reached Position is reached, ReachedFbk = (PosFbk – Pos) with in +/- PosTolerance
PosTolerance	PFE ←→ MOD	REAL	Position Tolearance Value for Calculation
PosDefClose	PFE ←→ MOD	REAL	Position to define close position
PosDefOpen	PFE ←→ MOD	REAL	Position to define open position
MonPosTi	PFE ←→ MOD	REAL	Monitor Time until position is reached [s]
MonPosErr	PFE ← MOD	BOOL	Position Error active 1: if the MonTiPos is elapsed before ReachedFbk = true 0: no error
CloseFbk	PFE ← MOD	BOOL	Position Close achieved If CloseFbkEn = false, CloseFbk = PosFbk <= PosDiClose
OpenFbk	PFE ← MOD	BOOL	Position Open achieved

Alle Rechte vorbehalten © Verein Deutscher Ingenieure e. V., Düsseldorf 20## Internes ArbeitspapierEntwurf VDI #### Blatt #— 55

	If OpenFbkEn = false, CloseFbk = PosFbk >= PosDiOpen

5.11 Bistabile Antriebe

Bistabile Antriebe können sowohl für Rechts- und Linkslauf nur ein- und ausgeschaltet werden.

BinDry

BinDrv ermöglicht der PFE das Ein- und Ausschalten eines Antriebs sowie die Vorgabe der Drehrichtung. Für die Drehrichtung gibt es jeweils einen booleschen Ausgangswert, der rechts oder linksdrehend signalisiert. Die Drehrichtung wird entweder intern oder extern ausgewählt in Abhängigkeit von dem Operation Mode. Darüber hinaus kann der Betriebsmodus ausgewählt werden. Es stehen die beiden Modi "Auto" und "Manuell" zur Verfügung. Im "Auto"-Modus werden die internen Steuersignale angewendet und im "Manuell"-Modus werden die externen Signale verwendet. Der Antrieb kann in beide Richtungen betrieben werden. Die Modulautomatisierung meldet vorliegende Werte zurück.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface	Definition					
Parent Int	Parent Interface					
MTPData	MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description			
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask (see OperationModes, only ExtendedOperationMode used)			
FwdEn	PFE ← MOD	BOOL	Forward Enable 1:enabled 0:disabled			
RevEn	PFE ← MOD	BOOL	Reverse Enable 1:enabled 0:disabled			
StopOp	PFE → MOD	BOOL	(relevant, if manual mode is active, see OperationModes) Stop Command from Operator 0→1: request from PFE 1→0: acknowledge from Module (see Handshake)			
FwdOp	PFE → MOD	BOOL	(relevant, if manual mode is active and FwdEn is true, see OperationModes) Forward Command from Operator 0→1: request from PFE 1→0: acknowledge from Module (see Handshake)			
RevOp	PFE → MOD	BOOL	(relevant, if manual mode is active and RevEn is true, see OperationModes) Reverse Command from Operator 0→1: request from PFE 1→0: acknowledge from Module (see Handshake)			
StopLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active, see OperationModes) Stop Command from Internal Link 1:Stop Command execute 0: no operation			
FwdLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active and FwdEn is true, see OperationModes) Forward Command from Internal Link 1:Forward Command execute 0: no operation			
RevLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active and RevEn is true, see OperationModes) Reverse Command from Internal Link			

			1:Reverse Command execute
			0: no operation
FwdCtrl	PFE ← MOD	BOOL	Forward Control
			1:active; 0:inactive
RevCtrl	PFE ← MOD	BOOL	Reverse Control
			1:active; 0:inactive
RevFbkEn	PFE ← MOD	BOOL	Reverse Feedback Enable
			1:Reverse Feedback Signal available
FwdFbkEn	PFE ← MOD	BOOL	Forward Feedback Enable
			1:Forward Feedback Signal available
RevFbk	PFE ← MOD	BOOL	Reverse Feedback Signal
			1: Reverse running , if RevFbkEn = false, RevFbk = RevCtrl
			0: not reverse running
FwdFbk	PFE ← MOD	BOOL	Forward Feedback Signal
			1:Forward running, if FwdFbkEn = false, FwdFbk = FwdCtrl
			0: not forward running
SafePos	PFE ← MOD	BOOL	Safe Position
			1:running; 0:stopped
Trip	$PFE \leftarrow MOD$	BOOL	Drive Protection Indicator
			0:tripped, 1:no error
PermEn	PFE ← MOD	BOOL	Enables the Permission Lock
			1:enabled; 0:disabled
Permit	$PFE \leftarrow MOD$	BOOL	Permit locks the Entity to be activated
			1:permission is given; 0:permission is not given
IntlEn	PFE ← MOD	BOOL	Enables the Interlock Lock
			1:enabled; 0:disabled
Interlock	PFE ← MOD	BOOL	Interlock locks the Entity to the safe state
			1: interlock is not active; 0: interlocking is active, must not be reset (see Reset)
			In this case deactivation (interlock = 0) means motor will be shutdown.
ProtEn	$PFE \leftarrow MOD$	BOOL	Enables the Protection Lock
			1:enabled; 0:disabled
Protect	$PFE \leftarrow MOD$	BOOL	Protect locks the Entity to the safe state – a reset is required
			1: protection is not active; 0: protection is active, must be reset (see Reset)
			In this case deactivation (protect = 0) means motor will be shutdown.
ResetOp	PFE → MOD	BOOL	Reset from Operator
			0→1: request from PFE, 1→0: acknowledge from Module (see Handshake)
ResetLi	PFE ← MOD	BOOL	Reset from internal link
			1:Reset execute

MonBinDrv

Die Schnittstelle MonBinDrv erweitert die Schnittstelle BinDrv um die Standard-Funktion Feedback Monitoring. Diese definiert übergreifend die Überwachung von gesteuerten (dynamische Fehlfunktion) oder ungesteuerten (statische Fehlfunktion) Zustandsänderungen inklusive deren Parametrierung. Die Sicherheitsposition eines Antriebs ist immer die Ruhelage.

Interface Def	Interface Definition					
Parent Interf	Parent Interface					
MTPDataObjectSUCLib/DataAssembly/BinDrv						
Alias	Access	Type	Specific Description			
MonEn	PFE ←→ MOD	BOOL	Monitor Enable			
			1:enabled; 0:disabled			
MonSafePos	PFE ← MOD	BOOL	Monitor SafePos			
			1: go to SafePos, if Monitoring Error occurs			
MonStatErr	PFE ← MOD	BOOL	Static Error active			
			1:active; 0:inactive			
MonDynErr	PFE ← MOD	BOOL	Dynamic Error active			
			1:active; 0:inactive			
MonStatTi	PFE ←→ MOD	REAL	Monitor Time for uncontrolled changes [s]			
MonDynTi	PFE ←→ MOD	REAL	Monitor Time for controlled changes [s]			

5.12 Analoge Antriebe

Analoge Antriebe können für Rechts- und Linkslauf ein- und ausgeschaltet und mit variabler Geschwindigkeit betrieben werden.

AnaDrv

AnaDrv ermöglicht der PFE das Ein- und Ausschalten eines Antriebs, sowie die Vorgabe einer entsprechenden Drehzahl und Drehrichtung. Für die Drehrichtung gibt es jeweils einen booleschen Ausgangswert, der rechts oder linksdrehend signalisiert. Die Drehrichtung wird entweder intern oder extern ausgewählt in Abhängigkeit von dem Operation Mode. Darüber hinaus kann der Betriebsmodus ausgewählt werden. Es stehen die beiden Modi "Auto" und "Manuell" zur Verfügung. Im "Auto"-Modus werden die internen Steuersignale angewendet und im "Manuell"-Modus werden die externen Signale verwendet. Eine Analogwertvorgabe der Drehzahl ermöglicht das Einstellen einer Drehzahl. Quelle der Drehzahlvorgabe kann nun durch die Auswahl Extern oder Intern vorgenommen werden. Ist der Motor deaktiviert, wird der Sollwert für die Drehzahl auf 0 gesetzt.

In der Spalte der spezifischen Beschreibung sind zusätzliche Bemerkungen enthalten, wie die Operation Moder Schnittstellen Auswirkungen auf die anderen Schnittstellen-Bestandteile hat. Die Default-Quelle wird im Programm der Modulautomatisierung, je nach Verwendung, definiert.

