CHAPTER 1

REVIEW OF RINGS AND FIELDS

1.1 Rings and Ideals

Definition 1.1.1 (Rings). Let R be a set and let $(+), (\cdot): R \times R \to R$ be functions. We say that $(R, +, \cdot)$ is a *ring* if:

- (R, +) is an abelian group;
- for all $a, b, c \in R$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- there exists a $1 \in R$ such that $1 \cdot a = a = a \cdot 1$ for all $a \in R$;
- for all $a, b, c \in R$,

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

The ring is *commutative* if for all $a, b \in R$, $a \cdot b = b \cdot a$.

Definition 1.1.2 (Ring Homomorphisms). Let R, S be rings and let $\varphi \colon R \to S$ be a map. We say that φ is a *ring homomorphism* if:

- $\varphi(1_R) = 1_S$;
- f(a+b) = f(a) + f(b) for all $a, b \in R$;
- f(ab) = f(a)f(b) for all $a, b \in R$.

Further, if φ is bijective, we say that φ is a ring isomorphism.

Proposition 1.1.3. Let R, S be rings and let $\varphi \colon R \to S$ be a ring isomorphism. Then, φ^{-1} is a ring isomorphism.

Proof. Let $s_1, s_2 \in S$. We can find an $r_1, r_2 \in R$ such that $\varphi(r_1) = s_1$ and $\varphi(r_2) = s_2$. Since φ is a ring homomorphism, we have $\varphi(r_1 + r_2) = s_1 + s_2$. Hence,

$$\varphi^{-1}(s_1) + \varphi^{-1}(s_2) = r_1 + r_2 = \varphi^{-1}(s_1 + s_2).$$

Moreover, $\varphi(r_1 \cdot r_2) = s_1 \cdot s_2$. Hence,

$$\varphi^{-1}(s_1) \cdot \varphi^{-1}(s_2) = r_1 \cdot r_2 = \varphi^{-1}(s_1 \cdot s_2).$$

So, φ^{-1} is a ring homomorphism.

Definition 1.1.4. Let R, S be rings and let $\varphi \colon R \to S$ be a ring homomorphism. We define the *kernel of* φ to be the set

$$\ker \varphi = \varphi^{-1}(0) = \{ r \in R \mid \varphi(r) = 0 \}.$$

Definition 1.1.5. Let R be a ring and let $I \subseteq R$. We say that I is an ideal of R if:

- I is a subgroup of (R, +); and
- for all $r \in R$ and $i \in I$, $ri \in I$ and $ir \in I$.

Proposition 1.1.6. Let R be a ring and let $I \subseteq R$ be an ideal. Then, R/I is an ideal with addition

$$(a+I) + (b+I) = (a+b) + I$$

 $and\ multiplication$

$$(a+I)\cdot(b+I) = ab+I,$$

with additive identity 0 + I and multiplicative identity 1 + I.

Definition 1.1.7. Let R be a ring and $I \subseteq R$ be an ideal. We say that R/I is a quotient ring.

Proposition 1.1.8. Let R, S be rings and let $\varphi \colon R \to S$ be a ring homomorphism. Then, φ is injective if and only if $\ker \varphi$ is trivial.

Proof. First, assume that φ is injective. Since $\varphi(0) = 0$, we must have that $\ker \varphi = \{0\}$.

Next, assume that $\ker \varphi = \{0\}$. Let $r_1, r_2 \in R$ such that $\varphi(r_1) = \varphi(r_2)$. So, $\varphi(r_1 - r_2) = 0$, meaning that $r_1 - r_2 \in \ker \varphi$. Hence, $r_1 = r_2$. This implies that φ is injective.

Lemma 1.1.9. Let R, S be rings and let $\varphi \colon R \to S$ be a ring homomorphism. Then, $\ker \varphi$ is an ideal of R.

Proof. Let $a \in R$ and $i \in \ker \varphi$. Then,

$$\varphi(ai) = \varphi(a) \cdot \varphi(i) = \varphi(a) \cdot 0 = 0$$

$$\varphi(ia) = \varphi(i) \cdot \varphi(a) = 0 \cdot \varphi(a) = 0.$$

Hence, $ai, ia \in \ker \varphi$. So, $\ker \varphi$ is an ideal in R.

