Regression Model

```
Supervised learning has two type of model:

1)Regression
2)classification

1. Regression (CH-5)
Regression is continuous:

-> LR(linear regression)

-> Polynomial Regression

2. Classification (CH-6)
Classification is discrete:

-> KNN

-> Decision Tree
```

LR(linear regression)

```
simple linear regression(SLR):
    y=mx+c
    where, y=dependent variable
        x=independent variable
        m=co-efficient
        c=intercept

multiple linear regression(MLR):
```

```
Step of Supervised learning process-

step1 : Define the problem
step2 : Collect and Prepare data
step3 : Data prepocessing
step4 : Feature Engineering
step5 : Select a model
step6 : Split the data in test/train
step7 : Train the model
step8 : Validate hyper parameters
step9 : Validate the model on the basis of tesing data
step10: Iterate the model
```

```
# Simple linear regression with the help of excel
```

Simple linear regression model

```
In [5]: import pandas as pd
import numpy as np

df=pd.read_csv("placement_03-06.csv")
df
```

Out[5]:

	cgpa	package
0	6.89	3.26
1	5.12	1.98
2	7.82	3.25
3	7.42	3.67
4	6.94	3.57
195	6.93	2.46
196	5.89	2.57
197	7.21	3.24
198	7.63	3.96
199	6.22	2.33

200 rows × 2 columns

In [6]: df.info()

```
In [7]: from sklearn.model_selection import train_test_split
         y=df['package']
         У
Out[7]: 0
                 3.26
         1
                 1.98
          2
                 3.25
          3
                 3.67
          4
                 3.57
         195
                 2.46
         196
                 2.57
          197
                 3.24
          198
                 3.96
          199
                 2.33
         Name: package, Length: 200, dtype: float64
In [11]: x=df.drop('package',axis=1)
Out[11]:
               cgpa
               6.89
            1
               5.12
            2
               7.82
               7.42
               6.94
          195
               6.93
          196
               5.89
          197
               7.21
          198
               7.63
          199
               6.22
          200 rows × 1 columns
In [12]: type(y)
Out[12]: pandas.core.series.Series
In [13]: type(x)
Out[13]: pandas.core.frame.DataFrame
In [14]: | y.shape
Out[14]: (200,)
```

```
In [15]: x.shape
Out[15]: (200, 1)
In [49]: | x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.8,random_state=
In [50]: print(y_train.shape)
         print(y_test.shape)
         print(x_train.shape)
         print(x_test.shape)
         (160,)
         (40,)
         (160, 1)
         (40, 1)
In [51]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         model=lr.fit(x_train,y_train)
In [52]: print("m = ",model.coef_)
         m = [0.58154877]
In [53]: print("c =" ,model.intercept_)
         c = -1.0859839580358024
In [54]:
         # v=mx+c
         y pred=model.predict(x test)
         print(y_pred)
         [2.9383335 4.36894346 3.18258398 1.89736121 3.49662031 3.35123312
          2.76968435 2.94996447 3.07208971 3.94441286 3.57222165 2.94996447
          2.75805338 2.64755911 3.67108494 3.2174769 3.97930579 2.90925606
          2.19395108 3.31052471 4.29915761 2.8918096 1.87409926 2.30444534
          3.62456104 2.12998071 3.9269664 2.36841571 1.5716939 2.06601035
          2.31026083 3.6885314 3.5024358 3.03719679 2.57195777 2.39167766
          3.170953
                     3.82228762 3.15932203 2.94414898]
```

Out[55]:

	actual	predicted
58	3.09	2.938333
40	4.02	4.368943
34	3.42	3.182584
102	1.37	1.897361
184	3.14	3.496620
198	3.96	3.351233
95	2.79	2.769684
4	3.57	2.949964
29	3.49	3.072090
168	3.52	3.944413
171	3.76	3.572222
18	2.98	2.949964
11	2.60	2.758053
89	2.72	2.647559
110	3.76	3.671085
118	2.88	3.217477
159	4.08	3.979306
35	2.87	2.909256
136	2.10	2.193951
59	3.31	3.310525
51	3.79	4.299158
16	2.35	2.891810
44	1.86	1.874099
94	2.42	2.304445
31	3.89	3.624561
162	2.55	2.129981
38	4.36	3.926966
28	2.24	2.368416
193	1.94	1.571694
27	2.16	2.066010
47	3.26	2.310261
165	4.08	3.688531
194	3.67	3.502436
177	3.64	3.037197
176	3.23	2.571958

			actual	predicted
		97	2.84	2.391678
		174	2.99	3.170953
		73	4.03	3.822288
		69	2.94	3.159322
		172	2.51	2.944149
[n [solute er y_act-y_
In [57]:	mae=		rn.metrio
		0.29	931188	593316804
In [58]:	mse=		rn.metric quared_er
		0.13	700625	19255722
In [59]:	rs=r		rn.metric e(y_test,

