Yıllara Göre Büyüme Oranının Tahmin Edilmesi

17110131006-Mehmet OKYAY

18110131505-Abdourazak ALİ EGUEH

Projemizin Amacı

Projemizin amacı 1950-2011 yılları arasında ülkelerini nüfus bilgileri doğrultusunda belirlenmiş bir ülkenin, belirli bir yıla ait dair tahminlerde bulunmasını sağlamak.

Veri seti Hakkında

- Veri toplama adımı olarak Kaggle yer alan bir veri seti kullanılmıştır.
- Veri seti Birleşmiş Milletler(BM) tarafından 1950 yılında itibaren ülkelerin nüfus bilgilerinin yer aldığı bir veri setidir.
- Veri setinde 228 ülkenin 15109 adet kayıtlık nüfus verisi yer almaktadır.

Veri Önişleme Adımları(Python Kütüphanelerini Yükleme)

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

Veri Önişleme Adımları(Veri seti Hakkında)

Ülke Kodu		Ülke Adı	Yıl	Kaba Doğum Oranı	Gerçek Ölüm Oranı	Net Göç	Doğal Artış Oranı	Büyüme_Oranı
0	SI	Slovenia	2036	7.59	14.65	0.23	-0.706	-0.682
1	SI	Slovenia	2022	7.52	12.28	0.32	-0.476	-0.444
2	SI	Slovenia	2023	7.43	12.41	0.31	-0.498	-0.467
3	SI	Slovenia	2024	7.35	12.55	0.31	-0.520	-0.489
4	SI	Slovenia	2025	7.30	12.68	0.30	-0.538	-0.508
15104	BP	Solomon Islands	2000	34.93	4.53	-2.51	3.040	2.789
15105	BP	Solomon Islands	1999	35.48	4.61	-2.58	3.087	2.829
15106	BP	Solomon Islands	1998	35.98	4.70	-2.45	3.128	2.884
15107	BP	Solomon Islands	1997	36.44	4.79	-2.31	3.165	2.934
15108	BP	Solomon Islands	1995	37.17	4.97	-2.01	3.220	3.019

Veri Önişleme Adımları(Veri seti Hakkında)

Veri setinde yer alan veri türleri aşağıda görüntülenmektedir. Ayrıca veri tipi ve

boş değer içerip içermediği hakkında genel bilgi verilmiştir.

```
veriseti.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15109 entries, 0 to 15108
Data columns (total 8 columns):
     Column
                        Non-Null Count Dtype
    Ülke Kodu 15109 non-null object
Ülke Adı 15109 non-null object
    Yıl
                       15109 non-null int64
     Kaba Doğum Oranı 15109 non-null float64
    Gerçek Ölüm Oranı 15109 non-null float64
    Net Göc
                       15109 non-null float64
    Doğal Artış Oranı 15109 non-null float64
     Büyüme Oranı
                        15109 non-null float64
dtypes: float64(5), int64(1), object(2)
memory usage: 944.4+ KB
```

Veri Önişleme Adımları(Veri seti Hakkında)

Verisetindeki temel istatistiki veriler.

verise	veriseti.describe()										
	Yıl	Kaba Doğum Oranı	Gerçek Ölüm Oranı	Net Göç	Doğal Artış Oranı	Büyüme_Oranı					
count	15109.000000	15109.000000	15109.000000	15109.000000	15109.000000	15109.000000					
mean	2016.748891	20.645532	9.137688	-0.041234	1.150771	1.109136					
std	20.220176	11.714597	4.409634	29.716751	1.114461	3.155930					
min	1950.000000	3.620000	1.530000	-831.810000	-6.383000	-168.944000					
25%	2001.000000	11.160000	6.230000	-2.130000	0.250000	0.223000					
50%	2017.000000	16.690000	8.130000	-0.090000	1.038000	0.938000					
75%	2034.000000	27.890000	11.050000	1.210000	2.075000	1.989000					
max	2050.000000	58.740000	97.080000	1693.010000	4.036000	168.887000					

