1.

Q: 1 - Q.30 carry one m ark each

1.	The goal of structured programming is to (a) have well indented programs (b) be able to infer the flow of control from the compiled code									
	(c) (d)		nfer the flow	w of contr	ol form the pr	•				
2.	Consid	der the followi vaid swap (on						
		{ int temp;	(IIII a, IIII b)							
		temp = a;								
		a = b;								
		b= temp; }								
	In or	In order to exchange the values of two variables x and y.								
	(a)	call swap (x	_							
	(b)	call swap (8	-							
	(c)	swap (x,y) cannot be used as it does not return any value swap (x,y) cannot be used as the parameters are passed by value								
	(d)	swap (x,y)	cannot be u	ised as the	e parameters	are passed	by value			
3.	A sing	A single array A[1MAXSIZE] is used to implement two stacks. The two stacks grow from opposite								
	ends o	of the array. V	/ariables top	o1 and top	2 (top1< top	2) point to	the locati	on o	f the topmost	
		nt in each of				-	y, the cond	dition	for "stack fu	II" is
	(a)			-	= MAXSIZE/2+	-1)				
	(b)	top1 + top2			S					
	(c)	•	XSIZE/2) or	(top2 = 1	MAXSIZE)					
	(d)	top1 = top2	2 -1							
4.	15, 12	ollowing numb 2, 16. What is from the root)	the height of							
	(a)	2	(b)	3	(c)	4	(d))	6	
5.	The b (a)	est data struc queue	ture to chec (b)	k whethe	r an arithmeti (c)	c expression tree	n has bala (d)		parentheses list	is a
6.	Level	order traversa	al of a roote	d tree can	be done by s	starting fron	n the root	and	performing	
	(a)	preorder tra			(b)	in-order				
	(c)	depth first s	search		(d)	breadth	first search	า		
7.		the following 10, which of th	•			89, 6171, 6	173, 4199) and	the hash fur	nction x
	i) 96	679, 1989, 41	99 hash to t	he same	value					
	ii) 14	471, 6171 has	to the sam	e value						
	iii) Al	I elements ha	sh to the sa	me value	1					
	iv) Ea	ach element h	ashes to a	different v	alue					
	(a)	i only	(b)	ii only	(c)	i and ii d	only (d))	iii or iv	

8.		or the following rminals, and r,s,t	•		ine requir	ements of an op	perator g	Jrammar? ₽, C	ı, к are
	(i)	$P \rightarrow Q R$	(ii)	$P \rightarrow Q s R$	(iii)	$P \rightarrow \epsilon$	(iv)	$P \rightarrow Q t R r$	
	(a)	(i) only (b)	• •		(i)	and (iii) only	, ,		
	(c)	(ii) and (iii) onl	lv		(d)	(iii) and (iv) or	nlv		
	(-)	() () -	,			() = = () =	J		
9.		der a program P t							ent files.
		contains a referer							
	(a)	Edit time	(b)	Compile time	(c)	Link time	(d)	Load time	
10.	a CPU registe code	der the grammar having a single uper. If E_1 and E_2 do	user regis o not hav	ter. The subtre nay-commo	action op	eration requires	the first	t operand to be	e in the
	(a)	E ₁ should be ev							
	(b) (c)	E ₂ should be every Evaluation of E			arily bo ir	ntarlagued			
	(d)	Order to evalua	. –		•				
	(-)			2	4	1			
11.	Consid	der the following	statemen	ts with respec	t to user-	level threads an	d kernel	-supported th	reads
	(i)	context switch							
	(ii)	for user-level t	hreads, a	system call ca	an block t	he entire proces	SS		
	(iii)	Kernel support	ed thread	s can be sche	duled ind	ependently			
	(iv)	User level thre	ads are tr	ansparent to	the kerne	I			
	Which	of the above sta	itements	are true?					
	(a)	(ii), (iii) and (iv	/) only		(b)	(ii) and (iii) or	nly		
	(c)	(i) and (iii) only	y	<u> </u>	(d)	(i) and (ii) onl	у		
					51.				
12.	time. by Sho	der an operating a The disk head sclortest Seek Time s the expected in 50%	heduling a First (SS	algorithm used FF), claimed b	d is First (y the ven	Come First Serve dor to give 50%	ed (FCFS better l	S). If FCFS is re	eplaced
13.	Let R ₁	(\underline{A} , B, ((D) and	R_2 (\underline{D} , E_2) be two relati	ion schem	na, where the pr	imary ke	eys are shown	
	above	lined, and let C b referential integral lowing relational Π_D (r_2) – Π_C (r_1) Π_D (r_1) r_2 r_2 r_3 r_4 r_5 r_7	rity consti algebra (aint in the co	rrespondi	ng relation insta	inces r ₁ a an empt r ₂)	and r ₂ . Which	
1.1	Consid	dor the following	rolation c	choma portair	sing to a	studonts databa			
14.		der the following Students (<u>rolln</u> Enroll(<u>rollno,cc</u> e the primary key	<u>o,</u> name, ourseno, o	address) oursename)				ident and Enro	oll tables
	are 12	20 and 8 respections in (Student * E	vely. Wha	t are the max	imum and	d minimum num			
	(a)	8, 8		120, 8		960, 8	(d)	960, 120	
					_				

