如

考

21

OO:2305201452

呆@西西弗斯

一、选择题 (每题1分,共18分)

1	2	3	4	5	6	7	8	9	10
A	В	A	A	В	С	C	С	C	D
11	12	13	14	15					
C	В	D	С	В					

1、下列情况中引起随机误差的是(A)

A.读取滴定管读数时,最后一位数字估计不准

B.使用腐蚀的砝码进行称量

C.标定 EDTA 溶液时,所用金属锌不纯

D. 所用试剂中含有被测组分

2、下列论述中,正确的是(B)

A.准确度是保证精密度的前提

B.精密度是保证准确度的前提

C.精密度高,系统误差一定小

D.准确度高, 随机误差一定小

3、试液体积>10mL 的分析称(A)

A.常量分析

B.微量分析

C.半微量分析

D.痕量分析

4、用来标定 NaOH 溶液的基准物质最好选用(A)

A.邻苯二甲酸氢钾

 $B.H_2C_2O_4 \cdot 2H_2O$

C.硼砂

 $D.As_2O_3$

5、已知某溶液pH值为0.070, 其氢离子浓度的正确值为: (B)

A. $0.8511 \text{ mol} \cdot \text{L}^{-1}$; B. $0.85 \text{ mol} \cdot \text{L}^{-1}$; C. $0.8 \text{ mol} \cdot \text{L}^{-1}$; D. $0.851 \text{ mol} \cdot \text{L}^{-1}$

6、 下列物质(c=0.1 mol·L-1)能用酸碱滴定法直接滴定的是

A. NaAc (HAc 的 K₂⁶=1.8×10⁻⁵)

B. $H_3BO_3(K_3^{\theta}=5.8 \times 10^{-10})$

C. NaCN (HCN 的 $K_a^{\theta} = 4.9 \times 10^{-10}$)

D. NaF (HF 的 K_a^θ=7.2×10⁻⁴)

7、 用 0.01mol·L⁻¹的 NaOH 滴定 0.01mol·L⁻¹的 HCl, pH 突跃范围为

A. 4.3~9.7 B. 5.3~9.7 C. 5.3~8.7 D. 4.3~8.7

8、H₂O 的共轭酸是 (

A. H₂O B. HAc C. H_3O^+ D. OH^-

9、用酸碱滴定法测定氨水中含 NH3量, 先加入已知过量的 HCI 标准溶液, 剩余的 HCI 溶液

用 NaOH 标准溶液滴定,这种滴定方式称为 ()

A. 间接滴定法 B. 置换滴定法 C. 返滴定法

D. 直接滴定法

10、酸碱滴定中选择指示剂的原则是()

A. 指示剂的变色范围与化学计量点完全相符;

B. 指示剂应在 pH = 7.00 时变色;

C. 指示剂变色范围应全部落在 pH 突跃范围之内; D. 指示剂的变色范围应全部或部分

落在 pH 突跃范围之内。

11、用 25mL 移液管移出的溶液体积应记为()。

A. 25mL B. 25.0mL C. 25.00mL D. 25.000mL

12、用 EDTA 滴定无色金属离子,终点所呈现的颜色是 ()

A. 金属指示剂与待测金属离子形成的配合物的颜色

B. 游离金属指示剂的颜色

C. EDTA与待测金属离子形成的配合物的颜色

D. 金属离子的颜色

13、在 EDTA 配位滴定中,下列关于掩蔽剂的陈述错误的是 ()

A. 配位掩蔽剂必须可溶且无色

B. 沉淀掩蔽剂生成的沉淀, 其溶解度要小

C. 氧化还原掩蔽剂必须能改变干扰离子的氧化数 D. 掩蔽剂的用量越多越好

14、用 EDTA 法测定 Ca²⁺、Mg²⁺混合溶液中 Ca²⁺, 消除 Mg²⁺的干扰宜用(

A 控制酸度法 B. 配位掩蔽法 C. 沉淀掩蔽法 D.氧化还原掩蔽法

15、 已知 lgKcdY=16.5 和 EDTA 酸效应系数的对数值随 pH 的变化如下表:

PH	1	2	3	4	5	6	7	8
$\lg\alpha_{Y(H)}$	18.3	13.8	10.8	8.6	6.6	4.8	3.4	2.3

若用 0.02 mol·L⁻¹EDTA 滴定 0.02 mol·L⁻¹Cd²⁺溶液, (要求ΔpM = 0.2, E_i=0.1%)滴定时最高允 许酸度是.....()

