

Projet 3A:

Estimation de l'orientation d'un ombilical sous-marin à partir d'une centrale inertielle

Claire DUNE
Juliette DRUPT

SYSMER 3A Année universitaire 2022-2023

Grégory MABILOTTE Lana MINATCHY

Sommaire

- 1 Définitions
- 2 Test préliminaires sur l'IMU
- 3 Test de validation des données de l'IMU grâce au système Qualisys
- 4 Analyse des données
- 5 Conclusion

Définitions: Théorie

Angles d'Euler

- Très utilisé pour décrire l'orientation d'un objet dans l'espace
- Problème de Gimbal Lock

Quaternions

$$q = a + b.i + c.j + d.k$$

où,
a, b, c, d scalaires
i, j, k imaginaires

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

- Définition unique dans un repère
- Affranchissement du Gimbal Lock

Définitions: Matériel

Centrale inertielle Phidget

3 accéléromètres

3 gyroscopes

3 magnétomètres

Axe o: Roulis

Axe 1 : Tangage

Axe 2: Lacet

Système Qualisys

Permet de capturer, suivre et analyser des mouvements en 3D

- Caméras Qualisys
- Logiciel QTM (Qualisys Track Manager)
- Marqueurs

Tests préliminaires sur le roulis

- Observation des paliers pour le roulis
- Valeurs cohérentes
- Tangage et lacet quasiment constants
- Erreurs de manipulations

Tests préliminaires sur le tangage

- Observation des paliers pour le tangage et valeurs cohérentes
- Apparition du Gimbal
 Lock pour pitch > 80 deg
- Valeurs erronées pour tous les angles

Tests préliminaires sur le lacet

- Observation des paliers pour le lacet et valeurs cohérentes
- Roulis et tangage quasiment constants
- Erreurs de manipulations
- Secousse du capteur
- Redéfinition du zéro magnétique

Tests de validation des données: Initialisation

Installation:

8 caméras à des hauteurs différentes

Calibrage:

Mire de calibrage Retour image des caméras sur QTM

Tests de validation des données: Modalités d'expérience

Système d'expérience:

- Bâton en plastique
- Phidget attaché au milieu
- 4 Marqueurs (extrémités, milieu et IMU)

4 manipulations:

- Rotations autour d'un seul axe : Roll, Pitch, Yaw
- Rotation aléatoire (données non utilisables)

Analyse des données: Problèmes rencontrés

1) Synchronisation des données

Acquisitions IMU et Qualisys pas commencées au même moment

- Données étudiées à partir du début du mouvement (retour vidéos Qualisys et graphiques IMU)
- Différence maximale des temps totaux : 0.5 s

2) Fréquences d'acquisition différentes

Qualisys:100 Hz/IMU:4 Hz

Etude d'une valeur du Qualisys sur 25

Analyse des données: Problèmes rencontrés

3) Repères différents (wi et wq)

But : pouvoir comparer les rotations qui se font dans des repères monde différents Utilisation des matrices de rotations

• <u>Méthode 1</u>: Changement de repère Wi Wq

$${}^{i}R_{w_q} = {}^{i}R_{w_i}. {}^{w_i}R_{w_q}$$

• <u>Méthode 2</u>: Comparaison des rotations par rapport à une orientation initiale

$${}^{i}R_{w_{i}}. {}^{w_{i}}R_{i_{0}} = {}^{q}R_{w_{q}}. {}^{w_{q}}R_{q_{0}}$$

Position initiale des repères : Début du mouvement

Analyse des données : Comparaison des matrices de rotations

Pour $\varepsilon = 0.1$ soit~ 5% d'erreur entre les deux matrices :

	Valeurs correctes	Valeurs incorrectes
Roll 1	39.2%	60.8%
Roll 2	29.8%	70.2%
Pitch	32.9%	67.1%
Yaw	76.5%	23.5%

- Majorité des comparaisons entre les deux matrices sont incorrectes donc l'équation n'est pas respectée
- Seul les rotations autour de l'axe z pour le lacet semble donner des résultats correctes

Analyse des données : Résultats pour le roulis (idem pour le tangage)

- Rotations synchrones mais pas autour des mêmes axes de rotations
- Différence de convention entre les deux systèmes d'où les erreurs sur les pourcentages
- Au bout d'un certain temps : plan de rotation de l'IMU semble se décaler
- Difficulté de l'IMU à connaître son orientation sans ses magnétomètres

Analyse des données : Résultats pour le lacet

- Rotations synchrones autour du même axe de rotation
- Différence de convention pour les axes x et y seulement
- Observation du même décalage dans le plan de rotation de l'IMU

Conclusion

L'IMU Phidget parvient bien à mesurer les rotations du système

- Problème de la perte du cap : Résolu en milieu sous-marin avec l'activation des **magnétomètres** et car les mouvements du système seront **plus lents**
- Problème de la différence de convention : Résolu si on connait la convention du système Qualisys

Le Phidget, après résolution de ces problèmes, pourra estimer l'orientation d'un ombilical sous-marin en temps réel

Merci de votre attention