Une introduction à la géométrie des fibrés principaux

Abdelhak Abouqateb a.abouqateb@uca.ac.ma

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Mini-cours dans le cadre de l'école EMA CIMPA - MIMS Rabat -UIR- 25 Juin au 07 juillet 2018

Introduction

La géométrie des fibrés principaux, objet de ce mini-cours, est d'une grande importance mathématique (en géométrie différentielle et topologie algébrique) et physique (théories de la relativité, de Yang-Mills et de Gauge).

Introduction

La géométrie des fibrés principaux, objet de ce mini-cours, est d'une grande importance mathématique (en géométrie différentielle et topologie algébrique) et physique (théories de la relativité, de Yang-Mills et de Gauge). Selon la formulation du problème étudié, on peut utiliser des outils propres aux fibrés vectoriels ou propres aux fibrés principaux, il est tout de même intéressant de savoir qu'il y a souvent une correspondance biunivoque entre les deux approches.

Objectif

Je me suis proposé dans ce mini-cours de se limiter à certains aspects géométriques des fibrés principaux (Fibrés associés, champs de vecteurs, formes différentielles, connections...) avec comme exemple principal de motivation le cas du fibré $G \to G/H$.

Objectif

Je me suis proposé dans ce mini-cours de se limiter à certains aspects géométriques des fibrés principaux (Fibrés associés, champs de vecteurs, formes différentielles, connections...) avec comme exemple principal de motivation le cas du fibré $G \to G/H$. Le fibré tangent d'une variété différentiable M peut toujours être interprété comme fibré associé au fibré des repères.

Objectif

Je me suis proposé dans ce mini-cours de se limiter à certains aspects géométriques des fibrés principaux (Fibrés associés, champs de vecteurs, formes différentielles, connections...) avec comme exemple principal de motivation le cas du fibré $G \rightarrow G/H$. Le fibré tangent d'une variété différentiable M peut toujours être interprété comme fibré associé au fibré des repères. Pour un espace homogène par exemple G/H on peut aussi considérer le H-fibré principal $G \rightarrow G/H$ pour classifier les G-fibrés vectoriels de base G/H (le fibré tangent T(G/H)et le fibré produit extérieur $\bigwedge T^*(G/H)$ en sont des exemples).

Plan adopté

- Généralités sur les groupes de Lie,
- Actions différentiables de groupes de Lie,
- Fibrés localements triviaux,
- Fibré tangent d'un espace homogène et problème d'existence de métriques riemanniennes invariantes,
- Actions prores et fibrés,
- Formes différentielles invariantes et cohomologie,
- Connections sur un fibré principal,
- Fibré universel et espaces classifiants (par Mehdi Nabil)

Groupes de Lie

Définition

Un groupe de Lie est un groupe G muni d'une structure de variété différentiable telle que les applications :

- **1** Multiplication : $G \times G \stackrel{\mu}{\longrightarrow} G$, $\mu(g_1, g_2) = g_1 g_2$,
- ② Inversion : $G \xrightarrow{\nu} G$, $\nu(g) = g^{-1}$, soient de classes C^{∞} .

Groupes de Lie

Définition

Un groupe de Lie est un groupe G muni d'une structure de variété différentiable telle que les applications :

- **1** Multiplication : $G \times G \stackrel{\mu}{\longrightarrow} G$, $\mu(g_1, g_2) = g_1 g_2$,

soient de classes C^{∞} .

Exemple

(Groupes linéaires) Par exemple : O(n), $SL(n, \mathbb{R})$, $U(n) \cdots$ Si G est un sous-groupe fermé d'un $GL(n, \mathbb{K})$, alors G est un groupe de Lie (Théorème de Cartan-Von Newmann) : On définit : $G = \{A \in M(n, \mathbb{K}) / \exp(tA) \subset G, \forall t \in \mathbb{R}\}$, et on montre que $\exp : G \to G$ est un difféomorphisme local d'un voisinage ouvert de 0 dans G sur un voisinage ouvert de $O(n, \mathbb{K})$ dans $O(n, \mathbb{K})$ exp($O(n, \mathbb{K})$) exp($O(n, \mathbb{K})$) et $O(n, \mathbb{K})$ et $O(n, \mathbb{K})$ est un difféomorphisme local d'un voisinage ouvert de $O(n, \mathbb{K})$ exp($O(n, \mathbb{K})$) et $O(n, \mathbb{K})$ et

C

Exemples

Théorème

Soit $G \subset \mathrm{Diff}(\mathrm{M})$ un sous-groupe. On pose :

$$S := \{X \text{ champ de vecteur complet } / \varphi_t^X \in G, \ \forall t \in \mathbb{R} \}$$

Si l'algèbre de Lie engendré par S est de dimension finie, alors G est un groupe de Lie d'algèbre de Lie S.

Exemples

Théorème

Soit $G \subset \mathrm{Diff}(\mathrm{M})$ un sous-groupe. On pose :

$$S := \{X \text{ champ de vecteur complet } / \varphi_t^X \in G, \ \forall t \in \mathbb{R} \}$$

Si l'algèbre de Lie engendré par $\mathcal S$ est de dimension finie, alors G est un groupe de Lie d'algèbre de Lie $\mathcal S$.

Théorème

Un groupe topologique localement euclidien est un groupe de Lie.

Exemples

Théorème

Soit $G \subset \mathrm{Diff}(\mathrm{M})$ un sous-groupe. On pose :

$$\mathcal{S} := \{ X \text{ champ de vecteur complet } / \varphi_t^X \in \mathcal{G}, \ \forall t \in \mathbb{R} \}$$

Si l'algèbre de Lie engendré par $\mathcal S$ est de dimension finie, alors G est un groupe de Lie d'algèbre de Lie $\mathcal S$.

Théorème

Un groupe topologique localement euclidien est un groupe de Lie.

Théorème

Tout sous-goupe connexe par arcs d'un groupe de Lie est un groupe de Lie.

Sous-goupes de Lie

Définition

Soit G un groupe de Lie. Un sous-groupe de Lie H de G est un sous-groupe munie d'une topologie et d'une structure différentiable qui en font un groupe de Lie et tel que l'injection canonique $\iota: H \hookrightarrow G$ soit une immersion.

Proposition

Soient G un groupe de Lie, et $H \subset G$ un sous-groupe qui est aussi une sous-variété plongée de G. Alors H est un sous-groupe de Lie fermé de G.

Selon usage, le tore \mathbb{T}^2 peut être vu comme étant $S^1 \times S^1$ ou le quotient $\mathbb{R}^2/\mathbb{Z}^2$,

Selon usage, le tore \mathbb{T}^2 peut être vu comme étant $S^1 \times S^1$ ou le quotient $\mathbb{R}^2/\mathbb{Z}^2$, il s'identifie aussi à la surface Σ de révolution dans \mathbb{R}^3 engendrée par la rotation autour de l'axe vertical (ox_3) d'un cercle méridien.

Selon usage, le tore \mathbb{T}^2 peut être vu comme étant $S^1 \times S^1$ ou le quotient $\mathbb{R}^2/\mathbb{Z}^2$, il s'identifie aussi à la surface Σ de révolution dans \mathbb{R}^3 engendrée par la rotation autour de l'axe vertical (ox_3) d'un cercle méridien. De manière plus précise, le difféomorphisme entre $\mathbb{R}^2/\mathbb{Z}^2$ et Σ

Selon usage, le tore \mathbb{T}^2 peut être vu comme étant $S^1 \times S^1$ ou le quotient $\mathbb{R}^2/\mathbb{Z}^2$, il s'identifie aussi à la surface Σ de révolution dans \mathbb{R}^3 engendrée par la rotation autour de l'axe vertical (ox_3) d'un cercle méridien. De manière plus précise, le difféomorphisme entre $\mathbb{R}^2/\mathbb{Z}^2$ et Σ est donné par :

$$\varphi(\overline{(t,s)}) = (x_1(\overline{(t,s)}, x_2(\overline{(t,s)}, x_3(\overline{(t,s)}))$$

avec

$$\begin{cases} x_1\overline{(t,s)} = (R + r\cos(2\pi s))\cos(2\pi t) \\ x_2\overline{(t,s)} = (R + r\cos(2\pi s))\sin(2\pi t) \\ x_3\overline{(t,s)} = r\sin(2\pi s) \end{cases}$$

Densité du flot à pente irrationnel sur le tore

Exercice

La topologie usuelle de $\mathbb{T}^2=S^1\times S^1\subset \mathbb{C}\times \mathbb{C}$ peut être définie par la distance d donnée par :

$$d((z_1, z_2), (z_1', z_2')) = \max(|z_1 - z_1'|, |z_2 - z_2'|).$$

Soit α un nombre irrationnel et D_{α} le sous-groupe des $(e^{it}, e^{i\alpha t})$ pour $t \in \mathbb{R}$. Soit $M = (e^{ix}, e^{iy})$ un point de $S^1 \times S^1$.

- Montrer que pour tout $\varepsilon > 0$, il existe $m \in \mathbb{Z}$ tel que : $d(M, (e^{i(x+2\pi m)}, e^{i\alpha(x+2\pi m)})) < \varepsilon$.
- ② En déduire que D_{α} est dense dans $S^1 \times S^1$.

On a $M = (e^{ix}, e^{iy})$, donc

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = \mid e^{i\alpha x}(e^{i\alpha 2\pi mx}-e^{it}) \mid \text{ avec } t = y-\alpha x.$$

On a $M = (e^{ix}, e^{iy})$, donc

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)}))=\mid e^{i\alpha x}(e^{i\alpha 2\pi mx}-e^{it})\mid \text{ avec } t=y-\alpha x.$$

D'où:

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = |e^{i\alpha 2\pi mx} - e^{it}|.$$

On a $M = (e^{ix}, e^{iy})$, donc

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)}))=\mid e^{i\alpha x}(e^{i\alpha 2\pi mx}-e^{it})\mid \text{ avec } t=y-\alpha x.$$

D'où:

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = |e^{i\alpha 2\pi mx} - e^{it}|.$$

Le résultat découle alors du fait que l'ensemble $H:=\{e^{i\alpha 2\pi m x} \ / \ m\in \mathbb{Z}\}$ est un sous-groupe dense de S^1 .

On a $M = (e^{ix}, e^{iy})$, donc

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)}))=\mid e^{i\alpha x}(e^{i\alpha 2\pi mx}-e^{it})\mid \text{ avec } t=y-\alpha x.$$

D'où:

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = |e^{i\alpha 2\pi mx} - e^{it}|.$$

Le résultat découle alors du fait que l'ensemble $H:=\{e^{i\alpha 2\pi mx} \mid m\in\mathbb{Z}\}$ est un sous-groupe dense de S^1 . Pour cela, on considère l'application $p:\mathbb{R}\to S^1,\quad t\mapsto e^{i2\pi t}$.

On a $M = (e^{ix}, e^{iy})$, donc

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)}))=\mid e^{i\alpha x}(e^{i\alpha 2\pi mx}-e^{it})\mid \text{ avec } t=y-\alpha x.$$

D'où:

$$d(M,(e^{i(x+2\pi m)},e^{i\alpha(x+2\pi m)})) = |e^{i\alpha 2\pi mx}-e^{it}|.$$

Le résultat découle alors du fait que l'ensemble $H:=\{e^{i\alpha 2\pi mx} \mid m\in \mathbb{Z}\}$ est un sous-groupe dense de S^1 . Pour cela, on considère l'application $p:\mathbb{R}\to S^1,\quad t\mapsto e^{i2\pi t}$. En effet, $H=p(\alpha\mathbb{Z})=p(\alpha\mathbb{Z}+\mathbb{Z})$ et $\alpha\mathbb{Z}+\mathbb{Z}$ est dense dans \mathbb{R} (puisque c'est un sous-groupe qui n'est pas de la forme $a\mathbb{Z}$). Et puisque p est continue et surjective, on obtient : $S^1=p(\mathbb{R})=p(\overline{\alpha\mathbb{Z}+\mathbb{Z}})=\overline{p(\alpha\mathbb{Z}+\mathbb{Z})}=\overline{H}$.

Groupe localement compact

Exercice

Soit G un groupe de Lie et H un sous-groupe de G. On dira que H est localement compact s'il existe O un ouvert de G et K un compact tel que

$$e \in O \cap H \subset K \subset H$$

Montrer que H est localement compact si et seulement si H est fermé dans G.

G est un groupe de Lie donc localement compact et séparé.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact,

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi H est localement compact.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi H est localement compact. Réciproquement, soit O un ouvert de G et K un compact tel que $e \in O \cap H \subset K \subset H$.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi G est localement compact. Réciproquement, soit G un ouvert de G et G un compact tel que G et G et G un compact tel que G et G et G un compact tel que G et G

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi H est localement compact. Réciproquement, soit O un ouvert de G et K un compact tel que $e \in O \cap H \subset K \subset H$. En prenant l'adhérence dans G, on obtient $\overline{O \cap H} \subset K \subset H$. et puisque O est un ouvert, on a : $O \cap \overline{H} \subset \overline{O} \cap \overline{H}$. On a ainsi $O \cap \overline{H} \subset H$.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi G est localement compact. Réciproquement, soit G un ouvert de G et G un compact tel que G est G un obtient G et G un obtient G est un ouvert, on a : G est un ouvert, on a insi G est un ouvert, on a insi G est un ouvert.

Soit maintenant $x \in \overline{H}$. Donc $xO \cap H \neq \emptyset$.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi G est localement compact. Réciproquement, soit G un ouvert de G et G un compact tel que G est G un obtient G est G est un ouvert, on a : G est G est un ouvert, on a insi

$$O \cap \overline{H} \subset H.$$
 (0.1)

Soit maintenant $x \in \overline{H}$. Donc $xO \cap H \neq \emptyset$. Soit alors $u \in O$ tel que $xu \in H$. On a donc

$$u \in x^{-1}H \subset \overline{H}H \subset \overline{H}$$

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi C est localement compact. Réciproquement, soit C un ouvert de C et C un compact tel que C est C un compact tel que C est C et puisque C est un ouvert, on a : C est C est un ouvert, on a insi

$$O \cap \overline{H} \subset H.$$
 (0.1)

Soit maintenant $x \in H$. Donc $xO \cap H \neq \emptyset$. Soit alors $u \in O$ tel que $xu \in H$. On a donc

$$u \in x^{-1}H \subset \overline{H}H \subset \overline{H}$$

D'où $u \in O \cap \overline{H}$.

G est un groupe de Lie donc localement compact et séparé. Supposons que H est un fermé de G et soit $e \in O \subset C$ avec O un ouvert de G et C un compact, alors $e \in O \cap H \subset C \cap H \subset H$ et $K := C \cap H$ est un compact. Ainsi G est localement compact. Réciproquement, soit G un ouvert de G et G un compact tel que G et G un compact tel que G et G un obtient G est un ouvert, on a : G est un ouvert, on a ainsi

$$O \cap \overline{H} \subset H.$$
 (0.1)

Soit maintenant $x \in H$. Donc $xO \cap H \neq \emptyset$. Soit alors $u \in O$ tel que $xu \in H$. On a donc

$$u \in x^{-1}H \subset \overline{H}H \subset \overline{H}$$

D'où $u \in O \cap \overline{H}$. Et d'après 0.1, on aura $u \in H$, et parsuite $x \in H$ (car $xu \in H$).

Algèbre de Lie d'un groupe de Lie

Définition

Soit $X \in \chi(G)$. On dira que X est invariant à gauche si $X \stackrel{l_g}{\sim} X$ pour tout $g \in G$. C'est à dire que pour tout $x \in G$ et pour tout $g \in G$:

$$X_{gx} = T_x I_g(X_x).$$

L'ensemble des champs de vecteurs invariants à gauches sur G est noté $\chi^I(G)$, c'est une sous algèbre de Lie de l'algèbre de Lie des champs de vecteurs $\chi(G)$.

Proposition

L'application $\phi: \chi^I(G) \longrightarrow T_eG$ donnée par $X \mapsto X_e$ est un isomorphisme d'espaces vectoriels.

Foncteur de Lie

Définition

On appelle algèbre de Lie du groupe de Lie G, l'algèbre de Lie réelle notée $\operatorname{Lie}(G) := (T_eG, [\ ,\]).$

Proposition

Soit $\varphi: G \longrightarrow H$ un morphisme de groupes de Lie et notons $\operatorname{Lie}(\varphi) := T_e \varphi$. Alors $\operatorname{Lie}(\varphi) : \operatorname{Lie}(G) \longrightarrow \operatorname{Lie}(H)$ est un morphisme d'algèbres de Lie.

Soit $X \in \chi'(G)$. Considérons le système différentiel ordinaire sur le groupe de Lie G :

$$\begin{cases}
\gamma'(t) = X_{\gamma(t)} \\
\gamma(0) = e
\end{cases} (0.2)$$

Proposition

Soit $\gamma: I \longrightarrow G$ La solution maximale du système (0.2). Alors $I = \mathbb{R}$ et pour tout $t, s \in \mathbb{R}$, on a $\gamma(t+s) = \gamma(t)\gamma(s)$.

Corollaire

Soit $X \in \chi^{l}(G)$ et ϕ^{X} le flot de X. Alors

$$\phi^{X}(t,x) = r_{\phi^{X}(t,e)}(x), \quad \forall t \in \mathbb{R} \ \forall x \in G$$

La fonction exponentielle exp : $Lie(G) \rightarrow G$

Définition

Soit $v \in \operatorname{Lie}(G)$. Notons $\gamma_v : \mathbb{R} \longrightarrow G$ la courbe intégrale de v^I qui vérifie $\gamma_v(0) = e$. On pose $\exp(v) = \gamma_v(1)$. Ceci définit une application $\exp : \operatorname{Lie}(G) \longrightarrow G$ qu'on appelle fonction exponentielle du groupe de Lie G.

Exemple

Soit V un espace vectoriel de dimension finie. G = (V, +), alors Lie(G) = V. Pour tout $x \in V$, la translation gauche I_x est donnée par $I_x(y) = x + y$.

Exemple

Soit V un espace vectoriel de dimension finie. G=(V,+), alors $\mathrm{Lie}(G)=V$. Pour tout $x\in V$, la translation gauche I_x est donnée par $I_x(y)=x+y$. Donc

$$T_y(I_x)(u) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_x(y+tu) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}x+y+tu=u.$$

Exemple

Soit V un espace vectoriel de dimension finie. G=(V,+), alors $\mathrm{Lie}(G)=V$. Pour tout $x\in V$, la translation gauche I_x est donnée par $I_x(y)=x+y$. Donc

$$T_y(I_x)(u) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_x(y+tu) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}x+y+tu=u.$$

En d'autre termes $T_v(I_x) = Id_V$ et $v^I(x) = T_0(I_x)(v) = v$.

Exemple

Soit V un espace vectoriel de dimension finie. G = (V, +), alors Lie(G) = V. Pour tout $x \in V$, la translation gauche I_x est donnée par $I_x(y) = x + y$. Donc

$$T_y(I_x)(u) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_x(y+tu) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}x+y+tu=u.$$

En d'autre termes $T_y(I_x) = Id_V$ et $v^I(x) = T_0(I_x)(v) = v$. On conclut alors que les champs de vecteurs invariants à gauche sur V sont les champs de vecteurs constants.

Exemple

Soit V un espace vectoriel de dimension finie. G=(V,+), alors $\mathrm{Lie}(G)=V$. Pour tout $x\in V$, la translation gauche I_x est donnée par $I_x(y)=x+y$. Donc

$$T_y(I_x)(u) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_x(y+tu) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}x+y+tu=u.$$

En d'autre termes $T_y(I_x) = Id_V$ et $v'(x) = T_0(I_x)(v) = v$. On conclut alors que les champs de vecteurs invariants à gauche sur V sont les champs de vecteurs constants. Ensuite, pour le calcul de la fonction exponentielle; la solution maximale $\gamma_v : \mathbb{R} \longrightarrow G$ de : $\gamma_v'(t) = v$, $\gamma_v(0) = 0$,

Exemple

Soit V un espace vectoriel de dimension finie. G = (V, +), alors Lie(G) = V. Pour tout $x \in V$, la translation gauche I_x est donnée par $I_x(y) = x + y$. Donc

$$T_y(I_x)(u) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_x(y+tu) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}x+y+tu = u.$$

En d'autre termes $T_y(I_x) = Id_V$ et $v'(x) = T_0(I_x)(v) = v$. On conclut alors que les champs de vecteurs invariants à gauche sur V sont les champs de vecteurs constants. Ensuite, pour le calcul de la fonction exponentielle; la solution maximale $\gamma_v : \mathbb{R} \longrightarrow G$ de : $\gamma'_v(t) = v$, $\gamma_v(0) = 0$, est $\gamma_v(t) = tv$.

Exemple

Soit V un espace vectoriel de dimension finie. G = (V, +), alors Lie(G) = V. Pour tout $x \in V$, la translation gauche I_x est donnée par $I_x(y) = x + y$. Donc

$$T_y(I_x)(u) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_x(y+tu) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}x+y+tu=u.$$

En d'autre termes $T_y(I_x) = Id_V$ et $v^I(x) = T_0(I_x)(v) = v$. On conclut alors que les champs de vecteurs invariants à gauche sur V sont les champs de vecteurs constants. Ensuite, pour le calcul de la fonction exponentielle; la solution maximale $\gamma_v : \mathbb{R} \longrightarrow G$ de : $\gamma_v'(t) = v$, $\gamma_v(0) = 0$, est $\gamma_v(t) = tv$. Ainsi $\exp_V(v) = \gamma_v(1) = v$. En résumé, $\exp_V = Id_V$.

Exemple

Si $G = GL(n, \mathbb{R})$, les définitions de l'application exponentielle de G, au sens matricielles et au sens des groupes de Lie, coïncident :

Exemple

Si $G = GL(n, \mathbb{R})$, les définitions de l'application exponentielle de G, au sens matricielles et au sens des groupes de Lie, coincident : Pour $A, B \in GL(n, \mathbb{R})$, on a $I_A(B) = AB$ et pour tout $H \in M(n, \mathbb{R})$,

$$T_B(I_A)(H) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_A(B+tH) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}A(B+tH) = AH.$$

Exemple

Si $G = GL(n, \mathbb{R})$, les définitions de l'application exponentielle de G, au sens matricielles et au sens des groupes de Lie, coïncident : Pour $A, B \in GL(n, \mathbb{R})$, on a $I_A(B) = AB$ et pour tout $H \in M(n, \mathbb{R})$,

$$T_B(I_A)(H) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_A(B+tH) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}A(B+tH) = AH.$$

Il en résulte quer pour tout $A \in \mathfrak{gl}(n, \mathbb{R})$ on a $A^{l}(B) = T_{l_n}(l_B)(A) = BA$.

Exemple

Si $G = GL(n, \mathbb{R})$, les définitions de l'application exponentielle de G, au sens matricielles et au sens des groupes de Lie, coïncident : Pour $A, B \in GL(n, \mathbb{R})$, on a $I_A(B) = AB$ et pour tout $H \in M(n, \mathbb{R})$,

$$T_B(I_A)(H) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_A(B+tH) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}A(B+tH) = AH.$$

Il en résulte quer pour tout $A \in \mathfrak{gl}(n, \mathbb{R})$ on a $A^{l}(B) = T_{l_{n}}(I_{B})(A) = BA$. Ensuite, la courbe $\gamma_{A} : \mathbb{R} \longrightarrow GL(n, \mathbb{R}), \quad \gamma_{A}(t) = e^{tA} := \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} A^{k}$ est la solution maximale de : $\gamma'(t) = \gamma(t)A, \quad \gamma(0) = I_{n}$.

Exemple

Si $G = GL(n, \mathbb{R})$, les définitions de l'application exponentielle de G, au sens matricielles et au sens des groupes de Lie, coïncident : Pour $A, B \in GL(n, \mathbb{R})$, on a $I_A(B) = AB$ et pour tout $H \in M(n, \mathbb{R})$,

$$T_B(I_A)(H) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}I_A(B+tH) = \frac{\mathrm{d}}{\mathrm{dt}}_{|\mathbf{t}=0}A(B+tH) = AH.$$

If en résulte quer pour tout $A \in \mathfrak{gl}(n, \mathbb{R})$ on a $A^l(B) = T_{I_n}(I_B)(A) = BA$. Ensuite, la courbe $\gamma_A : \mathbb{R} \longrightarrow GL(n, \mathbb{R}), \quad \gamma_A(t) = e^{tA} := \sum_{k=0}^{\infty} \frac{1}{k!} t^k A^k$ est la solution maximale de : $\gamma'(t) = \gamma(t)A, \quad \gamma(0) = I_n$. Ainsi $\exp(A) = \gamma_A(1) = e^A$.

Propriétés de la fonction exp

Proposition

Tout homomorphisme de groupes de Lie $\gamma: \mathbb{R} \longrightarrow G$ est de la forme $\gamma(t) = \exp(tv)$ avec $v = \gamma'(0)$.

Proposition

Si $v, w \in \text{Lie}(G)$ commutent, c'est à dire que [v, w] = 0, alors :

$$\exp_G(v+w) = \exp_G(v)\exp_G(w).$$

Proposition

La fonction exponentielle $\exp_G : \operatorname{Lie}(G) \longrightarrow G$ est de classe \mathcal{C}^{∞} et vérifie $T_0 \exp_G = \operatorname{Id}_{\operatorname{Lie}(G)}$. Par conséquent, \exp_G est un difféomorphisme d'un voisinage de 0 de $\operatorname{Lie}(G)$ sur un voisinage de e dans G.

Proposition

La composante connexe de l'élément neutre de G coïncide avec le sous-groupe de G engendré par $\exp(\operatorname{Lie}(G))$.

Foncteur de Lie et fonction exponentielle

Proposition

Soit $\varphi: G_1 \longrightarrow G_2$ un morphisme de groupes de Lie. Alors on a la relation

$$\exp_{G_2} \circ \operatorname{Lie}(\varphi) = \varphi \circ \exp_{G_1}.$$

En d'autres termes, le diagramme suivant est commutatif :

$$\begin{array}{ccc}
\operatorname{Lie}(G_1) & \xrightarrow{\operatorname{Lie}(\varphi)} & \operatorname{Lie}(G_2) \\
\operatorname{exp}_{G_1} \downarrow & & \downarrow & \operatorname{exp}_{G_2} \\
G_1 & \xrightarrow{\varphi} & G_2
\end{array}$$

Théorème des sous-groupes fermés

Soit G un groupe de Lie et $H\subset G$ est un sous-groupe fermé. On pose :

$$\mathcal{H} = \{ v \in Lie(G), \exp_G(\mathbb{R}v) \subset H \}.$$

Alors

- **1** \mathcal{H} est une sous-algèbre de Lie de Lie(G).
- 2 Le groupe H possède une structure de sous-groupe de Lie (pour la tolopogie iduite).
- **3** L'inclusion canonique $\iota_H: H \longrightarrow G$ (morphisme de groupes de Lie) induit $\operatorname{Lie}(\iota_H): \operatorname{Lie}(H) \longrightarrow \operatorname{Lie}(G)$ et définit un isomorphisme de $\operatorname{Lie}(H)$ sur \mathcal{H} .
- Soit $\mathcal{M} \subset \operatorname{Lie}(G)$ un supplémentaire de \mathcal{H} . Alors il existe un ouvert $V_{\mathcal{M}}$ de \mathcal{M} voisinage de 0 tel que l'application $\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp_G(V_{\mathcal{M}})H$, $(v,h) \mapsto \exp_G(v)h$ est un difféomorphisme sur un ouvert de G.

Soit $\mathcal{M} \subset \mathrm{Lie}(G)$ un supplémentaire de \mathcal{H}

Soit $\mathcal{M} \subset \operatorname{Lie}(G)$ un supplémentaire de \mathcal{H} et considérons l'application $\phi: \mathcal{M} \times \mathcal{H} \longrightarrow G$ $(v, w) \mapsto \exp_G(v) \exp_G(w)$.

Soit $\mathcal{M} \subset \mathrm{Lie}(G)$ un supplémentaire de \mathcal{H} et considérons l'application $\phi: \mathcal{M} \times \mathcal{H} \longrightarrow G$ $(v, w) \mapsto \exp_G(v) \exp_G(w)$.

• Etape 1 : On utilise le théorème d'inversion locale, ensuite un raisonnement par l'absurde nous permet d'établir l'existence de $U_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} , un ouvert $U_{\mathcal{H}}$ de \mathcal{H} voisinage de 0 et un ouvert $W \subset G$ voisinage de e tel que l'application $\phi_{|U_{\mathcal{M}} \times U_{\mathcal{H}}} : U_{\mathcal{M}} \times U_{\mathcal{H}} \longrightarrow W$ est un difféomorphisme et $\exp_G(U_{\mathcal{H}}) = \phi(\{0\} \times U_{\mathcal{H}}) = W \cap H$.

Soit $\mathcal{M} \subset \operatorname{Lie}(G)$ un supplémentaire de \mathcal{H} et considérons l'application $\phi: \mathcal{M} \times \mathcal{H} \longrightarrow G$ $(v, w) \mapsto \exp_G(v) \exp_G(w)$.

- Etape 1 : On utilise le théorème d'inversion locale, ensuite un raisonnement par l'absurde nous permet d'établir l'existence de $U_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} , un ouvert $U_{\mathcal{H}}$ de \mathcal{H} voisinage de 0 et un ouvert $W \subset G$ voisinage de e tel que l'application $\phi_{|U_{\mathcal{M}} \times U_{\mathcal{H}}} : U_{\mathcal{M}} \times U_{\mathcal{H}} \longrightarrow W$ est un difféomorphisme et $\exp_G(U_{\mathcal{H}}) = \phi(\{0\} \times U_{\mathcal{H}}) = W \cap H$.

Soit $\mathcal{M} \subset \operatorname{Lie}(G)$ un supplémentaire de \mathcal{H} et considérons l'application $\phi: \mathcal{M} \times \mathcal{H} \longrightarrow G \quad (v, w) \mapsto \exp_G(v) \exp_G(w)$.

- Etape 1 : On utilise le théorème d'inversion locale, ensuite un raisonnement par l'absurde nous permet d'établir l'existence de $U_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} , un ouvert $U_{\mathcal{H}}$ de \mathcal{H} voisinage de 0 et un ouvert $W \subset G$ voisinage de e tel que l'application $\phi_{|U_{\mathcal{M}} \times U_{\mathcal{H}}} : U_{\mathcal{M}} \times U_{\mathcal{H}} \longrightarrow W$ est un difféomorphisme et $\exp_G(U_{\mathcal{H}}) = \phi(\{0\} \times U_{\mathcal{H}}) = W \cap H$.
- Etape 3 : On montre que l'application $\overline{\varphi}: V_{\mathcal{M}} \times H \longrightarrow \exp_G(V_{\mathcal{M}})H, \ \varphi(v,h) = \exp_G(v)h, \ \text{est}$ un difféomorphisme sur un ouvert de G.

Représentation d'un groupe de Lie

Définition

Soit V un espace vectoriel de dimension finie. Une représentation de G dans V est la donnée d'un homomorphisme de groupes de Lie : $\rho: G \to GL(V)$.

La dérivée $\rho': \mathcal{G} \to End(V)$ définie

$$\rho'(h) := \frac{d}{dt}_{|_{t=0}} \rho(\exp_{\mathcal{G}} th).$$

On a :
$$\rho'([h, k]) = [\rho'(h), \rho'(k)], \quad \forall h, k \in \mathcal{G}$$

Lemme

pour tout $t \in \mathbb{R}$ et $h \in \mathcal{G}$, on a : $\rho(\exp_{\mathcal{G}} th) = \exp(t\rho'(h))$.

La représentation adjointe $Ad : G \rightarrow GL(G)$

Soit G un groupe de Lie et G = Lie(G). Pour tout $g \in G$, l'automorphisme intérieur $\tau_g : G \to G$ est défini par

$$\tau_{\mathsf{g}}(\mathsf{x}) := \mathsf{g} \mathsf{x} \mathsf{g}^{-1}$$

c'est un automorphisme du groupe de Lie G. La dérivée $(\tau_g)'_e:\mathcal{G}\to\mathcal{G}$ est un isomorphisme d'algèbres de Lie.

