U19 CS0 76

Krithikha Balamurugan

Tutorial - 3

			`		
31) (16)	(2,4),	(3,3)	(4,5)	15,4,	(6,2)
	0	,	,	. ,	

	1	1		1	6	
	2	1		,	4	,
	3	l	m	=	3	(mx+b=47)
1	24	١	L b.		5	
	5	1	, 1, 5	\	·3· 4	
	6	1	V. 20		2	·

AATX* = ATY

$$\begin{bmatrix} 91 & 21 \\ 21 & 6 \end{bmatrix} \begin{bmatrix} m^* \\ b^* \end{bmatrix} = \begin{bmatrix} 75 \\ 24 \end{bmatrix}$$

$$\frac{..}{273} \frac{273}{m^*} + \frac{63}{5} \frac{5^*}{5^*} = \frac{225}{312}$$

$$21 m^{*} + 8(\frac{87}{15}) = 24$$

$$105 m^{*} + 174 = (20)$$

$$105 m^{*} + 1$$

U1968076

yor (3,3) y = (-18/35) 3 + (87/15)
y = 4.25714
1
40 (4,5) y = (-18/35) 4 + (87/15)
$y^A = 3.74286$
y = 3.74286
709 (5/4) yA = (-18/35) 5 + (87/15)
$y^4 = 3.2286$
(2)
for (6,2) y A = (-18/35)6 +(87/15)
JA = 2.7143
A 11 12
$\frac{y}{x} + \frac{y^{2} - y}{y^{2}}$
1 6 5.28 -0.72 0.5184
2 4 4.77 0.47 0.5929
3 3 4.28 1.28 1.6.384
<u>4</u> 5 3.74 -1.26 1.5876 5 4 3.23 -0.77 0.5929
5 4 3.23 -0.44 0.5921 c 2 2.71 0.71 0.5041
Standard Error
of estimate = \ \(\frac{1}{2} \left(\hat{y} - \yeqref{y}^2 \right)
h-z 0.9461
= 5.4343 = 2.347

U19 CS076

			, ,			
B2] n	y	и	~	u^2	V 2	W UV
56	147	9	19	81	361	171
42	125	-5	-3	25	9	15
72	160	25	. 32	625	1024	800
36	118	-11	-10	121	100	110
63	149	16	21	256	441	. 336
47	128	0	0	0	0	0
- 55	150	8	22	64	484	176
49	145	2,	27	4	729	54
38	115	-9	-13	81	169	117
#2	140	-5	12	25	144	-60
68	152	21	24	441	576	804
60	165	13	27	169	729	357
		620	158	1892	4766	2574
^	V =8	γ = 2	€47-	1 8 N	42V	
		\sqrt{C}	242	1 (£4)2] { { 5	$(V^2 - \frac{1}{N}(EV)^2)$
		= 0	2574	- 1/8	(64)((821
		_				56-1 (158)2
		= \(\langle \langle \l	1350	120-5	=)	= 1310 2075.16
	X.	= 0-1	53123	77	Y =	0.8964

A27 n	H 7.15 Z	20 710 ~	(10 7 2) 7 20 7 11 7 20		
			2-19 7-21 7·20 7·16 7·18		
	Mean =	ZpH = 57	7-47 = 7.18		
	(\bar{X})	'n	8		
		* 1	7 - 2		
	X	X - X	$(x-\overline{x})^2$		
	7.15	-0.03	0-0009		
	7.20	0-02	0.0004		
	7.18		0		
	7.19	0.01	0.000		
	7.21	0.03	0.0009		
	7.20	0.02	0.0004		
	7.18	_ 0.02	0.0004		
	4.18	0	0		
	0 5				
	S. D	1/			
					
	4.		= 0.01968		
	1, -	122	0.0003875		
	Variance.	= $(SD) =$	0.0003873		
			1 -12		
94	X	<u> </u>	$(x-\overline{x})^2$		
	116.8	-2	4		
	171.4	2.6	6.76		
	169.1		0.09		
	1785	9.7	94.09		
	168	-0.8	0.64		
	157.9	-10.9			
	170.1 1.3		1.69		
	X	= 2X =	1181.8 - 168.8		
	/\	n	7		

-Bample Variance
$S^{2} = \sum (X - \bar{X})^{2} = 226.08 = 37.7$
$Q_{2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
Sample standard deviation
S= \s = \square 37.7 = 6.
3. If X: ~ geometric (o), then
$P_{\times_{i}}(x;0) = (1-0)^{2-1}$
Thus the likelihood function is given by
$L(x_1,x_2,\dots,x_n) = P_{x_1}x_2\dots x_n(x_1,x_2\dots x_n)$
$= P_{X_1}(x_1, \theta) P_{X_2}(x_2, \theta) - P_{X_n}(x_n; \theta)$
$= (1-\theta) \left[\frac{\varepsilon}{\varepsilon} > \varepsilon - n \right] \theta^n$
Then the lag likelishood function is given by
$\ln L(x_1, x_2, \dots, x_n; \theta) = \left(\sum_{i=1}^n \sum_{i=1}^n \sum_{i=$
$\frac{d \ln L(x_1, x_2, \dots, \infty_n; \theta) = \left(\frac{x_1}{2} \cdot x_1 - n\right) \cdot -1}{d\theta} + \frac{n}{1 - \theta}$
do 1-0 0
By setting the derivative to zero, we can check that the maximum value of 0 is given by On = n Ex. i=1
that the maximum value of A is North
by A
$\frac{\sigma}{m} = \frac{m}{m}$
Z X .

