M4P58 Modular Forms

Lectured by Dr David Helm Typed by David Kurniadi Angdinata

Autumn 2019

$$\mathcal{D} = \left\{ z \in \mathbb{H} \mid \frac{1}{2} \le \operatorname{Re} z \le \frac{1}{2}, \, |z| \ge 1 \right\} \subseteq \mathbb{H}$$

Syllabus

Modular forms of level one. Eisenstein series. Spaces of modular forms of level one. Theta series. Hecke operators of level one. L-functions of level one. Modular forms of higher level. Spaces of modular forms of higher level. Hecke operators of higher level. L-functions of higher level. Oldforms and newforms.

M4P58 Modular Forms Contents

Contents

Inti	roduction
Mo	odular forms of level one
1.1	Modular forms
	1.1.1 Modular actions
	1.1.2 Review of complex analysis
	1.1.3 Modular forms
1.2	Eisenstein series
	1.2.1 Lattice functions
	1.2.2 Eisenstein series
	1.2.3 Convergence and holomorphy on \mathbb{H}
	1.2.4 q-expansion and holomorphy at ∞
	1.2.5 Bernoulli numbers
1.3	Spaces of modular forms
1.0	1.3.1 The fundamental domain
	1.3.2 Further review of complex analysis
	1.3.3 Controlling modular forms
	1.3.4 The space of holomorphic modular forms
1 4	1.3.5 The space of meromorphic modular forms
1.4	Theta series
	1.4.1 Quadratic forms
	1.4.2 Fourier analysis
	1.4.3 Theta series
	1.4.4 Asymptotic analysis
1.5	Hecke operators
	1.5.1 Correspondences
	1.5.2 Hecke operators
	1.5.3 Eigenforms
	1.5.4 Hermitian pairings
	1.5.5 The Petersson inner product
1.6	L-functions
	1.6.1 Dirichlet L-functions
	1.6.2 Hecke L-functions
Mo	dular forms of higher level
2.1	Modular forms
	2.1.1 Congruence subgroups
	2.1.2 Modular forms
	2.1.3 A fundamental domain
2.2	Spaces of modular forms
	2.2.1 The space of holomorphic modular forms
	2.2.2 The space of meromorphic modular forms
2.3	Hecke operators
	2.3.1 Hecke operators
	2.3.2 Diamond operators
	2.3.3 The Petersson inner product
2.4	L-functions
2.4	2.4.1 Hecke L-functions
	2.4.1 Frecke L-functions
0.5	
2.5	Fermat's last theorem

M4P58 Modular Forms 0 Introduction

0 Introduction

The following are textbooks.

Lecture 1 Friday 04/10/19

- Serre, A course in arithmetic, 1973
- J Shurman and F Diamond, A first course in modular forms, 2005

Let

$$f = q \prod_{n=1}^{\infty} (1 - q^n)^2 (1 - q^{11n})^2 = \sum_{n=1}^{\infty} b_n q^n = q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 - 2q^7 + \dots,$$

and let a_n be the number of solutions modulo n to the elliptic curve

$$E = \{(x, y) \in \mathbb{Z} \mid y^2 + y = x^3 - x^2 - 10x - 20\}.$$

- Modulo 2, there are $a_2 = 4$ solutions (0,0), (0,1), (1,0), (1,1).
- Modulo 3, there are $a_3 = 4$ solutions (1,0), (1,-1), (-1,0), (-1,-1).
- Modulo 5, there are $a_5 = 4$ solutions (0,0), (0,-1), (1,0), (1,-1).
- Modulo 7, there are $a_7 = 9$ solutions (1,3), (2,2), (2,-3), (-1,1), (-1,-2), (-2,1), (-2,-2), (-3,1), (-3,-2).

If $p \neq 11$, then

$$a_p - p = -b_p.$$

The following are some questions.

- What is the relationship between E and f?
- \bullet Can we find similar relationships for other E?
- How does one prove something like this?

Let

$$\mathbb{H} = \{x + iy \mid x, y \in \mathbb{R}, \ y > 0\} \subseteq \mathbb{C}.$$

Then \mathbb{H} has an action of

$$\operatorname{SL}_{2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}.$$

Modular forms are complex functions on \mathbb{H} with a high degree of symmetry. These functions are symmetric under the action of large discrete subgroups of $SL_2(\mathbb{R})$, in particular

$$\mathrm{SL}_{2}\left(\mathbb{Z}\right)=\left\{ \left(egin{matrix} a & b \\ c & d \end{matrix}\right) \mid a,b,c,d\in\mathbb{Z}, \ ad-bc=1 \right\}\subseteq \mathrm{SL}_{2}\left(\mathbb{R}\right).$$

Why are these interesting to number theorists? Power series expansions often involve expressions of interest to number theorists. For example,

- Bernoulli numbers,
- divisor functions $\sigma_k(n) = \sum_{d|n} d^k$,
- number of points on elliptic curves, and
- traces of Galois representations.

Lecture 2 Friday

04/10/19

1 Modular forms of level one

1.1 Modular forms

1.1.1 Modular actions

 $\mathrm{SL}_{2}\left(\mathbb{R}\right)$ acts on $\mathbb{C}\cup\left\{ \infty\right\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \begin{cases} \frac{az+b}{cz+d} & z \neq -\frac{d}{c} \\ \infty & z = -\frac{d}{c} \\ \frac{a}{c} & z = \infty \end{cases}$$

One checks that this gives a bijection from $\mathbb{C} \cup \{\infty\}$ to $\mathbb{C} \cup \{\infty\}$, where the inverse is given by the inverse matrix $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, and

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \cdot z \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \cdot z.$$

One obtains a left action of $\mathrm{SL}_{2}\left(\mathbb{R}\right)$ on $\mathbb{C}\cup\left\{ \infty\right\}$. An observation is

$$\operatorname{Im} \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \operatorname{Im} \frac{az+b}{cz+d} = \operatorname{Im} \frac{\left(az+b\right)\left(c\overline{z}+d\right)}{\left|cz+d\right|^2} = \frac{\operatorname{Im} \left(az+b\right)\left(c\overline{z}+d\right)}{\left|cz+d\right|^2} = \frac{\left(ad-bc\right)\operatorname{Im} z}{\left|cz+d\right|^2}.$$

In particular, if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$, then

$$\operatorname{Im} \gamma z = \frac{\operatorname{Im} z}{\left| cz + d \right|^2}.$$

So $\mathrm{SL}_2\left(\mathbb{R}\right)$ preserves $\mathbb{H}\cup\{\infty\}$. More generally, if

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \right\},$$

then

$$\operatorname{Im} \gamma z = \frac{\det \gamma \operatorname{Im} z}{\left| cz + d \right|^2}.$$

So

$$\operatorname{GL}_{2}\left(\mathbb{R}\right)_{+}=\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a,b,c,d \in \mathbb{R}, ad-bc>0 \right\}$$

preserves $\mathbb{H} \cup \{\infty\}$.

Definition 1.1.1. Let $f: \mathbb{H} \to \mathbb{C}$, let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})_+$, and let $k \in \mathbb{Z}$. Define

$$f|_{k,\gamma}$$
 : \mathbb{H} \longrightarrow \mathbb{C}
 $z \longmapsto \det \gamma^{k-1} f(\gamma z) (cz+d)^{-k}$,

where det γ^{k-1} is the **fudge factor**, which is one for $\gamma \in \mathrm{SL}_2(\mathbb{R})$, and $(cz+d)^{-k}$ is the **twisted action** on functions.

Check that

$$f|_{k,\mathrm{id}} = f, \qquad \left(f|_{k,\gamma} \right) \Big|_{k,\gamma'} = f|_{k,\gamma\gamma'}.$$

This gives, for each k, a left action of $\mathrm{GL}_2\left(\mathbb{R}\right)_+$ on functions $\mathbb{H} \to \mathbb{C}$, a **modular action of weight** k. A modular form of weight k will be a sufficiently nice function $f:\mathbb{H} \to \mathbb{C}$ such that $f|_{k,\gamma} = f$ for all $\gamma \in \mathrm{SL}_2\left(\mathbb{Z}\right)$. That is, for all $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \mathrm{SL}_2\left(\mathbb{Z}\right)$ and $z \in \mathbb{H}$,

$$f(\gamma z)(cz+d)^{-k} = f(z)$$
 \Longrightarrow $f(\gamma z) = f(z)(cz+d)^{k}$,

the modular transformation law of weight k.

The following are some observations.

- Let k = 0. Then constant functions satisfy $f(\gamma z) = f(z)$. It will turn out that all functions of weight zero are constant.
- Let k be odd, and $\gamma = -id$. Then $\gamma z = z$ for all z and cz + d = -1, so $f(\gamma z) = f(z)(cz + d)^k$ gives $f(z) = f(z)(-1)^k = -f(z)$, so f(z) = 0 for all z. So no non-zero functions $f: \mathbb{H} \to \mathbb{C}$ satisfy the modular transformation law of weight k, for all $\gamma \in \mathrm{SL}_2(\mathbb{Z})$, when k is odd.

1.1.2 Review of complex analysis

Let $f: U \to \mathbb{C}$ for $U \subseteq \mathbb{C}$ open, and let $p \in U$.

Definition 1.1.2. f is holomorphic at p if

$$f'\left(p'\right) = \lim_{\epsilon \to 0, \ \epsilon \in \mathbb{C}} \frac{f\left(p' + \epsilon\right) - f\left(p'\right)}{\epsilon}$$

exists for all p' in a neighbourhood of p.

Proposition 1.1.3. f is holomorphic at p implies that f is continuous and infinitely differentiable at p, that is $f^{(n)}(p)$ exists for all $n \ge 0$. Moreover, we have

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(p)}{n!} (z-p)^n = f(p) + f'(p) (z-p) + \frac{f''(p)}{2} (z-p)^2 + \dots,$$

for all z in a neighbourhood of p.

Corollary 1.1.4. If f is holomorphic and not identically zero on an open set U, then the zeroes of f are isolated on U.

More generally is the following.

Definition 1.1.5. f is **meromorphic** at p if there exists a neighbourhood U of p and $g, h : U \to \mathbb{C}$ holomorphic on U such that f = g/h on $U \setminus \{p\}$. Such an f has a **Laurent series expansion** at p,

$$f(z) = \sum_{i=-N}^{\infty} c_i (z - p)^i.$$

The smallest i such that $c_i \neq 0$ is denoted by $\operatorname{ord}_p f$, the **order of vanishing** of f at p.

- If $\operatorname{ord}_p f = -n$ for n > 0, we say f has a **pole of order** n.
- If ord_p f = n for n > 0, we say f has a **zero of order** n.

Proposition 1.1.6.

- $\operatorname{ord}_{p} fg = \operatorname{ord}_{p} f + \operatorname{ord}_{p} g$, and
- $\operatorname{ord}_{p}(f+g) \ge \min \{\operatorname{ord}_{p} f, \operatorname{ord}_{p} g\}, \text{ with equality if } \operatorname{ord}_{p} f \ne \operatorname{ord}_{p} g.$

If f is holomorphic on $U \setminus \{p\}$ for U a neighbourhood of p, then f may or may not be meromorphic at p.

Example. $f(z) = e^{-1/z^2}$ is holomorphic on $\mathbb{C} \setminus \{0\}$, but not meromorphic at zero.

Theorem 1.1.7. Let f be holomorphic on $U \setminus \{p\}$, and there exists n > 0 such that

$$\lim_{x \to p} (x - p)^n f(x)$$

exists. Then f is meromorphic on U, and $\operatorname{ord}_{p} f \geq -n$.

1.1.3 Modular forms

Definition 1.1.8. $f: \mathbb{H} \to \mathbb{C}$ is a weakly modular function of weight k if

- f is meromorphic on \mathbb{H} , and
- f satisfies the modular transformation law of weight k.

Consider $\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, so $\gamma z = z + 1$ and cz + d = 1. The modular transformation law gives f(z + 1) = f(z). Let

$$\mathbb{D} = \{ q \mid |q| < 1 \}.$$

Can define a function

$$\begin{array}{cccc} g & : & \mathbb{D} \setminus \{0\} & \longrightarrow & \mathbb{H} \\ & q & \longmapsto & f\left(\frac{\log q}{2\pi i}\right) \end{array},$$

that is

$$\begin{array}{cccc} f & : & \mathbb{H} & \longrightarrow & \mathbb{D} \setminus \{0\} \\ & z & \longmapsto & g\left(e^{2\pi i z}\right) \end{array},$$

and $q=e^{2\pi iz}$, where g is holomorphic or meromorphic on $\mathbb{D}\setminus\{0\}$ if and only if f is holomorphic or meromorphic on \mathbb{H} .

Definition 1.1.9. $f: \mathbb{H} \to \mathbb{C}$ is a modular form of weight k if

- 1. f satisfies the modular transformation law of weight k,
- 2. f is holomorphic on \mathbb{H} , and
- 3. f is holomorphic at ∞ , so the function $g: \mathbb{D} \setminus \{0\} \to \mathbb{C}$, which is holomorphic on $\mathbb{D} \setminus \{0\}$ by 2, extends to a holomorphic function on \mathbb{D} .

Lecture 3 Monday 07/10/19

Then $q \to 0$ in $\mathbb D$ if and only if $\operatorname{Im} z \to +\infty$. Recall that a holomorphic function g on $\mathbb D \setminus \{0\}$ extends to a meromorphic function on $\mathbb D$ if and only if there exists n such that $\lim_{q \to 0} q^n g(q)$ exists. Then 3 means g(q) is bounded as $q \to 0$ so f(z) is bounded as $\operatorname{Im} z \to +\infty$. For f satisfying $g(q) \to \mathbb C$ has a series expansion

$$g(q) = \sum_{n} a_n q^n = a_0 + a_1 q + \dots$$

in $q = e^{2\pi iz}$. We call this the q-expansion for f.

Definition 1.1.10. $f : \mathbb{H} \to \mathbb{C}$ is a **meromorphic modular form of weight** k if the same conditions 1 to 3 hold, but with holomorphic weakened to meromorphic.

Note. If f is only meromorphic at ∞ then a finite number of negative powers of q can appear.

Example.

• The discriminant

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

is a modular form of weight twelve.

• The j-invariant

$$j(z) = \frac{1}{a} + 744 + 196844q + 21493760q^2 + \dots$$

is a meromorphic modular form of weight zero.

1.2 Eisenstein series

1.2.1 Lattice functions

How can we construct modular forms?

Definition 1.2.1. A lattice in \mathbb{C} is an abelian subgroup of \mathbb{C} of the form $\mathbb{Z}w_1 + \mathbb{Z}w_2$, where $w_1, w_2 \in \mathbb{C}$ are \mathbb{R} -linearly independent. More generally if V is an \mathbb{R} -vector space, a lattice L in V is a discrete abelian subgroup of V that spans V over \mathbb{R} . For $L \subseteq \mathbb{C}$ a lattice and $\lambda \in \mathbb{C}^{\times}$, let

$$\lambda L = \{\lambda x \mid x \in L\} \subseteq \mathbb{C}.$$

We say that L and λL are **homothetic**. For $z \in \mathbb{H}$, let

$$L_{z,1} = \mathbb{Z} + \mathbb{Z}z = \{az + b \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

A question is when is $L_{z,1}$ homothetic to $L_{z',1}$, and what is a homothety factor?

• Suppose $L_{z,1} = \lambda L_{z',1}$. Then there exist a, b, c, d such that

$$\begin{cases} \lambda z' = az + b \\ \lambda = cz + d \end{cases} \implies \begin{pmatrix} \lambda z' \\ \lambda \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix}. \tag{1}$$

On the other hand there exist a', b', c', d' such that

$$\begin{cases} z = a'\lambda z' + b'\lambda \\ 1 = c'\lambda z' + d'\lambda \end{cases} \implies \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} \lambda z' \\ \lambda \end{pmatrix} = \begin{pmatrix} z \\ 1 \end{pmatrix}. \tag{2}$$

By (1) and (2),

$$\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} z \\ 1 \end{pmatrix},$$

so $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$. Moreover (1) implies that z' = (az + b) / (cz + d).

• Conversely, if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, then $\gamma z = (az + b) / (cz + d)$, so

$$L_{\gamma z,1} = (cz+d)^{-1} L_{az+b,cz+d}.$$

But certainly $L_{az+b,cz+d} \subseteq L_{z,1}$. On the other hand if $\gamma' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ is inverse to γ ,

$$\begin{pmatrix} z \\ 1 \end{pmatrix} = \gamma' \gamma \begin{pmatrix} z \\ 1 \end{pmatrix} = \gamma \begin{pmatrix} az+b \\ cz+d \end{pmatrix} = \begin{pmatrix} a' \left(az+b\right) + b' \left(cz+d\right) \\ c' \left(az+b\right) + d' \left(cz+d\right) \end{pmatrix},$$

so $z \in L_{az+b,cz+d}$ and $1 \in L_{az+b,cz+d}$. So

$$L_{az+b,cz+d} = L_{z,1},$$

so
$$L_{\gamma z,1} = (cz + d)^{-1} L_{z,1}$$
.

Definition 1.2.2. A lattice function of weight k is a function $F : \{\text{lattices in } \mathbb{C}\} \to \mathbb{C} \text{ such that }$

$$F\left(\lambda L\right) = \lambda^{-k} F\left(L\right),\,$$

for all lattices L. Given such an F, can define

$$\begin{array}{cccc} f & : & \mathbb{H} & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & F\left(\mathcal{L}_{z,1}\right) \end{array}.$$

If F has weight k, then

$$f(\gamma z) = F\left(\mathbf{L}_{\gamma z,1}\right) = F\left(\left(cz+d\right)^{-1}\mathbf{L}_{z,1}\right) = \left(cz+d\right)^{k}F\left(\mathbf{L}_{z,1}\right) = \left(cz+d\right)^{k}f\left(z\right), \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

1.2.2 Eisenstein series

Definition 1.2.3. For $L \in \mathbb{C}$, define the **Eisenstein series**

Lecture 4 Friday 11/10/19

$$G_k(L) = \sum_{w \in L, w \neq 0} \frac{1}{w^k}, \quad g_k(z) = G_k(L_{z,1}) = \sum_{\substack{m = -\infty \\ (m,n) \neq (0,0)}}^{\infty} \sum_{n = -\infty}^{\infty} \frac{1}{(mz + n)^k}.$$

Then

$$G_{k}\left(\lambda L\right) = \sum_{w' \in \lambda L, \ w' \neq 0} \frac{1}{w'^{k}} = \sum_{w \in L, \ w \neq 0} \frac{1}{\left(\lambda w\right)^{k}} = \lambda^{-k} G_{k}\left(L\right).$$

Corollary 1.2.4. g_k satisfies the modular transformation law of weight k.

The following are some questions.

- Does G_k , or g_k , converge?
- Is g_k holomorphic, or meromorphic, on \mathbb{H} ?
- Is g_k holomorphic at ∞ ?
- What is the q-expansion of g_k ?

1.2.3 Convergence and holomorphy on \mathbb{H}

Definition 1.2.5. Let $U \subseteq \mathbb{C}$ be open. A sequence of functions $f_n : U \to \mathbb{C}$ converges uniformly on compact sets to f if for all $C \subseteq U$ compact and $\epsilon > 0$, there exists $N \in \mathbb{Z}$ such that for all n > N,

$$|f(z) - f_n(z)| < \epsilon, \qquad z \in C.$$

Theorem 1.2.6. A uniform limit of holomorphic functions is holomorphic. If f_n converges to f uniformly on compact sets and f_n is holomorphic on U, then f is holomorphic on U.

Theorem 1.2.7. Let $k \geq 4$. The series $g_k(z)$ converges absolutely and uniformly on compact subsets of \mathbb{H} .

Proof. Let

$$P_{z,r} = \{az + b \mid a, b \in \mathbb{R}, \max(|a|,|b|) = r\} \subseteq \mathbb{C},$$

so $P_{z,r} = rP_{z,1}$, and there are 8r points on $P_{z,r} \cap L_{z,1}$. Then

$$g_k(z) = \sum_{r=1}^{\infty} \sum_{w \in L_{z,1} \cap P_{z,r}} \frac{1}{w^k}.$$

The function $z \mapsto |z|$ attains a non-zero minimum $\delta(z)$ on $P_{z,1}$, so on $P_{z,1}$, have $|z| > \delta(z)$, so $1/|z|^k < 1/\delta(z)^k$. On $P_{z,r}$, have $|z| > r\delta(z)$, so $1/|z|^k < 1/r^k\delta(z)^k$. Let $C \subseteq \mathbb{H}$ be compact. Then $z \mapsto \delta(z)$ is a continuous function on C and attains a minimum δ_C . For all $z \in C$ and $w \in P_{z,r}$, get $|w| > r\delta_C$, so

$$\frac{1}{\left|w\right|^{k}} < \frac{1}{r^{k} \delta_{C}^{k}}.$$

Thus for $z \in C$, $g_k(z)$ is dominated by

$$\sum_{r=1}^{\infty} \frac{8r}{r^k \delta_C^k} = \frac{8}{\delta_C^k} \sum_{r=1}^{\infty} \frac{1}{r^{k-1}},$$

which converges absolutely for $k \geq 4$.

Corollary 1.2.8. $g_k(z)$ is holomorphic on \mathbb{H} .

1.2.4 *q*-expansion and holomorphy at ∞

The idea is to understand series of the form

$$\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^k}.$$

Theorem 1.2.9. A bounded holomorphic function on all of \mathbb{C} is constant.

