https://famaf.aulavirtual.unc.edu.ar/course/view.php?id=254

1 Taylor

Let $f \in C^n[a, b]$ and assume $f^{(n+1)}$ exists in (a, b). Then for any $c, x \in [a, b]$ there is some ζ between c and x s.t.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)(x-c)^k}{k!} + E_n(x)$$
 (1)

where

$$E_n(x) = \frac{f^{(n+1)}(\zeta)(x-c)^{n+1}}{(n+1)!}$$

Equation (1) is called the Taylor expansion of f around c.

Observation. The famous *mean value theorem* is simply the case n = 0 of Taylor's expansion: if $f \in C[a, b]$ and f' exists on (a, b), then for $x, c \in [a, b]$

$$f(x) = f(c) + f'(\zeta)(x - c)$$

where ζ is between c and x. Take x = b, c = a and the theorem appears:

$$f(b) - f(a) = f'(\zeta)(b - a)$$

We typically extend the Taylor approximation of f around a point r, where r = x + h is an approximation some value of interest x. This is useful because said approximation gives

$$f(r) = f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \dots + \frac{f^{(n)}(x)}{n!}h^n + E_n(h)$$

In other words, this strategy allows us to extend f(r) in terms of x and h, the approximation and its error. Usually, r, h are unknown but h can be bounded.

2 Alg. de Horner: Polynomial evaluation

Consider

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

We wish to compute p(k) for a given $k \in \mathbb{R}$ minimizing the number of operations. Directly computing $a_0 + a_1k_1 + \ldots$ leads to n sums. The ith term requires computing k^i , which means i product operations, for a totall of $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ products. The total number of operations is then

$$\Theta = n + n(n+1)/2$$

The associated complexity is $O(n^2)$.

Horner's method consists of re-writing p(x) so that the number of products is reduced. One writes

$$p(x) = a_0 + xb_0$$

where $b_{n-1} = a_n$ and for $0 \le i < n-1$:

$$b_{i-1} = a_i + xb_i$$

Let $p(x) = 3 + 5x - 4x^2 + 0x^3 + 6x^4$, giving n = 4. Then $b_3 = 6$ and

$$b_2 = a_3 + xb_3 = 6x,$$
 $b_1 = a_2 + xb_2 = -4 + x(6x),$ $b_0 = a_1 + xb_1 = 5 + x(-4 + x(6x))$

This finally gives

$$p(x) = 3 + xb_0 = 3 + x(5 + x(-4 + x(6x)))$$

Here, one must perform n sums again but only n products. Thus, there are $\Theta = n + n = 2n$ operations, giving a complexity of O(n) (in the operation space). See the algorithm below:

```
input n; a_i, i = 0, ..., n; x
b_{n-1} \leftarrow a_n
for i = n - 2 to i = 0
b_i = a_{i+1} + x * b_{i+1}
od
y \leftarrow a_0 + x * b_0
return y
```

It is easy to see in this code that the **for** loop performs n-1 iterations, in each of which a single sum and a single product are computed. The nth sum and nth product are performed in the computation of y, the final result.

A more polished version includes the last computation (the one in the assignment of y) within the loop and makes no use of indexes:

input
$$n$$
; a_i , $i = 0, ..., n$; x
 $b \leftarrow a_n$
for $i = n - 2$ to $i = -1$
 $b = a_{i+1} + x * b$
od
return b

In Python,

```
def horner(coefs, x):
    n = len(coefs)-1
    b = coefs[n]

for i in reversed(range(-1, n-1)):
    b = coefs[i+1] + x*b

return b
```

It is trivial to adapt the code so that it returns the coefficients b_0, \ldots, b_{n-1} and not the final result, if needed.

3 Error

Let r, \overline{r} be two real numbers s.t. the latter is an approximation of the first. We define the **error** of the approximation to be $r - \hat{r}$, and

$$\Delta r = |r - \overline{r}|, \qquad \delta r = \frac{\Delta r}{|r|}$$

With r unknown the strategy is to work with a known bound of r.

4 Non-linear equations

The general problem is to find members of the set \mathcal{R}_f of roots of $f \in \mathbb{R} \to \mathbb{R}$. The numerical strategy is to iteratively approximate some $r \in \mathcal{R}_f$ until some pre-established threshold in the error of approximation is met.

More formally, the numerical strategy produces a sequence $\{x_k\}_{k\in\mathbb{N}}$ which satisfies

- $\lim_{k\to\infty} \{x_k\} = r$ for some $r \in \mathcal{R}_f$
- Either $e(x_k) < e(x_{k-1})$ or, more strongly, $\lim_{k \to \infty} e(x_k) = 0$, where $e(x_k)$ is some appropriate measure of the error of approximation.

4.1 Bisection

A very simple procedure: if a root exists in [a, b], it iteratively shrinks [a, b] in halves (keeping the halves which contain the root) until the interval is of sufficiently small length or the root is found.

Theorem 1 (Intermediate value). If f is continuous in [a, b] and f(a)f(b) < 0, then $\exists r \in \mathcal{R}_f$ s.t. $r \in [a, b]$.

Assume f is continuous. A root exists in [a, b] if f(a)f(b) < 0 (**Theorem 1**). If that is the case, the midpoint (a + b)/2 is taken as the approximation x_0 . It is also trivial to observe that x_0 is at most at a distance of (b - a)/2 from the real root, so $e_0 = |x_0 - r| \le (b - a)/2$.

If $f(x_0) = 0$ the procedure must end because a root was found. Otherwise, sufficies to find which half of the interval contains a root computing f(a) f(c) and, if needed, f(c) f(b).

The iterations may stop after reaching a maximum number of steps, when |f(c)| is sufficiently close to zero, or when the error bound $|e_k| \le (b_k - a_k)/2$ (where $[a_k, b_k]$ is the interval of this iteration) is sufficiently small.

(!) The algorithm not always converges. Take f(x) = 1/x. Clearly, it has no root. Yet setting a = -1, b = 1 in the initial iteration falsely passes the test. (The problem obviously is that f is not continuous in [-1, 1].) If one sets

```
Input : a, b, \delta, M, f
Output: Tupla de la forma: (r, \cot a \operatorname{de error})
f_a \leftarrow f(a)
f_b \leftarrow f(b)
\mathbf{if}\ f_a*f_b>0
      return?
fi
for i = 1 to i = M do
      c \leftarrow a + (b - a)/2
      f_c \leftarrow f(c)
      if f_c = 0 then
              return (c,0)
      fi
      \epsilon = \frac{b-a}{2}
      if \epsilon < \delta then
             break
      fi
      if f_a * f_c < 0 then
             b \leftarrow c
             f_b = f(b)
      else
             a \leftarrow c
             f_a = f(a)
      fi
od
return (c, \epsilon)
```

```
def bisection(f : callable, a : float, b : float, delta : float, M : int):
  s, e = f(a), f(b) # function values at (s)tart, (e)nd of interval
  if s*e > 0:
    raise ValueError("Interval [a, b] contains no root.")
  for i in range(M):
    c = a + (b-a)/2
    m = f(c) # value of f at (m)idpoint
    if m == 0:
      return c, 0
    e = (b-a)/2
    if e < delta:</pre>
      return c, e
    if s*m < 0:
      b = c
      e = f(b)
    else:
      a = c
      s = f(a)
```

return c, e

Theorem 2. If $\{[a_i, b_i]\}_{i=0}^{\infty}$ are the intervals generated by the bisection method on iterations i = 0, 1, ..., then:

1. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ is a member of \mathcal{R}_f .

2. If
$$c_n = \frac{1}{2}(a_n + b_n)$$
, $r = \lim_{n \to \infty} c_n$, then $|r - c_n| \le \frac{1}{2^{n+1}}(b_0 - a_0)$

Proof. (1) It is clear that $a_i \le a_{i+1}$ and $b_i \ge b_{i+1}$, since the interval on each iteration shrinks in one direction.

 $\therefore a_n, b_n$ are monotonous.

But clearly a_n is bounded by b_0 and b_n is bounded by a_0 .

- $\therefore a_n, b_n$ are monotonous and bounded.
- : Their limits exist.

It is also clear that the interval shrinks to half its size on each iteration:

$$b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1}), \qquad n \ge 1$$
 (1)

By recurrence on (1),

$$b_n - a_n = \frac{1}{2^n}(b_0 - a_0), \qquad n \ge 0$$
 (2)

Then

$$\lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \frac{1}{2^n} (b_0 - a_0) = 0$$
 (3)

 $\therefore \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$

Since the limit of a_n, b_n exists and f is by assumption continuous, the composition limit theorem applies and:

$$\lim_{n \to \infty} (f(a_n) \cdot f(b_n))$$

$$= \lim_{n \to \infty} f(a_n) \cdot \lim_{n \to \infty} f(b_n)$$

$$= f\left(\lim_{n \to \infty} a_n\right) \cdot f\left(\lim_{n \to \infty} b_n\right)$$

$$= [f(r)]^2$$
{Composition limit theorem}
$$\left\{r = \lim_{n \to \infty} a_n\right\}$$
(4)

The invariant of the algorithm is $f(a_n)f(b_n) < 0$. But due to the last result,

$$\lim_{n \to \infty} f(a_n) f(b_n) \le 0 \iff [f(r)]^2 \le 0 \iff f(r) = 0$$

 $\therefore r = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ is a root.

