OOD detection of Hierarchical VAE

Jaehyoung Hong

Unlike theoretical idea, deep generative model cannot detect out-of-distribution (OOD) inputs

- Out-of-distribution (OOD) detection success → Important when our task is filtering (Anomaly detection) : Factory, Network (Security) and Healthcare (e.g. Dementia)
- Deep generative model: Training $\log p(X) \to \text{OOD}$ detection success (Bishop,1994); Trained on simple data

- Likelihood: Higher is better
- Bits Per Dimension (BPD): Lower is better

Data Set	Avg. Bits Per Dimension	Data Set	Avg. Bits Per Dimension
Glow Trained on FashionMNIST		Glow Trained on CIFAR-10	
FashionMNIST-Train	2.902	CIFAR10-Train	3.386
FashionMNIST-Test	2.958	CIFAR10-Test	3.464
MNIST-Test	1.833	SVHN-Test	2.389
Glow Trained on MNIST		Glow Trained on SVHN	
MNIST-Test	1.262	SVHN-Test	2.057

Why does OOD detection fail?

Latent variable z: $z_1, z_2, ..., z_L$

$$\mathbb{R}^D \geq \mathbb{R}^{d_1} \geq \mathbb{R}^{d_2}$$

 \geq \mathbb{R}^{d_L}

Low-level feature

High-level feature

Figure 4. The inference and generative models, q_{ϕ} and p_{θ} , for an L=2 layered bottom-up hierarchical VAE as the one used in our experiments. Dashed lines indicate deterministic skip connections which are employed in both networks. Skip connections are found to be useful for optimizing latent variable models (Dieng et al., 2019; Maaløe et al., 2019).

- ✓ Authors assume low-level feature is global structure
 - → Important for transfer learning
 - → Not suitable for OOD detection

- ✓ Low-level feature: Edge detector
- ✓ High-level feature: Cloth
- ✓ MNIST (simpler data) can sufficiently generated from edge (OOD detection Fails)

Why does OOD detection fail?

Low level features correlate strongly

- ✓ Low-level feature is not important for OOD detection
- ✓ If Low-level feature is a large part of the reconstruction, then $p_{\theta}(\mathbf{x}|\mathbf{z}_1)$ will be high for both inand out-of-distribution data

Reconstruction from each layer

Example

Reconstructions from latent hierarchy (right is higher)

- ✓ Sampling from the $p(z_{\leq k}|z_{>k})$ instead of $q(z_{>k}|z_{\leq k})$
- ✓ Reconstruction from higher latent variable losses details (e.g. Sunglass)

$$\geq \text{ ELBO } \mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] =$$

$$\mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p(z))$$

Why does OOD detection fail?

Reconstruction from higher latent variable for OOD

- ✓ Latent reconstruction: Sampling from the $p(z_{\leq k}|z_{>k})$ instead of $q(z_{>k}|z_{\leq k})$
- ✓ Reconstruction form higher latent variables cannot reconstruct OOD data (Stick to trained data)

Hierarchical VAE is used to make VAE more flexible

• VAE (Variational autoencoder)

- \checkmark e,d: Deep network & $e(x) = (u(x), \sigma(x))$
- ✓ Cost function is depending on latent distribution
- ✓ Single latent variable limits the ability to learn a high likelihood representation

Hierarchical VAE (Deeper hierarchy of latent variables)

- Hierarchical VAE
 - ✓ Introduce hierarchy of latent variables $z = z_1, ..., z_L$
 - ✓ Two types of inference model
 - **Bottom-up**: $q_{\phi}(\mathbf{z}|\mathbf{x}) = q_{\phi}(\mathbf{z}_{1}|\mathbf{x}) \prod_{i=2}^{L} q_{\phi}(\mathbf{z}_{i}|\mathbf{z}_{i-1})$
 - ightharpoonup Top-down: $q_{\phi}(\mathbf{z}|\mathbf{x}) = q_{\phi}(\mathbf{z}_{L}|\mathbf{x}) \prod_{i=L-1}^{1} q_{\phi}(\mathbf{z}_{i}|\mathbf{z}_{i+1})$