Lemma 1.2.10.

1.

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2}.$$

2.

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{z+n} \right) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}.$$

Proof.

1. The right hand side converges absolutely and uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{Z}$, so the right hand side is holomorphic on $\mathbb{C} \setminus \mathbb{Z}$. Locally around z = n, the series looks like

$$\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} = \dots + \frac{1}{(z-n+1)^2} + \frac{1}{(z-n)^2} + \frac{1}{(z-n-1)^2} + \dots = \frac{1}{(z-n)^2} + h_1(z),$$

where $h_1(z)$ is holomorphic in a neighbourhood of z = n. Similarly, the left hand side is meromorphic on \mathbb{C} , and the Laurent series near z = n is

$$\frac{\pi^2}{\sin^2 \pi z} = \pi \left(\frac{1}{\pi^2 (z - n)^2} + \frac{1}{3} + \frac{1}{15} \pi^2 (z - n)^2 + \dots \right) = \frac{1}{(z - n)^2} + h_2(z),$$

where $h_2(z)$ is a holomorphic function. So the difference

$$g(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} - \frac{\pi^2}{\sin^2 \pi z}$$

is meromorphic on \mathbb{C} and holomorphic on $\mathbb{C} \setminus \mathbb{Z}$, and the Laurent expression around z = n is

$$g(z) = \frac{1}{(z-n)^2} + h_1(z) - \left(\frac{1}{(z-n)^2} + h_2(z)\right) = h_1(z) - h_2(z),$$

so g(z) is holomorphic at z=n for all n. Consider $t\to\pm\infty$ for z=a+it. The right hand side is

$$R = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} = \sum_{n=a-N}^{a+N} \frac{1}{(z-n)^2} + \sum_{n=-\infty}^{a-N-1} \frac{1}{(z-n)^2} + \sum_{n=a+N+1}^{\infty} \frac{1}{(z-n)^2} = R_0 + R_- + R_+,$$

where R_0 has finitely many terms that converge to less than $\epsilon/2$ as $t \to \pm \infty$ and $R_- + R_+ < \epsilon/2$ for $N \gg 0$ independent of t, so $R < \epsilon$ converges to zero. Similarly, the left hand side is

$$\left| \frac{\pi^2}{\sin^2 \pi z} \right| = \left| \frac{2\pi^2}{e^{\pi i z} - e^{-\pi i z}} \right| \to 0,$$

so $\lim_{t\to\infty} g\left(a+it\right)=0$. Moreover, $g\left(z+1\right)=g\left(z\right)$ for all z. Then

$$S = \{ z \in \mathbb{C} \mid n-1 \le \operatorname{Re} z \le n, -N \le \operatorname{Im} z \le N \}, \qquad n \in \mathbb{Z}$$

is compact, so |g(z)| attains a maximum in S, so g(z) is bounded in S, so g(z) is bounded in \mathbb{C} , so g(z) is constant. Since $\lim_{t\to\infty} g(a+it)=0, g=0$.

2. Check that the right hand side converges absolutely and uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{Z}$, so the right hand side is meromorphic on $\mathbb{C} \setminus \mathbb{Z}$. Similarly, the left hand side is also meromorphic on $\mathbb{C} \setminus \mathbb{Z}$. Comparing derivatives,

Lecture 5 Friday 11/10/19

$$-\frac{\pi^2}{\sin^2 \pi z} = -\frac{1}{z^2} - \sum_{n=1}^{\infty} \left(\frac{1}{(z-n)^2} + \frac{1}{(z+n)^2} \right),$$

so the difference is constant. Let $z=\frac{1}{2}$. The left hand side is $\pi\cot\frac{\pi}{2}=0$ and the right hand side is

$$\frac{2}{1} + \left(-\frac{2}{1} + \frac{2}{3}\right) + \left(-\frac{2}{3} + \frac{2}{5}\right) + \dots \to 0, \quad n \to \infty,$$

so the difference is zero.

Thus

$$\frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{z+n} \right) = \pi \cot \pi z = \pi i \frac{e^{\pi i z} + e^{-\pi i z}}{e^{\pi i z} - e^{-\pi i z}} = \pi i \frac{q+1}{q-1} = \pi i - \frac{2\pi i}{1-q} = \pi i - 2\pi i \sum_{n=0}^{\infty} q^n.$$

Take $\frac{d^{k-1}}{dz^{k-1}}$. For $k \geq 2$ even, get

$$-(k-1)! \sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^k} = -(2\pi i)^k \sum_{n=1}^{\infty} n^{k-1} q^n,$$

SO

$$\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} q^n.$$

Collecting powers of q,

$$\begin{split} \mathbf{g}_{k}\left(z\right) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{k}} \\ &= 2 \sum_{n=1}^{\infty} \frac{1}{n^{k}} + 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{k}} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n^{k-1} q^{nm} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right) q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty}$$

Corollary 1.2.11. $g_k(z)$ is holomorphic at ∞ . In particular, g_k is a modular form of weight k.

1.2.5 Bernoulli numbers

Definition 1.2.12. The **Bernoulli numbers** b_k are defined by

$$\sum_{k=0}^{\infty} b_k \frac{x^k}{k!} = \frac{x}{e^x - 1},$$

a formal power series with rational coefficients.

Then

$$b_0 = 1,$$
 $b_1 = -\frac{1}{2},$ $b_2 = \frac{1}{6},$ $b_3 = 0,$ $b_4 = -\frac{1}{20},$...

where $b_{2k} \in \mathbb{Q}$ is interesting and $b_{2k+1} = 0$ for $k \geq 1$.

Proposition 1.2.13. For all even k,

$$\zeta(k) = -\mathbf{b}_k \frac{(2\pi i)^k}{2k!}.$$

Proof. On one hand,

$$\pi z \cot \pi z = \pi i z + \frac{2\pi i z}{e^{2\pi i z} - 1} = \pi i z + \sum_{k=0}^{\infty} b_k \frac{(2\pi i z)^k}{k!}.$$

On the other hand,

$$\begin{split} \pi \cot \pi z &= \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} = \frac{1}{z} - \frac{2z}{n^2} \sum_{n=1}^{\infty} \frac{1}{1 - z^2/n^2} \\ &= \frac{1}{z} - \sum_{n=1}^{\infty} \frac{2}{z} \sum_{k=1}^{\infty} \left(\frac{z^2}{n^2}\right)^k = \frac{1}{z} - \frac{2}{z} \sum_{k=1}^{\infty} z^{2k} \sum_{n=1}^{\infty} \frac{1}{n^{2k}} \\ &= \frac{1}{z} - \frac{2}{z} \sum_{k=1}^{\infty} \zeta\left(2k\right) z^{2k}, \end{split}$$

SO

$$\pi iz + \sum_{k=0}^{\infty} b_k \frac{(2\pi iz)^k}{k!} = \pi z \cot \pi z = 1 - 2 \sum_{k=1}^{\infty} \zeta(2k) z^{2k}.$$

Comparing,

$$b_{2k} \frac{(2\pi i)^{2k}}{(2k)!} = -2\zeta(2k),$$

get the desired formula.

So

$$g_k(z) = -b_k \frac{(2\pi i)^k}{k!} + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Set the normalised Eisenstein series

$$E_k = \frac{g_k}{2\zeta(k)} = 1 - \frac{2k}{b_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Example.

$$E_{4} = 1 + 240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}, \qquad E_{6} = 1 - 504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n},$$

$$E_{8} = 1 + 480 \sum_{n=1}^{\infty} \sigma_{7}(n) q^{n}, \qquad E_{12} = 1 + \frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{n}.$$

p is **regular** if $p \nmid h(\mathbb{Z}[\zeta_p])$ for $\zeta_p^p = 1$.

Theorem 1.2.14. p is regular if and only if p does not divide the numerator of b_k for $1 \le k .$

An observation is if f is modular of weight k and g is modular of weight k', then fg is modular of weight k + k', and if k = k', then f + g is modular of weight k.

 $\begin{array}{c} \text{Lecture 6} \\ \text{Monday} \\ 14/10/19 \end{array}$

Example.

• The discriminant

$$\Delta(z) = \frac{E_4^3 - E_6^2}{1728} = q - 24q^2 + 252q^3 + \dots$$

is a modular form of weight twelve.

• The j-invariant

$$j(z) = \frac{E_4^3}{\Delta} = \frac{1}{q} + 744 + 196844q + \dots$$

is a meromorphic modular form of weight zero.

1.3 Spaces of modular forms

1.3.1 The fundamental domain

The idea is to control the action of $\mathrm{SL}_2(\mathbb{Z})$ on \mathbb{H} . If $f:\mathbb{H}\to\mathbb{C}$ satisfies $f(\gamma z)=(cz+d)^kf(z)$ for all $\gamma=\begin{pmatrix} a&b\\c&d\end{pmatrix}\in\mathrm{SL}_2(\mathbb{Z})$, and if $D\subseteq\mathbb{H}$ such that D meets every $\mathrm{SL}_2(\mathbb{Z})$ -orbit in \mathbb{H} , then f is determined by its values on D.

Definition 1.3.1. Let G be a group acting continuously on a complex analytic space X, such as $X = \mathbb{H}$. A subset $D \subseteq X$ is a **fundamental domain** for the action of G if

- D meets every G-orbit in X,
- the subset $\{x \in D \mid \exists g \in G, gx \in D, gx \neq x\}$ has measure zero, and
- D is closed in X.

Define

$$\mathcal{D} = \left\{ z \in \mathbb{H} \mid \frac{1}{2} \le \operatorname{Re} z \le \frac{1}{2}, |z| \ge 1 \right\} \subseteq \mathbb{H},$$

SO

Let

$$\mathbf{S} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : z \mapsto -\frac{1}{z}, \qquad \mathbf{T} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : z \mapsto z+1,$$

and let $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$ be the subgroup generated by S and T. We will see later that $\Gamma = \mathrm{SL}_2(\mathbb{Z})$.

Theorem 1.3.2.

- 1. For all $z \in \mathbb{H}$, there exists $\gamma \in \Gamma$ such that $\gamma z \in \mathcal{D}$.
- 2. Suppose $z, z' \in \mathcal{D}$ and $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ with $\gamma z = z'$. Then either
 - \bullet z=z'
 - Re $z = \pm \frac{1}{2}$ and $z' = z \mp 1$, or
 - |z| = 1 and z' = -1/z.

In particular, if $z \neq z'$, then z and z' are on the boundary of \mathcal{D} .

3. For $z \in \mathcal{D}$, let Stab_z be the stabiliser of z in $\operatorname{SL}_2(\mathbb{Z})$, that is

$$\operatorname{Stab}_{z} = \{ \gamma \in \operatorname{SL}_{2}(\mathbb{Z}) \mid \gamma z = z \}.$$

Then $Stab_z = \{\pm id\}$ unless

- z = i, where $Stab_z = \{\pm id, \pm S\}$,
- $z = \rho$, where $Stab_z = \{\pm id, \pm (ST), \pm (T^{-1}S)\}$, or
- $z = \rho'$, where $\operatorname{Stab}_z = \{\pm \operatorname{id}, \pm (\operatorname{TS}), \pm (\operatorname{ST}^{-1})\}.$

Corollary 1.3.3. $\Gamma = \mathrm{SL}_2(\mathbb{Z})$.

Proof. Fix $\gamma \in \operatorname{SL}_2(\mathbb{Z})$ and $z \in \mathring{\mathcal{D}}$ so $\operatorname{SL}_2(\mathbb{Z}) z \cap \mathcal{D} = \{z\}$ and $\operatorname{Stab}_z = \{\pm \operatorname{id}\}$. Consider γz . There exists $\gamma' \in \Gamma$ such that $\gamma' \gamma z \in \mathcal{D}$, so $\gamma' \gamma z = z$. So $\gamma' \gamma = \pm \operatorname{id}$, so $\gamma = \pm \gamma'^{-1}$. But $\gamma'^{-1} \in \Gamma$ and $-\operatorname{id} = \operatorname{S}^2 \in \Gamma$, so $\gamma \in \Gamma$.

Proof of Theorem 1.3.2. Recall that $\operatorname{Im} \gamma z = \operatorname{Im} z/|cz+d|^2$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$.

1. As c and d vary, $\{cz+d\}$ forms a lattice in \mathbb{C} , so there exist only finitely many c and d such that |cz+d|<1. So $\operatorname{Im}\gamma z$ attains a maximum as γ varies over Γ , so there exists $\gamma\in\Gamma$ such that $\operatorname{Im}\gamma z$ is maximal. There exists $n\in\mathbb{Z}$ such that $\operatorname{T}^n\gamma z$ has real part between $-\frac{1}{2}$ and $\frac{1}{2}$. Consider $|\operatorname{T}^n\gamma z|$. If this is less than one, then

$$\operatorname{Im} \operatorname{ST}^n \gamma z = \operatorname{Im} \frac{-1}{\operatorname{T}^n \gamma z} > \operatorname{Im} \operatorname{T}^n \gamma z = \operatorname{Im} \gamma z.$$

Since $ST^n \gamma \in \Gamma$, this contradicts maximality so $|T^n \gamma z| \geq 1$, so $T^n \gamma z \in \mathcal{D}$.

Lecture 7 Friday 18/10/19

2, 3. Let $z, z' \in \mathcal{D}$ such that $\gamma z = z'$. Without loss of generality $\operatorname{Im} z' \geq \operatorname{Im} z$, so $|cz + d| \leq 1$. Note that $|cz + d| \geq \operatorname{Im} (cz + d) \geq \frac{\sqrt{3}}{2}c$, so c = -1, 0, 1. Note that can replace γ with $-\gamma$ if convenient.

c=0. ad=1, so can assume a=d=1, so $\gamma z=z+b$. Since $z,z+b\in\mathcal{D},\,b=\pm 1$ and $\mathrm{Re}\,z=\mp\frac{1}{2}$.

$$c = 1$$
. Have $|z + d| \le 1$ and $|z| \ge 1$, so $d = -1, 0, 1$.

$$d=0.$$
 $|z|=1$, and $\gamma z=(az-1)/z=a-1/z$. The only possibilities are $*a=0$ and $\gamma=\mathrm{S},$ $*a=1$ and $\gamma=\mathrm{TS},$ so $z=\rho',$ or $*a=-1$ and $\gamma=\mathrm{T}^{-1}\mathrm{S},$ so $z=\rho.$

$$d = 1$$
. $z = \rho$, and $\gamma z = ((b+1)z+b)/(z+1) = b+1-1/(z+1)$, so $b = 0$ or $b = -1$. $d = -1$. $z = \rho'$ is similar.

c = -1. Similar.

1.3.2 Further review of complex analysis

Recall that on any compact set, a meromorphic function has only finitely many zeroes and poles. If $f(z) = g(e^{2\pi iz})$ is meromorphic at ∞ , then g is meromorphic on $\mathbb{D} = \{|q| < 1\}$, so zeroes and poles of g are discrete with respect to q, and $\text{Im } z \gg 0$ if and only if $|q| < \epsilon$.

Definition 1.3.4. Let $U \subseteq \mathbb{C}$ be open, and let $f: U \to \mathbb{C}$ be meromorphic on U. If f has a pole at p, can write

$$f(z) = \sum_{n=\text{ord}, f<0}^{\infty} a_n (z-p)^n.$$

The coefficient a_{-1} is called the **residue** Res_p f of f at p.

Theorem 1.3.5 (Residue theorem). Let V be a region in \mathbb{C} whose boundary ∂V is a simple closed curve with counterclockwise orientation. Then

$$\frac{1}{2\pi} \int_{\partial V} f(z) dz = \sum_{p \in V \text{ pole of } f} \operatorname{Res}_{p} f.$$

Definition 1.3.6. Let f be meromorphic on $U \subseteq \mathbb{C}$ open. Then the **logarithmic derivative** $d \log f$ is the function f'/f.

If $f(z) = c_n (z-p)^n + c_{n+1} (z-p)^{n+1} + \dots$ and $c_n \neq 0$, then if $n \neq 0$ then the leading term of f' is $nc_n (z-p)^{n-1}$ and the leading term of f is $c_n (z-p)^n$, so the leading term of f'/f is $n(z-p)^{-1}$. If n=0, then f'/f is holomorphic. So f'/f is meromorphic with simple poles precisely at the points where $\operatorname{ord}_p f \neq 0$, and $\operatorname{Res}_p f'/f$ at such p is $\operatorname{ord}_p f$.

Theorem 1.3.7 (Argument principle).

$$\frac{1}{2\pi i} \int_{\partial V} \frac{f'\left(z\right)}{f\left(z\right)} \; \mathrm{d}z = \sum_{p \in V \; pole \; of \; f} \mathrm{ord}_{p} \, f.$$

1.3.3 Controlling modular forms

Theorem 1.3.8 (k/12-formula). Let f be a non-zero meromorphic modular form of weight k. Then

$$\operatorname{ord}_{\infty} f + \frac{\operatorname{ord}_{\rho} f}{3} + \frac{\operatorname{ord}_{i} f}{2} + \sum_{p \in \operatorname{SL}_{2}(\mathbb{Z}) \setminus \mathbb{H}, \ p \nsim \{i, \rho\}} \operatorname{ord}_{p} f = \frac{k}{12}.$$

Proof. Consider the closed curve $C_{N,\epsilon}$,

Lecture 8 Friday 18/10/19

where the z's are zeroes or poles of f, and the circles are of radius ϵ . Consider

$$\frac{1}{2\pi i} \int_{C_{N,\epsilon}} \frac{f'(z)}{f(z)} dz = \sum_{p \in \operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}, \ p \nsim \{i, \rho\}} \operatorname{ord}_p f, \qquad \epsilon \to 0.$$

So it suffices to show

$$\lim_{\epsilon \to 0, \ N \to \infty} \frac{1}{2\pi i} \int_{C_{N,\epsilon}} \frac{f'(z)}{f(z)} dz = -\operatorname{ord}_{\infty} f - \frac{\operatorname{ord}_{\rho} f}{3} - \frac{\operatorname{ord}_{i} f}{2} + \frac{k}{12}.$$

The vertical parts of the boundary cancel. Since $f(-1/z) = z^k f(z)$,

$$d\left(z^{k}f\left(z\right)\right) = \left(kz^{k-1}f\left(z\right) + z^{k}f'\left(z\right)\right)dz,$$

so the integral over the circular part of $\partial \mathcal{D}$ approaches

$$\frac{1}{2\pi i} \int_{\rho}^{i} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{i}^{\rho'} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \left(\int_{\rho}^{i} \frac{f'(z)}{f(z)} dz - \int_{\rho}^{i} \frac{f'(-1/z)}{f(-1/z)} dz \right) \\
= \frac{1}{2\pi i} \int_{\rho}^{i} \frac{f'(z)}{f(z)} - \frac{kz^{k-1}f(z) + z^{k}f'(z)}{z^{k}f(z)} dz = -\frac{1}{2\pi i} \int_{\rho}^{i} \frac{k}{z} dz = \frac{k}{12}.$$

Since $dq = 2\pi i q dz$, the top part is

$$\frac{1}{2\pi i} \int_{\frac{1}{2}+iN}^{\frac{1}{2}-iN} \frac{f'\left(z\right)}{f\left(z\right)} \, \mathrm{d}z = -\frac{1}{2\pi i} \int_{\text{circle of radius } \epsilon} \frac{g'\left(q\right)}{g\left(q\right)} \, \mathrm{d}q = -\operatorname{ord}_{\infty} f.$$

Near i, $f'/f = \operatorname{ord}_i f(z-i)^{-1} + h(z)$, where h(z) is holomorphic such that $h(z) \to 0$ as $\epsilon \to 0$. Then the circle $C_{\epsilon,i}$ of radius ϵ centered at i is

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{C_{\epsilon,i}} \frac{f'\left(z\right)}{f\left(z\right)} \; \mathrm{d}z = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\text{arc of half circle centered at } i} \frac{\operatorname{ord}_i f}{z - i} \; \mathrm{d}z = -\frac{\operatorname{ord}_i f}{2}.$$

Similarly, at ρ and ρ' , get that the circles $C_{\epsilon,\rho}$ and $C_{\epsilon,\rho'}$ of radius ϵ centered at ρ and ρ' are

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{C_{\epsilon,0}} \frac{f'\left(z\right)}{f\left(z\right)} \, \mathrm{d}z = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{C_{\epsilon,0}} \frac{f'\left(z\right)}{f\left(z\right)} \, \mathrm{d}z = -\frac{\mathrm{ord}_{\rho} \, f}{6},$$

which gives $-\operatorname{ord}_{\rho} f/3$.

1.3.4 The space of holomorphic modular forms

Let

$$\mathbf{M}_k = \{\text{holomorphic modular forms of weight } k\},$$

$$\mathbf{S}_k = \{\text{cusp forms of weight } k\} = \{f \in \mathbf{M}_k \mid \operatorname{ord}_{\infty} f > 0\} \subseteq \mathbf{M}_k.$$

Corollary 1.3.9.

- $M_k = 0$ if k < 0, k = 2, or k odd.
- M₀ are constants.
- $M_4 = \mathbb{C}E_4$, where $\operatorname{ord}_{\rho} E_4 = 1$ and no other zeroes.
- $M_6 = \mathbb{C}E_6$, where $\operatorname{ord}_i E_6 = 1$ and no other zeroes.
- $M_8 = \mathbb{C}E_8$, where $\operatorname{ord}_{\rho} E_8 = 2$ and no other zeroes.
- $M_{10} = \mathbb{C}E_{10}$, where $\operatorname{ord}_{\rho} E_{10} = \operatorname{ord}_{i} E_{10} = 1$ and no other zeroes.
- $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$, where $\operatorname{ord}_{\infty} \Delta = 1$ and no other zeroes.