0.7283345498058083

Multiple linear regression model-1

```
In [67]: import pandas as pd
    df=pd.read_csv("Advertising_03-06.csv")
    df
```

Out[67]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [68]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	Radio	200 non-null	float64
3	Newspaper	200 non-null	float64
4	Sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

```
In [69]: df.drop("Unnamed: 0",axis=1,inplace=True)
df
```

Out[69]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [70]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
```

```
#
   Column
              Non-Null Count Dtype
   -----
              -----
                             ----
0
   ΤV
              200 non-null
                             float64
   Radio
              200 non-null
                             float64
1
2
              200 non-null
                             float64
   Newspaper
3
   Sales
              200 non-null
                             float64
```

dtypes: float64(4)
memory usage: 6.4 KB

```
In [71]: from sklearn.model_selection import train_test_split
    y=df['Sales']
y
```

```
Out[71]: 0
                  22.1
                  10.4
          1
          2
                   9.3
          3
                  18.5
          4
                  12.9
                  . . .
          195
                   7.6
          196
                   9.7
          197
                  12.8
          198
                  25.5
```

199

13.4

Name: Sales, Length: 200, dtype: float64

```
In [72]: x=df.drop('Sales',axis=1)
x
```

Out[72]:

69.2 45.1
00.0
69.3
58.5
58.4
13.8
8.1
6.4
66.2
8.7

200 rows × 3 columns

```
In [78]: print(x_train.shape)
    print(x_test.shape)
    print(y_train.shape)
    print(y_test.shape)
```

```
(170, 3)
(30, 3)
(170,)
(30,)
```

In [83]: diff=pd.DataFrame({"actual":y_test,"predicted":y_pred})
diff

Out[83]:

	actual	predicted
58	23.8	21.856120
40	16.6	16.430700
34	9.5	7.613586
102	14.8	17.814142
184	17.6	18.641718
198	25.5	23.814146
95	16.9	16.294421
4	12.9	13.260195
29	10.5	9.100138
168	17.1	17.241416
171	14.5	14.379547
18	11.3	9.893760
11	17.4	17.347656
89	16.7	16.793714
110	13.4	14.881883
118	15.9	15.487477
159	12.9	12.402423
35	12.8	17.210858
136	9.5	11.289204
59	18.4	18.171065
51	10.7	9.353014
16	12.5	12.687963
44	8.5	8.766590
94	11.5	10.484010
31	11.9	11.335462
162	14.9	15.003772
38	10.1	9.801311
28	18.9	19.488939
193	19.6	18.439608
27	15.9	17.160863

```
In [84]: from sklearn.metrics import mean_absolute_error
mae=mean_absolute_error(y_test,y_pred)
print(mae)
```

0.984560464503767

```
In [85]: from sklearn.metrics import mean_squared_error
    mse=mean_squared_error(y_test,y_pred)
    print(mse)
```

1.8945245763596135

```
In [86]: from sklearn.metrics import r2_score
    rs=r2_score(y_test,y_pred)
    print(rs)
```

0.882855181551423

Multiple linear regression model-2

```
In [91]: import pandas as pd
    df=pd.read_csv("insurance_03-06.csv")
    df
```

Out[91]:

	age	sex	bmi	children	smoker	region	expenses
0	19	female	27.9	0	yes	southwest	16884.92
1	18	male	33.8	1	no	southeast	1725.55
2	28	ma l e	33.0	3	no	southeast	4449.46
3	33	ma l e	22.7	0	no	northwest	21984.47
4	32	ma l e	28.9	0	no	northwest	3866.86
1333	50	ma l e	31.0	3	no	northwest	10600.55
1334	18	female	31.9	0	no	northeast	2205.98
1335	18	female	36.9	0	no	southeast	1629.83
1336	21	female	25.8	0	no	southwest	2007.95
1337	61	female	29.1	0	yes	northwest	29141.36

1338 rows × 7 columns

```
In [92]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    # Column Non-Null Count Dtype
```

```
0
               1338 non-null
                               int64
    age
 1
              1338 non-null
                               object
    sex
 2
    bmi
              1338 non-null
                               float64
 3
    children 1338 non-null
                               int64
 4
    smoker
              1338 non-null
                               object
 5
              1338 non-null
                               object
    region
 6
    expenses 1338 non-null
                               float64
dtypes: float64(2), int64(2), object(3)
```

memory usage: 73.3+ KB

In [93]: df.drop(["sex","children","region"],axis=1,inplace=True)
df

Out[93]:

	age	bmi	smoker	expenses
0	19	27.9	yes	16884.92
1	18	33.8	no	1725.55
2	28	33.0	no	4449.46
3	33	22.7	no	21984.47
4	32	28.9	no	3866.86
1333	50	31.0	no	10600.55
1334	18	31.9	no	2205.98
1335	18	36.9	no	1629.83
1336	21	25.8	no	2007.95
1337	61	29.1	yes	29141.36

1338 rows × 4 columns

