Задача A. RMQ

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая на данном массиве из N целых чисел позволяет узнать максимальное значение на этом массиве и индекс элемента, на котором достигается это максимальное значение.

Формат входных данных

В первой строке вводится натуральное число N ($1\leqslant N\leqslant 10^5$) – количество элементов в массиве. В следующей строке содержатся N целых чисел, не превосходящих по модулю 10^9 – элементы массиваб гарантируется, что в массиве нет одинаковых элементов. Далее идет число K ($0\leqslant K\leqslant 10^5$) – количество запросов к структуре данных. Каждая из следующих K строк содержит два целых числа l и r ($1\leqslant l\leqslant r\leqslant N$) – левую и правую границы отрезка в массиве для данного запроса.

Формат выходных данных

Для каждого из запросов выведите два числа: наибольшее значение среди элементов массива на отрезке от l до r и индекс одного из элементов массива, принадлежащий отрезку от l до r, на котором достигается этот максимум.

стандартный вывод
7 1
6 4
1 3

Задача В. Катый ноль

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Реализуйте эффективную структуру данных, позволяющую изменять элементы массива и вычислять индекс k-го слева нуля на данном отрезке в массиве.

Формат входных данных

В первой строке вводится одно натуральное число N ($1 \le N \le 200\,000$) — количество чисел в массиве. Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива. В третьей строке вводится одно натуральное число M ($1 \le M \le 200\,000$) — количество запросов. Каждая из следующих M строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (\mathbf{s} — вычислить индекс k-го нуля, \mathbf{u} — обновить значение элемента). Следом за \mathbf{s} вводится три числа — левый и правый концы отрезка и число k ($1 \le k \le N$). Следом за \mathbf{u} вводятся два числа — номер элемента и его новое значение.

Формат выходных данных

Для каждого запроса s выведите результат. Все числа выводите в одну строку через пробел. Если нужного числа нулей на запрашиваемом отрезке нет, выводите -1 для данного запроса.

стандартный ввод	стандартный вывод
5	4
0 0 3 0 2	
3	
u 1 5	
u 1 0	
s 1 5 3	

Задача С. Перестановки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.75 секунд Ограничение по памяти: 512 мегабайт

Вася выписал на доске в каком-то порядке все числа от 1 по N, каждое число ровно по одному разу. Количество чисел оказалось довольно большим, поэтому Вася не может окинуть взглядом все числа. Однако ему надо всё-таки представлять эту последовательность, поэтому он написал программу, которая отвечает на вопрос — сколько среди чисел, стоящих на позициях с x по y, по величине лежат в интервале от k до l. Сделайте то же самое.

Формат входных данных

В первой строке лежит два натуральных числа — $1\leqslant N\leqslant 10^5$ — количество чисел, которые выписал Вася и $1\leqslant M\leqslant 10^5$ — количество вопросов, которые Вася хочет задать программе. Во второй строке дано N чисел — последовательность чисел, выписанных Васей. Далее в M строках находятся описания вопросов. Каждая строка содержит четыре целых числа $1\leqslant x\leqslant y\leqslant N$ и $1\leqslant k\leqslant l\leqslant N$.

Формат выходных данных

Выведите M строк, каждая должна содержать единственное число — ответ на Васин вопрос.

Пример

стандартный ввод	стандартный вывод
4 2	1
1 2 3 4	3
1 2 2 3	
1 3 1 3	

Замечание

Напиши merge-sort-tree. Другие решения будут забанены.

Задача D. Ближайшее большее число справа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив a из n чисел. Нужно обрабатывать запросы:

0. set(i, x) — присвоить новое значение элементу массива a[i] = x;

1. get(i, x) — найти $\min k \colon k \geqslant i$ и $a_k \geqslant x$.

Формат входных данных

Первая строка входных данных содержит два числа: длину массива n и количество запросов m $(1 \le n, m \le 200\,000)$.

Во второй строке записаны n целых чисел – элементы массива a ($0 \le a_i \le 200\,000$).

Следующие m строк содержат запросы, каждый запрос содержит три числа t,i,x. Первое число t равно 0 или 1 – тип запроса. t=0 означает запрос типа $\mathsf{set},\,t=1$ соответствует запросу типа $\mathsf{get},\,1\leqslant i\leqslant n,\,0\leqslant x\leqslant 200\,000$. Элементы массива нумеруются с единицы.

Формат выходных данных

На каждой запрос типа **get** на отдельной строке выведите соответствующее значение k. Если такого k не существует, выведите -1.

