

DEPARTMENT OF LINGUISTICS

DUTCH VOWEL REDUCTION, STOCHASTIC FRAMEWORKS, AND HARMONIC BOUNDING

Aaron Kaplan

LSA Annual Meeting

University of Utah a.kaplan@utah.edu

Jan. 6, 2023

Dutch Vowel Reduction

- Unstressed vowels optionally reduce to [ə] (Booij 1995, Kager 1989).
- Several factors affect vowels' propensity to reduce. The focus here: metrical structure.
- Unfooted vowels do not reduce unless footed vowels do, too (1).
- (1) a. $(fo.no).lo.(\gamma i)$ 'phonology' $(fo.no).lo.(\gamma i)$ 'phonology' $(fo.no).lo.(\gamma i)$ 'fo.no).lo.(\gamma i) $(fo.no).lo.(\gamma i)$ 'fo.no).lo.(\gamma i) $(fo.no).lo.(\gamma i)$
 - b. (ˌlo.kou).mo.('ti.ef) 'locomotive' (ˌlo.kou).mo.('ti.ef) (_lo.kou).mo.('ti.ef) (_lo.kou).mo.('ti.ef)
 - *(ˌlo.ko).mə.('ti.ef)

 . (ˌfe.li̪).ci̯.('teer) 'congratulate'
 (ˌfe.lə̪).cə.('teer)
 - (ˌfe.ləౖ).ci.(ˈteer) *(ˌfe.liַ).cə.(ˈteer)
- Two footed vowels (2): either both reduce or neither does.
- (2) ($|\text{en.do}\rangle(|\text{kri.no}\rangle)(|\text{lo}\chi)$ 'endocrinologist' ($|\text{en.do}\rangle(|\text{kri.no}\rangle)(|\text{lo}\chi)$
- *($_{1}en.d_{\underline{\theta}}$)($_{1}kri.n_{\underline{\theta}}$)($_{1}lo\chi$)
- *($|en.d_{\overline{\Theta}}\rangle(|kri.n_{\overline{\Theta}}\rangle)(|lo\chi\rangle)$
- (1a) & (2): phonetic transcriptions from Nazarov (2019).
- (1b) & (1c): following Kager (1989), underlined vowels are rendered phonetically, everything else orthographically.

My argument

- Nazarov's (2019) Partial Orders (PO; Anttila 1997) analysis provides a better account than Noisy Harmonic Grammar (NHG; Boersma & Pater 2016) and MaxEnt (Goldwater & Johnson 2003).
- The reason: harmonic bounding suppresses unwanted candidates more reliably in PO than in NHG and MaxEnt.

Moraic Domains & Partial Orders

- Moraic Domains (MD; Nazarov 2019): a level of representation between the foot and syllable that groups moras together. Stressed Vs are moraic, but unstressed Vs may or may not be.
- < > = Moraic Domain; () = foot
- Constraints:
- -*STRUC- μ : one violation per mora
- $-SWP(D_{\mu})$: each MD containing a stressed syllable must be disyllabic
- -PROJECT(V, μ): every V must be moraic
- -PROJECT(V, μ)/Ft: every footed V must be moraic
- -Not shown here: constraints requiring non-moraic Vs to be [ə]
- Partial Orders: optionality arises from variation in the constraint ranking.

• (3) & (4): no fixed ranking among the top 3 constraints. Depending on the ranking chosen, any licit candidate can win.

(3)	/fonoloyi/	$*STRUC-\mu$	$SWP(D_{\mu})$	$\Pr(V,\mu)$	FAITH	$_{(\mathrm{V},\mu)/\mathrm{Ft}}^{\mathrm{PROJ}}$
	(1837) a. $(< fo_{\mu}>< no_{\mu}>)< lo_{\mu}>(< \gamma i_{\mu}>)$	***(!)*	**(!)	 		
	(1887) b. ($<$ fo $_{\mu}$.nə $>$) $<$ lo $_{\mu}>$ ($<$ I $\gamma i_{\mu}>$)	***(!)	 *	*(!)	*	*
	(1887) c. $(< fo_{\mu}.nə>)$ lə $(< \gamma i_{\mu}>)$	**	 *	*(!)*	**	*
	d. ($<$ _I $fo_{\mu}><$ no $_{\mu}>$) l ə($<$ ^I $\gamma i_{\mu}>$)	***(!)	**(!)	*(!)	*	

- Without Proj(V, μ)/Ft, candidate (d) is harmonically bounded.
- •PROJ(V, μ)/Ft is needed for typological reasons (Nazarov 2019), but it can be safely stashed at the bottom of the hierarchy.

(4)	/endokrinoloχ/	* STRUC- μ	$SWP(D_{\mu})$	$\operatorname{PROJ}(\mathrm{V},\mu)$	FAITH
	(**) a. $(<_{l}en_{\mu\mu}>< do_{\mu}>)(<_{l}kri_{\mu}>< no_{\mu}>)(<_{l}lo\chi_{\mu\mu\mu}>)$	8(!)	**(!)*		
	(b. $(< en_{\mu\mu}.də>)(< kri_{\mu}.nə>)(< lockline)$	6		*(!)*	**
	c. $(< en_{\mu\mu}>< do_{\mu}>)(< kri_{\mu}.nə>)(< lox_{\mu\mu\mu}>)$	7(!)	**(!)	*(!)	*
	d. $(<_{l}en_{\mu\mu}.də>)(<_{l}kri_{\mu}>< no_{\mu}>)(<^{l}lo\chi_{\mu\mu\mu}>)$	7(!)	**(!)	*(!)	*

- PROJ(V, μ)/Ft omitted for space. It penalizes candidate (b) twice, (c), and (d).
- Candidates (a) and (b) collectively harmonically bound (c) and (d).

