1η Ομάδα

- 1. (α) Εξετάζοντας το ενεργό δυναμικό $U_{\it eff}(r) = -\frac{Gm_{\rm l}m_{\rm 2}}{r} + \frac{l^2}{2\mu r^2}$ να βρεθεί η ακτίνα στην οποία ένας πλανήτης ή ένας κομήτης με στροφορμή l μπορεί να περιστρέφεται γύρω από τον ήλιο σε τροχιά σταθερής ακτίνας. (5μ)
 - (β) Δείξτε ότι η κυκλική αυτή ακτίνα είναι σταθερή με την έννοια ότι μικρές μόνο διαταραχές στην ακτινική διεύθυνση προκαλούν μόνο μικρές ακτινικές ταλαντώσεις. (8μ)
 - (γ) Δείξτε ότι η περίοδος των ταλαντώσεων αυτών είναι ίση με την περίοδο περιφοράς του πλανήτη γύρω από τον ήλιο. (7μ)

(a) To everyo Sovaturo eivar: Veg= - Gm,m2 + 22 phr2
Tra va exorte under rpoxia da refere de de est = 0
Auto espaise de : $\frac{dV_{eff}}{dr} = \frac{Gm_1m_2}{r^2} - \frac{4l^2}{4kr^3} = 0 \Rightarrow$
$\Rightarrow \sqrt{\text{kuxlains rpoxios}} = \frac{2}{Gm_{1}m_{2}}$
(b) Tra va eivar y topoxia stadepi mpinu d'Vell >0
Bpieroulie enolières za 2º mapayuyo zou evepyoù Surafunoù cra V=Vkul
$\frac{d^{2}V_{eff}}{dr^{2}} = -\frac{9Gm_{m_{2}}}{r^{3}} + \frac{3l^{2}}{hr^{4}} = \frac{1}{r^{4}} \left(-9Gm_{m_{2}}r + \frac{3l^{2}}{\mu}\right) \Rightarrow$
$\Rightarrow \frac{d^2 U_{egg}}{dr^2} = \frac{1}{V_0^4} \left[-2 Gm_1 m_2 \frac{\ell^2}{Gm_1 m_2 L} + \frac{3\ell^2}{L} \right] = \frac{1}{V_0^4} \left[-\frac{2\ell^2}{L} + \frac{3\ell^2}{L} \right] \Rightarrow$
$\Rightarrow \frac{d^2 \mathcal{I}_{\text{eff}}}{dr^2}\Big _{r=r_0} = \frac{1}{r_0^4} \frac{\ell^2}{\mu} > 0 \text{àpa 6 tau lepin}$

2. Τι θα συμβεί στην τροχιά της γης (την οποία μπορείτε να θεωρήσετε κυκλική) αν η μισή από την μάζα του ήλιου εξαφανιστεί ξαφνικά. (**20μ**)

Αρχικά η γη βρίοκετοι σε σταθερή κυνθική τροχιά ακτίνας Το To everyo Swapino eiva: $\frac{V_{egg} = -Gm_1m_2}{R_0} + \frac{\ell^2}{g_h R_0^2} = \frac{k_0}{R_0} + \frac{\ell^2}{g_h R_0^2}$ onou vo= am, m2 nou m2 = pieja is lou evi m2 = pieja yos Apoi Opicueros se unidaris rooquia rote de los = 0 > $\Rightarrow \frac{k_0}{R^2} - \frac{g\ell^2}{\ell k_0^3} = 0 \Rightarrow \frac{1}{R^3} \left[k_0 R_0 - \frac{\ell^2}{k_0} \right] = 0 \Rightarrow \left[R - \frac{\ell^2}{k_0 k_0} \right]$ (1) To Swapinio endienes et Diez avez Da civar: $V_{eq}^{min}(R_0) = -\frac{k_0}{R_0} + \frac{\ell^2}{2\mu R_0^2} = -\frac{k_0 \mu}{\ell^2} + \frac{\ell^2}{2\mu \ell^2} = -\frac{k_0 \mu}{\ell^2} + \frac{k_0 \mu}{2\ell^2} \Rightarrow$ => 2 eg (Ro) = - koh Στο επμείο αυτό η ενέρχεια $E = U_{eqp}(R_0) \Rightarrow U_0 + T_0 = -\frac{k_0^2 μ}{20^2}$ ⇒ $\Rightarrow -\frac{k_0}{R_0} + \frac{1}{2} \mu v_0^2 = -\frac{k_0^2 L}{2\ell^2} \Rightarrow \frac{k_0^2 \mu}{90^2} - \frac{k_0}{2} + \frac{1}{2} \mu R_0^2 \dot{\Theta}^2 = 0 \Rightarrow$ $\frac{k_{0}^{2}\mu}{90^{2}} - \frac{k_{0}}{R_{1}} + \frac{1}{2}\frac{\ell^{2}}{\mu R^{2}} = 0 \Rightarrow \frac{1}{90^{2}}\left(k_{0}^{2} - \frac{2\kappa_{0}\ell^{2}}{\mu R_{0}} + \frac{\ell^{4}}{\mu^{2}R^{2}}\right) = 0 \Rightarrow$ $\Rightarrow \frac{\mu}{2l^2} \left(k_0 - \frac{l^2}{\mu R_0} \right) = 0 \Rightarrow \left| k_0 = \frac{l^2}{\mu R_0} \right| \text{ auto inposition was}$ Ito i Suo anoté Jespio uazadijoule και au Dempisoule: $F_{gr} = F_{kev} \Rightarrow \frac{K_0}{R_0^2} = \frac{\mu v^2}{R_0} \Rightarrow K_0 = \frac{(\mu v R_0)^2}{\mu R_0} \frac{\ell^2}{\mu R_0}$

Av n fraja vor i dor ziver gaprina z files vote K= 1/2 ko Il czpopophy Scarnpeirar na enopieus zo vio Scrapenio Da $U_{1}(R_{0}) = \frac{1}{2} U_{0}(R_{0}) = -\frac{k_{0}}{9R} = -\frac{\ell^{2}}{91.R}$ H unyeun evéppera mapafières afrecabling apor lo=l1 > v=v, $T_1 = T_0 = \frac{1}{2} k v_0^2 = \frac{\ell^2}{9 k R}$ Apa y ourodais evépyera da eiva: $E = T_1 + V_1 = \frac{\ell^2}{91.8} + \frac{\ell^2}{910} = 0$. Επομένως η χη θα φύχει από το ηθιαιό δύσενμα αποθοιθώντως παραβοθική τροχιά αφού: $e = \sqrt{1 + \frac{2E\ell^2}{k^2 L}} \Rightarrow e = 1$ Αυτό μπορούμε να σο βρούμε και από την εξίωως της τροχιώς $\Gamma(\varphi) = \frac{C}{1 + e\cos\varphi} \Rightarrow 1 + e\cos\varphi = \frac{C}{r} \Rightarrow 1 + e\cos\varphi = \frac{K}{r} \Rightarrow$ $\stackrel{\text{c=1}}{\Rightarrow} 1 + \cos \varphi = \frac{\ell^2}{k_0 \mu r} = \frac{2\ell^2}{k_0 \mu r} \stackrel{\text{(1)}}{\Rightarrow} 1 + \cos \varphi = \frac{2R_0}{r} \Rightarrow$ => 2R0 = V (1+ COSG) The $r = \sqrt{x^2 + y^2}$ was $\cos \varphi = \frac{x}{r}$ Exorps: $x = R_0 - \frac{y^2}{4R_0}$ Ja averceoixei ce eficusy rapabolis (0=0 oran xaveran n piej piaja con johon) Tapabolius tpoxia

Toli no einola:

Εποδίενως η αρχική ενέρχεια της χης είναι:

O con giveran r énpr f_r r ϵ cooperfir con encertiacos δ en alléles en $k = \frac{1}{2} k_0$ aboù r tiefa con r lion giveran fuer;

Apoi n copo poplus eivas contepis la = lo => mv, 1/2 = mv, 1/2 = = v=vz

Apoi a evéppera eira funder -> 2 epoxia nou da

anolowice u si da exe enneuroista $C=\sqrt{1+\frac{2El^2}{k^2h}}=\frac{1}{1}$ markol

2η Ομάδα

1. Να βρεθούν οι Hamiltonians που αντιστοιχεί στις ακόλουθες Lagrangians:

(α)
$$L = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 + \lambda \dot{x}_1 x_2^2 - a (x_1 - x_2)^4$$
 όπου m_1 , m_2 , λ και α είναι σταθερές. (5μ)

