

Нейросетевой помощник "Нейротьютор"

Старт обучения: 22.02.2024

Постановка задачи

Разработать нейросетевой помощник Нейротьютор для автоматической обработки образовательного контента с платформ Dzen и VK.

Система должна обеспечивать высокую точность распознавания речи и сохранение смысловой нагрузки при обработке лекций.

Требуется реализовать функционал пересказа лекций разной степени подробности.

Ограничения включают работу только с русскоязычным контентом и зависимость качества от исходного аудио.

Цель

Основная цель проекта "Нейротьютора" - создание интеллектуальной системы для автоматической обработки и анализа образовательного контента с платформ Dzen и VK.

Система направлена на повышение доступности и эффективности работы с лекционными материалами за счет их автоматической транскрибации, структуризации и формирования базы знаний.

Задачи

- Транскрибация аудио:
 - Преобразование аудиодорожек видеолекций в текст
 - о Обеспечение точности и качества транскрибации.
- Формирование базы знаний:
 - Создание структурированной базы знаний на основе транскрибированных текстов.
 - Организация данных по дисциплинам, темам и лекциям для удобства поиска и анализа.
- Генерация ответов:
 - Использование языковой модели GPT для формирования развернутых ответов на экзаменационные вопросы.
 - Создание пересказов лекций разной длины на основе анализа релевантных фрагментов текста.
- Интерфейс взаимодействия:
 - Разработка интерфейса для добавления новых данных, запросов и получения ответов.

Обучающая база

Объем базы 37 видеолекции

Источник сбора данных Платформы Dzen и VK

Инструменты для сбора данных Библиотеки requests, BeautifulSoup, requests-html и yt-dlp для извлечения аудиодорожек из онлайн-лекций. Для обработки и транскрибации аудио применяется модель Faster Whisper

Возникшие трудности при сборе базы Прямые ссылки на аудио (s3.dzeninfra.ru) больше не доступны Разработан новый метод получения аудиоданных через HLS-поток

Возможности системы

- 1. Распознавание аудио и видео:
 - Транскрибация лекций с использованием Faster Whisper.
 - Поддержка платформ Dzen и VK.
- 2. Формирование базы знаний:
 - Разбиение текста на чанки (фрагменты).
 - Создание эмбеддингов с использованием FAISS.
- 3. Генерация ответов:
 - Использование GPT для формирования развернутых ответов на вопросы.
 - Пересказ лекций в различных объемах (очень короткий, краткий, подробный).
- 4. Интеграция:
 - Возможность добавления новых лекций через форму.
 - Хранение данных на Google Drive.

Схема работы интеллектуальной системы

УНИВЕРСИТЕТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Пользовательский интерфейс

Технологический стек интерфейса:

- Jupyter Notebook
- IPython widgets
- HTML/CSS

> Форма для добавления лекции в базу знаний

₹	Дисциплина:		Директория создана: /content/faiss_data	-
			Файлы не найдены. Начинаю загрузку	
	Тема лекц	BBogino romy nongini	Downloading	
	Ссылка на		From: https://drive.google.com/uc?id=1-0mfXxZkUhEWIYq7cDXPgWikdnZ3tGOn To: /content/faiss_data/index.pkl	
	Добавить лекцию		100% 2.11M/2.11M [00:00<00:00, 76.6MB/s]	
			Downloading	
			From: https://drive.google.com/uc?id=1-D0m6s5Rp_gYi0rrotTVVc9ec0R-BkTC	
			To: /content/faiss_data/index.faiss	
			100% 6.33M/6.33M [00:00<00:00, 124MB/s]	
			Файлы успешно загружены.	
			База знаний успешно загружена.	
			База знаний готова к использованию!	
			Добавьте лекцию в базу знаний!	
	4			,

Пользовательский интерфейс

Компоненты интерфейса:

- Формы ввода данных (Text, Textarea)
- Выпадающие списки (Dropdown)
- Кнопки управления (Button)
- Слайдеры (FloatSlider)
- Области вывода информации (Output)

> Форма для ответа на вопрос пользователя

> Формы для пересказа лекции - новая

[8] Показать ко

Модуль сбора данных (парсинг)

Используются библиотеки Requests-HTML и BeautifulSoup, которые извлекают ссылки на медиафайлы с платформ Dzen, а также получают метаданные о контенте.

Скачивание аудио осуществляется через yt-dlp и ffmpeg, где видеофайлы конвертируются в аудиодорожки в формате WAV перед дальнейшей обработкой.

Requests-HTML

Технологии и инструменты парсинга и извлечения данных:

- Requests-HTML (для работы с HTML)
- BeautifulSoup (для парсинга)
- yt-dlp (для работы с медиаконтентом)
- AsyncHTMLSession (для асинхронных запросов)
- FFmpeg для преобразования аудио в WAV с помощью

YT-DLP A youtube-dl fork with additional features and fixes

Модуль обработки аудио

Разделение аудио на сегменты по 5 минут

Транскрибация каждого сегмента

Объединение результатов транскрибации

Сохранение результата в текстовый файл

Используемые технологии и инструменты:

- 1. Обработка аудио:
 - pydub: для работы с аудиофайлами
 - subprocess: для вызова FFmpeg команд
 - tempfile/io: для временного хранения сегментов
- 2. Транскрибация:
 - faster-whisper: модель для распознавания речи
 - ctranslate2: для оптимизации работы модели
 - int8: вычисления для повышения производительности
- 3. Обработка текста:
 - ге: для работы с регулярными выражениями
 - json: для работы со структурированными данными
- 4. Вспомогательные инструменты:
 - tqdm: для отображения прогресса
 - os/shutil: для работы с файловой системой
 - numpy: для численных операций
 - scipy: для различных вычислений