15.											
	Group P.	Data link layer			Group		s reliable transp	oort of da	ata over a phy	sical	
		Zata iiin iayo.				point-to	-point link				
	Q.	Network layer					s/decodes data				
	R.	Transport layer			3.	process	end-to-end con	nmunicat	ion between i	:WO	
					4.	1	data from one	network	node to the r	next	
	(a)	P – 1, Q – 4, R	- 3				2 – 4, R – 1				
	(c)	P - 2, $Q - 3$, R	– 1		(d)	P – 1, C	2 - 3, $R - 2$				
16.	Which (of the following i	is NOT tı	rue with	respect t	o a tran	sparent bridge	and a ro	outer?		
	Which of the following is NOT true with respect to a transparent bridge and a router? (a) Both bridge and router selectively forward data packets										
	(b)	A bridge uses II						, ata			
	(c) (d)	A bridge builds A router can co						cers			
17.		ean function x'y'		-	uivalent t			(d)	w		
	(a)	x' + y'	(b)	x + y		(c)	x + y'	(d)	x' + y'		
18.	In an S will res	R latch made by ult in	cross-co	oupling t	wo NAN	gates,	if both S and I	R inputs	are set to 0, t	hen it	
	(a)	Q = 0, Q' = 1				(b)	Q = 1, Q' = 0				
	(c)	Q = 1, Q' = 1				(d)	Indeterminate	states			
19.	If 73 _x (in base-x numbe	er system	n) is equa	al to 54 _v	(in base	e y-number sys	tem), the	e possible valu	ues of x	
	and y a	ire	_	-					•		
	(a)	8, 16	(b)	10, 12		(c)	9, 13	(d)	8, 11		
20.	Which of the following addressing modes are suitable for program relocation at run time?										
	(i)	i) Absolute addressing (ii) Based addressing									
	(iii) (a)	Relative addres (i) and (iv)	sing (iv) (b)	Indirect (i) and		ing (c)	(ii) and (iii)	(d)	(i), (ii) and	(iv)	
	(a)	(i) and (iv)	(D)	(i) allu	(II)	(6)	(ii) and (iii)	(u)	(i), (ii) ariu	(10)	
21.	The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by										
	(a)	the instruction s	set archi	tecture	(b) page size						
	(c)	physical memor	ry size			(d)	number of pro	cesses in	n memory		
22.	link usi	any 8-bit charact									
	one pai	rity bit? 600	(b)	800		(c)	876	(d) 12	00		
	(a)	000	(D)	000		(6)	070	(u) 12	00		
23.		y the correct trar er than all the gi		nto logic	cal notation	on of th	e following ass	ertion. S	Some boys in t	the class	
	Note: t	aller (x, y) is true	e if x is t	aller tha	n y.						
	(a)	$(\exists x) (boy(x) \rightarrow$	(∀y) (gi	irl(y) ∧ ta	aller (x, y	())))					
	(b)	$(\exists x) (boy(x) \land ($	(∀y) (gir	l(y) ∧ ta	ller (x, y)))					
	(c)	$(\exists x) (boy(x) \rightarrow$	(∀y) (gi	$irl(y) \rightarrow 1$	taller (x,	y)))					
(d) $(\exists x)$ (boy(x) \land ($\forall y$) (girl(y) \land taller (x, y)))											

24. Consider the binary relation: $S = \{(x, y)|y = x + 1 \text{ and } x, y \in \{0, 1, 2\}\}\$ The reflexive transitive closure of S is (a) $\{(x, y)|y > x \text{ and } x, y \in \{0, 1, 2\}\}$ $\{(x, y)|y \ge x \text{ and } x, y \in \{0, 1, 2\}\}$ (b) (c) $\{(x, y)|y < x \text{ and } x, y \in \{0, 1, 2\}\}$ (b) $\{(x, y)|y \le x \text{ and } x, y \in \{0, 1, 2\}\}$ 25. If a fair coin is tossed four times. What is the probability that two heads and two tails will result? (c) (a) 8 26. The number of different n × n symmetric matrices with each element being either 0 or 1 is: (Note: power (2,x) is same as 2^x) power (2,n) (b) $power(2,n^2)$ (a) power $(2, (n^2 + n/2))$ (c) (d) power $(2, (n^2 - n)/2)$ 27. Let A,B,C,D be n \times n matrices, each with non-zero determinant. If ABCD=I, then B⁻¹ is $D^{-1} C^{-1} A^{-1}$ (b) CDA (c) **ADC** (d) Does not necessarily exist 28. What is the result of evaluating the following two expressions using three-digit floating point arithmetic with rounding? (113. + -111.) + 7.51113. + (-111.) + 7.51)10.0 and 9.51 respectively (a) 9.51 and 10.0 respectively (b) (c) 9.51 and 9.51 respectively (d) 10.0 and 10.0 respectively 29. The tightest lower bound on the number of comparisons, in the worst case, for comparison-based sorting is of the order of (c) nlogn nlog²n 30. The problem 3-SAT and 2-SAT are (a) both in P (b) both NP complete (c) NP-complete and in P respectively (d) undecidable and NP-complete respectively Q: 31 - 90 carry two marks each Consider the following C function: 31. int f(int n) { static int i = 1 ; if (n >= 5) return n; n = n+I;

The value returned by f(1) is (b)

(a)

6

i++;

return f(n);

7

(d)

8

32. Consider the following program fragment for reversing the digits in a given integer to obtain a new integer. Let $n = d_1 d_2 ... d_m$.

