Laboratorium Podstaw Fizyki

Nr ćwiczenia					
Badanie efektu Halla Temat ćwiczenia					
Nazwisko i Imię prowadzącego kurs					
Wykonawca:					
•	Wojciech Dwornik 244585				
Imię i Nazwisko	Mateusz Stasiak 262339				
nr indeksu, wydział	Kinga Teklak 233124				
, ,	Matematyka Stosowana				
Termin zajęć: dzień tygodnia, godzina	czwartek 17:05				
Numer grupy ćwiczeniowej	T00-62d				
Data oddania sprawozdania:	07.04.2022				
Ocena końcowa					
Zatwierdzam wyniki pomiarów.					

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania

poprawionego sprawozdania

Data i podpis prowadzącego zajęcia

Spis treści

1	\mathbf{Wstep}	2
	1.1 Czym jest efekt Halla?	2
	1.2 Cele	2
	1.3 Przebieg pomiarów	2
	1.4 Wykorzystane przyrządy pomiarowe i ich niedokładności	2
2	Wyniki pomiarów wraz z niedokładnościami	3
3	3 Opracowanie wyników	4
	3.1 Wykresy charakterystyki kątowej hallotronu $U_H = f(\alpha)$	4
	3.2 Wyznaczanie maksymalnej czułości kątowej $S_{\alpha}=\Delta U_{H}/\Delta \alpha$ oraz niepewno	
	$u(S_{\alpha})$	5
	3.3 Obliczanie składowej normalnej indukcji magnetycznej B_n	6
	3.4 Wykresy zależności napięcia od indukcji magnetycznej	9
4	Wnioski	12
5	ő Ź ródła	13

1 Wstęp

1.1 Czym jest efekt Halla?

Efektem Halla nazywamy zjawisko fizyczne polegające na wystąpieniu różnicy potencjałów w przewodniku, w którym płynie prąd elektryczny, gdy przewodnik znajduje się w poprzecznym do płynącego prądu polu magnetycznym. Ta różnica potencjałów, zwana napięciem Halla, pojawia się między płaszczyznami ograniczającymi przewodnik, prostopadle do płaszczyzny wyznaczanej przez kierunek prądu i wektor indukcji magnetycznej. Jest ona spowodowana działaniem siły Lorentza na ładunki poruszające się w polu magnetycznym.

1.2 Cele

Zmierzenie charakterystyk statycznych hallotronu $U_H = f(a)$ i $U_H = f(B_n)$, na podstawie serii pomiarów dla trzech różnych natężeń przy zmianie kąta w hallotronie o 10^o w przedziale 0^o - 360^o . W następnym kroku wyznaczamy czułość polową $\gamma_B = \Delta U_H/\Delta B$. Wyznaczenie koncentracji n swobodnych nośników ładunku. Wyznaczenie maksymalnej czułości kątowej $S_\alpha = \Delta U_H/\Delta \alpha$ hallotronu.

1.3 Przebieg pomiarów

Procedurę powtarzam dla trzech natężeń: 5mA, 10mA, 15mA

- 1. Tworzymy układ według schematu załączonego w instrukcji.
- 2. Włączamy zasilanie oraz woltomierz.
- 3. Ustawiamy natężenie na amperomierzu.
- 4. Zaczynając od kąta 0^o ustawionego na hallotronie, zapisujemy uzyskane napięcie, następnie obracamy hallotron o 10^o i powtarzamy procedurę, aż do pełnego obrotu hallotronu.

