Answers to selected problems

Chapter 1

- 1. a) cup shaped
- b) unit sphere
- c) umbrella stand
- d) cone with semi-vertical angle $\pi/4$
- e) saddle

2.
$$2xye^{x^2y}$$
, $x^2e^{x^2y}$, $(2x+2x^3y)e^{x^2y}$.

		$\frac{\partial z}{\partial x}$	$\frac{\partial z}{\partial y}$	$\frac{\partial^2 z}{\partial x^2}$	$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$	$\frac{\partial^2 z}{\partial y^2}$
	a)	2xy	$x^2 + 2y$	2y	2x	2
3.	b)	-y	x	2xy	$(y^2 - x^2)$	-2xy
	b)	$\overline{(x^2+y^2)}$	$\overline{(x^2+y^2)}$	$\overline{(x^2+y^2)^2}$	$\overline{(x^2+y^2)^2}$	$(x^2 + y^2)^2$
	c)	$\cos(x-cy)$	$-c\cos(x-cy)$	$-\sin(x-cy)$	$c\sin(x-cy)$	$-c^2\sin(x-cy)$

4. a)
$$z = 6x + 10y - 34$$
, $\mathbf{n} = (6, 10, -1)^T$

b)
$$z = 32 - 16x + 16y$$
, $\mathbf{n} = (-16, 16, -1)^T$

c)
$$4x - 6y - 7z - 14 + 7 \ln 7 = 0$$
, $\mathbf{n} = (4, -6, -7)^T$

d)
$$2x + 3y + \sqrt{23}z - 6 = 0$$
, $\mathbf{n} = (2, 3, \sqrt{23})^T$

- 5. a) $784\pi \, \text{cm}^3$
- b) $\frac{217\pi}{15}$ cm³
- c) 1.85%

- 6. 0.05
- 7. 5.012 (calculator gives 5.012115)
- 8. $|\Delta S| \le 0.0404$
- 9. 9% decrease.
- 10. 0.21%
- 11. a) $e^t(t^2 + 2t)$
- b) 2t
- 12. 7.5π cubic centimetres per second
- 13. b) $F(x,y) = \sin(y x^2)$
- 14. a) $u_{xx}(x,t) = g''(x+\lambda t), \qquad u_{tt}(x,t) = \lambda^2 g''(x+\lambda t)$
 - b) 4, -4

17. a)
$$u_t(x,t) = \frac{-u(x,t) f'(x - tu(x,t))}{1 + t f'(x - tu(x,t))}, \quad u_x(x,t) = \frac{f'(x - tu(x,t))}{1 + t f'(x - tu(x,t))}$$

- d) Hint: Try the Maple commands with (plots): implicitplot(y-1+tanh(x-t*y),x=-5..7, y=-1..3, gridrefine = 2);for a few values of t. Can you animate this in time t?

18. a)
$$y = \pm 1, \frac{dy}{dt} = 0.$$

- a) $y = \pm 1, \frac{dy}{dt} = 0.$ b) $\nabla F = (2x, 2y, -2z)^T.$
 - c) The vector $\left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right)^T$ representes the velocity of the raindrop. So the equation states that the velocity is perpendicular to the normal to the curve.
 - d) If $x_0 = z_0$ then $y_0 = \pm 1$, so the lines are $(0, y_0, 0)^T + \lambda (1, 0, \pm 1)^T$. If $x_0 \neq z_0$ then the lines $\frac{-1}{z_0^2 - x_0^2} \left(x_0 \pm z_0 y_0, 0, z_0 \pm x_0 y_0 \right) + \lambda \left(x_0 y_0 \pm z_0, z_0^2 - x_0^2, z_0 y_0 \pm x_0 \right)^T.$