The loop invariant condition at the end of the i iteration is: th

- (a) $n = d_1d_2...d_{m-1}$ and $rev = d_md_{m-1}...d_{m-1+1}$
- (b) $n = d_{m+1}...d_{m-1}d_m \text{ or rev} = d_{m-1}...d_2d_1$
- (c) $n \neq rev$
- (d) $n = d_1 d_2 ... d_m \text{ or rev } = d_m ... d_2 d_1$
- 33. Consider the following C program segment:

The output of the program is

(a) gnirts

(b) string

(c) gnirt

- (d) no output is printed
- 34. It is desired to design an object-oriented employee record system for a company. Each employee has a name, unique id and salary. Employees belong to different categories and their salary is etermined by their category. The functions get Name, getld and compute salary are required. Given the class hierarchy below, possible locations for these functions are:
 - (i) getld is implemented in the superclass
 - (ii) getId is implemented in the subclass
 - (iii) getName is an abstract function in the superclass
 - (iv) getName is implemented in the superclass
 - (v) getName is implemented in the subclass
 - (vi) getSalary is an abstract function in the superclass
 - (vii) getSalary is implemented in the superclass
 - (viii) getSalary is implemented in the subclass

(d)

Previous GATE question Papers | GATE online tests | GATE Question Bank | GATE textbooks | Forum | GATE Coaching | Study tips and articles | Motivation Factors and many more at www.questionpapers.net.in

- 35. Consider the label sequences obtained by the following pairs of traversals on a labeled binary tree. Which of these pairs identify a tree uniquely?
 - (i) preorder and postorder
- (ii) inorder and postorder
- (iii) preorder and inorder
- (iv) level order and postorder

- (a) (i) only
- (b) (ii), (iii) (c)
- (iii) only
- (iv) only
- 36. A circularly linked list is used to represent a Queue. A single variable p is used to access the Queue. To which node should p point such that both the operations enQueue and deQueue can be performed in constant time?

(a) rear node

- (b) front node
- (c) not possible with a single pointer
- (d) node next to front
- 37. The elements 32, 15, 20, 30, 12, 25, 16, are inserted one by one in the iven order into a maxHeap. The resultant maxHeap is

- 38. Assume that the operators +, -, × , are left associative and ^ is right associative. the order of precedence (from highest to lowest) is ^, × , +, -. The postfix expression corresponding to the infix expression $a + b \times c-d^e^f$ is •
 - (a) abc×+def^^-

(b) $abc \times + de^{f^-}$

(c) ab+c×d-e^f^

- (d) $+ a \times bc^{\wedge} def$
- 39. Two matrices M₁ and M₂ are to be stored in arrays A and B respectively. Each array can be stored either in row-major or column-major order in contiquous memory locations. The time complexity of an algorithm to compute $M_1 \times M_2$ will be
 - (a) best if A is in row-major, and B is in column major order
 - (b) best if both are in row-major order
 - best if both are in column-major order (c)
 - independent of the storage scheme (d)
- 40. Suppose each set is represented as a linked list with elements in arbitray order. Which of the operations among union, intersection, membership, cardinality will be the slowest?
 - union only (a)

(b) intersection, membership

(c) membership, cardinality

- (d) union, intersection
- 41. Consider the following C program

```
main ()
{ int x, y, m, n;
scanf ("%d %d", &x, &y);
/ *Assume x > 0 and y > 0 */
m = x; n = y;
while (m! = n)
      \{ if (m > n) \}
            m = m - n;
      else
                = n - m;
printf("%d",n);
```

The program computes

- (a) x + y using repeated subtraction
- (b) x mod y using repeated subtraction
- (c) the greatest common divisor of x and y
- (d) the least common multiple of x and y
- What does the following algorithm approximate? (Assume $m > 1, \in > 0$). 42.

$$X = m;$$

 $Y = 1;$
While $(x - y > \epsilon)$
 $\{ x = (x + y) / 2;$
 $y = m/x;$
 $\}$
print $(x);$

(a) log m (b)

 $m^{1/2}$ (c)

 $m^{1/3}$

The value returned by the function DoSomething when a pointer to the root of a non-empty tree is passed as argument is

- (a) The number of leaf nodes in the tree
- (b) The number of nodes in the tree
- (c) The number of internal nodes in the tree
- (d) The height of the tree
- 44. Suppose we run Dijkstra's single source shortest-path algorithm on the following edge-weighted directed graph with vertex P as the source.

In what order do the nodes get included into the set of vertices for which the shortest path distances are finalized?

(a) $P_{1}Q_{1}R_{2}S_{1}T_{1}U$

(b) P,Q,R,U,S,T

(c) P,Q,R,U,T,S

- (d) P,Q,T,R,U,S
- 45. Consider the grammar with the following translation rules and E as the start symbol.

```
\{E.value = E_1.value * T.value\}
E \rightarrow E_1 \#
              Τ
              Τ
                                   {E.value = T.value}
              F
                                   \{T.value = T_1.value * F.value\}
T \rightarrow T_1 \&
                                   {T.value = F.value}
                                   {F.value = num.value}
F \rightarrow num
Compute E.value for the root of the parse tree for the expression: 2 # 3 & 5 # 6 & 4.
(a)
        200
                          (b)
                                   180
                                                (c)
                                                              160
                                                                                (d)
```

