

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 April 2002 (04.04.2002)

PCT

(10) International Publication Number
WO 02/26982 A2

(51) International Patent Classification⁷: C12N 15/12,
C12Q 1/68, C07K 14/47, 16/18, A01K 67/027, A61K
38/17, 39/395, B01J 19/00, G01N 33/50, 33/53

(21) International Application Number: PCT/US01/30042

(22) International Filing Date:
25 September 2001 (25.09.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/236,869 29 September 2000 (29.09.2000) US
60/239,812 11 October 2000 (11.10.2000) US
60/240,108 12 October 2000 (12.10.2000) US
60/241,282 17 October 2000 (17.10.2000) US
60/242,218 20 October 2000 (20.10.2000) US

(71) Applicant (for all designated States except US): INCYTE
GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo
Alto, CA 94087 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YUE, Henry
[US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US).
TANG, Y., Tom [US/US]; 4230 Ranwick Court, San
Jose, CA 95118 (US). NGUYEN, Danniel, B. [US/US];
1403 Ridgewood Drive, San Jose, CA 95118 (US). YAO,
Monique, G. [US/US]; 1189 Woodgate Drive, Carmel,
IN 40633 (US). XU, Yuming [US/US]; 1739 Walnut
Drive, Mountain View, CA 94040 (US). TRIBOLEY,
Catherine, M. [FR/US]; 1121 Tennessee Street #5, San
Francisco, CA 94107 (US). SANJANWALA, Madhu,
S. [US/US]; 210 Sylvia Court, Los Altos, CA 94024
(US). WALIA, Narinder, K. [US/US]; 890 Davis Street
#205, San Leandro, CA 94577 (US). BAUGHN, Mariah,
R. [US/US]; 14244 Santiago Road, San Leandro, CA
94577 (US). SAPPERSTEIN, Stephanie, K. [US/US];
3531 Highland Avenue, Redwood City, CA 94062 (US).
LAL, Preeti [IN/US]; P.O. Box 5142, Santa Clara, CA
95056 (US). THORNTON, Michael [US/US]; 9 Medway
Road, Woodside, CA 94062 (US). GANDHI, Ameena,
R. [US/US]; 837 Roble Avenue #1, Menlo Park, CA
94025 (US). RAMKUMAR, Jayalaxmi [US/US]; 34359
Maybird Circle, Fremont, CA 94555 (US). ELLIOTT,
Vicki, S. [US/US]; 3770 Polten Place Way, San Jose, CA
95121 (US). ARVIZU, Chandra [US/US]; 490 Sherwood

Way #1, Menlo Park, CA 94025 (US). THANGAVELU,
Kavitha [IN/US]; 1950 Montecito Avenue #23, Mountain
View, CA 94043 (US). GIETZEN, Kimberly, J. [US/US];
691 Los Huecos Drive, San Jose, CA 95123 (US). DING,
Li [CH/US]; 3353 Alma Street #146, Palo Alto, CA
94506 (US). AU-YOUNG, Janice [US/US]; 233 Golden
Eagle Lane, Brisbane, CA 94005 (US). TRAN, Bao
[US/US]; 750 Salberg Avenue, Santa Clara, CA 95051
(US). POLICKY, Jennifer, L. [US/US]; 1511 Jarvis
Court, San Jose, CA 95118 (US). LEE, Sally [US/US];
825 East Evelyn #425, Sunnyvale, CA 94086 (US). LU,
Dyung, Aina, M. [US/US]; 233 Coy Drive, San Jose, CA
95123 (US). BURFORD, Neil [GB/US]; 105 Wildwood
Circle, Durham, CT 06422 (US). WARREN, Bridget,
A. [US/US]; 10130 Parwood Drive #2, Cupertino, CA
95014 (US). GURURAJAN, Rajagopal [IN/US]; 5591
Dent Avenue, San Jose, CA 95118 (US). DUGGAN,
Brendan, M. [AU/US]; 243 Buena Vista Avenue #306,
Sunnyvale, CA 94086 (US). HONCHELL, Cynthia, D.
[US/US]; 400 Laurel Street #203, San Carlos, CA 94070
(US). HAFLALIA, April, J., A. [US/US]; 2227 Calle de
Primavera, Santa Clara, CA 95054 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics,
Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/26982 A2

(54) Title: SECRETED PROTEINS

(57) Abstract: The invention provides human secreted proteins (SECP) and polynucleotides which identify and encode SECP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of SECP.

Best Available Copy

SECRETED PROTEINS**TECHNICAL FIELD**

This invention relates to nucleic acid and amino acid sequences of secreted proteins and to
5 the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative,
autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders, and in the
assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid
sequences of secreted proteins.

10 BACKGROUND OF THE INVENTION

Protein transport and secretion are essential for cellular function. Protein transport is
mediated by a signal peptide located at the amino terminus of the protein to be transported or
secreted. The signal peptide is comprised of about ten to twenty hydrophobic amino acids which
target the nascent protein from the ribosome to a particular membrane bound compartment such as the
15 endoplasmic reticulum (ER). Proteins targeted to the ER may either proceed through the secretory
pathway or remain in any of the secretory organelles such as the ER, Golgi apparatus, or lysosomes.
Proteins that transit through the secretory pathway are either secreted into the extracellular space or
retained in the plasma membrane. Proteins that are retained in the plasma membrane contain one or
more transmembrane domains, each comprised of about 20 hydrophobic amino acid residues.
20 Secreted proteins are generally synthesized as inactive precursors that are activated by post-
translational processing events during transit through the secretory pathway. Such events include
glycosylation, proteolysis, and removal of the signal peptide by a signal peptidase. Other events that
may occur during protein transport include chaperone-dependent unfolding and folding of the nascent
protein and interaction of the protein with a receptor or pore complex. Examples of secreted proteins
25 with amino terminal signal peptides are discussed below and include proteins with important roles in
cell-to-cell signaling. Such proteins include transmembrane receptors and cell surface markers,
extracellular matrix molecules, cytokines, hormones, growth and differentiation factors, enzymes,
neuropeptides, vasomediators, cell surface markers, and antigen recognition molecules. (Reviewed in
Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York, NY, pp. 557-
30 560, 582-592.)

Cell surface markers include cell surface antigens identified on leukocytic cells of the
immune system. These antigens have been identified using systematic, monoclonal antibody (mAb)-
based "shot gun" techniques. These techniques have resulted in the production of hundreds of mAbs
directed against unknown cell surface leukocytic antigens. These antigens have been grouped into
35 "clusters of differentiation" based on common immunocytochemical localization patterns in various

differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "cluster of differentiation" or "CD" designation. Some of the genes encoding proteins identified by CD antigens have been cloned and verified by standard molecular biology techniques. CD antigens have been characterized as both
5 transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI).

(Reviewed in Barclay, A. N. et al. (1995) The Leucocyte Antigen Facts Book, Academic Press, San Diego, CA, pp. 17-20.)

Matrix proteins (MPs) are transmembrane and extracellular proteins which function in
10 formation, growth, remodeling, and maintenance of tissues and as important mediators and regulators of the inflammatory response. The expression and balance of MPs may be perturbed by biochemical changes that result from congenital, epigenetic, or infectious diseases. In addition, MPs affect leukocyte migration, proliferation, differentiation, and activation in the immune response. MPs are frequently characterized by the presence of one or more domains which may include collagen-like
15 domains, EGF-like domains, immunoglobulin-like domains, and fibronectin-like domains. In addition, MPs may be heavily glycosylated and may contain an Arginine-Glycine-Aspartate (RGD) tripeptide motif which may play a role in adhesive interactions. MPs include extracellular proteins such as fibronectin, collagen, galectin, vitronectin and its proteolytic derivative somatomedin B; and cell adhesion receptors such as cell adhesion molecules (CAMs), cadherins, and integrins. (Reviewed
20 in Ayad, S. et al. (1994) The Extracellular Matrix Facts Book, Academic Press, San Diego, CA, pp. 2-16; Ruoslahti, E. (1997) Kidney Int. 51:1413-1417; Sjaastad, M.D. and Nelson, W.J. (1997) BioEssays 19:47-55.)

Mucins are highly glycosylated glycoproteins that are the major structural component of the mucus gel. The physiological functions of mucins are cytoprotection, mechanical protection,
25 maintenance of viscosity in secretions, and cellular recognition. MUC6 is a human gastric mucin that is also found in gall bladder, pancreas, seminal vesicles, and female reproductive tract (Toribara, N.W. et al. (1997) J. Biol. Chem. 272:16398-16403). The MUC6 gene has been mapped to human chromosome 11 (Toribara, N.W. et al. (1993) J. Biol. Chem. 268:5879-5885). Hemomucin is a novel
Drosophila surface mucin that may be involved in the induction of antibacterial effector molecules
30 (Theopold, U. et al. (1996) J. Biol. Chem. 271:12708-12715).

Tuftelins are one of four different enamel matrix proteins that have been identified so far. The other three known enamel matrix proteins are the amelogenins, enamelin and ameloblastin. Assembly of the enamel extracellular matrix from these component proteins is believed to be critical in producing a matrix competent to undergo mineral replacement. (Paine, C.T. et al. (1998) Connect
35 Tissue Res. 38:257-267). Tuftelin mRNA has been found to be expressed in human ameloblastoma

tumor, a non-mineralized odontogenic tumor (Deutsch, D. et al. (1998) Connect. Tissue Res. 39:177-184).

Olfactomedin-related proteins are extracellular matrix, secreted glycoproteins with conserved C-terminal motifs. They are expressed in a wide variety of tissues and in broad range of species, from *Caenorhabditis elegans* to *Homo sapiens*. Olfactomedin-related proteins comprise a gene family with at least 5 family members in humans. One of the five, TIGR/myocilin protein, is expressed in the eye and is associated with the pathogenesis of glaucoma (Kulkarni, N.H. et al. (2000) Genet. Res. 76:41-50). Research by Yokoyama et al. (1996) found a 135-amino acid protein, termed AMY, having 96% sequence identity with rat neuronal olfactomedin-related ER localized protein in a neuroblastoma cell line cDNA library, suggesting an essential role for AMY in nerve tissue (Yokoyama, M. et al. (1996) DNA Res. 3:311-320). Neuron-specific olfactomedin-related glycoproteins isolated from rat brain cDNA libraries show strong sequence similarity with olfactomedin. This similarity is suggestive of a matrix-related function of these glycoproteins in neurons and neurosecretory cells (Danielson, P.E. et al. (1994) J. Neurosci. Res. 38:468-478).

Mac-2 binding protein is a 90-kD serum protein (90K), a secreted glycoprotein isolated from both the human breast carcinoma cell line SK-BR-3, and human breast milk. It specifically binds to a human macrophage-associated lectin, Mac-2. Structurally, the mature protein is 567 amino acids in length and is preceded by an 18-amino acid leader. There are 16 cysteines and seven potential N-linked glycosylation sites. The first 106 amino acids represent a domain very similar to an ancient protein superfamily defined by a macrophage scavenger receptor cysteine-rich domain (Koths, K. et al. (1993) J. Biol. Chem. 268:14245-14249). 90K is elevated in the serum of subpopulations of AIDS patients and is expressed at varying levels in primary tumor samples and tumor cell lines. Ullrich et al. (1994) have demonstrated that 90K stimulates host defense systems and can induce interleukin-2 secretion. This immune stimulation is proposed to be a result of oncogenic transformation, viral infection or pathogenic invasion (Ullrich, A., et al. (1994) J. Biol. Chem. 269:18401-18407).

Semaphorins are a large group of axonal guidance molecules consisting of at least 30 different members and are found in vertebrates, invertebrates, and even certain viruses. All semaphorins contain the sema domain which is approximately 500 amino acids in length. Neuropilin, a semaphorin receptor, has been shown to promote neurite outgrowth in vitro. The extracellular region of neuropilins consists of three different domains: CUB, discoidin, and MAM domains. The CUB and the MAM motifs of neuropilin have been suggested to have roles in protein-protein interactions and are thought to be involved in the binding of semaphorins through the sema and the C-terminal domains (reviewed in Raper, J.A. (2000) Curr. Opin. Neurobiol. 10:88-94). Plexins are neuronal cell surface molecules that mediate cell adhesion via a homophilic binding mechanism in the presence of calcium ions. Plexins have been shown to be expressed in the receptors and neurons of

particular sensory systems (Ohta, K. et al. (1995) *Cell* 14:1189-1199). There is evidence that suggests that some plexins function to control motor and CNS axon guidance in the developing nervous system. Plexins, which themselves contain complete semaphorin domains, may be both the ancestors of classical semaphorins and binding partners for semaphorins (Winberg, M.L. et al (1998) 5 *Cell* 95:903-916).

Human pregnancy-specific beta 1-glycoprotein (PSG) is a family of closely related glycoproteins of molecular weights of 72 KDa, 64KDa, 62KDa, and 54KDa. Together with the carcinoembryonic antigen, they comprise a subfamily within the immunoglobulin superfamily (Plouzek, C.A. and Chou, J.Y. (1991) *Endocrinology* 129:950-958) Different subpopulations of PSG 10 have been found to be produced by the trophoblasts of the human placenta, and the amnionic and chorionic membranes (Plouzek, C.A. et al. (1993) *Placenta* 14:277-285).

Autocrine motility factor (AMF) is one of the motility cytokines regulating tumor cell migration; therefore identification of the signaling pathway coupled with it has critical importance. Autocrine motility factor receptor (AMFR) expression has been found to be associated with tumor 15 progression in thymoma (Ohta Y. et al. (2000) *Int. J. Oncol.* 17:259-264). AMFR is a cell surface glycoprotein of molecular weight 78KDa.

Hormones are secreted molecules that travel through the circulation and bind to specific receptors on the surface of, or within, target cells. Although they have diverse biochemical compositions and mechanisms of action, hormones can be grouped into two categories. One category 20 includes small lipophilic hormones that diffuse through the plasma membrane of target cells, bind to cytosolic or nuclear receptors, and form a complex that alters gene expression. Examples of these molecules include retinoic acid, thyroxine, and the cholesterol-derived steroid hormones such as progesterone, estrogen, testosterone, cortisol, and aldosterone. The second category includes hydrophilic hormones that function by binding to cell surface receptors that transduce signals across 25 the plasma membrane. Examples of such hormones include amino acid derivatives such as catecholamines (epinephrine, norepinephrine) and histamine, and peptide hormones such as glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotrophic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and vasopressin. (See, for example, Lodish et al. (1995) Molecular Cell Biology, Scientific American Books Inc., New York, NY, pp. 856-864.)

30 Pro-opiomelanocortin (POMC) is the precursor polypeptide of corticotropin (ACTH), a hormone synthesized by the anterior pituitary gland, which functions in the stimulation of the adrenal cortex. POMC is also the precursor polypeptide of the hormone beta-lipotropin (beta-LPH). Each hormone includes smaller peptides with distinct biological activities: alpha-melanotropin (alpha-MSH) and corticotropin-like intermediate lobe peptide (CLIP) are formed from ACTH; gamma-lipotropin (gamma-LPH) and beta-endorphin are peptide components of beta-LPH; while beta-MSH 35

is contained within gamma-LPH. Adrenal insufficiency due to ACTH deficiency, resulting from a genetic mutation in exons 2 and 3 of POMC results in an endocrine disorder characterized by early-onset obesity, adrenal insufficiency, and red hair pigmentation (Chretien, M. et al. (1979) Canad. J. Biochem. 57:1111-1121; Krude, H. et al. (1998) Nature Genet. 19:155-157; Online Mendelian

5 Inheritance in Man (OMIM) 176830).

Growth and differentiation factors are secreted proteins which function in intercellular communication. Some factors require oligomerization or association with membrane proteins for activity. Complex interactions among these factors and their receptors trigger intracellular signal transduction pathways that stimulate or inhibit cell division, cell differentiation, cell signaling, and
10 cell motility. Most growth and differentiation factors act on cells in their local environment (paracrine signaling). There are three broad classes of growth and differentiation factors. The first class includes the large polypeptide growth factors such as epidermal growth factor, fibroblast growth factor, transforming growth factor, insulin-like growth factor, and platelet-derived growth factor. The second class includes the hematopoietic growth factors such as the colony stimulating factors (CSFs).

15 Hematopoietic growth factors stimulate the proliferation and differentiation of blood cells such as B-lymphocytes, T-lymphocytes, erythrocytes, platelets, eosinophils, basophils, neutrophils, macrophages, and their stem cell precursors. The third class includes small peptide factors such as bombesin, vasopressin, oxytocin, endothelin, transferrin, angiotensin II, vasoactive intestinal peptide, and bradykinin, which function as hormones to regulate cellular functions other than proliferation.

20 Growth and differentiation factors play critical roles in neoplastic transformation of cells in vitro and in tumor progression in vivo. Inappropriate expression of growth factors by tumor cells may contribute to vascularization and metastasis of tumors. During hematopoiesis, growth factor misregulation can result in anemias, leukemias, and lymphomas. Certain growth factors such as interferon are cytotoxic to tumor cells both in vivo and in vitro. Moreover, some growth factors and
25 growth factor receptors are related both structurally and functionally to oncoproteins. In addition, growth factors affect transcriptional regulation of both proto-oncogenes and oncosuppressor genes.
(Reviewed in Pimentel, E. (1994) Handbook of Growth Factors, CRC Press, Ann Arbor, MI, pp. 1-9.)

The Slit protein, first identified in Drosophila, is critical in central nervous system midline formation and potentially in nervous tissue histogenesis and axonal pathfinding. Itoh et al. have
30 identified mammalian homologues of the slit gene (human Slit-1, Slit-2, Slit-3 and rat Slit-1). The encoded proteins are putative secreted proteins containing EGF-like motifs and leucine-rich repeats, both of which are conserved protein-protein interaction domains. Slit-1, -2, and -3 mRNAs are expressed in the brain, spinal cord, and thyroid, respectively (Itoh, A. et al., (1998) Brain Res. Mol. Brain Res. 62:175-186). The Slit family of proteins are indicated to be functional ligands of
35 glypcan-1 in nervous tissue and suggests that their interactions may be critical in certain stages

during central nervous system histogenesis (Liang, Y. et al., (1999) *J. Biol. Chem.* 274:17885-17892).

Neuropeptides and vaso mediators (NP/VM) comprise a large family of endogenous signaling molecules. Included in this family are neuropeptides and neuropeptide hormones such as bombesin, neuropeptide Y, neurotensin, neuromedin N, melanocortins, opioids, galanin, somatostatin, 5 tachykinins, urotensin II and related peptides involved in smooth muscle stimulation, vasopressin, vasoactive intestinal peptide, and circulatory system-borne signaling molecules such as angiotensin, complement, calcitonin, endothelins, formyl-methionyl peptides, glucagon, cholecystokinin and gastrin. NP/VMs can transduce signals directly, modulate the activity or release of other 10 neurotransmitters and hormones, and act as catalytic enzymes in cascades. The effects of NP/VMs range from extremely brief to long-lasting. (Reviewed in Martin, C.R. et al. (1985) Endocrine Physiology, Oxford University Press, New York, NY, pp. 57-62.)

NP/VMs are involved in numerous neurological and cardiovascular disorders. For example, neuropeptide Y is involved in hypertension, congestive heart failure, affective disorders, and appetite regulation. Somatostatin inhibits secretion of growth hormone and prolactin in the anterior pituitary, 15 as well as inhibiting secretion in intestine, pancreatic acinar cells, and pancreatic beta-cells. A reduction in somatostatin levels has been reported in Alzheimer's disease and Parkinson's disease. Vasopressin acts in the kidney to increase water and sodium absorption, and in higher concentrations stimulates contraction of vascular smooth muscle, platelet activation, and glycogen breakdown in the liver. Vasopressin and its analogues are used clinically to treat diabetes insipidus. Endothelin and 20 angiotensin are involved in hypertension, and drugs, such as captopril, which reduce plasma levels of angiotensin, are used to reduce blood pressure (Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp. 194; 252; 284; 55; 111).

Neuropeptides have also been shown to have roles in nociception (pain). Vasoactive intestinal peptide appears to play an important role in chronic neuropathic pain. Nociceptin, an 25 endogenous ligand for the opioid receptor-like 1 receptor, is thought to have a predominantly anti-nociceptive effect, and has been shown to have analgesic properties in different animal models of tonic or chronic pain (Dickinson, T. and Fleetwood-Walker, S.M. (1998) *Trends Pharmacol. Sci.* 19:346-348).

Other proteins that contain signal peptides include secreted proteins with enzymatic activity, 30 or enzyme inhibitory activity. Such activity includes, for example, oxidoreductase/dehydrogenase activity, transferase activity, hydrolase activity, lyase activity, isomerase activity, or ligase activity. For example, matrix metalloproteinases are secreted hydrolytic enzymes that degrade the extracellular matrix and thus play an important role in tumor metastasis, tissue morphogenesis, and arthritis (Reponen, P. et al. (1995) *Dev. Dyn.* 202:388-396; Firestein, G.S. (1992) *Curr. Opin. Rheumatol.* 35 4:348-354; Ray, J.M. and Stetler-Stevenson, W.G. (1994) *Eur. Respir. J.* 7:2062-2072; and Mignatti,

P. and Rifkin, D.B. (1993) *Physiol. Rev.* 73:161-195). Tissue Inhibitors of Metalloproteinase (TIMPs), on the other hand, are secreted proteins which bind to metalloproteinases and block their activity (Stetler-Stevenson, W.G. et al. (1989) *J. Biol. Chem.* 264:17374-17378). Additional examples are the acetyl-CoA synthetases which activate acetate for use in lipid synthesis or energy generation (Luong, A. et al. (2000) *J. Biol. Chem.* 275:26458-26466). The result of acetyl-CoA synthetase activity is the formation of acetyl-CoA from acetate and CoA. Acetyl-CoA synthetases share a region of sequence similarity identified as the AMP-binding domain signature. Acetyl-CoA synthetase has been shown to be associated with hypertension (H. Toh (1991) *Protein Seq. Data Anal.* 4:111-117; and Iwai, N. et al., (1994) *Hypertension* 23:375-380).

A number of isomerases catalyze steps in protein folding, phototransduction, and various anabolic and catabolic pathways. One class of isomerases is known as peptidyl-prolyl *cis-trans* isomerases (PPIases). PPIases catalyze the *cis* to *trans* isomerization of certain proline imidic bonds in proteins. Two families of PPIases are the FK506 binding proteins (FKBPs), and cyclophilins (CyPs). FKBPs bind the potent immunosuppressants FK506 and rapamycin, thereby inhibiting signaling pathways in T-cells. Specifically, the PPIase activity of FKBPs is inhibited by binding of FK506 or rapamycin. There are five members of the FKP family which are named according to their calculated molecular masses (FKBP12, FKBP13, FKBP25, FKBP52, and FKBP65), and localized to different regions of the cell where they associate with different protein complexes (Coss, M. et al. (1995) *J. Biol. Chem.* 270:29336 - 29341; Schreiber, S.L. (1991) *Science* 251:283 - 287).

The peptidyl-prolyl isomerase activity of CyP may be part of the signaling pathway that leads to T-cell activation. CyP isomerase activity is associated with protein folding and protein trafficking, and may also be involved in assembly/disassembly of protein complexes and regulation of protein activity. For example, in *Drosophila*, the CyP NinaA is required for correct localization of rhodopsins, while a mammalian CyP (Cyp40) is part of the Hsp90/Hsc70 complex that binds steroid receptors. The mammalian CypA has been shown to bind the *gag* protein from human immunodeficiency virus 1 (HIV-1), an interaction that can be inhibited by cyclosporin. Since cyclosporin has potent anti-HIV-1 activity, CypA may play an essential function in HIV-1 replication. Finally, Cyp40 has been shown to bind and inactivate the transcription factor c-Myb, an effect that is reversed by cyclosporin. This effect implicates CyPs in the regulation of transcription, transformation, and differentiation (Bergsma, D.J. et al (1991) *J. Biol. Chem.* 266:23204 - 23214; Hunter, T. (1998) *Cell* 92: 141-143; and Leverson, J.D. and Ness, S.A. (1998) *Mol. Cell.* 1:203-211).

Another protein that contains a signal peptide is encoded by the seizure-related gene, SEZ-6, a brain specific cDNA whose expression is increased by the convulsant drug pentylenetetrazole. The SEZ-6 protein is expressed in the cerebrum and cerebellum. SEZ-6 contains five short consensus repeats (SCR, or sushi domains) and two CUB (complement C1r/s-like repeat) domains in addition to

a signal peptide and a single transmembrane domain (Shimizu-Nishikawa, K. et al. (1995) Biochem. Biophys. Res. Commun. 216:382-389).

- Gamma-carboxyglutamic acid (Gla) proteins rich in proline (PRGPs) are members of a family of vitamin K-dependent single-pass integral membrane proteins. These proteins are characterized by
- 5 an extracellular amino terminal domain of approximately 45 amino acids rich in Gla. The intracellular carboxyl terminal region contains one or two copies of the sequence PPXY, a motif present in a variety of proteins involved in such diverse cellular functions as signal transduction, cell cycle progression, and protein turnover (Kulman, J.D. et al., (2001) Proc. Natl. Acad. Sci. U.S.A. 98:1370-1375). The process of post-translational modification of glutamic residues to form Gla is
- 10 Vitamin K-dependent carboxylation. Proteins which contain Gla include plasma proteins involved in blood coagulation. These proteins are prothrombin, proteins C, S, and Z, and coagulation factors VII, IX, and X. Osteocalcin (bone-Gla protein, BGP) and matrix Gla-protein (MGP) also contain Gla (Friedman, P.A., and C.T. Przysiecki (1987) Int. J. Biochem. 19:1-7; C. Vermeer (1990) Biochem. J. 266:625-636).
- 15 The *Drosophila* sp. gene *crossveinless 2* is characterized as having a putative signal or transmembrane sequence, and a partial Von Willebrand Factor D domain similar to those domains known to regulate the formation of intramolecular and intermolecular bonds and five cysteine-rich domains, known to bind BMP-like (bone morphogenetic proteins) ligands. These features suggest that *crossveinless 2* may act extracellularly or in the secretory pathway to directly potentiate ligand
- 20 signaling and hence, involvement in the BMP-like signaling pathway known to play a role in vein specification (Conley, C.A. et al., (2000) Development 127:3947-3959). The dorsal-ventral patterning in both vertebrate and *Drosophila* embryos requires a conserved system of extracellular proteins to generate a positional informational gradient.
- Immunoglobulins
- 25 Antigen recognition molecules are key players in the sophisticated and complex immune systems which all vertebrates have developed to provide protection from viral, bacterial, fungal, and parasitic infections. A key feature of the immune system is its ability to distinguish foreign molecules, or antigens, from "self" molecules. Most cell surface and soluble molecules that mediate functions such as recognition, adhesion or binding have evolved from a common evolutionary
- 30 precursor (i.e., these proteins have structural homology). A number of molecules outside the immune system that have similar functions are also derived from this same evolutionary precursor. This ability is mediated primarily by secreted and transmembrane proteins expressed by leukocytes (white blood cells) such as lymphocytes, granulocytes, and monocytes. Most of these proteins belong to the immunoglobulin (Ig) superfamily, members of which contain one or more repeats of a conserved
- 35 structural domain. This Ig domain is comprised of antiparallel β sheets joined by a disulfide bond in

an arrangement called the Ig fold. The criteria for a protein to be a member of the Ig superfamily is to have one or more Ig domains, which are regions of 70-110 amino acid residues in length homologous to either Ig variable-like (V) or Ig constant-like (C) domains. Members of the Ig superfamily include antibodies (Ab), T cell receptors (TCRs), class I and II major histocompatibility (MHC) proteins and immune cell-specific surface markers such as the "cluster of differentiation" or CD antigens, CD2, CD3, CD4, CD8, poly-Ig receptors, Fc receptors, neural cell-adhesion molecule (NCAM) and platelet-derived growth factor receptor (PDGFR). These antigens have been identified using systematic, monoclonal antibody (mAb)-based "shot gun" techniques. These techniques have resulted in the production of hundreds of mAbs directed against unknown cell surface leukocytic antigens. These antigens have been grouped into "clusters of differentiation" based on common immunocytochemical localization patterns in various differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "cluster of differentiation" or "CD" designation. Some of the genes encoding proteins identified by CD antigens have been cloned and verified by standard molecular biology techniques.

CD antigens have been characterized as both transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI). (Reviewed in Barclay, A. N. et al. (1995) The Leucocyte Antigen Facts Book, Academic Press, San Diego, CA, pp. 17-20.)

Ig domains (V and C) are regions of conserved amino acid residues that give a polypeptide a globular tertiary structure called an immunoglobulin (or antibody) fold, which consists of two approximately parallel layers of β -sheets. Conserved cysteine residues form an intrachain disulfide-bonded loop, 55-75 amino acid residues in length, which connects the two layers of the β -sheets. Each β -sheet has three or four anti-parallel β -strands of 5-10 amino acid residues. Hydrophobic and hydrophilic interactions of amino acid residues within the β -strands stabilize the Ig fold (hydrophobic on inward facing amino acid residues and hydrophilic on the amino acid residues in the outward facing portion of the strands). A V domain consists of a longer polypeptide than a C domain, with an additional pair of β -strands in the Ig fold.

A consistent feature of Ig superfamily genes is that each sequence of an Ig domain is encoded by a single exon. It is possible that the superfamily evolved from a gene coding for a single Ig domain involved in mediating cell-cell interactions. New members of the superfamily then arose by exon and gene duplications. Modern Ig superfamily proteins contain different numbers of V and/or C domains. Another evolutionary feature of this superfamily is the ability to undergo DNA rearrangements, a unique feature retained by the antigen receptor members of the family.

Many members of the Ig superfamily are integral plasma membrane proteins with extracellular Ig domains. The hydrophobic amino acid residues of their transmembrane domains and

their cytoplasmic tails are very diverse, with little or no homology among Ig family members or to known signal-transducing structures. There are exceptions to this general superfamily description. For example, the cytoplasmic tail of PDGFR has tyrosine kinase activity. In addition Thy-1 is a glycoprotein found on thymocytes and T cells. This protein has no cytoplasmic tail, but is instead attached to the plasma membrane by a covalent glycoprophatidylinositol linkage.

Another common feature of many Ig superfamily proteins is the interactions between Ig domains which are essential for the function of these molecules. Interactions between Ig domains of a multimeric protein can be either homophilic or heterophilic (i.e., between the same or different Ig domains). Antibodies are multimeric proteins which have both homophilic and heterophilic interactions between Ig domains. Pairing of constant regions of heavy chains forms the Fc region of an antibody and pairing of variable regions of light and heavy chains form the antigen binding site of an antibody. Heterophilic interactions also occur between Ig domains of different molecules. These interactions provide adhesion between cells for significant cell-cell interactions in the immune system and in the developing and mature nervous system. (Reviewed in Abbas, A.K. et al. (1991) Cellular and Molecular Immunology, W.B. Saunders Company, Philadelphia, PA, pp.142-145.)

Antibodies

MHC proteins are cell surface markers that bind to and present foreign antigens to T cells. MHC molecules are classified as either class I or class II. Class I MHC molecules (MHC I) are expressed on the surface of almost all cells and are involved in the presentation of antigen to cytotoxic T cells. For example, a cell infected with virus will degrade intracellular viral proteins and express the protein fragments bound to MHC I molecules on the cell surface. The MHC I/antigen complex is recognized by cytotoxic T-cells which destroy the infected cell and the virus within. Class II MHC molecules are expressed primarily on specialized antigen-presenting cells of the immune system, such as B-cells and macrophages. These cells ingest foreign proteins from the extracellular fluid and express MHC II/antigen complex on the cell surface. This complex activates helper T-cells, which then secrete cytokines and other factors that stimulate the immune response. MHC molecules also play an important role in organ rejection following transplantation. Rejection occurs when the recipient's T-cells respond to foreign MHC molecules on the transplanted organ in the same way as to self MHC molecules bound to foreign antigen. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing, New York, NY, pp. 1229-1246)

Antibodies are multimeric members of the Ig superfamily which are either expressed on the surface of B-cells or secreted by B-cells into the circulation. Antibodies bind and neutralize foreign antigens in the blood and other extracellular fluids. The prototypical antibody is a tetramer consisting of two identical heavy polypeptide chains (H-chains) and two identical light polypeptide chains (L-chains) interlinked by disulfide bonds. This arrangement confers the characteristic Y-shape to

antibody molecules. Antibodies are classified based on their H-chain composition. The five antibody classes, IgA, IgD, IgE, IgG and IgM, are defined by the α , δ , ϵ , γ , and μ H-chain types. There are two types of L-chains, κ and λ , either of which may associate as a pair with any H-chain pair. IgG, the most common class of antibody found in the circulation, is tetrameric, while the other classes of antibodies are generally variants or multimers of this basic structure.

H-chains and L-chains each contain an N-terminal variable region and a C-terminal constant region. The constant region consists of about 110 amino acids in L-chains and about 330 or 440 amino acids in H-chains. The amino acid sequence of the constant region is nearly identical among H- or L-chains of a particular class. The variable region consists of about 110 amino acids in both H- and L-chains. However, the amino acid sequence of the variable region differs among H- or L-chains of a particular class. Within each H- or L-chain variable region are three hypervariable regions of extensive sequence diversity, each consisting of about 5 to 10 amino acids. In the antibody molecule, the H- and L-chain hypervariable regions come together to form the antigen recognition site.

(Reviewed in Alberts, B. et al. supra, pp. 1206-1213 and 1216-1217.)

Both H-chains and L-chains contain the repeated Ig domains of members of the Ig superfamily. For example, a typical H-chain contains four Ig domains, three of which occur within the constant region and one of which occurs within the variable region and contributes to the formation of the antigen recognition site. Likewise, a typical L-chain contains two Ig domains, one of which occurs within the constant region and one of which occurs within the variable region.

The immune system is capable of recognizing and responding to any foreign molecule that enters the body. Therefore, the immune system must be armed with a full repertoire of antibodies against all potential antigens. Such antibody diversity is generated by somatic rearrangement of gene segments encoding variable and constant regions. These gene segments are joined together by site-specific recombination which occurs between highly conserved DNA sequences that flank each gene segment. Because there are hundreds of different gene segments, millions of unique genes can be generated combinatorially. In addition, imprecise joining of these segments and an unusually high rate of somatic mutation within these segments further contribute to the generation of a diverse antibody population.

The discovery of new secreted proteins, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of secreted proteins.

The invention features purified polypeptides, secreted proteins, referred to collectively as "SECP" and individually as "SECP-1," "SECP-2," "SECP-3," "SECP-4," "SECP-5," "SECP-6," "SECP-7," "SECP-8," "SECP-9," "SECP-10," "SECP-11," "SECP-12," "SECP-13," "SECP-14," "SECP-15," "SECP-16," "SECP-17," "SECP-18," "SECP-19," "SECP-20," "SECP-21," "SECP-22," 5 "SECP-23," "SECP-24," "SECP-25," "SECP-26," "SECP-27," "SECP-28," "SECP-29," "SECP-30," "SECP-31," "SECP-32," "SECP-33," "SECP-34," "SECP-35," "SECP-36," "SECP-37," "SECP-38," "SECP-39," "SECP-40," "SECP-41," "SECP-42," "SECP-43," "SECP-44," "SECP-45," "SECP-46," "SECP-47," "SECP-48," "SECP-49," "SECP-50," "SECP-51," "SECP-52," "SECP-53," "SECP-54," "SECP-55," "SECP-56," "SECP-57," "SECP-58," "SECP-59," "SECP-60," "SECP-61," "SECP-62," 10 "SECP-63," "SECP-64," "SECP-65," "SECP-66," and "SECP-67." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of 15 a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-67.

The invention further provides an isolated polynucleotide encoding a polypeptide selected 20 from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a 25 polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-67. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:68-134.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter 30 sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group 35 consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino

acid sequence selected from the group consisting of SEQ ID NO:1-67. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group

- 5 consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. The method comprises a)
- 10 culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a

- 15 polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an
- 20 immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.

- The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

- Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a-d). The

method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional SECP, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an

immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional SECP, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional SECP, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, c) a biologically active fragment of a polypeptide

having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the 5 activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in

10 altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

The invention further provides a method for assessing toxicity of a test compound, said

15 method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a 20 polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a 25 polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the 30 target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.

5 Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

10 Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polynucleotides of the invention.

15 Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

20 **DESCRIPTION OF THE INVENTION**

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which 25 will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so 30 forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now 35 described. All publications mentioned herein are cited for the purpose of describing and disclosing

the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

5 "SECP" refers to the amino acid sequences of substantially purified SECP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of SECP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other 10 compound or composition which modulates the activity of SECP either by directly interacting with SECP or by acting on components of the biological pathway in which SECP participates.

An "allelic variant" is an alternative form of the gene encoding SECP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in 15 polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding SECP include those sequences with deletions, 20 insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as SECP or a polypeptide with at least one functional characteristic of SECP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding SECP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding 25 SECP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent SECP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of SECP is retained. For example, 30 negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

35 The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide,

polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

- 5 "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of SECP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small 10 molecules, or any other compound or composition which modulates the activity of SECP either by directly interacting with SECP or by acting on components of the biological pathway in which SECP participates.

- The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. 15 Antibodies that bind SECP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, 20 and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures 25 on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

- The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), described in U.S. Patent No. 30 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH₂), which may improve a desired property, e.g., 35 resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules,

e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)

The term "intramer" refers to an aptamer which is expressed *in vivo*. For example, a vaccinia 5 virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl Acad. Sci. USA 96:3606-3610).

The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed 10 nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified 15 sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring 20 nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic SECP, or of any oligopeptide thereof, 25 to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'. In an alternative example, SEQ ID NO:135 and SEQ ID NO:136 pair with their 30 complements, SEQ ID NO:114 and SEQ ID NO:116, respectively.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding SECP or fragments of SECP may be 35 employed as hybridization probes. The probes may be stored in freeze-dried form and may be

associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated

- 5 DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and
10 assembled to produce the consensus sequence.

- "Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded
15 as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
20	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
25	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
30	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
35	Val	Ile, Leu, Thr

- Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of
40 the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative

- 5 polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or

- 10 absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be 15 assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.

- A "fragment" is a unique portion of SECP or the polynucleotide encoding SECP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a 20 fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected 25 from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

- A fragment of SEQ ID NO:68-134 comprises a region of unique polynucleotide sequence that 30 specifically identifies SEQ ID NO:68-134, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:68-134 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:68-134 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:68-134 and the region of SEQ ID NO:68-134 to which the fragment corresponds are routinely 35 determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-67 is encoded by a fragment of SEQ ID NO:68-134. A fragment of SEQ ID NO:1-67 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-67. For example, a fragment of SEQ ID NO:1-67 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-67.

- 5 The precise length of a fragment of SEQ ID NO:1-67 and the region of SEQ ID NO:1-67 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A

- 10 “full length” polynucleotide sequence encodes a “full length” polypeptide sequence.

“Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

- The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a
15 standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

- Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e
20 sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and “diagonals saved”=4. The “weighted” residue
25 weight table is selected as the default. Percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polynucleotide sequences.

- Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available
30 from several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2
35 Sequences” can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>.

The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

- 5 *Matrix: BLOSUM62*
 Reward for match: 1
 Penalty for mismatch: -2
 Open Gap: 5 and Extension Gap: 2 penalties
 Gap x drop-off: 50
10 *Expect: 10*
 Word Size: 11
 Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, 15 over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

20 Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

25 The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

30 Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default 35 residue weight table. As with polynucleotide alignments, the percent identity is reported by

CLUSTAL V as the “percent similarity” between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for

5 example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

10 *Word Size: 3*

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for
15 instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain
20 DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

25 “Hybridization” refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the
30 stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
35 Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about

1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

10 High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents 15 include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such 20 similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid 25 support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune 30 disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of SECP which is capable of eliciting an immune response when introduced into a living organism, for example, a 35 mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment

of SECP which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

5 The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of SECP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of SECP.

10 The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

15 "Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

20 "Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

25 "Post-translational modification" of an SECP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of SECP.

30 "Probe" refers to nucleic acid sequences encoding SECP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.

35 "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers 5 may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular 10 Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

15 Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the 20 PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which 25 sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, 30 thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to 35 identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of

oligonucleotide selection are not limited to those described above.

A “recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the 5 artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, *supra*. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to 10 transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A “regulatory element” refers to a nucleic acid sequence usually derived from untranslated 15 regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

“Reporter molecules” are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, 20 chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An “RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose 25 instead of deoxyribose.

The term “sample” is used in its broadest sense. A sample suspected of containing SECP, nucleic acids encoding SECP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

30 The terms “specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide 35 comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A

and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which 5 they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, 10 microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient 15 cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term 20 "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic 25 acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term *genetic manipulation* does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The 30 transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), 35 supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

The invention is based on the discovery of new human secreted proteins (SECP), the polynucleotides encoding SECP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte

polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of SEQ ID NO:1-7, SEQ ID

- 5 NO:34-35, and SEQ ID NO:57-58, as identified by BLAST analysis against the GenBank protein
(genpept) database. Columns 1 and 2 show polypeptides of SEQ ID NO:1-7, SEQ ID NO:34-35, and
SEQ ID NO:57-58 and their corresponding Incyte polypeptide sequence numbers (Incyte Polypeptide
ID). Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank
homolog. Column 4 shows the probability score for the match between SEQ ID NO:1-7, SEQ ID
10 NO:34-35, and SEQ ID NO:57-58 and their GenBank homologs. Column 5 shows the annotation of
the GenBank homolog along with relevant citations where applicable, all of which are expressly
incorporated by reference herein.

Table 3 shows various structural features of each of the polypeptides of the invention.

- Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the
15 corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of
the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4
shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as
determined by the MOTIFS program of the GCG sequence analysis software package (Genetics
Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature
20 sequences, domains, and motifs, including the locations of signal peptides (as indicated by "Signal
Peptide" and/or "signal_cleavage"). Column 7 shows analytical methods for protein
structure/function analysis and in some cases, searchable databases to which the analytical methods
were applied.

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these

- 25 properties establish that the claimed polypeptides are secreted proteins. For example, SEQ ID NO:1
is 56% identical to a human cerebral cell adhesion molecule (GenBank ID g5764665) as determined
by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score
is 3.8e-156, which indicates the probability of obtaining the observed polypeptide sequence alignment
by chance. SEQ ID NO:1 also contains a lysyl hydrolase domain as determined by searching for
30 statistically significant matches in the hidden Markov model (HMM)-based PFAM database of
conserved protein family domains. (See Table 3.) Data from SPSCAN, HMMER,
BLAST_PRODOM and BLAST_DOMO analyses using other sequence databases provide further
corroborative evidence that SEQ ID NO:1 is a secreted hydrolase. In an alternative example, SEQ ID
NO:2 is 32% identical to mouse seizure-related gene product 6 precursor (GenBank ID g693910) and
35 is 67% identical from residue S22 to residue R527 to human CUB and sushi multiple domains 1

protein (GenBank ID g14794726) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability scores are 2.9e-42 and 0.0 respectively, which indicate the probabilities of obtaining the observed polypeptide sequence alignments by chance. SEQ ID NO:2 also contains three sushi domains and two CUB domains as determined by searching for 5 statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) In addition, SEQ ID NO:2 contains a signal peptide as identified by HMMER analysis. Data from BLIMPS analysis provides further corroborative evidence that SEQ ID NO:2 is a secreted protein which contains sushi domains. In an alternative example, SEQ ID NO:3 shares 51% local identity to a mouse transmembrane protein (GenBank ID 10 g7259265) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.4e-28, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:3 also contains a signal peptide as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from SPSCAN 15 analyses provide further corroborative evidence that SEQ ID NO:3 is a secreted protein. In an alternative example, SEQ ID NO:58 is 39% identical to ZOG, a rat zona glomerulosa specific protein (GenBank ID g3097285) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.2e-65, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:58 contains a signal peptide and 20 single transmembrane domain. SEQ ID NO:58 also contains a number of EGF-like domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) The presence of this motif is confirmed by BLIMPS and MOTIFS analyses, providing further corroborative evidence that SEQ ID NO:58 is a secreted protein. SEQ ID NO:4-57 and SEQ ID NO:59-67 were analyzed and 25 annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-67 are described in Table 7.

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence 30 identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in base pairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:68-136 or that distinguish between SEQ ID NO:68-136 and 35 related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA

sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective 5 full length sequences.

The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 8052177J1 is the identification number of an Incyte cDNA sequence, and FTUBTUE01 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from 10 pooled cDNA libraries (e.g., 71926854V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g2204647) which contributed to the assembly of the full length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (*i.e.*, those sequences including the designation "ENST"). Alternatively, the identification numbers in column 5 15 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (*i.e.*, those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (*i.e.*, those sequences including the designation "NP"). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, FL_XXXXXX_N₁_N₂_YYYYY_N₃_N₄ represents a "stitched" 20 sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYY is the number of the prediction generated by the algorithm, and N_{1,2,3...}, if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, 25 FLXXXXXX_gAAAAAA_gBBBBB_1_N is the identification number of a "stretched" sequence, with XXXXXX being the Incyte project identification number, gAAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances 30 where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier (*i.e.*, gBBBBB).

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The 35 following Table lists examples of component sequence prefixes and corresponding sequence analysis

methods associated with the prefixes (see Example IV and Example V).

Prefix	Type of analysis and/or examples of programs
5	GNN, GFG, ENST Exon prediction from genomic sequences using, for example, GENSCAN (Stanford University, CA, USA) or FGENES (Computer Genomics Group, The Sanger Centre, Cambridge, UK).
	GBI Hand-edited analysis of genomic sequences.
	FL Stitched or stretched genomic sequences (see Example V).
	INCY Full length transcript and exon prediction from mapping of EST sequences to the genome. Genomic location and EST composition data are combined to predict the exons and resulting transcript.

In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in
10 column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant
Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotide
sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is
the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which
15 were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors
which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

The invention also encompasses SECP variants. A preferred SECP variant is one which has
at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid
sequence identity to the SECP amino acid sequence, and which contains at least one functional or
20 structural characteristic of SECP.

The invention also encompasses polynucleotides which encode SECP. In a particular
embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected
from the group consisting of SEQ ID NO:68-134, which encodes SECP. The polynucleotide
sequences of SEQ ID NO:68-134, as presented in the Sequence Listing, embrace the equivalent RNA
25 sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the
sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding SECP. In
particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at
least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide
30 sequence encoding SECP. A particular aspect of the invention encompasses a variant of a
polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID
NO:68-134 which has at least about 70%, or alternatively at least about 85%, or even at least about

95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:68-134. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of SECP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the
5 genetic code, a multitude of polynucleotide sequences encoding SECP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the
10 polynucleotide sequence of naturally occurring SECP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode SECP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring SECP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding SECP or
15 its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding SECP and its derivatives without altering the encoded amino acid sequences
20 include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode SECP and SECP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell
25 systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding SECP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:68-134 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and
30 S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment
35 of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied

Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV),
5 PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M.
10 (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding SECP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed,
15 restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve
25 unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National
30 Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include
35 sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T)

library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode SECP may be cloned in recombinant DNA molecules that direct expression of SECP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent 15 degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express SECP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter SECP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA 20 shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such 25 as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of SECP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene 30 variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random 35 point mutations may be recombined, screened, and then reshuffled until the desired properties are

optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

- 5 In another embodiment, sequences encoding SECP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, SECP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques.
- 10 (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of SECP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or
- 15 a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

- 20 In order to express a biologically active SECP, the nucleotide sequences encoding SECP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences
- 25 encoding SECP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding SECP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding SECP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994)
- 30 Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding SECP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory

- 5 Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding SECP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509; Engelhard, E.K. et al. (1994) *Proc. Natl. Acad. Sci. USA*

- 10 91:3224-3227; Sandig, V. et al. (1996) *Hum. Gene Ther.* 7:1937-1945; Takamatsu, N. (1987) *EMBO J.* 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci. USA* 81:3655-3659; and Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for

- 15 delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) *Cancer Gen. Ther.* 5(6):350-356; Yu, M. et al. (1993) *Proc. Natl. Acad. Sci. USA* 90(13):6340-6344; Buller, R.M. et al. (1985) *Nature* 317(6040):813-815; McGregor, D.P. et al. (1994) *Mol. Immunol.* 31(3):219-226; and Verma, I.M. and N. Somia (1997) *Nature* 389:239-242.)

The invention is not limited by the host cell employed.

- 20 In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding SECP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding SECP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding SECP into the vector's multiple
- 25 cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of SECP are needed, e.g. for the production of
- 30 antibodies, vectors which direct high level expression of SECP may be used. For example, vectors
- 35

containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of SECP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such 5 vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of SECP. Transcription of sequences 10 encoding SECP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock 15 promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.)
15 These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding SECP may be ligated into 20 an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses SECP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma 25 virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of 30 DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of SECP in cell lines is preferred. For example, sequences encoding SECP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous 35 expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media

before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

5 Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to 10 methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. 15 Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

20 Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding SECP is inserted within a marker gene sequence, transformed cells containing sequences encoding SECP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding SECP under the control of a single 25 promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding SECP and that express SECP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR 30 amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

35 Immunological methods for detecting and measuring the expression of SECP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing

monoclonal antibodies reactive to two non-interfering epitopes on SECP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and 5 Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding SECP

10 include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding SECP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety 15 of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding SECP may be cultured under 20 conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode SECP may be designed to contain signal sequences which direct secretion of SECP through a prokaryotic or eukaryotic cell membrane.

25 In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity.

30 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid 35 sequences encoding SECP may be ligated to a heterologous sequence resulting in translation of a

- fusion protein in any of the aforementioned host systems. For example, a chimeric SECP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of SECP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the SECP encoding sequence and the heterologous protein sequence, so that SECP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10).
- 15 A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled SECP may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the 20 T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

SECP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to SECP. At least one and up to a plurality of test compounds may be screened for specific binding to SECP. Examples of test compounds include antibodies, oligonucleotides, 25 proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of SECP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which SECP 30 binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express SECP, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing SECP or cell membrane fractions which contain SECP are then contacted 35 with a test compound and binding, stimulation, or inhibition of activity of either SECP or the

compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with SECP, either in

- 5 solution or affixed to a solid support, and detecting the binding of SECP to the compound.

Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

- 10 SECP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of SECP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for SECP activity, wherein SECP is combined with at least one test compound, and the activity of SECP in the presence of a test compound is compared with the activity of SECP in the absence of the test
- 15 compound. A change in the activity of SECP in the presence of the test compound is indicative of a compound that modulates the activity of SECP. Alternatively, a test compound is combined with an in vitro or cell-free system comprising SECP under conditions suitable for SECP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of SECP may do so indirectly and need not come in direct contact with the test compound. At least one and up
- 20 to a plurality of test compounds may be screened.

- In another embodiment, polynucleotides encoding SECP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For
- 25 example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using
- 30 the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce
- 35 heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential

therapeutic or toxic agents.

Polynucleotides encoding SECP may also be manipulated *in vitro* in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate 5 into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) *Science* 282:1145-1147).

Polynucleotides encoding SECP can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding SECP is injected into animal ES cells, and the injected sequence 10 integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress SECP, e.g., by secreting SECP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) *Biotechnol. Annu. Rev.* 4:55-74).

15 THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of SECP and secreted proteins. In addition, the expression of SECP is closely associated with neurological, gastrointestinal, cardiovascular, reproductive, developmental, diseased, and tumorous tissues such as adrenal gland tumor tissue. Therefore, SECP appears to play a role in 20 cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders. In the treatment of disorders associated with increased SECP expression or activity, it is desirable to decrease the expression or activity of SECP. In the treatment of disorders associated with decreased SECP expression or activity, it is desirable to increase the expression or activity of SECP.

25 Therefore, in one embodiment, SECP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, 30 polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory 35 disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory

distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia

5 with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic

10 lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a cardiovascular disorder such as congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid

15 aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, complications of cardiac transplantation, arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose

20 veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural

25 muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the

30 nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis,

35 inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental

disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; and a developmental disorder such as renal tubular acidosis,

5 anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as

10 Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss.

In another embodiment, a vector capable of expressing SECP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP including, but not limited to, those described above.

15 In a further embodiment, a composition comprising a substantially purified SECP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP including, but not limited to, those provided above.

20 In still another embodiment, an agonist which modulates the activity of SECP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP including, but not limited to, those listed above.

25 In a further embodiment, an antagonist of SECP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of SECP. Examples of such disorders include, but are not limited to, those cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders described above. In one aspect, an antibody which specifically binds SECP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express SECP.

30 In an additional embodiment, a vector expressing the complement of the polynucleotide encoding SECP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of SECP including, but not limited to, those described above.

35 In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The

combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of SECP may be produced using methods which are generally known in the art.

- 5 In particular, purified SECP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind SECP. Antibodies to SECP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit
10 dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with SECP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral
15 gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to SECP have an amino acid sequence consisting of at least about 5 amino acids, and generally will
20 consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of SECP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to SECP may be prepared using any technique which provides for the
25 production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

30 In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single
35 chain antibodies may be adapted, using methods known in the art, to produce SECP-specific single

chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for SECP may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between SECP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering SECP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for SECP. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of SECP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple SECP epitopes, represents the average affinity, or avidity, of the antibodies for SECP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular SECP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10⁹ to 10¹² L/mole are preferred for use in immunoassays in which the SECP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10⁶ to 10⁷ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of SECP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation 5 of SECP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding SECP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene 10 expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding SECP. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding SECP. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

15 In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Clin. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995) 20 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) *Blood* 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) *Pharmacol. Ther.* 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) *Br. Med. Bull.* 51(1):217-225; Boado, R.J. et 25 al. (1998) *J. Pharm. Sci.* 87(11):1308-1315; and Morris, M.C. et al. (1997) *Nucleic Acids Res.* 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding SECP may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) *Science* 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency 30 (Blaese, R.M. et al. (1995) *Science* 270:475-480; Bordignon, C. et al. (1995) *Science* 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) *Cell* 75:207-216; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:643-666; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:667-703), thalassamias, familial 35 hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal,

R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D.

5 (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in SECP expression or regulation causes disease, the expression of SECP from an appropriate population of transduced cells may alleviate the clinical manifestations

10 caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in SECP are treated by constructing mammalian expression vectors encoding SECP and introducing these vectors by mechanical means into SECP-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) 15 ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of SECP include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). SECP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β -actin genes), (ii) an inducible 25 promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter 30 (Rossi, F.M.V. and Blau, H.M. supra), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding SECP from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental 35 parameters. In the alternative, transformation is performed using the calcium phosphate method

(Graham, F.L. and A.J. Eb (1973) *Virology* 52:456-467), or by electroporation (Neumann, E. et al. (1982) *EMBO J.* 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with

5 respect to SECP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding SECP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are
10 commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) *Proc. Natl. Acad. Sci. USA* 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) *J. Virol.* 61:1647-1650; Bender, M.A. et al. (1987) *J. Virol.* 61:1639-1646; Adam, M.A. and
15 A.D. Miller (1988) *J. Virol.* 62:3802-3806; Dull, T. et al. (1998) *J. Virol.* 72:8463-8471; Zufferey, R. et al. (1998) *J. Virol.* 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-
20 cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) *J. Virol.* 71:7020-7029; Bauer, G. et al. (1997) *Blood* 89:2259-2267; Bonyhadi, M.L. (1997) *J. Virol.* 71:4707-4716; Ranga, U. et al. (1998) *Proc. Natl. Acad. Sci. USA* 95:1201-1206; Su, L. (1997) *Blood* 89:2283-2290).

25 In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding SECP to cells which have one or more genetic abnormalities with respect to the expression of SECP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas
30 (Csete, M.E. et al. (1995) *Transplantation* 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) *Annu. Rev. Nutr.* 19:511-544 and Verma, I.M. and N. Somia (1997) *Nature* 389:239-242, both incorporated by reference herein.

35 In another alternative, a herpes-based, gene therapy delivery system is used to deliver

polynucleotides encoding SECP to target cells which have one or more genetic abnormalities with respect to the expression of SECP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing SECP to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) *Exp. Eye Res.* 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) *J. Virol.* 73:519-532 and Xu, H. et al. (1994) *Dev. Biol.* 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding SECP to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) *Curr. Opin. Biotechnol.* 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for SECP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of SECP-coding RNAs and the synthesis of high levels of SECP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) *Virology* 228:74-83). The wide host range of alphaviruses will allow the introduction of SECP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA

transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, 5 inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-10 177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, 15 engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding SECP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, 20 corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared 25 by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding SECP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs 30 that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible 35 modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs

and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

- 5 An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding SECP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular
10 chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased SECP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding SECP may be therapeutically useful, and in the treatment of disorders associated with
15 decreased SECP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding SECP may be therapeutically useful.

At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in
20 altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding SECP is exposed to at least one test compound thus obtained. The sample
25 may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding SECP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding SECP. The amount of hybridization may be quantified, thus forming
30 the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system
35 (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res.

28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.

10 Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

15 Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of 20 Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of SECP, antibodies to SECP, and mimetics, agonists, antagonists, or inhibitors of SECP.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, 25 enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides 30 and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active 35 ingredients are contained in an effective amount to achieve the intended purpose. The determination

of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising SECP or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of 5 the macromolecule. Alternatively, SECP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell 10 culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example SECP 15 or fragments thereof, antibodies of SECP, and agonists, antagonists or inhibitors of SECP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the 20 therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the 25 patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the 30 subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and 35 methods of delivery is provided in the literature and generally available to practitioners in the art.

Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

- 5 In another embodiment, antibodies which specifically bind SECP may be used for the diagnosis of disorders characterized by expression of SECP, or in assays to monitor patients being treated with SECP or agonists, antagonists, or inhibitors of SECP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for SECP include methods which utilize the antibody and a label to detect SECP in human body
- 10 fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring SECP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of SECP expression. Normal 15 or standard values for SECP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to SECP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of SECP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values.

- 20 Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding SECP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of SECP may be correlated with 25 disease. The diagnostic assay may be used to determine absence, presence, and excess expression of SECP, and to monitor regulation of SECP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding SECP or closely related molecules may be used to identify nucleic acid sequences which encode SECP. The specificity of the probe, whether it is made 30 from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding SECP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% 35 sequence identity to any of the SECP encoding sequences. The hybridization probes of the subject

invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:68-134 or from genomic sequences including promoters, enhancers, and introns of the SECP gene.

Means for producing specific hybridization probes for DNAs encoding SECP include the cloning of polynucleotide sequences encoding SECP or SECP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding SECP may be used for the diagnosis of disorders associated with expression of SECP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a cardiovascular disorder such as congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic

endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, complications of cardiac transplantation, arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; and a developmental disorder such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratoderma, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Sydenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss. The polynucleotide sequences encoding SECP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered SECP expression. Such qualitative or quantitative methods are well known in the art.

35 In a particular aspect, the nucleotide sequences encoding SECP may be useful in assays that

detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding SECP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a 5 standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding SECP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

10 In order to provide a basis for the diagnosis of a disorder associated with expression of SECP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding SECP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects 15 with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, 20 hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or 25 overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

30 Additional diagnostic uses for oligonucleotides designed from the sequences encoding SECP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding SECP, or a fragment of a polynucleotide complementary to the polynucleotide encoding SECP, and will be employed under optimized conditions for identification of a specific gene or 35 condition. Oligomers may also be employed under less stringent conditions for detection or

quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding SECP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding SECP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (*isSNP*), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of SECP include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and

effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, SECP, fragments of SECP, or antibodies specific for SECP may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms,

knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at <http://www.niehs.nih.gov/oc/news/toxchip.htm>.) Therefore, it is important and desirable in

5 toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present

10 invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global

15 pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the

20 separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, *supra*). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical

25 density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the

30 spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for SECP to quantify the

35 levels of SECP expression. In one embodiment, the antibodies are used as elements on a microarray,

and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) *Anal. Biochem.* 270:103-111; Mendoza, L.G. et al. (1999) *Biotechniques* 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol-
5 or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson,
10 N.L. and J. Seilhamer (1997) *Electrophoresis* 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.
15

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic
20 response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are
25 incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g.,
30 Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) *Proc. Natl. Acad. Sci. USA* 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) *Proc. Natl. Acad. Sci. USA* 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are
35 well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed.

(1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding SECP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355; Price, C.M. (1993) *Blood Rev.* 7:127-134; and Trask, B.J. (1991) *Trends Genet.* 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) *Proc. Natl. Acad. Sci. USA* 83:7353-7357.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, *supra*, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding SECP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, SECP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a

solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between SECP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT

5 application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with SECP, or fragments thereof, and washed. Bound SECP is then detected by methods well known in the art. Purified SECP can also be coated directly onto plates for use in the aforementioned drug screening techniques.

Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a
10 solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding SECP specifically compete with a test compound for binding SECP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with SECP.

15 In additional embodiments, the nucleotide sequences which encode SECP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding
20 description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, including U.S. Ser. No. 60/236,869, U.S. Ser. No. 60/240,108, U.S. Ser. No. 60/239,812, U.S. Ser.
25 No. 60/241,282, and U.S. Ser. No. 60/242,218, are hereby expressly incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database
30 (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium
35 acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was 5 isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the 10 recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column 15 chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), or pINCY (Incyte 20 Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids obtained as described in Example I were recovered from host cells by *in vivo* 25 excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 30 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically 35 using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence

scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.

