# Chapter 16

**CORPUSCULAR ASPECT OF LIGHT** 

PHOTOELECTRIC EFFECT

## I) What is photoelectric effect?

Is the emission of free electrons from the surface of a metal when illuminated by a suitable radiation.

The energy of the radiation must be greater than a certain value  $\mathbf{W}_{0}$ 

 $W_0$  is called the work function of the metal or extraction energy or ionization energy.

It is the minimum energy needed to extract an electron from the surface of the metal.



| Element  | Work Function (eV) |
|----------|--------------------|
| Aluminum | 4.3                |
| Carbon   | 5.0                |
| Copper   | 4.7                |
| Gold     | 5.1                |
| Nickel   | 5.1                |
| Silicon  | 4.8                |
| Silver   | 4.3                |
| Sodium   | 2.7                |
|          |                    |

## II) Einstein's Postulate

Light is made up of very tiny massless particles (of zero charge) called photons. The energy of each photon is given by:

Unit of  $E_{ph}$ 

$$E_{Ph} = h\nu = \frac{hc}{\lambda}$$

$$\frac{(J.s)(m/s)}{m} = J$$

#### Where:

v is the frequency the photon in (Hz) or (s<sup>-1</sup>).

 $\lambda$  is the wavelength of the photon in (m)

 $\mathbf{h} = 6.62 \times 10^{-34} \, \mathbf{J.s}$  is Planck's constant.

 $c = 3 \times 10^8$  m/s is the speed of light in vacuum.

The SI unit of  $E_{ph}$  is **Joule (J)** Another unit is the **electron-volt (eV)** 

$$1eV = 1.6 \times 10^{-19} J$$



**An Artist's Drawing of Photons** 

## **Example:**

Calculate, in J and in eV, the energy of a violet photon of wavelength  $\lambda_V = 400nm \ and$  that of a red photon of wavelength  $\lambda_R = 750nm$ . Conclude.

**Given:** 
$$h = 6.62 \times 10^{-34} J.s$$
  $c = 3 \times 10^8 m/s$   $1 \, eV = 1.6 \times 10^{-19} J$ 

## The energy of the violet photon is:

$$E_V = \frac{hc}{\lambda_V} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{400 \times 10^{-9}} = 4.965 \times 10^{-19} J = \frac{4.965 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV} = 3.1 \text{ eV}$$

### The energy of the red photon is:

$$E_R = \frac{hc}{\lambda_R} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{750 \times 10^{-9}} = 2.648 \times 10^{-19} J = \frac{2.648 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV} = 1.655 \text{ eV}$$

**Conclusion:** As  $\lambda$  increases, the energy of the photon decreases and vice versa.

## III) Threshold frequency and wavelength:

When the energy of the photon is exactly equal to  $W_0 \Rightarrow$  the frequency of this photon is called the **threshold frequency**  $v_0$  and its wavelength is called the threshold wavelength  $\lambda_0$ 

$$E_{Ph} = W_0$$

$$\Rightarrow h\nu_0 = W_0$$

$$E_{Ph} = W_0$$

$$\Rightarrow h\nu_0 = W_0$$

$$OR \frac{hc}{\lambda_0} = W_0$$

 $W_0$  is minimum  $\Rightarrow v_0$  is minimum

 $W_0$  is minimum  $\Rightarrow \lambda_0$  is maximum

Threshold frequency  $v_0$ : is the minimum frequency (of the incident radiation) needed to extract an election from the surface of the metal.

