Physics 158 Written Homework 2

Problem 1

Difficulty: ★☆☆

The LRC circuit below is constructed with a 12 V battery, 6Ω resistor, 5μ F capacitor, and 0.5 mH inductor.

If the switch has been closed for a long time and is suddenly opened, find:

- a) How much current is flowing through the inductor just after the switch has been opened.
- b) How much charge is stored on the capacitor at the instant the switch is opened.
- c) The initial energy in the circuit.
- d) The maximum current in the circuit.
- e) How often the capacitor attains a max charge per second (only consider the absolute value of the charge).
- f) How much power is dissipated in the circuit after 40 seconds.

Problem 2

Difficulty: ★☆☆

A 2 F capacitor, 0.25 H inductor, and a 100 Ω resistor are connected in series with a voltage source $v(t) = 25\cos(80t - \frac{\pi}{2})$

- a) What is the impedence of this circuit?
- b) What is the peak current?
- c) What is the peak voltage across each element?

Problem 3

Difficulty: ★☆☆

A coil with L = 88 mH and unknown resistance, and a capacitor ($C = 0.94 \mu\text{F}$) are connected in series with an alternating EMF operating at a frequency= 930 Hz. If the phase constant between the applied voltage and the current is $+75^{\circ}$, what is the resistance R of the coil?

Problem 4

Difficulty: ★★☆

Mystery RLC circuit: You are given an RLC circuit with elements connected in series. Values of R, L and C are unknown. You have at your disposal a source of AC voltage with $V_{\rm RMS} = 8$ V and a tunable frequency ω . You also have an Ammeter which measures the RMS current $I_{\rm RMS}$ and the power factor $\cos \phi$. Suppose you measured $I_{\rm RMS}$ as a function of frequency and found that the maximum RMS current occurs at $\omega_0 = 12.5$ kHz and is equal to 40 mA.

- a) What is the resistance, R? What does this tell you about L and C?
- b) What is the power factor at $\omega = \omega_0$?
- c) In addition you find that at $\omega_1 = 17$ kHz the power factor is 0.5. Based on this information, what are the values of L and C?

Problem 5

Difficulty: ★★☆

An AC circuit is connected in series with a resistor, capacitor, and an inductor with values of 30Ω , 2μ F, and 2 H. If the circuit has an impedence of $Z = 220 \Omega$ what are all of the possible frequency values, ω ?

Problem 6

Difficulty: ★★☆

Consider a plastic ring of radius R = 50.0 cm on which there are two charged beads as shown in the figure below. Bead 1 has $q_1 = +2.00 \,\mu\text{C}$ and is fixed in place on the x-axis. Bead 2 has $q_2 = +6.0 \,\mu\text{C}$ and can be moved along the ring.

- a) Determine the positive angle θ for q_2 which can produce a net Electric field of magnitude $E = 2.00 \times 10^5$ N/C at the centre of the ring?
- b) Is there any negative angle θ for q_2 which can produce a net Electric field of magnitude $E = 2.00 \times 10^5$ N/C at the centre of the ring? If so, calculate that angle.