Interface Definition					
Parent Interface					
MTPDataObjectSUCLib/DataAssembly					
Alias	Alias Access Type Specific Description		Specific Description		
OpMode	PFE ←→ MOD	DWORD	Operation Mode Mask		
			(see OeprationModes, ExtendedOperation- and SourceMode used)		
FwdEn	PFE ← MOD	BOOL	Forward Enable		
			1:enabled		
			0:disabled		
RevEn	PFE ← MOD	BOOL	Reverse Enable		
			1:enabled		
			0:disabled		
StopOp	PFE → MOD	BOOL	(relevant, if manual mode is active, see OperationModes)		
			Stop Command from Operator		
			0→1: request from PFE		
			1→0: acknowledge from Module (see Handshake)		
FwdOp	PFE → MOD	BOOL	(relevant, if manual mode is active and FwdEn is true, see OperationModes)		
			Forward Command from Operator		
			0→1: request from PFE		
			1→0: acknowledge from Module (see Handshake)		
RevOp	PFE → MOD	BOOL	(relevant, if manual mode is active and RevEn is true, see OperationModes)		
			Reverse Command from Operator		
			0→1: request from PFE		
			1→0: acknowledge from Module (see Handshake)		
StopLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active, see OperationModes)		
			Stop Command from Internal Link		
			1:Stop Command executed		
			0: no operation		
FwdLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active and FwdEn is true, see OperationModes)		
			Forward Command from Internal Link		

			1:Forward Command executed	
D 1:	DEE (1105	DOC!	0: no operation	
RevLi	PFE ← MOD	BOOL	(relevant, if automatic mode is active and RevEn is true, see OperationModes)	
			Reverse Command from Internal Link 1:Reverse Command executed	
			0: no operation	
FwdCtrl	PFE ← MOD	BOOL	Forward Control	
1 wacui	TTE C WOD	BOOL	1:active	
			0:inactive	
RevCtrl	PFE ← MOD	BOOL	Reverse Control	
			1:active	
			0:inactive	
RevFbkEn	PFE ← MOD	BOOL	Reverse Feedback Enable	
			1: Reverse Feedback available	
			0: no reverse feedback available	
FwdFbkEn	PFE ← MOD	BOOL	Forward Feedback Enable	
			1: Forward Feedback available	
			0: no forward feedback available	
RevFbk	PFE ← MOD	BOOL	Reverse Feedback Signal	
			1: Reverse running, if RevFbkEn = false, RevFbk = RevCtrl	
			0: is not reverse running	
FwdFbk	PFE ← MOD	BOOL	Forward Feedback Signal	
			1: Forward running, if FwdFbkEn = false, FwdFbk = FwdCtrl	
	(),05		0: is not forward running	
SafePos	PFE ← MOD	BOOL	Safe Position	
			1: running 0: stopped	
Trip	PFE ← MOD	BOOL	Drive Protection Indicator	
Пр	FFE C WOD	BOOL	1: no problem	
			0: Drive Protection triggered	
RpmSclMin	PFE ← MOD	REAL	RPM Setpoint Scale Low Limit (see ScaleSettings)	
RpmSclMax	PFE ← MOD	REAL	RPM Setpoint Scale High Limit (see ScaleSettings)	
RpmUnit	PFE ← MOD	INT	RPM Setpoint Unit (see UnitSettings)	
RpmInt	PFE ← MOD	REAL	(relevant, if internal source is active, see OperationModes)	
p			RPM Internal Setpoint	
RpmExt	PFE → MOD	REAL	(relevant, if external source is active, see OperationModes)	
r			RPM External Setpoint	
RpmMin	PFE ← MOD	REAL	RPM Setpoint Low Limit (see ValueLimitation)	
RpmMax	PFE ← MOD	REAL	RPM Setpoint High Limit (see ValueLimitation)	
Rpm	PFE ← MOD	REAL	RPM Setpoint	
RpmFbk	PFE ← MOD	REAL	RPM Feedback Signal	
PermEn	PFE ← MOD	BOOL	Enables the Permission Lock	
			1:enabled	
			0:disabled	
Permit	PFE ← MOD	BOOL	Permit locks the Entity to be activated	
			1:permission is given	
			0:permission is not given	
IntlEn	PFE ← MOD	BOOL	Enables the Interlock Lock	
			1:enabled	

			0:disabled
Interlock	Interlock PFE ← MOD BOOL		Interlock locks the Entity to the safe state
			1: interlock is not active
			0: interlocking is active, must not be reseted (see Reset)
			In this case deactivation (interlock = 0) means motor will be shutdown.
ProtEn	PFE ← MOD	BOOL	Enables the Protection Lock
			1:enabled
			0:disabled
Protect	PFE ← MOD	BOOL	Protect locks the Entity to the safe state – a reset is required
			1: protection is not active
			0: protection is active, must be reset (see Reset)
			In this case deactivation (protect = 0) means motor will be shutdown.
ResetOp	PFE → MOD	BOOL	Reset from Operator
			0→1: request from PFE
			1→0: acknowledge from Module (see Handshake)
ResetLi	PFE ← MOD	BOOL	Reset from Module
			1:Reset execute
			0: no operation

MonAnaDrv

Die Schnittstelle MonAnaDrv erweitert die Schnittstelle AnaDrv um die Standard-Funktion Feedback Monitoring. Überwachung von gesteuerten (dynamische Fehlfunktion) oder ungesteuerten (statische Fehlfunktion) Zustandsänderungen inklusive deren Parametrierung, sowie einer Drehzahlüberwachung.

