Math40003 Linear Algebra and Groups

Problem Sheet 3

- 1. * Let $\mathbb{R}[x]$ be the set of all polynomials with variable x and real coefficients, with standard addition and scalar multiplication. Show that this is a vector space over \mathbb{R} .
 - A1 Follows from associativity of \mathbb{R} and definition of polynomial addition. i.e. let $f(x), g(x), h(x) \in \mathbb{R}[x]$ then we have:

$$f(x) = \sum_{i=1}^{m} a_i x^i$$

$$g(x) = \sum_{i=1}^{n} b_i x^i$$

$$h(x) = \sum_{i=1}^{s} c_i x^i$$

Let $t = max\{m, n, s\}$ then define $a_i = 0$ for $m \le i \le t$, similarly define $b_i = 0$ for $n \le i \le t$, and define $c_i = 0$ for $s \le i \le t$. So we get:

$$f(x) = \sum_{i=1}^{t} a_i x^i$$

$$g(x) = \sum_{i=1}^{t} b_i x^i$$

$$h(x) = \sum_{i=1}^{t} c_i x^i$$

Now

$$f(x) + (g(x) + h(x)) = \sum_{i=1}^{t} a_i x^i + (\sum_{i=1}^{t} b_i x^i + \sum_{i=1}^{t} c_i x^i)$$

$$= \sum_{i=1}^{t} (a_i + (b_i + c_i)) x^i$$

$$= \sum_{i=1}^{t} ((a_i + b_i) + c_i) x^i$$

$$= (\sum_{i=1}^{t} a_i x^i + \sum_{i=1}^{t} b_i x^i) + \sum_{i=1}^{t} c_i x^i$$

$$= (f(x) + g(x)) + h(x)$$

- A2 Follows from commutativity of \mathbb{R} and definition of polynomial addition.
- A3 0_V here is the polynomial 0.
- A4 The inverse of $f(x) = \sum_{i=1}^m a_i x^i$ is $-f(x) = \sum_{i=1}^m -a_i x^i$ clearly we get $f(x) + (-f(x)) = 0_V$.
- A5 Follows from distributivity of \times over + in $\mathbb R$ and definition of polynomial addition.
- A6 Follows from distributivity of + over \times in \mathbb{R} and definition of multiplying a polynomial by a constant/scalar.
- A7 Follows from commutativity of \times in \mathbb{R} and definition of multiplying a polynomial by a constant/scalar.
- A8 Follows from definition of multiplying a polynomial by a constant/scalar.
- 2. Decide whether the following sets together with the indicated operations of addition and scalar multiplication is a vector space:

(a) The set \mathbb{R}^2 , with the usual addition but with scalar multiplication defined by

$$r \odot \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} ry \\ rx \end{array} \right).$$

Consider A7, and let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$.

$$r \odot (s \odot \mathbf{v}) = r \odot \left(s \odot \left(\begin{array}{c} x \\ y \end{array} \right) \right)$$
$$= r \odot \left(\begin{array}{c} sy \\ sx \end{array} \right)$$
$$= \left(\begin{array}{c} rsx \\ rsy \end{array} \right)$$

and

$$(rs) \odot \mathbf{v} = (rs) \odot \begin{pmatrix} x \\ y \end{pmatrix}$$

= $\begin{pmatrix} rsy \\ rsx \end{pmatrix}$

Because $r \odot (s \odot \mathbf{v}) \neq (rs) \odot \mathbf{v}$, A7 is not satisfied.

(b) The set \mathbb{R}^2 , with the usual scalar multiplication but with addition defined by

$$\left(\begin{array}{c} x \\ y \end{array}\right) \oplus \left(\begin{array}{c} r \\ s \end{array}\right) = \left(\begin{array}{c} y+s \\ x+r \end{array}\right).$$

All of the axioms A5 - A8 are satisfied since the usual definition of scalar multiplication is used.

Consider the axiom A1, and let $\mathbf{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$, then

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = \begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \end{pmatrix} \oplus \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$
$$= \begin{pmatrix} y_1 + y_2 \\ x_1 + x_2 \end{pmatrix} \oplus \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + x_2 + y_3 \\ y_1 + y_2 + x_3 \end{pmatrix}$$

and

$$\mathbf{u} \oplus (\mathbf{v} + \mathbf{w}) = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \oplus \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} y_2 + y_3 \\ x_2 + x_3 \end{pmatrix}$$

$$= \begin{pmatrix} y_1 + x_2 + x_3 \\ x_1 + y_2 + y_3 \end{pmatrix}$$

Since $(u \oplus v) \oplus w \neq u \oplus (v \oplus w)$ then A1 is not satisfied.

