Income Shock and Redistribution Under Misreporting

Gaspar Alarcón Matías Ustares

Quantitative Macroeconomic Theory Washington University in St Louis December 6, 2021

Motivation

Data

Model

Results

Motivation

Data

Model

Results

Argentina

25% drop during 2002 devaluation and economic crisis, and rapid bottom-driven growth after 2002 devaluation. • Details

Questions

- In the 2001/2002 crisis, wages fell significantly, in real terms, for most workers in the formal sector.
- After the crisis, we observe that the recovery presents different heterogeneities. The lowest percentiles recover the pre-crisis level in just three years, while the highest do so in up to ten years, or the very top, never recover their previous level.
- Could misreported wages reflect an illusory distribution improvement?

Motivation

Data

Mode

Results

Data source & Sample Selection

Sistema Integrado Previsional Argentino (SIPA)

- Matched employer-employee monthly panel data (1996-2017)
- Covers all formal workers (private and public)
- Data on 4.5 million workers per year

Sample Selection

- Earnings include salary, bonus, vacation, 13th salary
- Compute total annual earnings, y_{it} , for person i in year t
- Drop observations with incomes below threshold

$$y_{it} \leq \frac{1}{2} \times 3$$
 months \times National MW_t

Motivation

Data

Model

Results

Model

$$V(\varepsilon, z, \bar{y}) = \max_{x} p(x) \left\{ u \left[y - T(x) - F(x) \right] + \beta E_{\varepsilon} \left[V(\varepsilon', z', xy) \right] \right\}$$

+
$$\left[1 - p(x) \right] \left\{ u \left[(1 - \delta)y - F(x) \right] + \beta E_{\varepsilon} \left[V(\varepsilon', z', y) \right] \right\}$$

subject to

$$x \in [0, 1],$$

 $T(x) = \tau_{\Delta}(xy - \bar{y}) + \tau_{y}xy,$
 $0 \le y - F(x) - \max\{\delta y, T(x)\},$

where $y=e^{\varepsilon+z}$, $\varepsilon'-\rho\varepsilon\sim N(0,\sigma_\varepsilon^2)$, and $z'\sim N(0,\sigma_z^2)$. Utility is $u(c)=c^{1-\gamma}/(1-\gamma)$.

$$1 - p(x) = \min \left\{ 1, \frac{1}{2} \left(\frac{xy - \bar{y}}{\bar{y}} \right)^2 \right\}$$

Algorithm

Discretize ε (using Tauchen) and z.

- 1. Create a grid for x: $\{x_1, x_2, \dots, x_N\}$ with $x_1 = 0$ and $x_N = 1$.
- 2. Guess V^0 in the state grid $(\varepsilon, z, \bar{y})$.
- 3. For every $(\varepsilon, z, \bar{y})$, compute

$$M_{i} = p(x_{i}) \left\{ u \left[y - T(x_{i}) - F(x_{i}) \right] + \beta E_{\varepsilon} \left[V^{0}(\varepsilon', z', x_{i}y) \right] \right\}$$

+
$$\left[1 - p(x_{i}) \right] \left\{ u \left[(1 - \delta)y - F(x_{i}) \right] + \beta E_{\varepsilon} \left[V^{0}(\varepsilon', z', y) \right] \right\}$$

for every x_i in the grid. To compute $E_{\varepsilon}V^0(\varepsilon',z',x_iy)$, we interpolate along state \bar{y} .

- 4. Set $V^1(\varepsilon, z, \bar{y}) = \max\{M_i\}_{i=1}^N$.
- 5. If V^1 is close to V^0 , stop. Otherwise, set $V^0 = V^1$ and go back to step 3.

Calibration

Discount factor	β	0.96
Elasticity of IS	γ	2.00
Persistance of ε	ρ	0.90
Std. Dev. $\varepsilon' - \rho \varepsilon$	$\sigma_{arepsilon}$	0.30
Std. Dev. z	σ_{z}	0.04
Tax/subsidy rate on $(xy - \bar{y})$	$ au_{m{\Delta}}$	0.20
Tax rate on xy	$ au_{y}$	0.30
Misreporting fine rate	δ	0.50

Checking the answer

Fix
$$F(x) = 20 > 0$$
 for $x \neq 1$ and $F(1) = 0$.

The policy is $x(\varepsilon, z, \bar{y}) = 1$ for all $(\varepsilon, z, \bar{y})$.

Comparing F(x)

$$F_1 = 0.8(1-x) + 0.02y$$
 $F_2 = 0.2(1-x)y$

► Value Functions ► F₃

Motivation

Data

Mode

Results

Aggregate shock z

Gini coefficient

Simulation with 10,000 individuals and 500 periods.

Gini under F_1 and data

Statistics under cost F_1

The following table presents the variation of the main statistics between the period before the crisis (1998-2000 in the data and [-3, -1] in the model]) and after (2001-2005 and [0, 3]).

Stats	Δ Data	Δ Reported y_{it} (Model)	Δ Effective y_{it} (Model)
Gini	-3.79%	-1.08%	-0.27%
CV	-3.11%	-1.55%	-0.18%
Mean	-0.87%	-3.26%	-2.76%
Median	-0.61%	-3.92%	-3.92%

Motivation

Data

Mode

Results

- In our analysis, the reported income shows less inequality than the effective income distribution after the shock.
- The distribution of the reported income is more sensitive to the aggregate shock than effective income.
- Misreporting magnifies changes in the income distribution.

THANK YOU!

Percentiles of $\log y_{it}$

We can observe the heterogeneity in the recovery by plotting the percentiles without normalizing them. • Return

Statistics using reports under F_1

The following table presents the absolute values of the main stats between the period before the crisis (1998-2000 in the data and [-3, -1] in the model]) and after (2001-2005 and [0, 3]). • Return

	Pre-shock [-3, -1]		Pos-shock [0, - 3]	
Stat	Data ('98 - '00)	Model	Data ('01 - '04)	Model
Gini	0.52	0.36	0.50	0.36
CV	0.93	0.71	0.90	0.71
Mean	12.14	1.20	12.03	1.17
Median	12.22	1	12.15	0.96

Value functions

$$F_1 = 0.8(1-x) + 0.02y$$
 $F_2 = 0.2(1-x)y$

$$F_2 = 0.2(1-x)y$$

Cost $F_3 = \frac{0.2}{x} + 0.01y$

Return