Sequencing reactions were processed using standard methods or high-throughput instrumentation

5 such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

10 Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 15 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The 20 Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.) 25 The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA 30 assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length 35 polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite,

and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the

- 5 CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used,

- 10 the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

- 15 The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:68-136. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 2.

IV. Identification and Editing of Coding Sequences from Genomic DNA

- 20 Putative secreted proteins were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an
25 assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode secreted proteins, the encoded polypeptides were analyzed by querying against PFAM models for secreted proteins. Potential secreted proteins were also identified by homology to
30 Incyte cDNA sequences that had been annotated as secreted proteins. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of
35 the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA

coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived 5 entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data

"Stitched" Sequences

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example 10 III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on 15 more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear 20 along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan 25 were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public 30 databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions 35 may occur in the chimeric protein with respect to the original GenBank protein homolog. The

GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

5 **VI. Chromosomal Mapping of SECP Encoding Polynucleotides**

The sequences which were used to assemble SEQ ID NO:68-134 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:68-134 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

15 Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM
20 distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (<http://www.ncbi.nlm.nih.gov/genemap/>), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

25 In this manner, SEQ ID NO:70 was mapped to chromosome 5 within the interval from 79.2 to 92.3 centiMorgans. SEQ ID NO:98 was mapped to chromosome 4 within the interval from 145.3 to 146.4 centiMorgans.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a
30 gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is
35 much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the

computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \min\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}}$$

5

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the
10 product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a
15 BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

20 Alternatively, polynucleotide sequences encoding SECP are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue;
25 digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following
30 disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding SECP. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

35 **VIII. Extension of SECP Encoding Polynucleotides**

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using
5 OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one
10 extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme
15 (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2:
94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times;
20 Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II
25 (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates,
30 digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham
35 Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site

overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase

- 5 (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted 10 with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

- In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides 15 designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

- Hybridization probes derived from SEQ ID NO:68-136 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide 20 fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). 25 An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

- The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 30 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

- 35 The linkage or synthesis of array elements upon a microarray can be achieved utilizing

photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, *supra*), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), *supra*). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers.

- 5 Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645;
- 10 Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the
15 biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element
20 on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is
25 reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by *in vitro* transcription
30 from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated
35 using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is

then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μ l 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element
5 is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

10 Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a
15 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference. 1 μ l of the array element DNA, at an average concentration of 100 ng/ μ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

20 Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 μ l of sample mixture consisting of 0.2 μ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just
30 slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μ l of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

Detection

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

Sequences complementary to the SECP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring SECP. For example, SEQ ID NO:135 and SEQ ID NO:136 are complementary polynucleotides to SEQ ID NO:114 and SEQ ID NO:116, respectively. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of SECP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the SECP-encoding transcript.

XII. Expression of SECP

Expression and purification of SECP is achieved using bacterial or virus-based expression systems. For expression of SECP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).

Antibiotic resistant bacteria express SECP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of SECP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding SECP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, SECP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from

SECP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, 5 supra, ch. 10 and 16). Purified SECP obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, and XVIII, where applicable.

XIII. Functional Assays

SECP function is assessed by expressing the sequences encoding SECP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression 10 vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a 15 marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate 20 the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; 25 alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of SECP on gene expression can be assessed using highly purified populations 30 of cells transfected with sequences encoding SECP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. 35 Expression of mRNA encoding SECP and other genes of interest can be analyzed by northern

analysis or microarray techniques.

XIV. Production of SECP Specific Antibodies

SECP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to 5 immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the SECP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well 10 described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the 15 oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for anti-peptide and anti-SECP activity by, for example, binding the peptide or SECP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring SECP Using Specific Antibodies

20 Naturally occurring or recombinant SECP is substantially purified by immunoaffinity chromatography using antibodies specific for SECP. An immunoaffinity column is constructed by covalently coupling anti-SECP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

25 Media containing SECP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of SECP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/SECP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and SECP is collected.

30 XVI. Identification of Molecules Which Interact with SECP

SECP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) *Biochem. J.* 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled SECP, washed, and any wells with labeled SECP complex are assayed. Data obtained using different concentrations 35 of SECP are used to calculate values for the number, affinity, and association of SECP with the

candidate molecules.

Alternatively, molecules interacting with SECP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) *Nature* 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

5 SECP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

XVII. Demonstration of SECP Activity

10 An assay for growth stimulating or inhibiting activity of SECP measures the amount of DNA synthesis in Swiss mouse 3T3 cells (McKay, I. and Leigh, I., eds. (1993) *Growth Factors: A Practical Approach*, Oxford University Press, New York, NY). In this assay, varying amounts of SECP are added to quiescent 3T3 cultured cells in the presence of [³H]thymidine, a radioactive DNA precursor. SECP for this assay can be obtained by recombinant means or from biochemical preparations.

15 Incorporation of [³H]thymidine into acid-precipitable DNA is measured over an appropriate time interval, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold SECP concentration range is indicative of growth modulating activity. One unit of activity per milliliter is defined as the concentration of SECP producing a 50% response level, where 100% represents maximal incorporation of [³H]thymidine into acid-precipitable DNA .

20 Alternatively, an assay for SECP activity measures the stimulation or inhibition of neurotransmission in cultured cells. Cultured CHO fibroblasts are exposed to SECP. Following endocytic uptake of SECP, the cells are washed with fresh culture medium, and a whole cell voltage-clamped *Xenopus* myocyte is manipulated into contact with one of the fibroblasts in SECP-free medium. Membrane currents are recorded from the myocyte. Increased or decreased current relative to control values are indicative of neuromodulatory effects of SECP (Morimoto, T. et al. (1995) *Neuron* 15:689-696).

25 Alternatively, an assay for SECP activity measures the amount of SECP in secretory, membrane-bound organelles. Transfected cells as described above are harvested and lysed. The 30 lysate is fractionated using methods known to those of skill in the art, for example, sucrose gradient ultracentrifugation. Such methods allow the isolation of subcellular components such as the Golgi apparatus, ER, small membrane-bound vesicles, and other secretory organelles. Immunoprecipitations from fractionated and total cell lysates are performed using SECP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting 35 techniques. The concentration of SECP in secretory organelles relative to SECP in total cell lysate is

proportional to the amount of SECP in transit through the secretory pathway.

Alternatively, AMP binding activity is measured by combining SECP with ^{32}P -labeled AMP. The reaction is incubated at 37°C and terminated by addition of trichloroacetic acid. The acid extract is neutralized and subjected to gel electrophoresis to remove unbound label. The radioactivity

5 retained in the gel is proportional to SECP activity.

Alternatively, SECP activity for SEQ ID NO:67, for example, can be measured as protease inhibitory activity. Trypsin (100 units) is incubated at ambient temperature in a quartz cuvette in pH 7.6 assay buffer containing 63 mM sodium phosphate, 0.23 mM N α -benzoyle-L-arginine ethyl ester, 0.06 mM hydrochloric acid, with or without SECP. Immediately after mixing by inversion, the 10 increase in $A_{253\text{ nm}}$ is recorded for approximately 5 minutes and the enzyme activity is calculated (Bergmeyer, H.U. et al. (1974) *Meth. Enzym. Anal.* 1:515-516). SECP activity is proportional to its effect on the activity of trypsin.

XVIII. Demonstration of Immunoglobulin Activity

An assay for SECP activity measures the ability of SECP to recognize and precipitate 15 antigens from serum. This activity can be measured by the quantitative precipitin reaction. (Golub, E. S. et al. (1987) *Immunology: A Synthesis*, Sinauer Associates, Sunderland, MA, pages 113-115.) SECP is isotopically labeled using methods known in the art. Various serum concentrations are added to constant amounts of labeled SECP. SECP-antigen complexes precipitate out of solution and are collected by centrifugation. The amount of precipitable SECP-antigen complex is proportional to 20 the amount of radioisotope detected in the precipitate. The amount of precipitable SECP-antigen complex is plotted against the serum concentration. For various serum concentrations, a characteristic precipitin curve is obtained, in which the amount of precipitable SECP-antigen complex initially increases proportionately with increasing serum concentration, peaks at the equivalence point, and then decreases proportionately with further increases in serum concentration. Thus, the 25 amount of precipitable SECP-antigen complex is a measure of SECP activity which is characterized by sensitivity to both limiting and excess quantities of antigen.

Alternatively, an assay for SECP activity measures the expression of SECP on the cell surface. cDNA encoding SECP is transfected into a non-leukocytic cell line. Cell surface proteins are labeled with biotin (de la Fuente, M.A. et.al. (1997) *Blood* 90:2398-2405). Immunoprecipitations 30 are performed using SECP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of SECP expressed on the cell surface.

Alternatively, an assay for SECP activity measures the amount of cell aggregation induced by overexpression of SECP. In this assay, cultured cells such as NIH3T3 are transfected with cDNA 35 encoding SECP contained within a suitable mammalian expression vector under control of a strong

promoter. Cotransfection with cDNA encoding a fluorescent marker protein, such as Green Fluorescent Protein (CLONTECH), is useful for identifying stable transfectants. The amount of cell agglutination, or clumping, associated with transfected cells is compared with that associated with untransfected cells. The amount of cell agglutination is a direct measure of SECP activity.

5

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it 10 should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
3211795	1	3211795CD1	68	3211795CB1
6813464	2	6813464CD1	69	6813464CB1
2156540	3	2156540CD1	70	2156540CB1
894939	4	894939CD1	71	894939CB1
4620890	5	4620890CD1	72	4620890CB1
5514146	6	5514146CD1	73	5514146CB1
7474769	7	7474769CD1	74	7474769CB1
065296	8	065296CD1	75	065296CB1
231994	9	231994CD1	76	231994CB1
538054	10	538054CD1	77	538054CB1
1259305	11	1259305CD1	78	1259305CB1
1483702	12	1483702CD1	79	1483702CB1
1519324	13	1519324CD1	80	1519324CB1
1630169	14	1630169CD1	81	1630169CB1
1664253	15	1664253CD1	82	1664253CB1
1864715	16	1864715CD1	83	1864715CB1
1929395	17	1929395CD1	84	1929395CB1
1987737	18	1987737CD1	85	1987737CB1
2122866	19	2122866CD1	86	2122866CB1
2123981	20	2123981CD1	87	2123981CB1
2200177	21	2200177CD1	88	2200177CB1
2319255	22	2319255CD1	89	2319255CB1
2792452	23	2792452CD1	90	2792452CB1
2853088	24	2853088CD1	91	2853088CB1
2949004	25	2949004CD1	92	2949004CB1
3011670	26	3011670CD1	93	3011670CB1
3242083	27	3242083CD1	94	3242083CB1
3363391	28	3363391CD1	95	3363391CB1
3703614	29	3703614CD1	96	3703614CB1
4000975	30	4000975CD1	97	4000975CB1
4598831	31	4598831CD1	98	4598831CB1

Table 1 (cont.)

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
4992201	32	4992201CD1	99	4992201CB1
5441583	33	5441583CD1	100	5441583CB1
1639243	34	1639243CD1	101	1639243CB1
1335166	35	1335166CD1	102	1335166CB1
166894	36	166894CD1	103	166894CB1
217969	37	217969CD1	104	217969CB1
335237	38	335237CD1	105	335237CB1
938306	39	938306CD1	106	938306CB1
1448129	40	1448129CD1	107	1448129CB1
1761049	41	1761049CD1	108	1761049CB1
1959587	42	1959587CD1	109	1959587CB1
2303463	43	2303463CD1	110	2303463CB1
2512281	44	2512281CD1	111	2512281CB1
2755924	45	2755924CD1	112	2755924CB1
2796369	46	2796369CD1	113	2796369CB1
3010920	47	3010920CD1	114	3010920CB1
3360955	48	3360955CD1	115	3360955CB1
3409459	49	3409459CD1	116	3409459CB1
4102938	50	4102938CD1	117	4102938CB1
4124601	51	4124601CD1	118	4124601CB1
4180577	52	4180577CD1	119	4180577CB1
5265807	53	5265807CD1	120	5265807CB1
5405979	54	5405979CD1	121	5405979CB1
7481109	55	7481109CD1	122	7481109CB1
6247114	56	6247114CD1	123	6247114CB1
3243866	57	3243866CD1	124	3243866CB1
7475633	58	7475633CD1	125	7475633CB1
1431268	59	1431268CD1	126	1431268CB1
2414185	60	2414185CD1	127	2414185CB1
5266594	61	5266594CD1	128	5266594CB1
7610617	62	7610617CD1	129	7610617CB1

Table 1 (cont.)

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
1902436	63	1902436CD1	130	1902436CB1
2310369	64	2310369CD1	131	2310369CB1
6180576	65	6180576CD1	132	6180576CB1
2274523	66	2274523CD1	133	2274523CB1
1801820	67	1801820CD1	134	1801820CB1

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability score	GenBank Homolog
1	3211795CD1	g5764665	3.80E-156	[Homo sapiens] cerebral cell adhesion molecule Starzyk, R.M. et al. (2000) J. Infect. Dis. 181:181-187
2	6813464CD1	g14794726	0	[Homo sapiens] CUB and sushi multiple domains 1 protein Sun, P. C. et al. (2001) Transcript map of the 8p23 putative tumor suppressor region. Genomics. 75:17-25
3	2156540CD1	g7259265	2.40E-28	[Mus musculus] contains transmembrane (TM) region Inoue, S. et al. (2000) Growth suppression of Escherichia coli by induction of expression of mammalian genes with transmembrane or ATPase domains. Biochem. Biophys. Res. Commun. 268:553-561
4	894939CD1	g7242876	4.30E-171	[Mus musculus] kidney predominant protein
5	4620890CD1	g13874437	1.00E-134	[Homo sapiens] cerebral protein-11
6	5514146CD1	g1256001	5.70E-46	[Homo sapiens] LIV-1 protein
7	7474769CD1	g13603845	0	[Mus musculus] ribonuclease/angiogenin inhibitor 2 Wang, P. J. et al. (2001) An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27:422-426
34	1639243CD1	g927209	5.00E-20	[Homo sapiens] alpha 1C adrenergic receptor isoform 2
35	13335166CD1	g3002527	1.80E-21	[Homo sapiens] neuronal thread protein AD7c-NTP
57	3243866CD1	g6273399	3.30E-27	[Homo sapiens] melanoma-associated antigen MG50 Weiler, S. R. et al. (1994) Assignment of a human melanoma associated gene MG50 (D2S448) to chromosome 2p25.3 by fluorescence in situ hybridization. Genomics 22:243-244
58	7475633CD1	g3097285	1.20E-65	[Rattus norvegicus] ZOG

Table 3

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Potential Glycosylation Domains and Motifs	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
1	3211795CD1	622	S125 S138 S153 S262 S272 S383 S542 S569 S591 S612 T300 T406 T562 T584 Y126 Y140 Y281 Y492	N184 N381 N96	Signal cleavage: M1-G29 Signal peptide: M1-P32 Lysyl hydrolase Lysyl hydro: V165-I240 PROCOLLAGENLYSINE 2OXOGLUTARATE 5DIOXYGENASE PRECURSOR LYSYL HYDROXYLASE OXIDOREDUCTASE DIOXYGENASE SIGNAL IRON PD009947: P52-L291	SPSCAN HMMER HMMER_PFAM	BLAST_PRODOM
2	6813464CD1	529	S109 S213 S243 S251 S299 S56 T113 T192 T273 T405 T416 T99	N312 N411	Signal peptide: M1-A21 Signal peptide: M1-S22 CUB domains: C136-Y244, C309-F414 Sushi domain (SCR repeat) : C74-C131, C252-C305, C422-C479 Sushi domain proteins PF00084: G93-Y104, N296-C305	SPSCAN HMMER HMMER_PFAM HMMER_PFAM	BLIMPS_PFAM BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
3 2156540CD1	204	S101 S124 S196 S63 S83 T46 T51 T54 T88 Y140	N122	signal_peptide: M1-A24 signal_cleavage: M1-P27 Immunoglobulin domain ig: G55-V144	HMMER SPSCAN HMMER_PFM	
4 894939CD1	406	S151 S200 S226 S249 S255 S288 S400	N134 N159 N187 N230 N333 N65 N95	signal_peptide: M1-G35 signal_cleavage: M1-G35 transmembrane_domain: L369-G387 Leucine_Zipper: L371-L392	HMMER SPSCAN HMMER	
5 4620890CD1	477	S151 S166 S183 S226 S235 S25 S253 S279 S360 S388 S70 T13 T325 T87	N201 N270	signal_peptide: M439-C460 transmembrane_domain: I418-F435 PROTEIN_TESTISPECIFIC TEX28KTAA0481 HH1480 PD156308: P55-Q145 PD184097: L287-W463	MOTIFS BLAST_PRODOM	
6 5514146CD1	691	S130 S136 S149 S160 S250 S293 S30 S312 S329 S392 S470 S51 S513 S530 S565 S598 S645 T24 T246 T26 T362 T658 T67	N134 N162 N201 N242 N290 N59	signal_cleavage: M1-S23 transmembrane_domain: I603-L621, W632- P651, P661-Y685 PROTEIN_GUFA_TRANSMEMBRANE_MEMBRANE INTERGENIC REGION INNER CONSERVED SIMILARITY MYXOCOCCUS PD004603: K533- L682	SPSCAN HMMER BLAST_PRODOM	

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
7	744769CD1	919	S125 S146 S157 S230 S275 S37 S393 S40 S462 S523 S543 S591 S632 S638 S661 S733 T217 T574 T679 T751 T814 T885 T896 T906 T915 Y109 Y47 Y645	N228 N601 N682 N731 N852 N904	signal_cleavage: M1-T16 RIBONUCLEASE INHIBITOR REPEAT LEUCINEREPEAT 3DSTRUCTURE PLACENTAL RAI RI RECEPTOR RIBONUCLEASE/ANGIOGENIN PD017636: L737-L842, L794-E889, L681-S787	SPSCAN BLAST_PRODOM
8	065296CD1	178	S24 S7 S79 S81 S87	N116 N74 N75	signal_cleavage: M1-G26	SPSCAN
9	231994CD1	310	S281 S93 T136	N101 N219	signal_cleavage: M1-P24	SPSCAN
10	538054CD1	559	S121 S150 S216 S258 S294 S385	N237 N26 N292 N346	signal_peptide: M1-V24 signal_cleavage: M1-N26	HMMER SPSCAN
			S474 S71 T274 T28 T363 T41		transmembrane_domain: M1-I25 BRUSH BORDER 61.9KD PROTEINPRECURSOR SIGNAL PD144534: L8-C555	HMMER BLAST_PRODOM
11	1259305CD1	477	S113 S129 S211 S273 S471 T135 T139 T142 T18 T338	N111 N209	signal_cleavage: M1-S40 transmembrane_domain: M23-A39, F56-I74, F250-L270, M315-L335, W406-N430	SPSCAN HMMER
12	1483702CD1	176	S108 S132 S138 S142 S3 S34 T32	N47	signal_peptide: M111-S132	HMMER
13	1519324CD1	190	S119 S164 S189 S23 S86 S93 S98		signal_cleavage: M1-S23	SPSCAN
14	1630169CD1	75		N50	signal_cleavage: M1-A27 signal_peptide: M1-S22 transmembrane_domain: L3-S22 sulfatases_signature sulfatase_2.prf: S22-W76	SPSCAN HMMER HMMER PROFILESCAN

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
15	164253CD1	265	S12 S14 S187 S30 S64 T162	N197	signal_peptide: M116-A264	HMMER
16	1864715CD1	202	S33 T167 T65	N10	signal_peptide: M1-A19 signal_cleavage: M1-G15 transmembrane_domain: I173-R193	HMMER SPSCAN
17	1929395CD1	111	T4 T67		signal_cleavage: M1-G34	SPSCAN
18	1987737CD1	105	S75 T38		signal_cleavage: M1-G28	SPSCAN
19	2122866CD1	717	S172 S3 S359 S397 S454 S46 S469 S488 S5 S526 S567 S594 S7 T117 T20 T410 Y213	N130 N274 N44 N520 N666	PROTEIN FACTOR REPEAT CELL CHROMOSOME INTERGENIC REGION HOST C1 JASMONATE PD013240: N149-N306 RGD: R432-D434	BLAST_PRODOM SPSCAN
20	2123981CD1	580	S109 S120 S210 S260 S322 T121 T178 T272 T31 T327 T360 T403 T415 T450 T460 T545 T70 T73 T75 Y522	N276 N337 N543 N99	signal_peptide: M1-K21 signal_cleavage: M1-A16	HMMER SPSCAN
21	2200177CD1	172	S113 S148 S93 T138 Y121			
22	2319255CD1	256	S242 S49 T116	N200	signal_cleavage: M1-C50 transmembrane_domain: L34-I51	SPSCAN HMMER
23	2792452CD1	93	S15 S24		signal_peptide: M1-S22 transmembrane_domain: L41-I58	HMMER SPSCAN
24	2853088CD1	112	S89		signal_cleavage: M1-G52 signal_peptide: M1-G36 signal_cleavage: M1-A27	HMMER SPSCAN
					J SP NEURONAL THREAD PD0033801: P30-R71	BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
25	2949004CD1	186	S26 S91 S94 T19 T65		signal_peptide: M75-S94 transmembrane_domain: I139-L163	HMMER
26	3011670CD1	487	S356 S36 S445 S89 T227 T262 T313 T44 T60 T91 Y66	N135 N203 N34 N397	signal_peptide: M128-A150 transmembrane_domain: W106-N126, I136- L155, V170-V188, M306-C323, L459-F479	SPSCAN HMMER
27	3242083CD1	350	S311 T261 T73	N294	Atp_Gtp_A: G53-T60 signal_cleavage: M1-A66 transmembrane_domain: V743-W65, M84-C102, F172-V191	MOTIFS SPSCAN
28	3363391CD1	450	S132 S140 S196 S247 S289 S380 S385 S417 S428 T208 T214 T357 T445 Y368 Y403	N131 N206 N287	signal_peptide: M144-R162 transmembrane_domain: L146-R162	HMMER HMMER
29	3703614CD1	400	S372 S71 S82 T32 T348 T358 Y362 Y76		signal_peptide: M173-T193 transmembrane_domain: M173-Y190, P198- V221, L293-V310	HMMER HMMER
30	4000975CD1	133	S54 S7		signal_peptide: M1-A24 signal_cleavage: M1-M25	HMMER SPSCAN
31	4598831CD1	359	S139 S300 S359 T355 T41 T63		do MEMBRANE; YOL002C; CHROMOSOME; C30D11.11; DM02642 Q09749 49-323; Y55- G321 DM02642 S62569 169-441; T41-H291 DM02642 Q09910 169-441; T41-H291 DM02642 S61982 50-325; D46-Q310	BLAST_DOMO
32	4992201CD1	72	S17 S32 T7	N14	signal_cleavage: M1-G65 transmembrane_domain: M39-F58	SPSCAN HMMER
33	5441583CD1	112			signal_peptide: M53-A80 Heme oxygenase signature heme_oxygenase_prf: T9-M53	HMMER PROFILESCAN

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
34	1639243CD1	149	S93		Signal cleavage: M1-Q45 J SP NEURONAL THREAD PD003801:R89-I130	SPSCAN BLAST_PRODOM
35	1335166CD1	97	S30 S36 S52 S70		Signal peptide: M1-P21 Signal cleavage: M1-A43 RNA EDITING PROTOONCOGENE REPEAT	HMMER SPSCAN BLAST_PRODOM
36	166894CD1	104	S25 T60		Signal cleavage: M1-T27 Signal peptide: M1-S29 Insulin-like growth factor binding proteins IGFB: C80-M93	SPSCAN HMMER_HMMER_PFFAM
37	217969CD1	99	T9		P-II protein signatures pii_glnb_cter.prf: L20-G76 Ribosomal protein S19e signature ribosomal_s19e.prf: S24-P77 Plant PEC family metallothionein signature PR00877 L75-R82	PROFILESCAN PROFILESCAN PROFILESCAN
38	335237CD1	80	S38	N42	Signal cleavage: M1-S35 RNA EDITING PROTOONCOGENE REPEAT PD005171: F29-L66 P_value 2.6e-07	SPSCAN BLAST_PRODOM
39	938306CD1	96	S41 S45 T79	N58	Signal peptide: M1-S18 Signal cleavage: M1-S18 Signal peptide: M1-G18	HMMER SPSCAN HMMER
40	1448129CD1	92	S62		Signal cleavage: M1-G18 Signal peptide: M1-A28 Aminotransferases class-I pyridoxal-asp aminotransferase.prf: K55-A92	SPSCAN HMMER SPSCAN PROFILESCAN
					Respiratory-chain NADH dehydrogenase 75 rd subunit signatures complex1_75k_3.prf: F5-Q79	PROFILESCAN

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
41	1761049CD1	77	S37		Signal cleavage: M1-C66 Transmembrane domain: Y40-M64	SPSCAN HMMER
42	1959587CD1	75	S48 S70		Signal cleavage: M1-G26 Signal peptide: M1-G23	SPSCAN HMMER
43	2303463CD1	85			Signal cleavage: M1-A30 Transmembrane domain: L22-A48	SPSCAN HMMER
44	2512281CD1	89	S61 S62 T29 T42 T58		Signal peptide: M1-R31 5-hydroxytryptamine 1B receptor PR00513 R31-T42	SPSCAN BLIMPS_PRINTS HMMER
45	2755924CD1	123			Signal peptide: M1-A19 Signal cleavage: M1-S24	SPSCAN HMMER
46	2796369CD1	159	S97 T35		Transmembrane domain: I38-A53 Signal cleavage: M1-G27	SPSCAN HMMER
47	3010920CD1	77	S7		Tyrosine specific protein phosphatases active site tyr_phosphatase.prf: I42-E100	PROFILESCAN
48	3360955CD1	130	S15 S32 S95 T25		Signal cleavage: M1-T33	SPSCAN
49	3409459CD1	97			Signal cleavage: M1-T14	SPSCAN
50	4102938CD1	74	S3		Orexin receptor signature PR01064 N78-T89 Signal peptide: M1-G20	BLIMPS_PRINTS HMMER
51	4124601CD1	74	S12		Signal cleavage: M1-G20 Signal cleavage: M1-L25 Signal peptide: M1-G33 Hemerythrins signature hemerythrins.prf: Q21-L60	SPSCAN PROFILESCAN
					Signal cleavage: M1-G46 Annexin Type III Signature PR00199 W17-A26	BLIMPS_PRINTS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
52	4180577CD1	151	S115 S116 S128 S63 S68 S77 T93	N40	Signal peptide: M1-A22 Signal cleavage: M1-S21	HMMER SPSCAN
53	5265807CD1	137	S123 S79		Signal cleavage: M1-A42 Signal peptide: M1-G31	SPSCAN
54	5405979CD1	137	S48 T118		Ank repeat ank: Y13-K45 L46-R78 S79-Y113 Ank repeat PD0007 L77-A89	HMMER_PFAM BLIMPS_PRODOM
55	7481109CD1	205	T181 T31 Y141	N131 N143	Ank repeat protein motif f PF00023 G80-H89 BLIMPS_PFAM Signal peptide: M1-A24	HMMER SPSCAN
					Signal cleavage: M1-L16 Signal peptide: M2-Q22	HMMER SPSCAN
					Signal cleavage: M1-F26	SPSCAN
					HYPERGLYCEMIC HORMONE TY PR00548: L158-C168	BLIMPS_PRINTS
					Pancreatic ribonucleases RNaseA: F104-C168	HMMER_PFAM

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
56	6247114CD1	199	S108 S113 S123 S136 S146 S42 S67 S91 T162 T175 T22 T31 T77	N111 N61 N89	Signal peptide: M1-S21 Signal cleavage: M1-A18 PANCREATIC RIBONUCLEASE FAMILY DM00621 P39873 28-166: S73-V183 Pancreatic ribonuclease family signature rnase_pancreatic.prf: G92-K138	HMMER SPSCAN BLAST_DOMO
57	3243866CD1	719	S108 S204 S255 S276 S400 S410 S618 S640 S685 S692 S76 T141 T198 T270 T305 T348 T454 T467 T480 T510 T647 T661 T668 T691 T704 T713 T704	N330 N339 N382 N406 N452 N671 N672 N73	signal peptide: M1-P21 signal cleavage: M1-A17 transmembrane_domain: M529-V554 Polycystic kidney disease protein signature PR005000B: P241-E261 Leucine-rich repeat signature PR0019A: L149-L162 Leucine Rich Repeat LR: S172-H195, K196-A219, R52-T75, S76-R99, N100-S123, N124-F147, A148-V171. Leucine rich repeat C-terminal domain LRRCT: N240-E285	HMMER SPSCAN HMMER BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS HMMER_PFAM HMMER_PFAM
					Immunoglobulin domain sig: G301-A359 RGD: R311-D313	MOTIFS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Potential Domains and Motifs	Signature Sequences , Domains and Motifs	Analytical Methods and Databases
58	7475633CD1	383	S290 S31 S45 T159 T188 T258 T328	N157	signal_peptide: M1-A26 signal_cleavage: M1-G21 transmembrane_domain: V308-R330	HMMER SPSCAN	
					EGF		BLAST_DOMO
					DM00003 T48324 235-285: C40-K90		
					DM00003 Q07645 107-174: G113-V173		
					DM00003 P10041 275-331: W75-K131		
					DM00003 P80370 72-127: Q76-K131		
					Laminin-type EGF-like domain BL01248 C48-C60	BLIMPS_BLOCKS	
					Type II EGF-like signature PR00010C: N194-F204	BLIMPS_PRINTS	
					Type III EGF-like signature PR00011D: C39-C57	BLIMPS_PRINTS	
					EGF-like domain EGF: C216-C247, C29-C57, C60-C88, C95- C128, C135-C171, C178-C209	HMMER_PFAM	
					EGF-like domain EGF: C46-C57, C77-C88, C117-C128, C160- C171, C198-C209, C236-C247	MOTIFS	
					Zinc_Finger_C3hc4: C7-I16	MOTIFS	
					Asp or Asn hydroxylation site found in EGF-domain proteins Asx_Hydroxyl: C189-C200, C227-C238	MOTIFS	
59	1431268CD1	126	S2 S54		signal_peptide: M1-A35	HMMER	
60	2414185CD1	137	T65		signal_peptide: M1-G21	HMMER	
61	5266594CD1	77	T35		signal_peptide: M1-G29	HMMER	
62	7610617CD1	110	S46 T83		signal_peptide: M1-S21	HMMER	

Table 3 (cont.)

SEQ NO:	Incyte ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
63	1902436CD1	103	T72		signal_peptide: M1-S18 signal_cleavage: M1-S18	HMMER SPSCAN
64	2310369CD1	192	S153 S28 S56 T186 T57		transmembrane_domain: I4-I23 signal_cleavage: M1-A32	HMMER SPSCAN
65	6180576CD1	310	S154 S158 S201 S307 S5 S79 S93 T225 T253 T55 T71 Y163		transmembrane_domain: V114-T134 signal_cleavage: M1-G61	HMMER SPSCAN
66	2274523CD1	135	S12			
67	1801820CD1	205	S110 S126 S198 S68 T185 T34	N67	signal_cleavage: M1-S44 signal_cleavage: M1-K36 Bowman-Birk serine protease inhibitor family signature bowman_birk.prf: C104-C194	SPSCAN SPSCAN PROFILESCAN

Table 4

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
68	3211795CB1	2569	1-513, 2404-2569	8052177J1 (FTUBTUE01) 6756010H1 (SINTFER02) 6756010J1 (SINTFER02)	1775 453 1047	2401 1192 1810
				68B8428H1 (BRAITDRO3) 6944985H1 (FTUBTUR01) 2185379F6 (PROSNOT26) 6900869H1 (MUSLTDRO2)	1419 1950 2103 729	1955 2416 2569 1401
69	6813464CB1	2387	104-184, 546-2387	7317029H2 (BONFTXT01) GNN.g98051897_000002_00 2	1 185	560 519
				GNN.g9408716_002.edit	1	397
				71926854V1 8085111H1 (BRACDIK08) 71926415V1 71930431V1	1924 355 1527 1025	2387 919 2107 1536
70	2156540CB1	1959	1918-1959, 723-1073	71928622V1 6813464F6 (ADRETRU01) g2204647 71147007V1	1515 559 1385 1221	2047 1255 1959 1916
				7714520H1 (SINTFEE02) g5553166 6269361H1 (BRAIFEN03) 7192294H2 (BRATDIC01)	705 1 1255 31	1255 422 1927 462
				7460559H1 (LIVRTUE01) 825696H1 (PROSNOT06)	264 1674	948 1941
71	894939CB1	1562	1-253	71113024V1 71113961V1 71111802V1 71178768V1	1 935 582 500	569 1562 1258 1205

Table 4 (cont.)

Polymer ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (s)	Sequence Fragments	5' Position	3' Position
72	4620890CB1	3425	1-355, 1127-2529	3730714F6 (SMCCNON03) 7126752H1 (COLNDIY01) 71260484V1	3124 2199 964	3425 2753 1582
				4041777H1 (BRAITUT26) 7089611R8 (BRAUTDR03) 7186380H1 (BONRFEC01) 5608905T6 (MONOTX505)	1 439 1573 1116	299 1129 2194 1696
				6216030H1 (MUSCDIT06) 7089611F8 (BRAUTDR03)	2803 56	3267 726
				5721967H1 (SEMVNNOT05) 6365636F6 (ARTANOT07)	2457 1758	2825 2350
73	5514146CB1	3130	2654-3130, 1611-2305, 992-1198	4058011F6 (SPLNNNOT13) 70403184D1 70401863D1 70942023V1	2882 2245 2527 1409	3293 2786 3130 2085
				6770687H1 (BRAUNOR01) 7998254H1 (BRAITUC02) 5514146F6 (BRADDIRO1) 70941524V1	239 1 1172 1731	723 446 1710 2281
				42533735F6 (BRADDIRO1) 5511496F8 (BRADDIRO1)	564 813	1091 1434
74	7474769CB1	3172	646-970, 2450-2614, 1939-2217	55077715J1 92100308 GNN.g6693125_000016_00 2	1 1 2911 200	392 3172 2789
75	065296CB1	2094	1826-2094	8038136J1 (SMCRUNE01) 71058917V1 94393469 71247541V1 71059505V1	1273 872 1 846 219	2094 1524 357 1456 883

Table 4 (cont.)

SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
76	231994CB1	1119	1-163	6424977H1 (BRSTUNT01) 1735672F6 (COLANNOT22) 3484368H1 (KIDNNNOT31)	19 309 1	703 846 154
77	538054CB1	3321	1513-1629, 2956-3321	4042488R6 (TMLR3DT01) 2304848R6 (NGANNNOT01) 70558993V1 70561551V1	620 1671 546 403	1119 2208 1031 982
				6951008H1 (BRAITDR02) 530151R6 (BRAINNOT03) 6884875H1 (BRAHTDR03) 7262670H1 (UTRETM0C01)	1039 2887 984 1	1798 3321 1466 433
				4880167H1 (UTRM0TMT01) 351423T6 (LVENNNOT01) 6995967H1 (BRAXTDR17)	2499 2563 1820	2782 3147 2548
78	1259305CB1	2646	1-1540	661278T6 (BRAINNOT03) 6782356J1 (OVARDIR01)	1959 584	2624 1338
				8009718H1 (NOSEDIC02) 71294610V1 6782356H1 (OVARDIR01)	1 2104 1332	556 2646 2025
				70979178V1 70978234V1 SXAF03884V1	1068 349 1	1745 977 513
79	1483702CB1	1749	1712-1749, 1130-1181	1478338F1 (CORPNOT02) 1477349F2 (CORPNOT02) 1832249R6 (BRAINNON01) 2571527R6 (HIPOAZT01)	404 1178 1421 713	960 1731 1749 1222
				569251H1 (MMLR3DT01) 4435164H2 (LUNGNOT38) 268264H1 (HNT2NOT01) 3504827H1 (ADRENNOT11)	1203 918 473 2031	1522 1216 759 2319
80	1519324CB1	2339	1987-2339, 1-66	3803618H1 (BLADTUT03)	1521	1831

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
81	1630169CB1	1006	1-1006	3188988H1 (THYMNON04) 1556067T6 (BLADTUT04) 1484363F6 (CORPNOT02) 1347568H1 (PROSNOT11) 2959710H2 (ADRENNOT09) 4103403F6 (BRSTTUT17) 3802959H1 (BLADTUT03)	1459 1662 1 2175 379 597 1197	1783 2316 478 2339 692 1168 1499
82	1664253CB1	1050	1-65, 979- 1050	6915144J1 (BRAUNR01) 71296019V1	1 386 654	547 815 1006
83	1864715CB1	1774	1-91, 864- 1189	6975645F8 (BRAHTDR04) 1511079H1 (LUNGNOT14) 7988873H1 (UTRSTTUC01) 6975645R8 (BRAHTDR04) 2866801H1 (KIDNNOT20) 3736166H1 (SMCCNOS01) 2972289H2 (HEAONOT02) 1864715T6 (PROSNOT19) 4585982H1 (OVARNOT13) 1864715F6 (PROSNOT19) 95431009	571 1 280 153 505 1503 168 1175 928 396 1	1050 206 911 745 837 1774 461 1760 1195 828 452 1192
84	1929395CB1	2608	1-230, 2378-2608, 1364-1424, 1859-1908	6426607H1 (LUNGNON07) 7159765H1 (HNT2TXC01) 6403390H1 (UTRENOT10) 5203330H2 (STOMNOT08) 8184678H1 (EYERNON01) 99772R1 (KIDNTUT01) 5776203H1 (BRAINNOT20) 2569101R6 (HIPOAZT01) 1987737R6 (LUNGAST01)	223 1 2330 1168 1894 1416 806 1 855	830 437 2608 1429 2382 1963 1360 375 1336
85	1987737CB1	1336	1-362, 396- 455			

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
86	2122866CB1	3062	2470-3062	7651140J1 (STOMTDE01) 70822631V1 1344981T6 (PROSNOT11)	287 379 2525	883 1013 3062
87	2123981CB1	2543	2458-2543	3373914T6 (CONNTUT05) 5106924H1 (PROSTUS19) 70581466V1 7760472J1 (THYMNOE02) 1861920T6 (PROSNOT19) 888838R1 (STOMTUT01) 2502591T6 (CONUTUT01) 70818388V1 2123981F6 (BRSTNOT07) 7184911H1 (BONRFE01) 7687944J1 (PROSTM06) 7182169H1 (BONRFE01) 1746464F6 (STOMTUT02) 1782982R6 (PGANNON02) 70818385V1 1570015F6 (UTRSNOT05)	1720 1482 571 1 1986 1125 1788 760 189 1 658 104 1479 2215 1272 2016 229	2315 1736 1299 697 2566 1703 2498 1446 695 201 1336 694 2021 2543 1844 2528 873 653 1350 2134
88	2200177CB1	873	1-873	70715536V1 2200177T6 (SPLNFET02)	1 747	1770 1893 927
89	2319255CB1	2134	1-1366	70972802V1 70972902V1 2319255R6 (OVARNOT02) 71291442V1 70973293V1 2719008F6 (THYRNTO9)	1606 1 1205 1388 369 1	1770 1893 927 541 1886 1816 611 1290
90	2792452CB1	1886	1-675, 1174-1420, 1824-1886	2631710F6 (COLNTUT15) 2792452T6 (COLNTUT16) 7056068H1 (BRALNON02) 70747733V1	1358 1154 1 764	1886 1816 611 1290

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
91	2853088CB1	928	1-368, 541-928	70750993V1 6909603F6 (PITUDIR01) 2853088F6 (BRSTTUT13)	541 403 1	1199 928 510
92	2949004CB1	962	1-73, 524-574	6406737H1 (UTREDIT10) 5773379H1 (BRAINOT20) 5571763H1 (TLYMMNOT08) 5763826H1 (PROSBPT02)	207 103 1	755 676 212
93	3011670CB1	2644	2581-2644, 2402-2433, 269-296, 1.289-1370	1454503T6 (PENITUT01) 70529802V1 70527923V1 70529939V1 6784388H1 (SINITMC01) 2130537H1 (KIDNNNOT05) 2493973H1 (ADRETTUT05)	1958 492 1101 1266 270 2381 1	2571 1220 1684 2004 744 2644 317
94	3242083CB1	1875	1605-1624, 760-1228, 140-182	8035143H1 (SMCRUNE01) 70729684V1 7764378H1 (URETTUE01) 8035143J1 (SMCRUNE01)	641 1272 549 1	1410 1875 1215 640
95	3363391CB1	2378	1-1315	7407517H1 (UTREDME05) 1691309F6 (PROSTUT10) 4647910F6 (PROSTUT20) 70701284V1 7600868H1 (ESOGTME01)	1294 1890 1 1462 415	1790 2378 702 1803 935
96	3703614CB1	1597	1-230, 1513-1597	70977847V1 70979848V1 2055126T6 (BEPINOT01)	1 1 1750	619 1335 2348
97	4000975CB1	653	1-653	70255942V1 70256236V1	1 62	528 653

Table 4 (cont.)

Polymerotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
98	4598831CB1	3090	1-265, 1019-1311, 3031-3090	6450571H1 (BRAINOC01) 7604731H1 (COLRTUE01) 7280444H1 (BMARTXE01) 7604731J1 (COLRTUE01) 6531268H1 (LUNPTMC01) 1717922F6 (UCMCNOT02) 9884719	2461 277 1 1034 2134 1652 2646 498	3039 871 363 1618 2785 2072 3090 1097
99				7069481H1 (BRAUTDR02) 7078716H1 (BRAUTDR04) 2598065F6 (OVARTUT02) 7361768H1 (BRAIFEE05) 1-132, 1180-1274	1807 2715 1093 190 190	2285 3063 1715 754 1274
100	4992201CB1	1274		6169092H1 (UTRSTD01) 264080H1 (HNNT2AGT01) 4992201F6 (LIVVRTUT11)	1004 1 356	357 1023 1514
101	5441583CB1	1514	1-341, 1360-1514, 644-737	7619787J1 (KIDNTUE01) 3216178F6 (TESTNOT07) 71580026V1 71579908V1	1036 1 543 651	608 1108 1167 1375
102	1639243CB1	1380	1332-1380, 1-505	27899856F6 (COLNTUT16) 8215917H1 (FIBRTXC01) 71249544V1 91447886	435 1 1 892	1224 632 1380 1319
103	1335166CB1	942	1-356, 942	1659932T6 (URETTUT01) 6929148H1 (SINITMR01) 1335166F6 (COLNNOT13) 2914860T6 (THYMFET03)	658 374 1 1046	942 512 1631 641
	166894CB1	1815	1-488, 1719-1815	8056981J1 (ESOGTUE01) 6623672H1 (LIVRTMR01) 5880645F8 (LIVRNON08)	1 1 516	1815 1810 1276

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
104	217969CB1	1120	801-1120, 1-542	1406479T6 (LATRTUT02) 1406479F6 (LATRTUT02) 7127039H1 (COLNDIY01)	238 1 546	897 500 1120
105	335237CB1	535	1-120, 389- 535	6516316H1 (THYMDIT01) 335237R6 (EOSIHETO2)	1 1.88	517 535
106	938306CB1	1188	1-36, 806- 1010, 232- 330	6837739H1 (BRSTN002) 1843293R6 (COLNNNOT08)	580 1	1188 610
107	1448129CB1	638	1-162	1448129F6 (PLACNOT02) g5152438	1 219	450 638
108	1761049CB1	648	152-576, 1- 91, 626-648	1448129T6 (PLACNOT02) 3335890F7 (BRAIFET01)	217 148	599 648
109	1959587CB1	1181	1-484	2418384T6 (HNT3AZT01) 6562708H1 (MCLEDTXT04)	623 227	647 1181 911
110	2303463CB1	1291	765-815, 965-1000, 1141-1291	1959587H1 (BRSTN004) 3087044F6 (HEAONOT03) g2052638	1 77 678	228 657 1253 1291
111	2512281CB1	594	324-594	70726533V1 70725786V1 5371544F6 (BRAINOT22) 45333095F8 (MYEPTXT01)	587 678 1 758	626 1287 522
112	2755924CB1	852	1-173, 290- 852	2512281F6 (CONUTU01) 7177623T8 (BRAXDIC01)	1 201	594
113	2796369CB1	1361	1-244, 802- 1135	71442317V1 5239268F6 (LIVRTUS02) 5716622H1 (PANCNOT16) 27996369F6 (NPOLNOT01) 6264155H1 (MCLEDTXN03)	1 384 1 483	554 852 603 950

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID 3010920CB1.comp	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
135		1650	1-235, 1416-1650	71297582V1 3010920F6 (MUSCN0T07) 70990273V1	1 805 1154	646 1441 1650
115	3360955CB1	1845	898-1404, 162-191, 1- 29, 1714- 1845	70991132V1 70138150V1 70772246V1 3360955F6 (PROSBPT02) 70137857V1	624 993 485 1272 21	1290 1531 1001 1845 501
136	3409459CB1.comp	1061	1-627, 435- 1061	2096304H1 (BRAITUT02) 4560677H1 (KERATXT01) 8049214H1 (LUNGTSU02) 3409459F6 (PROSTUS08) 7590996H1 (LIVRNOC07)	1 942 628 377 134	230 360 1061 946 798 641
117	4102938CB1	1085	971-1085, 1-257, 684- 783, 464- 486	71665573V1 4102938F6 (BRSTTUT17)	330	1085
118	4124601CB1	870	285-870	71157275V1	1	507
119	4180577CB1	3394	1-766, 3366-3394, 1487-1519	4124601F6 (BRSTTUT26) 72081891D1 72079822D1 7370367H1 (ADREFEC01) 72360174D1 7371968H2 (BRAIFEE04) 7675267J2 (NOSETUE01) 7236006D1 72082904D1	200 2015 2570 2278 1351 413 1 1405 721	520 870 2579 3394 2821 2147 992 607 2231 1412 1218 2343 2197
120	5265807CB1	2343	56-519, 671-1627	71163549V1 71397639V1 71396875V1	560 1942 1547	1412 1218 2343 2197

Table 4 (cont.)

Polymer ID No:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
				71163327V1	1285	1845
				7142204H1 (LIVRDIT07)	1183	1750
				7098309H1 (BRACDIR02)	1	574
				71166280V1	540	1183
121	5405979CB1	751	718-751	96711145	1	240
				2009872R6 (TESTNOT03)	303	751
				2009872T6 (TESTNOT03)	17	749
				GNN·99588388_010	1	618
122	7481109CB1	618	1-618	2008559R6 (TESTNOT03)	538	979
123	6247114CB1	979	1-384	62447114F8 (TESTNOT17)	1	741
124	3243866CB1	3012	1-43, 2836- 2885, 2307- 2520, 1275- 1779	8184163H1 (EYERNON01)	1215	1932
				6768945J1 (BRAUNOR01)	1	569
				70960957V1	2437	3012
				70869814V1	1551	2189
				7056045H1 (BRALNON02)	2131	2749
				3243866F6 (BRAINOT19)	735	1313
				70870169V1	2283	2835
				47833652F6 (BRATNOT03)	503	1074
125	7475633CB1	1600	1-72	6874650F6 (EPIMUNN04)	1	911
				72379524V1	900	1600
				6874650T6 (EPIMUNN04)	746	1587
126	1431268CB1	1001	335-547	5223435H1 (OVARDIT07)	650	922
				6747053H1 (BRAFN02)	286	909
				4139565H1 (BRSTTM01)	709	1001
				70255212V1	1	559
				7034594R6 (SINTFER03)	1	607
				6897648H1 (LIVRTMR01)	899	1424
127	2414185CB1	1424	1-46, 297- 1424	2414185F6 (HNT3AZT01)	570	1052
				7764520H1 (URETTUE01)	730	1282
128	5266594CB1	1282	1-34, 990- 1282	5545864T8 (TESTNO01)	1	829
				7373102F6 (BRAFE04)	29	632

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
129	7610617CB1	642	314-642	7736685J1 (BRAITME01) 3881415H1 (SPLNNNOT11) 7610617F6 (KIDCTME01)	348 721 97	963 1008 642
130	1902436CB1	1326	845-1326, 740-776, 40-705	7610617R6 (KIDCTME01) 70882432V1 2216468F6 (SINTPET03) 70880085V1	1 717 1 538	609 1326 480 986
131	2310369CB1	1486	139-395, 67-106	70879063V1 2310369R6 (NGANNNOT01) 3375613H1 (CONNUTU05)	412 107 1	953 557 265
132	6180576CB1	1523	1-40	72069492V1 6438845H1 (BRAENNOT02) 6116528T8 (SINITTM04) 7179642H1 (BRAXDIC01)	784 252 762 526	1486 854 1496 1151
133	2274523CB1	848	87-567	6146183H1 (BRANDIT03) 6577826F8 (BRANDIT04) 2274523T6 (PROSNON01) 2083066F6 (UTRSNOT08)	1185 1 378 87	1523 571 848 583
134	1801820CB1	2758	2484-2758	2068885H1 (PROSNOT26) 1315807F1 (BLADTTU02) 2645114F6 (OVARTTU03) 1798924F6 (COLNNNOT27) 7079130H1 (BRAUTTR04)	1 2434 1991 556 1	348 2758 2502 1212 600
				7409525H1 (BRAIFET02) 6479333H1 (PROSTMIC01) 2303084R6 (BRSTNMOT05) 2926367F6 (TLYMMNOT04)	631 910 1294 1693	1253 1424 1816 2229

Table 5

Polynucleotide SEQ ID NO:	Incyte Project ID	Representative Library
68	3211795CB1	OVERTUE01
69	6813464CB1	ADRETRU01
70	2156540CB1	BRAINNOT09
71	894939CB1	BONSTUTU01
72	4620890CB1	MONOTX505
73	5514146CB1	BRADDIRO1
74	7474769CB1	TESTNOC01
75	065296CB1	PLACNOB01
76	231994CB1	BRSTTUTU01
77	538054CB1	LIVENNOT01
78	1259305CB1	KIDNNNOT19
79	1483702CB1	CORPNOT02
80	1519324CB1	KIDNNNOT09
81	1630169CB1	BRAGNON02
82	1664253CB1	BRAHTDRO4
83	1864715CB1	PROSNOT19
84	1929395CB1	COLNTUTU03
85	1987737CB1	BRAINNON01
86	2122866CB1	LIVRNNON08
87	2123981CB1	PGANNON02
88	2200117CB1	KERANOT01
89	2319255CB1	TESTNOT03
90	2792452CB1	COLNTUTU16
91	2853088CB1	PITUDIRO1
92	2949004CB1	BRAITUTU07
93	3011670CB1	PENITUTU01
94	3242083CB1	FIBRTX507
95	3363391CB1	PROSTUT10
96	3703614CB1	SINJNOT03
97	4000975CB1	HNT2AZS07
98	4598831CB1	UCMCNOT02

Table 5 (cont.)

Polynucleotide SEQ ID NO:	Incyte Project ID	Representative Library
99	4992201CB1	HINTZAGT01
100	5441583CB1	BSTMNON02
101	1639243CB1	UTRSNOT06
102	1335166CB1	COLNNOT13
103	166894CB1	LIVRNTO1
104	217969CB1	LAVRTUT02
105	335237CB1	EOSIHTET02
106	938306CB1	CERYNOT01
107	1448129CB1	PLACNOT02
108	1761049CB1	PITUNNOT03
109	1959587CB1	HEAONCCT03
110	2303463CB1	BRSTNOT05
111	2512281CB1	COMTTUT01
112	2755924CB1	THPIAZS08
113	2796369CB1	LIVRTTJS02
135	3010920CB1.comp	MUSCNNOT07
115	3360955CB1	PROSBPT02
136	3409459CB1.comp	STOMTTUT02
117	4102938CB1	BRSTTTUT17
118	4124601CB1	BRSTTTUT26
119	4180577CB1	BRAIFEE04
120	5265807CB1	UTRENNON03
121	5405979CB1	TESTNOT03
123	6247114CB1	TESTNOT17
124	3243866CB1	BRAIFEN03
125	7475633CB1	EPIMUNNO4
126	1431268CB1	SINTBAST01
127	2414185CB1	BRSTNOT04
128	5266594CB1	STOMFET01
129	7610617CB1	KILDCTME01
130	1902436CB1	OVARNOT07
131	2310369CB1	FIBRTXS07

Table 5 (cont.)

Polynucleotide SEQ ID NO:	Incyte Project ID	Representative Library
132	6180576CB1	HIPONOT01
133	2274523CB1	PROSNON01
134	1801820CB1	COLNOT27

Table 6

Library	Vector	Library Description
ADRETRU01	PCDNA2.1	This random primed library was constructed using RNA isolated from left upper pole, adrenal gland tumor tissue removed from a 52-year-old Caucasian male during nephroureterectomy and local destruction of renal lesion. Pathology indicated grade 3 adrenal cortical carcinoma forming a mass that infiltrated almost the whole adrenal parenchyma and extended to adjacent adipose tissue. A metastatic tumor nodule was identified in the hilar region. The renal vein was infiltrated by tumor and the neoplastic process was present at the resection margin of the renal vein. Fragments of adrenal cortical carcinoma and thrombus were found in the inferior vena cava. Patient history included abnormal weight loss. Family history included skin cancer, type I diabetes, and neurotic depression.
BONSTUT01	PINCY	Library was constructed using RNA isolated from sacral bone tumor tissue removed from an 18-year-old Caucasian female during an exploratory laparotomy with soft tissue excision. Pathology indicated giant cell tumor of the sacrum. Patient history included a soft tissue malignant neoplasm. Family history included prostate cancer.
BRADDIR01	PINCY	Library was constructed using RNA isolated from diseased choroid plexus tissue of the lateral ventricle, removed from the brain of a 57-year-old Caucasian male, who died from a cerebrovascular accident.
BRAGNON02	PINCY	This normalized substantia nigra tissue library was constructed from 4.2x10 ⁷ independent clones from a substantia nigra tissue library. Starting RNA was made from RNA isolated from substantia nigra tissue removed from an 81-year-old Caucasian female who died from a hemorrhage and ruptured thoracic aorta due to atherosclerosis. Pathology indicated moderate atherosclerosis involving the internal carotids, bilaterally; microscopic infarcts of the frontal cortex and hippocampus; and scattered diffuse amyloid plaques and neurofibrillary tangles, consistent with age. Grossly, the leptomeninges showed only mild thickening and hyalinization along the superior sagittal sinus. The remainder of the leptomeninges was thin and contained some congested blood vessels. Mild atrophy was found mostly in the frontal poles and lobes, and temporal lobes, bilaterally. Microscopically, there were pairs of Alzheimer type II astrocytes within the deep layers of the neocortex. There was increased sialitis around neurons in the deep gray matter in the middle frontal cortex. The amygdala contained rare diffuse plaques and neurofibrillary tangles. The posterior hippocampus contained a

Table 6 (cont.)

Library	Vector	Library Description
BRAHTD04		microscopic area of cystic cavitation with hemosiderin-laden macrophages surrounded by reactive gliosis. Patient history included sepsis, cholangitis, post-operative atelectasis, pneumonia CAD, cardiomegaly due to left ventricular hypertrophy, splenomegaly, arteriolonephrosclerosis, nodular colloid goiter, emphysema, CHF, hypothyroidism, and peripheral vascular disease. The library was normalized in two rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996) :791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
PCDNA2.1		This random primed library was constructed using RNA isolated archaeocortex, anterior hippocampus tissue removed from a 55-year-old Caucasian female who died from cholangiocarcinoma. Pathology indicated mild meningeal fibrosis predominately over the convexities, scattered axonal spheroids in the white matter of the cingulate cortex and the thalamus, and a few scattered neurofibrillary tangles in the entorhinal cortex and the peri-aqueductal gray region. Pathology for the associated tumor tissue indicated well-differentiated cholangiocarcinoma of the liver with residual or relapsed tumor. Patient history included cholangiocarcinoma, post-operative Budd-Chiari syndrome, biliary ascites, hydrothorax, dehydration, oliguria and acute renal failure. Previous surgeries included cholecystectomy and resection of 85% of the liver.
BRAIFEE04	PINCY	This 5' biased random primed library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus who was stillborn with a hypoplastic left heart at 23 weeks' gestation.
BRAIFEN03	PINCY	This normalized fetal brain tissue library was constructed from 3.26 million independent clones from a fetal brain library. Starting RNA was made from brain tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart at 23 weeks' gestation. The library was normalized in 2 rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228 and Bonaldo et al., Genome Research (1996) 6:791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
BRAINMON01	PSPORT1	This normalized library was made from 4.88 million independent clones from a brain tissue library. Starting RNA was isolated from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4

Table 6 (cont.)

Library	Vector	Library Description
BRAINOT09	PINCY	oligoastrocytoma in the right fronto-parietal part of the brain.
BRAINT07	PINCY	Library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus, who died at 23 weeks' gestation.
BRSTNOT04	PSPORT1	Library was constructed using RNA isolated from left frontal lobe tumor tissue removed from the brain of a 32-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated low grade desmoplastic neuronal neoplasm, type not otherwise specified. The lesion formed a firm, circumscribed cyst-associated mass involving white matter and cortex. No definite glial component was evident to suggest a diagnosis of ganglioglioma. Family history included atherosclerotic coronary artery disease.
BRSTNOT05	PSPORT1	Library was constructed using RNA isolated from breast tissue removed from a 62-year-old East Indian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 ductal carcinoma. Patient history included benign hypertension, hyperlipidemia, and hematuria. Family history included cerebrovascular and cardiovascular disease, hyperlipidemia, and liver cancer.
BRSTT01	PSPORT1	Library was constructed using RNA isolated from breast tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated multicentric invasive grade 4 lobular carcinoma. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular and cardiovascular disease, breast and prostate cancer, and type I diabetes.
BRSTT01	PSPORT1	Library was constructed using RNA isolated from breast tumor tissue removed from a 55-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated invasive grade 4 mammary adenocarcinoma of mixed lobular and ductal type, extensively involving the left breast. The tumor was identified in the deep dermis near the lactiferous ducts with extracapsular extension. Seven mid and low and five high axillary lymph nodes were positive for tumor. Proliferative fibrocytic changes were characterized by apocrine metaplasia, sclerosing adenosis, cyst formation, and ductal hyperplasia without atypia. Patient history included atrial tachycardia, blood in the stool, and a benign breast neoplasm. Family history included benign hypertension, atherosclerotic coronary artery disease, cerebrovascular disease, and depressive disorder.

Table 6 (cont.)

Library	Vector	Library Description
BRSTTUT17	PINCY	Library was constructed using RNA isolated from left breast tumor tissue removed from a 65-year-old Caucasian female during a unilateral radical mastectomy. Pathology indicated invasive and <i>in situ</i> grade 3, nuclear grade 2 ductal carcinoma. Patient history included hyperlipidemia and uterine leiomyoma. Family history included stomach cancer, myocardial infarction, atherosclerotic coronary artery disease, prostate cancer, benign hypertension, breast cancer, and hyperlipidemia.
BRSTTUT26	PINCY	Library was constructed using RNA isolated from breast tumor tissue removed from an adult female. The breast carcinoma tumor tissue was found to have low vascular density and was considered resting.
BSTMNON02	PSPORT1	This normalized brain stem library was constructed from 2.84 million independent clones from a brain stem library. Starting RNA was made from the brain stem tissue of a 72-year-old Caucasian male who died from myocardial infarction. Patient history included coronary artery disease, insulin-dependent diabetes mellitus, and arthritis. Normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91:9228).
CERVNOT01	PSPORT1	Library was constructed using RNA isolated from the uterine cervical tissue of a 35-year-old Caucasian female during a vaginal hysterectomy with dilation and curettage. Pathology indicated mild chronic cervicitis. Family history included atherosclerotic coronary artery disease and type II diabetes.
COLNNOT13	PINCY	Library was constructed using RNA isolated from ascending colon tissue of a 28-year-old Caucasian male with moderate chronic ulcerative colitis.
COLNNOT27	PINCY	Library was constructed using RNA isolated from diseased cecal tissue removed from 31-year-old Caucasian male during a total intra-abdominal colectomy, appendectomy, and permanent ileostomy. Pathology indicated severe active Crohn's disease involving the colon from the cecum to the rectum. There were deep rake-like ulcerations which spared the intervening mucosa. The ulcers extended into the muscularis, and there was transmural inflammation. Patient history included an irritable colon. Previous surgeries included a colonoscopy.
COLNTUT03	PINCY	Library was constructed using RNA isolated from colon tumor tissue obtained from the sigmoid colon of a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy. Pathology indicated invasive grade 2 adenocarcinoma. One lymph node contained metastasis with extranodal extension. Patient history

Table 6 (cont.)

Library	Vector	Library Description
		included hyperlipidemia, cataract disorder, and dermatitis. Family history included benign hypertension, atherosclerotic coronary artery disease, hyperlipidemia, breast cancer, and prostate cancer.
COLNTUT16	PINCY	Library was constructed using RNA isolated from colon tumor tissue obtained from a 60-year-old Caucasian male during a left hemicolectomy. Pathology indicated an invasive grade 2 adenocarcinoma, forming a sessile mass. Patient history included thrombophlebitis, inflammatory polyarthropathy, prostatic inflammatory disease, and depressive disorder. Previous surgeries included resection of the rectum. Family history included atherosclerotic coronary artery disease and colon cancer.
CONUTUT01	PINCY	Library was constructed using RNA isolated from sigmoid mesentery tumor tissue obtained from a 61-year-old female during a total abdominal hysterectomy and bilateral salpingo-oophorectomy with regional lymph node excision. Pathology indicated a metastatic grade 4 malignant mixed mullerian tumor present in the sigmoid mesentery at two sites.
CORPNOT02	PINCY	Library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.
EOSIHE02	PBLUESCRIPT	Library was constructed using RNA isolated from peripheral blood cells apheresed from a 48-year-old Caucasian male. Patient history included hypereosinophilia. The cell population was determined to be greater than 77% eosinophils by Wright's staining.
EPIMUNN04	PINCY	This normalized mammary epithelial cell tissue library was constructed from 3.28 million independent clones from an epithelial cell tissue library. Starting RNA was made from untreated mammary epithelial cell tissue removed from a 21-year-old female. The library was normalized in two rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996) :791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
FIBRTX07	PINCY	This subtracted library was constructed using 1.3 million clones from a dermal fibroblast library and was subjected to two rounds of subtraction hybridization with 2.8 million clones from the an untreated dermal fibroblast tissue library. The starting library for subtraction was constructed using RNA isolated from treated dermal fibroblast tissue removed from the breast of a 31-year-old

Table 6 (cont.)