Corollary 1.3.10. $\Delta: M_k \to S_{k+12}$ is an isomorphism. On the other hand,

$$M_k \cong \mathbb{C}E_k \oplus S_k, \qquad k \geq 4 \text{ even},$$

so

$$M_k \cong \mathbb{C}E_k \oplus \cdots \oplus \mathbb{C}E_{k-12r}\Delta^r, \qquad k-12r=0,4,6,8,10,14.$$

Corollary 1.3.11. $E_4^2 = E_8$ and $E_4E_6 = E_{10}$.

So for k > 4, the set

$$\begin{cases} \mathbf{E}_k, \dots, \mathbf{E}_{k-12 \lfloor k/12 \rfloor} \Delta^{\lfloor k/12 \rfloor} & k \not\equiv 2 \mod 12 \\ \mathbf{E}_k, \dots, \mathbf{E}_{14} \Delta^{\lfloor k/12 \rfloor - 1} & k \equiv 2 \mod 12 \end{cases}$$

is a basis for M_k . A variant is to write k=4n+6m with m=0,1 and $n\geq 0$, for $k\geq 4$. Then $M_k=\mathbb{C}\mathrm{E}_4^n\mathrm{E}_6^m\oplus\mathrm{S}_k$ gives a basis

$$\mathbf{E}_4^n \mathbf{E}_6^m, \dots, \mathbf{E}_4^{n-3\lfloor n/3 \rfloor} \mathbf{E}_6^m \Delta^{\lfloor n/3 \rfloor}$$

for M_k . Since $\Delta = (E_4^3 - E_6^2)/1728$, we see every modular form of weight k is a polynomial in E_4 and E_6 , and

$$\Delta \in q + q^2 \mathbb{Z}\left[\left[q\right]\right], \qquad \mathrm{E}_4^n \mathrm{E}_6^m \in 1 + q \mathbb{Z}\left[\left[q\right]\right], \qquad \mathrm{E}_4^{n-3} \mathrm{E}_6^m \Delta \in q + q^2 \mathbb{Z}\left[\left[q\right]\right], \qquad \dots$$

have integer coefficients.

Corollary 1.3.12. If the q-expansion of f has integer coefficients, then f is an integer combination of

$$\mathbf{E}_4^n \mathbf{E}_6^m, \dots, \mathbf{E}_4^{n-3\lfloor n/3 \rfloor} \mathbf{E}_6^m \Delta^{\lfloor n/3 \rfloor}.$$

Notation. $M_k(\mathbb{Z}) \subseteq M_k$ consists of modular forms with integer q-expansions.

Theorem 1.3.13. $M_k(\mathbb{Z})$ spans M_k , and $f \in M_k$ lies in $M_k(\mathbb{Z})$ if and only if f is an integral polynomial in E_4, E_6, Δ .

Definition 1.3.14. A graded ring is a ring R, together with a direct sum decomposition, as abelian groups,

$$R = \bigoplus_{i \in \mathbb{Z}} R_i,$$

such that $R_i \cdot R_j \subseteq R_{i+j}$ for all $i, j \in \mathbb{Z}$.

Example.

- $R = \mathbb{C}[X,Y]$, where R_i are polynomials homogeneous of degree i.
- $R = \bigoplus_{k \in \mathbb{Z}} M_k$.

Lecture 9 Monday 21/10/19 Let $\mathbb{C}[X,Y]$ be graded with deg X=4 and deg Y=6. Have a homomorphism of graded rings

$$\begin{array}{ccc} \mathbb{C}\left[X,Y\right] & \longrightarrow & \bigoplus_{k \in \mathbb{Z}} \mathcal{M}_k \\ (X,Y) & \longmapsto & (\mathcal{E}_4,\mathcal{E}_6) \end{array}.$$

Theorem 1.3.15. This is an isomorphism of graded rings.

Proof. This map is surjective, since every $f \in M_k$ is a polynomial in E_4 and E_6 . It remains to show this map is injective. Suppose not. There exists P(X,Y), homogeneous of degree k, such that $P(E_4,E_6)=0$. Write k=4n+6m with m=0,1. If $P=c_0X^nY^m+\cdots+c_rX^{n-3r}Y^{m+2r}$ where $r=\lfloor n/3\rfloor$, then

$$c_0 \mathbf{E}_4^n \mathbf{E}_6^m + \dots + c_r \mathbf{E}_4^{n-3r} \mathbf{E}_6^{m+2r} = 0.$$

Dividing by $\mathrm{E}_4^{n-3r}\mathrm{E}_6^{m+2r}$, get $Q\left(\mathrm{E}_4^3/\mathrm{E}_6^2\right)=0$ where $Q\left(X\right)=c_0X^r+\cdots+c_r$. Since the roots of Q are discrete, and $\mathrm{E}_4^3/\mathrm{E}_6^2$ is non-constant, this is impossible.

1.3.5 The space of meromorphic modular forms

Note. The meromorphic modular forms of weight zero form a field.

Example. The j-invariant j $(z) = E_4^3/\Delta = 1728E_4^3/\left(E_4^3 - E_6^2\right)$ is a non-constant meromorphic modular form, with a pole of order one at ∞ , a zero of order three at ρ , and no other zeroes or poles.

Theorem 1.3.16. j gives a bijection between $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ and \mathbb{C} .

Proof. Given $\lambda \in \mathbb{C}$, want $z \in \mathbb{H}$ such that $j(z) = \lambda$. Consider $g = j - \lambda$. This is meromorphic of weight zero. This has a pole at ∞ , and no other poles, and

$$\operatorname{ord}_{\infty} g + \frac{\operatorname{ord}_{\rho} g}{3} + \frac{\operatorname{ord}_{i} g}{2} + \sum_{p \in \operatorname{SL}_{2}(\mathbb{Z}) \setminus \mathbb{H}, \ p \nsim \{i, \rho\}} \operatorname{ord}_{p} g = 0.$$

The only possibilities are

- q has a zero at ρ of order three, and no other zeroes,
- \bullet q has a zero at i of order two, and no other zeroes, or
- *g* has a simple zero somewhere else, and no other zeroes.

In each case, the zero of g is a unique $SL_2(\mathbb{Z})$ -orbit on which $j(z) = \lambda$. So j is bijective.

Lecture 10 Friday 25/10/19

Theorem 1.3.17. Every meromorphic modular form of weight zero is a rational function in j. That is, the field of meromorphic modular forms is $\mathbb{C}(j)$.

Proof. Let g be meromorphic of weight zero. Then g has finitely many $\operatorname{SL}_2(\mathbb{Z})$ -orbits worth of poles in \mathbb{H} . Saw last time that j is holomorphic in \mathbb{H} . If p is a pole of g, then $(j(z) - j(p))^{n_p}$ is holomorphic on \mathbb{H} and zero at z = p. Doing this for all poles, there exists $P \in \mathbb{C}[X]$ such that P(j) g(z) is holomorphic on \mathbb{H} . Then for some m, $P(j) g(z) \Delta^m$ is holomorphic of weight 12m. So it suffices to show if h is holomorphic of weight 12m, then h/Δ^m is a rational function in j, since if $P(j) g(z) \Delta^m = h$ then $P(j) g(z) \in \mathbb{C}(j)$, so $g(z) \in \mathbb{C}(j)$. Then h is a sum of terms

$$h = \sum_{a,b} c_{a,b} \mathcal{E}_4^a \mathcal{E}_6^b, \qquad c_{a,b} \in \mathbb{C}, \qquad 4a + 6b = 12m.$$

Considering this equation modulo four and modulo three, find $3 \mid a$ and $2 \mid b$, so

$$\frac{h}{\Delta^m} = \sum_{a,b} c_{a,b} \left(\frac{E_4^3}{\Delta}\right)^{\frac{a}{3}} \left(\frac{E_6^2}{\Delta}\right)^{\frac{b}{2}}.$$

So it suffices to show E_4^3/Δ and E_6^2/Δ are rational functions in j. Then $j = E_4^3/\Delta$, and

$$\frac{E_6^2}{\Delta} = \frac{1728E_6^2}{E_4^3 - E_6^2} = \frac{1728\left(E_6^2 - E_4^3\right) + 1728E_4^3}{E_4^3 - E_6^2} = -1728 + \frac{1728E_4^3}{E_4^3 - E_6^2} = j - 1728.$$

1.4 Theta series

Let $L \subseteq \mathbb{R}^n$ be a lattice. For $x, y \in L$, $x \cdot y \in \mathbb{R}$. Suppose $x \cdot y \in \mathbb{Z}$ for all $x, y \in L$. A question is for $n \in \mathbb{Z}$, how many $x \in L$ have $x \cdot x = n$? The rough idea is to form the series

$$\sum_{x \in L} q^{x \cdot x} = \sum_{n=0}^{\infty} a_n q^n, \qquad a_n = \# \{ x \in L \mid x \cdot x = n \}.$$

We will show that, with some slight modifications, and extra hypotheses on L, this generating function turns out to be a modular form.

1.4.1 Quadratic forms

Fix a lattice $L \subseteq \mathbb{R}^n$, so

$$L = \mathbb{Z} \cdot e_1 \oplus \cdots \oplus \mathbb{Z} \cdot e_n$$
.

Given these e_i , form a matrix A such that $A_{ij} = e_i \cdot e_j$.

Note. $A = B^{\intercal}B$, where B is the matrix whose columns are the e_i , and $|\det B|$ is the **volume** of the parallelogram spanned by e_i , so $\det A = \det B^2 > 0$.

Definition 1.4.1. The dual lattice L^{\vee} is the set of $y \in \mathbb{R}^n$ such that $y \cdot x \in \mathbb{Z}$ for all $x \in L$.

Let f_1, \ldots, f_n be the dual basis to e_1, \ldots, e_n , that is the unique set of solutions f_1, \ldots, f_n such that

$$f_i \cdot e_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

Then L^{\vee} is spanned by the f_i . Clearly $f_i \in L^{\vee}$ for all i. Conversely, if $y \in L^{\vee}$, then $y \cdot e_i = a_i \in \mathbb{Z}$, then $y = \sum_{i=1}^n a_i f_i$.

Proposition 1.4.2. Let $C = A^{-1}$. Then

$$f_i = \sum_{j=1}^n C_{ij} e_j.$$

Proof.

$$f_i \cdot e_k = \sum_{j=1}^n C_{ij} e_j e_k = \sum_{j=1}^n C_{ij} A_{jk} = (CA)_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}.$$

Definition 1.4.3. A lattice L is **self-dual** if $L^{\vee} = L$ as subsets of \mathbb{R}^n .

Proposition 1.4.4. L is self-dual if and only if the associated matrix A has integer entries and determinant one.

Proof. Clearly if $L = L^{\vee}$, then $e_i \cdot e_j \in \mathbb{Z}$, so A has integer entries. Since $L^{\vee} \subseteq L$, f_i is an integer combination of the e_j , so $C = A^{-1}$ has integer entries. So det $A = \pm 1$, but already saw det A > 0. Conversely if A has integer entries and determinant one, $C = A^{-1}$ has integer entries. Then A has integer entries implies that $e_i \cdot e_j \in \mathbb{Z}$ for all i and j, so $e_i \in L^{\vee}$ for all i, so $L \subseteq L^{\vee}$. Similarly, C has integer entries implies that $L^{\vee} \subseteq L$.

If L is self-dual, get an integer-valued quadratic form

$$Q_L : \mathbb{Z}^n \longrightarrow \mathbb{Z}$$

$$(a_1, \dots, a_n) \longmapsto (a_1 e_1 + \dots + a_n e_n) \cdot (a_1 e_1 + \dots + a_n e_n) = (a_1 \dots a_n) A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

A question is given m, how often does Q_L represent m?

Lecture 11

Friday 25/10/19

1.4.2 Fourier analysis

Let $f: \mathbb{R}^n \to \mathbb{C}$ be a C^{∞} function.

Definition 1.4.5. We will say f is rapidly decreasing if for all m,

$$||x|^m f(x)| \to 0, \qquad |x| \to \infty,$$

where $|x| = (x \cdot x)^{1/2}$. For $f \in \mathbb{C}^{\infty}$, rapidly decreasing, define

$$\widehat{f}(y) = \int_{\mathbb{R}^n} e^{-2\pi i(x \cdot y)} dx : \mathbb{R}^n \to \mathbb{C}.$$

Fact.

- If f is smooth and rapidly decreasing, so is \hat{f} .
- If $f(x) = e^{-\pi(x \cdot x)}$, then $\widehat{f}(x) = f(x)$.
- If f is smooth and rapidly decreasing, and $L \subseteq \mathbb{R}^n$ is a lattice with volume V, then

$$\sum_{x \in L} f(x) = \frac{1}{V} \sum_{x \in L^{\vee}} \widehat{f}(x).$$

1.4.3 Theta series

A crucial assumption is that L is self-dual. An assumption that can be removed is that L is even, so for all $x \in L$, $Q_L(x) \in 2\mathbb{Z}$.

Definition 1.4.6. The theta series Θ_L is defined by

$$\Theta_{L}\left(z\right) = \sum_{m \in L} q^{\frac{1}{2}x \cdot x} = \sum_{m=0}^{\infty} a_{m} q^{m}, \qquad a_{m} = \#\left\{x \in \mathbb{Z}^{n} \mid Q_{L}\left(x\right) = 2m\right\}.$$

Theorem 1.4.7. Θ_L is modular of weight n/2.

Example. Let $\Gamma_8 \subseteq \mathbb{R}^8$ be spanned by

$$e_1 = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \qquad e_2 = (1, 1, 0, 0, 0, 0, 0, 0),$$

$$e_3 = (-1, 1, 0, 0, 0, 0, 0, 0), \qquad e_4 = (0, -1, 1, 0, 0, 0, 0, 0), \qquad e_5 = (0, 0, -1, 1, 0, 0, 0, 0),$$

$$e_6 = (0, 0, 0, -1, 1, 0, 0, 0), \qquad e_7 = (0, 0, 0, 0, -1, 1, 0, 0), \qquad e_8 = (0, 0, 0, 0, 0, -1, 1, 0).$$

Then

$$A = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{pmatrix},$$

and

$$Q_L(z_1,\ldots,z_8) = 2(z_1^2 + \cdots + z_8^2 - z_1z_3 - z_2z_4 - z_3z_4 - z_4z_5 - z_6z_7 - z_7z_8).$$

If $L \subseteq \mathbb{R}^n$ is even and self-dual, and Θ_L is modular of weight n/2, then the dimension is $\sim n/24$.

Fact. If $L \subseteq \mathbb{R}^n$ is even and self-dual, then $8 \mid n$.

Proof. Serre V.2.1 Corollary 2.

Proof of Theorem 1.4.7. Know, since L is even, that $\Theta_L(z+1) = \Theta_L(z)$. It suffices to show $\Theta_L(-1/z) = z^{n/2}\Theta_L(z)$. Both sides are holomorphic on \mathbb{H} , so it suffices to show

$$\Theta_L\left(-\frac{1}{it}\right) = (it)^{\frac{n}{2}} \Theta_L(it).$$

For $t \in \mathbb{R}^{\times}$, let $L_t = t^{1/2} \cdot L$. Then $L_t^{\vee} = t^{-1/2} \cdot L = L_{t^{-1}}$, so the volume of L_t is $t^{n/2}$. By the facts,

$$\sum_{x\in L_t} e^{-\pi(x\cdot x)} = t^{-\frac{n}{2}} \sum_{x\in L_{\star-1}} e^{-\pi(x\cdot x)},$$

so

$$\sum_{x \in L} e^{-\pi(x \cdot x)t} = t^{-\frac{n}{2}} \sum_{x \in L} e^{-\frac{\pi(x \cdot x)}{t}}.$$

Now return to Θ_L . The left hand side is

$$\Theta_L\left(-\frac{1}{it}\right) = \sum_{x \in L} e^{\frac{1}{2} \cdot 2\pi i \cdot \left(-\frac{1}{it}\right) \cdot (x \cdot x)} = \sum_{x \in L} e^{-\frac{\pi(x \cdot x)}{t}},$$

and the right hand side is

$$\Theta_L\left(it\right) = \sum_{x \in L} e^{\frac{1}{2} \cdot 2\pi i \cdot (it) \cdot (x \cdot x)} = \sum_{x \in L} e^{-\pi(x \cdot x)t},$$

so the result follows.

1.4.4 Asymptotic analysis

Let $L \subseteq \mathbb{R}^n$ be even and self-dual, so $8 \mid n$, and let $\Theta_L = \sum_{m=0}^{\infty} a_m q^m$, where a_m is the number of ways Q_L represents 2m, so $a_0 = 1$. Then

$$\Theta_L = E_{\frac{n}{2}} + g, \qquad E_{\frac{n}{2}} \sim \sigma_{\frac{n}{2}-1}(m) \sim m^{\frac{n}{2}-1},$$

where g is a cusp form.

Lecture 12 is a problems class.

Proposition 1.4.8. Let

$$E_k = \sum_{n=0}^{\infty} a_n q^n = 1 + C \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Then there exist $A, B \in \mathbb{R}_{>0}$ such that

$$An^{k-1} < a_n < Bn^{k-1}$$

Proof. Set A = C. Then

$$\sigma_{k-1}(n) = \sum_{d|n} d^{k-1} \ge n^{k-1},$$

so $a_n = C\sigma_{k-1}(n) \ge Cn^{k-1}$. Consider

$$\frac{\sigma_{k-1}(n)}{n^{k-1}} = \sum_{d|n} \frac{d^{k-1}}{n^{k-1}} = \sum_{d'|n} \frac{1}{d'^{k-1}} \le \sum_{n=1}^{\infty} \frac{1}{n^{k-1}} = \zeta(k-1),$$

so $\sigma_{k-1}(n) \leq \zeta(k-1) n^{k-1}$. So set $B = C\zeta(k-1)$, so $a_n \leq Bn^{k-1}$.

Theorem 1.4.9 (Hecke). Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a cusp form of weight k. Then

$$|a_n| = \mathcal{O}\left(n^{\frac{k}{2}}\right),\,$$

that is $|a_n| n^{-k/2}$ is bounded as $n \to \infty$.

Lecture 12 Monday 28/10/19 Lecture 13 Friday 01/11/19

Proof. f/q is holomorphic on \mathbb{H} , so |f/q| is bounded as $q \to 0$, so $|f(z)|/e^{-2\pi\operatorname{Im} z}$ is bounded as $\operatorname{Im} z \to \infty$. That is, there exist $M \in \mathbb{R}$ such that $|f(z)| \le Me^{-2\pi\operatorname{Im} z}$. Consider

$$\phi(z) = |f(z)| \operatorname{Im} z^{\frac{k}{2}},$$

so $\lim_{\mathrm{Im}\,z\to\infty}\phi\left(z\right)=0$. Note that

$$\phi\left(\gamma z\right) = \left|f\left(\gamma z\right)\right|\operatorname{Im}\gamma z^{\frac{k}{2}} = \left|f\left(z\right)\right|\left|cz+d\right|^{k} \frac{\operatorname{Im}z^{\frac{k}{2}}}{\left|cz+d\right|^{2^{\frac{k}{2}}}} = \left|f\left(z\right)\right|\operatorname{Im}z^{\frac{k}{2}} = \phi\left(z\right), \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_{2}\left(\mathbb{Z}\right).$$

Then $\phi(z)$ is determined by its values on the standard fundamental domain, so $\phi(z)$ is bounded on \mathbb{H} , so $|f(z)| < M' \operatorname{Im} z^{-k/2}$ for some $M' \in \mathbb{R}$. If z = x + iy for y fixed, then by the residue theorem,

$$a_m = \frac{1}{2\pi i} \int_C \frac{f(q)}{q^{m+1}} dq = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f(x+iy)}{e^{2\pi i(x+iy)m}} dx,$$

where C is a circle around zero, oriented counterclockwise, so

$$|a_m| \le \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{|f(x+iy)|}{e^{-2\pi ym}} dx \le \frac{|f(x+iy)|}{e^{-2\pi ym}} \le e^{2\pi ym} M' y^{-\frac{k}{2}}.$$

Set y = 1/m. Get $|a_m| \le e^{2\pi} M' m^{k/2}$, so $|a_m| / m^{k/2}$ is bounded.

Had

$$\Theta_L = \mathbf{E}_{\frac{n}{2}} + g, \qquad \mathbf{E}_{\frac{n}{2}} \sim m^{\frac{n}{2}-1}, \qquad g = \mathcal{O}\left(m^{\frac{n}{4}}\right).$$

Theorem 1.4.10 (Deligne). Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a cusp form of weight k. Then

$$|a_n| = O\left(n^{\frac{k-1}{2}}\sigma_0(n)\right).$$

Proof. Very rough sketch of argument.

Ramanujan 1910s. Conjectured by Ramanujan for $f = \Delta$.

