Prof. Dr. Ir. Joost-Pieter Katoen

Christian Dehnert, Sebastian Junges

Exercise 1 (CTL-star):

(3 points)

Consider the CTL*-formula (over $AP = \{a, b\}$)

$$\Phi = \forall \Diamond \Box \exists \bigcirc (a U \exists \Box b)$$

and the transition system TS outlined below:

Apply the CTL* Model Checking Algorithm to compute $Sat(\Phi)$ and decide whether $TS \models \Phi$. Hint: You may infer the satisfaction sets for LTL formulas directly.

Exercise 2 (Fair-CTL Model Checking):

(3 points)

Consider the CTL-formula $\Phi = \forall \Box (a \rightarrow \forall \Diamond (b \land \neg a))$ together with the following CTL fairness assumption

$$fair = \Box \Diamond \forall \bigcirc (a \land \neg b) \rightarrow \Box \Diamond \forall \bigcirc (b \land \neg a)$$
$$\land \Diamond \Box \exists \Diamond b \rightarrow \Box \Diamond b.$$

Check that $TS \models_{fair} \Phi!$

Exercise 3 (Bisimulation I):

(2 points)

Consider the transition system TS over $AP = \{a, b\}$ outlined below:

- 1. Determine the bisimulation equivalence \sim_{TS} and depict the bisimulation quotient system TS/\sim .
- 2. For each bisimulation equivalence class C, provide a CTL formula Φ_C that holds only in the states in C.

Exercise 4 (Bisimulation II):

(2 points)

Consider the following three transition systems TS_1 , TS_2 , and TS_3 , where all the states labelled with $\{a\}$ are initial states. Decide whether $TS_i \sim TS_j$ for $i,j \in \{1,2,3\}$ and $i \neq j$. If $TS_i \not\sim TS_j$, then provide a distinguishing CTL formula Φ such that $TS_i \models \Phi \iff TS_j \not\models \Phi$.

