Machine Learning Engineer Nanodegree

Telstra Network Disruptions Capstone Write Up

Srinivasa Amirapu July 31th, 2018

The task was to predict the severity of service disruptions on Telstra's network. It was a 3-class classification problem evaluated on multiclass logloss. Here I'll share my approach to solving this problem.

1) Understanding Data and Features:

Features are extracted from log files and other sources: event_type.csv, log_feature.csv, resource_type.csv, severity_type.csv. All above features are categorical except for "volume". The data set is in a relational format, split among multiple files. The following provides a description of data in each file.

□Event Type Data
□Log Feature Data
□Resource Type Data
□Severity Type Data
□Training Data
□Testing Data

Training Data

Data Fields	Definition
ID	identifies a unique location-time point
Location	identifier of location
Fault_Severity	categorical. 0: no fault, 1: a few faults, 2: many faults

Event Type Data

Data Fields	Definition							
ID	identifies a unique location-time point							
EventType	type of event that occured at that ID (can be multiple events per ID)							

Log	Fea	ture	Dat	ta
-----	-----	------	-----	----

Data Fields	Definition
ID	identifies a unique location-time point
Log_Feature	type of feature logged for that ID
Volume	number of times the feature was logged for that ID

Resource Type Data

 Severity Type Dat 	а
---------------------------------------	---

Data Fields	Definition
ID	identifies a unique location-time point
Resource_Type	type of resource assocaited with that ID

Data Fields	Definition
ID	identifies a unique location-time point
Severity_Type	type of severity level logged for that ID

1.1) Exploratory Data Analysis

1) Chi-square test is performed to understand correlation between categorical variables Analysis shows location and id are strongly correlated and we can drop one of them.

2) Spearman correlation test is performed to understand correlation between categorical vs numericals.

	id	location	fault_severity	event_type	resource_type	severity_type	log_feature	volume
id	1.000000	-0.027298	-0.035930	0.019441	-0.013694	0.027083	-0.010111	-0.002106
location	-0.027298		0.271742	-0.383049	0.429917	-0.424742	-0.304589	0.071210
fault_severity	-0.035930		1.000000	-0.261497	0.290473	-0.360594	-0.238632	-0.046634
event_type	0.019441	-0.383049	-0.261497	1.000000	-0.596874	0.414419	0.523528	0.091495
resource_type	-0.013694	0.429917	0.290473	-0.596874	1.000000	-0.392140	-0.491933	-0.043653
severity_type	0.027083	-0.424742	-0.360594	0.414419	-0.392140	1.000000	0.382624	0.126415
log_feature	-0.010111	-0.304589	-0.238632	0.523528	-0.491933	0.382624	1.000000	0.043322
volume	-0.002106	0.071210	-0.046634	0.091495	-0.043653	0.126415	0.043322	1.000000

2) Data Preparation

Step 1: Import Modules

Import all the python,numpy,pandas and scikit-learn modules

Step 2: Import Datasets

Each row in the main dataset (train.csv, test.csv) represents a location and a time point. They are identified by the "id" column, which is the key "id" used in other data files. Fault severity has 3 categories: 0,1,2 (0 meaning no fault, 1 meaning only a few, and 2 meaning many). "fault_severity" is a measurement of actual reported faults from users of the network and is the target variable (in train.csv).

Step 3: Data preprocessing: Data merging to create a single Customer Analytics Record (CAR)

	id	event_type	resource_type	severity_type	log_feature	volume
0	6597	event_type 11	resource_type 8	severity_type 2	feature 68	6
1	8011	event_type 15	resource_type 8	severity_type 2	feature 68	7
2	2597	event_type 15	resource_type 8	severity_type 2	feature 68	1
3	5022	event_type 15	resource_type 8	severity_type 1	feature 172	2
4	5022	event_type 15	resource_type 8	severity_type 1	feature 56	1

