QUESTION 4

Theorem every odd natural number is one of the forms 4n + 1 or 4n + 3 where $n \in \mathbb{Z}$.

Proof: by induction, considering each case.

Base case: 1 = 4n + 1 where n = 0.

Inductive step: If k_i is an odd natural number, the next odd natural number is given by $k_{i+1} = k_i + 2$. There are two cases to consider.

(i) Assume $k_i = 4n + 1$. Then:

$$k_{i+1} = k_i + 2$$

= $4n + 1 + 2$ (by induction hypothesis)
= $4n + 3$

Therefore, k_{i+1} is of the required form.

(ii) Assume $k_i = 4n + 3$. Then:

$$k_{i+1} = k_i + 2$$

= $4n + 3 + 2$ (by induction hypothesis)
= $4n + 4 + 1$
= $4(n+1) + 1$

Therefore, k_{i+1} is again of the required form.

Therefore every odd natural number is one of the forms 4n+1 or 4n+3 where $n \in \mathbb{Z}$.