Espacio de estados Inteligencia Artificial Clásica

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

8 de marzo de 2021

- Espacio de estados

00000

- Espacio de estados
 - Estado
 - Espacio de estados

Estado del sistema

Definición

Un *estado* es el conjunto de valores de las variables del sistema en un momento determinado.

Definición

Un estado es cada uno de los nodos en un autómata.

00000

- Espacio de estados
 - Estado
 - Espacio de estados

Espacio de estados

Definición

Un espacio de estados es el conjunto de todas las posibles asignaciones de valores al conjunto de variables que describen al sistema.

Definición

El espacio de estados es el conjunto de todos los nodos en el autómata.

Sistema de transición de estados

- Sistema de transición de estados

- Sistema de transición de estados
 - Definición
 - Ejemplo
 - Acción aplicable
 - Versión en grafo
 - Función sucesor
 - Estados alcanzables

Definición

Espacio de estados

Un sistema de transición de estados es una tupla $\Sigma = (S, A, E, \gamma)$, a donde:

- $S = \{s_1, s_2, ...\}$ es un conjunto finito o recursivamente enumerable de estados.
- $A = \{\alpha_1, \alpha_2, ...\}$ es un conjunto finito o recursivamente enumerable de acciones realizables por el agente.
- $E = \{e_1, e_2, ...\}$ es un conjunto finito o recursivamente enumerable de eventos que no están en control del agente.
- $\gamma: S \times (A \cup E) \rightarrow 2^S$ es una función de transición de estados^c.

^aGhallab. Nau v Traverso 2004

^bInfinito

^c2^S es un conjunto de estados, el conjunto potencia de todos los estados. Es decir, un elemento del conjunto 2^S es un conjunto de estados.

- Sistema de transición de estados
 - Definición
 - Ejemplo
 - Acción aplicable
 - Versión en grafo
 - Función sucesor
 - Estados alcanzables

Ejemplo: gato

Definición (Espacio de estados)

Sea:

$$\begin{split} \text{S\'imbolos} = & \{o, x, \square\} \\ S = & \{gato|gato \in Matriz3x3, \\ gato_{ij} = s\'imbolo \in S\'imbolos, \\ \#o \in [\#x, (\#x+1)]\} \end{split}$$

Lo cual se visualiza como el conjunto de todos los estados como:

Definición (Acciones)

• tira(i,j) con $i \in \mathbb{N}, 0 \leqslant i \leqslant 2$ y $j \in \mathbb{N}, 0 \leqslant j \leqslant 2$.

Definición (Eventos)

$$E = \emptyset$$

Ejemplo: gato

Definición (Función de transición)

$$\gamma = \gamma(s, a(i, j)) \rightarrow s'$$

Precondiciones: $s_{i,j} = \square$

Postcondiciones:

$$s'_{k,l} = \begin{cases} s_{k,l} & \forall (k,l) \neq (i,j) \\ o & \text{si } \#o = \#x \text{ y } (k,l) = (i,j) \\ x & \text{si } \#o = \#x + 1 \text{ y } (k,l) = (i,j) \end{cases}$$

Por lo tanto:

$$\gamma(s,\alpha(\mathfrak{i},\mathfrak{j})) = \begin{cases} \emptyset & \text{si } s_{\mathfrak{i},\mathfrak{j}} \neq \square \\ s' & \text{en otro caso} \end{cases}$$

Ejercicio: definirlo de otra manera. Ver ejemplos en Rich, Knight y Nair 2009.

- Sistema de transición de estados
 - Definición
 - Ejemplo
 - Acción aplicable
 - Versión en grafo
 - Función sucesor
 - Estados alcanzables

Acción aplicable

Definición

Espacio de estados

Se dice que la acción α es *aplicable* en s si $\alpha \in A$ y $\gamma(s,\alpha) \neq \emptyset$. Aplicar α en s cambia el estado del sistema a s'.

Figura: Acción aplicable: mover(tablero, 12, abajo).

- Sistema de transición de estados
 - Definición
 - Ejemplo
 - Acción aplicable
 - Versión en grafo
 - Función sucesor
 - Estados alcanzables

Sistema de transición como grafo

Espacio de estados

El sistema de transición de estados $\Sigma = (S, A, E, \gamma)$, también puede ser visto como una gráfica $G = (N_G, E_G)$ donde:

- Los nodos corresponden a los estados en el conjunto S, i.e. $N_G = S$.
- Hay una arista dirigida de $s \in N_G$ a $s' \in N_G$ (i.e. $s \to s' \in E_G$ con etiqueta $u \in (A \cup E)$ si v sólo si $s' \in \gamma(s, u)$

Figura: Estados del juego del gato. Nótese el uso de simetrías para elimiar nodos.

- Sistema de transición de estados
 - Definición
 - Ejemplo
 - Acción aplicable
 - Versión en grafo
 - Función sucesor
 - Estados alcanzables

Función sucesor

Definición

La función sucesor $\Gamma^m: 2^S \to 2^S$ para un dominio restringido $\Sigma = (S,A,\gamma)$ se define como:

$$\Gamma(s) = \{ \gamma(s, \alpha) | \alpha \in A \text{ y } \alpha \text{ es aplicable en s para } s \in S \}$$

$$\Gamma(\{s_1, ..., s_n\}) = \bigcup_{k \in [1, n]} \Gamma(s_k)$$

$$\Gamma^0(\{s_1, ..., s_n\}) = \{s_1, ..., s_n\}$$

$$\Gamma^m(\{s_1, ..., s_n\}) = \Gamma(\Gamma^{m-1}(\{s_1, ..., s_n\}))$$

$$(2)$$

- Sistema de transición de estados
 - Definición
 - Ejemplo
 - Acción aplicable
 - Versión en grafo
 - Función sucesor
 - Estados alcanzables

Estados alcanzables

• La cerradura transitiva de Γ define el conjunto de todos los estados alcanzables:

$$\hat{\Gamma}(s) = \bigcup_{(k \in [0,\infty])} \Gamma^k(s) \text{ para } s \in S$$
 (3)

- Spacio de estados II

Definición alternativa de espacio de estados

- OJO: Hay quien define al espacio de estados implícitamente como "el conjunto de todos los estados alcanzables desde el estado inicial" Russell y Norving 2004.
- PERO: ¿Cómo definir ploblemas en los que no se sabe si cierto estado es alcanzable o no?

- Ghallab, Malik, Dana Nau y Paolo Traverso (2004). Automated Planning, Theory and Practice. Morgan Kaufmann Publishers.
- Rich, Elaine, Kevin Knight y Shivashankar B Nair (2009). Artificial Intelligence. 3rd. McGraw-Hill, pág. 568.
- Russell, Stuart y Peter Norving (2004). *Inteligencia Artificial, Un Enforque Moderno*.

 2a. Pearson Prentice Hall.

Creative Commons Atribución-No Comercial-Compartir Igual

