CS 171 F24 Final Exam Reference Sheet

Created by Steven He

Uninformed Search	
todo	

Heuristic Search todo

Game Search todo

Constraint Satisfaction todo

Intro to ML, Linear Regression, kNN
todo

Decision Trees and Neural Networks
todo

Reinforcement Learning

 ${\bf Markov\ Property}$ - Future is independent of past given present:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,\ldots,S_t]$$
 where S_t is state at time t

We use matrix $\mathcal P$ to define transition property from state s to s', denoted as probability in row s, column s'.

$$\mathcal{P} = \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \vdots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}, \mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

Markov Process/Chain - Sequence of states S_1, S_2, \ldots satisfying Markov property. Formally defined as tuple $\langle \mathcal{S}, \mathcal{P} \rangle$ i.e. (set of states, prob matrix) **Episode** - Some sequence of traveresed states in a MP

Markov Reward Process - Give states in MP some reward. We "gain" reward R_{t+1} when transitioning from states $S_t \to S_{t+1}$ placeholder intermediary stuff goes here

	Evaluate Policy, π	Find Best Policy, π^*
MDP Known	Policy Evaluation	Policy/Value Iteration
(Planning probs)		
MDP Unknown	MC and TD Learning	Q-Learning