```
In [97]: df1=pd.get_dummies(df,drop_first=True)
df1
```

Out[97]:

age	bmi	expenses	smoker_yes
19	27.9	16884.92	1
18	33.8	1725.55	0
28	33.0	4449.46	0
33	22.7	21984.47	0
32	28.9	3866.86	0
50	31.0	10600.55	0
18	31.9	2205.98	0
18	36.9	1629.83	0
21	25.8	2007.95	0
61	29.1	29141.36	1
	19 18 28 33 32 50 18 18 21	19 27.9 18 33.8 28 33.0 33 22.7 32 28.9 50 31.0 18 31.9 18 36.9 21 25.8	19 27.9 16884.92 18 33.8 1725.55 28 33.0 4449.46 33 22.7 21984.47 32 28.9 3866.86 50 31.0 10600.55 18 31.9 2205.98 18 36.9 1629.83 21 25.8 2007.95

1338 rows × 4 columns

16884.92

```
In [103]: from sklearn.model_selection import train_test_split
    y=df1['expenses']
y
```

```
Out[103]: 0
```

```
1
          1725.55
2
         4449.46
3
        21984.47
4
          3866.86
           . . .
1333
        10600.55
1334
         2205.98
1335
          1629.83
1336
         2007.95
1337
        29141.36
```

Name: expenses, Length: 1338, dtype: float64

```
In [104]: x=df1.drop('expenses',axis=1)
x
```

Out[104]:

	age	bmi	smoker_yes
0	19	27.9	1
1	18	33.8	0
2	28	33.0	0
3	33	22.7	0
4	32	28.9	0
1333	50	31.0	0
1334	18	31.9	0
1335	18	36.9	0
1336	21	25.8	0
1337	61	29.1	1

1338 rows × 3 columns

```
In [105]:
          print(type(x))
          print(type(y))
          <class 'pandas.core.frame.DataFrame'>
          <class 'pandas.core.series.Series'>
In [106]: print(x.shape)
          print(y.shape)
          (1338, 3)
           (1338,)
In [110]:
          x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.85,random_state
          print(x_train.shape)
          print(x_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (1137, 3)
          (201, 3)
          (1137,)
          (201,)
```

