NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA

Department of Electrical Engineering

POWER SYSTEM SIMULATION

Fast Decoupled Load Flow Analysis

Algorithm 1: FDLF Analysis

```
1: Read network data. Define all variables with appropriate dimensions.
```

- 3: Form B' and B'' matrices. Ignore line resistance and shunt capacitance while forming B' matrix.
- 4: Calculate and store $B'_{inv}=[B']^{-1}$, $B''_{inv}=[B'']^{-1}$.
- 5: Initialize voltage magnitude and angle: Set $V_i=1$ pu to a PQ bus i and $V_k=V_k^{sp}$ to a PV bus k. Set $\delta_i = 0$ for all buses.
- 6: for itr = 1 to itrmax do

7: **for**
$$i=1$$
 to n_b , $i \neq s$ **do**

 $\triangleright s$ is the slack bus

Calculate: 8:

$$P_i^{cal} = V_i \sum_{k=1}^{n_b} V_k \{G_{ik} \cos(\delta_i - \delta_k) + B_{ik} \sin(\delta_i - \delta_k)\}$$

- end for 9:
- Calculate $\left|\frac{\Delta P}{V}\right|$ vector, where $\Delta P_i = P_i^{sp} P_i^{cal}$. 10:
- if $||\bar{\Delta P}||_{\infty} > \epsilon_p$ then
- Calculate 12:

$$[\Delta \delta] = \left[B'_{inv} \right] \left[\frac{\bar{\Delta P}}{V} \right]$$

- Update δ . 13:
- end if 14:
- for $\forall i, i \in N_{PQ}$ do 15:

 $\triangleright N_{PQ}$: set of PQ buses

Calculate: 16:

$$Q_i^{cal} = V_i \sum_{k=1}^{n_b} V_k \{G_{ik} \sin(\delta_i - \delta_k) - B_{ik} \cos(\delta_i - \delta_k)\}$$

- end for 17:
- Calculate $\left\lceil \frac{ar{\Delta Q}}{V} \right
 ceil$ vector, where $\Delta Q_i = Q_i^{sp} Q_i^{cal}$. 18:
- if $||\Delta Q||_{\infty} > \epsilon_q$ then 19:
- Calculate 20:

$$[\Delta V] = [B_{inv}''] \left\lceil \frac{\bar{\Delta Q}}{V} \right\rceil$$

- Update V. 21:
- end if 22:
- if $||\Delta P||_{\infty} \leq \epsilon_p$ and $||\Delta Q||_{\infty} \leq \epsilon_q$ then 23:
- Load flow converged. Prepare result. 24:
- end if 25:
- 26: end for
- 27: **if** itr > itrmax **then**
- Load flow did not converge. ▶ Infeasible loading
- 29: end if

- 1. For all IEEE test systems:
 - (a) Find bus voltage magnitude and angle using FDLF Method. Print:
 - Number of iterations required to converge.
 - In tabular format, print:
 - Bus Code
 - Converged voltage magnitude (p.u.)
 - Voltage angle (in degree)
 - Active power generation (p.u.)
 - Reactive power generation (p.u.)
 - Active power demand (p.u.)
 - Reactive power demand (p.u.)
 - Active power injection (p.u.)
 - Reactive power injection (p.u.)
 - (b) Calculate feeder and transformer current (both ends) using obtained voltage.
 - In tabular format, print:
 - Feeder/Transformer Code
 - From bus
 - To bus
 - Magnitude (p.u.) of the current flowing from from-bus to to-bus
 - Angle (degree) of the current flowing from from-bus to to-bus
 - Magnitude (p.u.) of the current flowing from to-bus to from-bus
 - Angle (degree) of the current flowing from to-bus to from-bus
 - (c) Calculate feeder and transformer power flow (both ends).
 - In tabular format, print:
 - Feeder/Transformer Code
 - From bus
 - To bus
 - Active power flow from from-bus to to-bus
 - Reactive power flow from from-bus to to-bus
 - Active power flow from to-bus to from-bus
 - Reactive power flow from to-bus to from-bus
 - Active power loss in the line
 - Reactive power loss in the line
 - (d) Calculate generator current and power injection.
 - In tabular format, print:
 - Generator bus number
 - Magnitude (p.u.) of the current injected
 - Angle (degree) of the current injected
 - Active power injection (p.u.)
 - Reactive power injection (p.u.)
 - (e) Validate KCL at each bus. Print ΣP and ΣQ in Tabular form.
 - (f) Calculate total loss $(P_{loss} + jQ_{loss})$ in the network from 1.(c). Print $P_{loss} + jQ_{loss} \sum_{i=1}^{n_b} (P_i + jQ_i)$.