χ -Binding Functions and Forbidden Induced Subgraphs

David Scholz

July 1, 2022

• A graph is a pair G = (V, E) of sets satisfying $E \subseteq [V]^2$.

- A graph is a pair G = (V, E) of sets satisfying $E \subseteq [V]^2$.
- The elements of *V* are called *vertices*, the elements of *E* are called edges.

- A graph is a pair G = (V, E) of sets satisfying $E \subseteq [V]^2$.
- The elements of *V* are called *vertices*, the elements of *E* are called edges.
- *V* is finite.

- A graph is a pair G = (V, E) of sets satisfying $E \subseteq [V]^2$.
- The elements of *V* are called *vertices*, the elements of *E* are called edges.
- *V* is finite.
- No loops.

- A graph is a pair G = (V, E) of sets satisfying $E \subseteq [V]^2$.
- The elements of *V* are called *vertices*, the elements of *E* are called edges.
- *V* is finite.
- No loops.

Let G be a graph.

Definition 1

A graph H is an induced subgraph of G if $V(H) \subseteq V(G)$ and $(x,y) \in E(H)$ if and only if $(x,y) \in E(G)$ for all $x,y \in V(H)$.

Let G be a graph.

Definition 1

A graph H is an *induced subgraph* of G if $V(H) \subseteq V(G)$ and $(x,y) \in E(H)$ if and only if $(x,y) \in E(G)$ for all $x,y \in V(H)$.

• Let $X \subseteq V(G)$. We write G[X] for the subgraph induced by X.

Let G be a graph.

Definition 1

A graph H is an induced subgraph of G if $V(H) \subseteq V(G)$ and $(x,y) \in E(H)$ if and only if $(x,y) \in E(G)$ for all $x,y \in V(H)$.

- Let $X \subseteq V(G)$. We write G[X] for the subgraph induced by X.
- If the graphs H_1, \dots, H_k are isomorphic to an induced subgraph of G, then we say that G contains H_1, \dots, H_k .

Let G be a graph.

Definition 1

A graph H is an induced subgraph of G if $V(H) \subseteq V(G)$ and $(x,y) \in E(H)$ if and only if $(x,y) \in E(G)$ for all $x,y \in V(H)$.

- Let $X \subseteq V(G)$. We write G[X] for the subgraph induced by X.
- If the graphs H_1, \dots, H_k are isomorphic to an induced subgraph of G, then we say that G contains H_1, \dots, H_k .
- Otherwise, G is called (H_1, \dots, H_k) -free.

Let G be a graph.

Definition 1

A graph H is an induced subgraph of G if $V(H) \subseteq V(G)$ and $(x,y) \in E(H)$ if and only if $(x,y) \in E(G)$ for all $x,y \in V(H)$.

- Let $X \subseteq V(G)$. We write G[X] for the subgraph induced by X.
- If the graphs H_1, \dots, H_k are isomorphic to an induced subgraph of G, then we say that G contains H_1, \dots, H_k .
- Otherwise, G is called (H_1, \dots, H_k) -free.
- A family \mathcal{F} of graphs is (H_1, \dots, H_k) -free if it contains all graphs that are (H_1, \dots, H_k) -free.

Let G be a graph.

Definition 1

A graph H is an induced subgraph of G if $V(H) \subseteq V(G)$ and $(x,y) \in E(H)$ if and only if $(x,y) \in E(G)$ for all $x,y \in V(H)$.

- Let $X \subseteq V(G)$. We write G[X] for the subgraph induced by X.
- If the graphs H_1, \dots, H_k are isomorphic to an induced subgraph of G, then we say that G contains H_1, \dots, H_k .
- Otherwise, G is called (H_1, \dots, H_k) -free.
- A family \mathcal{F} of graphs is (H_1, \dots, H_k) -free if it contains all graphs that are (H_1, \dots, H_k) -free.
- A family $\mathcal F$ which is closed under taking induced subgraphs is called *hereditary*.

• A *complete graph* is a graph in which every pair of vertices is adjacent.

