Approximate Inference: Variational Bayes Inference (1)

Piyush Rai

Probabilistic Machine Learning (CS772A)

Oct 10, 2017

• Approximate a distribution by a set of randomly drawn samples

Target distribution and histogram of the MCMC samples at different iteration points.

• Approximate a distribution by a set of randomly drawn samples

Target distribution and histogram of the MCMC samples at different iteration points.

Compute quantities that depend on this distribution by averaging using these samples

$$p(y_*|x_*) = \mathbb{E}_{p(w|X,y)}[p(y_*|x_*,w)] = \int p(y_*|x_*,w)p(w|X,y)dw \approx \frac{1}{L} \sum_{\ell=1}^{L} p(y_*|x_*,w^{(\ell)})$$

- Pros:
 - Asymptotically exact

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions
- Cons:

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions
- Cons:
 - Can be expensive

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions
- Cons:
 - Can be expensive (but a lot of work on speeding up; online and parallel MCMC methods)

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions
- Cons:
 - Can be expensive (but a lot of work on speeding up; online and parallel MCMC methods)
 - Convergence can be hard to assess

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions
- Cons:
 - Can be expensive (but a lot of work on speeding up; online and parallel MCMC methods)
 - Convergence can be hard to assess (though there exist heuristics to diagnose convergence, and formal results on convergence rate to to the true posterior)

- Pros:
 - Asymptotically exact (.. if you run the sampler long enough)
 - Often easy to implement (e.g., when doing Gibbs sampling)
 - Very general. Can be used to sample from a broad class of distributions
- Cons:
 - Can be expensive (but a lot of work on speeding up; online and parallel MCMC methods)
 - Convergence can be hard to assess (though there exist heuristics to diagnose convergence, and formal results on convergence rate to to the true posterior)
 - Expensive storage-wise (need to store samples) and also at prediction-time (e.g., we need to average using the collected samples)

• Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)

- Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)
- Assume a approximation class of distributions $\{q(z|\phi)\}$ parameterized by free parameters ϕ

- Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)
- Assume a approximation class of distributions $\{q(z|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)
- Assume a approximation class of distributions $\{q(z|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(oldsymbol{z}|\phi)$

- Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)
- Assume a approximation class of distributions $\{q(z|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(z|\phi)$
- $\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(z)||p(z|x)]$

4 D L 4 D L 4 D L 2 D L

- Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)
- Assume a approximation class of distributions $\{q(z|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(m{z}|\phi)$
- $\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{z})||p(\mathbf{z}|\mathbf{x})]$: Approximate inference now becomes an optimization problem!

- Origin of the name: Calculus of variations (optimizing w.r.t. functions/distributions)
- ullet Assume a approximation class of distributions $\{q(oldsymbol{z}|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(oldsymbol{z}|\phi)$
- $\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{z})||p(\mathbf{z}|\mathbf{x})]$: Approximate inference now becomes an optimization problem!
- But wait! We don't know the true distribution p(z|x). How to solve the above problem then?

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• The key identity central to VB inference is the following (holds for any choice of q)

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

Note that we saw something similar in EM

• The key identity central to VB inference is the following (holds for any choice of q)

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables **Z** distinction. Now we'll treat everything as latent variables and collectively call it **Z**

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables **Z** distinction. Now we'll treat everything as latent variables and collectively call it **Z**
- An Observation: The L.H.S. $\log p(\mathbf{X})$ is a constant w.r.t. **Z**

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables **Z** distinction. Now we'll treat everything as latent variables and collectively call it **Z**
- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus finding q that minimizes KL(q||p) is equivalent to finding q that maximizes $\mathcal{L}(q)$

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables **Z** distinction. Now we'll treat everything as latent variables and collectively call it **Z**
- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus finding q that minimizes KL(q||p) is equivalent to finding q that maximizes $\mathcal{L}(q)$
 - Important: Unlike KL(q||p), $\mathcal{L}(q)$ does NOT depend on the true posterior $p(\mathbf{Z}|\mathbf{X})$

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables **Z** distinction. Now we'll treat everything as latent variables and collectively call it **Z**
- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- ullet Thus finding q that minimizes $\mathit{KL}(q||p)$ is equivalent to finding q that maximizes $\mathcal{L}(q)$
 - Important: Unlike KL(q||p), $\mathcal{L}(q)$ does $\underline{\mathsf{NOT}}$ depend on the true posterior $p(\mathbf{Z}|\mathbf{X})$
- Note: Since $KL \ge 0$, $\mathcal{L}(q)$ is a lower bound on the log-evidence $\log p(\mathbf{X})$ of the model m

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables **Z** distinction. Now we'll treat everything as latent variables and collectively call it **Z**
- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus finding q that minimizes KL(q||p) is equivalent to finding q that maximizes $\mathcal{L}(q)$
 - Important: Unlike KL(q||p), $\mathcal{L}(q)$ does $\underline{\mathsf{NOT}}$ depend on the true posterior $p(\mathbf{Z}|\mathbf{X})$
- Note: Since $KL \ge 0$, $\mathcal{L}(q)$ is a lower bound on the log-evidence $\log p(\mathbf{X})$ of the model m $\log p(\mathbf{X}|m) \ge \mathcal{L}(q)$ (using m to explicitly refer to the model in consideration)

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- Note that we saw something similar in EM. But, unlike EM, there's no "parameters" ⊖ vs latent variables Z distinction. Now we'll treat everything as latent variables and collectively call it Z
- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus finding q that minimizes KL(q||p) is equivalent to finding q that maximizes $\mathcal{L}(q)$
 - Important: Unlike KL(q||p), $\mathcal{L}(q)$ does NOT depend on the true posterior $p(\mathbf{Z}|\mathbf{X})$
- Note: Since $KL \ge 0$, $\mathcal{L}(q)$ is a lower bound on the log-evidence log $p(\mathbf{X})$ of the model m $\log p(\mathbf{X}|m) \geq \mathcal{L}(q)$ (using m to explicitly refer to the model in consideration)
- Therefore $\mathcal{L}(q)$ is also known as the **Evidence Lower Bound (ELBO)**

• VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

$$= \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• Note that q depends on the variational parameters ϕ . Expanding, we get

$$\begin{array}{lcl} \mathcal{L}(q) = \mathcal{L}(\phi) & = & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ & = & \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z})) \end{array}$$

• Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\begin{array}{lcl} \mathcal{L}(q) = \mathcal{L}(\phi) & = & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ & = & \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z})) \end{array}$$

- Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

$$= \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- ullet Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\begin{array}{lcl} \mathcal{L}(q) = \mathcal{L}(\phi) & = & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ & = & \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z})) \end{array}$$

- Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - Restricting the form of the q distribution, e.g., mean-field VB inference (today's discussion)

VB by Maximizing the ELBO

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• Note that q depends on the variational parameters ϕ . Expanding, we get

$$\begin{array}{lcl} \mathcal{L}(q) = \mathcal{L}(\phi) & = & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ & = & \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z})) \end{array}$$

- Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - \bullet Restricting the form of the q distribution, e.g., mean-field VB inference (today's discussion)
 - Using Monte-Carlo approximation of the expectation/gradient of the ELBO (later)

VB by Maximizing the ELBO

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

ullet Note that q depends on the variational parameters ϕ . Expanding, we get

$$\begin{array}{lcl} \mathcal{L}(q) = \mathcal{L}(\phi) & = & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ & = & \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z})) \end{array}$$

- ullet Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - lacktriangle Restricting the form of the q distribution, e.g., mean-field VB inference (today's discussion)
 - Using Monte-Carlo approximation of the expectation/gradient of the ELBO (later)
- Option (1) becomes especially easy if $p(\mathbf{X}|\mathbf{Z})$ and $p(\mathbf{Z})$ are exponential family distributions or if the model is locally conjugate

ullet Suppose we partition the latent variables old Z into M groups $old Z_1, \dots, old Z_M$

- Suppose we partition the latent variables **Z** into *M* groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- Suppose we partition the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation q(Z) factorizes over these groups

$$q(\mathsf{Z}|\phi) = \prod_{i=1}^{M} q(\mathsf{Z}_i|\phi_i)$$

ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$

- Suppose we partition the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- ullet Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- Mean-field assumption is quite a strong assumption (can destroy structure among latent variables)

- Suppose we partition the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation q(Z) factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- Mean-field assumption is quite a strong assumption (can destroy structure among latent variables)
- Many improvements have been proposed to the standard mean-field VB

- Suppose we partition the latent variables **Z** into *M* groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- Mean-field assumption is quite a strong assumption (can destroy structure among latent variables)
- Many improvements have been proposed to the standard mean-field VB, e.g.,
 - Structured Mean-Field (Saul and Jordan 1995). Imposes a pre-defined structure in the decomposition

- Suppose we partition the latent variables **Z** into *M* groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation q(Z) factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- As a short-hand, sometimes we write $q = \prod_{i=1}^M q_i$ where $q_i = q(\mathbf{Z}_i|\phi_i)$
- Mean-field assumption is quite a strong assumption (can destroy structure among latent variables)
- Many improvements have been proposed to the standard mean-field VB, e.g.,
 - Structured Mean-Field (Saul and Jordan 1995). Imposes a pre-defined structure in the decomposition
 - Hierarchical Variational Models (Ranganath et al, 2016): Assumes a shared prior on ϕ_1, \dots, ϕ_M which imposes a coupling among them

- Suppose we partition the latent variables **Z** into *M* groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- Mean-field assumption is quite a strong assumption (can destroy structure among latent variables)
- Many improvements have been proposed to the standard mean-field VB, e.g.,
 - Structured Mean-Field (Saul and Jordan 1995). Imposes a pre-defined structure in the decomposition
 - Hierarchical Variational Models (Ranganath et al, 2016): Assumes a shared prior on ϕ_1, \dots, ϕ_M which imposes a coupling among them
- In mean-field VB, learning the optimal q reduces to learning the optimal q_1, \ldots, q_M .

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

$$= \int q_{j} \ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_{j}) d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

$$= \int q_{j} \ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_{j}) d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

where we have defined a new distribution $\widetilde{p}(\mathbf{X}, \mathbf{Z}_j)$ by the relation

$$\ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const.}$$

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

$$= \int q_{j} \ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_{j}) d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

where we have defined a new distribution $\widetilde{p}(\mathbf{X}, \mathbf{Z}_j)$ by the relation

$$\ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const.}$$

ullet Here $\mathbb{E}_{i
eq j}$ denotes expectation w.r.t. the q distribution except component q_j

$$\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] = \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i \, d\mathbf{Z}_i$$

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

$$= \int q_{j} \ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_{j}) d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

where we have defined a new distribution $\widetilde{p}(\mathbf{X}, \mathbf{Z}_j)$ by the relation

$$\ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const.}$$

• Here $\mathbb{E}_{i\neq j}$ denotes expectation w.r.t. the q distribution except component q_i

$$\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] = \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i \, d\mathbf{Z}_i$$

• In the above, $\mathcal{L}(q) = -KL(q_i||\tilde{p}) + \text{const.}$ Which q_i will maximize it?

Under the mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

$$= \int q_{j} \ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_{j}) d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

where we have defined a new distribution $\widetilde{p}(\mathbf{X}, \mathbf{Z}_j)$ by the relation

$$\ln \widetilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const.}$$

• Here $\mathbb{E}_{i\neq j}$ denotes expectation w.r.t. the q distribution except component q_i

$$\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] = \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i \, d\mathbf{Z}_i$$

• In the above, $\mathcal{L}(q) = -KL(q_j||\tilde{p}) + \text{const.}$ Which q_j will maximize it? Answer: $q_j = \tilde{p}(\mathbf{X}, \mathbf{Z}_j)$

ullet The optimal $q_j^*(\mathbf{Z}_j)$ is therefore equal to $\widetilde{p}(\mathbf{X},\mathbf{Z}_j)$

- ullet The optimal $q_i^*(\mathbf{Z}_j)$ is therefore equal to $ilde{p}(\mathbf{X},\mathbf{Z}_j)$
- ullet Since $\ln q_j^*(\mathbf{Z}_j) = \ln ilde{p}(\mathbf{X},\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$, we have

- ullet The optimal $q_i^*(\mathbf{Z}_j)$ is therefore equal to $ilde{p}(\mathbf{X},\mathbf{Z}_j)$
- ullet Since $\ln q_j^*(\mathbf{Z}_j) = \ln ilde{p}(\mathbf{X},\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$, we have

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

• Note: Only need to compute the numerator. Denominator by usually be recognized by inspection

- ullet The optimal $q_j^*(\mathbf{Z}_j)$ is therefore equal to $ilde{p}(\mathbf{X},\mathbf{Z}_j)$
- ullet Since $\ln q_j^*(\mathbf{Z}_j) = \ln ilde{p}(\mathbf{X},\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$, we have

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

- Note: Only need to compute the numerator. Denominator by usually be recognized by inspection
- ullet Note: For estimating q_j , the required expectation depends on other $\{q_i\}_{i
 eq j}$

- The optimal $q_i^*(\mathbf{Z}_i)$ is therefore equal to $\tilde{p}(\mathbf{X}, \mathbf{Z}_i)$
- Since $\ln q_i^*(\mathbf{Z}_i) = \ln \tilde{p}(\mathbf{X}, \mathbf{Z}_i) = \mathbb{E}_{i \neq i}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const}$, we have

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) \, d\mathbf{Z}_j}$$

- Note: Only need to compute the numerator. Denominator by usually be recognized by inspection
- Note: For estimating q_i , the required expectation depends on other $\{q_i\}_{i\neq i}$
- Thus we need to cycle through updating each q_i in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)

- The optimal $q_i^*(\mathbf{Z}_j)$ is therefore equal to $\tilde{p}(\mathbf{X}, \mathbf{Z}_j)$
- Since $\ln q_i^*(\mathbf{Z}_i) = \ln \tilde{p}(\mathbf{X}, \mathbf{Z}_i) = \mathbb{E}_{i \neq i}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const}$, we have