(2) Follows directly from result (2)

$$|r - c_n| = \left| r - \frac{1}{2} (b_n - a_n) \right|$$

$$\leq \left| \frac{1}{2} (b_n - a_n) \right|$$

$$= \left| \frac{1}{2^{n+1}} (b_0 - a_0) \right|$$
{Result (2)}

4.2 Newton's method

Assume $r \in \mathcal{R}_f$ and r = x + h, with x an approximation of r and h its error. Assume f'' exists and is continuous in some I around x s.t. $r \in I$. What we explained on Taylor expansions around a point gives:

$$0 = f(r) = f(x+h) = f(x) + f'(x)h + O(h^2)$$

If x is sufficiently close to r, h is small and h^2 even smaller, so that $O(h^2)$ is unconsiderable:

$$0 \approx f(x) + hf'(x)$$

Therefore,

$$h \approx -\frac{f(x)}{f'(x)} \tag{1}$$

From this follows that r = x + h is approximated by

$$r \approx x - \frac{f(x)}{f'(x)}$$

Since the approximation in (5) truncated the terms of $O(h^2)$ complexity, this new approximation is closer to r than x originally was. In other words, x - f(x)/f'(x) is a better approximation to r than x itself.

Thus, if x_0 is an original approximation, we can define

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{2}$$

to produce a sequence of approximations. This is the fundamental idea of Newton's method.

Input:
$$x_0, M, \delta, \epsilon$$
;
 $v \leftarrow f(x_0)$
if $|v| < \epsilon$ then return x_0 fi
for $k = 1$ to $k = M$ do

$$x_1 \leftarrow x_0 - \frac{v}{f'(x_0)}$$

$$v \leftarrow f(x_1)$$
if $|x_1 - x_0| < \delta \lor v < \epsilon$ then return x_1
fi

$$x_0 \leftarrow x_1$$
od

The predicate $|x_1 - x_0| < \delta$ checks whether our algorithm is adjusting x in a negligible degree. If that is the case, we should stop.

Theorem 3. If f'' continuous around $r \in \mathcal{R}_f$ and $f'(r) \neq 0$, then there is some $\delta > 0$ s.t. if $|r - x_0| \leq \delta$, then:

- $|r x_n| \le \delta$ for all $n \ge 1$.
- $\{x_n\}$ converges to r
- The convergence is quadratic, i.e. there is a constant $c(\delta)$ and a natural N s.t. $|r x_{n+1}| \le c |r x_n|^2$ for all $n \ge N$.

Proof. Let $e_n = r - x_n$ be the error in the *n*th approximation. Assume f'' is continuous and f(r) = 0, $f'(r) \neq 0$. Then

$$e_{n+1} = r - x_{n+1}$$

$$= r - \left(x_n - \frac{f(x_n)}{f'(x_n)}\right)$$

$$= r - x_n + \frac{f(x_n)}{f'(x_n)}$$

$$= \frac{e_n f'(x_n) + f(x_n)}{f'(x_n)}$$
(3)

Thus, the error at any given iteration is a function of the error at the previous iteration. Now consider the expansion of f(r) as

$$f(r) = f(x_n - e_n) = f(x_n) + e_n f'(x_n) + \frac{e_n^2 f''(\zeta_n)}{2}$$
(4)

for ζ_n between x_n and r. This equation gives

$$e_n f'(x_n) + f(x_n) = -\frac{1}{2} f''(\zeta_n) e_n^2$$
 (5)

The expression in (5) is the numerator in (3), whereby we obtain via substitution:

$$e_{n+1} = -\frac{1}{2} \frac{f''(\zeta_n)e_n^2}{f'(x_n)} \tag{6}$$

Equation (6) ensures that the error scales quadratically. Now we wish to bound the error expression in (6). To bound e_{n+1} , we take $\delta > 0$ to define a neighbourhood of length δ around r. For any x in this neighbourhood, (6) reaches its maximum when the numerator is maximized and the denominator is minimized:

$$c(\delta) = \frac{1}{2} \frac{\max_{|x-r| \le \delta} |f''(x)|}{\min_{|x-r| \le \delta} |f'(x)|}$$

In other words, $c(\delta)$ is the maximum value which e_{n+1} can take if ζ_n, x_n are assumed to belong to the neighbourhood. Now we make two assumptions:

- 1. x_0 belongs to the neighbourhood, i.e. $|x_0 r| \le \delta$
- 2. δ is sufficiently small so that $\rho := \delta c(\delta) < 1$.

Note that, since ζ_0 is between x_0 and r, assumption (1) ensures that ζ_0 is also in the neighbourhood, i.e. $|r - \zeta_0| \le \delta$. Then we have:

$$|e_0| = \frac{1}{2} |f''(\zeta_0)/f'(x_0)| \le c(\delta)$$

Then:

$$|x_1 - r| = |e_1|$$

$$= \left| e_0^2 \cdot \frac{1}{2} f''(\zeta_0) / f'(x_0) \right|$$

$$\leq |e_0^2| c(\delta) \qquad \left\{ \frac{1}{2} f''(\zeta_0) / f'(x_0) \leq c(\delta) \right\}$$

$$\leq |e_0| \delta c(\delta) \qquad \{|e_0| \leq \delta\}$$

$$= |e_0| \varrho \qquad \{\varrho = \delta c(\delta)\}$$

$$< |e_0| \qquad \{\varrho < 1\}$$

 $|e_1| < |e_0| \le \delta$, which means the error decreases. This argument may be repeated inductively, giving:

$$|e_1| \le \varrho |e_0|$$

$$|e_2| \le \varrho |e_1| \le \varrho^2 |e_0|$$

$$|e_3| \le \varrho |e_2| \le \varrho^3 |e_0|$$

$$\vdots$$

In general, $|e_n| \le \varrho^n |e_0|$. And since $0 \le \varrho < 1$, we have $\varrho^n \to 0$ when $n \to \infty$, entailing that $|e_n| \to 0$ when $n \to \infty$.

Theorem 4. If f'' is continuous in \mathbb{R} , and if f is increasing, convex, and has a root, then said root is unique and Newton's method converges to it from any starting point.

Recall that f is convex if f''(x) > 0 for all x. Graphically, it is convex if the line connecting two arbitrary points of f lies above the curve of f between those two points.

4.3 Secant method

In Netwon's method,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The function of interest is f. We cannot escape computing $f(x_n)$, but it would be desirable to avoid the computation of $f'(x_n)$, which may potentially be expensive. Since

$$f'(x) = \lim_{h \to x} \frac{f(x) - f(h)}{x - h}$$

it is natural to suggest

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
 (1)

Graphically, this means we are not using the line tangent to the point $(x_n, f(x_n))$ but the line secant to the points $(x_n, f(x_n))$ and $(x_{n-1}, f(x_{n-1}))$. The point x_{n+1} is then the value of x where this secant line has a root.

4.4 Fixed point iteration

The key observation is this: if $r \in \mathcal{R}_f$, then g(x) = x - k f(x) has r as fixed point, for any $k \in \mathbb{R}$. Inversely, if g has a fixed point in r, then $r \in \mathcal{R}_f$.

Theorem 5. (1) Let $g \in C[a, b]$ and assume $g(x) \in [a, b]$ for all $x \in [a, b]$. Then there is a fixed point of g in [a, b].

(2) If, on top of previous conditions, g is differentiable in (a, b) and there is some k < 1 s.t. $|g'(x)| \le k$ for all $x \in (a, b)$, then the fixed point referred in (1) is unique.

Theorem 6 (Mean value theorem). Let $f : [a, b] \to \mathbb{R}$ continuous and differentiable on (a, b) with a < b. Then there is some $c \in (a, b)$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

The interpretation is simple: consider the line secant to f on a, b. The theorem ensures that there is some point c s.t. the line tangent to c is parallel to said secant (equal slopes).

Proof. (1) If a or b are fixed points the proof is done so assume otherwise. Since $g(x) \in [a, b]$, we have g(a) > a and g(b) < b.

Take $\varphi(x) = g(x) - x$, which is continuous and defined in [a, b]. Then

$$\varphi(a) = g(a) - a > 0, \qquad \varphi(b) = g(b) - b < 0$$

Then $\varphi(a)\varphi(b) < 0$. Then, by the intermediate value theorem, φ has a root in (a,b). In otherwords, there is at least one p s.t.

$$\varphi(p) = g(p) - p = 0$$

g(p) = p is a fixed point of g.

(2) Assume two distinct fixed points p, q exist in [a, b]. The mean value theorem ensures the existence of some ζ between p, q (and thus in [a, b]) s.t.t

$$g'(\zeta) = \frac{g(a) - g(b)}{a - b} \iff g'(\zeta)(a - b) = g(a) - g(b) \tag{1}$$

By hypothesis, $|g'(x)| \le k < 1$. Since p, q are assumed to be fixed points, equation (1) gives:

$$|p - q| = |g(p) - g(q)|$$

= $|g'(\zeta)| |p - q|$
 $\le k |p - q| < |p - q|$

But this is absurd. The contradiction arises from assuming p, q to be distinct. Therefore, the fixed point is unique.

The fixed point algorithm begins with an approximation p_0 . Then,

$$p_n = g(p_{n-1})$$

If g continuous and the sequence converges, then it converges to a fixed point, since:

$$p := \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)$$

Input:
$$p, M, \delta$$

$$p_{\text{previous}} = p$$
for $i = 1$ to $i = M$ do
$$p \leftarrow g(p)$$
if $|p - p_{\text{previous}}| < \delta$ then
return p
fi
$$p_{\text{previous}} = p$$
od
return p

Theorem 7. Let $g \in C[a,b]$ be a self-map of [a,b] differentiable in (a,b). Assume there is a constant 0 < k < 1 s.t. $|g'(x)| \le k$ for all $x \in (a,b)$.