- A *complete graph* is a graph in which every pair of vertices is adjacent.
- A *clique* is a set $C \subseteq V(G)$, s.t. G[C] is a complete graph.

- A complete graph is a graph in which every pair of vertices is adjacent.
- A *clique* is a set $C \subseteq V(G)$, s.t. G[C] is a complete graph.
- The cardinality of a largest clique in G is called the clique number, denoted by ω(G).

- A complete graph is a graph in which every pair of vertices is adjacent.
- A *clique* is a set $C \subseteq V(G)$, s.t. G[C] is a complete graph.
- The cardinality of a largest clique in G is called the clique number, denoted by ω(G).
- \overline{G} is the *complement* of G if $V(\overline{G}) = V(G)$ and $(x,y) \in E(\overline{G}) \iff (x,y) \notin E(G)$ for all $x,y \in V(G)$.

- A complete graph is a graph in which every pair of vertices is adjacent.
- A *clique* is a set $C \subseteq V(G)$, s.t. G[C] is a complete graph.
- The cardinality of a largest clique in G is called the clique number, denoted by ω(G).
- \overline{G} is the *complement* of G if $V(\overline{G}) = V(G)$ and $(x,y) \in E(\overline{G}) \iff (x,y) \notin E(G)$ for all $x,y \in V(G)$.
- $S \subseteq V(G)$ is called *stable* (independent) in G if $\overline{G}[S]$ is a complete graph.

- A complete graph is a graph in which every pair of vertices is adjacent.
- A *clique* is a set $C \subseteq V(G)$, s.t. G[C] is a complete graph.
- The cardinality of a largest clique in G is called the clique number, denoted by ω(G).
- \overline{G} is the *complement* of G if $V(\overline{G}) = V(G)$ and $(x,y) \in E(\overline{G}) \iff (x,y) \notin E(G)$ for all $x,y \in V(G)$.
- $S \subseteq V(G)$ is called *stable* (independent) in G if $\overline{G}[S]$ is a complete graph.
- The cardinality of a largest stable set in G is called the *stable* set number, denoted by $\alpha(G)$.

• A *k-coloring* of *G* is a mapping $V \rightarrow \{1, \dots, k\}$.

- A *k-coloring* of *G* is a mapping $V \rightarrow \{1, \dots, k\}$.
- The elements of $\{1, \dots, k\}$ are called colors.

- A *k-coloring* of *G* is a mapping $V \rightarrow \{1, \dots, k\}$.
- The elements of $\{1, \dots, k\}$ are called colors.
- A coloring is called *proper* if adjacent vertices receive different colors.

- A *k-coloring* of *G* is a mapping $V \rightarrow \{1, \dots, k\}$.
- The elements of $\{1, \dots, k\}$ are called colors.
- A coloring is called *proper* if adjacent vertices receive different colors.
- The least k such that G admits a proper k-coloring is called the *chromatic number*, denoted by $\chi(G)$.

Definition 2

A graph G is *perfect* if $\omega(H) = \chi(H)$ for every induced subgraph H of G.

Definition 2

A graph G is *perfect* if $\omega(H) = \chi(H)$ for every induced subgraph H of G.

• Trivial lower bound: $\omega(G) \leq \chi(G)$.

Definition 2

A graph G is *perfect* if $\omega(H) = \chi(H)$ for every induced subgraph H of G.

- Trivial lower bound: $\omega(G) \leq \chi(G)$.
- A minimal imperfect graph is a graph that is not perfect but becomes perfect by deleting an arbitrary vertex.

Definition 2

A graph G is *perfect* if $\omega(H) = \chi(H)$ for every induced subgraph H of G.

- Trivial lower bound: $\omega(G) \leq \chi(G)$.
- A minimal imperfect graph is a graph that is not perfect but becomes perfect by deleting an arbitrary vertex.
- Berge (1963) noticed that the minimal imperfect graphs are the induced odd cycles of length at least 5 (odd holes) and its complements (odd antiholes).

Theorem 1 (Strong Perfect Graph Theorem, 2006)

A graph is perfect if and only if it does not contain an odd hole or odd antihole.