Chapter 2

1. a)
$$\frac{1}{4}e^{2x^2}$$
 b) $-\frac{1}{2}\cos(x^2)$ c) $\frac{1}{6}\sin(2x^3)$ d) $\frac{1}{10}\ln|5x^2-11|$ e) $-\frac{1}{4}\cos^4x$ f) $\ln(\ln x)$ g) $\sqrt{x^2+4x+7}$ h) $\frac{1}{3}(1+x^2)^{\frac{3}{2}}$ i) $-\frac{1}{18}(9-4x^3)^{\frac{3}{2}}$ j) $-\frac{1}{6}(9-4x^3)^{\frac{1}{2}}$ k) $-\frac{1}{8(1+x^4)^2}$ l) $\frac{-1}{3\tan^3x}$ m) $\frac{-1}{2\sin^2x}$ n) $\frac{1}{8}(4+3e^{2x})^{\frac{4}{3}}$ o) $\frac{-1}{4(\ln x)^4}$

$$b) -\frac{1}{2}\cos(x^2)$$

c)
$$\frac{1}{6}\sin(2x^3)$$

d)
$$\frac{1}{10} \ln |5x^2 - 11|$$

e)
$$-\frac{1}{4}\cos^4 x$$

i)
$$-\frac{1}{(9-4x^3)}$$

j)
$$-\frac{1}{6}(9-4x^3)^{\frac{1}{2}}$$

k)
$$-\frac{3}{8(1+x^4)^2}$$

$$1) \quad \frac{-1}{3\tan^3 x}$$

$$m) \quad \frac{-1}{2\sin^2 x}$$

n)
$$\frac{1}{8}(4+3e^{2x})^{\frac{4}{3}}$$

o)
$$\frac{-1}{4(\ln x)^4}$$

2. a)
$$-e^{-x}(x^2 + 2x + 2)$$

b)
$$\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$$

c)
$$x \tan x + \ln(\cos x)$$

2. a)
$$-e^{-x}(x^2 + 2x + 2)$$
 b) $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$ c) $x \tan x + \ln(\cos x)$ d) $-\frac{(\ln x)^2}{x} - 2\frac{\ln x}{x} - \frac{2}{x}$ e) $\frac{1}{2}e^x(\sin x + \cos x)$ f) $x \ln x - x$

e)
$$\frac{1}{2}e^x(\sin x + \cos x)$$

$$f) \quad x \ln x - x$$

- g) $x \tan^{-1} x \frac{1}{2} \ln(x^2 + 1)$
- 3. a) 1/8

- c) $\frac{1}{3}\sec^3 x + C$ d) $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta + C$ e) $-\frac{1}{99}(\sin x \cos 10x 10\cos x \sin 10x) + C$ or $\frac{1}{2}(\frac{1}{9}\sin 9x + \frac{1}{11}\sin 11x) + C$ f) $-\frac{1}{10}\cos 5x + \frac{1}{2}\cos x + C$

- a) $\ln |\tan x + \sec x| + C$

 - b) i) $\frac{1}{3}\sec^2 x \tan x + \frac{2}{3}\tan x + C$ ii) $\frac{1}{4}\sec^3 x \tan x + \frac{3}{8}\sec x \tan x + \frac{3}{8}\ln|\tan x + \sec x| + C$
- a) $3\pi/512$ 5.
- b) 1/60
- c) 2/35

6. $6 - 16e^{-1}$

7.
$$5/12 - (\ln 2)/2$$
, $\pi/4 - 76/105$

8.
$$(e^2+3)/8$$

9.
$$35\pi/256$$
, $16/35$

10.
$$I_n = (2\sqrt{2} - 2nI_{n-1})/(1+2n)$$

15. a)
$$\pi/3 - \sqrt{3}/2$$
; $x = 2\sin\theta$

b)
$$\sinh^{-1} \frac{x-3}{2} + C$$
 or $\ln(x-3+\sqrt{x^2-6x+13}) + K$; complete the square.

c)
$$9\pi/4$$

d)
$$-\frac{\sqrt{x^2+16}}{16x}+C$$
; $x=4\tan\theta$ to obtain $\int \frac{\cos\theta}{\sin^2\theta} d\theta$.

