GUIÃO 06 - PROGRAMAÇÃO DINÂMICA

1 – Números de Delannoy

Os números de Delannoy representam o número de caminhos definidos numa grelha, desde o canto inferior esquerdo – posição (0, 0) – até qualquer outra posição (m, n), sendo permitidos apenas movimentos para cima (N), para a direita (E) ou na diagonal (NE).

As figuras seguintes apresentam os caminhos que é possível definir até às posições (1, 1), (2, 2) e (3, 3).

Os números de Delannoy são definidos pela seguinte relação de recorrência:

$$D(m, n) = 1$$
, se $m = 0$ ou $n = 0$
 $D(m, n) = D(m-1, n) + D(m-1, n-1) + D(m, n-1)$

Tarefas

- Implemente uma função recursiva, para calcular o número de Delannoy D(m, n).
- Qual é o maior número **D(k, k)** que consegue determinar em tempo útil, usando o seu computador?
- Implemente uma **função iterativa**, usando **Programação Dinâmica** e um **array 2D local**, para calcular o número de Delannoy D(m, n).
- Implemente uma **função recursiva**, usando **memoization** e um **array 2D global**, para calcular o número de Delannoy D(m, n).
- Para analisar o esforço computacional requerido por cada uma das funções, construa uma tabela como a da figura seguinte e conte o número de adições realizadas para calcular cada um dos seus elementos. Classifique as funções de acordo com a sua ordem de complexidade.

Delannoy's Matrix - Recursive Function										
1	1	1	1	1	1	1	1	1	1	1
1	3	5	7	9	11	13	15	17	19	21
1	5	13	25	41	61	85	113	145	181	221
1	7	25	63	129	231	377	575	833	1159	1561
1	9	41	129	321	681	1289	2241	3649	5641	8361
1	11	61	231	681	1683	3653	7183	13073	22363	36365
1	13	85	377	1289	3653	8989	19825	40081	75517	134245
1	15	113	575	2241	7183	19825	48639	108545	224143	433905
1	17	145	833	3649	13073	40081	108545	265729	598417	1256465
1	19	181	1159	5641	22363	75517	224143	598417	1462563	3317445
1	21	221	1561	8361	36365	134245	433905	1256465	3317445	8097453

1

Função Rewrisiva normal;

$$T(n) = \int_{-\infty}^{\infty} T$$

Delannoy [3] [3]; n - Columon m > linhas 1

2 - O Problema da Fileira de Moedas ("The Coin Row Problem")

Seja dada uma sequência de **n moedas** de **valores inteiros** – **c**₁, **c**₂, …, **c**_n –, com possíveis repetições.

Pretende-se resolver o seguinte problema de otimização combinatória:

• determinar o valor de um subconjunto de moedas com o maior valor total, com a restrição de que esse subconjunto não contém moedas que sejam adjacentes na sequência dada.

Note que podem ocorrer mais do que um subconjunto de moedas com o valor ótimo (i.e., máximo), que são designados soluções ótimas equivalentes.

Para uma sequência de n moedas, o valor de uma solução ótima pode ser determinado pela seguinte relação de recorrência, em que V(i), i = 0, 1, 2, ..., n, representa o valor de uma solução ótima considerando apenas as primeiras i moedas.

$$V(0) = 0$$

 $V(1) = c_1$
 $V(n) = max \{ c_n + V(n-2), V(n-1) \}, para n > 1$

Tarefas

- Considere a sequência de moedas de valor 5, 1, 2, 10, 6, 2. Calcule manualmente o valor da correspondente solução ótima.
- Implemente uma **função recursiva** que, dada uma sequência de n moedas, cujos valores estão armazenados num array, calcula o valor V(n) de uma sua solução ótima.
- Qual é o tamanho da maior sequência que consegue processar em tempo útil, usando o seu computador?
- Implemente uma função iterativa, usando Programação Dinâmica e um array local, para calcular o valor V(n) de uma solução ótima para uma sequência de n moedas.
- Implemente uma **função recursiva**, usando **memoization** e um **array global**, para calcular o valor V(n) de uma solução ótima para uma sequência de n moedas.
- Para analisar o esforço computacional requerido por cada uma das funções, conte o número de comparações realizadas para determinar o valor da solução ótima, para sequências de moedas sucessivamente mais longas. Classifique as funções de acordo com a sua ordem de complexidade.

Tarefa adicional

• Para a função iterativa que usa **Programação Dinâmica**, desenvolva uma estratégia que, além de determinar o valor de uma solução ótima, **identifique as moedas** que constituem essa solução.