Theorem 1 (Strong Perfect Graph Theorem, 2006)

A graph is perfect if and only if it does not contain an odd hole or odd antihole.

 Conjectured by Berge (1963), proven by Chudnovsky, Robertson, Seymour and Thomas (2006).

Definition 3 (Gyárfás, 1987)

A family \mathcal{F} is χ -bounded with χ -binding function $f: \mathbb{N} \to \mathbb{N}$ if for all $G \in \mathcal{F}$ and every induced subgraph H of G, $\chi(H) \leq f(\omega(H))$.

Definition 3 (Gyárfás, 1987)

A family \mathcal{F} is χ -bounded with χ -binding function $f: \mathbb{N} \to \mathbb{N}$ if for all $G \in \mathcal{F}$ and every induced subgraph H of G, $\chi(H) \leq f(\omega(H))$.

Theorem 2 (Erdős, 1959)

For any positive integers $k, l \geq 3$, there exists a graph G with girth $g(G) \geq l$ and chromatic number $\chi(G) \geq k$.

Definition 3 (Gyárfás, 1987)

A family \mathcal{F} is χ -bounded with χ -binding function $f: \mathbb{N} \to \mathbb{N}$ if for all $G \in \mathcal{F}$ and every induced subgraph H of G, $\chi(H) \leq f(\omega(H))$.

Theorem 2 (Erdős, 1959)

For any positive integers $k, l \ge 3$, there exists a graph G with girth $g(G) \ge l$ and chromatic number $\chi(G) \ge k$.

 \implies There are graph families that are not χ -bounded.

Let \mathcal{F} be a family of graphs.

Let \mathcal{F} be a family of graphs.

1. When is \mathcal{F} χ -bounded?

Let \mathcal{F} be a family of graphs.

- 1. When is \mathcal{F} χ -bounded?
- 2. What is the smallest χ -binding function of \mathcal{F} ?

Let \mathcal{F} be a family of graphs.

- 1. When is \mathcal{F} χ -bounded?
- 2. What is the smallest χ -binding function of \mathcal{F} ?
- 3. Does there exist a polynomial χ -binding function for \mathcal{F} ?

Let \mathcal{F} be a family of graphs.

- 1. When is \mathcal{F} χ -bounded?
- 2. What is the smallest χ -binding function of \mathcal{F} ?
- 3. Does there exist a polynomial χ -binding function for \mathcal{F} ?
- 4. Does there exist a linear χ -binding function for \mathcal{F} ?

Definition 4

A hereditary family $\mathcal F$ of graphs has the Erdős-Hajnal property if there exists a constant $\epsilon>0$ such that every $G\in\mathcal F$ contains a clique or a stable set of size at least $|V(G)|^\epsilon$.

Definition 4

A hereditary family $\mathcal F$ of graphs has the Erdős-Hajnal property if there exists a constant $\epsilon>0$ such that every $G\in\mathcal F$ contains a clique or a stable set of size at least $|V(G)|^\epsilon$.

Conjecture 1 (Erdős and Hajnal, 1989)

For every graph H, the family of H-free graphs has the Erdős-Hajnal property.

There is a connection to χ -boundedness.

There is a connection to χ -boundedness. Let \mathcal{F} be a χ -bounded family of graphs with χ -binding function f.

There is a connection to χ -boundedness.

Let $\mathcal F$ be a χ -bounded family of graphs with χ -binding function f.

• Let $G \in \mathcal{F}$ with chromatic number $\chi(G) = k$.

There is a connection to χ -boundedness.

Let \mathcal{F} be a χ -bounded family of graphs with χ -binding function f.

- Let $G \in \mathcal{F}$ with chromatic number $\chi(G) = k$.
- V(G) can be partitioned into k stable sets $S_i, i \in \{1, \dots, k\}$.

There is a connection to χ -boundedness.

Let $\mathcal F$ be a χ -bounded family of graphs with χ -binding function f.