- Weil 1940s. For an algebraic variety V over \mathbb{F}_q , what can we say about $\#V(\mathbb{F}_{q^n})$ for various n? Weil associated to V and \mathbb{F}_q a generating function called the **zeta function** $\zeta_{V,q}(t)$ of V over \mathbb{F}_q , conjectured several things about $\zeta_{V,q}$, and proved in the case of curves.
 - $-\zeta_{V,q}$ is a rational function in t.
 - $-\zeta_{V,q}$ satisfies a certain symmetry under $t\mapsto 1/t$.
 - The Riemann hypothesis

$$\zeta_{V,q}(t) = \frac{P_1(t) \dots P_{2d-1}(t)}{P_0(t) \dots P_{2d}(t)}, \quad \text{dim } V = d,$$

where the roots of $P_{i}(t)$ have absolute value $q^{i/2}$.

- Eichler-Shimura 1950s. Let $\Gamma \subseteq \operatorname{SL}_2(\mathbb{Z})$ be a nice **congruence subgroup**. Then $X_{\Gamma} = \Gamma \setminus \mathbb{H}$ has the structure of an algebraic curve over \mathbb{Q} , with **good reduction** at primes p not dividing $[\operatorname{SL}_2(\mathbb{Z}) : \Gamma]$. Eichler, Shimura, and others studied $\zeta_{V,p}$ for $V = X_{\Gamma}$, and related $\zeta_{V,p}$ to the p-th Fourier coefficients of a basis for forms of weight two and **level** Γ . The **Weil conjectures** bound a_p in terms of $q^{1/2}$.
 - Deligne 1960s. Deligne showed that in weight k, there exists a **Kuga-Sato variety**, of dimension k-1, whose zeta function has a factor coming from modular forms of weight k and level Γ , and showed that if the Weil conjectures, particularly the Riemann hypothesis, holds, then get the coefficient bound.

Deligne 1970s. The Riemann hypothesis in higher dimensions.

1.5 Hecke operators

Let

$$\Delta = \frac{E_4^3 - E_6^2}{1728} = \sum_{n=1}^{\infty} \tau(n) q^n = q \prod_{m=1}^{\infty} (1 - q^m)^{24} = q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 + \dots$$

Lecture 14 Friday 01/11/19

Then $\tau(n)$ grows roughly like n^6 or $n^{11/2+\epsilon}$. Mordell proved that

- $\tau(mn) = \tau(n)\tau(m)$ if (m,n) = 1, and
- $\bullet \ \tau\left(p^{n+1}\right) = \tau\left(p\right)\tau\left(p^{n}\right) p^{11}\tau\left(p^{n-1}\right).$

Note. If $E_k = 1 + C \sum_n \sigma_{k-1}(n) q^n$, set

$$E'_{k} = \frac{1}{C} + \sum_{n} \sigma_{k-1}(n) q^{n}.$$

• If (m, n) = 1, then

$$\sigma_{k-1}(nm) = \sum_{d|n} \sum_{d'|m} (dd')^{k-1} = \left(\sum_{d|n} d^{k-1}\right) \left(\sum_{d'|m} d'^{k-1}\right) = \sigma_{k-1}(n) \sigma_{k-1}(m).$$

• Since $\sigma_{k-1}(p^n) = 1 + \dots + p^{n(k-1)}$,

$$\sigma_{k-1}(p)\,\sigma_{k-1}(p^n) = \left(1 + p^{k-1}\right)\left(1 + \dots + p^{n(k-1)}\right)$$
$$= 1 + 2p^{k-1} + \dots + 2p^{n(k-1)} + p^{(n+1)(k-1)}$$
$$= \sigma_{k-1}(p^{n+1}) + p^{k-1}\sigma_{k-1}(p^{n-1}),$$

so

$$\sigma_{k-1}(p^{n+1}) = \sigma_{k-1}(p) \sigma_{k-1}(p^n) - p^{k-1} \sigma_{k-1}(p^{n-1}).$$

1.5.1 Correspondences

Definition 1.5.1. Let X be a set. The free abelian group on X, denoted $\mathbb{Z}X$, is the set of finite formal sums

$$\sum_{i=1}^{r} a_i x_i, \qquad a_i \in \mathbb{Z}, \qquad x_i \in X,$$

where x_i are distinct. Add by combining like terms.

Definition 1.5.2. A correspondence on X is a homomorphism $\mathbb{Z}X \to \mathbb{Z}X$. Let

$$\operatorname{Corr} X = \{ \operatorname{correspondences} \operatorname{on} X \}.$$

Equivalently, a correspondence associates to each $x \in X$, a finite formal sum

$$\sum_{i=1}^{r} a_i y_i, \qquad a_i \in \mathbb{Z}, \qquad y_i \in X.$$

If X is a finite set $X = \{x_1, \dots, x_r\}$, any correspondence T can be represented, in a unique way, by the matrix M_T such that

$$Tx_i = \sum_{i=1}^r \left(M_T \right)_{ij} x_j,$$

and composition of correspondences is matrix multiplication. Let X be a set, and let

$$\operatorname{Fun}_{\mathbb{C}} X = \{ \operatorname{functions} X \to \mathbb{C} \}.$$

Then $T \in \operatorname{Corr} X$ acts on $\operatorname{Fun}_{\mathbb{C}} X$ as follows. If $Tx = \sum_{i} a_{i}x_{i}$ then $(Tf) x = \sum_{i} a_{i}f(x_{i})$. Check $(T \circ T') f = T(T'f)$ etc. Let

$$\mathcal{L} = \{ \text{lattices in } \mathbb{C} \}.$$

Example.

• For $\lambda \in \mathbb{C}^{\times}$, have

$$\begin{array}{cccc} R_{\lambda} & : & \mathbb{Z}\mathcal{L} & \longrightarrow & \mathbb{Z}\mathcal{L} \\ & L & \longmapsto & \lambda L \end{array}$$

• For $n \in \mathbb{Z}_{>0}$, have

$$T_n : \mathbb{Z}\mathcal{L} \longrightarrow \mathbb{Z}\mathcal{L}$$
 $L \longmapsto \sum_{L' \subseteq_n L} L'$,

the *n* Hecke operators. Note that there are only finitely many $L' \subseteq_n L$, since if $L' \subseteq_n L$, then L' contains R_nL . Then $L/R_nL \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. The image of L' in L/R_nL is a subgroup H of $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ of order n. The preimage of H in L is L'. Thus there is a bijection

$$\{ \text{ subgroups of } L/\mathbf{R}_n L \text{ of order } n \} \longleftrightarrow \{ \text{ sublattices of } L \text{ of index } n \}.$$

Proposition 1.5.3.

- 1. $R_{\lambda}R_{\mu} = R_{\lambda\mu}$.
- 2. $R_{\lambda}T_n = T_nR_{\lambda}$.
- 3. $T_n T_m = T_{nm} \text{ if } (m, n) = 1.$
- 4. $T_p T_{p^n} = T_{p^{n+1}} + p T_{p^{n-1}} R_p$.

Lecture 15 Monday 04/11/19

Corollary 1.5.4. T_p commute with each other for p prime, also with R_{λ} , and every T_n is a polynomial in T_p and R_p for $p \mid n$, so all T_n and R_{λ} commute.

Proposition 1.5.5. If A is an abelian group of order nm, with (n,m) = 1, then A factors uniquely as $B \times C$, where B has order n and C has order m. In particular B is the unique subgroup of A of order n.

Proof. Write 1 = an + bm for $a, b \in \mathbb{Z}$. Have a map

$$\begin{array}{ccc} A & \longleftrightarrow & mA \times nA \\ x & \longmapsto & (mbx, nax) \\ x + y & \longleftrightarrow & (x, y) \end{array}.$$

Then mA has order n and nA has order m. Clearly inverses on one side, so counting implies isomorphism. \square Proof of Proposition 1.5.3.

- 1. Easy.
- 2. If $L \in \mathcal{L}$, then

$$R_{\lambda}T_{n}L = R_{\lambda} \sum_{L' \subseteq_{n}L} L' = \sum_{L' \subseteq_{n}L} R_{\lambda}L' = \sum_{L' \subseteq_{n}R_{\lambda}L} L' = T_{n}R_{\lambda}L.$$

3. If $L \in \mathcal{L}$, then

$$\mathbf{T}_n \mathbf{T}_m L = \mathbf{T}_n \sum_{L' \subseteq_m L} L' = \sum_{L' \subseteq_m L} \mathbf{T}_n L' = \sum_{L' \subseteq_m L} \sum_{L'' \subseteq_n L'} L''.$$

An observation is $L'' \subseteq_n L' \subseteq_m L$, so $L'' \subseteq_{nm} L$. Then

$$T_n T_m L = \sum_{L'' \subseteq_{nm} L} c_{n,m} (L'', L) L'', \qquad c_{n,m} (L'', L) = \# \{ L' \in \mathcal{L} \mid L'' \subseteq_n L' \subseteq_m L \}.$$

An observation is that there is a bijection

Have (n, m) = 1, then $c_{n,m}(L'', L) = 1$ so

$$\mathbf{T}_{n}\mathbf{T}_{m}L = \sum_{L''\subseteq_{nm}L} c_{n,m} \left(L'',L\right)L'' = \sum_{L''\subseteq_{nm}L} L'' = \mathbf{T}_{nm}L.$$

4. Similarly, if $L \in \mathcal{L}$, then

$$T_{p}T_{p^{r}}L = \sum_{L'' \subseteq_{p^{r+1}} L} c_{p,p^{r}} (L'', L) L'', \qquad c_{p,p^{r}} (L'', L) = \# \{L' \in \mathcal{L} \mid L'' \subseteq_{p} L' \subseteq_{p^{r}} L\}.$$

What is

$$c_{p,p^r}(L'',L) = \#\{\text{subgroups of order } p \text{ in } L/L''\}?$$

L/L'' is abelian of order p^{r+1} and is generated by two elements. By the classification of finite abelian groups, every finite abelian group can be written uniquely as

$$\mathbb{Z}/a_1\mathbb{Z}\times\cdots\times\mathbb{Z}/a_r\mathbb{Z}, \qquad a_1\mid\cdots\mid a_r,$$

up to isomorphism, and r is the minimal number of generators for such a group. So

$$L/L'' \cong \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}, \qquad a, b \ge 0, \qquad a+b=r+1.$$

Case 1. $L/L'' \cong \mathbb{Z}/p^{r+1}\mathbb{Z}$ is cyclic. In this case $c_{p,p^r}(L'',L) = 1$.

Case 2. $L/L'' \cong \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$ with a, b > 0. Any subgroup of order p is contained in the subgroup killed by p,

$$p^{a-1}\mathbb{Z}/p^a\mathbb{Z} \times p^{b-1}\mathbb{Z}/p^b\mathbb{Z} \cong (\mathbb{Z}/p\mathbb{Z})^2$$
.

The p^2-1 elements of $(\mathbb{Z}/p\mathbb{Z})^2$ other than zero each spans a subgroup of order p, and two elements span the same group if and only if they differ by a scalar in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, so there are $(p^2-1)/(p-1)=p+1$ subgroups of order p in $(\mathbb{Z}/p\mathbb{Z})^2$. In this case $c_{p,p^r}(L'',L)=p+1$.

The latter case occurs if and only if L/L'' maps surjectively to $(\mathbb{Z}/p\mathbb{Z})^2 \cong L/\mathbf{R}_pL$, if and only if $\mathbf{R}_pL \supseteq L''$. Thus

$$\begin{split} \mathbf{T}_{p}\mathbf{T}_{p^{r}}L &= \sum_{L'' \subseteq_{p^{r}+1}L} c_{p,p^{r}}\left(L'',L\right)L'' = \sum_{L'' \subseteq_{p^{r}+1}L \text{ cyclic}} L'' + (p+1) \sum_{L'' \subseteq_{p^{r}+1}L \text{ not cyclic}} L'' \\ &= \mathbf{T}_{p^{r+1}}L + p \sum_{L'' \subseteq_{p^{r}+1}L \text{ not cyclic}} L'' = \mathbf{T}_{p^{r+1}}L + p \sum_{L'' \subseteq_{p^{r}-1}\mathbf{R}_{p}L} L'' = \mathbf{T}_{p^{r+1}}L + p \mathbf{T}_{p^{r-1}}\mathbf{R}_{p}L. \end{split}$$

1.5.2 Hecke operators

If $F: \mathcal{L} \to \mathbb{C}$, then

$$(\mathbf{T}_n F)(L) = \sum_{L' \subseteq_n L} F(L'), \qquad (\mathbf{R}_{\lambda} F)(L) = F(\mathbf{R}_{\lambda} L).$$

Recall that F has weight k if $F(R_{\lambda}L) = \lambda^{-k}F(L)$ for all $\lambda \in \mathbb{C}^{\times}$, if and only if

$$R_{\lambda}F = \lambda^{-k}F, \qquad \lambda \in \mathbb{C}^{\times},$$

so

$$R_{\lambda}T_{n}F = T_{n}R_{\lambda}F = T_{n}\lambda^{-k}F = \lambda^{-k}T_{n}F.$$

So the T_n and R_λ preserve lattice functions of weight k. Have a bijection

$$\left\{ f : \mathbb{H} \to \mathbb{C} \mid f(\gamma z) = (cz + d)^k f(z) \right\} \longrightarrow \left\{ \text{lattice functions } F \text{ of weight } k \right\}$$
$$f(z) \longmapsto F(\mathcal{L}_{z,1})$$

On lattice functions of weight k, have

$$T_p T_{p^r} = T_{p^{r+1}} + p^{1-k} T_{p^{r-1}}.$$

Definition 1.5.6. For $f: \mathbb{H} \to \mathbb{C}$ corresponding to $F: \mathcal{L} \to \mathbb{C}$ of weight k, define $T_n f$ by

$$\left(\mathbf{T}_{n}f\right)\left(z\right)=n^{k-1}\left(\mathbf{T}_{n}F\right)\left(\mathbf{L}_{z,1}\right)=n^{k-1}\sum_{L'\subseteq_{n}\mathbf{L}_{z,1}}F\left(L'\right).$$

Lecture 16 Friday 08/11/19 On $f: \mathbb{H} \to \mathbb{C}$, T_n satisfy

$$T_p T_{p^r} = T_{p^{r+1}} + p^{k-1} T_{p^{r-1}}.$$

Need to rewrite $\sum_{L'\subseteq nL_{z,1}}F\left(L'\right)$ in terms of f. Let

$$\mathbf{S}^{n} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \operatorname{Mat}_{2 \times 2} \mathbb{Z} \mid ad = n, \ a, d > 0, \ 0 \le b < d \right\}.$$

Lemma 1.5.7. The map

$$\begin{array}{ccc}
S^n & \longrightarrow & \{sublattices \ of \ L_{z,1} \ of \ index \ n\} \\
\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} & \longmapsto & L_{az+b,d}
\end{array}$$

is a bijection.

Proof. For surjectivity, let $L \subseteq_n L_{z,1}$. Then $L_{z,1}/L$ is a group of order n. Can consider $1 + L \in L_{z,1}/L$. Let d be the order of 1 + L, that is d is the smallest positive integer such that $d \in L$. Then $d \mid n$, so set a = n/d. Let $L' = \mathbb{Z} + L$ be the lattice generated by 1 and L. Then $L \subseteq_d L'$ and $L \subseteq_n L_{z,1}$, so $L' \subseteq_a L_{z,1}$, so $az \in L'$, so there exists $b \in \mathbb{Z}$ such that $az + b \in L$. Since $d \in L$, without loss of generality can arrange $0 \le b < d$. Now $d \in L$ and $az + b \in L$, so $L_{az+b,d} \subseteq_n L_{z,1}$ and $L \subseteq_n L_{z,1}$, so $L = L_{az+b,d}$. Thus surjective, and for injectivity, can recover a, b, d from $L_{az+b,d} \subseteq L_{z,1}$.

Thus

$$T_n f = n^{k-1} \sum_{\substack{L' \subseteq_n L_{z,1}}} F(L') = n^{k-1} \sum_{\substack{a \ b \ 0 \ d} \in S^n} F(L_{az+b,d})$$
$$= n^{k-1} \sum_{\substack{a \ b \ 0 \ d} \in S^n} d^{-k} F\left(L_{\underline{az+b},1}\right) = n^{k-1} \sum_{\substack{a \ b \ 0 \ d} \in S^n} d^{-k} f\left(\frac{az+b}{d}\right).$$

Theorem 1.5.8. If $f = \sum_{m=0}^{\infty} c_m q^m$ is modular of weight k, then

$$T_n f = \sum_{m=0}^{\infty} \gamma_m q^m, \qquad \gamma_m = \sum_{a|(m,n), a>0} a^{k-1} c_{\frac{mn}{a^2}}.$$

Proof.

$$T_{n}f = n^{k-1} \sum_{\left(\substack{a \ b \\ 0 \ d \right) \in \mathbb{S}^{n}}} d^{-k}f\left(\frac{az+b}{d} \right) = n^{k-1} \sum_{\left(\substack{a \ b \\ 0 \ d \right) \in \mathbb{S}^{n}}} \sum_{m=0}^{\infty} d^{-k}c_{m}e^{2\pi i m \left(\frac{az+b}{d} \right)}$$

$$= n^{k-1} \sum_{ad=n} \sum_{a>0}^{d-1} \sum_{b=0}^{\infty} d^{-k}c_{m}q^{\frac{ma}{d}} e^{\frac{2\pi i mb}{d}} = n^{k-1} \sum_{m=0}^{\infty} \sum_{ad=n} \sum_{a>0}^{d-k} d^{-k}c_{m}q^{\frac{ma}{d}} \sum_{b=0}^{d-1} e^{\frac{2\pi i mb}{d}}.$$

Then

$$\sum_{b=0}^{d-1} e^{\frac{2\pi i m b}{d}} = \begin{cases} d & d \mid m \\ 0 & d \nmid m \end{cases},$$

so

$$T_n f = n^{k-1} \sum_{m=0, \ d|m}^{\infty} \sum_{ad=n, \ a>0} d^{1-k} c_m q^{\frac{ma}{d}} = \sum_{a|n, \ a>0} \sum_{m'=0}^{\infty} a^{k-1} c_{\frac{m'n}{a}} q^{m'a}.$$

Which m' and a give q^m ? Need $a \mid (m, n)$ for a > 0 and m'a = m, so the coefficient is $a^{k-1}c_{mn/a^2}$. The sum of these is

$$\gamma_m = \sum_{a|(m,n), a>0} a^{k-1} c_{\frac{mn}{a^2}}.$$

Corollary 1.5.9. T_n preserves M_k and S_k .

In the case n = p,

$$T_p f = \sum_{m=0}^{\infty} \gamma_m q^m, \qquad \gamma_m = \begin{cases} c_{mp} + p^{k-1} c_{\frac{m}{p}} & p \mid m \\ c_{mp} & p \nmid m \end{cases}.$$

1.5.3 Eigenforms

An observation is that the dimensions of $M_4, M_6, M_8, M_{10}, S_{12}$ are one, so $E_4, E_6, E_8, E_{10}, \Delta$ are eigenvectors for T_n for all n.

Definition 1.5.10. A function $f \in M_k$ is an **eigenform** if there exists $\lambda_n \in \mathbb{C}^{\times}$ such that $T_n f = \lambda_n f$ for all $n \in \mathbb{Z}_{>0}$.

Proposition 1.5.11. Let $f \in M_k$ be an eigenform, with k > 0, so $T_n f = \lambda_n f$ for all n. Then if $f = \sum_m c_m q^m$, we have $c_1 \neq 0$ and $\lambda_n c_1 = c_n$ for all $n \geq 1$. In particular, if $c_1 = 1$, then $c_n = \lambda_n$ for all n. Proof.

$$\sum_{m=0}^{\infty} \lambda_n c_m q^m = \lambda_n f = T_n f = \sum_{m=0}^{\infty} \gamma_m q^m, \qquad \gamma_1 = \sum_{a|(1,n)} a^{k-1} c_n = c_n,$$

so $\lambda_n c_1 = c_n$. Suppose $c_1 = 0$. Then $c_n = 0$ for all $n \ge 1$, so f is constant. Since $k \ne 0$, this does not happen.

Corollary 1.5.12. Recall that $\Delta(z) = \sum_{n} \tau(n) q^{n}$. Then

- $\tau(mn) = \tau(n)\tau(m)$ if (m, n) = 1, and
- $\tau(p^{r+1}) = \tau(p)\tau(p^r) p^{11}\tau(p^{r-1}).$

Proof. $\Delta \in S_{12}$ is one-dimensional, so there exists λ_n such that $T_n\Delta = \lambda_n\Delta$. Proposition 1.5.11 implies that $\lambda_n = \tau(n)$ for all n. Thus

- $\tau(mn) \Delta = \lambda_{mn} \Delta = T_{mn} \Delta = T_m T_n \Delta = \lambda_m \lambda_n \Delta = \tau(m) \tau(n) \Delta$, and
- $\bullet \ \tau\left(p^{r+1}\right)\Delta = \mathbf{T}_{p^{r+1}}\Delta = \mathbf{T}_{p}\mathbf{T}_{p^{r}}\Delta p^{11}\mathbf{T}_{p^{r-1}}\Delta = \left(\tau\left(p\right)\tau\left(p^{r}\right) p^{11}\tau\left(p^{r-1}\right)\right)\Delta.$

In fact, the same argument shows if $f \in M_k$ for k > 0 is an eigenform, with q-coefficient one, a **normalised** eigenform, and $f = \sum_{n=0}^{\infty} c_n q^n$, then

- $c_{nm} = c_n c_m$ if (n, m) = 1, and
- $\bullet \ c_{p^{r+1}} = c_p c_{p^r} p^{k-1} c_{p^{r-1}}.$

Proposition 1.5.13. E_k is an eigenform for all k.

