(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 July 2002 (11.07.2002)

PCT

(10) International Publication Number WO 02/053155 A1

- (51) International Patent Classification⁷: A61K 31/4178, 31/4166, 31/4439, C07D 233/86, 401/06, 403/06, 405/06, 409/06
- (21) International Application Number: PCT/US01/50042
- (22) International Filing Date:

28 December 2001 (28.12.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/259,124

30 December 2000 (30.12.2000) US

- (71) Applicants (for all designated States except US): GERON CORPORATION [US/US]; 230 Constitution Drive, Menlo Park, CA 94025 (US). KYOWA HAKKO KOGYO CO.,LTD. [JP/JP]; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MACHII, Daisuke [JP/JP]; Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 (JP). HAGIHARA, Koji [JP/JP]; Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 (JP). ASAI, Akira [JP/JP]; Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 (JP). ARAI, Hitoshi [JP/JP]; Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 (JP). YAMASHITA, Yoshinori [JP/JP]; Pharmaceutical Research Institute, Kyowa Hakko

Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 (JP). CHIN, Allison, C. [US/US]; Stanford, CA (US). PIATYSZEK, Mieczslaw, A. [US/US]; Morgan Hill, CA (US).

- (74) Agents: CHA, Don, D. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- entirely in electronic form (except for this front page) and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

12/053155 A1

(54) Title: TELOMERASE INHIBITOR

Telomerase Inhibitor

CROSS-REFERENCES TO RELATED APPLICATIONS

[01] This application claims the benefit of U.S. Provisional Application No. 60/259,124, filed December 30, 2001, which is incorporated herein by reference in its entirety.

5

10

15

20

FIELD OF THE INVENTION

[02] The present invention relates to telomerase inhibitors and antitumor agents containing a 4-oxo-2-thioxoimidazolidine derivative (i.e., thiohydantoin derivative) or a pharmaceutically acceptable salt thereof. Such telomerase inhibitors and antitumor agents can be used for the treatment of diseases related to telomerase activity, e.g., malignant tumors. The present invention also relates to thiohydantoin derivatives or pharmaceutically acceptable salts thereof.

BACKGROUND OF THE INVENTION

- believed to be essential to the stabilization of chromosomes. In humans, the telomere sequence consists of repetitions of TTAGGG from the 5' end. Although there are few exceptions, telomeres in normal cells usually undergo a gradual reduction in length as the cell divides. The cell becomes an aged cell (M1 phase) and ceases to divide when the telomeres are shortened to a certain length. However, when there is mutation in a cancer suppressor gene, e.g., p53 gene, the cell keeps dividing until the telomeres are reduced to extremely short lengths resulting in instability of the chromosomes and the cell death (M2 phase). See, for example, *Proc. Natl. Acad. Sci. USA*, vol. 89, pp. 10114-10118 (1992) and *Trends in Cell Biology*, vol. 5, pp. 293-297 (1995).
- In addition, it is believed that 80% or more cancer cells express an enzyme called telomerase, which extends telomeres. *Journal of the NCI*, vol. 87, pp. 884-894 (1995). Telomerase is a reverse transcription enzyme that extends telomeres using RNA as a template. Telomerase is composed of a template RNA (hTR) and a catalytic subunit protein (hTERT). It is believed that the telomerase in cancer cells suppresses or prevents shortening of the telomeres, thereby rendering the cancer cells immortal, i.e., indefinitely growing by maintaining the length of the telomeres. This theory, often referred to as the "telomere hypothesis", was proposed in 1992 by Cal Harley et al. *Proc. Natl. Acad. Sci. USA*, vol. 89,

pp. 10114-10118 (1992). The telomere hypothesis has been supported experimentally. For example, administration of an antisense agent against hTR results in telemere reduction and cancer cell death. *Science*, vol. 269, pp. 1236-1240 (1995). In addition, expression of a dominant-negative mutant hTERT which inhibits wild type telomerase also results in telomere reduction and cancer cell death. *Genes & Development*, vol. 13, pp. 2388-2399 (1999) and *Nature Medicine*, vol. 5, pp. 1164-1170 (1999). Therefore, it is believed that compounds that specifically inhibit telomerase may be used as a new type of antitumor agents by inducing a telomere reduction and limiting the life span of cancer cells. Such compounds are expected to be low-toxicity antitumor agents with minimal affect on normal tissues, because the telomerase is expressed only in cancer cells with few exceptions, such as reproductive cells, etc.

5

10

15

- [05] Examples of known low molecular weight compounds that inhibit telomerase in vitro include: nucleic acid analogs, e.g., AZTTP, ddGTP [Mol. Cell. Biol., vol. 16, pp. 53-65 (1996)], and 7-deaza-dGTP [Biochemistry, vol. 35, pp. 15611-15617 (1996)]; hetero 5-membered ring fused pyridine derivatives [U.S. Patent Nos. 5,656,638 and 5,760,062]; benzothiophene derivatives [U.S. Patent No. 5,703,116]; pyridine derivatives [U.S. Patent Nos. 5,767,278 and 5,770,613]; anthraquinones [J. Med. Chem., vol. 40, pp. 2113-2116 (1997) and Japanese Laid-Open Patent Publication No. 11-35457]; triazine derivatives [Japanese Laid-Open Patent Publication No. 11-60573]; and phenylisothiazole derivatives [WO99/08679]. In addition, telomerase inhibitory activity and reduction of telomere in cancer cells have been associated with catechins, which are present in green teas. Biochem. Biophys. Res. Commun., vol. 249, pp. 391-396 (1998). Other reported telomerase inhibitors include TMPyP4, a porphyrin having positive charge. J. Am. Chem. Soc., vol. 120, pp. 3261-3262 (1998) and WO98/33503.
- [06] Thiohydantoin derivatives have been reported to have a variety of pharmaceutical activities, such as anti-allergic and anti-inflammatory [e.g., WO97/28147 and Japanese Laid-Open Patent Publication No. 2-62864]; anti-ulcer [Japanese Laid-Open Patent Publication No. 8-225537]; blood sugar level reduction [Arzneim. Forsch., vol. 50, pp. 626-630 (2000)]; aldose reductase inhibition [Farmaco, vol. 49, pp. 443-447 (1994)]; and the like.
 In addition, thiohydantoin derivatives are known to be effective in preventing and have therapeutic effects on tissue damage associated with lipid peroxide [Japanese Laid-Open Patent Publication No. 5-331148]. Moreover, thiohydantoin derivatives are reported to be useful in optic materials [e.g., Japanese Laid-Open Patent Publication No. 6-128234].

However, no telomerase inhibiting activity of thiohydantoin derivatives has been reported to date.

BRIEF SUMMARY OF THE INVENTION

[07] Some aspects of the present invention provide telomerase inhibitors, antitumor agents, and novel thiohydantoin derivatives having excellent telomerase inhibitory activity and antitumor activity.

[08] In one aspect, the present invention provides a compound having a telomerase inhibitory activity, wherein the compound comprises a 4-oxo-2-thioxoimidazolidine skeleton.

[09] In another aspect, the present invention provides an antitumor agent comprising as an active ingredient a compound having a 4-oxo-2-thioxoimidazolidine skeleton and having a telomerase inhibitory activity.

[10] Yet another aspect of the present invention provides a telomerase inhibitor comprising a compound of the formula:

$$\begin{array}{c} \begin{array}{c} Q^1 \\ \\ \end{array} \\ \begin{array}{c} Q^2 \\ \end{array} \\ \begin{array}{c} Q^3 \end{array}$$

or a pharmaceutically acceptable salt thereof, wherein

5

10

20

25

[11] Q¹ is hydrogen, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, substituted or unsubstituted lower alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkenyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted arylalkynyl, substituted or unsubstituted heteroarylalkynyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted lower alkenoyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted arylalkanoyl, substituted or unsubstituted heteroarylalkanoyl, substituted or unsubstituted arylalkenoyl, substituted or unsubstituted heteroarylalkenoyl, substituted or unsubstituted arylalkynoyl, or substituted or unsubstituted heteroarylalkynoyl;

[12] Q² and Q³ are different, and one of them is hydrogen, and the other is substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

[13] Still another aspect of the present invention provides an antitumor agent comprising the Compound of Formula I above or a pharmaceutically acceptable salt thereof, as an active ingredient.

[14] Yet another aspect of the present invention provides a compound of the formula:

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3
\end{array}$$
(Ia)

wherein

5

10

20

[15] R¹ is hydrogen, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, substituted or unsubstituted lower alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted arylalkenyl, substituted or unsubstituted heteroarylalkenyl, substituted or unsubstituted arylalkynyl, or substituted or unsubstituted heteroarylalkynyl;

[16] one of R^2 and R^3 is hydrogen, and the other is a moiety of the formula:

$$Z^1$$
 Z^2 Z^3 Z^5 Z^4

15 [wherein

[17] each Z¹ to Z⁵ is independently hydrogen, substituted or unsubstituted lower alkyl, unsubstituted lower alkoxy having no asymmetric carbon atom, substituted lower alkoxy, unsubstituted lower alkylthio having no asymmetric carbon atom, substituted lower alkylthio, NR⁴R⁵ (wherein R⁴ and R⁵ are the same or different, and each represents hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkanoyl, aroyl, heteroaroyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, or a moiety of the formula

or R^4 and R^5 together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group), nitro, cyano, aryl, heteroaryl, aryloxy, heteroaryloxy, aralkyloxy, heteroarylalkyloxy or halogen, or two of the substituents Z^1 to Z^5 that are attached to the adjacent carbon atoms on the benzene ring together form a moiety of the formula $-O-(CH_2)_n-O-$ (wherein n represents an integer of 1 or 2)],

[18] substituted or unsubstituted naphthyl, substituted or unsubstituted heteroaryl, or a moiety of the formula:

wherein

5

15

10 [19] R^6 has the same meaning as the aforementioned R^1 ;

[20] each of R⁷ and R⁸ is independently hydrogen, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroarylalkyl, or R⁷ and R⁸ together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group;

[21] with the proviso that when one of R^2 and R^3 is hydrogen, and the other is not

wherein

[22] R⁶, R⁷ and R⁸ are those defined above, R¹ is the above-mentioned substituent other than hydrogen and substituted or unsubstituted methyl.

[23] Still another aspect of the present invention provides a telomerase inhibitor comprising the Compound of Formula Ia above or a pharmaceutically acceptable salt thereof, as an active ingredient.

[24] Another aspect of the present invention provides an antitumor agent comprising the Compound of Formula Ia above or a pharmaceutically acceptable salt thereof, as an active ingredient.

[25] Yet another aspect of the present invention provides a medicament comprising the Compound of Formula Ia above or a pharmaceutically acceptable salt thereof, as an active ingredient.

[26] The Compound having a 4-oxo-2-thioxoimidazolidine skeleton and having telomerase inhibitory activity according to the present invention is preferably the Compound of Formula I above, and more preferably the Compound of Formula Ia above. However, it should be appreciated that the compounds of the present invention are not limited to such.

5

15

20

DETAILED DESCRIPTION

- [27] Hereinafter, Compound of Formula (I) or (Ia) may be denoted as Compound (I) or (Ia), respectively. Similar notations apply to compounds of formulae with other numerals.
 - [28] Respective groups in formula (I) are subject to the following definitions.
 - [29] "Lower alkyl" refers to a linear or branched saturated monovalent hydrocarbon moiety of 1 to 6 carbon atoms, e.g., methyl, ethyl, propyl, isopropyl, butyl, tertbutyl, isobutyl, pentyl, and hexyl.
 - [30] "Lower alkenyl" refers to a linear or branched monovalent hydrocarbon moiety of 2 to 10 carbon atoms having one or more carbon-carbon double bonds, e.g., vinyl, propenyl, methacryl, prenyl, butenyl, pentenyl, hexenyl, and geranyl.
 - [31] "Lower alkynyl" refers to a linear or branched monovalent hydrocarbon moiety of 2 to 6 carbon atoms having one or more carbon-carbon triple bonds, e.g., ethynyl, propynyl, butynyl, pentynyl, and hexynyl.
 - [32] "Aryl" refers to monocyclic, bicyclic, or tricyclic aromatic rings, e.g., phenyl, naphthyl, anthryl, and the like.
- [33] "Heteroaryl" refers to monocyclic, bicyclic, or tricyclic aromatic heterocyclic rings, e.g., pyridyl, thienyl, furyl, pyrrolyl, imidazolyl, pyrimidinyl, oxazolyl, thiazolyl, pyrazolyl, quinolyl, quinoxalinyl, quinazolyl, benzopyranyl, benzothienyl, benzofuryl, indolyl, benzimidazolyl, benzothiazolyl, indazolyl, benzodioxanyl, benzoxazolyl, and the like.
- [34] "Alkylene," "alkenylene" and "alkynylene" refer to the corresponding divalent form of lower alkyl, lower alkenyl and lower alkynyl, respectively.
 - "Aralkyl" or "heteroarylalkyl" refers to a moiety of the formula –R'–R", where R' is alkylene and R" is aryl or heteroaryl, respectively, as defined herein.

[36] "Arylalkenyl" or "heteroarylalkenyl" refers to a moiety of the formula –R'–R", where R' is alkenylene and R" is aryl or heteroaryl, respectively, as defined herein.

- "Alkynylene" or "heteroarylalkynyl" refers to a moiety of the formula –R'–R", where R' is alkynylene and R" is aryl or heteroaryl, respectively, as defined herein.
- [38] Substituted aryl, substituted heteroaryl, substituted aralkyl, substituted heteroarylalkyl, substituted arylalkenyl, substituted heteroarylalkenyl, substituted arylalkynyl, substituted heteroarylalkynyl, substituted arylalkanoyl, substituted heteroarylalkanoyl, substituted arylalkenoyl, substituted arylalkynoyl, and substituted heteroarylalkynoyl may include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents. Examples of such substituents include:
 - [39] substituted or unsubstituted lower alkyl;
 - [40] substituted or unsubstituted lower alkenyl;
 - [41] substituted or unsubstituted lower alkynyl;
 - [42] hydroxy;
- 15 [43] substituted or unsubstituted lower alkoxyl;
 - [44] aryl;

5

10

- [45] aryloxy;
- [46] heteroaryloxy;
- [47] aralkyl;
- 20 [48] substituted aralkyl {where substituent(s) for the aralkyl may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, NR⁹R¹⁰ (where R⁹ and R¹⁰ may be the same or different and represent hydrogen or lower alkyl), nitro, cyano, CO₂R¹¹ (where R¹¹ represents hydrogen or lower alkyl), CONR¹²R¹³ [where R¹² and R¹³ may be the same or different and represent hydrogen, lower alkyl, aryl, heteroaryl, aralkyl, or heteroarylalkyl; or alternatively, R¹² and R¹³ together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group], arylsulfonylmethyl, methylenedioxy,
- 30 [49] aralkyloxy;
 - [50] heteroarylalkyl;

propylenedioxy, and halogen};

[51] substituted heteroarylalkyl [where substituent(s) for the heteroarylalkyl may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy,

lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, $NR^{9a}R^{10a}$ (where R^{9a} and R^{10a} are same as R^9 and R^{10} , respectively), nitro, cyano, CO_2R^{11a} (where R^{11a} is same as R^{11}), $CONR^{12a}R^{13a}$ (where R^{12a} and R^{13a} are same as R^{12} and R^{13} , respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen];

- 5 [52] heteroarylalkyloxy;
 - [53] arylalkenyl;

10

- substituted arylalkenyl [where substituent(s) for the arylalkenyl may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, NR^{9A}R^{10A} (where R^{9A} and R^{10A} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{11A} (where R^{11A} is same as R¹¹), CONR^{12A}R^{13A} (where R^{12A} and R^{13A} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen];
- [55] heteroarylalkenyl;
- substituted heteroarylalkenyl [where substituent(s) for the heteroarylalkenyl may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, NR^{9Aa}R^{10Aa} (where R^{9Aa} and R^{10Aa} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{11Aa} (where R^{11Aa} is same as R¹¹), CONR^{12Aa}R^{13Aa} (where R^{12Aa} and R^{13Aa} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen];
 - [57] arylalkynyl;
 - substituted arylalkynyl [where substituent(s) for the arylalkynyl may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, NR^{9B}R^{10B} (where R^{9B} and R^{10B} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{11B} (where R^{11B} is same as R¹¹), CONR^{12B}R^{13B} (where R^{12B} and R^{13B} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen];
- 30 [59] heteroarylalkynyl;
 - [60] substituted heteroarylalkynyl [where substituent(s) for the heteroarylalkynyl may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, NR^{9Ba}R^{10Ba} (where R^{9Ba} and

 R^{10Ba} are same as R^9 and R^{10} , respectively), nitro, cyano, CO_2R^{11Ba} (where R^{11Ba} is same as R^{11}), $CONR^{12Ba}R^{13Ba}$ (where R^{12Ba} and R^{13Ba} are same as R^{12} and R^{13} , respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen];

[61] lower alkanoyl;

5 [62] lower alkanoyloxy;

[63] mercapto;

[64] substituted or unsubstituted lower alkylthio;

[65] heteroaryl;

30

[66] NR¹⁴R¹⁵ {where each R¹⁴ and R¹⁵ is independently hydrogen, lower alkyl,

lower alkanoyl, aroyl, aryl, heteroaryl, aralkyl, heteroarylalkyl, substituted aryl [where substituent(s) for the aryl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, hydroxy, lower alkoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio, NR¹⁶R¹⁷ (where R¹⁶ and R¹⁷ are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R¹⁸ (where R¹⁸ is same as R¹¹), CONR¹⁹R²⁰ (where R¹⁹ and R²⁰ are same as R¹² and R¹³, respectively), 4-oxo-2-thioxoimidazolidin-5-

ylidenemethyl and halogen], substituted heteroaryl [where substituent(s) for the heteroaryl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, hydroxy, lower alkoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio, NR^{16a}R^{17a} (where R^{16a} and R^{17a} are same as R⁹ and R¹⁰,

respectively), nitro, cyano, CO₂R^{18a} (where R^{18a} is same as R¹¹), CONR^{19a}R^{20a} (where R^{19a} and R^{20a} are same as R¹² and R¹³, respectively), 4-oxo-2-thioxoimidazolidin-5-ylidenemethyl and halogen], substituted aralkyl [where substituent(s) for the aralkyl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, hydroxy, lower alkoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio,
NR^{16A}R^{17A} (where R^{16A} and R^{17A} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{18A}

NR^{16A}R^{17A} (where R^{16A} and R^{17A} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{18A} (where R^{18A} is same as R¹¹), CONR^{19A}R^{20A} (where R^{19A} and R^{20A} are same as R¹² and R¹³, respectively), 4-oxo-2-thioxoimidazolidin-5-ylidenemethyl and halogen], or substituted heteroarylalkyl [where substituent(s) for the heteroarylalkyl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl,

hydroxy, lower alkoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio, $NR^{16Aa}R^{17Aa}$ (where R^{16Aa} and R^{17Aa} are same as R^9 and R^{10} , respectively), nitro, cyano, CO_2R^{18Aa} (where R^{18Aa} is same as R^{11}), $CONR^{19Aa}R^{20Aa}$ (where R^{19Aa} and R^{20Aa} are same as R^{12} and R^{13} , respectively), and halogen]; or alternatively, R^{14} and R^{15} together with the

nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group};

[67] nitro;

[68] cyano;

10

15

20

25

30

5 [69] CO_2R^{21} (where R^{21} is same as R^{11});

CONR²²R²³ {where each of R²² and R²³ is independently hydrogen, [70] substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, aryl, heteroaryl, aralkyl, heteroarylalkyl, substituted aryl [where substituent(s) for the aryl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, lower alkanovl, lower alkanovloxy, mercapto, lower alkylthio, aryl, NR^{16A}R^{17A} (where R^{16A} and R^{17A} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{18A} (where R^{18A} is same as R¹¹), CONR^{19A}R^{20A} (where R^{19A} and R^{20A} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen], substituted aralkyl [where substituent(s) for the aralkyl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio, aryl, $NR^{16B}R^{17B}$ (where R^{16B} and R^{17B} are same as R^9 and R^{10} , respectively), nitro, cyano, CO₂R^{18B} (where R^{18B} is same as R¹¹), CONR^{19B}R^{20B} (where R^{19B} and R^{20B} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen], substituted heteroaryl [where substituent(s) for the heteroaryl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio, aryl, NR^{16Aa}R^{17Aa} (where R^{16Aa} and R^{17Aa} are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{18Aa} (where R^{18Aa} is same as R¹¹), CONR^{19Aa}R^{20Aa} (where R^{19Aa} and R^{20Aa} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogen], substituted heteroarylalkyl [where substituent(s) for the heteroarylalkyl include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, lower alkanoyl, lower alkanoyloxy, mercapto, lower alkylthio, aryl, NR 16Ba R 17Ba (where R 16Ba and R 17Ba are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R^{18Ba} (where R^{18Ba} is same as R¹¹), CONR^{19Ba}R^{20Ba} (where R^{19Ba} and R^{20Ba} are same as R¹² and R¹³, respectively), arylsulfonylmethyl, methylenedioxy, propylenedioxy, and halogenl; or alternatively. R²² and

R²³ together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group};

[71] arylsulfonylmethyl;

[72] methylenedioxy;

[73] propylenedioxy;

5

10

15

20

25

30

[74] halogen; and the like.

In the aforementioned definitions of substituents for substituted aryl, [75] substituted heteroaryl, substituted aralkyl, substituted heteroarylalkyl, substituted arylalkenyl, substituted heteroarylalkenyl, substituted arylalkynyl, substituted heteroarylalkynyl, substituted arylalkanoyl, substituted heteroarylalkanoyl, substituted arylalkenoyl, substituted heteroarylalkenoyl, substituted arylalkynoyl, and substituted heteroarylalkynoyl, lower alkyl, lower alkenyl, and lower alkynyl bear the same meanings as defined above, respectively. Aryl bears the same definition as the aforementioned aryl in the definition of formula (I). The aryl mojety of an aralkyl bears the same definition as the aforementioned aryl in the definition of formula (I). The alkylene moiety of an aralkyl represents the lower alkyl as defined above in the definition of formula (I) less one hydrogen atom. Heteroaryl bears the same definition as the aforementioned heteroaryl in the definition of formula (I). The heteroaryl mojety of a heteroarylalkyl bears the same definition as the aforementioned heteroaryl in the definition of formula (I). The alkylene moiety of a heteroarylalkyl represents the lower alkyl as defined above in the definition of formula (I) less one hydrogen atom. The aryl moiety of an arylsulfonylmethyl bears the same definition as the aforementioned aryl in the definition of formula (I). The aryl moiety of an arylalkenyl bears the same definition as the aforementioned aryl in the definition of formula (I). The alkenylene moiety of an arylalkenyl represents the lower alkenyl as defined above in the definition of formula (I) less one hydrogen atom. The heteroaryl moiety of a heteroarylalkenyl bears the same definition as the aforementioned heteroaryl in the definition of formula (I). The alkenylene moiety of a heteroarylalkenyl represents the lower alkenyl as defined above in the definition of formula (I) less one hydrogen atom. The aryl moiety of an arylalkynyl bears the same definition as the aforementioned aryl in the definition of formula (I). The alkynylene moiety of an arylalkynyl represents the lower alkynyl as defined above in the definition of formula (I) less one hydrogen atom. The heteroaryl moiety of a heteroarylalkynyl bears the same definition as the aforementioned heteroaryl in the definition of formula (I). The alkynylene moiety of a heteroarylalkynyl represents the lower alkynyl as defined above in the definition of formula (I) less one hydrogen atom. Halogen means an

iodine, bromine, chlorine, or fluorine atom. Examples of heterocyclic groups which may be formed together with the adjoining nitrogen atom include pyrrolidinyl, piperidino, piperazinyl, morpholino, thiomorpholino, pyrrolyl, imidazolyl, pyrazolyl, 1,2,3,6-tetrahydropyridyl, 1,2,3,4-tetrahydroisoquinolynyl, and the like. Substituents for a heterocyclic group which may be formed together with the adjoining nitrogen atom are: lower alkyl, aralkyl, lower alkanoyl (where the lower alkyl moiety of the lower alkanoyl bears the same definition as above), aroyl, heteroaroyl, and substituted or unsubstituted aryl (where a substituent for the substituted aryl is lower alkyl, lower alkoxy, or halogen).

5

10

15

20

25

30

Examples of substituents for substituted lower alkyl, substituted lower alkenyl, substituted lower alkynyl, substituted lower alkoxy, substituted lower alkanoyl, substituted lower alkynoyl, or substituted lower alkylthio include one or more, up to the substitutable number of, substituents; preferably 1 to 5 substituents; and more preferably 1 to 3 substituents, such as lower alkyl, lower alkenyl, lower alkynyl, hydroxy, lower alkoxy, lower alkoxy, lower alkoxy, lower alkanoyloxy, mercapto, lower alkylthio, cycloalkyl, cycloalkenyl, NR^{24a}R²⁵ (where R²⁴ and R²⁵ are same as R⁹ and R¹⁰), nitro, cyano, CO₂R²⁶ (where R²⁶ is same as R¹¹), CONR²⁷R²⁸ (where R²⁷ and R²⁸ are same as R¹² and R¹³), aryl, heteroaryl, arylsulfonyl, alicyclic heterocyclic groups, halogen, and the like.

In the aforementioned definitions of substituents for substituted lower alkyl, [77] substituted lower alkenyl, substituted lower alkynyl, substituted lower alkoxy, substituted lower alkanoyl, substituted lower alkenoyl, substituted lower alkynoyl, or substituted lower alkylthio, lower alkyl bears the same definition as above; and the lower alkyl moiety of lower alkoxy, lower alkanoyl, lower alkanoyloxy, or lower alkylthio bears the same definition as the aforementioned lower alkyl. Lower alkenyl and lower alkynyl bear the same definitions as lower alkenyl and lower alkyl as defined above, respectively. Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like, having 3 to 8 carbons. Cycloalkenyl includes cyclopentenyl, cyclohexenyl, and the like, having 5 to 8 carbons. Lower alkoxy lower alkoxy means a lower alkoxy which has been substituted with lower alkoxy. Examples of alicyclic heterocyclic groups include tetrahydrofuranyl, tetrahydropyranyl, 2-pyrrolidon-1-yl, and the like. Aryl bears the same definition as the aforementioned aryl in the definition of formula (I). Heteroaryl bears the same definition as the aforementioned heteroaryl in the definition of formula (I). The aryl moiety of the arylsulfonyl bears the same definition as the aforementioned aryl in the definition of formula (I). Halogen bears the same definition as above.

[78] Respective groups in formula (Ia) are subject to the following definitions. Examples of lower alkyl include those which have 1 to 6 carbons and which are in a straight chain or branched form, e.g., methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, isobutyl, pentyl, and hexyl.

- 5 [79] Examples of lower alkenyl include those which have 2 to 10 carbons and which are in a straight chain or branched form, e.g., vinyl, propenyl, methacryl, prenyl, butenyl, pentenyl, hexenyl, and geranyl.
 - [80] Examples of lower alkynyl include those which have 2 to 6 carbons and which are in a straight chain or branched form, e.g., ethynyl, propynyl, butynyl, pentynyl, and hexynyl.
 - [81] The alkylene moieties of aralkyl or heteroarylalkyl represents the aforementioned lower alkyl less one hydrogen atom. The alkenylene moiety of arylalkenyl or heteroarylalkenyl represents the aforementioned lower alkenyl less one hydrogen atom. The alkynylene moiety of arylalkynyl or heteroarylalkynyl represents the aforementioned lower alkynyl less one hydrogen atom. The lower alkyl moiety of lower alkoxy, lower alkylthio, or lower alkanoyl bears the same definition as the aforementioned lower alkyl.
 - [82] "Halogen" means iodine, bromine, chlorine, or fluorine.

10

- [83] Examples of aryl include phenyl, naphthyl, and the like.
- [84] Examples of heteroaryl include pyridyl, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, pyrimidinyl, oxazolyl, thiazolyl, indolyl, and the like. The aryl moiety of aralkyl, arylalkenyl, arylalkynyl, aryloxy, and aralkyloxy bears the same definition as the aforementioned aryl in the definition of formula (Ia). The heteroaryl moiety of heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heteroarylalkyloxy bears the same definition as the heteroaryl in the definition of formula (Ia).
- Exemplary heterocyclic groups which may be formed together with the adjoining nitrogen atom include pyrrolidinyl, piperidino, piperazinyl, morpholino, thiomorpholino, pyrrolyl, imidazolyl, pyrazolyl, 1,2,3,6-tetrahydropyridyl, 1,2,3,4-tetrahydroisoquinolynyl, and the like. Substituents for a substituted heterocyclic group which may be formed together with the adjoining nitrogen atom include: lower alkyl, aralkyl, lower alkanoyl, aroyl, heteroaroyl, and substituted or unsubstituted aryl (where a substituent for substituted aryl is lower alkyl, lower alkoxy, or halogen).
 - [86] In the definition of substituents for the substituted heterocyclic group which may be formed together with the adjoining nitrogen atom, lower alkyl and aralkyl bear the same definitions as the lower alkyl and aralkyl in the definition of formula (Ia), respectively.

The lower alkyl moiety of the lower alkanoyl bears the same definition as the lower alkyl in the definition of formula (Ia). The aryl moiety of aroyl bears the same definition as aryl in the definition of formula (Ia). The heteroaryl moiety of heteroaroyl bears the same definition as heteroaryl in the definition of formula (Ia). Aryl bears the same definition as aryl in the definition of formula (Ia). Lower alkoxy and halogen bear the same definition as the lower alkyl and halogen in the definition of formula (Ia).

5

10

15

20

25

30

Examples of substituents for substituted aryl, substituted naphthyl, substituted heteroaryl, substituted aralkyl, substituted heteroarylalkyl, substituted arylalkenyl, substituted heteroarylalkyl, substituted heteroarylalkynyl, may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 3 substituents, such as lower alkyl, trifluoromethyl, hydroxy, lower alkoxy, trifluoromethoxy, mercapto, lower alkylthio, aryl, NR²⁹R³⁰ (where R²⁹ and R³⁰ may be the same or different and respectively bear the same definitions as the aforementioned R⁹ and R¹⁰), nitro, cyano, CO₂R³¹ (where R³¹ bears the same definitions as the aforementioned R¹¹), CONR³²R³³ (where R³² and R³³ may be the same or different and respectively bear the same definitions as the aforementioned R¹¹), propylenedioxy, or halogen.

