```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn import metrics
# loading the data from csv file to a Pandas DataFrame
calories = pd.read_csv('/content/calories.csv')
# print the first 5 rows of the dataframe
calories.head()
\Box
          User_ID Calories
                               ▦
      0 14733363
                       231.0
                               ıl.
      1 14861698
                        66.0
      2 11179863
                        26.0
      3 16180408
                        71.0
                        35.0
      4 17771927
 Next steps:
             Generate code with calories
                                             View recommended plots
exercise_data = pd.read_csv('/content/exercise.csv')
exercise_data.head()
                           Age Height Weight Duration Heart_Rate Body_Temp
                                                                                   畾
          User_ID Gender
      0 14733363
                            68
                                  190.0
                                          94.0
                                                     29.0
                                                                105.0
                                                                            40.8
                     male
      1 14861698
                   female
                            20
                                  166.0
                                          60.0
                                                     14.0
                                                                 94.0
                                                                            40.3
      2 11179863
                            69
                                 179.0
                                          79.0
                                                      5.0
                                                                 88.0
                                                                            38.7
                     male
      3 16180408
                   female
                            34
                                  179.0
                                          71.0
                                                     13.0
                                                                100.0
                                                                            40.5
      4 17771927
                   female
                            27
                                  154.0
                                          58.0
                                                     10.0
                                                                 81.0
                                                                            39.8
 Next steps:
             Generate code with exercise_data
                                                  View recommended plots
calories_data = pd.concat([exercise_data, calories['Calories']], axis=1)
calories_data.head()
          User_ID Gender
                           Age Height Weight Duration Heart_Rate Body_Temp Calories
                                                                105.0
                                                                                     231.0
      0 14733363
                     male
                            68
                                 190.0
                                          94.0
                                                     29.0
                                                                            40.8
      1 14861698
                   female
                            20
                                 166.0
                                          60.0
                                                     14.0
                                                                 94.0
                                                                            40.3
                                                                                      66.0
      2 11179863
                     male
                            69
                                 179.0
                                          79.0
                                                      5.0
                                                                 88.0
                                                                            38.7
                                                                                      26.0
      3 16180408
                            34
                                 179.0
                                          71.0
                                                     13.0
                                                                100.0
                                                                            40.5
                                                                                      71.0
                   female
      4 17771927
                            27
                                  154.0
                                           58.0
                                                     10.0
                                                                 81.0
                                                                            39.8
                                                                                       35.0
                   female
 Next steps:
              Generate code with calories_data
                                                  View recommended plots
# checking the number of rows and columns
calories_data.shape
     (15000, 9)
# checking the number of rows and columns
calories_data.shape
     (15000, 9)
# checking for missing values
calories_data.isnull().sum()
```

User_ID 0 Gender 0 Age 0 Height 0 Weight Duration 0 Heart_Rate Body_Temp Calories 0 0 dtype: int64

get some statistical measures about the data
calories_data.describe()

	User_ID	Age	Height	Weight	Duration	Heart_Ra
count	1.500000e+04	15000.000000	15000.000000	15000.000000	15000.000000	15000.0000
mean	1.497736e+07	42.789800	174.465133	74.966867	15.530600	95.5185
std	2.872851e+06	16.980264	14.258114	15.035657	8.319203	9.5833
min	1.000116e+07	20.000000	123.000000	36.000000	1.000000	67.0000
25%	1.247419e+07	28.000000	164.000000	63.000000	8.000000	88.0000
50%	1.499728e+07	39.000000	175.000000	74.000000	16.000000	96.0000
75%	1.744928e+07	56.000000	185.000000	87.000000	23.000000	103.0000
max	1.999965e+07	79.000000	222.000000	132.000000	30.000000	128.0000

sns.set()

plotting the gender column in count plot
sns.countplot(calories_data['Gender'])

finding the distribution of "Age" column
sns.distplot(calories_data['Age'])

<ipython-input-14-6cbf196d4d06>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\frac{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(calories_data['Age'])
<Axes: xlabel='Age', ylabel='Density'>

finding the distribution of "Height" column
sns.distplot(calories_data['Height'])

<ipython-input-15-fdc2a1fecb6d>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(calories_data['Height'])
<Axes: xlabel='Height', ylabel='Density'>

finding the distribution of "Weight" column
sns.distplot(calories_data['Weight'])

<ipython-input-16-ac6457c483b4>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(calories_data['Weight'])
<Axes: xlabel='Weight', ylabel='Density'>

correlation = calories_data.corr()

<ipython-input-17-65125daba8ee>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver correlation = calories_data.corr()

 $\ensuremath{\text{\#}}$ constructing a heatmap to understand the correlation

plt.figure(figsize=(10,10))

sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot=True, annot_kws={'size':8}, cmap='Blues')

<Axes: >

calories_data.replace({"Gender":{'male':0,'female':1}}, inplace=True)

calories_data.head()

	User_ID	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp	Calories
0	14733363	0	68	190.0	94.0	29.0	105.0	40.8	231.0
1	14861698	1	20	166.0	60.0	14.0	94.0	40.3	66.0
2	11179863	0	69	179.0	79.0	5.0	88.0	38.7	26.0
3	16180408	1	34	179.0	71.0	13.0	100.0	40.5	71.0
4	17771927	1	27	154.0	58.0	10.0	81.0	39.8	35.0
4)

Next steps: Generate code with calories_data

View recommended plots

X = calories_data.drop(columns=['User_ID','Calories'], axis=1)

Y = calories_data['Calories']

print(X)

	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp
0	0	68	190.0	94.0	29.0	105.0	40.8
1	1	20	166.0	60.0	14.0	94.0	40.3
2	0	69	179.0	79.0	5.0	88.0	38.7
3	1	34	179.0	71.0	13.0	100.0	40.5
4	1	27	154.0	58.0	10.0	81.0	39.8
• • •							
14995	1	20	193.0	86.0	11.0	92.0	40.4
14996	1	27	165.0	65.0	6.0	85.0	39.2
14997	1	43	159.0	58.0	16.0	90.0	40.1
14998	0	78	193.0	97.0	2.0	84.0	38.3
14999	0	63	173.0	79.0	18.0	92.0	40.5

```
[15000 rows x 7 columns]
```

```
print(Y)
     0
              231.0
              66.0
     1
     2
     3
               71.0
               35.0
              45.0
23.0
     14995
    14996
     14997
              75.0
     14998
              11.0
     14999
              98.0
     Name: Calories, Length: 15000, dtype: float64
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
print(X.shane. X train.shane. X test.shane)
```