Реальная задача Data Science из золотодобывающей отрасли. Проект предоставлен компанией «Цифра».

Постановка задачи

Подготовьте прототип модели машинного обучения для «Цифры». Компания разрабатывает решения для эффективной работы промышленных предприятий. Модель должна предсказать коэффициент восстановления золота из золотосодержащей руды. В вашем распоряжении данные с параметрами добычи и очистки. Модель поможет оптимизировать производство, чтобы не запускать предприятие с убыточными характеристиками.

Технологический процесс

Когда добытая руда проходит первичную обработку, получается дроблёная смесь. Её отправляют на флотацию (обогащение) и двухэтапную очистку.

1. Флотация

Во флотационную установку подаётся смесь золотосодержащей руды. После обогащения получается черновой концентрат и «отвальные хвосты», то есть остатки продукта с низкой концентрацией ценных металлов. На стабильность этого процесса влияет непостоянное и неоптимальное физико-химическое состояние флотационной пульпы (смеси твёрдых частиц и жидкости).

2. Очистка

Черновой концентрат проходит две очистки. На выходе получается финальный концентрат и новые отвальные хвосты.

Описание данных

Технологический процесс

- Rougher feed исходное сырье
- Rougher additions (или reagent additions) флотационные реагенты:
 - Хаптате ксантогенат (промотер, или активатор флотации);
 - Sulphate сульфат (на данном производстве сульфид натрия);
 - Depressant депрессант (силикат натрия).
- Rougher process (англ. «грубый процесс») флотация
- Rougher tails отвальные хвосты
- Float banks флотационная установка
- Cleaner process очистка

- Rougher Au черновой концентрат золота
- Final Au финальный концентрат золота

Параметры этапов

- air amount объём воздуха
- fluid levels уровень жидкости
- feed size размер гранул сырья
- feed rate скорость подачи

Наименование признаков

[этап].[тип_параметра].[название_параметра]

Пример: rougher.input.feed_ag

Значения для блока [этап]:

- rougher флотация
- primary_cleaner первичная очистка
- secondary cleaner вторичная очистка
- final финальные характеристики

Значения для блока [тип_параметра]:

- input параметры сырья
- output параметры продукта
- state параметры, характеризующие текущее состояние этапа
- calculation расчётные характеристики

Расчёт эффективности

Необходимо смоделировать процесс восстановления золота из золотосодержащей руды. Эффективность обогащения рассчитывается по формуле

$$Recovery = \frac{C(F-T)}{F(C-T)}100\%$$

, где

- С доля золота в концентрате после флотации/очистки;
- F доля золота в сырье/концентрате до флотации/очистки;
- Т доля золота в отвальных хвостах после флотации/очистки.

Метрика качества

Для решения задачи введём новую метрику качества — sMAPE (англ. Symmetric Mean Absolute Percentage Error, «симметричное среднее абсолютное процентное отклонение»). Она одинаково учитывает масштаб и целевого признака, и предсказания.

$$sMAPE = \frac{1}{N} \sum_{i=1}^{N} \frac{|y_i - \hat{y}_i|}{\frac{|y_i| + |\hat{y}_i|}{2}}$$

, где

- y_i значение целевого признака для объекта с порядковым номером і в выборке, на которой измеряется качество.
- $\hat{y_i}$ значение предсказания для объекта с порядковым номером і, например, в тестовой выборке.

Нужно спрогнозировать сразу две величины:

- эффективность обогащения чернового концентрата rougher.output.recovery;
- эффективность обогащения финального концентрата final.output.recovery.