- ✓ Until NVAE, hierarchical VAE
 - < SOTA autoregressive and flow-based model

Regular ELBO is not suitable for OOD detection because of bottleneck structure

Lowest level latent variable contribute the most to the approximate likelihood

ightharpoonup Generative mapping $f: \mathbb{R}^d \to \mathbb{R}^D$ s.t $\mathbf{x} = f(\mathbf{z}_L)$

$$f(\mathbf{z}_L) = f_1(..f_{L-1}(f_L(\mathbf{z})))$$

where $f_i: \mathbb{R}^{d_i} \to \mathbb{R}^{d_{i-1}}$

 \triangleright Likelihood p(x)

$$p(\mathbf{x}) = p(\mathbf{z}) \prod_{i=1}^{L} \left(\sqrt{\det \mathbf{J}_{i}^{T} \mathbf{J}_{i}} \right)^{-1}$$
 where \mathbf{J}_{i} is the Jacobian of f_{i} i.e. $J_{i} = \frac{\partial f_{i}}{\partial \mathbf{z}_{i}} \in \mathbb{R}^{d_{i} \times d_{i-1}}$

 \triangleright Log-likelihood p(x)

$$\log p(\mathbf{x}) = \log p(\mathbf{z}) - \frac{1}{2} \sum_{i=1}^{L} \log \det \mathbf{J}_{i}^{T} \mathbf{J}_{i}$$

> We can expect that

$$\det \mathbf{J}_{i+1}^T \mathbf{J}_{i+1} > \det \mathbf{J}_i^T \mathbf{J}_i$$

since determinant of $d \times d$ matrix $\approx O(\lambda^d)$

✓ Dominant of lowest level latent variable

Regular ELBO is not suitable for OOD detection because of bottleneck structure

Lowest level latent variable contribute the most to the approximate likelihood

New bound $\mathcal{L}^{>k}$ for semantic OOD detection

• New bound $\mathcal{L}^{>k}$

$$\geq \text{ ELBO } \mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] = \\ \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p(z))$$

$$proop q(z_{>k}|x) = q(z_{>k}|d_k(x))$$

with $d_k(x) = \mathbb{E}[q(z_k|d_{k-1}(x))], d_0(x) = x$

- ✓ $\mathcal{L}^{>0}$: Regular ELBO
- $\checkmark \quad \mathcal{L} \ge \mathcal{L}^{>k} \ \forall k \ (Empirically)$
- ✓ $p(z_{>k}) = p(z_L)p(z_{L-1}|z_L) \cdots p(z_{k+1}|z_{k+2})$ evaluated with samples from $q(z_{>k}|x)$
- ✓ $p(z_{\leq k}|z_{>k}) = p(z_k|z_{k+1})p(z_{k-1}|z_k)\cdots p(z_1|z_2)$ evaluated with samples from $p_{\theta}(z_{\leq k}|z_{>k})$

 $p_{\theta}(x|z)$ depend on z_{k+1}

$$\log p(\mathbf{x}) = \log \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

$$= \log \int \frac{q(\mathbf{z}_{>k}|\mathbf{x})}{q(\mathbf{z}_{>k}|\mathbf{x})}p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

$$= \log \int q(\mathbf{z}_{>k}|\mathbf{x})p(\mathbf{z})\frac{p(\mathbf{x}|\mathbf{z})}{q(\mathbf{z}_{>k}|\mathbf{x})}d\mathbf{z}$$

$$= \log \int q(\mathbf{z}_{>k}|\mathbf{x})p(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})p(\mathbf{z}_{>k})\frac{p(\mathbf{x}|\mathbf{z})}{q(\mathbf{z}_{>k}|\mathbf{x})}d\mathbf{z}$$

$$= \log \int q(\mathbf{z}_{>k}|\mathbf{x})p(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})p(\mathbf{z}_{>k})\frac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z}_{>k})}{q(\mathbf{z}_{>k}|\mathbf{x})}d\mathbf{z}$$

$$= \log \int q(\mathbf{z}_{>k}|\mathbf{x})p(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})\frac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z}_{>k})}{q(\mathbf{z}_{>k}|\mathbf{x})}d\mathbf{z}$$

$$\geq \mathbb{E}_{p(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})}\left[\log q(\mathbf{z}_{>k}|\mathbf{x})\frac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z}_{>k})}{q(\mathbf{z}_{>k}|\mathbf{x})}\right]$$

$$\geq \mathbb{E}_{p(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})q(\mathbf{z}_{>k}|\mathbf{x})}\left[\log \frac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z}_{>k})}{q(\mathbf{z}_{>k}|\mathbf{x})}\right] \equiv \mathcal{L}^{>k}.$$