- Let $G \in \mathcal{F}$ with chromatic number $\chi(G) = k$.
- V(G) can be partitioned into k stable sets $S_i, i \in \{1, \dots, k\}$.

$$\implies |V(G)| = \left|\bigcup_{i=1}^k S_i\right| = \sum_{i=1}^k |S_i| \le \sum_{i=1}^k \alpha(G) = k\alpha(G)$$

There is a connection to χ -boundedness.

Let $\mathcal F$ be a χ -bounded family of graphs with χ -binding function f.

- Let $G \in \mathcal{F}$ with chromatic number $\chi(G) = k$.
- V(G) can be partitioned into k stable sets $S_i, i \in \{1, \dots, k\}$.

$$\implies |V(G)| = \left|\bigcup_{i=1}^k S_i\right| = \sum_{i=1}^k |S_i| \le \sum_{i=1}^k \alpha(G) = k\alpha(G)$$

Thus,

$$|V(G)| \le \chi(G)\alpha(G) \le f(\omega(G))\alpha(G) \iff \frac{|V(G)|}{\alpha(G)} \le f(\omega(G))$$

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

• Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.
- ullet Suppose that G does not satisfy the Erdős-Hajnal property.

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.
- ullet Suppose that G does not satisfy the Erdős-Hajnal property.
- Then, $\alpha < n^{\epsilon}$ for all $\epsilon > 0$.

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.
- Suppose that G does not satisfy the Erdős-Hajnal property.
- Then, $\alpha < n^{\epsilon}$ for all $\epsilon > 0$.

$$\frac{n}{n^{\epsilon}} < \frac{n}{\alpha} \le f(\omega)$$

$$n^{1-\epsilon} < f(\omega)$$

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.
- Suppose that G does not satisfy the Erdős-Hajnal property.
- Then, $\alpha < n^{\epsilon}$ for all $\epsilon > 0$.

$$\frac{n}{n^{\epsilon}} < \frac{n}{\alpha} \le f(\omega)$$

$$n^{1-\epsilon} < f(\omega)$$

Set
$$\epsilon = \frac{1}{d+1}$$
.

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.
- Suppose that G does not satisfy the Erdős-Hajnal property.
- Then, $\alpha < n^{\epsilon}$ for all $\epsilon > 0$.

$$\frac{n}{n^{\epsilon}} < \frac{n}{\alpha} \le f(\omega)$$

$$n^{1-\epsilon} < f(\omega)$$

Set
$$\epsilon = \frac{1}{d+1}$$
. Then, $n^{\frac{d}{d+1} \cdot \frac{1}{d}} < \omega \iff n^{\frac{1}{d+1}} < \omega$.

If f is a polynomial, then the Erdős-Hajnal property for $\mathcal F$ follows directly!

- Let $G \in \mathcal{F}$ with $\alpha(G) = \alpha$, $\omega(G) = \omega$ and |V(G)| = n.
- Suppose that G is χ -bounded by a degree d polynomial f.
- ullet Suppose that G does not satisfy the Erdős-Hajnal property.
- Then, $\alpha < n^{\epsilon}$ for all $\epsilon > 0$.

$$\frac{n}{n^{\epsilon}} < \frac{n}{\alpha} \le f(\omega)$$

$$n^{1-\epsilon} < f(\omega)$$

Set $\epsilon = \frac{1}{d+1}$. Then, $n^{\frac{d}{d+1}\cdot\frac{1}{d}} < \omega \iff n^{\frac{1}{d+1}} < \omega$. But then G has a clique of size larger than n^{ϵ} as in the Erdős-Hajnal property. A contradiction.

(III)

Conjecture 2 (Esperet, 2012)

Let \mathcal{F} be a χ -bounded family of graphs. Then, there exists a $c \in \mathbb{R}$, such that for any $G \in \mathcal{F}$, $\chi(G) \leq \omega(G)^c$.

Conjecture 2 (Esperet, 2012)

Let \mathcal{F} be a χ -bounded family of graphs. Then, there exists a $c \in \mathbb{R}$, such that for any $G \in \mathcal{F}$, $\chi(G) \leq \omega(G)^c$.

