

Math93.com

TD - NSI Représentation des données Types et valeurs de base

Activité 1 : Opération sur les nombres en binaire

Exercice 1.		
_	e rs naturels. le des nombres binaires par groupe de 8 bits = un octet. On dispose de 8 n d'entiers naturels peut-on représenter?	3 bit
		· • • • •
		• • • •
2. Addition sur 8 bits.		
(a) Additionner sur 8	bits les nombres suivants et commenter le résultat obtenu :	
	0101 0001 ₂ et 0111 0111 ₂	
	Aide	
	$0_2 + 0_2 = 0_2 \text{ et } 1_2 + 0_2 = 1_2 \text{ et } 1_2 + 1_2 = 10_2$	
	$0_2 + 0_2 = 0_2$ et $1_2 + 0_2 = 1_2$ et $1_2 + 1_2 = 10_2$	
		• • • • •
(b) Faire de même av	ec les nombres suivants sur 8 bits, quel problème se pose?	
(4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	· · ·	
	01010001_2 et 11110111_2	
		• • • • •
3. La négation sur n bits	(ou complément à 1).	
Définition 1 (Négat	ion ou complément à 1)	

www.math93.com / M. Duffaud

en transformant les 1 en 0 et les 0 en 1. $Exemple: NON(0100\ 1001) = 1011\ 0110$

TD - NSI - Représentation des données Types et valeurs de base

(a)	Calculer la somme de 1010 1100 ₂ écrit en base 2 et de son complément à 1 sur 8 bits
(b)	Faites ce calcul sur d'autres nombres écrit en base 2 écrit sur 3 bits, 4 bits ,? . Que peut-on conjecturer?
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	

www.math93.com / M. Duffaud 2/5

Activité 2

Codage des nombres relatifs : une première méthode

Sur $n = 8$ bits, on a: $0000 \ 1000_2 = 8_{10}$	
Proposer une méthode pour représenter (–8) en base 2 sur 8 bits, en n'utilisant que des 0 et des 1 sur 8 l (pas de signe – possible).	
	• • •
Remarque	
Problèmes et critique.	
Activité 3	
Codage des nombres relatifs : le complément à 2	
1. Donner la définition de l'opposé d'un nombre <i>x</i> ?	
1. Doinier in definition de l'oppose à diritornoire ».	
2. En déduire l'opposé de 1 ₂ sur 8 bits.	
	• • •
3. On utilisant le résultat conjecturé de la question 3 de l'exercice 1, que dire de l'écriture sur n bits c	
	•••
x + NON(x) + 1	•••
` '	•••
` '	•••
	•••
	•••
4. On en déduit la méthode permettent d'obtenir l'opposé d'un entier en binaire.	•••
	•••

www.math93.com / M. Duffaud 3/5

Exercice 2. Un exemple si n = 4 bits.

1.	Combien d'entiers positifs et négatifs peut-on représenter sur $n=4$ bits?

2. Compléter le tableau suivants et observez le lien entre **le bit de poids fort** (le premier à gauche) et le signe du nombre :

-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
														0110	0111

Partie collaborative : discutions et bilan sur le bit de poids fort.

Exercice 3. Un exemple si n = 8 bits.

- 1. Sur l'ordinateur, utilisez la calculatrice en mode « *programmer* » et vérifier quelques résultats précédents.
- 2. Un exemple si n = 8 bits.

Après avoir donné les écritures en binaire sur 8 bits, donnez les opposés des entiers suivants (en binaire sur 8 bits) :

$$a = 1$$
; $b = 5$; $c = 10$; $d = 16$; $d = 32$; $e = 300$

• •																																				

3. Combien d'entiers positifs et négatifs peut-on représenter sur n=8 bits?

Donner le plus petit et le plus grand en écriture décimale et binaire.

www.math93.com / M. Duffaud 4/5

Activité 4 : Les plus grands et plus petits entiers relatifs à coder sur n bits

1.	Combien d'entiers positifs et négatifs peut-on représenter sur $n = 16$ bits, $n = 32$ bits?
	Donner le plus petit et le plus grand en écriture décimale et binaire.
2.	Généralisation : reprendre la question précédente sur n bits?

Compléments (facultatif)

- 1. Quel est le plus grand nombre relatif positif utilisé par une machine en 64 bits?
- 2. Écrire un algorithme (en pseudo-code) pour obtenir l'opposé d'un nombre binaire en complément à
- 3. Écrire un algorithme (en pseudo-code) qui demande un nombre n entier différent de 0 de bits, et un nombre relatif x (en base 10) et le convertit en binaire sur n bits. Il faut tenir compte des dépassements de capacité.
- 4. Écrire des algorithmes, en pseudo-code et en Python permettant de passer d'un entier relatif à son écriture binaire sur *n* bits, et réciproquement.

www.math93.com / M. Duffaud 5/5