Définition

La représentation adjointe de G est la représentation de $\operatorname{Ad}: G \to \operatorname{GL}(\mathcal{G})$ définie par : $\operatorname{Ad}(g) = \operatorname{Ad}_g := (\tau_g)'_e$,

$$\mathrm{Ad}_{g}(h) := \frac{d}{dt}_{|_{t=0}} g(\exp th) g^{-1}$$

La représentation adjointe $ad : \mathcal{G} \longrightarrow End(\mathcal{G})$

La dérivée Ad' de cette représentation sera notée ad :

$$ad : \mathcal{G} \longrightarrow End(\mathcal{G}), \quad ad_X := (Ad)'(X).$$

i.e. pour tous $X,Y\in\mathcal{G}$, on a :

$$\operatorname{ad}_X(Y) = \frac{d}{dt} \operatorname{Ad}_{exp(tX)}(Y),$$

soit encore

$$\operatorname{ad}_X(Y) = \frac{d}{dt}|_{t=0} (t \mapsto \frac{d}{ds}|_{t=0} \exp(tX) \exp(sY) \exp(-tX)).$$

Lemme

Soit X, Y deux champs de vecteurs invariants à gauche sur un groupe de Lie G. Alors :

$$[X,Y]_e = \frac{d}{dt}\Big|_{t=0} (t \mapsto \frac{d}{ds}\Big|_{t=0} exp(tX)exp(sY)exp(-tX)\Big)$$

Démonstration.

Nous allons partir du fait que le crochet de deux champs de vecteurs sur une variété s'exprime à l'aide du flot : $[X,Y]_x = \frac{d}{dt}_{|_{t=0}}(t\mapsto T_{\varphi^X_t(x)}\varphi^X_{-t}(Y_{\varphi^X_t(x)})). \text{ Dans notre cas, le flot de } X\text{est } \varphi^X_t: x\mapsto x\text{exp}(tX), \text{ ce qui permet d'obtenir : } [X,Y]_e = \frac{d}{dt}_{|_{t=0}}(T_{\text{exp}(tX)}r_{\text{exp}(-tX)})(T_eI_{\text{exp}(tX)})(Y_e). \text{ Ainsi } [X,Y]_e = \frac{d}{dt}_{|_{t=0}}(T_e\tau_{\text{exp}(tX)})(Y_e) = \frac{d}{dt}_{|_{t=0}}(\frac{d}{ds}_{|_{s=0}}\text{exp}(tX)\text{exp}(sY)\text{exp}(-tX)).$

Proposition

• Pour tout $X, Y \in \mathcal{G}$ on a :

$$\operatorname{ad}_X Y = [X, Y]$$

2 Pour tout $X \in \mathcal{G}$,

$$Ad_{\exp_G(X)} = \exp(ad_X).$$

Exemples d'application

Exercice

Soit G un groupe de Lie connexe d'algèbre de Lie G et H un sous-groupe de Lie connexe d'algèbre de Lie $H \subset G$. Montrer l'équivalence entre les deux assertions :

- H est un sous-groupe distingué dans G.
- H est un idéal de G.

H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$.

H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$. On a $\tau_g(\exp(tY)) = \exp(t\mathrm{Ad}_g(Y))$, donc :

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \exp(t \operatorname{Ad}_g(Y)) \in H$$

H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$. On a $\tau_g(\exp(tY)) = \exp(t\mathrm{Ad}_g(Y))$, donc :

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \exp(t \operatorname{Ad}_g(Y)) \in H$$

D'où

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \operatorname{Ad}_{g}(Y) \in \mathcal{H}$$
 (0.3)

H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$. On a $\tau_g(\exp(tY)) = \exp(t\mathrm{Ad}_g(Y))$, donc :

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \exp(t \operatorname{Ad}_g(Y)) \in H$$

D'où

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \operatorname{Ad}_{g}(Y) \in \mathcal{H}$$
 (0.3)

Et parsuite

$$\forall X \in \mathcal{G}, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \operatorname{Ad}_{\exp(tX)}(Y) \in \mathcal{H}$$
 (0.4)

H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$. On a $\tau_g(\exp(tY)) = \exp(t\mathrm{Ad}_g(Y))$, donc :

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \exp(t \operatorname{Ad}_g(Y)) \in H$$

D'où

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \operatorname{Ad}_{g}(Y) \in \mathcal{H}$$
 (0.3)

Et parsuite

$$\forall X \in \mathcal{G}, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \operatorname{Ad}_{\exp(tX)}(Y) \in \mathcal{H}$$
 (0.4)

Par dérivation en t = 0, on obtient que $\operatorname{ad}_X(Y) \in \mathcal{H}$ pour tous $X \in \mathcal{G}$ et $Y \in \mathcal{H}$.

Solution: $H \triangleleft G \implies [\mathcal{H}, \mathcal{G}] \subset \mathcal{H}$

H est distingué dans G signifie que $\tau_g(H) \subset H$ pour tout $g \in G$, où $\tau_g(x) = gxg^{-1}$. On a $\tau_g(\exp(tY)) = \exp(t\mathrm{Ad}_g(Y))$, donc :

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \exp(t \operatorname{Ad}_g(Y)) \in H$$

D'où

$$\forall g \in G, \ \forall Y \in \mathcal{H}, \ \operatorname{Ad}_{g}(Y) \in \mathcal{H}$$
 (0.3)

Et parsuite

$$\forall X \in \mathcal{G}, \ \forall Y \in \mathcal{H}, \ \forall t \in \mathbb{R}, \ \operatorname{Ad}_{\exp(tX)}(Y) \in \mathcal{H}$$
 (0.4)

Par dérivation en t = 0, on obtient que $\operatorname{ad}_X(Y) \in \mathcal{H}$ pour tous $X \in \mathcal{G}$ et $Y \in \mathcal{H}$. Ainsi \mathcal{H} est un idéal de \mathcal{G} .

Réciproquement, supposons que ${\mathcal H}$ est un idéal de ${\mathcal G}.$

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$.

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$. D'un autre côté, on a

$$\operatorname{Ad}_{\exp_G(tX)}(Y) = \exp(t\operatorname{ad}_X)(Y) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (\operatorname{ad}_X)^n(Y)$$

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$. D'un autre côté, on a

$$\operatorname{Ad}_{\exp_{G}(tX)}(Y) = \exp(t\operatorname{ad}_{X})(Y) = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} (\operatorname{ad}_{X})^{n}(Y)$$

Ce qui implique 0.4.

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$. D'un autre côté, on a

$$\operatorname{Ad}_{\exp_G(tX)}(Y) = \exp(t\operatorname{ad}_X)(Y) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (\operatorname{ad}_X)^n(Y)$$

Ce qui implique 0.4. Et par connexité de G, on obtient 0.3

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$. D'un autre côté, on a

$$\operatorname{Ad}_{\exp_G(tX)}(Y) = \exp(t\operatorname{ad}_X)(Y) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (\operatorname{ad}_X)^n(Y)$$

Ce qui implique 0.4. Et par connexité de G, on obtient 0.3; parsuite $\tau_g(\exp(Y)) \in H$ pour tous $g \in G$ et $Y \in \mathcal{H}$.

Réciproquement, supposons que \mathcal{H} est un idéal de \mathcal{G} . Un raisonnement par récurrence nous permet alors d'établir que pour tous $X \in \mathcal{G}$, $Y \in \mathcal{H}$ et $n \in \mathbb{N}$, $(\operatorname{ad}_X)^n(Y) \in \mathcal{H}$. D'un autre côté, on a

$$\operatorname{Ad}_{\exp_G(tX)}(Y) = \exp(t\operatorname{ad}_X)(Y) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (\operatorname{ad}_X)^n(Y)$$

Ce qui implique 0.4. Et par connexité de G, on obtient 0.3; parsuite $\tau_g(\exp(Y)) \in H$ pour tous $g \in G$ et $Y \in \mathcal{H}$. Puisque $\exp(\mathcal{H})$ engendre le groupe H (par connexité de H), on obtient $\tau_g(H) \subset H$ pour tous $g \in G$.

Actions de groupes de Lie I

Abdelhak Abougateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Mini-cours dans le cadre de l'école EMA CIMPA - MIMS - UIR Rabat - 25 Juin au 07 juillet 2018

Soit G un groupe de Lie et H un sous-groupe. Notons $\mathcal R$ la relation d'équivalence définie sur G par :

$$\forall x, y \in G, \quad (x\mathcal{R}y \Leftrightarrow x^{-1}y \in H)$$

Soit G un groupe de Lie et H un sous-groupe. Notons $\mathcal R$ la relation d'équivalence définie sur G par :

$$\forall x, y \in G, \quad (x\mathcal{R}y \Leftrightarrow x^{-1}y \in H)$$

La classe \overline{x} d'un $x \in G$ est le sous-ensemble de G suivant :

$$\overline{x} = xH = \{xy/y \in H\}$$

Soit G un groupe de Lie et H un sous-groupe. Notons $\mathcal R$ la relation d'équivalence définie sur G par :

$$\forall x, y \in G, \quad (x\mathcal{R}y \Leftrightarrow x^{-1}y \in H)$$

La classe \overline{x} d'un $x \in G$ est le sous-ensemble de G suivant :

$$\overline{x} = xH = \{xy/y \in H\}$$

L'ensemble de ces classes d'équivalences est l'ensemble noté G/H. La surjection canonique $\pi: G \to G/H$ est l'application définie par : $\pi(x) = \overline{x}$.

Soit G un groupe de Lie et H un sous-groupe. Notons $\mathcal R$ la relation d'équivalence définie sur G par :

$$\forall x, y \in G, \quad (x\mathcal{R}y \Leftrightarrow x^{-1}y \in H)$$

La classe \overline{x} d'un $x \in G$ est le sous-ensemble de G suivant :

$$\overline{x} = xH = \{xy/y \in H\}$$

L'ensemble de ces classes d'équivalences est l'ensemble noté G/H. La surjection canonique $\pi:G\to G/H$ est l'application définie par : $\pi(x)=\overline{x}$. On définit une topologie sur G/H en décrétant qu'une partie U est un ouvert de G/H si et seulement si $\pi^{-1}(U)$ est un ouvert de G. C'est la topologie quotient sur G/H.

Propriétés

Proposition

- La surjection canonique $\pi: G \to G/H$ est continue et ouverte.
- G/H est séparé si et seulement si H est fermé dans G.

Propriétés

Proposition

- La surjection canonique $\pi: G \to G/H$ est continue et ouverte.
- G/H est séparé si et seulement si H est fermé dans G.

Démonstration. 1) La continuité de q découle immédiatement de la définition de la topologie quotient. Soit maintenant O un ouvert de G, on a

$$\pi^{-1}(\pi(O)) = OH = \bigcup_{b \in H} Ob$$

Ce qui montre que π est ouverte.

2) Si G/H est séparé alors le singleton $\{\overline{e}\}$ est un fermé de G/H, ce qui conduit à $H=\pi^{-1}\{\overline{e}\}$ est un fermé de G.

2) Si G/H est séparé alors le singleton $\{\overline{e}\}$ est un fermé de G/H, ce qui conduit à $H=\pi^{-1}\{\overline{e}\}$ est un fermé de G. Réciproquement, Soit $x,y\in G$ tels que $xH\neq yH$. On a donc $x^{-1}y\in G\backslash H$ qui est un ouvert de G. Par continuité de l'application $f:(a,b)\mapsto ax^{-1}yb$ de $G\times G$ dans G au point (e,e),

2) Si G/H est séparé alors le singleton $\{\overline{e}\}$ est un fermé de G/H, ce qui conduit à $H=\pi^{-1}\{\overline{e}\}$ est un fermé de G. Réciproquement, Soit $x,y\in G$ tels que $xH\neq yH$. On a donc $x^{-1}y\in G\backslash H$ qui est un ouvert de G. Par continuité de l'application $f:(a,b)\mapsto ax^{-1}yb$ de $G\times G$ dans G au point (e,e), on peut choisir V un voisinage ouvert symétrique $(V^{-1}=V)$ de G tel que G0.

2) Si G/H est séparé alors le singleton $\{\overline{e}\}$ est un fermé de G/H, ce qui conduit à $H = \pi^{-1}\{\overline{e}\}$ est un fermé de G. Réciproquement, Soit $x, y \in G$ tels que $xH \neq yH$. On a donc $x^{-1}y \in G \setminus H$ qui est un ouvert de G. Par continuité de l'application $f:(a,b)\mapsto ax^{-1}yb$ de $G\times G$ dans G au point (e, e), on peut choisir V un voisinage ouvert symétrique $(V^{-1} = V)$ de e tel que $f(V, V) \cap H = \emptyset$. Il en résulte alors que les deux ensembles xVH et yVH sont disjoints, et puisqu'en plus ce sont des ouverts saturés et que la projection π est une application ouverte,

2) Si G/H est séparé alors le singleton $\{\overline{e}\}$ est un fermé de G/H, ce qui conduit à $H=\pi^{-1}\{\overline{e}\}$ est un fermé de G. Réciproquement, Soit $x, y \in G$ tels que $xH \neq yH$. On a donc $x^{-1}y \in G \setminus H$ qui est un ouvert de G. Par continuité de l'application $f:(a,b)\mapsto ax^{-1}yb$ de $G\times G$ dans G au point (e, e), on peut choisir V un voisinage ouvert symétrique $(V^{-1} = V)$ de e tel que $f(V, V) \cap H = \emptyset$. Il en résulte alors que les deux ensembles xVH et yVH sont disjoints, et puisqu'en plus ce sont des ouverts saturés et que la projection π est une application ouverte, on obtient que $\pi(xVH)$ et $\pi(yVH)$ sont des voisinages ouverts disjoints respectivement de $\pi(x)$ et de $\pi(y)$.

Exercice

- **1** Montrer que \mathbb{R}/\mathbb{Z} est homéomorphe à un cercle.
- ② Montrer que si l'on remplace \mathbb{Z} par \mathbb{Q} , alors la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière (Ceci montre que le quotient d'un espace métrique n'est pas toujours métrisable).

Exercice

- **1** Montrer que \mathbb{R}/\mathbb{Z} est homéomorphe à un cercle.
- ② Montrer que si l'on remplace \mathbb{Z} par \mathbb{Q} , alors la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière (Ceci montre que le quotient d'un espace métrique n'est pas toujours métrisable).

Solution. 1) \mathbb{R}/\mathbb{Z} est séparé (puisque \mathbb{Z} est fermé dans \mathbb{R}). La projection canonique $\pi:\mathbb{R}\to\mathbb{R}/\mathbb{Z}$ est définie par $\pi(x)=x+\mathbb{Z}$.

Exercice

- **1** Montrer que \mathbb{R}/\mathbb{Z} est homéomorphe à un cercle.
- ② Montrer que si l'on remplace \mathbb{Z} par \mathbb{Q} , alors la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière (Ceci montre que le quotient d'un espace métrique n'est pas toujours métrisable).

Solution. 1) \mathbb{R}/\mathbb{Z} est séparé (puisque \mathbb{Z} est fermé dans \mathbb{R}). La projection canonique $\pi: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ est définie par $\pi(x) = x + \mathbb{Z}$. En utilisant la partie entière d'un nombre réel, on obtient que $\pi(\mathbb{R}) = q([0,1])$ ce qui implique que \mathbb{R}/\mathbb{Z} est compact.

Exercice

- **1** Montrer que \mathbb{R}/\mathbb{Z} est homéomorphe à un cercle.
- ② Montrer que si l'on remplace \mathbb{Z} par \mathbb{Q} , alors la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière (Ceci montre que le quotient d'un espace métrique n'est pas toujours métrisable).

Solution. 1) \mathbb{R}/\mathbb{Z} est séparé (puisque \mathbb{Z} est fermé dans \mathbb{R}). La projection canonique $\pi:\mathbb{R}\to\mathbb{R}/\mathbb{Z}$ est définie par $\pi(x)=x+\mathbb{Z}$. En utilisant la partie entière d'un nombre réel, on obtient que $\pi(\mathbb{R})=q([0,1])$ ce qui implique que \mathbb{R}/\mathbb{Z} est compact. Considérons maintenant l'application $h:\mathbb{R}/\mathbb{Z}\to S^1$ définie par $h(\overline{x})=e^{i2\pi x}$.

Exercice

- **1** Montrer que \mathbb{R}/\mathbb{Z} est homéomorphe à un cercle.
- ② Montrer que si l'on remplace \mathbb{Z} par \mathbb{Q} , alors la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière (Ceci montre que le quotient d'un espace métrique n'est pas toujours métrisable).

Solution. 1) \mathbb{R}/\mathbb{Z} est séparé (puisque \mathbb{Z} est fermé dans \mathbb{R}). La projection canonique $\pi:\mathbb{R}\to\mathbb{R}/\mathbb{Z}$ est définie par $\pi(x)=x+\mathbb{Z}$. En utilisant la partie entière d'un nombre réel, on obtient que $\pi(\mathbb{R})=q([0,1])$ ce qui implique que \mathbb{R}/\mathbb{Z} est compact. Considérons maintenant l'application $h:\mathbb{R}/\mathbb{Z}\to S^1$ définie par $h(\overline{x})=e^{i2\pi x}$. Il est clair que h est bijective et continue, donc c'est un homéomorphisme puisque \mathbb{R}/\mathbb{Z} est compact.

2) Soit F un fermé non vide de ${\rm I\!R}/{\rm \mathbb{Q}}.$

2) Soit F un fermé non vide de \mathbb{R}/\mathbb{Q} . Soit $x \in \pi^{-1}(F)$.

2) Soit F un fermé non vide de \mathbb{R}/\mathbb{Q} . Soit $x \in \pi^{-1}(F)$. Puisque $\pi(x) = q(x+r)$ pour tout $r \in \mathbb{Q}$, on obtient $x + \mathbb{Q} \subset \pi^{-1}(F)$.

2) Soit F un fermé non vide de \mathbb{R}/\mathbb{Q} . Soit $x \in \pi^{-1}(F)$. Puisque $\pi(x) = q(x+r)$ pour tout $r \in \mathbb{Q}$, on obtient $x + \mathbb{Q} \subset \pi^{-1}(F)$. Maintenant, $\pi^{-1}(F)$ est un fermé de \mathbb{R} (par continuité de π) contenant $x + \mathbb{Q}$ qui est une partie dense de \mathbb{R} .

2) Soit F un fermé non vide de \mathbb{R}/\mathbb{Q} . Soit $x \in \pi^{-1}(F)$. Puisque $\pi(x) = q(x+r)$ pour tout $r \in \mathbb{Q}$, on obtient $x + \mathbb{Q} \subset \pi^{-1}(F)$. Maintenant, $\pi^{-1}(F)$ est un fermé de \mathbb{R} (par continuité de π) contenant $x + \mathbb{Q}$ qui est une partie dense de \mathbb{R} , ceci implique que $\pi^{-1}(F) = \mathbb{R}$ et parsuite $F = \mathbb{R}/\mathbb{Q}$.

2) Soit F un fermé non vide de \mathbb{R}/\mathbb{Q} . Soit $x \in \pi^{-1}(F)$. Puisque $\pi(x) = q(x+r)$ pour tout $r \in \mathbb{Q}$, on obtient $x + \mathbb{Q} \subset \pi^{-1}(F)$. Maintenant, $\pi^{-1}(F)$ est un fermé de \mathbb{R} (par continuité de π) contenant $x + \mathbb{Q}$ qui est une partie dense de \mathbb{R} , ceci implique que $\pi^{-1}(F) = \mathbb{R}$ et parsuite $F = \mathbb{R}/\mathbb{Q}$. On a donc montré que la topologie quotient de \mathbb{R}/\mathbb{Q} n'est autre que la topologie grossière.

Théorème

Soit G un groupe de Lie d'algèbre de Lie $\mathcal G$ et H un sous-groupe fermé. Il existe une structure de variété différentiable sur G/H de dimension $\dim G$ — $\dim H$ telle que

- **①** $\pi: G \rightarrow G/H$ est une submersion.
- ② Il existe un recouvrement de G/H par des ouverts U_{α} avec des difféomorphismes

$$\psi_{\alpha}: U_{\alpha} \times H \stackrel{\cong}{\longrightarrow} \pi^{-1}(U_{\alpha})$$

tels que

$$\pi(\psi_{\alpha}(\mathsf{x},b)) = \mathsf{x}$$
 et $\psi_{\alpha}(\mathsf{x},\mathsf{a}b) = \psi_{\alpha}(\mathsf{x},\mathsf{a})b,$

pour tous $x \in U_{\alpha}$, $a, b \in H$.

Démonstration

Soit $\mathcal{M} \subset \mathcal{G}$ t.q. $\mathcal{G} = \mathcal{M} \oplus \mathcal{H}$. On sait (théorème du sous-groupe fermé) qu'il existe $V_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} tel que l'application $\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp(V_{\mathcal{M}})H, \quad (v,b) \mapsto \exp_G(v)b$, est un difféomorphisme sur un ouvert O de G.

Démonstration

Soit $\mathcal{M} \subset \mathcal{G}$ t.q. $\mathcal{G} = \mathcal{M} \oplus \mathcal{H}$. On sait (théorème du sous-groupe fermé) qu'il existe $V_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} tel que l'application $\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp(V_{\mathcal{M}})H, \quad (v,b) \mapsto \exp_G(v)b$, est un difféomorphisme sur un ouvert O de G. Considérons alors l'application continue

$$\varphi_e = \pi \circ \exp: V_{\mathcal{M}} \to G/H.$$

Démonstration

Soit $\mathcal{M} \subset \mathcal{G}$ t.q. $\mathcal{G} = \mathcal{M} \oplus \mathcal{H}$. On sait (théorème du sous-groupe fermé) qu'il existe $V_{\mathcal{M}}$ un voisinage ouvert de 0 dans \mathcal{M} tel que l'application $\varphi: V_{\mathcal{M}} \times H \longrightarrow \exp(V_{\mathcal{M}})H, \quad (v,b) \mapsto \exp_G(v)b$, est un difféomorphisme sur un ouvert O de G. Considérons alors l'application continue

$$\varphi_e = \pi \circ \exp: V_{\mathcal{M}} \to G/H.$$

On obtient un diagramme commutatif :

Nous montrons que φ_e est un homéomorphisme de V_M sur $\overline{Q} = \pi(Q)$ un ouvert de G/H:

Nous montrons que φ_e est un homéomorphisme de $V_{\mathcal{M}}$ sur $\overline{O} = \pi(O)$ un ouvert de G/H: Le diagramme montre que φ_e est ouverte (puisque π l'est), et que $\varphi_e(V_{\mathcal{M}}) = \overline{O}$.

Nous montrons que φ_e est un homéomorphisme de $V_{\mathcal{M}}$ sur $\overline{O}=\pi(O)$ un ouvert de G/H: Le diagramme montre que φ_e est ouverte (puisque π l'est), et que $\varphi_e(V_{\mathcal{M}})=\overline{O}$. Pour l'injectivité, soit $v_1,v_2\in V_{\mathcal{M}}$ tels que $\varphi_e(v_1)=\varphi_e(v_2)$. Il existe alors $b\in H$ tel que $\exp(v_1)=\exp(v_2)b$, ce qui signifie $\varphi(v_1,e)=\varphi(v_2,b)$. L'injectivité de φ donne $v_1=v_2$.

Nous montrons que φ_e est un homéomorphisme de $V_{\mathcal{M}}$ sur $\overline{O}=\pi(O)$ un ouvert de G/H: Le diagramme montre que φ_e est ouverte (puisque π l'est), et que $\varphi_e(V_{\mathcal{M}})=\overline{O}$. Pour l'injectivité, soit $v_1,v_2\in V_{\mathcal{M}}$ tels que $\varphi_e(v_1)=\varphi_e(v_2)$. Il existe alors $b\in H$ tel que $\exp(v_1)=\exp(v_2)b$, ce qui signifie $\varphi(v_1,e)=\varphi(v_2,b)$. L'injectivité de φ donne $v_1=v_2$. Remarquons que O=OH ce qui implique $\pi^{-1}(\overline{O})=O$. Nous construisons ensuite un atlas différentiable sur G/H indexé par les éléments de G.

Les ouverts $\overline{O}_a := a.\overline{O}$, pour $a \in G$, constituent un recouvrement de G/H.

Les ouverts $\overline{O}_a := a.\overline{O}$, pour $a \in G$, constituent un recouvrement de G/H. On définit

$$\varphi_{\mathsf{a}}:V_{\mathcal{M}} \to \overline{O}_{\mathsf{a}}, \quad \varphi_{\mathsf{a}}(x) = \pi(\mathsf{a}\exp(x)) = \mathsf{a}.\varphi_{\mathsf{e}}(x)$$

Il reste à vérifier que $\{\overline{O}_a, \varphi_a^{-1}\}$, est un atlas différentiable sur G/H.

Les ouverts $\overline{O}_a := a.\overline{O}$, pour $a \in G$, constituent un recouvrement de G/H. On définit

$$\varphi_{\mathsf{a}}:V_{\mathcal{M}} \to \overline{O}_{\mathsf{a}}, \quad \varphi_{\mathsf{a}}(x) = \pi(\mathsf{a}\exp(x)) = \mathsf{a}.\varphi_{\mathsf{e}}(x)$$

Il reste à vérifier que $\{\overline{O}_a, \varphi_a^{-1}\}$, est un atlas différentiable sur G/H. Soit alors $a,b\in G$ tel que $\overline{O}_a\cap \overline{O}_b\neq \emptyset$, alors l'application

$$\varphi_{\mathit{ba}} = \varphi_{\mathit{b}}^{-1} \circ \varphi_{\mathit{a}} : \varphi_{\mathit{a}}^{-1} \big(\overline{O}_{\mathit{a}} \cap \overline{O}_{\mathit{b}} \big) \to \varphi_{\mathit{b}}^{-1} \big(\overline{O}_{\mathit{a}} \cap \overline{O}_{\mathit{b}} \big)$$

est différentiable.

Les ouverts $\overline{O}_a := a.\overline{O}$, pour $a \in G$, constituent un recouvrement de G/H. On définit

$$\varphi_{\mathsf{a}}:V_{\mathcal{M}} \to \overline{O}_{\mathsf{a}}, \quad \varphi_{\mathsf{a}}(x) = \pi(\mathsf{a}\exp(x)) = \mathsf{a}.\varphi_{\mathsf{e}}(x)$$

Il reste à vérifier que $\{\overline{O}_a, \varphi_a^{-1}\}$, est un atlas différentiable sur G/H. Soit alors $a,b\in G$ tel que $\overline{O}_a\cap \overline{O}_b\neq \emptyset$, alors l'application

$$\varphi_{\mathit{ba}} = \varphi_{\mathit{b}}^{-1} \circ \varphi_{\mathit{a}} : \varphi_{\mathit{a}}^{-1}(\overline{O}_{\mathit{a}} \cap \overline{O}_{\mathit{b}}) \to \varphi_{\mathit{b}}^{-1}(\overline{O}_{\mathit{a}} \cap \overline{O}_{\mathit{b}})$$

est différentiable. Ceci découle du fait qu'on

$$\varphi_{\mathit{ba}} = \varphi_{\mathit{e}}^{-1} \circ \pi \circ \mathit{I}_{\mathit{b}^{-1}\mathit{a}} \circ \exp = \mathit{p}_1 \circ \varphi^{-1} \circ \mathit{I}_{\mathit{b}^{-1}\mathit{a}} \circ \exp.$$

De la commutativité du diagramme ci-dessus et de la nature des cartes locaux de G/H, on obtient que $\pi:G\to G/H$ est une submersion.

De la commutativité du diagramme ci-dessus et de la nature des cartes locaux de G/H, on obtient que $\pi: G \to G/H$ est une submersion. Ce qui achève la démonstration de 1. Pour 2,

De la commutativité du diagramme ci-dessus et de la nature des cartes locaux de G/H, on obtient que $\pi:G\to G/H$ est une submersion. Ce qui achève la démonstration de 1. Pour 2, il suffit de considérer le recouvrement de G/H par les ouverts \overline{O}_a et les difféomorphismes

$$\psi_{\mathsf{a}}:\overline{O}_{\mathsf{a}}\times H\to \pi^{-1}(\overline{O}_{\mathsf{a}})=\mathsf{a}.O,\quad \psi_{\mathsf{a}}=\mathit{I}_{\mathsf{a}}\circ \varphi\circ (\varphi_{\mathsf{a}}^{-1}\times \mathit{id}_{H})$$

De la commutativité du diagramme ci-dessus et de la nature des cartes locaux de G/H, on obtient que $\pi:G\to G/H$ est une submersion. Ce qui achève la démonstration de 1. Pour 2, il suffit de considérer le recouvrement de G/H par les ouverts \overline{O}_a et les difféomorphismes

$$\psi_{\mathsf{a}}:\overline{O}_{\mathsf{a}}\times H\to \pi^{-1}(\overline{O}_{\mathsf{a}})=\mathsf{a}.O,\quad \psi_{\mathsf{a}}=\mathit{I}_{\mathsf{a}}\circ \varphi\circ (\varphi_{\mathsf{a}}^{-1}\times \mathit{id}_{H})$$

Explicitement :
$$\psi_a(x, b) = a\varphi(\varphi_a^{-1}(x), b)$$
 pour tout $(x, b) \in \overline{O}_a \times H$.

De la commutativité du diagramme ci-dessus et de la nature des cartes locaux de G/H, on obtient que $\pi:G\to G/H$ est une submersion. Ce qui achève la démonstration de 1. Pour 2, il suffit de considérer le recouvrement de G/H par les ouverts \overline{O}_a et les difféomorphismes

$$\psi_{\mathsf{a}}:\overline{O}_{\mathsf{a}}\times H \to \pi^{-1}(\overline{O}_{\mathsf{a}})=\mathsf{a}.O, \quad \psi_{\mathsf{a}}=\mathit{I}_{\mathsf{a}}\circ \varphi\circ (\varphi_{\mathsf{a}}^{-1}\times \mathit{id}_{H})$$

Explicitement : $\psi_a(x, b) = a\varphi(\varphi_a^{-1}(x), b)$ pour tout $(x, b) \in \overline{O}_a \times H$. On a

$$\pi(\psi_{\mathbf{a}}(\mathbf{x},b)) = \rho(\mathbf{a}) \circ \pi \circ \varphi(\varphi_{\mathbf{a}}^{-1}(\mathbf{x}),b) = \rho(\mathbf{a}) \circ \varphi_{\mathbf{e}}(\varphi_{\mathbf{a}}^{-1}(\mathbf{x})) = \mathbf{x}.$$

• La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^{\infty}: \sigma_a: \overline{O}_a \to G$

- La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^{\infty}: \sigma_a: \overline{O}_a \to G$ tels que $\pi \circ \sigma_a = id$
- Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .

- La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^{\infty}: \sigma_a: \overline{O}_a \to G$ tels que $\pi \circ \sigma_a = id$
- Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .
- Pour tout $a \in G$, L'application $\rho(a) : \overline{g} \mapsto \overline{ag}$ est un difféomorphisme de G/H,

- La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^{\infty}: \sigma_a: \overline{O}_a \to G$ tels que $\pi \circ \sigma_a = id$
- Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .
- Pour tout $a \in G$, L'application $\rho(a) : \overline{g} \mapsto \overline{ag}$ est un difféomorphisme de G/H, avec en plus $\rho(ab) = \rho(a) \circ \rho(b)$

- La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^\infty: \sigma_a: \overline{O}_a \to G$ tels que $\pi \circ \sigma_a = id$
- Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .
- Pour tout $a \in G$, L'application $\rho(a) : \overline{g} \mapsto \overline{ag}$ est un difféomorphisme de G/H, avec en plus $\rho(ab) = \rho(a) \circ \rho(b)$ et l'application

$$G \times G/H \to G/H$$
, $(a, \overline{g}) \mapsto \rho(a)(\overline{g})$

est C^{∞} .

