Συναρτήσεις Fermat, Κρίσιμα Σημεία

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

5 Ιουλίου 2025 — Έκδοση: 2.6

Λίγη Γεωγραφία?

- ① Το ψηλότερο σημείο στη γη
- ② Το ψηλότερο σημείο στην Ελλάδα
- ③ Το ψηλότερο σημείο στη διαδρομή Θεσσαλονίκη Γιάννινα

Λίγη Γεωγραφία?

- 1 Το ψηλότερο σημείο στη γη
- Το ψηλότερο σημείο στην Ελλάδα
- ③ Το ψηλότερο σημείο στη διαδρομή Θεσσαλονίκη Γιάννινα

Λίγη Γεωγραφία?

- 1 Το ψηλότερο σημείο στη γη
- Το ψηλότερο σημείο στην Ελλάδα
- ③ Το ψηλότερο σημείο στη διαδρομή Θεσσαλονίκη Γιάννινα

Τοπικά Ακρότατα

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0\in A$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται <u>θέση</u> ή <u>σημείο τοπικού ακροτάτου</u>, ενώ το $f(x_0)$ <u>τοπικό</u> μέγιστο της f

Αρα ΣΤΟ x_0 , ΤΟ $f(x_0)$

Τοπικά Ακρότατα

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0\in A$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται <u>θέση</u> ή <u>σημείο τοπικού ακροτάτου</u>, ενώ το $f(x_0)$ <u>τοπικό</u> μέγιστο της f

Αρα <u>ΣΤΟ</u> x_0 , <u>ΤΟ</u> $f(x_0)$

Συγκρίσεις παντού

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού \mathbf{A} , θα λέμε ότι παρουσιάζει στο $x_0 \in \mathbf{A}$ μέγιστο, όταν

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathbf{A}$

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0\in A$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται <u>θέση</u> ή <u>σημείο τοπικού ακροτάτου</u>, ενώ το $f(x_0)$ <u>τοπικό</u> μέγιστο της f

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστα
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μένιστα

- Το μέγιστο είναι και τοπικό ΣΩΣΤΟ
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστο

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μένιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο ΛΑΘΟΣ!!!!!!!!!!
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστο

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μένιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο ΛΑΘΟΣ!!!!!!!!!!
- 🕘 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστο

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα ΛΑΘΟΣ!!!!!!!!!!
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστο

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα ΣΩΣΤΟ

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- \bigcirc Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενό διαστήματος
- \P Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενόσο διαστήματος και να υπάρχει το $f'(x_0)$
- \bigcirc Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- \P Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- \bullet Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $oldsymbol{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- **4** Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $oldsymbol{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- lacktriangle Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑤ Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $oldsymbol{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $oldsymbol{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑤ Συμπέρασμα για το $f'(x_0)$?

Θεώρημα Fermat

Ορισμός

Εστω μια συνάρτηση f ορισμένη σ' ένα διάστημα Δ και x_0 ένα εσωτερικό σημείο του Δ . Αν η f παρουσιάζει τοπικό ακρότατο στο x_0 και είναι παραγωγίσιμη στο σημείο αυτό, τότε: $f'(x_0)=0$

Απόδειξη

Ολα μαζί

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Ολα μαζί

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Ολα μαζί

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

- f 4 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f^\prime τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f' = 0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

- f 4 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- ullet Τα εσωτερικά που f'=0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

Ναι, αλλά πότε τα "πιθανά" είναι και "σίγουρα"

Να βρείτε συνθήκη για την f ώστε ένα σημείο της να είναι τοπικό μέγιστο

Ελεγχος πιθανών ακροτάτων

Εστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α, β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής.

- Αν f'(x) > 0 στο (α, x_0) και f'(x) < 0 στο (x_0, β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f
- Αν f'(x) < 0 στο (α, x_0) και f'(x) > 0 στο (x_0, β) , τότε το $f(x_0)$ είναι τοπικό ελάχιστο της f
- Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(\beta,x_0)$ τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β)

Ναι, αλλά πότε τα "πιθανά" είναι και "σίγουρα"

Να βρείτε συνθήκη για την f ώστε ένα σημείο της να είναι τοπικό μέγιστο

Ελεγχος πιθανών ακροτάτων

Εστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α,β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής.

- \bullet Αν f'(x)>0 στο (α,x_0) και f'(x)<0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f
- \bullet Av f'(x)<0 στο (α,x_0) και f'(x)>0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό ελάχιστο της f
- ο Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(\beta,x_0)$ τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β)

1. Εστω η συνάρτηση $f(x)=2\alpha\ln x-\frac{\beta}{x}+3\alpha$, όπου α , $\beta\in\mathbb{R}$. Αν η f παρουσιάζει ακρότατο στο 1 το 5, να βρείτε τα α και β

2. Δίνεται η συνάρτηση $f(x) = e^x - \alpha x$, για την οποία ισχύει

$$f(x) \geq 1$$
 για κάθε $x \in \mathbb{R}$

Να αποδείξετε ότι $\alpha=1$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 12/22

3. Αν για κάθε x>0 ισχύει

$$\alpha \ln x \le x - 1, \alpha \in \mathbb{R}$$

να βρείτε την τιμή του α

4. Εστω $f:\mathbb{R}\to\mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0)=1 και ισχύει

$$f(x) \geq 2e^x - x - 1$$
 για κάθε $x \in \mathbb{R}$

- Να βρείτε την εφαπτομένη της C_f στο $x_0=0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 14/22 **4.** Εστω $f:\mathbb{R}\to\mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0)=1 και ισχύει

$$f(x) \geq 2e^x - x - 1$$
 για κάθε $x \in \mathbb{R}$

- Να βρείτε την εφαπτομένη της C_f στο $x_0=0$
- Nα υπολογίσετε το $\lim_{x\to +\infty} f(x)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 14/22