1.4 Wykorzystane przyrządy pomiarowe i ich niedokładności

- Hallotron z dokładnością pomiarową $\pm 5^{\circ}$.
- Miliamperomierz (klasa: 0,5)
- Multimetr M-4660A $\pm (0,5\%rdg + 10dgt)$ przy rozdzielczości $100\mu V$

2 Wyniki pomiarów wraz z niedokładnościami

u(l_s)[mA]	0,044					
I_s [mA]	15,	000	10,000		5,000	
	pomiar nr 1		pomiar nr 2		pomiar nr 3	
kąt (°)	U_h[V]	u(U_h)[V]	U_h[V]	u(U_h)[V]	U_h[V]	u(U_h)[V]
0	0,03800	0,00069	0,00800	0,00061	0,00110	0,00059
10	-0,05150	0,00073	-0,03660	0,00069	-0,01750	0,00063
20	-0,10260	0,00088	-0,07420	0,00080	-0,03720	0,00069
30	-0,1550	0,0011	-0,10570	0,00089	-0,05420	0,00074
40	-0,2011	0,0012	-0,13630	0,00098	-0,06900	0,00078
50	-0,2402	0,0013	-0,1621	0,0011	-0,08400	0,00082
60	-0,2852	0,0015	-0,1848	0,0012	-0,09570	0,00086
70	-0,3089	0,0015	-0,2008	0,0012	-0,10400	0,00088
80	-0,3250	0,0016	-0,2119	0,0012	-0,10690	0,00089
90	-0,3333	0,0016	-0,2171	0,0013	-0,11240	0,00091
100	-0,3323	0,0016	-0,2164	0,0013	-0,11220	0,00091
110	-0,3227	0,0016	-0,2099	0,0012	-0,10890	0,00090
120	-0,3030	0,0015	-0,1979	0,0012	-0,10280	0,00088
130	-0,2757	0,0014	-0,1805	0,0011	-0,09350	0,00085
140	-0,2416	0,0013	-0,1576	0,0011	-0,08140	0,00082
150	-0,1936	0,0012	-0,12910	0,00096	-0,06750	0,00078
160	-0,1455	0,0010	-0,09710	0,00086	-0,05070	0,00073
170	-0,09240	0,00085	-0,06240	0,00076	-0,03260	0,00068
180	-0,03930	0,00070	-0,02760	0,00066	-0,01480	0,00063
190	0,01360	0,00062	0,01670	0,00063	0,00400	0,00059
200	0,07010	0,00078	0,04360	0,00071	0,02210	0,00065
210	0,11960	0,00093	0,07830	0,00081	0,03980	0,00070
220	0,1651	0,0011	0,10990	0,00090	0,05810	0,00075
230	0,2100	0,0012	0,13780	0,00098	0,07130	0,00079
240	0,2467	0,0013	0,1594	0,0011	0,08290	0,00082
250	0,2743	0,0014	0,1776	0,0011	0,09160	0,00085
260	0,2922	0,0015	0,1893	0,0012	0,09760	0,00086
270	0,3005	0,0015	0,1951	0,0012	0,10090	0,00087
280	0,2999	0,0015	0,1947	0,0012	0,10070	0,00087
290	0,2898	0,0015	0,1881	0,0012	0,09710	0,00086
300	0,2727	0,0014	0,1760	0,0011	0,09090	0,00084
310	0,2435	0,0013	0,1588	0,0011	0,08190	0,00082
320	0,2074	0,0012	0,13470	0,00097	0,06930	0,00078
330	0,1684	0,0011	0,10980	0,00090	0,05590	0,00074
340	0,11550	0,00092	0,07650	0,00080	0,03940	0,00070
350	0,06090	0,00076	0,04240	0,00070	0,02160	0,00064
360	0,00160	0,00059	0,00280	0,00059	0,00110	0,00059

3 Opracowanie wyników

3.1 Wykresy charakterystyki kątowej hallotronu $U_H = f(\alpha)$

3.2 Wyznaczanie maksymalnej czułości kątowej $S_{\alpha}=\Delta U_{H}/\Delta \alpha$ oraz niepewności $u(S_{\alpha})$

Na podstawie poprzednich wykresów bierzemy po dwa punkty z każdego z nich, pomiędzy którymi możemy zauważyć najszybszą zmianę napięcia od kąta.

Przykładowo dla pierwszego wykresu będę to punkty między dla 140^o i 220^o .

