Técnicas de Processamento Paralelo na Geração do Fractal de Mandelbrot

Bruno Pereira dos Santos Dany Sanchez Dominguez Esbel Tomás Evalero Orellana

Roteiro

- Breve introdução sobre processamento paralelo
 - Técnicas tradicionais
- O que é CUDA?
- Problema abordado (Fractal de Mandelbrot)
- Características da Tecnologia CUDA
- Resultados Obtidos
- Conclusões e Trabalhos Futuros

Introdução

- Processamento Paralelo
 - Resolução de problemas computacionais de grande porte
 - Engenharia nuclear
 - Física médica
 - Bioinformática
 - Engenharia genética
 - Fontes [Aiping D, 2011] [Alonso P. 2009], [Goddeke D. 2007]
 - Redução de tempo
 - Clusters
 - Grids
- Hardware
 - CPU versus GPU

Introdução

- Técnicas tradicionais de paralelismo
 - Utilizam CPU como hardware
 - Memória compartilhada X Memória Distribuída
 - OpenMP (Open Multi Processing)
 - MPI (Message Passing Interface)

Introdução

- GPGPU (acrônimo de General-purpose Computing on Graphics Processing Units)
 - Marks Harris em 2002 definiu o uso das GPUs para fins não gráficos
 - Fonte [GPGPU.org]
- OpenCL (Open Computing Language)
 - Visa por em Prática a GPGPU
 - Framework mantido pelas empresas
 - Intel, AMD, Nvidia, Apple Inc, ATI.
 - Fonte [Nvidia 3]

O que é CUDA?

- CUDA (Computing Unified Device Architecture)
 - Criada pela Nvidia
 - Aplicar o GPGPU nas placas da Nvidia
 - Extensão das linguagens C e C++
 - Oferece uma API
 - Driver
 - CUDA runtime e bibliotecas

Problema Computacional Abordado

- Fractal de Mandelbrot
 - Funções recursivas
 - Difícil plotagem
 - Foi o primeiro fractal a ser resolvido em um computador
 - Conjunto específico de pontos no plano complexo

Problema Computacional Abordado

- Propriedades do Fractal de Mandelbrot
 - É definido pela recorrência do numero complexo:
 - $\blacksquare Z = x + yi$
 - $Z_0 = 0$
 - $Z_{(n+1)} = Z_n^2 + C$
 - Onde Z_0 e $Z_{(n+1)}$ são iterações n e (n+1)
 - C = a + bi fornece a posição de um ponto do plano complexo a ser iterado
 - Distância máxima de 2 da origem
 - Quantidade máxima de iterações

Problema Computacional Abordado

Algoritmo

```
int Mandelbrot(complexo c){
 int i = 0, ITR = 255;
 float x = 0, y = 0, tmp = 0;
enquanto (x^2+y^2 \le 2^2 \&\& i < ITR) {
 tmp = x^2 - y^2 + c. real;
  y = 2*x*y + c.img;
  i++;
se(i < ITR) retorne i;
senão retorne 0;
```


- CUDA como um conjunto software e hardware
 - Recebe a nomenclatura SPMD para sua arquitetura paralela
 - SPMD (Single Program Multiple-Data)

- CUDA como um conjunto software e hardware
 - Novo modelo de compilação para arquiteturas paralelas
 - Compilador nvcc
 - Fonte [Nvidia 2]

Figura 2 - Compilação [Nvidia - 1]

- CUDA como um conjunto software e hardware
 - Fluxo de execução

Figura 3 - Fluxo de execução [Nvidia - 1]

- Kernel
 - Podem ser organizados em diversas hierarquias
 - Grids formados por blocos
 - Podem ser organizados em até 2 dimensões
 - Bloco formados por threads
 - Podem ser organizados em até 3 dimensões

- Extensões de linguagem
 - Qualificadores de tipo
 - Função: __global__, __device__, __host__
 - Variável: __device__, __constant__, __shared__
 - Identificadores de variável threads
 - blockidx.x, blockidx.y
 - threadIdx.x, threadIdx.y, threadIdx.z
 - Nova sintaxe para chamada de funções kernel
 - Nome_funcao<<grid, blocos>>(parametros);

Resultados Obtidos

- Ferramentas para os experimentos numéricos
 - Máquina de testes
 - Processador intel (R) Core i7 CPU 860 2,8GHz
 - Placa gráfica Nvidia GeForce 9800GT
 - 512MB de memória principal
 - 112 cores
 - PCI-Express 16x
 - 8GB de memória RAM
 - Máquina de teste para MPI
 - 8 processadores Intel(R) Xeon(R) CPU E5520 2.27GHz
 - 16GB de memória RAM

Resultados Obtidos

Gráfico 1 -Speedup do processamento em CUDA com diversos tamanhos de imagem para 256 iterações.

Resultados Obtidos

Gráfico 2 -Speedup comparativo entre os códigos paralelos para 4096 iterações.

Conclusões

- Ganho significativo
 - Desempenho CUDA
 - Custo pelo hardware
 - Alocação de espaço físico para a máquina
- Desafios
 - Absorção das diretivas introduzidas pela biblioteca CUDA
 - O modelo de arquitetura SPMD
 - Programação com threads
- Conquistas
 - Frameworks para padronização
 - Difusão no meio acadêmico
 - Introdução da tecnologia em computadores de grande porte
 - Criou-se competências no GPMAC\UESC na tecnologia GPU

Agradecimentos

Universidade Estadual de Santa Cruz

Fundação de Amparo à Pesquisa do Estado da Bahia

Dúvidas

