BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Department of Electrical and Electronic Engineering

Course No.: EEE 416

Course Title: Microprocessor and Interfacing Laboratory

Logical Instructions and Jump Commands in Assembly Language

Name: Mir Sayeed Mohammad

ID: 1606003

Level: 4

Term: 1

Section: A

Submission Deadline: 14 - 3 -2021

Exercise Part 1 (a)

Assembly Code:

CODE SEGMENT

ASSUME CS:CODE, DS:CODE

MOV BX, 3256H MOV CX, 1554H AND CX, BX

HLT

CODE ENDS END

Analysis:

In the CX register, 1554H value is loaded. In the following instruction, the contents of CX and BX register are logically multiplied and the result put inside the CX register, giving the value of 1054H in CX register.

Fig: Execution of AND operation

Exercise Part 1 (b)

Assembly Code:

CODE SEGMENT

ASSUME CS:CODE, DS:CODE

MOV BX, 3256H MOV CX, 1554H XOR CX, BX

HLT

CODE ENDS END

Analysis:

XOR operation is performed on the contents of CX and BX register, and the result = 2702H is stored in the CX register

Fig: Execution of XOR operation

Exercise Part 1 (c)

Assembly Code:

CODE SEGMENT

ASSUME CS:CODE, DS:CODE

MOV AX, 1027H MOV BX, 5A27H MOV CX, 54A5H

OR AX, BX ; $AX = AX \mid BX$

 $XOR AX, CX ; AX = AX ^ CX$

NOT AX ; $AX = \sim AX$

TEST CX, BX ; check flags, result not stored

AND CX, AX ; CX = CX & AX

 HLT

CODE ENDS END

Analysis:

Code segment	Registers in	Registers in Bin	Out	put		
executed	Hex					
MOV AX, 1027H	AX = 1027	0001 0000 0010 0111	01 02	CODE SEGMENT	- registe	
MOV BX, 5A27H	BX = 5A27	0101 1010 0010 0111	03 04	ASSUME CS: CODE,	ΑX	H L 27
MOV CX, 54A5H	CX = 54A5	0101 0100 1010 0101	05	MOU AX, 1027H		
			06 07	MOU BX, 5A27H MOU CX, 54A5H	BX	5A 27
			Ø8 Ø9	OR AX, BX	CX	54 A5
			10		DX	00 00
			11	XOR AX, CX	CS	0100
			13	NOT AX	IP	0009
			15 16	TEST CX, BX	SS	0100
			17	AND CX, AX	SP	FFFE
			19	HLT	BP	0000
			20	CODE ENDS	SI	0000
			22	END	DI	0000

OR AX, BX	AX = 5A27	0101 1010 0010 0111	01 CODE SEGMENT	registers
	BX = 5A27	0101 1010 0010 0111	03 ASSUME CS:CODE,	H L
	CX = 54A5	0101 0100 1010 0101	04 05 MOV AX, 1027H	AX 5A 27
			06 MOU BX, 5A27H 07 MOU CX, 54A5H	BX 5A 27 CX 54 A5
			08 09 OR AX, BX	
			10 11 XOR AX, CX	
			12 13 NOT AX	CS 0100 IP 000R
			14 15 TEST CX, BX	SS 0100
			17 AND CX, AX	SP FFFE
			18 19 HLT	BP 0000
			20 21 CODE ENDS	SI 0000
XOR AX, CX	AX = E82	0000 1110 1000 0010	22 END 01 CODE SEGMENT	
λοιττίλι, ολ	BX = 5A27	0101 1010 0010 0111	02 03 ASSUME CS:CODE,	registers H_L_
	CX = 54A5	0101 0100 0010 0111	05 MOV AX, 1027H	AX 0E 82
			06 MOU BX, 5A27H 07 MOU CX, 54A5H	BX 5A 27
			08 09 OR AX, BX	CX 54 A5
			10 11 XOR AX, CX	DX 00 00
			12 13 NOT AX	CS 0100
			14	IP 000D
			15 TEST CX, BX	SS 0100
			17 AND CX, AX	SP FFFE
			19 HLT 20	BP 0000
			21 CODE ENDS 22 END	SI 0000
NOT AX	AX = F17D	1111 0001 0111 1101	01 CODE SEGMENT 02	registers
	BX = 5A27	0101 1010 0010 0111	03 ASSUME CS:CODE,	AX F1 7D
	CX = 54A5	0101 0100 1010 0101	05 MOV AX, 1027H 06 MOV BX, 5A27H	BX 5A 27
			07 MOU CX, 54A5H	CX 54 A5
			09 OR AX, BX	DX 00 00
			11 XOR AX, CX	CS 0100
			13 NOT AX	IP 000F
			15 TEST CX, BX	SS 0100
			17 AND CX, AX	SP FFFE
			19 HLT 20	BP 0000
			21 CODE ENDS 22 END	SI 0000
	1	I .	LITE LITE	0000

