1

SEQUENCE LISTING

<110> diaDexus, Inc.
Macina, Roberto
Turner, Leah
Sun, Yongming
Chen, Huei-Mei
Rodriguez, Maria

<120> Compositions, Splice Variants and Methods Relating to Breast Specific Genes and Proteins

<130> DEX-0452

<150> US 60/431,123

<151> 2002-12-05

<160> 241

<170> PatentIn version 3.1

<210> 1

<211> 3163

<212> DNA

<213> Homo sapien

<400> 1

tccagtaagg tgtgcccagc tttcttctgg gcacagacaa gaaagatgga aagtataggt 60 taaagtcccc actctaaagt gctttacatt ttaaatgtgg accacaaaag tgcccacgag 120 ccaaaaagat tccaagaagc tgtgtaagca aatccatgat tgaatgttac aaacgtgtgt 180 240 aatcttctct ctgggttctt caggcaattt ctctgcccac attcccattt ccctaaqata 300 ttccataagg gccagtcacg gagaattcat acctgaaagg gaaactgtta tttgtgttgt 360 tgtcaaagat atgtggacta actttcagaa ctacccactg tgtttccttg gcaggttccg 420 gagteteace actgeatttt teagagaege catgggette ttattaatgt ttgaceteac 480 cagtcaacag agcttcttaa atgtcagaaa ctggatgagc caactgcaag caaatgctta 540 ttgtgaaaat ccagatatag tattaattgg caacaaggca gacctaccag atcagaggga 600 agtcaatgaa cggcaagctc gggaactggc tgacaaatat ggctgcaaat tgagtacact 660 gggaatcaac aaatttgatg aagcctgtct gtctcttcac cagtggagtg agtgcagcag 720 ttagaaagag aagcaatatt gtgcaactgg tgcagtggtg agttaatcat agtgtataac 780 cttgtgttca tgaaacaggt tgttcattgt tctgcatctc tcttcattta aaaaggatac 840 acaattettt eeteattgea tattacacca aacgtttgag ggaaaaatee teattegtaa 900 aggattttgg atttataatc taaaactcaa caataaagaa ataatattcc aagtctctgg 960 tttcctaaga tacataataa ctgtttataa agaaggtcta agagctgata tttgccaaag 1020

tgatagaaga gttgtttttt cctctctact accaagcttt aagacattaa aagaagtcta 1080 gtgtatttga atattttaga gaaagcttta tcatttttta agatgccaag atgctgccta 1140 cgtttgcaaa agttgtctaa gaattcacca tgagctatat tttcttctgg atctttgacc 1200 aaggtgatgt cagcttattt ctggggaagg tgttgagctc ttatacatga aaatggatat 1260 aggetattet etgggatgag tgteatttea atgetttata aateeatgaa getgettgte 1320 tcataaagta gaactgatac aaattttggt tggatatata gagaatttta taaatgtatt 1380 gccttagaat ttctgggtgg agacccaact acaatgacat tgtcatgcaa gaactataaa 1440 gataattaga gttaaaagtt gtttaaattg tgcccttaaa tacagcagaa cctggagaag 1500 gtcatacttc aaaggtcgat tttgagtccg aataaagaaa gacctagtaa cagatagttt 1560 ttttttgttc attttcttct accaagtaga ggtttatgcc ctcagaacta aactagtaaa 1620 aatatctgaa caaaaaacct ttcgttgttg gcataaaaat gtgatacact tagagacatt 1680 ttgtttattg catataaatc taatttttcc ataaattaga tttatgatat tttcataaag 1740 cacttgatta gtttttcaag gcgtaccatc acaaagatgc tttcctgcag agttctttgt 1800 atcaacagec tatggttgag atgttttctc atttcctgta gagagagaat accactaaca 1860 aacaagcaaa aactttagtg ccaaaatagt ggaactattt tgtcatcttt tgagaaaaaa 1920 atatacaaag aagtcatctt ttcattaagt ggattccctg gttcctttcc agctggttgt 1980 ggaagtaatg gctaacatcc ttcagctgac tttgtctaca aggattatta gcaaattctg 2040 taggagcaag catgtctgac cttaacttaa tggatccctt attcaatcag tggcttctgt 2100 ctttatgtct gttggcatat caaaatggtt tctgttccta gaaaagtaat aacatatgct 2160 tatctttatt ctttttccag gtgattttgt tttcaaatgc tccttgtgaa aacacctagt 2220 gttgtagaaa ggaaagtggc cagaaagaac aacttgggac catgagtagg tcattaaata 2280 gcttagtgat ttatcctcat atagggctta taaaccctgt atgtgtttat atgtgcttca 2340 cagagttcgt gtcaggctca aaggagatat gtataagaaa gtggtttgta aattatgttc 2400 catttcataa atagacacta ttcacaaact aaaatctaat aaaaaaccac agttgtaatt 2460 taaactgctt gatataaaaa gaggtatcat agcagggaaa acacactaat tttcatacag 2520 tagaggtatt gaaaactgaa aatgggaagg caacttgaag tcattgtatt tgattgaaaa 2580 tgtttaatac atctcattat tgacaaaata tgtcatcttg tatttatttc aaggaaacca 2640 atgaatteta ggtagtatat tacaagttgg teaaaatatt eeatgtacaa atagggette 2700 tgtgtccata gccttgtaag agatactgat tgtatctgaa attattttt aaaaaaataa 2760 attatcctgc tttagtgtgt taaaagtaga cgatgttcta atataacact gaagtgcttc 2820 attgtatccc aacagtttac cttcaagtaa tattatcttt atttttaggc taagcacgtt 2880

tgattattt	gtetgtetee	tatatagatc	tgttttgtct	agtgctatga	atgtaactta	2940
aaactataaa	cttgaagttt	ttattctata	tgccccttaa	tagactgtgg	ttcctgacgc	3000
acactgttag	gtcattattt	tgttgtacca	aagttctagt	ggcttcagaa	atcatagcat	3060
ccaatgattt	tttggtgtct	ggctatgaat	actatggttg	agaattgtat	tcagtgattg	3120
tttctgcaca	cttttcaaat	aaaaaatgaa	tttttatcaa	tta		3163
	_					
<400> 2 taagctcgga	agcgactcta	gggcrggggg	agggtegggt	gtcggcgagc	teegegtgeg	60
ggttccgagt	ggctgctggc	ggcctgggct	gccggggccg	acgcctgggt	ggctgctgcc	120
gccgcgcctg	ctgcgagatg	gcgatcttgg	gcgcggaagg	gtgagggcgc	ccgccgcagg	180
aggaggtgcc	gctgccgtgg	ccgcccggct	gccgggagcc	gacagetteg	cgccggggtt	240
gtctcctcac	agactatgag	ctccttgaaa	gagggaatcg	tgtcttactc	atctttgtat	300
ccccagtgtc	tagcagttcc	tgatacatag	ttttagctga	attttgggac	atggccactg	360
cttcaccaag	gtctgatact	agtaataacc	acagtggaag	gttgcagtta	caggtaactg	420
tttctagtgc	caaacttaaa	agaaaaaaga	actggttcgg	aacagcaata	tatacagaag	480
tagttgtaga	tggagaaatt	acgaaaacag	caaaatccag	tagttcttct	aatccaaaat	540
gggatgaaca	gctaactgta	aatgttacgc	cacagactac	attggaattt	caagtttgga	600
gccatcgcac	tttaaaagca	gatgctttat	taggaaaagc	aacgatagat	ttgaaacaag	660
ctctgttgat	acacaataga	aaattggaaa	gagtgaaaga	acaattaaaa	ctttccttgg	720
aaaacaagaa	tggcatagca	caaactggtg	aattgacagt	tgtgcttgat	ggattggtga	780
ttgagcaaga	aaatataaca	aactgcagct	catctccaac	catagaaata	caggaaaatg	840
gtgatgcctt	acatgaaaat	ggagagcctt	cagcaaggac	aactgccagg	ttggctgttg	900
aaggcacgaa	tggaatagat	aatcatgtac	ctacaagcac	tctagtccaa	aactcatgct	960
gctcgtatgt	agttaatgga	gacaacacac	cttcatctcc	gtctcaggtt	gctgccagac	1020
ccaaaaatac	accagctcca	aaaccactcg	catctgagcc	tgccgatgac	actgttaatg	1080
gagaatcatc	ctcatttgca	ccaactgata	atgcgtctgt	cacgggtact	ccagtagtgt	1140
ctgaagaaaa	tgccttgtct	ccaaattgca	ctagtactac	tgttgaagat	cctccagttc	1200
aagaaatact	gacttcctca	gaaaacaatg	aatgtattcc	ttctaccagt	gcagaattgg	1260
aatctgaagc	tagaagtata	ttagagcctg	acacctctaa	ttctagaagt	agttctgctt	1320

WO 2004/053077

4

PCT/US2003/038815

ttgaagcagc	caaatcaaga	cagccagatg	ggtgtatgga	tcctgtacgg	cagcagtctg	1380
ggaatgccaa	cacagaaacc	ttgccatcag	ggtgggaaca	aagaaaagat	cctcatggta	1440
gaacctatta	tgtggatcat	aatactcgaa	ctaccacatg	ggagagacca	caacctttac	1500
ctccaggttg	ggaaagaaga	gttgatgatc	gtagaagagt	ttattatgtg	gatcataaca	1560
ccagaacaac	aacgtggcag	cggcctacca	tggaatctgt	ccgaaatttt	gaacagtggc	1620
aatctcagcg	gaaccaattg	cagggagcta	tgcaacagtt	taaccaacga	tacctctatt	1680
cggcttcaat	gttagctgca	gaaaatgacc	cttatggacc	tttgccacca	ggctgggaaa	1740
aaagagtgga	ttcaacagac	agggtttact	ttgtgaatca	taacacaaaa	acaacccagt	1800
gggaagatcc	aagaactcaa	ggcttacaga	atgaagaaac	ccttggcaga	aggctgcgac	1860
aatttagaat	attctccgtg	aaggtgctaa	ggtcaccttg	ctgcactcat	tcaacccagc	1920
aacccacccc	ctttccaaga	ctcctccgca	tgcggaaacc	cactgacact	tcaaacggtg	1980
gtccagcaaa	ctgccctacc	gaacgccggc	tacaggtgaa	gccagccaaa	tacccaaaga	2040
tggggcccag	cctaatggcc	tacccacgca	cgggaacgaa	cacagcgtcc	cccggccaac	2100
aatctgcgac	ggaacccccc	ccaacaaaga	tggggcaaac	accccaagac	agagaaggcc	2160
gccacagaaa	ccttaccgcg	gageecagea	ccaatcaggg	cacgagaaaa	gagccgaccc	2220
cacaacgtac	cacccacagt	gcagacgcac	aaccaactta	gcaacgacaa	caacacgaac	2280
actatacgca	acaacacaag	caaca				2305
<210> 3 <211> 1900 <212> DNA <213> Homo) o sapien					
tttttttat	attttctaaa	atttttattt	cttgttcatt	ttgtttctaa	gatattcact	60
cacatattaa	aaataacaac	gtctcaaaac	atttgaagca	actctcttca	tcccttttaa	120
aaataccttg	ctgtttcggg	ggttaaaaaa	agccacaagg	gagattaaaa	caatacaaat	180
atttatttc	ccaactcccc	tgccatgggt	tctgggacgt	caccgcctct	ttctggggcc	240
cgtttcatcc	ttttctttta	atccaagaag	cgatggtgtt	gtgcgcctgt	agtcccagct	300
acctgggagg	caggctgagg	tgggaggatc	ttttgggtcc	aggattttga	ggctgcagta	360
agccgtgttc	tcaccactgc	actcgagact	gggcggaaga	gcgagacact	gtatcaaaaa	420
caaaacaaaa	caaaacgaga	aggcatcgcg	gctctgtaac	actccgtcca	gctctcgcac	480
tctcagatgc	aaacttccac	acaaactcct	cggctcgcct	tgtcccgcgg	gactagcata	540
tcaagccttc	cgggacacac	cgtgcgatga	tatatacgta	tatacccctc	ttgcccttga	600

aggccggaag	tcggtcttac	agataaaagc	gaaacaggaa	gtcccgcccc	tctatggaaa	660
gtaaatggta	gctcggaagg	gtcaaaagag	tccgcggttt	cgccgcgtga	gttgcttttt	720
gcggctgggg	aggtctacgc	ttctagagct	tgagccagcg	gggcgaccct	gcagtggcag	780
gactcggcac	cgcgccctcc	accgccggtt	ggtggcctgc	gtgacagttt	cctcccgtcg	840
acatcgaaag	gaagccggac	gtgggcgggc	agagaggtcg	gcttgctgat	gggtccgggt	900
ggggcgcgcg	tggactatgg	gcccgggagg	tcccttactg	tccccgagcc	gcgggttcct	960
cttgtgcaaa	acggggtggc	actccaatcg	cctgcttggt	gattgtggcc	cccacacacc	1020
tgtttctaca	gcgcttagct	tcatcgcagt	aggaatggca	gccccatcta	tgaaggaaag	1080
acaggtctgc	tggggggccc	gggatgagta	ctggaagtgt	ttagatgaga	acttagagga	1140
tgcttctcaa	tgcaagaagt	taagaagctc	tttcgaatca	agttgtcccc	aacagtggat	1200
aaaatatttt	gataaaagaa	gagactactt	aaaattcaaa	gaaaaatttg	aagcaggaca	1260
atttgagcct	tcagaaacaa	ctgcaaaatc	ctaggctgtt	cataaagatt	gaaagtattc	1320
tttctggaca	ttgaaaaagc	tccactgact	atggaacagt	aatagtttga	atcatagtga	1380
acatcaatac	ttgttcccta	tatacgacac	ttgataatta	agatgatcaa	gaaccagaag	1440
atctgtgaag	aaatgaaata	aaatggtatt	tagtaagaaa	tctctatttt	aagaaaaaa	1500
gtaaaacctg	ttataaacac	aaaaaaaaa	aaaaaaaaa	aaaacaaaaa	aaaaaaaaa	1560
aaacaaaaag	aacggaacaa	agacacaaaa	aaaaacacaa	cagaagaaag	aggaaggggg	1620
aaaaaacaaa	ggggccccgg	gggggccggg	gaccccccag	ccccacccgg	ggcgcccgca	1680
ttagagaggt	ccatcacatc	atccatcgct	aagaaccacc	agcaacacat	gaacaacatg	1740
gattaaatac	acatcacacc	atgttatgtg	ctctctaaga	acaaccaaac	gtatccgtag	1800
ctaacagtta	gcaaactacg	acatctatat	gttcaatatt	gattaatatt	tgtttaaagt	1860
cagttgacaa	tctctgtgat	atcttgtaca	attttaacaa			1900
	sapien					
<400> 4 ttttttttgg	aaccatgtgc	gcctttatta	gctgagccac	tacttgagag	ggatgaagca	60
gaaggagtgg	gtggcgccga	tgccggaccg	gcattgcttt	acgggcttgt	aggtgatgga	120
gaactcgccc	aggtagtggc	caatcatctc	gggcttgacc	tccacctggt	tgaaggtctt	180
gccgttgtgg	acgcccacca	tgctgcccac	cacctcgggc	aggatgatca	cgtccctcag	240

gtgcgtcttc accacttccg gcttctccat gggcggcgcc tccttcttgg ccttgcgcag 300

gcgcttcagc a	gggagtgct	gcttccgccg	caggccccgg	ttcagccgcc	gcgctggcgc	360
gcactgtaca g	ctgcatcag	ctgctcgtag	gacatgtcca	gcagctggtc	gaggtccacg	420
ccgcgcttca t	cgcagtagg	aatggcagcc	ccatctatga	aggaaagaca	ggtctgctgg	480
ggggcccggg a	tgagtactg	gaagtgttta	gatgagaact	tagaggatgc	ttctcaatgc	540
aagaagttaa g	aagctcttt	cgaatcaagt	tgtccccaac	agtggataaa	atattttgat	600
aaaagaagag a	ctacttaaa	attcaaagaa	aaatttgaag	caggacaatt	tgagccttca	660
gaaacaactg c	aaaatccta	ggctgttcat	aaagattgaa	agtattcttt	ctggacattg	720
aaaaagctcc a	ctgactatg	gaacagtaat	agtttgaatc	atagtgaaca	tcaatacttg	780
ttccctatat a	cgacacttg	ataattaaga	tgatcaagaa	ccagaagatc	tgtgaagaaa	840
tgaaataaaa t	ggtatttag	taagaaatct	ctattttaag	aaaaaagta	aaacctgtta	900
taaacacatg ca	acttttgtt	ttgtttttgt	tttgttttta	attagaggat	gggtagtagg	960
cagatgataa aa	atttataat	atacatagaa	gtgaaataaa	tgggagttag	cattttaata	1020
caggcaagag c	tattacaac	aacccaagtg	agaaatgatg	agggtttgtg	gaaggtttat	1080
aaggaagaag g	gtgaactta	aaatatacaa	gtaaaataat	aaaagccatc	tataaaaaag	1140
cccatagcta at	tatcaacac	ttaatgttgg	gacaggaact	ggatgtctag	ctagtccagt	1200
gagacaaaaa aq	gaaaaagca	tacacactgg	gaaggaagaa	agaaaactag	ctctactcac	1260
atataataaa ta	actatctta	tagaatgtac	caatggatgc	acaaaaagag	ctcctagaac	1320
tataagtcaa to	catagaaag	gttgcaggaa	acaaggtcaa	tatacacaag	gaaaattata	1380
ttcctatata to	cagcaataa	acaactggaa	tttaaaactt	aaaaatacca	tttgtgaata	1440
gcaccaaaaa aa	aattaaagg	aatacttagg	tataaatcta	atatatggag	gcctctatgc	1500
tgagaactag aa	aaacacttg	gaagcagact	acatcagatt	aaatggagag	gtatacagtt	1560
ggccctctgt gg	ggttctgca	tccatggatt	caaccccgaa	gagaaaattt	ttgggaaaag	1620
gaaaaacgag ta	aaaataat	aaaaatttaa	aaatccagta	taacacctat	ttacattgta	1680
ttaggtattg ta	agtcattg a	agatgattta	aagtataggc	atacctcaaa	gatactgcag	1740
gtttggttac ag	gaccactgc a	attaaagtga	atatcacaat	agagtgggtt	acacaaatgt	1800
tttggttttc ca	agtacacat a	agaagttatg	tttatactgt	tgtctagtaa	gtgtgcaata	1860
gcattatgtc tg	gctcagtat a	atatgc				1886

<210> 5

<211> 1935 <212> DNA <213> Homo sapien

<400> 5 agatccaaga tgggcattat attcattgta tgtttacaaa ttcttacatt ttagttattc 60 ttcagcaaaa aatccagatg gatgttttt tcagaaagtg ttgaatgggt ttacaaagtt 120 tttttgtaag gaacaatatt gcaaattact aaaattgtat ttttataggc tgtttgctct 180 tttgtggata ttgtgcctgt caggattctt gaagtttttt ttttatagtg agataatgga 240 gttggtctta gccgctgcag gagcccttct tttctgtgga ttcatcatct atgacacaca 300 ctcactgatg cataaactgt cacctgaaga gtacgtatta gctgccatca gcctctactt 360 ggatatcatc aatctattcc tgcacctgtt acggtttctg gaagcagtta ataaaaagta 420 attaaaagta tctcagctca actgaagaac aacaaaaaaa atttaacgag aaaaaaggat 480 taaagtaatt ggaagcagta tatagaaact gtttcattaa gtaataaagt ttgaaacaat 540 gattaaatac tgttacaatc tttatttgta tcatatgtaa ttttgagagc tttaaaatct 600 tactattctt tatgatacct catttctaaa tccttgattt aggatctcag ttaagagcta 660 tcaaaattct attaaaaatg cttttctggc tgggcacagt ggctcacgcc tgtaatccca 720 ccactttggg agaccgaggc aggtggatca cgaggtcaag aggttgagac catcctggcc 780 aacatggtga aaccccgtct ctactaaaaa tacaaaaatt agctggatgt ggtggcacac 840 acctgtagtc ccagctagtc aagaggctga ggccagagaa tcgcttgaac ctgggaggtg 900 gaggttgcat tgagccaaga tcacgccact gcattccagc ctggtgacag agcgagactc 960 agtotcaaaa aaaaaaaaaa aatttttott ootaaattag coacgoatag cggttogttt 1020 gcaattcaaa aataatttta tgagtagata agaatatcag tttaccgttg tctagtgatt 1080 ttatctaaat tttccctgaa ttattaagta atattgattt ggctttgatt ctgaagtagt 1140 agagtettta eeattataaa etgtaaatet etttttgett aaaaggaaaa aaatgtaaaa 1200 1260 aattgtacta acattaaaag ttggcctgaa agtcagatat tatgacaaaa tttgacatta 1320 attgttttta aagtatagat ttcatttgaa attatagaat gctaatgtgg ttagaggaca 1380 ccaaagatac tgggtcatca gccattaagt atatctattt caaaattaaa atatttggga 1440 agtattgtct tatggtttca tttgtgttgg tccacacagc atgttaggtc agtgtaccag 1500 taaccaatga aattttgtca aattccctca ctgtactagt ttgttaggct gccataacaa 1560 agttctacag cttgggtggc ttcaacaaga aatttgtttt cccacagttc tggaggctaa 1620 aagtccaaga tcaaggtgtt agcagggttg gtttcctttg aggcctttct ctttgatttg 1680 tagatggcca tetteteeet gtgtetttaa atggeettee etetgtaett gtetgtgeee 1740 aaatttette ttettatgag gacaccagte atactggatt agggeecaca etgaggaeet 1800

catttttcct	taattatctc	tttcaaaacc	tatctccaaa	tacagtcaca	ttctgaagtg	1860
ctgggattag	gatttcttca	tgtgaatttt	ggggggacta	caactcagcc	cataacaccc	1920
cctaagtatt	tccca					1935
<210> 6 <211> 202 <212> DNA <213> Hom						
<400> 6	.					
					tcctgtccca	60
					ccccggctgc	120
tgcccaggat	ccgccggacc	ccggcctcga	tatgggagac	ctggaactgc	tgctgcccgg	180
ggaagctgaa	gtgctggtgc	ggggtctgcg	cagcttcccg	ctacgcgaga	tgggctccga	240
agggtggaac	cagcagcatg	agaacctgga	gaagctgaac	atgcaagcca	tcctcgatgc	300
cacagtcagc	cagggcgagc	ccattcagga	gctgctggtc	acccatggga	aggtcccaac	360
actggtggag	gagctgatcg	cagtggagat	gtggaagcag	aaggtgttcc	ctgtgttctg	420
cagggtggag	gacttcaagc	cccagaacac	cttccccatc	tacatggtgg	tgcaccacga	480
ggcctccatc	atcaacctct	tggagacagt	gttcttccac	aaggaggtgt	gtgagtcagc	540
agaagacact	gtcttggact	tggtagacta	ttgccaccgc	aaactgaccc	tgctggtggc	600
ccagagtggc	tgtggtggcc	cccctgaggg	ggagggatcc	caggacagca	accccatgca	660
ggagctgcag	aagcaggcag	agctgatgga	atttgagatt	gcactgaagg	ccctctcagt	720
actacgctac	atcacagact	gtgtggacag	cctctctctc	agcaccttga	gccgtatgct	780
tagcacacac	aacctgccct	gcctcctggt	ggaactgctg	gagcatagtc	cctggagccg	840
gcgggaagga	ggcaagctgc	agcagttcga	gggcagccgt	tggcatactg	tggccccctc	900
agagcagcaa	aagctgagca	agttggacgg	gcaagtgtgg	atcgccctgt	acaacctgct	960
gctaagccct	gaggctcagg	cgcgctactg	cctcacaagt	tttgccaagg	gacggctact	1020
caaggtcaga	ctccctccgc	accagecece	acagccccag	taccgccctc	cccatcctac	1080
cccgactgcg	tecetgetgt	ttatctttgc	ccacccacct	caaccccagt	gctcttttca	1140
gteettggge	ctcaggtgac	acaccagcta	gtgggacatg	ggcccccaca	ggcattctca	1200
gcccaaccca	gccccttcct	tttccttggc	cccctggcca	gcacctgcat	cacactggcc	1260
tccactggac	accettgeag	cttcgggcct	tcctcacaga	cacactgctg	gaccagctgc	1320
caacctggc	ccacttgcag	agtttcctgg	cccatctgac	cctaactgaa	acccagcctc	1380
ctaagaagga	cctggtgttg	gaacagatcc	cagaaatctg	ggagcggctg	gagcgagaaa	1440

9

acagaggcaa	gtggcaggca	attgccaagc	accageteca	gcatgtgttc	agcccctcag	1500
agcaggacct	gcggctgcag	gcgcgaaggt	gggctgagac	ctacaggctg	gatgtgctag	1560
aggcagtggc	tccagagcgg	ccccgctgtg	cttactgcag	tgcagaggct	tctaagcgct	1620
gctcacgatg	ccagaatgag	tggtattgct	gcagggagtg	ccaagtcaag	cactgggaaa	1680
agcatggaaa	gacttgtgtc	ctggcagccc	agggtgacag	agccaaatga	gggctgcagt	1740
tgctgagggc	cgaccaccca	tgccaaggga	atccacccag	aatgcacccc	tgaacctcaa	1800
			gtctccgcag			1860
			ccccaagtga			1920
cacccagtgg	gtaggccaag	tgtgttgctt	cagcaaaccg	gaccaggagg	gccagggccg	1980
gatgtgggga	ccctcttcct	ctagcacagt	aaagctggcc	tccagaaa		2028

<210> 7

<211> 3186

<212> DNA

<213> Homo sapien

<400> 7 60 catgececag geteageagg gagetgetgg atgagaaaga geetgaagte ttgeaggaet 120 cactggatag atgttattca actccttcag gttgtgttga actgtgtgac tcatgccagc 180 240 atgaaattga aaagtaccaa gaagtggaag aagaccaaga cccatcatgc cccaggctca 300 gcagggagct gctggatgag aaagagcctg aagtcttgca ggactcactg gatagatgtt 360 attcgactcc ttcaggttat cttgaactgc ctgacttagg ccagccctac agcagtgctg 420 tttactcatt ggaggaacag taccttggct tggctcttga cgtggacaga attaaaaagg 480 accaagaaga ggaagaagac caaggcccac catgccccag gctcagcagg gagctgctgg 540 aggtagtaga gcctgaagtc ttgcaggact cactggatag atgttattca actccttcca 600 gttgtcttga acagcctgac tcctgccagc cctatggaag ttccttttat gcattggagg 660 aaaaacatgt tggcttttct cttgacgtgg gagaaattga aaagaagggg aaggggaaga 720 780 gatcaaaacc caccatgccc caggctcagc agggagctgc tggatgagaa agggcctgaa 840 gtcttgcagg actcactgga tagatgttat tcaactcctt caggttgtct tgaactgact 900 gactcatgcc agccctacag aagtgccttt tatgtattgg agcaacagcg tgttggcttg 960 gctgttgaca tggatgaaat tgaaaagtac caagaagtgg aagaagacca agacccatca 1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

10 tgccccaggc tcagcaggga gctgctggat gagaaagagc ctgaagtctt gcaggactca ctggatagat gttattcgac tccttcaggt tatcttgaac tgcctgactt aggccagccc tacagcagtg ctgtttactc attggaggaa cagtaccttg gcttggctct tgacgtggac aaaattgaaa agaaggggaa ggggaaaaaa agaaggggaa gaagatcaaa gaaggaaaga agaaggggaa gtaaagaagg ggaagaagat caaaacccac catgccccag gctcagcggt gtgctgatgg aagtggaaga gcctgaagtc ttacaggact cactggatag atgttattcg actccgtcaa tgtactttga actacctgac tcattccagc actacagaag tgtgttttac tcatttgagg aacagcacat cagcttcgcc cttgacgtgg acaataggtt tcttactttg atgggaacaa gtctccacct ggtcttccag atgggagtca tattcccaca gtaagcagcc cttactaagc cgagagatgt cattcctgca ggcaggacct ataggcacgt gaagatttga atgaaactat agttccattt ggaagcccag acataggatg ggtcagtggg catggctcta ttcctattct cagaccatgc cagtggcaac ctgtgctcag tctgaagaca atggacccaa gttaggtgtg acacgttcac ataactgtgc agcacatgcc gggagtgatc agtcagacat tttaatttga accacgtatc tctgggtagc tacaaagttc ctcagggatt tcattttgca ggcatgtctc tgagcttcta tacctgctca aggtcagtgt catctttgtg tttagctcat ccaaaggtgt taccctggtt tcaatgaacc taacctcatt ctttgtatct tcagtgttga attgttttag ctgatccatc tttaacacag gagggatcct tggctgagga ttgtatttca gaaccaccaa ctgctcttga caattgttaa cccgctaggc tcctttggtt agagaagcca cagtccttca gcctccaatt ggtgttagta cttaggaaga ccacagctag atggacaaac agcattggga ggccttagcc ctgctcctct cgattccatc ctgtagagaa caggagtcag 2220 gagccgctgg caggagacag catgtcaccc aggactctgc cggtgcagaa tatgaacaac 2280 gccatgttct tgcagaaaac gcttagcctg agtttcatag gaggtaatca ccagacaact 2340 gcagaatgtg gaacactgag caggacaact ggcctgtctc cttcacatag tccatatcac 2400 cacaaatcac acaacaaaaa ggagaagaga tattttgggt tcaaaaaaag taaaaagata 2460 atatagetge atttettag ttattttgaa ceccaaatat tteeteatet ttttgttgtt 2520 gtcattgatg gtggtgacat ggacttgttt atagaggaca ggtcagctgt ctggctcagt 2580 gatctacatt ctgaagttgt ctgaaaatgt cttcatgatt aaattcagcc taaacgtttt 2640 gccgggaaca ctgcagagac aatgctgtga gtttccaacc ttagcccatc tgcgggcaga 2700 gaaggtetag tttgteeate agcattatea tgatateagg aetggttaet tggttaagga 2760 ggggtctagg agatctgtcc cttttagaga caccttactt ataatgaagt atttgggagg 2820 gtggttttca aaagtagaaa tgtcctgtat tccgatgatc atcctgtaaa cattttatca 2880

11

tttattaatc atccctgcct gtgtctatta ttatattcat atctctacgc tggaaacttt 2940 ctgcctctat gtttactgtg cctttgtttt tgctagtgtg tgttgttgaa aaaaaaaaca 3000 ttctctgcct gagttttaat ttttgtccaa agttatttta atctatacaa ttaaaagctt 3060 ttgcctatca aaaaaaaag ggggggtaa aataccgagg ggccaattgg tcccttttgt 3120 aaagggcctc aggagggtaa aagcagaggg gggtaacgga gggaagcgca ggatgagaac 3180 tgggga 3186 <210> 8 <211> 790 <212> DNA <213> Homo sapien <400> 8 gctttgtctg tgtgatctgt gtgtgtatgt tgctttggga atcctgccca gtgcagttta 60 ggaggagete caggagketg etgketgget cagagtetgt ecceggetat ceaetageee 120 agagcagttc tecetatage ecagtaagaa attacaeett caeettecag aetggcaeee 180 acgetetece agaaagtgag aagggaacte acaggtgaet teaccecatg gtggggagaa 240 cagcctgtgc tggggtcaag gcagaaggag gatgagcccc gaggctcctg gagagtctga 300 gcctgggtga ggaaggggag gaggtggtcc ctgatctcag ggcggggaga gccaatgagg 360 agacggagcc atagcacgcg gctctcagct gggggatcct ggtcccctca ccatctcctc 420 tcccccagct actccgtgaa gtctagggac aggaagatgg ttggcgacgt gaccggggcc 480 caggeetatg cetecacege caagtgeetg aacatetggg ceetgattet gggeateete 540 atgaccattg gattcatcct gttactggta ttcggctctg tgacagtctm ccatattatg 600 ttwcagataa tacaggaaaa acggggttac tagtagccgc ccatagcctg caacctttgc 660 actecactgt geaatgetgg ceetgeacge skggetgttg ceeetgeece ettggteetg 720 cccctarata cagcagttta tacccacaca cctgtytaca gtgtcattca ataaagcgca 780 cgtgcttgtg 790 <210> 9 <211> 1233 <212> DNA <213> Homo sapien <400> 9 tgcacgactc cggctgggca ggattccgga caacgcctgg ttcctcttgg gtccttccgg 60 cgtcgccgga gtgaattgat ccgggagttg aagagggctg caaggtggga agtgaagtca 120 gtgcctcagt tgctgatcag tgtgtttttt gtgtccaatt cttttatcac caaaaaagag

PCT/US2003/038815 WO 2004/053077

12 aagaaatatt gcagtgaatg aagattcctc tgcattttag cactgctttt tcaactgtag 240 ttggcttttg aatgaggatg acaatggaag agatgaagaa tgaagctgag accacatcca 300 tggtttctat gcccctctat gcagtcatgt atcctgtgtt taatgagcta gaacgagtaa 360 atctgtctgc agcccagaca ctgagagccg ctttcatcaa ggctgaaaaa gaaaatccag 420 gtctcacaca agacatcatt atgaaaattt tagagaaaaa aagcgtggaa gttaacttca 480 cggagtccct tcttcgtatg gcagctgatg atgtagaaga gtatatgatt gaacgaccag 540 agccagaatt ccaagaccta aacgaaaagg cacgagcact taaacaaatt ctcagtaaga 600 teccagatga gateaatgae agagtgaggt ttetgeagae aateaageae ttgaacaeea 660 aaagaaagaa tttgtaaagt actccaaaag tttcagtgat actctgaaaa cgtatttaa 720 agatggcaag gcaataaatg tgttcgtaag tgccaaccga ctaattcatc aaaccaactt 780 aatacttcag accttcaaaa ctgtggcctg aaagttgtat atgttaagag atgtacttct 840 cagtggcagt attgaactgc ctttatctgt aaattttaaa gtttgactgt ataaattatc 900 agteceteet gaagggatet aatecaggat gttgaatggg attattgeea tettacacea 960 tatttttgta aaatgtagct taatcataat ctcacactga agattttgca tcacttttgc 1020 tattatcatt cttttaagaa ttataagcca aaagaattta cgccttaatg tgtcattata 1080 taacattcct taaaagaatt gtaaatattg gtgtttgttt ctgacatttt aacttgaaag 1140 cgatatgctg caagataatg tatttaacaa tatttggtgg caaatattca ataaatagtt 1200 tacatctgtt aaacatttct ttacttgaaa aaa 1233 <210> 10 <211> 596 <212> DNA <213> Homo sapien <400> 10 ggaagagttc cccttgcttt aggagtgcag actctgcctc aaacttgtga tgaacccaaa 60 gcccacacca gcttccaaat ctccctaagt gtcagttaca cagggtcgag cggccgcccg 120 ggcaggtacg aactgttcaa gagctcccca cactccctgt tcccagaaaa aatggtctcc 180 agetgteteg atgeacaca tggtatatec catgaagace teatecaggt ggggggacee 240 cccatttcac tgcagattca cgactcccca gcattggcca gtgcttctcc acccttaagt 300 cctgtgcctc ccctctatgt tgtagaaaga gccaaatcac agtcctgtgt gactggggac 360 agtcactttc cctgcctgag catcagtttc ttctattaaa tgggggcgag aaatgcatgt 420 ggagcatttc cttgtaaaaa cctgagggtg ggctgggcac ggtggctcat gcctataatc 480 ccagcacttt gggaggctga ggcgggagga ttacttaagc ctagaagttt gagagtttga

PCT/US2003/038815 WO 2004/053077

			13			
gaccagcct	g ggcaacata	a tgagacctc	g tototocaaa	aaaaaaaaa	aaaaaa	596
<212> DN	74					
<400> 11						
	g teceteteg					60
agacaggcc	c ccaggettgg	g ccaatgaaca	gaccaggttc	ggggagggtg	ttggaaaaga	120
gtggatggg	g tggttcccct	taccttgcag	g cccccaggcc	ctcccccct	ccctcccagg	180
tggtcggga	c tcttgatctt	cgctcgtggt	actgtctgtt	cggctgtctt	ccccgcctct	240
ccccaggca	c ctgcatcct	ccttggcacc	tgctgccagg	ctaggaaggg	caaaaacaat	300
cccagttgg	c gtagtcaggg	g agtctccgcc	ctcctcccag	gtttcctcct	cccaggcgcc	360
tcccctgga	c ccgccccat	ctgcccaaga	taattttagt	ttccttgggc	ctggaatctg	420
gacacacag	g gatacacac	gcctctgact	tctctgtccg	aagtcgggac	accctcctac	480
cacctgtag	a gaagcgggag	tggatctgaa	ataaaatcca	ggaatctggg	ggttcctaga	540
cggagccag	a cttcggaacg	ggtgtcctgc	tactcctgct	ggggctcctc	caggacaagg	600
gcacacaac	t ggttccgtta	agcccctctc	tcgctcagac	gccatggagc	tggatctgtc	660
tccacctca	t cttagcagct	ctccggaaga	cctttgccca	gcccctggga	cccctcctgg	720
gactccccg	g ccccctgata	cccctctgcc	tgaggaggta	aagaggtccc	agcctctcct	780
catcccaac	c accggcagga	aacttcgaga	ggaggagagg	cgtgccacct	ccctcccctc	840
tatccccaa	cccttccctg	agctctgcag	tcctccctca	cagagcccaa	ttctcggggg	900
cccctccagt	gcaagggggc	tgeteceeg	cgatgccagc	cgcccccatg	tagtaaaggt	960
gtacagtgag	g gatggggcct	gcaggtctgt	ggaggtggca	gcaggtgcca	cagetegeea	1020
cgtgtgtgaa	atgctggtgc	agcgagctca	cgccttgagc	gacgagacct	gggggctggt	1080
ggagtgccad	ccccacctag	cactggagcg	gggtttggag	gaccacgagt	ccgtggtgga	1140
agtgcaggct	gcctggcccg	tgggcggaga	tagccgcttc	gtcttccgga	aaaacttcgc	1200
caagtacgaa	ctgttcaaga	gctccccaca	ctccctgttc	ccagaaaaaa	tggtctccag	1260
ctgtctcgat	gcacacactg	gtatatccca	tgaagacctc	atccaggtgg	ggggacccc	1320
catttcactg	cagattcacg	actccccagc	attggccagt	gcttctccac	ccttaagtcc	1380
	ctctatgttg					1440
	tgcctgagca					1500
gcatttcct	tgtaaaaacc	tgagggtggg	ctgggcacgg	tggctcatgc	ctataatccc	1560

agcactttgg	gaggctgagg	cgggaggatt	acttaagcct	agaagtttga	gagtttgaga	1620
ccagcctggg	caacataatg	agacctcgtc	tctccaaaaa	aaaaaaaaa	aaaa	1674
<210> 12 <211> 229 <212> DNA <213> Hom	-					
<400> 12	tgtagtaact	ggcactcagg	aacatoaooo	2222225++2	gatattotoa	60
	aagacatgaa					120
	aggttgacag					180
	gcttgggata					240
ggaacagtga	ctatgttttt	agtgctagca	cgtgcatgtc	agctgttaca	aatatgtctc	300
aaagaatctc	tctttgcata	tctaggcctg	tctcctccct	cctacacatt	tccagctcct	360
gctgcagtta	ttcctacaga	agctgccatt	taccagccct	ctgtgatttt	gaatccacga	420
gcactgcagc	cctccacagc	gtactaccca	gcaggcactc	agctcttcat	gaactacaca	480
gcgtactatc	ccagccccc	aggttcgcct	aatagtcttg	gctacttccc	tacagctgct	540
aatcttagcg	gtgtccctcc	acagcetgge	acggtggtca	gaatgcaggg	cctggcctac	600
aatactggag	ttaaggaaat	tcttaacttc	ttccaaggtt	accagtatge	aaccgaggat	660
ggacttatac	acacaaatga	ccaggccagg	actctaccca	aagaatgggt	ttgtatttaa	720
gggccccagc	agttagaaca	tcctcagaaa	agaagtgttt	gaaagatgta	tggtgatctt	780
gaaacctcca	gacacaagaa	aacttctagc	aaattcaggg	gaagtttgtc	tacactcagg	840
ctgcagtatt	ttcagcaaac	ttgattggac	aaacgggcct	gtgccttatc	ttttggtgga	900
gtgaaaaaat	ttgagctagt	gaagccaaat	cgtaacttac	agcaagcagc	atgcagcata	960
cctggctctt	tgctgattgc	aaataggcat	ttaaaatgtg	aatttggaat	cagatgtctc	1020
cattacttcc	agttaaagtg	gcatcatagg	tgtttcctaa	gttttaagtc	ttggataaaa	1080
actccaccag	tgtctaccat	ctccaccatg	aactctgtta	aggaagcttc	atttttgtat	1140
attcccgctc	ttttctcttc	atttccctgt	cttctgcata	atcatgcctt	cttgctaagt	1200
aattcaagca	taagatcttg	gaataataaa	atcacaatct	taggagaaag	aataaaattg	1260
ttattttccc	agtctcttgg	ccatgatgat	atcttatgat	taaaaacaaa	ttaaatttta	1320
	agatatatta					1380
aagtttggat	ctttttctca	gcaggtatca	gttgtaaata	atgaattagg	ggccaaaatg	1440
	aatgaagcag					1500
					-	

atattgtggc ttcatatgta ttattttata ttgtactttt ttcattattg atggtttgga 1560 ctttaataag agaaattcca tagtttttaa tatcccagaa gtgagacaat ttgaacagtg 1620 tattctagaa aacaatacac taactgaaca gaagtgaatg cttatatata ttatgatagc 1680 cttaaacctt tttcctctaa tgccttaact gtcaaataat tataaccttt taaagcatag 1740 gactatagtc agcatgctag actgagaggt aaacactgat gcaattagaa caggtactga 1800 tgctgtcagt gtttaacact atgtttagct gtgtttatgc tataaaagtg caatattaga 1860 cactagctag tactgctgcc tcatgtaact ccaaagaaaa caggatttca ttaagtgcat 1920 tgaatgtggc tatttctcta agttactcat attgtccttt gcttgaatgc aatgccgtgc 1980 agatttatgt ggctgctatt tttattttct gtgcattact ttaacacctt aaagggagaa 2040 gcaaacattt ccttcttcag ctgactggca atggcccttt aactgcaata ggaagaaaaa 2100 aaaaaaggtt tgtgtgaaaa ttggtgataa ctggcactta agatcgaaaa gaaatttctg 2160 tatacttgat gccttaagat gcccaaagct gcccaaagct ctgaaagact ttaagatagg 2220 cagtaatgct tactacaata ctactgagtt tttgtagagt taacatttga taataaaact 2280 tgcctgttta atctcaa 2297

<400> 13

caggcagetg ccaggagete ttccctgctc gctcacgcct gctctcagaa gctccgatcc 60 agacacacge gaggegetgt cettteagea ceacaagete gggetgagga gggaggaete 120 etggeegtee teeteetett caaattgget tgaatetget etgaeeeeee acgagtgeag 180 cacagtctgg gaagaaaggc gtaaggatgg tgaagctgaa cagtaacccc agcgagaagg 240 gaaccaagcc gccttcagtt gaggatggct tccagaccgt ccctctcatc actcccttgg 300 aggttaatca ettacagetg eetgeteeag aaaaggtgat tgtgaagaca agaaeggaat 360 atcagccgga acagaagaac aaagggaagt tccgggtgcc gaaaatcgct gaatttacgg 420 tcaccatcct tgtcagcctg gccctagctt tccttgcgtg catcgtgttc ctggtggttt 480 acaaagcctt cacctatttg aaggasctaa attcgtagca mattctgtgg cagttttaaa 540 aagttaagct gctatagtaa gttactgggc attctcaata cttgaatatg gaacatatgc 600 acaggggaag gaaataacat tgcactttat aaacactgta ttgtaagtgg aaaat 655

<210> 13

<211> 655

<212> DNA

<213> Homo sapien

<210> 14

<211> 5636

<212> DNA

16 .

<213> Homo sapien

<400> 14	· ttcaactcat	· cacaacatt				
					gtggttaaga	60
					gccaagtgtt	120
ggtgttgcat	: gggtcaccta	caagcatgct	gaattcagat	agaatgtaga	caagagggat	180
ggtgaggaaa	acctacggca	agcagctcta	taatttctgg	aaagtgacca	ggaggctcgt	240
ggatgatgg	: aggaaggaga	gtagaaagtg	atttagccag	aagatatgaa	cttcaaatat	300
ttttgaagca	gaaaagagca	gaaatggttt	ggaagtagca	atcaggacca	aagagaccac	360
ccaaactcaa	tagcccaacc	tcttagcctt	agggtacgca	gaatctgaaa	agtgtaatct	420
caattttgga	gctctacago	agtaaatctg	caagtaacca	cctgtagcta	atgtccaggg	480
attaaaaaaa	. agataatgaa	aatgttttg	cccaggaaac	attaatttca	ggcgtatcta	540
gaatgcagtt	cttgcattat	acgtactggg	ttaccagtca	ttgcaaagtc	atggtccttt	600
gcctctcagc	tcagttcccc	ttctgaagat	aaaaacattt	gcctatgtgt	ccagggaagc	660
tgtgaggaca	aaaaaccaag	caacttttac	aagggatcat	aaaaacctac	ctaacaactt	720
gctaattaaa	acctgatttt	taatttgcat	tattgagctt	aataccattg	cttaaatgta	780
tgtgaatact	gagatttta	taaaggaatt	agttacctct	aggaaaataa	ttatcactaa	840
aagaaataat	atcgcaattt	gaataaaagt	aagtcgctta	aatcatagga	aacattttta	900
gtgaaggcgt	ttgttttaaa	tgtattctaa	cctagcaatg	tagaaagcag	gcaaacattt	960
aaaaaaaatt	taaccagttt	ctaaaacata	gtttggagct	cagattctgg	ggaaatgatt	1020
aacacaccct	acatccaagg	tctcctttcc	tttctagaaa	gaaagcatct	ttaaacatac	1080
atattcatca	gaaatacaaa	tatttgtcat	cagtgatact	aatttccagg	caaacatttt	1140
aattgcagtc	aatgtattag	attctaccag	gttttaattt	ggatcggtaa	tacgggtttg	1200
attagggttc	taggcctaat	tataggtcac	tagtcttcct	ttaggattat	gcaccatctg	1260
ttattttaaa	ttgaccattg	agggggttcc	caagggttct	ccttcgtttt	gttatcaaac	1320
gttaggttta	ggattcttgc	gggtggtggg	atccaaagcc	agagacggtt	tcaacaaaaa	1380
tgcaagcgcg	aatttgtctt	gcgtctgaac	gcactgttca	aattaaacaa	tttagacatg	1440
ccccaactat	gacactaaga	agtgaatggt	atagtacact	tttgtcacaa	attcaagggt	1500
aatttaagtg	cccgatggta	gaggtctggc	ttcccctggg	tttctggaac	aaaagaagcg	1560
ttcgcgagga	gaggggtaac	teccegecet	cccctccca	aagtaaatca	aatcaaggaa	1620
tatgagtgcc	tgcagacaag	cctcgcttct	tttcttcccc	ttcagggcta	gcgtttgggg	1680
aaggcaaggc	tgcggctact	cttggagctt	cagtgtcccg	ggaggaagaa	aggcccagcc	1740

			<i>'</i>			
aagggteete	acactggcgt	ggaattcggc	gegttegtag	g gcgatcgac	c ccagagacga	1800
aagctgcttc	tcaagctggg	ggagggagag	gaaacggcg	c acaaaagca	g tacgacctgt	1860
cccttatcgg	cgtctaaggg	gaagggtgga	gaaaacgaaa	a acagaagcg	g gccgggagcc	1920
teggeteeeg	ccccagegec	ttttaaactg	g cgtttctacc	tcctctcgct	cagcgcggcg	1980
gctaatggaa	cccgcgcgag	cegtetegee	aatcaccgc	gegetteet	ccgtcgcccg	2040
ccaatggcgg	cgcgcgttct	tggggcgtgg	gcgaagcagg	g ctgctcgcct	cctgcctgta	2100
gtgtgtgggc	tggggttggt	gcgagcttcc	agcttggccg	cagttggttc	gtagttcggc	2160
tctggggtct	tttgtgtccg	ggtctggctt	ggctttgtgt	ccgcgagttt	ttgttccgct	2220
ccgcagcgct	cttcccgggc	aggagccgtg	aggctcggag	geggeagege	ggtccccggc	2280
caggagcaag	cgcgccggcg	tgagcggcgg	cggcaaaggc	: tgtggggagg	gggcttcgca	. 2340
gatccccgag	atgccggagt	tcctggaaga	cccctcggtc	ctgacaaaag	acaagttgaa	2400
gagtgagttg	gtcgccaaca	atgtgacgct	gccggccggg	gagcagcgca	aagacgtgta	2460 .
cgtccagctc	tacctgcagc	acctcacggc	tcgcaaccgg	ccgccgctcc	ccgccggcac	2520
caacagcaag	gggcccccgg	acttctccag	tgacgaagag	cgcgagccca	ccccggtcct	2580
cggctctggg	gccgccgccg	cgggccggag	ccgagcagcc	gtcggcagga	aagccacaaa	2640
aaaaactgat	aaacccagac	aagaagataa	agatgatcta	gatgtaacag	agctcactaa	2700
tgaagatctt	ttggatcagc	ttgtgaaata	cggagtgaat	cctggtccta	ttgtgggaac	2760
aaccaggaag	ctatatgaga	aaaagctttt	gaaactgagg	gaacaaggaa	cagaatcaag	2820
atcttctact	cctctgccaa	caatttcttc	ttcagcagaa	aatacaaggc	agaatggaag	2880
taatgattct	gacagataca	gtgacaatga	agaagactct	aaaatagagc	tcaagcttga	2940
gaagagagaa	ccactaaagg	gcagagcaaa	gactccagta	acactcaagc	aaagaagagt	3000
tgagcacaat	cagagctatt	ctcaagctgg	aataactgag	actgaatgga	caagtggatc	3060
ttcaaaaggc	ggacctctgc	aggcattaac	tagggaatct	acaagagggt	caagaagaac	3120
tccaaggaaa	agggtggaaa	cttcagaaca	ttttcgtata	gatggtccag	taatttcaga	3180
gagtactccc	atagctgaaa	ctataatggc	ttcaagcaac	gaatcettag	ttgtcaatag	3240
ggtgactgga a	aatttcaagc	atgcatctcc	tattctgcca	atcactgaat	tctcagacat	3300
acccagaaga (gcaccaaaga	aaccattgac	aagagctgaa	gtgggagaaa	aaacagagga	3360
aagaagagta (gaaagggata	ttcttaagga	aatgttcccc	tatgaagcat	ctacaccaac	3420
aggaattagt o	gctagttgcc	gcagaccaat	caaaggggct	gcaggccggc	cattagaact	3480
cagtgatttc a	aggatggagg	agtcttttc	atctaaatat	gttcctaagt	atgttccctt	3540
ggcagatgtc a	agtcagaaa	agacaaaaaa	gggacgetee	attcccgtat	ggataaaaat	3600

tttgctgttt gttgttgtgg cagttttttt gtttttggtc tatcaagcta tggaaaccaa 3660 ccaagtaaat cccttctcta attttcttca tgttgaccct agaaaatcca actgaatggt 3720 atctctttgg cacgttcaac ttggtctcct attttcaata actgttgaaa aacatttgtg 3780 tacacttgtt gactccaaga actaaaaata atgtgatttc gcctcaataa atgtagtatt 3840 tcattgaaaa gcaaacaaaa tatatataaa tggacttcat taaaatgttt ttgaactttg 3900 gactagtagg agatcacttt gtgccatatg aataatcttt tttagctctg gaactttttg 3960 taggetttat ttttttaatg tgggeatett attteatttt tgaaaaaatg tatatgtttt 4020 ttgtgtattt gggaaacgaa gggtgaaaca tggtagtata atgtgaagct acacatttaa 4080 atacttagaa ttcttacaga aaagatttta agaattattc tctgctgaat aaaaactgca 4140 aatatgtgaa acataatgaa attcagtaag aggaaaagta acttggttgt actttttgta 4200 actgcaacaa agtttgatgg tgtttatgag gaaaagtaca gcaataatct cttctgtaac 4260 ctttattaat agtaatgttg ttgtagccct atcatactca ctttttaaga cacagtatca 4320 tgaaagtcct atttcagtaa gacccattta catacagtag atttttagca gagatctttt 4380 agtgtaacat acatatttta gagaattgtt ggctagctgt acatgttttg aaaagctgtt 4440 tagctagcta taaggctata attggaaatt tgtatttttt atttacagca aaacatttat 4500 tcagtcatcc agtttgctac caaaatatgt tttagataag tgtgtgtatg tttgtttaga 4560 agttagaaat tgtaaacact ggtcttatgt ttcatttgga ttcattattg cattgtcttg 4620 ttaccagaaa caaatcctcc cgggttcaag caattttcct gcctcggcag agacggggtt 4680 tcaccatgtt ggccaggctg gtctcgaacc cctgacctca agtgatcagc ccacctcagc 4740 ttcccaaagt gctgggatta caggtgtgat ccactgcacc cggccggcat tatgattttg 4800 tgtactcttg aaatggttat ctttgtggat gattttttt tttaagctga aacttacctc 4860 atgaataact tgattaaagt agtaggtgat taaaatttca atagaatcaa atgagacaaa 4920 aattttaaac tgactcattt gagtttcaac tttacagtca ttgaccataa agcacactaa 4980 aaatgtaagt tatttttaaa tacatctgaa ataaaaatac ttactaaaaa ggaagaagcc 5040 gaagatgtat atttagacca gcacacaatt ttgatttcaa ttagccttat tctaatattt 5100 agettttaga tettteatae acatttteae gtaetttgea attgagacea gaaagaettg 5160 taggtctttc tgcagaatga gtgggtcctt gcaaagtgag tgggaaactt actcctagat 5220 cagaaatgtt tgcctctctg agtaaaatgt ttctttcaga tgagccatag agggggcacc 5280 ttttactcaa cttttctttg ttttgaaact ttgtttccca tactgttttc agccttttgt 5340 ttataattag aaattgtgag aagcttcatt tagtgtttaa aaatgtgggg agataaatca 5400

WO 2004/053077

19

PCT/US2003/038815

gacttaacat	: gtatgtaaga	tcaattcact	: taaaagtatg	gtccaaatag	r caaaaatagg	5460
accaggtgaa	a acatgtagto	: atttttaaa	aacatgtact	tggtcttttg	tgtgtgtctg	5520
ttttattcca	a ttagaataaa	tgtgtccttg	, atgtaaatgo	aaagcattto	: ttcctgatta	5580
aattgtagat	gtagacttta	caatataatt	caataataaa	aagtaattaa	cctcta	5636
<210> 15 <211> 288 <212> DNF <213> Hom	-					
<400> 15 gagccggcta	ctttgggcgg	acttttcaaa	acagcgaaaa	caaaacaaat	cggggacctt	60
taaaaggcgt	aatgagacca	gaaacgatct	ccttccgccc	ctctgtcttc	ccccgttccc	120
caacgcagat	caatcgcgga	ataagcccga	cgcccagatt	ccgctctccg	ccctagcgcc	180
aggcgggagg	actggctcgg	caaagccaag	gagagctagg	gaggccgcga	gagaggctcg	240
agacggcagc	ttaggggcgg	gactctttt	taaagtccgt	ggaggaagtg	caggatccct	300
ccgcggggag	tcacgtgccc	cgcccccttg	ggggcgtcga	aactcttaac	aaaaacaagg	360
ggctcgggga	ggtttccgct	gaggcggcgg	gggtgcggcg	gtgggctggt	cttccgcggc	420
cggcgttgcg	ccgcggcgga	gggtgggcgc	gcggggagcg	ggatggagct	ggggcgaccc	480
ttgctggagg	tactggcctc	agccctttct	cccgcttccc	cacccctctt	acccccagat	540
tacattctct	gtgtggtgtc	tttactgcag	atgaaggatt	tgggggcaga	gcacttggca	600
ggtcatgaag	gggtccaact	tctcgggttg	ttgaacgtct	acctggaaca	agaagagaga	660
ttccaacctc	gagaaaaagg	gctgagtttg	attgaggcta	ccccggagaa	tgataacact	720
ttgtgtccag	gattgagaaa	tgccaaagtt	gaagatttaa	ggagtttagc	caacttttt	780
ggatcttgca	ctgaaacttt	tgtcctggct	gtcaatattt	tggacaggtt	cttggctctt	840
atgaaggtga	aacctaaaca	tttgtcttgc	attggagtct	gttcttttt	gctggctgct	900
agaatagttg	aagaagactg	caatattcca	tccactcatg	atgtgatccg	gattagtcag	960
tgtaaatgta	ctgcttctga	cataaaacgg	atggaaaaaa	taatttcaga	aaaattgcac	1020
tatgaattgg	aagctactac	tgccttaaac	tttttgcact	tataccatac	tattatactt	1080
tgtcatactt	cagaaaggaa	agaaatactg	agccttgata	aactagaagc	tcagctgaaa	1140
gcttgcaact	gccgactcat	cttttcaaaa	gcaaaaccat	ctgtattagc	cttgtgcctt	1200
ctcaatttgg	aagtggaaac	tttgaaatct	gttgaattac	tggaaattct	cttgctagtt	1260
aaaaaacatt	ccaagattaa	tgacactgag	ttcttctact	ggagagagtt	ggtttctaaa	1320
tgcctagccg	agtattcttc	tcctgaatgt	tgcaaaccag	atcttaagaa	gttggtttgg	1380

WO 2004/053077

atcgtttcaa	ggcgcacagc	ccagaacctc	cacaacagct	actatagtgt	tectgagetg	1440
ccaacgatac	ctgagggggg	ttgttttgat	gaaagtgaaa	gtgaggactc	ttgtgaagat	1500
atgagttgtg	gagaggagag	tctcagcagc	tctcctccca	gtgatcaaga	gtgcaccttc	1560
tttttcaact	tcaaagtggc	acaaacactg	tgctttccat	cttagaaatc	tgattgttct	1620
gtcagaattt	atatttacag	gtttcaaagc	aataaatggg	ggaataggta	gtttcctggt	1680
ttagccccca	tctagtcagg	aattaatata	ctggaatacc	taccttctat	ttgttattca	1740
gatcagatct	ggcctatttt	catatttatc	ctaagccatc	aaatggggta	gtgcctctta	1800
aaccattaac	agtactttag	acattggcac	tttattttc	tcgtagatct	ttagctactt	1860
tggggaggag	ggaaggtgct	gataccttca	atttgttact	tttcaagatt	tttaaaaata	1920
actagtgtag	cttatcttaa	acattttata	aaaccttcag	atgtctttaa	gcagattgga	1980
agtatgcaag	tgcttcctta	gcagggacag	tggataatcc	ttaatggttt	atcatagatt	2040
tcaccctccc	cccttctcag	aagagtgagt	atgctcttaa	atgtcaaaca	catttttgtt	2100
gttttgttt	ttaaatgatc	agtgtctatt	tgatgtgatg	cagatcttat	aaatttggga	2160
attataatat	tgacatttct	gtgattttta	tatatgtaat	gtcttaattg	agatttctgt	2220
taaggcagaa	ataattaggc	tagggctctt	agttttcatt	cctattgccc	aagtattgtc	2280
aaactatggt	attattttaa	tgttacttta	aaaatccata	atctgctagt	tttgcatgta	2340
cttatatgaa	aacagtgcag	taagttgaaa	actcagtatc	tatggaattg	ataaatgttg	2400
atctggtgta	gtatatttta	tcgcattttc	ttatattaaa	aaatgtctgc	atgattacat	2460
tttatttcct	ttgtaattta	catttcagaa	tagtgtattg	ctatatgggt	gccaagattg	2520
aatatgaaga	acccgagtgt	ttgtagtatt	atagttttaa	gcaaatctgt	gtggtgatac	2580
agccataaga	atggggctta	tataaactct	gtacatgtaa	gattttgtac	agagaatttt	2640
taactttata	aattgtatat	gaacatgtaa	atcttttaaa	atgtacataa	aatactgtat	2700
ttttttacct	tgtgtgtgat	agtctagtca	ttgcatgtaa	atataattta	ttatgtattc	2760
tgtagtataa	atcatacatt	gatgacttac	atttttactg	gtaagtcaac	atccgttgga	2820
tgttttctga	agtggctctt	tttgaagtga	taatagattg	taattcaaaa	taaaattatt	2880
aatgaa						2886

<210> 16 <211> 5374 <212> DNA <213> Homo sapien

tgatacatca ctatagggca actggtcctc tagatgctgc tcgagcggcs scagtgtgat

ggatdgcggc gcggccgagg tactgcttct gacataaaac ggatggaaaa aataatttca 120 gaaaaattgc actatgaatt ggaagctact actgccttaa actttttgca cttataccat 180 actattatac tttgtcatac ttcagaaagg aaagaaatac tgagccttga taaactagaa 240 getcagetga aagettgeaa etgeegaete atetttteaa aageaaaace atetgtatta 300 gccttgtgcc ttctcaattt ggaagtggaa actttgaaat ctgttgaatt actggaaatt 360 420 ctcttgctag ttaaaaaaca ttccaagatt aatgacactg agttcttcta ctggagagag ttggtttcta aatgcctagc cgagtattct tctcctgaat gttgcaaacc agatcttaag 480 aagttggttt ggatcgtttc aaggcgcaca gcccagaacc tccacaacag ctactatagt 540 600 gttcctgagc tgccaacgat acctgagggg ggttgttttg atgaaagtga aagtgaggac 660 tcttgtgaag atatgagttg tggagaggag agtctcagca gctctcctcc cagtgatcaa 720 gagtgcacct tctttttcaa cttcaaagtg gcacaaacac tgtgctttcc atcttagaaa tctgattgtt ctgtcagaat ttatatttac aggtttcaaa gcaataaatg ggggaatagg 780 tagtttcctg gtttagcccc catctagtca ggaattaata tactggaata cctaccttct 840 900 atttgttatt cagatcagat ctggcctatt ttcatattta tcctaagcca tcaaatgggg tagtgcctct taaaccatta acagtacttt agacattggc actttatttt tctcgtagat 960 1020 ctttagctac tttggggagg agggaaggtg ctgatacctt caatttgtta cttttcaaga 1080 tttttaaaaa taactagtgt agettatett aaacatttta taaaacette agatgtettt aagcagattg gaagtatgca agtgcttcct tagcagggac agtggataat ccttaatggt 1140 1200 ttatcataga tttcaccctc cccccttctc agaagagtga gtatgctctt aaatgtcaaa 1260 cacatttttg ttgttttgtt ttttaaatga tcagtgtcta tttgatgtga tgcagatctt 1320 ataaatttgg gaattataat attgacattt ctgtgatttt tatatatgta atgtcttaat 1380 tgagatttct gttaaggcag aaataattag gctagggctc ttagttttca ttcctattgc ccaagtattg tcaaactatg gtattatttt aatgttactt taaaaatcca taatctgcta 1440 1500 gttttgcatg tacttatatg aaaacagtgc agtaagttga aaactcagta tctatggaat 1560 tgataaatgt tgatctggtg tagtatattt tatcgcattt tcttatatta aaaaatgtct gcatgattac attitatitc ctitgtaatt tacatticag aatagtgtat tgctatatgg 1620 gtgccaagat tgaatatgaa gaacccgagt gtttgtagta ttatagtttt aagcaaatct 1680 1740 gtgtggtgat acagccataa gaatggggct tatataaact ctgtacatgt aagattttgt acagagaatt tttaacttta taaattgtat atgaacatgt aaatctttta aaatgtacat 1800 aaaatactgt atttttttac cttgtgtgtg atagtctagt cattgcatgt aaatataatt 1860 tattatgtat totgtagtat aaatcataca ttgatgactt acatttttac tggtaagtca 1920

acatccgttg	gatgttttct	gaagtggctc	tttttgaagt	gataatagat	tgtaattcaa	1980
aataaaatta	ttaatgaatt	ctccttgttt	gggatcacat	cttaattttt	aatctgttaa	2040
aagttcttga	tgtattttaa	tgagaagact	ttaggtgagg	ctacagtgat	tccagagtga	2100
gccttctaac	tggctagcag	aagttctcta	ggtttggcat	ctgtgccttg	gagatactga	2160
aagagaatct	gtcatttgac	aattgacctc	tttgtgggat	ggactcatta	agtatgctct	2220
cagagactgg	tatattacca	gaatgcctat	taattttcag	tgagaggcaa	caggtattaa	2280
gtagaacaga	atgctcaggt	tggcagatta	gaacgatctt	tcaggagaca	aagcaagttt	2340
taatcagttg	tttggttaat	aagtatgggg	tgttcgctgt	gatagggccc	cgccagcttc	2400
tggctcttgt	ggacctcaaa	agtatcaggt	ggttttgcaa	gtggtggtcc	tttcccctgc	2460
cccaccccaa	taggttcccc	atctgtctag	tttgattttt	gtagaccttt	gttttctcta	2520
gttagaaaat	caggtacact	gaatatggtt	ttcatgtaac	acctcttctc	tggagatagg	2580
ggtatgtttt	cctacccttc	tagtggagaa	tcctacttga	ggatgacctt	tcctctctta	2640
ctaaataata	ttagtaaata	gtgggcaata	tattctgctt	tcagattttg	atttgttgag	2700
atgtaaaagt	tgtttggggc	ttaccaaatc	tcaagactct	ctttagctcc	tgcaggattg	2760
tattgctttt	cttactggat	atttttcctg	ggtaagcatc	tttgtggctt	catctcttcc	2820
ccctgtggtt	ttcagtgtat	ttagtcgaga	cctctctgct	gagcttgcaa	cctgtttatt	2880
cacatggcct	gccatgccac	ttggaggttt	ctgattactc	ccaaacctgc	tggttcttta	2940
tgtctttctc	agcgaataat	tccatctgtt	catgttggaa	acttaggtga	tatgctcatc	3000
tccttttgcc	tgtttatgga	ggtcaccagc	ctctatcatt	tgtatgattt	cgtttacact	3060
gtttatatct	ctctgtcccc	cctttttctg	ccattggcat	ggtttagacc	tgtactcttt	3120
atcagcagag	gtactgtaat	atatttgtga	tccctcagct	tccaggctta	ctcctggtct	3180
ctgccttcct	atctacatat	ccttttaaaa	taaaatttta	actatetect	gaaaaattgt	3240
tgagtaggtc	acgcacaatc	aggagaaaaa	tctattcatg	acatacaagt	ctctgtctaa	3300
tctgaacact	gcacctgtct	ctggcctttt	tttcttgtca	tttcctagac	cttaaaaaat	3360
gtgtattgag	aaagaactct	gttagctata	cagaagatga	actgggcaat	atagagtagc	3420
agcatggaga	ccagtctgac	tgaactaagg	cagtggaagt	gtggatgagg	aagagaggtg	3480
aaaattgaga	agcgctatcc	tttctctttg	ggcattatta	ggaggctcac	agacaagtcc	3540
aggagcctgg	ttataccctc	ctgtgccatt	caaccaggtg	gctttcccat	gactgtgatg	3600
aataaaattg	agaagcccct	gcccttttca	gagcagaggg	tgaggagaaa	gctaccattt	3660
tgtcctcatc	cttacccccg	ttgacttggc	gagagatttg	acctttcagg	ttttgatcct	3720

gtcattttct	aggatgtggt	gcacgcactt	tgctgttgcg	catggtgaag	tattgtgcct	3780
aggtcctggg	tcttcatctg	tttggctctg	ctactgtttc	ctcctcccag	gaagtgtggt	3840
tagacaaata	atgtgtttta	attacctgtc	acactcagga	ttaatacata	ctcaggttaa	3900
ctgtagagag	g gcattggctt	cagaacactc	ctcgtgacaa	ttttaaccat	tttctttgtc	3960
tagagtctgo	ctttttcttt	tttacaattt	cttttatttc	aacactaggt	ttcaatatgg	4020
tgttcctgct	acctcccacc	tecetectee	ctcatcacac	atgcaaattg	tcagcttatt	4080
gagacaacco	e acttagattc	atatatggac	aaggacaagg	tattttgcat	ttgttactgg	4140
aattcagttt	tcctaactat	ttactaccag	aaatggtcaa	taacttactt	tgtgtttagc	4200
aaatcaaatt	gtgtgataga	tagtttccca	gtatgatggc	cagtcagtct	ttccatccct	4260
gtgcctacat	getgetette	ccgtccacaa	gtggagtctg	tttctcttga	gttttggctg	4320
gccttatgaa	tggctttgct	tactgaagtg	cagcagaaga	aatttagtat	atgtccaagc	4380
ctaggcttta	a agagactggc	agctttcctt	ttatcctttt	tggaagctag	ccaccatgct	4440
gcaaagaag	tcagctggat	tactgaaaga	tgagaggcca	tgtggagaga	gactcttgag	4500
gatgagagat	: tatcttggat	gttccagcct	taagctccca	gctgaatgtg	ggtgtatcct	4560
cagctacaco	acagaaaaca	gaggaactac	tcagtcgatc	ccaatcaacc	cacagactca	4620
ctagaaataa	a caaattattg	ttttaagcca	cgaggttttg	ggggagggtt	gttaaacagt	4680
aatagataag	g tgagacagat	tgcttgttat	ttatggtcaa	atggtgatta	tctctggtga	4740
gattacaggt	gatgttttt	ttaagttatg	cctatctgta	gtttcctttt	tttcctaaaa	4800
ttgatttgaa	a ttattagtgt	attaacagaa	taaagaatga	actttaaaac	acacacgctg	4860
gttatatgct	tcctctaatt	aaaattcatg	gctctcacca	caccttagca	tcaagttcca	4920
acttcgtact	geggettaga	agacccagct	tgatttgttc	ceggeteect	tttcagcctt	4980
gtttcatgg	e atccacatcc	acgtatttcc	caggcccact	acatctgaga	tgagtcagag	5040
acccctctta	a ggggcctgtt	ccctactccc	aaacatggaa	attaaaaaaa	aaatcgtgag	5100
ttcttccaag	g agaaattcca	ggcatctggc	tagccctgag	aagtaagaga	gaaatgtgat	5160
aagcaacaa	a tagcggctca	aaacaatagc	caagtaagtt	agaatcatgg	gatgtttggt	5220
tcccctatag	g aaactacaga	taacatctta	atatatatcc	ctgagttgtt	ttccagaaac	5280
ctgaacccct	agcaaatgga	tgcgctagca	catagacctc	agataagagg	gagctgagga	5340
ctgaactctg	g accaccgttc	tttgttctaa	attt			5374

<210> 17 <211> 663 <212> DNA <213> Homo sapien

<400> 17						
	acagaatgaa	catcatcatg	aatacatgaa	tcggctgtga	tgtgtgaact	60
gctaagggcc	aaatgaacgt	ttgcagagca	gtgggcacaa	tgtttacaat	gtatgtgtat	120
gtcactttcg	gtacctgtga	atgcatgggg	acgtgctgaa	cccgaaaaaa	agtgcctttc	180
cataaggact	gcaatagaga	gggcaattta	ccctggtggt	acacggaacc	tagattcact	240
cctgccatgc	cttgccaata	gtaagctgca	gggtggaaca	agaaatcact	tgctctgggg	300
ggaagggagg	ggggaatggg	tgtgtcagct	gggtagatac	aaaccctgaa	aagagaatcc	360
atgtgctgct	ggcaggcaac	atttttaaa	gctctttcag	aaaccctcat	atttggggtt	420
tcttttcagg	aaacattcct	gtggagggaa	aacgaatatg	aagataattt	tcagctaatt	480
atctgggtga	cccagaatcg	tgtatatggc	tataggatag	acttcttaat	aatggcaagt	540
gacgtggccc	tggggaaagg	tgctttatgt	accgtgtgtg	cgtgtatgtg	tgtgtatcta	600
tacaagtttg	tcagctttgg	catgactgtt	tgtttgtctc	gaaaaccaat	aaactcaaag	660
ttt						663
	2 o sapien					
<400> 18 tcaggcgggg	gcctgtcccc	agcagtccgt	gttgtgatgg	tgccagatcc	cacacgttct	60
gtcaactttg	agaagcttca	aggttaatcc	tgtatcattt	ccatcttgat	cccctacgtt	120
ttgcctcact	tcttgaaaag	gagtgaaaag	ggaacagggc	tggtgtgtag	ggcagtgacc	180
cagcctgcag	ttgtgacgag	ccaccatggc	aaaggggtcc	cagagtggcc	gcttggcttc	240
tccaaagttg	ccgtggtcta	tgtatgtcca	ggagagcatg	tagtccttgt	gaaggcccca	300
cactgtgtgt	gcgttcatgg	gacaaaggtt	gagaactgtc	acttccaact	gtaagatete	360
aaagcacttg	agaagaggaa	accagttgta	tagagaaatc	tagatgtact	tggggttggg	420
gtttggctga	gttgatgggc	catgtgaggg	gggcacacag	gcacagtgga	ggaagaaccc	480
tccaaaagac	tgcggcctgg	cctgccaacc	tctctccaaa	gccccagcct	ctgccagctc	540
tggccaggcc	ccactgagaa	atggctgact	ccagctttct	gctgcgcccc	tccactggcc	600
ttcactcatc	cctgttttga	ctgactgtcc	cctgccatgg	cctgcagact	tcttatcctg	660
ccctttgttg	tcatgtccct	gagtcactgg	ggtgacgcct	tgctctggcc	ctctgtcccc	720
agctcatcct	gccccacgtg	gacatccagc	taaagtattt	tgacctcggg	ctcccaaacc	780
gtgaccagac	tgatgaccag	gtcaccattg	actctgcact	ggccacccag	aagtacagtg	840

25	
tggctgtcaa gtgtgccacc atcacccctg atgaggcccg tgtggaagag ttcaagctga	900
agaagatgtg gaaaagtccc aatggaacta tccggaacat cctggggggg actgtcttcc	960
gggagcccat catctgcaaa aacatcccac gcctagtccc tggctggacc aagcccatca	1020
ccattggcag gcacgcccat ggcgaccagt acaaggccac agactttgtg gcagaccggg	1080
ccggcacttt caaaatggtc ttcaccccaa aagatggcag tggtgtcaag gagtgggaag	1140
tgtacaactt ccccgcaggc ggcgtgggca tgggcatgta caacaccgac gagtccatct	1200
caggttttge gcacagctge ttecagtatg ccatecagaa gaaatggeeg etgtacatga	1260
gcaccaagaa caccatactg aaagcctacg atgggcgttt caaggacatc ttccaggaga	1320
tctttgacaa gcactataag accgacttcg acaagaataa gatctggtat gagcaccggc	1380
tcattgatga catggtggct caggtcctca agtcttcggg tggctttgtg tgggcctgca	1440
agaactatga cggagatgtg cagtcagaca teetggeeca gggetttgge teeettggee	1500
tgatgacgtc cgtcctggtc tgccctgatg ggaagacgat tgaggctgag gccgctcatg	1560
ggaccgtcac ccgccactat cgggagcacc agaagggccg gcccaccagc accaacccca	1620
tegecageat etttgeetgg acaegtggee tggageaeeg ggggaagetg gatgggaaee	1680
aagaceteat caggtttgee cagatgetgg agaaggtgtg egtggagacg gtggagagtg	1740
gagecatgae caaggaeetg gegggetgea tteaeggeet cageaatgtg aagetgaaeg	1800
agcacttect gaacaccaeg gaetteeteg acaccateaa gagcaacetg gacagageee	1860
tgggcaggca gtagggggag gcgccaccca tggctgcagt ggaggggcca gggctgagcc	1920
ggcgggtcet cetgagegeg geagagggtg ageetcaeag eecetetetg gaggeettte	1980
taggggatgt ttttttataa gccagatgtt tttaaaagca tatgtgtgtt tcccctcatg	2040
gtgacgtgag gcaggagcag tgcgttttac ctcagccagt cagtatgttt tgcatactgt	2100
aatttatatt gcccttggaa cacatggtgc catatttagc tactaaaaag ctcttcacaa	2160
aa	2162
<210> 19 <211> 1527 <212> DNA <213> Homo sapien <400> 19	
ggcacgagaa ttggcagact ccagagccca cacatttgca ctctagactc tactgccttc	60
ctcatgaaga attttaggac ccccgtctgg ctgtgttgtt gcttggggtt caaattctgg	120
ttgaaagatg gcggctgcag tgggaccact attatctctg tcctcacaga gttcaagctg	180
aagaagatgt ggaaaagtcc caatggaact atccggaaca tcctgggggg gactgtcttc	240

			26			
cgggagccca	tcatctgcaa	aaacatccca	cgcctagtcc	ctggctggac	caagcccatc	300
accattggca	ggcacgccca	tggcgaccag	gtaggccagg	gtggagaggg	gatccactga	360
cctgggcacc	ccccgactgg	agctcctcgc	ctagccatcc	tettgtetet	gcagtacaag	420
gccacagact	ttgtggcaga	ccgggccggc	actttcaaaa	tggtcttcac	cccaaaagat	480
ggcagtggtg	tcaaggagtg	ggaagtgtac	aacttccccg	caggcggcgt	gggcatgggc	540
atgtacaaca	ccgacgagtc	catctcaggt	tttgcgcaca	gctgcttcca	gtatgccatc	600
cagaagaaat	ggccgctgta	catgagcacc	aagaacacca	tactgaaagc	ctacgatggg	660
cgtttcaagg	acatcttcca	ggagatcttt	gacaagcact	ataagaccga	cttcgacaag	720
aataagatct	ggtatgagca	ccggctcatt	gatgacatgg	tggctcaggt	cctcaagtct	780
tcgggtggct	ttgtgtgggc	ctgcaagaac	tatgacggag	atgtgcagtc	agacatcctg	840
gcccagggct	ttggctccct	tggcctgatg	acgtccgtcc	tggtctgccc	tgatgggaag	900
acgattgagg	ctgaggccgc	tcatgggacc	gtcacccgcc	actatcggga	gcaccagaag	960
ggccggccca	ccagcaccaa	ccccatcgcc	agcatctttg	cctggacacg	tggcctggag	1020
caccggggga	agctggatgg	gaaccaagac	ctcatcaggt	ttgcccagat	gctggagaag	1080
gtgtgcgtgg	agacggtgga	gagtggagcc	atgaccaagg	acctggcggg	ctgcattcac	1140
ggcctcagca	atgtgaagct	gaacgagcac	ttcctgaaca	ccacggactt	cctcgacacc	1200
atcaagagca	acctggacag	agccctgggc	aggcagtagg	gggaggcgcc	acccatggct	1260
gcagtggagg	ggccagggct	gagccggcgg	gtcctcctga	gcgcggcaga	gggtgagcct	1320
cacagcccct	ctctggaggc	ctttctaggg	gatgttttt	tataagccag	atgtttttaa	1380
aagcatatgt	gtgtttcccc	tcatggtgac	gtgaggcagg	agcagtgcgt	tttacctcag	1440
ccagtcagta	tgttttgcat	actgtaattt	atattgccct	tggaacacat	ggtgccatat	1500
ttagctacta	aaaagctctt	cacaaaa				1527
<210> 20 <211> 136 <212> DNA	4					