[88] In the aforementioned definitions of substituents for substituted aryl, substituted naphthyl, substituted heteroaryl, substituted aralkyl, substituted heteroarylalkyl, substituted arylalkynyl, and substituted heteroarylalkynyl, lower alkyl bears the same definition as the lower alkyl in the definition of formula (Ia). The lower alkyl moiety of lower alkoxy or lower alkylthio bears the same definition as the lower alkyl in the definition of formula (Ia). Aryl bears, the same definition as the aryl in the definition of formula (Ia). The aryl moiety of arylsulfonylmethyl bears the same definition as the aryl in the definition of formula (Ia). Halogen bears the same definition as the halogen in the definition of formula (Ia).

[89] Examples of substituents for substituted lower alkyl, substituted lower alkenyl, substituted lower alkynyl, substituted lower alkoxy, or substituted lower alkylthio may be the same or different, and include one or more, up to the substitutable number of, substituents; preferably 1 to 3 substituents, such as lower alkyl, lower alkenyl, lower alkynyl, hydroxy, lower alkoxy, lower alkoxy lower alkoxy, mercapto, lower alkylthio, cycloalkyl, cycloalkenyl, NR³⁴R³⁵ (where R³⁴ and R³⁵ are same as R⁹ and R¹⁰, respectively), nitro, cyano, CO₂R³⁶ (where R³⁶ is same as R¹¹), aryl, heteroaryl, arylsulfonyl, alicyclic heterocyclic group and halogen.

[90] In the aforementioned definitions of the substituents for substituted lower alkyl, substituted lower alkenyl, substituted lower alkynyl, substituted lower alkoxy, or substituted lower alkylthio, lower alkyl, lower alkenyl, and lower alkynyl bear the same definitions as the lower alkyl, lower alkenyl, and lower alkynyl in the definition of formula (Ia), respectively. The lower alkyl moiety of lower alkoxy and lower alkylthio bears the same definition as the lower alkyl in the definition of formula (Ia). Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like, having 3 to 8 carbons. Cycloalkenyl includes cyclopentenyl, cyclohexenyl, and the like, having 5 to 8 carbons. Lower alkoxy lower alkoxy means a lower alkoxy group which is substituted with lower alkoxy. Aryl bears the same definition as aryl in the definition of formula (Ia). Heteroaryl bears the same definition as heteroaryl in the definition of formula (Ia). The aryl moiety of arylsulfonyl bears the same definition as aryl in the definition of formula (Ia). Examples of alicyclic heterocyclic groups include tetrahydrofuranyl, tetrahydropyranyl, 2-pyrrolidon-1-yl, and the like. Halogen bears the same definition as halogen in the definition of formula (Ia).

5

10

15

20

25

- [91] Exemplary pharmaceutically acceptable salts of Compound (I) include pharmaceutically acceptable acid addition salts or base addition salts, such as: inorganic acid salts, e.g., hydrochlorides, hydrobromides, sulfates, and phosphates; organic acid salts, e.g., methanesulfonates, oxalates, acetates, malonates, succinates, fumarates, maleates, tartrates, and citrates; and base addition salts, e.g., sodium salts, potassium salts, and calcium salts.
- [92] Some species of Compound (I) according to the present invention may have various stereoisomers, regioisomers, tautomers, and the like. It is intended that all such possible isomers and mixtures thereof can be used for the telomerase inhibitor or antitumor agent according to the present invention, the mixture ratio being arbitrarily selected.
- [93] Compound (I) may in itself be commercially available. Any species thereof which are not commercially available or are novel can be synthesized in a method similar to the following method for producing Compound (Ia) or methods individually described in Examples, etc.
 - If any of the defined groups are susceptible to unwanted modification under the described conditions or otherwise unsuitable for practicing the production method described below, it is possible to adopt a method commonly used in synthetic organic chemistry, e.g., protection and deprotection of functional groups to facilitate production [see Protective Groups in Organic Synthesis, T.W. Greene, John Wiley & Sons, Inc. (1981), etc.]. The order of reaction steps, such as introduction of substituents, may be altered if necessary.

[95] Compound (Ia) can be produced through the following reaction step.

where R^1 , R^2 , and R^3 are those defined above.

5

10

15

20

25

[96] Compound (Ia) can be obtained by reacting a 4-oxo-2-thioxoimidazolidine derivative (II), as commercially available or obtained by the method described later, with a carbonyl Compound (III), as commercially available or obtained by the method described later.

[97] The reaction can be carried out in the presence of a base catalyst, in a solvent if necessary. Examples of the base catalyst include piperidine, piperidinium acetate, diethylamine, pyridine, sodium acetate, potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like. Such base catalysts may be used in 0.1 to 1 equivalent of Compound (III). Suitable solvents include alcohols, such as methanol, ethanol, propanol; ethers, such as diethyl ether, tetrahydrofuran, dioxane; hydrocarbons, such as benzene, toluene, xylene; N,N-dimethylformamide; N-methylpyrrolidinone and a combination thereof.

[98] Compound (II) and Compound (III) may be used in equivalent molar amounts, although in some cases Compound (III) may be used in 0.5 to 2 equivalents of Compound (II). The reaction is carried out at a temperature range from room temperature to the boiling point of the solvent, preferably from room temperature to 100 °C. The reaction time is typically from 1 to 50 hours.

[99] Compound (Iaa), i.e., Compound (Ia) in which one of \mathbb{R}^2 or \mathbb{R}^3 is hydrogen, and the other is

(where R¹ and R⁴ are those defined above), can be produced through the following reaction step.

$$S \xrightarrow{R^1} OHC$$
 CHO
 $base$
 OHC
 CHO
 CHO

where R¹ and R⁴ are those defined above.

5

10

15

20

25

[100] Compound (Iaa) can be obtained by reacting Compound (IIIa) with 2 to 4 equivalents of Compound (II) in a manner similar to obtaining Compound (Ia) from Compound (II) and Compound (III).

[101] Next, a method for producing Compound (II) to serve as a starting material will be described.

[102] Compound (IIa), i.e., Compound (II) in which R¹ is not hydrogen, can be obtained through the following reaction steps.

where R^{1a} represents a group according to the definition of aforementioned R¹ other than hydrogen; and X represents chlorine, bromine, iodine, p-toluenesulfonyloxy or methanesulfonyloxy.

[103] Compound (V) can be produced in a method similar to that disclosed in *Tetrahedron Letters*, vol. 38, pp. 5831-5834 (1997). Briefly, in an ether solvent such as diethyl ether, tetrahydrofuran, or dioxane, or in an aromatic hydrocarbon solvent such as benzene, toluene, or xylene, Compound (IV) is allowed to react with R^{1a}OH (where R^{1a} is that defined above) for 1 to 24 hours at a temperature range of from room temperature to the boiling point of the solvent in the presence of triphenylphosphine or the like, and diethyl azodicarboxylate, diisopropyl azodicarboxylate, or the like. Or alternatively, in an alcohol solvent such as ethanol, methanol or propanol in an ether solvent such as diethyl ether, tetrahydrofuran or dioxane, or in a solvent such as N,N-dimethylformamide or N-methylpyrrolidinone, Compound (IV) is allowed to react with R^{1a}X (where R^{1a} and X are those defined above) for 1 to 24 hours at a temperature range of from room temperature to the boiling point of the solvent in the presence of a base, such as potassium carbonate, sodium carbonate, sodium hydride, sodium ethoxide or potassium tert-butoxide. Thereafter, in an

ether solvent such as diethyl ether, tetrahydrofuran, or dioxane, or in a halomethane solvent, such as methylene chloride or chloroform, treatment of the product with a thiol, such as mercaptoacetic acid or ethyl mercaptoacetate is performed for 1 to 24 hours at a temperature in the range from room temperature to the boiling point of the solvent, if necessary in the presence of an organic base such as triethylamine. As a result, the 2,4-dinitrobenzenesulfonyl group is deprotected, whereby Compound (V) can be produced.

5

10

15

20

25

Next, the Compound (V) and benzoyl isothiocyanate are allowed to react for 1 [104] to 24 hours at a temperature range of from room temperature to the boiling point of the solvent, e.g., halomethane solvent, such as methylene chloride or chloroform; or ether solvent, such as diethyl ether, tetrahydrofuran or dioxane. Then, in the presence of an organic base such as propylamine or benzylamine, and preferably in the presence of aminomethylated polystyrene, a treatment is performed as to the product for 1 to 24 hours at a temperature in the range from room temperature to the boiling point of the solvent in a halomethane solvent such as methylene chloride or chloroform, or in an ether solvent such as ether, tetrahydrofuran, or dioxane, thereby effecting cyclization reaction and deprotection of the benzoyl group after cyclization. Alternatively, Compound (V) and sodium thiocyanate, potassium thiocyanate or the like are allowed to react for 1 to 24 hours at a temperature in the range from room temperature to the boiling point of the solvent in an alcohol solvent such as methanol, ethanol, or propanol, or in a mixed solvent containing the same and water, if necessary with pH adjustment using acetic acid or the like. Thus, Compound (IIa) can be produced.

[105] Next, a method for producing Compound (III) to serve as a starting material will be described.

[106] Compound (IIIa), i.e,. Compound (III) in which one of R² or R³ is hydrogen and the other is

(where R⁴ is that defined above), can be produced through the following reaction steps.

$$X^{a}$$
 X^{a}
 X^{a}

where R⁴ and X are those defined above; and X^a represents a group according to the definition of aforementioned X other than chlorine.

5

10

15

20

In a halomethane solvent such as methylene chloride or chloroform, or in an ether solvent such as ether, tetrahydrofuran, or dioxane, if necessary in the presence of an organic base such as triethylamine, pyridine, or 4-dimethylaminopyridine, Compound (VI) and di-tert-butyl dicarbonate are allowed to react for 1 to 24 hours at a temperature in the range from room temperature to the boiling point of the solvent, whereby a compound, in which the amino group in Compound (VI) is protected can be obtained. After an organic lithium reagent, such as n-butyl lithium or methyl lithium, is allowed to react with the obtained compound at a temperature range of from -78 °C to 0 °C for 10 minutes to 12 hours in an ether solvent such as diethyl ether, tetrahydrofuran, or dioxane, a formylating reagent such as N,N-dimethylformamide is allowed to react with the product for 30 minutes to 24 hours at a temperature in the range from -78°C to room temperature, whereby Compound (VII) can be produced.

[108] Compound (VIII) can be produced by adding an organic acid such as trifluoroacetic acid or a mineral acid such as hydrogen chloride or hydrogen bromide to Compound (VII) in a halomethane solvent such as methylene chloride or chloroform, or in an ether solvent such as ether, tetrahydrofuran, or dioxane, and carrying out a treatment of the mixture at a temperature range of from 0°C to the boiling point of the solvent for 1 to 24 hours.

[109] Compound (IIIa) can be produced by allowing Compound (VIII) to react with R⁴X (where R⁴ and X are those defined above) at a temperature range of from room temperature to the boiling point of the solvent for 1 to 24 hours in an ether solvent such as

ether, tetrahydrofuran, or dioxane, or in a solvent such as N,N-dimethylformamide or N-methylpyrrolidinone, in the presence of a base such as sodium hydride, potassium hydride, or potassium tert-butoxide.

[110] Compound (IIIba), i.e., Compound (III) in which one of R² or R³ is hydrogen and the other is

(where R⁷ and R⁸ are those defined above), can be produced through the following reaction steps.

OHC
$$(IX)$$
 R^7R^8NH $(IIIba)$ R^7 R^7 R^7R^8NH $(IIIba)$ (X)

where R^7 and R^8 are those defined above.

5

15

20

25

Chem., vol. 43, pp. 4849-4853 (1978)) to react with 1 to 4 equivalents, and preferably 1 to 2 equivalents of amine R⁷R⁸NH, at a temperature range of from -78 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 48 hours, in a solvent such as N,N-dimethylformamide or tetrahydrofuran in the absence of a base, or in the presence of a base such as 1 to 4 equivalents, preferably 1 to 2 equivalents of potassium carbonate, sodium carbonate, cesium carbonate, sodium hydride, potassium tert-butoxide or the like, or 1 to 4 equivalents, preferably 1 to 1.5 equivalents of n-butyl lithium or the like.

[112] Alternatively, Compound (IIIba) can also be produced by reacting Compound (X) (*Synth. Commun.*, vol. 17, pp. 401-407 (1987)) with 1 to 4 equivalents, preferably 1 to 2 equivalents, of amine R⁷R⁸NH at a temperature range of from 0 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 48 hours, in a halomethane solvent such as methylene chloride or chloroform, or in a solvent such as N,N-dimethylformamide or tetrahydrofuran, in the presence of 1 to 4 equivalents, and preferably 1 to 2 equivalents of a condensing agent such as dicyclohexylcarbodiimide or 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. Alternatively, Compound (IIIba) can also be produced by allowing an acid halide - which can be produced by halogenating Compound (X) in an inert solvent such as methylene chloride by employing 1 equivalent to the solvent amount, preferably 1 to 2 equivalents, of a halogenating agent such as thionyl chloride, at a temperature range of from 0 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 5 hours - to react with 1 to 4 equivalents, preferably 1 to 2 equivalents, of a primary or secondary amine at a temperature range of from 0 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 24 hours, in a solvent such as methylene chloride, chloroform, N,N-dimethylformamide, tetrahydrofuran, 1,2-dimethoxyethane, or 1,4-dioxane, in the presence of 1 equivalent to the solvent amount, preferably 1 to 5 equivalents of an organic base such as pyridine or triethylamine.

[113] Compound (IIIbb), i.e., Compound (III) in which one of \mathbb{R}^2 or \mathbb{R}^3 is hydrogen and the other is

(where R^{6a} represents a group according to the definition of R^{6} other than hydrogen; and R^{7} and R^{8} are those defined above), can be produced through the following reaction step:

OHC
$$R^{6a}$$
 OHC R^{6a} OHC R^{6a}

where, R^{6a} , R^7 , R^8 and X are those defined above.

5

10

15

25

[114] Compound (IIIbb) can be produced by allowing Compound (IIIba) and 1 to 4 equivalents, preferably 1 to 2 equivalents of a compound represented as R^{6a}-X (where R^{6a} and X are those defined above) to react at a temperature range of from 0 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 48 hours, in a inert solvent such as N,N-dimethylformamide, tetrahydrofuran, dimethoxyethane, or 1,4-dioxane, in the presence of an organic base such as 1 to 4 equivalents, preferably 1 to 2 equivalents of sodium carbonate,

cesium carbonate, sodium hydride or potassium tert-butoxide, or 1 to 4 equivalents, preferably 1 to 1.5 equivalents of 2-(tert-butylimino)-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphospholine, 2-(tert-butylimino)-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphospholine on polystyrene, or 1,8-diazabicyclo[4.3.0]undec-7-ene.

5 [115] Alternatively, Compound (IIIbb) can also be produced through the following reaction steps.

where R^{6a}, R⁷ and R⁸ are those defined above.

10

20

[116] Compound (XI) can be produced from a compound represented by R^{6a}NH₂ (where R^{6a} is that defined above) and 2,5-dimethoxytetrahydrofuran, according to a method similar to that described in literature [*J. Org. Chem.*, vol. 63, pp. 6715-6718 (1998)].

[117] Compound (XII) can be produced from Compound (XI) and trichloroacetyl chloride in a method similar to that described in literature [*J. Org. Chem.*, vol. 43, pp. 4849-4853 (1978)].

15 [118] Compound (XIII) can be produced by subjecting Compound (XII) to formylation in a method similar to that described in literature [*J. Org. Chem.*, vol. 43, pp. 4849-4853 (1978)].

[119] Compound (IIIbb) can be produced from Compound (XIII) and a compound represented by R⁷R⁸NH in a method similar to that for obtaining Compound (IIIba) from Compound (IX).

[120] Alternatively, Compound (IIIbb) can also be produced through the following reaction steps.

OHC (XIII)

$$CCI_3$$
 CCI_3
 CCI_3

where R^{6a}, R⁷ and R⁸ are those defined above.

[121] Compound (XV) can be produced from Compound (XIV) in a method similar to that for obtaining Compound (IIIbb) from Compound (IIIba). Alternatively, Compound (XV) can be produced by allowing Compound (XIII) and 1 to 4 equivalents, preferably 1 to 2 equivalents of sodium methoxide to react in methanol at a temperature range of from 0 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 48 hours.

5

10

15

20

25

- [122] Compound (XVI) can be produced by hydrolyzing Compound (XV) in a solvent such as methanol or ethanol, in the presence of 1 to 4 equivalents, preferably 1 to 2 equivalents of an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of lithium hydroxide or the like, at a temperature range of from 0 °C to the boiling point of the solvent, preferably at a temperature range of from room temperature to the boiling point of the solvent, for 1 to 72 hours, preferably 1 to 48 hours.
- [123] Compound (IIIbb) can be produced from Compound (XVI) in a method similar to that for producing Compound (IIIba) from Compound (X).
- [124] A desired compound according to each of the above-described production method may be isolated and purified by a purification method which is commonly used in synthetic organic chemistry, e.g., filtration, extraction, washing, drying, concentration, recrystallization, and/or various chromatography techniques. Furthermore, the desired compound may be purified by a purification method which is commonly used in general parallel synthesis methods, e.g., methods using scavenger resin and/or ion exchange resin techniques.
- [125] A salt of Compound (I) can be obtained from a free form of Compound (I) by forming a salt by usual methods. For example, Compound (I) can be dissolved or suspended in an appropriate solvent and a predetermined acid or base can be added. The resulting salt can then be isolated and/or purified. Alternatively, a salt of Compound (I) can be obtained directly from the reaction and optionally be purified.
- [126] Compound (I) or a pharmaceutically acceptable salt thereof may be in the form of an adduct with water or various solvents. Such adducts are also encompassed within the present invention.
- [127] Compound (I) or a pharmaceutically acceptable salt thereof may be used as such or in various forms of pharmaceutical formulations depending on the pharmacological effects and purpose of administration thereof. When used as a drug, an effective amount of Compound (I) or a pharmaceutically acceptable salt thereof may be uniformly mixed with a

pharmaceutically acceptable carrier. Such a carrier may be in a wide range of forms depending on the particular formulation desired for administration. Such a drug composition is preferably in a unit dosage form appropriate for oral or parenteral administration (e.g., via injection).

- Tablets can be formulated using any of the conventional methods known to one skill in the art and can include an excipient, a disintegrator, a lubricant, a binder and/or a surfactant. Exemplary excipients include lactose, glucose, sucrose, mannitol, methyl cellulose, and the like. Exemplary disintegrators include starch, sodium alginate, carboxymethyl cellulose calcium, crystalline cellulose, and the like. Exemplary lubricants include magnesium stearate, talc, and the like. Exemplary binders include gelatin, polyvinylalcohol, polyvinylpyrrolidone, hydroxypropyl cellulose, methyl cellulose, and the like. Exemplary surfactants include sucrose fatty acid esters, sorbitan fatty acid esters, and the like. Such tablets preferably contain 1 to 300 mg of an active ingredient per tablet.
 - [129] Granules can be prepared using any of the conventional methods known to one skilled in the art by adding suitable components, e.g., excipients such as lactose or sucrose; disintegrators such as starch; and/or binders such as gelatin. Similarly, powder forms can be prepared using any of the conventional methods known to one skilled in the art by adding suitable components, for example, an excipient, such as lactose or mannitol.

15

20

25

- [130] Capsule formulation can include gelatin, water, sucrose, gum Arabic, sorbitol, glycerin, crystalline cellulose, magnesium stearate talc, and/or the like. Such capsules preferably contain 1 to 300 mg of an active ingredient per capsule.
- [131] Injectable form can include a solvent, such as water, saline, vegetable oils (e.g., olive oil or peanut oil), ethyl oleate or propylene glycol; a solubilizer, such as sodium benzoate, sodium salicylate, and urethane; an isotonizing agent, such as sodium chloride or glucose; a preservative, such as phenol, cresol, p-hydroxy benzoate, or chlorobutanol; an antioxidant, such as ascorbic acid or sodium pyrosulfite; and the like.
- [132] Compound (I) or a pharmaceutically acceptable salt thereof can be orally or parenterally (e.g., via injection) administered. Although the effective dose and administration frequency may vary depending on the mode of administration, the age, weight, and/or symptoms of each patient and/or the like, it is generally preferable to administer 0.01 to 20 mg/kg of Compound (I) or a pharmaceutically acceptable salt thereof, over one to four times per day.

[133] Specific examples Compound (I) are shown in Tables 1 to 3 below. However, it should be appreciated that the scope of the present invention is not limited to such specific examples.

Table 1-1

Cpd. No.	R ¹	R ²	Instrumental Data
1	—(CH ₂) ₂ CH ₃		MS m/z (M-H) ⁻ 245
2	——(СН ₂) ₂ СН ₃	→ ^S	MS m/z (M-H) ⁻ 251
3	—(СН ₂) ₂ СН ₃	NC NC	MS m/z (M-H) ⁻ 270
4	—(СН ₂) ₂ СН ₃	—√N	MS m/z (M-H) ⁻ 246
5	—(СН ₂) ₂ СН ₃	OCH ₃	MS m/z (M-H) ⁻ 275
6	—(CH ₂) ₂ CH ₃		MS n√z (M-H) ⁻ 301
7	—(СН ₂) ₂ СН ₃	- F	MS m/z (M-H) ⁻ 263
8	—(СН ₂) ₂ СН ₃	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 305
9	—(СН ₂) ₂ СН ₃	CH ₃	MS m/z (M-H) ⁻ 287
10	—(CH ₂) ₂ CH ₃		MS m/z (M-H) ⁻ 290
11	—(СН ₂) ₂ СН ₃		MS m/z (M-H) ⁻ 337
12	—(CH ₂) ₂ CH ₃	OCH ₃	MS m/z (M-H) ⁻ 382

Table 1-2

Cpd. No.	R ¹	R ²	Instrumental Data
13	—(CH ₂) ₂ ОСН ₃	→	MS m/z (M-H) ⁻ 261
14	—(CH ₂) ₂ OCH ₃	\prec s	MS m/z (M-H) ⁻ 267
15	—(CH ₂) ₂ OCH ₃	NC NC	MS m/z (M-H) ⁻ 286
16	—(CH ₂) ₂ OCH ₃	→ N	MS m/z (M-H) ⁻ 262
17	—(CH ₂) ₂ OCH ₃	OCH ₃	MS m/z (M-H) ⁻ 291
18	(CH ₂) ₂ OCH ₃	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 317
19	—(СН ₂) ₂ ОСН ₃	- F	MS m/z (M-H) ⁻ 279
20	—(CH ₂) ₂ ОСН ₃	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 321
21	—(CH ₂) ₂ ОСН ₃	CH ₃	MS m/z (M-H) ⁻ 303
22	—(CH ₂) ₂ OCH ₃		MS m/z (M-H) ⁻ 305
23	—(CH ₂) ₂ ОСН ₃		MS m/z (M-H) ⁻ 353
24	(CH ₂) ₂ OCH ₃	OCH ₃	MS m/z (M-H) ⁻ 397

Table 1-3

Cpd. No.	R ^I	R ²	Instrumental Data
25	$-(CH_2)_2$ CH_3 CH_3	-	MS m/z (M-H) ⁻ 273
26	-(CH ₂) ₂ $-$ CH ₃	~s	MS m/z (M-H) ⁻ 279
27	-(CH ₂) ₂ $-$ CH ₃	NC NC	MS m/z (M-H) ⁻ 298
28	$(CH_2)_2$ CH_3 CH_3	—√N	MS m/z (M-H) ⁻ 274
29	$(CH_2)_2$ CH_3 CH_3	OCH ₃	MS m/z (M-H) ⁻ 303
30	-(CH ₂) ₂ $-$ CH ₃	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 329
31	$(CH_2)_2$ CH_3 CH_3	——F	MS m/z (M-H) ⁻ 291
32	$-(CH_2)_2$ CH_3 CH_3	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 333
33	-(CH ₂) ₂ $-$ CH ₃	CH ₃	MS m/z (M-H) ⁻ 315
34	$(CH_2)_2$ CH_3 CH_3		MS m/z (M-H) ⁻ 317
35	-(CH ₂) ₂ $-$ CH ₃		MS n/z (M-H) ⁻ 365
36	$(CH_2)_2$ CH_3 CH_3	OCH ₃	MS m/z (M-H) ⁻ 409

Table 1-4

Cpd. No.	R¹	R ²	Instrumental Data
37	—(CH ₂) ₂ —S	_	MS m/z (M-H) ⁻ 313
38	—(CH ₂) ₂ — S	→ ^s	MS m/z (M-H) ⁻ 319
39	—(CH ₂) ₂ —S	NC NC	MS m/z (M-H) ⁻ 338
40	$-(CH_2)_2$	—√N	MS m/z (M-H) ⁻ 314
41	—(CH ₂) ₂ ——S	OCH ₃	MS m/z (M-H) 343
42	—(CH ₂) ₂ — S	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 369
43	—(CH ₂) ₂ — S	——F	MS m/z (M-H) ⁻ 331
.44	—(CH ₂) ₂ — S	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 373
45	$-(CH_2)_2$	CH ₃	MS m/z (M-H) ⁻ 355
46	$-(CH_2)_2$		MS m/z (M-H) ⁻ 357
47	$-(CH_2)_2$ S		MS m/z (M-H) ⁻ 405
48	—(CH ₂) ₂ — S	OCH ₃	MS m/z (M-H) ⁻ 449

Table 1-5

49 — CH ₂ —	MS m/z (M-H) ⁻ 293
50 —CH ₂ —	MS m/z (M-H) ⁻ 299
51 —CH ₂ —	MS m/z (M-H) ⁻ 318
52 —CH ₂ —	MS m/z (M-H) 294
53 —CH ₂ —	OCH ₃ MS m/z (M-H) ⁻ 323
54 —CH ₂ —	C(CH ₃) ₃ MS m/z (M-H) ⁻ 349
55 —CH ₂ —	MS m/z (M-H) ⁻ 311
56 —CH₂— → H₃CÓ	MS m/z (M-H) 353
57 —CH ₂ —	CH ₃ CH ₃ CH ₃ MS m/z (M-H) ⁻ 335
58 —CH ₂ —	MS m/z (M-H) ⁻ 337
59 —CH ₂ —	MS m/z (M-H) ⁻ 385 H NMR: See Example
60 —CH ₂ —	MS m/z (M-H) 429

Table 1-6

Cpd. No.	R ¹	R ²	Instrumental Data
61	—CH ₂ —	-	MS m/z (M-H) ⁻ 299
62	—CH ₂ —	→ ^s	MS m/z (M-H) ⁻ 305
63	—CH ₂ —	NC NC	MS m/z (M-H) ⁻ 324
64	—CH ₂ —	— N	MS m/z (M-H) ⁻ 300
65	—CH ₂ —	———ОСН3	MS m/z (M-H) ⁻ 329
66	—CH ₂ —	C(CH ₃) ₃	MS m/z (M-H) ⁻ 355
67	—CH ₂ —	- F	MS m/z (M-H) ⁻ 317
68	—CH ₂ —	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 359
69	—CH ₂ —	CH ₃	MS m/z (M-H) ⁻ 341
70	—CH ₂ —		MS m/z (M-H) ⁻ 343
71	—CH ₂ —		MS m/z (M-H) ⁻ 391
72	—CH ₂ —	OCH ₃	MS m/z (M-H) ⁻ 435

Table 1-7

Cpd. No.	R ¹	R ²	Instrumental Data
73	—CH ₂ —		MS m/z (M-H) ⁻ 301
74	$-CH_2 \longrightarrow 0$	~s	MS m/z (M-H) ⁻ 307
75	$-CH_2 \longrightarrow 0$	NC NC	MS m/z (M-H) ⁻ 326
76	$-CH_2$	N	MS m/z (M-H) ⁻ 302
77	—СH ₂ —	—СТ ОСН3	MS m/z (M-H)* 331
78	$-CH_2$	-C(CH ₃) ₃	MS m/z (M-H)* 357
79	$-CH_2$ $\stackrel{O}{\longrightarrow}$	-F	MS m/z (M-H) ⁻ 319
80	$-CH_2 \longrightarrow O$	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 361
81	—сн ₂ —	CH ₃	MS m/z (M-H) ⁻ 343
82	$-CH_2$		MS m/z (M-H) ⁻ 345
83	$-CH_2$ \longrightarrow CH_2		MS m/z (M-H) ⁻ 393
84	—сн ₂ —	OCH ₃	MS m/z (M-H) ⁻ 437

Table 1-8

Cpd. No.	R ¹	R ²	Instrumental Data
85	$-CH_2$		MS m/z (M-H) ⁻ 327
86	—CH ₂ ——Cl	~s	MS m/z (M-H) ⁻ 333
87	—CH ₂ ——CI	NC NC	MS m/z (M-H) ⁻ 352
88	—CH ₂ ——CI	—√_N	MS m/z (M-H) ⁻ 328
89	CH ₂	———OCH3	MS m/z (M-H) ⁻ 357
90	—CH ₂ ——CI	——————————————————————————————————————	MS m/z (M-H) ⁻ 383
91	—CH ₂ ——CI	——F	MS m/z (M-H) ⁻ 345
92	—CH ₂ ——CI	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 387
93	—CH ₂ ——CI	CH ₃	MS m/z (M-H) ⁻ 369
94	—CH ₂ ——CI		MS n√z (M-H) ⁻ 371
95	—CH ₂ ——CI		MS m/z (M-H) ⁻ 419
96	-CH ₂ -CI	OCH ₃	MS π/z (M-H) ⁻ 463