Library	Vector	Library Description
		Caucasian female. The cells were treated with 9CIS retinoic acid. The hybridization probe for subtraction was derived from a similarly constructed library from RNA isolated from untreated dermal fibroblast tissue from the same donor. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR (1991) 19:1954 and Bonaldo, et al., Genome Research (1996) 6:791.
HEAONOT03	PINCY	Library was constructed using RNA isolated from aortic tissue removed from a 27-year-old Caucasian female, who died from an intracranial bleed.
HIPONOT01	PBLUESCRIPT	Library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis.
HNT2AGT01	PBLUESCRIPT	Library was constructed at Stratagene (STR937233), using RNA isolated from the HNT2 cell line derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor. Cells were treated with retinoic acid for 5 weeks and with mitotic inhibitors for two weeks and allowed to mature for an additional 4 weeks in conditioned medium.
HNT2AZS07	PSFORT1	This subtracted library was constructed from RNA isolated from an HNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor) treated for three days with 0.35 micromolar AZ. The hybridization probe for subtraction was derived from a similarly constructed library from untreated HNT2 cells. 3.08M clones from the AZ-treated library were subjected to three rounds of subtractive hybridization with 3.04M clones from the untreated library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (NAR (1991) 19:1954) and Bonaldo et al. (Genome Research (1996) 6:791).
KERANOT01	PBLUESCRIPT	Library was constructed using RNA isolated from neonatal keratinocytes obtained from the leg skin of a spontaneously aborted black male.
KIDCTME01	PCDNA2.1	This 5' biased random primed library was constructed using RNA isolated from kidney cortex tissue removed from a 65-year-old male during nephroureterectomy. Pathology indicated the margins of resection were free of involvement. Pathology for the matched tumor tissue indicated grade 3 renal cell carcinoma, clear cell type, forming a variegated multicystic mass situated within the mid-portion of the kidney. The tumor invaded deeply into but not through the renal capsule.

Table 6 (cont.)

Library	Vector	Library Description
KIDNNNOT09	PINCY	Library was constructed using RNA isolated from the kidney tissue of a Caucasian male fetus, who died at 23 weeks' gestation.
KIDNNNOT19	PINCY	Library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated a grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included myocardial infarction, atherosclerotic coronary artery disease, cerebrovascular disease, prostate cancer, myocardial infarction, and atherosclerotic coronary artery disease.
LATRTUT02	PINCY	Library was constructed using RNA isolated from a myxoma removed from the left atrium of a 43-year-old Caucasian male during annuloplasty. Pathology indicated atrial myxoma. Patient history included pulmonary insufficiency, acute myocardial infarction, atherosclerotic coronary artery disease, hyperlipidemia, and tobacco use. Family history included benign hypertension, acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
LIVRNNOT08	PINCY	This normalized library was constructed from 5.7 million independent clones from a pooled liver tissue library. Starting RNA was made from pooled liver tissue removed from a 4-year-old Hispanic male who died from anoxia and a 16 week female fetus who died after 16-weeks gestation from anencephaly. Serologies were positive for cytomegalovirus in the 4-year-old. Patient history included asthma in the 4-year-old. Family history included taking daily prenatal vitamins and mitral valve prolapse in the mother of the fetus. The library was normalized in 2 rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228 and Bonaldo et al., Genome Research 6 (1996):791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
LIVRNOT01	PBLUESCRIPT	Library was constructed at Stratagene, using RNA isolated from the liver tissue of a 49-year-old male.
LIVRTUT02	PINCY	This subtracted C3A liver tumor cell line library was constructed using 6.4 million clones from a 3-methylnicholthrene-treated hepatocyte library and was subjected to two rounds of subtraction hybridization with 1.72 million clones from an untreated C3A hepatocyte library. The starting library for subtraction was constructed using RNA isolated from a treated C3A hepatocyte cell line which is a

Table 6 (cont.)

Library	Vector	Library Description
MONOTX05	PINCY	derivative of Hep G2, a cell line derived from a hepatoblastoma removed from a 15-year-old Caucasian male. The cells were treated with 3-methylcholanthrene (MCA), 5 mM for 48 hours. The hybridization probe for subtraction was derived from a similarly constructed library from RNA isolated from untreated C3A hepatocyte cells from the same cell line. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR 19 (1991):1954 and Bonaldo, et al. Genome Research 6(1996):791.
LIVENNOT01	PBLUESCRIPT	Library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female, who died from an intracranial bleed.
MUSCNNOT07	PINCY	Library was constructed using 7.5 million clones from a treated monocyte library and subjected to two rounds of subtraction hybridization with 1.03 x 10e7 clones from a second treated monocyte library. The starting library for subtraction was constructed using RNA from treated monocytes from peripheral blood obtained from a 42-year-old female. The cells were pre-treated for 1 hour with 10 ng/ml anti-interleukin-10 (anti-IL-10). Lipopolysaccharide (LPS) at 5 ng/ml was added and monocytes harvested after 24 hours. Monocytes were isolated from buffy coat by adherence to plastic. The hybridization probe for subtraction was derived from a similarly constructed library using RNA isolated from monocyte tissue, treated with interleukin-10 (IL10) and lipopolysaccharide (LPS) from the same donor. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. NAR 19 (1991):1954 and Bonaldo, et al. Genome Research 6 (1996):791.
OVARNNOT07	PINCY	Library was constructed using RNA isolated from muscle tissue removed from the forearm of a 38-year-old Caucasian female during a soft tissue excision. Pathology for the associated tumor tissue indicated intramuscular hemangioma. Family history included breast cancer, benign hypertension, cerebrovascular disease, colon cancer, and type II diabetes.
		Library was constructed using RNA isolated from left ovarian tissue removed from a 28-year-old Caucasian female during a vaginal hysterectomy and removal of the fallopian tubes and ovaries. The tissue was associated with multiple follicular cysts, endometrium in a weakly proliferative phase, and chronic cervicitis of the cervix with squamous metaplasia. Family history included benign hypertension, hyperlipidemia, and atherosclerotic coronary artery disease.

Table 6 (cont.)

Library	Vector	Library Description
OVARTUE01	PCDNA2.1	This 5' biased random primed library was constructed using RNA isolated from left ovary tumor tissue removed from a 44-year-old female. Pathology indicated grade 4 (of 4) serous carcinoma replacing both the right and left ovaries forming solid mass cystic masses. Neoplastic deposits are identified in para-ovarian soft tissue, on the surface of the uterus and scattered throughout the myometrium and cervix. Transverse colon was positive for metastatic disease. Multiple staging biopsies including diaphragm, bladder, liver, sigmoid rectal serosa, inguinal lymph nodes and left colic gutter are metastatically involved.
PENITUT01	PINCY	Library was constructed using RNA isolated from tumor tissue removed from the penis of a 64-year-old Caucasian male during penile amputation. Pathology indicated a fungating invasive grade 4 squamous cell carcinoma involving the inner wall of the foreskin and extending onto the glans penis. Patient history included benign neoplasm of the large bowel, atherosclerotic coronary artery disease, angina pectoris, gout, and obesity. Family history included malignant pharyngeal neoplasm, chronic lymphocytic leukemia, and chronic liver disease.
PGANNON02	PSPORT1	This normalized paraganglion library was constructed with 5.48e6 independent clones from a paraganglionic tissue library. Starting RNA was made from paraganglionic tissue removed from a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and was associated with a grade 2 renal cell carcinoma. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91:9228-9232) using a significantly longer (48-hour) annealing hybridization period.
PITUDIR01	PCDNA2.1	This random primed library was constructed using RNA isolated from pituitary gland tissue removed from a 70-year-old female who died from metastatic adenocarcinoma. Pathology for the brain indicated moderate Alzheimer disease and mild carotid and cerebral atherosclerosis. The cerebral hemispheres, frontal and temporal lobes, white matter, and hippocampus showed mild atrophy, bilaterally. There were numerous neurofibrillary tangles, neuritic and diffuse amyloid plaques deposited throughout most neocortical areas. Most of the diffuse plaques were in the superficial layers, with more core and neuritic amyloid plaques in the deep cortical layers. Most of the tangles were found in small interneurons, rather than in the large pyramidal neurons. The areas that were most involved with plaques and tangles were the entorhinal cortex, temporal cortex, and superior parietal lobes.

Table 6 (cont.)

Library	Vector	Library Description
		There was marked vacuolization of the superficial layers throughout all neocortical areas examined. The hippocampus contained numerous neurofibrillary tangles (predominantly in the CA-1 field), diffuse and neuritic plaques, as well as granulovacuolar degeneration within the pyramidal cell neurons. There were neuritic plaques with scattered neurofibrillary tangles within the amygdala. The thalamus had scattered diffuse plaques. There was mild pigment incontinence in the substantia nigra compacta. The periaqueductal gray matter showed mild gliosis. Diffuse plaques were found within the superior colliculus. Neurofibrillary tangles were found within the pons. The neurons of the locus ceruleus were ballooned and contain eosinophilic foamy material with very little neuromelanin pigment.
PITUNOT03	PSPORT1	Library was constructed using RNA isolated from pituitary tissue of a 46-year-old Caucasian male, who died from colon cancer. Serologies were negative. Patient history included arthritis, peptic ulcer disease, and tobacco use. Patient medications included Tagamet and muscle relaxants.
PLACNOB01	PBLUESCRIPT	Library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks' gestation. Serologies of the mother's blood were positive for CMV (cytomegalovirus).
PLACNOT02	pINCY	Library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks' gestation. Serologies of the mother's blood were positive for CMV (cytomegalovirus).
PROSBPT02	pINCY	Library was constructed using RNA isolated from diseased prostate tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated benign prostatic hyperplasia (BPH). Pathology for the associated tumor tissue indicated adenocarcinoma, Gleason grade 3+4. One (of 7) right pelvic lymph nodes was positive for metastatic adenocarcinoma. The patient presented with induration and elevated prostate specific antigen (PSA). Patient history included a benign neoplasm of the large bowel and benign hypertension.
PROSNON01	PSPORT1	This normalized prostate library was constructed from 4.4 M independent clones from a prostate library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.

Table 6 (cont.)

Library	Vector	Library Description
PROSNOT19	PINCY	Library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+3). The patient presented with elevated prostate-specific antigen (PSA). Patient history included colon diverticuli, asbestos, and thrombophlebitis. Previous surgeries included a partial colectomy. Family history included benign hypertension, multiple myeloma, hyperlipidemia and rheumatoid arthritis.
PROSTUT010	PINCY	Library was constructed using RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2+3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer and secondary bone cancer.
SINTNOT03	PINCY	Library was constructed using RNA isolated from duodenum tissue removed from the small intestine of a 16-year-old Caucasian male who died from head trauma. Patient history included a kidney infection.
SINTBSTR01	PINCY	Library was constructed using RNA isolated from ileum tissue obtained from an 18-year-old Caucasian female during bowel anastomosis. Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.
STOMFBT01	PINCY	Library was constructed using RNA isolated from the stomach tissue of a Caucasian female fetus, who died at 20 weeks' gestation.
STOMTUT02	PINCY	Library was constructed using RNA isolated from stomach tumor tissue obtained from a 68-year-old Caucasian female during a partial gastrectomy. Pathology indicated a malignant lymphoma of diffuse large-cell type. Previous surgeries included cholecystectomy. Patient history included thalassemia. Family history included acute leukemia, malignant neoplasm of the esophagus, malignant stomach neoplasm, and atherosclerotic coronary artery disease.
TESTTNOC01	PBLUESCRIPT	This large size fractionated library was constructed using RNA isolated from testicular tissue removed from a pool of eleven, 10 to 61-year-old Caucasian males.

Table 6 (cont.)

Library	Vector	Library Description
TESTNOT03	PBLUESCRIPT	Library was constructed using RNA isolated from testicular tissue removed from a 37-year-old Caucasian male, who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.
TESTNOT17	PINCY	Library was constructed from testis tissue removed from a 26-year-old Caucasian male who died from head trauma due to a motor vehicle accident. Serologies were negative. Patient history included a hernia at birth, tobacco use (1 1/2 ppd), marijuana use, and daily alcohol use (beer and hard liquor).
THPLAZS08	PSPORT1	This subtracted THP-1 promonocyte cell line library was constructed using 5.76 x 1e6 clones from a 5-aza-2'-deoxycytidine (AZ) treated THP-1 cell library. Starting RNA was made from THP-1 promonocyte cells treated for three days with 0.8 micromolar AZ. The donor had acute monocytic leukemia. The hybridization probe for subtraction was derived from a similarly constructed library, made from 1 microgram of polyA RNA isolated from untreated THP-1 cells. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR (1991) 19:1954, and Bonaldo et al., Genome Research (1996) 6:791.
UCMCNOT02	PINCY	Library was constructed using RNA isolated from mononuclear cells obtained from the umbilical cord blood of nine individuals.

Table 6 (cont.)

Library	Vector	Library Description
UTREN03	PINCY	Library was constructed from 1.2×10^7 independent clones from a uterine endometrial tissue library. Starting RNA was made from uterine endometrium tissue obtained from a 29-year-old Caucasian female during a vaginal hysterectomy and cystocele repair. Pathology indicated the endometrium was secretory and the cervix showed mild chronic cervicitis with focal squamous metaplasia. Pathology for the associated tumor tissue indicated an intramural uterine leiomyoma. Patient history included hypothyroidism, pelvic floor relaxation, incomplete T-12 injury (due to a motor vehicle accident) causing paraplegia and self catheterization. Previous surgeries included a normal delivery, a rhinoplasty, a laminectomy, and a rhinoplasty. Family history included benign hypertension, type II diabetes, and hyperlipidemia. The libraries were normalized in two rounds using conditions adapted from Soares et al., PNAS (1994) 91:9928 and Bonaldo et al., Genome Research (1996) 6:791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
UTRSNOT06	PINCY	Library was constructed using RNA isolated from myometrial tissue removed from a 50-year-old Caucasian female during a vaginal hysterectomy. Pathology indicated residual atypical complex endometrial hyperplasia. Pathology for the associated tissue removed during dilation and curettage indicated fragments of atypical complex hyperplasia and a single microscopic focus suspicious for grade 1 adenocarcinoma. Patient history included benign breast neoplasm, hypothyroid disease, polypectomy, and arthralgia. Family history included cerebrovascular disease, atherosclerotic coronary artery disease, hyperlipidemia, and chronic hepatitis.

Table 7

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	<i>ESTs</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>ESTs</i> : fasta E value=1.0E-6 <i>Assembled ESTs</i> : fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less <i>Full Length sequences</i> : faster score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.	<i>PFAM hits</i> : Probability value= 1.0E-3 or less <i>Signal peptide hits</i> : Score= 0 or greater

Table 7 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score \geq GC-G-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phil's Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Int'l. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide selected from the group consisting of:
 - a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-67,
 - b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-67,
 - c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, and
 - d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-67.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
- 20 5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:68-134.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
- 25 7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 30 9. A method of producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 - b) recovering the polypeptide so expressed.

10. A method of claim 9, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.

11. An isolated antibody which specifically binds to a polypeptide of claim 1.

5

12. An isolated polynucleotide selected from the group consisting of:

- a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134,
- b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:68-134,
- c) a polynucleotide complementary to a polynucleotide of a),
- d) a polynucleotide complementary to a polynucleotide of b), and
- e) an RNA equivalent of a)-d).

15

13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.

14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

- a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

25

15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.

30

16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- b) detecting the presence or absence of said amplified target polynucleotide or fragment

thereof, and, optionally, if present, the amount thereof.

17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

5

18. A composition of claim 17, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.

10 19. A method for treating a disease or condition associated with decreased expression of functional SECP, comprising administering to a patient in need of such treatment the composition of claim 17.

20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

- 15 a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting agonist activity in the sample.

21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.

20

22. A method for treating a disease or condition associated with decreased expression of functional SECP, comprising administering to a patient in need of such treatment a composition of claim 21.

25 23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting antagonist activity in the sample.

30 24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.

25. A method for treating a disease or condition associated with overexpression of functional SECP, comprising administering to a patient in need of such treatment a composition of claim 24.

35

26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising:

- a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
- 5 b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:

- 10 a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
- b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
- c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

20 28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
- 25 b) detecting altered expression of the target polynucleotide, and
- c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

29. A method of assessing toxicity of a test compound, the method comprising:

- 30 a) treating a biological sample containing nucleic acids with the test compound,
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof,

- c) quantifying the amount of hybridization complex, and
- d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

5

30. A diagnostic test for a condition or disease associated with the expression of SECP in a biological sample, the method comprising:

- a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and
- b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.

15

31. The antibody of claim 11, wherein the antibody is:

- a) a chimeric antibody,
- b) a single chain antibody,
- c) a Fab fragment,
- d) a F(ab')₂ fragment, or
- e) a humanized antibody.

20

32. A composition comprising an antibody of claim 11 and an acceptable excipient.

25
32.

34. A composition of claim 32, wherein the antibody is labeled.

30
34.

36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 35 11, the method comprising:

- a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- b) isolating antibodies from said animal, and
- 5 c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.

37. A polyclonal antibody produced by a method of claim 36.

10

38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.

39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising:

- 15 a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- b) isolating antibody producing cells from the animal,
- c) fusing the antibody producing cells with immortalized cells to form monoclonal
- 20 antibody-producing hybridoma cells,
- d) culturing the hybridoma cells, and
- e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.

25

40. A monoclonal antibody produced by a method of claim 39.

41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.

30

42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.

43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.

35

44. A method of detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67 in a sample, the method comprising:

- a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
- 5 b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67 in the sample.

45. A method of purifying a polypeptide having an amino acid sequence selected from the

10 group consisting of SEQ ID NO:1-67 from a sample, the method comprising:

- a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
- b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-67.

15 46. A microarray wherein at least one element of the microarray is a polynucleotide of claim

13.

20 47. A method of generating a transcript image of a sample which contains polynucleotides,

the method comprising:

- a) labeling the polynucleotides of the sample,
- b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and
- 25 c) quantifying the expression of the polynucleotides in the sample.

48. An array comprising different nucleotide molecules affixed in distinct physical locations

on a solid substrate, wherein at least one of said nucleotide molecules comprises a first

30 oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.

49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is

35 completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.

50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.

51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.

52. An array of claim 48, which is a microarray.

10 53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.

54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.

15 55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.

20

56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.

57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.

25 58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.

59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.

60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.

30

61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.

62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.

35

63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.

64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
- 5 66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.
67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.
68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.
- 10 69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.
70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15.
- 15 71. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:16.
72. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:17.
73. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:18.
- 20 74. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:19.
75. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:20.
- 25 76. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:21.
77. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:22.
78. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:23.
- 30 79. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:24.
80. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:25.
- 35 81. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:26.

82. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:27.
83. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:28.
- 5 84. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:29.
85. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:30.
86. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:31.
- 10 87. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:32.
88. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:33.
- 15 89. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:34.
90. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:35.
91. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:36.
- 20 92. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:37.
93. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:38.
- 25 94. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:39.
95. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:40.
96. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:41.
- 30 97. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:42.
98. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:43.
- 35 99. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:44.

100. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:45.
101. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:46.
- 5 102. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:47.
103. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:48.
104. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:49.
- 10 105. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:50.
106. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:51.
- 15 107. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:52.
108. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:53.
109. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:54.
- 20 110. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:55.
111. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:56.
- 25 112. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:57.
113. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:58.
114. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:59.
- 30 115. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:60.
116. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:61.
- 35 117. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:62.

118. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:63.

119. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:64.

5 120. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:65.

121. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:66.

10 122. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:67.

123. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:68.

15 124. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:69.

125. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:70.

20 126. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:71.

127. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:72.

25 128. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:73.

129. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 30 NO:74.

130. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:75.

35 131. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:76.

132. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:77.

5

133. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:78.

134. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

10 NO:79.

135. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:80.

15 136. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:81.

137. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:82.

20

138. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:83.

139. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

25 NO:84.

140. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:85.

30 141. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:86.

142. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

NO:87.

35

143. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:88.

144. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 5 NO:89.

145. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:90.

10 146. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:91.

147. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:92.

15 148. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:93.

149. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 20 NO:94.

150. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:95.

25 151. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:96.

152. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:97.

30 153. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:98.

154. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 35 NO:99.

155. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:100.

156. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 5 NO:101.

157. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:102.

10 158. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:103.

159. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:104.

15 160. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:105.

20 161. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:106.

162. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:107.

25 163. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:108.

164. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:109.

30 165. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:110.

166. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 35 NO:111.

167. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:112.

168. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
5 NO:113.

169. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:114.

10 170. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:115.

171. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:116.

15 172. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:117.

173. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
20 NO:118.

174. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:119.

25 175. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:120.

176. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:121.

30 177. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:122.

178. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
35 NO:123.

179. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:124.

180. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
5 NO:125.

181. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:126.

10 182. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:127.

183. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:128.

15 184. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:129.

185. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
20 NO:130.

186. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:131.

25 187. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:132.

188. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:133.

30 189. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:134.

<110> INCYTE GENOMICS, INC.
YUE, Henry
TANG, Y. Tom
NGUYEN, Dannie B.
YAO, Monique G.
XU, Yuming
TRIBOULEY, Catherine M.
SANJANWALA, Madhu S.
WALIA, Narinder K.
BAUGHN, Mariah R.
SAPPERSTEIN, Stephanie
LAL, Preeti
THORNTON, Michael
GANDHI, Ameena R.
RAMKUMAR, Jayalakmi
ELLIOTT, Vicki S.
ARVIZU, Chandra
THANGAVELU, Kavitha
GIETZEN, Kimberly
DING, Li
AU-YOUNG, Janice
TRAN, Bao
POLICKY, Jennifer L.
LEE, Sally
LU, Dyung Aina M.
BURFORD, Neil
WARREN, Bridget A.
GURURAJAN, Rajagopal
DUGGAN, Brendan M.
HONCHELL, Cynthia D.
HAFLALIA, April J.A.

<120> SECRETED PROTEINS

<130> PI-0240 PCT

<140> To Be Assigned

<141> Herewith

<150> 60/236,869; 60/239,812; 60/240,108; 60/241,282; 60/242,218
<151> 2000-09-29; 2000-10-11; 2000-10-12; 2000-10-17; 2000-10-20

<160> 136

<170> PERL Program

<210> 1
<211> 622
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3211795CD1

<400> 1
Met Ala Ala Ala Pro Arg Ala Gly Arg Arg Gly Gln Pro Leu
1 5 10 15
Leu Ala Leu Leu Leu Leu Ala Pro Leu Pro Pro Gly Ala
20 25 30
Pro Pro Gly Ala Asp Ala Tyr Phe Pro Glu Glu Arg Trp Ser Pro
35 40 45
Glu Ser Pro Leu Gln Ala Pro Arg Val Leu Ile Ala Leu Leu Ala

	50	55	60
Arg Asn Ala Ala His	Ala Leu Pro Thr	Thr Leu Gly Ala Leu	Glu
65	70	75	
Arg Leu Arg His Pro	Arg Glu Arg Thr	Ala Leu Trp Val Ala	Thr
80	85	90	
Asp His Asn Met Asp	Asn Thr Ser Thr	Val Leu Arg Glu Trp	Leu
95	100	105	
Val Ala Val Lys Ser	Leu Tyr His Ser	Val Glu Trp Arg Pro	Ala
110	115	120	
Glu Glu Pro Arg Ser	Tyr Pro Asp Glu	Glu Gly Pro Lys His	Trp
125	130	135	
Ser Asp Ser Arg Tyr	Glu His Val Met	Lys Leu Arg Gln Ala	Ala
140	145	150	
Leu Lys Ser Ala Arg	Asp Met Trp Ala	Asp Tyr Ile Leu Phe	Val
155	160	165	
Asp Ala Asp Asn Leu	Ile Leu Asn Pro	Asp Thr Leu Ser Leu	Leu
170	175	180	
Ile Ala Glu Asn Lys	Thr Val Val Ala	Pro Met Leu Asp Ser	Arg
185	190	195	
Ala Ala Tyr Ser Asn	Phe Trp Cys Gly	Met Thr Ser Gln Gly	Tyr
200	205	210	
Tyr Lys Arg Thr Pro	Ala Tyr Ile Pro	Ile Arg Lys Arg Asp	Arg
215	220	225	
Arg Gly Cys Phe Ala	Val Pro Met Val	His Ser Thr Phe Leu	Ile
230	235	240	
Asp Leu Arg Lys Ala	Ala Ser Arg Asn	Leu Ala Phe Tyr Pro	Pro
245	250	255	
His Pro Asp Tyr Thr	Trp Ser Phe Asp	Asp Ile Ile Val Phe	Ala
260	265	270	
Phe Ser Cys Lys Gln	Ala Glu Val Gln	Met Tyr Val Cys Asn	Lys
275	280	285	
Glu Glu Tyr Gly Phe	Leu Pro Val Pro	Leu Arg Ala His Ser	Thr
290	295	300	
Leu Gln Asp Glu Ala	Glu Ser Phe Met	His Val Gln Leu Glu	Val
305	310	315	
Met Val Lys His Pro	Pro Ala Glu Pro	Ser Arg Phe Ile Ser	Ala
320	325	330	
Pro Thr Lys Thr Pro	Asp Lys Met Gly	Phe Asp Glu Val Phe	Met
335	340	345	
Ile Asn Leu Arg Arg	Arg Gln Asp Arg	Arg Glu Arg Met Leu	Arg
350	355	360	
Ala Leu Gln Ala Gln	Glu Ile Glu Cys	Arg Leu Val Glu Ala	Val
365	370	375	
Asp Gly Lys Ala Met	Asn Thr Ser Gln	Val Glu Ala Leu Gly	Ile
380	385	390	
Gln Met Leu Pro Gly	Tyr Arg Asp Pro	Tyr His Gly Arg Pro	Leu
395	400	405	
Thr Lys Gly Glu Leu	Gly Cys Phe Leu	Ser His Tyr Asn Ile	Trp
410	415	420	
Lys Glu Val Val Asp	Arg Gly Leu Gln	Lys Ser Leu Val Phe	Glu
425	430	435	
Asp Asp Leu Arg Phe	Glu Ile Phe Phe	Lys Arg Arg Leu Met	Asn
440	445	450	
Leu Met Arg Asp Val	Glu Arg Glu Gly	Leu Asp Trp Asp Leu	Ile
455	460	465	
Tyr Val Gly Arg Lys	Arg Met Gln Val	Glu His Pro Glu Lys	Ala
470	475	480	
Val Pro Arg Val Arg	Asn Leu Val Glu	Ala Asp Tyr Ser Tyr	Trp
485	490	495	
Thr Leu Ala Tyr Val	Ile Ser Leu Gln	Gly Ala Arg Lys Leu	Leu
500	505	510	
Ala Ala Glu Pro Leu	Ser Lys Met Leu	Pro Val Asp Glu Phe	Leu
515	520	525	

Pro Val Met Phe Asp Lys His Pro Val Ser Glu Tyr Lys Ala His
 530 535 540
 Phe Ser Leu Arg Asn Leu His Ala Phe Ser Val Glu Pro Leu Leu
 545 550 555
 Ile Tyr Pro Thr His Tyr Thr Gly Asp Asp Gly Tyr Val Ser Asp
 560 565 570
 Thr Glu Thr Ser Val Val Trp Asn Asn Glu His Val Lys Thr Asp
 575 580 585
 Trp Asp Arg Ala Lys Ser Gln Lys Met Arg Glu Gln Gln Ala Leu
 590 595 600
 Ser Arg Glu Ala Lys Asn Ser Asp Val Leu Gln Ser Pro Leu Asp
 605 610 615
 Ser Ala Ala Arg Asp Glu Leu
 620

<210> 2
<211> 529
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6813464CD1

<400> 2
 Met Ala Gly Ala Pro Pro Pro Ala Leu Leu Leu Pro Cys Ser Leu
 1 5 10 15
 Ile Ser Asp Cys Cys Ala Ser Asn Gln Arg His Ser Val Gly Val
 20 25 30
 Gly Pro Ser Glu Leu Val Lys Lys Gln Ile Glu Leu Lys Ser Arg
 35 40 45
 Gly Val Lys Leu Met Pro Ser Lys Asp Asn Ser Gln Lys Thr Ser
 50 55 60
 Val Leu Thr Gln Val Gly Val Ser Gln Gly His Asn Met Cys Pro
 65 70 75
 Asp Pro Gly Ile Pro Glu Arg Gly Lys Arg Leu Gly Ser Asp Phe
 80 85 90
 Arg Leu Gly Ser Ser Val Gln Phe Thr Cys Asn Glu Gly Tyr Asp
 95 100 105
 Leu Gln Gly Ser Lys Arg Ile Thr Cys Met Lys Val Ser Asp Met
 110 115 120
 Phe Ala Ala Trp Ser Asp His Arg Pro Val Cys Arg Ala Arg Met
 125 130 135
 Cys Asp Ala His Leu Arg Gly Pro Ser Gly Ile Ile Thr Ser Pro
 140 145 150
 Asn Phe Pro Ile Gln Tyr Asp Asn Asn Ala His Cys Val Trp Ile
 155 160 165
 Ile Thr Ala Leu Asn Pro Ser Lys Val Ile Lys Leu Ala Phe Glu
 170 175 180
 Glu Phe Asp Leu Glu Arg Gly Tyr Asp Thr Leu Thr Val Gly Asp
 185 190 195
 Gly Gly Gln Asp Gly Asp Gln Lys Thr Val Leu Tyr Ile Leu Thr
 200 205 210
 Gly Thr Ser Val Pro Asp Leu Ile Val Ser Thr Asn His Gln Met
 215 220 225
 Trp Leu Leu Phe Gln Thr Asp Gly Ser Gly Ser Ser Leu Gly Phe
 230 235 240
 Lys Ala Ser Tyr Glu Glu Ile Glu Gln Gly Ser Cys Gly Asp Pro
 245 250 255
 Gly Ile Pro Ala Tyr Gly Arg Arg Glu Gly Ser Arg Phe His His
 260 265 270
 Gly Asp Thr Leu Lys Phe Glu Cys Gln Pro Ala Phe Glu Leu Val
 275 280 285

Gly Gln Lys Ala Ile Thr Cys Gln Lys Asn Asn Gln Trp Ser Ala
 290 295 300
 Lys Lys Pro Gly Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ser
 305 310 315
 Pro Ser Gly Val Val Leu Ser Pro Asn Tyr Pro Glu Asp Tyr Gly
 320 325 330
 Asn His Leu His Cys Val Trp Leu Ile Leu Ala Arg Pro Glu Ser
 335 340 345
 Arg Ile His Leu Ala Phe Asn Asp Ile Asp Val Glu Pro Gln Phe
 350 355 360
 Asp Phe Leu Val Ile Lys Asp Gly Ala Thr Ala Glu Ala Pro Val
 365 370 375
 Leu Gly Thr Phe Ser Gly Asn Gln Leu Pro Ser Ser Ile Thr Ser
 380 385 390
 Ser Gly His Val Ala Arg Leu Glu Phe Gln Thr Asp His Ser Thr
 395 400 405
 Gly Lys Arg Gly Phe Asn Ile Thr Phe Thr Thr Phe Arg His Asn
 410 415 420
 Glu Cys Pro Asp Pro Gly Val Pro Val Asn Gly Lys Arg Phe Gly
 425 430 435
 Asp Ser Leu Gln Leu Gly Ser Ser Ile Ser Phe Leu Cys Asp Glu
 440 445 450
 Gly Phe Leu Gly Thr Gln Gly Ser Glu Thr Ile Thr Cys Val Leu
 455 460 465
 Lys Glu Gly Ser Val Val Trp Asn Ser Ala Val Leu Arg Cys Glu
 470 475 480
 Ala Pro Cys Gly Gly His Leu Thr Ser Pro Ser Gly Thr Ile Leu
 485 490 495
 Ser Pro Gly Trp Pro Gly Phe Tyr Lys Asp Ala Leu Ser Cys Ala
 500 505 510
 Trp Val Ile Glu Ala Gln Pro Gly Tyr Pro Ile Lys Ile Thr Phe
 515 520 525
 Asp Arg Cys Leu

<210> 3
<211> 204
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2156540CD1

<400> 3
Met Gly Ala Pro Leu Ala Val Ala Leu Gly Ala Leu His Tyr Leu
 1 5 10 15
Ala Leu Phe Leu Gln Leu Gly Gly Ala Thr Arg Pro Ala Gly His
 20 25 30
Ala Pro Trp Asp Asn His Val Ser Gly His Ala Leu Phe Thr Glu
 35 40 45
Thr Pro His Asp Met Thr Ala Arg Thr Gly Glu Asp Val Glu Met
 50 55 60
Ala Cys Ser Phe Arg Gly Ser Gly Ser Pro Ser Tyr Ser Leu Glu
 65 70 75
Ile Gln Trp Trp Tyr Val Arg Ser His Arg Asp Trp Thr Asp Lys
 80 85 90
Gln Ala Trp Ala Ser Asn Gln Leu Lys Ala Ser Gln Gln Glu Asp
 95 100 105
Ala Gly Lys Glu Ala Thr Lys Ile Ser Val Val Lys Val Val Gly
 110 115 120
Ser Asn Ile Ser His Lys Leu Arg Leu Ser Arg Val Lys Pro Thr
 125 130 135

Asp	Glu	Gly	Thr	Tyr	Glu	Cys	Arg	Val	Ile	Asp	Phe	Ser	Asp	Gly
140										145				150
Lys	Ala	Arg	His	His	Lys	Val	Lys	Ala	Tyr	Leu	Arg	Val	Gln	Pro
155										160				165
Gly	Glu	Asn	Ser	Val	Leu	His	Leu	Pro	Glu	Ala	Pro	Pro	Ala	Ala
170										175				180
Pro	Ala	Pro	Pro	Pro	Pro	Lys	Pro	Gly	Lys	Glu	Leu	Arg	Lys	Arg
185										190				195
Ser	Val	Asp	Gln	Glu	Ala	Cys	Ser	Leu						
200														

<210> 4

<211> 406

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 894939CD1

<400> 4

Met	Arg	Gly	Ser	Val	Glu	Cys	Thr	Trp	Gly	Trp	Gly	His	Cys	Ala
1					5				10					15
Pro	Ser	Pro	Leu	Leu	Leu	Trp	Thr	Leu	Leu	Leu	Phe	Ala	Ala	Pro
20										25				30
Phe	Gly	Leu	Leu	Gly	Glu	Lys	Thr	Arg	Gln	Val	Ser	Leu	Glu	Val
35										40				45
Ile	Pro	Asn	Trp	Leu	Gly	Pro	Leu	Gln	Asn	Leu	Leu	His	Ile	Arg
50										55				60
Ala	Val	Gly	Thr	Asn	Ser	Thr	Leu	His	Tyr	Val	Trp	Ser	Ser	Leu
65										70				75
Gly	Pro	Leu	Ala	Val	Val	Met	Val	Ala	Thr	Asn	Thr	Pro	His	Ser
80										85				90
Thr	Leu	Ser	Val	Asn	Trp	Ser	Leu	Leu	Leu	Ser	Pro	Glu	Pro	Asp
95										100				105
Gly	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser
110										115				120
Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val
125										130				135
Ser	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr
140										145				150
Ser	Leu	Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile	Thr	Asp	Ser	Leu	Asp
155										160				165
Pro	Ala	Thr	Leu	Ser	Ala	Thr	Phe	Gln	Gly	His	Pro	Met	Asn	Asp
170										175				180
Pro	Thr	Arg	Thr	Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe	Arg	Val	Gln
185										190				195
Ala	Phe	Ser	Arg	Ser	Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg	Leu	Leu
200										205				210
His	Thr	Ala	Asp	Thr	Cys	Gln	Leu	Glu	Val	Ala	Leu	Ile	Gly	Ala
215										220				225
Ser	Pro	Arg	Gly	Asn	Arg	Ser	Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr
230										235				240
Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	Ser	Met	Gln	Glu	Gln	His	Ser
245										250				255
Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	Phe	Gln	Leu	Asp	Gln	Leu
260										265				270
Leu	Trp	Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	Gln	Trp	Arg	Pro	Val
275										280				285
Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Cys
290										295				300
Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	Leu	Pro	Gln
305										310				315

Ser Pro Ile Val Arg Ala Phe Phe Gly Ser Gln Asn Asn Phe Cys
 320 325 330
 Ala Phe Asn Leu Thr Phe Gly Ala Ser Thr Gly Pro Gly Tyr Trp
 335 340 345
 Asp Gln His Tyr Leu Ser Trp Ser Met Leu Leu Gly Val Gly Phe
 350 355 360
 Pro Pro Val Asp Gly Leu Ser Pro Leu Val Leu Gly Ile Met Ala
 365 370 375
 Val Ala Leu Gly Ala Pro Gly Leu Met Leu Leu Gly Gly Gly Leu
 380 385 390
 Val Leu Leu Leu His His Lys Lys Tyr Ser Glu Tyr Gln Ser Ile
 395 400 405
 Asn

<210> 5
 <211> 477
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4620890CD1

<400> 5
 Met Pro Gly Ser Asp Thr Ala Leu Thr Val Asp Arg Thr Tyr Ser
 1 5 10 15
 Asp Pro Gly Arg His His Arg Cys Lys Ser Arg Val Glu Arg His
 20 25 30
 Asp Met Asn Thr Leu Ser Leu Pro Leu Asn Ile Arg Arg Gly Gly
 35 40 45
 Ser Asp Thr Asn Leu Asn Phe Asp Val Pro Asp Gly Ile Leu Asp
 50 55 60
 Phe His Lys Val Lys Leu Thr Ala Asp Ser Leu Lys Gln Lys Ile
 65 70 75
 Leu Lys Val Thr Glu Gln Ile Lys Ile Glu Gln Thr Ser Arg Asp
 80 85 90
 Gly Asn Val Ala Glu Tyr Leu Lys Leu Val Asn Asn Ala Asp Lys
 95 100 105
 Gln Gln Ala Gly Arg Ile Lys Gln Val Phe Glu Lys Lys Asn Gln
 110 115 120
 Lys Ser Ala His Ser Ile Ala Gln Leu Gln Lys Lys Leu Glu Gln
 125 130 135
 Tyr His Arg Lys Leu Arg Glu Ile Glu Gln Asn Gly Ala Ser Arg
 140 145 150
 Ser Ser Lys Asp Ile Ser Lys Asp His Leu Lys Asp Ile His Arg
 155 160 165
 Ser Leu Lys Asp Ala His Val Lys Ser Arg Thr Ala Pro His Cys
 170 175 180
 Met Glu Ser Ser Lys Ser Gly Met Pro Gly Val Ser Leu Thr Pro
 185 190 195
 Pro Val Phe Val Phe Asn Lys Ser Arg Glu Phe Ala Asn Leu Ile
 200 205 210
 Arg Asn Lys Phe Gly Ser Ala Asp Asn Ile Ala His Leu Lys Asn
 215 220 225
 Ser Leu Glu Glu Phe Arg Pro Glu Ala Ser Ala Arg Ala Tyr Gly
 230 235 240
 Gly Ser Ala Thr Ile Val Asn Lys Pro Lys Tyr Gly Ser Asp Asp
 245 250 255
 Glu Cys Ser Ser Gly Thr Ser Gly Ser Ala Asp Ser Asn Gly Asn
 260 265 270
 Gln Ser Phe Gly Ala Gly Gly Ala Ser Thr Leu Asp Ser Gln Gly
 275 280 285

Lys	Leu	Ala	Val	Ile	Leu	Glu	Glu	Leu	Arg	Glu	Ile	Lys	Asp	Thr
290						295						300		
Gln	Ala	Gln	Leu	Ala	Glu	Asp	Ile	Glu	Ala	Leu	Lys	Val	Gln	Phe
305							310					315		
Lys	Arg	Glu	Tyr	Gly	Phe	Ile	Ser	Gln	Thr	Leu	Gln	Glu	Glu	Arg
320							325					330		
Tyr	Arg	Tyr	Glu	Arg	Leu	Glu	Asp	Gln	Leu	His	Asp	Leu	Thr	Asp
335							340					345		
Leu	His	Gln	His	Glu	Thr	Ala	Asn	Leu	Lys	Gln	Glu	Leu	Ala	Ser
350							355					360		
Ile	Glu	Glu	Lys	Val	Ala	Tyr	Gln	Ala	Tyr	Glu	Arg	Ser	Arg	Asp
365							370					375		
Ile	Gln	Glu	Ala	Leu	Glu	Ser	Cys	Gln	Thr	Arg	Ile	Ser	Lys	Leu
380							385					390		
Glu	Leu	His	Gln	Gln	Glu	Gln	Gln	Ala	Leu	Gln	Thr	Asp	Thr	Val
395							400					405		
Asn	Ala	Lys	Val	Ile	Leu	Gly	Arg	Cys	Ile	Asn	Val	Ile	Leu	Ala
410							415					420		
Phe	Met	Thr	Val	Ile	Leu	Val	Cys	Val	Ser	Thr	Ile	Ala	Lys	Phe
425							430					435		
Val	Ser	Pro	Met	Met	Lys	Ser	Arg	Cys	His	Ile	Leu	Gly	Thr	Phe
440							445					450		
Phe	Ala	Val	Thr	Leu	Leu	Ala	Ile	Phe	Cys	Lys	Asn	Trp	Asp	His
455							460					465		
Ile	Leu	Cys	Ala	Ile	Glu	Arg	Met	Ile	Ile	Pro	Arg			
470							475							

<210> 6

<211> 691

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5514146CD1

<400> 6

Met	Cys	Phe	Arg	Thr	Lys	Leu	Ser	Val	Ser	Trp	Val	Pro	Leu	Phe
1					5				10			15		
Leu	Leu	Leu	Ser	Arg	Val	Phe	Ser	Thr	Glu	Thr	Asp	Lys	Pro	Ser
					20				25			30		
Ala	Gln	Asp	Ser	Arg	Ser	Arg	Gly	Ser	Ser	Gly	Gln	Pro	Ala	Asp
					35				40			45		
Leu	Leu	Gln	Val	Leu	Ser	Ala	Gly	Asp	His	Pro	Pro	His	Asn	His
					50				55			60		
Ser	Arg	Ser	Leu	Ile	Lys	Thr	Leu	Leu	Glu	Lys	Thr	Gly	Cys	Pro
					65				70			75		
Arg	Arg	Arg	Asn	Gly	Met	Gln	Gly	Asp	Cys	Asn	Leu	Cys	Phe	Glu
					80				85			90		
Pro	Asp	Ala	Leu	Leu	Leu	Ile	Ala	Gly	Gly	Asn	Phe	Glu	Asp	Gln
						95			100			105		
Leu	Arg	Glu	Glu	Val	Val	Gln	Arg	Val	Ser	Leu	Leu	Leu	Tyr	
						110				115			120	
Tyr	Ile	Ile	His	Gln	Glu	Glu	Ile	Cys	Ser	Ser	Lys	Leu	Asn	Met
							125				130		135	
Ser	Asn	Lys	Glu	Tyr	Lys	Phe	Tyr	Leu	His	Ser	Leu	Leu	Ser	Leu
							140				145		150	
Arg	Gln	Asp	Glu	Asp	Ser	Ser	Phe	Leu	Ser	Gln	Asn	Glu	Thr	Glu
							155				160		165	
Asp	Ile	Leu	Ala	Phe	Thr	Arg	Gln	Tyr	Phe	Asp	Thr	Ser	Gln	Ser
							170				175		180	
Gln	Cys	Met	Glu	Thr	Lys	Thr	Leu	Gln	Lys	Lys	Ser	Gly	Ile	Val
							185				190		195	

Ser Ser Glu Gly Ala Asn Glu Ser Thr Leu Pro Gln Leu Ala Ala
 200 205 210
 Met Ile Ile Thr Leu Ser Leu Gln Gly Val Cys Leu Gly Gln Gly
 215 220 225
 Asn Leu Pro Ser Pro Asp Tyr Phe Thr Glu Tyr Ile Phe Ser Ser
 230 235 240
 Leu Asn Arg Thr Asn Thr Leu Arg Leu Ser Glu Leu Asp Gln Leu
 245 250 255
 Leu Asn Thr Leu Trp Thr Arg Ser Thr Cys Ile Lys Asn Glu Lys
 260 265 270
 Ile His Gln Phe Gln Arg Lys Gln Asn Asn Ile Ile Thr His Asp
 275 280 285
 Gln Asp Tyr Ser Asn Phe Ser Ser Ser Met Glu Lys Glu Ser Glu
 290 295 300
 Asp Gly Pro Ile Ser Trp Asp Gln Thr Cys Phe Ser Ala Arg Gln
 305 310 315
 Leu Val Glu Ile Phe Leu Gln Lys Gly Leu Ser Leu Ile Ser Lys
 320 325 330
 Glu Asp Phe Lys Gln Met Ser Pro Gly Ile Ile Gln Gln Leu Leu
 335 340 345
 Ser Cys Ser Cys His Leu Pro Lys Asp Gln Gln Ala Lys Leu Pro
 350 355 360
 Pro Thr Thr Leu Glu Lys Tyr Gly Tyr Ser Thr Val Ala Val Thr
 365 370 375
 Leu Leu Thr Leu Gly Ser Met Leu Gly Thr Ala Leu Val Leu Phe
 380 385 390
 His Ser Cys Glu Glu Asn Tyr Arg Leu Ile Leu Gln Leu Phe Val
 395 400 405
 Gly Leu Ala Val Gly Thr Leu Ser Gly Asp Ala Leu Leu His Leu
 410 415 420
 Ile Pro Gln Val Leu Gly Leu His Lys Gln Glu Ala Pro Glu Phe
 425 430 435
 Gly His Phe His Glu Ser Lys Gly His Ile Trp Lys Leu Met Gly
 440 445 450
 Leu Ile Gly Gly Ile His Gly Phe Phe Leu Ile Glu Lys Cys Phe
 455 460 465
 Ile Leu Leu Val Ser Pro Asn Asp Lys Gln Gly Leu Ser Leu Val
 470 475 480
 Asn Gly His Val Gly His Ser His His Leu Ala Leu Asn Ser Glu
 485 490 495
 Leu Ser Asp Gln Ala Gly Arg Gly Lys Ser Ala Ser Thr Ile Gln
 500 505 510
 Leu Lys Ser Pro Glu Asp Ser Gln Ala Ala Glu Met Pro Ile Gly
 515 520 525
 Ser Met Thr Ala Ser Asn Arg Lys Cys Lys Ala Ile Ser Leu Leu
 530 535 540
 Ala Ile Met Ile Leu Val Gly Asp Ser Leu His Asn Phe Ala Asp
 545 550 555
 Gly Leu Ala Ile Gly Ala Ala Phe Ser Ser Ser Ser Glu Ser Gly
 560 565 570
 Val Thr Thr Thr Ile Ala Ile Leu Cys His Glu Ile Pro His Glu
 575 580 585
 Met Gly Asp Phe Ala Val Leu Leu Ser Ser Gly Leu Ser Met Lys
 590 595 600
 Thr Ala Ile Leu Met Asn Phe Ile Ser Ser Leu Thr Ala Phe Met
 605 610 615
 Gly Leu Tyr Ile Gly Leu Ser Val Ser Ala Asp Pro Cys Val Gln
 620 625 630
 Asp Trp Ile Phe Thr Val Thr Ala Gly Met Phe Leu Tyr Leu Ser
 635 640 645
 Leu Val Glu Met Leu Pro Glu Met Thr His Val Gln Thr Gln Arg
 650 655 660
 Pro Trp Met Met Phe Leu Leu Gln Asn Phe Gly Leu Ile Leu Gly

	665	670	675
Trp Leu Ser Leu Leu Leu Ala Ile	Tyr Glu Gln Asn Ile Lys		
680	685	690	
Ile			

<210> 7
<211> 919
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7474769CD1

<400> 7

Met Gln Glu Cys Leu Thr Leu Trp Val Phe Ser Pro Leu Ala Leu	1	5	10
			15
Thr Asp Ser Gly Tyr Thr Lys Thr Tyr Gln Ala His Ala Lys Gln			
20	25	30	
Lys Phe Ser Arg Leu Trp Ser Ser Lys Ser Val Thr Glu Ile His			
35	40	45	
Leu Tyr Phe Glu Glu Glu Val Lys Gln Glu Glu Cys Asp His Leu			
50	55	60	
Asp Arg Leu Phe Ala Pro Lys Glu Ala Gly Lys Gln Pro Arg Thr			
65	70	75	
Val Ile Ile Gln Gly Pro Gln Gly Ile Gly Lys Thr Thr Leu Leu			
80	85	90	
Met Lys Leu Met Met Ala Trp Ser Asp Asn Lys Ile Phe Arg Asp			
95	100	105	
Arg Phe Leu Tyr Thr Phe Tyr Phe Cys Cys Arg Glu Leu Arg Glu			
110	115	120	
Leu Pro Pro Thr Ser Leu Ala Asp Leu Ile Ser Arg Glu Trp Pro			
125	130	135	
Asp Pro Ala Ala Pro Ile Thr Glu Ile Val Ser Gln Pro Glu Arg			
140	145	150	
Leu Leu Phe Val Ile Asp Ser Phe Glu Glu Leu Gln Gly Gly Leu			
155	160	165	
Asn Glu Pro Asp Ser Asp Leu Cys Gly Asp Leu Met Glu Lys Arg			
170	175	180	
Pro Val Gln Val Leu Leu Ser Ser Leu Leu Arg Lys Lys Met Leu			
185	190	195	
Pro Glu Ala Ser Leu Leu Ile Ala Ile Lys Pro Val Cys Pro Lys			
200	205	210	
Glu Leu Arg Asp Gln Val Thr Ile Ser Glu Ile Tyr Gln Pro Arg			
215	220	225	
Gly Phe Asn Glu Ser Asp Arg Leu Val Tyr Phe Cys Cys Phe Phe			
230	235	240	
Lys Asp Pro Lys Arg Ala Met Glu Ala Phe Asn Leu Val Arg Glu			
245	250	255	
Ser Glu Gln Leu Phe Ser Ile Cys Gln Ile Pro Leu Leu Cys Trp			
260	265	270	
Ile Leu Cys Thr Ser Leu Lys Gln Glu Met Gln Lys Gly Lys Asp			
275	280	285	
Leu Ala Leu Thr Cys Gln Ser Thr Thr Ser Val Tyr Ser Ser Phe			
290	295	300	
Val Phe Asn Leu Phe Thr Pro Glu Gly Ala Glu Gly Pro Thr Pro			
305	310	315	
Gln Thr Gln His Gln Leu Lys Ala Leu Cys Ser Leu Ala Ala Glu			
320	325	330	
Gly Met Trp Thr Asp Thr Phe Glu Phe Cys Glu Asp Asp Leu Arg			
335	340	345	
Arg Asn Gly Val Val Asp Ala Asp Ile Pro Ala Leu Leu Gly Thr			

	350	355	360
Lys Ile Leu Leu Lys Tyr Gly Glu Arg		Glu Ser Ser Tyr Val	Phe
365	370	375	
Leu His Val Cys Ile Gln Glu Phe Cys		Ala Ala Leu Phe Tyr	Leu
380	385	390	
Leu Lys Ser His Leu Asp His Pro His		Pro Ala Val Arg Cys	Val
395	400	405	
Gln Glu Leu Leu Val Ala Asn Phe Glu		Lys Ala Arg Arg Ala	His
410	415	420	
Trp Ile Phe Leu Gly Cys Phe Leu Thr		Gly Leu Leu Asn Lys	Lys
425	430	435	
Glu Gln Glu Lys Leu Asp Ala Phe Phe		Gly Phe Gln Leu Ser	Gln
440	445	450	
Glu Ile Lys Gln Gln Ile His Gln Cys		Leu Lys Ser Leu Gly	Glu
455	460	465	
Arg Gly Asn Pro Gln Gly Gln Val Asp		Ser Leu Ala Ile Phe	Tyr
470	475	480	
Cys Leu Phe Glu Met Gln Asp Pro Ala		Phe Val Lys Gln Ala	Val
485	490	495	
Asn Leu Leu Gln Glu Ala Asn Phe His		Ile Ile Asp Asn Val	Asp
500	505	510	
Leu Val Val Ser Ala Tyr Cys Leu Lys		Tyr Cys Ser Ser Leu	Arg
515	520	525	
Lys Leu Cys Phe Ser Val Gln Asn Val		Phe Lys Lys Glu Asp	Glu
530	535	540	
His Ser Ser Thr Ser Asp Tyr Ser Leu		Ile Cys Trp His His	Ile
545	550	555	
Cys Ser Val Leu Thr Thr Ser Gly His		Leu Arg Glu Leu Gln	Val
560	565	570	
Gln Asp Ser Thr Leu Ser Glu Ser Thr		Phe Val Thr Trp Cys	Asn
575	580	585	
Gln Leu Arg His Pro Ser Cys Arg Leu		Gln Lys Leu Gly Ile	Asn
590	595	600	
Asn Val Ser Phe Ser Gly Gln Ser Val		Leu Leu Phe Glu Val	Leu
605	610	615	
Phe Tyr Gln Pro Asp Leu Lys Tyr Leu		Ser Phe Thr Leu Thr	Lys
620	625	630	
Leu Ser Arg Asp Asp Ile Arg Ser Leu		Cys Asp Ala Leu Asn	Tyr
635	640	645	
Pro Ala Gly Asn Val Lys Glu Leu Ala		Leu Val Asn Cys His	Leu
650	655	660	
Ser Pro Ile Asp Cys Glu Val Leu Ala		Gly Leu Leu Thr Asn	Asn
665	670	675	
Lys Lys Leu Thr Tyr Leu Asn Val Ser		Cys Asn Gln Leu Asp	Thr
680	685	690	
Gly Val Pro Leu Leu Cys Glu Ala Leu		Cys Ser Pro Asp Thr	Val
695	700	705	
Leu Val Tyr Leu Met Leu Ala Phe Cys		His Leu Ser Glu Gln	Cys
710	715	720	
Cys Glu Tyr Ile Ser Glu Met Leu Leu		Arg Asn Lys Ser Val	Arg
725	730	735	
Tyr Leu Asp Leu Ser Ala Asn Val Leu		Lys Asp Glu Gly Leu	Lys
740	745	750	
Thr Leu Cys Glu Ala Leu Lys His Pro		Asp Cys Cys Leu Asp	Ser
755	760	765	
Leu Cys Leu Val Lys Cys Phe Ile Thr		Ala Ala Gly Cys Glu	Asp
770	775	780	
Leu Ala Ser Ala Leu Ile Ser Asn Gln		Asn Leu Lys Ile Leu	Gln
785	790	795	
Ile Gly Cys Asn Glu Ile Gly Asp Val		Gly Val Gln Leu Leu	Cys
800	805	810	
Arg Ala Leu Thr His Thr Asp Cys Arg		Leu Glu Ile Leu Gly	Leu
815	820	825	

Glu	Glu	Cys	Gly	Leu	Thr	Ser	Thr	Cys	Cys	Lys	Asp	Leu	Ala	Ser
				830				835				840		
Val	Leu	Thr	Cys	Ser	Lys	Thr	Leu	Gln	Gln	Leu	Asn	Leu	Thr	Leu
				845				850				855		
Asn	Thr	Leu	Asp	His	Thr	Gly	Val	Val	Val	Leu	Cys	Glu	Ala	Leu
				860				865				870		
Arg	His	Pro	Glu	Cys	Ala	Leu	Gln	Val	Leu	Gly	Leu	Arg	Lys	Thr
				875				880				885		
Asp	Phe	Asp	Glu	Glu	Thr	Gln	Ala	Leu	Leu	Thr	Ala	Glu	Glu	Glu
				890				895				900		
Arg	Asn	Pro	Asn	Leu	Thr	Ile	Thr	Asp	Asp	Cys	Asp	Thr	Ile	Thr
				905				910				915		
Arg	Val	Glu	Ile											

<210> 8
<211> 178
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 065296CD1

<400> 8														
Met	Ala	Gly	Lys	Pro	Tyr	Ser	Leu	Arg	Gly	Ser	Ser	His	Thr	Thr
1				5				10				15		
Gly	Thr	Phe	Leu	Leu	Leu	Ser	Gln	Ser	Ser	Gly	Glu	Leu	Gln	Ile
					20				25			30		
Ile	Lys	Tyr	Phe	Lys	Met	Lys	Phe	Lys	Thr	Glu	Met	Phe	Leu	Leu
					35				40			45		
Leu	Leu	Leu	Trp	Arg	Asp	Cys	Met	Lys	Thr	His	Thr	Gly	Met	Asn
					50				55			60		
His	Arg	Leu	His	Val	Pro	Glu	Leu	Ser	Asn	Ala	Gln	Asp	Asn	Asn
				65				70			75			
Ser	Ser	Ala	Ser	Ile	Ser	Asp	Lys	Val	Gly	Phe	Ser	Lys	Ala	Glu
				80				85			90			
Leu	Arg	Met	Cys	Leu	Ala	Ile	Trp	Thr	Phe	Ser	Pro	Ile	Lys	Gln
				95				100			105			
Val	Tyr	Lys	Ile	Leu	Lys	Ile	Glu	Cys	Leu	Asn	Phe	Ser	Ile	Val
				110				115			120			
Leu	Ser	Val	Leu	Lys	Pro	Ile	Arg	Ile	Pro	Arg	Ile	Asn	Met	Phe
				125				130			135			
Val	Phe	Leu	Gly	Ala	Leu	Ser	Met	Thr	Gln	Asp	Asn	Glu	Trp	Tyr
				140				145			150			
Leu	Asn	Tyr	Ile	Phe	Phe	Thr	Leu	Glu	Ile	Ser	Arg	Gln	Lys	Val
				155				160			165			
Phe	Phe	Glu	Trp	Val	Asn	Ser	Ala	Leu	Ser	Phe	Ser	Gln		
				170				175						

<210> 9
<211> 310
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 231994CD1

<400> 9														
Met	Ser	Cys	Pro	Val	Gln	Thr	Met	Asp	Pro	Glu	Val	Thr	Leu	Leu
1				5				10			15			
Leu	Gln	Cys	Pro	Gly	Gly	Leu	Pro	Gln	Glu	Gln	Ile	Gln	Ala	

	20		25		30									
Glu	Leu	Ser	Pro	Ala	His	Asp	Arg	Arg	Pro	Leu	Pro	Gly	Gly	Asp
	35								40					45
Glu	Ala	Ile	Thr	Ala	Ile	Trp	Glu	Thr	Arg	Leu	Lys	Ala	Gln	Pro
	50								55					60
Trp	Leu	Phe	Asp	Ala	Pro	Lys	Phe	Arg	Leu	His	Ser	Ala	Thr	Leu
	65								70					75
Ala	Pro	Ile	Gly	Ser	Arg	Gly	Pro	Gln	Leu	Leu	Leu	Arg	Leu	Gly
	80								85					90
Leu	Thr	Ser	Tyr	Arg	Asp	Phe	Leu	Gly	Thr	Asn	Trp	Ser	Ser	Ser
	95								100					105
Ala	Ala	Trp	Leu	Arg	Gln	Gln	Gly	Ala	Thr	Asp	Trp	Gly	Asp	Thr
	110								115					120
Gln	Ala	Tyr	Leu	Ala	Asp	Pro	Leu	Gly	Val	Gly	Ala	Ala	Leu	Ala
	125								130					135
Thr	Ala	Asp	Asp	Phe	Leu	Val	Phe	Leu	Arg	Arg	Ser	Arg	Gln	Val
	140								145					150
Ala	Glu	Ala	Pro	Gly	Leu	Val	Asp	Val	Pro	Gly	Gly	His	Pro	Glu
	155								160					165
Pro	Gln	Ala	Leu	Cys	Pro	Gly	Gly	Ser	Pro	Gln	His	Gln	Asp	Leu
	170								175					180
Ala	Gly	Gln	Leu	Val	Val	His	Glu	Leu	Phe	Ser	Ser	Val	Leu	Gln
	185								190					195
Glu	Ile	Cys	Asp	Glu	Val	Asn	Leu	Pro	Leu	Leu	Thr	Leu	Ser	Gln
	200								205					210
Pro	Leu	Leu	Leu	Gly	Ile	Ala	Arg	Asn	Glu	Thr	Ser	Ala	Gly	Arg
	215								220					225
Ala	Ser	Ala	Glu	Phe	Tyr	Val	Gln	Cys	Ser	Leu	Thr	Ser	Glu	Gln
	230								235					240
Val	Arg	Lys	His	Tyr	Leu	Ser	Gly	Gly	Pro	Glu	Ala	His	Glu	Ser
	245								250					255
Thr	Gly	Ile	Phe	Phe	Val	Glu	Thr	Gln	Asn	Val	Arg	Arg	Leu	Pro
	260								265					270
Glu	Thr	Glu	Met	Trp	Ala	Glu	Leu	Cys	Pro	Ser	Ala	Lys	Gly	Ala
	275								280					285
Ile	Ile	Leu	Tyr	Asn	Arg	Val	Gln	Gly	Ser	Pro	Thr	Gly	Ala	Ala
	290								295					300
Leu	Gly	Ser	Pro	Ala	Leu	Leu	Pro	Pro	Leu					
	305								310					

<210> 10
<211> 559
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 538054CD1

