Day 1: Basics

Ikuma Ogura

Ph.D. student, Department of Government, Georgetown University

August 19, 2019

Why Do I Need to Study Mathematics?

- Statistical analysis/Formal modeling
 - Standard tools for political science research
 - Applied field of mathematics
- We study mathematics to...
 - read textbooks
 - read articles using statsitics/formal modeling

Real Stats

Specifically, the expression for the sum of squared residuals for any given estimates of $\hat{\beta}_0$ and $\hat{\beta}_1$ is

$$\sum_{i=1}^{N} \hat{\epsilon}_i^2 = \sum_{i=1}^{N} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

Game Theory for Applied Economists

where $y_i(e_i) = e_i + \varepsilon_i$. The first-order condition for (2.2.4) is

$$(w_{\rm H} - w_{\rm L}) \frac{\partial \text{Prob}\{y_i(e_i) > y_j(e_i^*)\}}{\partial e_i} = g'(e_i). \tag{2.2.5}$$

That is, worker i chooses e_i such that the marginal disutility of extra effort, $g'(e_i)$, equals the marginal gain from extra effort, which is the product of the wage gain from winning the tournament, $w_H - w_L$, and the marginal increase in the probability of winning. By Bayes' rule, 12

$$\begin{split} \operatorname{Prob}\{y_i(e_i) > y_j(e_j^*)\} &= \operatorname{Prob}\{\varepsilon_i > e_j^* + \varepsilon_j - e_i\} \\ &= \int_{\varepsilon_j} \operatorname{Prob}\{\varepsilon_i > e_j^* + \varepsilon_j - e_i \mid \varepsilon_j\} f(\varepsilon_j) \, d\varepsilon_j \\ &= \int_{\varepsilon_j} [1 - F(e_j^* - e_i + \varepsilon_j)] f(\varepsilon_j) \, d\varepsilon_j, \end{split}$$

Elements of Statistical Learning

orm. The least squares estimate of $a^T\beta$ is

$$\hat{\theta} = a^T \hat{\beta} = a^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}. \tag{3.17}$$

Considering X to be fixed, this is a linear function $\mathbf{c}_0^T \mathbf{y}$ of the response vector \mathbf{y} . If we assume that the linear model is correct, $a^T \hat{\beta}$ is unbiased ince

$$E(a^{T}\hat{\beta}) = E(a^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y})$$

$$= a^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}\beta$$

$$= a^{T}\beta.$$
(3.18)

No Worries!

Specifically, the expression for the sum of squared residuals for any given estimates of $\hat{\beta}_0$ and $\hat{\beta}_1$ is

$$\sum_{i=1}^{N} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{N} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i})^{2}$$

No Worries!

where $y_i(e_i) = e_i + \varepsilon_i$. The first-order condition for (2.2.4) is

$$(w_{H} - w_{L}) \frac{\partial \operatorname{Prob}\{y_{i}(e_{i}) > y_{j}(e_{j}^{*})\}}{\partial e_{i}} = g'(e_{i}). \tag{2.2.5}$$
The sday + Wednesday

That is, worker i chooses e_i such that the marginal disutility of extra effort, $g'(e_i)$, equals the marginal gain from extra effort, which is the product of the wage gain from winning the tournament, $w_H - w_L$, and the marginal increase in the probability of winning. By Bayes' rule, 12

By Bayes rule,
$$Prob\{y_i(e_i) > y_j(e_j^*)\} = Prob\{\varepsilon_i > e_j^* + \varepsilon_j - e_i\}$$

$$= \int_{\varepsilon_j} Prob\{\varepsilon_i > e_j^* + \varepsilon_j - e_i \mid \varepsilon_j\} f(\varepsilon_j) d\varepsilon_j$$

$$= \int_{\varepsilon_j} [1 - F(e_j^* - e_i + \varepsilon_j)] f(\varepsilon_j) d\varepsilon_j,$$

$$= \int_{\varepsilon_j} Wednesday$$

No Worries!

form. The least squares estimate of $a^T\beta$ is

$$\hat{\theta} = a^T \hat{\beta} = a^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$
 Thursday (3.17)

Considering X to be fixed, this is a linear function $\mathbf{c}_0^T \mathbf{y}$ of the response vector \mathbf{y} . If we assume that the linear model is correct, $a^T \hat{\beta}$ is unbiased since

$$E(a^{T}\hat{\beta}) = E(a^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y})$$

$$= a^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}\beta$$

$$= a^{T}\beta.$$
(3.18)

Note

- The mathematics you need depends on what kinds of research you want to do.
- This lecture will cover basic mathematics that you often encounter

Do I Need to Memorize Formulas?

- NO!
- Rather focus on understanding the meanings of the formulas and when/why/how you should use them.

Today

- Basics
 - Algebra review
 - Set
 - Variable
 - Functions
 - ★ Graphing equations/inequalities
 - ★ Exponential and log functions
 - Summation & product operators
- (Today's lecture is a bit all over the place...)

Algebra Review: Order of Calculation

- Perform the following calculations.
 - 1. $3+5\times 2-17=$
 - 2. $5 \times (7-4) + (4-2) =$
 - 3. $(8-3) (9-13) \times 4 =$

Algebra Review: Fraction

- Perform the following calculations.
 - 1. $\frac{2}{3} \frac{1}{5} =$
 - 2. $\frac{4}{5} \times \frac{2}{3} =$
 - 3. $\frac{2}{5} \div \frac{3}{8} =$
 - 4. $\frac{\frac{2}{7}}{\frac{3}{4}} =$

Algebra Review: Power, Root, Factorial, & Absolute value

- Perform the following calculations.
 - 1. $2^3 \times 4^2 =$
 - $(2^3)^2 =$
 - 3. $3^{-1} =$
 - 4. $\sqrt[3]{8} =$
 - **5**. 5! =
 - 6. |-3| =

Set

- **Set**: a collection of distinct objects
- Element: an object consisting a set

Set: Notation

- We write elements of a set within {}.
 - $A = \{1, 2, 4, 6, 7\}$
- When we can write elements of a set using a general form, we use the notation {general form|definition}
 - e.g., $B = \{x^2 | x \text{ is an integer}, 1 \le x \le 4\}$
- If x is an element of the set A, we write $x \in A$.
- If x is not an element of the set A, we write $x \notin A$.

Set: Subset

- If every element of A is also in B, A is called the **subset** of B, and denoted as $A \subseteq B$.
- Example: Let $A=\{1,2,4,6,7\}$ and $B=\{1,2,7\}$. Then, $B\subseteq A$.

Set Operation

- **Intersection**: the intersection of A and B, denoted as $A \cap B$, is the set of common elements to both sets.
- **Union**: the union of A and B, denoted as $A \cup B$, is the set of all elements contained in either set.
- **Complement**: the complement of A, denoted as A^c , is the set that contains elements that are not contained in A.
- **Difference**: the difference of sets A and B, denoted as A/B, is the set of elements in A but not in B.
 - ▶ A/B is the same as $A \cap B^c$.
 - ▶ A/B is generally different from B/A.

Set: Number System

- Natural numbers (N): set of 0 and positive integers $(\{0,1,2,\cdots\})$
- Integers (\mathbb{Z}): set of all integers ($\{\cdots, -2, -1, 0, 1, 2, \cdots\}$)
- Rational numbers (\mathbb{Q}) : set of all numbers which can be represented as the fraction of integers
- Real numbers (\mathbb{R}): set of all numbers whose squares are larger than or equal to 0.
 - ▶ Real numbers which cannot be represented as the fraction of integers (e.g., $\sqrt{2}$) are called the **irrational numbers**
- Using the set notation, $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$.

Set: Additional Notations/Terms

- Empty set: a set with no elements, denoted as ∅
- If sets A and B have no elements in common (i.e., $A \cap B = \emptyset$), we say A and B are **disjoint**
- We denote the union and the intersection of a sequence of sets (A_1, A_2, \dots, A_n) as follows.

