Direct and Inverse Spectral Problems for 2-dimensional Hamiltonian Systems

Harald Woracek

Vienna University of Technology

Many results are classical, dating back to the 1950's or 60's (for particular cases, even much earlier). Others are more recent, and taken from work of various authors.

Many results are classical, dating back to the 1950's or 60's (for particular cases, even much earlier). Others are more recent, and taken from work of various authors.

We will also see a few results shown by myself (with different coauthors).

Many results are classical, dating back to the 1950's or 60's (for particular cases, even much earlier). Others are more recent, and taken from work of various authors.

We will also see a few results shown by myself (with different coauthors).

These slides are available from my website http://asc.tuwien.ac.at/index.php?id=woracek

Not all what is written on these slides is *strictly* correct.

We will occasionally neglect some technical difficulties and/or exeptional cases.

Each such instance will be clearly marked.

We consider 2×2 -Hamiltonian systems without potential:

$$y'(t) = zJH(t)y(t), \quad t \in (s_-, s_+).$$

Here the $Hamiltonian\ H$ shall be subject to

- $H(t): (s_-, s_+) \to \mathbb{R}^{2 \times 2}$,
- $H(t) \ge 0$, $t \in (s_-, s_+)$,
- $H \in L^1_{loc}(s_-, s_+)$,
- ullet H does not vanish identically on any set of positive measure,
- $z \in \mathbb{C}$ a parameter,
- $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Direct Problems: Given a Hamiltonian H, find information about spectral data of selfadjoint realizations.

Direct Problems: Given a Hamiltonian H, find information about spectral data of selfadjoint realizations.

Inverse Problems:

Direct Problems: Given a Hamiltonian H, find information about spectral data of selfadjoint realizations.

Inverse Problems:

• Existence Theorems: Given some spectral data, does there exist a Hamiltonian H which leads to this data.

Direct Problems: Given a Hamiltonian H, find information about spectral data of selfadjoint realizations.

Inverse Problems:

- Existence Theorems: Given some spectral data, does there exist a Hamiltonian H which leads to this data.
- Uniqueness Theorems: Which spectral data obtained from some Hamiltonian determine this Hamiltonian uniquely.

Outline

Operator Model

Definition of $L^2(H)$ and $T_{\max}(H)$ Three Fundamental Cases

Examples

The Schrödinger Equation
The String Equation
The Hamburger Moment Problem

Case I: $Ic \leftrightarrow Ic$

Case II: $lc \leftrightarrow lp$ or $lp \leftrightarrow lc$

Case III: $lp \leftrightarrow lp$

Let H be a Hamiltonian on (s_-, s_+) , let $(a, b) \subseteq (s_-, s_+)$ and $\phi \in \mathbb{R}$. Then (a, b) is H-indivisible of type ϕ , if

$$H(t) = h(t) \cdot {\cos \phi \choose \sin \phi} (\cos \phi, \sin \phi), \quad t \in (a, b),$$

with some scalar function $h \in L^1_{loc}(a,b)$.

Let H be a Hamiltonian on (s_-, s_+) , let $(a, b) \subseteq (s_-, s_+)$ and $\phi \in \mathbb{R}$. Then (a, b) is H-indivisible of type ϕ , if

$$H(t) = h(t) \cdot {\cos \phi \choose \sin \phi} (\cos \phi, \sin \phi), \quad t \in (a, b),$$

with some scalar function $h \in L^1_{loc}(a,b)$.

Definition (The model space $L^2(H)$)

The model space $L^2(H)$ is the space of all $f:(s_-,s_+)\to\mathbb{C}^2$ with

•
$$||f||_H^2 := \int_{s_-}^{s_+} f(t)^* H(t) f(t) dt < \infty.$$

• If $(a,b)\subseteq (s_-,s_+)$ is indivisible of type ϕ , then $\big(\cos\phi,\sin\phi\big)f(t)=\text{ constant on }(a,b).$

In the definition of $L^2({\cal H})$, we tacitly understand that two functions f,g with

$$H(t)f(t)=H(t)g(t),\quad t\in (s_-,s_+) \text{ a.e.},$$

are identified.

In the definition of $L^2({\cal H})$, we tacitly understand that two functions f,g with

$$H(t)f(t) = H(t)g(t), \quad t \in (s_{-}, s_{+}) \text{ a.e.},$$

are identified.

If endowed with the scalar product

$$(f,g)_H = \int_{s_-}^{s_+} g(t)^* H(t) f(t) dt, \quad f,g \in L^2(H),$$

the space $L^2(H)$ becomes a Hilbert space.

Here we suppress some technical terms.

Definition (The maximal operator $T_{\text{max}}(H)$)

The (graph of the) maximal operator $T_{\text{max}}(H)$ is

$$T_{\max}(H) = \Big\{ (f;g) \in L^2(H) \times L^2(H) :$$

$$f \text{ is locally absolutely continuous and } f' = JHg \Big\}$$

Here we suppress some technical terms.

Definition (The maximal operator $T_{\text{max}}(H)$)

The (graph of the) maximal operator $T_{\text{max}}(H)$ is

$$T_{\max}(H)=\left\{(f;g)\in L^2(H) imes L^2(H):
ight.$$
 f is locally absolutely continuous and $f'=JHg
ight\}$

The operator $T_{\max}(H)$ is closed.

Definition (The minimal operator $T_{\min}(H)$)

The minimal operator $T_{\min}(H)$ is $T_{\min}(H) = T_{\max}(H)^*$.

Definition (The minimal operator $T_{\min}(H)$)

The minimal operator $T_{\min}(H)$ is $T_{\min}(H) = T_{\max}(H)^*$.

The operator $T_{\min}(H)$ is closed and symmetric. It is either selfadjoint, or completely nonselfadjoint.

Limit Circle vs. Limit Point Case

The spectral theory of $T_{\rm max}(H)$ depends on the growth of H towards the endpoints s_- and s_+ .

Limit Circle vs. Limit Point Case

The spectral theory of $T_{\rm max}(H)$ depends on the growth of H towards the endpoints s_- and s_+ .

• H is in limit circle case at s_- , if $(x_0 \in (s_-, s_+))$

$$\int_{s_{-}}^{x_{0}} \operatorname{tr} H(t) dt < \infty \qquad \Big(\Leftrightarrow H \in L_{\operatorname{loc}}^{1}([s_{-}, s_{+})) \Big).$$

• H is in limit point case at s_- , if $(x_0 \in (s_-, s_+))$

$$\int_{s_{-}}^{x_{0}} \operatorname{tr} H(t) \, dt = \infty.$$

Limit Circle vs. Limit Point Case

The spectral theory of $T_{\rm max}(H)$ depends on the growth of H towards the endpoints s_- and s_+ .

• H is in limit circle case at s_- , if $(x_0 \in (s_-, s_+))$

$$\int_{s_{-}}^{x_{0}} \operatorname{tr} H(t) dt < \infty \qquad \Big(\Leftrightarrow H \in L^{1}_{\operatorname{loc}}([s_{-}, s_{+})) \Big).$$

• H is in limit point case at s_- , if $(x_0 \in (s_-, s_+))$

$$\int_{s_{-}}^{x_{0}} \operatorname{tr} H(t) \, dt = \infty.$$

Similar: limit circle case at s_+ and limit point case at s_+ .

We know the operator $T_{\min}(H)$ is closed and symmetric.

We know the operator $T_{\min}(H)$ is closed and symmetric.

Its deficiency indices are always finite and equal.

We know the operator $T_{\min}(H)$ is closed and symmetric.

Its deficiency indices are always finite and equal.

- Case I, $lc \leftrightarrow lc$: (2,2).
- Case II, $lc \leftrightarrow lp$ or $lp \leftrightarrow lc$: (1,1).
- Case III, $lp \leftrightarrow lp$: (0,0).

We know the operator $T_{\min}(H)$ is closed and symmetric.

Its deficiency indices are always finite and equal.

- Case I, $lc \leftrightarrow lc$: (2,2).
- Case II, $lc \leftrightarrow lp$ or $lp \leftrightarrow lc$: (1,1).
- Case III, $lp \leftrightarrow lp$: (0,0).

In Case III, $T_{\min}(H) = T_{\max}(H)$. Hence, $T_{\min}(H)$ is selfadjoint and is the only selfadjoint realization.

In the Cases I and II, there are many different selfadjoint realizations.

If s_- is in limit circle case, each $f = (f_1, f_2)^T \in \text{dom } T_{\text{max}}(H)$ has a continuous extension to s_- . Similar for s_+ .

If s_- is in limit circle case, each $f = (f_1, f_2)^T \in \text{dom } T_{\text{max}}(H)$ has a continuous extension to s_- . Similar for s_+ .

Selfadjoint realizations can be described with boundary conditions.

If s_- is in limit circle case, each $f = (f_1, f_2)^T \in \text{dom } T_{\text{max}}(H)$ has a continuous extension to s_- . Similar for s_+ .

Selfadjoint realizations can be described with boundary conditions.

Assume Case Ic ↔ Ip. Then (for example)

$$A_D := \{ (f;g) \in T_{\max}(H) : f_1(s_-) = 0 \}$$

is a selfadjoint restriction of $T_{\max}(H)$.

If s_- is in limit circle case, each $f = (f_1, f_2)^T \in \text{dom } T_{\text{max}}(H)$ has a continuous extension to s_- . Similar for s_+ .

Selfadjoint realizations can be described with boundary conditions.

Assume Case Ic ↔ Ip. Then (for example)

$$A_D := \{ (f;g) \in T_{\max}(H) : f_1(s_-) = 0 \}$$

is a selfadjoint restriction of $T_{\max}(H)$.

• Assume Case Ic \leftrightarrow Ic. Then (for example) for each $\tau \in \mathbb{R} \cup \{\infty\}$

$$A_{D,\tau} = \{ (f;g) \in T_{\max}(H) : f_1(s_-) = 0, \tau f_1(s_+) + f_2(s_+) = 0 \}$$

is a selfadjoint restrictions of $T_{\max}(H)$.

Reparameterizations

Two Hamiltonians H_1 on H_2 defined on (s_-^1, s_+^1) and (s_-^2, s_+^2) , respectively, are reparameterizations of each other, if there exists

$$\phi: (s_-^2, s_+^2) \to (s_-^1, s_+^1)$$

such that

- ullet ϕ is bijective and monotonically increasing,
- ϕ and ϕ^{-1} are both absolutely continuous,
- $H_2(t) = H_1(\phi(t)) \cdot \phi'(t)$ for $t \in (s_-^2, s_+^2)$.

Reparameterizations

Two Hamiltonians H_1 on H_2 defined on (s_-^1, s_+^1) and (s_-^2, s_+^2) , respectively, are *reparameterizations of each other*, if there exists

$$\phi: (s_-^2, s_+^2) \to (s_-^1, s_+^1)$$

such that

- ullet ϕ is bijective and monotonically increasing,
- ϕ and ϕ^{-1} are both absolutely continuous,
- $H_2(t) = H_1(\phi(t)) \cdot \phi'(t)$ for $t \in (s_-^2, s_+^2)$.

If H_1 and H_2 are reparameterizations of each other, their operator models are unitarily equivalent.

Examples: 1. The Schrödinger Equation

Consider the equation $(0 < T < \infty)$

$$-y''(t) + V(t)y(t) = zy(t), \quad t \in [0, T],$$

where the *potential* V(t) belongs to $L^1([0,T])$.

Examples: 1. The Schrödinger Equation

Consider the equation $(0 < T < \infty)$

$$-y''(t) + V(t)y(t) = zy(t), \quad t \in [0, T],$$

where the potential V(t) belongs to $L^1([0,T])$.

Let y_1 and y_2 be the solutions of -y''(t)+V(t)y(t)=0 with

$$y_1(0) = 0, y_1'(0) = 1, \quad y_2(0) = 1, y_2'(0) = 0,$$

and define

$$H(t) := \begin{pmatrix} y_1(t)^2 & y_1(t)y_2(t) \\ y_1(t)y_2(t) & y_2(t)^2 \end{pmatrix}, \quad t \in [0, T].$$

Examples: 1. The Schrödinger Equation

Consider the equation $(0 < T < \infty)$

$$-y''(t) + V(t)y(t) = zy(t), \quad t \in [0, T],$$

where the potential V(t) belongs to $L^1([0,T])$.

Let y_1 and y_2 be the solutions of -y''(t)+V(t)y(t)=0 with

$$y_1(0) = 0, y_1'(0) = 1, \quad y_2(0) = 1, y_2'(0) = 0,$$

and define

$$H(t) := \begin{pmatrix} y_1(t)^2 & y_1(t)y_2(t) \\ y_1(t)y_2(t) & y_2(t)^2 \end{pmatrix}, \quad t \in [0, T].$$

Then H is a Hamiltonian which is $Ic \leftrightarrow Ic$.

Examples: 1. The Schrödinger Equation

A function y(t) solves the Schrödinger equation with potential V(t) and parameter z, if and only if the function

$$u(t) = \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} \cdot \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$$

solves the Hamiltonian system with Hamiltonian H(t) and parameter z.