- $f(x) \ge 1$ για κάθε $x \in \mathbb{R}$
- $\bullet \ f''(x) > 0$ για κάθε $x \in \mathbb{R}$

Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 15/22

6. Dínetai η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1\leq x<1 \\ (x-2)^2 &, 1\leq x\leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τα κρίσιμα σημεία της f

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 16/22

6. Δίνεται η συνάρτηση
$$f(x)= egin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τα κρίσιμα σημεία της f
- Τις πιθανές θέσεις ακροτάτων της f

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 16/22

6. Δίνεται η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1\leq x<1 \\ (x-2)^2 &, 1\leq x\leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τα κρίσιμα σημεία της f
- Τις πιθανές θέσεις ακροτάτων της f
- Το σύνολο τιμών της f

Συναρτήσεις 5 Ιουλίου 2025 16/22 **7.** Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη και ισχύει:

$$f^3(x)+3f(x)=x^3+x$$
 για κάθε $x\in\mathbb{R}$

Να δείξετε ότι η f δεν έχει ακρότατα

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 17/22 **8.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f'(0) = 1 και ισχύει:

$$f^3(x) + e^x = f(f(x)) + x$$
 για κάθε $x \in \mathbb{R}$

Να δείξετε ότι η f δεν έχει ακρότατα

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 18/22

- **9.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f(1)=1η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:
 - $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
 - $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
 - Να βρείτε την εφαπτομένη της C_f στο $x_0=1$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 19/22

- **9.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f(1) = 1η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:
 - $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
 - $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
 - Να βρείτε την εφαπτομένη της C_f στο $x_0=1$
 - Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσα

Συναρτήσεις 5 Ιουλίου 2025 19/22

- **9.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f(1) = 1η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:
 - $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
 - $\bullet \left(f^2(x) \right)' \neq 0$ για κάθε $x \in \mathbb{R}$
 - Να βρείτε την εφαπτομένη της C_f στο $x_0=1$
 - Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσα
 - Nα βρείτε το $\lim_{x\to 0+} f\left(\frac{1}{x}\right)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 19/22

- **10.** Δίνεται η συνάρτηση $f(x) = |e^x + \alpha x 1|$, $x \in \mathbb{R}$ η οποία είναι παραγωγίσιμη.
 - Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

$$f(x) = e^x - x - 1, x \in \mathbb{R}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 20/22

- **10.** Δίνεται η συνάρτηση $f(x) = |e^x + \alpha x 1|$, $x \in \mathbb{R}$ η οποία είναι παραγωγίσιμη.
 - Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x)=e^x-x-1, x\in\mathbb{R}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 20/22

- **10.** Δίνεται η συνάρτηση $f(x) = |e^x + \alpha x 1|$, $x \in \mathbb{R}$ η οποία είναι παραγωγίσιμη.
 - Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x) = e^x - x - 1, x \in \mathbb{R}$$

3 Αν η f είναι ορισμένη στο B = [-1, 1], να βρείτε το f(B)

Συναρτήσεις 5 Ιουλίου 2025 20/22 **11.** Εστω $f:[0,2]\to\mathbb{R}$ μια συνάρτηση με f(0)=1, f(1)=0, f(2)=3 η οποία είναι παραγωγίσιμη. Αν $f'\uparrow(0,2)$, να δείξετε ότι υπάρχει μοναδικό $x_0\in(0,2)$ τέτοιο ώστε $f'(x_0)=0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 21/22

- **12.** Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις παραγωγίσιμες που έχουν κοινά σημεία τα $(\alpha,f(\alpha))$ και $(\beta,f(\beta))$ και η C_f είναι πάνω από τη C_a στο διάστημα (α, β) . Να δείξετε ότι:
 - Υπάρχει $\xi \in (\alpha, \beta)$, τέτοιο ώστε η κατακόρυφη απόσταση των σημείων με τετμημένη ξ των C_f και C_a , να γίνεται μέγιστη

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 22/22

- **12.** Εστω $f,g:\mathbb{R}\to\mathbb{R}$ δύο συναρτήσεις παραγωγίσιμες που έχουν κοινά σημεία τα $(\alpha,f(\alpha))$ και $(\beta,f(\beta))$ και η C_f είναι πάνω από τη C_g στο διάστημα (α,β) . Να δείξετε ότι:
 - ① Υπάρχει $\xi\in(\alpha,\beta)$, τέτοιο ώστε η κατακόρυφη απόσταση των σημείων με τετμημένη ξ των C_f και C_o , να γίνεται μέγιστη
 - ② Οι εφαπτόμενες των C_f και C_g στα σημεία $(\xi,f(\xi))$ και $(\xi,g(\xi))$ είναι παράλληλες

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 22 / 22

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 .

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{I}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Λόλας $(10^{\circ}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025

1/1

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Λόλας $(10^{\circ}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025

1/1

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025

1/1

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Apα $0 \le \kappa \le 0$, σηλαση $f(x_0) = 0$ (1100 στη θεωρία

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Αρα $0 \leq k \leq 0$, δηλαδή $f'(x_0) = 0$ Πίσω στη θεωρία

Λόλας (10^o ΓΕΛ)