Véletlen fizikai folyamatok

6. beadandó

Márton Tamás

PJF19C

martontamas@caesar.elte.hu

1. feladat

Feladat leírás.

Csön-csön gyűrűt játszanak hárman. A gyűrűt a körben álló játékosok az óramutató járásával egy irányban adják tovább. Az 1-es gyereknél indul a gyűrű, s a továbbadási ráta w. newline

- 1. Írjuk fel az egyenletet annak a valószínűségére, hogy a gyűrű az i-edik gyereknél van!
- 2. Határozzuk meg a stacionáris megoldást!
- 3. Határozzuk meg a rendszer relaxációs idejét (először próbáljuk megbecsülni az értékét)!

Feladat megoldása.

1.

Körben ülnek a gyerekek, tehát az 1. gyermek a 3. gyermektől megkaphatja a gyűrűt. Mivel csak az óramutató járásával egy irányban adják tovább, ezért egy adott állapotból a rendszer csak 1 irányba tud elmozdulni. Így a Master-egyenlet, ami leírja annak a valószínűségét, hogy az i. gyermeknél van a gyűrű t időpontban:

$$\frac{\partial}{\partial t}P_i(t) = -wP_i(t) + wP_{i-1}(t), \quad i = 1, 2, 3.$$
 (1.1)

Amely a három gyermekre kiírva:

$$\frac{\partial}{\partial t}P_1(t) = -wP_1(t) + wP_3(t)\frac{\partial}{\partial t}P_2(t) = -wP_2(t) + wP_1(t)\frac{\partial}{\partial t}P_3(t) = -wP_3(t) + wP_2(t)$$

Vezessük be a rendszerünket leíró valószínűségi vektort:

$$\vec{P}(t) = \begin{pmatrix} P_1(t) \\ P_2(t) \\ P_3(t) \end{pmatrix} \tag{1.2}$$

A rendszerünk dinamikai mátrixa pedig a következő:

$$\mathbf{A} = \begin{bmatrix} -w & 0 & w \\ w & -w & 0 \\ 0 & w & -w \end{bmatrix} \tag{1.3}$$

ami sztochasztikus, hiszen minden oszlopban a tagok összege zérus. Mivel e mellé még az állapottér irreducibilis is, a Perron–Frobenius-tétel kimondja, hogy az A dinamikai mátrixunk legkisebb és legnagyobb sajátértéke nem degenerált. Biztos, hogy van egy λ_1 sajátértéke a mátrixnak ami nulla, a többinek a valós része viszont mind negatív, hiszen a rendszer különben elszállna. A stacionárius megoldáshoz a $\lambda_1=0$ sajátértékhez tartozó sajátvektorra van szükségünk, amit egy sajátérték számolásra alkalmas weboldal segítségével számoltam ki:

$$(\mathbf{A} - \lambda_1) \, \vec{P}^{(e)} = 0 \rightarrow \vec{P}^{(e)} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (1.4)

Az $\frac{1}{3}$ szorzó a normálást mutatja. Azt kaptuk amit vártunk, hiszen egy szimmetrikus problémáról van szó, egyensúlyban mindegyik állapot ugyanakkora valószínűséggel fordulhat elő. A rendszer relaxációs idejére $t=\infty$ és értéket becsülök, hiszen az egyensúlyi állapot számomra egy olyan állapotot jelent, amiből a rendszer nem akar kimozdulni. És ennél a játéknál ha csak adogatják körbe a gyűrűt, nincs egy külső kényszer ami a körbeadogatást korlátozná, vagyis mindig mozgásban kell lenni a gyűrűnek. Emellett a relaxációs időt akár t=0-nak is becsülhetjük, mert igazából abból az állapotból nem fog kimozdulni a rendszer, hogy folyamatosan adogatják körbe a gyűrűt. Eszerint értelmezés szerint az általam becsült relaxációs idő vagy $t=\infty$ vagy t=0.

2. feladat

Feladat leírás.

