Topic 5: SUPPORT VECTOR MACHINES

STAT 37710/CMSC 25400 Machine Learning Risi Kondor, The University of Chicago

Regularized Risk Minimization (RRM)

Find the hypothesis \widehat{f} by solving a problem of the form

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \left[\underbrace{\frac{1}{m} \sum_{i=1}^{m} \ell(f(x_i), y_i)}_{\text{training error}} + \underbrace{\lambda \Omega[f]}_{\text{regularizer}} \right]$$

- ullet can be quite a rich hypothesis space.
- The purpose of the regularizer is to avoid overfitting.
- λ is a tunable parameter.
- $\ell(\widehat{y}, y)$: loss function
- ℓ might or might not be the same loss as in $\mathcal{E}_{\mathsf{true}}$.

[Tykhonov regularization] [Vapnik 1970's-]

Optimization: equality constraints

Problem:

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize }} f(\mathbf{x}) \qquad \text{subject to} \qquad g(\mathbf{x}) = c.$$

- 1. Form the Lagrangian $L(\mathbf{x}, \lambda) = f(\mathbf{x}) \lambda (g(\mathbf{x}) c)$.
- 2. The solution must be at a critical point of L. \rightarrow Setting

$$\frac{\partial L(\mathbf{x},\lambda)}{\partial x_i} = 0 \qquad i = 1, 2, \dots, n.$$

yields a curve of solutions $\mathbf{x} = \gamma(\lambda)$.

3. Reintroducing the constraint $g(\gamma(\lambda))=c$ gives λ , hence the optimal x.

Optimization: inequality constraints

Problem:

- 1. Form the Lagrangian $L(\mathbf{x}, \lambda) = f(\mathbf{x}) \lambda (g(\mathbf{x}) c)$.
- 2. Introduce the dual function

$$h(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda).$$

3. Solve the dual problem

$$\lambda^* = \underset{\lambda}{\operatorname{argmax}} h(\lambda)$$
 subject to $\lambda \geq 0$.

4. The optimal \mathbf{x} is $\inf_{\mathbf{x}} L(\mathbf{x}, \lambda^*)$ (assuming strong duality).

When f is a convex function and $g(\mathbf{x}) \ge c$ defines a convex region of space, this gives the global optimum.

Karush-Kuhn-Tucker conditions

At the optimal solution \mathbf{x}^* of

either

- 1. we are the boundary $\rightarrow g(\mathbf{x}^*) = c$ or
- 2. we are at an interior point $\rightarrow \lambda^* = 0$.

 \rightarrow Complementary slackness: $\lambda^* (g(\mathbf{x}^*) - c) = 0$.

Support Vector Machines

Linear classifiers

To apply RRM, go back to binary classification in \mathbb{R}^n with a linear (affine) hyperplane:

Input space: $\mathcal{X} = \mathbb{R}^n$

Output space: $\mathcal{Y} = \{-1, +1\}$

Hypothesis:

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b.$$

$$h(\mathbf{x}) = \operatorname{sgn}(f(\mathbf{x}))$$

(Note the sneaky difference between f and h)

Question: Of all possible hyperplanes that separate the data which one do we choose?

The margin

Recall, the margin of a point (x,y) to the hyperplane $f(x)=w\cdot x+b=0$ (with $\|\mathbf{w}\|=1$) is

$$y(\mathbf{w} \cdot \mathbf{x} + b).$$

The margin of a dataset $S=\{(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_m,y_m)\}$ to f is $\min_i \ y_i(\mathbf{w}\cdot\mathbf{x}_i+b)\,.$

In the case of the perceptron we saw that having a large margin is desirable.

IDEA: Choose \mathbf{w} and b explicitly to maximize the margin! \rightarrow Support Vector Machines (SVM)

Maximizing the margin

Choose the hyperplane that has the largest margin!

Hard Margin Support Vector Machine

Given a dataset
$$S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$$
,

maximize
$$\delta$$
 s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge \delta \quad \forall i$.

Equivalent formulation: drop the $\|\mathbf{w}\|=1$ constraint and solve

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$.

The primal problem

The primal SVM optimization problem

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$

This is a nice convex optimization problem (a QP) with a unique minimum.

 \rightarrow Introduce a Lagrangian.