TEST CX, BX	AX = F17D	1111 0001 0111 1101	01 CODE SEGMENT 02	registers
	BX = 5A27	0101 1010 0010 0111	03 ASSUME CS:CODE,	H L
	CX = 54A5	0101 0100 1010 0101	04 05 MOU AX, 1027H	ΔX F1 7D
			06 MOU BX, 5A27H	BX 5A 27
			07 MOU CX, 54A5H	CX 54 A5
			09 OR AX, BX	DX 00 00
			11 XOR AX, CX	CS 0100
			13 NOT AX	IP 0011
			15 TEST CX, BX	SS 0100
			17 AND CX, AX	SP FFFE
			19 HLT 20	BP 0000
			21 CODE ENDS 22 END	SI 0000
AND CX, AX	AX = F17D	1111 0001 0111 1101	01 CODE SEGMENT	registers
	BX = 5A27	0101 1010 0010 0111	02 03 ASSUME CS:CODE,	H L
	CX = 5025	0101 0000 0010 0101	04 05 MOU AX, 1027H	ΔX F1 7D
	011 3023	0101 0000 0010 0101	06 MOV BX, 5A27H	BX 5A 27
			07 MOU CX, 54A5H	CX 50 25
			09 OR AX, BX	DX 00 00
			11 XOR AX, CX	CS 0100
			13 NOT AX	IP 0013
			15 TEST CX, BX	SS 0100
			17 AND CX, AX	SP FFFE
			19 HLT 20	BP 0000
			21 CODE ENDS 22 END	SI 0000
				DI 0000

Exercise Part 2 (a)

Assembly Code:

CODE SEGMENT
ASSUME CS:CODE, DS:CODE

MOV AX, 7A24H MOV BX, 15A3H

SUB AX, BX ; AX = 6481H after subtraction

JMP L3T2

EEE316:

DIV BX ; Divide AX = 4481H by BX = 15A3H

; Quotient AX = 0003H ; Dividend DX = 0398H

JMP Last

L3T2: MOV CX, 45B1H

AND AX, CX; AX = 4481H after AND

TEST AX, BX JMP EEE316

Last: HLT

CODE ENDS END

Analysis:

Code segment	Registers in	Registers in Bin	Output
executed	Hex		
MOV AX, 7A24H MOV BX, 15A3H	AX = 7A24 BX = 15A3 CX = 0000 DX = 0000	0111 1010 0010 0100 0001 0101 1010 0011 0000 0000 0000 0000 0000 0000 0000 0000	01 CODE SEGMENT 02 ASSUME CS:CODE, 03 04 MOU AX, 7A24H 05 MOU BX, 15A3H 06 SUB AX, BX 07 JMP L3T2 08 09 EEE316: DIU BX 10; Quotient AX = 11; Dividend DX = 12; JMP Last 13 14 L3T2: MOU CX, 15 AND AX, CX 16 TEST AX, BX 17 JMP EEE316 18 19 Last: HLT BP 0000