Végezzünk szimulációkat az egy-dimenziós Ising modell egyensúlyi tulajdonságainak meghatározására. A rendszer állapotát egydimenziós rács pontjaiban (i=1,2,...,N) ülő $s_i=\pm 1$ spinek határozzák meg. A spinek szomszédjaikkal ferromágnesesen hatnak kölcsön, azaz egy állapot energiája a következő:

$$E(s_1, s_2, \dots, s_N) = J \sum_{i=1}^{N-1} s_i s_{i+1}, \quad J > 0.$$
(2.1)

A spinek T hőmérsékletű környezettel vannak kölcsönhatásban, s ennek eredményeképpen átbillenhetnek egyik állapotukból a másikba $(s_i \Leftrightarrow -s_i)$. Válasszunk spin-flip rátának olyan alakot, ami kielégíti a részletes egyensúly elvét. Ilyen lesz például, ha az i-edik spin forgatásának $(s_i \to -s_i)$ rátája a következő (1/s egységben):

$$w(s_1, ..., s_{i-1}, s_i, s_{i+1,...s_N}) = \begin{cases} 1 & ha \ \Delta E < 0 \\ 1/2 & ha \ \Delta E = 0 \\ e^{(-\beta \Delta E)} & ha \ \Delta E > 0 \end{cases}$$
 (2.2)

ahol, mint könnyen belátható

$$\Delta E = 2Js_i(s_{i-1} + s_{i+1}). \tag{2.3}$$

Legyen N=50, s kezdjük a rendszer szimulálását teljesen véletlenszerű állapotból, ahol 1/2 valószínűséggel $s_i=\pm 1$ (az egyensúlyi átlagok nem függhetnek a kezdeti feltételtől, tehát eredményeink helyességét ellenőrizhetjük azzal, hogy teljesen rendezett állapotból indítjuk a rendszert, s megnézzük ugyanazt kapjuk-e).

A szimuláció lépései:

- 1. Véletlenszerűen kiválasztunk egy spint.
- 2. Megnézzük, hogy ha megforgatjuk, akkor mennyit változik a rendszer energiája, azaz kiszámítjuk ΔE -t.
- 3. Ha $\Delta E < 0$, akkor megforgatjuk a spint, és megyünk az (1)-es ponthoz
- 4. Ha $\Delta E=0$, akkor húzunk egy véletlen számot P-t a [0,1] intervallumból, és ha P<1/2, akkor megforgatjuk a spint, s megyünk az (1)-es ponthoz. Ha P>1/2, akkor forgatás nélkül megyünk az (1)-es ponthoz
- 5. Ha $\Delta E > 0$, akkor húzunk egy véletlen számot P-t a [0,1] intervallumból, és ha $P < e^{(-1)}$ $\beta \Delta E$, akkor megforgatjuk a spint, egyébként megyünk az (1)-es ponthoz.
- Az (1) (5) pontokat sokszor, $N\cdot t$ -szer elvégezve azt mondjuk, hogy t idő telt el. Minden rendszernek van általában egy relaxációs ideje, τ , és ha $t>\tau$, akkor a rendszer elérkezik az egyensúlyba, és attól kezdve a különböző mennyiségek, mint például a mágnesezettség

$$m = \frac{1}{N} \sum_{i=1}^{N} s_i, \tag{2.4}$$

vagy a mágnesezettség fluktuációja m_2 , az egyensúlyi értéke körül fluktuál. Az egyensúlyi átlagokat $(\langle m \rangle, \rangle m^2 \rangle)$ tehát megbecsülhetjük mint időátlagokat. Ez azt jelenti, hogy t_1 időnként kiszámítjuk (megmérjük) az m és az m_2 értékét, majd elég sok ilyen mérésből átlagokat számolunk, s ezek megadják a T hőmérsékleti termodinamikai átlagokat, $\langle m \rangle$ -t és $\langle m^2 \rangle$ -t.