Table 1-9

Cpd. No.	R ¹	R ²	Instrumental Data	
97	—(CH ₂) ₂ CH ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 289	
98	—(CH ₂) ₂ CH ₃	SCH ₃	MS m/z (M-H) ⁻ 291	
99	—(СН ₂) ₂ СН ₃		MS m/z (M-H) ⁻ 295	
100	—(CH ₂) ₂ CH ₃	N CH ₃	MS m/z (M-H) ⁻ 298	
101	(CH ₂) ₂ CH ₃	H ₃ C	MS m/z (M-H) ⁻ 259	
102	—(СН ₂) ₂ СН ₃	$ N$ CH_3	MS m/z (M-H) ⁻ 302	
103	—(CH ₂) ₂ CH ₃	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 303	
104	——(CH ₂) ₂ CH ₃	OCH ₃	MS m/z (M-H) ⁻ 305	
105	(CH ₂) ₂ CH ₃	-CF ₃	MS m/z (M-H) ⁻ 313	
106	—(CH ₂) ₂ CH ₃		MS m/z (M-H) ⁻ 321	
107	—(СН ₂) ₂ СН ₃	F	MS m/z (M-H)` 297	
108	(CH ₂) ₂ CH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 333	

Table 1-10

Cpd. No.	R ¹	R ²	Instrumental Data
109	—(CH ₂) ₂ ОСН ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 305
110	──(CH ₂) ₂ OCH ₃	SCH ₃	MS m/z (M-H) ⁻ 307
111	—-(СН ₂) ₂ ОСН ₃		MS m/z (M-H) ⁻ 311
112	—(CH ₂) ₂ ОСН ₃	N CH ₃	MS m/z (M-H) ⁻ 314
113	—(CH ₂) ₂ ОСН ₃	H ₃ C	MS m/z (M-H) ⁻ 275
114	—(CH ₂) ₂ OCH ₃	$ N$ CH_3	MS m/z (M-H) ⁻ 318
115	—(CH ₂) ₂ ОСН ₃	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 319
116	· (CH ₂) ₂ OCH ₃	OCH ₃	MS m/z (M-H) ⁻ 321
117	—(CH ₂) ₂ OCH ₃	————CF3	MS m/z (M-H) ⁻ 329
118	—(CH ₂) ₂ OCH ₃		MS m/z (M-H) ⁻ 337
119	—(CH ₂) ₂ OCH ₃	F CI	MS m/z (M-H) ⁻ 313
120	(CH ₂) ₂ OCH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 349

Table 1-11

Cpd. No.	R ¹	R ²	Instrumental Data
121	$(CH_2)_2$ CH_3 CH_3	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 317
122	-(CH ₂) ₂ $-$ CH ₃	SCH ₃	MS m/z (M-H) ⁻ 319
123	$(CH_2)_2$ CH_3 CH_3		MS m/z (M-H) ⁻ 323
124	$-(CH_2)_2$ CH_3 CH_3	N,CH ₃	MS m/z (M-H) ⁻ 326
125	$-(CH_2)_2$ CH_3 CH_3	H ₃ C	MS m/z (M-H) ⁻ 287
126	$(CH_2)_2$ $(CH_3)_2$ $(CH_3)_2$	$-\!$	MS m/z (M-H) ⁻ 330
127	$(CH_2)_2$ $(CH_3)_2$ $(CH_3)_3$	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 331
128	-(CH2)2 - CH3 $CH3$	OCH ₃	MS m/z (M-H) ⁻ 333
129	$-(CH_2)_2$ CH_3 CH_3	CF_3	MS m/z (M-H) ⁻ 341
130	$-(CH_2)_2$ CH_3 CH_3	-	MS m/z (M-H) ⁻ 349
131	$(CH_2)_2$ CH_3 CH_3	F Cl	MS m/z (M-H) ⁻ 325
132	$-(CH_2)_2$ CH_3 CH_3	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 361

Table 1-12

Cpd. No.	R ¹	R ²	Instrumental Data
133	$-(CH_2)_2$	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 357
134	—(CH ₂) ₂ —S	SCH ₃	MS m/z (M-H) ⁻ 359
135	$-(CH_2)_2$ S		MS m/z (M-H) ⁻ 363
136	—(CH ₂) ₂ —S	N,CH3	MS m/z (M-H) ⁻ 366
137	$-(CH_2)_2$	H ₃ C	MS m/z (M-H) ⁻ 327
138	—(CH ₂) ₂ —S	$ \stackrel{H}{\sim}$ $\stackrel{O}{\sim}$ CH_3	MS m/z (M-H) ⁻ 370
139	—(CH ₂) ₂ —S	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 371
140	$-(CH_2)_2$	OCH ₃	MS m/z (M-H) ⁻ 373
141	—(CH ₂) ₂ — S	CF ₃	MS m/z (M-H) ⁻ 381
142	—(CH ₂) ₂ — S		MS m/z (M-H) ⁻ 389
143	—(CH ₂) ₂ — S	——F	MS m/z (M-H) ⁻ 365
144	—(CH ₂) ₂ —S	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 401

Table 1-13

Cpd. No.	R ¹	R ²	Instrumental Data
145	—СH ₂ —	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 337
146	$-CH_2$	SCH ₃	MS m/z (M-H) ⁻ 339
147	—CH ₂ —		MS m/z (M-H) ⁻ 343
148	—CH ₂ —	N,CH ₃	MS m/z (M-H) ⁻ 346
149	—CH ₂ —	H ₃ C	MS m/z (M-H) ⁻ 307
150	—CH ₂ —	$-\!$	MS m/z (M-H) ⁻ 350
151	—CH ₂ —	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 351
152	—CH ₂ —	OCH ₃	MS m/z (M-H) ⁻ 353
153	—CH ₂ —	————CF ₃	MS m/z (M-H) ⁻ 361
154	—CH ₂ —		MS nv/z (M-H) ⁻ 369
155	$-CH_2$	F Cl	MS m/z (M-H) ⁻ 345
156	—CH ₂ —	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 381

Table 1-14

Cpd. No.	R ¹	R ²	Instrumental Data
157	—CH ₂ —	H ₃ CH ₂ CO	MS m/z (M-H) 343
158	$-CH_2$	SCH ₃	MS m/z (M-H) ⁻ 345
159	—CH ₂ —		MS m/z (M-H) ⁻ 349
160	—CH ₂ —	N CH ₃	MS m/z (M-H) ⁻ 352
161	—CH ₂ —	H ₃ C	MS m/z (M-H) ⁻ 313
162	$-CH_2$	$ N$ CH_3	MS m/z (M-H) ⁻ 356
163	—CH ₂ —	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 357
164	—CH ₂ —	OCH ₃	MS m/z (M-H) ⁻ 359
165	—CH ₂ —	——————————————————————————————————————	MS m/z (M-H) ⁻ 367
166	—СH ₂ —		MS m/z (M-H) ⁻ 375
167	—CH ₂ —	- F CI	MS m/z (M-H) ⁻ 351
168	—сн ₂ —	(H ₃ C) ₃ CS	MS m/z (M-H) 387

Table 1-15

Cpd. No.	R ¹	R ²	Instrumental Data
169	—CH ₂ ——O—	H ₃ CH ₂ CO	MS m/z (M-H)* 345
170	$-CH_2 \longrightarrow 0$	SCH ₃	MS m/z (M-H)* 347
171	$-CH_2$		MS m/z (M-H) ⁻ 351
172	—сн ₂ —О	N,CH3	MS ṁ/z (M-H)⁻ 354
173	$-CH_2$	H ₃ C	MS m/z (M-H) ⁻ 31 <i>5</i>
174	$-CH_2 \longrightarrow 0$	$-\!$	MS m/z (M-H) ⁻ 358
175	$-CH_2$	CH ₃ OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 359
176	$-CH_2 \longrightarrow O$	OCH ₃	MS m/z (M-H) - 361
177	$-CH_2$	——————————————————————————————————————	MS m/z (M-H) ⁻ 369
178	$-CH_2$		MS m/z (M-H) ⁻ 377
179	$-CH_2$	-F	MS m/z (M-H) ⁻ 353
180	—CH ₂ —	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 389

Table 1-16

Cpd. No.	R¹	R ²	Instrumental Data
181	—СH ₂ —СI	₃CH₂CO	MS m/z (M-H) ⁻ 371
182	—CH ₂ ——Cl	SCH ₃	MS m/z (M-H) ⁻ 373
183	—СH ₂ —СI		MS nv/z (M-H) [*] 377
184	—CH ₂ ——CI	→ CH ₃	MS m/z (M-H) ⁻ 380
185	—CH ₂ ——CI	H ₃ C	MS m/z (M-H) ⁻ 341
186	$-CH_2$ $-CI$	$-\!$	MS m/z (M-H) ⁻ 384
187	—CH ₂ ——CI	CH ₃ OCH ₃	MS m/z (M-H)` 385
188	—CH ₂ ——CI	OCH ₃	MS m/z (M-H) ⁻ 387
189	—СH ₂ —СI	——————————————————————————————————————	MS m/z (M-H) ⁻ 395
190	—СH ₂ —СІ		MS m/z (M-H) ⁻ 403
191	—CH ₂ ——CI	- F Cl	MS m/z (M-H) ⁻ 379
192	—СH ₂ —СI	H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 415

Table 1-17

Cpd. No.	R ¹	R ²	Instrumental Data
193	CH ₃	-	MS m/z (M-H) ⁻ 271
194	CH ₃	→ ^s	MS m/z (M-H) ⁻ 277
195	CH ₃	NC NC	MS m/z (M-H) ⁻ 296
196	CH ₃	—√N	MS m/z (M-H) ⁻ 272
197	CH ₃	——OCH ₃	MS m/z (M-H) ⁻ 301
198	CH ₃	——————————————————————————————————————	MS m/z (M-H) ⁻ 327
199	CH ₃	———F	MS m/z (M-H) ⁻ 289
200	CH ₃	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 331
201	CH ₃	—————————————————————————————————————	MS m/z (M-H) ⁻ 313
202	CH ₃		MS m/z (M-H) ⁻ 315
203	CH ₃		MS m/z (M-H) ⁻ 363
204	CH ₃	OCH ₃	MS m/z (M-H)* 407

Table 1-18

Cpd. No.	R ¹	R^2	Instrumental Data
205	—CH ₂ —	$\overline{}$	MS m/z (M-H) ⁻ 257
206	—СH ₂ —	→ ^s	MS m/z (M-H) ⁻ 263
207	—CH ₂ —	NC NC	MS m/z (M-H) ⁻ 282
208	—СH ₂ —	— N	MS m/z (M-H) ⁻ 258
209	—CH ₂ —	—С ОСН3	MS m/z (M-H) ⁻ 287
210	—CH ₂ —	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 313
211	— СН ₂ —	——F	MS n√z (M-H)` 275
212	—СH₂—<	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 317
213	— СН ₂ —	CH ₃	MS m/z (M-H) ⁻ 299
214	— СН₂ — <		MS m/z (M-H) ⁻ 301
215	—сн ₂ —<		MS m/z (M-H) ⁻ 349
216	—сн ₂ —	OCH ₃	MS m/z (M-H) ⁻ 393

Table 1-19

Cpd. No.	R ¹	R ²	Instrumental Data
217	$-CH_2$	-	MS m/z (M-H) ⁻ 287
218	—CH ₂ —СО	→ ^S	MS m/z (M-H) ⁻ 293
219	$-CH_2$	NC NC	MS m/z (M-H) ⁻ 312
220	$-CH_2$	—√N	MS m/z (M-H)⁻ 288
221	$-CH_2-\bigcirc O$	——ОСН3	MS m/z (M-H) ⁻ 317
222	—сн ₂ —Со	——————————————————————————————————————	MS m/z (M-H) ⁻ 343
223	—сн ₂ —Со	- F	MS m/z (M-H) ⁻ 305
224	$-CH_2$	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 347
225	$-CH_2$	CH ₃	MS m/z (M-H) ⁻ 329
226	$-CH_2$ \bigcirc \bigcirc		MS m/z (M-H)⁻ 331
227	$-CH_2$		MS m/z (M-H) ⁻ 379
228	—СH ₂ —СО	OCH ₃	MS m/z (M-H) ⁻ 423

Table 1-20

Cpd. No.	R ¹	R ²	Instrumental Data
229	—CH ₂ —		MS m/z (M-H) ⁻ 297 ¹ H NMR: See Example
230	—CH ₂ —	→ ^s	MS m/z (M-H) ⁻ 303
231	—CH ₂ —	NC NC	MS m/z (M-H) ⁻ 322
232	—CH ₂ —	— N	MS m/z (M-H) ⁻ 298
233	—CH ₂ —	→OCH ₃	MS m/z (M-H) ⁻ 327
234	—CH ₂ —	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 353
235	—CH ₂ —	——F	MS m/z (M-H) 315
236	—CH ₂ —	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 357
237	—CH ₂ —	—Сн ₃	MS m√z (M-H) ⁻ 339
238	—СH ₂ —		MS m/z (M-H) ⁻ 341
239	—СH ₂ —		MS m/z (M-H) ⁻ 389
240	—CH ₂ —	OCH ₃	MS m/z (M-H)⁻ 433

Table 1-21

241 — CH ₂ — S — S — MS m/z (M-H) ² 299 242 — CH ₂ — S — MS m/z (M-H) ² 305 243 — CH ₂ — S — MS m/z (M-H) ² 324 244 — CH ₂ — S — OCH ₃ — MS m/z (M-H) ² 329 245 — CH ₂ — S — C(CH ₃) ₃ — MS m/z (M-H) ² 329 246 — CH ₂ — S — MS m/z (M-H) ² 355 247 — CH ₂ — S — MS m/z (M-H) ² 317 248 — CH ₂ — S — MS m/z (M-H) ² 359 MS m/z (M-H) ² 359	Cpd. No.	R ¹	R ²	Instrumental Data
243 $-CH_2$ S N MS m/z (M-H) 324 244 $-CH_2$ S N MS m/z (M-H) 329 245 $-CH_2$ S C(CH ₃) ₃ MS m/z (M-H) 355 247 $-CH_2$ S MS m/z (M-H) 355 MS m/z (M-H) 355 ANS m/z (M-H) 355 MS m/z (M-H) 355 MS m/z (M-H) 355	241	$-CH_2$		MS m/z (M-H) ⁻ 299
244 $-CH_2$ NC NC NS m/z (M-H) 300 245 $-CH_2$ S $-CH_2$ S $-C(CH_3)_3$ MS m/z (M-H) 355 247 $-CH_2$ F MS m/z (M-H) 317 248 $-CH_2$ S $-CH_2$ MS m/z (M-H) 359 MS m/z (M-H) 359	242	$-CH_2$	→ ^S	MS m/z (M-H) ⁻ 305
244 — CH_2 S $MS m/z (M-H)^3 300$ 245 — CH_2 S $C(CH_3)_3$ $MS m/z (M-H)^3 329$ 246 — CH_2 S $MS m/z (M-H)^3 355$ 247 — CH_2 S $MS m/z (M-H)^3 317$ 248 — CH_2 S	243	$-CH_2 \longrightarrow S$	NC NC	MS m/z (M-H) ⁻ 324
246 $-CH_2$ $-C(CH_3)_3$ MS m/z (M-H) 355 247 $-CH_2$ $-CH_2$ $-CH_2$ $-CH_3$ MS m/z (M-H) 317 248 $-CH_2$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$	244	$-CH_2$	N	MS m/z (M-H) ⁻ 300
247 $-CH_2$ S MS m/z (M-H) 317 248 $-CH_2$ S H_3CO OCH_3 S CH_3	245	$-CH_2$	———OCH3	MS m/z (M-H) ⁻ 329
248 —CH ₂ —S MS m/z (M-H) 359 H ₃ CO OCH ₃ CH ₃	246	$-CH_2$	——————————————————————————————————————	MS m/z (M-H) ⁻ 355
H ₃ CO OCH ₃	247	—СH ₂ ——\$	─ F	MS m/z (M-H) ⁻ 317
S CH ₃	248	$-CH_2$	H,CO OCH,	MS m/z (M-H) ⁻ 359
249 —CH ₂ — MS m/z (M-H) ⁻ 341	249	$-CH_2 \longrightarrow S$	CH ₃	MS m/z (M-H) ⁻ 341
250 —CH ₂ —S MS m/z (M-H) ⁻ 343	250	$-CH_2$		MS m/z (M-H) ⁻ 343
251 —CH ₂ —S MS m/z (M-H) 391	251	$-CH_2$		MS m/z (M-H) ⁻ 391
252 —CH ₂ —S MS m/z (M-H) 435	252	—сн ₂ —\$	OCH ₃	MS m/z (M-H) 435

Table 1-22

Cpd. No.	R ¹	R ²	Instrumental Data
253	—(CH ₂) ₂ SCH ₃	-	MS m/z (M-H) ⁻ 277
254	—(CH ₂) ₂ SCH ₃	\prec s	MS m/z (M-H) ⁻ 283
255	—(CH ₂) ₂ SCH ₃	NC NC	MS m/z (M-H) ⁻ 302
256	—(CH ₂) ₂ SCH ₃	— N	MS m/z (M-H) ⁻ 278
257	—(CH ₂) ₂ SCH ₃	OCH ₃	MS m/z (M-H) ⁻ 307
258	(CH ₂) ₂ SCH ₃	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 333
259	(CH ₂) ₂ SCH ₃	─ F	MS m/z (M-H) ⁻ 295
260	—(CH ₂) ₂ SCH ₃	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 337
261	—(CH ₂) ₂ SCH ₃	CH ₃	MS m/z (M-H) ⁻ 319
262	—(СН ₂) ₂ SСН ₃		MS m/z (M-H) ⁻ 321
263	—(CH ₂) ₂ SCH ₃		MS m/z (M-H) [*] 369
264	—(CH ₂) ₂ SCH ₃	OCH ₃	MS m/z (M-H) ⁻ 413

Table 1-23

Cpd. No.	R ¹	R ²	Instrumental Data
265	—(CH ₂) ₂ —		MS m/z (M-H) ⁻ 307
266	—(CH ₂) ₂ —	\prec s	MS m/z (M-H) ⁻ 313
267	—(CH ₂) ₂ —	NC NC	MS m/z (M-H) ⁻ 332
268	—(CH ₂) ₂ —	—√N	MS m/z (M-H) ⁻ 308
269	—(CH ₂) ₂ —	————OCH ₃	MS m/z (M-H) ⁻ 337
270	—(CH ₂) ₂ —	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 363
271	—(CH ₂) ₂ —	——F	MS m/z (M-H) ⁻ 325
272	(CH ₂) ₂	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 367
273	—(CH ₂) ₂ —	CH ₃	MS m/z (M-H) ⁻ 349
274	—(CH ₂) ₂ —		MS m/z (M-H) ⁻ 351
275	—(CH ₂) ₂ —		MS m/z (M-H) ⁻ 399
276	—(CH ₂) ₂ —	OCH ₃	MS m/z (M-H) - 443

Table 1-24

Cpd. No.	R¹	R ²	Instrumental Data
277	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃		MS m/z (M-H) ⁻ 319
278	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	→ ^S	MS m/z (M-H) ⁻ 325
279	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	NC NC	MS m/z (M-H) ⁻ 344
280	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	—√_N	MS m/z (M-H) ⁻ 320
281	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	OCH ₃	MS m/z (M-H) ⁻ 349
282	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	——————————————————————————————————————	MS m/z (M-H) 375
283	(СН ₂) ₂ О(СН ₂) ₂ ОСН ₂ СН ₃	——F	MS m/z (M-H)* 337
284	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 379
285	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	CH ₃	MS m/z (M-H) ⁻ 361
286	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃		MS m/z (M-H) ⁻ 363
287	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃		MS m/z (M-H) ⁻ 411
288	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	OCH ₃	MS m/z (M-H) ⁻ 455

Table 1-25

Cpd. No.	R ¹	R ²	Instrumental Data
289	CH ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 315
290	CH ₃	——SCH ₃	MS m/z (M-H) ⁻ 317
291	CH ₃		MS m/z (M-H) ⁻ 321
292	CH ₃	N CH ₃	MS m/z (M-H) ⁻ 324
293	CH ₃	H ₃ C	MS m/z (M-H)⁻ 285
294	CH ₃	$ N$ CH_3	MS m/z (M-H) 328
295	CH ₃	CH ₃ OCH ₃	MS m/z (M-H) 329
296	CH ₃	ОСН3	MS m/z (M-H) ⁻ 331
2 97	CH ₃	CF ₃	MS m/z (M-H) ⁻ 339
298	CH ₃		MS m/z (M-H) ⁻ 347
299	CH ₃	F	MS m/z (M-H) ⁻ 323
300	CH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 359

Table 1-26

Cpd. No.	R ¹	R ²	Instrumental Data
301	—СH ₂ —	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 301
302	—CH ₂ —	SCH ₃	MS m/z (M-H) ⁻ 303
303	—CH₂—<		MS m/z (M-H) ⁻ 307
304	—CH ₂ —	N.CH ₃	MS m/z (M-H) ⁻ 310
305	—СH ₂ —	H ₃ C	. MS m/z (M-H) ⁻ 271
306	—CH ₂ —	$- \stackrel{\text{H}}{\longrightarrow} \stackrel{\text{CH}_3}{\longrightarrow}$	MS m/z (M-H) ⁻ 314
307	—СH ₂ —	CH ₃ OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 315
308	—СH ₂ —	OCH ₃	MS m/z (M-H) ⁻ 317
309	—СH ₂ —	——CF ₃	MS m/z (M-H) ⁻ 325
310	—CH ₂ —	-	MS m/z (M-H) ⁻ 333
311	—CH ₂ —	F	MS n/z (M-H)* 309 1 H NMR: See Example
312	—СH ₂ —	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 345

Table 1-27

Cpd. No.	R ¹	R ²	Instrumental Data
313	—СH ₂ —СО	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 331
314	$-CH_2$	SCH ₃	MS m/z (M-H) ⁻ 333
315	$-CH_2$ O		MS m/z (M-H) ⁻ 337
316	—СH ₂ —СО	N,CH3	MS m/z (M-H)⁻ 340
317	$-CH_2$	H ₃ C	MS m/z (M-H) ⁻ 301
318	$-CH_2$	$-\!$	MS m/z (M-H) ⁻ 344
319	$-CH_2-CO$	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 345
320	$-CH_2$ \bigcirc \bigcirc	OCH ₃	MS m/z (M-H) ⁻ 347
321	$-CH_2$	CF3	MS m/z (M-H) ⁻ 355
322	$-CH_2$ O		MS m/z (M-H) ⁻ 363
323	$-CH_2$	-F	MS m/z (M-H) ⁻ 339
324	—CH ₂ ——	(H ₃ C) ₃ CS	MS m/z (M-H) 375

Table 1-28

Cpd. No.	R ¹	R^2	Instrumental Data
325	—CH ₂ —	H ₃ CH ₂ CO .	MS m/z (M-H) ⁻ 341
326	$-CH_2$	· SCH ₃	MS m/z (M-H) ⁻ 343
327	—CH ₂ —		MS m/z (M-H) ⁻ 347
328	—СH ₂ —	√N,CH₃	MS m/z (M-H) ⁻ 350
329	—CH ₂ —	H ₃ C	MS m/z (M-H) ⁻ 311
330	—CH ₂ —	$-\!$	MS m/z (M-H) ⁻ 354
331	—CH ₂ —	CH ₃ OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 355
332	—CH ₂ —	OCH ₃	MS m/z (M-H) ⁻ 357
333	$-CH_2$	-CF ₃	MS m/z (M-H) ⁻ 365
334	—CH ₂ —		MS m/z (M-H) ⁻ 373
335	—CH ₂ —	F	MS m/z (M-H) ⁻ 349
336	—CH ₂ —	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 385

Table 1-29

Cpd. No.	R ¹	R ²	Instrumental Data
337	—CH ₂ —S	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 343
338	$-CH_2$	——SCH ₃	MS m/z (M-H) ⁻ 345
339	$-CH_2$		MS m/z (M-H) ⁻ 349 ⁻
340	$-CH_2$	N CH ₃	MS m/z (M-H) ⁻ 352
341	$-CH_2$	H ₃ C	MS m/z (M-H) ⁻ 313
342	$-CH_2$	$ \stackrel{H}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{CH_3}{\longrightarrow}$	MS m/z (M-H) ⁻ 356
343	$-CH_2$	CH ₃ OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 357
344	$-CH_2$	OCH ₃	MS m/z (M-H) ⁻ 359
345	$-CH_2$	——————————————————————————————————————	MS m/z (M-H) ⁻ 367
346	$-CH_2$		MS m/z (M-H) ⁻ 375
347	$-CH_2$	F Cl	MS m/z (M-H) ⁻ 351
348	$-CH_2$	(H ₃ C) ₃ CS	MS m/z (M-H) 387

Table 1-30

Cpd. No.	R ¹	R ²	Instrumental Data
349	──(CH ₂) ₂ SCH ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 321
350	(CH ₂) ₂ SCH ₃	——SCH ₃	MS m/z (M-H) ⁻ 323
351	—(CH ₂) ₂ SCH ₃		MS m/z (M-H) ⁻ 327
352	—(CH ₂) ₂ SCH ₃	√N,CH ₃	MS m/z (M-H) ⁻ 330
353	——(CH ₂) ₂ SCH ₃	H ₃ C	MS m/z (M-H) ⁻ 291
354	——(CH ₂) ₂ SCH ₃	$-\!$	MS m/z (M-H) ⁻ 334
355	—(CH ₂) ₂ SCH ₃	OCH ₃ OCH ₃	MS m/z (M-H) [*] 335
356	(CH2)2SCH3	осн,	MS m/z (M-H) ⁻ 337
357	$(CH_2)_2SCH_3$	CF ₃	MS m/z (M-H) ⁻ 345
358	—(CH ₂) ₂ SCH ₃	-	MS n/z (M-H) ⁻ 353
359	—(CH ₂) ₂ SCH ₃	-F	MS m√z (M-H) ⁻ 329
360	——(CH ₂) ₂ SCH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 365

Table 1-31

Cpd. No.	R ¹	R ²	Instrumental Data
361	—(CH ₂) ₂ —	I ₃ CH ₂ CO	MS m/z (M-H) ⁻ 351
362	—(CH ₂) ₂ —	———SCH ₃	MS m/z (M-H) ⁻ 353
363	—(CH ₂) ₂ —		MS m/z (M-H) ⁻ 357
364	—(CH ₂) ₂ —	N,CH ₃	MS m/z (M-H) ⁻ 360
365	—(CH ₂) ₂ —	H ₃ C	MS m/z (M-H) ⁻ 321
366	—(CH ₂) ₂ —	$-\!$	MS m/z (M-H) ⁻ 364
367	—(CH ₂) ₂ —	OCH ₃	MS m/z (M-H) ⁻ 365
368	(CH ₂) ₂	ОСН3	MS m/z (M-H) ⁻ 367
369	—(CH ₂) ₂ —	——CF ₃	MS m/z (M-H) ⁻ 375
370	—(CH ₂) ₂ —		MS n/z (M-H) ⁻ 383
371	—(CH ₂) ₂ —	F CI	MS m/z (M-H) ⁻ 359
372	—(CH ₂) ₂ —	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 395

Table 1-32

Cpd. No.	R ¹	R ²	Instrumental Data
373	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 363
374	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	SCH ₃	MS m/z (M-H) ⁻ 365
375	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃		MS m/z (M-H) ⁻ 369
376	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	N CH ₃	MS m/z (M-H) ⁻ 372
377	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	H ₃ C	MS m/z (M-H) ⁻ 333
378	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	$-\!$	MS m/z (M-H) ⁻ 376
379	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 377
380	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	OCH ₃	MS m/z (M-H) ⁻ 379
381	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	-CF ₃	MS m/z (M-H) ⁻ 387
382	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃		MS m/z (M-H) ⁻ 395
383	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	-CI	MS m/z (M-H) ⁻ 371 H NMR: See Example
384	—(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 407

Table 1-33

Cpd. No.	R ¹	R ²	Instrumental Data
385	$-CH_2$		MS m/z (M-H) ⁻ 337
386	$-CH_2$	~s	MS m/z (M-H) ⁻ 343
387	-CH ₂ -0	NC	MS m/z (M-H) ⁻ 362
388	$-CH_2$	—√_N	MS m/z (M-H) ⁻ 338
389	$-CH_2$	—СТУ-осн3	MS m/z (M-H) ⁻ 367
390	$-CH_2$	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 393
391	$-CH_2$	———F	MS m/z (M-H) ⁻ 355
392	$-CH_2$	H ₃ CO OCH ₃	MS π/z (M-H) ⁻ 397
393	$-CH_2$	$ CH_3$ CH_3	MS m/z (M-H) ⁻ 379
394	-CH ₂		MS m/z (M-H) ⁻ 381
395	$-CH_2$		MS m/z (M-H) ⁻ 429
396	$-CH_2$	OCH ₃	MS m/z (M-H) [*] 473

Table 1-34

Cpd. No.	R ¹	R ²	Instrumental Data
397	—(CH ₂) ₂ —F	$\rightarrow \bigcirc$	MS m/z (M-H) ⁻ 325
398	—(CH ₂) ₂ —F	$\stackrel{s}{\longrightarrow}$	MS m/z (M-H) ⁻ 331
399	—(CH ₂) ₂ —F	NC NC	MS m/z (M-H) ⁻ 350
400	—(CH ₂) ₂ —F		MS m/z (M-H) ⁻ 326
401	(CH ₂) ₂	OCH ₃	MS π/z (M-H) ⁻ 355
402	—(CH ₂) ₂ ——F		MS m/z (M-H) ⁻ 381
403	—(CH ₂) ₂ ——F	─ F	MS m/z (M-H) ⁻ 343
404	—(CH ₂) ₂ ——F	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 385
405	—(CH ₂) ₂ —F	CH ₃	MS m/z (M-H) ⁻ 367
406	—(CH ₂) ₂ ——F		MS m/z (M-H) ⁻ 369
407	—(CH ₂) ₂ —F		MS m/z (M-H) ⁻ 417
408	—(CH ₂) ₂ —F	OCH ₃	MS m/z (M-H) ⁻ 461