e)
$$x/\sqrt{1-x^2} + C$$

$$f)$$
 $tan^{-1} 2$

16.
$$\sqrt{x^2-4}+C$$

17. a)
$$\frac{1}{2} \ln \left| \frac{x+1}{x+3} \right| + C$$

b)
$$3\log|x-2| + 2\log|x-1| + C$$

c)
$$2\log|x| + \frac{1}{x} + 2\log|x - 1| + C$$

c)
$$2\log|x| + \frac{1}{x} + 2\log|x - 1| + C$$
 d) $-\frac{1}{4}\left(\frac{2x}{x^2 - 1} - \log\left|\frac{x + 1}{x - 1}\right|\right) + C$

e)
$$x + \ln \left| \frac{x-1}{x+1} \right| + C$$

f)
$$\ln|x-3| - \frac{1}{2}\ln(x^2+9) - \tan^{-1}\frac{x}{3} + C$$

h) $\frac{-1}{3} + \frac{1}{3} - \frac{x}{3} + C$

e)
$$x + \ln \left| \frac{x-1}{x+1} \right| + C$$

g) $\ln \frac{(x+1)^2}{|x+2|} + \frac{4}{x+2} + C$

h)
$$\frac{-1}{(1+x)^2} + \frac{1}{1+x} = \frac{x}{(1+x)^2} + C$$

18. a)
$$\frac{1}{2}\ln(x^2+2x+10) - \frac{1}{3}\tan^{-1}\frac{x+1}{3} + C$$
 b) $\sqrt{x^2+2x+10} - \sinh^{-1}\frac{x+1}{3} + C$ c) $2\sqrt{x} - 2\ln(1+\sqrt{x}) + C$ d) $11 - 6\ln(3/2)$; $x = u^6$ first.

b)
$$\sqrt{x^2 + 2x + 10} - \sinh^{-1} \frac{x+1}{3} +$$

c)
$$2\sqrt{x} - 2\ln(1+\sqrt{x}) + C$$

$$2\ln(1+\sqrt{x}) + C$$
 d) $11 - 6\ln(3/2)$; $x = u^6$ first

22. a)
$$\ln x - \frac{1}{2} \ln(x^2 + x + 1) - \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}}\right) + C$$

b)
$$\frac{8}{5} \cosh^5(x) + C$$

c)
$$\frac{3}{2}\ln(x^2+4x+8) - \frac{1}{2}\tan^{-1}\left(\frac{x+2}{2}\right) + C$$

d)
$$\frac{1}{2}x\sqrt{25-x^2} + \frac{25}{2}\sin^{-1}\left(\frac{x}{5}\right) + C$$

e)
$$\ln|x-1| + \ln(x^2 - 2x + 2) + \tan^{-1}(x-1) + C$$

$$f) \quad -\frac{\sqrt{1+x^2}}{x} + C$$

g)
$$\frac{1}{3} \frac{x}{\sqrt{x^2+3}} + C$$

h)
$$-\frac{1}{14}\cos(7x) + \frac{1}{2}\cos(x) + C$$

i)
$$2/e$$

Chapter 3

1. a)
$$y = \tan(t^3/3 + C)$$

b)
$$y = -2/(x^2 + A)$$

c)
$$y = \sqrt[3]{A - 3\cos x}$$

$$d) \quad y = C(x-1)/x$$

e)
$$e^{x+y} + Ce^y + 1 = 0$$

f)
$$y^2 = \tan^2 x + 4 \tan x - 1$$
, where $y > 0$

$$g) \quad (\ln x)^2 = 2 \ln y + C$$

h)
$$y = 1/(1-x^3)$$

2. Let a and b be arbitrary real numbers with a < b. Then there are solutions of the form

$$y = \begin{cases} (x-a)^3 & \text{if } x < a \\ 0 & \text{if } a \le x \le b \\ (x-b)^3 & \text{if } x > b \end{cases}$$

