

Etude théorique de la translocation de biomolécules à travers un nanopore

Timothée Menais

March 4, 2015

Introduction

Translocation d'ADN à travers un nanopore

Introduction

Translocation d'ADN à travers un nanopore Intérêts technologiques et fondamentaux

Introduction

Translocation d'ADN à travers un nanopore Intérêts technologiques et fondamentaux Arrivée du graphène

Nature de l'ADN

Structure
Liaisons covalentes
Liaisons hydrogènes
Interactions
orbitalaires

Translocation

Translocation

Translocation

Pores classiques

Pores classiques

Problèmes d'épaisseur

Nanopores dans le graphène

Nanopores dans le graphène

cristal bidimensionnel de carbones aromatiques

Nanopores dans le graphène

cristal bidimensionnel de carbones aromatiques

Exemple de modèle gros grain

Exemple de modèle gros grain

 Interactions de contact

Exemple de modèle gros grain

- Interactions de contact
- Liaisons covalentes

Exemple de modèle gros grain

- Interactions de contact
- Liaisons covalentes
- Potentiel de tortion

Exemple de modèle gros grain

- Interactions de contact
- Liaisons covalentes
- Potentiel de tortion
- Interactions hydrogènes

Exemple de modèle gros grain

- Interactions de contact
- Liaisons covalentes
- Potentiel de tortion
- Interactions hydrogènes
- Interactions orbitalaires

Exemple de modèle gros grain

- Interactions de contact
- Liaisons covalentes
- Potentiel de tortion
- Interactions hydrogènes
- Interactions orbitalaires

Dynamique moléculaire:
$$\frac{d\mathbf{r}_n}{dt} = -\frac{1}{\epsilon} \frac{\partial F_{tot}}{\partial \mathbf{r}_n} + \mathbf{g}_n$$

Interactions de contact, coeur dur et VdW

Interactions de contact, coeur dur et VdW Liaisons covalentes, ajout de In $\left[1-(r/r_o)^2\right]$

4ème grain, carbones, interactions π/σ

$$\langle {f r}
angle = 0$$
 et $\left\langle {f r}^2
ight
angle = b^2 N$

Cas idéal

• Marche auto-évitante

- Cas idéal
- $R_0 \propto bN^{\frac{1}{2}}$

- Marche auto-évitante
- $R_0 \propto b N^{
 u} (~
 u pprox 3/5, ~ {
 m exp.} ~ {
 m de}$ Flory)

- Cas idéal
- $R_0 \propto bN^{\frac{1}{2}}$

•
$$P(\mathbf{r}, N) =$$

$$\left(\frac{3}{2\pi Nb^2}\right)^{\frac{3}{2}} \exp\left(-\frac{3\mathbf{r}^2}{2Nb^2}\right)$$

- Marche auto-évitante
- $R_0 \propto bN^{\nu} (\ \nu \approx 3/5, \ {\rm exp. \ de}$ Flory)

$$\begin{array}{c} \bullet \;\; P_{SAW}(R,N) \propto \\ \exp \left[-\frac{3 r^2}{2 N b^2} - \frac{v_c N^2}{2 r^3} \right] \end{array}$$

- Cas idéal
- $R_0 \propto bN^{\frac{1}{2}}$
- $P(\mathbf{r}, N) =$ $\left(\frac{3}{2\pi Nb^2}\right)^{\frac{3}{2}} \exp\left(-\frac{3\mathbf{r}^2}{2Nb^2}\right)$
- $F(\mathbf{r}) = F(0) + \frac{3k_B T \mathbf{r}^2}{2Nb^2}$

- Marche auto-évitante
- $R_0 \propto bN^{
 u} (\
 u pprox 3/5, \ {
 m exp.} \ {
 m de}$ Flory)

$$\begin{array}{c} \bullet \ \ P_{SAW}(R,N) \propto \\ \exp \left[-\frac{3 \mathbf{r}^2}{2 N b^2} - \frac{v_c N^2}{2 \mathbf{r}^3} \right] \end{array}$$

•
$$F(\mathbf{r}) = F(0) + \frac{3k_B T \mathbf{r}^2}{2Nb^2} + \frac{k_B T v_c N^2}{2\mathbf{r}^3}$$

•
$$\langle (\mathbf{r}_{CM}(t) - \mathbf{r}_{CM}(0))^2 \rangle = \frac{6k_BT}{N\epsilon}t = 6Dt$$

•
$$\left\langle (\mathbf{r}_{CM}(t) - \mathbf{r}_{CM}(0))^2 \right\rangle = \frac{6k_BT}{N\epsilon}t = 6Dt$$

traction: $v \propto \eta F \propto N\epsilon F$

•
$$\langle (\mathbf{r}_{CM}(t) - \mathbf{r}_{CM}(0))^2 \rangle = \frac{6k_BT}{N\epsilon}t = 6Dt$$

traction: $v \propto \eta F \propto N\epsilon F$
vérifications indépendantes

Théorème de fluctuation-dissipation

Resultats conformes à la théorie, théorème de fluctuation-dissipation vérifié.

Polymère greffé

Translocation

cas non biaisé: au est proportionnel à $\frac{R_0^2}{D}$ ~ $N^{1+2\nu}$

Translocation

cas non biaisé:
$$au$$
 est proportionnel à $\frac{R_0^2}{D}$ ~ $N^{1+2
u}$ biaisé: $au \propto N^{2
u}$ à $au \propto N^{1+
u}$

Translocation

cas non biaisé:
$$au$$
 est proportionnel à $\frac{R_0^2}{D}$ ~ $N^{1+2\nu}$ biaisé: $au \propto N^{2\nu}$ à $au \propto N^{1+\nu}$
$$au \propto F^{-1}$$
 à $au \propto F^{(1/\nu)-2}$

Pore large

Pore large

Deux régimes, $au \propto 1/F$ et exposant critique plus élevé

Pore large

Deux régimes, $au \propto 1/F$ et exposant critique plus élevé $au \propto \textit{N}^{1.69} \approx \textit{N}^{1+\nu}$

Pore étroit

Pore étroit

Toujours deux régimes pour les forces

Pore étroit

Toujours deux régimes pour les forces

$$au \propto \mathit{N}^{1+
u}$$

Comparaison

Ralentissement de la translocation avec un pore étroit

Pore vibrant

Echauffement du pore et translocation fractionnée

Utilisation d'un modèle original

Utilisation d'un modèle original

Détermination de lois d'échelle

Utilisation d'un modèle original

Détermination de lois d'échelle

Effets du frottements du pore

Utilisation d'un modèle original
Détermination de lois d'échelle
Effets du frottements du pore
Cas du pore vibrant?

Utilisation d'un modèle original

Détermination de lois d'échelle

Effets du frottements du pore

Cas du pore vibrant?

Flexibilité de l'ensemble du plan?

Merci de votre attention.

Merci de votre attention.

Des questions ?