Substitution Method

Wednesday, 14 August 2024

11:11 pm

Differentiation

Simple integration
Integration by substitution
Integration by parts
Literally every type of integration in existence

The Substitution Rule

Because of the Fundamental Theorem, it's important to be able to find antiderivatives. But our antidifferentiation formulas don't tell us how to evaluate integrals such as

$$\int 2x\sqrt{1+x^2}\,dx$$

In general, this method works whenever we have an integral that we can write in the form $\int f(g(x)) g'(x) dx$. Observe that if F' = f, then

$$\int F'(g(x))g'(x) dx = F(g(x)) + C$$

because, by the Chain Rule,

$$\frac{d}{dx}[F(g(x))] = F'(g(x))g'(x)$$

If we make the "change of variable" or "substitution" u = g(x), then from Equation 3 we have

$$\int F'(g(x))g'(x) dx = F(g(x)) + C = F(u) + C = \int F'(u) du$$

or, writing F' = f, we get

$$\int f(g(x))g'(x) dx = \int f(u) du$$

Thus we have proved the following rule.

The Substitution Rule If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(g(x))g'(x) dx = \int f(u) du$$

EXAMPLE 1 Find
$$\int x^3 \cos(x^4 + 2) dx$$
.

EXAMPLE 2 Evaluate
$$\int \sqrt{2x+1} \, dx$$
.

EXAMPLE3 Find
$$\int \frac{x}{\sqrt{1-4x^2}} dx$$
.

EXAMPLE 4 Calculate $\int e^{5x} dx$.

EXAMPLE 5 Find
$$\int \sqrt{1 + x^2} x^5 dx$$
.

V EXAMPLE 6 Calculate $\int \tan x \, dx$.

Types of headache

Definite Integrals

6 The Substitution Rule for Definite Integrals If g' is continuous on [a, b] and f is continuous on the range of u = g(x), then

$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

PROOF Let F be an antiderivative of f. Then, by $\boxed{3}$, F(g(x)) is an antiderivative of f(g(x))g'(x), so by Part 2 of the Fundamental Theorem, we have

$$\int_{a}^{b} f(g(x)) g'(x) dx = F(g(x)) \Big]_{a}^{b} = F(g(b)) - F(g(a))$$

But, applying FTC2 a second time, we also have

$$\int_{g(a)}^{g(b)} f(u) \, du = F(u) \Big|_{g(a)}^{g(b)} = F(g(b)) - F(g(a))$$

EXAMPLE 7 Evaluate
$$\int_0^4 \sqrt{2x+1} \ dx$$
 using 6.

EXAMPLE 8 Evaluate
$$\int_1^2 \frac{dx}{(3-5x)^2}$$
.

EXAMPLE 9 Calculate
$$\int_{1}^{c} \frac{\ln x}{x} dx$$
.