Итоговая метрика складывается из двух величин:

$$sMAPE_{result} = 25\% * sMAPE(rougher) + 75\% * sMAPE(final)$$

План

1. Подготовка данных

- 1.1 Получение файлов
- 1.2 Проверка верности расчёта эффективности обогащения
- 1.3 Анализ признаков, которых нет в тестовой выборке
- 1.4 Предобработка данных

2. Исследовательский анализ данных

- 2.1 Динамика изменения концентрации металлов (Au, Ag, Pb) на различных э тапах очистки.
- 2.2 Сравнение распределения размеров гранул сырья на обучающей и тестово й выборках.
- 2.3 Исследование суммарной концентрации всех веществ на разных стадиях: в сырье, в черновом и финальном концентратах.

3. Построение модели и её обучение

- 3.1 Функция нахождения итоговой sMAPE.
- 3.2 Обучение моделей и оценка их качеств кросс-валидацией. Выбор лучшей модели и её проверка на тестовой выборке.

1. Подготовка данных

1.1 Получение файлов

```
import pandas as pd
import numpy as np

from sklearn.metrics import mean_absolute_error as mae
from sklearn.metrics import make_scorer

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score

from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression

import os
import urllib
import matplotlib.pyplot as plt

pd.options.display.float_format = "{:.3f}".format
PLOT = True
```

```
B [3]: class DF:
    def __init__(self, df):
        self.df = df

    def get(self, part_of_name):
        return self.df.loc[:, list(filter(lambda x: part_of_name in x, self.df.cc
```

```
B [4]: train_origin, test_origin, full_origin = [DF(pd.read_csv(name)) for name, _ in data
train, test, full = [DF(pd.read_csv(name)) for name, _ in datas]
target_col_1, target_col_2 = 'rougher.output.recovery', 'final.output.recovery'
```

1.2 Проверка верности расчёта эффективности обогащения

Вычислите её на обучающей выборке для признака rougher.output.recovery. Найдите МАЕ между вашими расчётами и значением признака. Опишите выводы.

```
B [5]: C = train.get('rougher.output.concentrate_au').iloc[:, 0]
F = train.get('rougher.input.feed_au').iloc[:, 0]
T = train.get('rougher.output.tail_au').iloc[:, 0]
Recovery_calc = ((C * (F - T)) / (F * (C - T)) * 100)
Recovery_actu = train.get('rougher.output.recovery').iloc[:, 0]
res = pd.concat([Recovery_calc, Recovery_actu], axis=1)
res = res.dropna()
res.columns = 'calculated actual'.split()
print('Pacчёт признака Recovery верный' if mae(res.iloc[:, 0], res.iloc[:, 1]) <</pre>
```

Расчёт признака Recovery верный

1.3 Анализ признаков, которых нет в тестовой выборке

```
B [6]: cols not in test = sorted(list(set(full.df.columns) - set(test.df.columns)))
       print(*cols_not_in_test, sep='\n')
       print('#' * 50)
       print(len(cols not in test))
       print("Is gen features in test -> ", target_col_1 in cols_not_in_test, target_col
       final.output.concentrate ag
       final.output.concentrate au
       final.output.concentrate pb
       final.output.concentrate_sol
       final.output.recovery
       final.output.tail ag
       final.output.tail au
       final.output.tail pb
       final.output.tail sol
       primary_cleaner.output.concentrate_ag
       primary_cleaner.output.concentrate_au
       primary cleaner.output.concentrate pb
       primary cleaner.output.concentrate sol
       primary_cleaner.output.tail_ag
       primary cleaner.output.tail au
       primary_cleaner.output.tail_pb
       primary_cleaner.output.tail_sol
       rougher.calculation.au pb ratio
       rougher.calculation.floatbank10 sulfate to au feed
       rougher.calculation.floatbank11_sulfate_to_au_feed
       rougher.calculation.sulfate to au concentrate
       rougher.output.concentrate_ag
       rougher.output.concentrate_au
       rougher.output.concentrate pb
       rougher.output.concentrate sol
       rougher.output.recovery
       rougher.output.tail ag
       rougher.output.tail au
       rougher.output.tail pb
       rougher.output.tail sol
       secondary cleaner.output.tail ag
       secondary_cleaner.output.tail_au
       secondary_cleaner.output.tail_pb
       secondary cleaner.output.tail sol
       34
       Is gen features in test -> True True
```