Theorem 1.1.10 (First Isomorphism Theorem). Let R, S be rings and let $\varphi: R \to S$ be a ring homomorphism. Then,

$$R/\ker \varphi \cong \operatorname{Im} \varphi.$$

Proof. Define the map $\psi \colon R/\ker \varphi \to S$ given by $\psi(r + \ker \varphi) = \varphi(r)$. We will show that ψ is a ring isomorphism.

• First, we show that ψ is well-defined. So, let $r + \ker \varphi = s + \ker \varphi$. Then, $r - s \in \ker \varphi$, meaning that $\varphi(r - s) = 0$. Hence,

$$\psi(r + \ker \varphi) = \varphi(r) = \varphi(s) = \psi(s + \ker \varphi).$$

So, the map is well-defined.

• Next, we show that ψ is a ring homomorphism. So, let $r, s \in R$. Then,

$$\psi((r + \ker \varphi) + (s + \ker \varphi)) = \psi((r + s) + \ker \varphi)$$

$$= \varphi(r + s)$$

$$= \varphi(r) + \varphi(s)$$

$$= \psi(r + \ker \varphi) + \psi(s + \ker \varphi).$$

Moreover,

$$\psi((r + \ker \varphi) \cdot (s + \ker \varphi)) = \psi(rs + \ker \varphi)$$

$$= \varphi(rs)$$

$$= \varphi(r)\varphi(s)$$

$$= \psi(r + \ker \varphi)\psi(s + \ker \varphi).$$

So, ψ is a ring homomorphism.

• Now, we find that

$$\ker \psi = \{ r + \ker \varphi \in R / \ker \varphi \mid \psi(r + \ker \varphi) = 0 \}$$
$$= \{ r + \ker \varphi \in R / \ker \varphi \mid \varphi(r) = 0 \}$$
$$= \{ r + \ker \varphi \in R / \ker \varphi \mid r \in \ker \varphi \} = \{ \ker \varphi \}.$$

So, ψ is injective.

Hence, we have a ring isomorphism

$$R/\ker\varphi\cong\operatorname{Im}\varphi.$$

Theorem 1.1.11 (Correspondence Theorem). Let R be a ring, I be an ideal of R. Then,

• for an ideal $I \subseteq J \subseteq R$,

$$J/I := \{j + I \mid j \in J\}$$

is an ideal of R/I;

• for an ideal K of R/I, the set

$$J = \bigcup_{a+I \in K} \{a+i \mid i \in I\}$$

is an ideal of R containing I;

• there is a bijection between ideals of R/I and ideals of R containing I, given by $J \mapsto J/I$.

Proof.

Pete Gautam 3

• Let $I \subseteq J \subseteq R$ be an ideal. By the correspondence theorem for groups, we know that J/I is a subgroup of R/I. Now, let $j+I \in J/I$ and $r+I \in R/I$. Then,

$$(j+I)(r+I) = jr + I \in J/I, \qquad (r+I)(j+I) = rj + I \in J/I$$

since $jr, rj \in J$. Hence, J/I is an ideal of R/I.

• Let $K \subseteq R/I$ be an ideal. By the correspondence theorem for groups, we know that J is a subgroup of R. Now, let $j \in J$ and $r \in R$. Since K is an ideal, we find that

$$(j+I)(r+I) = jr + I \in K, \qquad (r+I)(j+I) = rj + I \in K.$$

So, $jr, rj \in J$. Hence, J is an ideal of R.

• This follows from the results above.

Definition 1.1.12. Let R be a ring and let $X \subseteq R$. We define the *ideal generated by* X, denoted (X), by the intersection of all ideals of R containing X.

Proposition 1.1.13. Let R be a ring and let $X \subseteq R$. Then, the ideal (X) is composed of finite sums of the form

$$\sum_{i=1}^{n} a_i x_i b_i,$$

where $a_i, b_i \in R$ and $x_i \in X$ for all $1 \le i \le n$.