3. $2\sqrt{2}$

4. a)
$$y = (x^3/3 + C)e^{2x}$$

c)
$$y = (2 + Ce^{-x})/x$$

e)
$$y = \tan x - 1 + Ae^{-\tan x}$$

5.
$$x = t - 1 + Ce^{-t}$$

7. a)
$$3x^2y + y^3 = A$$

8. a)
$$(x^2+1)e^y + e^x = C$$

c)
$$y \tan^{-1} x + xe^y = C$$

9. a)
$$xy^2 - 3y \tan x = C$$

c)
$$y = \frac{\ln x + C}{x}$$

e)
$$y = \left[3\left(\ln|x| + \frac{x^2}{2} + \frac{17}{2}\right)\right]^{1/3}$$

b)
$$y = e^{-3x}(\tan^{-1}x + C)$$

d)
$$y = 2x^5 + Ax^2$$

f)
$$y = \frac{x}{2} \tan 2x + \frac{1}{4} + A \sec 2x$$

b)
$$x \sin y - \frac{1}{2}x^2y^2 = C$$

$$d) \quad e^{xy}\cos x = C$$

b)
$$y^2 = \ln(x^2 + 1) + C$$

$$d) \quad y = Axe^{-1/x}$$

10.
$$xy^2 = 2y^5 + C$$

11. a)
$$x/y = \ln|x| + C$$

$$c) \quad 3x^2y + y^3 = A$$

b)
$$\sec \frac{y-x}{x} + \tan \frac{y-x}{x} = Ax$$

d) $3xy^2 + x^3 = A$

d)
$$3xy^2 + x^3 = A$$

e)
$$\sinh^{-1}(y/x) = \ln x$$
; that is, $y = \frac{1}{2}(x^2 - 1)$

12. ln $\sqrt{x^2 + y^2} = -\tan^{-1}(y/x)$. Logarithmic or equiangular spiral, $r = e^{-\theta}$.

13.
$$2x + C = \ln \left| \frac{y - x - 1}{y - x + 1} \right|$$
 or $y = x - 1 + \frac{2}{1 + De^{2x}}$

14. a)
$$y = \frac{1}{2 + Ae^{-t}}$$

b)
$$y = 25/(5t - 1 + 26e^{-5t});$$
 $y_{\text{max}} = \frac{25}{\ln 26}$ when $t = \frac{\ln 26}{5}$

15. a)
$$y^2 = Ce^{4x} - \frac{1}{2}x - \frac{1}{8}$$
 b) $x \ln y + x^3/3 = C$ c) $y = Ae^{Bx^2}$

b)
$$x \ln y + x^3/3 = C$$

c)
$$y = Ae^{Bx^2}$$

16. a)
$$y = Ae^{-2t} + B + 3t$$

b)
$$y = \frac{t}{c} - \frac{\ln(1+ct)}{c^2} + d$$

17. a) Let $z = \frac{dv}{dx}$. We obtain $\alpha z' + (2\alpha' + b\alpha)z = 0$, which is first order homogeneous linear.

b)
$$u = Ax^2 + Bx^3$$

18. a) i)
$$y = 0$$
, $y = K$

ii)
$$y = \frac{y_0 K}{y_0 + (K - y_0)e^{-kt}}$$

- iii) y is strictly increasing and approaches K.
- iv) y = K/2; work from the differential equation.
- v) The solution is the same as for ii); y is strictly decreasing (and concave upwards) with y = K as a horizontal asymptote.
- b) $y = K \exp \left\{-\ln(K/y_0)e^{-\alpha t}\right\}$; one way, let $z = \ln y$.
- 19. Let y litres of pollutant be present in the lake after t days.

$$\frac{dy}{dt} = 10^4 - \frac{y(t)}{10^9} \times (10^6 + 10^4), \quad \text{giving} \quad y = \frac{10^9}{101} \left(1 - e^{-1.01t/10^3} \right)$$

