REPORT

Experiment 1: Basic AC Sweep Configuration (Using AD2 as OSC)

1.

- Construct the above configuration and apply the following conditions to F.G. and Osc.
 - F.G.
 - Sine, f=any frequency, 2V_{pp}
 - Sweep: scale=log, f_{start}=100 Hz, f_{stop}=1 MHz, T_{sweep}=0.1s, marker=off</sub>
 - Osc. (AD2)
 - Trigger Source=CH1, select proper trigger level by yourself
 - Select appropriate vertical and horizontal scale for both channel

2. CH1(SYNC) and CH2(output) waveform with marker= off

在 marker frequency 是關閉的時候,無法清楚的得知 channel 2 在 square wave 的 falling edge 的頻率為何。

3.

CH1(SYNC) and CH2(output) waveform with marker=1k Hz

CH1(SYNC) and CH2(output) waveform with marker=10k Hz

CH1(SYNC) and CH2(output) waveform with marker=100k Hz

CH1(SYNC) and CH2(output) waveform with marker=1M Hz

到 Marker frequency = 1M Hz的時候可以看到該方波已經不打算落下了,表示在 Channel 2 的訊號中沒有頻率為 1M Hz 的地方。

Question:

What do you find?

在關閉 marker frequency 的時候,Channel 1 的方波是無法得知 falling edge 將會落在哪裡,但是倘若將 marker frequency 打開的時候,便可以得知 Channel 1 的 sync 波將會在Channel 2 的 sinusoidal signal 有相同頻率的時候才會落下。此外,根據 Exp 1 的第三部分:調整不同的 marker frequency,可以觀察到隨著 marker frequency 越大,Channel 1 的falling edge 越晚才發生,要到 frequency 更大的地方才會落下。

What is the main purpose of the marker frequency?

當 Channel 1 marker frequency 打開的時候,我們才可以比較方便得知在 Channel 1 的 sync 波的 falling edge 所對應到的 Channel 2 的頻率為何,我想這也是為什麼會將其命 名為 marker frequency 吧,是為了方便我們能夠方便觀察在 falling edge 所對應到的 frequency 為何。

What I learn?

透過 Channel 1 的 sync 的方波並在有開啟 marker frequency 的情況下,我們能夠去對應到在 Channel 2 的 sinusoidal signal 所對應到的頻率為何。因此便可以量測在電路學中提到的 3dB frequency 為何,僅需將 sinusoidal signal 的 peak to peak value 算出來之後乘上 0.707 之後,在透過調整 Channel 1 的 marker frequency 便可以得知 Channel 2 的 3dB 頻率為何。

Experiment 2: The Transient Response of RC Circuits

3. transient waveform and steady state waveform

使用 single 的 trigger 以記錄暫態為何,這是平常在手算電路中不會考慮到也算不出來的部分,僅能透過給定相關的邊界條件去模擬做實驗才可以得到這樣的結果,可以看到剛傳送訊號給這個電路的時候,並不是馬上就會輸出完美的弦波,而是還會有一點點的躁動,必須要經過一定的時間才會到達穩態。

這個暫態的實驗讓我想到我之前在模擬 將時變的電場打入介電材料的晶格時,電子會產生些微的移動,而我將相關的參數 寫入 python 以數值分析做模擬後也有在 一開始的地方發現有暫態的存在,而不會 馬上就達到我們可以透過手算出來的解 析解。因此我認為在不管是在哪個領域, 暫態是一個必須要列入考慮的一項條件。 舉例來說,假如在開關剛打開的時候,產 生了一個很高的電流或是電壓,便有可能 會對電路造成傷害。

詳見: https://github.com/coherent17/physics_calculation/blob/main/Lorentz_model/Lorentz_model final_report.pdf

Experiment 3: First-Order Low-pass filter and High-pass filter (Using AD2 as OSC)

