Ile razy trzynastego przypada w piątek? O zadaniu 2 z listy 3

Antoni Kościelski

1 Pierwsze spostrzeżenia

Ponumerujmy dni tygodnia. Poniedziałek ma numer 1, wtorek -2, sobota -6. Łatwo domyślić się jakie numery mają pozostałe dni robocze. Kłopot jest z niedzielą. Powinna być siódmym dniem tygodnia, ale umówmy się, że ma numer 0. Do numerów dni będziemy dodawać jakieś liczby. Będzie to jednak dodawanie modulo 7, które będziemy oznaczać symbolem $+_7$.

Będziemy rozważać funkcję dt, która dacie i numerowi roku przyporządkowuje numer dnia tygodnia przypadający w wybranym dniu roku będącego argumentem. Jeżeli data jest ustalona, będziemy ją pomijać w zapisie. Tak więc, jeżeli D oznacza 23 marca, to

$$dt_D(2021) = dt_{23marca}(2021) = dt(2021) = 2.$$

Nie definiujemy funkcji dt_D dla daty 29 lutego.

Definicja funkcji dt zależy oczywiście od numeracji lat i zasad tworzenia kalendarza. Dla uproszczenia, przez chwilę będziemy zakładać, że lata przestępne występują regularnie co 4 lata, ewentualnie ograniczamy nasze rozważania do okresu, w którym podany warunek jest spełniony. Wtedy funkcja dt spełnia następujący, łatwy do sprawdzenia warunek rekurencyjny:

$$dt(n+1) = \left\{ \begin{array}{ll} dt(n) +_7 2 & \text{gdy } n \equiv 0 \ \mathbf{mod} \ 4 \ \text{i data } D \ \text{przypada przed 29 lutego}, \\ dt(n) +_7 2 & \text{gdy } n \equiv 3 \ \mathbf{mod} \ 4 \ \text{i data } D \ \text{przypada po 29 lutego}, \\ dt(n) +_7 1 & \text{w pozostałych przypadkach.} \end{array} \right.$$

Wynika z niego przez rozważenie przypadków, że

$$dt(n+4) = dt(n) +_7 5$$

dla wszystkich n, a także

$$dt(n+28) = dt(n) + 35 = dt(n).$$

Zajmijmy się teraz ciągiem

$$dt(n), dt(n+1), dt(n+2), \ldots, dt(n+27).$$

Biorac co czwarty element tego ciagu rozbijamy go na zbiory

$$X_i = \{dt(n+i+4k) \mid k = 0, 1, \dots, 6\}$$

dla i=0,1,2 i 3. Są to zbiory postaci $\{a+5k \mod 7 \mid k=0,1,\ldots,6\}$ i wszystkie są siedmioelementowe. Wobec tego, w rozważanym ciągu każda liczba naturalna < 7 występuje dokładnie 4 razy. Czyli w każdym okresie 28 lat, w którym lata przestępne pojawiają się regularnie, data D przypada w ustalony dzień tygodnia dokładnie 4 razy.

2 Dokładniejsza formalizacja sytuacji

Niech teraz $nr_D(n)$ oznacza numer dnia o dacie D w roku n, czyli liczbę dni w roku n o dacie wcześniejszej niż D. Mamy więc $nr_{1stucznia}(n) = 0$.

Chcielibyśmy, aby zachodził wzór

$$nr_D(m) - nr_{D'}(m) = nr_D(n) - nr_{D'}(n),$$
 (1)

który mówi, że między datami D i D' w latach m i n upływa tyle samo dni. Niestety, nie jest on prawdziwy, a to przez 29 lutego. Zachodzi jednak w dwóch przypadkach: gdy lata m i n są tego samego rodzaju (przestępne lub nie), oraz gdy daty D i D' są tego samego rodzaju, a więc albo gdy obie daty są z początku roku (z przed 29 lutego), albo z końca roku (po 29 lutego). Datę 29 lutego będziemy ignorować, nie będzie dla nas normalną datą, ale musimy uwzględnić jej istnienie. Powinniśmy w ogóle unikać dat z 29 dniem miesiąca.

