# Supplementary Information for: Crosslinguistic Word Orders Enable an Efficient Tradeoff between Memory and Surprisal

Michael Hahn, Judith Degen, Richard Futrell

2018



Figure 1: Histogram

{fig:hist-re

### 1 Formal Analysis and Proofs

In this section, we prove the theorem described above.

#### 1.1 Mathematical Assumptions

We first make explicit how we formalize language processing for proving the theorem.

**Ingredient 1: Language as a Stationary Stochastic Process** We represent language as a stochastic process of words ...  $w_{-2}w_{-1}w_0w_1w_2...$ , extending indefinitely both into the past and into the future. The symbols  $w_i$  belong to a common set, representing the words of the language.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Could also be phonemes, sentences, ..., any other kind of unit.



Figure 2: Illustration of (3). As the utterance unfolds, the listener maintains a memory state. After receiving word  $w_t$ , the listener computes their new memory state  $m_t$  based on the previous memory state  $m_{t-1}$  and the new word  $w_t$ .

{fig:listene

The assumption of infinite length is for mathematical convenience and does not affect the substance of our results: As we restrict our attention to the processing of individual sentences, which have finite length, we will actually not make use of long-range and infinite contexts.

We make the assumption that this process is *stationary*. Formally, this means that the conditional distribution  $P(w_t|w_{< t})$  does not depend on t, it only depends on the actual sequence  $w_{< t}$ . Informally, this says that the process has no 'internal clock', and that the statistical rules of the language do not change at the timescale we are interested in. In reality, the statistical rules of language do change: They change as language changes over generations, and they also change between different situations – e.g., depending on the interlocutor at a given point in time. Given that we are interested in memory needs in the processing of *individual sentences*, at a timescale of seconds or minutes, stationarity seems to be a reasonable assumption to make.

**Ingredient 2: Flow of Information** We now analyze memory from the perspective of the listener, who needs to maintain information about the past to predict the future. As the speaker's utterance unfolds, the listener maintains a memory state  $m_t$ .

There are no assumptions about the memory architecture and the nature of its computations. We only make a basic assumption about the flow of information (Figure 2): At a given point in time, the listener's memory state  $m_t$  is determined by the last word  $w_t$ , and the prior memory state  $m_{t-1}$ . As a consequence,  $m_t$  contains no information about the process beyond what is contained in the last word observed  $w_{t-1}$  and in the memory state before that word was observed  $m_{t-1}$ . This is formalized as a statement about conditional probabilities:

$$p(m_1|(w_t)_{t\in\mathbb{Z}}, m_0) = p(m_1|m_0, w_1)$$
(1)

This says that  $m_1$  contains no information about the utterances beyond what is contained in  $m_0$  and  $w_1$ . As a consequence, the listener has no knowledge of the speaker's state beyond the information provided in their prior communication. This is a simplification, as the listener could obtain information about the speaker from other sources, such as their common environment (weather, ...). (For the study of memory in sentence processing, this seems fair. Discuss this more.)

#### 1.2 Proof of the Theorem

We restate the theorem:

{prop:subopt

**Theorem 1.** Let T be any positive integer  $(T \in \{1,2,3,...\})$ , and consider a listener using at most

$$\sum_{t=1}^{T} t I_t \tag{2}$$

bits of memory on average. Then this listener will incur surprisal at least

$$H[w_t|w_{< t}] + \sum_{t>T} I_t$$

on average.

We formalize a language as a stationary stochastic process ...  $w_{-2}w_{-1}w_0w_1w_2...$ , extending indefinitely both into the past and into the future. The symbols  $w_i$  belong to a common set, representing the words of the language.<sup>2</sup> We denote the listener's memory state at time t, after hearing  $w_{< t} = ... w_{t-2}w_{t-1}$  by  $m_t$ . As described above, we assume

$$p(m_{t+1}|(w_{t'})_{t'\in\mathbb{Z}}, m_t) = p(m_{t+1}|m_t, w_t)$$
(3)

that is,  $m_{t+1}$  contains no information about the utterances beyond what is contained in  $m_t$  and  $w_t$ . As a consequence, the listener has no knowledge of the speaker's state beyond the information provided in their prior communication.