Process Arrival Time	46. Consider the following set of processes, with the arrival times and the CPU-burst times g milliseconds.						times given in			
P2 1 93 2 1 3 3 P4 4 4 1 1				Arrival	Time		Burst T	ime		
P3 2 4 3 1 What is the average turnaround time for these processes with the preemptive shortest remaining processing time first (SRPT) algorithm? (a) 5.50 (b) 5.75 (c) 6.00 (d) 6.25 47. Consider a system with a two-level paging scheme in which a regular memory access takes 150 nanoseconds, and servicing a page fault takes 8 milliseconds. An average instruction takes 100 nanoseconds of CPU time, and two memory accesses. The TLB hit ratio is 90%, and the page fault rate is one in every 10.000 instructions. What is the effective average instruction execution time? (a) 645 nanoseconds (b) 1050 nanoseconds (c) 1215 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: P₁: While true do { L₁							5			
What is the average turnaround time for these processes with the preemptive shortest remaining processing time first (SRPT) algorithm? (a) 5.50 (b) 5.75 (c) 6.00 (d) 6.25 47. Consider a system with a two-level paging scheme in which a regular memory access takes 150 nanoseconds, and servicing a page fault takes 8 milliseconds. An average instruction takes 100 nanoseconds of CPU time, and two memory accesses. The TLB hit ratio is 90%, and the page fault rate is one in every 10,000 instructions. What is the effective average instruction execution time? (a) 645 nanoseconds (b) 1050 nanoseconds (c) 1215 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: P₁: While true do { L¹ L² L² L¹ X = X + 1; Y = Y - 1; V(S₂); In order to avoid deadlock, the correct operators at L₁, L₂, L₃ and L₄ are respectively. (a) p (S₃), p (S₃), p (S₃), p (S₃), p (S₃), p (S₃); p (S₃), p (S₃)				-		+	3			
What is the average turnaround time for these processes with the preemptive shortest remaining processing time first (SRPT) algorithm? (a) 5.50 (b) 5.75 (c) 6.00 (d) 6.25 47. Consider a system with a two-level paging scheme in which a regular memory access takes 150 nanoseconds, and servicing a page fault takes 8 milliseconds. An average instruction takes 100 nanoseconds of CPU time, and two memory accesses. The TLB hit ratio is 90%, and the page fault rate is one in every 10,000 instructions. What is the effective average instruction execution time? (a) 645 nanoseconds (b) 1050 nanoseconds (c) 1215 nanoseconds (b) 1230 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: P₁: While true do L₁							3 1			
rocessing time first (SRPT) algorithm? (a) 5.50 (b) 5.75 (c) 6.00 (d) 6.25 47. Consider a system with a two-level paging scheme in which a regular memory access takes 150 nanoseconds, and servicing a page fault takes 8 milliseconds. An average instruction takes 100 nanoseconds of CPU time, and two memory accesses. The TLB hit ratio is 90%, and the page fault rate is one in every 10,000 instructions. What is the effective average instruction execution time? (a) 645 nanoseconds (b) 1050 nanoseconds (c) 1215 nanoseconds (d) 1230 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: p; While true do { While true do { While true do { Usua			F 4	4						
 47. Consider a system with a two-level paging scheme in which a regular memory access takes 150 nanoseconds, and servicing a page fault takes 8 milliseconds. An average instruction takes 100 nanoseconds of CPU time, and two memory accesses. The TLB hit ratio is 90%, and the page fault rate is one in every 10,000 instructions. What is the effective average instruction execution time? (a) 645 nanoseconds (b) 1050 nanoseconds (c) 1215 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: P₁: While true do L₁: X = X + 1; Y = Y - 1; X = Y - 1; Y(S₂): V(S₂): In order to avoid deadlock, the correct operators at L₁, L₂, L₃ and L₄ are respectively. (a) p (s₂), p (s₂): p (s₂), p (s₂). (b) p (s₂), p (s₂): p (s₂): p (s₂). Y(S₂): In order to avoid deadlock, the correct operators at L₁, L₂, L₃ and L₄ are respectively. (a) p (s₂), p (s₂): p						these p	rocesses	s with the preem	nptive sh	ortest remaining
nanoseconds, and servicing a page fault takes 8 milliseconds. An average instruction takes 100 nanoseconds of CPU time, and two memory accesses. The TLB hit ratio is 90%, and the page fault rate is one in every 10,000 instructions. What is the effective average instruction execution time? (a) 645 nanoseconds (b) 1050 nanoseconds (c) 1215 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: p₁: p₂: While true do L₁		(a)	5.50	(b)	5.75	S	(c)	6.00	(d)	6.25
 (c) 1215 nanoseconds (d) 1230 nanoseconds 48. Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: p₁: While true do L₁: X = X + 1; Y = Y + 1; Y(S₂); V(S₂); In order to avoid deadlock, the correct operators at L₁, L₂, L₃ and L₄ are respectively. (a) p(s₂), p(s₂); p(s₂); p(s₂), p(s₂) (b) p(s₂), p(s₂); p(s₂), p(s₂) (c) p(s₃), p(s₃); p(s₂); p(s₂), p(s₂) (d) p(s₂), p(s₂); p(s₂), p(s₂) (e) p(s₂), p(s₂); p(s₂); p(s₂) (f) p(s₂), p(s₂); p(s₂) (g) p(s₂), p(s₂); p(s₂) (h) p(s₂), p(s₂); p(s₂); p(s₂) (h) p(s₂), p(s₂); p(s₂); p(s₂); p(s₂) (h) p(s₂), p(s₂); p(s₂)	47.	nanose nanose	conds, and servi conds of CPU tin	cing a pane, and t	age fault t wo memo	takes 8 ory acce	millisece esses. Tl	onds. An averag he TLB hit ratio	e instruc is 90%,	tion takes 100 and the page fault
 Consider two processes P₁ and P₂ accessing the shared variables X and Y protected by two binary semaphores S₂ and S₂ respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P₁ and P₂ is as follows: p₁: While true do L₁		(a)	645 nanosecon	ds			(b)	1050 nanoseco	nds	
semaphores S_x and S_y respectively, both initialized to 1.P and V denote the usual semaphore operators, where P decrements the semaphore value, and V increments the semaphore value. The pseudo-code of P_1 and P_2 is as follows: p_1 : While true do L_1 : L_2 : L_3 : L_4 : L_4 : L_4 : L_4 : L_4 : L_5 : L_4 : L_4 : L_5 : L_4 : L_5 : L_5 : L_6 : L_8 : L_9 :		(c)	1215 nanoseco	nds			(d)	1230 nanoseco	nds	
