Consecutive Constructions

Consecutive Constructions

The problem

Problem

Given a DAG G. Find the maximum number of edges that can be packed in vertex-disjoint paths in G.

Example

Example – greedy solution

Greedy solution with two edges.

Example – optimal solution

Optimal solution with three edges.

Possible approaches

- Greedy we've just seen it doesn't work.
- DP the graph is a DAG, so there is some hope. However, we hit the wall pretty soon (assuming you take the edge v_1 to v_k , you still need a solution on $v_2, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n$ where parts "before" and "after" v_k are not independent).

Matching solution

```
Let V_{out} := \{u_{out} : u \in V(G)\}. Similarly, V_{in} := \{u_{in} : u \in V(G)\}. Finally, let E' := \{(u_{out}, v_{in}) : (u, v) \in E(G)\}. Consider bipartite G' := (V_{out} \cup V_{in}, E').
```

Matching solution – example

Matching solution

```
Let V_{out} := \{u_{out} : u \in V(G)\}. Similarly, V_{in} := \{u_{in} : u \in V(G)\}. Finally, let E' := \{(u_{out}, v_{in}) : (u, v) \in E(G)\}. Consider bipartite G' := (V_{out} \cup V_{in}, E').
```

Lemma

There is a 1-1 to correspondence between solutions for G with k edges and matchings in G' of size k.

Therefore, the problem reduces to finding a maximum matching.

Matching solution – example

Matching solution – example