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

- Note: Only need to compute the numerator. Denominator by usually be recognized by inspection
- Note: For estimating q_i , the required expectation depends on other $\{q_i\}_{i\neq i}$
- Thus we need to cycle through updating each q_i in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)
- Guaranteed to converge (to a local optima). $\mathcal{L}(q)$ is concave w.r.t. each q_i (and we're maximizing)

- The optimal $q_i^*(\mathbf{Z}_j)$ is therefore equal to $\tilde{p}(\mathbf{X}, \mathbf{Z}_j)$
- Since $\ln q_i^*(\mathbf{Z}_i) = \ln \tilde{p}(\mathbf{X}, \mathbf{Z}_i) = \mathbb{E}_{i \neq i}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const}$, we have

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

- Note: Only need to compute the numerator. Denominator by usually be recognized by inspection
- Note: For estimating q_i , the required expectation depends on other $\{q_i\}_{i\neq i}$
- Thus we need to cycle through updating each q_i in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)
- Guaranteed to converge (to a local optima). $\mathcal{L}(q)$ is concave w.r.t. each q_i (and we're maximizing)
- \bullet Note: We didn't specify any particular form of q_i to begin with

An Example of Mean-Field VB via Inspection Method

• Suppose we have N obs. $\mathcal{D} = \{x_1, \dots, x_N\}$ from a 1-D Gaussian $\mathcal{N}(\mu, \tau)$

$$p(\mathcal{D}|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$

ullet Assume the following priors on the mean μ and precision au

$$p(\mu|\tau) = \mathcal{N}\left(\mu|\mu_0, (\lambda_0\tau)^{-1}\right)$$

$$p(\tau) = \operatorname{Gam}(\tau|a_0, b_0)$$

ullet Goal: Infer the posterior distribution $p(\mu, \tau | \mathcal{D})$

An Example of Mean-Field VB via Inspection Method

• Suppose we have N obs. $\mathcal{D} = \{x_1, \dots, x_N\}$ from a 1-D Gaussian $\mathcal{N}(\mu, \tau)$

$$p(\mathcal{D}|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$

ullet Assume the following priors on the mean μ and precision au

$$p(\mu|\tau) = \mathcal{N}\left(\mu|\mu_0, (\lambda_0\tau)^{-1}\right)$$

$$p(\tau) = \operatorname{Gam}(\tau|a_0, b_0)$$

- ullet Goal: Infer the posterior distribution $p(\mu, \tau | \mathcal{D})$
- We know how to do it using other simpler ways but let's try VB on it

An Example of Mean-Field VB via Inspection Method

• Suppose we have N obs. $\mathcal{D} = \{x_1, \dots, x_N\}$ from a 1-D Gaussian $\mathcal{N}(\mu, \tau)$

$$p(\mathcal{D}|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$

ullet Assume the following priors on the mean μ and precision au

$$p(\mu|\tau) = \mathcal{N}\left(\mu|\mu_0, (\lambda_0\tau)^{-1}\right)$$

$$p(\tau) = \operatorname{Gam}(\tau|a_0, b_0)$$

- Goal: Infer the posterior distribution $p(\mu, \tau | \mathcal{D})$
- We know how to do it using other simpler ways but let's try VB on it
- Assume the following factorized distribution

$$q(\mu,\tau) = q_{\mu}(\mu)q_{\tau}(\tau)$$

ullet Using the inspection method, we have $\ln q_i^*(\mathbf{Z}_j) = \ln \widetilde{p}(\mathbf{X},\mathbf{Z}_j) = \mathbb{E}_{i
eq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$, and

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

ullet Using the inspection method, we have $\ln q_i^*(\mathbf{Z}_j) = \ln \widetilde{p}(\mathbf{X},\mathbf{Z}_j) = \mathbb{E}_{i
eq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$, and

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

• Variational distribution for the Gaussian's mean:

$$\ln q_{\mu}^{\star}(\mu) = \mathbb{E}_{\tau} \left[\ln p(\mathcal{D}|\mu, \tau) + \ln p(\mu|\tau) \right] + \text{const}$$

$$= -\frac{\mathbb{E}[\tau]}{2} \left\{ \lambda_0 (\mu - \mu_0)^2 + \sum_{n=1}^{N} (x_n - \mu)^2 \right\} + \text{const.}$$

Completing the square over μ we see that $q_{\mu}(\mu)$ is a Gaussian $\mathcal{N}\left(\mu|\mu_N,\lambda_N^{-1}\right)$ with mean and precision given by

$$\mu_N = \frac{\lambda_0 \mu_0 + N\overline{x}}{\lambda_0 + N}$$

$$\lambda_N = (\lambda_0 + N)\mathbb{E}[\tau].$$

ullet Using the inspection method, we have $\ln q_i^*(\mathbf{Z}_j) = \ln \widetilde{p}(\mathbf{X},\mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$, and

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

• Variational distribution for the Gaussian's mean:

$$\ln q_{\mu}^{\star}(\mu) = \mathbb{E}_{\tau} \left[\ln p(\mathcal{D}|\mu, \tau) + \ln p(\mu|\tau) \right] + \text{const}$$

$$= -\frac{\mathbb{E}[\tau]}{2} \left\{ \lambda_0 (\mu - \mu_0)^2 + \sum_{n=1}^{N} (x_n - \mu)^2 \right\} + \text{const.}$$

Completing the square over μ we see that $q_{\mu}(\mu)$ is a Gaussian $\mathcal{N}\left(\mu|\mu_N,\lambda_N^{-1}\right)$ with mean and precision given by

$$\mu_N = \frac{\lambda_0 \mu_0 + N\overline{x}}{\lambda_0 + N}$$

$$\lambda_N = (\lambda_0 + N)\mathbb{E}[\tau].$$

ullet Note that we didn't assume q_{μ} to be a Gaussian (we just found out by inspection)

• Assuming shape-rate parameterization of gamma prior on the precision τ , the variational distribution for the Gaussian's precision (verify):

$$\ln q_{\tau}^{\star}(\tau) = \mathbb{E}_{\mu} \left[\ln p(\mathcal{D}|\mu, \tau) + \ln p(\mu|\tau) \right] + \ln p(\tau) + \text{const}$$

$$= (a_{0} - 1) \ln \tau - b_{0}\tau + \frac{N}{2} \ln \tau + \frac{1}{2} \ln \tau$$

$$- \frac{\tau}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_{n} - \mu)^{2} + \lambda_{0} (\mu - \mu_{0})^{2} \right] + \text{const}$$

and hence $q_{\tau}(\tau)$ is a gamma distribution $\operatorname{Gam}(\tau|a_N,b_N)$ with parameters

$$a_N = a_0 + \frac{N+1}{2}$$

$$b_N = b_0 + \frac{1}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right]$$

