Single-phase half-wave (1-pulse) rectifiers

1-ph half-wave rectifier [(R-L load) / (L-filter and R-load)]

Waveforms in periodic steady state

 $v_s = 230\sqrt{2}\sin(2\pi \cdot 50 \cdot t)$ V, R=0.5 Ω , L=6.5mH, $i_{D1} = i_s$

1-ph half-wave rectifier (Free-wheeling diode, L-filter and R-load)

Waveforms: Start-up transient and periodic steady state volt -200·10⁻³ ampere ·10⁻³ time (sec)

1-ph half-wave rectifier (Free-wheeling diode, L-filter and R-load)

Waveforms in periodic steady state

 $v_s = 230\sqrt{2}\sin(2\pi \cdot 50 \cdot t)$ V, R=0.5 Ω , L=6.5mH, $i_{D1} = i_s$ Diode currents?

1-ph half-wave rectifier (Capacitive filter and R load)

Waveforms in periodic steady state

 $v_s = 230\sqrt{2}\sin(2\pi \cdot 50 \cdot t)V$, R=15 Ω , C=0.5mF, $i_{D1} = i_s$

1-ph half-wave rectifier (Capacitive filter and R-load)

Waveforms in periodic steady state

 $v_s = 230\sqrt{2}\sin(2\pi \cdot 50 \cdot t)$ V, R=15 Ω , C=0.5mF, $i_{D1} = i_s$ vs i_o !

Single-phase full-wave (2-pulse) rectifiers

R with high L

EN 313 - Power Electronics

1-ph full-wave rectifier: Waveforms of input current $i_s(t)$

 ωt_n is the instant at which the diodes turn-ON

1-ph full-wave rectifier: Waveforms of input current $i_s(t)$

In the case of constant current (I_o) load,

- $I_{sRMS} = I_o; \quad \text{Fundamental } I_{s1RMS} = \frac{4I_o}{\pi} \frac{1}{\sqrt{2}} = 0.9I_o; \quad \text{n}^{th} \text{ harmonic } I_{snRMS} = \frac{I_{s1RMS}}{n}$
- ▶ DPF = 1 and $DF_1 = 0.9$ ⇒ power factor PF = 0.9
- $ightharpoonup i_s(t)$ doesn't contain even harmonics
- ► Total harmonic distortion $I_{sTHD} = 48.43\%$

1-ph full-wave rectifier: Waveforms of output voltage $v_o(t)$

 $V_n = V_m \sin(\omega t_n)$ and ωt_n is the instant at which the diodes turn-ON

 $K = \omega RC$

	$\mathbf{v}_n = \mathbf{v}_m \sin(\omega t_n)$ and ωt_n is the instant at which the diodes turn-ON				
	Load type	V_{oAV}			
	R-Load	21/			
	RL-Load	$\frac{2V_m}{}$			
	Const I_o	π			
	C-filter with R-load	$\frac{V_m}{\pi} \left[\cos(\omega t_n) + \sqrt{1 + K^2} - \frac{K^2}{\sqrt{1 + K^2}} e^{\frac{-\tan^{-1}K - \omega t_n}{K}} \right]$			

1-ph full-wave rectifier: Voltage across diode

- Peak inverse voltage (PIV) across each diode in a 2-diode rectifier (with $N_1 = N_2$) is twice that in a bridge rectifier
- In practical diodes, $v_{D1} \neq 0$ when D_1 is ON. Forward voltage drop across two diodes appears between source and load in bridge rectifier, while the center-tap (2-diode) rectifier has only one diode-voltage-drop between source and load

1-ph full-wave rectifier: Design of C-filter

Specifications: (i) Input voltage and frequency (V_m and ω) (ii) average output power (P_o) (iii) peak-to-peak ripple in output voltage (ΔV_o)

Assumptions: (i) Diodes stop conducting at $\omega t=\pi/2$ and (ii) ripple in output power is negligible

Peak-to-peak ripple
$$\Delta V_o = V_m - V_n = V_m - [V_m \sin(\omega t_n)] \Rightarrow \omega t_n = \sin^{-1}[1 - (\Delta V_o/V_m)]$$

Output power P_o is supplied only by the capacitor for the duration $\Delta t = \frac{(\pi/2) + \omega t_n}{\omega}$

Change in energy of the capacitor $\frac{1}{2}C\left(V_m^2-V_n^2\right)=P_o\Delta t$

Connection of multiple diodes

Common cathode connection

Diode with its anode at the most positive voltage conducts

Common anode connection

Diode with its cathode at the most negative voltage conducts

3-ph half-wave (3-pulse) rectifier

$$v_{RN} = V_m \sin(\omega t)$$
 $v_{YN} = V_m \sin\left(\omega t - \frac{2\pi}{3}\right)$ $v_{BN} = V_m \sin\left(\omega t + \frac{2\pi}{3}\right)$

 $i_R = i_{D1}$ and similar definitions for $i_Y \& i_B$

July - November 2018

3-ph half-wave (3-pulse) rectifier

3-ph half-wave (3-pulse) rectifier

Average output voltage

$$V_{oAV} = rac{1}{(2\pi/3)} \int_{rac{\pi}{6}}^{rac{5\pi}{6}} V_m \sin(\omega t) \ d(\omega t) = rac{3\sqrt{3}V_m}{2\pi}$$

- Peak-to-peak ripple in output voltage $V_{OPP} = 0.5 V_m$
- ► Each diode conducts for 120° (one-third of a line cycle)
- ▶ Input current $i_R(t)$ contains DC component (finite average value)