(β)
$$L = \frac{1}{2} m_1 R^2 (\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta) - mgR \cos \theta$$
 (5μ)

$$(\gamma) L = x\dot{x} (5\mu)$$

Στην τελευταία αυτή περίπτωση τι νομίζετε ότι σημαίνει το αποτέλεσμα που βρήκατε; Σας δίνει ανάλογο αποτέλεσμα η Lagrangian; (**5**μ)

(a)
$$L = \frac{1}{2}m_1 \dot{x}_1^2 + \frac{1}{2}m_2 \dot{x}_2^2 + 2\dot{x}_1 \dot{x}_2^2 - \alpha(x_1 - x_2)^4$$

Or novomnompines oppies eina

$$P_1 = \frac{\partial k}{\partial \dot{x}_1} = m_1 \dot{x}_1 + \Im x_2^2 \qquad P_2 = \frac{\partial k}{\partial \dot{x}_2} = m_2 \dot{x}_2$$

Nivovias as nos x, ka x, exoute:

$$\overset{\circ}{\times}_{1} = \frac{P - 0 \times_{2}^{2}}{m_{1}} \qquad \text{kar} \quad \overset{\circ}{\times}_{2} = \frac{P_{2}}{m_{2}}$$

H Hamiltoniay enoficios Da civar:

$$\mathcal{H} = \rho_{1} \dot{x}_{1} + \rho_{2} \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{1} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{1} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}^{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} - \mathcal{L} = (m_{1} \dot{x}_{1} + \mathcal{I} x_{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}) \dot{x}_{2} + (m_{2} \dot{x}_{2}$$

$$\Rightarrow \mathcal{H} = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 + \alpha (x_1 - x_2)^4 \Rightarrow \text{Averagistives } \dot{x}_1 \dot{y} \dot{x}_2$$

$$|\mathcal{H}| = \frac{(P_A - 3x_2^2)^2}{2m_1} + \frac{P_2^2}{2m_2} + \alpha (x_1 - x_2)^4$$

(6)
$$p_{\theta} = \frac{\partial L}{\partial \dot{\phi}} = mR^2 \dot{\phi}$$
 $p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = mR^2 \dot{\phi} \sin^2 \theta$

Enopères
$$O = \frac{Po}{mR^2}$$
 ka $\phi = \frac{P\phi}{mR^2 \sin^2 \Theta}$

$$\mathcal{H} = P_{\Theta} + P_{\Phi} + P_{\Phi} + \mathcal{L} = \frac{1}{2} mR^{2} (\dot{\Theta}^{2} + \dot{\phi}^{2} \sin^{2}\Theta) + mgR \cos\Theta \Rightarrow$$

$$|\mathcal{H}| = \frac{P_{\Theta}^{2}}{2mR^{2}} + \frac{P_{\Phi}^{2}}{2mR^{2} \sin^{2}\Theta} + mgR \cos\Theta$$

(x)
$$p = \frac{\partial L}{\partial \dot{x}} = x$$

Enolières $\mathcal{H} = p\dot{x} - L = x\dot{x} - x\dot{x} = 0 \Rightarrow |\mathcal{H} = 0|$

(δ) Mπορεί να sas pavei περίερχο ότι H=O. Αστό επραίνει ότι δευ υπάρχουν εβίσωσως κίνησης.

Ταρό Το που φετατρέφαφε τη Lagrangian σε. Hamiltonian

n padrandian con energhates non rebildage en en engine

(x) Seu trepsypaper na racolifoupe ero iso enfinipartia pe co doptialistió dagrange.

Προςέβει ότι η αρχική hagrangian είναι το ολιώ διαφοριώ ως προς το προνο:

$$\mathcal{L} = \times \dot{x} = \frac{d}{dt} \left(\frac{1}{2} \dot{x}^2 \right)$$

Auxò entraires à es γ Spaey eira ceadepy Sesopieres reinour europaneir europaneir $\chi(t_1) = \chi_1$ na $\chi(t_2) = \chi_2$ èxoute:

$$S = \int_{t_1}^{t_2} L dt = \frac{1}{2} \times_{2}^{2} - \frac{1}{2} \times_{1}^{2} = c \tau a d.$$

Intúrter aupôteto que en Spaig eiven co is un le co va fortification aupôteto que S=0 men enotières auté n dagrangian. ser èxer escribers vivn 675.

