Vv156 Lecture 12

Jing Liu

UM-SJTU Joint Institute

October 23, 2018

Definition

A limit of the form

$$\lim_{x\to a}\frac{f(x)}{g(x)}, \qquad \text{in which} \quad f(x)\to 0 \quad \text{and} \quad g(x)\to 0, \qquad \text{as} \quad x\to a,$$

is called an indeterminate form of type $\frac{0}{0}$.

• Some examples encountered earlier are

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2, \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

- The first limit was obtained algebraically by considering x+1, and the 2nd limits were obtained using a geometric argument and the squeeze theorem.
- However, there are many limits that have indeterminate forms for which neither algebraic nor geometric methods will simplify the limit, so we need to develop a more general method of evaluating such limits.

- Suppose that we have an indeterminate form $\lim_{x\to a} \frac{f(x)}{g(x)}$ of type $\frac{0}{0}$, in which
 - 1. f'(x) and g'(x) are continuous at x = a
 - 2. $g'(a) \neq 0$.
- Then the following limits are equivalent,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$

• Let h=x-a, so x=h+a and clearly $h\to 0$ as $x\to a$,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{h \to 0} \frac{\frac{f(h+a) - f(a)}{h}}{\frac{g(a+h) - g(a)}{h}} = \frac{\lim_{h \to 0} \frac{f(h+a) - f(a)}{h}}{\lim_{h \to 0} \frac{g(a+h) - g(a)}{h}} = \frac{f'(a)}{g'(a)} = \frac{\lim_{x \to a} f'(x)}{\lim_{x \to a} g'(x)}$$

• Although this assumes f and g have continuous derivatives at x=a and that $g'(a) \neq 0$, the result is true under less stringent conditions.

L'Hospital's rule for the form $\frac{0}{0}$

Suppose that f and g are differentiable functions on an open interval containing x=a, except possibly at x=a,

and that

$$\lim_{x\to a} f(x) = 0 \qquad \text{ and } \qquad \lim_{x\to a} g(x) = 0$$

If $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, or if this limit is $+\infty$ or $-\infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Moreover, this statement is also true in the case of a limit as

$$x \to a^ x \to a^+$$
 $x \to -\infty$ $x \to +\infty$

Exercise

Find

$$\lim_{x \to 0} \frac{e^x - 1}{x^3}$$

 Applying L'Hospital's rule to limits that are not in indeterminate forms can lead to incorrect results. For example, the computation

$$\lim_{x \to 0} \frac{x+6}{x+2} = \frac{6}{2} \neq \lim_{x \to 0} \frac{(x+6)'}{(x+2)'} = \lim_{x \to 0} \frac{1}{1} = 1$$

Q: Can we apply L'Hospital's rule to

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}},$$

where clearly

$$\lim_{x \to \infty} \ln x = \infty \quad \text{and} \quad \lim_{x \to \infty} \sqrt[3]{x} = \infty$$

Definition

The limit of a ratio, $\lim_{x\to a} \frac{f(x)}{g(x)}$, is called an indeterminate form of type $\frac{\infty}{\infty}$ if

$$f(x) \to \infty$$
 and $g(x) \to \infty$ as $x \to a$

L'Hospital's rule for the form $\frac{\infty}{\infty}$

Suppose that f and g are differentiable functions on an open interval containing x=a, except possibly at x=a,

and that

$$\lim_{x\to a} f(x) = \infty \qquad \text{ and } \qquad \lim_{x\to a} g(x) = \infty$$

If $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists, or if this limit is $+\infty$ or $-\infty$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Moreover, this statement is also true in the case of a limit as

$$x \to a^ x \to a^+$$
 $x \to -\infty$ $x \to +\infty$

Exercise

Find

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}}$$

• If n is any positive integer, then

$$x^n \to \infty$$
 as $x \to \infty$

• Such integer powers of x are sometimes used as "measuring sticks" to describe how rapidly other functions grow. For example,

$$e^x \to \infty$$
 and $x \to \infty$

- It is reasonable to ask whether x^n grow faster or e^x grow faster.
- One way to investigate this is to examine the behaviour of the ratio

$$\frac{x^n}{e^x}$$
 or $\frac{e^x}{x^n}$

ullet For a given n, graphically it is clear that e^x grows faster for large values of x,

Q: How can we show for any positive integer n

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0$$

• We have discussed indeterminate forms of type

$$\frac{0}{0} \qquad \text{and} \qquad \frac{\infty}{\infty}$$

However, these two forms are not the only possibilities; in general, the limit
of an expression that has one of the forms

$$\frac{f(x)}{g(x)}$$
, $f(x)g(x)$, $f(x)^{g(x)}$, $f(x) \pm g(x)$

is called an indeterminate form if the limits of f(x) and g(x) individually exert conflicting influences on the limit of the entire expression. For example,

$$\lim_{x \to 0^+} x \ln x$$

is an indeterminate form of type $0\cdot\infty$ because the limit of the first factor is 0, the limit of the second factor is $-\infty$, so they have conflicting influences on the value of the limit, therefore the limit in this form is indeterminate

Exercise

Evaluate

$$\lim_{x \to 0^+} x \ln x$$

• A limit problem that leads to one of the expressions

$$\infty - \infty$$
, $-\infty - (-\infty)$, $\infty + (-\infty)$, $-\infty + \infty$

is an indeterminate form of type $\infty - \infty$.

• However, limit problems that lead to one of the expressions

$$\infty + \infty$$
, $\infty - (-\infty)$, $-\infty + (-\infty)$, $-\infty - \infty$

is not an indeterminate form.

