微積分演習 その1

問題 1. 次の極限を計算せよ. ただし, $0 < a < b, c \neq 0$ とする.

(1)
$$\lim_{n \to \infty} (n^3 - n^2)$$
 (2) $\lim_{n \to \infty} \frac{n^2 - 1}{n^3 + 1}$ (3) $\lim_{n \to \infty} (\sqrt{n^2 - n} - \sqrt{n^2 - 1})$ (4) $\lim_{n \to \infty} \sqrt[n]{a^n + b^n}$

(1)
$$\lim_{n \to \infty} (n^3 - n^2)$$
 (2) $\lim_{n \to \infty} \frac{n^2 - 1}{n^3 + 1}$ (3) $\lim_{n \to \infty} (\sqrt{n^2 - n} - \sqrt{n^2 - 1})$ (4) $\lim_{n \to \infty} \sqrt[n]{a^n + b^n}$ (5) $\lim_{n \to \infty} \frac{1}{c^n + c^{-n}}$ (6) $\lim_{n \to \infty} \frac{a^n}{n!}$ (7) $\lim_{n \to \infty} \frac{a^n}{b^n + 1}$ (8) $\lim_{n \to 0} \sqrt[n]{1 + bn}$ (9) $\lim_{n \to \infty} \sum_{k=1}^n \frac{k^2}{n^3}$

問題 2. 次の極限を計算せよ.

(1)
$$\lim_{n \to \infty} \frac{n}{e^n}$$
 (2) $\lim_{n \to \infty} \frac{\log n}{n^2}$ (3) $\lim_{n \to \infty} n^{\frac{1}{n}}$ (4) $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n$ (5) $\lim_{n \to \infty} \frac{n}{(\log(1+n))^n}$

問題 3. 次の等比級数の収束・発散を判定せよ. また , 収束する場合はその値を求めよ .
$$(1) \, \sum\limits_{n=1}^\infty ar^{n-1} \quad (2) \, \sum\limits_{n=1}^\infty ar^{2n-1} \quad (3) \, \sum\limits_{n=1}^\infty \frac{x^{2n-1}}{2^n} \quad (4) \, \sum\limits_{n=1}^\infty (1-x)^n$$

(3)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+k)}$$
 (4) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+k)}(\sqrt{n}+\sqrt{n+k})}$

問題 5. ダランベールの判定法を用いて,次の級数の収束・発散を判定せよ。
$$(1) \sum_{n=1}^{\infty} \frac{1}{n!} \quad (2) \sum_{n=1}^{\infty} \frac{1}{(2n)!} \quad (3) \sum_{n=1}^{\infty} \frac{n+1}{n!} \quad (4) \sum_{n=1}^{\infty} \frac{2^n}{n} \quad (5) \sum_{n=1}^{\infty} \frac{1+e^{-n}}{1+e^n}$$

$$(6) \sum_{n=1}^{\infty} \frac{1}{n} \quad (7) \sum_{n=1}^{\infty} \frac{n!}{n^n} \quad (8) \sum_{n=1}^{\infty} \frac{((n+1)!)^2}{(2n)!} \quad (9) \sum_{n=1}^{\infty} \frac{n^k}{n!} \quad (10) \sum_{n=1}^{\infty} \frac{\log n}{n!}$$

(6)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (7) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ (8) $\sum_{n=1}^{\infty} \frac{((n+1)!)^2}{(2n)!}$ (9) $\sum_{n=1}^{\infty} \frac{n^k}{n!}$ (10) $\sum_{n=1}^{\infty} \frac{\log n}{n!}$

問題 6. 次の級数の収束・発散を判定せよ。
$$(1) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \qquad (2) \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 - 1} \qquad (3) \sum_{n=1}^{\infty} \frac{1}{2n-1} \qquad (4) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} \qquad (5) \sum_{n=1}^{\infty} \frac{1}{\log n + 1}$$

$$(6) \sum_{n=1}^{\infty} \frac{1}{(\log n)^n} \qquad (7) \sum_{n=1}^{\infty} \frac{1}{n^{\log n}} \qquad (8) \sum_{n=1}^{\infty} \frac{2n^2}{n^3 + 1} \qquad (9) \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1} \qquad (10) \sum_{n=1}^{\infty} \frac{1}{n}$$