(c) The set \mathbb{R}^2 , with addition and scalar multiplication defined by

$$\left(\begin{array}{c} x \\ y \end{array}\right) \oplus \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} x+a+1 \\ y+b \end{array}\right) \quad \text{and} \quad r \odot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} rx+r-1 \\ ry \end{array}\right).$$

Consider A1, and let $\mathbf{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$, then

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = \begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \end{pmatrix} \oplus \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + x_2 + 1 \\ y_1 + y_2 \end{pmatrix} \oplus \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + x_2 + x_3 + 2 \\ y_1 + y_2 + y_3 \end{pmatrix}$$

and

$$\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \oplus \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 + x_3 + 1 \\ y_2 + y_3 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 + x_2 + x_3 + 2 \\ y_1 + y_2 + y_3 \end{pmatrix}$$

Because $(u \oplus v) \oplus w = u \oplus (v \oplus w)$, A1 is satisfied.

Consider A2 and let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, then

$$\mathbf{v} \oplus \mathbf{w} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + x_2 + 1 \\ y_1 + y_2 \end{pmatrix}$$

and

$$\mathbf{w} \oplus \mathbf{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \oplus \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + x_2 + 1 \\ y_1 + y_2 \end{pmatrix}$$

Because $\mathbf{v} \oplus \mathbf{w} = \mathbf{w} \oplus \mathbf{v}$, A2 is satisfied.

Consider A3, and let
$$\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 and $\mathbf{e} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, then

$$\mathbf{e} \oplus \mathbf{v} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \oplus \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x - 1 + 1 \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \mathbf{v}$$

Therefore, A3 is satisfied.

Consider A4, and let
$$\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, then

$$\mathbf{v} \oplus (-1 \odot \mathbf{v}) = \begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} -1 \odot \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} -x - 1 - 1 \\ -y \end{pmatrix}$$
$$= \begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} -x - 2 \\ -y \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
$$= \mathbf{e}$$

Therefore, A4 is satisfied.

Consider A5 and let
$$\mathbf{v} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, then

$$r \odot (\mathbf{v} \oplus \mathbf{w}) = r \odot \begin{pmatrix} x_1 + x_2 + 1 \\ y_1 + y_2 \end{pmatrix}$$
$$= \begin{pmatrix} r(x_1 + x_2 + 1) + r - 1 \\ r(y_1 + y_2) \end{pmatrix}$$

and

$$(r \odot \mathbf{v}) \oplus (r \odot \mathbf{w}) = r \odot \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \oplus r \odot \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$
$$= \begin{pmatrix} rx_1 + r - 1 \\ ry_1 \end{pmatrix} \oplus \begin{pmatrix} rx_2 + r - 1 \\ ry_2 \end{pmatrix}$$
$$= \begin{pmatrix} rx_1 + r - 1 + rx_2 + r - 1 + 1 \\ ry_1 + ry_2 \end{pmatrix}$$
$$= \begin{pmatrix} r(x_1 + x_2 + 1) + r - 1 \\ r(y_1 + y_2) \end{pmatrix}$$

Because $r \odot (\mathbf{v} \oplus \mathbf{w}) = (r \odot \mathbf{v}) \oplus (r \odot \mathbf{w})$, A5 is satisfied.

Consider A6, and let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$, then

$$(r+s) \odot \mathbf{v} = (r+s) \odot \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} (r+s)x + (r+s) - 1 \\ (r+s)y \end{pmatrix}$$

and

$$(r \odot \mathbf{v}) \oplus (s \odot \mathbf{v}) = r \odot \begin{pmatrix} x \\ y \end{pmatrix} \oplus s \odot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} rx + r - 1 \\ ry \end{pmatrix} \oplus \begin{pmatrix} sx + s - 1 \\ sy \end{pmatrix}$$

$$= \begin{pmatrix} rx + r - 1 + sx + s - 1 + 1 \\ ry + sy \end{pmatrix}$$

$$= \begin{pmatrix} (r + s)x + (r + s) - 1 \\ (r + s)y \end{pmatrix}$$

Because $(r+s) \odot \mathbf{v} = (r \odot \mathbf{v}) \oplus (s \odot \mathbf{v})$, A6 is satisfied.

