a) Analizar minuciosamente cada línea del programa anterior

El programa tiene como objetivo realizar una transferencia de datos de memoria a memoria usando el Controlador de Acceso Directo a Memoria (CDMA) en modo de transferencia por bloque.

Líneas clave:

- 1. PIC EQU 20H: Define la dirección del PIC (Controlador de Interrupciones Programable) en 20H, que es el puerto de control del PIC.
- 2. ORG 2000H: Establece la dirección de inicio del código en 2000H.
- 3. DMA EQU 50H: Define la dirección del registro de control del CDMA en 50H.
- 4. CLI: Deshabilita las interrupciones globales.
- 5. N DMA EQU 20 : Establece el número de DMA que se usará.
- 6. MOV AL, N_DMA: Carga el número de DMA en el registro AL.
- 7. OUT PIC+7, AL: Configura el bit de interrupción del PIC.
- 8. MOV AX, OFFSET MSJ: Carga la dirección de la cadena MSJ (mensaje a copiar) en el registro AX.
- 9. OUT DMA, AL: Configura el CDMA con la dirección de la cadena a transferir.
- 10. MOV AX, OFFSET FIN-OFFSET MSJ: Define la longitud de los datos a transferir.
- 11. MOV AL, AH: Mueve el valor de AH a AL.
- 12. OUT DMA+1, AL : Establece el bloque a transferir.
- 13. MOV AX, OFFSET COPIA: Carga la dirección de la ubicación de destino en el registro AX.
- 14. OUT DMA+4, AL : Establece la dirección de destino de la transferencia.
- 15. MOV AL, ØAH: Configura el CDMA para transferir en modo de bloque.
- 16. OUT DMA+6, AL: Configura el modo de transferencia.
- 17. RUT_DMA: : Define la rutina de interrupción del CDMA.
- 18. MOV AL, OFFH: Desactiva las interrupciones de CDMA.
- 19. MOV AL, 0F7H: Habilita las interrupciones del PIC.
- 20. MOV BX, OFFSET COPIA: Carga la dirección de destino para la transferencia.
- 21. MOV AL, NCHAR: Establece la longitud de la cadena de caracteres a transferir.
- 22. INT 7: Realiza la interrupción de software para iniciar la transferencia.
- 23. моv AL, 20н: Señala que la transferencia está completa.
- 24. IRET : Finaliza la rutina de interrupción.

b) Explicar qué función cumple cada registro del CDMA e indicar su dirección

- DMA (50H): Dirección base del registro de control del CDMA. A través de este registro se gestionan las transferencias.
- CTRL (DMA + 6): Registro de control que define el tipo de operación (transferencia por bloque, transferencia bajo demanda, etc.). También configura otros parámetros.
- RF (DMA + 2): Registro de destino de la transferencia.
- CONT (DMA + 3): Registro de contador que establece la cantidad de datos a transferir.
- RD (DMA + 4): Registro de origen de los datos a transferir.
- PIC (20H): Registro del PIC para manejar las interrupciones y control de los eventos del sistema.

c) Describir el significado de los bits del registro CTRL

El registro CTRL generalmente tiene varios bits de control, que pueden incluir los siguientes:

- 1. Bit 0-3: Control de modo de transferencia (bloque, demanda, etc.).
- 2. Bit 4: Indica si la transferencia es de memoria a memoria o de memoria a periférico.
- 3. Bit 5-6: Indicadores de tipo de interrupción (habilitada o deshabilitada).
- 4. Bit 7: Activación de la transferencia (para comenzar la operación).

d) ¿Qué diferencia hay entre transferencia de datos por bloque y bajo demanda?

- Transferencia por bloque: El CDMA transfiere un bloque completo de datos sin intervención adicional de la CPU. El tamaño del bloque se configura antes de comenzar la transferencia.
- Transferencia bajo demanda: La CPU controla la transferencia de datos de forma más dinámica, es decir, el CDMA espera una solicitud específica de la CPU para cada transferencia de byte.

e) ¿Cómo se le indica al CDMA desde el programa que debe arrancar la transferencia de datos?

Se indica mediante la configuración del registro CTRL y la activación de la línea de control correspondiente. En el programa proporcionado, esto se hace a través de la instrucción:

```
asm

O Copiar ** Editar

MOV AL, ØAH

OUT DMA+6, AL; Modo de transferencia por bloque
```

Esto configura al CDMA para que comience la transferencia.

f) ¿Qué le indica el CDMA a la CPU a través de la línea hrq? ¿Qué significa la respuesta que le envía la CPU a través de la línea hlda?

- hrq (Request): Es una señal enviada por el CDMA para solicitar el control del bus de datos.
- h1da (Acknowledge): Es la señal de respuesta enviada por la CPU para indicar que ha otorgado el control del bus de datos al CDMA.

g) Explicar detalladamente cada paso de la operación de transferencia de un byte desde una celda a otra de la memoria. Verificar que en esta operación intervienen el bus de direcciones, el bus de datos y las líneas mrd y mwr.

- 1. Dirección de origen: El CDMA coloca la dirección de origen en el bus de direcciones.
- 2. Lectura de datos: La señal mrd (Memory Read) se activa para leer el byte desde la memoria.
- 3. Transferencia del byte: El byte es transferido desde la memoria al CDMA a través del bus de datos.
- 4. Dirección de destino: El CDMA coloca la dirección de destino en el bus de direcciones.
- Escritura de datos: La señal mwr (Memory Write) se activa para escribir el byte en la memoria de destino.

h) ¿Qué sucede con los registros RF, CONT y RD del CDMA después de transferido un byte?

- RF: Se actualiza para reflejar la siguiente dirección de memoria de destino.
- CONT : Se decrementa para reflejar la cantidad restante de datos por transferir.
- RD : Se actualiza con la siguiente dirección de origen para la siguiente transferencia de byte.

i) ¿Qué evento hace que el CDMA emita una interrupción y a través de qué línea de control lo hace?

El CDMA emite una interrupción cuando ha completado una transferencia de datos. Esta interrupción se genera a través de la línea de control INT del PIC, que indica a la CPU que el CDMA ha terminado la transferencia.

j) ¿Cómo se configura el PIC para atender la interrupción del CDMA?

El PIC se configura para atender la interrupción de la siguiente manera:

```
OUT PIC+1, AL ; Habilita las interrupciones del PIC
```

Esto habilita la interrupción correspondiente en el PIC para que la CPU pueda atenderla cuando se active.

k) ¿Qué hace la rutina de interrupción del CDMA del programa anterior?

La rutina de interrupción del CDMA realiza los siguientes pasos:

- 1. Deshabilita las interrupciones del CDMA para evitar interrupciones durante la atención.
- 2. Restaurar el estado de las interrupciones en el PIC.
- 3. Envía la señal de fin de transferencia (señalando que la transferencia ha sido completada).
- 4. Realiza la actualización de la pantalla con los resultados de la transferencia de datos.