Spatial Modeling with Template Model Builder Theory and Mechanics

Andrea Havron, OST

Species Distribution Modeling

Triangle Shell Surf clam Manawatu, NZ

Species Distribution Modeling

Triangle Shell Surf clam Manawatu, NZ

Benefits of modeling spatial correlation

- Failure to model spatial correlation violates independence assumptions
 - Narrower confidence intervals
 - Inflated Type I error
- We want to learn about the spatial structure
- More realistic predictions of species distributions

Hierarchical Spatial Model

$$Y \sim f_y(g^{-1}(\mu))$$
$$\mu = \beta_0 + X\beta + \omega$$
$$\omega \sim MVN(0, \Sigma)$$

$$L(\boldsymbol{\omega}) = \frac{|\Sigma|^{-1/2}}{\sqrt{(2\pi)^n}} \exp(-\frac{1}{2}\boldsymbol{\omega}^T \Sigma^{-1}\boldsymbol{\omega})$$

Covariance Matrix, Σ

Exponential Correlation

$$\Sigma_{i,j} = \exp(-\frac{d_{ij}}{\phi})$$

 ϕ : distance spatial correlation $\approx 10\%$

Covariance Matrix, Σ

Matérn Correlation

$$\Sigma_{i,j} = \frac{1}{2^{\nu-1}\Gamma(\nu)} (\kappa d)^{\nu} K_{\nu}(\kappa d)$$

 ϕ : distance spatial correlation $\approx 10\%$ $\kappa = \sqrt{8\nu}/\phi$

Gaussian Field

$$L(\boldsymbol{\omega}) = \frac{|\Sigma|^{-1/2}}{\sqrt{(2\pi)^n}} \exp(-\frac{1}{2}\boldsymbol{\omega}^T \Sigma^{-1}\boldsymbol{\omega})$$

Likelihood Bottleneck

$$L(\boldsymbol{\omega}) = \frac{|\Sigma|^{-1/2}}{\sqrt{(2\pi)^n}} \exp(-\frac{1}{2}\boldsymbol{\omega}^T \Sigma^{-1}\boldsymbol{\omega})$$

• Operations are $\mathcal{O}(n^3)$

Gaussian Markov Random Field (Besag, 1974)

GMRF (Besag, 1974)

$$Y(s_i|\boldsymbol{s}_{-i}) = Y(s_i|\boldsymbol{s}_j: j \in Nb_i)$$

 $s_i \perp s_k \mid s_j$

S _k				
		Sj		
	S _j	s _i	Sj	
		S _j		

$$Q = \frac{1}{\sigma^2} \begin{bmatrix} 1 + \rho^2 & -\rho & \cdot & \cdot \\ -\rho & 1 + \rho^2 & -\rho & \cdot \\ \cdot & -\rho & 1 + \rho^2 & -\rho \\ \cdot & \cdot & -\rho & 1 + \rho^2 \end{bmatrix} \begin{bmatrix} 9 \\ -\rho \\ -\rho \end{bmatrix}$$

AR(1), 1D

S _k				
		Sj		
	Sj	S _i	Sj	
		S _j		

 $Q = \Sigma^{-1}$

$$Q = \frac{1}{\sigma^2} \begin{bmatrix} 1 + \rho^2 & -\rho & \cdot & \cdot \\ -\rho & 1 + \rho^2 & -\rho & \cdot \\ \cdot & -\rho & 1 + \rho^2 & -\rho \\ \cdot & \cdot & -\rho & 1 + \rho^2 \end{bmatrix}$$

AR(1), 1D S_k S_{i} S_i S_i

$$Q = \frac{1}{\sigma^2} \begin{bmatrix} 1 + \rho^2 & -\rho & \cdot & \cdot \\ -\rho & 1 + \rho^2 & -\rho & \cdot \\ \cdot & -\rho & 1 + \rho^2 & -\rho \\ \cdot & \cdot & -\rho & 1 + \rho^2 \end{bmatrix}$$

$$\Sigma = \frac{\sigma^2}{1 - \rho^2} \begin{bmatrix} 1 & \rho & \rho^2 & \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 & \rho^2 & \rho & 1 \end{bmatrix}$$

AR(1), 1D

S _k				
		Sj		
	S _j	s _i	S _j	
		S _j		

Likelihood Bottleneck

$$L(\boldsymbol{\omega}) = \frac{|\Sigma|^{-1/2}}{\sqrt{(2\pi)^n}} \exp(-\frac{1}{2}\boldsymbol{\omega}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\omega})$$

• Operations are $\mathcal{O}(n^3)$

Resolving the Likelihood Bottleneck

$$L(\boldsymbol{\omega}) = \frac{|\Sigma|^{-1/2}}{\sqrt{(2\pi)^n}} \exp(-\frac{1}{2}\boldsymbol{\omega}^T \boldsymbol{Q} \boldsymbol{\omega})$$

• Operations are $\mathcal{O}(n^{3/2})$

Stochastic Partial Differential Equation

SPDE (Whittle, 1963)

$$(\kappa^2 - \Delta)^{\alpha/2} x(s) = W(s)$$

Solution: Gaussian Field with a Matérn covariance matrix

Finite Element Method approach to the SPDE

FEM-SPDE (Lindgren et al., 2011)

Triangulated Mesh

Finite Element Method approach to the SPDE

FEM-SPDE (Lindgren et al., 2011)

Image source: Krainski et al. 2019

FEM-SPDE with R-INLA

FEM-SPDE with R-INLA

Precision matrix from R-INLA output

$$Q = \tau^{2}(\kappa^{4}M_{1} + 2\kappa^{2}M_{1} + M_{2})$$
$$\omega \sim GMRF(Q)$$

 κ : rate of decay in spatial correlation

$$au^2 = rac{1}{4\pi\kappa^2\sigma^2}$$
, $u = 2$

TMB's Spatial Functionality

- \triangleright Covariance Matrix, Σ :
 - matern()
 - MVNORM()
 - AR1()
- Precision Matrix, Q:
 - R_inla::Q_spde()
 - **GMRF()**
- > Sparsity detection