Następnie odczytujemy wartości napięcia dla tych punktów i wykorzystując powyższy wzór wyliczamy wartość czułości kątowej.

$$S_1 = (0, 1651 + 0, 2416)/(220 - 140) = 0,00508375[V/^o]$$

W przypadku pomiaru dla dwóch sąsiadujących punktów, możemy uzyskać większe wartości $(0,0924-0,0393)/10\approx 0,0054[V/^o]$, które jednak nie wydaję się sensowne, ponieważ za bardzo odbiegają od wartości uzyskanej na większym przedziale kątowym,

Dla kolejnych wykresów również bierzemy przedział kątowy od 140^o do 220^o , wartości wyglądają następująco:

$$S_2 = 0,00334375[V/^o]$$
 $S_3 \approx 0,00174375[V/^o]$

Do wyliczenia niepewności $u(S_{\alpha})$ wykorzystamy wzór na niepewność złożoną przedstawiony

poniżej:

$$u_c(y) = \sqrt{\sum_{j=1}^{k} \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}$$

 $S_{\alpha} = \Delta U_h / \Delta \alpha = f(\Delta U_h, \Delta \alpha)$

$$u(S_{\alpha}) = \sqrt{\frac{1}{\Delta \alpha^2} u^2(\Delta U_h) + \frac{\Delta U_h^2}{\Delta \alpha^4} u^2(\Delta \alpha)}$$

Przykładowe obliczenia dla czułości kątowej nr 1

$$u(\Delta U_h) = \sqrt{u^2(U_{h2}) + u^2(U_{h1})} =$$

Do obliczenia powyższego wzoru potrzebujemy wartości niepewności $u(\Delta U_h)$ oraz $u(\Delta \alpha)$. Również obliczamy je ze wzoru na niepewność złożoną wiedząc, że $\Delta U_h = U_{h2} - U_{h1}$, $\Delta \alpha = \alpha_2 - \alpha_1$.

$$u(\Delta U_h) = \sqrt{u^2(U_{h2}) + u^2(U_{h1})}$$
$$u(\alpha) = 1/\sqrt{3} \approx 0,58[^o]$$
$$u(\Delta \alpha) = \sqrt{u^2(\alpha) + u^2(\alpha)}$$

Po wyliczeniach i zaokrągleniu otrzymujemy następujące wartości czułości kątowej dla poszczególnych wykresów:

- 1. $S_{\alpha} = 0,005084(56)[V/^{o}]$
- 2. $S_{\alpha} = 0,003344(39)[V/^{o}]$
- 3. $S_{\alpha} = 0.001744(23)[V/^{o}]$

3.3 Obliczanie składowej normalnej indukcji magnetycznej B_n

Wykorzystujemy wzór $B_n = B_0 sin(\alpha - \alpha_0)$. Za B_0 przyjmujemy wartość $0,500 \pm 0,050[T]$, natomiast za $u(\alpha) = 0,58^o$. Do obliczenia $u(B_n)$ potrzebujemy jeszcze wyliczonej niepewności α_0 .

Wykorzystując wbudowaną w excelu funkcję REGLINP uzyskujemy dokładne wartości współczynników a i b oraz ich niepewności. Wykorzystując zależność $\alpha_0 = f(a, b) = -b/a$ oraz wykorzystując poniższy wzór na niepewność złożoną, możemy policzyć niepewność $u(\alpha_0)$.

$$u_c(y) = \sqrt{\sum_{j=1}^{k} \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}$$

Przekształcając powyższy wzór do naszych potrzeb otrzymujemy następującą formę:

$$u(\alpha_0) = \sqrt{\frac{1}{a^2}u^2(b) + \frac{b^2}{a^4}u^2(a)}$$

Mając wyprowadzony wzór na liczenie niepewności α_0 , możemy przejść do wyprowadzenia wzoru na $u(B_n)$. Tutaj również będziemy korzystać ze wzoru na niepewność złożoną, po przekształceniach wygląda następująco:

$$u_c(B_n) = \sqrt{\sin^2(\alpha - \alpha_0)u^2(B_0) + [B_0\cos(\alpha - \alpha_0)]^2u^2(\alpha) + [B_0\cos(\alpha - \alpha_0)]^2u^2(\alpha_0)}$$