• Assuming shape-rate parameterization of gamma prior on the precision τ , the variational distribution for the Gaussian's precision (verify):

$$\ln q_{\tau}^{\star}(\tau) = \mathbb{E}_{\mu} \left[\ln p(\mathcal{D}|\mu, \tau) + \ln p(\mu|\tau) \right] + \ln p(\tau) + \text{const}$$

$$= (a_{0} - 1) \ln \tau - b_{0}\tau + \frac{N}{2} \ln \tau + \frac{1}{2} \ln \tau$$

$$- \frac{\tau}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_{n} - \mu)^{2} + \lambda_{0} (\mu - \mu_{0})^{2} \right] + \text{const}$$

and hence $q_{\tau}(\tau)$ is a gamma distribution $Gam(\tau|a_N,b_N)$ with parameters

$$a_N = a_0 + \frac{N+1}{2}$$

$$b_N = b_0 + \frac{1}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right]$$

ullet Note that we didn't assume q_{μ} to be a Gamma (we just found out by inspection)

• Initialize the variational distribution parameters $\mu_N, \lambda_N, a_N, b_N$ randomly

- **1** Initialize the variational distribution parameters $\mu_N, \lambda_N, a_N, b_N$ randomly
- ② Update μ_N, λ_N as follows (depends on a_N, b_N)

$$\mu_N = \frac{\lambda_0 \mu_0 + N\overline{x}}{\lambda_0 + N}$$
$$\lambda_N = (\lambda_0 + N)\mathbb{E}[\tau]$$

- Initialize the variational distribution parameters $\mu_N, \lambda_N, a_N, b_N$ randomly
- ② Update μ_N, λ_N as follows (depends on a_N, b_N)

$$\mu_N = \frac{\lambda_0 \mu_0 + N\overline{x}}{\lambda_0 + N}$$
$$\lambda_N = (\lambda_0 + N)\mathbb{E}[\tau]$$

• Update a_N, b_N as follows (depends on μ_N, λ_N)

$$a_N = a_0 + \frac{N}{2}$$

$$b_N = b_0 + \frac{1}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right]$$

- Initialize the variational distribution parameters $\mu_N, \lambda_N, a_N, b_N$ randomly
- ② Update μ_N, λ_N as follows (depends on a_N, b_N)

$$\mu_N = \frac{\lambda_0 \mu_0 + N\overline{x}}{\lambda_0 + N}$$
$$\lambda_N = (\lambda_0 + N)\mathbb{E}[\tau]$$

• Update a_N, b_N as follows (depends on μ_N, λ_N)

$$a_N = a_0 + \frac{N}{2}$$

 $b_N = b_0 + \frac{1}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right]$

Go to step 2 if not converged

• Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Zi's will go aways since they are integrated out)

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Z_i's will go aways since they are integrated out)

$$\mathcal{L}(q) = \mathcal{L}(\phi_1, \dots, \phi_M) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Z_i 's will go aways since they are integrated out)

$$\mathcal{L}(q) = \mathcal{L}(\phi_1, \dots, \phi_M) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$
$$= \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Z_i 's will go aways since they are integrated out)

$$\mathcal{L}(q) = \mathcal{L}(\phi_1, \dots, \phi_M) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

$$= \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Z_i 's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

• Note: The above may get further simplified due to independence structures, e.g.,

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Z_i's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

- Note: The above may get further simplified due to independence structures, e.g.,
 - i.i.d. observations simplify $\log p(X|Z)$;

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the **full ELBO** expression (Imp: Z_i 's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

- Note: The above may get further simplified due to independence structures, e.g.,
 - i.i.d. observations simplify $\log p(X|Z)$; conditionally independent priors simplify $\log p(Z)$

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the **full ELBO** expression (Imp: Z_i 's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

- Note: The above may get further simplified due to independence structures, e.g.,
 - i.i.d. observations simplify $\log p(X|Z)$; conditionally independent priors simplify $\log p(Z)$
 - ullet The mean-field assumption simplifies $q({\sf Z})$ as $q({\sf Z}) = \prod_{i=1}^M q_i({\sf Z}_i)$

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the **full ELBO** expression (Imp: Z_i 's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

- Note: The above may get further simplified due to independence structures, e.g.,
 - i.i.d. observations simplify $\log p(X|Z)$; conditionally independent priors simplify $\log p(Z)$
 - ullet The mean-field assumption simplifies $q({\sf Z})$ as $q({\sf Z}) = \prod_{i=1}^M q_i({\sf Z}_i)$
 - Note that the last term reduces to sum of entropies of q_i's (which usually has known forms)

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the **full ELBO** expression (Imp: Z_i 's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

- Note: The above may get further simplified due to independence structures, e.g.,
 - i.i.d. observations simplify $\log p(X|Z)$; conditionally independent priors simplify $\log p(Z)$
 - ullet The mean-field assumption simplifies $q({\sf Z})$ as $q({\sf Z}) = \prod_{i=1}^M q_i({\sf Z}_i)$
 - Note that the last term reduces to sum of entropies of q_i's (which usually has known forms)
- Now take partial derivatives of $\mathcal{L}(\phi_1,\ldots,\phi_M)$ w.r.t. ϕ_1,\ldots,ϕ_M to find their optimal values

- Assume some form for each $q_i(\mathbf{Z}_i)$ (e.g., the same distribution as the prior $p(\mathbf{Z}_i)$)
 - Suppose the free variational parameters of $q_i(\mathbf{Z}_i)$ are ϕ_i (say mean and variance of the Gaussian)
- Now write down the full ELBO expression (Imp: Z_i's will go aways since they are integrated out)

$$\begin{split} \mathcal{L}(q) &= \mathcal{L}(\phi_1, \dots, \phi_M) &= & \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \\ &= & \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} \end{split}$$

- Note: The above may get further simplified due to independence structures, e.g.,
 - i.i.d. observations simplify $\log p(X|Z)$; conditionally independent priors simplify $\log p(Z)$
 - ullet The mean-field assumption simplifies $q({\sf Z})$ as $q({\sf Z}) = \prod_{i=1}^M q_i({\sf Z}_i)$
 - Note that the last term reduces to sum of entropies of q_i's (which usually has known forms)
- Now take partial derivatives of $\mathcal{L}(\phi_1,\ldots,\phi_M)$ w.r.t. ϕ_1,\ldots,ϕ_M to find their optimal values
 - ullet Note: Each ϕ_j usually depends on the other ϕ_i 's (i
 eq j). Co-ordinate ascent/descent like procedure

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- Suppose $q_{\mu}(\mu) = \mathcal{N}(\mu|\mu_N, \lambda_N)$ and $q_{ au}(au) = \mathsf{Gamma}(au|a_N, b_N)$
- Note: our variational distribution $q(\mathbf{Z}) = q(\mu, \tau) = q_{\mu}(\mu)q_{\tau}(\tau)$

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- Suppose $q_{\mu}(\mu) = \mathcal{N}(\mu|\mu_N, \lambda_N)$ and $q_{ au}(au) = \mathsf{Gamma}(au|a_N, b_N)$
- Note: our variational distribution $q(\mathbf{Z}) = q(\mu, \tau) = q_{\mu}(\mu)q_{\tau}(\tau)$
- Can write the ELBO as (by definition)