The average number of bits required to encode this state is  $H[m_t]$ , which by assumption is at most  $\sum_{t=1}^{T} tI_t$ . As the listener's predictions are made on the basis of her memory state, her average surprisal is at least  $H[w_t|m_t]$ . The difference between the listener's surprisal and optimal surprisal is thus at least  $H[w_t|m_t] - H[w_t|w_{< t}]$ . By the assumption of stationarity, we can, for any positive integer T, rewrite this expression as

$$H[w_t|m_t] - H[w_t|w_{< t}] = \frac{1}{T} \sum_{t'=1}^{T} (H[w_{t'}|m_{t'}] - H[w_{t'}|w_{< t'}])$$
(4)

We first show a lemma:

**Lemma 2.** For any positive integer t, the following inequality holds:

$$H[w_t|m_t] \ge H[w_t|w_{1...t-1}, m_1] \tag{5}$$

Proof of the Lemma. By Bayes' Theorem

$$p(w_t|m_0, m_1, w_{0...t-1}) = \frac{p(m_1|m_0, w_{0...t})}{p(m_1|m_0, w_{0...t-1})} \cdot p(w_t|m_0, w_{0...t-1})$$

By Equation 3, the quotient on the RHS is equal to 1, so

$$p(w_t|m_0, m_1, w_{0...t-1}) = p(w_t|m_0, w_{0...t-1})$$

So we have a Markov chain

$$(w_t) \to (m_0, w_{0-t-1}) \to (m_1, w_{1-t-1})$$
 (6)

Thus, by the Data Processing Inequality,

$$H[w_t|w_{1...t-1},m_1] \ge H[w_t|w_{0...t-1},m_0] \tag{7}$$

Finally, iteratively applying this inequality, we get:

$$H[w_t|m_t] \ge H[w_t|w_{t-1}, m_{t-1}] \ge H[w_t|w_{t-2,t-1}, m_{t-2}] \ge \dots \ge H[w_t|w_{1,t-1}, m_1]$$

<sup>&</sup>lt;sup>2</sup>Could also be phonemes, sentences, ..., any other kind of unit.

Plugging this inequality into Equation 4 above:

$$\begin{split} \mathbf{H}[w_{t}|m_{t}] - \mathbf{H}[w_{t}|w_{< t}] &\geq \frac{1}{T} \sum_{t=1}^{T} (\mathbf{H}[w_{t}|w_{1...t-1}, m_{1}] - \mathbf{H}[w_{t}|w_{1...t-1}, w_{\leq 0}]) \\ &= \frac{1}{T} (\mathbf{H}[w_{1...T}|m_{1}] - \mathbf{H}[w_{1...T}|w_{\leq 0}]) \\ &= \frac{1}{T} (I[w_{1...T}|w_{\leq 0}] - I[w_{1...T}|m_{1}]) \end{split}$$

The first term  $I[w_{1...T}|w_{<0}]$  can be rewritten in terms of  $I_t$ :

$$I[w_{1...T}|w_{\leq 0}] = \sum_{i=1}^{T} \sum_{i=-1}^{-\infty} I[w_i, w_j|w_{j+1}...w_{i-1}] = \sum_{t=1}^{T} tI_t + T \sum_{t>T} I_t$$

Therefore

$$H[w_t|m_t] - H[w_t|w_{< t}] \ge \frac{1}{T} \left( \sum_{t=1}^T tI_t + T \sum_{t>T} I_t - I[w_{1...T}|m_1] \right)$$

 $I[w_{1...T}|m_1]$  is at most  $H[m_1]$ , which is at most  $\sum_{t=1}^{T} tI_t$  by assumption. Thus, the expression above is bounded by

$$H[w_t|m_t] - H[w_t|w_{< t}] \ge \frac{1}{T} \left( \sum_{t=1}^{T} t I_t + T \sum_{t>T} I_t - \sum_{t=1}^{T} t I_t \right)$$

$$= \sum_{t>T} I_t$$

Rearranging shows that the listener's surprisal is at least  $H[w_t|m_t] \ge H[w_t|w_{< t}] + \sum_{t>T} I_t$ , as claimed.

#### 1.3 Locality in a model with Memory Retrieval

Here we show that our information-theoretic analysis is compatible with models placing the main bottleneck in the difficulty of retrieval. We describe an information-theoretic formalization of a model that has both a limited WM and an unlimited STM.

We consider a model that maintains both a small working memory  $m_t$  and an unlimited short-term memory  $s_t$ .

Predictions are made based on working memory  $m_t$ , incurring surprisal  $H[w_t|m_t]$ . In each time step, there is some amount of communication between  $m_t$  and  $s_t$ , corresponding to retrieval operations. We model this using a variable  $r_t$  representing the information that is retrieved from  $s_t$ .

