Institut national des sciences appliquées de Rouen

INSA DE ROUEN

Projet MMSN GM3 - Vague 3 - Sujet 4

Résolution de système linéaire par la méthode du gradient conjugué

Auteurs:
Thibaut André-Gallis
thibaut.andregallis@insa-rouen.fr
Kévin Gatel
kevin.gatel@insa-rouen.fr

 $Enseign ant: \\ Bernard GLEYSE \\ bernard.gleyse@insa-rouen.fr$

4 Janvier 2021

Table des matières

In	ntroduction	3			
1	Présentation du problème 1.1 Principe	4 4			
2	Résolution numérique 2.1 Méthode 2.2 Résultats 2.2.1 Sans perturbation 2.2.2 Avec perturbation	5 5			
Conclusion					
A	nnexes	7			
Bibliographie					

Table des figures

Annexes	7
Matrice elec	
Matrice elecmodif	
Matrice dif de dim 8	
Matrice de Hilbert de dim 5	
Matrice Laplacienne 3 (de dim 3^2)	
Matrice tri α de dim 10 avec $\alpha = 5$,
Matrice de Wilson	

Introduction

 $\mathrm{m1}\ \mathrm{m2}$

1. Présentation du problème

1.1 Principe

Expliquer le principe du problème

1.2 Résolution mathématique

Expliquer la résolution mathématique du problème (théorème sans démonstrations)

2. Résolution numérique

2.1 Méthode

Expliquer la méthode numérique utilisée (fortran algo etc)

2.2 Résultats

Convergence des x_n , convergence des résidus, p.s. des résidus qui forment bien une base, inégalité du conditionnement...

2.2.1 Sans perturbation

2.2.2 Avec perturbation

Conclusion

Dans la conclusion, vous devez commenter les résultats numériques par rapport á ce que l'on pouvait espérer au vu des résultats théoriques.

Annexes

13.0	-8.0	-3.0
-8.0	10.0	-1.0
-3.0	-1.0	11.0

Matrice elec

Matrice dif de dim 8

Matrice Laplacienne_3 (de dim 3²)

```
-13.0 -8.0 -3.0
-8.0 10.0 -1.0
-3.0 -1.0 11.0
```

Matrice elecmodif

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{pmatrix}$$

Matrice de Hilbert de dim 5

Matrice tri α de dim 10 avec $\alpha = 5$

10 7 8 7 7 5 6 5 8 6 10 9 7 5 9 10

Matrice de Wilson

Bibliographie

- $[1] \ {\rm Andr\'e} \ {\rm Draux} \ {\it Analyse} \ num\'erique, \ {\rm poly}, \ {\rm chapitre} \ 2 \ {\it Les} \ m\'ethodes \ de \ descente.$
- [2]Maria Kazakova $\mathit{GM3}$ Analyse numérique I, Année 2020-2021, section 1.2.4 Les méthodes de Krylov