- La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^{\infty}: \sigma_a: \overline{O}_a \to G$ tels que $\pi \circ \sigma_a = id$
- Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .
- Pour tout $a \in G$, L'application $\rho(a) : \overline{g} \mapsto \overline{ag}$ est un difféomorphisme de G/H, avec en plus $\rho(ab) = \rho(a) \circ \rho(b)$ et l'application

$$G \times G/H \to G/H$$
, $(a, \overline{g}) \mapsto \rho(a)(\overline{g})$

est C^{∞} . C'est l'action homogène canonique de G sur G/H.

- La famille des ouverts $(\overline{O}_a)_a$ est un recouvrement de G/H avec des applications $C^{\infty}: \sigma_a: \overline{O}_a \to G$ tels que $\pi \circ \sigma_a = id$
- Une application $f: G/H \to M$ est C^{∞} si et seulement si $f \circ \pi$ est C^{∞} .
- Pour tout $a \in G$, L'application $\rho(a) : \overline{g} \mapsto \overline{ag}$ est un difféomorphisme de G/H, avec en plus $\rho(ab) = \rho(a) \circ \rho(b)$ et l'application

$$G \times G/H \to G/H$$
, $(a, \overline{g}) \mapsto \rho(a)(\overline{g})$

est C^{∞} . C'est l'action homogène canonique de G sur G/H.

• L'application linéaire tangente $T_e\pi: \mathcal{G} \to T_{\overline{e}}(G/H)$ induit un isomorphisme linéaire : $\mathcal{G}/\mathcal{H} \stackrel{\cong}{\longrightarrow} T_{\overline{e}}(G/H)$.

Soit M une variété différentiable, $\mathrm{Diff}(M)$ le groupe des C^{∞} -difféomorphismes.

Soit M une variété différentiable, $\mathrm{Diff}(M)$ le groupe des C^{∞} -difféomorphismes.

Définition

Une action de G sur M est un homomorphisme de groupes $\rho: G \to \mathrm{Diff}(M)$.

Soit M une variété différentiable, $\mathrm{Diff}(M)$ le groupe des C^{∞} -difféomorphismes.

Définition

Une action de G sur M est un homomorphisme de groupes $\rho: G \to \mathrm{Diff}(M)$. Autrement dit, pour tout $g \in G$, $\rho(g): M \to M$ est un difféomorphisme tel que

$$\rho(g_1g_2)=\rho(g_1)\circ\rho(g_2).$$

Soit M une variété différentiable, $\mathrm{Diff}(M)$ le groupe des C^{∞} -difféomorphismes.

Définition

Une action de G sur M est un homomorphisme de groupes $\rho: G \to \mathrm{Diff}(M)$. Autrement dit, pour tout $g \in G$, $\rho(g): M \to M$ est un difféomorphisme tel que

$$\rho(g_1g_2)=\rho(g_1)\circ\rho(g_2).$$

L'action ρ de G sur M est C^{∞} si l'application évaluation :

$$G \times M \to M$$
, $(g, m) \to \rho(g)(m)$

est C^{∞} .

Soit M une variété différentiable, $\mathrm{Diff}(M)$ le groupe des C^{∞} -difféomorphismes.

Définition

Une action de G sur M est un homomorphisme de groupes $\rho: G \to \mathrm{Diff}(M)$. Autrement dit, pour tout $g \in G$, $\rho(g): M \to M$ est un difféomorphisme tel que

$$\rho(g_1g_2)=\rho(g_1)\circ\rho(g_2).$$

L'action ρ de G sur M est C^{∞} si l'application évaluation :

$$G \times M \to M$$
, $(g, m) \to \rho(g)(m)$

est C^{∞} . On note $\rho(g)(m)$ par $g \cdot m$. On dira que G agit ou opère sur M.

Exemple

• Tout groupe sous-groupe de $GL(\mathbb{R}^n)$ opère sur \mathbb{R}^n par des transformations linéaires.

- Tout groupe sous-groupe de $GL(\mathbb{R}^n)$ opère sur \mathbb{R}^n par des transformations linéaires.
- Le groupe des rotations SO(n+1) opère sur la sphère S^n .

- Tout groupe sous-groupe de $GL(\mathbb{R}^n)$ opère sur \mathbb{R}^n par des transformations linéaires.
- Le groupe des rotations SO(n+1) opère sur la sphère S^n .
- La donnée d'un champ de vecteurs sur une variété compacte équivaut à la donnée d'une action (différentiable) de IR sur M.

- Tout groupe sous-groupe de $GL(\mathbb{R}^n)$ opère sur \mathbb{R}^n par des transformations linéaires.
- Le groupe des rotations SO(n+1) opère sur la sphère S^n .
- La donnée d'un champ de vecteurs sur une variété compacte équivaut à la donnée d'une action (différentiable) de IR sur M.
- Tout groupe de Lie G opère sur lui même à gauche, à droite et par conjugaison $(g,x) \mapsto gxg^{-1}$.

- Tout groupe sous-groupe de $GL(\mathbb{R}^n)$ opère sur \mathbb{R}^n par des transformations linéaires.
- Le groupe des rotations SO(n+1) opère sur la sphère S^n .
- La donnée d'un champ de vecteurs sur une variété compacte équivaut à la donnée d'une action (différentiable) de IR sur M.
- Tout groupe de Lie G opère sur lui même à gauche, à droite et par conjugaison $(g,x) \mapsto gxg^{-1}$.
- Si H est un sous-groupe fermé de G, alors l'action homogène de G sur G/H est l'action différentiable : (g, aH) → gaH.

Définition

Soit $\varphi: G \times M \longrightarrow M$ une action différentiable d'un groupe de Lie G sur une variété différentiable M.

Définition

Soit $\varphi : G \times M \longrightarrow M$ une action différentiable d'un groupe de Lie G sur une variété différentiable M.

• Pour tout $m \in M$, l'orbite de l'action en m est le sous-ensemble de M :

$$G \cdot m := \{g \cdot m \mid g \in G\}$$

Définition

Soit $\varphi : G \times M \longrightarrow M$ une action différentiable d'un groupe de Lie G sur une variété différentiable M.

• Pour tout $m \in M$, l'orbite de l'action en m est le sous-ensemble de M :

$$G \cdot m := \{g \cdot m \mid g \in G\}$$

2 Le groupe d'isotropie en m est :

$$G_m := \{g \in G \mid g.x = x\}$$

Définition

Soit $\varphi: G \times M \longrightarrow M$ une action différentiable d'un groupe de Lie G sur une variété différentiable M.

• Pour tout $m \in M$, l'orbite de l'action en m est le sous-ensemble de M :

$$G \cdot m := \{g \cdot m \mid g \in G\}$$

2 Le groupe d'isotropie en m est :

$$G_m := \{g \in G \mid g.x = x\}$$

C'est un sous-groupe de G.

Espace des orbites

Pour tout $m \in M$, l'application évaluation $g \mapsto g \cdot m$ induit une bijection de G/G_m sur l'orbite $G \cdot m$.

Espace des orbites

Pour tout $m \in M$, l'application évaluation $g \mapsto g \cdot m$ induit une bijection de G/G_m sur l'orbite $G \cdot m$.

Définition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action. Pour $m, m' \in M$, la relation d'appartenance à la même orbite est une relation d'équivalence dont les classes d'équivalences sont les orbites $G \cdot m$.

Espace des orbites

Pour tout $m \in M$, l'application évaluation $g \mapsto g \cdot m$ induit une bijection de G/G_m sur l'orbite $G \cdot m$.

Définition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action. Pour $m, m' \in M$, la relation d'appartenance à la même orbite est une relation d'équivalence dont les classes d'équivalences sont les orbites $G \cdot m$. L'espace des orbites M/G est l'ensemble

$$M/G := \{G \cdot m/ \ m \in M\}$$

Espace des orbites

Pour tout $m \in M$, l'application évaluation $g \mapsto g \cdot m$ induit une bijection de G/G_m sur l'orbite $G \cdot m$.

Définition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action. Pour $m, m' \in M$, la relation d'appartenance à la même orbite est une relation d'équivalence dont les classes d'équivalences sont les orbites $G \cdot m$. L'espace des orbites M/G est l'ensemble

$$M/G := \{G \cdot m / m \in M\}$$

La surjection canonique

$$\pi: M \to M/G, \quad m \mapsto G \cdot m$$

permet de munir M/G de la topologie quotient.

Espace des orbites

Pour tout $m \in M$, l'application évaluation $g \mapsto g \cdot m$ induit une bijection de G/G_m sur l'orbite $G \cdot m$.

Définition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action. Pour $m, m' \in M$, la relation d'appartenance à la même orbite est une relation d'équivalence dont les classes d'équivalences sont les orbites $G \cdot m$. L'espace des orbites M/G est l'ensemble

$$M/G := \{G \cdot m / m \in M\}$$

La surjection canonique

$$\pi: M \to M/G, \quad m \mapsto G \cdot m$$

permet de munir M/G de la topologie quotient. L'action sera dite **transitive** s'il n'y a qu'une seule orbite.

Une action $\rho: G \hookrightarrow \mathrm{Diff}(M)$ est dite :

• **libre** si $G_m = e$ pour tout $m \in M$.

Une action $\rho: G \hookrightarrow \mathrm{Diff}(M)$ est dite :

- **libre** si $G_m = e$ pour tout $m \in M$.
- **effective** si l'homomorphisme de l'action $G \to \mathrm{Diff}(M)$ est injectif, ce qui signifie $\bigcap_{m \in M} G_m = e$.

Une action $\rho: G \hookrightarrow \mathrm{Diff}(M)$ est dite :

- **libre** si $G_m = e$ pour tout $m \in M$.
- **effective** si l'homomorphisme de l'action $G \to \mathrm{Diff}(M)$ est injectif, ce qui signifie $\bigcap_{m \in M} G_m = e$.

Exercice

Soit G un groupe de Lie et H et K deux sous-groupes fermés de G.

Une action $\rho: G \hookrightarrow \mathrm{Diff}(M)$ est dite :

- **libre** si $G_m = e$ pour tout $m \in M$.
- **effective** si l'homomorphisme de l'action $G \to \mathrm{Diff}(M)$ est injectif, ce qui signifie $\bigcap_{m \in M} G_m = e$.

Exercice

Soit G un groupe de Lie et H et K deux sous-groupes fermés de G. Déterminer les groupes d'isotropie de l'action homogène naturelle de K sur G/H? Quelle est la condition pour que cette action soit effective?

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et $m \in M$. L'application évaluation

$$\rho_m: G \to M, \quad \rho_m(g) = g \cdot m$$

est différentiable (comme composé des application $g \mapsto (g, m)$ et $(g, m) \mapsto g \cdot m$).

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et $m \in M$. L'application évaluation

$$\rho_m: G \to M, \quad \rho_m(g) = g \cdot m$$

est différentiable (comme composé des application $g \mapsto (g, m)$ et $(g, m) \mapsto g \cdot m$).

Théorème

• Le groupe d'isotropie G_m est un sous-groupe de Lie de G d'algèbre de Lie $\mathcal{G}_m = \ker T_e \rho_m$.

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et $m \in M$. L'application évaluation

$$\rho_m: G \to M, \quad \rho_m(g) = g \cdot m$$

est différentiable (comme composé des application $g \mapsto (g, m)$ et $(g, m) \mapsto g \cdot m$).

Théorème

- Le groupe d'isotropie G_m est un sous-groupe de Lie de G d'algèbre de Lie $\mathcal{G}_m = \ker T_e \rho_m$.
- 2 L'orbite G · m est une sous-variété immergé.

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et $m \in M$. L'application évaluation

$$\rho_m: G \to M, \quad \rho_m(g) = g \cdot m$$

est différentiable (comme composé des application $g \mapsto (g, m)$ et $(g, m) \mapsto g \cdot m$).

Théorème

- Le groupe d'isotropie G_m est un sous-groupe de Lie de G d'algèbre de Lie $G_m = \ker T_e \rho_m$.
- 2 L'orbite G · m est une sous-variété immergé.
- ③ Si l'action est transitive, l'application $gG_m \mapsto g.m$ est un difféomorphisme G-équivariant de l'espace homogène G/G_m sur M.

1) Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous-groupe fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann).

1) Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous-groupe fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann). Son algèbre de Lie $Lie(G_m)$ s'identifie alors à la sous-algèbre de Lie

$$\mathcal{G}_m := \{ u \in \mathcal{G} / \exp(tu) \cdot m = m, \text{ pour tout } t \in \mathbb{R} \}$$

1) Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous-groupe fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann). Son algèbre de Lie $Lie(G_m)$ s'identifie alors à la sous-algèbre de Lie

$$\mathcal{G}_m := \{ u \in \mathcal{G} / \exp(tu) \cdot m = m, \text{ pour tout } t \in \mathbb{R} \}$$

Il en résulte que pour tout $u \in \mathcal{G}_m$, $\rho_m(\exp_G(tu)) = m$; en dérivant en t = 0, on obtient $T_e\rho_m(u) = 0$. D'où l'inclusion $\mathcal{G}_m \subset \ker T_e\rho_m$.

1) Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous-groupe fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann). Son algèbre de Lie $Lie(G_m)$ s'identifie alors à la sous-algèbre de Lie

$$\mathcal{G}_m := \{ u \in \mathcal{G} / \exp(tu) \cdot m = m, \text{ pour tout } t \in \mathbb{R} \}$$

Il en résulte que pour tout $u \in \mathcal{G}_m$, $\rho_m(\exp_G(tu)) = m$; en dérivant en t = 0, on obtient $T_e \rho_m(u) = 0$. D'où l'inclusion $\mathcal{G}_m \subset \ker T_e \rho_m$. Réciproquement, soit $u \in \ker T_e \rho_m$.

1) Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous-groupe fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann). Son algèbre de Lie $Lie(G_m)$ s'identifie alors à la sous-algèbre de Lie

$$\mathcal{G}_m := \{ u \in \mathcal{G} / \exp(tu) \cdot m = m, \text{ pour tout } t \in \mathbb{R} \}$$

Il en résulte que pour tout $u \in \mathcal{G}_m$, $\rho_m(\exp_G(tu)) = m$; en dérivant en t = 0, on obtient $T_e \rho_m(u) = 0$. D'où l'inclusion $\mathcal{G}_m \subset \ker T_e \rho_m$. Réciproquement, soit $u \in \ker T_e \rho_m$. La courbe $\beta: \mathbb{R} \to M$ donnée par $\beta(t) = \exp(tu) \cdot m$, satisfait :

$$\beta'(t) = T_m I_{\exp(tu)} \circ T_e \rho_m(u) = T_m I_{\exp(tu)}(0) = 0, \quad \forall t \in \mathbb{R}$$

1) Le groupe d'isotropie $G_m = \rho_m^{-1}\{m\}$ est un sous-groupe fermé de G, c'est donc un sous-groupe de Lie (théorème de Cartan-Von Neumann). Son algèbre de Lie $Lie(G_m)$ s'identifie alors à la sous-algèbre de Lie

$$\mathcal{G}_m := \{ u \in \mathcal{G} / \exp(tu) \cdot m = m, \text{ pour tout } t \in \mathbb{R} \}$$

Il en résulte que pour tout $u \in \mathcal{G}_m$, $\rho_m(\exp_G(tu)) = m$; en dérivant en t = 0, on obtient $T_e \rho_m(u) = 0$. D'où l'inclusion $\mathcal{G}_m \subset \ker T_e \rho_m$. Réciproquement, soit $u \in \ker T_e \rho_m$. La courbe $\beta: \mathbb{R} \to M$ donnée par $\beta(t) = \exp(tu) \cdot m$, satisfait :

$$\beta'(t) = T_m I_{\exp(tu)} \circ T_e \rho_m(u) = T_m I_{\exp(tu)}(0) = 0, \quad \forall t \in \mathbb{R}$$

Il en résulte que $\exp(tu) \cdot m = m$ pour tout $t \in \mathbb{R}$. D'où $u \in \mathcal{G}_m$.

$$\overline{\rho_m}: G/G_m \longrightarrow M$$
, telle que $\overline{\rho_m} \circ \pi = \rho_m$

$$\overline{\rho_m}: G/G_m \longrightarrow M$$
, telle que $\overline{\rho_m} \circ \pi = \rho_m$

qui est clairement injective avec image l'orbite $G \cdot m$.

$$\overline{\rho_m}: G/G_m \longrightarrow M$$
, telle que $\overline{\rho_m} \circ \pi = \rho_m$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a\cdot m}M, \quad \overline{a} \in G/G_m$$

sont injectives.

$$\overline{\rho_{\it m}}: {\it G}/{\it G_{\it m}} \longrightarrow {\it M}, \quad {\it telle que } \overline{\rho_{\it m}} \circ \pi = \rho_{\it m}$$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}:\,T_{\overline{a}}(G/G_m)\longrightarrow T_{a\cdot m}M,\quad \overline{a}\in G/G_m$$

sont injectives. Puisque l'action homogène de G sur G/G_m est transitive et que l'application $\overline{\rho_m}$ est G-équivariante, il suffit de le montrer pour le cas $\overline{a}=\overline{e}$.

$$\overline{\rho_{\it m}}: {\it G}/{\it G_{\it m}} \longrightarrow {\it M}, \quad {\it telle que } \overline{\rho_{\it m}} \circ \pi = \rho_{\it m}$$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a \cdot m}M, \quad \overline{a} \in G/G_m$$

sont injectives. Puisque l'action homogène de G sur G/G_m est transitive et que l'application $\overline{\rho_m}$ est G-équivariante, il suffit de le montrer pour le cas $\overline{a}=\overline{e}$. Soit alors $v\in T_{\overline{e}}(G/G_m)$ tel que $T_{\overline{e}}\overline{\rho_m}(v)=0$,

$$\overline{\rho_m}: G/G_m \longrightarrow M$$
, telle que $\overline{\rho_m} \circ \pi = \rho_m$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a\cdot m}M, \quad \overline{a} \in G/G_m$$

sont injectives. Puisque l'action homogène de G sur G/G_m est transitive et que l'application $\overline{\rho_m}$ est G-équivariante, il suffit de le montrer pour le cas $\overline{a}=\overline{e}$. Soit alors $v\in T_{\overline{e}}(G/G_m)$ tel que $T_{\overline{e}}\overline{\rho_m}(v)=0$, par surjectivité de $T_e\pi$ on peut choisir $u\in \mathcal{G}$ tel que $T_e\pi(u)=v$.

$$\overline{\rho_{\it m}}: {\it G}/{\it G_{\it m}} \longrightarrow {\it M}, \quad {\it telle que } \overline{\rho_{\it m}} \circ \pi = \rho_{\it m}$$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a \cdot m}M, \quad \overline{a} \in G/G_m$$

sont injectives. Puisque l'action homogène de G sur G/G_m est transitive et que l'application $\overline{\rho_m}$ est G-équivariante, il suffit de le montrer pour le cas $\overline{a}=\overline{e}$. Soit alors $v\in T_{\overline{e}}(G/G_m)$ tel que $T_{\overline{e}}\overline{\rho_m}(v)=0$, par surjectivité de $T_e\pi$ on peut choisir $u\in \mathcal{G}$ tel que $T_e\pi(u)=v$. Il en résulte que $T_{\overline{e}}\overline{\rho_m}\circ T_e\pi(u)=0$, donc $T_e\rho_m(u)=0$.

$$\overline{\rho_m}: G/G_m \longrightarrow M$$
, telle que $\overline{\rho_m} \circ \pi = \rho_m$

qui est clairement injective avec image l'orbite $G \cdot m$. Nous allons montrer que les applications linéaires tangentes :

$$T_{\overline{a}}\overline{\rho_m}: T_{\overline{a}}(G/G_m) \longrightarrow T_{a\cdot m}M, \quad \overline{a} \in G/G_m$$

sont injectives. Puisque l'action homogène de G sur G/G_m est transitive et que l'application $\overline{\rho_m}$ est G-équivariante, il suffit de le montrer pour le cas $\overline{a}=\overline{e}$. Soit alors $v\in T_{\overline{e}}(G/G_m)$ tel que $T_{\overline{e}}\overline{\rho_m}(v)=0$, par surjectivité de $T_e\pi$ on peut choisir $u\in \mathcal{G}$ tel que $T_e\pi(u)=v$. Il en résulte que $T_{\overline{e}}\overline{\rho_m}\circ T_e\pi(u)=0$, donc $T_e\rho_m(u)=0$. Et parsuite $u\in\ker T_e\rho_m=\mathcal{G}_m$, donc $v=T_e\pi(u)=0$ (puisque $\mathcal{G}_m=\ker(T_e\pi)$).

3) L'action étant transitive, l'application différentiable $\overline{\rho_m}: G/G_m \to M$ alors une immersion bijective. C'est alors un difféomorphisme.

3) L'action étant transitive, l'application différentiable $\overline{\rho_m}: G/G_m \to M$ alors une immersion bijective. C'est alors un difféomorphisme. En effet, d'après le théorème de Sard, il existe un point $\overline{a} \in G/G_m$ tel que

$$T_{\overline{a}}\overline{\rho_m}:T_{\overline{a}}(G/G_m)\longrightarrow T_{a\cdot m}M$$

est surjective

3) L'action étant transitive, l'application différentiable $\overline{\rho_m}: G/G_m \to M$ alors une immersion bijective. C'est alors un difféomorphisme. En effet, d'après le théorème de Sard, il existe un point $\overline{a} \in G/G_m$ tel que

$$T_{\overline{a}}\overline{\rho_m}:T_{\overline{a}}(G/G_m)\longrightarrow T_{a\cdot m}M$$

est surjective, donc dim $M=\dim(G/G_m)$ et parsuite tous les applications $T_{\overline{a}}\overline{\rho_m}$ sont des isomorphismes

3) L'action étant transitive, l'application différentiable $\overline{\rho_m}: G/G_m \to M$ alors une immersion bijective. C'est alors un difféomorphisme. En effet, d'après le théorème de Sard, il existe un point $\overline{a} \in G/G_m$ tel que

$$T_{\overline{a}}\overline{\rho_m}:T_{\overline{a}}(G/G_m)\longrightarrow T_{a\cdot m}M$$

est surjective, donc dim $M=\dim(G/G_m)$ et parsuite tous les applications $T_{\overline{a}}\overline{\rho_m}$ sont des isomorphismes ; le théorème d'inversion locale permet alors de conclure que $\overline{\rho_m}$ est un difféomorphisme.

Actions de groupes de Lie II

Abdelhak Abougateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Mini-cours dans le cadre de l'école EMA CIMPA - MIMS - UIR Rabat - 25 Juin au 07 juillet 2018

Nous avons vu auparavant que si M est une G-variété homogène, alors il existe un difféomorphisme G-équivariant d'un espace homogène G/H sur M. Illustration :

Nous avons vu auparavant que si M est une G-variété homogène, alors il existe un difféomorphisme G-équivariant d'un espace homogène G/H sur M. Illustration :

• L'action naturelle du groupe de Lie SO(n+1) sur la sphère S^n est transitive. Il en résulte un difféomorphisme SO(n+1)-équivariant

$$SO(n+1)/SO(n) \cong S^n$$
.

Nous avons vu auparavant que si M est une G-variété homogène, alors il existe un difféomorphisme G-équivariant d'un espace homogène G/H sur M. Illustration :

• L'action naturelle du groupe de Lie SO(n+1) sur la sphère S^n est transitive. Il en résulte un difféomorphisme SO(n+1)-équivariant

$$SO(n+1)/SO(n) \cong S^n$$
.

• Pour tout $n \in \mathbb{N}$, la sphère S^{2n+1} s'identifie à l'ensemble des vecteurs complexes (z_1, \cdots, z_{n+1}) tels que $|z_1|^2 + \cdots + |z_{n+1}|^2 = 1$. L'action naturelle naturelle de $\mathrm{U}(n+1)$ sur S^{2n+1} est transitive

Nous avons vu auparavant que si M est une G-variété homogène, alors il existe un difféomorphisme G-équivariant d'un espace homogène G/H sur M. Illustration :

• L'action naturelle du groupe de Lie SO(n+1) sur la sphère S^n est transitive. Il en résulte un difféomorphisme SO(n+1)-équivariant

$$SO(n+1)/SO(n) \cong S^n$$
.

• Pour tout $n \in \mathbb{N}$, la sphère S^{2n+1} s'identifie à l'ensemble des vecteurs complexes (z_1, \cdots, z_{n+1}) tels que $|z_1|^2 + \cdots + |z_{n+1}|^2 = 1$. L'action naturelle naturelle de $\mathrm{U}(n+1)$ sur S^{2n+1} est transitive et le groupe d'isotropie en $e_{n+1} := (0, \cdots, 0, 1)$ s'identifie à $\mathrm{U}(n)$.

Nous avons vu auparavant que si M est une G-variété homogène, alors il existe un difféomorphisme G-équivariant d'un espace homogène G/H sur M. Illustration :

• L'action naturelle du groupe de Lie SO(n+1) sur la sphère S^n est transitive. Il en résulte un difféomorphisme SO(n+1)-équivariant

$$SO(n+1)/SO(n) \cong S^n$$
.

• Pour tout $n \in \mathbb{N}$, la sphère S^{2n+1} s'identifie à l'ensemble des vecteurs complexes (z_1, \cdots, z_{n+1}) tels que $|z_1|^2 + \cdots + |z_{n+1}|^2 = 1$. L'action naturelle naturelle de $\mathrm{U}(n+1)$ sur S^{2n+1} est transitive et le groupe d'isotropie en $e_{n+1} := (0, \cdots, 0, 1)$ s'identifie à $\mathrm{U}(n)$. Il en résulte :

$$\mathrm{U}(n+1)/\mathrm{U}(n)\cong \mathcal{S}^{2n+1}$$

• Soit S(n) := I'espace des matrices carrées $n \times n$ qui sont symétrique.

• Soit S(n) := l'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$,

• Soit S(n) := l'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?).

• Soit S(n) := l'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action induite est transitive (pourquoi?)

• Soit S(n) := l'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action induite est transitive (pourquoi?) (le groupe d'isotropie en I_n , la matrice identité, n'est autre que le groupe spécial orthogonal SO(n)).

• Soit S(n) := l'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action induite est transitive (pourquoi?) (le groupe d'isotropie en I_n , la matrice identité, n'est autre que le groupe spécial orthogonal SO(n)). On obtient :

$$\mathrm{GL}^+(n,\mathbb{R})/\mathrm{SO}(n)\cong \mathsf{S}^+(n)$$

• Soit S(n) := I'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action induite est transitive (pourquoi?) (le groupe d'isotropie en I_n , la matrice identité, n'est autre que le groupe spécial orthogonal SO(n)). On obtient :

$$\mathrm{GL}^+(n,\mathbb{R})/\mathrm{SO}(n)\cong \mathsf{S}^+(n)$$

• Le groupe $\mathrm{SL}(2,{\rm I\!R})$ opère transitivement sur le demi-plan de Poincaré ${\rm I\!H}$:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}$$

• Soit S(n) := I'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n,\mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action induite est transitive (pourquoi?) (le groupe d'isotropie en I_n , la matrice identité, n'est autre que le groupe spécial orthogonal SO(n)). On obtient :

$$\mathrm{GL}^+(n,\mathbb{R})/\mathrm{SO}(n)\cong \mathsf{S}^+(n)$$

• Le groupe $SL(2, \mathbb{R})$ opère transitivement sur le demi-plan de Poincaré \mathbb{H} :

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}$$

et le groupe d'isotropie en i est SO(2),

• Soit S(n) := I'espace des matrices carrées $n \times n$ qui sont symétrique. Le groupe $GL^+(n, \mathbb{R})$ opère sur S(n) via l'application : $g.B := gBg^\top$, c'est une action non transitive (pourquoi?). Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action induite est transitive (pourquoi?) (le groupe d'isotropie en I_n , la matrice identité, n'est autre que le groupe spécial orthogonal SO(n)). On obtient :

$$\mathrm{GL}^+(n,\mathbb{R})/\mathrm{SO}(n)\cong \mathsf{S}^+(n)$$

• Le groupe $\mathrm{SL}(2,{\rm I\!R})$ opère transitivement sur le demi-plan de Poincaré ${\rm I\!H}$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

et le groupe d'isotropie en i est SO(2), on obtient :

$$SL(2, \mathbb{R})/SO(2) \cong \mathbb{H}$$
.

Remarque

Un autre aspect important concernant les actions transitives, est de pouvoir transmettre une structure différentiable d'espace homogène à tout ensemble munie d'une action transitive d'un groupe de Lie.

Remarque

Un autre aspect important concernant les actions transitives, est de pouvoir transmettre une structure différentiable d'espace homogène à tout ensemble munie d'une action transitive d'un groupe de Lie.

Définition

Soit X un ensemble et S(X) l'ensemble des bijections de X. Une action d'un groupe G sur X est un homomorphisme de groupes $\rho: G \to S(X)$.

Remarque

Un autre aspect important concernant les actions transitives, est de pouvoir transmettre une structure différentiable d'espace homogène à tout ensemble munie d'une action transitive d'un groupe de Lie.

Définition

Soit X un ensemble et S(X) l'ensemble des bijections de X. Une action d'un groupe G sur X est un homomorphisme de groupes $\rho: G \to S(X)$. L'action sera dite transitive si pour tous $x_1, x_2 \in X$ il existe $g \in G$ tel que $x_2 = \rho(g)(x_1)$.

Remarque

Un autre aspect important concernant les actions transitives, est de pouvoir transmettre une structure différentiable d'espace homogène à tout ensemble munie d'une action transitive d'un groupe de Lie.

Définition

Soit X un ensemble et S(X) l'ensemble des bijections de X. Une action d'un groupe G sur X est un homomorphisme de groupes $\rho: G \to S(X)$. L'action sera dite transitive si pour tous $x_1, x_2 \in X$ il existe $g \in G$ tel que $x_2 = \rho(g)(x_1)$. Le groupe d'isotropie en un point $x \in X$ est le sous-groupe $G_x := \{g \in G/\rho(g)(x) = x\}$.

Soit X un ensemble et soit $\rho: G \to S(X)$ une action transitive d'un groupe de Lie G sur X tel que le groupe d'isotropie en un point x_0 soit un fermé de G.

Soit X un ensemble et soit $\rho: G \to S(X)$ une action transitive d'un groupe de Lie G sur X tel que le groupe d'isotropie en un point x_0 soit un fermé de G. Alors il existe une une unique structure de variété différentiable sur X telle que ρ devient une action différentiable, X est ainsi une variété G-homogène.

Soit X un ensemble et soit $\rho: G \to S(X)$ une action transitive d'un groupe de Lie G sur X tel que le groupe d'isotropie en un point x_0 soit un fermé de G. Alors il existe une une unique structure de variété différentiable sur X telle que ρ devient une action différentiable, X est ainsi une variété G-homogène.

Démonstration.

Soit H le groupe d'isotropie en x_0 . Puisque H est un sous-groupe fermé de G, le quotient G/H est alors muni de sa structure différentiable d'espace homogène. L'application :

$$\varphi: G/H \to X$$
, $gH \mapsto \rho(g)(x_0)$

est bien définie et c'est une bijection G-équivariante.

Soit X un ensemble et soit $\rho: G \to S(X)$ une action transitive d'un groupe de Lie G sur X tel que le groupe d'isotropie en un point x_0 soit un fermé de G. Alors il existe une une unique structure de variété différentiable sur X telle que ρ devient une action différentiable, X est ainsi une variété G-homogène.

Démonstration.

Soit H le groupe d'isotropie en x_0 . Puisque H est un sous-groupe fermé de G, le quotient G/H est alors muni de sa structure différentiable d'espace homogène. L'application :

$$\varphi: G/H \to X, \quad gH \mapsto \rho(g)(x_0)$$

est bien définie et c'est une bijection G-équivariante. On peut alors munir l'ensemble X d'une topologie et d'une structure de variété différentiable telle que φ devient un difféomorphisme.

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Grassmann G(n, k) est l'ensemble des sous-espaces vectoriels réels de dimensions k de \mathbb{R}^n .

