

What is AirBnB Platform?

In []: AirBnB is a leading online marketplace that connects people looking to rent ou Founded in 2008, the platform has grown exponentially, offering over 7 million AirBnB provides a wide range of lodging options, from single rooms and apartme This diversity allows travelers to find accommodations that suit their prefere

Importance of Analyzing Booking Data

Analyzing booking data on AirBnB is crucial for several reasons: In []:

1. Understanding Market Trends:

By examining booking patterns, one can identify peak seasons, popular destinations, and emerging travel trends. This information is invaluable for hosts to optimize their listings and pricing strategies.

2.Enhancing Guest Experience:

Insights from booking data help identify what guests value most, enabling hosts to tailor their offerings to meet guest expectations. For instance, understanding the demand for certain amenities or property types can lead to more targeted and effective listings.

3.Improving Host Performance:

Analysis of booking data can reveal key factors that contribute to higher occupancy rates and better reviews. Hosts can use this information to improve their property management practices and increase their revenue.

4. Strategic Decision-Making:

For AirBnB as a platform, booking data analysis is essential for strategic planning. It helps in understanding the competitive landscape, assessing the effectiveness of marketing campaigns, and making informed decisions about platform enhancements.

5. Enhancing Safety and Compliance

By analyzing booking data, AirBnB can detect unusual patterns that may indicate fraudulent activity or violations of local regulations. This proactive approach ensures a safer and more reliable platform for both hosts and guests.

→ Problem statements

- (1) Find Distribution Of Airbnb Bookings Price Range.
- (2) Find Total Listing/Property count in Each Neighborhood Group in NYC.
- (3) Find Average Price Of listings/property in each Neighborhood Groups and also Neighborhoods.
- (4) Find Top Neighborhoods and Hosts by Listing/property in entire NYC.
- (5) Find the Number Of Active Hosts Per Location by Each Neighborhood Groups.
- (6) Find Total Counts Of Each Room Types in entire NYC.
- (7) Find Stay Requirement counts by Minimum Nights.
- (8) Find the total numbers of Reviews and Maximum Reviews by Each Neighborhood Group.
- (9) Find Most reviewed room type in Neighborhood groups per month.
- (10) Find Best location listing/property location for travelers.
- (11) Find also best location listing/property location for Hosts.
- (12) Find Price variations in NYC Neighborhood groups.

Exploring the AirBnB Dataset in Python

Dataset Link -Airbnb

Step 1: Importing Necessary Libraries and Loading the AirBNB Dataset

This script imports essential data manipulation and visualization libraries, loads an Airbnb dataset from a CSV file, and displays the first few rows of the dataset. This initial step helps in understanding the structure and content of the data before performing further analysis or visualization.

```
In [2]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

In [3]: df=pd.read_csv('Airbnb_Analysis (1).csv')
In [4]: df
```

Out[4]:		id	name	host_id	host_name	neighbourhood_group	n
	0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	
	1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	
	2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	
	3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	
	4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	
	48890	36484665	Charming one bedroom - newly renovated rowhouse	8232441	Sabrina	Brooklyn	
	48891	36485057	Affordable room in Bushwick/East Williamsburg	6570630	Marisol	Brooklyn	
	48892	36485431	Sunny Studio at Historical Neighborhood	23492952	llgar & Aysel	Manhattan	
	48893	36485609	43rd St. Time Square-cozy single bed	30985759	Taz	Manhattan	
	48894	36487245	Trendy duplex in the very heart of Hell's Kitchen	68119814	Christophe	Manhattan	

48895 rows × 16 columns

Step 2: Check the column names in the Dataset

Step 3: Check for Missing Values

```
In [6]: print(df.isnull().sum())
       id
                                               0
       name
                                              16
       host id
                                               0
                                              21
       host name
       neighbourhood group
                                               0
       neighbourhood
                                               0
       latitude
                                               0
       longitude
                                               0
                                               0
       room type
                                               0
       price
       minimum nights
                                               0
       number_of_reviews
                                               0
       last review
                                           10052
       reviews_per_month
                                           10052
       calculated_host_listings_count
                                               0
       availability 365
                                               0
       dtype: int64
```

Step 4: Handle Missing Values

```
In [7]:
        df['name'].value counts()
Out[7]: name
        Hillside Hotel
                                                               18
        Home away from home
                                                               17
        New york Multi-unit building
                                                               16
        Brooklyn Apartment
                                                               12
        Loft Suite @ The Box House Hotel
                                                               11
        Brownstone garden 2 bedroom duplex, Central Park
                                                                1
        Bright Cozy Private Room near Columbia Univ
                                                                1
        1 bdrm/large studio in a great location
                                                                1
        Cozy Private Room #2 Two Beds Near JFK and J Train
                                                                1
        Trendy duplex in the very heart of Hell's Kitchen
                                                                1
        Name: count, Length: 47896, dtype: int64
        df['name'].fillna(df['name'].mode()[0],inplace=True)
In [8]:
```