Proof. It suffices to show $T_pE_k = \lambda_pE_k$ for all primes p. Recall that E_k is a constant multiple of G_k . Now

$$(T_p G_k) (L) = \sum_{L' \subseteq_p L} \sum_{w \in L', w \neq 0} \frac{1}{w^k} = \sum_{w \in L, w \neq 0} c_w \frac{1}{w_k}, \qquad c_w = \# \{ L' \subseteq_p L \mid w \in L' \}.$$

Note that $pL \subseteq L' \subseteq L$. If $w \in pL$, then $w \in L'$ for all $L' \subseteq_p L$, and there are p+1 of these. If $w \notin pL$, then $pL \subseteq pL + \mathbb{Z}w \subseteq L$ and $pL \subseteq_{p^2} L$, so $pL \subseteq_p pL + \mathbb{Z}w$ and $pL + \mathbb{Z}w \subseteq_p L$. In this case there exists a unique lattice of index p containing w. Thus

$$(\mathbf{T}_{p}\mathbf{G}_{k})(L) = \sum_{w \in L \setminus pL} \frac{1}{w^{k}} + (p+1) \sum_{w \in pL, \ w \neq 0} \frac{1}{w^{k}} = \sum_{w \in L, \ w \neq 0} \frac{1}{w^{k}} + p \sum_{w \in pL, \ w \neq 0} \frac{1}{w^{k}}$$

$$= \mathbf{G}_{k}(L) + p \sum_{w \in L, \ w \neq 0} \frac{1}{(pw)^{k}} = \mathbf{G}_{k}(L) + p^{1-k} \sum_{w \in L, \ w \neq 0} \frac{1}{w^{k}} = (1 + p^{1-k}) \mathbf{G}_{k}(L) ,$$

so $T_p E_k = (1 + p^{k-1}) E_k$.

Lecture 17 Friday 08/11/19

A question is does M_k have a basis of eigenforms for all k? By linear algebra, there exist nice classes of operators that are guaranteed to admit bases of eigenvectors, such as self-adjoint, or more generally, normal operators.

1.5.4 Hermitian pairings

Let V be a \mathbb{C} -vector space and $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ a **Hermitian pairing**. That is,

- $\langle \lambda v + w, x \rangle = \lambda \langle v, x \rangle + \langle w, x \rangle$,
- $\langle x, y \rangle = \overline{\langle y, x \rangle}$, and
- $\langle x, x \rangle > 0$ for all $x \neq 0$.

Example. The standard pairing

$$\begin{array}{ccc} \mathbb{C}^n \times \mathbb{C}^n & \longrightarrow & \mathbb{C} \\ \langle z, w \rangle & \longmapsto & \sum_{i=1}^n z_i \overline{w_i} \end{array}.$$

Definition 1.5.14. Let $A:V\to V$ be \mathbb{C} -linear, and $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{C}$ Hermitian. Then the **adjoint** $A^*:V\to V$ is the unique linear map $V\to V$ such that

$$\langle Av, w \rangle = \langle v, A^*w \rangle$$
.

We say A is **self-adjoint** if $A^* = A$, and **normal** if A^* commutes with A.

Theorem 1.5.15. If A is normal, then A has a basis of eigenvectors.

Lecture 18 Monday 11/11/19

Lemma 1.5.16. $A^{**} = A$.

Proof. For all $v, w \in V$,

$$\langle v, A^{**}w \rangle = \langle A^*v, w \rangle = \overline{\langle w, A^*v \rangle} = \overline{\langle Aw, v \rangle} = \langle v, Aw \rangle,$$

so $A^{**}w = Aw$ for all $w \in V$.

Definition 1.5.17. If $W \subseteq V$, let

$$W^{\perp} = \{ v \in V \mid \forall w \in W, \langle v, w \rangle = 0 \}.$$

Proposition 1.5.18. im $A^* = (\ker A)^{\perp}$.

Proof. $\langle v, A^*w \rangle = \langle Av, w \rangle = 0$ if $v \in \ker A$. So im $A^* \subseteq (\ker A)^{\perp}$, so $\operatorname{rk} A^* \leq \operatorname{rk} A$. The same argument with A^* in place of A implies that $\operatorname{rk} A = \operatorname{rk} A^{**} \leq \operatorname{rk} A^*$. So $\operatorname{rk} A^* = \operatorname{rk} A$, so $\operatorname{im} A^* = (\ker A)^{\perp}$.

In particular, im $A^* \cap \ker A = \{0\}$ and dim im $A^* + \dim \ker A = \operatorname{rk} A^* + n - \operatorname{rk} A = n$. So

$$V = \operatorname{im} A^* \oplus \ker A.$$

Theorem 1.5.19 (Spectral theorem for normal operators). If A and A^* commute, then A^* is diagonalisable.

Proof. Induction on dim V. Then dim V=1 is clear. Let λ be an eigenvalue of A, and let $A'=A-\lambda\operatorname{id}_V$, so $V=\ker A'\oplus\operatorname{im} A'^*$, where dim $\ker A'>0$. Then A commutes with A', and $A'^*=A^*-\overline{\lambda}\operatorname{id}_V$, so A commutes with A'^* . So $AA'^*v=A'^*Av$, so A preserves the image of A'^* . The restriction of $\langle\cdot,\cdot\rangle$ to im A'^* is still Hermitian on im A'^* and the restriction of A to im A'^* is still normal, since its adjoint is the restriction of A^* to im A'^* . By induction A is diagonalisable on im A'^* and scalar on $\ker A'$, so diagonalisable.

Also the need the following observation.

Proposition 1.5.20. If $A: V \to V$ and $B: V \to V$ commute, and $V_{\lambda} = \ker(A - \lambda \operatorname{id}_{V})$, then $BV_{\lambda} = V_{\lambda}$.

Proof. If
$$v \in V_{\lambda}$$
, then $ABv = BAv = B\lambda v = \lambda Bv$, so $Bv \in V_{\lambda}$.

1.5.5 The Petersson inner product

To apply this to modular forms, we need a bilinear pairing on M_k or S_k . The idea is to show that there exists a pairing $\langle \cdot, \cdot \rangle_k : S_k \times S_k \to \mathbb{C}$ such that $\langle T_n f, g \rangle = \langle f, T_n g \rangle$ for all n, so T_n are self-adjoint, hence diagonalisable.

Definition 1.5.21. Let $f, g \in S_k$. The Petersson inner product of weight k is

$$\langle f,g\rangle_k = \iint_{\mathcal{D}} f\left(z\right) \overline{g\left(z\right)} \frac{y^k}{y^2} \, \mathrm{d}x \, \mathrm{d}y = \frac{i}{2} \iint_{\mathcal{D}} f\left(z\right) \overline{g\left(z\right)} \frac{\mathrm{Im}\,z^k}{\mathrm{Im}\,z^2} \, \mathrm{d}z \, \mathrm{d}\overline{z}.$$

Here z = x + iy and $\overline{z} = x - iy$, so

$$dzd\overline{z} = (dx + idy) \wedge (dx - idy) = -2i(dx \wedge dy).$$

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. Then

$$f(\gamma z)\overline{g(\gamma z)}\operatorname{Im}\gamma z^{k} = f(z)\left(cz+d\right)^{k}\overline{g(z)\left(cz+d\right)^{k}}\frac{\operatorname{Im}z^{k}}{\left|cz+d\right|^{2k}} = f(z)\overline{g(z)}\operatorname{Im}z^{k},$$

and

$$\frac{1}{\operatorname{Im}\gamma z^{2}}\mathrm{d}\left(\gamma z\right)\mathrm{d}\left(\gamma\overline{z}\right)=\frac{1}{\operatorname{Im}\gamma z^{2}|cz+d|}^{4}\mathrm{d}z\mathrm{d}\overline{z}=\frac{1}{\operatorname{Im}z^{2}}\mathrm{d}z\mathrm{d}\overline{z},$$

so for all $U \subseteq \mathbb{H}$,

$$\iint_{\gamma(U)} f\left(z\right) \overline{g\left(z\right)} \frac{\operatorname{Im} z^{k}}{\operatorname{Im} z^{2}} \; \mathrm{d}z \; \mathrm{d}\overline{z} = \iint_{U} f\left(z\right) \overline{g\left(z\right)} \frac{\operatorname{Im} z^{k}}{\operatorname{Im} z^{2}} \; \mathrm{d}z \; \mathrm{d}\overline{z}.$$

Note. This converges for $f, g \in S_k$, since f(a+it) goes like e^{-t} as $t \to \pm \infty$, and the same for g. If $\langle f, f \rangle = 0$, the integrand vanishes identically, since it lives in $\mathbb{R}_{\geq 0}$. So f = 0 on \mathcal{D} , hence everywhere. Then

$$\langle \lambda f, g \rangle_k = \lambda \, \langle f, g \rangle_k \,, \qquad \langle f, \lambda g \rangle_k = \overline{\lambda} \, \langle f, g \rangle_k \,, \qquad \langle f, g \rangle_k = \overline{\langle g, f \rangle}_k.$$

So $\langle \cdot, \cdot \rangle_k$ is Hermitian.

Theorem 1.5.22.

$$\langle \mathbf{T}_n f, g \rangle_k = \langle f, \mathbf{T}_n g \rangle_k, \qquad f, g \in \mathbf{S}_k, \qquad n \in \mathbb{Z}_{>1}.$$

Corollary 1.5.23. Each T_n is diagonalisable on S_k . Since T_n and T_m commute for all n and m, T_m preserves eigenspaces of T_n for all m. By induction, T_m preserves the simultaneous eigenspaces of T_n for all n < m.

Proposition 1.5.24. Let n > |k/12| + 1. Fix $\lambda_2, \ldots, \lambda_n \in \mathbb{C}$. The subspace V of S_k on which

$$T_i = \lambda_i, \qquad i = 2, \dots, n$$

is zero or one-dimensional.

Proof. Let $f \in V$, so $f = c_1q + c_2q^2 + \ldots$ Seen if $T_if = \lambda_i f$, then $c_i = \lambda_i c_1$. Also seen that if the first n Fourier coefficients of f vanishes, then f = 0, by the k/12-formula. So $c_1 \neq 0$ unless f = 0. Now if $f, g \in V \setminus \{0\}$, there exists $\lambda \in \mathbb{C}$ such that f and λg have the same q-coefficient, and thus the same first n Fourier coefficients. But then $f - \lambda g = 0$.

Corollary 1.5.25. S_k admits a basis of eigenforms for all k.

Proof. Let $n \ge \lfloor k/12 \rfloor + 1$. Can diagonalise S_k with respect to the first n Hecke operators. Any simultaneous eigenspace for these is at most one-dimensional, and preserved by all T_n . So each of these is actually an eigenspace for all T_n .

Note. If f and g are eigenforms, and f is not a scalar multiple of g, there exists T_n such that $T_n f = \lambda_n f$ and $T_n g = \mu_n g$ with $\lambda_n \neq \mu_n$. Then

Lecture 19 Friday 15/11/19

$$\langle \mathbf{T}_n f, g \rangle_k = \langle \lambda_n f, g \rangle_k = \lambda_n \langle f, g \rangle_k, \qquad \langle f, \mathbf{T}_n g \rangle_k = \langle f, \mu_n g \rangle_k = \overline{\mu_n} \langle f, g \rangle_k,$$

$$\lambda_n \langle f, f \rangle_k = \langle \mathbf{T}_n f, f \rangle_k = \langle f, \mathbf{T}_n f \rangle_k = \overline{\langle \mathbf{T}_n f, f \rangle}_k = \overline{\lambda_n} \langle f, f \rangle_k.$$

So
$$\lambda_n = \overline{\lambda_n}$$
 and $\mu_n = \overline{\mu_n}$. Then $(\lambda_n - \mu_n) \langle f, g \rangle_k = 0$, so $\langle f, g \rangle_k = 0$.

By the formula for T_n on q-expansions, T_n takes a q-expansion with integer coefficients to another such. Saw that the space of modular forms with integral q-expansions is spanned by

$$E_4^n E_6^m, \dots, E_4^{n-3\lfloor n/3 \rfloor} E_6^m \Delta^{\lfloor n/3 \rfloor}, \qquad k = 4n + 6m, \qquad n, m > 0,$$

where m = 0, 1 is minimal, so the matrix of T_n with respect to this basis has integer entries. Thus the characteristic polynomial of T_n on S_k has integer coefficients, so the eigenvalues of T_n are algebraic integers.

Example. Can ask when modular forms are congruent modulo p. In fact $E_{12} \equiv \Delta \mod 691$.

Ribet 1970s proved that when an Eisenstein series of suitable weight is congruent modulo p to a cusp form, can use the Galois representation attached to that cusp form to construct elements of ideal class groups of cyclotomic fields.

1.6 L-functions

1.6.1 Dirichlet L-functions

Definition 1.6.1. Let $\{a_n\}_{n\geq 1}$ be a sequence of complex numbers, usually algebraic integers. The **Dirichlet** series attached to a_n is the formal series

$$\sum_{n=1}^{\infty} a_n n^{-s},$$

thought of as a function of $s \in \mathbb{C}$.

In general, if $|a_n| \leq Cn^k$, then the corresponding series converges absolutely for Re s > k+1.

Example.

• The Riemann ζ -function is

$$\zeta\left(s\right) = \sum_{n=1}^{\infty} n^{-s}.$$

• Let $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a **primitive character**, that is does not factor through $(\mathbb{Z}/N\mathbb{Z})^{\times} \to (\mathbb{Z}/m\mathbb{Z})^{\times}$ for $m \mid N$ such that $m \neq N$. Set

$$a_n = \begin{cases} \chi(n) & (n, N) = 1\\ 0 & (n, N) \neq 1 \end{cases}.$$

Then

$$L(s,\chi) = \sum_{n=1}^{\infty} a_n n^{-s}$$

is the **Dirichlet** L-function attached to χ .

In both these examples, and many others,

- these series have meromorphic, and often analytic, continuations to all of \mathbb{C} ,
- there is a functional equation relating values at s and k-s for some k, and
- there is an Euler product.

Example.

$$\zeta\left(s\right) = 2^{s}\pi^{s-1}\sin\frac{\pi s}{2}\Gamma\left(1-s\right)\zeta\left(1-s\right), \qquad \zeta\left(s\right) = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}, \qquad \mathcal{L}\left(s,\chi\right) = \prod_{p \nmid N} \frac{1}{1-\chi\left(p\right)p^{-s}}.$$

1.6.2 Hecke L-functions

Definition 1.6.2. Let $f = \sum_{n=0}^{\infty} a_n q^n \in M_k$. Define the **Hecke** L-function of weight k

$$L(s,f) = \sum_{n=1}^{\infty} a_n n^{-s}.$$

Example. Let

$$f = E'_k = b_k \frac{(-1)^{\frac{k}{2}}}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Then

$$L(s,f) = \sum_{n=1}^{\infty} \sigma_{k-1}(n) n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - \sigma_{k-1}(p) p^{-s}} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} \cdot \frac{1}{1 - p^{k-1}p^{-s}} = \zeta(s) \zeta(s - k + 1),$$

since $\sigma_{k-1}(mn) = \sigma_{k-1}(m) \sigma_{k-1}(n)$ for (m,n) = 1 and $\sigma_{k-1}(p^r) = 1 + \dots + p^{r(k-1)}$.

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a cusp form. Recall that Hecke implies that $|a_n| \leq C n^{k/2}$, so gives absolute convergence of L (s, f) for Re s > k/2 + 1.

Lecture 20 Friday 15/11/19

Theorem 1.6.3.

- 1. L(s, f) extends to a holomorphic function on all of \mathbb{C} .
- 2. Set

$$R(s, f) = \frac{\Gamma(s)}{(2\pi)^{s}} L(s, f).$$

Then

$$R(s, f) = (-1)^{\frac{k}{2}} R(k - s, f).$$

3. If f is a normalised eigenform, then

$$L(s, f) = \prod_{p \ prime} \frac{1}{1 - a_p p^{-s} + p^{k-1} p^{-2s}}.$$

Definition 1.6.4. The infinite product $\prod_{n=1}^{\infty} (1+c_n)$ converges if

$$\lim_{N \to \infty} \prod_{n=1}^{N} (1 + c_n)$$

converges to a non-zero number, if and only if $\sum_{n=1}^{\infty} \log(1+c_n)$ converges. Then $\prod_{n=1}^{\infty} (1+c_n)$ converges absolutely if

$$\prod_{n=1}^{\infty} \left(1 + |c_n| \right)$$

converges.

Lemma 1.6.5. $\prod_{n=1}^{\infty} (1+c_n)$ converges absolutely if and only if $\sum_{n=1}^{\infty} |c_n|$ converges.

Proof.

$$\sum_{n=1}^{N} |c_n| \le \prod_{n=1}^{N} (1 + |c_n|) \le \prod_{n=1}^{N} e^{|c_n|} \le e^{\sum_{n=1}^{\infty} |c_n|}.$$

Proof of Theorem 1.6.3. Recall that

$$\Gamma\left(s\right) = \int_{0}^{\infty} t^{s-1} e^{-t} \, \mathrm{d}t$$

is meromorphic on \mathbb{H} , with poles at $\mathbb{Z}_{\leq 0}$ and never zero, and satisfies $\Gamma(s+1) = s\Gamma(s)$ so $\Gamma(n) = (n-1)!$. Substituting $t \mapsto 2\pi nt$ in $\Gamma(s)$,

$$\Gamma(s) = \int_0^\infty (2\pi nt)^{s-1} e^{-2\pi nt} (2\pi n) dt = (2\pi n)^s \int_0^\infty t^{s-1} e^{-2\pi nt} dt,$$

so

$$L(s, f) = \sum_{n=1}^{\infty} a_n n^{-s} = \sum_{n=1}^{\infty} a_n \frac{(2\pi)^s}{\Gamma(s)} \int_0^{\infty} t^{s-1} e^{-2\pi nt} dt.$$

Then

$$\begin{split} \mathbf{R}\left(s,f\right) &= \frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}} \mathbf{L}\left(s,f\right) = \sum_{n=1}^{\infty} a_{n} \int_{0}^{\infty} t^{s-1} e^{-2\pi nt} \ \mathrm{d}t = \int_{0}^{\infty} t^{s-1} \sum_{n=1}^{\infty} a_{n} e^{-2\pi nt} \ \mathrm{d}t = \int_{0}^{\infty} t^{s-1} f\left(it\right) \ \mathrm{d}t \\ &= \int_{0}^{1} t^{s-1} f\left(it\right) \ \mathrm{d}t + \int_{1}^{\infty} t^{s-1} f\left(it\right) \ \mathrm{d}t = \int_{1}^{\infty} \left(\frac{1}{t}\right)^{s-1} f\left(\frac{i}{t}\right) \ \mathrm{d}\left(\frac{1}{t}\right) + \int_{1}^{\infty} t^{s-1} f\left(it\right) \ \mathrm{d}t \\ &= \int_{1}^{\infty} \left(t^{-s-1} \left(it\right)^{k} f\left(it\right) + t^{s-1} f\left(it\right)\right) \ \mathrm{d}t = \int_{1}^{\infty} f\left(it\right) \left((-1)^{\frac{k}{2}} t^{k-s-1} + t^{s-1}\right) \ \mathrm{d}t. \end{split}$$

1. R(s, f) converges independently of s uniformly for s in a compact subset of \mathbb{C} , so it is holomorphic in s, and extends to a holomorphic function on \mathbb{C} . Then

$$L(s, f) = \frac{(2\pi)^{s}}{\Gamma(s)} R(s, f),$$

so L(s, f) is holomorphic since $\Gamma(s)$ is non-vanishing.

2. R(s, f) is symmetric up to a sign under $s \mapsto k - s$, so

$$R(s, f) = (-1)^{\frac{k}{2}} R(k - s, f).$$

3. Now assume f is a normalised eigenform, so $f = \sum_{n=1}^{\infty} a_n q^n$ with $a_1 = 1$ and $T_n f = a_n f$. Then $a_{nm} = a_n a_m$ if (n, m) = 1, so

$$L(s,f) = \sum_{n} a_n n^{-s} = \prod_{p \text{ prime } k=0} \sum_{k=0}^{\infty} a_{p^k} p^{-ks},$$

a power series in p^{-s} . Fix p, and consider

$$(1 - a_p p^{-s} + p^{k-1} p^{-2s}) \sum_{k=0}^{\infty} a_{p^k} p^{-ks}.$$

The p^0 coefficient is $a_1 = 1$, the p^{-s} coefficient is $a_p p^{-s} - a_p p^{-s} = 0$, and the $p^{-(r+1)s}$ coefficient is

$$a_{p^{r+1}}p^{-(r+1)s} - a_pa_{p^r}p^{-(r+1)s} + p^{k-1}a_{p^{r-1}}p^{-(r+1)s} = \left(a_{p^{r+1}} - a_pa_{p^r} + p^{k-1}a_{p^{r-1}}\right)p^{-(r+1)s} = 0,$$

since $a_{p^{r+1}} = a_p a_{p^r} - p^{k-1} a_{p^{r-1}}$. So

$$L(s,f) = \prod_{p \text{ prime}} \sum_{k=0}^{\infty} a_{p^k} p^{-ks} = \prod_{p \text{ prime}} \frac{1}{1 - a_p p^{-s} + p^{k-1} p^{-2s}}.$$

Lecture 21 is a problems class.