問題 7. 次の級数の収束・発散を判定せよ. (「 $\sum\limits_{n=1}^{\infty}a_n$ が収束なら $\lim\limits_{n \to \infty}a_n=0$ 」を用いよ.)

$$(1) \sum_{n=1}^{\infty} n^{\frac{1}{n}} \qquad (2) \sum_{n=1}^{\infty} \frac{a^n (n!)^2}{(2n)!} \qquad (3) \sum_{n=1}^{\infty} \frac{a^n}{a^{2n}+1} \qquad (4) \sum_{n=1}^{\infty} \sum_{k=0}^{n} r^k, \ |r| < 1$$

微積分演習 解答 その1

解答 1.

 $(1) \, \infty \quad (2) \, \, 0 \quad (3) \, \, -\frac{1}{2} \quad (4) \, \, b \quad (5) \, \, 0 < |c| < 1, \, \, \texttt{tU} \, \texttt{J} \, \, |c| > 1 \, \, \texttt{TSI} \, \, 0. \, \, c = 1 \, \, \texttt{TSI},$ $rac{1}{2}.$ c=-1 ならば極限は存在しない. $\ \ (6)\ 0$ $\ \ \ (7)\ 0$ $\ \ (8)\ e^{b}$ $\ \ \ (9)\ rac{1}{3}$

解答 2. (1) 0 (2) 0 (3) 1 (4) 1/e (4) 0

解答 3. (1) |r| < 1 のとき $\frac{a}{1-r}$ に収束する. $|r| \ge 1$ のとき発散する.

- $(2) \ |r| < 1$ のとき $\dfrac{ar}{1-r^2}$ に収束する. $|r| \geq 1$ のとき発散する. $(3) \ |x| < \sqrt{2}$ のとき $\dfrac{x}{2-x^2}$ に収束する. $|x| \geq \sqrt{2}$ のとき発散する.
- $(4) \ |x-1| < 1$ のとき $\dfrac{1-x}{x}$ に収束する . $|x-1| \geq 1$ のとき発散する .

解答 4. (1) 1 (2) $\frac{1}{kk!}$ (3) $\frac{1}{k} \sum_{m=1}^{k} \frac{1}{m}$ (4) $\frac{1}{k} \sum_{m=1}^{k} \frac{1}{\sqrt{m}}$

解答 5. (1) 収束 (2) 収束 (3) 収束 (4) 発散 (5) 収束 (6) 判定不能 (7) 収束 (8) 収束 (9) 収束 (10) 収束

解答 6. (1) 発散 (2) 収束 (3) 発散 (4) 収束 (5) 発散 (6) 収束 (7) 収束 (8) 発散 (9) 収束 (10) 発散

解答 7. (1) 発散 (2) |a| < 4 ならば収束, |a| \geq 4 ならば発散 (3) $a \neq -1$ ならば収束, a = -1ならば発散 (4) 発散

微積分演習(発展問題)

問題 1. 次の数列の収束を $\varepsilon-N$ 論法を用いて証明せよ.

(1)
$$\lim_{n \to \infty} \frac{1}{n} = 0$$

(1)
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 (2) $\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = 0$ (3) $\lim_{n \to \infty} \frac{n!}{n^n} = 0$

$$(3) \lim_{n \to \infty} \frac{n!}{n^n} = 0$$

$$(4) \lim_{n \to \infty} \frac{n}{2^n} = 0$$

(4)
$$\lim_{n \to \infty} \frac{n}{2^n} = 0$$
 (5) $\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2} = \frac{1}{2}$

問題 2. 次の級数の収束を $\varepsilon-N$ 論法を用いて証明せよ.

(1)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$$

$$(2)\sum_{n=1}^{\infty} \frac{1}{n^2 - 3n + 2} = 1$$

(3)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$$

問題 3. 数列 $\{a_n\}$ がコーシー列であるとは , $\{a_n\}$ が次の条件を満たすことを言う . 任意の $\varepsilon > 0$ に対して,自然数 N が存在し,n, m > N のとき

$$|a_n - a_m| < \varepsilon$$

が成り立つ.

