

Algorisme Perceptró: aplicació a tasques de classificació

Objectius formatius

- Implementar classificadors lineals
- Programar l'algorisme Perceptró
- Aplicar l'algorisme Perceptró a tasques de classificació

Índex

1	Funcions discriminants lineals					
2	Algorisme Perceptró					
3	Aplicació a tasques de classificació: OCR					
	3.1	Entrenament	10			
	3.2	Estimació de l'error	13			
	3.3	Efecte de α	14			
	3.4	Efecto de b	15			
	3.5	Entrenament del classificador final	16			
4	Exe	rcici: aplicació a altres tasques	17			

1 Funcions discriminants lineals

Tot classificador pot representar-se com:

$$c(x) = \underset{c}{\operatorname{arg\,max}} g_c(x)$$

on cada classe c utilitza una *funció discriminant* $g_c(x)$ que mesura la pseudo-probabilitat de pertinença d'un objecte x a c

Les funcions discriminants més utilitzades són *lineals* (amb x):

$$g_c(m{x}) = m{w}_c^t m{x} + w_{c0}$$
 on $m{x} = egin{pmatrix} x_1 \ dots \ x_D \end{pmatrix}$ y $m{w_c} = egin{pmatrix} w_{c1} \ dots \ w_{cD} \end{pmatrix}$

Amb notació *homogènia*:

$$g_c(\mathbf{x}) = \mathbf{w}_c^t \mathbf{x}$$
 on $\mathbf{x} = \begin{pmatrix} 1 \\ \boldsymbol{x} \end{pmatrix}$ y $\mathbf{w}_c = \begin{pmatrix} w_{c0} \\ \boldsymbol{w}_c \end{pmatrix}$

linmach.py

```
import math
import numpy as np

def linmach(w,x):
    C = w.shape[1]; cstar=1; max=float('-inf');
    for c in range(C):
        g=np.dot(w[:,c],x);
        if g>max:
            max=g; cstar=c;
    return cstar;
```


test_linmach.py

```
#!/usr/bin/python
import numpy as np
from linmach import linmach
w=np.array([[-4,-36],[4,12]]);
for x in range(1,9):
   y=np.array([1, x]);
   print('c(%d)=%d' % (x,linmach(w,y)));
```


2 Algorisme Perceptró

Entrada:
$$\{(\mathbf{x}_n,c_n)\}_{n=1}^N$$
, $\{\mathbf{w}_c\}_{c=1}^C$, $\alpha\in\mathbb{R}^{>0}$ y $b\in\mathbb{R}$

Eixida:
$$\{\mathbf{w}_c\}^* = \underset{\{\mathbf{w}_c\}}{\operatorname{arg\,min}} \sum_n \left[\underset{c \neq c_n}{\operatorname{max}} \mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n \right]$$

Métode:

$$[P] = \begin{cases} 1 & \text{si } P = \text{vertader} \\ 0 & \text{si } P = \text{fals} \end{cases}$$

repetir

per a tota dada \mathbf{x}_n

$$err = fals$$

per a tota classe c diferent de c_n

si
$$\mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n$$
: $\mathbf{w}_c = \mathbf{w}_c - \alpha \cdot \mathbf{x}_n$; $err = \text{vertader}$

si
$$err$$
: $\mathbf{w}_{c_n} = \mathbf{w}_{c_n} + \alpha \cdot \mathbf{x}_n$

fins que no queden mostres mal classificades (o s'arribe a un màxim d'iteracions prefixat)

perceptron.py

```
import numpy as np
def perceptron (\frac{data}{b} = 0.1, a = 1.0, K = 200):
 (N,L) = data.shape; D=L-1;
  labs=np.unique(data[:,L-1]); C=labs.size;
  \mathbf{w} = \text{np.zeros}((\mathbf{L}, \mathbf{C}));
  for k in range (1, K+1):
    E=0;
    for n in range(N):
     xn=np.concatenate(([1],data[n,:D]));
     cn=np.where(labs==data[n,L-1])[0][0];
     er=0; q=np.dot(w[:,cn],xn);
     for c in range(C):
      if c != cn and np.dot(w[:,c],xn) + b > g:
           w[:,c] = w[:,c] - a*xn; er=1;
     if er==1:
         w[:,cn] = w[:,cn] + a*xn; E=E+1;
    if E==0:
      break;
  return w, E, k;
```


test_perceptron.py

```
#!/usr/bin/python
import numpy as np
from perceptron import perceptron
data=np.array([[0, 0, 0], [1, 1, 1]]);
w,E,k=perceptron(data);
print(w);
print('E=%d k=%d' % (E,k));
```

L'execució d'aquest script proporciona la següent eixida:

```
[[ 1. -1.]

[-1. 1.]

[-1. 1.]]

E=0 k=3
```


3 Aplicació a tasques de classificació: OCR

El corpus OCR_14x14 és una matriu de 1000 files (mostres) i 197 columnes (196 característiques i etiqueta de classe):

Cada mostra correspon a una imatge de dígit manuscrit normalitzada a 14x14 grisos i llegida en l'ordre de lectura usual:

```
#!/usr/bin/python
import numpy as np
import matplotlib.pyplot as plt

data=np.loadtxt('OCR_14x14');
N,L=data.shape; D=L-1;
I=np.reshape(data[1,:D],(14,14));
plt.imshow(I, cmap='gray_r');
plt.axis('off'); plt.show();

np.random.seed(23);
perm=np.random.permutation(N);
data=data[perm];
for n in range(N):
    I=np.reshape(data[n,:D],(14,14));
    plt.imshow(I, cmap='gray_r');
    plt.axis('off'); plt.show();
```


3.1 Entrenament

```
#!/usr/bin/python
import numpy as np
from perceptron import perceptron
data=np.loadtxt('OCR 14x14');
N, L=data.shape; D=L-1;
labs=np.unique(data[:,L-1]); C=labs.size;
np.random.seed(23); perm=np.random.permutation(N);
data=data[perm];
NTr=int(round(.7*N)); train=data[:NTr,:];
w, E, k=perceptron(train);
np.savetxt('percep w', w, fmt='%.2f');
print(w);
[ [-38. \quad -34. \quad -36. \quad ... \quad -32. \quad -50. \quad -36. ]
           0. 0. ...
    0.
                             0.
                                    0.
                                           0. 1
    0.
           0. 0. 0. 0. 0. 1
           0. \quad 0.23 \dots \quad 0.54 \quad -0.77 \quad -1. \quad 1
    0.
           0. 0.96 ... 0.
                                   -0.96
                                         0. 1
    0.
                             0. 0. 11
           0.
                  0. ...
    0.
```


Càlcul de la funció discriminant

El grau de pertinença de \mathbf{x} (amb $x_0 = 1$) a la classe del dígit c és $g_c(\mathbf{x}) = \mathbf{w}_c^t \mathbf{x}$, on \mathbf{w}_c ve donat per la columna c de \mathbf{w} :

```
#!/usr/bin/python
from __future__ import print_function
import numpy as np

data=np.loadtxt('OCR_14x14'); w=np.loadtxt('percep_w');
N,L=data.shape; D=L-1;
labs=np.unique(data[:,L-1]); C=labs.size;

for n in range(N):
    for c in range(C):
        xn=np.concatenate(([1],data[n,:D]));
        print('g_%d(x_%d)=%.0f ' % (c,n,np.dot(w[:,c],xn)),end='');
    print('');
```

```
g_0(x_0) = -687 g_1(x_0) = -882 g_2(x_0) = -854 g_3(x_0) = -789 ... g_0(x_1) = -519 g_1(x_1) = -655 g_2(x_1) = -553 g_3(x_1) = -588 ... g_0(x_2) = -730 g_1(x_2) = -877 g_2(x_2) = -914 g_3(x_2) = -785 ...
```


Els pesos de major variabilitat són més discriminatius que els pesos que varien poc.

```
#!/usr/bin/python
import numpy as np
import matplotlib.pyplot as plt
w=np.loadtxt('percep_w');
sw=np.std(w[1:],axis=1);
I=np.reshape(sw,(14,14));
plt.imshow(I, cmap='gray');
plt.axis('off'); plt.show();
```


Els pesos d'una classe c comparativament majors que els de la resta de classes indiquen característiques (no neg.; p.e. grisos) "pro-c"; els menors "anti-c".

```
#!/usr/bin/python
import numpy as np
import matplotlib.pyplot as plt
w=np.loadtxt('percep w');
D, C=w.shape;
mw=np.mean(w[1:],axis=1);
for c in range(C):
  wc = w[1:,c];
  pw=np.maximum(0,wc-mw);
  I=np.reshape(pw, (14, 14));
  plt.imshow(I, cmap='gray');
  plt.axis('off'); plt.show();
 nw=np.minimum(0,wc-mw);
  I=np.reshape(nw,(14,14));
  plt.imshow(I, cmap='gray r');
  plt.axis('off'); plt.show();
```


3.2 Estimació de l'error

Estimació de l'error de classificació amb interval de confiança al 95% mitjançant les mostres no emprades en entrenament:

```
#!/usr/bin/python
import math; import numpy as np
from linmach import linmach
from confus import confus
data=np.loadtxt('OCR_14x14');
N, L=data.shape; D=L-1;
labs=np.unique(data[:,L-1]); C=labs.size;
np.random.seed(23);
perm=np.random.permutation(N);
data=data[perm]; NTr=int(round(.7*N));
M=N-NTr; test=data[NTr:,:];
w=np.loadtxt('percep_w');rl=np.zeros((M,1));
for m in range(M):
  tem=np.concatenate(([1],test[m,:D]));
 rl[m] = labs[linmach(w, tem)];
ner, m = confus(test[:, L-1].reshape(M, 1), rl);
print('ner=%d'%ner);print(m);
per=ner/M; print('per=%.3f'%per);
r=1.96*math.sqrt(per*(1-per)/M);
print('r = %.3f' % r);
print('I=[%.3f, %.3f]'%(per-r,per+r));
```

```
ner = 17
[[27.  0.  0.  0.  ...]
  [ 0.  25.  0.  0.  ...]
  [ 1.  0.  34.  0.  ...]
  [ 0.  0.  1.  26.  ...]
  [ 0.  0.  1.  0.  ...]
  [ 1.  0.  0.  0.  ...]
  [ 0.  0.  1.  0.  ...]
  [ 0.  0.  0.  0.  ...]
  [ 1.  1.  0.  2.  ...]
  [ 0.  0.  0.  0.  ...]
  per = 0.026
I=[0.031,  0.083]
```


3.3 Efecte de α

```
#!/usr/bin/pvthon
import numpy as np; from perceptron import perceptron;
from linmach import linmach; from confus import confus
data=np.loadtxt('OCR 14x14');
N, L=data.shape; D=L-1; labs=np.unique(data[:,L-1]); C=labs.size;
np.random.seed(23); perm=np.random.permutation(N); data=data[perm];
NTr=int(round(.7*N)); train=data[:NTr,:]; M=N-NTr; test=data[NTr:,:];
print('#
             a E k Ete');
print('#-----);
for a in [.1,1,10,100,1000,10000,100000]:
 w, E, k = perceptron(train, a = a); rl = np.zeros((M, 1));
  for n in range (M):
    rl[n]=labs[linmach(w,np.concatenate(([1],test[n,:D])))];
 nerr, m = confus (test[:, L-1].reshape(M, 1), rl);
 print('%8.1f %3d %3d %3d' % (a,E,k,nerr));
```

	# a	E	k	Ete
	#			
	0.1	0	11	14
	1.0	0	12	17
	10.0	0	10	15
- 7	100.0	0	10	15
	1000.0	0	10	15
	10000.0	0	10	15
	100000.0	0	10	15

El paràmetre α , $\alpha > 0$, *no* té gran efecte sobre el comportament de Perceptró.

3.4 Efecto de b

```
#!/usr/bin/python
import numpy as np; from perceptron import perceptron;
from linmach import linmach; from confus import confus
data=np.loadtxt('OCR 14x14');
N, L=data.shape; D=L-1; labs=np.unique(data[:,L-1]); C=labs.size;
np.random.seed(23); perm=np.random.permutation(N); data=data[perm];
NTr=int(round(.7*N)); train=data[:NTr,:]; M=N-NTr; test=data[NTr:,:];
print('# b E k Ete');
print('#-----');
for b in [.1,1,10,100,1000,10000,100000]:
 w, E, k=perceptron(train, b); rl=np.zeros((M, 1));
 for n in range (M):
   rl[n]=labs[linmach(w,np.concatenate(([1],test[n,:D])))];
 nerr, m=confus(test[:,L-1].reshape(M,1),rl);
 print('%8.1f %3d %3d %3d' % (b,E,k,nerr));
```

	# b	Ε	k	Ete
	#			
	0.1	0	12	17
	1.0	0	11	14
	10.0	0	12	18
	100.0	0	17	14
	1000.0	0	123	14
	10000.0	162	200	11
	100000.0	538	200	29

El paràmetre b sí té gran efecte.