For all $p_0 \in [a, b]$, the sequence $p_n = g(p_{n-1})$ converges to the unique f ixed point p in (a, b).

Proof. The mean value theorem ensures that

$$|p_n - p| = |g(p_{n-1}) - g(p)|$$

$$= |g'(\zeta_n)||(p_{n-1} - p)|$$

$$\le k |p_{n-1} - p|$$

with $\zeta_n \in (a, b)$. More succintly, with $e_n := p_n - p$,

$$|e_n| \le k |e_{n-1}| \le k |e_{n-2}| \le \ldots \le k |e_0|$$

By recurrence,

$$|e_n| \le k^n |e_0|$$

Since 0 < k < 1, $k^n \to 0$ when $n \to \infty$, which entails $|e_n| \to 0$ when $n \to \infty$. It follows that $\{p_n\} \to p$ when $n \to \infty$.

Now let us consider the error of this method. Take $p_n = p + e_n$ and consider the Taylor expanssion of g around p evaluated at $p_n = p + e_n$:

$$g(p_n) = g(p + e_n) = \sum_{i=1}^{m-1} \frac{g^{(i)}(p)}{i!} e_n^i + \frac{f^{(m)}(\zeta_n)}{(n+1)!} e_n^m$$
 (2)

See that in (2), n corresponds to the iteration we are dealing with, and thus ζ_n and e_n depend on it. On the contrary, m is the degree to which we expand the series of g around p evaluated at p_n . We also assume that ζ_n lies between p_n and p.

By definition, $g(p_n) = p_{n+1}$ so (2) is nothing but an expression for this value. Assume $g^{(k)}(p) = 0$ for k = 1, 2, ..., m - 1, but $g^{(m)}(p) \neq 0$. Then

$$e_{n+1} = p_{n+1} - p$$

$$= g(p_n) - g(p)$$

$$= \frac{g^{(m)}(\zeta_n)}{m!} e_n^m$$

More succintly,

$$e_{n+1} = \frac{g^{(m)}(\zeta_n)}{m!} e_n^m$$

Then

$$\lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^m} \right| = \frac{|g^m(p)|}{m!}$$

which is a constant. In conclusion, if the derivatives of g are null in p up to the order m-1, the method as an order of convergence of at least m. Three results follow from this fact.

4.5 Excercises

(1) Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which root does the biscection method converge on the following intervals?

$$[-1.5, 2.5],$$
 $[-0.5, 2.4],$ $[-0.5, 3],$ $[-3, -0.5]$

- (a) The midpoint of $I_0 = [-1.5, 2.5]$ is $c_0 := (2.5 1.5)/2 = 1/2$. Since f(a)f(c) < 0, we have $I_1 = [-1.5, 0.5]$. The midpoint of I_1 is $c_1 = -0.5$, so I_2 will be [-0.5, 0.5]. The only root in this interval is r = 0, so the algorithm converges to it.
- (b) The midpoint of $I_0 = [-0.5, 2.4]$ is c := (2.4 0.5)/2 = 0.95. Then $I_1 = [-1.5, 0.95]$. Same logic gives $c_1 = -0.725$ and then $I_2 = [-0.725, 0.95]$. The only root here is zero again.
- (c,d) Same.

- (2) We wish to find a root of f in [a, b] using bisection method and ensuring that the error is not greater than $\epsilon \in \mathbb{R}^+$.
- (a) Estimate the number of iterations sufficient to meet the criterion.
- (b) What is the number of iterations for $a = 0, b = 1, \epsilon = 10^{-5}$?

Let $e_n = x_n - r$. It is trivial to note that $|e_n| \le \frac{b_n - a_n}{2}$. Furthermore, the length of I_1 is half the length of I_0 , that of I_2 is half that of I_1 , etc. In other words,

$$|e_0| \le \frac{b-a}{2}, \qquad |e_1| \le \frac{b-a}{2^2}, \qquad |e_2| \le \frac{b-a}{2^3}, \dots$$

In general,

$$|e_n| \le \frac{b-a}{2^{n+1}}$$

Imposing

$$|e_n| \le \frac{b-a}{2^{n+1}} \le \epsilon$$

we satisfy our criterion, but we wish to express this bound in terms of n. Now, clearly,

$$\frac{b-a}{2^{n+1}} \le \epsilon$$

$$\iff \frac{b-a}{\epsilon} \le 2^{n+1}$$

$$\iff \log_2\left(\frac{b-a}{\epsilon}\right) - 1 \le n$$

$$\iff \log_2\left(\frac{b-a}{\epsilon}\right) \le n$$

$$\iff \frac{\ln\left(\frac{b-a}{\epsilon}\right)}{\ln 2} \le n$$

which is our final answer.

(b) For $a = 0, b = 1, \epsilon = 10^{-5}$, we need

$$n \ge \frac{\ln\left(\frac{1}{10^{-5}}\right)}{\ln 2} \approx 16.609$$

so n = 17 would suffice.

(3) Determine graphically some root of $f(x) = 4 \sin x + 1 - x$ and perform three iterations of the bisection method to approximate. How many steps are needed to ensure an error less than 10^{-3} ?

Let us unveil the full power of LaTex:

I'm too lazy to perform the steps of the algorithm. The number of steps needed again are given by

$$n \ge \frac{\ln\left(\frac{4-2}{10^{-3}}\right)}{\ln 2} \approx 10.96$$

so taking n = 11 suffices.

- (4) Let a > 0. Computing \sqrt{a} is equivalent to finding the root of $f(x) = x^2 a$.
- (a) Show that Newton's sequence for this case is

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

- (b) Prove that f or any $x_0 > 0$, the approximations $\{x_n\}$ satisfy $x_n \ge \sqrt{a}$ for $n \ge 1$.
- (c) Prove $\{x_n\}$ is sdecreasing.
- (d) Conclude that the sequence converges to \sqrt{a}
- (a) In Newton's algorithm,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Clearly,

$$f'(x) = \frac{d}{dx}(x^2 - a) = 2x$$

Therefore,

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n}$$

$$= x_n - \frac{1}{2} \left(x_n - \frac{a}{x_n} \right)$$

$$= \frac{1}{2} x_n + \frac{1}{2} \frac{a}{x_n}$$

$$= \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

(b) Let $x_0 > 0$. Recall that, among all Pythagorean means, the arithmetic mean is the greatest, asuming positively-valued vectors. In particular, it is greater or equal to the geometric mean:

$$\frac{1}{N}\sum_{i=1}^n y_i \geq \sqrt[n]{\prod_{i=1}^n y_i}$$

for any set of points y_1, \ldots, y_n all positive. In particular,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \ge \sqrt{x_n \frac{a}{x_n}} = \sqrt{a} \qquad \blacksquare$$

(*c*)

$$\frac{1}{2}\left(x_n + \frac{a}{x_n}\right) \le x_n$$

$$\iff x_n + \frac{a}{x_n} \le 2x_n$$

$$\iff \frac{a}{x_n} \le x_n$$

$$\iff a \le x_n^2$$

$$\iff \sqrt{a} \le x_n$$

which is true due to point (b).

(d) Let $e_n = x_n - \sqrt{a}$. We have shown $\{x_n\}$ to be decreasing and bounded below by \sqrt{a} . Therefore, it converges to a limit L (with L the infimum of $\{x_n\}$). Then

$$\lim_{n \to \infty} x_n = \frac{1}{2} \lim_{n \to \infty} \left(x_{n-1} + \frac{a}{x_{n-1}} \right) = \frac{1}{2} L + \frac{a}{2L}$$

This induces the equation

$$L = \frac{L}{2} + \frac{a}{2L} \iff \frac{L}{2} = \frac{a}{2L}$$
$$\iff L^2 = a$$
$$\iff L = \sqrt{a}$$

(5) Propose an iteration formula to approximate $\frac{1}{\sqrt{a}}$, with a > 0, using Newton's method. Decide the number of iterations needed so that the relative error in the approximation is less than 10^{-4} when starting from $x_0 = 1$ and taking a = 5.

Error: $e_n = r - x_n$, quadratite, i.e. $|r - x_{n+1}| \le c|r - x_n|^2$.

(a. Iteration formula) Let a > 0 and assume we wish to approximate $1/\sqrt{a}$. Let $\varphi = \frac{1}{a}$, so that $\frac{1}{\sqrt{a}} = \sqrt{\varphi}$. We see that we can express the problem of finding the reciprocal of a root in terms of a simple root.

We know from the previous excercise that the iteration formula for $\sqrt{\varphi}$ is

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\varphi}{x_n} \right)$$

Now take $x_0 = 1$ and a = 5, so that $\varphi = \frac{1}{5}$. The relative error of approximation on iteration n is

$$e_n = \frac{\left| x_n - \frac{1}{\sqrt{5}} \right|}{\sqrt{5}}$$

Brute-forcing allows us to see that x_0, x_1, x_2, x_3 do not meet the criterion, but

$$x_4 = 0.4472137791286728$$
 (jaja)

has $e_4 < 10^{-4}$.

(6) Propose an iteration formula for $\sqrt[3]{R}$ where R > 0. Plot the function to see where the procedure converges.