	95	100	105
Ser Tyr Phe Val	Ile Leu Asn Ser Ala	Ala Phe Phe Lys Val	Gly
110	115	120	
Ser Gln Leu Glu	Val Leu Val His Val	Gln Asp Phe Gln Arg	Lys
125	130	135	
Pro Lys Lys Tyr	Gly Gly Asp Tyr Leu	Gln Ala Arg Ile His	Ser
140	145	150	
Leu Lys Leu Gln	Ala Gly Ala Val Gly	Arg Val Val Asp Tyr	Gln
155	160	165	
Asn Gly Phe Tyr	Lys Val Phe Phe Thr	Leu Leu Trp Pro Gly	Lys
170	175	180	
Val Lys Val Ser	Val Ser Leu Val His	Pro Ser Glu Gly Ile	Arg
185	190	195	
Val Leu Gln Arg	Leu Gln Glu Asp Lys	Pro Asp Arg Val Tyr	Phe
200	205	210	
Lys Ser Leu Phe	Arg Ser Gly Arg Ile	Ser Glu Thr Thr Glu	Cys
215	220	225	
Asn Val Cys Leu	Pro Gly Asn Leu Pro	Leu Cys Asn Phe Thr	Asp
230	235	240	
Leu Tyr Thr Gly	Glu Pro Trp Phe Cys	Phe Lys Pro Lys Lys	Leu
245	250	255	
Pro Cys Ser Ser	Arg Ile Thr His Phe	Lys Gly Gly Tyr Leu	Lys
260	265	270	
Gly Leu Leu Thr	Ala Ala Glu Ser Ala	Phe Phe Gln Ser Gly	Val
275	280	285	
Asn Ile Lys Met	Pro Val Asn Ser Ser	Gly Pro Asp Trp Val	Thr
290	295	300	
Val Ile Pro Arg	Arg Ile Lys Glu Thr	Asn Ser Leu Glu Leu	Ser
305	310	315	
Gln Gly Ser Gly	Thr Phe Pro Ser Gly	Tyr Tyr Tyr Lys Asp	Gln
320	325	330	
Trp Arg Pro Arg	Lys Phe Lys Met Arg	Gln Phe Asn Asp Pro	Asp
335	340	345	
Asn Ile Thr Glu	Cys Leu Gln Arg Lys	Val Val His Leu Phe	Gly
350	355	360	
Asp Ser Thr Ile	Arg Gln Trp Phe Glu	Tyr Leu Thr Thr Phe	Val
365	370	375	
Pro Asp Leu Val	Glu Phe Asn Leu Gly	Ser Pro Lys Asn Val	Gly
380	385	390	
Pro Phe Leu Ala	Val Asp Gln Lys His	Asn Ile Leu Leu Lys	Tyr
395	400	405	
Arg Cys His Gly	Pro Pro Ile Arg Phe	Thr Thr Val Phe Ser	Asn
410	415	420	
Glu Leu His Tyr	Val Ala Asn Glu Leu	Asn Gly Ile Val Gly	Gly
425	430	435	
Lys Asn Thr Val	Val Ala Ile Ala Val	Trp Ser His Phe Ser	Thr
440	445	450	
Phe Pro Leu Glu	Val Tyr Ile Arg Arg	Leu Arg Asn Ile Arg	Arg
455	460	465	
Ala Val Val Arg	Leu Leu Asp Arg Ser	Pro Lys Thr Val Val	Val
470	475	480	
Ile Arg Thr Ala	Asn Ala Gln Glu Leu	Gly Pro Glu Val Ser	Leu
485	490	495	
Phe Asn Ser Asp	Trp Tyr Asn Phe Gin	Leu Asp Thr Ile Leu	Arg
500	505	510	
Arg Met Phe Ser	Gly Val Gly Val Tyr	Leu Val Asp Ala Trp	Glu
515	520	525	
Met Thr Leu Ala	His Tyr Leu Pro His	Lys Leu His Pro Asp	Glu
530	535	540	
Val Ile Val Lys	Asn Gln Leu Asp Met	Phe Leu Ser Phe Val	Cys
545	550	555	
Pro Leu Glu Thr			

<210> 11
<211> 477
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1259305CD1

<400> 11

Met	Val	Cys	Val	Phe	Val	Met	Asn	Arg	Met	Asn	Ser	Gln	Asn	Ser	
1						5			10					15	
Gly	Phe	Thr	Gln	Arg	Arg	Arg	Arg	Met	Ala	Leu	Gly	Ile	Val	Ile	Leu
									20		25				30
Leu	Leu	Val	Asp	Val	Ile	Trp	Val	Ala	Ser	Ser	Glu	Leu	Thr	Ser	
						35			40					45	
Tyr	Val	Phe	Thr	Gln	Tyr	Asn	Lys	Pro	Phe	Phe	Ser	Thr	Phe	Ala	
						50			55					60	
Lys	Thr	Ser	Met	Phe	Val	Leu	Tyr	Leu	Gly	Phe	Ile	Ile	Trp		
						65			70					75	
Lys	Pro	Trp	Arg	Gln	Gln	Cys	Thr	Arg	Gly	Leu	Arg	Gly	Lys	His	
						80			85					90	
Ala	Ala	Phe	Phe	Ala	Asp	Ala	Glu	Gly	Tyr	Phe	Ala	Ala	Cys	Thr	
						95			100					105	
Thr	Asp	Thr	Thr	Met	Asn	Ser	Ser	Leu	Ser	Glu	Pro	Leu	Tyr	Val	
						110			115					120	
Pro	Val	Lys	Phe	His	Asp	Leu	Pro	Ser	Glu	Lys	Pro	Glu	Ser	Thr	
						125			130					135	
Asn	Ile	Asp	Thr	Glu	Lys	Thr	Pro	Lys	Lys	Ser	Arg	Val	Arg	Phe	
						140			145					150	
Ser	Asn	Ile	Met	Glu	Ile	Arg	Gln	Leu	Pro	Ser	Ser	His	Ala	Leu	
						155			160					165	
Glu	Ala	Lys	Leu	Ser	Arg	Met	Ser	Tyr	Pro	Val	Lys	Glu	Gln	Glu	
						170			175					180	
Ser	Ile	Leu	Lys	Thr	Val	Gly	Lys	Leu	Thr	Ala	Thr	Gln	Val	Ala	
						185			190					195	
Lys	Ile	Ser	Phe	Phe	Phe	Cys	Phe	Val	Trp	Phe	Leu	Ala	Asn	Leu	
						200			205					210	
Ser	Tyr	Gln	Glu	Ala	Leu	Ser	Asp	Thr	Gln	Val	Ala	Ile	Val	Asn	
						215			220					225	
Ile	Leu	Ser	Ser	Thr	Ser	Gly	Leu	Phe	Thr	Leu	Ile	Leu	Ala	Ala	
						230			235					240	
Val	Phe	Pro	Ser	Asn	Ser	Gly	Asp	Arg	Phe	Thr	Leu	Ser	Lys	Leu	
						245			250					255	
Leu	Ala	Val	Ile	Leu	Ser	Ile	Gly	Gly	Val	Val	Leu	Val	Asn	Leu	
						260			265					270	
Ala	Gly	Ser	Glu	Lys	Pro	Ala	Gly	Arg	Asp	Thr	Val	Gly	Ser	Ile	
						275			280					285	
Trp	Ser	Leu	Ala	Gly	Ala	Met	Leu	Tyr	Ala	Val	Tyr	Ile	Val	Met	
						290			295					300	
Ile	Lys	Arg	Lys	Val	Asp	Arg	Glu	Asp	Lys	Leu	Asp	Ile	Pro	Met	
						305			310					315	
Phe	Phe	Gly	Phe	Val	Gly	Leu	Phe	Asn	Leu	Leu	Leu	Trp	Pro		
						320			325					330	
Gly	Phe	Phe	Leu	Leu	His	Tyr	Thr	Gly	Phe	Glu	Asp	Phe	Glu		
						335			340					345	
Pro	Asn	Lys	Val	Val	Leu	Met	Cys	Ile	Ile	Ile	Asn	Gly	Leu		
						350			355					360	
Gly	Thr	Val	Leu	Ser	Glu	Phe	Leu	Trp	Leu	Trp	Gly	Cys	Phe		
						365			370					375	
Thr	Ser	Ser	Leu	Ile	Gly	Thr	Leu	Ala	Leu	Ser	Leu	Thr	Ile		
						380			385					390	
Leu	Ser	Ile	Ile	Ala	Asp	Met	Cys	Met	Gln	Lys	Val	Gln	Phe		

395	400	405
Trp Leu Phe Phe Ala Gly Ala Ile Pro Val Phe Phe Ser Phe Phe		
410	415	420
Ile Val Thr Leu Leu Cys His Tyr Asn Asn Trp Asp Pro Val Met		
425	430	435
Val Gly Ile Arg Arg Ile Phe Ala Phe Ile Cys Arg Lys His Arg		
440	445	450
Ile Gln Arg Val Pro Glu Asp Ser Glu Gln Cys Glu Ser Leu Ile		
455	460	465
Ser Met His Ser Val Ser Gln Glu Asp Gly Ala Ser		
470	475	

<210> 12
<211> 176
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1483702CD1

400	405	410
Met Leu Ser Leu Lys Leu Pro Gln Leu Leu Gln Val His Gln Val		
1	5	10
Pro Arg Val Phe Trp Glu Asp Gly Ile Met Ser Gly Tyr Arg Arg		
20	25	30
Pro Thr Ser Ser Ala Leu Asp Cys Val Leu Ser Ser Phe Gln Met		
35	40	45
Thr Asn Glu Thr Val Asn Ile Trp Thr His Phe Leu Pro Thr Trp		
50	55	60
Tyr Phe Leu Trp Arg Leu Leu Ala Leu Ala Gly Gly Pro Gly Phe		
65	70	75
Arg Ala Glu Pro Tyr His Trp Pro Leu Leu Val Phe Leu Leu Pro		
80	85	90
Ala Cys Leu Tyr Pro Phe Ala Ser Cys Cys Ala His Thr Phe Ser		
95	100	105
Ser Met Ser Pro Arg Met Arg His Ile Cys Tyr Phe Leu Asp Tyr		
110	115	120
Gly Ala Leu Ser Leu Tyr Ser Leu Val Ser Trp Ser Trp Lys Ala		
125	130	135
Leu Gly Ser Val Arg Ser Ser Ala Gln Glu Pro Ser Pro Ile His		
140	145	150
Ser Cys Ser Thr Thr Ser His Ser Phe Ile Gly Ser Gly Cys Ala		
155	160	165
Gly Ala Gly Ala Thr Ala Val Gly Arg Arg Pro		
170	175	

<210> 13
<211> 190
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1519324CD1

400	405	410
Met Ala Gly Met Met Lys Gly Ile Arg Trp Ser Cys Pro Ala Ile		
1	5	10
Ala Ser Ile Ser Gln Thr Arg Ser Ser Gln Glu Lys Asp Ser Ser		
20	25	30
Ser Pro Pro Trp Asp Leu Arg Arg Ala Ala Thr Glu Trp Gly Gly		
35	40	45

Pro	Arg	Cys	Ala	Val	Pro	Lys	Pro	Gly	Pro	Arg	Pro	Lys	Phe	Ser
50					55								60	
Leu	Pro	Ser	Leu	Val	Pro	Ser	Cys	Pro	Phe	Leu	Leu	His	Ala	Trp
65						70							75	
Ala	Cys	Arg	Pro	Thr	Pro	Ala	Thr	Thr	Glu	Ser	Thr	Arg	Ser	Ala
80							85						90	
Leu	Cys	Ser	Trp	Arg	Arg	His	Ser	Arg	Val	Glu	Ser	Cys	Pro	Ser
95							100						105	
Leu	Ser	Leu	Gly	His	Leu	Gly	Gly	Glu	Ser	Gly	Leu	Arg	Ser	Glu
110							115						120	
Leu	Asp	Pro	Gly	Asp	Leu	Gly	Ser	Phe	Phe	Leu	Ala	His	Gln	Pro
125							130						135	
Cys	Arg	Pro	His	Leu	Ser	Gln	Asn	Pro	Leu	Cys	Leu	Gly	Gly	Ser
140							145						150	
Gly	Ser	Ala	Leu	Leu	Cys	Ser	Arg	Gly	Trp	Gly	Val	Asp	Ser	Ile
155							160						165	
Arg	Trp	Glu	Ser	Gly	Val	His	Pro	His	Val	Ser	Val	Gly	Phe	Ser
170							175						180	
Pro	Trp	Gly	Trp	Lys	Lys	Arg	Ala	Ser	Thr					
				185					190					

<210> 14

<211> 75

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1630169CD1

<400> 14

Met	Ala	Leu	Gly	Lys	Val	Leu	Ala	Met	Ala	Leu	Val	Leu	Ala	Leu
1					5				10					15
Ala	Val	Leu	Gly	Ser	Leu	Ser	Pro	Gly	Ala	Arg	Ala	Gly	Asp	Cys
					20				25					30
Lys	Gly	Gln	Arg	Gln	Val	Leu	Arg	Glu	Ala	Pro	Gly	Phe	Val	Thr
					35			40						45
Asp	Gly	Ala	Gly	Asn	Tyr	Ser	Val	Asn	Gly	Asn	Cys	Glu	Trp	Leu
					50			55						60
Ile	Glu	Gly	Glu	Trp	Gly	Arg	Val	Gly	His	Ser	Leu	Ile	Arg	Trp
					65			70						75

<210> 15

<211> 265

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1664253CD1

<400> 15

Met	Ser	Ala	Ala	Pro	Leu	Val	Gly	Tyr	Ser	Ser	Ser	Gly	Ser	Glu
1					5				10					15
Asp	Glu	Ser	Glu	Asp	Gly	Met	Arg	Thr	Arg	Pro	Gly	Asp	Gly	Ser
					20			25						30
His	Arg	Arg	Gly	Gln	Ser	Pro	Leu	Pro	Arg	Gln	Arg	Phe	Pro	Val
					35			40						45
Pro	Asp	Ser	Val	Leu	Asn	Met	Phe	Pro	Gly	Thr	Glu	Glu	Gly	Pro
					50			55						60
Glu	Asp	Asp	Ser	Thr	Lys	His	Gly	Gly	Arg	Val	Arg	Thr	Phe	Pro
					65			70						75

His Glu Arg Gly Asn Trp Ala Thr His Val Tyr Val Pro Tyr Glu
 80 85 90
 Ala Lys Glu Glu Phe Leu Asp Leu Leu Asp Val Leu Leu Pro His
 95 100 105
 Ala Gln Thr Tyr Val Pro Arg Leu Val Arg Met Lys Val Phe His
 110 115 120
 Leu Ser Leu Ser Gln Ser Val Val Leu Arg His His Trp Ile Leu
 125 130 135
 Pro Phe Val Gln Ala Leu Lys Ala Arg Met Thr Ser Phe His Arg
 140 145 150
 Phe Phe Phe Thr Ala Asn Gln Val Lys Ile Tyr Thr Asn Gln Glu
 155 160 165
 Lys Thr Arg Thr Phe Ile Gly Leu Glu Val Thr Ser Gly His Ala
 170 175 180
 Gln Phe Leu Asp Leu Val Ser Glu Val Asp Arg Val Met Glu Glu
 185 190 195
 Phe Asn Leu Thr Thr Phe Tyr Gln Asp Pro Ser Phe His Leu Ser
 200 205 210
 Leu Ala Trp Cys Val Gly Asp Ala Arg Leu Gln Leu Glu Gly Gln
 215 220 225
 Cys Leu Gln Glu Leu Gln Ala Ile Val Asp Gly Phe Glu Asp Ala
 230 235 240
 Glu Val Leu Leu Arg Val His Thr Glu Gln Val Arg Cys Lys Ser
 245 250 255
 Gly Asn Lys Phe Phe Ser Met Pro Leu Lys
 260 265

<210> 16
 <211> 202
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1864715CD1

<400> 16

Met	Glu	Ala	Ala	Leu	Leu	Gly	Leu	Cys	Asn	Trp	Ser	Thr	Leu	Gly
1	5													15
Val	Cys	Ala	Ala	Leu	Lys	Leu	Pro	Gln	Ile	Ser	Ala	Val	Leu	Ala
					20				25					30
Ala	Arg	Ser	Ala	Arg	Gly	Leu	Ser	Leu	Pro	Ser	Leu	Leu	Leu	Glu
					35				40					45
Leu	Ala	Gly	Phe	Leu	Val	Phe	Leu	Arg	Tyr	Gln	Cys	Tyr	Tyr	Gly
					50				55					60
Tyr	Pro	Pro	Leu	Thr	Tyr	Leu	Glu	Tyr	Pro	Ile	Leu	Ile	Ala	Gln
					65				70					75
Asp	Val	Ile	Leu	Leu	Leu	Cys	Ile	Phe	His	Phe	Asn	Gly	Asn	Val
					80				85					90
Lys	Gln	Ala	Thr	Pro	Tyr	Ile	Ala	Val	Leu	Val	Ser	Ser	Trp	Phe
					95				100					105
Ile	Leu	Ala	Leu	Gln	Lys	Trp	Ile	Ile	Asp	Leu	Ala	Met	Asn	Leu
					110				115					120
Cys	Thr	Phe	Ile	Ser	Ala	Ala	Ser	Lys	Phe	Ala	Gln	Leu	Gln	Cys
					125				130					135
Leu	Trp	Lys	Thr	Arg	Asp	Ser	Gly	Thr	Val	Ser	Ala	Leu	Thr	Trp
					140				145					150
Ser	Leu	Ser	Ser	Tyr	Thr	Cys	Ala	Thr	Arg	Ile	Ile	Thr	Thr	Leu
					155				160					165
Met	Thr	Thr	Asn	Asp	Phe	Thr	Ile	Leu	Leu	Arg	Phe	Val	Ile	Met
					170				175					180
Leu	Ala	Leu	Asn	Ile	Trp	Val	Thr	Val	Thr	Val	Leu	Arg	Tyr	Arg
					185				190					195

Lys Thr Ala Ile Lys Ala Glu
200

<210> 17
<211> 111
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1929395CD1

<400> 17
Met Tyr Pro Thr Ala Pro Glu Leu Leu Val Pro Gln Pro Arg Pro
1 5 10 15
Gln Gly Ser Pro Ala Ser Leu Leu Leu Gly Thr Pro Val Leu Ala
20 25 30
Ala Val Tyr Gly Ala Ser Cys Leu Pro Leu Gly Arg His Pro Cys
35 40 45
Thr Pro Ala Ser Phe Pro Trp Pro Phe Leu Ala Pro Val Leu Leu
50 55 60
Leu Tyr Ile Asp Leu Phe Thr Gln Lys Arg Ala Arg Pro Leu Phe
65 70 75
Ser Ala Thr Ser Pro Val Ser Glu Ile Gln Pro Pro Arg Leu His
80 85 90
Arg Lys Ile Asp Ile Leu Glu Ile Met Lys Ser Asp Ile Phe Ala
95 100 105
Tyr Glu Arg Lys Lys Gly
110

<210> 18
<211> 105
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1987737CD1

<400> 18
Met Cys Val His Arg Cys Glu Cys Val Cys Met Arg Ala Cys Leu
1 5 10 15
Cys Ala Gly Val Cys Met Cys Val Ala Ser Cys Leu Gly Leu Pro
20 25 30
Met Asn Val Val Glu Cys Tyr Thr Trp Arg Val Leu Val Phe His
35 40 45
Gln Phe Gln Asp Glu Glu Leu His Asp Thr Val Asp Leu Glu Thr
50 55 60
Ile Pro Leu Glu Arg Gln Pro Arg Asp Val Gln His Pro Val Ser
65 70 75
Thr Arg Ile Leu Tyr Leu His Val Tyr Phe Val Ala Val Thr Leu
80 85 90
Thr Leu Ile Arg Ile Leu Gln Leu Trp Thr Glu Ala Phe Ser Pro
95 100 105

<210> 19
<211> 717
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 2122866CD1

<400> 19

Met Ala Ser Ser Ser Asp Ser Glu Asp Asp Ser Phe Met Ala Val			
1	5	10	15
Asp Gln Glu Glu Thr Val Leu Glu Gly Thr Met Asp Gln Asp Glu			
20	25	30	
Glu Pro His Pro Val Leu Glu Ala Glu Glu Thr Arg His Asn Arg			
35	40	45	
Ser Met Ser Glu Leu Pro Glu Glu Val Leu Glu Tyr Ile Leu Ser			
50	55	60	
Phe Leu Ser Pro Tyr Gln Glu His Lys Thr Ala Ala Leu Val Cys			
65	70	75	
Lys Gln Trp Tyr Arg Leu Ile Lys Gly Val Ala His Gln Cys Tyr			
80	85	90	
His Gly Phe Met Lys Ala Val Gln Glu Gly Asn Ile Gln Trp Glu			
95	100	105	
Ser Arg Thr Tyr Pro Tyr Pro Gly Thr Pro Ile Thr Gln Arg Phe			
110	115	120	
Ser His Ser Ala Cys Tyr Tyr Asp Ala Asn Gln Ser Met Tyr Val			
125	130	135	
Phe Gly Gly Cys Thr Gln Ser Ser Cys Asn Ala Ala Phe Asn Asp			
140	145	150	
Leu Trp Arg Leu Asp Leu Asn Ser Lys Glu Trp Ile Arg Pro Leu			
155	160	165	
Ala Ser Gly Ser Tyr Pro Ser Pro Lys Ala Gly Ala Thr Leu Val			
170	175	180	
Val Tyr Lys Asp Leu Leu Val Leu Phe Gly Gly Trp Thr Arg Pro			
185	190	195	
Ser Pro Tyr Pro Leu His Gln Pro Glu Arg Phe Phe Asp Glu Ile			
200	205	210	
His Thr Tyr Ser Pro Ser Lys Asn Trp Trp Asn Cys Ile Val Thr			
215	220	225	
Thr His Gly Pro Pro Met Ala Gly His Ser Ser Cys Val Ile			
230	235	240	
Asp Asp Lys Met Ile Val Phe Gly Gly Ser Leu Gly Ser Arg Gln			
245	250	255	
Met Ser Asn Asp Val Trp Val Leu Asp Leu Glu Gln Trp Ala Trp			
260	265	270	
Ser Lys Pro Asn Ile Ser Gly Pro Ser Pro His Pro Arg Gly Gly			
275	280	285	
Gln Ser Gln Ile Val Ile Asp Asp Ala Thr Ile Leu Ile Leu Gly			
290	295	300	
Gly Cys Gly Gly Pro Asn Ala Leu Phe Lys Asp Ala Trp Leu Leu			
305	310	315	
His Met His Ser Gly Pro Trp Ala Trp Gln Pro Leu Lys Val Glu			
320	325	330	
Asn Glu Glu His Gly Ala Pro Glu Leu Trp Cys His Pro Ala Cys			
335	340	345	
Arg Val Gly Gln Cys Val Val Val Phe Ser Gln Ala Pro Ser Gly			
350	355	360	
Arg Ala Pro Leu Ser Pro Ser Leu Asn Ser Arg Pro Ser Pro Ile			
365	370	375	
Ser Ala Thr Pro Pro Ala Leu Val Pro Glu Thr Arg Glu Tyr Arg			
380	385	390	
Ser Gln Ser Pro Val Arg Ser Met Asp Glu Ala Pro Cys Val Asn			
395	400	405	
Gly Arg Trp Gly Thr Leu Arg Pro Arg Ala Gln Arg Gln Thr Pro			
410	415	420	
Ser Gly Ser Arg Glu Gly Ser Leu Ser Pro Ala Arg Gly Asp Gly			
425	430	435	
Ser Pro Ile Leu Asn Gly Gly Ser Leu Ser Pro Gly Thr Ala Ala			
440	445	450	

Val Gly Gly Ser Ser Leu Asp Ser Pro Val Gln Ala Ile Ser Pro
 455 460 465
 Ser Thr Pro Ser Ala Pro Glu Gly Tyr Asp Leu Lys Ile Gly Leu
 470 475 480
 Ser Leu Ala Pro Arg Arg Gly Ser Leu Pro Asp Gln Lys Asp Leu
 485 490 495
 Arg Leu Gly Ser Ile Asp Leu Asn Trp Asp Leu Lys Pro Ala Ser
 500 505 510
 Ser Ser Asn Pro Met Asp Gly Met Asp Asn Arg Thr Val Gly Gly
 515 520 525
 Ser Met Arg His Pro Pro Glu Gln Thr Asn Gly Val His Thr Pro
 530 535 540
 Pro His Val Ala Ser Ala Leu Ala Gly Ala Val Ser Pro Gly Ala
 545 550 555
 Leu Arg Arg Ser Leu Glu Ala Ile Lys Ala Met Ser Ser Lys Gly
 560 565 570
 Pro Ser Ala Ser Ala Ala Leu Ser Pro Pro Leu Gly Ser Ser Pro
 575 580 585
 Gly Ser Pro Gly Ser Gln Ser Leu Ser Ser Gly Glu Thr Val Pro
 590 595 600
 Ile Pro Arg Pro Gly Pro Ala Gln Gly Asp Gly His Ser Leu Pro
 605 610 615
 Pro Ile Ala Arg Arg Leu Gly His His Pro Pro Gln Ser Leu Asn
 620 625 630
 Val Gly Lys Pro Leu Tyr Gln Ser Met Asn Cys Lys Pro Met Gln
 635 640 645
 Met Tyr Val Leu Asp Ile Lys Asp Thr Lys Glu Lys Gly Arg Val
 650 655 660
 Lys Trp Lys Val Phe Asn Ser Ser Val Val Gly Pro Pro Glu
 665 670 675
 Thr Ser Leu His Thr Val Val Gln Gly Arg Gly Glu Leu Ile Ile
 680 685 690
 Phe Gly Gly Leu Met Asp Lys Lys Gln Asn Val Lys Tyr Tyr Pro
 695 700 705
 Lys Thr Asn Ala Leu Tyr Phe Val Arg Ala Lys Arg
 710 715

<210> 20
 <211> 580
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2123981CD1

<400> 20
 Met His Leu Ser Ala Val Phe Asn Ala Leu Leu Val Ser Val Leu
 1 5 10 15
 Ala Ala Val Leu Trp Lys His Val Arg Leu Arg Glu His Ala Ala
 20 25 30
 Thr Leu Glu Glu Leu Ala Leu Ser Arg Gln Ala Thr Glu Pro
 35 40 45
 Ala Pro Ala Leu Arg Ile Asp Tyr Pro Lys Ala Leu Gln Ile Leu
 50 55 60
 Met Glu Gly Gly Thr His Met Val Cys Thr Gly Arg Thr His Thr
 65 70 75
 Asp Arg Ile Cys Arg Phe Lys Trp Leu Cys Tyr Ser Asn Glu Ala
 80 85 90
 Glu Glu Phe Ile Phe Phe His Gly Asn Thr Ser Val Met Leu Pro
 95 100 105
 Asn Leu Gly Ser Arg Arg Phe Gln Pro Ala Leu Leu Asp Leu Ser
 110 115 120

Thr	Val	Glu	Asp	His	Asn	Thr	Gln	Tyr	Phe	Asn	Phe	Val	Glu	Leu
				125					130					135
Pro	Ala	Ala	Ala	Leu	Arg	Phe	Met	Pro	Lys	Pro	Val	Phe	Val	Pro
				140					145					150
Asp	Val	Ala	Leu	Ile	Ala	Asn	Arg	Phe	Asn	Pro	Asp	Asn	Leu	Met
				155					160					165
His	Val	Phe	His	Asp	Asp	Leu	Leu	Pro	Leu	Phe	Tyr	Thr	Leu	Arg
				170					175					180
Gln	Phe	Pro	Gly	Leu	Ala	His	Glu	Ala	Arg	Leu	Phe	Phe	Met	Glu
				185					190					195
Gly	Trp	Gly	Glu	Gly	Ala	His	Phe	Asp	Leu	Tyr	Lys	Leu	Leu	Ser
				200					205					210
Pro	Lys	Gln	Pro	Leu	Leu	Arg	Ala	Gln	Leu	Lys	Thr	Leu	Gly	Arg
				215					220					225
Leu	Leu	Cys	Phe	Ser	His	Ala	Phe	Val	Gly	Leu	Ser	Lys	Ile	Thr
				230					235					240
Thr	Trp	Tyr	Gln	Tyr	Gly	Phe	Val	Gln	Pro	Gln	Gly	Pro	Lys	Ala
				245					250					255
Asn	Ile	Leu	Val	Ser	Gly	Asn	Glu	Ile	Arg	Gln	Phe	Ala	Arg	Phe
				260					265					270
Met	Thr	Glu	Lys	Leu	Asn	Val	Ser	His	Thr	Gly	Val	Pro	Leu	Gly
				275					280					285
Glu	Glu	Tyr	Ile	Leu	Val	Phe	Ser	Arg	Thr	Gln	Asn	Arg	Leu	Ile
				290					295					300
Leu	Asn	Glu	Ala	Glu	Leu	Leu	Leu	Ala	Leu	Ala	Gln	Glu	Phe	Gln
				305					310					315
Met	Lys	Thr	Val	Thr	Val	Ser	Leu	Glu	Asp	His	Thr	Phe	Ala	Asp
				320					325					330
Val	Val	Arg	Leu	Val	Ser	Asn	Ala	Ser	Met	Leu	Val	Ser	Met	His
				335					340					345
Gly	Ala	Gln	Leu	Val	Thr	Thr	Leu	Phe	Leu	Pro	Arg	Gly	Ala	Thr
				350					355					360
Val	Val	Glu	Leu	Phe	Pro	Tyr	Ala	Val	Asn	Pro	Asp	His	Tyr	Thr
				365					370					375
Pro	Tyr	Lys	Thr	Leu	Ala	Met	Leu	Pro	Gly	Met	Asp	Leu	Gln	Tyr
				380					385					390
Val	Ala	Trp	Arg	Asn	Met	Met	Pro	Glu	Asn	Thr	Val	Thr	His	Pro
				395					400					405
Glu	Arg	Pro	Trp	Asp	Gln	Gly	Gly	Ile	Thr	His	Leu	Asp	Arg	Ala
				410					415					420
Glu	Gln	Ala	Arg	Ile	Leu	Gln	Ser	Arg	Glu	Val	Pro	Arg	His	Leu
				425					430					435
Cys	Cys	Arg	Asn	Pro	Glu	Trp	Leu	Phe	Arg	Ile	Tyr	Gln	Asp	Thr
				440					445					450
Lys	Val	Asp	Ile	Pro	Ser	Leu	Ile	Gln	Thr	Ile	Arg	Arg	Val	Val
				455					460					465
Lys	Gly	Arg	Pro	Gly	Pro	Arg	Lys	Gln	Lys	Trp	Thr	Val	Gly	Leu
				470					475					480
Tyr	Pro	Gly	Lys	Val	Arg	Glu	Ala	Arg	Cys	Gln	Ala	Ser	Val	His
				485					490					495
Gly	Ala	Ser	Glu	Ala	Arg	Leu	Thr	Val	Ser	Trp	Gln	Ile	Pro	Trp
				500					505					510
Asn	Leu	Lys	Tyr	Leu	Lys	Val	Arg	Glu	Val	Lys	Tyr	Glu	Val	Trp
				515					520					525
Leu	Gln	Glu	Gln	Gly	Glu	Asn	Thr	Tyr	Val	Pro	Tyr	Ile	Leu	Ala
				530					535					540
Leu	Gln	Asn	His	Thr	Phe	Thr	Glu	Asn	Ile	Lys	Pro	Phe	Thr	Thr
				545					550					555
Tyr	Leu	Val	Trp	Val	Arg	Cys	Ile	Phe	Asn	Lys	Ile	Leu	Leu	Gly
				560					565					570
Pro	Phe	Ala	Asp	Val	Leu	Val	Cys	Asn	Thr					
				575					580					

<210> 21
<211> 172
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2200177CD1

<400> 21

Met	Leu	Ser	Glu	Asp	Lys	Leu	Phe	Gln	Ile	Ile	His	Ser	Leu	Leu
1					5				10					15
Ile	Thr	Gln	Leu	Ala	Ser	Glu	Thr	Lys	Ile	Ser	Ala	Thr	Ile	Cys
					20				25					30
Leu	Pro	Leu	Leu	Phe	His	Cys	Leu	Phe	Leu	Leu	Val	Leu	Ser	Phe
					35				40					45
Pro	Ile	Thr	Leu	Cys	Ile	Arg	His	Ser	Gly	Pro	Tyr	His	Ile	Tyr
					50				55					60
Pro	Leu	Leu	Gln	Val	Ser	Asn	Leu	Ile	Phe	Leu	Gln	Thr	His	Phe
					65				70					75
Leu	Ser	Tyr	Ile	Ala	Gly	Ile	Met	Gln	Lys	Leu	Leu	Ser	Asn	Val
					80				85					90
Val	His	Ser	Gln	Lys	Ile	His	Pro	Glu	Ile	Leu	Arg	Phe	Gly	Lys
					95				100					105
Val	Cys	Ala	Gln	Ser	Thr	Ile	Ser	Lys	Lys	Phe	Lys	Glu	Glu	Lys
					110				115					120
Tyr	Lys	Thr	Pro	His	Thr	Ile	Ser	Leu	Ile	Ser	Gln	Ile	His	Glu
					125				130					135
Thr	Ala	Thr	Ile	Lys	Ser	Lys	Val	Phe	Arg	Lys	Leu	Ser	Thr	Tyr
					140				145					150
Phe	Ser	Ile	Val	Leu	Lys	Leu	Lys	Glu	Ile	Lys	Ile	Ala	Gly	Phe
					155				160					165
Lys	Tyr	Leu	Trp	Ser	Ser	Ser	Asn							
					170									

<210> 22
<211> 256
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2319255CD1

<400> 22

Met	Asn	Thr	Phe	Lys	Ala	Val	Gly	Lys	Ile	Arg	Gly	Lys	Pro	Leu
1					5				10					15
Pro	Leu	Leu	Leu	Phe	Phe	Glu	Ala	Leu	Phe	Ile	Thr	Ser	His	Ala
					20				25					30
Phe	Pro	Cys	Pro	Val	Asp	Ala	Ala	Leu	Thr	Leu	Glu	Gly	Ile	Lys
					35				40					45
Cys	Gly	Leu	Ser	Glu	Lys	Arg	Leu	Asp	Leu	Val	Thr	Asn	Trp	Val
					50				55					60
Thr	Gln	Glu	Arg	Leu	Thr	Phe	Ser	Glu	Glu	Ala	Gly	Asp	Val	Ile
					65				70					75
Cys	Asp	Tyr	Gly	Glu	Gln	Asp	Thr	Tyr	Asn	Lys	Ala	Lys	Cys	Leu
					80				85					90
Ala	Leu	Ala	Gln	Ile	Ile	Tyr	Ser	Glu	Cys	Gly	Leu	His	Lys	Lys
					95				100					105
Ala	Ile	Leu	Cys	Leu	Cys	Lys	Gln	Gly	Gln	Thr	His	Arg	Val	Met
					110				115					120
Glu	Tyr	Ile	Gln	Gln	Leu	Lys	Asp	Phe	Thr	Thr	Asp	Asp	Leu	Leu
					125				130					135

Gln Leu Leu Met Ser Cys Pro Gln Val Glu Leu Ile Gln Cys Leu
 140 145 150
 Thr Lys Glu Leu Asn Glu Lys Gln Pro Ser Leu Ser Phe Gly Leu
 155 160 165
 Ala Ile Leu His Leu Phe Ser Ala Asp Met Lys Lys Val Gly Ile
 170 175 180
 Lys Leu Leu Gln Glu Ile Asn Lys Gly Gly Ile Asp Ala Val Glu
 185 190 195
 Ser Leu Met Ile Asn Asp Ser Phe Cys Ser Ile Glu Lys Trp Gln
 200 205 210
 Glu Val Ala Asn Ile Cys Ser Gln Asn Gly Phe Asp Lys Leu Ser
 215 220 225
 Asn Asp Ile Thr Ser Ile Leu Arg Ser Gln Ala Ala Val Thr Glu
 230 235 240
 Ile Ser Glu Glu Asp Asp Ala Val Asn Leu Met Glu His Val Phe
 245 250 255
 Trp

<210> 23
<211> 93
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2792452CD1

<400> 23
Met Ser Pro Met Trp Ala Pro Pro Trp Leu Pro Leu Leu Leu Ser
 1 5 10 15
 Lys Ser Glu Pro Thr Gln Ser Pro Ser Pro Arg Arg Pro Leu Pro
 20 25 30
 Pro Gly Lys Met Thr Leu Gly Gln Gly Ser Leu Leu Met Ser Val
 35 40 45
 Phe Cys Leu Val Gly Leu Gly Val Pro Leu Pro Leu Ile Arg Arg
 50 55 60
 Gly Phe Arg Ala Glu Ile Lys Pro Gln Thr Gly Glu Pro Leu Trp
 65 70 75
 His Met Ala Pro Arg Ala Ser His Ala Ser Gly Phe Ser Pro Cys
 80 85 90
 Gln Asp Thr

<210> 24
<211> 112
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2853088CD1

<400> 24
Met Pro Thr Asp Val Pro Lys Ala Arg Leu Glu Leu Thr Ser Leu
 1 5 10 15
 Leu Leu Leu Leu Phe Leu Arg Trp Ser Leu Ala Leu Leu Pro
 20 25 30
 Arg Leu Asp Cys Ser Gly Ala Val Leu Ala His Cys Asn Phe Arg
 35 40 45
 Leu Trp Gly Ser Ser Asp Ser Ser Ala Ser Ala Ser Ser Gln Val
 50 55 60
 Ala Gly Ser Thr Gly Ala Cys His Gln Ala Arg Ala Lys Glu Arg

	65	70	75
Asp Ser Ile Ser Lys Ile Ile Thr Ile Ile Met Arg Ser Ile			
80	85	90	
Pro Asp Val Leu Leu Gly Arg Leu Trp Ala Tyr Ser Leu Glu Leu			
95	100	105	
Arg Arg Asp Ile Lys Ala Ser			
	110		

<210> 25

<211> 186

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2949004CD1

<400> 25

Met Lys Leu Pro Arg Glu Glu Ala Ser Ala Ser Phe Val Arg Arg			
1	5	10	15
Ala Asp Leu Thr Arg Glu Asp Leu Ala Pro Ser Ser Val Asp Ser			
20	25	30	
Gly Gln Ala Gly Phe Gly Gly Cys Cys Glu Ser Gly Leu Pro Asn			
35	40	45	
Thr Met Pro Ser Ala Phe Ser Val Ser Ser Phe Pro Val Ser Ile			
50	55	60	
Pro Ala Val Leu Thr Gln Thr Asp Trp Thr Glu Pro Trp Leu Met			
65	70	75	
Gly Leu Ala Thr Phe His Ala Leu Cys Val Leu Leu Thr Cys Leu			
80	85	90	
Ser Ser Arg Ser Tyr Arg Leu Gln Ile Gly His Phe Leu Cys Leu			
95	100	105	
Val Ile Leu Val Tyr Cys Ala Glu Tyr Ile Asn Glu Ala Ala Ala			
110	115	120	
Met Asn Trp Arg Leu Phe Ser Lys Tyr Gln Tyr Phe Asp Ser Arg			
125	130	135	
Gly Met Phe Ile Ser Ile Val Phe Ser Ala Pro Leu Leu Val Asn			
140	145	150	
Ala Met Ile Ile Val Val Met Trp Val Trp Lys Thr Leu Asn Val			
155	160	165	
Met Thr Asp Leu Lys Asn Ala Gln Glu Arg Arg Lys Glu Lys Lys			
170	175	180	
Arg Arg Arg Lys Glu Asp			
	185		

<210> 26

<211> 487

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3011670CD1

<400> 26

Met Gly Val Ile Gly Ile Gln Leu Val Val Thr Met Val Met Ala			
1	5	10	15
Ser Val Met Gln Lys Ile Ile Pro His Tyr Ser Leu Ala Arg Trp			
20	25	30	
Leu Leu Cys Asn Gly Ser Leu Arg Trp Tyr Gln His Pro Thr Glu			
35	40	45	
Glu Glu Leu Arg Ile Leu Ala Gly Lys Gln Gln Lys Gly Lys Thr			
50	55	60	

Lys Lys Asp Arg Lys Tyr Asn Gly His Ile Glu Ser Lys Pro Leu
 65 70 75
 Thr Ile Pro Lys Asp Ile Asp Leu His Leu Glu Thr Lys Ser Val
 80 85 90
 Thr Glu Val Asp Thr Leu Ala Leu His Tyr Phe Pro Glu Tyr Gln
 95 100 105
 Trp Leu Val Asp Phe Thr Val Ala Ala Thr Val Val Tyr Leu Val
 110 115 120
 Thr Glu Val Tyr Tyr Asn Phe Met Lys Pro Thr Gln Glu Met Asn
 125 130 135
 Ile Ser Leu Val Trp Cys Leu Leu Val Leu Ser Phe Ala Ile Lys
 140 145 150
 Val Leu Phe Ser Leu Thr Thr His Tyr Phe Lys Val Glu Asp Gly
 155 160 165
 Gly Glu Arg Ser Val Cys Val Thr Phe Gly Phe Phe Phe Val
 170 175 180
 Lys Ala Met Ala Val Leu Ile Val Thr Glu Asn Tyr Leu Glu Phe
 185 190 195
 Gly Leu Glu Thr Gly Phe Thr Asn Phe Ser Asp Ser Ala Met Gln
 200 205 210
 Phe Leu Glu Lys Gln Gly Leu Glu Ser Gln Ser Pro Val Ser Lys
 215 220 225
 Leu Thr Phe Lys Phe Phe Leu Ala Ile Phe Cys Ser Phe Ile Gly
 230 235 240
 Ala Phe Leu Thr Phe Pro Gly Leu Arg Leu Ala Gln Met His Leu
 245 250 255
 Asp Ala Leu Asn Leu Ala Thr Glu Lys Ile Thr Gln Thr Leu Leu
 260 265 270
 His Ile Asn Phe Leu Ala Pro Leu Phe Met Val Leu Leu Trp Val
 275 280 285
 Lys Pro Ile Thr Lys Asp Tyr Ile Met Asn Pro Pro Leu Gly Lys
 290 295 300
 Glu Ser Ile Pro Leu Met Thr Glu Ala Thr Phe Asp Thr Leu Arg
 305 310 315
 Leu Trp Leu Ile Ile Leu Leu Cys Ala Leu Arg Leu Ala Met Met
 320 325 330
 Arg Ser His Leu Gln Ala Tyr Leu Asn Leu Ala Gln Lys Cys Val
 335 340 345
 Asp Gln Met Lys Lys Glu Ala Gly Arg Ile Ser Thr Val Glu Leu
 350 355 360
 Gln Lys Met Val Ala Arg Val Phe Tyr Tyr Leu Cys Val Ile Ala
 365 370 375
 Leu Gln Tyr Val Ala Pro Leu Val Met Leu Leu His Thr Thr Leu
 380 385 390
 Leu Leu Lys Thr Leu Gly Asn His Ser Trp Gly Ile Tyr Pro Glu
 395 400 405
 Ser Ile Ser Thr Leu Pro Val Asp Asn Ser Leu Leu Ser Asn Ser
 410 415 420
 Val Tyr Ser Glu Leu Pro Ser Ala Glu Gly Lys Met Lys Val Thr
 425 430 435
 Val Thr Gln Ile Thr Val Ala Leu Ser Ser Leu Lys Asn Ile Phe
 440 445 450
 Thr Pro Leu Leu Phe Arg Gly Leu Leu Ser Phe Leu Thr Trp Trp
 455 460 465
 Ile Ala Ala Cys Leu Phe Ser Thr Ser Leu Phe Gly Leu Phe Tyr
 470 475 480
 His Gln Tyr Leu Thr Val Ala
 485

<210> 27
 <211> 350
 <212> PRT
 <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3242083CD1

<400> 27

Met	Asn	Pro	Arg	Gly	Leu	Phe	Gln	Asp	Phe	Asn	Pro	Ser	Lys	Phe
1				5					10					15
Leu	Ile	Tyr	Thr	Cys	Leu	Leu	Leu	Phe	Ser	Val	Leu	Leu	Pro	Leu
				20					25					30
Arg	Leu	Asp	Gly	Ile	Ile	Gln	Trp	Ser	Tyr	Trp	Ala	Val	Phe	Ala
				35				40						45
Pro	Ile	Trp	Leu	Trp	Lys	Leu	Leu	Val	Val	Ala	Gly	Ala	Ser	Val
				50				55						60
Gly	Ala	Gly	Val	Trp	Ala	Arg	Asn	Pro	Arg	Tyr	Arg	Thr	Glu	Gly
				65				70						75
Glu	Ala	Cys	Val	Glu	Phe	Lys	Ala	Met	Leu	Ile	Ala	Val	Gly	Ile
				80				85						90
His	Leu	Leu	Leu	Leu	Met	Phe	Glu	Val	Leu	Val	Cys	Asp	Arg	Val
				95				100						105
Glu	Arg	Gly	Thr	His	Phe	Trp	Leu	Leu	Val	Phe	Met	Pro	Leu	Phe
				110				115						120
Phe	Val	Ser	Pro	Val	Ser	Val	Ala	Ala	Cys	Val	Trp	Gly	Phe	Arg
				125				130						135
His	Asp	Arg	Ser	Leu	Glu	Leu	Glu	Ile	Leu	Cys	Ser	Val	Asn	Ile
				140				145						150
Leu	Gln	Phe	Ile	Phe	Ile	Ala	Leu	Lys	Leu	Asp	Arg	Ile	Ile	His
				155				160						165
Trp	Pro	Trp	Leu	Val	Val	Phe	Val	Pro	Leu	Trp	Ile	Leu	Met	Ser
				170				175						180
Phe	Leu	Cys	Leu	Val	Val	Leu	Tyr	Tyr	Ile	Val	Trp	Ser	Leu	Leu
				185				190						195
Phe	Leu	Arg	Ser	Leu	Asp	Val	Val	Ala	Glu	Gln	Arg	Arg	Thr	His
				200				205						210
Val	Thr	Met	Ala	Ile	Ser	Trp	Ile	Thr	Ile	Val	Val	Pro	Leu	Leu
				215				220						225
Thr	Phe	Glu	Val	Leu	Leu	Val	His	Arg	Leu	Asp	Gly	His	Asn	Thr
				230				235						240
Phe	Ser	Tyr	Val	Ser	Ile	Phe	Val	Pro	Leu	Trp	Leu	Ser	Leu	Leu
				245				250						255
Thr	Leu	Met	Ala	Thr	Thr	Phe	Arg	Arg	Lys	Gly	Gly	Asn	His	Trp
				260				265						270
Trp	Phe	Gly	Ile	Arg	Arg	Asp	Phe	Cys	Gln	Phe	Leu	Leu	Glu	Ile
				275				280						285
Phe	Pro	Phe	Leu	Arg	Glu	Tyr	Gly	Asn	Ile	Ser	Tyr	Asp	Leu	His
				290				295						300
His	Glu	Asp	Ser	Glu	Asp	Ala	Glu	Glu	Thr	Ser	Val	Pro	Glu	Ala
				305				310						315
Pro	Lys	Ile	Ala	Pro	Ile	Phe	Gly	Lys	Lys	Ala	Arg	Val	Val	Ile
				320				325						330
Thr	Gln	Ser	Pro	Gly	Lys	Tyr	Val	Pro	Pro	Pro	Pro	Lys	Leu	Asn
				335				340						345
Ile	Asp	Met	Pro	Asp										
				350										

<210> 28
<211> 450
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3363391CD1

<400> 28

Met Leu Pro Ser Cys	Leu Trp Phe Arg Gly Thr Gly Leu Ile Trp		
1	5	10	15
Trp Val Thr Gly Thr	Ala Ser Ala Ala Gly Leu Leu Tyr Leu His		
	20	25	30
Thr Trp Ala Ala Ala Val Ser Gly Cys	Val Phe Ala Ile Phe Thr		
	35	40	45
Ala Ser Met Trp Pro Gln Thr Leu Gly His	Leu Ile Asn Ser Gly		
	50	55	60
Thr Asn Pro Gly Lys	Thr Met Thr Ile Ala Met Ile Phe Tyr Leu		
	65	70	75
Leu Glu Ile Phe Phe Cys Ala Trp Cys	Thr Ala Phe Lys Phe Val		
	80	85	90
Pro Gly Gly Val Tyr Ala Arg Glu Arg Ser	Asp Val Leu Leu Gly		
	95	100	105
Thr Met Met Leu Ile Ile Gly Leu Asn	Met Leu Phe Gly Pro Lys		
	110	115	120
Lys Asn Leu Asp Leu Leu Leu Gln Thr	Lys Asn Ser Ser Lys Val		
	125	130	135
Leu Phe Arg Lys Ser Glu Lys Tyr Met	Lys Leu Phe Leu Trp Leu		
	140	145	150
Leu Val Gly Val Gly Leu Leu Gly Leu	Gly Leu Arg His Lys Ala		
	155	160	165
Tyr Glu Arg Lys Leu Gly Lys Val Ala	Pro Thr Lys Glu Val Ser		
	170	175	180
Ala Ala Ile Trp Pro Phe Arg Phe Gly	Tyr Asp Asn Glu Gly Trp		
	185	190	195
Ser Ser Leu Glu Arg Ser Ala His Leu	Leu Asn Glu Thr Gly Ala		
	200	205	210
Asp Phe Ile Thr Ile Leu Glu Ser Asp	Ala Ser Lys Pro Tyr Met		
	215	220	225
Gly Asn Asn Asp Leu Thr Met Trp Leu	Gly Glu Lys Leu Gly Phe		
	230	235	240
Tyr Thr Asp Phe Gly Pro Ser Thr Arg	Tyr His Thr Trp Gly Ile		
	245	250	255
Met Ala Leu Ser Arg Tyr Pro Ile Val	Lys Ser Glu His His Leu		
	260	265	270
Leu Pro Ser Pro Glu Gly Glu Ile Ala	Pro Ala Ile Thr Leu Thr		
	275	280	285
Val Asn Ile Ser Gly Lys Leu Val Asp	Phe Val Val Thr His Phe		
	290	295	300
Gly Asn His Glu Asp Asp Leu Asp Arg	Lys Leu Gln Ala Ile Ala		
	305	310	315
Val Ser Lys Leu Leu Lys Ser Ser Ser	Asn Gln Val Ile Phe Leu		
	320	325	330
Gly Tyr Ile Thr Ser Ala Pro Gly Ser	Arg Asp Tyr Leu Gln Leu		
	335	340	345
Thr Glu His Gly Asn Val Lys Asp Ile	Asp Ser Thr Asp His Asp		
	350	355	360
Arg Trp Cys Glu Tyr Ile Met Tyr Arg	Gly Leu Ile Arg Leu Gly		
	365	370	375
Tyr Ala Arg Ile Ser His Ala Glu Leu	Ser Asp Ser Glu Ile Gln		
	380	385	390
Met Ala Lys Phe Arg Ile Pro Asp Asp	Pro Thr Asn Tyr Arg Asp		
	395	400	405
Asn Gln Lys Val Val Ile Asp His Arg	Glu Val Ser Glu Lys Ile		
	410	415	420
His Phe Asn Pro Arg Phe Gly Ser Tyr	Lys Glu Gly His Asn Tyr		
	425	430	435
Glu Asn Asn His His Phe His Met Asn	Thr Pro Lys Tyr Phe Leu		
	440	445	450

<210> 29
<211> 400
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3703614CD1

<400> 29

Met	Asn	Pro	Phe	Leu	Gly	Asn	Leu	Pro	Ser	Ala	Pro	Ala	Met	Gly
1				5				10					15	
Cys	Ser	Asp	Ala	Ser	Thr	Leu	Asn	Pro	Gly	Ser	Ala	Ser	His	Val
					20				25				30	
Ser	Thr	Tyr	Thr	Glu	Asp	Ser	Gly	Ser	Ala	His	Gln	Ser	Arg	Asp
					35				40				45	
Gln	Val	Phe	Leu	Pro	Ala	Phe	Pro	Val	Gln	Val	Arg	Arg	Cys	Lys
					50				55				60	
Ala	Leu	Lys	Glu	Lys	Asp	Leu	Ile	Arg	Thr	Ser	Glu	Ser	Asp	Cys
					65				70				75	
Tyr	Cys	Tyr	Asn	Gln	Asn	Ser	Gln	Val	Glu	Trp	Lys	Tyr	Ile	Trp
					80				85				90	
Ser	Thr	Met	Gln	Val	Lys	Ile	Thr	Ser	Pro	Gly	Leu	Phe	Arg	Ile
					95				100				105	
Val	Tyr	Ile	Ala	Glu	Arg	His	Asn	Cys	Gln	Tyr	Pro	Glu	Asn	Ile
					110				115				120	
Leu	Ser	Phe	Ile	Lys	Cys	Val	Ile	His	Asn	Phe	Trp	Ile	Pro	Lys
					125				130				135	
Glu	Ser	Asn	Glu	Ile	Thr	Ile	Ile	Ile	Asn	Pro	Tyr	Arg	Glu	Thr
					140				145				150	
Val	Cys	Phe	Ser	Val	Glu	Pro	Val	Lys	Lys	Ile	Phe	Asn	Tyr	Met
					155				160				165	
Ile	His	Val	Asn	Arg	Asn	Ile	Met	Asp	Phe	Lys	Leu	Phe	Leu	Val
					170				175				180	
Phe	Val	Ala	Gly	Val	Phe	Leu	Phe	Phe	Ala	Arg	Thr	Leu	Ser	
					185				190				195	
Gln	Ser	Pro	Thr	Phe	Tyr	Tyr	Ser	Ser	Gly	Thr	Val	Leu	Gly	Val
					200				205				210	
Leu	Met	Thr	Leu	Val	Phe	Val	Leu	Leu	Leu	Val	Lys	Arg	Phe	Ile
					215				220				225	
Pro	Lys	Tyr	Ser	Thr	Phe	Trp	Ala	Leu	Met	Val	Gly	Cys	Trp	Phe
					230				235				240	
Ala	Ser	Val	Tyr	Ile	Val	Cys	Gln	Leu	Met	Glu	Asp	Leu	Lys	Trp
					245				250				255	
Leu	Trp	Tyr	Glu	Asn	Arg	Ile	Tyr	Val	Leu	Gly	Tyr	Val	Leu	Ile
					260				265				270	
Val	Gly	Phe	Phe	Ser	Phe	Val	Val	Cys	Tyr	Lys	His	Gly	Pro	Leu
					275				280				285	
Ala	Asp	Asp	Arg	Ser	Arg	Ser	Leu	Leu	Met	Trp	Met	Leu	Arg	Leu
					290				295				300	
Leu	Ser	Leu	Val	Leu	Val	Tyr	Ala	Gly	Val	Ala	Val	Pro	Gln	Phe
					305				310				315	
Ala	Tyr	Ala	Ala	Ile	Ile	Leu	Leu	Met	Ser	Ser	Trp	Ser	Leu	His
					320				325				330	
Tyr	Pro	Leu	Arg	Ala	Cys	Ser	Tyr	Met	Arg	Trp	Lys	Met	Glu	Gln
					335				340				345	
Trp	Phe	Thr	Ser	Lys	Glu	Leu	Val	Val	Lys	Tyr	Leu	Thr	Glu	Asp
					350				355				360	
Glu	Tyr	Arg	Glu	Gln	Ala	Asp	Ala	Glu	Thr	Asn	Ser	Ala	Leu	Glu
					365				370				375	
Glu	Leu	Arg	Arg	Ala	Cys	Arg	Lys	Pro	Asp	Phe	Pro	Ser	Trp	Leu
					380				385				390	
Val	Val	Ser	Arg	Leu	His	Thr	Pro	Ser	Asn					

395

400

<210> 30
<211> 133
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4000975CD1

<400> 30
Met Pro Arg Lys Leu Pro Ser Trp Arg Glu Ser Leu Phe Leu Ser
1 5 10 15
Val Glu Leu Ser Pro Leu Ala Leu Ala Met Gly Ser Ala Pro Gly
20 25 30
Leu Gln Val Phe Ser Lys Thr Asn Pro Leu Phe Leu Ser Pro Pro
35 40 45
Leu Lys Ser Arg Ala Leu Gly Pro Ser Pro Gln Glu Gly Phe Trp
50 55 60
Pro Asn Leu Gln Arg Gln Val Arg Ala Val Ser Leu Gly Cys Glu
65 70 75
Ala Ala Gly Glu Gly Asp Phe Gly Gln Met Ser Leu Gly Cys Glu
80 85 90
Ala Ala Gly Glu Gly Asp Phe Gly Gln Met Ser Leu Gly Cys Glu
95 100 105
Ala Ala Gly Glu Gly Asp Phe Gly Gln Val Ser Pro Ala Leu Cys
110 115 120
Pro Ser Gln Val Gln Leu Arg Asp Gly Leu Cys Leu Leu
125 130

<210> 31
<211> 359
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4598831CD1

<400> 31
Met Arg Ala Ala Ala Met Thr Thr Ala Ile Leu Glu Arg Leu Ser
1 5 10 15
Thr Leu Ser Val Ser Gly Gln Gln Leu Arg Arg Leu Pro Lys Ile
20 25 30
Leu Glu Asp Gly Leu Pro Lys Met Pro Cys Thr Val Pro Glu Thr
35 40 45
Asp Val Pro Gln Leu Phe Arg Glu Pro Tyr Ile Arg Thr Gly Tyr
50 55 60
Arg Pro Thr Gly His Glu Trp Arg Tyr Tyr Phe Phe Ser Leu Phe
65 70 75
Gln Lys His Asn Glu Val Val Asn Val Trp Thr His Leu Leu Ala
80 85 90
Ala Leu Ala Val Leu Leu Arg Phe Trp Ala Phe Ala Glu Ala Glu
95 100 105
Ala Leu Pro Trp Ala Ser Thr His Ser Leu Pro Leu Leu Phe
110 115 120
Ile Leu Ser Ser Ile Thr Tyr Leu Thr Cys Ser Leu Leu Ala His
125 130 135
Leu Leu Gln Ser Lys Ser Glu Leu Ser His Tyr Thr Phe Tyr Phe
140 145 150
Val Asp Tyr Val Gly Val Ser Val Tyr Gln Tyr Gly Ser Ala Leu
155 160 165

Ala His Phe Phe Tyr Ser Ser Asp Gln Ala Trp Tyr Asp Arg Phe
 170 175 180
 Trp Leu Phe Phe Leu Pro Ala Ala Ala Phe Cys Gly Trp Leu Ser
 185 190 195
 Cys Ala Gly Cys Cys Tyr Ala Lys Tyr Arg Tyr Arg Arg Pro Tyr
 200 205 210
 Pro Val Met Arg Lys Ile Cys Gln Val Val Pro Ala Gly Leu Ala
 215 220 225
 Phe Ile Leu Asp Ile Ser Pro Val Ala His Arg Val Ala Leu Cys
 230 235 240
 His Leu Ala Gly Cys Gln Glu Gln Ala Ala Trp Tyr His Thr Leu
 245 250 255
 Gln Ile Leu Phe Phe Leu Val Ser Ala Tyr Phe Phe Ser Cys Pro
 260 265 270
 Val Pro Glu Lys Tyr Phe Pro Gly Ser Cys Asp Ile Val Gly His
 275 280 285
 Gly His Gln Ile Phe His Ala Phe Leu Ser Ile Cys Thr Leu Ser
 290 295 300
 Gln Leu Glu Ala Ile Leu Leu Asp Tyr Gln Gly Arg Gln Glu Ile
 305 310 315
 Phe Leu Gln Arg His Gly Pro Leu Ser Val His Met Ala Cys Leu
 320 325 330
 Ser Phe Phe Phe Leu Ala Ala Cys Ser Ala Ala Thr Ala Ala Leu
 335 340 345
 Leu Arg His Lys Val Lys Ala Arg Leu Thr Lys Lys Asp Ser
 350 355

<210> 32
 <211> 72
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4992201CD1

<400> 32
 Met Lys Cys Ala Leu Ile Thr Gly Arg Leu Arg Arg Gly Asn Glu
 1 5 10 15
 Thr Ser Cys Ile Asp His Arg Ala Gln Ser Leu Ala Phe Arg Lys
 20 25 30
 Pro Ser Val Arg Val His Asp Ala Met Val Ser Val Ile Ile Leu
 35 40 45
 Phe Ile Leu Ile Ile Thr Phe Ile Ile Phe Leu Leu Phe Leu Glu
 50 55 60
 Asn Ser Leu Glu Gly Leu Ile Pro Cys Tyr His Gly
 65 70

<210> 33
 <211> 112
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5441583CD1

<400> 33
 Met Asn Ser Ala Met Trp His Gln Thr Ala Thr Gln Thr Thr Val
 1 5 10 15
 Ser Ser Ala Thr Leu Val Thr His Ile Gln Ala Arg Phe His Leu
 20 25 30
 Gln Gln Ser Trp Met Arg Trp Leu Ala Glu Ala Asn Pro Leu Pro

35	40	45
Ala Leu Gln Ala Lys Ala Gly Met Trp Pro Arg Trp Phe Leu Arg		
50	55	60
Ser Leu Thr Ile Leu Arg Ser Cys Ile Leu Ser Ile Ser Gly Gln		
65	70	75
Arg Cys Leu His Ala Pro Ser Ser Phe Val Ser Leu Met Phe Leu		
80	85	90
Ala Thr Cys Tyr Ser Ser Leu Ser Tyr Phe Ser Arg Phe His Arg		
95	100	105
Glu Arg Phe Ser Cys Pro Trp		
110		

<210> 34
<211> 149
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1639243CD1