- a) $y \to 10^9/101$ litres or just under 1%
- b) $\frac{10^5 \ln 2}{101} \approx 686.3 \text{ days } \approx 1.88 \text{ years}$
- c) That there is perfect mixing, that the pollutant does not precipitate or dissolve, that the pollutant does not itself create more pollution, that
- 20. With an inflow of 3 litres per minute and an outflow of 1 litre per minute, the volume of liquid in the tank at time t is 50+2t litres. The inflow of salt is 3×2 grams per minute. In running off 1 litre per minute with a concentration of x/(50+2t) grams of salt per litre, the rate of removal of salt is $1\times x/(50+2t)$ grams per minute. So the net rate of increase of x is given by $\frac{dx}{dt}=6-x/(50+2t)$ or $\frac{dx}{dt}+\frac{1}{50+2t}$ x=6. This is a first order linear ODE. (You may find it helpful to consider the outflow over a small time interval $[t, t+\Delta t]$.)
- 21. a) $P(t) = 100 25\cos t + 25\sin t 55e^{-t}$
 - b) 100

22.
$$y = A \exp \left\{ k(t + \frac{a}{2\pi} \sin(2\pi t)) \right\}$$

- 23. a) r(t) = 2% + (1.5% 2%)/10t = 0.02 0.0005t, where t is measured in years.
 - b) The differential equation is $\frac{dy}{dt} = (0.02 0.0005t)y$ $y = 10^7 \exp(0.02t - 0.00025t^2)$. When t = 10, $y = 10^7 e^{0.175} \approx 10^7 \times 1.19$
- 24. a) $\frac{dv}{dt} = g kv$; with g = 9.8, k = 10. So $v = Ae^{-kt} + g/k$. With v = 0 at t = 0, $v = \frac{g}{k}(1 e^{-kt}) = \frac{49}{50}(1 e^{-10t})$
 - b) g/k = 49/50
 - c) $t \ge \frac{\ln 20}{k}$ (\approx 0.3 seconds)
 - d) A > 0 and v decreases (rapidly) towards g/k.
- 25. a) $y = Ax^{\lambda}$
 - b) Graph $\ln y$ against $\ln x$. From the graph, $\lambda \approx 1.54$ and $\ln A \approx -4.55$ (so that $A \approx 0.0106$).
- 26. a) \$610701.38
 - b) Treating the car payments as continuous at the rate of \$10400 a year, $\frac{dP}{dt} = 0.2P 10400$. Then $P = 52000 + 448000e^{0.2t}$, for $0 \le t \le 1/2$. At t = 1/2, P = 547116.57. The capital

remaining in the cooperative after 6 months is $47116.57 e^{-0.05} = 44818.67$. At the end of one year, the total is 547116.57 (capital plus new interest in Hitek) +44818.67 (in the co-op) = 591935.24 dollars.

- 28. $\frac{dy_1}{dt} = -0.25y_1$, $\frac{dy_2}{dt} = 0.25y_1 2y_2$ with $y_1(0) = K$, $y_2(0) = 0$. Thus $y_1 = Ke^{-0.25t}$ and hence $y_2 = \frac{K}{7}(e^{-0.25t} e^{-2t})$. The maximum value of y_2 occurs for $t = \frac{12}{7} \ln 2$. That is, after about 1.188 days.
- 29. 20 ln $2 \approx 13.8$ m/sec

30. a)
$$y = Ae^{-2x} + Be^{-x}$$

b)
$$y = e^{-x}(C \cos 3x + D \sin 3x)$$

c)
$$y = Ae^{-3x}$$

d)
$$y = (Ax + B)e^{-2x}$$

31. a)
$$\frac{1}{4}(5e^x - e^{5x})$$

b)
$$y = e^{-x}(\cos x + \sin x)$$

32. a)
$$y = Ae^{-3x} + Be^{-x} + \frac{1}{3}x - \frac{4}{9}$$

b)
$$y = (Ax + B)e^{3x} + 5e^{2x}$$

c)
$$y = e^{-x}(A \sin x + B \cos x) + 2 \sin 2x - \cos 2x$$
 d) $y = (A - x/2)e^{-x} + Be^{x}$

d)
$$y = (A - x/2)e^{-x} + Be$$

e)
$$y = A \cos 2x + B \sin 2x - \frac{1}{4}x \cos 2x$$

f)
$$y = Ae^{-3x} + 2e^{2x}$$

g)
$$y = \frac{1}{3}(\sin x + \sin 2x)$$

h)
$$y = e^x + e^{4x} - e^{2x}$$

33. a)
$$Ae^{-x} + Be^{5x/2}$$
; seek $y_P = x(ax+b)e^{5x/2}$

b)
$$Ae^{4x} + Be^{-6x}$$
; seek $y_P = e^{4x}(a \cos 6x + b \sin 6x)$

c)
$$(Ax + B)e^{-3x}$$
; seek $y_P = x^2 ae^{-3x}$

34.
$$y = \frac{1}{2}x^4e^{2x}$$
.