Observe that finding $\sqrt[3]{R}$ is equivalent to finding a root of $f(x) = x^3 - R$.

But f(x) is simply a vertical displacement of x^3 , so $\frac{d}{dx}x^3 = \frac{d}{dx}f(x)$ (which holds algebraically). In particular, the derivative of x^3 approaches 0 as $x \to 0$, meaning that Newton's method will fail to converge for intervals of length L around 0 (with L unspecified). The graph suggests that an appropriate value for L is 1.

That said, since $\frac{d}{dx}f(x) = \frac{d}{dx}x^3$ (in other words, since the derivative of the function is independent of R), and $\frac{d}{dx}x^3 = 3x^2$, we propose

$$x_{n+1} = x_n - \frac{x_n^3}{3x_n^2} = x_n - \frac{x_n}{3} = \frac{2x_n}{3}$$

- (7) (a) Utilizando el teorema del valor intermedio, demostrar que $g(x) = \arctan(x) \frac{2x}{1+x^2}$ tiene raíz $\alpha \in [1, \sqrt{3}]$.
- (b) Then show that if $\{x_n\}$ is the sequence generated by Newton's method for $f(x) = \arctan(x)$, with $x_0 = \alpha$, it is the case that $x_n = (-1)^n \alpha$.
- (a) It is known that $\arctan x$ is continuous in \mathbb{R} . Since $1 + x^2 > 0$ for all x, $2x/(1 + x^2)$ is also continuous in \mathbb{R} . \therefore g is continuous in \mathbb{R} . And it is easy to verify as well that $g(1)g(\sqrt{3}) < 0$.
- \therefore By virtue of the intermediate value theorem, there is a root α of g in $[1, \sqrt{3}]$.
- (b) Let $g_1(x) = \arctan x$, $g_2(x) = \frac{2x}{1+x^2}$, so that $g = g_1 g_2$. Since $\alpha > 0$, we have $g_1(\alpha) > 0$, $g_2(\alpha) > 0$. And since $g(\alpha) = 0$ if and only if $g_1(\alpha) g_2(\alpha) = 0$, we conclude that $g_1(\alpha) = g_2(\alpha)$. In other words,

$$\arctan \alpha = \frac{2\alpha}{1 + \alpha^2} \tag{1}$$

Since the derivative of $\arctan x$ is $1/(1+x^2)$, equation (1) may be expressed as follows:

$$\arctan \alpha = 2\alpha \arctan'(\alpha)$$
 (2)

This entails that

$$\arctan' \alpha = \frac{\arctan \alpha}{2\alpha} \tag{3}$$

Now take $x_0 = \alpha$ and consider Newton's sequence for $f(x) = \arctan x = g_1(x)$. Clearly,

$$x_{1} = \alpha - \frac{f(\alpha)}{f'(\alpha)}$$

$$= \alpha - \arctan \alpha \times \frac{2\alpha}{\arctan \alpha}$$

$$= \alpha - 2\alpha$$

$$= -\alpha$$
{Eq. (3)}

Same logic gives $x_2 = \alpha$, $x_3 = -\alpha$, ... and the result should be easy to generalize.

(8) Consider for the fixed-point iteration the following functions, whose least positive root we wish to find:

$$\phi(x) = x^3 - x - 1, \qquad \psi(x) = 2x - \tan x, \qquad \varphi(x) = \exp(-x) - \cos x$$

Find an iteration function and an interval which guarantees the method's convergence.

 (ϕ) Let us analyze ϕ in order to ascertain where its roots are.

Consider that $\phi'(x) = 3x^2 - 1$, which means ϕ' has roots wherever $3x^2 = 1$, which holds if and only if $x^2 = \frac{1}{3}$, or equivalently $x = \pm \frac{\sqrt{3}}{3}$. Furthermore, $\phi'(x) < 0$ in the region $(-\sqrt{3}/3, \sqrt{3}/3)$ and $\phi'(x) > 0$ elsewhere. In conclusion, ϕ is decreasing in $(-\sqrt{3}/3, \sqrt{3}/3)$ and increasing everywhere else.

Now, observe that $\phi\left(\sqrt{3}/3\right) < 0$. Combined with the fact that ϕ is increasing in $(\sqrt{3}/3, \infty)$, this means there is a root of ϕ in this interval. (Note that ϕ is a polynomial without asymptotic behavior.) Furthermore, $\phi\left(-\sqrt{3}/3\right) < 0$. Again, this means there is no root in $(\infty, \sqrt{3}/3)$.

 $\therefore \phi$ has one and only one root and it belongs to $(\sqrt{3}/3, \infty)$.

Now, suffices to note that f(1.3)i < 0, f(1.4) > 0, and the intermediate value theorem ensures that there is a root in (1.3, 1.4). \therefore The only root of ϕ lies within (1.3, 1.4).

Now, we need only propose a function f s.t. r is a fixed-point of f and $f(x) \in (1.3, 1.4)$ for all $x \in (1.3, 1.4)$. Consider that

$$\phi(x) = 0 \iff x^3 = x + 1 \iff x = \sqrt[3]{x + 1}$$
 (4)

So letting $f(x) := \sqrt[3]{x+1}$ ensures that the fixed point of f is the root of ϕ . Furthermore, $f(1.3) \approx 1.32, f(1.4) \approx 1.33$. Now,

$$f'(x) = \frac{1}{\sqrt[3]{(x+1)^2}}$$

Since f'(x) > 0 (as is simple to note), we know f is increasing, which means all $f(x) \in (1.32, 1.33)$ for $x \in [1.3, 1.4]$. Furthermore, $f'(x) \in (0, 1)$ and f'(x) is clearly decreasing. This means that in [1.3, 1.4], f' has its maximum at $f'(1.4) \approx 0.573$. In other words, if we let k = 0.573, we know |g'(x)| = g'(x) < k for all $x \in [1.3, 1.4]$.

- \therefore f is a self-map of [1.3, 1.4], differentiable in (1.3, 1.4), and there is a constant $k \in (0, 1)$ s.t. |g'(x)| < k for all $x \in (1.3, 1.4)$ —where incidentally this constant is g'(1.3).
- .. By virtue of **Theorem 7**, the fixed-point algorithm will converge to the unique root $r \in (1.3, 1.4)$ if using the iteration function $f(x) = \sqrt[3]{x+1}$ and the interval [1.3, 1.4].

 (ψ) Let $\psi(x) = 2x - \tan x$. A root exists for $\psi(x)$ whenever

$$x = \frac{\tan x}{2} = \frac{2\sin x}{\cos x}$$

So we may define $g(x) := \tan x/2$ guarantying that any fixed point of g is a root of ψ . Now, $\tan 0 = 0$ entails that g(0) = 0. Furthermore, $g(\pi/4) = 1/2$. Since $g'(x) = \sec^2(x)/2$ is strictly positive, g is strictly increasing and this means for $x \in [0, \frac{\pi}{4}]$ we have $g(x) \in [0, 1/2] \subseteq [0, \frac{\pi}{4}]$.

- \therefore g is a self-map in $[0, \pi/4]$.
- \therefore There is a fixed-point of g in $[0, \pi/4]$.

Consider now $g'(x) = \frac{1}{2}\sec^2(x) = \frac{1}{2\cos^2 x}$. This is clearly bounded in (0, 1]. To be more precise, it is geometrically obvious that, for all $x \in [0, \pi/4]$, $\sqrt{2}/2 \le \cos x \le 1$, which means $1/2 \le \cos^2 x \le 1$. In particular, g'(x) reaches its maximum when $\cos^2 x$ reaches its minimum, so g'(x) reaches its maximum at $x = \frac{\pi}{4}$:

$$g'(\pi/4) = \frac{1}{2\cos^2\frac{\pi}{4}} = \frac{1}{2\cdot 1/2} = 1$$

It follows that there is some constant $k \in (0, 1)$ such that $|g'(x)| \le k$ for all $x \in (0, \pi/4)$.

- \therefore There is a unique fixed point of g in $[0, \pi/4]$.
- \therefore There is a unique root of $\psi(x)$ in $[0, \pi/4]$ and the iteration method converges to it using this interval and the iteration function g.

 (φ) Consider $\varphi(x) = \exp(-x) - \cos x$. This function is zero if and only if $e^{-x} = \cos x$, which may be expressed as $x = -\ln(\cos x)$. In other words, the roots of φ correspond to the fixed points of $f(x) = -\ln(\cos x)$.

Now, $-1 \le \cos x \le 1$ but ln is defined only in \mathbb{R}^+ . From this follows that f is defined only when $\cos x > 0$, i.e. in the right-hand half of the unite circle. This corresponds to values of x in $[0, \pi/2)$ or $(3\pi/2, 2\pi]$ (extended by any factor $2\pi k$, $k \in \mathbb{Z}$).

Take $I := [0, \pi/4] \subseteq \text{Dom}(f)$. See that $f(0) = -\ln(1) = 0$ and $f(\pi/4) = -\ln(\sqrt{2}/2) \approx 0.346 < \pi/4$. Furthermore, with $u = \cos x$,

$$\frac{df}{dx} = -\frac{d}{du}\ln(u) \times \frac{d}{dx}\cos x = \frac{\sin x}{\cos x} = \tan x$$

which is strictly positive in $[0, \pi/4]$. This suffices to prove that $f(x) \in [0, \pi/4]$ for all $x \in [0, \pi/4]$.

- \therefore f is a self-map of $[0, \pi/4]$.
- \therefore There is a fixed point of f in $[0, \pi/4]$.

