1 First order ODE

1.1 Separable

Formulation: g(y)y' = f(x)Solution: $\int g(y)dy = \int f(x)dx + c$

1.2 Homogeneous of degree n

Definition: f(x,y) is homogeneous of degree $n \implies$ $f(tx, ty) = t^n f(x, y)$ **Formulation 1:** M(x,y) + N(x,y)y' = 0, where M and N are homogeneous of degree n. y' = f(x,y) =

 $\frac{-M(x,y)}{N(x,y)}$, where f(x,y) is homogeneous of degree 0. **Solution 1**: Substitution y = zx, then y' = z + xz',

then $z + xz' = f(x, zx) = x^0 \frac{f(z)}{f(1,z) - z} = \frac{f(z)}{x}$, the equation is now separable: $\frac{dz}{f(1,z) - z} = \frac{dz}{x}$

Formulation 2: $y' = \frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}$

Solution 2-1: If $a_1b_2 \neq a_2b_1$, consider x = z+h, y = w+k, where $a_1h+b_1k+c_1=0, a_2h+b_2k+c_2=0$, the equation is transformed to $\frac{dw}{dz} = \frac{a_1z + b_1w}{a_2z + b_2w}$, back to formulation 1.

Solution 2-2: If $a_1b_2 = a_2b_1$, consider $r = \frac{a_1}{b_1} = \frac{a_2}{b_2}$, take z=rx+y, the equation is transformed to $\frac{b_2z+c_2}{b_1z+c_1+r(b_2z+c_2)}z'=1, \text{ which is separable.}$

1.3 Exact

Formulation: M(x,y)dx + N(x,y)dy = 0, and there exists u(x,y) such that M(x,y)dx + N(x,y)dy = $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$

Solution: u(x,y) = cTheorem: Assume M,N and their first partial derivatives are continuous in the rectangle S:|x- $|x_0| < a, |y - y_0| < b$. A necessary and sufficient condition for the equation to be exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ for all $(x,y) \in S$, then $u(x,y) = \int_{x_0}^x M(s,y) ds +$ $\int_{y_0}^{y} N(x_0, t) dt$

1.4 Integrating factor

Definition: A non-zero function $\mu(x,y)$ is an integrating factor of the formulation above if $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$ is exact. In this case, $(\mu M)_y = (\mu N)_x \implies N\mu_x - M\mu_y = \mu(M_y - N_x)$. One may look for an integrating factor of the form $\mu = \mu(v)$, where v is a known function of x and y, then $\mu_x = \frac{d\mu}{dv}v_x$ and $\mu_y = \frac{d\mu}{dv}v_y$, and by substitution we have $\frac{1}{\mu}\frac{d\mu}{dv} = \frac{M_y - N_x}{Nv_x - Mv_y}$, if RHS is a function of valone, say $\phi(v)$, then $\mu = e^{\int^v \phi(v) dv}$ is an integrating

Common choices of v: If v = x, check $\frac{M_y - N_x}{N}$ is a function of x. If v = y, check $-\frac{M_y - N_x}{M}$ is a function of y. If v = xy, check $\frac{M_y - N_x}{yN - xM}$ is a function of xy.

1.5 Homogeneous linear equations

Formulation: y' + p(x)y = 0

Solution: Take integrating factor $e^{P(x)}$, where $P(x) = \int_a^x p(s)ds$, then the general solution is y(x) =

1.6 Non-homogeneous linear equations

Formulation : y' + p(x)y = q(x)

Solution: $y(x) = e^{-P(x)} [\int_a^x e^{P(t)} q(t) dt + c]$, where $P(x) = \int_{a}^{x} p(s)ds$

1.7 Bernoulli equation

Formulation: $y' + p(x)y = q(x)y^n$

Solution: Consider substitution $u = y^{1-n}$, the equation is transformed into u' + (1 - n)p(x)u =(1-n)q(x), which is first order linear.