<212> DNA

<213> Homo sapien

<400> 20

27

catactgaaa	gcctacgatg	ggcgtttcaa	ggacatcttc	caggagatct	ttgacaagta	360
aagcctcatc	catgtactct	gtggcctttc	ttcccttccc	cccatgctgt	teccatecta	420
ccctgggaag	gtcgctatta	gagtgcattt	ggctcagctc	cgaggctcag	ggagggatcc	480
ccaacctgtc	agccttctgc	cctctcccca	taacagacct	ttttactccc	aggcactata	540
agaccgactt	cgacaagaat	aagatctggt	atgagcaccg	gctcattgat	gacatggtgg	600
ctcaggtcct	caagtcttcg	ggtggctttg	tgtgggcctg	caagaactat	gacggagatg	660
tgcagtcaga	catcctggcc	cagggctttg	gctcccttgg	cctgatgacg	tccgtcctgg	720
tctgccctga	tgggaagacg	attgaggctg	aggccgctca	tgggaccgtc	acccgccact	780
atcgggagca	ccagaagggc	cggcccacca	gcaccaaccc	catcgccagc	atctttgcct	840
ggacacgtgg	cctggagcac	cgggggaagc	tggatgggaa	ccaagacctc	atcaggtttg	900
cccagatgct	ggagaaggtg	tgcgtggaga	cggtggagag	tggagccatg	accaaggacc	960
tggcgggctg	cattcacggc	ctcagcaatg	tgaagctgaa	cgagcacttc	ctgaacacca	1020
cggacttcct	cgacaccatc	aagagcaacc	tggacagagc	cctgggcagg	cagtaggggg	1080
aggcgccacc	catggctgca	gtggagggc	cagggctgag	ccggcgggtc	ctcctgagcg	1140
cggcagaggg	tgagcctcac	agcccctctc	tggaggcctt	tctaggggat	gtttttttat	1200
aagccagatg	tttttaaaag	catatgtgtg	tttcccctca	tggtgacgtg	aggcaggagc	1260
agtgcgtttt	acctcagcca	gtcagtatgt	tttgcatact	gtaatttata	ttgcccttgg	1320
aacacatggt	gccatattta	gctactaaaa	agctcttcac	aaaa		1364
<210> 21 <211> 897 <212> DNA <213> Homo	o sapien					
<400> 21 accctccagt	gccctccagc	cctgtgctgg	gccctggaga	cccacaggag	ggtgaagaga	60
cctggaacag	tccctgtcct	cccagttgca	gctgggggag	gctgagtaga	gccacgaact	120
atggcagcta	caatattggg	ttgtagaggg	cagcagggct	cagctgggtg	gccccaggag	180
aggcgaggcc	ctgagagaaa	ggctttctac	cctccaggct	ttggctccct	tggcctgatg	240
acgtccgtcc	tggtctgccc	tgatgggaag	acgattgagg	ctgaggccgc	tcatgggacc	300
gtcacccgcc	actatcggga	gcaccagaag	ggccggccca	ccagcaccaa	ccccatcgcc	360
agcatctttg	cctggacacg	tggcctggag	caccggggga	agctggatgg	gaaccaagac	420

ctcatcaggt ttgcccagat gctggagaag gtgtgcgtgg agacggtgga gagtggagcc

atgaccaagg acctggcggg ctgcattcac ggcctcagca atgtgaagct gaacgagcac

28

		20			
ttcctgaaca ccacggactt c	cctcgacacc	atcaagagca	acctggacag	agccctgggc	600
aggcagtagg gggaggcgcc a	acccatggct	gcagtggagg	ggccagggct	gagccggcgg	660
gtectectga gegeggeaga g	ggtgagcct	cacageceet	ctctggaggc	ctttctaggg	720
gatgtttttt tataagccag a	atgtttttaa	aagcatatgt	gtgtttcccc	tcatggtgac	780
gtgaggcagg agcagtgcgt t	ttacctcag	ccagtcagta	tgttttgcat	actgtaattt	840
atattgccct tggaacacat g	ggtgccatat	ttagctacta	aaaagctctt	cacaaaa	897
<210> 22 <211> 1548 <212> DNA <213> Homo sapien <400> 22					
tgcccgcgcg gccagcgccc g	gccaggccca	gcgttagcgt	tagcccgcgg	ccaggcagcc	60
gggaggagcg gcgcgcgctc g	ggacctctcc	cgccctgctc	gttcgctctc	cagcttggga	120
tggccggcta cctgcgggtc g	gtgcgctcgc	tctgcagagc	ctcaggctcg	cggccggcct	180
gggcgccggc ggccctgaca g	gccccacct	cgcaagagca	gccgcggcgc	cactatgccg	240
acaaaaggat caaggtggcg a	aagcccgtgg	tggagatgga	tggtgatgag	atgacccgta	300
ttatctggca gttcatcaag g	gagaagtgtg	aagctgaacg	agcacttcct	gaacaccacg	360
gacttcctcg acaccatcaa g	gagcaacctg	gacagagccc	tgggcaggca	gtagggggag	420
gegeeaceca tggetgeagt g	ggaggggcca	gggctgagcc	ggcgggtcct	cctgagcgcg	480
gcagagggtg agcctcacag o	cccctctctg	gaggcctttc	taggggatgt	tttttataa	540
gccagatgtt tttaaaagca t	tatgtgtgtt	tcccctcatg	gtgacgtgag	gcaggagcag	600
tgcgttttac ctcagccagt o	cagtatgttt	tgcatactgt	aatttatatt	gcccttggaa	660
cacatggtgc catatttagc t	tactaaaaag	ctcttcacaa	aattgtctgc	tgtgtttgtc	720
cctgagggga ggaggtagtg	ggaccctgag	gcagaggccc	tgctagagct	ggcaggttcc	780
cctggggcag accagagcac o	ctcaggaagg	ggctgccacg	gcagggaagg	gaccaggcag	840
ccctgggagc ccgcattcca c	caggggccca	ctgcggagtt	ctcggacact	cagggcacag	900
gcctgtgggt tccctggaat t	tttctagcat	gatccagttt	ctgtgtccag	ttctccattc	960
tgagagtcaa tcagttcctg a	ataggttgtc	attgatttt	ttcttcgttg	gttttaacct	1020
tctaaacatc tccaggccac t	tttcttagcc	tttttctagg	tactaaaaag	aggtcctacc	1080
cacacctgcc tcacacttct o	cctttccaag	gctgcctgag	tttggagggg	cttgggtgtg	1140
tgtgaacaag ggccctgcat t	tgtctaggcc	tgcagttccc	aggcttgggt	tcactttcac	1200
		L-L			1000

catgcattgg caaaactaga aaagtaagct tgtgacaaat tgttctcggc cgggcacagt 1260

WO 2004/053077

29

PCT/US2003/038815

			29			
ggcgcacgcc	tataatccct	gtactttggg	aggctgaggt	gggtggatca	cttgaggcca	1320
ggagttcgag	accagcctgg	ccaacatggt	gaaaccccat	ctctactcaa	aatacaaaaa	1380
ttagccaggc	gtggtgatgc	gcacctgcag	tcccagctac	tcgggaggct	gaggcaggaa	1440
aatggcttga	acctgggagg	cagaggttgc	agtgagccga	gactgcacca	ctgcactcca	1500
gcctgggtga	cagagcaaga	ctctgtctca	aaaaaaaaa	aaaaaaa		1548
<210> 23 <211> 3393 <212> DNA <213> Homo	s o sapien					
<400> 23	cqaqttccca	acctcaggtc	atctgcccgt	ctcagcctcc	caaagtgctg	60
				tatttttaaa		120
	•			tgatgcacag		180
				tttgactctt		240
				cccaggttat		300
gageggeage	aatacctctt	ggtgattggg	caggttgtag	tgatgtccag	ttagctcagc	360
				ctggatgctt		420
				gaagattgat		480
ctatagagta	tgtatctgaa	ttccgtacga	tgactctggt	tttggtcagc	ctagagttcc	540
acaggacagc	gtggatgttg	catttgtgtc	atcttatcca	ggaggctgcc	ttatacatct	600
ccacagtcat	tgagaaaggg	ggcggccagc	tgagtcggat	ctttatgttt	gagaaaggct	660
gcatgttcct	ctgtgttttc	ggccttcctg	gtgataagaa	gccagacgag	tgtgcacatg	720
ccctggagag	ctccttcagc	atcttcagct	tctgctggga	gaatcttgct	aagaccaact	780
gaggaggaag	gtggggcaga	gaggagcttc	tcaggcccca	ggggctcttc	aggcaggatc	840
cctagatttg	tttccatcag	tatcactaat	ggaccagtat	tctgtggcgt	ggttggagca	900
gtagcaagac	acgaatatac	agttattggc	ccaaaagtga	gtcttgcggc	cagaatgata	960
actgcttatc	caggtttggt	gtcctgtgat	gaggtaacat	atctaagatc	catgctacct	1020
gcttacaact	tcaagaaact	cccagagaaa	atgatgaaaa	acatctccaa	cccagggaag	1080
atatatgaat	atcttggcca	cagaagatgt	ataatgtttg	gaaaaagaca	tttggcaaga	1140
aagagaaaca	aaaatcaccc	tttgttagga	gtgttaggtg	ctccctgtct	ctctacagac	1200
tgggagaaag	aattggaagc	cttccaaatg	gcacagcaag	ggtgtttgca	ccagaagaag	1260
ggacaagcag	ttctgtatga	aggtggaaaa	ggctatggaa	aaagccagct	gttggctgaa	1320

ataaactttc	tggcacagaa	agaagggcat	agctaccctt	cacaggtgct	ttggaaaccc	1380
actttattgt	gaggtcctat	gccaggacct	tctctctaag	gacgtgttgc	tctttcatgt	1440
cctacaaaag	gaggaagagg	aaaacagcaa	gtgggaaacc	ctctcagcca	atgccatgaa	1500
atccataatg	tatagtattt	ctcctgccaa	ctctgaggaa	ggccaggaac	tttatgtctg	1560
cacagtcaag	gatgatgtga	acttggatac	agtacttctc	ctaccctttt	tgaaagaaat	1620
agcagtaagc	caactggatc	aactgagccc	agaggaacag	ttgctggtca	agtgtgctgc	1680
aatcattggt	cactccttcc	atatagattt	gctgcagcac	ctcctgcctg	gctgggataa	1740
aaataagcta	cttcaggtct	tgagagctct	tgtggatata	catgtgctct	gctggtctga	1800
caagagccaa	gagetteetg	ctgagcccat	attaatgcct	tcctctatcg	acatcattga	1860
tggaaccaaa	gagaagaaga	caaagttaga	tggtgggtca	gcctctcttc	tcaggctaca	1920
agaagaatta	tccctaccac	aaactgaggt	gttggaattt	ggagtgcctc	tgctacgggc	1980
agctgcttgg	gagetetgge	ccaaggaaca	acagatagct	ctgcaccttg	aatgtgcctg	2040
ctttctccaa	gttttggcct	gccgctgtgg	gagctgccat	ggaggagact	ttgtcccctt	2100
tcatcatttt	gcagtttgtt	ctactaagaa	ttccaagggg	acctctcgat	tctgtactta	2160
cagagatact	ggctcagtgc	taacacaagt	gatcacagaa	aaattgcagc	tgccttctcc	2220
ccaagaacag	aggaagagtt	cctagatcaa	gtgaagagga	agctggctca	gaccagccct	2280
gagaaagacc	tgttgaccac	aaagccttgt	cactgtaagg	atatcctgaa	gttagtgctc	2340
ttacccctca	cccagcattg	cttggtcgtt	ggagaaacca	cctgtgcatt	ttattacctg	2400
ctggaggctg	cggctgcctg	cttggacctg	tcagataatt	atatggtctg	tttcaacatg	2460
ggacgtatca	ctttagccaa	aaaattggct	aggaaagccc	ttcgactgct	gaaaaggaat	2520
ttcccttgga	cctggtttgg	tgtccttttc	cagacattcc	tggaaaagta	ttggcattcc	2580
tgtaccctga	gccaacctcc	aaacgaccct	agtgagaagt	tgtctctacc	tatgtggagc	2640
tctctcagtt	ctcccagagt	gtgggcatca	aggacaagtg	gctgcactgt	gagcagatgg	2700
ccattcagaa	aagcagttta	tgttggttct	ccagggaggg	gttgttggcc	acagctcagc	2760
tcatgcaggc	cctggcctac	accaagctct	gccttggtca	tcttgacttc	tccatcaagc	2820
tgggattgct	gtgtcggccc	tttagtgagt	gtctgcgttt	cgttcaagtc	tacgagcaca	2880
gccgtgttct	aacctctcag	agcaatgtca	tgctgggggt	ccactcctcc	ctggccatgt	2940
gtactgtaag	gagttcttct	ctcaatgtgt	gacctgccct	gtctatcacc	agtgggtatc	3000
tgagcttaag	gcctctgtaa	tgagatgtga	aaagagagaa	ttgatgtccc	tgactaacag	3060
catcagacct	tttgacacct	gcttgaccag	gatttggata	aaaggagaat	ttctgcagga	3120
aaataactct	tagaaaagaa	acttaggaat	acagagattt	gacagagtgg	ctgatgtcaa	3180

ggagaacaag	gatgcagaag	aaactcaaga	tgtatgtatt	aaaacaaaag	aacaataacc	3240
tgaagggacc	atgattctgt	tattgtatat	aacacaagga	aatgccccag	attctccttt	3300
aaaagatata	atgtacatat	taagtatact	agcctttata	gttactgcta	tctacatgtt	3360
tatcaaaata	aaagactatt	tttttctaaa	aca			3393
<210> 24 <211> 4034 <212> DNA <213> Home	1 o sapien					
<400> 24 ggtaactcaa	tgtgtcttta	tagattgatg	aaggccagcc	tatagagtat	gtatctgaat	60
tccgtacgat	gactctggtt	ttggtcagcc	tagagttcca	caggacagcg	tggatgttgc	120
atttgtgtca	tcttatccag	gaggctgcct	tatacatctc	cacagtcatt	gagaaagggg	180
gcggccagct	gagtcggatc	tttatgtttg	agaaaggctg	catgttcctc	tgtgttttcg	240
gccttcctgg	tgataagaag	ccagacgagt	gtgcacatgc	cctggagagc	tccttcagca	300
tcttcagctt	ctgctgggag	aatcttgcta	agaccaactg	aggaggaaga	tccctagatt	360
tgtttccatc	agtatcacta	atggaccagt	attctgtggc	gtggttggag	cagtagcaag	420
acacgaatat	acagttattg	gcccaaaagt	gagtcttgcg	gccagaatga	taactgctta	480
tccaggtttg	gtgtcctgtg	atgaggtaac	atatctaaga	tccatgctac	ctgcttacaa	540
cttcaagaaa	ctcccagaga	aaatgatgaa	aaacatctcc	aacccaggga	agatatatga	600
atatcttggc	cacagaagat	gtataatgtt	tggaaaaaga	catttggcaa	gaaagagaaa	660
caaaaatcac	cctttgttag	gagtgttagg	tgctccctgt	ctctctacag	actgggagaa	720
agaattggaa	gccttccaaa	tggcacagca	agggtgtttg	caccagaaga	agggacaagc	780
agttctgtat	gaaggtggaa	aaggctatgg	aaaaagccag	ctgttggctg	aaataaactt	840
tctggcacag	aaagaagggc	atagctaccc	ttcacaggtg	ctttggaaac	ccactttatt	900
gtgaggtcct	atgccaggac	cttctctcta	aggacgtgtt	gctctttcat	gtcctacaaa	960
aggaggaaga	ggaaaacagc	aagtgggaaa	ccctctcagc	caatgccatg	aaatccataa	1020
tgtatagtat	ttctcctgcc	aactctgagg	aaggccagga	actttatgtc	tgcacagtca	1080
aggatgatgt	gaacttggat	acagtacttc	tcctaccctt	tttgaaagaa	atagcagtaa	1140
gccaactgga	tcaactgagc	ccagaggaac	agttgctggt	caagtgtgct	gcaatcattg	1200
gtcactcctt	ccatatagat	ttgctgcagc	acctcctgcc	tggctgggat	aaaaataagc	1260
tacttcaggt	cttgagagct	cttgtggata	tacatgtgct	ctgctggtct	gacaagagcc	1320
aagagettee	tgctgagccc	atattaatgc	cttcctctat	cgacatcatt	gatggaacca	1380

aagagaagaa	gacaaagtta	gatggtgggt	cagcctctct	tctcaggcta	caagaagaat	1440
tatccctacc	acaaactgag	gtgttggaat	ttggagtgcc	tctgctacgg	gcagctgctt	1500
gggagctctg	gcccaaggaa	caacagatag	ctctgcacct	tgaatgtgcc	tgctttctcc	1560
aagttttggc	ctgccgctgt	gggagctgcc	atggaggaga	ctttgtcccc	tttcatcatt	1620
ttgcagtttg	ttctactaag	aattccaagg	ggacctctcg	attctgtact	tacagagata	1680
ctggctcagt	gctaacacaa	gtgatcacag	aaaaattgca	gctgccttct	ccccaagaac	1740
agaggaagag	ttcctagatc	aagtgaagag	gaagctggct	cagaccagcc	ctgagaaaga	1800
cctgttgacc	acaaagcctt	gtcactgtaa	ggatatcctg	aagttagtgc	tcttacccct	1860
cacccagcat	tgcttggtcg	ttggagaaac	cacctgtgca	ttttattacc	tgctggaggc	1920
tgcggctgcc	tgcttggacc	tgtcagataa	ttatatggtc	tgtttcaaca	tgggacgtat	1980
cactttagcc	aaaaaattgg	ctaggaaagc	ccttcgactg	ctgaaaagga	atttcccttg	2040
gacctggttt	ggtgtccttt	tccagacatt	cctggaaaag	tattggcatt	cctgtaccct	2100
gagccaacct	ccaaacgacc	ctagtgagaa	gttgtctcta	cctatgtgga	gctctctcag	2160
ttctcccaga	gtgtgggcat	caaggacaag	tggctgcact	gtgagcagat	ggccattcag	2220
aaaagcagtt	tatgttggtt	ctccagggag	gggttgttgg	ccacagetea	gctcatgcag	2280
gccctggcct	acaccaaget	ctgccttggt	catcttgact	tctccatcaa	gctgggattg	2340
ctgtgtcggc	cctttagtga	gtgtctgcgt	ttcgttcaag	tctacgagca	cagccgtgtt	2400
ctaacctctc	agagcaatgt	catgctgggg	gtccactcct	ccctggccat	gtggtaatgt	2460
cttactcaag	ggctgtggaa	aaggatagac	atttatgtca	tttaagctgt	ctctccccac	2520
cagacaggac	ttttgaacct	ctctaaccaa	cttttaaaga	ccattcacct	cccataccct	2580
cccatcttat	tagaagggct	cttgtccttt	aacaggtttt	ggcctatagg	tcaagggtta	2640
cgtttagggt	tacatttaac	tgctagagta	acccatagca	aggctgaata	taattggtct	2700
ccttttaagt	ttccttgtat	gtgagttagt	agccttggtc	actttctagc	atcacaattc	2760
tgattgtcca	tgaggtctta	gagccttaaa	gaagtgatga	ttttaagcaa	aagtcatggt	2820
gggtaagcag	cggatattgc	tgcaagctgt	tactctttc	ctccaggttt	gcccaggaat	2880
cacagtggga	cctgtttaag	cactatttct	ccaacgcttg	cagttggtga	aaagaaccaa	2940
tgcctcgcta	tttggtgcac	atggctttgt	ccgattccta	gaatgccatg	tgttaatgtt	3000
acagaaaatg	ccagagggta	tcttcatgca	tattcctcta	gagcttcaca	gccaaaccct	3060
tgaggtacct	gtttctcagc	tgtcctttga	ctaacacctg	attcacttag	ttctacccta	3120
tggtgctctt	tctaccacct	gcatctcttc	cttttttccc	ttttactggc	tctgtttccc	3180

tttactcttt gaatcctttg tttctccacc tagaaagttt ctacctacct tatgtatcct 3240 tecegatatt attgeateta gttetggaet gggtttetta aettteeace tttgeeaget 3300 gctacccagt atcattaaaa tattaacatt tagccttgct caatggacct gtagtctatg 3360 gttcagtcta taatttgata cagctccctc cagcccttct gagtctaaaa cacattccaa 3420 ttcctctgtt ttccaggctt attttgccat cagtaactcc ttcctgttcc cccagccatg 3480 agtgaatatg ctgaatgagg acctttgtaa gttctgatga agtagcatgt taggagaatg 3540 3600 teteaatgtg tgacetgeee tgtetateae eagtgggtat etgagettaa ggeetetgta 3660 atgagatgtg aaaagagaga attgatgtcc ctgactaaca gcatcagacc ttttgacacc 3720 tgcttgacca ggatttggat aaaaggagaa tttctgcagg aaaataactc ttagaaaaga 3780 aacttaggaa tacagagatt tgacagagtg gctgatgtca aggagaacaa ggatgcagaa 3840 gaaactcaag atgtatgtat taaaacaaaa gaacaataac ctgaagggac catgattctg 3900 ttattgtata taacacaagg aaatgcccca qattctcctt taaaaqatat aatqtacata 3960 ttaagtatac tagcetttat agttactget atetacatgt ttatcaaaat aaaagactat 4020 ttttttctaa aaca 4034 <210> 25 <211> 4074 <212> DNA

<213> Homo sapien

<400> 25

acactgggtt cgagttccca acctcaggtc atctgcccgt ctcagcctcc caaagtgctg 60 ggattacagg cgtgagccac cgtgcctggc cgtaaggtat tatttttaaa ggttagctca 120 cctaagactt ccgcagctga gggcagtaac aagataggca tgatgcacag agccatgtgg 180 ggattccaga cccctcctgt tgcatagttt cccagttgaa tttgactctt ctccatttat 240 ctcatttttt tctggatagg tctacctgca agtcggattt cccaggttat tgttggagat 300 gagcggcagc aatacctctt ggtgattggg caggttgtag tgatgtccag ttagctcagc 360 gtttggctca ggcgaatgaa attgtcctat cctggaactg ctggatgctt tgcaagcagt 420 atatgtttga agtggcaatc atgagggagg atgaagctgt gaagattgat gaaggccagc 480 ctatagagta tgtatctgaa ttccgtacga tgactctggt tttggtcagc ctagagttcc 540 acaggacage gtggatgttg catttgtgte atettateca ggaggetgee ttatacatet 600 ccacagtcat tgagaaaggg ggcggccagc tgagtcggat ctttatgttt gagaaaggct 660 geatgtteet etgtgtttte ggeetteetg gtgataagaa geeagaegag tgtgeacatg 720

			- -			
ccctggagag	ctccttcagc	atcttcagct	tctgctggga	gaatcttgct	aagaccaact	780
gaggaggaag	gtggggcaga	gaggagcttc	tcaggcccca	ggggctcttc	aggcaggatc	840
cctagatttg	tttccatcag	tatcactaat	ggaccagtat	tctgtggcgt	ggttggagca	900
gtagcaagac	acgaatatac	agttattggc	ccaaaagtga	gtcttgcggc	cagaatgata	960
actgcttatc	caggtttggt	gtcctgtgat	gaggtaacat	atctaagatc	catgctacct	1020
gcttacaact	tcaagaaact	cccagagaaa	atgatgaaaa	acatctccaa	cccagggaag	1080
atatatgaat	atcttggcca	cagaagatgt	ataatgtttg	gaaaaagaca	tttggcaaga	1140
aagagaaaca	aaaatcaccc	tttgttagga	gtgttaggtg	ctccctgtct	ctctacagac	1200
tgggagaaag	aattggaagc	cttccaaatg	gcacagcaag	ggtgtttgca	ccagaagaag	1260
ggacaagcag	ttctgtatga	aggtggaaaa	ggctatggaa	aaagccagct	gttggctgaa	1320
ataaactttc	tggcacagaa	agaagggcat	agctaccctt	cacaggtgct	ttggaaaccc	1380
actttattgt	gaggtcctat	gccaggacct	tctctctaag	gacgtgttgc	tctttcatgt	1440
cctacaaaag	gaggaagagg	aaaacagcaa	gtgggaaacc	ctctcagcca	atgccatgaa	1500
atccataatg	tatagtattt	ctcctgccaa	ctctgaggaa	ggccaggaac	tttatgtctg	1560
cacagtcaag	gatgatgtga	acttggatac	agtacttctc	ctaccctttt	tgaaagaaat	1620
agcagtaagc	caactggatc	aactgagccc	agaggaacag	ttgctggtca	agtgtgctgc	1680
aatcattggt	cactccttcc	atatagattt	gctgcagcac	ctcctgcctg	gctgggataa	1740
aaataagcta	cttcaggtct	tgagagetet	tgtggatata	catgtgctct	gctggtctga	1800
caagagccaa	gagcttcctg	ctgagcccat	attaatgcct	tectetateg	acatcattga	1860
tggaaccaaa	gagaagaaga	caaagttaga	tggtgggtca	gcctctcttc	tcaggctaca	1920
agaagaatta	tccctaccac	aaactgaggt	gttggaattt	ggagtgcctc	tgctacgggc	1980
agetgettgg	gagctctggc	ccaaggaaca	acagatagct	ctgcaccttg	aatgtgcctg	2040
ctttctccaa	gttttggcct	gccgctgtgg	gagctgccat	ggaggagact	ttgtcccctt	2100
tcatcatttt	gcagtttgtt	ctactaagaa	ttccaagggg	acctctcgat	tctgtactta	2160
cagagatact	ggctcagtgc	taacacaagt	gatcacagaa	aaattgcagc	tgccttctcc	2220
ccaagaacag	aggaagagtt	cctagatcaa	gtgaagagga	agctggctca	gaccagccct	2280
gagaaagacc	tgttgaccac	aaagccttgt	cactgtaagg	atatcctgaa	gttagtgctc	2340
ttacccctca	cccagcattg	cttggtcgtt	ggagaaacca	cctgtgcatt	ttattacctg	2400
ctggaggctg	cggctgcctg	cttggacctg	tcagataatt	atatggtctg	tttcaacatg	2460
ggacgtatca	ctttagccaa	aaaattggct	aggaaagccc	ttcgactgct	gaaaaggaat	2520
ttcccttgga	cctggtttgg	tgtccttttc	cagacattcc	tggaaaagta	ttggcattcc	2580

PCT/US2003/038815 WO 2004/053077

tgtaccctga	gccaacctcc	aaacgaccct	agtgagaagt	tgtctctacc	tatgtggagc	2640
tctctcagtt	ctcccagagt	gtgggcatca	aggacaagtg	gctgcactgt	gagcagatgg	2700
ccattcagaa	aagcagttta	tgttggttct	ccagggaggg	gttgttggcc	acageteage	2760
tcatgcaggc	cctggcctac	accaagctct	gccttggtca	tcttgacttc	tccatcaagc	2820
tgggattgct	gtgtcggccc	tttagtgagt	gtctgcgttt	cgttcaagtc	tacgagcaca	2880
gccgtgttct	aacctctcag	agcaatgtca	tgctgggggt	ccactcctcc	ctggccatgt	2940
ggtaatgtct	tactcaaggg	ctgtggaaaa	ggatagacat	ttatgtcatt	taagctgtct	3000
ctccccacca	gacaggactt	ttgaacctct	ctaaccaact	tttaaagacc	attcacctcc	3060
cataccctcc	catcttatta	gaagggctct	tgtcctttaa	caggttttgg	cctataggtc	3120
aagggttacg	tttagggtta	catttaactg	ctagagtaac	ccatagcaag	gctgaatata	3180
attggtctcc	ttttaagttt	ccttgtatgt	gagttagtag	ccttggtcac	tttctagcat	3240
cacaattctg	attgtccatg	aggtcttaga	gccttaaaga	agtgatgatt	ttaagcaaaa	3300
gtcatggtgg	gtaagcagcg	gatattgctg	caagctgtta	ctcttttcct	ccaggtttgc	3360
ccaggaatca	cagtgggacc	tgtttaagca	ctatttctcc	aacgettgea	gttggtgaaa	3420
agaaccaatg	cctcgctatt	tggtgcacat	ggctttgtcc	gattcctaga	atgccatgtg	3480
ttaatgttac	agaaaatgcc	agagggtatc	ttcatgcata	ttcctctaga	gcttcacagc	3540
caaacccttg	aggcttattt	tgccatcagt	aactccttcc	tgttccccca	gccatgagtg	3600
aatatgctga	atgaggacct	tttactgtaa	ggagttcttc	tctcaatgtg	tgacctgccc	3660
tgtctatcac	cagtgggtat	ctgagcttaa	ggcctctgta	atgagatgtg	aaaagagaga	3720
attgatgtcc	ctgactaaca	gcatcagacc	ttttgacacc	tgcttgacca	ggatttggat	3780
aaaaggagaa	tttctgcagg	aaaataactc	ttagaaaaga	aacttaggaa	tacagagatt	3840
tgacagagtg	gctgatgtca	aggagaacaa	ggatgcagaa	gaaactcaag	atgtatgtat	3900
taaaacaaaa	gaacaataac	ctgaagggac	catgattctg	ttattgtata	taacacaagg	3960
aaatgcccca	gattctcctt	taaaagatat	aatgtacata	ttaagtatac	tagcctttat	4020
agttactgct	atctacatgt	ttatcaaaat	aaaagactat	ttttttctaa	aaca	4074

<210> 26 <211> 3591 <212> DNA <213> Homo sapien

<400> 26

acactgggtt cgagttccca acctcaggtc atctgcccgt ctcagcctcc caaagtgctg 60 ggattacagg cgtgagccac cgtgcctggc cgtaaggtat tatttttaaa ggttagctca 120

36

180 cctaagactt ccgcagctga gggcagtaac aagataggca tgatgcacag agccatgtgg ggattccaga cccctcctgt tgcatagttt cccagttgaa tttgactctt ctccatttat 240 ctcatttttt tctggatagg tctacctgca agtcggattt cccaggttat tgttggagat 300 gagcggcagc aatacctctt ggtgattggg caggttgtag tgatgtccag ttagctcagc 360 gtttggctca ggcgaatgaa attgtcctat cctggaactg ctggatgctt tgcaagcagt 420 atatgtttga agtggcaatc atgagggagg atgaagctgt gaagattgat gaaggccagc 480 ctatagagta tgtatctgaa ttccgtacga tgactctggt tttggtcagc ctagagttcc 540 acaggacage gtggatgttg catttgtgtc atcttateca ggaggetgee ttatacatet 600 ccacagtcat tgagaaaggg ggcggccagc tgagtcggat ctttatgttt gagaaaggct 660 gcatgttcct ctgtgttttc ggccttcctg gtgataagaa gccagacgag tgtgcacatg 720 ccctggagag ctccttcagc atcttcagct tctgctggga gaatcttgct aagaccaact 780 gaggaggaag gtggggcaga gaggagcttc tcaggcccca ggggctcttc aggcaggatc 840 cctagatttg tttccatcag tatcactaat ggaccagtat tctgtggcgt ggttggagca 900 gtagcaagac acgaatatac agttattggc ccaaaagtga gtcttgcggc cagaatgata 960 actgcttatc caggtttggt gtcctgtgat gaggtaacat atctaagatc catgctacct 1020 gcttacaact tcaagaaact cccagagaaa atgatgaaaa acatctccaa cccagggaag 1080 atatatgaat atettggeea cagaagatgt ataatgtttg gaaaaagaea tttggeaaga 1140 aagagaaaca aaaatcaccc tttgttagga gtgttaggtg ctccctgtct ctctacagac 1200 tgggagaaag aattggaagc cttccaaatg gcacagcaag ggtgtttgca ccagaagaag 1260 ggacaagcag ttctgtatga aggtggaaaa ggctatggaa aaagccagct gttggctgaa 1320 ataaactttc tggcacagaa agaagggcat agctaccctt cacaggtgct ttggaaaccc 1380 actttattgt gaggtcctat gccaggacct tctctctaag gacgtgttgc tctttcatgt 1440 cctacaaaag gaggaagagg aaaacagcaa gtgggaaacc ctctcagcca atgccatgaa 1500 atccataatg tatagtattt ctcctgccaa ctctgaggaa ggccaggaac tttatgtctg 1560 cacagtcaag gatgatgta acttggatac agtacttctc ctaccctttt tgaaagaaat 1620 agcagtaagc caactggatc aactgagccc agaggaacag ttgctggtca agtgtgctgc 1680 aatcattggt cactccttcc atatagattt gctgcagcac ctcctgcctg gctgggataa 1740 aaataagcta cttcaggtet tgagagetet tgtggatata catgtgetet getggtetga 1800 caagagccaa gagcttcctg ctgagcccat attaatgcct tcctctatcg acatcattga 1860 tggaaccaaa gagaagaaga caaagttaga tggtgggtca gcctctcttc tcaggctaca 1920

agaagaatta	tccctaccac	aaactgaggt	gttggaattt	ggagtgcctc	tgctacgggc	1980
agctgcttgg	gagctctggc	ccaaggaaca	acagatagct	ctgcaccttg	aatgtgcctg	2040
ctttctccaa	gttttggcct	gccgctgtgg	gagetgeeat	ggaggagact	ttgtcccctt	2100
tcatcatttt	gcagtttgtt	ctactaagaa	ttccaagggg	acctctcgat	tctgtactta	2160
cagagatact	ggctcagtgc	taacacaagt	gatcacagaa	aaattgcagc	tgccttctcc	2220
ccaagaacag	aggaagagtt	cctagatcaa	gtgaagagga	agctggctca	gaccagccct	2280
gagaaagacc	tgttgaccac	aaagccttgt	cactgtaagg	atatcctgaa	gttagtgctc	2340
ttacccctca	cccagcattg	cttggtcġtt	ggagaaacca	cctgtgcatt	ttattacctg	2400
ctggaggctg	cggctgcctg	cttggacctg	tcagataatt	atatggtctg	tttcaacatg	2460
ggacgtatca	ctttagccaa	aaaattggct	aggaaagccc	ttcgactgct	gaaaaggaat	2520
ttcccttgga	cctggtttgg	tgtccttttc	cagacattcc	tggaaaagta	ttggcattcc	2580
tgtaccctga	gccaacctcc	aaacgaccct	agtgagaagt	tgtctctacc	tatgtggagc	2640
tctctcagtt	ctcccagagt	gtgggcatca	aggacaagtg	gctgcactgt	gagcagatgg	2700
ccattcagaa	aagcagttta	tgttggttct	ccagggaggg	gttgttggcc	acageteage	2760
tcatgcaggc	cctggcctac	accaagctct	gccttggtca	tcttgacttc	tccatcaagc	2820
tgggattgct	gtgtcggccc	tttagtgagt	gtctgcgttt	cgttcaagtc	tacgagcaca	2880
gccgtgttct	aacctctcag	agcaatgtca	tgctgggggt	ccactcctcc	ctggccatgt	2940
ggtttgccca	ggaatcacag	tgggacctgt	ttaagcacta	tttctccaac	gcttgcagtt	3000
ggtgaaaaga	accaatgcct	cgctatttgg	tgcacatggc	tttgtccgat	tcctagaatg	3060
ccatgtgtta	atgttacaga	aaatgccaga	gggtatcttc	atgcatattc	ctctagagct	3120
tcacagccaa	acccttgagt	actgtaagga	gttettetet	caatgtgtga	cctgccctgt	3180
ctatcaccag	tgggtatctg	agcttaaggc	ctctgtaatg	agatgtgaaa	agagagaatt	3240
gatgtccctg	actaacagca	tcagaccttt	tgacacctgo	ttgaccagga	tttggataaa	3300
aggagaattt	ctgcaggaaa	ataactctta	gaaaagaaac	: ttaggaatac	agagatttga	3360
cagagtggct	gatgtcaagg	agaacaagga	tgcagaagaa	actcaagatg	tatgtattaa	3420
aacaaaagaa	caataacctg	aagggaccat	gattctgtta	ttgtatataa	cacaaggaaa	3480
tgccccagat	tctcctttaa	aagatataat	gtacatatta	agtatactag	cctttatagt	3540
tactgctate	: tacatgttta	tcaaaataaa	agactatttt	tttctaaaac	: a	3591

<210> 27 <211> 5050 <212> DNA <213> Homo sapien

<400> 27						
acactgggtt	: cgagttccca	acctcaggtc	atctgcccgt	ctcagcctcc	caaagtgctg	60
ggattacagg	g cgtgagccac	cgtgcctggc	cgtaaggtat	tatttttaaa	ggttagctca	120
cctaagactt	ccgcagctga	gggcagtaac	aagataggca	tgatgcacag	agccatgtgg	180
ggattccaga	cccctcctgt	tgcatagttt	cccagttgaa	tttgactctt	ctccatttat	240
ctcattttt	tctggatagg	tctacctgca	agtcggattt	cccaggttat	tgttggagat	300
gagcggcagc	aatacctctt	ggtgattggg	caggttgtag	tgatgtccag	ttagctcagc	360
gtttggctca	ggcgaatgaa	attgtcctat	cctggaactg	ctggatgctt	tgcaagcagt	420
atatgtttga	agtggcaatc	atgagggagg	atgaagetgt	gaagattgat	gaaggccagc	480
ctatagagta	tgtatctgaa	ttccgtacga	tgactctggt	tttggtcagc	ctagagttcc	,540
acaggacago	gtggatgttg	catttgtgtc	atcttatcca	ggaggctgcc	ttatacatct	600
ccacagtcat	tgagaaaggg	ggcggccagc	tgagtcggat	ctttatgttt	gagaaaggct	660
gcatgttcct	ctgtgttttc	ggccttcctg	gtgataagaa	gccagacgag	tgtgcacatg	720
ccctggagag	ctccttcagc	atcttcagct	tctgctggga	gaatcttgct	aagaccaact	780
gaggaggaag	gtggggcaga	gaggagette	tcaggcccca	ggggctcttc	aggcaggatc	840
cctagatttg	tttccatcag	tatcactaat	ggaccagtat	tctgtggcgt	ggttggagca	900
gtagcaagac	acgaatatac	agttattggc	ccaaaagtga	gtcttgcggc	cagaatgata	960
actgcttato	caggtttggt	gtcctgtgat	gaggtaacat	atctaagatc	catgctacct	1020
gcttacaact	tcaagaaact	cccagagaaa	atgatgaaaa	acatctccaa	cccagggaag	1080
atatatgaat	atcttggcca	cagaagatgt	ataatgtttg	gaaaaagaca	tttggcaaga	1140
aagagaaaca	aaaatcaccc	tttgttagga	gtgttaggtg	ctccctgtct	ctctacagac	1200
tgggagaaag	aattggaagc	cttccaaatg	gcacagcaag	ggtgtttgca	ccagaagaag	1260
ggacaagcag	ttctgtatga	aggtggaaaa	ggctatggaa	aaagccagct	gttggctgaa	1320
ataaacttto	tggcacagaa	agaagggcat	agctaccctt	cacaggtgct	ttggaaaccc	1380
actttattgt	gaggtcctat	gccaggacct	tctctctaag	gacgtgttgc	tctttcatgt	1440
cctacaaaag	gaggaagagg	aaaacagcaa	gtgggaaacc	ctctcagcca	atgccatgaa	1500
atccataatg	tatagtattt	ctcctgccaa	ctctgaggaa	ggccaggaac	tttatgtctg	1560
cacagtcaag	gatgatgtga	acttggatac	agtacttctc	ctaccctttt	tgaaagaaat	1620
agcagtaagc	caactggatc	aactgagccc	agaggaacag	ttgctggtca	agtgtgctgc	1680
aatcattggt	cactccttcc	atatagattt	gctgcagcac	ctcctgcctg	gctgggataa	1740
aaataagcta	cttcaggtct	tgagagctct	tgtggatata	catgtgctct	gctggtctga	1800

caagagecaa gagetteetg etgageceat attaatgeet teetetateg acateattga	1860
tggaaccaaa gagaagaaga caaagttaga tggtgggtca gcctctcttc tcaggctaca	1920
agaagaatta teeetaeeae aaaetgaggt gttggaattt ggagtgeete tgetaeggge	1980
agetgettgg gagetetgge ccaaggaaca acagataget etgeaeettg aatgtgeetg	2040
ctttctccaa gttttggcct gccgctgtgg gagctgccat ggaggagact ttgtcccctt	2100
tcatcatttt gcagtttgtt ctactaagaa ttccaagggg acctctcgat tctgtactta	2160
cagagatact ggctcagtgc taacacaagt gatcacagaa aaattgcagc tgccttctcc	2220
ccaagaacag aggaagagtt cctagatcaa gtgaagagga agctggctca gaccagccct	2280
gagaaagacc tgttgaccac aaagcettgt cactgtaagg atateetgaa gttagtgete	2340
ttacccetca cccagcattg cttggtcgtt ggagaaacca cctgtgcatt ttattacctg	2400
ctggaggctg cggctgcctg cttggacctg tcagataatt atatggtctg tttcaacatg	2460
ggacgtatca ctttagccaa aaaattggct aggaaagccc ttcgactgct gaaaaggaat	2520
ttcccttgga cctggtttgg tgtccttttc cagacattcc tggaaaagta ttggcattcc	2580
tgtaccetga gecaacetee aaacgaceet agtgagaagt tgtetetace tatgtggage	2640
tctctcagtt ctcccagagt gtgggcatca aggacaagtg gctgcactgt gagcagatgg	2700
ccattcagaa aagcagttta tgttggttct ccagggaggg gttgttggcc acagctcagc	2760
tcatgcagge cetggeetae accaagetet geettggtea tettgaette tecatcaage	2820
tgggattget gtgteggeee tttagtgagt gtetgegttt egtteaagte tacgageaea	2880
geegtgttet aaceteteag ageaatgtea tgetgggggt eeacteetee etggeeatgt	2940
ggtaatgtct tactcaaggg ctgtggaaaa ggatagacat ttatgtcatt taagctgtct	3000
ctccccacca gacaggactt ttgaacctct ctaaccaact tttaaagacc attcacctcc	3060
cataccetee catettatta gaagggetet tgteetttaa caggttttgg cetataggte	3120
aagggttacg tttagggtta catttaactg ctagagtaac ccatagcaag gctgaatata	3180
attggtetee ttttaagttt eettgtatgt gagttagtag eettggteae tttetageat	3240
cacaattctg attgtccatg aggtcttaga gccttaaaga agtgatgatt ttaagcaaaa	3300
gtcatggtgg gtaagcagcg gatattgctg caagctgtta ctcttttcct ccaggtttgc	3360
ccaggaatca cagtgggacc tgtttaagca ctatttctcc aacgcttgca gttggtgaaa	3420
agaaccaatg cctcgctatt tggtgcacat ggctttgtcc gattcctaga atgccatgtg	3480
ttaatgttac agaaaatgcc agagggtatc ttcatgcata ttcctctaga gcttcacagc	3540
caaaccettg aggtacetgt tteteagetg teetttgact aacacetgat teacttagtt	3600

			40			
ctaccctatg	gtgctctttc	taccacctgc	atctcttcct	tttttccctt	ttactggctc	3660
tgtttccctt	tactctttga	atcctttgtt	tctccaccta	gaaagtttct	acctacctta	3720
tgtatccttc	ccgatattat	tgcatctagt	tctggactgg	gtttcttaac	tttccacctt	3780
tgccagctgc	tacccagtat	cattaaaata	ttaacattta	gccttgctca	atggacctgt	3840
agtctatggt	tcagtctata	atttgataca	gctccctcca	gcccttctga	gtctaaaaca	3900
cattccaatt	cctctgtttt	ccaggcttat	tttgccatca	gtaactcctt	cctgttcccc	3960
cagccatgag	tgaatatgct	gaatgaggac	ctttgtaagt	tctgatgaag	tagcatgtta	4020
ggagaatgaa	gcactaatcc	cagagctaat	ggaccttcct	ttcctttcag	tactgtaagg	4080
agttcttctc	tcaatgtgtg	acctgccctg	tctatcacca	gtgggtatct	gagcttaagg	4140
cctctgtaat	gagatgtgaa	aagagagaat	tgatgtccct	gactaacagc	atcagacctt	4200
ttgacacctg	cttgaccagg	atttggataa	aaggagaatt	tctgcaggaa	aataactctt	4260
agaaaagaaa	cttaggaata	cagagtaagc	atttcttcct	ggaagccttg	tgtgagagac	4320
ataaagacag	tctcagattc	ttactcacaa	gcagtcaaag	gctgcacctc	tgaaataaaa	4380
agggacacac	agatgtaagg	agttagtcct	tgctccagag	gtaagtataa	tcctcttcct	4440
agtgctaggc	cctgcctgga	cagataggaa	tcccttctat	tgttaaacag	caatttcttc	4500
agcttctctc	agctctttgt	ttcagtattg	gtaactcttt	ggcatagaaa	gttcttcctt	4560
gcttttagcc	aaagcagttg	ggttgtttcc	ttgaagtaac	tggatggtca	ctaaggagag	4620
aaaaaggtct	tagaagtcac	aatgtaatgt	ctatgaaggt	gaatgataag	attaggcaag	4680
aaaaggagag	gaaagaatat	agttcctttc	ctcagaggcc	tgcaaatctt	ctttcccatg	4740
gctgctattt	aactttgtaa	ttgctgagga	cattctttgt	atttgtgaca	ttctttgtgt	4800
tccttcttc	aggatttgac	agagtggctg	atgtcaagga	gaacaaggat	gcagaagaaa	4860
ctcaagatgt	atgtattaaa	acaaaagaac	aataacctga	agggaccatg	attctgttat	4920
tgtatataac	acaaggaaat	gccccagatt	ctcctttaaa	agatataatg	tacatattaa	4980
gtatactagc	ctttatagtt	actgctatct	acatgtttat	caaaataaaa	gactatttt	5040
ttctaaaaca						5050
<210> 28 <211> 4658						

<211> 4658 <212> DNA <213> Homo sapien

<400> 28

acactgggtt cgagttccca acctcaggtc atctgcccgt ctcagcctcc caaagtgctg 60 ggattacagg cgtgagccac cgtgcctggc cgtaaggtat tatttttaaa ggttagctca 120

cctaagactt ccgcagctga gggcagtaac aagataggca tgatgcacag agccatgtgg 180 ggattccaga cccctcctgt tgcatagttt cccagttgaa tttgactctt ctccatttat 240 300 ctcatttttt tctggatagg tctacctgca agtcggattt cccaggttat tgttggagat gagcggcagc aatacctctt ggtgattggg caggttgtag tgatgtccag ttagctcagc 360 420 gtttggctca ggcgaatgaa attgtcctat cctggaactg ctggatgctt tgcaagcagt atatgtttga agtggcaatc atgagggagg atgaagctgt gaagattgat gaaggccagc 480 ctatagagta tgtatctgaa ttccgtacga tgactctggt tttggtcagc ctagagttcc 540 600 acaggacage gtggatgttg catttgtgte atettateca ggaggetgee ttatacatet ccacagtcat tgagaaaggg ggcggccagc tgagtcggat ctttatgttt gagaaaggct 660 gcatgttcct ctgtgttttc ggccttcctg gtgataagaa gccagacgag tgtgcacatg 720 780 ccctggagag ctccttcagc atcttcagct tctgctggga gaatcttgct aagaccaact gaggaggaag gtggggcaga gaggagcttc tcaggcccca ggggctcttc aggcaggatc 840 900 cctagatttg tttccatcag tatcactaat ggaccagtat tctgtggcgt ggttggagca gtagcaagac acgaatatac agttattggc ccaaaagtga gtcttgcggc cagaatgata 960 actgcttatc caggtttggt gtcctgtgat gaggtaacat atctaagatc catgctacct 1020 gcttacaact tcaagaaact cccagagaaa atgatgaaaa acatctccaa cccagggaag 1080 atatatgaat atcttggcca cagaagatgt ataatgtttg gaaaaagaca tttggcaaga 1140 1200 aagagaaaca aaaatcaccc tttgttagga gtgttaggtg ctccctgtct ctctacagac tgggagaaag aattggaagc cttccaaatg gcacagcaag ggtgtttgca ccagaagaag 1260 1320 ggacaagcag ttctgtatga aggtggaaaa ggctatggaa aaagccagct gttggctgaa ataaactttc tggcacagaa agaagggcat agctaccctt cacaggtgct ttggaaaccc 1380 actttattgt gaggtcctat gccaggacct tctctctaag gacgtgttgc tctttcatgt 1440 1500 cctacaaaag gaggaagagg aaaacagcaa gtgggaaacc ctctcagcca atgccatgaa 1560 atccataatg tatagtattt ctcctgccaa ctctgaggaa ggccaggaac tttatgtctg cacagtcaag gatgatgtga acttggatac agtacttctc ctaccctttt tgaaagaaat 1620 agcagtaagc caactggatc aactgagccc agaggaacag ttgctggtca agtgtgctgc 1680 aatcattggt cactccttcc atatagattt gctgcagcac ctcctgcctg gctgggataa 1740 1800 aaataageta etteaggtet tgagagetet tgtggatata catgtgetet getggtetga caagagccaa gagcttcctg ctgagcccat attaatgcct tcctctatcg acatcattga 1860 tggaaccaaa gagaagaaga caaagttaga tggtgggtca gcctctcttc tcaggctaca 1920 agaagaatta teeetaeeae aaaetgaggt gttggaattt ggagtgeete tgetaeggge 1980

agctgcttgg	gagctctggc	ccaaggaaca	acagatagct	ctgcaccttg	aatgtgcctg	2040
ctttctccaa	gttttggcct	gccgctgtgg	gagctgccat	ggaggagact	ttgtcccctt	2100
tcatcatttt	gcagtttgtt	ctactaagaa	ttccaagggg	acctctcgat	tctgtactta	2160
cagagatact	ggctcagtgc	taacacaagt	gatcacagaa	aaattgcagc	tgccttctcc	2220
ccaagaacag	aggaagagtt	cctagatcaa	gtgaagagga	agctggctca	gaccagccct	2280
gagaaagacc	tgttgaccac	aaagccttgt	cactgtaagg	atatcctgaa	gttagtgctc	2340
ttacccctca	cccagcattg	cttggtcgtt	ggagaaacca	cctgtgcatt	ttattacctg	2400
ctggaggctg	cggctgcctg	cttggacctg	tcagataatt	atatggtctg	tttcaacatg	2460
ggacgtatca	ctttagccaa	aaaattggct	aggaaagccc	ttcgactgct	gaaaaggaat	2520
ttcccttgga	cctggtttgg	tgtccttttc	cagacattcc	tggaaaagta	ttggcattcc	2580
tgtaccctga	gccaacctcc	aaacgaccct	agtgagaagt	tgtctctacc	tatgtggagc	2640
tctctcagtt	ctcccagagt	gtgggcatca	aggacaagtg	gctgcactgt	gagcagatgg	2700
ccattcagaa	aagcagttta	tgttggttct	ccagggaggg	gttgttggcc	acagctcagc	2760
tcatgcaggc	cctggcctac	accaagetet	gccttggtca	tcttgacttc	tccatcaagc	2820
tgggattgct	gtgtcggccc	tttagtgagt	gtctgcgttt	cgttcaagtc	tacgagcaca	2880
gccgtgttct	aacctctcag	agcaatgtca	tgctgggggt	ccactcctcc	ctggccatgt	2940
ggtaatgtct	tactcaaggg	ctgtggaaaa	ggatagacat	ttatgtcatt	taagctgtct	3000
ctccccacca	gacaggactt	ttgaacctct	ctaaccaact	tttaaagacc	attcacctcc	3060
cataccctcc	catcttatta	gaagggctct	tgtcctttaa	caggttttgg	cctataggtc	3120
aagggttacg	tttagggtta	catttaactg	ctagagtaac	ccatagcaag	gctgaatata	3180
attggtctcc	ttttaagttt	ccttgtatgt	gagttagtag	ccttggtcac	tttctagcat	3240
cacaattctg	attgtccatg	aggtcttaga	gccttaaaga	agtgatgatt	ttaagcaaaa	3300
gtcatggtgg	gtaagcagcg	gatattgctg	caagctgtta	ctcttttcct	ccaggtttgc	3360
ccaggaatca	cagtgggacc	tgtttaagca	ctatttctcc	aacgcttgca	gttggtgaaa	3420
agaaccaatg	cctcgctatt	tggtgcacat	ggctttgtcc	gattcctaga	atgccatgtg	3480
ttaatgttac	agaaaatgcc	agagggtatc	ttcatgcata	ttcctctaga	gcttcacagc	3540
caaacccttg	aggtacctgt	ttctcagctg	tcctttgact	aacacctgat	tcacttagtt	3600
ctaccctatg	gtgctctttc	taccacctgc	atctcttcct	tttttccctt	ttactggctc	3660
tgtttccctt	tactctttga	atcctttgtt	tctccaccta	gaaagtttct	acctacctta	3720
tgtatccttc	ccgatattat	tgcatctagt	tctggactgg	gtttcttaac	tttccacctt	3780

tgccagctgc	tacccagtat	cattaaaata	ttaacattta	gccttgctca	atggacctgt	3840
agtctatggt	tcagtctata	atttgataca	gctccctcca	gcccttctga	gtctaaaaca	3900
cattccaatt	cctctgtttt	ccaggcttat	tttgccatca	gtaactcctt	cctgttcccc	3960
cagccatgag	tgaatatgct	gaatgaggac	ctttgtaagt	tctgatgaag	tagcatgtta	4020
ggagaatgaa	gcactaatcc	cagagctaat	ggaccttcct	ttcctttcag	tactgtaagg	4080
agttcttctc	tcaatgtgtg	acctgccctg	tctatcacca	gtgggtatct	gagcttaagg	4140
cctctgtaat	gagatgtgaa	aagagagaat	tgatgtccct	gactaacagc	atcagacctt	4200
ttgacacctg	cttgaccagg	atttggataa	aaggagaatt	tctgcaggaa	aataactctt	4260
agaaaagaaa	cttaggaata	cagagtaagc	atttcttcct	ggaagccttg	tgtgagagac	4320
ataaagacag	tctcagattc	ttactcacaa	gcagtcaaag	gctgcacctc	tgaaataaaa	4380
agggacacac	agatgtaagg	agttagtcct	tgctccagag	gatttgacag	agtggctgat	4440
gtcaaggaga	acaaggatgc	agaagaaact	caagatgtat	gtattaaaac	aaaagaacaa	4500
taacctgaag	ggaccatgat	tctgttattg	tatataacac	aaggaaatgc	cccagattct	4560
cctttaaaag	atataatgta	catattaagt	atactagcct	ttatagttac	tgctatctac	4620
atgtttatca	aaataaaaga	ctatttttt	ctaaaaca			4658

<210> 29

<211> 1920

<212> DNA

<213> Homo sapien

<400> 29

ctccctcctc ctccactctg ctcaggtccc tctcactctt ttttttttt aaccgctacg 60 ccacagtece egggagaatt cagateccaa eeggggette eggattetgt agtggetttg 120 gcctgtgtct ggtctgagga cgcccggaag gcattgcact gaggctaagg gaaaggtctc 180 tggagggagc ctcaggaaga gcaaatggag gccagagact ggcaggagcg cgccagcgca 240 ggatttaatc ccgacgagcg gattcagagc cgtgcttata taaagcttca ggaagcgccg 300 ttccgacgat gaggtcgaca cgcgagaggc gacctcaaga gcggcggcgc cagggatctg 360 tgcgccaagg gaggacggga gggagcaggt tcgccataat tcctggctcc aggctctgtt 420 ttgttggacc gagccactgt attttagctc acacaggaga attctggccc tgggaaaatt 480 ggtctcagca tgctgccaag ctttctcatg gacgtcagcg aatcccaaca cactgtcggt 540 caaagccgtg ctggaagaaa caaaacagtt ctccctcggt agaactgaga ggggattggt 600 ccagggcccc cgccgatacc aaaatccagg ttgctcaagt ctctcataga aagtggcgta 660 gtatttgcac ataactatgc acatcctccc gtgtacttta aatagtctct aaattacttc 720

PCT/US2003/038815 WO 2004/053077

44

gtaacaccta	atccagtgta	aatgctatgt	aagtaattgt	tatactgttt	ttatttttac	780
tatcttttgt	tgtacttttt	tttaaaaaag	aaattcattt	gtttaatatt	ttcggtcttg	840
gggaacccgc	gtatatggag	ggcctgctac	atagagaaga	ctgagggata	ttctgtgcat	900
ccgtttctac	ggatcctcta	aatcggcctt	tgttttcagc	caggatttag	tgcccagctg	960
tgtcctttgg	aggccccaca	tggagctagc	aaagtttgct	aaatcgggtt	ttgcaagagg	1020
actgtctgct	ccatactggg	agtagttacc	gcaaactgcc	ctatgaaatt	ggttggggtt	1080
cttactgtta	gcatgtttat	tactttatca	gggctctctg	taggagagtc	tatgagaaaa	1140
tettetggtt	tctgctgaaa	gaatcgtgtt	ttgttggggt	ttttttcccg	aaaaatatta	1200
tttttaaaaa	ctcttctgtg	ccctgtttaa	tetetecett	ggatccacct	tctgtgtgct	1260
cataaatcgt	aaatctgtat	tcagacttct	ggactcgaga	cacgtagatc	cacctggtgg	1320
ttcttcagtc	attttaagcc	caaaactcaa	aatctcccga	aatcaaaatg	tttaaactta	1380
taatctccag	ggtgtgactc	acgggggatg	aggggagcaa	ttctctccct	ccccgcataa	1440
agctggttct	cctgtctgct	cattgaacgg	ttccactgcg	catcacagca	tctacatgcc	1500
taaaccaaca	ccccagcatt	ggcaacagat	atcttcctct	cccttggctg	cttcaggaca	1560
gggaagaaac	atgcttgccc	ttttctgact	ctttagtaac	tctggccgaa	tctatcacat	1620
tattttacat	ctctttacat	cttactactc	ccccatcttg	gctgtgtgtt	ccctactggc	1680
agtgatttt	gtttattcat	ttttgtaaac	tgacacttag	ttcagtgtcc	aatataagct	1740
caacaatagt	ttataaagga	aaagttcctg	cctttgattg	cttttaaaca	ctattagaaa	1800
agacataacc	aaattgcaac	atgataaaac	aaccgcaaac	aaggctgaga	gaagtggtga	1860
tttctggtgt	cagagggcac	aggaccctgg	gcagaatcag	agatacggtg	tctgtgcagt	1920

<210> 30

gcctttccca agtgctttgt aatgaataga aatggaaacc aaaaaaaacg tatacaggcc 60 ttcagaaata gtaattgcta ctattttgtt ttcattaagc catagttctg gctataattt 120 tatcaaactc accagctata ttctacagtg aaagcaggat tctagaaagt ctcactgttt 180 tatttatgtc accatgtgct atgatatatt tggttgaatt catttgaaat tagggctgga 240 agtattcaag taatttcttc tgctgaaaaa atacagtgtt ttgagtttag ggcctgtttt 300 atcaaagttc taaagagcct atcactcttc cattgtagac attttaaaat aatgacactg 360 attttaacat ttttaagtgt ctttttagaa cagagagcct gactagaaca cagccctcc 420

<211> 6398 <212> DNA <213> Homo sapien

<400> 30

aaaaacccat gctcaaatta tttttactat ggcagcaatt ccacaaaagg gaacaatggg 480 tttagaaatt acaatgaagt catcaaccca aaaaacatcc ctatccctaa gaaggttatg 540 atataaaatg cccacaagaa atctatgtct gctttaatct gtcttttatt gctttggaag 600 gatggctatt acatttttag tttttgctgt gaatacctga gcagtttctc tcatccatac 660 ttatccttca cacatcagaa gtcaggatag aatatgaatc attttaaaaa cttttacaac 720 780 tccagagcca tgtgcataag aagcattcaa aacttgccaa aacatacatt tttttcaaa tttaaagata ctctattttt gtattcaata gctcaacaac tgtggtcccc actgataaag 840 tgaagtggac aaggagacaa gtaatggcat aagtttgttt ttcccaaagt atgcctgttc 900 aatagccatt ggatgtggga aatttctaca tctcttaaaa ttttacagaa aatacatagc 960 cagatagtct agcaaaagtt caccaagtcc taaattgctt atccttactt cactaagtca 1020 tgaaatcatt ttaatgaaaa gaacatcacc taggttttgt ggtttctttt tttcttattc 1080 atggctgagt gaaaacaaca atctctgttt ctccctagca tctgtggact atttaatgta 1140 1200 ccattattcc acactctatg gtccttacta aatacaaaat tgaacaaaaa gcagtaaaac aactgactct tcacccatat tataaaatat aatccaagcc agattagtca acatccataa 1260 gatgaatcca agctgaactg ggcctagatt attgagttca ggttggatca catccctatt 1320 tattaataaa cttaggaaag aaggeettae agaceateag ttagetggag etaatagaae 1380 ctacacttct aaagttcggc ctagaatcaa tgtggcctta aaagctgaaa agaagcagga 1440 1500 aagaacagtt ttcttcaata atttgtccac cctgtcactg gagaaaattt aagaatttgg gggtgttggt agtaagttaa acacagcagc tgttcatggc agaaattatt caatacatac 1560 1620 cttctctgaa tatcctataa ccaaagcaaa gaaaaacacc aaggggtttg ttctcctcct tggagttgac ctcattccaa ggcagagctc aggtcacagg cacaggggct gcgcccaagc 1680 1740 ttqtccqcaq ccttatgcag ctgtggagtc tggaagactg ttgcaggact gctggcctag tcccagaatg tcagcctcat tttcgattta ctggctcttg ttgctgtatg tcatgctgac 1800 cttattgtta aacacaggtt tgtttgcttt ttttccactc atggagacat gggagaggca 1860 ttatttttaa gctggttgaa agctttaacc gataaagcat ttttagagaa atgtgaatca 1920 ggcagctaag aaagcatact ctgtccatta cggtaaagaa aatgcacaga ttattaactc 1980 tgcagtgtgg cattagtgtc ctggtcaata ttcggataga tatgaataaa atatttaaat 2040 ggtattgtaa atagttttca ggacatatgc tatagcttat ttttattatc ttttgaaatt 2100 gctcttaata catcaaatcc tgatgtattc aatttatcag atataaatta ttctaaatga 2160 agcccagtta aatgtttttg tcttgtcagt tatatgttaa gtttctgatc tctttgtcta 2220 2280 tqacqtttac taatctgcat ttttactgtt atgaattatt ttagacagca gtggtttcaa

getttttgcc actaaaaata cettttattt teteeteece cagaaaagte tatacettga 2340 agtatctatc caccaaactg tacttctatt aagaaatagt tattgtgttt tcttaatgtt 2400 ttgttattca aagacatatc aatgaaagct gctgagcagc atgaataaca attatatcca 2460 cacagatttg atatattttg tgcagcctta acttgatagt ataaaatgtc attgcttttt 2520 aaataatagt tagtcaatgg acttctatca tagctttcct aaactaggtt aagatccaga 2580 gctttggggt cataatatat tacatacaat taagttatct ttttctaagg gctttaaaat 2640 tcatgagaat aaccaaaaaa ggtatgtgga gagttaatac aaacatacca tattcttgtt 2700 gaaacagaga tgtggctctg cttgttctcc ataaggtaga aatactttcc agaatttgcc 2760 taaactagta agccctgaat ttgctatgat tagggatagg aagagatttt cacatggcag 2820 actttagaat tetteaettt agecagtaaa gtateteett ttgatettag tattetgtgt 2880 attttaactt ttctgagttg tgcatgttta taagaaaaat cagcacaaag ggtttaagtt 2940 aaagcctttt tactgaaatt tgaaagaaac agaagaaaat atcaaagttc tttgtatttt 3000 3060 ttattttttg ttgaaaagtc ttactttagg catcatttta ttcctcagca actagctgtg 3120 aagcetttae tgtgetgtat gecagteact etgetagatt gtggagatta ecagtgttee 3180 cgtcttctcc gagcttagag ttggatgggg aataaagaca ggtaaacaga tagctacaat 3240 attgtactgt gaatgettat getggaggaa gtacagggaa etattggage acetaagagg 3300 agcacctacc ttgaatttag gggttagcag aggcatcctg aaaaaagtca aagctaagcc 3360 acaatctata agcagtttag gaattagcag aacgtgcgtg gtgaggagat gccaaaggca 3420 agaagagaag agtattccaa acaggaggga ttccaaagag agaagagtat cccaaacaac 3480 3540 aagaaagcca ggtctagata atcagtggcc ttgtacacca tgttaaagag tgtagacttg 3600 attctgttgt aaacaggaaa gcagcacaat tcatatgaat attttagaag actcccactg 3660 gaatatggag aataaagttg gagatgacta atcctggaag cagggagaac atttttgagg 3720 aagttgcact attttggtga aaatgatggt cataaacatg aagaattgta ggtgatcatg 3780 acctcctctc taattttcca gaagggtttt ggaagatata acataggaac attgacagga 3840 ctgacgaaag gagatgaaat acaccatata aattgtcaaa cacaaggcca gatgtctaat 3900 tattttgctt atgtgttgaa attacaaatt tttcatcagg aaaccaaaaa ctacaaaact 3960 tagttttccc aagtcccaga attctatctg tccaaacaat ctgtaccact ccacctatat 4020 ccctaccttt gcatgtctgt ccaacctcaa agtccaggtc tatacacacg ggtaagacta 4080

gagcagttca	agtttcagaa	aatgagaaag	aggaactgag	ttgtgctgaa	cccatacaaa	4140
ataaacacat	tctttgtata	gattcttgga	acctcgagag	gaattcacct	aactcatagg	4200
tatttgatgg	tatgaatcca	tggctgggct	cggcttttaa	aaagccttat	ctgggattcc	4260
ttctatggaa	ccaagttcca	tcaaagccca	tttaaaagcc	tacattaaaa	acaaaattct	4320
tgctgcattg	tatacaaata	atgatgtcat	gatcaaataa	tcagatgcca	ttatcaagtg	4380
gaattacaaa	atggtatacc	cactccaaaa	aaaaaaagct	aaattctcag	tagaacattg	4440
tgacttcatg	agccctccac	agccttggag	ctgaggaggg	agcactggtg	agcagtaggt	4500
tgaagagaaa	acttggcgct	taataatcta	tccatgtttt	ttcatctaaa	agagccttct	4560
ttttggatta	ccttattcaa	tttccatcaa	ggaaattgtt	agttccacta	accagacagc	4620
agctgggaag	gcagaagctt	actgtatgta	catggtagct	gtgggaagga	ggtttctttc	4680
tccaggtcct	cactggccat	acaccagtcc	cttgttagtt	atgcctggtc	atagaccccc	4740
gttgctatca	tctcatattt	aagtctttgg	cttgtgaatt	tatctattct	ttcagcttca	4800
gcactgcaga	gtgctgggac	tttgctaact	tccatttctt	gctggcttag	cacattcctc	4860
ataggcccag	ctcttttctc	atctggccct	gctgtggagt	caccttgccc	cttcaggaga	4920
gccatggctt	accactgcct	gctaagcctc	cactcagctg	ccaccacact	aaatccaagc	4980
ttctctaaga	tgttgcagac	tttacaggca	agcataaaag	gcttgatctt	cctggacttc	5040
cctttacttg	tctgaatctc	acctccttca	actttcagtc	tcagaatgta	ggcatttgtc	5100
ctctttgccc	tacatcttcc	ttcttctgaa	tcatgaaagc	ctctcacttc	ctcttgctat	5160
gtgctggagg	cttctgtcag	gttttagaat	gagttctcat	ctagtcctag	tagcttttga	5220
tgcttaagtc	caccttttaa	ggataccttt	gagatttaga	ccatgtttt	cgcttgagaa	5280
agccctaatc	tccagacttg	cctttctgtg	gatttcaaag	accaactgag	gaagtcaaaa	5340
gctgaatgtt	gactttcttt	gaacatttcc	gctataacaa	ttccaattct	cctcagagca	5400
atatgcctgc	ctccaactga	ccaggagaaa	ggtccagtgc	caaagagaaa	aacacaaaga	5460
ttaattattt	cagttgagca	catactttca	aagtggtttg	ggtattcata	tgaggttttc	5520
tgtcaagagg	gtgagactct	tcatctatcc	atgtgtgcct	gacagttctc	ctggcactgg	5580
ctggtaacag	atgcaaaact	gtaaaaatta	agtgatcatg	tattttaacg	atatcatcac	5640
atacttattt	tctatgtaat	gttttaaatt	tcccctaaca	tactttgact	gttttgcaca	5700
tggtagatat	tcacattttt	ttgtgttgaa	gttgatgcaa	tcttcaaagt	tatctacccc	5760
gttgcttatt	agtaaaacta	gtgttaatac	ttggcaagag	atgcagggaa	tctttctcat	5820
gactcacgcc	ctatttagtt	attaatgcta	ctaccctatt	ttgagtaagt	agtaggtccc	5880
taagtacatt	gtccagagtt	atacttttaa	agatatttag	ccccatatac	ttcttgaatc	5940

48

taaagtcata caccttgctc ctcatttctg agtgggaaag acatttgaga gtatgttgac 6000 aattgttctg aaggtttttg ccaagaaggt gaaactgtcc tttcatctgt gtatgcctgg 6060 ggctgggtcc ctggcagtga tggggtgaca atgcaaagct gtaaaaacta ggtgctagtg 6120 ggcacctaat atcatcatca tatacttatt ttcaagctaa tatgcaaaat cccatctctg 6180 tttttaaact aagtgtagat ttcagagaaa atattttgtg gttcacataa gaaaacagtc 6240 tactcagctt gacaagtgtt ttatgttaaa ttggctggtg gtttgaaatg aatcatcttc 6300 acataatgtt ttctttaaaa atattgtgaa tttaactcta attcttgtta ttctgtgtga 6360 taataaagaa taaactaatt tctatatctc tctttatt 6398 <210> 31 <211> 1314 <212> DNA <213> Homo sapien <400> 31 60 aggtgcgggc gcccagccca gggcaggcgg gcagggctga gggcgcggat ccccaaccag gccccgcgca ccttcatgac ggttcagaac tgctccgagg caaactcaga caactctctg 120 aggacaacgt ccgccccgc ggcgcccgcc tctcttcggg gccagggacc ggggtgtcgg 180 tectattega aagggaegga gaactacatt teeeggeatg ceategegea eteegggeet 240 300 gcgacggaaa gagctcttcg cagccgaacg tcatttccgc tgcgctactg ggaccacgtt ctgtagtcgt gagcggaggc ctggtatggc gcccggtttc cggtttccgg cgacggaagt 360 gacgetatea eggegegeea aggegteagt egaggagtea aggeageaat gaategtgte 420 ttgtgtgccc cggcggccgg ggccgtccgg gcgctgaggc tcataggctg ggcttcccga 480 agcetteate egttgeeegg tteeegggat egggeeeace etgeegeega ggaagaggae 540 gaccctgacc gccccattga gttttcctcc agcaaagcca accctcaccg ctggtcggtg 600 ggccatacca tgggaaaggg acatcagcgg ccctggtgga aggtgctgcc cctcagctgc 660 ttcctcgtgg cgctgatcat ctggtgctac ctgagggagg agagcgaggc ggaccagtgg 720 ttgagacagg tgtggggaga ggtgccagag cccagtgatc gttctgagga gcctgagact 780 ccagctgcct acagagcgag aacttgacgg ggtgcccgct ggggctggca ggaagggagc 840 cgacagccgc ccttcggatt tgatgtcacg tttgcccgtg actgtcctgg ctatgcgtgc 900 gtcctcagca ctgaaggact tggctggtgg atggggcact tggctatgct gattcgcgtg 960 aaggeggage agaateteag cagateggaa aetgeteete geetggetet tgatgteeaa 1020 ggattccatc ggcaagactt ctcagatcct tggggaaggt ttcagttgca ctgtatgctg 1080

ttggatttgc caagtctttg tataacataa tcatgtttcc aaagcacttc tggtgacact

tgtcatccag tgttagtttg caggtaattt gctttc	tgag atagaatatc tggcagaagt 1200
gtgaaactgt attgcatgct gcggcctgtg caagga	acac ttccacatgt gagttttaca 1260
caacaacaaa tgaaaataaa ttttaatttt ataata	tggg attagatgat tccc 1314
<210> 32 <211> 1124 <212> DNA <213> Homo sapien	
<400> 32 tttcctcgct gcagtcatcc aatagccaag atacac	ggct aggtgatttg cgagcgggag 60
ttaggtgtcc tcttggcgcc tgaccagagt cgggaaa	
ttccccgagt tgccccccga ggtatgcggg gtcactc	
ggtcggacaa ggctccggag ccctgtagct gccctc	
gccgaggtgc ccaccccgca gcattctggg agtggta	
ctggctggcc agtgcccaag actggcgaga ctacga	ttcc cagacgccca agcgagtcgc 360
cggtcacgtg gccgcaagga cgctgggccg gtgggc	
cgtctgtgcc acccagagcc ggcgggccgc taggtc	cccg gagaccctgc tatggtgcgt 480
gcgggcgccg tgggggctca tctccccgcg tccggct	ttgg atatettegg ggaeetgaag 540
aagatgaaca agcgccagct ctattaccag gttttaa	aact tegecatgat egtgtettet 600
gcactcatga tatggaaagg cttgatcgtg ctcacag	ggca gtgagagccc catcgtggtg 660
gtgctgagtg gcagtatgga gccggccttt cacagag	ggag acctcctgtt cctcacaaat 720
ttccgggaag acccaatcag agctgagata atggaga	acat caaatttctg actaaaggag 780
ataataatga agttgatgat agaggcttgt acaaaga	aagg ccagaactgg ctggaaaaga 840
aggacgtggt gggaagagca agagggtttt taccata	atgt tggtatggtc accataataa 900
tgaatgacta tccaaaattc aagtatgctc ttttggc	etgt aatgggtgca tatgtgttac 960
taaaacgtga atcctaaaat gagaagcagt tcctggg	gacc agattgaaat gaattctgtt 1020
gaaaaagaga aaaactaata tatttgagat gttccat	ettt ctgtataaaa gggaacagtg 1080
tggagatgtt tttgtcttgt ccaaataaaa gattcac	ccag taaa 1124
<210> 33 <211> 2414 <212> DNA <213> Homo sapien <400> 33	
agactggctg aggaaggaat ttggggcaag agacaaa	aat acagcaacag gagaaaagac 60

tcacggaggt	agaaagagac	tgggagacaa	aaagagagaa	acacatcaaa	aagatgtgga	120
gagagataga	aacagagcca	ggcagagtaa	aaagaggctg	agagagatga	gttagagatg	180
tgcagctgga	catgtagagg	acagagaaaa	gcaaattggg	ccagataatg	tcaaagacct	240
tcaggcaaac	ggagggcagc	cagggagaca	ggcgtgtgca	cagcaaggct	acagcctctc	300
ctgaccctgc	cctccctcc	ctactgtgga	cgcaggagaa	atccaaccca	cacagtgaat	360
tcagccacca	gaacctcatc	atcaacacgc	tctcgctctt	ctttgctggc	actgagacca	420
ccagcaccac	tctccgctac	ggcttcctgc	tcatgctcaa	ataccctcat	gtcgcagaga	480
gagtctacaa	ggagattgaa	caggtggttg	gcccacatcg	ccctccagcg	cttgatgacc	540
gagccaaaat	gccatacaca	gaggcagtca	tccgtgagat	tcagagattt	gctgaccttc	600
tccccatggg	tgtgccccac	attgtcaccc	aacacaccag	cttctgaggg	tacaccatcc	660
ccaaggacac	ggaagtattt	ctcatcctga	gcactgctct	ccgtgaccca	cactactttg	720
aaaaaccaga	cgccttcaat	cctgaccact	ttctggatgc	caatggggca	ctgaaaaaga	780
atgaagcttt	tatccccttc	tccttaggga	agcggatttg	tcttggtgaa	ggcattgccc	840
gtgcggaatt	gttcctcttc	ttcaccacca	tcctccagaa	cttctccgtg	gccagccccg	900
tggctcctga	agacatcgat	ctgacacccc	aggagtgtgg	tgtgggcaaa	atacccccaa	960
cataccagat	ctgcttcctg	ccccgctgaa	ggggctgagg	gaagggggtc	aaaggattcc	1020
agggtcattc	agtgtcccca	cctctgtaga	taatggctct	gactccctgc	aacttcctgc	1080
ctctgagaga	cctgctgcaa	gccagcttcc	ttcccttcca	tggcaccagt	tgtctgaggt	1140
cgcagtgcaa	atgagtggag	gagtgagatt	attgaaaatt	ataatataca	aaattatata	1200
tatatattt	gagacagagt	ctcactcagt	tgcccaggct	ggagtgcagt	ggcgtgatct	1260
cggctcactg	caacctccac	ccccggggtt	caagaaattc	tcctgcctca	gcctccctag	1320
tagctgggat	tacaggtgtg	tgctaccatg	cctggctaat	ttttgtattt	ttagtagaga	1380
tggggtttca	ccgtgttggc	caggetgate	tcaaactcct	gaactcaagt	gattcaccca	1440
ccttagcctc	ccaaagtgct	gggattacag	gtgtgagtca	ccatgcccgg	ccatgtatat	1500
atataatttt	aaaaattaag	atgaaattca	cataaaataa	aattagccat	tttaaagtgt	1560
acaatttagt	ggtgtgtggt	tcattcacaa	agctgtacaa	ccaccaccat	ctagttccaa	1620
acattttctt	tttttctgag	acggagtete	actctgtcac	ccaggttcga	gttcagtggt	1680
cttgaactcc	tgatgtcagg	tgattctcct	agttccaaat	gttttcatta	tetetecece	1740
aacaaaaccc	atacctatca	agctgtcact	ccccataccc	cattctcttt	ttcatctcag	1800
cccctgtcaa	tctggttttt	gtccttatgg	acttaccaat	tctgaatatt	tcctataaac	1860
agaatcacac	aatatttgat	tttttttta	aaactaagcc	ttgctctgtc	tcccaggctg	1920

51

gagtgctgtg gcgtgatttt ggttcactgc aacctccgcc ttccaagttc aagagattct 1980 cctgcctcag cttccaagta gctgggatta caggcatgtg gtaccacgcc tggctaattt 2040 tettgtattt ttagtaggga catgttggee aggetggttg tgageteetg geeteaggtg 2100 atccacacgc ctcagtgtcc cagagtgctg atattacagg cgtaatatgt gatcttttgt 2160 gtctggttcc tttcacgttg aacgctattt ttgaggttcg tgcctgttgt agaccacagt 2220 cacacactgc tgtagtcttc ccccatcctc attcccagct gcctcctcct actgtttccc 2280 totatoaaaa agootoottg gogcaggtto cotgagotgt gggattotgo actggtgott 2340 tggattccct gatatgttcc ttcaaatcca ctgagaatta aataaacatc gctaaagcct 2400 2414 qacctcccca cgtc <210> 34 <211> 578 <212> DNA <213> Homo sapien <400> 34 atgctgctcg agcggcgcag tgtgatggat ccgcccgggc aggtacaaac ttatgaagaa 60 ggtctctttt atgctcaaaa aagtaagaag ccattaatgg ttattcatca cctggaggat 120 tgtcaatact ctcaagcact aaagaaagta tttgcccaaa atgaagaaat acaagaaatg 180 gctcagaata agttcatcat gctaaacctt atgcatgaaa ccactgataa gaatttatca 240 cctgatgggc aatatgtgcc tagaatcatg tttgtagacc cttctttaac agttagagct 300 gacatagctg gaagatactc taacagattg tacacatatg agcctcggga tttaccccta 360 ttgatagaaa acatgaagaa agcattaaga cttattcagt cagagctata agagatgata 420 gaaaaaagcc ttcacttcaa agaagtcaaa tttcatgaag aaaacctctg gcacattgac 480 aaatactaaa tgtgcaagta tatagatttt gtaatattac tatttagttt ttttaatgtg 540 578 tttgcaatag tcttattaaa ataaatgttt tttaaatc <210> 35 <211> 1410 <212> DNA <213> Homo sapien <400> 35 tggctgtacg gcgagtttta gatcctacgt ctggtccagt cggtcttcct ccggcccggg 60 ccctggccca gctagccggc catggaaggt aatggccccg ctgctgtcca ctaccagccg 120 gccagccccc cgcgggacgc ctgcgtctac agcagctgct actgtgaaga aaatatttgg 180 aagetetgtg aatacateaa aaaceatgae eagtateett tagaagaatg ttatgetgte 240

