1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>											
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>											
Лабораторная работа № <u>6</u>											
Построение и программная реализация алгоритмов численного дифференцирования											
Студент Криков А. В.											
Группа ИУ7-43Б											

Оценка (баллы) _____

Преподаватель _____ Градов В. М.

1. Цель работы

Получение навыков построения алгоритма вычисления производных от сеточных функций.

2. Задание

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

Вычислить первые разностные производные от функции и занести их в столбцы таблицы:

- 1 односторонняя разностная производная,
- 2 центральная разностная производная,
- 3 2-я формула Рунге с использованием односторонней производной,
- 4 введены выравнивающие переменные.
- 5 вторая разностная производная.

Входные данные:

Заданная таблица

Выходные данные:

Заполненная таблица с краткими комментариями по поводу использованных формул и их точности.

3. Описание алгоритма

Используя ряд Тейлора, получаем разностные формулы:

$$y'_n = \frac{y_n - y_{n-1}}{h}$$
 $y'_n = \frac{y_{n+1} - y_n}{h}$

Первое выражение — правая разностная производная, второе — левая разностная производная. Данные формулы имеют самый низкий (первый) порядок точности относительно шага.

Таким же образом получим центральную формулу:

$$y_n' = \frac{y_{n+1} - y_{n-1}}{2h}$$

Эта формула имеет второй порядок точности.

Используя преобразования в рядах Тейлора, приходим к первой формуле Рунге:

$$\psi(x)h^p = \frac{\Phi(h) - \Phi(mh)}{m^p - 1}$$

Отсюда можно получить вторую формулу Рунге:

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1}$$

Отметим, что формулы Рунге справедливы не только для операции дифференцирования, но и для любых других приближенных вычислений (при условии, что погрешность формул имеет вышеприведенный вид)

Следует также описать метод вода выравнивающих переменных. При удачном подборе таких переменных исходная кривая может быть преобразована в прямую, производная от которой вычисляется точно даже по простым формулам. Пусть задана некоторая функция y(x), и введены выравнивающие переменные $\xi(x)$ и $\eta = \eta(y)$. Тогда, возврат к заданным

переменным осуществляется этой формулой: $y_x = \frac{\eta'_{\xi} \xi_x'}{\eta_y'}$

4. Результат работы программы

/home/akrik/.jdks/openjdk-15.0.2/bin/java -javaagent:/snap/intellij-idea-ultimate/295/lib/idea_rt.jar=42515:/snap/int														/int		
X				Left side	Center Side		RungeDiff			AlignVarsDiff			SecondDiff			
1.0		0.571								0,408						
2.0		0.889		0,318	0,2	260				0,247			-0,116			
3.0		1.091		0,202	0,1	171		0,144		0,165			-0,062			
4.0		1.231		0,140	0,1	21		0,109		0,118			-0,038			
5.0		1.333		0,102	0,6	90		0,083		0,089			-0,023			
6.0		1.412		0,079				0,068								
Proce	ess f	finished	wit	h exit code	Θ											

Пояснения:

- **1.** X
- 2. Y
- 3. В вычислениях использовалась левосторонняя формула. Точность O(h)
- **4.** В вычислениях использовалась центральная формула. Точность $O(h^2)$
- **5.** В вычислениях использовалась вторая формула Рунге с использованием левосторонней формулы.
- 6. Использовался метод выравнивающих переменных. Формула,

использованная в вычислениях: $y_x = \frac{\eta_\xi \xi_x}{\eta_y} = \frac{\eta_\xi y^2}{x^2}$

 $\eta_{\xi}^{'}$ определяется с помощью правосторонней формулы: $\frac{\frac{-1}{y_{i+1}} + \frac{1}{y_i}}{\frac{-1}{x_{i+1}} + \frac{1}{x_i}}$

7. В вычислениях использовалась вторая разностная производная. Точность — $O(h^2)$

