Started on Saturday, 21 October 2023, 8:17 AM

State Finished

Completed on Saturday, 21 October 2023, 9:36 AM

Time taken 1 hour 18 mins

Grade 8.00 out of 10.00 (**80**%)

Question 1

Correct

Mark 1.00 out of 1.00

Consider the channel estimation model for the multiple transmit antenna system given by $\bar{\mathbf{y}} = \mathbf{X}\bar{\mathbf{h}} + \bar{\mathbf{v}}$, where \mathbf{X} denotes the pilot matrix and the noise samples in $\bar{\mathbf{v}}$ are zero-mean i.i.d. Gaussian with variance σ^2 . The likelihood function for the parameter vector $\bar{\mathbf{h}}$ given the observation vector $\bar{\mathbf{y}}$ is

Select one:

$$\bigcirc \ \left(\frac{1}{2\pi\sigma^2}\right)^{\!\!\frac{N}{2}} e^{-\frac{\|\bar{\mathbf{y}}-\mathbf{X}\bar{\mathbf{h}}\|}{\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{|\bar{y}-Xh|}{\sigma^2}}$$

Your answer is correct.

The correct answer is: $\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\|ar{\mathbf{y}}-\mathbf{X}\mathbf{h}\|^2}{2\sigma^2}}$

Question ${\bf 2}$

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the channel estimation model for the multiple transmit antenna system given by $\bar{\mathbf{y}} = \mathbf{X}\bar{\mathbf{h}} + \bar{\mathbf{v}}$, where \mathbf{X} denotes the pilot matrix and the noise samples $\bar{\mathbf{v}}$ are zeromean i.i.d. Gaussian. Let the number of pilot symbols be greater than the number of transmit antennas. The ML estimate of the channel $\bar{\mathbf{h}}$ is

Select one:

$$\mathbf{X}^{-1}\bar{\mathbf{y}}$$

$$(\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\mathbf{\bar{y}}$$

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\bar{\mathbf{y}} \checkmark$$

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{\bar{y}}$$

Your answer is correct.

The correct answer is: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Tar{\mathbf{y}}$

Question **3**

Correct

Mark 1.00 out of 1.00

For the multiple transmit antenna channel estimation model given by $\bar{\mathbf{y}} = \mathbf{X}\bar{\mathbf{h}} + \bar{\mathbf{v}}$, the pseudo-inverse of the pilot matrix \mathbf{X} , when the number of pilot symbols is greater than the number of transmit antennas, is

Select one:

- **X**⁻¹
- $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \checkmark$
- $(\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}$

Your answer is correct.

The correct answer is: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$

Question 4

Correct

Mark 1.00 out of 1.00

Consider a multi-antenna channel estimation scenario with the pilot matrix given as

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}$$

The pilot matrix **X** for this scenario satisfies the property that

Select one:

- It is invertible
- It has identical columns
- None of these
- It has orthogonal columns

Your answer is correct.

The correct answer is: It has orthogonal columns

Question **5**

Incorrect

Mark 0.00 out of 1.00

ℙ Flag question

Consider the channel estimation model for the multiple transmit antenna system given by $\bar{y}=X\bar{h}+\bar{v}$, with the pilot matrix x given as below
$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$ The number of transmit antennas in the system is
Select one: ○ 3 ● 4 ★
12
Your answer is incorrect. The correct answer is: 2
Question 6 Incorrect Mark 0.00 out of 1.00 Flag question
Consider the channel estimation model for the multiple transmit antenna system given by $\bar{y}=X\bar{h}+\bar{v}$, with the pilot matrix x given as below
$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}$
The number of pilot vectors in the system is
Select one: 3 4
○ 1● 2 x
Your answer is incorrect. The correct answer is: 4
Question 7 Correct Mark 1.00 out of 1.00 Flag question

Consider the channel estimation model for the multiple transmit antenna system given by $\bar{\bf y}={\bf X}\bar{\bf h}+\bar{\bf v}_{,\prime}$ with the pilot matrix ${\bf X}$ given as below

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}$$

The pseudo-inverse of the pilot matrix \mathbf{X} is

Select one:

$$0 \quad \frac{1}{4} \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\
-\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4}
\end{bmatrix}$$

Your answer is correct.

The correct answer is: $\begin{bmatrix} \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$

Question **8**

Correct

Mark 1.00 out of 1.00

Consider the channel estimation model for the multiple transmit antenna system given by

 $ar{m{y}} = m{X}ar{m{h}} + ar{m{v}}$, with the pilot matrix $m{X}$ and receive vector $ar{m{y}}$ given below

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}, \mathbf{\bar{y}} = \begin{bmatrix} 3 \\ -2 \\ -2 \\ -1 \end{bmatrix}$$

The ML estimate of $\bar{\mathbf{h}}$ is,

Select one:

$$\begin{array}{c} \frac{1}{2} \begin{bmatrix} -2 \\ -3 \end{bmatrix} \end{array}$$

$$\begin{array}{cc} & \frac{1}{2} \begin{bmatrix} -1 \\ -2 \end{bmatrix} \end{array}$$

$$0 \frac{1}{2} \begin{bmatrix} -2\\3 \end{bmatrix}$$

Your answer is correct.

The correct answer is: $\frac{1}{2}\begin{bmatrix} 3\\2 \end{bmatrix}$

Question **9**

Correct

Mark 1.00 out of 1.00

Consider the channel estimation model for the multiple transmit antenna system given by $\bar{\bf y}={\bf X}\bar{\bf h}+\bar{\bf v}_{_{^{\prime}}}$ with the pilot matrix ${\bf X}$ is

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}$$

Let the noise variance $\sigma^2 = \frac{1}{4}$. The error covariance of the ML estimate of $\bar{\mathbf{h}}$ is,

Select one:

$$\begin{bmatrix}
\frac{1}{16} & 0 \\
0 & \frac{1}{16}
\end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} \end{bmatrix}$$

$$\frac{1}{8}$$

$$\begin{bmatrix} \frac{1}{8} & 0 \\ 0 & \frac{1}{8} \end{bmatrix}$$

Your answer is correct.

The correct answer is: $\begin{bmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{16} \end{bmatrix}$

Question 10

Correct

Mark 1.00 out of 1.00

Consider the channel estimation model for the multiple transmit antenna system given by $\bar{y}=x\bar{h}+\bar{v}$, with the pilot matrix x is

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \\ 1 & -1 \end{bmatrix}$$

Let the noise variance $\sigma^2 = \frac{1}{4}$. The MSE of the ML estimate of $\bar{\mathbf{h}}$ is,

Select one:

$$\bigcirc \quad \frac{1}{16}$$

Your answer is correct.

The correct answer is: $\frac{1}{8}$

Finish review