W dalszych rozważaniach zwykle zakładamy, że zajmujemy datami tego samego rodzaju, i tym samym, że zachodzi wzór (1). Można mu nadać postać

$$nr_D(m) - nr_D(n) = nr_{D'}(m) - nr_{D'}(n).$$
 (2)

Dni tygodnia zmieniają się cyklicznie. Mamy więc następujący wzór

$$dt_D(n) = nr_D(n) +_7 dt_{1stycznia}(n)$$

(operacje związane z numerami dni tygodnia wykonujemy modulo 7, wynik powinien być < 7). Stąd, dla dat tego samego rodzaju wzorowi (2) można nadać postać

$$dt_D(m) -_7 dt_D(n) = dt_{D'}(m) -_7 dt_{D'}(n).$$
(3)

Wzór (3) stwierdza, że wartość

$$p(m,n) = dt_D(n) -_7 dt_D(m)$$

(m < n) zależy od rodzaju D, ale nie zależy od samej daty i jest taka sama dla dat tego samego rodzaju. Będziemy nazywać ją przesunięciem.

Przesunięcia spełniają oczywistą równość

$$p(m, n) = p(m, k) +_{7} p(k, n)$$

(m < k < n). Łatwo też sprawdzić, że dla dat z początku roku mamy

$$p(m, m+1) = \begin{cases} 2 & \text{jeżeli rok } m \text{ jest przestępny} \\ 1 & \text{w przeciwnym przypadku,} \end{cases}$$

a dla dat końcowych -

$$p(m,m+1) = \left\{ \begin{array}{ll} 2 & \text{jeżeli rok } m+1 \text{ jest przestępny} \\ 1 & \text{w przeciwnym przypadku.} \end{array} \right.$$

Wzory te wymagają założenia, że żadne dwa kolejne lata nie są przestępne.

Będzie jeszcze potrzebne pojęcie okresu. Pojęcie to możemy formalizować jako skończony przedział [m,n) w zbiorze liczb naturalnych (lepiej: prawostronnie otwarty, choć to ma niewielkie znaczenie), ale chodzi nam o okres czasu, lata od roku o numerze m do roku poprzedzającego rok n.

Dla ustalonej daty D będziemy rozważać tablicę indeksowaną liczbami < 7 (lub wektor o siedmiu współrzędnych) $L_D(okres)$ (L(okres) dla ustalonego D), której i-ty element jest dany wzorem

$$L_D(okres)[i] = liczba\ elementow\ zbioru\ \{k \in okres: dt_D(k) = i\}.$$

Tak więc na przykład data D w rozważanym okresie okres przypada $L_D(okres)[3]$ razy w środę. Znowu mamy oczywiste wzory

$$L([m,n))[i] = L([m,k))[i] + L([k,n))[i]$$
(4)

(w tym wzorze dodajemy liczby naturalne) oraz

$$L([m, n)) = L([m, k)) + L([k, n))$$

(teraz dodajemy wektory).

Okresy $[m_1, n_1)$ i $[m_2, n_2)$ nazywamy analogicznymi, jeżeli $m_1 - m_2 = n_1 - m_2$ oraz każdy rok $k \in [m_1, n_1)$ jest przestępny wtedy i tylko wtedy, gdy przestępnym jest rok $k - m_1 + m_2$.

Przyjmijmy, że $m_1 < m_2$. Dla analogicznych okresów $[m_1, n_1)$ i $[m_2, n_2)$ oraz $j < n_1 - m_1$ mamy $p(m_1, m_1 + j) = p(m_2, m_2 + j)$. Można to łatwo dowieść przez indukcję korzystając z przytoczonych własności przesunięcia p. Zachodzi też równość

$$p(m_1, m_1 + j) +_7 p(m_1 + j, m_2 + j) = p(m_1, m_2 + j) = p(m_1, m_2) +_7 p(m_2, m_2 + j).$$

Stąd dla $j < n_1 - m_1$ otrzymujemy, że

$$p(m_1 + j, m_2 + j) = p(m_1, m_2 + j) -_{7} p(m_1, m_1 + j) = p(m_1, m_2).$$

Ta równość z kolei pozwala dowieść najważniejszy wzór dla analogicznych okresów $[m_1, n_1)$ i $[m_2, n_2)$:

$$L([m_2, n_2))[i] =$$

$$= |\{k \in [m_2, n_2) : dt(k) = i\}| = |\{j < n_1 - m_1 : dt(m_2 + j) = i\}| =$$

$$= | \{ j < n_1 - m_1 : dt(m_1 + j) +_7 p(m_1 + j, m_2 + j) = i \} | =$$

=
$$|\{j < n_1 - m_1 : dt(m_1 + j) = i -_7 p(m_1, m_2)\}| = L([m_1, n_1))[i -_7 p(m_1, m_2)].$$

Wzór ten stwierdza, że mając tablicę L(okres) wyliczenie takiej tablicy dla analogicznego okresu wymaga stosownego przesunięcia zawartości L(okres). Dowiedliśmy więc, że dla analogicznych okresów mamy

$$L([m_2, n_2))[i] = L([m_1, n_1))[i -_7 p(m_1, m_2)].$$
(5)

3 Obliczenia

3.1 Okresy czteroletnie

Dla krótkich okresów wyliczenie odpowiednich tablic i przesunięć nie wymaga żadnej teorii, choć można się nią posłużyć. Niżej są przedstawione tablice L_D dla pojedyńczej daty D będącej niedzielą w roku n oraz potrzebne przesunięcia

p = p(n, n+4) w czterech przypadkach. Rozważamy dwa rodzaje okresów czteroletnich: złożone z trzech zwykłych lat, po których jest rok przestępny, oraz złożone z czterch zwykłych lat. Obliczenia zależą też od rodzaju daty: daty mogą być z początku roku (sprzed 29 lutego) lub z końca roku.

okres	data	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p
3 zwykłe i przestępny	D < 29.02	1	1	1	1	0	0	0	5
3 zwykłe i przestępny	D > 29.02	1	1	1	0	1	0	0	5
4 zwykłe	D < 29.02	1	1	1	1	0	0	0	4
4 zwykłe	D > 29.02	1	1	1	1	0	0	0	4

3.2 Okres dwunastoletni

Teraz będziemy zajmować się tylko okresami, które składają się trzech kolejnych okresów złożonych z trzech lat zwykłych i z roku przestępnego. Cały czas obowiązuje założenie, że w pierwszym roku okresu wybrana data przypada w niedzielę.

Najpierw zajmujemy się datami z początku roku. Obliczenia są oparte o wzory (5) i (4). Wzór (5) każe odpowiednio przesuwać tablicę L. Wytłuszczone cyfry pokazują, jak jest przesuwana zawartość pierwszego elementu tablicy. Wzór (4) każe potem sumować kolumny.

[po,	ko)	$dt_D(po)$	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p(po, ko)
\overline{n}	n+4	0	1	1	1	1	0	0	0	5
n+4	n+8	5	1	1	0	0	0	1	1	3
n+8	n + 12	3	0	0	0	1	1	1	1	1
\overline{n}	n + 12		2	2	1	2	1	2	2	1

Dalej mamy to same obliczenia dla dat z drugiej części roku.

[po,	ko)	$dt_D(po)$	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p(po, ko)
\overline{n}	n+4	0	1	1	1	0	1	0	0	5
n+4	n+8	5	1	0	1	0	0	1	1	3
n+8	n + 12	3	1	0	0	1	1	1	0	1
\overline{n}	n + 12		3	1	2	1	2	2	1	1

3.3 Okres szesnastoletni

Teraz zajmiemy się okresami szesnastu lat pojawiającymi się pod koniec wieku, które kończą się czterema latami zwykłymi.

Dla dat z początku roku mamy:

[po,	ko)	$dt_D(po)$	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p(po, ko)
n	n + 12	0	2	2	1	2	1	2	2	1
n + 12	n + 16	1	0	1	1	1	1	0	0	4
\overline{n}	n + 16	5	2	3	2	3	2	2	2	5

A teraz podobna tabela dla dat z drugie części roku:

[po	, $ko)$	$dt_D(po)$	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p(po, ko)
\overline{n}	n + 12	0	3	1	2	1	2	2	1	1
n + 1	12 n + 16	1	0	1	1	1	1	0	0	4
\overline{n}	n + 16	5	3	2	3	2	3	2	1	5

