

18-4Q Crypto Lab 도커 컨테이너

1492073 임지훈

INTRODUCTION

FULL VIRTUALIZATION

PARAVIRTUALIZATION

VIRTUAL MACHINE & DOCKER CONTAINER

DB	App Web Server			
Bins/Libs	Bins/Libs	Bins/Libs		
Guest	Guest	Guest		
Hypervisor (Type 2)				
Host OS				
Hardware				

하이퍼바이저

각종 시스템 자원을 가상화 독립된 공간을 생성

라이브러리, 커널등 을 전부 포함

장점: 완벽한 운영체제 생성

단점:일반 호스트에 비해 성능의 손실 발생

배포하기 위한 이미지의 크기가 커짐

VIRTUAL MACHINE & DOCKER CONTAINER

가상화된 공간 생성 방법

chroot, namespace, cgroup 사용

필요한 커널은 Host OS와 공유

애플리케이션을 구동하는 데 필요한 Lib 및 실행 파일만 존재

장점:이미지의 용량이 작음, 배포시간이 빠름 성능 손실도 거의 없음

SECURITY

Application	Image Name	Stars
PEScanner	remnux/pescanner	****** (7)
JSDetox	renmux/jsdetox	***** (5)
YARA	blacktop/yara	***** (5)
Volatility	remnux/volatility	*** (3)
SIFT	k0st/sift	*** (3)
SpiderMonkey	nacyot/javascript-spidermonkey	** (2)
Dradis	raesene/auto_docker_dradis	** (2)
VirusTotal	malice/virustotal	* (1)
Malcom	tomchop/malcom-automatic	* (1)
ClamAV	malice/clamav	* (1)
FIR	(no public build)	

Available Container Security Features, Requirements and Defaults					
Security Feature	LXC 2.0	Docker 1.11	CoreOS Rkt 1.3		
User Namespaces	Default	Optional	Experimental		
Root Capability Dropping	Weak Defaults	Strong Defaults	Weak Defaults		
Procfs and Sysfs Limits	Default	Default	Weak Defaults		
Cgroup Defaults	Default	Default	Weak Defaults		
Seccomp Filtering	Weak Defaults	Strong Defaults	Optional		
Custom Seccomp Filters	Optional	Optional	Optional		
Bridge Networking	Default	Default	Default		
Hypervisor Isolation	Coming Soon	Coming Soon	Optional		
MAC: AppArmor	Strong Defaults	Strong Defaults	Not Possible		
MAC: SELinux	Optional	Optional	Optional		
No New Privileges	Not Possible	Optional	Not Possible		
Container Image Signing	Default	Strong Defaults	Default		
Root Interation Optional	True	False	Mostly False		

SECURITY

Gartner

Gartner analyst Joerg Fritsch

"How to Secure Docker Containers in Operation"

컨테이너에 배포된 응용프로그램은 bareOS에 배포된 것보다 안전하다.

프로그램과 사용자가 컨테이너별로 분리되어 있기 때문에, 다른 컨테이너나 hostOS를 손상시킬수 없다.

→ 또 하나의 Defense Layer를 쌓는 효과

Aaron Grattafiori, NCC Group

"Understanding and Hardening Linux Containers."

보안 측면에서, 공격 대상을 줄이고 필요한 구성 요소, 인터페이스, 라이브러리 및 네트워크 연결로만 응용프로그램을 격리하는 방법을 만듬. 요즘시기에, 리눅스 컨테이너와 같은 응용 프로그램을 사용하지 않을 이유가 거의 없다.

시작하세요 도커 저자 테크블로그

전가상화 반가상화

Incident Handling with Docker Containers

Your Software Is Safer In Docker Containers

THANK YOU