Table 1-35

Cpd. No.	R ¹	R ²	Instrumental Data
409	—(CH ₂) ₂ —————————————————————————————————		MS m/z (M-H) ⁻ 321
410	—(CH ₂) ₂ —————————————————————————————————	→ ^s	MS m/z (M-H) ⁻ 327
411	—(CH ₂) ₂ —————————————————————————————————	NC NC	MS m/z (M-H) ⁻ 346
412	—(CH ₂) ₂ —————————————————————————————————	—√_N	MS m/z (M-H) ⁻ 322
413	—(CH ₂) ₂ —————————————————————————————————	—ССН3	MS nv/z (M-H) ⁻ 351
414	—(CH ₂) ₂ —————————————————————————————————	-C(CH ₃) ₃	MS m√z (M-H) ⁻ 377
415	(CH ₂) ₂	———F	MS m/z (M-H) 339
416	—(CH ₂) ₂ —————————————————————————————————	H ₃ CO OCH ₃	MS m/z (M-H) 381
417	—(CH ₂) ₂ —————————————————————————————————	CH ₃	MS n√z (M-H) ⁻ 363
418	—(CH ₂) ₂ —————————————————————————————————		MS m/z (M-H) ⁻ 365
419	—(CH ₂) ₂ —————————————————————————————————		MS m√z (M-H) ⁻ 413
420	$-(CH_2)_2$ H_3C	OCH ₃	MS m/z (M-H) ⁻ 457

Table 1-36

Cpd. No.	R ¹	R ²	Instrumental Data
421	—CH ₂ ——O(CH ₂) ₃ CH ₃	-	MS m/z (M-H) ⁻ 365
422	$-CH_2$ $O(CH_2)_3CH_3$	→ ^s	MS m/z (M-H) ⁻ 371
423	$-CH_2$ $-O(CH_2)_3CH_3$	NC NC	MS m/z (M-H) 390
424	—CH ₂ ——O(CH ₂) ₃ CH ₃	— N	MS m/z (M-H) ⁻ 366
425	$-CH_2$ $O(CH_2)_3CH_3$	OCH ₃	MS m/z (M-H) 395
426	$-CH_2$ $O(CH_2)_3CH_3$	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 421
427	$-CH_2$ $O(CH_2)_3CH_3$	——F	MS m/z (M-H) ⁻ 383
428	$-CH_2$ $O(CH_2)_3CH_3$	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 425
429	$-CH_2$ $O(CH_2)_3CH_3$	CH ₃	MS m/z (M-H) ⁻ 407
430	$-CH_2$ $O(CH_2)_3CH_3$		MS m/z (M-H) ⁻ 409
431	$-CH_2$ $O(CH_2)_3CH_3$		MS m/z (M-H) ⁻ 457
432	$-CH_2$ $O(CH_2)_3CH_3$	OCH ₃	MS m/z (M-H) ⁻ 501

Table 1-37

Cpd. No.	R ¹	R ²	Instrumental Data
433	—(CH ₂) ₂ —(CI	→	MS m/z (M-H) ⁻ 341
434	—(CH ₂) ₂ ——CI	→ ^s	MS m/z (M-H) ⁻ 347
435	—(CH ₂) ₂ ——CI	NC NC	MS m/z (M-H) ⁻ 366
436	—(CH ₂) ₂ ——CI	—√_N	MS m/z (M-H) ⁻ 342
437	—(CH ₂) ₂ ——CI	OCH ₃	MS m/z (M-H) ⁻ 371
438	—(CH ₂) ₂ ——Cl	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 397
439	—(CH ₂) ₂ ——CI	-F	MS m/z (M-H) ⁻ 359
440	—(CH ₂) ₂ ——CI	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 401
441	(CH ₂) ₂	—————————————————————————————————————	MS m/z (M-H) ⁻ 383
. 442	—(CH ₂) ₂ ——CI		MS m/z (M-H) ⁻ 385
443	—(CH ₂) ₂ ——CI		MS m/z (M-H) 433
444	—(CH ₂) ₂ ——CI	OCH ₃	MS m/z (M-H) ⁻ 477

Table 1-38

Cpd. No.	R ¹	R ²	Instrumental Data
445	—(CH ₂) ₃ ——OCH ₃		MS m/z (M-H) ⁻ 351
446	—(CH ₂) ₃ —OCH ₃	→ ^s	MS m/z (M-H) ⁻ 357
447	—(CH ₂) ₃ ——OCH ₃	NC NC	MS m/z (M-H) ⁻ 376
448	—(CH ₂) ₃ —ОСН ₃	—√N	MS m/z (M-H) ⁻ 352
449	$-(CH_2)_3$ OCH_3	———OCH ₃	MS m/z (M-H) 381
450	—(CH ₂) ₃ ——OCH ₃	-C(CH ₃) ₃	MS m/z (M-H) ⁻ 407
451	—(CH ₂) ₃ ——OCH ₃	— F	MS m/z (M-H) 369 H NMR: See Example
452	$(CH_2)_3$ $$ OCH ₃	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 411
453	$-(CH_2)_3$ OCH ₃	CH ₃	MS m/z (M-H) ⁻ 393
454	—(CH ₂) ₃ ——OCH ₃		MS n√z (M-H) ⁻ 395
455	—(CH ₂) ₃ ——OCH ₃		MS m/z (M-H) ⁻ 443
456	—(CH ₂) ₃ —OCH ₃	OCH ₃	MS m/z (M-H) ⁻ 487

Table 1-39

Cpd. No.	R ¹	R ²	Instrumental Data
457	OCH ₃ OCH ₃ OCH ₃	-	MS m/z (M-H) ⁻ 383
458	$-CH_2$ OCH_3 OCH_3 OCH_3	→ ^s	MS m/z (M-H) ⁻ 389
459	$-CH_2$ OCH_3 OCH_3 OCH_3	NC NC	MS m/z (M-H) ⁻ 408
460	$-CH_2$ OCH_3 OCH_3 OCH_3	—√_N	MS m/z (M-H) ⁻ 384
461	$-CH_2$ OCH_3 OCH_3 OCH_3	OCH3	MS m/z (M-H) ⁻ 413
462	OCH ₃ OCH ₃ OCH ₃	-C(CH ₃) ₃	MS m/z (M-H) 439

Table 1-40

Cpd. No.	R ¹	R ²	Instrumental Data
463	$-CH_2$ OCH_3 OCH_3 OCH_3	———F	MS m/z (M-H) ⁻ 401 ¹ H NMR: See Example
464	$-CH_2$ OCH_3 OCH_3	H ₃ CO OCH ₃	MS m/z (M-H) ⁻ 443
465	$-CH_2$ OCH_3 OCH_3	CH ₃	MS m/z (M-H) ⁻ 425
466	$-CH_2$ OCH_3 OCH_3 OCH_3		MS m/z (M-H) ⁻ 427
467	$-CH_2$ OCH_3 OCH_3		MS m/z (M-H) ⁻ 475
468	$-CH_2$ OCH_3 OCH_3	OCH ₃	MS m/z (M-H) ⁻ 519

Table 1-41

Cpd. No.	R ¹	R ²	Instrumental Data
469	—СH ₂ —Со	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 381
470	$-CH_2$	——SCH ₃	MS m/z (M-H) ⁻ 383
471	$-CH_2$ O		MS m/z (M-H) ⁻ 387
472	$-CH_2$	N CH ₃	MS m/z (M-H) ⁻ 390
473	-CH ₂ -0	H ₃ C	MS m/z (M-H) ⁻ 351
474	$-CH_2$	HOCH3	MS m/z (M-H) ⁻ 394
475	$-CH_2$	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 395
476	-CH ₂	осн,	MS m/z (M-H) ⁻ 397
477	$-CH_2$	————CF3	MS m/z (M-H) ⁻ 405
478	$-CH_2$		MS m/z (M-H) ⁻ 413
479	$-CH_2$	- F	MS m/z (M-H) ⁻ 389
480	$-CH_2$	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 425

Table 1-42

Cpd. No.	R ⁱ	R ²	Instrumental Data
481	—(CH ₂) ₂ —F	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 369
482	—(CH ₂) ₂ ——F	——SCH ₃	MS m/z (M-H) ⁻ 371
483	—(CH ₂) ₂ —F		MS m/z (M-H) ⁻ 375
484	—(CH ₂) ₂ ——F	N,CH3	MS m/z (M-H) ⁻ 378
485	—(CH ₂) ₂ —F	H ₃ C	MS m/z (M-H) ⁻ 339
486	—(CH ₂) ₂ ——F	$-\!$	MS m/z (M-H) ⁻ 382
487	—(CH ₂) ₂ —F	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 383
488	—(CH ₂) ₂ —F	OCH ₃	MS m/z (M-H) ⁻ 385
489	—(CH ₂) ₂ ——F	——————————————————————————————————————	MS m/z (M-H) ⁻ 393
490	—(CH ₂) ₂ —F		MS n√z (M-H) ⁻ 401
491	—(CH ₂) ₂ —F	F CI	MS m/z (M-H) ⁻ 377
492	—(CH ₂) ₂ —F	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 413

Table 1-43

Cpd. No.	R ¹	R ²	Instrumental Data
493	—(CH ₂) ₂ —————————————————————————————————	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 365
494	(CH ₂) ₂	SCH ₃	MS m/z (M-H) ⁻ 367
495	—(CH ₂) ₂ —————————————————————————————————		MS m/z (M-H) ⁻ 371
496	—(CH ₂) ₂ —————————————————————————————————	√CH ₃	MS m/z (M-H) ⁻ 374
497	—(CH ₂) ₂ —————————————————————————————————	H ₃ C	MS m/z (M-H) ⁻ 335
498	—(CH ₂) ₂ —————————————————————————————————	——————————————————————————————————————	MS m/z (M-H) ⁻ 378
499	—(CH ₂) ₂ —————————————————————————————————	CH ₃ OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 379
500	—(CH ₂) ₂ —————————————————————————————————	OCH ₃	MS m/z (M-H) ⁻ 381
501	—(CH ₂) ₂ —————————————————————————————————	—CF ₃	MS m/z (M-H) ⁻ 389
502	—(CH ₂) ₂ —————————————————————————————————		MS m/z (M-H) ⁻ 397
503	—(CH ₂) ₂ —————————————————————————————————	-Cl	MS m/z (M-H) ⁻ 373 ¹ H NMR: See Example
504	—(CH ₂) ₂ —————————————————————————————————	(H ₃ C) ₃ CS	MS m/z (M-I-I) ⁻ 409

Table 1-44

Cpd. No.	R ¹	R ²	Instrumental Data
505	—CH ₂ ——O(CH ₂) ₃ CH ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 409
506	$-CH_2$ $O(CH_2)_3CH_3$	\longrightarrow SCH ₃	MS m/z (M-H) 411
507	$-CH_2$ $O(CH_2)_3CH_3$		MS m/z (M-H) ⁻ 415
508	$-CH_2$ $O(CH_2)_3CH_3$	N CH ₃	MS m/z (M-H) ⁻ 418
509	$-CH_2$ $O(CH_2)_3CH_3$	H ₃ C	MS n√z (M-H) ⁻ 379
510	$-CH_2$ $O(CH_2)_3CH_3$	$ N$ CH_3	MS m/z (M-H) ⁻ 422
511	$-CH_2$ $O(CH_2)_3CH_3$	CH ₃ OCH ₃	MS m/z (M-H) 423
512	$-CH_2$ $O(CH_2)_3CH_3$	OCH ₃	MS m/z (M-H) ⁻ 425
513	$-CH_2$ $O(CH_2)_3CH_3$	——CF ₃	MS m/z (M-H) ⁻ 433
514	$-CH_2$ $O(CH_2)_3CH_3$		MS m/z (M-H) ⁻ 441
515	$-CH_2$ $-O(CH_2)_3CH_3$	- F	MS m/z (M-H) 417 H NMR: See Example
516	—CH ₂ ——O(CH ₂) ₃ CH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) 453

Table 1-45

Cpd. No.	R ¹	R ²	Instrumental Data
517	—(CH ₂) ₂ ——CI	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 385
518	—(CH ₂) ₂ ——CI	——SCH ₃	MS m/z (M-H) ⁻ 387
519	(CH ₂) ₂		MS m/z (M-H) ⁻ 391
520	—(CH ₂) ₂ ——CI	N CH ₃	MS m/z (M-H) ⁻ 394
521	—(CH ₂) ₂ ——CI	H ₃ C	MS m/z (M-H)` 355
522	—(CH ₂) ₂ ——CI	$ N$ CH_3	MS m/z (M-H)* 398
523	—(CH ₂) ₂ ——CI	OCH ₃	MS m/z (M-H) [*] 399
524	—(CH ₂) ₂ ——C1	OCH ₃	MS m/z (M-H)* 401
525	—(CH ₂) ₂ ——CI	——————————————————————————————————————	MS m/z (M-H) ⁻ 409
526	—(CH ₂) ₂ ——CI		MS m/z (M-H) ⁻ 417
527	—(CH ₂) ₂ ——CI	- F	MS m/z (M-H) ⁻ 393
528	(CH ₂) ₂	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 429

Table 1-46

Cpd. No.	R ¹	R ²	Instrumental Data
529	—(CH ₂) ₃ ——OCH ₃	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 395
530	$-(CH_2)_3$ $-OCH_3$	SCH ₃	MS m/z (M-H) ⁻ 397
531	$-(CH_2)_3$ $-OCH_3$		MS m/z (M-H) ⁻ 401
532	—(CH ₂) ₃ ——OCH ₃	N,CH3	MS m/z (M-H) ⁻ 404
533	$-(CH_2)_3$ $-OCH_3$	H ₃ C	MS m/z (M-H) ⁻ 365
534	—(CH ₂) ₃ ——OCH ₃	- $ -$	MS m/z (M-H) ⁻ 408
535	—(CH ₂) ₃ ——OCH ₃	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 409
536	—(СН ₂) ₃ —ОСН ₃	OCH ₃	MS m/z (M-H) ⁻ 411
537	—(CH ₂) ₃ ——OCH ₃	——CF3	MS m/z (M-H) ⁻ 419
538	—(СН ₂) ₃ —ОСН ₃	→	MS m/z (M-H) ⁻ 427
539	—(CH ₂) ₃ ——OCH ₃	F	MS m/z (M-H) ⁻ 403
540	—(CH ₂) ₃ ——OCH ₃	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 439

Table 1-47

Cpd. No.	R ¹	R ²	Instrumental Data
541	$-CH_2$ OCH_3 OCH_3	H ₃ CH ₂ CO	MS m/z (M-H) ⁻ 427
542	$-CH_2$ OCH_3 OCH_3 OCH_3	H ₃ SCH ₃	MS m/z (M-H) ⁻ 429
543	$-CH_2$ OCH_3 OCH_3 OCH_3	·I ₃	MS m/z (M-H) ⁻ 433
544	$-CH_2$ OCH_3 OCH_3	H ₃ CH ₃	MS m/z (M-H) ⁻ 436
545	$-CH_2$ OCH_3 OCH_3	H ₃ C	MS m/z (M-H) ⁻ 397
546	$-CH_2$ OCH_3 OCH_3	H_3 \longrightarrow H_3 CH_3	MS m/z (M-H) - 440

Table 1-48

Cpd. No.	R ^I	R ²	Instrumental Data
547	$-CH_2$ OCH_3 OCH_3	CH ₃ OCH ₃	MS m/z (M-H) ⁻ 441
548	$-CH_2$ OCH_3 OCH_3	OCH ₃	MS m/z (M-H) 443
549	$-CH_2$ OCH_3 OCH_3	CF ₃	MS m/z (M-H) ⁻ 451
550	$-CH_2$ OCH_3 OCH_3 OCH_3		MS m/z (M-H) ⁻ 459
551	$-CH_2$ OCH_3 OCH_3 OCH_3	-Cl	MS m/z (M-H) ⁻ 435
552	$-CH_2$ OCH_3 OCH_3 OCH_3	(H ₃ C) ₃ CS	MS m/z (M-H) ⁻ 471

Table 1-49

Cpd. No.	R ^I	R ²	Instrumental Data
553	—-(СН ₂) ₂ СН ₃	~	MS m/z (M-H)⁻ 235
554	—(СН ₂) ₂ ОСН ₃		MS m/z (M-H) ⁻ 251
555	$(CH_2)_2$ CH_3 CH_3	\multimap	MS m/z (M-H) ⁻ 263
556	$-(CH_2)_2$	\rightarrow	MS m/z (M-H) ⁻ 303
557	—CH ₂ —	\multimap	MS m/z (M-H) ⁻ 283
558	—CH ₂ —	~	MS m/z (M-H) ⁻ 289
559	—сн ₂ —	-	MS m/z (M-H) ⁻ 291
560	—CH ₂ ——CI	$\rightarrow \bigcirc$	MS m/z (M-H) ⁻ 317
561	CH ₃	\multimap	MS m/z (M-H) ⁻ 261
562	—CH ₂ ——	$\stackrel{\circ}{\longrightarrow}$	MS m/z (M-H) ⁻ 247
563	—СH ₂ —	$\stackrel{\circ}{\longrightarrow}$	MS m/z (M-H) ⁻ 277
564	—CH ₂ —		MS n√z (M-H) ⁻ 287

Table 1-50

Cpd. No.	R ¹	R ²	Instrumental Data
565	—CH ₂ ——S	$\overline{}$	MS m/z (M-H) ⁻ 289
566	(CH ₂) ₂ SCH ₃		MS m/z (M-H) ⁻ 267
567	(CH ₂) ₂	$\stackrel{\circ}{\longrightarrow}$	MS m/z (M-H) ⁻ 297
568	(CH ₂) ₂ O(CH ₂) ₂ OCH ₂ CH ₃	\multimap	MS m/z (M-H) ⁻ 309
569	$-CH_2$	$\stackrel{\circ}{\longrightarrow}$	MS m/z (M-H) ⁻ 327
570	(CH ₂) ₂ F	\multimap	MS m/z (M-H) ⁻ 315
571	(CH ₂) ₂	$\overline{}$	MS m/z (M-H) ⁻ 311
572	$-CH_2$ $-O(CH_2)_3CH_3$	\multimap	MS m/z (M-H) ⁻ 355
573	(CH ₂) ₂ —CI		MS m/z (M-H) ⁻ 331
574	——(CH ₂) ₃ ——OCH ₃	$\stackrel{\circ}{\longrightarrow}$	MS m/z (M-H) ⁻ 341
575	OCH_3 OCH_3 OCH_3		MS m/z (M-H) ⁻ 373

Table 2-1

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
576	—СH ₂ —	-N $-(CH2)2CH3$	MS m/z (M-H) ⁻ 367
577	—CH ₂ —	$-N$ -(CH ₂) ₂ CH_3 CH ₃	MS m/z (M-H) ⁻ 395
578	$-CH_2$	$-N-(CH_2)_3OCH_3$	MS m/z (M-H) ⁻ 397
579	$-CH_2$	$-N-CH_2$	MS m/z (M-H) ⁻ 405
580	—CH ₂ —	H ₃ C -N-CH ₂	MS m/z (M-H) ⁻ 429
581	—CH ₂ —	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 435
582	—CH ₂ —	-N-(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 443
583	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 449
584	—CH ₂ —	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 459
585	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) [*] 465
586	—CH ₂ —	-H-CH ₂ -CH ₃	MS m/z (M-H) ⁻ 475
587	—CH ₂ —	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 483

Table 2-2

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588	<u>~</u>	−N−(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 435
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	589	—CH ₂ —	-N-(CH ₂) ₂ - C H ₃ CH ₃	MS m/z (M-H) ⁻ 463
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	590	$-CH_2$	-N-(CH ₂) ₃ OCH ₃	MS m/z (M-H) ⁻ 465
592 $-CH_2$ $-N$ $-C$ $-N$ $-$	591	$-CH_2$		MS m/z (M-H) ⁻ 473
593 — CH_2 — H — $(CH_2)_2$ — CH_3 — $MS m/z (M-H)^- 503$ 594 — CH_2 — H — $(CH_2)_2$ — CH_3 — $MS m/z (M-H)^- 511$ 595 — CH_2 — H — CH_2 — CH_3 — CH_3 — CH_4 — CH_5 — CH_6 — $CH_$	592	${CH_2}$ ·	н	MS m/z (M-H) ⁻ 497
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593	—CH ₂ —	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 503
595 — CH_2 — H — CH_2 — $MS \text{ m/z (M-H)} \cdot 517$ 596 — CH_2 — H — $(CH_2)_2$ — OCH_3 — $MS \text{ m/z (M-H)} \cdot 527$ 597 — CH_2 — H — CH_2 — $MS \text{ m/z (M-H)} \cdot 533$ 598 — CH_2 — H — CH_3 — H — CH_3 — H — CH_4 — H —	594	—CH ₂ —	-N- $(CH2)2-CH3$	MS m/z (M-H) ⁻ 511
596 — CH_2 — H — CH_2 — OCH_3 MS m/z (M-H) 527 597 — CH_2 — H — CH_2 — H — CH_2 — H — CH_3 MS m/z (M-H) 533 598 — H —	595	—CH ₂ —	HN-CH ₂ -CI	MS m/z (M-H) ⁻ 517
597 $-CH_2$ $-H_2$ $-CH_3$ $-$	596	$-CH_2$	$-N$ - $(CH_2)_2$ - OCH_3	MS m/z (M-H) ⁻ 527
$-CH_{2} \longrightarrow -CH_{2} \longrightarrow -CH_{2} \longrightarrow -CH_{3}$ $-CH_{3} \longrightarrow -CH_{2} \longrightarrow -CH_{3}$ $-CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3}$ $-CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3}$ $-CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3} \longrightarrow -CH_{3}$ $-CH_$	597	$-CH_2$		MS m/z (M-H) ⁻ 533
Jens,	598	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 543
$-CH_2$ $-N-CH_2$ MS m/z (M-H) ⁻ 551	599	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 551

Table 2-3

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
600	—CH ₂ —	$-C(CH_3)_3$ $-N-(CH_2)_2C$	² H ₃ MS m/z (M-H) ⁻ 423
601	—CH ₂ —	$-C(CH_3)_3$ $-N-(CH_2)_2$	CH ₃ MS m/z (M-H) ⁻ 451 CH ₃
602	—CH ₂ —	$-C(CH_3)_3$ $-N-(CH_2)_3C$	OCH ₃ MS m/z (M-H) ⁻ 453
603	—CH ₂ —	$-C(CH_3)_3$ $-N-CH_2$	MS m/z (M-H) ⁻ 461
604	—CH ₂ —	H_3C_1 $-C(CH_3)_3$ $-N-CH_2$	MS m/z (M-H) ⁻ 485
605	—CH ₂ —	$-C(CH_3)_3$ $-N-(CH_2)_2$	MS m/z (M-H) 491
606	—CH ₂ —	$-C(CH_3)_3$ $-N-(CH_2)_2$	CH ₃ MS m/z (M-H) ⁻ 499
607	—CH ₂ —	$-C(CH_3)_3$ $-N-CH_2-6$	MS m/z (M-H) ⁻ 505
608	—CH ₂ —	$-C(CH_3)_3$ $-N-(CH_2)_2$	OCH ₃ MS m/z (M-H) ⁻ 515
609	—СH ₂ —	$-C(CH_3)_3$ $-H$ $-N$ $-CH_2$ $<$	MS m/z (M-H) ⁻ 521
610	—CH ₂ —	$-C(CH_3)_3$ $-N-CH_2$	OCH ₃ MS m/z (M-H) ⁻ 531
611	—CH ₂ —	$-C(CH_3)_3$ $-N-CH_2$	OCH ₃ MS m√z (M-H) ⁻ 539

Table 2-4

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
612	−CH ₂ NC	-N-(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 392
613	−CH ₂ NC	$-\overset{H}{\overset{C}{H_{2}}}_{C}$	MS m/z (M-H) ⁻ 420
614	−CH ₂ NC	-N-(CH2)3OCH3	MS m/z (M-H) ⁻ 422
615	−CH ₂ −√NC	$-N-CH_2$	MS n√z (M-H) ⁻ 430
616	−CH ₂ −√NC	$-N-CH_2$	MS m/z (M-H) 454
617	−CH ₂ NC	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 460
618	−CH ₂ NC	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 468
619	−CH ₂ NC	$-N-CH_2$	MS m/z (M-H) 474
620	−CH ₂ NC	-N $-$ (CH ₂) ₂ $-$ OCH ₃	MS m/z (M-H) 484
621	$-CH_2$ NC	$-N-CH_2$	MS m/z (M-H) ⁻ 490
622	−CH ₂ −√NC	$-N-CH_2$ OCH	MS n√z (M-H) ⁺ 500
623	—СH ₂ ————————————————————————————————————	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 508

Table 2-5

Cpd. No	· R ⁶	NR ⁷ R ⁸	Instrumental Data
624	-CH ₂ -CH ₂ SO ₂ -CH ₂	H —N−(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 521
625	$-CH_2$ CH_2SO_2	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 550
626	$-CH_2$ CH_2SO_2	-N – (CH ₂) ₃ OCH ₃	MS m/z (M-H) ⁻ 551
627	-CH ₂	-N-CH ₂ - O	MS m/z (M-H) ⁻ 559
628	CH ₂ SO ₂	H_3C H $-N$ $-CH_2$	MS m/z (M-H) ⁻ 583
629	—CH ₂ ————————————————————————————————————	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 589
630	CH ₂	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 597
631	$-CH_2$ CH_2SO_2	-N-CH ₂ - CI	MS m/z (M-H) ⁻ 603
632	$-CH_2$ CH_2SO_2	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) 613
633	$-CH_2$ CH_2SO_2	-N-CH ₂	MS m/z (M-H) ⁻ 619
634	$-CH_2$ CH_2SO_2	$-$ N $-$ CH $_2$ \longrightarrow OCH $_3$	MS m/z (M-H) ⁻ 629 ⁻
635	$-CH_2$ CH_2SO_2	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 637

Table 2-6

Cpd. No.	R^6	NR ⁷ R ⁸	Instrumental Data
636	—CH ₂ —	-N $-(CH2)2CH3$	MS m/z (M-H) ⁻ 443
637	—CH ₂ ——	-N-(CH ₂) ₂ (CH ₃ . CH ₃	MS m/z (M-H) ⁻ 471
638	—CH ₂ —	-N $-(CH2)3OCH3$	MS m/z (M-H) ⁻ 473
639	—CH ₂ ————————————————————————————————————	$-\text{N-CH}_2$	MS m/z (M-H) ⁻ 481
640	—CH ₂ —	H_3C H_N $-CH_2$	MS m/z (M-H) ⁻ 505
641	—CH ₂ ——	-N-(CH ₂) ₂ - S	MS m/z (M-H) ⁻ 511
642	—CH ₂ —	$ \frac{H}{N}$ $ (CH2)2 CH3$	MS m/z (M-H) ⁻ 519
643	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 525
644	-CH ₂	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 535
645	—CH ₂ ——	$-\mathrm{H}_{\mathrm{N-CH}_2}$	MS n/z (M-H) ⁻ 541
646	—CH ₂ ——	H-CH ₂ —OCH ₃	MS m/z (M-H) ⁻ 551
647	—CH ₂ —	$-$ N $-$ CH $_2$ F_3 C	MS m/z (M-H) ⁻ 559

Table 2-7

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
648	—СH ₂ —СН ₃	H −N−(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 381
649	—СH ₂ —СН ₃	$-\overset{H}{\overset{C}{H_{2}}}_{CH_{3}}$	MS m/z (M-H) ⁻ 409
650	$-CH_2$ $-CH_3$	-N— $(CH2)3OCH3$	MS m/z (M-H) ⁻ 411
651	—СH ₂ —СН ₃	$-$ N $-$ CH $_2$ $-$ O	MS π/z (M-H) ⁻ 419
652	—СН ₂ —СН ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 443
653	$-CH_2$ $-CH_3$	-N- $(CH2)2-S$	MS m/z (M-H) ⁻ 449
654	—СH ₂ —СН ₃	$-N$ - $(CH_2)_2$ - CH_3	MS m/z (M-H) ⁻ 457
655	—CH ₂ ——CH ₃	$-$ N $-$ CH $_2$ $-$ CI	MS m/z (M-H) ⁻ 463
656	—СH ₂ —СН ₃	-N $-$ (CH ₂) ₂ $-$ OCH ₃	MS m/z (M-H) ⁻ 473
657	—СH ₂ —СН ₃	-N-CH ₂	MS m/z (M-H) ⁻ 479
658	—СH ₂ —СН ₃	-N-CH ₂ $-$ OCH ₃	MS m/z (M-H) [*] 489
659	$-CH_2$ CH_3	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H)* 497

Table 2-8

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
660	—СH ₂ —	-N-(CH2)2CH3	MS m/z (M-H) ⁻ 417
661	—СH ₂ —	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 445
662	—СН ₂ —	—N—(CH ₂) ₃ OCH ₃	MS m/z (M-H) ⁻ 447
663	—СH ₂ —	$-$ N $-$ CH $_2$ $-$ 0	MS m/z (M-H) ⁻ 455
664	—СН ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 479
665	—CH ₂ ——	$-\frac{H}{N-(CH_2)_2}$	MS m/z (M-H) ⁻ 485
666	—СH ₂ —	-N-(CH2)2 - CH3	MS m/z (M-H)* 493
667	—СH ₂ —	$-$ N $-$ CH $_2$ $-$ CI	MS m/z (M-H) ⁻ 499
668	—СH ₂ —	$-N-(CH_2)_2 \longrightarrow OCH_3$	MS m/z (M-H) ⁻ 509
669	—СH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 515
670	—СH ₂ —	-N-CH ₂ $-$ OCH	MS m/z (M-H)* 525
671	—СH ₂ —{	ОСН ₃	MS m/z (M-H) ⁻ 533

Table 2-9

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
672	—CH ₂ —	H —N−CH₂CH(CH₃)CH₂CH₃	MS m/z (M-H) ⁻ 395
673	—СH ₂ —	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 447
674	—CH ₂ —	-N-(CH ₂) ₃ -N	MS m/z (M-H)⁻ 450
675	—CH ₂ —	-H-(CH ₂) ₂	MS m/z (M-H) ⁻ 519
676	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 379
677	—CH ₂ —	$-N$ - CH_2 - O	MS m/z (M-H)⁻ 409
678	—CH ₂ —	$-H_{\text{CH}_2}$	MS n√z (M-H) ⁻ 421
679	—СH ₂ —	$-\text{N-CH}_2$	MS m/z (M-H) ⁻ 459
680	—CH ₂ —	$- \stackrel{\text{CH}_3}{\text{N-CH}_2\text{CHC}(\text{CH}_2)_2\text{CHC}} \stackrel{\text{CH}_3}{\swarrow}$	MS m/z (M-H) ⁻ 461
681	—CH ₂ —	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 475
682	—СH ₂ —	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 429
683	—CH ₂ —	$-N-(CH_2)_2-OH$	MS m/z (M-H) ⁻ 383