3-ph full-wave/bridge (6-pulse) rectifier

$$v_{RN} = V_m \sin(\omega t)$$
 $v_{YN} = V_m \sin\left(\omega t - \frac{2\pi}{3}\right)$ $v_{BN} = V_m \sin\left(\omega t + \frac{2\pi}{3}\right)$

$$v_{BN} = V_m \sin\left(\omega t + \frac{2\pi}{3}\right)$$

 $i_R = i_{D1} - i_{D4}$ and similar definitions for $i_Y \& i_B$

PIV for each diode is $\sqrt{3}V_m$

Average output voltage

$$V_{oAV} = \frac{1}{(\pi/3)} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} v_{RY}(t) \ d(\omega t)$$
$$= \frac{3}{\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sqrt{3} V_m \sin\left(\omega t + \frac{\pi}{6}\right) \ d(\omega t) = \frac{3\sqrt{3} V_m}{\pi}$$

- Maximum value of $v_o(t)$ is peak line-to-line voltage $\sqrt{3}V_m$
- Peak-to-peak ripple in output voltage $V_{oPP} = \sqrt{3}V_m 1.5V_m = 0.232V_m$
- ► Frequency of output voltage ripple is 300Hz (6 times the line frequency)
- \blacktriangleright Each diode conducts for 120° (one-third of a line cycle), two diodes conduct together
- Input current $i_R(t)$ doesn't contain even harmonics; doesn't contain triplen harmonics

In the case of constant current (I_o) load, $i_R(t)$ has the shape of a quasi-square wave

- $I_{RRMS} = I_o \sqrt{\frac{2}{3}}; \quad \text{Fundamental } I_{R1RMS} = \frac{\sqrt{6}}{\pi} I_o; \quad \text{n}^{th} \text{ harmonic } I_{RnRMS} = \frac{I_{R1RMS}}{n}$
- ▶ DPF = 1 and $DF_1 = 0.955 \Rightarrow$ power factor PF = 0.955
- ▶ Order of harmonics in $i_R(t)$ is 5,7,11,13,17,19,... or $6m \pm 1$, m = 1, 2, 3, ...
- ▶ Total harmonic distortion $I_{RTHD} = 31.08\%$

Effect of source inductance: Commutation (Constant load current Io)

- Commutation: The process of current being transferred from one diode to the other
- Commutating inductance L_s is in series with v_s for 1-phase rectifiers
- For 3-phase rectifiers, L_s is in series with each of the sources, v_{RN} , v_{YN} and v_{BN}
- Commutation interval (in terms of angle) is denoted by μ
- Effects of commutation
 - Load regulation (Variation of output voltage with load)
 - Change in the shape of source (input) current waveform

Type of rectifier	$\cos \mu$	V_{oAV}	
1-ph half-wave (free-wheeling diode)	$1 - \frac{\omega L_s I_o}{V_m}$	$\frac{V_m}{\pi} \left(1 - \frac{\omega L_s I_o}{2V_m} \right)$	
1-ph bridge	$1 - \frac{2\omega L_s I_o}{V_m}$	$\frac{2V_m}{\pi}\left(1-\frac{\omega L_s I_o}{V_m}\right)$	
3-ph half-wave	$1 - \frac{2\omega L_s I_o}{\sqrt{3} V_m}$	$\frac{3\sqrt{3}V_m}{2\pi}\left(1-\frac{\omega L_s I_o}{\sqrt{3}V_m}\right)$	
3-ph bridge	$1 - \frac{2\omega L_s I_o}{\sqrt{3} V_m}$	$\frac{3\sqrt{3}V_m}{\pi}\left(1-\frac{\omega L_s I_o}{\sqrt{3}V_m}\right)$	

Effect of source inductance: Waveforms of output voltage $v_o(t)$

Pavan Kumar Hari (DESE, IIT Bombay)

Input current of a rectifier: Effect on other loads

3-phase 12-pulse series-type diode rectifier

$$\frac{N_{s2}}{N_p} = \sqrt{3} \frac{N_{s1}}{N_p}$$

 V_{R2Y2} and V_{R1Y1} have equal magnitudes V_{R2Y2} leads V_{R1Y1} by 30°

$$i_{R} = \left(\frac{N_{s1}}{N_{p}}\right) i_{R1} + \left(\frac{N_{s2}}{N_{p}}\right) \left(\frac{i_{R2} - i_{B2}}{3}\right)$$

Ideal transformer

45 / 120

3-phase 12-pulse diode rectifier: R-load

 $N_{s1} = N_p$

3-phase 12-pulse diode rectifier (constant current Io load)

$$N_{s1} = N_p$$

$$I_1 = \frac{I_o}{\sqrt{3}}$$

$$I_2 = I_o \left(1 + \frac{1}{\sqrt{3}} \right)$$

$$I_3 = I_o \left(1 + \frac{2}{\sqrt{3}} \right)$$

- $I_{RRMS} = I_o \sqrt{\frac{4}{3} + \frac{2}{\sqrt{3}}}; \quad \text{Fundamental } I_{R1RMS} = \frac{2\sqrt{6}}{\pi}I_o$
- ▶ DPF = 1 and $DF_1 = 0.9886 \Rightarrow$ power factor PF = 0.9886
- ▶ Order of harmonics in $i_R(t)$ is 11,13,23,25,... or $12m \pm 1$, m = 1,2,3,...
- ► Total harmonic distortion $I_{RTHD} = 15.24\%$

July - November 2018

Module 1: Summary

- Diode characteristics and loss calculations
- ▶ 1-pulse, 2-pulse, 3-pulse, 6-pulse and 12-pulse rectifiers
- ▶ R-load, constant current load (R with high L) and C-filter with R-load
- ► Effect of source inductance: commutation, load regulation
- Periodic steady-state and measures of periodic waveforms
- Fourier analysis and waveform symmetries
- Harmonic distortion at point of common coupling

July - November 2018