nedega MOT

Multi Object Tracking

MOT چندین شیء را بهطور همزمان شناسایی و ردیابی میکند و برای هر کدام یک شناسه (ID) پایدار نگه میدارد.

آشنایی با مفاهیم ردیابی اشیا (MOT)

SOT

یک شی

پیدا کردن همان شیء اولیه در هر فریم

معمولا: فقط در فریم اول Object Detection انجام می شود.

MOT

چندین شی همزمان

شناسایی، ردیابی و حفظ ID همه اشیاء در فریمها

معمولا: در همه ی فریم ها (یا هر چند فریم) باید OD انجام شود.

Video

ي.كند. ,	سیستم یک ویدیو یا فریمهای زنده از دوربین دریافت ه
Object Detection	[x1, y1, x2, y2, confidence, class_id] در هر فریم، اشیاء (افراد، ماشینها،) با استفاده از یک مدل تشخیص (مثلاً YOLO) شناسایی میشوند.
Filtering	۰ حذف detectionهای کماعتماد (confidence پایین) ۰ انتخاب کلاسهای خاص (مثلاً فقط انسان)
Difference Detector(Appearance Feature Extraction)	• برای هر جعبه (Bounding Box)، یک شبکهی Re-ID ویژگی بصری استخراج میکند. • هدف: اگر ظاهر شیء ثابت باشد، بهتر بتوان آن را ردیابی کرد.
Motion Prediction	۰ با استفاده از Kalman Filter، موقعیت احتمالی اشیاء در فریم جدید پیشبینی میشود. میشود. در فریم جدید پیشبینی می
	• ترکیب شباهت مکانی (IOU) و شباهت ظاهری (Cosine Distance) • اختصاص detection جدید به مسیر قبلی با الگوریتم Hungarian
	بهروزرسانی یا حذف مسیر با حذف مسیر
	Visualization / Saving

YOLOv8 + DeepSORT

MOT

Frames Object Detection DeepSort Tracker

Frames Object Detection YOLOV8

DeepSort Tracker

Frames Object Detection

DeepSort Tracker

Frames Object Detection

DeepSort Tracker

خروجی Yolo

Cosine distance = $1 - cosine_similarity(f_track, f_det)$

$$d(ec{x},ec{y}) = \sqrt{(ec{x}-ec{y})^T S^{-1} (ec{x}-ec{y})}$$

x: مکان تشخیص داده شده

y: مکان پیشبینی شده توسط Kalman

S: ماتریس کوواریانس پیشبینی Kalman

Association Metrics

محاسبهی هزینهی تطبیق (Matching Cost) بین هر مسیر فعال (track) و هر detection

خروجی Yolo **Appearance-based Metric Motion-based Metric** خروجی KF

$cost[i][j] = \lambda * motion_cost + (1 - \lambda) * appearance_cost$

در محیطهای با حرکت کم $\lambda = 0.98$ در محیطهای شلوغ و با occlusion زیاد $\lambda = 0.5$

Association Metrics

محاسبهی هزینهی تطبیق (Matching Cost) بین هر مسیر فعال (track) و هر detection

Hungarian Assignment

تطبیق بهینه بین مسیرهای فعال و تشخیصهای جدید اختصاص ID به تشخیص جدید

matches = [(0,0),(1,1),(2,2)]

	D1	D2	D3
T1	4	1	3
T2	2	0	5
T3	3	2	2

الله بريم سراغ كدش!

MOT