2/30 (1996) CSSA Trials

Question 1:

(a)
$$5x^2 - 2x - 3 = (55x + 3)(x - 1)$$

5 +3

(c)
$$\frac{d}{dx}(4x^2+2) = 8x$$
.

(d)
$$\left| x-5 \right| = 6$$
.

Case 1:
$$x-5>0$$
 of $(x-5)^2=36$.
 $x-5=6 x=11$ $x=11,-1$.

$$\mathcal{U} = -1$$

$$\frac{2x-3}{5} + \frac{3x+4}{10} = \frac{2(2x-3)}{10} = \frac{3x+4}{10}$$

$$= \frac{4x-6-3x-4}{10}$$

$$=\frac{\chi_{.-10}}{10.}$$

$$(9)$$
 $3p > -5$ $p > -5/3$

Question 2:

(a)
$$\frac{d}{dx} \left[\int \ln (3x-2) \right] = \cos (3x-2) - 3$$

= $3 \cos (3x-2) +$

$$\frac{d}{dx} \left(\frac{e^x}{n} \right) = \frac{ne^x - e^x}{n^2}$$

$$= \frac{(x-1)e^x}{n^2}$$

$$= \frac{(\varkappa - 1) e^{\chi}}{\varkappa^2} \#$$

(i)
$$\int (5x-3)^5 dx = (5x-3)^6 + C$$

$$= \left(\frac{5x-3}{30}\right)^{2} + C$$

(ii)
$$\int_{1}^{0} \frac{dx}{2x+3} = \left[\ln \frac{(2x+3)}{2}\right]_{1}^{0}$$

= $\left[\ln 3 - \ln 1\right] \times \frac{1}{2}$
= $\ln 3 = \ln 4$ (ldp.)

Question 3

(a) Using pythagras'
$$AB^2 = 3^2 + 4^2$$

 $AB = 5$ #

(b) Given $|AB| = |BC|$
 $5 = |-3| + 0e$.

 $c = 2$.

(c) Gradient of $AB = \frac{4}{3}$

Since co $\pm AB = M_{CD} = \frac{-3}{4}$ ragid pt. (2,0)

-1. Using
$$y-y_1 = m(x-x_1)$$

 $y-0 = \frac{3}{4}(x-2)$
 $4y = -3x+6$.
 $3x+4y=6 \#$
(d) for P, when $x=0$, then $3x+4y=6$.
 $4y=6$
 $y=1/2$.

·· P(0, 13) #

(2)
$$CP^2 = OC^2 + OP^2$$

= $2^2 + (\frac{3}{2})^2$
= $4 + 9$
= $\frac{25}{4}$

(f)
$$ADP = 90^{\circ}$$
 (given)
 $LPOC = 90^{\circ}$ (given)
 $AR = 4 - 1\frac{1}{2}$
 $= 2\frac{1}{2}$ units.
 $PC = 2\frac{1}{2}$ units
 $= AP$
 $LAPP = LCPO$ (vert. opp. 1's)
 $APP = ACOP$ (AAJ)

(g) hets consider. DABC & DBDC.

$$= 12 - 3$$

= $9u^2$ #

Question 4:

(a)
$$y = x \ln x$$
. $= use product rule$.

$$\frac{dy}{dx} = x \cdot x \frac{1}{x} + \ln x$$
.
$$= 1 + \ln x$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.
$$= 1 + \ln 1 \quad \text{at } x = 1$$
.

b)i)
$$\frac{AD}{40} = \sin 60^{\circ}$$

 $AD = 40 \times \frac{\sqrt{3}}{2}$
 $= 205 \text{ m. } #$

(ii)
$$AB^2 = 5^2 + 40^2 - 2 \times 40 \times 5 \text{ Gos } 60^\circ$$

= $25 + 1600 - 400 \times \frac{1}{2}$
= 1425
= $25 \times \sqrt{57}$
 $AB = 25 \sqrt{57}$

(c)
$$\log 3^{2m} = \log 3 - \log 3^{2}$$

 $2m \log 3 = \log 3 - \frac{1}{2} \log 3$
 $2m \log 5 = \frac{1}{2} \log 3$
 $2m = \frac{1}{2}$

(a)
$$0.4^{2} > 5$$

 $(\frac{2}{5})^{2} > 5$
 $(\frac{2}{5})^{2} > 6$

alustion 53.

(a)
$$A = \frac{h}{3} \begin{bmatrix} 0 + 13 + 4(13 + 4) + 2 \times 10 \end{bmatrix}$$

 $= \frac{6}{3} \begin{bmatrix} 13 + 76 + 20 \end{bmatrix}$
 $= \frac{248}{3} \begin{bmatrix} 242 + 24 \end{bmatrix}$

(b) i) all =
$$120 \times 2 (40-t) \times (-1)$$

= $-240 (40-t)$
= $-240 (40-6)$
= -8160
all = $8160 L/min$

(ii)