

RELASI

(Slide Acknowledgment: Gatot Wahyudi, Adila A. Krisnadhi)

Matematika Diskret 2
Fakultas Ilmu Komputer Universitas Indonesia
Semester Genap 2020/2021

Agenda

Partial Order

Partial Order

Relasi Terurut (Partial Order)

Definisi

Suatu relasi *R* pada himpunan *A* disebut <u>relasi terurut</u> atau <u>(non-strict) partial order</u> pada *A* jika *R* bersifat <u>refleksif</u>, <u>antisimetri</u>, dan <u>transitif</u>.

Pasangan berurutan (A, R) di mana R merupakan relasi terurut pada himpunan A disebut <u>poset</u> (<u>partially ordered set</u>). Anggota himpunan A juga merupakan anggota poset.

Notasi ≤ sering digunakan untuk merepresentasikan sebuah relasi terurut.

- Notasi $x \leq y$ menyatakan bahwa x mendahului atau sama dengan y pada urutan parsial \leq .
- Notasi x < y dapat ditulis jika $x \le y$ dan $x \ne y$.

Contoh Poset

- (*Z*, ≤), di mana
 - Z merupakan himpunan bilangan bulat
 - ≤ menyatakan relasi "kurang dari atau sama dengan"
- (*A*, *R*), di mana
 - *A* = { 1, 2, 3 }
 - $R = \{ (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) \}$
- (*A*, R), di mana
 - *A* = { mahasiswa }
 - R = { (a, b) | usia a lebih muda atau sama dengan b }

Strict Partial Order

Definisi

Suatu relasi *R* pada himpunan *A* disebut <u>strict partial order</u> pada *A* jika *R* bersifat irrefleksif, asimetri, dan transitif.

Notasi $x \prec y$ digunakan untuk merepresentasikan $(x, y) \in R$ jika R merupakan sebuah strict partial order.

- Contoh strict partial order
 - Relasi "kurang dari (<)" pada himpunan bilangan natural $\mathbb N$
 - Relasi $R = \{(a, b) \in \mathbb{Z}^2 \mid b = a + 2k \ dengan \ k \in \mathbb{Z}^+\}$

Keterbandingan (Comparability)

Definisi

Misalkan (S, \leq) merupakan sebuah poset.

- Untuk sembarang $a, b \in S$, jika $a \le b$ atau $b \le a$, maka a dan b dikatakan comparable (dapat dibandingkan)
- Sebaliknya, jika tidak berlaku demikian, maka α dan b dikatakan incomparable (tidak dapat dibandingkan)
- Contoh
 - Dalam poset (\mathbb{Z}^+, I) , 3 dan 9 bersifat *comparable*, sedangkan 5 dan 7 bersifat *incomparable*

Urutan Total (*Total Order*)

Definisi

Suatu relasi terurut ≤ pada himpunan S disebut urutan total (total order) atau urutan linier (linear order) jika setiap pasangan elemen pada S bersifat comparable.

Pasangan (S, \leq) disebut himpunan terurut linier (*linearly ordered set/totally ordered set*) atau sebuah rantai (*chain*)

- Contoh
 - Pasangan (N, \leq) dengan \leq adalah relasi kurang dari atau sama dengan adalah sebuah rantai
 - Relasi ≤ bersifat refleksif, antisimetri, dan transitif
 - Pada \leq pada N, $\forall a,b \in N$, berlaku $a \leq b$ atau $b \leq a$

Well-Ordered Set

Definisi

Sebuah poset (S, ≤) disebut well-ordered set jika ≤ merupakan total order dan setiap himpunan bagian tidak kosong pada S memiliki elemen terkecil sesuai dengan urutan yang didasarkan pada relasi ≤.

