

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1
		9

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
<i>/</i>	1	0	0
OR	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

- O mapa de Karnaugh é mais uma técnica criada para simplificar uma expressão lógica ou até mesmo converter uma tabela verdade em um circuito lógico, tudo isso de forma simples e metódica.
- O mapa de Karnaugh pode ser usado em problemas que envolvem qualquer número de variáveis de entrada. Mas nesse curso iremos restringir a problemas com até quatro entradas.
- Os Mapas de Karnaugh são aplicados sobretudo aos circuitos lógicos combinacionais, ou àqueles cuja função de saída depende única e exclusivamente dos estados lógicos das variáveis de entrada, definidos em termos de 0's e 1's, embora também possam ser aplicados a circuitos sequenciais.
- M. Karnaugh criou, em 1953, uma representação gráfica que ordena e mostra os MINTERM's e os MAXTERM's das funções lógicas de uma forma geométrica tal que a aplicação do teorema da adjacência, se torna óbvia por inspeção.

Maurice Karnaugh

Vamos começar com o principio básico. Fazendo o mapa de 2 variáveis.

Mint	Adj	A	В
0	1,2	0	0
1	0,3	0	1
2	0,3	1	0
3	1,2	1	1

Relação de adjacência com a tabela verdade

Preenchendo o Mapa de K

Mint	Adj	Α	В	S
0	1,2	0	0	S1
1	0,3	0	1	S2
2	0,3	1	0	S3
3	1,2	1	1	S4

	B	В
Ā	S1 °	S2 1
Α	S3 2	S4 3

Preenchendo o Mapa de K

Mint	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	0
3	1	1	1

Utilizando o Mapa de K

Mint	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	0
3	1	1	1

Utilizando o Mapa de K

Mint	Α	В	S
0	0	0	0
1	0	1	0
2	1	0	1
3	1	1	1

$$S = A$$

Utilizando o Mapa de K

Mint	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Agora temos dois pares. Basta somar eles!

$$S = A + B$$

Senac

Mapa de Karnough

Utilizando o Mapa de K

Mint	Α	В	S
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	1

$$S = \overline{A}\overline{B} + AB$$

NÃO é permitido agrupar em diagonal

Utilizando o Mapa de K

Mint	Α	В	S
0	0	0	1
1	0	1	1
2	1	0	1
3	1	1	1

$$S = 1$$

Algumas Regras

Nós sempre formaremos os agrupamentos respeitando a formula abaixo:

$$2^n = Grupo$$

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

Para facilitar, somente usaremos agrupamentos de:

- Isolado
- Pares
- Quartetos
- Octetos

Preenchendo o Mapa de K com 3 variáveis

Mint	Α	В	С	S
0	0	0	0	S1
1	0	0	1	S2
2	0	1	0	S 3
3	0	1	1	S4
4	1	0	0	S5
5	1	0	1	S6
6	1	1	0	S7
7	1	1	1	S8

	ВĒ	ВC	ВС	ВŌ
Ā	S1 ₀	S2 1	S4	S3 ₂
Α	S5 4	S6	S8	S7 6

Utilizando o Mapa de K com 3 variáveis

Mint	Α	В	С	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Utilizando o Mapa de K com 3 variáveis

Mint	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

$$S = \overline{B}\overline{C} + \overline{A}\overline{C}$$

Utilizando o Mapa de K com 3 variáveis

Mint	Α	В	С	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$S = \overline{A}C + A\overline{B} + A\overline{C}$$

ΒŌ

Utilizando o Mapa de K com 3 variáveis

O X pode ser 1 ou 0 de acordo com nosso mapa. E sua melhor aplicação.

Mint	Α	В	С	S
0	0	0	0	(\mathbf{x})
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	ВĒ		
Ā	X	0	
Α	1	4	
Α	1	4	

Indiferente

Dica: Sempre que fizermos uma quadra eliminamos duas variáveis.

Mapa de K com 4 variáveis

Mint	Α	В	С	D	S
0	0	0	0	0	S1
1	0	0	0	1	S2
2	0	0	1	0	S3
3	0	0	1	1	S4
4	0	1	0	0	S5
5	0	1	0	1	S6
6	0	1	1	0	S7
7	0	1	1	1	S8
8	1	0	0	0	S9
9	1	0	0	1	S10
10	1	0	1	0	S11
11	1	0	1	1	S12
12	1	1	0	0	S13
13	1	1	0	1	S14
14	1	1	1	0	S15
15	1	1	1	1	S16

	ĒΦ	ĒD	CD	CD
ĀĒ	S1 ₀	S2 ₁	S4 ₃	S3 ₂
ĀB	S5 ₄	S6 5	\$8 7	S7 6
AB	S13	S14	S16	S15
ΑĒ	S9 8	S10	S12	S11 ₁₀

Utilizando o Mapa de K com 4 variáveis

Mint	Α	В	С	D	S
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

$$S = B + \overline{D}$$

Projeto de Circuito Combinacional

Iremos seguir alguns passos para projetar circuitos combinacionais.

Elaborar um circuito lógico que permita encher automaticamente um filtro de água de dois recipientes e vela, conforme indicado no desenho

Aplicando Soma e Produto

Aplicando Soma e Produto

Obtenção da Tabela Verdade a partir de uma

descrição

Vamos deixar esse circuito menor ainda:

Α	В	S
0	0	1
0	1	1
1	0	0
1	1	0

Circuito pronto sem simplificação

Circuito pronto com simplificação

Exercício

Considere um sistema de segurança que uma loja de departamento está precisando elaborar:

- Existe um sensor de contato, que em nível Alto indica que a porta está fechada.
- Existe um sensor infravermelho que, quando está em nível alto, indica que não existe movimento na loja.
- Também existe um alarme que é acionado quando pelo menos um dos sensores está em nível baixo.

Descubra a expressão lógica responsável pelo acionamento do alarme e desenhe o circuito.

Exercício

Resolva as tabelas verdade com Karnough

Α	В	S
0	0	0
0	1	0
1	0	1
1	1	0

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Dúvidas?

	B	В
Ā	0	1
Α	2	3

		ВĒ	ВC	ВС	ВŌ
	Ā	0	1	3	2
5.	Α	4	5	7	6

	Ζ̄D̄	СD	CD	CD
ĀĒ	0	1	3	2
ĀB	4	5	7	6
AB	12	13	15	14
ΑĒ	8	9	11	10

ATÉ A PRÓXIMA AULA!