While true do	48.	semaph operato pseudo	nores S_x and S_y rors, where P dec	espective rements	ely, both i the sema	nitialize	ed to 1.F	and V denote t	he usual	semaphore
L ₁										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						+				
$\begin{array}{c} X=X+1;\\ Y=Y-1;\\ V(S_x);\\ V(S_y);\\ V(S_y);\\ In \ order \ to \ avoid \ deadlock, \ the \ correct \ operators \ at \ L_1\ , \ L_2\ , \ L_3 \ and \ L_4 \ are \ respectively.\\ (a) p\ (s_y), \ p\ (s_x); \ p\ (s_y), \ p\ (s_y); \ p\$						S				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1				
$\begin{array}{c} V(S_{x}); \\ V(S_{y}); \\ In \ order \ to \ avoid \ deadlock, \ the \ correct \ operators \ at \ L_{1} \ , \ L_{2} \ , \ L_{3} \ and \ L_{4} \ are \ respectively. \\ (a) p \ (s_{y}), \ p \ (s_{x}); \ p \ (s_{y}), \ p \ (s_{y}) \ , \ p \ (s_{y}), \ p \ (s_{y}); \ p \ (s_{y}), \ p \ (s_{y}); \ p \ (s_{y}), \ p \ (s_{y}); \ p \ (s_$								·		
$V(S_y); \\ \text{In order to avoid deadlock, the correct operators at L_1, L_2, L_3 and L_4 are respectively.} \\ (a) p(s_y), p(s_x); p(s_x), p(s_y) \qquad (b) p(s_x), p(s_y); p(s_y), p(s_x), p(s_y); \\ (c) p(s_x), p(s_y); p(s_y), p(s_y) \qquad (d) p(s_y), p(s_y); p(s_x), p(s_y); \\ \text{49.} \text{A unix-style I-node has 10 direct pointers and one single, one double and one triple indirect pointer Disk block size is 1 Kbyte, disk block address is 32 bits, and 48-bit integers are used. What is the maximum possible file size? \\ (a) 2^{24} \text{ bytes} \qquad (b) 2^{32} \text{ bytes} \qquad (c) 2^{34} \text{ bytes} \qquad (d) 2^{48} \text{ bytes} \\ \text{50.} \text{The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies: } \\ name, courseNo, \rightarrow \text{grade} \\ rollNo, courseNo, \rightarrow \text{grade} \\ rollNo, rollNo \rightarrow \text{name} \\ \text{The highest normal form of this relation scheme is} \\ \end{cases}$			- 1,					- 1,		
In order to avoid deadlock, the correct operators at L ₁ , L ₂ , L ₃ and L ₄ are respectively. (a) p (s _y), p (s _x); p (s _x), p(s _y) (b) p (s _x), p(s _y); p (s _y), p (s _x) (c) p (s _x), p (s _y); p (s _y), p (s _y) (d) p (s _y), p (s _y); p (s _y), p (s _y); 49. A unix-style I-node has 10 direct pointers and one single, one double and one triple indirect pointer Disk block size is 1 Kbyte, disk block address is 32 bits, and 48-bit integers are used. What is the maximum possible file size? (a) 2 ²⁴ bytes (b) 2 ³² bytes (c) 2 ³⁴ bytes (d) 2 ⁴⁸ bytes 50. The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies: name, courseNo, → grade rollNo, courseNo → grade name → rollNo rollNo → name The highest normal form of this relation scheme is										
 (a) p (s_y), p (s_x); p (s_x), p(s_y) (b) p (s_x), p(s_y); p (s_y), p (s_x) (c) p (s_x), p (s_x); p (s_y), p (s_y) (d) p (s_y), p (s_y); p (s_x), p (s_y); 49. A unix-style I-node has 10 direct pointers and one single, one double and one triple indirect pointer Disk block size is 1 Kbyte, disk block address is 32 bits, and 48-bit integers are used. What is the maximum possible file size? (a) 2²⁴ bytes (b) p (s_x), p (s_y); p (s_x), p (s_y); (c) p (s_x), p (s_y); p (s_x), p (s_y); (d) p (s_y), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_x), p (s_y); p (s_x), p (s_y); (e) p (s_y), p (s_y); p (s_x), p (s_y); (e) p (s_y), p (s_y); p (s_x), p (s_y); (e) p (s_y), p (s_y); p (s_y); (e) p (s_y); p (s_y); (e) p (s_y), p (s_y);<!--</td--><td></td><td>-</td><td>r to ovoid doodle</td><td>مطاح بامم</td><td></td><td>orotoro</td><td></td><td></td><td></td><td>the obe</td>		-	r to ovoid doodle	مطاح بامم		orotoro				the obe
 (c) p (s_x), p (s_x); p (s_y), p (s_y) (d) p (s_y), p (s_y); p (s_x), p (s_y); 49. A unix-style I-node has 10 direct pointers and one single, one double and one triple indirect pointer Disk block size is 1 Kbyte, disk block address is 32 bits, and 48-bit integers are used. What is the maximum possible file size? (a) 2²⁴ bytes (b) 2³² bytes (c) 2³⁴ bytes (d) 2⁴⁸ bytes 50. The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies: name, courseNo, → grade rollNo, courseNo → grade name → rollNo rollNo → name The highest normal form of this relation scheme is 					-	bei ators			-	-
 A unix-style I-node has 10 direct pointers and one single, one double and one triple indirect pointer Disk block size is 1 Kbyte, disk block address is 32 bits, and 48-bit integers are used. What is the maximum possible file size? (a) 2²⁴ bytes (b) 2³² bytes (c) 2³⁴ bytes (d) 2⁴⁸ bytes The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies: name, courseNo, → grade rollNo, courseNo → grade name → rollNo rollNo → name The highest normal form of this relation scheme is 			•		•			•	•	
Disk block size is 1 Kbyte, disk block address is 32 bits, and 48-bit integers are used. What is the maximum possible file size? (a) 2 ²⁴ bytes (b) 2 ³² bytes (c) 2 ³⁴ bytes (d) 2 ⁴⁸ bytes 50. The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies: name, courseNo, → grade rollNo, courseNo → grade name → rollNo rollNo → name The highest normal form of this relation scheme is		(0)	P (3x)/ P (3x)/ P	(3y) P (<i>-</i>		(4)	P (3y) / P (3y) / P	(0x)/ P (3 y, 7
 (a) 2²⁴ bytes (b) 2³² bytes (c) 2³⁴ bytes (d) 2⁴⁸ bytes 50. The relation scheme Student Performance (name, courseNo, rollNo, grade) has the following functional dependencies: name, courseNo, → grade rollNo, courseNo → grade name → rollNo rollNo → name The highest normal form of this relation scheme is 	49.	Disk blo	ock size is 1 Kby	te, disk b						
functional dependencies: name, courseNo, → grade rollNo, courseNo → grade name → rollNo rollNo → name The highest normal form of this relation scheme is		(a)	2 ²⁴ bytes	(b)	2 ³² bytes	5	(c)	2 ³⁴ bytes	(d)	2 ⁴⁸ bytes
	50.		nal dependencie: name, courseN rollNo, courseN name → rollNo	s: lo, → gra lo → gra o	ade		e, course	eNo, rollNo, grad	de) has t	he following
(a) 2 NF (b) 3 NF (c) BCNF (d) 4 NF		The hig	hest normal forr	n of this	relation s	scheme	is			
		(a)	2 NF	(b)	3 NF		(c)	BCNF	(d)	4 NF

