CS 254: Assignment 8

Devansh Jain	Harshit Varma
190100044	190100055

April 10, 2021

Contents

Traffic Light Controller	1
State Machine 1	2
State Machine 2	Δ

Traffic Light Controller

Finding Number of States

Let us consider states of the form (_ _ _ _) (_), where the first set represents the color of lanes and each has value from G, Y, R and the second set represents counter from 0 to 7 (taking 1 unit as 5s).

Possible States for Green: the first set will have 3Rs and 1G, second set would be from 0 to 5.

Possible States for Yellow: the first set will have 3Rs and 1Y, second set would be 6.

This gives us totally $(6+1) \times 4 = 28$ states, which can be represented in 5 state variables.

For modularity, we split the 5 state variables into set of 3 and 2 state variables - first set (3 variables) storing the counter, second set (2 variables) storing the lane number.

State Diagram

State Machine 1

$$\begin{split} & \boldsymbol{I} = \phi \\ & \boldsymbol{O} = \{(\texttt{clk'} = 0, \texttt{green} = 0), (\texttt{clk'} = 0, \texttt{green} = 1), (\texttt{clk'} = 1, \texttt{green} = 1)\} \\ & \boldsymbol{S} = \{(\texttt{time} = 0), (\texttt{time} = 1), (\texttt{time} = 2), (\texttt{time} = 3), (\texttt{time} = 4), (\texttt{time} = 5), (\texttt{time} = 6)\} \\ & \boldsymbol{S_0} = (\texttt{time} = 0) \\ & \text{Number of state variables} = \lceil \log_2(7) \rceil = 3. \\ & \text{Let state variables be } \boldsymbol{s_2}, \boldsymbol{s_1}, \boldsymbol{s_0}. \end{split}$$

Variable Mapping

State	s_2	s_1	s_0
$(\mathtt{time} = 0)$	0	0	0
$(\mathtt{time}=1)$	0	0	1
$(\mathtt{time} = 2)$	0	1	0
$(\mathtt{time}=3)$	0	1	1
$(\mathtt{time}=4)$	1	0	0
$(\mathtt{time} = 5)$	1	0	1
$(\mathtt{time}=6)$	1	1	0

Output	λ_1	λ_0
$(\mathtt{clk'} = 0, \mathtt{green} = 0)$	0	0
$(\mathtt{clk'} = 0, \mathtt{green} = 1)$	0	1
(clk' = 1, green = 1)	1	1

State Transition Table

s_2	s_1	s_0	δ_2	δ_1	δ_0	λ_1	$ \lambda_0 $
0	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1
0	1	0	0	1	1	0	1
0	1	1	1	0	0	0	1
1	0	0	1	0	1	0	1
1	0	1	1	1	0	0	0
1	1	0	0	0	0	1	1

K-Maps

$$\delta_1=\bar{s}_1s_0+\bar{s}_2s_1\bar{s}_0$$

$$\pmb{\delta_0} = \bar{\pmb{s}_1}\bar{\pmb{s}_0} + \bar{\pmb{s}_2}\bar{\pmb{s}_0}$$

$$\lambda_1$$
 s_1s_0
 s_2
00 01 11 10
0 0 0 0 0
1 0 0 X 1

$$\boldsymbol{\lambda_1} = \boldsymbol{s_2} \boldsymbol{s_1}$$

State Machine 2

```
\begin{split} & \boldsymbol{I} = \{(\texttt{green} = 0), (\texttt{green} = 1)\} \\ & \boldsymbol{O} = \{(\texttt{RRRG}), (\texttt{RRGR}), (\texttt{RGRR}), (\texttt{GRRR}), (\texttt{RRRY}), (\texttt{RRYR}), (\texttt{RYRR}), (\texttt{YRRR})\} \\ & \boldsymbol{S} = \{(\texttt{lane} = 0), (\texttt{lane} = 1), (\texttt{lane} = 2), (\texttt{lane} = 3)\} \\ & \boldsymbol{S_0} = (\texttt{lane} = 0) \\ & \text{Number of state variables} = \lceil \log_2(4) \rceil = 2. \\ & \text{Let state variables be } \boldsymbol{s_1}, \boldsymbol{s_0}. \end{split}
```

Variable Mapping

State	s_1	s_0
(lane $= 0$)	0	0
$(\mathtt{lane} = 1)$	0	1
$(\mathtt{lane} = 2)$	1	0
$(\mathtt{lane} = 3)$	1	1

Input	$\mid a \mid$
$(\mathtt{green} = 0)$	0
(green = 1)	1

Output	g_3	g_2	g_1	g_0	y_3	y_2	y_1	y_0	r_3	r_2	r_1	$\mid r_0 \mid$
(RRRG)	0	0	0	1	0	0	0	0	1	1	1	0
(RRGR)	0	0	1	0	0	0	0	0	1	1	0	1
(RGRR)	0	1	0	0	0	0	0	0	1	0	1	1
(GRRR)	1	0	0	0	0	0	0	0	0	1	1	1
(RRRY)	0	0	0	0	0	0	0	1	1	1	1	0
(RRYR)	0	0	0	0	0	0	1	0	1	1	0	1
(RYRR)	0	0	0	0	0	1	0	0	1	0	1	1
(YRRR)	0	0	0	0	1	0	0	0	0	1	1	1

State Transition Table

a	s_1	s_0	δ_1	δ_0	g_3	g_2	g_1	g_0	y_3	y_2	y_1	y_0	r_3	r_2	r_1	r_0
0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	0
0	0	1	1	0	0	0	0	0	0	0	1	0	1	1	0	1
0	1	0	1	1	0	0	0	0	0	1	0	0	1	0	1	1
0	1	1	0	0	0	0	0	0	1	0	0	0	0	1	1	1
1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	1	0
1	0	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
1	1	0	1	1	0	1	0	0	0	0	0	0	1	0	1	1
1	1	1	0	0	1	0	0	0	0	0	0	0	0	1	1	1

$$\delta_1=\bar{s}_1s_0+s_1\bar{s}_0=s_1\oplus s_0$$