Now, $\tan x$ is increasing in $[0, \pi/4]$ and, in particular, $\tan 0 = 0$, $\tan \frac{\pi}{4} = 1$. This suffices to show that |g'(x)| < 1 for all $x \in (0, \pi/4)$.

 \therefore There is a unique fixed point of f in $[0, \pi/4]$ and the fixed point iteration algorithm converges to it when starting from said interval with f as iteration function.

(10) Let $x_{n+1} = 2^{x_n-1}$ the formula used to solve $2x = 2^x$. What interval should be chosen to ensure $\{x_n\}$ is convergent? Calculate its limit.

The fixed-point algorithm uses the formula $p_n = g(p_{n-1})$ where g is a function s.t. the fixed points of g are roots of some original function of interest f. In this case, clearly $g(x) = 2^{x-1}$. To ensure convergence, we must find an interval I s.t. g is a self-map of I and g' lies within a unit neighbourhood of 0.

Now, clearly the equation $2x = 2^x$ has solutions x = 1, x = 2, and no other. So whatever self-map I we build must contain either 1 or 2. So take I = [0, 1].

Clearly, if $x \in I$, then $-1 \le x - 1 \le 0$. This means 2^{x-1} has exponent at least -1, when $g(0) = 2^{-1} = \frac{1}{2}$. Furthermore, 2^{x-1} has exponent at most 0, when $g(1) = 2^0 = 1$. This suffices to show that $g(x) \in I$ for all $x \in I$.

Now,

$$\frac{d}{dx}2^{x-1} = \frac{d}{du}2^u \times \frac{d}{dx}(x-1) = 2^u \ln u$$

In short, $g'(x) = 2^{x-1} \ln(2)$. For $x \in [0, 1]$, we have already established that $0 \le 2^{x-1} \le 1$. Therefore, $0 \le g'(x) \le \ln(2) < 0$ for all $x \in [0, 1]$. In other words, g' lies within a unit-distance of zero when its domain is restricted to I.

 \therefore The algorithm converges to the unique solution of $2x = 2^x$ in [0, 1] (which is 1) when starting from said interval with iteration function g.

(11) Suppose $\{x_n\}$ converges to r and that $x_{n+1} = g(x_n)$ where $|g(y) - g(x)| \le \lambda |y - x|$ for all x, y with $\lambda \in (0, 1)$. Determine the error bound on each iteration as a function of the difference between the last two iteration values. In other words, find C s.t.

$$|x_{n+1} - r| \le C |x_{n+1} - x_n|$$

Recall that $x_{n+1} = g(x_n)$. This means

$$|x_{n+1} - r| = |g(x_n) - r|$$

But r is a fixed-point of g, i.e. r = g(r). Then

$$|g(x_n) - r| = |g(x_n) - g(r)|$$

By assumption, then,

$$|x_{n+1} - r| = |g(x_n) - g(r)|$$

$$\leq \lambda |x_n - r|$$

Recall that $|e_n| = |x_n - r| \le k^n |e_{n-1}|$ for some $k \in (0, 1)$. Since the property above holds for any $\lambda \in (0, 1)$, it holds for said k.

Since $|x_n - r| \le k^n |e_{n-1}|$, and $k^n \in (0, 1)$ entails $k^n |e_{n-1}| < |e_{n-1}|$, we have $|x_n - r| < |x_{n-1} - r|$. In other words, successive approximations in the sequence become increasingly closer to r. This means

$$|x_{n+1} - r| \le k |x_n - r|$$

Wtf now?

5 Polynomial interpolation

Teorema fundamental del álgebra. Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots.

Theorem 8. Given $x_0, \ldots, x_n, y_0, \ldots, y_n$, there is a unique polynomial p_n of degree $gr(p_n) \le n$ s.t. $p_n(x_i) = y_i$ for all i.

Proof. (Existence) If n = 0 simple $p_0(x) = y_0$ which is trivial. So take as inductive hypothesis the existence of p_{k-1} , of degree $\le k - 1$, s.t. $p_{k-1}(x_i) = y_i$ for $i = 0, \dots, k - 1$. We will construct a polynomial p_k of degree $\le k$ s.t. $p_k(x_i) = y_i$ for $0 \le i \le k$.

Consider

$$p_k(x) = p_{k-1}(x) + c(x - x_0)(x - x_1) \dots (x - x_{k-1})$$

with c yet to be determined. Its degree is $\leq k$ and it obviously interpolates the points $(x_0, y_0), \ldots, (x_{k-1}, y_{k-1})$. Now consider the equation:

$$p_k(x_k) = y_k$$

or equivalently

$$p_{k-1}(x_k) + c(x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1})$$

Solving for c, we find

$$c = \frac{y_k - p_{k-1}(x_k)}{(x_k - x_0) \dots (x_k - x_{k-1})}$$

Notice that c is well defined because each x_0, \ldots, x_n is distinct and therefore the denominator is never zero. This proves the polynomial exists.

(Uniqueness) Assume two interpolating polynomoials p_n , q_n exist. Let $h = p_n - q_n$. Clearly, its degree is $\leq n$ and $h(x_i) = 0$ for each $0 \leq i \leq n$. But this means h has n + 1 real roots. Then, for the fundamental theorem of algebra, h(x) = 0 for all x and then $p_n = q_n$.

5.1 Newton's form

Given x_0, \ldots, x_n we define Newton's basis polynomials:

$$\eta_i(x) = \prod_{j=0}^{i-1} (x - x_j), \qquad 0 \le i \le n$$

where $\eta_0(x) := 1$. Applying the construction seen in the last proof recurrently, we obtain:

$$p_k(x) = \sum_{i=0}^k c_i \eta_i(x) = \sum_{i=0}^k c_i \prod_{j=0}^{i-1} (x - x_j)$$

Here, each c_i is obtained as in the last proof.

Example. Consider the points (1, 2), (2, 5), (3, 3). We begin with $p_0(x) = 2$, the first interpolation which interpolates (1, 2).

Now,

$$p_1(x) = p_0(x) + c_0(x - x_0)$$
$$= 2 + c_0(x - 1)$$

Now, we pose the equation:

$$p_1(x_1) \iff y_1 \equiv p_1(2) = 5$$

 $\iff 2 + c_0(2 - 1) = 5$
 $\iff c_0 = 3$

Then $p_1(x) = 2 + 3(x - 1) = 3x - 1$. Now we repeat:

$$p_2(x) = p_1(x) + c_1(x - x_0)(x - x_1)$$

= $(3x - 1) + c_1(x - 1)(x - 2)$

We pose the equation:

$$(3 \cdot 3 - 1) + c_1(3 - 1)(3 - 2) = 3$$

$$\iff 8 + 2c_1 = 3$$

$$\iff 2c_1 = -5$$

$$\iff c_1 = -\frac{5}{2}$$

from which we have

$$p_2(x) = (3x - 1) - \frac{5}{2}(x - 1)(x - 2)$$

In Newton's form,

$$p_2(x) = 2 + 3(x - 1) - \frac{5}{2}(x - 1)(x - 2)$$
$$= \sum_{i=0}^{2} c_i \eta_i(x)$$

with $c_0 = 2$, $c_1 = 3$, $c_2 = -\frac{5}{2}$.

5.2 Lagrange's form

Given $(x_0, y_0), \ldots, (x_n, y_n)$, we define Lagrange's basic polynyomials:

$$\ell_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{(x - x_j)}{(x_i - x_j)}, \qquad i = 0, \dots, n$$

Note that $gr(\ell_i) = n$ for all i and $\ell_i(x_j) = \delta_{ij}$ for all i, j. In other words, $\ell_i(x)$ is nothing but a polynomial that becomes null at each x_i except at x_i , where it is one.

The Lagrange form of the interpolating polynomial es

$$p_n(x) = \sum_{i=0}^n y_i \ell_i(x)$$

Prove that $\sum_{i=0}^{n} \ell_i(x) = 1$.

Observe that the polynomial $\sum_{i=0}^{n} \ell_i(x)$ has roots x_0

Let $\gamma(x) = \sum_{i=0}^{n} \ell_i(x) - 1$. Any root of this polynomial is a value where the sum of each $\ell_i(x)$ is 1. Since $\ell_i(x_j) = \delta_{ij}$, it is the case that each x_j is a root of γ . Therefore, γ has at least n+1 roots,

but its degree is n. By the fundamental theorem of algebra, $\gamma(x) = 0$. But then $\sum_{i=0}^{n} \ell_i(x) = 1$ necessarily.

It should be clear from the fact that $\ell_i(x_j) = \delta_{ij}$ that Lagrange's form is a valid interpolation. We don't really care what its value is beyond the arguments x_0, \ldots, x_n .

5.3 Error of interpolation

Theorem 9 (Error of interpolation). Let $f \in C^{n+1}[a,b]$ and p a polynomial of degree $\leq n$ which interpolates f on n+1 distinct points within [a,b]. Then for each $x \in [a,b]$, there is a number $\zeta = \zeta_x \in (a,b)$ s.t.

$$f(x) - p(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} \eta_{n+1}(x)$$

or equivalently

$$f(x) - p(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} \prod_{j=0}^{n} (x - x_i)$$

5.4 Divided differences

In Newton's form, we use $f[x_0, \ldots, x_k]$ to denote c_k . In other words, we re-write

$$p_k(x) = \sum_{i=0}^k f[x_0, \dots, x_i] \eta_i(x)$$

= $f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_1)(x - x_2) + \dots$

If k = 0, $f[x_0] = f(x_0)$; if k = 1,

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

where f is the function being interpolated.