articles	Motivation Factors and	many more at www.question	papers.net.in						
51.	Consider the relation Student (<u>name</u> , sex, marks), where the primary key is shown underlined, pertaining to students in a class that has at least one boy and one girl. What does the following relational algebra expression produce) (Note: ρ is the rename operator). $ \prod_{\text{name}} \left(r_{\text{sex=female} (\text{Student})} - \prod_{\text{name}} \left(\text{Student}_{(\text{sex=female} \land x=\text{male} \land \text{marks} \le m)} \right) \rho_{\text{n,x,m}} (\text{Student}) $ (a) names of girl students with the highest marks (b) names of girl students with more marks than some boy student (c) names of girl students with marks not less than some boy student (d) names of girl students with more marks than all the boy students								
52.	The order of an internal node in a B+ tree index is the maximum number of children it can have. Suppose that a child pointer takes 6 bytes, the search field value takes 14 bytes, and the block size 512 bytes. What is the order of the internal node? (a) 24 (b) 25 (c) 26 (d) 27								
	(u) 21	(5) 25		20	(4)	21			
53.	The employee information in a company is stored in the relation Employee (name, sex, salary, deptName) Consider the following SQL query Select deptName From Employee where sex = "M' Group by deptName Having avg(salary) > (select avg (salary) from Employee) It returns the names of the department in which (a) the average salary is more than the average salary in the company (b) the average salary of male employees is more than the average salary of all male employee in the company (c) the average salary of male employees is more than the average salary of employees in the same department. (d) the average salary of male employees is more than the average salary in the company								
54.	and B attempt to transmit a frame, collide, and A wins the first backoff race. At the end of this successful transmission by A, both A and B attempt to transmit and collide. The probability that A wins the second backoff race is								
	(a) 0.5	(b) 0.625	(c)	0.75	(d)	1.0			
55.	The routing table	of a router is shown be	elow:						
	Destination	Subnet Mask		Interface					
	128.75.43.0	255.255.255.0		Eth0					
	128.75.43.0	255.255.255.128	3	Eth1					
	192.12.17.5	255.255.255.255		Eth3					
	Default	200.200.200.200		Eth2					
	Dordan			LUIZ					
	On which interface	e will the router forward	d packets add	ressed to desti	nations 12	28.75.43.16 and			