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Grassmann G(n, k) est l'ensemble des sous-espaces vectoriels réels de dimensions k de \mathbb{R}^n . Le groupe O(n) opère transitivement sur G(n, k),

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Grassmann G(n, k) est l'ensemble des sous-espaces vectoriels réels de dimensions k de \mathbb{R}^n . Le groupe O(n) opère transitivement sur G(n, k), ce qui permet d'obtenir :

$$G(n,k) \cong O(n)/O(k) \times O(n-k).$$

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Grassmann G(n, k) est l'ensemble des sous-espaces vectoriels réels de dimensions k de \mathbb{R}^n . Le groupe O(n) opère transitivement sur G(n, k), ce qui permet d'obtenir :

$$G(n,k) \cong O(n)/O(k) \times O(n-k).$$

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Stiefel V(n, k) est l'ensemble des k-repères orthonormés (u_1, \ldots, u_k) de \mathbb{R}^n .

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Grassmann G(n, k) est l'ensemble des sous-espaces vectoriels réels de dimensions k de \mathbb{R}^n . Le groupe O(n) opère transitivement sur G(n, k), ce qui permet d'obtenir :

$$G(n,k) \cong O(n)/O(k) \times O(n-k).$$

Pour tout $k, n \in \mathbb{N}$, $1 \le k \le n-1$ la variété de Stiefel V(n, k) est l'ensemble des k-repères orthonormés (u_1, \ldots, u_k) de \mathbb{R}^n . Encore ici le groupe O(n) opère transitivement sur V(n, k), ce qui permet d'obtenir :

$$V(n,k) \stackrel{\cong}{\to} O(n)/O(n-k)$$

L'ensemble des structures complexes de ${\rm I\!R}^{2n}$ peut être défini par :

$$M = \{Q \in GL(2n, \mathbb{R})/ Q^2 = -l_{2n}\}.$$

Le groupe $\mathrm{GL}(2n,\mathbb{R})$ opère par conjuguaison sur M : $g\cdot Q=gQg^{-1}$.

L'ensemble des structures complexes de ${\rm I\!R}^{2n}$ peut être défini par :

$$M = \{Q \in GL(2n, \mathbb{R})/ Q^2 = -I_{2n}\}.$$

Le groupe $\operatorname{GL}(2n,\mathbb{R})$ opère par conjuguaison sur M: $g\cdot Q=gQg^{-1}$. On peut montrer que tout matrice $Q\in M$ est semblable à la matrice $J_n=\begin{pmatrix}0&-I_n\\I_n&0\end{pmatrix}$.

L'ensemble des structures complexes de ${\rm I\!R}^{2n}$ peut être défini par :

$$M = \{Q \in GL(2n, \mathbb{R})/ Q^2 = -I_{2n}\}.$$

Le groupe $\operatorname{GL}(2n,\mathbb{R})$ opère par conjuguaison sur M: $g\cdot Q=gQg^{-1}.$ On peut montrer que tout matrice $Q\in M$ est semblable à la matrice $J_n=\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$ En effet, il suffit d'interpréter Q comme étant un endomorphisme de \mathbb{C}^{2n} , qui est alors diagonalisble

L'ensemble des structures complexes de ${\rm I\!R}^{2n}$ peut être défini par :

$$M = \{Q \in GL(2n, \mathbb{R})/ Q^2 = -I_{2n}\}.$$

Le groupe $\operatorname{GL}(2n,\mathbb{R})$ opère par conjuguaison sur M: $g\cdot Q=gQg^{-1}.$ On peut montrer que tout matrice $Q\in M$ est semblable à la matrice $J_n=\begin{pmatrix}0&-I_n\\I_n&0\end{pmatrix}.$ En effet, il suffit d'interpréter Q comme étant un endomorphisme de \mathbb{C}^{2n} , qui est alors diagonalisble puisqu'il admet comme polynôme annulateur le polynôme $P(X)=X^2+1$ qui est à racine simples.

L'ensemble des structures complexes de ${\rm I\!R}^{2n}$ peut être défini par :

$$M = \{Q \in GL(2n, \mathbb{R})/ Q^2 = -I_{2n}\}.$$

Le groupe $GL(2n, \mathbb{R})$ opère par conjuguaison sur M: $g \cdot Q = gQg^{-1}$. On peut montrer que tout matrice $Q \in M$ est semblable à la matrice $J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$. En effet, il suffit d'interpréter Q comme étant un endomorphisme de \mathbb{C}^{2n} . qui est alors diagonalisble puisqu'il admet comme polynôme annulateur le polynôme $P(X) = X^2 + 1$ qui est à racine simples. Et puisque Q est à coefficients réelles, on obtient que "V est un vecteur propre associé à la valeur propre i si et seulement si le vecteur conjugué \overline{V} est un vecteur propre associé à la valeur propre -i".

Ce qui permet de construire une base

$$(W_1,\ldots,W_n,\overline{W_1},\ldots,\overline{W_n})$$

de \mathbb{C}^{2n} avec (W_1, \ldots, W_n) une base du sous-espace propre associé à la valeur propre i et $\overline{W_1}, \ldots, \overline{W_n}$ une base du sous-espace propre associé à la valeur propre -i.

Ce qui permet de construire une base

$$(W_1,\ldots,W_n,\overline{W_1},\ldots,\overline{W_n})$$

de \mathbb{C}^{2n} avec (W_1,\ldots,W_n) une base du sous-espace propre associé à la valeur propre i et $\overline{W_1},\ldots,\overline{W_n}$ une base du sous-espace propre associé à la valeur propre -i. Ces vecteurs permettent de construire une base de \mathbb{R}^{2n} :

$$\mathcal{B}:=(U_1,\ldots,U_n,V_1,\ldots,V_n)$$
, où

$$U_j = \frac{W_j + \overline{W_j}}{2}, \quad V_j = \frac{W_j - \overline{W_j}}{2i}.$$

Ce qui permet de construire une base

$$(W_1,\ldots,W_n,\overline{W_1},\ldots,\overline{W_n})$$

de \mathbb{C}^{2n} avec (W_1, \ldots, W_n) une base du sous-espace propre associé à la valeur propre i et $\overline{W_1}, \ldots, \overline{W_n}$ une base du sous-espace propre associé à la valeur propre -i. Ces vecteurs permettent de construire une base de \mathbb{R}^{2n} :

$$\mathcal{B} := (U_1, \ldots, U_n, V_1, \ldots, V_n)$$
, où

$$U_j = \frac{W_j + \overline{W_j}}{2}, \quad V_j = \frac{W_j - \overline{W_j}}{2i}.$$

La matrice dans la base \mathcal{B} de Q en tant qu'endomorphisme du \mathbb{R} -espace vectoriel \mathbb{R}^{2n} est de la forme

$$\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$$

Nous venons donc de montrer que l'action de $GL(2n, \mathbb{R})$ sur M est transitive.

Nous venons donc de montrer que l'action de $\operatorname{GL}(2n,\mathbb{R})$ sur M est transitive. En plus, il est facile de vérifier que le groupe d'isotropie au point $J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, s'identifie au sous-groupe de $\operatorname{GL}(2n,\mathbb{R})$ des matrices de la forme

$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$
, avec $A, B \in GL(n, \mathbb{R})$

et qui s'identifie alors à $\mathrm{GL}(n,\mathbb{C})$. Ce qui permet d'aboutir à :

$$M \cong \mathrm{GL}(2n,\mathbb{R})/\mathrm{GL}(n,\mathbb{C}).$$

La représentation d'isotropie

Soit G un groupe de Lie, H un sous-groupe fermé de G et $\pi:G\to G/H$ la projection canonique. Nous avons vu que l'application linéaire tangente $T_e\pi:\mathcal{G}\to T_{\overline{e}}(G/H)$ induit un isomorphisme linéaire :

$$I: \mathcal{G}/\mathcal{H} \stackrel{\cong}{\longrightarrow} T_{\overline{e}}(G/H), \quad X+\mathcal{H} \mapsto T_{\overline{e}}\pi(X) = \frac{d}{dt}_{|_{t=0}}(\exp_G(tX))H$$

Pour tout élément $a \in H$, le difféomorphisme

$$\rho(a): G/H \to G/H, \quad xH \mapsto axH$$

fixe le point $\overline{e} = H$, il en résulte l'existence d'un isomorphisme linéaire

$$T_{\overline{e}}(\rho(a)): T_{\overline{e}}(G/H) \stackrel{\cong}{\to} T_{\overline{e}}(G/H).$$

Définition

La représentation d'isotropie du G-espace homogène G/H est la représentation du groupe :

$$\operatorname{Ad}^{G/H}: H \to \operatorname{GL}(T_{\overline{e}}(G/H)), \qquad \operatorname{Ad}^{G/H}(a) = T_{\overline{e}}(\rho(a))$$

Définition

La représentation d'isotropie du G-espace homogène G/H est la représentation du groupe :

$$\operatorname{Ad}^{G/H}: H \to \operatorname{GL}(T_{\overline{e}}(G/H)), \qquad \operatorname{Ad}^{G/H}(a) = T_{\overline{e}}(\rho(a))$$

Lemme

Pour tout $a \in H$, on a le diagramme commutatif suivant :

$$T_{\overline{e}}(G/H) \xrightarrow{\operatorname{Ad}_{a}^{G/H}} T_{\overline{e}}(G/H)$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\mathcal{G}/\mathcal{H} \xrightarrow{\overline{\operatorname{Ad}}_{a}} \mathcal{G}/\mathcal{H}$$

avec $\operatorname{Ad}_a(X + \mathcal{H}) = \operatorname{Ad}_a(X) + \mathcal{H}$.

Autrement dit, via l'isomorphisme *I*, la représentation d'isotropie est équivalente à la représentation :

$$\overline{\mathrm{Ad}}: H \to \mathrm{GL}(\mathcal{G}/\mathcal{H}), \quad a \mapsto \overline{\mathrm{Ad}}_{a}.$$

Définition

(Espaces homogènes réductifs) Un G-espace homogène G/H est dit réductif s'il existe un sous-espace vectoriel $\mathcal{M} \subset \mathcal{G}$ supplémentaire de \mathcal{H} et stable par la représentation adjointe de H i.e.

$$\mathcal{G} = \mathcal{H} \oplus \mathcal{M}$$
 et $\mathrm{Ad}_{a}(\mathcal{M}) \subset \mathcal{M}$ $\forall a \in H$.

Exemple: Exercice

Prenons G = SO(n+1) et H le sous-groupe des matrices $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ identifié à SO(n).

Exemple: Exercice

Prenons $G = \mathrm{SO}(n+1)$ et H le sous-groupe des matrices $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ identifié à $\mathrm{SO}(n)$. L'algèbre de Lie des matrices antisymétriques so(+1) s'identifie à $\mathcal G$ et la sous-algèbre de Lie des matrices $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ avec $(A^t = -A)$ s'identifie à $\mathcal H$.

Exemple: Exercice

Prenons $G = \mathrm{SO}(n+1)$ et H le sous-groupe des matrices $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ identifié à $\mathrm{SO}(n)$. L'algèbre de Lie des matrices antisymétriques so(+1) s'identifie à $\mathcal G$ et la sous-algèbre de Lie des matrices $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ avec $(A^t = -A)$ s'identifie à $\mathcal H$. Soit $\mathcal M = \{ \begin{pmatrix} 0 & X \\ -X^t & 0 \end{pmatrix} / X \in \mathbb R^n \}$.

Exemple: Exercice

Prenons G = SO(n+1) et H le sous-groupe des matrices $\begin{pmatrix}A&0\\0&1\end{pmatrix}$ identifié à $\mathrm{SO}(n)$. L'algèbre de Lie des matrices antisymétriques so(+1) s'identifie à $\mathcal G$ et la sous-algèbre de Lie des matrices $\left(egin{array}{cc} A & 0 \\ 0 & 0 \end{array}
ight)$ avec $\left(A^t = -A \right)$ s'identifie à ${\cal H}.$ Soit $\mathcal{M} = \left\{ \left(\begin{array}{cc} 0 & X \\ -X^t & 0 \end{array} \right) / X \in \mathbb{R}^n \right\} .$

•
$$so(n+1) = so(n) \oplus \mathcal{M}$$
.

Exemple: Exercice

Prenons $G = \mathrm{SO}(n+1)$ et H le sous-groupe des matrices $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ identifié à $\mathrm{SO}(n)$. L'algèbre de Lie des matrices antisymétriques so(+1) s'identifie à $\mathcal G$ et la sous-algèbre de Lie des matrices $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ avec $(A^t = -A)$ s'identifie à $\mathcal H$. Soit $\mathcal M = \{ \begin{pmatrix} 0 & X \\ -X^t & 0 \end{pmatrix} / X \in \mathbb R^n \}$.

Monter que

- $so(n+1) = so(n) \oplus \mathcal{M}$.
- Montrer que pour tous $A \in SO(n)$ et $X := (x_1, \dots, x_n)^t$, on a :

$$\left(\begin{array}{cc} A & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & X \\ -X^t & 0 \end{array}\right) \left(\begin{array}{cc} A^{-1} & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & AX \\ -(AX)^t & 0 \end{array}\right)$$

Si H est compact, alors G/H est réductif

En effet, on rappelle (Intégrale de Haar) l'existence d'une unique fonctionnelle μ de l'espace $C^0(H)$ des applications continues sur H vers \mathbb{R} :

$$\mu: C^0(H) \to {\rm I\!R}, \quad \mu(\varphi) = \int_H \varphi(a) da$$

satisfaisant aux propriétés

- $\mu(1) = 1$,
- ullet μ est positive et linéaire.
- \bullet μ est invariante :

$$\forall a \in H, \quad \mu(\varphi \circ l_a) = \mu(\varphi \circ r_a) = \mu(\varphi).$$

Partant d'un produit scalaire quelconque <,> sur l'espace vectoriel \mathcal{G} , on pose :

$$\ll u, v \gg = \int_{\mathcal{U}} < \mathrm{Ad}_{a}(u), \mathrm{Ad}_{a}(v) > da, \quad \forall u, v \in \mathcal{G}$$

on obtient ainsi un nouveau produit scalaire sur $\mathcal G$ qui est en plus $\mathrm{Ad}(\mathcal H)$ -invariant. Donc pour tout $a\in \mathcal H$, Ad_a est une isométrie de $\mathcal G$. Le sous-espace $\mathcal M:=\mathcal H^\perp$ est alors stable par la représentation adjointe.

Si G/H est réductif, alors la représentation d'isotropie $\operatorname{Ad}^{G/H}$ est équivalente à la représentation adjointe induite de H dans $\mathcal M$:

$$H \to \mathrm{GL}(\mathcal{M}), \quad a \mapsto \mathrm{Ad}_{a|_{\mathcal{M}}}.$$

Si G/H est réductif, alors la représentation d'isotropie $\operatorname{Ad}^{G/H}$ est équivalente à la représentation adjointe induite de H dans $\mathcal M$:

$$H \to \mathrm{GL}(\mathcal{M}), \quad a \mapsto \mathrm{Ad}_{a|_{\mathcal{M}}}.$$

Exemple

Posons $S^n = SO(n+1)/SO(n)$. La représentation d'isotropie est équivalente à la représentation canonique $SO(n) \to GL(\mathbb{R}^n)$.

Métriques riemanniennes invariantes

Définition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et g une métrique riemannienne sur M. On dira que cette métrique est G-invariante si pour tout $a \in G$, $\rho(a)$ est une isométrie de M. Autrement dit, $\rho(G) \subset \mathrm{Isom}(M)$.

Métriques riemanniennes invariantes

Définition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable et g une métrique riemannienne sur M. On dira que cette métrique est G-invariante si pour tout $a \in G$, $\rho(a)$ est une isométrie de M. Autrement dit, $\rho(G) \subset \mathrm{Isom}(M)$.

Remarque

Lorsqu'on considère l'action par translations gauche d'un groupe de Lie G sui lui même, on dira tout simplement que la métrique est invariante à gauche au lieu de dire G-invariante.

Dans ce qui suit G désigne un groupe de Lie et H un sous-groupe fermé.

Proposition

Il y a une correspondance biunivoque canonique entre l'ensemble des métriques riemanniennes G-invariantes sur G/H et l'ensemble des produits scalaires sur G/H qui sont invariante par la représentation $\overline{\mathrm{Ad}}: H \to \mathrm{GL}(\mathcal{G}/\mathcal{H})$.

Dans ce qui suit G désigne un groupe de Lie et H un sous-groupe fermé.

Proposition

Il y a une correspondance biunivoque canonique entre l'ensemble des métriques riemanniennes G-invariantes sur G/H et l'ensemble des produits scalaires sur \mathcal{G}/\mathcal{H} qui sont invariante par la représentation $\overline{\mathrm{Ad}}: H \to \mathrm{GL}(\mathcal{G}/\mathcal{H})$.

Démonstration. Si g est une métrique riemannienne G-invariantes sur G/H, alors

$$\forall a, x \in G, \ \forall u, v \in T_{\overline{x}}(G/H), \quad g_{\overline{x}}(u, v) = g_{\overline{ax}}(a \cdot u, a \cdot v)$$

$$\tag{0.1}$$

en particulier, on a

$$\forall a, \ \forall u, v \in T_{\overline{e}}(G/H), \quad g_{\overline{e}}(u, v) = g_{\overline{e}}(\mathrm{Ad}^{G/H}(a)(u), \mathrm{Ad}^{G/H}(a)(v))$$

En identifiant $T_{\overline{e}}(G/H)$ à \mathcal{G}/\mathcal{H} , on obtient un produit scalaire <,> sur \mathcal{G}/\mathcal{H} satisfaisant :

$$\forall \mathsf{a}, \ \forall \mathsf{X}, \mathsf{Y} \in \mathcal{G}, \quad <\mathsf{X} + \mathcal{H}, \mathsf{Y} + \mathcal{H} > = < \overline{\mathrm{Ad}}_{\mathsf{a}}(\mathsf{X} + \mathcal{H}), \overline{\mathrm{Ad}}_{\mathsf{a}}(\mathsf{Y} + \mathcal{H}) >$$

En identifiant $T_{\overline{e}}(G/H)$ à \mathcal{G}/\mathcal{H} , on obtient un produit scalaire <,> sur \mathcal{G}/\mathcal{H} satisfaisant :

$$\forall a, \ \forall X, Y \in \mathcal{G}, \quad \langle X + \mathcal{H}, Y + \mathcal{H} \rangle = \langle \overline{\mathrm{Ad}}_a(X + \mathcal{H}), \overline{\mathrm{Ad}}_a(Y + \mathcal{H}) \rangle$$

Réciproquement, soit <, > un produit scalaire sur $T_{\overline{e}}(G/H)$ qui est invariant par la représentation $\mathrm{Ad}^{G/H}$. On définit alors une métrique riemannienne G-invariante sur G/H en posant :

$$\forall x \in G, \ \forall u, v \in T_{\overline{x}}(G/H), \quad g_{\overline{x}}(u, v) = \langle x^{-1} \cdot u, x^{-1} \cdot v \rangle;$$

il reste à montrer que cette définition a bien un sens (elle ne dépend pas du choix de x définissant la classe \overline{x}), qu'elle est G-invariante et différentiable (on peux se placer sur un ouvert $U \subset G/H$ muni d'une section locale du fibré principal \cdots)

Remarque

Un groupe de Lie G peut toujours être vu comme une $(G \times G)$ -variété homogène (l'action de $G \times G$ sur G étant définie par $(a,b) \cdot x = axb^{-1}$), donc $G = (G \times G)/G$ et la représentation d'isotropie s'identifie à la représentation adjointe $\mathrm{Ad}: G \to \mathrm{GL}(G)$. Il en résulte que la donnée d'une métrique riemannienne bi-invariante sur G équivaut à la donnée d'un produit scalaire <,> sur G qui est $\mathrm{Ad}(G)$ -invariant.

Remarque

Un groupe de Lie G peut toujours être vu comme une $(G \times G)$ -variété homogène (l'action de $G \times G$ sur G étant définie par $(a,b) \cdot x = axb^{-1}$), donc $G = (G \times G)/G$ et la représentation d'isotropie s'identifie à la représentation adjointe $\mathrm{Ad}: G \to \mathrm{GL}(G)$. Il en résulte que la donnée d'une métrique riemannienne bi-invariante sur G équivaut à la donnée d'un produit scalaire <,> sur G qui est $\mathrm{Ad}(G)$ -invariant.

Exercice

Le groupe de Lie $\mathrm{SL}(2,\mathbb{R})$ n'admet pas de métrique bi-invariante.

Solution

En effet, supposons que <, > est un produit scalaire sur $sl(2,\mathbb{R})$ qui est $\mathrm{Ad}(\mathrm{SL}(2,\mathbb{R}))$ -invariant et désignons par $\|\cdot\|$ la norme associée. En prenant alors par exemple

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \in SL(2, \mathbb{R}) \text{ et } X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in sl(2, \mathbb{R}), \text{ on doit donc avoir}$$

$$|| X || = || \operatorname{Ad}_A(X) || = || AXA^{-1} || = || 4X || = 4 || X ||.$$

Ce qui est impossible puisque $X \neq 0$.

Corollaire

Il existe une métrique riemannienne G-invariante sur G/H si et seulement si $\overline{\mathrm{Ad}}(H)$ est relativelment compact dans $\mathrm{GL}(\mathcal{G}/\mathcal{H})$.

Corollaire

Il existe une métrique riemannienne G-invariante sur G/H si et seulement si $\overline{\mathrm{Ad}}(H)$ est relativelment compact dans $\mathrm{GL}(\mathcal{G}/\mathcal{H})$.

Démonstration : L'existence d'une telle métrique sur G/H implique l'existence d'un produit scalaire <,> sur \mathcal{G}/\mathcal{H} tel que pour tout $a\in H$, $\overline{\mathrm{Ad}}_a$ appartient au groupe orthogonal $O(\mathcal{G}/\mathcal{H})$. On a donc $\overline{\mathrm{Ad}}(H)\subset O(\mathcal{G}/\mathcal{H})$. Et puisque $O(\mathcal{G}/\mathcal{H})$ est compact, on en déduit que $\overline{\mathrm{Ad}}(H)$ est relativelment compact \cdots

Actions homogènes effectives : Soit G un groupe de Lie et $H \subset G$ un sous-groupe fermé de G tel que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. Cela signifie (puisque le groupe d'isotropie en un point bH est le sous-groupe bHb^{-1}) que

$$\bigcap_{b\in C} bHb^{-1} = \{e\}.$$

Actions homogènes effectives : Soit G un groupe de Lie et $H \subset G$ un sous-groupe fermé de G tel que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. Cela signifie (puisque le groupe d'isotropie en un point bH est le sous-groupe bHb^{-1}) que

$$\bigcap_{b\in G}bHb^{-1}=\{e\}.$$

En d'autres termes, le plus grand sous-groupe de H qui soit distingué dans G est $\{e\}$.

Actions homogènes effectives : Soit G un groupe de Lie et $H \subset G$ un sous-groupe fermé de G tel que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. Cela signifie (puisque le groupe d'isotropie en un point bH est le sous-groupe bHb^{-1}) que

$$\bigcap_{b\in G}bHb^{-1}=\{e\}.$$

En d'autres termes, le plus grand sous-groupe de H qui soit distingué dans G est $\{e\}$.

Exercice

Montrer que l'action homogène de $SL(3, \mathbb{R})$ sur $SL(3, \mathbb{R})/SL(2, \mathbb{R})$ est effective.

Remarque

Toute action transitive $\rho: G \to \mathrm{Diff}(M)$, se factorise en une action effective transitive.

En effet, si on considère $K := \ker \rho$, c'est sous-groupe distingué fermé de G; ce qui permet de munir le quotient G/K d'une structure de groupe de Lie qui opère sur M via :

$$\overline{\rho}: G/K \hookrightarrow \mathrm{Diff}(M), \quad \overline{\rho}(gK) := \rho(g).$$

Nous avons $\rho=\overline{\rho}\circ\pi$ avec $\pi:G\to G/K$ la projection canonique.

Lemme

Si l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective, alors la représentation adjointe $\mathrm{Ad}: H \to \mathrm{GL}(\mathcal{G})$ est injective.

Démonstration.

Soit $a \in H$ tel que $\operatorname{Ad}_a = id_{\mathcal{G}}$. Puisqu'on a $\tau_a \circ \exp = \exp \circ \operatorname{Ad}_a$ (où $\tau_a(x) = axa^{-1}$), on en déduit que $c_a(\exp(X)) = \exp(X)$ pour tout $X \in \mathcal{G}$; et puisque $\exp(\mathcal{G})$ engendre le groupe G (car G est connexe), on obtient que $c_a(x) = x$ pour tout $x \in G$, et parsuite $a = xax^{-1}$. Il en résulte que $a \in \bigcap_{x \in G} xHx^{-1}$. Ainsi a = e.

Théorème

Supposons que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. On a alors l'équivalence entre les deux assertions suivantes :

- Il existe une métrique riemannienne G-invariante sur G/H.
- **2** Ad(H) est relativement compact dans GL(G).

Théorème

Supposons que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. On a alors l'équivalence entre les deux assertions suivantes :

- Il existe une métrique riemannienne G-invariante sur G/H.
- **2** Ad(H) est relativement compact dans GL(G).

Démonstration. 2) implique l'existence de <, > un produit scalaire $\mathrm{Ad}(H)$ -invariant sur $\mathcal G$. L'orthogonal $\mathcal H^\perp$ de $\mathcal H$ dans $\mathcal G$ relativement à <, >, est alors $\mathrm{Ad}(H)$ -stable et l'image de $\mathrm{Ad}: H \to \mathrm{GL}(\mathcal H^\perp)$ est dans le groupe orthogonal $O(\mathcal H^\perp)$. D'où 1).

Théorème

Supposons que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. On a alors l'équivalence entre les deux assertions suivantes :

- Il existe une métrique riemannienne G-invariante sur G/H.
- **2** Ad(H) est relativement compact dans GL(G).

Démonstration. 2) implique l'existence de <,> un produit scalaire $\mathrm{Ad}(H)$ -invariant sur $\mathcal G$. L'orthogonal $\mathcal H^\perp$ de $\mathcal H$ dans $\mathcal G$ relativement à <,>, est alors $\mathrm{Ad}(H)$ -stable et l'image de $\mathrm{Ad}:H\to\mathrm{GL}(\mathcal H^\perp)$ est dans le groupe orthogonal $O(\mathcal H^\perp)$. D'où 1). Réciproquement, à partir de 1) on peut identifier $\mathcal G$ au sous-groupe de Lie immergé :

$$L(G) := \{L_g / g \in G\} \subset \text{Isom}(G/H)$$

En particulier l'action de $\operatorname{Isom}(G/H)$ sur G/H est transitive, il résulte qu'on a un difféomorphisme $\operatorname{Isom}(G/H)$ -équivariant $G/H \cong (\operatorname{Isom}(G/H))/K$ avec $K := \{f \in \operatorname{Isom}(G/H)/f(\overline{e}) = \overline{e}\}$ sous-groupe compact. Considérons alors <,> un produit scalaire sur $\operatorname{Lie}(\operatorname{Isom}(G/H))$ qui est $\operatorname{Ad}(K)$ -invariant, et qui est alors $\operatorname{Ad}(H)$ -invariant (puisque $H \subset K$). La restriction de <,> au sous-espace $\mathcal G$ est alors $\operatorname{Ad}(H)$ -invariant, donc $\operatorname{Ad}(H) \subset O(\mathcal G)$. D'où 2).

En particulier l'action de $\mathrm{Isom}(G/H)$ sur G/H est transitive, il résulte qu'on a un difféomorphisme $\mathrm{Isom}(G/H)$ -équivariant $G/H \cong (\mathrm{Isom}(G/H))/K$ avec $K := \{f \in \mathrm{Isom}(G/H)/|f(\overline{e}) = \overline{e}\}$ sous-groupe compact. Considérons alors <,> un produit scalaire sur $\mathrm{Lie}(\mathrm{Isom}(G/H))$ qui est $\mathrm{Ad}(K)$ -invariant, et qui est alors $\mathrm{Ad}(H)$ -invariant (puisque $H \subset K$). La restriction de <,> au sous-espace $\mathcal G$ est alors $\mathrm{Ad}(H)$ -invariant, donc $\mathrm{Ad}(H) \subset O(\mathcal G)$. D'où 2).

Corollaire

Supposons que l'action homogène $G \to \mathrm{Diff}(G/H)$ est effective. S'il existe une métrique riemannienne G-invariante sur G/H, alors le groupe de Lie G admet une métrique riemannienne invariante à gauche et H-invariante à droite ; la restriction de cette métrique à H est biinvariante.

Actions propres et fibrés

Abdelhak Abougateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Mini-cours dans le cadre de l'école EMA CIMPA - MIMS - UIR Rabat - 25 Juin au 07 juillet 2018

Actions propres

Définition

Une action de G sur M est **propre** si pour tout compact C de M l'ensemble $G_C := \{g \in G/gC \cap C \neq \emptyset\}$ est compact.

Actions propres

Définition

Une action de G sur M est **propre** si pour tout compact C de M l'ensemble $G_C := \{g \in G/gC \cap C \neq \emptyset\}$ est compact.

Proposition

Soit $\rho: G \to \mathrm{Diff}(M)$ une action différentiable de G sur M. Les propriétés suivantes sont équivalentes :

- **1** L'action de G sur M est propre.
- 2 L'application $\psi: G \times M \longrightarrow M \times M$ donnée par : $\psi(g,p)=(g\cdot p,p)$ est propre.
- 3 $Si(x_n)$ est une suite convergente de M et (g_n) est une suite de G telle que $(g_n \cdot x_n)_n$ est convergente. Alors (g_n) possède une sous suite convergente.

Démonstration.

(1) \Longrightarrow (2) : L'idée est de considérer le compact $C = C_1 \cup C_2$ dès que C_1 et C_2 sont deux compacts de M. (2) \Longrightarrow (3) : Supposons que l'application $\psi: G \times M \longrightarrow G \times M$ est propre. On se donne une suite $(x_n)_n$ de M qui converge vers un élément x et (g_n) une suite de G telle que la suite $(g_n \cdot x_n)$ converge vers un élément $y \in M$. On considère ensuite

$$C_1 = \{p_n, n \in \mathbb{N}\} \cup \{x\} \quad \text{et} \quad C_2 = \{g_n \cdot x_n, n \in \mathbb{N}\} \cup \{y\}$$

. . .

(3) \Longrightarrow (1) : Soit C un compact de M et (g_n) une suite de G_C . Pour tout $n \in \mathbb{N}$ on a $(g_n \cdot C) \cap C \neq \emptyset$. Considérons pour tout $n \in \mathbb{N}$ un élément $p_n \in C$ tel que $g_n.p_n \in C$. Quitte à se restreindre à une sous suite on peut supposer sans perte de généralités que les suites (p_n) et $(g_n.p_n)$ sont convergente \cdots .

Si l'action de G sur M est propre, les orbites sont fermés dans M et l'espace des orbites M/G est séparé.

Démonstration.

Soient $x \in M$ et $(g_n)_n$ une suite de G tel que $(g_n.x)$ est convergente.

Si l'action de G sur M est propre, les orbites sont fermés dans M et l'espace des orbites M/G est séparé.

Démonstration.

Soient $x \in M$ et $(g_n)_n$ une suite de G tel que $(g_n.x)$ est convergente. On sait alors que (g_n) possède une sous suite qui converge vers un élément $g \in G$. Donc $(g_n.x)$ converge vers $g.x \in G.x$.

Si l'action de G sur M est propre, les orbites sont fermés dans M et l'espace des orbites M/G est séparé.

Démonstration.

Soient $x \in M$ et $(g_n)_n$ une suite de G tel que $(g_n.x)$ est convergente. On sait alors que (g_n) possède une sous suite qui converge vers un élément $g \in G$. Donc $(g_n.x)$ converge vers $g.x \in G.x$. L'orbite G.x est alors fermé dans M.

Si l'action de G sur M est propre, les orbites sont fermés dans M et l'espace des orbites M/G est séparé.

Démonstration.