測量值

	f1	f2	f3	f4	f5	f6	f6	f8
Target Freq. (Hz)	50	100	500	1.60k	3.18k	5.5k	10.2k	31.7k
Vout,pp (V)	10.043	10.132	10.778	9.434	7.294	5.332	3.727	2.072
Vin,pp (V)	10.122	10.247	10.902	10.880	10.737	10.571	10.542	10.556
gain (V/V)	0.992	0.988	0.988	0.89	0.867	0.504	0.353	0.196
dB	-0.069	-0.104	-0.104	-1.01	-1.23	-5.95	-9.044	-14.15
phase out->in (degree)	-0.6	-2.1	-10	-29	-47	-60	-71	-86

理論值:

	f1	f2	f3	f4	f5	f6	f6	f8
Target								
Freq.	50	100	500	1.60k	3.18k	5.5k	10.2k	31.7k
(Hz)								
dB	-1.07m	-4.30m	-105.9m	-980.2m	-3.01	-5.99	-10.51	-20.01
phase								
out->in	-899.9m	-1.802	-8.931	-26.71	-45.00	-59.90	-72.65	-84.26
(degree)								

Bode magnitude plot (hand drawing, x-axis=freq., y-axis=20log(gain)dB)

Bode phase plot (hand drawing, x-axis=freq., y-axis=phase difference (out to in) degree)

Bode plot in Matlab: Bode magnitude plot

Bode phase plot

透過 Matlab 精準的做圖,可以看到 Bode Magnitude 在高頻的地方與理論值相差較多,而 phase difference 與理論值則是相當的貼合。

3. Output AC Sweep waveform

Approximate 3db frequency = 3202 Hz

Ideal =
$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi RC} = \frac{1}{2\pi (1000 \cdot 0.05 \cdot 10^{-6})} = 3183 Hz$$

透過 Exp 1 所學,調整 marker frequency 以計算 3dB 頻率大約為 3202Hz

What I learn?

這個實驗把上學期所學的 Bolt Plot 以人工及 AC sweep 的方式實作了出來,當初在學的時候覺得這邊好複雜,好多複數運算,連 Transfer function 是甚麼也不太清楚,不過透過這次的實驗,讓我對傳說中的頻率響應有了更進一步的理解。

LTspice simulation

(a)AC sweep (將 Small Magnitude Amplitude 設為 1V,測量 V_out 即為所求)

(b) Gain in dB & phase difference at different frequency:

V(out)

Group Delay:

Mag:

Phase:

-5.9964397dB

-59.907692°

12.572507µs

0

Freq:

5.4930002KHz

Freq:

$(1) f_1 = 50 Hz$:

() - 1								
Cursor 1	V(out)			-Cursor 1	V	(out)		
Freq: 50H		-1.0714465mdB	0	Freq:	50Hz	Mag:	-1.0714465mdB	_ C
	Phase:	-899.92599m°	_ 0			Phase:	-899.92599m°	_ 0
	Group Delay:	49.987671μs			Grou	p Delay:	49.987671μs	
$(2) f_2 = 100H$	Iz:							
Cursor 1	V(out)			Cursor	1	<i>u</i> ,		
Freq: 100.183		-4.3002815mdB				/(out)	4.0000045 In	
1 leq. 100.103			_	Freq:	100.18361Hz	Mag:	-4.3002815mdB	_ ()
	Phase:	-1.8027097°	- 0		_	Phase:	-1.8027097°	0
	Group Delay:	49.950512μs			Grou	ıp Delay:	49.950512μs	
$(3) f_3 = 500 H$	<i>Iz</i> :							
Cursor 1	\//= \ \			-Cursor 1		<i>u</i> 0		
Freq: 500.275	V(out)	105.07205 40	_	_		/(out)	405.0000	
Freq: 500.275		-105.97385mdB	_ 0	Freq:	500.27585Hz	Mag:	-105.97385mdB	_
	Phase:	-8.9318979°	0			Phase:	-8.9318979°	C
	Group Delay:	48.794522μs			Grou	ıp Delay:	48.794522μs	
$(4) f_4 = 1.6kH$	Hz:							
Cursor 1	N // 0			-Cursor 1				
5 1 00174	V(out)		_			/(out)		
Freq: 1.601746		-980.29648mdB	_ 0	Freq:	1.6017463KHz	Mag:	-980.29648mdB	_ C
	Phase:	-26.711092°	0			Phase:	-26.711092°	0
	Group Delay:	39.897313µs			Grou	ıp Delay:	39.897313µs	
$(5) f_5 = 3.18k$	zHz:							
Cursor 1				-Cursor 1				
	V(out)			34.33.	\	(out)		
Freq: 3.183543	34KHz Mag:	-3.0107683dB	0	Freq:	3.1835434KHz	Mag:	-3.0107683dB	C
	Phase:	-45.002186°	0			Phase:	-45.002186°	0
	Group Delay:	24.997698μs			Grou	ıp Delay:	24.997698μs	
$(6) f_6 = 5.5kH$	Hz:							
Cursor 1				-Cursor 1				