mLE can be written as êm: = m 2:X:
Z X.
(b). If x: ~ uniform (0,0) then
$f(f(x)) = \begin{cases} 1/0 & 0 \leq x < 0 \end{cases}$
lo otherwise
The likelihood function is given by
Lf α, , x, xn; θ) = fx, x, xn (x, x, x, -xn; θ)
$= \int_{X_1} (x_1) \theta \int_{X_2} (x_2) \theta \cdots$
TXT (~1) 07 +x2 (~2) 0)
$-\frac{1}{2}\left(x_{n}(x_{n})\theta\right)$
=) 1/m 06 X1, X2, Xn = 0
o otherwise
Note that 10 n is decresing function of o
Thus to maximize it we need to choose the smallest possible value for to forte i = 1,2n we need to have $0 > \infty$. Thus the smallest prossible value for 0 .
the smallest possible value for & for &
i = 1,2n we need to have of >x
Thus the smallest or possible value Con a.
us
$\widehat{O}_{ML} = \max \left(X_1 \times 2 \cdots \times n \right)$
ome on on
Therefore MLF can be written as
Therefore MLF can be written as $\hat{\theta} = \max\left(X_1, X_2, \dots, X_n\right)$
ML

U19CS 076

(7) Example | Fxample 2

$$m_1 = 40$$
 $x_1 = 64.7 \text{ hrs}$
 $x_2 = 74.2 \text{ nrs}$
 $x_1 = 64.7 \text{ hrs}$
 $x_2 = 74.2 \text{ nrs}$
 $x_1 = 31 \text{ hrs}$
 $x_2 = 29 \text{ hrs}$

ii) 95 / confidence level

$$x_1 - \overline{z}_2 = 64.7 - 74.2 = -95$$

$$x_2 = 1 - 95/100$$

$$x_2 = 0.025$$

$$x_3 = 1.96$$

interval = $(x_1 - 5/2) \pm x_2/2 = x_3/2 + 5/2 = x_3/2$

$$= -95 \pm 1.96 \times 6.535$$

$$= -95 \pm 12.8086$$

$$\Rightarrow (-107.8086 - 82.1914)$$

11) 99 // confidence level

$$x_1 - x_2 = -95$$

$$x_2 = 1 - 99/100 = 0.0$$

$$x_2 = 0.005$$

$$x_3 = 2.57$$

Interval = $(x_1 - x_2) \pm 24/2 = x_3/2 + 5/2 = x_3/2$

$$= -95 \pm 2.57$$

Scanned with CamScanner

$=-95\pm2.57$ $\boxed{24.025+18.688}$
$= -95 \pm 2.57 \times 6.535$ $= -95 \pm 16.794$
Interval: (-111.794, -78.205)
8). We need to find a 95% (= 100(1-x)%) confidence interval for 40
X = 1-95/100
$\alpha = 0.05$
$\frac{\alpha/2 = 0.025}{4\pi}$
In order to find required confidence interval we
It we be following theorem If I and SI are the mean and standard
aevidion, respectively of the normally distributed.
differences of n random pains of measurement
100 (1-x) /-
confidence interval for $p_0 = p_1 - p_2$ is
d-tx, sd = pd < d+tx, sd — ()
V/ ·
From given data we have $d1 = 38 - 45 = -7$
dl = 38 $dl = 23 - 25 = -2$
d3 = 35 - 31 = 4
d4 = 41 - 38 = 3
d5 = 44-50 = -6
$\frac{d6 = 29 - 33 = -4}{d7 = 37 - 36 = 1}$
d+=3+ 50

U190S076 d8 = 31-40 = -9 d9 = 38 - 43 = -5Hence, =1(-7-2+4+3-6-4+1-9-5 -25 -2-778 J20.9444 4.5765 -2.7778-2.31 4.5765 < pd < -2-7778+2.31/2.5715 0.7461 $(n_1) = 10$ 230 Calories 3 = 15 calories confidence interval for of or I variance

Given dala:

$$2^{2}_{\alpha n} = 21.66 \qquad 2^{2}_{1-\alpha/2} = 2.088 \qquad 2 \qquad 9d-of$$

$$d = 0.001$$

$$d/2 = 0.005 / 50^{2} d/2 = 21.666$$

$$x^{2} = 2.082$$
val

$$\frac{(10-1)225}{21.666} \leq \sigma^2 \leq \frac{(10-1)225}{2.082}$$