NHG & MaxEnt

- These frameworks were investigated using OTSoft (Hayes et al. 2013).
- NHG:
- Constraint weights are perturbed; harmonically bounded outputs are impossible.
- $-\text{PROJ}(V,\mu)/\text{Ft}$ prevents exclusion of candidate (d) in (5). All four candidates can win.
- -Because every constraint violated by (d) is violated by a licit candidate, no constraint can be elevated to rule out (d).
- ⇒ NHG forces a choice between accuracy for Dutch and typological adequacy.

(5)		* STRUC- μ	$SWP(D_{\mu})$	$PROJ(V,\mu)$	[DENT(V)	ROJ (m)/Ft	
	/fonoloyi/	I * 1.004	S 2.15	0.896	0.756	0.95	H
	a. $(< fo_{\mu}>< no_{\mu}>)< lo_{\mu}>(< \gamma i_{\mu}>)$	4	2				8.316
	b. (< fo _{\mu} .nə>)< o _{\mu} >(< \gamma i_\mu>)	3	1	1	1	1	7.764
	c. (< fo $_{\mu}$.nə>)lə(< γi_{μ} >)	2	1	2	2	1	8.412
	d. ($<$ $fo_{\mu}><$ $no_{\mu}>$) l ə($<$ $\gamma i_{\mu}>$)	3	2	1	1		8.964

MaxEnt:

- All candidates are assigned probabilities.
- $-PROJ(V,\mu)/Ft$ makes no difference.
- -Like NHG, changing weights in (5) to increase (d)'s penalty also harms licit forms.
- -Collective harmonic bounding (4): MaxEnt necessarily assigns the harmonically bounded forms probabilities between those of the bounders.
- Output probabilities:

	NHG without	NHG with	
Candidate	Proj $(V,\mu)/Ft$	Proj(V, μ)/Ft	MaxEnt
(ˌfo.no).lo.('ɣi)	0.443	0.383	0.286
(ˌfo.nə).lo.('ɣi)	0.235	0.261	0.381
(ˌfo.nə).lə.(ˈɣi)	0.322	0.320	0.190
*(ˌfo.no).lə.('ɣi)	0.000	0.036	0.143
(en.do)(kri.no)(loχ)	0.427	0.423	0.184
$(en.də)(kri.nə)(lo\chi)$	0.573	0.577	0.327
$*(en.do)(kri.nə)(lo\chi)$	0.000	0.000	0.245
$*(en.də)(kri.no)(lo\chi)$	0.000	0.000	0.245

Harmonic bounding

- All three analyses rely on harmonic bounding to exclude illicit forms, but only PO does so robustly.
- PO: an "extraneous" constraint like PROJ(V, μ)/Ft that disrupts harmonic bounding can be placed at the bottom of the ranking, where it is harmless.
- NHG: even zero-weighted constraints can influence the outcome (Flemming 2021, Hayes & Kaplan in submission): perturbation gives it a non-zero weight.
- MaxEnt: even harmonically bounded candidates get output probabilities.
- -Collective harmonic bounding is especially pernicious for MaxEnt: the bounded candidates necessarily have probabilities between those of the bounders.

References

• Anttila, A. 1997. Deriving Variation from Grammar, Variation, Change and Phonological Theory, edited by F. Hinskens, R. van Hout, & W. L. Wetzels, Current Issues in Linguistic Theory, vol. 146, 35–68, Philadelphia: John Benjamins. • Boersma, P. & J. Pater. 2016. Convergence Properties of a Gradual Learning Algorithm for Harmonic Grammar, Harmonic Grammar and Harmonic Serialism, edited by J. J. McCarthy & J. Pater, 389–434, Bristol, CT: Equinox. • Booij, G. 1995. The Phonology of Dutch, Oxford: Oxford University Press. • Flemming, E. 2021. Comparing MaxEnt and Noisy Harmonic Grammar, Glossa: A Journal of General Linguistics 6:1–42. • Goldwater, S. & M. Johnson. 2003. Learning OT Constraint Rankings Using a Maximum Entropy Model, Proceedings of the Workshop on Variation within Optimality Theory, 113–122, Stockholm University. • Hayes, B. & A. Kaplan. in submission. Zero-weighted constraints in Noisy Harmonic Grammar. • Hayes, B., B. Tesar, & K. Zuraw. 2013. OTSoft 2.6, www.linguistics.ucla.edu/people/hayes/otsoft. • Kager, R. 1989. A Metrical Theory of Stressing and Destressing in English and Dutch, Dordrecht: Foris. • Nazarov, A. 2019. Moraic Domains Between Feet and Syllables: An Argument from Vowel Reduction Typology, Glossa 4:1–43.