PCT/US2003/038815

420

			54			
ttcatatcta	atgagaggaa	gatgatacct	atctggaaac	aacaggcgag	acctggagat	300
ggacctgtga	tctgggatta	ccatgttgtt	ttgcttcatg	tttcaagtgg	aggacagaac	360
ttcatttatg	atctcgatac	tgtcttgcca	tttccctgcc	tctttgacac	ttatgtagaa	420
gatgccttta	agtctgatga	tgacattcac	ccacagttta	ggaggaaatt	tagagtgatc	480
cgtgcagatt	catatttgaa	gaactttgct	tctgaccgat	ctcacatgaa	agactccagt	540
gggaattgga	gagagcctcc	gccgccatat	ccctgcattg	agactggagg	catcaatcca	600
gttgataatt	tcctgacatt	taagaagata	aagggtcctt	caccctatta	ctattgtttg	660
gcattcatat	gagtttgaag	tattatttac	gtttattcca	aaatgaacct	gaacgatttc	720
atcagtatgg	atcccaaggt	aggatggggc	gccgtctaca	cactateega	atttacacat	780
cggtttggca	gtaaaaactg	ctgaacttgg	tctcaagatg	tggaactgtg	gagaaattct	840
aggacatgaa	caagctatcc	tttcatcgag	gacagcaaac	attatggtac	agttggcttg	900
gaattatgtc	tttctctttt	aatttgattg	agtggaaatc	tgagtgaata	caaatataaa	960
tgaacaacat	aaaaactttt	gttttgacat	gtcaaattga	aacttgataa	agtgcgtact	1020
tgctaagata	ttcctgtggc	tcatgcgtta	caacacgagg	acttaagcca	gtaatcgttt	1080
ttgttcagat	agaggtgtgg	aggtagagcc	agcccctcat	gtctgttttg	gatgttttgt	1140
gtctctccag	ctacattgta	agttccttga	gggcagggcc	atggcccatt	gctctgtgaa	1200
tctcaaatgc	ccataaaagg	tgcccataaa	atgttttctt	gaacatttga	atgtgctgtt	1260
gtctggaaag	gggtaatatt	gtgagctgaa	tcagcaataa	gtattagtct	ttttggacta	1320
tggtattgtt	aaaaagactg	cagccctctc	agacttgagc	gttaattggc	ttatttattt	1380
atggctttaa	ataaaatcga	tttaacgtta				1410
<210> 36 <211> 734 <212> DNA <213> Homo	o sapien			·		
	agagagagag	agagagagag	agagtggaca	taaaaattgc	ttagtaaagg	60
tcaaagattc	taaactgcct	gcatataagg	atctcggtaa	aaatctacca	ttccctacat	120
attttcctga	tggagatgaa	gaggaactgc	cagaagattt	gtatgatgaa	aacgtgtgtc	180
agcccggtgc	gccttctatt	acatttgcct	aacatctttg	gacgtggcag	aaccttacat	240
attctgtgag	cttcgatgag	ccagagtgat	atcataacca	ccagaaatca	tactctcctt	300

tettagteac aacaaaatca cacatgteat etttgteaag ggeataaata tateatteat acccccatta aattttgtta gaaaaattac cacattaaat atatgagtta agtagattgg

atttgctgaa	attggtgttg	ggcatattag	caaaatatto	ttaatttgtg	gactcgattc	480
ttttttacta	catatttccc	aagttatctt	aagatgtctg	taaatttaac	tttattaaa	540
gttttgtcaa	tctttgtgaa	atagtggttg	tggaacagta	gaaaaccata	tggggactat	600
agtgcaacct	atttgggtaa	agaaaccatt	tgctaaaatg	gagaaagtaa	atagatttt	660
atttaaatta	cagaaacatg	ttaaaggccg	gacaaaggaa	agacaataaa	atcataaatt	720
atcggtcctg	ttta					734
<210> 37 <211> 683 <212> DNA <213> Homo <400> 37	o sapien					
ggccatccag	ccctgtggac	cgaatggagt	cccgcacgct	gttgaggtca	gttgtgggtt	60
cccctggcct	cgggctgggc	gcggggtcag	cgcacctgca	ggcggcgctt	gcggtacggg	120
ctggtgaaag	tggagatgga	cggcaggatg	gattcacttg	gccacatggc	gcgaasstgg	180
gaagacggac	accgacctaa	gtcagtgtta	gtctaccact	gtacatctgg	taacctcaat	240
ccctgcaacc	ggggcaaaat	gggtttccag	gtcttggcaa	cctttgaaat	tccaattcca	300
tttgagagag	ctttgacgag	gccatatgct	gatttcacca	ccagcaactt	cagaacccag	360
tactggaatg	ccatcagcca	gcaggcccct	gccatcatct	atgacttcta	tctgtggctc	420
actggaagga	aacccaggca	aggccaagat	ggctcaaaga	gcaaccagcc	acctctgcag	480
cctgccacct	cctgctggca	agatttgttt	ttgcatcctg	tgaagagcca	aggaggcacc	540
agggcataag	tctactcact	tatatctgtc	tggaacataa	cgcttgtttg	tttttacaac	600
aaataaaatt	gatcttgaat	aaaaacagat	gcggccggac	atcctcatct	atattttcgt	660
tcgacataaa	tatgggtgta	ttc				683
<210> 38 <211> 1181 <212> DNA <213> Homo						
<400> 38 gcatgctgca	acgactctct	taatcctcca	ccgctacaga	ctaaatgagg	gatttcttct	60
tggtttggat	ccattgctgg	caaagttgtt	atctatgcaa	caagccagag	aaactgcagt	120
tcaacagtac	aaaaaactgg	aagaggaaat	ccagaccctt	cgagtttact	acagtttaca	180
caaatcttta	tctcaagaag	aaaatctgaa	ggatcagttt	aactataccc	ttagtacata	240
tgaagaagct	ttaaaaaaca	gagagaacat	tgtttccatc	actcaacaac	aaaatgagga	300
actggctact	caactgcaac	aagctctgac	agagcgagca	aatatggaat	tacaacttca	360

acatgccag	a gaggcctcc	c aagtggccaa	ı tgaaaaagtt	caaaagttgg	aaaggctggt	420
ggatgtact	g aggaagaag	g ttggaaccgg	gaccatgagg	acagtgatct	gattgaaaaa	480
aaacgacag	t ctggggaag	gatcacatct	ggtgaccagg	ctgcttcatt	caacactgtg	540
taaacacca	a agccttaact	tagcaaacag	f ttgttagaag	tgggacactc	caaccacatt	600
ccaagetga	g ataaaatcaa	a tcacaaatg	tttaaccact	ttgctgctga	cttgagttat	660
ttatccaaa	t atattaacta	tagactttta	ccaatgggta	gctataaggt	tacagettat	720
tttgtaact	a ttttatatct	: caatatcttt	aatataaatc	tttttactga	gagatcatta	780
tagaaacat	g ttaaagttgg	f ttaggatcat	atcttcacat	atggcccttt	ctgaatcaaa	840
gtgcggcaa	a gtaaatattg	r tctaagcttt	aatccactgt	gttaggtcaa	aacttcaaat	900
acatgcatt	ttcaatatag	ggtatatttc	ttaactgatg	agagaggctt	agacatgagt	960
gtgtagtcti	ccttcaatgo	gtgtatgtaa	tctttgttag	tataaaagat	attaaatata	1020
ggtgccaaga	a attaaatgta	taatttgttt	aataagagat	ggatatatta	aaattacatt	1080
catcaaggca	tgatttttgt	ttcactacaa	ataatgcaaa	ctgttttcaa	taaaaagagg	1140
agactgttaa	tgtgtactta	taaattcaca	ttgtcagtat	t		1181
<210> 39 <211> 204 <212> DNF <213> Hom <400> 39	-					
	geegteeeeg	tgcaccccag	tgatggccgc	cgtccccgtg	cacaccagtg	60
atggccgccg	tgcccgtgca	ccccagtgat	ggccgccgtc	cccgtgcaca	ccagtgatgg	120
cctctgtccc	ccatgcactc	ccagacaggc	aatgtccctg	tgggcctgtc	ccaggctctg	180
ttctcagcag	gctgggctca	gccctggtgc	agggagtgag	gaggtgggag	tagtagggac	240
cagaaaaagt	ggcagctgtt	gacaactctg	ccatctcttt	ctgaatgtaa	tgggaggtcc	300
tgtcttttca	gcttgcaagg	aaggagggtc	cgaggcaact	ccgctgttgc	acatttaggg	360
acccctgaac						
atataattaa	ttaaatgaca	gaatgccctg	accactctgg			420
grgrgeriga				aaggcactgt	gttcatgttt	420 480
	ctcttgatcc	gtaaaatggc	accactctgg	aaggcactgt ggtcattaac	gttcatgttt tgtgagattc	
agagagtagg	ctcttgatcc tgcacacgtc	gtaaaatggc cctgcagaga	accactctgg tgtttgtgca	aaggcactgt ggtcattaac actgaaaacc	gttcatgttt tgtgagattc agtagaaata	480
agagagtagg tatcagcacc	ctcttgatcc tgcacacgtc tggatcttgc	gtaaaatggc cctgcagaga ctcctgagtc	accactctgg tgtttgtgca ttccagcagg	aaggcactgt ggtcattaac actgaaaacc tgccacagtc	gttcatgttt tgtgagattc agtagaaata acgaaggcag	480 540
agagagtagg tatcagcacc tgggatttcg	ctcttgatcc tgcacacgtc tggatcttgc agggagggaa	gtaaaatggc cctgcagaga ctcctgagtc gggaaggcgg	accactctgg tgtttgtgca ttccagcagg agtaaggata	aaggcactgt ggtcattaac actgaaaacc tgccacagtc atgccctccg	gttcatgttt tgtgagattc agtagaaata acgaaggcag gggtgcccga	480 540 600

ctttccgagg tcaccctgcc	actgcgtgcc	cttcagtccc	tcctggcagg	tgggggcaca	840
tcccccagcc actcccattt	cctgacattg	tcactttgta	taactggaag	ccttctgtga	900
aattttagtt ttcaaagcat	tatctggtga	tgggcaaccc	agggcagcga	atcattcaga	960
attttcttat ctaggctaat	aaacataata	aaatcaataa	ggactttgaa	agtaactcca	1020
ctgggttcag gaaactgagt	gtggccgccc	tgtggggtgg	tgtttggtga	gtgcttcccg	1080
gaggtgagta gttaattcac	aggagtgact	aatggcagcg	tcccactcac	tcctccttcc	1140
ggggtcatgg tctcaagggg	tcactccatg	cactggggat	gtcagctcat	tacagaatga	1200
tatattcggg aagtgtctca	gttctgagtg	cctttgaggg	aatttgcact	tccgttccca	1260
cacagcettg cattgtgtgt	gttagaggct	gtgggccttg	ggcaggaggg	gtgagtgttg	1320
gcacatacct cccgtctctc	ccagccttct	ctgactctga	ctttccctct	tgaaggctac	1380
cggctctctg accagttcca	cgacatecte	attcgaaagt	ttgacaggca	gggacggggg	1440
cagatcgcct tcgacgactt	catccagggc	tgcatcgtcc	tgcagaggtt	gacggatata	1500
ttcagacgtt acgacacgga	tcaggacggc	tggattcagg	tgtcgtacga	acagtacctg	1560
tccatggtct tcagtatcgt	atgaccctgg	cctctcgtga	agagcagcac	aacatggaaa	1620
gagccaaaat gtcacagttc	ctatctgtga	gggaatggag	cacaggtgca	gttagatgct	1680
gttcttcctt tagattttgt	cacgtgggga	cccagctgta	catatgtgga	taagctgatt	1740
aatggttttg caactgtaat	agtagctgta	tcgttctaat	gcagacattg	gatttggtga	1800
ctgtctcatt gtgccatgag	gtaaatgtaa	tgtttcaggc	attctgcttg	caaaaaaatc	1860
tatcatgtgc ttttctagat	gtctctggtt	ctatagtgca	aatgctttta	ttagccaata	1920
ggaattttaa aataacatgg	aacttacaca	aaaggctttt	catgtgcctt	acttttttaa	1980
aaaggagttt attgtattca	ttggaatatg	tgacgtaagc	aataaaggga	atgttagacg	2040
tg					2042
<210> 40 <211> 1287 <212> DNA <213> Homo sapien					
<400> 40					
ggtgataatg ccaggcctg					60
ctcgtcgctg caggcgcctc					120
ccgccccggc cctggggccg					180
cttcctgtgg aacgttttcc	agagggtcga	taaagacagg	agtggagtga	tatcagacac	240

cgagcttcag caagctctct ccaacggcac gtggactccc tttaatccag tgactgtcag 300

WO 2004/053077

56

PCT/US2003/038815

•						
gtcgatcata	tccatgtttg	accgtgagaa	caaggccggc	gtgaacttca	gcgagttcac	360
gggtgtgtgg	aagtacatca	cggactggca	gaacgtette	cgcacgtacg	accgggacaa	420
ctccgggatg	atcgataaga	acgagctgaa	gcaggccctc	tcaggtttcg	gctaccggct	480
ctctgaccag	ttccacgaca	tcctcattcg	aaagtttgac	aggcagggac	gggggcagat	540
cgccttcgac	gacttcatcc	agggctgcat	cgtcctgcag	accettgete	catcacccag	600
gccagagtgt	ggtggtgcga	acacggctca	ctgcagcctc	gaccctcagg	ctcaagcgat	660
cctcacgcct	cggaccccca	aagtgctggg	atcacaggcg	agagtcacca	tgctggcctg	720
aatcttcagg	aggttgacgg	atatattcag	acgttacgac	acggatcagg	acggctggat	780
tcaggtgtcg	tacgaacagt	acctgtccat	ggtcttcagt	atcgtatgac	cctggcctct	840
cgtgaagagc	agcacaacat	ggaaagagcc	aaaatgtcac	agttcctatc	tgtgagggaa	900
tggagcacag	gtgcagttag	atgctgttct	tcctttagat	tttgtcacgt	ggggacccag	960
ctgtacatat	gtggataagc	tgattaatgg	ttttgcaact	gtaatagtag	ctgtatcgtt	1020
ctaatgcaga	cattggattt	ggtgactgtc	tcattgtgcc	atgaggtaaa	tgtaatgttt	1080
caggcattct	gcttgcaaaa	aaatctatca	tgtgcttttc	tagatgtctc	tggttctata	1140
gtgcaaatgc	ttttattagc	caataggaat	tttaaaataa	catggaactt	acacaaaagg	1200
cttttcatgt	gccttacttt	tttaaaaagg	agtttattgt	attcattgga	atatgtgacg	1260
taagcaataa	agggaatgtt	agacgtg				1287

<210> 41

<211> 1763

<212> DNA

<213> Homo sapien

<400> 41

aaaaagatca gagcgcagcc gaggacccgg cgagagcaag gacgcgcgct cggcgacgca 60 gcgcgaagga acacaataca caccgagcat gtaaggccgc cgcgcgcgcc ccacacgcgt 120 acccagcaca tacggtgcag agaggacgac gtggccgtcc acaccccgtg gcaccagcca 180 acgccccgca cctcggcctc tctctgattt ccttatgtgt tgttgttact ttgtttgtta 240 300 360 ttataaatgt gtttaattac aactgcttca aaagaatccc agcttttcaa aagtttattt 420 taagtttgga gactagacaa ggtcatactg gttttacatc ctacgtgata taagtatata 480 tacaaagaaa aaaacaacat tggaatatta cacagcttga aggtttgcaa aggttatttg 540 tgtcttagtt atttctgcac ttaatgacac atcagacgca ttgagtatat ttcataagtt 600 WO 2004/053077

gttgactag	c aaagatacaa	ı tcattagtaa	cccaagtctt	: caaaattcac	accaaacttt	660
atgaagtca	t tcagaaagag	g aaagtcaatc	ctaaaattaa	aattggcaac	: tatgataaat	720
accttcaaa	a ggatgtagat	ataatggaga	tgtttaaaag	, tttagtttca	ttaattgtaa	780
aattagcat	g ttatatttac	: tcaatatagt	gaagactagg	tgattcttac	atgtattcta	840
cttatggta	c tgtactggtt	ttagtgtgaa	tttacataga	ataaatttac	ttcactttca	900
tgtcatcga	c atgaatgaca	caaaagctac	ttcataatac	tactttacaa	tagttttcaa	960
catttccata	a tggtgcgacc	cctttgctct	catcaatttt	gggtgtcatg	agaacaatag	1020
gtatecegt	t ggacatgatg	tattgcgaag	agcatataaa	gcagagggaa	aatgaaaaag	1080
caagagaaa	c tcatttcaat	gctttttcta	aaaggtaaca	aatataattt	taatcaactt	1140
ccttggaaaa	a tatttttaaa	acaggtatca	atagaaaaaa	ttacaaaaca	tcatatgaag	1200
ctataaataa	a ttttgaaaaa	ctatatcatc	ataaagcata	agtaataatc	ttaaaaatac	1260
actcttaaga	a aggtatgtaa	tttgcaaagg	aaaatggcta	gatatctgat	gggacagtaa	1320
accttgaaag	g aaactggcta	aagagtaagt	gtgtgtatat	ttctgaacct	aagtaattat	1380
ttgtcacgac	tttaaaattt	agccagttac	aaatatttta	aaatcctaac	tttaaagtta	1440
tctaaaaaag	g gcaatatgga	ggaaatagta	attttgtttt	tgaaagatgt	tgaaaactga	1500
tcaccatttc	agaggcttca	aattcataat	ttcataataa	gaacaagaag	tagaaagcat	1560
atgggcaagg	g aacaaatatg	tggccagcca	gtccccttag	acgaactaat	tttgttctta	1620
ttaaaaatgo	caatacaatt	gactttctct	ttaaattctt	cactatgatt	gaagaccact	1680
ccatatatac	atcattaaga	aatgctgtta	acacatggac	agacaagaca	gtaacagtct	1740
agtggctttt	gttatgcagc	aca				1763
<210> 42 <211> 291 <212> DNA <213> Hom	<u> </u>					
cccgttaggg	gttacccctt	ccatcttaag	caggatattc	taggatctct	cagtctcaca	60
gccttgccca	ccaataacca	gcagaaagcg	gttcgacaat	tggtccttct	tttggcccct	120
cctgcgatgc	ccgcggattg	gacggctgag	tctggctacg	cgggcctccg	cgggagcgcg	180
atggggccaa	tcaagagctt	ggcgtatttt	acaaactgag	aaagtagctc	cagcagcacc	240
cgagagggtc	aggagaaaag	cggaggaagc	tgggtaggcc	ctgaggggcc	tcggtaagcc	300
atcatgacca	cccggcaagc	cacgaaggat	cccctcctcc	ggggtgtatc	tcctacccct	360
agcaagattc	cggtacgctc	tcagaaacgc	acgcctttcc	ccactgttac	atcgtgcgcc	420

58

gtggaccagg agaaccaaga tccaaggaga tgggtgcaga aaccaccgct caatattcaa 480 egececeteg ttgatteage aggececagg cegaaageca ggcaccagge agagacatea 540 caaagattgg tggggatcag tcagcctcgg aaccccttgg aagagctcag gcctagccct 600 aggggtcaaa atgtggggcc tgggccccct gcccagacag aggctccagg gaccatagag 660 tttgtggctg accetgcage cetggecace atectgtcag gtgagggtgt gaagagetgt 720 cacctggggc gccagcctag tctggctaaa agagtactgg ttcgaggaag tcagggaggc 780 accacccaga gggtccaggg tgttcgggcc tctgcatatt tggcccccag aacccccacc 840 caccgactgg accctgccag ggcttcctgc ttctctaggc tggagggacc aggacctcga 900 ggccggacat tgtgccccca gaggctacag gctctgattt caccttcagg accttccttt 960 caccetteca etegeceeag tttecaggag etaagaaggg agacagetgg cageageegg 1020 acttcagtga gccaggcctc aggattgctc ctggagaccc cagtccagcc tgctttctct 1080 cttcctaaag gagaacgcga ggttgtcact cactcagatg aaggaggtgt ggcctctctt 1140 ggtctggccc agcgagtacc attaagagaa aaccgagaaa tgtcacatac cagggacagc 1200 catgactece acetgatgee eteceetgee cetgtggeee agecettgee tggecatgtg 1260 gtgccatgtc catcaccett tggacgggct cagcgtgtac cctccccagg ccctccaact 1320 ctgacctcat attcagtgtt gcggcgtctc accgttcaac ctaaaacccg gttcacaccc 1380 atgccatcaa cccccagagt tcagcaggcc cagtggctgc gtggtgtctc ccctcagtcc 1440 tgctctgaag atcctgccct gccctgggag caggttgccg tccggttgtt tgaccaggag 1500 agttgtataa ggtcactgga gggttctggg aaaccaccgg tggccactcc ttctggaccc 1560 cactctaaca gaacccccag cetecaggag gtgaagatte aagtgagtet gtgtggccaa 1620 cagetttgat gtetattgaa cagtgaetgg getgaggaag agggaaaaga gatgggggat 1680 caggaatagg acagtgtggg tagactactg aacgcacatc ttgatgtcac actggggtgc 1740 teteteceae cacagegeat eggtateetg caacagetgt tgagacagga agtagagggg 1800 ctggtagggg gccagtgtgt ccctcttaat ggaggctctt ctctggatat ggttgaactt 1860 cageceetge tgaetgagat ttetagaact etgaatgeea cagageataa etetgggaet 1920 teccacette etggaetgtt aaaacaetea gggetgecaa agecetgtet tecagaggag 1980 tgcggggaac cacagccctg ccctccggca gagcctgggc ccccagaggc cttctgtagg 2040 agtgagcctg agataccaga gccctccctc caggaacagc ttgaagtacc agagccctac 2100 cctccagcag aacccaggcc cctagagtcc tgctgtagga gtgagcctga gataccggag 2160 tectetegee aggaacaget tgaggtaeet gageeetgee etecageaga acceaggeee 2220

ctagagteet actgtaggat tgageetgag ataceggagt eetetegeea ggaacagett	2280
gaggtacetg agecetgeee tecageagaa eeegggeeee tteageeeag cacecagggg	2340
cagtetggae ecceagggee etgeeetagg gtagagetgg gggeateaga geeetgeace	2400
ctggaacata gaagtetaga gtecagteta ecaceetget geagteagtg ggetecagea	2460
accaccagee tgatettete tteecaacae eegetttgtg eeageeeee tatetgetea	2520
ctccagtett tgagacecec ageaggecag geaggeetca geaatetgge eeetegaace	2580
ctagecetga gggagegeet caaategtgt ttaaeegeea teeaetgett eeaegagget	2640
cgtctggacg atgagtgtgc cttttacacc agecgagece eteceteagg eeccaeeegg	2700
gtetgcacca accetgtgge tacattacte gaatggcagg atgeeetgtg ttteatteca	2760
gttggttctg ctgccccca gggctctcca tgatgagaca accactcctg ccctgccgta	2820
cttcttcctt ttagccctta tttattgtcg gtctgcccat gggactggga gccgccact	2880
tttgtcctca ataaagtttc taaagtaaaa cac	2913
<210> 43 <211> 986 <212> DNA <213> Homo sapien	
<400> 43	
<400> 43 cgccaggaac agcttgaggt acctgagccc tgccagctcc agcagcaccc gagagggtca	60
	60 120
cgccaggaac agcttgaggt acctgagccc tgccagctcc agcagcaccc gagagggtca	
cgccaggaac agcttgaggt acctgagccc tgccagctcc agcagcaccc gagagggtca ggagaaaagc ggaggaagct gggtaggccc tgaggggcct cggtaagcca tcatgaccac	120
cgccaggaac agcttgaggt acctgagccc tgccagctcc agcagcaccc gagagggtca ggagaaaagc ggaggaagct gggtaggccc tgaggggcct cggtaagcca tcatgaccac ccggcaagcc acgaaggatc ccctcctccg gggtgtatct cctacccct agggtagagc	120 180
cgccaggaac agcttgaggt acctgagccc tgccagctcc agcagcaccc gagagggtca ggagaaaagc ggaggaagct gggtaggccc tgaggggcct cggtaagcca tcatgaccac ccggcaagcc acgaaggatc ccctcctccg gggtgtatct cctacccct agggtagagc tgggggcatc agagccctgc accctggaac atagaagtct agagtccagt ctaccacct	120 180 240
cgccaggaac agcttgaggt acctgagccc tgccagctcc agcagcaccc gagagggtca ggagaaaagc ggaggaagct gggtaggccc tgaggggcct cggtaagcca tcatgaccac ccggcaagcc acgaaggatc ccctcctccg gggtgtatct cctacccct agggtagagc tgggggcatc agagccctgc accctggaac atagaagtct agagtccagt ctaccaccct gctgcagtca gtgggctcca gcaaccacca gcctgatctt ctcttcccaa cacccgcttt	120 180 240 300
egecaggaac agettgaggt acetgagece tgecagetec ageageace gagagggtea ggagaaaage ggaggaaget gggtaggeee tgaggggeet eggtaageea teatgaceae eeggeaagee acgaaggate eeeteeteeg gggtgtatet eetaceeet agggtagage tgggggeate agageeetge aceetggaac atagaagtet agagteeagt etaceaeet getgeagtea gtgggeteea geaaceaea geetgatett etetteeeaa eaceegettt gtgecageee eeetatetge teacteeagt etttgagaee eeeageagge eaggeaggta	120 180 240 300 360
egecaggaac agettgaggt acetgagece tgecagetee ageageacee gagagggtea ggagaaaage ggaggaaget gggtaggeee tgaggggeet eggtaageea teatgaceae eeggeaagee acgaaggate eeeteeteeg gggtgtatet eetaceeet agggtagage tgggggeate agageeetge aceetggaac atagaagtet agagteeagt etaceaeet getgeagtea gtgggeteea geaaceaea geetgatett etetteeaa eaceegettt gtgecageee eeetatetge teaeteeagt etttgagaee eeeageagge eaggeaggta aggagttgge tgggaaggag tgtgaacaea agaggteete aceteaetgt gagetgeaea	120 180 240 300 360 420
egecaggaac agettgaggt acetgagece tgecagetee ageageacee gagagggtea ggagaaaage ggaggaaget gggtaggeee tgaggggeet eggtaageea teatgaceae eeggeaagee acgaaggate eeetteeteeg gggtgtatet eetaceeeet agggtagage tgggggeate agageeetge aceetggaac atagaagtet agagteeagt etaceaeeet getgeagtea gtgggeteea geaaceaea geetgatett etetteeaa eaceegettt gtgecageee eeetatetge teaeteeagt etttgagaee eeeageagge eaggeaggta aggagttgge tgggaaggag tgtgaacaea agaggteete aceteaetgt gagetgeaea eetgeeetge eeetaceea ggeaatetea tgetteeaea eetteeaeee tggeeeagee tggeteteee teaggaagag gggagggget geaetteeag eeetgtgete etaattgget tggeegttgg tggggagga ggagaggaea gtaeatggtg gaagtatagg aceecagaee	120 180 240 300 360 420
egecaggaac agettgaggt acetgagece tgecagetee ageageacee gagagggtea ggagaaaage ggaggaaget gggtaggeee tgaggggeet eggtaageea teatgaceae ceggeaagee acgaaggate eeetteeg gggtgtatet eetaceeet agggtagage tgggggeate agageeetge aceetggaac atagaagtet agagteeagt etaceaeeet getgeagtea gtgggeteea geaaceaea geetgatett etetteeaa eaceegettt gtgecageee eeetacege teaeteeagt etttgagaee eeeageagge eaggeaggta aggagttgge tgggaaggag tgtgaacaea agaggteete aceteaetgt gagetgeaea eetgeeetge eeetaceeea ggeaatetea tgetteeaea eetteeaeee tggeeeagee tggeteteee teaggaagag gggagggget geaetteeag eeetgtgete etaattgget	120 180 240 300 360 420 480 540
egecaggaac agettgaggt acetgagece tgecagetee ageageacee gagagggtea ggagaaaage ggaggaaget gggtaggeee tgaggggeet eggtaageea teatgaceae eeggeaagee acgaaggate eeetteeteeg gggtgtatet eetaceeeet agggtagage tgggggeate agageeetge aceetggaac atagaagtet agagteeagt etaceaeeet getgeagtea gtgggeteea geaaceaea geetgatett etetteeaa eaceegettt gtgecageee eeetatetge teaeteeagt etttgagaee eeeageagge eaggeaggta aggagttgge tgggaaggag tgtgaacaea agaggteete aceteaetgt gagetgeaea eetgeeetge eeetaceea ggeaatetea tgetteeaea eetteeaeee tggeeeagee tggeteteee teaggaagag gggagggget geaetteeag eeetgtgete etaattgget tggeegttgg tggggagga ggagaggaea gtaeatggtg gaagtatagg aceecagaee	120 180 240 300 360 420 480 540
egecaggaac agettgaggt acctgagece tgecagetec ageageacee gagagggtea ggagaaaaage ggaggaaget eeeteeteeg gggtgtatet eetaeceeet agggtagage tggggggeate agaggteagee acceteggaac atagaagtet agagtecage etaecaeete getgeagtea gtggggeate agagteceage accetggaac atagaagtet agagtecagt etaecaeete getgecagtea gtgggeteea geaaceaea geetgatett etetteeaa eaceegettt gtgecagee eeetaeteg teaeteeagt etttgagaee eeetaeetg gagetgaaga agaggttgge tgggaaaggag tgtgaacaa agaggteete accteaetgt gagetgeaea eetggeetgee eeggaateete tggeeetge eeaggaaga tgggaagaggeget geaetteeag eeetgggee etaattgget tgggeegttgg tgggggaggaggget geaetteeag eeetgggee etaattgget etaeetgtaggeggetggagagaggggetggaaateteaggaggaggggetggaagaaggaggggetggagaagaaggaggggetggaaaateteaggaggagaagaaggaggagaagaagaagaagaagaaga	120 180 240 300 360 420 480 540 600
cgccaggaac agcttgaggt acctgagece tgccagetee agcageacee gagagggtea ggagaaaagee ggaggaaget gggtaggeee tgaggggeet eggtaageea teatgaeeaee ceggcaagee acgaaggate eceteeteeg gggtgtatet eetateeeeet agggtagage tgggggeate agageeetge accetggaac atagaagtet agagteeagt etaceaeeet getgeagtea gtgggeteea geaaceaeea geetgatett eteeteeeaa eaeeegettt gtgecageee eeetatetge teaeteeagt etttgagaee eceageagge eaggeaggta aggagttgge tgggaaggag tgtgaacaea agaggteete accteaetgt gagetgeaea eetgeeetge eeetaceea ggeaatetea tgetteeaea eetteeaee tggeeeagee tggeteteee teaggaagag gggaggget geaetteeag eeetgtgete etaattgget tggeegttgg tggggagga ggagaggaea gtacatggtg gaagtatagg acceeagaee teeetetaaa tttteeatge eeeteaggee teageaatet ggeeeetega accetageee tgagggageg eeteaaateg tgtttaaceg eeateeacet etteeaega getegtetgg	120 180 240 300 360 420 480 540 600 720

cttttagccc ttatttattg	teggtetgee	catgggactg	ggagccgccc	acttttgtcc	960
tcaataaagt ttctaaagta	aaacac				986
<210> 44 <211> 865 <212> DNA <213> Homo sapien					
<400> 44 ccctgctgat acgattcgag	ctcgtacccc	tecagetgge	cccaaggaga	aagccttctc	60
aagtgagata gaagatttgc	cgtacctttc	caccacagaa	atgtatttgt	gtcgttggca	120
ccagcctccc ccatcaccgt	taccattacg	ggaatcctct	ccaaagaagg	aggagactgt	180
agcaagtaag gcatagagaa	cacttgctct	tataccctag	tggtggcggt	caagctaaca	240
agtgtgaaaa tgcctttggc	atttttaaaa	aagtgcaatc	aataaagcag	agttctgtca	300
agaatgagta agttaacagc	cagagacaga	cactgtgcag	gcattgcaaa	tagatggaat	360
tacagcaaaa tgtgctcaat	gtatttgcct	gcttacaaca	ctgggagatg	tgtttgccag	420
taagttgctc atcacaagag	caccagactt	gggggtgtaa	tctccggcaa	cttgcatgcc	480
ctctgaaaga agggttttct	gtgctgtgaa	atgcatagaa	ctatactttg	ccatgcacga	540
ctgttcctgc aattgatatt	gtgtgaaatc	tgggagggtg	gtctttgggt	gttctcaggg	600
gccaatggta atttttgggt	tggggagcca	gcttggggtg	gggaattttc	acctgggcct	660
ccgctcttta actatataaa	catttatctg	tatatctatg	tecetgtetg	gggggcagga	720
ggaatctgcc aaagaccaac	agtcttactt	tatcttacta	tacttcacaa	aggttctaaa	780
atgtgaagag tttacttgga	ttgcagtagc	ccattggttg	ttcatatatt	taaataaaat	840
ggtctacaaa ctatttttca	aacaa				865
<210> 45 <211> 1050 <212> DNA <213> Homo sapien					
<400> 45 ccccgcgcgc cctcgctccc	tcccgtcagc	ccccgcccct	cggcgaaggg	agcggcgtgc	60
cgtccgggtc gcctaggcct	ggggtcggga	gegegeaege	tgtgcgccct	gggcgcgctc	120
gggattctcg cctggcgcgg	ctggggaagg	tgaacagtgt	ggcccgccat	gttcttctcc	180
geggegetee gggeeeggge	ggctggcctc	accgcccact	ggggaagaca	tgtaaggaat	240
ttgcataaga cagctatgca	aaatggagct	ggaggagctt	tatttgtgca	cagagatact	300
cctgagaata accctgatac	tccatttgat	ttcacaccag	aaaactataa	gaggatagag	360
gcaattgtaa aaaactatcc	agaaggccat	aaagcagcag	ctgttcttcc	agtcctggat	420

61

ttagcccaaa ggcagaatgo	gtggttgccc	atctctgcta	tgaacaaggt	tgcagaagtt	480
ttacaagtac ctccaatgag	, agtatatgaa	gtagcaactt	tttatacaat	gtataatcga	540
aagccagttg gaaagtatca	cattcaggtc	tgcactacta	caccctgcat	gcttcgaaac	600
tctgacagca tactggaggd	cattcagaaa	aagcttggaa	taaaggttgg	ggagactaca	660
cctgacaaac ttttcactct	tatagaagtg	gaatgtttag	gggcctgtgt	gaacgcacca	720
atggttcaaa taaatgacaa	ttactatgag	gatttgacag	ctaaggatat	tgaagaaatt	780
attgatgagc tcaaggctgg	caaaatccca	aaaccagggc	caaggagtgg	acgcttctct	840
tgtgagccag ctggaggtct	tacctctttg	actgaaccac	ccaagggacc	tggatttggt	900
gtacaatgtg ttcacctcca	caggaaattc	caaggtgcaa	tagcggttgt	tgtcaatcat	960
aggatetetg ttgggatgge	tgaaggtgaa	acagggctgg	ggtgcmgaga	gctggtggaa	1020
gttgtgcagc cgtacctgcc	cgggcggccg				1050
<210> 46 <211> 1027 <212> DNA <213> Homo sapien <400> 46					
cccegegege cetegetece	tcccgtcagc	ccccgcccct	cggcgaaggg	agcggcgtgc	60
cgtccgggtc gcctaggcct	ggggtcggga	gcgcgcacgc	tgtgcgccct	gggcgcgctc	120
gggattctcg cctggcgcgg	ctggggaagg	tgaacagtgt	ggcccgccat	gttcttctcc	180
geggegetee gggeeeggge	ggctggcctc	accgcccact	ggggaagaca	tgtaaggaat	240
ttgcataaga cagctatgca	aaatggagct	ggaggagctt	tatttgtgca	cagagatact	300
cctgagaata accctgatac	tccatttgat	ttcacaccag	aaaactataa	gaggatagag	360
gcaattgtaa aaaactatco	agaaggccat	aaagcagcag	ctgttcttcc	agtcctggat	420
ttagcccaaa ggcagaatgg	gtggttgccc	atctctgcta	tgaacaaggt	tgcagaagtt	480
ttacaagtac ctccaatgag	agtatatgaa	gtagcaactt	tttatacaat	gtataatcga	540
aagccagttg gaaagtatca	cattcaggtc	tgcactacta	caccctgcat	gcttcgaaac	600
tctgacagca tactggaggc	cattcagaaa	aagcttggaa	taaaggttgg	ggagactaca	660
cctgacaaac ttttcactct	tatagaagtg	gaatgtttag	gggcctgtgt	gaacgcacca	720
atggttcaaa taaatgacaa	ttactatgag	gatttgacag	ctaaggatat	tgaagaaatt	780
attgatgagc tcaaggctgg	caaaatccca	aaaccagggc	caaggagtgg	acgcttctct	840
tgtgagccag ctggaggtct	tacctctttg	actgaacggc	ctccagtatg	ctgtcagagt	900
h.b					

ttcgaagcat gcagggtgta gtagtgcaga cctgaatgtg atactttcca actggctttc 960

gattatacat	: tgtataaaaa	gttgctactt	catatactct	cattggaggt	acctgcccgg	1020
geggeeg						1027
<210> 47 <211> 864 <212> DNZ <213> Hon						
<400> 47	: cctcgctccc	tcccgtcagc	ccccgcccct	cggcgaaggg	ageggegtge	60
cgtccgggt	gcctaggcct	ggggtcggga	gcgcgcacgc	tgtgcgccct	gggcgcgctc	120
gggattctcg	r cctggcgcgg	ctggggaagg	tgaacagtgt	ggcccgccat	gttcttctcc	180
gcggcgctcc	gggcccgggc	ggctggcctc	accgcccact	ggggaagaca	tgtaaggaat	240
ttgcataaga	cagctatgca	aaatggagct	ggaggagctt	tatttgtgca	cagagatact	300
cctgagaata	accctgatac	tccatttgat	ttcacaccag	aaaactataa	gaggatagag	360
gcaattgtaa	aaaactatcc	agaaggccat	aaagcagcag	ctgttcttcc	agtcctggat	420
ttagcccaaa	ggcagaatgg	gtggttgccc	atctctgcta	tgaacaaggt	tgcagaagtt	480
ttacaagtac	ctccaatgag	agtatatgaa	gtagcaactt	tttatacaat	gtataatcga	540
aagccagttg	gaaagtatca	cattcaggtc	tgcactacta	caccctgcat	gcttcgaaac	600
tctgacagca	tactggaggc	cattcagaaa	aagcttggta	gggaatacat	gatatttgta	660
acactgataa	aaagtagaat	tgtctctcta	gatttggtac	atttctatct	aaaatttcca	720
acttctgcca	tcttattgga	tctgtactta	cctagtaata	ttttgtgtta	ctgtgtttcc	780
acatctttat	ttcttcctat	ttggtattct	tcctcagttc	ttagtgttaa	agctgagttt	840
ttaattttt	cttttttaat	cagt				864
<210> 48 <211> 101 <212> DNA <213> Hom	=					
<400> 48	gtgtgatgga	ttegggggg	aggtagatag	aattannaan		60
	tettgtcaac					120
	tgcggggctt					120
	gggcgtcatc					180
	getegeeeeg					300
	gtccagcctc					
	geccageeee	cyaryycreg	yayatyatgg	accycggaag	ygaagcgtct	360

63

gtggggagtg	g agcgcttaga	tggccagcag	ctgeteette	tgggaagctc	gcaccttggc	420
aacagaaca	g ccctctagca	gagcgtcagt	gcagtcgtgt	tatcccggct	tttacagaat	480
attcttgtco	: tattttagaa	ttttccggag	tagtttattt	gcagtctgtt	gattatgtgc	540
agtagacccg	g ggacactgcg	ttttaccgat	caccttgaat	gtggtgcctg	gatgtgcctt	600
tttttttt	ccctgaaatt	attattaatt	ttctattgtg	agttcatcag	ttcatagttt	660
ttttagtaaa	a gaagcaaaat	taaaaggctt	ttaaaaatgt	acaacttcag	aattataatc	720
tgttagtcaa	atatttgtta	ttaaacattt	ctgtaatatg	aagttgtaat	cctggccgtg	780
agcttggaag	, cttacttttg	attcttaaag	cctatgtttt	ctaaaatgag	acaaatacgg	840
atgtctattt	gccttttatt	gtaactttta	aatgaaataa	tttcatgtca	atttctatta	900
gatatatcac	: ttaaaatatt	tggttttaaa	tcacaagaat	atgtattctt	taataaagat	960
aatttatgat	catggtataa	ttaattgaaa	tttattaaaa	tctgttttta	ttaa	1014
	_					
-	cagcctgcgg	ctgccaggcc	ccacgccggc	caggaagtgc	tegeegeeeg	60
cggccgacgg	gacccgccca	cgccccgcct	cttaaagggg	gcagtgactg	cggctgggcg	120
ggagtccggg	teggettgge	tgagcggggg	cggtgctggg	cagggcggcg	gccgctccct	180
cccggactcc	cggcctcccg	gcctccctgg	tcccgcctgg	gaagggatgc	aaggaagccc	240
teeggegetg	cgctccgagg	cgggagacag	cgtccccctc	cgcccctcgg	gtcctggcgc	300
ctcagagccc	ggcccaggcc	gcggaacggt	gatgctcggg	ccggacgggc	gggcgcggat	360
ccctgcgtcc	cgctgaaaat	gtgtgtctga	catgcaagct	cagtggggca	gagacccgtg	420
gattgctgtg	ccctgccctc	cggacctgga	tcatgaaggt	gttgggaaga	agcttcttct	480
gggtgctgtt	tcccgtcctt	ccctgggcgg	tgcaggctgt	ggagcacgag	gaggtggcgc	540
agcgtgtgat	caaactgcac	cgcgggcgag	gggtggctgc	catgcagagc	cggcagtggg	600
tccgggacag	ctgcaggaag	ctctcagggc	ttctccgcca	gaagaatgca	gttctgaaca	660
aactgaaaac	tgcaattgga	gcagtggaga	aagacgtggg	cctgtcggat	gaagagaaac	720
tgtttcaggt	gcacacgttt	gaaattttcc	agaaagagct	gaatgaaagt	gaaaattccg	780
ttttccaagc	tgtctacgga	ctgcagagag	ccctgcaggg	ggattacaat	gatggaccgt	840

ggaagggaag cgtctgtggg gagtgagcgc ttagatggcc agcagctgct ccttctggga

agetegeace ttggcaacag aacageeete tagcagageg teagtgcagt egtgttatee 960

64

		64			
cggcttttac agaatat	tct tgtcctattt	tagaattttc	cggagtagtt	tatttgcagt	1020
ctgttgatta tgtgcag	tag accegggaca	ctgcgtttta	ccgatcacct	tgaatgtggt	1080
gcctggatgt gcctttt	ttt ttttccctg	aaattattat	taattttcta	ttgtgagttc	1140
atcagttcat agttttt	tta gtaaagaagc	aaaattaaaa	ggcttttaaa	aatgtacaac	1200
ttcagaatta taatctg	ıtta gtcaaatatt	tgttattaaa	catttctgta	atatgaagtt	1260
gtaatcctgg ccgtgag	jett ggaagettae	ttttgattct	taaagcctat	gttttctaaa	1320
atgagacaaa tacggat	gtc tatttgcctt	ttattgtaac	ttttaaatga	aataatttca	1380
tgtcaatttc tattaga	itat atcacttaaa	atatttggtt	ttaaatcaca	agaatatgta	1440
ttctttaata aagataa	attt atgatcatgg	tataattaat	tgaaatttat	taaaatctgt	1500
ttttattaa					1509
<210> 50 <211> 1206 <212> DNA <213> Homo sapier	n				
<400> 50 ggtccaacgc cagcct	gegg etgeeaggee	ccacgccggc	caggaagtgc	tegeegeeeg	60
cggccgacgg gacccg	ccca cgccccgcct	cttaaagggg	gcagtgactg	cggctgggcg	120
ggagtccggg tcggct	tggc tgagcggggg	cggtgctggg	cagggcggcg	gccgctccct	180
cccggactcc cggcct	cccg gcctccctgg	tecegeetgg	gaagggatgc	aaggaagccc	240
teeggegetg egetee	gagg cgggagacag	gteecete	cgcccctcgg	gtcctggcgc	300
ctcagagccc ggccca	ggcc gcggaacggt	gatgctcggg	ccggacggg	gggcgcggat	360
ccctgcgtcc cgctga	aaat gtgtgtctga	a catgcaagct	cagtggggca	gagacccgtg	420
gattgctgtg ccctgc	cctc cggacctgga	ı tcatgaaggt	gttgggaaga	agettettet	480
gggtgctgtt tecegt	cett ceetgggegg	g tgcaggctgt	ggagcacgag	g gaggtggcgc	540
agcgtgtgat caaact	gcac cgcgggcgag	gggtggctgc	catgcagago	c cggcagtggg	600
tccgggacag ctgcag	gaag ctctcaggg	e ttctccgcca	gaagaatgca	gttctgaaca	660
aactgaaaac tgcaat	tgga gcagtggaga	a aagacgtggg	cctgtcggat	gaagagaaac	720
tgtttcaggt gcacac	gttt gaaattttc	c agaaagagct	gaatgaaagt	gaaaattccg	780
ttttccaagc tgtcta	ıcgga ctgcagagag	g ccctgcaggg	ggattacaaa	a gatgtcgtga	840
acatgaagga gagcag	jecgg cagegeetge	g aggecetgag	g agaggctgca	a ataaaggaag	900
aaacagaata tatgga	actt ctggcagca	g aaaaacatca	agttgaagc	c cttaaaaata	960

tgcaacatca aaaccaaagt ttatccatgc ttgacgagat tcttgaagat gtaagaaagg 1020

		05			
cagcggatcg tctggaggaa	gagatagagg	aacatgcttt	tgacgacaat	aaatcagtaa	1080
gcgttccaga acagctgctt	cttcacctcc	tgagccactc	actaatcaga	agacatgttg	1140
ttgaaattgt tcacgtgtat	gtttttaatg	tagattgaaa	atgaagacaa	actaaaatgc	1200
ttctct					1206
<210> 51 <211> 882					
<212> DNA					
<213> Homo sapien					
<220> <221> misc_feature					
<222> (43)(43)					
<223> n=a, c, g or t					
<400> 51					
tgggtaattg gattctcacc	cctccgccct	acgcactgca	ctncgactct	tagagatece	60
cggggagccg gggcagacgt	ccgtagcgcc	ccctcccgag	gaggtcgagc	cgggcagtgg	120
ggtccgcatc gtggtggagt	actggtgagc	ggccccggct	ggaggacccg	caccctggtc	180
ccgcgggccg gacggaggtg	ggtccacggg	aggccccacc	cccgaatccc	cagcccagcc	240
ccatctcttg actccccagt	gaaccctgcg	gcttcgaggc	gacctacctg	gagctggcca	300
gtgctgtgaa ggagcagtat	ccgggcatcg	agatcgagtc	gcgcctcggg	ggcacaggtg	360
cctttgagat agagataaat	ggacagctgg	tgttctccaa	gctggagaat	gggggettte	420
cctatgagaa agatctcatt	gaggccatcc	gaagagccag	taatggagaa	accctagaaa	480
agatcaccaa cagccgtcct	ccctgcgtca	tcctgtgact	gcacaggact	ctgggttcct	540
gctctgttct ggggtccaaa	ccttggtctc	cctttggtcc	tgctgggagc	teccetgee	600
tettteecet acttagetee	ttagcaaaga	gaccetggee	tccactttgc	cctttgggta	660
caaagaagga atagaagatt	ccgtggcctt	gggggcagga	gagagacact	ctccatgaac	720
acttctccag ccacctcata	ccccttccc	agggtaagtg	cccacgaaag	cccagtccac	780
tcttcgcctc ggtaatacct	gtctgatgcc	acagatttta	tttattctcc	cctaacccag	840
ggcaatgtca gctattggca	gtaaagtggc	gctacaaaca	ct		882
<210> 52					
<211> 1074					
<212> DNA <213> Homo sapien		-			
<400> 52					
taaatgaagc catgaagtcc	agcggacacc	gggagtgggg	agtggggaag	cccggcactc	60
cgggagaccg ggccagggaa	ggagggtctg	gaccggaccc	agcccctgcc	cggggagcga	120

PCT/US2003/038815 WO 2004/053077

66

			66			
gctccggagc	tgccctacga	ggtcaaaacg	tagcagtggc	ggagacccgc	agggggcgcc	180
cgaacgccac	cctcggcccc	teccegetec	agaggccccg	ccccgtcacg	tgcccgcggt	240
tcgcgtcaca	cccggaagca	ggggcccgag	cggaccggcc	gcgatgagcg	gggagccggg	300
gcagacgtcc	gtagcgcccc	ctcccgagga	ggtcgagccg	ggcagtgggg	tccgcatcgt	360
ggtggagtac	tgtgaaccct	gcggcttcga	ggcgacctac	ctggagctgg	ccagtgctgt	420
gaaggagcag	tatccgggca	tcgagatcga	gtcgcgcctc	gggggcacag	gtgcctttga	480
gatagagata	aatggacagc	tggtgttctc	caagctggag	aatgggggct	ttccctatga	540
gaaagatgtg	agtatttaca	gcgttgggag	gacctcttgg	tcaccctacc	ccaacagtgc	600
atcatcctgt	cattccactc	ctctagctca	ttgaggccat	ccgaagagcc	agtaatggag	660
aaaccctaga	aaagatcacc	aacagccgtc	ctccctgcgt	catcctgtga	ctgcacagga	720
ctctgggttc	ctgctctgtt	ctggggtcca	aaccttggtc	tccctttggt	cctgctggga	780
gctcccctg	cctctttccc	ctacttagct	ccttagcaaa	gagaccctgg	cctccacttt	840
gccctttggg	tacaaagaag	gaatagaaga	ttccgtggcc	ttgggggcag	gagagagaca	900
ctctccatga	acacttctcc	agccacctca	tacccccttc	ccagggtaag	tgcccacgaa	960
agcccagtcc	actcttcgcc	tcggtaatac	ctgtctgatg	ccacagattt	tatttattct	1020
cccctaaccc	agggcaatgt	cagctattgg	cagtaaagtg	gcgctacaaa	cact	1074
<210> 53 <211> 961 <212> DNA <213> Homo	o sapien					

<220>

<221> misc_feature <222> (43)..(43) <223> n=a, c, g or t

<400> 53

tgggtaattg gattctcacc cctccgccct acgcactgca ctncgactct tagagatccc 60 cggggagccg gggcagacgt ccgtagcgcc ccctcccgag gaggtcgagc cgggcagtgg 120 ggtccgcatc gtggtggagt actggtgagc ggccccggct ggaggacccg caccctggtc 180 240 ccatctcttg actccccagt gaaccctgcg gcttcgaggc gacctacctg gagctggcca 300 gtgctgtgaa ggagcagtat ccgggcatcg agatcgagtc gcgcctcggg ggcacaggtg 360 cctttgagat agagataaat ggacagctgg tgttctccaa gctggagaat gggggctttc 420 cctatgagaa agatgtgagt atttacagcg ttgggaggac ctcttggtca ccctacccca 480

acagtgcatc atcetgtcat tecactecte tageteattg aggecatecg aagagecagt	
aatggagaaa ccctagaaaa gatcaccaac agccgtcctc cctgcgtcat cctgtgactg	600
cacaggacte tgggtteetg ctetgttetg gggteeaaac ettggtetee etttggteet	660
gctgggaget ecceetgeet ettteeeeta ettageteet tagcaaagag accetggeet	720
ccactttgcc ctttgggtac aaagaaggaa tagaagattc cgtggccttg ggggcaggag	780
agagacacte tecatgaaca ettetecage caceteatae eccettecca gggtaagtge	840
ccacgaaage ccagtccact cttcgcctcg gtaatacctg tctgatgcca cagattttat	900
ttattctccc ctaacccagg gcaatgtcag ctattggcag taaagtggcg ctacaaacac	960
t	961
<210> 54 <211> 1839 <212> DNA <213> Homo sapien	
<400> 54 ggagagatcg tccaggaggc ggtgttgatg cggcaaaggg caacaggaag ggcattagga	
cttgaaatcg gagacgcacg caggggaggg agtcagtgtc ggaacctggt aggccctggg	60
agaacteegg ettttegtet gegtgagetg gagaagagee gaaggtttet gegeacagea	120
cggacctgcg tgcctcagct ttaaggaaat caccgtggcc gccgctgtga acgcagagaa	180
gggcgcgagc gtgggagcag gaacccaagg cggtgggaaa cggtggggct ttctgagtgt	240
	300
attggaaagt agagcccaca gatctgctgc agaccagaaa ggggcgcgag aaagagcgga cagaggcaga caccagaggt ggcgggata garaasaa	360
cagaggcaga cgccggggct ggcggcgatg gagcagcagt cggaggacgc ggaaggcctg	420
cgagagtege cegeggeeca gegeeggeet tegggteeca cettgegggt gatgttgtge	480
acgtaggggc acgtgttgca ggcgaagcgg tggcagcgtt gtccctcctc cacgatcagc	540
ccgttcccgc agccggggca gaacagcagc atggtctcga actccgcagg ctccaactcc	600
cggcagctcc cactgccgct cagcgccgat gcgccgcccg cctcgagctc acattggtcc	660
tggcagcctt cccggcacac caaccaacca atagacaggg cgattctgcg ctcccggcct	720
gctgcaggct gtctcgcact tgtcattggt cactgcagcc gccccacccc cccggcgcgc	780
cagtggctgg gcggcctcgc tggggcgggc cgcagttcct gcgcgtgcgc gcttggcctc	840
cctagtgcgg gctggcagtg cgggcagagc ccggctgaga ggggcggccc tggaggagac	900
ggaggcggcg ggtgggcccg aggcgcaaga ggaagatgag gacgaagaag aggcgctgcc	960
	1020
getetgegat etgeegatee aggttaetet ggaagaagte aacteecaaa tageeetaga	1080

atacggccag	gcaatgacgg	tccgagtgtg	caagatggat	ggagaagtaa	tgcccgtggt	1140
tgtagtgcag	agtgccacag	tcctggacct	gaagaaggcc	atccagagat	acgtgcagct	1200
caagcaggag	cgtgaagggg	gcattcagca	catcagctgg	tcctacgtgt	ggaggacgta	1260
ccatctgacc	tctgcaggag	agaaactcac	ggaagacaga	aagaagctcc	gagactacgg	1320
catccggaat	cgagacgagg	tttccttcat	caaaaagctg	aggcaaaagt	gagcctccag	1380
acaggacaac	cctcttcatc	actggtggct	gagctttttc	ccagcaggaa	tgggtcctcg	1440
aatcatcgtg	cctctttcac	agaaaggacg	ttgtggtggc	ctcaccccag	gcatgcccaa	1500
caggaactgt	cagcattaaa	cctgggggcc	ctcaggacta	ggacagggtg	agccagtgct	1560
ccctcctttc	atgtacttgg	cctgagactg	acctctccct	aggtccaaat	gccctagtca	1620
catggagaca	cggctggcac	tgttaataaa	ctgttggttt	agttgaagga	caaaaaaaaa	1680
gggggcggtg	aagttactct	ggggcgagta	ggaccagttt	ggaaagggca	tgtgggatta	1740
agagaagggg	ggtaaagtgc	gaaaagcatg	gtttggagag	attgggggga	gagagcgaga	1800
ggaggggaaa	ggtgagaagg	gggaggtgta	taagagagg			1839

PCT/US2003/038815

<210> 55

<211> 2586

<212> DNA

<213> Homo sapien

<400> 55 ggcacgaggg agagatcgtc caggaggcgg tgttgatgcg gcaaagggca acaggaaggg 60 120 cattaggact tgaaatcgga gacgcacgca ggggagggag tcagtgtcgg aacctggtag 180 gccctgggag aactccggct tttcgtctgc gtgagctgga gaagagccga aggtttctgc gcacagcacg gacctgcgtg cctcagcttt aaggaaatca ccgtggccgc cgctgtgaac 240 300 gcagagaagg gcgcgagcgt gggagcagga acccaaggcg gtgggaaacg gtggggcttt 360 ctgagtgtat tggaaagtag agcccacaga tctgctgcag accagaaagg ggcgcgagaa 420 agagcggaca gaggcagacg ccggggctgg cggcgatgga gcagcagtcg gaggacgcgg aaggeetgeg agagtegeee geggeeeage geeggeette gggteeeace ttgegggtga 480 tgttgtgcac gtaggggcac gtgttgcagg cgaagcggtg gcagcgttgt ccctcctcca 540 cgatcagccc gttcccgcag ccggggcaga acagcagcat ggtctcgaac tccgcaggct 600 ccaactcccg gcagctccca ctgccgctca gcgccgatgc gccgcccgcc tcgagctcac 660 720 attggtectg gcagcettec cgccacacca accaaccaat agacagggcg attctgcgct 780 cceggcctg ctgcaggctg tctcgcactt gtcattggtc actgcagccg ccccacccc 840 cccggcgcgc cagtggctgg gcggcctcgc tggggcgggc cgcagttcct gcgcgtgcgc

gcttggcctc	cctagtgcgg	gctggcagtg	cgggcagagc	ccggctgaga	ggggcggccc	900
tggaggagac	ggaggcggcg	ggtgggcccg	aggcgcaaga	ggaagatgag	gacgaagaag	960
aggcgctgcc	gcactccgag	gccatggacg	tgttccagga	gggtctggct	atggtggtgc	1020
aggacccgct	gctctgcgat	ctgccgatcc	aggttactct	ggaagaagtc	aactcccaaa	1080
	atacggccag					1140
tgcccgtggt	tgtagtgcag	agtgccacag	tcctggacct	gaagaaggcc	atccagagat	1200
acgtgcagct	caagcaggag	cgtgaagggg	gcattcagca	catcagctgg	taagtggaac	1260
aacattccct	tcattatagc	ccttcgtggg	gctagtgccc	ttcttggcac	tgtcaccagg	1320
	aaacagctct					1380
	gagtgatgag					1440
ctcctgcctc	ggccatcccc	aacattctgc	tettecateg	gcatcacccc	atccgagctg	1500
ctgggtatct	tcacttgggg	acactgtcgg	gaatttccag	tgtgtctgga	agtggcctcc	1560
ctagttttgg	atggtacacc	tgtaggggct	cccatcccct	tctcacctgg	gtgctgtcag	1620
ccctcactct	cctattggat	caactatcct	gttcactgag	tctcaacact	gtcgcctgtt	1680
gcattagcaa	ggtttgtttg	gccaagccgc	cccagacagc	cctctgagaa	cagageetee	1740
ttgtagctgc	ctcagaccca	atctgcacat	tgtacagaac	agcccaggta	gggaggacag	1800
ctgccccagg	tcccatagga	ctgcatgcct	caagcccacg	tcatgcagag	ccactcagct	1860
caccctgctc	agggcacgtg	gtttacctgc	attcccctct	tgcaggtcct	acgtgtggag	1920
gacgtaccat	ctgacctctg	caggagagaa	actcacggaa	gacagaaaga	agctccgaga	1980
ctacggcatc	cggaatcgag	acgaggtttc	cttcatcaaa	aagctgaggc	aaaagtgagc	2040
ctccagacag	gacaaccctc	ttcatcactg	gtggctgagc	tttttcccag	caggaatggg	2100
tcctcgaatc	atcgtgcctc	tttcacagaa	aggacgttgt	ggtggcctca	ccccaggcat	2160
gcccaacagg	aactgtcagc	ataaacctgg	gggccctcag	gactaggaca	gggtgagcca	2220
gtgctccctc	ctttcatgta	cttggcctga	gactgacctc	tccctaggtc	caaatgccct	2280
agtcacatgg	cagacccacg	gcctggccca	ctgtataaaa	taaacctgtt	tgcttcttat	2340
cttagtttga	aaagtagaaa	gccacagtaa	cctgggtagc	aaagactgag	attgccccat	2400
cacagaggtg	agttaagggg	agagaattgg	tacaggcgag	tcctatagtc	caagatggcg	2460
ccacaccacc	aaagccttga	ggccacacca	ctccccaaac	cacacaactg	tgttaccatg	2520
atctccacag	caaggaggaa	ataaaagcag	agcggcttta	gggtttgcat	cctggagctc	2580
acagtg						2586

<210> 56 <211> 2566 <212> DNA <213> Homo sapien

<400> 56

<400> 56	
ggcacgaggg agagatcgtc caggaggcgg tgttgatgcg gcaaagggca acaggaaggg	60
cattaggact tgaaatcgga gacgcacgca ggggagggag tcagtgtcgg aacctggtag	120
gccctgggag aactccggct tttcgtctgc gtgagctgga gaagagccga aggtttctgc	180
gcacagcacg gacctgcgtg cctcagcttt aaggaaatca ccgtggccgc cgctgtgaac	240
gcagagaagg gcgcgagcgt gggagcagga acccaaggcg gtgggaaacg gtggggcttt	300
ctgagtgtat tggaaagtag agcccacaga tctgctgcag accagaaagg ggcgcgagaa	360
agagcggaca gaggcagacg ccggggctgg cggcgatgga gcagcagtcg gaggacgcgg	420
aaggeetgeg agagtegeee geggeeeage geeggeette gggteeeaee ttgegggtga	480
tgttgtgcac gtaggggcac gtgttgcagg cgaagcggtg gcagcgttgt ccctcctcca	540
cgatcagccc gttcccgcag ccggggcaga acagcagcat ggtctcgaac tccgcaggct	600
ccaacteceg geagetecea etgeegetea gegeegatge geegeeegee tegageteae	660
attggteetg geageettee egecacacea accaaccaat agacagggeg attetgeget	720
cccggccctg ctgcaggctg tctcgcactt gtcattggtc actgcagccg ccccacccc	780
cccggcgcgc cagtggctgg gcggcctcgc tggggcgggc cgcagttcct gcgcgtgcgc	840
gcttggcctc cctagtgcgg gctggcagtg cgggcagagc ccggctgaga ggggcggccc	900
tggaggagac ggaggcggcg ggtgggcccg aggcgcaaga ggaagatgag gacgaagaag	960
aggegetgee geacteegag gecatggaeg tgtteeagga gggtetgget atggtggtge	1020
aggacccget getetgegat etgeegatee aggttaetet ggaagaagte aaeteecaaa	1080
tagccctaga atacggccag gcaatgacgg tccgagtgtg caagatggat ggagaagtaa	1140
tgegtaagtg etaceeteet eeetteaggt tatgtggtee aggettteae ageaggaaga	1200
cctaacagtg ctggtcagcc tgctcagaaa ctcacaggcc atgcccaggg gtactggggc	1260
aaccacaaac ctgccctgtg cacagaggtg ttggttcctt tcctgccatc ggaggctgtg	1320
gctttgggtt ctcaccatgg atcttctccc atctgtgtcc gtggttgcag ccgtggttgt	1380
agtgcagagt gccacagtcc tggacctgaa gaaggccatc cagagatacg tgcagctcaa	1440
gcaggagcgt gaagggggca ttcagcacat cagctggtaa gtggaacaac attcccttca	1500
ttatageeet tegtgggget agtgeeette ttggeaetgt caecaggeae caectggaaa	1560
cageteteag etetgeatga gtacageace actgaagtga tgageteeet gteacaagag	1620

PCT/US2003/038815 WO 2004/053077

71

			, _			
tgatgagctc	cctgtcacag	acagtgcggg	tcgttctgtg	cctgggactc	ctgcctcggc	1680
catccccaac	attctgctct	tccatcggca	tcaccccatc	cgagctgctg	ggtatcttca	1740
cttggggaca	ctgtcgggaa	tttccagtgt	gtctggaagt	ggcctcccta	gttttggatg	1800
gtacacctgt	aggggeteee	atccccttct	cacctgggtg	ctgtcagccc	tcactctcct	1860
attggatcaa	ctatcctgtt	cactgagtct	caacactgtc	gcctgttgca	ttagcaaggt	1920
ttgtttggcc	aagccgcccc	agacagccct	ctgagaacag	agcctccttg	tagctgcctc	1980
agacccaatc	tgcacattgt	acagaacagc	ccaggtaggg	aggacagctg	ccccaggtcc	2040
cataggactg	catgcctcaa	gcccacgtca	tgcagagcca	ctcagctcac	cctgctcagg	2100
gcacgtggtt	tacctgcatt	cccctcttgc	aggtcctacg	tgtggaggac	gtaccatctg	2160
acctctgcag	gagagaaact	cacggaagac	agaaagaagc	tccgagacta	cggcatccgg	2220
aatcgagacg	aggtttcctt	catcaaaaag	ctgaggcaaa	agtgagcctc	cagacaggac	2280
aaccctcttc	atcactggtg	gctgagcttt	ttcccagcag	gaatgggtcc	tcgaatcatc	2340
gtgcctcttt	cacagaaagg	acgttgtggt	ggcctcaccc	caggcatgcc	caacaggaac	2400
tgtcagcata	aacctggggg	ccctcaggac	taggacaggg	tgagccagtg	ctccctcctt	2460
tcatgtactt	ggcctgagac	tgacctctcc	ctaggtccaa	atgccctagt	cacatggcag	2520
acccacggcc	tggcccactg	tataaaataa	acctgtttgc	ttctta		2566

<210> 57 <211> 2817 <212> DNA <213> Homo sapien

<400> 57

(400) 37						
gcccactttg	gctcacgtcc	actgccactc	tcacggaaac	tcctacaaga	acggcacaca	60
cgttcgctcc	ctcagcattg	caaacacgct	ccccccaaa	ccacaaacgc	gccccacac	120
actcgcttac	tttccctcac	aaagatgccc	gcttacacgg	ccacagcagg	cacgctcaga	180
gacacgcagt	tacacacaca	catcgctgta	cacaacccca	catacaatca	aaaaacaaaa	240
cacgaaacgt	tcccctgggc	actaaatcct	cacgttaacg	tacacacaca	aacacacgcc	300
ctcctctccc	acttcctctt	ccatacccct	tcctcgaggc	ccccacccc	tgattttcgg	360
cacccccagt	cccaatcata	attggcgccc	gcgcagccct	ctttggacac	acacgcgccg	420
cccacgcacg	cgctcccctc	cccggcaggc	gggggcggct	tcggccggga	gccggcggag	480
cccgcttcgg	attccaggtg	tggcagtgac	tacgagatac	acgttttgca	ggctgccacc	540
gtgtcggagg	cgaggcgagg	aagggagctg	gaataacaaa	gggaggtaat	ggggtagatt	600
ggatacctct	ggggtcttgg	aagaagctat	gacttattta	ctgtctacta	tgtggccctg	660

acattctcca	gctttcatgg	tgttcctgca	atccaagtgc	cgcttatctc	tctacagggc	720
tggaagaaag	ccatacttct	gactccagga	agtgctttgg	tggagctgga	ccggcttctg	780
agctgtctgt	ggcgtccacc	agatgaccgg	ctggcctcct	aattgggctt	cctgcattcc	840
tgcctgtgct	cggagctccc	ttctccactt	gcctgctgga	ggaggtttac	aaacaaaatc	900
agatcatggc	actcccctgg	ggccctgcat	cctgtggcca	gcaggtcttg	gaaacgcccc	960
tgtaccccag	aaacttcctg	atcagtccct	ggtcagtgta	tatcatgctt	cctgtgacat	1020
gacatcaact	tttcagtgac	ttccactggt	tttggcccag	ctcgaagagc	ctgacacctc	1080
tgcagggaat	tctaccaggg	agaagagaaa	gtagtcactg	cttccagttt	ttttaaggag	1140
ttggccaaga	gccagcacca	ggcatcagag	gaaggcagct	gactgcactc	ggccacatcc	1200
caaaagtgcc	tggaagggga	gggaggaagc	aggcgcttca	gaaggcacta	ctgtgtgtca	1260
ggactcatgc	taggaacgct	gtaacaggga	gcagtgatgg	agtccttgag	ggagctcagg	1320
agggggaatt	gcactgaaga	tttgtcccat	cgtgaagcaa	gagcactgga	acttacactc	1380
caccatcagg	ccctgtcaca	ggagaacaaa	gaaggaaggc	agaggagatc	atgctccggc	1440
cagcagggaa	tctccatttt	tttcagcctc	ataccttgga	aagtacaaag	gagtgagagc	1500
tgggactacc	agccagaggg	ttcatggagg	tagtgggagg	ggaagatggg	ttctgcatgg	1560
agccactcca	gggacttttc	ttctgtctca	cagcctgaca	atcacctcta	gctgttctca	1620
gtcccattct	catcaatgac	ctcgtctcct	gattttgtac	aatatctagg	tgaccttctc	1680
ttctttccat	cttcaaacgc	ttgatcattg	atgctccctt	ttctcttctc	tctcctcctg	1740
ggaaaagaga	aggaccaaca	tccccctttc	ccttcctcct	gtgctgtccc	gacccctctg	1800
agacctggct	ctagcagtaa	gtccctctct	cttctgcagc	accagcctct	gcccatccct	1860
gccctctgca	cacaaagctc	tcacattgtc	tgcactttaa	gaacttttgt	ggcaaaccct	1920
ggcaaatcct	gccacttgtt	tccactcttc	tcaaatggct	ttgaggtcat	cattgaccta	1980
tcccatttga	ccctgtcctg	tatctgatgt	tgtacccttt	ctccttgatc	ccactctggc	2040
aactctccca	ctcccctttc	ttggatcaac	tgtcttgctc	ctcagtcttg	atcaatgcct	2100
ccttctctct	ctttagcctt	ggcccttttt	ggccagggaa	ataaatgtga	aatacataaa	2160
gcttcatttt	atcttatgat	tatagctatg	ttgatgttac	ccaagaccta	aaagtcacac	2220
tctctaatta	cacttccctc	ctgtgttctg	ggtcctcttg	gaccagtcct	tactctggct	2280
cccctcctgg	atgtctccca	gacttctaat	tagaattact	gtttcctata	tcaagctaat	2340
tatctttccc	accaacctcc	tccatccttg	ggtgaaagca	tcacttggtt	gcaaaagtca	2400
gaaatctggg	tttcattctt	gcggtaggta	gaataatgcc	cccaggcccc	aggttttgac	2460
atccgaatcc	ctgggacttt	gcagatgtga	ttcagtttag	gattttgaga	tggggagatt	2520

atctgggaga	gcctgatgtc	atcataaggt	tcttataaga	gggaggcagg	agggttagag	2580
tgagtagtaa	gagatgcaac	agtggaagca	agaggttggg	gtgatgtggc	cacaagccca	2640
ggagtgctga	cagacatcag	aagctggaag	ggacaaggaa	tggtttctcc	tctggagcct	2700
ccagaaagaa	ccagccctgc	tgacaccttg	attttagcct	tggaagactc	attttggact	2760
tctgaccttg	aacgttgtaa	gagaataaat	ttacatattt	taaactggaa	tgtttat	2817
<210> 58 <211> 1530 <212> DNA <213> Homo	o sapien					
<400> 58 atctagctct	gcatgccacc	cagggagete	aggagggga	attgcactga	agatttgtcc	60
catcgtgaag	caagagcact	ggaacttaca	ctccaccatc	aggccctgtc	acaggagaac	120
aaagaaggaa	ggcagaggag	atcatgetee	ggccagcagg	gaatctccat	ttttttcagc	180
ctcatacctt	ggaaagtaca	aaggagtgag	agctgggact	accagccaga	gggttcatgg	240
aggtagtggg	aggggaagat	gggttctgca	tggagccact	ccagggactt	ttcttctgtc	300
tcacagcctg	acaatcacct	ctagctgttc	tcagtcccat	tctcatcaat	gacctcgtct	360
cctgattttg	tacaatatct	aggtgacctt	ctcttctttc	catcttcaaa	cgcttgatca	420
ttgatgctcc	cttttctctt	ctctctcctc	ctgggaaaag	agaaggacca	acatccccct	480
ttcccttcct	cctgtgctgt	cccgacccct	ctgagacctg	gctctagcag	taagtccctc	540
tetettetge	agcaccagcc	tctgcccatc	cctgccctct	gcacacaaag	ctctcacatt	600
gtctgcactt	taagaacttt	tgtggcaaac	cctggcaaat	cctgccactt	gtttccactc	660
ttctcaaatg	gctttgaggt	catcattgac	ctatcccatt	tgaccctgtc	ctgtatctga	720
tgttgtaccc	tttctccttg	atcccactct	ggcaactctc	ccactcccct	ttcttggatc	780
aactgtcttg	ctcctcagtc	ttgatcaatg	cctccttctc	tctctttagc	cttggccctt	840
tttggccagg	gaaataaatg	tgaaatacat	aaagcttcat	tttatcttat	gattatagct	900
atgttgatgt	tacccaagac	ctaaaagtca	cactctctaa	ttacacttcc	ctcctgtgtt	960
ctgggtcctc	ttggaccagt	ccttactctg	gctcccctcc	tggatgtctc	ccagacttct	1020
aattagaatt	actgtttcct	atatcaagct	aattatcttt	cccaccaacc	tcctccatcc	1080
ttgggtgaaa	gcatcacttg	gttgcaaaag	tcagaaatct	gggtttcatt	cttgcggtag	1140
gtagaataat	gccccaggc	cccaggtttt	gacatccgaa	tccctgggac	tttgcagatg	1200
tgattcagtt	taggattttg	agatggggag	attatctggg	agagcctgat	gtcatcataa	1260
ggttcttata	agagggaggc	aggagggtta	gagtgagtag	taagagatgc	aacagtggaa	1320

gcaagag	gtt	ggggtgatgt	ggccacaagc	ccaggagtgc	tgacagacat	cagaagctgg	1380
aagggac	aag	gaatggtttc	tcctctggag	cctccagaaa	gaaccagccc	tgctgacacc	1440
ttgattt	tag	ccttggaaga	ctcattttgg	acttctgacc	ttgaacgttg	taagagaata	1500
aatttac	ata	ttttaaactg	gaatgtttat				1530
<211> <212> :	59 349 DNA Homo	o sapien					
	59	actotanana				.	
					attttggtca		60
					catcttctgg		120
					cccactgggg		180
cctctat	tgc	catgtgcctg	gaattattat	atgctcatca	ctttatgaas	aayaaaattt	240
gtcttkc	ctg	ccttaaagtt	acattcgttc	ttccgctcaa	atcctgatct	ggtccattaa	300
agagtgt	tcg	cagacaaagt	ttctgaaaga	ttagagaaga	atcccccca	agattgcccc	360
aacactg	aac	tacagacaaa	cactatttta	tttaaataag	gagacagctt	tctaaaagta	420
tacattc	tct	aataaaaata	gtttattatt	ttgaatgatt	taatggtttt	ctacacaatt	480
tacatca	caa	catgtaaatt	ttagcagtaa	catctgattc	taacagcaca	tcatgctatt	540
cctttcat	tag	agccttcaga	gattcaatgc	taaacaaatt	tccttagttg	gcatcaaggc	600
actgatca	act	ttagaggctt	ttaagaaatt	atttaaagat	gcaaatgcct	ctgagtgaag	660
tgtacta	tcc	catcactgaa	gcccacagga	acaagtccta	caattttaaa	aaggctcgat	720
ggaaaaat	ttt	ctcaatcctg	aaatccccta	gggaaggggt	caggagaaag	tgccatggtt	780
gatattta	aag	aactccacag	ctcttaaaaa	taagcactta	tccctaacat	gcaatactgc	840
agatgcaa	agt	taaacttatc	tgttaacagc	tgcctgctgt	tttctgctcc	cagatgaaat	900
gaagcaad	ctc	ttctgataac	gaagagatac	ctgtctgagg	caaacgaaac	attggcacac	960
agcacago	cct	cctcaatcca	cttgatccca	actcatctct	catttatttc	ggcttcttt	1020
attccago	gat	taatgtagtg	taacattttc	atttcttttc	gcttttattc	tgcttttgta	1080
aaagcagt	tat	tttgagatgg	acattgcctc	ttcattgtat	ttctcatcaa	ttcattattt	1140
ttgtggtt	tat	agcttgacaa	gcaattaact	ttaaaatggt	agattccgta	actttaaatt	1200
ggtagctt	ttc	atttgcttaa	aattttttgg	catatgcaga	taatgttctc	atcagtagta	1260
agaatcto	cag	ggttatgctt	attccccaat	ggaggtatga	catataatct	tttctgcctt	1320
tacttato	caa	ttcaccaagg	agctgttttc	tctgcatcta	ggccatcata	ctgccaggct	1380

1440 ccctcatcaa caaaagccca ccctctaaga gacattcaag ctgaactatc acaattctta 1500 atcagttaca atttacaaac agataagttt aaaataaaca atttacaaaa tttttgaagc 1560 ataccttaac atcttgtttt gcagttaaac aatggaaaag tatttctcct acactaaaaa 1620 aaaacttgct tacacacaac tgaaaataga atcttacttg ataatacaaa agctaccatc 1680 agaagaaatc ccttcaggat cattaagcca cttcctttgc tctgcagttt ctatagtagt 1740 tttaaattat tattaaatca cctgaaaaaa attccaaaag agaaccacac actaccatat 1800 ccaaacaact tttgcatttc ccataattgt agttaatgtc agcccagtag gccagaccaa 1860 cccccagttc aatactttcc ttccccaaaa gctctatact ttgaaggaaa acagatacag 1920 tatcaaatta tgacactttc cttgcccaaa ttaatgcact ggtacaccca gtggctcata 1980 tttaacttcc cccagcttcc caattcaaac tggggggaaa aaaactaaat cattgggagt 2040 tacttgccaa cttggaagtt gatatttctt tactttttcc attctaagac tttaagttct 2100 ctggcatgag tttatctgca atcataaact aaacaattac ctaaacccac cccaccaatc 2160 ccaaccgtaa caggccactg ccaactaatt gccaatattt gcccctcccc tttaataaaa 2220 cttttaagaa gtcacattat tggaaaactt aacttcaaca tttggcctac tcaagctctt 2280 ctgaagttct cctgagatga ctgaatatga accaaagctg cactgtgctg tacttttcag 2340 cttcaactgg gaatactctt ccaaggataa aagcagctcc agtccctgaa ggtgttcgtg 2400 ccaacagcac agcggtacat tcaccaaatc gcactggctc ctggactctt ttcctatctt 2460 caccacgaac tgctgcttgc tcgcttgctc ctcagtccta gcttcatcaa acactggttc 2520 ctggaatcct gtctgctgct gtcttcctag attcactgaa tccacttctg tgtagcacct 2580 gggtcagctg tcaattaatg ctagtcctca ggatttaaaa aataatctta actcaaaqtc 2640 caatgcaaaa acattaagtt ggtaattact cttgatcttg aattacttcc gttacgaaag 2700 tectteacat ttttcaaact aagetactat atttaaggee ttecaaatte ttetaactet 2760 tecaaaagee ttetgeetta gtttttttta aattacacea gteettttag tagetttttg 2820 atgtgatttt taaccaactt ccccttctag cttcaagtat tcttctaaat tggttctggt 2880 ctacgtaaac accctcatct tctcaagctt taccttctaa cttctgcacc accagaaatt 2940 aaattgatgg gettttaaaa taaattggtt accaataatt teeteatttt tteagtgeta 3000 ttttatccaa tttttggctt tatatttttc tatcttctat acttctccaa tacttgtctt 3060 agottgtttt toattttota totgaaacto ttgacaatat tttcattttc tatottgttt 3120 ctatcttcca attttcttct aagtttgtac attttgccct tagctttttg tttcctagct 3180

tatatttt	attataatta	ataatttta-		****	abbab	2011
					cttctaaaag	3240
	tcttctaatt					3300
ctgtcttcca	gttttccact	tcaaacttct	atcttctcca	aattgtttca	tcctaccact	3360
cccaattaat	ctttccattt	tegtetgegt	ttagtaaatg	cgttaactag	gctttaaatg	3420
acgcaattct	ccctgcgtca	tggatttcaa	ggtcttttaa	tcaccttcgg	tttaatctct	3480
ttttaaaaga						3490
	_					
<400> 60 taagcctcat	agtctaagaa	agccctcaag	caaggctaac	attttggtca	tctgcgagaa	60
gattgagcac	teggtgteet	tgctcctttc	agcttcgcag	catcttctgg	agcagcatga	120
gcttctcact	ctgactcata	agtctcccac	cctcataagc	cccactgggg	agtttggggg	180
cctctattgc	catgtgcctg	gaattattat	atgctcatca	ctttatgaas	aayaaaattt	240
gtcttkcctg	ccttaaagtt	acattcgttc	ttccgctcaa	atcctgatct	ggtccattaa	300
agagtgttcg	cagacaaagt	ttctgaaaga	ttagagaaga	atccccccca	agattgcccc	360
aacactgaac	tacagacaaa	cactatttta	tttaaataag	gagacagctt	tctaaaagta	420
tacattctct	aataaaaata	gtttattatt	ttgaatgatt	taatggtttt	ctacacaatt	480
tacatcacaa	catgtaaatt	ttagcagtaa	catctgattc	taacagcaca	tcatgctatt	540
cctttcatag	agccttcaga	gattcaatgc	taaacaaatt	tccttagttg	gcatcaaggc	600
actgatcact	ttagaggctt	ttaagaaatt	atttaaagat	gcaaatgcct	ctgagtgaag	660
tgtactatcc	catcactgaa	gcccacagga	acaagtccta	caattttaaa	aaggctcgat	720
ggaaaaattt	ctcaatcctg	aaatccccta	gggaaggggt	caggagaaag	tgccatggtt	780
gatatttaag	aactccacag	ctcttaaaaa	taagcactta	tccctaacat	gcaatactgc	840
agatgcaagt	taaacttatc	tgttaacagc	tgcctgctgt	tttctgctcc	cagatgaaat	900
gaagcaactc	ttctgataac	gaagagatac	ctgtctgagg	caaacgaaac	attggcacac	960
agcacagcct	cctcaatcca	cttgatccca	actcatctct	catttatttc	ggcttctttt	1020
attccaggat	taatgtagtg	taacattttc	atttctttc	gcttttattc	tgcttttgta	1080
aaagcagtat	tttgagatgg	acattgcctc	ttcattgtat	ttctcatcaa	ttcattattt	1140
ttgtggttat	agcttgacaa	gcaattaact	ttaaaatggt	agattccgta	actttaaatt	1200
ggtagctttc	atttgcttaa	aattttttgg	catatgcaga	taatgttctc	atcagtagta	1260

77

agaatctcag ggttatgctt attccccaat ggaggtatga catataatct tttctgcctt 1320 tacttatcaa ttcaccaagg agctgttttc tctgcatcta ggccatcata ctgccaggct 1380 ggttatgact cagaagatgt tatctgaaaa aagtctatag aaaaaaaaa artktcccct 1440 ccctcatcaa caaaagccca ccctctaaga gacattcaag ctgaactatc acaattctta 1500 atcagttaca atttacaaac agataagttt aaaataaaca atttacaaaa tttttgaagc 1560 ataccttaac atcttgtttt gcagttaaac aatggaaaag tatttctcct acactaaaaa 1620 aaaacttgct tacacacaac tgaaaataga atcttacttg ataatacaaa agctaccatc 1680 agaagaaatc ccttcaggat cattaagcca cttcctttgc tctgcagttt ctatagtagt 1740 tttaaattat tattaaatca cctgaaaaaa attccaaaag agaaccacac actaccatat 1800 ccaaacaact tttgcatttc ccataattgt agttaatgtc agcccagtag gccagaccaa 1860 . ccccagttc aatactttcc ttccccaaaa gctctatact ttgaaggaaa acagatacag 1920 tatcaaatta tgacactttc cttgcccaaa ttaatgcact ggtacaccca gtggctcata 1980 tttaacttcc cccagcttcc caattcaaac tggggggaaa aaaactaaat cattgggagt 2040 tacttgccaa cttggaagtt gatatttctt tactttttcc attctaagac tttaagttct 2100 ctggcatgag tttatctgca atcataaact aaacaattac ctaaacccac cccaccaatc 2160 ccaaccgtaa caggccactg ccaactaatt gccaatattt ggagggatga gcataaggag 2220 ggatgagcat atgagggt 2238 <210> 61 <211> 2226 <212> DNA <213> Homo sapien <400> 61 taagcctcat agtctaagaa agccctcaag caaggctaac attttggtca tctgcgagaa 60 gattgagcac tcggtgtcct tgctcctttc agcttcgcag catcttctgg agcagcatga 120 getteteact etgacteata agteteccae ecteataage eccaetgggg agtttggggg 180 cctctattgc catgtgcctg gaattattat atgctcatca ctttatgaas aayaaaattt 240 gtcttkcctg ccttaaagtt acattcgttc ttccgctcaa atcctgatct ggtccattaa 300 agagtgttcg cagacaaagt ttctgaaaga ttagagaaga atcccccca agattgccc 360 aacactgaac tacagacaaa cactatttta tttaaataag gagacagctt tctaaaagta 420 tacattetet aataaaaata gtttattatt ttgaatgatt taatggtttt etacacaatt 480 tacatcacaa catgtaaatt ttagcagtaa catctgattc taacagcaca tcatgctatt 540 cctttcatag agccttcaga gattcaatgc taaacaaatt tccttagttg gcatcaaggc 600

actgatcact ttagaggctt ttaagaaatt atttaaagat gcaaatgcct ctgagtgaag	660
tgtactatcc catcactgaa gcccacagga acaagtccta caattttaaa aaggctcgat	720
ggaaaaattt eteaateetg aaateeeeta gggaaggggt caggagaaag tgeeatggtt	780
gatatttaag aactccacag ctcttaaaaa taagcactta tccctaacat gcaatactgc	840
agatgcaagt taaacttatc tgttaacagc tgcctgctgt tttctgctcc cagatgaaat	900
gaagcaactc ttctgataac gaagagatac ctgtctgagg caaacgaaac attggcacac	960
agcacagect ecteaateca ettgatecca acteatetet catttattte ggettetttt	1020
attccaggat taatgtagtg taacattttc atttcttttc gcttttattc tgcttttgta	1080
aaagcagtat tttgagatgg acattgcctc ttcattgtat ttctcatcaa ttcattattt	1140
ttgtggttat agcttgacaa gcaattaact ttaaaatggt agattccgta actttaaatt	1200
ggtagettte atttgettaa aattttttgg catatgeaga taatgttete atcagtagta	1260
agaateteag ggttatgett atteeceaat ggaggtatga catataatet tttetgeett	1320
tacttatcaa ttcaccaagg agctgttttc tctgcatcta ggccatcata ctgccaggct	1380
ggttatgact cagaagatgt tatctgaaaa aagtctatag aaaaaaaaaa	1440
ccctcatcaa caaaagccca ccctctaaga gacattcaag ctgaactatc acaattctta	1500
atcagttaca atttacaaac agataagttt aaaataaaca atttacaaaa tttttgaagc	1560
ataccttaac atcttgtttt gcagttaaac aatggaaaag tatttctcct acactaaaaa	1620
aaaacttgct tacacacaac tgaaaataga atcttacttg ataatacaaa agctaccatc	1680
agaagaaatc ccttcaggat cattaagcca cttcctttgc tctgcagttt ctatagtagt	1740
tttaaattat tattaaatca cetgaaaaaa attecaaaag agaaccacac actaccatat	1800
ccaaacaact tttgcatttc ccataattgt agttaatgtc agcccagtag gccagaccaa	1860
cccccagttc aatactttcc ttccccaaaa gctctatact ttgaaggaaa acagatacag	1920
tatcaaatta tgacactttc cttgcccaaa ttaatgcact ggtacaccca gtggctcata	1980
tttaacttcc cccagcttcc caattcaaac tggggggaaa aaaactaaat cattgggagt	2040
tacttgccaa cttggaagtt gatatttctt tactttttcc attctaagac tttaagttct	2100
ctggcatgag tttatctgca atcataaact aaacaattac ctaaacccac cccaccaatc	2160
ccaaccgtaa caggccactg ccaactaatt gccaatattt tacctcgccg cgaccacgct	2220
aagggc	2226