400	34		
Met Leu Gly Cys Tyr Gly Met Gly Gln Leu Cys Ile Trp Glu Ser			
1	5	10	15
Pro Pro Ala Ser Pro Ser Trp Leu Leu Ser Val Gly Cys Tyr His			
20	25	30	
Leu Pro Ser Leu Gly Leu Leu Ser Pro His Pro Phe Thr Arg Gln			
35	40	45	
Leu Pro Phe Arg Thr His Trp Pro Ile Pro Ser Phe Ser Ser Ser			
50	55	60	
His Pro Ser Thr Pro Val His Gly Cys Cys Arg Ser Gly Phe Phe			
65	70	75	
Val Phe Val Phe Phe Lys Thr Glu Ser His Ser Ala Ala Arg Leu			
80	85	90	
Glu Cys Ser Gly Arg Ile Leu Ala His Cys Asn Leu Cys Leu Pro			
95	100	105	
Gly Ser Ser Asp Ser Pro Ala Ser Ala Ser Arg Val Ala Gly Thr			
110	115	120	
Thr Gly Thr Cys His His Ile Gln Leu Ile Phe Val Phe Leu Val			
125	130	135	
Glu Met Gly Phe His His Val Gly Gln Asp Leu Leu Thr Ser			
140	145		

<210> 35
<211> 97
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1335166CD1

400	35		
Met Glu Ser Cys Ser Val Thr Leu Ala Gly Val Gln Trp Cys Asn			
1	5	10	15
Leu Gly Ser Leu Gln Pro Pro Pro Gly Phe Lys Arg Phe Ser			
20	25	30	
Cys Leu Asn Leu Leu Ser Ser Trp Asp Tyr Arg His Ala Gln Pro			
35	40	45	
His Trp Leu Phe Phe Val Ser Leu Thr Glu Thr Gly Phe His His			
50	55	60	
Val Gly Gln Ala Gly Leu Glu Leu Leu Ser Ser Ser Asp Leu Pro			
65	70	75	

Ala Leu Ala Ser Gln Ser Ala Gly Ile Thr Gly Val Ser His Cys
80 85 90
Ala Arg Pro Gly Arg Leu Leu
95

<210> 36
<211> 104
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 166894CD1

<400> 36
Met Phe Ser Glu Ala Leu Leu Ile His Arg Thr Tyr Leu Ala Tyr
1 5 10 15
Leu Phe Ala Cys Leu Leu Leu Met Ser Ser Leu Thr Glu Ser Leu
20 25 30
Leu Gln Arg Thr Thr Pro Ala Ser Arg Pro Arg Asn Val Gly Lys
35 40 45
Gly Lys Ala Trp Leu Val Leu Val Glu Met Glu Met Leu Val Thr
50 55 60
Val Glu Glu Cys Pro Pro Ser Asp Ser Gln Trp Gly Gly Ala Leu
65 70 75
Gly Pro Cys His Cys Pro Arg Thr Ser Ala Phe Gly Cys Pro Ala
80 85 90
Glu Arg Met Arg His Leu Ser Ser Ser Phe Trp Ser Pro Glu
95 100

<210> 37
<211> 99
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 217969CD1

<400> 37
Met Ser Ser Leu Cys Val Ser Val Thr Ser Lys Asn His Asn Met
1 5 10 15
Phe Met Ala His Asp Gly Tyr Cys Ser Phe Val Phe Cys Phe Phe
20 25 30
Phe Glu Thr Glu Ser Ala Ser Val Thr Gln Pro Gly Val Gln Trp
35 40 45
Tyr His His Ser Ser Leu Gln Pro Arg Pro Pro Gly Leu Glu Gly
50 55 60
Ser Ser His Leu Ser Leu Gln Val Ala Arg Thr Ile Gly Val Cys
65 70 75
His His Thr Gln Leu Ile Leu Phe Arg Trp Gly Leu Thr Met Leu
80 85 90
Pro Trp Leu Val Ser Asn Phe Arg Ala
95

<210> 38
<211> 80
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 335237CD1

<400> 38

Met	Pro	Asp	Leu	Ala	Val	Val	Leu	Phe	Cys	Ser	Arg	Val	Pro	Arg
1														15
Ser	Ser	Ser	Gly	Thr	Gly	Ser	Gln	Gly	Gln	Leu	Val	Pro	Arg	Ala
				20										30
Ser	Leu	Ala	Cys	Pro	Leu	Gly	Ser	Ser	Arg	Asp	Asn	Leu	Thr	Cys
				35										45
Pro	Ile	Lys	Ala	Lys	Gly	Gln	Asn	Arg	Arg	Gln	Asn	Leu	Ala	Arg
				50										60
Pro	Ser	Ser	Asn	Ser	Lys	Gly	Lys	Pro	Val	Pro	Trp	Ile	Leu	Ser
				65										75
Glu	Ile	Lys	Thr	Lys										
				80										

<210> 39

<211> 96

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 938306CD1

<400> 39

Met	Lys	Cys	Lys	Gly	Ile	Leu	Ser	Val	Pro	Gly	Trp	Leu	Pro	Thr
1					5					10				15
Val	Leu	Gly	Lys	Arg	Val	Ile	Phe	Gln	Lys	Gly	Pro	Glu	Gln	Ser
					20					25				30
Ala	Cys	Ile	Leu	Ser	Pro	Leu	Leu	Pro	Val	Ser	Ser	Lys	Ala	Ser
					35					40				45
Gln	Lys	Leu	His	Phe	Pro	Thr	Ser	Cys	His	Phe	Gln	Asn	His	Ser
					50					55				60
Leu	Asn	Leu	Lys	Asn	Lys	Trp	Glu	Ala	Val	Phe	Leu	Pro	Leu	Met
					65					70				75
Ile	Ala	Ala	Thr	Tyr	Lys	Pro	Ala	Arg	Thr	Glu	His	Ser	Lys	Gln
					80					85				90
Arg	Arg	Val	Gln	Ser	Cys									
				95										

<210> 40

<211> 92

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1448129CD1

<400> 40

Met	Ser	Ala	Met	Phe	Asn	Ala	Pro	Trp	Trp	Ser	Leu	Gly	Lys	Met
1					5					10				15
Pro	Thr	Pro	Tyr	Leu	Leu	Ser	Leu	Met	Asn	Ser	Gln	Ala	Ser	Phe
					20					25				30
Gly	Gln	Thr	Phe	Gln	Gln	Ala	Leu	Glu	Ser	Arg	Leu	Ile	Val	Thr
					35					40				45
Arg	Glu	Arg	Tyr	Lys	Leu	Gly	Glu	Arg	Lys	Glu	Pro	Phe	Leu	Glu
					50					55				60
Glu	Ser	Ala	Phe	Glu	Gln	Phe	Leu	Lys	Val	Leu	Val	Gly	Arg	Gly
					65					70				75
His	Ser	Arg	Gln	Val	Gly	Leu	Phe	Thr	Glu	Trp	Thr	Ala	Val	Trp
					80					85				90
Val	Ala													

<210> 41
<211> 77
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1761049CD1

<400> 41

Met	Ile	Asn	Val	Trp	Tyr	His	Val	Phe	Leu	Gln	Asn	Ile	Glu	Phe
1				5					10				15	
Lys	Glu	Cys	Ser	Leu	Gln	Tyr	Trp	Gln	Leu	Ser	Pro	Asp	Leu	Leu
				20					25				30	
Phe	Asn	His	Gly	Val	Ile	Ser	Glu	Lys	Tyr	Leu	Phe	Tyr	Phe	Ile
				35					40				45	
Leu	Phe	Tyr	Phe	Ile	Leu	Phe	Met	Leu	Phe	Met	Leu	Phe	Met	Leu
				50					55				60	
Cys	Tyr	Val	Met	Leu	Cys	Tyr	Val	Met	Leu	Cys	Tyr	Val	Met	Leu
				65					70				75	
Phe	Phe													

<210> 42
<211> 75
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1959587CD1

<400> 42

Met	Lys	Leu	Pro	His	Leu	Ala	Gln	Phe	Leu	Thr	Ser	Pro	Leu	Val
1					5				10				15	
Leu	Trp	Ser	Thr	Gly	Val	Ser	Gly	Ser	Ala	Gly	Phe	His	Gln	Leu
					20				25				30	
Val	Pro	Gln	Trp	Glu	Cys	Glu	Glu	Val	Pro	Gly	Cys	Gly	Lys	Ser
				35					40				45	
Cys	Leu	Ser	Lys	Arg	Gly	Leu	Ile	Glu	Met	Leu	Gly	Lys	Val	Ala
				50					55				60	
Val	Ser	Leu	His	Tyr	Gly	Arg	Glu	Gln	Ser	Gly	Arg	Ala	Cys	Cys
				65					70				75	

<210> 43
<211> 85
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2303463CD1

<400> 43

Met	Ala	Ile	Phe	Ser	Leu	Leu	Met	Phe	His	Ile	Tyr	Ser	Phe	Met
1					5				10				15	
Arg	Ile	Phe	Ser	Phe	Ala	Leu	Met	Ser	Val	Phe	Ile	Ile	Ala	Ala
					20				25				30	
Phe	Lys	Phe	Leu	Ser	Ala	Val	Tyr	Ile	Leu	Asp	Ile	Leu	Glu	Met
					35				40				45	
Ala	Thr	Ala	Cys	Phe	Leu	Ser	Cys	Val	Phe	Ile	Thr	Phe	Ser	Arg
				50					55				60	

Val Phe Thr His Leu Leu Asn Trp Lys Leu Cys Pro Gly Asp Cys
 65 70 75
 Ile Gln Asp Trp Ile Lys Lys Thr Gly Phe
 80 85

<210> 44
<211> 89
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2512281CD1

<400> 44
Met Ala Ala Ala Pro Ala Pro Lys Pro Ser Leu Ala Pro Val Leu
 1 5 10 15
Gly Pro Leu Glu Val Leu Pro Ala Pro Leu Gln Ala Pro Thr Arg
 20 25 30
Arg Ser Pro Gly Thr Glu Cys Ala Pro Pro Ala Thr Gly Lys Gly
 35 40 45
Arg Leu Ile Arg Val Arg Ser Arg Asp Gly Ile Val Thr Met Lys
 50 55 60
Ser Ser Arg Arg Ala Met Cys Leu Lys Pro Ser Val Thr Leu Pro
 65 70 75
Asn Ser Gln Glu Ala Arg His Ala Leu His Pro Ala Glu Pro
 80 85

<210> 45
<211> 123
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2755924CD1

<400> 45
Met Phe Ile Lys Ile His Asn Leu Phe Phe Cys Ile Cys Val Leu
 1 5 10 15
Pro Thr Leu Ala Ile Ser Gly Trp Ser Cys Pro Ser Leu Leu Ser
 20 25 30
Leu Ser Phe Phe Lys His Ser Ile Cys Ile Leu Phe Leu Phe Leu
 35 40 45
Val Thr Gly Phe His Tyr Val Ala His Thr Gly His Glu Leu Leu
 50 55 60
Ser Ser Gly Asp Leu Pro Thr Ser Ala Ser Gln Val Ala Gly Thr
 65 70 75
Thr Gly Thr Cys His Cys Ala Gln Leu Val Thr Ala Asn Phe Asn
 80 85 90
Leu Gly Met Phe Val Pro Leu Leu Tyr Cys His Val Lys Asn Phe
 95 100 105
Ala Asn Ser Gln Glu Thr Ser Val Ser Ser Val Lys Leu Asn Leu
 110 115 120
Ser Ser Leu

<210> 46
<211> 159
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte ID No: 2796369CD1

<400> 46

Met	Gly	Ser	Leu	Cys	Ser	Glu	Asn	Gly	Arg	Val	Trp	Asp	Gly	Leu
1						5			10					15
Ser	Phe	Leu	Leu	Val	Gly	Pro	Gly	Ser	Gly	Ser	Gly	Ala	Ala	Pro
						20			25					30
Phe	Leu	Trp	Ser	Thr	Gln	Arg	Glu	Gln	Glu	Gly	Leu	Asp	Leu	Gly
					35				40					45
Lys	Glu	Ala	Ile	His	Arg	Ala	Pro	Gln	Lys	Pro	Gly	Pro	Pro	Gly
					50				55					60
Ala	His	Cys	Cys	Ala	Glu	Ala	Thr	Arg	Leu	Gly	Tyr	Phe	Leu	Pro
					65				70					75
Glu	Ala	Gly	Asn	Arg	Glu	Cys	Arg	Glu	Ala	Arg	Gln	Gln	Glu	
					80				85					90
Ala	Pro	Asn	Ala	Gly	Val	Ser	Lys	Pro	Glu	Pro	Pro	Pro	Asp	Phe
					95				100					105
Thr	Pro	Val	Cys	Pro	Ala	His	Ser	Arg	Leu	Ser	Leu	Gly	Gly	Pro
					110				115					120
Trp	Gly	Leu	Asp	Leu	Pro	Asp	Leu	Trp	Pro	Gln	Lys	Gly	Leu	Ser
					125				130					135
Pro	Glu	Ser	His	Gly	Met	Glu	Pro	Gly	Met	His	Arg	Pro	Ser	Gly
					140				145					150
Leu	Cys	Leu	Gly	Ser	Arg	Pro	Gly	Ile						
					155									

<210> 47

<211> 77
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte ID No: 3010920CD1

<400> 47

Met	Ala	Leu	Arg	Lys	Ser	Ser	Cys	Leu	Pro	Leu	Lys	Leu	Gly	Thr
1								5		10				15
Leu	Ile	Thr	Tyr	Ser	Leu	Ile	Phe	Leu	Ala	Trp	Phe	Leu	Leu	Lys
								20		25				30
Ser	Ala	Thr	Phe	Asn	Gln	Val	Ile	Met	Pro	Arg	Glu	Leu	Cys	Gln
					35				40					45
Asp	Leu	Ile	Tyr	Val	His	Ser	Tyr	Asp	Lys	Tyr	Leu	Leu	Ile	Phe
					50				55					60
Gln	Ile	Asn	Ser	Cys	Gly	Cys	Cys	Asn	Thr	Tyr	Ile	His	Tyr	Arg
					65				70					75
Lys	Leu													

<210> 48

<211> 130
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte ID No: 3360955CD1

<400> 48

Met	Leu	Phe	Val	Phe	Ser	Phe	Cys	Pro	Gln	Gln	Ala	Val	Thr	Ser
1								5		10				15
Asp	Gln	Glu	Val	Ser	Lys	Ser	Thr	Glu	Thr	Leu	Arg	Arg	Leu	Met

	20	25	30
Leu Ser Ala Lys Ile Met Asp Gly Glu Asp Thr Gly Leu Tyr His			
35	40	45	
Gln His Phe Ser Trp Tyr Leu Thr Ile Asn Arg Met Met Ala His			
50	55	60	
Arg Ser Lys Gly Thr Ser Phe His Ala Leu Pro Ser Leu Pro Ile			
65	70	75	
Leu Ala Asn Pro Ser Ser Trp Pro Pro Asp Tyr Asp Thr Thr Gln			
80	85	90	
Met Ser Ile Phe Ser Ala Arg Lys Ser Leu Leu Gly Thr Lys Leu			
95	100	105	
Leu Thr Ser Cys Leu Ser Ser Leu His Phe Arg Lys Cys Pro Val			
110	115	120	
Leu His Cys Asn Leu Leu Lys Ala Gly Lys			
125	130		

<210> 49

<211> 97

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3409459CD1

<400> 49

Met Asn Phe Tyr Arg Ala Ser Cys Leu Ser Leu Trp Val Phe Ala			
1	5	10	15
Gly Gly Gly Phe Gly Leu Asn Ala Ala Asp Met Ser Asp Ser Pro			
20	25	30	
Leu Ala Ala Ala Gly Glu Val Ala Ile Val Val Pro Leu His Pro			
35	40	45	
Gly His Leu Arg Cys Trp Tyr Leu Leu Asn Gln Gly Ile Trp Pro			
50	55	60	
Gly Arg Ala Ser Ser Pro Ala Pro Pro Ala Trp His Cys Pro Leu			
65	70	75	
Pro Val Leu Gln Arg Ala Ile Arg Lys Ala Gly Leu Pro Thr Leu			
80	85	90	
Leu Pro Arg Pro Ala Gly Pro			
95			

<210> 50

<211> 74

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4102938CD1

<400> 50

Met Pro Ser Leu Leu Asp His Pro Phe Ala Glu Lys Pro Phe Leu			
1	5	10	15
Leu Leu Ala Leu Phe Gln Leu Asn Phe Leu Ala Pro Leu Ser Gln			
20	25	30	
Val Ala Gly His Ala Ala Glu Gly Asn Trp Gly Asp Ser Arg Thr			
35	40	45	
Ala Asn His Phe Ser Lys Leu Arg Phe Gln Phe Glu Thr Arg Leu			
50	55	60	
Ala Asn Met Val Lys Pro Arg Leu Tyr Lys Lys Tyr Lys Asn			
65	70		

<210> 51

<211> 74
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4124601CD1

<400> 51
Met Leu Gly Leu Gln Gln Gly Gln Ser Ser Glu Arg Gln
1 5 10 15
Lys Trp Val Gly Pro Arg Gly Trp Arg Ala Ala Glu His Lys Ser
20 25 30
Arg Leu Lys Gly Ala Ala Thr Ala Gln Ser Pro Leu Thr Ala Ala
35 40 45
Gly Trp Asp Cys Lys Pro Arg Val Ala Arg Ser Val Ser Phe Phe
50 55 60
Gln Asp Lys Leu Glu Ile Arg Phe Ser His Gly Ile Val Ser
65 70

<210> 52
<211> 151
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4180577CD1

<400> 52
Met Ser Ser Ser Thr Ser Phe Ile Leu Ser Ala Ile Ala Ser Gly
1 5 10 15
Phe His Tyr Ser Leu Ser Ala Val Thr Ala Cys Gly Gln Leu Leu
20 25 30
Leu Leu Thr Ala Cys Arg Glu Leu Pro Asn Phe Ser Ser Gln Phe
35 40 45
Phe Leu Arg Ser Trp Leu Phe Trp Pro Gln Leu Lys Gly Val Leu
50 55 60
Leu Ser Ser Leu Arg Val Leu Ser Leu Phe Asp Pro Ile Val Val
65 70 75
Phe Ser Ser Phe Glu His Val Phe Gln Tyr Ser Tyr Phe Asn Leu
80 85 90
Leu Arg Thr Leu Lys Gly Asn Asp Lys Leu Val Val Gly Ile Trp
95 100 105
Gln Thr Gly Ala Cys Leu Phe Glu Arg Ser Ser Arg Arg Asp Lys
110 115 120
Ile Gln Ser Ala Ile Cys Phe Ser Trp Arg Gly Lys Arg Glu Asn
125 130 135
Leu Leu Asp Tyr Ile Leu Val Pro Trp His Thr Thr Tyr Met Phe
140 145 150
Lys

<210> 53
<211> 137
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5265807CD1

<400> 53

Met Leu Thr Tyr Ser Ser Phe His Phe Leu Leu Phe Tyr Leu Leu
 1 5 10 15
 Leu Pro Leu Ser Leu Leu Ser Pro Ala Pro Gln Gln Lys Val Leu
 20 25 30
 Gly Leu Leu Leu Ala His Ser Ala Asp Val Asn Ala Arg Asp Lys
 35 40 45
 Leu Trp Gln Thr Pro Leu His Val Ala Ala Asn Arg Ala Thr
 50 55 60
 Lys Cys Ala Glu Ala Leu Ala Pro Leu Leu Ser Ser Leu Asn Val
 65 70 75
 Ala Asp Arg Ser Gly Arg Ser Ala Leu His His Ala Val His Ser
 80 85 90
 Gly His Leu Glu Val Arg Thr Val Pro Ile Gln Ala Gln Leu Gly
 95 100 105
 Leu Ser Leu Phe Leu Pro Ser Tyr Ser Arg Phe Pro Ala Ser Gly
 110 115 120
 Pro Ser Ser Leu Lys Glu Lys Gln Pro Gly Trp Leu Tyr Lys His
 125 130 135
 Leu Ser

<210> 54
<211> 137
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5405979CD1

<400> 54
Met Gln Ser Phe Thr Phe Tyr Leu Val Leu Pro Ser Pro Val Val
 1 5 10 15
 Leu Ala Pro Pro Val Pro Ser Ala Ala Gly Pro Val Phe Ser Phe
 20 25 30
 Gln Pro Arg Ser Ser Gln Pro Leu Leu His Gln Trp Cys Leu Leu
 35 40 45
 Trp Ala Ser Pro Arg Leu Arg Cys Phe Arg Leu Ser Leu Leu Arg
 50 55 60
 Gln Gln His Ala Ser Arg Trp His Ala Cys Pro Leu His Ala Ser
 65 70 75
 Leu Gly Leu Pro Leu Leu Ala Gly Gln Gln Pro Ala Glu Pro Arg
 80 85 90
 Tyr Leu Pro Phe Pro Cys Cys Ser Ser Leu Ser Pro Leu Ser Ser
 95 100 105
 Trp Ala Cys Leu Gly Gln Lys Gly Gln Val Ser Gly Thr Ser Gln
 110 115 120
 Glu Thr Leu Gly Arg Glu Val Ser Leu Ser Leu Glu Thr Val Asp
 125 130 135
 Lys Leu

<210> 55
<211> 205
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7481109CD1

<400> 55
Met Met Arg Thr Leu Ile Thr Thr His Pro Leu Pro Leu Leu

1	5	10	15
Leu Pro Gln Gln	Leu Leu Gln Leu Val	Gln Phe Gln Glu Val Asp	
20	25	30	
Thr Asp Phe Asp	Phe Pro Glu Glu Asp	Lys Lys Glu Glu Phe Glu	
35	40	45	
Glu Cys Leu Glu	Lys Phe Phe Ser Thr Gly	Pro Ala Arg Pro Pro	
50	55	60	
Thr Lys Glu Lys	Val Lys Arg Arg Val	Leu Ile Glu Pro Gly Met	
65	70	75	
Pro Leu Asn His	Ile Glu Tyr Cys Asn His	Glu Ile Met Gly Lys	
80	85	90	
Asn Val Tyr Tyr	Lys His Arg Trp Val	Ala Glu His Tyr Phe Leu	
95	100	105	
Leu Met Gln Tyr	Asp Glu Leu Gln Lys	Ile Cys Tyr Asn Arg Phe	
110	115	120	
Val Pro Cys Lys	Asn Gly Ile Arg Lys	Cys Asn Arg Ser Lys Gly	
125	130	135	
Leu Val Glu Gly	Val Tyr Cys Asn Leu	Thr Glu Ala Phe Glu Ile	
140	145	150	
Pro Ala Cys Lys	Tyr Glu Ser Leu Tyr	Arg Lys Gly Tyr Val Leu	
155	160	165	
Ile Thr Cys Ser	Trp Gln Asn Glu Met	Gln Lys Arg Ile Pro His	
170	175	180	
Thr Ile Asn Asp	Leu Val Glu Pro Pro	Glu His Arg Ser Phe Leu	
185	190	195	
Ser Glu Asp Gly	Val Phe Val Ile Ser Pro		
200	205		

<210> 56

<211> 199

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 6247114CD1

<400> 56

Met Glu Thr Phe Pro	Leu Leu Leu Leu Ser	Leu Gly Leu Val Leu	
1	5	10	15
Ala Glu Ala Ser	Glu Ser Thr Met Lys	Ile Ile Lys Glu Glu Phe	
20	25	30	
Thr Asp Glu Glu	Met Gln Tyr Asp Met	Ala Lys Ser Gly Gln Glu	
35	40	45	
Lys Gln Thr Ile	Glu Ile Leu Met Asn	Pro Ile Leu Leu Val Lys	
50	55	60	
Asn Thr Ser Leu	Ser Met Ser Lys Asp Asp	Met Ser Ser Thr Leu	
65	70	75	
Leu Thr Phe Arg	Ser Leu His Tyr Asn Asp	Pro Lys Gly Asn Ser	
80	85	90	
Ser Gly Asn Asp	Lys Glu Cys Cys Asn Asp	Met Thr Val Trp Arg	
95	100	105	
Lys Val Ser Glu	Ala Asn Gly Ser Cys	Lys Trp Ser Asn Asn Phe	
110	115	120	
Ile Arg Ser Ser	Thr Glu Val Met Arg	Arg Val His Arg Ala Pro	
125	130	135	
Ser Cys Lys Phe	Val Gln Asn Pro Gly	Ile Ser Cys Cys Glu Ser	
140	145	150	
Leu Glu Leu Glu	Asn Thr Val Cys Gln	Phe Thr Thr Gly Lys Gln	
155	160	165	
Phe Pro Arg Cys	Gln Tyr His Ser Val	Thr Ser Leu Glu Lys Ile	
170	175	180	
Leu Thr Val	Leu Thr Gly His Ser	Leu Met Ser Trp Leu Val Cys	

185 190 195
Gly Ser Lys Leu

<210> 57
<211> 719
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3243866CD1

	365	370	375
Lys Leu Pro His	Leu Leu Asn Ser Thr	Asn His Ile His Glu	Pro
380	385	390	
Asp Pro Gly Ser	Ser Asp Ile Ser Thr	Ser Thr Lys Ser Gly	Ser
395	400	405	
Asn Thr Ser Ser	Ser Asn Gly Asp Thr	Lys Leu Ser Gln Asp	Lys
410	415	420	
Ile Val Val Ala	Glu Ala Thr Ser Ser	Thr Ala Leu Leu Lys	Phe
425	430	435	
Asn Phe Gln Arg	Asn Ile Pro Gly Ile	Arg Met Phe Gln Ile	Gln
440	445	450	
Tyr Asn Gly Thr	Tyr Asp Asp Thr Leu	Val Tyr Arg Met Ile	Pro
455	460	465	
Pro Thr Ser Lys	Thr Phe Leu Val Asn	Asn Leu Ala Ala Gly	Thr
470	475	480	
Met Tyr Asp Leu	Cys Val Leu Ala Ile	Tyr Asp Asp Gly Ile	Thr
485	490	495	
Ser Leu Thr Ala	Thr Arg Val Val Gly	Cys Ile Gln Phe Thr	Thr
500	505	510	
Glu Gln Asp Tyr	Val Arg Cys His Phe	Met Gln Ser Gln Phe	Leu
515	520	525	
Gly Gly Thr Met	Ile Ile Ile Gly	Gly Ile Ile Val Ala	Ser
530	535	540	
Val Leu Val Phe	Ile Ile Ile Leu Met	Ile Arg Tyr Lys Val	Cys
545	550	555	
Asn Asn Asn Gly	Gln His Lys Val Thr	Lys Val Ser Asn Val	Tyr
560	565	570	
Ser Gln Thr Asn Gly	Ala Gln Ile Gln	Gly Cys Ser Val Thr	Leu
575	580	585	
Pro Gln Ser Val	Ser Lys Gln Ala Val	Gly His Glu Glu Asn	Ala
590	595	600	
Gln Cys Cys Lys	Ala Thr Ser Asp Asn Val	Ile Gln Ser Ser	Glu
605	610	615	
Thr Cys Ser Ser	Gln Asp Ser Ser Thr	Thr Thr Ser Ala Leu	Pro
620	625	630	
Pro Ser Trp Thr	Ser Ser Thr Ser Val	Ser Gln Lys Gln Lys	Arg
635	640	645	
Lys Thr Gly Thr	Lys Pro Ser Thr Glu	Pro Gln Asn Glu Ala	Val
650	655	660	
Thr Asn Val Glu	Ser Gln Asn Thr Asn	Arg Asn Asn Ser Thr	Ala
665	670	675	
Leu Gln Leu Ala	Ser Arg Pro Pro Asp	Ser Val Thr Glu Gly	Pro
680	685	690	
Thr Ser Lys Arg	Ala His Ile Lys Pro	Asn Ala Leu Leu Thr	Asn
695	700	705	
Val Asp Gln Ile Val	Gln Glu Thr Gln	Arg Leu Glu Leu Ile	
710	715		

<210> 58
<211> 383
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7475633CD1

<400> 58
Met Pro Ser Gly Cys Arg Cys Leu His Leu Val Cys Leu Leu Cys
1 5 10 15
Ile Leu Gly Ala Pro Gly Gln Pro Val Arg Ala Asp Asp Cys Ser
20 25 30
Ser His Cys Asp Leu Ala His Gly Cys Cys Ala Pro Asp Gly Ser

	35	40	45
Cys Arg Cys Asp Pro Gly Trp Glu Gly Leu His Cys Glu Arg Cys			
50	55	60	
Val Arg Met Pro Gly Cys Gln His Gly Thr Cys His Gln Pro Trp			
65	70	75	
Gln Cys Ile Cys His Ser Gly Trp Ala Gly Lys Phe Cys Asp Lys			
80	85	90	
Asp Glu His Ile Cys Thr Thr Gln Ser Pro Cys Gln Asn Gly Gly			
95	100	105	
Gln Cys Met Tyr Asp Gly Gly Glu Tyr His Cys Val Cys Leu			
110	115	120	
Pro Gly Phe His Gly Arg Asp Cys Glu Arg Lys Ala Gly Pro Cys			
125	130	135	
Glu Gln Ala Gly Ser Pro Cys Arg Asn Gly Gly Gln Cys Gln Asp			
140	145	150	
Asp Gln Gly Phe Ala Leu Asn Phe Thr Cys Arg Cys Leu Val Gly			
155	160	165	
Phe Val Gly Ala Arg Cys Glu Val Asn Val Asp Asp Cys Leu Met			
170	175	180	
Arg Pro Cys Ala Asn Gly Ala Thr Cys Leu Asp Gly Ile Asn Arg			
185	190	195	
Phe Ser Cys Leu Cys Pro Glu Gly Phe Ala Gly Arg Phe Cys Thr			
200	205	210	
Ile Asn Leu Asp Asp Cys Ala Ser Arg Pro Cys Gln Arg Gly Ala			
215	220	225	
Arg Cys Arg Asp Arg Val His Asp Phe Asp Cys Leu Cys Pro Ser			
230	235	240	
Gly Tyr Gly Gly Lys Thr Cys Glu Leu Val Leu Pro Val Pro Asp			
245	250	255	
Pro Pro Thr Thr Val Asp Thr Pro Leu Gly Pro Thr Ser Ala Val			
260	265	270	
Val Val Pro Ala Thr Gly Pro Ala Pro His Ser Ala Gly Ala Gly			
275	280	285	
Leu Leu Arg Ile Ser Val Lys Glu Val Val Arg Arg Gln Glu Ala			
290	295	300	
Gly Leu Gly Glu Pro Ser Leu Val Ala Leu Val Val Phe Gly Ala			
305	310	315	
Leu Thr Ala Ala Leu Val Leu Ala Thr Val Leu Leu Thr Leu Arg			
320	325	330	
Ala Trp Arg Arg Gly Val Cys Pro Pro Gly Pro Cys Cys Tyr Pro			
335	340	345	
Ala Pro His Tyr Ala Pro Ala Cys Gln Asp Gln Glu Cys Gln Val			
350	355	360	
Ser Met Leu Pro Ala Gly Leu Pro Leu Pro Arg Asp Leu Pro Pro			
365	370	375	
Glu Pro Gly Lys Thr Thr Ala Leu			
380			

<210> 59
<211> 126
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1431268CD1

<400> 59
Met Ser Arg Leu Glu Ser Ser Glu Ala Ala Cys Arg Ala Val Pro
1 5 10 15
Ser Ala Trp His Thr Phe Leu Leu Ser Pro Leu Cys Leu Leu Leu
20 25 30
Ile Gln Val Trp Ala His Gly Pro Ser Leu Gln Val Val Thr Lys

35	40	45
Val Ala Pro Pro Ala Leu Thr Ser Ser Met Ser Asp Ser Leu Val		
50	55	60
Phe Thr Lys His Phe Ser Leu Cys Lys Val Ile Asp Ser Ala Asn		
65	70	75
Val His Arg Gly Cys Thr Thr Cys Gln Ala Leu Val Lys Ala Arg		
80	85	90
Asp Val Glu Thr Ser Cys Cys Arg Phe Ser Ala His Ala Leu Ala		
95	100	105
Gly Glu Ala Val Ser Gln Gln Asn Lys Gln Arg Gly Gly Glu Ala		
110	115	120
Ala Ser Cys Leu Leu Arg		
125		

<210> 60

<211> 137

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2414185CD1

<400> 60

Met Met Gly Lys Leu Ser Pro Thr Phe Ile Leu Gly Ile Cys Trp			
1	5	10	15
Val Pro Ala Gly Leu Gly Tyr Gln Gln Gly Lys Lys Thr Trp Pro			
20	25		30
Leu Ser Ser Ser Pro Tyr Asn Leu Gln Asp Lys Met Tyr Ala Leu			
35	40		45
Glu Lys Ala Gly Asp Pro Ser Lys Ala Arg Ser Met Gly Pro His			
50	55		60
Lys Ser Pro Glu Thr Gln Arg Gly Gln Pro Met Glu Met Ser Gly			
65	70		75
Leu Lys Gly Gln Val Thr Ser Thr Ala Leu His Thr Leu His Phe			
80	85		90
Pro Arg Arg Pro Pro Ser Gly Cys Gln Thr Asp Gln Ala Gly Asp			
95	100		105
His Glu Pro Gly Gly Arg Phe Leu Ala Gln Pro Gln Arg Leu Arg			
110	115		120
Glu Leu Ser Leu Met Ile Ser Pro Leu Gln Leu Leu Pro Phe Gly			
125	130		135
Ser Arg			

<210> 61

<211> 77

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5266594CD1

<400> 61

Met Leu Glu Gly Thr Leu Pro Leu Pro Thr Val Leu Leu Val Gly			
1	5	10	15
Arg Pro Val Leu Leu Leu Ala Leu Gly Ala Ala Val Pro Gly His			
20	25		30
Leu Ala Ala Pro Thr Asp Val Glu Leu Pro Glu Leu Leu Leu Asn			
35	40		45
His Cys Ala Gly Arg Val Val Ala Leu Ile Val Gly Ala Arg Val			
50	55		60

Leu Leu Leu Phe His Tyr Ile Pro Val Gly Ile Ile Ile Pro Gly
 65 70 75
 His Ile

<210> 62
<211> 110
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7610617CD1

<400> 62
Met Ser Asn Leu Trp Leu Leu Val Gly Ala Arg Ala Cys Ser Leu
 1 5 10 15
 Ser Leu Leu Thr Tyr Ser Phe Leu Gly Asp Leu Ile Pro Ser His
 20 25 30
 Cys Leu Lys His Leu Pro Gly Thr Gly Val Ile His Leu Cys Ser
 35 40 45
 Ser Ser Ser Glu Ile Pro Ser Ala Pro Phe Ile His Leu Phe Ile
 50 55 60
 His Ser Ala Asn Ile Cys Gly Ile Ser Val Pro Gly Thr Ala Leu
 65 70 75
 Gln Pro Gly Cys Thr Ile Gly Thr Gln Thr Asp Thr Pro Phe Pro
 80 85 90
 Met His Ser Leu Leu Thr Asp Thr Pro Ala Trp Gln Cys Leu Gly
 95 100 105
 Val Phe Thr Ala Pro
 110

<210> 63
<211> 103
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1902436CD1

<400> 63
Met Thr Phe Ile Tyr Thr Phe Ile Leu Ser Phe Phe Leu Gln Leu
 1 5 10 15
 Cys Cys Ser Phe Met Lys Leu Ile Leu Ile Ser Asn Thr Asn
 20 25 30
 Ala Val Ser Phe Ile Leu His Arg Pro Cys Thr Leu Cys Ser Asp
 35 40 45
 Phe Tyr Ser His Ile Cys Met Leu Leu Thr Val Ser Val Asn Phe
 50 55 60
 Leu Ser Phe Trp Asn Asn Phe Gln Thr Ile Leu Thr Trp Ala Asp
 65 70 75
 Leu Phe Ser Met Leu Leu Ala Tyr Glu Tyr Arg Phe Thr Arg Leu
 80 85 90
 Phe Ser Val Leu Pro His Thr Ser Val Met Leu Cys Phe
 95 100

<210> 64
<211> 192
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No: 2310369CD1

<400> 64

Met Ala Pro Lys Pro Gly Ala Glu Trp Ser Thr Ala Leu Ser His	
1 5 10 15	
Leu Val Leu Gly Val Val Ser Leu His Ala Ala Val Ser Thr Ala	
20 25 30	
Glu Ala Ser Arg Gly Ala Ala Ala Gly Phe Leu Leu Gln Val Leu	
35 40 45	
Ala Ala Thr Thr Leu Ala Pro Gly Leu Ser Thr His Glu Asp	
50 55 60	
Cys Leu Ala Gly Ala Trp Val Ala Thr Val Ile Gly Leu Pro Leu	
65 70 75	
Leu Ala Phe Asp Phe His Trp Val Asn Gly Asp Arg Ser Ser Ala	
80 85 90	
Asn Leu Leu Leu Gly Gly Met Val Leu Ala Val Ala Gly Gly	
95 100 105	
His Leu Gly Pro Glu Gly Arg Ser Val Ala Gly Gln Ala Met Leu	
110 115 120	
Leu Val Val Ala Val Thr Ile Leu Ile Val Ala Val Phe Thr Ala	
125 130 135	
Asn Thr Tyr Gly Met Trp Gly Gly Ala Met Leu Gly Val Ala Gly	
140 145 150	
Leu Leu Ser Arg Leu Glu Glu Asp Arg Leu Leu Leu Leu Pro Lys	
155 160 165	
Glu Asp Val Cys Arg Trp Ala Leu Ala Val Gly Ser Trp Ala Tyr	
170 175 180	
Cys Arg Ala Leu His Thr Gln Arg Leu Gln Trp Glu	
185 190	

<210> 65

<211> 310

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 6180576CD1

<400> 65

Met Asn Gly Leu Ser Leu Ser Glu Leu Cys Cys Leu Phe Cys Cys	
1 5 10 15	
Pro Pro Cys Pro Gly Arg Ile Ala Ala Lys Leu Ala Phe Leu Pro	
20 25 30	
Pro Glu Ala Thr Tyr Ser Leu Val Pro Glu Pro Glu Pro Gly Pro	
35 40 45	
Gly Gly Ala Gly Ala Ala Pro Leu Gly Thr Leu Arg Ala Ser Ser	
50 55 60	
Gly Ala Pro Gly Arg Trp Lys Leu His Leu Thr Glu Arg Ala Asp	
65 70 75	
Phe Gln Tyr Ser Gln Arg Glu Leu Asp Thr Ile Glu Val Phe Pro	
80 85 90	
Thr Lys Ser Ala Arg Gly Asn Arg Val Ser Cys Met Tyr Val Arg	
95 100 105	
Cys Val Pro Gly Ala Arg Tyr Thr Val Leu Phe Ser His Gly Asn	
110 115 120	
Ala Val Asp Leu Gly Gln Met Ser Ser Phe Tyr Ile Gly Leu Gly	
125 130 135	
Ser Arg Leu His Cys Asn Ile Phe Ser Tyr Asp Tyr Ser Gly Tyr	
140 145 150	
Gly Ala Ser Ser Gly Arg Pro Ser Glu Arg Asn Leu Tyr Ala Asp	
155 160 165	

Ile	Asp	Ala	Ala	Trp	Gln	Ala	Leu	Arg	Thr	Arg	Tyr	Gly	Ile	Ser
				170				175					180	
Pro	Asp	Ser	Ile	Ile	Leu	Tyr	Gly	Gln	Ser	Ile	Gly	Thr	Val	Pro
				185				190					195	
Thr	Val	Asp	Leu	Ala	Ser	Arg	Tyr	Glu	Cys	Ala	Ala	Val	Val	Leu
				200				205					210	
His	Ser	Pro	Leu	Thr	Ser	Gly	Met	Arg	Val	Ala	Phe	Pro	Asp	Thr
				215				220					225	
Lys	Lys	Thr	Tyr	Cys	Phe	Asp	Ala	Phe	Pro	Asn	Ile	Glu	Lys	Val
				230				235					240	
Ser	Lys	Ile	Thr	Ser	Pro	Val	Leu	Ile	Ile	His	Gly	Thr	Glu	Asp
				245				250					255	
Glu	Val	Ile	Asp	Phe	Ser	His	Gly	Leu	Ala	Leu	Tyr	Glu	Arg	Cys
				260				265					270	
Pro	Lys	Ala	Val	Glu	Pro	Leu	Trp	Val	Glu	Gly	Ala	Gly	His	Asn
				275				280					285	
Asp	Ile	Glu	Leu	Tyr	Ser	Gln	Tyr	Leu	Glu	Arg	Leu	Arg	Arg	Phe
				290				295					300	
Ile	Ser	Gln	Glu	Leu	Pro	Ser	Gln	Arg	Ala					
				305				310						

<210> 66
<211> 135
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2274523CD1

<400> 66

Met	Phe	Ala	Gln	Pro	Phe	Ser	Pro	Ile	Arg	Ala	Ser	Lys	Arg	Met
1				5				10					15	
Ala	Lys	Val	Ser	Ser	Asn	Asn	Phe	Ala	Ser	Leu	Pro	Arg	Gln	Ala
				20				25					30	
Pro	Met	Leu	Leu	Phe	Cys	Pro	Leu	Trp	Met	Pro	Val	Thr	Ser	Val
				35				40					45	
Pro	Gln	Glu	Ala	Lys	Leu	Leu	Arg	Gln	Leu	Lys	Phe	Ser	Gln	Gly
				50				55					60	
Thr	Gly	Val	Cys	Val	Leu	Ile	Tyr	Thr	Pro	Leu	His	Thr	Tyr	Phe
				65				70					75	
Phe	Lys	Leu	Ser	Pro	Thr	Leu	Gly	Thr	Pro	Val	Leu	Glu	Tyr	Pro
				80				85					90	
Gln	Gln	Phe	Lys	Gly	Lys	Lys	Arg	Leu	Lys	Gln	Lys	Asp	Phe	Phe
				95				100					105	
Leu	Pro	Lys	Leu	Cys	Leu	Leu	Ala	Trp	Gly	Pro	Arg	His	Ala	Asp
				110				115					120	
Leu	Lys	Ile	Asn	Gln	Ala	Trp	Val	Gly	His	Gly	Gly	Ser	Arg	Leu
				125				130					135	

<210> 67
<211> 205
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1801820CD1

<400> 67

Met	Val	Asn	Leu	Ala	Ala	Met	Val	Trp	Arg	Arg	Leu	Leu	Arg	Lys
1					5				10				15	

Arg Trp Val Leu Ala Leu Val Phe Gly Leu Ser Leu Val Tyr Phe
 20 25 30
 Leu Ser Ser Thr Phe Lys Gln Glu Glu Arg Ala Val Arg Asp Arg
 35 40 45
 Asn Leu Leu Gln Val His Asp His Asn Gln Pro Ile Pro Trp Lys
 50 55 60
 Val Gln Phe Asn Leu Gly Asn Ser Ser Arg Pro Ser Asn Gln Cys
 65 70 75
 Arg Asn Ser Ile Gln Gly Lys His Leu Ile Thr Asp Glu Leu Gly
 80 85 90
 Tyr Val Cys Glu Arg Lys Asp Leu Leu Val Asn Gly Cys Cys Asn
 95 100 105
 Val Asn Val Pro Ser Thr Lys Gln Tyr Cys Cys Asp Gly Cys Trp
 110 115 120
 Pro Asn Gly Cys Cys Ser Ala Tyr Glu Tyr Cys Val Ser Cys Cys
 125 130 135
 Leu Gln Pro Asn Lys Gln Leu Leu Leu Glu Leu Phe Leu Asn Arg
 140 145 150
 Ala Ala Val Ala Phe Gln Asn Leu Phe Met Ala Val Glu Asp His
 155 160 165
 Phe Glu Leu Cys Leu Ala Lys Cys Arg Thr Ser Ser Gln Ser Val
 170 175 180
 Gln His Glu Asn Thr Tyr Arg Asp Pro Ile Ala Lys Tyr Cys Tyr
 185 190 195
 Gly Glu Ser Pro Pro Glu Leu Phe Pro Ala
 200 205

<210> 68

<211> 2569

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3211795CB1

<400> 68

ctcggacccc tttaaggcgc ggccagagtc ctcccgcaaga aaaacgactt aaaggagacg 60
 cgtggcgcga tggcggccgc cccacgcgcg ggccggcggc gcggggcagcc gtcctggcg 120
 ctgctgcttc tgctgctggc gccactgccc ccgggggccc cgccgggcgc cgacgcctac 180
 ttitccgagg agcgctggag cccggagtcg cccctgcagg cgccgcgcgt gtcatcgcg 240
 ctgttggcgc gaaacgcgcgc ccacgcgttg cccaccacgc tgggcgcact cgagcggctg 300
 cggcacccgc gggagcgcac ggccgtatgg gtggctacgg accacaacat ggataacacg 360
 tcaactgtgc tcggggagtg gctggtgccc gtgaagagggt gtaccattc cgtggagtgg 420
 cggccaggcagg aggagccca gtcctatccc gacgagggaa gcccggaaaca ctggcttgac 480
 tcacgctacg agcatgtcat gaaggttgcgc caggcagccc tggaaatcagc tcgagacatg 540
 tgggctgatt acatccttgtt tgttagatgcg gacaacctga tcctcaaccc tgacacactg 600
 agcctgctca tcgctgagaa caagacggtg gtgcggccca tgctgattc cggggctgcg 660
 tactccaact tctggtgtgg aatgacttcc cagggctact acaagcgcac acctgcctac 720
 atccctatcc gcaaggcaga ccgcgggggc tgctttgcag ttcccatggt gcactcgacc 780
 ttctctgatcg acctgcggaa ggcggcgtcc aggaacctgg cttcttaccc acctcaccct 840
 gactacacct ggtccttga cgacatcatc gtctttgcct tctcctgcaa gcaggcagag 900
 gttcagatgt atgtgtgcaa caaggaggag tacggattct tgccagtgcc attgcgcgc 960
 cacagcaccc tccaggatga ggccgagagc ttcatgcatt tgcaagtggaa ggtcatggtg 1020
 aagcacccgc cccgagagcc ctcccgcttc atctcggttc ccaccaagac accggacaag 1080
 atgggcttcg acggggcttt catgatcaac ctggggcgc ggcaggaccc gcggggagcgc 1140
 atgctgcggg cgctgcaggg acaggagatc gagtgccggc tggtgaggcc cgtggacggc 1200
 aaagccatga acaccaggcca ggtggaggcg ctggggatcc agatgtgcc tggctaccgg 1260
 gacccttacc acggccggcc cttcaccaag ggtgagctgg gctgccttcct gagccactac 1320
 aacatcttga aggagggtgtt ggacgggggg ctgcagaaat cgcttgcgtt tgaggatgac 1380
 ctgcgtttt agatcttctt caagagacgt ctgatgaacc tcatgcggga tggggagcgg 1440
 gagggcctgg actgggaccc catctatgtg ggccgaaagc ggatgcaggt ggagcacccc 1500
 gagaaggctg tgcctcgctg gaggaacctg gtggaggccg actattccta ctggaccctg 1560

gcctacgtga	tctccctgca	aggcgccccg	aaactgctgg	ctgctgagcc	gctctccaag	1620
atgctgcctg	tggacgagtt	cctgccccgtc	atgttcgaca	aacaccagg	gtccgagat	1680
aaggcccact	tctccctccg	caacctgcat	gccttctctg	tggagccgct	gctcatctac	1740
cccacacact	acacaggaga	cgatggctat	tgagtgaca	ccgagacctc	agtcttatgg	1800
aacaatgago	acgtcaagac	cgactgggac	cgcgccaagt	cccagaagat	gccccggcag	1860
caggcactga	gccgtgaggc	caagaactcg	gacgtgctcc	agtccccact	ggacagtgt	1920
gccccggatg	aactcttgagg	ggtagcagcc	agaaagccaa	agcagccat	ggtggcccag	1980
gctccacgtg	cttacttgagg	acatcagggc	caccttctgga	cccccttggca	ggccacagag	2040
ggctctctgt	tggggtgtgt	tccagccagc	tcttgcataag	caatcacgt	cacacaggca	2100
gcattaatgg	agtgcctact	gcatgcccgc	aacaggggctt	ggccctgggg	aattggggagg	2160
aaccaagccc	tcttcatctg	ttcatgtgcc	cagcatttat	taagcacttgc	ctgtatgc	2220
ggttcccatt	ttacggcagt	aatggaggca	taatttgtcc	ctccatcagc	gattgttca	2280
gtcatcaagc	agttaactgtat	cagattaaga	atcaggcaact	agtgtatacac	attcatttt	2340
aaaattcatt	caaggattta	ttgagtgctt	actgtgtgtt	gggtgccattt	ccaggctctg	2400
ggatttttttt	tttttttttt	tttaagagt	agagtcgttc	tctgtcacc	aggctggagt	2460
gcagttgtgt	gacggctcac	tgcagcctgc	gcctcccagc	gtccagcaat	tcttgttct	2520
ccggctccca	agtagctggg	actataggt	cgtgcacatca	catctggct		2569

<210> 69
<211> 2387
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6813464CB1

ttttgtgtga agagccagat ggtaaatatt ttaggcttg tggccactt gcctacttgc 2160
 atatctctga tgcgtgtct gctttggcg cttttttt ttcttaagat ctctttacaa 2220
 atgtaaaaag catccttagc tctccaggct atagaccaga tctggccct gaggctcta 2280
 gtgtgctgac ccctagccta gaatgttctg acctccatga ggctagtcat tgtgcctcta 2340
 ggtcttaagc tgggctcaca gatcaggcca cagagaggat gagagct 2387

<210> 70
 <211> 1959
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2156540CB1

<400> 70
 gcccggctgg gcgtgcgtc gtcggccaa gcccgggtcg gcccggagcc gggcgaggcc 60
 tgggagctgg gcccgggtccg gggacagcgg gcggggggca gctgcggag cggggcagcc 120
 aggccgctggc gggcaggggc cagctggcg cggttctgcg gtctccgggg cccagatgtg 180
 aggccggcgc gccccggcc cagagcgcga cgtatggggc cccgcgtcc gtagcgctgg 240
 ggcgcctcca ctacctggca ctttctgc aactcggcg cgccacgcgg cccgcccggc 300
 acgcgcctg ggacaaccac gtctccggcc acgcgcctgtt cacagagaca ccccatgaca 360
 tgacagcacg gacggggcag gacgtggaga tggcgtcgc cttccggc agcggctccc 420
 cctcctactc gctggagatc cagttgtgtt atgtacggag ccacccggac tggaccgaca 480
 agcaggcgtg ggcctcgAAC cagctaaaag catctcgca ggaagacgc gggaaaggagg 540
 caaccaaaat aagtgtggc aagggtggc gcagcaacat ctcccacaag ctgcgcctgt 600
 cccgggtgaa gcccacggac gaaggcacct acgagtgcgg cgtcatcgac ttcaagcgac 660
 gcaaggcccg gcaccacaa gtcacaggct acctgcgggt gcagccagg gagaactccg 720
 tcctgcatact gcccgaagcc cctccggcccg cgccggccccc gcccggccccc aagccaggca 780
 aggagcttag gaaagcgtcg gtggaccagg aggccgtcag cctctagact gatgcggctg 840
 ccccccggcca tccggcccca cgctgtacag agtgcgttag gggccggcc accaccgggg 900
 accgactgcc tgcgtccaa cgtgcggccat ccccgaggcc gcgttgccc accatgtcgg 960
 cccttttcc accaccctt gtcacatcg taagccca cccacccctgc ctttcagac 1020
 ccctcggtg acctggotcg gagaagggtt ccctggccac caaggggccca accgcctgt 1080
 acactggggc agggaccaatg ctggggcccg gggccacccc cttctgtca ccagcttctg 1140
 tggagttccag tgttttgtt tgctgttttgc tccccatcc tgctctgagc cggggcccc 1200
 cagcctcgcc tccctccctt taccatccct cacttggacc tgggggtgtg gacagtgacc 1260
 cctccctgaa tatggactt aatcttctga cgacgtact ggcctctccc ctggtaaga 1320
 cccaggaaac ccaggaggcc cttctgggg cagtgctct gcagggtcac tcatggaggc 1380
 cttagggaaac agcgagatgc cccacccaccc cctggcgagt cttctgtt cagctccctg 1440
 tgccggccctc cagggatgca ggggatccag gattctctgc cctgtcacac ggcgagtcag 1500
 aaggggaggccc ctttccctt ggacccatgg ccccaaggcag agttttgcac cagcaggacc 1560
 ccttgagggtt cttcaaggc tctccaggta gtcccccctt gcccggccccc caatgcccc 1620
 gctccctgtt gggctctgtt ccaagtcgc cccaggccctt ggggtgttg ggagccaagg 1680
 gccccctgggt actcagtcc ctcacgatcc cccatcacgg gcacacccctgc cccctggta 1740
 tttgtaaata tttcttatgg acccaattct cctcgaaatt ggctggcacc tctggctgcc 1800
 acagctcagt gatgacgtgg gggaggtggg agaggccgag ggcttgcct aggggtgggt 1860
 tgccctgtat acatgatcca gtctgtact accagccaa ctgaataaaag cggtttaaa 1920
 aaaaaaaaaaaa aaaaaaaaaat atgcggcgca agcttattc 1959

<210> 71
 <211> 1562
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 894939CB1

<400> 71
 cctttccgt cggctgaatt gcggccgtat gcgcggctct gtggagtgc cctgggggttg 60
 ggggcactgt gcccccaagcc ccctgtctt ttggactcta cttctgttttgc cagcccccatt 120
 tggcctgtgtt ggggagaaga cccggccagggt gtctctggag gtcaccccta actggctggg 180

ccccctgcag aacctgcgttc atatacgggc agtgggcacc aattccacac tgcactatgt 240
gtggagcagc ctggggcctc tggcagtggt aatggtgccc accaacaccc cccacagcac 300
cctgagcgta aactggagcc tcctgctatc ccctgagccc gatggggcc tgatgggtgc 360
ccctaaggac agcattcagt ttcttctgc ccttgtttt accaggctgc ttgagtttga 420
cagcaccaac gtgtccgata cggcagcaaa gccttggga agaccatc ctccatactc 480
cttggccgat ttcttcttgc aacaatcac tgattcatg gatctgcgc ccctgagtgc 540
cacatcaa ggcacccca tgaacgaccc taccaggact tttgccaatg gcagcctggc 600
cttcagggtc caggccttt ccaggtccag ccgaccagcc caacccttc gcctcctgca 660
cacagcagac acctgtcagc tagagggtgc cctgatttga gcctctcccc ggggaaaccg 720
ttccctgttt gggctggagg tagccacatt gggccaggc cctgactgcc cctcaatgca 780
ggagcagcac tccatcgacg atgaatatgc accggccgtc ttccagttgg accagctact 840
gtggggctcc ctccccatcg gcttgcaca gtggcgcacca gtggcttact cccagaagcc 900
ggggggccga gaatcagccc tgccctgcca agctccctt cttcatcctg ccttagcata 960
ctctcttccc cagtcaccca ttgtccgagc cttcttggg tcccagaata acttctgtgc 1020
cttcaatctg acgttcgggg ctccacagg ccctggctat tgggaccaac actacctcag 1080
ctggcgtatg ctccctgggt tggcttccc tccagtgac ggcttgcctt cactagtcc 1140
gggcatcatg gcagtgccccc tgggtgcccc agggctcatg ctgcttagggg ggggcttgg 1200
tctgctgtc caccacaaa agtactcaga gtaccagtcc ataaattaag gcccgtctc 1260
tgagggaaag gacattactg aacctgttgcgtt gctgtgcctt gaaactctgg aggttggagg 1320
atcaagttcc agccggcccccc ttcaatcccc catcttgctt ttctgtggaa cctcagaggc 1380
cagcctcgac ttccctggaga ccccccagggt gggcttccctt catactttgt tgggggactt 1440
tgaggcggg caggggacag ggctattgt aaggctccct tggtgttgc ttcttgcatc 1500
tccacacatt tcccttgat gggacttgca ggcctaaatg agaggcattc tgactgggtt 1560
gc 1562

<210> 72
<211> 3425
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4620890CB1

<400> 72
tcccagggtg atcccgagca cggccgggtgg ctgcggcgc ggcagcccca gaagacggga 60
aagttcgcgg cccggagcgcg gagatgccgg gcagcgacac ggccgtcacc gtggacccgg 120
cctactcgga ccccgccgg caccaccgtc gcaagagccg gtagaaacgt catgacatga 180
atacccttaag cctgcccctg aacatacgcc gaggggggtc agacaccaac ctcaactttg 240
atgtcccgga tggcatctg gacttccaca aggtcaact cactgcagac agcctgaagc 300
aaaaaattct aaaggttaaca gagcagataa aaattgagca aacatcgccg gatgggaatg 360
ttcgccggta tctgaaacta gtgacacaacg cggacaagca gcaggccggg cgtatcaagc 420
aagtctttaa gaagaagaat cagaatctcg ctcaatccat cgcccgatcg cagaagaagt 480
tagagcgtta tcatacgaaatc tccagagatc tcgacgagaa tggggctctt aggagctcaa 540
aggacatttc caaagaccac ctgaaggata tacatcgctc tttgaaagat gcccacgtga 600
aatctcgAAC tggcccccattt tgcattggaga gcagcaatc gggcatgcca ggggtctcac 660
ttactccacc tgggtttgtt ttcaataatg ccagagagg tggccaaacctg atccggaaata 720
agtttggcag cgccgacaac attgctact tggaaatcc cttagaggag ttttagggccag 780
aggcgagtgc cagggcctac gggggcagcg ctaccatcgta gaacaaaccc aagtatggca 840
gtgtatgtga atgttcgagt ggcacgtcag gctcgccga cagtaacggg aaccagtcgt 900
ttggggcttgg tggagccagc acactggaca gccaggggca gctcgccgtg atcctggagg 960
aactgaggga gatcaaggat acccaagctc agctggctgaa ggacatcgag gactgaagg 1020
tgcagttaa gagagaatattt ggtttattt ctcaatccct gcaagaggaa agatacagg 1080
atagcgact ggaagacccat ctgcattgacc tgacggact gcatcagcat gagacagcca 1140
acttgcggca ggagctggcc agcattggagg agaagggtggc ctaccaggcc tacgagcgct 1200
cgccggacat ccggaaatcc ttggaaatcc gccagactcg cattttcaag ctggagctcc 1260
accagcaaga gcagcaagct ctgcagacag acaccgtgaa tgctaaatgtt ctcctgggg 1320
ggtgcatcaa cgtgtatctg gccttcatgat ctgtcatctt agtgtgtgtg tccaccatcg 1380
cgaagttcgat ctcacccatg atgaagatgc gctgccacat tcttggcacc ttctttggcc 1440
tgactcttct tgcttatattt tgtaaaaaact gggaccatat cctgtgtgccc atagaaaagga 1500
tgataatacc aagatgaagc cactggttcc tgcctcaag ttcttcaag tttttatattt 1560
aaagaaaaact ctgtgcatac taccatcatt tacagtgaat gattgtgcgg actcgtgtgt 1620
aagaaaaactt aggactgtgt ggtgtaaata actacaattc tcttaactcg gtagcagttg 1680

ccaactcagt ccttgtactt cgtaaacacg aatctgtttc agagctctcc taccttgctc 1740
 actgccttaa tcagaccat ttccgtccca cctgaccacg ccagcgtgg aaacctctgt 1800
 atattgagac cttggcataa ttggtgatcc tgaagaaaga ggtctctctc ctaagtctct 1860
 gtcagaattg agtttcacaa ttgtaatgg ttgtttctg tgagtcctat aaaaagcaag 1920
 gatatgcacg attcaggaa tgaagaatca caggcttggg cagtgttaaa cactgtggcc 1980
 tatggtcccc gtgtgatcca ccctgtttct ctccaggggga ccataggtcc cgtcatgtac 2040
 tcagtgtcca cagcgtcag tcgtgtatga ccctgttaacg tggaaatctt atcacacacc 2100
 ttttatccaa caagtctacc tgagggttt tggttacact taaatggaa ggcataaggga 2160
 tttatgaatg gggctttcac ctltcatac ccaggcaacc aacacctgtat tttgtctcaa 2220
 ctggcttagca aatgcccccacg cttagagtg tgccaggaatg ttttccaaatc cctcatcaga 2280
 ctgtgacttt aacattaatt tggaaatcctg tgagcactac tctgaagggtt tgggtttgg 2340
 caaatctttt ttctttttt agacagggtt ctgctaaata ttgctcaggc tgggttgc当地 2400
 ctccctgtttt caagggatcc tcccacctca gcctcccaag cagccggac tgcaggcaca 2460
 agccaccatg cctggctgtt ttttggcaaa tcttgattgt gataagcccc cctggaggat 2520
 atgattcaact ttatgtgatt catcttattc acaggctgtt gaggactgc gaagcttact 2580
 cagggaaatga aaacaaatga tggcatgtt gcagttttt ccttgaagga caaccgaacc 2640
 atagcctcta aagttcaagt gcactgaggt gtcggAACGC tgaaacatg aggaaacgag 2700
 gacgttaggggt gtgactgaat ggtggctaga tttagtggag cagttcacct ggatgaagat 2760
 ttagagcatac gtctttgaga agtggaaagac tagcaagaat aaaataaaat aagtccactg 2820
 ttttggccaa ggttgcacc tggctcttaa catctcactt aacataagtcc ctgaggat 2880
 agacgacca tactgcctt gagtggaaaaa catttccaaatc ttcacatccc tgggtttgggg 2940
 ataccattca ccgccttcac cccagatgtt actttccctt aaatctgtgt ctctgtgtgt 3000
 ataacaaaga ggaagatgaa aacaatgttc atggaaactg ctgttggagcc cttgtccca 3060
 ccactcccgccatctgtgc aggccaggaa gcatgtgagt gtacgttttcc ttccaggaga 3120
 catcagggtcc ccctggatttccaaatgtt caatattttt caaacagctc ttcttaggg 3180
 aatctcctga agggaaaaaaa tggacagaaat tggccatag tctgagagaaa tggaaatcggt 3240
 gagcatttag tacaagttca gttgtgtga gcccggactt ggcagctcaa gcttgc当地 3300
 ttttttaagc gtacaattga gtttttttag taaattcaca aacttgc当地 accatcacca 3360
 ctatctaattt ccagactcactt gctttttttaa acaataaaatg tcatttcataa aaaaaaaaaa 3420
 aaaaaa 3425.

<210> 73
 <211> 3130
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5514146CB1

<400> 73

gggacagtca aagaatttta aaaacaggca actttgttaac tggaaatatac tctccaggat 60
 taaaaggctt gtggagctcc agataaaagaa tcgtttatct ttcttctgaa gaaattcctt 120
 tggttacaag tttacccat aaacggcaac acactcacctt ccatccaaga cagactcaag 180
 gtggaggaag cgtggaaatg tggttccggaa caaagcttc agtattctgg gtgcccattgt 240
 ttcttctact cagccgttgg ttttctactg agacagacaa accctcagcc caggacagca 300
 gaagccgtgg ggttcaggc caacccggcag acctgttaca gtttctctt gctgggtgacc 360
 acccaccctca caaccactca agaagcctca tcaaaacatt gttggagaaa actgggtgccc 420
 cacggaggag aaacggaaatg caaggagatt gcaatctgtt ctttgaacca gatgcactat 480
 tactaatagc tggaggaaat ttttgaagatc agcttagaga agaagtggcc cagagagttt 540
 ctcttctctt tctcttatttac attatttcatc aggaagagat ctgttcttca aagctcaaca 600
 tggtaataa agagtataaa ttttacctac acagcctact gggcctcagg caggatgaag 660
 attcctctttt cctttcacag aatgagacag aagatattttt ggcttccacc aggccgtact 720
 ttgacacttcaaaaggccatc tggatggaaa cccaaacgct gcagaaaaaaa tctggaaatag 780
 tgacgttcaatc aggtgttccatc gaaagtgc当地 ttccgttccatc ggcagccatc atcattactt 840
 tggccctccaa ggggttttgc当地 ctgggacaag gaaacttgc当地 ttcccccagac tactttacag 900
 aatatatttt cagttccctt aatcgttacga atacactccg ctttccatcagaa cttagaccaac 960
 tcctcaacac tctctggacc agaagactt gtatcaaaaa tgagaaaatc catcaatttc 1020
 aaaggaaaca aaacaacata ataaccatc atcaggacta ttcttaatttc ttcttcatcca 1080
 tggaaaaaaa gtttgc当地 ggttccatc cctgggatca gacctgttcc tctgttccatc 1140
 agctgggtggaa gatatttctt cagaaggccctt tcttccatc ttcttaaggag gacttttac 1200
 aatatgttcc agggatcactt cagcagctcc tcagctgtcc ctgcccactt cccaggacc 1260
 aacaagcaaa gtttgc当地 accactctgg agaaatacgg ctacagcactt cccaggacc 1320

cccttctcac actgggctcc atgctgggga cagcgcgtgg cctttccat agctgtgagg 1380
agaactacag gcttatctta cagctgttg tgggcttggc cgtcgggaca ctgtctgggg 1440
acgcctctgt ccaccttata cctcagggtc ttggtttaca taagcaggaa gccccagaat 1500
ttgggcattt ccatgaaaagc aaaggtcata ttggaaact gatgggatta attggaggca 1560
tccatggatt tttcttgata gaaaaatgtt ttattcttct tgatcacca aatgacaagc 1620
agggcctgtc attgtttaat gggcacgtgg gtcattccca ccatcttgc caactctg 1680
aattaagtga ccaggcaggc agaggcaaat ctgcttcaac tatccagttt aaaagcccag 1740
aagattcaca ggcagctgaa atgcctatacg cagatgac agcctccaac agaaaatgtt 1800
aagccatag cttgttagca atcatgatc tggtgggga cagcctgtcat aattttcag 1860
atggccttagc cataggagca gccttctcat catcatccga gtcaggagtg accactacga 1920
ttgctatctt gtgtcatgaa atcccatatg aatgggaga ctttgcctgt ctcttaagct 1980
ctggactttc tatgaagact gccatcctgt tgaattttat aagctcccta actgcctca 2040
tgggattata cattggcctt tccgtgtcat ctgatccatg tggatccatg tgatcaagac tgatcttca 2100
cagtcactgc tgggatgttc ttatattttat cttgttga aatgttccctt gaaatgactc 2160
atgttcaaac acaacgaccctt tggatgtatgt ttctcctgc aaaaactttggaa ttgatccctag 2220
gttggcttc tctctgtctc ttggctatata atgagcaaaa tattaaaata taagtgagga 2280
tcttcaacat ctttcaaaaaa tgcattata tagtcttact ttgtttctt cattgcactc 2340
tataatgatt tttaaattaa gaattttttt tcttaggcaa agtgtgtctc ttcaattca 2400
ttaacttatt aattttataa tgcatgtttt tttttggaaa catataaata tcagactgtc 2460
cttaattgaa attttgtctt tggtttccaa caccatgtatg aagctcttgc tttttaaaaaa 2520
gtagtttagta aattctgtcat gaatttttagt aaactttaaa aatagattt tttccctaag 2580
aaagaatgtt tgtagaattt aaagtggaca gatgcctgtt ggggtaaaat caactgcaac 2640
tttttgatgt taatttttttt cccgtgtcaa ttataaacta taagcaagtt aagtgacaag 2700
caaatgtat aagactagt tttaaaaaaa aaaaaaaaaagggg gggttttctc cccggccctg 2760
ggctatattt gggcaaaaattt tttaaaaaataatg tgggggttc ttcaacattt ttcaaaaaagg 2820
cattaatagg gtctaaacttgc gttccttcca tggcactcta aaagggtttt aaattttagga 2880
tttttttacc ttggccaaag tggggcttcc ccaatctta accttttaaa ttttataagg 2940
cggtttatgt tttgaaaaac cttttaaaattt ccgagcgggc ctaaatggaa atttggctt 3000
gggttcccaa ccccggtgt aacccttgc tttaaaaag tagtgggggc cccggcccca 3060
atccgaaaca tgctaaaggg gttccccggg gaattttta cccgccaaaaa ttccccaaaa 3120
tatgggggggg 3130

<210> 74
<211> 3172
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7474769CB1

```

<400> 74
ggctccgtta gacaatatac ccgtgaatgg ttagtgagtt ctaatgaaa ctttattttac 60
aaggaggagac tgaccagggtt tggcctgggg gccacagtgt gtagacctct gaaaagatac 120
atccctgagaa gaaaaaaaaga atatatgcag gaatgtttaa ctttgtgggt tttctctcct 180
cttgcctca ctgactcagg atacacaag acctatcaag ctcacgc当地 gcagaaattc 240
agccgcttat ggttcagcaa gtctgtcact gagattcacc tatactttga ggagggaaatgc 300
aagcaagaag aatgtgacca tttggaccgc ctttttgctc ccaaggaagc tggggaaacac 360
ccacgtacag tgatcattca aggacccaaa ggaattggaa aaacgcacact cctgtatgaag 420
ctgtatgtat cctggcgaa caacaagatc tttcggnata ggttccgtta cacgttctat 480
ttctgtctca gagaactgag ggagttgcgg ccaacgcgtt tggctgactt gatttccaga 540
gagttggctcg accccgctgc tcctataaca gagatcgtgt ctcacccggaa gagactctt 600
ttcgtcatcg acagttcga agagctgcag ggccggttga acgaacccggaa ttccggatctg 660
tgtgggtgact tgatggagaa acggccgggtc caggtgtttc tgagcagttt gctgagggaa 720
aagatgtcc cggaggcctc cctgtctatc gctatcaaacc cctgtgtcccc gaaggagatc 780
cgggatcagg tgacgtatctc agaaaatctac cagccccggg gattcaacga gagtgtatgg 840
tttagtgtatt tctgtgtttt cttcaaaagac ccggaaaagag ccattggaaatc cttcaatctt 900
gtaagagaaa gtgaacagat gttttccata tgccaaatcc cgctccctctg ctggatctg 960
tgtaccatc tgaagcaaga gatgcagaaaa gggaaaagacc tggccctgtac ctggccagggc 1020
actaccttgc tggacttctc ttccgttcc aaccgttca cacctgggggg tgccggggggc 1080
ccgactccgc aaacccagca ccagctgaag gcccgtgtgc cccctggctgc agagggatgt 1140
tggacagaca catttgagtt ttgtgaagac gacccggaa gaaatgggggt tggatgtttt 1200
gacatccctg cgctgtgggg caccqaqata cttctgtttt acggggggggc tgagatgtcc 1260

```

tacgtgttcc tccacgtgt tatccaggag ttctgtgccg cttgttcta tttgctcaag 1320
 agccacccctg atcatcctca cccagctgt agatgtgtac aggaattgtc agttgccaat 1380
 tttgaaaaag caaggagagc acattggatt tttttgggtt gttttctaac tggcctttta 1440
 aataaaaaagg aacaagaaaa actggatgcg ttttttggtc tccaactgtc ccaagagata 1500
 aagcagcaaa ttccaccgtg cctgaagagc tttagggagc gtggcaatcc tcagggacag 1560
 gtggattcct tggcgatatt ttactgtctc tttgaaatgc aggatcctgc ctttgtgaag 1620
 caggcagtga acctcctcca agaagctaac tttcatatta ttgacaacgt ggacttgggt 1680
 gtttctgcct actgtctaaa atactgtcc agcttgagga aactctgtt ttcggttcaa 1740
 aatgtcttta agaaagagga tgaacacagc tctacgtcgg attacagcct catctgttg 1800
 catcacatct gctctgtgtt caccaggc gggcacctca gagagctcca ggtgcaggac 1860
 agcaccctca gcgagtcgac ttttgacc ttgtgttaacc agctgaggca tcccagctgt 1920
 cgccttcaga agcttggaat aaataacgtt tcctttctg gccagagtgt tctgctctt 1980
 gaggtgtctt tttatcagcc agacttggaa tacctgagct tcacccctcac gaaactctct 2040
 cgtgatgaca tcaggtccct ctgtgtatcc ttgaactacc cagcaggcaa cgtcaaagag 2100
 cttagcgttgg taaattgtca cctctcaccc attgattgtg aagtcttgc tggccttcta 2160
 accaacaaca agaagctgac gtatctgaat gtatcttgc accagttaga cacaggcgtg 2220
 cccctttgtt gtgaagccct gtgcagccca gacacggtcc tggtataacct gatgttggct 2280
 ttctgcccacc tcagcgagca gtgtcgcaaa tacatctctg aaatgttttgc gcttaacaag 2340
 agcgtgcgtt atctagaccc tcaatgcgtt gtcctgttgg acgaggact gaaaactctc 2400
 tgcgaggccct taaaacatcc ggactgtgtc ctggattcac tgggtttgggaaaatgtttt 2460
 atcaactgtc ctggctgtga agacatcgcc tctgtcttca tcagaaatca aaacatgttgg 2520
 attctgcaaa ttgggttgcgg taaaatcgga gatgtgggtt tgccatgtt gttcgggct 2580
 ctgacgcata cggattggcc ctttagagatt ctgggttgg aagaatgtgg gtttaacgagc 2640
 acctgctgtt aaggatctccg gtctgttctc acctgcgttca agaccctgcg ctagctcaac 2700
 ctgaccccttgc acaccttggc ccacacaggg gtgggttgc tctgtggggc cctgagacac 2760
 ccagagtgtt ccctgcagggt gctcgggctg agaaaaactg attttgcgtt gaaaaaccccg 2820
 gcacttctgtt cggctgagga agagagaaat cctaacctgtt ccatcacaga cgactgtgac 2880
 acaatcacaa gggtagagat ctgattgcga ggaacctggg ctctgactcg aacacctgc 2940
 aaggacaggg actgggaccg ttacttacat gacactgcac ccaggagata caaatcattt 3000
 acactctgtt ttgtgagatt tctggccatcc cattcataga ttgtatgtt tacacgtgg 3060
 ttatgttgc tctgtggccct tggatgatgtc actgaaaggc cttcatggc tctcggtctc 3120
 acaaggacccctt cttaaacccctt caataaaatgtt ttacatttttcaacatttggaa aa 3172

<210> 75

<211> 2094

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 065296CB1

<400> 75

tgtgtgttgc ttttttaatg aacaacttat aatcttacaa aataactggc ttagtgcgtt 60
 ttacatttaca atacagttaga tcaatgttgc tcaatcattt cccaaatcaag ccattttttt 120
 ggtgtttaac taatgcactc aatagtgtatc acaaaagaata caggaatgtc caagttcaat 180
 gcttgcataat agaaaaaaga gaagatgaga atcaggaaga gctctttact ttcacaatcc 240
 cttaacttta atttctgtca gtatcttgcatttcttca ccctgtcccc ttacctgttcc 300
 ttctgttgcatttgg aggctgtcat gcttagttttt agggccatc agccctgggc caccctggca 360
 caatcaaaca cacagaagag tcttgagaa aggctcttca tgaccacatg ggtggataag 420
 attagcagaa tggaccac cacatggatt gatgtgttgc ttagtgcgtt gggatctgtt 480
 accacagtgtt cttagtgcattt ccactttatc agtgacatc gttgcataaa acatcagggtc 540
 ccaggaacaa agactggaa aacctgtgtt ctctgtatag ctatagctga ctatggctgg 600
 gaagccttat agcctaaagag gcttccatca cacaacagga acttttccccc ttgtttccca 660
 gagcagtgggtt gatgtgttgc taataaaatg tttttttttt aaattttttt cagaaatgtt 720
 ctactgttgc tctttgttgc gagactgtcat gaaagacacac actggcatga accacagggtt 780
 ccatgttgcattt gatgtgttgc tttttttttt tttttttttt tttttttttt tttttttttt 840
 attaggattt tccaaaggcag aactttagat gtgtgttgc tttttttttt tttttttttt 900
 aaaacaagtt tataaaatgtt tgaaataga gtgtgttgc tttttttttt tttttttttt 960
 attgaagccctt atcagaatcc caagaataaa tatgtttgtc ttctttttttt cactaaggat 1020
 gacccaaagac aatgaatgtt atctgttgc tttttttttt tttttttttt tttttttttt 1080
 aaaggttttt ttgttgcattt gatgtgttgc tttttttttt tttttttttt tttttttttt 1140
 tcattccatca aacccacaga ttaatgttgc tttttttttt tttttttttt tttttttttt 1200

tcaggatatt gttctccct acgtgatagt gtggataata tttctatcat tggtagt 1260
 ttccatttc ctatggcac agccattgc ctagtggta tgaaaagagt agaaaaactg 1320
 tggtaaaacg aaaagagcag aagatgagaa gagaccacag ctgagctcta aattttgtct 1380
 gttcttggtt tccattggag aagaaaactt aaaggagaca agcctca ctc acagccttcc 1440
 taaaatgagt aaagctagaa tgttaaacag aaactggctc cttactcact tcccttaggg 1500
 tctaattccag aaaccgtac aagaaaaatgt aactgcaga gaccacatcc cagtggcc 1560
 gggatgtaaa tagagagagg cttaatatgg tcatttcatg tgcatccat ctattggata 1620
 agaaagggtt aaaacaacaa aatggacatt aaatagttga aattttctgt tctccccaca 1680
 gagtgtcacc ctgcattccat gcattccat ggcttgcata agtcaaatac tctggctcac 1740
 agatttgtt catgataattt gaagagaatt tatctcagat tcttcattgc tcaagggacc 1800
 cacttggc ttcttggag acttggaaaca gaggaccaag tctccctgat cacttccatt 1860
 ctcatgcccgg ggcctggat ttaaccctgt acaggcttt ggcctgttct ttcatctgct 1920
 tccagctttt ccctattcat ttccatgaaa tttccctcca gaaaattaaa gttgggtctgt 1980
 gactggcgac ttgggacttc tacagaagtt ggatgggca gtttgggtt gtgtggcc 2040
 ggatggggtt caaagggtt tcatttgcgg ggccctgggtt ggttttggaa accg 2094

<210> 76
 <211> 1119
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 231994CB1

<400> 76
 ggcggagctg agggacccgg cggttgtga ggcggccgtg gaggctggag cttccgggccc 60
 ctggaaagggtt ggtcccccggc cgccccgggtt cggaggcaga cccctgggtt tgggggacat 120
 ggcatttgg ggcgcctgaa cccaaagacct ctggatgagc tgccccgttc agaccatgg 180
 tcctgaggtt accttgcgc tgcgtgtccc tggcgggggc ctgccccagg agcagataca 240
 ggcgcagctg agccccggcc atgaccgtcg cccactgcac ggtggggacg aggccatcac 300
 tgccatctgg gagacccggc taaaggccca accctggctc ttgcacgccc ccaagttccg 360
 cctgcactca gccacccctgg cgcctattgg ctctcggggg ccacagctgc ttctgcgcct 420
 ggccttactt tcctaccggg acttccctggg caccactgg tccagctcag ctgcctggct 480
 ggcacagcgg ggtccacccg actgggtgtt cgcgcaggcc tatctggggg acccaactggg 540
 ggtggcgct gcactagccca cagccgtatgc ttccctgtc ttctgcgc 600
 ggtggctgag gcccctggc tggtggacgtt acctgggtgg caccctgagc ctcaggccct 660
 gtgccttgg ggcagccccc agcaccagga cctcgctggg cagctggggg tacatgaact 720
 ctttccagt gtccttcagg agatctgtt tgaggtaac ctgcgcgtgc tcaccctgg 780
 ccagccctg ctgttggca tcgccccaaa tgagaccgt gctggccgag ccagtgcga 840
 gttctatgtc cagtgaccc tgacttctgtt gcaggtggg aagcaactacc tgagtgggg 900
 acccgaggcc cacgagtcta caggaatctt ctgttggggg acacagaacg tgccggagatt 960
 gcccggacgg gagatgtggg ctgaactctg cccctggcc aaaggcgcca tcatccctta 1020
 caaccgggtt cagggaaatc ccactggcgc ggccttaggg tccccagccc tactccgc 1080
 gctctgaaaa taataaaacgaa ctttattctt ggaaaaaaaaa 1119

<210> 77
 <211> 3321
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 538054CB1

<400> 77
 gtcggccgggtt gaggaagcgg ggggcttagcg gcctggcgct gcggcgaccg accggggcg 60
 caggatccctt ggccccggg gaggcaaggg cggcgccggc cggcgaccg aagaattgtt 120
 tagaaatgtt aaaaacattt atgttgctt cacatgtggc atgaaaaaaaaa tgaggacctc 180
 tggtaaaaat tgcctgatgtt cagaatttca tgctggagg aaagtttagac gtaacttcta 240
 attcttagtt ccagtaagca tctcttctt gaaaattttc aaaaaagagt cctgctctgt 300
 tgcccgaggctt ggagtacatt ggtgtatgtt tcatgggttca ctgcgcctc gaccccccag 360
 gctcaagcaa ttctccttacc tcagccttctt gacttaactgg gactatagga tttctttgaa 420

gaaaaatgtg cttcttgaat caactgcagt ctctcctctg cataagagct cttaaaggta 480
 cttagcaggat .agaagcaaat gaaactgaaa gctcatctgc agctcagaaa agcaaagaca 540
 tggatttta aagagtgaag gtagcatggt gtcggccatg ggtgaacaag acacagccag 600
 acaatgtgga ccaatttctt caaactacgg cttttctgct gtctgcttgc agtgttgatg 660
 gtggtgtgtc tggcatcaa tgttactcgat gttagactact tggaccatga gactgtttca 720
 gcacttca tcgacagcag tggacagttt gtttctccc aggtgacagg aattagccga 780
 aatccctact gtggctatga tcagcagacc ctgtccagcc aggagcgcatt ggaggaggac 840
 tccttgcgtgg ctgccttgc ccggcagggt cctgtatgtgg gcccagtccc ctttgtgaag 900
 agcactgacc ctcttccag ctactttgtc atcttgaact ctgctgcctt ctttaagggt 960
 ggaagccagc ttgagggtgtt gtttcatgtc caggattttc aaagaaggcc caagaagtat 1020
 ggtggagact acctgcaggc cagaattcac tccctcaagc tgcaggctgg ggctgtggc 1080
 agggtgtgg attaccagaa tgggttttac aagggtttctt ttactttgtct atggccaggc 1140
 aaagttaaag tatccgtatc tctggtccac cccagtgaag ggatcagagt tcttcagcgc 1200
 ttacaggaag ataaaccaga cagggtctat ttcaagagtc tcttcgttc aggaagaatt 1260
 tctgaaacta ctgagtgc当地 cgtgtgtctt cctggaaatc tgccccgtg taactttaca 1320
 gacctctaca ctggggagcc ctgggtctgc ttcaaaaccaa agaagetccc ttgcagcgc 1380
 agaattaccc atttcaaagg tggatacctg aaaggtctcc taaccgtcgc agagagtgc 1440
 ttcttccaga gtgggtgtcaa tatcaaaaatg ccagtcaact ccagtggacc tgattggta 1500
 actgtgttcc ccaggagaat aaaagaaaact aacagtctag aactatctca aggctcagg 1560
 actttccctt ctgggttatta tttaaaagac cagtggaggc ccagaaaagtt taagatgcgt 1620
 cagtttaatg accctgacaa cattacagag tgcttacaaa gaaaatgtgtt gcatttattt 1680
 ggtgactcaa caatcaggca atgggttggaa taccttacta catttgttcc agatttatgt 1740
 gagtttaact tgggttagtcc caagaatgtg ggtcccttcc ttgcagtggc ccagaagcac 1800
 aacatccctgc tcaaataccg ctggccatggt ccacccatcc gcttcaagc tgcgttttgc 1860
 aatgagctcc attatgtggc gaatggatctg aatggcattt tgggagggaa gaacacagtg 1920
 gttgccatag ctgtatgttc tcacttcagc accttccccc ttgaagtgtt catccggcg 1980
 ctcaggaaca tccgtcgagc agtgggttcgg ctccctcgatc gaagccaaa gaccgtggc 2040
 gtcatccgga cggccaaacgc ccaagagctg ggacctgagg tgacgcctt caacagcgc 2100
 tggtacaact ttcagcttgc caccatccctt cggaggatgt tctcagggtt tggagtatat 2160
 ctcgtcgatg cctggggat gaccctggcc cattatctac cgcacaaagct gcattccagat 2220
 gaagtatttgc tgaagaacca gctggacatg ttcttgc当地 ttgtgtgccc cttggaaacc 2280
 tagcctgtct tggaaaggac tggaggaatc atattcaatg accttctcaa ttgacctgag 2340
 ttacagaaag tggcccccagt gagagatgac tggcccttaat aagtataaaa ttcaaaaag 2400
 atctggactt aatatgtatc ttataaaggaa gcttagaaaaa tgccgttac atttatatct 2460
 acctatagga ttttatccaa tggacttgc gccatggtag aactcttacat tgcatttaca 2520
 cactatattt ctcttgc当地 caaaatgtct aatgagtgtt tttgaatttgc tttcttcttgc 2580
 gaggggtgac tactttgtca aagagtatga aaaatgtttt gatggaaagg acaagtttg 2640
 ttggtagtag agtgggttgc gcttatctgg taaagggaaat tgagtgc当地 tgcatttgc当地 2700
 gcacaagtaa tccatcttgc ggcgggttaac tagagaaagc ttatagtc当地 aggcttgc当地 2760
 gaatgcactg aagactgtcg tgc当地 cttctcaggaa gtttctcttgc atgatctacc ttttctgaaat 2820
 tacttggaaaaa ggccaaatgtg cttgggttgc当地 gttttttatg gaatatttac aatttccctgc 2880
 ttttatcttag aaaagaagca aaaggaaaat atgaaagcag tatataaaa atctgtgtt 2940
 tggattgtat atttgc当地 tggatgtttt gtttattttgc ttccagctaaa ttttattgtgt 3000
 tgaatactt ctcttgc当地 actacttttgc gaaactggaaag gggaaaatct gtaaatggaa 3060
 atttttttgc当地 atgatcttgc当地 attttgc当地 tttaggaatgg acttttgc当地 aaaaatgtc 3120
 acggttatttgc当地 aagactgtgg aagtttttgc当地 cactagtttgc当地 aggtgtttt ttttgc当地 3180
 gttgttgc当地 ttattttgc当地 ctacttacca aaatttgc当地 taaaatcttgc当地 atttgc当地 3240
 aataagatc当地 taaaatttgc当地 gacaaaaaaaaaaa aaaacaaaaaaaaaaa acacaaaaaaaaaaa aaaaaaaaaaaa 3300
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 3321

<210> 78
 <211> 2646
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1259305CB1

<400> 78
 gtcccttccc ctcacccgct ccacgccc当地 ctggggccgag tggagttggg tgggtgtcg 60
 agcctctccc tgaggggc当地 cgcgtcttca ggagctggcc ctccagtgcc ggcgc当地 120
 aggccgggtg acagctctgt gagtccgagg ccgcggccgt ggcgc当地 ggc当地 180

cctgaccgggt	ccgcgtcatgg	tgccgccacg	acgccatcg	ggggcaggaa	ggccagggggt	240
gctgagttct	tcacccctt	ttagacttag	atctgccaag	tttccggca	ttgctttga	300
ggatctcaga	agggcttta	agacaagact	gcaaattgg	tgttatttg	tcatgaaccg	360
aatgaattcc	cagaacagt	gtttactca	gcccaggcga	atggcttctt	ggatttttat	420
tcttcgtt	gttgatgt	tatgggttgc	ttcccttgc	tttacttcgt	atgtttttac	480
ccagtacaa	aaaccattct	tcagcacctt	tgcaaaaaca	tctatgttt	ttttgtacct	540
tttgggcctt	attattttg	agccatggag	acaacagtgt	acaagaggac	ttcgcgaaaa	600
gcatgctgt	tttttgcag	atgctgaagg	ttacttgc	gcttgcacaa	cagataacaac	660
tatgaatagt	tctttgagt	aacccctgt	tgtgcctgt	aaattccat	atcttccaa	720
tgaaaaaac	gagagcacaa	acattgatac	tgaaaaaaacc	ccccaaaaagt	ctcgtgtgag	780
gttcagtaat	atcatggaga	ttcgcacag	tccgtcaagt	catgcattgg	aagcaaaagt	840
gtctcgat	tcatatccgt	tgaaagaaca	agaatccata	ctgaaaactg	tggggaaact	900
tactgcaact	caagtagcga	aaatttagct	tttttttgc	tttgcgtgtt	ttttggaaaa	960
tttgtcatat	caagaagcac	tttcagacac	acaagggt	atagttata	ttttatcttc	1020
aacttccgga	cttttacct	taatccgt	tgcaagtattt	ccaagtaaca	gtggagatag	1080
atttaccctt	tctaaaactat	tagctgt	ttaaagcatt	ggaggcgtt	tactgtttaa	1140
cctggcagg	tctgaaaaac	ctgctggaa	agacacagta	gttccattt	ggctcttgc	1200
tggagccatg	ctctatgt	tctatattt	tatgattaag	agaaaaagt	atagagaaga	1260
caagttggat	attccaaatgt	tctttggtt	tgttaggtt	tttaatctgc	tgctctttag	1320
gccaggtt	tttttacttc	attataactgg	atttgaggac	ttcgagttt	ccaataaaagt	1380
agtattaaatg	tgcattatca	ttaatggct	tattgaaaca	gtactctcg	agttccgt	1440
gttgcggg	tgctttctt	cctcatcatt	gataggcaca	tttgactaa	gccttacaat	1500
acctctgtcc	ataatagctg	acatgtgtat	gcaaaaagg	cagttttctt	ggttattttt	1560
tgcaggagct	atccctgtat	ttttttcatt	tttttattgt	actctctat	gccattataa	1620
taattggat	cctgtgtatgg	tgggaatcag	aagaatattt	gtttttat	gcagaaaaaca	1680
tcaatttcag	agagttccag	aagacagcga	acagtgtgag	agtctcattt	ctatgcacag	1740
tgtttctcag	gaggatggag	ctagttact	gtctgttgc	tgtagccag	tttgataatg	1800
gaactataca	gcgaagagac	aatctctgg	aagttttgt	agaaaaaaatg	tttcagtgcc	1860
tagtctgaaa	aataacagtt	ttagttctt	gaaactctaa	aatatatttt	tctcataacct	1920
gttttctca	ttttcataat	gaagcactt	gctatgtac	tgtgtacata	tcactacagt	1980
tataggaagt	ttcagtctac	agtccatcca	aaggaccaac	ctgccttaca	catctcaagg	2040
aattcagctg	ttgaaatcat	ttgaactaa	caaggaataa	atcctaattgt	tctgggactt	2100
tatttcaca	tgttaaatgc	tggaaatata	tatgaaaatg	tttcaagaa	atcacttaag	2160
tgttcataga	ccagttttc	tgacaggtaa	aatgctaaaa	taagctacct	gtaataagt	2220
tggatttat	ttttgggtt	tgtagaat	tgcaattaa	ccacacaaaa	aatgtttaat	2280
ttatgcaaca	agcatgttt	tgcaatttc	atgggactt	aaaaagaata	agtatttgag	2340
aaaatatctg	gttcaacttac	actacattt	ctgttattt	cttttata	attaggtgcc	2400
ttgttattt	aatctgtgac	aaacccatgg	aaattttaa	aggggaagta	tttattaaaa	2460
atgaagaaat	atgttattct	aaaggctta	ttgctgtaaa	cttaattgt	aaagctctgt	2520
ttaattttaga	gttttgaaga	aatgtctcc	cttcaattaa	gaaattttca	taatggaaatg	2580
atttaaatg	aagtgcacaa	gagtattt	aaaatacaat	gtttatacgt	aaaaaaa	2640
aaaaaaa						2646

<210> 79
<211> 1749
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1483702CB1

```

<400> 79
tcagcctggc tggcagcagc cttggactcc gcccgtggag ccctgggcct gttgacccac 60
cagcttagga gcacccacca agctctgggt caacgtggag gtaccaggcc accatgtcta 120
gtctcaagct gccccaaactt ttcaagtcc accaggtccc cgggtgttc tggaaagatg 180
gcatcatgtc tggctaccgc cgccccacca gctcgctt ggactgtgtc ctcaagctct 240
tccagatgac caacagagacg gtcaacatct ggactctactt cctggccacc tggtaacttcc 300
tgtggcgct cctggcgctg gccccggggcc cggcgcttc tgccggagccg taccactggc 360
cgctgctgtt ctgcgtctg cccgcgttcc tctacccttt cgcgtcggtc tgccgcgcaca 420
cctcagctc catgtcgccc cgcattgcggcc acatctgtca ctgcgtcgac tacggcgccgc 480
tcagcctcta cagttctgggtt ttctggagct ggaaaagccct gggttcagta aggttctccg 540
cacaggagcc ttgcctatac cattccgtt ccgacaaacctc ccactctttt atcggctcg 600

```

gctgtgctgg ggcaggggcc acggctgtgg gcaggaggcc ctgagcacca gccatggcta 660
 ccatctcttc tgcgcgtgc tcactggctt cctcttcgcc tcccacatgc ctgaaaggct 720
 ggcaccagga cgctttgatt acatcgccca cagccaccag ttattccaca tctgtgcagt 780
 gctggcacc cacttccagc tggaggcagt gctggctgat atgggatcac gcagagcctg 840
 gctggccaca caggaacctg ccctggccct ggcaggcaca gtggccacac tggcttggc 900
 tgcagctggg aacctaactca ttatgtgtgc tttcacagcc accctgttcc gggccccca 960
 tacatgcctc ctgctgcagg gtggcccaact ggagggggg acccaggcca aacaacagtg 1020
 aggccccatc cctgaccctg tcctggaggg ggcaggccc agggcccagt gctgacgagg 1080
 agcccgatt tggccataat cagggtggga cgcacatctca cctggaaacca acagggcctg 1140
 aggagagagg gcacaggaga gagggcagag aagaggaggg gtgtctaggg ggactggca 1200
 agtgtgagag ggaccgtgag ggggtcttg atgggagtgg aagaagtgt gagggtctga 1260
 gaggggagat gcatgcgtgt ccaggctgaa gatgccccta tattctgtca aagggttggcg 1320
 gggggaggtg ttgggttctt ttcatctggc tccgttctg gtgcttctgg aagtctctgc 1380
 tcagcacagg gaagaactaa cacgactaac ctaggcctac cctgaatgtc tcttgctaa 1440
 caggccgaga ggccacacac ttgccccccc atccccacaa accaggtaat gccagtttg 1500
 cagcagctat ttgcctatag agatgagttc gtccctggta taactgtgtg ctcaaggtgt 1560
 ccaggctttt ggggggtggc ctatctgggt gcattatgga tggtttggg gattgaggtg 1620
 tggggaggag ggtccttaggc tagagggggg atccctagtt agacttggg aagccacctt 1680
 caatgtttc tggaaacaagg caggtaaaaaaaa taaaaaaaaata aaactttgga aagcacaaaa 1740
 aaaaaaaaaa 1749

<210> 80

<211> 2339

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1519324CB1

<400> 80

ctcttcattt gttgaaaggg atagaataac ctacttgcag gttgtgtca tctgagttga 60
 gcactggta cattgaaggt gctgggtaag tggtagctt tggtagttcc cgttcagcg 120
 cacatctgca gtggagcctg aaaaaggctcc acattaggc acctgtgcac agccatggct 180
 ggaatgtga aggggatacg ctggagttgc cctgccatcg cctccatcag ccagacgagg 240
 tcctcacagg agaaggacag ctctccccca ccctggatc tcaggagggc agccacggag 300
 tggggaggcc ccagatgcgc tggccaaag ccaggccgc ggc当地 gttgaatct 360
 tccttggtgc cgtccctggcc cttcccttcatgcctgg cctgcaggcc caccggcc 420
 accactgagt ccactcggag tgccctgtgt tcctggagaa ggcattccag ggttgaatct 480
 tggccctggcc tcagcctggg acacctaggt ggagagagt gtctccgtc tgaattggat 540
 ccaggggacc tgggctcattt cttcttggctt caccacccctt gcaggccctca ttttcccaa 600
 aacccactt gtcttgggg gagggttcc ggc当地 gttgaatct 660
 gacagcatca ggtggggaaag tggagttccac cctcatgtt ctgttaggatt ctccacccgtgg 720
 ggctggagaag aaagagcatc gacttgattt ctccaaaccac tcatccctt ttttccctt 780
 tccaccatc cccaccccgat ctgttagttt ttccatgttcc ttacaatcc taagctcaga 840
 gaaagttcca tttccgttcc agagggaaagg gaaacccctt aggtcccttcc ctggcttgg 900
 ataacgcaaa gcttgggtgt ttatgcact ctatcttaag aactgcccag ctcagctga 960
 aaaccccaat ctgagaagga attgcgtcat gtaagggaaag ctggattaa gggagctgag 1020
 ccagtcatgg ttgtggcggt tgagtcagga gacctaggtt tcagccctc totactgtca 1080
 gcgagctgtg caacgtggc aagtcattgt cctctgagct gcagttccct catctgtcac 1140
 atcgctacag acaagaccc cctggaaaccc ttctgattgt cttagacact gtgggttgc 1200
 aaccacggc aaggctcatt tggggggaa gtcagaggaa aaatgatcca gtggacactt 1260
 ggggattatc tggcatttca gatcccttca tcaaccccaa ggtcagctcc catctcattt 1320
 ccagaaaggc tcataccctgg cttgcaggga agcatctgtc ttgtcattcc aggtgccaga 1380
 atccctctcg agtcattgtt ggggttccac ccattccacc caaggcttgg cacactgcca 1440
 gtgtcttagc agggcttgc ggggttgg ggc当地 cactcagaag gcaaaggaaac 1500
 caccctaccc atttggccctc tggggggggc agaagaaaga aagaaacccatccatctatatt 1560
 ttacaaaggca tggatattt ggcattaggtt ctcataggg acccatgtc ttcccttgc 1620
 agtgcaaaaac tggatgttcc acttgctgtt gatgttggt taacacgagc tagttaaaca 1680
 gtggcattgtt ttggccatgtt aagctccaa ccctaaagccca ctgggacggt gggccagagat 1740
 gccagcagcc tctgtccccc ttgtcataat aacccaaaatc cagaccttat ccacaaccccg 1800
 gggcttggaa aggaaggat tttggatca caccctccggg ttatgttgc ccagtaaaat 1860
 cttgcctggaa aagaggcagt cttcttagca tggtagctg agttcatggc tttttttgt 1920

<210> 81
<211> 1006
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1630169CB1

```

<400> 81
ctggcccaag cgtccccctcg tctctctgat ctggcccatc cggcttcgga gggaggcgag 60
ggtgtttag  caaaggatt gggtctgtgg ggtccaggcc cgaacccttg aagacgggct 120
ccgccccccg  caccggctcg cgcccccgc  ccgggtggag gagtctctcc tggaccatcc 180
gaaccttagcc tgcgtccggcc cgcagccctc atggaggc  tcgtccggcc gtagagccct 240
tcgccccctg  gggacccacc cgtctataa  gtccgtttgg cctgcagc  cctgagtccg 300
taatgctggg  cactgttcat gggatcgccc ccctatggag ccctgtgtct atagggact 360
cctacggtcc  cttagggttc  gccccgtcca taatgactcc atatacaggg cttccatcg 420
ctctataggg  ctcagccctc ggcttccaga gcctgtc  agtggccgt  cccttcgccc 480
ggactgcggg  gtctccggga cctcttcgat ctacaagg  atgttatgc  tatagagg  540
gcatttgcag  ggcctcaccc cgggttagagg gtcctctcc  gtttttacg  gctgtcccc 600
gctctaaggg  tcagtgccagg aggccgc  ggccttggc  aaggttctgg ccatggcact 660
ggttttggcc  ttggccgtgc tggggtgc  gtcctctgg  gccccggcc  gggactgcaa 720
ggggcagcgg  cagggtctgc gggaggcc  aggcttc  acggatgg  cgggcaacta 780
cagcgtcaat  ggcaactcg  agtggctcat cgagggtgag tggggccgc  tgggtcactc 840
actaattcgc  tggtagttc  ttcatgtgt  cattcatcc  ctcaccacat tcccagagct 900
cggttctgg  ccaggcc  ttgtctaaaa tgcctgacac ccagggttgc agccaacctg 960
ggggggatcc  actaattc  agcgcgc  cgcgtggctc  cagctt  1006

```

<210> 82
<211> 1050
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1664253CB1

```

<400> 82
cgcttccggc acagcggAAC tccgggtgcc ggTTgaggTT gCTggTggac ctgctctggT 60
ggTcttgat gaggccccat gagcgcggcg cccctggTgg gCTacAGcaG cagcggctcc 120
gaggatgagt ccgaggacgg gatgcggacc aggccggggg atgggagcca ccgTCgtggc 180
cagagcccc ttcccaggca gagatttcca gtacottgaca gtgtgctgaa catgttccc 240
ggcacccgagg aggggcctga agatgacAGC acaaAacacg ggggacgggt ggcCACCTC 300
ccccacgagc gaggcaactg gcccacccac gtctatgtac catatgaAGC caaggaggag 360
ttccTggatc tgcttgatgt gttgctgccc catgcccaga catatgtccc ccggctggta 420
aggatgaagg tgTTccaccc tggccgttcc cagagtgtgg ttctgcgcCA ccactggatc 480
ctcccTtcg tgcaGGctct gaaAGcccgT atgactctct tccacagatT cttctttact 540
gccaaccagg taaaggatTTT caccAAatcaA gagaaaaACCA ggacCTTtat tgggCTTgag 600
gtcactttag ggcatggcca gttccTggac ctggTTtcag aggtggacag agtcatggag 660
gaattcaac tcaccaactt taccaggat ccttctttcc acctcagccT ggcCTggTgt 720
gtgggtgatg cacgtctcca gctggggggg cagtgctgc aggaactaca ggcaatctg 780
gatgggtttg aagatgctga ggtgctgc cgcgtgcaca ctgagcaagt ccgctgcaag 840
tctgggaaca agttcttctc gatgccttgc aagtggacac cagaggcctt cctccTccag 900
ggccctctgc agaccaggct gagatggagg aacctgctaa aatcgatggA gatgttcta 960
gcctcccaagt aggaggcccc agccatgcct tcaacctggc aggagggtgtA gccactccctc 1020

```

atcctccctg agtgctgata ttctctctct 1050

<210> 83
<211> 1774
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1864715CB1

<400> 83	gggccttggc	cgggtggtcc	cgggcggatc	ccgggaaggc	ggaaggcttc	ggcagagctg	60
cgccgcccag	gctgagcgg	cccttctcg	tgccggccgc	caggtcccc	ccccctggc	120	
gctatggagg	cggcgctgt	ggggctgtgt	aactggagca	cgctggcg	gtgcgcccg	180	
ctgaagctgc	cgcagatctc	cgctgtcta	gcggcgc	gcgcgcggg	cctcagcctt	240	
ccgagttac	ttctggagct	ggcaggattc	ctgggtttc	tgcgttacca	gtgttactat	300	
gggtatccgc	cgctgacc	cctggagtac	cccatctca	tgcgcaga	tgtcatctc	360	
ctgctctgt	tctttcattt	taacgggaa	gtgaagcagg	ccactcctt	catcgctgt	420	
tttgtgtctt	cttggttcat	ccttgccctg	cagaagtgg	tcatagac	ggccatgaat	480	
ctatgtactt	tcatcagcgc	ggccaga	tttgcacagc	tccatgttct	gtggaaagac	540	
agagacttag	gaactgtgag	tgcgtgact	tggac	cttcttatac	ctgtcaaca	600	
agaataatca	caacctaat	gaccaccaat	gattttacaa	tcttcttac	ttttgtgatc	660	
atgctggctt	taataat	ggtaacagt	acactgtt	gctaccggaa	gaccgtata	720	
aaggctgaat	gatggataca	ttattcctc	acacagtgg	ttttgagtaa	ctgaacccaaa	780	
ggaaaaagaa	gctctttgct	aaattaaggt	cttttataaa	tttagataat	cagtttataa	840	
tcttaaagc	caaagg	tttagactt	aaagaaagag	ccacttaat	tcttgtttaa	900	
aaataccaaat	ttgcctc	cttcctact	tcgttagtt	atggtagtgc	tcagacatct	960	
gcagtgttga	gaaggcc	cactgttgg	agtcatccaa	gaagcc	ttgaggccat	1020	
ttttagcctt	actcttaagt	tctctatgaa	gaactacatt	gatttgttgg	ctttcagaat	1080	
cttttagaa	ataaaatc	tccaggacaa	aaatgaacat	gaatggagtg	gcattttgtt	1140	
ccaagtccaga	ggtgggc	tataataat	gactagg	cacttctgg	gactgatgtt	1200	
taattgtAAC	acagata	cagggtggc	ttgttgtata	taatacggta	ttatacc	1260	
atgtgtcttA	gcaaggat	caaggca	atacatgt	ctggctt	tttgtacca	1320	
aacagtcc	caacttgc	ctgtgc	agtaattact	acaaaagg	actaggatta	1380	
gctgcacat	ctacttgc	tgaggaaatc	ccagtaag	ttctgattc	agtacaatgc	1440	
tgccatttt	taaagg	caactat	attaccact	ttggat	gtacaaa	1500	
tggtttgtct	attggaa	tacacgg	atgggtt	taggttag	ctgtcc	1560	
cttagggat	tttttgc	atagcatt	ttaccctaa	catgtgtt	agatttat	1620	
atactgtatt	ttcttctaa	ttaaccctaa	tgttttaaa	ctcacttcc	ccctttaatt	1680	
gaaggcatt	ttttgttag	tgcagtaat	atgtttacca	gagattattt	tttcctat	1740	
aaaataaatt	ttcatat	aaaaaaa	aaaa			1774	

<210> 84
<211> 2608
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1929395CB1

```

<400> 84
cgtacggctc gagtctagct tcagactcat gtcatttcca gtctgtcagc gtttagacatg 60
gtccctgtcc agtttccaga cattcatttc ttactataga gaagagact cccctggcgt 120
cttaaacctat ggaaaacatg cacggatagg atatatttga ttgccttcctc ttccccttca 180
gtatatgtat tattaatattt attatttattt ttatttattt tagttcatca gtttgctgtt 240
ctctgcagtg agcagaatca aatgggcaat atttgtccctg ggagacctgt gccgcaccca 300
ggccccctgt ttaacgtgtg cctgcgggtt tggttggcac cctcgggtgg tagctcttct 360
actgtaatga gacaaggcct tcttctgtca ctgcagaatt tagaaaggggc cgtgagcagt 420
cttcccaagc atggccagg agcagctcg agaggggtt gttggaggatgc atgcattccag 480
ggAACAGGCA tcaagaagcc aggggccgtgc ctggagcact gcagagatgt caTTGGAGAA 540
agcaaaqcag tgaccaggatq accaggcaca ttactcgtga gcgaggatatt cccagtcttc 600

```

ctgctaaggcc	taatccaagc	cttaccggc	tgtgcactg	tcatttgca	agcaaggaaa	660
tactactact	ggtaataaaa	ctacacatgc	aagatgtcg	ataagaata	ggtttatatt	720
tacccctctg	cgtatgtgggg	ttggtgcttg	aagataaatg	tgctgtttct	agtttcttaa	780
atagcccaca	ccccctggatg	caaaaaggca	gggttatttt	tacccatgag	catcctgtgc	840
aggcaataga	cttccttcac	tgtctccgccc	tgcagggagg	agaatgtacc	ccactgcacc	900
tgagctctg	gtccctcagc	caagacctca	ggggccccca	gccagcctgc	tgctggggac	960
ccctgtgctt	gctcagttgt	atggagccctc	ttgccttccc	ctggggaggc	accctgtac	1020
cccagcttcc	ttcccttgcc	ctttctggc	cccagtgtc	ctcccttaca	tagacttgtt	1080
cacacagaaa	cgtgcacgccc	ccctttctc	cgccacttca	ccagttctgt	aatccaaacc	1140
tcccagactt	cacaggaaga	tagatattct	tgagataatg	aaaagtgtata	tcttcgcata	1200
cgaaaaggaaa	aaagggttag	gtatatatga	tttttaactg	tattagggtt	gtatgaacca	1260
gtttaaaac	gagggtttat	ttactgtaga	gatgaatgca	aatcagaacc	aatgatccct	1320
tggctactt	agttaaaacc	agttcataca	tcccttaggg	tttttattat	tattattatt	1380
attattacag	ttgttattgt	ttttttgtt	tttattatta	tttgggggtt	cttgggtttt	1440
ttctttgcga	ctctccacac	taaacttgca	atattgtggg	gagaagctgt	gactaaactc	1500
tacgctgcgg	tgagatgtag	cagtaatcag	ctcccagcga	cgtgtgtac	tggggctgcc	1560
gctcgcaata	atcactattt	atttaaagct	ttacttagcc	ttgatctgt	ccctcgtagt	1620
caataaggctc	ttgcacattt	ttatttagtga	ggggagaaaa	cgtattattt	gtttgtgtt	1680
tttgccttc	ccccacccccc	caatattaaa	ctgtgaaattt	tgtgattttgt	ttaaactctg	1740
ggtgaatcat	agcttagttt	gcatgtccag	ctaatttgg	tctatacattt	ttgtttgatt	1800
ctctttctcc	ttctctcagg	gcttttacaa	aaaaatatat	atatatggat	cttctgaaaa	1860
gtttttttag	gtgcaggttt	tttctcttgt	tttttttttt	ttttttttct	cattgattaa	1920
tggacatgt	gctgagattc	aatcaactaca	tgaaacacct	ggctgtgaaa	acaaaacaac	1980
ccagagggct	gtgttccaag	cagcgtctgg	gaagctacgt	aacagtcgga	tgccagttt	2040
ggaagattca	ccatcgcttc	tgaccctctg	ttcgctcttt	tccttcctcc	tttcttcaag	2100
aaggaaaattt	atccatgtga	tttcagccca	tgcataaac	agggaaacaaat	aataaatttt	2160
tagaattcat	atttttctaa	agggaaactt	aaaactgtcg	ctacatgtta	tgtacaaaac	2220
tggtttatgc	cacatgaaca	gagaatcaca	agtttggttt	ttgtactttt	ttgtcccttt	2280
tgtattttagt	tgtatagaac	ttccaaatttgc	agaatgagaa	gaaagctgtt	ctgtatcaa	2340
ccatattaac	aataaaatgtt	atattttaaa	agtcgcagaa	tactggtaga	tgctgcattt	2400
gttgcataatgg	ttccctggcaa	acccatgtga	tttgagagct	tctcagacta	tccacccctt	2460
ggtcgctttg	ctgtcgtga	tatgagacag	acagttgcgg	tgggtgtcat	caaagoagt	2520
gacaagaagg	ctgtggggc	tggcaagggtc	accaagtctg	cccagaaagc	tcagaaggct	2580
aaatgaatata	tatcccttagt	acctggccc				2608

<210> 85

<211> 1336

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1987737CB1

<400> 85

```

cccacgcgtc cggtgacttt caaatccccct ttgcgagtga aagaaacagc aaacacttaa 60
gattcagcat ctgttctcca gttgcactga ggaatgcact gtctcgccagc accagctctg 120
cagaggccctt gccccgact ctttgcgggtt ttattttat gtatttccat atttcattcc 180
tgtgtgtcac tgctgcattt gttggccagc aagtgaccctt atgcgtacagg tcttactatg 240
gacaccaaggc cagggtcaac cacacaaaaac aaaggccaggc ccatgagctg cctatgatat 300
gcattgcggg agtaacattt taccgggtt gtgcatttc agtgatataa atatattttt 360
ttcttagact aaatatgagc tgactatctc ttttgatgtg tgtacatagg tggatgtgt 420
tctgtatgcg tgcctgtctg tgcgggtt tgcgtatgtg cgtacgcctca tgcttaggac 480
tacccatgaa tgggtggaa tgctacacctt ggagagtttct gttttccac cagttcaag 540
atgaagaact acatgataca gtggacctgg agaccatccc cttggaaaga caaccaggag 600
atgttcagca tcctgtatctt acacgcattt cttatctaca cgtgtatccc gtagctgtca 660
cactaacctt aataagaattt ctacagcttt ggacagaggc attttcaccc taatggtcaa 720
gtaattttaa atataaatcc attcagggtt caacccatca tcaaaattttc aaattttctg 780
attgaactca tctgaatcat cagttctt atggagagag agaaggagat ggaatgtgtc 840
tggtaacccc aaatggagta caagtagccctt ttgtttccctt gcataaaatgg acttggatgg 900
tgcgaacgaa tatatgcaat tcatataactt ttggagatgtt acgttagatat tggatgtcaggc 960
ttttagatgg tggatgtctt attaataactt tgcctccaa tattcagatggaa aaatacatgc 1020
cagtgtactt tgagggttaag gtagttggaa tgaaatggcc tcaaggcaattt tcacattccc 1080

```

taattacctg gaaagttcta cagtaattaa tatgcagcta actcctgttg ccctcacaag 1140
agcatcgcc ttctagaatc ggagctccgg agtgtgaaga ttcaagtattt atatgatatg 1200
tataccaaac tccagccaac ttactgccc ttttcataat ctgagtggtt gccttgctt 1260
tcctaagctg tggttgcaga aaccgtggcc atttatataa gctataaacat caaatcagg 1320
aaaaaaaaaaa aaaaaaa 1336

<210> 86
<211> 3062
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2122866CB1

<400> 86
gtccccgcac ctgtgaggag ccccgagcac ggctgtcgcg gcctgaggca gagcgcctct 60
gctctggccc tgcctctggc tcacctatcca ccgtcgccac cggagcgaac ccgagagcgt 120
ggagcgggct gggccagctg tttagtggaa tgtcatggcc agtcctcgg acagtgaaga 180
tgacagttc atggctgtgg accaggaaga aactgtgctg gaagggacaa tggatcaaga 240
tgaggagcc caccagtat tggaggctga ggagactaga cataataggt ccatgtcgga 300
gctgccagaa gaggttttgg agtataatctt gtccttctc tcaccgtatc aggaacacaa 360
aactgcggcc cttgtctgca aacagtggta tgcacttac aaagggtgtag cccatcaagt 420
ttatcatgtt ttcgtgaagg ctgtccggaa aggaacatt cagtgggaga gccgtacta 480
tccttatctt ggaaccccaa tcactcagcg ctctcgcac agtgcatgtc attatgtgc 540
taatcagtt atgtatgtgt ttggaggctg taccaggac agtcgtcaatg ctgcttcaa 600
tgacctctgg agacgttggc taaacagcaa agagttggat cgacccttgg cttcagggtc 660
ctatcctcc cccaaagctg gagcaactt ggtcggtac aaggacttgc tagtgctgtt 720
tgtggctgg acgcggccaa gcccttattcc cctacaccag ccagagagat tctttgtatga 780
aatacacact tactcaccct ctaaaaattt gtggaaactgc attgtgacaa cccatgggccc 840
acctccatg gctggccact ctcctgtgt gatagatgtt aaaatgattt tctttgggtt 900
ctcttagga tccccggcaaa tgagcaatga tgtctgggtc cttgaccttgc agcagtggc 960
gtggtccaag ccgaacatct ctggcccccag tcctcatctt cgaggtggcc aatctcagat 1020
tgtcatagat gatgcaacta tcttaatctt cggagggtgt ggccgtccca atgctctatt 1080
caaggatgtc tggtgttgc acatgcattc tggtccttgg gcctggcagc cactcaaggt 1140
agaaaaatgaa gagcatgggg ccccaagaact gtggtgcatt ccagcttgc ggttgggaca 1200
gtgtgtgtg gtctcagcc aggctcttag tcggagagcc coactcagcc ccagtgttga 1260
ctctcgccca tcacccatca gtgccacttcc tccagcttc tggctcttggaaa cccgagagta 1320
ccgctctcag tctccagtaa gaaagcatgaa tgaagctctt tggtttaacg gccgctgggg 1380
aacactgaga cccagggtctc aaaggcagac tccttcaggat tccccgggaa ggagccttcc 1440
cccagccaga ggagacggct ctcctatctt caatgggtttt agttgtctc caggaacggc 1500
agctgtgggt ggctttctt tggacagttcc tgtacaggcc atatctccaa gtactccatc 1560
tgctcctgaa ggatacgacc tggaaaatagg acttttttg gccccccgac gaggatcaat 1620
accagatctgaa aaagatctga gattaggatc catagatctg aattgggatc taaaacccgc 1680
ttccagtagt aatcccatgg atggcatgaa caataggaca gtgggggaa gtatgagaca 1740
ccctctgaa cagacaaatg gtgtgcatac cccacccatc gtggccagtgt cccttgcagg 1800
ggccgtctcc ccagggtggcc tgcgtcgagg tctggaaagcc atcaaagcga tgcctccaa 1860
aggcccctcg gcctctcgag cactaagtcc tccttttggg tcttcctccag gctctctgg 1920
gagccagatgt tgagcaggat gagaacaaatgt gcccattcc cggccaggcc ctggccaaagg 1980
agatggacat tccttaccc tcattgtctg cccgccttggc caccaccctc cacagttcc 2040
aaatgttgc aaacccctat accagagttt gaaactgcac ccacatgcaga tgcgtgtct 2100
ggacattaaa gacaccaagg agaagggggc ggtcaatgg aaagtattta atagcgttcc 2160
tgtggttggc cctctgtaaa ccagcctgca taccgtggta caaggcagggt gtgaaactcat 2220
catatttggc ggactcatgg acaagaaaca gaatgtgaag tactatccaa aaacaaacgc 2280
cttgcacttt gtacgagcaa agagataatg ttttctaaac cccttcctt ttctgtggct 2340
ttaatttgg aattttccag tgcgtaaagca tttggactga gaattgggaa aacaaaatta 2400
ctcccaagat cccaaactctt ttaattccca accgaagtca ctccaggctg ggtcaatctc 2460
tccattaaaga aaaaaaaaaat tatataaaata tatataatata tattatataatg ccaactctgt 2520
tgacaaaaaa agggagagat tttccatctgt gttcagatataa agttgtgtc gtgttttaac 2580
agggcgtgg ctgcctttt ctacccatgt gttcaataga ccaagaagttt agaaataga 2640
ctaacatctg taacttccca aaagaaaactg aagagcccccc tttttatctt tatgtggct 2700
tcttggagtt aaaaaatgaa agggcatatg taagttgca aggtggaggg ttttagactc 2760
tcattgtctca ggtgtgtcg gggtaaaagt aactgtttt cccttccttct taaaaccaca 2820

gaggacctgt gacagctctg cagaaatgcc agtgcctggc cccctttgc cttttatggc 2880
 tgaggaaagt taccacaaca aggattttat tccacatttg tgtccgggt cattgtgaaa 2940
 taatgtttat gcagccaaca tctgaccgcc tagtagtgtc cattggtctt tggagtgcct 3000
 ctgtgtgtc tcagaaaaca ttttgttct gattgtggaa atttctgaca atcaatttct 3060
 tc 3062

<210> 87
 <211> 2543
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2123981CB1

<400> 87
 gcacctgcga gcctggaggt ggccgtcgct gcgaacccgg cggcgccggcc aaacctgtgc 60
 tggtgcctg ggccttctgg gccttcctgg ccagaagctg ggcgtggggg cggcgccggg 120
 gtggaaaggc ggcccccggc tggggcctcc tggacgcgtc ggccggagggt gcttcgtccc 180
 gcccgttcca ggcttcaggc tttcaccagt tctcaggatg cccataggga tgggtgaaggc 240
 ctgcctggcc tgggtgtctt cccatggcc gtcatctcat tagggccca cagtggcatt 300
 agatgcacc tctcgggggtt gttcaacgcc ctcctgggtt cgggtgtggc agcggcctg 360
 tggaaagcatg tgccgtcgct tgagcatgca gcccacactgg aggaggaggct ggcctcaggc 420
 cgacaggcca cagagccaggcccacactgg aggatcgact accccgaaggc actgcagatc 480
 ctgatggagg gccgcacaca catgtgtgc acggggccgca cgcacacaga ccgcacatctgc 540
 cgcttaagt ggctctgcta ctccaaacgg gctgaggagt tcacatctt ccatggcaac 600
 acctctgtca tgctgccccaa cctgggctcc cggcgttcc agccagccct gctcgaccta 660
 tccaccgtgg aggaccacaa cactcagtac ttcaacttgc tggagctgcc tgctgtgc 720
 ctgcgttca tgcccaagcc ggtgttcgtg ccagacgtgg ccctcatcgca accccgcttc 780
 aaccccgaca acctcatgca cgtcttcat gacgacgttc tgccacttctt ctacaccctg 840
 cggcagttc cccggcttgc ccacggggca cggcttctt tcacatggaggcttggggcggag 900
 ggtgcacact tcgacccatca caagctgtc agccccaaggc agcccttcctt gccggccacag 960
 ctgaagaccc tggggccgct gctgtgttc tcccatgttctt tggtggccctt ctccaaagatc 1020
 actacctgtt accagttatgg ctttgcgtc ccccaaggcc cgaaggccaa catcctcgtc 1080
 tcaggcaatg agatccggca gtttgcacgg ttcatgacag aaaagtgaa cgtgagccac 1140
 acaggagtcc cccttagggca ggagttacatt ctggtcttta gccgaaccca gaacagactc 1200
 attctgaatg aggccagatc gctgtgtgc ctggcccaagg agttccagat gaagacactg 1260
 acagtgtccc tggaggacca cacctttgtc gatgtgtgc ggctggtcag caatgcctcc 1320
 atgctggtca gcatgcatgg ggcccaaggctg gtcaccaccc tcttcgtgcc ccgtggggca 1380
 actgtggtag agctcttccc atatgtgtc aatcccgacc actacactcc ctataagacg 1440
 ctggccatgc tgcctggcat ggacccatccat tatgtgtcct ggcggaaacat gatgccagag 1500
 aacacagtca cacaccctga gcggccctgg gatcaggggg gcatcaccacca tctggaccgg 1560
 gctgagcaag cccgtatctt gcaaaaggccgt gaggtcccaac ggcacatctctt tgccggaaac 1620
 cccgagtgcc tttcccaatg ctaccaggac accaagggtgg acatcccatc ctcattcaa 1680
 accataccgc gctgtgtgaa gggccggccca ggaccacggc agcagaatgt gacagtccggc 1740
 ctatatccag gcaagggtgcg ggaggcacgg tgccaggcgt cagtgcattt cgcctccgag 1800
 gcccgccctca ctgtctcttgc gcaatccca tggAACCTTA aataccgtaa ggtgaggggag 1860
 gtgaagttacg aggtgtgtctt gcaaggacggc ggggagaaca cctacgtgcc ttacatccctg 1920
 gctctgcaga accacacccat cactgagaac atcaaggccct tcacccaccta cctgggtgtgg 1980
 gtcgcgtca tttcaacaa gatccctcttgg gggaccctttt cagatgtgtc ggtgtgcac 2040
 acgttagcgag caggccacag cctggccctcg ggaagggtggc tcctgcaggat cagcgtccct 2100
 gggcccttta atcccaactgt ggagacttctt gggacttatt tatttagcag gctctgtgcct 2160
 ccacatcatc ttgttgtctc tgggggtgtgg tgcacagca ctccttttgc ccctagagat 2220
 aaggggacctg acttcccttccatccat gaaacatttttgc accccctggag aagttccctta 2280
 gcaggaggaga ggaaggaggaggaggaggaaaggc aaaaatcac aaggaaacctc tggcttaggtg 2340
 atccctgtatgtt ttccatctgtt gttttcttgc tttccatgtt tgcggaaaccctt gatgtatcat 2400
 gtactgttttggatgggtgtt tcacatgttccatccatccat gaaatttacc tggtagccctt 2460
 tgaagggtgtt gttttggaaaca ttccaaaat cacttcaaca tcttatcaaaa ataaaaatata 2520
 ttaatgagaa aaaaaaaaaaaa aaa 2543

