

MECH 10 Fundamentals of Electronics

Class 20 Bipolar Junction Transistors

MECH 10 Fundamentals of Electronics

- Bipolar Junction
 - Bipolar two types of semiconductors
 - N & P type
 - Junction use current carrying PN junctions
- Transistor
 - Transfer resistor
 - Low resistance input to a high resistance output

SDG 1

SDG 2

MECH 10 Fundamentals of Electronics

- Bipolar Junction Transistor
- $\beta_{DC} = \frac{I_C}{I_B}$

- Current Gain
 - Collector current !> base current
 - I_C is typically 40 to 300 times > I_B
 - Small current controls large current
 - Amplification!
 - AKA
 - h_{FE}
 - DC Beta

MECH 10 Fundamentals of Electronics

- Bipolar Junction Transistor
 - Current Gain Example
 - A BJT has a base current of 24 μA and a collector current of 1.2mA. Find β_{DC}

$$\beta_{DC} = \frac{I_C}{I_B}$$

$$\beta_{DC} = \frac{1.2mA}{24\mu A} = ?$$

MECH 10 Fundamentals of Electronics

- Bipolar Junction Transistor
 - Current Gain Example
 - The β_{DC} of a BJT is 180. What base current is required to produce collector current of 18mA?

$$\frac{\beta_{DC}}{1} = \frac{I_C}{I_B}$$

$$I_B = \frac{18mA}{180} = ?$$

$$\frac{I_B}{1} = \frac{I_C}{\beta_{DC}}$$

MECH 10 Fundamentals of Electronics

Lab 20 – Transistor Gain

Learning Objectives

- Test transistor forward and reverse bias values
- Test transistor gain using a DMM
- Calculate transistor gain by measuring base and collector currents
- Plot transistor performance on a scatter plot

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
Setup	NPN / PNP configuration determined with diode test measurements	5
Beta Measurement	HFE measured & recorded, transistor off I _B measured & recorded; I _B , I _C measured & recorded for four transistors, beta calculated accurately	20
Temperature Effect	Temperature impact on I _B and I _C observed and recorded	5
Conclusions	Questions answered completely & accurately.	10
	Total	50

SDG 5