В тестовой выборке не хватает 34 признаков, включая rougher.output.recovery, final.output.recovery (целевые прирнаки). Все признаки, кроме целевых, а точнее их величины могут быть получены лишь при работающем механизме фильтрации (концентрации, излишки)

1.4 Предобработка данных

B [7]: train.df.columns.shape[0], test.df.columns.shape[0], full.df.columns.shape[0]

```
Out[7]: (87, 53, 87)
                      В датасетах различное количество столбцов, что недопустимо для обучения модели (train
                     должен иметь такие же столбцы, как и test или valid). Проверим, совпадают ли столбцы
                     из train c full на предмет того, что все столбцы рассматриваются.
  B [8]: set(train.df.columns) == set(full.df.columns)
Out[8]: True
  B [9]: target_col_1 in full.df.columns and target_col_2 in full.df.columns
Out[9]: True
B [10]: train.df = train.df.loc[:, list(test.df.columns) + [target_col_1, target_col_2]]
B [11]: for df in train.df, test.df, full.df:
                                df.index = df.date
                                df.drop(['date'], axis=1, inplace=True)
B [12]: test.df = test.df.join(full.df[[target col 1, target col 2]])
B [13]: print('Nan values in train (max) {:.3f} %'.format(train.df.isna().sum().max() /
                     print('Nan values in test (max) {:.3f} %'.format(test.df.isna().sum().max() / test.df.isna().sum().max() / test.df.isna().sum().sum().max() / test.df.isna().sum().sum().max() / test.df.isna().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().s
                     Nan values in train (max) 15.261 %
                     Nan values in test (max) 9.324 %
B [14]: | %%time
                     f = s = t = 1
                     while f or s or t:
                                if f:
                                          train.df = train.df.ffill(limit=5)
                                          train.df = train.df.bfill(limit=5)
                                if s:
                                          test.df = test.df.ffill(limit=5)
                                          test.df = test.df.bfill(limit=5)
                                if t:
                                          full.df = full.df.ffill(limit=5)
                                          full.df = full.df.bfill(limit=5)
                                f, s, t = (train.df.isna().sum().sum(),\
                                                            test.df.isna().sum().sum(),\
                                                            full.df.isna().sum().sum())
```

Wall time: 1.42 s

2. Исследовательский анализ данных

2.1 Динамика изменения концентрации металлов (Au, Ag, Pb) на различных этапах очистки.

Концентраци серебра при прохождении руды через такую последовательность этапов: флотация, первая очистка и вторая очистка уменьшается. При таком же следовании этапов концетрация золота увеличивается. В свою очередь после флотации концетрация свинца увеличивается, но разница не так хорошо прослеживается между очистками.

2.2 Сравнение распределения размеров гранул сырья на обучающей и тестовой выборках.

Если распределения сильно отличаются друг от друга, оценка модели будет неверной.

Размер гранул сырья перед флотацией на обеих выборках имеют распределения похожие на распределение Пуссона, в свою очередь распределения перед первой очисткой похожи на нормальное распределение

