Códigos y Criptografía Grado en Ingeniería Informática

Examen escrito 1 (10% nota final) 2021

Fecha: 26 de octubre de 2021

Hora: 12:05–12:55 **Lugar:** Aula 101

Ayuda permitida: cualquier tipo de material impreso: notas, apuntes, libros, ejercicios resueltos, ...

No se permite ninguna ayuda de forma electrónica, salvo una sencilla calculadora y un ordenador portátil o tablet con un lector de ficheros pdf abierto donde se puede consultar un libro electrónico o las pizarras de clase. En particular no debe tenerse abierto un explorador, SageMath o cualquier programa de email/mensajería. El wifi y datos deben estar desactivados.

Preferentemente, se usará una calculadora de bolsillo. En el caso de no tener una calculadora de bolsillo, se podrá usar la calculadora de Windows/Linux.

Cualquier otro tipo de ayuda electrónica no se puede utilizar. Esto incluye calculadoras científicas avanzadas, teléfono móvil, tablets/pdas, smartwatchs, reproductores de música, . . .

Nota: la resolución de los ejercicios debe **justificarse** de forma **razonada**.

Nota: escribe tu nombre y apellidos y DNI/NIE en todas las hojas que entregues.

Nota: El porcentaje al principio de cada ejercicio indica su valor en el examen. El último ejercicio es un ejercicio "bonus" que permite obtener un 25% adicional.

Ejercicios: pueden encontrarse en las próximas 2 páginas.

Ejercicio 1. (45%) Sea $C \subset \mathbb{F}_3^4$ el código lineal dado por la matriz de generadora

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$

- (a) ¿Cuál es la longitud y la dimensión de C?
- (b) Codifica el mensaje $(1,1) \in \mathbb{F}_3^2$ usando el código C.
- (c) Calcula una matriz de control del código C.
- (d) Razona si las siguientes palabras de \mathbb{F}_3^4 pertenecen al código o no
 - (2, 2, 1, 0).
 - (2,2,2,0).
- (e) ¿Cuál es la distancia mínima de *C*? ¿Es *C* un código MDS (i.e. sus parámetros verfican con igualdad la cota de Singleton)?

Ejercicio 2. (35%) Sea C el código lineal binario dado por la matriz de control

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

y que tiene la siguiente tabla de síndromes y líderes:

Síndrome	Líder
(0,0,0)	(0,0,0,0,0,0)
(1,1,1)	(1,0,0,0,0,0)
(1,0,1)	(0,1,0,0,0,0)
(1,1,0)	(0,0,1,0,0,0)
(1,0,0)	(0,0,0,1,0,0)
(0,1,0)	(0,0,0,0,1,0)
(0,0,1)	(0,0,0,0,0,1)
(0,1,1)	-

- (a) A partir de la tabla de síndromes y líderes, deduce la capacidad correctora del código *C*.
- (b) Usando la tabla de síndromes y líderes, decodifica las siguientes palabras recibidas de \mathbb{F}_2^6 y menciona cuantos errores se han cometido.
 - (1,0,1,0,1,0)
 - (1,0,1,0,1,1)
 - (1,0,1,0,0,1)

Ejercicio 3. (20%) Sea *C* un código lineal binario de longitud 10 y dimensión 3.

- (a) Proporciona una cota superior para la distancia mínima de *C* de acuerdo a la cota de Plotkin.
- (b) ¿Puede existir un código binario de longitud 10 y dimensión 3 que sea MDS? Es decir, que cuyos parámetros verifiquen con igualdad la cota de Singleton.

Ejercicio 4. (extra 25%)

- (a) Encuentra un elemento primitivo de \mathbb{F}_{11} .
- (b) Considera \mathbb{F}_8 dado por $\mathbb{F}_2[X]/(X^3+X+1)$. Y sea $\alpha=X$ un elemento primitivo de \mathbb{F}_8 .
 - Calcula $\alpha^5 + \alpha^6$. Expresa la respuesta por un polinomio (o vector) y por una potencia de α .
 - Calcula $(X + X^2)(1 + X^2)$. Expresa la respuesta por un polinomio (o vector) y por una potencia de α .