Határozzuk meg az $\langle m \rangle$ és az $\langle m^2 \rangle$ átlagokat az alábbiakban megadott egyéni βJ értékeknek megfelelő hőmérsékleteken. Próbáljuk megmagyarázni az eredményt! Mentsünk el egy- egy egyensúlyi spinkonfigurációt $\{s_1,...,s_{i-1},s_i,s_{i+1},...,s50\}$ mind a négy βJ értéknél, egy későbbi feladatban esetleg szükség lesz rájuk.

Feladat megoldása.

A szimulációs problémát Python nyelven oldottam meg, jupyter-notebookban. Legelőször importáltam a szükséges csomagot a matematikai műveletekhez és az ábrázoláshoz, majd egy tömbben eltároltam a személyre szabott paramétereim, illetve deklaráltam, hogy N=150 darab spint fogok szimulálni:

```
%pylab inline 
BetaJ = [0.12, 0.24, 0.75, 1.60]
N = 150
```

A szimuláció során a J paraméter értékét végig 1-nek vettem. Ezek után írtam egy függvényt az adott spinkonfiguráció energiájának kiszámítására:

```
\begin{array}{l} \textbf{def } E(\,spinek\,)\colon\\ s \,=\, 0\\ \textbf{for } i \ \textbf{in } \ \textbf{range}(1\,,\ len(\,spinek\,))\colon\\ s \,=\, s\,+\, spinek\,[\,i\,-1]\,\,*\,\, spinek\,[\,i\,]\\ E \,=\, -s\\ \textbf{return } E \end{array}
```

Majd megírtam az energiakülönbség kiszámítására is a kellő függvényt:

```
def dE(s0 ,s1, s2):
    return 2 * s1* (s0 + s2)
```

Mindezek után implementáltam a szimuláció léptető függvényét. Ezen felül látható a kódból, hogy alkalmaztam egy periodikus határfeltételt annak érdekében, hogy tudjuk kezelni azokat az eseteket, ha az első, vagy esetleg az utolsó spint választanánk:

```
def Leptetes (s, N, BetaJ):
        rand = random.randint(0, N)
        if rand = 0:
                 s1 = s[rand]
                 s0 = s[N-1]
                 s2 = s[rand+1]
        if rand == N-1:
                 s1 = s[rand]
                 s0 = s [rand -1]
                 s2 = s[0]
        else:
                 s0 = s [rand -1]
                 s1 = s[rand]
                 s2 = s[rand+1]
        if dE(s0, s1, s2) < 0:
                 s[rand] = -s[rand]
                 return s
        elif dE(s0, s1, s2) = 0:
                 P = random.random()
                 if P < 0.5:
                         s[rand] = -s[rand]
                         return s
                 else:
                         return s
        else:
                 P = random.random()
                 if P < \exp(-BetaJ * dE(s0, s1, s2)):
                         s[rand] = -s[rand]
                         return s
                 else:
                         return s
```

Ezek segítségével elvégeztem a szimulációt:

```
\begin{array}{l} s = (random.randint(0\,,\,\,2\,,\,\,(N,))\,\,\,-1/2)\,*\,2\\ b = 0\\ t = 1000\\ m = [\,]\\ \\ sFrissitett = s\\ \textbf{for i in range}(N*t):\\ s = sFrissitett\\ m.\,append(\textbf{sum}(s)\,\,/\,\,N)\\ sFrissitett = Leptetes(s\,,\,\,N,\,\,BetaJ[b]) \end{array}
```

Ezek után minden βJ értékre 5-ször lefuttattam a szimulációt, és táblázatba írtam az aktuális m mágnesezettséget a szimuláció legvégén, az átlagos $\langle m \rangle$ mágnesezettséget, illetve az átlagos mágnesezettség szórásnégyzetét, úgy mint $\langle m^2 \rangle - \langle m \rangle^2$. A négy futtatás eredményeit kiátlagoltam, és az átlag hibáját úgy adtam meg, hogy:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \langle x \rangle)^2 \longrightarrow \sigma = \sqrt{\sigma^2}$$
 (2.5)