1.8 Riccati equation

Formulation: $y' = P(x) + Q(x)y + R(x)y^2$ **Theorem:** Let $y = y_0(x)$ be a particular solution of the Riccati equation. Set $H(x) = \int_{x_0}^x [Q(t) +$ $2R(t)y_0(t)]dt, Z(x) = e^{-H(x)}[c - \int_{x_0}^x e^{H(t)}R(t)dt],$ where c is an arbitrary constant, the the general solution is given by $y = y_0 + \frac{1}{Z(x)}$

The general solution of the Riccati equation can be written as $y(x) = \frac{cF(x)+G(x)}{cf(x)+g(x)}$, where $f(x) = e^{-H(x)}$, $g(x) = -e^{-H(x)} \int_{x_0}^x e^{H(t)} R(t) dt$, $F(x) = e^{-H(x)} \int_{x_0}^x e^{H(t)} R(t) dt$ $y_0(x)f(x), G(x) = y_0g(x) + 1$

Given four distinct functions p(x), q(x), r(x), s(x), we define cross-ratio $\frac{(p-q)(r-s)}{(p-s)(r-q)}$. The cross ratio of

four distinct particular solutions of a Riccati equation is independent of x. As a consequence, suppose y_1, y_2, y_3 are three distinct particular solutions of a Riccati equation, then the general solution is given by $\frac{(y_1-y_2)(y_3-y)}{(y_1-y)(y_3-y_2)}=c$, where c is an arbitrary constant. Suppose y_1, y_2 are two distinct particular solutions of a Riccati equation, then the general solution is given by $\ln |\frac{y-y_1}{y_1-y_2}| = \int R(x)(y_1(x)-y_2(x))dx + c$, where c is an arbitrary constant.

1.9 Method of differentiation

Formulation: y = f(x, y')

Solution: Let p = y'. Differentiating y' = f(x, p) we get $[f_x(x, p) - p]dx + f_p(x, p)dp = 0$, which is a first order explicit equation in x and p. If it is solvable to give $p = \phi(x)$, then the original equation has a solution $y = f(x, \phi(x))$.

1.10 Clairaut's equation

Formulation: y = xy' + f(y')**Solution:** Let p = y'. We have y = xp + f(p). Differentiating we get (x+f'(p))p' = 0. When p' = 0 we have y = cx + f(c). When x + f'(p) = 0 we have parameterized solution x = -f'(p), y = -pf'(p) + f(p).

1.11 Method of parameterization

Used to solve equations where either x or y is miss-Suppose F(y, y') = 0, let p = y', then F(y,p) = 0. It determines a family of curves in yp-plane. Let y = g(t), p = h(t) be one of the curves F(g(t),h(t))=0, since $dx=\frac{dy}{y'}=\frac{dy}{p}=\frac{g'(t)dt}{h(t)}$, we have $x = \int_{t_0}^t \frac{g'(t)}{h(t)} dt + c, y = g(t)$ This method can also be applied to equations F(x, y') = 0 where y is missing.

1.12 Reduction of order

Formulation: F(x, y', y'') = 0

Solution: Let p=y', then F(x,p,p')=0, if $p=\phi(x,c_1)$ is a general solution of the new equation, then the general solution of the original equation is $y = \int_{x_0}^x \phi(t, c_1) dt + c_2.$

Formulation: F(y, y', y'') = 0.

Solution: Let p = y', then $F(y, p, p \frac{dp}{dy}) = 0$. If $p = \psi(y, c_1)$ is a general solution of the new equation, then the general solution of the original equation is given by solving $y' = \psi(y, c_1)$.

2 Linear ODE

2.1 General formulation

Definition: *n*-th order linear ODE is defined as $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = f(x)$. If $f(x) \not\equiv 0$, it is non-homogeneous, otherwise, it is homogeneous. The initial value problem is defined by the equation together with n conditions $y(x_0) = y_0, y'(x_0) =$ $y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$

Theorem 1 (Existence and uniqueness theorem). Assume that $a_i(x)$ and f(x) are continuous functions defined on interval (a, b). Then for any $x_0 \in (a, b)$ and for any numbers y_0, \ldots, y_{n-1} , the initial value problem has a unique solution defined on (a, b).

Theorem 2. If $f(x) \equiv 0$, and if there exists $x_0 \in$ (a,b) such that $y(x_0) = 0, \dots, y^{(n-1)}(x_0) = 0$, then $y(x) \equiv 0$ on (a, b).