Step 4: Data Cleansing to remove text from variables

Define Cleanse() method to strip off text from variables

Step 6: Drop "fault_severity" from train dataset as it is the target variable

	id	location		id	location
o	14121	location 118	O	14121	118
1	9320	location 91	1	9320	91
2	14394	location 152	2	14394	152
3	8218	location 931	3	8218	931
4	14804	location 120	4	14804	120

Step 7: Merge the train dataframe without the "fault_severity" column and the combined dataframe of "event_type ... etc"

	id	location	event_type	resource_type	severity_type	log_feature	volume
0	14121	118	34	2	2	312	19
1	14121	118	34	2	2	232	19
2	14121	118	35	2	2	312	19
3	14121	118	35	2	2	232	19
4	9320	91	34	2	2	315	200

Step 8: Convert Categoricals using Get_Dummies

Step 9: groupby "id"

	id	0	1	2	3	4	5	6	7	8	 1572	1573	1574	1575	1576	1577	1578	1579	1580	vol
0	14121	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	76
1	9320	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	632
2	14394	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	4
3	8218	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	44
4	14804	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	96

3) **Split data** using train_test_split method from sklearn.model_selection Dataset is slightly imbalanced across class labels 0,1,2. I choose stratify parameter.In this context, stratification means that the train_test_split method returns training and test subsets that have the same proportions of class labels as the input dataset.

3) Model Selection:

A wide class of models have been used for Network Disruption Prediction

- Generalized Linear Models
- Support Vector Machines
- K-Nearest Neighbors
- Naïve Bayes
- Decision Trees and Ensemble Methods like AdaBoost and Gradient Boosting

Among Ensemble Methods, I have chosen Gradient Boosting Classifier as benchmark model because of its better performance and accuracy.

Boosting is a sequential technique which works on the principle of ensemble. It combines a set of weak learners and delivers improved prediction accuracy.

5) Model Training and Tuning: Train the gradient boost classifier model using optimal parameters (best fit model) obtained from GridSearchCV technique. Scores obtained for unoptimized model vs optimized model are below:

Unoptimized model:

Accuracy score on testing data: 0.7133

F-score on testing data: 0.5864

Optimized Model:

Final accuracy score on the testing data: 0.7233

Final F-score on the testing data: 0.6018

We can further tune and improve the F-score by tuning parameters which can be divided into 3 categories:

• Tree-Specific Parameters: These affect each individual tree in the Model

Min_samples_split, min_samples_leaf,

min_weight_fraction_leaf, max_depth, max_leaf_nodes,

max_features

• Boosting Parameters: These affect the boosting operation in the model

Learning_rate, n_estimators, subsample

• *Miscellaneous Parameters*: Other parameters for overall functioning Loss, init, random_state, verbose, warm_start, presort

6) Measure accuracy:

It would seem that using **accuracy** as a metric for evaluating a particular model's performance would be appropriate. But this is a multi-class classification problem where model's ability to precisely predict fault severity at a location is *more important* than the model's ability to **recall** those locations. We can use **F-score** as a metric that considers both precision and recall:

Below is the classification report generated for the optimized model obtained above :

	precision	recall	f1-score	support
fault_severity_0	0.76	0.95	0.84	4784
fault severity 1	0.66	0.32	0.43	1871
fault_severity_2	0.67	0.48	0.56	726
avg / total	0.73	0.74	0.71	7381

7) Predicted Probabilities for Classes 1,2,3: Calculate predicted values along with probabilities for test data set.

	id	predict_0	predict_1	predict_2
0	11066.0	0.810560	0.100919	0.088521
1	18000.0	0.533543	0.145241	0.321216
2	16964.0	0.813410	0.097757	0.088832
3	4795.0	0.545782	0.328023	0.126195
4	3392.0	0.378244	0.440102	0.181654

References:

- 1) https://www.kaggle.com/c/telstra-recruiting-network
- 2) https://www.telstra.com.au/consumer-advice/customer-service/mass-service-disruption
- 3) http://gereleth.github.io/Telstra-Network-Disruptions-Writeup/