Multimedia Software Systems CS4551

Video Compression – ISO Standards (MPEG)

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

ISO Standards

- MPEG-1(movies on CD-ROM)
- MPEG-2(digital television, movies on DVD)
- MPEG was established in 1988.
- MPEG-1 was approved in 1991.
- MPEG-2 was approved in 1994.

ISO MPEG-1 Video

- MPEG-1: true multimedia standard with specifications for coding and transmission of audio, video and data streams in a series of synchronized, mixed packets
- Driving focus: storage of multimedia content on digital storage media (eg. CDs or VCDs)
- Quality: VHS VCR-like video quality and CD audio quality
- Picture format: SIF (Source Input Format)
 - 352x288, 25 fps for PAL (Phase Alternating Line) video
 - 354x240, 30 fps for NTSC (National Television System Committee) video
 - 4:2:0 Chroma sampling

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

Motion Compensation in MPEG-1

- Coding mechanism similar to H.26x
- Three types of frames:
 - − *I-frames* (coded in intra-frame mode)
 - P-frames (coded with motion compensation using as reference a previous *I* or *P* frame)
 - B-frames (coded with bidirectional motion compensation based on a previous and a later *I* or *P* frame)

Motion Compensation in MPEG-1

• For B-frame encoding/decoding, it needs succeeding P- or I-frame, the actual coding and transmission order is different from the display order. => Inevitable delay and need for buffering.

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

Acquisition/Transmission Order | Production | Prediction | Prediction

Example Question

- Suppose we encode a sequence of 23 frames using MPEG. Each frame is encoded in I(intra frame), P (forward prediction) or B (bi-directional prediction) mode according to the following order: IPPPBBPIPPBBBBBPIPIP
 - Derive the correct transmission and decoding order. Answer)
 1 2 3 4 7 5 6 8 9 10 11 12 13 14 19 15 16 17 18 20 21 22 23
 with respect to the indices of the original sequence starting from 1.
 - What is the minimum delay (in terms of frame period) due to bi-directional encoding in this case?

Answer) 4 frames. The 15th frame in the sequence (a B-frame) cannot be encoded until the 19th frame in the sequence has been encoded.

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

ISO MPEG-1 Video

- Differences from H.261
 - Quantization (allow non-constant quantization interval for the block)
 - Half pixel accuracy
 - Supports larger gaps between I and P frames
 - Bitstream format allows random access

ISO MPEG-1 Video

• Quantization in MPEG-1

Default quantization table (Q_1) for intra-coding.

8	16	19	22	26	27	29	34
16	16	22	24	27	29	34	37
19	22	26	27	29	34	34	38
22	22	26	27	29	34	37	40
22	26	27	29	32	35	40	48
26	27	29	32	35	40	48	58
26	27	29	34	38	46	56	69
27	29	35	38	46	56	69	83

Default quantization table (Q_2) for inter-coding.

16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

ISO MPEG-1 Video

MPEG-1 Video Bitstream

ISO MPEG-2

- MPEG-2 is for high-quality video at a bit rate of more than *4Mbps*. It was originally designed as a standard for digital broadcast TV.
- Over time, the MPEG-2 video standard was expanded to include high-resolution video (such as HDTV), as well as *hierarchical* (or *scalable* or *layered*) video coding.
- MPEG-2 has gained wide acceptance beyond broadcasting digital TV over satellite or cable networks.
- It is also adopted for DVDs.

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

ISO MPEG-2

- MPEG-2 defined 7 profiles aimed at different applications such as low-delay video conferencing, scalable video, or HDTV.
- 7 profiles: Simple, Main, SNR Scalable, Spatially Scalable, High, 4:2:2 and Multiview.
- Within each profile, up to four levels are defined.

ISO MPEG-2

Profiles and Levels in MPEG-2. SNR Spatially 4:2:2 Multiview Simple Main scalable scalable High Level profile profile profile profile profile profile profile High High 1440 Main Low

Four levels in the main profile of MPEG-2.