Threshold wavelength  $\lambda_0$ : is the maximum wavelength (of the incident radiation) needed to extract an election from the surface of the metal.

| material                              | Aluminum | Carbon | copper | Gold | Nickel | Silicon | Silver | Sodium |
|---------------------------------------|----------|--------|--------|------|--------|---------|--------|--------|
| Threshold Wavelength $\lambda_0$ (nm) | 288.6    | 248    | 264    | 243  | 243    | 300     | 290    | 460    |

## **Example:**

Can a red photon of wavelength  $\lambda=750 nm$  extract an electron from the surface of sodium of threshold wavelength  $\lambda_0=460$  nm? Justify your answer.

| 1 <sup>st</sup> Method                                                                                                                                                                                                                                                           | 2 <sup>nd</sup> Method                                                                                                                                                                                                                                      | 3 <sup>rd</sup> Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The threshold wavelength of sodium is $\lambda_0$ = 460nm. It is the maximum wavelength of the radiation that can extract electrons form the surface of sodium.  Since $\lambda$ = 750nm > $\lambda_0$ then the red photon cannot extract an electron from the surface of sodium | $\lambda > \lambda_0$ $\Rightarrow \frac{1}{\lambda} < \frac{1}{\lambda_0}$ $\Rightarrow \frac{hc}{\lambda} < \frac{hc}{\lambda_0}$ $\Rightarrow E_{ph}$ $< W_0$ $\Rightarrow \text{ the red photon cannot extract an electron from the surface of sodium}$ | The energy of the red photon is: $E_{ph} = \frac{hc}{\lambda}$ $= \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{750 \times 10^{-9}}$ $= 2.648 \times 10^{-19}J$ $= \frac{2.648 \times 10^{-19}J}{1.6 \times 10^{-19}}$ The work function of sodium is: $W_{0} = \frac{hc}{\lambda_{0}} = 4.317 \times 10^{-19}J$ $= \frac{4.317 \times 10^{-19}J}{1.6 \times 10^{-19}} = 2.7eV$ Since $E_{ph} < W_{0} \implies$ the red photon cannot extract an electron from the surface of sodium |

- If  $E_{ph} < W_0 \Rightarrow$  No electrons are extracted from the surface of the metal.
- If  $E_{ph} = W_0 \Rightarrow$  electrons are ejected from the surface of the metal with zero KE

#### **IV) Einstein Formula:**

- If  $E_{ph} > W_0 \Rightarrow$ , then:

$$E_{Ph} = W_0 + KE_{electron}$$

$$\Rightarrow h\nu = h\nu_0 + KE_{electron}$$

$$\Rightarrow \frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2}m_e v^2$$

$$m_e = 9.1 \times 10^{-31} kg$$

### **Notes:**

- The energy exchange between metal and radiation is quantized.
- The photon that extracts an electron from the surface of the metal is called effective photon. **Not all incident photons are effective.**
- Each effective photon gives its energy to only one electron  $\Rightarrow$  the number of extracted electrons is equal to the number of effective photons ( $N_{electrons} = N_{effective}$ )
- The quantum efficiency of a metal is:

$$r = \frac{\text{Numberofeffective photons}}{\text{Numberofin cident photons}} = \frac{N_{eff.}}{N_{incid.}}$$

- Increasing the energy of photon does not increase the number of extracted electrons but it increases the K.E of the extracted electrons.
- Increasing the intensity of light, increases the number of extracted electrons.
- If the power P of a source of light and its wavelength  $\lambda$  are given, calculate the number of photons emitted form this source during time t.

$$P = \frac{Energyofall the photons}{time} = \frac{N \times Energyofone photon}{time}$$

$$\Rightarrow P = \frac{Nhc}{\lambda t} \Rightarrow N = \frac{P\lambda t}{hc}$$

## - Graph of KE versus frequency v:

## **Using Einstein relation:**

$$E_{ph} = W_0 + KE$$

$$KE = E_{ph} - W_0$$



$$\Rightarrow KE = h\nu - W_0$$
 of the form  $y = ax + b$ 

 $\Rightarrow$ The variation of KE versus  $\nu$  is a straight line not passing through the origin of positive slope.

The slope of this st. line is: 
$$slope = h = \frac{KE_2 - KE_1}{\nu_2 - \nu_1}$$