Die Drehzahlüberwachung beinhaltet Variablen zur Überwachung einer Drehzahl, bzw. der Drehzahlabweichung, bei analogen Antrieben. Die Drehzahlabweichung wird auf eine Ober- und eine Untergrenze überwacht.

Interface Defin	ition			
Parent Interfac	e			
MTPDataObjectSUCLib/DataAssembly/AnaDrv				
Alias Access Type		Type	Specific Description	
MonEn	PFE ←→ MOD	BOOL	Monitor Enable 1:enabled 0:disabled	
MonSafePos	PFE ← MOD	BOOL	Set the Error Behaviour, if an error occurs 1: after an error occurs, the safe pos will be set 0: after an error occurs, the entity holds the state	
MonStatErr	PFE ← MOD	BOOL	Static Error active 1:active 0:inactive	
MonDynErr	PFE ← MOD	BOOL	Dynamic Error active 1:active 0:inactive	
MonStatTi	PFE ←→ MOD	REAL	Monitor Time for uncontrolled changes [s]	
MonDynTi	PFE ←→ MOD	REAL	Monitor Time for controlled changes [s]	
RpmErr	PFE → MOD	REAL	RPM Error RpmErr = Rpm – RpmFbk	
RpmAHEn	PFE ←→ MOD	BOOL	Enable Alarm High Limit 1:enabled 0:disabled	
RpmALEn	PFE ←→ MOD	BOOL	Enable Alarm Low Limit 1:enabled 0:disabled	
RpmAHAct	PFE ← MOD	BOOL	Alarm High Active 1:active 0:inactive	
RpmALAct	PFE ← MOD	BOOL	Alarm Low Active 1:active 0:inactive	
RpmAHLim	PFE ←→ MOD	REAL	Limit Value for Alarm High	
RpmALLim	PFE ←→ MOD	REAL	Limit Value for Alarm Low	
StartingFbk	PFE ← MOD	BOOL	Starting Feedback 1: drive is starting 0: drive is not starting	
StoppingFbk	PFE ← MOD	BOOL	0: drive is not starting Stopping Feedback 1:drive is stopping 0: drive is not stopping	

5.13 Verriegelungsanzeige

Verriegelungsanzeigen visualisieren den aktuellen Zustand einer Verriegelung

LockView4

LockView4 repräsentiert eine Anzeige einer logischen Grundoperation (UND / ODER) mit vier Eingängen, die jeweils nochmals invertiert werden können. Folgend aus den Interlock-, Permit- und Protect-Variablen an den Schnittstellen mit Verriegelungsfunktion sind auch hier die Signale als Low-Active (Drahtbruch-Stil) auszuführen.

 $Logic\ 1: AND - Logic - In1 \land In2 \land In3 \land In4$ $Logic\ 0: OR - Logic - In1 \lor In2 \lor In3 \lor In4$

Interfac	e Definition				
Parent I	nterface				
MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description		
Logic	PFE ← MOD	BOOL	Logical Behavior		
			0: OR		
			1: AND		
In1En	PFE ← MOD	BOOL	Locking Input 1 – Enable		
			0: Input not used		
			1: Input is used		
In1	PFE ← MOD	BOOL	Locking Input 1 - Value		
In1QC	PFE ← MOD	BYTE	Locking Input 1 – Quality Code		
In1Inv	PFE ← MOD	BOOL	Locking Input 1 – Inversion Enable		
			0: Input not inverted		
			1: Input inverted		
In1Txt	PFE ← MOD	STRING	Locking Input 1 – Additional Text		
In2En	PFE ← MOD	BOOL	Locking Input 2 – Enable		
			0: Input not used		
			1: Input is used		
In2	PFE ← MOD	BOOL	Locking Input 2 - Value		
In2QC	PFE ← MOD	BYTE	Locking Input 2 – Quality Code		
In2Inv	PFE ← MOD	BOOL	Locking Input 2 – Inversion Enable		
			0: Input not inverted		
			1: Input inverted		
In2Txt	PFE ← MOD	STRING	Locking Input 2 – Additional Text		
In3En	PFE ← MOD	BOOL	Locking Input 3 – Enable		
			0: Input not used		
			1: Input is used		
In3	PFE ← MOD	BOOL	Locking Input 3 - Value		
In3QC	PFE ← MOD	BYTE	Locking Input 3 – Quality Code		
In3Inv	PFE ← MOD	BOOL	Locking Input 3 – Inversion Enable		
			0: Input not inverted		
			1: Input inverted		
In3Txt	PFE ← MOD	STRING	Locking Input 3 – Additional Text		
In4En	PFE ← MOD	BOOL	Locking Input 4 – Enable		
			0: Input not used		

