DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Доклад по статье

Суть проблемы

- Обучаемся задаче сегментации ⇒ нужны датасеты с разметкой pixel-wise
- Размечать вручную по пикселям миллион картинок – сомнительно
- Датасет необходимо сгенерировать

Идея – GAN

- GAN умеют генерировать реалистичные и разнообразные изображения
- Содержат ли они информацию о семантике объектов?
- Будем генерировать изображения вместе с разметкой

StyleGAN

- w внутреннее представление
- k аффинных преобразований ⇒ векторы стиля, подающиеся в AdalN
- AdalN возвращает feature map

Feature map – набор признаков для каждого пикселя

Ручная разметка

У каждого пикселя сгенерированного изображения теперь есть метка класса

Схема генерации одного сэмпла

Составление ручной разметки

- Никакого краудсорсинга
- Детализированная и качественная разметка

 Низкое качество сгенерированных изображений может негативно сказаться на разметке

Эксперименты

- Наборы данных: Car, Bedroom, Face, Cat, Bird
- Основная модель Deeplab-V3

Количественные результаты

Testing Dataset	ADE-Car-12	ADE-Car-5	Car-20	CelebA-Mask-8 (Face)	Face-34	Bird-11	Cat-16	Bedroom-19
Num of Training Images	16	16	16	16	16	30	30	40
Num of Classes	12	5	20	8	34	11	16	19
Transfer-Learning	24.85	44.92	33.91 ± 0.57	62.83	45.77 ± 1.51	21.33 ± 1.32	21.58 ± 0.61	22.52 ± 1.57
Transfer-Learning (*)	29.71	47.22	Х	64.41	Х	Х	Х	X
Semi-Supervised [41]	28.68	45.07	44.51 ± 0.94	63.36	48.17 ± 0.66	25.04 ± 0.29	24.85 ± 0.35	30.15 ± 0.52
Semi-Supervised [41] (*)	34.82	48.76	Х	65.53	Х	Х	Х	X
Ours	45.64	57.77	62.33 ± 0.55	70.01	53.46 ± 1.21	36.76 ± 2.11	$\textbf{31.26} \pm \textbf{0.71}$	36.83 ± 0.54

X means that the method does not apply to this setting due to missing labeled data in the domain.

Сравнение с full-supervised

- 2600 объектов vs 25
- Out-of-domain ⇒ лучшее качество

Testing Dataset	ADE-Car-5	PASCAL-Car-5
Num of Classes	5	5
Deeplab-V3 [6] (2600 labels)	59.41 (*)	54.31
Ours (25 labels)	57.71	55.65

Faces 34 cls. **Faces** 34 cls. **Birds** 11 cls. Cats 16 cls. **Bedrooms** 19 cls. prediction prediction groundtruth groundtruth groundtruth image image image

- Достаточно разметить вручную небольшое число объектов
- Высокое качество и детализация разметки
- Искусственный датасет пригоден для использования в задачах обучения

