MPI* Physique

TD Thermodynamique

Exercices de rappels

Olivier Caffier

1 Compression adiabatique

Faisons subir une compression adiabatique mécaniquement réversible à 1L d'azote ($\gamma = 1,4$) pris dans les conditions normales avec un rapport volumétrique de 1,9.

- 1. Calculez la température et la pression finales.
- 2. Calculez le travail reçu par le gaz.

2 Compression d'un gaz

(CCP MP 2018)

- 1. Un gaz parfait passe de l'état $P_1 = 1$ bar, $T_1 = 300K$ et $V_1 = 50$ L à l'état $P_2 = 2$ bar, $T_2 = 600$ K et $V_2 = V_1$. Sachant que $C_{vm} = 20$ J.K⁻¹.mol⁻¹ et $\gamma = 1,4$, pour ce gaz, que pouvez-vous dire du transfert thermique reçu par ce gaz au cours de la transformation?
- 2. Considérons maintenant n = 1 mol de ce gaz parfait initialement à l'état (P_1, V_1) . On le comprime de manière mécaniquement réversible jusqu'à un volume $V_1/2$.
 - (a) De manière isotherme : décrivez le système (paroi du récipient, extérieur...) et calculez le transfert thermique Q_{isoth} reçu par le gaz.
 - (b) De manière adiabatique : décrivez le système et donnez la variation de température ΔT_{adiab} subie par le gaz.

3 Utilisation d'une bouilloire

- 1. Quelle durée faut-il à une bouilloire électrique pour porter à ébullition 1L d'eau initialement à 20°C, sachant que la puissance de sa résistance chauffante est de 2 kW. On donne $c_{\text{eau}} = 4,18 \text{ kJ.K}^{-1} \text{kg}^{-1}$.
- 2. Quelle augmentation de température obtiendrons-nous si la même quantité d'énergie servait à chauffer la même masse de fer, sachant que la capacité thermique massique du fer est c=0,45 kJ.K $^{-1}$ kg $^{-1}$

4 Oscillations adiabatiques lentes

Un cylindre calorifugé, horizontal, séparé en deux compartiments par un piston athermane de masse m, mobile sans frottement, contient à l'état initial une mole de gaz parfait (P_0, V_0, T_0) de chaque côté. Le coefficient de Laplace du gaz est noté γ .

À l'instant t = 0, l'opérateur écarte le piston de sa position d'équilibre de x_0 faible devant la longueur l_0 d'un compartiment $(V_0 = l_0 S)$.

FIGURE 1 - Oscillations adiabatiques lentes

En appelant x l'abscisse du piston à un instant quelconque (figure 1), exprimez, en supposant les transformations infiniment lentes :

- 1. Les pressions instantanées de chaque côté et la force qui en résulte sur le piston.
- 2. La période des petites oscillations obtenues.

5 Transformation isentropique

Montrez qu'une transformation adiabatique réversible est nécessairement isentropique.

➤ En pratique, la réciproque est (presque) toujours vérifiée donc on a tendance à traiter les deux propriétés comme équivalentes.

6 Bilan entropique dans un calorimètre

On considère un vase parfaitement calorifugé qui contient une masse $m_1 = 200$ g d'un liquide de capacité thermique massique $c_1 = 2850$ J.K⁻¹kg⁻¹ à la température $t_1 = 20$ °C.

On y plonge rapidement un morceau de cuivre de masse $m_2 = 250$ g et de capacité thermique massique $c_2 = 390$ J.K⁻¹kg⁻¹ à la température $t_2 = 80$ °C.

Le vase a une capacité thermique $C_3 = 150 \text{ J.K}^{-1}$ et est soigneusement refermé aussitôt le cuivre introduit.

- 1. Déterminez la température d'équilibre dans le vase.
- 2. Calculez la variation d'entropie au cours de cette opération.

7 Transformation lente ou brutale

Considérons un gaz parfait contenu dans une enceinte cylindrique de section S munie d'un piston. Le piston coulisse sans frottement et sa masse m sera supposée négligeable (i.e $mg \ll P_{\rm atm}S$).

Les parois de l'enceinte sont diathermanes, c'est-à-dire qu'elles sont de parfaits conducteurs thermiques, de sorte qu'à l'équilibre, la température du gaz est toujours égale à T_{atm} .

Initialement, tout est à l'équilibre : le gaz a une température $T_1 = T_{\text{atm}} = 293 \text{ K}$, une pression $P_1 = P_{\text{atm}} = 1 \text{ bar}$. L'enceinte a alors une volume $V_1 = 5 \text{ L}$.

- 1. Calculez $V_2, T_2, \Delta U, Q, \Delta S, S_e$ et S_c lorsque la pression du gaz passe de P_1 à $P_2 = 10$ atm :
 - (a) en appuyant très lentement sur le piston.
 - (b) en laissant tomber sur le piston une masse adéquate.
- 2. Commentez.

The people studying it:

