Fault Tolerant Computing and VLSI Testing

Assignment 3

1. The Markov Model for the system with self-diagnostics is:

- 1 is where the system is working successfully.
- FS is where a fault has been detected and the system has been safely deactivated.
- FU is where a fault has not been detected.

The Mean Time To Failure (MTTF) will be the amount of time we expect to stay in the working state. This is the value of t such that $t\alpha\lambda = 1$. This is equal to $t = \frac{1}{\lambda\alpha}$

We detect the failure with probability 0.95, and don't with probability 0.05. This gives us a mean time between failures of:

$$0.95 * 24 + 0.05 * 72 = 26.4$$

Thus, the steady-state availability is:

$$A = \frac{1}{\alpha \lambda (\frac{1}{\alpha \lambda} + 26.4)} = \frac{1}{1 + 26.4\alpha \lambda}$$

The Markov Model for the system without self-diagnostics is:

- 1 is where the system is working successfully.
- FU is where a fault has occured.

The MTTF is $\frac{1}{\lambda}$ and the steady-state availability is:

$$A = \frac{1}{\lambda(\frac{1}{\lambda} + 72)} = \frac{1}{1 + 72\lambda}$$

We can find the value of α for which self-diagnostics begins to degrade the steady-state availability by equating these two equations:

$$\frac{1}{1+26.4\alpha\lambda} = \frac{1}{1+72\lambda} \implies 1+26.4\alpha\lambda = 1+72\lambda \implies 26.4\alpha\lambda = 72\lambda$$

$$\alpha = \frac{72}{26.4} = 2.727$$

- 2. Test patterns are written as ABCD
 - (i) 0000

(ii) 0100

(iii) 0111

$$\begin{array}{ll} 3. & FC = 80\% \implies DL = 1 - 0.9^{1-0.8} = 0.020852 = 20852 PPM \\ & FC = 90\% \implies DL = 1 - 0.9^{1-0.9} = 0.010481 = 10481 PPM \\ & FC = 99\% \implies DL = 1 - 0.9^{1-0.99} = 0.001053 = 1053 PPM \\ & DL = 20PPM = 2*10^{-5} = 1 - 0.7^{1-FC} \\ & 0.6^{1-FC} = 1 - 2*10^{-5} = 0.99998 \\ & 1 - FC = \log_{0.6} 0.99998 = 3.915*10^{-5} \\ & FC = 1 - 3.915*10^{-5} = 0.99996 = 99.996\% \\ \end{array}$$

4.

AB	00	01	10	11	
Z	1	1	1	0	
P_0 stuck open	1	LastZ	1	0	
P_0 stuck short	1	1	1	I_{DDQ}	
P_1 stuck open	1	1	LastZ	0	
P_1 stuck short	1	1	1	I_{DDQ}	
N_0 stuck open	1	1	1	LastZ	
N_0 stuck short	1	I_{DDQ}	1	0	
N_1 stuck open	1	1	1	LastZ	
N_1 stuck short	1	1	I_{DDQ}	0	

5. Test patterns are written as ab

(1) Note that a=1 in order to exercise d sa0, as that is the only input that can set the wire d to 1. Also note that b=0, as otherwise the fault d sa0 will be quenched at the OR-gate.

Therefore the only input that could test this fault is 10. Here is what this input produces:

So even with this input, the fault cannot be detected. The fault is therefore redundant.

We can remove the redundancy by considering the operation of the circuit:

$$a \oplus (a+b) = a\overline{(a+b)} + \overline{a}(a+b) = a\overline{a}\overline{b} + \overline{a}a + \overline{a}b = \overline{a}b$$
$$(a+b)\overline{b} = a\overline{b} + b\overline{b} = a\overline{b}$$
$$(a \oplus (a+b)) + (a+b)\overline{b} = \overline{a}b + a\overline{b}$$

We can now detect the fault using the input 11:

(2) 10:

As stated above, the operation is equivalent to:

$$\overline{a}b + a\overline{b} = a \oplus b$$

Therefore, the boolean operation this circuit is equivalent to is exclusive-OR. The minimum implementation is:

6. Test patterns are written as abc.

Not that a * symbol is used where appropriate to represent the AND operation for clarity, in order to help distinguish between, for example, $\overline{a*c}$ and $\overline{a}*\overline{c}$

(i)
$$\overline{a} \frac{dz}{da} = \overline{a}(z(a=1) \oplus z(a=0)) = \overline{a}((\overline{c} + cb) \oplus cb)$$

$$= \overline{a}(\overline{c} + c\overline{b}cb + (\overline{c} + cb)\overline{cb}) = \overline{a}(\overline{c}\overline{c}\overline{b}cb + \overline{c}\overline{c}\overline{b} + cb\overline{c}\overline{b})$$

$$= \overline{a} * \overline{c}\overline{c}\overline{b} = \overline{a} * \overline{c}(\overline{c} + \overline{b}) = \overline{a} * \overline{c} + \overline{a} * \overline{c}\overline{b} = \overline{a} * \overline{c}(1 + \overline{b}) = \overline{a} * \overline{c} = 1$$
The patterns $\{000, 010\}$ can detect the fault.