стандартный ввод	стандартный вывод
4 5	1
1 2 3 4	3
1 1 1	-1
1 1 3	2
1 1 5	
0 2 3	
1 1 3	

Задача Е. Дерево отрезков с операцией на отрезке

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Реализуйте эффективную структуру данных для хранения элементов и увеличения нескольких подряд идущих элементов на одно и то же число.

Формат входных данных

В первой строке вводится одно натуральное число $N~(1\leqslant N\leqslant 100\,000)$ — количество чисел в массиве.

Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива.

В третьей строке вводится одно натуральное число $M~(1\leqslant M\leqslant 30\,000)$ — количество запросов.

Каждая из следующих М строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (g — получить текущее значение элемента по его номеру, а — увеличить все элементы на отрезке).

Следом за д вводится одно число — номер элемента.

Следом за а вводится три числа — левый и правый концы отрезка и число add, на которое нужно увеличить все элементы данного отрезка массива $(0 \le add \le 100\,000)$.

Формат выходных данных

Выведите в одну строку через пробел ответы на каждый запрос д.

стандартный вывод
4
2
14
5

Задача F. Число возрастающих подпоследовательностей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Задана последовательность из n чисел a_1,a_2,\ldots,a_n . Подпоследовательностью длины k этой последовательности называется набор индексов i_1,i_2,\ldots,i_k , удовлетворяющий неравенствам $1\leqslant i_1< i_2<\ldots< i_k\leqslant n$. Подпоследовательность называется возрастающей, если выполняются неравенства $a_{i_1}< a_{i_2}<\cdots< a_{i_k}$.

Необходимо найти число возрастающих подпоследовательностей наибольшей длины заданной последовательности a_1, \ldots, a_n . Так как это число может быть достаточно большим, необходимо найти остаток от его деления на $10^9 + 7$.

Формат входных данных

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка входного файла содержит n целых чисел: a_1, a_2, \ldots, a_n . Все a_i не превосходят 10^9 по абсолютной величине.

Формат выходных данных

В выходной файл выведите ответ на задачу.

стандартный ввод	стандартный вывод
5	1
1 2 3 4 5	
6	8
1 1 2 2 3 3	

Задача G. [В-Х] Армия покемонов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Пикачу — милый и дружелюбный покемон, живущий в стае диких пикачу.

Однако недавно стало известно, что команда R хочет украсть всех этих покемонов! Тренер покемонов Андрей решил помочь Пикачу собрать армию для борьбы с командой R.

В первую очередь Андрей посчитал всех покемонов: их оказалось ровно n штук. Затем он установил силу каждого покемона и так получилось, что i-й покемон имеет силу, равную a_i .

В качестве армии Андрей может выбрать любую непустую подпоследовательность покемонов. Иными словами, Андрей выбирает какой-то массив b из k индексов таких, что $1 \le b_1 < b_2 < \dots < b_k \le n$, и его армия будет состоять из покемонов с силами $a_{b_1}, a_{b_2}, \dots, a_{b_k}$.

Сила армии вычисляется как знакопеременная сумма элементов подпоследовательности, то есть $a_{b_1}-a_{b_2}+a_{b_3}-a_{b_4}+\ldots$

Андрей экспериментирует с построением покемонов. Он q раз меняет двух покемонов местами, а именно, в i-й раз он менял местами покемонов с номерами l_i и r_i .

Андрею надо знать: какую максимальную силу армии он мог получить при начальной расстановке покемонов, а также после каждого изменения строя?

Помогите Андрею и покемонам, иначе команде R удастся воплотить в жизнь свой коварный план!

Формат входных данных

В первой строке каждого теста находятся два целых числа n и q $(1 \leqslant n \leqslant 3 \cdot 10^5, 0 \leqslant q \leqslant 3 \cdot 10^5)$ — количество покемонов и количество обменов соответственно.

Во второй строке находятся п целых положительных чисел $a_1, a_2, \dots, a_n \ (1 \leqslant a_i \leqslant n)$ — силы покемонов.

i-я из следующих q строк содержит два целых положительных числа l_i и r_i $(1 \le l_i \le r_i \le n)$ — номера обмениваемых покемонов в i-й операции.

Формат выходных данных

Выведите q+1 число — максимально возможную силу армии до изменений и после каждого изменения.

стандартный ввод	стандартный вывод
3 1	3
1 3 2	4
1 2	
2 2	2
1 2	2
1 2	2
1 2	
7 5	9
1 2 5 4 3 6 7	10
1 2	10
6 7	10
3 4	9
1 2	11
2 3	

Задача Н. Разреженные таблицы

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Формат входных данных

В первой строке зданы три натуральных числа $n, m \ (1 \leqslant n \leqslant 10^5, 1 \leqslant m \leqslant 10^7)$ и $a_1 \ (0 \leqslant a_1 < 16714589)$ — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и $v_1 \ (1 \leqslant u_1, v_1 \leqslant n)$ — первый запрос.