Likelihood-ratio score for OOD detection

Likelihood-score LLR^{>k}

$$\mathcal{L}LR^{>k}(x) = (\mathcal{L} - L^{>k})(x)$$

$$\mathcal{L} = \log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})),$$

$$\mathcal{L}^{>k} = \log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}}(p_{\theta}(\mathbf{z}_{< k}|\mathbf{z}_{> k})q_{\phi}(\mathbf{z}_{> k}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$

$$(7)$$

$$LLR^{>k}(x) = -D_{KL} (q_{\phi}(z|x)||p_{\theta}(z|x)) + D_{KL} (p_{\theta}(z_{\leq k}|z_{>k})q_{\phi}(z_{>k}|x)||p_{\theta}(z|x))$$

- $\checkmark \quad \mathcal{L} \ge \mathcal{L}^{>k} \ \forall k \ (Empirically) \to LLR^{>k} \ge 0$
- ✓ High $LLR^{>k}$ indicates $L^{>k}$ is looser on the data than the ELBO: **The data may be OOD**
- ✓ $LLR^{>k}$ does not include $\log p_{\theta}(x)$: Only depend on latent space → Suitable for OOD detection
- ✓ Note that $LLR^{>k}$ is only possible concept for HVAE

Consider stricter bound

$$LLR_S^{>k}(x) = (\mathcal{L}_S - L^{>k})(x)$$

- $\mathcal{L}_S = \mathbb{E}_{q(z|x)} \left[\log \left(\frac{1}{N} \sum_{s=1}^S \frac{p(x,z^{(s)})}{q(z^{(s)}|x)} \right) \right]$: Strictly tighter importance weighted bound (Burda et al., 2016)
- $\mathcal{L}_S \to \log p_{\theta}(x)$ when $S \to \infty$ so that $LLR_S^{>k}(x) \to D_{KL}(p_{\theta}(z_{\leq k}|z_{>k})q_{\phi}(z_{>k}|x)||p_{\theta}(z|x))$

$$\checkmark Var(\widehat{LLR}^{>k}) = Var(\widehat{\mathcal{L}}) + Var(\widehat{\mathcal{L}}^{>k}) - \frac{2Cov(\widehat{\mathcal{L}}, \widehat{\mathcal{L}}^{>k})}{2Cov(\widehat{\mathcal{L}}, \widehat{\mathcal{L}}^{>k})}$$

$$\checkmark Var(\hat{\mathcal{L}}) \le Var(\widehat{LLR}^{>k}) \le Var(\hat{\mathcal{L}}^{>k})$$
 (Empirically)

Experimental Setup

Model architecture

Figure 4. The inference and generative models, q_{ϕ} and p_{θ} , for an L=2 layered bottom-up hierarchical VAE as the one used in our experiments. Dashed lines indicate deterministic skip connections which are employed in both networks. Skip connections are found to be useful for optimizing latent variable models (Dieng et al., 2019; Maaløe et al., 2019).

Hyperparameter	Setting/Range
All	
Optimization	Adam (Kingma & Ba, 2015)
Learning rate	3e-4
Batch size	128
Epochs	2000
Free bits	$2 \mathrm{nats}$ shared among all \mathbf{z}_i
Free bits constant	200 epochs
Free bits annealed	200 epochs
Activation	ReLU
To tate the earlier	Data-dependent
Initialization	(Salimans & Kingma, 2016)
HVAE	
Latent dimensionality	8-16-32 (natural) / 8-16-8 (grey)
Convolution kernel	5-3-3
Stride	2-2-2 (natural) / 2-2-1 (grey)
Warmup anneal period	200 epochs
BIVA	
T -4 - 4 - 1' 1' 1'	10-8-6 (spatial)
Latent dimensionality	42-40-38-36-34-32-30 (dense)
Convolution kernel	5-3-3-3-3-3-3-3
Stride	2-1-1-2-1-2-1-1-1