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- Suppose $q_{\mu}(\mu) = \mathcal{N}(\mu|\mu_N, \lambda_N)$ and $q_{ au}(au) = \mathsf{Gamma}(au|a_N, b_N)$
- ullet Note: our variational distribution $q(\mathbf{Z})=q(\mu, au)=q_{\mu}(\mu)q_{ au}(au)$
- Can write the ELBO as (by definition)

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

• Log joint probability $\log p(X, Z)$ for this model

$$\log p(\mathcal{D}, \mathbf{Z}) = \log p(\mathcal{D}, \mu, \tau) = \log p(\mathcal{D}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$$

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- ullet Suppose $q_{\mu}(\mu)=\mathcal{N}(\mu|\mu_N,\lambda_N)$ and $q_{ au}(au)=\mathsf{Gamma}(au|a_N,b_N)$
- Note: our variational distribution $q(\mathbf{Z}) = q(\mu, au) = q_{\mu}(\mu)q_{ au}(au)$
- Can write the ELBO as (by definition)

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

• Log joint probability $\log p(X, Z)$ for this model

$$\log p(\mathcal{D}, \mathbf{Z}) = \log p(\mathcal{D}, \mu, \tau) = \log p(\mathcal{D}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$$

ullet Likewise, $\log q(\mathbf{Z}) = \log q_{\mu}(\mu) + \log q_{ au}(au)$

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- Suppose $q_{\mu}(\mu) = \mathcal{N}(\mu|\mu_N, \lambda_N)$ and $q_{ au}(au) = \mathsf{Gamma}(au|a_N, b_N)$
- Note: our variational distribution $q(\mathbf{Z}) = q(\mu, \tau) = q_{\mu}(\mu)q_{\tau}(\tau)$
- Can write the ELBO as (by definition)

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

• Log joint probability $\log p(X, Z)$ for this model

$$\log p(\mathcal{D}, \mathbf{Z}) = \log p(\mathcal{D}, \mu, \tau) = \log p(\mathcal{D}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$$

- ullet Likewise, $\log q(\mathbf{Z}) = \log q_{\mu}(\mu) + \log q_{ au}(au)$
- ullet Can plug these into Eq 1 and take expectations w.r.t. $q({f Z})=q_{\mu}(\mu)q_{ au}(au)$

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- ullet Suppose $q_{\mu}(\mu)=\mathcal{N}(\mu|\mu_{N},\lambda_{N})$ and $q_{ au}(au)=\mathsf{Gamma}(au|a_{N},b_{N})$
- ullet Note: our variational distribution $q(\mathbf{Z})=q(\mu, au)=q_{\mu}(\mu)q_{ au}(au)$
- Can write the ELBO as (by definition)

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

• Log joint probability $\log p(X, Z)$ for this model

$$\log p(\mathcal{D}, \mathbf{Z}) = \log p(\mathcal{D}, \mu, \tau) = \log p(\mathcal{D}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$$

- ullet Likewise, $\log q({f Z}) = \log q_{\mu}(\mu) + \log q_{ au}(au)$
- ullet Can plug these into Eq 1 and take expectations w.r.t. $q({f Z})=q_{\mu}(\mu)q_{ au}(au)$
- Expectations simplify due to the factored form of q (do it as an exercise)

- Let's revisit the Gaussian parameter estimation via explicitly taking derivatives of ELBO
- ullet Suppose $q_{\mu}(\mu)=\mathcal{N}(\mu|\mu_{N},\lambda_{N})$ and $q_{ au}(au)=\mathsf{Gamma}(au|a_{N},b_{N})$
- ullet Note: our variational distribution $q(\mathbf{Z})=q(\mu, au)=q_{\mu}(\mu)q_{ au}(au)$
- Can write the ELBO as (by definition)

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

• Log joint probability $\log p(\mathbf{X}, \mathbf{Z})$ for this model

$$\log p(\mathcal{D}, \mathbf{Z}) = \log p(\mathcal{D}, \mu, \tau) = \log p(\mathcal{D}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$$

- ullet Likewise, $\log q(\mathbf{Z}) = \log q_{\mu}(\mu) + \log q_{ au}(au)$
- ullet Can plug these into Eq 1 and take expectations w.r.t. $q(\mathbf{Z})=q_{\mu}(\mu)q_{ au}(au)$
- ullet Expectations simplify due to the factored form of q (do it as an exercise)
- ullet Finally take derivatives w.r.t. each variational parameter $\mu_N, \lambda_N, a_N, b_N$

• Both are iterative (work in a cyclic fashion)

- Both are iterative (work in a cyclic fashion)
- Method 1 preferred if you are comfortable computing expectations and "recognizing" the forms of distributions

- Both are iterative (work in a cyclic fashion)
- Method 1 preferred if you are comfortable computing expectations and "recognizing" the forms of distributions
- Method 2 preferred if you are comfortable taking derivatives (and also computing expectations)

- Both are iterative (work in a cyclic fashion)
- Method 1 preferred if you are comfortable computing expectations and "recognizing" the forms of distributions
- Method 2 preferred if you are comfortable taking derivatives (and also computing expectations)
 - Also more generally applicable in a wide variety of situations
 - Usually considered to be the more direct method

- Both are iterative (work in a cyclic fashion)
- Method 1 preferred if you are comfortable computing expectations and "recognizing" the forms of distributions
- Method 2 preferred if you are comfortable taking derivatives (and also computing expectations)
 - Also more generally applicable in a wide variety of situations
 - Usually considered to be the more direct method
 - ullet The value of ${\cal L}$ can be readily calculated (since we have written its full expression in terms of ϕ_i 's)

- Both are iterative (work in a cyclic fashion)
- Method 1 preferred if you are comfortable computing expectations and "recognizing" the forms of distributions
- Method 2 preferred if you are comfortable taking derivatives (and also computing expectations)
 - Also more generally applicable in a wide variety of situations
 - Usually considered to be the more direct method
 - ullet The value of ${\cal L}$ can be readily calculated (since we have written its full expression in terms of ϕ_i 's)
 - ullet Can use the current value of ${\cal L}$ (ELBO) to easily check for convergence

• Consider a Bayesian linear regression model with unknown noise variance α^{-1} (assume λ known)

$$\begin{split} y_i \sim \operatorname{Normal}(x_i^T w, \alpha^{-1}), \quad w \sim \operatorname{Normal}(0, \lambda^{-1} I), \quad \alpha \sim \operatorname{Gamma}(a, b) \\ p(y, w, \alpha | x) &= p(\alpha) p(w) \prod_{i=1}^N p(y_i | x_i, w, \alpha) \\ q(w, \alpha) &= q(\alpha) q(w) = \operatorname{Gamma}(\alpha | a', b') \operatorname{Normal}(w | \mu', \Sigma') \end{split}$$