Soient $x \in M$ et $(g_n)_n$ une suite de G tel que $(g_n.x)$ est convergente. On sait alors que (g_n) possède une sous suite qui converge vers un élément $g \in G$. Donc $(g_n.x)$ converge vers $g.x \in G.x$. L'orbite G.x est alors fermé dans M. Montrer par l'absurde aue M/G est séparé (exercice) : "On suppose que que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Poursuivre le raisonnement en introduisant une distance d sur $M \cdots$ "

- Si G est compact, toute action topologique de G sur M est propre. Si M est compact, seuls les groupes compacts opèrent de façon propre sur M.
- Soit G×M → M une action transitive d'un groupe de Lie G sur une variété M, tel que le groupe d'isotropie en un point est compact. Alors l'action de G sur M est propre.
- 3 Si g est une métrique riemannienne sur M, alors l'action naturelle de Isom(M, g) sur M est propre.
- Soit $G \hookrightarrow \mathrm{Isom}(M,g)$ une action effective par isométries d'un groupe de Lie G sur M. S'il $x \in M$ tel que le groupe d'isotropie G_x soit compact et que l'orbite G_x soit fermé dans M, alors l'action de G sur M est propre (S. kulkarni).

Théorème

Soit $P \times G \rightarrow P$ une action (à droite) différentiable **propre** et **libre**. On a alors :

- **1** L'espace des orbites P/G possède une unique structure de variété différentiable de dimension dim P dim G tel que la projection canonique $\pi: P \to P/G$ est une submersion.
- ② Pour tout $m \in P/G$, il existe un ouvert $U \subset P/G$ voisinage de m et un difféomorphisme

$$\phi: U \times G \longrightarrow \pi^{-1}(U)$$
 $(x,g) \longrightarrow \phi(x,g)$
qui vérifie : $\phi(x,ga) = \phi(x,g) \cdot a$ et $\pi(\phi(x,g)) = x$.

Pour une démonstration complète, on peut consulter le livre de M. Lee, *Introduction to Smooth Manifolds*. Springer, New York, NY, 2003.

Fibrés localement triviaux

Soient F et M deux variétés différentiables.

Définition

Se donner un fibré différentiable localement trivial de base M, fibre-type F, et d'espace total d'un fibré E, c'est se donner une variété différentiable E et une application différentiable

$$\pi: E \to M$$

telles que tout point de M admette un voisinage ouvert U dans M et un difféomorphisme $\Phi_U: U \times F \to \pi^{-1}(U)$ tel que $\pi|_U \circ \Phi_U = p_1$,.

Un difféomorphisme tel que Φ_U s'appelle une *trivialisation* locale de E

Propriétés

- \bullet π est une submersion.
- la restriction $\Phi_m : F \to \pi^{-1}(m), \quad \Phi_m(y) = \Phi(x, y),$ est un difféomorphisme de F sur $E_m := \pi^{-1}(m).$

Définition

On appelle section du fibré $\pi: E \to M$ toute application $s: M \to E$ telle que $\pi \circ s$ soit l'identité dans M.

Une section locale est définie seulement sur un ouvert $U \subset M$.

Remarque

Sur un ouvert trivialisant, il y a toujours des sections mais des sections globales $s:M\to E$ n'existent pas toujours.

① (Fibrés triviaux) $p_1: M \times F \to M$, $p_1(x,y) = x$.

- **(Fibrés triviaux)** $p_1: M \times F \to M, \quad p_1(x,y) = x.$
- **(Fibré tangent)** Pour toute variété différentiable M, le fibré tangent $\pi: TM \to M$ est un fibré de fibre \mathbb{R}^n $(n = \dim M)$.

- **(Fibrés triviaux)** $p_1: M \times F \to M, \quad p_1(x,y) = x.$
- **② (Fibré tangent)** Pour toute variété différentiable M, le fibré tangent $\pi: TM \to M$ est un fibré de fibre \mathbb{R}^n $(n = \dim M)$.
- (Fibré en sphères et fibré en boules) Si g est une métrique riemannienne sur M, $SM \rightarrow M$ le fibré des vecteurs de norme 1, c'est un fibré de fibre S^{n-1} . Le fibré en boules $BM \rightarrow M$ est constitué des vecteurs de norme < 1, c'est un fibré de fibre le disque unité D^n .

- **①** (Fibrés triviaux) $p_1: M \times F \to M$, $p_1(x,y) = x$.
- **② (Fibré tangent)** Pour toute variété différentiable M, le fibré tangent $\pi: TM \to M$ est un fibré de fibre \mathbb{R}^n $(n = \dim M)$.
- (Fibré en sphères et fibré en boules) Si g est une métrique riemannienne sur M, $SM \rightarrow M$ le fibré des vecteurs de norme 1, c'est un fibré de fibre S^{n-1} . Le fibré en boules $BM \rightarrow M$ est constitué des vecteurs de norme < 1, c'est un fibré de fibre le disque unité D^n .
- Si G est un groupe de Lie et H ⊂ G un sous-groupe fermé de G, la projection canonique G → G/H est un fibré de fibre H.

- **(Fibrés triviaux)** $p_1: M \times F \to M, \quad p_1(x,y) = x.$
- **② (Fibré tangent)** Pour toute variété différentiable M, le fibré tangent $\pi: TM \to M$ est un fibré de fibre \mathbb{R}^n $(n = \dim M)$.
- (Fibré en sphères et fibré en boules) Si g est une métrique riemannienne sur M, $SM \rightarrow M$ le fibré des vecteurs de norme 1, c'est un fibré de fibre S^{n-1} . Le fibré en boules $BM \rightarrow M$ est constitué des vecteurs de norme < 1, c'est un fibré de fibre le disque unité D^n .
- Si G est un groupe de Lie et H ⊂ G un sous-groupe fermé de G, la projection canonique G → G/H est un fibré de fibre H.
- **⑤** Soit $P \times G \rightarrow P$ une action propre et libre, la projection canonique $\pi : P \rightarrow P/G$ est un fibré de fibre G.

Soit E un ensemble, M et F des variétés différentiables et $\pi: E \to M$ une surjection. Le lemme technique suivant est très pratique pour munir l'ensemble E d'une structure différentiable de façon que $\pi: E \to M$ devient un fibré localement trivial.

Soit E un ensemble, M et F des variétés différentiables et $\pi: E \to M$ une surjection. Le lemme technique suivant est très pratique pour munir l'ensemble E d'une structure différentiable de façon que $\pi: E \to M$ devient un fibré localement trivial.

Lemme

Supposons l'existence d'un recouvrement ouvert $\{U_{\alpha}/\alpha \in I\}$ de M avec des bijections $\varphi_{\alpha}: U_{\alpha} \times F \to \pi^{-1}(U_{\alpha})$ tel que $\pi|_{\pi^{-1}(U_{\alpha})} \circ \varphi_{\alpha} = p_1$.

Soit E un ensemble, M et F des variétés différentiables et $\pi: E \to M$ une surjection. Le lemme technique suivant est très pratique pour munir l'ensemble E d'une structure différentiable de façon que $\pi: E \to M$ devient un fibré localement trivial.

Lemme

Supposons l'existence d'un recouvrement ouvert $\{U_{\alpha}/\alpha \in I\}$ de M avec des bijections $\varphi_{\alpha}: U_{\alpha} \times F \to \pi^{-1}(U_{\alpha})$ tel que $\pi|_{\pi^{-1}(U_{\alpha})} \circ \varphi_{\alpha} = p_{1}$. Supposons en plus que pour tout $\alpha, \beta \in I$ tels que $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset$, l'application $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}: U_{\alpha\beta} \times F \to U_{\alpha\beta} \times F$ est différentiable.

Soit E un ensemble, M et F des variétés différentiables et $\pi: E \to M$ une surjection. Le lemme technique suivant est très pratique pour munir l'ensemble E d'une structure différentiable de façon que $\pi: E \to M$ devient un fibré localement trivial.

Lemme

Supposons l'existence d'un recouvrement ouvert $\{U_{\alpha}/\alpha \in I\}$ de M avec des bijections $\varphi_{\alpha}: U_{\alpha} \times F \to \pi^{-1}(U_{\alpha})$ tel que $\pi|_{\pi^{-1}(U_{\alpha})} \circ \varphi_{\alpha} = p_{1}$. Supposons en plus que pour tout $\alpha, \beta \in I$ tels que $U_{\alpha\beta}:=U_{\alpha}\cap U_{\beta}\neq\emptyset$, l'application $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}:U_{\alpha\beta}\times F\to U_{\alpha\beta}\times F$ est différentiable. Alors on peut mettre sur E une unique structure de variété différentiable telle que $\{(U_{\alpha},\varphi_{\alpha})/\alpha\in I\}$ devient un recouvrement trivialisant du fibré $E\to M$.

Fibrés images réciproques (Pullback of a bundle)

Soit $\pi: E \to M$ un fibré de fibre-type F et $f: X \to M$ une application différentiable.

Fibrés images réciproques (Pullback of a bundle)

Soit $\pi: E \to M$ un fibré de fibre-type F et $f: X \to M$ une application différentiable. On définit alors :

$$f^*E := \{(x, u) \in X \times E / f(x) = \pi(u)\}$$

Fibrés images réciproques (Pullback of a bundle)

Soit $\pi: E \to M$ un fibré de fibre-type F et $f: X \to M$ une application différentiable. On définit alors :

$$f^*E := \{(x, u) \in X \times E / f(x) = \pi(u)\}$$

C'est un fermé de $X \times E$. Par restriction des deux projections, on obtient des applications $\tilde{p}: f^*E \to X$ et $\tilde{f}: f^*E \to E$ tels que le digramme suivant commute :

Par définition, pour tout $x \in M$ l'image réciproque $\tilde{p}^{-1}\{x\}$ s'identifie avec la fibre $E_{f(x)}$ de E au dessus de $f(x) \in M$.

Par définition, pour tout $x \in M$ l'image réciproque $\tilde{p}^{-1}\{x\}$ s'identifie avec la fibre $E_{f(x)}$ de E au dessus de $f(x) \in M$.

Proposition

 $\tilde{p}: f^*E \to X$ est un fibré de même fibre-type F.

Démonstration. On applique le lemme technique.

Si $\Phi_U: U \times F \to \pi^{-1}(U)$ est une trivialisation locale de $E \to M$, on définit une trivialisation locale au dessus de $\tilde{U}:=f^{-1}(U)$ en posant

$$\tilde{\Phi}_U: \tilde{U} \times F \to \tilde{p}^{-1}(\tilde{U}), \quad (x,y) \mapsto (x, \Phi_U(f(x), y))$$

Par définition, pour tout $x \in M$ l'image réciproque $\tilde{p}^{-1}\{x\}$ s'identifie avec la fibre $E_{f(x)}$ de E au dessus de $f(x) \in M$.

Proposition

 $\tilde{p}: f^*E \to X$ est un fibré de même fibre-type F.

Démonstration. On applique le lemme technique.

Si $\Phi_U: U \times F \to \pi^{-1}(U)$ est une trivialisation locale de $E \to M$, on définit une trivialisation locale au dessus de $\tilde{U}:=f^{-1}(U)$ en posant

$$\tilde{\Phi}_U: \tilde{U} \times F \to \tilde{p}^{-1}(\tilde{U}), \quad (x,y) \mapsto (x, \Phi_U(f(x), y))$$

Définition (Images réciproques)

Le fibré $\tilde{p}: f^*E \to X$ est appelé image réciproque de E par f.

Il est parfois noté $f^{-1}(E)$.

Fibrés induits Pour toute sous-variété différentiable $S \subset M$, l'image réciproque d'un fibré $E \to M$ par l'inclusion $\iota: S \subset M$, est un fibré de base S et de même fibre-type que E, qu'on appelle le fibré induit par E sur S, ou restriction de E à S, et qu'on note souvent $E|_{S}$.

Fibrés induits Pour toute sous-variété différentiable $S \subset M$, l'image réciproque d'un fibré $E \to M$ par l'inclusion $\iota: S \subset M$, est un fibré de base S et de même fibre-type que E, qu'on appelle le fibré induit par E sur S, ou restriction de E à S, et qu'on note souvent $E|_{S}$.

Produit fibré. Soient $\pi_1: E_1 \to M$ et $\pi_2: E_2 \to M$ deux fibrés de même base M, et de fibres-type respectives F_1 et F_2 . Le sous-ensemble

$$E_1 \times_M E_2 := \{(e_1, e_2) \in E_1 \times E_2 / \pi_1(e_1) = \pi_2(e_2)\}$$

possède une structure naturelle de fibré de base M et de fibre-type $F_1 \times F_2$, la projection d'un point $(e_1, e_2) \in E_1 \times_V E_2$ étant égale à $\pi_1(e_1)$ $(=\pi_2(e_2))$.

Si

$$\Phi_1: U \times F_1 \xrightarrow{\cong} E_1|_U$$
 et $\Phi_2: U \times F_2 \xrightarrow{\cong} E_2|_U$

désignent des trivialisations locales de E_1 et E_2 au dessus d'un même ouvert U de M, on définit une trivialisation locale

$$\Phi: U \times (F_1 \times F_2) \to (E_1 \times_V E_2)|_U$$

en posant

$$\Phi(m,(y_1,y_2)) = (\Phi_1(m,y_1),\Phi_2(m,y_2))$$

pour tous $y_1 \in F_1$, $y_2 \in F_2$ et $m \in U$. La fibre de $E_1 \times_V E_2$ en un point $m \in M$ est égale à $(E_1)_m \times (E_2)_m$.

Si

$$\Phi_1: U \times F_1 \stackrel{\cong}{\longrightarrow} E_1|_U$$
 et $\Phi_2: U \times F_2 \stackrel{\cong}{\longrightarrow} E_2|_U$

désignent des trivialisations locales de E_1 et E_2 au dessus d'un même ouvert U de M, on définit une trivialisation locale

$$\Phi: U \times (F_1 \times F_2) \to (E_1 \times_V E_2)|_U$$

en posant

$$\Phi(m,(y_1,y_2)) = (\Phi_1(m,y_1),\Phi_2(m,y_2))$$

pour tous $y_1 \in F_1$, $y_2 \in F_2$ et $m \in U$. La fibre de $E_1 \times_V E_2$ en un point $m \in M$ est égale à $(E_1)_m \times (E_2)_m$.

Définition

Le fibré $E_1 \times_M E_2 \to M$ ainsi défini est appelé produit fibré de E_1 et E_2 .

Fibrés vectoriels

Un fibré vectoriel $E \to M$ est un fibré dont la fibre type F et chaque fibre E_m sont munies d'une structure d'espace vectoriel de dimension r, et qu'il est possible de choisir les trivialisations locales

$$\Phi_U: U \times F \to \pi^{-1}(U)$$

de telle façon que chaque difféomorphisme Φ_m soit un isomorphisme d'espaces vectoriels.

L'entier r s'appelle le rang du fibré vectoriel.

Exemple

Le fibré tangent TM o M : si (x_1, x_2, \cdots, x_n) est un système de coordonnées locales sur U, et si x désigne le point de U admettant ces coordonnées locales, l'application Φ_U : $(x, (y_1 \cdots, y_n)) \mapsto \sum_{i=1}^n y_i \left(\frac{\partial}{\partial x_i}\right)_x$ est une trivialisation locale de TM.

Exemple

Le fibré tangent $TM o M : si(x_1, x_2, \cdots, x_n)$ est un système de coordonnées locales sur U, et si x désigne le point de U admettant ces coordonnées locales, l'application $\Phi_U : (x, (y_1 \cdots, y_n)) \mapsto \sum_{i=1}^n y_i \left(\frac{\partial}{\partial x_i}\right)_x$ est une trivialisation locale de TM.

Exemple

Le fibré cotangent $T^*M \to M$: $si\ (x_1, x_2, \cdots, x_n)$ est un système de coordonnées locales sur U, et $si\ x$ désigne le point de U admettant ces coordonnées locales, l'application $\Phi_U: ((y_1 \cdots, y_n), x) \mapsto \sum_{i=1}^n y_i (dx_i)_x$ est une trivialisation locale de T^*M .

Sections des fibrés vectoriels

Si $E \to M$ désigne un fibré vectoriel, l'ensemble $\Gamma(E)$ des sections différentiables de E est muni d'une structure naturelle de $C^{\infty}(M)$ -module :

$$(u \sigma + v \tau)(m) = u(m) \sigma(m) + v(m) \tau(m)$$

pour toutes sections σ et τ de E et pour toutes fonctions u, v différentiables sur M.

Sections des fibrés vectoriels

Si $E \to M$ désigne un fibré vectoriel, l'ensemble $\Gamma(E)$ des sections différentiables de E est muni d'une structure naturelle de $C^{\infty}(M)$ -module :

$$(u \sigma + v \tau)(m) = u(m) \sigma(m) + v(m) \tau(m)$$

pour toutes sections σ et τ de E et pour toutes fonctions u, v différentiables sur M.

Définition

On appelle métrique riemannienne ou produit scalaire sur un fibré vectoriel différentiable réel $E \to M$ la donnée d'un produit scalaire $< , >_m$ dans chaque fibre E_m de E, de façon que : pour tout couple $\sigma, \tau \in \Gamma(E)$ de sections différentiables, la fonction $< \sigma, \tau >: \mu \mapsto < \sigma(m), \tau(m) >_m$ soit différentiable.

Sections des fibrés vectoriels

Si $E \to M$ désigne un fibré vectoriel, l'ensemble $\Gamma(E)$ des sections différentiables de E est muni d'une structure naturelle de $C^\infty(M)$ -module :

$$(u \sigma + v \tau)(m) = u(m) \sigma(m) + v(m) \tau(m)$$

pour toutes sections σ et τ de E et pour toutes fonctions u, v différentiables sur M.

Définition

On appelle métrique riemannienne ou produit scalaire sur un fibré vectoriel différentiable réel $E \to M$ la donnée d'un produit scalaire $< , >_m$ dans chaque fibre E_m de E, de façon que : pour tout couple $\sigma, \tau \in \Gamma(E)$ de sections différentiables, la fonction $< \sigma, \tau >: \mu \mapsto < \sigma(m), \tau(m) >_m$ soit différentiable.

Proposition

Tout fibré vectoriel $E \rightarrow M$ admet un produit scalaire.

3

Sommes de Whitney

Si E_1 et E_2 sont des fibrés vectoriels de rang respectif r_1 et r_2 et de même base M, le produit fibré $E_1 \times_M E_2 \to V$ possède une structure de fibré vectoriel de rang $r_1 + r_2$, qu'on appelle Ia somme de Whitney des deux fibrés E_1 et E_2 , et que l'on note $E_1 \oplus E_2$: en tout point $E_1 \oplus E_2$: en tout point $E_2 \oplus E_2$: en tout point $E_1 \oplus E_2$: en tout point $E_2 \oplus E_2$:

Sommes de Whitney

Si E_1 et E_2 sont des fibrés vectoriels de rang respectif r_1 et r_2 et de même base M, le produit fibré $E_1 \times_M E_2 \to V$ possède une structure de fibré vectoriel de rang $r_1 + r_2$, qu'on appelle Ia somme de Whitney des deux fibrés E_1 et E_2 , et que l'on note $E_1 \oplus E_2$: en tout point $E_1 \oplus E_2$: en tout point $E_2 \oplus E_2$: en tout point $E_2 \oplus E_2$: en tout point $E_1 \oplus E_2$: et que l'on note $E_2 \oplus E_2$: en tout point $E_2 \oplus E_2$: et que l'on note $E_2 \oplus E_2$: en tout point $E_2 \oplus E_2$:

Exercice

Supposons le fibré vectoriel E o M muni d'un produit scalaire. Soit E' un sous-fibré vectoriel de E. Montrer que la réunion $E'' = \coprod_{m \in M} (E_m)''$ des supplémentaires orthogonaux $(E_m)''$ de chaque fibre E'_m dans E_m possède une structure naturelle de fibré vectoriel, et que $E = E' \oplus E''$.

Sommes de Whitney

Si E_1 et E_2 sont des fibrés vectoriels de rang respectif r_1 et r_2 et de même base M, le produit fibré $E_1 \times_M E_2 \to V$ possède une structure de fibré vectoriel de rang $r_1 + r_2$, qu'on appelle Ia somme de Whitney des deux fibrés E_1 et E_2 , et que l'on note $E_1 \oplus E_2$: en tout point $E_1 \oplus E_2$: en tout point $E_2 \oplus E_2$: en tout point $E_2 \oplus E_2$: en tout point $E_1 \oplus E_2$: en tout point $E_2 \oplus E_2$:

Exercice

Supposons le fibré vectoriel E o M muni d'un produit scalaire. Soit E' un sous-fibré vectoriel de E. Montrer que la réunion $E'' = \coprod_{m \in M} (E_m)''$ des supplémentaires orthogonaux $(E_m)''$ de chaque fibre E'_m dans E_m possède une structure naturelle de fibré vectoriel, et que $E = E' \oplus E''$.

Théorème

(Théorème de Swan) Pour tout fibré vectoriel $E \to M$, il existe un fibré vectoriel $E' \to M$ tel que $E \oplus E'$ soit trivial.

Fibrés principaux

Définition

Un G-fibré principal est la donnée d'une variété P sur laquelle opère à droite un groupe de Lie G et une application $\pi:P\to M$ tels qu'il existe un recouvrement ouvert (U_{α}) de M et des difféomorphismes locaux

$$\psi_{\alpha}:U_{\alpha}\times G\to \pi^{-1}(U_{\alpha})$$

satisfaisant

$$\pi(\psi_{\alpha}(\mathsf{x},\mathsf{g})) = \mathsf{x}$$
 et $\psi_{\alpha}(\mathsf{x},\mathsf{ag}) = \psi_{\alpha}(\mathsf{x},\mathsf{a}) \cdot \mathsf{g}$

pour tous $a, g \in G$, $x \in U_{\alpha}$.

Exemple

Soit H un groupe de Lie, $G \subset H$ un sous-groupe de Lie fermé. $\pi: H \to H/G$ est un G-fibré principal.

Exemple

Soit H un groupe de Lie, $G \subset H$ un sous-groupe de Lie fermé. $\pi: H \to H/G$ est un G-fibré principal.

Exemple

Si $G \to \mathrm{Diff}(P)$ est une action différentiable libre et propre, alors $P \to P/G$ est un fibré principal.

Remarques

Soit $P \to M$ est un G-fibré principal et $\psi_\alpha: U_\alpha \times G \to \pi^{-1}(U_\alpha)$ une trivialisation locale. On a alors :

Soit $P \to M$ est un G-fibré principal et $\psi_{\alpha}: U_{\alpha} \times G \to \pi^{-1}(U_{\alpha})$ une trivialisation locale. On a alors :

1 Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.

- Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2 L'action de G sur P est libre.

- Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2 L'action de G sur P est libre.
- Pour tout $z \in P$, l'orbite $z \cdot G$ est égale à la fibre $\pi^{-1}(\pi(z))$.

- Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2 L'action de G sur P est libre.
- Pour tout $z \in P$, l'orbite $z \cdot G$ est égale à la fibre $\pi^{-1}(\pi(z))$.
- Les fibres sont *G*-stables par l'action et que l'action induite est transitive et libre.

Une définition équivalente d'un G-fibré principal est la suivante :

Une définition équivalente d'un G-fibré principal est la suivante : "C'est la donnée d'un fibré localement trivial $P \to M$ avec une action $G \to \mathrm{Diff}(P)$ qui est libre et transitive sur les fibres" (i.e. les orbites coincident avec les fibres).

Une définition équivalente d'un G-fibré principal est la suivante : "C'est la donnée d'un fibré localement trivial $P \to M$ avec une action $G \to \mathrm{Diff}(P)$ qui est libre et transitive sur les fibres" (i.e. les orbites coincident avec les fibres). (L'idée pour prouver ceci est de partir d'une section locale $\sigma_\alpha: U_\alpha \to P$ qui existe puisque le fibré est localement trivial et puis de définir des trivialisations "équivariantes" : $\psi_\alpha: (x,g) \mapsto \sigma_\alpha(x) \cdot g$.)

Variété des repères

Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n$ (coordonnées) et d'un repère (base) $z:\mathbb{R}^n\stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme.

Variété des repères

Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n$ (coordonnées) et d'un repère (base) $z:\mathbb{R}^n\stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme. L'ensemble des repères de F est défini par : $R(F):=Isom(\mathbb{R}^n,F)$, il peut être muni d'une structure de variété différentiable telle que pour tout repère fixé z_0 , la bijection :

$$\mathrm{GL}(n,\mathbb{R}) \to R(F), \quad g \mapsto z_0 \circ g.$$

est un difféomorphisme.

Variété des repères

Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n$ (coordonnées) et d'un repère (base) $z:\mathbb{R}^n\stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme. L'ensemble des repères de F est défini par : $R(F):=Isom(\mathbb{R}^n,F)$, il peut être muni d'une structure de variété différentiable telle que pour tout repère fixé z_0 , la bijection :

$$GL(n, \mathbb{R}) \to R(F), \quad g \mapsto z_0 \circ g.$$

est un difféomorphisme. Pour $g \in GL(n, \mathbb{R})$, les couples (z, λ) et $(z \circ g, g^{-1}(\lambda))$ représentent le même vecteur de F de sorte que F peut encore être identifié à l'espace des orbites :

$$\big(R(F) imes \mathbb{R}^n \big) / \mathit{GL}(n,\mathbb{R}) \cong F$$
, pour l'action $(z,\lambda) \cdot g = (z \circ g, g^{-1}(\lambda))$

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel.

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbb{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré principal de base M et de fibre $GL(n,\mathbb{R})$:

Soit $E \to M$ un \mathbbm{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbbm{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré principal de base M et de fibre $GL(n,\mathbbm{R})$: Si $\Phi^\alpha: U_\alpha \times \mathbbm{R}^n \to E|_{U_\alpha}$ est une trivialisation locale de E, l'application

$$\psi_{\alpha}: U_{\alpha} \times GL(n, \mathbb{R}) \to R(E)|_{U_{\alpha}}, \quad \psi_{\alpha}(g, x) = \Phi_{x}^{\alpha} \circ g$$

est une trivialisation locale de R(E)

Soit $E \to M$ un \mathbbm{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbbm{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré principal de base M et de fibre $GL(n,\mathbbm{R})$: Si $\Phi^\alpha: U_\alpha \times \mathbbm{R}^n \to E|_{U_\alpha}$ est une trivialisation locale de E, l'application

$$\psi_{\alpha}: U_{\alpha} \times GL(n, \mathbb{R}) \to R(E)|_{U_{\alpha}}, \quad \psi_{\alpha}(g, x) = \Phi_{x}^{\alpha} \circ g$$

est une trivialisation locale de R(E) qui satisfait :

$$\psi_{\alpha}(x,g_1g_2)=\psi_{\alpha}(x,g_1)\cdot g_2$$

Soit $P \rightarrow M$ un G-fibré principal.

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré.

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$,

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$, on définit

$$\varphi: M \times G \to P, \quad \varphi(x,g) = \sigma(x) \cdot g,$$

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$, on définit

$$\varphi: M \times G \to P, \quad \varphi(x,g) = \sigma(x) \cdot g,$$

nous obtenons une trivialisation du G-fibré principal $P \to M$.

Nous venons d'établir en partie :

Proposition

Soit $P \rightarrow M$ un G-fibré principal. Les assertions suivantes sont équivalentes :

- \bigcirc $P \rightarrow M$ admet une section globale différentiable.
- Il existe une application différentiable $f: P \to G$ qui soit G-équivariante $(c'\text{est-}\grave{a}\text{-}dire\ f(z\cdot g)=f(z)g)$.

Nous avons déjà montré que 1. \implies 2. l'autre sens est évident. 2. \implies 3. : Soit $\sigma: M \rightarrow P$ une section.

Nous avons déjà montré que $1. \implies 2$. l'autre sens est évident. $2. \implies 3$. : Soit $\sigma: M \to P$ une section. Pour tout $z \in P$, les deux points $\sigma(\pi(z))$ et z sont sur la même fibre, il en résulte que $\forall z \in P, \ \exists ! \ g \in G, \ z = \sigma(\pi(z)) \cdot g$.

Nous avons déjà montré que 1. \Longrightarrow 2. l'autre sens est évident. 2. \Longrightarrow 3. : Soit $\sigma: M \to P$ une section. Pour tout $z \in P$, les deux points $\sigma(\pi(z))$ et z sont sur la même fibre, il en résulte que $\forall z \in P, \ \exists ! \ g \in G, \ z = \sigma(\pi(z)) \cdot g$. Ce qui permet de définir une application $f: P \to G$ telle que $z = \sigma(\pi(z)) \cdot f(z)$. L'équivariance de f découle de : $\sigma(\pi(z)) \cdot f(z) = z \cdot g = \sigma(\pi(z)) \cdot f(z \cdot g) = \sigma(\pi(z)) \cdot f(z \cdot g)$.

Nous avons déjà montré que $1. \implies 2.$ l'autre sens est évident. 2. \implies 3. : Soit $\sigma: M \rightarrow P$ une section. Pour tout $z \in P$, les deux points $\sigma(\pi(z))$ et z sont sur la même fibre, il en résulte que $\forall z \in P$, $\exists ! \ g \in G$, $z = \sigma(\pi(z)) \cdot g$. Ce qui permet de définir une application $f: P \rightarrow G$ telle que $z = \sigma(\pi(z)) \cdot f(z)$. L'équivariance de f découle de : $\sigma(\pi(z)) \cdot f(z) = z \cdot g = \sigma(\pi(z \cdot g)) \cdot f(z \cdot g) = \sigma(\pi(z)) \cdot f(z \cdot g).$ 3. \implies 2. : Soit $f: P \rightarrow G$ une application différentiable G-équivariante. On définit une section $\sigma: M \to P$ en posant $\sigma(x) = z \cdot f(z)^{-1}$, où $z \in \pi^{-1}(x)$. Le fait que σ est bien définie découle de l'équivariance de f.

Nous avons déjà montré que $1. \implies 2.$ l'autre sens est évident, 2. \implies 3. : Soit $\sigma: M \rightarrow P$ une section. Pour tout $z \in P$, les deux points $\sigma(\pi(z))$ et z sont sur la même fibre, il en résulte que $\forall z \in P$, $\exists ! \ g \in G$, $z = \sigma(\pi(z)) \cdot g$. Ce qui permet de définir une application $f: P \rightarrow G$ telle que $z = \sigma(\pi(z)) \cdot f(z)$. L'équivariance de f découle de : $\sigma(\pi(z)) \cdot f(z) = z \cdot g = \sigma(\pi(z \cdot g)) \cdot f(z \cdot g) = \sigma(\pi(z)) \cdot f(z \cdot g).$ 3. \implies 2. : Soit $f: P \rightarrow G$ une application différentiable G-équivariante. On définit une section $\sigma: M \to P$ en posant $\sigma(x) = z \cdot f(z)^{-1}$, où $z \in \pi^{-1}(x)$. Le fait que σ est bien définie découle de l'équivariance de f. Pour montrer que σ est différentiable, il suffit de remarquer qu'on peut exprimer la restriction de σ à un ouvert trivialisant U_{α} en fonction de sections locaux différentiables.

Définition

Fibré image réciproque (Pullback of principal bundle) Soit $\pi: P \to M$ un G-fibré principal et $f: X \to M$ une application différentiable. Le fibré image réciproque de P par fest : $f*P := \{(x,z) \in X \times P / f(x) = \pi(z)\}$. C'est l'espace total d'un G-fibré principal défini par la projection $((x,z)) \mapsto x$ et l'action $(x,z) \cdot g = (x,z \cdot g)$.

Définition

Fibré image réciproque (Pullback of principal bundle)

Soit $\pi: P \to M$ un G-fibré principal et $f: X \to M$ une application différentiable. Le fibré image réciproque de P par f est : $f^*P := \{(x,z) \in X \times P / f(x) = \pi(z)\}$. C'est l'espace total d'un G-fibré principal défini par la projection $((x,z)) \mapsto x$ et l'action $(x,z) \cdot g = (x,z \cdot g)$.