Theorem 3 (Briański, Davies, Walczak, 2022)

Let $f: \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ be such that f(1) = 1 and $f(n) \geq {3n+1 \choose 3}$ for every $n \geq 2$. Then there exists a hereditary family of graphs \mathcal{F} such that $\sup \{\chi(G) : G \in \mathcal{F} \text{ and } \omega(G) = n\} = f(n) \text{ for every } n \in \mathbb{N}.$

Conjecture 2 (Esperet, 2012)

Let \mathcal{F} be a χ -bounded family of graphs. Then, there exists a $c \in \mathbb{R}$, such that for any $G \in \mathcal{F}$, $\chi(G) \leq \omega(G)^c$.

Theorem 3 (Briański, Davies, Walczak, 2022)

Let $f: \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ be such that f(1) = 1 and $f(n) \geq {3n+1 \choose 3}$ for every $n \geq 2$. Then there exists a hereditary family of graphs \mathcal{F} such that $\sup \{\chi(G): G \in \mathcal{F} \text{ and } \omega(G) = n\} = f(n) \text{ for every } n \in \mathbb{N}.$

There exists a hereditary family of graphs which is χ -bounded by f and f is optimal for this family. In particular, f can be arbitrary in this case.

Thus Briański, Davies and Walczak disprove the conjecture of Esperet by showing that there exist hereditary χ -bounded families of graphs not having a polynomial χ -binding function.

Thereby they motivate research on hereditary χ -bounded graph families, whether they are χ -bounded by a polynomial function!

Definition 5 (Hoàng, 2018)

A graph G is *perfectly divisible* if for every induced subgraph H of G, V(H) can be partitioned into two sets A, B, such that $\omega(G[A]) < \omega(G)$ and G[B] is perfect or V(H) is a stable set.

Definition 5 (Hoàng, 2018)

A graph G is *perfectly divisible* if for every induced subgraph H of G, V(H) can be partitioned into two sets A, B, such that $\omega(G[A]) < \omega(G)$ and G[B] is perfect or V(H) is a stable set.

Observation 1 (Hoàng, 2018)

Let G be a perfectly divisible graph. Then G is χ -bounded with χ -binding function $f \in \mathcal{O}(\omega(G)^2)$.

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$.

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$. Induction on $\omega(G)=k$.

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$. Induction on $\omega(G)=k$. The base case is trivial.

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$. Induction on $\omega(G)=k$. The base case is trivial. Suppose that a perfectly divisible graph with clique number k-1 is χ -bounded by $\binom{k}{2}$.

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$. Induction on $\omega(G)=k$. The base case is trivial. Suppose that a perfectly divisible graph with clique number k-1 is χ -bounded by $\binom{k}{2}$. Let G be a perfectly divisible graph with clique number k. Then there exists a partition of V(G) into two sets A and B, such that $\omega(G[A])<\omega(G)$ and G[B] is perfect.

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$. Induction on $\omega(G)=k$. The base case is trivial. Suppose that a perfectly divisible graph with clique number k-1 is χ -bounded by $\binom{k}{2}$. Let G be a perfectly divisible graph with clique number k. Then there exists a partition of V(G) into two sets A and B, such that $\omega(G[A])<\omega(G)$ and G[B] is perfect. By induction $\chi(G[A])\leq \binom{k}{2}$ and $\chi(G[B])=\omega(G[B])\leq k$.

(Ki

Proof.

We claim that G is χ -bounded by $\binom{\omega(G)+1}{2}$. Induction on $\omega(G)=k$. The base case is trivial. Suppose that a perfectly divisible graph with clique number k-1 is χ -bounded by $\binom{k}{2}$. Let G be a perfectly divisible graph with clique number k. Then there exists a partition of V(G) into two sets A and B, such that $\omega(G[A])<\omega(G)$ and G[B] is perfect. By induction $\chi(G[A])\leq \binom{k}{2}$ and $\chi(G[B])=\omega(G[B])\leq k$. Thus, $\chi(G)\leq \chi(G[A])+\chi(G[B])\leq \binom{k}{2}+k=\binom{k+1}{2}$.