35. You should obtain
$$\frac{d^2y}{dt^2} - 5\frac{dy}{dt} + 6y = e^{5t}$$
. $y = Ax^3 + Bx^2 + \frac{1}{6}x^5$

- 37. $50^2 g/\pi$ grams; about 780 kilograms
- 38. a) $x(t) = \cos 2t$, so the block oscillates with fixed amplitude.
 - b) If c=2 then $x(t)=e^{-t}(\cos\sqrt{3}t+\frac{1}{\sqrt{3}}\sin\sqrt{3}t)$, so the system has damped oscillations. If c=5 then $x(t)=\frac{1}{3}(e^{-t}-e^{-4t})$, so the system does not oscillate.
 - c) If the characteristic equation has real roots then the solution has no oscillating terms. This happens whenever $c \geq 4$. So the smallest value of c is 4.
- a) $q(t) = A\cos 100t + B\sin 100t$ 39.
 - b) $x_P = a\cos\Omega t + b\sin\Omega t$ if $\Omega \neq 100$; $x_P = t(a\cos\Omega t + b\sin\Omega t)$ if $\Omega = 100$.
 - c) $50/\pi$ (which corresponds to when $\Omega = 100$).
- a) $y = Ae^{-t} + Be^{-2t} + 2\sin t 6\cos t$ 40.
 - b) $y = -6\cos t + 2\sin t$
- b) $y_p = -\frac{1}{4} t \cos t$ 41.
- b) No 42.
 - c) $\mu = n\pi/L$, where n = 1, 2, 3, ... The corresponding solutions are $y_n(x) = B_n \sin(n\pi x/L)$.
- b) $2\lambda = 1 + \frac{k^2\pi^2}{L^2}$, $k = 1, 2, 3, \dots$ with $y_k = B_k e^{-x} \sin(k\pi x/L)$
 - ©2018 School of Mathematics and Statistics, UNSW Sydney

44. a)
$$\frac{x^2}{a} + \frac{y^2}{b} = C$$
, a family of ellipses.

b)
$$\frac{d^2y}{dx^2} + aby = 0$$
, $y = A \cos \omega t + B \sin \omega t$, where $\omega^2 = ab$ and $x = (A\omega/b) \sin \omega t - (B\omega/b) \cos \omega t$.

c)
$$\omega = 1.6$$
, $A = 3.2$, $B = 2.4$
 $x = 1.6 \sin \omega t - 1.2 \cos \omega t$, $y = 3.2 \cos \omega t + 2.4 \sin \omega t$ or $x = -2\cos(\omega t + \phi) = 2\sin(\omega t + \phi - \pi/2)$ and $y = 4\sin(\omega t + \phi)$
where $\phi = \sin^{-1}\frac{4}{5}$, and $\frac{x^2}{4} + \frac{y^2}{16} = 1$. The peaks in the predator population lag behind the peaks in the prey population by a quarter of the period.

45. Care is required if the characteristic equation of Lu = 0 has a double root. Otherwise a basis for $\ker(L^2)$ is $\{u_1, xu_1, u_2, xu_2\}$.

The two dimensional kernel of L is a subspace of the four dimensional kernel of L^2 .