Для того, чтобы размер ввода был небольшой, массив и запросы генерируются.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589.$$

Например, при n=10, $a_1=12345$ получается следующий массив: $a=(12345,\ 305498,\ 7048017,\ 11694653,\ 1565158,\ 2591019,\ 9471233,\ 570265,\ 13137658,\ 1325095)$.

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + r_i + 2i) \bmod n) + 1,$$

$$v_{i+1} = ((13 \cdot v_i + 593 + r_i + 5i) \bmod n) + 1,$$

где r_i — ответ на запрос номер i.

Обратите внимание, что u_i может быть больше, чем v_i .

Формат выходных данных

В выходной файл выведите u_m , v_m и r_m (последний запрос и ответ на него).

Примеры

стандартный ввод	стандартный вывод
10 8 12345	5 3 1565158
3 9	

Замечание

Можно заметить, что массивы u, v и r можно не сохранять в памяти полностью.

Запросы и ответы на них выглядят следующим образом:

i	u_i	v_i	r_i
1	3	9	570265
2	10	1	12345
3	1	2	12345
4	10	10	1325095
5	5	9	570265
6	2	1	12345
7	3	2	305498
8	5	3	1565158

Эта задача скорее всего не решается стандартными интерпретаторами Python 2 и Python 3. Используйте соответствующие компиляторы PyPy.

Задача І. Прямоугольники

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Когда-то тут была легенда про вёдра, но её съели.

Жюри олимпиады

Есть таблица T размера $N \times M$. Элементами таблицы являются прямоугольники T_{ij} , где $0 \leqslant i < N$ и $0 \leqslant j < M$. Прямоугольник T_{ij} задаётся четвёркой чисел $(x_1^{ij}, y_1^{ij}, x_2^{ij}, y_2^{ij})$, где (x_1^{ij}, y_1^{ij}) и (x_2^{ij}, y_2^{ij}) — координаты противоположных углов прямоугльника. Стороны прямоугольника параллельны осям координат.

Далее вам поступают запросы. Каждый запрос состоит из четырёх чисел: (r_1, c_1, r_2, c_2) . Ответом на такой запрос является площадь фигуры, являющейся пересечением всех прямоугольников T_{ij} таких, что $\min(r_1, r_2) \leqslant i \leqslant \max(r_1, r_2)$ и $\min(c_1, c_2) \leqslant j \leqslant \max(c_1, c_2)$. Запросов очень много, поэтому мы просим вас вывести сумму ответов на все запросы по модулю $10^9 + 7$.

Формат входных данных

В первой строке записаны два целых числа N и M — размеры таблицы T ($1\leqslant N, M\leqslant 127$). Далее в N строках описывается таблица T: в (i+1)-й строке (j+1)-я четвёрка чисел x_1^{ij} y_1^{ij} x_2^{ij} y_2^{ij} описывает прямоугольник T_{ij} . Гаранируется, что $|x_k^{ij}|, |y_k^{ij}| \leqslant 10^6$.

Дальше в отдельной строке записано четыре числа. Первое из них, число Q — количество запросов $(1 \le Q \le 5 \cdot 10^6)$. Следующие три числа — это A, B, v_0 $(0 \le A, B, v_0 < 10^9 + 7)$. При помощи этих чисел генерируется бесконечная последовательность $\{v_i\}$ по правилу $v_i = (A \cdot v_{i-1} + B) \mod (10^9 + 7)$.

После этого k-й запрос (запросы нумеруются с единицы) задаётся следующей четвёркой чисел: $(v_{4k-3} \mod N, v_{4k-2} \mod M, v_{4k-1} \mod N, v_{4k} \mod M)$.

Формат выходных данных

Выведите сумму ответов на все запросы по модулю $10^9 + 7$.

Примеры

стандартный ввод	стандартный вывод
2 2	1
0 0 2 2 1 1 3 3	
0 3 2 1 1 2 3 0	
1 500000003 4 2	
3 2	85
8 -1 -7 6 6 8 9 10	
-4 -10 4 9 -3 -8 6 9	
-2 -9 3 8 -5 7 7 3	
5 303164476 273973578 65779139	

Замечание

В первом примере запрос имеет вид (1,0,0,1), то есть это запрос ко всей таблице. Пересечением всех прямоугольников является квадрат с углами в точках (1,1) и (2,2). Его площадь равна 1.

Во втором примере запросы имеют вид (0,1,1,1), (1,0,2,0), (0,0,2,1), (0,1,1,1), (0,1,0,0). На второй запрос ответ -85, на остальные -0.