Theorem 10. Given x_0, \ldots, x_n ,

$$f[x_0,\ldots,x_n] = \frac{f[x_1,\ldots,x_n] - f[x_0,\ldots,x_{n-1}]}{x_n - x_0}$$

This allows us to construct a table for the so called divided differences. For instance, with n = 3:

Example. Assume f(3) = 1, f(1) = -3, f(5) = 2, f(6) = 4 where these arguments are x_0, \ldots, x_3 . We begin the table thus:

This is information sufficient to compute $f[x_2, x_3]$, which is

$$f[x_2, x_3] = \frac{f(x_2) - f(x_3)}{x_2 - x_3} = \frac{2 - 4}{5 - 6} = 2$$

giving

Same logic gives $f[x_1, x_2] = 5/4$ and $f[x_0, x_1] = 2$:

Now, $f[x_0, x_1, x_2] = (f[x_1, x_2] - f[x_0, x_1])/(x_2 - x_0)$. Using the table, this gives (5/4 - 2)/(2) = -3/8. Similarly, $f[x_1, x_2, x_3] = (f[x_2, x_3] - f[x_1, x_2])/(x_3 - x_1) = (2 - 5/4)/(5) = 3/20$.

The last value is computed in similar fashion.

Theorem 11 (Error of interpolation with divided differences). Let p with degree $\leq n$ an interpolator of f on nodes x_0, \ldots, x_n . If $t \neq x_i$ for all i is a real number, then

$$f(t) - p(t) = f[x_0, \dots, x_n, t] \prod_{j=0}^{n} (t - x_j)$$

(*) **Observation**. Assume p(x) is of degree 1 (linear). Then $f(x) - p(x) = \frac{f^{(2)}(\zeta_x)}{2!}(x - x_0)(x - x_1)$ for some ζ_x in $[x_0, x_1]$, in accordance with the **Error of interpolation** theorem. See that $\varphi(x) = (x - x_0)(x - x_1)$ is a quadratic expression with roots x_0, x_1 and minimum at $x_m = (x_0 + x_1)/2$. And since $\varphi(x_m)$ is negative, $\varphi(x) \ge \varphi(x_m) \Rightarrow |\varphi(x)| \le |\varphi(x_m)|$. In consequence,

$$|\varphi(x)| \le |(x - x_0)(x - x_1)| = \frac{|x_1 - x_0|^2}{4}$$

In consequence,

$$|f(x) - p(x)| \le \frac{f^{(2)}(\zeta_x)}{8} |x_1 - x_0|^2$$

If we choose M the maximum of $f^{(2)}(x)$ in $[x_0, x_1]$, then we have

$$|f(x) - p(x)| \le \frac{f^{(2)}(\zeta_x)}{8} |x_1 - x_0|^2 \le \frac{M}{8} |x_1 - x_0|^2$$

In consequence,

$$|f(x) - p(x)| \le \frac{\max_{x} f_{|[x_0, x_1]}^{(2)}(x)}{8} |x_1 - x_0|^2$$

5.5 Hermite interpolation

Hermite interpolation consists of interpolating a function f and its derivative in certain nodes x_0, \ldots, x_n . For instance, if two points are given, we wish

$$p(x_i) = f(x_i),$$
 $p'(x_i) = f'(x_i),$ for $i = 0, 1$

See that this gives four conditions, which means it is reasonable to seek a solution in Π_3 the space of all polynomials of degree ≤ 3 . (An element in Π_3 has four coefficients.) But instead of writing p(x) in terms of the coefficients for $1, x, x^2, x^3$, we shall write

$$p(x) = a + b(x - x_0) + c(x - x_0)^2 + d(x - x_0)^2(x - x_1)$$

which gives

$$p'(x) = b + 2c(x - x_0) + 2d(x - x_0)(x - x_1) + d(x - x_0)^2$$

Writing the polynomial this way allows us to express the four conditions as follows:

$$a = f(x_0)$$

$$b = f'(x_0)$$

$$f(x_1) = a + bh + ch^2$$

$$f'(x_1) = b + 2ch + dh^2$$

where $h = x_1 - x_0$. This approach readily gives a and b, c can be determined from the third equation, and d from the fourth equation.

Now, observe that from the third equation,

$$c = \frac{f(x_1) - a - bh}{h^2} = \frac{f(x_1) - f(x_0)}{h^2} - \frac{f'(x_0)h}{h^2}$$
$$= \frac{f(x_1) - f(x_0)}{(x_1 - x_0)^2} - \frac{f'(x_0)}{(x_1 - x_0)}$$

5.6 Splines

A spline is an interval-based polynomial approximation. We say S(x) defined on $[x_0, x_n]$ is a spline of degree k if

- 1. S is polynomial of degree $\leq k$ on each sub-interval $[x_i, x_{i+1})$ para $i = 0, \dots, n-1$;
- 2. The derivatives of $S^{(i)}$ are continuous $[x_0, x_n]$ for $i = 0, \dots, k-1$.

A linear spline is a spline of the form:

$$S(x) = \begin{cases} S_2(x) = a_0 x + b_0 & x \in [x_0, x_1) \\ S_1(x) = a_1 x + b_1 & x \in [x_1, x_2) \\ \vdots & & \\ S_{n-1}(x) = a_{n-1} x + b_{n-1} & x \in [x_{n-1}, x_n) \end{cases}$$

where each a_i , b_i is to be determined. This gives 2n conditions. Clearly, for a fixed i,

$$a_i x_i + b_i = S_i(x_i) = f(x_i)$$

 $a_i x_{i+1} + b_i = \lim_{x \to x_{i+1}} S_i(x) = S_{i+1}(x_{i+1}) = f(x_{i+1})$

Subtracting the first equation in the second one,

$$a_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}, \qquad b_i = f(x_i) - a_i x_i$$

The error of approximation in a linear spline can be determined if we assume each x_0, \ldots, x_n to be equidistant. In other words, assume f is two times continuously differentiable in [a, b] and $x_k = a + kh$ for h = (b - a)/n the length of each sub-interval. Then on each interval we have a degree 1 polynomial, which means the error of interpolation for each $x \in [a, b]$ satisfies

$$|e(x)| < \frac{M}{8}h^2$$

where $|f''(x)| \le M$ for all $x \in [x_0, x_n]$. (See **Observation** marked with \star .)

5.6.1 Cubic splines

5.7 Excercises

(1) Construct the Lagrange and Newton interpolating polynomials for f(x) = 1/x taking $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$. Compare them and give their degrees. Graph them. Analyze the results (?).

(Newton) Newton's interpolating polynomial has the form

$$\varphi(x) = \sum_{i=0}^{n} a_i \eta_i(x)$$

where each a_i is to be determined and $\eta_i = \prod_{j=0}^{i-1} (x - x_j)$. We first do a brute construction, then a construction using divided differences.

(Newton, brute) Take $\varphi_0(x) = \frac{1}{2}$, a polynomial interpolating f at x_0 . Now let $\varphi_1(x) = \varphi_0(x) + c(x - x_0)$ and solve $\varphi_1(x_1) = f(x_1)$:

$$\frac{1}{2} + c(2.5 - 2) = f(2.5)$$

$$\iff c = 2 \times \left(\frac{2}{5} - \frac{1}{2}\right)$$

$$\iff c = \frac{4}{5} - \frac{5}{5}$$

$$\iff c = -\frac{1}{5}$$

$$\therefore \varphi_1(x) = \frac{1}{2} - \frac{1}{5}(x - 2).$$

Now we let $\varphi_2(x) = \frac{1}{2} - \frac{1}{5}(x-2) + c(x-2)(x-2.5)$ and solve for c in $\varphi_2(4) = f(4)$:

$$\frac{1}{2} - \frac{1}{5} \times 2 + 2 \times \frac{3}{2}c = \frac{1}{4}$$

$$\iff \frac{1}{2} - \frac{2}{5} + 3c = \frac{1}{4}$$

$$\iff c = \frac{1}{3} \left(\frac{10}{40} + \frac{16}{40} - \frac{20}{40} \right)$$

$$\iff c = \frac{1}{3} \left(\frac{3}{20} \right)$$

$$\iff c = \frac{1}{20}$$

So finally we have the following polynomial in Newton's form:

$$\varphi(x) = \frac{1}{2} - \frac{1}{5}(x - 2) + \frac{1}{20}(x - 2.5)(x - 2)$$

which is of degree 2.

(Newton, divided diffs.) The table of divided differences to interpolate f on x_0, x_1, x_2 is

Now, $f[x_1, x_2] = (f[x_2] - f[x_1])/(x_2 - x_1) = (1/4 - 2/5)/(1.5) = -1/10$:

$$\begin{array}{c|c|c}
2 & 1/2 & f[x_0, x_1] & f[x_0, x_1, x_2] \\
2.5 & 2/5 & -1/10 & 4 & 1/4
\end{array}$$

Now, same rule gives $f[x_0, x_1] = -1/5$:

$$\begin{array}{c|c|c|c}
2 & 1/2 & -1/5 & f[x_0, x_1, x_2] \\
2.5 & 2/5 & -1/10 & 4 & 1/4
\end{array}$$

Lastly, $f[x_0, x_1, x_2] = (f[x_1, x_2] - f[x_0, x_1])/(x_2 - x_0) = 1/20$:

$$\begin{array}{c|c|c|c}
2 & 1/2 & -1/5 & 1/20 \\
2.5 & 2/5 & -1/10 & 4 & 1/4
\end{array}$$

Then,

$$\varphi(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$
$$= \frac{1}{2} - \frac{1}{5}(x - 2) + \frac{1}{20}(x - 2.5)(x - 2)$$

which is is what we had obtained before.