Si les mostres són linealment separables, escollirem un b amb el qual Perceptró convergisca (E=0) i siga comparativament elevat (p.e. b=1000).

3.5 Entrenament del classificador final

Entrenem el nostre classificador *final* amb totes les mostres:

```
#!/usr/bin/python
import numpy as np
from perceptron import perceptron
data=np.loadtxt('OCR_14x14');
N,L=data.shape;
np.random.seed(23); perm=np.random.permutation(N); data=data[perm];
w,E,k=perceptron(data,1000,0.1);
np.savetxt('OCR_14x14__w',w,fmt='%.2f');
print(w);
```

Examinem els pesos del classificador final:

4 Exercici: aplicació a altres tasques

Siguen els següents 4 conjunts de dades de sengles tasques:

- 1. *expressions:* 225 expressions facials representades amb vectors 4096-D i classificades en 5 classes (1=sorpresa, 2=felicitat, 3=tristesa, 4=angoixa i 5=disgust).
- 2. *gauss2D:* 4000 mostres sintètiques procedents de dues classes equiprobables de forma Gaussiana bidimensional.
- 3. *gender:* 2836 expressions facials representades mitjancant vectors 1280-D i classificades per gènere.
- 4. *videos:* 7985 vídeos de bàsquet/no-bàsquet descrits amb vectors 2000-D extrets d'histogrames de característiques locals.

Activitat

1. Elabora un script experiment py en Python per a automatitzar l'aplicació de l'algorisme Perceptró a altres tasques. Aquest script rep com a entrada les dades, i el rang de valors de α i b:

```
#!/usr/bin/python
import sys; import math; import numpy as np
from perceptron import perceptron; from confus import confus
from linmach import linmach
if len(sys.argv)!=4:
  print('Usage: %s <data> <alphas> <bs>' % sys.argv[0]);
  sys.exit(1);
data=np.loadtxt(sys.argv[1]);
alphas=np.fromstring(sys.argv[2],sep=' ');
bs=np.fromstring(sys.argv[3],sep=' ');
for a in alphas:
  for b in bs:
    w, E, k = perceptron(train, b, a); rl = np.zeros((M, 1));
    . . .
```

Des de l'intèrpret de comandos executarem

```
$ ./experiment.py OCR_14x14 '.1 1 10 100 1000 10000' ('0.1'
```


Activitat

Una possible eixida de resultats del script seria:

#	a	b	E	k	Ete	Ete	(응)	Ite	은 (응)
#-									
	0.1	0.1	0	11	14		4.7	[2.3,	7.1]
	1.0	0.1	0	12	17		5.7	[3.1,	8.3]
	10.0	0.1	0	10	15		5.0	[2.5,	7.5]
	100.0	0.1	0	10	15		5.0	[2.5,	7.5]
	1000.0	0.1	0	10	15		5.0	[2.5,	7.5]
1	.0000.0	0.1	0	10	15		5.0	[2.5,	7.5]

2. Obtín una taula de resultats semblant a la següent:

tasca	Ete (%)	Ite (%)
OCR_14x14	4.7	[2.3, 7.1]
expressions	3.0	[0.0, 7.1]
gauss2D	10.5	[8.8, 12.2]
gender	4.6	[3.2, 6.0]
videos	27.0	[25.2, 28.8]

Examen

• L'examen de laboratori consistirà en una modificació del teu script experiment.py per a la realització d'un experiment amb un conjunt de dades ja conegut o nou.

- El dia de l'examen hauràs de lliurar:
 - Script experiment.py original
 - Script experiment.py modificat
 - Resultats obtinguts i comentaris sobre els mateixos