<210> 88
 <211> 873
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2200177CB1

<400> 88

tacatgcgtt	aatcaactttt	gcacacacctgg	ataaatatctg	cttgctttat	gatctgtttg	60
aagaaaataaa	cgttacagta	acaagaaaagt	ctggaaaggt	ggtagctaaa	aagaaaacaaa	120
acagaaaaca	aaaaacaaaaa	acctcagaaa	cttgttgg	aagtaacatc	cttttatata	180
acattgataa	tctctattct	tgtctgtctc	tgtgtcacaa	aagaagataa	ttgttagagct	240
tgaatgata	atcaaagatt	atctagtaca	tttttcacag	gtacagaaaac	agatgctcag	300
tgaggataaa	ttatttcaaa	taatacacag	tctgttaata	acacagctag	catcagaaaac	360
taagatctct	gcaaccatct	gtctgcctt	actcttccat	tgttgttto	tgttagttt	420
gagctttct	atcacactct	gtataaggca	ctctggcccc	tatcatattt	atccctctgtt	480
acaggtgtca	aatctcattt	tcctccagac	ccatttcctc	actacatttgc	ctggcattat	540
gcaaaaagtc	ctttccaatg	tgtgtcactc	tcaaaaaatt	catccagaaa	tactaaggtt	600
tgggaaggtc	tgtggccaaa	gcactataag	caaaaaagttc	aaagaagaaa	aataacaaaac	660
tcctcataca	ataagtctaa	tatcacaat	tcatgaaaacg	gcaactataa	agagcaaaagt	720
attcagaaaa	ttaagtacat	atttcagcat	tgtcttaaag	ctaaaagaaa	ttaaaatagc	780
tggtttaaaa	tatctatgga	gttcaaaacta	gatttagtgtt	gaactcttca	cctttagtca	840
atatatataa	taaaaactttt	gttatgaatt	tat			873

<210> 89

<211> 2134

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2319255CB1

<220>

<221> unsure

<222> 713

<223> a, t, c, g, or other

<400> 89

tctgcaggc	acccaccgtt	tctgttttct	tctgttatcc	ttccagagat	tttctatgcc	60
taaacaccat	ttgaagccat	gaatgtatag	tgatgagggg	ttttttacag	ttgcacatga	120
ctggaaatag	aatatcaatt	agatatttag	aatattgtat	agccaatagg	agctgtatggg	180
tttagaaaaat	aaggagggtga	agagaatcca	ggattttaaag	gtttaaatga	agtttagagac	240
tagatttga	gcgagtaaga	gaagatacag	aatttatttt	aaaagattca	gaactggaa	300
aatttagaact	agcatttagtt	ttaactgaaa	tcatataatg	catgtgttca	taccaagtag	360
aacaaaaatg	gccttttttt	ctctcatatt	taaaatccac	attatctact	gtaatgttcc	420
acaaagagca	cataatgtat	aaatattggc	tttagtgtcc	aattatgttt	gagcttgcgt	480
tagattttag	attttaattt	gctaattcatg	tttcattttt	aaaataatct	ataatgttat	540
ttgcaagaat	ttcaatccat	agccctcctag	aaaaaaaaatc	aataccatag	gcagaaaaat	600
aatatttcag	gtaatagagc	atatcactgc	atacaatcc	attcttactt	caatcaaaaa	660
agaatatgat	gcctttatttg	agacaataaa	gaaagaccga	agaactacat	ttngtcttca	720
tggaaaacct	aaagggttgg	cagcagagcc	tacagtttg	gtatattaca	ggaaaagaac	780
aatccaaacctt	gaagcaaaggc	atgactcttc	aagaatccat	gaatcttagat	gttctcacta	840
aatacatgaa	acatcttggaa	gataaaatatg	cagaaaattaa	acaagctatg	ttgataaaaat	900
atgtgccagc	tcagaggaag	gctgatttag	atgaagaaaat	gattgtgtta	ttaaaacggc	960
gagatgttagc	tgaaaatctg	aacaaaaaat	tgcagtttg	tcatcaaaga	ctgcagataa	1020
tttcacaggc	acttagttca	tggtttaaaaat	ctgatatatg	cagccccattt	caagactttg	1080
tggagcaaat	tcagaaaaacc	aaatattttac	aaggtttaat	gagttaatct	cacttgggtga	1140
atatgaaaaag	gcagcttggt	atgcagcaaa	cagtccatga	agaatttcttc	gaaacattgg	1200
tacaatgtat	acattaagg	ctgttggaaa	aatttagagga	aagccctttc	cattactctt	1260
atttttttag	gcccctttta	tcacaagtc	tgctttttca	tgtctctgtt	atgcagttct	1320
aacccttgaa	ggaatcaaatt	gtggattatc	agaaaaacgg	tttagatttag	ttaccaattt	1380
ggttacacag	gaaagactgaa	cattttctga	ggaggctggg	gatgtgttatt	gtgattatgg	1440
ggagcaqgat	acttataaca	aggccaagt	cctggctta	gctcagat	tctacagtga	1500

atgtggcctg cacaagaaaag ctattcttg cttgtgtaaa cagggtcaga ctcataagggt 1560
 catggagtac atacagcagt tgaaggactt tactaccat gacctgttgc agctattaat 1620
 gtcatgtccc caagttgaat taattcagtg tctcaactaa gagttgaatg agaaacaacc 1680
 atctttatct ttggcttctt cтatacttca tctgttctt gcagacatga aaaaagttgg 1740
 cattaagcta cttcaagaaa tcaataaaagg tgggatagat gcagtagaaa gtcttatgat 1800
 aaatgattcc ttttgcctca tagaaaagtg gcaagaagtg gcaaataat gttcacagaa 1860
 tggcttgcac aaattatctt atgacatcac gtctatttctt cgatctcagg ctgcagttac 1920
 agaaaatitct gaagaggatg acgcgtcaa cctaatggaa catgtgtttt ggtagttcta 1980
 tatcttaacc agctgagggg gcttgatcaa cacctttagt atgctgggtt ggaaaaactg 2040
 atttaacgt aactaactt taaaataatc tagagtaaga agatctcaga aataaatc 2100
 acttttgtt a tcatgacaaa aaaaaaaaaaaa aaaa 2134

<210> 90
<211> 1886
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2792452CB1

<400> 90
 tggtgtccc caccagctcc aaagtctcca cctctcaaacc accatgtctt ctttgggtgtc 60
 tgggacacag gctgttcttg gccaggccac agcctcatca tgcattggctc tgcccggtgg 120
 ctcacgggct ctgtccacaa caccggggga caggtgctt tatctctccc aggagtctgg 180
 atgagacgtg catgcatttca ttggcagtt ctcttggat cctgggtgtc tcctcagccc 240
 ttggccgtcc ctgggcttgg gctccccacc tctctggcac ccaagactgg tggaaaagga 300
 aagcccttc gttctgatggt gagatctcg aacccttggc ctttgcag ggcctccaaa 360
 ggcgtctgtt ggaccctgtca cctgtctgc agcgccttcc ccaggccctc ttgcacggg 420
 cagtgcagg ggtttctgtc tcagagcggag tccagcggg cctccacaga gtgcaagggtt 480
 gcctgcctt cctgtggaaag agcaaacctt gtccctgtt tcccgaccc cctactcgt 540
 ggcctctgaa tggcccaat gtggccccc ccttgcgtc cccttgcgtt ctccaaatgtcc 600
 gagcccaccc agagcccaag ccctcggagg cccctgcac ctggaaatg gacactgggg 660
 cagggttctc ttctgatgtc tgggtttgt cttgtggggc ttgggggtgcc cctgccttgc 720
 ataagaaggg gtttcagagc agaaaataaaag cctcagacag gtgagcctct gtggcacatg 780
 gcccctcgag ccagccatgc atctgggttc agcccttggc aggacacttg accaggcccc 840
 ttaccccttc cgagctggga tcatgtctgg aagactgaat gggacgcagc cggtgaaaac 900
 gcctggaaga gatgtttctc cattttctct aagcatattt atttctttaa caacagtgc 960
 gaccatttgt gaggccatctc tctgtctcg gcacgggtc acatgcaac gaaacctgtct 1020
 cccattgaac cctggccagc cagtgaagaa agggttggc ctgggagggt ccactttaca 1080
 gacaggggca ccaagggca ggggtggcagg aggcccaccc gacgttcccc atgaagtagc 1140
 agtcccgagc tccacacccca gcaggcacca cgctggcccg cggccctccct gccagcacgc 1200
 ctggcttccc ggccctcgaa cttgtatgtc tcccttctcc ggacactggg gtcctgtcca 1260
 agtccctggc tgggcagca ctgtgaaca ttctaaagaaa tccctcccg gtttttctca 1320
 ggagcccccggg tggggcagga agtccccagg ggctgagggg accgtggcgg cagggtggc 1380
 ccagagcagc actctcttgg ggcccgagggtt gttggccag aggccaggact gtgaggcccta 1440
 gtgtaggggcc tcctgcctgtt ggccggcacc tacttgtggg gctgggggtt ccccccagcag 1500
 gttgggtctcc ccacctgaca cactcacaga ctttgcctt tggagagcca gtgttccccgg 1560
 gcccacatag ctatggcc caggggctgg gcctgtccca gctctgttcc cccggccccca 1620
 ggtccctggac gctggcttgg cgccaggca ggcggccccc ggaggacacg atgtgactgg 1680
 ctggccgtac gtgcactca gatgagtctg cgccggatcg acctgtgtcc gagtcctgtcc 1740
 ggacaggcac aggcaggag tggaaattat ctacccttt ttattttta ataactgaat 1800
 gaaaataaaac attggtggtt tgacaaataa ctacatattt tcaaaccac ccagtccagg 1860
 gatgtcaggat tccagggtcg ttagtgc 1886

<210> 91
<211> 928
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2853088CB1

<400> 91
 ctacaagaag ctatTTGCC actaagagag gagAGCCTGc ctgagggtga agccaaatgc 60
 atagggaagg cagaaccaga gatggtgac cacaggttc tgataatctc tggcccctgt 120
 gttcacctgt ctgaatctgt ccgcctgtGA ctttgcatt acttgggcca tagcttcctt 180
 tactgttag gccagctgtGA gcccggtaa tcagacactg gatgggtgtGA ggatctact 240
 gtgctcatgc ttcaactac cctccgtact ttaattgttc tcgatTTCTC taactggcct 300
 ttagtgcTCTC tcttagctcc agactatgt cccacagacG cccaaaAGC acgtctggaa 360
 ttgacctcat tattattattt gtttagatgtGA gtctcgctc tttgcccagg 420
 ctggattgca gtggcgcagt ctggctcac tgcaacttcc gactctgggg ttcaagtgtat 480
 tcttctgcct cagcctccctc tcaagtagct gggagtagac ggcgcctgcca ccaagcccc 540
 gcaaaagagc gagactccat ctcaaaaata ataacaataa taataatgag gtcattcca 600
 gacgtgcTTT tgggacgtct gtgggcataat agtctggagc taagaagaga catcaaggcc 660
 agtttagagaa atcgagaaca attaaaagtac ggagggttagt tgaaAGCAGt agcacagtga 720
 gatcctccac ccatccagtg tctgattgac ccggctccag ctggcctaaa cagtaaagga 780
 agctatggcc caagtaatcg aaaagtccag agcggacaga ttcagacagg tgaacacagg 840
 gcccagaaga tatcaggaac ctgtggctca ccatctctgg ttctgccttc cctatgcatt 900
 tggcttcacc ctcaggcagg ctctccctc 928

<210> 92
 <211> 962
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2949004CB1

<400> 92
 ttggacctag caatgccatg aaattaccgc gagaggaagc aagcgcAAGT ttCGTgAGGA 60
 gggcagatct caccggagag gattggcgc cctcctctgt ggattctggc caggccgggt 120
 tcggcggtt ctgtgagagc gggcttccca acaccatgcc gtccgccttc tctgtcagct 180
 ctTcccgt cagcatccca ggcgtgtcA cgcagacgga ctggactgag ccctggctaa 240
 tgggctggc cacTcccaac ggcgtctcg tgcTcctcAc ctgctgtcc tcccgaagct 300
 acagactaca gatcgggcac tttotgtgtc tagtcatctt agtctactgt gctgaataca 360
 tcaatgagggc ggctgcgatg aactggagat tattttcgaA ataccagtat ttgcactcca 420
 gggggatgtt catttctata gtattttcag ccccaactgt ggtgaatgcc atgatcattg 480
 tggttatgtg ggtatggaaag actttaatg tgatgactga cctgaagaat gcacaagaga 540
 gaagaaaagga aaagaaaagg agaaggaaag aagactgagg ggcagcagct gcttggagtt 600
 tgcgtccctc ccgtccaccc agtgcagctc ccagtgtcA agtgtgcgtg gctggggcat 660
 ccttccagct gactcatgtt ttgaaaaacc gttgttttat ttaaatatcc acagtggtag 720
 ggcacacact gaagttggct ttcaagccag cactgaatgt atccatcagg acatgcgtct 780
 tcagggtcct gatcttGta gtcaggctgt gggAACGGTC tctgcagacg ttcataactg 840
 ggaatttgat ttgaagaatg ccatgtcata tttgttaacta gtactaatta taaatataaaa 900
 atacacaata taaaatatga aactcaataa taaacagtgc cacctgtaaa aaaaaaaaaa 960
 aa 962

<210> 93
 <211> 2644
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3011670CB1

<400> 93
 ccctctcttt cgctgttGA gagtctctcg gctcaaggac cgggaggtaa gaggtttggg 60
 actgccccgg caactccagg gtgtctggc cacgacctat cctaggcgc atgggtgtga 120
 taggtataca gctgggttGt accatggta tggccagtgt catgcagaag attatacctc 180
 actattctct tgctcgatgg ctactctgtA atggcagttt gaggtgtat cagcatccta 240
 cagaagaaga attaagaatt cttgcaggGA aacaacaaaa agggAAAACC aaaaaagata 300
 gggaaataaa tggtcacatt gaaagtaaGc cattaaccat tccaaaggat attgacctc 360
 atctagaaac aaagtcaGtt acagaagtgg atactttAGC attgcattac ttccagaat 420

accagtggct ggtggatttc acagtggctg ctacagttgt gtatctagta actgaagtct 480
 actacaattt tatgaaggct acacaggaaa tgaatatcag cttagtctgg tgcctacttg 540
 ttttgtctt tgcaatcaa gttctattt cattaactac acactatttt aaagtagaaag 600
 atgggtggta aagatctgtt tgtgtcacct ttggattttt ttcttgcgc aaagcaatgg 660
 cagtgttgat tgtaacagaa aattatctgg aatttggact tgaaacacaggg ttacaaattt 720
 tttcagacag tgcgatgcag tttcttgaaa agcaagggtt agaatctcag agtccctgtt 780
 caaaaactac tttcaaaattt ttctggcta ttctgttgc attcattggg gctttttga 840
 catttcctgg attacgact gctcaaatgc atctggatgc cctgaattt gcaacagaaa 900
 aaattacaca aactttact catatact tcttggcacc ttattttatg gttttgctct 960
 ggtaaaacc aatcaccaaa gactacatta tgaacccacc actgggcaaa gaaagtatcc 1020
 cttaatgac agaaggccaca ttgcataactc tgcaactctg gttataataatc ctgctgtgt 1080
 cttdcggtt gccatgatg cgtgtcacc tgcaagctt tttaaatttta gccccaaaaat 1140
 gtgtggatca gatgaagaaa gaagcggggc gaataagcac gggtgagcta cagaaaaatgg 1200
 tggctcgagt cttttattat ctttgttca ttgcactgca gtatgtggcg cctctggtaa 1260
 tgcgtctca cacaactctg cttttgaaaaa cactaggtaa tcattctgg ggtattttatc 1320
 cagaatctat ctctacotta ccagtggata atagtctact gtccaaattct gtttactctg 1380
 aattaccatc agctgaaggg aaaatgaagg taactgttac acaaataaca gtggcactga 1440
 gcagcttaaa aaatattttt actccctttc ttttcgagg acttctgtct ttctgaccc 1500
 ggtggattgc tgcttgctc ttttcttacaa gcctttttgg gcttttctat caccagttac 1560
 tgactgtggc atgaatctca gttaaacaaa aagcatatcc aaatcaccct ttaaatttaaa 1620
 atatctgtgc ctttaaaggg ctgtgaaaaa ccagaagaaa gcaaaatacaa tgggaaaaaaa 1680
 aaaacatatc agaatgttctt gttttttttt tttcctctgtt attctcaggg tgaatttaatg 1740
 tagtaatatt taaaattaca aaatagattt ttaactgttta cactgtggca ttggatattt 1800
 aactctttgt atttactggg atgagagggc tatctacaag ggtatattt ctgattacc 1860
 tggttacag aaacctccag cagtcttga aacatctcac atgactctag ttattgattt 1920
 cttttatgg ttttatggta ctgtttagat tcatagtggc tgcctataga acaatcttca 1980
 aactgagcca tgctttaggg gagggaaagg ggctaaagtcc tcttctgtt gtaattttt 2040
 agttactctt gaaacagtaa aatccaaacag aaaggaagag atagctactg tatattacag 2100
 taaagaaaagc tgcatagttt ttttaattt aatggagatg aatatgttta aaatataataa 2160
 ctactgtgc ttgagaatag caagagtattt gttttaaaac atattccacc caacttgaga 2220
 gttttttaa aatgattggc catatgaaaca ttgtttaatct tgccattagg ttggacctg 2280
 ccataattttt ttttattctg tgatcctaac tagttcctttaataggctt aaatattttat 2340
 caatactgtt cagactttaa agaaattttt ttgttaaactt gctgactacc tttatgttatt 2400
 gtatatatat tatataattaa atatataata tatttgatattt tttttttttt ataaaagatg aaaaatattga 2460
 atccttataaa tatttttaatg tgcagaatgtt atgtttttttt gtagacttggaa tgagatgtat 2520
 ttgtatcttag aaatttttattt tctttttggta atgagattaa aatacattttt gaaagttcaa 2580
 caaacagaaaa agaaaagaca gtagcagaag tcggtaagac ggagtgtgcg cgagagtagc 2640
 ccctt 2644

<210> 94
 <211> 1875
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3242083CB1

<400> 94
 cgtcgcccaa ggtcgccggc cgcttgggta gtcagcagcg cgccaggccc cttcgccccc 60
 cacacgcatt aggtgccttc ttgtatggta cggagtgaac gcggggccggc gcgggaccga 120
 ggcagcgccc agttttaac cggccgcggc cccgtccccg cgcgcgccac accccagcgc 180
 gcttccggcc gggccacgtt accgcgcgtt cacgtttcc ggcctctccg cttcgccgc 240
 cccaaacctcc tcctggctgtt cccggcattt gtcacgcggc agccggctt ggcggggccc 300
 gggaggccggc ggccggagaa gcccgggaga cgcgagccg gaggctcgcc agggagccgg 360
 cccggccagg caagcgccgg cctccggcat gaacccccagg ggcctttcc aggacttcaa 420
 cccccagttt tttctcatct acacctgcct gctgtcttc tcgggtctgc tgccccctcc 480
 cctggacggc atcatccaaat ggagctactg ggccgtctt gccccccatat ggctgtggaa 540
 gcttctagtc gtgcgaggcg cttccgtggg cgcgggcgtt tggggccgc accctcgcta 600
 cccgaccggag ggagaggccct gtgtggagtt caaagccatg ctgatcgctg tgggcattcca 660
 cctgtctgtt ctcatgttgc aagtctgtt ctgcgacagg gtggagaggg gcacccactt 720
 ctggctgttgc gtcttcatgc ctctttttt cgtgtcccccc gttccgtgg ctgcctgcgt 780
 ctggggctttt cgacacgata ggtcgcttgc gctggagatc ctgtgtctgg tcaacatccct 840

gcgatccatc	ttcatcgccc	taaagctgga	caggattatt	cactggccgt	ggctgggtgg	900
gtttgtgcc	ctgtggatcc	tcatgtcgtt	cctttgcctg	gtcgtcctct	attacatcg	960
ctggtcctc	ctgttcctgc	ggtccctgga	tgtgggtgcc	gagcagcgg	gaacacacgt	1020
gaccatggct	atcaagtgg	taacgatttg	cgtgcctctg	ctcaactttt	aggtcctgct	1080
ggttcacaga	ttggatggcc	acaatacatt	ctcctacgtc	tccatattt	tcccccttt	1140
gctttcccta	ctaaacttta	tggccacaac	atttaggcga	aaggggggca	atcattgg	1200
gtttggcatt	cgcagagact	tctgtcagg	tctgcttggaa	attttccat	ttttaagaga	1260
atatggAAC	atttcatatg	atctccatca	cgaagatagt	gaagatgct	aagaaacatc	1320
agttccagaa	gctccgaaaa	ttgctccaat	atttggaaag	aaggccagag	tagttataac	1380
ccagagccct	gggaaatacg	ttccccccccc	tcccaagtt	aatattgtata	tgccagatta	1440
aactccatga	gaggaccacag	gcacacacag	actccacttg	gccttcgcct	cttgttcatt	1500
catcccaaac	ctggaaatgg	aaacaggctt	caaacactcg	tctcacgcgg	tgttgagat	1560
caccgcctca	tcatgtgca	tcatagatgg	aggtgtttc	atgtatgggg	tgtgtgtgg	1620
gtgtacctgg	gtaaagagact	tgcttccag	gttcgcactt	tccaggtag	ctggggccag	1680
taagtgcgaat	tgttttagta	ggtcctcaaa	aggaataacc	acacagctgt	ttgtttaaat	1740
gctactgtac	ctatcaaacc	tattgtttaa	aaagtatttt	tatacactgc	taatctaaaa	1800
ttgtatttca	gattgtgcct	gtcataacaa	tagcaaatgt	aaaaagttct	ctttcccccacc	1860
aaaaaaaaaaa	aaaaaa					1875

<210> 95
<211> 2378
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3363391CB1

<400> 95 .
aaagtgcagc agatgttgcg ttgcttagttc aattcaactgg gccccgtaa tatggcggtt 60
gacgcgtcg gtaaacgacc gtcgttagtag agtcagagca catgacgggc gaggcaagga 120
atgtgttctt ggtctctcta ccatgacctg ggaccgatga tctattactt tcctttgcaa 180
acaactagaac tcactgggct tgaagggtt agtatacgat ttctttctcc aatattcccta 240
acaattactc cttdtcggaa attggtaaac aagaagtgg a tgctaaacctt gctgaggata 300
atcaacttgc gcacatagc ctcccccag gctccaaatg ccaaacttcg actgtatggtt 360
cttgcgttg ggggtcttc tcactgtata gtgcagctg tgacttgggt gtcaggaaatg 420
catttgc当地 ggtacacttag aattttggga ttcattttag gacagatgt ttttgtt 480
ctacgcata ggtataacttc actaaaccca atctggagtt atcagatgtc caacaacttg 540
atactgacat taagtgccat agccacactt gatcgatttgc acacagatgg tgactgcagt 600
aaacactgaag aaaagaagac tggtaggta gccacgggaa tggcctctag acccaactgg 660
ctgctggcag gggctgctt tggtagcctt gtgttctca cccactgggt ttcggagaa 720
gtctctctgt ttccagatgg gcagtggatg ggcattccaca tccaggccca gatcctaacc 780
catttggagg tgcagttactg ctgtgttgg caagtggatt gatgtttcca tcttgtt 840
ggtttgcgtt tactgggtt atctgggtgg ttacaggaac agcttcagct gccccgttcc 900
tttacactgca cacatgggca gtcgtgtgt ctggctgtgt cttcgctatc tttactgtcat 960
ccatgtggcc ccaacactt ggacacccat ttaactcagg gacaaaacctt gggaaaacca 1020
tgaccatgtc catgatattt tatcttctag aaatattttt ctgtgccttg tgccacgctt 1080
ttaagtttgt cccaggaggt gtctacgcta gagaaaagatc agatgtgtt ttggggacaa 1140
tgatgttaat tatcgggtct aatatgttat ttggcctaa gaaaaacctt gactgtttc 1200
ttcaaaacaaa aaacagtctt aaagtgttt tcagaaagag tggaaaatatac atgaaaacttt 1260
ttctgtggct gcttgggtt gttggattgt tgggatttagg actacggcat aaagccatgt 1320
agagaaaact gggcaaagtgc gcaccaacca aagaggcttc tgctgccttc tggccttca 1380
ggtttggata tgacaatgaa ggggtgtctt gtctagaaag atcagctcactg ctgctcaatg 1440
aaacaggtgc agatttcata acaattttgg agagtgtatgc ttctaaagccc tatatggga 1500
acaatgtactt aaccatgtgg cttagggaaa agttgggtt ctatacagac tttgttccaa 1560
gcacaaggta tcacacttgg gggattatgg ctttgcataag atacccaaattt gtgaaatctg 1620
agcatcacct tcttcgtca ccagggggc agatcgccacc accatcaca ttgaccgtt 1680
acatttccggg caagctgggt gatttgttcg tgacacactt tgggaaccac gaagatgacc 1740
tcgacagggaa actcgaggat attgtgtttt ccaaactactt gaaaatgtc tctaatcaag 1800
tgtatattctt gggatatac atttcagcac ctggctccag agattatctt cagctctgt 1860
aacatggcaa tgtgaaggat atcgacagca ctgatcatga cagatgtgtt gaatacatta 1920
tgtatcgagg gctgatcagg ttgggtttagt caagaatctc ccatgctgaa ctgagtgatt 1980
cagaaattca gatggcaaaa tttaggatcc ctgatgaccc cactaattat agagacaacc 2040

agaaaagtgg catagaccac agagaagttt ctgagaaaaat tcatttaat cccagattt 2100
 gatcctacaa agaaggcac aattatgaaa acaaccatca tttcatatg aatactccc 2160
 aatactttt atgaaacatt taaaacaaga agttattggc tggaaaatc taagaaaaaa 2220
 agtatgtaa ataaaaagaa gagattaatg aaagtggaa aatacacatg aagaacctca 2280
 acttaaaaaa cacatgtat ctatgcagtg ggaaattacc tccatttga aactatgtt 2340
 ctaataaaa acatttcct aaaaaaaaaa aaaaaaaaa 2378

<210> 96
 <211> 1597
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3703614CB1

<400> 96
 ttccagccct catgaacccc ttcttggaa acttgcottc agcaccggcc atggctgtt 60
 cagatgcctc cactctgaaac cctggaagtg cctcacatgt cagcacctat actgaggact 120
 ctggatcgc acaccagagc agggatcaag tcttcctccc tgccatccc gtacaagtcc 180
 gttagtgtaa agcttgaaag gaaaaagat taattagaac gtcgtgtca gactgttact 240
 gctacaatca aaattcccaa gtggagtgg aatacatatg gtcaactatg caggtaaaa 300
 ttaccagtcc aggccgttca aggatgtat atatcgaga aagacataat tgccaatatc 360
 cagaaaaacat tctatctttt atcaaatgt tgattcataa cttttggata ccaaaggaat 420
 ctaacgaaat aaccataatc atcaatccat acaggggagac tgcgtgttcc tctgtggagc 480
 ctgtcaagaa gatatttaac tatatgatac atgtgaatcg aaacatcatg gatttcaaac 540
 tcttccttgc gtttggca ggagtttttcc ttttcttta tgcaaggacc ctgagtcaaa 600
 gccctactttt ctattactcc tgggaactg tgcttaggtgt tctaattgaca tttagtcttt 660
 tcttgctgtt ggtgaaaaga ttcatccga agtatacgac cttttggct ctaatggttt 720
 gttgttgggtt tgcctcaattt tatattgtat gccagttgtat ggaagatctg aagtggctgt 780
 ggtatgaaaa caggatataat gttaggtat atgtcttgc agttggattt tttagtcttt 840
 ttgttggta caagcatggg ccccttgcag acgacaggag cagaagtctt ctgtatgtgg 900
 tgcgtcgact cctccctcg gttctggatc atgtcttgc ggcgtctgca ctaccactg agagcatgca 1020
 atgcagccat aatcccttc atgtccctc ggcgtctgca ctaccactg agagcatgca 1080
 gttatatgag gtggaaaatg gagcagtggt ttacatcaaa agagctggtg gtgaaatatc 1140
 ttacggaaga cgagtacagg gagcaagctg atgctgaaac gaacagtgt ctggaggagc 1200
 tacgccccggc ctgccaaaaa cccgactttc cctcatggc ggtcgctcc agactccaca 1260
 ctccctgcaaa ctgtatggaaac caaggccctg aaagggttac caagttgcca gggtcgtgca 1320
 gatcaacaaa ctgcagaagc aagactcaac caggtcttct gctgtcaaat cttgtgcct 1380
 tcccatggcc agcagggct ccccccagctg gatcagaacac ctttcaggga aatttagaaag 1440
 gtgctttctt tcatacacac aaaaagtagt gatcacttaa ccttaaaatc ttgtttcaca 1500
 aagatgttgtt aatattatac ctatacttaa aacgttagat ttcttaataaa atttaattaa 1560
 tagagctatg aataacttaa tagtaataat gaaagtcatc gtaattaataa gtaacttaat 1597
 aaatagcaat aaaaatggca aaaaaaaaaa aaaaaaaaaa

<210> 97
 <211> 653
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4000975CB1

<400> 97
 aaaacaaaaaa aaaactgtgg gctctaccaa tagtccaaaa tgccaaagaaa gcttccttca 60
 tggggaaaaa gccttttctt ctccgtggaa ctcagccac tggccttggc aatgggcagt 120
 gtcctggcc tgcaagtctt ctccaaagaca aatccctgtt ttcttagccc acccttgaaa 180
 agtagggctc tggggccctc ccccccaggag gtttctggc ccaatctgca acgtcaagta 240
 cgccgcgtgt ctttgggtt tgaggcagct ggggagggtt actttggaca gatgtcctt 300
 ggctgtgagg cagctgggaa gggtagctt ggacagatgt ctttggctg tgaggcagct 360
 ggggagggtt actttggaca ggtgtccccg gcactgtgcc ccagtcaggt gcaactaagg 420
 gatgggctgt gcctactttg aaggttaacag agtctgccc gggccacagt ccaagggcga 480

```

ggcccttttg ggggcctgt catggcactt ggtcatcagc cacctggcc cctgcaagct 540
ggggccacccc atgggcactc ctgagcaagg cctgggaggg acctgccagt gtcctggag 600
ccactctgccc aaggctcagt ggcgatgtca tactttggaa aaaaaaaaaaaa aaa 653

```

<210> 98
<211> 3090
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 4598831CB1

<i><400></i>	98	ggctggggccg	ggctgggcta	cgcgcacggg	ctcgcccgcc	gcccctgccc	gttgcataacc	60
ctgtcctgag		ggcgccgcac	ggagtgcac	ggggccgctg	ccatgacgac	cgccatctt	120	
gagcgcctga		gcaccctgtc	ggtcagcggg	cagcagctgc	gccgcctgccc	caagatctt	180	
gaggatggc		ttccaagat	gccttgcact	gtccccagaaa	cggatgtgcc	ccagcttcc	240	
cgggagcctt		acatccgcac	cggctaccgc	cccacggggc	acgagtggcc	ctactactt	300	
ttcagccctt		ttcagaaaca	caacgagggt	gtcaacgtct	ggaccattt	actggcagcc	360	
ctggccgtcc		tcttcgtcatt	ctgggcctt	gccggaggctg	aggccttgcc	atggcgct	420	
acccacttcc		tgcctctgt	ccttttcata	ctgtgtcaat	tacttaccc	cacctggcag	480	
cttctggccc		acctgtcga	gtccaaagtca	gagcttccc	actacaccc	ctactttgt	540	
gactatgtt		gctgtgagct	ttaccaatat	ggcagtgctt	tggctcattt	cttctacagc	600	
tctgaccagg		cctggtatga	ccgggtctgg	ctttttctt	tgccagcagc	tgccttctgt	660	
ggctgggttat		cttgtgtcgg	ctgttgcata	gccaatatac	tttaccggag	gccttatcca	720	
gtcatgagga		agatctgtca	agtgggtcga	gcaggcttgg	cttttatcc	agacatcagc	780	
cctgtggcac		accgtgtggc	gctctgtcac	ctggctggct	gccaggagca	agcagcctgg	840	
taccacaccc		tccagatcc	cttcttcctt	gttagcgtt	atttcttctc	ctgccccgtg	900	
cctgagaagt		actttccggg	ttcctgtgac	atcgtgggccc	atgggcatca	gatcttccat	960	
gcatttcgt		ccatctgtac	actctcccg	ctggaggcc	ttcccttgc	ctaccagggg	1020	
ccggcaggaga		tcttcctgca	gcccgcattgg	cccctatctg	tccacatggc	ctgcctctcc	1080	
ttcttcctcc		tggctgcctt	cagtgtctcc	accgcagccc	tttctggggc	caaagtcaag	1140	
gcccagactga		ccaagaaaga	ttccgtggc	tggcaagtgg	ggcaacgtgt	ggaggaagcc	1200	
cctcataata		tggaaaaaaac	ttgataacaat	agaagtgac	ttttaaggca	tttgccttta	1260	
aattaataca		tatataccaa	gatatgtt	agctgtcgt	tttggaaagcc	aaaggattta	1320	
agagtttgt		tgttgttataat	aaaaggaaata	ctccttttcc	ttttggatca	tagcttaaca	1380	
aggcacagga		agggaaggga	tcttgactaa	gattcatgag	acattgaatt	aaggagaatc	1440	
atcttcatgc		ctgaaaattt	agcaaaaattc	cgactatggc	ctccaggggc	aattccctaaa	1500	
agctgaatgg		ataaaaaaat	tggactggaa	agtaagtagg	tggctggttc	tcaccctgtt	1560	
ggaatggcta		tcctactatg	ctgttctt	gtaatggaaat	aaattgaccc	aaggaccgaa	1620	
tttcatttgg		atttcaaatt	gtccagagt	aaaaagccctt	caagatgaca	tgtgaatta	1680	
ctcagttcat		ctgatttctt	gtccctcc	tctcgacaa	tataataacta	accctttt	1740	
caggataact		gtctacac	ggcagttt	tctgacgtgc	ttttca	catccctacc	1800	
ttgcatgtt		atataaaggaa	cttaggaagca	gtcataactt	caggaaatgc	ttggatttcat	1860	
gtggacattt		aggaagctt	ttctcatata	ataactatct	aaacagtact	aaaaattaca	1920	
gtgcacaaag		ccaccaggag	gcccgcacaa	taagcataga	tatatatgg	tatcatggg	1980	
cccatctatt		tttttacagg	ggactacagg	attacttgc	agtttacagg	gtgccttaac	2040	
agaccaggag		atctgggggt	tgccacagg	aatccctata	tttggaccagc	atgtttaaa	2100	
agctcttgg		aggatttagt	gtttctaa	atccctctag	ggaccttattt	atttcaagag	2160	
gaacccaaag		tccagcctcc	tacatagat	ctggcccac	aaggaccac	aaaactaacc	2220	
tagttcagg		ttctcaggca	ggcagttctt	tttcagctt	gagcagaacc	cataaaatac	2280	
tcaagtact		ggataggcaa	gcatgtgtt	ttactgtgg	tttggccctt	aaggcttcc	2340	
tgggtgagaa		catgtgaacc	aggcacccct	gtttgtttgg	agcattgtct	cccagaagct	2400	
tctatggat		agggtgtgt	tgggtttat	gtttgtgtgg	catgcagccc	tccctgagga	2460	
ttgacttctt		cactaatcca	gtgaaggagg	ctgtgtcaaa	agaagggtctc	agaagccctc	2520	
tttcagagg		caatgattcc	tgtcgtat	aggtccctt	tttactaaaa	agggacatga	2580	
ttaaactcca		gtttgtat	cctccctccg	gtttacttta	tttgccttca	atctttttgtt	2640	
ttcttcctt		tgttgagatt	tgtgggtttt	gtgccttata	aatggaaat	tatgaacaca	2700	
atatatgtt		atgttataat	ttctgttct	gtttttgggg	ataagaaaaaa	atatatattt	2760	
ctcttcaact		agttaatggaa	agaaaactica	gaaagctaga	atttgcattt	aatcaaaaaga	2820	
ctttctcaat		ctatttggc	cacaaacaaa	catattcaac	tgaagcttcc	caataatctt	2880	
tatatacaaa		aagcatgcgt	cttgcgtacgt	acattttttt	tttagatgg	tttcttctgt	2940	

```

taatcctcaa atatctgaac ttctgtgtta cccaaatgttc ttatacaagg ttctgggttc 3000
taggacaaat ttatggcaaa taaaattagc aaaactgaaa aaaaaaaaaa aaaaaaaaaa 3060
aaaaattctc ggcgcaagaa tttagctggcc                                3090

```

<210> 99
<211> 1274
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 4992201CB1

<220>
<221> unsure
<222> 1191, 1250
<223> a, t, c, q, or other

```

<400> 99
cggcacgagc tggctttgaa ctcggaccc cagggtatcc gcccgttcc gccccccaaa 60
ggactgcgt tacatgcgtg agccaccggc cccagcttcc aaaagttta agcagagctc 120
agaggtctt agcacaggca catcagagga gcattttga aatgcttcc agttctcca 180
ataggaatgg aagccaaatt ccgaatttat gactccttg aggaagtgcga gagctgtaa 240
gaaagccagg aacaggggca agggagagat gcatccggaa tgatccctgtg ccaattcttt 300
ctggaatctt tgatgtgtat tcagctgccc ttctatact tgacacagtg attgtggcac 360
ccactggctc agctgtggtc tacaaggaa ccccaaagg aaggccacag tgagcagggg 420
catcgccgt agtgcacaagg atttgagagg gcagggttggg tgccaggaga ggactggca 480
aatggcatgt gtctggactt aggctgcctg gttcaactg gacttcaccc ttttgactt 540
catgatctgg tacaatttat atggaaatgc attgctcctt ttctagtctg taaaataata 600
atgaaaatgtc cactaataac tgggagacta cgcagggaaa atgaaaacaag ctgcataagac 660
cacagagtc agaggctggc cttaggaag ccctcagtaa gggttcatga tgccatggtg 720
tctgtcatca tcctctttat cctcatcatc accttcataa tcttttatt gttcttagag 780
aatagtttag agggactcat tccctgtat catgggtgag atgtctatga aaaggacaac 840
cagtgaaaaa gggaaaggaaa attttgaata agatttctga gaccgcccc ccccgaccat 900
aaccagaaac agaaaactcca cagtcgtct agccgacagt ttgcacgttg gtctccccc 960
atctggccac cgcactctcc tggttttttc ctggagatga ggataaaaaa caaggctccc 1020
aacctgcctt cagcaactcac tgaactgccc ttcccctctg ctggggccatg accacggaga 1080
acaagtccac tgtctccctt gctgggtgca cgtggggccatg tcaactccca tcttcaggc 1140
tggcaagaag acagggtgaga catgaggccctt ctgatcacagt gatggttctg ncacagatgg 1200
actcacatga ggtgagccaa tattacatca tgctggagtc agccaaagctn tagcaatgca 1260
gtccacttag atca

```

<210> 100
<211> 1514
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5441583CB1

```

<400> 100
aatctgcaaa gttcctgtga gcgctgtcat tttgtcactc tggttttca gattcttccc 60
ctggaggctg gagtttccag gatgtcaaaa ttacctctgc ttgggtgagc tatttcaagc 120
agctggata cctgtgtcac tcctgctgtc tgccagtgc tgccagggtg tctgctggtt 180
cctccccagg agtagggagg aaccagggtgg gctggctggg atgggtggat attaaagac 240
caggccttgg acgctgcagc acttctatct ctgcttgatg cctgctgcca cgtggcttgt 300
cctccctctc ctgctgtggc tgagccttgg ggtgaagaca ggcagctgtc cccaaacccca 360
gaaccttgc tgtcttggga cggatcaccc ctgcaaggagg ggaagtgtgtc actgtgtatga 420
attctgcatt gtggcaccag actgcaccc agaccaaggt gtcctctgtca accctggtaa 480
ctcacataca ggcccgattc cacctacagc aaagctggat gcgatggctg cgacagggcaa 540
acccttgc tgcaattcag gccaaagccg ggatgtggcc tagatggttc ctaagggtccc 600
tgacaatctc gagatcttgc atcttgtcta tttcaggtca aaggtgccta catgctcttt 660

```

ctagtttgt ttccatgatg ttccttgcca cctgctactc ctctctgagc tactttcca 720
 ggttccacag ggagagggttc agctgtccgt ggttagacatg agggtagaga gtgaggggtt 780
 tgggttccac ttaccttct atcatcttgc agtatggatg tctcttact ggtaccgtgt 840
 agactttga gggcacacag gagtctgcag agagataactg gggacattga gcagcagcag 900
 tgggttggg aggcaaaaat gaggacagga acatttacct tgttttctc tcagcttctc 960
 agatgaccaa gatgtgtcg cagatggtgc tgaggatgaa gaacccacca agccccgcta 1020
 ggagccaccc agactggatg cagacatgg ttccagcgagt tctccaaacc agcctccca 1080
 gaatgccatt ctccatggct gtgaggagaa taaagaagag agcctgactc ctctcctgaa 1140
 gccccttccc caccctgagc cagcaggatc cacggagoag aggtcatctg tccccagctt 1200
 gccccactga ggccagcatg gctggggcca ggatgcttgt ctctcagctc ccattctgtg 1260
 tacttccaca ttggtttaac cagaggaaaa ccgaaatcta caattgtcat aaacacattt 1320
 aaatgtgcgt agaatcagcc atacaaattt taaaacatac attgggctca tggatttattt 1380
 cactgttgg tggtggttag agtactata gcaaacattt cttgaaaagta gaaaataaga 1440
 acccagcacc cttgagcta agtaatgtgc cctctgtcct caatattcct tcctgggctc 1500
 cacattactg ccct 1514

<210> 101
 <211> 1380
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1639243CB1

<400> 101
 tagtcatcga actgccactg ccctctctg agccccatca tgctgggtt ttaggaaatg 60
 ggacagctct gtatctggaa aagtccctca gcctcacctt cttggctctt aagtgttaggc 120
 ttttaccact tgcccagccct gggcctccctc tctcccccacc ctttcacaag gcagctgccc 180
 ttccgcactc actggcccat cccttcttcc tcatacgccc acccttccac cccctgtcat 240
 ggctgtgtt ggtctgggtt tttttttt gtttttttta agacggagtc tcaactctgccc 300
 gcaggctgg agtgcaggc cagaattttt gtcactgca acctctgcct cccagggttca 360
 agcgattctc ctgcctcagc cttcccgatg gctggacta caggcacgtg ccaccatatic 420
 cagctaattt ttgttattttt agtagagat gggtttccacc atgttggcca ggatcttttgc 480
 acctctgtat ctgcccgcct cggcctccca aagtgtgttgc attacaggcg tgagccaccg 540
 tgcctagcca ggtcttgggtt tggaaacccctc actgtgggag attcaggcat cttccctaa 600
 ccagctggcc gctgtgttca agcctgttca gagttataaa taatcattag ctgaatgggt 660
 ctggggcctt tcagcttcag atctctaagc acttgcaggc tgagtcagtc agccctcacc 720
 ttccccctcc ttccctggct gcagagtgtt aacaaatggg aaggcactgt gggaaaggaag 780
 tcaggaatct tgctgttagc cacgccttgc agtacttct cgtctggag tggcactga 840
 gtcctctcag taaaactata agacttgcac ctgacaaaagg tcaagatatg tagggaaacac 900
 agtgtatgtt aggtctggagac ctatgggtt ggcagggggtt gctgttgagc ctgaacttcc 960
 agtactctgtt cccttccttc tggttacctg gcttggccca cagggggcac ccctggcttt 1020
 gatgcctcaa gcccagcatt tgggttccc ctctgcaagc tcagagagca gggaggcttc 1080
 tggtagtgct ctgtatgttctt ctgtgtctgg ttggcacaat gatcctgtt aacatgaaat 1140
 gaaagggtgca tcagcttggg ggctggggaa cctgcagttt gggtttactc cgtccctatc 1200
 actgggtgtgg ctgtggccaa accacttatt gcctgaccta cctcacaggat gttgttag 1260
 gggttggatgaa gagaatgaat gttaatagga attggaaaat tcaaaggcatt aaacacatgt 1320
 aaacagggtt taaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aagatctt 1380

<210> 102
 <211> 942
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1335166CB1

<400> 102
 gccttggccct tccaaagtgc cgggattaca ggcttgagcc actgtgcctg gcctattattt 60
 gttatttaag atggagtctt gctatgtcac cctggctgaa gtgcagtggt gcaatcttgg 120
 ctcactgcaa cttccacccctc ctggattcaa gagattctcc tgcctcaacc tcctgatgtt 180

ctgggattac	aggcatgcac	aaccacactg	gctattttt	gtatcttaa	cagagacagg	240
gtttcaccat	gttggccagg	ctggtctcg	acttctgac	tcaagcgatc	tgcctgcct	300
ggcctccaa	agtgtggg	ttacaggcg	gagtcaactg	gcccgaccag	ggagactatt	360
atgatggta	tgagtggaca	atgccaagaa	actgaagtac	actccttata	aggagttca	420
acaaaacaact	agtccaaaatc	aaataactca	aagtccatgc	aataaaagata	gttcaatagc	480
atttgagtcc	aatttgttcag	tctttgttca	gggatgatgg	tgattnaaagg	ccaaacccct	540
cccattaaat	gagagatcta	cattagagag	gtttcagaga	cctccaccca	gcaacagtgg	600
gcaaggcagcg	tttataaaca	aaaaaaaggaa	gtggcattgg	atataggctg	attggttatac	660
gctcaaccc	tgtctaaattt	ggacacatct	ggtcagtctg	cagtctgccc	ctggctgaa	720
gctggctgct	atgattggag	agaactccct	tcttcttaca	agaatatact	gcctggtaa	780
gttgttagtt	gtttacataa	taaataaagg	tacatcccc	tcaaattctc	cctacaacaat	840
atccccattt	ctgagctcta	ttaccataga	ctagttttc	tgctttaat	aatgggatc	900
atgcaattaa	cgaaaacaga	gagaacaaat	gcggcgccac	tc		942

<210> 103
<211> 1815
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 166894CB1

<210> 104
<211> 1120
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc feature

<223> Incyte ID No: 217969CB1

<400> 104
 ctccgctgag ggaactggca ctttctccac acacccctt cgccgagtca cagacaagct 60
 atgcagagaa atctaccgga gccacggaa ggctctggaa gaggacagag aaggagcag 120
 ctccagagg ccacatcggt ttgtcgccat gacaacagag gggcggggcc gtgaccacct 180
 gcccctggca caaggcccc aagtggcaa gggtcactga gtcttaagca aagagcaaga 240
 ggcacatgcc tcataggaca atccacccag agtgcctaa ccacagacccc caaaagtccc 300
 ctatggaca ccacccagtc caggaacaga tcaaattcaa gaatatgtaa acttgggtgg 360
 gaaaaaaaaat cttttctcc actagccagg aactaattatt tagcatttc attatgaaga 420
 taggcagcat accacatgag cagccctgt gtgtcggtca ccagtaaaaaa tcataatatg 480
 ttcatggcac atgatggta ttgcagttt gttttttgtt tttttttga gacagagtct 540
 gcctctgtca cccaaacctgg agtgcagtgg taccatcaca gctcactgca acctcgacca 600
 cccgggctcg agggatcctc ccacccatcage ctccaagttt ctcggactat aggctgtgc 660
 caccacaccc agctaattct ttttagatgg ggtctcaacta tggtgcctg gctagtctca 720
 aacttccggg cttaaagcaat tctcctacat cagccctccca aagtgcgtgg gttacaggca 780
 tgagccacca caccggcctt gttgcagatg tcttggaaaga gtatttaccc ttcatctcta 840
 ctgtgaaatt acggttgttt tcagacttgc cactattgaa tgcattattt aagtggtaca 900
 tatatttcta catcgtaaat gtttatattt ggcattttga tatcagttt tcaagagttc 960
 tctccctcgat aatccaaagt gtgttatttt ttaaatgtaa acattattt aagaaggggc 1020
 tcaggatcaa ccctggagga ccagacgggc tacagcacac aaaaaaaaaaagc ttcaagtacac 1080
 tgtatttagt tgctgaggat gtcgcaacaa agtacttcag 1120

<210> 105

<211> 535

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 335237CB1

<400> 105
 aaatgaatag ggagcttctc tagactgggt agccccaaaa ggtctgcccgg aagagatgct 60
 atttagtctg aaggcctgat cgtgatgaca gttccccctg tgaagggtgca ggttagagtgt 120
 tttgtaaaca tggaccatc acctgtgatc atatctttaa ccctcacact ccccccattcct 180
 aacccatcgat aaatgctgtc catgctctga gctagatact ctcatcttaac cccttacccca 240
 cctccaggag acctcgctg ttacagtcta tgcctgattt agctgtgtc cttttctgca 300
 gtagagtcggc caggagttct tcagggacag gcagtcaagg acagctgggt cccagagcct 360
 ccctggcttg cccactgggc agctccaggg acaacttgc ac tggccaaatc aaagccaaag 420
 gtcagaacag gaggcagaac ctcgccccggc cctcttcaaa ctccaaggga aagcctgttc 480
 cttggatctt ttcagaataa aaaaacaaaaat gacatcaaaa aaaaaaaaaaaaaaaa 535

<210> 106

<211> 1188

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 938306CB1

<220>
 <221> unsure
 <222> 1052
 <223> a, t, c, g, or other

<400> 106
 agtaactgtt ctttgcctcc ccgggttcaaa tgataccctg cctcagcccc ccagatagct 60
 gggattacgg gcacatgca ccacacccgg ctaactttt aatttttagt agagacagag 120
 ttcccatgt tagccaggt ggtctcgaaac tccgtaccc agatgataca cccacccatcg 180
 ccccccacggc tgctggattt acaggtgtga gccactgccc ccagctggct tatgctctt 240
 ttctaaaaat ttgtccactt aggaaagtgt cttgattca ataaaatttag catggattaa 300

attactttt ttctttttt tttttttttt ggtatggat cttgctcgat gaatgtggac 360
 atcagctatg ggtaggaat gctattcagg aacatcta atgtttgtga taatgttattt 420
 gacttgtggc caaatggta tcttgagaga tgggttggc acttgcacag attaagccaa 480
 agttaaattc tgatgaagt caaaggaatt ttatcggtcc caggatggtt gccaactgtg 540
 ttggcaaaa gagtgattt ccaaaaaggc ccagagcaat ccgcattgtat tctgtcacct 600
 ctacttccag ttcttcacaa ggcagccaa aagcttcatt ttcctacttc ctgtcatttc 660
 caaaaccaca gcttaaacct gaaaaacaaa tgggaagctg tggttctgcc tcttatgtatt 720
 gtcgcactt acaaaccagg aagaacagag cacgcaggc agaggagagt tcagtcttgc 780
 tgatgtcaca tgaaggcaga tgaggactt gcttggggc ctcctgagtt taaaagataa 840
 gtagacaatt tattgttggt aggttgagaa aattcaagaa cagagagaaa tctgacagtc 900
 tggccataag aagaaattt tgcattatg ttcttatacg catacctgaa gtcaactaat 960
 tacgtttggc gagaagtaga atgcttgctt taagaagaaa aaacaggcta gggcgcgggtg 1020
 gcacacaccc gtaatcccag cacttggga gnccgaggcg ggcagatcat gaggtcagga 1080
 gatcaagacc atcctggcta gcatggta accctgtctc tactaaaaat acaaaaaattt 1140
 agccgcgcgt ggtggggc acctgtggc ccagctgctc gggggc 1188

<210> 107
<211> 638
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1448129CB1

<400> 107
 ctaatgtgga gaggaaggat tctgtggtc ccttaactgc aaaggattgt tcactatcg 60
 acattttagag ctgaagagaa ggcttgcgaa ggccatttga ctttttttt cttccttattc 120
 gcagcaggc catcagcaat gtcacgaacc tctaaccaag accccctaag caatccaattt 180
 tctggcagca cttaaatgtctt ttctatactc ctgtatggac atgatgtca tttctcaaca 240
 aagattttt gaatgtctgc tatgtttat gcaccatgtt ggaggctggg gaagatgcct 300
 acgcataacc tgctgtcctt aatgaactca caggccagct tcggccagac attccagca 360
 gcattggagt ccaggctaat agtaaccaga gagaggta aactgggtga aagaaaggaa 420
 cccttcctgg aggagtctcgc atttgagcag ttcttgcagg tgctgtgggg tagagggcat 480
 tccaggcagg tgggtctt cacaaggatgg actgcaggatgg ggggttcctg acaaagatga 540
 gaagggttag gtttttcctt cttcccttc gcatgaaata atggggaaaga agccgtgata 600
 gaaagattta gtttggagta ggataaaggc gctaagaa 638

<210> 108
<211> 648
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1761049CB1

<400> 108
 actgtaatgg gataactgata ctgcctcata gataatgaga ttaagtgtct cttacatttga 60
 atgtctgtctt cgggtttggc ctggagatattt ctttcccaag tgggttggaa tccatctctg 120
 tggccgttgtt aatggctggc caccaggaga gtttggatc agcctggca acatggcaag 180
 aacctgtccc aaatttaata taataaaattt taaataaaat tttaaaaata aaatttaata 240
 aaaaattata caggaggccc atgtcaggatgg aatttttaact gaagccaaacc ttattttttc 300
 ataacaatga agtttatattt acttagaaaaa aatttccattt catgataaat gtgtggatc 360
 atgtttttct tcaaaatattt gaattttaaag aatgttccattt gcaatactgg caactaagtgc 420
 cagattttgtt tttaaccat ggagtaattt ctgagaaata ttgtttttat ttatttttat 480
 ttatttttat ttatttatgt ttatttatgt tttttatgtt atgttatgtt atgttatgtt 540
 atgttatgtt atgttatgtt atgttatgtt ttggaaacag agtctgtctc ttgttgcccc 600
 ggctggagtg caatgggtgtt atctctgcctt cctgggttca agcgattc 648

<210> 109
<211> 1181
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1959587CB1

<400> 109

attaaaaatg tcttgggtggc aaaatcatgt aacaccta aacatctttt gtcataatct 60
 catactttgg aaattactgt tccaggaggt attcatgtga aaggaaagct gtttgaacta 120
 tatataacc caagcctgta agcagaaatg actggacaga aatacaagcc tgtgagacag 180
 agagatctag gagatcccta gagagggtcca tctagaccc caggatgaaa ttacctcatt 240
 tagctcagtt tctcacccctc ccgttagtgc tttggccac ggggtcagt gtttctgcag 300
 gatttcacca actgggtcca cagtggaaat gtgaagaggt acctggctgt gggaaaagct 360
 gcttatcaaa gagaggcctg atagaaatgc tagggaaatgt ggctgtgagc ctgcattatg 420
 gacgggagca gagcggcagg gcatgttgc aggacta aagc agtcgattca cgtgagtctg 480
 gacaccatgt ataaatattt tgaaaacttc ctgttacaat ttaatttact ccattgtgtt 540
 agagggagtg cttccctgca catgggtgtc tttatattt ttgggtgatg tgcttttaggg 600
 tatagtaattt atttatacgca atagattgt acccagggtt cagagttgc ttatgttat 660
 ctttatttcc ttttctttaga gattatagac ataatttgc tctgtcatct tttgaccaa 720
 aatctaattgg gaatgaagaa ttacacttgat atgtttat ttaagtaata agttctgtga 780
 tagtgattt aggtgtctgc attttttttt atgttttaaa aagtacagag gtcaaacaag 840
 catctgtatg attgaacaaa tgttatccg tttatccgt tcaaaatttta aaaaatggat 900
 aaagaggccg ggcactgtgg ctcacgcctg taatcccagc actttggag gccaagggtgg 960
 gtggatcacc tgaggtcagg agttcaagac cagcctggcc aacatggtga aacctgtctc 1020
 tactaaaaat ataaaaattt gccagatgtg gtgggtgggt cctgtaatcc cagccacccg 1080
 ggaggctgag gttggagaat tgttggacc caggagacgg aggttgcgt gagccacat 1140
 ggtgccaatg cactccagca atggcgaca gagtgagaca c 1181

<210> 110

<211> 1291

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2303463CB1

<400> 110

ggccctctcac ggagactttc ccaccagtgt aataaagagg agaaaacgtc acagcggaaag 60
 ggccctgaccc tgctgcatcc actaaggaaa cagctacggg gatgggaccc tggaaagctgc 120
 tggggagcc tcatacccg cttctctgac cccacccagg ctgctccca ggcctcagg 180
 tcttagtgc gaccccccgg ccgtgatcaa tgcagttttt caggttaagt actgcacgac 240
 tactcgctt tggaaactgt agacactgac tcacccgt gcagggcaga cgcacaagag 300
 cagaatctcc gtggacatc tctctggac atcaatattt ctgcattt tggaaagaaac 360
 aaatttaaat aagttctaaag tgaaatggatgaaat tttttttttt gaaatgtctg gaaagtcatc 420
 tgcctttat aactgtcgat tgcatttttgc gtcagactttt ctccaaagaca aaaaactctaa 480
 gaacttattt ccattcttac aaatgtataaa aatgataat catatcaatg caatttggaaag 540
 tcctgcctgc tgctttctta aatcacaata tggccttggat atgtttttt ttgtactttt 600
 gtgggggatt cgtggatctt tagattaaaa aaaaaaaaaatg gtttttgcac aatttttgc 660
 agtttgcacg tggatgtttt tggcaacccca tcttattttt ctgtctctct 720
 cctctccatca ggctcaatata ttccatgggt ctctaaaggct gtgtttttt tctttaaattt 780
 ttgttgattt acttttatac tccatgttgc ttttttcttctc tctcaccctt tctcagactc 840
 agtcatccca caggctgttgc aggctctgtt cattttttt aaactttttt ttttccctctc 900
 ctcagattgg ataaattata ttgcattgtc tctgtttctg aactatagaa aagctcaaaa 960
 ttacttattt tatttcttcat tttttatatg gttttttttt ctctgtgtt gtttccatc 1020
 tatttcatat tggaaatattt ttcccttgc cttcatggatc tttttttttt agctgccttc 1080
 aaattcttgc tggccgttta catctggac atcttggatc tggctactgc ctgtttttta 1140
 tcttgcgtat ttatcattt ttcacgtgtc ttcacgcac tcttgcattt gaaattgtgc 1200
 cctggagact gtatacaaga ctggattaaa aagactggat tctgaaaaaaa aaaaaaaaaa 1260
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaattt g 1291

<210> 111

<211> 594

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2512281CB1

<400> 111

```
tatatcccca acttgcagtt tcaaggctgc cttcccttc cctgtgctgt gggtttctcc 60
cccccggtt ccccccgttcc tcctcagtgc ctctgagagc acatggcagc tgccccagcc 120
ccgaaggccaa gcctggcgc tgcctcggtt cctctggaaag tcctcccccgc ccctctacaa 180
gcctccatca gacgctctcc agggacggag tgcgtccctc cagccacagg aaaggggaga 240
ctgatccgcg tcaaggccccg ggtatggata gtaaccatga aatccagccg cagagcaatg 300
tgtctcaagc catcagtcac cttccctaat tctcaggaag ccaggcatgc cttcaccc 360
gctgaacctt gaactccgccc ttggcctttt caaggaaatc agccagtaaa taagacccc 420
aaatcgagc aacctgagaa gacatgacca gggtacaagg agggagaact gtggccaagg 480
atggccacag gccccagatg gtcacccag ctcaccaaag aactggcctc ttggaaagagc 540
ttcaacattt tcagagatac cacgcgaggg gcggtcattt actgacttct ttcc 594
```

<210> 112

<211> 852

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2755924CB1

<400> 112

```
ttagtttatt tcaccacagt cgtaaaggcag gatgtgatgt ttattaaaat tcataatttta 60
ttttctgtt tctgtgtgtt gcccaccttgc gccattagcg gttggagctg cccctttttt 120
ttgtcaactgt catttttaa acatagtata ttttattttttt ttctttttttt agtgacaggg 180
tttcaactatg ttgcccacac tggccatgaa ctcttgcgtt caggtatct tcctacctca 240
gcctcccaag tagctggac tacaggcaca tgccactgtg cccagttgt cactgccaat 300
ttaatcttgc gcatgtttgtt cccattgtgt tattgccatg tgaaaaattt tgccaaacagc 360
caggagacct ctgtttcttc tgtaaaggttt aatctttttt ctttgcataatg acttaatagt 420
gatttctatc aagtggagaa gaaatcttaa aaccgtacat actgtttttgg gctctctgg 480
agtttttagg aggggagctc cccaggaggt aaatgggaat gccatccagc tttggcaat 540
tcttattgaa actaatgagt ttaatagact gaccttatttta ctcctattta caacctcatt 600
acaaaattat ctgctcaatg tttgctaaat tcttttatcgg tcttgcataatg ctaagcccc 660
tgttaatttgc tggctaaac cgtaaaaattt ttcccccctt catataaaaa gagtagcccc 720
aaaggccccctt gataaaaat aaatagtggc tttggcaattt ttgacatcag gaataaccta 780
ggaaaaatttgc gcttaaagaa tttaaagcta aaaatggtc tcttgcataatg cgtgaataaa 840
aaaaaaaaaa aa 852
```

