#### Intel Embedded Systems Competition 2016

# Hydrus – Autonomous Drone for Hydrologic Monitoring

Lucas Pires Camargo Guilherme Augusto Pangratz Émili Bohrer

Professor: Giovani Gracioli

University: Federal University of Santa Catarina - UFSC

Organization Promotion Sponsorship

















# The Hydrus Project



- An autonomous boat drone for data acquisition, and water quality sensing.
- Able to navigate autonomously, via GPS, and collect water quality data along the way.





## Why is it important?

- ▶ 65% of sewage in Brazil is dumped untreated (IGBE + SNIS 2014)
- Manual monitoring of water in reservoirs is expensive, slow, and sparse.
- Advances in technology and lowering costs can help solve problems more easily.
- Our drone can...

Increase the number of measurements. Geotag all measurements by default.



Open sewage in João Pessoa, PB Source: goo.gl/34XWrf



Garbage floating in a SP reservoir Source: goo.gl/SnBXYp

#### **Boat Frame**

- We decided to build our own boat from scratch.
- Laminated fiberglass on a custom mold.
- Adequate size and build for our application.



"From zero to boat in a couple of months"

#### Hardware

- GPS and magnetometer for navigation.
- WiFi module for base communication.
- PH, turbidity, and temperature sensors.
- Additional sensors can be connected to auxiliary μC.



Our custom Galileo shield



#### Software

- Custom built C / C++ firmware, with standard IoT image.
- Cyclic executive scheduler + blackboard architecture.



| Execute<br>(A) | Execute<br>(B) | Period  |
|----------------|----------------|---------|
| 1              | 1              | 0.02s   |
| 1              | 1              | 0.02s   |
| 1              |                | 0.04s   |
|                | 1              | 0.04s   |
|                | (A)            | (A) (B) |

Cyclic task Schedule. Major period is 0.04s

#### Base Station Software



#### Technical issues

- We found the Galileo Gen 2 board to be very sensitive.
  - Inadequate inrush current protection: we had the regulator catch fire because we plugged the board to a lithium battery (14.5V).
  - There should be a separate I2C bus for the onboard peripherals: any interference would bring the sketch to a halt.
  - We bricked one probably because the IOREF jumper was loose...



#### Workarounds

- A couple of boards were brought back to life by supplying +5V directly.
- We created a GPS-publisher phone app for situations it was hard to get the GPS module to fix to the satellites.
  - Overcast weather, old almanac data, etc.





Helper Android application

## Why the project is innovative?

- A handmade, low-cost boat drone that can navigate autonomously, and collect data on water quality along the way.
- Modular hardware and software. Custom physical frame.
- Our drone is a framework that can be easily extended to support additional sensors and applications.



| Item                 | Price (USD) |
|----------------------|-------------|
| Boat frame           | \$60.00     |
| Battery + Powertrain | \$51.00     |
| Galileo Gen 2        | \$77.00     |
| Sensors and Modules  | \$129.00    |
| Total                | \$317.00    |

#### Results and Future Plans

- The drone is able to reach programmed waypoints and navigate correctly.
- The companion application allows the user to plot collected data spatially.
- We plan to study the usage of the boat for sonar bathymetry applications.
- We also want to investigate additional energy sources, such as solar.



Plot of collected temperature data on a mock route



#### Intel® Embedded Systems Competition 2016

# Thank you for your attention!

Questions?

Organization

Promotion

Sponsorship