• Consider a Bayesian linear regression model with unknown noise variance α^{-1} (assume λ known)

$$\begin{split} y_i \sim \operatorname{Normal}(x_i^T w, \alpha^{-1}), \quad w \sim \operatorname{Normal}(0, \lambda^{-1} I), \quad \alpha \sim \operatorname{Gamma}(a, b) \\ p(y, w, \alpha | x) &= p(\alpha) p(w) \prod_{i=1}^N p(y_i | x_i, w, \alpha) \\ q(w, \alpha) &= q(\alpha) q(w) = \operatorname{Gamma}(\alpha | a', b') \operatorname{Normal}(w | \mu', \Sigma') \end{split}$$

ullet The ELBO $\mathcal{L}(q) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$ is

$$\mathcal{L}(a',b',\mu',\Sigma') = \int q(\alpha) \ln p(\alpha) d\alpha + \int q(w) \ln p(w) dw$$
$$+ \sum_{i=1}^{N} \int \int q(\alpha) q(w) \ln p(y_i | x_i, w, \alpha) dw d\alpha$$
$$- \int q(\alpha) \ln q(\alpha) d\alpha - \int q(w) \ln q(w) dw$$

• ELBO is now a function of the variational parameters a', b', μ', Σ'

$$\mathcal{L}(a',b',\mu',\Sigma') = (a-1)(\psi(a') - \ln b') - b\frac{a'}{b'} + \text{constant}$$

$$-\frac{\lambda}{2}(\mu'^T\mu' + \text{tr}(\Sigma')) + \text{constant}$$

$$+\frac{N}{2}(\psi(a') - \ln b') - \sum_{i=1}^N \frac{1}{2}\frac{a'}{b'}\Big((y_i - x_i^T\mu')^2 + x_i^T\Sigma'x_i\Big) + \text{constant}$$

$$+a' - \ln b' + \ln \Gamma(a') + (1-a')\psi(a')$$

$$+\frac{1}{2}\ln |\Sigma'| + \text{constant}$$

ullet ψ is the digamma function (derivative of log of gamma function)

• ELBO is now a function of the variational parameters a', b', μ', Σ'

$$\begin{split} \mathcal{L}(a',b',\mu',\Sigma') &= (a-1)(\psi(a') - \ln b') - b\frac{a'}{b'} + \text{constant} \\ &- \frac{\lambda}{2}(\mu'^T \mu' + \text{tr}(\Sigma')) + \text{constant} \\ &+ \frac{N}{2}(\psi(a') - \ln b') - \sum_{i=1}^N \frac{1}{2} \frac{a'}{b'} \Big((y_i - x_i^T \mu')^2 + x_i^T \Sigma' x_i \Big) + \text{constant} \\ &+ a' - \ln b' + \ln \Gamma(a') + (1 - a') \psi(a') \\ &+ \frac{1}{2} \ln |\Sigma'| + \text{constant} \end{split}$$

- ullet ψ is the digamma function (derivative of log of gamma function)
- Can now take gradients w.r.t. each of a', b', μ', Σ' and estimate these in an alternating fashion

ullet ELBO is now a function of the variational parameters a',b',μ',Σ'

$$\begin{split} \mathcal{L}(a',b',\mu',\Sigma') &= (a-1)(\psi(a') - \ln b') - b\frac{a'}{b'} + \text{constant} \\ &- \frac{\lambda}{2}(\mu'^T \mu' + \text{tr}(\Sigma')) + \text{constant} \\ &+ \frac{N}{2}(\psi(a') - \ln b') - \sum_{i=1}^N \frac{1}{2} \frac{a'}{b'} \Big((y_i - x_i^T \mu')^2 + x_i^T \Sigma' x_i \Big) + \text{constant} \\ &+ a' - \ln b' + \ln \Gamma(a') + (1 - a') \psi(a') \\ &+ \frac{1}{2} \ln |\Sigma'| + \text{constant} \end{split}$$

- ullet ψ is the digamma function (derivative of log of gamma function)
- Can now take gradients w.r.t. each of a', b', μ', Σ' and estimate these in an alternating fashion
- This will give us $q(\mathbf{w}, \alpha) = \text{Normal}(\mathbf{w}|\mu', \Sigma') \text{Gamma}(\alpha|a', b')$

Inputs: Data and definitions $q(\alpha) = \text{Gamma}(\alpha|a',b')$ and $q(w) = \text{Normal}(w|\mu',\Sigma')$

Output: Values for a', b', μ' and Σ'

- 1. Initialize a_0', b_0', μ_0' and Σ_0' in some way
- 2. For iteration $t = 1, \ldots, T$
 - Update $q(\alpha)$ by setting

$$\begin{aligned} a_t' &= a + \frac{N}{2} \\ b_t' &= b + \frac{1}{2} \sum_{i=1}^{N} (y_i - x_i^T \mu_{t-1}')^2 + x_i^T \Sigma_{t-1}' x_i \end{aligned}$$

- Update q(w) by setting

$$\begin{split} \Sigma_t' &= \left(\lambda I + \frac{a_t'}{b_t'} \sum_{i=1}^N x_i x_i^T\right)^{-1} \\ \mu_t' &= \Sigma_t' \Big(\frac{a_t'}{b_t'} \sum_{i=1}^N y_i x_i\Big) \end{split}$$

- Evaluate $\mathcal{L}(a'_t, b'_t, \mu'_t, \Sigma'_t)$ to assess convergence (i.e., decide T).

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

ullet Let's assume some model with data $old X = \{x_1, \dots, x_N\}$, local latent variables $old Z = \{z_1, \dots, z_N\}$

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- ullet Let's assume some model with data $old X=\{old z_1,\ldots,old z_N\}$, local latent variables $old Z=\{old z_1,\ldots,old z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- ullet Let's assume some model with data $old X = \{old z_1, \dots, old z_N\}$, local latent variables $old Z = \{old z_1, \dots, old z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\eta}) = \prod_{n=1}^{N} h(\mathbf{x}_n, \mathbf{z}_n) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n) \right\}$$

where η denotes the natural parameters and ${\it u}$ is the sufficient statistics

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- ullet Let's assume some model with data $old X = \{old z_1, \dots, old z_N\}$, local latent variables $old Z = \{old z_1, \dots, old z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\eta}) = \prod_{n=1}^{N} h(\mathbf{x}_n, \mathbf{z}_n) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n) \right\}$$

where η denotes the natural parameters and ${\it u}$ is the sufficient statistics

$$p(\boldsymbol{\eta}|\nu_0, \mathbf{v}_0) = f(\nu_0, \boldsymbol{\chi}_0) g(\boldsymbol{\eta})^{\nu_0} \exp\left\{\nu_o \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_0\right\}$$

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- Let's assume some model with data $\mathbf{X} = \{x_1, \dots, x_N\}$, local latent variables $\mathbf{Z} = \{z_1, \dots, z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\eta}) = \prod_{n=1}^{N} h(\mathbf{x}_n, \mathbf{z}_n) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n) \right\}$$

where η denotes the natural parameters and $\emph{\textbf{u}}$ is the sufficient statistics

ullet Suppose the conjugate prior for the parameters η is

$$p(\boldsymbol{\eta}|\nu_0, \mathbf{v}_0) = f(\nu_0, \boldsymbol{\chi}_0) g(\boldsymbol{\eta})^{\nu_0} \exp\left\{\nu_o \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_0\right\}$$

ullet Note: This prior is equivalent to having u_0 pseudo-observations, with sufficient statistics $oldsymbol{u}=\chi_0$