Veri Önişleme Adımları (Verisetinin düzenleme)

Sütunların yeniden adlandırılması

```
veriseti=pd.read_csv("dataset.csv")
veriseti=veriseti.rename(columns={"country_code":"Ülke Kodu","country_name":"Ülke Adı","year":"Yıl"})
veriseti=veriseti.rename(columns={"crude_birth_rate":"Kaba Doğum Oranı","crude_death_rate":"Gerçek Ölüm Oranı"})
veriseti=veriseti.rename(columns={"net_migration":"Net Göç","rate_natural_increase":"Doğal Artış Oranı"})
veriseti=veriseti.rename(columns={"growth_rate":"Büyüme_Oranı"})
veriseti
```

▶ Ülke adı ve ülke kodu bilgileri yer alan veri setinde ülke kodu gereksiz olduğu düşünülerek Ülke Kodu sütunu silinmiştir.

```
veriseti.drop('Ülke Kodu', inplace=True, axis=1)
```

Veri Önişleme Adımları

- Verilerimizin eğitim ve test verilerinin ayrıştırılması için ilk 6 sütun bağımsız değişken olarak belirlendi ve nupy dizini olarak X değişkeninde hafızaya alındı.
- ► Son sütun olan nüfusun büyüme oranı ise bağımlı değişken olarak(y) alındı.

```
X = veriseti.iloc[:, :-1]

y = veriseti.iloc[:, 6]
y.head()
```

```
X = veriseti.iloc[:, 1:6].values
 = np.array(X)
#y = veriseti.iloc[:, 6].values
print('X:',X)
print('Y:',y)
X: [[ 2.036e+03 7.590e+00 1.465e+01 2.300e-01 -7.060e-01]
   2.023e+03 7.430e+00 1.241e+01 3.100e-01 -4.980e-01
                        4.700e+00 -2.450e+00
             3.644e+01 4.790e+00 -2.310e+00
  1.995e+03 3.717e+01 4.970e+00 -2.010e+00 3.220e+00]]
Y: 0
           -0.682
        -0.444
        -0.467
        -0.489
        -0.508
15104
         2.789
15105
         2.829
15106
         2.884
         2.934
15107
15108
         3.019
Name: Büyüme Oranı, Length: 15109, dtype: float64
```

Modelin Eğitilmesi

R2 hata oranına bakılarak test_size = 0,33 ve random_state=0 olarak belirlendi.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 0)

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

# Predicting the Test set results
y_pred = regressor.predict(X_test)
```

Tahmin İşlemleri

Tahmin işlemleri için lineer regresyon modeli kullanıldı.

```
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size = 0.33, random state = 0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X train, y train)
# Predicting the Test set results
y pred = regressor.predict(X test)
regressor.predict([[2036,7.59,14.65,0.23,-0.706]])
array([-0.78097056])
from sklearn.metrics import r2 score
score=r2 score(y test,y pred)
print(y_pred)
[-0.70716749 2.10005263 1.10071767 ... 2.34913785 2.44773868
  2.84661336]
print(score)
0.09529090418610942
```

Veri Görselleştirme

Basit Doğrusal Regresyon Modeli ile Test/Tahmin/Görselleştirme

Geçen bölümde eğitimini gerçekleştirdiğimiz basit doğrusal regresyon modelimizi kullanarak tahminler yapacağız ve sonuçları görselleştireceğiz.

```
array = veriseti.Yıl.values.reshape(-1,1) # yıla

plt.figure()
plt.scatter(x,y)
y_head = model.predict(array)
plt.plot(array, y_head, color = "red")
plt.xlabel("Yıl ")
plt.ylabel("Büyüme_Oranı")
plt.title("Yıl - Büyüme_Oranı", color = "red")
plt.grid(True)
plt.show()
```


R2 İle Eğitimin İyileştirilmesi(Gelişitirme)

```
print("R2 score hata oran1:",r2_score(y,yeni_tahmin))
```

R2 score hata orani: 0.12861112746857983