Модуль создания базы знаний

LangChain

FAISS Scalable Search With Facebook AI

Используемые технологии и инструменты:

- 1. Обработка текста:
 - MarkdownHeaderTextSplitter: для разделения текста по заголовкам
 - RecursiveCharacterTextSplitter: для разбиения текста на чанки
 - tiktoken: для подсчета токенов
- 2. Создание эмбеддингов:
 - OpenAlEmbeddings: для генерации векторных представлений текста
 - FAISS (Facebook AI Similarity Search): для создания индексной базы данных
- 3. Хранение данных:
 - FAISS: для хранения векторной базы данных
 - pickle (.pkl): для сохранения метаданных
 - Google Drive: для хранения файлов базы знаний
- 4. Вспомогательные инструменты:
 - os: для работы с файловой системой
 - ге: для работы с регулярными выражениями
 - json: для работы со структурированными данными
 - tqdm: для отображения прогресса

Получение текстового контента

Разделение на чанки по токенам

Создание эмбеддингов для чанков

Формирование индексной базы данных

Сохранение базы знаний

Модульобработки лекций для пересказа

Фильтрация чанков по выбранной лекции

Объединение чанков в единый текст

Разделение текста на предложения (SpaCy)

Выбор релевантных предложений (TF-IDF)

Группировка предложений в блоки по 2000 токенов

Используемые технологии и инструменты

- 1. Обработка текста:
 - SpaCy Используется для разделения текста на предложения.
 - TfidfVectorizer (sklearn) Выбор наиболее релевантных предложений на основе TF-IDF.
 - FAISS База знаний используется для фильтрации чанков по выбранной лекции.
- 2. Вспомогательные инструменты:
 - time Для задержки между запросами к API.
 - ге -Для очистки текста от лишних символов.

Модуль GPT

Используемые технологии и инструменты

- 1. Поиск релевантных чанков:
 - FAISS (Facebook AI Similarity Search):
 - База данных для быстрого поиска наиболее релевантных фрагментов текста.
 - Используется для нахождения к ближайших чанков к запросу пользователя.
- 2. Генерация текста:
 - OpenAl API :
 - Модель GPT (gpt-4o-mini, gpt-4o, gpt-4) используется для генерации ответов.
 - Настройка параметров, таких как температура, максимальное количество токенов.
 - tiktoken :
 - Подсчет количества токенов для контроля размера входных данных.

Поиск релевантных чанков в базе знаний (FAISS)

Формирование контекста из релевантных чанков

Генерация ответа через GPT

Эксперимент N°1 — Сравнение моделей Faster Whisper

Таблица результатов сравнения моделей

Модель small vs medium WER: 40.90% CER: 8.37% Модель small vs large-v3 WER: 45.13% CER: 8.04% Модель medium vs large-v3 WER: 22.24% CER: 5.71%

Основные выводы:

- Модели medium и large-v3 наиболее схожи
- Small значительно отличается от остальных
- Увеличение размера модели не всегда дает большой прирост качества

Эксперимент N°2 — Функциональность системы

Методы:

- Скачивание аудио из VK.
- Распознавание текста с помощью Faster Whisper.
- Добавление распознанной лекции в существующую базу.

Результаты:

- Успешное скачивание и обработка короткой лекции (105 секунд).
- Добавление лекции в базу подтверждено.

Вывод:

Компоненты системы работают корректно.

Эксперимент N°3 — Анализ влияния параметров на ответы GPT

Параметры:

- k=7, temperature=0.1: Подробный, структурированный ответ.
- k=3, temperature=0.9: Короткий, креативный ответ.

Результаты:

- Высокое значение k увеличивает объем и детализацию ответа.
- Высокая temperature делает стиль более креативным, но менее стабильным.

Вывод:

Для научных запросов рекомендуется k=7, temperature=0.1 . Для творческих задач — k=3, temperature=0.9 .

Эксперимент Nº4 — Пересказ лекций

Параметры:

- Подробный пересказ:
 - k_recap = 0.7, temperature = 0.9.
 - Количество предложений: 74.
 - Количество токенов: 3031.
- Краткий пересказ:
 - k_recap = 0.1, temperature = 0.1.
 - Количество предложений: 10.
 - Количество токенов: 1310.

Результаты:

- Подробный пересказ охватывает все ключевые темы, включая второстепенные аспекты.
- Краткий пересказ фокусируется только на основных идеях.

Вывод:

Для глубокого анализа рекомендуется Подробный пересказ . Для быстрого обзора — Краткий пересказ .

Вывод

Нейротьютор представляет собой комплексное решение для обработки образовательного контента, включающее автоматический сбор данных с платформ Dzen и VK, их транскрибацию с помощью Faster Whisper и формирование структурированной базы знаний.

Внедрение новых методов работы с HLS-потоками значительно повысило надежность сбора аудиодорожек, а оптимизированные алгоритмы обработки текста обеспечивают качественное формирование пересказов различной степени подробности.

Система успешно демонстрирует свою эффективность при работе с базой из 37 видеолекций, сохраняя высокую точность распознавания речи и качество генерируемых ответов

Заключение

Нейротьютор представляет собой эффективную систему для работы с образовательным контентом, демонстрирующую высокую точность транскрибации и качество формирования базы знаний.

Внедрение новых методов обработки данных, таких как работа с HLS-потоком, значительно повысило стабильность и надежность системы.

Дальнейшее развитие проекта может включать расширение функционала пересказов и оптимизацию алгоритмов обработки данных.

Спасибо за внимание!