CS 166: Lab2 notes

March, 11 2018

1. Database Design steps:

- Requirement Analysis
 - What data should be stored in Database? Analysts + customer
 - What applications can be build on top of it?
 - Which operations are subject to performance requirements?
- Conceptual Database Design
 - High level description of Analysis + constrains over these data are modeled with the ER model (semantic model used in database design)
 - Goal: Generate description of data which is understandable both by developers and users
 - The design must be precise in order to allow straightforward translation into the relational model (tables, attributes,..), which is used by the Database
- Logical Database Design (ER schema → relational database schema)
 - Generally this step involves the conversion of the conceptual schema to Databasespecific schema.
- Schema Refinement
 - Analyze Relational Database Schema and identify problems
 - Ex: Student(ssn, name, numgrade, lettergrade) functionally-dependent attributes
 - Normalizing relations
- Physical Database Design
 - Make sure that the database meets the performance needs / workloads that are expected by the Analysis. (Indexes, Denormalize Relations)
- Application & Security Design

Requirement Analysis	Conceptual Design ER	Logical DB Design (relational)	Schema Refinement	Physical DD
-------------------------	-------------------------	--------------------------------------	----------------------	-------------

2. Entities, Attributes, Entity Sets, Relationships, Relationship Sets

- Entity (Relation)
 - An entity is a real world object that can be distinguished from another object given some attributes
 - e.g. Employee, Manager are not different
 - but Employee, Projects are different
- Attribute
 - Several attribute characterize an entity. If an attribute is multi-value (address zip, address, aptno) create an entity
 - Domain \rightarrow Possible values
 - Key \rightarrow Set of attributes that uniquely identifies an entity (primary, secondary, candidate)
- Entity-Set
 - Toy, Appliance Department Employees under same set
- Relationship
 - Relates 2 or more entities
 - Descriptive Attributes
 - Ternary Relationship \rightarrow Involves 3 relations
- Relationship Set
 - A set of similar relationships
- 3. Entity-Relationship (ER) Diagram
 - The ER model allows us to describe the data involved in a real world enterprise in terms of objects (entities) and their relationships
 - Provides the initial framework for developing an initial DB design
 - There are other variations of the ER model, mainly different on the way entities and their relationships are graphically represented
 - You should follow book notation
 - ER Data Structure Diagram
- 4. ER Notation Explanation

E_name	Entity
R_name	1:1, 1:M or M:1 Relationship
Rname	M:N Relationship (Entity-Relationship)
-	Relationship connector
	At-least-One Relationship connector
	At-most-One Relationship connector
—	At-least-One and At-most-One Relationship connector
E_name	Weak Entities
attribute	Attribute (key if it is underlined)

5. Additional Feature of ER Model

- Key Constrains
 - The "At least At most" question
 - 1:1 : Each professor works in at most 1 department. At most 1 professor work works in each department.

- 1:N : Each professor works in at most N departments . In each department at most 1 professor work.
- N:M : Each professor works in at most N departments . In each department at most M professor work.
- Participation Constrains (partial VS total)
 - Employee works in at least 1, at most N Departments (TOTAL participation in relationship)
 - Employee works in at least 0, at most N Departments (PARTIAL participation in relationship)
- Weak Entities

 $-\,$ A weak entity can be identified uniquely ONLY by considering the primary of another relation

• Class Hierarchies & Aggregation

6. Exercises

- (a) A university database contains information about professors (identified by social security number, or SSN) and courses (identified by courseid). Professors teach courses; each of the following situations concerns the Teaches relationship set. For each situation, draw an ER diagram that describes it (assuming that no further constraints hold).
 - Professors can teach the same course in several semesters, and each offering must be recorded.
 - Professors can teach the same course in several semesters, and only the most recent such offering needs to be recorded. (Assume this condition applies in all subsequent questions.)
 - Every professor must teach some course.
 - Every professor teaches exactly one course (no more, no less).
 - Every professor teaches exactly one course (no more, no less), and every course must be taught by some professor.
 - Now suppose that certain courses can be taught by a team of professors jointly, but it is possible that no one professor in a team can teach the course. Model this situation, introducing additional entity sets and relationship sets if necessary.

Entity Vs Attribute (e.g. address) Depends on application. Rule of Thumb: if multivalue attribute split into Entity

Entity Vs Relationship Rule of Thumb: if a relationship is M:N think of making it an entity

- Easier for your design.
- During conversion to relational model you will do it anyway

- Rename by concatenating: Student, Courses \rightarrow StudentCourses
- (b) Create an ER diagram for a car-insurance company with the following information:
 - People own one or more cars each
 - A car cannot have multiple owners
 - Each person has the following attributes: driver-id, name, address
 - Cars have license, model, year attributes
 - Each car has a number of recorded accidents (zero to any) associated with it
 - Accidents have report-number, location, date attributes
 - The car owner might not be the driver of the car involved in the accident
 - For each accident record the damage-amount
 - Step one: Define Entity Set
 - People: driver-id, name, address
 - Car: license, model, year
 - Accident: report-number, location, date
 - Step two: Relationship sets
 - owns: a person can own 0 or more cars. A car has only one owner
 - participates: a driver and a car participate in an accident. Damage-amount is the attribute of participates
 - Step three: build ER diagram