Math 4310 Assignment #1 University of Lethbridge, Fall 2014

Sean Fitzpatrick

September 5, 2014

Due date: Friday, September 12, by 5 pm.

Practice Problems (do not submit)

From Sutherland: 3.1, 3.3, 3.5, 3.6, 3.9, 4.1, 4.4, 4.9, 4.13, all from Chapter 5. Other problems:

- 1. Let $f: A \to B$ be given and let $\{X_{\alpha}\}_{{\alpha} \in I}$ be an indexed family of subsets of A. Prove:
 - (a) $f(\bigcup_{\alpha \in I} X_{\alpha}) = \bigcup_{\alpha \in I} f(X_{\alpha})$
 - (b) $f(\bigcap_{\alpha \in I} X_{\alpha}) \subseteq \bigcap_{\alpha \in I} f(X_{\alpha})$
 - (c) If $f: A \to B$ is one-to-one, then $f(\bigcap_{\alpha \in I} X_{\alpha}) = \bigcap_{\alpha \in I} f(X_{\alpha})$
- 2. Let $f:A\to B$ be given and let $\{Y_\alpha\}_{\alpha\in I}$ be an indexed family of subsets of B. Prove:
 - (a) $f^{-1}(\bigcup_{\alpha \in I} Y_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(Y_{\alpha})$
 - (b) $f^{-1}(\bigcap_{\alpha \in I} Y_{\alpha}) = \bigcap_{\alpha \in I} f^{-1}(Y_{\alpha})$
 - (c) If X is a subset of B, then $f^{-1}(X^c) = (f^{-1}(X))^c$, where $X^c = B \setminus X$ denotes the complement of X in B (and similarly $(f^{-1}(X))^c$ denotes the complement of $f^{-1}(X)$ in A).
 - (d) If X is a subset of A and Y is a subset of B, then $f(X \cap f^{-1}(Y)) = f(X) \cap Y$.
- 3. Let A be the set of all functions $f:[a,b] \to \mathbb{R}$ that are continuous on [a,b]. Let B be the subset of A consisting of all the functions possessing a continuous derivative on [a,b]. Let C be the subset of B consisting of all functions whose value at a is 0. Let $d:B\to A$ be the correspondence that associates with each function in B its derivative. Is the function d invertible?

To each $f \in A$, let h(f) be the function defined by $(h(f))(x) = \int_a^x f(t) dt$, for $x \in [a, b]$. Verify that $h: A \to C$. Find the function $g: C \to A$ such that these two functions are inverses of each other.

- 4. Let m, n be positive integers. Let X be a set with m distinct elements and Y a set with n distinct elements. How many distinct functions are there from X to Y? Let A be a subset of X with r distinct elements, with $0 \le r \le m$, and $f: A \to Y$. In how many distinct ways can we extend f to a function defined on all of X?
- 5. Prove that (\mathbb{R}^n, d'') is a metric space, where the function d'' is defined by the correspondence

$$d''(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|,$$

for $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$. In (\mathbb{R}^2, d'') determine the shape and position of the set of points \mathbf{x} such that $d(\mathbf{x}, \mathbf{y}) \leq 1$ for a given point $\mathbf{y} \in \mathbb{R}^2$.

6. Let (X_i, d_i) , (Y_i, d'_i) , i = 1, ..., n be metric spaces. Let $f_i : X_i \to Y_i$ be continuous functions with respect to the given metrics. Let $X = \prod_{i=1}^n X_i$ and $Y = \prod_{i=1}^n Y_i$, and make X and Y into metric spaces as in the previous problem. Prove that the function $F: X \to Y$ defined by

$$F(x_1,\ldots,x_n) = (f_1(x_1),\ldots,f_n(x_n))$$

is continuous.

- 7. Let $\delta(x,y)$ be a real-valued function on $X \times X$ for some set X, and suppose that for all $x,y,z \in X$ we have
 - (i) $\delta(x,y) \ge 0$ and $\delta(x,y) = 0$ if and only if x = y.
 - (ii) $\delta(x,y) \le \delta(x,z) + \delta(y,z)$.

Deduce that, in addition, $\delta(x,y) = \delta(y,x)$, and thus that $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$.

8. If d is a metric on a set X, show that $d_1(x,y) = \frac{d(x,y)}{1+dx,y}$ and $d_2(x,y) = \min\{d(x,y),1\}$ are also metrics on X.

Assigned problems (to be submitted)

1. Let A be a set and let $E \subseteq A$. The function $\chi_E : A \to \{0,1\}$ defined by

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E \end{cases}$$

is called the *characteristic function* of E. Let E and F be subsets of A.

- (a) Show that $\chi_{E \cap F} = \chi_E \cdot \chi_F$, where $\chi_E \cdot \chi_F(x) = \chi_E(x)\chi_F(x)$.
- (b) Show that $\chi_{E \cup F} = \chi_E + \chi_F \chi_{E \cap F}$.
- (c) Find a similar expression for $\chi_{E \cup F \cup G}$

- 2. Let X denote the set of all continuous functions $f:[a,b]\to\mathbb{R}$, and let X' denote the set of all bounded functions $f:[a,b]\to\mathbb{R}$. (Note: by the Extreme Value Theorem, $X\subseteq X'$.)
 - (a) For $f, g \in X$, define $d(f, g) = \int_a^b |f(t) g(t)| dt$. Using appropriate theorems from calculus, prove that (X, d) is a metric space.
 - (b) For $f, g \in X'$, define $d'(f, g) = \sup_{x \in [a,b]} (|f(x) g(x)|)$. Prove that (X', d') is a metric space.
 - (c) Since $X \subseteq X'$, the metric d' defines a metric on X by restriction. Compare the two metrics d and d' on X.
- 3. Given metric spaces X_1, \ldots, X_n with metrics d_1, \ldots, d_n respectively, let $X = \prod_{i=1}^n X_i$. Then the function $d: X \times X \to \mathbb{R}$ defined by

$$d(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{d_i(x_i, y_i)\}.$$

makes (X, d) into a metric space. Let d continue to denote the metric on \mathbb{R}^n defined by this result, where each d_i is the usual absolute value metric on \mathbb{R} , let d' be the standard Euclidean metric on \mathbb{R}^n , and let d'' be the metric defined in problem #5 from the practice problems above. Prove that for each pair of points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have

$$d(\mathbf{x}, \mathbf{y}) \le d'(\mathbf{x}, \mathbf{y}) \le \sqrt{n} \cdot d(\mathbf{x}, \mathbf{y}),$$

$$d(\mathbf{x}, \mathbf{y}) \le d''(\mathbf{x}, \mathbf{y}) \le n \cdot d(\mathbf{x}, \mathbf{y}).$$

4. Define a function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} ||x - y||, & \text{if } \mathbf{x} = c\mathbf{y} \text{ for some } c \in \mathbb{R} \\ ||\mathbf{x}|| + ||y|| & \text{otherwise} \end{cases}$$

Verify that d defines a metric on \mathbb{R}^2 , and describe the open balls $B_a^d(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^2 \mid d(\mathbf{x}, \mathbf{y}) < a\}$ with respect to this metric. (Hint: if you get stuck, this metric is known as the "Paris Metro" metric. This should let you find help online – but cite your sources! Once you figure it out, take a look at a map of the Paris subway system to understand where the name comes from.)