Proof of Hall's Marriage Theorem By Mathematical Induction

Google Gemini 2.5 Pro (Preview)

June 11, 2025

Theorem 1 (Hall's Marriage Condition). Given a family of finite sets S_1, S_2, \ldots, S_n . If for every subset of indices $I \subseteq \{1, 2, \ldots, n\}$, the following condition holds:

$$\left| \bigcup_{i \in I} S_i \right| \ge |I|$$

Then the family has a **System of Distinct Representatives (SDR)**, i.e., there exist n distinct elements a_1, a_2, \ldots, a_n such that $a_i \in S_i$ for all $i \in \{1, \ldots, n\}$.

Proof. We proceed by mathematical induction on n, the number of sets.

Base Case: n = 1 When n = 1, we have a single set S_1 . The Hall condition for $I = \{1\}$ implies $|S_1| \ge 1$. Thus, S_1 is non-empty, and we can choose an element $a_1 \in S_1$ as its representative. The base case holds.

Inductive Hypothesis Assume that the theorem holds for any collection of k sets, where k < n.

Inductive Step We now prove the theorem for a collection of n sets, S_1, \ldots, S_n , that satisfies the Hall condition. We consider two cases.

Case 1: The Strong Hall Condition Assume that for every proper, non-empty subset $I \subset \{1, ..., n\}$ (where |I| < n), the condition holds strictly: $|\bigcup_{i \in I} S_i| > |I|$.

- 1. Choose an arbitrary element $a_n \in S_n$ (this is possible since $|S_n| \ge 1$).
- 2. For the remaining n-1 sets, define new sets $S_i' = S_i \setminus \{a_n\}$ for $i \in \{1, \ldots, n-1\}$.
- 3. We show that this new collection $\{S'_i\}$ satisfies the Hall condition. For any non-empty subset $I \subseteq \{1, \ldots, n-1\}$:

$$\left| \bigcup_{i \in I} S_i' \right| = \left| \left(\bigcup_{i \in I} S_i \right) \setminus \{a_n\} \right| \ge \left| \bigcup_{i \in I} S_i \right| - 1$$

By our assumption for Case 1, $|\bigcup_{i \in I} S_i| \ge |I| + 1$. Therefore:

$$\left| \bigcup_{i \in I} S_i' \right| \ge (|I| + 1) - 1 = |I|$$

4. By the inductive hypothesis, the collection $\{S'_i\}$ has an SDR, say $\{a_1, \ldots, a_{n-1}\}$. By construction, none of these representatives is a_n . Thus, $\{a_1, \ldots, a_{n-1}, a_n\}$ is an SDR for the original family.

Case 2: The Critical Case Assume there exists a proper, non-empty subset $J \subset \{1, \ldots, n\}$ (let |J| = k, where $1 \le k < n$) for which the condition holds exactly:

$$\left| \bigcup_{j \in J} S_j \right| = |J| = k$$

- 1. Consider the family of k sets $\{S_j\}_{j\in J}$. This family satisfies the Hall condition. Since k < n, by the inductive hypothesis, there exists an SDR for this family, say $\{a_j\}_{j\in J}$. Let $U_J = \bigcup_{j\in J} S_j$. Note that all representatives $\{a_j\}$ are in U_J and $|U_J| = |J| = k$.
- 2. Now consider the remaining n-k sets. Let J' be the complement of J in $\{1,\ldots,n\}$. For each $i \in J'$, define a new set $S''_i = S_i \setminus U_J$.
- 3. We show that this new family $\{S_i''\}_{i \in J'}$ satisfies the Hall condition. For any non-empty subset $K \subseteq J'$:

$$\left| \bigcup_{i \in K} S_i'' \right| = \left| \left(\bigcup_{i \in K} S_i \right) \setminus U_J \right|$$

$$= \left| \left(\bigcup_{i \in K} S_i \right) \cup U_J \right| - |U_J|$$

$$= \left| \bigcup_{i \in K \cup J} S_i \right| - |J|$$

By the original Hall condition on the family $\{S_i\}$, the last expression is $\geq (|K|+|J|)-|J|=|K|$.

- 4. Since n k < n, by the inductive hypothesis, the family $\{S_i''\}$ has an SDR, say $\{a_i\}_{i \in J'}$.
- 5. By construction, the representatives $\{a_i\}_{i\in J'}$ are disjoint from U_J , and thus disjoint from the representatives $\{a_j\}_{j\in J}$ found in the first step. Combining these two sets of representatives gives a complete SDR for the original family.

Having proven both cases, the inductive step is complete. By the principle of mathematical induction, the theorem holds.