Examples: 1. The Schrödinger Equation

A function y(t) solves the Schrödinger equation with potential V(t) and parameter z, if and only if the function

$$u(t) = \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} \cdot \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$$

solves the Hamiltonian system with Hamiltonian H(t) and parameter z.

The operator models of the Schrödinger equation and of the Hamiltonian system are unitarily equivalent.

Here we ignore some technicalities.

Let L>0, and μ be a positive Borel measure on $\mathbb R$ with $\operatorname{supp} \mu \subseteq [0, L]$ and $\mu(\{L\}) = 0$. Consider the integral equation boundary value problem with complex parameter z:

$$y'(t) + \int_{[0,t]} zy(u)d\mu(u) = 0, \quad y'(0-) = 0.$$

Here we ignore some technicalities.

Let L>0, and μ be a positive Borel measure on $\mathbb R$ with $\operatorname{supp} \mu \subseteq [0, L]$ and $\mu(\{L\}) = 0$. Consider the integral equation boundary value problem with complex parameter z:

$$y'(t) + \int_{[0,t]} zy(u)d\mu(u) = 0, \quad y'(0-) = 0.$$

Set $m(t) := \mu((-\infty, t))$, and

$$\hat{m}(x) = \begin{cases} \inf\left\{t \ge 0 : x \le m(t)\right\}, & x \in [0, m(L)] \\ L, & x > m(L) \end{cases}$$

Here we ignore some technicalities.

Define

$$H(x) := \begin{pmatrix} \hat{m}(x)^2 & \hat{m}(x) \\ \hat{m}(x) & 1 \end{pmatrix}, \quad x \in (0, \infty).$$

Here we ignore some technicalities.

Define

$$H(x) := \begin{pmatrix} \hat{m}(x)^2 & \hat{m}(x) \\ \hat{m}(x) & 1 \end{pmatrix}, \quad x \in (0, \infty).$$

Then H is a Hamiltonian which is $lc \leftrightarrow lp$.

Here we ignore some technicalities.

Define

$$H(x) := \begin{pmatrix} \hat{m}(x)^2 & \hat{m}(x) \\ \hat{m}(x) & 1 \end{pmatrix}, \quad x \in (0, \infty).$$

Then H is a Hamiltonian which is $lc \leftrightarrow lp$.

The operator models of the string equation and of the Hamiltonian system with this Hamiltonian are unitarily equivalent.

Case III: Ip ↔ Ip

Examples: 3. The Hamburger Moment Problem

Let $(s_n)_{n\geq 0}$ be a sequence of real numbers. Is this sequence the sequence of power moments of some positive Borel measure on the real line? That is, does there exist a positive Borel measure μ on \mathbb{R} with

$$s_n = \int_{\mathbb{R}} t^n \, d\mu(t), \quad n \geq 0 \quad \textbf{?}$$

Let $(s_n)_{n\geq 0}$ be a sequence of real numbers. Is this sequence the sequence of power moments of some positive Borel measure on the real line? That is, does there exist a positive Borel measure μ on $\mathbb R$ with

$$s_n = \int_{\mathbb{R}} t^n \, d\mu(t), \quad n \ge 0 \quad ?$$

The answer is yes, if and only if

$$\det [(s_{i+j})_{i,j=0}^N] \ge 0, \quad N \ge 0.$$

Assume that $D_N = \det[(s_{i+j})_{i,j=0}^N] \geq 0$, $N \geq 0$.

Assume that
$$D_N = \det[(s_{i+j})_{i,j=0}^N] \ge 0$$
, $N \ge 0$.

Either

• the solution of the Hamburger moment problem, i.e., the measure having $(s_n)_{n\geq 0}$ as its moment sequence, is unique,

or

• there exist infinitely many such measures.

Assume that
$$D_N = \det[(s_{i+j})_{i,j=0}^N] \ge 0$$
, $N \ge 0$.

Either

• the solution of the Hamburger moment problem, i.e., the measure having $(s_n)_{n\geq 0}$ as its moment sequence, is unique,

or

there exist infinitely many such measures.

If $D_N = 0$ for some $N \ge 0$, then the solution is unique and is a discrete measure with finitely many pointmasses.

Assume that $D_N = \det[(s_{i+j})_{i,j=0}^N] > 0$, $N \ge 0$.

Assume that $D_N = \det[(s_{i+j})_{i,j=0}^N] > 0$, $N \ge 0$. Set

$$E_{N} = \det \left[(s_{i+j+1})_{i,j=0}^{N} \right], \quad C_{N} = \det \left[(s_{i+j-1})_{i,j=0}^{N} \right] (s_{-1} = 0),$$

$$l_{0} = 1, \quad l_{N} = (E_{N}^{2} + C_{N}^{2}) \left(D_{N-1} D_{N} \right)^{-1}, \quad N \ge 1,$$

$$t_{0} = 0, \quad t_{N} = \sum_{n=0}^{N-1} l_{n}, \quad n \ge 1, \qquad T = \lim_{N \to \infty} t_{n},$$

$$\theta_{0} = \frac{\pi}{2}, \quad \theta_{N} = \begin{cases} \arctan \left(-\frac{E_{N}}{C_{N}} \right), \quad C_{N} \ne 0 \\ \frac{\pi}{2}, \quad C_{N} = 0 \end{cases}$$

Define

$$H(t) = \begin{pmatrix} \cos \theta_N \\ \sin \theta_N \end{pmatrix} (\cos \theta_N, \sin \theta_N), \ t \in [t_N, t_{N-1}), \quad N \ge 0.$$

Define

$$H(t) = \begin{pmatrix} \cos \theta_N \\ \sin \theta_N \end{pmatrix} (\cos \theta_N, \sin \theta_N), \ t \in [t_N, t_{N-1}), \quad N \ge 0.$$

Then H is a Hamiltonian which is

000

- Ic ↔ Ip, if the solution is unique,
- Ic ↔ Ic, if the solution is not unique.

Case III: Ip ↔ Ip

Define

$$H(t) = \begin{pmatrix} \cos \theta_N \\ \sin \theta_N \end{pmatrix} (\cos \theta_N, \sin \theta_N), \ t \in [t_N, t_{N-1}), \quad N \ge 0.$$

Then H is a Hamiltonian which is

- Ic ↔ Ip, if the solution is unique,
- Ic ↔ Ic, if the solution is not unique.

The set of solutions of the Hamburger moment problem coincides with the set of all $spectral\ measures$ of the Hamiltonian H.