This is instantiated by ACT-R. We can explicitly explain how this covers the McElree ideas and the Lewis and Vasishth ACT-R model.

This model has two bottlenecks: The working memory capacity, which we model as  $H[m_t]$ , and the amount of information that is added through retrieval, modeled as  $H[r_t|m_t]$ .

**Theorem 3.** Assume the average working memory  $H[m_t]$  is bounded as  $H[L_t] \leq \sum_{t=1}^{T} tI_t$ , and the average amount of retrieval is bounded as  $H[R_t] \leq \sum_{t=T+1}^{S} I_t$  (per word). Then  $H[w_t|m_t] \geq H[w_t|x_{< t}] + \sum_{t>S} I_t$ .

*Proof.* The negative surprisal gap is 
$$\leq \frac{1}{T}(I[X_1...X_T|(M_0,R_1,...,R_T)] - \sum_{t=1}^T tI_t - T\sum_{t>T}I_t) \leq \frac{1}{T}(T\cdot H[R_t] - T\sum_{t>T}I_t) = H[R_t] - \sum_{t>T}I_t$$

We can also think of this as a multi-objective optimization, aiming to minimize  $\lambda_1 WM + \lambda_2 Retrieval$  to achieve a given surprisal level.

If  $\frac{\lambda_2}{\lambda_1} \to \infty$  (retrievals get more expensive), recover previous model.

If  $\frac{\lambda_2}{\lambda_1} \to 0$  (retrievals get cheaper), locality effect gets weaker, and disappears in the limit<sup>3</sup> Objective

$$\min_{T} \lambda_1 \sum_{t=1}^{T} t I_t + \lambda_2 \sum_{t=T+1}^{S} I_t$$

has solution  $T \approx \frac{\lambda_2}{\lambda_1}$ .<sup>4</sup>

Consequence: As long as retrievals are more expensive than keeping the same amount in WM, locality is predicted.

### 2 Corpus Size per Language

| Language  | Training | Held-Out | Language   | Training | Held-Out |
|-----------|----------|----------|------------|----------|----------|
| Afrikaans | 1,315    | 194      | Indonesian | 4,477    | 559      |
| Amharic   | 974      | 100      | Italian    | 17,427   | 1,070    |
| Arabic    | 21,864   | 2,895    | Japanese   | 7,164    | 511      |
| Armenian  | 514      | 50       | Kazakh     | 947      | 100      |
| Bambara   | 926      | 100      | Korean     | 27,410   | 3,016    |
| Basque    | 5,396    | 1,798    | Kurmanji   | 634      | 100      |
| Breton    | 788      | 100      | Latvian    | 4,124    | 989      |
| Bulgarian | 8,907    | 1,115    | Maltese    | 1,123    | 433      |
| Buryat    | 808      | 100      | Naija      | 848      | 100      |
| Cantonese | 550      | 100      | North Sami | 2,257    | 865      |
| Catalan   | 13,123   | 1,709    | Norwegian  | 29,870   | 4,639    |
| Chinese   | 3,997    | 500      | Persian    | 4,798    | 599      |
| Croatian  | 7,689    | 600      | Polish     | 6,100    | 1,027    |
| Czech     | 102,993  | 11,311   | Portuguese | 17,995   | 1,770    |
| Danish    | 4,383    | 564      | Romanian   | 8,664    | 752      |
| Dutch     | 18,310   | 1,518    | Russian    | 52,664   | 7,163    |
| English   | 17,062   | 3,070    | Serbian    | 2,935    | 465      |
| Erzya     | 1,450    | 100      | Slovak     | 8,483    | 1,060    |
| Estonian  | 6,959    | 855      | Slovenian  | 7,532    | 1,817    |
| Faroese   | 1,108    | 100      | Spanish    | 28,492   | 3,054    |
| Finnish   | 27,198   | 3,239    | Swedish    | 7,041    | 1,416    |
| French    | 32,347   | 3,232    | Thai       | 900      | 100      |

 $<sup>^{3}</sup>$ (Of course, even in this limit, there might be additional factors that may still favor locality in a specific implementation of memory – e.g., in ACT-R, decay and interference are less problematic if there is locality.)

<sup>&</sup>lt;sup>4</sup>Can do simple proof using the continuous-*T*-version.

| German    | 13,814 | 799   | Turkish    | 3,685 | 975 |
|-----------|--------|-------|------------|-------|-----|
| Greek     | 1,662  | 403   | Ukrainian  | 4,506 | 577 |
| Hebrew    | 5,241  | 484   | Urdu       | 4,043 | 552 |
| Hindi     | 13,304 | 1,659 | Uyghur     | 1,656 | 900 |
| Hungarian | 910    | 441   | Vietnamese | 1,400 | 800 |

Table 2: Languages, with the number of training and held-out sentences available.

{tab:corpora

# 3 Samples Drawn per Language

| Language  | Base. | Real | Language   | Base. | Real |
|-----------|-------|------|------------|-------|------|
| Afrikaans | 13    | 10   | Indonesian | 11    | 11   |
| Amharic   | 137   | 10   | Italian    | 10    | 10   |
| Arabic    | 11    | 10   | Japanese   | 25    | 15   |
| Armenian  | 140   | 76   | Kazakh     | 11    | 10   |
| Bambara   | 25    | 29   | Korean     | 11    | 10   |
| Basque    | 15    | 10   | Kurmanji   | 338   | 61   |
| Breton    | 35    | 14   | Latvian    | 308   | 178  |
| Bulgarian | 14    | 10   | Maltese    | 30    | 24   |
| Buryat    | 26    | 18   | Naija      | 214   | 10   |
| Cantonese | 306   | 32   | North Sami | 335   | 194  |
| Catalan   | 11    | 10   | Norwegian  | 12    | 10   |
| Chinese   | 21    | 10   | Persian    | 25    | 12   |
| Croatian  | 30    | 17   | Polish     | 309   | 35   |
| Czech     | 18    | 10   | Portuguese | 15    | 55   |
| Danish    | 33    | 17   | Romanian   | 10    | 10   |
| Dutch     | 27    | 10   | Russian    | 20    | 10   |
| English   | 13    | 11   | Serbian    | 26    | 11   |
| Erzya     | 846   | 167  | Slovak     | 303   | 27   |
| Estonian  | 347   | 101  | Slovenian  | 297   | 80   |
| Faroese   | 27    | 13   | Spanish    | 14    | 10   |
| Finnish   | 83    | 16   | Swedish    | 31    | 14   |
| French    | 14    | 11   | Thai       | 45    | 19   |
| German    | 19    | 13   | Turkish    | 13    | 10   |
| Greek     | 16    | 10   | Ukrainian  | 28    | 18   |
| Hebrew    | 11    | 10   | Urdu       | 17    | 10   |
| Hindi     | 11    | 10   | Uyghur     | 326   | 175  |
| Hungarian | 220   | 109  | Vietnamese | 303   | 12   |

Figure 3: Samples drawn per language according to the precision-dependent stopping criterion.

{tab:samples

| Language  | Mean | Lower | Upper | Language   | Mean | Lower | Upper |
|-----------|------|-------|-------|------------|------|-------|-------|
| Afrikaans | 1.0  | 1.0   | 1.0   | Indonesian | 1.0  | 1.0   | 1.0   |
| Amharic   | 1.0  | 1.0   | 1.0   | Italian    | 1.0  | 1.0   | 1.0   |
| Arabic    | 1.0  | 1.0   | 1.0   | Japanese   | 1.0  | 1.0   | 1.0   |
| Armenian  | 0.92 | 0.87  | 0.97  | Kazakh     | 1.0  | 1.0   | 1.0   |
| Bambara   | 1.0  | 1.0   | 1.0   | Korean     | 1.0  | 1.0   | 1.0   |
| Basque    | 1.0  | 1.0   | 1.0   | Kurmanji   | 0.93 | 0.88  | 0.98  |
| Breton    | 1.0  | 1.0   | 1.0   | Latvian    | 0.49 | 0.4   | 0.57  |
| Bulgarian | 1.0  | 1.0   | 1.0   | Maltese    | 1.0  | 1.0   | 1.0   |
| Buryat    | 1.0  | 1.0   | 1.0   | Naija      | 1.0  | 0.99  | 1.0   |
| Cantonese | 0.96 | 0.86  | 1.0   | North Sami | 0.37 | 0.3   | 0.44  |
| Catalan   | 1.0  | 1.0   | 1.0   | Norwegian  | 1.0  | 1.0   | 1.0   |
| Chinese   | 1.0  | 1.0   | 1.0   | Persian    | 1.0  | 1.0   | 1.0   |
| Croatian  | 1.0  | 1.0   | 1.0   | Polish     | 0.1  | 0.04  | 0.17  |
| Czech     | 1.0  | 1.0   | 1.0   | Portuguese | 1.0  | 1.0   | 1.0   |
| Danish    | 1.0  | 1.0   | 1.0   | Romanian   | 1.0  | 1.0   | 1.0   |
| Dutch     | 1.0  | 1.0   | 1.0   | Russian    | 1.0  | 1.0   | 1.0   |
| English   | 1.0  | 1.0   | 1.0   | Serbian    | 1.0  | 1.0   | 1.0   |
| Erzya     | 0.99 | 0.98  | 1.0   | Slovak     | 0.07 | 0.03  | 0.12  |
| Estonian  | 0.8  | 0.72  | 0.86  | Slovenian  | 0.82 | 0.77  | 0.88  |
| Faroese   | 1.0  | 1.0   | 1.0   | Spanish    | 1.0  | 1.0   | 1.0   |
| Finnish   | 1.0  | 1.0   | 1.0   | Swedish    | 1.0  | 1.0   | 1.0   |
| French    | 1.0  | 1.0   | 1.0   | Thai       | 1.0  | 1.0   | 1.0   |
| German    | 1.0  | 0.91  | 1.0   | Turkish    | 1.0  | 1.0   | 1.0   |
| Greek     | 1.0  | 1.0   | 1.0   | Ukrainian  | 1.0  | 1.0   | 1.0   |
| Hebrew    | 1.0  | 1.0   | 1.0   | Urdu       | 1.0  | 1.0   | 1.0   |
| Hindi     | 1.0  | 1.0   | 1.0   | Uyghur     | 0.65 | 0.57  | 0.73  |
| Hungarian | 0.87 | 0.8   | 0.93  | Vietnamese | 1.0  | 0.98  | 1.0   |

