PREDICTIVE ANALYSIS ON WEATHER IN SZEGED (2006-2016)

CASE STUDY BY ALI AHMAD

CONTENTS

Case Study

Objective

Univariate Analysis

Multivariate Analysis

Model Prediction

Observations

Insights

CASE STUDY

This dataset comprises the scrapped information about the factors which have an impact on the Temperature in Hungary. It includes an hourly/daily summary for Szeged, Hungary area, between 2006 and 2016. It consists of 12 variables with 96453 rows..

Formatted	<u></u>	
Date Summary		
Precip Type		
Temperature (C)		
Apparent Temperature (C)		
Humidity		
Wind Speed (km/h)		
Wind Bearing (degrees)		
Visibility (km)		
Loud Cover		
Pressure (millibars)		
Daily Summary		

Objective

The objective here is to perform a Linear regression analysis to arrive at a model that can be used to predict the Temperature in Szeged (2006-2016) and find out the factors having an impact on the Temperature.

0

UNIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS: Pairplot

DENSITY DISTRIBUTION FOR TARGET VARIABLE

Correlation Matrix !::

	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Pressure (millibars)	Precip Type_rain	Precip Type_snow
Temperature (C)	1.000000	0.992652	-0.633350	0.015442	0.029995	0.392771	-0.041252	0.562523	-0.562523
Apparent Temperature (C)	0.992652	1.000000	-0.603616	-0.050812	0.029005	0.381696	-0.033546	0.565130	-0.565130
Humidity	-0.633350	-0.603616	1.000000	-0.230628	0.000592	-0.369596	0.010005	-0.232782	0.232782
Wind Speed (km/h)	0.015442	-0.050812	-0.230628	1.000000	0.099943	0.105185	-0.075718	0.070080	-0.070080
Wind Bearing (degrees)	0.029995	0.029005	0.000592	0.099943	1.000000	0.047594	-0.020593	0.041984	-0.041984
Visibility (km)	0.392771	0.381696	-0.369596	0.105185	0.047594	1.000000	0.039725	0.312875	-0.312875
Pressure (millibars)	-0.041252	-0.033546	0.010005	-0.075718	-0.020593	0.039725	1.000000	-0.043474	0.043474
Precip Type_rain	0.562523	0.565130	-0.232782	0.070080	0.041984	0.312875	-0.043474	1.000000	-1.000000
Precip Type_snow	-0.562523	-0.565130	0.232782	-0.070080	-0.041984	-0.312875	0.043474	-1.000000	1.000000

HEATMAP

Model Prediction

Interpretation of actual value and the predicted value

	Actual value	Predicted value	Difference
6119	14.422222	14.172452	0.249771
51443	12.155556	13.496475	-1.340920
18754	23.961111	23.338621	0.622490
34070	15.000000	15.113622	-0.113622
26082	12.800000	13.138845	-0.338845
75095	11.088889	11.607233	-0.518345
29781	0.555556	-0.078981	0.634537
68559	12.733333	13.523960	-0.790626
71611	27.222222	26.636426	0.585796
62588	20.211111	19.428311	0.782800

Plot Result: Actual Vs Predicted Data

OBSERVATIONS

- R-square score on train data of Linear Regression : 0.9902
- R-square score on test data of Linear Regression: 0.9901
- Mean Absolute Error (MAE) of Linear Regression : 0.736
- Mean Squared Error (MSE) of Linear Regression: 0.889
- Root Mean Squared Error (RMSE): 0.943

RECOMMENDATIONS

- When apparent temperature increases, it causes an increase of temperature. This is because apparent temperature has a high positive coefficient value given by the model.
- When humidity increases, it also causes an increase in the temperature. This is because humidity has a positive but low coefficient value given by the model
- ❖ When wind speed increases, it causes a decrease of the temperature. This is because wind speed has a negative coefficient value given by the model.

THANK YOU