Case Ic \leftrightarrow Ic. Spectral Measures

Denote by
$$W(t,z)=(w_{ij}(t,z))_{i,j=1}^2$$
 the solution of

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [s_{-}, s_{+}], \qquad W(s_{-}, z) = I.$$

Case Ic \leftrightarrow Ic. Spectral Measures

Denote by $W(t,z)=(w_{ij}(t,z))_{i,j=1}^2$ the solution of

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [s_-, s_+], \qquad W(s_-, z) = I.$$

Then, for each $\tau \in \mathbb{R} \cup \{\infty\}$, the function

$$q_{H,\tau}(z) = \frac{w_{11}(s_+, z)\tau + w_{12}(s_+, z)}{w_{21}(s_+, z)\tau + w_{22}(s_+, z)}$$

belongs to the Nevanlinna class, that is,

- q_H is analytic in $\mathbb{C}\setminus\mathbb{R}$ and $q_H(\overline{z})=\overline{q_H(z)}$,
- $\operatorname{Im} q_H(z) \geq 0$ for $\operatorname{Im} z > 0$.

Case $lc \leftrightarrow lc$. Spectral Measures

We can represent $q_{H,\tau}$ as (Herglotz integral representation)

$$q_{H,\tau}(z) = a_{H,\tau} + b_{H,\tau}z + \int_{\mathbb{R}} \left(\frac{1}{t-z} - \frac{t}{1+t^2}\right) d\mu_{H,\tau}(t), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

with

- $a_{H,\tau} \in \mathbb{R}, b_{H,\tau} \ge 0$,
- μ_H positive Borel measure with $\int_{\mathbb{R}} \frac{d\mu_{H,\tau}(t)}{1+t^2} < \infty$.

Case Ic \leftrightarrow Ic. Spectral Measures

We can represent $q_{H,\tau}$ as (Herglotz integral representation)

$$q_{H,\tau}(z) = a_{H,\tau} + b_{H,\tau}z + \int_{\mathbb{R}} \left(\frac{1}{t-z} - \frac{t}{1+t^2}\right) d\mu_{H,\tau}(t), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

with

- $a_{H,\tau} \in \mathbb{R}, b_{H,\tau} \ge 0$,
- μ_H positive Borel measure with $\int_{\mathbb{R}} \frac{d\mu_{H,\tau}(t)}{1+t^2} < \infty$.

The measure $\mu_{H,\tau}$ can be computed from $q_{H,\tau}$ by means of the Stieltjes Inversion Formula, and the constant $b_{H,\tau}$ from the behaviour of $q_{H,\tau}$ towards $i\infty$.

Case Ic \leftrightarrow Ic. Spectral Measures

We can represent $q_{H,\tau}$ as (Herglotz integral representation)

$$q_{H,\tau}(z) = a_{H,\tau} + b_{H,\tau}z + \int_{\mathbb{R}} \left(\frac{1}{t-z} - \frac{t}{1+t^2}\right) d\mu_{H,\tau}(t), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

with

- $a_{H,\tau} \in \mathbb{R}$, $b_{H,\tau} \geq 0$,
- μ_H positive Borel measure with $\int_{\mathbb{R}} \frac{d\mu_{H,\tau}(t)}{1+t^2} < \infty$.

The measure $\mu_{H,\tau}$ can be computed from $q_{H,\tau}$ by means of the Stieltjes Inversion Formula, and the constant $b_{H,\tau}$ from the behaviour of $q_{H,\tau}$ towards $i\infty$.

Each measure $\mu_{H,\tau}$ obtained in this way is called a *spectral* measure of H.

Case $lc \leftrightarrow lc$. Fourier Transforms

ightharpoonup Here we ignore the exceptional case $b_{H,\tau}>0$ and technicalities.

Theorem (Integral transforms, $lc \leftrightarrow lp$)

Let $\tau \in \mathbb{R} \cup \{\infty\}$. A unitary map $U_{\tau}: L^2(H) \to L^2(\mu_{H,\tau})$ is defined by

$$(U_{\tau}f)(x) = \int_{s_{-}}^{s_{+}} (w_{21}(t,x), w_{22}(t,x)) H(t)f(t)dt.$$

Its inverse $U_{\tau}^{-1}: L^2(\mu_{H,\tau}) \to L^2(H)$ is given as

$$(U_{\tau}^{-1}F)(t) = \int_{-\infty}^{\infty} {w_{21}(t,x) \choose w_{22}(t,x)} F(x) d\mu_{H,\tau}(x).$$

Case $lc \leftrightarrow lc$. Fourier Transforms

brace Here we ignore the exceptional case $b_{H, au}>0$ and technicalities.

Theorem (Unitary equivalence)

Let $\tau \in \mathbb{R} \cup \{\infty\}$. The selfadjoint realization

$$A_{D,\tau} = \{ (f;g) \in T_{\max}(H) : f_1(s_-) = 0, \tau f_1(s_+) + f_2(s_+) = 0 \}$$

is unitarily equivalent to the the multiplication operator M_x in $L^2(\mu_{H, au})$ via $U_ au$, that is,

$$U_{\tau} \circ A_{D,\tau} = M_x \circ U_{\tau}.$$

Case Ic \leftrightarrow Ic. A Direct Theorem

Theorem (Direct Spectral Theorem)

- Each selfadjoint realization has compact resolvents.
- The spectrum of each selfadjoint realization defined by separated boundary conditions is simple.
- Let (λ_n^+) and (λ_n^-) denote the sequences of positive and negative, respectively, eigenvalues of a selfadjoint realization arranged according to increasing modulus. Then

$$\lim \frac{n}{\lambda_n^+} = \lim \frac{n}{\lambda_n^-} = \frac{1}{\pi} \int_s^{s_+} \sqrt{\det H(t)} dt.$$

Case $lc \leftrightarrow lc$. A Uniqueness Theorem

A Hamiltonian H is not uniquely determined by the spectrum of one of its selfadjoint realizations. It may happen that H_1 and H_2 are different (not reparameterizations of each other), and still

$$\sigma(A_{D,0}^1) = \sigma(A_{D,0}^2).$$

Case $lc \leftrightarrow lc$. A Uniqueness Theorem

A Hamiltonian H is not uniquely determined by the spectrum of one of its selfadjoint realizations. It may happen that H_1 and H_2 are different (not reparameterizations of each other), and still

$$\sigma(A_{D,0}^1) = \sigma(A_{D,0}^2).$$

Theorem (Inverse Theorem / Uniqueness)

Assume that two Hamiltonians H_1 and H_2 satisfy

$$\sigma(A_{D,0}^1) = \sigma(A_{D,0}^2) \quad \text{and} \quad \sigma(A_{D,\infty}^1) = \sigma(A_{D,\infty}^2),$$

then H_1 and H_2 are equal (up to a reparameterization).