(MA)

Theorem 4 (Hoàng and McDiarmid, 2002)

A $3K_1$ -free graph is perfectly divisible.

Theorem 4 (Hoàng and McDiarmid, 2002)

A $3K_1$ -free graph is perfectly divisible.

Theorem 5 (Hoàng, 2018)

A (banner, odd hole)-free graph is perfectly divisible.

Theorem 4 (Hoàng and McDiarmid, 2002)

A $3K_1$ -free graph is perfectly divisible.

Theorem 5 (Hoàng, 2018)

A (banner, odd hole)-free graph is perfectly divisible.

Theorem 6 (Chudnovsky and Sivaraman, 2019)

A bull-free graph that is either odd-hole-free or P_5 -free is perfectly divisible.

Theorem 4 (Hoàng and McDiarmid, 2002)

A $3K_1$ -free graph is perfectly divisible.

Theorem 5 (Hoàng, 2018)

A (banner, odd hole)-free graph is perfectly divisible.

Theorem 6 (Chudnovsky and Sivaraman, 2019)

A bull-free graph that is either odd-hole-free or P_5 -free is perfectly divisible.

Theorem 7 (Karthick, Kaufmann, Sivaraman, 2021)

A (chair, F)-free graph is perfectly divisible, when $F \in \{P_6, bull, co\text{-}dart\}$.

Hoàng's Conjecture

Conjecture 3 (Hoàng, 2018)

An odd-hole-free graph is perfectly divisible.

Hoàng's Conjecture

Conjecture 3 (Hoàng, 2018)

An odd-hole-free graph is perfectly divisible.

 \implies An odd-hole-free graph is χ -bounded by a quadratic function.

Hoàng's Conjecture

Conjecture 3 (Hoàng, 2018)

An odd-hole-free graph is perfectly divisible.

 \implies An odd-hole-free graph is χ -bounded by a quadratic function.

Theorem 8 (Scott and Seymour, 2015)

Let G be an odd-hole-free graph. Then $\chi(G) \leq 2^{2^{\omega(G)+2}}$

Thank You!

References I

- 1. C. Berge, Perfect Graphs, Six Papers on Graph Theory, pp. 1-21. Indian Statistical Institute, Calcutta, 1963.
- 2. J.A. Bondy and U. S. R. Murty, Graph Theory, *Graduate Texts in Mathematics* vol. 244, Springer, New York, 2008.
- 3. M. Briański, J. Davies and B. Walczak, Separating polynomial χ -boundedness from χ boundedness, *preprint* (2022), (Available at https://arxiv.org/abs/2201.08814).
- 4. M. Chudnovsky and V. Sivaraman, Perfect divisibility and 2-divisibility, *Journal of Graph Theory* **90** (2019), 54–60.
- 5. P. Erdős, Graph theory and probability, Can. J. Math. 11 (1959), 34-38.
- 6. P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Applied Mathematics **25** (1989), 37-52.

References II

- 7. A. Gyárfás, Problems from the world surrounding perfect graphs, *Zastosowania Matematyki Applicationes Mathematicae* **19** (1987), 413–441.
- 8. C. T. Hoàng, On the structure of (banner, odd hole)-free graphs, *Journal of Graph Theory* **89** (2018), 395–412.
- 9. C. T. Hoàng and C. McDiarmid, On the divisibility of graphs, *Discrete Mathematics* **242** (2002), 145–156.
- T. Karthick, J. Kaufmann and V. Sivaraman, Coloring graph classes with no induced fork via perfect divisibility, *preprint* (2021). (Available at https://arxiv.org/abs/2104.02807)
- 11. I. Schiermeyer and B. Randerath, Polynomial χ -binding functions and forbidden induced subgraphs: A survey, *Graphs and Combinatorics* **35** (2019), 1–31.

References III

12. A. Scott and P. Seymour, A survey of χ -boundedness, *Journal* of Graph Theory **95** (2020), 473–504.