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- ullet Let's assume some model with data $old X = \{old z_1, \dots, old z_N\}$, local latent variables $old Z = \{old z_1, \dots, old z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\eta}) = \prod_{n=1}^{N} h(\mathbf{x}_n, \mathbf{z}_n) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n) \right\}$$

where η denotes the natural parameters and $\emph{\textbf{u}}$ is the sufficient statistics

$$p(\boldsymbol{\eta}|\nu_0, \mathbf{v}_0) = f(\nu_0, \boldsymbol{\chi}_0) g(\boldsymbol{\eta})^{\nu_0} \exp\left\{\nu_o \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_0\right\}$$

- ullet Note: This prior is equivalent to having u_0 pseudo-observations, with sufficient statistics $oldsymbol{u}=\chi_0$
- ullet We are interested in the posterior over both ${f Z}$ and ${m \eta}$.

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- ullet Let's assume some model with data $old X = \{old z_1, \dots, old z_N\}$, local latent variables $old Z = \{old z_1, \dots, old z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\eta}) = \prod_{n=1}^{N} h(\mathbf{x}_n, \mathbf{z}_n) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n) \right\}$$

where η denotes the natural parameters and $\emph{\textbf{u}}$ is the sufficient statistics

$$p(\boldsymbol{\eta}|\nu_0, \mathbf{v}_0) = f(\nu_0, \boldsymbol{\chi}_0) g(\boldsymbol{\eta})^{\nu_0} \exp\left\{\nu_o \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_0\right\}$$

- ullet Note: This prior is equivalent to having u_0 pseudo-observations, with sufficient statistics $oldsymbol{u}=\chi_0$
- ullet We are interested in the posterior over both **Z** and η . Usually intractable.

Mean-Field VB updates are easy to identify/derive if likelihoods/priors are in exponential family

- ullet Let's assume some model with data $old X=\{old x_1,\ldots,old x_N\}$, local latent variables $old Z=\{old z_1,\ldots,old z_N\}$
- For many models, the joint distribution of X and Z is an exponential family distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\eta}) = \prod_{n=1}^{N} h(\mathbf{x}_n, \mathbf{z}_n) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n) \right\}$$

where η denotes the natural parameters and $\emph{\textbf{u}}$ is the sufficient statistics

$$p(\boldsymbol{\eta}|\nu_0, \mathbf{v}_0) = f(\nu_0, \boldsymbol{\chi}_0) g(\boldsymbol{\eta})^{\nu_0} \exp\left\{\nu_o \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_0\right\}$$

- ullet Note: This prior is equivalent to having u_0 pseudo-observations, with sufficient statistics $oldsymbol{u}=\chi_0$
- ullet We are interested in the posterior over both **Z** and η . Usually intractable. Let's use Mean-Field VB.

Using method 1, variational post'r for Z can be written (only keeping terms that depend on Z)

$$\ln q^{\star}(\mathbf{Z}) = \mathbb{E}_{\boldsymbol{\eta}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const}$$
$$= \sum_{n=1}^{N} \left\{ \ln h(\mathbf{x}_{n}, \mathbf{z}_{n}) + \mathbb{E}[\boldsymbol{\eta}^{T}]\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n}) \right\} + \text{const}$$

• Using method 1, variational post'r for **Z** can be written (only keeping terms that depend on **Z**)

$$\ln q^{\star}(\mathbf{Z}) = \mathbb{E}_{\boldsymbol{\eta}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const}$$
$$= \sum_{n=1}^{N} \left\{ \ln h(\mathbf{x}_{n}, \mathbf{z}_{n}) + \mathbb{E}[\boldsymbol{\eta}^{T}]\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n}) \right\} + \text{const}$$

Exponentiating again, we get the following form

$$q^{\star}(\mathbf{z}_n) = h(\mathbf{x}_n, \mathbf{z}_n) g\left(\mathbb{E}[\boldsymbol{\eta}]\right) \exp\left\{\mathbb{E}[\boldsymbol{\eta}^{\mathrm{T}}] \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n)\right\}$$

Using method 1, variational post'r for Z can be written (only keeping terms that depend on Z)

$$\ln q^{\star}(\mathbf{Z}) = \mathbb{E}_{\boldsymbol{\eta}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const}$$

$$= \sum_{n=1}^{N} \left\{ \ln h(\mathbf{x}_{n}, \mathbf{z}_{n}) + \mathbb{E}[\boldsymbol{\eta}^{T}]\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n}) \right\} + \text{const}$$

• Exponentiating again, we get the following form

$$q^{\star}(\mathbf{z}_n) = h(\mathbf{x}_n, \mathbf{z}_n) g\left(\mathbb{E}[\boldsymbol{\eta}]\right) \exp\left\{\mathbb{E}[\boldsymbol{\eta}^{\mathrm{T}}] \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n)\right\}$$

ullet Likewise, the variational posterior for the parameters η (only keeping terms that depend on η)

$$\begin{split} & \ln q^{\star}(\boldsymbol{\eta}) = \ln p(\boldsymbol{\eta}|\nu_{0}, \boldsymbol{\chi}_{0}) + \mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const} \\ & = \nu_{0} \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_{0} + \sum_{n=1}^{N} \left\{ \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\mathrm{T}} \mathbb{E}_{\mathbf{z}_{n}}[\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n})] \right\} + \text{const} \end{split}$$

Using method 1, variational post'r for Z can be written (only keeping terms that depend on Z)

$$\begin{split} \ln q^{\star}(\mathbf{Z}) &= \mathbb{E}_{\boldsymbol{\eta}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const} \\ &= \sum_{n=1}^{N} \left\{ \ln h(\mathbf{x}_{n}, \mathbf{z}_{n}) + \mathbb{E}[\boldsymbol{\eta}^{\text{T}}]\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n}) \right\} + \text{const} \end{split}$$

Exponentiating again, we get the following form

$$q^{\star}(\mathbf{z}_n) = h(\mathbf{x}_n, \mathbf{z}_n) g\left(\mathbb{E}[\boldsymbol{\eta}]\right) \exp\left\{\mathbb{E}[\boldsymbol{\eta}^{\mathrm{T}}] \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n)\right\}$$

ullet Likewise, the variational posterior for the parameters η (only keeping terms that depend on η)

$$\begin{split} & \ln q^{\star}(\boldsymbol{\eta}) = \ln p(\boldsymbol{\eta}|\nu_{0}, \boldsymbol{\chi}_{0}) + \mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const} \\ & = \nu_{0} \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_{0} + \sum_{n=1}^{N} \left\{ \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\mathrm{T}} \mathbb{E}_{\mathbf{z}_{n}}[\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n})] \right\} + \text{const} \end{split}$$