Table 2-10

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
684	—CH ₂ ————————————————————————————————————	H —N—CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 463
685	$-CH_2$ CF_3	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 51 <i>5</i>
686	$-CH_2$ CF_3	H-(CH ₂) ₃ -N	MS m/z (M-H) ⁻ 518
687	—СH ₂ —С _{F₃}	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 587
688	—CH ₂ ——CF ₃	$-$ N $-$ CH $_2$	MS m/z (M-H) ⁻ 447
689	$-CH_2$ CF_3	$-N-CH_2$	MS m/z (M-H) ⁻ 477
690	—CH ₂ ————————————————————————————————————	$-N-CH_2$	MS m/z (M-H) ⁻ 489
691	$-CH_2$ CF_3	$-N-CH_2$	MS m/z (M-H) ⁻ 527
692	$-CH_2$ CF_3	CH ₃ —N-CH ₂ CHC(CH ₂) ₂ CHC CH ₃	MS n√z (M-H) ⁻ 529
693	$-CH_2$ CF_3	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 543
694	—СH ₂ —СF ₃	$-N-(CH_2)_2$	MS m√z (M-H) ⁻ 497
695	—CH ₂ ————————————————————————————————————	$-$ N $-$ (CH $_2$) $_2$ $-$ OH	MS m/z (M-H) ⁻ 451

Table 2-11

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
696	$-CH_2$ $-C(CH_3)_3$	H —N−CH₂CH(CH₃)CH₂CH₃	MS m/z (M-H) ⁻ 451
697	$-CH_2$ $-C(CH_3)_3$	-N-(CH ₂) ₂ - F	MS m/z (M-H) 503
698	$-CH_2$ $C(CH_3)_3$	-H-(CH ₂) ₃ -N	MS m/z (M-H) ⁻ 506
699	-C(CH ₃) ₃	-H-(CH ₂) ₂	MS m/z (M-H) ⁻ 575
700	$-CH_2$ $-C(CH_3)_3$	$-$ N-CH ₂ - \sim	MS m/z (M-H) 435
701	$-CH_2$ $-C(CH_3)_3$	$-N-CH_2$	MS m/z (M-H) ⁻ 465
702	$-CH_2$ $-C(CH_3)_3$	$-N-CH_2-$	MS m/z (M-H) ⁻ 477
703	$-CH_2$ $C(CH_3)_3$	$-H_{\text{N-CH}_2}$	MS m/z (M-H) ⁻ 515
704	$-CH_2$ $-C(CH_3)_3$	—N−CH ₂ CHC(CH ₂) ₂ CHC СН ₃	MS m/z (M-H) ⁻ 517
705	$-CH_2$ $C(CH_3)_3$	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 531
706		$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 487
707	$-CH_2$ $-C(CH_3)_3$	$-N$ – $(CH_2)_2$ – OH	MS m/z (M-H) ⁻ 439

Table 2-12

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
708	−CH ₂ NC	−N−CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 420
709	−CH ₂ NC	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 472
710	−CH ₂ −√NC	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 475
711	−CH ₂ −√NC	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 544
712	$-CH_2$ NC	$-N-CH_2$	MS m/z (M-H) ⁻ 404
713	CH₂	$-N-CH_2$	MS m/z (M-H) ⁻ 434
714	−CH ₂ −√NC	$-N-CH_2-$	MS m/z (M-H) ⁻ 446
715	−CH ₂ −√NC	$-\text{N-CH}_2$	MS m/z (M-H) ⁻ 484
716	—СH ₂ ——	$- \overset{H}{N} - CH_2 CHC(CH_2)_2 CHC \overset{CH_3}{\underbrace{CH_3}}$	MS m/z (M-H) ⁻ 486
717	$-CH_2$ NC	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 500
718	$-CH_2$ NC	$-N-(CH_2)_2$	MS m/z (M-H) ⁺ 454
719	−CH ₂ NC	—Н —N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 408

Table 2-13

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
—СH ₂	CH ₂ SO ₂ —	H —N-CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) 549
—СН ₂	CH ₂ SO ₂ —	-N $-$ (CH ₂) ₂ $-$ F	MS m/z (M-H) ⁻ 601
—СН ₂	CH ₂ SO ₂ —	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 604
—СH ₂	CH ₂ SO ₂ —	-N-(CH ₂) ₂ -	MS n√z (M-H) 673
——СН ₂ 724	CH ₂ SO ₂ —	$-$ N $-$ CH $_2$ $-$	MS m/z (M-H) ⁻ 533
—СН ₂	CH ₂ SO ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 563
—СН ₂	CH ₂ SO ₂ —	$-N$ -CH ₂ - \leftarrow	MS n/z (M-H) ⁻ 575
—СН ₂	CH_2SO_2	$-N-CH_2$	MS m/z (M-H) 613
—СН ₂	CH ₂ SO ₂ —	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃	MS m/z (M-H) ⁻ 615
—СН _:	CH ₂ SO ₂ —	$-N-CH_2$ OCH_3	MS m/z (M-H) ⁻ 629
—-СН _:	CH ₂ SO ₂ —	$-N-(CH_2)_2$	MS m/z (M-H) 583
—СН ₂	CH ₂ SO ₂ —	-N $-(CH2)2 -OH$	MS m/z (M-H) 537

Table 2-14

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
732	—CH ₂ —	H N-CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 471
733	—CH ₂ —	$ \frac{H}{N-(CH_2)_2}$ $ \frac{F}{N-(CH_2)_2}$	MS m/z (M-H) ⁻ 523
734	—CH ₂ —	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 526
735	$-CH_2$	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 595
736	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 455
737	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 485
738	—CH ₂ —	$-N-CH_2-$	MS n√z (M-H) ⁻ 497
739	$-CH_2$	$-H_{\text{N-CH}_2}$	MS m/z (M-H) ⁻ 535
740	-CH ₂ -	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃	MS m/z (M-H) 537
741	—CH ₂ —	$-N$ - CH_2 - OCH_3	MS m/z (M-H) 551
742	—CH ₂ —	-N $-$ (CH ₂) ₂ $ -$	MS m/z (M-H) ⁻ 505
743	—СH ₂ —	H −N−(CH ₂) ₂ −OH	MS m/z (M-H) ⁻ 459

Table 2-15

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
744		—H—CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 409
745	—CH ₂ ——CH ₃	-N-(CH ₂) ₂ - F	MS m/z (M-H) ⁻ 461
746	—CH ₂ ——CH ₃	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 464
747	$-CH_2$ $-CH_3$	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 533
748	$-CH_2$ $-CH_3$	$-$ N $-$ CH $_2$	MS m/z (M-H) ⁻ 393
749	—CH ₂ ——CH ₃	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) ⁻ 423
750	—CH ₂ —СН ₃	$-$ N $-$ CH $_2$ $-$	MS m/z (M-H) ⁻ 435
751	—CH ₂ —СН ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 473
752	—CH ₂ —СН ₃	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃	MS m/z (M-H) 475
753	—СH ₂ —СН ₃	$-N$ - CH_2 - OCH_3	MS m/z (M-H)* 489
754	—CH ₂ —СН ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 443
755	—CH ₂ —СН ₃	—N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 397

Table 2-16

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
756	—CH ₂ —	H —N−CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 445
757	$-CH_2$	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 497
758	—CH ₂ ————	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 500
759	—CH ₂ ——	H-(CH ₂) ₂	MS m/z (M-H) ⁻ 569
760	—СH ₂ —	$-$ N $-$ CH $_2$ $-$	MS m/z (M-H) ⁻ 429
761	—СH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 459
762	-CH ₂ -	$-N-CH_2-CH_2$	MS m/z (M-H) ⁻ 471
763	$-CH_2$	$-N-CH_2$	MS m/z (M-H) 509
764	$-CH_2$	H −N−CH₂CHC(CH₂)₂CHC CH	MS m/z (M-H) ⁻ 511
765	-CH ₂ -	$-N-CH_2$ OCH_3	MS m/z (M-H) ⁻ 525
766	-CH ₂ -	$-N$ -(CH ₂) ₂ \sim	MS m/z (M-H) ⁻ 479
767	—CH ₂ ——	—Н —N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 433

Table 2-17

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
768	—CH ₂ —	-N	MS m/z (M-H) ⁻ 391
769	—CH ₂ —	-NNNNNNNNNNNNN-	MS m/z (M-H) ⁻ 491
770	—CH ₂ —	—N—(CH ₂) ₂ —CN CH ₃	MS m/z (M-H) ⁻ 392
771	—CH ₂ —	-N CH ₃	MS m/z (M-H) ⁻ 423
772	—CH ₂ —	$-N-CH_2$ CH_2 CH_2	MS m/z (M-H)* 421
773	—CH ₂ —	$-N-CH_2$ $(CH_2)_3CH_3$	MS n/z (M-H) ⁻ 471
774	—CH ₂ —	(CH ₂) ₄ CH ₃ -N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 465
775	—CH ₂ —	$-N$ $-CH_2$	MS m/z (M-H) ⁻ 483
776	—CH ₂ —	-N N -0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS m/z (M-H) ⁻ 488
777	—CH ₂ —	$-N$ N CH_3	MS m/z (M-H) ⁻ 436
778	—CH ₂ —	N_NF	MS m/z (M-H) ⁻ 488
779	—CH ₂ —	-n	MS m/z (M-H) ⁻ 441

Table 2-18

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
780	—СH ₂ —СБ ₃	-N	MS m/z (M-H) ⁻ 459
781	—CH ₂ ————————————————————————————————————	H-N-	MS m/z (M-H) ⁻ 559
782	—CH ₂ ————————————————————————————————————	$-N-(CH_2)_2-CN$ CH_3 CH_3	MS m/z (M-H) ⁻ 460
783	$-CH_2$ CF_3	−N O CH ₃	MS m/z (M-H) ⁻ 491
784	—СH ₂ —СF ₃	$-N-CH_2-$ $(CH_2)_2CH_3$	MS m/z (M-I-I) ⁻ 489
785	$-CH_2$ CF_3	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 539
786	—CH ₂ ————————————————————————————————————	$(CH_{2})_{4}CH_{3}$ -N $(CH_{2})_{4}CH_{3}$	MS m/z (M-H) ⁻ 533
787	$-CH_2$ CF_3	—N—CH ₂ —	MS m/z (M-H) ⁻ 551
788	—CH ₂ ————————————————————————————————————	-N	MS m/z (M-H) ⁻ 556
789	—CH ₂ ————————————————————————————————————	$-N$ N CH_3	MS m/z (M-H) ⁻ 504
790	—CH ₂ ————————————————————————————————————	-N N $-F$	MS m/z (M-H) ⁻ 556
791	—СH ₂ ——СF ₃	-N	MS m/z (M-H) ⁻ 509

Table 2-19

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
792	—CH ₂ ——C(CH ₃) ₃	-n	MS m/z (M-H) ⁻ 447
793	$-CH_2$ $-C(CH_3)_3$	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 547
794	$-CH_2$ $-C(CH_3)_3$	—N-(CH ₂) ₂ —CN CH ₃	MS m/z (M-H) ⁻ 448
795	$-CH_2$ $C(CH_3)_3$	-N O CH ₃	MS m/z (M-H) ⁻ 479
796	$-CH_2$ $-C(CH_3)_3$	$-N-CH_2 (CH_2)_2CH_3$	MS m/z (M-H) ⁻ 477
797	$-CH_2$ $C(CH_3)_3$	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 527
798	$-CH_2$ $-C(CH_3)_3$	$(CH_{2})_{4}CH_{3}$ -N $(CH_{2})_{4}CH_{3}$	MS m/z (M-H) ⁻ 522
799	$-CH_2$ $-C(CH_3)_3$	$-N$ CH_2	MS m/z (M-H) ⁻ 539
800	$-CH_2$ $C(CH_3)_3$	-N N 0	MS m/z (M-H) ⁻ 544
801	$-CH_2$ $C(CH_3)_3$	$-N$ N CH_3	MS m/z (M-H) ⁻ 492
802	$-CH_2$ $C(CH_3)_3$	_N_N_F	MS m/z (M-H) ⁻ 544
803	$-CH_2$ $C(CH_3)_3$		MS m/z (M-H) ⁻ 497

Table 2-20

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
804	−CH ₂ −√NC	_N	MS m/z (M-H) ⁻ 416
805	—CH ₂ ——NC	-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 516
806	-CH ₂	$-N-(CH_2)_2-CN$ CH_3 CH_3	MS m/z (M-H) ⁻ 417
807	-CH ₂	-N O CH₃	MS m/z (M-H) ⁻ 448
808	—CH ₂ ——NC	$-N-CH_2-$ $(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 446
809	—CH ₂ ——NC	-N-CH ₂	MS m/z (M-H) ⁻ 496
810	—CH ₂ ——	(CH ₂) ₄ CH ₃ -N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 490
811	—CH ₂ ——NC	$-N$ CH_2	MS m/z (M-H) ⁻ 508
812	−CH ₂ −√NC		MS m/z (M-H) ⁻ 513
813	−CH ₂ −√NC	$-N$ N CH_3	MS m/z (M-H) ⁻ 461
814	CH ₂	-N_N-_F	MS m/z (M-H) ⁻ 513
815	$-CH_2$	-N	MS m∕z (M-H) [*] 466

Table 2-21

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
—Cl	CH ₂ SO ₂	_N	MS m/z (M-H)* 545
817 —C	H ₂ ————————————————————————————————————	_H	MS m/z (M-H) 645
818 —C	H ₂ ————————————————————————————————————	-N-(CH ₂) ₂ CN CH ₃	MS m/z (M-H) ⁻ 546
819 —C	H_2 CH_2SO_2	-N CH ₃	MS m/z (M-H) ⁻ 577
820 —C	CH ₂ SO ₂	$-N-CH_2$ $(CH_2)_2CH_3$	MS m/z (M-H)* 575
821 —C	H ₂ ————————————————————————————————————	-N-CH ₂	MS m/z (M-H) ⁻ 625
822 —C	CH ₂ SO ₂	(CH ₂) ₄ CH ₃ -N (CH ₂) ₄ CH ₃	MS m/z (M-H)* 619
823 —C	H ₂ ————————————————————————————————————	$-N$ CH_2	MS m/z (M-H)* 637
824 —C	CH ₂ SO ₂	-N N 0 0 0	MS m/z (M-H)* 642
825 —C	H ₂ ————————————————————————————————————	$-N$ N CH_3	MS m/z (M-H)* 590
826 —C	H_2 CH_2SO_2	-N_N-(F	MS m/z (M-H) ⁻ 642
827 —C	H ₂ ————————————————————————————————————	-N	MS m/z (M-H) ⁻ 595

Table 2-22

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
828	-CH ₂	-n	MS m/z (M-H) ⁻ 467
829	—CH ₂ —	-N-	MS m/z (M-H) ⁻ 567
830	—CH ₂ —	$-N-(CH_2)_2-CN$ CH_3 CH_3	MS m/z (M-H) ⁻ 468
831	—CH ₂ —	—N O CH ₃	MS m/z (M-H) ⁻ 499
832	—СН2—	$-N-CH_2$ CH_2	MS n√z (M-H) ⁻ 497
833	—CH ₂ —	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H)⁻ 547
834	—CH ₂ —	(CH ₂) ₄ CH ₃ —N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 541
835	—CH ₂ —	$-N$ CH_2	MS m/z (M-H) ⁻ 559
836	—CH ₂ ——	-N N 0	MS m/z (M-H) ⁻ 564
837	—CH ₂ —	-N N $CH3$	MS m/z (M-H) ⁻ 512
838	—CH ₂ —	_NF	MS m/z (M-H) ⁻ 564
839	—CH ₂ ——	-N	MS m/z (M-H) ⁻ 517

Table 2-23

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
840	−СН₂ СН₃	-N	MS m/z (M-H) ⁻ 405
841	—СH ₂ —СН ₃	H-N-	MS m/z (M-H) ⁻ 505
842	—СH ₂ —СН ₃	—N—(CH ₂) ₂ —CN CH ₃ CH ₃	MS m/z (M-H) ⁻ 406
843	—СH ₂ —СН ₃	—N O CH ₃	MS m/z (M-H) ⁻ 437
844	—СH ₂ —СН ₃	$-N-CH_2 \longrightarrow (CH_2)_2CH_3$	MS m/z (M-H) ⁻ 435
845	—СH ₂ —СН ₃	$-N-CH_2$ $(CH_2)_3CH_3$	MS n/z (M-H) ⁻ 485
846	—СH ₂ —СН ₃	(CH2)4CH3 $-N$ $(CH2)4CH3$	MS nv/z (M-H) ⁻ 479
847	—СH ₂ —СН ₃	$-N$ CH_2	MS m/z (M-H) ⁻ 497
848	—CH ₂ ——CH ₃	-N	MS m/z (M-H) ⁻ 502
849	$-CH_2$ $-CH_3$	-N N $CH3$	MS m/z (M-H) ⁻ 450
850	$-CH_2$ $-CH_3$	-N_N-_F	MS m/z (M-H) ⁻ 502
851	—СH ₂ —СН ₃	-N	MS m/z (M-H) ⁻ 455

Table 2-24

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
852	—CH ₂ —	-N	MS m/z (M-H) ⁻ 441
853	—CH ₂ —	-K-	MS m/z (M-H) ⁻ 541
854	-CH ₂	$-N-(CH_2)_2-CN$ CH_3 CH_3	MS m/z (M-H) ⁻ 442
855	-CH ₂ -	-N O CH ₃	MS m/z (M-H) ⁻ 473
856	—CH ₂ ————————————————————————————————————	$-N-CH_2$ CH_2 CH_3	MS m/z (M-H)⁻ 471
857	-CH ₂ -	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 521
858	$-CH_2$	$(CH_{2})_{4}CH_{3}$ -N $(CH_{2})_{4}CH_{3}$	MS m/z (M-H) ⁻ 515
859	—CH ₂ —	-NCH ₂ -√	MS m/z (M-H) ⁻ 533
860	$-CH_2$	-N_N-0	MS m/z (M-H) ⁻ 538
861	$-CH_2$	$-N$ N CH_3	MS m/z (M-H) ⁻ 486
862	$-CH_2$	-NN $-$ F	MS m/z (M-H) ⁻ 538
863	-CH ₂ -		MS m/z (M-H) ⁻ 491

Table 2-25

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
864	−CH ₂ −Cl	$-N-(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 401
865	−CH ₂ −CI	$-\overset{H}{\overset{N}{\overset{-}}{\overset{-}{\overset{-}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}}{\overset{-}}}{\overset{-}}}{\overset{-}}}}}}}}}$	MS m/z (M-H) ⁻ 429
866	—CH ₂ ——	—Н —N—(СН ₂) ₃ ОСН ₃	MS m/z (M-H) ⁻ 431
867	—CH ₂ ——	$-N-CH_2$	MS m/z (M-H) ⁻ 439
868	$-CH_2$	H_3C $-N-CH_2$	MS m/z (M-H) ⁻ 463
869	—CH ₂ ———	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 469
870	—CH ₂ ——	$-N-(CH_2)_2$ CH_3	MS m√z (M-H) ⁻ 477
871	−CH ₂ −Cl	$-N-CH_2$	MS m/z (M-H) ⁻ 483
872	—CH ₂ ————————————————————————————————————	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 493
873	−CH ₂ CI	$-N-CH_2$	MS m/z (M-H) ⁻ 499
874	—CH ₂ ————————————————————————————————————	H-CH ₂ —OCH ₃	MS m/z (M-H) ⁻ 509
875	—CH ₂ ————————————————————————————————————	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 517

Table 2-26

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
876	—СH ₂ ————————————————————————————————————	N(CH ₂)₂CH₃	MS m/z (M-H) ⁻ 385
877	$-CH_2$ F	-N-(CH2)2CH3 $CH3$	MS m/z (M-H) ⁻ 413
878	—CH ₂ ————————————————————————————————————	—N−(CH ₂)₃OCH₃	MS m/z (M-H) ⁻ 415
879	—СН ₂ ————————————————————————————————————	$-N-CH_2$	MS m/z (M-H) ⁻ 423
880	—СH ₂ ————————————————————————————————————	H_3C $-N-CH_2$	MS π/z (M-H) ⁻ 447
881	—СH ₂ ————————————————————————————————————	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 453
882	—CH ₂ ——	-N- $(CH2)2-CH3$	MS m/z (M-H) ⁻ 461
883	—СH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 467
884	—CH ₂ ————————————————————————————————————	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 477
885	$-CH_2$	$-N-CH_2$	MS m/z (M-H)⁻ 483
886	$-CH_2$	$-$ N $-$ CH $_2$ $-$ OCH	MS m/z (M-H) ⁻ 493
887	—СH ₂ ————————————————————————————————————	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 501

Table 2-27

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
888	−СН2 СО2СН3	$-N$ $-(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 425
889	—CH ₂ ——CO ₂ CH ₃	$-\overset{H}{N}-(CH_2)_2-\overset{CH_3}{\longleftarrow}_{CH_3}$	MS m/z (M-H) ⁻ 453
890	$-CH_2$ $-CO_2CH_3$	—N—(CH ₂) ₃ OCH ₃	MS m/z (M-H) ⁻ 455
891	—CH ₂ ——CO ₂ CH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 463
892	—СH ₂ —СО ₂ СН ₃	H_3C H_3C	MS m/z (M-H) ⁻ 487
893	—СH ₂ —СО ₂ СН ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 493
894	СН₂СО₂СН₃	$-N-(CH_2)_2$ — CH_3	MS m/z (M-H) ⁻ 501
895	—СH ₂ —СО ₂ СН ₃	$-$ N $-$ CH $_2$ $-$ CI	MS m/z (M-H) ⁻ 507
896	−СН2 СО2СН3	-N- $(CH2)2-OCH3$	MS m⁄z (M-H)⁻ 517
897	—СH ₂ —СО ₂ СН ₃	-N-CH ₂	MS m/z (M-H) ⁻ 523
898	—CH ₂ ——CO ₂ CH ₃	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 533
899	—СH ₂ —СО ₂ СН ₃	u 🦱	MS m/z (M-H) ⁻ 541

Table 2-28

900 —CH ₂ -	-Br $-$ N $-$ (CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 445
901 —CH ₂ -	-Br $-$ N $-$ (CH ₂) ₂ $-$ CH ₃ $-$ CH ₃	MS m/z (M-H) ⁻ 473
902 —CH ₂ -	- $ N$ $ (CH2)3OCH3$	MS m/z (M-H) ⁻ 475
903 —CH ₂ -	- $ -$	MS m/z (M-H) ⁻ 483
904CH ₂ -	- $ -$	MS m/z (M-H) ⁻ 507
905 —CH ₂ -	-Br $-$ N $-$ (CH ₂) ₂ $-$ S	MS m/z (M-H) ⁻ 513
906 —CH ₂ -	B_{Γ} N $-(CH_2)_2$ C	CH ₃ MS m/z (M-H) 521
907 —CH ₂ -	$-$ Br $-$ N $-$ CH $_2$ $-$ Cl	MS m/z (M-H) ⁻ 527
908 —CH ₂ -	-Br $-$ N $-$ (CH ₂) ₂ $-$ C	OCH ₃ MS m/z (M-H) ⁻ 537
909 —CH ₂ -	$-$ Br $-$ N $-$ CH $_2$	MS m/z (M-H) ⁻ 543
910 —CH ₂ -	$-$ Br $-$ N $-$ CH $_2$ $-$ OCH $_3$	MS m/z (M-H) ⁻ 553
911 —CH ₂ -	- $ -$	MS m/z (M-H) ⁻ 561

Table 2-29

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
912	-CH ₂	−N−(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 381
913	$-CH_2$ H_3C	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 409
914	$-CH_2$ H_3C	-N-(CH ₂) ₃ OCH ₃	MS m/z (M-H) ⁻ 411
915	-CH ₂	$-N$ - CH_2	MS m/z (M-H) ⁻ 419
916		$-N-CH_2$	MS m/z (M-H) ⁻ 443
917	-CH ₂	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 449
918	—СH ₂ ————————————————————————————————————	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 457
919	—CH₂———————————————————————————————————	-N-CH ₂ - CI	MS m/z (M-H) ⁻ 463
920	$-CH_2$ H_3C	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-I-I) ⁻ 473
921	$-CH_2$ H_3C	$-H_2$	MS m/z (M-H) ⁻ 479
922	$-CH_2$ H_3C	$-$ N $-$ CH $_2$ \longrightarrow OCH $_3$	MS m/z (M-H)⁻ 489
923	—CH₂———————————————————————————————————	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 497

Table 2-30

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
924	−CH ₂ −CI	-N-(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 435
925	−CH ₂ ←CI	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 463
926	-CH ₂ -Cl	—N−(CH ₂)₃ОСН₃	MS m/z (M-H) ⁻ 465
927	—СН ₂ —СІ	-N-CH ₂ - O	MS m/z (M-H) ⁻ 473
928	—CH ₂ —CI	$ \begin{array}{c} H_3C \\ -N-CH_2 \end{array} $	MS m/z (M-H)⁻ 497
929	—СН ₂ —СІ	$-N-(CH_2)_2$	MS m/z (M-H); 503
930	-CH ₂ CI	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 511
931	-CH ₂ -CI	$-N-CH_2$	MS m/z (M-H) ⁻ 517
932	—CH ₂ ——CI	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 527
933	−CH ₂ ←CI	-N-CH ₂	MS m/z (M-H) ⁻ 833
. 934	−CH ₂ ←CI	$-N$ - CH_2 OCH ₃ OCH ₃	MS m/z (M-H) ⁻ 543
935	—СH ₂ —СI	$-N$ - CH_2 F_3C	MS m/z (M-H) ⁻ 551

Table 2-31

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
936	—CH ₂ —	-OCH ₃ — Н -(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 397
937	—CH ₂ —	$-OCH_3 \qquad -N - (CH_2)_2 - \begin{pmatrix} CH_3 \\ \\ CH_3 \end{pmatrix}$	MS m/z (M-H) ⁻ 425
938	—СH ₂ —	$-OCH_3$ $-N-(CH_2)_3OCH_3$	MS m/z (M-H) 427
939	—CH ₂ —	-осн ₃ — H-сн ₂ —	MS m/z (M-H) ⁻ 435
940	—CH ₂ —	$-OCH_3$ $-N-CH_2$	MS m/z (M-H)⁻ 459
941		$-OCH_3$ $-N$ $-(CH_2)_2$ $-S$	MS m/z (M-H) ⁻ 465
942	—СH ₂ —	$-OCH_3$ $-N-(CH_2)_2$ $-CH_3$	MS m/z (M-H) ⁻ 473
943	—CH ₂ —	-осн ₃ — N-сн ₂ —	MS m/z (M-H) 479
944	—CH ₂ ——	$-OCH_3$ $-N-(CH_2)_2$ $-OCH_3$	MS m/z (M-H)⁻ 489
945	—CH ₂ —	$-OCH_3$ $-N-CH_2$	MS m/z (M-H) ⁻ 495
946	—CH ₂ —	-OCH ₃ H-CH ₂ OCH ₃	MS m/z (M-H) ⁻ 505
947	—CH ₂ —	OCH ₃ $-OCH_3 - N - CH_2 \longrightarrow F_3C$	MS m/z (M-H) ⁻ 513

Table 2-32

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
948	—CH ₂ ————————————————————————————————————	H —N—(CH ₂) ₂ CH ₃	MS n√z (M-H) ⁻ 392
949	$-CH_2$	$-\overset{H}{N}-(CH_2)_2-\overset{CH_3}{\longleftarrow}_{CH_3}$	MS m/z (M-H) ⁻ 420
950	-CH ₂	-N $-(CH2)3OCH3$	MS m/z (M-H) ⁻ 422
951	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 430
952	-CH ₂ €	H_3C $-N-CH_2$	MS m/z (M-H) ⁻ 454
953	CH ₂ —CH ₂ CN	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 460
954	$-CH_2$	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 468
955	-CH ₂	$-$ N $-$ CH $_2$	MS m/z (M-H) ⁻ 474
956	-CH ₂	$-N-(CH_2)_2$ OCH ₃	MS m/z (M-H) ⁻ 484
957	—CH ₂ ——	$-H_{N-CH_2}$	MS m/z (M-H) ⁻ 490
958	—CH ₂ —	OCH ₃	MS m/z (M-H) ⁻ 500
959	CN CN	$-N-CH_2$	MS m/z (M-H) ⁻ 508

Table 2-33

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
960	CH ₂	H −N−CH₂CH(CH₃)CH₂CH₃ /F	MS m/z (M-H) ⁻ 429
961	—CH ₂ ————————————————————————————————————	$-\overset{H}{N-(CH_2)_2}-\overset{\bullet}{\bigcirc}$	MS m/z (M-H) ⁻ 481
962	—CH ₂ ————————————————————————————————————	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 484
963	$-CH_2$	-H-(CH ₂) ₂ -	MS m/z (M-H) ⁻ 553
964	—CH ₂ ——	$-N-CH_2-$	MS m/z (M-H) ⁻ 413
965	—CH ₂ ——	$-N-CH_2$	MS m/z (M-H) ⁻ 443
966	—CH ₂ —	$-N-CH_2$	MS m/z (M-H) ⁻ 455
967	$-CH_2$	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) ⁻ 493
968	CI' —CH ₂ —	H—CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃	MS m/z (M-H) ⁻ 495
969	—CH ₂ ——	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 509
970	—CH ₂ ——	$-H$ N $CH_2)_2$	MS m/z (M-H) 463
971	—CH ₂ ——	-N-(CH ₂) ₂ -OH	MS m/z (M-H) 417
	Cl [′]		