C:\Users\subha\AppData\Local\Temp\ipykernel_17640\3835375673.py:1: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through chain ed assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work bec ause the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.me thod({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['name'].fillna(df['name'].mode()[0],inplace=True)

In [16]: print(df.isnull().sum())

```
id
                                    0
                                    0
name
host id
                                    0
                                    0
host name
neighbourhood group
                                    0
neighbourhood
                                    0
latitude
                                    0
                                    0
longitude
room type
                                    0
price
                                    0
                                    0
minimum nights
number of reviews
                                    0
last review
                                    0
reviews per month
calculated host listings count
                                    0
availability 365
dtype: int64
```

```
In [10]: df['host_name'].fillna(df['host_name'].mode()[0],inplace=True)
```

C:\Users\subha\AppData\Local\Temp\ipykernel_17640\2917131993.py:1: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through chain ed assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work bec ause the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.me thod({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['host name'].fillna(df['host name'].mode()[0],inplace=True)

```
In [15]: # Convert 'last review' to datetime and handle errors
    df['last_review'] = pd.to_datetime(df['last_review'], errors='coerce')
# Fill missing values
```

```
df.fillna({'reviews_per_month': 0, 'last_review': df['last_review'].min()}, ir
df.fillna({'last_review': 0, 'last_review': df['last_review'].min()}, inplace=
```

Step 5: Correct Data Types

Ensure that all columns have the correct data types.

```
In [17]: df['price'] = df['price'].replace('[\$,]', '', regex=True).astype(float)

<>:1: SyntaxWarning: invalid escape sequence '\$'
<>:1: SyntaxWarning: invalid escape sequence '\$'
C:\Users\subha\AppData\Local\Temp\ipykernel_17640\2337335738.py:1: SyntaxWarning: invalid escape sequence '\$'
    df['price'] = df['price'].replace('[\$,]', '', regex=True).astype(float)
```

Step 6: Remove Duplicates

Check for and remove any duplicate records.

```
In [18]: df.drop_duplicates(inplace=True)
```

Step 7: Confirm Data Cleaning

Verify that the data cleaning steps were successful.

```
In [19]: print(df.info())
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 48895 entries, 0 to 48894
       Data columns (total 16 columns):
            Column
        #
                                             Non-Null Count Dtype
            ----
        - - -
                                             _ _ _ _ _ _ _ _ _ _ _ _ _
                                                             ----
        0
            id
                                             48895 non-null int64
        1
            name
                                             48895 non-null object
        2
                                             48895 non-null int64
            host id
        3
            host name
                                             48895 non-null object
        4
            neighbourhood group
                                             48895 non-null object
        5
            neighbourhood
                                             48895 non-null object
        6
            latitude
                                             48895 non-null float64
        7
            longitude
                                             48895 non-null float64
        8
            room type
                                             48895 non-null object
                                             48895 non-null float64
        9
            price
        10 minimum_nights
                                             48895 non-null int64
        11 number of reviews
                                             48895 non-null int64
        12 last review
                                             48895 non-null datetime64[ns]
        13 reviews per month
                                             48895 non-null float64
        14 calculated_host_listings_count 48895 non-null int64
        15 availability 365
                                             48895 non-null
                                                             int64
       dtypes: datetime64[ns](1), float64(4), int64(6), object(5)
       memory usage: 6.0+ MB
       None
```

Step 8: Descriptive Statistics

The df.describe() function in pandas generates descriptive statistics that summarize the central tendency, dispersion, and shape of a dataset's distribution, excluding NaN values. This function is useful for understanding the basic statistical properties of the data.

