

Hierarchical method of clustering- II

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Agglomerative hierarchical algorithm
- Python demo

Example for Hierarchical Agglomerative Clustering (HAC)

 A data set consisting of seven objects for which two variables were measured.

Object	Variable 1	Variable 2
1	2.00	2.00
2	5.50	4.00
3	5.00	5.00
4	1.50	2.50
5	1.00	1.00
6	7.00	5.00
7	5.75	6.50

Scatter plot

Calculate Euclidean Distance and create the distance matrix.

Distance[
$$(x_1, y_1), (x_2, y_2)$$
] = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Distance (1,2)

$$(2.00, 2.00) (5.50, 4.00) = \sqrt{(5.50 - 2.00)^2 + (4.00 - 2.00)^2} = 4.02$$

Distance (1,3)

$$(2.00, 2.00) (5.00, 5.00) = \sqrt{(5.00 - 2.00)^2 + (5.00 - 2.00)^2} = 4.24$$

Distance (1,4)

$$(2.00, 2.00) (1.50, 2.50) = \sqrt{(1.50 - 2.00)^2 + (2.50 - 2.00)^2} = 0.71$$

Object

Var 1

2.00

5.50

5.00

1.50

1.00

7.00

5.75

Var 2

2.00

4.00

5.00

2.50

1.00

5.00

6.50

	Object	Vai 1	vai Z
7	71	2.00	2.00
$^{\prime}/$	2	5.50	4.00
	3	5.00	5.00
/	4	1.50	2.50
2	0952	1.00	1.00
, 	9 6	7.00	5.00
_ \	√		

Ohiect Var 1

$$(2.00, 2.00) (1.00, 1.00) = \sqrt{(1.00 - 2.00)^2 + (1.00 - 2.00)^2}$$

$$= 1.41$$

Distance (1,6)

$$(2.00, 2.00) (7.00, 5.00) = \sqrt{(7.00 - 2.00)^2 + (5.00 - 2.00)^2} = 5.83$$

Distance (1,7)

$$(2.00, 2.00) (5.75, 6.50) = \sqrt{(5.75 - 2.00)^2 + (6.50 - 2.00)^2} = 5.86$$

6.50

	1	2.00	2.00
	2	5.50	4.00
	> 3	5.00	5.00
	4	1.50	2.50
א	2 032	1.00	1.00

7.00

5.75

Var 1

Var 2

5.00

6.50

Object

$$(5.50, 4.00) (5.00, 5.00) = \sqrt{(5.00 - 5.50)^2 + (5.00 - 5.50)^2}$$

$$= 1.12$$

Distance (2,4)

$$(5.50, 4.00) (1.50, 2.50) = \sqrt{(1.50 - 5.50)^2 + (2.50 - 4.00)^2} = 4.27$$

Distance (2,5)

$$(5.50, 4.00) (1.00, 1.00) = \sqrt{(1.00 - 5.50)^2 + (1.00 - 4.00)^2} = 5.41$$

Distance (2,6)

$$(5.50, 4.00) (7.00, 5.00) = \sqrt{(7.00 - 5.50)^2 + (5.00 - 4.00)^2} = 1.80$$

,	· · · ·	
1	2.00	2.00
~ 2	5 50	4 00

5.00

1.50

1.00

7.00

5.75

Var 1

Var 2

5.00

2.50

1.00

5.00

6.50

Object

$$(5.50, 4.00) (5.75, 6.50) = \sqrt{(5.75 - 5.50)^2 + (6.50 - 4.00)^2}$$

$$= 2.51$$

Distance (3,4)

$$(5.00, 5.00) (1.50, 2.50) = \sqrt{(1.50 - 5.00)^2 + (2.50 - 5.00)^2} = 4.30$$

Distance (3,5)

$$(5.00, 5.00) (1.00, 1.00) = \sqrt{(1.00 - 5.00)^2 + (1.00 - 5.00)^2} = 5.66$$

Distance (3,6)

$$(5.00, 5.00) (7.00, 5.00) = \sqrt{(7.00 - 5.00)^2 + (5.00 - 5.00)^2} = 2.00$$

1	2.00	2.00
2	5.50	4.00
<u>3</u>	5.00	5.00
4	1.50	2.50

1.00

7.00

5.75

Var 1

Var 2

1.00

5.00

6.50

Object

Distance (3,7)

$$(5.00, 5.00) (5.75, 6.50) = \sqrt{(5.75 - 5.00)^2 + (6.50 - 5.00)^2}$$

= 1.68

Distance (4,5)