Case $lc \leftrightarrow lc$. Existence Theorems

Theorem (Characterization of spectra)

Let (λ_n) be a sequence of pairwise different real numbers. Then there exists a Hamiltonian H in $lc \leftrightarrow lc$ with $\{\lambda_n\} = \sigma(A_{D,0})$, if and only if all λ_n are nonzero, and

- the limits $\lim \frac{n}{\lambda_n^+}$ and $\lim \frac{n}{\lambda_n^-}$ exist in $[0,\infty)$ and are equal, where (λ_n^+) and (λ_n^-) denote the sequences of positive and negative elements of (λ_n) ,
- $\lim_{R\to\infty}\sum_{|\lambda_n|\leq R}\frac{1}{\lambda_n}$ exists in \mathbb{R} ,
- $\bullet \ \sum_n \frac{1}{|\lambda_n|^2 |A'(\lambda_n)|} < \infty \ \textit{where} \ A(z) = \lim_{R \to \infty} \prod_{|\lambda_n| \le R} \Big(1 \frac{z}{\lambda_n}\Big).$

Case $lc \leftrightarrow lc$. Existence Theorems

Theorem (Characterization of pairs of spectra)

Let (λ_n) and (μ_n) be two sequences of pairwise different real numbers. Then there exists a Hamiltonian H in $\mathsf{lc} \leftrightarrow \mathsf{lc}$ with $\{\lambda_n\} = \sigma(A_{D,0})$ and $\{\mu_n\} = \sigma(A_{D,\infty})$, if and only if all λ_n are nonzero, the point zero is among the μ_n 's, and

- the sequences (λ_n) and (μ_n) interlace,
- $\bullet \ \lim \frac{n}{\lambda_n^+} = \lim \frac{n}{\lambda_n^-} \in [0,\infty) \ \text{and} \ \lim_{R \to \infty} \sum_{|\lambda_n| \le R} \frac{1}{\lambda_n} \ \text{exists in } \mathbb{R},$
- $\sum_{n} \frac{1}{|\lambda_n|^2 |A'(\lambda_n)B(\lambda_n)|} < \infty$ where

$$A(z)\!=\!\lim_{R\to\infty}\prod_{|\lambda_n|< R}\!\!\left(1-\frac{z}{\lambda_n}\right),\ B(z)\!=\!z\lim_{R\to\infty}\prod_{0<|\mu_n|< R}\!\!\left(1-\frac{z}{\mu_n}\right).$$

The cases lc \leftrightarrow lp and lp \leftrightarrow lc are fully analogous. We confine attention to lc \leftrightarrow lp.

The cases lc \leftrightarrow lp and lp \leftrightarrow lc are fully analogous. We confine attention to lc \leftrightarrow lp.

Theorem (Weyl coefficient. Existence)

Denote by $W(t,z)=(w_{ij}(t,z))_{i,j=1}^2$ the solution of

$$\frac{d}{dt}W(t,z)J = zW(t,z)H(t), \quad t \in [s_-, s_+), \qquad W(s_-, z) = I.$$

Then, for each $\tau \in \mathbb{R} \cup \{\infty\}$ the limit

$$q_H(z) = \lim_{t \nearrow s_+} \frac{w_{11}(t, z)\tau + w_{12}(t, z)}{w_{21}(t, z)\tau + w_{22}(t, z)}$$

exists locally uniformly on $\mathbb{C} \setminus \mathbb{R}$. It does not depend on τ .

Theorem (Weyl coefficient. Properties)

The function q_H belongs to the Nevanlinna class, that is,

- q_H is analytic in $\mathbb{C}\setminus\mathbb{R}$ and $q_H(\overline{z})=\overline{q_H(z)}$,
- $\operatorname{Im} q_H(z) \geq 0$ for $\operatorname{Im} z > 0$.

Theorem (Weyl coefficient. Properties)

The function q_H belongs to the Nevanlinna class, that is,

- q_H is analytic in $\mathbb{C}\setminus\mathbb{R}$ and $q_H(\overline{z})=\overline{q_H(z)}$,
- $\operatorname{Im} q_H(z) \geq 0$ for $\operatorname{Im} z > 0$.

We can therefore represent q_H as

$$q_H(z) = a_H + b_H z + \int_{\mathbb{R}} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\mu_H(t), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

with

- $a_H \in \mathbb{R}$, $b_H \geq 0$,
- μ_H positive Borel measure with $\int_{\mathbb{R}} \frac{d\mu_H(t)}{1+t^2} < \infty$.

Theorem (Weyl coefficient. Properties)

The function q_H belongs to the Nevanlinna class, that is,

- q_H is analytic in $\mathbb{C}\setminus\mathbb{R}$ and $q_H(\overline{z})=\overline{q_H(z)}$,
- $\operatorname{Im} q_H(z) \geq 0$ for $\operatorname{Im} z > 0$.

We can therefore represent q_H as

$$q_H(z) = a_H + b_H z + \int_{\mathbb{R}} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\mu_H(t), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

with

- $a_H \in \mathbb{R}$, $b_H \geq 0$,
- μ_H positive Borel measure with $\int_{\mathbb{R}} \frac{d\mu_H(t)}{1+t^2} < \infty$.

The measure μ_H obtained in this way is called the *spectral* measure of H.

Case Ic \leftrightarrow Ip. A Direct Theorem

Theorem (Direct Spectral Theorem)

A unitary map $U: L^2(H) \to L^2(\mu_H)$ is defined by

$$(Uf)(x) = \int_{s_{-}}^{s_{+}} (w_{21}(t,x), w_{22}(t,x)) H(t) f(t) dt.$$

It intertwines A_D and the multiplication operator M_x in $L^2(\mu_H)$:

$$U \circ A_D = M_x \circ U.$$

Its inverse $U^{-1}: L^2(\mu_H) \to L^2(H)$ is given as

$$(U^{-1}F)(t) = \int_{-\infty}^{\infty} {w_{21}(t,x) \choose w_{22}(t,x)} F(x) d\mu_H(x).$$

Case $lc \leftrightarrow lp$. The Inverse Theorem

The following Existence and Uniqueness Theorem is *the* major result in the spectral theory of Hamiltonian systems.

Case Ic \leftrightarrow Ip. The Inverse Theorem

The following Existence and Uniqueness Theorem is *the* major result in the spectral theory of Hamiltonian systems.

Theorem (Inverse Spectral Theorem)

Let a function q in the Nevanlinna class be given. Equivalently, let $a \in \mathbb{R}$, $b \ge 0$, and a positive Borel measure μ with $\int_{\mathbb{R}} \frac{d\mu(t)}{1+t^2}$ be given.