From primal to dual

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$

Lagrangian:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i} \alpha_{i} (y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1)$$

$$\frac{\partial}{\partial w_{i}} L(\mathbf{w}, b, \boldsymbol{\alpha}) = 0 \quad \Rightarrow \quad \left[\mathbf{w} - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = 0 \right]$$

$$\frac{\partial}{\partial b} L(\mathbf{w}, b, \boldsymbol{\alpha}) = 0 \quad \Rightarrow \quad \sum_{i} \alpha_{i} y_{i} = 0$$

Dual function:

$$L(\boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$

The dual problem

The dual SVM optimization problem

$$\begin{array}{ll} \underset{\alpha_{1},...,\alpha_{m}}{\text{maximize}} \ L(\boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j}) \\ \\ \text{subject to} \ \sum_{i} y_{i} \alpha_{i} = 0 \ \text{ and } \ \alpha_{i} \geq 0 \ \forall i \end{array}$$

Still a QP, but in fewer variables, so easier to solve. In particular,

$$h(\mathbf{x}) = \operatorname{sgn}\left[\sum_{i} \alpha_{i} y_{i}(\mathbf{x} \cdot \mathbf{x}_{i}) + b\right] = \operatorname{sgn}\left[\sum_{i} \gamma_{i}(\mathbf{x} \cdot \mathbf{x}_{i}) + b\right],$$

where $\gamma_i = y_i \alpha_i$. \to The solution lies in the span of the data, $\mathbf{w} = \sum_i \gamma_i \mathbf{x}_i$.

Support vector machine

Sparsity of support vectors

The KKT conditions prescribe that

$$\alpha_i(y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1) = 0 \quad \forall i$$

So $\alpha_i \neq 0$ only for those examples that lie exactly on the margin, and therefore only these "support vectors" influence the solution

$$h(\mathbf{x}) = \operatorname{sgn}\left[\sum_{i} \alpha_{i} y_{i}(\mathbf{x} \cdot \mathbf{x}_{i}) + b\right]$$

 \rightarrow Sparsity is a precious thing.

Question: But what about non-separable data? → Soft margin SVMs

The Soft Margin SVM

The primal SVM optimization problem

$$\underset{\mathbf{w},b,\xi_{1},\ldots,\xi_{m}}{\text{minimize}} \frac{1}{2} \|\mathbf{w}\|^{2} + \frac{C}{m} \sum_{i} \xi_{i} \quad \text{s.t.} \quad y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \geq 1 - \xi_{i} \quad \xi_{i} \geq 0 \quad \forall i$$

The ξ_i 's are called **slack variables** and C is a "softness parameter"

[Cortes & Vapnik, 1995]

From primal to dual

$$\underset{\mathbf{w},b,\xi_{1},...,\xi_{m}}{\text{minimize}} \frac{1}{2} \|\mathbf{w}\|^{2} + \frac{C}{m} \sum_{i} \xi_{i} \quad \text{s.t.} \quad y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \geq 1 - \xi_{i} \quad \xi_{i} \geq 0 \quad \forall i$$

Lagrangian:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{m} \sum_{i} \xi_{i} - \sum_{i} \alpha_{i} (y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1 + \xi_{i}) - \sum_{i} \beta_{i} \xi_{i}$$

$$\frac{\partial}{\partial w_{i}} L(\mathbf{w}, b, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0 \qquad \Rightarrow \qquad \mathbf{w} - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\frac{\partial}{\partial b} L(\mathbf{w}, b, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0 \qquad \Rightarrow \qquad \sum_{i} \alpha_{i} y_{i} = 0$$

$$\frac{\partial}{\partial \xi_{i}} L(\mathbf{w}, b, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0 \qquad \Rightarrow \qquad \alpha_{i} + \beta_{i} = \frac{C}{m}$$

Soft margin SVM dual

The dual SVM optimization problem

maximize
$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$

subject to $\sum_{i} y_{i} \alpha_{i} = 0$ and $0 \le \alpha_{i} \le \frac{C}{m} \ \forall i$

SVM is just a form of RRM

At the optimum of the primal problem the slacks are as small as possible:

$$\xi_i = \max\{0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)\} = \underbrace{(1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))_{\geq 0}}_{\ell_{\text{hinge}}(\mathbf{w} \cdot \mathbf{x}_i, y_i)},$$

where $(z)_{\geq 0} = \max(0, z)$.

The soft-margin SVM finds

$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \left[\underbrace{\frac{1}{m} \sum_{i=1}^{m} \ell_{\text{hinge}}(f(\mathbf{x}_i), y_i)}_{\text{empirical loss}} + \underbrace{\frac{1}{2C} \|\mathbf{w}\|^2}_{\text{regularizer}} \right].$$

where \mathcal{F} is the hypothesis space of $f(x) = \mathbf{w} \cdot \mathbf{x} + b$ linear functions

Loss functions for classification

Loss functions for regression

