

Karol Dudek

Realizacja sieci neuronowej uczonej algorytmem wstecznej propagacji błędu ucząca się rozpoznawać rodzaj schorzenia u pacjenta na podstawie wyników jego badań.

Praca projektowa z przedmiotu "Sztuczna Inteligencja"

Opiekun pracy: dr hab. inż. Roman Zajdel, prof. PRz

Spis treści

1.	Wst	${ m ep}$
	1.1.	Cel projektu
	1.2.	Opis problemu
	1.3.	Opis zestawu danych
	1.4.	Przygotowanie danych
2.	Zag	adnienia teorytyczne
	2.1.	Model sztucznego neuronu
	2.2.	Funkcja aktywacji
	2.3.	Model sieci wielowarstwowej
	2.4.	Uczenie sieci pod nadzorem (supervised learning)
	2.5.	Algorytm wstecznej propagacji błędu 6
3.	Rea	lizacja sieci
	3.1.	Opis skryptu
4.	Eks	perymenty
	4.1.	Eksperyment 1
	4.2.	Eksperyment 2
	4.3.	Eksperyment 3
	4.4.	Eksperyment 4
	4.5.	Eksperyment 5
	4.6.	Eksperyment 6
	4.7.	Eksperyment 7
	4.8.	Eksperyment 8
5.	Wni	oski

- 1. Wstęp
- 1.1. Cel projektu
- 1.2. Opis problemu
- 1.3. Opis zestawu danych
- 1.4. Przygotowanie danych

- 2. Zagadnienia teorytyczne
- 2.1. Model sztucznego neuronu
- 2.2. Funkcja aktywacji
- 2.3. Model sieci wielowarstwowej
- 2.4. Uczenie sieci pod nadzorem (supervised learning)
- 2.5. Algorytm wstecznej propagacji błędu

3. Realizacja sieci

3.1. Opis skryptu

```
1 from sklearn.model_selection import train_test_split
     from csv import reader
 3 import numpy as np
 5 # Import function
 6 def dataImport(name):
               with open(name, 'r', encoding='utf-16') as file:
                         return [line for line in reader(file, delimiter='\t')]
10 # Normalization function
     def normalizeMinMax(table):
               for row in range(0, len(table)):
                         min_val, max_val = min(table[row]), max(table[row])
                         table[row] = [(1 - 0) * (col - min_val) / (max_val - min_val) for col in table
               [row]]
               return table
17 # Data loader function
     def loadData():
18
              # Import acute.tsv to dataFile
19
               dataFile = dataImport('acute.tsv')
              # Create numpy array from dataList
               dataFile = np.array(dataFile)
              # Convert array of strings to array of floats
               dataFile = dataFile.astype(float)
               # Data normalization
28
               dataFile = normalizeMinMax(dataFile.T).T
               # Data splitting into training and test data
               trainData, testData = train test split(dataFile, test size=0.2, random state=25)
               # Splitting data into 2 groups, inputData and outputdata
34
               testIn, testOut = testData[:,:6], testData[:,6:]
               trainIn , trainOut = trainData[:,:6] , trainData[:,6:]
36
               # Combining inputData and outputData in a single tuple
38
               trainData = [(np.array(trainIn[i], ndmin=2).T, np.array(trainOut[i], ndmin=2).T)
               for i in range(0, len(trainOut))]
               testData = [(np.array(testIn[i], ndmin=2).T, np.array(testOut[i], ndmin=2).T) \\ for if in the interval of th
                 in range(0, len(testOut))]
               return (trainData, testData)
```