(Lagrange) Lagrange's polynomial has the form

$$\phi(x) = \sum_{i=0}^{n} y_i \ell_i(x)$$

where

$$\ell_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Then,

$$\ell_0(x) = \left(\frac{x - 2.5}{2 - 2.5}\right) \left(\frac{x - 4}{2 - 4}\right)$$
$$= \left(-\frac{1}{2}(x - 2.5)\right) (-2(x - 4))$$
$$= (x - 2.5)(x - 4)$$

$$\ell_1(x) = \left(\frac{x-2}{2.5-2}\right) \left(\frac{x-4}{2.5-4}\right)$$
$$= -\frac{3}{4}(x-2.5)(x-4)$$

$$\ell_2(x) = \left(\frac{x-2}{4-2}\right) \left(\frac{x-2.5}{4-2.5}\right)$$
$$= 3(x-2)(x-4)$$

Therefore,

$$\phi(x) = \frac{1}{2}\ell_0(x) + \frac{2}{5}\ell_1(x) + \frac{1}{4}\ell_2(x)$$

$$= \frac{1}{2}(x - 2.5)(x - 4) - \frac{3}{10}(x - 2.5)(x - 4) + \frac{3}{4}(x - 2)(x - 4)$$

(2) Prove: If f polynomial of degree $\leq n$ then the polynomial of degree $\leq n$ that interpolates f at x_0, \ldots, x_n is f itself.

It is a theorem that there exists a polynomial of degree $\leq n$ that interpolates f in the points x_0, \ldots, x_n , and that this polynomial is unique. f is a polynomial of degree $\leq n$ that interpolates f at x_0, \ldots, x_n . This concludes the proof.

Given x_0, \ldots, x_n , prove the following properties of Lagrange's basic polynomials $\ell_k(x)$:

- 1. Their sum is 1.
- 2. Their linear combination with coefficients x_0, \ldots, x_n is x.
- 3. Their linear combinations with coefficients x_0^m, \ldots, x_n^m , with $m \le n$, is x^m .
- (1) This was already proven in a previous section.
- (2) See that

$$\sum_{k=0}^{n} x_k \ell_k(x) = x \iff \sum_{k=0}^{n} x_k \ell_k(x) - x = 0$$
 (1)

Let $\phi(x) = \sum x_k \ell_k(x) - x$. Since $\ell_k(x_j) = \delta_{kj}$, $\varphi(x_j) = x_j - x_j = 0$, meaning that each x_j is root of ϕ . This means ϕ is a polynomial of degree $\leq n$ with n+1 roots. Then by virtue of the fundamental theorem of algebra, it is necessarily the case that $\phi(x) = 0$. Then the RHS of (1) holds, which concludes the proof.

(3) Assume $m \le n$. See that:

$$\sum_{k=0}^{n} x_k^m \ell_k(x) = x^m \iff \sum_{k=0}^{n} x_k^m \ell_k(x) - x^m = 0$$
 (2)

Let $\phi(x) = \sum x_k^m \ell_k(x) - x^m$. The polynomial has degree $\leq n$ due to the fact that $m \leq n$. Once more, $\phi(x_j) = x_j^m - x_j^m = 0$. Etc.

(6) Let $f:[0,5] \to \mathbb{R}$, $f(x)=2^x$. Let P_n a polynomial of degree at most n that interpolates f at n+1 distinct points in [0,5]. Prove that for any x in said interval,

$$|P(x) - f(x)| \le \frac{32 \times 5^{n+1}}{(n+1)!}$$

Recall that for $x \in [0, 5]$,

$$P(x) - f(x) = \frac{f^{(n+1)}(\zeta_x)}{(n+1)!} \eta_{n+1}(x)$$

for some $\zeta_x \in [0, 5]$. Now, $\frac{d}{dx}2^x = \ln 2 \times 2^x$, whose derivative is $\ln^2 2 \times 2^x$, whose derivative is $\ln^3 2 \times 2^x$, etc. $\therefore f^{(n+1)}(x) = \ln^{n+1} 2 \times 2^x = (n+1) \ln 2 \times 2^x$.

$$P(x) - f(x) = \frac{\ln^{n+1}(2) \times 2^{\zeta_x}}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$
$$= \frac{\ln^{n+1}(2) \times 2^{\zeta_x}}{n!} \prod_{j=0}^{n} (x - x_j)$$

Since $0 < \ln(2) < 1$, we know $0 < \ln^{n+1}(2) < 1$, and therefore

$$\frac{\ln^{n+1}(2) \times 2^{\zeta_x}}{(n+1)!} \prod_{j=0}^{n} (x - x_j) < \frac{2^{\zeta_x}}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

Necessasrily, $2^{\zeta_x} \le 5$ and

$$\prod_{j=0}^{n} (5 - x_j) \le \prod_{j=0}^{n} 5 = 5^{n+1}$$

From this follows that

$$P(x) - f(x) \le \frac{2^5 \times 5^{n+1}}{(n+1)!}$$

Since the RHS is positive, taking absolute value on both sides gives us the desired result.

(7) Prove that when interpolating $\cosh(x)$ with a polynomial p(x) of degree ≤ 22 in [-1, 1], the error is $\leq 5 \times 10^{-16}$.

A polynomial of degree n=22 has 23 coefficients, corresponding to the need of determining 23 nodes x_0, \ldots, x_{23} . So we let n=23. It is known that $\frac{d}{dx} \cosh x = \sinh x$, whose derivative is once more $\cosh x$. So, $\cosh^{(n+1)} = \cosh^{(24)} = \cosh$. In consequence,

$$p(x) - \cosh(x) = \frac{\cosh(\zeta_x)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

for some $\zeta_x \in (-1, 1)$. The graph of $\cos h$ is symmetric (the function is even). Therefore, it achieves its maximum (restricted to [-1, 1]) at $\cosh(1) = \cosh(-1) = (e^1 + e^{-1})/2 = (e^2 + 1)/2e$. So

$$\left| \frac{\cosh(\zeta_x)}{(n+1)!} \right| \left| \prod_{j=0}^n (x - x_j) \right| \le \frac{e^2 + 1}{2e(n+1)!} \left| \prod_{j=0}^n (x - x_j) \right|$$

Now, since $x \in [-1, 1]$, it is obvious that the maximum value which the factorial (and its absolute value) can take is 1. So

$$\left| \frac{e^2 + 1}{2e(n+1)!} \right| \prod_{j=0}^{n} (x - x_j) \le \frac{e^2 + 1}{2e(n+1)!}$$

Now, with a calculator one can see that $24! > 10^{16}$. Furthermore, $(e^2 + 1)/2e < 5$. So,

$$\frac{e^2 + 1}{2e(n+1)!} < \frac{5}{10^{16}} = 5 \times 10^{-16}$$

(8) (a) Let a < b, m the midpoint between them, p = m - h and q = m + h for $0 \le h \le (b - a)/2$. Prove that for all $x \in [a, b]$,

$$|(x-p)(x-q)| \le \frac{(b-a)^2}{4}$$

(b) Let $x_i = a + i(\frac{b-a}{n})$ for i = 0, ..., n equidistant points in [a, b]. Prove that for all $x \in [a, b]$,

$$|(x-x_0)\dots(x-x_n)| \le \frac{(b-a)^{n+1}}{2^{n+1}}$$

(a) See the graph below for reference.

Define f(x) as the quadratic function with roots a, b and upward tails: f(x) = (x - a)(x - b). We know that if $x_0 = p$, $x_1 = q$, then a linear interpolation of f at nodes x_0, x_1 on the interval [a, b] satisfies:

$$|f(x) - p(x)| = \left| \frac{f''(\zeta_x)}{2!} \right| |(x - x_0)(x - x_1)| \le \frac{M}{8} |x_1 - x_0|^2$$

with M the maximum of |f''(x)| in [a, b] and some $\zeta_x \in (a, b)$. Now,

$$|x_1 - x_0|^2 = |(m+h) - (m-h)|^2 = 4h^2$$

Therefore,

$$\left| \frac{f''(\zeta_x)}{2} \right| |(x-p)(x-q)| \le \frac{4h^2 \times M}{8}$$

$$\Rightarrow \left| \frac{f''(\zeta_x)}{2} \right| |(x-p)(x-q)| \le \frac{M}{2}h^2$$

$$\Rightarrow |f''(\zeta_x)| |(x-p)(x-q)| \le Mh^2$$

Here's the trick: since f is quadratic, f'' is constant and therefore $|f''(\zeta_x)| = |M|$. So dividing by |M| on both sides we get

$$|(x-p)(x-q)| \le h^2$$

Finally, we know $0 \le h \le (b - a)/2$, so

$$|(x-p)(x-q)| \le h^2 \le \left(\frac{b-a}{2}\right)^2 = \frac{(b-a)^2}{4}$$

which is what we wanted to show.

