Crescimento das Populações de Bacilos

Heinrich Hermann Robert Koch foi um médico alemão que viveu de 1843 a 1910 e ficou famoso por ter isolado o bacilo causador da tuberculose. Seus estudos sobre a doença que causava muitas mortes até meados do século XX possibilitaram o desenvolvimento de uma vacina que salvou milhões de vidas por todo o mundo. Robert Koch foi agraciado em 1905 com o prêmio Nobel de Medicina e é considerado um dos pais da Microbiologia.

Um dos estudos de Koch estava ligado com a velocidade de crescimento das populações de bacilos. Koch observou que os bacilos demoram um instante de tempo para atingir a maturidade e iniciar a divisão celular. A partir daí, o bacilo gera um novo indivíduo a cada instante de tempo por meio de uma divisão. Dessa forma, se partirmos de uma população inicial com apenas um indivíduo, no instante seguinte teremos ainda um (ele atinge a maturidade para divisão), no seguinte teremos 2, no outro 3, então 5 e assim por diante.

Sua tarefa é, dado um inteiro K, determinar os três últimos dígitos do número de bacilos após K instantes de tempo, partindo de uma população inicial com um indivíduo.

Entrada

A entrada é composta por diversas instâncias. A primeira linha da entrada contém um inteiro **T** indicando o número de instâncias.

Cada instância é composta por apenas uma linha que contém um inteiro K (1 ≤ K ≤ 10¹000000).

Saída

Para cada instância imprima uma linha contendo os três últimos dígitos do número de bacilos após **K** instantes de tempo.

Exemplo de Entrada	Exemplo de Saída
5	001
1	003
4	055
10	744
21312	875
1000000	

Estacas

Marcos trabalha em uma empreiteira, sua tarefa é cercar com estacas os terrenos onde serão construidos prédios. Existem duas restrições para a distribuição destas estacas, elas devem ser colocadas de tal forma que a distância entre duas estacas seja sempre igual, e a segunda restrição é que Marcos deve usar o menor número possível de estacas. Marcos é seu amigo e pediu para que você desenvolva um programa para ajudá-lo.

Entrada

Haverão diversos casos de teste, cada caso de teste é descrito em uma linha por dois números X e Y (1 $\leq X$, $Y \leq$ 100000000), os quais representam as dimensões do terreno. O final da entrada é indicado por final de arquivo.

Saída

Para cada caso de teste imprima uma linha com o número mínimo de estacas necessário para cercar o tereno.

Exemplo de Entrada	Exemplo de Saída
2 2	4
33	4
2 5	14
8 ₃ 76 ₅₀	22
76 50	126