Chapter 4

1. a)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^9}{9!}$$

b)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}$$

c)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \frac{x^9}{9!}$$

2.
$$p_{2m+1}(x) = \sum_{k=0}^{m} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

3. a)
$$2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3$$

b)
$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \left(x - \frac{\pi}{4} \right) - \frac{1}{2\sqrt{2}} \left(x - \frac{\pi}{4} \right)^2 + \frac{1}{6\sqrt{2}} \left(x - \frac{\pi}{4} \right)^3 + \frac{1}{24\sqrt{2}} \left(x - \frac{\pi}{4} \right)^4$$

4. a)
$$3+3(x-1)$$

b)
$$3+3(x-1)+(x-1)^2$$

c)
$$7 + 5(x-2) + (x-2)^2$$

5. a)
$$p_1(x) = x$$
 and $R_2(x) = -\frac{x^2}{2(1+c)^2}$ for some c between 0 and x.

7. a)
$$p_n(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^k \frac{x^n}{n!}$$
 where $n = 2k$;

 $R_{n+1}(x) = \frac{(-1)^{k+1} \sin c}{(n+1)!} x^{n+1}$ for some c between 0 and x.

c)
$$|R_{n+1}(x)| < \frac{1}{10^{n+2}(n+1)!}$$

- d) n = 4
- e) The estimate $\sin x \leq 1$ (whenever $x \in \mathbb{R}$) is less crude in the case when $x \geq 1$.
- f) n = 14

g) Rearranging the inequality $|\text{error}| \leq \frac{a^{11}}{11!} < 10^{-6} \text{ gives } a < \sqrt[11]{11!10^{-6}}$. So a less than 1.398 will do.

d) 1

- 10. a) Horizontal point of inflexion at 1; local maximum at -2.
 - Horizontal point of inflexion at -1; local minima at 2 and 3.
- 12. a) 1/2b) 0 c) boundedly divergent
 - f) diverges to ∞ g) a
- b) $N = 2/\epsilon$ works 13. a) 1/2
- 14. a) e^4 b) 1/e
- e) $(1+\sqrt{5})/2$ 15.
- a) 1/2, 0 b) 1/2, -1/2 c) $\sqrt{2}, -\sqrt{2}$ d) $1/2 + \sin 2, -1/5 + \sin 5$ e) ∞, π f) $1 + \pi/2, 1 \pi/2$ 16.
- 17. b) 2
- 19. a) iii) 1 b) iii) 3/4
- 24. diverges
- 25. a) divergent b) divergent c) convergent
- 26. b) divergent a) convergent c) divergent
 - d) divergent e) divergent f) convergent
- 27. a) convergent b) convergent c) convergent d) divergent
- 28. conditionally convergent
 - divergent (by the kth term test)
 - absolutely convergent
 - diverges to ∞ ; $\frac{(-1)^k}{\sqrt{k} + (-1)^k} = \frac{(-1)^k \sqrt{k}}{k-1} \frac{1}{k-1}$
- 29. b) $s_4 = 9677/16380 \approx 0.59078$; $|error| \le 1/126$
 - c) n equal to 99 will do.
- 30. a) convergent b) divergent c) convergent
 - e) divergent d) convergent f) convergent
- 31. Only e) and f) are divergent.
- 32. Converges if $\lim_{k\to\infty} a_k > 1$ and diverges otherwise.

$$34. \quad \text{a)} \quad \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

34. a)
$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 b) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$ c) $\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$ d) $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$ e) $-\sum_{k=0}^{\infty} x^k$

d)
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$
 e)

35. a)
$$e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \frac{e^{c_n} x^{n+1}}{(n+1)!}$$
, for some c_n between 0 and x .

36. a)
$$R_{n+1}(x) = \frac{\sinh c_n}{(n+1)!} x^{n+1}$$
 if n is odd and $R_{n+1}(x) = \frac{\cosh c_n}{(n+1)!} x^{n+1}$ if n is even. In each case, c_n lies between 0 and x .

37. a)
$$R_{n+1}(x) = \frac{(-1)^n x^{n+1}}{(n+1)(1+c_n)^{n+1}}$$
 for some c_n between 0 and x .