2.3 Исследование суммарной концентрации всех веществ на разных стадиях: в сырье, в черновом и финальном концентратах.

```
B [22]: if PLOT:
             full.df.loc[:, 'rougher.input.feed_sum'] = (full
                  .get('rougher.input.feed')
                  .drop(['rougher.input.feed_size', 'rougher.input.feed_rate'], axis=1)
                  .apply(lambda x: x.sum(), axis=1)
              )
B [23]: if PLOT:
             for name in ['rougher.output.concentrate', 'primary_cleaner.output.concentrat
                  full.df.loc[:, name + '_sum'] = (full
                       .get(name)
                       .apply(lambda x: x.sum(), axis=1)
                  )
B [24]: if PLOT:
             df_sum_conc = full.get('sum')
             df_sum_conc.columns = ['В сырье', 'В черновом концентрате после флотации',\
                                        'В черновом концентрате после 1-ой очистки', 'В чернов
              _ = df_sum_conc.plot(kind='hist', bins=100, figsize=(13, 7),\
                                 color=('lightblue', 'coral', 'lightgreen', 'teal'), alpha=.7
             plt.title('Гистограмма суммарных концентраций')
             plt.xlabel('Суммарная концентрация')
             plt.ylabel('Кол-во объектов')
             plt.show()
                                          Гистограмма суммарных концентраций
            3000
                   В сырье
                   В черновом концентрате после флотации
                   В черновом концентрате после 1-ой очистки

    В черновом концентрате после 2-ой очистки (финальный концетрат)

            2500
            2000
          Кол-во объектов
           1500
            1000
            500
```

Как и ожидалось, концентрация металлов увеличивается к концу всех этапов.

Суммарная концентрация

3. Построение модели и её обучение

3.1 Функция нахождения итоговой sMAPE.

```
def sMAPE(predicted, target):
    res = np.sum(np.abs(predicted - target) / (np.abs(predicted) + np.abs(target)
    return res / len(predicted) * 100

def sMAPE_result(predicted_rougher, target_rougher, predicted_final, target_final
    sMAPE_rougher = sMAPE(predicted_rougher, target_rougher)
    sMAPE_final = sMAPE(predicted_final, target_final)
    return .25 * sMAPE_rougher + .75 * sMAPE_final

sMAPE_score = make_scorer(sMAPE, greater_is_better=False)
```

3.2 Обучение моделей и оценка их качеств кросс-валидацией. Выбор лучшей модели и её проверка на тестовой выборке.

Линейная регрессия

```
B [28]: model_lin = LinearRegression()
model_lin.fit(features_train, target_train)
predicts_lin = model_lin.predict(features_test)
```

```
B [29]: sMAPE_result(predicts_lin[:, 0], target_test.iloc[:, 0], predicts_lin[:, 1], target_test.iloc[:, 0]
```

Out[29]: 9.140700746751737

Дерево решений

```
B [30]: | features_train_1 = train.df.drop([target_col_1], axis=1).reset_index(drop=True)
         target train 1 = train.df[target col 1].reset index(drop=True)
         features train 2 = train.df.drop([target col 2], axis=1).reset index(drop=True)
         target train 2 = train.df[target col 2].reset index(drop=True)
         features_test_1 = test.df.drop([target_col_1], axis=1).reset_index(drop=True)
         target_test_1 = test.df[target_col_1].reset_index(drop=True)
         features test 2 = test.df.drop([target col 2], axis=1).reset index(drop=True)
         target test 2 = test.df[target col 2].reset index(drop=True)
 B [31]: param grid tree = {
             'max depth': [i for i in range(3, 30)]
         model tree = DecisionTreeRegressor(random state=1)
         model_tree_gscv = GridSearchCV(estimator=model_tree, param_grid=param_grid_tree,)
                                        n_jobs=-1, cv=3, verbose=2,\
                                        scoring=sMAPE score)
         model tree gscv.fit(features train 1, target train 1)
         model_tree_best_model_1 = model_tree_gscv.best_estimator_
         predicts tree 1 = model tree best model 1.predict(features test 1)
         Fitting 3 folds for each of 27 candidates, totalling 81 fits
         [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
         [Parallel(n jobs=-1)]: Done 25 tasks
                                                     | elapsed:
                                                                  5.8s
         [Parallel(n_jobs=-1)]: Done 81 out of 81 | elapsed:
                                                                 17.2s finished
 B [32]:
         model tree gscv.fit(features train 2, target train 2)
         model tree best model 2 = model tree gscv.best estimator
         predicts_tree_2 = model_tree_best_model_2.predict(features_test_2)
         Fitting 3 folds for each of 27 candidates, totalling 81 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
         [Parallel(n jobs=-1)]: Done 25 tasks
                                                                   3.1s
                                                     | elapsed:
         [Parallel(n jobs=-1)]: Done 81 out of 81 | elapsed:
                                                                 15.3s finished
 B [33]: sMAPE_result(predicts_tree_1, target_test_1, predicts_tree_2, target_test_2)
Out[33]: 9.045763502493083
```