Definition: We define an operator L by L[y] = $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y$. L is a linear operator, since L[cy] = cL[y] and L[u + v] =L[u] + L[v].

Theorem 3. If y_1, y_2 are solutions of the homogeneous equation in an interval (a, b), then for any constant $c_1, c_2, y = c_1y_1 + c_2y_2$ is also a solution in interval (a,b). If y_p is a solution of the non-homogeneous equation and y_h is a solution of the homogeneous equation, then $y = y_p + y_h$ is also a solution of the non-homogeneous equation.

Definition: Functions $\phi_1(x), \ldots, \phi_k(x)$ are linearly dependent on (a, b) if there exists constant c_1, \ldots, c_k not all zero such that $c_1\phi_1(x) + \cdots + c_k\phi_k(x) \equiv 0$ on (a, b). They are linearly independent otherwise. Similar definitions apply to vector valued functions.

Theorem 4. Functions $\phi_i(x)$ are linearly dependent on $(a,b) \iff$ the following vector-valued functions $(\phi_i(x), \phi_i'(x), \dots, \phi_i^{(n-1)}(x))$ are linearly dependent.

The Wronskian of n functions Definition: $\phi_1(x), \ldots, \phi_n(x)$ is defined by $W(\phi_1, \ldots, \phi_n)(x) =$ $\phi_1(x)$... $\phi_n(x)$ $\phi_1^{(n-1)}(x)$... $\phi_n^{(n-1)}(x)$ **Theorem 5.** Let $y_1(x), \ldots, y_n(x)$ be n solutions of the homogeneous equation and let W(x) be their Wronskian. They are linearly dependent on $(a,b) \iff W(x) \equiv 0$ on $(a,b) \iff W(x) = 0$ for some $x \in (a,b)$. They are linearly independent

 $\iff W(x)$ is never zero on (a, b). **Theorem 6.** The Wronskian of n solutions of the homogeneous equation is either identically zero or nowhere zero. n solutions y_1, \ldots, y_n are linearly independent on (a,b) \iff vectors $(y_i(x_0),\ldots,\hat{y_i^{(n-1)}}(x_0))$ are linearly independent for

Theorem 7 (Abel's theorem). Assume y_1, y_2 are solutions to the equation y'' + p(x)y' + q(x)y = 0 on interval [a,b], then their Wronskian satisfies $W(y_1, y_2)(x) = ce^{-\int p(x)dx}$

some $x_0 \in (a.b)$.

Theorem 8. Let $a_i(x)$ and f(x) be continuous on (a,b). The homogeneous equation has n linearly independent solutions on (a,b). Let y_1,\ldots,y_n be nlinearly independent solutions of the homogeneous equation. The general solution is given by y(x) = $c_i y_i(x)$ where c_i are arbitrary constants. Any such linearly independent set of solutions is called a fundamental set of solutions.

Theorem 9. Let y_p be a particular solution of the non-homogeneous equation. The general solution is given by $y = y_p + \sum c_i y_i$, where the latter is the general solution of the associated homogeneous solution.

2.2 Linear equations with constant coefficients

Formulation: y'' + ay' + by = 0 where a, b are con-

Solution: We look for solutions of form $e^{\lambda x}$. $e^{\lambda x}$ is a solution $\iff \lambda^2 + a\lambda + b = 0$. This is the characteristic equation. The roots are characteristic values: $\lambda_1 = \frac{1}{2}(-a + \sqrt{a^2 - 4b}), \lambda_2 = \frac{1}{2}(-a - \sqrt{a^2 - 4b}).$ If $a^2 - 4b > 0$, we have two distinct real characteristic values λ_1, λ_2 , the general solution is given by $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$. If $a^2 - 4b = 0$, we have a repeated real characteristic value λ , the general solution is given by $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$. If $a^2 - 4b < 0$, we have two complex characteristic values $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$. The general solution is given by $y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$ Formulation: $y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = a_n y' + a_n$

0, where a_i are real constants.