Proof. Let [X] denote all finite sums of the form

$$\sum_{i=1}^{n} a_i x_i b_i,$$

where $a_i, b_i \in R$ and $x_i \in X$ for all $1 \le i \le n$. For all $x \in X$, we have $x = 1x1 \in [X]$, so $X \subseteq [X]$. By construction, the set [X] is closed under addition. Moreover, we have

$$-\left(\sum_{i=1}^{n} a_{i} x_{i} b_{i}\right) = \sum_{i=1}^{n} (-a_{i}) x_{i} b_{i} \in [X]$$

with $a_i, b_i \in R$ and $x_i \in X$ for all $1 \le i \le n$, so [X] is an additive subgroup. Also,

$$a\left(\sum_{i=1}^{n} a_{i} x_{i} b_{i}\right) = \sum_{i=1}^{n} (a a_{i}) x_{i} b_{i} \in [X], \qquad \left(\sum_{i=1}^{n} a_{i} x_{i} b_{i}\right) b = \sum_{i=1}^{n} a_{i} x_{i} (b_{i} b) \in [X],$$

meaning that [X] is an ideal of R containing X.

4

Now, let $I \subseteq R$ be an ideal of R containing X. We show that $[X] \subseteq I$. Since $X \subseteq I$, we find that for all $a, b \in R$ and $x \in X$, $abx \in I$. Moreover, since I is closed under addition, we have

$$\sum_{i=1}^{n} a_i x_i b_i \in I.$$

Hence, $[X] \subseteq I$. Since [X] is an ideal of R containing X, we find that

$$(X) = \bigcap_{\substack{I \subseteq R \text{ ideal} \\ X \subseteq I}} I = [X].$$

5

Using this result, we find that in a commutative ring R, the ideal generated by $\{x\}$, for some $x \in R$ is given by

$$(x) = \{ rx \mid r \in R \}.$$

1.2 Integral Domains and Fields

Definition 1.2.1. Let R be a ring and let $u \in R$. We say that u is a ring there exists a $v \in R$ such that uv = 1 = vu. We say that v is a multiplicative inverse of u.

Proposition 1.2.2. Let R be a ring and let $u \in R$ with multiplicative inverses v_1 and v_2 . Then, $v_1 = v_2$.

Proof. We know that $uv_1 = 1 = v_1u$ and $uv_2 = 1 = v_2u$. So,

$$v_1 = v_1 \cdot 1 = v_1(uv_2) = (v_1u)v_2 = 1 \cdot v_2 = v_2.$$

Definition 1.2.3. Let K be a non-zero ring (i.e. $K \neq \{0\}$). We say that K is a *field* if for all $x \in K$ with $x \neq 0$, x is a unit.

Proposition 1.2.4. Let R be a commutative ring. Then, R is a field if and only if it has no non-trivial proper ideals.

Proof. Assume first that R is a field, and let $I \subseteq R$ be a non-trivial ideal. In that case, there exists a $u \in I$ such that $u \neq 0$. Since R is a field, we find that u is a unit. Hence, for all $a \in R$,

$$a = au^{-1} \cdot u \in I.$$

So, I = R. That is, R has no non-trivial proper ideals.

Now, assume that R has no non-trivial proper ideals, and let $u \in R$ be non-zero. We know that (u) is a non-trivial ideal of R. Hence, (u) = R. In particular, there exists a $v \in R$ such that uv = 1. So, u is a unit. \square

Corollary 1.2.5. Let K be a field, R a non-zero ring and let $\varphi \colon K \to R$ be a ring homomorphism. Then, φ is injective.

Proof. We know that $\ker \varphi$ is an ideal of K. Moreover, since $\varphi(1) = 1$, we know that $\ker \varphi \neq R$. Hence, $\ker \varphi$ is trivial, meaning that φ is injective. \square

Definition 1.2.6. Let R be a commutative ring and let $r \in R$ be non-zero. We say that r is a zero divisor if there exists a non-zero $s \in R$ such that rs = 0. We say that R is an integral domain if it is non-zero and has it has no zero divisors.

Proposition 1.2.7. Let R be an integral domain and let $r, a, b \in R$ such that ra = rb. Then, either r = 0 or a = b.