<210> 62 <211> 981 <212> DNA <213> Homo sapien

<400> 62	
tgctttgttg tctacttcct tgtgccctmc ggagtcgagc tctgtcagtg catgattctt	60
gccaatcgct aaacgtagga ctcgaggaag gccattggca attctgctaa gaagacagtg	120
caagtgccta taaaaacgac agtttagggg gaaaacaaac caatacccgg aaagctgaga	180
ggccagcttt ttaatcgtca tggttttatg taaaataaaa	240
aagegettgg tggetgeteg agececcaga aaggtgettg gttetteeae etetgeeaet	300
aattcgacat cagtttcatc gaggaaagct gaaaataaat atgcaggagg gaaccccgtt	360
tgcgtgcgcc caactcccaa gtggcaaaaa ggaattggag aattctttag gttgtcccct	420
aaagattctg aaaaagagaa tcagattcct gaagaggcag gaagcagtgg cttaggaaaa	480
gcaaagagaa aagcatgtcc tttgcaacct gatcacacaa atgatgaaaa agaatagaac	540
tttctcattc atctttgaat aacgtctcct tgtttaccct ggtattctag aatgtaaatt	600
tacataaatg tgtttgttcc aattagcttt gttgaacagg catttaatta aaaaatttag	660
gtttaaattt agatgttcaa aagtagttgt gaaatttgag aatttgtaag actaattatg	720
gtaacttagc ttagtattca atataatgca ttgtttggtt tcttttacca aattaagtgt	780
ctagttcttg ctaaaatcaa gtcattgcat tgtgttctaa ttacaagtat gttgtatttg	840
agatttgctt agattgttgt actgctgcca tttttattgg tgtttgatta ttggaatggt	900
gccatattgt cactccttct acttgcttta aaaagcagag ttagattttt gcacattaaa	960
aaattcagta ttaattaaac a	981
<210> 63 <211> 706 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (34)(34) <223> n=a, c, g or t	
<400> 63 ccccccccc cgcctactta tctataaggg ccantggtta tcctagatgc tgctcgagcg	60
gcgcagtgtg atggattggt cgcggccgag gtaccagatt ataatgccag aatataatgt	120
gcaggcaatc gtggatgtct ctgacaaagt gtgtctcaaa aataatatac ttttacatta	180
aagaaattta atgtttetet ggagttgggg etettggett teagagtttg gttaateagt	240
gttgattcta gatgatcaac ataatggacc actcctgaat gagacttaat tttgtctttc	300
aaatttactg tottaaatca gtttattaaa totgaatttt aaaacatgot gtttatgaca	360

caatgacaca	tttgttgcac	caattaagtg	ttgaaaaata	tctttgcatc	atagaacaga	420
aatatataaa	aatatatgtt	gaatgttaac	aggtattttc	acaggtttgt	ttcttgatag	480
ttactcagac	actagggaaa	ggtaaataca	agtgaacaaa	ataagcaact	aaatgagacc	540
taataattgg	ccttcgattt	taaatatttg	ttcttataaa	ccttgtcaat	aaaaataaat	600
ctaaatcaga	aaaaaaaaca	acacaaaaaa	aaaaggttgg	gggaaaccag	ggcccaaagg	660
ggtccctgtg	tgacttggtt	ttccgtccaa	ttccccaagt	aggcac		706
<210> 64 <211> 630 <212> DNA <213> Home <400> 64	o sapien					
	agcggcgcag	tgttgatgga	tcgtggtcgc	ggccgaggta	catcgacttc	60
actgcagacc	aggtggacct	gacttctgct	ctgaccaaga	aaatcactct	taagacccca	120
ctggtttcct	ctcccatgga	cacagtcaca	gaggctggga	tggccatagc	aatggcgctt	180
acaggcggta	ttggcttcat	ccaccacaac	tcctaagtat	atgattgcga	gtggaaaaat	240
aggggacaga	aatcaggtat	tggcagtttt	tccattttca	tttgtgtgtg	aatttttaat	300
ataaatgcgg	agacgtaaag	cattaatgca	agttaaaatg	tttcagtgaa	caagtttcag	360
cggttcaact	ttataataat	tataaataaa	cctgttaaat	ttttctggac	aatgccagca	420
tttggatttt	tttaaaacaa	gtaaatttct	tattgatggc	aactaaatgg	tgtttgtagc	480
atttttatca	tacagtagat	tccatccatt	cactatactt	ttctaactga	gttgtcctac	540
atgcaagtac	atgttttaa	tgttgtctgt	cttctgtgct	gttcctgtaa	gtttgctatt	600
aaaatacatt	aaactataaa	aaaaaaaaa				630
<210> 65 <211> 424° <212> DNA <213> Homo	7 o sapien					
<400> 65 gccccttcta	ggattttcta	tgcacatgca	catatatcta	tgttttaaat	cacagatggc	60
		ctgcaccttg				120
catatetgea	caccattcct	aaagcaacac	aattttccat	tatgatcatt	agctagttcc	180
		cctcccgaac				240
		ctgcatatgt				300
		tgcatctgtt				360
ctttaaggtg	atgtcaggct	gtgctctgac	tagccataca	tgggagttct	gttctcccac	420

accccaccaa	cagtgggatc	ttcataatga	cccattatgg	tccaaggagg	cattgaatta	480
cagccactgc	agagggctcc	acatggctca	cctggcccca	ccaggccacg	agtgttttga	540
ggcccttggg	gccaatcttc	caatccttga	gctgcgttga	caagccagtg	cgtggctcgg	600
gtgtgctgca	gggttgagag	agggctggtc	atttagagtc	agtatccaag	actggattaa	660
tacaagaccg	ttttggtttt	ttaggacaga	ggaagagaag	aaagaatgga	ttcaggtgaa	720
gcttctaaag	ttgtaaagta	accaaatgac	caagtgattg	agcagtaagg	ccattcatgt	780
tggttcagag	ggtggggcc	ctggcctccg	ggactgctgg	ccctgtgctg	taccctgcag	840
ggatgcagtg	accacactgt	gccttcataa	gcagcttcag	atgccacaag	cccttcaacc	900
cattcatttc	tttgagggcc	cccaaataaa	catgagcggg	cctggtggag	tcacaggcca	960
ggttccccgc	tcagggtgga	tctcctcaat	ctggacagct	ccaaggggag	accacatcat	1020
tggtaggggg	gaagggagat	ggccagtggc	ctgggcattg	ttctgggaac	gccaaggccc	1080
gtcctcggga	cagaggcagg	cgcgtccctc	ctgtgggtag	catcctccca	tgccccttta	1140
tagtcctcac	tgttgtgttg	ctgtgtccag	atcatccagg	ccaccatcga	gaagcacaaa	1200
cagaacagcg	aaaccttcaa	ggcttttggt	ggcgccttca	gccaggatga	ggaccccagc	1260
ctctctccag	acatgcctat	cacgagcacc	agccctgtgg	agcctgtggt	gaccaccgaa	1320
ggcagttcgg	gtgcagcagg	gctcgagccc	agaaaactat	cctctaagac	cagacgtgac	1380
aaggagaagc	agagctgtaa	gagctgtggt	gagaccttca	actccatcac	caagaggagg	1440
catcactgca	agctgtgtgg	ggcggtcatc	tgtgggaagt	gctccgagtt	caaggccgag	1500
aacagccggc	agagccgtgt	ctgcagagat	tgtttcctga	cacagccagt	ggcccctgag	1560
agcacagagg	tgggtgctcc	cageteetge	teceetectg	gtggcgcggc	agagcctcca	1620
gacacctgct	cctgtgcccc	agcagctcta	gctgcctctg	ctttcggagt	gtccctggga	1680
ccaggataga	tgtgggtgtg	tctcagtggg	gcccccaggc	tgggaacaca	ctcggaagat	1740
cccgtgtgtg	cacgctggct	tctcgggacc	agccagggcc	aaggcttggg	aaccatttgc	1800
atccaggagt	tagatgggaa	caagtgtcac	tcctggtcac	ctggttggag	ggcatggatt	1860
gaagctgccc	tcaagtccag	gccttgaggc	ccacctgagg	ggagatactg	cccttctctc	1920
tgcctgcctc	acctccagct	gtcagagggt	gagcagggcc	ctggaggcag	gcaccccctc	1980
ctcctcctcc	ccgtcccctt	ctcctcctcc	tccccgtccc	cttctcctct	tcctctccct	2040
ccttcctctc	cctccgcctc	gctgtctttc	tccttctcct	ctccctcctc	ctcctgctcc	2100
tteteeteee	cgtacccttt	ttctactctt	ccctctcctt	ctcctcctcc	tttctctccc	2160
tectectece	cctccccttc	tectectete	tttctcttcc	tetttteete	ctccactcct	2220

			04			
ctttctgaga	gtagctgctg	g ctttccctga	cttccttcct	caagaataca	gtctattctg	2280
gggggttgca	ggacagctga	a aaaagaaaac	gtgagtttcc	agaaaagcac	atcgcccttt	2340
ctctccacto	gacacageet	gcggtttgca	gtgccagctg	cacgttggag	tctcctggga	2400
agcttctagt	gttgatctcc	ctcctagagg	ctcagtgagg	tgatcggggg	gtcagtgtgt	2460
tttcagagtc	ccagctgctc	: tgacttacag	ctgtggttgg	agccctgacc	taggtccttg	2520
gtctaagaag	tcaaggatgt	aagtctatta	ggactgagtg	ttgaatggtc	ttgatggtga	2580
agaaggacct	tgcactgcct	accgagetee	ctcatgcctg	caatttaaat	accgaggtgt	2640
gttctgagag	ccccaggtcc	ttggggcacg	ggcctccagg	gccctgtaag	gtggactctg	2700
gcctcgaagg	ggggcccagg	tctgaggggt	ccagctctgg	cagggggtgt	ctaagccacg	2760
tccaaatggt	ggacagtagc	tccaacagtg	acatgacaga	gggagggcct	gtgtgtgtgg	2820
tgtgtgtgtg	tgtgctgtgt	gtgcacgcac	gtgcatgtat	atggtgtgtg	tagaactgac	2880
acgcttgaag	tccctgtccc	gtgacccacc	ctcaggtact	tgctgttggg	ttttcctatg	2940
attttgatgt	gtcctgaccc	agcatatgga	tgccctcccc	ttggagggcc	cagcctgcaa	3000
accccatctg	ataccacaca	tgcctatgtc	ctgcaggctt	ctagtgaccc	ttgcaagccg	3060
ggtgaggctg	gtcccagtct	ctgtgcagat	cttggccatg	tctccacagc	cagctccccc	3120
caagcagtgg	ccctggccct	accccagcct	cctcagaaca	ggggtgacca	ctgcagggga	3180
gactgcccct	aacctgtgtc	tttgtgtccc	cagaagacac	ccactgcaga	ccccagccc	3240
agcctgctct	gcggccccct	gcggctgtca	gagagcggtg	agacctggag	cgaggtgtgg	3300
gccgccatcc	ccatgtcaga	tccccaggtg	ctgcacctgc	agggaggcag	ccaggacggc	3360
cggctgcccc	gcaccatccc	tctccccagc	tgcaaactga	gtgtgccgga	ccctgaggag	3420
aggctggact	cggggcatgt	gtggaagctg	cagtgggcca	agcagtcctg	gtacctgagc	3480
gcctcctccg	cagagctgca	gcagcagtgg	ctggaaaccc	taagcactgc	tgcccatggg	3540
gacacggccc	aggacagccc	gggggccctg	cagcttcagg	tccctatggg	cgcagctgct	3600
ccgtgagctg	agtctcccac	tgccctgcac	accaccacat	tggacctgtg	ctgtcctggg	3660
aggtggtgtt	ggaggcccca	tgaagagcgc	cctggactgc	tgagggtggg	ccaacagccc	3720
agagctcagg	acacttggct	ttggggggaa	ggaaactgag	gcccagagag	gggcaaccac	3780
tggccaaggg	tcacccagca	agttttggct	aagagcctgg	cctccagccc	cagcagtgtg	3840
gcccagagca	ggggccgact	gccaaagtaa	ccatcatcca	tatgggccgt	gtggtgatgc	3900
tggcccggaa	ggcagaaaga	ggcagcatgg	gcactgccag	ggacagccac	atcctgctgg	3960
tctgcagcgt	ggtccacccc	gcctctgccc a	agcctgtcta	caccgtgtga (gctgaatcgt	4020
gacttgcttc	ccacctcctt	tctctgtcct	ctcctgaggt	tctgcctgca ;	gcccccagga	4080

ggtgggcctg	ccccatccta	gctggactca	tggttcctaa	ataaccacgc	tcagaagctc	4140
tgctaggact	taccccagcc	actgagtggc	aggcgcatga	gatttgtggc	tgttcctgat	4200
gctagtggca	cacagtgctt	atctgcataa	ataaacactg	gccacca		4247
<210> 66 <211> 513 <212> DNA <213> Homo	o sapien					
<400> 66 ctctagagga	tctcggctgc	ctagcacttc	mmtctgacts	tatagctggc	cattcctacc	60
tcggaggtgg	aggccggaaa	ggtcgcacca	agagagaagc	tgctgccaac	accaaccgcc	120
ccagccctgg	cgggcacgag	aggaaactgg	tgaccaagct	gcagaattca	gagaggaaga	180
agcgaggggc	acggcgctga	gacagagctg	gagatgaggc	cagaccatgg	acactacacc	240
cagcaataga	gacgggactg	cggaggaagg	aggacccagg	acaggatcca	ggccggcttg	300
ccacaccccc	cacccctagg	acttattccc	gctgactgag	tctctgaggg	gctaccagga	360
aagcgcctcc	aaccctagca	aaagtgcaag	atggggagtg	agaggctggg	aatggagggg	420
cagagccagg	aagatccccc	agaaaagaaa	gctacagaag	aaactggggc	teeteeaggg	480
tggcagcaac	aataaataga	cacgcacggc	agc			513
<210> 67 <211> 177 <212> DNA <213> Hom						
<400> 67 tgggctggac	tcagggaccg	actcttcccg	tctcatgact	gtgtttactg	ggctggattt	60
tgggaagggg	ccagattgca	tcagacaggg	cctgatgggc	tggagccaga	ctgtggtctg	120
aggaggagac	acagccttat	aagctgaggg	agtggagagg	cccggggcca	ggaaagcaga	180
gacagacaaa	gcgttaggag	aagaagagag	gcagggaaga	caagccaggc	acgatggcca	240
ccttcccacc	agcaaccagc	gccccccagc	agcccccagg	cccggaggac	gaggactcca	300
gcctggatga	atctgacctc	tatagcctgg	cccattccta	cctcggtaag	gcccactcag	360
ccatctccac	ggtccttcct	cctctcccga	aatcaggacc	cacccctctt	gtttcctctc	420
atttcctttc	ctttcctctt	cgtttctttc	tttcttttt	tttgagagag	tcactctgtc	480
acccaggetg	gagtgcagta	gtgtgatcac	aacaactcaa	acaactcacc	gcagcetega	540
actcctgggc	tcaagtgatc	ctcctgcttc	agcctcctga	gtggctggaa	cttcaggtgt	600
acaccacctg	cagtggtgag	atggggtctc	actatgtttc	ccaggctgat	cccaaattcc	660

tgggctcaag caatteteet geettggeet eecaaagtge tgagattaca ggagtgagee

				- 3 - 3	22-2-2-2-4	, _ 0
accctgccca	gcccactcac	ccttttctag	ccaacctgtt	ccttggaccc	tcacgtcacc	780
cctgtctaat	cccttatccc	aggagtgcta	tgttactcag	cctgggacct	cacacacatc	840
tggggtccca	cattccacag	aggggaagca	gcaggcttct	ccctgctctt	cccatcccca	900
caaccctgaa	cccctgcctc	tcctctgaca	gggcctctca	tcatgcctat	gcccacttca	960
cctctgactc	ctgccttggt	tacaggaggt	ggaggccgga	aaggtcgcac	caagagagaa	1020
gctgctgcca	acaccaaccg	ccccagccct	ggcgggcacg	agaggaaact	ggtgaccaag	1080
ctgcagaatt	cagagaggaa	gaagcgaggg	gcacggcgct	gagacagagc	tggagggtaa	1140
ggagtcgggg	ggcccagaga	gctcaaggtg	gtgcttctgc	catgaaggac	aggccggaag	1200
gtgtgtgatt	gggtggggag	gagggatcag	gcaactgttg	tcttgatgca	gaataaaacg	. 1260
agacatatgt	ttgattgtga	gtttcctagt	ggccagagca	aagtgggaac	acagaacctt	1320
tccaattgaa	gggaaatttg	acttacagag	acagaaattg	aggatagaga	gggtgggtcc	1380
ttccctggag	tcacaaatca	agtgagtggg	agaggcagaa	ttagaaccca	gatctctgtc	1440
ccttttacca	cctgcttttc	ctcacccccc	agatgaggcc	agaccatgga	cactacaccc	1500
agcaatagag	acgggactgc	ggaggaagga	ggacccagga	caggatccag	gccggcttgc	1560
cacacccccc	acccctagga	cttattcccg	ctgactgagt	ctctgagggg	ctaccaggaa	1620
agcgcctcca	accctagcaa	aagtgcaaga	tggggagtga	gaggctggga	atggaggggc	1680
agagccagga	agatccccca	gaaaagaaag	ctacagaaga	aactggggct	cctccagggt	1740
ggcagcaaca	ataaatagac	acgcacggca	gc			1772
<210> 68 <211> 1864 <212> DNA <213> Homo	sapien					
	tcgagcggcg	cagtgtgatg	gatgtggtcg	cggccgaggt	ggggagctga	60
attccggaag	atccccacat	cgatgaaagc	aaagcgaagc	caccaagcca	tcatcatgtc	120
cacgtcgcta	cgagtcagcc	catccatcca	tggctaccac	ttcgacacag	cctctcgtaa	180
gaaagccgtg	ggcaacatct	ttgaaaacac	agaccaagaa	tcactagaaa	ggctcttcag	240
aaactctgga	gacaagaaag	cagaggagag	agccaagatc	atttttgcca	tagatcaaga	300
tgtggaggag	aaaacgcgtg	ccctgatggc	cttgaagaag	aggacaaaag	acaagctttt	360

ccagtttctg aaactgcgga aatattccat caaagttcac tgaagagaag aggatggata 420

aggacgttat ccaagaatgg acattcaaag accaagtgag tttgtgagat tctaacagat 480

PCT/US2003/038815

gcagcatttt	gctgctacct	tacaagcttc	tcttctgtca	ggactccaga	ggctggaaag	540
	tggaaaggga	_	_			600
	tgctgttaca			_		660
	caggaaagga					720
	agatggctgg					780
_	agttgaactt	_ _		_		840
	acagggagag					900
	aatatttcca		_	_		960
			_	_	_	1020
	atttatttgc					
	tcaagaaagt					1080
ttggtttgta	aaaggttttt	tatacatttc	aaacaggttg	cacaaaagtt	aaaataatgg	1140
ggtcttttat	aaatccaaag	tactgtgaaa	acattttaca	tatttttaa	atcttctgac	1200
taatgctaaa	acgtaatcta	attaaatttc	atacagttac	tgcagtaagc	attaggaagt	1260
gaatatgata	tacaaaatag	tttataaaga	ctctatagtt	tctataattt	attttactgg	1320
caaatgtcat	gcaacaataa	taaattattg	taaactttgt	ggcttttggt	ctgtgatgct	1380
tggtctcaaa	ggaaaaaata	agatggtaaa	tgttgatatt	tacaaacttt	tctaaagatg	1440
tgtctctaac	aataaaagtt	aattttagag	tagttttata	ttaattacca	aactttttca	1500
aaacaaattc	ttacgtcaaa	tatctgggaa	gtttctctgt	cccaatctta	aaatataaaa	1560
tatagatata	gaagttcata	gattgactcc	ttggcatttc	tatttatgta	tccattaagg	1620
atgagtttta	aaaggctttc	tcttcatact	tttgaaaaat	ttcttctatg	attacagtag	1680
ctatgtacat	gtgtacatct	atttttccca	agcaatatgt	tttgggttta	gagtctgagt	1740
gatgaccaag	attctgtgtg	ttactactgt	ttgtttaata	ggaacaaata	tagaaataat	1800
attatctctt	tgcttatttc	ccgttaaaac	tataataaaa	tgtttctaag	acagcatacg	1860
taaa						1864
<210> 69 <211> 157	2					

<211> 1572 <212> DNA <213> Homo sapien

<400> 69

agatgctgct cgagcggcgc agtgtgatgg atgggcaggt aaagggagct gaattccgga 60 agatccccac atcgatgaaa gcaaagcgaa gccaccaagc catcatcatg tccacgtcgc 120 tacgagtcag cccatccatc catggctacc acttcgacac agcctctcgt aagaaagccg 180

WO 2004/053077

86

PCT/US2003/038815

tgggcaacat	ctttgaaaac	acagaccaag	aatcactaga	aaggctcttc	agaaactctg	240
gagacaagaa	agcagaggag	agagccaaga	tcatttttgc	catagatcaa	gatgtggagg	300
agaaaacgcg	tgccctgatg	gccttgaaga	agaggacaaa	atgctttcag	caaggatttg	360
aaaactcttc	cgtccctgca	ggaaaggatt	gatgctgata	gaagagcctg	gacagatgta	420
atgagaacta	aagaaaacag	atggctggag	atgacattta	tccagggtca	ctttgtcagg	480
ccctaggact	taaatcgaag	ttgaactttt	tttttttt	aaccaaatag	ataggggaag	540
ggaggaggga	gagggaggac	agggagagaa	aataccatgc	ataaattgtt	tactgaattt	600
ttatatctga	gtgttcaaaa	tatttccaag	cctgagtatt	gtctattggt	atagatttt	660
agaaatcaat	aattgattat	ttatttgcac	ttattacaat	gcctgaaaaa	gtgcaccaca	720
tggatgttaa	gtagaaattc	aagaaagtaa	gatgtcttca	gcaactcagt	aaaaccttac	780
gccacctttt	ggtttgtaaa	aggttttta	tacatttcaa	acaggttgca	caaaagttaa	840
aataatgggg	tcttttataa	atccaaagta	ctgtgaaaac	attttacata	ttttttaaat	900
cttctgacta	atgctaaaac	gtaatctaat	taaatttcat	acagttactg	cagtaagcat	960
taggaagtga	atatgatata	caaaatagtt	tataaagact	ctatagtttc	tataatttat	1020
tttactggca	aatgtcatgc	aacaataata	aattattgta	aactttgtgg	cttttggtct	1080
gtgatgcttg	gtctcaaagg	aaaaaataag	atggtaaatg	ttgatattta	caaacttttc	1140
taaagatgtg	tctctaacaa	taaaagttaa	ttttagagta	gttttatatt	aattaccaaa	1200
ctttttcaaa	acaaattctt	acgtcaaata	tctgggaagt	ttctctgtcc	caatcttaaa	1260
atataaaata	tagatataga	agttcataga	ttgactcctt	ggcatttcta	tttatgtatc	1320
cattaaggat	gagttttaaa	aggetttete	ttcatacttt	tgaaaaattt	cttctatgat	1380
tacagtagct	atgtacatgt	gtacatctat	ttttcccaag	caatatgttt	tgggtttaga	1440
gtctgagtga	tgaccaagat	tctgtgtgtt	actactgttt	gtttaatagg	aacaaatata	1500
gaaataatat	tatctctttg	cttatttccc	gttaaaacta	taataaaatg	tttctaagac	1560
agcatacgta	aa					1572
<210> 70 <211> 1265 <212> DNA <213> Homo	s sapien					
	cgagcgggcc	gcagtgttga	tggatacaag	gccgtgaggt	tctccagccc	60
ctccagagca	ttgttgggga	cccgtgagat	ctggttgtgg	tcgagatgga	gctctctcac	120

accccacaga gctaatctaa atcttgtgct agaaaaagca ttctctaact ctaccccacc 180

PCT/US2003/038815

87	
ctacaaaatg catatggagg taggctgaaa agaatgtaat ttttattttc tgaaatacag	240
atttgageta teagaecaae aaacetteee eetgaaaagt gageageaae gtaaaaaegt	300
atgtgaagcc tctcttgaat ttctagttag caatcttaag gctctttaag gttttctcca	360
atattaaaaa atatcaccaa agaagtcctg ctatgttaaa aacaaacaac aaaaaacaaa	420
caacaaaaa aaattaaaaa aaaaaacaga aatagagctc taagttatgt gaaatttgat	480
ttgagaaact cggcatttcc tttttaaaaa agcctgtttc taactatgaa tatgagaact	540
tctaggaaac atccaggagg tatcatataa ctttgtagaa cttaaatact tgaatattca	600
aatttaaaag acactgtatc ccctaaaata tttctgatgg tgcactactc tgaggcctgt	660
atggcccctt tcatcaatat ctattcaaat atacaggtgc atatatactt gttaaagctc	720
ttatataaaa aagccccaaa atattgaagt tcatctgaaa tgcaaggtgc tttcatcaat	780
gaaccttttc aaacttttct atgattgcag agaagctttt tatataccca gcataacttg	840
gaaacaggta tetgacetat tettatttag ttaacacaag tgtgattaat ttgatttett	900
taattcctta ttgaatctta tgtgatatga ttttctggat ttacagaaca ttagcacatg	960
taccttgtgc ctcccattca agtgaagtta taatttacac tgagggtttc aaaattcgac	1020
tagaagtgga gatatattat ttatttatgc actgtactgt	1080
aacttttaag ctgtgcctca cttattaaag cacaaaatgt tttacctact ccttatttac	1140
gacgcaataa aataacatca atagattttt aggctgaatt aatttgaaag cagcaatttg	1200
ctgttctcaa ccattctttc aaggcttttc attskwcaaa kwwaataaaw martagayww	1260
twarg	1265
<210> 71 <211> 7232 <212> DNA <213> Homo sapien	
<400> 71 tcctccctcc ctccccatcc ccaatcctga ttcctgttta caaagaatgt tgaaaaacaa	60
ggaattatgt ataacagttc ccagtttgct caggaaattc tcagattata aagagacatt	120
acaaatgaac aagtgaagag aagaaccttg gtggttccaa catagtatgg ccattgtttt	180
atactcaaaa tatagaaaga caacctcaga ataagaaaac ttttggaatg gaataaatca	240
agtttatcat taaaatgcaa agaaaaaaac tctccaaatg ttgctgatct tctgttttaa	300
actactgtta gaccggagaa gcggagagca ggggaatccg ccaaagagtt ttggatgaaa	360
attaatcage cetgtetace gtagteacae eccaetgece ttgagaecea ateettegga	420

aggagtgtcc aagaggtata aagcaaaacg aaaaaacagt tcgcaaattc cagagttcgt 480

tttctctcat	taaaaatata	aatatcaggc	taacacatgt	tgacacacaa	taacagggac	540
acagaatccc	tcctggaaga	ccgacgggcc	cacggacccc	acgggtgcca	cggtggtgga	600
cgaggttaag	taacttggtt	cagggtgtct	gggcacacct	ctgcgtgaga	ctctgtctct	660
gctgctcctc	tcatctctac	gccgattcct	ccccacaatc	ctccctttc	cttgggcccc	720
cgacgcctct	ccgaccaaca	gtctccccag	ccccgcagct	tctctcttc	agacctttac	780
ttcttgatcc	tcactccata	gtgagatgtg	gcctttcagc	aaataaattg	tgctcaggga	840
gacagccaat	tgtcccttgc	cgtcctcctg	agggtgcctg	gagcttaagc	actgtgtgct	900
cttggcctcc	acactgggga	tgccgctgac	tcccactgtc	cagggcttcc	agtggattct	960
ccgaggccct	gatgtagaaa	cttccccatt	gggtgcacca	agagcagcct	cacatggtgt	1020
gggctgacat	caagagctgc	cagatccaac	aggaagatgg	ccaatctttc	ctaagctgct	1080
caccttacaa	gaaaacgaat	cgtactgcta	agaattcaaa	cttcagcagt	catggggagc	1140
cttggaagga	gcccgaatca	ctgatggaat	tggacagtgc	atggagatgg	ttcagcagga	1200
caagggtaag	tgcaggggca	agtccaggtc	atactgagag	acaacgagtg	gcgctgacag	1260
agacagacaa	agataaaatc	aaaagtttgt	gcttcatctt	caaaaactca	aactaataac	1320
aaacttggcc	ttatgagaaa	taataagtat	ttttctattt	acatgagaat	ttaatctcaa	1380
aacaggaatc	agaaacatat	taagtccagg	gcataaaacc	taaaccactg	ctcatattta	1440
ttctttctaa	atagagcaaa	gtgtaaaatc	ttctccataa	aatgcacatt	gtgcttatga	1500
aaaggccagt	cttagtgaga	atcattggta	ttccatagaa	gagtgaatta	aacacagcca	1560
agggaagacc	caagtctcat	acttctcttg	tatattccag	agttccaggg	gaattccagg	1620
tgatagaggt	gatctcccat	actgttaaag	caaggttgca	gacacttggg	aattttggtc	1680
ccagtactct	aggaggtcac	acctctgtcc	tggaaaatac	tacaggaatg	tatactcttc	1740
ctatgactca	ttctggtcat	tcttccagca	tcacaaaaac	caaaaaaaa	aaaggaaata	1800
tgtccaaata	catgatttgc	tatccctcct	cttcaggttt	cttacctgtt	acttacggat	1860
aacagcatta	ccacaggatt	atgatgaaga	tacaatgtcc	aaatataaac	acagttttga	1920
gcaaaatgcc	ttgtacgaat	tggtcaatga	acaactagta	aataattatg	tgaatattta	1980
ctgaattata	tggatcctat	gaataattac	tgaataattc	atgtgattgc	ttttattggc	2040
agtgctgaaa	actcatcccc	gtgtgacctc	aagtaagcca	tgtaactctg	tgaacctgca	2100
gttttatcat	ttttaaaata	aagaaacatg	acagattttc	attatgacac	agaatgtcag	2160
gtctcccaga	tgccagaaaa	tacatttact	taaagccgtt	gatacgtctt	aaagcggttt	2220
ccttacagtg	tcattggagg	acagtgtgga	gtgcagagag	acatgctttg	aaatgggatt	2280
gatccagtcc	teetteette	actaccacat	gaatgctggg	cagcccaggg	tcaacccacc	2340

		•					
	gcaccctcaa	ctcaggcaag	tccagcagcc	aatcttagga	gacctgggct	acagaacagt	2400
	ctcccaagtt	ccaggctcac	aaaacctagg	tggggtgaaa	gctgagaaag	cgaggagttg	2460
	gttcagggga	tcactctttc	ctactcattc	ctctcatctc	aaactcacct	tctactgcaa	2520
	cactgaggat	caccaaccaa	ccgtgaccat	aaccttgatc	ttgccatgtt	ctgttagtgg	2580
	aatgcaaccc	aaaatcaatg	gtgttaggtc	atctgaacaa	aatatatatc	aaaccatatt	2640
	gcataagaac	cgctcatggc	cctgttcttt	tcagtatatg	ggaaaacaaa	atggaaacaa	2700
	caaaatagca	tcaggtttat	gaaacttccc	aagatagatg	gtcacacatg	ttttcaggag	2760
	atctctatat	aaatgatttt	gatcacttga	taccttgaaa	agagctcttg	tgacactaga	2820
	atgacatcca	taagtgacaa	gtataaaatg	tagcgctcag	tgacatcaaa	aaccaaatca	2880
	acccacatag	aggaagagct	ctggacatag	ggatgtcaaa	ctggtctaga	gtgtaatgaa	2940
	aagcaaagat	ggtgccccag	tgagaaaaaa	gaaatcaaca	taacaatggg	aaacagcaag	3000
	aagaatactg	agacaggaaa	gacaacattt	tttacaaatg	aattattcat	tcactttcta	3060
	gtggatacag	acaaaactgc	agaagaccca	gaggaaatca	gggcaggcta	aaagtttgat	3120
	atcttacacc	tgtggaaaag	gccttaagct	ctgttttaac	tgagagcagg	tggggtgact	3180
	tcatgactac	cattaagaaa	atacaacctg	ttgggaaact	gtttctgcct	tgatgatgtt	3240
	gtacagacaa	gagataaaca	gtgaggaata	tgcttagatg	tattgggaaa	gacacgggtc	3300
	tgtggcatca	tcacaagggt	acacgaatac	tgagagtgaa	tgctgaagga	atgatcccca	3360
	ttggtggtga	ccctcaggtg	agactagggt	gcctgtgttt	caggaaagcc	tgggcaattg	3420
	gaatgcaggg	ctcctaagat	tccatgacac	ccccaccttc	taattctgtt	attgcaactg	3480
	cagacggtta	cctggcacgc	tggccacagt	ctacctcact	cttatcagag	tctgagctac	3540
	tggcagtgct	ttcagctctg	agttcaggca	cctcgaacct	tgtttttgtg	gtgaaggatc	3600
	ctaaagtgct	gtggggagtg	atcacatttt	tcacaacatc	cctggctcca	cctcttctgc	3660
	cacaaacgtc	agcatggtgg	tatcagctgg	cccttggtcc	agcgagaagg	cagagacgaa	3720
	cattttagaa	atcaacgaga	aattgcgccc	ccagctggca	gagaacaaac	agcagttcag	3780
	aaacctcaaa	gagaaatgtt	ttgtaactca	actggccggc	ttcctggcca	accgacagaa	3840
	gaaatacaag	tatgaagagt	gtaaagacct	cataaaattt	atgctgagga	atgagcgaca	3900
	gttcaaggag	gagaagcttg	cagagcagct	caagcaagct	gaggagetca	ggcaatataa	3960
	agtcctggtt	cactctcagg	aacgagagct	gacccagtta	agggagaagt	tacgggaagg	4020
	gagagatgcc	tcccgctcat	tgaatcagca	tctccaggcc	ctcctcactc	cggatgagcc	4080
•	agacaagtcc	caggggcagg	acctccaaga	acagctggct	gaggggtgta	gactggcaca	4140

gcaccttgtc	caaaagctca	gcccagaaaa	tgacaacgat	gacgatgaag	atgttcaagt	4200
tgaggtggct	gagaaagtgc	agaaatcgtc	tgcccccagg	gagatgccga	aggctgaaga	4260
aaaggaagtc	cctgaggact	cactggagga	atgtgccatc	acttgttcaa	atagccatgg	4320
cccttatgac	tccaaccagc	cacataggaa	aaccaaaatc	acatttgagg	aagacaaagt	4380
cgactcaact	ctcattggct	catcctctca	tgttgaatgg	gaggatgctg	tacacattat	4440
cccagaaaat	gaaagtgatg	atgaggaaga	ggaagaaaaa	gggccagtgt	ctcccaggaa	4500
tctgcaggag	tctgaagagg	aggaagtccc	ccaggagtcc	tgggatgaag	gttattcgac	4560
tctctcaatt	cctcctgaaa	tgttggcctc	gtaccagtct	tacagcggca	catttcactc	4620
attagaggaa	cagcaagtct	gcatggctgt	tgacataggc	ggacatcggt	gggatcaagt	4680
gaaaaaggag	gaccaagagg	caacaggtcc	cagccaggct	cagcagggag	ctgctggatg	4740
agaaagggcc	tgaagtcttg	caggactcac	tggatagatg	ttattcaact	ccttcaggtt	4800
atcttgaact	gactgactca	tgccagccct	acagaagtgc	cttttacata	ttggagcaac	4860
agcgtgttgg	ctgggctctt	gacatggatg	aaattgaaaa	gtaccaagaa	gtggaagaag	4920
accaagaccc	atcatgcccc	aggctcagca	gggagctgct	ggatgagaaa	gagcctgaag	4980
tcttgcagga	ctcactggat	agatgttatt	cgactccttc	aggttatctt	gaactgcctg	5040
acttaggcca	gccctacaga	agtgctgttc	actcattgga	ggaacagtac	cttggcttgg	5100
ctcttgacgt	ggacagaatt	aaaaaggacc	aggaagagga	agaagaccaa	ggcccaccat	5160
gccccaggct	cagcagggag	ctgctggagg	cagtagagcc	tgaagtcttg	caggactcac	5220
tggatagatg	ttattcaact	ccttccagtt	gtcttgaaca	gcctgactcc	tgcctgccct	5280
atggaagttc	cttttatgca	ttggaggaaa	aacatgttgg	cttttctctt	gacgtgggag	5340
aaattgaaaa	gaaggggaag	gggaagaaaa	gaaggggaag	aagatcaacg	aagaaaagaa	5400
ggagaagggg	aagaaaagaa	ggggaagaag	atcaaaaccc	accatgcccc	aggctcagca	5460
gggagctgct	ggatgagaaa	gggcctgaag	tcttgcagga	ctcactggat	agatgttatt	5520
caactccttc	aggttatctt	gaactgactg	actcatgcca	gccctacaga	agtgcgtttt	5580
actyattkga	gsaacagcry	rttsagcttc	gcccttgacg	tggacaatag	agtttcttta	5640
ctttgatggg	aakaaggtct	ccacctgagt	cttccagatg	ggagtcatat	tcccacagta	5700
agcagccctt	actaagccga	gagatgtcat	tcctgcaggc	aggacctata	ggcacgtgaa	5760
gatttgaatg	aaactmtagt	tccayttgga	agcccagrca	wrggatgggt	cagtgrgcak	5820
ggctctmttc	ctaktctcag	rccatgccwg	tggcamcctg	tgctcagtct	gaagacaatg	5880
gacccaagtt	aggtgtgaca	cgttcacata	actgtgcagc	acatgccggg	agtgatcagt	5940
cagacatttt	aatttgaacc	acgtatctct	gggtagctac	aaagttcctc	agggatttca	6000

ttttgcaggc a	atgtctctga	gcttctatac	ctgctcaagg	tcagtgtcat	ctttgtgttt	6060
agctcatcca a	aaggtgttac	cctggtttca	atgaacctaa	cctcattctt	tgtatcttca	6120
gtgttgaatt g	gttttagctg	atccatcttt	aacgcaggag	ggatccttgg	ctgaggattg	6180
tatttcagaa o	ccaccaactg	ctcttgacaa	ttgttaaccc	gctaggctcc	tttggttaga	6240
gaagccacag t	tccttcagcc	tccaattggt	gtcagtactt	aggaagacca	cagctagatg	6300
gacaaacagc a	attgggagac	cttagccctg	ctcctctcga	ttccatcctg	tagagaacag	6360
gagtcaggag (ccgctggcag	gagacagcat	gtcacccagg	actctgccgg	tgcagaatat	6420
gaacaacgcc a	atgttcttgc	agaaaacgct	tagcctgagt	ttcataggag	gtaatcacca	6480
gacaactgca g	gaatgtagaa	cactgagcag	gacaactgac	ctgtctcctt	cacatagtcc	6540
atatcaccac a	aaatcacaca	acaaaaagga	gaagagatat	tttgggttca	aaaaagtaa	6600
aaagataata t	tagctgcatt	tctttagtta	ttttgaaccc	caaatatttc	ctcatctttt	6660
tgttgttgtc a	attgatggtg	gtgacatgga	cttgtttata	gaggacaggt	cagctgtctg	6720
gctcagtgat o	ctacattctg	aagttgtctg	aaaatgtctt	catgattaaa	ttcagcctaa	6780
acgttttgcc g	gggaacactg	cagagacaat	gctgtgagtt	tccaacctta	gcccatctgc	6840
gggcagagaa g	ggtctagttt	gtccatcagc	attatcatga	tatcaggact	ggttacttgg	6900
ttaaggaggg g	gtctaggaga	tctgtccctt	ttagagacac	cttacttata	atgaagtatt	6960
tgggagggtg g	gttttcaaaa	gtagaaatgt	cctgtattcc	gatgatcatc	ctgtaaacat	7020
tttatcattt a	attaatcatc	cctgcctgtg	tctattatta	tattcatatc	tctacgctgg	7080
aaactttctg	cctcaatgtt	tactgtgcct	ttgtttttgc	tagtttgtgt	tgttgaaaaa	7140
aaaaacattc t	tctgcctgag	ttttaatttt	tgtccaaagt	tattttaatc	tatacaatta	7200
aaagcttttg (cctctagatc	gcgggcggcc	gc			7232

<210> 72 <211> 6876 <212> DNA

<213> Homo sapien

<400> 72

eggggeetgt gtteecegeg etggattett egeetgeege tgeegeeege ageecaacte 60 tegtgggege tggggaagaa actegetgge gggtgttetg tggcatecea gggggtggag 120 ggacggagca getteggggg cacgtectee tatateetgt agaggacaet gaccegeae 180 cccaccetce aggecagaaa teegtteeet etgeggaeet gagaggegag egegetegeg 240 cccctgactt gcaaagttgg ggtctttact ggcctccggg cttctgctcc tggcgttgtc 300 tccaggctgg tgatgggcaa gccaggtgtg ccagctccag gatgcacatg agcagcattt 360

WO 2004/053077

420	ccgcaggatt	ctcaaatgaa	cggggcaagc	tcctgactag	ctgaatcacc	gtagccatcg
480	tgacccgggc	aggttcccgg	acccaggcga	tcctgtttag	tgaaggcaaa	tcgggcaatc
540	aagcactgtg	cctggagctt	cctgagggtg	ttgccgtcct	caattgtccc	tctcaccagc
600	ttccagtgga	tgtccagggc	tgactcccac	gggatgccgc	ctccacactg	tgctcttggc
660	gcctcacatg	accaagagca	cattgggtgc	gaaacttccc	ccctgatgta	ttctccgagg
720	tttcctaagc	atggccaatc	caacaggaag	ctgccagatc	acatcaagag	gtgtgggctg
780	cagtcatggg	caaacttcag	gctaagaatt	gaatcgtact	acaagaaaac	tgctcacctt
840	atggttcagc	gtgcatggag	gaattggaca	atcactgatg	aggagcccga	gagccttgga
900	agtggcgctg	agagacaacg	ggtcatactg	ggcaagtcca	taagtgcagg	aggacaaggg
960	ctcaaactaa	tcttcaaaaa	ttgtgcttca	aatcaaaagt	acaaagataa	acagagacag
1020	gaatttaatc	atttacatga	gtatttttct	gaaataataa	ggccttatga	taacaaactt
1080	actgctcata	aacctaaacc	cagggcataa	atattaagtc	aatcagaaac	tcaaaacagg
1140	cattgtgctt	ataaaatgca	aatcttctcc	caaagtgtaa	ctaaatagag	tttattcttt
1200	attaaacaca	agaagagtga	ggtattccat	gagaatcatt	cagtcttagt	atgaaaaggc
1260	aggggaattc	ccagagttcc	cttgtatatt	tcatacttct	gacccaagtc	gccaagggaa
1320	tgggaatttt	tgcagacact	aaagcaaggt	ccatactgtt	aggtgatctc	caggtgatag
1380	aatgtatact	atactacagg	gtcctggaaa	tcacacctct	ctctaggagg	ggtcccagta
1440	aaaaaagga	aaaccaaaaa	agcatcacaa	tcattcttcc	ctcattctgg	cttcctatga
1500	tgttacttac	gtttcttacc	tcctcttcag	ttgctatccc	aatacatgat	aatatgtcca
1560	aaacacagtt	gtccaaatat	aagatacaat	gattatgatg	attaccacag	ggataacagc
1620	tatgtgaata	agtaaataat	atgaacaact	gaattggtca	tgccttgtac	ttgagcaaaa
1680	ttgcttttat	attcatgtga	ttactgaata	ctatgaataa	tatatggatc	tttactgaat
1740	tctgtgaacc	gccatgtaac	cctcaagtaa	ccccgtgtga	gaaaactcat	tggcagtgct
1800	acacagaatg	tttcattatg	catgacagat	aataaagaaa	tcatttttaa	tgcagtttta
1860	tcttaaagcg	cgttgatacg	tacttaaagc	aaaatacatt	cagatgccag	tcaggtctcc
1920	tttgaaatgg	agagacatgc	tggagtgcag	gaggacagtg	agtgtcattg	gtttccttac
1980	agggtcaacc	tgggcagccc	acatgaatgc	cttcactacc	gtcctccttc	gattgatcca
2040	ggctacagaa	aggagacctg	agccaatctt	caagtccagc	tcaactcagg	caccgcaccc
2100	aaagcgagga	gaaagctgag	taggtggggt	tcacaaaacc	agttccaggc	cagtctccca
2160	accttctact	tctcaaactc	attcctctca	tttcctactc	gggatcactc	gttggttcag

gcaacactga ggatcaccaa ccaaccgtga ccataacctt gatcttgcca tgttctgtta 2220 gtggaatgca acccaaaatc aatggtgtta ggtcatctga acaaaatata tatcaaacca 2280 tattgcataa gaaccgctca tggccctgtt cttttcagta tatgggaaaa caaaatggaa 2340 acaacaaaat agcatcaggt ttatgaaact tcccaagata gatggtcaca catgttttca 2400 ggagatetet atataaatga ttttgateae ttgatacett gaaaagaget ettgtgacae 2460 2520 tagaatgaca tecataagtg acaagtataa aatgtagege teagtgacat caaaaaccaa 2580 atcaacccac atagaggaag agctctggac atagggatgt caaactggtc tagagtgtaa tgaaaagcaa agatggtgcc ccagtgagaa aaaagaaatc aacataacaa tgggaaacag 2640 caagaagaat actgagacag gaaagacaac attttttaca aatgaattat tcattcactt 2700 tctagtggat acagacaaaa ctgcagaaga cccagaggaa atcagggcag gctaaaagtt 2760 tgatatetta cacetgtgga aaaggeetta agetetgttt taaetgagag caggtggggt 2820 gacttcatga ctaccattaa gaaaatacaa cctgttggga aactgtttct gccttgatga 2880 tgttgtacag acaagagata aacagtgagg aatatgctta gatgtattgg gaaagacacg 2940 ggtctgtggc atcatcacaa gggtacacga atactgagag tgaatgctga aggaatgatc 3000 cccattggtg gtgaccctca ggtgagacta gggtgcctgt gtttcaggaa agcctgggca 3060 attggaatgc agggeteeta agatteeatg acacececae ettetaatte tgttattgea 3120 actgcagacg gttacctggc acgctggcca cagtctacct cactcttatc agagtctgag 3180 ctactggcag tgctttcagc tctgagttca ggcacctcga accttgtttt tgtggtgaag 3240 gatcctaaag tgctgtgggg agtgatcaca tttttcacaa catccctggc tccacctctt 3300 ctgccacaaa cgtcagcatg gtggtatcag ctggcccttg gtccagcgag aaggcagaga 3360 cgaacatttt agaaatcaac gagaaattgc gccccagct ggcagagaac aaacagcagt 3420 tcagaaacct caaagagaaa tgttttgtaa ctcaactggc cggcttcctg gccaaccgac 3480 agaagaaata caagtatgaa gagtgtaaag acctcataaa atttatgctg aggaatgagc 3540 gacagttcaa ggaggagaag cttgcagagc agctcaagca agctgaggag ctcaggcaat 3600 ataaagteet ggtteaetet eaggaaegag agetgaeeca gttaagggag aagttaeggg 3660 aagggagaga tgcctcccgc tcattgaatc agcatctcca ggccctcctc actccggatg 3720 agecagacaa gteecagggg caggacetee aagaacaget ggetgagggg tgtagaetgg 3780 cacagcacct tgtccaaaag ctcagcccag aaaatgacaa cgatgacgat gaagatgttc 3840 aagttgaggt ggctgagaaa gtgcagaaat cgtctgcccc cagggagatg ccgaaggctg 3900 aagaaaagga agtccctgag gactcactgg aggaatgtgc catcacttgt tcaaatagcc 3960 atggccctta tgactccaac cagccacata ggaaaaccaa aatcacattt gaggaagaca 4020

aagtcgactc	aactctcatt	ggctcatcct	ctcatgttga	atgggaggat	gctgtacaca	4080
ttatcccaga	aaatgaaagt	gatgatgagg	aagaggaaga	aaaagggcca	gtgtctccca	4140
ggaatctgca	ggagtctgaa	gaggaggaag	tccccagga	gtcctgggat	gaaggttatt	4200
cgactctctc	aattcctcct	gaaatgttgg	cctcgtacca	gtcttacagc	ggcacatttc	4260
actcattaga	ggaacagcaa	gtctgcatgg	ctgttgacat	aggcggacat	cggtgggatc	4320
aagtgaaaaa	ggaggaccaa	gaggcaacag	gtcccagcca	ggctcagcag	ggagctgctg	4380
gatgagaaag	ggcctgaagt	cttgcaggac	tcactggata	gatgttattc	aactccttca	4440
ggttatcttg	aactgactga	ctcatgccag	ccctacagaa	gtgcctttta	catattggag	4500
caacagcgtg	ttggctgggc	tcttgacatg	gatgaaattg	aaaagtacca	agaagtggaa	4560
gaagaccaag	acccatcatg	ccccaggctc	agcagggagc	tgctggatga	gaaagagcct	4620
gaagtcttgc	aggactcact	ggatagatgt	tattcgactc	cttcaggtta	tcttgaactg	4680
cctgacttag	gccagcccta	cagaagtgct	gttcactcat	tggaggaaca	gtaccttggc	4740
ttggctcttg	acgtggacag	aattaaaaag	gaccaggaag	aggaagaaga	ccaaggccca	4800
ccatgcccca	ggctcagcag	ggagctgctg	gaggcagtag	agcctgaagt	cttgcaggac	4860
tcactggata	gatgttattc	aactccttcc	agttgtcttg	aacagcctga	ctcctgcctg	4920
ccctatggaa	gttcctttta	tgcattggag	gaaaaacatg	ttggcttttc	tcttgacgtg	4980
ggagaaattg	aaaagaaggg	gaaggggaag	aaaagaaggg	gaagaagatc	aacgaagaaa	5040
agaaggagaa	ggggaagaaa	agaaggggaa	gaagatcaaa	acccaccatg	ccccaggctc	5100
agcagggagc	tgctggatga	gaaagggcct	gaagtcttgc	aggactcact	ggatagatgt	5160
tattcaactc	cttcaggtta	tcttgaactg	actgactcat	gccagcccta	cagaagtgcg	5220
ttttactyat	tkgagsaaca	gcryrttsag	cttcgccctt	gacgtggaca	atagagtttc	5280
tttactttga	tgggaakaag	gtctccacct	gagtcttcca	gatgggagtc	atattcccac	5340
agtaagcagc	ccttactaag	ccgagagatg	tcattcctgc	aggcaggacc	tataggcacg	5400
tgaagatttg	aatgaaactm	tagttccayt	tggaagccca	grcawrggat	gggtcagtgr	5460
gcakggctct	mttcctaktc	tcagrccatg	ccwgtggcam	cctgtgctca	gtctgaagac	5520
aatggaccca	agttaggtgt	gacacgttca	cataactgtg	cagcacatgc	cgggagtgat	5580
cagtcagaca	ttttaatttg	aaccacgtat	ctctgggtag	ctacaaagtt	cctcagggat	5640
ttcattttgc	aggcatgtct	ctgagcttct	atacctgctc	aaggtcagtg	tcatctttgt	5700
gtttagctca	tccaaaggtg	ttaccctggt	ttcaatgaac	ctaacctcat	tctttgtatc	5760
ttcagtgttg	aattgtttta	gctgatccat	ctttaacgca	ggagggatcc	ttggctgagg	5820

attgtattte agaaccacca actgctcttg acaattgtta acccgctagg ctcctttggt	5880
tagagaagee acagteette ageetecaat tggtgteagt aettaggaag accaeageta	5940
gatggacaaa cagcattggg agaccttagc cctgctcctc tcgattccat cctgtagaga	6000
acaggagtca ggagccgctg gcaggagaca gcatgtcacc caggactctg ccggtgcaga	6060
atatgaacaa egecatgtte ttgcagaaaa egettageet gagttteata ggaggtaate	6120
accagacaac tgcagaatgt agaacactga gcaggacaac tgacctgtct ccttcacata	6180
gtccatatca ccacaatca cacaacaaaa aggagaagag atattttggg ttcaaaaaaa	6240
gtaaaaagat aatatagctg catttcttta gttattttga accccaaata tttcctcatc	6300
tttttgttgt tgtcattgat ggtggtgaca tggacttgtt tatagaggac aggtcagctg	6360
tetggeteag tgatetaeat tetgaagttg tetgaaaatg tetteatgat taaatteage	6420
ctaaacgttt tgccgggaac actgcagaga caatgctgtg agtttccaac cttagcccat	6480
ctgcgggcag agaaggtcta gtttgtccat cagcattatc atgatatcag gactggttac	6540
ttggttaagg aggggtctag gagatctgtc ccttttagag acaccttact tataatgaag	6600
tatttgggag ggtggttttc aaaagtagaa atgtcctgta ttccgatgat catcctgtaa	6660
acattttatc atttattaat catccctgcc tgtgtctatt attatattca tatctctacg	6720
ctggaaactt tctgcctcaa tgtttactgt gcctttgttt ttgctagttt gtgttgttga	6780
aaaaaaaac attctctgcc tgagttttaa tttttgtcca aagttatttt aatctataca	6840
attaaaagct tttgcctcta gatcgcgggc ggccgc	6876
<210> 73 <211> 3060 <212> DNA <213> Homo sapien	
<400> 73 gcgtcgctga ggcgcccatg gccttcgccc gccggctcct gcgcgggcca ctgtcggggc	60
egetgetegg geggegeggg gtetgegetg gggeeatgge teegeegege egettegtee	120
tggagettee egaetgeace etggeteact tegecetagg egeegaegee eeeggegaeg	180
cagacgeece egaceeege etggeggege tgetggggee eeeggagege agetaetege	240
tgtgegtgee egtgaeeeeg gaegeegget geggggeeeg ggteegggeg gegeggetge	300
accagegeet getgeaccag etgegeegeg geceetteea geggtgeeag etgeteagge	360
tgctctgcta ctgcccgggc ggccaggccg gcggcgcaca gcaaggcttc ctgctgcgcg	420
accceetgga tgaccetgae acceggeaag egetgetega getgetggge geetgeeagg	480
aggcaccacg cccgcacttg ggcgagttcg aggccgaccc gcgcggccag ctgtggcagc	540

gcctctggga	ggtgcaagac	ggcaggcggc	tgcaggtggg	ctgcgcacag	gtcgtgcccg	600
tcccggagcc	cccgctgcac	ccggtggtgc	cagacttgcc	cagttccgtg	gtetteeegg	660
accgggaagc	cgcccgggcc	gttttggagg	agtgtacctc	ctttattcct	gaagcccggg	720
cagtgcttga	cctggtcgac	cagtgcccaa	aacagatcca	gaaaggaaag	ttccaggttg	780
ttgccatcga	aggactggat	gccacgggta	aaaccacggt	gacccagtca	gtggcagatt	840
cacttaaggc	tgtcctctta	aagtcaccac	cctcttgcat	tggccagtgg	aggaagatct	900
ttgatgatga	accaactatc	attagaagag	ctttttactc	tttgggcaat	tatattgtgg	960
cctccgaaat	agctaaagaa	tctgccaaat	ctcctgtgat	tgtagacagg	tactggcaca	1020
gcacggccac	ctatgccata	gccactgagg	tgagtggggg	tctccagcac	ctgcccccag	1080
cccatcaccc	tgtgtaccag	tggccagagg	acctgctcaa	acctgacctt	atcctgctgc	1140
tcactgtgag	tcctgaggag	aggttgcaga	ggctgcaggg	ccggggcatg	gagaagacca	1200
gggaagaagc	agaacttgag	gccaacagtg	tgtttcgtca	aaaggtagaa	atgtcctacc	1260
agcggatgga	gaatcctggc	tgccatgtgg	ttgatgccag	cccctccaga	gaaaaggtcc	1320
tgcagacggt	attaagccta	atccagaata	gttttagtga	accgtagtta	ctctggccag	1380
gtgccacgtc	taactagatt	agatgttgtt	tgaaacatct	acatccacca	tttgttatgc	1440
agtgttccca	aatttctgtt	ctacaagcat	gttgtgtggc	agaaaactgg	agaccaggca	1500
tcttaatttt	acttcagcca	tcgtaccctc	ttctgactga	tggacccgtc	atcacaaagg	1560
tccctctcat	catgttccag	tgagaggcca	gcgattgctt	tattaatgga	atagtaaaca	1620
ttttcttgga	acatatgttt	cacttaatca	ctaccaaata	tctggaagac	ctgtcttact	1680
cagacagcac	caggtgtaca	gaagcagcag	acaagatctt	ccagatcagc	agggagaccc	1740
cggagcctct	gcttctccta	cactggcatg	ctgatgagat	cgtgacatgc	ccacattggc	1800
ttcttccaca	tctggttgca	ctcgtcatga	tgggctcgct	gcatctccct	cagtcccaaa	1860
ttctagagcc	aagtgttcct	gcagaggctg	tctatgtgtc	ctggctgccc	aaggacactc	1920
ctgcagagcc	atttttgggt	aaggaacact	tacaaagaag	gcattgatct	tgtgtctgag	1980
gctcagagcc	cttttgatag	gcttctgagt	catatataaa	gacattcaag	ccaagatgct	2040
ccaactgcaa	atataccaac	cttctctgaa	ttatattttg	cttatttata	tttctttct	2100
ttttttctaa	agtatggctc	tgaatagaat	gcacattttc	cattgaactg	gatgcatttc	2160
atttagccaa	tccagtaatt	tatttatatt	aatctataca	taatatgttt	cctcagcata	2220
ggagctatga	ttcattaatt	aaaagtggag	tcaaaacgct	aaatgcaatg	tttgttgtgt	2280
attttcatta	cacaaactta	atttgtcttg	ttaaataagt	acagtggatc	ttggagtggg	2340
atttcttggt	aaattatctt	gcacttgaat	gtctcatgat	tacatatgaa	atcoctttoa	2400

catatcttta	gacagaaaaa	agtagctgag	tgaggggaa	attatagagc	tgtgtgactt	2460
tagggagtag	gttgaaccag	gtgattacct	aaaattcctt	ccagttcaaa	ggcagataaa	2520
tctgtaaatt	attttatcct	atctaccatt	tcttaagaag	acattactcc	aaaataatta	2580
aatttaaggc	tttatcaggt	ctgcatatag	aatcttaaat	tctaataaag	tttcatgtta	2640
atgtcatagg	atttttaaaa	gagctatagg	taatttctgt	ataatatgtg	tatattaaaa	2700
tgtaattgat	ttcagttgaa	agtattttaa	agctgataaa	tagcattagg	gttctttgca	2760
atgtggtatc	tagctgtatt	attggtttta	tttactttaa	acattttgaa	aagcttatac	2820
tggcagccta	gaaaaacaaa	caattaatgt	atctttatgt	ccctggcaca	tgaataaact	2880
ttgctgtggt	ttactaatct	atgctgtcat	cctgggtaca	tattgatttg	tctgaaaagt	2940
gctttctcag	attccccttt	taatattgtg	atgtaaagga	gggaaatttt	ggtaaaggaa	3000
gttgaaaggt	gtgagctggc	aggctaagtg	gaatttgtgg	tcagagtgct	ttcagagaaa	3060

<210> 74

<211> 3885

<212> DNA

<213> Homo sapien

<400> 74

gaaaagtact ggaagtaaag tetgacetaa ageaaatgaa cagettaace ggagateaca 60 aaggctacaa caattaacag aggtttcaag aaggtcgtta cgcagtagag aaattcaggg 120 180 tcaagttcaa gcagttaaac agagtttgcc accaactaaa aaagagcagt gtagcagtac tcagagtaaa tctaataaaa caagtcaaaa acatgtgaag agaaaagtac tggaagtaaa 240 300 gtctgactct aaagaagatg aaaatctagt aattaatgaa gtaataaatt ctcccaaagg gaaaaaacgc aaggtagaac atcagacagc ttgtgcttgt agttctcaat gcatgcaagg 360 atctgaaaag tgtcctcaga agactactag aagagacgaa acgaaacctg tgcctgtaac 420 ttctgaggtg aaaagatcaa aaatggctac ttcagtggtc ccgaaaaaga atgagatgaa 480 gaagteggtt catacacaag tgaatactaa cacaacacte ecaaaaagte cacagecate 540 agtgcctgaa caaagtgata atgagctgga gcaagcagga aagagcaaac gaggtagtat 600 660 tctccagctc tgtgaagaaa ttgctggtga aattgagtca gataatgtag aggtaaaaaa 720 ggaatcttca caaatggaaa gtgtaaagga agaaaagccc acagaaataa aattggaaga gaccagtgtt gaaagacaaa tacttcatca gaaggaaaca aatcaggatg tgcaatgtaa 780 tcgttttttc ccaagtagaa aaacaaagcc tgtgaaatgt atactaaatg gaataaacag 840 ctcagccaag aagaactcca actggactaa aattaaactc tcaaaattta actctgtgca 900 gcacaataag ttggactctc aagtttcccc taaattaggc ttattacgaa ccagtttttc 960

accaccaget ttagaaatge atcatecagt gaeteaaagt acatttttag ggacaaaget 1020 acatgataga aatataactt gccagcagga aaaaatgaaa gaaattaatt ctgaagaagt 1080 gaaaattaat gatattacag tagaaattaa taaaaccaca gaaagggctc ctgaaaattg 1140 tcatttggcc aatgagataa aaccttctga cccaccattg gataatcaga tgaaacattc 1200 ttttgattca gcatcaaata agaatttcag ccaatgtttg gaatccaagc tagaaaacag 1260 tecagtggaa aatgttaetg etgettegae tetgeteagt caagcaaaaa ttgatacagg 1320 agagaataaa tttccaggtt cagctcccca acagcatagt attctcagta accagacatc 1380 taaaagcagt gataacaggg agacaccacg aaatcattct ttgcctaagt gtaattccca 1440 tttggagata acaattccaa aggacttgaa actaaaagaa gcagagaaaa ctgatgaaaa 1500 acagttgatt atagatgcag gacaaaaaag atttggagca gtttcttgta atgtttgtgg 1560 aatgctgtat acagcttcaa atccagaaga tgaaacacag catctgcttt tccacaacca 1620 gtttataagt gctgttaaat atgtggttct gctcattaat caccacgagt gtggatctga 1680 agaagagttt attacctctc tttttttgag tatgtttaac ttcagataca cacaacgtag 1740 cttctccttc cctattagat tcttagaagg gctggaagaa agaaagaatt ctggctgaat 1800 accetgatgg caggataata atggttette etgaagaeee aaagtatgee etgaaaaagg 1860 ttgacgagat tagagagatg gttgacaatg atttaggttt tcaacaggct ccactaatgt 1920 gctattccag aactaaaaca cttctcttca tttccaatga caaaaaagta gttggctgcc 1980 taattgcgga acatatccaa tggggctaca gagttataga agagaaactt ccagttatca 2040 ggtcagaaga agaaaaagtc agatttgaaa ggcaaaaagc ctggtgctgc tcaacattac 2100 cagagcctgc aatctgcggg atcagtcgaa tatgggtatt cagcatgatg cgtcggaaga 2160 aaattgcttc tcgcatgatt gaatgcctaa ggagtaactt tatatatggc tcatatttga 2220 gcaaagaaga aattgctttc tcagatccca ctcctgatgg aaagctgttt gcaacacagt 2280 actgtggcac tggtcaattt ctggtatata attttattaa tggacagaat agcacgtaaa 2340 acaaattett geetacaeca etagaagaea tetattgaag agaatggatt ggttgetgae 2400 tttaaccagg aactagggcc atttttatta caatgaactc aggactggca acaaccatat 2460 ggttgttcca ttttcataaa attggaaaca atgcagtaat agcttattgt tttgttttt 2520 aaagaagata ttttattatc ttttacagaa atttatgatt gatgtatttt atctatagtt 2580 atttagacat gtttacatgc agcagataat tgttcatagt ggactgaaaa ctaatgcaag 2640 gactatggtc tcagtgataa gtatattttg aagttcttaa tatggaaata taccagtgta 2700 gcttggtact gtatttttt atattgatct gctgatacca gtgataggct taaagattgt 2760

99

attttcacag agtggaaacc aattttttta gttattgttc aaggagggtg caatattaag 2820 tgttttggaa tttgaagcta atttttaaaa ggcctgaact atactttgaa gaaacccta 2880 tagaaaagga aagctccagc taaataggaa gaattagaat attgagcttt tttttcctga 2940 tttttctctt tcctatcttt gatggaagga ggaagtagaa agtggtaaag aattgaggct 3000 ttccttcttg gagagctgta aatgacaagc attaggaaag gtaccctcct agattcatta 3060 ttctttcatt ctggtttcac ttttaaaata aatggcaact tggcacacct aggctgttaa 3120 caaatctcaa agaggtttat aaaaacgtat agaatacttg gaagcaaagt atggatgact 3180 eggtatetge tttgttatte etcagaaata etgeaetgag tatatgeeet cattactgga 3240 cttcattttg atacttgtct atccttcata gtgccctcta cttttaaagg gtttatatgt 3300 tgaaaaactg ctgtggcctt ttatgacctg tatataatgt agaataaaaa taataaaata 3360 cttgatagct ttttctaagt gaccaatgta ctaactgaga ataatggtgt gttgtcattt 3420 gtgctttttc agggtgtttt tttggtttga tatcttgaaa tatgattaaa acattggctt 3480 cctaaaggca gtttccacca gtttgccaaa ggatcattgt gtcagcagca aatcagctga 3540 actttatttc caaaggcaaa atcctttctg attattttag taacatagta cttttatgat 3600 gttgcaaata aatgaagggc ccacagccca agaatgaatt accactgtgg ttcaacttag 3660 gttatttttg tgagctgaaa tgatcatatc tcagttgaaa actggctaaa atttagggcc 3720 ttaaattaac aggtatacat tttatttccc tataaatttt tgcttttaca atttctaggc 3780 cactgcacct ggccctaget tttgatactg tcatttccct ttgggcttga gactgttcta 3840 gtcaatcctg gtctcattgt ttgcctgaca ggtaccatga tttaa 3885

<210> 75

<211> 2271

<212> DNA

<213> Homo sapien

<400> 75

aggatgatag atatataggc gaatggkctc tagatcatgc tcgagcggcg cagtgtgatg 60 gatgcgtggt cgcggccgta cagcgtggag tgggatggct ctcttccctc agccacgccg 120 cttgtgagga cagaggtggg ggagtgggaa gtgggaagtc accagagaac aggagaggga 180 tttgagggcg cgaccccagc gctctccacg gaccagccag agggactgga gccaggtgtg 240 catgggttca aggccctggc cctgcccagc ctctgtcttg ggagctcagc cccagggttc 300 ggtcgtcagc agtttcccaa gaacaagatg tgatggcatc tgctgctgaa accctgatga 360 ggaccaggec ccctgcaccg ctgtcagcct gaggaattaa agctttggtg ctgggaagag 420 cattattcct ctgaggagcc gctgtgcttc cttctgaagt gagggccgtg ccccgggtcc 480

catttetect	ttcacttgag	tcgggaagca	cagcaacttt	aaggctcgcg	cccagcaaca	540
tggctcccct	cgcatctgca	tetecetect	gctctggtgt	tgccgctgca	ccctgtcctc	600
ggaggacagc	agaggtttgg	acggagactc	agggagggag	ggaaggaggc	aaggacgcct	660
gtggaaacat	ctttcaggca	gctctagggt	ctgggggcca	ggatgcctgg	gtctcccaag	720
gcctgtctgc	tgtctctgcc	accctcagcg	gctgccagaa	gcagcgtgtg	ggggaggcat	780
gtgctgcagc	acacctgcgg	ccgagaccag	cactcagagg	teggeteece	tgacaggaac	840
cgtgtagggt	gcagaaggct	gagacctgtg	gacactgcgt	gttttatggc	agcttgcttg	9,00
ctggggctca	tggccacagt	ggagaggggc	cgtgggtcag	ggcagcccgg	tgtgcagtcc	960
agtgccgggc	aggagtcttg	caggggctca	tgaccacagt	ggagaggggc	tgtgggtcag	1020
gggcagcctg	gcgtgcagtc	cagtgccggg	caggagtete	acaggggctc	gtggccacag	1080
tggagagggg	ctgtgggtca	gggggcagcc	cggcatgcag	tccagtgccg	ggcaggagtc	1140
tcgcagaatg	cagcctgacg	cctccacgtg	gctcccccgg	cccctacagg	ctccctcagc	1200
tgcagagctg	ggtcccatcc	gacgctgtcg	ctgggcagcg	agaggcagag	gcaggttccc	1260
cgagggaagc	atgggcccct	tctcccggcc	acggttgccc	cagcaggagt	tcatctttgc	1320
agccccagag	ccagggtgat	gtgggcacag	gtgtcaagtc	agggtggtcg	gtagccttgc	1380
gcccgcagga	gagatatggc	ctgaagcctg	ctgcacgtgc	gtgccacacg	cgtgtggggc	1440
cacctctgca	catcctgagg	tgaccctttt	ggggggtcg	tgatggtcag	tgcacgtgtg	1500
ccggcagggc	tggtcagggt	tcatcgcctg	cccaggagcc	tgagcctgag	gcagggaggt	1560
gctggtgacc	gttcccccaa	ggtggctcac	ccacagcacc	gggaatggac	caggtcgtcc	1620
ctgcccctca	gtaagcctgg	ggactggcag	accgtctctt	ttctggggac	acgtatccag	1680
ccacacatgg	gctgaccccc	tcccagtctc	tgcacccgac	acagtttgat	cccttctcag	1740
gccaatcctg	aggctcaggg	ctggcacact	gtctctatcc	caaggcaagc	acaggtgggc	1800
acactgccct	tgtccttggt	ccactgtggg	actggtcctg	tctgtctcca	gcgcccagca	1860
tggcctccac	acacctctgc	ctccagggct	ggctgggcct	gccctcagag	tccctgccac	1920
gccagccgtt	ggctgcaggc	atatcacaga	taggggatgc	tgcccagggc	tccgagtaga	1980
ccaaaagatt	cctgcccaca	gcccaggaag	agcaggcagg	caacggcgat	tccccgggaa	2040
gggaagggcc	ccggagtggg	gtgctcagaa	ccctgggcca	ctgtgctgtt	aaccaccacc	2100
tcccggcaat	ggctggcctc	agcgaggccc	cagggcctcc	ccgcagcctc	gcagtgtgca	2160
tgtccctggc	cctctcccat	caccaggctg	tggtgggtgt	gtggggaggc	tgtggtacac	2220
aacgcaggta	aaataatatg	agaacatgca	cccagcacca	ggggactcag	a	2271

101

<210> 76 <211> 2186 <212> DNA <213> Homo sapien

<400> 76 aggatgatag atatataggc gaatggkete tagateatge tegageggeg cagtgtgatg 60 gatgcgtggt cgcggccgcg gccgcccggg caggtcgcga gggcgcgacc ccagcgctct 120 ccacggacca gccagaggga ctggagccag gtgtgcatgg gttcaaggcc ctggccctgc 180 ccagcetetg tettgggage teageeceag ggtteggteg teageagttt cecaagaaca 240 agatgtgatg gcatctgctg ctgaaaccct gatgaggacc aggccccctg caccgctgtc 300 agcctgagga attaaagctt tggtgctggg aagagcatta ttcctctgag gagccgctgt 360 getteettet gaagtgaggg cegtgeeeeg ggteeeattt eteettteae ttgagteggg 420 aagcacagca actttaaggc tegegeecag caacatgget eccetegeat etgeatetee 480 ctcctgctct ggtgttgccg ctgcaccctg tcctcggagg acagcagagg tttggacgga 540 gactcaggga gggagggaag gaggcaagga cgcctgtgga aacatctttc aggcagctct 600 agggtetggg ggecaggatg cetgggtete ceaaggeetg tetgetgtet etgecaeeet 660 cageggetge cagaageage gtgtggggga ggeatgtget geageaeace tgeggeegag 720 accagcactc agaggtcggc tcccctgaca ggaaccgtgt agggtgcaga aggctgagac 780 ctgtggacac tgcgtgtttt atggcagctt gcttgctggg gctcatggcc acagtggaga 840 ggggccgtgg gtcagggcag cccggtgtgc agtccagtgc cgggcaggag tcttgcaggg 900 gctcatgacc acagtggaga ggggctgtgg gtcaggggca gcctggcgtg cagtccagtg 960 ccgggcagga gtctcacagg ggctcgtggc cacagtggag aggggctgtg ggtcaggggg 1020 cageceggea tgeagteeag tgeegggeag gagtetegea gaatgeagee tgaegeetee 1080 acgtggctcc cccggcccct acaggctccc tcagctgcag agctgggtcc catccgacgc 1140 tgtcgctggg cagcgagagg cagaggcagg ttccccgagg gaagcatggg ccccttctcc 1200 eggecaeggt tgccccagca ggagttcate tttgcagece cagagecagg gtgatgtggg 1260 cacaggtgtc aagtcagggt ggtcggtagc cttgcgcccg caggagagat atggcctgaa 1320 gcctgctgca cgtgcgtgcc acacgcgtgt ggggccacct ctgcacatcc tgaggtgacc 1380 cttttggggg ggtcgtgatg gtcagtgcac gtgtgccggc agggctggtc agggttcatc 1440 gcctgcccag gagcctgagc ctgaggcagg gaggtgctgg tgaccgttcc cccaaggtgg 1500 ctcacccaca gcaccgggaa tggaccaggt cgtccctgcc cctcagtaag cctggggact 1560 ggcagaccgt ctcttttctg gggacacgta tccagccaca catgggctga cccctccca 1620 gtctctgcac ccgacacagt ttgatccctt ctcaggccaa tcctgaggct cagggctggc 1680

102

acactgtctc tatcccaa	g caagcacagg	tgggcacact	gcccttgtcc	ttggtccact	1740
gtgggactgg tcctgtct	t ctccagcgcc	cagcatggcc	tccacacacc	tctgcctcca	1800
gggctggctg ggcctgcc	t cagagteect	gccacgccag	ccgttggctg	caggcatatc	1860
acagataggg gatgctgc	c agggctccga	gtagaccaaa	agattcctgc	ccacagccca	1920
ggaagagcag gcaggcaa	g gcgattcccc	gggaagggaa	gggccccgga	gtggggtgct	1980
cagaaccctg ggccactg	g ctgttaacca	ccacctcccg	gcaatggctg	gcctcagcga	2040
ggccccaggg cctccccg	a gcctcgcagt	gtgcatgtcc	ctggccctct	cccatcacca	2100
ggctgtggtg ggtgtgtg	g gaggetgtgg	tacacaacgc	aggtaaaata	atatgagaac	2160
atgcacccag caccaggg	ga ctcaga				2186
<210> 77 <211> 1258 <212> DNA <213> Homo sapien <400> 77					
tgatggatcg gccgcccg	g caggtcaaag	cggcaacaag	tgatctggaa	cactatgaca	60
agactcgtca tgaagaat	t aaaaaatatg	aaatgatgaa	ggaacatgaa	aggagagaat	120
atttaaaaac attgaatg	a gaaaagagaa	aagaagaaga	gtctaaattt	gaagaaatga	180
agaaaaagca tgaaaatc	ıc cctaaagtta	atcacccagg	aagcaaagat	caactaaaag	240
aggtatggga agagactg	it ggattggato	ctaatgactt	tgaccccaag	acatttttca	300
aattacatga tgtcaata	rt gatggattco	tggatgaaca	agaattagaa	gccctattta	360
ctaaagagtt ggagaaag	a tatgacccta	aaaatgaaga	ggatgatatg	gtagaaatgg	420
aagaagaaag gcttagaa	g agggaacatg	taatgaatga	ggttgatact	aacaaagaca	480
gattggtgac tctggagg	g tttttgaaag	ccacagaaaa	aaaagaattc	ttggagccag	540
atagctggga gacattag	it cagcaacagt	tcttcacaga	ggaagaacta	aaagaatatg	600
aaaatattat tgctttac	a gaaaatgaac	ttaagaagaa	ggcagatgag	cttcagaaac	660
aaaaagaaga gctacaac	nt cagcatgato	aactggaggc	tcagaagctg	gaatatcatc	720
aggtcataca gcagatgg	a caaaaaaaat	tacaacaagg	aattcctcca	tcagggccag	780
ctggagaatt gaagtttg			-		840
aagctgttaa ctcaacat					900
aaatatttta aaagcata					960
ttgggacaca gatattaa	g gattgaagtt	tatcagaacc	aggaagaaaa	caaactcact	1020

gtctgctctc tgctctcaca ttcacacggc tcttttattt attttttgt tctcctttaa 1080

103

tgatttaatt aagtggcttt atgccataat ttagtgaaac tattaggaac tatttaagtg 1140 agaaaactct gcctcttgct tttaaattag attgctctca cttactcgta aacataggta 1200 ttcttttatg ggtgcttatc attccttctt tcaataaatg tctgtttgat attaacaa 1258 <210> 78 <211> 1597 <212> DNA <213> Homo sapien <400> 78 gaagaggtg ataaaggaaa ggagaaggcc attcttactg acctgatagt ggaagaaaaa 60 tgaggtggag gaccatcctg ctacagtatt gctttctctt gattacatgt ttacttactg 120 ctcttgaagc tgtgcctatt gacatagaca agacaaaagt acaaaatatt caccctgtgg 180 aaagtgcgaa gatagaacca ccagatactg gactttatta tgatgaatat ctcaagcaag 240 tgattgatgt gctggaaaca gataaacact tcagagaaaa gctccagaaa gcagacatag 300 aggaaataaa gagtgggagg ctaagcaaag aactggattt agtaagtcac catgtgagga 360 caaaacttga tgaactgaaa aggcaagaag taggaaggtt aagaatgtta attaaagcta 420 agttggattc ccttcaagat ataggcatgg accaccaagc tcttctaaaa caatttgatc 480 acctaaacca cctgaatcct gacaagtttg aatccacaga tttagatatg ctaatcaaag 540 cggcaacaag tgatctggaa cactatgaca agactcgtca tgaagaattt aaaaaatatg 600 aaatgatgaa ggaacatgaa aggagagaat atttaaaaac attgaatgaa gaaaagagaa 660 aagaagaaga gtctaaattt gaagaaatga agaaaaagca tgaaaatcac cctaaagtta 720 atcacccagg aagcaaagat caactaaaag aggtatggga agagactgat ggattggatc 780 ctaatgactt tgaccccaag acatttttca aattacatga tgtcaatagt gatggattcc 840 tggatgaaca agaattagaa gccctattta ctaaagagtt ggagaaagta tatgacccta 900 aaaatgaaga ggatgatatg gtagaaatgg aagaagaaag gcttagaatg agggaacatg 960 taatgaatga ggttgatact aacaaagaca gattggtgac tctggaggag tttttgaaag 1020 ccacagaaaa aaaagaattc ttggagccag atagctggga ggtcatacag cagatggaac 1080 aaaaaaaatt acaacaagga attcctccat cagggccagc tggagaattg aagtttgagc 1140 cacacattta aagtetgaag tecaceagaa ettggaagaa agetgttaae teaacateta 1200 tttcatcttt ttagctccct tcctttttct ctgctcaata aatattttaa aagcatattt 1260 gaaataaagg gagatacttt ttaaatgaaa acactttttt tqqqacacag atattaaaqq 1320 attgaagttt atcagaacca ggaagaaaac aaactcactg tctgctctct gctctcacat 1380 tcacacggct cttttattta tttttttgtt ctcctttaat gatttaatta agtggcttta 1440

tgccataatt tagtgaaact	attaggaact	atttaagtga	gaaaactctg	cctcttgctt	1500
ttaaattaga ttgctctcac	ttactcgtaa	acataggtat	tcttttatgg	gtgcttatca	1560
ttccttcttt caataaatgt	ctgtttgata	ttaacaa			1597
<210> 79 <211> 1959 <212> DNA <213> Homo sapien					
<400> 79 ggggcagagc ggagcggtgg	gccgggggct	ggaggacagg	tttgtgcgct	ggacgcaagc	60
accaggcgca gcctcgctcg					120
gaaaaaacat tgagctagga	gccaagaccc	atctcttcac	tattttggta	ttgtgcaagt	180
catcttacct ctctggatct	cagttgtctc	atctgtaaaa	aggagataaa	aattatttac	240
ctgcctgaac atgaggtgga	ggaccatcct	gctacagtat	tgctttctct	tgattacatg	300
tttacttact gctcttgaag	ctgtgcctat	tgacatagac	aagacaaaag	tacaaaatat	360
tcaccctgtg gaaagtgcga	agatagaacc	accagatact	ggactttatt	atgatgaata	420
tctcaagcaa gtgattgatg	tgctggaaac	agataaacac	ttcagagaaa	agctccagaa	480
agcagacata gaggaaataa	agagtgggag	gctaagcaaa	gaactggatt	tagtaagtca	540
ccatgtgagg acaaaacttg	atgaactgaa	aaggcaagaa	gtaggaaggt	taagaatgtt	600
aattaaagct aagttggatt	cccttcaaga	tataggcatg	gaccaccaag	ctcttctaaa	660
acaatttgat cacctaaacc	acctgaatcc	tgacaagttt	gaatccacag	atttagatat	720
gctaatcaaa gcggcaacaa	gtgatctgga	acactatgac	aagactcgtc	atgaagaatt	780
taaaaaatat gaaatgatga	aggaacatga	aaggagagaa	tatttaaaaa	cattgaatga	840
agaaaagaga aaagaagaag	agtctaaatt	tgaagaaatg	aagaaaaagc	atgaaaatca	900
ccctaaagtt aatcacccag	gaagcaaaga	tcaactaaaa	gaggtatggg	aagagactga	960
tggattggat cctaatgact	ttgaccccaa	gacattttc	aaattacatg	atgtcaatag	1020
tgatggattc ctggatgaac	aagaattaga	agccctattt	actaaagagt	tggagaaagt	1080
atatgaccct aaaaatgaag	aggatgatat	ggtagaaatg	gaagaagaaa	ggcttagaat	1140
gagggaacat gtaatgaatg	aggttgatac	taacaaagac	agattggtga	ctctggagga	1200
gtttttgaaa gccacagaaa	aaaaagaatt	cttggagcca	gatagctggg	agacattaga	1260
tcagcaacag ttcttcacag	aggaagaact	aaaagaatat	gaaaatatta	ttgctttaca	1320
agaaaatgaa cttaagaaga	aggcagatga	gcttcagaaa	caaaaagaag	agctacaacg	1380
tcagcatgat caactggagg	ctcagaagct	ggaatatcat	caggtcatac	agcagatgga	1440