<210> 113

<211> 1361

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2796369CB1

<400> 113

```
aactgtgtgtt acacagtggag cgtaaaggatc tcagaagact caaaaagatat ctaacccatg 60
ctaagtggaa atttggggcc gctgtaaaaat ttccaccacgg gcaacagcta tgaccgg 120
ttcccccaag gtcataatac ggccccctat tggccaaactt ggtaccccaa aaatggccgc 180
tacggaaata attcccgcccc agacgagtcc actagtccagg ccgtgcctt tttttttttt 240
tttcaatgtt ttaagaaaaat ttatagattt gtgttgggtt gcatttcaatg ctgttccatg 300
ggccaacagt tggacaagtt tgcccttagat catggggtct ttgtgtctg agaatggcg 360
agtttggat ggactcagct ttctgttggt tggcccttggaa tctggatctg gtgtgcctcc 420
ctttctctgg agcacacaaa ggaaacaaga aggcccttgcac ttggcaagg aagccatcca 480
```

cagggctccc cagaaggccag ggccaccagg agctcaactgc ttgtcagagg caactcggtc 540
 tggttatttc ttgcctgagg cagggAACAG ggaatgcagg gaagccaggc agcaggcagg 600
 ggctccaaac gctgggtgtca gcaagccaga acccccaccc gacttcactc ctgtctgccc 660
 agctcacagt cgccctgtcac tgggaggtcc ttggggcctg gacctgcctg acctgtggcc 720
 ccagaagggg ctaagcccg agtcacatgg gatggagct ggaatgcata ggccaagtgg 780
 gttgtgcctg ggcagcaggc ctgggatatg agggggctac tcctccatcc acagccccga 840
 cacacattct ggagggatgg tgcgtacccct gtgaccaggc ctccgcaccc tcacataggc 900
 cagcaggggg caatgccagg tgccatccag agccccaccc catgtcctcc cggaggtcat 960
 gagctctgcc ctacgtaccc cagccccaca atgggaaggc ggcatggagc tggcagagca 1020
 tgcgccacgc ctgcctgt tgcgtttctg aggaactctt gttcaactctg aggccactgc 1080
 cttaggtgccc gtccctggtc tgctgtctgt ggctctgtat aagctaacc a gccttcttcc 1140
 ccaccaagag ggtgtcccg cagcagctat ggctatgtc cggcgggggg aaggcgggg 1200
 gccttcctcc tcactggctg ttcatttt ttatTTTTT gaggcagagt ctctcggtcac 1260
 ccaggctgga gtgcagcggc gtaatctcg tctgctgcaa cctccaccc ccagggtcaa 1320
 gcgattctct gcctcagcc ttccaagtag ctgggatcac a 1361

<210> 114
 <211> 1650
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3010920CB1

<400> 114
 ctttttttt ttggtaaac agccaagtga ataaaactat ctgcctagg tgaggtggcc 60
 tctaattccca gcactttggg aggcccaggc ggggggatca cctgagggtca ggagttcgag 120
 accagccagg caaacatgtt gaaacctcat ctctactaaa aataaaaaaa ttagccaggc 180
 atggtaatcc caggtacgtt ggaggctgag gcaggagaat tgcttgaaacc tgggaggcag 240
 aggttgcagt gacccaaat tatgccattt cactccaggc tggcaacaa agcatgactc 300
 tgcctccaga gggggaaaaaaa aaaacctgtc tacaaaacttc tagtaagtta ttatTTTcat 360
 catatggcac taagaaaaatc atcatgtttt ccattaaaaac taggtacact aataacttat 420
 agcttaatcc ttttggcatg gtttctactg aaatctgtca ctttcaacca agtcattatg 480
 cctcgagagc tctgtcaaga cttatataat gttcattctt atgataaaaa ttactgata 540
 tttcagataa atagttgtgg ttgcgtgtac acatataatc actacagaaa actgttagatt 600
 tctatataag caagaaccaa ttattgtatc atcataagca ataccataag ggcacatatga 660
 atatttacta gtattataca aaacagctatc caccatataat ttggatttca gtacagttct 720
 tcctccagta cccacatctt tgagacgtat taggaggtaa aattcaccta agtttttagaa 780
 ctcacacaaac catatctcaa gtatttactt ctgccttac catacggtg atcctggca 840
 agtagttaa cctccctcg ccttagttt ttcatttgc aaataataat acaaaccctt 900
 ttaagttttt aacagaaccaa tatattgtat gtaaagtacc taggaaaggc tctggcccat 960
 agtaaatgtt tgataatgtc agtgettact gtaatcatgtt ttgaaattgc agagatcaaa 1020
 caattcccaa taatatagca aaaaaagtga agtgcctagg accttcaaaa atatttcaaa 1080
 gaattttgtt tcaagatgtt ttttagactt ttttctgg ttctacaaag tccagatgg 1140
 atcttctgtc ctacacaatgt taggtgtgtt cgtaagactc ttctaccagg tactttctt 1200
 acatctgtga gaggcaagca ggtatttccc cagtaacttac acacttagtgc tgctaattac 1260
 tgagtcatgt ttaacgaata cgtaaactac tctggctatg ctaaacactt agggaggctg 1320
 catcagattt ttcaacaact ggtcagttt tactgagttc actgagttacg cagctatgtt 1380
 ctaaaaaagtt gcattcacat caataatcaa acataatccc tgcctgagta gagtttacca 1440
 tctagaggaa acaaaactaaa agaagttaa aagaaaaatgt agtattttt agtataatgg 1500
 cttagctaaag ttgatttgc tgcgtttaa aaacgagaaa gaatataatt agatgagagg 1560
 cagttataaaa tataaattac aattggatg ttgaatgtg caacagcggg aaagcacacg 1620
 aacacaggat gaaacataag taatgtgtac 1650

<210> 115
 <211> 1845
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3360955CB1

<400> 115

gaccgcagga atttttttt ttttttttg cattgtat ttcaactttat taaataagca 60
 aaaaaaaaaaca actggataaa aagaatattt gcaaagtcta ttaagctccc atttgtttgt 120
 ggaggtgtt gctagttgtc tagatcctt agtaactgac cttttttagtt tgtttttatg 180
 ttgtttgtt tcagctttt tccacaacag gcagtcactt cagaccagga agtctctaaa 240
 agcacccgaga ctcttcggag gttaatgct tcggccaaga tcatggatgg ggaggacaca 300
 gggcttacc atcagcactt ctcttggatc ctcactatca acaggatgat ggcccatagg 360
 agcaaaggc caagtttca tgcaactgccc agtttaccca ttttgcacaa tccttcctcc 420
 tggcctcctg actatgacac cacccagatg tccatattt ctgcaggaa aagcctgctg 480
 gggacaaaggc ttcttacttc atgtttatct tcttcattt tcagaaaaat tcccgtctta 540
 cattgcact ttttgcacaa agggaaatgtg ttttatagtt agactaattt acattaaagt 600
 gaaaatgaca ttatTTTgag gggtaccact tcaagtaattt tgtttatatt ttaataat 660
 attgagagtc ttggggcgtc aggccgttt tcctggcaca taaggaggca aagctgggtg 720
 ttggagacca gcctggacaa tataggaagg cctcatctat ataacaacaa caacaacaaa 780
 aaagaatatg atagagacat tcattgagca ttacatttt tgagcattat atattctgtg 840
 tcctgtgtct ccatccaaat ttttagattca aaatatattt ttactgtat gttaacccca 900
 aaagaaaaat atttatttgtt aataatctaa gtactatgtat atgtttttttt gacctctcca 960
 aatgctctaaa tcataccata ttgggaaattt attactcaaa tagctctctc tatataccct 1020
 tatctaaacc aggaccaaaag actgaacacagg ctcggaaagat atctttgttt ttatTTTgt 1080
 tttagaaaca gggctctctt ttggggccca gactgtctc gaactcctgg gctcaaaaga 1140
 tcctccccac tcaggccccc aaagttctgg gatttacagg gtgagccact gtgcccagac 1200
 tgaaggatc ttgttagggt gcttcttca catgggagat ggaacatata gatccaatac 1260
 agatgggatt gttctatata gtaaaacgaa caagtgcata attaaatcccc atgtttttttt 1320
 ttctctggtc aaaagtttc caaaagttt taccatttgc tcctctatct ctgaagtgaa 1380
 tacagaagca gtacaatgag gcagcttata gcagaggaaag ggacctacat gggactctt 1440
 tagctcatgt ggatatgaa ctgcagaaga gagaggctg ggttgcacgta aaataagacc 1500
 ctgaaatcca aaggcaatca acggatagc attgggttgc gttcaaaacc tcagagatcc 1560
 atatggctt ctggggaaa aactcttca tcttgcacca aggcagaaaag tgagaaggag 1620
 gcagtagcca ccaagacaga agaaaactta agcattttgaa gagggaaattt caatgggctc 1680
 caggtgcctt ccatgttaac atttcagaaa aactcccaga agtttgcata agctcatgcg 1740
 tgcataatgaa actgtttttt ccagtcaatg cgccatccctt gttggactca tagaggaaac 1800
 ggaggagcca agatggaaat gcagaaatca cccgtcttgc 1845

<210> 116

<211> 1061

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3409459CB1

<400> 116

agctgacaga caagctcgag cacttagagc aagagaaaaca tgaatttgaga agacgatttg 60
 agaaccgaga aggggagttt ggaggcccgag ttttgcacat ggaggtgtat gtgaaggcgc 120
 cggccctctt cctccaccca gggcccaat caaaggctcc gggggccggc cagccctca 180
 ctgtctcaaa cccatgttccat cccctccctt ccctcacgtt gggaaaggcac agcaggatgt 240
 cgcggcaaga atgttacatgtt agatgtgtac ataccacatgtt gctgtatattt tgatgtac 300
 aatcatgtaa atacatgtat ggattttata atatacatat ataaaaatct ataaaggcat 360
 attttttagaa aaacagcaca ccactgttcc ttttggaaaat agtctgtat agaataaaaat 420
 gaatttctac agatgttccctt gcttgcgtt ctgggtattt gggggggcgg ggtttggct 480
 gaatgtcgtt gacatgttgcg acttaccactt ggctgtgtt gggaggttagt caatagtgg 540
 tccctgtcac ccggggccacc tcagatgttgc gtacttactt aaccaaggaa ttggccagg 600
 aaggggcatcc tccctgtccc ctccggccctt gcactgcccc ctgcacgttgc tgcacgttgc 660
 catccgcaccc gcaggccgtt ccacgttgc tccctggccca gcaggccctt aaagcttggc 720
 agaaaacttca agcccgaaaag aaaccacggcc aggccaaaggc ttccactgtca tccttcagg 780
 catgtggagg ataaacacgg agtctccctt ggcacatcttccatgttgc cccatgttca 840
 cttagggggagg actcaaccctt ggccacatgtt ccacatgttgc aatggaccc ttggcttctt 900
 agtgtcccaa gggccctcgac aggcttccgtt gcaagacttta gggcaagaac agggaaagac 960
 aggacacgggtt ggggtggaaag aagccacggcc cactcagcac atctctggag ggagagcaaa 1020
 cagaccctgg aagaaaattt ggcacgttgc acctttattt t 1061

<210> 117

<211> 1085
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4102938CB1

<400> 117
cctttcttga tctccgtaca cacgcataacc acccaccctc cctccctctc ttctcccact 60
tcccctctct cctttctcac catctctctt cattatgcct tctctactcg atcaccctt 120
tgcagagaaa cctttctcc ttcttgctct tttccagttt aatttctcg cccccgttgc 180
ccagggct ggacatgcag cagaaggaa ctggggagac tctcgactg ccaatcatt 240
ctaaaaactc aggttccagt ttgagacccg cctggccaaat atggtaaac ctcgtctcta 300
caaaaaatac aaaaattagc cgggcaaggt agcgcacctg tggtcccagg tactcaggag 360
actgaggcat gagaatccct tgaaactggg aggccgaagt tgcagtgagc tgtgatctg 420
ccactgcact ccagcctgtt tgacagagca acatgctatc tctaaaacaa acaaacaac 480
aaaaacttagt gttcccacac cctotaaacc ctgcctcc tcaggttaca gagacctctc 540
caggaggctg aagtgccctt accccgacca tctgaccagc caccggccca tgcccggtgcc 600
ccaccggagg cgagggtgc tcactgctct gttttatctc tgccctctga tctgcattc 660
tttgccagg gcttagaccc aggccaaactg cttccggtag tcaataaacc ggtaaaaccag 720
caatagacat aagcggctat ttaacgaccc tgccctgaac cgacgaccgg gtcgaatttg 780
cttgcattt tctgccattc atccgcattt tatcaacttat tcaggcgttag caaccaggcg 840
tttaaggca ccaataactg ccttaaaaaaa attacgcccc gcctgcactc atccgactac 900
tgggttattc attagcatc tggcgcacatg gaagccatca caaacggcat gtgaacctga 960
tcgcccaggat atcgactgcg gtgtgggtt attttggcc tggggAACGG gggcaaaatg 1020
tcccttggc cgcttatcca ctggactccc ccgggttgtt ggaattttct acttggaaag 1080
cgta 1085

<210> 118
<211> 870
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4124601CB1

<400> 118
ccccctttttt ttttttttga gacacagtat cgctctgtt cccagactgg agtgcgggtgg 60
cgtgatctat gctcaactgca acctctaccc cccgggttca taccattctc ctgcctcaggc 120
ctcccgagta gctggacta caggcaccgg ccaccacgcc cggctaatct tttttttgtt 180
tttttagtag agacgggggtt tcacccgtt agccaggatg gtctcaattt cctgacctcg 240
tgatctgccc gcctcggtct cccaaagtgc tggattaca ggctattaca cgtccctttta 300
tactgactgg acttttgc taaaaaacag tttggctgac ttggagtgtat ggagttacta 360
gtctctgtgt cagggactgc aaatgctggg cctccagcag gggcaggcg gatccagcga 420
aagacagaag tgggtggcc caagggatg gagagctgca gaacacaagt cccgcctcaa 480
ggggggcagca actgcccaga gtccgcgtac ggccgctggg tgggactgca agcccccagggt 540
tgccagatct gtcaagttt ttcaagataa gcttggaaatc agattttcac atggaaattgt 600
cagctaattc aacaattaa aacacagcat gggctgaatg caacatgcct atggttcaac 660
atgggtgtca ggccaccagt ttgtcggttc ggatccagga ggattccatt aaggattgtg 720
cacctcagag ccatctgca agctggtgca gacccttcat ttgcttcttag aaaatcgggt 780
ttactccaca tggggtcgc aaaggatgag gacaaagcca gtgccttgc gtagaccgtg 840
ggagtccaccc acccactcat cattattaa 870

<210> 119
<211> 3394
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4180577CB1

<400> 119
acgagccgga ccactagttt cggcgcaagt tgctggaaag attaaaaggagg tcgctgttaa 60
atgtaaagaa aaaatgcctcg tagctatttg ctccctggta ttggagcagt tcagttttt 120
agtttataacc attggattca attcattgca ccatggttgc caaaagtgc ttaggtcata 180
atggattgtt aaaataacta aattccagg gttggaaact ctaggtttgt accattttt 240
ctgctgtggg aaaaaacaac aacaacaacg atgatcaagg taacatcaca ttgtatgtat 300
aatattatac tattaatggg atatcagtag acaactgtt acccatttagt agcatgaga 360
taaacagtag acctaataa attggagaca ttgcacta ggtttaacag tggaatctt 420
atttgcctag gtgacttcgtt ggattactgt ttgacaataa agagaacat ttattttcat 480
ttcagaattt acgtcacttt tagctacaag agtagaaaga aggtaaatcg caaggcggaa 540
gagtatactc ttgccttag gatagcgtaa actcaggctg agacataccc ggcttataga 600
gttcttctag atgttagac tgtaaatgcc caaatcctt caactaaagt tttagtgatt 660
ccacaaagcc tctcatgtaa atttccagg gttccaccat tgcacttgc aatatgtatc 720
cttggtagta cccaggatg tcctcgagca ccagttttat ttatctgcc attgcattctg 780
gattccatta cagccctctca gctgttactg cctgtggaca gtacttctg ttactgcct 840
gtagagagtt acctaacttc tcttcctcgt tcttcctcgt gtcctggcta ttttggcctc 900
agttgaaggg agtcttgc tcatctctga gggtttaag ttgttttgc cccattttt 960
tctttctag ctttgagcat gtttttcaat attcatattt taacttactg agaacattaa 1020
agggaaatga taaactcgta gtggggatat ggcagacagg tgctgtttt tttgagagaa 1080
gttagcagaag agataaaaata caaagtgc tatagtttcgt ctggagagga aagagagaga 1140
atttatttaga ttatataactt gtcccatggc ataccacgtt tatgttttaaa tagggacaca 1200
tctccctatg ttaactata cttataaaca actttgatac acattgcgtc ttatctctg 1260
tcacctgata ttttagtgc tctcaagg ttagattttt cttttttttt 1320
aatttggact tagtccata tacagaaaga acttttagaaat attctttttt 1380
tattgatagc cataaaatattt atgtttatgtt attctttttt 1440
gttcatgaat gtaacaagct tcaatttctc atttgcgtt agtacatttgc 1500
gtttgtttgt ttgttttgc gatggagctt cacgcgtca ccaggctggc gtgcagttgc 1560
gcatgttcag ctcactgca cttccaccc ctaggtgc gtagtgccttcc tgcctcagcc 1620
tcccggatgt ctgggactac agacacccgc caccacaccc ggtttttttt 1680
gttagagacgg ggttcacca tggttgcgtt gtcgttgc aactcttgc ttcgttgcattt 1740
gccccccctgc gcctccccaa agtgcgttgc ttacaggcgt gagccaccac gcccaggccgt 1800
acatttactt tttaaagcag cagacttaggtt acactaattt tcaacttgc 1860
gaatgttagtt atcaccatgtt cttttttttt 1920
gactacaaaa atgattctaa ttaaaccattt tataatcaat agtaggttgc gtcttttagcc 1980
attatatgtt tataatataca gacacatgtt tataacttgc 1980
tgagtcctga tgcactttt acccagctgg ctaccagaga tgcaagggtt ggctctttttt 2040
agattagcaa aatggacgtt tctgttactt gggaaaggaa aagttttttt cttttttttt 2100
acacagttt catcatggcc acaatcttgc ttatggcttgc gttaaacacgc actgccttat 2160
tagcaatgtt aacaaaaatg aaattttttt 2220
atttctgagc tcaattttt cagcaactgtt tttttttttt 2280
agtaagttt gtgtttaactt cttttttttt 2340
tacagagggaa aacactgggaa acattttttt 2400
attgtatattt ggaactgata ataggttagag attgttgc tttttttttt 2460
ttttttagcc agaaaattttt cttttttttt 2520
gaatgaaaat attttttttt 2580
tttgagtcctc ttcaatataat attgttgc tttttttttt 2640
ggcttagacaa atttgcattt atataatggc atacccttgc ttgttgcac tataactacta 2700
atctacatgtt tttttttttt 2760
ttgttgggtt tttttttttt 2820
atgagggttgc ttatgggtttt tttttttttt 2880
agagtctcat tctgttgcacc accggctttttt 2940
tttgcattt tttttttttt 3000
ggtagatgtt tttttttttt 3060
gccaagctg atcttgcactt cttttttttt 3120
agttgggattt cttttttttt 3180
ttcttcacattt tagtataatgtt tttttttttt 3240
caggggaaataa aaagggttgc tttttttttt 3300
tggagaactt tccaaaggcaca tttttttttt 3360
ttttttttttt 3394

<210> 120
<211> 2343
<212> DNA
<213> *Homo sapiens*

<220>

<221> misc_feature

<223> Incyte ID No: 5265807CB1

<400> 120

gatgtggagg aagtgcgttc cctactctcg cagaaggaga acatcaatgt gctggtgagt 60
 tgggagcagg gaggatggcg agacccgaat cctggctccc gtgttctgga cccctccccca 120
 ccgggtgggc ggctccgtgt ctccctctgtc cagatgagggc cgccagttt tccatctgg 180
 agtggaaagcc tactctgtcat ttggggatgg agagcagggtc aggcttgaag cccagatcac 240
 ttgggctggg aatgcccagg aacgttgttc tcttctcaac ctccggagtc tgcaagcggcc 300
 ccacccctcc tggaaaaagg agccggcttc tcagccatt ggcctgact ccacccctccc 360
 taggtgttttgc cctttgactc ccaataccgg gacttaggac gctgcagaaa ctatggaaag 420
 aggttgtggg gaagggcctg gagctctgag acttgggctg gggtccttga tagccccctt 480
 acccccgccc catactccct gctttttttt gccttcccag gaccaagaga ggcgaactcc 540
 attgcgtgtc gtcgcctacg taggcgtatgt ccccatcctc cagttgtac tgatgtcagg 600
 tgctaatgtc aatgctaagg acacactgtg gctgaccctt cttcatctgt ctgctgcctc 660
 ccgaaacagag gtatgcaccc ccacccctcta ttacccttca aaaaaggata agttgcttaa 720
 aggtggaggt taagggttaa ggagccctag tcctcagccc tacaagctgt tctaccccaag 780
 gtatgtgggaa gatcaaatact tggcccttcc tcctctaccctc tagaactggc cagtaagggg 840
 gttgagtgtc gccagctgtatgtc gtcgtactcagg aagagcttaa cactgggtc gcagactgcg 900
 gggccctgc tgccaggctt gaggactca tccctcccttgc gggggccacc ttgagtctga 960
 tccccctctg ggcactgaga tttctttcc ttgtatgga ggtatggat agtaatctgt 1020
 tgcatccctg gccctcaagc agcttggaaatg ttgacagcac agggggccaaa catatttcat 1080
 cagttgggtc ctttatccca ttcccatcag ccctgaagac agggaaaggg ggacccctcctc 1140
 ctcagttcat cacttccctg gtcctcaggcca ccagggggag gggccggagc cagttggaaat 1200
 gaggtgggtg gtgggttagga ggggcattttt agctcgggtt ttgcaaacacg accagtatct 1260
 gtttgcttac tgagatactg aaaataattt tggtgcctat gagaaggcta aagagggtgt 1320
 tcagggcaag atgttagcaag agcatttagt tttcctagaa gtagtagggg gttggatgt 1380
 gtggatctcc acatgtggat ttgtttggga atggatgtat gtgtgagtga agattttcag 1440
 ggtctaaagg ggcagtcag gtggcttggaa gaagagcaaa gggcttctgt ttaatcagc 1500
 aaggttaagg agagcttaag ttctaaagaag atccagaaga tggaaagtag gtattcagag 1560
 gcttaggtatg ttggaaaaat gagaagagat tctgtctgg ggaaggggct gttagatgcta 1620
 tgctgaccta ttccctccat catttctgt ttttttacat cctgtccca ctctctttt 1680
 tggccctgc ccctcaacag aagggtctgg ggctgtctgt ggcacattca gcagatgtga 1740
 atgcccggga caagctgtgg cagacaccac tgcatgtggc tgctgccaac cggggccacca 1800
 agtgtgtca ggcctctggca cccctgttga gcagcctcaa cgtggctgac aggagcgggc 1860
 gcagtgccttgc gcaccatgca gtgcatactg ggcacatcttga ggtgaggact gttcccatcc 1920
 aggcccagct ggggctttcc ctttcttac cttcctactc acgtttccct gcttctggc 1980
 cctcaaggcct gaaggagaag cagccggat gtttatataa acacttaagc tgaagcacta 2040
 aatgaatggt cagacttagat taaaatttctt aacttggact tcaggaggtt gataaaaacct 2100
 tggatttgc gtggaaaata tttgcataca cgccttctg aagagatcc atgtctttca 2160
 gcacatttgc aaagacttac aagagttaa gaaccggccg ggcacccggc ctcacccctg 2220
 taatcccagc actttggag gcgaaaggccg gtggatcatg agatcaggag atcgagatca 2280
 tcctggctaa catggtgaaa ccctgtcttactaaaaata caaaaaatttgcgggtgtg 2340
 gtg 2343

<210> 121

<211> 751

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5405979CB1

<400> 121

cacggtttga ctcaagtaac tttattttc tctaaattat tttatctggc aacatttctg 60
 tggcttaac tattaactgt aaacataaaa cagatgttagt gatgatctt tttcaagagg 120
 tggccgtgtt gttccagccc caggttgtct ggtactttcc ttcctcactc ctcacccccc 180
 acgtggcact atgcaagact tcacattctt tttgttttcc ctttctccag tcgttcttg 240
 tcctcctgtt ctttctgtgg ccggccctgt tttcttccat cagccaaatgtt ctccggcagcc 300
 tcctcctgtcat cagtggtggc tgctgtggc ttcccaagg ctgcgtgtt ttccggcttc 360
 ctcctcgtggc cagcagcatgtt cttctcgctg gcatgttgc ttccactacatgtt cttctctttagg 420

gcttcctctc cttgcgggcc agcagcctgc tgagccaagg tacctccct ttccttgg 480
 ctcttcctt tctccgttt cctcttggc atgtcttggc cagaaaggc aggttaagcgg 540
 tacttcacag gagaccctgg gtagggaggt ttctgttgc ttggagactg tggataagct 600
 ttagtagctg tcttggatat cacaggagaa gatggtctt taggaatgcc tccagaaaac 660
 tcacatctc tcagagggga cccgaagtgc acaacaggaa gagaagttgc tgttcggt 720
 ccccgcttca ctttctcac cagagaggcc t 751

<210> 122
 <211> 618
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7481109CB1

<400> 122
 atgatgagaa ctctcatcac cacacaccca ctgcccctgc ttctattgcc gcagcagctg 60
 ctgcagctgg tgcatgtca agaggtggat acagatttg atttcccaga agaagataaa 120
 aaagaagaat ttgaagagtg ttggaaaaaa ttgttaga cagggccgc cagaccacct 180
 accaaagaaa aagtcaaaag acgtgtcctt attgaacctg gaatgccact aaatcatata 240
 gaggactgt a accatgaaat catggaaaaa aatgtttact acaaacaccg ttgggtggca 300
 gaacattact tccttcttat gcaatatgac gagctccaaa aaatctgtt caacagattt 360
 gtgccatgt a agaatgaaat taggaaatgt aacaggagca aaggcttgc tggatggatg 420
 tattgttaatt taacagaagc atttggaaa ccagcgtgt aatacgaatc actttatagg 480
 aagggtacg tccttcatcac ttgttcatgg caaaatgaaa tgcaaaaacg tattcctcat 540
 actataaaatg atctcggtt gcccacccgaa cacagaagg ttctcagtga ggatgggt 600
 tttgtcatat cgccctag 618

<210> 123.
 <211> 979
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 6247114CB1

<400> 123
 gaccttagagc aggcatgggt gggcacagg ctttggagag cactctctgt cctgatctt 60
 tcagttgaga gacttcagct gttcattgtct catttggact tagttaaga attttgggt 120
 tcacccaggt aacagggccc tcagcatctg aataaaaaact gaacaggaac agaagagatt 180
 acactacat tgagatggag accttcctc tgctgctgt cagcctggc ctgggttctt 240
 cagaagcatc agaaaagcaca atgaagataa taaaagaaga atttacagac gaagagatgc 300
 aatatgacat ggccaaaaatg ggccaaagaaa aacagaccat tgagatatta atgaacccga 360
 tcctgttagt taaaatacc agcctcagca tgtccaagg tgatatgtct tccacattac 420
 tgacattcag aagtttacat tataatgacc ccaagggaaa cagttcggt aatgacaaag 480
 agtgttgc a tgacatgaca gtctggagaa aagtttca a gcaaaacggc tcgtgcaagt 540
 ggagcaataa cttcatccgc agctccacag aagtgtatgcg cagggtccac agggccccca 600
 gctcaagtt tgtacagaat cctggcataa gctgtgtga gggcttagaa ctggaaaata 660
 cagtgtgcca gttcaactaca ggcaaaacaat tccccaggtg ccaataccat agtggtaacct 720
 cattagagaa gatattgaca gtgctgacag gtcattctt gatgagctgg ttatgttgc 780
 gctctaagtt gtaaatccca cagagcttta ggacttaggtt cttactaagg aaggacctct 840
 tcttggatcat tcttggatcaa accttcctt aataatctact ctttagcact atagtgaact 900
 cctgatttatt tattctact ggaggagtga aaaatccaaa attgtggata attcaattaa 960
 aagttatgac tgataaaaaa 979

<210> 124
 <211> 3012
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3243866CB1

<400> 124

gcccgcctc tgcccgctcc ccggggcgccg agccgcgggt ttcatgggc gattgcagcg 60
 attccccac ccagagcagc ctggggcag cggccgcagt ggcaggagcc gccttccga 120
 ttccctacga tgcgggtct gagctatggc aaaggccgcg gaagtgcgca gcgcgaccccg 180
 cgtacgactg tgaaaagccac ctggagccac ctggccggg ttgtacactgc aggccgaaaag 240
 tcttcctacg accgtcttt cccttagagg caccagaatc cctgttaacca ttcatccagg 300
 tggagaaat atatgtaca gcccggcacc catctttga caccgtcctc tgaaatcagc 360
 tttggagatg ctggactct gtccgtctc tgccgcggc aggccagatg cogactcctt 420
 cacagccgtg aggaactctt caggctccag aagctcttaa acctgtatcta caatggaaaa 480
 aattctttt tatctgttc tcattggcat agcagtggaaa gctcagatct gtccaaagcg 540
 ttgtgtctgt cagattttgt ctccataatct tgcaaccctt tgcgccaaga aaggccttt 600
 atttgtcca ccaaaccattg acagaagaac tggactcg cggttggcag acaattttgt 660
 tacaatattt aaaaggaaag atttggccaa tatgaccagc ttggtgacc tgactctatc 720
 caggaataca ataagtttta ttacacctca tgctttcgct gacctacgaa atttgagggc 780
 tttgcatttg aatagcaaca gattgactaa aattacaat gatatgtca gtggtcttc 840
 caatcttcat catttgatac tgaacaacaa tcagctact ttaatttcct ctacagcg 900
 tggatgttc ttggcccttgg aggagctggc tctgtccatat aataatctag aaaccattcc 960
 ttgggatgct gttgagaaga tggtagctt gcataccctt agttggatc acaatatgtat 1020
 tgataacatt cctaaggggg ccttctccca ttgcacaag atgactcggt tagatgtgac 1080
 atcaataaaaa ttgcagaacg taccacctga ccctctctt cagcgagctc aggtactagc 1140
 aacctcagga atcataagcc catctacttt tgcatattaat tttgggaa accccttgca 1200
 ttgcaattgtt gaattgttgtt ggttggcg tctgtccaga gaagatgact tagagacctg 1260
 tgcttctctt ccactttta ctggccgcta cttttggtca attcctgaag aagattttt 1320
 gtgtgagcct cctctcatta ctcgtcatac acatgagatg agagtcctgg agggacaaag 1380
 ggcacacactg aggtgcaag ccaggggaga ccctgagcct gcaattcaact ggatttctcc 1440
 tgaagggaaag ctatccaa atgcaacaag atctctggg tattgtataacg gaacacttga 1500
 cattcttatac acaactgtaa aggatacagg tgctttacc tgcatgtctt ccaatcctgc 1560
 tggggaaagca acacaaatag tggatctca tataattaat ctccctcaact tactaaatag 1620
 tacaaaccat atccatgagc ctgatccctgg ttcttcagat atctcaactt ctaccaagtc 1680
 aggttctaat acaagcgta gtaatgggtca tactaaatgg agtcaagata aaattgtgg 1740
 ggcagaactg acatcatcaa cggcaactact taaatattt tttcaagaa atatccctgg 1800
 aatacgatg tttcaatcc agtacaatgg tacttatgt gacacccttg tttacagaat 1860
 gataccctt acgagaaaa ctttctggt caataatctg gctgtggaa ctatgtatga 1920
 cttgtgttc ttggccatat atgatgtgg catcaactt ctcactgcca caagagtcgt 1980
 gggttgcattc cagtttacta cggcacagga ttatgtgcgt tgccatttca tgcatgtccca 2040
 gttttggga ggcaccatgaa ttattttat tggtggaaatc attgttagcat ctgtgtcggt 2100
 attcatcatt attctgtatc tccggatataa gtttgcaac aataatgggc aacacaaggt 2160
 caccaaggtt agcaatgtttt attccaaac taacggggt caaatacaag gctgtatgt 2220
 aacgctgccc cagtccgtgt ccaaacaagc tggggacac gaagagaatg cccagtgtt 2280
 taaagctacc agtgacaatg tgattcaatc ttcaaaaact tggtcgatc aggactcctc 2340
 taccatcacc tctgtttgc ctcccttcgt gacttcaagc acttcgtgt cccaaaagca 2400
 gaaaagaaaaag actggcacaa agccaaatgtc agaaccacag aatgaagccg tcacaaaatgt 2460
 tgaatccccaa aacactaaca ggaacaactc aactgcctt cagttagctt ggcgtcctcc 2520
 cgttctgtc acagggggc ccacgtctaa aagagccatc ataaagccaa atgctttgct 2580
 gactaatgtt gaccagatttgc tccaggaaac acagaggctg gatgtatctt gaagagcacc 2640
 acttcctcctc tctcttcgtt aaaaatttgc cactgtatatt ttactggat aaaaattcaaa 2700
 aatgtttcaa ttccacaagg ctaattgttgc aactgggtgc gtagaaagaaa ttgtctacag 2760
 gagccaaagg gaaagtctct gatgacggcg gaactggctc cattagacca ttggttcatcc 2820
 tctttaaaaa ccaaattttt ttgttctctg gcctacaatg atttttttt taaaaaaagaa 2880
 aaaaaggctt cattggcatc aagttctgttca tcaatccatc ttacattgcc atccatgatt 2940
 taacagactg tagaatcttg aataatctat atcactttaa caaataatgt ttactatgt 3000
 aaaaaaaaaaa aa 3012

<210> 125

<211> 1600

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7475633CB1

<400> 125

cgccgcgagga gcagccgctg ccggcgctcg gggtcgcctg gagccccaga ttcccggcgc 60
 ctcggctcgc atggcagccg ctteggcgcc cggcccccgcg gccagctagg ggccggcccg 120
 cgctccctca cggccctcg gggcgcccg tcggatccgg cctctctcg cgccccggg 180
 cgccgcacact cccccggga ggtgtccacg cgtccggccg tccatccgtc egccccctct 240
 gggccggcg ctgaccatgc ccageggctg ccgtgcctg catctcgat gtctgttgc 300
 cattctgggg gctcccggtc agcctgtccg agccgatgac tgcagctccc actgtgaccc 360
 gggccacggc tgctgtgcac ctgacggctc ctgcagggtt gacccgggtt gggaggggct 420
 gcactgttag cgctgtgtga ggatgcctgg ctgcccac ggtacctgcc accagccatg 480
 gcagtgcatt tgccacagt gctgggcagg caagttctgt gacaaagatg aacatatctg 540
 taccacgcag tccccctgc agaatggagg ccagtgcatt tatgacgggg gccgtgagta 600
 ccattgtgtg tgcttaccag gcttccatgg gctgtactgc gagcgcagg ctggaccctg 660
 tgaacaggca ggctcccat gcccgaatgg cgggcagtgc caggacgacc agggctttgc 720
 tctcaacttc acgtggccgt gcttgggtgg ctgtgtggg gcccgtgtg aggtaaatgt 780
 ggtactgc ctgatgcggc cttgtctaa cggtgccacc tgccttgacg gcataaaaccg 840
 ctctccctgc ctctgtccctg agggcttgc tggacgcttc tgcaccatca acctggatga 900
 ctgtgccagc cgcccatgccc agagaggggc cccgtgtcg gaccgtgtcc atgacttcga 960
 ctgcctctgc cccagtggct atgggtggcaa gacttgttag ctgtgtttac ctgtccca 1020
 ccccccAACCC acatggaca cccctctagg gcccacccca gctgtgtgg tacctgcccac 1080
 gggccagcc ccccacagcg caggggctgg tctgtgcgg atctcaatgtt aggagggtt 1140
 gggaggccaa gaggctggc taggtgagcc tagcttggg gccctggg tggtttggg 1200
 cctcaactgct gcccgggtt tggctactgt tttgtgacc ctgaggccctt ggcgcgggg 1260
 tgtctgcccc cctggaccct gttgttaccc tggccacac tatgtccca cgtgcccagg 1320
 ccaggagtgt caggttagca tgctggccagc agggctcccc ctgcccacgtg acttgc 1380
 tgagccttggaa aagaccacag cactgtgtatg gaggtgggg ctttctggcc cccttcctca 1440
 cctctccac ccctcagact ggagtggtcc gttctcacca cccttcagct tgggtacaca 1500
 cacagaggag acctcagct cacaccagaa atattattt tttaatacac agaatgttaag 1560
 atgaaatttt atcaaataaa actatgaaaa tccccaaaaaaa 1600

<210> 126

<211> 1001

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1431268CB1

<400> 126

caattttgt atcttagta gagacgggtt ttcaccatgt tggccaggct ggtcttgaac 60
 tcctgacctc aagtgtatcg cccggccccc cctcccaaaag tgctggattt acaggcgtga 120
 gccactgtgc cccggccccc actcaggctt ttctgaccca ggagcagcac ctgcttcagc 180
 cactgtctt gggccctgt ttggctgatg cacaatctc cttccatgtc taggctggag 240
 tcctcagaag ctgcgtgcag ggctgtcccc tcagcctggc atacttcctt cctgtcaccc 300
 ctgtgtctcc tccttattca agtctggcc cacggccctt ctctgcaggat cgtaactaaa 360
 gtcgcaccc tcgcccataac tcctccatgt tctgactt tggatttac caagcacttc 420
 tcactttgca aagtcatgtt ttctgaaaat gttcatcgag gatgtactac gtgcaggct 480
 ctggtaagg cacgggatgt agaaaacaatg tgctgtcgtt tttcaactca tgctctggct 540
 ggagaggccgg tcagtcagca gaataagca agaggccggag aggctgcgtc ctgcctccct 600
 agatgagcac tggctgtcc agcacggtag ccgtggccca caggtgagat ttcaactaa 660
 gttgaaatag gcccggccca gtggctcatc atgcctgtaa tcccacact ttggaggcc 720
 gaggcaggcg gatcacgagg tcaggagatc gggaccatcc tggccaaacac agtggaaactc 780
 cgtctctact gcccagggtc tgggtgcagag gaggcattcc atcaattgaa ctttaaggaa 840
 ctctggaggc agggatatg aatgttactt aagtgtgtac atcacattaa gtacagaaaat 900
 cgtctgggtt cactactca gtgtcaccgc tgcaacatcc agccgagggt gtcatgtcgt 960
 ttgcagagca ggaaacttcag cctcagaatg gttgccttgc c 1001

<210> 127

<211> 1424

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2414185CB1

<400> 127

tcatgggtg	gaataaacac	agaaaagact	aaaaaaagccg	ggccaatggc	tcaagcccgt	60
aattcccagc	acttgggagg	ccaaagggtgg	cggatcacct	gaggtcagga	gttcaagacc	120
agccctggcca	agatggtgaa	atcccatctc	ttactaaaaa	tacagaaatt	agccaggcat	180
ggtgtgggt	gcctgcaatt	ttagtactc	aggaggctga	ggcaggagaa	ccgctggAAC	240
ctgggaggcg	gaggttgcag	ttagccgaga	tccccccact	gcgctccagc	ctgagccaac	300
aacagcgaga	ctccgtctaa	aaaaaaaaaa	agaagactga	aaaaaaaaat	gttggagacg	360
actttcttac	tgtggaaagg	ctgagattcc	atgatgggaa	agcttagccc	caccttattt	420
ctgggcattt	gttgggtacc	tgctggttt	ggataccagc	agggaaaagaa	aacatggccc	480
ttgtcctcca	gcccttacaa	cctgcaagac	aagatgtacg	ccttggagaa	agctggagat	540
ccttccaagg	caaggagcat	ggggcctcac	aatatctccag	aaacccagag	agggcaacct	600
atggagatgt	ctggcttaaa	ggggcagggt	acatccacag	ccttacacac	tctgcatttt	660
cctagaaggc	ctccctctgg	ctgtcagaca	gatcaggctg	gtgaccacga	gccaggggg	720
cgtttctgg	cccaaccoaca	gagacttagg	gaactttcat	tgatgatcag	tcccctgcaa	780
ctcttccct	ttggtagccg	ctgaaaagtag	gtcgtgaaag	ggcctagacc	tcaggatgtc	840
tggggagaac	ctcccttgagt	tgccagaaga	ttcttgcatc	cagggtttt	tggctaaggc	900
tcatgcttac	tggcagtgt	ggcctgtatgg	gtagagaacc	gcctggacca	cctacgtgg	960
atatttatgg	gatgctgaga	cgtttctcca	aaatacctc	tggaatggcc	tgtatcgtat	1020
gctgaagtca	taggatcatt	cctcccgact	aaagaaaatgc	ctgctattaa	atttttgtgg	1080
ataagaggaa	gagacatagc	tttgtggacgt	gcagttgggt	gaagtcatga	acatactgac	1140
taatgatacc	cagggtgaac	tgctgactaa	tttggtaaa	cagagtggat	gttctctgtat	1200
ggtgagccct	agggctctgt	tccggcctcc	ccatcatgt	tcaggaatgt	tcatggaaat	1260
taaaaggtat	actgataaaa	tctatggag	atacaaaact	aggagagatt	gctggagtaa	1320
taaaattatg	gaatgaactt	tcagaaaaac	tgctgttagt	tgaaataatg	ggcccaagct	1380
gtaacatatt	agggatgaat	agaaggcct	atatacaaagt	tcat		1424

<210> 128

<211> 1282

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5266594CB1

<220>

<221> unsure

<222> 9-10, 23

<223> a, t, c, g, or other

<400> 128

aacaaaaann	cccaaaacca	gtaaaaagcg	tttgcctgacg	tttgcatt	taaggattac	60
agcaaatgt	tctatttcta	atttctaccc	ttccctattgc	ctccccccca	aaaaaaaaactg	120
tacatgagtt	tacaaacata	ttaacatata	aataatgaga	accgtctgg	ttggagccct	180
ctccgttgc	tctgctggag	atgaacactg	aggggcgcgt	taaccacaca	gactgcctgt	240
gacatcgaaa	gtctcacggc	agctgtccctg	ggccgcgcgc	tggctttttt	ggcacctccca	300
ggttcaacca	ccagtcgttc	tctgctgtgc	ccagggtaga	ccccgggggc	tgtgagttatg	360
tgtggctccc	ctgcccgtca	tcgctctggc	tcaagctcat	gctggaaagg	acgcttcctc	420
tcccgacagt	gcttcttgc	ggcaggccag	tccttctgt	ggcactggg	gccgcgtac	480
cgggcccact	ggcagcgccc	acagatgtt	aactcccgaa	gtgtcttc	aatcaactgt	540
cagggagggt	agtggcactc	atagtaggtt	caagagtct	cctcccttc	cactacatcc	600
ccgttggcat	tataataccg	ggtacacattt	aggacaggaa	actgttcttc	tatagggtct	660
gttaggcagct	gctgaattgc	aagccaatac	aagctttgtt	ccctctgttt	gctggaggtc	720
tcttcagcct	tggggccca	gccccacggc	accagttgca	gttgtccag	gcatgttgc	780
acggtcacag	cgttgagggt	caccacctgg	aagcccgaaa	ccacggccccc	ccgggtccgc	840
tcccacagca	gctcatgaag	gagttctcca	gagcccttc	ctcggttctt	gtcaaaggca	900
tagccaata	tcttagcacc	atttccatct	gcatccactt	ccattccggc	ctcaaaggag	960
tagctctcca	ccagcgggat	gtcctgctca	tcgatcagcg	tgtatttgg	tttccggcc	1020
acccggccga	ggccgcacgat	acccaatttg	aagtcggtca	tggccggcc	tgcgttcgc	1080

```

cggcagcccc ctcctcggg aggccgcac gggccgggg cgagccgcgg cgccgcggta 1140
cagacgggac cgagccgggt cgggtacacc agccggctcc gggcggacga gctggccggc 1200
tcggcctccc gccgcctgcg cccggcgtt cagaactgcg ccgtcggat gattaaagcc 1260
atgccctata tatattacgc gc 1282

```

<210> 129
<211> 642
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7610617CB1

<210> 130
<211> 1326
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1902436CB1

<210> 131
<211> 1486

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2310369CB1

<400> 131
 cccaaacaga gcgtttctg gtcgcgaac tcctccggc tccacccgca cctacagcct 60
 ccaaccaaac cccaccaagt ctgcaccctc tccccaggc ctgcaccctc cccgctcgcc 120
 ctgcgttggg accgcgcacc cggttaactgc gcacggctgg cctccggag tcctgcgc 180
 tcgctccctcc tggaccggg ttcccaggac aacgcctccc ggaacgcagg gacgcaggcc 240
 aggccgcccgc gtgggcctgc aegcgcctgc cgctctctt tccccaggcc cgcactccca 300
 cttggctcc agggcccccag ggctgacgtt ccccccagct tagaccctga gtcgtttcc 360
 cccgttccc ggctgaatta gggttcttctt ctccacaggt gtgtcagtg gcctcaggga 420
 tccggaaagt ctaggactga acttctctta acatccagta atggggacct ggaacctggg 480
 cgtactagag tgccgcgcgt agggctccag gtgcgtggc tctgcgtttt cttccctctcc 540
 aaagttaggt atctcctatc tgtgtccctca tacatactgc cgcctgaggt gccatggccc 600
 ccaagccggg ggccgagttt agcacagccc tgcgtccatctt ggtgtggga gtgggtgtctc 660
 tgcacgcgcg cgtgagcaca gcccggggca gtgcggggc tgctgtggc ttctgtctcc 720
 aggtcttggc tgccaccacc acgtctggcc cagggtcttag cacacatgaa gactgccttg 780
 ctggagccctg ggtggccacc gtcatcgccc ttcccccttgc ggcctcgat ttccactggg 840
 tgaatgggaa cccgtccctc gccaacctgc tcctgggagg aggcatggtg ctggcagtgg 900
 ctggcggcca cctcggccctt gaggcccgct ctgtggctgg tcagggcaatg ctgttgggtgg 960
 tcgcagtgtac catcctcatt gtactgtctc tcacggccaa cacttatggg atgtgggggg 1020
 gggcgatgtct ggggtgtggca ggcctccctga gcccggcttga ggaggacagg ctgtgtctgc 1080
 taccgaagga ggatgtctgt cgctggccct tggctgttagg cagctggct tactgccggg 1140
 ccctgcatac acagcgcctc cagttggagt gacagtttga tacagccagg cagggtttct 1200
 gccctgcccga acactttccc tcccacctgc ctgcgtccctt cgcctctcc ctaggggtag 1260
 actcttctgc ctactgaagt gggtttgcgtc cacattgact ggtcaggggc agagtctggg 1320
 tgcgtgtccctt tggccacgtg tggggacttgc tctagaccag aatgaaaggg acagggtccc 1380
 agacacgtttt gggggctctg attctgggctt ggacacgtt gttggatccag agaagaggcc 1440
 tagtctccaa taaaatcttag gaattttgca ggaaaaaaaaaaaaaaa 1486

<210> 132
 <211> 1523
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 6180576CB1

<400> 132
 gggccgggtgg cgggtgcagga ggccggggcag ggggtgcggag ggaccggacgg acgcacggggc 60
 gggccggccgg gagccatgga ggcggggccctt gggggccggg ggcggggccccc ggggtggggct 120
 tcccacggca cgacatggag acctgtggttt ggcaggctcc ctggggctcg gttttggaccc 180
 ccatggggctt gggccctggc ctccctaaccgg ggctgtgtc tggggcggtt gctgggggggg 240
 cgcctctcccc cctggcccgcc actcgagca ccccccacccc tccccctggcc ggcctggcc 300
 gggccgggttg ttggccggggg ccccggtggaa gggccggccctt gggccggccccc cgccatgaat 360
 gggctgtcgc tgagtgagct ctgcgtccctc ttctgtgtcc cgcctggccccc cggccgcata 420
 gtcgccaagc tcgccttctt gccggccggag gccacctaact ccctgtgtcc tgagccccag 480
 ccggggccctg gtggggcccg ggccggccccc ttggggaccc tgagagcctc ctcggggccca 540
 cccggggctt ggaagctgca cctgacggag cgtggccactt tccagttacag ccagcgcgag 600
 ctggacacca tcgagggtctt ccccaccaag acgcggccggc gcaaccggcgt ctccctgcatt 660
 tatgttgcgt gctgtgcctgg tgccaggatc acgggtctctt tctcgacgg caatgcgttgc 720
 gacctggggcc agatgagcag ctcttacattt ggcctgggtt cccgcctccca ctgcaacatc 780
 ttctccatcg actactccgg ctacgggtggcc agtcggggca ggcctccca gaggaaacctc 840
 tatggccgaca tcgacgcgcgc ctggcaggcc ctgcgcacca ggtacggcat cagccggac 900
 agcatcatcc tgcgtggca gagcatggcc acgggtccccca ccgtggaccc ggcctcgcc 960
 tacaggtgtg cccgggtgtt gctgcactcg ccgttcaccc cggccatggcc cgtcgccctt 1020
 cccgacacca agaagaccta ctgccttcgac gccttccctt acatcgagaa ggtgtccaag 1080
 atcacgtctc ccgtgtctcat catccacggc acggaggacg aggtgatcga ctgcgtccac 1140

gggctggcgc tctacgagcg ctgccccaaag gcgggtggagc cgctgtgggt ggagggcgcc 1200
 gggcacaacg acatcgagct ctacagccag tacctggagc gcctgcgtcg cttcatctcc 1260
 caggagctgc ccagccagcg cgcttagcgg cggcccccaac cggccggacc tcagcaataa 1320
 ggcggcccccc ggacctcacc cccgcggcgc ccccacccag gggctgcatg tggacccccc 1380
 gggcggccca ggggaccccg ccccgaccca ggggctgtgg acgatgtaca gcacacagag 1440
 ctacgactc ctttcctttt ggaagcaaga agaaaatacg tgaaaacgga attaaagat 1500
 taaaaatttt aaaaaaaaaaaa aaa 1523

<210> 133
 <211> 848
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2274523CB1

<400> 133
 tagttctaga actcctgacc tcctgatctg cccacctoag cctcccaaag tttttggatt 60
 acaggggta gccaccacgc ccagcccgagc agtggcttct gtgtggaaag aaggtcagg 120
 ctgaaggacc ctggaggat gccccccca acatgtccctc tctcatcgtg ggttaattgc 180
 ccatgttgc ccagccattc tcacccatca gggcttccaa aagaatggcc aaagtaagt 240
 ctaacaactt tgcttctttt ccaaggcaag cacaatgtc acttttctgc cctctctgg 300
 tggccgtgac ttccgtccca caggaagcca agtccttgag gcagctgaaa ttcaatcagg 360
 ggactgggggt ctgtgtactg atctacaccc cacttcatac ctacttcttc aaactgtccc 420
 caacactggg aacacctgtc cttgaatata ctcagcaatt taaggggaaa aaaaggctga 480
 agcagaaaaga ctttttccctt cccaaattgt gcctgcttgc ttggggccctt aggcatgcag 540
 acttggaaat aaatcaagct tgggtggggc atgggtggctc ccgcctgtga tcccagcact 600
 ttggaaaggcc gaggcaggcc aggagggtt aggaggatca caaggtcagg agatcgagac 660
 catccctggct aacacggta aaccctgtct ctactaaaaa tacaaaaaca aaatttagcca 720
 gggtgtggc ggggtgcctgt agtcccagct gctctggagg ctgaggcagg agaatggcat 780
 gaacccagga ggcaaaagcta gcagtgagcg gagatcgac cactgcactc aagcctgaca 840
 taattgcg 848

<210> 134
 <211> 2758
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1801820CB1

<400> 134
 cggcggggcc ggccctgccc tggaggatg gggctggccgg gcgcgttaggg gccatgccc 60
 cggggaccccg ggcctgccc gttccgcgc cggccggcccg cgccccacgt cccgcgggg 120
 atggtaacc tggcgcccat ggtgtggcgc cggcttctgc ggaagagggtt ggtgtcgcc 180
 ctggtcttcg ggctgtcgct cgtctacttc ctcagcagca cttcaagca ggaggagagg 240
 gcagttagag ataggaatct cttccagttt catgaccata atcagcccat cccgtggaaa 300
 gtgcagtttta acttggcaaa tagcagtcgt ccgagcaatc agtgcgc当地 cttccattca 360
 ggaagcacc tcatacggta tgaactcgcc tacgtttgcg agaggaagga ttgtgtggta 420
 aatggctgct gtaatgtcaa cgtccctagc acgaagcagt actgtgtga tggctgtgg 480
 cccaacggct gctgcagcgc ctatgagttc tttgtctctt gctgcctgca gcccaca 540
 caacttctcc tggagctttt cctcaaccgg gcagccgtgg cattccagaa cctcttcatg 600
 gcagtgcgaaatcacttta gttgtgcctg gccaaatgca ggacccatc tcagagcgtg 660
 cagcatgaga acacccatccgg ggaccccccata gcaaaatgtt gctatggaga aagccccc 720
 gagctctcc cccgttgacgc ggtgcagcgg acttgcctca gcctgggtga ggaggcccc 780
 ctgaagaact cccctctgg gaccctggat cagccatgg gcaggcgtgc aggaagaaga 840
 caaaggcgcgt tgaggaaac cttggctttt acccccttc gttgtgtcat cttggcttc 900
 gctcaccacc cgggcttacc agatggaaact cttctgtaaa gcagcttggc ccctccagcc 960
 agtcccattc gggaaagatg aaacccggagg cggggctcac ggtgggttg gagtttttg 1020
 atgactcagc cctgggacccgc acacaggac ctgtgacttgc tgttcatgg gggccgggtgt 1080
 cacttccagt tttgtatccag gctcttcac tgtaaaattt tttattggat tcctttggag 1140

taatggggaaac attctaattgt tttatgttagg aaaatgcctt gccattctag ttgaatatgt 1200
tcaaggaaat tattttgtt gttgttctgt gttctcgagt ttcaaggaaat aaatcattct 1260
tccaccaga tacaacattt tctcttttag gacgtgaata ttctctctag gcagttattt 1320
ttgtttgtat ttgcacagta tcaagcatag gcccgtaaacg tgacctgtta gccatatcct 1380
gacgtgtaaa attatctaaa aactcagaca ctcttcatt ctaatctaac tgacgattt 1440
ctaacagtgg gcaccatgtg ctgtccctca gtttattttc cagtggtagt cgaatgtgct 1500
catataccct atggagagca ctgttttagc agaaatctaa ttctcttcc tggaggaatt 1560
tgttctcatt tctttgtcca cttaaaaatc actgtgggct actcagccag gttacagtgg 1620
gaggcctcagg aaggctcagag gcaactctt ccccttttctt atcaatagaa acccaacgtt 1680
gaggcaattt ctaaacacagc gcacccctgt gcttgcgtt gttgttattt ctttattgt 1740
ttcagcttg gggctgttac aggtacaaat atttgcattt cctatgattt atagagaaga 1800
agaagaaacc cagcttctta tcagagcac gcaagagaag agtcttacac ctgcctcag 1860
tggggatgtt gaatggtcat tatgacttag agaatgttac acgtgttagt tgctgggtg 1920
tcctgaatcc acaggcataa agcactcccc attttccta ctgtaatgc gattctccgg 1980
ctcaaggctt agaatattttg atcctaagat caagacatca tgcccttgc atagtaactgc 2040
tctttgttt caggagtccac gtgaacacac aacttccta tattcctcac gaacctcagg 2100
attgagcaag gtctttgtaa ttttttttgtt tcacttttattt gacctgggag caaggtctt 2160
attctgtgtt cagtattcaa tttttttttc agtggagctt ttcttttggg ccataattgc 2220
cttcttaatac attccgtcaa tatgttagtgg tgattttccct tagcttctc ctaactacctc 2280
tttactctat ctccccaaat tatttgcctc ccttaaaaat gttttcttag aaggttaagct 2340
ggtcaggccaa ttggaaaaat attagatccc aagaatctt ttccgtttgc attggacttc 2400
tcggatttca ttgtttgtca gcaggactac atcgaatctt gatgtggccg atttgtggcat 2460
gtctgtcatgt ctcatccatc tattttttt ggttaactcag ttgttgcattt cagtgtctgt 2520
cttccctggg ttgcatttgg aatcagccctc tcctttgagc ttattttaac tcttgcgaa 2580
cataacatag atttaatgtt aacagtttat accaaagggc agcctgtgcc tgtttatgg 2640
tcctctctgc ctttgtactt gaagagcgtca ttttacattt ccagtcctt cacagacagg 2700
agctccaaacc ttacgatgggaaat ttttttttttgc tgcttgcattt tccactttgtt ggatgagg 2758

<210> 135
<211> 1650
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3010920CB1.comp

<400> 135
gtcagcatta cttatgtttc atccctgtgtt cgtgtgc ttcgcgttgc ctacattcaa 60
catccaaatt gtaatttata ttataaactg cctctcatct aattatattc tttctcg tttctcg 120
ttaaaaacaca gcaaaatcaa ctttagctag ccattatact aaaacatact acat tttctt 180
ttaaaactct ttttagttgt ttcctctaga tggtaaactc tactcaggca gggattatgt 240
ttgattattg atgtaatgc aacttttag aacatagctg cgtaactcagt ggactcagta 300
catactgacc agttgtgaa aaatctgtat cagccctccct aagtgtttag catagccaga 360
gtagtttacg tattcgtaa atctgactca gtaattagca gaccttagtgt ttaagtactg 420
ggaaatattacc tgcttgctc tcacagatgt caagaaagta ctttgttagaa gagtcttacg 480
acacagctta acttggtag gacacaaatg accatctggaa ctttgttagaa cccagaaata 540
caagtctaaa aataatcttga taacaaatc tttgaatatt tttgaagg tctgagact 600
tcactttttt ggcttatattt ttagaaatg tttgatctct gcaatttcaa caatgattac 660
agtaatcact gtcattatca agcatttact atggcccaga ccctttccctt ggtactttac 720
atacaatata ttgttctgtt aaaaactttaa caaggttgc attattattt tacaatgaa 780
gaaactaagg ccgggggggg ttaactaact tgcccaggat cacacgtatg gtaaaggcag 840
aagtaatatac ttgagatatg gtttgttag ttctaaaact taggtgaatt ttaccttcta 900
atacgtctca aggatgtggg tactggagga agaactgtac tgaatccaa atatttgg 960
ctagctgtt tgtataatc tagtaaatat tcatttgc ctatggat tgcttgc 1020
catacaatata ttgggtcttg ttatataaga aatctacagt ttctgttagt gaatataatgt 1080
gttacagcaa ccacaactat ttatctgaaa tatcgtaaa tattttatcat aggaatgaac 1140
atattatataa tcttgacaga gctctcgagg cataatgact tggtgaaag tagcagattt 1200
cagtaagaac catggaaaaa atattaaatc ataaggattt agtgtaccta gtttttatgg 1260
caaacatgtat gattttctta gtgcctatgtt atggaaaaaa taacttacta gaagtttgc 1320
gacagggtttt ttttcccccc tctggagaca gagtcatgtt ttgttgc ggtctggatg 1380
caatggcata attttggctc actgcaacct ctgcctccca ggtcaagca attctctgc 1440
ctcagccctcc cacgtacatq qgattaccat gcctggctaa tttttgtatt ttttagtagag 1500

atgagggttc accatgtttg cctggctggc ctcgaactcc tgacctcagg tgatcccccc 1560
gcctgggcct cccaaagtgc tgggattaca ggccaccta cctagggatc atagtttat 1620
tcaacttggtt gttcaccaa aaaaaaaaaag 1650

<210> 136
<211> 1061
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3409459CB1.comp

<400> 136
aaaataaaagg ttcaagctgc caaattttct tccagggtct gtttgccttc cctccagaga 60
tgtgctgagt ggccgtggct tcttcccacc caccgtgtcc tgctttccc tgttcttggc 120
ctaagtcttg cacaggagcc tgcgcaggcc ctgggacac ttccagaagc cagggtccatt 180
ttctccatga acaggtggcc cagggttag tctcccccata gttggactgg gagcacatgt 240
gtaagatgc caggggaagg tccgtgtta tcctccacat gcctggaaagg atgcagtgg 300
agcccttgcc tggcgtgggt tctttctggc ttgaaggttc tgccaaagtt tagggccctg 360
ctggcctggg aagcagcgtt ggcaggcctg ccttgcggat ggcacgctgc agcactggca 420
gggggcagtg ccaggcgaaaa ggggcagggg aggatgcct tcctggccaa atcccttgg 480
taagtaagta ccagcatctg aggtggcccg ggtgcagggg aaccactatt gctacctctc 540
cagcagcagc cagtggtag tctgacatgt cagctgcatt cagaccaaac ccgcgggggg 600
caaataccca gagactgagg caggaagctc tgttagaaatt cattttattt ttattcagac 660
tattttcaaa agaagcagtg gtgtgtgtt tttctaaaaa tatgcctta tagattttta 720
tatatgtata ttataaaatc catacatgtt tttacatgtat tgctacatac aaaattacag 780
cactgtggta tgtacacatc tacaggtaca ttcttgcgc gcacccctgc tgtgctttcc 840
ccacgtgagg gagggaggga gactgaatcg gttgtgagca gctgaggggct ggccggggcc 900
cgagccctt gatggggggc ctgggtggag gaggaggggc ggctgcttca catcaactctc 960
cagctctgac actcggcctt cccactcccc ttctcggttc tcaaatacgat ttctcaattt 1020
atgtttctct tgctctaagt gtcgagtt gtctgtcagc t 1061

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.