基于边缘触发的触发器

边缘D触发器工作原理

RS触发器真值表

输 入			输出	功能说明
$\bar{\mathbf{S}}$	R	S R	Q^{n+1}	74 NG 74
1	1	0 0	\mathbb{Q}^n	保持
1	0	0 1	0	置 0
0	1	1 0	1	置 1
0	0	1 1	不定	不允许

CLK=0

根据RS触发器原理 维持状态不变 Q(n+1) = Q(n)

同时D进入触发器 为状态刷新准备

边缘D触发器工作原理

RS触发器真值表

输入			输出	功能说明
$\overline{\mathbf{S}}$	R	S R	Q^{n+1}	74 NO 00 74
1	1	0 0	\mathbf{Q}^n	保持
1	0	0 1	0	置 0
0	1	1 0	1	置 1
0	0	1 1	不定	不允许

当CLK从0跳为1

根据RS触发器原理 根据D值进行更新

Q(n+1) = D

边缘D触发器工作原理

当CLK=1 假设当前Q=0 D阻塞 Q维持当前状态

假设当前Q=1 D阻塞 Q维持当前状态