Then there exists a (up to reparameterization) unique Hamiltonian in $lc \leftrightarrow lp$ whose Weyl coefficient equals q.

Case Ic \leftrightarrow Ip. A Local Uniqueness Theorem

Theorem (Local uniqueness)

Let H_1 and H_2 be Hamiltonians defined on (s_-^1, s_+^1) and (s_-^2, s_+^2) , respectively. For a>0 set

$$s_a^j = \sup \left\{ t \in [s_-^j, s_+^j) : \int_{s_-^j}^t \sqrt{\det H_j(x)} \, dx < a \right\}, \quad j = 1, 2.$$

Then the following are equivalent.

- $H_1 \mid_{(s_-^1, s_a^1)}$ and $H_2 \mid_{(s_-^2, s_a^2)}$ are reparameterizations of each other.
- $q_{H_1}(z) q_{H_2}(z) = O((\operatorname{Im} z)^3 e^{-2a\operatorname{Im} z}), \quad z \hat{\to} i\infty.$

Theorem (Consequence of semibounded spectrum)

Let H be given with $\inf\sup \mu_H > -\infty$. Then there exist unique $L \in (0,\infty]$ and $\nu:[0,L) \to [0,+\infty)$, such that

- ν is nondecreasing, right-continuous, and normalized by $\nu(0) \in [0,\pi)$ and $\nu(t)-\nu(t-)<\pi$,
- *H* is (a reparameterization of)

$$H_{\nu}(x) = \begin{cases} \begin{pmatrix} [\cot \nu(t)]^2 & -\cot \nu(t) \\ -\cot \nu(t) & 1 \end{pmatrix} & \text{if } \nu(t) \not\in \pi \mathbb{Z} \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \text{if } \nu(t) \in \pi \mathbb{Z} \end{cases}$$

The question converse to the above theorem is: Given ν with the properties stated in the theorem. Is the spectral measure of H_{ν} semibounded from below ?

The question converse to the above theorem is: Given ν with the properties stated in the theorem. Is the spectral measure of H_{ν} semibounded from below ?

The answer is unknown.

Theorem (The case of finite negativity)

The following are equivalent:

- H is (up to a reparameterization) equal to H_{ν} with ν being (in addition) bounded.
- $(-\infty,0) \cap \operatorname{supp} \mu_H$ is a finite set.

It is a question of interest for which Hamiltonians their selfadjoint realizations have discrete spectrum (equivalently, have compact resolvents).

It is a question of interest for which Hamiltonians their selfadjoint realizations have discrete spectrum (equivalently, have compact resolvents).

The answer is unknown.

It is a question of interest for which Hamiltonians their selfadjoint realizations have discrete spectrum (equivalently, have compact resolvents).

The answer is unknown.

What is easy to see is that for each discrete subset M of \mathbb{R} , there exist (infinitely many) Hamiltonians H which are $\mathsf{lc} \leftrightarrow \mathsf{lp}$ and such that

$$\sigma(A_D) = M.$$

Write
$$H(t) = (h_{ij}(t))_{i,j=1}^2$$
, and set $B(t) = \int_{s_{-}}^{t} h_{12}(x) dx$.

For r > 0 set

$$M_1(r) = \left\{ \lambda \in \mathbb{R} \setminus \{0\} : \lim \sup_{t \nearrow s_+} \left(\int_{s_-}^t h_{22}(x) e^{-2\lambda B(x)} dx \int_t^{s_+} h_{11}(x) e^{2\lambda B(x)} dx \right) \le \frac{r}{\lambda^2} \right\},$$

$$M_2(r) = \left\{ \lambda \in \mathbb{R} \setminus \{0\} : \lim \sup_{t \nearrow s_+} \left(\int_{s_-}^t h_{11}(x) e^{2\lambda B(x)} dx \int_t^{s_+} h_{22}(x) e^{-2\lambda B(x)} dx \right) \le \frac{r}{\lambda^2} \right\}.$$

In the literature this theorem is only stated. We have not seen a proof.

Theorem (Discreteness of spectrum)

If μ_H is discrete, then

$$\mathbb{R}\setminus\{0\}\subseteq M_1(1)\cup M_2(1).$$

If there exist sequences $\lambda_i \to +\infty$ and $\mu_i \to -\infty$ with

$$\{\lambda_i : i \in \mathbb{N}\} \cup \{\mu_i : i \in \mathbb{N}\} \subseteq \bigcup_{r < \frac{1}{4}} (M_1(r) \cup M_2(r)),$$

then μ_H is discrete.

Theorem (The diagonal case)

Assume that H is diagonal, that is,

$$H(x) = \begin{pmatrix} h_1(x) & 0 \\ 0 & h_2(x) \end{pmatrix}, \quad x \in (s_-, s_+) \text{ a.e.}$$

Then μ_H is discrete, if and only if either

$$\int\limits_{s_{-}}^{s_{+}}h_{1}(x)\,dx<\infty \text{ and } \lim\limits_{x\nearrow s_{+}}\Big(\int\limits_{x}^{s_{+}}h_{1}(t)\,dt\cdot\int\limits_{s_{-}}^{x}h_{2}(t)\,dt\Big)=0,$$

or

$$\int\limits_{s}^{s_{+}}h_{2}(x)\,dx<\infty \text{ and } \lim\limits_{x\nearrow s_{+}}\Big(\int\limits_{x}^{s_{+}}h_{2}(t)\,dt\cdot\int\limits_{s}^{x}h_{1}(t)\,dt\Big)=0.$$

Case Ic \leftrightarrow Ip. Hilbert-Schmidt Property

Contrasting discreteness of the spectrum, the property that the spectrum is discrete with square summable eigenvalues can be characterized in general.

Case Ic ↔ Ip. Hilbert-Schmidt Property

Contrasting discreteness of the spectrum, the property that the spectrum is discrete with square summable eigenvalues can be characterized in general.

Theorem (Characterization of Hilbert-Schmidt class)

The resolvents of selfadjoint realizations belong to the Hilbert-Schmidt class, if and only if there exists an angle $\phi \in [0, \pi)$ such that (here $\xi_{\alpha} = \binom{\cos \alpha}{\sin \alpha}$)

•
$$\int_{s_{-}}^{s_{+}} \xi_{\phi}^{T} H(t) \xi_{\phi} dt < \infty,$$

$$\bullet \int_{s}^{s_{+}} \left(\int_{s}^{t} \xi_{\phi+\frac{\pi}{2}}^{T} H(u) \xi_{\phi+\frac{\pi}{2}} du \right) \xi_{\phi}^{T} H(t) \xi_{\phi} dt < \infty.$$

Case Ip \leftrightarrow Ip. Vector-Valued L^2 -Spaces

Let $\Omega=(\Omega_{ij})_{i,j=1}^n$ be a positive $n\times n$ -matrix valued Borel measure on \mathbb{R} , that is, a map of Borel sets to positive semidefinite $n\times n$ -matrices which is σ -additive and satisfies $\Omega(\emptyset)=0$.