On which interface will the router forward packets addressed to destinations 128.75.43.16 and 192.12.17.10 respectively?

(a) Eth1 and Eth2

(b) Eth0 and Eth2

(c) Eth0 and Eth3

(d) Eth1 and Eth3

The following information pertains to Q.56 and 57:

Consider three IP networks A, B and C. Host H_A in networks A sends messages each containing 180 bytes of application data to a host H_C in network C. The TCP layer prefixes a 20 byte header to the message. This passes through an intermediate network B. the maximum packet size, including 20 byte IP header, in each network is:

A: 1000 bytes B: 100 bytes C: 1000 bytes

The network A and B are connected through a 1 Mbps link, while B and C are connected by a 512 Kbps link (bps = bits per second).

- 56. Assuming that the packets are correctly delivered, how many bytes, including headers, are delivered to the IP layer at the destination for one application message, in the best case? Consider only data packets.
 - (a) 200
- (b) 220
- (c) 240
- (d) 260
- 57. What is the rate at which application data is transferred to host H_c? Ignore errors, acknowledgements, and other overheads.
 - (a) 325.5 Kbps
- (b) 354.5 Kbps
- (c) 409.6 Kbps
- (d) 512.0 Kbps
- 58. A circuit outputs a digit in the form of 4 bits. 0 is represented by 0000, 1 by 0001, ..., 9 by 1001. A combinational circuit is to be designed which takes these 4 bits as input and outputs 1 if the digit ≥ 5, and 0 otherwise. If only AND, OR and NOT gates may be used, what is the minimum number of gates required?
 - (a) 2
- (b)
- (c) 4
- (d) 5
- 59. Which are the essential prime implicants of the following Boolean function?
 - f(a, b, c) = a'c + ac' + b'c
 - (a) a'c and ac'
- a'c and b'c
- (c) a'c only
- (d) ac' and bc'
- 60. Consider a multiplexer with X and Y as data inputs and Z as control input. Z = 0 selects input X, and Z = 1 selects input Y. What are the connections required to realize the 2-variable Boolean function f = T + R, without using any additional hardware?
 - (a) R to X, 1 to Y, T to Z

(b) T to X, R to Y, T to Z

(c) T to X, R to Y, 0 to Z

- (d) R to X, 0 to Y, T to Z
- 61. Consider the partial implementation of a 2-bit counter using T flip-flops following the sequence 0-2-3-1-0, as shown below.

To complete the circuit, the input X should be

- (a) Q_2
- (b) $Q_2 + Q_1$
- (c) $(Q_1 \oplus Q_2)'$
- (d)
- $Q_1 \oplus Q_2$

- 62. A 4-bit carry look ahead adder, which adds two 4-bit numbers, is designed using AND, OR, NOT, NAND, NOR gates only. Assuming that all the inputs are available in both complemented and uncomplemented forms and the delay of each gate is one time unit, what is the overall propagation delay of the adder? Assume that the carry network has been implemented using two-level AND-OR logic.
 - (a) 4 time units
- (b) 6 time units (c)
- 10 time units
- (d) 12 time units

The following information pertains to Q.63 and 64:

Consider the following program segment for a hypothetical CPU having three user registers R1, R2 and R3.

Instruction	Operation	Instruction Size (in words)
MOV R1,5000	;R1 ← Memory[5000]	2
MOV R2(R1)	$R2 \leftarrow Memory[(R1)]$	1
ADD R2, R3	;R2 ← R2 + R3	1
MOV 6000, R2	; Memory[6000] ← R2	2
HALT	;Machine halts	1

- 63. Consider that the memory is byte addressable with size 32 bits, and the program has been loaded starting form memory location 1000 (decimal). If an interrupt occurs while the CPU has been halted after executing the HALT instruction, the return address (in decimal) saved in the stack will be
 - (a) 1007
- (b) 1020
- c) 1024
- d) 1028
- 64. Let the clock cycles required fro various operations be as follows:

Register to/from memory transfer ADD with both operands in register

3 clock cycles 1 clock cycle

Instruction fetch and decode

2 clock cycles per word

The total number of clock cycles required to execute the program is

- (a) 2
- (b) 24
- (c) 23
- (d) 20
- 65. Consider a small two-way set-associative cache memory, consisting of four blocks. For choosing the block to be replaced, use the least recently used (LRU) scheme. The number of cache misses for the following sequence of block addresses is 8, 12, 0, 12,8
 - (a)
- (b) 3
-) 4
- (d) 5
- 66. Let $A = 1111 \ 1010$ and $B = 0000 \ 1010$ be two 8-bit 2's complement numbers.

Their product in 2's complement is

- (a) 1100 0100
- (b) 1001 1100
- (c) 1010 0101
- (d) 1101 0101

in the control memory of a processor have a width of 26 bits. Each microinstruction is divided into three fields: a micro-operation field of 13 bits, a next address field (X), and a MUX select field (Y). There are 8 status bits in the inputs of the MUX. How many bits are there in the X and Y fields, and what is the size of the control memory in number of words?

- (a) 10, 3, 1024
- (b) 8, 5, 256
- (c) 5, 8, 2048
- (d) 10, 3, 512

68.	DMA. 7 DMA tr	The processor rur	ns at 600 ely. If the) MHz, ar e size of t	nd takes the trans	300 an	d 900 clock cycle	es to init	ata to memory using iate and complete rcentage of processor 0.1%
69.	that ar		the stage n to pro onds	es have a	delay c	of 5 nan	oseconds each.	Assumin I be onds	respectively. Registers g constant clocking
70.	The fol (a) (c)	llowing preposition satisfiable but read a contradiction		ement is	$(P \rightarrow (C))$	0 v R)) - (b) (d)	\rightarrow ((P \land Q) \rightarrow R valid None of the above	ove	
71.	How m -x + 5 x - y = x + 3y (a) (c)	2	es the fo	ollowing s	system o	of linear (b) (d)	equations have? two distinct sol none of the abo	utions	
72.	* e e a a b c	llowing is the income a b c b c e b c trow of the table c a e b	·	operation c b a e	n table o	of a 4-el	ement group. c b e a	(d)	c e a b
73.	$S = \{\{\}\}$	clusion of which on the clusion of which on the cluster of the clu	[1, 3, 5]	, {1, 2, 4	}, {1, 2,				
74.	four ch answer		rect ans	wer fetch	nes -0.2	5 marks	s. Suppose 1000	student	each question having s choose all their s obtained by all 9375
75.	these 5	52 prints with one	e of k co a letter	lours, sud can also	ch that h be colou	ne colou	r pairs used to d	olour ar	wants to paint each of ny two lwtters are t is the minimum