Lagrangian sus esseincers wingers onôte da éxorpe:

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{\partial \dot{x}}{\partial \dot{x}} = 0 \Rightarrow \dot{x} = \dot{x}$$
 Tou icoSurației Le 0=0

Andadi Sw unapxer n'apodopia ezes esièmes wingens

σχήμα. Αρχικά ο δορυφόρος ωθείται από το σημείο P σε μια ελλειπτική τροχιά 2, αρκετά μεγάλη ώστε να τον μεταφέρει στην επιθυμητή ακτίνα R₂. Κατόπιν, τη στιγμή που βρίσκεται στην επιθυμητή ακτίνα (στο σημείο P΄ το οποίο είναι το απόγειο της ελλειπτικής τροχιάς μεταφοράς) ωθείται με τη βοήθεια των ρουκετών στη κυκλική τροχιά 3.

(β) Κατά πόσο αυξάνει η ταχύτητα του δορυφόρου σαν αποτέλεσμα της όλης διαδικασίας; (8μ)

Υπόδειζη: Οι ωθήσεις γίνονται και στις δυο περιπτώσεις εφαπτομενικά της τροχιάς. Σε κάθε περίπτωση η νέα τροχιά έχει ένα κοινό σημείο με την προηγούμενη τροχιά του δορυφόρου το σημείο στο οποίο πυροδοτήθηκαν οι ρουκέτες

Apxika o Sopudópos Boigkera GE Kurdini, zpoxia G-Ry Kar eropierus y excerción co eiva E1=0. (eipowa pe en (1)) H zpoqua con onoia to n lipupa Dile va heta depolei èxe autina R3=2R1 H perapopa and expra winding spoxia con a 20, xiveras pieces fuas ε Illuria wis τροχιώς. Το εγρείο στο οποίο πυροδοκούνται οι pourices, P, anorellei co Tepinique ens elleneuis cooxiais, be Ty yo va bpicketas cays ectia ens il Jewys. And on englis now or nuposioner giverar som examoleures Siensway y caxirata Eina can idia Sievering he en apxiling was walten can αντίνα από τη χή στο δορυφόρο. H efiewed the thouses the $\frac{C}{1+e_1\cos(\phi)}$ onou C= l2 was k= amy mg I to enfecto nuposicy 675 y véa man nasià toogra Tpěne va sufinintow kan enoficions: (Seupineas de 0=0) => 1+0,0000 (2)

Η ταχύτητα του δορυφόρου αφέων μετά τη πυροδότηση δα είναι: υρ = Ωτη (3) όπου Ω είναι ο συντεθεστής που δείχνει την αύβηση της ταχύτητας που αρχικά είχε ο δορυφόρος, υξ,
Στο επρείο P , r ετφοφορμή έναι: $l_1 = \mu R_1 v_2$ Απριδών μετά την πυροδότηση r δέση δεν αλλάβει και επομένως $l_2 = \mu R_1 v_2 \Rightarrow l_2 = \mu R_1 \lambda v_3 \Rightarrow l_2 = \lambda l_1$ (4)
Ξέρουμε όμως ότι C είναι ανάθαχο con l² και άρα [C2= JC] (5)
Avrinadiativas env (5) ety (2) Da égoupe:
$\frac{\sqrt{1}}{1+e_1} = \frac{\sqrt[3]{e_1}}{1+e_2} \Rightarrow e_2 = \sqrt[3]{(1+e_1)} - 1.$
ADDà aboù $e_1 = \phi$ zòre $e_2 = \lambda^2 - 1$. Aven eivar y Euneuspiegea
της ελθαητικής τροχώς γιαταφοράς.
Τη στιχμή που ο δορυφόρος φθάνει στο σημείο P' η αντί να πρίπει να χίνει 2K1 = R3. Το σημείο αυτό είναι σο αποχείο της εθθειπαιώς τροχιώς και εποψένως:
$\mathcal{R}_{3} = \frac{C_{2}}{1 - C_{2}} = \frac{\Omega^{2} \mathcal{R}_{1}}{1 - (\Omega^{2} - 1)} = \frac{\Omega^{2} \mathcal{R}_{1}}{2 - \Omega^{2}}$
Nivoulie as nos of noi fortie: $\int = \sqrt{\frac{2R_3}{R_1 + R_3}} = \sqrt{\frac{2.2R_1}{R_1 + 2R_3}} = \sqrt{\frac{4}{3}}$
Δη Γαδή ο δορυφόρος δα πρέπει να αυξή δει εμ ταχύτητά τον κατά $J = \sqrt{\frac{4}{3}} = 1.15 \Rightarrow 15\%$ για να φθά δει στην κυμθική τροχιά R_3
$J = \sqrt{\frac{4}{3}} = 1.15 \Rightarrow 15\%$ You va Goldon Gent Kundung thoxid kg
Στο επροίο P πυροδοτεί και πάθε τις ρουκέτες: $v_3 = Jv_1$ και εποξένως v_1 v_2 v_3 v_4 v_5 v_6
kau né le anó en e fiewer (5) vou epòcov to Pères to anòjero ens
$\frac{C_2}{1-e_2} = \frac{C_3}{1-e_2} \Rightarrow \frac{C_2}{1-e_2} = \frac{1}{1-e_2} \Rightarrow \frac{1}{1-e$
$\Rightarrow \int \int = \sqrt{\frac{1}{1 - \lambda^2 + 1}} = \sqrt{\frac{1}{2 - \lambda^2}} \Rightarrow \int \int = \sqrt{\frac{1}{2 - \frac{2R_3}{R_1 + 2R_3}}} = \sqrt{\frac{R_1 + R_3}{2R_1 + 2R_3}} \Rightarrow$
$\Rightarrow \Im' = \sqrt{\frac{R_1 + R_3}{2R_1}} \Rightarrow \Im' = \sqrt{\frac{2(1 + 2R_1)}{2R_1}} \Rightarrow [\Im' = \sqrt{\frac{3}{2}} \approx 1.92] \Rightarrow$