39. a)
$$f'(x) = 2e^{-1/x^2}/x^3$$
 if $x \neq 0$; $f'(0) = 0$.

b)
$$f''(x) = 4e^{-1/x^2}/x^6 - 6e^{-1/x^2}/x^4$$
 if $x \neq 0$; $f''(0) = 0$.

f)
$$\frac{1}{2} \ln 2$$

41. Students studying MATH1231 only need to state the corresponding open interval in each case.

a)
$$(-6,6)$$

b)
$$[-1,1]$$

c)
$$(-2,2)$$

f)
$$(-3,3]$$

$$g$$
) $(-\infty, \infty)$

43. a)
$$\sum_{k=0}^{\infty} \frac{(k+1)x^k}{k!}$$
 b) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{4k+2}}{(2k+1)!}$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^k x^{4k+2}}{(2k+1)!}$$

c) Differentiate 34(e):
$$\sum_{k=1}^{\infty} kx^{k-1}$$

a)
$$\sum_{k=0}^{\infty} (-1)^k x^k$$

b)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k}$$

44. All series are valid on
$$(-1,1)$$
.

a) $\sum_{k=0}^{\infty} (-1)^k x^k$
b) $\sum_{k=0}^{\infty} (-1)^k x^{2k}$
c) $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$

45. a)
$$f(x) = x^5 - \frac{x^{11}}{3!} + \frac{x^{17}}{5!} - \frac{x^{23}}{7!} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{6k-1}}{(2k-1)!}$$

c) A horizontal point of inflexion.

46.
$$R = 1$$
, $\ln 2 \approx \frac{56}{81}$.

a) A local maximum

b)
$$\operatorname{Si}(x) = x - \frac{x^3}{3!3} + \frac{x^5}{5!5} - \frac{x^7}{7!7} + \cdots$$

c)
$$\operatorname{Si}(\pi) \approx \pi - \frac{\pi^3}{3!3} + \frac{\pi^5}{5!5} - \frac{\pi^7}{7!7} \approx 1.84$$

48. a)
$$(-1,1)$$

b)
$$f(x) = \frac{x}{(1-x)^2}$$

e) The Maclaurin series is $0 + 0x + 0x^2 + 0x^3 + \cdots$, and hence converges everywhere. It only converges to f at 0.

49. a)
$$\sum_{k=1}^{\infty} \frac{x^k}{k!}$$

a)
$$\sum_{k=1}^{\infty} \frac{x^k}{k!}$$
 b) $y' = \sum_{k=1}^{\infty} k a_k x^{k-1}, \ y'' = \sum_{k=2}^{\infty} k (k-1) a_k x^{k-2}$ c) $a_k = \frac{1}{k^2 k!}$ whenever $k \ge 1$ d) $y = \sum_{k=1}^{\infty} \frac{x^k}{k^2 k!}$ whenever $x \in \mathbb{R}$.

c)
$$a_k = \frac{1}{k^2 k!}$$
 whenever $k \ge 1$

d)
$$y = \sum_{k=1}^{\infty} \frac{x^k}{k^2 k!}$$
 whenever $x \in \mathbb{R}$.

Chapter 5

- 1. $8 \sinh(1/2) \approx 4.17$ metres
- 2. $27\frac{2}{9} \,{}^{\circ}C$
- 3. a) $(13^{3/2} 8)/27$ b) 8 c) $\frac{8}{27}(10\sqrt{10} 1)$

- 4. 6a
- 5. $\sqrt{2}(e^{2\pi}-1)$
- 6. 8
- 7. a) 9 seconds
 - b) $10\sqrt{41} \approx 64.03$ metres per second
 - c) 90 metres
 - d) $80\sqrt{2} 80\ln(\sqrt{2} 1) + 25\sqrt{41} + 160\ln 2 80\ln(\sqrt{41} 5) \approx 427.53$ metres
- 8. a) $v(t) = \frac{\pi^2}{2} |\sin(\pi t)|$
 - b) (i) $t = \frac{1}{2} + k$, where k is a positive integer. (ii) t = n, where n is a positive integer.
 - c) A semicircle of centre (0,0) and radius 1 in the upper half-plane.
 - d) π
 - e) 3π
- 10. a) $\frac{\pi}{27}(145^{3/2}-1)$
- b) $64\pi/3$
- 13. $32\pi/5$