Network Security

Asst. Prof. Mihai Bucicoiu

Network 7 Layers [1]

Sleepy	Physical	The group new that physical connections are boring, and figured it might as well assign the physical layer to dwarf ``Sleepy''.		
Sneezy	Link	If you monitor a network and watch the pattern of packets emitted by a computer, you'll immediately understand the relationship between link-layer protocols and ``Sneezy''.		
Нарру	Network	Everyone's happy with the network layer. Well to be honest, the only network layer protocol that makes everyone's happy is the Internet Protocol.		
Doc	Transport	This one's obvious it definitely takes a Ph.D. to understand the subtleties of a transport layer protocol.		
Dopey	Session	Yep, even the designers realized that having a separate session layer is a dopey idea. They decided to follow Disney's approach of adding comic relief, so they stuck in a completely unnecessary layer and laughed about it.		
Bashful	Presentation	The designers realized that sooner or later someone would create a presentation layer protocol. However, the group decided to classify such protocols as too ``bashful'' to appear in public. So, even if a presentation protocol is produced, no one gets to see it.		
Grumpy	Application	Programmers who design network applications are incredibly grumpy they complain about the efficiency of other layers []. And users add to the grumpiness, [] ,they only complain about applications.		

Intercepting at physical

- You can buy one of these for ~350\$
- You can detect an attack like this by loss of light (must be lower than 2% in an acceptably quality implementation)

802.1x

• Several devices enforcing different security policies.

L2 Security

- MITM attacks from insiders (ARP Spoofing)
- STP can be broken
- VLAN hopping

L2 Security

- Sticky MAC
- BPDU Guard

VPN topologies

- Remote-access VPNs
 - Remote users must have a broadband Internet connection
 - The VPN parameters are dynamically negotiated
 - The tunnel is established only when required
- Site-to-site VPNs
 - Configured between two VPN-aware devices on both ends
 - Always-on
 - Provides interconnectivity between multiple networks on both sites.
 - Each end of the tunnel acts as a gateway for its networks.

- IPsec is an IETF standard (RFC 2401-2412)
 - Defines ways to deploy VPNs using the IP addressing protocol.
 - Is a framework of open standards that describe how to secure communication.
- Relies on existing algorithms to provide:
 - Encryption
 - Authentication
 - Data integrity
 - Secure key exchange
- Can work over any L2 connection.

- Algorithms that provide confidentiality (encryption):
 - Examples: DES, 3DES, AES, SEAL
- Algorithms that ensure integrity:
 - Examples: MD5, SHA, along with other versions
- Algorithms that define the authentication method:
 - Choices include: pre-shared keys (PSK) or digitally signed using RSA.
- The mechanism to securely communicate a shared key:
 - Several DH (Diffie-Hellman) groups

IKE phase 1

IKE phase 2

The NAT problem

- AH hashes the IP header and the TCP header and expects them to remain unaltered.
- NAT(PAT) overwrites the layer 3 and 4 addresses and port numbers.
- How do you solve this?
- Solution: NAT-T (NAT-Traversal or NAT-Transparency)
 - In IKE Phase 1, an unencrypted but hashed message is sent.
 - At destination, if the hashes do not match, there is a NAT router in between.
- NAT-T encapsulates everything (including ESP) in an UDP header
 - There is also a TCP variant available when connection state tracking is required.
 - If an IPS/IDS device is present, for example.

Routing protocols (attacks)

- OSPF
- BGP
 - (Sub)Prefix Hijacking (I'm Youtube now ☺)
- Attacks directed to the equipment (routers)

Routing anonymity

- Mixes routers (1981) [6]
 - nodes may reorder, delay, and pad traffic to complicate traffic analysis
- Onion router (1996) [7]
 - produce virtual circuits within link encrypted connections
 - TOR project (2004) [8]
- Crowds (1998) [9]
 - Relay message to random router: with probability p to another router; with probability 1-p, to its intended destination

TCP/IP Attacks [4]

- Port scanning
- TCP Sequence Numbers guessing
- Source Routing

Port knocking

A) The client cannot connect to the application. The client cannot establish a connection to any port.

B) The client attempts connection to a number of ports in a predefined sequence. Client receives no ACKs.

Port knocking

C) The PK daemon interprets the attempts and carries out a task. For example, it opens a specific port (n).

D) The client can now connect to port n.

(Distributed) Denial of Service

- Each network MUST have a benchmark of:
 - Total bandwidth utilization
 - Protocols active in the network
 - Hardware load (For hosts/network devices)
- All the above measured for different times of the day
- These statistics can be used to detect anomalies
- Anomalies can represent attacks
- TCP SYN Flood

SSL

- Developed by Netscape, now an IETF RFC (TLS Jan '99)
- Protocol for using one or two public/private keys
 - to authenticate a sever to a client
 - and by requiring a client key to authenticate the client to the server
 - establish a shared symmetric key (the session key)
- Gives you authentication, message integrity and confidentiality
- Everything except authorization

SSL

- Negotiate the cipher suite
- Establish a shared session key
- Authenticate the server (optional)
- Authenticate the client (optional)
- Authenticate previously exchanged data

- SSL Attacks [10] [11]
- SSL Stripping
- TLS 1.0 wrong crypto (CBC IV's)
- Broken CA (DigiNotar 2011)

Firewall

- Access control over traffic (at different OSI levels)
- Must be fast
- Whitelisting vs. Blacklisting
- Stateful vs. Stateless
- Next level firewalls: Deep Packet Inspection

Intrusion Detection/Prevention Systems

- Intrusion detection is a classification problem
- Based on signatures (how to be fast? data structures? GPU?)

	Detection Result			
		True	False	
Reality	True	True Positive	False Negative	
	False	False Positive	True Negative	

Honeypots

- Easy-to-hack environment (hopefully) controlled by administrator
- Used to learn about hackers behavior or as decoy
- Low interaction (emulated) vs. High interaction (real OS/apps)
- Virtual Machines as honeypots

DNS Security [5]

- DNS requests and responses are not authenticated
- DNS relies heavily on caching for efficiency, enabling cache pollution attacks

• DNSSec:

- Each domain signs their "zone" with a private key
- Public keys published via DNS
- Zones signed by parent zones

SNMP Security

- Management Information Base = MIB
- SNMPv1 is simple, effective, and provides the majority of SNMP service in the field
- SNMPv2 adds some functionality to v1
- SNMPv3 is a security overlay for either version, not a standalone replacement

References

- [1] https://www.cs.purdue.edu/homes/dec/essay.network.layers.html
- [2] http://www.faqs.org/faqs/firewalls-faq/
- [3] http://www.sans.org/reading-room/whitepapers/protocols/ssl-tls-beginners-guide-1029
- [4] https://www.cs.columbia.edu/~smb/papers/ipext.pdf
- [5] http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
- [6] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms, Communications of the ACM, v. 24, n. 2, Feb. 1981, pages 84-88.

References

- [7] http://www.onion-router.net/Publications/IH-1996.pdf
- [8] http://www.onion-router.net/Publications/tor-design.pdf
- [9] http://avirubin.com/crowds.pdf
- [10] http://resources.infosecinstitute.com/ssl-attacks/
- [11] https://tools.ietf.org/html/rfc7457