- Contoh
 - Poset (\mathbb{Z}^+, \leq) merupakan contoh well-ordered set
 - Poset (\mathbb{R}^+, \leq) BUKAN merupakan contoh well-ordered set

Diagram Hasse

- Diagram Hasse digunakan untuk menggambarkan poset jika himpunan pembetuknya adalah himpunan berhingga
- Contoh

- Diagram Hasse untuk suatu poset (A, ≤) dibentuk berdasarkan aturan berikut:
 - Setiap elemen A akan muncul tepat satu kali
 - Jika $x \le y$ dan $x \ne y$, maka x berada pada level yang lebih rendah dari level y.
 - Setiap $z \in A$ di mana tidak ada $y \in A$ sehingga $y \leq z$ diletakkan pada level 1
 - Jika $x \le y$ dan tidak ada $z \in A$ sehingga $x \le z$ dan $z \le y$, maka ditarik sebuah garis dari x ke y

Contoh 1

- Diberikan sebuah poset (A, |) di mana
 - Himpunan $A = \{1, 2, 3, 4, 5, 6\}$ dan;
 - Relasi | = { (a, b) | $a \in A, b \in A, b \mod a = 0$ } sehingga | = { $(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6) }$

- Pembentukan Diagram Hasse untuk (A, |)
 - Tahap 1: dari tuple-tuple (1,1), (1,2), (1,3), ..., (1,6) diperoleh diagram Hasse sementara sebagai berikut:

- Pembentukan Diagram Hasse untuk (A, |)
 - Tahap 2: ditambah tuple-tuple (2,2), (2,4), (2,6) diperoleh diagram Hasse sementara sebagai berikut:

- Pembentukan Diagram Hasse untuk (A, |)
 - Tahap 3: ditambah tuple-tuple (3,3), (3,6) diperoleh diagram Hasse sementara sebagai berikut:

- Pembentukan Diagram Hasse untuk (A, |)
 - Tahap 4: ditambah tuple-tuple (4,4), (5,5), (6,6) tidak mengubah lagi diagram Hasse yang terbentuk:

Contoh 2

```
Diberikan (P(B), \subseteq), di mana
• B = {a, b, c}
• P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, B\}
• \subseteq = { (\emptyset, \emptyset), (\emptyset, \{a\}), ..., (\emptyset, B),
          ({a}, {a}), ({a}, {a,b}), ({a}, {a,c}), ({a}, B),
           ({b}, {b}), ({b}, {a,b}), ({b}, {b,c}), ({b}, B),
          ({c}, {c}), ({c}, {a,c}), ({c},{b,c}), ({c}, B),
          ({a,b}, {a,b}), ({a,b}, B),
          ({a,c}, {a,c}), ({a,c}, B),
          ({b,c}, {b,c}), ({b,c}, B),
           (B,B)
```

• Tahap 1:

dari tuple-tuple (\emptyset, \emptyset) , $(\emptyset, \{a\})$, ..., (\emptyset, B) diperoleh diagram Hasse sementara sebagai berikut:

• Tahap 2:

ditambah tuple-tuple ({a}, {a}), ({a}, {a,b}), ({a}, {a, c}), ({a}, B) diperoleh diagram Hasse sementara sebagai berikut:

• Tahap 3:

ditambah tuple-tuple ({b}, {b}), ({b}, {a,b}), ({b}, {b}, c}), ({b}, B) diperoleh diagram Hasse sementara sebagai berikut:

• Tahap 3:

ditambah tuple-tuple ({c}, {c}), ({c}, {b,c}), ({b}, {a, c}), ({c}, B) diperoleh diagram Hasse sementara sebagai berikut:

• Tahap 4:

ditambah tuple-tuple ({a,b}, {a,b}), ({a,b}, B), ({a,c}, {a,c}), ({a,c}, B), ({b,c}, {b,c}), ({b,c}, B), (B,B) diperoleh diagram Hasse akhir:

Alternatif Pembentukan Diagram Hasse

- Untuk suatu poset (A, R), diagram Hasse pada dasarnya merupakan sebuah graf tidak berarah yang diperoleh dari representasi graf relasi R melalui langkah-langkah operasi berikut:
 - 1. Hilangkan semua *loop*
 - 2. Hilangkan semua shortcut edge yang berasal dari sifat transitif
 - Hilangkan sisi (a, c) jika sudah ada sisi (a, b) dan sisi (b, c)
 - 3. Gambarkan sisi yang tersisa mengarah ke atas dan hilangkan semua tanda panah (menjadi graf tak berarah)
 - Sisi (a,b) digambar dari bawah ke atas, artinya a berada di bawah b, dan a dihubungkan ke b melalui suatu sisi tak berarah

