Question 20 (9 marks)

Consider square  $\overrightarrow{OACB}$  where point O is the origin. Let the position vectors for points A, B be defined as a, b respectively i.e.  $\overrightarrow{OA} = a$  and  $\overrightarrow{OB} = b$ .

Let points P, Q, R and S be defined so that  $\overrightarrow{OP} = ka$ ,  $\overrightarrow{AQ} = kb$ ,  $\overrightarrow{RC} = ka$  and  $\overrightarrow{SB} = kb$  where  $0 \le k \le 1$ . This means that points P, Q, R and S are positioned along their respective sides in equal proportion.



(a) Using vector methods, prove that the size of  $\angle PQR = 90^{\circ}$ . (5 marks)

Now suppose that in square OACB, it is known that OA = 10 cm and that point P is moving away from the origin at a speed of 0.2 cm per second. This means that points Q, R and S are moving at the same speeds along their respective sides.

Let x = the distance OP.

(b) Determine the rate at which the area of square PQRS is changing when x = 3 cm. (4 marks)