Lecture 21 Monday 18/11/19

Lecture 22

Friday 22/11/19

2 Modular forms of higher level

2.1 Modular forms

2.1.1 Congruence subgroups

 $\mathrm{GL}_{2}\left(\mathbb{Q}\right)_{+}$ acts on \mathbb{H} by fractional linear transformations.

Definition 2.1.1. $\Gamma(N) \subseteq \operatorname{SL}_2(\mathbb{Z})$ is the kernel of $\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ for $N \in \mathbb{Z}_{>0}$. Alternatively,

$$\Gamma\left(N\right) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2\left(\mathbb{Z}\right) \;\middle|\; a \equiv d \equiv 1 \mod N, \; b \equiv c \equiv 0 \mod N \right\}.$$

Note. $\Gamma(N) \subseteq \mathrm{SL}_2(\mathbb{Z})$ has finite index.

Definition 2.1.2. $\Gamma \subseteq GL_2(\mathbb{Q})_+$ is a **congruence subgroup** if Γ contains $\Gamma(N)$ with finite index for some $N \in \mathbb{Z}_{>0}$.

Example. $\mathrm{SL}_{2}\left(\mathbb{Z}\right)$ and $\Gamma\left(N\right)$ are congruence subgroups. Let

$$\Gamma_{0}\left(N\right) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_{2}\left(\mathbb{Z}\right) \mid c \equiv 0 \mod N \right\},$$

and

$$\Gamma_{1}\left(N\right)=\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_{2}\left(\mathbb{Z}\right) \;\middle|\; a\equiv d\equiv 1 \mod N,\; c\equiv 0 \mod N \right\},$$

so $\Gamma_1(N)$ is the preimage of $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \subseteq \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ in $\operatorname{SL}_2(\mathbb{Z})$. Then $\Gamma_0(N)$ and $\Gamma_1(N)$ are congruence subgroups such that

$$\Gamma(N) \subseteq \Gamma_1(N) \subseteq \Gamma_0(N) \subseteq \mathrm{SL}_2(\mathbb{Z})$$
.

Proposition 2.1.3. Let $\alpha \in GL_2(\mathbb{Q})_+$, and let Γ be a congruence subgroup. Then $\alpha\Gamma\alpha^{-1}$ is also a congruence subgroup.

Proof. Need that there exists M with $\Gamma(M) \subseteq \alpha \Gamma \alpha^{-1}$ with finite index. There exists N such that $\Gamma(N) \subseteq \Gamma$. Note that $\Gamma(N) = \operatorname{SL}_2(\mathbb{Q}) \cap (\operatorname{id}_2 + N \operatorname{Mat}_2 \mathbb{Z})$. Consider

$$\alpha\Gamma(N) \alpha^{-1} = \operatorname{SL}_2(\mathbb{Q}) \cap (\operatorname{id}_2 + N\alpha \operatorname{Mat}_2 \mathbb{Z}\alpha^{-1}).$$

Choose $n \in \mathbb{Z}$ such that $n\alpha$ and $n\alpha^{-1}$ have entries in \mathbb{Z} . Then $n^2\alpha^{-1}\operatorname{Mat}_2\mathbb{Z}\alpha \subseteq \operatorname{Mat}_2\mathbb{Z}$, so $n^2\operatorname{Mat}_2\mathbb{Z} \subseteq \alpha\operatorname{Mat}_2\mathbb{Z}\alpha^{-1}$, so $Nn^2\operatorname{Mat}_2\mathbb{Z} \subseteq N\alpha\operatorname{Mat}_2\mathbb{Z}\alpha^{-1}$, so

$$\Gamma\left(n^{2}N\right) = \operatorname{SL}_{2}\left(\mathbb{Q}\right) \cap \left(\operatorname{id}_{2} + Nn^{2}\operatorname{Mat}_{2}\mathbb{Z}\right) \subseteq \operatorname{SL}_{2}\left(\mathbb{Q}\right) \cap \left(\operatorname{id}_{2} + N\alpha\operatorname{Mat}_{2}\mathbb{Z}\alpha^{-1}\right) = \alpha\Gamma\left(N\right)\alpha^{-1}.$$

Similarly, show

$$\alpha\Gamma\left(n^{4}N\right)\alpha^{-1}\subseteq\Gamma\left(n^{2}N\right)\subseteq\alpha\Gamma\left(N\right)\alpha^{-1}.$$

Since $\Gamma(n^4N)$ has finite index in $\Gamma(N)$, $\Gamma(n^2N)$ has finite index in $\alpha\Gamma(N)$ α^{-1} .

Note. Also, if T = lcm(M, N) then $\Gamma(T) \subseteq \Gamma(M) \cap \Gamma(N)$, so the intersection of two congruence subgroups is a congruence subgroup.

Example. Let $\alpha = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$. Then

$$\alpha^{-1}\operatorname{SL}_{2}\left(\mathbb{Z}\right)\alpha=\left\{ \begin{pmatrix} a & p^{-1}b\\ pc & d \end{pmatrix} \middle| \begin{pmatrix} a & b\\ c & d \end{pmatrix} \in \operatorname{SL}_{2}\left(\mathbb{Z}\right) \right\},$$

and

$$\alpha^{-1}\operatorname{SL}_{2}\left(\mathbb{Z}\right)\alpha\cap\operatorname{SL}_{2}\left(\mathbb{Z}\right)=\left\{\begin{pmatrix}a&b\\pc&d\end{pmatrix}\;\middle|\;ad-bpc=1\right\}=\Gamma_{0}\left(p\right).$$

2.1.2 Modular forms

Recall that for $f: \mathbb{H} \to \mathbb{C}$ and $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Q})_+$, we defined $f|_{k,\alpha}$ by

$$f|_{k,\alpha}(z) = \det \alpha^{k-1} f(\alpha z) (cz+d)^{-k}$$
.

Suppose we have a $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Q})$ and $f : \mathbb{H} \to \mathbb{C}$ such that $f|_{k,\gamma} = f$ for all $\gamma \in \Gamma$. Then if $g = f|_{k,\alpha}$, then $g|_{k,\alpha^{-1}\gamma\alpha} = g$, since

$$\left. \left(f|_{k,\alpha} \right) \right|_{k,\alpha^{-1}\gamma\alpha} = \left. f|_{k,\gamma\alpha} = \left. \left(f|_{k,\gamma} \right) \right|_{k,\alpha} = \left. f|_{k,\alpha} \right. .$$

Fix $\Gamma \subseteq SL_2(\mathbb{Q})$ a congruence subgroup.

Definition 2.1.4. A function $f : \mathbb{H} \to \mathbb{C}$ is a weakly holomorphic or meromorphic modular form of weight k and level Γ if

- $f|_{k,\gamma} = f$ for all $\gamma \in \Gamma$, and
- f is holomorphic or meromorphic on \mathbb{H} .

A question is what condition should we impose at ∞ to get a good theory?

Example. Let $k \geq 4$ and $N \in \mathbb{Z}$, and let

$$\mathrm{E}_{k}^{0,1}\left(z\right) = \sum_{(m,n) \in S^{0,1}} \frac{1}{\left(mz + n\right)^{k}}, \qquad S^{0,1} = \left\{ (m,n) \in \mathbb{Z}^{2} \setminus \left\{0\right\} \;\middle|\; m \equiv 1 \mod N, \; n \equiv 0 \mod N \right\}.$$

Claim that $\mathbf{E}_{k}^{0,1}\left(\gamma z\right)=\mathbf{E}_{k}^{0,1}\left(z\right)$ for $\gamma\in\Gamma\left(N\right)$. Let $\gamma=\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\in\Gamma\left(N\right)$. Then

$$E_k^{0,1}(\gamma z) = \sum_{(m,n)\in S^{0,1}} \frac{1}{\left(m\left(\frac{az+b}{cz+d}\right) + n\right)^k} = (cz+d)^k \sum_{(m,n)\in S^{0,1}} \frac{1}{\left(m\left(az+b\right) + n\left(cz+d\right)\right)^k}$$
$$= (cz+d)^k \sum_{(m,n)\in S^{0,1}} \frac{1}{\left((ma+nc)z + (mb+nd)\right)^k}.$$

Since $m \equiv a \equiv d \equiv 1 \mod N$ and $n \equiv b \equiv c \equiv 0 \mod N$, $ma + nc \equiv 1 \mod N$ and $mb + nd \equiv 0 \mod N$, so $(ma + nc, mb + nd) \in S^{0,1}$. Moreover, the map

$$\begin{array}{ccc} S^{0,1} & \longleftrightarrow & S^{0,1} \\ (m,n) & \longmapsto & (ma+nc,mb+nd) \\ (m'a'+n'c',m'b'+n'd') & \longleftrightarrow & (m',n') \end{array}$$

is a bijection, where $\gamma^{-1} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. So $\mathbf{E}_k^{0,1}(\gamma z) = \mathbf{E}_k^{0,1}(z) \left(cz + d\right)^k$.

Every congruence subgroup is conjugate to a subgroup of $\operatorname{SL}_2(\mathbb{Z})$, and $(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}) \in \operatorname{SL}_2(\mathbb{Z})$ need not be in Γ . On the other hand, if $\Gamma \subseteq \operatorname{SL}_2(\mathbb{Z})$, then Γ has finite index in $\operatorname{SL}_2(\mathbb{Z})$, so there exists a minimal $\operatorname{n}_{\Gamma} > 0$ such that $(\begin{smallmatrix} 1 & \operatorname{n}_{\Gamma} \\ 0 & 1 \end{smallmatrix}) \in \Gamma$. Then if f is weakly modular of weight k and level Γ , know $f(z + \operatorname{n}_{\Gamma}) = f(z)$ for all z, so f is a function of $q^{1/\operatorname{n}_{\Gamma}}$. Let $g(q^{1/\operatorname{n}_{\Gamma}})$ be a function on $\mathbb{D} \setminus \{0\}$ such that $f(z) = g(e^{2\pi i z/\operatorname{n}_{\Gamma}})$. Then if g is meromorphic on \mathbb{D} , can express g as a Laurent series in $q^{1/\operatorname{n}_{\Gamma}}$. We say f is **meromorphic at** ∞ , and the series for q is its q-expansion.

Example.

- For $\Gamma = \Gamma_0(N)$ or $\Gamma = \Gamma_1(N)$, $n_{\Gamma} = 1$.
- For $\Gamma = \Gamma(N)$, $n_{\Gamma} = N$.

2.1.3 A fundamental domain

A question is for $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$, can we write down a fundamental domain for Γ ? For all $z \in \mathbb{H}$, there exists $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma z \in \mathcal{D}$. For $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$, write

$$\mathrm{SL}_{2}\left(\mathbb{Z}\right) = \bigsqcup_{\gamma_{i} \in \mathrm{SL}_{2}(\mathbb{Z})} \pm \gamma_{i} \cdot \Gamma.$$

Lecture 23 Friday 22/11/19 Set

$$\mathcal{D}_{\Gamma} = \bigcup_{i} \gamma_{i}^{-1} \cdot \mathcal{D}.$$

Theorem 2.1.5.

- 1. For all $z \in \mathbb{H}$, there exists $\gamma \in \Gamma$ such that $\gamma z \in \mathcal{D}_{\Gamma}$.
- 2. The subset $\{z \in \mathcal{D}_{\Gamma} \mid \Gamma \cdot z \cap \mathcal{D}_{\Gamma} \neq \{z\}\}$ is contained in $\bigcup_{\gamma_i \in \operatorname{SL}_2(\mathbb{Z})} \gamma_i \cdot \partial \mathcal{D}$, the boundary of \mathcal{D} , so has measure zero.

That is, \mathcal{D}_{Γ} is a fundamental domain for Γ .

Proof.

- 1. Fix $z \in \mathbb{H}$. There exists $\gamma \in \operatorname{SL}_2(\mathbb{Z})$ such that $\gamma z \in \mathcal{D}$. Can write γ as $\pm \gamma_i \gamma'$ for some i and $\gamma' \in \Gamma$. Then $\pm \gamma_i \gamma' z \in \mathcal{D}$, so $\gamma_i \gamma' z \in \mathcal{D}$, so $\gamma' z \in \gamma_i^{-1} \mathcal{D} \subseteq \mathcal{D}_{\Gamma}$.
- 2. Let $z \in \bigcup_i \gamma_i^{-1} \cdot \mathring{\mathcal{D}}$. Want $\Gamma \cdot z \cap \mathcal{D}_{\Gamma} = \{z\}$. Suppose $\gamma z \in \mathcal{D}_{\Gamma}$ for $\gamma \in \Gamma$. There exist i and j such that $z \in \gamma_i^{-1} \cdot \mathring{\mathcal{D}}$ and $\gamma z \in \gamma_j^{-1} \cdot \mathring{\mathcal{D}}$, so $\gamma_i z, \gamma_j \gamma z \in \mathring{\mathcal{D}}$. So $\gamma_i z = \gamma_j \gamma z$ so $\gamma^{-1} \gamma_j^{-1} \gamma_i z = z$. Then $\operatorname{Stab}_z = \pm \operatorname{id}_2$, so $\gamma_i = \pm \gamma_j \gamma$. Since $\operatorname{SL}_2(\mathbb{Z}) = \bigsqcup_i \pm \gamma_i \cdot \Gamma$, this is only possible if i = j. Then $\gamma_i = \pm \gamma_i \gamma$, so $\gamma = \pm \operatorname{id}_2$. So $z = \gamma z$.

Example. $\Gamma = \Gamma_0(2)$ has index three in $SL_2(\mathbb{Z})$. The coset representatives are

$$\mathrm{id}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} : z \mapsto z, \qquad \mathrm{S} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : z \mapsto -\frac{1}{z}, \qquad \mathrm{ST} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} : z \mapsto -\frac{1}{z+1},$$

so

A question is for a given Γ and \mathcal{D}_{Γ} , what are the ways to escape to ∞ in \mathcal{D}_{Γ} ? Let $\Gamma \subseteq SL_2(\mathbb{Z})$ be a congruence subgroup. Then

$$\mathrm{SL}_{2}\left(\mathbb{Z}\right)\cdot\infty=\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}\cdot\infty\right\}=\left\{ \frac{a}{c} \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix}\in\mathrm{SL}_{2}\left(\mathbb{Z}\right)\right\}=\mathbb{Q}\cup\left\{ \infty\right\}.$$

Definition 2.1.6. The set of cusps for Γ is the set of Γ -orbits on $\mathbb{Q} \cup \{\infty\}$.

Note. If $\operatorname{SL}_2(\mathbb{Z}) = \bigsqcup_i \pm \gamma_i \cdot \Gamma$, then $\{\gamma_i^{-1} \cdot \infty\}$ is a set of representatives for the Γ -orbits on $\mathbb{Q} \cup \{\infty\}$.

Example. Let $\Gamma = \Gamma_0(p)$ for p prime. Then

$$\Gamma \cdot \infty = \left\{ \frac{a}{pc} \;\middle|\; (a,pc) = 1 \right\} \cup \left\{ \infty \right\}, \qquad \Gamma \cdot 0 = \left\{ \frac{b}{d} \;\middle|\; d \nmid p \right\}.$$

Definition 2.1.7. A weakly modular form f of weight k and level Γ is **holomorphic or meromorphic** at all cusps if for all $\gamma \in \Gamma$, $f|_{k,\gamma}$ is holomorphic or meromorphic at ∞ .

Note. Since $f|_{k,\gamma} = f$ for $\gamma \in \Gamma$, it suffices to check on a set of coset representatives for Γ in $\mathrm{SL}_2(\mathbb{Z})$.

Definition 2.1.8. A modular form of weight k and level Γ is a weakly modular form of weight k and level Γ that is holomorphic on \mathbb{H} and at all cusps.

2.2 Spaces of modular forms

2.2.1 The space of holomorphic modular forms

Let

Lecture 24 Monday 25/11/19

$$M_k(\Gamma) = \{\text{holomorphic modular forms of weight } k \text{ and level } \Gamma\},\$$

$$S_k(\Gamma) = \{f \in M_k(\Gamma) \mid f \text{ vanishes at all cusps}\}.$$

Note. For any $\gamma \in GL_2(\mathbb{Q})_+$, if $f \in M_k(\Gamma)$, then $f|_{k,\gamma} \in M_k(\gamma^{-1}\Gamma\gamma)$. If we consider the \mathbb{C} -vector space $\widetilde{M}_k = \bigcup_{\Gamma} M_k(\Gamma)$, then γ acts on \widetilde{M}_k by $\gamma \cdot f = f|_{k,\gamma}$. In fact, $GL_2(\mathbb{Q})_+ \subseteq GL_2(\mathbb{A}_{\mathbb{Q}}^{fin})$ and the action extends to this larger group. If we enlarge \widetilde{M}_k in a suitable way, the correct group that acts is $GL_2(\mathbb{A}_{\mathbb{Q}})$.

A question is what can we say about $\dim_{\mathbb{C}} M_k(\Gamma)$? Assume $\Gamma \subseteq SL_2(\mathbb{Z})$, and fix $f \in M_k(\Gamma)$. Write

$$\mathrm{SL}_{2}\left(\mathbb{Z}\right) = \bigsqcup_{j=1}^{d} \Gamma \cdot \alpha_{j}, \qquad g = \prod_{j=1}^{d} f|_{k,\alpha_{j}}, \qquad d = \left[\mathrm{SL}_{2}\left(\mathbb{Z}\right) : \Gamma\right].$$

Proposition 2.2.1.

1. g is independent of the choice of α_i .

2. $g \in M_{kd}$.

Proof.

- 1. Suppose I replace α'_j such that $\Gamma \cdot \alpha_j = \Gamma \cdot \alpha'_j$. Then there exists $\gamma \in \Gamma$ such that $\gamma \alpha_j = \alpha'_j$, so $f|_{k,\alpha'_j} = \left(f|_{k,\gamma}\right)\Big|_{k,\alpha_j} = f|_{k,\alpha_j}$. So the product defining g does not change.
- 2. For $\alpha \in \mathrm{SL}_2(\mathbb{Z})$, $g|_{kd,\alpha} = \prod_{j=1}^d \left(f|_{k,\alpha_j} \right) \Big|_{k,\alpha} = \prod_{j=1}^d f|_{k,\alpha_j\alpha}$. Since $\mathrm{SL}_2(\mathbb{Z}) = \bigsqcup_{j=1}^d \Gamma \cdot \alpha_j$, $\mathrm{SL}_2(\mathbb{Z}) = \mathrm{SL}_2(\mathbb{Z}) \cdot \alpha = \bigsqcup_{j=1}^d \Gamma \cdot \alpha_j\alpha$. So the elements $\alpha_i\alpha$ are another set of coset representatives for Γ in $\mathrm{SL}_2(\mathbb{Z})$. Since g was independent of the choice of representatives, $g|_{kd,\alpha} = g$.

Have

$$\sum_{p \in \operatorname{SL}_2(\mathbb{Z}) \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\})} \frac{1}{e_p} \operatorname{ord}_p g = \frac{kd}{12}, \qquad e_p = \begin{cases} \frac{1}{2} \# \operatorname{Stab}_p \in \{1, 2, 3\} & p \in \mathbb{H} \\ 1 & p \in \mathbb{Q} \cup \{\infty\} \end{cases},$$

so

$$\frac{kd}{12} = \sum_{p \in \operatorname{SL}_2(\mathbb{Z}) \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\})} \frac{1}{e_p} \sum_{j=1}^d \operatorname{ord}_p f|_{k,\alpha_j} = \sum_{p \in \operatorname{SL}_2(\mathbb{Z}) \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\})} \frac{1}{e_p} \sum_{j=1}^d \operatorname{ord}_{\alpha_j p} f.$$

As p runs over a set of representatives for $\mathrm{SL}_2\left(\mathbb{Z}\right)$ -orbits, and α_j runs over the coset representatives for Γ in $\mathrm{SL}_2\left(\mathbb{Z}\right)$, $q=\alpha_j p$ runs over the representatives for Γ -orbits, so

$$\sum_{q \in \Gamma \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\})} \frac{n_q}{e_q} \operatorname{ord}_q f = \frac{kd}{12}, \qquad n_q = \# \left\{ j \mid \alpha_j q \in \Gamma \cdot q \right\} \geq 1.$$

Corollary 2.2.2. If $\operatorname{ord}_{\infty} f \geq kd/12n_{\infty} + 1$ for $f \in M_k(\Gamma)$, then f = 0.