問題1で示した数列,すなわち,次の数列がコーシー列であることを示せ.

(1)
$$a_n = \frac{1}{n}$$

(1)
$$a_n = \frac{1}{n}$$
 (2) $a_n = \sqrt{n+1} - \sqrt{n}$ (3) $a_n = \frac{n!}{n^n}$

$$(3) a_n = \frac{n!}{n^n}$$

$$(4) \ a_n = \frac{n}{2^n}$$

(4)
$$a_n = \frac{n}{2^n}$$
 (5) $a_n = \frac{1+2+\cdots+n}{n^2}$

注意 1. 数列 $\{a_n\}$ が収束列であることに必要十分条件は,数列 $\{a_n\}$ がコーシー列であること である.

収束列ならばコーシー列であることは簡単に示すことができる、逆についてはコーシー列の有 界性など、いくつかの命題を示す必要があり、ここでは割愛する、興味のある学生は『解析入 門 I』(杉浦 光夫 著,東京大学出版)や『微分積分』(黒田 成俊 著,共立出版)などを参照し て欲しい.

微積分演習(発展問題)

問題 1. 次の数列の収束を $\varepsilon-N$ 論法を用いて証明せよ.

$$(1) \ N > \frac{1}{\varepsilon} \ \text{LUT, } \left| \frac{1}{n} \right| < \frac{1}{N} < \varepsilon$$

$$(2) \ N>\frac{1}{\varepsilon^2} \ \textbf{LUT} \ \text{, } |\sqrt{n+1}-\sqrt{n}|=\left|\frac{1}{\sqrt{n+1}+\sqrt{n}}\right| \leq \left|\frac{1}{\sqrt{n}}\right| < \left|\frac{1}{\sqrt{N}}\right| < \varepsilon$$

$$(3) \left| \frac{n!}{n^n} \right| = \left| \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{1}{n} \right| \le \left| \frac{1}{n} \right|$$

$$(4)$$
 $(1+1)^n$ の二項展開から $2^n>rac{n(n+1)}{2}$ となるから $\left|rac{n}{2^n}
ight|<rac{2}{n+1}$

(5)
$$1+2+\cdots+n=\frac{n(n+1)}{2}$$
 this $\frac{1+2+\cdots+n}{n^2}=\frac{1}{2}+\frac{1}{2n}$

問題 2. 次の級数の収束を $\varepsilon-N$ 論法を用いて証明せよ .

$$(1)$$
 $\frac{1}{n^2-1}=rac{1}{2}\Big(rac{1}{n-1}-rac{1}{n+1}\Big)$ だから第 n 部分和 S_n は

$$S_n = \frac{3}{4} - \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right)$$

となる.よって,

$$\left| S_n - \frac{3}{4} \right| = \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right) \le \frac{1}{n}$$

(2)
$$\frac{1}{n^2-3n+2} = \frac{1}{n-2} - \frac{1}{n-1}$$
 だから (1) と同じ

$$(3) \ \ \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \Big(\frac{1}{n} - \frac{1}{n+1} \Big) - \frac{1}{2} \Big(\frac{1}{n+1} - \frac{1}{n+2} \Big)$$
 だから (1) と同じ

問題 3. 次の数列がコーシー列であることを示せ.

$$(1) \ N>\frac{2}{\varepsilon} \ \ \ \, \ \ \, \ \ \, \ \, \left|\frac{1}{n}-\frac{1}{m}\right| \leq \frac{1}{n}+\frac{1}{m} < \frac{2}{N} < \varepsilon$$

$$(2) |\sqrt{n+1} - \sqrt{n} - \sqrt{m+1} + \sqrt{m}| \le \left| \frac{1}{\sqrt{n+1} + \sqrt{n}} \right| + \left| \frac{1}{\sqrt{m+1} + \sqrt{m}} \right| \le \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}$$

(3) (4) (5) 上記と同じ