The baseline result of trained model

Method	Dataset	Avg. bits/dim				
		$\log p(x)$	$\mathcal{L}^{>1}$	$\mathcal{L}^{>2}$	$\mathcal{L}^{>3}$	
Trained on FashionMNIST						
Glow	FashionMNIST	2.96	-	-		
Glow	MNIST	1.83	-	-		
HVAE (Ours)	FashionMNIST	0.420	0.476	0.579	-	
	MNIST	0.317	0.601	0.881	-	
Trained on CIFAR10						
Class	CIFAR10	3.46	-	-		
Glow	SVHN	2.39	-	-		
HVAE (Ours)	CIFAR10	3.74	17.8	54.3	75.7	
HVAE (Ours)	SVHN	2.62	10.2	64.0	93.9	
BIVA (Ours)	CIFAR10	3.46	8.74	19.7	37.3	
	SVHN	2.35	6.62	25.1	59.0	

✓ $\mathcal{L}^{>k}$ is higher for OOD data as k increased

The Likelihood-based OOD detection result of trained model

Method	AUROC↑	AUPRC↑	FPR80↓		
FashionMNIST (in) / MNIST (out)					
Use prior knowledge of OOD					
Backgr. contrast. LR (PixelCNN) [1]	0.994	0.993	0.001		
Backgr. contrast. LR (VAE) [7]	0.924	-	-		
Binary classifier [1]	0.455	0.505	0.886		
$p(\hat{y} \mathbf{x})$ with OOD as noise class [1]	0.877	0.871	0.195		
$p(\hat{y} \mathbf{x})$ with calibration on OOD [1]	0.904	0.895	0.139		
Input complexity $(S, Glow)$ [9]	0.998	-	-		
Input complexity $(S, PixelCNN++)$ [9]	0.967	-	-		
Use in-distribution data labels y					
$p(\hat{y} \mathbf{x})$ [1], [2]	0.734	0.702	0.506		
Entropy of $p(y \mathbf{x})$ [1]	0.746	0.726	0.448		
ODIN [1, 3]	0.752	0.763	0.432		
VIB [4, 7]	0.941	-	-		
Mahalanobis distance, CNN [1]	0.942	0.928	0.088		
Mahalanobis distance, DenseNet [5]	0.986	-	-		
Ensemble, 20 classifiers [1, 6]	0.857	0.849	0.240		
No OOD-specific assumptions					
- Ensembles					
WAIC, 5 models, VAE [7]	0.766	-	-		
WAIC, 5 models, PixelCNN [1]	0.221	0.401	0.911		
- Not ensembles					
Likelihood regret [8]	0.988	-	-		
$\mathcal{L}^{>0}$ + HVAE (ours)	0.268	0.363	0.882		
$\mathcal{L}^{>1}$ + HVAE (ours)	0.593	0.591	0.658		
$\mathcal{L}^{>2}$ + HVAE (ours)	0.712	0.750	0.548		
$LLR^{>1}$ + HVAE (ours)	0.964	0.961	0.036		
$LLR_{250}^{>1}$ + HVAE (ours)	0.984	0.984	0.013		

Method	$AUROC \!\!\uparrow$	$AUPRC \!\!\uparrow$	FPR80↓			
CIFAR10 (in) / SVHN (out)						
Use prior knowledge of OOD						
Backgr. contrast. LR (PixelCNN) [1]	0.930	0.881	0.066			
Backgr. contrast. LR (VAE) [8]	0.265	-	-			
Outlier exposure [9]	0.984	-	-			
Input complexity $(S, Glow)$ [10]	0.950	-	-			
Input complexity $(S, PixelCNN++)$ [10]	0.929	-	-			
Input complexity (S, HVAE) (Ours) $[10]^3$	0.833	0.855	0.344			
Use in-distribution data labels y						
Mahalanobis distance [5]	0.991	-	-			
No OOD-specific assumptions						
- Ensembles						
WAIC, 5 models, Glow [7]	1.000	-	-			
WAIC, 5 models, PixelCNN [1]	0.628	0.616	0.657			
- Not ensembles						
Likelihood regret [8]	0.875	-	-			
$LLR^{>2}$ + HVAE (ours)	0.811	0.837	0.394			
$LLR^{>2}$ + BIVA (ours)	0.891	0.875	0.172			

✓ $\mathcal{L}^{>0}$ is higher for OOD data as expected, so that have inferior AUROC ↑ to random

ELBO and $\mathcal{L}^{>k}$ are not sufficient for OOD detection while $LLR^{>k}$ shows potential

$LLR^{>k}$ has better performance for OOD detection

Two conflict intuition

- Generative model is strong for transfer learning (Complex to simple)
 - Complex data have enough 'latent information' to generate simple data

- HVAE is strong for OOD detection
 - $\succ LLR^{>k}$ only suitable for HVAE