		1			
SUB AX, BX	AX = 6481	0110 0100 1000 0001	01 02	CODE SEGMENT ASSUME CS:CODE,	registers ———— H L
	BX = 15A3	0001 0101 1010 0011	03 04	MOU AX, 7A24H	AX 64 81
	CX = 0000	0000 0000 0000 0000	05	MOU BX, 15A3H	BX 15 A3
	DX = 0000	0000 0000 0000 0000	06 07	SUB AX, BX JMP L3T2	CX 00 00
			Ø8	EEE316: DIU BX	DX 00 00
			10	; Quotient AX = ; Dividend DX =	
			12	JMP Last	CS 0100
			14 15	L3T2: MOU CX, AND AX, CX	IP 0008
			16	TEST AX. BX	SS 0100
			17 18		SP FFFE
			19		BP 0000
JMP L3T2	AX = 6481	0110 0100 1000 0001	01 02	CODE SEGMENT ASSUME CS:CODE.	registers — H L
	BX = 15A3	0001 0101 1010 0011	03 04	MOU AX, 7A24H	AX 64 81
	CX = 0000	0000 0000 0000 0000	05	MOU BX, 15A3H	BX 15 A3
	DX = 0000	0000 0000 0000 0000	06 07	SUB AX, BX JMP L3T2	CX 00 00
			08 09	EEE316: DIU BX	
			10	; Quotient AX = ; Dividend DX =	DX 00 00
			12 13	JMP Last	CS 0100
			14	L3T2: MOU CX,	IP 000E
			15 16	AND AX, CX TEST AX, BX	SS 0100
			17	JMP EEE316	SP FFFE
			19	Last: HLT	BP 0000
L3T2: MOV CX,	AX = 6481	0110 0100 1000 0001	01 02	CODE SEGMENT ASSUME CS:CODE,	registers
45B1H	BX = 15A3	0001 0101 1010 0011	03		H L
	CX = 45B1	0100 0101 1011 0001	04 05	MOU AX, 7A24H MOU BX, 15A3H	AX 64 81
	DX = 0000	0000 0000 0000 0000	06 07	SUB AX, BX JMP L3T2	BX 15 A3
			08	EEE316: DIV BX	CX 45 B1
			10	; Quotient AX =	DX 00 00
				; Dividend DX = JMP Last	CS 0100
			13 14		IP 0011
			15 16	AND AX CX TEST AX BX	SS 0100
			17		SP FFFE
			19	Last: HLT	BP 0000

	т	T	-		
AND AX, CX	AX = 4481	0100 0100 1000 0001	01 02	CODE SEGMENT ASSUME CS:CODE,	registers
	BX = 15A3 $CY = 45D1$	0001 0101 1010 0011	03 04	MOU AX, 7A24H	AX 44 81
	$\begin{array}{c} CX = 45B1 \\ DX = 0000 \end{array}$	0100 0101 1011 0001 0000 0000 0000	05 06	MOU BX, 15A3H SUB AX, BX	BX 15 A3
	DX = 0000		07 08	JMP L3T2	CX 45 B1
			09	EEE316: DIV BX ; Quotient AX =	DX 00 00
			11 12	; Dividend DX = JMP Last	CS 0100
			13 14	L3T2: MOU CX,	IP 0013
			15	AND AX, CX TEST AX, BX	SS 0100
			17 18	JMP EEE316	SP FFFE
			19 20	Last: HLT	BP 0000
TEST AX, BX	AX = 4481	0100 0100 1000 0001	01 02	CODE SEGMENT ASSUME CS:CODE,	registers
	BX = 15A3 $CY = 45B1$	0001 0101 1010 0011 0100 0101 1011 0001	03 04	MOU AX, 7A24H	AX 44 81
	$\begin{array}{c} CX = 45B1 \\ DX = 0000 \end{array}$	0000 0000 0000 0000	05 06	MOU BX, 15A3H SUB AX, BX	BX 15 A3
	DA - 0000		07 08	JMP L3T2	CX 45 B1
			09 10	EEE316: DIV BX ; Quotient AX =	DX 00 00
			11 12	; Dividend DX = JMP Last	CS 0100
			13 14	L3T2: MOU CX,	IP 0015
			15	AND AX, CX TEST AX, BX	SS 0100
			17	JMP EEE316	SP FFFE
11.15.555.40			19	Last: HLT	BP 0000
JMP EEE316	AX = 4481	0100 0100 1000 0001	01 02	CODE SEGMENT ASSUME CS:CODE,	registers H L
	BX = 15A3 $CX = 45B1$	0001 0101 1010 0011 0100 0101 1011 0001	03 04	MOU AX, 7A24H	AX 44 81
	DX = 0000	0000 0000 0000 0000	05 06	MOU BX, 15A3H SUB AX, BX	BX 15 A3
	D71 0000		07 08	JMP L3T2	CX 45 B1
			10	EEE316: DIV BX; Quotient AX =	DX 00 00
			12	; Dividend DX = JMP Last	CS 0100
			13	L3T2: MOU CX,	IP 000A
			16	AND AX, CX TEST AX, BX	SS 0100
			17		SP FFFE
			19	Last: HLT	BP 0000

EEE316: DIV BX	AX = 0003 BX = 15A3 CX = 45B1 DX = 0398	0000 0000 0000 0011 0001 0101 1010 0011 0100 0101 1011 0001 0000 0011 1001 1000	01 CODE SEGMENT 02 ASSUME CS:CODE, 03 04 MOU AX, 7A24H 05 MOU BX, 15A3H 06 SUB AX, BX 07 JMP L3T2 08 09 EEE316: DIU BX 10; Quotient AX = 11; Dividend DX = 12 JMP Last 13 14 L3T2: MOU CX, 15 AND AX, CX 16 TEST AX, BX 17 JMP EEE316	P 900C SS 9100 SP FFFE
JMP Last	AX = 0003 BX = 15A3 CX = 45B1 DX = 0398	0000 0000 0000 0011 0001 0101 1010 0011 0100 0101 1011 0001 0000 0011 1001 1000	19 Last: HLT 01 CODE SEGMENT 02 ASSUME CS:CODE, 03 04 MOU AX, 7A24H 05 MOU BX, 15A3H 06 SUB AX, BX 07 JMP L3T2 08 09 EEE316: DIU BX 10; Quotient AX = 11; Dividend DX = 12 JMP Last 13 14 L3T2: MOU CX, 15 AND AX, CX 16 TEST AX, BX 17 JMP EEE316 18 19 Last: HLT	BP 0000 registers H L AX 00 03 BX 15 A3 CX 45 B1 DX 03 98 CS 0100 IP 0017 SS 0100 SP FFFE BP 0000
Last: HLT	AX = 0003 BX = 15A3 CX = 45B1 DX = 0398	0000 0000 0000 0011 0001 0101 1010 0011 0100 0101 1011 0001 0000 0011 1001 1000	an aistern	

The last label is required because the way the program is structured, L3T2 is jumped to first, and then L3T2 directs the pointer to EEE316 which is above itself in the instruction list. After EEE316, the program counter will automatically point to the location that is below EEE316, incidentally reaching L3T2 and looping here forever. This is why the pointer is required to jump to Last where the instruction register receives halt command and stops execution.

Exercise Part 2 (b)

Assembly Code:

CODE SEGMENT
ASSUME CS:CODE, DS:CODE

MOV AX, 7A24H MOV BX, 95A3H ADD AX, BX

JC L3T2 ; Jump to L3T2 if CF=1

EEE316: OR AX, 23H

JNZ Last ; Jump to Last if previous operation not zero

L3T2: MOV CX, 0FC7H

SUB AX, CX TEST AX, BX

JZ EEE316 ; Jump to EEE316 if previous operation zero

Last: HLT

CODE ENDS END

Analysis:

Code segment	Registers in	Registers in Bin	Output
executed	Hex		
MOV AX, 7A24H	AX = 7A24	0111 1010 0010 0100	01 CODE SEGMENT 02 ASSUME CS:CODE, registers
MOV BX, 95A3H	BX = 95A3	1001 0101 1010 0011	03 HOU ON FROMAIN
	CX = 0000	0000 0000 0000 0000	05 MOU BX, 95A3H
			06 ADD AX, BX BX BX 95 A3
			08 09 EEE316: OR AX, CX 00 00
			10 JNZ Last DX 00 00
			12 L3T2: MOU CX, CS 0100
			14 TEST AX, BX IP 0006
			15 JZ EEE316 SS 0100
			17 Last: HLT SP FFFE