Wprowadzając uzyskane wzory do excela uzyskujemy następujące table z wynikami:

Regresja liniowa				
Natężenie prądu [mA]	15	10	5	
Współczynnik kierunkowy	0,005173	0,003421	0,001770	
Współczynnik b	-0,9693	-0,6408	-0,3323	
Alpha_0 [°]	187,4	187,3	187,8	
u(alpha_0) [°]	2,2	4,0	3,0	
Alpha_0 [rad]	3,271	3,270	3,277	
u(alpha_0) [rad]	0,038	0,069	0,052	
u(alpha) [°]	0,58			
u(alpha) [rad]	0,011			

I_s [mA]		15,000		10,000		5,000	
Składowa normalna indukcji magnetycznej							
kąt (°)	kąt [rad]	B_n[T]	u(B_n)[T]	B_n[T]	u(B_n)[T]	B_n[T]	u(B_n)[T]
0,00	0,000	0,064	0,021	0,064	0,035	0,067	0,027
10,00	0,175	-0,023	0,020	-0,023	0,035	-0,020	0,027
20,00	0,349	-0,109	0,023	-0,110	0,036	-0,106	0,028
30,00	0,524	-0,192	0,027	-0,193	0,038	-0,190	0,031
40,00	0,698	-0,269	0,032	-0,270	0,040	-0,267	0,035
50,00	0,873	-0,339	0,037	-0,339	0,043	-0,336	0,039
60,00	1,047	-0,397	0,042	-0,398	0,045	-0,396	0,043
70,00	1,222	-0,444	0,046	-0,444	0,048	-0,443	0,046
80,00	1,396	-0,477	0,049	-0,477	0,049	-0,476	0,049
90,00	1,571	-0,496	0,050	-0,496	0,050	-0,495	0,050
100,00	1,745	-0,499	0,050	-0,499	0,050	-0,500	0,050
110,00	1,920	-0,488	0,049	-0,488	0,050	-0,489	0,050
120,00	2,094	-0,462	0,047	-0,461	0,049	-0,463	0,048
130,00	2,269	-0,421	0,044	-0,421	0,047	-0,423	0,045
140,00	2,443	-0,368	0,040	-0,368	0,044	-0,370	0,041
150,00	2,618	-0,304	0,035	-0,303	0,041	-0,306	0,037
160,00	2,793	-0,230	0,029	-0,229	0,039	-0,233	0,033
170,00	2,967	-0,149	0,024	-0,149	0,037	-0,152	0,030
180,00	3,142	-0,064	0,021	-0,064	0,035	-0,067	0,027
190,00	3,316	0,023	0,020	0,023	0,035	0,020	0,027
200,00	3,491	0,109	0,023	0,110	0,036	0,106	0,028
210,00	3,665	0,192	0,027	0,193	0,038	0,190	0,031
220,00	3,840	0,269	0,032	0,270	0,040	0,267	0,035
230,00	4,014	0,339	0,037	0,339	0,043	0,336	0,039
240,00	4,189	0,397	0,042	0,398	0,045	0,396	0,043
250,00	4,363	0,444	0,046	0,444	0,048	0,443	0,046
260,00	4,538	0,477	0,049	0,477	0,049	0,476	0,049
270,00	4,712	0,496	0,050	0,496	0,050	0,495	0,050
280,00	4,887	0,499	0,050	0,499	0,050	0,500	0,050
290,00	5,061	0,488	0,049	0,488	0,050	0,489	0,050
300,00	5,236	0,462	0,047	0,461	0,049	0,463	0,048
310,00	5,411	0,421	0,044	0,421	0,047	0,423	0,045
320,00	5,585	0,368	0,040	0,368	0,044	0,370	0,041
330,00	5,760	0,304	0,035	0,303	0,041	0,306	0,037
340,00	5,934	0,230	0,029	0,229	0,039	0,233	0,033
350,00	6,109	0,149	0,024	0,149	0,037	0,152	0,030
360,00	6,283	0,064	0,021	0,064	0,035	0,067	0,027