5. Исходный код программы

```
private static Double[] X = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
private static Double[] Y = {0.571, 0.889, 1.091, 1.231, 1.333, 1.412};
private static Double[][] table = {
private static Double leftSide(Double[] y, Double step, int i) {
       return (y[i] - y[i - 1]) / step;
private static Double rightSide(Double[] y, Double step, int i) {
       return (Y[i + 1] - Y[i]) / step;
private static Double centerSide(Double[] y, Double step, int i) {
       return (y[i + 1] - y[i - 1]) / 2 / step;
private static Double secondDiff(Double[] y, Double step, int i) {
        return (y[i - 1] - 2 * y[i] + y[i + 1]) / (step * step);
```

```
private static Double rungeDiff(Double[] y, Double step, int i) {
   if (i >= 2) {
        Double F1 = leftSide(y, step, i);
        Double F2 = (y[i] - y[i - 2]) / (2 * step);

        return F1 + F1 - F2;
   }
   return null;
}

private static Double alignVarsDiff(Double[] y, Double[] x, int i) {
   if (i <= y.length - 2) {
        Double etaKsiDiff = (1 / y[i + 1] - 1 / y[i]) / (1 / x[i + 1] - 1 / x[i]);
        Double Y = y[i];
        Double X = x[i];
        return etaKsiDiff * Y * Y / X / X;
   }
   return null;
}</pre>
```

6. Ответы на контрольные вопросы

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной $\mathcal{Y'}_N$ в крайнем правом узле \mathcal{X}_N .

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной $\mathcal{Y}^{\prime\prime}{}_0$ в крайнем левом узле \mathcal{X}_0 .

parientere l'pry Tenropa: $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^3}{5!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \\ y_2 = y_0 + \frac{2h}{1!} y_0' - \frac{(2h)^2}{2!} y_0'' + \frac{(2h)^3}{3!} y_0''' + \frac{46h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{(2h)^2}{2!} y_0''' + \frac{(2h)^3}{3!} y_0''' + \frac{46h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0''' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0''' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^4}{4!} y_0'' + \frac{h^4}{4!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^4}{1!} y_0'' + \frac{h^4}{1!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^4}{1!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^4}{1!} y_0'' + \frac{h^4}{1!} y_0'' + \dots \end{cases}$ $\begin{cases} y_1 = y_0 + \frac{h}{1!} y_0' - \frac{h^4}{1!} y_0'' + \frac{h^4}{1!} y_0'' + \dots \end{cases}$ T(2) - 2.(1): $y_2 - 2y_1 = -y_0 + \frac{2h^2}{2!}y_0'' + \frac{6h^5}{3!}y_0''' + \frac{(4h^4)^4}{4!}y_0'' + \dots$ $||y_3 - 3y_1| = -2y_0 + \frac{(h^2)^2}{2!} + \frac{24h^3}{3!} \cdot y_0^{14} + \frac{78h^4}{4!} y_0^{14} + \dots$ II 4.(I) -(I) $4y_2 - 8y_1 - y_3 + 3y_1 = -2y_0 + \frac{2h'}{2!} g_0^{11} - \frac{22h'}{4!} g_0^{11} + \dots$ $-5y_1 + 4y_2 - y_3 = -2y_0 + h'y_0'' - \frac{11}{12}h'' + \dots$ $y_{\delta}^{11} = 2y_{\delta} - Cy_{1} + 4y_{2} - y_{5}$ $\frac{11h^{2}y^{1}}{12}$ $(y^{0} = 2y_{0} - 5y_{1} + 4y_{2} - y_{3} + 0(h^{2})$

Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции
 №7 для первой производной У'о в левом крайнем узле

$$S = P(h) + P(h) - P(mh) + O(h^{p+1}) = \frac{y_{m} - y_{m}}{h} + \frac{y_{m} - y_{m}}{h} - \frac{y_{m} - y_{m}}{2h} + O(h^{2}) = \frac{y_{m} - y_{m}}{2h} + O(h^{2}) = \frac{y_{m} - y_{m}}{2h} + O(h^{2})$$

Dia selvo yyua: $n = 0, n+1 = 1, n+2 = 2 = 3y_{s} = \frac{-3y_{s} + 4y_{s} - 9z_{s}}{2h} = \frac{-3y_{s} + 4y_{s}}{2h} = \frac{-3y_{s}}{2h} = \frac{-3y_{s} + 4y_{s}}{2h} = \frac{-3y_{s}}{2h} = \frac{-3y_{s}}{2h$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной \mathcal{Y}'_0 в крайнем левом узле \mathcal{X}_0 .

Memorry perpense & pry Memory

$$\begin{cases}
y_1 = y_0 + hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{3!}y''' + \frac{h^4}{4!}y'' y'' \\
y_2 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{3!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (2)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{3!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (2)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{3!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (2)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (2)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (3)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (4)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (4)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \dots \end{cases} (4)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{2!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \frac{h^4}{4!}y'' + \dots \end{cases} (4)$$

$$\begin{cases}
y_3 = y_0 + 2hy'_0 + \frac{h^2}{4!}y'' + \frac{h^3}{4!}y''' + \frac{h^4}{4!}y'' + \frac{h^4}{$$