Proof. We know that r(a-b)=0. Now, if $r\neq 0$, then since r cannot be a zero divisor, we must have that a-b=0. So, either r=0 or a=b.

Lemma 1.2.8. Let K be a field. Then, K is an integral domain.

Proof. Let $a \in K$ be non-zero and let $b \in K$ such that ab = 0. Since K is a field, we know that a is a unit. Hence,

$$b = a^{-1} \cdot (ab) = 0.$$

So, a is not a zero divisor. Hence, K is an integral domain.

6 Pete Gautam

Definition 1.2.9. Let R be a commutative ring and let $I \subseteq R$ be an ideal. We say that I is principal if there exists a $p \in R$ such that

$$I = (p) = \{rp \mid r \in R\}.$$

We say that R is a *principal ring* if all its ideals are principal. If R is an integral domain, we further say that R is a *principal ideal domain*.

Proposition 1.2.10. The set \mathbb{Z} is a principal ideal domain.

Proof. Let $I \subseteq \mathbb{Z}$ be an ideal. If $I = \{0\}$, then I = (0). Otherwise, let $n \in I$ be the smallest positive integer. Now, let $m \in I$. By the division algorithm, there exist $q, r \in \mathbb{Z}$ such that

$$m = qn + r,$$

with $0 \le r < n$. We have

$$r = m - qn \in I$$

since I is an ideal. By the minimality of n, we must have that r=0. That is, $m=qn\in(n)$. By the definition of ideal, we have $(n)\subseteq I$, meaning that I=(n).

1.3 Maximal and prime ideals

Definition 1.3.1. Let R be a ring and let $I \subseteq R$ be an ideal.

- We say that I is *prime* if for all $a, b \in R$ with $ab \in I$, either $a \in I$ or $b \in I$;
- We say that I is maximal if for all ideals $I \subseteq J \subseteq R$, either J = I or J = R.

Proposition 1.3.2. Let R be a commutative ring and let M be a maximal ideal of R. Then, M is a prime ideal.

Proof. Let $a, b \in R$ with $a \notin M$ such that $ab \in M$. We know that

$$J = M + (a) = \{ m + ar \mid m \in M, r \in R \}$$

is an ideal in R containing a. Since $a \notin M$ and $M \subseteq J$, we find that J = R. In particular, 1 = m + ar, for some $m \in M$ and $r \in R$. Hence,

$$b = b \cdot 1 = b \cdot (m + ar) = mb + abr \in M$$

since $m, ab \in M$. So, M is a prime ideal.

Theorem 1.3.3. Let R be a commutative ring and let $I \subseteq R$ be an ideal. Then, I is prime if and only if R/I is an integral domain.

Proof. Assume first that I is a prime ideal. Let $a+I, b+I \in R/I$ such that (a+I)(b+I)=0+I. In that case, ab+I=0+I, meaning that $ab \in I$. Since I is a prime ideal, we know that either $a \in I$ or $b \in I$. That is, either a+I=0+I and b+I=0+I. So, R/I is an integral domain.

Assume now that R/I is an integral domain. Let $a,b\in R$ such that $ab\in I$. In that case,

$$(a+I)(b+I) = ab + I = 0 + I.$$

Since R/I is an integral domain, we find that a+I=0+I or b+I=0+I. Hence, either $a \in I$ or $b \in I$. So, I is a prime ideal.

Theorem 1.3.4. Let R be a commutative ring and let $I \subseteq R$ be an ideal. Then, I is maximal if and only if R/I is a field.

Proof. Assume first that I is a maximal ideal. Let $a+I \in R/I$ be non-zero. In that case, $a \notin I$. Now, let

$$J = I + (a) = \{i + ar \mid i \in I, r \in R\}.$$

We know that J is an ideal of R. Moreover, since $a \notin I$ and I maximal, we find that J = R. In particular, there exists an $i \in I$ and a $r \in R$ such that 1 = i + ar. Hence,

$$(a+I)(r+I) = ar + I = (ar+i) + I = 1 + I.$$

So, a + I is a unit. This implies that R/I is a field.