105

acaaaaaaa	ttacaacaag	gaattcctcc	atcagggcca	gctggagaat	tgaagtttga	1500
gccacacatt	taaagtctga	agtccaccag	aacttggaag	aaagctgtta	actcaacatc	1560
tatttcatct	ttttagctcc	cttccttttt	ctctgctcaa	taaatatttt	aaaagcatat	1620
ttgaaataaa	gggagatact	ttttaaatga	aaacactttt	tttgggacac	agatattaaa	1680
ggattgaagt	ttatcagaac	caggaagaaa	acaaactcac	tgtctgctct	ctgctctcac	1740
attcacacgg	ctcttttatt	tattttttg	ttctccttta	atgatttaat	taagtggctt	1800
tatgccataa	tttagtgaaa	ctattaggaa	ctatttaagt	gagaaaactc	tgcctcttgc	1860
ttttaaatta	gattgctctc	acttactcgt	aaacataggt	attcttttat	gggtgcttat	1920
cattccttct	ttcaataaat	gtctgtttga	tattaacaa			1959

<210> 80

<211> 1625

<212> DNA

<213> Homo sapien

<400> 80

aaaaagcaaa gagtaccaga ctcacaagta tggttatgag agctacatga tatagtatat 60 agcaaaggaa tttattagtt taaaagtact atggaaatgt taattttgga aatgtgaggt 120 180 aatatttata aggcacttag aacaatgcta gccacatagt gtttgttaaa tagattaaaa 240 cagtcctagt aatatcgtta tctaggaata cacagttcat gttattgcac caaagctact tctgaaatga ctaaagatag ccacttggtt caatatacct gagaaaatag agtgtaagtt 300 360 ttattaaaaa tgttagtctg taatgcaaac ttcagtcact tgggaaatcc ctttccccac aaacagttta gtagtgaagt tgcactctat ggacaaaatt acctactatc acaaaataaa 420 aaagtgtata ttcagcgctc tgagggccag aaatactcgg agatcaatta aactagatgg 480 540 aaaaggagaa cccaaagggg cgaagagagc gaagccagtg aagtacactg cagcaaagct gcatgagaaa ggtgtcctgc tagatataga tgatcttcaa acaaaccagt ttaagaatgt 600 tacatttgat atcatagcta ctgaagatgt aggcattttc gatgtaagat caaaattcct 660 720 tggtgttgag atggaaaagg tgcaactcaa tattcaggat ttacttcaga tgcaatatga aggagtagct gtaatgaaaa tgtttgataa ggttaaagtg aatgtaaacc ttctcatata 780 cctgctgaac aagaagttct atggaaagtg aagtgcctac agaaatttct tggattctgt 840 900 atcatctgga ttaggaaatg aatttgttta atatttttgt ttttaaacat gattgaaatc actgcttata aatgtgtgat tttttttaaa cgaccaaaac tgttctgaag aatgtaccca 960 ggtgcctttt tgctaatttg atactataat agaatgagac ataaaatgaa ttaatggaaa 1020 1080 catatccaca ctgtactgtg atataggtac tctgatttaa aactttggac atcctgtgat

PCT/US2003/038815 WO 2004/053077

ctgttttaaa	gttggggggt	gggaaattta	gctgactagg	gacaaacatg	taaacctatt	1140
ttcctatgaa	aaaaatttta	aatgtcccac	ttgaataacg	taattcttca	tagtttttt	1200
aatctatgga	taaatggaaa	cctaattatt	tgtaatgaat	tatttagaca	gttctaagcc	1260
ctgtcttctg	ggagttatca	attttaaaga	gaacttttgt	gcaattcaaa	tgaagttttt	1320
ataagtaatt	gaaaatgaca	acacaataac	actttctgta	taaaagtata	tattttatgt	1380
gatttattcc	tactaaatga	aagtgcacta	ctgcctcatg	taaagactct	tgcacgcaga	1440
gcctttaagt	gactaaggaa	caacatagat	agtgagcata	gtccccacct	ccacccctca	1500
caatttattt	gaatacttca	attgtgcctc	tcaattttt	gtaatgctaa	aaaatcagta	1560
tctagatggt	ttttaaatgt	attctctgga	aattgtttta	tgtaaaataa	atgttactta	1620
attcc						1625
	o sapien					
<400> 81 gcaaagcagc	gcggaagcag	gggggggcga	cgagcgagaa	attaacacgt	atgggcgatg	60
ggccctaatg	caatgcgagc	ggcgcagtgt	gatggatgtc	cgcggcgagg	tacttctgag	120
ctgccttaat	gcaaggtcat	ttatatttgt	taagaggaaa	taatcaagat	cactcatatc	180
ccaactgaat	ctgaggtttt	ataaatccct	caaacgattg	ctgagagcct	gattgtggaa	240
agaagtgaga	tgcaccttat	tttcaagaag	tcctgggaag	cgctctccta	gcacgtccat	300
ttccaggagg	agaagcaagc	agatgagagg	ttttccattt	tgtcatccaa	ggtagctgtg	360
cacttgcctt	gttgctgaag	ttccaataat	gtgaaaacca	aagtagaggt	ttttttcttc	420
ttctttttgt	tttctattaa	tttcacttat	accaaagtgt	ttgaaagtat	gaaatgtgtt	480
gcttctgagt	tatataaggc	tacttcatga	caagactgct	ttgtaatatt	tcactttgtt	540
ttactacaaa	ttcagatcac	tttgttttac	tataaattca	gattatccaa	atattttcct	600
aatactatgt	gggaatgctg	attttcttt	gttacgtagt	ggaaacattt	tgcattgttt	660
acatagttct	catggaacat	ggaaattttt	gaaagtgata	tatgatacac	attttttgtg	720
tatgtattct	aattagtgtg	aataaagcag	taacattaat	gcattttta	ag	772

<210> 82 <211> 3198 <212> DNA <213> Homo sapien

<400> 82

ggcactggcc	ttccatggca	cagcacccct	gcccaactgg	cgctggctgg	tctacgacaa	60
gctcagcccc	atccccaaca	acaacggctt	catcaaccag	gacttcgtgg	tgtggatgcg	120
catggcagcg	ctgcccacgt	tccgcaagct	gttccgcaag	ctgtacgggc	acatccgcca	180
gggcaactac	tcagctgggc	tgccgcggtg	tgtctactgt	gtcaacatca	cctacaacta	240
cctggtaaga	agcgcaattc	cacactctac	ataaccatgt	tactcattgt	tccagtcatc	300
gtcgcaggtg	caatcatagt	actcctgctt	tacctaaaaa	ggctcaagat	tattatattc	360
cctccaattc	ctgatcctgg	caagattttt	aaagaaatgt	ttggagacca	gaatgatgat	420
actctgcact	ggaagaagta	cgacatctat	gagaagcaaa	ccaaggagga	aaccgactct	480
gtagtgctga	tagaaaacct	gaagaaagcc	tctcagtgat	ggagataatt	tatttttacc	540
ttcactgtga	ccttgagaag	attcttccca	ttctccattt	gttatctggg	aacttattaa	600
atggaaactg	aaactactgc	accatttaaa	aacaggcagc	tcataagagc	cacaggtctt	660
tatgttgagt	cgcgcaccga	aaaactaaaa	ataatgggcg	ctttggagaa	gagtgtggag	720
tcattctcat	tgaattataa	aagccagcag	gcttcaaact	aggggacaaa	gcaaaaagtg	780
atgatagtgg	tggagttaat	cttatcaaga	gttgtgacaa	cttcctgagg	gatctatact	840
tgctttgtgt	tctttgtgtc	aacatgaaca	aattttattt	gtaggggaac	tcatttgggg	900
tgcaaatgct	aatgtcaaac	ttgagtcaca	aagaacatgt	agaaaacaaa	atggataaaa	960
tctgatatgt	attgtttggg	atcctattga	accatgtttg	tggctattaa	aactctttta	1020
acagtctggg	ctgggtccgg	tggctcacgc	ctgtaatccc	agcaatttgg	gagtccgagg	1080
cgggcggatc	actcgaggtc	aggagttcca	gaccagcctg	accaaaatgg	tgaaacctcc	1140
tctctactaa	aactacaaaa	attaactggg	tgtggtggcg	cgtgcctgta	atcccagcta	1200
ctcgggaagc	tgaggcaggt	gaattgtttg	aacctgggag	gtggaggttg	cagtgagcag	1260
agatcacacc	actgcactct	agcctgggtg	acagagcaag	actctgtcta	aaaaacaaaa	1320
caaaacaaaa	caaaacaaaa	aaacctctta	atattctgga	gtcatcattc	ccttcgacag	1380
cattttcctc	tgctttgaaa	gccccagaaa	tcagtgttgg	ccatgatgac	aactacagaa	1440
aaaccagagg	cagcttcttt	gccaagacct	ttcaaagcca	ttttaggctg	ttaggggcag	1500
tggaggtaga	atgactcctt	gggtattaga	gtttcaacca	tgaagtctct	aacaatgtat	1560
tttcttcacc	tctgctactc	aagtagcatt	tactgtgtct	ttggtttgtg	ctaggccccc	1620
gggtgtgaag	cacagacccc	ttccaggggt	ttacagtcta	tttgagactc	ctcagttctt	1680
gccacttttt	tttttaatct	ccaccagtca	tttttcagac	cttttaactc	ctcaattcca	1740
acactgattt	ccccttttgc	attctccctc	cttcccttcc	ttgtagcctt	ttgactttca	1800
ttggaaatta	ggatgtaaat	ctgctcagga	gacctggagg	agcagaggat	aattagcatc	1860

108

tcaggttaag	tgtgagtaat	ctgagaaaca	atgactaatt	cttgcatatt	ttgtaacttc	1920
catgtgaggg	ttttcagcat	tgatatttgt	gcattttcta	aacagagatg	aggtggtatc	1980
ttcacgtaga	acattggtat	tcgcttgaga	aaaaaagaat	agttgaacct	atttctcttt	2040
ctttacaaga	tgggtccagg	attcctcttt	tctctgccat	aaatgattaa	ttaaatagct	2100
tttgtgtctt	acattggtag	ccagccagcc	aaggctctgt	ttatgctttt	ggggggcata	2160
tattgggttc	cattctcacc	tatccacaca	acatatccgt	atatatcccc	tctactctta	2220
cttcccccaa	atttaaagaa	gtatgggaaa	tgagaggcat	ttcccccacc	ccatttctct	2280
cctcacacac	agactcatat	tactggtagg	aacttgagaa	ctttatttcc	aagttgttca	2340
aacatttacc	aatcatatta	atacaatgat	gctatttgca	attcctgctc	ctaggggagg	2400
ggagataaga	aaccctcact	ctctacaggt	ttgggtacaa	gtggcaacct	gcttccatgg	2460
ccgtgtagaa	gcatggtgcc	ctggcttctc	tgaggaagct	ggggttcatg	acaatggcag	2520
atgtaaagtt	attettgaag	tcagattgag	gctgggagac	agccgtagta	gatgttctac	2580
tttgttctgc	tgttctctag	aaagaatatt	tggttttcct	gtataggaat	gagattaatt	2640
cctttccagg	tattttataa	ttctgggaag	caaaacccat	gcctccccct	agccattttt	2700
actgttatcc	tatttagatg	gccatgaaga	ggatgctgtg	aaattcccaa	caaacattga	2760
tgctgacagt	catgcagtct	gggagtgggg	aagtgatctt	ttgttcccat	cctcttcttt	2820
tagcagtaaa	atagctgagg	gaaaagggag	ggaaaaggaa	gttatgggaa	tacctgtggt	2880
ggttgtgatc	cctaggtctt	gggagctctt	ggaggtgtct	gtatcagtgg	atttcccatc	2940
ccctgtggga	aattagtagg	ctcatttact	gttttaggtc	tagcctatgt	ggatttttc	3000
ctaacatacc	taagcaaacc	cagtgtcagg	atggtaattc	ttattctttc	gttcagttaa	3060
gtttttccct	tcatctgggc	actgaaggga	tatgtgaaac	aatgttaaca	tttttggtag	3120
tcttcaacca	gggattgttt	ctgtttaact	tcttatagga	aagcttgagt	aaaataaata	3180
ttgtcttttt	gtatgtca					3198
<210> 83 <211> 5193 <212> DNA <213> Homo						
	gaattggcac	gaggagcgcg	acacatcctg	gagctggcgg	gcgccgcagc	60
aaatgggacc	aaccagctcc	agccccactt	ctcttcctcc	cgccagcggc	cccaggtggg	120
gaggtcacca	gcagtggggg	aagtcctggg	ggcaccacag	ctgctccttc	aggagccttg	180

gatgctgctg ctgctgtggc tgccaagatt aatgccatgc tcatggcaaa agggaagctg

aaaccaactc	agaatgcttc	tgagaagctt	caggctcctg	gcaaaggcct	aactagcaat	300
aaaagcaagg	atgacctggt	ggtagctgaa	gtagaaatta	atgatgtgcc	tctcacatgt	360
aggaacttgc	tgactcgagg	acagactcaa	gacgagatca	gccgacttag	tggggctgca	420
gtatcaactc	gagggaggtt	catgacaact	gaggaaaaag	ccaaagtggg	accaggggat	480
cgtccattat	atcttcatgt	tcagggccag	acacgggaat	tagtggacag	agctgtaaac	540
cggatcaaag	aaattatcac	caatggagtg	gttcaccagc	cagcacccat	cgctcagttg	600
tctccagctg	ttagccagaa	gcctcccttc	cagtcaggga	tgcattatgt	tcaagataaa	660
ttatttgtgg	gtctagaaca	tgctgtaccc	acttttaatg	tcaaggagaa	ggtggaaggt	720
ccaggetget	cctatttgca	gcacattcag	attgaaacag	gtgccaaagt	cttcctgcgg	780
ggcaaaggtt	caggctgcat	tgagccagca	tctggccgag	aagcttttga	acctatgtat	840
atttacatca	gtcaccccaa	accagaaggc	ctggctgctg	ccaagaagct	ttgtgagaat	900
cttttgcaaa	cagttcatgc	tgaatactct	agatttgtga	atcagattaa	tactgctgta	960
cctttaccag	gctatacaca	accetetget	ataagtagtg	tccctcctca	accaccatat	1020
tatccatcca	atggctatca	gtctggttac	cctgttgttc	cccctcctca	gcagccagtt	1080
caacctccct	acggagtacc	aagcatagtg	ccaccagctg	tttcattagc	acctggagtc	1140
ttgccggcat	tacctactgg	agtcccacct	gtgccaacac	aatacccgat	aacacaagtg	1200
cagcctccag	ctagcactgg	acagagtccg	atgggtggtc	cttttattcc	tgctgctcct	1260
gtcaaaactg	ccttgcctgc	tggcccccag	ccccagcccc	agccccagcc	cccactccca	1320
agtcagcccc	aggcacagaa	gagacgattc	acagaggagc	taccagatga	acgggaatct	1380
ggactgcttg	gataccaggt	taaataaaat	accctgtttt	cctatcttca	ccttattctt	1440
ctactatatt	ctccctttaa	aaaagataaa	ttcacatcat	tctcccagta	ctaggatttc	1500
tgctttctgg	aattcatttt	ggttaggttt	tttatcctat	tcaacagact	cttgaaagcc	1560
tctgagagtt	cttactttct	tatacatctc	actcaaagct	cttgatctac	cagtatgtgg	1620
tttgtattta	aaaccttggc	tttcagtggt	gctctctctt	ttaccctcca	cctaaaaaag	1680
agagtgatat	ctccctccag	tctccccacc	cctcaagact	gctagaaaag	gagtgattct	1740
gtacatgtaa	ttgtaaagtt	agccactaaa	gttaaaaaga	ttcttaattt	gtagttttgg	1800
tgcaatttta	tcagaagtac	ctttccattt	tgccagaatc	cttgaatcat	tctttaaacc	1860
aaagcatttt	tttatagttt	ctagctaggt	ttatagaaac	tagtggagct	atgggcagtc	1920
agttaaaaac	aggccataga	tagcataatg	aattataaca	cccctgtcca	agtcctatag	1980
agaaaaaaaa	aaatccctac	ttttgactac	agttacacag	cagatcccaa	agagetttgt	2040

agtagtttaa	cgtactacaa	cttatcagaa	agatgaggca	cttgacagtt	acattaagga	2100
gctaaagtca	atacggcagt	tgtagatttg	ctaatgccac	tgtattttc	tgctcatagc	2160
atggacccat	tcatatgact	aatttaggta	caggettete	cagtcagaat	gagattgaag	2220
gtgcaggatc	gaagccagca	agttcctcag	gcaaagagag	agagaggac	aggcagttga	2280
tgcctccacc	agcctttcca	gtgactggaa	taaaaacaga	gtccgatgaa	aggaatgggt	2340
ctgggacctt	aacagggagc	catggtgagt	gtgatatagc	tgggggaaca	ggggagtggc	2400
taagactggt	ctaaagctat	tagttttctc	agccgggcgc	agtggctcac	gcctgtaatc	2460
ccagcacttt	gggaggccga	ggtgggcaga	tcacctaagg	tcaggagttc	aagaccagct	2520
tggccaacat	agtgaaatcc	catctctact	aaaaatacaa	aaactagcgg	gcatggtggt	2580
gggcgcctgt	aattccagct	actcaggggg	ttgaggcagg	agaatcgctt	caacctggga	2640
ggcagaggtt	gcagtgagcc	aagatcagac	cactgccctc	cagcctgggc	aatagagcaa	2700
gactccatct	cataaataaa	taaatacata	aataaagcta	ttaattttct	aacctgatgt	2760
tcattcaggt	gtttaatcca	acctctataa	tctgttggcc	agtgaaaata	cttttgggct	2820
gggcacggtg	gctcacgcct	gtaatcccag	cactttggga	ggccaaggtg	ggcggataac	2880
ctgaggtcag	gagtttgaga	ccagcgtggc	taacacggtg	aaaccccgtc	tctactaaaa	2940
atagaaaaat	taagctgggc	atggtggtgc	atgcctgtaa	ttccagcggc	ttggaaggct	3000
gaggcaggag	aatcacttga	acttgggagg	tggaggttgc	agtgagccaa	gatcacacca	3060
ctgcattcca	gcctgggcac	tagagtgaga	ctctgtctca	aaaaaaaga	aagagaaaga	3120
gaaaatagtt	tctaaaaaat	tgtatacaga	caacctttta	tttccaacaa	acgtgtgccg	3180
agagagagag	agagaaaata	gttttaaaaa	aattgtatac	agacaacctt	ttgtttccaa	3240
ccaacgtgta	tctagaaaag	agttagtcga	cttattttat	acatagcatc	agtgaatagt	3300
aatgagtggt	aggtcatttc	aaaatcctgt	tgcctatatt	atgtgaatac	caggaggtca	3360
tctgatacgg	acttaataaa	ggttgatttt	gctttatatt	gggagctgag	ccacacctcc	3420
ccttataact	ctattggtca	gtaatggtca	gtttgtggct	gttaggaaaa	tgttgccttt	3480
tagcattcca	gaactctaaa	tcctgtagag	gtacatggga	tattttattc	tttgcctgta	3540
ctcataaaaa	tgaacagaag	aaaatacgtt	ttttcttt	cttaacttct	tttcttttaa	3600
ctctttaaaa	ggtgaaatat	cagccctcaa	gagactcact	tgctaacttt	ccttttttc	3660
tttttttc	tttttttgt	gtttctttt	tctttctctg	ttttcttaca	tggttctggt	3720
ggattcacat	ttgctgatgc	tggtgctgtt	tttcgtgtga	tcttcaacgt	ttttgggtga	3780
ccattgaccc	tgtgacctca	aaatggtgtc	caactaacca	cttaaaatta	acatctttt	3840
tttaattaac	gaatttatgg	tattttttt	tttcccttgg	cggggatggg	gttggggttg	3900

ttttttctct attctagatt atccagccaa gaagatgaaa actacagaga agggatttgg	3960
cttggtggct tatgctgcag attcatctga tgaagaggag gaacatggag gtcataaaaa	4020
tgcaagtagt tttccacagg gctggagttt gggataccaa tatccttcat cacaaccacg	4080
agctaaacaa cagatgccat tctggatggc tccctaggaa acagtggaac agagttttga	4140
ccctcagtga ctcttcttag caataatgca tgcatttgat ttaacaagac tctggggcct	4200
gtgctgggaa ccatctggac ctttgcagaa gttagagatt cagtgccccc ctttcttaaa	4260
ggggttcctt aacaaccaca aaaatcctta tttctgcagt ggcatagaat ctgttaaaat	4320
ttaattagaa tcacaaattt atctcagaag ctttttaaca gttggtgaaa tgtgcttgtc	4380
caacaaagca teetaacagg gtegtteeca tacacatttg acetggteag cetttteeag	4440
gtgaatagcc ccagttctga cataaagaaa gttttatttg tattttacta ctgtttggtc	4500
aattttgata tataactggt tacaaacaga gccttactat ttattagtgg ggaaatgatt	4560
ttaagaccgt ccttttcagt atttaattct gacagatctg catccctgtt ttgttttgga	4620
ttatttctgt tttggaaaat gctgtctcat ttaaaactgt tggatatagc tggatcctgg	4680
ataggaaaat gaaattattt tttcattgtg ttttttaatt ggggtgatcc aaagctggca	4740
ccttcaggca cattggtctc atagccatta ctgtttttat tgcccttcta agatcctgtc	4800
ttcagctggg tcagagaaaa cttcttgact aaaactggtc agaactcatc acagaaatga	4860
aatacagtgg tetetetete ecagaactgg ttgeagetaa aacagagaga tetgaetget	4920
ggctatagga ttttggactt aatgactgaa attgcaaatt gtcctttttc ttggcattac	4980
agattttgcc aaaataactt tttgtatcaa atattgatgt gtgaaagtga aggagctagt	5040
ctgctgaacc aggaatagtt tgagatattg aactgtcatt tttgcacatt tgaatacttt	5100
gcaggctggc tttgtataaa cttatcctct ggtttcctat atgttgtaaa tatttagacc	5160
ataatttcat tataaataaa tctataaata ttc	5193
<210> 84 <211> 5410 <212> DNA <213> Homo sapien	
<400> 84 cacccagctt gccccattga tttggataga cgagaccaca tttgtttata acctattaga	6 0
caaccagcaa aaaggaattc tgttcttaaa tattgggtta tctcaataga ctggaaaata	60
atggtagtga atccataaga acagatttga tctgaactct gtgggccagt tgacttttaa	120
	180
aatcaagaag tttatttgtt ccccagctgt taaagcatgt tctgagacat tagctagcaa	240
aaacccttct aatgtatata gtcccttttg gttatttgga aacttgaaac attacaaatt	300

agatctggtg acccatttga	ctccttttt	ggttttgacc	: acattgagat	catccttttt	360
tgtttctctt tatagggatc	gtccattata	tcttcatgtt	cagggccaga	cacgggaatt	420
agtggacagt aagtaatgtt (tttggctcac	gtagcacttt	ttgtgaagag	g caaagtacag	480
ggctctgtat agcaagttgg (caaagtgtcc	ctgatggctg	ttctaaccct	tgttcatgaa	540
ctatacacga atttgtatgg g	gagtttagag	ggatggagag	ccacatattt	gggtaacgta	600
taaagcagat ttacggtgaa t	taattgaaca	ctggcctgcc	tgggcactag	tcagttcatt	660
ccattcagtt ttactgtctg t	gtttttcta	aggagctgta	aaccggatca	aagaaattat	720
caccaatgga gtggtaaaag o	etgccacagg	aacaagtcca	acttttaatg	gtgcaacagt	780
aactgtctat caccagccag c	acccatcgc	tcagttgtct	ccagctgtta	gccagaagcc	840
tecettecag teagggatge a	ttatgttca	agataaatta	tttgtgggtc	tagaacatgc	900
tgtacccact tttaatgtca a	ıggagaaggt	ggaaggtcca	ggctgctcct	atttgcagca	960
cattcagatt gaaacaggtg c	caaagtctt	cctgcggggc	aaaggttcag	gctgcattga	1020
gccagcatct ggccgagaag c	ttttgaacc	tatgtatatt	tacatcagtc	accccaaacc	1080
agaaggcctg gctgctgcca a	gaagctttg	tgagaatctt	ttgcaaacag	ttcatgctga	1140
atactctaga tttgtgaatc a	gattaatac	tgctgtacct	ttaccaggct	atacacaacc	1200
ctctgctata agtagtgtcc c	tcctcaacc	accatattat	ccatccaatg	gctatcagtc	1260
tggttaccct gttgttcccc c	tcctcagca	gccagttcaa	cctccctacg	gagtaccaag	1320
catagtgcca ccagctgttt ca	attagcacc	tggagtcttg	ccggcattac	ctactggagt	1380
cccacctgtg ccaacacaat a	cccgataac	acaagtgcag	cctccagcta	gcactggaca	1440
gagtccgatg ggtggtcctt ti	tattcctgc	tgctcctgtc	aaaactgcct	tgcctgctgg	1500
cccccagccc cagccccagc co	ccagccccc	actcccaagt	cagccccagg	cacagaagag	1560
acgattcaca gaggagctac ca	agatgaacg (ggaatctgga	ctgcttggat	accaggttaa	1620
ataaaatacc ctgttttcct at	cttcacct (tattcttcta	ctatattctc	cctttaaaaa	1680
agataaattc acatcattct co	cagtacta (ggatttctgc	tttctggaat	tcattttggt	1740
taggtttttt atcctattca ac	agactctt o	gaaagcetet ;	gagagttett	actttcttat	1800
acateteact caaagetett ga	tctaccag t	tatgtggttt (gtatttaaaa	ccttggcttt	1860
cagtggtgct ctctcttta co	ctccacct a	aaaaagaga g	gtgatatctc	cctccagtct	1920
ccccacccct caagactgct ag	gaaaaggag t	gattctgta d	catgtaattg	taaagttagc	1980
cactaaagtt aaaaagattc tt	aatttgta g	gttttggtgc a	aattttatca (gaagtacctt	2040
tccattttgc cagaatcctt ga	atcattct t	taaaccaaa g	catttttt a	atagtttcta	2100

gctaggttta tagaaactag tggagctatg ggcagtcagt taaaaacagg ccatagatag 2160 cataatgaat tataacaccc ctgtccaagt cctatagaga aaaaaaaaa tccctacttt 2220 tgactacagt tacacagcag atcccaaaga gctttgtagt agtttaacgt actacaactt 2280 atcagaaaga tgaggcactt gacagttaca ttaaggagct aaagtcaata cggcagttgt 2340 agatttgcta atgccactgt atttttctgc tcatagcatg gacccattca tatgactaat 2400 ttaggtacag gcttctccag tcagaatgag attgaaggtg caggatcgaa gccagcaagt 2460 tecteaggea aagagagaga gagggacagg cagttgatge etceaceage etttecagtg 2520 actggaataa aaacagagtc cgatgaaagg aatgggtctg ggaccttaac agggagccat 2580 ggtgagtgtg atatagctgg gggaacaggg gagtggctaa gactggtcta aagctattag 2640 ttttctcagc cgggcgcagt ggctcacgcc tgtaatccca gcactttggg aggccgaggt 2700. gggcagatca cctaaggtca ggagttcaag accagcttgg ccaacatagt gaaatcccat 2760 ctctactaaa aatacaaaaa ctagcgggca tggtggtggg cgcctgtaat tccagctact 2820 cagggggttg aggcaggaga atcgcttcaa cctgggaggc agaggttgca gtgagccaag 2880 atcagaccac tgccctccag cctgggcaat agagcaagac tccatctcat aaataaataa 2940 atacataaat aaagctatta attttctaac ctgatgttca ttcaggtgtt taatccaacc 3000 tctataatct gttggccagt gaaaatactt ttgggctggg cacggtggct cacgcctgta 3060 atcccagcac tttgggaggc caaggtgggc ggataacctg aggtcaggag tttgagacca 3120 gcgtggctaa cacggtgaaa ccccgtctct actaaaaata gaaaaattaa gctgggcatg 3180 gtggtgcatg cctgtaattc cagcggcttg gaaggctgag gcaggagaat cacttgaact 3240 tgggaggtgg aggttgcagt gagccaagat cacaccactg cattccagcc tgggcactag 3300 agtgagactc tgtctcaaaa aaaaagaaag agaaagagaa aatagtttct aaaaaattgt 3360 atacagacaa ccttttattt ccaacaaacg tgtgccgaga gagagagaga gaaaatagtt 3420 ttaaaaaaat tgtatacaga caacettttg tttccaacca acgtgtatct agaaaagagt 3480 tagtcgactt attttataca tagcatcagt gaatagtaat gagtggtagg tcatttcaaa 3540 atcctgttgc ctatattatg tgaataccag gaggtcatct gatacggact taataaaggt 3600 tgattttgct ttatattggg agctgagcca cacctccct tataactcta ttggtcagta 3660 atggtcagtt tgtggctgtt aggaaaatgt tgccttttag cattccagaa ctctaaatcc 3720 tgtagaggta catgggatat tttattcttt gcctgtactc ataaaaatga acagaagaaa 3780 atacgttttt ttctttctt aacttctttt cttttaactc tttaaaaggt gaaatatcag 3840 ccctcaagag actcacttgc taactttcct ttttttcttt tttttcttt tttttgtgtt 3900 tetttttet ttetetgttt tettacatgg ttetggtgga tteacatttg etgatgetgg 3960

tgctgttttt cgtgtgatct tcaacgtttt tgggtgacca ttgaccctgt gacctcaaaa 402	0 2
tggtgtccaa ctaaccactt aaaattaaca tcttttttt aattaacgaa tttatggtat 408	30
ttttttttt cccttggcgg ggatggggtt ggggttgttt tttctctatt ctagattatc 414	٥ ا
cagccaagaa gatgaaaact acagagaagg gatttggctt ggtggcttat gctgcagatt 420	0
catctgatga agaggaggaa catggaggtc ataaaaatgc aagtagtttt ccacagggct 426	0
ggagtttggg ataccaatat ccttcatcac aaccacgagc taaacaacag atgccattct 432	0
ggatggetee etaggaaaca gtggaacaga gttttgaeee teagtgaete ttettagcaa 438	0
taatgcatgc atttgattta acaagactct ggggcctgtg ctgggaacca tctggacctt 444	0
tgcagaagtt agagattcag tgccccctt tcttaaaggg gttccttaac aaccacaaaa 450	0
atcettattt etgeagtgge atagaatetg ttaaaattta attagaatea caaatttate 456	0
tcagaagett tttaacagtt ggtgaaatgt gettgteeaa caaageatee taacagggte 4620	0
gttcccatac acatttgacc tggtcagcct tttccaggtg aatagcccca gttctgacat 4680	0
aaagaaagtt ttatttgtat tttactactg tttggtcaat tttgatatat aactggttac 4740)
aaacagagcc ttactattta ttagtgggga aatgatttta agaccgtcct tttcagtatt 4800)
taattetgae agatetgeat eeetgttttg ttttggatta tttetgtttt ggaaaatget 4860)
gtctcattta aaactgttgg atatagctgg atcctggata ggaaaatgaa attatttttt 4920)
cattgtgttt tttaattggg gtgatccaaa gctggcacct tcaggcacat tggtctcata 4980)
gccattactg tttttattgc ccttctaaga tcctgtcttc agctgggtca gagaaaactt 5040)
cttgactaaa actggtcaga actcatcaca gaaatgaaat	ı
gaactggttg cagctaaaac agagagatct gactgctggc tataggattt tggacttaat 5160	
gactgaaatt gcaaattgtc ctttttcttg gcattacaga ttttgccaaa ataacttttt 5220	
gtatcaaata ttgatgtgtg aaagtgaagg agctagtctg ctgaaccagg aatagtttga 5280	
gatattgaac tgtcattttt gcacatttga atactttgca ggctggcttt gtataaactt 5340	
atcctctggt ttcctatatg ttgtaaatat ttagaccata atttcattat aaataaatct 5400	
ataaatattc 5410	
<210> 85	

<210> 85

<211> 5271

<212> DNA

<213> Homo sapien

<400> 85

ggcaaaaaa aatttaattt tggcagattg tgctatttag aatctttgaa gttttctctt 60 gttaagatgg attgcatttt acttttgact aaaatttcca gaattatgtg tggactcttg 120

atatetggta tgttaaggte etaeteeett acaataaaaa ttttaaatta agtaacaaaa	180
tctagataat ctttatttcc taaccatcat ctgttttggc actctaccac ctaggtacca	240
taactgaaca acctatatgc tctggttttc taactttttt actagttgtg ctaatatttt	300
tacttgttag tcaaaggaaa tgaagtcata atagttttcc ttctcttaca gagactttag	360
aagacagctt tecategaca etaggeeett tagaccagee tetgaaggga ateetagega	420
tgateetgag cetttgecag cacateggea ggeaettgga gagaggettt ateetegtgt	480
acaagcaatg caaccagtgt gtactgtgta cttagttacc tcttaactgg ctgtgttatt	540
tttttgcttt tgaattaaag atggtgttta aaaaaaattg tcagctactg gcaaaaccac	600
atgattgagg actcttttta gctctgcagt aagaaggaag ctcaggagag aataaggcag	660
tgtttactga agggtaactg tatagcttga atttattttt tcctccaccc accttatgtt	720
gggacactgt ctccattcta ccttccttgc atgctaaaga atttgctgtg cattatattt	780
attgtatctt catttgaaca aattattact acttttggag cagactttat ctgttagcaa	840
gctgtagttg gaacacatta atgctgatta gtattgcagg aagaatttta ttttgaatgt	900
tctatcaaga gtttttcttt atatgatatg aaacacaaat tagttatgtt ttttgtcttt	960
atgcataact gtatgtacac attttatagt gaaagaataa cagaaaacta ttatttcttc	1020
cagcaagtcc tcagccttaa acataggtat atttttctct accctacccc cttcttttt	1080
tctaccctaa ataaaagata tttctggctc tctgatgaag aaaaaaatat ggaaattgag	1140
tatatgtatg tttaactcag agatataaaa aaacctaaaa agaaaacttg tcatacaaat	1200
attataagta gccttaacaa gatgtggtac tgcatggact gtttattccc tgccaagttt	1260
ctctataatt gatcttccag tttcataaaa gaccttactg gttctgaaat tttgtatttg	1320
ttacccaagt ttcttatttt attttttttt taaataaaag attgtagatg taattagaca	1380
agaggtttta gagagtagtc aagtaacatt tgttcatcat ttacaggcat ttgcaagtaa	1440
aatcactggc atgttgttgg aattatcccc agctcagctg cttctccttc tagcaagtga	1500
ggattctctg agagcaagag tggatgaggc catggaactc attattgcac atggacggga	1560
aaatggagct gatagtatcc tggatcttgg attagtagac tcctcagaaa aggtacagca	1620
ggaaaaccga aagcgccatg gctctagtcg aagtgtagta gatatggatt tagatgatac	1680
agatgatggt gatgacaatg cccctttgtt ttaccaacct gggaaaagag gattttatac	1740
tccaaggcct ggcaagaaca cagaagcaag gttgaattgt ttcagaaaca ttggcaggat	1800
tcttggacta tgtctgttac agaatgaact atgtcctatc acattgaata gacatgtaat	1860
taaagtattg cttggtagaa aagtcaattg ggatgatttt gattattt	1920

gtatgagagt	ttgcggcaac	taatcctcgc	gtctcagagt	tcagatgctg	atgctgtttt	1980
ctcagcaatg	gatttggcat	ttgcaattga	cctgtgtaaa	gaagaaggtg	gaggacaggt	2040
tgaactcatt	cctaatggtg	taaatatacc	agtcactcca	cagaatgtat	atgagtatgt	2100
gcggaaatac	gcagaacaca	gaatgttggt	agttgcagaa	cagcccttac	atgcaatgag	2160
gaaaggtcta	ctagatgtgc	ttccaaaaaa	ttcattagaa	gatttaacgg	cagaagattt	2220
taggcttttg	gtaaatggct	gcggtgaagt	caatgtgcaa	atgctgatca	gttttacctc	2280
tttcaatgat	gaatcaggag	aaaatgctga	gaagcttctg	cagttcaagc	gttggttctg	2340
gtcaatagta	gagaagatga	gcatgacaga	acgacaagat	cttgtttact	tttggacatc	2400
aagcccatca	ctgccagcca	gtgaagaagg	attccagcct	atgccctcaa	tcacaataag	2460
accaccagat	gaccaacatc	ttcctactgc	aaatacttgc	atttctcgac	tttacgtccc	2520
actctattcc	tctaaacaga	ttctcaaaca	gaaattgtta	ctcgccatta	agaccaagaa	2580
ttttggtttt	gtgtagagta	taaaaagtgt	gtattgctgt	gtaatattac	tagcaaattt	2640
tgtagatttt	tttccatttg	tctataaaag	tttatggaag	ttaatgctgt	catacccccc	2700
tggtggtacc	ttaaagagat	aaaatgcaga	cattccttgc	tgagtttata	gcttaaaggc	2760
ctaaggagca	ctagcaacat	ttggctatat	tggtttgcta	gtcaccaact	tctgggtcta	2820
accccagcca	aagatgacag	cagaacaaca	taatttacac	tgtgatttat	ctttttgctg	2880
agggggaaaa	aatgtaaatg	ttctgaaaat	tcactgctgc	ctttgtggaa	actgtttcag	2940
caaaggttct	tgtatagagg	gaatagggaa	tttcaaaata	aaaaattaag	tatgttctgt	3000
gttttcattt	taacttttt	tatggtgttt	aatttgtggt	tggctgcaac	tgtgtatcat	3060
gtatatggaa	cttgtaaaaa	agttctcgac	attcagatct	taagagatga	aatcactttt	3120
acctataaaa	accactttta	ttgcggtttg	actgcattga	gctctaggat	attaaatgat	3180
atcactaata	ttttgcatgt	aatttgctca	tttgagtgag	ggcacttttt	ttgtacatat	3240
gatggggcca	atgcacaata	cttttatcac	aatcaacttt	ttctttgtat	ccctatttca	3300
atgagcagtc	agtctcaaga	ggttactgca	cttcagttct	aactagacat	ttgtactaag	3360
gtatttcagt	tatgtaaact	cagcctgggc	actttctgat	aactgtaaaa	tgttttataa	3420
gatcatgatt	attgaagata	cattttggaa	aattttaaat	gttcgtgagc	agcttaacta	3480
cttttgtatc	tagccttttt	taagtatctt	gttacattta	cttttttaaa	taaagaaatt	3540
acagaagaaa	tgtcaagtaa	tattgaagaa	acaatagttt	ttatttatgt	agttgtacat	3600
ttttaaacta	agggcaatac	actgacatgg	ttatgtgcat	aaaaattttg	acttaaagaa	3660
ctggaagttt	atatacacct	ggactataag	aaacagaaga	aaatcagtcc	acattttaca	3720
gttagcagag	aatcctaaat	ggcactggcc	tggccacctt	ttcattttac	aaatggggga	3780

agtgaagtgt gaccccttac	ttggcatagg	aagttaactt	acacctaata	actgacaggt	3840
ttttgttttg atgacctatt	aattatgtag	cctaggatta	atatcccaaa	attactctgg	3900
tttaagtagc tttattcagt	ggcataataa	cactgttttc	ttccttaagt	cttcaatgaa	3960
gtgacttaaa acagtcactt	tacatattaa	aaatgaggag	agcaattctc	tggaatctct	4020
cctttcagtt cctttgtagg	atttctggcc	ttgaggatag	tcttcatgtt	caaaggcact	4080
atgcttttat tatataactt	ccttcagaag	actgaaccac	atgatattct	cagccctgtt	4140
aacactaaaa atatttaaaa	ctgaatgata	gtagtgactc	attgtattac	ttaaaactta	4200
tataacacgc tgtattagat	gtgtgtaaat	tagccaaagg	ttattttaca	aagtgagaca	4260
ttggttttta tgtctaaatg	ctatttctga	ataaatgaaa	tagtaattag	atcaagagct	4320
gattagcatc aatgtgtttg	aaagatataa	aatttataca	tcaccttaac	ctctgtatgc	4380
acatgatggg attgataaaa	tattaaatga	gaacaaacta	gatatgatta	ggacatttga	4440
aaccctaatt gtgaatttat	tttaatagt	tactgaaatg	aaaatattta	aaataatgca	4500
caatgtctta agtcttccta	aatcaagatt	ttggttaaaa	aatacttcta	ataatagtaa	4560
aagatttttt ttttaagtaa	atcataaaac	ggttctaaat	gtaaaataaa	gacatgtaaa	4620
ataaagttct cttttggtct	tgtttagtgt	ttaaatctaa	caattgaaaa	caaatttagg	4680
aagagaagac caagaatgaa	ctttactgag	tgttttcaga	gtttgctact	actattttt	4740
tccctaaatc atctggatac	caagactatc	cagtaaaatg	gataactggg	gcagacttga	4800
gagggtattt taaaggaatg	atttcactat	ttagtagctg	ccccaaaca	acatccctcc	4860
cataaagata ctatttttac	attttaaagg	tagtcagcaa	ttcctatgtt	taaactcaag	4920
ttgagataat cccttgaggc	agtagtttcc	atgcttctgt	atgttgtaag	attcatttgt	4980
aaagtttgtt aatgcagatt	cttaagcatt	cctcatcctc	ttgcctcctt	tctgattcag	5040
taagtctttg gtggaggcca	ggaatcttca	tgcagatcat	cccaggtgat	tctgaaacac	5100
tgcccaaaga atatttcctt	tttatttaca	aatataaatg	tcccgctgaa	agctcctgag	5160
agccaaacct ttcctactta	gaactgctta	caatctatgg	aaaagtacat	ctattgataa	5220
actagtccta ggttggattc	ttcctactga	taaggggctg	gttggaagtg	c	5271

<210> 86

<211> 3159 <212> DNA

<213> Homo sapien

<400> 86

tgggttgacc gatgctgggc agctgagcgg accaatcggc cccctagact gagacgttgg 60 cgtttgaaat cagccaatgg caggtctaca ctggagcttc ctctccgcct ccttcgccta

gcctgcgagt	gttctgaggg	aagcaaggag	gcggcggcgg	ccgcagcgag	tggcgagtag	180
tggaaacgtt	gcttctgagg	ggagcccaag	gtagggaggc	gaggcgacgg	tgtgcgggag	240
cgggctctcc	agggacttcc	cgggtccgca	actggcaggg	ccgttcgatt	cgcaggggat	300
cccgtttcgt	ttctgttgtt	ttccctttat	ttttaggagt	gcccggggcg	acgggacccc	360
gggagagggg	aaagggaaca	gtctggggtc	cgggcatcgc	tgtgggccgg	gctgggttta	420
gggggacggc	ggtgcgggct	gggccggttt	gggcgcggcg	ggggccggat	gatggggcga	480
gtccggacct	tggcgggcga	gtgctcggcg	caggcgcaag	cgcagagtct	cctcgcggtc	540
gtcctctcgg	cccctccctc	tggggggacc	cccagtgcca	ggctgtcagt	gcgcagcccc	600
agcccgcggg	acccctgggg	actctgggcg	cctgttctgc	agatgaccgg	ttctaacgag	660
ttcaagctga	accagccacc	cgaggatggc	atctcctccg	tgaagttcag	ccccaacacc	720
tcccagttcc	tgcttgtctc	ctcctgggac	acgtccgtgc	gtctctacga	tgtgccggcc	780
aactccatgc	ggctcaagta	ccagcacacc	ggcgccgtcc	tggactgcgc	cttctacgat	840
ccaacgcatg	cctggagtgg	aggactagat	catcaattga	aaatgcatga	tttgaacact	900
gatcaagaaa	atcttgttgg	gacccatgat	gcccctatca	gatgtgttga	atactgtcca	960
gaagtgaatg	tgatggtcac	tggaagttgg	gatcagacag	ttaaactgtg	ggatcccaga	1020
actccttgta	atgctgggac	cttctctcag	cctgaaaagg	tatataccct	ctcagtgtct	1080
ggagaccggc	tgattgtggg	aacagcaggc	cgcagagtgt	tggtgtggga	cttacggaac	1140
atgggttacg	tgcagcagcg	cagggagtcc	agcctgaaat	accagactcg	ctgcatacga	1200
gcgtttccaa	acaagcaggg	ttatgtatta	agctctattg	aaggccgagt	ggcagttgag	1260
tatttggacc	caagccctga	ggtacagaag	aagaagtatg	ccttcaaatg	tcacagacta	1320
aaagaaaata	atattgagca	gatttaccca	gtcaatgcca	tttctttca	caatatccac	1380
aatacatttg	ccacaggtgg	ttctgatggc	tttgtaaata	tttgggatcc	atttaacaaa	1440
aagcgactgt	gccaattcca	tcggtacccc	acgagcatcg	catcacttgc	cttcagtaat	1500
gatgggacta	cgcttgcaat	agcgtcatca	tatatgtatg	aaatggatga	cacagaacat	1560
cctgaagatg	gtatcttcat	tcgccaagtg	acagatgcag	aaacaaaacc	caagtcacca	1620
tgtacttgac	aagatttcat	ttacttaagt	gccatgttga	tgataataaa	acaattcgta	1680
ctccccaatg	gtggatttat	tactattaaa	gaaaccaggg	aaaatattaa	tttaatatt	1740
ataacaacct	gaaaataatg	gaaaagaggt	ttttgaattt	tttttttaa	ataaacacct	1800
tcttaagtgc	atgagatggt	ttgatggttt	gctgcattaa	aggtatttgg	gcaaacaaaa	1860
ttggagggca	agtgactgca	gttttgagaa	tcagttttga	ccttgatgat	tttttgtttc	1920

cactgtggaa	ataaatgttt	gtaaataagt	gtaataaaaa	tccctttgca	ttctttctgg	1980
accttaaatg	gtagaggaaa	aggetegtga	gccatttgtt	tcttttgctg	gttatagttg	2040
ctaattctaa	agctgcttca	gactgcttca	tgaggaggtt	aatctacaat	taaacaatat	2100
ttcctcttgg	ccgtccatta	ttttctgaag	cagatggttc	atcatttcct	gggctgttaa	2160
acaaagcgag	gttaaggtta	gactcttggg	aatcagctag	ttttcaatct	tattagggtg	2220
cagaaggaaa	actaataaga	aaacctccta	atatcatttt	gtgactgtaa	acaattattt	2280
attagcaaac	aattgatccc	agaagggcaa	attgtttgag	tcagtaatga	gctgagaaaa	2340
gacagagcat	atctgtgtat	ttggaaaaat	aattgtaacg	taattgcagt	gcatttagac	2400
aggcatctat	ttggacctgt	ttctatctct	aaatgaattt	ttggaaacat	taatgaggtt	2460
tacatatttc	tctgacattt	atatagttct	tatgtccatt	tcagttgacc	agccgctggt	2520
gattaaagtt	aaaaagaaaa	aaattatagt	gagaatgaga	ttcatttcaa	tgtaatgcac	2580
taaagcagaa	cacgaactta	gcttggccta	ttctaggtag	ttccaaatag	tatttttgtt	2640
gtcaaacttt	aaaatttata	ttaatttgca	aatgtatgtc	tctgagtagg	acttggacct	2700
ttcctgagat	ttattttatc	cgtgatgtat	ttttttaat	tcttttgata	cagagaaggg	2760
tcttttttt	tttaagtatt	tcagtgaaaa	cttggtgtaa	gtctgaaccc	atcttttgaa	2820
atgtattttc	ttcattgcag	gtccacctaa	tcatcctgtg	aaagtggttt	ctctatggaa	2880
agctttgttt	gcttcctaca	aatacatgct	tattccttaa	gggatgtgtt	agagttactg	2940
tggatttctc	tgttttctgt	cttacaagaa	acttgtctat	gtaccttaat	actttgttta	3000
ggatgaggag	tetttgtgte	cctgtacagt	agtctgacgt	atttcccctt	ctgtccccta	3060
gtaagcccag	ttgctgtatc	tgaacagttt	gagctctttt	tgtaatatac	tctaaacctg	3120
ttatttctgt	gctaataaac	gagatgcaga	acccttgaa			3159
<210> 87 <211> 1018	•					
<211> 1010 <212> DNA						

<212> DNA <213> Homo sapien

<400> 87

gcccttagcg tggtcgcggc cgaggtaccg tgtcccgttc ttagtgctcg aatgtcccaa 60 cctgaagctg aagaagccgc cctggttgca catgccgtcg gccatgactg tgtatgctct 120 ggtggtggtg tcttacttcc tcatcaccgg aggaataatt tatgatgtta ttgttgaacc 180 tccaagtgtc ggttctatga ctgatgaaca tgggcatcag aggccagtag ctttcttggc 240 ctacagagta aatggacaat atattatgga aggacttgca tccagcttcc tatttacaat 300 gggaggttta ggtttcataa tcctggaccg atcgaatgca ccaaatatcc caaaactcaa 360

PCT/US2003/038815 WO 2004/053077

120

tagattcctt	cttctgttca	ttggattcgt	ctgtgtccta	ttgagttttt	tcatggctag	420
agtattcatg	agaatgaaac	tgccgggcta	tctgatgggt	tagagtgcct	ttgagaagaa	480
atcagtggat	actggatttg	ctcctgtcaa	tgaagtttta	aaggctgtac	caatcctcta	540
atatgaaatg	tggaaaagaa	tgaagagcag	cagtaaaaga	aatatctagt	gaaaaaacag	600
gaagcgtatt	gaagcttgga	ctagaatttc	ttcttggtat	taaagagaca	agtttatcac	660
agaattttt	ttcctgctgg	cctattgcta	taccaatgat	gttgagtggc	attttcttt	720
tagtttttca	ttaaaatata	ttccatatct	acaactataa	tatcaaataa	agtgattatt	780
ttttacaacc	ctcttaacat	tttttggaga	tgacatttct	gattttcaga	aattaacata	840
aaatccagaa	gcaagattcc	gtaagctgag	aactctggac	agttgatcag	ctttacctat	900
ggtgctttgc	ctttaactag	agtgtgtgat	ggtagattat	ttcagatatg	tatgtaaaac	960
tgtttcctga	acaataagat	gtatgaacgg	agcagaaata	aatacttttt	ctaattaa	1018

<210> 88 <211> 2075 <212> DNA <213> Homo sapien

<400> 88

ggcggttccg tacag	ggtat aaaagctgtc	cgcgcgggag	cccaggccag	ctttggggtt	60
gtccctggac ttgtc	ttggt tccagaacct	gacgacccgg	cgacggcgac	gtctcttttg	120
actaaaagac agtgt	ccagt gctccagcct	aggagtctac	ggggaccgcc	tecegegeeg	180
ccaccatgcc caact	tctct ggcaactgga	aaatcatccg	atcggaaaac	ttcgaggaat	240
tgctcaaagt gctgg	gggtg aatgtgatgc	tgaggaagat	tgctgtggct	gcagcgtcca	300
agccagcagt ggaga	tcaaa caggagggag	acactttcta	catcaaaacc	tccaccaccg	360
tgcgcaccac agaga	ttaac ttcaaggttg	gggaggagtt	tgaggagcag	actgtggatg	420
ggaggccctg taaga	gcctg gtgaaatggg	agagtgagaa	taaaatggtc	tgtgagcaga	480
agctcctgaa gggag	agggc cccaagacct	cgtggaccag	agaactgacc	aacgatgggg	540
aactgatcct ggtaa	gteet geeteeteee	cactaatagc	aaacccagtg	ctaccttcca	600
agattctctg ggaga	cccca gggtgcagga	gactcaagaa	caaccatggc	tggactccgc	660
accctgctga tggga	ctgct tgaacagaac	taaggtgtcc	ctatcccata	cagtgccctg	720
tgtgaattag aaatg	gtgtt ccttttatgc	aagcaaaggg	catgtactga	gggatcccag	780
cagttettea gggaga	atctt cctggcttga	ggaggaggac	gggccccagg	ggctctattg	840
ctatectece tecate	tgatg cctgggcatt	ctgggaccag	ctcctgcctg	ttggtcttga	900
gccaagaagc aggtt	tggac ctggaggcca	agcagagtac	ctccattcaa	cectectete	960

WO 2004/053077

121

PCT/US2003/038815

			121		•	
caaagccaca	ggaccccagg	ggcctctcag	gctaacaact	acttctgtcc	ttccagacca	1020
tgacggcgga	tgacgttgtg	tgcaccaggg	tctacgtccg	agagtgagtg	gccacaggta	1080
gaaccgcggc	cgaagcccac	cactggccat	gctcaccgcc	ctgcttcact	gcccctccg	1140
tcccaccccc	tccttctagg	atagcgctcc	ccttacccca	gtcacttctg	ggggtcactg	1200
ggatgcctct	tgcagggtct	tgctttcttt	gacctcttct	ctcctcccct	acaccaacaa	1260
agaggaatgg	ctgcaagagc	ccagatcacc	cattccgggt	tcactccccg	cctccccaag	1320
tcagcagtcc	tagccccaaa	ccagcccaga	gcagggtctc	tctaaagggg	acttgagggc	1380
ctgagcagga	aagactggcc	ctctagcttc	taccetttgt	ccctgtagcc	tatacagttt	1440
agaatattta	tttgttaatt	ttattaaaat	gctttaaaaa	aataaaaaaa	aaaaacaaa	1500
aaaaaaaag	aagagcccgg	cgcgcgaaac	ccgcgtggcc	atggcgcggc	gacccgcggg	1560
gcgcgaaaac	agtggcgtac	ctcgcggcct	ccccaaattc	tccccaccca	cctttagcgc	1620
agcgaccaac	gtgcgcgccg	cgcagcgggg	gcggccgcga	cgagcgccgg	acgctacgcg	1680
acggacggcg	cgggccggca	ccacgccacc	acgtcacggg	cagccgccag	cgcacgcccg	1740
ggcggcgcct	gctcacaacc	gaggtetgee	tagttgctgc	tcccggtgcc	gagccaaggc	1800
ccgctacgca	cgcccacgca	gggctgaggc	agcggcacgc	gcgcggcgtg	caacgccggc	1860
ggcacccggc	tggaggggg	gaggcaccgc	aacacggccg	acgcggcgaa	gagcgggaac	1920
aaacgcacac	gacccacacc	gcaacggtga	gcaacgaccg	agcggccagc	ggcgaccgcg	1980
gcgtggcagc	aggcgacgac	gccacgagac	gcgcgagagc	gagagaccac	tccgaggcgc	2040
cggcccgggt	gtgccaggcc	cgacgcgtgg	tggcc			2075
<210> 89 <211> 1557 <212> DNA <213> Homo	sapien					
gcccacccca	agccggtttc	acaaactccg	tttcttaccg	taaggtttct	cccctctcgc	60
cgctcgggca	agctgatcac	aggtgtgtcg	ggagcctagg	agtctacggg	gaccgcctcc	120
cgcgccgcca	ccatgcccaa	cttctctggc	aactggaaaa	tcatccgatc	ggaaaacttc	180
gaggaattgc	tcaaagtgct	gggggtgaat	gtgatgctga	ggaagattgc	tgtggctgca	240
gcgtccaagc	cagcagtgga	gatcaaacag	gagggagaca	ctttctacat	caaaacctcc	300
accaccgtgc	gcaccacaga	gattaacttc	aaggttgggg	aggagtttga	ggagcagact	360
gtggatggga	ggccctgtaa	gagcctggtg	aaatgggaga	gtgagaataa	aatggtctgt	420
gagcagaagc	tcctgaaggg	agagggcccc	aagacctcgt	ggaccagaga	actgaccaac	480

			122			
gatggggaac	tgatcctgac	catgacggcg	gatgacgttg	tgtgcaccag	ggtctacgtc	540
cgagagtgag	tggccacagg	tagaaccgcg	gccgaagccc	accactggcc	atgctcaccg	600
ccctgcttca	ctgcccctc	cgtcccaccc	cctccttcta	ggatagcgct	cccttaccc	660
cagtcacttc	tgggggtcac	tgggatgcct	cttgcagggt	cttgctttct	ttgacctctt	720
ctctcctccc	ctacaccaac	aaagaggaat	ggctgcaaga	gcccagatca	cccattccgg	780
gttcactccc	cgcctcccca	agtcagcagt	cctagcccca	aaccagccca	gagcagggtc	840
tctctaaagg	ggacttgagg	gcctgagcag	gaaagactgg	ccctctagct	tctacccttt	900
gtccctgtag	cctatacagt	ttagaatatt	tatttgttaa	ttttattaaa	atgctttaaa	960
aaaataaaaa	aaaaaaaaca	aaaaaaaaa	agaagagccc	ggcgcgcgaa	acccgcgtgg	1020
ccatggcgcg	gcgacccgcg	gggcgcgaaa	acagtggcgt	acctcgcggc	ctccccaaat	1080
tctccccacc	cacctttagc	gcagcgacca	acgtgcgcgc	cgcgcagcgg	gggcggccgc	1140
gacgagcgcc	ggacgctacg	cgacggacgg	cgcgġgccgg	caccacgcca	ccacgtcacg	1200
ggcagccgcc	agegeaegee	cgggcggcgc	ctgctcacaa	ccgaggtctg	cctagttgct	1260
gctcccggtg	ccgagccaag	gecegetacg	cacgcccacg	cagggctgag	gcagcggcac	1320
gcgcgcggcg	tgcaacgccg	gcggcacccg	gctggagggg	gggaggcacc	gcaacacggc	1380
cgacgcggcg	aagagcggga	acaaacgcac	acgacccaca	ccgcaacggt	gagcaacgac	1440
cgagcggcca	gcggcgaccg	cggcgtggca	gcaggcgacg	acgccacgag	acgcgcgaga	1500
gcgagagacc	actccgaggc	gccggcccgg	gtgtgccagg	cccgacgcgt	ggtggcc	1557
	o sapien					
<400> 90 ggcggttccg	tacagggtat	aaaagctgtc	cgcgcgggag	cccaggccag	ctttggggtt	60
gtccctggac	ttgtcttggt	tccagaacct	gacgacccgg	cgacggcgac	gtctcttttg	120
actaaaagac	agtgtccagt	gctccagcct	aggagtctac	ggggaccgcc	tcccgcgccg	180
ccaccatgcc	caacttctct	ggcaactgga	aaatcatccg	atcggaaaac	ttcgaggaat	240
tgctcaaagt	gctgggggtg	aatgtgatgc	tgaggaagat	tgctgtggct	gcagcgtcca	300
agccagcagt	ggagatcaaa	caggaggag	acactttcta	catcaaaacc	tccaccaccg	360
tgcgcaccac	agagattaac	ttcaaggttg	gggaggagtt	tgaggagcag	actgtggatg	420
ggaggccctg	taagagcctg	gtgaaatggg	agagtgagaa	taaaatggtc	tgtgagcaga	480

ageteetgaa gggagaggge cecaagacet etaggatage geteeeetta eeccagteae 540

ttctgggggt cactgggatg cetcttgcag ggtcttgctt tctttgacct cttct	ctcct 600
cccctacacc aacaaagagg aatggctgca agagcccaga tcacccattc cgggt	tcact 660
ccccgcctcc ccaagtcagc agtcctagcc ccaaaccagc ccagagcagg gtctc	tctaa 720
aggggacttg agggcctgag caggaaagac tggccctcta gcttctaccc tttgt	ccctg 780
tagcctatac agtttagaat atttatttgt taattttatt aaaatgcttt aaaaa	aataa 840
aaaaaaaaa acaaaaaaaa aaaagaagag cccggcgcgc gaaacccgcg tggcc	atggc 900
gcggcgaccc gcggggcgcg aaaacagtgg cgtacctcgc ggcctcccca aatto	tcccc 960
acccaccttt agcgcagcga ccaacgtgcg cgccgcgcag cgggggcggc cgcga	cgagc 1020
gccggacgct acgcgacgga cggcgcgggc cggcaccacg ccaccacgtc acggg	cagcc 1080
gccagegcae gcccgggcgg cgcctgctca caaccgaggt ctgcctagtt gctgc	tcccg 1140
gtgccgagcc aaggcccgct acgcacgccc acgcagggct gaggcagcgg cacgc	gcgcg 1200
gcgtgcaacg ccggcggcac ccggctggag ggggggaggc accgcaacac ggccg	acgcg 1260
gcgaagagcg ggaacaaacg cacacgaccc acaccgcaac ggtgagcaac gaccg	agcgg 1320
ccagcggcga ccgcggcgtg gcagcaggcg acgacgccac gagacgcgcg agagc	gagag 1380
	1430
accaeteega ggegeeggee egggtgtgee aggeeegaeg egtggtggee	
<210> 91 <211> 1265 <212> DNA <213> Homo sapien	
<210> 91 <211> 1265 <212> DNA	agggta 60
<210> 91 <211> 1265 <212> DNA <213> Homo sapien <400> 91	-555
<210> 91 <211> 1265 <212> DNA <213> Homo sapien <400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca	ataaaa 120
<210> 91 <211> 1265 <212> DNA <213> Homo sapien <400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa	ataaaa 120 gagaac 180
<pre><210> 91 <211> 1265 <212> DNA <213> Homo sapien <400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa tggtctgtga gcagaagctc ctgaagggag agggccccaa gacctcgtgg accag</pre>	ataaaa 120 gagaac 180 ccaggg 240
<pre><210> 91 <211> 1265 <212> DNA <213> Homo sapien </pre> <pre><400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa tggtctgtga gcagaagctc ctgaagggag agggccccaa gacctcgtgg accag tgaccaacga tggggaactg atcctgacca tgacggcgga tgacgttgtg tgcaccaacga</pre>	gagaac 180 ccaggg 240 ggccat 300
<pre><210> 91 <211> 1265 <212> DNA <213> Homo sapien <400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa tggtctgtga gcagaagctc ctgaagggag agggccccaa gacctcgtgg accag tgaccaacga tggggaactg atcctgacca tgacgggag tgacgttgtg tgcac tctacgtccg agagtgagtg gccacaggta gaaccgcggc cgaagcccac cactg</pre>	gagaac 180 ccaggg 240 ggccat 300 cgctcc 360
<pre><210> 91 <211> 1265 <212> DNA <213> Homo sapien </pre> <pre><400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa tggtctgtga gcagaagctc ctgaagggag agggccccaa gacctcgtgg accag tgaccaacga tggggaactg atcctgacca tgacggcga tgacgttgtg tgcac tctacgtccg agagtgagtg gccacaggta gaaccgcggc cgaagcccac cactg gctcaccgcc ctgcttcact gcccctccg tcccacccc tccttctagg atagc</pre>	ataaaa 120 gagaac 180 ccaggg 240 ggccat 300 cgctcc 360 ctcttt 420
<pre><210> 91 <211> 1265 <212> DNA <213> Homo sapien <400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagca tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa tggtctgtga gcagaagctc ctgaagggag agggccccaa gacctcgtgg accag tgaccaacga tggggaactg atcctgacca tgacggcga tgacgttgtg tgcac tctacgtccg agagtgagtg gccacaggta gaaccgcggc cgaagcccac cactg gctcaccgcc ctgcttcact gccccctccg tcccaccccc tccttctagg atagc ccttacccca gtcacttctg ggggtcactg ggatgcctct tgcagggtct tgctb</pre>	gagaac 180 ccaggg 240 ggccat 300 cgctcc 360 ctcttt 420
<pre><210> 91 <211> 1265 <212> DNA <213> Homo sapien </pre> <pre><400> 91 gttcactccc cgcctcccca agtcagcagt cctagcccca aaccagccca gagcagt tctctaaagg ggacttgagg gcctgtaaga gcctggtgaa atgggagagt gagaa tggtctgtga gcagaagctc ctgaagggag agggccccaa gacctcgtgg accag tgaccaacga tggggaactg atcctgacca tgacgggag tgacgttgtg tgcac tctacgtccg agagtgagtg gccacaggta gaaccgcggc cgaagcccac cactg gctcaccgcc ctgcttcact gcccctccg tcccacccc tccttctagg atagc ccttacccca gtcacttctg ggggtcactg ggatgcctct tgcagggtct tgctt gacctcttct ctcctccct acaccaacaa agaggaatgg ctgcaagagc ccagag</pre>	ataaaa 120 gagaac 180 ccaggg 240 ggccat 300 cgctcc 360 ctcttt 420 atcacc 480 cccaga 540

ccgcgtggcc atggcgcggc gacccgcggg gcgcgaaaac agtggcgtac ctcgcggcct	780
ccccaaattc tccccaccca cctttagcgc agcgaccaac gtgcgcgccg cgcagcgggg	840
geggeegega egagegeegg aegetaegeg aeggaeggeg egggeeggea ceaegeeaee	900
acgtcacggg cagccgccag cgcacgcccg ggcggcgcct gctcacaacc gaggtctgcc	960
tagttgctgc tcccggtgcc gagccaaggc ccgctacgca cgcccacgca gggctgaggc	1020
ageggeaege gegeggegtg caaegeegge ggeaeeegge tggagggggg gaggeaeege	1080
aacacggccg acgcggcgaa gagcgggaac aaacgcacac gacccacacc gcaacggtga	1140
gcaacgaccg agcggccagc ggcgaccgcg gcgtggcagc aggcgacgac gccacgagac	1200
gcgcgagagc gagagaccac tccgaggcgc cggcccgggt gtgccaggcc cgacgcgtgg	1260
tggcc	1265
<210> 92 <211> 1406 <212> DNA <213> Homo sapien <400> 92	
gattcaagtg ctggctttgc gtccgcttcc ccatccactt actagcgcag gagaaggcta	60
teteggtece cagagaagee tggacecaca egegggetag atecagagaa eetgacgace	120
cggcgacggc gacgtctctt ttgactaaaa gacagtgtcc agtgctccag cctaggagtc	180
tacggggacc gcctcccgcg ccgccaccat gcccaacttc tctggcaact ggaaaatcat	240
ccgatcggaa aacttcgagg aattgctcaa agtgctgggg gtgaatgtga tgctgaggaa	300
gattgctgtg gctgcagcgt ccaagccagc agtggagatc aaacaggagg gagacacttt	360
ctacatcaaa acctccacca ccgtgcgcac cacagagatt aacttcaagg ttggggagga	420
gtttgaggag cagactgtgg atgggaggcc ctgtaagcac tgccccctcc gtcccacccc	480
ctccttctag gatagcgctc cccttacccc agtcacttct gggggtcact gggatgcctc	540
ttgcagggtc ttgctttctt tgacctcttc tctcctcccc tacaccaaca aagaggaatg	600
getgeaagag cecagateae ceatteeggg tteaeteeee geeteeceaa gteageagte	660
ctageeccaa accageecag agcagggtet etetaaaggg gaettgaggg eetgageagg	720
aaagactggc cctctagctt ctaccctttg tccctgtagc ctatacagtt tagaatattt	780
atttgttaat tttattaaaa tgctttaaaa aaataaaaaa aaaaaaaaacaa aaaaaaaa	840
gaagageeeg gegegegaaa eeegegtgge catggegegg egaeeegegg ggegegaaaa	900
cagtggcgta cctcgcggcc tccccaaatt ctccccaccc acctttagcg cagcgaccaa	960
cgtgcgcgcc gcgcagcggg ggcggccgcg acgagcgccg gacgctacgc gacggacggc	1020

gcgggccggc accacgccac	cacgtcacgg	gcagccgcca	gcgcacgccc	gggcggcgcc	1080
tgctcacaac cgaggtctgc	ctagttgctg	ctcccggtgc	cgagccaagg	cccgctacgc	1140
acgcccacgc agggctgagg	cagcggcacg	cgcgcggcgt	gcaacgccgg	cggcacccgg	1200
ctggaggggg ggaggcaccg	caacacggcc	gacgcggcga	agagcgggaa	caaacgcaca	1260
cgacccacac cgcaacggtg	agcaacgacc	gagcggccag	cggcgaccgc	ggcgtggcag	1320
caggcgacga cgccacgaga	cgcgcgagag	cgagagacca	ctccgaggcg	ccggcccggg	1380
tgtgccaggc ccgacgcgtg	gtggcc				1406
<210> 93 <211> 1441 <212> DNA <213> Homo sapien					
<400> 93 ccctctctga gtacggagtg	gtcccactgg	atccagttca	gggttcaatg	gagctagggc	60
cagctacggc tcaagatctg	gggtccgcct	gcgggtgggg	tcgccaggtg	tccggcacca	120
aggagttgaa tgcaccgagt	cagaacctga	cgacccggcg	acggcgacgt	ctcttttgac	180
taaaagacag tgtccagtgc	tccagcctag	gagtctacgg	ggaccgcctc	ccgcgccgcc	240
accatgccca acttctctgg	caactggaaa	atcatccgat	cggaaaactt	cgaggaattg	300
ctcaaagtgc tgggggtgaa	tgtgatgctg	aggaagattg	ctgtggctgc	agcgtccaag	360
ccagcagtgg agatcaaaca	ggagggagac	actttctaca	tcaaaacctc	caccaccgtg	420
cgcaccacag agattaactt	caaggttggg	gaggagtttg	aggagcagac	tgtggatggg	480
aggecetgta ageaetgeee	cctccgtccc	acccctcct	tctaggatag	cgctcccctt	540
accccagtca cttctggggg	tcactgggat	gcctcttgca	gggtcttgct	ttctttgacc	600
tettetetee teecetacae	caacaaagag	gaatggctgc	aagagcccag	atcacccatt	660
ccgggttcac tccccgcctc	cccaagtcag	cagtcctagc	cccaaaccag	cccagagcag	720
ggtctctcta aaggggactt	gagggcctga	gcaggaaaga	ctggccctct	agcttctacc	780
ctttgtccct gtagcctata	cagtttagaa	tatttatttg	ttaattttat	taaaatgctt	840
taaaaaaata aaaaaaaaaa	aacaaaaaaa	aaaaagaaga	gcccggcgcg	cgaaacccgc	900
gtggccatgg cgcggcgacc	cgcggggcgc	gaaaacagtg	gcgtacctcg	cggcctcccc	960
aaattctccc cacccacctt	tagcgcagcg	accaacgtgc	gcgccgcgca	acaaaaacaa	1020
ccgcgacgag cgccggacgc	tacgcgacgg	acggcgcggg	ccggcaccac	gccaccacgt	1080
cacgggcagc cgccagcgca	cgcccgggcg	gcgcctgctc	acaaccgagg	tctgcctagt	1140
tgctgctccc ggtgccgagc	caaggcccgc	tacgcacgcc	cacgcagggc	tgaggcagcg	1200

gcacgcgcgc ggcgtgcaac g	gccggcggca	cccggctgga	gggggggagg	caccgcaaca	1260
cggccgacgc ggcgaagagc g	ggaacaaac	gcacacgacc	cacaccgcaa	cggtgagcaa	1320
cgaccgagcg gccagcggcg a	accgcggcgt	ggcagcaggc	gacgacgcca	cgagacgcgc	1380
gagagcgaga gaccactccg a	aggegeegge	ccgggtgtgc	caggcccgac	gcgtggtggc	1440
С					1441
<210> 94 <211> 1062 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (19)(19) <223> n=a, c, g or t <220> <221> misc_feature <222> (20) (20)(20) <223> n=a, c, g or t					
<400> 94 gtttggaaag gttgggggnc c	cccaaaccc	aaggggggtt	aaagggaaaa	acccccccg	60
gcncccgggg gcccgaaaaa a	agcccaccac	tggccatgct	caccgccctg	cttcactgcc	120
coctcogtcc caccccctcc t	tctaggata	gegeteeeet	taccccagtc	acttctgggg	180
gtcactggga tgcctcttgc a	agggtcttgc	tttctttgac	ctcttctctc	ctcccctaca	240
ccaacaaaga ggaatggctg c	caagagccca	gatcacccat	tccgggttca	ctccccgcct	300
ccccaagtca gcagtcctag c	cccaaacca	gcccagagca	gggtetetet	aaaggggact	360
tgagggcctg agcaggaaag a	etggecete	tagcttctac	cctttgtccc	tgtagcctat	420
acagtttaga atatttattt g	ttaatttta	ttaaaatgct	ttaaaaaaat	aaaaaaaaa	480
aaacaaaaaa aaaaaagaag a	gcccggcgc	gcgaaacccg	cgtggccatg	gcgcggcgac	540
ccgcggggcg cgaaaacagt g	gcgtacctc	geggeeteee	caaattctcc	ccacccacct	600
ttagcgcagc gaccaacgtg c	gegeegege	agcgggggcg	gccgcgacga	gcgccggacg	660
ctacgcgacg gacggcgcgg g	gccggcacca	cgccaccacg	tcacgggcag	ccgccagcgc	720
acgcccgggc ggcgcctgct c	acaaccgag	gtctgcctag	ttgctgctcc	cggtgccgag	780
ccaaggcccg ctacgcacgc c	cacgcaggg	ctgaggcagc	ggcacgcgcg	cggcgtgcaa	840
cgccggcggc acccggctgg a	ggggggag	gcaccgcaac	acggccgacg	cggcgaagag	900
cgggaacaaa cgcacacgac c	cacaccgca	acggtgagca	acgaccgagc	ggccagcggc	960

gaccgcggcg tggcagcagg cgacgacgcc acgagacgcg cgagagcgag agaccactcc	1020
gaggegeegg eeegggtgtg eeaggeeega egegtggtgg ee	1062
<210> 95 <211> 937 <212> DNA <213> Homo sapien	
<400> 95	
geggegeeag tgtgatggat geggeegeee gggeaggtee eagteaette tggggggteae	60
tgggatgcct cttgcagggt cttgctttct ttgacctctt ctctcctccc ctacaccaac	120
aaagaggaat ggctgcaaga gcccagatca cccattccgg gttcactccc cgcctcccca	180
agtcagcagt cctagccca aaccagccca gagcagggtc tctctaaagg ggacttgagg	240
geetgageag gaaagaetgg eeetetaget tetaceettt gteeetgtag eetatacagt	300
ttagaatatt tatttgttaa ttttattaaa atgctttaaa aaaataaaaa aaaaaaaaca	360
aaaaaaaaa agaagagccc ggcgcgcgaa acccgcgtgg ccatggcgcg gcgacccgcg	420
gggcgcgaaa acagtggcgt acctcgcggc ctccccaaat tctccccacc cacctttagc	480
gcagegacca aegtgegege egegeagegg gggeggeege gaegagegee ggaegetaeg	540
cgacggacgg cgcgggccgg caccacgcca ccacgtcacg ggcagccgcc agcgcacgcc	600
cgggcggcgc ctgctcacaa ccgaggtctg cctagttgct gctcccggtg ccgagccaag	660
gecegetacg caegeceaeg cagggetgag geageggeae gegegeggeg tgeaaegeeg	720
gcggcacccg gctggagggg gggaggcacc gcaacacggc cgacgcggcg aagagcggga	780
acaaacgcac acgacccaca ccgcaacggt gagcaacgac cgagcggcca gcggcgaccg	840
cggcgtggca gcaggcgacg acgccacgag acgcgcgaga gcgagagacc actccgaggc	900
gccggcccgg gtgtgccagg cccgacgcgt ggtggcc	937
<210> 96 <211> 117 <212> PRT <213> Homo sapien <400> 96	
Met Trp Thr Asn Phe Gln Asn Tyr Pro Leu Cys Phe Leu Gly Arg Phe 1 5 10 15	
Arg Ser Leu Thr Thr Ala Phe Phe Arg Asp Ala Met Gly Phe Leu Leu 20 25 30	

Met Phe Asp Leu Thr Ser Gln Gln Ser Phe Leu Asn Val Arg Asn Trp 35 40 45

Met Ser Gln Leu Gln Ala Asn Ala Tyr Cys Glu Asn Pro Asp Ile Val

Leu Ile Gly Asn Lys Ala Asp Leu Pro Asp Gln Arg Glu Val Asn Glu

Arg Gln Ala Arg Glu Leu Ala Asp Lys Tyr Gly Cys Lys Leu Ser Thr

Leu Gly Ile Asn Lys Phe Asp Glu Ala Cys Leu Ser Leu His Gln Trp

Ser Glu Cys Ser Ser 115

<210> 97

<211> 651

<212> PRT

<213> Homo sapien

<400> 97

Met Ala Thr Ala Ser Pro Arg Ser Asp Thr Ser Asn Asn His Ser Gly

Arg Leu Gln Leu Gln Val Thr Val Ser Ser Ala Lys Leu Lys Arg Lys

Lys Asn Trp Phe Gly Thr Ala Ile Tyr Thr Glu Val Val Asp Gly 40

Glu Ile Thr Lys Thr Ala Lys Ser Ser Ser Ser Ser Asn Pro Lys Trp 50 55

Asp Glu Gln Leu Thr Val Asn Val Thr Pro Gln Thr Thr Leu Glu Phe 65 70

Gln Val Trp Ser His Arg Thr Leu Lys Ala Asp Ala Leu Leu Gly Lys 85 90

Ala Thr Ile Asp Leu Lys Gln Ala Leu Leu Ile His Asn Arg Lys Leu 100 110

Glu Arg Val Lys Glu Gln Leu Lys Leu Ser Leu Glu Asn Lys Asn Gly 115 120

Ile Ala Gln Thr Gly Glu Leu Thr Val Val Leu Asp Gly Leu Val Ile 135 Glu Gln Glu Asn Ile Thr Asn Cys Ser Ser Ser Pro Thr Ile Glu Ile 150 155 Gln Glu Asn Gly Asp Ala Leu His Glu Asn Gly Glu Pro Ser Ala Arg Thr Thr Ala Arg Leu Ala Val Glu Gly Thr Asn Gly Ile Asp Asn His Val Pro Thr Ser Thr Leu Val Gln Asn Ser Cys Cys Ser Tyr Val Val 200 Asn Gly Asp Asn Thr Pro Ser Ser Pro Ser Gln Val Ala Ala Arg Pro 215 Lys Asn Thr Pro Ala Pro Lys Pro Leu Ala Ser Glu Pro Ala Asp Asp 225 230 235 Thr Val Asn Gly Glu Ser Ser Ser Phe Ala Pro Thr Asp Asn Ala Ser 245 250 Val Thr Gly Thr Pro Val Val Ser Glu Glu Asn Ala Leu Ser Pro Asn 260 265 Cys Thr Ser Thr Thr Val Glu Asp Pro Pro Val Gln Glu Ile Leu Thr 285 275 280 Ser Ser Glu Asn Asn Glu Cys Ile Pro Ser Thr Ser Ala Glu Leu Glu 290 295 Ser Glu Ala Arg Ser Ile Leu Glu Pro Asp Thr Ser Asn Ser Arg Ser 305 310 315 Ser Ser Ala Phe Glu Ala Ala Lys Ser Arg Gln Pro Asp Gly Cys Met Asp Pro Val Arg Gln Gln Ser Gly Asn Ala Asn Thr Glu Thr Leu Pro Ser Gly Trp Glu Gln Arg Lys Asp Pro His Gly Arg Thr Tyr Tyr Val . 360

