Capturing the Intangible Concept of Information In Hydrological Simulation ——Perspectives From Shannon and Kolmogorov

Pan Baoxiang Cong Zhentao

Institute of Hydrology and Water Resources
Tsinghua University

June 4, 2015

Outline

- Introduction
- Shannon Information & Kolmogorov Complexity
- Case Study
- Discussion & Conclusion

Introduction

Questions:

- Given the p.d.f. of the rainfall amount of a certain year, through how many guesses could we reach its interval estimation to a fixed accuracy?
- Give an efficient description of an annual rainfall series.

Introduction

Questions:

- Given the p.d.f. of the rainfall amount of a certain year, through how many guesses could we reach its interval estimation to a fixed accuracy?
- Give an efficient description of an annual rainfall series.

Information is Bits + Context.

Measuring Information Contents

	Shannon Entropy	Kolmogorov Complexity		
Definition	$H(X) = -\Sigma p(x) log p(x)$	The length (in bits) of the		
		shortest computer program		
	$h(X) = -\int f(x) \log f(x) dx$	that prints the sequence		
		and then halts.		
Focus	Random Source	Object		
	Object irrelevant	Probability irrelevant		
	•	•		
Property	$H(X,Y) \leq H(X) + H(Y)$	Uncomputability		
		_		
Estimator	p.d.f Estimator	Compressor		
Dimension	D	Sit.		
Dimension		PIL		

Measuring Information Connections

	Mutual Information(S)	Mutual Information(K)
Definition	$I(X; Y) = \sum p(x, y) log \frac{p(x, y)}{p(x)p(y)}$	KC(X) + KC(Y) - KC(X, Y)
	$I(X;Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy$	
Focus	Random Source	Object
	Object irrelevant	Probability irrelevant
Property	Symmetry	Uncomputability
. ,	, ,	, ,
Estimator	KNN + SVR	ZIP(X) + ZIP(Y) - ZIP(X, Y)
D: :	D	٠.
Dimension	Bi	it

- For a time/frequency/feature-space domain base,
 - X_i, X_o, X_s, S are represented by their coordinates,
 - Entropy / Kolmogorov Complexity of these coordinates represents the complexity of expressing the signals with that base:
 - $H(X_o)$ / $KC(X_o)$: Bits are required to depict X_o .
 - Shannon / Kolmogorov Mutual Information between coordinates represents the information connection of the signals at that base:

 $MI(X_i, X_o)$: Bits provided by X_i .

 $MI(X_s, X_o)$: Bits provided by Model.

- For a time/frequency/feature-space domain base,
 - X_i, X_o, X_s, S are represented by their coordinates,
 - Entropy / Kolmogorov Complexity of these coordinates represents the complexity of expressing the signals with that base:
 - $H(X_o)$ / $KC(X_o)$: Bits are required to depict X_o .
 - Shannon / Kolmogorov Mutual Information between coordinates represents the information connection of the signals at that base:

 $MI(X_i, X_o)$: Bits provided by X_i . $MI(X_s, X_o)$: Bits provided by Model.

Aleatory Uncertainty = $H(X_o)/KC(X_o) - MI(X_i, X_o)$ Epistemic Uncertainty = $MI(X_i, X_o) - MI(X_s, X_o)$

- For a time/frequency/feature-space domain base,
 - X_i, X_o, X_s, S are represented by their coordinates,
 - Entropy / Kolmogorov Complexity of these coordinates represents the complexity of expressing the signals with that base:
 - $H(X_o)$ / $KC(X_o)$: Bits are required to depict X_o .
 - Shannon / Kolmogorov Mutual Information between coordinates represents the information connection of the signals at that base:

 $MI(X_i, X_o)$: Bits provided by X_i . $MI(X_s, X_o)$: Bits provided by Model.

Aleatory Uncertainty = $H(X_o)/KC(X_o) - MI(X_i, X_o)$ Noise Epistemic Uncertainty = $MI(X_i, X_o) - MI(X_s, X_o)$ Signal

Case Study 1: How water-heat correlation emerges through temporal upscaling

Signal-to-noise Ratio Across Temporal Scales

Case Study 2: To what ratio can hydrological data be compressed

Huffman Encoding —— Lisp Implementation

Case Study 2: To what ratio can hydrological data be compressed

Data set	Constant	Linear	Uniform white	Gaussian white	Sin 1	Sin 100	Leaf Q	Leaf P
file size	50 000	50 000	50 000	50 000	50 000	50 000	14610	14610
$\frac{H}{\log N}$	0.0	99.9	99.9	86.3	96.0	92.7	42.1	31.0
SNR	NaN	255.0	255.6	108.0	307.4	317.8	42.6	39.9
			Uncomp	ressed formats				
BMP	102.2	102.2	102.2	102.2	102.2	102.2	407.4	407.4
WAV	100.1	100.1	100.1	100.1	100.1	100.1	100.3	100.3
HDF_NONE	100.7	100.7	100.7	100.7	100.7	100.7	102.3	102.3
			Lossless com	pression algorithms				
JPG_LS	12.6	12.8	110.6	94.7	12.9	33.3	33.7	49.9
HDF_RLE	2.3	2.7	101.5	101.5	3.2	92.3	202.3	202.3
WAVPACK	0.2	1.9	103.0	87.5	2.9	25.6	38.0	66.2
ARJ	0.3	1.0	100.3	88.0	3.1	1.9	33.7	40.0
PPMD	0.3	2.1	102.4	89.7	3.6	1.4	27.7	36.4
LZMA	0.4	0.9	101.6	88.1	1.9	1.2	31.0	37.8
BZIP2	0.3	1.8	100.7	90.7	3.0	2.3	29.8	40.5
PNG	0.3	0.8	100.4	93.5	1.5	0.8	40.2	50.0
GIF	2.3	15.7	138.9	124.5	17.3	32.0	38.8	45.9
TIFF	2.0	2.4	101.2	101.2	2.9	91.2	201.5	201.5

Weijs S V, Giesen N, Parlange M B. Data compression to define information content of hydrological time series[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3171-3187.

Discussion & Conclusion

Coding is not merely an E.E. trick. It's hard to tell where data science stops and coding starts.

- Significance Digging
- Application Expansion

https://github.com/morepenn

END