EECS 127/227AT Optimization Models in Engineering Spring 2020

Discussion 2

1. Gradients and Hessians

(a) The *Gradient* of a scalar-valued function $g: \mathbb{R}^n \to \mathbb{R}$, is the column vector of length n, denoted ∇g , containing the derivatives of components of g with respect to the variables:

$$(\nabla g(\vec{x}))_i = \frac{\partial g}{\partial x_i}(\vec{x}), \ i = 1, \dots n.$$

Compute the gradient, $\nabla g(\vec{x})$, of:

i.
$$g(\vec{x}) = \vec{c}^{\top} \vec{x}$$

ii.
$$g(\vec{x}) = \vec{x}^{\top} \vec{x}$$

iii.
$$g(\vec{x}) = \ln\left(\sum_{i=1}^{n} e^{x_i}\right)$$

(b) The *Hessian* of a scalar-valued function $g: \mathbb{R}^n \to \mathbb{R}$, is the $n \times n$ matrix, denoted as $\nabla^2 g$, containing the second derivatives of components of g with respect to the variables:

$$(\nabla^2 g(\vec{x}))_{ij} = \frac{\partial^2 g}{\partial x_i \partial x_j}(\vec{x}), \quad i = 1, \dots, n, \quad j = 1, \dots, n.$$

Compute the Hessian, $\nabla^2 g(\vec{x})$, of:

i.
$$g(\vec{x}) = \vec{c}^{\top} \vec{x}$$

ii.
$$g(\vec{x}) = \vec{x}^{\top} \vec{x}$$
.

iii.
$$g(\vec{x}) = \vec{x}^{\top} A \vec{x}$$
.

2. Gradients with respect to matrices (OPTIONAL)

Assume that $A \in \mathbb{R}^{p \times m}, C, X \in \mathbb{R}^{m \times n}, \Sigma \in \mathbb{R}^{m \times m}$ and $\vec{a} \in \mathbb{R}^m, \vec{b} \in \mathbb{R}^n$. Find the following gradients and specify the dimensions of the gradients.

- (a) $\nabla_X \operatorname{tr}(X^\top C)$
- (b) $\nabla_X(\vec{a}^\top X \vec{b})$
- (c) $\nabla_{\Sigma^{-1}} \operatorname{tr}(X^{\top} \Sigma^{-1} X)$
- (d) $\nabla_X ||AX||_F^2$

3. Jacobians (OPTIONAL)

The *Jacobian* of a vector-valued function $g: \mathbb{R}^n \to \mathbb{R}^m$ is the $m \times n$ matrix, denoted as Dg, containing the derivatives of the components of g with respect to the variables:

$$(Dg)_{ij} = \frac{\partial g_i}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

(a) Compute the Jacobian of $g(\vec{x}) = A\vec{x}$