Asp His Asn Thr Arg Thr Thr Trp Glu Arg Pro Gln Pro Leu Pro

370 375 380 Pro Gly Trp Glu Arg Arg Val Asp Asp Arg Arg Arg Val Tyr Tyr Val 395 Asp His Asn Thr Arg Thr Thr Thr Trp Gln Arg Pro Thr Met Glu Ser 405 410 Val Arg Asn Phe Glu Gln Trp Gln Ser Gln Arg Asn Gln Leu Gln Gly 420 425 Ala Met Gln Gln Phe Asn Gln Arg Tyr Leu Tyr Ser Ala Ser Met Leu 440 Ala Ala Glu Asn Asp Pro Tyr Gly Pro Leu Pro Pro Gly Trp Glu Lys Arg Val Asp Ser Thr Asp Arg Val Tyr Phe Val Asn His Asn Thr Lys 470 475 Thr Thr Gln Trp Glu Asp Pro Arg Thr Gln Gly Leu Gln Asn Glu Glu 485 Thr Leu Gly Arg Arg Leu Arg Gln Phe Arg Ile Phe Ser Val Lys Val 500 Leu Arg Ser Pro Cys Cys Thr His Ser Thr Gln Gln Pro Thr Pro Phe 520 Pro Arg Leu Leu Arg Met Arg Lys Pro Thr Asp Thr Ser Asn Gly Gly Pro Ala Asn Cys Pro Thr Glu Arg Arg Leu Gln Val Lys Pro Ala Lys 550 Tyr Pro Lys Met Gly Pro Ser Leu Met Ala Tyr Pro Arg Thr Gly Thr Asn Thr Ala Ser Pro Gly Gln Gln Ser Ala Thr Glu Pro Pro Pro Thr 580 Lys Met Gly Gln Thr Pro Gln Asp Arg Glu Gly Arg His Arg Asn Leu 595 600 605 Thr Ala Glu Pro Ser Thr Asn Gln Gly Thr Arg Lys Glu Pro Pro His 610 615 620

Asn Val Pro Pro Thr Val Gln Thr His Asn Gln Leu Ser Asn Asp Asn 625 630 635 640

Asn Thr Asn Thr Ile Arg Asn Asn Thr Ser Asn 645 650

<210> 98

<211> 645

<212> PRT

<213> Homo sapien

<400> 98

Tyr Ile Val Leu Ala Glu Phe Trp Asp Met Ala Thr Ala Ser Pro Arg

1 10 15

Ser Asp Thr Ser Asn Asn His Ser Gly Arg Leu Gln Leu Gln Val Thr 20 25 30

Val Ser Ser Ala Lys Leu Lys Arg Lys Lys Asn Trp Phe Gly Thr Ala 35 40 45

Ile Tyr Thr Glu Val Val Val Asp Gly Glu Ile Thr Lys Thr Ala Lys
50 55 60

Ser Ser Ser Ser Ser Asn Pro Lys Trp Asp Glu Gln Leu Thr Val Asn 65 70 75 80

Val Thr Pro Gln Thr Thr Leu Glu Phe Gln Val Trp Ser His Arg Thr 85 90 95

Leu Lys Ala Asp Ala Leu Leu Gly Lys Ala Thr Ile Asp Leu Lys Gln 100 105 110

Ala Leu Leu Ile His Asn Arg Lys Leu Glu Arg Val Lys Glu Gln Leu 115 120 125

Lys Leu Ser Leu Glu Asn Lys Asn Gly Ile Ala Gln Thr Gly Glu Leu 130 135 140

Thr Val Val Leu Asp Gly Leu Val Ile Glu Gln Glu Asn Ile Thr Asn 145 150 155 160

Cys Ser Ser Ser Pro Thr Ile Glu Ile Gln Glu Asn Gly Asp Ala Leu 165 170 175

132

His Glu Asn Gly Glu Pro Ser Ala Arg Thr Thr Ala Arg Leu Ala Val 180 185 190

Glu Gly Thr Asn Gly Ile Asp Asn His Val Pro Thr Ser Thr Leu Val

Gln Asn Ser Cys Cys Ser Tyr Val Val Asn Gly Asp Asn Thr Pro Ser 210 215 220

Ser Pro Ser Gln Val Ala Ala Arg Pro Lys Asn Thr Pro Ala Pro Lys 225 230 235 235

Pro Leu Ala Ser Glu Pro Ala Asp Asp Thr Val Asn Gly Glu Ser Ser 245 250 255

Ser Phe Ala Pro Thr Asp Asn Ala Ser Val Thr Gly Thr Pro Val Val 260 265 270

Ser Glu Glu Asn Ala Leu Ser Pro Asn Cys Thr Ser Thr Thr Val Glu 275 280 285

Asp Pro Pro Val Gln Glu Ile Leu Thr Ser Ser Glu Asn Asn Glu Cys 290 295 300

Ile Pro Ser Thr Ser Ala Glu Leu Glu Ser Glu Ala Arg Ser Ile Leu 305 310 315 320

Glu Pro Asp Thr Ser Asn Ser Arg Ser Ser Ser Ala Phe Glu Ala Ala 325 330 335

Lys Ser Arg Gln Pro Asp Gly Cys Met Asp Pro Val Arg Gln Gln Ser 340 345 350

Gly Asn Ala Asn Thr Glu Thr Leu Pro Ser Gly Trp Glu Gln Arg Lys 355 360 365

Asp Pro His Gly Arg Thr Tyr Tyr Val Asp His Asn Thr Arg Thr Thr 370 375 380

Thr Trp Glu Arg Pro Gln Pro Leu Pro Pro Gly Trp Glu Arg Arg Val 385 390 395 400

Asp Asp Arg Arg Val Tyr Tyr Val Asp His Asn Thr Arg Thr Thr 405 410 415

Thr Trp Gln Arg Pro Thr Met Glu Ser Val Arg Asn Phe Glu Gln Trp

133

420 425 430

Gln Ser Gln Arg Asn Gln Leu Gln Gly Ala Met Gln Gln Phe Asn Gln 435 440 445

Arg Tyr Leu Tyr Ser Ala Ser Met Leu Ala Ala Glu Asn Asp Pro Tyr 450 455 460

Gly Pro Leu Pro Pro Gly Trp Glu Lys Arg Val Asp Ser Thr Asp Arg 465 470 475 480

Val Tyr Phe Val Asn His Asn Thr Lys Thr Thr Gln Trp Glu Asp Pro

Arg Thr Gln Gly Leu Gln Asn Glu Glu Thr Leu Gly Arg Arg Leu Arg 500 510

Gln Phe Arg Ile Phe Ser Val Lys Val Leu Arg Ser Pro Cys Cys Thr 515 520 525

His Ser Thr Gln Gln Pro Thr Pro Phe Pro Arg Leu Leu Arg Met Arg 530 540

Lys Pro Thr Asp Thr Ser Asn Gly Gly Pro Ala Asn Cys Pro Thr Glu 545 550 555 560

Arg Arg Leu Gln Val Lys Pro Ala Lys Tyr Pro Lys Met Gly Pro Ser 565 570 575

Leu Met Ala Tyr Pro Arg Thr Gly Thr Asn Thr Ala Ser Pro Gly Gln 580 585 590

Gln Ser Ala Thr Glu Pro Pro Pro Thr Lys Met Gly Gln Thr Pro Gln 595 600 605

Asp Arg Glu Gly Arg His Arg Asn Leu Thr Ala Glu Pro Ser Thr Asn 610 615 620

Gln Gly Thr Arg Lys Glu Pro Thr Pro Gln Arg Thr Thr His Ser Ala 625 630 635 640

Asp Ala Gln Pro Thr

<210> 99 <211> 125 WO 2004/053077 PO

134

<212> PRT

<213> Homo sapien

<400> 99

Met Gly Pro Gly Gly Pro Leu Leu Ser Pro Ser Arg Gly Phe Leu Leu 1 5 10 15

PCT/US2003/038815

Cys Lys Thr Gly Trp His Ser Asn Arg Leu Leu Gly Asp Cys Gly Pro

His Thr Pro Val Ser Thr Ala Leu Ser Phe Ile Ala Val Gly Met Ala 35 40 45

Ala Pro Ser Met Lys Glu Arg Gln Val Cys Trp Gly Ala Arg Asp Glu 50 55 60

Tyr Trp Lys Cys Leu Asp Glu Asn Leu Glu Asp Ala Ser Gln Cys Lys 65 70 75 80

Lys Leu Arg Ser Ser Phe Glu Ser Ser Cys Pro Gln Gln Trp Ile Lys 85 90 95

Tyr Phe Asp Lys Arg Arg Asp Tyr Leu Lys Phe Lys Glu Lys Phe Glu
100 . 105 . 110

Ala Gly Gln Phe Glu Pro Ser Glu Thr Thr Ala Lys Ser

<210> 100

<211> 164

<212> PRT

<213> Homo sapien

<400> 100

Phe Phe Leu Glu Pro Cys Ala Pro Leu Leu Ala Glu Pro Leu Leu Glu 15

Arg Asp Glu Ala Glu Gly Val Gly Gly Ala Asp Ala Gly Pro Ala Leu 20 25 30

Leu Tyr Gly Leu Val Gly Asp Gly Glu Leu Ala Gln Val Val Ala Asn 35 40 45

His Leu Gly Leu Asp Leu His Leu Val Glu Gly Leu Ala Val Val Asp 50 55 60

Ala His His Ala Ala His His Leu Gly Gln Asp Asp His Val Pro Gln

65 70 75 80

Val Arg Leu His His Phe Arg Leu Leu His Gly Arg Arg Leu Leu

Gly Leu Ala Gln Ala Leu Gln Gln Gly Val Leu Leu Pro Pro Gln Ala 100 105

Pro Val Gln Pro Pro Pro Leu Ala Arg Thr Val Gln Leu His Gln Leu 120

Leu Val Gly His Val Gln Gln Leu Val Glu Val His Ala Ala Leu His 130 135

Arg Ser Arg Asn Gly Ser Pro Ile Tyr Glu Gly Lys Thr Gly Leu Leu 150

Gly Gly Pro Gly

<210> 101 <211> 129

<212> PRT

<213> Homo sapien

<400> 101

Phe Phe Leu Glu Pro Cys Ala Pro Leu Leu Ala Glu Pro Leu Leu Glu

Arg Asp Glu Ala Glu Gly Val Gly Gly Ala Asp Ala Gly Pro Ala Leu 20

Leu Tyr Gly Leu Val Gly Asp Gly Glu Leu Ala Gln Val Val Ala Asn

His Leu Gly Leu Asp Leu His Leu Val Glu Gly Leu Ala Val Val Asp

Ala His His Ala Ala His His Leu Gly Gln Asp Asp His Val Pro Gln 70

Val Arg Leu His His Phe Arg Leu Leu His Gly Arg Arg Leu Leu Leu

Gly Leu Ala Gln Ala Leu Gln Gln Gly Val Leu Leu Pro Pro Gln Ala 100 105

Pro Val Gln Pro Pro Arg Trp Arg Ala Leu Tyr Ser Cys Ile Ser Cys 115 120

Ser

<210> 102 <211> 139 <212> PRT

<213> Homo sapien

<400> 102

Asp Pro Arg Trp Ala Leu Tyr Ser Leu Tyr Val Tyr Lys Phe Leu His

Phe Ser Tyr Ser Ser Ala Lys Asn Pro Asp Gly Cys Phe Phe Gln Lys

Val Leu Asn Gly Phe Thr Lys Phe Phe Cys Lys Glu Gln Tyr Cys Lys

Leu Leu Lys Leu Tyr Phe Tyr Arg Leu Phe Ala Leu Leu Trp Ile Leu 50 55

Cys Leu Ser Gly Phe Leu Lys Phe Phe Phe Tyr Ser Glu Ile Met Glu 70 75

Leu Val Leu Ala Ala Gly Ala Leu Leu Phe Cys Gly Phe Ile Ile

Tyr Asp Thr His Ser Leu Met His Lys Leu Ser Pro Glu Glu Tyr Val 105

Leu Ala Ala Ile Ser Leu Tyr Leu Asp Ile Ile Asn Leu Phe Leu His 115

Leu Leu Arg Phe Leu Glu Ala Val Asn Lys Lys 130 135

<210> 103

<211> 525

<212> PRT

<213> Homo sapien

<400> 103

Met Gly Asp Leu Glu Leu Leu Pro Gly Glu Ala Glu Val Leu Val 5 10

- Arg Gly Leu Arg Ser Phe Pro Leu Arg Glu Met Gly Ser Glu Gly Trp
- Asn Gln Gln His Glu Asn Leu Glu Lys Leu Asn Met Gln Ala Ile Leu
- Asp Ala Thr Val Ser Gln Gly Glu Pro Ile Gln Glu Leu Leu Val Thr
- His Gly Lys Val Pro Thr Leu Val Glu Glu Leu Ile Ala Val Glu Met
- Trp Lys Gln Lys Val Phe Pro Val Phe Cys Arg Val Glu Asp Phe Lys
- Pro Gln Asn Thr Phe Pro Ile Tyr Met Val Val His His Glu Ala Ser
- Ile Ile Asn Leu Leu Glu Thr Val Phe Phe His Lys Glu Val Cys Glu
- Ser Ala Glu Asp Thr Val Leu Asp Leu Val Asp Tyr Cys His Arg Lys
- Leu Thr Leu Leu Val Ala Gln Ser Gly Cys Gly Gly Pro Pro Glu Gly 155
- Glu Gly Ser Gln Asp Ser Asn Pro Met Gln Glu Leu Gln Lys Gln Ala
- Glu Leu Met Glu Phe Glu Ile Ala Leu Lys Ala Leu Ser Val Leu Arg
- Tyr Ile Thr Asp Cys Val Asp Ser Leu Ser Leu Ser Thr Leu Ser Arg
- Met Leu Ser Thr His Asn Leu Pro Cys Leu Leu Val Glu Leu Leu Glu
- His Ser Pro Trp Ser Arg Glu Gly Gly Lys Leu Gln Gln Phe Glu
- Gly Ser Arg Trp His Thr Val Ala Pro Ser Glu Gln Gln Lys Leu Ser

- Lys Leu Asp Gly Gln Val Trp Ile Ala Leu Tyr Asn Leu Leu Ser 260 265 270
- Pro Glu Ala Gln Ala Arg Tyr Cys Leu Thr Ser Phe Ala Lys Gly Arg
- Leu Leu Lys Val Arg Leu Pro Pro His Gln Pro Pro Gln Pro Gln Tyr 290 295 300
- Arg Pro Pro His Pro Thr Pro Thr Ala Ser Leu Leu Phe Ile Phe Ala 305 310 315 320
- His Pro Pro Gln Pro Gln Cys Ser Phe Gln Ser Leu Gly Leu Ser Asp
- Thr Pro Ala Ser Gly Thr Trp Ala Pro Thr Gly Ile Leu Ser Pro Thr 340 345 350
- Gln Pro Leu Pro Phe Pro Trp Pro Pro Gly Gln His Leu His His Thr 355 360 365
- Gly Leu His Trp Thr Pro Leu Gln Leu Arg Ala Phe Leu Thr Asp Thr 370 375 380
- Leu Leu Asp Gln Leu Pro Asn Leu Ala His Leu Gln Ser Phe Leu Ala 385 390 395 400
- His Leu Thr Leu Thr Glu Thr Gln Pro Pro Lys Lys Asp Leu Val Leu 405 410 415
- Glu Gln Ile Pro Glu Ile Trp Glu Arg Leu Glu Arg Glu Asn Arg Gly
 420 425 430
- Lys Trp Gln Ala Ile Ala Lys His Gln Leu Gln His Val Phe Ser Pro 435 440 445
- Ser Glu Gln Asp Leu Arg Leu Gln Ala Arg Arg Trp Ala Glu Thr Tyr 450 455 460
- Arg Leu Asp Val Leu Glu Ala Val Ala Pro Glu Arg Pro Arg Cys Ala
 465 470 475 480
- Tyr Cys Ser Ala Glu Ala Ser Lys Arg Cys Ser Arg Cys Gln Asn Glu 485 490 495

PCT/US2003/038815 WO 2004/053077

139

Trp Tyr Cys Cys Arg Glu Cys Gln Val Lys His Trp Glu Lys His Gly

Lys Thr Cys Val Leu Ala Ala Gln Gly Asp Arg Ala Lys 520

<210> 104 <211> 385 <212> PRT

<213> Homo sapien

<400> 104

Pro Phe Pro Trp Leu Arg Glu Leu Thr Leu Pro Asn Arg Pro Ala Thr

Val Leu Ser Gln Thr Leu Ala Pro Ser Gly Ser Val Val Pro Glu Cys 20 25

Asp Ser Ile Pro Thr Pro Ala Ala Ala Gln Asp Pro Pro Asp Pro Gly 40

Leu Asp Met Gly Asp Leu Glu Leu Leu Pro Gly Glu Ala Glu Val

Leu Val Arg Gly Leu Arg Ser Phe Pro Leu Arg Glu Met Gly Ser Glu

Gly Trp Asn Gln Gln His Glu Asn Leu Glu Lys Leu Asn Met Gln Ala

Ile Leu Asp Ala Thr Val Ser Gln Gly Glu Pro Ile Gln Glu Leu Leu 105 100

Val Thr His Gly Lys Val Pro Thr Leu Val Glu Glu Leu Ile Ala Val 120

Glu Met Trp Lys Gln Lys Val Phe Pro Val Phe Cys Arg Val Glu Asp 135 140

Phe Lys Pro Gln Asn Thr Phe Pro Ile Tyr Met Val Val His His Glu 150 145

Ala Ser Ile Ile Asn Leu Leu Glu Thr Val Phe Phe His Lys Glu Val 165 170

Cys Glu Ser Ala Glu Asp Thr Val Leu Asp Leu Val Asp Tyr Cys His 185 180

Arg Lys Leu Thr Leu Leu Val Ala Gln Ser Gly Cys Gly Gly Pro Pro 195 200 205

Glu Gly Glu Gly Ser Gln Asp Ser Asn Pro Met Gln Glu Leu Gln Lys 210 215 220

Gln Ala Glu Leu Met Glu Phe Glu Ile Ala Leu Lys Ala Leu Ser Val 225 230 235 240

Leu Arg Tyr Ile Thr Asp Cys Val Asp Ser Leu Ser Leu Ser Thr Leu 245 250 255

Ser Arg Met Leu Ser Thr His Asn Leu Pro Cys Leu Leu Val Glu Leu 260 265 270

Leu Glu His Ser Pro Trp Ser Arg Arg Glu Gly Gly Lys Leu Gln Gln 275 280 285

Phe Glu Gly Ser Arg Trp His Thr Val Ala Pro Ser Glu Gln Gln Lys 290 295 300

Leu Ser Lys Leu Asp Gly Gln Val Trp Ile Ala Leu Tyr Asn Leu Leu 305 310 315 320

Leu Ser Pro Glu Ala Gln Ala Arg Tyr Cys Leu Thr Ser Phe Ala Lys

Gly Arg Leu Leu Lys Val Arg Leu Pro Pro His Gln Pro Pro Gln Pro 340 345 350

Gln Tyr Arg Pro Pro His Pro Thr Pro Thr Ala Ser Leu Leu Phe Ile 355 360 365

Phe Ala His Pro Pro Gln Pro Gln Cys Ser Phe Gln Ser Leu Gly Leu 370 375 380

Arg 385

<210> 105

<211> 438

<212> PRT

<213> Homo sapien

<400> 105

141

Met Asp Glu Ile Glu Lys Tyr Gln Glu Val Glu Glu Asp Gln Asp Pro 1 5 10 15

Ser Cys Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Glu Pro Glu 20 25 30

Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly Tyr
35 40 45

Leu Glu Leu Pro Asp Leu Gly Gln Pro Tyr Ser Ser Ala Val Tyr Ser 50 55 60

Leu Glu Glu Gln Tyr Leu Gly Leu Ala Leu Asp Val Asp Arg Ile Lys 70 75 80

Lys Asp Gln Glu Glu Glu Glu Asp Gln Gly Pro Pro Cys Pro Arg Leu 85 90 95

Ser Arg Glu Leu Leu Glu Val Val Glu Pro Glu Val Leu Gln Asp Ser 100 105 110

Leu Asp Arg Cys Tyr Ser Thr Pro Ser Ser Cys Leu Glu Gln Pro Asp 115 120 125

Ser Cys Gln Pro Tyr Gly Ser Ser Phe Tyr Ala Leu Glu Glu Lys His 130 135 140

Val Gly Phe Ser Leu Asp Val Gly Glu Ile Glu Lys Lys Gly Lys Gly 145 150 155 160

Lys Lys Arg Arg Gly Arg Arg Ser Lys Lys Glu Arg Arg Arg Gly Arg 165 170 175

Lys Glu Glu Glu Asp Gln Asn Pro Pro Cys Pro Arg Leu Ser Arg 180 . 185 . 190

Glu Leu Leu Asp Glu Lys Gly Pro Glu Val Leu Gln Asp Ser Leu Asp 195 200 205

Arg Cys Tyr Ser Thr Pro Ser Gly Cys Leu Glu Leu Thr Asp Ser Cys 210 215 220

Gln Pro Tyr Arg Ser Ala Phe Tyr Val Leu Glu Gln Gln Arg Val Gly
225 230 235 240

Leu Ala Val Asp Met Asp Glu Ile Glu Lys Tyr Gln Glu Val Glu Glu

142

245 250 255

Asp Gln Asp Pro Ser Cys Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu 260 265 270

Lys Glu Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr 275 280 285

Pro Ser Gly Tyr Leu Glu Leu Pro Asp Leu Gly Gln Pro Tyr Ser Ser 290 295 300

Ala Val Tyr Ser Leu Glu Glu Gln Tyr Leu Gly Leu Ala Leu Asp Val 305 310 315 320

Asp Lys Ile Glu Lys Lys Gly Lys Gly Lys Lys Arg Arg Gly Arg Arg 325 330 335

Ser Lys Lys Glu Arg Arg Gly Ser Lys Glu Gly Glu Asp Gln 340 345 350

Asn Pro Pro Cys Pro Arg Leu Ser Gly Val Leu Met Glu Val Glu Glu 355 360 365

Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser 370 375 380

Met Tyr Phe Glu Leu Pro Asp Ser Phe Gln His Tyr Arg Ser Val Phe 385 390 395 400

Tyr Ser Phe Glu Glu Gln His Ile Ser Phe Ala Leu Asp Val Asp Asn . 405 410 415

Arg Phe Leu Thr Leu Met Gly Thr Ser Leu His Leu Val Phe Gln Met 420 425 430

Gly Val Ile Phe Pro Gln 435

<210> 106

<211> 334

<212> PRT

<213> Homo sapien

<400> 106

Ser Leu Lys Ser Cys Arg Thr His Trp Ile Asp Val Ile Gln Leu Leu 1 5 10 15

- Pro Val Val Leu Asn Ser Leu Thr Pro Ala Ser Pro Met Glu Val Pro 20 25 30
- Phe Met His Trp Arg Lys Asn Met Leu Ala Phe Leu Leu Thr Trp Glu 35 40 45
- Lys Leu Lys Arg Arg Gly Arg Gly Arg Lys Glu Gly Glu Glu Asp Gln 50 55 60
- Arg Arg Lys Glu Arg Gly Arg Lys Glu Gly Glu Glu Asp Gln Asn 65 70 75 80
- Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Gly Pro 85 90 95
- Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly
 100 105 110
- Cys Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser Ala Phe Tyr 115 120 125
- Val Leu Glu Gln Gln Arg Val Gly Leu Ala Val Asp Met Asp Glu Ile 130 135 140
- Glu Lys Tyr Gln Glu Val Glu Glu Asp Gln Asp Pro Ser Cys Pro Arg 145 150 155 160
- Leu Ser Arg Glu Leu Leu Asp Glu Lys Glu Pro Glu Val Leu Gln Asp 165 170 175
- Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly Tyr Leu Glu Leu Pro 180 185 190
- Asp Leu Gly Gln Pro Tyr Ser Ser Ala Val Tyr Ser Leu Glu Glu Gln 195 200 205
- Tyr Leu Gly Leu Ala Leu Asp Val Asp Lys Ile Glu Lys Lys Gly Lys 210 215 220
- Gly Lys Lys Arg Arg Gly Arg Arg Ser Lys Lys Glu Arg Arg Arg Gly 225 230 235 240
- Ser Lys Glu Glu Glu Asp Gln Asn Pro Pro Cys Pro Arg Leu Ser 245 250 255

PCT/US2003/038815 WO 2004/053077

144

Gly Val Leu Met Glu Val Glu Glu Pro Glu Val Leu Gln Asp Ser Leu 265 270

Asp Arg Cys Tyr Ser Thr Pro Ser Met Tyr Phe Glu Leu Pro Asp Ser 280

Phe Gln His Tyr Arg Ser Val Phe Tyr Ser Phe Glu Glu Gln His Ile 295

Ser Phe Ala Leu Asp Val Asp Asn Arg Phe Leu Thr Leu Met Gly Thr

Ser Leu His Leu Val Phe Gln Met Gly Val Ile Phe Pro Gln 325

<210> 107

<211> 140 <212> PRT <213> Homo sapien

<400> 107

Met Arg Arg Arg Ser His Ser Thr Arg Leu Ser Ala Gly Gly Ser Trp

Ser Pro His His Leu Leu Ser Pro Ser Tyr Ser Val Lys Ser Arg Asp

Arg Lys Met Val Gly Asp Val Thr Gly Ala Gln Ala Tyr Ala Ser Thr

Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile Leu Gly Ile Leu Met Thr

Ile Gly Phe Ile Leu Leu Val Phe Gly Ser Val Thr Val Ser His 65

Ile Met Phe Gln Asn Asn Thr Gly Lys Thr Gly Leu Leu Val Ala Ala 85

His Ser Leu Gln Pro Leu His Ser Thr Val Gln Cys Trp Pro Cys Asn 100

Ala Val Ala Val Ala Pro Ala Pro Leu Val Leu Pro Leu Asn Thr Ala 115 120

Val Tyr Thr His Thr Pro Val Tyr Ser Val Ile Gln 130 135

<210> 108 <211> 114

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE <222> (53)..(53) <223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (82)..(82) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (94)..(94)

<223> X=any amino acid

<400> 108

Gly Gln Glu Asp Gly Trp Arg Arg Asp Arg Gly Pro Gly Leu Cys Leu

His Arg Gln Val Pro Glu His Leu Gly Pro Asp Ser Gly His Pro His 25

Asp His Trp Ile His Pro Val Thr Gly Ile Arg Leu Cys Asp Ser Leu

Pro Tyr Tyr Val Xaa Asp Asn Thr Gly Lys Thr Gly Leu Leu Val Ala 50

Ala His Ser Leu Gln Pro Leu His Ser Thr Val Gln Cys Trp Pro Cys

Thr Xaa Gly Cys Cys Pro Cys Pro Leu Gly Pro Ala Pro Xaa Tyr Ser

Ser Leu Tyr Pro His Thr Cys Leu Gln Cys His Ser Ile Lys Arg Thr 100 105

Cys Leu

<210> 109

<211> 182

<212> PRT

<213> Homo sapien

<400> 109

Met Glu Glu Met Lys Asn Glu Ala Glu Thr Thr Ser Met Val Ser Met 5

Pro Leu Tyr Ala Val Met Tyr Pro Val Phe Asn Glu Leu Glu Arg Val

Asn Leu Ser Ala Ala Gln Thr Leu Arg Ala Ala Phe Ile Lys Ala Glu

Lys Glu Asn Pro Gly Leu Thr Gln Asp Ile Ile Met Lys Ile Leu Glu

Lys Lys Ser Val Glu Val Asn Phe Thr Glu Ser Leu Leu Arg Met Ala 70

Ala Asp Asp Val Glu Glu Tyr Met Ile Glu Arg Pro Glu Pro Glu Phe

Gln Asp Leu Asn Glu Lys Ala Arg Ala Leu Lys Gln Ile Leu Ser Lys 100

Ile Pro Asp Glu Ile Asn Asp Arg Val Arg Phe Leu Gln Thr Ile Lys 120

Ala Leu Glu His Gln Lys Lys Glu Phe Val Lys Tyr Ser Lys Ser Phe

Ser Asp Thr Leu Lys Thr Tyr Phe Lys Asp Gly Lys Ala Ile Asn Val 150

Phe Val Ser Ala Asn Arg Leu Ile His Gln Thr Asn Leu Ile Leu Gln

Thr Phe Lys Thr Val Ala 180

<210> 110

<211> 141 <212> PRT <213> Homo sapien

<400> 110

Met Arg Met Thr Met Glu Glu Met Lys Asn Glu Ala Glu Thr Thr Ser

WO 2004/053077 PCT/US2003/038815

15

147 1 5 10

Met Val Ser Met Pro Leu Tyr Ala Val Met Tyr Pro Val Phe Asn Glu
20 25 30

Leu Glu Arg Val Asn Leu Ser Ala Ala Gln Thr Leu Arg Ala Ala Phe 35 40 45

Ile Lys Ala Glu Lys Glu Asn Pro Gly Leu Thr Gln Asp Ile Ile Met
50 55 60

Lys Ile Leu Glu Lys Lys Ser Val Glu Val Asn Phe Thr Glu Ser Leu 65 70 75 80

Leu Arg Met Ala Ala Asp Asp Val Glu Glu Tyr Met Ile Glu Arg Pro 85 90 95

Glu Pro Glu Phe Gln Asp Leu Asn Glu Lys Ala Arg Ala Leu Lys Gln
100 105 110

Ile Leu Ser Lys Ile Pro Asp Glu Ile Asn Asp Arg Val Arg Phe Leu 115 120 125

Gln Thr Ile Lys His Leu Asn Thr Lys Arg Lys Asn Leu 130 135 140

<210> 111

<211> 132

<212> PRT

<213> Homo sapien

<400> 111

Gly Arg Val Pro Leu Ala Leu Gly Val Gln Thr Leu Pro Gln Thr Cys
1 5 10 15

Asp Glu Pro Lys Ala His Thr Ser Phe Gln Ile Ser Leu Ser Val Ser 20 25 30

Tyr Thr Gly Ser Ser Gly Arg Pro Gly Arg Tyr Glu Leu Phe Lys Ser 35 40 45

Ser Pro His Ser Leu Phe Pro Glu Lys Met Val Ser Ser Cys Leu Asp 50 55 60

Ala His Thr Gly Ile Ser His Glu Asp Leu Ile Gln Val Gly Gly Pro 65 70 75 80

148

Pro Ile Ser Leu Gln Ile His Asp Ser Pro Ala Leu Ala Ser Ala Ser 85

Pro Pro Leu Ser Pro Val Pro Pro Leu Tyr Val Val Glu Arg Ala Lys

Ser Gln Ser Cys Val Thr Gly Asp Ser His Phe Pro Cys Leu Ser Ile 120

Ser Phe Phe Tyr 130

<210> 112

<211> 277 <212> PRT

<213> Homo sapien

<400> 112

Met Glu Leu Asp Leu Ser Pro Pro His Leu Ser Ser Ser Pro Glu Asp 10

Leu Cys Pro Ala Pro Gly Thr Pro Pro Gly Thr Pro Arg Pro Pro Asp

Thr Pro Leu Pro Glu Glu Val Lys Arg Ser Gln Pro Leu Leu Ile Pro 35 40

Thr Thr Gly Arg Lys Leu Arg Glu Glu Glu Arg Arg Ala Thr Ser Leu 55 60

Pro Ser Ile Pro Asn Pro Phe Pro Glu Leu Cys Ser Pro Pro Ser Gln 75

Ser Pro Ile Leu Gly Gly Pro Ser Ser Ala Arg Gly Leu Leu Pro Arg 85

Asp Ala Ser Arg Pro His Val Val Lys Val Tyr Ser Glu Asp Gly Ala 100

Cys Arg Ser Val Glu Val Ala Ala Gly Ala Thr Ala Arg His Val Cys 115

Glu Met Leu Val Gln Arg Ala His Ala Leu Ser Asp Glu Thr Trp Gly 130 135 140

Leu Val Glu Cys His Pro His Leu Ala Leu Glu Arg Gly Leu Glu Asp

155 145 150 160

His Glu Ser Val Val Glu Val Gln Ala Ala Trp Pro Val Gly Gly Asp 170

Ser Arg Phe Val Phe Arg Lys Asn Phe Ala Lys Tyr Glu Leu Phe Lys

Ser Ser Pro His Ser Leu Phe Pro Glu Lys Met Val Ser Ser Cys Leu 195 200

Asp Ala His Thr Gly Ile Ser His Glu Asp Leu Ile Gln Val Gly Gly 210 215

Pro Pro Ile Ser Leu Gln Ile His Asp Ser Pro Ala Leu Ala Ser Ala 230

Ser Pro Pro Leu Ser Pro Val Pro Pro Leu Tyr Val Val Glu Arg Ala 250

Lys Ser Gln Ser Cys Val Thr Gly Asp Ser His Phe Pro Cys Leu Ser 265

Ile Ser Phe Phe Tyr 275

<210> 113 <211> 155 <212> PRT <213> Homo sapien

<400> 113

Met Phe Leu Val Leu Ala Arg Ala Cys Gln Leu Leu Gln Ile Cys Leu

Lys Glu Ser Leu Phe Ala Tyr Leu Gly Leu Ser Pro Pro Ser Tyr Thr 20

Phe Pro Ala Pro Ala Ala Val Ile Pro Thr Glu Ala Ala Ile Tyr Gln 35

Pro Ser Val Ile Leu Asn Pro Arg Ala Leu Gln Pro Ser Thr Ala Tyr 60

Tyr Pro Ala Gly Thr Gln Leu Phe Met Asn Tyr Thr Ala Tyr Tyr Pro 75

150

Ser Pro Pro Gly Ser Pro Asn Ser Leu Gly Tyr Phe Pro Thr Ala Ala 85

Asn Leu Ser Gly Val Pro Pro Gln Pro Gly Thr Val Val Arg Met Gln

Gly Leu Ala Tyr Asn Thr Gly Val Lys Glu Ile Leu Asn Phe Phe Gln 115

Gly Tyr Gln Tyr Ala Thr Glu Asp Gly Leu Ile His Thr Asn Asp Gln 130 135

Ala Arg Thr Leu Pro Lys Glu Trp Val Cys Ile 150

<210> 114

<211> 103

<212> PRT

<213> Homo sapien

<400> 114

Met Val Lys Leu Asn Ser Asn Pro Ser Glu Lys Gly Thr Lys Pro Pro

Ser Val Glu Asp Gly Phe Gln Thr Val Pro Leu Ile Thr Pro Leu Glu 20 25

Val Asn His Leu Gln Leu Pro Ala Pro Glu Lys Val Ile Val Lys Thr 35

Arg Thr Glu Tyr Gln Pro Glu Gln Lys Asn Lys Gly Lys Phe Arg Val 50

Pro Lys Ile Ala Glu Phe Thr Val Thr Ile Leu Val Ser Leu Ala Leu 75

Ala Phe Leu Ala Cys Ile Val Phe Leu Val Val Tyr Lys Ala Phe Thr 85

Tyr Leu Lys Glu Leu Asn Ser 100

<210> 115

<211> 117 <212> PRT <213> Homo sapien

151

<220>

<221> MISC_FEATURE

<222> (114)..(114) <223> X=any amino acid

<400> 115

Pro Pro Thr Ser Ala Ala Gln Ser Gly Lys Lys Gly Val Arg Met Val

Lys Leu Asn Ser Asn Pro Ser Glu Lys Gly Thr Lys Pro Pro Ser Val

Glu Asp Gly Phe Gln Thr Val Pro Leu Ile Thr Pro Leu Glu Val Asn 40

His Leu Gln Leu Pro Ala Pro Glu Lys Val Ile Val Lys Thr Arg Thr

Glu Tyr Gln Pro Glu Gln Lys Asn Lys Gly Lys Phe Arg Val Pro Lys 75

Ile Ala Glu Phe Thr Val Thr Ile Leu Val Ser Leu Ala Leu Ala Phe 85

Leu Ala Cys Ile Val Phe Leu Val Val Tyr Lys Ala Phe Thr Tyr Leu 105

Lys Xaa Leu Asn Ser 115

<210> 116

<211> 454

<212> PRT

<213> Homo sapien

<400> 116

Met Pro Glu Phe Leu Glu Asp Pro Ser Val Leu Thr Lys Asp Lys Leu

Lys Ser Glu Leu Val Ala Asn Asn Val Thr Leu Pro Ala Gly Glu Gln 20 25

Arg Lys Asp Val Tyr Val Gln Leu Tyr Leu Gln His Leu Thr Ala Arg 35

Asn Arg Pro Pro Leu Pro Ala Gly Thr Asn Ser Lys Gly Pro Pro Asp 55

Phe 65	Ser	Ser	Asp	Glu	Glu 70	Arg	Glu	Pro	Thr	Pro 75	Val	Leu	Gly	Ser	Gly 80
Ala	Ala	Ala	Ala	Gly 85	Arg	Ser	Arg	Ala	Ala 90	Val	Gly	Arg	Lys	Ala 95	Thr
Lys	Lys	Thr	Asp 100	Lys	Pro	Arg	Gln	Glu 105	Asp	Lys	Asp	Asp	Leu 110	Asp	Val
Thr	Glu	Leu 115	Thr	Asn	Glu	Asp	Leu 120	Leu	Asp	Gln	Leu	Val 125	ГÀв	Tyr	Gly
Val	Asn 130	Pro	Gly	Pro	Ile	Val 135	Gly	Thr	Thr	Arg	Lys 140	Leu	Tyr	Glu	Ьys
Lys 145	Leu	Leu	Lys	Leu	Arg 150	Glu	Gln	Gly	Thr	Glu 155	Ser	Arg	Ser	Ser	Thr 160
Pro	Leu	Pro	Thr	Ile 165	Ser	Ser	Ser	Ala	Glu 170	Asn	Thr	Arg	Gln	Asn 175	Gly
Ser	Asn	Asp	Ser 180	Asp	Arg	Tyr	Ser	Asp 185	Asn	Glu	Glu	Asp	Ser 190	ГÀв	Ile
Glu	Leu	Lys 195	Leu	Glu	Lys	Arg	Glu 200	Pro	Leu	Lys	Gly	Arg 205	Ala	Lys	Thr
Pro	Val 210	Thr	Leu	Lys	Gln	Arg 215	Arg	Val	Glu	His	Asn 220	Gln	Ser	Tyr	Ser
Gln 225	Ala	Gly	Ile	Thr	Glu 230	Thr	Glu	Trp	Thr	Ser 235	Gly	Ser	Ser	Lys	Gly 240
Gly	Pro	Leu	Gln	Ala 245	Leu	Thr	Arg	Glu	Ser 250	Thr	Arg	Gly	Ser	Arg 255	Arg
Thr	Pro	Arg	Lys 260	Arg	Val	Glu	Thr	Ser 265	Glu	His	Phe	Arg	Ile 270	Asp	Gly
Pro	Val	Ile 275	Ser	Glu	Ser	Thr	Pro 280	Ile	Ala	Glu	Thr	Ile 285	Met	Ala	Ser
Ser	Asn 290	Glu	Ser	Leu	Val	Val 295	Asn	Arg	Val	Thr	Gly 300	Asn	Phe	Гуs	His

Ala Ser Pro Ile Leu Pro Ile Thr Glu Phe Ser Asp Ile Pro Arg Arg 305 310 315 320

Ala Pro Lys Lys Pro Leu Thr Arg Ala Glu Val Gly Glu Lys Thr Glu 325 330 335

Glu Arg Arg Val Glu Arg Asp Ile Leu Lys Glu Met Phe Pro Tyr Glu
340 345 350

Ala Ser Thr Pro Thr Gly Ile Ser Ala Ser Cys Arg Arg Pro Ile Lys 355 360 365

Gly Ala Ala Gly Arg Pro Leu Glu Leu Ser Asp Phe Arg Met Glu Glu 370 375 380

Ser Phe Ser Ser Lys Tyr Val Pro Lys Tyr Val Pro Leu Ala Asp Val 385 390 395 400

Lys Ser Glu Lys Thr Lys Lys Gly Arg Ser Ile Pro Val Trp Ile Lys 405 410 415

Ile Leu Leu Phe Val Val Val Ala Val Phe Leu Phe Leu Val Tyr Gln
420 425 430

Ala Met Glu Thr Asn Gln Val Asn Pro Phe Ser Asn Phe Leu His Val
435 440 445

Asp Pro Arg Lys Ser Asn 450

<210> 117

<211> 380

<212> PRT

<213> Homo sapien

<400> 117

Met Glu Leu Gly Arg Pro Leu Leu Glu Val Leu Ala Ser Ala Leu Ser 1 5 10 15

Pro Ala Ser Pro Pro Leu Pro Pro Asp Tyr Ile Leu Cys Val Val 20 25 30

Ser Leu Leu Gln Met Lys Asp Leu Gly Ala Glu His Leu Ala Gly His 35 40 45

Glu Gly Val Gln Leu Leu Gly Leu Leu Asn Val Tyr Leu Glu Gln Glu

WO 2004/053077 PCT/US2003/038815

154

50 55 60

Glu Arg Phe Gln Pro Arg Glu Lys Gly Leu Ser Leu Ile Glu Ala Thr 65 70 75 80

Pro Glu Asn Asp Asn Thr Leu Cys Pro Gly Leu Arg Asn Ala Lys Val 85 90 95

Glu Asp Leu Arg Ser Leu Ala Asn Phe Phe Gly Ser Cys Thr Glu Thr
100 105 110

Phe Val Leu Ala Val Asn Ile Leu Asp Arg Phe Leu Ala Leu Met Lys 115 120 125

Val Lys Pro Lys His Leu Ser Cys Ile Gly Val Cys Ser Phe Leu Leu 130 135 140

Ala Ala Arg Ile Val Glu Glu Asp Cys Asn Ile Pro Ser Thr His Asp 145 150 155 160

Val Ile Arg Ile Ser Gln Cys Lys Cys Thr Ala Ser Asp Ile Lys Arg 165 170 175

Met Glu Lys Ile Ile Ser Glu Lys Leu His Tyr Glu Leu Glu Ala Thr 180 185 190

Thr Ala Leu Asn Phe Leu His Leu Tyr His Thr Ile Ile Leu Cys His 195 200 205

Thr Ser Glu Arg Lys Glu Ile Leu Ser Leu Asp Lys Leu Glu Ala Gln 210 215 220

Leu Lys Ala Cys Asn Cys Arg Leu Ile Phe Ser Lys Ala Lys Pro Ser 225 230 235 240

Val Leu Ala Leu Cys Leu Leu Asn Leu Glu Val Glu Thr Leu Lys Ser 245 250 255

Val Glu Leu Leu Glu Ile Leu Leu Val Lys Lys His Ser Lys Ile 260 265 270

Asn Asp Thr Glu Phe Phe Tyr Trp Arg Glu Leu Val Ser Lys Cys Leu 275 280 285

Ala Glu Tyr Ser Ser Pro Glu Cys Cys Lys Pro Asp Leu Lys Lys Leu 290 295 300

Val Trp Ile Val Ser Arg Arg Thr Ala Gln Asn Leu His Asn Ser Tyr 310 315

Tyr Ser Val Pro Glu Leu Pro Thr Ile Pro Glu Gly Gly Cys Phe Asp 325 330

Glu Ser Glu Ser Glu Asp Ser Cys Glu Asp Met Ser Cys Gly Glu Glu

Ser Leu Ser Ser Pro Pro Ser Asp Gln Glu Cys Thr Phe Phe 355 360

Asn Phe Lys Val Ala Gln Thr Leu Cys Phe Pro Ser 375

<210> 118 <211> 227

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (6)..(6) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (11)..(11)

<223> X=any amino acid

<400> 118

Met Leu Leu Glu Arg Xaa Gln Cys Asp Gly Xaa Arg Arg Gly Arg Gly

Thr Ala Ser Asp Ile Lys Arg Met Glu Lys Ile Ile Ser Glu Lys Leu

His Tyr Glu Leu Glu Ala Thr Thr Ala Leu Asn Phe Leu His Leu Tyr

His Thr Ile Ile Leu Cys His Thr Ser Glu Arg Lys Glu Ile Leu Ser 50 55

Leu Asp Lys Leu Glu Ala Gln Leu Lys Ala Cys Asn Cys Arg Leu Ile 65 70 75

156

Phe Ser Lys Ala Lys Pro Ser Val Leu Ala Leu Cys Leu Leu Asn Leu 85

Glu Val Glu Thr Leu Lys Ser Val Glu Leu Leu Glu Ile Leu Leu Leu 105

Val Lys Lys His Ser Lys Ile Asn Asp Thr Glu Phe Phe Tyr Trp Arg 120

Glu Leu Val Ser Lys Cys Leu Ala Glu Tyr Ser Ser Pro Glu Cys Cys 135

Lys Pro Asp Leu Lys Lys Leu Val Trp Ile Val Ser Arg Arg Thr Ala

Gln Asn Leu His Asn Ser Tyr Tyr Ser Val Pro Glu Leu Pro Thr Ile

Pro Glu Gly Gly Cys Phe Asp Glu Ser Glu Ser Glu Asp Ser Cys Glu 185

Asp Met Ser Cys Gly Glu Glu Ser Leu Ser Ser Ser Pro Pro Ser Asp 200

Gln Glu Cys Thr Phe Phe Phe Asn Phe Lys Val Ala Gln Thr Leu Cys 215

Phe Pro Ser 225

<210> 119 <211> 227

<212> PRT

<213> Homo sapien

<400> 119

Met Leu Leu Glu Arg Arg Gln Cys Asp Gly Leu Arg Arg Gly Arg Gly 10

Thr Ala Ser Asp Ile Lys Arg Met Glu Lys Ile Ile Ser Glu Lys Leu 20

His Tyr Glu Leu Glu Ala Thr Thr Ala Leu Asn Phe Leu His Leu Tyr 35 40

His Thr Ile Ile Leu Cys His Thr Ser Glu Arg Lys Glu Ile Leu Ser 50

Leu Asp Lys Leu Glu Ala Gln Leu Lys Ala Cys Asn Cys Arg Leu Ile

157

PCT/US2003/038815

Phe Ser Lys Ala Lys Pro Ser Val Leu Ala Leu Cys Leu Leu Asn Leu 85

Glu Val Glu Thr Leu Lys Ser Val Glu Leu Leu Glu Ile Leu Leu Leu

Val Lys Lys His Ser Lys Ile Asn Asp Thr Glu Phe Phe Tyr Trp Arg

Glu Leu Val Ser Lys Cys Leu Ala Glu Tyr Ser Ser Pro Glu Cys Cys 135

Lys Pro Asp Leu Lys Lys Leu Val Trp Ile Val Ser Arg Arg Thr Ala

Gln Asn Leu His Asn Ser Tyr Tyr Ser Val Pro Glu Leu Pro Thr Ile 165 170

Pro Glu Gly Gly Cys Phe Asp Glu Ser Glu Ser Glu Asp Ser Cys Glu 180

Asp Met Ser Cys Gly Glu Glu Ser Leu Ser Ser Fro Pro Ser Asp 200 205

Gln Glu Cys Thr Phe Phe Phe Asn Phe Lys Val Ala Gln Thr Leu Cys 210 215 220

Phe Pro Ser 225

WO 2004/053077

<210> 120 <211> 101 <212> PRT

<213> Homo sapien

<400> 120

Met Cys Cys Trp Gln Ala Thr Phe Phe Lys Ala Leu Ser Glu Thr Leu 1 5 10

Ile Phe Gly Val Ser Phe Gln Glu Thr Phe Leu Trp Arg Glu Asn Glu 20 25

158

Tyr Glu Asp Asn Phe Gln Leu Ile Ile Trp Val Thr Gln Asn Arg Val

Tyr Gly Tyr Arg Ile Asp Phe Leu Ile Met Ala Ser Asp Val Ala Leu

Gly Lys Gly Ala Leu Cys Thr Val Cys Ala Cys Met Cys Val Tyr Leu

Tyr Lys Phe Val Ser Phe Gly Met Thr Val Cys Leu Ser Arg Lys Pro 90

Ile Asn Ser Lys Phe 100

<210> 121 <211> 392

<212> PRT

<213> Homo sapien

<400> 121

Arg Leu Ala Leu Cys Pro Gln Leu Ile Leu Pro His Val Asp

Ile Gln Leu Lys Tyr Phe Asp Leu Gly Leu Pro Asn Arg Asp Gln Thr 20

Asp Asp Gln Val Thr Ile Asp Ser Ala Leu Ala Thr Gln Lys Tyr Ser

Val Ala Val Lys Cys Ala Thr Ile Thr Pro Asp Glu Ala Arg Val Glu

Glu Phe Lys Leu Lys Lys Met Trp Lys Ser Pro Asn Gly Thr Ile Arg

Asn Ile Leu Gly Gly Thr Val Phe Arg Glu Pro Ile Ile Cys Lys Asn

Ile Pro Arg Leu Val Pro Gly Trp Thr Lys Pro Ile Thr Ile Gly Arg

His Ala His Gly Asp Gln Tyr Lys Ala Thr Asp Phe Val Ala Asp Arg 120

Ala Gly Thr Phe Lys Met Val Phe Thr Pro Lys Asp Gly Ser Gly Val 130 135

Lys Glu Trp Glu Val Tyr Asn Phe Pro Ala Gly Gly Val Gly Met Gly 155

Met Tyr Asn Thr Asp Glu Ser Ile Ser Gly Phe Ala His Ser Cys Phe 165 170

Gln Tyr Ala Ile Gln Lys Lys Trp Pro Leu Tyr Met Ser Thr Lys Asn 185

Thr Ile Leu Lys Ala Tyr Asp Gly Arg Phe Lys Asp Ile Phe Gln Glu 200 205

Ile Phe Asp Lys His Tyr Lys Thr Asp Phe Asp Lys Asn Lys Ile Trp

Tyr Glu His Arg Leu Ile Asp Asp Met Val Ala Gln Val Leu Lys Ser 235

Ser Gly Gly Phe Val Trp Ala Cys Lys Asn Tyr Asp Gly Asp Val Gln

Ser Asp Ile Leu Ala Gln Gly Phe Gly Ser Leu Gly Leu Met Thr Ser 265

Val Leu Val Cys Pro Asp Gly Lys Thr Ile Glu Ala Glu Ala Ala His 280 285

Gly Thr Val Thr Arg His Tyr Arg Glu His Gln Lys Gly Arg Pro Thr 295

Ser Thr Asn Pro Ile Ala Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu 305 315

His Arg Gly Lys Leu Asp Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln 335

Met Leu Glu Lys Val Cys Val Glu Thr Val Glu Ser Gly Ala Met Thr 345

Lys Asp Leu Ala Gly Cys Ile His Gly Leu Ser Asn Val Lys Leu Asn 365

Glu His Phe Leu Asn Thr Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn 375 380

Leu Asp Arg Ala Leu Gly Arg Gln 385

<210> 122

<211> 438 <212> PRT

<213> Homo sapien

<400> 122

Met Ala Cys Arg Leu Leu Ile Leu Pro Phe Val Val Met Ser Leu Ser

His Trp Gly Asp Ala Leu Leu Leu Ala Leu Cys Pro Gln Leu Ile Leu

Pro His Val Asp Ile Gln Leu Lys Tyr Phe Asp Leu Gly Leu Pro Asn

Arg Asp Gln Thr Asp Asp Gln Val Thr Ile Asp Ser Ala Leu Ala Thr 50

Gln Lys Tyr Ser Val Ala Val Lys Cys Ala Thr Ile Thr Pro Asp Glu 70

Ala Arg Val Glu Glu Phe Lys Leu Lys Lys Met Trp Lys Ser Pro Asn 85 90

Gly Thr Ile Arg Asn Ile Leu Gly Gly Thr Val Phe Arg Glu Pro Ile 100 105

Ile Cys Lys Asn Ile Pro Arg Leu Val Pro Gly Trp Thr Lys Pro Ile 120

Thr Ile Gly Arg His Ala His Gly Asp Gln Tyr Lys Ala Thr Asp Phe 130

Val Ala Asp Arg Ala Gly Thr Phe Lys Met Val Phe Thr Pro Lys Asp 150

Gly Ser Gly Val Lys Glu Trp Glu Val Tyr Asn Phe Pro Ala Gly Gly 170

Val Gly Met Gly Met Tyr Asn Thr Asp Glu Ser Ile Ser Gly Phe Ala 190

His Ser Cys Phe Gln Tyr Ala Ile Gln Lys Lys Trp Pro Leu Tyr Met

161 200 205 195 Ser Thr Lys Asn Thr Ile Leu Lys Ala Tyr Asp Gly Arg Phe Lys Asp Ile Phe Gln Glu Ile Phe Asp Lys His Tyr Lys Thr Asp Phe Asp Lys 235 240 230 Asn Lys Ile Trp Tyr Glu His Arg Leu Ile Asp Asp Met Val Ala Gln 245 250 Val Leu Lys Ser Ser Gly Gly Phe Val Trp Ala Cys Lys Asn Tyr Asp Gly Asp Val Gln Ser Asp Ile Leu Ala Gln Gly Phe Gly Ser Leu Gly 280 Leu Met Thr Ser Val Leu Val Cys Pro Asp Gly Lys Thr Ile Glu Ala 295 Glu Ala Ala His Gly Thr Val Thr Arg His Tyr Arg Glu His Gln Lys 305 310 315 Gly Arg Pro Thr Ser Thr Asn Pro Ile Ala Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu His Arg Gly Lys Leu Asp Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln Met Leu Glu Lys Val Cys Val Glu Thr Val Glu Ser Gly Ala Met Thr Lys Asp Leu Ala Gly Cys Ile His Gly Leu Ser Asn 375 Val Lys Leu Asn Glu His Phe Leu Asn Thr Thr Asp Phe Leu Asp Thr 385 390 395 Ile Lys Ser Asn Leu Asp Ser Ser Pro Gly Gln Ala Val Gly Gly Ala Thr His Gly Cys Ser Gly Gly Ala Arg Ala Glu Pro Ala Gly Pro 425 420

Pro Glu Arg Gly Arg Gly 435

<2	1	0	>	1	2	3

<211> 292

<212> PRT

<213> Homo sapien

<400> 123

Pro Gly His Pro Pro Thr Gly Ala Pro Arg Leu Ala Ile Leu Leu Ser 5

Leu Gln Tyr Lys Ala Thr Asp Phe Val Ala Asp Arg Ala Gly Thr Phe

Lys Met Val Phe Thr Pro Lys Asp Gly Ser Gly Val Lys Glu Trp Glu 40 45

Val Tyr Asn Phe Pro Ala Gly Gly Val Gly Met Gly Met Tyr Asn Thr

Asp Glu Ser Ile Ser Gly Phe Ala His Ser Cys Phe Gln Tyr Ala Ile

Gln Lys Lys Trp Pro Leu Tyr Met Ser Thr Lys Asn Thr Ile Leu Lys

Ala Tyr Asp Gly Arg Phe Lys Asp Ile Phe Gln Glu Ile Phe Asp Lys 105

His Tyr Lys Thr Asp Phe Asp Lys Asn Lys Ile Trp Tyr Glu His Arg 120 125

Leu Ile Asp Asp Met Val Ala Gln Val Leu Lys Ser Ser Gly Gly Phe

Val Trp Ala Cys Lys Asn Tyr Asp Gly Asp Val Gln Ser Asp Ile Leu

Ala Gln Gly Phe Gly Ser Leu Gly Leu Met Thr Ser Val Leu Val Cys

Pro Asp Gly Lys Thr Ile Glu Ala Glu Ala Ala His Gly Thr Val Thr 185

Arg His Tyr Arg Glu His Gln Lys Gly Arg Pro Thr Ser Thr Asn Pro 195 200

163

Ile Ala Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu His Arg Gly Lys

Leu Asp Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln Met Leu Glu Lys 240

Val Cys Val Glu Thr Val Glu Ser Gly Ala Met Thr Lys Asp Leu Ala 245

Gly Cys Ile His Gly Leu Ser Asn Val Lys Leu Asn Glu His Phe Leu 265

Asn Thr Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn Leu Asp Arg Ala 280

Leu Gly Arg Gln 290

<210> 124

<211> 417 <212> PRT <213> Homo sapien

<400> 124

Met Lys Asn Phe Arg Thr Pro Val Trp Leu Cys Cys Leu Gly Phe 10

Lys Phe Trp Leu Lys Asp Gly Gly Cys Ser Gly Thr Thr Ile Ile Ser

Val Leu Thr Glu Phe Lys Leu Lys Lys Met Trp Lys Ser Pro Asn Gly

Thr Ile Arg Asn Ile Leu Gly Gly Thr Val Phe Arg Glu Pro Ile Ile

Cys Lys Asn Ile Pro Arg Leu Val Pro Gly Trp Thr Lys Pro Ile Thr 65 70

Ile Gly Arg His Ala His Gly Asp Gln Val Gly Gln Gly Glu Gly

Ile His Arg Pro Gly His Pro Pro Thr Gly Ala Pro Arg Leu Ala Ile 100

Leu Leu Ser Leu Gln Tyr Lys Ala Thr Asp Phe Val Ala Asp Arg Ala 115

- Gly Thr Phe Lys Met Val Phe Thr Pro Lys Asp Gly Ser Gly Val Lys
- Glu Trp Glu Val Tyr Asn Phe Pro Ala Gly Gly Val Gly Met Gly Met
- Tyr Asn Thr Asp Glu Ser Ile Ser Gly Phe Ala His Ser Cys Phe Gln 170
- Tyr Ala Ile Gln Lys Lys Trp Pro Leu Tyr Met Ser Thr Lys Asn Thr
- Ile Leu Lys Ala Tyr Asp Gly Arg Phe Lys Asp Ile Phe Gln Glu Ile
- Phe Asp Lys His Tyr Lys Thr Asp Phe Asp Lys Asn Lys Ile Trp Tyr 210
- Glu His Arg Leu Ile Asp Asp Met Val Ala Gln Val Leu Lys Ser Ser 225 235
- Gly Gly Phe Val Trp Ala Cys Lys Asn Tyr Asp Gly Asp Val Gln Ser 245
- Asp Ile Leu Ala Gln Gly Phe Gly Ser Leu Gly Leu Met Thr Ser Val
- Leu Val Cys Pro Asp Gly Lys Thr Ile Glu Ala Glu Ala Ala His Gly 275
- Thr Val Thr Arg His Tyr Arg Glu His Gln Lys Gly Arg Pro Thr Ser 290 295
- Thr Asn Pro Ile Ala Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu His 305 320
- Arg Gly Lys Leu Asp Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln Met
- Leu Glu Lys Val Cys Val Glu Thr Val Glu Ser Gly Ala Met Thr Lys
- Asp Leu Ala Gly Cys Ile His Gly Leu Ser Asn Val Lys Leu Asn Glu 360

165

His Phe Leu Asn Thr Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn Leu 375

Asp Ser Ser Pro Gly Gln Ala Val Gly Gly Gly Ala Thr His Gly Cys 385

Ser Gly Gly Ala Arg Ala Glu Pro Ala Gly Pro Pro Glu Arg Gly Arg 405 410

Gly

<210> 125 <211> 255

<212> PRT

<213> Homo sapien

<400> 125

Lys Pro Thr Met Gly Val Ser Arg Thr Ser Ser Arg Arg Ser Leu Thr

Ser Lys Ala Ser Ser Met Tyr Ser Val Ala Phe Leu Pro Phe Pro Pro 25

Cys Cys Ser His Pro Thr Leu Gly Arg Ser Leu Leu Glu Cys Ile Trp 35

Leu Ser Ser Glu Ala Gln Gly Gly Ile Pro Asn Leu Ser Ala Phe Cys 50

Pro Leu Pro Ile Thr Asp Leu Phe Thr Pro Arg His Tyr Lys Thr Asp

Phe Asp Lys Asn Lys Ile Trp Tyr Glu His Arg Leu Ile Asp Asp Met

Val Ala Gln Val Leu Lys Ser Ser Gly Gly Phe Val Trp Ala Cys Lys 100 105

Asn Tyr Asp Gly Asp Val Gln Ser Asp Ile Leu Ala Gln Gly Phe Gly

Ser Leu Gly Leu Met Thr Ser Val Leu Val Cys Pro Asp Gly Lys Thr

Ile Glu Ala Glu Ala Ala His Gly Thr Val Thr Arg His Tyr Arg Glu

WO 2004/053077 PCT/US2003/038815

166 145 150 155 160 His Gln Lys Gly Arg Pro Thr Ser Thr Asn Pro Ile Ala Ser Ile Phe 170 165 Ala Trp Thr Arg Gly Leu Glu His Arg Gly Lys Leu Asp Gly Asn Gln 185 Asp Leu Ile Arq Phe Ala Gln Met Leu Glu Lys Val Cys Val Glu Thr 205 195 200 Val Glu Ser Gly Ala Met Thr Lys Asp Leu Ala Gly Cys Ile His Gly 220 Leu Ser Asn Val Lys Leu Asn Glu His Phe Leu Asn Thr Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn Leu Asp Arg Ala Leu Gly Arg Gln 245 250 <210> 126 <211> 289 <212> PRT <213> Homo sapien <400> 126 Met Ser Thr Lys Asn Thr Ile Leu Lys Ala Tyr Asp Gly Arg Phe Lys 5 Asp Ile Phe Gln Glu Ile Phe Asp Asn Lys Ala Ser Ser Met Tyr Ser 20 25 Val Ala Phe Leu Pro Phe Pro Pro Cys Cys Ser His Pro Thr Leu Gly 40 35 Arg Ser Leu Leu Glu Cys Ile Trp Leu Ser Ser Glu Ala Gln Gly Gly 55 Ile Pro Asn Leu Ser Ala Phe Cys Pro Leu Pro Ile Thr Asp Leu Phe Thr Pro Arg His Tyr Lys Thr Asp Phe Asp Lys Asn Lys Ile Trp Tyr Glu His Arg Leu Ile Asp Asp Met Val Ala Gln Val Leu Lys Ser Ser

105

100

Gly Gly Phe Val Trp Ala Cys Lys Asn Tyr Asp Gly Asp Val Gln Ser 115

Asp Ile Leu Ala Gln Gly Phe Gly Ser Leu Gly Leu Met Thr Ser Val

Leu Val Cys Pro Asp Gly Lys Thr Ile Glu Ala Glu Ala Ala His Gly 145 150 155

Thr Val Thr Arg His Tyr Arg Glu His Gln Lys Gly Arg Pro Thr Ser 165 170

Thr Asn Pro Ile Ala Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu His 180 185

Arg Gly Lys Leu Asp Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln Met 195

Leu Glu Lys Val Cys Val Glu Thr Val Glu Ser Gly Ala Met Thr Lys 215

Asp Leu Ala Gly Cys Ile His Gly Leu Ser Asn Val Lys Leu Asn Glu 225

His Phe Leu Asn Thr Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn Leu 250

Asp Ser Ser Pro Gly Gln Ala Val Gly Gly Gly Ala Thr His Gly Cys

Ser Gly Gly Ala Arg Ala Glu Pro Ala Gly Pro Pro Glu Arg Gly Arg

Gly

<210> 127 <211> 167

<212> PRT

<213> Homo sapien

<400> 127

Val Glu Pro Arg Thr Met Ala Ala Thr Ile Leu Gly Cys Arg Gly Gln 10 15

Gln Gly Ser Ala Gly Trp Pro Gln Glu Arg Arg Gly Pro Glu Arg Lys

168

20

Ala Phe Tyr Pro Pro Gly Phe Gly Ser Leu Gly Leu Met Thr Ser Val 40

25

Leu Val Cys Pro Asp Gly Lys Thr Ile Glu Ala Glu Ala Ala His Gly 55

Thr Val Thr Arg His Tyr Arg Glu His Gln Lys Gly Arg Pro Thr Ser 70

Thr Asn Pro Ile Ala Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu His

Arg Gly Lys Leu Asp Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln Met 100 105

Leu Glu Lys Val Cys Val Glu Thr Val Glu Ser Gly Ala Met Thr Lys 120

Asp Leu Ala Gly Cys Ile His Gly Leu Ser Asn Val Lys Leu Asn Glu

His Phe Leu Asn Thr Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn Leu 150

Asp Arg Ala Leu Gly Arg Gln 165

<210> 128 <211> 188

<212> PRT

<213> Homo sapien

<400> 128

Met Ala Ala Thr Ile Leu Gly Cys Arg Gly Gln Gln Gly Ser Ala Gly

Trp Pro Gln Glu Arg Arg Gly Pro Glu Arg Lys Ala Phe Tyr Pro Pro 20

Gly Phe Gly Ser Leu Gly Leu Met Thr Ser Val Leu Val Cys Pro Asp

Gly Lys Thr Ile Glu Ala Glu Ala Ala His Gly Thr Val Thr Arg His

Tyr Arg Glu His Gln Lys Gly Arg Pro Thr Ser Thr Asn Pro Ile Ala 65 70 75 80

Ser Ile Phe Ala Trp Thr Arg Gly Leu Glu His Arg Gly Lys Leu Asp 85 90 95

Gly Asn Gln Asp Leu Ile Arg Phe Ala Gln Met Leu Glu Lys Val Cys
100 105 110

Val Glu Thr Val Glu Ser Gly Ala Met Thr Lys Asp Leu Ala Gly Cys 115 120 125

Ile His Gly Leu Ser Asn Val Lys Leu Asn Glu His Phe Leu Asn Thr 130 135 140

Thr Asp Phe Leu Asp Thr Ile Lys Ser Asn Leu Asp Ser Ser Pro Gly 145 150 155 160

Gln Ala Val Gly Gly Gly Ala Thr His Gly Cys Ser Gly Gly Ala Arg 165 · 170 175

Ala Glu Pro Ala Gly Pro Pro Glu Arg Gly Arg Gly 180 185

<210> 129

<211> 162

<212> PRT

<213> Homo sapien

<400> 129

Pro Ala Arg Pro Ala Pro Ala Arg Pro Ser Val Ser Val Ser Pro Arg

1 5 10 15

Pro Gly Ser Arg Glu Glu Arg Arg Ala Leu Gly Pro Leu Pro Pro Cys 20 25 30

Ser Phe Ala Leu Gln Leu Gly Met Ala Gly Tyr Leu Arg Val Val Arg 35 40 45

Ser Leu Cys Arg Ala Ser Gly Ser Arg Pro Ala Trp Ala Pro Ala Ala 50 55 60

Leu Thr Ala Pro Thr Ser Gln Glu Gln Pro Arg Arg His Tyr Ala Asp
65 70 75 80

Lys Arg Ile Lys Val Ala Lys Pro Val Val Glu Met Asp Gly Asp Glu

85 90 95

Met Thr Arg Ile Ile Trp Gln Phe Ile Lys Glu Lys Cys Glu Ala Glu 100 105

Arg Ala Leu Pro Glu His His Gly Leu Pro Arg His His Gln Glu Gln 120

Pro Gly Gln Ser Pro Gly Gln Ala Val Gly Gly Gly Ala Thr His Gly

Cys Ser Gly Gly Ala Arg Ala Glu Pro Ala Gly Pro Pro Glu Arg Gly 155

Arg Gly

<210> 130 <211> 112 <212> PRT

<213> Homo sapien

<400> 130

Met Ala Gly Tyr Leu Arg Val Val Arg Ser Leu Cys Arg Ala Ser Gly 5 10

Ser Arg Pro Ala Trp Ala Pro Ala Ala Leu Thr Ala Pro Thr Ser Gln 20 25

Glu Gln Pro Arg Arg His Tyr Ala Asp Lys Arg Ile Lys Val Ala Lys

Pro Val Val Glu Met Asp Gly Asp Glu Met Thr Arg Ile Ile Trp Gln 50

Phe Ile Lys Glu Lys Cys Glu Ala Glu Arg Ala Leu Pro Glu His His 70

Gly Leu Pro Arg His His Gln Glu Gln Pro Gly Gln Gln Pro Trp Ala

Gly Ser Arg Gly Arg Arg His Pro Trp Leu Gln Trp Arg Gly Gln Gly 100 105 110

<210> 131

<211> 306 <212> PRT

<213> Homo sapien

<400> 131

Thr Phe Trp His Arg Lys Lys Gly Ile Ala Thr Leu His Arg Cys Phe 1 5 10 15

Gly Asn Pro Leu Tyr Cys Glu Val Leu Cys Gln Asp Leu Leu Ser Lys 20 25 30

Asp Val Leu Leu Phe His Val Leu Gln Lys Glu Glu Glu Glu Asn Ser 35 40 45

Lys Trp Glu Thr Leu Ser Ala Asn Ala Met Lys Ser Ile Met Tyr Ser 50 55 60

Ile Ser Pro Ala Asn Ser Glu Glu Glu Glu Leu Tyr Val Cys Thr 65 70 75 80

Val Lys Asp Asp Val Asn Leu Asp Thr Val Leu Leu Pro Phe Leu 85 90 95

Lys Glu Ile Ala Val Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln
100 105 110

Leu Leu Val Lys Cys Ala Ala Ile Ile Gly His Ser Phe His Ile Asp 115 120 125

Leu Leu Gln His Leu Leu Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln 130 135 140

Val Leu Arg Ala Leu Val Asp Ile His Val Leu Cys Trp Ser Asp Lys
145 150 155 160

Ser Gln Glu Leu Pro Ala Glu Pro Ile Leu Met Pro Ser Ser Ile Asp 165 170 175

Ile Ile Asp Gly Thr Lys Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser

Ala Ser Leu Leu Arg Leu Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu
195 200 205

. Val Leu Glu Phe Gly Val Pro Leu Leu Arg Ala Ala Trp Glu Leu 210 215 220

Trp Pro Lys Glu Gln Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe

WO 2004/053077 PCT/US2003/038815

172

225 230 235 240

Leu Gln Val Leu Ala Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe 245 250 255

Val Pro Phe His His Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly 260 265 270

Thr Ser Arg Phe Cys Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln 275 280 285

Val Ile Thr Glu Lys Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys 290 295 300

Ser Ser 305

<210> 132

<211> 508

<212> PRT

<213> Homo sapien

<400> 132

Met Pro Trp Arg Ala Pro Ser Ala Ser Ser Ala Ser Ala Gly Arg Ile

1 10 15

Leu Leu Arg Pro Thr Glu Glu Glu Gly Gly Ala Glu Arg Ser Phe Ser 20 25 30

Gly Pro Arg Gly Ser Ser Gly Arg Ile Pro Arg Phe Val Ser Ile Ser 35 40 45

Ile Thr Asn Gly Pro Val Phe Cys Gly Val Val Gly Ala Val Ala Arg 50 55 60

His Glu Tyr Thr Val Ile Gly Pro Lys Val Ser Leu Ala Ala Arg Met 65 70 75 80

Ile Thr Ala Tyr Pro Gly Leu Val Ser Cys Asp Glu Val Thr Tyr Leu 85 90 95

Arg Ser Met Leu Pro Ala Tyr Asn Phe Lys Lys Leu Pro Glu Lys Met

Met Lys Asn Ile Ser Asn Pro Gly Lys Ile Tyr Glu Tyr Leu Gly His 115 120 125

- Arg Arg Cys Ile Met Phe Gly Lys Arg His Leu Ala Arg Lys Arg Asn 130 135 140
- Lys Asn His Pro Leu Leu Gly Val Leu Gly Ala Pro Cys Leu Ser Thr 145 150 155 160
- Asp Trp Glu Lys Glu Leu Glu Ala Phe Gln Met Ala Gln Gln Gly Cys 165 170 175
- Leu His Gln Lys Lys Gly Gln Ala Val Leu Tyr Glu Gly Gly Lys Gly 180 185 190
- Tyr Gly Lys Ser Gln Leu Leu Ala Glu Ile Asn Phe Leu Ala Gln Lys 195 200 205
- Glu Gly His Ser Tyr Pro Ser Gln Val Leu Trp Lys Pro Thr Leu Phe 210 225 220
- Glu Val Leu Cys Gln Asp Leu Leu Ser Lys Asp Val Leu Leu Phe His 225 230 235 240
- Val Leu Gln Lys Glu Glu Glu Glu Asn Ser Lys Trp Glu Thr Leu Ser 245 250 255
- Ala Asn Ala Met Lys Ser Ile Met Tyr Ser Ile Ser Pro Ala Asn Ser 260 265 270
- Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr Val Lys Asp Asp Val Asn 275 280 285
- Leu Asp Thr Val Leu Leu Leu Pro Phe Leu Lys Glu Ile Ala Val Ser 290 295 300
- Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln Leu Leu Val Lys Cys Ala 305 310 315 320
- Ala Ile Ile Gly His Ser Phe His Ile Asp Leu Leu Gln His Leu Leu 325 330 335
- Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln Val Leu Arg Ala Leu Val 340 345 350
- Asp Ile His Val Leu Cys Trp Ser Asp Lys Ser Gln Glu Leu Pro Ala

174

Glu Pro Ile Leu Met Pro Ser Ser Ile Asp Ile Ile Asp Gly Thr Lys 375 370

Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser Ala Ser Leu Leu Arg Leu

Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu Val Leu Glu Phe Gly Val 405 410

Pro Leu Leu Arg Ala Ala Ala Trp Glu Leu Trp Pro Lys Glu Gln Gln

Ile Ala Leu His Leu Glu Cys Ala Cys Phe Leu Gln Val Leu Ala Cys

Arg Cys Gly Ser Cys His Gly Gly Asp Phe Val Pro Phe His His Phe 455

Ala Val Cys Ser Thr Lys Asn Ser Lys Gly Thr Ser Arg Phe Cys Thr 470

Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln Val Ile Thr Glu Lys Leu 485 490

Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys Ser Ser 505

<210> 133

<211> 306

<212> PRT <213> Homo sapien

<400> 133

Thr Phe Trp His Arg Lys Lys Gly Ile Ala Thr Leu His Arg Cys Phe

Gly Asn Pro Leu Tyr Cys Glu Val Leu Cys Gln Asp Leu Leu Ser Lys

Asp Val Leu Leu Phe His Val Leu Gln Lys Glu Glu Glu Glu Asn Ser 35 40

Lys Trp Glu Thr Leu Ser Ala Asn Ala Met Lys Ser Ile Met Tyr Ser 50 55

Ile Ser Pro Ala Asn Ser Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr 70 75

WO 2004/053077 PCT/US2003/038815

175

Val	Lys	Asp	Asp	Val	Asn	Leu	Asp	Thr	Val	Leu	Leu	Leu	Pro	Phe	Leu
				85					90					95	

- Lys Glu Ile Ala Val Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln
 100 105 110
- Leu Leu Val Lys Cys Ala Ala Ile Ile Gly His Ser Phe His Ile Asp 115 120 125
- Leu Leu Gln His Leu Leu Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln 130 135 140
- Val Leu Arg Ala Leu Val Asp Ile His Val Leu Cys Trp Ser Asp Lys 145 150 155 160
- Ser Gln Glu Leu Pro Ala Glu Pro Ile Leu Met Pro Ser Ser Ile Asp 165 170 175
- Ile Ile Asp Gly Thr Lys Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser 180 185 190
- Ala Ser Leu Leu Arg Leu Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu
 195 200 205
- Val Leu Glu Phe Gly Val Pro Leu Leu Arg Ala Ala Ala Trp Glu Leu 210 225 220
- Trp Pro Lys Glu Gln Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe 225 230 235 240
- Leu Gln Val Leu Ala Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe 245 250 255
- Val Pro Phe His His Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly 260 265 270
- Thr Ser Arg Phe Cys Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln 275 280 285
- Val Ile Thr Glu Lys Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys 290 295 300

Ser Ser

305

176

<210> 134

<211> 429

<212> PRT

<213> Homo sapien

<400> 134

Met Ile Thr Ala Tyr Pro Gly Leu Val Ser Cys Asp Glu Val Thr Tyr

Leu Arg Ser Met Leu Pro Ala Tyr Asn Phe Lys Lys Leu Pro Glu Lys

Met Met Lys Asn Ile Ser Asn Pro Gly Lys Ile Tyr Glu Tyr Leu Gly

His Arg Arg Cys Ile Met Phe Gly Lys Arg His Leu Ala Arg Lys Arg

Asn Lys Asn His Pro Leu Leu Gly Val Leu Gly Ala Pro Cys Leu Ser

Thr Asp Trp Glu Lys Glu Leu Glu Ala Phe Gln Met Ala Gln Gln Gly

Cys Leu His Gln Lys Lys Gly Gln Ala Val Leu Tyr Glu Gly Gly Lys 100 105

Gly Tyr Gly Lys Ser Gln Leu Leu Ala Glu Ile Asn Phe Leu Ala Gln 115

Lys Glu Gly His Ser Tyr Pro Ser Gln Val Leu Trp Lys Pro Thr Leu 130

Phe Glu Val Leu Cys Gln Asp Leu Leu Ser Lys Asp Val Leu Leu Phe 145 150 160

His Val Leu Gln Lys Glu Glu Glu Glu Asn Ser Lys Trp Glu Thr Leu 165

Ser Ala Asn Ala Met Lys Ser Ile Met Tyr Ser Ile Ser Pro Ala Asn 180 185

Ser Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr Val Lys Asp Asp Val 200

Asn Leu Asp Thr Val Leu Leu Leu Pro Phe Leu Lys Glu Ile Ala Val

210 215 220

Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln Leu Leu Val Lys Cys

Ala Ala Ile Ile Gly His Ser Phe His Ile Asp Leu Leu Gln His Leu

Leu Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln Val Leu Arg Ala Leu 260 265

Val Asp Ile His Val Leu Cys Trp Ser Asp Lys Ser Gln Glu Leu Pro 280

Ala Glu Pro Ile Leu Met Pro Ser Ser Ile Asp Ile Ile Asp Gly Thr 290 295

Lys Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser Ala Ser Leu Leu Arg 305 315

Leu Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu Val Leu Glu Phe Gly 330

Val Pro Leu Leu Arg Ala Ala Trp Glu Leu Trp Pro Lys Glu Gln 340 345

Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe Leu Gln Val Leu Ala 360

Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe Val Pro Phe His His

Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly Thr Ser Arg Phe Cys 395

Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln Val Ile Thr Glu Lys 410

Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys Ser Ser 420 425

<210> 135 <211> 306 <212> PRT <213> Homo sapien

<400> 135

Thr 1	Phe	Trp	His	Arg 5	Гув	Lys	Gly	Ile	Ala 10	Thr	Leu	His	Arg	Сув 15	Phe
Gly	Asn	Pro	Leu 20	Tyr	аұЭ	Glu	Val	Leu 25	Сув	Gln	Asp	Leu	Leu 30	Ser	Lys
Asp	Val	Leu 35	Leu	Phe	His	Val	Leu 40	Gln	Гув	Glu	Glu	Glu 45	Glu	Asn	Ser
Lys	Trp 50	Glu	Thr	Leu	Ser	Ala 55	Asn	Ala	Met	Lys	Ser 60	Ile	Met	Tyr	Ser
Ile 65	Ser	Pro	Ala	Asn	Ser 70	Glu	Glu	Gly	Gln	Glu 75	Leu	Tyr	Val	Суз	Thr 80
Val	ГÀЗ	Asp	Asp	Val 85	Asn	Leu	Asp	Thr	Val 90	Leu	Leu	Leu	Pro	Phe 95	Leu
Lys	Glu	Ile	Ala 100	Val	Ser	Gln	Leu	Asp 105	Gln	Leu	Ser	Pro	Glu 110	Glu	Gln
Leu	Leu	Val 115	Lys	Сув	Ala	Ala	Ile 120	Ile	Gly	His	Ser	Phe 125	His	Ile	Asp
	Leu 130	Gln	His	Leu	Leu	Pro 135	Gly	Trp	Asp	Lys	Asn 140	Lys	Leu	Leu	Gln
Val 145	Leu	Arg	Ala	Leu	Val 150	Asp	Ile	His	Val	Leu 155	Сув	Trp	Ser	Asp	Lys 160
Ser	Gln	Gl'n	Leu	Pro 165	Ala	Glu	Pro	Ile	Leu 170	Met	Pro	Ser	Ser	Ile 175	Asp
Ile	Ile	Ąsp	Gly 180	Thr	Lys	Glu	Lys	Lys 185	Thr	Lys	Leu	Asp	Gly 190	Gly	Ser
Ala	Ser	Leu 195	Leu	Arg	Leu	Gln	Glu 200	Glu	Leu	Ser	Leu	Pro 205	Gln	Thr	Glu
Val	Leu 210	Glu	Phe	Gly	Val	Pro 215	Leu	Leu	Arg	Ala	Ala 220	Ala	Trp	Glu	Leu

Trp Pro Lys Glu Gln Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe 225 230 235 240

179

Leu Gln Val Leu Ala Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe 245

Val Pro Phe His His Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly 265

Thr Ser Arg Phe Cys Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln

Val Ile Thr Glu Lys Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys 295 300

Ser Ser 305

<210> 136 <211> 306 <212> PRT <213> Homo sapien

<400> 136

Thr Phe Trp His Arg Lys Lys Gly Ile Ala Thr Leu His Arg Cys Phe

Gly Asn Pro Leu Tyr Cys Glu Val Leu Cys Gln Asp Leu Leu Ser Lys

Asp Val Leu Leu Phe His Val Leu Gln Lys Glu Glu Glu Asn Ser

Lys Trp Glu Thr Leu Ser Ala Asn Ala Met Lys Ser Ile Met Tyr Ser

Ile Ser Pro Ala Asn Ser Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr

Val Lys Asp Asp Val Asn Leu Asp Thr Val Leu Leu Pro Phe Leu

Lys Glu Ile Ala Val Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln

Leu Leu Val Lys Cys Ala Ala Ile Ile Gly His Ser Phe His Ile Asp 120

Leu Leu Gln His Leu Leu Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln 135

Val Leu Arg Ala Leu Val Asp Ile His Val Leu Cys Trp Ser Asp Lys 150 155

Ser Gln Glu Leu Pro Ala Glu Pro Ile Leu Met Pro Ser Ser Ile Asp 170

Ile Ile Asp Gly Thr Lys Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser

Ala Ser Leu Leu Arg Leu Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu 200

Val Leu Glu Phe Gly Val Pro Leu Leu Arg Ala Ala Ala Trp Glu Leu

Trp Pro Lys Glu Gln Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe

Leu Gln Val Leu Ala Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe 250

Val Pro Phe His His Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly

Thr Ser Arg Phe Cys Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln 275 280

Val Ile Thr Glu Lys Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys 290 295

Ser Ser 305

<210> 137

<211> 306

<212> PRT

<213> Homo sapien

Thr Phe Trp His Arg Lys Lys Gly Ile Ala Thr Leu His Arg Cys Phe 5

Gly Asn Pro Leu Tyr Cys Glu Val Leu Cys Gln Asp Leu Leu Ser Lys 20 25

181

Asp Val Leu Leu Phe His Val Leu Gln Lys Glu Glu Glu Glu Asn Ser 35 40 45

Lys Trp Glu Thr Leu Ser Ala Asn Ala Met Lys Ser Ile Met Tyr Ser 50 55 60

Ile Ser Pro Ala Asn Ser Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr 65 70 75 80

Val Lys Asp Asp Val Asn Leu Asp Thr Val Leu Leu Leu Pro Phe Leu 85 90 95

Lys Glu Ile Ala Val Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln 100 105 110

Leu Leu Val Lys Cys Ala Ala Ile Ile Gly His Ser Phe His Ile Asp 115 120 125

Leu Leu Gln His Leu Leu Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln 130 135 140

Val Leu Arg Ala Leu Val Asp Ile His Val Leu Cys Trp Ser Asp Lys 145 150 155 160

Ser Gln Glu Leu Pro Ala Glu Pro Ile Leu Met Pro Ser Ser Ile Asp 165 170 175

Ile Ile Asp Gly Thr Lys Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser 180 185 190

Ala Ser Leu Leu Arg Leu Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu 195 200 205

Val Leu Glu Phe Gly Val Pro Leu Leu Arg Ala Ala Ala Trp Glu Leu 210 215 220

Trp Pro Lys Glu Gln Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe 225 230 235 240

Leu Gln Val Leu Ala Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe 245 250 255

Val Pro Phe His His Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly 260 265 270

Thr Ser Arg Phe Cys Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln

182

275 280 285

Val Ile Thr Glu Lys Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys 290 295 300

Ser Ser

<210> 138

<211> 306

<212> PRT

<213> Homo sapien

<400> 138

Thr Phe Trp His Arg Lys Lys Gly Ile Ala Thr Leu His Arg Cys Phe 1 5 10 15

Gly Asn Pro Leu Tyr Cys Glu Val Leu Cys Gln Asp Leu Leu Ser Lys 20 25 30

Asp Val Leu Leu Phe His Val Leu Gln Lys Glu Glu Glu Glu Asn Ser 35 40 45

Lys Trp Glu Thr Leu Ser Ala Asn Ala Met Lys Ser Ile Met Tyr Ser 50 55 60

Ile Ser Pro Ala Asn Ser Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr 70 75 80

Val Lys Asp Asp Val Asn Leu Asp Thr Val Leu Leu Leu Pro Phe Leu 85 90 95

Lys Glu Ile Ala Val Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln
100 105 110

Leu Leu Val Lys Cys Ala Ala Ile Ile Gly His Ser Phe His Ile Asp 115 120 125

Leu Leu Gln His Leu Leu Pro Gly Trp Asp Lys Asn Lys Leu Leu Gln 130 135 140

Val Leu Arg Ala Leu Val Asp Ile His Val Leu Cys Trp Ser Asp Lys 145 150 155 160

Ser Gln Glu Leu Pro Ala Glu Pro Ile Leu Met Pro Ser Ser Ile Asp 165 170 175

Ile Ile Asp Gly Thr Lys Glu Lys Lys Thr Lys Leu Asp Gly Gly Ser 185

Ala Ser Leu Leu Arg Leu Gln Glu Glu Leu Ser Leu Pro Gln Thr Glu

Val Leu Glu Phe Gly Val Pro Leu Leu Arg Ala Ala Ala Trp Glu Leu 210 215

Trp Pro Lys Glu Gln Gln Ile Ala Leu His Leu Glu Cys Ala Cys Phe 225

Leu Gln Val Leu Ala Cys Arg Cys Gly Ser Cys His Gly Gly Asp Phe

Val Pro Phe His His Phe Ala Val Cys Ser Thr Lys Asn Ser Lys Gly 260 265

Thr Ser Arg Phe Cys Thr Tyr Arg Asp Thr Gly Ser Val Leu Thr Gln

Val Ile Thr Glu Lys Leu Gln Leu Pro Ser Pro Gln Glu Gln Arg Lys 290 295

Ser Ser 305

<210> 139 <211> 121 <212> PRT <213> Homo sapien

<400> 139

Met Arg Ser Thr Arg Glu Arg Arg Pro Gln Glu Arg Arg Arg Gln Gly

Ser Val Arg Gln Gly Arg Thr Gly Gly Ser Arg Phe Ala Ile Ile Pro

Gly Ser Arg Leu Cys Phe Val Gly Pro Ser His Cys Ile Leu Ala His 40

Thr Gly Glu Phe Trp Pro Trp Glu Asn Trp Ser Gln His Ala Ala Lys 55

Leu Ser His Gly Arg Gln Arg Ile Pro Thr His Cys Arg Ser Lys Pro

75 70 80 65

Cys Trp Lys Lys Gln Asn Ser Ser Pro Ser Val Glu Leu Arg Gly Asp 85 90

Trp Ser Arg Ala Pro Ala Asp Thr Lys Ile Gln Val Ala Gln Val Ser 105

His Arg Lys Trp Arg Ser Ile Cys Thr 115 120

<210> 140

<211> 125

<212> PRT <213> Homo sapien

<400> 140

Glu Phe Gly Gly Val Gly Ser Lys Leu Asn Thr Ala Ala Val His Gly

Arg Asn Tyr Ser Ile His Thr Phe Ser Glu Tyr Pro Ile Thr Lys Ala

Lys Lys Asn Thr Lys Gly Phe Val Leu Leu Gly Val Asp Leu Ile 35 40

Pro Arg Gln Ser Ser Gly His Arg His Arg Gly Cys Ala Gln Ala Cys 50

Pro Gln Pro Tyr Ala Ala Val Glu Ser Gly Arg Leu Leu Gln Asp Cys 65

Trp Pro Ser Pro Arg Met Ser Ala Ser Phe Ser Ile Tyr Trp Leu Leu 85

Leu Leu Tyr Val Met Leu Thr Leu Leu Leu Asn Thr Gly Leu Phe Ala

Phe Phe Pro Leu Met Glu Thr Trp Glu Arg His Tyr Phe 120 115

<210> 141

<211> 764

<212> PRT

<213> Homo sapien

<400> 141

185

Met Gln Ser Ser Leu Tyr Phe Glu Arg Ile Lys Tyr Asp Leu Gln Lys 1 10 15

Leu His Gly Gly Leu Ser Lys Thr Leu Asn Tyr Leu Phe Phe Val Glu
20 25 30

Lys Ser Tyr Phe Arg His His Phe Ile Pro Gln Gln Leu Ala Val Lys 35 40 45

Pro Leu Leu Cys Cys Met Pro Val Thr Leu Leu Asp Cys Gly Asp Tyr 50 55 60

Gln Cys Ser Arg Leu Leu Arg Ala Arg Val Gly Trp Gly Ile Lys Thr 65 70 75 80

Gly Lys Gln Ile Ala Thr Ile Leu Tyr Cys Glu Cys Leu Cys Trp Arg 85 90 95

Lys Tyr Arg Glu Leu Leu Glu His Leu Arg Gly Ala Pro Thr Leu Asn 100 105 110

Leu Gly Val Ser Arg Gly Ile Leu Lys Lys Val Lys Ala Lys Pro Gln 115 120 125

Ser Ile Ser Ser Leu Gly Ile Glu Gln Asn Val Arg Gly Glu Glu Met 130 135 140

Pro Lys Ala Arg Arg Glu Glu Tyr Ser Lys Gln Glu Gly Phe Gln Arg 145 150 155 160

Glu Lys Ser Ile Pro Asn Asn Ile Cys Thr Asn Leu Met Gly Arg Glu 165 170 175

Asn Val Gly Trp Gly Trp Met Met Arg Leu Lys Lys Lys Ala Arg Ser 180 185 190

Glu Ile Ile Ser Gly Leu Val His His Val Lys Glu Cys Arg Leu Asp 195 200 205

Ser Val Val Asn Arg Lys Ala Ala Gln Phe Ile Met Asn Ile Leu Glu 210 215 220

Asp Ser His Trp Asn Met Glu Asn Lys Val Gly Asp Asp Tyr Ile Leu 225 230 235 240

Glu Ala Gly Arg Thr Phe Leu Arg Lys Leu His Tyr Phe Gly Glu Asn

186

245 250 255

Asp Gly His Lys His Glu Glu Leu Glu Val Ile Met Thr Ser Ser Leu 260 265 270

Ile Phe Gln Lys Gly Phe Gly Arg Tyr Asn Ile Gly Thr Leu Thr Gly 275 280 285

Leu Thr Lys Gly Asp Glu Ile His His Ile Asn Cys Gln Thr Gln Gly 290 295 300

Gln Met Ser Asn Tyr Phe Ala Tyr Asp Val Glu Ile Thr Asn Phe Ser 305 310 315 320

Ser Gly Asn Gln Lys Leu Gln Asn Leu Val Phe Pro Ser Pro Arg Ile 325 330 335

Leu Ser Val Gln Thr Ile Cys Thr Thr Pro Pro Ile Ser Leu Pro Leu 340 345 350

His Val Cys Pro Thr Ser Lys Ser Arg Ser Ile His Thr Gly Lys Thr 355 360 365

Arg Ala Val Gln Val Ser Glu Asn Glu Lys Glu Glu Leu Ser Cys Ala 370 375 380

Glu Pro Ile Gln Asn Lys His Ile Leu Cys Ile Asp Ser Trp Asn Leu 385 390 395 400

Glu Arg Asn Ser Pro Asn Ser Ile Gly Ile Trp Met Val Cys Asn Pro 405 410 415

Trp Leu Gly Ser Ala Phe Lys Lys Pro Tyr Leu Glu Ile Pro Ser Met 420 425 430

Glu Pro Ser Ser Ile Lys Ala His Leu Lys Ala Tyr Ile Lys Asn Lys 435 440 445

Ile Leu Ala Ala Leu Tyr Thr Asn Asn Asp Val Met Ile Lys Leu Ser 450 455 460

Asp Ala Ile Ile Lys Trp Asn Tyr Lys Met Val Tyr Pro Leu Gln Lys 465 470 475 480

Lys Lys Ala Lys Phe Ser Val Glu His Cys Asp Phe Met Ser Leu His 485 490 495

Ser	Leu	Gly	Ala 500		Glu	Gly	Ala	Leu 505		Ser	Ser	Glu	Val 510		Glu
Lys	Thr	Trp 515		Leu	Ile	Ile	Tyr 520	Ala	Met	Phe	Phe	His 525	Leu	ГÀв	Glu
Ala	Phe 530	Phe	Leu	Asp	Tyr	Leu 535	Ile	Gln	Phe	Pro	Ser 540	Arg	Гуs	Leu	Leu
Val 545	Pro	Leu	Thr	Arg	Gln 550	Gln	Leu	Gly	Arg	Gln 555	Lys	Leu	Tyr	Cys	Met 560
Tyr	Met	Val	Ala	Val 565	Gly	Arg	Arg	Phe	Leu 570		Pro	Gly	Pro	His 575	Trp
Pro	Tyr	Thr	Ser 580	Pro	Leu	Leu	Val	Met 585	Pro	Gly	His	Arg	Pro 590	Pro	Val
Ala	Ile	Ile 595	Ser	Tyr	Leu	Ser	Leu 600	Trp	Leu	Val	Asn	Leu 605	Ser	Ile	Leu
Ser	Ala 610	Ser	Ala	Leu	Gln	Ser 615	Ala	Gly	Thr	Leu	Leu 620	Thr	Ser	Ile	Ser
Сув 625	Trp	Leu	Ser	Thr	Phe 630	Leu	Ile	Gly	Pro	Ala 635	Leu	Phe	Ser	Ser	Gly 640
Pro	Ala	Val	Glu	Ser 645	Pro	Сув	Pro	Phe	Arg 650	Arg	Ala	Met	Ala	Tyr 655	His
Сув	Leu	Leu	Ser 660	Leu	His	Ser	Ala	Ala 665	Thr	Thr	Leu	Asn	Pro 670	Ser	Phe
Ser	Lys	Asp 675	Val	Ala	Asp	Phe	Thr 680	Gly	Lys	His	Lys	Arg 685	Leu	Asp	Leu
Pro	Gly 690	Leu	Pro	Phe	Thr	Cys 695	Leu	Asn	Leu	Thr	Ser 700	Phe	Asn	Phe	Gln
Ser 705	Gln	Asn	Val	Gly	Ile 710	Val	Ser	Ser	Leu	Pro 715	Tyr	Ile	Phe	Leu	Leu 720
Leu	Asn	His	Glu	Ser 725	Leu	Ser	Leu	Pro	Leu 730	Ala	Met	Сув	Trp	Arg 735	Leu

Leu Ser Gly Phe Arg Met Ser Ser His Leu Val Leu Val Ala Phe Asp 740 745 750

Ala Ser Ser Pro Pro Phe Lys Asp Thr Phe Glu Ile 755 760

<210> 142

<211> 267

<212> PRT

<213> Homo sapien

<400> 142

Val Arg Ala Pro Ser Pro Gly Gln Ala Gly Arg Ala Glu Gly Ala Asp 1 5 10 15

Pro Gln Pro Gly Pro Ala His Leu His Asp Gly Ser Glu Leu Leu Arg
20 25 30

Gly Lys Leu Arg Gln Leu Ser Glu Asp Asn Val Arg Pro Arg Gly Ala 35 40 45

Arg Leu Ser Ser Gly Pro Gly Thr Gly Val Ser Val Leu Phe Glu Arg 50 55 60

Asp Gly Glu Leu His Phe Pro Ala Cys His Arg Ala Leu Arg Ala Cys 65 70 75 80

Asp Gly Lys Ser Ser Ser Gln Pro Asn Val Ile Ser Ala Ala Leu Leu 85 90 95

Gly Pro Arg Ser Val Val Val Ser Gly Gly Leu Val Trp Arg Pro Val
100 105 110

Ser Gly Phe Gly Asp Gly Ser Asp Ala Ile Thr Ala Arg Gln Gly Val 115 120 125

Ser Arg Gly Val Lys Ala Ala Met Asn Arg Val Leu Cys Ala Pro Ala 130 135 140

Ala Gly Ala Val Arg Ala Leu Arg Leu Ile Gly Trp Ala Ser Arg Ser 145 150 155 160

Leu His Pro Leu Pro Gly Ser Arg Asp Arg Ala His Pro Ala Ala Glu 165 170 175

Glu Glu Asp Asp Pro Asp Arg Pro Ile Glu Phe Ser Ser Lys Ala

189

180 185 190

Asn Pro His Arg Trp Ser Val Gly His Thr Met Gly Lys Gly His Gln 195 200

Arg Pro Trp Trp Lys Val Leu Pro Leu Ser Cys Phe Leu Val Ala Leu 210 215

Ile Ile Trp Cys Tyr Leu Arg Glu Glu Ser Glu Ala Asp Gln Trp Leu 235 240

Arg Gln Val Trp Gly Glu Val Pro Glu Pro Ser Asp Arg Ser Glu Glu 245 250

Pro Glu Thr Pro Ala Ala Tyr Arg Ala Arg Thr 260 265

<210> 143

<211> 164 <212> PRT

<213> Homo sapien

<400> 143

Ala Glu Ala Trp Tyr Gly Ala Arg Phe Pro Val Ser Gly Asp Gly Ser 5

Asp Ala Ile Thr Ala Arg Gln Gly Val Ser Arg Gly Val Lys Ala Ala 20 30

Met Asn Arg Val Leu Cys Ala Pro Ala Ala Gly Ala Val Arg Ala Leu 35

Arg Leu Ile Gly Trp Ala Ser Arg Ser Leu His Pro Leu Pro Gly Ser

Arg Asp Arg Ala His Pro Ala Ala Glu Glu Asp Asp Pro Asp Arg

Pro Ile Glu Phe Ser Ser Ser Lys Ala Asn Pro His Arg Trp Ser Val

Gly His Thr Met Gly Lys Gly His Gln Arg Pro Trp Trp Lys Val Leu

Pro Leu Ser Cys Phe Leu Val Ala Leu Ile Ile Trp Cys Tyr Leu Arg 115 120

Glu Glu Ser Glu Ala Asp Gln Trp Leu Arg Gln Val Trp Gly Glu Val 135

Pro Glu Pro Ser Asp Arg Ser Glu Glu Pro Glu Thr Pro Ala Ala Tyr 150 155

Arg Ala Arg Thr

<210> 144

<211> 99 <212> PRT

<213> Homo sapien

<400> 144

Met Val Arg Ala Gly Ala Val Gly Ala His Leu Pro Ala Ser Gly Leu

Asp Ile Phe Gly Asp Leu Lys Lys Met Asn Lys Arg Gln Leu Tyr Tyr 25

Gln Val Leu Asn Phe Ala Met Ile Val Ser Ser Ala Leu Met Ile Trp 40

Lys Gly Leu Ile Val Leu Thr Gly Ser Glu Ser Pro Ile Val Val Val 50 55

Leu Ser Gly Ser Met Glu Pro Ala Phe His Arg Gly Asp Leu Leu Phe 75

Leu Thr Asn Phe Arg Glu Asp Pro Ile Arg Ala Glu Ile Met Glu Thr 90

Ser Asn Phe

<210> 145

<211> 136 <212> PRT <213> Homo sapien

<400> 145

Val Ile Cys Glu Arg Glu Leu Gly Val Leu Leu Ala Pro Asp Gln Ser 5 10

Arg Glu Ile Gln Leu Leu Ser Ser Pro Phe Pro Glu Leu Pro Pro 20 25

Glu Val Cys Gly Val Thr Arg Cys Ser Met Phe Pro Pro Lys Gly Arg
35 40 45

Thr Arg Leu Arg Ser Pro Val Ala Ala Leu Pro Arg Ser Pro Gly Ser 50 55

Ser Leu Ala Glu Val Pro Thr Pro Gln His Ser Gly Ser Gly Ser Phe 70 75 80

Leu Pro Ser Gly Ser Phe Leu Ala Gly Gln Cys Pro Arg Leu Ala Arg 85 90 95

Leu Arg Phe Pro Asp Ala Gln Ala Ser Arg Arg Ser Arg Gly Arg Lys
100 105 110

Asp Ala Gly Pro Val Gly Gly Gly Arg Gln Val Leu Arg Ser Arg Leu 115 120 125

Cys His Pro Glu Pro Ala Gly Arg

<210> 146

<211> 139

<212> PRT

<213> Homo sapien

<400> 146

Met Ser Lys Thr Phe Arg Gln Thr Glu Gly Ser Gln Gly Asp Arg Arg 1 5 10 15

Val His Ser Lys Ala Thr Ala Ser Pro Asp Pro Ala Leu Pro Ser Leu 20 25 30

Leu Trp Thr Gln Glu Lys Ser Asn Pro His Ser Glu Phe Ser His Gln 35 40

Asn Leu Ile Ile Asn Thr Leu Ser Leu Phe Phe Ala Gly Thr Glu Thr 50 55 60

Thr Ser Thr Thr Leu Arg Tyr Gly Phe Leu Leu Met Leu Lys Tyr Pro 65 70 75 80

His Val Ala Glu Arg Val Tyr Lys Glu Ile Glu Gln Val Val Gly Pro 85 90 95

192

His Arg Pro Pro Ala Leu Asp Asp Arg Ala Lys Met Pro Tyr Thr Glu 100 105 110

Ala Val Ile Arg Glu Ile Gln Arg Phe Ala Asp Leu Pro Met Gly 115 120 125

Val Pro His Ile Val Thr Gln His Thr Ser Phe 130 135

<210> 147

<211> 165

<212> PRT

<213> Homo sapien

<400> 147

Arg His Arg Ser Asp Thr Pro Gly Val Trp Cys Gly Gln Asn Thr Pro 1 5 10 15

Asn Ile Pro Asp Leu Leu Pro Ala Pro Leu Lys Gly Leu Arg Glu Gly 20 25 30

Gly Gln Arg Ile Pro Gly Ser Phe Ser Val Pro Thr Ser Val Asp Asn 35 40 45

Gly Ser Asp Ser Leu Gln Leu Pro Ala Ser Glu Arg Pro Ala Ala Ser 50 55 60

Gln Leu Pro Ser Leu Pro Trp His Gln Leu Ser Glu Val Ala Val Gln 65 70 75 80

Met Ser Gly Gly Val Arg Leu Leu Lys Ile Ile Ile Tyr Lys Ile Ile 85 90 95

Tyr Ile Tyr Phe Glu Thr Glu Ser His Ser Val Ala Gln Ala Gly Val
100 105 110

Gln Trp Arg Asp Leu Gly Ser Leu Gln Pro Pro Pro Gly Phe Lys

Lys Phe Ser Cys Leu Ser Leu Pro Ser Ser Trp Asp Tyr Arg Cys Val 130 135 140

Leu Pro Cys Leu Ala Asn Phe Cys Ile Phe Ser Arg Asp Gly Val Ser 145 150 155 160

Pro Cys Trp Pro Gly

165

193

<210> 148

<211> 136 <212> PRT

<213> Homo sapien

<400> 148

Met Leu Leu Glu Arg Arg Ser Val Met Asp Pro Pro Gly Gln Val Gln 5 10

Thr Tyr Glu Glu Gly Leu Phe Tyr Ala Gln Lys Ser Lys Lys Pro Leu 25

Met Val Ile His His Leu Glu Asp Cys Gln Tyr Ser Gln Ala Leu Lys 40

Lys Val Phe Ala Gln Asn Glu Glu Ile Gln Glu Met Ala Gln Asn Lys

Phe Ile Met Leu Asn Leu Met His Glu Thr Thr Asp Lys Asn Leu Ser 75

Pro Asp Gly Gln Tyr Val Pro Arg Ile Met Phe Val Asp Pro Ser Leu 90

Thr Val Arg Ala Asp Ile Ala Gly Arg Tyr Ser Asn Arg Leu Tyr Thr 105

Tyr Glu Pro Arg Asp Leu Pro Leu Leu Ile Glu Asn Met Lys Lys Ala 115

Leu Arg Leu Ile Gln Ser Glu Leu 130

<210> 149 <211> 196 <212> PRT

<213> Homo sapien

<400> 149

Met Glu Gly Asn Gly Pro Ala Ala Val His Tyr Gln Pro Ala Ser Pro

Pro Arg Asp Ala Cys Val Tyr Ser Ser Cys Tyr Cys Glu Glu Asn Ile

Trp Lys Leu Cys Glu Tyr Ile Lys Asn His Asp Gln Tyr Pro Leu Glu

194

35 40 45

Glu Cys Tyr Ala Val Phe Ile Ser Asn Glu Arg Lys Met Ile Pro Ile 50 . 55 60

Trp Lys Gln Gln Ala Arg Pro Gly Asp Gly Pro Val Ile Trp Asp Tyr 65 70 75 80

His Val Val Leu Leu His Val Ser Ser Gly Gly Gln Asn Phe Ile Tyr 85 90 95

Asp Leu Asp Thr Val Leu Pro Phe Pro Cys Leu Phe Asp Thr Tyr Val

Glu Asp Ala Phe Lys Ser Asp Asp Ile His Pro Gln Phe Arg Arg 115 120 125

Lys Phe Arg Val Ile Arg Ala Asp Ser Tyr Leu Lys Asn Phe Ala Ser 130 135 140

Asp Arg Ser His Met Lys Asp Ser Ser Gly Asn Trp Arg Glu Pro Pro 145 150 155 160

Pro Pro Tyr Pro Cys Ile Glu Thr Gly Gly Ile Asn Pro Val Asp Asn 165 170 175

Phe Leu Thr Phe Lys Lys Ile Lys Gly Pro Ser Pro Tyr Tyr Cys
180 185 190

Leu Ala Phe Ile 195

<210> 150

<211> 69

<212> PRT

<213> Homo sapien

<400> 150

Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu Ser Gly His Lys Asn Cys
1 10 15

Phe Val Lys Val Lys Asp Ser Lys Leu Pro Ala Tyr Lys Asp Leu Gly
20 25 30

Lys Asn Leu Pro Phe Pro Thr Tyr Phe Pro Asp Gly Asp Glu Glu Glu 35

Leu Pro Glu Asp Leu Tyr Asp Glu Asn Val Cys Gln Pro Gly Ala Pro 55

Ser Ile Thr Phe Ala

<210> 151 <211> 69

<212> PRT

<213> Homo sapien

<400> 151

Arg Glu Arg Glu Arg Glu Arg Glu Ser Gly His Lys Asn Cys

Leu Val Lys Val Lys Asp Ser Lys Leu Pro Ala Tyr Lys Asp Leu Gly 20

Lys Asn Leu Pro Phe Pro Thr Tyr Phe Pro Asp Gly Asp Glu Glu Glu 40

Leu Pro Glu Asp Leu Tyr Asp Glu Asn Val Cys Gln Pro Gly Ala Pro 55

Ser Ile Thr Phe Ala 65

<210> 152

<211> 174 <212> PRT <213> Homo sapien

<400> 152

Met Glu Ser Arg Thr Leu Leu Gly Gln Leu Trp Val Pro Leu Ala Ser

Gly Trp Ala Arg Gly Gln Arg Thr Cys Arg Arg Arg Leu Arg Tyr Gly 25

Leu Val Lys Val Glu Met Asp Gly Arg Met Asp Ser Leu Gly His Met 35 40

Ala Arg Ser Trp Glu Asp Gly His Arg Pro Lys Ser Val Leu Val Tyr 50 55

His Cys Thr Ser Gly Asn Leu Asn Pro Cys Asn Arg Gly Lys Met Gly 70

Phe Gln Val Leu Ala Thr Phe Glu Ile Pro Ile Pro Phe Glu Arg Ala 85 90

Leu Thr Arg Pro Tyr Ala Asp Phe Thr Thr Ser Asn Phe Arg Thr Gln 105

Tyr Trp Asn Ala Ile Ser Gln Gln Ala Pro Ala Ile Ile Tyr Asp Phe 120

Tyr Leu Trp Leu Thr Gly Arg Lys Pro Arg Gln Gly Gln Asp Gly Ser

Lys Ser Asn Gln Pro Pro Leu Gln Pro Ala Thr Ser Cys Trp Gln Asp

Leu Phe Leu His Pro Val Lys Ser Gln Gly Gly Thr Arg Ala 165 170

<210> 153

<211> 167 <212> PRT <213> Homo sapien

<220>

<221> MISC FEATURE

<222> (44)..(44)

<223> X=any amino acid

<400> 153

Gly Gln Leu Trp Val Pro Leu Ala Ser Gly Trp Ala Arg Gly Gln Arg

Thr Cys Arg Arg Arg Leu Arg Tyr Gly Leu Val Lys Val Glu Met Asp

Gly Arg Met Asp Ser Leu Gly His Met Ala Arg Xaa Trp Glu Asp Gly

His Arg Pro Lys Ser Val Leu Val Tyr His Cys Thr Ser Gly Asn Leu 50 55

Asn Pro Cys Asn Arg Gly Lys Met Gly Phe Gln Val Leu Ala Thr Phe 65 70

Glu Ile Pro Ile Pro Phe Glu Arg Ala Leu Thr Arg Pro Tyr Ala Asp 85

Phe Thr Thr Ser Asn Phe Arg Thr Gln Tyr Trp Asn Ala Ile Ser Gln 100 105 110

Gln Ala Pro Ala Ile Ile Tyr Asp Phe Tyr Leu Trp Leu Thr Gly Arg
115 120 125

Lys Pro Arg Gln Gly Gln Asp Gly Ser Lys Ser Asn Gln Pro Pro Leu 130 135 140

Gln Pro Ala Thr Ser Cys Trp Gln Asp Leu Phe Leu His Pro Val Lys 145 150 155 160

Ser Gln Gly Gly Thr Arg Ala 165

<210> 154

<211> 125

<212> PRT

<213> Homo sapien

<400> 154

Met Gln Gln Ala Arg Glu Thr Ala Val Gln Gln Tyr Lys Lys Leu Glu 1 5 10 15

Glu Glu Ile Gln Thr Leu Arg Val Tyr Tyr Ser Leu His Lys Ser Leu 20 25 30

Ser Gln Glu Glu Asn Leu Lys Asp Gln Phe Asn Tyr Thr Leu Ser Thr 35 40 45

Tyr Glu Glu Ala Leu Lys Asn Arg Glu Asn Ile Val Ser Ile Thr Gln 50 55 60

Gln Gln Asn Glu Glu Leu Ala Thr Gln Leu Gln Gln Ala Leu Thr Glu 65 70 75 80

Arg Ala Asn Met Glu Leu Gln Leu Gln His Ala Arg Glu Ala Ser Gln 85 90 95

Val Ala Asn Glu Lys Val Gln Lys Leu Glu Arg Leu Val Asp Val Leu 100 105 110

Arg Lys Lys Val Gly Thr Gly Thr Met Arg Thr Val Ile 115 120 125

198

<210> 155

<211> 106

<212> PRT

<213> Homo sapien

<400> 155

Met Pro Gln Ser Arg Arg Gln Trp Asp Phe Glu Gly Gly Lys Gly Arg
1 10 15

Arg Gln Ala Gly His Ala Leu Arg Gly Ala Arg Thr His Leu Leu His 20 25 30

Pro His Val Phe Arg Ala Leu Ser Leu Trp Glu Ala Phe Phe Arg Thr 35 40 45

Ala Leu Val Asn Trp Lys Arg Asn Pro Ser Pro Trp Pro Cys Ser
50 55 60

Asp Leu Asp Leu Ser Glu Val Thr Leu Pro Leu Arg Ala Leu Gln Ser 65 70 75 80

Leu Leu Ala Gly Gly Gly Thr Ser Pro Ser His Ser His Phe Leu Thr 85 90 95

Leu Ser Leu Cys Ile Thr Gly Ser Leu Leu 100 105

<210> 156

<211> 237

<212> PRT

<213> Homo sapien

<400> 156

Met Pro Gly Pro Ala Pro Gly Arg Gly Gly Ser Gly Val Gly Leu Arg
1 10 15

Gly Leu Ser Ser Leu Gln Ala Pro Gln Pro Ser Arg Val Pro Trp Pro 20 25 30

Met Ala Ala Tyr Ser Tyr Arg Pro Gly Pro Gly Ala Gly Pro Gly Pro 35 40 45

Ala Ala Gly Ala Ala Leu Pro Asp Gln Ser Phe Leu Trp Asn Val Phe 50 55 60

Gln Arg Val Asp Lys Asp Arg Ser Gly Val Ile Ser Asp Thr Glu Leu 65 70 75 80

Gln Gln Ala Leu Ser Asn Gly Thr Trp Thr Pro Phe Asn Pro Val Thr 85 90 95

Val Arg Ser Ile Ile Ser Met Phe Asp Arg Glu Asn Lys Ala Gly Val 100 105 110

Asn Phe Ser Glu Phe Thr Gly Val Trp Lys Tyr Ile Thr Asp Trp Gln 115 120 125

Asn Val Phe Arg Thr Tyr Asp Arg Asp Asn Ser Gly Met Ile Asp Lys 130 135 140

Asn Glu Leu Lys Gln Ala Leu Ser Gly Phe Gly Tyr Arg Leu Ser Asp 145 150 155 160

Gln Phe His Asp Ile Leu Ile Arg Lys Phe Asp Arg Gln Gly Arg Gly 165 170 175

Gln Ile Ala Phe Asp Asp Phe Ile Gln Gly Cys Ile Val Leu Gln Thr 180 185 190

Leu Ala Pro Ser Pro Arg Pro Glu Cys Gly Gly Ala Asn Thr Ala His 195 200 205

Cys Ser Leu Asp Pro Gln Ala Gln Ala Ile Leu Thr Pro Arg Thr Pro 210 215 220

Lys Val Leu Gly Ser Gln Ala Arg Val Thr Met Leu Ala 225 230 235

<210> 157

<211> 67

<212> PRT

<213> Homo sapien

<400> 157

Lys Asp Gln Ser Ala Ala Glu Asp Pro Ala Arg Ala Arg Thr Arg Ala 1 5 10 15

Arg Arg Arg Ser Ala Lys Glu His Asn Thr His Arg Ala Cys Lys Ala 20 25 30

Ala Ala Arg Ala Pro His Ala Tyr Pro Ala His Thr Val Gln Glu Asp 35 40 45

Asp Val Ala Val His Thr Pro Trp His Gln Pro Thr Pro Arg Thr Ser

200

50 55 60

Ala Ser Leu

<210> 158 <211> 156 <212> PRT <213> Homo sapien

<400> 158

Lys Asp Gln Ser Ala Ala Glu Asp Pro Ala Arg Ala Arg Thr Arg Ala

Arg Arg Arg Ser Ala Lys Glu His Asn Thr His Arg Ala Cys Lys Ala

Ala Ala Arg Ala Pro His Ala Tyr Pro Ala His Thr Val Gln Arg Gly 40

Arg Arg Gly Arg Pro His Pro Val Ala Pro Ala Asn Ala Pro His Leu

Gly Leu Ser Leu Ile Ser Leu Cys Val Val Val Thr Leu Phe Val Ile 70 75

Val Cys Ser Val Ile Val Cys Tyr Phe Tyr Leu Leu Phe Cys Phe Val 90

Val Val Cys Val Phe Val Phe Leu Phe Phe Phe Val Phe Leu Phe Phe 100

Phe Phe Phe Asn Phe Cys Ile Leu Ile Asn Val Phe Asn Tyr Asn Cys 120

Phe Lys Arg Ile Pro Ala Phe Gln Lys Phe Ile Leu Ser Leu Glu Thr

Arg Gln Gly His Thr Gly Phe Thr Ser Tyr Val Ile 145 150

<210> 159

<211> 829

<212> PRT <213> Homo sapien

<400> 159

Met Thr Thr Arg Gln Ala Thr Lys Asp Pro Leu Leu Arg Gly Val Ser 1 10 15

Pro Thr Pro Ser Lys Ile Pro Val Arg Ser Gln Lys Arg Thr Pro Phe 20 25 30

Pro Thr Val Thr Ser Cys Ala Val Asp Gln Glu Asn Gln Asp Pro Arg
35 40 45

Arg Trp Val Gln Lys Pro Pro Leu Asn Ile Gln Arg Pro Leu Val Asp 50 55 60

Ser Ala Gly Pro Arg Pro Lys Ala Arg His Gln Ala Glu Thr Ser Gln 65 70 75 80

Arg Leu Val Gly Ile Ser Gln Pro Arg Asn Pro Leu Glu Glu Leu Arg 85 90 95

Pro Ser Pro Arg Gly Gln Asn Val Gly Pro Gly Pro Pro Ala Gln Thr

Glu Ala Pro Gly Thr Ile Glu Phe Val Ala Asp Pro Ala Ala Leu Ala 115 120 125

Thr Ile Leu Ser Gly Glu Gly Val Lys Ser Cys His Leu Gly Arg Gln 130 135 140

Pro Ser Leu Ala Lys Arg Val Leu Val Arg Gly Ser Gln Gly Gly Thr 145 150 155 160

Thr Gln Arg Val Gln Gly Val Arg Ala Ser Ala Tyr Leu Ala Pro Arg 165 170 175

Thr Pro Thr His Arg Leu Asp Pro Ala Arg Ala Ser Cys Phe Ser Arg 180 185 190

Leu Glu Gly Pro Gly Pro Arg Gly Arg Thr Leu Cys Pro Gln Arg Leu 195 200 205

Gln Ala Leu Ile Ser Pro Ser Gly Pro Ser Phe His Pro Ser Thr Arg 210 215 220

Pro Ser Phe Gln Glu Leu Arg Arg Glu Thr Ala Gly Ser Ser Arg Thr 225 230 235 240

Ser Val Ser Gln Ala Ser Gly Leu Leu Glu Thr Pro Val Gln Pro

202 255 250 245 Ala Phe Ser Leu Pro Lys Gly Glu Arg Glu Val Val Thr His Ser Asp 265 Glu Gly Gly Val Ala Ser Leu Gly Leu Ala Gln Arg Val Pro Leu Arg 280 Glu Asn Arg Glu Met Ser His Thr Arg Asp Ser His Asp Ser His Leu 290 Met Pro Ser Pro Ala Pro Val Ala Gln Pro Leu Pro Gly His Val Val Pro Cys Pro Ser Pro Phe Gly Arg Ala Gln Arg Val Pro Ser Pro Gly 330 325 Pro Pro Thr Leu Thr Ser Tyr Ser Val Leu Arg Arg Leu Thr Val Gln Pro Lys Thr Arg Phe Thr Pro Met Pro Ser Thr Pro Arg Val Gln Gln 365 Ala Gln Trp Leu Arg Gly Val Ser Pro Gln Ser Cys Ser Glu Asp Pro 375 Ala Leu Pro Trp Glu Gln Val Ala Val Arg Leu Phe Asp Gln Glu Ser Cys Ile Arg Ser Leu Glu Gly Ser Gly Lys Pro Pro Val Ala Thr Pro 410 405 Ser Gly Pro His Ser Asn Arg Thr Pro Ser Leu Gln Glu Val Lys Ile 425 Gln Val Ser Leu Cys Gly Gln Gln Leu Cys Cys Leu Leu Asn Ser Asp Trp Ala Glu Glu Glu Gly Lys Glu Met Gly Asp Gln Glu Glu Asp Ser 450 455 Val Gly Arg Leu Leu Asn Ala His Leu Asp Val Thr Leu Gly Cys Ser 470 475 465 Leu Pro Pro Gln Arg Ile Gly Ile Leu Gln Gln Leu Leu Arg Gln Glu

490

485

Val	Glu	Gly	Leu 500		Gly	Gly	Gln	Сув 505	Val	Pro	Leu	Asn	Gly 510		Ser
Ser	Leu	Asp 515	Met	Val	Glu	Leu	Gln 520	Pro	Leu	Leu	Thr	Glu 525	Ile	Ser	Arg
Thr	Leu 530	Asn	Ala	Thr	Glu	His 535	Asn	Ser	Gly	Thr	Ser 540	His	Leu	Pro	Gly
Leu 545	Leu	Lys	His	Ser	Gly 550	Leu	Pro	Lys	Pro	Сув 555	Leu	Pro	Glu	Glu	Cys 560
Gly	Glu	Pro	Gln	Pro 565	Сув	Pro	Pro	Ala	Glu 570	Pro	Gly	Pro	Pro	Glu 575	Ala
Phe	Сув	Arg	Ser 580	Glu	Pro	Glu	Ile	Pro 585	Glu	Pro	Ser	Leu	Gln 590	Glu	Gln
Leu	Glu	Val 595	Pro	Glu	Pro	Tyr	Pro 600	Pro	Ala	Glu	Pro	Arg 605	Pro	Leu	Glu
Ser	Сув 610	Сув	Arg	Ser	Glu	Pro 615	Glu	Ile	Pro	Glu	Ser 620	Ser	Arg	Gln	Glu
Gln 625	Leu	Glu	Val	Pro	Glu 630	Pro	Сув	Pro	Pro	Ala 635	Glu	Pro	Arg	Pro	Leu 640
Glu	Ser	Tyr	Сув	Arg 645	Ile	Glu	Pro	Glu	Ile 650	Pro	Glu	Ser	Ser	Arg 655	Gln
Glu	Gln	Leu	Glu 660	Val	Pro	Glu	Pro	Сув 665	Pro	Pro	Ala	Glu	Pro 670	Gly	Pro
Leu	Gln	Pro 675	Ser	Thr	Gln	Gly	Gln 680	Ser	Gly	Pro	Pro	Gly 685	Pro	Cys	Pro
Arg	Val 690	Glu	Leu	Gly	Ala	Ser 695	Glu	Pro	Сув	Thr	Leu 700	Glu	His	Arg	Ser
Leu 705	Glu	Ser	Ser	Leu	Pro 710	Pro	Сув	Сув	Ser	Gln 715	Trp	Ala	Pro	Ala	Thr 720
Thr	Ser	Leu	Ile	Phe	Ser	Ser	Gln	His	Pro	Leu	Cys	Ala	Ser	Pro	Pro

204

Ile Cys Ser Leu Gln Ser Leu Arg Pro Pro Ala Gly Gln Ala Gly Leu
740 745 750

Ser Asn Leu Ala Pro Arg Thr Leu Ala Leu Arg Glu Arg Leu Lys Ser 755 760 765

Cys Leu Thr Ala Ile His Cys Phe His Glu Ala Arg Leu Asp Asp Glu 770 775 780

Cys Ala Phe Tyr Thr Ser Arg Ala Pro Pro Ser Gly Pro Thr Arg Val 785 790 795 800

Cys Thr Asn Pro Val Ala Thr Leu Leu Glu Trp Gln Asp Ala Leu Cys 805 810 815

Phe Ile Pro Val Gly Ser Ala Ala Pro Gln Gly Ser Pro 820 825

<210> 160

<211> 443

<212> PRT

<213> Homo sapien

<400> 160

Ala Ile Met Thr Thr Arg Gln Ala Thr Lys Asp Pro Leu Leu Arg Gly
1 5 10 15

Val Ser Pro Thr Pro Ser Lys Ile Pro Val Arg Ser Gln Lys Arg Thr 20 25 30

Pro Phe Pro Thr Val Thr Ser Cys Ala Val Asp Gln Glu Asn Gln Asp 35 40 45

Pro Arg Arg Trp Val Gln Lys Pro Pro Leu Asn Ile Gln Arg Pro Leu 50 60

Val Asp Ser Ala Gly Pro Arg Pro Lys Ala Arg His Gln Ala Glu Thr 65 70 75 80

Ser Gln Arg Leu Val Gly Ile Ser Gln Pro Arg Asn Pro Leu Glu Glu 85 90 95

Leu Arg Pro Ser Pro Arg Gly Gln Asn Val Gly Pro Gly Pro Pro Ala 100 105 110

Gln Thr Glu Ala Pro Gly Thr Ile Glu Phe Val Ala Asp Pro Ala Ala

115 120 125

Leu Ala Thr Ile Leu Ser Gly Glu Gly Val Lys Ser Cys His Leu Gly 130 135 140

Arg Gln Pro Ser Leu Ala Lys Arg Val Leu Val Arg Gly Ser Gln Gly
145 150 155 160

Gly Thr Thr Gln Arg Val Gln Gly Val Arg Ala Ser Ala Tyr Leu Ala 165 170 175

Pro Arg Thr Pro Thr His Arg Leu Asp Pro Ala Arg Ala Ser Cys Phe 180 185 190

Ser Arg Leu Glu Gly Pro Gly Pro Arg Gly Arg Thr Leu Cys Pro Gln 195 200 205

Arg Leu Gln Ala Leu Ile Ser Pro Ser Gly Pro Ser Phe His Pro Ser 210 220

Thr Arg Pro Ser Phe Gln Glu Leu Arg Arg Glu Thr Ala Gly Ser Ser 225 230 235 240

Arg Thr Ser Val Ser Gln Ala Ser Gly Leu Leu Clu Thr Pro Val 245 250 255

Gln Pro Ala Phe Ser Leu Pro Lys Gly Glu Arg Glu Val Val Thr His 260 265 270

Ser Asp Glu Gly Gly Val Ala Ser Leu Gly Leu Ala Gln Arg Val Pro 275 280 285

Leu Arg Glu Asn Arg Glu Met Ser His Thr Arg Asp Ser His Asp Ser 290 295 300

His Leu Met Pro Ser Pro Ala Pro Val Ala Gln Pro Leu Pro Gly His 305 310 315 320

Val Val Pro Cys Pro Ser Pro Phe Gly Arg Ala Gln Arg Val Pro Ser 325 330 335

Pro Gly Pro Pro Thr Leu Thr Ser Tyr Ser Val Leu Arg Arg Leu Thr 340 345 350

Val Gln Pro Lys Thr Arg Phe Thr Pro Met Pro Ser Thr Pro Arg Val 355 360 365

Gln Gln Ala Gln Trp Leu Arg Gly Val Ser Pro Gln Ser Cys Ser Glu 370 375 380

Asp Pro Ala Leu Pro Trp Glu Gln Val Ala Val Arg Leu Phe Asp Gln 385 390 395 400

Glu Ser Cys Ile Arg Ser Leu Glu Gly Ser Gly Lys Pro Pro Val Ala 405 410 415

Thr Pro Ser Gly Pro His Ser Asn Arg Thr Pro Ser Leu Gln Glu Val
420 425 430

Lys Ile Gln Val Ser Leu Cys Gly Gln Gln Leu 435 440

<210> 161

<211> 138

<212> PRT

<213> Homo sapien

<400> 161

Met Leu Pro His Leu Pro Pro Trp Pro Ser Leu Ala Leu Pro Gln Glu 1 5 10 15

Glu Gly Arg Gly Cys Thr Ser Ser Pro Val Leu Leu Ile Gly Leu Ala 20 25 30

Val Gly Gly Gly Gly Glu Asp Ser Thr Trp Trp Lys Tyr Arg Thr 35 40 45

Pro Asp Leu Pro Leu Asn Phe Pro Cys Pro Ser Gly Leu Ser Asn Leu 50 55 60

Ala Pro Arg Thr Leu Ala Leu Arg Glu Arg Leu Lys Ser Cys Leu Thr 65 70 75 80

Ala Ile His Cys Phe His Glu Ala Arg Leu Asp Asp Glu Cys Ala Phe 85 90 95

Tyr Thr Ser Arg Ala Pro Pro Ser Gly Pro Thr Arg Val Cys Thr Asn 100 105 110

Pro Val Ala Thr Leu Leu Glu Trp Gln Asp Ala Leu Cys Phe Ile Pro 115 120 125

Val Gly Ser Ala Ala Pro Gln Gly Ser Pro 130 135

<210> 162

<211> 60

<212> PRT

<213> Homo sapien

<400> 162

Met Arg Ala Arg Thr Pro Pro Ala Ala Pro Lys Glu Lys Ala Phe Ser 1 10 15

Ser Glu Ile Glu Asp Leu Pro Tyr Leu Ser Thr Thr Glu Met Tyr Leu 20 25 30

Cys Arg Trp His Gln Pro Pro Pro Ser Pro Leu Pro Leu Arg Glu Ser 35 40 45

Ser Pro Lys Lys Glu Glu Thr Val Ala Ser Lys Ala 50 55 60

<210> 163

<211> 99

<212> PRT

<213> Homo sapien

<400> 163

Lys Lys Gly Phe Leu Cys Cys Glu Met His Arg Thr Ile Leu Cys His 1 5 10 15

Ala Arg Leu Phe Leu Gln Leu Ile Leu Cys Glu Ile Trp Glu Gly Gly 20 25 30

Leu Trp Val Phe Ser Gly Ala Asn Gly Asn Phe Trp Val Gly Glu Pro 35 40 .45

Ala Trp Gly Gly Glu Phe Ser Pro Gly Pro Pro Leu Phe Asn Tyr Ile 50 55 60

Asn Ile Tyr Leu Tyr Ile Tyr Val Pro Val Trp Gly Ala Gly Gly Ile 65 70 75 80

Cys Gln Arg Pro Thr Val Leu Leu Tyr Leu Thr Ile Leu His Lys Gly
85 90 95

Ser Lys Met

<210> 164

<211> 294 <212> PRT

<213> Homo sapien

<400> 164

Met Phe Phe Ser Ala Ala Leu Arg Ala Arg Ala Ala Gly Leu Thr Ala

His Trp Gly Arg His Val Arg Asn Leu His Lys Thr Ala Met Gln Asn 20

Gly Ala Gly Gly Ala Leu Phe Val His Arg Asp Thr Pro Glu Asn Asn

Pro Asp Thr Pro Phe Asp Phe Thr Pro Glu Asn Tyr Lys Arg Ile Glu 50

Ala Ile Val Lys Asn Tyr Pro Glu Gly His Lys Ala Ala Ala Val Leu 70

Pro Val Leu Asp Leu Ala Gln Arg Gln Asn Gly Trp Leu Pro Ile Ser

Ala Met Asn Lys Val Ala Glu Val Leu Gln Val Pro Pro Met Arg Val 100

Tyr Glu Val Ala Thr Phe Tyr Thr Met Tyr Asn Arg Lys Pro Val Gly 120

Lys Tyr His Ile Gln Val Cys Thr Thr Thr Pro Cys Met Leu Arg Asn 130

Ser Asp Ser Ile Leu Glu Ala Ile Gln Lys Lys Leu Gly Ile Lys Val 150

Gly Glu Thr Thr Pro Asp Lys Leu Phe Thr Leu Ile Glu Val Glu Cys 170

Leu Gly Ala Cys Val Asn Ala Pro Met Val Gln Ile Asn Asp Asn Tyr 180

Tyr Glu Asp Leu Thr Ala Lys Asp Ile Glu Glu Ile Ile Asp Glu Leu 200

Lys Ala Gly Lys Ile Pro Lys Pro Gly Pro Arg Ser Gly Arg Phe Ser

210 215 220

Cys Glu Pro Ala Gly Gly Leu Thr Ser Leu Thr Glu Pro Pro Lys Gly 230

Pro Gly Phe Gly Val Gln Cys Val His Leu His Arg Lys Phe Gln Gly 250

Ala Ile Ala Val Val Val Asn His Arg Ile Ser Val Gly Met Ala Glu 260 265

Gly Glu Thr Gly Leu Gly Cys Arg Glu Leu Val Glu Val Gln Pro 280

Tyr Leu Pro Gly Arg Pro 290

<210> 165 <211> 250

<212> PRT

<213> Homo sapien

<400> 165

Met Phe Phe Ser Ala Ala Leu Arg Ala Arg Ala Ala Gly Leu Thr Ala 10

His Trp Gly Arg His Val Arg Asn Leu His Lys Thr Ala Met Gln Asn 20

Gly Ala Gly Gly Ala Leu Phe Val His Arg Asp Thr Pro Glu Asn Asn

Pro Asp Thr Pro Phe Asp Phe Thr Pro Glu Asn Tyr Lys Arg Ile Glu 50

Ala Ile Val Lys Asn Tyr Pro Glu Gly His Lys Ala Ala Ala Val Leu 70

Pro Val Leu Asp Leu Ala Gln Arg Gln Asn Gly Trp Leu Pro Ile Ser

Ala Met Asn Lys Val Ala Glu Val Leu Gln Val Pro Pro Met Arg Val 100

Tyr Glu Val Ala Thr Phe Tyr Thr Met Tyr Asn Arg Lys Pro Val Gly 120

210

Lys Tyr His Ile Gln Val Cys Thr Thr Pro Cys Met Leu Arg Asn 130 135

Ser Asp Ser Ile Leu Glu Ala Ile Gln Lys Lys Leu Gly Ile Lys Val 150

Gly Glu Thr Thr Pro Asp Lys Leu Phe Thr Leu Ile Glu Val Glu Cys 170

Leu Gly Ala Cys Val Asn Ala Pro Met Val Gln Ile Asn Asp Asn Tyr 180 185

Tyr Glu Asp Leu Thr Ala Lys Asp Ile Glu Glu Ile Ile Asp Glu Leu 200

Lys Ala Gly Lys Ile Pro Lys Pro Gly Pro Arg Ser Gly Arg Phe Ser

Cys Glu Pro Ala Gly Gly Leu Thr Ser Leu Thr Glu Arg Pro Pro Val 230

Cys Cys Gln Ser Phe Glu Ala Cys Arg Val 245

<210> 166

<211> 232

<212> PRT

<213> Homo sapien

<400> 166

Met Phe Phe Ser Ala Ala Leu Arg Ala Arg Ala Ala Gly Leu Thr Ala

His Trp Gly Arg His Val Arg Asn Leu His Lys Thr Ala Met Gln Asn 20

Gly Ala Gly Gly Ala Leu Phe Val His Arg Asp Thr Pro Glu Asn Asn 40

Pro Asp Thr Pro Phe Asp Phe Thr Pro Glu Asn Tyr Lys Arg Ile Glu

Ala Ile Val Lys Asn Tyr Pro Glu Gly His Lys Ala Ala Val Leu

Pro Val Leu Asp Leu Ala Gln Arg Gln Asn Gly Trp Leu Pro Ile Ser

90 95 85

Ala Met Asn Lys Val Ala Glu Val Leu Gln Val Pro Pro Met Arg Val 100

Tyr Glu Val Ala Thr Phe Tyr Thr Met Tyr Asn Arg Lys Pro Val Gly

Lys Tyr His Ile Gln Val Cys Thr Thr Pro Cys Met Leu Arg Asn 135 130

Ser Asp Ser Ile Leu Glu Ala Ile Gln Lys Lys Leu Gly Arg Glu Tyr 150 145

Met Ile Phe Val Thr Leu Ile Lys Ser Arg Ile Val Ser Leu Asp Leu 170

Val His Phe Tyr Leu Lys Phe Pro Thr Ser Ala Ile Leu Leu Asp Leu 180

Tyr Leu Pro Ser Asn Ile Leu Cys Tyr Cys Val Ser Thr Ser Leu Phe

Leu Pro Ile Trp Tyr Ser Ser Ser Val Leu Ser Val Lys Ala Glu Phe 215 220 210

Leu Ile Phe Ser Phe Leu Ile Ser 225 230

<210> 167 <211> 28 <212> PRT <213> Homo sapien

<400> 167

Met Asp Ser Arg Pro Arg Tyr Ile Pro Phe Lys Gln Tyr Ala Gly Lys

Tyr Val Leu Leu Ser Thr Trp Pro Ala Thr Glu Ala 20 25

<210> 168

<211> 106

<212> PRT

<213> Homo sapien

<400> 168

212

Trp Ile Arg Gly Arg Gly Thr Ser Pro Ser Ser Ser Met Leu Ala Asn 10

Thr Ser Ser Cys Gln Arg Gly Gln Leu Leu Arg Pro Asp Gly Pro Val

His Gln Val Asp Arg Leu Cys Gly Ala Cys Pro Gly Gln Arg Val Phe 40

Leu Cys Pro Gly Glu Pro Gly Ala Lys Ser Gly Arg His Leu Ser Gly

Gly Val Pro Pro Tyr Thr Glu Cys Asp His Ala Gln Pro Leu Ala Arg

Pro Gly Ala Val Glu Ser Cys Asn His Glu Val Cys Ala Gln Thr Gly 90

Glu Thr Val Gln Pro Leu Met Ala Arg Arg

<210> 169 <211> 137 <212> PRT <213> Homo sapien

<400> 169

Met Lys Val Leu Gly Arg Ser Phe Phe Trp Val Leu Phe Pro Val Leu

Pro Trp Ala Val Gln Ala Val Glu His Glu Val Ala Gln Arg Val 25

Ile Lys Leu His Arg Gly Arg Gly Val Ala Ala Met Gln Ser Arg Gln

Trp Val Arg Asp Ser Cys Arg Lys Leu Ser Gly Leu Leu Arg Gln Lys 55

Asn Ala Val Leu Asn Lys Leu Lys Thr Ala Ile Gly Ala Val Glu Lys 70

Asp Val Gly Leu Ser Asp Glu Glu Lys Leu Phe Gln Val His Thr Phe 85

Glu Ile Phe Gln Lys Glu Leu Asn Glu Ser Glu Asn Ser Val Phe Gln 100 105 110

Ala Val Tyr Gly Leu Gln Arg Ala Leu Gln Gly Asp Tyr Asn Asp Gly

Pro Trp Lys Gly Ser Val Cys Gly Glu 130 135

<210> 170

<211> 241

<212> PRT

<213> Homo sapien

<400> 170

Met Lys Val Leu Gly Arg Ser Phe Phe Trp Val Leu Phe Pro Val Leu 10

Pro Trp Ala Val Gln Ala Val Glu His Glu Glu Val Ala Gln Arg Val

Ile Lys Leu His Arg Gly Arg Gly Val Ala Ala Met Gln Ser Arg Gln

Trp Val Arg Asp Ser Cys Arg Lys Leu Ser Gly Leu Leu Arg Gln Lys

Asn Ala Val Leu Asn Lys Leu Lys Thr Ala Ile Gly Ala Val Glu Lys

Asp Val Gly Leu Ser Asp Glu Glu Lys Leu Phe Gln Val His Thr Phe 90

Glu Ile Phe Gln Lys Glu Leu Asn Glu Ser Glu Asn Ser Val Phe Gln 105

Ala Val Tyr Gly Leu Gln Arg Ala Leu Gln Gly Asp Tyr Lys Asp Val

Val Asn Met Lys Glu Ser Ser Arg Gln Arg Leu Glu Ala Leu Arg Glu 130 135

Ala Ala Ile Lys Glu Glu Thr Glu Tyr Met Glu Leu Leu Ala Ala Glu 145 150 155

Lys His Gln Val Glu Ala Leu Lys Asn Met Gln His Gln Asn Gln Ser 165 170

214

Leu Ser Met Leu Asp Glu Ile Leu Glu Asp Val Arg Lys Ala Ala Asp 185 180

Arg Leu Glu Glu Glu Ile Glu Glu His Ala Phe Asp Asp Asn Lys Ser 200

Val Ser Val Pro Glu Gln Leu Leu His Leu Leu Ser His Ser Leu 215 220

Ile Arg Arg His Val Val Glu Ile Val His Val Tyr Val Phe Asn Val 225 230 235

Asp

<210> 171 <211> 102

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (15)..(15) <223> X=any amino acid

<400> 171

Trp Val Ile Gly Phe Ser Pro Leu Arg Pro Thr His Cys Thr Xaa Thr

Leu Arg Asp Pro Arg Gly Ala Gly Ala Asp Val Arg Ser Ala Pro Ser

Arg Gly Gly Arg Ala Gly Gln Trp Gly Pro His Arg Gly Gly Val Leu 40

Val Ser Gly Pro Gly Trp Arg Thr Arg Thr Leu Val Pro Arg Ala Gly 55

Arg Arg Trp Val His Gly Arg Pro His Pro Arg Ile Pro Ser Pro Ala 70 75

Pro Ser Leu Asp Ser Pro Val Asn Pro Ala Ala Ser Arg Arg Pro Thr

Trp Ser Trp Pro Val Leu 100

215

<210> 172

<211> 207

<212> PRT

<213> Homo sapien

<400> 172

Met Lys Ser Ser Gly His Arg Glu Trp Gly Val Gly Lys Pro Gly Thr 5

Pro Gly Asp Arg Ala Arg Glu Gly Gly Ser Gly Pro Asp Pro Ala Pro 25 20

Ala Arg Gly Ala Ser Ser Gly Ala Ala Leu Arg Gly Gln Asn Val Ala 40

Val Ala Glu Thr Arg Arg Gly Arg Pro Asn Ala Thr Leu Gly Pro Ser 55

Pro Leu Gln Arg Pro Arg Pro Val Thr Cys Pro Arg Phe Ala Ser His

Pro Glu Ala Gly Ala Arg Ala Glu Pro Ala Ala Met Ser Gly Glu Pro

Gly Gln Thr Ser Val Ala Pro Pro Pro Glu Glu Val Glu Pro Gly Ser 105

Gly Val Arg Ile Val Val Glu Tyr Cys Glu Pro Cys Gly Phe Glu Ala

Thr Tyr Leu Glu Leu Ala Ser Ala Val Lys Glu Gln Tyr Pro Gly Ile 135

Glu Ile Glu Ser Arg Leu Gly Gly Thr Gly Ala Phe Glu Ile Glu Ile

Asn Gly Gln Leu Val Phe Ser Lys Leu Glu Asn Gly Gly Phe Pro Tyr

Glu Lys Asp Val Ser Ile Tyr Ser Val Gly Arg Thr Ser Trp Ser Pro 180 185 190

Tyr Pro Asn Ser Ala Ser Ser Cys His Ser Thr Pro Leu Ala His 195 200 205

<210> 173 <211> 208

<212> PRT

<213> Homo sapien

<400> 173

Ser His Glu Val Gln Arg Thr Pro Gly Val Gly Ser Gly Glu Ala Arg

His Ser Gly Arg Pro Gly Gln Gly Arg Arg Val Trp Thr Gly Pro Ser 20 25

Pro Cys Pro Gly Ser Glu Leu Arg Ser Cys Pro Thr Arg Ser Lys Arg

Ser Ser Gly Gly Asp Pro Gln Gly Ala Pro Glu Arg His Pro Arg Pro 55

Leu Pro Ala Pro Glu Ala Pro Pro Arg His Val Pro Ala Val Arg Val 70 75

Thr Pro Gly Ser Arg Gly Pro Ser Gly Pro Ala Ala Met Ser Gly Glu

Pro Gly Gln Thr Ser Val Ala Pro Pro Pro Glu Glu Val Glu Pro Gly 100

Ser Gly Val Arg Ile Val Val Glu Tyr Cys Glu Pro Cys Gly Phe Glu

Ala Thr Tyr Leu Glu Leu Ala Ser Ala Val Lys Glu Gln Tyr Pro Gly

Ile Glu Ile Glu Ser Arg Leu Gly Gly Thr Gly Ala Phe Glu Ile Glu 150

Ile Asn Gly Gln Leu Val Phe Ser Lys Leu Glu Asn Gly Gly Phe Pro 170

Tyr Glu Lys Asp Val Ser Ile Tyr Ser Val Gly Arg Thr Ser Trp Ser 180

Pro Tyr Pro Asn Ser Ala Ser Ser Cys His Ser Thr Pro Leu Ala His

<210> 174 <211> 267 <212> PRT

<213> Homo sapien

<400> 174

Met Val Ser Asn Ser Ala Gly Ser Asn Ser Arg Gln Leu Pro Leu Pro 1 5 10 15

Leu Ser Ala Asp Ala Pro Pro Ala Ser Ser Ser His Trp Ser Trp Gln
20 25 30

Pro Ser Arg His Thr Asn Gln Pro Ile Asp Arg Ala Ile Leu Arg Ser 35 40 45

Arg Pro Cys Cys Arg Leu Ser Arg Thr Cys His Trp Ser Leu Gln Pro 50 55 60

Pro Pro Pro Pro Pro Ala Arg Gln Trp Leu Gly Gly Leu Ala Gly Ala 65 70 75 80

Gly Arg Ser Ser Cys Ala Cys Ala Leu Gly Leu Pro Ser Ala Gly Cys 85 90 95

Ser Ala Gly Arg Ala Arg Leu Arg Gly Ala Ala Leu Glu Glu Thr Glu 100 105 110

Ala Ala Gly Gly Pro Glu Ala Gln Glu Glu Asp Glu Asp Glu Glu Glu 115 120 125

Ala Leu Pro His Ser Glu Ala Met Asp Val Phe Gln Glu Gly Leu Ala 130 135 140

Met Val Val Gln Asp Pro Leu Leu Cys Asp Leu Pro Ile Gln Val Thr 145 150 155 160

Leu Glu Glu Val Asn Ser Gln Ile Ala Leu Glu Tyr Gly Gln Ala Met 165 170 175

Thr Val Arg Val Cys Lys Met Asp Gly Glu Val Met Pro Val Val Val 180 185 190

Val Gln Ser Ala Thr Val Leu Asp Leu Lys Lys Ala Ile Gln Arg Tyr 195 200 205

Val Gln Leu Lys Gln Glu Arg Glu Gly Gly Ile Gln His Ile Ser Trp 210 215 220

Ser Tyr Val Trp Arg Thr Tyr His Leu Thr Ser Ala Gly Glu Lys Leu 225 230 235 240

Thr Glu Asp Arg Lys Lys Leu Arg Asp Tyr Gly Ile Arg Asn Arg Asp 245 250 255

Glu Val Ser Phe Ile Lys Lys Leu Arg Gln Lys 260 265

<210> 175

<211> 225

<212> PRT

<213> Homo sapien

<400> 175

Thr Gly Arg Phe Cys Ala Pro Gly Leu Leu Gln Ala Val Ser His Leu 1 5 10 15

Ser Leu Val Thr Ala Ala Ala Pro Pro Pro Arg Arg Ala Ser Gly Trp 20 25 30

Ala Ala Ser Leu Gly Arg Ala Ala Val Pro Ala Arg Ala Arg Leu Ala 35 40 45

Ser Leu Val Arg Ala Gly Ser Ala Gly Arg Ala Arg Leu Arg Gly Ala 50 60

Ala Leu Glu Glu Thr Glu Ala Ala Gly Gly Pro Glu Ala Gln Glu Glu 65 70 75 80

Asp Glu Asp Glu Glu Glu Ala Leu Pro His Ser Glu Ala Met Asp Val 85 90 95

Phe Gln Glu Gly Leu Ala Met Val Val Gln Asp Pro Leu Leu Cys Asp 100 105 110

Leu Pro Ile Gln Val Thr Leu Glu Glu Val Asn Ser Gln Ile Ala Leu 115 120 125

Glu Tyr Gly Gln Ala Met Thr Val Arg Val Cys Lys Met Asp Gly Glu 130 135 140

Val Met Pro Val Val Val Val Gln Ser Ala Thr Val Leu Asp Leu Lys
145 150 155 160

Lys Ala Ile Gln Arg Tyr Val Gln Leu Lys Gln Glu Arg Glu Gly Gly 165 170 175

219

Ile Gln His Ile Ser Trp Ser Tyr Val Trp Arg Thr Tyr His Leu Thr 185

Ser Ala Gly Glu Lys Leu Thr Glu Asp Arg Lys Lys Leu Arg Asp Tyr

Gly Ile Arg Asn Arg Asp Glu Val Ser Phe Ile Lys Lys Leu Arg Gln 215 220

Lys 225

<210> 176 <211> 224 <212> PRT

<213> Homo sapien

<400> 176

Met Val Ser Asn Ser Ala Gly Ser Asn Ser Arg Gln Leu Pro Leu Pro

Leu Ser Ala Asp Ala Pro Pro Ala Ser Ser Ser His Trp Ser Trp Gln

Pro Ser Arg His Thr Asn Gln Pro Ile Asp Arg Ala Ile Leu Arg Ser

Arg Pro Cys Cys Arg Leu Ser Arg Thr Cys His Trp Ser Leu Gln Pro

Pro His Pro Pro Arg Arg Ala Ser Gly Trp Ala Ala Ser Leu Gly Arg

Ala Ala Val Pro Ala Arg Ala Arg Leu Ala Ser Leu Val Arg Ala Gly

Ser Ala Gly Arg Ala Arg Leu Arg Gly Ala Ala Leu Glu Glu Thr Glu 100 105

Ala Ala Gly Gly Pro Glu Ala Gln Glu Glu Asp Glu Asp Glu Glu Glu 115 120

Ala Leu Pro His Ser Glu Ala Met Asp Val Phe Gln Glu Gly Leu Ala 130 135

Met Val Val Gln Asp Pro Leu Leu Cys Asp Leu Pro Ile Gln Val Thr 150 155

Leu Glu Glu Val Asn Ser Gln Ile Ala Leu Glu Tyr Gly Gln Ala Met 165 170 175

Thr Val Arg Val Cys Lys Met Asp Gly Glu Val Met Pro Val Val Val 180 185 190

Val Gln Ser Ala Thr Val Leu Asp Leu Lys Lys Ala Ile Gln Arg Tyr 195 200 205

Val Gln Leu Lys Gln Glu Arg Glu Gly Gly Ile Gln His Ile Ser Trp 210 215 220

<210> 177

<211> 300

<212> PRT

<213> Homo sapien

<400> 177

Met Val Ser Asn Ser Ala Gly Ser Asn Ser Arg Gln Leu Pro Leu Pro 1 5 10 15

Leu Ser Ala Asp Ala Pro Pro Ala Ser Ser Ser His Trp Ser Trp Gln 20 25 30

Pro Ser Arg His Thr Asn Gln Pro Ile Asp Arg Ala Ile Leu Arg Ser 35 40 45

Arg Pro Cys Cys Arg Leu Ser Arg Thr Cys His Trp Ser Leu Gln Pro 50 55 60

Pro His Pro Pro Arg Arg Ala Ser Gly Trp Ala Ala Ser Leu Gly Arg 65 70 75 80

Ala Ala Val Pro Ala Arg Ala Arg Leu Ala Ser Leu Val Arg Ala Gly 85 90 95

Ser Ala Gly Arg Ala Arg Leu Arg Gly Ala Ala Leu Glu Glu Thr Glu 100 105 110

Ala Ala Gly Gly Pro Glu Ala Gln Glu Glu Asp Glu Asp Glu Glu Glu 115 120 125

Ala Leu Pro His Ser Glu Ala Met Asp Val Phe Gln Glu Gly Leu Ala 130 135 140

Met Val Val Gln Asp Pro Leu Leu Cys Asp Leu Pro Ile Gln Val Thr 145 150 155 160

Leu Glu Glu Val Asn Ser Gln Ile Ala Leu Glu Tyr Gly Gln Ala Met 165 170 175

Thr Val Arg Val Cys Lys Met Asp Gly Glu Val Met Arg Lys Cys Tyr 180 185 190

Pro Pro Pro Phe Arg Phe Met Trp Ser Arg Leu Ser Gln Gln Glu Asp 195 200 205

Leu Thr Val Leu Val Ser Leu Leu Arg Asn Ser Gln Ala Met Pro Arg 210 215 220

Gly Thr Gly Ala Thr Thr Asn Leu Pro Cys Ala Gln Arg Cys Trp Phe 225 230 235 240

Leu Ser Cys His Arg Arg Leu Trp Leu Trp Val Leu Thr Met Asp Leu 245 250 255

Leu Pro Ser Val Ser Val Val Ala Ala Val Val Val Gln Ser Ala 260 265 270

Thr Val Leu Asp Leu Lys Lys Ala Ile Gln Arg Tyr Val Gln Leu Lys 275 280 285

Gln Glu Arg Glu Gly Gly Ile Gln His Ile Ser Trp 290 295 300

<210> 178

<211> 236

<212> PRT

<213> Homo sapien

<400> 178

Gly His Val Leu Gln Ala Lys Arg Trp Gln Arg Cys Pro Ser Ser Thr 1 5 10 15

Ile Ser Pro Phe Pro Gln Pro Gly Gln Asn Ser Ser Met Val Ser Asn 20 25 30

Ser Ala Gly Ser Asn Ser Arg Gln Leu Pro Leu Pro Leu Ser Ala Asp 35 40

Ala Pro Pro Ala Ser Ser Ser His Trp Ser Trp Gln Pro Ser Arg His 50 55 60

Thr Asn Gln Pro Ile Asp Arg Ala Ile Leu Arg Ser Arg Pro Cys Cys

Arg Leu Ser Arg Thr Cys His Trp Ser Leu Gln Pro Pro His Pro Pro

Arg Arg Ala Ser Gly Trp Ala Ala Ser Leu Gly Arg Ala Ala Val Pro 105

Ala Arg Ala Arg Leu Ala Ser Leu Val Arg Ala Gly Ser Ala Gly Arg

Ala Arg Leu Arg Gly Ala Ala Leu Glu Glu Thr Glu Ala Ala Gly Gly

Pro Glu Ala Gln Glu Glu Asp Glu Glu Glu Glu Ala Leu Pro His 155

Ser Glu Ala Met Asp Val Phe Gln Glu Gly Leu Ala Met Val Val Gln 165 170

Asp Pro Leu Leu Cys Asp Leu Pro Ile Gln Val Thr Leu Glu Glu Val 180 185

Asn Ser Gln Ile Ala Leu Glu Tyr Gly Gln Ala Met Thr Val Arg Val 195 200

Cys Lys Met Asp Gly Glu Val Met Arg Lys Cys Tyr Pro Pro Pro Phe 210

Arg Leu Cys Gly Pro Gly Phe His Ser Arg Lys Thr 225

<210> 179

<211> 143 <212> PRT

<213> Homo sapien

Met Pro Ala Tyr Thr Ala Thr Ala Gly Thr Leu Arg Asp Thr Gln Leu 5

His Thr His Ile Ala Val His Asn Pro Thr Tyr Asn Gln Lys Thr Lys 20

WO 2004/053077 PCT/US2003/038815

223

His Glu Thr Phe Pro Trp Ala Leu Asn Pro His Val Asn Val His Thr 35 40 45

Gln Thr His Ala Leu Leu Ser His Phe Leu Phe His Thr Pro Ser Ser 50 55 60

Arg Pro Pro Thr Pro Asp Phe Arg His Pro Gln Ser Gln Ser Glu Leu 65 . 70 75 80

Ala Pro Ala Gln Pro Ser Leu Asp Thr His Ala Pro Pro Thr His Ala 85 90 95

Leu Pro Ser Pro Ala Gly Gly Gly Phe Gly Arg Glu Pro Ala Glu
100 105 110

Pro Ala Ser Asp Ser Arg Cys Gly Ser Asp Ser Ala Leu His Val Leu 115 120 125

Gln Ala Ala Thr Val Ser Glu Ala Arg Arg Gly Arg Glu Leu Glu 130 135 140

<210> 180

<211> 126

<212> PRT

<213> Homo sapien

<400> 180

Ala His Phe Gly Ser Arg Pro Leu Pro Leu Ser Arg Lys Leu Leu Gln 1 5 10 15

Glu Arg His Thr Arg Ser Leu Pro Gln His Cys Lys His Ala Pro Pro 20 25 30

Gln Thr Thr Asn Ala Pro Pro His Thr Arg Leu Leu Ser Leu Thr Lys 35 40 45

Met Pro Ala Tyr Thr Ala Thr Ala Gly Thr Leu Arg Asp Thr Gln Leu 50 55 60

His Thr His Ile Ala Val His Asn Pro Thr Tyr Asn Gln Lys Thr Lys 65 70 75 80

His Glu Thr Phe Pro Trp Ala Leu Asn Pro His Val Asn Val His Thr 85 90 95

Gln Thr His Ala Leu Leu Ser His Phe Leu Phe His Thr Pro Ser Ser 100 105 110

Arg Pro Pro Thr Pro Asp Phe Arg His Pro Gln Ser Gln Ser 120

<210> 181

<211> 116

<212> PRT

<213> Homo sapien

<400> 181

Ser Ser Ser Ala Cys His Pro Gly Ser Ser Gly Gly Ile Ala Leu

Lys Ile Cys Pro Ile Val Lys Gln Glu His Trp Asn Leu His Ser Thr

Ile Arg Pro Cys His Arg Arg Thr Lys Lys Glu Gly Arg Gly Asp His

Ala Pro Ala Ser Arg Glu Ser Pro Phe Phe Ser Ala Ser Tyr Leu Gly

Lys Tyr Lys Gly Val Arg Ala Gly Thr Thr Ser Gln Arg Val His Gly 75

Gly Ser Gly Arg Gly Arg Trp Val Leu His Gly Ala Thr Pro Gly Thr

Phe Leu Leu Ser His Ser Leu Thr Ile Thr Ser Ser Cys Ser Gln Ser 100 105

His Ser His Gln 115

<210> 182 <211> 77 <212> PRT

<213> Homo sapien

<400> 182

Lys Pro His Ser Leu Arg Lys Pro Ser Ser Lys Ala Asn Ile Leu Val

Ile Cys Glu Lys Ile Glu His Ser Val Ser Leu Leu Ser Ala Ser

Gln His Leu Leu Glu Gln His Glu Leu Leu Thr Leu Thr His Lys Ser

225

40 35

Pro Thr Leu Ile Ser Pro Thr Gly Glu Phe Gly Gly Leu Tyr Cys His 60

Val Pro Gly Ile Ile Ile Cys Ser Ser Leu Tyr Glu Glu 75

<210> 183

<211> 115 <212> PRT

<213> Homo sapien

<400> 183

Leu Val Phe His Phe Leu Ser Glu Thr Leu Asp Asn Ile Phe Ile Phe

Tyr Leu Val Ser Ile Phe Gln Phe Ser Ser Lys Phe Val His Phe Ala

Leu Ser Phe Leu Phe Pro Ser Leu Ser Phe Phe Phe Cys Phe Leu Leu 35 40

Phe Arg Phe Lys Phe Ile Phe Phe Leu Leu Lys Val Cys Phe Tyr Leu 50 55

Leu Ile Ser Leu Ser Ser Leu Phe Phe Ser Ser Pro Ser Arg Thr Ser 65 70 75 80

Val Phe Gln Phe Ser Thr Ser Asn Phe Tyr Leu Leu Gln Ile Val Ser

Ser Tyr His Ser Gln Leu Ile Phe Pro Phe Ser Ser Ala Phe Ser Lys 100 105 110

Cys Val Asn 115

<210> 184

<211> 84 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (77)..(78) <223> X=any amino acid

226

<220>

<221> MISC_FEATURE

<222> (82)..(82)

<223> X=any amino acid

<400> 184

Lys Pro His Ser Leu Arg Lys Pro Ser Ser Lys Ala Asn Ile Leu Val

Ile Cys Glu Lys Ile Glu His Ser Val Ser Leu Leu Ser Ala Ser

Gln His Leu Leu Glu Gln His Glu Leu Leu Thr Leu Thr His Lys Ser

Pro Thr Leu Ile Ser Pro Thr Gly Glu Phe Gly Gly Leu Tyr Cys His

Val Pro Gly Ile Ile Cys Ser Ser Leu Tyr Glu Xaa Xaa Asn Leu

Ser Xaa Leu Pro

<210> 185

<211> 84

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (77)..(78) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (82)..(82)

<223> X=any amino acid

<400> 185

Lys Pro His Ser Leu Arg Lys Pro Ser Ser Lys Ala Asn Ile Leu Val 5 10

Ile Cys Glu Lys Ile Glu His Ser Val Ser Leu Leu Leu Ser Ala Ser 20

Gln His Leu Leu Glu Gln His Glu Leu Leu Thr Leu Thr His Lys Ser 35

227

Pro Thr Leu Ile Ser Pro Thr Gly Glu Phe Gly Gly Leu Tyr Cys His

Val Pro Gly Ile Ile Cys Ser Ser Leu Tyr Glu Xaa Xaa Asn Leu

Ser Xaa Leu Pro

<210> 186

<211> 104 <212> PRT

<213> Homo sapien

<400> 186

Met Val Leu Cys Lys Ile Lys Gln His Val Glu Gly Ile Val Ser Ala

Trp Trp Leu Leu Glu Pro Pro Glu Arg Cys Cys Gly Ser Ser Thr Ser

Ala Thr Asn Ser Thr Ser Val Ser Ser Arg Lys Ala Glu Asn Lys Tyr

Ala Gly Gly Asn Pro Val Cys Val Arg Pro Thr Pro Lys Trp Gln Lys

Gly Ile Gly Glu Phe Phe Arg Leu Ser Pro Lys Asp Ser Glu Lys Glu

Asn Gln Ile Pro Glu Glu Ala Gly Ser Ser Gly Leu Gly Lys Ala Lys

Arg Lys Ala Cys Pro Cys Ala Thr 100

<210> 187 <211> 107 <212> PRT

<213> Homo sapien

<400> 187

Asn Lys Thr Ala Arg Gly Arg Tyr Cys Lys Arg Leu Val Ala Ala Arg 10

Ala Pro Arg Lys Val Leu Gly Ser Ser Thr Ser Ala Thr Asn Ser Thr

228

20 25 30

Ser Val Ser Ser Arg Lys Ala Glu Asn Lys Tyr Ala Gly Gly Asn Pro

Val Cys Val Arg Pro Thr Pro Lys Trp Gln Lys Gly Ile Gly Glu Phe 50 60 55

Phe Arg Leu Ser Pro Lys Asp Ser Glu Lys Glu Asn Gln Ile Pro Glu 70

Glu Ala Gly Ser Ser Gly Leu Gly Lys Ala Lys Arg Lys Ala Cys Pro 90

Leu Gln Pro Asp His Thr Asn Asp Glu Lys Glu 105

<210> 188

<211> 38 <212> PRT <213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (12)..(12)

<223> X=any amino acid

<400> 188

Pro Pro Pro Arg Leu Leu Ile Tyr Lys Gly Gln Xaa Val Ile Leu Asp 5

Ala Ala Arg Ala Ala Gln Cys Asp Gly Leu Val Ala Ala Glu Val Pro 25

Asp Tyr Asn Ala Arg Ile 35

<210> 189

<211> 47 <212> PRT

<213> Homo sapien

<400> 189

Ile Phe Val Leu Ile Asn Leu Val Asn Lys Asn Lys Ser Lys Ser Glu

Lys Lys Thr Thr Gln Lys Lys Val Gly Gly Asn Gln Gly Pro Lys 25

229

Gly Ser Leu Cys Asp Leu Val Phe Arg Pro Ile Pro Gln Val Gly

<210> 190 <211> 71 <212> PRT <213> Homo sapien

<400> 190

Met Leu Leu Glu Arg Arg Ser Val Asp Gly Ser Trp Ser Arg Pro Arg 5 10

Tyr Ile Asp Phe Thr Ala Asp Gln Val Asp Leu Thr Ser Ala Leu Thr 25

Lys Lys Ile Thr Leu Lys Thr Pro Leu Val Ser Ser Pro Met Asp Thr 40

Val Thr Glu Ala Gly Met Ala Ile Ala Met Ala Leu Thr Gly Gly Ile

Gly Phe Ile His His Asn Ser 70

<210> 191

<211> 138 <212> PRT <213> Homo sapien

<400> 191

Met Pro Ile Thr Ser Thr Ser Pro Val Glu Pro Val Val Thr Thr Glu 10

Gly Ser Ser Gly Ala Ala Gly Leu Glu Pro Arg Lys Leu Ser Ser Lys 20

Thr Arg Arg Asp Lys Glu Lys Gln Ser Cys Lys Ser Cys Gly Glu Thr

Phe Asn Ser Ile Thr Lys Arg Arg His His Cys Lys Leu Cys Gly Ala

Val Ile Cys Gly Lys Cys Ser Glu Phe Lys Ala Glu Asn Ser Arg Gln

Ser Arg Val Cys Arg Asp Cys Phe Leu Thr Gln Pro Val Ala Pro Glu

230

85 90 95

Ser Thr Glu Val Gly Ala Pro Ser Ser Cys Ser Pro Pro Gly Gly Ala 100 105 110

Ala Glu Pro Pro Asp Thr Cys Ser Cys Ala Pro Ala Ala Leu Ala Ala 115 120 125

Ser Ala Phe Gly Val Ser Leu Gly Pro Gly 130 135

<210> 192

<211> 67 <212> PRT

<213> Homo sapien

<400> 192

Ser Arg Gly Ser Arg Leu Pro Ser Asn Phe Pro Ser Asp Leu Tyr Ser 10 15

Leu Ala His Ser Tyr Leu Gly Gly Gly Gly Arg Lys Gly Arg Thr Lys 25

Arg Glu Ala Ala Asa Thr Asa Arg Pro Ser Pro Gly Gly His Glu 35 40

Arg Lys Leu Val Thr Lys Leu Gln Asn Ser Glu Arg Lys Lys Arg Gly 50 55 60

Ala Arg Arg 65

<210> 193

<211> 65

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (10)..(10) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (13)..(13)

<223> X=any amino acid

<400> 193

Leu Glu Asp Leu Gly Cys Leu Ala Leu Xaa Ser Asp Xaa Ile Ala Gly 10

His Ser Tyr Leu Gly Gly Gly Gly Arg Lys Gly Arg Thr Lys Arg Glu

Ala Ala Ala Asn Thr Asn Arg Pro Ser Pro Gly Gly His Glu Arg Lys

Leu Val Thr Lys Leu Gln Asn Ser Glu Arg Lys Lys Arg Gly Ala Arg

Arg 65

<210> 194 <211> 195

<212> PRT

<213> Homo sapien

<400> 194

Met Gly Ser His Tyr Val Ser Gln Ala Asp Pro Lys Phe Leu Gly Ser

Ser Asn Ser Pro Ala Leu Ala Ser Gln Ser Ala Glu Ile Thr Gly Val 25

Ser His Pro Ala Gln Pro Thr His Pro Phe Leu Ala Asn Leu Phe Leu

Gly Pro Ser Arg His Pro Cys Leu Ile Pro Tyr Pro Arg Ser Ala Met

Leu Leu Ser Leu Gly Pro His Thr His Leu Gly Ser His Ile Pro Gln

Arg Gly Ser Ser Arg Leu Leu Pro Ala Leu Pro Ile Pro Thr Thr Leu 90

Asn Pro Cys Leu Ser Ser Asp Arg Ala Ser His His Ala Tyr Ala His 100 105

Phe Thr Ser Asp Ser Cys Leu Gly Tyr Arg Arg Trp Arg Pro Glu Arg 120

Ser His Gln Glu Arg Ser Cys Cys Gln His Gln Pro Pro Gln Pro Trp 130 135

Arg Ala Arg Glu Glu Thr Gly Asp Gln Ala Ala Glu Phe Arg Glu Glu 155

Glu Ala Arg Gly Thr Ala Leu Arg Gln Ser Trp Arg Val Arg Ser Arg

Gly Ala Gln Arg Ala Gln Gly Gly Ala Ser Ala Met Lys Asp Arg Pro 180 185

Glu Gly Val 195

<210> 195 <211> 124 <212> PRT <213> Homo sapien

<400> 195

Trp Met Trp Ser Arg Pro Arg Trp Gly Ala Glu Phe Arg Lys Ile Pro

Thr Ser Met Lys Ala Lys Arg Ser His Gln Ala Ile Ile Met Ser Thr

Ser Leu Arg Val Ser Pro Ser Ile His Gly Tyr His Phe Asp Thr Ala 40

Ser Arg Lys Lys Ala Val Gly Asn Ile Phe Glu Asn Thr Asp Gln Glu

Ser Leu Glu Arg Leu Phe Arg Asn Ser Gly Asp Lys Lys Ala Glu Glu

Arg Ala Lys Ile Ile Phe Ala Ile Asp Gln Asp Val Glu Glu Lys Thr

Arg Ala Leu Met Ala Leu Lys Lys Arg Thr Lys Asp Lys Leu Phe Gln 105

Phe Leu Lys Leu Arg Lys Tyr Ser Ile Lys Val His 115 120

<210> 196 <211> 106 <212> PRT <213> Homo sapien

WO 2004/053077 PCT/US2003/038815

233

<400> 196

Met Lys Ala Lys Arg Ser His Gln Ala Ile Ile Met Ser Thr Ser Leu 1 5 10 15

Arg Val Ser Pro Ser Ile His Gly Tyr His Phe Asp Thr Ala Ser Arg
20 25 30

Lys Lys Ala Val Gly Asn Ile Phe Glu Asn Thr Asp Gln Glu Ser Leu 35 40 45

Glu Arg Leu Phe Arg Asn Ser Gly Asp Lys Lys Ala Glu Glu Arg Ala 50 55 60

Lys Ile Ile Phe Ala Ile Asp Gln Asp Val Glu Glu Lys Thr Arg Ala 65 70 75 80

Leu Met Ala Leu Lys Lys Arg Thr Lys Asp Lys Leu Phe Gln Phe Leu 85 90 95

Lys Leu Arg Lys Tyr Ser Ile Lys Val His
100 105

<210> 197

<211> 129

<212> PRT

<213> Homo sapien

<400> 197

Met Leu Leu Glu Arg Arg Ser Val Met Asp Gly Gln Val Lys Gly Ala 1 5 10 15

Glu Phe Arg Lys Ile Pro Thr Ser Met Lys Ala Lys Arg Ser His Gln
20 25 30

Ala Ile Ile Met Ser Thr Ser Leu Arg Val Ser Pro Ser Ile His Gly 35 40 45

Tyr His Phe Asp Thr Ala Ser Arg Lys Lys Ala Val Gly Asn Ile Phe 50 60

Glu Asn Thr Asp Gln Glu Ser Leu Glu Arg Leu Phe Arg Asn Ser Gly 70 75 80

Asp Lys Lys Ala Glu Glu Arg Ala Lys Ile Ile Phe Ala Ile Asp Gln 85 90 95

234

Asp Val Glu Glu Lys Thr Arg Ala Leu Met Ala Leu Lys Lys Arg Thr 105

Lys Cys Phe Gln Gln Gly Phe Glu Asn Ser Ser Val Pro Ala Gly Lys 120

Asp

<210> 198

<211> 130 <212> PRT <213> Homo sapien

<400> 198

Met Leu Leu Glu Arg Arg Ser Val Met Asp Gly Gln Val Ser Leu Gly 10

Ala Glu Phe Arg Lys Ile Pro Thr Ser Met Lys Ala Lys Arg Ser His

Gln Ala Ile Ile Met Ser Thr Ser Leu Arg Val Ser Pro Ser Ile His 35

Gly Tyr His Phe Asp Thr Ala Ser Arg Lys Lys Ala Val Gly Asn Ile 50 55

Phe Glu Asn Thr Asp Gln Glu Ser Leu Glu Arg Leu Phe Arg Asn Ser 70 75

Gly Asp Lys Lys Ala Glu Glu Arg Ala Lys Ile Ile Phe Ala Ile Asp 85 90

Gln Asp Val Glu Glu Lys Thr Arg Ala Leu Met Ala Leu Lys Lys Arg

Thr Lys Cys Phe Gln Gln Gly Phe Glu Asn Ser Ser Val Pro Ala Gly 115 120

Lys Asp 130

<210> 199

<211> 85 <212> PRT

<213> Homo sapien

WO 2004/053077 PCT/US2003/038815

235

<400> 199

Ile Leu Cys Asp Met Ile Phe Trp Ile Tyr Arg Thr Leu Ala His Val 1 5 10 15

Pro Cys Ala Ser His Ser Ser Glu Val Ile Ile Tyr Thr Glu Gly Phe 20 25 30

Lys Ile Arg Leu Glu Val Glu Ile Tyr Tyr Leu Phe Met His Cys Thr 35 40 45

Val Phe Leu Tyr Cys Cys Leu Lys Leu Leu Ser Cys Ala Ser Leu Ile 50 55 60

Lys Ala Gln Asn Val Leu Pro Thr Pro Tyr Leu Arg Arg Asn Lys Ile 65 70 75 80

Thr Ser Ile Asp Phe

<210> 200

<211> 68

<212> PRT

<213> Homo sapien

<400> 200

Asp Ala Cys Arg Ala Gly Arg Ser Val Asp Gly Tyr Lys Ala Val Arg

1 10 15

Phe Ser Ser Pro Ser Arg Ala Leu Leu Gly Thr Arg Glu Ile Trp Leu 20 25 30

Trp Ser Arg Trp Ser Ser Leu Thr Pro His Arg Ala Asn Leu Asn Leu 35 40 45

Val Leu Glu Lys Ala Phe Ser Asn Ser Thr Pro Pro Tyr Lys Met His 50 55 60

Met Glu Val Gly

<210> 201

<211> 378

<212> PRT

<213> Homo sapien

<400> 201

Ser Ala Val Gly Ser Asp His Ile Phe His Asn Ile Pro Gly Ser Thr

236 1 5 10 15 Ser Ser Ala Thr Asn Val Ser Met Val Val Ser Ala Gly Pro Trp Ser Ser Glu Lys Ala Glu Thr Asn Ile Leu Glu Ile Asn Glu Lys Leu Arg Pro Gln Leu Ala Glu Asn Lys Gln Gln Phe Arg Asn Leu Lys Glu Lys 55 Cys Phe Val Thr Gln Leu Ala Gly Phe Leu Ala Asn Arg Gln Lys Lys Tyr Lys Tyr Glu Glu Cys Lys Asp Leu Ile Lys Phe Met Leu Arg Asn Glu Arg Gln Phe Lys Glu Glu Lys Leu Ala Glu Gln Leu Lys Gln Ala 105 Glu Glu Leu Arg Gln Tyr Lys Val Leu Val His Ser Gln Glu Arg Glu Leu Thr Gln Leu Arg Glu Lys Leu Arg Glu Gly Arg Asp Ala Ser Arg 130 135 Ser Leu Asn Gln His Leu Gln Ala Leu Leu Thr Pro Asp Glu Pro Asp Lys Ser Gln Gly Gln Asp Leu Gln Glu Gln Leu Ala Glu Gly Cys Arg Leu Ala Gln His Leu Val Gln Lys Leu Ser Pro Glu Asn Asp Asn Asp 185 Asp Asp Glu Asp Val Gln Val Glu Val Ala Glu Lys Val Gln Lys Ser 200 Ser Ala Pro Arg Glu Met Pro Lys Ala Glu Glu Lys Glu Val Pro Glu 210 215

Asp Ser Leu Glu Glu Cys Ala Ile Thr Cys Ser Asn Ser His Gly Pro

Tyr Asp Ser Asn Gln Pro His Arg Lys Thr Lys Ile Thr Phe Glu Glu

230

245

Asp Lys Val Asp Ser Thr Leu Ile Gly Ser Ser Ser His Val Glu Trp 265

Glu Asp Ala Val His Ile Ile Pro Glu Asn Glu Ser Asp Asp Glu Glu 280

Glu Glu Lys Gly Pro Val Ser Pro Arg Asn Leu Gln Glu Ser Glu 295

Glu Glu Glu Val Pro Gln Glu Ser Trp Asp Glu Gly Tyr Ser Thr Leu

Ser Ile Pro Pro Glu Met Leu Ala Ser Tyr Gln Ser Tyr Ser Gly Thr 330

Phe His Ser Leu Glu Glu Gln Gln Val Cys Met Ala Val Asp Ile Gly 345

Gly His Arg Trp Asp Gln Val Lys Lys Glu Asp Gln Glu Ala Thr Gly

Pro Ser Gln Ala Gln Gln Gly Ala Ala Gly 370 375

<210> 202

<211> 876

<212> PRT

<213> Homo sapien

<400> 202

Met Gly Asn Ser Lys Lys Asn Thr Glu Thr Gly Lys Thr Thr Phe Phe

Thr Asn Glu Leu Phe Ile His Phe Gln Trp Ile Gln Thr Lys Leu Gln

Lys Thr Gln Arg Lys Ser Gly Gln Ala Lys Ser Leu Ile Ser Tyr Thr

Cys Gly Lys Ala Leu Ser Ser Val Leu Thr Glu Ser Arg Trp Gly Asp 55 50

Phe Met Thr Thr Ile Lys Lys Ile Gln Leu Leu Gly Asn Cys Phe Cys 70

WO 2004/053077 PCT/US2003/038815

238

Leu Asp Asp Val Val Gln Thr Arg Asp Lys Gln Leu Arg Asn Met Leu 85 90 95

Arg Cys Ile Gly Lys Asp Thr Gly Leu Trp His His Lys Gly Thr
100 105 110

Arg Ile Leu Arg Val Asn Ala Glu Gly Met Ile Pro Ile Gly Gly Asp 115 120 125

Pro Gln Val Arg Leu Gly Cys Leu Cys Phe Arg Lys Ala Trp Ala Ile 130 135 140

Gly Met Gln Gly Ser Tyr Asp Ser Met Thr Pro Pro Pro Ser Asn Ser 145 150 155 160

Val Ile Ala Thr Ala Asp Gly Tyr Leu Ala Arg Trp Pro Gln Ser Thr 165 170 175

Ser Leu Leu Ser Glu Ser Glu Leu Leu Ala Val Leu Ser Ala Leu Ser 180 185 190

Ser Gly Thr Ser Asn Leu Val Phe Val Val Lys Asp Pro Lys Val Leu 195 200 205

Trp Gly Val Ile Thr Phe Phe Tyr Asn Ile Pro Gly Ser Thr Ser Ser 210 215 220

Ala Thr Asn Val Ser Met Val Val Ser Ala Gly Pro Trp Ser Ser Glu 225 230 235 240

Lys Ala Glu Thr Asn Ile Leu Glu Ile Asn Glu Lys Leu Arg Pro Gln 245 250 255

Leu Ala Glu Asn Lys Gln Gln Phe Arg Asn Leu Lys Glu Lys Cys Phe 260 265 270

Val Thr Gln Leu Ala Gly Phe Leu Ala Asn Arg Gln Lys Lys Tyr Lys 275 280 285

Tyr Glu Glu Cys Lys Asp Leu Ile Lys Phe Met Leu Arg Asn Glu Arg 290 295 300

Gln Phe Lys Glu Glu Lys Leu Ala Glu Gln Leu Lys Gln Ala Glu Glu 305 310 315 320

Leu Arg Gln Tyr Lys Val Leu Val His Ser Gln Glu Arg Glu Leu Thr

325 330

335 Gln Leu Arg Glu Lys Leu Arg Glu Gly Arg Asp Ala Ser Cys Ser Leu 340 345 Asn Gln His Leu Gln Ala Leu Leu Thr Pro Asp Glu Pro Asp Lys Ser Gln Gly Gln Asp Leu Gln Glu Gln Leu Ala Glu Gly Cys Arg Leu Ala 370 380 Gln His Leu Val Gln Lys Leu Ser Pro Glu Asn Asp Asn Asp Asp 390 395 Glu Asp Val Gln Val Glu Val Ala Glu Lys Val Gln Lys Ser Ser Ala 405 Pro Arg Glu Met Pro Lys Ala Glu Glu Lys Glu Val Pro Glu Asp Ser 420 Leu Glu Glu Cys Ala Ile Thr Cys Ser Asn Ser His Gly Pro Tyr Asp 440 Ser Asn Gln Pro His Arg Lys Thr Lys Ile Thr Phe Glu Glu Asp Lys Val Asp Ser Thr Leu Ile Gly Ser Ser Ser His Val Glu Trp Glu Asp 470 475 Ala Val His Ile Ile Pro Glu Asn Glu Ser Asp Asp Glu Glu Glu Glu 485 490 Glu Lys Gly Pro Val Ser Pro Arg Asn Leu Gln Glu Ser Glu Glu Glu Glu Val Pro Gln Glu Ser Trp Asp Glu Gly Tyr Ser Thr Leu Ser Ile 520 Pro Pro Glu Met Leu Ala Ser Tyr Gln Ser Tyr Ser Gly Thr Phe His Ser Leu Glu Glu Gln Gln Val Cys Met Ala Val Asp Ile Gly Gly His 555 Arg Trp Asp Gln Val Lys Lys Glu Asp Gln Glu Ala Thr Gly Pro Ser

565

Gln	Leu	Ser	Arg 580	Glu	Leu	Leu	Asp	Glu 585	Lys	Gly	Pro	Glu	Val 590	Leu	Gln
Asp	Ser	Leu 595	Asp	Arg	Сув	Tyr	Ser 600	Thr	Pro	Ser	Gly	Tyr 605	Leu	Glu	Leu
Thr	Asp 610	Ser	Сув	Gln	Pro	Туг 615	Arg	Ser	Ala	Phe	Tyr 620	Ile	Leu	Glu	Gln
Gln 625	Arg	Val	Gly	Trp	Ala 630	Leu	Asp	Met	Asp	Glu 635	Ile	Glu	Lys	Tyr	Gln 640
Glu	Val	Glu	Glu	Asp 645	Gln	Asp	Pro	Ser	Сув 650	Pro	Arg	Leu	Ser	Arg 655	Glu
Leu	Leu	Asp	Glu 660	Lys	Glu	Pro	Glu	Val 665	Leu	Gln	Asp	Ser	Leu 670	Asp	Arg
Сув	Tyr	Ser 675	Thr	Pro	Ser	Gly	Tyr 680	Leu	Glu	Leu	Pro	Asp 685	Leu	Gly	Gln
Pro	Tyr 690	Arg	Ser	Ala	Val	His 695	Ser	Leu	Glu	Glu	Gln 700	Tyr	Leu	Gly	Leu
Ala 705	Leu	Ąsp	Val	Asp	Arg 710	Ile	Lys	Lys	Asp	Gln 715	Glu	Glu	Glu	Glu	Asp 720
Gln	Gly	Pro	Pro	Сув 725	Pro	Arg	Leu	Ser	Arg 730	Glu	Leu	Leu	Glu	Ala 735	Val
Glu	Pro	Glu	Val 740	Leu	Gln	Asp	Ser	Leu 745	Asp	Arg	Cys	Tyr	Ser 750	Thr	Pro
Ser	Ser	Cys 755	Leu	Glu	Gln	Pro	Asp 760	Ser	Сув	Leu	Pro	Tyr 765	Gly	Ser	Ser
Phe	Tyr 770	Ala	Leu	Glu	Glu	Lys 775	His	Val	Gly	Phe	Ser 780	Leu	Asp	Val	Gly
Glu 785	Ile	Glu	Lys	Lys	Gly 790	Lys	Gly	ГÀЗ	Lys	Arg 795	Arg	Gly	Arg	Arg	Ser 800
Thr	ГÀв	Lys	Arg	Arg 805	Arg	Arg	Gly	Arg	Lys 810	Glu	Gly	Glu	Glu	Asp 815	Gln

Asn Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Gly 820 825

Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser

Gly Tyr Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser Ala Phe 850

Tyr Leu Leu Glu Gln Gln Arg Val Glu Leu Arg Pro 870

<210> 203

<211> 378 <212> PRT <213> Homo sapien

<400> 203

Ser Ala Val Gly Ser Asp His Ile Phe His Asn Ile Pro Gly Ser Thr

Ser Ser Ala Thr Asn Val Ser Met Val Val Ser Ala Gly Pro Trp Ser 25

Ser Glu Lys Ala Glu Thr Asn Ile Leu Glu Ile Asn Glu Lys Leu Arg 35 40

Pro Gln Leu Ala Glu Asn Lys Gln Gln Phe Arg Asn Leu Lys Glu Lys 50 55

Cys Phe Val Thr Gln Leu Ala Gly Phe Leu Ala Asn Arg Gln Lys Lys 65 80

Tyr Lys Tyr Glu Glu Cys Lys Asp Leu Ile Lys Phe Met Leu Arg Asn 90

Glu Arg Gln Phe Lys Glu Glu Lys Leu Ala Glu Gln Leu Lys Gln Ala

Glu Glu Leu Arg Gln Tyr Lys Val Leu Val His Ser Gln Glu Arg Glu 115 120

Leu Thr Gln Leu Arg Glu Lys Leu Arg Glu Gly Arg Asp Ala Ser Arg

Ser Leu Asn Gln His Leu Gln Ala Leu Leu Thr Pro Asp Glu Pro Asp

WO 2004/053077 PCT/US2003/038815

242

145 150 155 160

Lys Ser Gln Gly Gln Asp Leu Gln Glu Gln Leu Ala Glu Gly Cys Arg 165 170 175

Leu Ala Gln His Leu Val Gln Lys Leu Ser Pro Glu Asn Asp Asn Asp 180 185 190

Asp Asp Glu Asp Val Gln Val Glu Val Ala Glu Lys Val Gln Lys Ser 195 200 205

Ser Ala Pro Arg Glu Met Pro Lys Ala Glu Glu Lys Glu Val Pro Glu 210 215 220

Asp Ser Leu Glu Glu Cys Ala Ile Thr Cys Ser Asn Ser His Gly Pro 225 230 235 240

Tyr Asp Ser Asn Gln Pro His Arg Lys Thr Lys Ile Thr Phe Glu Glu 245 250 255

Asp Lys Val Asp Ser Thr Leu Ile Gly Ser Ser Ser His Val Glu Trp 260 265 270

Glu Asp Ala Val His Ile Ile Pro Glu Asn Glu Ser Asp Asp Glu Glu 275 280 285

Glu Glu Lys Gly Pro Val Ser Pro Arg Asn Leu Gln Glu Ser Glu 290 295 300

Glu Glu Glu Val Pro Gln Glu Ser Trp Asp Glu Gly Tyr Ser Thr Leu 305 310 315 320

Ser Ile Pro Pro Glu Met Leu Ala Ser Tyr Gln Ser Tyr Ser Gly Thr 325 330 335

Phe His Ser Leu Glu Glu Gln Gln Val Cys Met Ala Val Asp Ile Gly 340 345 350

Gly His Arg Trp Asp Gln Val Lys Lys Glu Asp Gln Glu Ala Thr Gly 355 360 365

Pro Ser Gln Ala Gln Gln Gly Ala Ala Gly 370 375

<210> 204 <211> 782

<212> PRT

<213> Homo sapien

<400> 204

Met Leu Arg Cys Ile Gly Lys Asp Thr Gly Leu Trp His His Lys

1 10 15

Gly Thr Arg Ile Leu Arg Val Asn Ala Glu Gly Met Ile Pro Ile Gly 20 25 30

Gly Asp Pro Gln Val Arg Leu Gly Cys Leu Cys Phe Arg Lys Ala Trp 35 40 45

Ala Ile Gly Met Gln Gly Ser Tyr Asp Ser Met Thr Pro Pro Pro Ser 50 55 60

Asn Ser Val Ile Ala Thr Ala Asp Gly Tyr Leu Ala Arg Trp Pro Gln 65 70 75 80

Ser Thr Ser Leu Leu Ser Glu Ser Glu Leu Leu Ala Val Leu Ser Ala 85 90 95

Leu Ser Ser Gly Thr Ser Asn Leu Val Phe Val Val Lys Asp Pro Lys 100 105 110

Val Leu Trp Gly Val Ile Thr Phe Phe Tyr Asn Ile Pro Gly Ser Thr 115 120 125

Ser Ser Ala Thr Asn Val Ser Met Val Val Ser Ala Gly Pro Trp Ser 130 135 140

Ser Glu Lys Ala Glu Thr Asn Ile Leu Glu Ile Asn Glu Lys Leu Arg 145 150 155 160

Pro Gln Leu Ala Glu Asn Lys Gln Gln Phe Arg Asn Leu Lys Glu Lys 165 170 175

Cys Phe Val Thr Gln Leu Ala Gly Phe Leu Ala Asn Arg Gln Lys Lys 180 185 190

Tyr Lys Tyr Glu Glu Cys Lys Asp Leu Ile Lys Phe Met Leu Arg Asn 195 200 205

Glu Arg Gln Phe Lys Glu Glu Lys Leu Ala Glu Gln Leu Lys Gln Ala 210 215 220

								2	244						
Glu 225	Glu	Leu	Arg	Gln	Tyr 230	ГÀЗ	Val	Leu	Val	His 235	Ser	Gln	Glu	Arg	Glu 240
Leu	Thr	Gln	Leu	Arg 245	Glu	ГÀЗ	Leu	Arg	Glu 250	Gly	Arg	Asp	Ala	Ser 255	Сув
Ser	Leu	Asn	Gln 260	His	Leu	Gln	Ala	Leu 265	Leu	Thr	Pro	Asp	Glu 270	Pro	Asp
Lys	Ser	Gln 275	Gly	Gln	Asp	Leu	Gln 280	Glu	Gln	Leu	Ala	Glu 285	Gly	Сув	Arg
Leu	Ala 290	Gln	His	Leu	Val	Gln 295	Lys	Leu	Ser	Pro	Glu 300	Asn	Asp	Asn	Asp
Авр 305	Авр	Glu	Asp	Val	Gln 310	Val	Glu	Val	Ala	Glu 315	ГÀв	Val	Gln	Lys	Ser 320
Ser	Ala	Pro	Arg	Glu 325	Met	Pro	Lys	Ala	Glu 330	Glu	Lys	Glu	Val	Pro 335	Glu
Asp	Ser	Leu	Glu 340	Glu	Сув	Ala	Ile	Thr 345	Сув	Ser	Asn	Ser	His 350	Gly	Pro
Tyr	qsA	Ser 355	Asn	Gln	Pro	His	Arg 360	Lys	Thr	Lys	Ile	Thr 365	Phe	Glu	Glu
Asp	Lys 370	Val	Asp	Ser	Thr	Leu 375	Ile	Gly	Ser	Ser	Ser 380	His	Val	Glu	Trp
Glu 385	Asp	Ala	Val	His	Ile 390	Ile	Pro	Glu	Asn	Glu 395	Ser	qaA	Asp	Glu	Glu 400
Glu	Glu	Glu	Lys	Gly 405	Pro	Val	Ser	Pro	Arg 410	Asn	Leu	Gln	Glu	Ser 415	Glu
Glu	Glu	Glu	Val 420	Pro	Gln	Glu	Ser	Trp 425	Asp	Glu	Gly	Tyr	Ser 430	Thr	Leu
Ser	Ile	Pro 435	Pro	Glu	Met	Leu	Ala 440	Ser	Tyr	Gln	Ser	Tyr 445	Ser	Gly	Thr

Gly His Arg Trp Asp Gln Val Lys Lys Glu Asp Gln Glu Ala Thr Gly

Phe His Ser Leu Glu Glu Gln Gln Val Cys Met Ala Val Asp Ile Gly

455

WO 2004/053077 PCT/US2003/038815

245

465 470 475 480 Pro Ser Gln Leu Ser Arg Glu Leu Leu Asp Glu Lys Gly Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly Tyr Leu 505 Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser Ala Phe Tyr Ile Leu Glu Gln Gln Arg Val Gly Trp Ala Leu Asp Met Asp Glu Ile Glu Lys 530 535 540 Tyr Gln Glu Val Glu Glu Asp Gln Asp Pro Ser Cys Pro Arg Leu Ser 545 550 Arg Glu Leu Leu Asp Glu Lys Glu Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly Tyr Leu Glu Leu Pro Asp Leu 580 585 Gly Gln Pro Tyr Arg Ser Ala Val His Ser Leu Glu Glu Gln Tyr Leu Gly Leu Ala Leu Asp Val Asp Arg Ile Lys Lys Asp Gln Glu Glu Glu 610 615 620 Glu Asp Gln Gly Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu Leu Glu Ala Val Glu Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Ser Cys Leu Glu Gln Pro Asp Ser Cys Leu Pro Tyr Gly 665 Ser Ser Phe Tyr Ala Leu Glu Glu Lys His Val Gly Phe Ser Leu Asp Val Gly Glu Ile Glu Lys Lys Gly Lys Gly Lys Lys Arg Arg Gly Arg 690 695 700 Arg Ser Thr Lys Lys Arg Arg Arg Gly Arg Lys Glu Gly Glu Glu 705 710 715

Asp Gln Asn Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu

Lys Gly Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr

Pro Ser Gly Tyr Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser 760

Ala Phe Tyr Leu Leu Glu Gln Gln Arg Val Glu Leu Arg Pro 775

<210> 205 <211> 449 <212> PRT <213> Homo sapien

<400> 205

Met Ala Phe Ala Arg Arg Leu Leu Arg Gly Pro Leu Ser Gly Pro Leu

Leu Gly Arg Arg Gly Val Cys Ala Gly Ala Met Ala Pro Pro Arg Arg

Phe Val Leu Glu Leu Pro Asp Cys Thr Leu Ala His Phe Ala Leu Gly 40

Ala Asp Ala Pro Gly Asp Ala Asp Ala Pro Asp Pro Arg Leu Ala Ala

Leu Leu Gly Pro Pro Glu Arg Ser Tyr Ser Leu Cys Val Pro Val Thr

Pro Asp Ala Gly Cys Gly Ala Arg Val Arg Ala Ala Arg Leu His Gln

Arg Leu Leu His Gln Leu Arg Arg Gly Pro Phe Gln Arg Cys Gln Leu

Leu Arg Leu Cys Tyr Cys Pro Gly Gly Gln Ala Gly Gly Ala Gln 120

Gln Gly Phe Leu Leu Arg Asp Pro Leu Asp Asp Pro Asp Thr Arg Gln 130 135

Ala Leu Leu	Glu Leu Le	u Gly Ala	Cys Gln Glu	Ala Pro	Arg Pro His
145	15		155		160

- Leu Gly Glu Phe Glu Ala Asp Pro Arg Gly Gln Leu Trp Gln Arg Leu 165 170 175
- Trp Glu Val Gln Asp Gly Arg Arg Leu Gln Val Gly Cys Ala Gln Val
 180 185 190
- Val Pro Val Pro Glu Pro Pro Leu His Pro Val Val Pro Asp Leu Pro 195 200 205
- Ser Ser Val Val Phe Pro Asp Arg Glu Ala Ala Arg Ala Val Leu Glu 210 215 220
- Glu Cys Thr Ser Phe Ile Pro Glu Ala Arg Ala Val Leu Asp Leu Val 225 230 235 240
- Asp Gln Cys Pro Lys Gln Ile Gln Lys Gly Lys Phe Gln Val Val Ala 245 250 255
- Ile Glu Gly Leu Asp Ala Thr Gly Lys Thr Thr Val Thr Gln Ser Val
 260 265 270
- Ala Asp Ser Leu Lys Ala Val Leu Leu Lys Ser Pro Pro Ser Cys Ile 275 280 285
- Gly Gln Trp Arg Lys Ile Phe Asp Asp Glu Pro Thr Ile Ile Arg Arg 290 295 300
- Ala Phe Tyr Ser Leu Gly Asn Tyr Ile Val Ala Ser Glu Ile Ala Lys 305 310 315 320
- Glu Ser Ala Lys Ser Pro Val Ile Val Asp Arg Tyr Trp His Ser Thr 325 330 335
- Ala Thr Tyr Ala Ile Ala Thr Glu Val Ser Gly Gly Leu Gln His Leu 340 345 350
- Pro Pro Ala His His Pro Val Tyr Gln Trp Pro Glu Asp Leu Leu Lys 355 360 365
- Pro Asp Leu Ile Leu Leu Leu Thr Val Ser Pro Glu Glu Arg Leu Gln 370 380
- Arg Leu Gln Gly Arg Gly Met Glu Lys Thr Arg Glu Glu Ala Glu Leu

395 390 385 400

Glu Ala Asn Ser Val Phe Arg Gln Lys Val Glu Met Ser Tyr Gln Arg

Met Glu Asn Pro Gly Cys His Val Val Asp Ala Ser Pro Ser Arg Glu

Lys Val Leu Gln Thr Val Leu Ser Leu Ile Gln Asn Ser Phe Ser Glu 440

Pro

<210> 206 <211> 590 <212> PRT

<213> Homo sapien

<400> 206

Pro Lys Ala Asn Glu Gln Leu Asn Arg Arg Ser Gln Arg Leu Gln Gln 1 5 10

Leu Thr Glu Val Ser Arg Arg Ser Leu Arg Ser Arg Glu Ile Gln Gly 20 25

Gln Val Gln Ala Val Lys Gln Ser Leu Pro Pro Thr Lys Lys Glu Gln

Cys Ser Ser Thr Gln Ser Lys Ser Asn Lys Thr Ser Gln Lys His Val 50

Lys Arg Lys Val Leu Glu Val Lys Ser Asp Ser Lys Glu Asp Glu Asn 70

Leu Val Ile Asn Glu Val Ile Asn Ser Pro Lys Gly Lys Lys Arg Lys 85

Val Glu His Gln Thr Ala Cys Ala Cys Ser Ser Gln Cys Met Gln Gly 100 105

Ser Glu Lys Cys Pro Gln Lys Thr Thr Arg Arg Asp Glu Thr Lys Pro

Val Pro Val Thr Ser Glu Val Lys Arg Ser Lys Met Ala Thr Ser Val 135

Val 145	Pro	Ьys	Lys	Asn	Glu 150	Met	ГÀЗ	Lув	Ser	Val 155	His	Thr	Gln	Val	Asr 160
Thr	Asn	Thr	Thr	Leu 165	Pro	ГХв	Ser	Pro	Gln 170	Pro	Ser	Val	Pro	Glu 175	Glr
Ser	Asp	Asn	Glu 180	Leu	Glu	Gln	Ala	Gly 185	Гув	Ser	Lys	Arg	Gly 190	Ser	Ile
Leu	Gln	Leu 195	Сув	Glu	Glu	Ile	Ala 200	Gly	Glu	Ile	Glu	Ser 205	Asp	Asn	Val
Glu	Val 210	ГÀв	Гув	Glu	Ser	Ser 215	Gln	Met	Glu	Ser	Val 220	ГÀв	Glu	Glu	Lys
Pro 225	Thr	Glu	Ile	Lys	Leu 230	Glu	Glu	Thr	Ser	Val 235	Glu	Arg	Gln	Ile	Leu 240
His	Gln	Lys	Glu	Thr 245	Asn	Gln	Asp	Val	Gln 250	Cys	Asn	Arg	Phe	Phe 255	Pro
Ser	Arg	Lys	Thr 260	Lys	Pro	Val	ГÀЗ	Cys 265	Ile	Leu	Asn	Gly	Ile 270	Asn	Ser
Ser	Ala	Lуя 275	Ьys	Asn	Ser	Asn	Trp 280	Thr	ГÀв	Ile	Lys	Leu 285	Ser	ГÀЗ	Phe
Asn	Ser 290	Val	Gln	His	Asn	Lуs 295	Leu	Asp	Ser	Gln	Val 300	Ser	Pro	Lys	Leu
Gly 305	Leu	Leu	Arg	Thr	Ser 310	Phe	Ser	Pro	Pro	Ala 315	Leu	Glu	Met	His	His 320
Pro	Val	Thr	Gln	Ser 325	Thr	Phe	Leu	Gly	Thr 330	Lys	Leu	His	Asp	Arg 335	Asn
Ile	Thr	Сув	Gln 340	Gln	Glu	Lys	Met	Lys 345	Glu	Ile	Asn	Ser	Glu 350	Glu	Val
Lys	Ile	Asn 355	Asp	Ile	Thr	Val	Glu 360	Ile	Asn	Lys	Thr	Thr 365	Glu	Arg	Ala
Pro	Glu 370	Asn	Сув	His	Leu	Ala 375	Asn	Glu	Ile	Lys	Pro 380	Ser	Asp	Pro	Pro

WO 2004/053077 PCT/US2003/038815

250

Leu Asp Asn Gln Met Lys His Ser Phe Asp Ser Ala Ser Asn Lys Asn 385 390 395 400

Phe Ser Gln Cys Leu Glu Ser Lys Leu Glu Asn Ser Pro Val Glu Asn 405 410 415

Val Thr Ala Ala Ser Thr Leu Leu Ser Gln Ala Lys Ile Asp Thr Gly
420 425 430

Glu Asn Lys Phe Pro Gly Ser Ala Pro Gln Gln His Ser Ile Leu Ser 435 440 445

Asn Gln Thr Ser Lys Ser Ser Asp Asn Arg Glu Thr Pro Arg Asn His 450 455 460

Ser Leu Pro Lys Cys Asn Ser His Leu Glu Ile Thr Ile Pro Lys Asp 465 470 475 480

Leu Lys Leu Lys Glu Ala Glu Lys Thr Asp Glu Lys Gln Leu Ile Ile 485 490 495

Asp Ala Gly Gln Lys Arg Phe Gly Ala Val Ser Cys Asn Val Cys Gly 500 505 510

Met Leu Tyr Thr Ala Ser Asn Pro Glu Asp Glu Thr Gln His Leu Leu 515 520 525

Phe His Asn Gln Phe Ile Ser Ala Val Lys Tyr Val Val Leu Leu Ile 530 535 540

Asn His His Glu Cys Gly Ser Glu Glu Glu Phe Ile Thr Ser Leu Phe 545 550 560

Leu Ser Met Phe Asn Phe Arg Tyr Thr Gln Arg Ser Phe Ser Phe Pro 565 570 575

Ile Arg Phe Leu Glu Gly Leu Glu Glu Arg Lys Asn Ser Gly 580 585 590

<210> 207

<211> 661

<212> PRT

<213> Homo sapien

<400> 207

Met Gln Gly Ser Glu Lys Cys Pro Gln Lys Thr Thr Arg Arg Asp Glu

10 15

Thr	Lys	Pro	Val 20	Pro	Val	Thr	Ser	Glu 25	Val	ГÀв	Arg	Ser	30	Met	Ala
Thr	Ser	Val 35	Val	Pro	Lys	Lys	Asn 40	Glu	Met	Lys	Lys	Ser 45	Val	His	Thr
Gln	Val 50	Asn	Thr	Asn	Thr	Thr 55	Leu	Pro	Lys	Ser	Pro 60	Gln	Pro	Ser	Val
Pro 65	Glu	Gln	Ser	qaA	Asn 70	Glu	Leu	Glu	Gln	Ala 75	Gly	Fàs	Ser	Lys	Arg 80
Gly	Ser	Ile	Leu	Gln 85	Leu	Сув	Glu	Glu	Ile 90	Ala	Gly	Glu	Ile	Glu 95	Ser
qaA	Asn	Val	Glu 100	Val	Lys	ГÀВ	Glu	Ser 105	Ser	Gln	Met	Glu	Ser 110	Val	ГÀЗ
Glu	Glu	Lys 115	Pro	Thr	Glu	Ile	Lys 120	Leu	Glu	Glu	Thr	Ser 125	Val	Glu	Arg
Gln	Ile 130	Leu	His	Gln	Lys	Glu 135	Thr	Asn	Gln	Asp	Val 140	Gln	Сув	Asn	Arg
Phe 145	Phe	Pro	Ser	Arg	Lys 150	Thr	ГÀЗ	Pro	Val	Lys 155	Сув	Ile	Leu	Asn	Gly 160
Ile	Asn	Ser	Ser	Ala 165	Lys	ГЛЗ	Asn	Ser	Asn 170	Trp	Thr	Lys	Ile	Lys 175	Leu
Ser	Lys	Phe	Asn 180	Ser	Val	Gln	His	Asn 185	Lys	Leu	Asp	Ser	Gln 190	Val	Ser
Pro	ГЛЗ	Leu 195	Gly	Leu	Leu	Arg	Thr 200	Ser	Phe	Ser	Pro	Pro 205	Ala	Leu	Glu
Met	His 210	His	Pro	Val	Thr	Gln 215	Ser	Thr	Phe	Leu	Gly 220	Thr	ГÀв	Leu	His
Asp 225	Arg	Asn	Ile	Thr	Сув 230	Gln	Gln	Glu	ГÀв	Met 235	Lys	Glu	Ile	Asn	Ser 240
Glu	Glu	V al	Lys	Ile 245	Asn	qaA	Ile	Thr	Val		Ile	Asn	Lys	Thr	

Glu	Arg	Ala	Pro	Glu	Asn	Cys	His	Leu	Ala	Asn	Glu	Ile	Lys	Pro	Ser
			260					265					270		

- Asp Pro Pro Leu Asp Asn Gln Met Lys His Ser Phe Asp Ser Ala Ser 275 280 285
- Asn Lys Asn Phe Ser Gln Cys Leu Glu Ser Lys Leu Glu Asn Ser Pro 290 295 300
- Val Glu Asn Val Thr Ala Ala Ser Thr Leu Leu Ser Gln Ala Lys Ile 305 310 315 320
- Asp Thr Gly Glu Asn Lys Phe Pro Gly Ser Ala Pro Gln Gln His Ser 325 330 335
- Ile Leu Ser Asn Gln Thr Ser Lys Ser Ser Asp Asn Arg Glu Thr Pro 340 345 350
- Arg Asn His Ser Leu Pro Lys Cys Asn Ser His Leu Glu Ile Thr Ile 355 360 365
- Pro Lys Asp Leu Lys Leu Lys Glu Ala Glu Lys Thr Asp Glu Lys Gln 370 375 380
- Leu Ile Ile Asp Ala Gly Gln Lys Arg Phe Gly Ala Val Ser Cys Asn 385 390 395 400
- Val Cys Gly Met Leu Tyr Thr Ala Ser Asn Pro Glu Asp Glu Thr Gln
 405 410 415
- His Leu Leu Phe His Asn Gln Phe Ile Ser Ala Val Lys Tyr Val Val 420 425 430
- Leu Leu Ile Asn His His Glu Cys Gly Ser Glu Glu Glu Phe Ile Thr 435 440 445
- Ser Leu Phe Leu Ser Met Phe Asn Phe Arg Tyr Thr Gln Arg Ser Phe 450 455 460
- Ser Phe Pro Ile Arg Phe Leu Glu Gly Trp Lys Lys Glu Arg Ile Leu 465 470 475 480
- Ala Glu Tyr Pro Asp Gly Arg Ile Ile Met Val Leu Pro Glu Asp Pro 485 490 495

253

Lys Tyr Ala Leu Lys Lys Val Asp Glu Ile Arg Glu Met Val Asp Asn 500 505

Asp Leu Gly Phe Gln Gln Ala Pro Leu Met Cys Tyr Ser Arg Thr Lys 515 520 525

Thr Leu Leu Phe Ile Ser Asn Asp Lys Lys Val Val Gly Cys Leu Ile 530 535 540

Ala Glu His Ile Gln Trp Gly Tyr Arg Val Ile Glu Glu Lys Leu Pro 545 550 555 560

Val Ile Arg Ser Glu Glu Glu Lys Val Arg Phe Glu Arg Gln Lys Ala 565 570 575

Trp Cys Cys Ser Thr Leu Pro Glu Pro Ala Ile Cys Gly Ile Ser Arg 580 585 590

Ile Trp Val Phe Ser Met Met Arg Arg Lys Lys Ile Ala Ser Arg Met 595 600 605

Ile Glu Cys Leu Arg Ser Asn Phe Ile Tyr Gly Ser Tyr Leu Ser Lys
610 620

Glu Glu Ile Ala Phe Ser Asp Pro Thr Pro Asp Gly Lys Leu Phe Ala 625 630 635 640

Thr Gln Tyr Cys Gly Thr Gly Gln Phe Leu Val Tyr Asn Phe Ile Asn 645 650 655

Gly Gln Asn Ser Thr 660

<210> 208

<211> 157

<212> PRT

<213> Homo sapien

<400> 208

Met Thr Thr Val Glu Arg Gly Cys Gly Ser Gly Ala Ala Trp Arg Ala 1 5 10 15

Val Gln Cys Arg Ala Gly Val Ser Gln Gly Leu Val Ala Thr Val Glu 20 25 30

Arg Gly Cys Gly Ser Gly Gly Ser Pro Ala Cys Ser Pro Val Pro Gly

Arg Ser Leu Ala Glu Cys Ser Leu Thr Pro Pro Arg Gly Ser Pro Gly 55

Pro Tyr Arg Leu Pro Gln Leu Gln Ser Trp Val Pro Ser Asp Ala Val

Ala Gly Gln Arg Glu Ala Glu Ala Gly Ser Pro Arg Glu Ala Trp Ala

Pro Ser Pro Gly His Gly Cys Pro Ser Arg Ser Ser Ser Leu Gln Pro 105

Gln Ser Gln Gly Asp Val Gly Thr Gly Val Lys Ser Gly Trp Ser Val

Ala Leu Arg Pro Gln Glu Arg Tyr Gly Leu Lys Pro Ala Ala Arg Ala

Cys His Thr Arg Val Gly Pro Pro Leu His Ile Leu Arg 150

<210> 209

<211> 269

<212> PRT <213> Homo sapien

<400> 209

Met Asp Arg Pro Pro Gly Gln Val Lys Ala Ala Thr Ser Asp Leu Glu

His Tyr Asp Lys Thr Arg His Glu Glu Phe Lys Lys Tyr Glu Met Met

Lys Glu His Glu Arg Arg Glu Tyr Leu Lys Thr Leu Asn Glu Glu Lys 40

Arg Lys Glu Glu Ser Lys Phe Glu Glu Met Lys Lys Lys His Glu 50 55

Asn His Pro Lys Val Asn His Pro Gly Ser Lys Asp Gln Leu Lys Glu 70 75

Val Trp Glu Glu Thr Asp Gly Leu Asp Pro Asn Asp Phe Asp Pro Lys 85

255

Thr Phe Phe Lys Leu His Asp Val Asn Ser Asp Gly Phe Leu Asp Glu 100 105 110

Gln Glu Leu Glu Ala Leu Phe Thr Lys Glu Leu Glu Lys Val Tyr Asp 115 120 125

Pro Lys Asn Glu Glu Asp Asp Met Val Glu Met Glu Glu Glu Arg Leu 130 135 140

Arg Met Arg Glu His Val Met Asn Glu Val Asp Thr Asn Lys Asp Arg 145 150 155 160

Leu Val Thr Leu Glu Glu Phe Leu Lys Ala Thr Glu Lys Lys Glu Phe
165 170 175

Leu Glu Pro Asp Ser Trp Glu Thr Leu Asp Gln Gln Gln Phe Phe Thr
180 185 190

Glu Glu Leu Lys Glu Tyr Glu Asn Ile Ile Ala Leu Gln Glu Asn 195 200 205

Glu Leu Lys Lys Lys Ala Asp Glu Leu Gln Lys Gln Lys Glu Glu Leu 210 215 220

Gln Arg Gln His Asp Gln Leu Glu Ala Gln Lys Leu Glu Tyr His Gln 225 230 235 240

Val Ile Gln Gln Met Glu Gln Lys Lys Leu Gln Gln Gly Ile Pro Pro 245 250 255

Ser Gly Pro Ala Gly Glu Leu Lys Phe Glu Pro His Ile 260 265

<210> 210

<211> 363

<212> PRT

<213> Homo sapien

<400> 210

Met Arg Trp Arg Thr Ile Leu Leu Gln Tyr Cys Phe Leu Leu Ile Thr 1 5 10 15

Cys Leu Leu Thr Ala Leu Glu Ala Val Pro Ile Asp Ile Asp Lys Thr

Lys Val Gln Asn Ile His Pro Val Glu Ser Ala Lys Ile Glu Pro Pro 35 40 45

- Asp Thr Gly Leu Tyr Tyr Asp Glu Tyr Leu Lys Gln Val Ile Asp Val
- Leu Glu Thr Asp Lys His Phe Arg Glu Lys Leu Gln Lys Ala Asp Ile
- Glu Glu Ile Lys Ser Gly Arg Leu Ser Lys Glu Leu Asp Leu Val Ser 90
- His His Val Arg Thr Lys Leu Asp Glu Leu Lys Arg Gln Glu Val Gly
- Arg Leu Arg Met Leu Ile Lys Ala Lys Leu Asp Ser Leu Gln Asp Ile
- Gly Met Asp His Gln Ala Leu Leu Lys Gln Phe Asp His Leu Asn His 135
- Leu Asn Pro Asp Lys Phe Glu Ser Thr Asp Leu Asp Met Leu Ile Lys
- Ala Ala Thr Ser Asp Leu Glu His Tyr Asp Lys Thr Arg His Glu Glu 165 170
- Phe Lys Lys Tyr Glu Met Met Lys Glu His Glu Arg Arg Glu Tyr Leu 180
- Lys Thr Leu Asn Glu Glu Lys Arg Lys Glu Glu Glu Ser Lys Phe Glu 195 200
- Glu Met Lys Lys His Glu Asn His Pro Lys Val Asn His Pro Gly 215 220
- Ser Lys Asp Gln Leu Lys Glu Val Trp Glu Glu Thr Asp Gly Leu Asp 230
- Pro Asn Asp Phe Asp Pro Lys Thr Phe Phe Lys Leu His Asp Val Asn 245 250
- Ser Asp Gly Phe Leu Asp Glu Glu Glu Leu Glu Ala Leu Phe Thr Lys
- Glu Leu Glu Lys Val Tyr Asp Pro Lys Asn Glu Glu Asp Asp Met Val 275 280

257

Glu Met Glu Glu Glu Arg Leu Arg Met Arg Glu His Val Met Asn Glu 290 295 300

Val Asp Thr Asn Lys Asp Arg Leu Val Thr Leu Glu Glu Phe Leu Lys 305 310 315 320

Ala Thr Glu Lys Lys Glu Phe Leu Glu Pro Asp Ser Trp Glu Val Ile 325 330 335

Gln Gln Met Glu Gln Lys Lys Leu Gln Gln Gly Ile Pro Pro Ser Gly 340 345 350

Pro Ala Gly Glu Leu Lys Phe Glu Pro His Ile 355 360

<210> 211

<211> 420

<212> PRT

<213> Homo sapien

<400> 211

Met Arg Trp Arg Thr Ile Leu Leu Gln Tyr Cys Phe Leu Leu Ile Thr 1 5 10 15

Cys Leu Leu Thr Ala Leu Glu Ala Val Pro Ile Asp Ile Asp Lys Thr
20 25 30

Lys Val Gln Asn Ile His Pro Val Glu Ser Ala Lys Ile Glu Pro Pro 35 40 45

Asp Thr Gly Leu Tyr Tyr Asp Glu Tyr Leu Lys Gln Val Ile Asp Val 50 55 60

Leu Glu Thr Asp Lys His Phe Arg Glu Lys Leu Gln Lys Ala Asp Ile 65 70 75 80

Glu Glu Ile Lys Ser Gly Arg Leu Ser Lys Glu Leu Asp Leu Val Ser 85 90 95

His His Val Arg Thr Lys Leu Asp Glu Leu Lys Arg Gln Glu Val Gly
100 105 110

Arg Leu Arg Met Leu Ile Lys Ala Lys Leu Asp Ser Leu Gln Asp Ile 115 120 125

Gly Met Asp His Gln Ala Leu Leu Lys Gln Phe Asp His Leu Asn His

258

	120							_							
	130					135					140				
Leu 145	Asn	Pro	Asp	ГЛЗ	Phe 150	Glu	Ser	Thr	Asp	Leu 155	Asp	Met	Leu	Ile	Lys 160
Ala	Ala	Thr	Ser	Asp 165	Leu	Glu	His	Tyr	Asp 170	Гув	Thr	Arg	His	Glu 175	Glu
Phe	Lys	Lys	Tyr 180	Glu	Met	Met	ГÀв	Glu 185	His	Glu	Arg	Arg	Glu 190	Tyr	Leu
Lys	Thr	Leu 195	Asn	Glu	Glu	Lys	Arg 200	Lys	Glu	Glu	Glu	Ser 205	Lys	Phe	Glu
Glu	Met 210	Lys	Lys	Lys	His	Glu 215	Asn	His	Pro	ГÀВ	Val 220	Asn	His	Pro	Gly
Ser 225	ГÀв	Asp	Gln	Leu	Lys 230	Glu	Val	Trp	Glu	Glu 235	Thr	Asp	Gly	Leu	Asp 240
Pro	Asn	Asp	Phe	Asp 245	Pro	Lys	Thr	Phe	Phe 250	Lys	Leu	His	qaA	Val 255	Asn
Ser	Asp	Gly	Phe 260	Leu	Asp	Glu	Gln	Glu 265	Leu	Glu	Ala	Leu	Phe 270	Thr	Lys
Glu	Leu	Glu 275	Гув	Val	Тух	Asp	Pro 280	Lys	Asn	Glu	Glu	Asp 285	Asp	Met	Val
Glu	Met 290	Glu	Glu	Glu	Arg	Leu 295	Arg	Met	Arg	Glu	His 300	Val	Met	Asn	Glu
Val 305	Asp	Thr	Asn	ГÀв	Asp 310	Arg	Leu	Val	Thr	Leu 315	Glu	Glu	Phe	Leu	Lys 320
Ala	Thr	Glu	Lys	Lys 325	Glu	Phe	Leu	Glu	Pro 330	Ąsp	Ser	Trp	Glu	Thr 335	Leu
Asp	Gln	Gln	Gln 340	Phe	Phe	Thr	Glu	Glu 345	Glu	Leu	Lys	Glu	Tyr 350	Glu	Asn
Ile	Ile	Ala 355	Leu	Gln	Glu	Asn	Glu 360	Leu	Lys	Lys	ŗ	Ala 365	Asp	Glu	Leu
Gln	Lуs 370	Gln	ГÀв	Glu	Glu	Leu 375	Gln	Arg	Gln	His	да Д 088	Gln	Leu	Glu	Ala

Gln Lys Leu Glu Tyr His Gln Val Ile Gln Gln Met Glu Gln Lys Lys 385 390 395 400

Leu Gln Gln Gly Ile Pro Pro Ser Gly Pro Ala Gly Glu Leu Lys Phe 405 410 415

Glu Pro His Ile 420

<210> 212

<211> 162

<212> PRT

<213> Homo sapien

<400> 212

Met Gln Thr Ser Val Thr Trp Glu Ile Pro Phe Pro Thr Asn Ser Leu

1 5 10 15

Val Val Lys Leu His Ser Met Asp Lys Ile Thr Tyr Tyr His Lys Ile 20 25 30

Lys Lys Cys Ile Phe Ser Ala Leu Arg Ala Arg Asn Thr Arg Arg Ser 35 40 45

Ile Lys Leu Asp Gly Lys Gly Glu Pro Lys Gly Ala Lys Arg Ala Lys 50 55 60

Pro Val Lys Tyr Thr Ala Ala Lys Leu His Glu Lys Gly Val Leu Leu 65 70 75 80

Asp Ile Asp Asp Leu Gln Thr Asn Gln Phe Lys Asn Val Thr Phe Asp 85 90 95

Ile Ile Ala Thr Glu Asp Val Gly Ile Phe Asp Val Arg Ser Lys Phe
100 105 110

Leu Gly Val Glu Met Glu Lys Val Gln Leu Asn Ile Gln Asp Leu Leu 115 120 125

Gln Met Gln Tyr Glu Gly Val Ala Val Met Lys Met Phe Asp Lys Val 130 135 140

Lys Val Asn Val Asn Leu Leu Ile Tyr Leu Leu Asn Lys Lys Phe Tyr 145 150 155 160

PCT/US2003/038815 WO 2004/053077

260

Gly Lys

<210> 213

<211> 69

<212> PRT <213> Homo sapien

<400> 213

Tyr Phe Thr Leu Phe Tyr Tyr Lys Phe Arg Ser Leu Cys Phe Thr Ile 10

Asn Ser Asp Tyr Pro Asn Ile Phe Leu Ile Leu Cys Gly Asn Ala Asp 20 25

Phe Leu Leu Leu Arg Ser Gly Asn Ile Leu His Cys Leu His Ser Ser 40

His Gly Thr Trp Lys Phe Leu Lys Val Ile Tyr Asp Thr His Phe Leu

Cys Met Tyr Ser Asn

<210> 214

<211> 42

<212> PRT

<213> Homo sapien

<400> 214

Gln Ser Ser Ala Glu Ala Gly Gly Gly Asp Glu Arg Glu Ile Asn Thr

Tyr Gly Arg Trp Ala Leu Met Gln Cys Glu Arg Arg Ser Val Met Asp

Val Arg Gly Arg Gly Thr Ser Glu Leu Pro

<210> 215

<211> 172

<212> PRT

<213> Homo sapien

<400> 215

Gly Thr Gly Leu Pro Trp His Ser Thr Pro Ala Gln Leu Ala Leu Ala

PCT/US2003/038815 WO 2004/053077

261

Gly Leu Arg Gln Ala Gln Pro His Pro Gln Gln Gln Arg Leu His Gln 25

Pro Gly Leu Arg Gly Val Asp Ala His Gly Ser Ala Ala His Val Pro

Gln Ala Val Pro Gln Ala Val Arg Ala His Pro Pro Gly Gln Leu Leu

Ser Trp Ala Ala Ala Val Cys Leu Leu Cys Gln His His Leu Gln Leu

Pro Gly Lys Lys Arg Asn Ser Thr Leu Tyr Ile Thr Met Leu Leu Ile 85 90

Val Pro Val Ile Val Ala Gly Ala Ile Ile Val Leu Leu Tyr Leu

Lys Arg Leu Lys Ile Ile Ile Phe Pro Pro Ile Pro Asp Pro Gly Lys

Ile Phe Lys Glu Met Phe Gly Asp Gln Asn Asp Asp Thr Leu His Trp 135 140

Lys Lys Tyr Asp Ile Tyr Glu Lys Gln Thr Lys Glu Glu Thr Asp Ser 145 150 155

Val Val Leu Ile Glu Asn Leu Lys Lys Ala Ser Gln 165

<210> 216 <211> 134

<212> PRT

<213> Homo sapien

<400> 216

Met Arg Met Ala Ala Leu Pro Thr Phe Arg Lys Leu Phe Arg Lys Leu

Tyr Gly His Ile Arg Gln Gly Asn Tyr Ser Ala Gly Leu Pro Arg Cys 25

Val Tyr Cys Val Asn Ile Thr Tyr Asn Tyr Leu Gly Lys Lys Arg Asn 35

Ser Thr Leu Tyr Ile Thr Met Leu Leu Ile Val Pro Val Ile Val Ala 50

Gly Ala Ile Ile Val Leu Leu Leu Tyr Leu Lys Arg Leu Lys Ile Ile

Ile Phe Pro Pro Ile Pro Asp Pro Gly Lys Ile Phe Lys Glu Met Phe

Gly Asp Gln Asn Asp Asp Thr Leu His Trp Lys Lys Tyr Asp Ile Tyr

Glu Lys Gln Thr Lys Glu Glu Thr Asp Ser Val Val Leu Ile Glu Asn 120

Leu Lys Lys Ala Ser Gln 130

<210> 217

<211> 396

<212> PRT

<213> Homo sapien

<400> 217

Met Leu Met Ala Lys Gly Lys Leu Lys Pro Thr Gln Asn Ala Ser Glu

Lys Leu Gln Ala Pro Gly Lys Gly Leu Thr Ser Asn Lys Ser Lys Asp

Asp Leu Val Val Ala Glu Val Glu Ile Asn Asp Val Pro Leu Thr Cys

Arg Asn Leu Leu Thr Arg Gly Gln Thr Gln Asp Glu Ile Ser Arg Leu

Ser Gly Ala Ala Val Ser Thr Arg Gly Arg Phe Met Thr Thr Glu Glu

Lys Ala Lys Val Gly Pro Gly Asp Arg Pro Leu Tyr Leu His Val Gln

Gly Gln Thr Arg Glu Leu Val Asp Arg Ala Val Asn Arg Ile Lys Glu 100 105

Ile Ile Thr Asn Gly Val Val His Gln Pro Ala Pro Ile Ala Gln Leu 115 120 125

Ser Pro Ala Val Ser Gln Lys Pro Pro Phe Gln Ser Gly Met His Tyr Val Gln Asp Lys Leu Phe Val Gly Leu Glu His Ala Val Pro Thr Phe 145 150 155 Asn Val Lys Glu Lys Val Glu Gly Pro Gly Cys Ser Tyr Leu Gln His 165 Ile Gln Ile Glu Thr Gly Ala Lys Val Phe Leu Arg Gly Lys Gly Ser Gly Cys Ile Glu Pro Ala Ser Gly Arg Glu Ala Phe Glu Pro Met Tyr 200 Ile Tyr Ile Ser His Pro Lys Pro Glu Gly Leu Ala Ala Ala Lys Lys Leu Cys Glu Asn Leu Leu Gln Thr Val His Ala Glu Tyr Ser Arg Phe 230 Val Asn Gln Ile Asn Thr Ala Val Pro Leu Pro Gly Tyr Thr Gln Pro Ser Ala Ile Ser Ser Val Pro Pro Gln Pro Pro Tyr Tyr Pro Ser Asn Gly Tyr Gln Ser Gly Tyr Pro Val Val Pro Pro Pro Gln Gln Pro Val 275 280 Gln Pro Pro Tyr Gly Val Pro Ser Ile Val Pro Pro Ala Val Ser Leu 290 295 Ala Pro Gly Val Leu Pro Ala Leu Pro Thr Gly Val Pro Pro Val Pro 305 310

Thr Gln Tyr Pro Ile Thr Gln Val Gln Pro Pro Ala Ser Thr Gly Gln
325 330 335

Ser Pro Met Gly Gly Pro Phe Ile Pro Ala Ala Pro Val Lys Thr Ala 340 345 350

Leu Pro Ala Gly Pro Gln Pro Gln Pro Gln Pro Pro Leu Pro 355 360 365

Ser Gln Pro Gln Ala Gln Lys Arg Arg Phe Thr Glu Glu Leu Pro Asp

370 375 380

Glu Arg Glu Ser Gly Leu Leu Gly Tyr Gln Val Lys 385 390 395

<210> 218

<211> 255

<212> PRT

<213> Homo sapien

<400> 218

Met His Tyr Val Gln Asp Lys Leu Phe Val Gly Leu Glu His Ala Val 1 5 10 15

Pro Thr Phe Asn Val Lys Glu Lys Val Glu Gly Pro Gly Cys Ser Tyr
20 25 30

Leu Gln His Ile Gln Ile Glu Thr Gly Ala Lys Val Phe Leu Arg Gly 35 40 45

Lys Gly Ser Gly Cys Ile Glu Pro Ala Ser Gly Arg Glu Ala Phe Glu 50 55 60

Pro Met Tyr Ile Tyr Ile Ser His Pro Lys Pro Glu Gly Leu Ala Ala 65 70 75 80

Ala Lys Lys Leu Cys Glu Asn Leu Leu Gln Thr Val His Ala Glu Tyr 85 90 95

Ser Arg Phe Val Asn Gln Ile Asn Thr Ala Val Pro Leu Pro Gly Tyr
100 105 110

Thr Gln Pro Ser Ala Ile Ser Ser Val Pro Pro Gln Pro Pro Tyr Tyr 115 120 125

Pro Ser Asn Gly Tyr Gln Ser Gly Tyr Pro Val Val Pro Pro Pro Gln 130 135 140

Val Ser Leu Ala Pro Gly Val Leu Pro Ala Leu Pro Thr Gly Val Pro 165 170 175

Pro Val Pro Thr Gln Tyr Pro Ile Thr Gln Val Gln Pro Pro Ala Ser 180 185 190

Thr Gly Gln Ser Pro Met Gly Gly Pro Phe Ile Pro Ala Ala Pro Val 200

Lys Thr Ala Leu Pro Ala Gly Pro Gln Pro Gln Pro Gln Pro

Pro Leu Pro Ser Gln Pro Gln Ala Gln Lys Arg Arg Phe Thr Glu Glu 235

Leu Pro Asp Glu Arg Glu Ser Gly Leu Leu Gly Tyr Gln Val Lys

<210> 219

<211> 412 <212> PRT <213> Homo sapien

<400> 219

Lys Ile Val Asp Val Ile Arg Gln Glu Val Leu Glu Ser Ser Gln Val

Thr Phe Val His His Leu Gln Ala Phe Ala Ser Lys Ile Thr Gly Met

Leu Leu Glu Leu Ser Pro Ala Gln Leu Leu Leu Leu Ala Ser Glu 35 40

Asp Ser Leu Arg Ala Arg Val Asp Glu Ala Met Glu Leu Ile Ile Ala 50

His Gly Arg Glu Asn Gly Ala Asp Ser Ile Leu Asp Leu Gly Leu Val 70

Asp Ser Ser Glu Lys Val Gln Gln Glu Asn Arg Lys Arg His Gly Ser

Ser Arg Ser Val Val Asp Met Asp Leu Asp Asp Thr Asp Asp Gly Asp

Asp Asn Ala Pro Leu Phe Tyr Gln Pro Gly Lys Arg Gly Phe Tyr Thr 120

Pro Arg Pro Gly Lys Asn Thr Glu Ala Arg Leu Asn Cys Phe Arg Asn

Ile Gly Arg Ile Leu Gly Leu Cys Leu Leu Gln Asn Glu Leu Cys Pro

266

150 155 145 160 Ile Thr Leu Asn Arg His Val Ile Lys Val Leu Leu Gly Arg Lys Val 170 Asn Trp His Asp Phe Ala Phe Phe Asp Pro Val Met Tyr Glu Ser Leu 185 Arg Gln Leu Ile Leu Ala Ser Gln Ser Ser Asp Ala Asp Ala Val Phe 195 200 Ser Ala Met Asp Leu Ala Phe Ala Ile Asp Leu Cys Lys Glu Glu Gly 210 Gly Gly Gln Val Glu Leu Ile Pro Asn Gly Val Asn Ile Pro Val Thr 225 235 Pro Gln Asn Val Tyr Glu Tyr Val Arg Lys Tyr Ala Glu His Arg Met 245 250 Leu Val Val Ala Glu Gln Pro Leu His Ala Met Arg Lys Gly Leu Leu 265 Asp Val Leu Pro Lys Asn Ser Leu Glu Asp Leu Thr Ala Glu Asp Phe Arg Leu Leu Val Asn Gly Cys Gly Glu Val Asn Val Gln Met Leu Ile Ser Phe Thr Ser Phe Asn Asp Glu Ser Gly Glu Asn Ala Glu Lys Leu Leu Gln Phe Lys Arg Trp Phe Trp Ser Ile Val Glu Lys Met Ser Met 330 Thr Glu Arg Gln Asp Leu Val Tyr Phe Trp Thr Ser Ser Pro Ser Leu Pro Ala Ser Glu Glu Gly Phe Gln Pro Met Pro Ser Ile Thr Ile Arg 355 Pro Pro Asp Asp Gln His Leu Pro Thr Ala Asn Thr Cys Ile Ser Arg 370 375 Leu Tyr Val Pro Leu Tyr Ser Ser Lys Gln Ile Leu Lys Gln Lys Leu 390 395

Leu Leu Ala Ile Lys Thr Lys Asn Phe Gly Phe Val 405

<210> 220

<211> 56 <212> PRT <213> Homo sapien

<400> 220

Gly Lys Lys Lys Phe Asn Phe Gly Arg Leu Cys Tyr Leu Glu Ser Leu

Lys Phe Ser Leu Val Lys Met Asp Cys Ile Leu Leu Leu Thr Lys Ile 25

Ser Arg Ile Met Cys Gly Leu Leu Ile Ser Gly Met Leu Arg Ser Tyr 40

Ser Leu Thr Ile Lys Ile Leu Asn

<210> 221 <211> 430 <212> PRT

<213> Homo sapien

<400> 221

Glu Cys Pro Gly Arg Arg Asp Pro Gly Arg Gly Glu Arg Glu Gln Ser 5

Gly Val Arg Ala Ser Leu Trp Ala Gly Leu Gly Leu Gly Arg Arg

Cys Gly Leu Gly Arg Phe Gly Arg Gly Gly Arg Met Met Gly Arg

Val Arg Thr Leu Ala Gly Glu Cys Ser Ala Gln Ala Gln Ala Gln Ser

Leu Leu Ala Val Val Leu Ser Ala Pro Pro Ser Gly Gly Thr Pro Ser 70 75

Ala Arg Leu Ser Val Arg Ser Pro Ser Pro Arg Asp Pro Trp Gly Leu 90

Trp Ala Pro Val Leu Gln Met Thr Gly Ser Asn Glu Phe Lys Leu Asn

105 100 110 Gln Pro Pro Glu Asp Gly Ile Ser Ser Val Lys Phe Ser Pro Asn Thr 120 Ser Gln Phe Leu Leu Val Ser Ser Trp Asp Thr Ser Val Arg Leu Tyr 135 Asp Val Pro Ala Asn Ser Met Arg Leu Lys Tyr Gln His Thr Gly Ala 145 150 155 Val Leu Asp Cys Ala Phe Tyr Asp Pro Thr His Ala Trp Ser Gly Gly 175 Leu Asp His Gln Leu Lys Met His Asp Leu Asn Thr Asp Gln Glu Asn 185 Leu Val Gly Thr His Asp Ala Pro Ile Arg Cys Val Glu Tyr Cys Pro 195 200 205 Glu Val Asn Val Met Val Thr Gly Ser Trp Asp Gln Thr Val Lys Leu Trp Asp Pro Arg Thr Pro Cys Asn Ala Gly Thr Phe Ser Gln Pro Glu 225 230 Lys Val Tyr Thr Leu Ser Val Ser Gly Asp Arg Leu Ile Val Gly Thr 245 250 Ala Gly Arg Arg Val Leu Val Trp Asp Leu Arg Asn Met Gly Tyr Val Gln Gln Arg Arg Glu Ser Ser Leu Lys Tyr Gln Thr Arg Cys Ile Arg 280 Ala Phe Pro Asn Lys Gln Gly Tyr Val Leu Ser Ser Ile Glu Gly Arg Val Ala Val Glu Tyr Leu Asp Pro Ser Pro Glu Val Gln Lys Lys Tyr Ala Phe Lys Cys His Arg Leu Lys Glu Asn Asn Ile Glu Gln Ile 325 330 Tyr Pro Val Asn Ala Ile Ser Phe His Asn Ile His Asn Thr Phe Ala 340 345

Thr Gly Gly Ser Asp Gly Phe Val Asn Ile Trp Asp Pro Phe Asn Lys 355 360 365

Lys Arg Leu Cys Gln Phe His Arg Tyr Pro Thr Ser Ile Ala Ser Leu 370 375 380

Ala Phe Ser Asn Asp Gly Thr Thr Leu Ala Ile Ala Ser Ser Tyr Met 385 390 395 400

Tyr Glu Met Asp Asp Thr Glu His Pro Glu Asp Gly Ile Phe Ile Arg 405 410 415

Gln Val Thr Asp Ala Glu Thr Lys Pro Lys Ser Pro Cys Thr 420 425 430

<210> 222

<211> 385

<212> PRT

<213> Homo sapien

<400> 222

Met Gly Arg Val Arg Thr Leu Ala Gly Glu Cys Ser Ala Gln Ala Gln 1 5 10 15

Ala Gln Ser Leu Leu Ala Val Val Leu Ser Ala Pro Pro Ser Gly Gly 20 25 30

Thr Pro Ser Ala Arg Leu Ser Val Arg Ser Pro Ser Pro Arg Asp Pro 35 40 45

Trp Gly Leu Trp Ala Pro Val Leu Gln Met Thr Gly Ser Asn Glu Phe 50 55 60

Lys Leu Asn Gln Pro Pro Glu Asp Gly Ile Ser Ser Val Lys Phe Ser 65 70 75 80

Pro Asn Thr Ser Gln Phe Leu Leu Val Ser Ser Trp Asp Thr Ser Val 85 90 95

Arg Leu Tyr Asp Val Pro Ala Asn Ser Met Arg Leu Lys Tyr Gln His 100 105 110

Thr Gly Ala Val Leu Asp Cys Ala Phe Tyr Asp Pro Thr His Ala Trp 115 120 125

		270													
Ser	Gly 130	Gly	Leu	Asp	His	Gln 135	Leu	Гув	Met	His	Asp 140	Leu	Asn	Thr	Asp
Gln 145	Glu	Asn	Leu	Val	Gly 150	Thr	His	Asp	Ala	Pro 155	Ile	Arg	Сув	Val	Glu 160
Tyr	Сув	Pro	Glu	Val 165	Asn	Val	Met	Val	Thr 170	Gly	Ser	Trp	Asp	Gln 175	Thr
Val	Lys	Leu	Trp 180	Asp	Pro	Arg	Thr	Pro 185	Сув	Asn	Ala	Gly	Thr 190	Phe	Ser
Gln	Pro	Glu 195	Lys	Val	Tyr	Thr	Leu 200	Ser	Val	Ser	Gly	Asp 205	Arg	Leu	Ile
Val	Gly 210	Thr	Ala	Gly	Arg	Arg 215	Val	Leu	Val	Trp	Asp 220	Leu	Arg	Asn	Met
Gly 225	Tyr	Val	Gln	Gln	Arg 230	Arg	Glu	Ser	Ser	Leu 235	Lys	Tyr	Gln	Thr	Arg 240
Сув	Ile	Arg	Ala	Phe 245	Pro	Asn	ГÀЗ	Gln	Gly 250	Tyr	Val	Leu	Ser	Ser 255	Ile
Glu	Gly	Arg	Val 260	Ala	Val	Glu	Tyr	Leu 265	Asp	Pro	Ser	Pro	Glu 270	Val	Gln
ГЛЯ	ГЛЗ	Lys 275	Tyr	Ala	Phe	Lys	Сув 280	His	Arg	Leu	Lys	Glu 285	Asn	Asn	Ile
Glu	Gln 290	Ile	Tyr	Pro	Val	Asn 295	Ala	Ile	Ser	Phe	His 300	Asn	Ile	His	Asn
Thr 305	Phe	Ala	Thr	Gly	Gly 310	Ser	Asp	Gly	Phe	Val 315	Asn	Ile	Trp	Asp	Pro 320
Phe	Asn	Lys	Lys	Arg 325	Leu	Сув	Gln	Phe	His 330	Arg	Tyr	Pro	Thr	Ser 335	Ile
Ala	Ser	Leu	Ala 340	Phe	Ser	Asn	Āsp	Gly 345	Thr	Thr	Leu	Ala	Ile 350	Ala	Ser
Ser	Tyr	Met 355	Tyr	Glu	Met	Asp	Asp 360	Thr	Glu	His	Pro	Glu 365	Asp	Gly	Ile

Phe Ile Arg Gln Val Thr Asp Ala Glu Thr Lys Pro Lys Ser Pro Cys

PCT/US2003/038815 WQ 2004/053077

271

375 370 380

Thr 385

<210> 223

<211> 123

<212> PRT <213> Homo sapien

<400> 223

Met Pro Ser Ala Met Thr Val Tyr Ala Leu Val Val Val Ser Tyr Phe

Leu Ile Thr Gly Gly Ile Ile Tyr Asp Val Ile Val Glu Pro Pro Ser 25

Val Gly Ser Met Thr Asp Glu His Gly His Gln Arg Pro Val Ala Phe 40

Leu Ala Tyr Arg Val Asn Gly Gln Tyr Ile Met Glu Gly Leu Ala Ser

Ser Phe Leu Phe Thr Met Gly Gly Leu Gly Phe Ile Ile Leu Asp Arg

Ser Asn Ala Pro Asn Ile Pro Lys Leu Asn Arg Phe Leu Leu Phe 85 90

Ile Gly Phe Val Cys Val Leu Leu Ser Phe Phe Met Ala Arg Val Phe 100 105

Met Arg Met Lys Leu Pro Gly Tyr Leu Met Gly 115 120

<210> 224

<211> 211

<212> PRT

<213> Homo sapien

<400> 224

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 1 5 10 15

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp 25 20

PCT/US2003/038815 WO 2004/053077

272

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys 55

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 135 140

Gly Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 155

Thr His Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg

Val Val Ala 210

<210> 225

<211> 178

<212> PRT <213> Homo sapien

<400> 225

Met Ala Arg Arg Pro Ala Gly Arg Glu Asn Ser Gly Val Pro Arg Gly 5

Leu Pro Lys Phe Ser Pro Pro Thr Phe Ser Ala Ala Thr Asn Val Arg 20 25

Ala Ala Gln Arg Gly Arg Pro Arg Ala Pro Asp Ala Thr Arg Arg 40

Thr Ala Arg Ala Gly Thr Thr Pro Pro Arg His Gly Gln Pro Pro Ala

His Ala Arg Ala Ala Pro Ala His Asn Arg Gly Leu Pro Ser Cys Cys

Ser Arg Cys Arg Ala Lys Ala Arg Tyr Ala Arg Pro Arg Arg Ala Glu 90

Ala Ala Arg Ala Arg Arg Ala Thr Pro Ala Ala Pro Gly Trp Arg

Gly Gly Gly Thr Ala Thr Arg Pro Thr Arg Arg Arg Ala Gly Thr Asn 120

Ala His Asp Pro His Arg Asn Gly Glu Gln Arg Pro Ser Gly Gln Arg

Arg Pro Arg Arg Gly Ser Arg Arg Arg His Glu Thr Arg Glu Ser

Glu Arg Pro Leu Arg Gly Ala Gly Pro Gly Val Pro Gly Pro Thr Arg 165 170

Gly Gly

<210> 226 <211> 211 <212> PRT

<213> Homo sapien

<400> 226

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 5

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp 20 25

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 35 40

274

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys
50 60

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp 65 70 75 80

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90 95

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala
100 105 110

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu 115 120 125

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 130 135 140

Gly Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 145 150 155 160

Thr His Thr Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170 175

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185 190

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200 205

Val Val Ala 210

<210> 227

<211> 211

<212> PRT

<213> Homo sapien

<400> 227

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 1 5 10 15

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp
20 25 30

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 35 40 45

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys 50 55 60

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp 65 70 75 80

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90 95

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala
100 105 110

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu 115 120 125

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 130 135 140

Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 145 150 155 160

Thr His Thr Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170 175

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185 190

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200 205

Val Val Ala 210

<210> 228

<211> 211

<212> PRT

<213> Homo sapien

<400> 228

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 1 5 10 15

Lys Lys Gln Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp 20 25 30

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 40

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 90

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala 105

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu 120

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 135

Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln

Thr His Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200

Val Val Ala 210

<210> 229

<211> 211

<212> PRT <213> Homo sapien

<400> 229

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 5 10

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp 20

277

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 35 40 45

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys 50 55 60

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp 65 70 75 80

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90 95

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala
100 105 110

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu 115 120 125

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 130 135 140

Gly Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 145 150 155 160

Thr His Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170 175

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185 190

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200 205

Val Val Ala 210

<210> 230

<211> 211

<212> PRT

<213> Homo sapien

<400> 230

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 1 5 10 15

278

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp
20 25 30

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 35 40 45

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys
50 55 60

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp 65 70 75 80

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90 95

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala
100 105 110

Ala Pro Gly Ala Glu Pro Arg. Pro Ala Thr His Ala His Ala Gly Leu 115 120 125

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 130 135 140

Gly Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 145 150 155 160

Thr His Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser
165 170 175

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185 190

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200 205

Val Val Ala 210

<210> 231

<211> 211

<212> PRT

<213> Homo sapien

<400> 231

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 1 5 10 15

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp
20 25 30

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 35 40 45

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys 50 55 60

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp 65 70 75 80

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90 95

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala
100 105 110

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu 115 120 125

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 130 135 140

Gly Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 145 150 155 160

Thr His Thr Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170 175

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185 190

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200 205

Val Val Ala 210

<210> 232

<211> 211

<212> PRT

<213> Homo sapien

<400> 232

Asn Ile Tyr Leu Leu Ile Leu Leu Lys Cys Phe Lys Lys Ile Lys Lys 1 5 10 15

Lys Lys Gln Lys Lys Lys Arg Arg Ala Arg Arg Ala Lys Pro Ala Trp
20 25 30

Pro Trp Arg Gly Asp Pro Arg Gly Ala Lys Thr Val Ala Tyr Leu Ala 35 40 45

Ala Ser Pro Asn Ser Pro His Pro Pro Leu Ala Gln Arg Pro Thr Cys 50 55 60

Ala Pro Arg Ser Gly Gly Gly Arg Asp Glu Arg Arg Thr Leu Arg Asp 65 70 75 80

Gly Arg Arg Gly Pro Ala Pro Arg His His Val Thr Gly Ser Arg Gln 85 90 95

Arg Thr Pro Gly Arg Arg Leu Leu Thr Thr Glu Val Cys Leu Val Ala
100 105 110

Ala Pro Gly Ala Glu Pro Arg Pro Ala Thr His Ala His Ala Gly Leu 115 120 125

Arg Gln Arg His Ala Arg Gly Val Gln Arg Arg Arg His Pro Ala Gly 130 135 140

Gly Gly Glu Ala Pro Gln His Gly Arg Arg Gly Glu Glu Arg Glu Gln 145 150 155 160

Thr His Thr Thr His Thr Ala Thr Val Ser Asn Asp Arg Ala Ala Ser 165 170 175

Gly Asp Arg Gly Val Ala Ala Gly Asp Asp Ala Thr Arg Arg Ala Arg 180 185 190

Ala Arg Asp His Ser Glu Ala Pro Ala Arg Val Cys Gln Ala Arg Arg 195 200 205

Val Val Ala 210

<210> 233

<211> 24

<212> DNA

<213> Artificial sequence

<220> <223>	Synthetic	
<400> tggttg	233 Jagaa gacatgaaaa tcca	24
<210> <211>		
<212>		
	Artificial sequence	
<220> <223>	Synthetic	
<400>	234	
aattco	accc tgtcaaccta aaaaa	25
<210>		
<211>		
	Artificial sequence	
<220>	.mcilletal bequence	
	Synthetic	
<400>	235	
	tggt gtttccgaat ttcaggcaa	29
		2,5
<210>		
<211>		•
<212>	Artificial sequence	
~243/	Actificial sequence	
<220>		
<223>	Synthetic	
<400>	236	
aggggg	atta caatgatgga cc	22
<210>	237	
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>	Control of the	
	Synthetic	
<400>		
ctgcca	aggt gcgagctt	18
<210>		
<211> <212>		
	Artificial sequence	
<220×		

282

	<223>	Synthetic						
	<400> agtgag	238 eget tagatggeea gea	23					
	<210>							
	<211>							
	<212>							
	<213>	Artificial sequence						
	<220>							
	<223>	Synthetic						
	<400>							
	acaataaatc agtaagcgtt ccagaa 26							
	<210>							
	<211>							
	<212>							
	<213>	Artificial sequence						
	<220>							
	<223>	Synthetic						
	<400>	240						
caatctacat taaaaacata cacgtgaaca 3								
	<210>	241						
	<211>	24						
	<212>	DNA						
	<213>	Artificial sequence						
	<220>							
	<223>	Synthetic						
	<400>	241						
	cttcttcacc tcctgagcca ctca 24							