Table 2-34

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
972	—СH ₂ —	H −N−CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 413
973	—CH ₂ —	$- \stackrel{H}{N} - (CH_2)_2 - \stackrel{\frown}{\bigcirc}$	MS m/z (M-H) ⁻ 465
974	—CH ₂ ——	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 468
975	—CH ₂ ——	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 537
976	—CH ₂ ——	$-N-CH_2$	MS m/z (M-H) ⁻ 397
977	—CH ₂ ——	$-N-CH_2$	MS m/z (M-H) ⁻ 427
978	—CH ₂ ——	-N-CH ₂	MS m/z (M-H) ⁻ 439
979	—CH ₂ ————————————————————————————————————	$-N-CH_2$	MS n√z (M-H) ⁻ 477
980	—СH ₂ —	H N-CH ₂ CHC(CH ₂) ₂ CHC CH	
981	—CH₂———	-N-CH ₂ -OCH ₃	MS m/z (M-H) ⁻ 493
982	CH ₂ —	$-N-(CH_2)_2$	MS m/z (M-H)⁻ 447
983	—CH₂———————————————————————————————————	—N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 401

Table 2-35

Cpd. No.	R ⁶		NR ⁷ R ⁸	Instrumental Data
984	—CH ₂ —	∕—со₂сн₃	H −N−CH ₂ CH(CH ₃)CH ₂ CH ₃ .F	MS m/z (M-H) ⁻ 453
985	—СH ₂ —	СО ₂ СН ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 505
986	—сн ₂ —	CO ₂ CH ₃	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 508
987	—CH ₂ —	СО2СН3	-H-(CH ₂) ₂ -	MS m/z (M-H) ⁻ 577
988	—СH ₂ —	СО2СН3	$-N-CH_2$	MS m/z (M-H) ⁻ 437
989	—CH ₂ —	∑—СО₂СН₃	$-N-CH_2$	MS m/z (M-H) ⁻ 467
990	—CH ₂ —	СО2СН3	-H-CH ₂	MS m/z (M-H) ⁻ 479
991	—СH ₂ —	CO ₂ CH ₃	$-N-CH_2$	MS m/z (M-H) 517
992	—СH ₂ —	_СО₂СН₃	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃	MS m/z (M-H) 519
993	—CH ₂ —	CO ₂ CH ₃	$-N-CH_2$ OCH_3	MS n/z (M-H) 533
994	—CH ₂ —	СО ₂ СН ₃	$-N-(CH_2)_2$	MS m/z (M-H) 487
995	—CH ₂ —	CO ₂ CH ₃	$-N-(CH_2)_2$ -OH	MS m/z (M-H) ⁻ 441

Table 2-36

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
996	—CH ₂ ——Br	H —N—CH ₂ CH(CH ₃)CH ₂ CH ₃ F	MS m/z (M-H) ⁻ 473
997	$-CH_2$ $-Br$	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 525
998	—CH ₂ ——Br	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 528
999	—CH ₂ ——Br	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 597
1000	—CH ₂ ——Br	-N-CH ₂	MS m/z (M-H) 457
1001	—CH ₂ ——Br	-N-CH ₂ - O	MS m/z (M-H) ⁻ 487
1002	$-CH_2$ $-Br$	$-N$ -CH ₂ - \bigcirc	MS m/z (M-H) ⁻ 499
1003	—CH ₂ ——Br	$-N-CH_2$	MS m/z (M-H) ⁻ 537
1004	—CH ₂ ——Br	H-N-CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃	MS m/z (M-H) ⁻ 539
1005	—CH ₂ ——Br	$-N$ - CH_2 - OCH_3	MS nv/z (M-H) 553
1006	—CH ₂ ——Br	$-N-(CH_2)_2$	MS m/z (M-H) 507
1007	—CH ₂ ——Br	—Н —N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 461

Table 2-37

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1008	-CH ₂ ————————————————————————————————————	H −N−CH₂CH(CH₃)CH₂CH₃ F	MS m/z (M-H) ⁻ 409
1009	−CH ₂ ————————————————————————————————————	$-\frac{H}{N-(CH_2)_2}$	MS m/z (M-H) ⁻ 461
1010	$-CH_2$ H_3C	$-N-(CH_2)_3-N$	MS m/z (M-H)* 464
1011	$-CH_2$ H_3C	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 533
1012	-CH ₂ ————————————————————————————————————	$-N-CH_2$	MS m/z (M-H) ⁻ 393
1013	-CH ₂	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) ⁻ 423
1014	-СH ₂ ————————————————————————————————————	$-$ N $-$ CH $_2$ $-$ O $_2$	MS m/z (M-H) ⁻ 435
1015	$-CH_2$ H_3C	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) ⁻ 473
1016	$-CH_2$ H_3C	H -N-CH ₂ CHC(CH ₂) ₂ CHC CH ₃	
1017	$-CH_2$ H_3C	−N−CH ₂ −−OCH ₃	MS m/z (M-H)* 489
1018	$-CH_2$ H_3C	-N $-$ (CH ₂) ₂ $-$	MS m/z (M-H)* 443
1019	$-CH_2$ H_3C	-N-(CH ₂) ₂ -OH	MS m/z (M-H) ⁻ 397
		•	

Table 2-38

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1020	—СH ₂ —С	CI —N—CH ₂ CH(CH ₃)CH ₂ CH ₃ F	MS m/z (M-H) ⁻ 463
1021	-CH ₂ -C	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 515
1022	$-CH_2$	$-\stackrel{H}{N}-(CH_2)_3-N$	MS m/z (M-H) 518
1023	—CH ₂ ——C	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 587
1024	—CH ₂ ———C	$-N-CH_2-$	MS m/z (M-H) ⁻ 447
1025	$-CH_2$	$-N-CH_2$	MS m/z (M-H) ⁻ 477
1026	- 🖳	-H-CH ₂	MS m/z (M-H) ⁻ 489
1027	$-CH_2$	$-N-CH_2 \longrightarrow 0$	MS m/z (M-H) ⁻ 527
1028	- 🖳	CH ₃ CH ₃ -N-CH ₂ CHC(CH ₂) ₂ CHC CH ₃	MS m/z (M-H) ⁻ 529
1029	—CH ₂ ——C	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 543
1030	—CH ₂ ————	$-\frac{H}{N-(CH_2)_2}$	MS m/z (M-H) ⁻ 497
1031	$-CH_2$	—H −N−(CH ₂) ₂ −OH	MS m/z (M-H) ⁻ 451

Table 2-39

Cpd. No.	Re	NR ⁷ R ⁸	Instrumental Data
1032	—CH ₂ —СОСН ₃	H −N−CH₂CH(CH₃)CH₂CH₃ ,F	MS m/z (M-H) 425
1033	—CH ₂ ——ОСН ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 477
1034	$-CH_2$ $-OCH_3$	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 480
1035	—CH ₂ ——ОСН ₃	$-N$ - $(CH_2)_2$	MS m/z (M-H) ⁻ 549
1036	$-CH_2$ $-OCH_3$	$-N-CH_2$	MS m/z (M-H) ⁻ 409
1037	—СH ₂ —ОСН ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 439
1038	$-CH_2$ OCH_3	$-N-CH_2-$	MS m/z (M-H) ⁻ 451
1039	—СH ₂ —СОСН ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 489
1040	$-CH_2$ $-OCH_3$	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃	MS m/z (M-H) 491
1041	$-CH_2$ OCH_3	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 505
1042	—СH ₂ ——ОСН ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 459
1043	—CH ₂ —СОСН ₃	$-N - (CH_2)_2 - OH$	MS m/z (M-H) ⁻ 413

Table 2-40

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1044	—СH ₂ —	H −N−CH₂CH(CH₃)CH₂CH₃ F	MS m/z (M-H)⁻ 420
1045	$-CH_2$ CN	$-\text{N}-(\text{CH}_2)_2$	MS m/z (M-H) ⁻ 472
1046	$-CH_2$	N-(CH ₂) ₃ N	MS m/z (M-H) ⁻ 475
1047	—CH ₂ ——CN	$-N-(CH_2)_2$	MS n/z (M-H) ⁻ 544
1048	—CH ₂ ————————————————————————————————————	$-\overset{H}{N}-CH_2-$	MS m/z (M-H)⁻ 404
1049	—CH ₂ ——CN	$-N-CH_2$	MS m/z (M-H) ⁻ 434
1050	—CH ₂ —	$-\text{N-CH}_2$	MS n√z (M-H) ⁻ 446
1051	−CH ₂ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	$-N-CH_2$	MS n√z (M-H) ⁻ 484
1052	—CH ₂ —	—N−CH₂CHĆ(CH₂)₂CHC C	H ₃ MS m/z (M-H) 486
1053	CH ₂ —CH ₂	−N−CH ₂ −−OCH ₃	MS m/z (M-H) ⁻ 500
1054	—CH ₂ ————————————————————————————————————	$-N-(CH_2)_2$	MS n√z (M-H) ⁻ 454
1055	$-CH_2$ CN	Н N(СН ₂) ₂ ОН	MS m∕z (M-H)⁻ 408

Table 2-41

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1056	—CH ₂ ——	-N	MS m/z (M-H) ⁻ 425
1057	—СH ₂ ——	_H	MS m/z (M-H) 525
1058	−CH ₂ −CI	$-N-(CH_2)_2-CN$ CH_3 CH_3	MS m/z (M-H) ⁻ 426
1059	−CH ₂ −CI	$-N$ O CH_3	MS n√z (M-H) ⁻ 457
1060	−CH ₂ −CI	$-N-CH_2-$ $(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 455
1061	-CH ₂	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) 505
1062	—CH ₂ ————————————————————————————————————	(CH ₂) ₄ CH ₃ N I (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 499
1063	—СH ₂ ——	$-N$ CH_2	MS m/z (M-H) ⁻ 517
1064	—CH ₂ ————————————————————————————————————	-N_N-0	MS m/z (M-H) ⁻ 522
1065	—СH ₂ —	$-N$ O CH_3	MS m/z (M-H)* 470
1066	—СH ₂ ——	-N N F	MS m/z (M-H)* 522
1067	$-CH_2$		MS m/z (M-H) ⁻ 475

Table 2-42

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1068	—сн ₂ —	-N	MS n√z (M-H) ⁻ 409
1069	-CH ₂ -√	_N	MS m/z (M-H) ⁻ 509
1070	—CH ₂ ——	—N—(CH ₂) ₂ —CN CH ₃	MS m/z (M-H) ⁻ 410
1071	—CH ₂ ——	—N_O	MS π/z (M-H) ⁻ 441
1072	—CH ₂ ——	Сн ₃ —N-Сн ₂ — —П-Сн 2-	MS m/z (M-H) 439
1073	—CH₂———————————————————————————————————	$(\dot{C}H_2)_2CH_3$ $-N-CH_2 (CH_2)_3CH_3$	MS m/z (M-H) ⁻ 489
1074	—CH₂———	(CH ₂) ₄ CH ₃ -N -N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 483
1075	CH ₂	$-N$ CH_2	MS m/z (M-H) ⁻ 501
1076	—CH ₂ —	-N N 0	MS m/z (M-H) ⁻ 506
1077	—CH₂———————————————————————————————————	$-N$ N CH_3	MS m/z (M-H) ⁻ 454
1078	—CH ₂ ——	-N N F	MS m/z (M-H) ⁻ 506
1079	$-CH_2$ F		MS m⁄z (M-H)⁻ 459

Table 2-43

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1080	—СH ₂ —СО ₂ СН ₃	-n	MS m/z (M-H) ⁻ 449
1081	$-CH_2$ $-CO_2CH_3$	_N	MS m/z (M-H) ⁻ 549
1082	$-CH_2$ $-CO_2CH_3$	-N-(CH ₂) ₂ CN CH ₃	MS m/z (M-H) ⁻ 450
. 1083	—CH ₂ ——CO ₂ CH ₃	−N CH ₃	MS m/z (M-H) 481
1084	$-CH_2$ $-CO_2CH_3$	$-N-CH_2$ $(CH_2)_2CH_3$	MS n√z (M-H) 479
1085	$-CH_2$ CO_2CH_3	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 529
1086	$-CH_2$ $-CO_2CH_3$	$(CH_{2})_{4}CH_{3}$ —N $(CH_{2})_{4}CH_{3}$	MS m/z (M-H) ⁻ 523
1087	$-CH_2$ $-CO_2CH_3$	$-N$ $-CH_2$	MS m/z (M-H) 541
1088	$-CH_2$ $-CO_2CH_3$	-N N 0	MS m/z (M-H) ⁻ 546
1089	$-CH_2$ $-CO_2CH_3$	$-N$ N CH_3	MS m/z (M-H) ⁻ 494
1090	$-CH_2$ $-CO_2CH_3$	-N N $-F$	MS m/z (M-H) ⁻ 546
1091	—CH ₂ ——CO ₂ CH ₃	-N	MS m/z (M-H) ⁻ 499

Table 2-44

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1092	$-CH_2$ Br	-N	MS m/z (M-H) ⁻ 469
1093	$-CH_2$ Br	-N-	MS m/z (M-H) [*] 569
1094	$-CH_2$ Br	—N—(CH ₂) ₂ —CN CH ₃	MS m/z (M-H) 470
1095	—CH ₂ ——Br	−N CH ₃	MS m/z (M-H) ⁻ 501
1096	$-CH_2$ Br	$-N-CH_2 (CH_2)_2CH_3$	MS m/z (M-H) ⁻ 499
1097 .	$-CH_2$ Br	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H)⁻ 549
1098	CH_2 \longrightarrow Br	$(CH_{2})_{4}CH_{3}$ -N $(CH_{2})_{4}CH_{3}$	MS m/z (M-H) ⁻ 543
1099	$-CH_2$ Br	$-N$ $-CH_2$	MS m/z (M-H) ⁻ 561
1100	$-CH_2$ Br	-N N 0 0 0 0 0 0 0 0 0 0 0 0 0	MS m/z (M-H) ⁻ 566
1101	$-CH_2$ Br	$-N$ N CH_3	MS m/z (M-H)⁻ 514
1102	$-CH_2$ Br	N_N	MS m/z (M-H) ⁻ 566
1103	—CH ₂ ——Br	-n	MS m/z (M-H) ⁻ 519

Table 2-45

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1104	—CH ₂ ————————————————————————————————————	-N	MS m/z (M-H) ⁻ 405
1105	$-CH_2$ H_3C	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 505
1106	$-CH_2$ H_3C	-N-(CH2)2-CN $CH3$	MS m/z (M-H) ⁻ 406
1107	$-CH_2$ H_3C	CH ₃	MS m/z (M-H) ⁻ 437
1108	—CH ₂ ————————————————————————————————————	$-N-CH_2-$ $(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 435
1109	—CH ₂ ————————————————————————————————————	-N-CH ₂	MS m/z (M-H) ⁻ 485
1110	—СH ₂ ————————————————————————————————————	(CH ₂) ₄ CH ₃ N I (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 479
1111	—СH ₂ ——	$-N$ CH_2	MS m/z (M-H) ⁻ 497
1112	$-CH_2$ H_3C	-N_N-0	MS m/z (M-H) ⁻ 502
1113	$-CH_2$ H_3C	$-N \longrightarrow N \longrightarrow CH_3$	MS n√z (M-H) ⁻ 450
1114	$-CH_2$ H_3C	-N_N-_F	MS n√z (M-H)` 502
1115	$-CH_2$ H_3C	-N	MS m/z (M-H) ⁻ 455

Table 2-46

$$\begin{array}{c|c}
R^6 & O \\
N & N \\
N & R^7
\end{array}$$

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1116	—CH₂——CI	-N	MS m/z (M-H) ⁻ 459
1117	—СH ₂ —СI	-N-	MS m/z (M-H) ⁻ 559
1118	$-CH_2$ $-CI$	—N-(CH ₂) ₂ —CN CH ₃	MS m/z (M-H) ⁻ 460
1119	—CH₂—CI	-NOCH ₃	MS m/z (M-H) 491
1120	$-CH_2$ CI	$-N-CH_2 (CH_2)_2CH_3$	MS m/z (M-H)* 489
1121	$-CH_2$ CI	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 539
1122	−CH ₂ −CI	(CH ₂) ₄ CH ₃ N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 533
1123	−CH ₂ −Cl	$-N$ $-CH_2$	MS m/z (M-H) 551
1124	—CH₂—CI	-N N 0 0 0 0 0 0 0 0 0 0 0 0 0	MS m/z (M-H) ⁻ 556
1125	—СН ₂ —СІ	$-N$ N CH_3	MS m/z (M-H) ⁻ 504
1126	—СH ₂ —СI	_N_N_F	MS m/z (M-H) .556
1127	$-CH_2$ CI	-n	MS m/z (M-H) ⁻ 509

Table 2-47

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1128	—CH ₂ ——OCH ₃	-N	MS m/z (M-H) 421
1129	—СH ₂ ——ОСН ₃	-N-	MS m/z (M-H) ⁻ 521
1130	$-CH_2$ OCH_3	$-N-(CH_2)_2-CN$ CH_3 CH_3	MS m/z (M-H) ⁻ 422
1131	—СH ₂ ——ОСН ₃	-NO CH ₃	MS m/z (M-H) ⁻ 453
1132	—СH ₂ —ОСН ₃	$-N-CH_2$ $CH_2)_2CH_3$	MS m/z (M-H) ⁻ 451
1133	$-CH_2$ OCH_3	-N-CH ₂	MS m/z (M-H) ⁻ 50 I
1134	$-CH_2$ $-OCH_3$	(CH ₂) ₄ CH ₃ —N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 495
1135	$-CH_2$ $-OCH_3$	$-N$ CH_2	MS m/z (M-H) ⁻ 513
1136	—СH ₂ ——ОСН ₃	-N N O O O	MS m/z (M-H) ⁻ 518
1137	$-CH_2$ OCH_3	$-N$ N CH_3	MS m/z (M-H) ⁻ 466
1138	$-CH_2$ $-CCH_3$	_NF	MS m/z (M-H) ⁻ 518
1139	—СH ₂ ——ОСН ₃	-N	MS m/z (M-H) ⁻ 471

Table 2-48

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1140	$-CH_2$ CN	-n	MS m/z (M-H)⁻ 416
1141	$-CH_2$ CN	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 516
1142	—CH ₂ ————————————————————————————————————	—N-(CH ₂) ₂ CN CH ₃	MS m/z (M-H) ⁻ 417
1143	—CH ₂ ——CN	−N O CH ₃	MS m/z (M-H) ⁻ 448
1144	—CH ₂ ————————————————————————————————————	$-N-CH_2 (CH_2)_2CH_3$	MS m/z (M-H) ⁻ 446
1145	$-CH_2$ CN	—N−CH ₂ ————————————————————————————————————	MS m/z (M-H) ⁻ 496
1146	$-CH_2$	(CH ₂) ₄ CH ₃ N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 490
1147	$-CH_2$ CN	$-N$ CH_2	MS m/z (M-H) ⁻ 508
1148	—CH ₂ ————————————————————————————————————	-N N O O	MS m/z (M-H) ⁻ 513
1149	$-CH_2$ CN	$-N$ N CH_3	MS m/z (M-H) ⁻ 461
1150	$-CH_2$ CN	-N_N-_F	MS m/z (M-H) ⁻ 513
1151	—CH ₂ ————————————————————————————————————	-N	MS m/z (M-H) ⁻ 466

Table 2-49

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1152	H ₃ C CH ₃	H −N−(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 395
1153	H_3C CH_2 CH_3	-N-(CH ₂) ₂ C H ₃ CH ₃	MS m/z (M-H) ⁻ 423
1154	H ₃ C CH ₃	—H—(CH ₂) ₃ OCH ₃	MS m/z (M-H) ⁻ 425
1155	H ₃ C CH ₃	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) ⁻ 433
1156	H ₃ C CH ₃	H_3C H N CH_2	MS π/z (M-H) ⁻ 45, ⁷
1157	H ₃ C CH ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 463
1158	H ₃ C CH ₃	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 471
1159	H ₃ C CH ₃ —CH ₂	$-N$ - CH_2	MS m/z (M-H) ⁻ 477
1160	H ₃ C CH ₃	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 487
1161	H ₃ C CH ₃	$-H_{N-CH_2}$	MS m/z (M-H) ⁻ 493
1162	H ₃ C CH ₃	$-$ N $-$ CH $_2$ \longrightarrow OCH $_3$	MS m/z (M-H) ⁻ 503
1163	H ₃ C CH ₃ CH ₃ -CH ₂	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 511

Table 2-50

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1164	H ₃ CO OCH ₃	−N−(CH ₂) ₂ CH ₃	MS n√z (M-H) ⁻ 427
1165	H ₃ CO — CH ₂ OCH ₃ — CH ₂	$-\stackrel{H}{N}-(CH_2)_2-\stackrel{CH_3}{\longleftarrow}_{CH_3}$	MS m/z (M-H) ⁻ 455
1166	H ₃ CO OCH ₃	-N-(CH ₂) ₃ OCH ₃	MS n√z (M-H) 457
1167	H ₃ CO — CH ₂ OCH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 465
1168	H ₃ CO OCH ₃	H ₃ C -N-CH ₂	MS m∕z (M-H)⁻ 489
1169	H ₃ CO OCH ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 495
1170	H ₃ CO OCH ₃	$-N$ - $(CH_2)_2$ - CH_3	MS m/z (M-H) ⁻ 503
1171	H ₃ CO OCH ₃ OCH ₂	$-N-CH_2$	MS m/z (M-H) ⁻ 509
1172	H ₃ CO OCH ₃	$-N$ - $(CH_2)_2$ - OCH_3	MS m/z (M-H) ⁻ 519
1173	H ₃ CO OCH ₃	$-N$ - CH_2	MS m/z (M-H)⁻ 525
1174	H ₃ CO OCH ₃	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 535
1175	H ₃ CO OCH ₃ —CH ₂	OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H) ⁻ 543

Table 2-51

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1176	$-CH_2$ OCF ₃	-N $-(CH2)2CH3$	MS m/z (M-H) ⁻ 451
1177	$-CH_2$ OCF ₃	$ \begin{array}{c} H \\ -N - (CH_2)_2 \longrightarrow \begin{pmatrix} CH_3 \\ CH_3 \end{array} $	MS m∕z (M-H) ⁻ 479
1178	-СH ₂ -ССБ ₃	$-N-(CH_2)_3OCH_3$	MS m/z (M-H)⁻ 481
1179	$-CH_2$ OCF ₃	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H)⁻ 489
1180	$-CH_2$ OCF ₃	H_3C H_3C $-N-CH_2$	MS m/z (M-H) ⁻ 513
1181	$-CH_2$ OCF ₃	$-N-(CH_2)_2$	MS n/z (M-H) 519
1182	$-CH_2$ OCF_3	-N $-$ (CH ₂) ₂ $-$ CH ₃	MS m/z (M-H) ⁻ 527
1183	$-CH_2$ OCF_3	−N−CH ₂ −√	MS m/z (M-H) ⁻ 533
1184	$-CH_2$ OCF ₃	-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 543
1185	$-CH_2$ OCF_3 OCF_3	−N−CH ₂ −	MS m/z (M-H) ⁻ 549
1186	$-CH_2$ OCF ₃	$-N-CH_2$ OCH ₃	MS m/z (M-H) ⁻ 559
1187	$-CH_2$ OCF_3	H-CH ₂	MS m/z (M-H) ⁻ 567
		F ₃ C	

Table 2-52

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1188	—CH ₂ ——Br	$-N-(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 463
1189	-CH ₂ -Br	$-\overset{H}{\overset{C}{H_{2}}}_{CH_{3}}$	MS m/z (M-H) ⁻ 491
1190	$-CH_2$ $-Br$	—N−(CH ₂)₃OCH₃	MS m/z (M-H) ⁻ 493
1191	—CH ₂ ——Br	$-N-CH_2$	MS m/z (M-H) ⁻ 501
1192	-CH ₂ -Br	$-N-CH_2$	MS m/z (M-H) ⁻ 525
1193	—CH ₂ ——Br	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 531
1194	—CH ₂ ——Br	-N $-$ (CH ₂) ₂ $-$ CH ₃	MS m/z (M-H) ⁻ 539
1195	-CH ₂ -Br	$-N-CH_2$	MS n√z (M-H) [*] 545
1196	—CH ₂ ——Br	$-N-(CH_2)_2$ $-OCH_3$	MS m/z (M-H) ⁻ 555
1197	-CH ₂ -Br	$-N-CH_2$	MS m/z (M-H) 561
1198	$-CH_2$ Br	$-$ N-CH ₂ \longrightarrow OCH ₃	MS m/z (M-H) ⁻ 571
1199	CH ₂ Br	$ \begin{array}{c} $	MS m/z (M-H) ⁻ 579

Table 2-53

Cpd. No.	2 6	NR ⁷ R ⁸	Instrumental Data
	F CH ₃	Н —N—(СН ₂) ₂ СН ₃	MS m/z (M-H) ⁻ 399
—CH ₂ —	F CH ₃	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 427
CH ₂	F CH ₃	H −N−(CH ₂)₃OCH₃	MS π/z (M-H) ⁻ 429
—CH ₂ —	F CH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 437
—СН ₂ ——	F CH ₃ -	H ₃ C H _N -CH ₂	MS m/z (M-H) ⁻ 461
—СН ₂ —	F CH ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 467
CH ₂	F CH ₃	H—N—(CH ₂) ₂ —————————————————————————————————	MS m/z (M-H) ⁻ 475
—СН ₂ —	F CH ₃	H-N-CH ₂ —CI	MS m/z (M-H) ⁻ 481
—CH ₂ —	F CH ₃	-N $-(CH2)2 OCH3$	MS m/z (M-H) ⁻ 491
—СН ₂ —	F CH ₃	H-N-CH ₂	MS m/z (M-H) ⁻ 497
—СH ₂ —	F CH ₃	OCH ₃	MS m/z (M-H) ⁻ 507
	F CH ₃	ОСН ₃ -N-СН ₂ -F ₃ C	MS m/z (M-H) ⁻ 515

Table 2-54

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1212	F	$-H$ $-(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 403
1213	F CH ₂ F	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 431
1214	F	$-$ N $-$ (CH $_2$) $_3$ OCH $_3$	MS m/z (M-H) 433
1215	$F \xrightarrow{-CH_2} F$ $-CH_2$	$-H$ $-CH_2$	MS m/z (M-H) ⁻ 441
1216	F CH_2	H_3C H N CH_2	MS m/z (M-H) ⁻ 465
1217	F CH ₂ F	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 471
1218	F—CH ₂	-N-(CH ₂) ₂ -CH ₃	MS m/z (M-H) ⁻ 479
1219	F CH_2	$-H$ $-CH_2$ $-CI$	MS m/z (M-H) ⁻ 485
1220	F CH_2	$-N$ - $(CH_2)_2$ - OCH_3	MS m/z (M-H) ⁻ 495
1221	F—CH ₂	$-N-CH_2$	MS m/z (M-H) ⁻ 501
1222	F—CH ₂	$-$ N $-$ CH $_2$ \longrightarrow OCH $_3$	MS m/z (M-H) ⁻ 511
1223	F F -CH ₂	OCH ₃ -N-CH ₂ F ₃ C	MS π√z (M-H) ⁻ 519

Table 2-55

Cpd. No.	R^6	NR ⁷ R ⁸	Instrumental Data
1224	$-CH_2$ F	$-N-(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 419
1225	—CH ₂ ——F	$-N-(CH_2)_2$ CH_3 CH_3	MS m/z (M-H) ⁻ 447
1226	$-CH_2$ F	H −N−(CH ₂)₃OCH₃	MS m/z (M-H) ⁻ 449
1227	$-CH_2$ F	N-CH ₂	MS m/z (M-H) ⁻ 457
1228	$-CH_2$ F	H_3C H CH_2	MS m/z (M-H) ⁻ 481
1229	$-CH_2$ F	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 487
1230	-CH ₂ -F	-N $-$ (CH ₂) ₂ $-$ CH ₃	MS m/z (M-H) ⁻ 495
1231	$-CH_2$ F	$-N$ - CH_2 - CI	MS m/z (M-H) ⁻ 501
1232	−CH ₂ −F	$-N-(CH_2)_2$ $-CCH_3$	MS n/z (M-H) 511
1233	$-CH_2$ F	$-N-CH_2$	MS m/z (M-H) ⁻ 517
1234	$-CH_2$ F	$-N-CH_2$ OCH ₃	MS m/z (M-Ḥ)˙ 527
1235	−CH ₂ −−F	$-N-CH_2$ F_3C	MS π/z (M-H) ⁻ 535

Table 2-56

$$\begin{array}{c|c} R^6 & O \\ N & N \\ N & R^7 \\ N & R^8 \end{array}$$

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1236		H−(CH ₂) ₂ CH ₃	MS m/z (M-H) ⁻ 443
1237		$-N-(CH_2)_2 - CH_3$ CH_3	MS m/z (M-H) ⁻ 471
1238		H −N−(CH ₂)₃OCH₃	MS m/z (M-H) ⁻ 473
1239		$-N$ - CH_2	MS m/z (M-H) 481
1240		$-N$ -CH ₂ - \longrightarrow	MS m/z (M-H) ⁻ 505
1241		$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 511
1242		-N- $(CH2)2-CH3$	MS m/z (M-H) ⁻ 519
1243		$-N-CH_2$	MS m/z (M-H) ⁻ 525
1244		-N-(CH ₂) ₂ -OCH ₃	MS m/z (M-H) ⁻ 535
1245		$-N-CH_2$	MS m/z (M-H) 541
1246		H $-N$ $-CH_2$ OCH_3	MS m/z (M-H) ⁻ 551
1247		OCH_3 $-N-CH_2$ F_3C	MS m/z (M-H)* 559