Level	Maximum resolution	Maximum fps	Maximum pixels/sec	Maximum coded data rate (Mbps)	
High High 1440 Main Low	$1,920 \times 1,152$ $1,440 \times 1,152$ 720×576 352×288	24,507,5	$62.7 \times 10^6 47.0 \times 10^6 10.4 \times 10^6 3.0 \times 10^6$	60 15	Film production Consumer HDTV Studio TV Consumer tape equivalent

• DVD video specification uses only a restricted form of the MPEG-2 Main profile at the Main and Low levels

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

MPEG-1 vs. MPEG-2

- Compression based on DCT-based transform coding and motionprediction.
- · Differences from MPEG-1
 - Support of interlaced video whereas MPEG-1 supports only non-interlaced (progressive) video. MPEG-2 is adopted by digital broadcast TV such as HDTV, it must support interlaced video.
 - Scalability make a *single* video stream scalable to various bitrates.
 - Support of 4:2:2 and 4:4:4 chroma sampling
 - More flexible video formats

- ...

MPEG-2 – Scalability

- The coded representation (bit-stream) is generated in such a way that decoders of various complexities are able to decode video of different resolution/quality from the same bit stream
 - If the bitstream is truly scalable, decoders of different complexities can
 coexist: inexpensive decoders would be expected to decode only small
 portions of the same bitstream producing basic quality pictures, while
 more sophisticated and expensive decoders will produce higher quality
 pictures
- For applications in networks with multi-quality video services and windowed video on computer workstations.

MPEG-2 – Scalabilities

- MPEG-2 scalable coding is also known as layered coding.
- Input video goes through a pre-processor producing a base layer signal and one or more enhancement layers.
 - Base layer is decoded independently by a standard MPEG-2 non-scalable video encoder with a coarse quantization, which result in fewer bits and a relatively low-quality video.
 - Enhancement layer is encoded with respect to the base layer by a MPEG-2 enhancement encoder.

MPEG-2 – Scalability

- MPEG-2 supports the following scalabilities
 - SNR scalability
 - Spatial Scalability (like pyramid)
 - Temporal Scalability (higher frame rate)
 - Hybrid scalability (combines any two of the above three)
 - Data partitioning (like Spectral selection)
- · Scalability is very useful for
 - Very different bitrates: different network link speeds (fast/slow)
 - Variable-bit rate channel: bitrate of the channel deteriorates sometime
 - Noisy connections: send the base layer via a less-noisy channel
 - Progressive transmission: coarse to finer image

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

MPEG-2 – SNR Scalability

- SNR scalable encoder generates two layers
 - Base layer bit stream called Bits base
 - Coarse quantization of the DCT coefficients is employed. -> Fewer bits
 - Enhancement layer bit stream called Bits enhance
 - Generate a DCT coefficient refinement by computing quantization error.
 - Quantization error = original DCT de-quantization (quantized DCT in the base layer)

MPEG-2 – Spatial Scalability

- Spatial Scalability
 - Base layer
 - Generate a bitstream of reduced-resolution frames
 - Enhancement layer(s)
 - Generate a bitstream of the details of higher resolution frames
 - Frames at the original resolution is generated by combining two layers.

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

MPEG-2 – Spatial Scalability

MPEG-2 – Temporal Scalability

• Temporal Scalability (a) - Both the base layer and enhancement layer are generated at a reduced frame rate with the same spatial resolution as in the input video. To restore the original video, it combines two layers.

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

MPEG-2 – Temporal Scalability

• Temporal Scalability (b) - The prediction of matching macroblocks at the enhancement layer by *interlayer motion-compensated prediction*

MPEG-2 – Temporal Scalability

• Temporal Scalability (c) - The prediction of matching macroblocks at the enhancement layer by *combined motion-compensation prediction* and *interlayer motion compensation prediction*

CSULA CS4551 Multimedia Software Systems by Eun-Young Kang

MPEG-2 – Other Scalability

- Hybrid scalability (combines any two of the above three)
 - SNR and Spatial
 - Spatial and temporal
 - SNR and temporal
- Data partitioning (similar to Spectral selection)
 - Base layer contains lower frequency DCT coefficients
 - Enhancement layers contain higher frequency DCT coefficients