Remarque

- **1** Si $\pi: P \to M$ est trivial, alors f^*P est trivial.
- 2 Si f est constante, alors f*P est trivial.
- **3** Le fibré f^*P est trivial si et seulement si il existe une application différentiable $\lambda: X \to P$ telle que $f = \pi \circ \lambda$.
- Pour $f = \pi : P \to M$, le fibré $\pi^*P = P \times_{\pi} P \to P$ est trivial. Une section évidente de ce fibré est $\sigma : z \mapsto (z, z)$.

Fibrés principaux : Propriétés

Abdelhak Abouqateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Mini-cours dans le cadre de l'école EMA CIMPA - MIMS - UIR Rabat - 25 Juin au 07 juillet 2018

Fibrés principaux

Définition

Un G-fibré principal est la donnée d'une variété P sur laquelle opère à droite un groupe de Lie G et une application $\pi:P\to M$ tels qu'il existe un recouvrement ouvert (U_{α}) de M et des difféomorphismes locaux

$$\psi_{\alpha}:U_{\alpha}\times G\to \pi^{-1}(U_{\alpha})$$

satisfaisant

$$\pi(\psi_{\alpha}(\mathsf{x},\mathsf{g})) = \mathsf{x}$$
 et $\psi_{\alpha}(\mathsf{x},\mathsf{ag}) = \psi_{\alpha}(\mathsf{x},\mathsf{a}) \cdot \mathsf{g}$

pour tous $a, g \in G$, $x \in U_{\alpha}$.

Exemples

Exemple

Soit H un groupe de Lie, $G \subset H$ un sous-groupe de Lie fermé. $\pi: H \to H/G$ est un G-fibré principal.

Exemples

Exemple

Soit H un groupe de Lie, $G \subset H$ un sous-groupe de Lie fermé. $\pi: H \to H/G$ est un G-fibré principal.

Exemple

Si $G \to \mathrm{Diff}(P)$ est une action différentiable libre et propre, alors $P \to P/G$ est un fibré principal.

Soit $P \to M$ est un G-fibré principal et $\psi_{\alpha}: U_{\alpha} \times G \to \pi^{-1}(U_{\alpha})$ une trivialisation locale. On a alors :

• Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.

- **1** Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2 L'action de G sur P est libre.

- Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2 L'action de G sur P est libre.
- Pour tout $z \in P$, l'orbite $z \cdot G$ est égale à la fibre $\pi^{-1}(\pi(z))$.

- Pour tout $x \in U_{\alpha}$, l'application $\psi_{\alpha}(x, \cdot) : g \mapsto \psi_{\alpha}(x, g)$ est un difféomorphisme G-équivariant de G sur la fibre $\pi^{-1}(x)$.
- 2 L'action de G sur P est libre.
- 4 Pour tout $z \in P$, l'orbite $z \cdot G$ est égale à la fibre $\pi^{-1}(\pi(z))$.
- Les fibres sont *G*-stables par l'action et que l'action induite est transitive et libre.

Remarque

Une définition équivalente d'un G-fibré principal est la suivante :

Remarque

Une définition équivalente d'un G-fibré principal est la suivante : "C'est la donnée d'un fibré localement trivial $P \to M$ avec une action $G \to \mathrm{Diff}(P)$ qui est libre et transitive sur les fibres" (i.e. les orbites coincident avec les fibres).

Remarque

Une définition équivalente d'un G-fibré principal est la suivante : "C'est la donnée d'un fibré localement trivial $P \to M$ avec une action $G \to \mathrm{Diff}(P)$ qui est libre et transitive sur les fibres" (i.e. les orbites coincident avec les fibres). (L'idée pour prouver ceci est de partir d'une section locale $\sigma_\alpha: U_\alpha \to P$ qui existe puisque le fibré est localement trivial et puis de définir des trivialisations "équivariantes" : $\psi_\alpha: (x,g) \mapsto \sigma_\alpha(x) \cdot g$.)

Variété des repères

Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbb{R}^n$ (coordonnées) et d'un repère (base) $z : \mathbb{R}^n \stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme.

Variété des repères

Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n$ (coordonnées) et d'un repère (base) $z:\mathbb{R}^n\stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme. L'ensemble des repères de F est défini par : $R(F):=Isom(\mathbb{R}^n,F)$, il peut être muni d'une structure de variété différentiable telle que pour tout repère fixé z_0 , la bijection :

$$\mathrm{GL}(n,\mathbb{R}) \to R(F), \quad g \mapsto z_0 \circ g.$$

est un difféomorphisme.

Variété des repères

Soit F un espace vectoriel réel de dimension n. Un vecteur de F peut encore être défini par un couple (z,λ) formé de $\lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n$ (coordonnées) et d'un repère (base) $z:\mathbb{R}^n\stackrel{\cong}{\to} F$, le vecteur de F étant alors l'image de λ par cet isomorphisme. L'ensemble des repères de F est défini par : $R(F):=Isom(\mathbb{R}^n,F)$, il peut être muni d'une structure de variété différentiable telle que pour tout repère fixé z_0 , la bijection :

$$GL(n, \mathbb{R}) \to R(F), \quad g \mapsto z_0 \circ g.$$

est un difféomorphisme. Pour $g \in GL(n, \mathbb{R})$, les couples (z, λ) et $(z \circ g, g^{-1}(\lambda))$ représentent le même vecteur de F de sorte que F peut encore être identifié à l'espace des orbites :

$$ig(R(F) imes {
m I\!R}^nig)/{\it GL}(n,{
m I\!R})\cong F, \;\; {
m pour } \; {
m l'action} \; (z,\lambda)\cdot g=(z\circ g,g^{-1}(\lambda)$$

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel.

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbb{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré principal de base M et de fibre $GL(n,\mathbb{R})$:

Soit $E \to M$ un \mathbbm{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbbm{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré principal de base M et de fibre $GL(n,\mathbbm{R})$: Si $\Phi^\alpha: U_\alpha \times \mathbbm{R}^n \to E|_{U_\alpha}$ est une trivialisation locale de E, l'application

$$\psi_{\alpha}: U_{\alpha} \times GL(n, \mathbb{R}) \to R(E)|_{U_{\alpha}}, \quad \psi_{\alpha}(g, x) = \Phi_{x}^{\alpha} \circ g$$

est une trivialisation locale de R(E)

Soit $E \to M$ un \mathbbm{R}^n -fibré vectoriel. Pour tout $x \in M$, le groupe $GL(n,\mathbbm{R})$ opère à droite de façon libre et transitive sur la variété des repères $R_x(E) := R(E_x)$. L'ensemble $R(E) = \bigcup_{x \in M} R_x(E)$ possède une structure naturelle de fibré principal de base M et de fibre $GL(n,\mathbbm{R})$: Si $\Phi^\alpha: U_\alpha \times \mathbbm{R}^n \to E|_{U_\alpha}$ est une trivialisation locale de E, l'application

$$\psi_{\alpha}: U_{\alpha} \times GL(n, \mathbb{R}) \to R(E)|_{U_{\alpha}}, \quad \psi_{\alpha}(g, x) = \Phi_{x}^{\alpha} \circ g$$

est une trivialisation locale de R(E) qui satisfait :

$$\psi_{\alpha}(x,g_1g_2)=\psi_{\alpha}(x,g_1)\cdot g_2$$

Soit $P \rightarrow M$ un G-fibré principal.

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré.

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$,

Soit P o M un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$, on définit

$$\varphi: M \times G \to P, \quad \varphi(x,g) = \sigma(x) \cdot g,$$

Soit $P \to M$ un G-fibré principal. Contrairement aux fibrés vectoriels qui admettent toujours des sections, l'existence d'une section pour un fibré principal est équivaut à la trivialité de ce fibré. En effet, supposons l'existence d'une application différentiable $\sigma: M \to P$ telle que $\pi(\sigma(x)) = x$ pour tout $x \in M$, on définit

$$\varphi: M \times G \to P, \quad \varphi(x,g) = \sigma(x) \cdot g,$$

nous obtenons une trivialisation du G-fibré principal $P \to M$.

Nous avons:

Proposition

Soit $P \rightarrow M$ un G-fibré principal. Les assertions suivantes sont équivalentes :

- $\mathbf{Q} P \rightarrow M$ admet une section globale différentiable.

Définition

Fibré image réciproque (Pullback of principal bundle) Soit $\pi: P \to M$ un G-fibré principal et $f: X \to M$ une application différentiable. Le fibré image réciproque de P par fest : $f*P := \{(x, z) \in X \times P / f(x) = \pi(z)\}$. C'est l'espace

Définition

Fibré image réciproque (Pullback of principal bundle)

Soit $\pi: P \to M$ un G-fibré principal et $f: X \to M$ une application différentiable. Le fibré image réciproque de P par f est : $f^*P := \{(x,z) \in X \times P / f(x) = \pi(z)\}$. C'est l'espace total d'un G-fibré principal défini par la projection $((x,z)) \mapsto x$ et l'action $(x,z) \cdot g = (x,z \cdot g)$.

Remarque

- **1** Si $\pi: P \to M$ est trivial, alors f^*P est trivial.
- 2 Si f est constante, alors f*P est trivial.
- **3** Le fibré f^*P est trivial si et seulement si il existe une application différentiable $\lambda: X \to P$ telle que $f = \pi \circ \lambda$.
- Pour $f = \pi : P \to M$, le fibré $\pi^*P = P \times_{\pi} P \to P$ est trivial. Une section évidente de ce fibré est $\sigma : z \mapsto (z, z)$.

Définition

Un morphisme de G-fibrés principaux

 $\phi: (\pi_1, P_1, M_1) \rightarrow (\pi_2, P_2, M_2)$ est une application

 $\phi: P_1 \rightarrow P_2$ différentiable G-équivariante.

Définition

Un morphisme de G-fibrés principaux $\phi: (\pi_1, P_1, M_1) \rightarrow (\pi_2, P_2, M_2)$ est une application $\phi: P_1 \rightarrow P_2$ différentiable G-équivariante.

Une telle application $\phi: P_1 \to P_2$ préserve les orbites (i.e. envoie l'orbite $z \cdot G$ sur l'orbite $\phi(z) \cdot G$).

Définition

Un morphisme de G-fibrés principaux $\phi: (\pi_1, P_1, M_1) \rightarrow (\pi_2, P_2, M_2)$ est une application $\phi: P_1 \rightarrow P_2$ différentiable G-équivariante.

Une telle application $\phi: P_1 \to P_2$ préserve les orbites (i.e. envoie l'orbite $z \cdot G$ sur l'orbite $\phi(z) \cdot G$). Elle induit alors une application différentiable $\overline{\phi}: M_1 \to M_2$ telle que le diagramme suivant

commute i.e. $\pi_2 \circ \phi = \overline{\phi} \circ \pi_1$.

Proposition

Soit $\phi: (\pi_1, P_1, M_1) \to (\pi_2, P_2, M_2)$ un morphisme de G-fibrés principaux. On a alors l'équivalence : $\phi: P_1 \to P_2$ est un difféomorphisme si et seulement si l'application induite $\overline{\phi}: M_1 \to M_2$ est un difféomorphisme.

Proposition

Soit $\phi: (\pi_1, P_1, M_1) \to (\pi_2, P_2, M_2)$ un morphisme de G-fibrés principaux. On a alors l'équivalence : $\phi: P_1 \to P_2$ est un difféomorphisme si et seulement si l'application induite $\overline{\phi}: M_1 \to M_2$ est un difféomorphisme.

Démonstration. Supposons que $\phi:P_1\to P_2$ est un difféomorphisme. Le difféomorphisme inverse $\psi:=\phi^{-1}$ est alors un morphisme de G-fibrés principaux et induit donc une application différentiable $\overline{\psi}:M_2\to M_1$ qui satisfait $\pi_1\circ\psi=\overline{\psi}\circ\pi_2$.

Proposition

Soit $\phi: (\pi_1, P_1, M_1) \to (\pi_2, P_2, M_2)$ un morphisme de G-fibrés principaux. On a alors l'équivalence : $\phi: P_1 \to P_2$ est un difféomorphisme si et seulement si l'application induite $\overline{\phi}: M_1 \to M_2$ est un difféomorphisme.

Démonstration. Supposons que $\phi:P_1\to P_2$ est un difféomorphisme. Le difféomorphisme inverse $\psi:=\phi^{-1}$ est alors un morphisme de G-fibrés principaux et induit donc une application différentiable $\overline{\psi}:M_2\to M_1$ qui satisfait $\pi_1\circ\psi=\overline{\psi}\circ\pi_2.$ On peut alors écrire :

$$\overline{\psi} \circ \overline{\phi} \circ \pi_1 = \overline{\psi} \circ \pi_2 \circ \phi = \pi_1 \circ \psi \circ \phi = \pi_1$$

Ce qui implique $\overline{\psi} \circ \overline{\phi} = id_{M_1}$ (puisque π_1 est surjective). De même on montre que $\overline{\phi} \circ \overline{\psi} = id_{M_2}$.

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$.

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z,z'\in P_1$ tels que $\underline{\phi}(z)=\phi(z')$. Donc $\pi_2\circ\phi(z)=\pi_2\circ\phi(z')$ et parsuite $\overline{\phi}(\pi_1(z))=\overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z)=\pi_1(z')$. Il existe alors $g\in G$ tel que $z'=z\cdot g$, et donc $\phi(z')=\phi(z\cdot g)=\phi(z)\cdot g$.

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z,z'\in P_1$ tels que $\underline{\phi}(z)=\phi(z')$. Donc $\pi_2\circ\phi(z)=\pi_2\circ\phi(z')$ et parsuite $\overline{\phi}(\pi_1(z))=\overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z)=\pi_1(z')$. Il existe alors $g\in G$ tel que $z'=z\cdot g$, et donc $\phi(z')=\phi(z\cdot g)=\phi(z)\cdot g$. Or $\phi(z')=\phi(z)$, Ce qui implique $\phi(z)\cdot g=\phi(z)$,

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z,z'\in P_1$ tels que $\phi(z)=\phi(z')$. Donc $\pi_2\circ\phi(z)=\pi_2\circ\phi(z')$ et parsuite $\overline{\phi}(\pi_1(z))=\overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z)=\pi_1(z')$. Il existe alors $g\in G$ tel que $z'=z\cdot g$, et donc $\phi(z')=\phi(z\cdot g)=\phi(z)\cdot g$. Or $\phi(z')=\phi(z)$, Ce qui implique $\phi(z)\cdot g=\phi(z)$, d'où g=e (car l'action de G est libre) et z'=z

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z,z'\in P_1$ tels que $\phi(z)=\phi(z')$. Donc $\pi_2\circ\phi(z)=\pi_2\circ\phi(z')$ et parsuite $\overline{\phi}(\pi_1(z))=\overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z)=\pi_1(z')$. Il existe alors $g\in G$ tel que $z'=z\cdot g$, et donc $\phi(z')=\phi(z\cdot g)=\phi(z)\cdot g$. Or $\phi(z')=\phi(z)$, Ce qui implique $\phi(z)\cdot g=\phi(z)$, d'où g=e (car l'action de G est libre) et z'=z. Pour la surjectivité de ϕ , soit $z_2\in P_2$,

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$. Donc $\pi_2 \circ \phi(z) = \pi_2 \circ \phi(z')$ et parsuite $\overline{\phi}(\pi_1(z)) = \overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z) = \pi_1(z')$. Il existe alors $g \in G$ tel que $z' = z \cdot g$, et donc $\phi(z') = \phi(z \cdot g) = \phi(z) \cdot g$. Or $\phi(z') = \phi(z)$, Ce qui implique $\phi(z) \cdot g = \phi(z)$, d'où g = e (car l'action de G est libre) et z'=z. Pour la surjectivité de ϕ , soit $z_2 \in P_2$, il existe alors (par surjectivité de $\overline{\phi}$) un point $x_1 \in M_1$ tel que $\overline{\phi}(x_1) = \pi_2(z_2).$

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$. Donc $\pi_2 \circ \phi(z) = \pi_2 \circ \phi(z')$ et parsuite $\overline{\phi}(\pi_1(z)) = \overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z) = \pi_1(z')$. Il existe alors $g \in G$ tel que $z' = z \cdot g$, et donc $\phi(z') = \phi(z \cdot g) = \phi(z) \cdot g$. Or $\phi(z') = \phi(z)$, Ce qui implique $\phi(z) \cdot g = \phi(z)$, d'où g = e (car l'action de G est libre) et z'=z. Pour la surjectivité de ϕ , soit $z_2 \in P_2$, il existe alors (par surjectivité de $\overline{\phi}$) un point $x_1 \in M_1$ tel que $\overline{\phi}(x_1) = \pi_2(z_2)$. Considérons $z_1 \in P_1$ tel que $\pi_1(z_1) = x_1$.

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$. Donc $\pi_2 \circ \phi(z) = \pi_2 \circ \phi(z')$ et parsuite $\overline{\phi}(\pi_1(z)) = \overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z) = \pi_1(z')$. Il existe alors $g \in G$ tel que $z' = z \cdot g$, et donc $\phi(z') = \phi(z \cdot g) = \phi(z) \cdot g$. Or $\phi(z') = \phi(z)$, Ce qui implique $\phi(z) \cdot g = \phi(z)$, d'où g = e (car l'action de G est libre) et z'=z. Pour la surjectivité de ϕ , soit $z_2 \in P_2$, il existe alors (par surjectivité de $\overline{\phi}$) un point $x_1 \in M_1$ tel que $\phi(x_1)=\pi_2(z_2)$. Considérons $z_1\in P_1$ tel que $\pi_1(z_1)=x_1$. D'où $\overline{\phi}(\pi_1(z_1)) = \pi_2(z_2)$ et parsuite $\pi_2(\phi(z_1)) = \pi_2(z_2)$.

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$. Donc $\pi_2 \circ \phi(z) = \pi_2 \circ \phi(z')$ et parsuite $\overline{\phi}(\pi_1(z)) = \overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z) = \pi_1(z')$. Il existe alors $g \in G$ tel que $z' = z \cdot g$, et donc $\phi(z') = \phi(z \cdot g) = \phi(z) \cdot g$. Or $\phi(z') = \phi(z)$, Ce qui implique $\phi(z) \cdot g = \phi(z)$, d'où g = e (car l'action de G est libre) et z'=z. Pour la surjectivité de ϕ , soit $z_2 \in P_2$, il existe alors (par surjectivité de $\overline{\phi}$) un point $x_1 \in M_1$ tel que $\overline{\phi}(x_1) = \pi_2(z_2)$. Considérons $z_1 \in P_1$ tel que $\pi_1(z_1) = x_1$. D'où $\overline{\phi}(\pi_1(z_1)) = \pi_2(z_2)$ et parsuite $\pi_2(\phi(z_1)) = \pi_2(z_2)$. L'action de G sur les fibres étant transitive, il existe alors $g \in G$ tel que $z_2 = \phi(z_1) \cdot g$.

Réciproquement, supposons que $\overline{\phi}$ est un difféomorphisme. Pour montrer l'injectivité de ϕ , soit $z, z' \in P_1$ tels que $\phi(z) = \phi(z')$. Donc $\pi_2 \circ \phi(z) = \pi_2 \circ \phi(z')$ et parsuite $\overline{\phi}(\pi_1(z)) = \overline{\phi}(\pi_1(z'))$. Et puisque $\overline{\phi}$ est injective, on obtient $\pi_1(z) = \pi_1(z')$. Il existe alors $g \in G$ tel que $z' = z \cdot g$, et donc $\phi(z') = \phi(z \cdot g) = \phi(z) \cdot g$. Or $\phi(z') = \phi(z)$, Ce qui implique $\phi(z) \cdot g = \phi(z)$, d'où g = e (car l'action de G est libre) et z'=z. Pour la surjectivité de ϕ , soit $z_2 \in P_2$, il existe alors (par surjectivité de $\overline{\phi}$) un point $x_1 \in M_1$ tel que $\overline{\phi}(x_1) = \pi_2(z_2)$. Considérons $z_1 \in P_1$ tel que $\pi_1(z_1) = x_1$. D'où $\overline{\phi}(\pi_1(z_1)) = \pi_2(z_2)$ et parsuite $\pi_2(\phi(z_1)) = \pi_2(z_2)$. L'action de G sur les fibres étant transitive, il existe alors $g \in G$ tel que $z_2 = \phi(z_1) \cdot g$. L'équivariance de ϕ donne alors $z_2 = \phi(z_1 \cdot g)$. Ainsi ϕ est bijective.

Pour montrer que $\phi^{-1}: P_2 \to P_1$ est différentiable, on va utiliser des trivialisations locales.

Pour montrer que $\phi^{-1}: P_2 \to P_1$ est différentiable, on va utiliser des trivialisations locales. Soit $\pi_2^{-1}(U_2) \cong U_2 \times G$ et $\pi_1^{-1}(U_1) \cong U_1 \times G$ deux trivialisations locaux respectivement de $P_2 \to M$ et $P_1 \to M$ tels que $\overline{\phi}(U_1) = U_2$.

Pour montrer que $\phi^{-1}: P_2 \to P_1$ est différentiable, on va utiliser des trivialisations locales. Soit $\pi_2^{-1}(U_2) \cong U_2 \times G$ et $\pi_1^{-1}(U_1) \cong U_1 \times G$ deux trivialisations locaux respectivement de $P_2 \to M$ et $P_1 \to M$ tels que $\overline{\phi}(U_1) = U_2$. L'expression locale de la restriction de ϕ à l'ouvert $\pi_1^{-1}(U_1)$ est de la forme

$$\phi: U_1 \times G \to U_2 \times G, \quad (x,g) \mapsto (\overline{\phi}(x), h(x) \cdot g)$$

où $h: U_1 \to G$ est une application différentiable.

Pour montrer que $\phi^{-1}: P_2 \to P_1$ est différentiable, on va utiliser des trivialisations locales. Soit $\pi_2^{-1}(U_2) \cong U_2 \times G$ et $\pi_1^{-1}(U_1) \cong U_1 \times G$ deux trivialisations locaux respectivement de $P_2 \to M$ et $P_1 \to M$ tels que $\overline{\phi}(U_1) = U_2$. L'expression locale de la restriction de ϕ à l'ouvert $\pi_1^{-1}(U_1)$ est de la forme

$$\phi: U_1 \times G \to U_2 \times G, \quad (x,g) \mapsto (\overline{\phi}(x), h(x) \cdot g)$$

où $h: U_1 \to G$ est une application différentiable. Donc l'expression locale de ϕ^{-1} est de la forme

$$\phi^{-1}: U_2 \times G \to U_1 \times G, \quad (x,g) \mapsto (\overline{\phi}^{-1}(x), h(x)^{-1} \cdot g)$$

qui est alors différentiable puisque l'application $g \mapsto g^{-1}$ est différentiable (puisque G est un groupe de Lie).

Soit $\pi: P \to M$ un G-fibré principal et $\rho: G \to \mathrm{Diff}(F)$ une action différentiable à gauche.

Soit $\pi: P \to M$ un G-fibré principal et $\rho: G \to \mathrm{Diff}(F)$ une action différentiable à gauche. On peut alors définir une action à droite de G sur $P \times F$ par $(z, y) \cdot g := (z \cdot g, g^{-1} \cdot y)$.

Soit $\pi: P \to M$ un G-fibré principal et $\rho: G \to \operatorname{Diff}(F)$ une action différentiable à gauche. On peut alors définir une action à droite de G sur $P \times F$ par $(z,y) \cdot g := (z \cdot g, g^{-1} \cdot y)$. On note alors $P \times_G F$ (ou $P \times_\rho F$) l'espace des orbites et soit [z,y] l'orbite de $(z,y) \in P \times F$. On désignera par $g: P \times F \to P \times_G F$ la projection canonique.

Soit $\pi: P \to M$ un G-fibré principal et $\rho: G \to \operatorname{Diff}(F)$ une action différentiable à gauche. On peut alors définir une action à droite de G sur $P \times F$ par $(z,y) \cdot g := (z \cdot g, g^{-1} \cdot y)$. On note alors $P \times_G F$ (ou $P \times_\rho F$) l'espace des orbites et soit [z,y] l'orbite de $(z,y) \in P \times F$. On désignera par $q: P \times F \to P \times_G F$ la projection canonique. Lorsque (z,y) et (z',y') sont sur une même orbite, alors $z'=z \cdot g$ pour un certain g, et donc $\pi(z)=\pi(z')$.

Soit $\pi: P \to M$ un G-fibré principal et $\rho: G \to \operatorname{Diff}(F)$ une action différentiable à gauche. On peut alors définir une action à droite de G sur $P \times F$ par $(z,y) \cdot g := (z \cdot g, g^{-1} \cdot y)$. On note alors $P \times_G F$ (ou $P \times_\rho F$) l'espace des orbites et soit [z,y] l'orbite de $(z,y) \in P \times F$. On désignera par $g: P \times F \to P \times_G F$ la projection canonique. Lorsque (z,y) et (z',y') sont sur une même orbite, alors $z'=z \cdot g$ pour un certain g, et donc $\pi(z)=\pi(z')$. On peut ainsi définir une application :

$$p: P \times_G F \to M, \quad p([z, y]) := \pi(z).$$

On obtient ainsi un diagramme commutatif :

Pour un G-fibré principal $\pi: P \to M$ et une action différentiable $\rho: G \to \mathrm{Diff}(F)$, on a :

1 $E := P \times_{\rho} F \xrightarrow{p} M$ est un fibré (différentiable localement trivial) de fibre-type F et l'application $q : P \times F \to P \times_G F$ est un morphisme de fibrés.

- $E := P \times_{\rho} F \xrightarrow{\rho} M$ est un fibré (différentiable localement trivial) de fibre-type F et l'application $g : P \times F \to P \times_G F$ est un morphisme de fibrés.
- ② Pour tout $z \in P_m$, l'application $\widetilde{z} : y \mapsto [z, y]$ est un difféomorphisme de F sur la fibre E_m .

- $E := P \times_{\rho} F \xrightarrow{p} M$ est un fibré (différentiable localement trivial) de fibre-type F et l'application $q : P \times F \to P \times_{G} F$ est un morphisme de fibrés.
- ② Pour tout $z \in P_m$, l'application $\widetilde{z} : y \mapsto [z, y]$ est un difféomorphisme de F sur la fibre E_m .
- Si F un IK-espace vectoriel (de dimension finie) et ρ: G → GL(F) un homomorphisme de groupes de Lie de G, le fibré E = P ×_ρ F → M possède alors une structure naturelle de fibré vectoriel.

- $E := P \times_{\rho} F \xrightarrow{p} M$ est un fibré (différentiable localement trivial) de fibre-type F et l'application $g : P \times F \to P \times_{G} F$ est un morphisme de fibrés.
- ② Pour tout $z \in P_m$, l'application $\widetilde{z} : y \mapsto [z, y]$ est un difféomorphisme de F sur la fibre E_m .
- ③ Si F un IK-espace vectoriel (de dimension finie) et $\rho: G \to GL(F)$ un homomorphisme de groupes de Lie de G, le fibré $E = P \times_{\rho} F \to M$ possède alors une structure naturelle de fibré vectoriel.
- La projection $q: P \times F \to P \times_G F$ est un G-fibré principal et $p_1: P \times F \to P$ est un morphisme de fibrés principaux.

Soit (U_{α}) un recouvrement de M par des ouverts trivialisant le fibré principal $P \to M$. Pour tout α , on a une section locale $\sigma_{\alpha}: U_{\alpha} \to P$.

Soit (U_{α}) un recouvrement de M par des ouverts trivialisant le fibré principal $P \to M$. Pour tout α , on a une section locale $\sigma_{\alpha}: U_{\alpha} \to P$. Ces sections sont reliés par

$$\sigma_{\beta}(x) = \sigma_{\alpha}(x) \cdot g_{\alpha\beta}(x), \quad x \in U_{\alpha} \cap U_{\beta}$$

où $g_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to G$ sont différentiables.

Soit (U_{α}) un recouvrement de M par des ouverts trivialisant le fibré principal $P \to M$. Pour tout α , on a une section locale $\sigma_{\alpha}: U_{\alpha} \to P$. Ces sections sont reliés par

$$\sigma_{\beta}(x) = \sigma_{\alpha}(x) \cdot g_{\alpha\beta}(x), \quad x \in U_{\alpha} \cap U_{\beta}$$

où $g_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to G$ sont différentiables. Pour tout α , on définit l'application

$$\varphi_{\alpha}:U_{\alpha} imes F o p^{-1}(U_{\alpha}),\quad (x,y)\mapsto q(\sigma_{\alpha}(x),y)$$

qui a bien un sens puisque $p(q(\sigma_{\alpha}(x), y)) = x \in U_{\alpha}$.

Soit (U_{α}) un recouvrement de M par des ouverts trivialisant le fibré principal $P \to M$. Pour tout α , on a une section locale $\sigma_{\alpha}: U_{\alpha} \to P$. Ces sections sont reliés par

$$\sigma_{\beta}(x) = \sigma_{\alpha}(x) \cdot g_{\alpha\beta}(x), \quad x \in U_{\alpha} \cap U_{\beta}$$

où $g_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to G$ sont différentiables. Pour tout α , on définit l'application

$$\varphi_{\alpha}: U_{\alpha} \times F \to p^{-1}(U_{\alpha}), \quad (x, y) \mapsto q(\sigma_{\alpha}(x), y)$$

qui a bien un sens puisque $p(q(\sigma_{\alpha}(x), y)) = x \in U_{\alpha}$. En plus, pour tout $x \in F$, l'application $\varphi_{\alpha,x} : y \mapsto [\sigma_{\alpha}(x), y]$ est une bijection de F sur $p^{-1}(x)$. Ce qui permet de déduire que φ_{α} est une bijection.

Il est en plus facile de vérifier que les chagements

$$\varphi_{\alpha}^{-1} \circ \varphi_{\beta} : U_{\alpha} \cap U_{\beta} \times F \to U_{\alpha} \cap U_{\beta} \times F$$

sont données par :

$$\varphi_{\alpha}^{-1}\circ\varphi_{\beta}(x,y)=(x,g_{\alpha\beta}(x)\cdot y)$$

qui sont donc des difféomorphismes.

Il est en plus facile de vérifier que les chagements

$$\varphi_{\alpha}^{-1} \circ \varphi_{\beta} : U_{\alpha} \cap U_{\beta} \times F \to U_{\alpha} \cap U_{\beta} \times F$$

sont données par :

$$\varphi_{\alpha}^{-1} \circ \varphi_{\beta}(x, y) = (x, g_{\alpha\beta}(x) \cdot y)$$

qui sont donc des difféomorphismes. Ce qui permet de munir $P \times_G F \to M$ d'une structure de fibré différentiable localement trivial.

Les autres points sont laissés à titre d'exercice.

Tout fibré vectoriel est un fibré associé

Exemple

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel et $R(E) \to M$ le fibré des repères, c'est un $GL(n,\mathbb{R})$ -fibré principal. Pour la représentation canonique de $GL(n,\mathbb{R})$ dans \mathbb{R}^n ,

Tout fibré vectoriel est un fibré associé

Exemple

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel et $R(E) \to M$ le fibré des repères, c'est un $GL(n,\mathbb{R})$ -fibré principal. Pour la représentation canonique de $GL(n,\mathbb{R})$ dans \mathbb{R}^n , on peut donc reconstruire un fibré vectoriel associé $R(E) \times_{GL(n,\mathbb{R})} \mathbb{R}^n$.

Tout fibré vectoriel est un fibré associé

Exemple

Soit $E \to M$ un \mathbb{R}^n -fibré vectoriel et $R(E) \to M$ le fibré des repères, c'est un $GL(n,\mathbb{R})$ -fibré principal. Pour la représentation canonique de $GL(n,\mathbb{R})$ dans \mathbb{R}^n , on peut donc reconstruire un fibré vectoriel associé $R(E) \times_{GL(n,\mathbb{R})} \mathbb{R}^n$. Alors celui-ci est canoniquement isomorphe à E:

$$R(E) \times_{GL(n,\mathbb{R})} \mathbb{R}^n \stackrel{\cong}{\longrightarrow} E, \quad [z,v] \mapsto z(v).$$

Sections d'un fibré associé

Proposition

Soit $\pi: P \to M$ un H-fibré principal et $H \times F \to F$ une action différentiable. Alors il existe une bijection naturelle entre l'espace des sections différentiables $\Gamma(P \times_H F)$ du fibré associé $P \times_H F \to M$ et l'espace $C^\infty(P,F)^H$ des fonctions H-équivariantes $f: P \to F$ i.e. qui vérifient $f(z.a) = a^{-1}.f(z)$. Explicitement, cette correspondance est donnée par $s(\pi(z)) = [z, f(z)]$.

Sections d'un fibré associé

Proposition

Soit $\pi: P \to M$ un H-fibré principal et $H \times F \to F$ une action différentiable. Alors il existe une bijection naturelle entre l'espace des sections différentiables $\Gamma(P \times_H F)$ du fibré associé $P \times_H F \to M$ et l'espace $C^\infty(P,F)^H$ des fonctions H-équivariantes $f: P \to F$ i.e. qui vérifient $f(z.a) = a^{-1}.f(z)$. Explicitement, cette correspondance est donnée par $s(\pi(z)) = [z, f(z)]$.

Démonstration. Partant de $f: P \to F$ équivariante, on pose $\sigma(x) := [z, f(z)]$ où $z \in P_x$. Réciproquement, soit σ est une section C^{∞} de $P \times_H F \to M$. Pour tout $z \in P$, il existe un unique élément $f(z) \in F$ tel que $\sigma(\pi(z)) = [z, f(z)]$. On obtient ainsi une application $f: P \to F$.

(Fibré universel : $V(n,k) \rightarrow G(n,k)$)

On a une projection canonique

$$\pi_k: V(n,k) \to G(n,k), \quad \pi_k(u_1,\cdots,u_k) = \text{vect}\{u_1,\cdots,u_k\}$$
 est un $O(k)$ -fibré principal appelé le fibré universel au dessus de $G(n,k)$.

(Fibré universel : $\overline{V(n,k) o G(n,k))}$

On a une projection canonique

$$\pi_k: V(n,k) \to G(n,k), \quad \pi_k(u_1, \cdots, u_k) = \text{vect}\{u_1, \cdots, u_k\}$$

est un O(k)-fibré principal appelé le fibré universel au dessus de G(n, k).

Une autre façon de décrire ce fibré : On identifie V(n, k) à l'ensemble I(n, k) des isométries euclidiennes $f : \mathbb{R}^k \hookrightarrow \mathbb{R}^n$.

(Fibré universel : $\overline{V(n,k)} ightarrow G(n,k)$)

On a une projection canonique

$$\pi_k: V(n,k) \to G(n,k), \quad \pi_k(u_1,\cdots,u_k) = \text{vect}\{u_1,\cdots,u_k\}$$

est un $O(k)$ -fibré principal appelé le fibré universel au dessus

est un O(k)-fibré principal appelé le fibré universel au dessus de G(n, k).

Une autre façon de décrire ce fibré : On identifie V(n, k) à l'ensemble I(n, k) des isométries euclidiennes $f : \mathbb{R}^k \hookrightarrow \mathbb{R}^n$. Le groupe O(k) opère à droite sur I(n, k) par l'action : $f \cdot A := f \circ a$ (où a est l'isométrie de \mathbb{R}^k ayant A comme matrice relativement à la base canonique $\{e_1, \dots, e_k\}$).

(Fibré universel : $\overline{V(n,k)} ightarrow \overline{G(n,k)}$)

On a une projection canonique

$$\pi_k: V(n,k) \to G(n,k), \quad \pi_k(u_1,\cdots,u_k) = \text{vect}\{u_1,\cdots,u_k\}$$

est un O(k)-fibré principal appelé le fibré universel au dessus de G(n, k).

Une autre façon de décrire ce fibré : On identifie V(n,k) à l'ensemble I(n,k) des isométries euclidiennes $f: \mathbb{R}^k \hookrightarrow \mathbb{R}^n$. Le groupe O(k) opère à droite sur I(n,k) par l'action : $f \cdot A := f \circ a$ (où a est l'isométrie de \mathbb{R}^k ayant A comme matrice relativement à la base canonique $\{e_1, \dots, e_k\}$). Nous

avons un difféomorphisme O(k)-équivariant

$$I(n,k) \stackrel{\cong}{\to} V(n,k), \quad f \mapsto f(e_1,\cdots,e_k)..$$

(Fibré universel : $\overline{V(n,k)} ightarrow \mathcal{G}(n,k)$ **)**

On a une projection canonique

$$\pi_k: V(n,k) \to G(n,k), \quad \pi_k(u_1,\cdots,u_k) = \text{vect}\{u_1,\cdots,u_k\}$$

est un O(k)-fibré principal appelé le fibré universel au dessus de G(n,k).

Une autre façon de décrire ce fibré : On identifie V(n, k) à l'ensemble I(n, k) des isométries euclidiennes $f : \mathbb{R}^k \hookrightarrow \mathbb{R}^n$.

Le groupe O(k) opère à droite sur I(n,k) par l'action : $f\cdot A:=f\circ a$ (où a est l'isométrie de ${\rm I\!R}^k$ ayant A comme

matrice relativement à la base canonique $\{e_1, \dots, e_k\}$). Nous avons un difféomorphisme O(k)-équivariant

 $I(n,k) \stackrel{\cong}{\to} V(n,k)$, $f \mapsto f(e_1, \dots, e_k)$.. Ce qui permet d'obtenir une définition équivalente du fibré universel :

$$p_k: I(n,k) \to G(n,k), \quad p_k(f) = f(\mathbb{R}^k).$$

Exemple

(Le fibré de Hopf) Pour k = 1, $V(n,1) = S^{n-1}$, $G(n,1) = \mathbb{R}P^{n-1}$ et $O(1) = \mathbb{Z}_2$. Dans le cas complexe, on obtient un S^1 -fibré principal $S^{2n-1} \to \mathbb{C}P^{n-1}$.

Exemple

(Le fibré de Hopf) Pour k = 1, $V(n, 1) = S^{n-1}$,

 $G(n,1) = \mathbb{R}P^{n-1}$ et $O(1) = \mathbb{Z}_2$. Dans le cas complexe, on obtient un S^1 -fibré principal $S^{2n-1} \to \mathbb{C}P^{n-1}$.

Proposition

Soit $\pi:P\to M$ un O(k)-fibré principal. Alors, il existe (pour un certain $n\geq k$) un homorphisme de O(k)-fibrés principaux

$$P \xrightarrow{\phi} I(n,k)$$

$$\uparrow \qquad \qquad \downarrow \pi_k$$

$$M \xrightarrow{\psi} G(n,k)$$

Et donc $P \to M$ est isomorphe au fibré pull-back $\psi^*(I(n,k)) \to M$.

Fibré vectoriel universel $E(n, k) \rightarrow G(n, k)$

On définit

$$E(n,k) := \{ (V,v) \in G(n,k) \times \mathbb{R}^n / v \in V \}$$

Alors la projection canonique $p_k : E(n,k) \to G(n,k)$ (p(V,v)=V) est un \mathbb{R}^k -fibré vectoriel canoniquement isomorphe au fibré vectoriel associé au fibré principal $I(n,k) \to G(n,k)$ et à la représentation canonique de O(k) dans \mathbb{R}^k .

Fibré vectoriel universel $E(n, k) \rightarrow G(n, k)$

On définit

$$E(n,k) := \{ (V,v) \in G(n,k) \times \mathbb{R}^n / v \in V \}$$

Alors la projection canonique $p_k: E(n,k) \to G(n,k)$ (p(V,v)=V) est un \mathbb{R}^k -fibré vectoriel canoniquement isomorphe au fibré vectoriel associé au fibré principal $I(n,k) \to G(n,k)$ et à la représentation canonique de O(k) dans \mathbb{R}^k .

En effet, il suffit de considérer la bijection :

$$\phi: I(n,k) \times_{O(k)} \mathbb{R}^k \xrightarrow{\cong} E(n,k), \quad [f,v] \mapsto (f(\mathbb{R}^k),f(v))$$

et puis munir E(n, k) de la structure différentiable de façon que ϕ devient un difféomorphisme.

Cas du fibré tangent

Considérons par exemple $M \subset \mathbb{R}^n$ une sous-variété de dimension k. Alors pour tout $x \in M$, l'espace tangent T_xM est un k-sous espace vectoriel de \mathbb{R}^n ,

Cas du fibré tangent

Considérons par exemple $M \subset \mathbb{R}^n$ une sous-variété de dimension k. Alors pour tout $x \in M$, l'espace tangent T_xM est un k-sous espace vectoriel de \mathbb{R}^n , on peut interpréter $x \mapsto T_xM$ comme étant une application différentiable $\psi: M \to G(n,k)$

Cas du fibré tangent

Considérons par exemple $M \subset \mathbb{R}^n$ une sous-variété de dimension k. Alors pour tout $x \in M$, l'espace tangent T_xM est un k-sous espace vectoriel de \mathbb{R}^n , on peut interpréter $x \mapsto T_xM$ comme étant une application différentiable $\psi: M \to G(n,k)$ et nous avons un diagramme commutatif :

Et parsuite $p: TM \to M$ est isomorphe au fibré pull-back $\psi^*(E(n,k)) \to M$.

Fibré tangent d'un espace homogène

H un sous-groupe de Lie fermé d'un groupe de Lie G, aux trois représentations : $\operatorname{Ad}: H \to \operatorname{GL}(\mathcal{H})$, $\operatorname{Ad}: H \to \operatorname{GL}(\mathcal{G})$ et $\overline{Ad}: H \to \operatorname{GL}(\mathcal{G}/\mathcal{H})$,

Fibré tangent d'un espace homogène

H un sous-groupe de Lie fermé d'un groupe de Lie G, aux trois représentations : $\operatorname{Ad}: H \to \operatorname{GL}(\mathcal{H})$, $\operatorname{Ad}: H \to \operatorname{GL}(\mathcal{G})$ et $\overline{Ad}: H \to \operatorname{GL}(\mathcal{G}/\mathcal{H})$, on peut faire correspondre trois fibrés associés de base G/H :

$$G \times_H \mathcal{H}$$
, $G \times_H \mathcal{G}$ et $G \times_H (\mathcal{G}/\mathcal{H})$

Fibré tangent d'un espace homogène

H un sous-groupe de Lie fermé d'un groupe de Lie G, aux trois représentations : $\operatorname{Ad}: H \to \operatorname{GL}(\mathcal{H})$, $\operatorname{Ad}: H \to \operatorname{GL}(\mathcal{G})$ et $\overline{Ad}: H \to GL(\mathcal{G}/\mathcal{H})$, on peut faire correspondre trois fibrés associés de base G/H :

$$G \times_H \mathcal{H}$$
, $G \times_H \mathcal{G}$ et $G \times_H (\mathcal{G}/\mathcal{H})$

Théorème

- ① L'application : $G \times_H (\mathcal{G}/\mathcal{H}) \stackrel{\cong}{\longrightarrow} T(G/H)$, définie par : $[g, X + \mathcal{H}] \mapsto \frac{d}{dt}|_{t=0} g \exp(tX)H$, est un isomorphisme du fibré $G \times_H (\mathcal{G}/\mathcal{H})$ sur le fibréT(G/H).
- 2 Le fibré $G \times_H G$ est trivial.
- **3** La somme de Whitney $(G \times_H (\mathcal{G}/\mathcal{H})) \oplus (G \times_H \mathcal{H})$ est trivial.

• L'action homogène de G sur G/H induit par différentiation une action de G sur T(G/H) de façon que le fibré tangent $p: T(G/H) \to G/H$ devient un G-fibré vectoriel (la projection p est équivariante).

• L'action homogène de G sur G/H induit par différentiation une action de G sur T(G/H) de façon que le fibré tangent p : T(G/H) → G/H devient un G-fibré vectoriel (la projection p est équivariante). Il en résulte que par restriction, nous obtenons une application différentiable :

$$G \times T_{\overline{e}}(G/H) \to T(G/H), \quad (g, Z) \mapsto g \cdot Z$$

• L'action homogène de G sur G/H induit par différentiation une action de G sur T(G/H) de façon que le fibré tangent p : T(G/H) → G/H devient un G-fibré vectoriel (la projection p est équivariante). Il en résulte que par restriction, nous obtenons une application différentiable :

$$G \times T_{\overline{e}}(G/H) \to T(G/H), \quad (g, Z) \mapsto g \cdot Z$$

Celle-ci passe au quotient et induit un difféomorphisme

$$G \times_H T_{\overline{e}}(G/H) \stackrel{\cong}{\longrightarrow} T(G/H)$$

• L'action homogène de G sur G/H induit par différentiation une action de G sur T(G/H) de façon que le fibré tangent p : T(G/H) → G/H devient un G-fibré vectoriel (la projection p est équivariante). Il en résulte que par restriction, nous obtenons une application différentiable :

$$G \times T_{\overline{e}}(G/H) \to T(G/H), \quad (g, Z) \mapsto g \cdot Z$$

Celle-ci passe au quotient et induit un difféomorphisme

$$G \times_H T_{\overline{e}}(G/H) \stackrel{\cong}{\longrightarrow} T(G/H)$$

En utilisant ensuite l'isomorphisme linéaire $\mathcal{G}/\mathcal{H} \stackrel{\cong}{\to} T_{\overline{e}}(G/H), \quad X + \mathcal{H} \mapsto T_e\pi(X)$, on obtient le résultat.

• L'application $\varphi: G/H \times \mathcal{G} \to G \times_H \mathcal{G}$ définie par

$$\varphi(aH,X) = [a, \operatorname{Ad}_{a^{-1}}(X)]$$

est un isomorphisme du fibré trivial $G/H \times \mathcal{G} \to G/H$ sur $G \times_H \mathcal{G} \to G/H$.

• L'application $\varphi: G/H \times \mathcal{G} \to G \times_H \mathcal{G}$ définie par

$$\varphi(\mathsf{aH},\mathsf{X}) = [\mathsf{a},\mathrm{Ad}_{\mathsf{a}^{-1}}(\mathsf{X})]$$

est un isomorphisme du fibré trivial $G/H \times \mathcal{G} \to G/H$ sur $G \times_H \mathcal{G} \to G/H$.

• On a une suite exacte courte naturelle de fibrés vectoriels

$$0 \to (G \times_{H} \mathcal{H}) \to (G \times_{H} \mathcal{G}) \to (G \times_{H} (\mathcal{G}/\mathcal{H})) \to 0$$

d'où le résultat.

Puisque la variété $G(n, k) \cong O(n)/O(k) \times O(n - k)$ et qui est un espace homogène réductif;

Puisque la variété $G(n,k)\cong O(n)/O(k)\times O(n-k)$ et qui est un espace homogène réductif; de manière plus précise on peut considérer le sous-espace $\mathcal{M}\subset so(n)$ des matrices antisymétriques de la forme $\begin{pmatrix} 0 & B \\ -B^t & 0 \end{pmatrix}$.

Puisque la variété $G(n,k)\cong O(n)/O(k)\times O(n-k)$ et qui est un espace homogène réductif ; de manière plus précise on peut considérer le sous-espace $\mathcal{M}\subset so(n)$ des matrices antisymétriques de la forme $\begin{pmatrix} 0 & B \\ -B^t & 0 \end{pmatrix}$. Ce sous-espace est stable par la représentation adjointe de $O(k)\times O(n-k)$ puisqu'on a :

$$\left(\begin{array}{cc} A & 0 \\ 0 & D \end{array}\right) \left(\begin{array}{cc} 0 & B \\ -B^t & 0 \end{array}\right) \left(\begin{array}{cc} A^t & 0 \\ 0 & D^t \end{array}\right) = \left(\begin{array}{cc} 0 & ABD^t \\ -DB^tA^t & 0 \end{array}\right)$$

Puisque la variété $G(n,k)\cong O(n)/O(k)\times O(n-k)$ et qui est un espace homogène réductif ; de manière plus précise on peut considérer le sous-espace $\mathcal{M}\subset so(n)$ des matrices antisymétriques de la forme $\begin{pmatrix} 0 & B \\ -B^t & 0 \end{pmatrix}$. Ce sous-espace est stable par la représentation adjointe de $O(k)\times O(n-k)$ puisqu'on a :

$$\left(\begin{array}{cc} A & 0 \\ 0 & D \end{array}\right) \left(\begin{array}{cc} 0 & B \\ -B^t & 0 \end{array}\right) \left(\begin{array}{cc} A^t & 0 \\ 0 & D^t \end{array}\right) = \left(\begin{array}{cc} 0 & ABD^t \\ -DB^tA^t & 0 \end{array}\right)$$

Autrement dit, \mathcal{M} s'identifie à l'espace des matrices $B \in M_{k,n-k}(\mathbb{R})$ muni de l'action de $O(k) \times O(n-k)$ donnée par : $(A,D) \cdot B := ABD^t$. On obtient ainsi :

$$T(G(n,k)) \cong O(n) \times_{O(k) \times O(n-k)} M_{k,n-k}(\mathbb{R}).$$

94

Parallélisabilité

Définition

Une variété M (de dimension n) est dite parallélisable si son fibré tangent est trivial.

Parallélisabilité

Définition

Une variété M (de dimension n) est dite parallélisable si son fibré tangent est trivial.

Exemple

- Tout groupe de Lie est parallélisable.
- ② Des sphères S^n seules S^1 , S^3 et S^7 sont parallélisables. En particulier la sphère S^2 ne l'est pas.
- **1** Les variétés de Stiefel V(n, k) pour $n \ge k \ge 2$ sont parallélisables.
- Comme autres exemples d'espaces homogènes non parallélisable, on peut considérer $U(n)/T^n$ avec T^n le sous-groupe des matrices $Diag(z_1, \dots, z_n)$ où les z_j sont des nombres complexes de module 1.

Réduction du groupe structural

Soit H un sous-groupe de Lie fermé dans G. Un H-sous-fibré principal $Q \to M$ d'un fibré G-fibré principal $P \to M$ est un H-fibré principal dont l'espace total Q est une sous-variété de P stable par la restriction à H de l'action à droite de G sur P.

Réduction du groupe structural

Soit H un sous-groupe de Lie fermé dans G. Un H-sous-fibré principal $Q \to M$ d'un fibré G-fibré principal $P \to M$ est un H-fibré principal dont l'espace total Q est une sous-variété de P stable par la restriction à H de l'action à droite de G sur P. Par exemple, si M est une variété riemannienne de dimension n, l'ensemble RO(M) des repères orthonormés du fibré tangent TM forment un O(n)-sous-fibré principal du $GL(n,\mathbb{R})$ -fibré principal R(M) de tous les repères de TM.

Exercice

Soit $H \subset G$ un sous-groupe fermé, et Q un H-sous-fibré principal de d'un G-fibré principal P. Soit $\rho_H: H \to \mathrm{Diff}(F)$ la restriction à H d'une action de $\rho: G \to \mathrm{Diff}(F)$. Montrer que les fibrés associés $F \times_{\rho_H} Q$ et $F \times_{\rho} P$ sont isomorphes.

Exercice

Soit $H \subset G$ un sous-groupe fermé, et Q un H-sous-fibré principal de d'un G-fibré principal P. Soit $\rho_H: H \to \mathrm{Diff}(F)$ la restriction à H d'une action de $\rho: G \to \mathrm{Diff}(F)$. Montrer que les fibrés associés $F \times_{\rho_H} Q$ et $F \times_{\rho} P$ sont isomorphes.

Exercice

Montrer que

$$P \times_G (G/H) \cong P/H$$

Il revient au même de se donner un H-sous-fibré principal de P ou une section s du fibré en espaces homogènes $P \times_G (G/H) \to M$ associé à P par l'action à gauche de G sur G/H.

Il revient au même de se donner un H-sous-fibré principal de P ou une section s du fibré en espaces homogènes $P \times_G (G/H) \to M$ associé à P par l'action à gauche de G sur G/H.

Soit Q un H-sous fibré principal d'un G-fibré principal $\pi:P\to M$. Pour tout point $m\in M$ choisissons arbitrairement un élément q_m de la fibre Q_m de Q en m.

Il revient au même de se donner un H-sous-fibré principal de P ou une section s du fibré en espaces homogènes $P \times_G (G/H) \to M$ associé à P par l'action à gauche de G sur G/H.

Soit Q un H-sous fibré principal d'un G-fibré principal $\pi:P\to M$. Pour tout point $m\in M$ choisissons arbitrairement un élément q_m de la fibre Q_m de Q en m. L'élément $[q_m,\overline{e}]$ de $P\times_G(G/H)$ ne dépend pas du choix de q_m car les éléments (q_m,\overline{e}) et $(q_m.h,\overline{e})$ sont équivalents modulo H.

Il revient au même de se donner un H-sous-fibré principal de P ou une section s du fibré en espaces homogènes $P \times_G (G/H) \to M$ associé à P par l'action à gauche de G sur G/H.

Soit Q un H-sous fibré principal d'un G-fibré principal $\pi:P\to M$. Pour tout point $m\in M$ choisissons arbitrairement un élément q_m de la fibre Q_m de Q en m. L'élément $[q_m,\overline{e}]$ de $P\times_G(G/H)$ ne dépend pas du choix de q_m car les éléments (q_m,\overline{e}) et $(q_m.h,\overline{e})$ sont équivalents modulo H. On définit ainsi une section s du fibré $(G/H)\times_GP\to M$ en posant $s(m)=[q_m,\overline{e}]$.

Il revient au même de se donner un H-sous-fibré principal de P ou une section s du fibré en espaces homogènes $P \times_G (G/H) \to M$ associé à P par l'action à gauche de G sur G/H.

Soit Q un H-sous fibré principal d'un G-fibré principal $\pi:P\to M$. Pour tout point $m\in M$ choisissons arbitrairement un élément q_m de la fibre Q_m de Q en m. L'élément $[q_m,\overline{e}]$ de $P\times_G(G/H)$ ne dépend pas du choix de q_m car les éléments (q_m,\overline{e}) et $(q_m.h,\overline{e})$ sont équivalents modulo H. On définit ainsi une section s du fibré $(G/H)\times_GP\to M$ en posant $s(m)=[q_m,\overline{e}]$.

Réciproquement, si s est une telle section, alors on obtient un H-sous fibré principal $Q \to M$ en considérant $Q := \{(z \in P \mid s(\pi(z))) = [z, \overline{e}]\}.$

Formes différentielles sur un fibré principal et Connexions

Abdelhak Abougateb

Université Cadi Ayyad
Faculté des sciences et Techniques Marrakech

Mini-cours dans le cadre de l'école EMA CIMPA - MIMS - UIR Rabat - 25 Juin au 07 juillet 2018

Formes différentielles :

Soit M une variété différentielle de dimension n.

Formes différentielles :

Soit M une variété différentielle de dimension n. Soit $p \in \{1, \ldots, n\}$. Une p-forme différentielle ω sur M est la donnée en tout point $x \in M$ d'une p-forme multilinéaire alternée ω_x sur l'espace tangent T_xM , telle pour toute famille X^1, \ldots, X^p de champs de vecteurs sur M, l'application :

$$\omega(X^1,\cdots,X^p): x\mapsto \omega_x(X^1_x,\cdots,X^p_x)$$

soit différentiable.

Formes différentielles :

Soit M une variété différentielle de dimension n. Soit $p \in \{1, \ldots, n\}$. Une p-forme différentielle ω sur M est la donnée en tout point $x \in M$ d'une p-forme multilinéaire alternée ω_x sur l'espace tangent T_xM , telle pour toute famille X^1, \ldots, X^p de champs de vecteurs sur M, l'application :

$$\omega(X^1,\cdots,X^p): x\mapsto \omega_x(X^1_x,\cdots,X^p_x)$$

soit différentiable.

Pour p = 0, une 0-forme différentielle sur M est la donnée d'une fonction $f \in C^{\infty}(M)$.

En d'autres termes, c'est aussi une section C^{∞} du fibré produit extérieur $\bigwedge^p T^*M$.

Par recollement:

On peut procéder par **recollement** pour définir une forme différentielle : partant d'un recouvrement de M par des ouverts (U_{α}) , on se donne une p-forme différentielle ω_{α} sur chaque U_{α} de façon que $\omega_{\alpha} = \omega_{\beta}$ sur chaque intersection $U_{\alpha} \cap U_{\beta}$ non vide. Il existe alors une unique p-forme différentielle ω définie globalement sur tout M, dont la restriction à chaque U_{α} coïncide avec U_{α} .

Image réciproque :

Pour toute application différentiable $\psi:M\to N$ d'une variété différentiable M dans une autre N, notons ψ_m' ou $(d\psi)_m$ l'application linéaire tangente $\psi_m':T_mM\to T_{\psi(m)}N$ en un point m de M. Pour $p\geq 1$, on définit l'image réciproque d'une p-forme $\omega\in\Omega^p(N)$ comme étant la p-forme $\psi^*\omega\in\Omega^p(M)$ obtenue en posant :

$$(\psi^*\omega)(X_1,\ldots,X_p)(m)=\omega_m\big(\psi_m'(X_1),\ldots,\psi_m'(X_p)\big) \text{ si } p\geq 1,$$
 et $\psi^*(f)=f\circ\psi$ pour une fonction $f\in\Omega^0(N).$

Différentielle extérieure :

C'est l'opérateur linéaire

$$d:\Omega^p(M)\to\Omega^{p+1}(M)$$

donné par :

$$d\omega(X^{0},\ldots,X^{p}) = \sum_{i=0}^{p} (-1)^{i} X^{i} (\omega(X^{0},\cdots,\widehat{X^{i}},\cdots,X^{p})) + \sum_{i < j} (-1)^{i+j} \omega([X^{i},X^{j}],X^{0},\cdots,\widehat{X^{i}},\cdots,X^{p})$$

Différentielle extérieure :

C'est l'opérateur linéaire

$$d:\Omega^p(M)\to\Omega^{p+1}(M)$$

donné par :

$$d\omega(X^0,\ldots,X^p) = \sum_{i=0}^p (-1)^i X^i (\omega(X^0,\cdots,\widehat{X^i},\cdots,X^p)) + \sum_{i < j} (-1)^{i+j} \omega([X^i,X^j],X^0,\cdots,\widehat{X^i},\cdots,X^p)$$

Expression locale:

$$d(fdx_I) = \sum_k \frac{\partial f}{\partial x_k} dx_k \wedge dx_I$$

Cohomologie de De-Rham

On a la propriété :

$$d \circ d = 0$$

Cohomologie de De-Rham

On a la propriété :

$$d \circ d = 0$$

On appellera p ième espace de cohomologie de de Rham de V le quotient :

$$H^p(M) = rac{\ker(d:\Omega^p(M) o \Omega^{p+1}(M))}{\operatorname{im}(d:\Omega^{p-1}(M) o \Omega^p(M))}$$

Cohomologie de De-Rham

On a la propriété :

$$d \circ d = 0$$

On appellera p ième espace de cohomologie de de Rham de V le quotient :

$$H^p(M) = rac{\ker(d:\Omega^p(M) o \Omega^{p+1}(M))}{\operatorname{im}(d:\Omega^{p-1}(M) o \Omega^p(M))}$$

La cohomologie de de Rham de M est l'espace vectoriel gradué

$$H^*(M) = \bigoplus_{p=0}^n H^p(M)$$

Pour $\psi: M \to N$, on a

$$\psi^* \circ d = d \circ \psi^*$$

Pour $\psi: M \to N$, on a

$$\psi^* \circ d = d \circ \psi^*$$

Ce qui permet d'obtenir

$$H^*(\psi): H^*(N) \to H^*(M)$$

Pour $\psi: M \to N$, on a

$$\psi^* \circ d = d \circ \psi^*$$

Ce qui permet d'obtenir

$$H^*(\psi): H^*(N) \to H^*(M)$$

On a:

$$H^*(\phi \circ \psi) = H^*(\phi) \circ H^*(\psi)$$

Soit M une variété différentiable sur laquelle opère (à droite) un groupe de Lie G.

Soit M une variété différentiable sur laquelle opère (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(M)$ on pose $g.\alpha = R_g^*(\alpha)$. Nous obtenons ainsi une action de G sur $\Omega(M)$.

Soit M une variété différentiable sur laquelle opère (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(M)$ on pose $g.\alpha = R_g^*(\alpha)$. Nous obtenons ainsi une action de G sur $\Omega(M)$. Cette action passe à la cohomologie et induit une action de G sur l'espace de cohomologie H(M).

Soit M une variété différentiable sur laquelle opère (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(M)$ on pose $g.\alpha = R_g^*(\alpha)$. Nous obtenons ainsi une action de G sur $\Omega(M)$. Cette action passe à la cohomologie et induit une action de G sur l'espace de cohomologie H(M).

Théorème

Supposons que G est compact. Alors

- L'inclusion $\iota: (\Omega(M))^G \subset \Omega(M)$ induit un morphisme injectif en cohomologie, dont l'image est l'algèbre $H(M)^G$ des éléments de la cohomologie qui sont invariants par G.
- ② Si un groupe de Lie G, à la fois compact et connexe, opère sur une variété M, ι induit un isomorphisme en cohomologie : $H(\iota)$: $H((\Omega(M))^G) \stackrel{\cong}{\longrightarrow} H(M)$.

Quelques applications

Corollaire

Soit G un groupe de Lie compact connexe.

- L'inclusion $(\Omega(G))^{l(G)} \subset \Omega(G)$ des formes différentielles invariantes à gauche, induit un isomorphisme en cohomologie.
- 2 Les formes différentielles bi-invariantes sur G sont fermées, et leur inclusion dans $\Omega(G)$ induit un isomorphisme en cohomologie : la cohomologie de de Rham de G s'identifie donc à l'algèbre des formes différentielles bi-invariantes.

Remarque

Le complexe $(\Omega(G))^{l(G)}$ des formes différentielles invariantes à gauche s'identifie au complexe $(\bigwedge \mathcal{G}^*, \partial)$ où l'expression de la différentielle $\partial : \bigwedge^k \mathcal{G}^* \to \bigwedge^{k+1} \mathcal{G}^*$ est donnée par :

$$\partial \alpha(u_0, \cdots, u_k) := \sum (-1)^{i+j} \alpha([u_i, u_j], u_0, \cdots, \hat{u}_i, \cdots, \hat{u}_j, \cdots, u_k)$$

Exemple 1. [Cohomologie de l'espace projectif réel \mathbb{RP}^n]

Exemple 1.[Cohomologie de l'espace projectif réel \mathbb{RP}^n] L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2 := \{-1, +1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $\nu: x \mapsto -x$).

Exemple 1.[Cohomologie de l'espace projectif réel \mathbb{RP}^n] L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2 := \{-1, +1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $\nu: x \mapsto -x$). La projection canonique $\pi: S^n \to \mathbb{RP}^n$ permet d'identifier les formes sur \mathbb{RP}^n aux formes sur S^n qui sont \mathbb{Z}_2 -invariantes,

Exemple 1.[Cohomologie de l'espace projectif réel \mathbb{RP}^n] L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2:=\{-1,+1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $\nu:x\mapsto -x$). La projection canonique $\pi:S^n\to\mathbb{RP}^n$ permet d'identifier les formes sur \mathbb{RP}^n aux formes sur S^n qui sont \mathbb{Z}_2 -invariantes, et par application du théorème nous obtenons :

$$H^p(\mathbb{RP}^n)\cong (H^p(S^n))^{\mathbb{Z}_2}$$

Par conséquent : $H^p(\mathbb{RP}^n)=0$ pour tout $p=1,\cdots,n-1$.

Par conséquent : $H^p(\mathbb{RP}^n) = 0$ pour tout $p = 1, \dots, n-1$. Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Par conséquent : $H^p(\mathbb{RP}^n) = 0$ pour tout $p = 1, \dots, n-1$. Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Et puisque $\nu^*(\omega) = (-1)^{n+1}\omega$, nous obtenons : $H^n(\mathbb{RP}^n) = 0$ si n est paire et $H^n(\mathbb{RP}^n) = Vect\{\overline{\omega}\}$ si n est impaire (où $\overline{\omega}$ est la n-forme sur \mathbb{RP}^n telle que $\pi^*(\omega) = \overline{\omega}$).

Par conséquent : $H^p(\mathbb{RP}^n) = 0$ pour tout $p = 1, \dots, n-1$. Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Et puisque $\nu^*(\omega) = (-1)^{n+1}\omega$, nous obtenons : $H^n(\mathbb{RP}^n) = 0$ si n est paire et $H^n(\mathbb{RP}^n) = Vect\{\overline{\omega}\}$ si n est impaire (où $\overline{\omega}$ est la n-forme sur \mathbb{RP}^n telle que $\pi^*(\omega) = \overline{\omega}$).

Notons aussi que si n est impaire, la forme $\overline{\omega}$ est une forme volume sur \mathbb{RP}^n qui est alors orientable. L'espace projectif n'est pas orientable dans le cas paire.

Soit $P \to M$ un G-fibré principal. Pour tout élément $A \in \mathcal{G}$,

Soit $P \to M$ un G-fibré principal. Pour tout élément $A \in \mathcal{G}$, on associe le champ de vecteurs complet A^* défini sur P par son flot :

$$\Phi^{A^*}(t,z) = z \cdot exp(tA)$$
 pour tout $z \in P$ et $t \in \mathbb{R}$.

Soit $P \to M$ un G-fibré principal. Pour tout élément $A \in \mathcal{G}$, on associe le champ de vecteurs complet A^* défini sur P par son flot :

$$\Phi^{A^*}(t,z) = z \cdot exp(tA)$$
 pour tout $z \in P$ et $t \in \mathbb{R}$.

 A^* est appelé champ de vecteurs fondamental associé à A.

Soit $P \to M$ un G-fibré principal. Pour tout élément $A \in \mathcal{G}$, on associe le champ de vecteurs complet A^* défini sur P par son flot :

$$\Phi^{A^*}(t,z) = z \cdot exp(tA)$$
 pour tout $z \in P$ et $t \in \mathbb{R}$.

 A^* est appelé champ de vecteurs fondamental associé à A.

Définition

Le fibré tangent vertical est le sous-fibré vectoriel $V(P)=\ker T\pi$ de TP au dessus de P. Un champ de vecteurs Z sur P sera dit vertical si $\pi_*(Z_z)=0$ pour tout $z\in P$, ce qui équivaut à ce que Z soit une section du fibré vertical $V(P)\to P$.

On désigne par V(P) le $C^{\infty}(P)$ -module des champs de vecteurs verticaux.

• Pour tous $A, B \in \mathcal{G}$ on $a : [A^*, B^*] = [A, B]^*$.

- ① Pour tous $A, B \in \mathcal{G}$ on $a : [A^*, B^*] = [A, B]^*$.
- 2 Pour tout $z \in P$, l'application $A \mapsto A_z^*$ est un isomorphisme linéaire de \mathcal{G} sur l'espace tangent à la fibre $P_{\pi(m)} = z \cdot G$

$$V(P)_z = \ker T_z \pi = T_z(z \cdot G)$$

- ① Pour tous $A, B \in \mathcal{G}$ on $a : [A^*, B^*] = [A, B]^*$.
- 2 Pour tout $z \in P$, l'application $A \mapsto A_z^*$ est un isomorphisme linéaire de \mathcal{G} sur l'espace tangent à la fibre $P_{\pi(m)} = z \cdot G$

$$V(P)_z = \ker T_z \pi = T_z(z \cdot G)$$

- ① Pour tous $A, B \in \mathcal{G}$ on $a : [A^*, B^*] = [A, B]^*$.
- 2 Pour tout $z \in P$, l'application $A \mapsto A_z^*$ est un isomorphisme linéaire de \mathcal{G} sur l'espace tangent à la fibre $P_{\pi(m)} = z \cdot G$

$$V(P)_z = \ker T_z \pi = T_z(z \cdot G)$$

L'application $(z, A) \mapsto A_z^*$ est un isomorphisme du fibré trivial $P \times \mathcal{G} \to P$ sur le fibré vertical $V(P) \to P$.

- ① Pour tous $A, B \in \mathcal{G}$ on $a : [A^*, B^*] = [A, B]^*$.
- 2 Pour tout $z \in P$, l'application $A \mapsto A_z^*$ est un isomorphisme linéaire de \mathcal{G} sur l'espace tangent à la fibre $P_{\pi(m)} = z \cdot G$

$$V(P)_z = \ker T_z \pi = T_z(z \cdot G)$$

L'application $(z, A) \mapsto A_z^*$ est un isomorphisme du fibré trivial $P \times \mathcal{G} \to P$ sur le fibré vertical $V(P) \to P$.

3 L'espace V(P) est $C^{\infty}(P)$ -module libre de type fini engendré par les champs de vecteurs fondamentaux.

Soit $\pi: P \to M$ un H-fibré principal. On dira qu'une forme différentielle $\beta \in \Omega(P)$ est basique s'il est à la fois H-invariante et satisfait $i_{A^*}\beta = 0$ pour tout $A \in \mathcal{H}$.

Soit $\pi: P \to M$ un H-fibré principal. On dira qu'une forme différentielle $\beta \in \Omega(P)$ est basique s'il est à la fois H-invariante et satisfait $i_{A^*}\beta = 0$ pour tout $A \in \mathcal{H}$. Ce qui équivaut, lorsque H est connexe, à

$$L_{A^*}\beta=0$$
 et $i_{A^*}\beta=0$.

Soit $\pi: P \to M$ un H-fibré principal. On dira qu'une forme différentielle $\beta \in \Omega(P)$ est basique s'il est à la fois H-invariante et satisfait $i_{A^*}\beta = 0$ pour tout $A \in \mathcal{H}$. Ce qui équivaut, lorsque H est connexe, à

$$L_{A^*}\beta = 0$$
 et $i_{A^*}\beta = 0$.

On désigne par $\Omega_b(P)$ l'espace des formes basiques.

Soit $\pi:P\to M$ un H-fibré principal. On dira qu'une forme différentielle $\beta\in\Omega(P)$ est basique s'il est à la fois H-invariante et satisfait $i_{A^*}\beta=0$ pour tout $A\in\mathcal{H}$. Ce qui équivaut, lorsque H est connexe, à

$$L_{A^*}\beta = 0$$
 et $i_{A^*}\beta = 0$.

On désigne par $\Omega_b(P)$ l'espace des formes basiques.

Proposition

L'homomorphisme $\pi^*: \Omega(M) \to \Omega(P)$ est injectif. L'image de π^* s'identifie à $\Omega_b(P)$.

L'injectivité de π^* découle du fait que les applications π et π_z' sont surjectives.

L'injectivité de π^* découle du fait que les applications π et π_z' sont surjectives. De plus, les relations

$$\pi \circ R(a) = \pi, \ \forall a \in H \quad \text{et} \quad \pi'_z(A_z^*) = 0, \ \forall A \in \mathcal{H} \ \ \forall z \in P,$$
 implique que $\pi^*(\Omega(M)) \subset \Omega_b(P)$.

L'injectivité de π^* découle du fait que les applications π et π_z' sont surjectives. De plus, les relations

$$\pi \circ R(a) = \pi, \ \forall a \in H \quad \text{et} \quad \pi'_z(A_z^*) = 0, \ \forall A \in \mathcal{H} \ \ \forall z \in P,$$

implique que $\pi^*(\Omega(M)) \subset \Omega_b(P)$. Partant de β une k-forme basique, il est facile de voir qu'on peux définir $\alpha \in \Omega^k(M)$ par

$$\alpha_{\mathsf{x}}(X_{\mathsf{x}}^1,\cdots,X_{\mathsf{x}}^k)=\beta_{\mathsf{z}}(Y_{\mathsf{z}}^1,\cdots,Y_{\mathsf{z}}^k)$$

avec
$$\pi(z) = x$$
 et $\pi'_z(Y_z^i) = X_x^i$, en plus $\pi^*(\alpha) = \beta$.

L'injectivité de π^* découle du fait que les applications π et π_z' sont surjectives. De plus, les relations

$$\pi \circ R(a) = \pi, \ \forall a \in H \quad \text{et} \quad \pi'_z(A_z^*) = 0, \ \forall A \in \mathcal{H} \ \ \forall z \in P,$$

implique que $\pi^*(\Omega(M)) \subset \Omega_b(P)$. Partant de β une k-forme basique, il est facile de voir qu'on peux définir $\alpha \in \Omega^k(M)$ par

$$\alpha_{\mathsf{x}}(X_{\mathsf{x}}^1,\cdots,X_{\mathsf{x}}^k)=\beta_{\mathsf{z}}(Y_{\mathsf{z}}^1,\cdots,Y_{\mathsf{z}}^k)$$

avec
$$\pi(z) = x$$
 et $\pi'_z(Y_z^i) = X_x^i$, en plus $\pi^*(\alpha) = \beta$.

Corollaire

On obtient un isomorphisme $H(\pi): H(M) \stackrel{\cong}{\to} H(\Omega_b(P))$.

Cohomologie de l'espace projectif complexe

L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibré de Hopf) : $\pi: S^{2n+1} \to \mathbb{CP}^n$.

Cohomologie de l'espace projectif complexe

L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibré de Hopf) : $\pi:S^{2n+1}\to\mathbb{CP}^n$. Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . L'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega_b^*(S^{2n+1})$. Le calcul de $H^*(\mathbb{CP}^n)$ est ramené au calcul de la cohomologie de $\Omega_b^*(S^{2n+1})$.

Cohomologie de l'espace projectif complexe

L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibré de Hopf) : $\pi:S^{2n+1}\to\mathbb{CP}^n$. Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . L'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega^*_b(S^{2n+1})$. Le calcul de $H^*(\mathbb{CP}^n)$ est ramené au calcul de la cohomologie de $\Omega^*_b(S^{2n+1})$. Pour cela, on montre (**Exercice**) que nous avons une suite axacte courte :

$$0 \longrightarrow \Omega_b^*(S^{2n+1}) \stackrel{\iota}{\longrightarrow} (\Omega^*(S^{2n+1}))^{S^1} \stackrel{i_A}{\longrightarrow} \Omega_b^{*-1}(S^{2n+1}) \to 0$$

Cohomologie de l'espace projectif complexe

L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibré de Hopf) : $\pi:S^{2n+1}\to\mathbb{CP}^n$. Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . L'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega^*_b(S^{2n+1})$. Le calcul de $H^*(\mathbb{CP}^n)$ est ramené au calcul de la cohomologie de $\Omega^*_b(S^{2n+1})$. Pour cela, on montre (**Exercice**) que nous avons une suite axacte courte :

$$0 \longrightarrow \Omega_b^*(S^{2n+1}) \stackrel{\iota}{\longrightarrow} (\Omega^*(S^{2n+1}))^{S^1} \stackrel{i_A}{\longrightarrow} \Omega_b^{*-1}(S^{2n+1}) \to 0$$

où le complexe du milieu est celui des formes S^1 -invariantes.

Cohomologie de l'espace projectif complexe

L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibré de Hopf) : $\pi:S^{2n+1}\to\mathbb{CP}^n$. Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . L'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega^*_b(S^{2n+1})$. Le calcul de $H^*(\mathbb{CP}^n)$ est ramené au calcul de la cohomologie de $\Omega^*_b(S^{2n+1})$. Pour cela, on montre (**Exercice**) que nous avons une suite axacte courte :

$$0 \longrightarrow \Omega_b^*(S^{2n+1}) \stackrel{\iota}{\longrightarrow} (\Omega^*(S^{2n+1}))^{S^1} \stackrel{i_A}{\longrightarrow} \Omega_b^{*-1}(S^{2n+1}) \to 0$$

où le complexe du milieu est celui des formes S^1 -invariantes. En écrivant la suite exacte longue de cohomologie associée, nous obtenons que pour tout $j=1,\cdots,n$ on a

$$\mathsf{H}^{2j}(\mathbb{CP}^n)=\mathbb{R} \ \ \mathsf{et} \ \ \mathsf{H}^{2j+1}(\mathbb{CP}^n)=\mathbf{0}.$$

Formes invariantes et cohomologie d'un espace homogène G/H

• L'espace $(\Omega^k(G/H))^G$ des formes différentielles G-invariantes est isomorphe à l'espace $(\bigwedge^k (\mathcal{G}/\mathcal{H})^*)^H$. L'action de H sur $\bigwedge^k (\mathcal{G}/\mathcal{H})^*$ étant définie par :

$$(a \cdot \lambda)(u_1 + \mathcal{H}, \cdots, u_k + \mathcal{H}) =$$

$$\lambda(\operatorname{Ad}_{(a^{-1})}(u_1) + \mathcal{H}, \cdots, \operatorname{Ad}_{(a^{-1})}(u_k) + \mathcal{H}).$$

- 2 La différentielle $\partial: \bigwedge^k \mathcal{G}^* \to \bigwedge^{k+1} \mathcal{G}^*$, induit une application linéaire bien définie $\partial_H: (\bigwedge^k (\mathcal{G}/\mathcal{H})^*)^H \to (\bigwedge^{k+1} (\mathcal{G}/\mathcal{H})^*)^H$. Cette application coïncide avec la différentielle usuelle suite à l'identification de $(\Omega(\mathcal{G}/H))^G \cong (\bigwedge(\mathcal{G}/\mathcal{H})^*)^H$.
- **3** Lorsque G est **compact connexe**, on a $H(G/H) \cong H(((\bigwedge (\mathcal{G}/\mathcal{H})^*)^H, \partial_H)).$

Connexion sur $P \rightarrow M$ un G-fibré principal

Notons V(P) le fibré tangent vertical.

Connexion sur $P \rightarrow M$ un G-fibré principal

Notons V(P) le fibré tangent vertical.

Définition

On appelle connexion sur P la donnée d'un sous-fibré différentiable $H \rightarrow P$ du fibré tangent TP, tel que

$$TP = V(P) \oplus H$$

et

$$H_{zg}=H_z\cdot g$$

pour tous $z \in P$ et $g \in G$.

Connexion sur $P \rightarrow M$ un G-fibré principal

Notons V(P) le fibré tangent vertical.

Définition

On appelle connexion sur P la donnée d'un sous-fibré différentiable $H \rightarrow P$ du fibré tangent TP, tel que

$$TP = V(P) \oplus H$$

et

$$H_{zg} = H_z \cdot g$$

pour tous $z \in P$ et $g \in G$.

Désignons par \mathcal{H} le $C^{\infty}(P)$ -module des sections du fibré $H \to P$, c'est le module des champs de vecteurs horizontaux. Tout champ de vecteurs X sur P se décompose en une somme $X^h + X^v$ avec X^h champ horizontal et X^v champ vertical.

Relèvement des champs de vecteurs

Soit $\pi: P \to M$ un G-fibré principal muni d'une connexion. Pour tout $z \in P$, la restriction de la différentielle de la projection à H_z réalise un isomorphisme

$$H_z \stackrel{\cong}{\longrightarrow} T_{\pi(z)}M$$

Relèvement des champs de vecteurs

Soit $\pi: P \to M$ un G-fibré principal muni d'une connexion. Pour tout $z \in P$, la restriction de la différentielle de la projection à H_z réalise un isomorphisme

$$H_z \stackrel{\cong}{\longrightarrow} T_{\pi(z)}M$$

Il en résulte que pour tout $X_x \in T_x M$ $(x = \pi(z))$, il existe un unique vecteur tangent $\tilde{X}_z \in H_z$ tel que $\pi_*(\tilde{X}_z) = X_x$.

Relèvement des champs de vecteurs

Soit $\pi: P \to M$ un G-fibré principal muni d'une connexion. Pour tout $z \in P$, la restriction de la différentielle de la projection à H_z réalise un isomorphisme

$$H_z \stackrel{\cong}{\longrightarrow} T_{\pi(z)}M$$

Il en résulte que pour tout $X_x \in T_x M$ $(x = \pi(z))$, il existe un unique vecteur tangent $\tilde{X}_z \in H_z$ tel que $\pi_*(\tilde{X}_z) = X_x$. Désignons par \mathcal{H} le $C^\infty(P)$ -module des sections du fibré $H \to P$, c'est le module des champs de vecteurs horizontaux. Tout champ de vecteurs X sur P se décompose en une somme $X^h + X^v$ avec X^h champ horizontal et X^v champ vertical.

Formes de connexion

Soit $\pi: P \to M$ un G-fibré principal muni d'une connexion. Puisqu'on $V(P) \to P$ est naturellement isomorphe au fibré trivial $P \times \mathcal{G} \to P$,

Formes de connexion

Soit $\pi: P \to M$ un G-fibré principal muni d'une connexion. Puisqu'on $V(P) \to P$ est naturellement isomorphe au fibré trivial $P \times \mathcal{G} \to P$, nous obtenons une 1-forme différentielle ω sur P à valeurs dans l'algèbre de Lie \mathcal{G} .

Formes de connexion

Soit $\pi:P\to M$ un G-fibré principal muni d'une connexion. Puisqu'on $V(P)\to P$ est naturellement isomorphe au fibré trivial $P\times \mathcal{G}\to P$, nous obtenons une 1-forme différentielle ω sur P à valeurs dans l'algèbre de Lie \mathcal{G} . On obtient une troisième définition équivalente :

Une *connexion* sur P est la donnée d'une 1-forme ω sur P à coefficients dans $\mathcal G$ telle que

(i)
$$\omega(A^*) = A$$
 pour tout $A \in \mathcal{G}$

(ii)
$$\omega_{z,g}(Z_z,g) = Ad(g^{-1})\omega_z(Z_z)$$
 pour tout $Z_z \in \mathcal{Z}$

 $T_z P$ et tout $g \in G$

Notons $\omega: TG \to \mathcal{G}$ la forme sur G dite "de Maurer-Cartan", définie par $\theta(gA) = A$ pour tout $g \in G$ et tout $A \in \mathcal{G}$.

Notons $\omega: TG \to \mathcal{G}$ la forme sur G dite "de Maurer-Cartan", définie par $\theta(gA) = A$ pour tout $g \in G$ et tout $A \in \mathcal{G}$. Sur le fibré trivial $G \to \cdot$, ω est une forme de connexion.

Notons $\omega: TG \to \mathcal{G}$ la forme sur G dite "de Maurer-Cartan", définie par $\theta(gA) = A$ pour tout $g \in G$ et tout $A \in \mathcal{G}$. Sur le fibré trivial $G \to \cdot$, ω est une forme de connexion. Soit $\mathcal{B} = \{e_1, \cdots, e_r\}$ une base de \mathcal{G} et désignons par $\mathcal{B}^* = \{\varepsilon_1, \cdots, \varepsilon_r\}$ sa base duale. L'unique forme invariante à gauche sur G obtenue par translation à gauche de ε^i sera notée ω^i .

Notons $\omega: TG \to \mathcal{G}$ la forme sur G dite "de Maurer-Cartan", définie par $\theta(gA) = A$ pour tout $g \in G$ et tout $A \in \mathcal{G}$. Sur le fibré trivial $G \to \cdot$, ω est une forme de connexion. Soit $\mathcal{B} = \{e_1, \cdots, e_r\}$ une base de \mathcal{G} et désignons par $\mathcal{B}^* = \{\varepsilon_1, \cdots, \varepsilon_r\}$ sa base duale. L'unique forme invariante à gauche sur G obtenue par translation à gauche de ε^i sera notée ω^i . On obtient alors facilement :

$$\omega = \sum_{1}^{r} \omega^{i} \otimes e_{i}$$

$$[e_j, e_k] = \sum_{i=1}^r C^i_{jk} e_i$$

$$[e_j,e_k]=\sum_{i=1}^r C_{jk}^i e_i$$

La différentielle de ω^i est alors :

$$d\omega^i = -\sum_{i < k} C^i_{jk} \omega^j \wedge \omega^k = -\frac{1}{2} \sum_{i,k} C^i_{jk} \omega^j \wedge \omega^k$$

$$[e_j,e_k]=\sum_{i=1}^r C_{jk}^i e_i$$

La différentielle de ω^i est alors :

$$d\omega^{i} = -\sum_{i \in I_{k}} C^{i}_{jk} \omega^{j} \wedge \omega^{k} = -\frac{1}{2} \sum_{i \mid L} C^{i}_{jk} \omega^{j} \wedge \omega^{k}$$

Il en découle

$$d\omega = -\frac{1}{2}(\sum \omega^j \wedge \omega^k \otimes [e_j, e_k]) = -\frac{1}{2}\omega \wedge \omega$$

$$[e_j, e_k] = \sum_{i=1}^r C_{jk}^i e_i$$

La différentielle de ω^i est alors :

$$d\omega^{i} = -\sum_{i \neq k} C^{i}_{jk} \omega^{j} \wedge \omega^{k} = -\frac{1}{2} \sum_{i \neq k} C^{i}_{jk} \omega^{j} \wedge \omega^{k}$$

Il en découle

$$d\omega = -\frac{1}{2}(\sum_{i,j}\omega^j\wedge\omega^k\otimes[e_j,e_k]) = -\frac{1}{2}\omega\wedge\omega$$

Nous obtenons l'équation dite de Maurer-Cartan :

$$d\omega + \frac{1}{2}\omega \wedge \omega = 0$$

Forme de courbure

Définition

Etant donnée une forme de connexion ω sur un G-fibré principal P, on appelle forme de courbure la 2-forme sur P à coefficients dans $\mathcal G$

$$\Omega = d\omega + [\omega, \omega],$$

$$o\grave{u} \ [\omega,\omega](Z_1,Z_2) = [\omega(Z_1),\omega(Z_2)].$$

Forme de courbure

Définition

Etant donnée une forme de connexion ω sur un G-fibré principal P, on appelle forme de courbure la 2-forme sur P à coefficients dans $\mathcal G$

$$\Omega = d\omega + [\omega, \omega],$$

$$où [\omega, \omega](Z_1, Z_2) = [\omega(Z_1), \omega(Z_2)].$$

Puisque le produit extérieur $\omega \wedge \omega$ relatif au crochet dans l'algèbre de Lie est défini par

 $(\omega \wedge \omega)(Z_1, Z_2) = [\omega(Z_1), \omega(Z_2)] - [\omega(Z_2), \omega(Z_1)],$ on peut écrire aussi :

$$\Omega = d\omega + \frac{1}{2} \omega \wedge \omega.$$

Forme de courbure

Définition

Etant donnée une forme de connexion ω sur un G-fibré principal P, on appelle forme de courbure la 2-forme sur P à coefficients dans \mathcal{G}

$$\Omega = d\omega + [\omega, \omega],$$

$$où [\omega, \omega](Z_1, Z_2) = [\omega(Z_1), \omega(Z_2)].$$

Puisque le produit extérieur $\omega \wedge \omega$ relatif au crochet dans l'algèbre de Lie est défini par $(\omega \wedge \omega)(Z_1, Z_2) = [\omega(Z_1), \omega(Z_2)] - [\omega(Z_2), \omega(Z_1)]$, on peut écrire aussi :

$$\Omega = d\omega + \frac{1}{2} \omega \wedge \omega.$$

$$\Omega(Z_1, Z_2) = Z_1 \omega(Z_2) - Z_2 \omega(Z_1) - \omega[Z_1, Z_2] + [\omega(Z_1), \omega(Z_2)]$$

$$\Omega(Z_1, Z_2) = d\omega(Z_1^h, Z_2^h) = -\omega([Z_1^h, Z_2^h])$$

0

$$\Omega(Z_1, Z_2) = d\omega(Z_1^h, Z_2^h) = -\omega([Z_1^h, Z_2^h])$$

2 Ω est nulle si, et seulement si le fibré horizontal $\mathcal{H} = \textit{Ker } \omega$ est involutif.

0

$$\Omega(Z_1, Z_2) = d\omega(Z_1^h, Z_2^h) = -\omega([Z_1^h, Z_2^h])$$

- ② Ω est nulle si, et seulement si le fibré horizontal $\mathcal{H} = \textit{Ker } \omega$ est involutif.
- **1** La 2-forme de courbure est une 2-forme tensorielle à valeurs dans le G-module (\mathcal{G},Ad) : Pour tout champ vertical Z on a $i_Z\Omega=0$ et pour tout $g\in G$ et Z_z^1,Z_z^2 on a

$$\Omega(Z_z^1\cdot g,Z_z^2\cdot g)=\mathrm{Ad}_{g^{-1}}\Omega(Z_z^1,Z_z^2)$$

4 L'équation de Bianchi : $d\Omega = [\Omega, \omega]$, i.e.

0

- $\Omega(Z_1, Z_2) = d\omega(Z_1^h, Z_2^h) = -\omega([Z_1^h, Z_2^h])$
- ② Ω est nulle si, et seulement si le fibré horizontal $\mathcal{H}=\mathit{Ker}\ \omega$ est involutif.
- **3** La 2-forme de courbure est une 2-forme tensorielle à valeurs dans le G-module (\mathcal{G},Ad) : Pour tout champ vertical Z on a $i_Z\Omega=0$ et pour tout $g\in G$ et Z_z^1,Z_z^2 on a

$$\Omega(Z_z^1 \cdot g, Z_z^2 \cdot g) = \operatorname{Ad}_{g^{-1}}\Omega(Z_z^1, Z_z^2)$$

1 L'équation de Bianchi : $d\Omega = [\Omega, \omega]$, i.e. Si l'on choisit $\{e_1, \dots, e_r\}$ une base de \mathcal{G} , on :

$$d\Omega_i = \sum_{j,k} C^i_{jk} \Omega^j \wedge \omega^k$$

Soient G un groupe de Lie, K un sous-groupe de Lie fermé, $\mathcal G$ et $\mathcal K$ leur algèbre de Lie.

Soient G un groupe de Lie, K un sous-groupe de Lie fermé, $\mathcal G$ et $\mathcal K$ leur algèbre de Lie. On suppose que G/K est un espace homogène $r\acute{e}ductif$:

Soient G un groupe de Lie, K un sous-groupe de Lie fermé, \mathcal{G} et \mathcal{K} leur algèbre de Lie. On suppose que G/K est un espace homogène $r\acute{e}ductif$: on s'est donné un supplémentaire \mathcal{M} de \mathcal{K} dans \mathcal{G} invariant par la représentation adjointe de K dans \mathcal{G} .

Soient G un groupe de Lie, K un sous-groupe de Lie fermé, $\mathcal G$ et $\mathcal K$ leur algèbre de Lie. On suppose que G/K est un espace homogène $\mathit{r\'eductif}$: on s'est donné un supplémentaire $\mathcal M$ de $\mathcal K$ dans $\mathcal G$ invariant par la représentation adjointe de K dans $\mathcal G$. Pour tout $A \in \mathcal G$, notons respectivement $A_{\mathcal K}$ et $A_{\mathcal M}$ les projections de A sur $\mathcal K$ et $\mathcal M$,

Soient G un groupe de Lie, K un sous-groupe de Lie fermé, $\mathcal G$ et $\mathcal K$ leur algèbre de Lie. On suppose que G/K est un espace homogène $\mathit{r\'eductif}$: on s'est donné un supplémentaire $\mathcal M$ de $\mathcal K$ dans $\mathcal G$ invariant par la représentation adjointe de K dans $\mathcal G$. Pour tout $A \in \mathcal G$, notons respectivement $A_{\mathcal K}$ et $A_{\mathcal M}$ les projections de A sur $\mathcal K$ et $\mathcal M$, et A^* le champ de vecteurs invariant à gauche sur G engendré par A.

Théorème

(i) La 1-forme $\omega: TG \to \mathcal{K}$ définie par $\omega(A^*) = A_{\mathcal{K}}$ est une forme de connexion sur le K-fibré principal $G \to G/K$. Elle est en outre G-invariante à gauche.

Théorème

- (i) La 1-forme $\omega: TG \to \mathcal{K}$ définie par $\omega(A^*) = A_{\mathcal{K}}$ est une forme de connexion sur le K-fibré principal $G \to G/K$. Elle est en outre G-invariante à gauche.
- (ii) Réciproquement, à toute connexion ω sur le G-fibré principal $G \to G/K$ qui soit G-invariante à gauche (lorsqu'elle existe) est associée une décomposition $\mathcal{G} = \mathcal{K} \oplus \mathcal{M}$ et que ω est obtenue comme dans (i).

Théorème

- (i) La 1-forme $\omega: TG \to \mathcal{K}$ définie par $\omega(A^*) = A_{\mathcal{K}}$ est une forme de connexion sur le K-fibré principal $G \to G/K$. Elle est en outre G-invariante à gauche.
- (ii) Réciproquement, à toute connexion ω sur le G-fibré principal $G \to G/K$ qui soit G-invariante à gauche (lorsqu'elle existe) est associée une décomposition $\mathcal{G} = \mathcal{K} \oplus \mathcal{M}$ et que ω est obtenue comme dans (i).
- (iii) La courbure de cette connexion est la 2-forme tensorielle Ω définie par

$$\Omega(A^*, B^*) = -[A_{\mathcal{M}}, B_{\mathcal{M}}]_{\mathcal{K}}.$$

Lorsque $\mathcal{B} = \{e_1, \cdots, e_r\}$ une base de \mathcal{G} telle que $\{e_1, \cdots, e_l\}$ est une base de \mathcal{K} et $\{e_{l+1}, \cdots, e_N\}$ est une base de \mathcal{M}

Lorsque $\mathcal{B} = \{e_1, \cdots, e_r\}$ une base de \mathcal{G} telle que $\{e_1, \cdots, e_l\}$ est une base de \mathcal{K} et $\{e_{l+1}, \cdots, e_N\}$ est une base de \mathcal{M} et si $\mathcal{B}^* = \{\varepsilon_1, \cdots, \varepsilon_N\}$ est la base duale de \mathcal{B} .

Lorsque $\mathcal{B}=\{e_1,\cdots,e_r\}$ une base de \mathcal{G} telle que $\{e_1,\cdots,e_l\}$ est une base de \mathcal{K} et $\{e_{l+1},\cdots,e_N\}$ est une base de \mathcal{M} et si $\mathcal{B}^*=\{\varepsilon_1,\cdots,\varepsilon_N\}$ est la base duale de \mathcal{B} . Les composantes de la courbure Ω sont données par :

$$\Omega^{i} = -\sum_{r \leq j < k \leq N} C^{i}_{jk} \omega^{j} \wedge \omega^{k}$$

- A. Abouqateb et D. Lehmann, Classes caractéristiques et résidus en Géométrie différentielle. Editions Ellipses 2010.
- A. Cap and J. Slovák. "Parabolic geometries. I, volume 154 of Mathematical Surveys and Monographs." American Mathematical Society, Providence, RI (2009).
- A. Borel, Some remarks about Lie groups transitive on spheres and tori. Bulletin of the American Mathematical Society, 55(6), 580-587 (1949).
- R. Bott and LW. Tu, *Differential forms in algebraic topology*. Graduate texts in Mathematics, Springer, 1982.
- J. Duistermaat and J. A. Kolk *Lie Groups*. Springer-Verlag (2000).

- W. Greub, S. Halperin and R. Vanstone, *Connections, Curvature, and Cohomology.* Vols. I-II-III Academic Press 1972/1973.
- D. Handel, A note on the parallelizability of real Stiefel manifolds. Proceedings of the American Mathematical Society, vol. 16, no 5, p. 1012-1014. (1965)
- J. Hilgert and K. H. Neeb, *Structure and geometry of Lie groups*. Springer Science & Business Media, 2011.
- J.L. Koszul, Lectures On Fibre Bundles and Differential Geometry. Tata Institute of Fundamental Research, Bombay 1960.
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I & II. John Wiley 1963.

- K. Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds. T.A.M.S. Volume 213, 1975.
- M. Lee, *Introduction to Smooth Manifolds*. Springer, New York, NY, 2003.
- E. Meinrenken, *Group actions on manifolds*. Lecture Notes, University of Toronto, Spring 2003. http://www.math.toronto.edu/mein/teaching/LectureNotes/act
 - E. H. Spanier, *Algebraic topology*. Vol. 55. No. 1. Springer Science & Business Media, 1989.
- N. E. Steenrod, *The topology of fibre bundles*. Vol. 14. Princeton university press, 1999.
- Loring W. Tu, *An introduction to Manifolds*. Universitext. Springer, 2008.