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n}$$

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n}$$

Set: Open/Closed Intervals

- Interval: a set of real numbers such that any numbers between the two points in the set are also included in the set.
- Open interval is an interval that does not include the end points as elements. e.g., $A = \{a < i < b | i \in \mathbb{R}\}$
 - ▶ We denote open intervals using parentheses ().
 - e.g., A = (a, b)
- Closed interval is an interval that include the end points as elements. e.g., $A=\{a\leq i\leq b|i\in\mathbb{R}\}$
 - ▶ We denote closed intervals using square brackets [].
 - ightharpoonup e.g., A = [a, b]

Set: Exercises

- 1. List all the elements of the set $A = \{x^3 | x \in \mathbb{Z}, -2 \le x \le 2\}$
- 2. Let $A = \{-3, 1, 4, 6, 8, 13\}$ and $B = \{-5, -3, 1, 8, 11, 13\}$. Then what is
 - 2.1 $A \cap B$
 - $2.2 A \cup B$
 - 2.3 A/B
 - $2.4 \ B/A$

Variable/Constant

- Variable: a symbol which represent an arbitrary number
 - value of a variable is not fully specified, so it can change/vary
- Constant: a quantity whose value do not change

Basic Number Properties

 Commutative Property: the order of addition/multiplication does not affect the outcome

$$a+b = b+a$$

 $a \times b = b \times a$

 Associative Property: the order of addition/multiplication does not matter as long as the sequence of operation is not changed

$$(a+b)+c = a+(b+c)$$

 $(a \times b) \times c = a \times (b \times c)$

• **Distributive Property**: distribution of multiplication over addition/subtraction

$$a(b+c) = ab + ac$$

Expansion

- Remove parentheses () from the product of polynomials.
- Monomial/Polynomial
 - ▶ **Monomial**: product of a constant and a variable raised to some value, which looks like ax^k
 - ★ The constant (a) is called the coefficient, and the number of exponent (k) is called the degree/order of the monomial
 - ▶ Polynomial: sum of monomials
 - * e.g., 2x + 3, $x^3 4x + 5$
 - The degree of a polynomial is the highest degree of its monomials
- How to perform expansion?
 - ▶ Repeatedly apply the distribution rule!

Expansion (cont.)

- Question: Multiply out $(2x+3)(x^2-8x+5)$
 - Answer:

$$(2x+3)(x^2 - 8x + 5)$$
= $2x(x^2 - 8x + 5) + 3(x^2 - 8x + 5)$
= $2x^3 - 16x^2 + 10x + 3x^2 - 24x + 15$
= $2x^3 - 13x^2 - 14x + 15$

Expansion (cont.)

- Question: Multiply out $(x+2)^3$
 - Answer:

$$(x+2)^{3}$$

$$= (x+2)(x+2)^{2}$$

$$= (x+2) \{x(x+2) + 2(x+2)\}$$

$$= (x+2)(x^{2} + 4x + 4)$$

$$= x(x^{2} + 4x + 4) + 2(x^{2} + 4x + 4)$$

$$= x^{3} + 6x^{2} + 12x + 8$$

Factoring

- Factoring: writing a polynomial as a product of polynomials of lower degrees.
- Factoring is the reverse of expanding parentheses.
- (Factoring is a bit harder than expansion, and you need to get used to it...)
- Tips
 - If you find common factors, try grouping the terms containing them

* e.g.,
$$x^3 - 5x^2 = x^2 \times x + x^2 \times (-5) = x^2(x-5)$$

▶ Try applying the rules on the next page

Factoring/Expansion Rules

- Some of the rules you often encounter:
 - 1. $(x+a)(x+b) = x^2 + (a+b)x + ab$
 - 2. $(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$
 - 3. $(x+a)^2 = x^2 + 2ax + a^2$
 - 4. $(x-a)^2 = x^2 2ax + a^2$
 - 5. $(x+a)(x^2-ax+a^2)=x^3+a^3$
 - 6. $(x-a)(x^2+ax+a^2)=x^3-a^3$
 - 7. $(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$
- (Again, you don't neet to memorize them...)

Factoring/Expansion: Exercises

1. Multiply out:

1.1
$$(x+6)(x-7) =$$

1.2 $(x^2+3)(x^2+x+7) =$

2. Factor:

$$2.1 \ x^2 - 2x - 3 =$$

$$2.2 6x^2 - x - 1 =$$

$$2.3 x^3 - 8 =$$

$$2.4 \ x^3 - 3x^2 - 10x =$$

Solving Equations/Inequalities

- This is when we want find values of a variable satisfying an equation/range of values of a variable satisfying an inequality
- Tips
 - ▶ Rearrange terms so that the variable of interest is isolated
 - Make sure to perform the same operations on both sides of equality/inequality
 - * Be careful when multiplying by negative numbers in solving inequalities!
 - Check answer

Solving Equations/Inequalities (cont.)