$$(1.50, 2.50) (1.00, 1.00) = \sqrt{(1.00 - 1.50)^2 + (1.00 - 2.50)^2} = 1.58$$

Distance (4,6)

$$(1.50, 2.50) (7.00, 5.00) = \sqrt{(7.00 - 1.50)^2 + (5.00 - 2.50)^2} = 6.04$$

Distance (4,7)

$$(1.50, 2.50) (5.75, 6.50) = \sqrt{(5.75 - 1.50)^2 + (6.50 - 2.50)^2} = 5.84$$

1	2.00	2.00
2	5.50	4.00
3	5.00	5.00
4	1.50	2.50

1.00

7.00

5.75

Var 1

Var 2

1.00

5.00

6.50

Object

$$(1.00, 1.00) (7.00, 5.00) = \sqrt{(7.00 - 1.00)^2 + (5.00 - 1.00)^2}$$

$$= 7.21$$

Distance (5,7)

$$(1.00, 1.00) (5.75, 6.50) = \sqrt{(5.75 - 1.00)^2 + (6.50 - 1.00)^2} = 7.27$$

Distance (6,7)

$$(7.00, 5.00) (5.75, 6.50) = \sqrt{(5.75 - 7.00)^2 + (6.50 - 5.00)^2} = 1.95$$

Distance Matrix

The distance matrix is-

	1	2	3	4	5	6	7
1	0.0						
2	4.0	0.0					
3	4.2	1.1	_0.0				
4	0.7	4.3	4.3	0.0			
5	1.4	5.4	5.7	1.6	0.0		
6	5.8	1.8	2.0	6.0	7.2	0.0	
7	5.9	2.5	1.7	5.8	7.3	2.0	0.0

Select minimum element to build first cluster formation-

	1	2	3	4	5	6	7
1	0.0						
2	4.0	0.0					
3	4.2	1.1	0.0				
4	0.7	4.3	4.3	0.0			
5	1.4	5.4	5.7	1.6	0.0		
6	5.8	1.8	2.0	6.0	7.2	0.0	
7	5.9	2.5	1.7	5.8	7.3	2.0	0.0

Recalculate distance to update distance matrix

	1	2	3	4	5	6	7
1	0.0						
2	4.0	0.0					
3	4.2	1.1	0.0				
4	0.7	4.3	4.3	0.0			
5	1.4	5.4	5.7	1.6	0.0		
6	5.8,	1.8	2.0	_6.0	7.2	0.0	
7	_5.9	2.5	1.7	5.8	7.3	2.0	0.0

- MIN[dist(1,4), 5] = MIN(dist(1,5), (4,5)) = MIN(1.4, 1.6) = 1.4
- MIN[dist(1,4), 6] = MIN(dist(1,6), (4,6)) = MIN(5.8, 6.0) = 5.8
- MIN[dist(1,4), 7] = MIN(dist(1,7), (4,7)) = MIN(5.9, 5.8) = 5.8

Updated distance matrix for the cluster (1, 4)

	1,4	2	3	5	6	7
1,4)	0.0					
2	4.0	0.0				
3	4.2	1.1	0.0			
5	1.4	5.4	5.7	0.0		
6	5.8	1.8	2.0	7.2	0.0	
7	5.8	2.5	1.7	7.3	2.0	0.0

• Select minimum element to build next cluster formation-

	1,4	2	3	5	6	7
1,4	0.0					
2	4.0	0.0				
3	4.2	1.1	0.0			
5	1.4	5.4	5.7	0.0		
6	5.8	1.8	2.0	7.2	0.0	
7	5.8	2.5	1.7	7.3	2.0	0.0

Recalculate distance to update distance matrix

- MIN[dist(2,3), (1,4)] = MIN(dist(2,(1,4)), (3,(1,	4))
= MIN(4.0, 4.2) = 4.0	

	1,4	2	3	5	6	7
1,4	0.0					
2	4.0	0.0				
3	4.2	1.1	0.0			
5	1.4	_5.4	5.7	0.0		
6	5.8	1.8	2.0	7.2	0.0	
17/	5.8	2.5	1.7	7.3	2.0	0.0

- MIN[dist(2,3), 5] = MIN(dist(2,5), (3,5)) = MIN(5.4, 5.7) = 5.4
- MIN[dist(2,3), 6] = MIN(dist(2,6), (3,6)) = MIN(1.8, 2.0) = 1.8
- MIN[dist(2,3), 7] = MIN(dist(2,7), (3,7)) = MIN(2.5, 1.7) = 1.7

Updated distance matrix for the cluster (2, 3)