Solution: The characteristic equation is $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$. We first find all characteristic values. Let $\lambda_1, \ldots, \lambda_s$ be the distinct eigenvalues and m_1, \dots, m_s the corresponding multiplicity. We have that $e^{\lambda x}$ is a solution. If m > 1, then for any positive integer $1 \le k \le m - 1$, $x^k e^{\lambda x}$ is a solution. If $\lambda = \alpha + i\beta$, then $x^k e^{\alpha x} \cos \beta x$, $x^k e^{\alpha x} \sin \beta x$ are solutions for $0 \le k \le m-1$.

Theorem 10. Let $\lambda_1, \ldots, \lambda_s$ be the distinct eigenvalues for the equation, with multiplicity m_1, \ldots, m_s respectively. Then a fundamental set of solutions is $e^{\lambda_i x}, x e^{\lambda_i x}, \dots, x^{m_i-1} e^{\lambda_i x}$

2.3 Non-homogeneous equation

Formulation: y'' + P(x)y' + Q(x)y = f(x), the associated homogeneous equation is y'' + P(x)y' +Q(x)y = 0. We shall look for a particular solution.

2.3.1 Variation of parameters

Let y_1, y_2 be two linearly independent solutions of the associated homogeneous solution and W(x) their Wronskian. We look for a particular solution of the non-homogeneous equation with the form y_p

By direct substitution and differentiation, we have $y_p'' + P(x)y_p' + Q(x)y_p = (u_1'y_1 + u_2'y_2)' + (u_1'y_1' + u_2'y_2' + u_2'y_$ $u'_2y'_2$) + $P(u'_1y_1 + u'_2y_2)$. Set $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, we solve that $u'_1 = -\frac{y_2}{W}f, u'_2 =$ $\frac{y_1}{W}f$, thus $u_1(x) = -\int_{x_0}^x \frac{y_2(t)}{W(t)}f(t)dt$, $u_2(x) =$

In addition, if z is a known solution of the homogeneous equation. We assume y=vz is a solution, then

we have $v = \int z^{-2} e^{-\int P dx} dx$

2.3.2 Undetermined coefficient

Remark: Only applicable to y'' + ay' + by = f(x), and $f(x) = P_n(x)e^{\alpha x}$ or $f(x) = P_n(x)e^{\alpha x}\cos\beta x$ or $f(x) = P_n(x)e^{\alpha x}\sin\beta x$ where P is a polynomial of

When $f(x) = P_n(x)e^{\alpha x}$, we look for a particular solution of the form $y=Q(x)e^{\alpha x}$, where Q is a polynomial. By substitution we have $Q''+(2\alpha+a)Q'+$ $(\alpha^2 + a\alpha + b)Q = P_n(x)$. If $\alpha^2 + a\alpha + b \neq 0$, we choose $Q = R_n$, a polynomial of degree n, and solve for R_n by comparing coefficients. If $\alpha^2 + a\alpha + b = 0$ but $2\alpha + a \neq 0$, then $Q'' + (2\alpha + a)Q' = P_n$. We choose $Q = xR_n$ and solve for coefficients. If $\alpha^2 + a\alpha + b = 0$ and $2\alpha + a = 0$, we have $Q'' = P_n$, we choose

When $f(x) = P_n(x)e^{\alpha x}\cos\beta x$ or $f(x) = P_n(x)e^{\alpha x}\sin\beta x$. We first look for a solution of $y'' + ay' + by = P_n(x)e^{(\alpha+i\beta)x}$. By previous case, we obtain a complex-valued solution z(x) = u(x) + iv(x), and we have u is a solution of $y'' + ay' + by = P_n(x)e^{\alpha x}\cos\beta x$, and v is a solution of y'' + ay' + by = v $P_n(x)e^{\alpha x}\sin\beta x$. Alternatively, directly try a solution of the form $Q_n(x)e^{\alpha x}\cos\beta x + R_n(x)e^{\alpha x}\sin\beta x$ when $a + i\beta$ is not a root of $\lambda^2 + a\lambda + b = 0$ and $xQ_n(x)e^{\alpha x}\cos\beta x + xR_n(x)e^{\alpha x}\sin\beta x$ otherwise.