ADD AX, BX	AV = 0EC7	0000 1111 1100 0111	01 CODE SEGMENT	
ADD AA, BA	AX = 0FC7	0000 1111 1100 0111	02 ASSUME CS:CODE, registe	rs — — H
	BX = 95A3 $CX = 0000$	1001 0101 1010 0011 0000 0000 0000 0000	03 04 MOU AX, 7A24H AX	OF C7
	CX = 0000		06 ADD AX, BX	95 A3
			08 CX	00 00
			09 EEE316: OR AX, DX	00 00
			11 L3T2: MOU CX, CS	0100
			13 SUB AX, CX 14 TEST AX, BX	0008
			15 JZ EEE316 SS	0100
			17 Last: HLT SP	FFFE
JC L3T2	AX = 0FC7	0000 1111 1100 0111	01 CODE SEGMENT 02 ASSUME CS: CODE, registe	ers
	BX = 95A3	1001 0101 1010 0011	03 84 MOH AV 7024H	H L
	CX = 0000	0000 0000 0000 0000	05 MOU BX, 95A3H	OF C7
			07 JC L3T2	95 A3
			08 09 EEE316: OR AX,	00 00
			10 JNZ Last DX	00 00
			12 L3T2: MOU CX, CS 13 SUB AX, CX	0100
			14 TEST AX, BX IP 15 JZ EEE316 SS	000F
			17 Last: HLT	0100 FFFE
L3T2: MOV CX,	AX = 0FC7	0000 1111 1100 0111	01 CODE SEGMENT	FFFE
0FC7H	BX = 95A3	1001 0101 1010 0011	02 ASSUME CS:CODE, registe	ers — — — H
	CX = 0FC7	0000 1111 1100 0111	04 MOU AX, 7A24H AX	OF C7
			06 ADD AX, BX BX BX	95 A3
			08 09 EEE316: OR AX,	OF C7
			10 JNZ Last DX	00 00
			12 L3T2: MOU CX, CS	0100
			13 SUB AX, CX 14 TEST AX, BX IP 15 JZ EEE316	0012
			16 55	0100
			17 Last: HLT SP	FFFE
SUB AX, CX	AX = 0000	0000 0000 0000 0000	01 CODE SEGMENT 02 ASSUME CS:CODE, registe	ers
	BX = 95A3	1001 0101 1010 0011	03 04 MOU AX, 7A24H AX	H L
	CX = 0FC7	0000 1111 1100 0111	05 MOV BX, 95A3H BX	95 A3
			07 JC L3T2 CX	0F C7
			09 EEE316: OR AX, 10 JNZ Last DX	00 00
			11 L3T2: MOU CX, CS	0100
			13 SUB AX, CX 14 TEST AX, BX	0014
			15 JZ EEE316 SS	0100
			17 Last: HLT SP	FFFE
		<u> </u>	10	

TEST AX, BX	AX = 0000 BX = 95A3 CX = 0FC7	0000 0000 0000 0000 1001 0101 1010 0011 0000 1111 1100 0111	01 CODE SEGMENT 02 ASSUME CS:CODE, 03 04 MOU AX, 7A24H 05 MOU BX, 95A3H 06 ADD AX, BX 07 JC L3T2 08 09 EEE316: OR AX, 10 JNZ Last 11 12 L3T2: MOU CX, 13 SUB AX, CX 14 TEST AX, BX 15 JZ EEE316 16 17 Last: HLT 18 CF 0 CS 0100 SP FFFE flags CF 0 CF 0
JZ EEE316	AX = 0000 BX = 95A3 CX = 0FC7	0000 0000 0000 0000 1001 0101 1010 0011 0000 1111 1100 0111	SF 0 - OF 0 - OF 0 - PF 1 - AF 0 - IF 1 - DF 0 - OI CODE SEGMENT ASSUME CS: CODE OI MOU AX. 7A24H OS MOU BX. 95A3H OF ADD AX. BX OF ADD AX. BX OF CF OF C7 OX OF C7 OX OF C7 OX OF C7
EEE316: OR AX, 23H	AX = 0023 BX = 95A3 CX = 0FC7	0000 0000 0010 0011 1001 0101 1010 0011 0000 1111 1100 0111	11