Then

$$n_{\infty} = \# \{j \mid \alpha_{j} \infty \in \Gamma \cdot \infty\} = \# \{j \mid \exists \gamma \in \Gamma, \ \alpha_{j} \infty = \gamma \infty\} = \# \{j \mid \exists \gamma \in \Gamma, \ \alpha_{j}^{-1} \gamma \in \operatorname{Stab}_{\infty} \}$$
$$= \# \{j \mid \alpha_{j}^{-1} \cdot \Gamma \subseteq \operatorname{Stab}_{\infty} \cdot \Gamma\} = \# (\operatorname{Stab}_{\infty} \cdot \Gamma/\Gamma) = \# (\operatorname{Stab}_{\infty} / (\operatorname{Stab}_{\infty} \cap \Gamma)) = n_{\Gamma},$$

since $\operatorname{Stab}_{\infty} = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Z} \}$. Since f is a power series in $q^{1/n_{\Gamma}}$, and f is determined by its terms of order at most $kd/12n_{\Gamma}$, f is determined by the first 1 + kd/12 terms of its q-expansion, so

$$\dim_{\mathbb{C}} M_k(\Gamma) \le 1 + \frac{kd}{12}.$$

2.2.2 The space of meromorphic modular forms

Let $\Gamma \subseteq \operatorname{SL}_2(\mathbb{Z})$ be a congruence subgroup. Let $\operatorname{F}(\Gamma)$ be the field of meromorphic modular forms of weight zero and level Γ , and let $\operatorname{F}_N = \operatorname{F}(\Gamma(N))$, so $\operatorname{F}_1 = \operatorname{F}(\operatorname{SL}_2(\mathbb{Z})) = \mathbb{C}(\mathfrak{j})$. If $M \mid N$, then $\Gamma(N) \subseteq \Gamma(M)$, so $\operatorname{F}_M \subseteq \operatorname{F}_N$. Then $\operatorname{SL}_2(\mathbb{Z})$ normalises $\Gamma(N)$ so if $f \in \operatorname{F}_N$, then $f|_{0,\alpha}$ is modular for $\alpha^{-1}\Gamma(N)\alpha = \Gamma(N)$ if $\alpha \in \operatorname{SL}_2(\mathbb{Z})$.

Lecture 25 Friday 29/11/19

Note. $(fg)|_{0,\alpha} = f|_{0,\alpha} \cdot g|_{0,\alpha}$ and $(f+g)|_{0,\alpha} = f|_{0,\alpha} + g|_{0,\alpha}$.

Then $\alpha \in \mathrm{SL}_2\left(\mathbb{Z}\right)$ gives an automorphism of F_N fixing F_1 . Get an action of $\mathrm{SL}_2\left(\mathbb{Z}\right)/\Gamma\left(N\right)$ on F_N by field automorphisms and F_1 is the fixed field.

Theorem 2.2.3 (Galois theory). Let F be a field and G a finite group acting faithfully on F by automorphisms, that is no $g \in G$ acts on F as id except $g = \mathrm{id}_G$. Then F is a Galois extension of

$$F^G = \{ x \in F \mid \forall g \in G, \ gx = x \},\$$

with Galois group G. In particular $[F:F^G]=\#G$.

Proposition 2.2.4. $\operatorname{SL}_2(\mathbb{Z})/\Gamma(N) \cong \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ acts faithfully on F_N .

Proof. Use dimension formulae for $M_k(\Gamma)$ to show that for $k \gg 0$ even, $\dim M_k(\Gamma(N)) > \dim M_k(\Gamma)$ for $\Gamma \supsetneq \Gamma(N)$, so there exists $f \in M_k(\Gamma(N))$ such that the only elements of $\mathrm{SL}_2(\mathbb{Z})$ fixing f lie in $\Gamma(N)$. Then f/E_k lies in F_N but not in $\mathrm{F}(\Gamma)$ for $\Gamma \supsetneq \Gamma(N)$. So f/E_k is not fixed by non-trivial elements of $\mathrm{SL}_2(\mathbb{Z})/\Gamma(N)$.

Corollary 2.2.5. F_N/F_1 is Galois with Galois group $SL_2(\mathbb{Z}/N\mathbb{Z})$.

Then F_N is a finite and algebraic extension of $\mathbb{C}(j)$, of transcendence degree one over \mathbb{C} . For Γ arbitrary in $\mathrm{SL}_2(\mathbb{Z})$, $\Gamma \supseteq \Gamma(N)$ for some N, so $\mathrm{F}(\Gamma)$ is the fixed field of $\Gamma/\Gamma(N)$ in F_N . Then $\mathrm{F}(\Gamma)/\mathrm{F}_1$ is not Galois in general, but is algebraic of degree $[\mathrm{SL}_2(\mathbb{Z}):\Gamma]$.

Proposition 2.2.6. There exists a unique smooth and projective algebraic curve $X(\Gamma)$ over \mathbb{C} , whose field of rational functions is $F(\Gamma)$.

Proof. Fix Γ , and let f be a primitive element of $F(\Gamma)$, that is f generates $F(\Gamma)$ over F_1 . Consider the polynomial

$$P\left(X\right) = \prod_{\mathrm{SL}_{2}\left(\mathbb{Z}\right) = \bigsqcup_{j} \Gamma \cdot \alpha_{j}} \left(X - f|_{0,\alpha_{j}}\right) = X^{d} + \frac{G_{1}\left(\mathrm{j}\right)}{H_{1}\left(\mathrm{j}\right)} X^{d-1} + \dots + \frac{G_{d}\left(\mathrm{j}\right)}{H_{d}\left(\mathrm{j}\right)} \in \mathrm{F}_{1}\left[X\right], \qquad G_{i}, H_{i} \in \mathbb{C}\left[Y\right].$$

Let

$$Q\left(X,Y\right)=H_{1}\left(Y\right)\ldots H_{d}\left(Y\right)\left(X^{d}+\frac{G_{1}\left(Y\right)}{H_{1}\left(Y\right)}X^{d-1}+\cdots+\frac{G_{d}\left(Y\right)}{H_{d}\left(Y\right)}\right)\in\mathbb{C}\left[X,Y\right].$$

Then $Q(X,j) = H_1(j) \dots H_d(j) \cdot P(X)$. Since P(f) = 0, Q(f,j) = 0. Consider the map

$$\phi : \mathbb{H} \longrightarrow \mathbb{C}^2$$

$$z \longmapsto (f(z), j(z)).$$

The image is contained in the zero locus of Q(X,Y), and factors through $\Gamma\backslash\mathbb{H}$. The following are some issues.

- This map is not necessarily defined everywhere. To fix, replace \mathbb{C}^2 with \mathbb{CP}^2 . Then ϕ extends to $\Gamma \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\}) \to \mathbb{CP}^2$.
- This map is not necessarily injective on $\Gamma \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\})$, but will be generically injective since f is primitive.
- This image might be singular. There are standard ways to fix, such as normalisation. When these are fixed, the map becomes injective.

The upshot is to get a complex algebraic curve $X(\Gamma)$ whose function field is $F(\Gamma)$, whose complex points are in bijection with $\Gamma \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\})$.

 $M_k(\Gamma)$ is the space of sections of certain line bundles on $X(\Gamma)$.

Lecture 26

Friday 29/11/19

2.3 Hecke operators

Let $f \in \mathcal{M}_k(\Gamma)$.

- 1. If $\Gamma' \subseteq \Gamma$, then $f \in M_k(\Gamma')$.
- 2. If $\alpha \in GL_2(\mathbb{Q})_+$, then $f|_{k,\alpha} \in M_k(\alpha^{-1}\Gamma\alpha)$.
- 3. If $\Gamma \subseteq \Gamma'$, can write $\Gamma' = \bigsqcup_{i=1}^{d} \Gamma \cdot \alpha_i$, then $\sum_{i=1}^{d} f|_{k,\alpha_i}$ is independent of choices and lives in $\mathcal{M}_k(\Gamma')$.

The rough idea is given $f \in M_k(\Gamma)$ and $\Gamma' \supseteq \alpha^{-1}\Gamma\alpha$, act on it by α to get a modular form of level $\alpha^{-1}\Gamma\alpha$, using 2, and average to get a modular form of level Γ' , using 3. Recall that if $H, K \leq G$ and $g \in G$, then the **double coset** is

$$HgK = \{hgk \mid h \in H, k \in K\}.$$

That is, the orbit of G under the action of HxK on G such that $(h,k) \cdot g = hgk^{-1}$.

Definition 2.3.1. Let $f \in M_k(\Gamma)$, let $\alpha \in GL_2(\mathbb{Q})_+$, and let Γ' be a congruence subgroup. Then

$$f|_{k,\Gamma\alpha\Gamma'} = \sum_{i=1}^{d} f|_{k,\alpha_i}, \qquad \Gamma\alpha\Gamma' = \bigsqcup_{i=1}^{d} \Gamma\alpha_i.$$

The idea is that the α_i are of the form $\alpha\beta_i$ where β_i are a set of coset representatives for $\alpha^{-1}\Gamma\alpha\cap\Gamma'$ in Γ' , by the coursework, so

$$\sum_{i=1}^d f|_{k,\alpha_i} = \sum_{i=1}^d \left. \left(f|_{k,\alpha} \right) \right|_{k,\beta_i},$$

where

- acting by α gets $f|_{k,\alpha}$ modular of level $\alpha^{-1}\Gamma\alpha$,
- so also modular of level $\alpha^{-1}\Gamma\alpha\cap\Gamma$, and
- averaging gets $f|_{k,\Gamma\alpha\Gamma'}$ modular of level Γ' .

So the double coset $\Gamma \alpha \Gamma'$ gives a map between $M_k(\Gamma)$ and $M_k(\Gamma')$.

2.3.1 Hecke operators

Recall that

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \mod N, \ c \equiv 0 \mod N \right\}.$$

Definition 2.3.2. For a prime $p \nmid N$, define

$$\begin{array}{cccc} \mathbf{T}_p & : & \mathbf{M}_k \left(\Gamma_1 \left(N \right) \right) & \longrightarrow & \mathbf{M}_k \left(\Gamma_1 \left(N \right) \right) \\ & f & \longmapsto & f \big|_{k, \Gamma_1 \left(N \right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) \Gamma_1 \left(N \right)} \end{array}.$$

Recall that for $SL_2(\mathbb{Z})$ we set

$$T_p f = p^{k-1} \sum_{\left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right) \in S^p} d^{-k} f\left(\frac{az+b}{d}\right) = \sum_{\left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right) \in S^p} f|_{k,\left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right)}.$$

To show this agrees with our new definition, we need that

$$\operatorname{SL}_{2}\left(\mathbb{Z}\right)\left(egin{matrix}1&0\\0&p\end{matrix}
ight)\operatorname{SL}_{2}\left(\mathbb{Z}\right)=\bigsqcup_{\left(egin{matrix}a&b\\0&d\end{matrix}
ight)\in\operatorname{S}^{p}}\operatorname{SL}_{2}\left(\mathbb{Z}\right)\left(egin{matrix}a&b\\0&d\end{matrix}
ight).$$

• For the reverse containment, it suffices to show $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in S^p$ lies in $SL_2(\mathbb{Z}) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} SL_2(\mathbb{Z})$, and

$$\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & b \\ 0 & p \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix},$$

where $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$.

• For disjointness, if $\operatorname{SL}_2(\mathbb{Z})\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \operatorname{SL}_2(\mathbb{Z})\begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}$ for $\begin{pmatrix} a & b \\ 0 & d' \end{pmatrix}, \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} \in \operatorname{S}^p$, then $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}^{-1} \in \operatorname{SL}_2(\mathbb{Z})$, so a = a' and d = d'. If a = p, then d = 1 and b = 0, and the same holds for b', so equal. If a = 1, have

$$\begin{pmatrix} 1 & \frac{b-b'}{p} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & p \end{pmatrix} \begin{pmatrix} 1 & b' \\ 0 & p \end{pmatrix}^{-1} \in \operatorname{SL}_2(\mathbb{Z}),$$

so p | b - b'. Since $0 \le b, b' < p, b = b'$.

• It remains to show that $SL_2(\mathbb{Z})\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} SL_2(\mathbb{Z})$ is the union of p+1 left cosets. By the coursework,

$$\begin{split} \#\left\{\mathrm{cosets}\right\} &= \#\operatorname{SL}_{2}\left(\mathbb{Z}\right) / \left(\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}^{-1} \operatorname{SL}_{2}\left(\mathbb{Z}\right) \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \cap \operatorname{SL}_{2}\left(\mathbb{Z}\right) \right) = \#\operatorname{SL}_{2}\left(\mathbb{Z}\right) / \Gamma_{0}\left(p\right) \\ &= \left[\operatorname{SL}_{2}\left(\mathbb{Z}\right) : \Gamma_{0}\left(p\right)\right] = \left[\operatorname{SL}_{2}\left(\mathbb{Z}/p\mathbb{Z}\right) : \text{upper triangular matrices modulo } p\right]. \end{split}$$

For upper triangular matrices $\binom{a}{0} \binom{b}{a^{-1}}$ of determinant one modulo p, there are p(p-1) possibilities. For $\mathrm{SL}_2\left(\mathbb{Z}/p\mathbb{Z}\right)$, there are p^2-1 possibilities for the first row, the second row cannot be a multiple of the first row, so there are p^2-p possibilities, and to get determinant one need to rescale the second row, so there are p possibilities left over, so $\#\mathrm{SL}_2\left(\mathbb{Z}/p\mathbb{Z}\right)=p\left(p^2-1\right)$. Thus the index is $p\left(p^2-1\right)/p\left(p-1\right)=p+1$.

Extending from T_p to T_n for (n, N) = 1, we set

$$\begin{array}{cccc} \mathbf{T}_n & : & \mathbf{M}_k \left(\Gamma_1 \left(N \right) \right) & \longrightarrow & \mathbf{M}_k \left(\Gamma_1 \left(N \right) \right) \\ f & \longmapsto & \sum_{ad=n,\ a|d} f|_{k,\Gamma_1 \left(N \right) \left(\begin{smallmatrix} a & 0 \\ 0 & d \end{smallmatrix} \right) \Gamma_1 \left(N \right)} \end{array}.$$

2.3.2 Diamond operators

Recall that

$$\Gamma_{1}\left(N\right)\subseteq\Gamma_{0}\left(N\right)=\left\{ egin{pmatrix} a & b \\ c & d \end{pmatrix}\in\mathrm{SL}_{2}\left(\mathbb{Z}\right) \;\middle|\; c\equiv0\mod N \right\}.$$

Have a surjection

$$\begin{pmatrix}
\Gamma_0(N) & \longrightarrow & (\mathbb{Z}/N\mathbb{Z})^{\times} \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} & \longmapsto & d
\end{pmatrix},$$

where the kernel is $\Gamma_1(N)$. So $\Gamma_0(N)/\Gamma_1(N) \cong (\mathbb{Z}/N\mathbb{Z})^{\times}$.

Note. If $f \in M_k(\Gamma_1(N))$ and $\alpha \in \Gamma_0(N)$, then $f|_{k,\alpha}$ is modular of level $\alpha^{-1}\Gamma_1(N) \alpha = \Gamma_1(N)$. Moreover $f|_{k,\alpha}$ depends only on the class of $\alpha \in \Gamma_0(N)/\Gamma_1(N)$, that is only on the lower right entry of α .

Definition 2.3.3. For $d \in \mathbb{Z}$ such that (d, N) = 1, we define the **diamond operator**

$$\langle d \rangle$$
 : $M_k (\Gamma_1 (N)) \longrightarrow M_k (\Gamma_1 (N))$
 $f \longmapsto f|_{k,\alpha}$,

where $\alpha \in \Gamma_0(N)$ with lower right entry congruent to d modulo N.

This defines an action of $(\mathbb{Z}/N\mathbb{Z})^{\times} \cong \Gamma_0(N)/\Gamma_1(N)$ on $M_k(\Gamma_1(N))$. Since $\langle d \rangle \langle d' \rangle = \langle dd' \rangle = \langle d' \rangle \langle d \rangle$, and operators of finite order on a \mathbb{C} -vector space are diagonalisable, $M_k(\Gamma_1(N))$ splits as a direct sum of simultaneous eigenspaces for the $\langle d \rangle$. Let V be one such eigenspace. Then for each $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$, there exists $\chi(d) \in \mathbb{C}^{\times}$ such that $\langle d \rangle f = \chi(d) f$ for all $f \in V$. Since $\langle d \rangle \langle d' \rangle = \langle dd' \rangle$, $\chi(d) \chi(d') = \chi(dd')$, so χ is a homomorphism $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$, that is a **character**.

Definition 2.3.4. For any character $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$, let $M_k(\Gamma_1(N), \chi)$ be the subspace of $M_k(\Gamma_1(N))$ consisting of the forms f such that

$$\langle d \rangle f = \chi(d) f, \qquad d \in (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

A warning is that this might be zero.

Example. If k is odd and $\chi(-1) = 1$, this space is zero.

Lecture 27 Monday 02/12/19 We have a direct sum decomposition

$$M_{k}\left(\Gamma_{1}\left(N\right)\right) \cong \bigoplus_{\chi:\left(\mathbb{Z}/N\mathbb{Z}\right)^{\times} \to \mathbb{C}} M_{k}\left(\Gamma_{1}\left(N\right),\chi\right).$$

Proposition 2.3.5. Let (n, N) = 1 and $f \in M_k(\Gamma_1(N), \chi)$ such that $f = \sum_{m=1}^{\infty} c_m q^m$. Then

$$T_n f = \sum_{m=1}^{\infty} \gamma_m f, \qquad \gamma_m = \sum_{d \mid (n,m)} \chi(d) d^{k-1} c_{\frac{nm}{d^2}}.$$

In particular, if $T_n f = \lambda_n f$ for some n with (n, N) = 1, then $c_n = \lambda_n c_1$.

2.3.3 The Petersson inner product

Fix $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$ a congruence subgroup.

Definition 2.3.6. For $f,g \in S_k(\Gamma)$ define the **Petersson inner product of weight** k and level Γ

$$\langle f, g \rangle_{k,\Gamma} = \frac{1}{\left[\operatorname{SL}_{2}\left(\mathbb{Z}\right) : \Gamma\right]} \iint_{\mathcal{D}_{\Gamma}} f\left(z\right) \overline{g\left(z\right)} \frac{y^{k}}{y^{2}} \, \mathrm{d}x \, \mathrm{d}y,$$

where \mathcal{D}_{Γ} is a fundamental domain for Γ .

Note. The scaling factor ensures if $\Gamma' \subseteq \Gamma$ and $f, g \in S_k(\Gamma)$, then $\langle f, g \rangle_{k,\Gamma'} = \langle f, g \rangle_{k,\Gamma}$.

Proposition 2.3.7. Let $f \in S_k(\Gamma)$ and $g \in S_k(\alpha^{-1}\Gamma\alpha)$ for $\alpha \in GL_2(\mathbb{Q})_+$. Then

$$\left\langle f|_{k,\alpha},g\right\rangle_{k,\alpha^{-1}\Gamma\alpha}=\left\langle f,g|_{k,\alpha'}\right\rangle_{k,\Gamma},\qquad \alpha'=\alpha^{-1}\det\alpha.$$

Proof. Let $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\alpha^{-1} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. Set $z' = \alpha z$ and $C = [\operatorname{SL}_2(\mathbb{Z}) : \alpha^{-1}\Gamma\alpha]$. Have (cz + d)(c'z' + d') = 1. Then

$$\begin{split} \left\langle f|_{k,\alpha}\,,g\right\rangle_{k,\alpha^{-1}\Gamma\alpha} &= \frac{1}{C}\iint_{\alpha^{-1}\mathcal{D}_{\Gamma}} f|_{k,\alpha}\left(z\right)\overline{g\left(z\right)}\frac{y^{k}}{y^{2}}\,\mathrm{d}x\,\mathrm{d}y\\ &= \frac{1}{C}\iint_{\mathcal{D}_{\Gamma}} f|_{k,\alpha}\left(\alpha^{-1}z'\right)\overline{g\left(\alpha^{-1}z'\right)}\frac{\det\alpha^{-k}y'^{k}|cz+d|^{2k}}{y'^{2}}\,\mathrm{d}x'\,\mathrm{d}y'\\ &= \frac{1}{C}\iint_{\mathcal{D}_{\Gamma}} \det\alpha^{k-1}f\left(z'\right)\left(cz+d\right)^{-k}\overline{g\left(\alpha^{-1}z'\right)}\det\alpha^{-k}|cz+d|^{2k}\frac{y'^{k}}{y'^{2}}\,\mathrm{d}x'\,\mathrm{d}y'\\ &= \frac{1}{C}\iint_{\mathcal{D}_{\Gamma}} \det\alpha^{-1}f\left(z'\right)\overline{\left(cz+d\right)^{k}}\overline{g\left(\alpha^{-1}z'\right)}\frac{y'^{k}}{y'^{2}}\,\mathrm{d}x'\,\mathrm{d}y'\\ &= \frac{1}{C}\iint_{\mathcal{D}_{\Gamma}} \det\alpha^{-1}f\left(z'\right)\overline{\left(c'z'+d'\right)^{-k}}\left(\det\alpha^{-1}\right)^{1-k}\overline{g|_{k,\alpha^{-1}}\left(z'\right)}\overline{\left(c'z'+d'\right)^{k}}\frac{y'^{k}}{y'^{2}}\,\mathrm{d}x'\,\mathrm{d}y'\\ &= \frac{1}{C}\iint_{\mathcal{D}_{\Gamma}} \det\alpha^{k-2}f\left(z'\right)\overline{g|_{k,\alpha^{-1}}\left(z'\right)}\frac{y'^{k}}{y'^{2}}\,\mathrm{d}x'\,\mathrm{d}y'\\ &= \det\alpha^{k-2}\left\langle f,g|_{k,\alpha^{-1}}\right\rangle_{k,\Gamma}. \end{split}$$

Recall $\alpha' = \alpha^{-1} \det \alpha$. Then

$$\begin{split} g|_{k,\lambda\alpha}\left(z\right) &= \det\lambda\alpha^{k-1}g\left(\lambda\alpha z\right)\left(\lambda cz + \lambda d\right)^{-k} = \lambda^{2k-2}\det\alpha^{k-1}g\left(\alpha z\right)\left(cz + d\right)^{-k}\lambda^{-k} = \lambda^{k-2}\left.g|_{k,\alpha}\left(z\right), \right. \\ &\text{so}\left.\left.g|_{k,\alpha'}\left(z\right) = \det\alpha^{k-2}\left.g|_{k,\alpha^{-1}}\left(z\right).\right. \text{ Thus } \left\langle \left.f\right|_{k,\alpha},g\right\rangle_{k,\alpha^{-1}\Gamma\alpha} = \left\langle f,\left.g\right|_{k,\alpha'}\right\rangle_{k,\Gamma}. \end{split}$$