Assume now that R/I is a field, and let $I \subsetneq J \subseteq R$ be an ideal. By the correspondence theorem, we know that J/I is an ideal of R/I. Moreover, it is non-trivial. Since R/I is a field, we find that J/I = R/I. That is, J = R. So, I is a maximal ideal.

Definition 1.3.5. Let R be an integral domain and $a \in R$. We say that a is reducible if it is not a unit and a = bc, for $b, c \in R$ not units. If a is not reducible, then a is irreducible.

Proposition 1.3.6. Let R be a principal ideal domain and let $r \in R$ not a unit and non-zero. Denote I = (r). Then, I is a non-trivial proper ideal, and the following are equivalent:

- 1. The element r is irreducible;
- 2. The ideal I is a prime ideal;
- 3. The ideal I is a maximal ideal;
- 4. The quotient R/I is an integral domain;
- 5. The quotient ring R/I is a field.

Proof. We have already shown that $(3) \implies (2), (2) \iff (4), (3) \iff (5)$. So, we show that $(2) \implies (1)$ and $(1) \implies (3)$:

(2) \Longrightarrow (1) Assume that r is reducible. So, r=ab, for $a,b\in R$ not units. We claim that $a\not\in (r)$. Assume, for a contradiction, that $a\in (r)$. In that case, a=rx, for some $x\in R$. Hence,

$$r = ab = rbx \iff r(1 - bx) = 0.$$

We know that $r \neq 0$, so we must have bx = 1. So, b is a unit-this is a contradiction. So, $a \notin (r)$. Similarly, $b \notin (r)$. We have $ab = r \in (r)$, so I cannot be a prime ideal.

(1) \Longrightarrow (3) Assume that r is irreducible, and let $I \subseteq J \subseteq R$ be ideals. Since R is a principal ideal domain, we know that J = (k), for some $k \in R$. Moreover, since $J \neq R$, we know that k is not a unit. Since $r \in J$, we find that r = kx, for some $x \in R$. Since k is not a unit and r is irreducible, we must have that x is a unit. So, $k = x^{-1}r \in (r)$. Hence, J = I. So, I is a maximal ideal.

Definition 1.3.7. Let K be a field and let $L \subseteq K$ be a subring. If L is a field, we say that L is a *subfield* of K.

Definition 1.3.8. Let K be a field. Then, the intersection of all subfields of K is called the *prime subfield* of K.

Proposition 1.3.9. Let K be a field. Then, the prime subfield of K is either isomorphic to \mathbb{Q} or \mathbb{F}_p , for a unique prime p.

Proof. Let $P \subseteq K$ be the prime subfield. Define the map $f: \mathbb{Z} \to K$ by $f(n) = n \cdot 1$. Since P = (1), we find that $\operatorname{Im}(f) \subseteq P$. Moreover, by the First Isomorphism Theorem, we know that

$$\mathbb{Z}/\ker f \cong \operatorname{Im}(f)$$
.

Pete Gautam 9

Since $\operatorname{Im}(f)$ is an integral domain, we must have that $\ker f$ is a prime ideal. If $\ker f$ is zero, then $\mathbb{Z} \cong \operatorname{Im}(f)$. Since every non-zero element in $\operatorname{Im}(f)$ has an inverse, we can extend the map to $g \colon \mathbb{Q} \to P$ by g(0) = 0 and

$$g(p/q) = f(p)f(q)^{-1}$$

otherwise. Then, $\ker g$ is zero, meaning that the map is injective. So, $\mathbb{Q} \cong \operatorname{Im}(f)$. In particular, it is a field. Since P is the prime subfield, we must therefore have $P = \operatorname{Im}(g) \cong \mathbb{Q}$.

Now, assume that $\ker f$ is non-zero. In that case, $\ker f = (p)$, for prime p. Hence,

$$\operatorname{Im}(f) \cong \mathbb{F}_p$$

is a field. Since P is the prime subfield, we must therefore have $P = \operatorname{Im}(f) \cong \mathbb{F}_p$. Since $\mathbb{F}_p \cong \mathbb{F}_q$ if and only if p = q, the prime p is unique.