此

无

效

殺

A. $pH\approx 2$ B. $pH\approx 4$ C. $pH\approx 6$ D. $pH\approx 8$

- 二、填空题(共20分,第一题每空2分,其它题每空1分)
- 1、(4分) 写出下列物质的 PBE
- (1)Na₂HPO₄ $[H^+] + [H_2PO_4] + [H_3PO_4] = [PO_4^{3-}] + [OH^-]$
- (2)NH₄HCO₃ $[H^+]$ + [H2CO3] = $[CO_3^2]$ + $[NH_3]$ + $[OH^-]$

- 4、若金属指示剂的 K_{Min} > K_{MY} ,则用 EDTA 滴定时 EDTA 不能夺取 M,这种现象称____指示剂的封闭现象
- 5、配合滴定必须控制溶液的酸度,若酸度过大,<u>由于酸效应金属离子配合物稳定性下降</u>。 酸度过小,___金属离子水解______;常用____缓冲溶液______来控制酸度。

四、综合题(共62分)

1、(10 分)测定 SiO₂ 的质量分数,得到下列数据(%), 28.62, 28.59, 28.51, 28.48, 28.52, 28.63 求平均值、标准偏差、相对平均偏差、置信度为 90%时平均值的置信区间。 t 值表如下表:

NEW	置信度						
测定次数	90%	95%	99%				
2	6.314	12.706	63.657				
3	2.920	4.303	9.925				
4	2.353	3,182	5.841				
5	2.132	2.776	4.604				
6	2.015	2.571	4.032				
7	1.943	2.447	3.707				
8	1.895	2.365	3,500				
9	1.860	2.306	3.355				
10	1.833	2.262	3.250				
11	1.812	2.228	3.169				
21	1.725	2.086	2.846				
∞	1.645	1.960	2.576				

在記

平均值:
$$\bar{x} = (\frac{28.62 + 28.59 + 28.51 + 28.48 + 28.52 + 28.63}{6})\% = 28.56\%$$

$$s = \sqrt{\frac{(0.06)^2 + (0.03)^2 + (0.05)^2 + (0.08)^2 + (0.04)^2 + (0.07)^2}{6 - 1}}\% = 0.06\%$$

查表格得出置信度为 90%,n=6,t=2.015 因此

$$\mu = \left(28.56 \pm \frac{2.015 \times 0.06}{\sqrt{6}}\right)\% = \left(28.56 \pm 0.05\right)\%$$

2、(8 分) 求 0.1000mol • L-1 NaOH 溶液标准溶液对 H₂C₂O₄ 的滴定度。

解:

 $H_2C_2O_4+2NaOH=Na_2C_2O_4+2H_2O$ a=1 b=2

得到
$$T_{\text{H2C2O4/NaOH}} = \frac{a}{b} \frac{c_{\text{NaOH}} M_{\text{H2C2O4}}}{1000} = \frac{1}{2} \frac{0.1 \times 90.04}{1000} = 0.004502 \, g \, / \, mL$$

- 3. (12 分) 用 0.01000 mol L⁻¹ NaOH 溶液滴定 20.00mL 0.01000 mol L⁻¹ HAc 溶液时,
- (1) 计量点溶液的 pH; (2) 计量点前后±0.1%时溶液的 pH; (3) 选择那种指示剂?

已知 K_a(HAc)=1.8×10⁻⁵ 或 pK_a(HAc)=4.74

$$c_{A^{-}} = \frac{39.98}{39.98}$$

$$c_{HA} = \frac{0.01 \times 20.00 - 0.01 \times 19.98}{39.98} = \frac{0.01 \times 0.02}{39.98}$$

$$pH = 4.74 + \lg \frac{19.98}{0.02} = 4.74 + \lg 0.1\% = 7.74$$

(2) 化学计量点时,NaOH 与 HAc 定量反应全部生成 NaAc。此时溶液的 H⁺主要由 Ac⁻的解 离所决定。

 $K_b=K_w/K_a=1.0\times10^{-14}/(1.8\times10^{-5})=5.6\times10^{-10}$,C(NaAc)= 0.005000mol • L⁻¹ (1分) 因 C • Kb=0.005000×5.6×10⁻¹⁰>20 K_w,C/Kb>500 (1分)

所以,
$$C(OH) = \sqrt{C \cdot K_b} = \sqrt{0.005000 \times 5.6 \times 10^{-10}} = 1.7 \times 10^{-6} \text{ mol} \cdot L^{-1}$$
 (2分)

效

如

災

pOH=5.77 pH=8.23 (1分)