Recall that

$$\begin{array}{cccc} \mathbf{T}_{p} & : & \mathbf{S}_{k}\left(\Gamma_{1}\left(N\right)\right) & \longrightarrow & \mathbf{S}_{k}\left(\Gamma_{1}\left(N\right)\right) \\ & f & \longmapsto & f|_{k,\Gamma_{1}\left(N\right)\left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix}\right)\Gamma_{1}\left(N\right)} = \sum_{i} f|_{k,\alpha_{i}} \ , & & \Gamma_{1}\left(N\right)\left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix}\right)\Gamma_{1}\left(N\right) = \bigsqcup_{i} \Gamma_{1}\left(N\right)\alpha_{i}. \end{array}$$

Lecture 28 Friday 06/12/19

Suppose we can find α_i such that

$$\Gamma_{1}\left(N\right)\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_{1}\left(N\right)=\bigsqcup_{i}\Gamma_{1}\left(N\right)\alpha_{i},\qquad\Gamma_{1}\left(N\right)\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_{1}\left(N\right)=\bigsqcup_{i}\alpha_{i}\Gamma_{1}\left(N\right).$$

Applying the operation ' to the latter gives

$$\Gamma_1(N) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma_1(N) = \bigsqcup_i \Gamma_1(N) \alpha_i'.$$

If $f, g \in S_k (\Gamma_1 (N))$,

$$\langle \mathbf{T}_{p}f, g \rangle_{k,\Gamma_{1}(N)} = \sum_{i} \left\langle f|_{k,\alpha_{i}}, g \right\rangle_{k,\Gamma}, \qquad \Gamma \subseteq \Gamma_{1}(N) \cap \bigcap_{i} \alpha_{i}^{-1}\Gamma_{1}(N) \alpha_{i} \cap \bigcap_{i} \alpha_{i}'^{-1}\Gamma_{1}(N) \alpha_{i}'$$

$$= \sum_{i} \left\langle f, g|_{k,\alpha_{i}'} \right\rangle_{k,\Gamma} = \left\langle f, g|_{k,\Gamma_{1}(N) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma_{1}(N)} \right\rangle_{k,\Gamma} = \left\langle f, g|_{k,\Gamma_{1}(N) \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma_{1}(N)} \right\rangle_{k,\Gamma_{1}(N)}.$$

For $SL_2(\mathbb{Z})$,

$$\mathrm{SL}_{2}\left(\mathbb{Z}\right)\begin{pmatrix}p&0\\0&1\end{pmatrix}\mathrm{SL}_{2}\left(\mathbb{Z}\right)=\mathrm{SL}_{2}\left(\mathbb{Z}\right)\begin{pmatrix}0&1\\-1&0\end{pmatrix}\begin{pmatrix}p&0\\0&1\end{pmatrix}\begin{pmatrix}0&-1\\1&0\end{pmatrix}\mathrm{SL}_{2}\left(\mathbb{Z}\right)=\mathrm{SL}_{2}\left(\mathbb{Z}\right)\begin{pmatrix}1&0\\0&p\end{pmatrix}\mathrm{SL}_{2}\left(\mathbb{Z}\right),$$

so

$$\langle \mathbf{T}_{p}f, g \rangle_{k, \mathrm{SL}_{2}(\mathbb{Z})} = \langle f, \mathbf{T}_{p}g \rangle_{k, \mathrm{SL}_{2}(\mathbb{Z})}, \qquad f, g \in \mathrm{S}_{k}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\right)\right),$$

which is Theorem 1.5.22. In general,

$$\Gamma_{1}(N)\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_{1}(N)=\mathrm{T}_{p}\langle p\rangle.$$

Will not prove, so see Diamond and Shurman chapter 5. This argument depends on finding α_i such that

$$\Gamma_{1}(N)\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}\Gamma_{1}(N) = \bigsqcup_{i}\Gamma_{1}(N)\alpha_{i} = \bigsqcup_{i}\alpha_{i}\Gamma_{1}(N).$$

Lemma 2.3.8. Such α_i exist.

Proof. This is Diamond and Shurman 5.5.1(c). Write

$$\Gamma_{1}\left(N\right)\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_{1}\left(N\right)=\bigsqcup_{i=1}^{r}\Gamma_{1}\left(N\right)\gamma_{i}=\bigsqcup_{j=1}^{r}\widetilde{\gamma}_{j}\Gamma_{1}\left(N\right).$$

Claim that for all $1 \leq i \leq r$, $\Gamma_1(N) \gamma_i \cap \widetilde{\gamma_i} \Gamma_1(N) \neq \emptyset$. Suppose otherwise. Then $\Gamma_1(N) \gamma_i \subseteq \bigsqcup_{j \neq i} \widetilde{\gamma_j} \Gamma_1(N)$. The right hand side is stable under right multiplication by $\Gamma_1(N)$, so

$$\Gamma_{1}\left(N\right)\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_{1}\left(N\right)=\Gamma_{1}\left(N\right)\gamma_{i}\Gamma_{1}\left(N\right)=\bigcup_{\beta\in\Gamma_{1}\left(N\right)}\Gamma_{1}\left(N\right)\gamma_{i}\beta\subseteq\bigsqcup_{j\neq i}\widetilde{\gamma_{j}}\Gamma_{1}\left(N\right).$$

This is impossible since $\widetilde{\gamma}_i$ is in the left hand side but not the right hand side. For all i, choose α_i such that $\alpha_i \in \Gamma_1(N) \gamma_i \cap \widetilde{\gamma}_i \Gamma_1(N)$, so $\Gamma_1(N) \alpha_i = \Gamma_1(N) \gamma_i$ and $\alpha_i \Gamma_1(N) = \widetilde{\gamma}_i \Gamma_1(N)$. Now,

$$\bigsqcup_{i=1}^{r}\Gamma_{1}\left(N\right)\alpha_{i}=\bigsqcup_{i=1}^{r}\Gamma_{1}\left(N\right)\gamma_{i}=\Gamma_{1}\left(N\right)\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_{1}\left(N\right)=\bigsqcup_{i=1}^{r}\widetilde{\gamma_{i}}\Gamma_{1}\left(N\right)=\bigsqcup_{i=1}^{r}\alpha_{i}\Gamma_{1}\left(N\right).$$

The upshot is

$$\left\langle \mathbf{T}_{p}f,g\right\rangle _{k,\Gamma_{1}\left(N\right)}=\left\langle f,\left\langle p\right\rangle \mathbf{T}_{p}g\right\rangle _{k,\Gamma_{1}\left(N\right)},\qquad p\nmid N,\qquad f,g\in\mathbf{S}_{k}\left(\Gamma_{1}\left(N\right)\right).$$

Check, such as by formulas on q-expansions, that T_p and T_q commute for $p, q \nmid N$ prime, and T_p and $\langle d \rangle$ commute. Thus T_p commutes with its adjoint for all p, so T_p is diagonalisable on $S_k(\Gamma_1(N))$.

2.4 L-functions

2.4.1 Hecke L-functions

Definition 2.4.1. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(\Gamma_1(N))$. Then the **Hecke** L-function of weight k and level $\Gamma_1(N)$ is

$$L(s,f) = \sum_{n=1}^{\infty} a_n n^{-s}.$$

This is absolutely convergent for Re $s \gg 0$, and has a meromorphic continuation and a functional equation. Set

$$R(s, f) = N^{\frac{s}{2}} \frac{\Gamma(s)}{(2\pi)^{s}} L(s, f).$$

Note.

$$\begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}^2 = \begin{pmatrix} -N & 0 \\ 0 & -N \end{pmatrix}, \qquad \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix} \Gamma_1 \left(N \right) \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix} = \Gamma_1 \left(N \right).$$

Set

$$\mathbf{w}_{N} : \mathbf{S}_{k} \left(\Gamma_{1} \left(N \right) \right) \longrightarrow \mathbf{S}_{k} \left(\Gamma_{1} \left(N \right) \right)$$

$$f \longmapsto i^{k} N^{1 - \frac{k}{2}} \left. f \right|_{k, \left(\begin{smallmatrix} 0 & -1 \\ N & 0 \end{smallmatrix} \right)}.$$

The constants are chosen so that $w_N^2 = id$, the **Atkin-Lehner involution**. A warning is that this does not commute with T_p and $\langle p \rangle$. In fact $w_N T_p w_N = \langle p \rangle T_p$ and $w_N \langle p \rangle w_N = \langle p \rangle^{-1}$, and

$$R(s, f) = R(k - s, w_N f)$$
.

If $f \in S_k(\Gamma_1(N), \chi)$ for $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is an eigenform for all T_p for $p \nmid N$ and $c_1 = 1$, then using

$$T_{p}f = \sum_{n=1}^{\infty} c_{np}q^{n} + \chi(p) c_{n}q^{np},$$

if $T_p f = \lambda_p f = \sum_{n=1}^{\infty} \gamma_n q^n$ for $p \nmid N$, then

$$\gamma_n = \begin{cases} c_{np} + \chi(p) p^{k-1} c_{\underline{n}} & p \mid n \\ c_{np} & p \nmid n \end{cases}.$$

The upshot is for $p \nmid m$,

$$c_{p^{k+1}m}=\lambda_{p}c_{p^{k}m}+\chi\left(p\right) p^{k-1}c_{p^{k-1}m},\qquad k\geq1,$$

so

$$L\left(s,f\right) = \prod_{p\nmid N} \frac{1}{1 - \lambda_{p}p^{-s} + \chi\left(p\right)p^{k-1-2s}} \sum_{\substack{m \text{ divisible only by primes } l\mid N}} c_{m}m^{-s}.$$

2.4.2 Oldforms and newforms

Let $p \nmid N$ and $l \mid N$, and let

Lecture 29
Friday

$$(\Gamma_1(N)) \longrightarrow S_k(\Gamma_1(N))$$
 $06/12/19$

$$\begin{array}{ccc} \mathbf{U}_{l} & : & \mathbf{S}_{k}\left(\Gamma_{1}\left(N\right)\right) & \longrightarrow & \mathbf{S}_{k}\left(\Gamma_{1}\left(N\right)\right) \\ & f & \longmapsto & f\big|_{k,\Gamma_{1}\left(N\right)\left(\begin{smallmatrix} 1 & 0 \\ 0 & l \end{smallmatrix}\right)\Gamma_{1}\left(N\right)} \end{array}.$$

On q-expansions, if $f = \sum_{n=1}^{\infty} c_n q^n$, then $U_l f = \sum_{n=1}^{\infty} c_{nl} q^n$. Then U_l commutes with T_p and $\langle d \rangle$, by checking on q-expansions. A problem is that U_l are generally not self-adjoint or even normal. Let $f = \sum_n c_n q^n \in S_k(\Gamma_1(N))$ be an eigenform for T_p and $\langle d \rangle$. Atkin-Lehner defined

Then β , a multiple of $f|_{k,\binom{l}{0}\frac{0}{1}}$, is modular of weight k and level $\binom{l}{0}\frac{0}{1}^{-1}\Gamma(N)\binom{l}{0}\frac{0}{1} \supseteq \Gamma_1(Nl)$. Check that $(T_p\beta_{N,l})(f) = \beta_{N,l}(T_pf)$, and similarly for $\langle d \rangle$ for $d \in (\mathbb{Z}/Nl\mathbb{Z})^{\times}$. Check that $\alpha_{N,l}$ and $\beta_{N,l}$ commute with T_p , $\langle d \rangle$ for $d \in (\mathbb{Z}/Nl\mathbb{Z})^{\times}$, and U_p for $p \mid N$ and $l \neq p$. Then $U_l(\beta_{N,l}(f)) = f$ and $U_l(\alpha_{N,l}(f)) = T_p f + p^k \chi(p) \beta_{N,l}(f)$, so the image of

$$S_k(\Gamma_1(N))^2 \longrightarrow S_k(\Gamma_1(Nl))$$

 $(f,g) \longmapsto \alpha_{N,l}f + \beta_{N,l}g$

is stable under T_p , $\langle d \rangle$, U_p , and U_l .

Definition 2.4.2. Define the **oldforms**

$$S_{k}\left(\Gamma_{1}\left(N\right)\right)^{\text{old}} = \sum_{l \nmid N} \left(\alpha_{\frac{N}{l}, l}\left(S_{k}\left(\Gamma_{1}\left(\frac{N}{l}\right)\right)\right) + \beta_{\frac{N}{l}, l}\left(S_{k}\left(\Gamma_{1}\left(\frac{N}{l}\right)\right)\right)\right),$$

which is stable under T_p , $\langle d \rangle$, and U_l . Define

$$S_k (\Gamma_1 (N))^{\text{new}} = \left(S_k (\Gamma_1 (N))^{\text{old}} \right)^{\perp},$$

the orthogonal complement with respect to $\langle \cdot, \cdot \rangle_{k,\Gamma_1(N)}$, which is stable under T_p and $\langle d \rangle$, and not a priori under U_p for $p \mid N$.

Theorem 2.4.3 (Atkin-Lehner 1979, strong multiplicity one). Let $0 \neq f \in S_k(\Gamma_1(N))^{\text{new}}$ and $g \in S_k(\Gamma_1(N))$. Suppose for all $p \nmid N$, there exist $\lambda_p \in \mathbb{C}$ and $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ such that

$$T_{p}f = \lambda_{p}f, \qquad T_{p}g = \lambda_{p}g, \qquad \langle d \rangle f = \chi(d) f, \qquad \langle d \rangle g = \chi(d) g.$$

Then g is a scalar multiple of f.

Corollary 2.4.4. U_p for $p \mid N$ preserves, and is diagonalisable on, $S_k(\Gamma_1(N))^{\text{new}}$.

Corollary 2.4.5. $S_k(\Gamma_1(N))^{new}$ breaks up as a direct sum of one-dimensional simultaneous eigenspaces for T_v , U_l , and $\langle d \rangle$ for (d, N) = 1.

Let $f = \sum_{n} c_n q^n$, so $U_l f = \sum_{n} c_{nl} q^n$, and $U_l f = \lambda_l f$ implies that $c_{nl} = \lambda_l c_n$.

Corollary 2.4.6. If $f \in S_k(\Gamma_1(N), \chi)$ is an eigenform for T_p and U_l , then $c_1 \neq 0$.

Definition 2.4.7. A **newform** is an element of $S_k(\Gamma_1(N))^{\text{new}}$ with $c_1 = 1$, that is an eigenform for T_p , U_l , and $\langle d \rangle$ for (d, N) = 1.

Let $f \in S_k(\Gamma_1(N), \chi)$ be a newform such that $T_p f = \lambda_p f$ and $U_l f = \lambda_l f$. Then

$$L(s, f) = \prod_{p \nmid N} \frac{1}{1 - \lambda_p p^{-s} + \chi(p) p^{k-1-2s}} \prod_{l \mid N} \frac{1}{1 - \lambda_l l^{-s}}.$$

2.5 Fermat's last theorem

Let E/\mathbb{Q} be an elliptic curve of conductor N, and let

$$a_p = \begin{cases} \#E\left(\mathbb{F}_p\right) - p - 1 & p \nmid N \\ 1 & E \text{ has split multiplicative reduction modulo } p \\ -1 & E \text{ has non-split multiplicative reduction modulo } p \\ 0 & E \text{ has additive reduction modulo } p \end{cases}.$$

Let

$$L(s, E) = \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} \prod_{l \mid N} \frac{1}{1 - a_l l^{-s}}.$$

Theorem 2.5.1 (Eichler-Shimura). Let $f \in S_2(\Gamma_0(N))$ be a newform with integer coefficients. There exists an elliptic curve E_f/\mathbb{Q} of conductor N such that $L(s, f) = L(s, E_f)$.

A question is that is the converse true?

Lecture 30 Monday 09/12/19

Theorem 2.5.2 (Eichler-Shimura, Deligne). Let $f \in S_k$ ($\Gamma_0(N), \chi$) be a newform for $k \geq 2$ such that $T_l f = a_l f$ for all $l \nmid N$, and let p be a prime. There exists a unique homomorphism $\overline{\rho_{f,p}} : \operatorname{Gal}\left(\overline{\mathbb{Q}}/\mathbb{Q}\right) \to \operatorname{GL}_2\left(\overline{\mathbb{F}_p}\right)$ such that for all $l \nmid N$, $\overline{\rho_{f,p}}$ is unramified at l, $\operatorname{Tr}\overline{\rho_{f,p}}$ (Frob_l) $\equiv a_l \mod p$, and $\operatorname{det}\overline{\rho_{f,p}}$ (Frob_l) $\equiv \chi(l) l^{k-1} \mod p$.

Example. If $f \in S_2(\Gamma_0(N))$ has integer coefficients, then $E_f[p](\overline{\mathbb{Q}}) \cong (\mathbb{Z}/p\mathbb{Z})^2$. Then $\rho_{f,p} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ gives an \mathbb{F}_p -linear action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $E_f[p](\overline{\mathbb{Q}})$.

A natural question is given $\overline{\rho}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$, is $\overline{\rho} = \overline{\rho_{f,p}}$ for some newform f? If so, for which (k, N, χ) ?

Theorem 2.5.3 (Serre's conjecture 1987 and Khare-Wintenberger theorem 2005). Let $\overline{\rho}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to$ GL₂ (\mathbb{F}_p) be odd, that is det $\overline{\rho}$ $(i \mapsto -i) = -1$.

- $\overline{\rho} = \overline{\rho_{f,p}}$ for some newform f.
- Can take f of weight $k_{\overline{\rho}}$, level $N_{\overline{\rho}}$, and character $\chi_{\overline{\rho}}$, where
 - $-2 \le k_{\overline{\rho}} \le p$,
 - $-\det \overline{\rho}\left(\operatorname{Frob}_{l}\right) \equiv \chi_{\overline{\rho}}\left(l\right) l^{k_{\overline{\rho}}-1} \mod p, \text{ and this condition determines } k_{\overline{\rho}} \text{ modulo } p-1 \text{ and } \chi_{\overline{\rho}},$
 - $-N_{\overline{\rho}}$ is the so-called **Artin conductor** N($\overline{\rho}$) of $\overline{\rho}$ usually, where

$$v_{l}\left(N\left(\overline{\rho}\right)\right) = \begin{cases} 0 & \overline{\rho} \text{ is unramified at } l \\ 1 & \overline{\rho}^{I_{l}} \text{ has dimension one }, \\ \geq 2 & \text{otherwise} \end{cases}$$

 $- if k_{\overline{\rho}} = 2,$

$$N_{\overline{\rho}} = \begin{cases} \frac{\mathcal{N}\left(\overline{\rho}\right)}{p} & \overline{\rho} \text{ is finite at } p\\ \mathcal{N}\left(\overline{\rho}\right) & \overline{\rho} \text{ is not finite at } p \end{cases}.$$

Example. If $\overline{\rho}$ comes from E/\mathbb{Q} , then $k_{\overline{\rho}} = 2$, $\chi_{\overline{\rho}}$ is trivial, and $N_{\overline{\rho}} \mid N(E)$, where $N(E) = \prod_{l \text{ bad for } E} p^{v_l}$ is the **conductor** of E, and

$$\mathbf{v}_{l}\left(\mathbf{N}\left(E\right)\right) = \begin{cases} 1 & E \text{ has multiplicative reduction} \\ \geq 2 & E \text{ has additive reduction} \end{cases}.$$

Moreover, if $v_l(N(E)) = 1$ and $p \mid \operatorname{ord}_l \Delta_E$, then $v_l(N_{\overline{\rho}}) = 0$.

Definition 2.5.4 (Frey 1985). Suppose $p \ge 5$ and $a^p + b^p = c^p$ for a, b, c coprime. Consider

$$y^2 = x(x - a^p)(x + b^p),$$

so $\Delta = 2^s (abc)^p$.

Then $E_{a,b,c}$ has multiplicative reduction modulo l for all l, so $N(E_{a,b,c}) = \operatorname{rad} 2abc$. Let $\overline{\rho} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ giving action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $E_{a,b,c}[p](\overline{\mathbb{Q}})$. Then $N_{\overline{\rho}} = 2$, $k_{\overline{\rho}} = 2$, and $\chi_{\overline{\rho}}$ is trivial.

Theorem 2.5.5 (Ribet 1986). If $\overline{\rho}$ comes from any newform, it comes from the level, weight, and character predicted by Serre.

Corollary 2.5.6. If $E_{a,b,c}$ is modular, then the corresponding $\overline{\rho}$ comes from a modular form in $S_{2}\left(\Gamma_{0}\left(2\right)\right)$.

The problem is dim $S_k(\Gamma) \leq \frac{1}{12}k\left[SL_2(\mathbb{Z}):\Gamma\right]$, and $\left[SL_2(\mathbb{Z}):\Gamma_0(2)\right] = 3$, so dim $S_2(\Gamma_0(2)) \leq \frac{1}{2}$.

Theorem 2.5.7 (Wiles 1995 and Taylor-Wiles 1996). All elliptic curves over \mathbb{Q} such that N(E) is square-free are modular.

Corollary 2.5.8. Fermat's last theorem holds.