Consider A7, and let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$, then

$$r \odot (s \odot \mathbf{v}) = r \odot \left(s \odot \left(\begin{array}{c} x \\ y \end{array} \right) \right)$$
$$= r \odot \left(\begin{array}{c} sx + s - 1 \\ sy \end{array} \right)$$
$$= \left(\begin{array}{c} r(sx + s - 1) + r - 1 \\ rsy \end{array} \right)$$
$$= \left(\begin{array}{c} r(sx + s) - 1 \\ rsy \end{array} \right)$$

and

$$(rs) \odot \mathbf{v} = rs \odot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} rsx + rs - 1 \\ rsy \end{pmatrix}$$

Because $r \odot (s \odot \mathbf{v}) = (rs) \odot \mathbf{v}$, then A7 is satisfied.

Consider A8, and let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$, then

$$1 \odot \mathbf{v} = 1 \odot \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x+1-1 \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \mathbf{v}$$

Therefore, A8 is satisfied.

Therefore, the set \mathbb{R}^2 with addition described by $\begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x+a+1 \\ y+b \end{pmatrix}$ and scalar multiplication described by $r \odot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} rx+r-1 \\ ry \end{pmatrix}$ is a vector space.

- 3. Show every F-vector space V with additive identity 0_V has the following properties:
 - (a) The vector 0_V is the unique vector satisfying the equation $0_V \oplus v = v$ for all vectors v in V.
 - (b) For 0 the additive identity in F, $0 \odot v = 0_V$ for all vectors v in V.
 - (a) Suppose that there are two vectors 0_v and $0_V'$ that satisfy

$$0_V \oplus \mathbf{v} = \mathbf{v} \quad 0_V' \oplus \mathbf{v} = \mathbf{v} \quad \forall \mathbf{v} \in V.$$

Let $\mathbf{v} = 0_V'$ in the first equation and $\mathbf{v} = 0_V$ in the second equation gives

$$0_V \oplus 0_V' = 0_V' \quad 0_V' \oplus 0_V = 0_V$$

By the commutative law, A2, $0_V \oplus 0_V' = 0_V' \oplus 0_V$, therefore, $0_V = 0_V'$ and hence the zero vector is unique.

(b) Using the distributive law, A6, for any $v \in V$,

$$0\odot \mathbf{v} = (0+0)\odot \mathbf{v} = (0\odot \mathbf{v}) \oplus (0\odot \mathbf{v})$$

By the additive identity axiom, A3, and the commutative law, A2,

$$0 \odot \mathbf{v} = 0 \odot \mathbf{v} \oplus (0 \odot \mathbf{v}) = (0 \odot \mathbf{v}) \oplus 0_V$$

Therefore, $(0 \odot \mathbf{v}) \oplus (0 \odot \mathbf{v}) = (0 \odot \mathbf{v}) \oplus 0_V$, and therefore, $0 \odot \mathbf{v} = 0_V$.

- 4. Describe all subspaces of \mathbb{R}^3
 - (a) The set containing the zero vector, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, i.e. the zero subspace,
 - (b) the set describing any straight line going through the origin (including the x, y, and z axes),
 - (c) the set describing any plane that goes through the origin,
 - (d) and \mathbb{R}^3 .
- 5. Let U, W be subspaces of a vector space V over F. Show that $U \cup W$ is a subspace of V iff either $U \subseteq W$ or $W \subseteq U$. (\Rightarrow) Suppose $U \cup W$ is a subspace. Suppose for contradiction we have $w \in W \setminus U$ and $u \in U \setminus W$. Then $u + w \notin U \cup W$:

Suppose $u + w \in U$ then $w = (u + w) + (-u) \in U$ which contradicts $w \in W \setminus U$, so $u + w \notin U$. Similarly we get $u + w \notin W$.

This contradicts SS2 for $U \cup W$, so either $W \setminus U = \emptyset$ (so $W \subseteq U$) or $U \setminus W = \emptyset$ (so $U \subseteq W$).

 (\Leftarrow) Clear as either $U \cup W = U$ or $U \cup W = W$