V(out)

Group Delay:

Mag:

Phase:

-5.9964397dB

-59.907692°

12.572507µs

0

5.4930002KHz

$(7) f_7 = 10.2kHz$:

Cursor 1 V(out)					Cursor		/(out)		
Freq:	10.192834KHz	Mag:	-10.512806dB	0	Freq:	10.192834KHz	Mag:	-10.512806dB	\circ
		Phase:	-72.656548°	\bigcirc			Phase:	-72.656548°	0
	Grou	ıp Delay:	4.4447598μs			Grou	ıp Delay:	4.4447598μs	

$(8) f_8 = 31.7 kHz$:

Cursor 1 V(out)						1V	(out)		
Freq:	31.724553KHz	Mag:	-20.01359dB	0	Freq:	31.724553KHz	Mag:	-20.01359dB	\circ
		Phase:	-84.269829°	\bigcirc			Phase:	-84.269829°	0
	Grou	up Delay:	498.5587ns			Grou	ıp Delay:	498.5587ns	

Experiment 4: Active First-Order and Second-Order Low-pass filter

1.

	f _{3dB} (measured) (Hz)
1 st order LPF	1100
2 nd order LPF	1100

Active 1-order LPF AC SWEEP waveform

Active 2-order LPF AC SWEEP waveform

2. Active 1-order LPF input and output waveform (time domain)

Active 1-order LPF input FFT (frequency domain)

Active 1-order LPF output FFT (frequency domain)

Active 2-order LPF output waveform (time domain)

Active 2-order LPF input FFT (frequency domain)

Active 2-order LPF output FFT (frequency domain)

	Carri	ier	Lower sidebar	nd	Upper sideband		
	200	Hz	19.8K	Hz	20.2K	Hz	
Before filter	-15	dB		-21		dB	
After 1 st order filter	-15	dB		-46		dB	
After 2 nd order filter	-15	dB		-75		dB	

透過上面這些照片可以看到,當一個有雜訊的 AM signal 經過 FFT 從 time domain 轉為 frequency domain 後,可以看到在大約在 200Hz 及 19.8 和 20.2kHz 這邊有突起物,分別 是 Carrier 及 left/right sideband。在經過一階的主動濾波器之後,可以發現 left/right sideband 的大小,或是想成是 input signal 中的 noise 的權重減小了,但是還是可以看到 很明顯的兩條 sideband 在那邊。但是在經過二階主動濾波器之後,可以發現已經幾乎 看不到 sideband 了,因此只好大約量測頻率為 19.8 或是 20.2kHz 的 dB 為多少。

What is AM?

將一個振幅訊號將其與載波調變之後,可以混成一個外表上與振幅訊號類似但是內部 還有頻率較高的訊號在震動。那之所以要混成是因為高頻訊號的波長較短,因此易於 天線傳送。

Math about AM?