Figure 4: Bootstrapped estimates for *G*.

{tab:boot-g}

# 4 Detailed Results per Language

## 4.1 Median Surprisal per Memory Budget

| 4 0 11    |         |        |          |
|-----------|---------|--------|----------|
| Afrikaans | Amharic | Arabic | Armenian |
|           |         |        |          |



Figure 5: Medians: For each memory budget, we provide the median surprisal for real and random languages. Solid lines indicate sample medians, dashed lines indicate 95 % confidence intervals for the population median, dotted lines indicate empirical quantiles  $(10\%, 20\%, \dots, 80\%, 90\%)$ . Green: Random baselines; blue: real language; red: maximum-likelihood grammars fit to real orderings.

{tab:medians



Figure 6: Medians (cont.)

Kurmanji Latvian Maltese Naija



Figure 7: Medians (cont.)

Thai Turkish Ukrainian Urdu



Figure 8: Medians (cont.)

# 4.2 Surprisal at Maximum Memory



Figure 9: Histograms: Surprisal, at maximum memory.

{tab:slice-h



Figure 10: Medians (cont.)



Figure 11: Medians (cont.)



Figure 12: Medians (cont.)

## 4.3 Samples Drawn (Experiment 3)

| Language  | Base. | MLE | Language   | Base. | MLE |
|-----------|-------|-----|------------|-------|-----|
| Afrikaans | 13    | 10  | Indonesian | 11    | 10  |
| Amharic   | 137   | 71  | Italian    | 10    | 10  |
| Arabic    | 11    | 10  | Japanese   | 25    | 10  |
| Armenian  | 140   | 17  | Kazakh     | 11    | 10  |
| Bambara   | 25    | 10  | Korean     | 11    | 10  |
| Basque    | 15    | 10  | Kurmanji   | 338   | 101 |
| Breton    | 35    | 10  | Latvian    | 308   | 132 |
| Bulgarian | 14    | 10  | Maltese    | 30    | 10  |
| Buryat    | 26    | 10  | Naija      | 214   | 93  |
| Cantonese | 306   | 135 | North Sami | 335   | 101 |
| Catalan   | 11    | 10  | Norwegian  | 12    | 10  |
| Chinese   | 21    | 10  | Persian    | 25    | 10  |
| Croatian  | 30    | 10  | Polish     | 309   | 131 |
| Czech     | 18    | 12  | Portuguese | 15    | 99  |
| Danish    | 33    | 10  | Romanian   | 10    | 10  |
| Dutch     | 27    | 10  | Russian    | 20    | 13  |
| English   | 13    | 10  | Serbian    | 26    | 11  |
| Erzya     | 846   | 101 | Slovak     | 303   | 138 |
| Estonian  | 347   | 10  | Slovenian  | 297   | 12  |
| Faroese   | 27    | 10  | Spanish    | 14    | 10  |
| Finnish   | 83    | 54  | Swedish    | 31    | 10  |
| French    | 14    | 12  | Thai       | 45    | 10  |
| German    | 19    | 10  | Turkish    | 13    | 10  |
| Greek     | 16    | 10  | Ukrainian  | 28    | 10  |
| Hebrew    | 11    | 10  | Urdu       | 17    | 10  |
| Hindi     | 11    | 10  | Uyghur     | 326   | 132 |
| Hungarian | 220   | 35  | Vietnamese | 303   | 132 |

Figure 13: Experiment 3: Samples drawn per language according to the precision-dependent stopping criterion.

