Gauss-seidel nethod

Intuition

$$\rightarrow a_1 \times_1 + a_{12} \times_2 = b_1 - 0$$

From (1)
$$-1 \quad x_1 = b_1 - a_2 x_2 - a_{11}$$

Start with an initial guess
$$\frac{x_1^{\circ}, x_2^{\circ}}{1}$$

Iteration 1: $x_1 = b, -q_{12} x_2^{\circ}$

$$x_2 = b_2 - a_{21} x_1$$

$$a_{22}$$

EXAMPLE:

Solve by
$$x_1, x_2, x_3$$
 using Gauss-Seidel
 $2x_1 + x_2 + x_3 = 7$ — (1)
 $x_1 - 3x_2 + x_3 = -2$ — (2)
 $2x_1 + 2x_2 - x_3 = 3$ — (3)

Use an initial guess $x_1 = x_2 = x_3 = 0$ Solve up to 3 iterations

Solution:
$$X_1 = \frac{7 - X_2 - X_3}{2}$$
 From (2)
 $X_2 = -\frac{2 - X_1 - X_3}{-3}$ From (3)
 $X_3 = \frac{3 - 2x_1 - 2x_2}{-1}$ From (3)
Therefron $|X_1 = (7 - 0 - 0)|_2 = \frac{3.5}{2}$
 $|X_2 = (-2 - \frac{3.5}{2} - 0)|_{-3} = \frac{1.8333}{2}$
 $|X_3 = (3 - 2)(3.5) - 2(1.8333)|_{-1}$

$$x_1 = 2 - (1.8353) - 7.6467$$

$$= -1.25$$

$$\frac{\chi_1 = 7 - \chi_2 - \chi_3}{2}$$

$$X_2 = -2 - X_1 - X_3$$

$$X_3 = 3 - 2x_1 - 2x_2$$

$$\chi_{\nu} = -2 - (-1.25) - 7.6667 = 2.8056$$

$$x_3 = 3 - 2(-1.25) - 2(2.8056) = 0.1111$$

Deration 3

Der	۲,	×z	አչ
1	3.5	1.6333	2.6667
2	-1.25	2.8056	0.1111
3	2.0416	1.3842	38516