 A_{C} : carrier amplitude

 $\left| \begin{array}{l} f_{C} : carrier \ frequency \\ A_{m} : modulation \ amplitide \end{array} \right|$

 f_m : modulation frequency

先寫出 sinusoidal 的 AM signal:

$$V_{\scriptscriptstyle AM}\left(t
ight) = A_{\scriptscriptstyle AM}\cos\left(2\pi f_{\scriptscriptstyle AM}t
ight)$$
 (AM signal 的頻率與載波相同為 $f_{\scriptscriptstyle C}$)

其中,AM 訊號的振幅 A_{AM} 包含兩種成分:

$$A_{AM} = \left(A_{C} + A_{m} \cos\left(2\pi f_{m} t\right)\right)$$

紅色的部分為載波的振幅,為一個定值,而藍色的部分為調變波的頻率成分為一個時變的值。將其相 乘可以得到:

$$V_{AM}(t) = (A_C + A_m \cos(2\pi f_m t))\cos(2\pi f_C t)$$

做到這邊,我們應該可以預期這個訊號畫出來應該是有一個 sinusoidal 的訊號,而在這個訊號裡面又 有一個 sinusoidal 的訊號在跑。接著,將其乘開,並且使用高深的數學技巧(積化合差),便可以得到 下式:

$$V_{AM}(t) = A_{C}\cos(2\pi f_{C}t) + \frac{1}{2}\left(\frac{A_{m}}{A_{C}}\right)A_{C}\left[\cos(2\pi [f_{C} - f_{m}]t) + \cos(2\pi [f_{C} + f_{m}]t)\right]$$

在這次的實驗中,將 AM depth $\left(\frac{A_m}{A_c}\right)$ 設為 100%,因此可以得到:

$$V_{AM}(t) = A_C \cos(2\pi f_C t) + \frac{1}{2} A_C \left[\cos(2\pi [f_C - f_m]t) + \cos(2\pi [f_C + f_m]t) \right]$$

因此可以得到此 AM 訊號應該是由三種不同頻率 $\left(f_{C},f_{C}-f_{m},f_{C}+f_{m}\right)$ 所構成的,因此可以猜測在做 FFT 時,會有三根突起的 Band。

附錄:

前面畫 bode plot 所使用的 Matlab code:

```
clc;
     clear;
     frequency = [50,100,500,1600,3180,5500,10200,31700];
     magnitude = [-1.07e-3, -4.3e-3, -105.9e-3, -980.2e-3, -3.01, -5.99, -10.51, -20.21];
     myMagnitude = [-0.069, -0.104, -0.104, -1.01, -1.23, -5.95, -9.044, -14.15];
     phase = [-899.9e-3,-1.802,-8.931,-26.71,-45,-59.9,-72.65,-84.26];
     myPhase = [-0.6, -2.1, -10, -29, -47, -60, -71, -86];
11
12
     figure(1);
13
     semilogx(frequency,magnitude,LineWidth=2);hold on;
     semilogx(frequency,myMagnitude,LineWidth=2);hold on;
     xlabel('frequency(Hz)',FontSize = 20);
     ylabel('20log(gain) dB', FontSize = 20);
     legend('theory', 'measure', FontSize = 20);
     title('Bode magnitude plot',FontSize=24);
20
     figure(2);
21
     semilogx(frequency,phase,LineWidth=2);hold on;
     semilogx(frequency,myPhase,LineWidth=2);hold on;
     xlabel('frequency(Hz)',FontSize = 20);
     ylabel('phase difference (degree)',FontSize = 20);
     legend('theory', 'measure', FontSize = 20);
     title('Bode phase plot',FontSize=24);
```

心得:

這次的實驗對我來說複雜許多,許多原理我都還不是非常了解。在做完實驗之後,有花一些時間去搞懂這些比較難的知識。在之前我們所學到的傅立葉轉換在這邊竟然派上用場了,能夠將訊號拆解成不同頻率的 sinusoidal signal 疊加,並且能夠計算出他們各自的權重(在示波器上 dB 表示)。其實還蠻好玩的。這次的實驗讓我有對於訊號的處理有更多的認識。透過 FFT 有點像是將一個混和訊號去抽取內部的特徵,並且計算他們不同特徵的權重。這不就跟機器學習有點類似嗎?在之前學過的 gradient descent 及相關的回歸方法以求特徵的權重竟然能夠在這邊以 FFT 求得。假如現在給定小鳥的鳴叫聲,或許可以經過 FFT 然後找到特定的 band 以猜測這是什麼品種的鳥發出來的。