Η στροφορμή της κάθε τροχιώς διατηρώται. Εποξιένως η στροφορμή στο περιήχειο, P, της εθλειπτικής τροχιώς, θα είναι ίση με τη στροφορμή στο απόχειο, P, της τροχιώς.

$$l_{p} = l_{p'} \Rightarrow \chi v_{p} R_{1} = \chi v_{p}, R_{3} \Rightarrow v_{p} R_{1} = v_{p'} 2R_{1} \Rightarrow$$

$$\Rightarrow \frac{v_{p}}{v_{0'}} = 2.$$

Il covolinio aldazio ens cazierzas qua en ila ximon da civa:

$$v_3 = \int' v_{p'} = \int' \frac{v_p}{2} = \int' \frac{1}{2} \int v_1 = \sqrt{\frac{R_1 + R_3}{2R_1}} \frac{1}{2} \sqrt{\frac{2R_3}{R_1 + R_3}} v_1 \Rightarrow$$

$$\Rightarrow \quad \mathcal{V}_{3} = \sqrt{\frac{3\cancel{\cancel{K}}}{\cancel{\cancel{2}\cancel{\cancel{N}}}}} \quad \frac{1}{\cancel{\cancel{2}}} \sqrt{\frac{4\cancel{\cancel{K}}}{\cancel{\cancel{N}}}} \quad \mathcal{V}_{4} \Rightarrow \quad \mathcal{V}_{3} = \sqrt{\frac{\cancel{\cancel{M}}^{2}}{\cancel{\cancel{2}}}} \frac{1}{\cancel{\cancel{2}}} \mathcal{V}_{1} \Rightarrow$$

$$\Rightarrow \quad \mathcal{V}_3 = \sqrt{\frac{2}{A_2}} \quad \mathcal{V}_4 \Rightarrow \quad \mathcal{V}_3 = \frac{\mathcal{V}_1}{\sqrt{2}} \Rightarrow \mathcal{V}_3 = \frac{\sqrt{2} \, \mathcal{V}_7}{9}$$

Η τελική ταχύτητα είναι μικρότερη της αρχικής κατά 12.

Αυτό αναξένονταν αφού χια μια μινθική τροχιά $U \propto \frac{1}{\sqrt{R}}$ Διπθα ωίδοντας την ακτίνα περιξιένουξε ότι η ταχύτητα θα πρέπει να εθατειθεί κατά ένα ποσοστό $\sqrt{2}$

Προσοχή ότι η αλλαγή δεν είναι το χινόμενο των 2 αλλαγών λήλ αφού η ταχύτητα του δορυφόρου κατά την ελλειπαιώ τροχιά αλλάβει