Szimuláció	m	$\langle m \rangle$	$\langle m^2 \rangle$ - $\langle m \rangle^2$
1	-0.026667	-0.002580	0.009245
2	0.013333	-0.001022	0.008111
3	-0.053333	-0.006363	0.008668
4	0.106667	0.002168	0.008631
5	0.013333	-0.001479	0.007973
Átlagok	0.01066659 ± 0.0960004	0.0018552 ± 0.0045078	0.008637 ± 0.0006079

 $\beta J = 0.12, szimulcieredmnyei.$

Szimuláció	m	$\langle m \rangle$	$\langle m^2 \rangle$ - $\langle m \rangle^2$
1	0.106667	0.003185	0.011440
2	-0.146667	0.006580	0.010222
3	0.173333	-0.002153	0.010128
\parallel 4	0.093333	0.005341	0.010224
5	0.120000	0.001454	0.010791
Átlagok	0.346666 ± 0.493333	0.014407 ± 0.006580	0.041365 ± 0.052156

 $\beta J = 0.24$, szimulcieredmnyei.

2. feladat

Szimuláció	m	$\langle m \rangle$	$\langle m^2 \rangle$ - $\langle m \rangle^2$
1	-0.173333	-0.032539	0.034690
2	0.040000	0.007498	0.033385
3	-0.200000	-0.015977	0.032477
4	-0.306667	-0.052809	0.023548
5	0.226667	0.000260	0.024044
Átlagok	-0.082666 ± 0.309333	-0.0187134 ± 0.0340956	0.0296288 ± 0.0037562

 $\beta J = 0.75, szimulcieredmnyei.$

Szimuláció	m	$\langle m \rangle$	$\langle m^2 \rangle$ - $\langle m \rangle^2$
1	-0.346667	0.453322	0.060846
2	0.146667	0.453322	0.043041
3	0.106667	0.419848	0.028452
4	0.453333	0.138696	0.130770
5	0.240000	0.115783	0.141747
Átlagok	$0.12 \pm\ 0.226667$	0.2428866 ± 0.086784	0.068802 ± 0.072945

 $\beta J = 1.6$, szimulcieredmnyei.

Példaként kiábrázoltam az m mágnesezettség időfüggését a különböző βJ értékek mellett, ez látható a 2..1 ábrán, amiről leolvashatjuk, hogy az m mágnesezettség az m=0 érték körül fluktuál, s nagyobb kiugrások a legnagyobb βJ érték esetén tapasztalhatók. Azért nem látunk az ábrán egy jellegzetes "relaxáló" lecsengést, mert a szimulációt random (-1 vagy +1 egyenlő valószínűséggel) spinekkel indítottam, így már kezdetben is a rendszer m mágnesezettsége 0 körüli értéket vesz fel. A táblázatokból jól látszik továbbá, hogy ahogy βJ értéke nő, úgy nő vele a mágnesezettség szórásnégyzete is. Kiábrázoltam a mért mennyiséget βJ függvényében, ezek láthatók a 2..3, a 2..2 és a 2..4 ábrán. A 2..4 ábráról tökéletesen látszik, hogy $\langle m^2 \rangle - \langle m \rangle^2$ tényleg növekvő trendet mutat, ha βJ nő. Ezzel ellentétben a 2..3 ábrán láthatjuk, hogy a végállapoti m mágnesezettség hibahatáron belül átlagosan 0 értéket vesz fel. Végül a 2..2 ábráról leolvashatjuk, hogy az átlagos $\langle m \rangle$ mágnesezettség a kisebb βJ értékek mellett 0 körüli értéket vesz fel, nagy βJ értékre pedig hirtelen megnő.

2..1. ábra. Az m mágnesezettség időfüggése a különböző βJ értékek mellett.

2..2. ábra. Átlagos $\langle m \rangle$ mágnesezettség βJ függése.

2..3. ábra. Végállapotimmágnesezettség βJ függése

2..4. ábra. Átlagos $\langle m^2 \rangle \langle m \rangle^2 \beta J$ függése.