			Flags × CF
JNZ Last	AX = 0023 BX = 95A3 CX = 0FC7	0000 0000 0010 0011 1001 0101 1010 0011 0000 1111 1100 0111	01 CODE SEGMENT 02 ASSUME CS:CODE, 03 MOU AX. 7A24H 05 MOU BX. 95A3H 06 ADD AX, BX 07 JC L3T2 08 09 EEE316: OR AX, 10 JNZ Last 11 L3T2: MOU CX. 13 SUB AX, CX 14 TEST AX, BX 15 JZ EEE316 16 17 Last: HLT 18 Pregisters H L AX 00 23 BX 95 A3 CX 0F C7 DX 00 00 IP 0018 SS 0100 SP FFFE

Write an assembly code that will determine whether a number is greater than 5, equal to or less, and put 0, 1 or 2 for the conditions in DX

Assembly Code:

CODE SEGMENT
ASSUME CS:CODE, DS:CODE

MOV AX, 06H ; input number

SUB AX, 05H

JZ zero ; if result was zero
JS negative ; if result was negative

MOV DX, 00H ; otherwise
JMP last

zero: MOV DX, 01H
JMP last

negative:
MOV DX, 02H

last: HLT

CODE ENDS END

JMP last

Output:

Fig: (a) AX = 6, DX = 0 after execution (b) AX = 5, DX = 1 after execution

Fig: (c) AX = 4, DX = 2 after execution

Subtract 86B1H from 3F42H and store 0 in CX if overflow occurs and 1 if no overflow occurs

Assembly Code:

```
CODE SEGMENT
  ASSUME CS:CODE, DS:CODE
    MOV AX, 86B1H
    MOV BX, 3F42H
    SUB BX, AX
    JO OF
               : JMP if overflow
    MOV CX, 01H
                  : otherwise
    JMP last
OF:
     MOV CX, 0H
    JMP last
last: HLT
CODE ENDS
    END
```

Output:

Fig: (a) Subtraction of AX from BX, overflow flag 1 (b) CX assumes value of 0

Take 2 arbitrary numbers x and y. If x>1000H perform x+y. If y<1000H perform x-y. If x>1000H and y<100H perform x=x.

Assembly Code:

```
CODE SEGMENT
  ASSUME CS:CODE, DS:CODE
    MOV AX, 0250H
    MOV BX, 0050H
    CMP AX, 1000H
                    ; Compares 1st val with 1000H
    JS AX les 1000 ; AX<1000
    JZ AX eql 1000 ; AX=1000
    JNS AX grt 1000 ; AX>1000
AX grt 1000:
    CMP BX, 100H
                    ; Compares 2nd val with 100H
    JS AX grt 1000 BX les 100; AX > 1000 & BX < 100
    JZ AX_grt_1000_BX_eql_100 ; AX > 1000 & BX = 100
    JNS AX grt 1000 BX grt 100; AX > 1000 & BX > 100
AX les 1000:
AX_eql_1000:
    CMP BX, 1000H
                   ; Compares 2nd val with 1000H
    JS BX les 1000 ; BX<1000
    JNS last ; AX<=1000 & BX >=1000
: 1st CASE
AX grt 1000 BX eql 100:
AX grt 1000 BX grt 100:
    ADD AX, BX
    JMP last
: 2nd CASE
BX les 1000:
```

```
SUB AX, BX
JMP last

; 3rd CASE
AX_grt_1000_BX_les_100:

NOT AX
JMP last

last: HLT

CODE ENDS
END
```

Output:

```
CODE
               SEGMENT
    ASSUME CS:CODE, DS:C
06
                                  registers
07
   MOU AX, 1250H
MOU BX, 1000H
                                            50
                                       22
                                   AX.
09
10
                                            00
                                       10
                                   BX
    CMP AX, 1000H
                                   CX
                                        00
                                            00
13
         AX_les_1000
   JZ AX_eq1_1000
JNS AX_grt_1000
                                   DX
                                       00
                                            00
```

Fig: AX > 1000H, BX !<100H (1st condition applicable, x+y operation)

```
CODE SEGMENT ASSUME CS:CODE, DS:C
06
                                      registers
                                             Н
    MOV AX, 0250H
MOV BX, 0050H
98
                                            02
                                                 00
                                       AX
09
10
                                                 50
                                       BX
                                            00
    CMP AX, 1000H
11
12
                                            00
                                                 00
                                        CX
    JS
          AX_les_1000
14 JZ AX_eq1_1000
15 JNS AX_grt_1000
                                           00
                                                 00
                                       DX
```

Fig: AX < 1000H, BX < 1000H (2nd Condition applicable, x-y operation)

```
CODE
                SEGMENT
    ASSUME CS:CODE, DS:C
06
                                      registers
                                             Н
07
    MOV AX, 1250H
MOV BX, 50H
08
                                           ED
                                                 AF
                                       ΑX
10
                                                 50
                                            00
                                       BΧ
    CMP AX, 1000H
                                            00
                                                 00
                                       CX
    JS AX_les_1000
JZ AX_eq1_1000
JNS AX_grt_1000
                                       DX
                                            00
```

Fig: AX > 1000H, BX < 100H (3^{rd} condition applicable, x = x' operation)

```
CODE SEGMENT ASSUME CS:CODE, DS:C
                                           registers
                                                   Н
07
     MOV AX, 0250H
MOV BX, 1050H
08
                                                 02 50
                                            ΑX
10
11
12
13
                                            BX
                                                 10
                                                      50
     CMP AX, 1000H
                                                 00
                                                       00
                                            CX
13 JS AX_les_1000
14 JZ AX_eq1_1000
15 JNS AX_grt_1000
                                            DX 00
                                                      00
```

Fig: AX < 1000H, BX > 1000H (No condition applicable, no operation)

Write an assembly code that checks if a year is a leap year. Code template is shown below. If 'YEAR' is a leap year, put 1 in 'LEAPYEAR'. Else put 0 in 'LEAPYEAR'. You may observe value of LEAPYEAR by pressing the "var" button, beside the "flag" button.

Assembly Code:

```
CODE SEGMENT
  ASSUME CS:CODE, DS:CODE
    MOV AX, CS
    MOV DS, AX
    MOV AX, YEAR
    MOV DX, 0
    : *************SOLUTION CODE HERE*********
    ; DIVIDE BY 400
    MOV CX, AX ; creates a copy of the main year
    MOV BX, 0400D; to divide by 400 first
    DIV BX
    CMP DX, 0H ; compare dividend with 0
    JZ positive ; leap year if divided by 400
    ; DIVIDE BY 100
    MOV AX, CX ; restore value of AX
    MOV DX, 0
                  ; making sure dividend 0
    MOV BX, 0100D ; to divide by 100
    DIV BX
    CMP DX, 0H ; compare dividend with 0
    JZ negative ; not leap year if divided by 100
    ; DIVIDE BY 4
    MOV AX, CX
                   ; restore value of AX
    MOV DX, 0
                  ; making sure dividend 0
    MOV BX, 04D
                   ; to divide by 4
```

```
DIV BX
    CMP DX, 0H ; compare dividend with 0
    JZ positive ;leap year if divided by 4
    JNZ negative ; not leap year
positive:
    MOV LEAPYEAR, 01H
    JMP terminate
negative:
    MOV LEAPYEAR, 0H
    JMP terminate
terminate:
    ; ******* END OF SOLUTION *********
    HLT
    YEAR DW 2021D ; DW = Data Word (16 bits)
    LEAPYEAR DB ? ; DB = Data Byte (8 bits)
CODE ENDS
    END
```

Output:

Fig: (a) 1900 not leap year (b) 2000 leap year

Fig: (c) 2020 leap year (d) 2021 not leap year