3.4 Wykresy zależności napięcia od indukcji magnetycznej

Do wyliczenia wartości γ wykorzystamy wzór podany w instrukcji $(a = \gamma I_s)$, z kolei do wyliczenia niepewności $u(\gamma)$ wykorzystamy wzór na niepewność złożoną:

$$u_c(y) = \sqrt{\sum_{j=1}^{k} \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}$$

$$u(\gamma) = \sqrt{\frac{u^2(a)}{I_s^2} + \frac{a^2}{I_s^4}u^2(I_s)}$$

Wyliczamy niepewność rozszerzoną ze wzoru:

$$U(\gamma) = ku(\gamma) = 2u(\gamma)$$

Do wyliczenia koncentracji n swobodnych nośników ładunku wykorzystamy poniższy wzór zamieszczony w instrukcji:

$$n = \frac{1}{e\gamma d}$$

Dy wyliczenia niepewności posłużymy się poniższym wzorem wyprowadzonym na podstawie wzoru na niepewność złożoną:

$$u(n) = \sqrt{\frac{u^2(d)}{e\gamma d^2} + \frac{u^2(\gamma)}{e\gamma^2 d}}$$

$$U(n) = ku(n) = 2u(n)$$

а	b		wspołczynnik korelacji			
0,636394	-0,01622		0,9969	1,00		
0,006027	0,002103		czułość polowa finalna			
0,996871	0,01279		42,44666667 42,45(26) [V/A			
11150,18	35		czułość polowa dla punktu			
1,824115	0,005726		-13,46388284	-13,47(2,7)	[V/A*T]	
			koncentracja n nośników			
U(A)	0,003313	~0,0034	7,35299E+22	73,6E+21(3,8)	[1/m^3]	

	niepewność czułości polowej dla punktu				
	uc=	2,616476005	~ 2,7		
niepewność rozszerzona	Uc=2*uc	5,232952011	[V/A*T]	~5,3	
niepewi	ność finalna dla	czułości polowej]		
			4		
	uc(gamma)	0,253543586	[V/A*T]	~0,26	
	niepewność roz	rzeszona:			
	Uc(gamma)	0,507087171	[V/A*T]	~0,51	

a	b		wspołczynnik korelacji		
0,415605685	-0,011755844		0,9965	1,00	
0,004185049	0,001460164		czułość polowa finalna		
0,99646355	0,00888172		41,60	41,60(40)	[V/A*T]
9861,929825	35		czułość polowa dla punktu		
0,777957916	0,002760974		-32,33	-32,33(17)	[V/A*T]
			koncen	tracja n nośnikó	w
U(A)	0,003524866	~0,0036	7,50264E+22	75,1E+21(39)	[1/m^3]

	niepewność czułości polowej dla punktu				
	0,161463101	~0,17			
niepewność rozszerzona	0,322926203	~0,33	[V/A*T]		
	niepewność fina	lna dla czułoś	ści polowej		
	0,397178101	~0,40	[V/A*T]		
	niepewn	ość rozrzeszo	ona		
	0,794356202	~0,80	[V/A*T]		

4 Wnioski

- Przy wyliczeniu czułości kątowych S_{α} możemy zaobserwować ich większe wartości dla większych natężeń, dzieląc wartość natężenia przez czułość kątową uzyskujemy zbliżoną wartość dla wszystkich trzech serii pomiarów. Wynika z tego że S_{α} jest liniowo zależne od wartości natężenia.
- Wartości kąta α_0 są do siebie zbliżone dla wszystkich badanych natężeń, czyli jego wartość nie jest zależna od wartości natężenia.

- \bullet Czułość polowa jest zależna od $I_s,$ tak samo jak jej niepewność. Wynika to bezpośrednio ze wzoru.
- \bullet Koncentracja nośników ładunków (n) zależy od czułości polowej, która to zależna jest od $I_s,$ zatem również zależy od $I_s.$
- $\bullet\,$ Dla największego badanego I_s (tzn15mA)wyznaczone wartości są najdokładniejsze.

5 Źródła

• Zjawisko Halla