WHAT IS CLAIMED IS:

1	1. A mechanically formed vortex ultrasound transducer capable of		
2	producing at least one, substantially annular focal region(s) when said transducer is excited.		
1	2. The transducer of claim 1 where the transducer incorporates a solid		
2	piezoelectric material.		
1	3. The transducer of claim 1 where the transducer incorporates a		
2	composite piezoelectric material.		
1	4. The transducer of claim 1 where the transducer incorporates one or		
2	more matching layers.		
1	5. The transducer of claim 1 where the transducer incorporates a filler		
2	material in front of the transducer or backing material in back of the transducer.		
1	6. The transducer of claim 1, being formed of a single contiguous		
2	piezoelectric element.		
1	7. A mechanically formed ultrasound transducer comprising a plurality of		
2	piezoelectric elements suspended in a polymer and having an irregular shape such that a		
3	vortex focal field is produced when the transducer is excited.		
1	8. A polymer for use in the creation of a heat set transducer shape having		
2	a liquid state when introduced into a diced piezoelectric ceramic, a semi solid state during		
3	processing and a fixed solid state upon completion of a heat treatment step.		
1	9. The polymer of claim 8, wherein the polymer is an epoxy.		
1	10. A system for producing a vortex ultrasound focal field comprising:		
2	a mechanically formed ultrasound transducer having an irregular shape for		
3	creating said vortex; and		
4	an activation switch.		
1	11. A method of creating a vortex transducer comprising the steps of:		
2	(a) shaping a piezoelectric ceramic into a desired form, the form having a		
3	front end and a back end;		
_	mont one and a back one,		

4	(b)	dicing said front end create a plurality of elements, said elements being	
5	attached to said back end and separated by dicing channels;		
6	(c)	filling said dicing channels with an epoxy material and allowing said	
7	epoxy to gel;		
8	(d)	creating a transducer form by removing said back end such that said	
9	elements are separated from one another;		
10	(e)	pressing said transducer form into a mold and heating said transducer	
1	form such that the epoxy is heated above the B-stage and allowing the resin to cross link and		
12	cool in a set shape;		
13	(f)	treating at least one surface of the transducer form with a conductive	
14	material such that all elements are in contact with said conductive material; and		
15	(g)	making a shape irregularity in the transducer form such that the	
16	transducer will produce a vortex effect.		
1	12.	The method of claim 11, wherein step (g) may be performed before	
2	performing any one of steps (a)-(f).		