Infographie - M1

Examen du 21/05/2013 Indications de correction.

Exercice 1

Il faut généraliser le test en 2D : pour chaque i, soit Π_i le plan contenant F_i et soit Q_i un sommet quelconque du polyèdre n'appartenant pas à F_i ; le point M est intérieur au polyèdre si et seulement si M et Q_i sont du même côté de Π_i .

Pour calculer le test, il faut calculer pour chaque i une normale $\vec{N_i}$ à P_i : on peut prendre $\vec{N_i} = P_0^i \vec{P_1}^i \wedge P_0^i \vec{P_2}^i$. Le test est vérifié si et seulement si pour chaque i, les produits scalaires $\vec{N} \cdot P_0^i \vec{M}$ et $\vec{N} \cdot P_0^i \vec{Q_i}$ sont de même signe.

Exercice 2

L'observateur voit le point M si et seulement si : ou bien M et A sont du même côté du plan ; ou bien ils ne sont pas du même côté du plan, et le point $P = [AM] \cap \Pi$ est intérieur au cercle.

On cherche le α tel que $\vec{AP} = \alpha \vec{AM}$. On doit avoir $\vec{CP} \cdot N = (\vec{CA} + \vec{AP}) \cdot N = (\vec{CA} + \alpha \vec{AM}) \cdot N$. Si $\vec{AM} \cdot N = 0$, α est indéfini - mais dans ce cas, \vec{AM} est parallèle au plan, et l'observateur voit M. Sinon, et si α n'est pas dans $]0 \dots 1[$, les points A et M sont (au sens large) du même côté de Π , et l'observateur voit M. Sinon, l'observateur voit M si et seulement si $\vec{CP} \cdot \vec{CP} = ||\vec{CP}||^2 \le R^2$.

Exercice 3

L'exercice ressemble beaucoup au test naïf d'intériorité du cours. L'idée générale est de calculer toutes les intersections du segments avec les arêtes - en prenant les mêmes précautions que dans le test - puis de les trier en fonction par exemple de leur distance à A et enfin, de découper la liste obtenue en segments - alternativement extérieurs/intérieurs. Voici une description informelle d'un algorithme simple. Les étapes 1 et 4 sont linéaires en n, l'étape 3 est au pire linéaire en n, l'étape 2 est au pire en $n \log n$ avec par exemple un tri rapide.

Etape 1. Pour chaque arête on détermine si celle-ci intersecte le segment [AB], en négligeant les arêtes parallèles à [AB] (t.q. $\vec{AB} \propto P_i \vec{P}_{i+1} = 0$) et en privant les arêtes de leur sommet "le plus haut": de P_{i+1} si $\vec{AB} \propto P_i \vec{P}_{i+1} > 0$, et de P_i sinon. Le calcul produit une liste $(\alpha_1, \ldots, \alpha_p)$ avec $p \leq n$, où chaque α_i est compris entre 0 et 1, et chaque M_i tel que $\vec{A}M_i = \alpha_i \vec{AB}$ est un point d'intersection.

Etape 2. On trie la liste des α_i , en supprimant toute valeur apparaîssant deux fois (cas du segment frôlant le bord du polygone en un sommet). Une fois la liste triée et simplifiée, on lui ajoute 0 (pour A) si cette valeur ne s'y trouve pas déjà, et 1 (pour B) si cette valeur ne s'y trouve pas déjà. On obtient une liste $\mathcal{B} = (\beta_0, \ldots, \beta_{p+1})$ strictement croissante, avec $\beta_0 = 0$, $\beta_{p+1} = 1$.

Etape 3. Soient \mathcal{L}_0 , \mathcal{L}_1 deux listes vides. Tant que la liste \mathcal{B} a au moins deux éléments β , β' en tête : si le dernier ajout s'est fait dans \mathcal{L}_0 on ajoute (β, β') à \mathcal{L}_1 , sinon on ajoute ce couple à \mathcal{L}_0 ; on supprime β de \mathcal{B} .

Etape 4. Si A est strictement extérieur à P, on renvoie $\mathcal{E} = \mathcal{L}_0$ et $\mathcal{I} = \mathcal{L}_1$. Sinon, on renvoie ce couple inversé.

Voici la manière dont on peut adapter l'algorithme au problème 3D posé. Les calculs sont à détailler. Si le segment est, pour l'observateur, devant le plan Π contenant le polygone (c.f. Roberts), il est totalement visible.

S'il est intégralement derrière ce plan, on se ramene au cas 2D: on calcule les cordonnées de $A' = [MA] \cap \Pi$ et $B' = [MB] \cap \Pi$, on munit Π d'un repère local, et l'on calcule le fenêtrage de [A'B'] par le polygone dans ce repère local, à l'aide de l'algorithme précédent. Les portions de [A'B'] extérieures à P sont, relativement à Π , les vues en perspective des portions de [AB] vues par l'observateur. Pour retrouver les portions de [AB] vues par l'observateur, il faut, pour chaque extrémité de portion E' de [A'B'], retrouver le point E de [AB] tel que $E' = [AB] \cap \Pi$.

Le cas intermédiaire où [AB] traverse le plan Π demande quelques calculs complémentaires : il faut calculer le point I=[AB], et ne considérer dans l'algorithme précédent que la portion de segment à l'arrière du plan ; la portion devant le plan sera ajoutée à la liste des portions externes, puisque par hypothèse, le point I est dans Π à l'extérieur du polygone.

Exercice 4

Les calculs sont à détailler.

Méthode 1. On calcule la translation $[D_1E_1]$ du segment $[AB_1]$, de direction orthogonale à ce segment, de distance R, vers B_2 ; symétriquement, on calcule la translation $[D_2E_2]$ du segment $[AB_2]$, de direction orthogonale à ce segment, de distance R, vers B_1 ; on calcule $C = (D_1E_1) \cap (D_2E_2)$; M_1 , M_2 sont les projections orthogonales de C sur (AB_1) , (AB_2) .

 $M\acute{e}thode~2$. Soit B_1' le point sur la demi-droite $[AB_2)$ tel que $\overline{AB_1} = \overline{AB_2}$. Soit I le milieu de $[B_1B_1']$. Les triangles (AIB_1) et (ACM_1) sont semblables, donc $R/\overline{AC} = \overline{IB_1}/\overline{AB_1}$ et $\overline{AM_1}/\overline{AC} = \overline{AI}/\overline{AB_1}$. On peut donc calculer \overline{AC} , puis $\overline{AM_1}$ (égal à $\overline{AM_2}$).