			1: Input is used
In4	PFE ← MOD	BOOL	Locking Input 4 - Value
In4QC	PFE ← MOD	BYTE	Locking Input 4 – Quality Code
In4Inv	PFE ← MOD	BOOL	Locking Input 4 – Inversion Enable
			0: Input not inverted
			1: Input inverted
In4Txt	PFE ← MOD	STRING	Locking Input 4 – Additional Text
Out	PFE ← MOD	BOOL	Logical Result Output
OutQC	PFE ← MOD	BYTE	Locking Result Output – Quality Code

LockView8

 $Lock View 8 \ repr\"{a}sentiert \ eine \ Anzeige \ einer \ logischen \ Grundoperation \ (UND \ / \ ODER) \ mit \ acht \ Eing\"{a}ngen, \ die jeweils \ nochmals \ invertiert \ werden \ k\"{o}nnen. \ Sie baut \ auf \ der \ Basis-Schnittstelle \ Lock View 4 \ auf.$

Interfac	Interface Definition					
Parent I	nterface					
MTPDa	MTPDataObjectSUCLib/DataAssembly					
Alias	Access	Type	Specific Description			
In5En	PFE ← MOD	BOOL	Locking Input 5 – Enable			
			0: Input not used			
			1: Input is used			
In5	PFE ← MOD	BOOL	Locking Input 5 - Value			
In5QC	PFE ← MOD	BYTE	Locking Input 5 – Quality Code			
In5Inv	PFE ← MOD	BOOL	Locking Input 5 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In5Txt	PFE ← MOD	STRING	Locking Input 5 – Additional Text			
In6En	PFE ← MOD	BOOL	Locking Input 6 – Enable			
			0: Input not used			
			1: Input is used			
In6	PFE ← MOD	BOOL	Locking Input 6 - Value			
In6QC	PFE ← MOD	BYTE	Locking Input 6 – Quality Code			
In6Inv	PFE ← MOD	BOOL	Locking Input 6 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In6Txt	PFE ← MOD	STRING	Locking Input 6 – Additional Text			
In7En	PFE ← MOD	BOOL	Locking Input 7 – Enable			
			0: Input not used			
			1: Input is used			
In7	PFE ← MOD	BOOL	Locking Input 7 - Value			
In7QC	PFE ← MOD	BYTE	Locking Input 7 – Quality Code			
In7Inv	PFE ← MOD	BOOL	Locking Input 7 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In7Txt	PFE ← MOD	STRING	Locking Input 7 – Additional Text			

-66 - VDI #### Blatt # Entwurf Internes Arbeitspapier Alle Rechte vorbehalten © Verein Deutscher Ingenieure e.V., Düsseldorf 20##

In8En	PFE ← MOD	BOOL	Locking Input 8 – Enable
			0: Input not used
			1: Input is used
In8	PFE ← MOD	BOOL	Locking Input 8 - Value
In8QC	PFE ← MOD	BYTE	Locking Input 8 – Quality Code
In8Inv	PFE ← MOD	BOOL	Locking Input 8 – Inversion Enable
			0: Input not inverted
			1: Input inverted
In8Txt	PFE ← MOD	STRING	Locking Input 8 – Additional Text

LockView16

LockView16 repräsentiert eine Anzeige einer logischen Grundoperation (UND / ODER) mit sechzehn Eingängen, die jeweils nochmals invertiert werden können. Sie baut auf der Basis-Schnittstelle LockView8 auf.