Table 2-57

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1248	H ₃ C CH ₃	—N−Сн ₂ Сн(Сн ₃)Сн ₂ Сн ₃	MS m/z (M-H) ⁻ 423
1249	H_3C CH_2 CH_3	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 475
1250	H_3C CH_2 CH_3	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 478
1251	H ₃ C — CH ₂ CH ₃	$-N-(CH_2)_2$	MS m/z (M-H) [*] 547
1252	-ĊH ₂ Н ₃ С СН ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 407
1253	H_3C CH_2 CH_3	$-N-CH_2$	MS m/z (M-H) ⁻ 437
1254	H ₃ C — CH ₂ CH ₃	-N-CH ₂ -	MS m/z (M-H) ⁻ 449
1255	H ₃ C CH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 487
1256	—ĊH ₂	Н —N−СН ₂ СНС(СН ₂) ₂ СНС(CH ₃ CH ₃ MS m/z (M-H) ⁻ 489
1257	H ₃ C CH ₂ CH ₃	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 503
1258	H ₃ C CH ₃	$-N-(CH_2)_2$	MS n√z (M-H) ⁻ 457
1259	H_3C CH_2 CH_3 $-CH_2$	$-N-(CH_2)_2$ -OH	MS m/z (M-H)

Table 2-58

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1260	H ₃ CO OCH ₃	H —N−CH₂CH(CH₃)CH₂CH₃ F	MS m/z (M-H) ⁻ 455
1261	H ₃ CO CH ₃	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 507
1262	H ₃ CO OCH ₃	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 510
1263	H ₃ CO CH ₂ OCH ₃	-N-(CH ₂) ₂ -	MS m/z (M-H) ⁻ 579
1264	H ₃ CO OCH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 439
1265	H ₃ CO OCH ₃	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) 469
1266	H ₃ CO OCH ₃	$-$ N-CH ₂ - \leftarrow	MS m/z (M-H) ⁻ 481
1267	H ₃ CO — CH ₂ OCH ₃ — CH ₂	$-N-CH_2$	MS m/z (M-H) ⁻ 519
1268	H ₃ CO OCH ₃	.Н —N−СН₂СНС(СН₂)₂СНС	CH ₃ CH ₃ MS m/z (M-H) ⁻ 521
1269	H ₃ CO CH ₃	-N-CH ₂ -OCH ₃	I ₃ MS m/z (M-H) ⁻ 535
1270	H ₃ CO OCH ₃	$-\frac{H}{N-(CH_2)_2}$	MS m/z (M-H) ⁻ 489
1271	H_3CO CH_2 CH_2 CH_2	-N-(CH ₂) ₂ -OH	MS m/z (M-H) ⁻ 443

Table 2-59

1272 ———————————————————————————————————	Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1272	—СH ₂ —		
1274 — CH ₂ — MS m/z (M-H) 534 1275 — CH ₂ — MS m/z (M-H) 603 1276 — CH ₂ — MS m/z (M-H) 465 1277 — CH ₂ — MS m/z (M-H) 493 1278 — CH ₂ — MS m/z (M-H) 505 1278 — CH ₂ — MS m/z (M-H) 505 1279 — CH ₂ — MS m/z (M-H) 543 1280 — CH ₂ — MS m/z (M-H) 545 1280 — CH ₂ — MS m/z (M-H) 545 1280 — CH ₂ — MS m/z (M-H) 545 1280 — CH ₂ — MS m/z (M-H) 545 1280 — CH ₂ — MS m/z (M-H) 545	1273	—СH ₂ —	OCF ₃	MS m/z (M-H) ⁻ 531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1274	—СH ₂ —	OCF_3 $-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 534
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1275	—СH ₂ —	н /	MS m/z (M-H) ⁻ 603
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1276	—сн ₂ —	OCF_3 $-N-CH_2$	MS m/z (M-H) ⁻ 465
OCF ₃ $-N-CH_2$ $-N-CH_2$ MS m/z (M-H) ⁻ 505 1279 $-CH_2$ $-N-CH_2$ $-N-CH_3$	1277	—CH₂—	$\begin{array}{c} \longrightarrow \\ \bigcirc \text{OCF}_3 \\ \longrightarrow \\ \longrightarrow \\ -\text{N-CH}_2 \longrightarrow \\ \end{array}$	MS π/z (M-H) ⁻ 493
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		—СН₃√	$ \begin{array}{c} -7 \\ OCF_3 \\ -N-CH_2 \end{array} $	MS m/z (M-H) ⁻ 505
OCF ₃ $-N-CH_2CHC(CH_2)_2CHC$ $-N-CH_2 CHC(CH_2)_2CHC$ $-N-CH_2 CHC(C$		\ /	H / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MS m/z (M-H) ⁻ 543
OCF ₃ H OCH ₃ OCH ₃ MS m/z (M-H) ⁻ 559		\ /	11 (2113	MS m/z (M-H) 545
1281 —CH ₂ ——OCH ₃		` /	_	
OCF_3 $-N-(CH_2)_2$ MS m/z (M-H) 513	1281	—CH₂—	OCF ₃	MS m/z (M-H) ⁻ 513
$-CH_2 \longrightarrow CH_2 \longrightarrow OCF_3$	1282	—СH ₂ —	OCF ₃	
$-N-(CH_2)_2-OH$ MS m/z (M-H) 467	1283	—СH ₂ —	<u> </u>	MS m/z (M-H) 46/

Table 2-60

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1284	CH ₂ Br	H —N-CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) 491
1285	FCH ₂	$-N-(CH_2)_2$	MS m/z (M-H) 543
1286	F ← CH ₂ ← Br	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 546
1287	F − CH ₂ − Br	H-N-(CH ₂) ₂	MS m/z (M-H) ⁻ 615
1288	F ← CH ₂ ← Br	-N-CH ₂ $<$	MS m/z (M-H)* 475
1289	CH ₂	$-N-CH_2$	MS m/z (M-H) ⁻ 505
1290	F	$-$ N $-$ CH $_2$ $-$	MS m/z (M-H)⁻ 517
1291	F —CH ₂ —Br	$-\text{N-CH}_2$	MS m/z (M-H)* 555
1292	F → CH ₂ → Br	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃	MS n√z (M-H) ⁻ 557
1293	F CH ₂ Br	$-N$ - CH_2 - OCH_3	MS m/z (M-H)⁻ 571
1294	F — CH ₂ — Br	$-\text{N-}(CH_2)_2$	MS m/z (M-H) ⁻ 525
1295	F Br	—Н—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 479
	Г		

Table 2-61

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1296	-CH ₂ -CH ₃	H ─N−CH₂CH(CH₃)CH₂CH₃ ,F	MS m/z (M-H)⁻ 427
1297	CH ₂ —CH ₃	$-\overset{H}{N}-(CH_2)_2-\overset{\frown}{\bigcirc}$	MS m/z (M-H) ⁻ 479
1 2 98	CH ₂ CH ₃	$-N-(CH_2)_3-N$	MS m/z (M-H) ⁻ 482
1299	-CH ₂	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 551
1300	-CH ₂ -CH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 411
1301	-CH ₂ -CH ₃	$-N-CH_2$	MS m/z (M-H) ⁻ 441
1302	-CH ₂	$-$ N $-$ CH $_2$ $-$ O	MS m/z (M-H) ⁻ 453
1303	CH ₂	$-H_{N-CH_2}$ O	MS m/z (M-H) ⁻ 491
1304	$-CH_2$ F CH_3	H-CH ₂ CHC(CH ₂) ₂ CHC CH ₃	MS m/z (M-H) ⁻ 493
1305	$-CH_2$ CH_3	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 507
1306	$-CH_2$ F CH_3	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 461
1307	—CH ₂ ————————————————————————————————————	—H —N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 415

Table 2-62

1308 F $-N$ $-CH_2CH(CH_3)CH_2CH_3$ MS m/z (M-H) 431 $-CH_2$	
1309 F $-\dot{N} - (CH_2)_2$ MS m/z (M-H) 483 MS m/z (M-H) 486 MS m/z (M-H) 486	
1310 F $-N-(CH_2)_3-N$ MS m/z (M-H) 486	
CH ₂	
F $-N - (CH2)2 -N - (CH2)2 MS m/z (M-H)^{\circ} 555$	
$-\dot{C}H_{2}$ $F \qquad -\dot{N}-CH_{2}$ $-\dot{N}-CH_{2}$ MS m/z (M-H) 415	
$\begin{array}{c} -CH_2 \\ F \\ -N-CH_2 \end{array}$ MS m/z (M-H) 445	
$-CH_2$ F $-N-CH_2$ MS m/z (M-H) 457	
$\begin{array}{c} & H \\ & -N - CH_2 \\ & -CH_2 \end{array}$ MS m/z (M-H) 495	
F F - H - CH ₂ CHC(CH ₂) ₂ CHC CH ₃ CH ₃ CH ₃ MS m/z (M-H) ⁻ 497	
F $-CH_2$ F $-N-CH_2$ $-OCH_3$ OCH ₃ MS m/z (M-H) ⁻ 511	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$H = \frac{H}{N-(CH_2)_2} - OH$ MS m/z (M-H) 419	

Table 2-63

$$\begin{array}{c|c}
R^6 & O \\
N & N \\
N & R^7
\end{array}$$

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1320	-CH ₂ -F	H —N-CH ₂ CH(CH ₃)CH ₂ CH ₃ _F	MS m/z (M-H) ⁻ 447
1321	—СH ₂ ——F	$-N$ - $(CH_2)_2$	MS m/z (M-H) ⁻ 499
1322	CI —CH ₂ —F	-H-(CH ₂) ₃ -N	MS m/z (M-H) ⁻ 502
1323	CI —CH ₂ —F	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 571
1324	CI —CH ₂ ——F	$-N-CH_2$	MS m/z (M-H) ⁻ 431
1325	CI —CH ₂ —F	-N-CH ₂ - O	MS m/z (M-H) ⁻ 461
1326		H-N-CH ₂ -	MS m/z (M-H) ⁻ 473
1327	CI'CH ₂	-N-CH ₂ -O	MS m/z (M-H) [*] 511
1328	Cl −CH ₂ −−F	$-$ N-CH ₂ CHC(CH ₂) ₂ CHC $\stackrel{\text{CH}_3}{\sim}$ CH ₃	MS m/z (M-H) ⁻ 513
1329	CI' —CH ₂ —F	$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 527
1330	CI' —CH ₂ —F	$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 481
1331	CI′ —CH₂——F	$-N-(CH_2)_2-OH$	MS m/z (M-H) ⁻ 435
·	cı'		

Table 2-64

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1332	0,0	H —N-CH ₂ CH(CH ₃)CH ₂ CH ₃	MS m/z (M-H) ⁻ 471
1333		$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 523
1334		-H-(CH ₂) ₃ -N	MS m/z (M-H) ⁻ 526
1335		-H-(CH ₂) ₂ -	MS m/z (M-H) ⁻ 595
1336		$-N-CH_2$	MS m/z (M-H) ⁻ 455
1337		$-N-CH_2$	MS m/z (M-H) ⁻ 485
1338		$-N-CH_2-CH_2$	MS m/z (M-H) ⁻ 497
1339		$-N-CH_2$	MS m/z (M-H) ⁻ 535
1340		-N-CH ₂ CHC(CH ₂) ₂ CHC $+N$ -CH ₃	MS m/z (M-H) ⁻ 537
1341		$-N$ - CH_2 - OCH_3	MS m/z (M-H) ⁻ 551
1342		$-N-(CH_2)_2$	MS m/z (M-H) ⁻ 505
1343		—N—(СН ₂) ₂ —ОН	MS m/z (M-H) ⁻ 459

Table 2-65

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1344	H ₃ C CH ₃	-N	MS m/z (M-H) ⁻ 419
1345	H ₃ C CH ₃	-N	MS m/z (M-H) ⁻ 519
1346	-CH ₂ -CH ₃ -CH ₃	-N-(CH ₂) ₂ CN CH ₃	MS m/z (M-H) ⁻ 420
1347	H ₃ C CH ₃	$-N$ CH_3 CH_3	MS m/z (M-H) ⁻ 451
1348	H ₃ C CH ₃	$-N-CH_2-$ $(CH_2)_2CH_3$	MS m/z (M-H) ⁻ 449
1349	H ₃ C CH ₃	—N−CH ₂ ————————————————————————————————————	MS m/z (M-H) ⁻ 499
1350	H ₃ C CH ₃ CH ₃	$(CH_{2})_{4}CH_{3}$ $-N$ $(CH_{2})_{4}CH_{3}$	MS m/z (M-H) ⁻ 493
1351	H ₃ C CH ₃ CH ₃ -CH ₂	$-N$ CH_2	MS m/z (M-H) ⁻ 511
1352	H ₃ C CH ₃	-N_N-0	MS m/z (M-H)` 516
1353	H ₃ C CH ₃	-N N $CH3$	MS m/z (M-H)* 464
1354	H ₃ C CH ₃	-N_N-{F	MS n√z (M-H) 516
1355	H ₃ C CH ₃ -CH ₂	-N	MS m/z (M-H) ⁻ 469

Table 2-66

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1356	H ₃ CO OCH ₃	-N	MS m/z (M-H) 451
1357	H ₃ CO CH ₂ OCH ₃	_H	MS m/z (M-H) ⁻ 551
1358	H ₃ CO OCH ₃	—N—(CH ₂) ₂ CN - CH ₃	MS n/z (M-H) ⁻ 452
1359	H ₃ CO — OCH ₃	—N—O	MS m/z (M-H) ⁻ 483
1360	-сн ₂	`CH₃ —n–CH₂——<	MS m/z (M-H) ⁻ 481
1361	H ₃ CO — OCH ₃	(CH ₂) ₂ CH ₃ —N−CH ₂ —	MS m/z (M-H) ⁻ 531
1362	H ₃ CO OCH ₃	(CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ —N	MS m/z (M-H) ⁻ 525
1363	H ₃ CO CH ₂ OCH ₃	(ĊH ₂)₄CH ₃ —N—CH ₂ —	MS m/z (M-H) ⁻ 543
1364	−ĊH ₂ H₃CO OCH₃	-N N $-Q$	MS m/z (M-H) ⁻ 548
1365	H ₃ CO CH ₂ OCH ₃	-N N $ N$ $-$	MS m/z (M-H) ⁻ 496
1366	H ₃ CO CH ₃ OCH ₃		MS m/z (M-H) ⁻ 548
1367	H_3CO CH_2 CH_2	_N	MS m/z (M-H) ⁻ 501

Table 2-67

Cpd. No. R ⁶ NR ⁷ R ⁸	Instrumental Data
$-CH_2$ $-N$ OCF_3	MS m/z (M-H) ⁻ 475
$-CH_2$ OCF ₃ $-H$	MS m/z (M-H) ⁻ 575
1370 — CH_2 — $N-(CH_2)_2CN$ — CH_3 — CH_3	MS m/z (M-H) 476
$-CH_2$ $-N$ O CH_3	MS m/z (M-H) 507
1372 $-CH_2$ $-N-CH_2$ CH_2 CH_2 CH_3	MS m/z (M-H) 505
1373 $-CH_2$ $-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) 555
1374 $-CH_2$ OCF ₃ $(CH_2)_4CH_3$ $(CH_2)_4CH_3$	MS m/z (M-H) 549
$-CH_2$ $-N$ $-CH_2$ $-N$ $-CH_2$	MS m/z (M-H) ⁻ 567
$-CH_2 \longrightarrow OCF_3$	MS m/z (M-H) 572
1377 $-CH_2$ $-N$ N CH_3	MS m/z (M-H) ⁻ 520
1378 $-CH_2$ $-N$ N N $-F$	MS m/z (M-H) ⁻ 572
1379 $-CH_2$ $-N$ OCF_3	MS m/z (M-H) 525

Table 2-68

$$\begin{array}{c|c}
R^6 & O \\
N & N \\
N & R^8
\end{array}$$

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1380	−CH ₂ −−Br		MS m/z (M-H) ⁻ 487
1381	CH ₂ Br	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 587
1382	$-CH_2$ Br	—N—(CH ₂) ₂ —CN CH ₃ ,CH ₃	MS m/z (M-H) ⁻ 488
1383	$-CH_2$ Br	-N O CH ₃	MS m/z (M-H) ⁻ 519
1384	$-CH_2$ $-Br$	$-N-CH_2$ CH_2 CH_3	MS m/z (M-H) ⁻ 517
1385	$-CH_2$ $-Br$	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 567
1386	−CH ₂ −−Br	(CH ₂) ₄ CH ₃ N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 561
1387	—CH ₂ —Br	$-N$ CH_2	MS m/z (M-H) ⁻ 579
1388	$-CH_2$ Br	-N_N-0	MS m/z (M-H) ⁻ 584
1389	−CH ₂ −−Br	$-N$ N CH_3	MS m/z (M-H) ⁻ 532
1390	$-CH_2$ Br	NNF	MS m/z (M-H) ⁻ 584
1391	$-CH_2$ Br	-N	MS m/z (M-H) ⁻ 537

Table 2-69

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
—C	F CH ₃	_n	MS m/z (M-H)⁻ 423
—C	EH ₂ ————————————————————————————————————		MS m/z (M-H)⁻ 523
—-C	F CH ₃	—N—(CH ₂) ₂ CN CH ₃	MS m/z (M-H) ⁻ 424
——C	CH ₂ ————————————————————————————————————	-N O CH ₃	MS m/z (M-H) ⁻ 455
—C	CH ₂ ————————————————————————————————————	$ \begin{array}{c} -N-CH_2- \\ \downarrow \\ (CH_2)_2CH_3 \end{array} $	MS m/z (M-H) ⁻ 453
—C	F CH ₃	N-CH ₂	MS m/z (M-H) ⁻ 503
—C	CH ₂ ————————————————————————————————————	$(CH_2)_4CH_3$ $-N$ $(CH_2)_4CH_3$	MS m/z (M-H) ⁻ 497
—C	CH ₂ ————————————————————————————————————	$-N$ CH_2	MS m/z (M-H)* 515
—-C	CH ₂ ————————————————————————————————————	-N	MS m/z (M-H) ⁻ 520
—-C	CH ₂ ————————————————————————————————————	$-N$ N CH_3	MS m/z (M-H) ⁻ 468
1402	CH ₂ ————————————————————————————————————	-N_N-(F)	MS m/z (M-H) ⁻ 520
—- C	CH ₂ ————————————————————————————————————	-N	MS π/z (M-H) ⁻ 473

Table 2-70

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1404	F	-N	MS m/z (M-H) ⁻ 427
1405	-ĊH ₂ F	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 527
1406	F CH_2	—N—(CH ₂) ₂ —CN CH ₃	MS m/z (M-H) ⁻ 428
1407	$F \longrightarrow F$ $-CH_2$	$-N$ CH_3 CH_3	MS m/z (M-H) ⁻ 459
1408	F F	$-N-CH_2$ $(CH_2)_2CH_3$	MS m√z (M-H) ⁻ 457
1409	F F CH ₂	$-N-CH_2$ $(CH_2)_3CH_3$	MS m/z (M-H) ⁻ 507
1410	$F \longrightarrow F$ CH_2	(CH ₂) ₄ CH ₃ - N N (CH ₂) ₄ CH ₃	MS m/z (M-H)⁻ 501
1411	$-CH_2$	$-N$ CH_2	MS m/z (M-H) ⁻ 519
1412	F CH_2	-N N O O	MS π/z (M-H) ⁻ 524
1413	F F CH ₂	$-N$ N CH_3	MS m/z (M-H) ⁻ 472
1414	F CH ₂ F	-N N $-F$	MS m/z (M-H) ⁻ 524
1415	-CH ₂	-N	MS m/z (M-H) ⁻ 477

Table 2-71

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1416	$-CH_2$ F	-n_	MS m/z (M-H) ⁻ 443
1417	$-CH_2$ F	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	MS m/z (M-H) ⁻ 543
1418	−CH ₂ −−F	-N— $(CH2)2—CN CH3 CH3$	MS m∕z (M-H) ⁻ 444
1419	$-CH_2$ F	−N O CH ₃	MS m∕z (M-H) ⁻ 475
1420	$-CH_2$ F	$-N-CH_2 (CH_2)_2CH_3$	MS m/z (M-H) 473
1421	$-CH_2$ F	-N-CH ₂	MS m/z (M-H) ⁻ 523
1422	$-CH_2$ F	(CH ₂) ₄ CH ₃ —N (CH ₂) ₄ CH ₃	MS m/z (M-H) ⁻ 517
1423	$-CH_2$ F	$-N$ CH_2	MS m/z (M-H) ⁻ 535
1424	$-CH_2$ F	-N_N-0	MS m/z (M-H) ⁻ 540
1425	—CH ₂ ——F	$-N$ N CH_3	MS m/z (M-H) ⁻ 488
1426	$-CH_2$ F	-N_N-(F)	MS n√z (M-H) 540
1427	$-CH_2$ F	-N	MS m/z (M-H) 493

Table 2-72

Cpd. No.	R ⁶	NR ⁷ R ⁸	Instrumental Data
1428		-N	MS n√z (M-H) ⁻ 467
1429		_N	MS m/z (M-H) ⁻ 567
1430		—N−(CH ₂) ₂ CN CH ₃	MS m/z (M-H) ⁻ 498
1431		−N CH ₃	MS m/z (M-H) ⁻ 499
1432		N-CH ₂	MS m/z (M-H) ⁻ 497
1433		-N-CH ₂ -	MS m/z (M-H) ⁻ 547
1434		(CH ₂) ₄ CH ₃ — N (CH ₂) ₄ CH ₃	MS m/z (M-H)* 541
1435		$-N$ $-CH_2$	MS m/z (M-H) ⁻ 559
1436		-N_N-0	MS m/z (M-H) ⁻ 564
1437		$-N$ N CH_3	MS m/z (M-H) ⁻ 512
1438		_N_N_F	MS m/z (M-H) ⁻ 564
1439		-n	MS m/z (M-H) ⁻ 517

Table 3

$$R^4$$
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

[134] Next, the pharmacological activity of the representative Compound (I) will be described with respect to Test Examples.

Test Example 1: Bio-Tel flush plate assay

By allowing the addition of repetitions of a telomere sequence (TTAGGG) to a biotinylated telomerase substrate primer, i.e., a reaction catalyzed by telomerase, to occur, telomerase activity was measured. The resultant biotinylated reaction product was captured in a microtiter plate having a streptoavidin coating. By employing a ³³P labeled oligonucleotide probe including a complementary sequence to 3.5 repetitions of the telomere sequence, the amount of reaction product associated with telomerase was measured by the following experimental method. The quantification was carried out by, after removing unbound probes through washing, calculating the amount of probes which annealed to the captured telomerase reaction product by scintillation counting.

[136] In the following method, the respective abbreviations have the following meanings.

HCS: hybridization capture solution

SSC: saline sodium citrate (saline containing sodium citrate)

SDS: sodium dodecyl sulfate

DTT: dithiothreitol

20 EGTA: ethylenebis(oxyethylenenitrilo)tetraacetic acid

EDTA: ethylenediaminetetraacetic acid

METHOD

15

[137] 1) The test compound was dissolved in 100% dimethyl sulfoxide. A solution (2µL) which was obtained by further diluting the above with 50% dimethyl sulfoxide

to a concentration which is 15 times the predetermined level was dispensed in a 96-well microtiter plate.

[138] 2) An ezyme mixture containing telomerase (18µL) was added to each test compound solution, which was then pre-incubated at room temperature for 10 minutes to 30 minutes.

[139] 3) A reaction associated with telomerase was allowed to begin by adding a master mix (described later)(10 μ L). The plate was sealed and incubated at 37 °C for 90 minutes.

[140] 4) The enzymatic reaction was stopped by adding HCS $(15\mu L)$.

10 [141] 5) The reaction solution (35μL) was placed in a 96-well flush plate (NEN) to which streptoavidin was allowed to covalently bind. This was incubated at room temperature for 2 hours with slow shaking.

[142] 6) Without incubation, each well was washed four times with the washing solution (2X SSC, 0.1% SDS).

15 [143] 7) The radio activity of the probes which annealed to the biotinylated telomerase reaction product was counted with a scintillation counter.

BUFFER SOLUTION COMPOSITION (MASTER MIX)

50 mM Tris-acetate, pH 8.2

1 mM DTT

20 1 mM EGTA

5

1 mM magnesium chloride

150 mM potassium acetate

10 μM dATP

20 μM dGTP

25 120 μM dTTP

100 μM biotinylated primer (5'-biotin-AATCCGTCGAGCAGAGTT-3')

5.4 µM labeled probe [5'-CCCTAACCCTAACCCTAACCC-(³³P)A₁₋₅₀-3']

1X SSC

saline containing sodium citrate (1X=150mM sodium chloride/15mM trisodium citrate,

30 pH7.2)

HCS

9X SSC, 30mM EDTA, 30mM Tris-HCl, pH7.0

[144] The telomerase reaction inhibition rates of Compound (I) measured by the above method are shown in Table 4.

Table 4

	Compound No.	telomerase inhibition rate (%,3.2 μmol/L)
	14	55
	33	58
5	43	53
	59	61
	129	48
	167	61
	168	53
10	210	54
	229	72
	233	63
	248	66
	302	56
15	311	71
	383	81
	451	75
	463	70
	503	84
20	515	84
	. 678	53
	714	79
	726	45
	751	50
25	961	44
	1209	42
	1219	45
	1345	60

Test Example 2: In vitro telomerase inhibitory activity

30

35

40

[145] The telomerase inhibitory activity of Compound (I) was measured in accordance with a known method (USP No. 5,760,062). Specifically, in the presence of oligodeoxynucleotide, and deoxynucleotide triphosphate serving as substrates, a dimethyl sulfoxide (DMSO) solution of a test compound was mixed with telomerase which was obtained through partial purification of a nucleus extract from HEK293 cells, and the mixture was incubated. The resultant reaction product (DNA having a telomere sequence) was allowed to be adsorbed onto a membrane, and hybridization was effected by using a labeled oligonucleotide probe having a complementary sequence to the telomere sequence. An inhibition rate was calculated from the ratio of the signal intensity of the label on the membrane in the presence of each test compound to the signal intensity of the membrane in the absence of the test compound (control). A compound concentration at which the enzymatic activity was inhibited by 50% relative to the control was defined as IC₅₀. The results of inhibitory activity of Compound (I) are shown in Table 5.

Table 5

Compound No.	Telomerase inhibitory activity (IC ₅₀ ; μmol/L)	
59	2.4	
503	3.0	
515	8.3	

Test Example 3: In vivo telomerase inhibitory activity

Ine Caki-1 for 24 hours, a cell extract was prepared by a known method (USP No. 5629154), and the enzymatic activity was measured. Specifically, a cell extract was prepared by using a buffer solution containing 0.5% CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). By using this extract, a TRAP (Telomeric Repeat Amplification Protocol) assay was performed (manufactured by Intergen, TRAP_{EZE}TM XL Telomerase Detection Kit) in vitro. A ratio (%) of the enzymatic activity value of the extract from cells which were treated with each test compound, to the enzymatic activity value of the extract from cells untreated with the test compound was calculated. In the above method, Compound 59 and Compound 515 according to the present invention inhibited telomerase activity by 50% or more at 30μmol/L.

[147] Thus, Compound (I) has an excellent telomerase inhibitory activity, and is useful as a therapeutic agent for diseases associated with telomerase activity, such as malignant tumors.

EXAMPLES

[148] The following examples are offered to illustrate, but not to limit the claimed invention.

[149] Hereinafter, Examples and Reference Examples will be described. The
25 physicochemical data of each compound in the following Examples and Reference Examples
were measured by using the following equipment.

¹H NMR: JEOL JNM-EX270 (270 MHz) or JEOL JNM-GX270 (270 MHz)

APCIMS: Micromass LCT

Example 1:

5

10

15

20

30 [150] Compound 1 to Compound 575 shown in Table 1 were produced by the following method.

Step (1)

[151] N-(2,4-Dinitrobenzenesulfonyl)glycine ethyl ester (0.1 mL, 1 mol/L tetrahydrofuran solution, 0.1 mmol), triphenylphosphine (0.15 mL, 1 mol/L tetrahydrofuran solution, 0.15 mmol) and a compound represented by R¹OH (0.15 mL, 1 mol/L tetrahydrofuran solution, 0.15 mmol) were added to a 96-well microtiter plate (1.2 mL), and the mixture was stirred at room temperature for 2 to 3 minutes.

5

10

15

20

25

30

- Then, diethyl azodicarboxylate (0.15 mL, 1 mol/L tetrahydrofuran solution, 0.15 mmol) was added, and the mixture was sealed and stirred at room temperature for 6 to 24 hours. The resultant reaction solution was concentrated, and thereafter tetrahydrofuran (0.1 mL) and ethyl mercaptoacetate (0.2 mL, 1 mol/L tetrahydrofuran solution, 0.2 mmol) were added, and the mixture was sealed and stirred at room temperature for 16 to 24 hours. After the reaction solution was passed through a BONDESIL SCX column (manufactured by Varian), the contaminants were eluted with a chloroform/methanol-mixed solvent (50% v/v, 2 mL) and methanol (1 mL). Finally, a solution which was eluted with a 4 mol/L hydrogen chloride ethyl acetate solution/methanol-mixed solvent (50% v/v, 1 mL) was concentrated, whereby glycine ethyl ester hydrochloride having substituent R¹ on nitrogen was obtained. *Step (2)*
- The glycine ethyl ester hydrochloride having substituent R¹ on nitrogen, which [153] was obtained in Step (1), was evenly divided into two aliquots using a 96-well microtiter plate (1.2 mL), to which chloroform (0.4 mL), benzoyl isothiocyanate (0.06 mL, 1 mol/L chloroform solution, 0.06 mmol), and morpholinomethylpolystyrene (0.075 mL, 2% DVB (divinylbenzene), 3.5 mmol/g) were added. This mixture was sealed and stirred at room temperature for 6 to 24 hours. To the reaction solution, chloroform (0.2 mL) and aminomethylated polystyrene (0.075 mL, 1% DVB, about 1.2 mmol/g) were added, and the mixture was sealed and stirred at room temperature for 16 to 24 hours. A residue obtained by filtering and concentrating the resultant reaction solution was dissolved in chloroform (0.8 mL), to which aminomethylated polystyrene (0.15 mL, 1% DVB, about 1.2 mmol/g) was added. This mixture was sealed and stirred at 50°C for 1 to 2 days. By filtering and concentrating the resultant reaction solution, 4-oxo-2-thioxoimidazolidine having substituent R¹ at the 1-position was obtained. If necessary, this compound can be purified by being passed through a BONDESIL SCX column (manufactured by Varian). *Step (3)*
- [154] To 4-oxo-2-thioxoimidazolidine having R¹ substituent at the 1-position obtained in Step (2), piperidine (0.1 mL, 0.5 mol/L methanol solution, 0.05 mmol) was added, and the mixture was stirred at room temperature for 10 to 15 minutes to achieve

complete dissolution. Then, an arylaldehyde or heteroarylaldehyde (0.1 mL, 0.5 mol/L methanol solution, 0.05 mmol) was added, and the mixture was sealed and stirred at room temperature for 16 to 24 hours. After the resultant reaction solution was concentrated, a single or mixed solvent of ethanol (0.3 mL), chloroform (0.2-0.3 mL), and/or N,N-dimethylformamide (0.2-0.3 mL) was added, depending on the solubility of the compound, to dissolve the compound. To this, AG1-X8 (hydroxide form) resin (0.075-0.15 mL, 1.2 meq/mL) (manufactured by Biorad) was added, and the mixture was sealed and stirred at room temperature for 2 to 24 hours. After removing the supernatant, the resin was washed twice with methanol (0.3 mL). To the resultant resin, a chloroform/methanol-mixed solvent (50% v/v, 0.4 mL) and a 4 mol/L hydrogen chloride ethyl acetate solution (0.05 mL) were

(50% v/v, 0.4 mL) and a 4 mol/L hydrogen chloride ethyl acetate solution (0.05 mL) were added, and the mixture was sealed and stirred at room temperature for 2 to 24 hours. By filtering and concentrating the resultant reaction solution, a 5-arylmethylene-4-oxo-2-thioxoimidazolidine derivative having substituent R¹ at the 1-position or a 5-heteroarylmethylene-4-oxo-2-thioxoimidazolidine derivative having substituent R¹ at the 1-

[155] The obtained compounds were identified by mass spectrometry.

position was obtained with an overall yield of 20 to 40%.