- 76. In an M × N matrix such that all non-zero entries are covered in a rows and b columns. Then the maximum number of non-zero entries, such that no two are on the same row or column, is
 - (a) $\leq a + b$

- (b) $\leq \max(a, b)$
- (c) $\leq \min(M - a, N - b)$

- (d) $\leq \min(a, b)$
- 77. The minimum number of colours required to colour the following graph, such that no two adjacent vertices are assigned the same colour, is

- (a) 2
- (b) 3
- (c)
- (d) 5
- 78. Two n bit binary strings, S₁ and S₂ are chosen randomly with uniform probability. The probability that the Hamming distance between these strings (the number of it positions where the two strings differ) is equal to d is
 - $^{n}C_{d} / 2^{n}$
- $^{n}C_{d} / 2^{d}$
- d / 2ⁿ (c)
- How many graph on n labeled vertices exist which have at least $\frac{n-3n}{2}$ edges. 79.
 - (a)
- (b) $\sum_{k=0}^{(n^2 2-3n)/2} {(n^2 2-n) \choose k}$ (d) $\sum_{k=0}^{n} {(n^2 2-n)/2 \choose k}$

- A point is randomly selected with uniform probability in the X-Y plane within the rectangle with 80. corners at (0,0), (1,0), (1,2) and (0,2). If p is the length of the position vector of the point, the expected value of p² is

- Let $G_1 = (V \ , \ E_1)$ and $G_2 = (V \ , \ E_2)$ be connected graphs on the same vertex set V , with more than 81. two vertices. If $G_1 \cap G_2 = (V , E_1 \cap E_2 \text{ is not a connected graph, then the graph})$
 - $G_1 \cup G_2 = (V, E_1 \cup E_2)$ cannot have a cut vertex (a)
 - must have a cycle (b)
 - must have a cut-edge (bridge) (c)
 - has chromatic number strictly greater than those of G₁ and G₂ and
- 82. Let A[1,...,n] be an array storing a bit (1 or 0) at each location, and f(m) is a function whose time complexity is $\theta(m)$. Consider the following program fragment written in a C like language:

counter = 0; for (i = 1; i < = n; i++)

 $\{if (a[i] == 1) counter + +;$

else {f (counter); counter = 0;)

The complexity of this program fragment is

 $\Omega(n^2)$ (a)

 Ω (nlogn) and O (n²) (b)

 θ (n) (c)

(d) o(n)

83. The time complexity of the following C function is (assume n > 0)

> int recursive (int n) { if (n == 1)return (1); else return (recursive (n-1) + recursive (n-1); }

- (a) O(n)
- O(nlog n) (b)
- 0 n
- (d) $O(2^n)$

The recurrence equation 84.

$$T (1) = 1$$

 $T (n) = 2T (n-1) + n, n \ge 2$

evaluates to

- (a)

85. A program takes as input a balanced binary search tree with n leaf nodes and computes the value of a function g(x) for each node x. If the cost of computing g(x) is min(number of leaf-nodes in leftsubtree of x, number of leaf-nodes in right-subtree of x) then the worst-case time complexity of the program is \odot (n²)

- (a) ⊙(n)
- (b) ⊙ (n log n) (c)
- \bigcirc (n² log n) (d)

86. The following finite state machine accepts all those binary strings in which the number of 1's and 0's are respectively

- (a) divisible by 3 and 2
- (c) even and odd

- (b) odd and even
- (d) divisible by 2 and 3
- 87. The language $\{a^mb^nc^{m+n} | m,n \ge 1\}$ is
 - (a)

- (b)

context-free but not regular

(c) context sensitive but not context free (d) type-0 but not context sensitive

Consider the following grammar G: 88.

 $S \rightarrow bS|aA|b$

 $A \rightarrow bA|aB$

 $B \rightarrow bB |aS| a$

Let N_a (ω) N_b (ω) and denote the number of a's and b's in a string respectively.

- $\{\omega | N_a(\omega) > 3N_b(\omega)\}$
- (b) $\{\omega | N_b(\omega) > 3N_a(\omega)\}$
- $\{\omega | N_a(\omega) = 3k, k \in \{0,1,2,....\}\}$ (c)
- (d) $\{\omega|N_b(\omega) = 3k, k \in \{0,1,2,....\}\}$

- 89. L_1 is a recursively enumerable language over Σ . An algorithm A effectively enumerates its words as $\omega_1, \ \omega_2, \ \omega_3, \ \dots$ define another language L_2 over $\Sigma \cup \{\#\}$ as $\{\omega_i \# \omega_j : \omega_j \in L_1, \ i < j\}$. Here # is a new symbol. Consider the following assertions.
 - S_1 : L_1 is recursive implies L_2 is recursive
 - $S_2: L_2$ is recursive implies L_1 is recursive

Which of the following statements is true?

- (a) Both S and S are true
- (b) S_1 is true but S_2 is not necessarily true
- (c) S_2 is true but S_1 is not necessarily true
- (d) Neither is necessarily true
- 90. Choose the best matching between the programming styles in Group1 and their characteristics in Group 2.

Group 1 Group 2

P. Functional

Q. Logic

1. Command-based, procedural
2. Imperative, abstract data types

R. Object-orientedS. ImperativeS. ImperativeDeclarative, clausal representation, theorem proving

(a) P - 2Q - 3R - 4S - 1

(b) P - 4Q - 3R - 2S - 1

(c) P - 3 Q - 4 R - 1 S - 2

(d) P - 3Q - 4R - 2S - 1

End of Question paper