Wireless: network forensics unplugged

Network Security and Forensics

Common wireless devices

- AM/FM radios
- Cordless phones
- Cell phones
- Bluetooth headsets
- Infrared devices, such as TV remotes
- Wireless doorbells
- Zigbee devices, such as HVAC, thermostat, lighting, and electrical controls
- Wi-Fi (802.11)—LAN networking over RF
- WiMAX (802.16)—"last-mile" broadband2

Cases involving wireless networks

- Recover a stolen laptop by tracking it on the wireless network.
- Identify rogue wireless access points that have been installed by insiders for convenience or to bypass enterprise security.
- Investigate malicious or inappropriate activity that occurred via a wireless network.
- Investigate attacks on the wireless network itself, including denial-of-service, encryption cracking, and authentication bypass attacks.

IEEE Layer 2 protocol series

- 802 series
 - 802.3 (Ethernet)
 - 802.1q (trunking)
 - 802.1X (LAN based authentication)
 - 802.11 (Wi-Fi)
 - 2.4 GHz
 - 3.7 GHz
 - 5 GHz
- RF has different characteristic than copper, requires different protocol

802.11 frame types

- Three types
 - Management Frames—Govern communications between stations, except flow control;
 - Control Frames—Support flow control over a variably available medium (such as RF);
 - Data Frames—Encapsulate the Layer 3+ data that moves between stations actively engaged in communication on a wireless network

Management frames

- Type 0
- Coordinate communication
- Forensic benefit
 - Not encrypted
 - MAC addresses
 - Basic Service Set Identification (BSSID)
 - Service Set Identifiers (SSIDs)
 - Often point of attacks:
 - WEP cracking
 - Evil Twin

																_	_															_
IEEE 802.11 Frame Header																																
Bits	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
Bytes	0						1					2						3														
0x00	Ver. Type Subtype DS F R P M W O									Duration/ID																						
0x04	Address 1																															
0x08	Address 1, cont.									Address 2																						
0x0C	Address 2, cont.																															
0x10	Address 3																															
0x14	Address 3, cont.										Sequence Control																					
0x18	Address 4																															
0x1C	Address 4, cont.										Frame Body																					

Flags

```
Flags: 0x00

S ... ..00 = DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0) (0x00)

S ... ..0.. = More Fragments: This is the last fragment

S ... ..0.. = Retry: Frame is not being retransmitted

S ... ..0 ... = PWR MGT: STA will stay up

D ..0. ... = More Data: No data buffered

M .0. ... = Protected flag: Data is not protected

W 0.. ... = Order flag: Not strictly ordered
```

Management frame subtypes

- 0x0 Association Request
- 0x1 Association Response
 - Status Code: 0x0000 Successful
- 0x4 Probe Request
- 0x5 Probe Response
- 0xA Disassociation
- 0xB Authentication
- 0xC Deauthentication

Control frames

- Type 1
- Manage the flow of traffic
- Problem of the hidden node addressed here
 - 0x1B—Request-to-send (RTS)
 - 0x1C—Clear-to-send (CTS)
 - 0x1D—Acknowledgment

Data frame

- Type 2
- Actual data
 - Includes encapsulated higher-layer protocols
- Subtypes examples
 - 4 = null function
 - No data
 - 0 = data

802.11 frame analysis

- Endianness
 - Big-endian
 - Most significant byte represented, stored or transmitted first
 - Little-endian
 - Least significant byte represented, stored or transmitted first

802.11 Mixed-endian

- Bit order within each individual data-field big endian
- Fields themselves little endian

Top – written protocol Bottom – actual transmitted order

First 2 Bytes of the IEEE 802.11 Frame Header														
Some example bit values, and their hexadecimal representations:														
Field	Version	Туре	Sub	type	DS		F	R	Р	М	w	0		
Data Bits	0 0	1 0	0 0	0 0	0	1	0	0	0	0	1	0		
Hex Bytes	V	ersion/ty	oe/subtyp	e = 0x20	flags = 0x42									
First 2 Bytes of the IEEE 802.11 Bit Transmission Order														
Here we see the same bit values, with fields reversed on the byte boundaries:														
Field	Sub	type	Type	Version	0	W	М	Р	R	F	D	S		
Data Bits	0 0	0 0	1 0	0 0	0	1	0	0	0	0	0	1		
Hex Bytes	V	ersion/typ	oe/subtyp	e = 0x08	flags = 0x41									