Theorem 11. Let y_1, y_2 be particular solutions of the equations $y'' + ay' + by = f_1, y'' + ay' + by = f_2$, then $y_1 + y_2$ is a particular solution of $y'' + ay' + by = f_1$.

2.3.3 Operator method

We define a differential operator L(D)y $\sum_{j=0}^{n} a_j D^j y.$

Formulation: L(D)y = f(x).

Let $y = L(D)^{-1}f$ denote any solution, we have $DD^{-1} = D^{-1}D = D^0$ and $L(D)^{-1}L(D) = L(D)L(D)^{-1} = D^0$.

Theorem 12. More generally, we have

- 1. $D^{-1}f(x) = \int f(x)dx + C$
- 2. $(D-a)^{-1}f(x) = Ce^{ax} + e^{ax} \int e^{-ax}f(x)dx$
- 3. $L(D)(e^{ax}f(x)) = e^{ax}L(D+a)f(x)$
- 4. $L(D)^{-1}(e^{ax}f(x)) = e^{ax}L(D+a)^{-1}f(x)$

To find a particular solution, we can ignore arbitrary

If $L(x) = \prod_{i=1}^n (x-r_i)$, then $y = L(D)^{-1}f = (D-r_1)^{-1}\dots(D-r_n)^{-1}f$, we could either obtain solution by successive integration, or if the roots are all distinct, consider partial fraction $\frac{1}{L(x)} = \sum_{i=1}^{n} \frac{A_i}{x - r_i}$ and thus $y = [A_1(D-r_1)^{-1} + \cdots + A_n(D-r_n)^{-1}]f$ Furthermore, if f is a polynomial, then (1-D)(1+C) $D + D^2 + \dots)f = f$ by power series, thus $(1 - D)^{-1}f = (1 + D + D^2 + \dots)f$. We may formally expand $(D-r)^{-1}$ into power series of D and apply it to f, it is only necessary to expand up to degree of f, since further derivatives evaluate to zero.

Theorem 13. Common power series expansion:

- 1. $(1-D)^{-1}f = (1+D+D^2+\dots)f$
- 2. $(1-D)^{-2}f = (1+2D+3D^2+4D^3+\dots)f$
- 3. $(1-2D^2+D^3)^{-1}f = (1+2D^2-D^3+4D^4-D^4)^{-1}f$ $4D^5 + \dots)f$

3 Second order linear ODE

Formulation: $p_0(x)y'' + p_1(x)y' + p_2(x)y = f(x)$

3.1 Exact

The equation can be written as $(p_0y' - p'_0y)' +$ $(p_1y)' + (p_0'' - p_1' + p_2)y = f(x)$. It is exact if $p_0'' - p_1' + p_2 = 0$. If exact, integrate both sides to get $p_0(x)y' - p_0'(x)y + p_1(x)y = \int f(x)dx + C_1$.

3.2 Integrating factor

If the equation is not exact but becomes exact by multiplying a function v(x), then v is an integrating factor, that is $(p_0v)'' - (p_1v)' + p_2v = 0$. This ing latest, that is $(p_0v) - (p_1v) + p_2v = 0$. This is a differential equation for v and more explicitly $p_0v'' + (2p'_0 - p_1)v' + (p''_0 - p'_1 + p_2)v = 0$. This equation is called the adjoint of the original second order linear ODE. v is an integrating factor of the original equation $\iff v$ is a solution of the adjoint equation. In this case, integrating both sides to get $v(x)p_0(x)y' - (v(x)p_0(x))'y + v(x)p_1(x)y =$ $\int v(x)f(x)dx + C_1$

Theorem 14 (Lagrange's identity). Let $L[y] \equiv p_0(x)y'' + p_1(x)y' + p_2(x)y$, the formal adjoint of L is the differential operator defined by $L^{+}[y] =$ $(p_0(x)y)'' - (p_1(x)y)' + p_2(x)y$, where p_0'', p_1', p_2 are continuous on an interval [a, b], let u, v be continuous ous on [a,b], we have $L[u]v - uL^+[v] = \frac{d}{dx}[P(u,v)],$ where $P(u, v) = up_1v - u(p_0v)' + u'p_0v$.

Theorem 15 (Green's formula). $\int_a^b (L[u]v$ $uL^+[v])dx = P(u,v)(x)|_a^b.$

We define an inner product for continuous real-valued function on [a,b] by $(f,g) = \int_a^b f(x)g(x)dx$. Green's formula becomes $(L[u], v) = (u, L^+[v]) + P(u, v)(x)|_a^b$. Note that if we restrict L and L^+ so that (L[u], v) = $(u, L^+[v])$. In this case, L^+ is the adjoint operator of L, and if further $L^+ = L$, we say that L is self-

For Sturm-Liouville equation, L[y] = (p(x)y')' +q(x)y, L is self-adjoint, then Lagrange's identity reduces to $L[u]v - uL[v] = -\frac{d}{dx}[pW(u,v)]$, and Green's formula reduces to (L[u], v) - (u, L[v]) = $-pW(u,v)(x)|_a^b$.

3.3 Two-point boundary value prob-

Formulation: Solve $y'' + p(x)y' + q(x)y = f(x), x \in$ (a,b) with boundary conditions $a_{11}y(a) + a_{12}y'(a) +$ $b_{11}y(b) + b_{12}y'(b) = d_1, a_{21}y(a) + a_{22}y'(a) + b_{21}y(b) + b_{22}y'(b) = d_2.$ We say the boundary conditions are homogeneous if $d_1 = d_2 = 0$.

If the equation is homogeneous and the boundary conditions are homogeneous, one could verify: If $\phi(x)$ is a non-trivial solution, so is $c\phi(x)$ for any constant c, so there is a one-parameter family of solutions. If ϕ_1, ϕ_2 are two linearly independent solutions, then $c_1\phi_1 + c_2\phi_2$ is also a solution, thus there is a two-parameter family of solutions. Else, the trivial solution is the unique solution. If the equation is nonhomogeneous, it is also possible that the problem has no solution.

3.4 Regular Sturm-Liouville boundary value problem

Formulation: $L[y] = (p(x)y')' + q(x)y, L[y] + \lambda r(x)y = 0, x \in (a, b), a_1y(a) + a_2y'(a) = 0, b_1y(b) + a_2y'(b) + a_2y'(b) = 0, b_1y(b) + a_1y(b) + a_2y'(b) = 0, b_1y(b) + a_1y(b) + a_1y(b)$ $b_2y'(b)=0$. p,p',q,r are continuous on [a,b] and p(x)>0,r(x)>0 on [a,b], and a_1,a_2 are not both zero, b_1, b_2 are not both zero.

Let u, v be functions with continuous second derivatives on [a, b] and satisfy the boundary conditions. It implies that W(u,v)(b) = W(u,v)(a) = 0. By Green's formula, (L[u], v) = (u, L[v]).

The objective is to determine for which values of λ , the equation has non-trivial solutions satisfying the given boundary conditions. The non-trivial solutions are called eigenfunctions, and the corresponding λ an eigenvalue. If all eigenfunctions associated with a particular eigenvalue are just scalar multiples of each other, then the eigenvalue is simple.

Theorem 16. All eigenvalues of the regular Sturm-Liouville boundary value problem are real, simple with real-valued eigenfunctions.

Definition: Two real-valued function f, g defined on [a,b] are orthogonal with respect to a positive weight function r if $\int_a^b f(x)g(x)r(x)dx = 0$.

Theorem 17. Eigenfunctions that correspond to distinct eigenvalues of the regular Sturm-Liouville boundary value problem are orthogonal with repsect

Theorem 18. The eigenvalues of the regular Sturm-Liouville boundary value problem form a countable and increasing sequence with $\lim_{n\to+\infty} \lambda_n = +\infty$

For $\lambda \leq 0$, the problem has only the trivial solution. When $\lambda > 0$, the general solution of the equation is $y = A\cos\sqrt{\lambda}x + B\sin\sqrt{\lambda}x$, the boundary conditions imply that $\lambda = n^2$ with corresponding eigenfunctions $\phi_n(x) = B_n\sin nx$. We can use these functions to form an orthonormal system. For any piecewise continuous function f on [a, b], we can form an orthogo-

Theorem 19. Let $\{\phi_n\}$ be an orthonormal system of eigenfunctions for the regular Sturm-Liouville boundary value problem. Let f be a continuous function on [a,b] such that f' is piecewise continuous on [a,b] and f satisfies the boundary conditions, then $f(x) = \sum_{n=1}^{+\infty} c_n \phi_n(x), x \in [a, b]$, where $c_n = \int_a^b f(x)\phi_n(x)r(x)dx$. The series converges uniformly on [a, b].