(b) Let x_0, \ldots, x_n s.t. $x_i = a + i \frac{(b-a)}{n}$ for $0 \le i \le n$. We wish to show that for all $x \in [a, b]$,

$$|\eta_{n+1}(x)| \le \frac{(b-a)^{n+1}}{2^{n+1}}$$

Take x_i , x_{i+1} and let f be the quadratic function with roots x_i , x_{i+1} and upward tails. Using the exact same reasoning of (a), we know

$$|(x - x_i)(x - x_{i+1})| \le \frac{(x_{i+1} - x_i)^2}{2^2}$$
(3)

Since the points are equidistant, $x_{i+1} - x_i = \frac{b-a}{n}$, as is easy to prove algebraically, so equation (2) is equivalent to:

$$|(x-x_i)(x-x_{i+1})| \le \left(\frac{b-a}{2n}\right)^2 \tag{4}$$

See that exercise (a) satisfied this formula, where had nodes x_0, x_1 and therefore n = 1. In other words, exercise (a) was the base case for an inductive proof and we can now assume that the statement holds for n = k - 1 for some k > 2. Our inductive case consists of having points x_0, \ldots, x_k , where we wish to prove

$$|(x-x_0)\dots(x-x_{k-1})| \le \frac{(b-a)^k}{2^k} \Rightarrow |(x-x_0)\dots(x-x_{k-1})(x-x_k)| \le \frac{(b-a)^{k+1}}{2^{k+1}}$$

So assume

$$|\eta_k(x)| \le \frac{(b-a)^k}{2^k}$$

Now take

$$|\eta_k(x)| |(x - x_{k+1})| \le \frac{(b-a)^k}{2^k} |(x - x_{k+1})|$$

Since $x \in [a, b]$ and $x_{k+1} = b$ is the last node, $|x - x_{k+1}| \le b - a$ (i.e. the maximum distance that x can take from b is when x is exactly a). So

$$|\eta_k(x)| |(x - x_{k+1})| \le \frac{(b - a)^k}{2^k} |(x - x_{k+1})| \le \frac{(b - a)^k}{2^k} (b - a)$$

Something's off. But should be along this lines.

(9) (a) Let $f(x) = \cos x\pi$. Find a polynomial of degree ≤ 3 that verifies:

$$p(-1) = f(-1),$$
 $p(0) = f(0),$ $p(1) = f(1),$ $p'(1) = f'(1)$

- (b) Find a polynomial of degree ≤ 4 that verifies previous conditions and the added condition p''(1) = f''(1).
- (a) Let $x_0 = -1$, $x_2 = 0$, $x_3 = 1$. To keep track of which nodes have double (or more) conditions, let $z_0 = x_0$, $z_1 = x_1$, $z_2 = x_2$, $z_3 = x_2$ (since x_2 has two conditions, one for p and one for p'.) Then, our table of divided differences is

So now we simply compute the first column.

Amazing. So now we compute $f[z_2, z_3] = f[x_2, x_2]$. Since this is a repeated node, by definition it corresponds to $f'(x_2) = f'(0)$. So, we see that $f'(0) = -\sin(0\pi)\pi = 0$. Similarly,

$$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1} = \frac{-2}{1} = -2$$

and

$$f[z_0, z_1] = \frac{f[z_1] - f[z_0]}{z_1 - z_0} = 2$$

So,

Now,

$$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1} = \frac{2}{1} = 2$$

$$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0} = -\frac{2}{2} = -2$$

At last,

$$f[z_0,\ldots,z_3] = \frac{f[z_1,z_2,z_3] - f[z_0,z_1,z_2]}{z_3 - z_0} = 2$$

The interpolating polynomial is built using Newton's form—remember that $f[x_0], f[x_0, x_1], \ldots$ etc are the coefficients c_0, c_1, \ldots in Newton's form $\sum_{i=0}^{n} c_i \eta_i(x)$. So,

$$p(x) = f[z_0] + f[z_0, z_1](x - z_0) + f[z_0, z_1, z_2](x - z_0)(x - z_1) + f[z_0, \dots, z_3](x - z_0)(x - z_1)(x - z_2)$$

Simplifying,

$$p(x) = -1 + 2(x+1) - 2(x+1)x + 2(x+1)x(x-1)$$

(10) We wish to approximate $f(x) = \sqrt{x}$ with an error of at most 5×10^{-8} using a linear spline and quadratic interpolation every three nodes.

Determine the least number of nodes n of the form $x_i = 1 + \frac{i}{n}$, with $i = 0, \dots, n$, and interval length h, so that the error bound is met.

(Linear spline) See that the desired approximation falls within [1,2]. For a linear spline, the error of approximation obeys

$$|e(x)| < \frac{M}{8}h^2$$
, $x \in [1, 2]$ and $M = \max |f''|$

where we can think of h as a function of n, i.e. $h(n) = \frac{1}{n}$ for $n \in \mathbb{N}$.

$$\frac{M}{8}h(n)^2 \le 5 \times 10^{-8}$$

$$\iff \frac{M}{(n)^2} \le 40 \times 10^{-8}$$

$$\iff \frac{10^8 M}{40} \le n^2$$

$$\iff \sqrt{\frac{10^8 M}{40}} \le n$$

Now, suffices to see that

$$f'(x) = \frac{1}{2\sqrt{x}}, \qquad f''(x) = -\frac{1}{4x^{3/2}}$$

Clearly then |f''(x)| is decreasing and its maximum in [1, 2] occurs at x = 1:

$$M = |f''(1))| = \frac{1}{4}$$

So, we require

$$\sqrt{\frac{10^8}{40 \times 4}} \le n$$

$$\iff \frac{10^4}{\sqrt{160}} \le n$$

$$\iff \frac{10.000}{\sqrt{16 \times 10}} \le n$$

$$\iff \frac{10.000}{4\sqrt{10}} \le n$$

$$\iff \frac{2500}{\sqrt{10}} \le n$$

$$\iff 790.569 \le n$$

So fixing n = 791 suffices.

(Quadratic interpolation) Assume we group x_0, \ldots, x_n into x_0, x_1, x_2 , then x_3, x_4, x_5 , etc. Let \overrightarrow{x}_i denote the *i*th grouping of three nodes. We are of course assuming that there are n + 1 = 3k nodes with $k \in \mathbb{N}$. The function h(n) which specifies the distance between nodes will be specified later.

Assume each \overrightarrow{x}_i is used to fit a quadratic polynomial $q_i(x) = a_i x^2 + b_i x + c_i$. The error of interpolation will then be specific to each interval. In other words, for any x belonging to the interval specified by \overrightarrow{x}_i ,

$$|e(x)| = \left| \frac{f^{(3)}(\zeta_x)}{3!} \prod_{\widetilde{x} \in \overrightarrow{x}_i} (x - \widetilde{x}) \right|$$

for some ζ_x in the interval of interest. Taking $M = \max |f^{(3)}(x)|$, with $f^{(3)}(x) = \frac{3}{8x^{\frac{5}{2}}}$, we obtain M = 3/8. Now the question becomes whether we can bound the factorial expression. See that

$$\varphi(x) = (x - x_0)(x - x_1)(x - x_2)$$

is a cubic function with distinct roots. (We could have chosen any successive values for x_0, x_1, x_2 .) Consider φ as restricted to the interval $[x_0, x_2]$. We know that it will have three roots, a maximum x_M in $[x_0, x_1]$ and a minimum x_m at $[x_1, x_2]$. Since the roots are equidistant (root symmetry), φ is symmetric around the mid-root x_1 and $\varphi(x_m) = \varphi(x_M)$. But where is the critical point?

(*) Let us consider a centered cubic polynomial, without loss of generality. Let $\phi(x) = (x - a)x(x - b)$, with mid-root zero. Assuming root symmetry, a = -b. So letting r = b we have

$$\phi(x) = (x - r)x(x + r) = x^3 - xr^2$$

Its derivative $\phi'(x) = 3x^2 - r^2$ is zero if and only if $x = \pm \frac{r}{\sqrt{3}}$. We have already established that these critical points are equal in their absolute values. Now it only suffices to see that

$$\phi\left(\frac{r}{\sqrt{3}}\right) = -\frac{2r^3}{3\sqrt{3}} = -\frac{(c-a)^3}{12\sqrt{3}}$$

(because r = (c - a)/2). Therefore,

$$\max |\phi(x)| = \frac{(c-a)^3}{12\sqrt{3}}$$

From (\star) readily follows that

$$\left| \prod_{\widetilde{x} \in \overrightarrow{x}_i} (x - \widetilde{x}) \right| \le \frac{h^3}{12\sqrt{3}}$$

where h is the distance between the last node in a grouping and the first (i.e. $x_2 - x_0 = x_5 - x_3 = \dots$ etc.) In consequence,

$$|e(x)| = \left| \frac{f^{(3)}(\zeta_x)}{3!} \prod_{\widetilde{x} \in \overrightarrow{x}_i} (x - \widetilde{x}) \right|$$
$$\Rightarrow |e(x)| \le 3/8 \frac{h^3}{12\sqrt{3}}$$

Here, h is a function of n. If n = 2 (three points), then h = 2/3. If n = 5 (six points), then each sub-interval is of length 1/6 and h = 2/6. In general, if n = 3k, then $h = \frac{2}{n}$. So we have

$$|e(x)| \le \frac{3}{8 \times \sqrt{3}} \frac{2}{n} = \frac{3}{4\sqrt{3}n}$$

So now all that is needed is to bound the RHS expression to 5×10^{-8} :

$$\frac{3}{4\sqrt{3}n} \le 5 \times 10^{-8} \iff \dots$$

bla bla. This is the simplest part of the problem so I skip it.