Cel ćwiczenia 1

Celem ćwiczenia było wyznaczenie gęstości wybranych cieczy przy użyciu wagi Mohra oraz piknometru dla denaturatu i zasolonej wody. W obu pomiarach jako gęstość wzorcową przyjęto gęstość wody destylowanej $\rho = 1000 \frac{kg}{m^3}$.

Opracowanie wyników dla wagi Mohra 2

pomierzone dane 2.1

badana ciecz	p	q	r
woda destylowana	1; 8	9	9
$\operatorname{denaturat}$	1; 7	3	_
slona woda	2; 9	7	_

p - numer konika, na którym zawieszono masę m (jeśli użyto kilku mas, to numery podane po średniku)

q - numer konika, na którym zawieszono masę $\frac{m}{10}$

r - numer konika, na którym zawieszono masę $\frac{m}{100}$

obliczenie gęstości 2.2

korzystamy ze wzoru¹

$$\rho = \rho_w \frac{p + \frac{q}{10} + \frac{r}{100}}{p_w + \frac{q_w}{10} + \frac{r_w}{100}}$$

 $\rho_w = 1000 \frac{kg}{m^3}$ (ciecz wzorcowa - woda destylowana)

p,q,r - pomierzone odległości koników od punktu podparcia dźwigni dla badanej

 p_w,q_w,r_w - pomierzone odległości koników od punktu podparcia dźwigni dla cieczy wzorcowej (woda destylowana)

badana ciecz	pomierzona gęstość $\rho[\frac{kg}{m^3}]$
denaturat	831, 831
słona woda	1173,173

rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru 2

$$|\frac{\Delta \rho}{\rho}| = |\frac{\frac{\Delta r_w}{100}}{p_w + \frac{q_w}{10} + \frac{r_w}{100}}| + |\frac{\frac{\Delta q}{10}}{p + \frac{q}{10} + \frac{r}{100}}|$$

gdzie $\Delta r_w = \Delta q = 1/2$ (używamy Δq - w pomiarach nie używaliśmy masy $\frac{m}{100})$

 $[\]hline ^{1} \texttt{https://pg.edu.pl/files/ftims/2021-03/cwiczenieM1.pdf} \ (M1.4) \\ ^{2} \texttt{https://pg.edu.pl/files/ftims/2021-03/cw_26.pdf} \ (26.9)$

badana ciecz	niepewność $\left \frac{\Delta \rho}{\rho} \right \left[\% \right]$
denaturat	0,60241
słona woda	0,47774

Opracowanie wyników dla Piknometru 3

pomierzone dane 3.1

pomiar	pomierzona masa [g]	
sam piknometr	26,972	
piknometr z wodą destylowaną	$78,\!325$	
piknometr z denaturatem	$69,\!541$	
piknometr z wodą morską	86,460	

3.2obliczenie gęstości

korzystamy ze wzoru ³

$$\rho = \rho_w \frac{m_3 - m_1}{m_2 - m_1}$$

 m_1 - masa samego piknometru

 m_2 - masa piknometru z cieczą wzorcową (woda destylowana)

 m_3 - masa piknometru z badaną cieczą

 ρ_w - gęstość wzorcowa (wody destylowanej, tak jak poprzednio)

badana ciecz	pomierzona gęstość $\rho[\frac{kg}{m^3}]$
$\operatorname{denaturat}$	828 9486
słona woda	1158,41334

rachunek niepewności 3.3

do wyliczenia niepewności korzystamy z oszcowania 4

$$|\frac{\Delta\rho}{\rho}|\approx 3|\frac{\Delta m}{m_2-m_1}|$$

gdzie $\Delta m = 0,001$ czyli $|\frac{\Delta \rho}{\rho}| \approx 0,00584191770\%$

 $[\]frac{^3 \text{https://pg.edu.pl/files/ftims}}{^4 \text{https://pg.edu.pl/files/ftims}} / 2021 - 03/\text{cwiczenieM1.pdf} \ (M1.7)$

4 Wnioski

rodzaj cieczy	waga Mohra $\rho[\frac{kg}{m^3}]$	piknometr $\rho[\frac{kg}{m^3}]$	tablice $\rho[\frac{kg}{m^3}]$
denaturat	831, 831	828 9486	800
słona woda	$1173,\!173$	1158,41334	1030

Mimo, że występuje odstępstwo od wskazań z tablic⁵, wyniki pomiarów piknometrem i wagą Mohra są do siebie zbliżone. Sugerowałoby to, że stężenie soli w zasolonej wodzie różni się od tego w wodzie morskiej a denaturat mógł być trochę rozcieńczony wodą po wielokrotnym użytku (stąd w obu sytuacjach wzrost gęstości w stosunku do tej z tablic). Różnice między wartościami spowodowane są niedokładnością techniki wykonywania pomiarów np. niewystarczające wysuszenie środka piknometru i nagrzanie piknometru suszarką co spowodowało podgrzanie cieczy w rezultacie zmniejszając wyznaczoną gęstość. W przypadku wagi Mohra na dokładność mogła wpłynąć także trudność w określeniu położenia równowagi, oscylacje ramienia dźwigni oraz przyjęte założenie, że nurek jest nieważki.

 $^{^5 {\}tt http://fizyka.edu.pl/gestosc-substancji/}$