Wavelet Trees Meet Suffix Trees

Maxim Babenko¹ Paweł Gawrychowski^{2 \rightarrow 3} **Tomasz Kociumaka**³ Tatiana Starikovskaya^{1 \rightarrow 4}

¹National Research University Higher School of Economics, Moscow, Russia

²Max-Planck-Institut für Informatik, Saarbrücken, Germany

³University of Warsaw, Poland

⁴University of Bristol, UK

SODA 2015

San Diego, California, USA January 4, 2015

General Setting

```
Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U

rank_A(u) count elements in A not exceeding u

select_A(k) return the k-th smallest element in A
```

General Setting

```
Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U

rank_A(u) count elements in A not exceeding u

select_A(k) return the k-th smallest element in A
```

Example: an integer multiset

$$A = \{0, 1, 3, 4, 5, 5, 8, 8, 9, 9\}$$

General Setting

```
Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U

rank_A(u) count elements in A not exceeding u

select_A(k) return the k-th smallest element in A
```

Example: an integer multiset

$$A = \{0, 1, 3, 4, 5, 5, 8, 8, 9, 9\}$$

 $rank_A(7) = 6$

General Setting

```
Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U

rank_A(u) count elements in A not exceeding u

select_A(k) return the k-th smallest element in A
```

Example: an integer multiset

$$A = \{0, 1, 3, 4, 5, 5, 8, 8, 9, 9\}$$

 $rank_A(7) = 6$ $select_A(7) = 8$

General Setting

Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U $rank_A(u)$ count elements in A not exceeding u $select_A(k)$ return the k-th smallest element in A

Example: an integer multiset

$$A = \{0, 1, 3, 4, 5, 5, 8, 8, 9, 9\}$$

 $rank_A(7) = 6$ $select_A(7) = 8$

Example: a set encoded as bitmask

$$A = \{2, 3, 5, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20\}$$

$$01101000111011111101$$

General Setting

Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U $rank_A(u)$ count elements in A not exceeding u $select_A(k)$ return the k-th smallest element in A

Example: an integer multiset

$$A = \{0, 1, 3, 4, 5, 5, 8, 8, 9, 9\}$$

 $rank_A(7) = 6$ $select_A(7) = 8$

Example: a set encoded as bitmask

$$A = \{2, 3, 5, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20\}$$

$$011010001110111111101$$

$$rank_1(7) = 3$$

General Setting

Universe totally ordered universe U (integers, strings,...)

Input multiset A over universe U $rank_A(u)$ count elements in A not exceeding u $select_A(k)$ return the k-th smallest element in A

Example: an integer multiset

$$A = \{0, 1, 3, 4, 5, 5, 8, 8, 9, 9\}$$

 $rank_A(7) = 6$ $select_A(7) = 8$

Example: a set encoded as bitmask

$$A = \{2, 3, 5, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20\}$$

$$011010001110111111101$$

$$rank_1(7) = 3 \qquad select_1(7) = 13$$

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \ldots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \dots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Special case:

Range Minimum Queries (RMQ).

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \dots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Special case:

Range Minimum Queries (RMQ).

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \dots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Special case:

• Range Minimum Queries (RMQ).

$$rank_{5..14}(6) =$$

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \dots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Special case:

• Range Minimum Queries (RMQ).

$$rank_{5..14}(6) = 8$$

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \dots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Special case:

Range Minimum Queries (RMQ).

$$rank_{5..14}(6) = 8$$
 $select_{9..17}(5) =$

Range Rank and Select Queries

Input An integer sequence $S = (S_1, \dots, S_n)$.

Queries Rank and select on a range $S_{\ell..r} = \{S_{\ell}, S_{\ell+1}, \dots, S_r\}$.

Special case:

Range Minimum Queries (RMQ).

$$rank_{5..14}(6) = 8$$
 $select_{9..17}(5) = 4.$

Problem	Space	Query	Construction	Reference
Rank	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu SODA 2010
(negative)	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log\log n})$	_	Pătrașcu STOC 2007

Problem	Space	Query	Construction	Reference
	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu
Rank	O(n)	$O(\frac{\log \log n}{\log \log n})$	$O(n\sqrt{\log n})$	SODA 2010
(negative)	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log \log n})$		Pătrașcu
(negative)	Hog VII	$\log \log n$	_	STOC 2007
	$\mathcal{O}(n)$		$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu
		$\mathcal{O}(\log n)$	$O(n\sqrt{\log n})$	SODA 2010
Select	$\mathcal{O}(n)$	$O(\log n)$	$\mathcal{O}(n \log n)$	Brodal et al.
	O(n)	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n \log n)$	ICALP 2009
(nogative)	$n\log^{\mathcal{O}(1)} n$	$O(\log n)$		Jørgensen & Larsen
(negative)	mog VII	$\Omega(\frac{\log n}{\log\log n})$	_	SODA 2011

Problem	Space	Query	Construction	Reference
	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu
Rank	- ()	(log log n)	- (SODA 2010
(negative)	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log \log n})$		Pătrașcu
(Hegative)	ITIOE VIII	$\frac{12}{\log\log n}$	_	STOC 2007
	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu
	O(n)	$C(\log n)$	$O(n\sqrt{\log n})$	SODA 2010
Select	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n \log n)$	Brodal et al.
	O(n)	$O(\log \log n)$	$C(n \log n)$	ICALP 2009
(negative)	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log \log n})$		Jørgensen & Larsen
(Hegative)	Triog VII	$\log \log n$	_	SODA 2011
Select	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n\sqrt{\log n})$	this work
		10.10		

Problem	Space	Query	Construction	Reference
	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu
Rank	<i>O(II)</i>	$\log \log n$		SODA 2010
(negative)	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log \log n})$		Pătrașcu
(negative)	ITIOG VIII	$\log \log n$	_	STOC 2007
	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(n\sqrt{\log n})$	Chan & Pătrașcu
	O(n)	$C(\log n)$	$O(n\sqrt{\log n})$	SODA 2010
Select	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n \log n)$	Brodal et al.
	O(n)	$O(\log \log n)$	$C(n \log n)$	ICALP 2009
(negative)	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log \log n})$		Jørgensen & Larsen
(negative)	Triog VII	$\log \log n$	_	SODA 2011
Select	$\mathcal{O}(n)$	$\mathcal{O}(\frac{\log n}{\log \log n})$	$\mathcal{O}(n\sqrt{\log n})$	this work

Theorem (independently: Munro, Nekrich, Vitter; SPIRE 2014)

Wavelet trees can be constructed in $\mathcal{O}(n\sqrt{\log n})$ time.

Suffix Rank and Selection Queries

```
Universe strings over \Sigma (denoted \Sigma^*)
```

Input a string T of length n

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

					l .	l		l			a
		l .			5	l				1	l .
ISA	6	10	3	7	11	5	9	2	4	8	1

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11
ISA	6	10	3	7	11	5	9	2	4	8	1

$$select_T(5) =$$

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11
ISA	6	10	3	7	11	5	9	2	4	8	1

$$select_{\mathcal{T}}(5) = \mathcal{T}[SA[5]..] = \mathcal{T}[6..] =$$
abaaba

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11
ISA	6	10	3	7	11	5	9	2	4	8	1

$$select_{T}(5) = T[SA[5]..] = T[6..] =$$
abaaba

$$rank_T(T[4..]) =$$

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11
ISA	6	10	3	7	11	5	9	2	4	8	1

$$select_T(5) = T[SA[5]..] = T[6..] =$$
abaaba

$$rank_T(T[4..]) = ISA[4] = 7$$

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

Queries rank and select on the set of suffixes of T (Suf(T)).

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11
ISA	6	10	3	7	11	5	9	2	4	8	1

abaaba
$$rank_T(T[4..]) = ISA[4] = 7$$
 $rank_T(aabb) =$

 $select_T(5) = T[SA[5]..] = T[6..] =$

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)

Input a string T of length n

Queries rank and select on the set of suffixes of T (Suf(T)).

T	a	b	a	a	b	a	b	a	a	b	a
i	1	2	3	4	5	6	7	8	9	10	11
ISA	6	10	3	7	11	5	9	2	4	8	1

$$select_T(5) = T[SA[5]..] = T[6..] =$$
 $abaaba$
 $rank_T(T[4..]) = ISA[4] = 7$

 $rank_{T}(aabb) = 3$

i		SA
1	11	a
2	8	aaba
3	3	aababaaba
4	9	aba
5	6	abaaba
6	1	abaababaaba
7	4	ababaaba
8	10	ba
9	7	baaba
10	2	baababaaba
11	5	babaaba

Substring Suffix Rank and Selection Queries

```
Universe strings over \Sigma (denoted \Sigma^*)
```

Input a string T of length n

Queries rank and select on suffixes of subwords $T[\ell..r]$ of T.

Substring Suffix Rank and Selection Queries

```
Universe strings over \Sigma (denoted \Sigma^*)

Input a string T of length n

Queries rank and select on suffixes of subwords T[\ell..r] of T.
```

Substring Suffix Rank and Selection Queries

$$T:$$
 a b a a b a b a a b a a b a b a a b a b a a b a select $T[5...14](2) =$

Substring Suffix Rank and Selection Queries

$$T:$$
 a b a a b a b a a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a a b a b a a a b a a b a a a b a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a

Substring Suffix Rank and Selection Queries

Substring Suffix Rank and Selection

Substring Suffix Rank and Selection Queries

Universe strings over Σ (denoted Σ^*)
Input a string T of length nQueries rank and select on suffixes of subwords $T[\ell..r]$ of T.

Substring Suffix Rank and Selection

Substring Suffix Rank and Selection Queries

```
Universe strings over \Sigma (denoted \Sigma^*)
Input a string T of length n
Queries rank and select on suffixes of subwords T[\ell..r] of T.
```

Subword Suffix Rank and Selection: Results

Problem	Space	Query	Construction	Reference
Maximum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	B.G.K.S. CPM 2014
Minimum	$\mathcal{O}(n)$	$\mathcal{O}(1)$ $\mathcal{O}(\log n)$	$\frac{\mathcal{O}(n\log n)}{\mathcal{O}(n)}$	B.G.K.S. CPM 2014

Subword Suffix Rank and Selection: Results

Problem	Space	Query	Construction	Reference
Maximum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	B.G.K.S.
				CPM 2014
Minimum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n \log n)$	B.G.K.S.
		$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	CPM 2014
Rank & Select (negative)	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(n\sqrt{\log n})^*$	this work
	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log\log n})$	_	LIII3 WOIK

Subword Suffix Rank and Selection: Results

Problem	Space	Query	Construction	Reference
Maximum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	B.G.K.S.
IVIAXIIIIUIII			0(11)	CPM 2014
Minimum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n \log n)$	B.G.K.S.
		$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	CPM 2014
Rank & Select (negative)	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(n\sqrt{\log n})^*$	this work
	$n\log^{\mathcal{O}(1)} n$	$\Omega(\frac{\log n}{\log\log n})$	_	tills Work

^{*} Wavelet suffix trees: randomized construction: $\mathcal{O}(n\sqrt{\log n})$ deterministic $+\mathcal{O}(n)$ expected.

<i>T</i> :	
server	SUBSTRING COMPRESSION

Burrows-Wheeler transform:

- often makes data easier to compress with simple methods:
 - run-length encoding.
- $RLE(BWT(banana\$)) = RLE(annb\$aa) = a^1n^2b^1\$^1a^2$.

Burrows-Wheeler transform:

- often makes data easier to compress with simple methods:
 - run-length encoding.
- $RLE(BWT(banana\$)) = RLE(annb\$aa) = a^1n^2b^1\$^1a^2$.

```
Substring compression: [Cormode & Muthukrishnan; SODA 2005)] LZ77 \mathcal{O}(s \log^{\varepsilon} n) [Keller et al.; Theor. Comp. Sci., 2014] BWT+RLE \mathcal{O}(s \log n) [this work]
```


Burrows-Wheeler transform:

- often makes data easier to compress with simple methods:
 - run-length encoding.
- $RLE(BWT(banana\$)) = RLE(annb\$aa) = a^1n^2b^1\$^1a^2$.

Substring compression: [Cormode & Muthukrishnan; SODA 2005)] LZ77 $\mathcal{O}(s \log^{\varepsilon} n)$ [Keller et al.; Theor. Comp. Sci., 2014] BWT+RLE $\mathcal{O}(s \log n)$ [this work]

Acknowledgement

Thanks to Djamal Belazzougui, Travis Gagie, and Simon Puglisi (University of Helsinki) for suggesting the of study BWT queries.

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 4\atop 9} { 1\atop 10\atop 10} { 1\atop 12} { 1\atop 13} { 1\atop 14} { 1\atop 15} { 1\atop 16} { 1\atop 17} { 1\atop 18} { 1\atop 19} { 2\atop 20}$

Wavelet tree of $S = { 2 \atop 1} { 6 \atop 2} { 0 \atop 3} { 7 \atop 4} { 0 \atop 5} { 0 \atop 6} { 2 \atop 7} { 1 \atop 8} { 1 \atop 9} { 1 \atop 10} { 1 \atop 11} { 1 \atop 12} { 13 \atop 14} { 15 \atop 16} { 17 \atop 16} { 18 \atop 19} { 20 \atop 20}$

Wavelet tree of $S = {2 \atop 1} {6 \atop 2} {0 \atop 3} {7 \atop 4} {0 \atop 5} {0 \atop 6} {7 \atop 7} {1 \atop 8} {1 \atop 9} {1 \atop 10} {11 \atop 12} {13 \atop 14} {15 \atop 16} {17 \atop 18} {18 \atop 19} {20 \atop 20}$

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 4\atop 9} { 1\atop 10\atop 11} { 1\atop 12} { 1\atop 3} { 1\atop 4} { 1\atop 5} { 1\atop 16} { 1\atop 17} { 1\atop 18} { 1\atop 9} { 3\atop 20} { 5\atop 5}$

Wavelet tree of $S = 2 \, 6 \, 0.7 \, 0.0 \, 2.1 \, 4.1 \, 8.1 \, 6.7 \, 4.2 \, 9.3 \, 0.5$

Wavelet tree of $S = { 2\ 6\ 0\ 7\ 0\ 0\ 2\ 1\ 4\ 1\ 8\ 1\ 6\ 7\ 4\ 2\ 9\ 3\ 0\ 5\ 6\ 7\ 4\ 2\ 9\ 3\ 0\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17\ 18\ 19\ 20\ }$

Wavelet tree of $S= { \begin{smallmatrix} 2 & 6 & 0 & 7 & 0 & 0 & 2 & 1 & 4 & 1 & 8 & 1 & 6 & 7 & 4 & 2 & 9 & 3 & 0 & 5 \\ \begin{smallmatrix} 1 & 2 & 0 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \end{smallmatrix}}$

Wavelet tree of $S= { \begin{smallmatrix} 2 & 6 & 0 & 7 & 0 & 0 & 2 & 1 & 4 & 1 & 8 & 1 & 6 & 7 & 4 & 2 & 9 & 3 & 0 & 5 \\ \begin{smallmatrix} 1 & 2 & 0 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \end{smallmatrix}}$

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 4\atop 9} { 1\atop 10\atop 11} { 1\atop 12} { 1\atop 13} { 1\atop 14} { 1\atop 15} { 1\atop 16} { 17\atop 17} { 18\atop 19} { 19\atop 20} { 5\atop 20}$

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 4\atop 9} { 1\atop 10\atop 11} { 1\atop 12} { 1\atop 3} { 1\atop 4} { 1\atop 15} { 1\atop 16} { 1\atop 17} { 1\atop 18} { 1\atop 9} { 2\atop 9} { 3\atop 0} { 5\atop 5}$

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 4\atop 9} { 1\atop 10\atop 11} { 1\atop 12\atop 13} { 1\atop 14} { 1\atop 15} { 1\atop 16} { 1\atop 17} { 1\atop 18} { 1\atop 19} { 2\atop 20}$

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 1\atop 9} { 1\atop 10\atop 11} { 1\atop 12} { 1\atop 3} { 1\atop 4} { 1\atop 15} { 1\atop 16} { 1\atop 17} { 1\atop 18} { 1\atop 9} { 2\atop 9} { 3\atop 0} { 5\atop 5}$

Wavelet tree of $S = { 2\atop 1} { 6\atop 2} { 0\atop 3} { 7\atop 4} { 0\atop 5} { 0\atop 6} { 2\atop 7} { 1\atop 8} { 4\atop 9} { 1\atop 10\atop 10} { 1\atop 12} { 1\atop 3} { 1\atop 4} { 1\atop 5} { 1\atop 16} { 1\atop 17} { 1\atop 18} { 1\atop 19} { 2\atop 20}$

Rank $\mathcal{O}(\log n)$ ($\mathcal{O}(\frac{\log n}{\log \log n})$: higher arity)

Select $\mathcal{O}(\log n)$ $(\mathcal{O}(\frac{\log n}{\log \log n}))$: higher arity + extra tools)

Suffix Trees

Suffix Trees

+ subwords of T and suffixes of T\$ in lexicographic order

Suffix Trees

+ subwords of T and suffixes of T\$ in lexicographic order

- high depth
- non-uniform arity

Wavelet Suffix Trees

Wavelet suffix tree of $T={\color{red}a\ b\ a\ b\ a\$

Wavelet Suffix Trees

Wavelet suffix tree of $T={\color{red}a\ b\ a\ b\ a\$

Wavelet suffix tree of $T= {\scriptsize a\ b\ b\ b\ b\ b\ b\ a\ b\ a\$

Wavelet suffix tree of $T={\color{red}a\ b\ a\ b\ a\ b\ a\ b\ a\ b\ a\ b\ a\ b\ b\ b\ b\ b\ b\ b\ a\ b\ a\$

Wavelet suffix tree of $T= {\scriptsize a\ b\ a\ b\ a\ b\ a\ b\ a\ b\ a\ b\ b\ b\ b\ b\ b\ a\ b\ a\$

Operations count suffixes in subtrees, generate suffixes on an edge.

Tools Internal Pattern Matching and bitmasks.

Conclusions & Open Problems

Our results:

- $\mathcal{O}(n\sqrt{\log n})$ construction of wavelet trees,
- simultaneously obtained state-of-the-art construction and query time range selection,
- developed wavelet suffix trees to answer substring suffix rank & selection,
- applied wavelet suffix trees for substring compression with Burrows-Wheeler transform and run-length encoding.

Conclusions & Open Problems

Our results:

- $\mathcal{O}(n\sqrt{\log n})$ construction of wavelet trees,
- simultaneously obtained state-of-the-art construction and query time range selection,
- developed wavelet suffix trees to answer substring suffix rank & selection,
- applied wavelet suffix trees for substring compression with Burrows-Wheeler transform and run-length encoding.

Open problems:

- Can the $\mathcal{O}(n\sqrt{\log n})$ construction time be improved?
 - Would affect counting inversions.

Conclusions & Open Problems

Our results:

- $\mathcal{O}(n\sqrt{\log n})$ construction of wavelet trees,
- simultaneously obtained state-of-the-art construction and query time range selection,
- developed wavelet suffix trees to answer substring suffix rank & selection,
- applied wavelet suffix trees for substring compression with Burrows-Wheeler transform and run-length encoding.

Open problems:

- Can the $\mathcal{O}(n\sqrt{\log n})$ construction time be improved?
 - Would affect counting inversions.
- Are substring suffix queries inherently harder than analogous range queries?
 - Currently $\mathcal{O}(\log n)$ vs $\mathcal{O}(\frac{\log n}{\log \log n})$.

Thank you

Thank you for your attention!