Interface	Interface Definition					
Parent In	nterface					
MTPDataObjectSUCLib/DataAssembly						
Alias	Access	Type	Specific Description			
In9En	PFE ← MOD	BOOL	Locking Input 9 – Enable			
			0: Input not used			
			1: Input is used			
In9	PFE ← MOD	BOOL	Locking Input 9 - Value			
In9QC	PFE ← MOD	BYTE	Locking Input 9 – Quality Code			
In9Inv	PFE ← MOD	BOOL	Locking Input 9 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In9Txt	PFE ← MOD	STRING	Locking Input 9 - Additional Text			
In10En	PFE ← MOD	BOOL	Locking Input 10 – Enable			
			0: Input not used			
			1: Input is used			
In10	PFE ← MOD	BOOL	Locking Input 10 - Value			
In10QC	PFE ← MOD	BYTE	Locking Input 10 – Quality Code			
In10Inv	PFE ← MOD	BOOL	Locking Input 10 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In10Txt	PFE ← MOD	STRING	Locking Input 10 – Additional Text			
In11En	PFE ← MOD	BOOL	Locking Input 11 – Enable			
			0: Input not used			
			1: Input is used			
In11	PFE ← MOD	BOOL	Locking Input 11 - Value			
In11QC	PFE ← MOD	BYTE	Locking Input 11 – Quality Code			
In11Inv	PFE ← MOD	BOOL	Locking Input 11 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In11Txt	PFE ← MOD	STRING	Locking Input 11 – Additional Text			
In12En	PFE ← MOD	BOOL	Locking Input 12 – Enable			
			0: Input not used			
			1: Input is used			
In12	PFE ← MOD	BOOL	Locking Input 12 - Value			
In12QC	PFE ← MOD	BYTE	Locking Input 12 – Quality Code			
In12Inv	PFE ← MOD	BOOL	Locking Input 12 – Inversion Enable			
			0: Input not inverted			
			1: Input inverted			
In12Txt	PFE ← MOD	STRING	Locking Input 12 – Additional Text			
In13En	PFE ← MOD	BOOL	Locking Input 13 – Enable			
			0: Input not used			
			1: Input is used			

In13	PFE ← MOD	BOOL	Locking Input 13 - Value
In13QC	PFE ← MOD	BYTE	Locking Input 13 – Quality Code
In13Inv	PFE ← MOD	BOOL	Locking Input 13 – Inversion Enable
			0: Input not inverted
			1: Input inverted
In13Txt	PFE ← MOD	STRING	Locking Input 13 – Additional Text
In14En	PFE ← MOD	BOOL	Locking Input 14 – Enable
			0: Input not used
			1: Input is used
In14	PFE ← MOD	BOOL	Locking Input 14 - Value
In14QC	PFE ← MOD	BYTE	Locking Input 14 – Quality Code
In14Inv	PFE ← MOD	BOOL	Locking Input 14 – Inversion Enable
			0: Input not inverted
			1: Input inverted
In14Txt	PFE ← MOD	STRING	Locking Input 14 – Additional Text
In15En	PFE ← MOD	BOOL	Locking Input 15 – Enable
			0: Input not used
			1: Input is used
In15	PFE ← MOD	BOOL	Locking Input 15 - Value
In15QC	PFE ← MOD	BYTE	Locking Input 15 – Quality Code
In15Inv	PFE ← MOD	BOOL	Locking Input 15 – Inversion Enable
			0: Input not inverted
			1: Input inverted
In15Txt	PFE ← MOD	STRING	Locking Input 15 – Additional Text
In16En	PFE ← MOD	BOOL	Locking Input 16 – Enable
			0: Input not used
			1: Input is used
In16	PFE ← MOD	BOOL	Locking Input 16 - Value
In16QC	PFE ← MOD	BYTE	Locking Input 16 – Quality Code
In16Inv	PFE ← MOD	BOOL	Locking Input 16 – Inversion Enable
			0: Input not inverted
			1: Input inverted
In16Txt	PFE ← MOD	STRING	Locking Input 16 – Additional Text

5.14 Zeichenkettenanzeigen

StrView

StrView definiert eine Schnittstelle zur Anzeige eines Strings aus dem Modulautomatisierungssystem in einem Visualisierungssystem

Interface Definition						
Parent Interface						
MTPData	MTPDataObjectSUCLib/DataAssembly					
Alias	Alias Access Type Specific Description					
Text	PFE ← MOD	STRING	Text Value out of the module automation			

 $-70- VDI \#\#\# Blatt \# Entwurf \\ \hline \begin{subarray}{l} Internes Arbeitspapier \\ Alle Rechte vorbehalten @ Verein Deutscher Ingenieure e. V., Düsseldorf 20\#\# \\ \hline \end{subarray}$

Anhang