Nash Equilibrium: Existence

Adam Brandenburger*

Version 01/04/07

An n-player game Γ in strategic form is a 2n-tuple $\Gamma = \left\langle S^1, \ldots, S^n, \pi^1, \ldots, \pi^n \right\rangle$ where S^i is player i's set of pure strategies and $\pi^i : \prod_{j=1}^n S^j \to \Re$ is i's payoff function. If each S^i is a finite set, then Γ is called a finite game. A mixed strategy for player i is a probability measure on i's set of pure strategies. So, player i's set of mixed strategies is

$$\Delta(S^i) = \left\{ \sigma^i : S^i \to \Re_+ \mid \sum_{s^i \in S^i} \sigma(s^i) = 1 \right\},\,$$

where $\sigma^i(s^i)$ is the probability with which i chooses the pure strategy $s^i \in S^i$. If the players choose the n-tuple of mixed strategies $\sigma = (\sigma^1, ..., \sigma^n)$, then the expected payoff to player i is

$$v^{i}(\sigma) = \sum_{(s^{1},\dots,s^{n})\in S^{1}\times\dots\times S^{n}} \prod_{j=1}^{n} \sigma^{j}(s^{j})\pi^{i}(s^{1},\dots,s^{n}).$$

The following notation will be helpful:

$$\begin{array}{rcl} \sigma^{-i} & = & (\sigma^1, \ldots, \sigma^{i-1}, \sigma^{i+1}, \ldots, \sigma^n), \\ (\sigma^{-i}, \widetilde{\sigma}^i) & = & (\sigma^1, \ldots, \sigma^{i-1}, \widetilde{\sigma}^i, \sigma^{i+1}, \ldots, \sigma^n). \end{array}$$

Definition 1 An n-tuple of mixed strategies $\sigma = (\sigma^1, ..., \sigma^n)$ is a **Nash equilibrium** if for every i it is true that $v^i(\sigma) \geq v^i(\sigma^{-i}, \widetilde{\sigma}^i)$ for every $\widetilde{\sigma}^i \in \Delta(S^i)$.

Theorem 1 (Nash) Every finite game possesses a Nash equilibrium.

^{*}With the assistance of Amanda Friedenberg. ${\tt nashproof-01-04-07}$

Nash's theorem will be proved as an easy corollary of a more general existence theorem.

Theorem 2 Consider an n-player game $\Gamma = \langle D^1, \ldots, D^n, v^1, \ldots, v^n \rangle$ where D^i is the set of pure strategies available to player i and $v^i : \prod_{j=1}^n D^j \to \Re$ is i's payoff function. If each D^i is a compact and convex subset of Euclidean space, and each v^i is quasiconcave in d^i and continuous, then Γ has a Nash equilibrium in pure strategies.

(To say that v^i is quasiconcave in d^i means that

$$v^i(d^{-i},\alpha d^i + (1-\alpha)\,\widetilde{d}^i) \geq \min\left\{v^i(d^{-i},d^i),v^i(d^{-i},\widetilde{d}^i)\right\}$$

for every $\alpha \in [0,1]$.) Theorem 2 is in turn an immediate consequence of Kakutani's Fixed Point Theorem. Before stating Kakutani's theorem, a definition will be useful.

Definition 2 A correspondence ϕ from a subset T of Euclidean space to a compact subset V of Euclidean space is **upper hemicontinuous at a point** $x \in T$ if $x_r \to x$, $y_r \to y$, where $y_r \in \phi(x_r)$ for every r, implies $y \in \phi(x)$. The correspondence ϕ is **upper hemicontinuous** if it is upper hemicontinuous at every $x \in T$.

Theorem 3 (Kakutani) If T is a nonempty compact and convex subset of Euclidean space, and ϕ is an upper hemicontinuous, nonempty, and convex-valued correspondence from T to T, then ϕ has a fixed point, that is, there is an $x \in T$ such that $x \in \phi(x)$.

Proof of Theorem 2. For each i define a best reply correspondence ϕ^i from $\prod_{j=1}^n D^j$ to D^i as follows. For any $d \in \prod_{j=1}^n D^j$, let

$$\phi^{i}\left(d\right)=\left\{\widehat{d}^{i}\in D^{i}\mid v^{i}(d^{-i},\widehat{d}^{i})\geq v^{i}(d^{-i},\widetilde{d}^{i})\text{ for every }\widetilde{d}^{i}\in D^{i}\right\}.$$

The set $\phi^i(d)$ is the set of strategies that maximizes i's payoff given the strategies of the other players prescribed by d; it is nonempty since D^i is compact and v^i is continuous. The correspondence $\phi^i(d)$ is convex-valued since v^i is quasiconcave in d^i . To see that ϕ^i is upper hemicontinuous, consider a sequence d_r in $\prod_{j=1}^n D^j$ converging to d, and a sequence d in d converging to d, where d is d in d in d converging to d in d in d in d in d is converging to d in d

for every r. For any $\widetilde{d}_i \in D^i$, we have $v^i(d_r^{-i}, \widehat{d}_r^i) \geq v^i(d_r^{-i}, \widetilde{d}^i)$. Therefore $v^i(d^{-i}, \widehat{d}^i) \geq v^i(d^{-i}, \widetilde{d}^i)$, since v^i is continuous, i.e. $\widehat{d}^i \in \phi(d)$. This shows that ϕ^i is upper hemicontinuous. Now define a correspondence ϕ from $\prod_{i=1}^n D^i$ to $\prod_{i=1}^n D^i$ by

$$\prod_{i=1}^n D^i$$
 by
$$\phi(d) = \phi^1(d) \times \cdots \times \phi^n(d).$$

The set $\prod_{i=1}^n D^i$ is a compact and convex subset of Euclidean space since each D^i is. The correspondence ϕ is upper hemicontinuous, nonempty, and convex-valued since each ϕ^i is. And it is easy to see that a fixed point of ϕ is just a Nash equilibrium of Γ .

Finally, we have to say why Theorem 1 follows from Theorem 2. To see this, just let $D^i = \Delta(S^i)$. Each D^i is then a compact and convex subset of a Euclidean space, and each v^i is quasiconcave in d^i (in fact, linear in each variable) and continuous. So, by Theorem 2, there is a Nash equilibrium of the game in which each player i chooses a pure strategy from $\Delta(S^i)$. But this is, of course, just a Nash equilibrium in mixed strategies of the original game.