Case Ip \leftrightarrow Ip. Vector-Valued L^2 -Spaces

Let $\Omega=(\Omega_{ij})_{i,j=1}^n$ be a positive $n\times n$ -matrix valued Borel measure on \mathbb{R} , that is, a map of Borel sets to positive semidefinite $n\times n$ -matrices which is σ -additive and satisfies $\Omega(\emptyset)=0$.

Set $\rho(\Delta) = \operatorname{tr} \Omega(\Delta)$, then ρ is a finite positive Borel measure on $\mathbb R$ and each entry Ω_{ij} is absolutely continuous w.r.t. ρ . The symmetric derivative of Ω w.r.t. ρ is

$$\frac{d\Omega}{d\rho}(x) = \lim_{\varepsilon \downarrow 0} \frac{\Omega\big((x-\varepsilon,x+\varepsilon)\big)}{\rho\big((x-\varepsilon,x+\varepsilon)\big)}, \quad x \in \mathbb{R} \ \rho\text{-a.e.}$$

Case Ip \leftrightarrow Ip. Vector-Valued L^2 -Spaces

Let $\Omega=(\Omega_{ij})_{i,j=1}^n$ be a positive $n\times n$ -matrix valued Borel measure on \mathbb{R} , that is, a map of Borel sets to positive semidefinite $n\times n$ -matrices which is σ -additive and satisfies $\Omega(\emptyset)=0$.

Set $\rho(\Delta) = \operatorname{tr} \Omega(\Delta)$, then ρ is a finite positive Borel measure on $\mathbb R$ and each entry Ω_{ij} is absolutely continuous w.r.t. ρ . The symmetric derivative of Ω w.r.t. ρ is

$$\frac{d\Omega}{d\rho}(x) = \lim_{\varepsilon \downarrow 0} \frac{\Omega\big((x-\varepsilon,x+\varepsilon)\big)}{\rho\big((x-\varepsilon,x+\varepsilon)\big)}, \quad x \in \mathbb{R} \ \rho\text{-a.e.}$$

 $L^2(\Omega)$ is the space of all $f:\mathbb{R} \to \mathbb{C}^n$ which are ho-measurable and $\left(f(x), rac{d\Omega}{d
ho}(x)f(x)
ight)_{\mathbb{C}^n} \in L^1(
ho)$. It is endowed with $(f,g)_{L^2(\Omega)} = \int_{\mathbb{R}} \left(f(x), rac{d\Omega}{d
ho}(x)g(x)
ight)_{\mathbb{C}^n} d
ho(x).$

Case Ip \leftrightarrow Ip. Matrix Weyl Function

Choose a point $s_0 \in (s_-, s_+)$. Then

- $H_+ = H|_{(s_0,s_+)}$ is a Hamiltonian Ic \leftrightarrow Ip.
- $H_- = H|_{(s_-,s_0)}$ is a Hamiltonian in $\mathsf{Ip} \leftrightarrow \mathsf{Ic}$,

Case Ip \leftrightarrow Ip. Matrix Weyl Function

Choose a point $s_0 \in (s_-, s_+)$. Then

- $H_+ = H|_{(s_0,s_+)}$ is a Hamiltonian Ic \leftrightarrow Ip.
- $H_- = H|_{(s_-,s_0)}$ is a Hamiltonian in $lp \leftrightarrow lc$,

The 2×2 -matrix valued function

$$Q_{H}(z) = \frac{1}{q_{H_{+}}(z) + q_{H_{-}}(z)} \begin{pmatrix} q_{H_{+}}(z)q_{H_{-}}(z) & -q_{H_{+}}(z) \\ -q_{H_{+}}(z) & -1 \end{pmatrix}$$

belongs to the 2×2 -Nevanlinna class, that is,

- ullet Q_H is analytic in $\mathbb{C}\setminus\mathbb{R}$ and $Q_H(\overline{z})=Q_H(z)^*$,
- $\operatorname{Im} q_H(z) = \frac{1}{2i}(Q_H(z) Q_H(z)^*)$ is positive semidefinite for each z with $\operatorname{Im} z > 0$.

Case Ip \leftrightarrow Ip. Matrix Weyl Function

We can represent Q_H as $(z \in \mathbb{C} \setminus \mathbb{R})$

$$Q_H(z) = a_H + b_H z + \int_{\mathbb{R}} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) \cdot (1 + t^2) d\Omega_H(t),$$

where

- $a_H, b_H \in \mathbb{C}^{2 \times 2}$, with $a_H = a_H^*$ and b_H positive semidefinite,
- Ω_H positive 2×2 -matrix valued Borel measure.

Case Ip \leftrightarrow Ip. The Titchmarsh-Kodaira formula

ightharpoonup Here we ignore the exceptional case $b_H \neq 0$.

Theorem (Unitary equivalence)

The selfadjoint operator $T_{min}(H)$ is unitarily equivalent to the multiplication operator in the space $L^2(\Omega_H)$. That is, there exists a unitary operator $U: L^2(H) \to L^2(\Omega_H)$ which intertwines $T_{\min}(H)$ and M_r :

$$U \circ T_{\min}(H) = M_x \circ U.$$

Case Ip \leftrightarrow Ip. The Titchmarsh-Kodaira formula

ho Here we ignore the exceptional case $b_H \neq 0$.

Theorem (Unitary equivalence)

The selfadjoint operator $T_{min}(H)$ is unitarily equivalent to the multiplication operator in the space $L^2(\Omega_H)$. That is, there exists a unitary operator $U: L^2(H) \to L^2(\Omega_H)$ which intertwines $T_{\min}(H)$ and M_r :

$$U \circ T_{\min}(H) = M_x \circ U.$$

The action of U can again be described as an integral transform.

Case Ip \leftrightarrow Ip. The Titchmarsh-Kodaira formula

ho Here we ignore the exceptional case $b_H \neq 0$.

Theorem (Unitary equivalence)

The selfadjoint operator $T_{min}(H)$ is unitarily equivalent to the multiplication operator in the space $L^2(\Omega_H)$. That is, there exists a unitary operator $U: L^2(H) \to L^2(\Omega_H)$ which intertwines $T_{\min}(H)$ and M_r :

$$U \circ T_{\min}(H) = M_x \circ U.$$

The action of U can again be described as an integral transform.

