Notes-Oct23

Hongdou Li 10/23/2018

A time series is a stochastic process indexed by time. Specially we have a sequence of random variables.

$${Y_t : t \in N} = {Y_0, Y_1, Y_2...} = {Y_t}$$

lower case y are observed random variables. the sequence $\{y_t\} = \{y_1, y_2, y_3...\}$ represent an observed time series ehat y_t is a realization of the random variable Y_i (stochastic process: sequence of random variables)

The idea is to understand the probabilistic behavior of $\{Y_t\}$ in order to model/forecast $\{y_t\}$

A time series model is the specification of the joint distribution of the random variables in $\{Y_t\}$:

$$P(Y_1 \le y_1, Y_2 \le y_2, ..., Y_n \le y_n)$$
 where $y_1, y_2, y_3 ... \in R$

(however, it is not practical in practice. because when data set increases there will be too much parameters.()

However, specifying such a joint distribution is typically infeasible in practice since there typically won't be enough information to estimate all of the parameters required.

But: Most of a distributions characteristics can be described with 1^{st} and 2^{nd} moments:

- $E[Y_t], t = 1, 2, ...$ (means)
- $E[Y_t, Y_{t+h}], t = 1, 2, ...h >= 0$ (variance covariance)
- special case : $\{\bar{Y}_t\} \sim MVN(\bar{\mu}, \Sigma)$

MVN :multivariate normal

$$\mu_i = E[Y_i], \ \Sigma_{ii} = Var(Y_i), \ \Sigma_{ij} = Cov[Y_i, Y_j]$$

Take away: we don't need the whole joint distribution of $\{Y_t\}$, we can rely on knowing the 1^{st} and 2^{nd} moments there will be a loss of information, but it won't be substantial.

Zero-Mean Models

• IID Noise:

$$\{\epsilon_t\} \sim IID(0, \sigma^2)$$

- $E[\epsilon_t] = 0$
- $Var[\epsilon_t] = \sigma^2$
- ϵ_t and ϵ_{t+h} (for h > 0) are independent
- ϵ_t all follows the same distribution.
- White Noise:

$$\{\epsilon_t\} \sim WN(0, \sigma^2)$$

- $E[\epsilon_t] = 0$
- $Var[\epsilon_t] = \sigma^2$
- $Cov(\epsilon_t, \epsilon_{t+h}) = 0$ (for h > 0)
- IID is a special case of WN

• Random Walk:

$$\epsilon_t = \begin{cases} +1 & with \ prob \ 1/2 \\ -1 & with \ prob \ 1/2 \end{cases}$$
 independently

$$\{S_t\}$$
 where $S_t = \sum_{k=1}^t \epsilon_k$ and $S_0 = 0$

This is zero -mean because
$$E[S_t] = \sum_{k=1}^{t} E[\epsilon_t] = \sum_{k=1}^{t} [1/2 + (-1)1/2] = 0$$

Stationary

A time series $\{Y_t\}$ is said to **strictly stationary** if the joint distribution of $Y_{t1}, Y_{t2}, Y_{t3}, ..., Y_{tn}$ is the same as that of $Y_{t1+h}, Y_{t2+h}, Y_{t3+h}, ..., Y_{tn+h}$ for $t1, t2, t3...tn, h \in N$. In other words $\{Y_t^2\}$ is strictly stationary if all of its statistical properties are preserved under time shifts.

Verifying the strict stationary conditions is difficult in practice and so we will use a weaker definition of stationary defined in terms of the 1^{st} and 2^{nd} moments.

- Define first:
 - Mean function:

$$\mu(t) = E[Y_t]$$

• Covariance Function:

$$\gamma(r,s) = Cov(Y_r, Y_s) = E(Y_r, Y_s) - E[Y_r]E[Y_s]$$

A time series $\{Y_t\}$ is said to weakly stationary if:

- (i) $\mu(t) = E[Y_t]$ must be independent of t.
- (ii) $\gamma(t, t+h) = Cov(Y_t, Y_{t+h})$ must be independent of t for all h
 - covariance only depends on the distance h , not t.

This for a weakly stationary time series $\mu(t) \equiv \mu$ and $\gamma(t, t+h) \equiv \gamma(h)$

- Example: Is $IID(0, \sigma^2)$ (weakly) stationary?
 - (i) $\mu(t) = E[\epsilon_t] = 0$ (independent of t)

(ii)
$$\gamma(t, t+h) = Cov(\epsilon_t, \epsilon_{t+h}) = \begin{cases} \sigma^2 & h = 0 \\ 0 & h > 0 \end{cases}$$
 (independent of t)

thus, IID is weakly stationary.

more: By similar arguments $WN(0, \sigma^2)$ is weakly stationary.

- Eaxmple: Is $\{S_t\}$ (the random walk) with $S_t = \sum_{k=1}^t \epsilon_k$, $\{\epsilon_k\} \sim IID(0, \sigma^2)$ weakly stationary?
 - (i) $\mu(t) = E[S_t] = 0$

(ii)
$$\gamma(t, t+h) = Cov(S_t, S_{t+h})$$

 $= Cov(S_t, S_t + \epsilon_{t_1} + \epsilon_{t_2} + \epsilon_{t+3}... + \epsilon_{t+h})$
 $= Cov(S_t, S_t) + Cov(S_t, \epsilon_{t+1})... + Cov(S_t, \epsilon_{t+h})$
 $= var(S_t)$
 $= E[S_t^2] - E[S_t]^2$
 $= E[(\sum_{k=1}^t \epsilon_k)^2]$
 $= E[\sum_{k=1}^t [\epsilon_k^2]] + 2\sum_{i \neq j} E[\epsilon_i \epsilon_j]$

$$= \sum_{k=1}^{t} Var[\epsilon_k] + 2 \sum_{i < j} Cov(\epsilon_i, \epsilon_j)$$
$$= \sum_{k=1}^{t} \sigma^2 = t\sigma^2$$

Thus, the random walk is not stationary.

• Example: First order moving average: $\{Y_t\} \sim MA(1)$

$$Y_t = \epsilon_t + \theta \epsilon_{t-1}$$

Where $\theta \in R$ and $\{\epsilon_t\} \sim wn(0, \sigma^2)$. Show that $\{Y_t\}$ IS weakly stationary.

(i)
$$\mu(t)=E[Y_t]=E[\epsilon_t+\theta\epsilon_{t-1}]=E[\epsilon_t]+\theta E[\epsilon_{t-1}]=0$$

(ii)

$$\begin{split} \gamma(t,t+h) &= cov(Y_t,Y_{t+h}) \\ &= Cov(\epsilon_t + \theta \epsilon_{t-1}, \epsilon_{t+h} + \theta \epsilon_{t+h-1}) \\ &= cov(\epsilon_t, \epsilon_{t+h}) + \theta Cov(\epsilon_t, \epsilon_{t+h-1}) + \theta Cov(\epsilon_{t-1}, \epsilon_{t+h}) + \theta^2 Cov(\epsilon_{t-1}, \epsilon_{t+h-1}) \\ &= \begin{cases} \sigma^2(1+\theta^2) & h = 0 \\ \theta \sigma^2 & h = 1 \text{ } \backslash \text{end} \{\text{center}\} \\ 0 & h > 1 \end{cases} \end{split}$$