{tab:samples

### 4.4 Medians (Experiment 3)



Figure 14: Experiment 3. Medians: For each memory budget, we provide the median surprisal for real and random languages. Solid lines indicate sample medians, dashed lines indicate 95 % confidence intervals for the population median. Green: Random baselines; blue: real language; red: maximum-likelihood grammars fit to real orderings.

{tab:medians



Figure 15: Medians (cont.)



Figure 16: Medians (cont.)



Figure 17: Medians (cont.)



Figure 18: Median Differences between Real and Baseline: For each memory budget, we provide the difference in median surprisal between real languages and random baselines; for real orders (blue) and maximum likelihood grammars (red). Lower values indicate lower surprisal compared to baselines. Solid lines indicate sample means. Dashed lines indicate 95 % confidence intervals.

{tab:median\_



Figure 19: Median Differences (Part 2)



Figure 20: Median Differences (Part 3)



Figure 21: Median Differences (Part 4)



Figure 22: Quantiles: At a given memory budget, what percentage of the baselines results in higher listener surprisal than the real language? Solid curves represent sample means, dashed lines represent 95 % confidence bounds; dotted lines represent 99.9 % confidence bounds. At five evenly spaced memory levels, we provide a p-value for the null hypothesis that the actual population mean is 0.5 or less. Confidence bounds and p-values are obtained using an exact nonparametric method (see text).



Figure 23: Quantiles (part 2)



Figure 24: Quantiles (part 3)

#### 5 Details for Neural Network Models

### 6 N-Gram Models

We use a version of Kneser-Ney Smoothing. For a sequence  $w_1 \dots w_k$ ,  $N(w_{1...k})$  is the number of times  $w_{1...k}$  occurs in the training set. The unigram probabilities are estimated as

$$p_1(w_t) := \frac{N(w_t) + \delta}{|Train| + |V| \cdot \delta}$$
(8)

where  $\delta \in \mathbb{R}_+$  is a hyperparameter. Here |Train| is the number of tokens in the training set, |V| is the number of types occurring in train or held-out data. Higher-order probabilities  $p_t(w_t|w_{0...t-1})$  are estimated recur-



Table 9: Medians (estimated using n-gram models): For each memory budget, we provide the median surprisal for real and random languages. Solid lines indicate sample medians for ngrams, dashed lines indicate 95 % confidence intervals for the population median. Green: Random baselines; blue: real language; red: maximum-likelihood grammars fit to real orderings.

{tab:medians



Table 10: Medians (cont.)



Table 11: Medians (cont.)



Table 12: Medians (cont.)

sively as follows. Let  $\gamma > 0$  be a hyperparameter. If  $N(w_{0...t-1}) < \gamma$ , set  $p_t(w_t|w_{0...t-1}) := p_{t-1}(w_t|w_{1...t-1})$ . Otherwise, we interpolate between n-th order and lower-order estimates:

$$p_t(w_t|w_{0...t-1}) := \frac{\max(N(w_{0...t}) - \alpha, 0.0) + \alpha \cdot \#\{w : N(w_{0...t-1}w) > 0\} \cdot p_{t-1}(w_t|w_{1...t-1})}{N(w_{0...t-1})}$$
(9)

where  $\alpha \in [0,1]$  is also a hyperparameter.

Hyperparameters  $\alpha, \gamma, \delta$  are tuned with the same strategy as for the neural network models.



Table 13: Quantiles: At a given memory budget, what percentage of the baselines results in higher listener surprisal than the real language? Solid curves represent sample means, dashed lines represent 95 % confidence bounds; dotted lines represent 99.9 % confidence bounds. At five evenly spaced memory levels, we provide a p-value for the null hypothesis that the actual population mean is 0.5 or less. Confidence bounds and p-values are obtained using an exact nonparametric method (see text).

{tab:quantil



Table 14: Quantiles (part 2)



Table 15: Quantiles (part 3)