In [20]: print	t(df.describe())					
	id	host_id	latitude	longitude	price	\
count	4.889500e+04	4.889500e+04	48895.000000	48895.000000	48895.000000	
mean	1.901714e+07	6.762001e+07	40.728949	-73.952170	152.720687	
min		2.438000e+03	40.499790	-74.244420	0.00000	
25%		7.822033e+06	40.690100	-73.983070	69.000000	
50%		3.079382e+07	40.723070	-73.955680	106.000000	
75%	2.915218e+07	1.074344e+08	40.763115	-73.936275	175.000000	
max	3.648724e+07	2.743213e+08	40.913060	-73.712990	10000.000000	
std	1.098311e+07	7.861097e+07	0.054530	0.046157	240.154170	
	minimum_nights	number of r	eviews	la	st review \	
count	48895.000000		000000	ca	48895	
mean	7.029962			3-18 07:43:12.		
min	1.000000		000000	2011-03-28 00:00:00		
25%	1.000000		000000	2016-03-24 00:00:00		
50%	3.000000		000000	2019-01-03 00:00:00		
75%	5.000000		000000	2019-06-19 00:00:00		
max	1250.000000	629.	000000	2019-07-08 00:00:00		
std	20.510550	44.	550582	NaN		
	reviews per mo	nth calculat	ed host listin	gs count avai	lability 365	
count	48895.0000				48895.000000	
mean	1.0909	910		7.143982	112.781327	
min	0.000	900		1.000000	0.000000	
25%	0.0400	900		1.000000	0.000000	
50%	0.3700	900		1.000000	45.000000	
75%	1.5800	900		2.000000	227.000000	
max	58.5000	900	32	7.000000	365.000000	
std	1.5972	283	3	2.952519	131.622289	

Step 9: Visualization

Distribution of Prices

Plot the distribution of listing prices.

```
In [21]: plt.figure(figsize=(10, 6))
    sns.histplot(df['price'], bins=50, kde=True)
    plt.title('Distribution of Listing Prices')
    plt.xlabel('Price ($)')
    plt.ylabel('Frequency')
    plt.show()
```

Distribution of Listing Prices

The histogram shows a fairly even distribution of listing prices across different price ranges, indicating no particular concentration of listings in any specific price range. The KDE line helps visualize this even spread more clearly, confirming that the dataset contains listings with a wide variety of prices.

Room Type Analysis

Analyze the distribution of different room types.

```
In [22]: plt.figure(figsize=(8, 5))
    sns.countplot(x='room_type', data=df , color='hotpink')
    plt.title('Room Type Distribution')
    plt.xlabel('Room Type')
    plt.ylabel('Count')
    plt.show()
```

Room Type Distribution

The count plot shows a clear distribution of the different room types available in the Airbnb dataset. The majority of listings are for 'Entire home/apt' and 'Private room', with 'Shared room' and 'Hotel room' being much less common. This insight can be useful for understanding the availability and popularity of different types of accommodations on Airbnb.

Neighborhood Analysis

Examine how listings are distributed across different neighborhoods.

```
In [23]: plt.figure(figsize=(12, 8))
    sns.countplot(y='neighbourhood_group', data=df,color="lightgreen" , order=df['
    plt.title('Number of Listings by Neighborhood Group')
    plt.xlabel('Count')
    plt.ylabel('Neighborhood Group')
    plt.show()
```


The count plot shows a clear distribution of the number of listings across different neighborhood groups. Manhattan and Brooklyn dominate the listings, suggesting they are prime locations for Airbnb. Queens, Bronx, and Staten Island have fewer listings, indicating less availability or popularity.

Price vs. Room Type

Visualize the relationship between price and room type.

```
In [24]: plt.figure(figsize=(10, 6))
    sns.boxplot(x='room_type', y='price', hue='room_type', data=df, palette='Set2'
    plt.title('Price vs. Room Type')
    plt.xlabel('Room Type')
    plt.ylabel('Price ($)')
    plt.legend(title='Room Type')
    plt.show()
```

C:\Users\subha\AppData\Local\Temp\ipykernel_17640\2734788128.py:6: UserWarning:
No artists with labels found to put in legend. Note that artists whose label s
tart with an underscore are ignored when legend() is called with no argument.
 plt.legend(title='Room Type')

The box plot provides a detailed view of how prices vary across different room types in the Airbnb dataset. It shows that while 'Shared room' tends to have lower prices, 'Private room', 'Entire home/apt', and 'Hotel room' have higher and more varied price ranges. This visualization helps in understanding the pricing dynamics for different types of accommodations on Airbnb.

Reviews Over Time

Plot the number of reviews over time.

```
In [27]: df['last_review'] = pd.to_datetime(df['last_review'])
    reviews_over_time = df.groupby(df['last_review'].dt.to_period('M')).size()

plt.figure(figsize=(12, 6))
    reviews_over_time.plot(kind='line',color='red')
    plt.title('Number of Reviews Over Time')
    plt.xlabel('Date')
    plt.ylabel('Number of Reviews')
    plt.show()
```


The line plot provides a clear visualization of the number of reviews over time. It helps identify trends and patterns in review activity, such as periods of high or low activity. This information can be useful for understanding the dynamics of user engagement and the popularity of Airbnb listings over time. The significant spikes and drops in reviews might be worth further investigation to understand the underlying causes, such as changes in Airbnb policies, market conditions, or external events.

In []: