MATHS 361 PARTIAL DIFFERENTIAL EQUATIONS

Oliver Maclaren oliver.maclaren@auckland.ac.nz

RECAP COMPLEX FOURIER SERIES

See Lecture 6 supplement (details of derivation from real series, full working for example problem).

LECTURE 7: APPLICATIONS OF FOURIER SERIES

The need for even and odd extensions for non-periodic functions defined on finite/one-sided intervals

Return to separation of variables solution

RETURN TO THE HEAT EQUATION

After solving our heat equation using separation of variables and using our boundary conditions we found we needed to solve the initial condition constraint

$$\sum_{n=1}^{\infty} A_n sin(n\pi x) = g(x)$$

on the domain [0, 1]. Here we are choosing a sin series based on the PDE and BC

If we were just given g(x) what sort of expansion would we choose? Since it is only defined on [0, 1] is even/odd/neither/can't say?

EVEN AND ODD EXTENSIONS

In order to connect a *general function* defined only on [0, l] to our results from Fourier series expansions we need to *choose an appropriate even/odd periodic extension* in two steps

- 1. Extend our definition from [0, l] to [-l, l]
- 2. Extend our definition from [-l, l] to a periodic function over $\mathbb R$

EVEN AND ODD EXTENSIONS

The *odd extension* of f is defined by

$$f_{odd}(x) = \begin{cases} f(x), & x \in [0, l] \\ -f(-x), & x \in [-l, 0) \end{cases}$$

The *even extension* of f is defined by

$$f_{even}(x) = \begin{cases} f(x), & x \in [0, l] \\ f(-x), & x \in [-l, 0) \end{cases}$$

Note the domains of x!

PERIODIC EXTENSION

Step 2 - the *periodic extension* is done in the usual way, but we need to be *careful of end points*. For $f:[-l,l]\to\mathbb{R}$ we define the periodic extension as

$$f_{per}(x+2nl) = f(x)$$

for all $x \in [-l, l)$ and all $n \in \mathbb{Z}$.

Note the domains of x!

EXAMPLES

Sketch the *odd extension* and *even extension* of the functions

$$f(x) = x, x \in [0, 2]$$

$$g(x) = 1, x \in [0, 1]$$

Then plot the *periodic extension* for both the odd and even extensions of these functions

FOURIER SERIES

We can calculate the Fourier series for the *extended* functions in the usual way.

Since the extensions are an 'artifice' to help construct a Fourier series, can we re-write our extended Fourier series on our original domain using only our original function definition?

LET'S TRY!

FOURIER SERIES FOR ODD EXTENSION

We get that the Fourier series of f_{odd} , also called the half-range sine (HRS) expansion of f, is

$$FS f_{odd} = FS_{HRS} f = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{l}\right)$$

where

$$b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx, \ n = 1, 2, \dots$$

Spot the differences!

FOURIER SERIES FOR EVEN EXTENSION

Similarly, the half-range cosine (HRS) expansion of f is

$$FS f_{even} = FS_{HRC} f = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{l}\right)$$

where...

• • •

$$a_0 = \frac{1}{l} \int_0^l f(x) dx$$

$$a_n = \frac{2}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) dx, \ n = 1, 2, \dots$$

Spot the differences!

HOW DO WE CHOOSE?

We saw for the heat equation the *PDE* + *BC motivated a sin* series. We will discuss this more in the next module...

...but also remember for *general functions*

GIBBS PHENOMENON

- Any Fourier series of a function with a *jump discontinuity* will have a persistent 9% (of the jump) *overshoot near the* discontinuity as $N \to \infty$.
- At *fixed x* the Fourier series will converge according to the convergence theorem as *N* increases, but the *overshoot* persists and moves towards the discontinuity.

and...

CONVERGENCE RATES OF COEFFICIENTS

• •

- A piecewise continuous function has Fourier coefficients that decay as 1/n.
- A continuous function with discontinuous first derivative has Fourier coefficients that decay as $1/n^2$.

In general: a continuous periodic function whose *first* k *derivatives are all continuous* but whose k+1 *derivative is discontinuous* will have Fourier coefficients that decay at a rate of $1/n^{k+2}$.

CHOOSE SMOOTHNESS IF POSSIBLE!

(note the connection to matching boundary conditions in the PDE case)

COMPLETE SOLUTION OF HEAT EQUATION USING SEPARATION OF VARIABLES AND FOURIER SERIES

FORMULATION

$$u_t = u_{xx}$$

for 0 < x < 1, where here u is temperature (not energy!)

- $u(0, t) = u_1$ for $0 < t < \infty$
- $u(1, t) = u_2$ for $0 < t < \infty$

for known constants u_1 , u_2 (= 10, 50 say). Note these are non-homogeneous BC.

• u(x, 0) = g(x) for 0 < x < 1 and g(x) known (= 100, say).

SOLUTION

HOMEWORK

Go over the various exercises from today

Try to summarise the key points from this module

Ask me about any questions you have

Tutorial 2! Assignment 1!