Ejercicio 1. (45%) Sea $C \subset \mathbb{F}_3^4$ el código lineal dado por la matriz de generadora

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$

- (a) ¿Cuál es la longitud y la dimensión de C?
- (b) Codifica el mensaje $(1,1) \in \mathbb{F}_3^2$ usando el código C.
- (c) Calcula una matriz de control del código C.
- (d) Razona si las siguientes palabras de \mathbb{F}_3^4 pertenecen al código o no
 - (2,2,1,0).
 - (2,2,2,0).
- (e) ¿Cuál es la distancia mínima de C? ¿Es C un código MDS (i.e. sus parámetros verfican con igualdad la cota de Singleton)?

$$\begin{array}{c} (10) & (11) & (12) & (10) & (1$$

A :- P
$$P = \begin{cases} 1 & 1 \\ 0 & 2 \end{cases} = \begin{cases} 2 & 0 \\ 0 & 2 \end{cases} = \begin{cases} 2 & 0 \\ 0 & 2 \end{cases} = \begin{cases} 2 & 0 \\ 0 & 2 \end{cases} = \begin{cases} 2 & 0 \\ 2 & 1 \end{cases} = \begin{cases} 2 & 0 \end{cases} = \begin{cases} 2 & 0 \\ 2 & 1 \end{cases} = \begin{cases} 2 & 0 \end{cases} = \begin{cases} 2 & 0 \\ 2 & 1 \end{cases} = \begin{cases} 2 & 0 \end{cases} = \begin{cases}$$

d) Mirar sindromes, 5i es 0, pertinece 3i = (2, 2, 1, 0) 5(i) = 1, 7 5(i) = (2, 0) = (2, 0) = (2, 0) = 1 No pertanece 3i = (2, 2, 2, 0) 5(i) = (2, 2, 2, 0) 5(i) = (2, 2, 2, 0)

Ejercicio 2. (35%) Sea C el código lineal binario dado por la matriz de control

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

y que tiene la siguiente tabla de síndromes y líderes:

Síndrome	Líder
(0,0,0)	(0,0,0,0,0,0)
(1,1,1)	(1,0,0,0,0,0)
(1,0,1)	(0,1,0,0,0,0)
(1,1,0)	(0,0,1,0,0,0)
(1,0,0)	(0,0,0,1,0,0)
(0,1,0)	(0,0,0,0,1,0)
(0,0,1)	(0,0,0,0,0,1)
(0,1,1)	-

- (a) A partir de la tabla de síndromes y líderes, deduce la capacidad correctora del código *C*.
- (b) Usando la tabla de síndromes y líderes, decodifica las siguientes palabras recibidas de \mathbb{F}_2^6 y menciona cuantos errores se han cometido.
 - (1,0,1,0,1,0)
 - (1,0,1,0,1,1)
 - (1,0,1,0,0,1)

a la pricion del evid y cada life, a li sumo presenta un unico evins por la familio, se de duce que es l.

Ejercicio 3. (20%) Sea *C* un código lineal binario de longitud 10 y dimensión 3.

- (a) Proporciona una cota superior para la distancia mínima de *C* de acuerdo a la cota de Plotkin.
- (b) ¿Puede existir un código binario de longitud 10 y dimensión 3 que sea MDS? Es decir, que cuyos parámetros verifiquen con igualdad la cota de Singleton.

a) f = 10.2.64 = 40 = 517

b) 10+173+5,7 (comple la regla, pers no la justidad por la que no es mods

Ejercicio 4. (extra 25%)

(a) Encuentra un elemento primitivo de \mathbb{F}_{11} .

(b) Considera \mathbb{F}_8 dado por $\mathbb{F}_2[X]/(X^3+X+1)$. Y sea $\alpha=X$ un elemento primitivo de F₈.

• Calcula $\alpha^5 + \alpha^6$. Expresa la respuesta por un polinomio (o vector) y por una potencia de α .

• Calcula $(X + X^2)(1 + X^2)$. Expresa la respuesta por un polinomio (o vector)

y por una potencia de α .

y por una potencia de
$$\alpha$$
.

 $\alpha = 1$
 α

X = [x]

x3= x+1

 $\times^{6} : \times^{3} \cdot \times^{3} = (x+1)(x+1) = x^{2} + x + x + 1 = x^{2} + 2x + 1 = x^{2} + 1 = x^{2} + 1$

 $X^{5} = X^{3} \cdot X^{2} = X^{2} \cdot (x+1) = (x^{3} + \chi^{2}) =$ $= x^{2} + \chi + 1$

X6 +X5 = X2+X+ X2+X+X = X// [0,1,0] $b_{2} = (x + x^{2})(1 + x^{2}).$ $= (x + x^{2})(1 + x^{2}) = x + x^{3} + x^{2} + x^{4} = x + x^{3} + x^{4} + x^{4} + x^{4} = x + x^{4} = x + x^{4} + x^{4} + x^{4} = x + x^{$

X= 7 2: x2 23 = x3 : x+1