• Indeterminate forms of $\infty-\infty$ can sometimes be evaluated by combining the terms and manipulating the result to be an indeterminate form of type

$$\frac{0}{0}$$
 or $\frac{\infty}{\infty}$

Exercise

Evaluate

(b)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

Limits of the form

$$\lim_{x \to a} \left(f(x) \right)^{g(x)}$$

can give rise to indeterminate forms of the types ∞^0 , 0^0 , 1^∞ . For example,

$$\lim_{x \to 0} \left(1 + \sin x\right)^{\frac{1}{x}}$$

ullet Such indeterminate forms can be evaluated by first introducing a variable y

$$y = f(x)^{g(x)}$$

$$\implies \ln y = g(x) \ln f(x)$$

and then compute the limit of $\ln y$.

Exercise

Find

$$\lim_{x \to 0} \left(1 + \sin x\right)^{1/x}$$

No.	Form	Indeterminate	Technique
1	(0/0)		Direct
2	(∞/∞)		Direct
3	$0\cdot\infty$		$(0/(1/\infty)) \text{ or } (\infty/(1/0))$
4	$\infty - \infty$	Yes	factorize or exponential transformation
5	0_0		
6	∞^0		la manith maia tua mafanyanatia m
7	1∞		logarithmic transformation
8	0^{∞}		
9	$(0/\infty)$		$0 \cdot (1/\infty)$
10	$(\infty/0)$	No	$\infty \cdot (1/0)$
11	$\infty \cdot \infty$		∞
12	$+\infty + (+\infty)$		∞
13	$+\infty + (+\infty) \\ +\infty - (-\infty)$		∞
14	$-\infty + (-\infty)$ $-\infty - (+\infty)$		$-\infty$
15	$-\infty - (+\infty)$		$-\infty$

Table: Table of Indeterminate forms

When NOT to use L'Hospital's rule

1. When it is making the problem worse. For example,

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{x}{(\ln x)^{-1}} = \lim_{x \to 0^+} \frac{1}{-\frac{1/x}{(\ln x)^2}} = \lim_{x \to 0^+} \left[-x(\ln x)^2 \right]$$

which is more complicated than the original problem

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

2. When there is a better way to get the answer.

$$\lim_{x \to \infty} \frac{x^2 - 1}{2x^2 + 1} = \lim_{x \to \infty} \frac{\frac{x^2 - 1}{x^2}}{\frac{2x^2 + 1}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{2 + \frac{1}{x^2}} = \frac{1}{2}$$

3. It isn't an indeterminate form!

$$\lim_{x \to 0^+} \frac{\cos x}{x} = +\infty \neq \lim_{x \to 0^+} \frac{(\cos x)'}{(x)'} = \lim_{x \to 0^+} \frac{-\sin x}{1} = 0$$

• In many problems, the properties of interest in the graph of a function are:

Properties of curves

- symmetries
- *x*-intercepts
- relative extrema
- intervals of increase and decrease
- asymptotes

- periodicity
- y-intercept
- concavity
- inflection points
- behavior as $x \to \infty$ or as $x \to -\infty$
- Some of these properties may not be relevant in certain cases. For example,
 asymptotes are characteristic of rational functions

$$\lim_{x\to a} f(x) = \infty \qquad \text{ or } \qquad \lim_{x\to a} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = b \qquad \text{ or } \qquad \lim_{x \to -\infty} f(x) = b$$

Here we discuss how to find the features of polynomial and rational functions

$$y = P_n(x)$$
 and $y = \frac{P(x)}{Q(x)}$

however, similar procedures can be used for other functions.

Exercise

Sketch a graph for each of the following functions and specify the locations of the intercepts, relative extrema, inflection points and asymptotes.

(a) Polynomial function

$$y = x^3 - 3x + 2$$

(b) Rational function

$$y = \frac{x^2 - 1}{x^3}$$

ullet Rational functions of which the degree of P did not exceed the degree of Q,

$$f(x) = \frac{P(x)}{Q(x)}$$

have either vertical asymptotes or horizontal asymptotes.

ullet Suppose P of a rational function has greater degree than Q, then other "asymptotes" are possible. For example, consider the rational function

$$f(x) = \frac{x^2 + 1}{x}$$

• By division we can rewrite it as

$$f(x) = x + \frac{1}{x}$$

• The second terms approach 0 as $x \to \infty$ or as $x \to -\infty$, then

$$(f(x) - x) \to 0$$

• Geometrically, this means that the graph of

$$y=f(x)$$
 and the line $y=x$ eventually gets closer and closer

as
$$x \to \infty$$
 or as $x \to -\infty$.

Definition

The line y = x is called an oblique or slant asymptote of f.

• Similarly, consider the rational function

$$g(x) = \frac{x^3 - x^2 - 8}{x - 1}$$

we can rewrite it as

$$g(x) = x^2 - \frac{8}{x - 1}$$

The second terms approach 0 as $x \to \infty$ or as $x \to -\infty$, then

$$\left(g(x) - x^2\right) \to 0$$

So the graph of

y=g(x) eventually gets closer and closer to the parabola $y=x^2$

as $x \to \infty$ or as $x \to -\infty$.

Definition

The parabola is called a curvilinear asymptote of g.

Vertical tangents are commonly found in graphs of functions

$$f(x) = (x - a)^{p/q}$$

that involve radicals or fractional exponents.

$$y = (x - 1)^{1/3}$$

$$(x-1)^{2/5}$$