Случайный лес

```
B [34]: param grid = {
            'bootstrap': [True],
            'max depth': [i for i in range(3, 20, 4)],
            'max features': [3, 7],
            'min_samples_leaf': [3, 7],
            'min_samples_split': [4, 8],
            'n estimators': [i for i in range(20, 120, 20)]
        }
        model = RandomForestRegressor()
        grid search = GridSearchCV(estimator=model, param grid=param grid,\
                                  cv=3, verbose=2, n_jobs=-1,\
                                  scoring=make_scorer(sMAPE, greater_is_better=False))
        grid search.fit(features train 1, target train 1)
        model forest best 1 = grid search.best estimator
        predicts forest 1 = model forest best 1.predict(features test 1)
        Fitting 3 folds for each of 200 candidates, totalling 600 fits
        [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
        [Parallel(n jobs=-1)]: Done 25 tasks
                                                      elapsed:
        [Parallel(n jobs=-1)]: Done 146 tasks
                                                      elapsed:
                                                                 31.6s
        [Parallel(n jobs=-1)]: Done 349 tasks
                                                      elapsed:
                                                                2.3min
        [Parallel(n jobs=-1)]: Done 600 out of 600 | elapsed: 5.4min finished
B [35]: grid_search.fit(features_test_2, target_test_2)
        model forest best 2 = grid search.best estimator
        predicts forest 2 = model forest best 2.predict(features test 2)
        Fitting 3 folds for each of 200 candidates, totalling 600 fits
        [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
        [Parallel(n_jobs=-1)]: Done 34 tasks
                                                      elapsed:
                                                                  2.1s
        [Parallel(n jobs=-1)]: Done 194 tasks
                                                                 18.5s
                                                      elapsed:
        [Parallel(n jobs=-1)]: Done 397 tasks
                                                      elapsed:
                                                                 56.2s
        [Parallel(n jobs=-1)]: Done 600 out of 600 | elapsed:
                                                                1.8min finished
B [36]: sMAPE_result(predicts_forest_1, target_test_1, predicts_forest_2, target_test_2)
```

Вывод

Out[36]: 8.087939651378415

Лучшая модель (2 модели для двух целевых признаков) на тестовой выборке - RandomForestRegressor

```
B [37]: model forest best 1.get params()
Out[37]: {'bootstrap': True,
           'ccp_alpha': 0.0,
           'criterion': 'mse',
           'max_depth': 11,
           'max features': 3,
           'max leaf nodes': None,
           'max samples': None,
           'min_impurity_decrease': 0.0,
           'min_impurity_split': None,
           'min samples leaf': 7,
           'min_samples_split': 4,
           'min weight fraction leaf': 0.0,
           'n estimators': 100,
           'n_jobs': None,
           'oob_score': False,
           'random_state': None,
           'verbose': 0,
           'warm_start': False}
 B [38]: model_forest_best_2.get_params()
Out[38]: {'bootstrap': True,
           'ccp alpha': 0.0,
           'criterion': 'mse',
           'max_depth': 3,
           'max_features': 7,
           'max leaf nodes': None,
           'max samples': None,
           'min_impurity_decrease': 0.0,
           'min impurity split': None,
           'min_samples_leaf': 7,
           'min_samples_split': 4,
           'min weight fraction leaf': 0.0,
           'n estimators': 60,
           'n_jobs': None,
           'oob score': False,
           'random_state': None,
           'verbose': 0,
           'warm start': False}
         C показетелем sMAPE_reslt = 8.09
```