	1,4	2,3	5	6	7
1,4	0.0				
2,3	4.0	0.0			
5	1.4	5.4	0.0		
6	5.8	1.8	7.2	0.0	
7	5.8	1.7	7.3	2.0	0.0

Select minimum element to build next cluster formation-

	1,4	2,3	5	6	7
1,4	0.0				
2,3	4.0	0.0			
5	1.4	5.4	0.0		
6	5.8	1.8	7.2	0.0	
7	5.8	1.7	7.3	2.0	0.0

Recalculate distance to update distance matrix

- MIN[dist((1,4),5), (2,3)] = MIN(dist((1,4),(2,3)), (5,(2,3))
·······(a.se((±) ://s/) (=/s/)
= MIN(4.0, 5.4) = 4.0
-101111(4.0, 0.4) - 4.0

- MIN[dist((1,4),5), 6] = MIN(dist((1,4),6), (5,6)) = MIN(5.8, 7.2) = 5.8
- MIN[dist((1,4),5), 7] = MIN(dist((1,4),7), (5,7)) = MIN(5.8, 7.3) = 5.8

Updated distance matrix for the cluster ((1,4), 5)

	1,4,5	2,3	6	7
1,4,5	0.0			
2,3	4.0	0.0		
6	5.8	1.8	0.0	
7	5.8	1.7	2.0	0.0

• Select minimum element to build next cluster formation-

	1,4,5	2,3	6	7
1,4,5	0.0			
2,3	4.0	0.0		
6	5.8	1.8	0.0	
7.	5.8	1.7	2.0	0.0

Recalculate distance to update distance matrix

	1,4,5	2,3	6	7
1,4,5	0.0			
2,3	4.0	0.0		
6	5.8	1.8	0.0	
7	5.8	1.7	2.0	0.0

- MIN[dist((2,3),7), 6] = MIN(dist((2,3),6), (7,6)) = MIN(1.8, 2.0) = 1.8

• Updated distance matrix for the cluster ((2,3), 7)

	1,4,5	2,3,7	6
1,4,5	0.0		
2,3,7	4.0	0.0	
6	5.8	1.8	0.0

Select minimum element to build next cluster formation-

	1,4,5	2,3,7	6
1,4,5	0.0		
2,3,7	4.0	0.0	
6	5.8	1.8	0.0

Recalculate distance to update distance matrix

	1,4,5	2,3,7	6
1,4,5	0.0		
2,3,7	4.0	0.0	
6	5.8	1.8	0.0

Updated distance matrix for the cluster ((2,3,7), 6)

	1,4,5	2,3,7,6
1,4,5	0.0	
2,3,7,6	4.0	0.0


```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import scipy
         from scipy.cluster.hierarchy import fcluster
         from scipy.cluster.hierarchy import cophenet
         from scipy.spatial.distance import pdist
In [2]: data = pd.read excel("hierarchical clustering.xlsx")
         data
Out[2]:
            Variable 1 Variable 2
                2.00
                          2.0
                5.50
                          4.0
                5.00
                          5.0
                1.50
                          2.5
                1.00
                          1.0
                7.00
                          5.0
                5.75
                          6.5
```



```
In [3]: x = data['Variable 1']
y = data['Variable 2']
n = range(1,8)

fig, ax = plt.subplots()
ax.scatter(x, y, marker='*', c='red', alpha=0.5)
plt.grid()
plt.xlabel("Variable 1")
plt.ylabel("Variable 2")
for i, txt in enumerate(n):
    ax.annotate(txt, (x[i], y[i]))
```



```
In [5]: import sklearn
        from sklearn.cluster import AgglomerativeClustering
        Hclustering = AgglomerativeClustering(n_clusters = k, affinity = 'euclidean', linkage = 'single')
        Hclustering.fit(data)
Out[5]: AgglomerativeClustering(affinity='euclidean', compute full tree='auto',
                                connectivity=None, distance threshold=None,
                                linkage='single', memory=None, n clusters=2,
                                pooling_func='deprecated')
In [6]: Hclustering.fit_predict(data)
Out[6]: array([1, 0, 0, 1, 1, 0, 0], dtype=int64)
In [7]: print(Hclustering.labels )
         [1001100]
```



```
In [8]: x = data['Variable 1']
y = data['Variable 2']
n = range(1,8)

fig, ax = plt.subplots()
ax.scatter(x, y, c=Hclustering.labels_, cmap='rainbow')
plt.grid()
plt.xlabel("Variable 1")
plt.ylabel("Variable 2")
for i, txt in enumerate(n):
    ax.annotate(txt, (x[i], y[i]))
```


THANK YOU