Again, exponentiating gives the following variational distribution

$$q^{*}(\boldsymbol{\eta}) = f(\nu_{N}, \boldsymbol{\chi}_{N})g(\boldsymbol{\eta})^{\nu_{N}} \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}_{N} \right\}$$

$$\nu_{N} = \nu_{0} + N$$

$$\boldsymbol{\chi}_{N} = \boldsymbol{\chi}_{0} + \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z}_{n}}[\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n})]$$

• Using method 1, variational post'r for **Z** can be written (only keeping terms that depend on **Z**)

$$\begin{split} \ln q^{\star}(\mathbf{Z}) &= \mathbb{E}_{\boldsymbol{\eta}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const} \\ &= \sum_{n=1}^{N} \left\{ \ln h(\mathbf{x}_{n}, \mathbf{z}_{n}) + \mathbb{E}[\boldsymbol{\eta}^{\text{T}}]\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n}) \right\} + \text{const} \end{split}$$

• Exponentiating again, we get the following form

$$q^{\star}(\mathbf{z}_n) = h(\mathbf{x}_n, \mathbf{z}_n) g\left(\mathbb{E}[\boldsymbol{\eta}]\right) \exp\left\{\mathbb{E}[\boldsymbol{\eta}^{\mathrm{T}}] \mathbf{u}(\mathbf{x}_n, \mathbf{z}_n)\right\}$$

ullet Likewise, the variational posterior for the parameters η (only keeping terms that depend on η)

$$\begin{split} & \ln q^{\star}(\boldsymbol{\eta}) = \ln p(\boldsymbol{\eta}|\nu_{0}, \boldsymbol{\chi}_{0}) + \mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta})] + \text{const} \\ & = \quad \nu_{0} \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\text{T}} \boldsymbol{\chi}_{0} + \sum_{n=1}^{N} \left\{ \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\text{T}} \mathbb{E}_{\mathbf{z}_{n}}[\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n})] \right\} + \text{const} \end{split}$$

• Again, exponentiating gives the following variational distribution

$$q^{*}(\boldsymbol{\eta}) = f(\nu_{N}, \chi_{N})g(\boldsymbol{\eta})^{\nu_{N}} \exp \left\{ \boldsymbol{\eta}^{T} \chi_{N} \right\}$$

$$\nu_{N} = \nu_{0} + N$$

$$\chi_{N} = \chi_{0} + \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z}_{n}}[\mathbf{u}(\mathbf{x}_{n}, \mathbf{z}_{n})]$$

ullet Again note that updates of $q(\mathbf{Z})$ and $q(\eta)$ are coupled

- VB can be seen as a generalization of the EM algorithm
- ullet Unlike EM, in VB there is no distinction between parameters ullet and latent variables $oldsymbol{Z}$

- VB can be seen as a generalization of the EM algorithm
- ullet Unlike EM, in VB there is no distinction between parameters ullet and latent variables $oldsymbol{Z}$
- VB treats all unknowns of the model as latent variables and calls them Z

- VB can be seen as a generalization of the EM algorithm
- Unlike EM, in VB there is no distinction between parameters Θ and latent variables **Z**
- VB treats all unknowns of the model as latent variables and calls them Z
- Since there is no notion of "parameters", VB is like EM without the "M step"

- VB can be seen as a generalization of the EM algorithm
- Unlike EM, in VB there is no distinction between parameters Θ and latent variables **Z**
- VB treats all unknowns of the model as latent variables and calls them Z
- Since there is no notion of "parameters", VB is like EM without the "M step"
- VB can be used within an EM algorithm if the E step is intractable
 - This is known as Variational EM algorithm

ELBO for Model Selection

- ELBO can also be used for model selection
- We can compute ELBO for each model and then choose the one with largest value of ELBO
- An Example: The ELBO plot for a Gaussian Mixture Model with different K values

Plot of the variational lower bound L versus the number K of components in the Gaussian mixture model, for the fold Faithful data, showing a distinct peak at K=2 components. For each value of K, the model is trained from 100 different random starts, and the results shown as $^{1+}$ symbols plotted with small random horizontal perturbations so that they can be distinguished. Note that some solutions find suboptimal local maxima, but that this happens infrequently.

• Note that unlike likelihood, ELBO doesn't monotonically increase with K (penalizes large K)

Some Properties of VB

Recall that VB is equivalent to finding q by minimizing $\mathsf{KL}(q||p)$

$$\mathrm{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If the true posterior p is very small in some region then, to minimize KL(q||p), the approx. dist. q will also have to be very small (otherwise KL will be very large)

Some Properties of VB

Recall that VB is equivalent to finding q by minimizing $\mathsf{KL}(q||p)$

$$KL(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If the true posterior p is very small in some region then, to minimize KL(q||p), the approx. dist. q will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB

- Underestimates the variances of the true posterior
- For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models

Some Properties of VB

Recall that VB is equivalent to finding q by minimizing KL(q||p)

$$\mathrm{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If the true posterior p is very small in some region then, to minimize KL(q||p), the approx. dist. q will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB

- Underestimates the variances of the true posterior
- For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models

Note: Some other inference methods, e.g., Expectation Propagation (EP) can avoid this behavior

• VB is a deterministic approximate inference method (unlike sampling methods)

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing KL(q||p))
- VB is guaranteed to converge to a local optima (in finite time)

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing KL(q||p))
- VB is guaranteed to converge to a local optima (in finite time)
- \bullet Simplifying assumption on q (e.g., mean field VB) can make VB update very easy to derive

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing KL(q||p))
- VB is guaranteed to converge to a local optima (in finite time)
- \bullet Simplifying assumption on q (e.g., mean field VB) can make VB update very easy to derive

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)
- VB is guaranteed to converge to a local optima (in finite time)
- \bullet Simplifying assumption on q (e.g., mean field VB) can make VB update very easy to derive
- ullet More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)
- VB is guaranteed to converge to a local optima (in finite time)
- ullet Simplifying assumption on q (e.g., mean field VB) can make VB update very easy to derive
- More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors
 - E.g., Monte-Carlo approximations of ELBO and its derivatives

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing KL(q||p))
- VB is guaranteed to converge to a local optima (in finite time)
- \bullet Simplifying assumption on q (e.g., mean field VB) can make VB update very easy to derive
- More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors
 - E.g., Monte-Carlo approximations of ELBO and its derivatives
- Implementations of many classic/advanced VB methods available in Stan, Edward, etc.

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing KL(q||p))
- VB is guaranteed to converge to a local optima (in finite time)
- ullet Simplifying assumption on q (e.g., mean field VB) can make VB update very easy to derive
- More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors
 - E.g., Monte-Carlo approximations of ELBO and its derivatives
- Implementations of many classic/advanced VB methods available in Stan, Edward, etc.
- VB can be a very useful inference method to apply Bayesian models for large-scale data. A lot of recent work on stochastic (i.e., online) variational inference algorithms that work with small randomly chosen minibatches of data and can easily scale to massive-scale data sets