Listing 1: Plik przygotowujący dane- data.py

```
import random
  import time
  import numpy as np
  class Network(object):
      # Constructor, takes list of layers and amount of neurons as parameter
      def ___init___(self , sizes):
          #Applying Seed
10
           np.random.seed(7)
          # Assing 'sizes' vector to amount of layers in the network
13
           self.num_layers = len(sizes)
14
           self.sizes = sizes
16
          # Pseudo random generator used to assign weight and biases
17
           self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
18
           self.weights = [np.random.randn(y, x)]
20
                           for x, y in zip(sizes[:-1], sizes[1:])]
      def feedforward (self, a):
          # Return neural network results for 'a' data
           for b, w in zip(self.biases, self.weights):
               a = sigmoid(np.dot(w, a)+b)
           return a
28
29
          # Mean Square Error
       def mse(self,_test_data):
           error = [pow(np.linalg.norm(self.feedforward(x)-y),2) for (x,y) in _test_data]
           return 1/len(_test_data)*sum(error)
33
      def SGD(self , training_data , epochs , mini_batch_size , eta ,
               error target = 0.001, test data=None):
35
36
           if test_data: n_test = len(test_data)
           n = len(training_data)
38
           for j in range(epochs):
               time1 = time.time()
40
               random.shuffle(training_data)
41
               mini_batches = [
                   training_data[k:k+mini_batch_size]
43
                   for k in range(0, n, mini_batch_size)]
44
               for mini_batch in mini_batches:
45
                   self.update_mini_batch(mini_batch, eta)
               cur_err = self.mse(training_data)
```

```
time2 = time.time()
               evalVal = self.evaluate(test_data)
               evalAcc = (evalVal/n_test*100)
               if cur_err < error_target or j == epochs-1:
                   if test_data:
                        print("\{0\}, \{2..2f\}, \{3..0f\}\%".format(
                            j, cur_err, evalAcc))
                   else:
                        print("Epoch {0} complete in {1:.2f} seconds".format(j, time2-
57
       time1))
                   break
58
               print("{0}, {1:.6f}, {2:.0f}%".format(j, cur_err, evalAcc))
61
       def update_mini_batch(self, mini_batch, eta):
63
           # Updates weights and biases using SGD and backpropagation for each mini batch
           nabla_b = [np.zeros(b.shape) for b in self.biases]
           nabla_w = [np.zeros(w.shape) for w in self.weights]
           for x, y in mini_batch:
               # Calculate gradient increase for each (x, y) pair
               delta\_nabla\_b \;,\;\; delta\_nabla\_w \;=\; self \,.\, backprop \, (x \,,\;\; y)
               # Calculate new gradient
               nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
               nabla w = [nw+dnw for nw, dnw in zip(nabla w, delta nabla w)]
74
           # New weights and biases
           self.weights = [w-(eta/len(mini_batch))*nw
                           for w, nw in zip(self.weights, nabla_w)]
           self.biases = [b-(eta/len(mini_batch))*nb
78
                           for b, nb in zip(self.biases, nabla_b)]
80
       def backprop(self, x, y):
82
           #Return tuple representing the gradient of the cost function
           nabla_b = [np.zeros(b.shape) for b in self.biases]
84
           nabla\_w = [np.zeros(w.shape) for w in self.weights]
           # feedforward
87
           activation = x
88
           activations = [x] # list to store all the activations, layer by layer
89
           zs = [] # list to store all the z vectors, layer by layer
90
91
           # Calculate neuron activations
92
           for b, w in zip(self.biases, self.weights):
93
               z = np.dot(w, activation)+b
94
               zs.append(z)
95
               activation = sigmoid(z)
96
```

```
activations.append(activation)
98
            # backward pass (gradient increase for output layer)
99
            delta = self.cost\_derivative(activations[-1], y) * 
                sigmoid_prime(zs[-1])
            nabla_b[-1] = delta
102
            nabla_w[-1] = np.dot(delta, activations[-2].transpose())
            # Calculate gradient increase for input and hidden layers
            for 1 in range(2, self.num layers):
                z = zs[-1]
                sp = sigmoid_prime(z)
108
                delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
                nabla_b[-l] = delta
                nabla\_w[-l\,] \,\,=\, np.\,dot\,(\,delta\,\,,\,\,activations\,[-l\,-l\,].\,transpose\,(\,)\,)
            return (nabla_b, nabla_w)
       def evaluate(self, test_data):
114
115
            test\_results = [(self.feedforward(x), y)]
                             for (x, y) in test_data]
                             # Approximation
            return sum(int((y[0] = 0 and x[0] < 0.5) or (y[0] = 1 and x[0] > 0.5) and
                            (y[1] = 0 \text{ and } x[1] < 0.5) \text{ or } (y[1] = 1 \text{ and } x[1] > 0.5))
121
                        for (x, y) in test_results)
       def cost_derivative(self, output_activations, y):
            # Return vector with difference between the neuron and the expected result
            return (output_activations-y)
   #### Miscellaneous functions
128
   def sigmoid(z):
       # Sigmoid function
130
        return 1.0/(1.0 + np.exp(-z))
132
   def sigmoid_prime(z):
134
       # Sigmoid prime function
        return sigmoid(z)*(1-sigmoid(z))
```

Listing 2: Plik zawierający sieć - network.py

```
import data
import network

import numpy as np

trainData, testData = data.loadData()

# [input vector size, S1 neurons, S2 neurons, output]
```

```
net = network.Network([6,2])

# (training_data, epochs, batch_size, eta, target, test_data)

net.SGD(trainData, 100000, 1, 0.1, error_target=0.179,test_data=testData)
```

Listing 3: Plik wywołujący przykładową sieć - main.py

4. Eksperymenty

4.1. Eksperyment 1

Celem pierwszego eksperymentu

- 4.2. Eksperyment 2
- 4.3. Eksperyment 3
- 4.4. Eksperyment 4
- 4.5. Eksperyment 5
- 4.6. Eksperyment 6
- 4.7. Eksperyment 7
- 4.8. Eksperyment 8

5. Wnioski

Literatura

- [1] https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
- [2] Michael Nielsen, Neural Networks and Deep Learning.
- [3] Zajdel.R "Ćwiczenie 6 Model Neuronu", Rzeszów, KIiA, PRz
- [4] Zajdel.R "Ćwiczenie 8 Sieć jednokierunkowa jednowarstwowa", Rzeszów, KIiA, PRz
- [5] Zajdel.R "Ćwiczenie 9 Sieć jednokierunkowa wielowarstwowa", Rzeszów, KIiA, PRz
- [6] R.Tadeusiewicz, M.Szaleniec "Leksykon sieci neuronowych"