```
In [ ]: import pandas as pd
  import numpy as np
  import yfinance as yf
  import matplotlib.pyplot as plt
  import warnings
  from shutil import which
  from matplotlib.pyplot import ylabel
  %matplotlib inline
  %config InlineBackend.figure_format = 'retina'
  # todos los imports superiores son necesarios para graficar
  # ahora descargamos la informacion, en este caso de microsoft
  df = yf.download(
      'MSFT',
      start = '1988-01-01',
      end = '2020-12-31',
      progress = False
  df = df.loc[:,['Adj Close']]
  df.rename(columns={'Adj Close' : 'adj_close'} , inplace = True)
  df
                adj_close
        Date
```

## Out[]:

| 1988-01-04  | 0.240652   |
|-------------|------------|
| 1988-01-05  | 0.244949   |
| 1988-01-06  | 0.251395   |
| 1988-01-07  | 0.259990   |
| 1988-01-08  | 0.240652   |
| •••         |            |
| 2020-12-23  | 214.842209 |
| 2020-12-24  | 216.523865 |
| 2020-12-28  | 218.672089 |
| 2020-12-29  | 217.884750 |
| 2020-12-30  | 215.483780 |
| 8316 rows × | 1 columns  |

```
In [ ]: # calcular los rendimientos simples y logaritmicos
  df['rendimiento_simple'] = df.adj_close.pct_change()
  df ['rendimiento_log'] = np.log(df.adj_close/df.adj_close.shift(1))
  df
```

| D | a | te |
|---|---|----|
|---|---|----|

| 2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873                                                                                                                                                                                                                         |            |            |           |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|-----------|
| 1988-01-06 0.251395 0.026316 0.025976   1988-01-07 0.259990 0.034188 0.033617   1988-01-08 0.240652 -0.074380 -0.077291         2020-12-23 214.842209 -0.013039 -0.013125   2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873   2020-12-29 217.884750 -0.003601 -0.003607 | 1988-01-04 | 0.240652   | NaN       | NaN       |
| 1988-01-07 0.2599990 0.034188 0.033617   1988-01-08 0.240652 -0.074380 -0.077291         2020-12-23 214.842209 -0.013039 -0.013125   2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873   2020-12-29 217.884750 -0.003601 -0.003607                                        | 1988-01-05 | 0.244949   | 0.017856  | 0.017699  |
| 1988-01-08 0.240652 -0.074380 -0.077291         2020-12-23 214.842209 -0.013039 -0.013125   2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873   2020-12-29 217.884750 -0.003601 -0.003607                                                                                 | 1988-01-06 | 0.251395   | 0.026316  | 0.025976  |
| 2020-12-23 214.842209 -0.013039 -0.013125   2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873   2020-12-29 217.884750 -0.003601 -0.003607                                                                                                                                 | 1988-01-07 | 0.259990   | 0.034188  | 0.033617  |
| 2020-12-23 214.842209 -0.013039 -0.013125   2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873   2020-12-29 217.884750 -0.003601 -0.003607                                                                                                                                 | 1988-01-08 | 0.240652   | -0.074380 | -0.077291 |
| 2020-12-24 216.523865 0.007827 0.007797   2020-12-28 218.672089 0.009921 0.009873   2020-12-29 217.884750 -0.003601 -0.003607                                                                                                                                                                             | •••        |            |           |           |
| <b>2020-12-28</b> 218.672089 0.009921 0.009873<br><b>2020-12-29</b> 217.884750 -0.003601 -0.003607                                                                                                                                                                                                        | 2020-12-23 | 214.842209 | -0.013039 | -0.013125 |
| <b>2020-12-29</b> 217.884750 -0.003601 -0.003607                                                                                                                                                                                                                                                          | 2020-12-24 | 216.523865 | 0.007827  | 0.007797  |
|                                                                                                                                                                                                                                                                                                           | 2020-12-28 | 218.672089 | 0.009921  | 0.009873  |
| <b>2020-12-30</b> 215.483780 -0.011019 -0.011081                                                                                                                                                                                                                                                          | 2020-12-29 | 217.884750 | -0.003601 | -0.003607 |
|                                                                                                                                                                                                                                                                                                           | 2020-12-30 | 215.483780 | -0.011019 | -0.011081 |

8316 rows × 3 columns

```
In [ ]: # Graficamos
  fig,ax = plt.subplots(3,1, sharex = True, figsize = (10,8)) # hemos creado un 'p
  # agregar los precios a la gráfica
  df.adj_close.plot(ax = ax[0]) # añadiendo el valor adj_close al eje 0X
  ax[0].set(
      title = 'Valor de acción de Microsoft en el tiempo',
      ylabel = 'Precio'
  # agregar los rendimientos simples
  df.rendimiento_simple.plot(ax=ax[1])
  ax[1].set(
      ylabel = 'Rendimiento simple (%)'
  )
  # agregar los rendimientos logaritmicos
  df.rendimiento_log.plot(ax=ax[2])
  ax[2].set(
      ylabel = 'Rendimiento logaritmico (%)'
  ax[2].tick_params(
      axis = 'x',
      which = 'major' ,
      labelsize = 12
```



In [ ]: