Real Analysis Qualifier — 2021

Undergraduate Problems

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will not receive credit.

- 1. Prove using the ϵ - δ definition of continuity that $f(x) = x^2$ is continuous on \mathbb{R} .
- 2. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and $f(x_0) > 0$ then $g = \sqrt{f}$ is differentiable at x_0 as well. Note g is well defined near x_0 . Do this using only the definition of the derivative. (Don't use the product rule, the chain rule, etc., unles you prove these.)
- 3. Use integration by parts to show that $\int_0^1 \frac{f^2(x)}{x^2} dx \le 4 \int_0^1 (f'(x))^2 dx$ for all smooth f on [0,1] such that f(0) = 0.
- 4. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable with $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, where M is some positive real number. Prove that

$$|f(x) - f(y)| \le M|x - y|$$
 for all $x, y \in \mathbb{R}$.

209A

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will not receive credit.

- 1. Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for all $A \in \mathcal{M}$. Prove that μ_E is a measure; that is, (X, \mathcal{M}, μ_E) is a measure space.
- 2. If $f: \mathbb{R} \to \mathbb{R}$ is monotone then it is Borel measurable.
- 3. Given a measure space (X, \mathcal{M}, μ) , let $f \in L^+(\mathcal{M})$. Define $\lambda(E) := \int_E f \, d\mu$ for all $E \in \mathcal{M}$. Prove that λ is a measure on \mathcal{M} and that for all $g \in L^+$,

$$\int g \, d\lambda = \int f g \, d\mu.$$

4. Let (X, \mathcal{M}, μ) be a measure space. If $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$ and $\mathbb{1}_{E_n} \to f$ in $L^1(\mathcal{M})$ as $n \to \infty$, then f is (almost everywhere) equal to the characteristic function of a measurable set. ²

¹Recall that $L^+(\mathcal{M})$ is the the space of all measurable functions from X to $[0,\infty]$.

 $^{^{2}\}mathbb{1}_{E_{n}}$ is the characteristic function of E_{n} , also often written $\chi_{E_{n}}$.

209B

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will not receive credit.

1. Let

$$g(x) = \begin{cases} e^x - 1, & x < 0; \\ e^x, & 0 \le x < 1; \\ x + 3, & x \ge 1. \end{cases}$$

Let ν be the Borel measure generated by g, i.e. $\nu((a,b]) = g(b) - g(a)$ for all numbers $b \ge a$. Let $\nu = \lambda + f d\mu$ be the Lebesque decomposition, where μ is the Lebsgue measure and λ is singular w.r.t. μ . Determine λ and f explicitly.

- 2. State respectively the definitions that a function is of bounded variation and absolutely continuous on [0, 1]. Construct a continuous function on [0, 1] which is of bounded variation but is not absolutely continuous.
- 3. Let $X = [0, 2\pi]$, equipped with Lebesgue measure. (a). Let $f_n = \sin^{21}(nx)$. Prove that f_n converges to 0 weakly in $L^2(X)$ as $n \to \infty$. That is, $\lim_{n \to \infty} \langle g, f_n \rangle = 0$ for all $g \in L^2(X)$ where $\langle \cdot, \cdot \rangle$ is the inner product on $L^2(X)$. You may assume Riemann-Lebesgue Lemma. (b). Prove that f_n does not converge to 0 a.e.
- 4. Let [0,1] be equipped with the Lebesgue measure. Let $L^1[0,1]$ be the space of integrable functions and $L^p[0,1]$, p>1, be the space of functions whose p-th power is integrable on [0,1]. Show that $L^p[0,1]$ is a meager subset of $L^1[0,1]$, i.e., $L^p[0,1]$ can be written as a countable union of nowhere dense subsets of $L^1[0,1]$. Hint: $L^p[0,1] = \bigcup_{N=1}^{\infty} \{f : ||f||_p \leq N\}$.

209C

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will not receive credit.

- 1. Let m be Lebesgue measure on the unit circle $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Consider the space $(L^{\infty}(\mathbb{T}, m), \|\cdot\|_{L^1})$ where $\|f\|_{L^1} = \int_{\mathbb{T}} |f| dm$.
 - (a) Is it a Banach space? Prove your answer.
 - (b) Is it a separable space? Prove you answer. Here you may use the fact that trigonometric polynomials are dense in $(L^p(\mathbb{T},m),\|\cdot\|_{L^p})$ for $1 \leq p < \infty$.
- 2. Let (X, \mathcal{M}, μ) be measure space where μ is a positive measure. Let $\{f_n\}_{n\geq 1}$ be a Cauchy sequence in $(L^1(X,\mu),\|\cdot\|_{L^1})$. Find a subsequence $\{f_{n_k}\}_{k\geq 1}$ of $\{f_n\}$ such that the pointwise limit

$$f(x) := \lim_{k \to \infty} f_{n_k}(x)$$

exists for μ -almost every $x \in X$ and $f \in L^1(X, \mu)$.

3. Recall the Schwartz space $\mathcal{S}(\mathbb{R})$ is a Fréchet space via the family of semi-norms

$$||f||_k := \sum_{n,m:|n|+|m| \le k} \sup_{x \in \mathbb{R}} |x^n f^{(m)}(x)|.$$

Consider the linear map $\Lambda : \mathcal{S}(\mathbb{R}) \to \mathbb{R}$ where $\Lambda(f) = \int_{\mathbb{R}} |xf| dx$. Show that Λ is continuous with respect to the natural topology on $\mathcal{S}(\mathbb{R})$.

4. Recall the Fourier Transformation on $\mathcal{S}(\mathbb{R})$ is defined as

$$\hat{f}(\xi) := (2\pi)^{-\frac{1}{2}} \int_{\mathbb{R}} f(x)e^{-ix\xi} dx.$$

4

Show that $\hat{f} \in C^{\infty}(\mathbb{R})$ for each $f \in \mathcal{S}(\mathbb{R})$.