3.5 Non-homogeneous regular Sturm-Liouville bondary value problem

Formulation: L[y]=f(x), where f is continuous on [a,b]. Same boundary conditions. We let L[y]=0be the associated homogeneous problem.

Theorem 20. The non-homogeneous problem has a unique solution \iff the associated homogeneous problem has only the trivial solution.

If the associated homogeneous problem has only the trivial solution, we construct a solution of the nonhomogeneous solution. Let y_1, y_2 be nontrivial solutions to the equation L[y] = 0 satisfying only the first and the second boundary condition respectively. By variation of parameters, we construct a particular solution for $L[y] = f \iff y'' + \frac{p'}{p}y + \frac{q}{p}y = \frac{f}{p}$, where $y = u_1 y_1 + u_2 y_2$ and $u_1 = -\int_b^x \frac{y_2(t) f(t)}{W(t) p(t)} dt, u_2 =$ $\int_a^x \frac{y_1(t)f(t)}{W(t)p(t)}dt$. We write $y = \int_a^b G(x,t)f(t)$, where $G(x,t) = \frac{y_1(t)y_2(x)}{W(t)p(t)}, a \le t \le x, \frac{y_1(x)y_2(t)}{W(t)p(t)}, x \le t \le b,$ since y_1, y_2 satisfy L[y] = 0, by Lagrange's identity, W(x)p(x) = C, a constant. G is called the Green's function for the non-homogeneous problem. y is a solution to the non-homogeneous problem.

Theorem 21 (Fredholm alternative). If the homogeneous problem has non-trivial solutions, then the non-homogeneous problem has a solution \iff $\int_a^b f(t)y(t)dt = 0$ for all non-trivial solutions y of the mogeneous problem.

Theorem 22. Any equation $p_0(x)y'' + p_1(x)y' +$ $p_2(x)y = 0$ can be made self-adjoint by multiplying

Definition: If a function has an infinite number of zeros in an interval $[a, \infty)$, we say that the function is oscillatory.

Theorem 23 (Sturm separation theorem). If y_1, y_2 are two linearly independent solutions of y'' +P(x)y' + Q(x)y = 0, then the zeros of these functions are distinct and occur alternatively in the sense that y_1 vanishes exactly once between any two successive zeros of y_2 , and vice versa.

Theorem 24. Suppose one nontrivial solution to the equation above is oscillatory on $[a, \infty)$, then all solutions are oscillatory.

Theorem 25. Let y be a non-trivial solution of the equation above on a closed interval [a, b], then y has at most a finite number of zeros in this interval

y'' + P(x)y' + Q(x)y = 0 can be written as u'' +q(x)u = 0 by y = uv, where $v = e^{-\frac{1}{2}\int Pdx}$ and $q(x) = Q(x) - \frac{1}{4}P(x)^2 - \frac{1}{2}P'(x)$. We call the first standard form and the second normal form of a homogeneous second order linear ODE. Since v(x) > 0, the transformation has no effect on distribution of zeros and leaves unaltered the oscillation behavior.

Theorem 26 (Sturm commparison theorem). Let y_1 be a non-trivial solution to $y'' + q_1(x)y = 0$ and y_2 a non-trivial solution to $y'' + q_2(x)y = 0$, $x \in (a, b)$. Assume $q_2(x) \ge q_1(x)$ on (a, b). If x_1, x_2 are two consecutive zeros of y_1 , then there exists a zero of y_2 in (x_1, x_2) , unless $q_2 = q_1$, in which case y_1, y_2 are linearly dependent.

Theorem 27. Suppose q(x) < 0 on [a, b], if y is a nontrivial solution of y'' + q(x)y = 0, then y has at most one zero.