Corollary

The spectral multiplicity of $T_{\min}(H)$ cannot exceed 2.

Let E be the projection valued spectral measure of $T_{\min}(H)$, and let σ_1,σ_2 be scalar positive Borel measures with $\sigma_2\ll\sigma_1\sim E$ such that $T_{\min}(H)$ is unitarily equivalent to the multiplication operator in $L^2(\sigma_1)\oplus L^2(\sigma_2)$.

Let E be the projection valued spectral measure of $T_{\min}(H)$, and let σ_1,σ_2 be scalar positive Borel measures with $\sigma_2\ll\sigma_1\sim E$ such that $T_{\min}(H)$ is unitarily equivalent to the multiplication operator in $L^2(\sigma_1)\oplus L^2(\sigma_2)$.

Set (layers of spectrum)

$$Y_l = \left\{ x \in \mathbb{R} : \frac{d\sigma_l}{d\sigma_1}(x) \in (0, \infty] \right\}, \quad l = 1, 2,$$

and (spectral multiplicity function)

$$N_H(x) := \#\{l \in \{1, 2\} : x \in Y_l\}, \quad x \in \mathbb{R}, \ \sigma_1$$
-a.e.

Theorem

We have
$$N_H(x)=\mathrm{rank}\, \frac{d\Omega_H}{d\rho}(x)$$
 for $x\in\mathbb{R}$, ho -a.e. (notice $ho\sim E$).

Theorem

We have
$$N_H(x)=\mathrm{rank}\, \frac{d\Omega_H}{d\rho}(x)$$
 for $x\in\mathbb{R}$, ρ -a.e. (notice $\rho\sim E$).

Denote by λ the Lebesgue measure, and set $\mu := \mu_{H_+} + \mu_{H_-}$.

Theorem

We have
$$N_H(x)=\mathrm{rank}\, \frac{d\Omega_H}{d\rho}(x)$$
 for $x\in\mathbb{R}$, ρ -a.e. (notice $\rho\sim E$).

Denote by λ the Lebesgue measure, and set $\mu:=\mu_{H_+}+\mu_{H_-}$.

Decompose

$$E = E_{ac} + E_s$$
 with $E_{ac} \ll \lambda$, $E_s \perp \lambda$,

and further

$$E_s = E_{s,ac} + E_{s,s}$$
 with $E_{s,ac} \ll \mu$, $E_{s,s} \perp \mu$.

Theorem

We have
$$N_H(x)=\mathrm{rank}\, \frac{d\Omega_H}{d\rho}(x)$$
 for $x\in\mathbb{R}$, ρ -a.e. (notice $\rho\sim E$).

Denote by λ the Lebesgue measure, and set $\mu := \mu_{H_+} + \mu_{H_-}$.

Decompose

$$E = E_{ac} + E_s$$
 with $E_{ac} \ll \lambda$, $E_s \perp \lambda$,

and further

$$E_s = E_{s,ac} + E_{s,s}$$
 with $E_{s,ac} \ll \mu$, $E_{s,s} \perp \mu$.

Moreover, decompose

$$\mu = \mu_{ac} + \mu_s$$
 with $\mu \ll \lambda$, $\mu \perp \lambda$.

Set $(x \in \mathbb{R}, \mu$ -a.e.)

$$r(x) = \begin{cases} 2 \;, & \frac{d\mu_{H_+}}{d\mu}(x), \frac{d\mu_{H_-}}{d\mu}(x) \in (0, \infty] \\ 1 \;, & \text{exactly one of } \frac{d\mu_{H_+}}{d\mu}(x), \frac{d\mu_{H_-}}{d\mu}(x) \; \text{is nonzero} \\ 0 \;, & \frac{d\mu_{H_+}}{d\mu}(x), \frac{d\mu_{H_-}}{d\mu}(x) = 0 \end{cases}$$

Set $(x \in \mathbb{R}, \mu$ -a.e.)

$$r(x) = \begin{cases} 2\,, & \frac{d\mu_{H_+}}{d\mu}(x), \frac{d\mu_{H_-}}{d\mu}(x) \in (0,\infty] \\ 1\,, & \text{exactly one of } \frac{d\mu_{H_+}}{d\mu}(x), \frac{d\mu_{H_-}}{d\mu}(x) \text{ is nonzero} \\ 0\,, & \frac{d\mu_{H_+}}{d\mu}(x), \frac{d\mu_{H_-}}{d\mu}(x) = 0 \end{cases}$$

Theorem (Computation of the multiplicity function)

We have

- $E_{ac} \sim \mu_{ac}$ and $N_H(x) = r(x)$, E_{ac} -a.e.
- $E_{s,ac} \sim \mathbb{1}_{\{r(x)=2\}} d\mu_s$ and $N_H(x) = 1$, $E_{s,ac}$ -a.e.
- $N_H(x) = 1$, $E_{s,s}$ -a.e.

Case Ip \leftrightarrow Ip. Simple Spectrum

Corollary

The singular spectrum of $T_{\min}(H)$ is always simple.

Case Ip \leftrightarrow Ip. Simple Spectrum

Corollary

The singular spectrum of $T_{\min}(H)$ is always simple.

Theorem (Characterization of simplicity)

The operator $T_{\min}(H)$ has simple spectrum if and only if the set

$$\begin{split} \left\{x \in \mathbb{R}: \lim_{\epsilon \downarrow 0} \operatorname{Im} q_{H_+}(x+i\epsilon) \text{ exists in } (0,\infty)\right\} \\ & \cap \left\{x \in \mathbb{R}: \lim_{\epsilon \downarrow 0} \operatorname{Im} q_{H_-}(-x+i\epsilon) \text{ exists in } (0,\infty)\right\} \end{split}$$

has Lebesgue measure zero.

Case Ip \leftrightarrow Ip. Simple Spectrum

An explicit sufficient condition for simplicity is:

Theorem

Assume that H_+ has the Hilbert-Schmidt property, i.e., that there exists $\phi \in [0,\pi)$ with

•
$$\int_{s_0}^{s_+} \xi_{\phi}^T H(t) \xi_{\phi} \, dt < \infty,$$

•
$$\int_{s_0}^{s_+} \left(\int_{s_0}^t \xi_{\phi + \frac{\pi}{2}}^T H(u) \xi_{\phi + \frac{\pi}{2}} du \right) \xi_{\phi}^T H(t) \xi_{\phi} dt < \infty.$$

Then the spectrum of $T_{\min}(H)$ is simple.