Wireshark example

- Wireshark will correctly interpret the first byte— 0x20 (0b00100000)
- The raw data show the actual order 0x08 (0b00001000)

```
Type/Subtype: Data (0x20)
     Frame Control: 0x4108 (Normal)
       Version: 0
       Type: Data frame (2)
       Subtype: 0
    Flags: 0x41
          .... ..01 = DS status: Frame from STA to DS via an AP (To DS: 1 From DS: 0) (0x01)
          .... .0.. = More Fragments: This is the last fragment
          .... 0... = Retry: Frame is not being retransmitted
          ...0 .... = PWR MGT: STA will stay up
          ..0. .... = More Data: No data buffered
          .1.. .... = Protected flag: Data is protected
         0... = Order flag: Not strictly ordered
     Duration: 52
     PSS Td. Cicco Li 61.00.d0 (00.22.60.61.00.d0)
     08 41 34 00 00 23 69 61 00 d0 00 11 22 33 44 55
                                                         .A4..#ia ...."3DU
0000
0010 00 23 69 61 00 ce 00 b7 80 bf 47 00 ae fa 61 4e
                                                         .#ia.... ..G...aN
```

Wired equivalent privacy (WEP)

- WEP
 - Private
 - "Shared" secret ??
- WEP is broken
 - Aircrack-ng brute force attack
- Why learn it?
 - Legacy Equipment
 - Modern equipment with legacy support
- Encrypted?
 - Private bit Confidentiality of data frames needed
 - Protected bit to 1 WEP, WPA, WPA2 used

TKIP, AES, WPA and WPA2

- Wi-Fi Protected Access (WPA)
 - Uses key rotation Temporal Key Integrity Protocol (TKIP)
 - Broken preshared Keys
- WPA2
 - Used Counter Mode with CBC-MAC Protocol (CCMP) mode of AES
 - Difficult to break
- Both WPA and WPA2
 - Robust security networks (RSN) to improve security
 - Management frame includes:
 - Beacons
 - Association Requests
 - Reassociation Requests
 - Probe Requests

802.1X

- Module, extensible authentication framework regardless of physical medium
- Framework for low-layer authentication
- Extensible Authentication Protocol (EAP)
 - Improves PPP
 - PPP is still commonly used
 - PPPoE
 - EV-DO
 - CHAP
 - PAP
 - Based on central authentication store
 - EAP- Transport Layer Security (EAP-TLS)
 - Protected EAP (PEAP)
 - Lightweight EAP (LEAP)
- Much more likely to have an audit trail

WAPs

- Layer 2 device
- All stations have access to signals
 - Interception easy
- Logging capabilities
- MAC address filtering
- DHCP service
- Routers
- SNMP
- Special case in investigation
 - Nearly unlimited access like a hub
 - Can include Layer 3 routing and Layer 4 NATing

Why investigate?

- Locally stored logs of connection attempts, authentication successes and failures, and other local WAP activity.
- Logs to track the physical movements of a wireless client throughout a building or campus.
- Configuration may provide insight regarding how an attacker gained access to the network.
- Configuration could be modified by an unauthorized party as part of an attack. Equivalent to compromising WAP.
 - Example login to a switch and then write libraries which can mimic user action

Type of Access Points

- Enterprise access points
 - Support for IEEE 802.11a/b/g/n
 - Centralized authentication
 - Audit of access logs (local and central)
 - Station location tracking
 - Performance monitoring capabilities
- Consumer End Access Points
 - Less facilities than enterprise

WAP evidence

Volatile

- History of connections by MAC address
- List of IPs associated with MACs
- Historical logs of wireless events (access requests, key rotation, etc.)
- History of client signal strength (can help identify geographic location)
- Routing tables
- Packet counts and statistics
- ARP table (MAC address to IP address mappings)
- DHCP lease assignments
- Access control lists
- I/O memory
- Running configuration
- Processor memory
- Flow data and related statistics

Persistent

- Operating system image
- Boot loader
- Startup configuration files

Off-System

- Aggregation
- storage

Spectrum analysis

- IEEE supports three frequencies:
 - 2.4 GHz (802.11b/g/n)
 - Country based issues
 - US only allows uses of channels 1 11
 - Japan allows uses through 14
 - 3.6 GHz (802.11y)
 - 5 GHz (802.11a/h/j/n)
- Greenfield (GF) mode
 - 802.11n devices operating in GF are not visible to 802.11a/b/g
- Software
 - Netsurveyor
 - Kismet

Passive evidence acquisition

- Wireless card must have Monitor mode
 - A separate card used only for Monitor mode is best

 - Info that can be gathered
 - Broadcast SSIDs
 - WAP MAC addresses
 - Supported encryption / authentication algorithms
 - Associated client MAC addresses

Efficient analysis

- Are there any beacons in the wireless traffic?
- Are there any probe responses?
- Can you find all the BSSIDs/SSIDs from authenticated/associated traffic?
- Can you find malicious traffic? What does that look like?
- Is the captured traffic encrypted using WEP/WPA? Is anyone trying to break the encryption?

Tcpdump and tshark

- Use BPF filters and wireless protocol knowledge
- Find WAPs
 - 'wlan[0] = 0x80'

```
Lynn@Sisyphus:~/CF_II.Network Forensics/NetworkForensics-EvidenceFiles/Ch6-Wireless$ sudo tcpdump -r wlan.
cap 'wlan[0] = 0x80 || wlan[0] = 0x50' | head
reading from file wlan.pcap, link-type IEEE802_11 (802.11)
07:56:41.085810 Beacon (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] ESS CH: 2, PRIVACY
07:57:01.494896 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:01.683314 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:04.404273 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:07.403761 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:10.405808 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:13.403761 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:15.417584 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:18.404784 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:18.404784 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:18.404784 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
07:57:21.403761 Probe Response (MentOrNet) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 2, PRIVACY
```

- Encrypted data frames
 - 'wlan [0] = 0x08 and wlan [1] & 0x40 = 0x40 '

Count Data Frames

First Byte – Version 0, Type 2, Subtype $0 = 00 \ 10 \ 0000$ (as parsed) = $0000 \ 10 \ 00$ (as sent) = 0x08

```
lynn@Sisyphus:~/CF_II.Network_Forensics/NetworkForensics-EvidenceFiles/Ch6-Wireless$ sudo tcpdump -r wlan.pcap 'wlan[0] = 0x08' | wc reading from file wlan.pcap, link-type IEEE802_11 (802.11)
59274
```

Count Encrypted Frames

```
lynn@Sisyphus:~/CF_II.Network_Forensics/NetworkForensics-EvidenceFiles/Ch6-Wireless$ sudo tcpdump -r wlan.pcap '(wlan[0] = 0x08) && ((wlan[1]
& 0x40) = 0x40)' | wc -l
reading from file wlan.pcap, link-type IEEE802_11 (802.11)
59274
```

http://www.wireshark.org/docs/dfref/w/wlan_mgt.html

Common attacks

- Sniffing
 - An attacker eavesdrops on the network
- Rogue Wireless Access Points
 - Unauthorized wireless devices that extend the local network, often for an end-user's convenience
 - Changing the channel
 - Illegal use of channel 14
 - Greenfield mode
 - Wireless Port knocking
 - Installing root kits and waiting for particular sequence of ports to be opened.

Common attacks continued

- The Evil Twin Attack
 - An attacker sets up a WAP with the same SSID as a legitimate WLAN
 - Man-in-the-middle attack
- WEP Cracking
 - An attacker attempts to recover the WEP encryption key to gain unauthorized access to a WEP-encrypted network.
 - Forced generation of large amounts of initialization vectors (IV) until right one is created

Locating wireless devices

- Strategies:
 - 1. Gather station descriptors, such as MAC addresses, which can help provide a physical description so that you know what to look for
 - MAC address has a manufacturer field could be spoofed
 - 2. For clients, identify the WAP that the station is associated with (by SSID)
 - 3. Leverage commercial enterprise wireless mapping software
 - 4. Poll the device's signal strength
 - Closest more powerful signal
 - **5.** Triangulate on the signal

Signal Strength

- Received Signal Strength Indication (RSSI) and Transmit (Tx) Rate
 - Sent only if the capture tool supplies the data
 - Wireshark can be configured as such by editing user preferences
- NetStumbler
 - Windows tool (XP, Vistumbler is a Win 7 option)
 - Presence can be detected
 - Supports GPS integration
 - Useful for wardriving and warwalking
- KisMet
- KisMac
- SkyHook
 - Wireless Positioning Systems

Signal strength continued again

- KisMAC
- Commercial Enterprise Tools
 - Aruba and Cisco
- Skyhook
 - Wireless Positioning System (WPS)
 - Apples "Locate Me" feature
 - Eye-Fi SD cards

https://github.com/chrissanders/packets
Use the pcap files given by Chris Sanders for studying tshark wireshark tcpdump etc. in detail.

Works Cited

Davidoff, S., & Ham, J. (2012). *Network Forensics Tracking Hackers Through Cyberspace*. Boston: Prentice Hall.