```
In [112]: y_pred=model.predict(x_test)
print(y_pred)
```

```
[ 4.66662368e+03
                  1.33010678e+04
                                   1.34653152e+04
                                                   1.28193039e+04
  1.04531758e+03
                  3.12026024e+04
                                   1.31016999e+04
                                                   1.21308741e+04
  3.76778485e+03
                  3.02539216e+04
                                   1.18854074e+04
                                                   1.72896696e+04
                  8.61286966e+03
  8.86756871e+03
                                   4.06122202e+03
                                                   1.05509036e+04
  4.29383875e+03
                  6.38320741e+03
                                   1.53904365e+04
                                                   1.51357374e+04
  1.25646049e+04
                                   9.24596826e+03
                  3.24170861e+04
                                                   9.94182153e+03
                                                   1.15236009e+04
  2.71199666e+03
                  8.16435467e+03
                                   8.37108330e+03
  7.49432680e+03
                  4.39165114e+03
                                   1.43900422e+04
                                                   5.90331509e+03
  3.32255987e+04
                  2.72951572e+04
                                   3.29597957e+04
                                                   1.00008958e+04
  3.12247474e+04
                  2.58702645e+04
                                   1.59459962e+04
                                                   3.36224001e+04
  6.22444920e+03
                  1.44712615e+04
                                   1.03183495e+04
                                                   1.55787005e+04
                                   4.86411999e+03
  4.05573278e+03
                  1.31718781e+04
                                                   2.95746614e+04
  7.53499914e+03
                                   1.43734491e+04
                                                   1.22157738e+04
                  1.24538798e+04
                                                   1.07797145e+04
  2.26535321e+03
                  8.35817060e+03
                                   2.56229262e+04
  3.37608222e+04
                  1.52114048e+04
                                   2.16198890e+03
                                                   6.75967273e+03
  7.26913354e+03
                  1.49696184e+04
                                   2.72693318e+04
                                                   3.38570492e+03
  1.58075741e+04
                  1.12098276e+04
                                   1.03404946e+04
                                                   1.09477678e+04
  1.24649429e+03
                                   3.66992504e+04
                                                   3.23635637e+04
                  2.50193961e+04
  2.59571964e+03
                  1.03552788e+04
                                   1.41316627e+04
                                                   3.45138782e+04
  3.16606358e+03
                  4.88445616e+03
                                   1.10954221e+04
                                                   9.81631220e+03
 -6.80435782e+02
                  1.34081125e+04
                                   1.01577825e+04
                                                   4.02248391e+03
  3.30428239e+04
                  3.31239805e+04
                                   7.45190830e+03
                                                   3.75667119e+04
  1.17838519e+04
                  9.63908936e+03
                                   3.02354569e+04
                                                   3.25611227e+04
  1.45838581e+04
                  1.11784503e+04
                                   6.18947609e+02
                                                   1.16325172e+04
  9.95105385e+03
                  1.49234568e+04
                                   1.51301855e+04
                                                   5.06535939e+03
  1.40855011e+04
                  2.64092311e+04
                                   2.78046180e+04
                                                   2.82050999e+04
  3.62138688e+04
                  2.72065771e+04
                                   1.27787162e+03
                                                   9.77015062e+03
  4.97116470e+03
                                   6.12295643e+03
                                                   4.73124988e+03
                  1.22471511e+04
  1.43475829e+03
                  1.79375524e+04
                                   3.23805056e+03
                                                   2.53296497e+03
  1.04751735e+04
                                                   3.79729064e+03
                  1.28544243e+04
                                   1.01484875e+04
  9.62804819e+03
                  1.22452796e+04
                                   8.10528039e+03
                                                   7.55159223e+03
  3.68930663e+04
                  1.18373743e+04
                                   1.08665485e+04
                                                   2.91058729e+04
  3.59480032e+04
                  1.16749357e+04
                                   2.90116782e+04
                                                   8.55329335e+01
  7.19533771e+03
                  3.21623870e+04
                                   9.21459093e+03 -8.59906805e+00
  1.56026762e+03
                  5.28493804e+03
                                   7.85800479e+03
                                                   1.23117147e+04
  1.46650774e+04
                  8.45411145e+03
                                   2.91280179e+04
                                                   1.65348047e+04
  1.36554508e+04
                  1.15568498e+04
                                   2.49235533e+03
                                                   9.48220269e+03
  4.31224069e+03
                  5.55448403e+03
                                   1.19887090e+04
                                                   5.04502322e+03
  1.38824529e+04
                  1.30629618e+04
                                   1.36886370e+04
                                                   7.95394564e+03
  1.19905805e+04
                  1.05472232e+04
                                   9.67233823e+03
                                                   5.36247695e+03
  6.67851612e+03
                  4.06066956e+04
                                   1.37182054e+04
                                                   4.76262722e+03
  7.32820782e+03
                  5.62640832e+03
                                   3.27548760e+04
                                                   1.17986362e+04
  1.16915915e+04
                  6.64345840e+03
                                   6.26137847e+03
                                                   6.78924121e+03
  3.31905409e+04
                  3.51322552e+04
                                   2.35580483e+03
                                                   7.03845104e+03
  5.61349562e+03
                  1.41039658e+04
                                   1.29820779e+03
                                                   1.12780715e+04
  1.34856514e+04
                  1.13612250e+04
                                   1.07170226e+04
                                                   1.24722817e+04
  2.14907619e+03
                  2.85299771e+04
                                   3.12545393e+03
                                                   1.50286300e+04
  6.79853622e+03
                  8.54088267e+03
                                   1.45930904e+04
                                                   3.89897958e+04
  3.05165810e+03
                                   4.59101900e+03
                                                   8.31943249e+03
                  1.21511695e+03
  7.05136374e+03
                  4.57249167e+03
                                   9.51177117e+03
                                                   9.37147760e+03
  9.98424003e+03]
```

```
In [113]: diff=pd.DataFrame({"actual":y_test,"predicated":y_pred})
diff
```

Out[113]:

	actual	predicated
559	1646.43	4666.623676
1087	11353.23	13301.067793
1020	8798.59	13465.315239
460	10381.48	12819.303931
802	2103.08	1045.317580
891	7243.81	7051.363739
414	2134.90	4572.491675
258	11520.10	9511.771173
538	8233.10	9371.477595
929	6289.75	9984.240030

201 rows × 2 columns

```
In [114]: from sklearn.metrics import mean_absolute_error
   mae=mean_absolute_error(y_test,y_pred)
   print(mae)
```

4019.341739524793

```
In [115]: from sklearn.metrics import mean_squared_error
    mse=mean_squared_error(y_test,y_pred)
    print(mse)
```

36946790.51390431

```
In [116]: from sklearn.metrics import r2_score
    rs=r2_score(y_test,y_pred)
    print(rs)
```

0.739443551121639

```
In [ ]:
```