Bentuklah diagram Hasse untuk poset berikut: $(\{1, 2, 3, 4, 5\}, \leq)$

```
Relasi \leq = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5), (5,5)}
```

Representasi graf berarah dari relasi ≤ pada {1,2,3,4,5}

Bentuklah diagram Hasse untuk poset berikut: ($\{1, 2, 3, 4, 5\}, \leq$)

Langkah 1: Hilangkan semua *loop*

Hasil:

Langkah 2: Hilangkan semua shortcut edge

Hasil:

Langkah 3: Gambar dari bawah ke atas dan hilangkan tanda panah

Hasil:

Elemen Minimal dan Maksimal

- Pada poset (A, ≤)
 - $x \in A$ disebut elemen minimal (minimum element) jika tidak ada elemen lain pada A yang mendahului x
- Pada poset (A, ≤)
 - $x \in A$ disebut elemen maksimal (maximum element) jika tidak ada elemen lain pada A yang didahului oleh x

Elemen Minimal dan Maksimal

Elemen Minimal dan Maksimal

• Pada poset ({ 2, 4, 5, 10, 12, 20, 25 }, |)

Elemen maksimal = 12, 20, dan 25

Elemen minimal = 2 dan 5

Elemen Terkecil dan Terbesar

- Pada poset (A, ≼)
 - x ∈ A disebut elemen terkecil (least element) jika x mendahului semua elemen A
- Pada poset (A, ≼)
 - x ∈ A disebut elemen terbesar (greatest element) jika x didahului semua elemen A

Elemen Terkecil dan Terbesar

Elemen Terkecil dan Terbesar

Pada poset ({ 2, 4, 5, 10, 12, 20, 25 }, |)

Elemen terbesarnya TIDAK ADA

Elemen terkecilnya TIDAK ADA

Batas Bawah

- Pada poset (S, ≼)
 - Jika $A \subseteq S$, $A \neq \emptyset$, maka $b \in S$ disebut batas bawah (*lower bound*) dari A jika $\forall a \in A, b \leq a$
 - Untuk $x \in S$ disebut batas bawah terbesar (*greatest lower bound*) untuk A jika untuk semua batas bawah b dari A, $b \le x$

Batas Bawah

Batas bawah dari { a, b, c } adalah a

Batas bawah dari { j, h } adalah a, b, c, d, e, f

Batas bawah terbesar dari { a, b, c } adalah a

Batas bawah terbesar dari { j, h } adalah f

Batas Atas

- Pada poset (S, ≤)
 - Jika $A \subseteq S$, $A \neq \emptyset$, maka $a \in S$ disebut batas atas (upper bound) dari A jika $\forall s \in A$, $s \leq a$
 - Untuk $y \in S$ disebut batas atas terkecil (*least upper bound*) untuk A jika untuk semua batas atas a dari A, $y \leq a$

Batas Atas

Batas atas dari { a, b, c } adalah e, f, h, j

Batas atas dari { j, h } tidak ada

Batas atas terkecil dari { a, b, c } adalah e

Batas atas terkecil dari { j, h } tidak ada

Contoh

- Elemen minimum: a
- Elemen terkecil: a
- Elemen maksimum: h, j
- Elemen terbesar: tidak ada
- Batas bawah dari { j, h } adalah a, b, c, d, e, f, g
- Batas bawah terbesar dari { j, h } adalah tidak ada
- Batas atas dari { j, h } tidak ada
- Batas atas terkecil dari { j, h } tidak ada
- Batas bawah dari { a, b, c } adalah a
- Batas bawah terbesar dari { a, b, c } adalah a
- Batas atas dari { a, b, c } adalah d, e, f, g, h, j
- Batas atas terkecil dari { a, b, c } adalah tidak ada

Lattice

Definisi

Sebuah poset (S, \leq) disebut *lattice* jika untuk setiap pasang elemen $a, b \in S$, himpunan $\{a, b\}$ memiliki batas atas terkecil (*least upper bound*/LUB) dan batas bawah terbesar (*greatest lower bound*/GLB).

Lattice

• Manakah diagram yang merupakan lattice?

- Diagram (a) dan (c) merupakan *lattice*
- Diagram (b) bukan *lattice* karena $\{b, c\}$ tidak memiliki LUB

Selamat belajar...