[156] The proton nuclear magnetic resonance spectra of representative compounds are shown below.

Compound 59

5

10

15

25

20 [01] ¹H NMR (270 MHz, CDCl₃) δ (ppm): 5.34 (s, 2H), 6.34 (s, 1H), 6.9-7.05 (m, 4H), 7.05-7.2 (m, 2H), 7.2-7.45 (m, 6H), 7.5-7.6 (m, 2H), 8.70 (s, 1H).

Compound 229

[158] 1 H NMR (270 MHz, CDCl₃) δ (ppm): 1.4-1.55 (m, 2H), 1.8-2.4 (m, 5H), 3.9-4.1 (m, 2H), 5.4-5.55 and 5.6-5.75 (m, 2H), 6.52 and 6.99 (s, 1H), 7.35-7.45 (m, 3H), 7.9-8.0 (m, 2H), 8.60 and 8.69 (br s, 1H).

Compound 311

[159] 1 H NMR (270 MHz, CDCl₃) δ (ppm): 0.5-0.65 (m, 4H), 1.1-1.25 (m, 1H), 4.04 (d, 2H, J= 6.9 Hz), 6.44 (s, 1H), 7.17 (t, 1H, J= 8.7 Hz), 7.85-7.95 (m, 1H), 8.10 (dd, 1H, J= 6.9, 2.3 Hz), 8.62 (br s, 1H).

30 Compound 383

[160] ¹H NMR (270 MHz, CDCl₃) δ (ppm): 1.17 (t, 3H, J= 7.0 Hz), 3.48 (q, 2H, J= 7.0 Hz), 3.5-3.6 (m, 2H), 3.6-3.7 (m, 2H), 3.82 (t, 2H, J= 5.1 Hz), 4.30 (t, 2H, J= 5.1 Hz),

6.86 (s, 1H), 7.15 (t, 1H, J= 8.6 Hz), 7.85-7.95 (m, 1H), 8.06 (dd, 1H, J= 7.1, 2.1 Hz), 8.66 (br s, 1H).

Compound 451

[161] ¹H NMR (270 MHz, CDCl₃) δ (ppm): 1.95-2.1 (m, 2H), 2.72 (t, 2H, J= 7.0 Hz), 3.81 (s, 3H), 4.0-4.1 (m, 2H), 6.06 (s, 1H), 6.88 (d, 2H, J= 8.6 Hz), 7.06 (t, 2H, J= 8.7 Hz), 7.16 (d, 2H, J= 8.6 Hz), 7.85-7.95 (m, 2H), 8.58 (br s, 1H).

Compound 463

[162] 1 H NMR (270 MHz, CDCl₃) δ (ppm): 3.68 and 3.85 (s, 6H), 3.78 and 3.84 (s, 3H), 5.14 and 5.28 (s, 2H), 5.84 and 6.54 (s, 2H), 6.42 and 6.87 (s, 1H), 7.0-7.15 and 7.85-7.95 (m, 4H), 8.70 and 8.79 (br s, 1H).

Compound 503

10

[163] ¹H NMR (270 MHz; CDCl₃) δ (ppm): 2.42 (s, 3H), 3.06 (t, 2H, J= 7.4 Hz), 4.24 (t, 2H, J= 7.4 Hz), 6.12 (s, 1H), 7.13 (t, 1H, J= 8.7 Hz), 7.19 (s, 4H), 7.55-7.65 (m, 1H), 7.87 (dd, 1H, J= 7.1, 2.2 Hz), 8.61 (br s, 1H).

15 Compound 515

[164] 1 H NMR (270 MHz, CDCl₃) δ (ppm): 0.97 (t, 3H, J= 7.4 Hz), 1.4-1.55 (m, 2H), 1.65-1.8 (m, 2H), 3.95 (t, 2H, J= 6.4 Hz), 5.27 (s, 2H), 6.28 (s, 1H), 6.99 (d, 2H, J= 8.7 Hz), 7.10 (t, 1H, J= 7.1 Hz), 7.22 (d, 2H, J= 8.7 Hz), 7.7-7.8 (m, 1H), 7.93 (dd, 1H, J= 7.1, 2.1 Hz), 8.69 (br s, 1H).

20 Example 2

25

30

[165] Compound 576 to Compound 767, Compound 864 to Compound 1055, Compound 1152 to Compound 1235, and Compound 1248 to Compound 1331 shown in Table 2 were produced by the following method.

[01] 4-Formyl-2-(trichloroacetyl)pyrrole (17 mg, 70 μmol), obtained by a method described in *J. Org. Chem.*, vol. 43, pp. 4849-4853 (1978), was dissolved in N,N-dimethylformamide (0.4 mL), and a compound (100 μmol) represented by R⁷R⁸NH was added. This mixture was stirred at 55 °C for 12 hours. The solvent was removed under reduced pressure. The resulting residue was dissolved in chloroform (0.6 mL), and N-methylisatoic anhydride polystyrene (40 mg, 80 μmol) was added. This mixture was stirred at room temperature for 15 hours. After filtering the reaction mixture, the solvent was distilled off, and the resulting residue was dissolved in N,N-dimethylformamide (0.4 mL). For introducing the substituent R^{6a} upon a nitrogen atom on the pyrrole ring, a corresponding

halogenated benzyl(100 µmol), 2-(tert-butylimino)-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphospholine on polystyrene (45 mg, 99µmol) was added, and the mixture was stirred at 30 °C for 12 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure. The resulting residue was dissolved in chloroform/methanol (10:1)(0.6 mL), and N-(2-mercaptoethyl)aminomethyl-polystyrene (25 mg, 38 µmol) and 5 Biorad [®]AG1-X8OH resin (90 mg, 180μmol) were added. This mixture was stirred at room temperature for 12 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure. The resulting residue was dissolved in ethanol (0.5 mL). To this, 4oxo-2-thioxoimidazolidine (3.6 mg, 31 μmol) and piperidine (4.0 μL, 40 μmol) were added, 10 and the mixture was stirred at room temperature for 12 hours. The reaction mixture was allowed to cool down to room temperature, and was diluted with chloroform (0.3 mL), methanol (0.3 mL), and tetrahydrofuran (0.3 mL). To this, Biorad ®AG1-X8OH resin (90 mg, 180µmol) was added, and the mixture was stirred at room temperature for 12 hours. Biorad ®AG1-X8OH resin was collected by filtration and suspended in chloroform/methanol 15 (1:1)(1.5 mL), and a 4 mol/L hydrogen chloride ethyl acetate solution (400 μL, 400 μmol) was added. This mixture was stirred at room temperature for 3 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure, whereby the desired compound was obtained.

[167] The resulting compounds were identified by mass spectrometry.

20 [168] The proton nuclear magnetic resonance spectra and element analytical values of representative Compound 714 are shown below.

Compound 714

[169] 1 H-NMR (270 MHz, DMSO-d₆) δ (ppm): 0.70-0.91 (m, 2H), 1.00-1.23 (m, 3H), 1.29-1.45 (m, 1H), 1.47-1.71 (m, 5H), 2.95 (t, 2H, J = 5.9 Hz), 5.78 (s, 2H), 6.45 (s,

25 1H), 6.69 (d, 1H, J = 7.6 Hz), 7.34 (s, 1H), 7.41-7.47 (m, 1H), 7.56-7.62 (m, 1H), 7.83 (s, 1H), 7.84 (d, 1H, J = 7.6 Hz), 7.97 (t, 1H, J = 5.9 Hz), 11.55 (s, 1H), 12.21 (s, 1H).

[170] Element analysis: $C_{24}H_{25}N_5O_2S$

[171] calcd: C, 64.41; H, 5.63; N, 15.65.

[172] found: C, 64.43; H, 5.92; N, 15.59.

30 Example 3

[173] Compound 768 to compound 863, Compound 1056 to Compound 1151, and Compound 1344 to Compound 1427 shown in Table 2 were produced by the following method.

5

10

15

20

25

30

4-Formyl-2-(methoxycarbonyl)pyrrole (11 mg, 70 μmol), obtained by a [174] method described in J. Org. Chem., vol. 43, pp. 4849-4853 (1978), was dissolved in N,Ndimethylformamide (0.4 mL). A halogenated benzyl (100 µmol) compound corresponding to R^{6a} and 2-(tert-butylimino)-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphospholine on polystyrene (45 mg, 99µmol) were added, and the mixture was stirred at 30 °C for 12 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure. The resulting residue was dissolved in chloroform/methanol (10:1) (0.6 mL). N-(2-Mercaptoethyl)aminomethyl-polystyrene (25 mg, 38µmol) and Biorad ®AG1-X8OH resin (90 mg, 180µmol) were added, and the mixture was stirred at room temperature for 12 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure. The resulting residue was dissolved in methanol (0.3 mL), and a 1 mol/L aqueous solution of sodium hydroxide (120µL, 120 µmol) was added. This mixture was stirred at 30 °C for 12 hours. The solvent was distilled off under reduced pressure, and the resulting residue was dissolved in methanol (0.3 mL). A 1 mol/L aqueous solution of hydrochloric acid (130µL, 130 µmol) was added, and the mixture was stirred at room temperature for 15 minutes. The solvent was distilled off, and the resulting residue was dissolved in chloroform (0.4 mL). To this, 1-hydroxybenzotriazole (8.5 mg, 63 µmol), a compound (100 µmol) represented by R⁷R⁸NH, 1-hydroxybenzotriazole (8.5 mg, 63 μmol), and 1-(3-dimethylaminopropyl)-3ethylcarbodiimide polymer bound (100 mg, 140 µmol) were added, and the mixture was stirred at 55 °C for 12 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure, and the resulting residue was dissolved in chloroform (0.6 mL). To this, 4-polyvinylpyridine (23 mg, 219µmol) and benzoyl chloride polymer bound (23 mg, 48µmol) were added, and the mixture was stirred at room temperature for 12 hours. After filtering the reaction mixture, the solvent was distilled off, and the resulting residue was dissolved in ethanol (0.5 mL). To this, 4-oxo-2-thioxoimidazolidine (3.6 mg, 31 µmol) and piperidine (4.0 μL, 40 μmol) were added, and the mixture was stirred at room temperature for 12 hours. The reaction mixture was allowed to cool down to room temperature, and was diluted with chloroform (0.3 mL), methanol (0.3 mL), and tetrahydrofuran (0.3 mL). To this, Biorad ®AG1-X8OH resin (90 mg, 180 mol) was added, and the mixture was stirred at room temperature for 12 hours. Biorad ®AG1-X8OH resin was collected by filtration and suspended in chloroform/methanol (1:1)(1.5 mL), a solution of hydrogen chloride in ethyl acetate (4 M, 400 µL, 400 µmol) was added, and the mixture was stirred at room temperature for 3 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure, whereby the desired compound was obtained.

[175] The resulting compounds were identified by mass spectrometry.

Example 4

5

10

15

20

30

[176] Compounds 1236-1247 and 1332-1343 shown in Table 2 were produced by the following method.

1-Diphenylmethyl-4-formyl-2-(trichloroacetyl)pyrrole (28 mg, 70 umol). [01]obtained by a method described in Japanese Laid-Open Publication No. 11-209344, was dissolved in N.N-dimethylformamide (0.4 mL), and a compound (100 µmol) represented by R⁷R⁸NH was added. This mixture was stirred at 55 °C for 12 hours. The solvent was distilled off under reduced pressure, and the resulting residue was dissolved in chloroform (0.6 mL). To this, N-methylisatoic anhydride polystyrene (40 mg, 80 µmol) was added, and the mixture was stirred at room temperature for 15 hours. After filtering the reaction mixture, the solvent was distilled off, and the resulting residue was dissolved in ethanol (0.5 mL). To this, 4-oxo-2-thioxoimidazolidine (3.6 mg, 31 μmol) and piperidine (4.0 μL, 40 μmol) were added, and the mixture was stirred at room temperature for 12 hours. The reaction mixture was allowed to cool down to room temperature, and was diluted with chloroform (0.3 mL), methanol (0.3 mL), and tetrahydrofuran (0.3 mL). To this, Biorad ®AG1-X8OH resin (90 mg, 180µmol) was added, and the mixture was stirred at room temperature for 12 hours. Biorad [®]AG1-X8OH was collected by filtration and suspended in chloroform/methanol (1:1)(1.5 mL), and a solution of hydrogen chloride in ethyl acetate (4 M, 400 μL, 400 μmol) was added. This mixture was stirred at room temperature for 3 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure, whereby the desired compound was obtained.

[178] The resulting compounds were identified by mass spectrometry.

Example 5

25 [179] Compounds 1428-1439 shown in Table 2 were produced by the following method.

[01] 1-Diphenylmethyl-4-formyl-2-(trichloroacetyl)-pyrrole (28 mg, 70 μ mol), obtained by a method described in Japanese Laid-Open Publication No. 11-209344, was dissolved in methanol (0.4 mL), and a 28% sodium methoxide methanol solution (27 μ L, 140 μ mol) was added. This mixture was stirred at room temperature for 12 hours. The reaction mixture was diluted with ethyl acetate, and sequentially washed with water and brine. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The resulting residue was dissolved in methanol (0.3 mL), and a 1

mol/L aqueous solution of sodium hydroxide (120µL, 120 µmol) was added. This mixture was stirred at 30 °C for 12 hours. The solvent was distilled off under reduced pressure, and the resulting residue was dissolved in methanol (0.3 mL). To this, a 1 mol/L aqueous solution of hydrochloric acid (130μL, 130 μmol) was added, and the mixture was stirred at room temperature for 15 minutes. The solvent was distilled off, and the resulting residue was dissolved in chloroform (0.4 mL). To this, 1-hydroxybenzotriazole (8.5 mg, 63 µmol), a compound (100 umol) represented by R⁷R⁸NH, 1-hydroxybenzotriazole (8.5 mg, 63 umol). and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide polymer bound (100 mg, 140 μmol) were added. This mixture was stirred at 55 °C for 12 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure, and the resulting residue was dissolved in chloroform (0.6 mL). To this, 4-polyvinylpyridine (23 mg, 219µmol) and benzoyl chloride polymer bound (23 mg, 48µmol) were added, and the mixture was stirred at room temperature for 12 hours. After filtering the reaction mixture, the solvent was distilled off, and the resulting residue was dissolved in ethanol (0.5 mL). To this, 4-oxo-2thioxoimidazolidine (3.6 mg, 31 µmol) and piperidine (4.0 µL, 40 µmol) were added, and the mixture was stirred at room temperature for 12 hours. The reaction mixture was allowed to cool down to room temperature, and was diluted with chloroform (0.3 mL), methanol (0.3 mL), and tetrahydrofuran (0.3 mL). To this, Biorad *AG1-X8OH resin (90 mg, 180µmol) was added, and the mixture was stirred at room temperature for 12 hours. Biorad ®AG1-X8OH resin was collected by filtration and suspended in chloroform/methanol (1:1)(1.5 mL), and a solution of hydrogen chloride in ethyl acetate (4 M, 400 μL, 400 μmol) was added. This mixture was stirred at room temperature for 3 hours. After filtering the reaction mixture, the solvent was distilled off under reduced pressure, whereby the desired compound was obtained.

25 [181] The obtained compounds were identified by mass spectrometry.

Example 6: (Compound 1440)

5

10

15

20

30

N-(3,4-Dichlorobenzyl)-4',4"-diformyldiphenylamine (69 mg, 0.18 mmol) obtained in Reference Example 3 was dissolved in ethanol (10 mL). To this, thiohydantoin (83 mg, 0.72 mmol) and lithium hydroxide (43 mg, 1.8 mmol) were added, and the mixture was stirred for 15 minutes while refluxing under heat. Water (30 mL) was added to the reaction mixture, and the reaction mixture was adjusted to pH 3 with 1 mol/L hydrochloric acid. The precipitated crystals were collected by filtration. Trituration was performed with methanol, whereby Compound 1440 (68 mg, yield: 65%) was obtained.

[183] 1 H NMR (270 MHz, DMSO-d₆) δ (ppm): 5.17 (s, 2H), 6.44 (s, 2H), 7.14 (d, 4H, J = 8.9 Hz), 7.29 (dd, 1H, J = 2.0, 8.3 Hz), 7.56 (d, 1H, J = 2.0 Hz), 7.59 (d, 1H, J = 8.3 Hz), 7.69 (d, 4H, J = 8.9 Hz), 12.04 (br s, 2H), 12.29 (br s, 2H).

Reference Example 1: N-(tert-Butoxycarbonyl)-4,4'-diformyldiphenylamine

5 Step (1)

10

15

20

25

Bis(4-bromophenyl)amine (2.13 g, 6.51 mmol) was dissolved in tetrahydrofuran (100 mL), and di-tert-butyl dicarbonate (3.00 mL, 13.1 mmol) was added. After stirring at room temperature for 8 hours, this mixture was refluxed for 4 hours. Next, 4-dimethylaminopyridine (1.70 g, 13.9 mmol) was added, and the mixture was refluxed for 4 more hours. The reaction mixture was allowed to cool down to room temperature. To this, a saturated aqueous solution of sodium bicarbonate was added, and extraction was carried out with chloroform. The organic layer was washed with brine, and dried over anhydrous sodium sulfate. After the solvent was distilled off under reduced pressure, purification was carried out by silica gel column chromatography (chloroform), whereby N-(tert-butoxycarbonyl)-4,4'-dibromodiphenylamine (2.50 g, 99%) was obtained.

[185] 1 H NMR (270MHz, CDCl₃) δ (ppm) 1.44 (s, 9H), 7.06 (d, 4H, J = 8.9 Hz), 7.42 (d, 4H, J = 8.9 Hz). Step (2)

[186] The aforementioned compound (1.47 g, 3.46 mmol) was dissolved in tetrahydrofuran (20 mL), and the mixture was cooled to -78 °C. Next, n-butyl lithium (1.50 mol/L hexane solution; 6.0 mL, 9.0mmol) was added, and the mixture was stirred for 40 minutes. Thereafter, N,N-dimethylformamide (1.10 mL, 14.3 mmol) was added, and the mixture was stirred for additional 30 more minutes. Next, the mixture was warmed to room temperature, and stirred for 8 hours. A saturated aqueous solution of ammonium chloride was added to the reaction mixture, and extraction was carried out with chloroform. The organic layer was washed with brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and purification was carried out by silica gel column chromatography (20:1 - 6:1 - 3:1 - 2:1 hexane/ethyl acetate), whereby the aforementioned compound (739 mg, 79%) was obtained.

30 [187] 1 H NMR (270 MHz, CDCl₃) δ (ppm): 1.47 (s, 9H), 7.35 (d, 4H, J = 8.4 Hz), 7.86 (d, 4H, J = 8.4 Hz), 9.98 (s, 2H).

Reference Example 2: 4,4'-Diformyldiphenylamine

5

15

20

25

30

N-(tert-butoxycarbonyl)-4,4'-diformyldiphenylamine (2.33 g, 7.16 mmol) obtained from Reference Example 1 was dissolved in dichloromethane (20 mL). To this, trifluoroacetic acid (10 mL) was added at room temperature, and the mixture was stirred at the same temperature for 1.5 hours. To the reaction mixture, a 6 mol/L aqueous solution of sodium hydroxide was added, and extraction was carried out with chloroform. The organic layer was washed with brine, and dried using anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. Trituration was performed with methanol, whereby the aforementioned compound (1.18 g, 73%) was obtained.

10 [189] ¹H NMR (270 MHz, CDCl₃) δ (ppm): 6.51 (br s, 1H), 7.25 (d, 4H, J = 8.6 Hz), 7.86 (d, 4H, J = 8.6 Hz), 9.89 (s, 2H).

Reference Example 3: N-(3,4-Dichlorobenzyl)-4',4"-diformyldiphenylamine

[190] 4,4'-Diformyldiphenylamine (404 mg, 1.79 mmol) obtained in Reference Example 2 was dissolved in tetrahydrofuran (20 mL). To this, sodium hydride (60% in mineral oil dispersion, 153 mg, 3.83 mmol) was added, and the mixture was stirred at room temperature for 10 minutes. Next, 3,4-dichlorobenzyl bromide (1.18 g, 4.92 mmol) was added, and the mixture was stirred at room temperature for 2 hours. Water was added to the reaction mixture. After extraction was carried out with chloroform, the organic layer was washed with brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure. Purification was carried out by silica gel column chromatography (4:1 - 2:1 hexane/ethyl acetate), whereby the aforementioned compound (614 mg, 89%) was obtained.

[01] 1 H NMR (270 MHz, CDCl₃) δ (ppm): 5.09 (s, 2H), 7.12 (dd, 1H, J = 2.0, 8.2 Hz), 7.21 (d, 4H, J = 8.9 Hz), 7.37 (d, 1H, J = 2.0 Hz), 7.40 (d, 1H, J = 8.2 Hz), 7.82 (d, 4H, J = 8.9 Hz), 9.89 (s, 2H).

[192] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

WHAT IS CLAIMED IS:

1 1. A telomerase inhibitor comprising as an active ingredient a compound 2 having a 4-oxo-2-thioxoimidazolidine skeleton and having telomerase inhibitory activity.

- 1 2. An antitumor agent comprising as an active ingredient a compound 2 having a 4-oxo-2-thioxoimidazolidine skeleton and having telomerase inhibitory activity.
 - 3. A telomerase inhibitor comprising a compound of the formula:

$$\begin{array}{c} \begin{array}{c} Q^1 \\ \\ N \end{array} \begin{array}{c} Q^2 \\ \\ Q^3 \end{array}$$

or a pharmaceutically acceptable salt thereof,

wherein

 Q^{1} is hydrogen, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted arylalkenyl, substituted or unsubstituted heteroarylalkenyl, substituted or unsubstituted arylalkynyl, substituted or unsubstituted heteroarylalkynyl, substituted or unsubstituted lower alkanoyl, substituted or unsubstituted lower alkenoyl, substituted or unsubstituted lower alkynoyl, substituted or unsubstituted arylalkanoyl, substituted or unsubstituted heteroarylalkanoyl, substituted or unsubstituted arylalkenoyl, substituted or unsubstituted heteroarylalkenoyl, substituted or unsubstituted arylalkynoyl, or substituted or unsubstituted heteroarylalkynoyl; one of Q^{2} and Q^{3} is hydrogen, and the other is substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

- 4. An antitumor agent comprising the compound according to claim 3 or a pharmaceutically acceptable salt thereof, as an active ingredient.
 - 5. A compound of the formula:

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
O \\
(Ia)
\end{array}$$

3 or a pharmaceutically acceptable salt thereof,

wherein

R¹ is hydrogen, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, substituted or unsubstituted lower alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted arylalkenyl, substituted or unsubstituted heteroarylalkenyl, substituted or unsubstituted arylalkynyl, or substituted or unsubstituted heteroarylalkynyl;

one of R² and R³ is hydrogen, and the other is

$$Z^1$$
 Z^2 Z^3 Z^5 Z^4

[wherein

 Z^1 to Z^5 are the same or different, and each represents hydrogen, substituted or unsubstituted lower alkyl, unsubstituted lower alkoxy having no asymmetric carbon atom, substituted lower alkoxy, unsubstituted lower alkylthio having no asymmetric carbon atom, substituted lower alkylthio, NR^4R^5 (wherein each of R^4 and R^5 is independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkanoyl, aroyl, heteroaroyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, or

or R⁴ and R⁵ together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group), nitro, cyano, aryl, heteroaryl,

form a substituted or unsubstituted heterocyclic group), nitro, cyano, aryl, heteroaryl, aryloxy, heteroaryloxy, aralkyloxy, heteroarylalkyloxy or halogen, or

two of adjacent Z^1 to Z^5 on the benzene ring together form a moiety of the formula -O- $(CH_2)_n$ -O- (wherein n is an integer of 1 or 2)], substituted or unsubstituted naphthyl, substituted or unsubstituted heteroaryl, or

2728

30

31

32

33

34

35

24

25

26

(wherein

 R^6 has the same meaning as the aforementioned R^1 ;

each of R⁷ and R⁸ is independently hydrogen, substituted or unsubstituted lower alkyl, substituted or unsubstituted lower alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroarylalkyl, or R⁷ and R⁸ together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic group);

with the proviso that when one of R² and R³ is hydrogen, and the other is not

36

1

2

37 (wherein

R⁶, R⁷ and R⁸ have the same meanings as defined above, respectively), R¹
represents the above-mentioned substituent other than hydrogen and substituted or
unsubstituted methyl.

- 1 6. A telomerase inhibitor comprising the compound according to claim 5 or a pharmaceutically acceptable salt thereof, as an active ingredient.
 - 7. An antitumor agent comprising the compound according to claim 5 or a pharmaceutically acceptable salt thereof, as an active ingredient.
- 8. A pharmaceutical composition comprising the compound according to claim 5 or a pharmaceutically acceptable salt thereof, as an active ingredient.

International application No.
PCT/US01/50042

A. CLASSIFICATION OF SUBJECT MATTER				
· '	· ·			
	US CL:Please See Extra Sheet. cording to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)				
U.S. :	514/341, 389; 546/274.4; 548/311.1, 311.7, 314.7, 3	15.1, 316.1, 317.1		
Documentat	tion searched other than minimum documentation to	the extent that such documents are i	ncluded in the fields	
searched				
Electronic o	lata base consulted during the international search (r	name of data base and, where practicable	e, search terms used)	
STN CA	s online	·	,	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
X	US 4,649,145 A (ROSS ET AL.) 10	March 1087 (10/03/87) see	3-8	
Λ	entire document, especially compounds	, , , , , ,	3-0	
	10.	14, 15, ctc. in columns y and		
	10.			
X	US 5,464,856 A (CETENKO ET	AL.) 07 November 1995	3-8	
	(07/11/95), see entire document, espec	•		
	in columns 21 and 22.	, , , , , , , , , , , , , , , , , , , ,		
X	US 5,614,541 A (BACKSTROM	ET AL.) 25 March 1997	3-8	
	(25/03/97), see entire document, espec			
	•	•		
· · · · · · · · · · · · · · · · · · ·				
X Furtl	her documents are listed in the continuation of Box	C. See patent family annex.		
-	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appl		
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the		
	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	e claimed invention cannot be	
	cument which may throw doubts on priority claim(s) or which is sed to establish the publication date of another citation or other	when the document is taken alone	Winter or might ag 800b	
	ecial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive step		
	cument referring to an oral disclosure, use, exhibition or other	with one or more other such docum obvious to a person skilled in the art		
"P" do	cument published prior to the international filing date but later an the priority date claimed	"&" document member of the same patent	family	
Date of the actual completion of the international search Date of mailing of the international search report		arch report		
25 MARCH 2002 0 R MAY 2002		2002		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT LAURA L. STOCKTON O 8 MAY 2002 Authorized officer College Bell-Houris for LAURA L. STOCKTON		·		
Commissioner of Patents and Trademarks		Valerie Bell-Ho	urs for	
Box PCT Washington	n, D.C. 20231	LAURA L. STOCKTON	\mathcal{U}	
Facsimile N	lo. (703) 305-3230	Telephone No. (703) 308-1235		

International application No.
PCT/US01/50042

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	Chem. abstr., Vol. 126, No.8, 24 February 1997 (Columbus. OH, USA), page 19, column 1, the abstract No. 98856, AL-OBAID ET AL. '5-Substituted-2-thiohydantoin analogs as a novel class of antitumor agents.' Anti-Cancer Drugs. 1996, 7(8), pages 873-880 (Eng).	3-8
X	Chem. abstr., Vol. 113, No. 6, 07 August 2000 (Columbus. OH, USA), page 692, column 2, the abstract No. 73977y, KHODAIR ET AL. 'Synthesis, conformational analysis and antitumor testing of 5-(Z)-arylidene-4-imidazolidinone derivatives.' Phosphorus, Sulfur and Silicon and the Related Elements. 1998, 140, pages 159-181 (Eng).	3-8

International application No. PCT/US01/50042

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:		
2. X Claims Nos.: 1 AND 2 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: the claims cannot be searched because the products are not adequately defined.		
5. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
This International Searching Authority found multiple inventions in this international application, as follows:		
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.		

International application No. PCT/US01/50042

A. CLASSIFICATION OF SUBJECT MATTER: IPC (7):
A61K 31/4178, 31/4166, 31/4439; C07D 233/86, 401/06, 405/06, 405/06, 409/06
A. CLASSIFICATION OF SUBJECT MATTER: US CL:
514/341, 389; 546/274.4; 548/311.1, 311.7, 314.7, 315.1, 316.1, 317.1