• Question: Temperatures in Celsius (say x) is converted to those in Fahrenheit (y) using the following equation.

$$y = \frac{9}{5}x + 32$$

Then,

- 1. Find the temperature when both are equal.
- 2. When do temperatures measured in Fahrenheit are higher than those in Celsius?

Solving Quadratics

After you rearrange the terms in the form

$$(\mathrm{i})ax^2+bx+c=0/(\mathrm{ii})ax^2+bx+c\leq 0/(\mathrm{iii})ax^2+bx+c\geq 0...$$

- If you can easily factor as $a(x+\alpha)(x+\beta)$ $(\alpha>\beta,a>0)$, then
 - ▶ (i): $(x + \alpha) = 0$ and/or $(x + \beta) = 0 \Rightarrow x = -\alpha, -\beta$
 - ▶ (ii): $(x + \alpha) \ge 0$ and $(x + \beta) \le 0 \Rightarrow -\alpha \le x \le -\beta$
 - \blacktriangleright (iii): $(x+\alpha) \le 0$ or $(x+\beta) \ge 0 \Rightarrow x \le -\alpha, x \ge -\beta$
 - ▶ How should we do when a < 0?
- When we cannot easily factor... → Complete the square
 - ▶ Transform the quadratic into the form $a(x \pm \alpha)^2 = \beta$ and solve for x by taking the square root of those terms.

Solving Quadratics: Complete the Square

 Move the constant to the RHS, and divide the equation by the coefficient on the squared term

$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

2. Divide the coefficient on x by 2, square the value, and add to both sides

$$x^2 + 2 \cdot \frac{b}{2a}x + \frac{b^2}{4a^2} = -\frac{c}{a} + \frac{b^2}{4a^2}$$

3. Factor the LHS into the form $(x\pm\alpha)^2$ and simplify the RHS

$$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}$$

4. Take the square root of both sides

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

5. Solve for *x*

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solving Quadratics: Exercises

- Solve the following equations/inequalities for *x*
 - 1. $2x^2 4x 3 = 0$
 - 2. $x^2 + x 6 \le 0$
 - 3. $x^3 = x^2 + 12x$

Function

- **Function** is a relation between sets which associate every element of the first set to exactly one element of the second set.
 - describes how the values of the LHS variable (inputs) changes with values of RHS variables (outputs)
 - ▶ input variables are often called the *inpdependent* variables
 - output variable os often called the dependent variable
- Domain, image, range
 - ▶ **Domain**: set over which a function is defined
 - ▶ Image: output value of the function
 - ▶ Range: set of the images of all elements of the domain

Function: Notation

• Let f be a function which relates every element $x \in X$ to exactly one element $y \in Y$. Then we denote the relationship as

$$y = f(x)$$

or

$$f: X \to Y$$

ightharpoonup Other letters often used to denote functions: g, h, u, v...

Function: Examples

- $f(x) = x + 4 \ (x \in \mathbb{R})$
- $f(x) = x^2 + 2 \ (x \in \mathbb{R})$
 - What is the range of this function?
- $f(x_1, x_2) = 2x_1 x_2 + 7 \ (x_1, x_2 \in \mathbb{R})$
 - ▶ f maps/associates every element $(x_1, x_2) \in X$ to exactly one element of $y \in Y$.
- $x^2 + y^2 = 1$ is not a function!
 - ightharpoonup e.g., when x=0, $y=\pm 1$

Graphing Functions

- Why do you want to graph a function?
 - Is it increasing/decreasing?
 - ▶ How fast is it increasing/decreasing?
 - **...**
- Intersection of algebra and geometry

Graphing Functions (cont.)

- Graph of y = f(x) is the collection of points satisfying the relationship.
- Compute the points $(x_0, f(x_0))$ for multiple x_0 and connect them!

Graphing Functions (cont.)

- Areas above the curve (areas in blue): set of points satisfying the relationships y > f(x)
- Areas below the curve (areas in green): set of points satisfying the relationships y < f(x)

Graphing Functions (cont.)