(2) 化学计量后 0.1%, 溶液中有 NaOH, NaAc, H2O

[OH-]= CNaOH 丹春

V=20.02m1 (Er=0.1%)

$$[OH-] = \frac{0.01 \times 0.02}{40.02} = 5 \times 10^{-6}$$

pH=8.70

使用苯酚红, 酚酞为指示剂。

4、(12 分) 有一三元酸,其 $pK_1=2$ $pK_2=6$ $pK_3=12$ 。 用 NaOH 溶液滴定时,第一和第二 化学计量点的 pH 分别为多少?两个化学计量点附近有无滴定突跃?可选用何种指示剂指示终点?能否直接滴定至酸的质子全部被中和?假设初始酸和 NaOH 的浓度为 $0.1 moL \cdot L^{-1}$,体积为 20.00 mL。

1) 第一 SP:
$$[H^+] = \sqrt{K_{a1}K_{a2}} = \sqrt{10^{-2} \times 10^{-6}} = 10^{-4}, pH = 4$$

第二 SP: $[H^+] = \sqrt{K_{a2}K_{a3}} = \sqrt{10^{-6} \times 10^{-12}} = 10^{-9}, pH = 9$

2)
$$cK_{a1} = 1.0 \times 10^{-5} \ge 10^{-8}$$
 $\frac{K_1}{K_2} = \frac{10^{-2}}{10^{-6}} = 10^4 \ge 10^4$

$$cK_{a2} = 0.1 \times 10^{-6} = 10^{-7} \ge 10^{-8}$$
 $\frac{K_2}{K_3} = \frac{10^{-6}}{10^{-12}} = 10^{6}$

$$cK_{a1} = 0.1 \times 10^{-12} = 1.0 \times 10^{-13} \le 10^{-8}$$

说明两个化学计量点附近有滴定突跃。

- 3) 可分别选用甲基橙和酚酞为指示剂。
- 4) 因 $cK_3 < 10^{-8}$,所以不能一次性准确滴定到第三化学计量点。
- 5. (10 分) 假设 Mg^{2+} 和 EDTA 的浓度皆为 10^{2} mol/L,在 PH=6 时,镁与 EDTA 配合物条件 稳定常数是多少(不考虑羟基配位等副反应)? 并说明在此 PH 条件下能否用 EDTA 标准溶液 滴定 Mg^{2+} ? 如不能滴定,求其允许的最小 pH。(已知 pH=5.0 时, $\lg \alpha_{Y(H)}$ =4.65 和下表数据, $\lg K_{MgY}$ =8.69)

pН	8.8	9.0	9.5	10.0
$lg\alpha_{Y(H)}$	1.48	1.28	0.83	0.45

解:

查表知: pH=6 时, lgα_{Y(H)}=4.65,

$$\lg K'_{MgY} = \lg K_{MgY} - \lg \alpha_{Y(H)} = 8.69 - 4.65 = 4.04 \quad (6 \, \%)$$

$$K'_{MoY} = 10^{4.04} \quad (1 \, \text{分})$$

因: $\lg cK'_{May} = -2 + 4.04 = 2.04 \prec 6$ (6分)

所以: 在此 pH 条件下不能用 EDTA 标准溶液滴定 Mg²⁺

$$: \lg cK'_{MgY} \ge 6 : \lg c + \lg K_{MY} - \lg \alpha_{Y(H)} \ge 6,$$

$$\lg \alpha_{Y(H)} \le \lg c + \lg K_{MgY} - 6 = \lg K_{MgY} - 8 = 8.69 - 8 = 0.69$$
 (6 $\%$)

查表知: $\lg \alpha_{Y(H)} = 0.69$ 时, $pH \approx 9.7$ (2分)

故: 滴定 Mg^{2+} 允许的最小 $pH \approx 9.7$ (2分)

6. (10 分)解释下列现象:

- (1) 用 $KMnO_4$ 溶液滴定 $C_2O_4^{2-}$ 时,滴入 $KMnO_4$ 溶液的红色褪去的速度由慢到快。
- (2) 以 K2Cr207 标定 Na2S203 溶液浓度时,是使用间接碘量法。能否用 K2Cr207 溶液直接滴定 Na₂S₂O₃溶液? 为什么?

答:

- 1)在反应 MnO_4^{2-} + 5 $C_2O_4^{2-}$ + 16 H^{+} = 2 Mn^{2+} +10 CO_2 ↑ + 8 H_2O 中, Mn^{2+} 起催化作用,反应刚开始, $[Mn^{2+}]$ 少,随着 Mn^{2+} 浓度的增加,使反应速度加快,故 $KMnO_4$ 溶液的红色褪去的速度由慢到快
- 2)因 $Cr_2O_7^{2-}$ 与 $S_2O_3^-$ 反应产物不单一,无定量关系, 反应不能定量地进行,故不能用 $K_2Cr_2O_7$ 溶液直接滴定 $Na_2S_2O_3$ 溶液。

例

|

. .

殺