(ii)
$$h \frac{dz}{dh} = h(z(h=1) \oplus z(h=0)) = h(1 \oplus a\overline{c}) = h\overline{a}\overline{c} = h(\overline{a}+c)$$

= $h\overline{a} + hc$

Note that h = cb.

$$h\frac{dz}{dh} = \overline{a}bc + bc = bc(a+1) = bc = 1$$

The patterns $\{011,111\}$ can detect the fault.

(iii)
$$\overline{h} \frac{dz}{dh} = \overline{h}\overline{a} + \overline{h}c = \overline{cb}\overline{a} + \overline{cb}c = (\overline{c} + \overline{b})\overline{a} + (\overline{c} + \overline{b})c$$

 $= \overline{ab} + \overline{ac} + \overline{b}c + \overline{c}c = \overline{ac} + \overline{ac} + \overline{b}c = 1$
The patterns $\{000, 001, 010, 101\}$ can detect the fault.

(iv)
$$e^{dz}_{\overline{de}} = e(z(e=1) \oplus z(e=0)) = e((a\overline{c}+b) \oplus a\overline{c})$$

 $= e(\overline{ac} + \overline{bac} + (a\overline{c} + b)\overline{ac}) = e(\overline{b} * \overline{ac}\overline{ac} + \overline{ac}\overline{ac} + \overline{bac}) = e\overline{bac}$
 $= be(\overline{a} + c) = \overline{abe} + bec$
Note that $e = c$.
 $e^{dz}_{\overline{de}} = \overline{abc} + bc = bc(\overline{a} + 1) = bc = 1$

The patterns
$$\{011, 111\}$$
 can detect the failure.

- (v) $\overline{e} \frac{dz}{de} = \overline{a}b\overline{e} + b\overline{e}c = \overline{a}b\overline{c} + bc\overline{c} = \overline{a}b\overline{c}$ The pattern $\{010\}$ can detect the failure.
- (vi) $c\frac{dz}{dc} = c(z(c=1) \oplus z(c=0)) = c(b \oplus a) = c(\overline{a}b + a\overline{b}) = \overline{a}bc + a\overline{b}c = 1$ The patterns $\{011, 101\}$ can detect the fault.
- 7. Test patterns are written as ab.

(a)
$$\overline{a} \frac{di}{da} = \overline{a}(i(a=1) \oplus i(a=0)) = \overline{a}(b \oplus 0) = \overline{a}b = 1$$

The pattern $\{01\}$ can detect the fault.

(b)
$$\overline{d} \frac{di}{da} = \overline{d}(i(d=1) \oplus i(d=0)) = \overline{d}(ab \oplus 0) = \overline{d}ab$$

Note that $d=a$.
 $\overline{d} \frac{di}{da} = \overline{a}ab = 0 = 1$

We have reached a contradiction, therefore this fault cannot be detected.

(c)
$$\overline{g} \frac{di}{dg} = \overline{g}(i(g=1) \oplus i(g=0)) = \overline{g}(ab \oplus 0) = \overline{g}ab$$

Note that $g = ab$.
 $\overline{g} \frac{di}{dg} = \overline{ab}ab = 0 = 1$

We have reached a contradiction, therefore this fault cannot be detected.

8. Below are the signatures calculated for the sequence M=10011011 (fault-free) and the faulty sequence M'=11111111

M	R_1	R_2	R_3	R_4	M'	R_1	R_2	R_3	R_4
1	0	0	0	0	1	0	0	0	0
1	1	0	0	0	1	1	0	0	0
0	1	1	0	0	1	1	1	0	0
1	0	1	1	0	1	1	1	1	0
1	1	0	1	1	1	1	1	1	1
0	0	0	0	1	1	0	0	1	1
0	1	1	0	0	1	0	1	0	1
1	0	1	1	0	1	0	1	1	0
R	1	0	1	1	R	1	0	1	1

The signature for the faulty sequence M' matches the signature for the fault-free sequence M, so this fault is not detected.