1. Preface

- (a) Quantum materials are really cool
- (b) Correlated systems are really cool
- (c) Probably the most exciting systems right now
- (d) What are the major questions?
- (e) Description of the book dissemination of results, and instruction manual
- 2. Introduction to ultrafast optics in correlated electron systems
 - (a) Correlated systems an overview
 - (b) Important aspects of correlated systems for this thesis
 - i. Charge density wave (example: 1T-TaS₂)
 - ii. Kondo effect and Magnetic order (example: CaMn₂Bi₂)
 - iii. Multiferroics (example: CuBr₂)
 - (c) Spectroscopy versus control
 - i. Ultrafast spectroscopy
 - A. Comparison of nonequil. vs equil. spectroscopy
 - B. In multiferroics
 - ii. Ultrafast control
 - A. Incoherent versus incoherent control
 - B. In magnets

3. SHG theory

- (a) Space groups and point groups
- (b) Response tensors
 - i. Multiple contributions to SHG
- (c) Symmetry of tensors the free energy
 - i. SHG does not mean inversion broken
 - ii. Presence of absorption
- (d) Phenomenological GL model of SHG
- (e) Quantum model
 - i. Wavelength dependence of SHG
- 4. SHG practical
 - (a) Basic idea
 - (b) Before you build the setup
 - i. Choice of oblique vs. normal incidence which tensor elements do you want to probe?

- ii. Scaling of SHG signal with volume, pulse width microscopy or not? Domain size?
- (c) Construction of the setup
 - i. Description of the setup that we built
 - ii. Better to use hollow bore stepper motors
 - iii. Choice of detector
- (d) Considerations for time-resolved
 - i. Location of pump mirror
 - ii. Alignment of normal incidence
 - iii. Choice of pump wavelength (OPA)
 - iv. Polarization rotation (why do it?)
 - v. Pump scatter
- (e) Data analysis (static)
- (f) Data analysis (time-resolved)
- 5. Appendix A: Failed experiments