3.4 Cztery wieki

Teraz już możemy przeanalizować, co dzieje się w czterech całych wieków. Okres ten uważamy za sumę

$$[1601, 1685) \cup [1685, 1701) \cup [1701, 1785) \cup [1785, 1801) \cup [1801, 1885) \cup$$
$$\cup [1885, 1901) \cup [1901, 1985) \cup [1985, 1997) \cup [1997, 2001).$$

W poniższej tabelce brakuje okresów

Każdy z nich jest sumą trzech regularnych okresów 28-letnich, w których każda data pojawia się w każdym dokładnie cztery razy, lącznie 576 razy. Warto zwrócić jeszcze uwagę, że takie 28-letnie okresy nie powodują przesunięcia dni tygodnia: jeżeli jakaś data w pierwszym roku była na przykład w środę, to także w pierwszym roku po zakończenia takiego okresu tę będzie w środę.

Najpierw prowadzimy obliczenia dla dat z początku roku:

[po,	ko)	$dt_D(po)$	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p(po, ko)
1685	1701	0	2	3	2	3	2	2	2	5
1785	1801	5	2	3	2	2	2	2	3	5
1885	1001	3	2	2	2	2	3	2	3	5
1985	1997	1	2	2	2	1	2	1	2	1
1997	2001	2	0	0	1	1	1	1	0	5
\overline{suma}			8	10	9	9	10	8	10	0
			48	48	48	48	48	48	48	0
1601	2001	0	56	58	57	57	58	56	58	0

A teraz analogiczne obliczenia dla dat z końca roku:

[po,	ko)	$dt_D(po)$	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]	p(po, ko)
1685	1701	0	3	2	3	2	3	2	1	5
1785	1801	5	3	2	3	2	1	3	2	5
1885	1901	3	3	2	1	3	2	3	2	5
1985	1997	1	1	3	1	2	1	2	2	1
1997	2001	2	0	0	1	1	1	0	1	5
\overline{suma}			10	9	9	10	8	10	8	0
			48	48	48	48	48	48	48	0
1601	2001	0	58	57	57	58	56	59	55	0

3.5 m-ty dzień miesiąca

Do tej pory prowadziliśmy obliczenia dla pojedyńczej daty. Teraz zajmiemy się dwunastoma datami trzynastego.

Wybierzmy początkową niedzielę w styczniu 1601 roku i przyjmijmy, że jest to m-ty dzień stycznia. Wyliczymy teraz, ile razy w ciągu 400 lat m-ty dzień miesiąca przypada w poszczególne dni tygodnia. Rok 1601 nie jest przestępny. W styczniu m-tym dniem tygodnia jest niedziela, w lutym – środa, w pozostałych miesiącach (a więc po 29 lutego) m-ty dzień miesiąca przypada jeden raz w niedzielę, poniedziałek, wtorek i czwartek oraz dwa razy w środę, piątek i sobotę.

dzień	razy	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]
0	1	8	10	9	9	10	8	10
3	1	10	8	10	8	10	9	9
0	1	10	9	9	10	8	10	8
1	1	8	10	9	9	10	8	10
2	1	10	8	10	9	9	10	8
3	2	8	10	8	10	9	9	10
		8	10	8	10	9	9	10
4	1	10	8	10	8	10	9	9
5	2	9	10	8	10	8	10	9
		9	10	8	10	8	10	9
6	2	9	9	10	8	10	8	10
		9	9	10	8	10	8	10
\overline{suma}		12	15	13	13	15	12	16
plus		96	96	96	96	96	96	96
dni	opuszcz.	576	576	576	576	576	576	576
razem		684	687	685	685	687	684	688

Z przeprowadzonych obliczeń wynika także, data m-tego stycznia 2001 przypadnie w ten sam dzień, co w styczniu 1601 roku. Powinna więc przypaść w niedzielę. Wobec tego powinniśmy przyjąć, że m jest równe 7 albo 14. Ostateczny wynik obliczeń otrzymamy przesuwając odpowiednio liczby znalezionej tablicy:

p	L[0]	L[1]	L[2]	L[3]	L[4]	L[5]	L[6]
6	684	687	685	685	687	684	688
	687	685	685	687	684	688	684

Ostatecznie ustaliliśmy, że w okresie 400 lat od 1 stycznia 1601 trzynasty dzień miesiąca przypadał w piątek aż 688 razy.