

HEALTH

Flu Shot Learning: Predict H1N1 and Seasonal Flu Vaccines

Can you predict whether people got H1N1 and seasonal flu vaccines using information they shared about their backgrounds, opinions, and health behaviors?

Beginner practice

7 months left

5,959 joined

Navigation

Home

Problem description

About

Official rules

Leaderboard

Discussion (11)

Data download

Submissions

Share your work

Team

Problem description

Your goal is to predict how likely individuals are to receive their H1N1 and seasonal flu vaccines. Specifically, you'll be predicting two probabilities: one for h1n1_vaccine and one for seasonal vaccine.

Each row in the dataset represents one person who responded to the National 2009 H1N1 Flu Survey.

Labels

Labels

Features

List of features

Example of features

Performance metric

<u>Example</u>

Submission Format

Format example

Labels

For this competition, there are two target variables:

- h1n1_vaccine Whether respondent received H1N1 flu vaccine.
- seasonal_vaccine Whether respondent received seasonal flu vaccine.

Both are binary variables: \emptyset = No; 1 = Yes. Some respondents didn't get either vaccine, others got only one, and some got both. This is formulated as a multilabel (and *not* multiclass) problem.

The features in this dataset

You are provided a dataset with 36 columns. The first column respondent_id is a unique and random identifier. The remaining 35 features are described below.

For all binary variables: 0 = No; 1 = Yes.

- h1n1_concern Level of concern about the H1N1 flu.
 - 0 = Not at all concerned; 1 = Not very concerned; 2 = Somewhat concerned; 3 = Very concerned.
- h1n1_knowledge Level of knowledge about H1N1 flu.
 - 0 = No knowledge; 1 = A little knowledge; 2 = A lot of knowledge.
- behavioral_antiviral_meds Has taken antiviral medications. (binary)
- behavioral_avoidance Has avoided close contact with others with flu-like symptoms.
 (binary)
- behavioral_face_mask Has bought a face mask. (binary)
- behavioral_wash_hands Has frequently washed hands or used hand sanitizer. (binary)
- behavioral_large_gatherings Has reduced time at large gatherings. (binary)
- behavioral_outside_home Has reduced contact with people outside of own household.
 (binary)
- behavioral_touch_face Has avoided touching eyes, nose, or mouth. (binary)
- doctor_recc_h1n1 H1N1 flu vaccine was recommended by doctor. (binary)
- doctor_recc_seasonal Seasonal flu vaccine was recommended by doctor. (binary)
- chronic_med_condition Has any of the following chronic medical conditions: asthma or an other lung condition, diabetes, a heart condition, a kidney condition, sickle cell anemia or other anemia, a neurological or neuromuscular condition, a liver condition, or a weakened immune system caused by a chronic illness or by medicines taken for a chronic illness. (binary)
- child_under_6_months Has regular close contact with a child under the age of six months.
 (binary)
- health_worker Is a healthcare worker. (binary)
- health_insurance Has health insurance. (binary)
- opinion_h1n1_vacc_effective Respondent's opinion about H1N1 vaccine effectiveness.
 - 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective;
 5 = Very effective.
- opinion_h1n1_risk Respondent's opinion about risk of getting sick with H1N1 flu without vaccine.

- 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
- opinion_h1n1_sick_from_vacc Respondent's worry of getting sick from taking H1N1 vaccine.
 - 1 = Not at all worried; 2 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5
 = Very worried.
- opinion_seas_vacc_effective Respondent's opinion about seasonal flu vaccine effectiveness.
 - 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective;
 5 = Very effective.
- opinion_seas_risk Respondent's opinion about risk of getting sick with seasonal fluwithout vaccine.
 - 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
- opinion_seas_sick_from_vacc Respondent's worry of getting sick from taking seasonal flu vaccine.
 - 1 = Not at all worried; 2 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5
 = Very worried.
- age_group Age group of respondent.
- education Self-reported education level.
- race Race of respondent.
- sex Sex of respondent.
- income_poverty Household annual income of respondent with respect to 2008 Census poverty thresholds.
- marital_status Marital status of respondent.
- rent or own Housing situation of respondent.
- employment_status Employment status of respondent.
- hhs_geo_region Respondent's residence using a 10-region geographic classification defined by the U.S. Dept. of Health and Human Services. Values are represented as short random character strings.
- census_msa Respondent's residence within metropolitan statistical areas (MSA) as defined by the U.S. Census.
- household_adults Number of other adults in household, top-coded to 3.
- household children Number of children in household, top-coded to 3.

- employment_industry Type of industry respondent is employed in. Values are represented as short random character strings.
- employment_occupation Type of occupation of respondent. Values are represented as short random character strings.

Feature data example

For example, a single row in the dataset, has these values:

Field	Value
h1n1_concern	1
h1n1_knowledge	0
behavioral_antiviral_meds	0
behavioral_avoidance	0
behavioral_face_mask	0
behavioral_wash_hands	0
behavioral_large_gatherings	0
behavioral_outside_home	1
behavioral_touch_face	1
doctor_recc_h1n1	0

Field	Value
doctor_recc_seasonal	0
chronic_med_condition	0
child_under_6_months	0
health_worker	0
health_insurance	1
opinion_h1n1_vacc_effective	3
opinion_h1n1_risk	1
opinion_h1n1_sick_from_vacc	2
opinion_seas_vacc_effective	2
opinion_seas_risk	1
opinion_seas_sick_from_vacc	2
age_group	55 - 64 Years
education	< 12 Years
race	White
sex	Female

Field	Value
income_poverty	Below Poverty
marital_status	Not Married
rent_or_own	Own
employment_status	Not in Labor Force
hhs_geo_region	oxchjgsf
census_msa	Non-MSA
household_adults	0
household_children	0
employment_industry	NaN
employment_occupation	NaN

Performance metric

Performance will be evaluated according to the area under the receiver operating characteristic curve (ROC AUC) for each of the two target variables. The mean of these two scores will be the overall score. A higher value indicates stronger performance.

In Python, you can calculate this using sklearn.metrics.roc_auc_score for this multilabel setup with the default average="macro" parameter.

Submission format

The format for the submission file is three columns: respondent_id, h1n1_vaccine, and seasonal_vaccine. The predictions for the two target variables should be **float probabilities** that range between **0.0** and **1.0**. Because the competition uses ROC AUC as its evaluation metric, the values you submit must be the probabilities that a person received each vaccine, *not* binary labels.

As this is a multilabel problem, the probabilities for each row do *not* need to sum to one.

For example, if you predicted...

	h1n1_vaccine	seasonal_vaccine
respondent_id		
26707	0.5	0.7
26708	0.5	0.7
26709	0.5	0.7
26710	0.5	0.7
26711	0.5	0.7

	h1n1_vaccine	seasonal_vaccine
respondent_id		
•••		

The first several lines of the .csv file that you submit would look like:

```
respondent_id,h1n1_vaccine,seasonal_vaccine
26707,0.5,0.7
26708,0.5,0.7
26709,0.5,0.7
26710,0.5,0.7
...
```

Good luck!

Good luck and enjoy this problem! If you have any questions you can always visit the <u>user</u> <u>forum</u>! If you want some help getting started, check out the <u>walkthrough</u> for our benchmark model.

We run data science competitions that create Al solutions for social good.

Work with us

As a partner
As a competitor
Join a competition
Careers

About us

What we do Who we are Blog

Get in touch

Contact us

Twitter

LinkedIn

Terms

Privacy

Copyright policy

© 2023 Driven Data Inc., 700 Colorado Blvd #611, Denver, CO 80206, info@drivendata.org