

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

schel, accompany this paper : one, a sketch of his telescope at Slough, fixed from its image in a lens ; and the rest copies of engravings and drawings, some reverse, or first transfers ; and others second transfers or re-reversed pictures.

March 21, 1839.

The MARQUIS of NORTHAMPTON, President, in the Chair.

Thomas William Fletcher, Esq., and the Rev. Thomas Gaskin, were balloted for, and duly elected into the Society.

The following papers were read :—

I. "Description of a Compensating Barometer, adapted to Meteorological purposes, and requiring no corrections either for Zero, or for Temperature." By Samuel B. Howlett, Esq., Chief Military Draftsman, Ordnance. Communicated by Sir John F. W. Herschel, Bart., K.H., V.P.R.S., &c.

In the instrument here described, there is provided, in addition to the ordinary barometric tube (inverted, in the usual way, in a cistern of mercury,) a second tube of the same dimensions, placed by the side of the former, and likewise filled with mercury, but only to the height of twenty-eight inches above the level of the mercury of the cistern. This tube is closed at its lower end, and fixed to a float supported by the mercury in the cistern : and it bears, at its upper end, an ivory scale, three inches in length. The elevation of the mercury in the barometric tube is estimated by the difference between its level and that of the mercury in the closed tube ; and is measured on the ivory scale by the aid of a horizontal index, embracing both the tubes, and sliding vertically along them. As the float which bears the closed tube, to which the scale is attached, rests freely on the mercury in the cistern, and consequently always adjusts itself to the level of that fluid, no correction for the zero point is needed ; and as every change of temperature must similarly affect the columns of mercury in both the tubes, after the scale has been adjusted so as to read correctly at any given temperature, such as 32° , which may be effected by comparison with a standard barometer, every other reading will correspond to the same temperature, and will require no correction. The author considers the error arising from the difference of expansion corresponding to the different lengths of the two columns of mercury, and which will rarely amount to one four-hundredth of an inch, as too small to deserve attention in practice, being, in fact, far within the limits of error in ordinary observations.

Subjoined to the above paper is a letter from the author to Sir John Herschel, containing a statement of comparative observations made with a mountain barometer, and with the compensation barometer, from which it appears that the use of the latter is attended with the saving of a great quantity of troublesome calculation. The comparative observations are given in a table, exhibiting a range of differences from $+ .012$ to $- .016$ of an inch.