- Linear function (polynomial of degree 1): y = a + bx
 - ▶ Must pass the point (0, a).
- Quadratic function
 - ▶ If we can factor as $a(x+b)(x+c) \to \text{must}$ pass the points (-b,0) and (-c,0)
 - ▶ Complete the square and get $a(x+b)^2 + c \rightarrow$ must pass the point (-b,c)
 - \star If a > 0: (-b, c) is the global minimum
 - \star If a < 0: (-b,c) is the global maximum

Graphing Functions: Exercises

- Graph the following relationships.
 - 1. $y = x^2 2x + 5$
 - 2. $y = 2x^2 + 2x 12$
 - 3. $y \ge \frac{3}{2}x 4$

Functions Often Used in Social Science

- Exponential function
- Logarithmic function
- (Trigonometric function)

Exponential Function

- An exponential function of x is some constant (say a) raised to x: $f(x) = a^x$
 - $f(x) = 4^x$
 - $f(x) = (-2)^x$
 - ▶ What is the range of an exponential function?
- Euler's constant e
 - $e = \lim_{x \to \infty} (1 + \frac{1}{h})^h = 2.71828...$
 - $e^x = \exp(x)$

Exponential Function: Basic Rules

1.
$$a^{x_1} \times a^{x_2} = a^{x_1 + x_2} \ (x_1, x_2 \in \mathbb{R})$$

- 2. $(a^{x_1})^{x_2} = a^{x_1x_2}$
- 3. $a^0 = 1$
- 4. $a^{-x} = \frac{1}{a^x}$
- 5. $a^{\frac{1}{x}} = \sqrt[x]{a}$

Logarithmic Funtion

• Logarithm is the inverse of an exponential function. Logarithm of x to base a is the number such that a power of it equals to x. Formally,

$$y = \log_a x \Leftrightarrow x = a^y$$

• Log of x to base e is called the **natural log**, and often denoted as

$$\log_e x = \log x = \ln(x)$$

Question: what is the domain of a log function?

Logarithmic Funtion: Basic Rules

- 1. $\log_a x^b = b \log_a x$
- 2. $\log_a \frac{1}{x} = \log_a x^{-1} = -\log_a x$
- $3. \log_a xy = \log_a x + \log_a y$
- **4**. $\log_a \frac{x}{y} = \log_a (x \times y^{-1}) = \log_a x \log_a y$
- 5. $\log_{x} x = 1$
- 6. $\log_a 1 = \log_a a^0 = 0$
- 7. (Change of base) $\log_b x = \frac{\log_a x}{\log_a b}$

Exponential and Logarithmic Functions: Exercises

1. Simplify the following expressions.

$$11 \ 2^5 \times 4^{\frac{3}{2}} =$$

$$1.2 \ 2 \log x - \log(3x) =$$

1.3
$$a^{\log_a x} =$$

2. Derive the change of base formula. (Hint: by definition, \boldsymbol{x} is represented as...)

Why Do People Use Log?

- Log function is (one of) the most frequently used function(s) in political science.
- But why?
- Log function stretches out the scale when the value of the input is small while compresses the scale when it's large.
 - Dealing with skewness of the data
 - Express nonlinear relationship
 - **...**

Why Do People Use Log? (cont.)

Why Do People Use Log? (cont.)

Summation and Product Operators

- Assume a sequence of variables/values $x_m, x_{m+1}, \dots, x_n \ (m < n)$
- We denote their sum as follows.

$$\sum_{i=m}^{n} x_i = x_m + x_{m+1} + \dots + x_n$$

We denote their product as follows.

$$\prod_{i=m}^{n} x_i = x_m \times x_{m+1} \times \dots \times x_n$$

Summation and Product Operators: Examples

- $\sum_{i=1}^{10} i = 1 + 2 + \dots + 10 = 55$.
- $\prod_{i=1}^{7} i = 7! = 840.$
- $\sum_{i=1}^{6} x_i = x_1 + x_2 + x_3 + x_4 + x_5 + x_6$.
- $\prod_{j=2}^{5} x_j = x_2 \times x_3 \times x_4 \times x_5$.

Summation and Product Operators: Exercises

- 1. Perform the following calculation.
 - 1.1 $\sum_{i=3}^{7} i^2$
 - 1.2 $\sum_{i=1}^{n} a$
- 2. Show that

 - $\sum_{i=1}^{n} (ax_i + b) = a \sum_{i=1}^{n} x_i + nb$

Tomorrow

- ullet Problem set 1
 ightarrow review in the morning
- Tomorrow
 - Limits
 - Derivative
 - Unconstrained optimization
 - ▶ Moore & Siegel, Chapters 4-6 & 8