Lemma 1.3.10. Let R be an integral domain, and let \sim be the relation on $R \times R \setminus \{0\}$ be given by

$$(a,b) \sim (c,d) \iff ad = bc.$$

Then, \sim is an equivalence relation.

Proof. Let $(a,b) \in R \times R \setminus \{0\}$. We trivially have $(a,b) \sim (a,b)$ since ab = ab. Now, let $(a,b), (c,d) \in R \times R \setminus \{0\}$ such that $(a,b) \sim (c,d)$. Hence, ad = bc, meaning that cb = da as well. Therefore, $(c,d) \sim (a,b)$. Finally, let $(a,b), (c,d), (e,f) \in R \times R \setminus \{0\}$ such that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. In that case, we know that ad - bc = 0 and cf - de. Moreover,

$$d \cdot (af - be) = ad \cdot f - b \cdot de = bc \cdot f - b \cdot de = b \cdot (cf - de) = b \cdot 0 = 0.$$

Since $d \neq 0$, we find that af = be. So, $(a, b) \sim (e, f)$. This implies that \sim is an equivalence relation.

Lemma 1.3.11. Let R be an integral domain, and let \sim be the equivalence relation on $R \times R \setminus \{0\}$ given by

$$(a,b) \sim (c,d) \iff ad = bc.$$

We denote the equivalence class of (a,b) by $\frac{a}{b}$. Then, the quotient $R \times R \setminus \{0\}/\sim$ forms a field under the following operations:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Proof. We first show that the operations are well-defined. So, let (a_1, b_1) , (a_2, b_2) , (c_1, d_1) , $(c_2, d_2) \in R \times R \setminus \{0\}$ such that $(a_1, b_1) \sim (a_2, b_2)$ and $(c_1, d_1) \sim (c_1, d_2)$. In that case, $a_1b_2 = b_1a_2$ and $c_1d_2 = d_1c_2$. Hence,

$$(a_1d_1 + b_1c_1) \cdot b_2d_2 = a_1b_2 \cdot d_1d_2 + c_1d_2 \cdot b_1b_2$$

= $b_1a_2 \cdot d_1d_2 + d_1c_2 \cdot b_1b_2$
= $(a_2b_2 + c_2d_2)b_1d_1$.

So, $(a_1d_1 + b_1c_1, b_1d_1) \sim (a_2d_2 + b_2c_2, b_2d_2)$. Similarly,

$$a_1c_1 \cdot b_2d_2 = a_1b_2 \cdot c_1d_2 = b_1a_2 \cdot d_1c_2 = a_2c_2 \cdot b_1d_1.$$

This implies that $(a_1c_1, b_1d_1) \sim (a_2c_2, b_2d_2)$. So, the operations are well-defined.

Now, we show that the operations are associative. So, let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in R \times R \setminus \{0\}$. Then,

$$\begin{split} \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) &= \frac{a}{b} + \frac{cf + de}{df} & \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} &= \frac{ad + bc}{bd} + \frac{e}{f} \\ &= \frac{adf + b(cf + de)}{bdf} &= \frac{(ad + bc)f + bde}{bdf} \\ &= \frac{adf + bcf + bde}{bdf} &= \frac{adf + bcf + bde}{bdf}. \end{split}$$

So, the addition operation is associative. Moreover,

$$\frac{a}{b} \cdot \left(\frac{c}{d} \cdot \frac{e}{f}\right) = \frac{a}{b} \cdot \frac{ce}{df} = \frac{ace}{bdf} = \frac{ac}{bd} \cdot \frac{e}{f} = \left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f}.$$

So, the multiplication operation is associative.

Next, let $\frac{a}{b} \in R \times R \setminus \{0\}/\sim$. Then,

$$\frac{a}{b} + \frac{0}{1} = \frac{a \cdot 1 + b \cdot 0}{b \cdot 1} = \frac{a}{b}, \qquad \frac{a}{b} \cdot \frac{1}{1} = \frac{a \cdot 1}{b \cdot 1} = \frac{a}{b}.$$

So, both operations have an identity. Moreover

$$\frac{a}{b} + \frac{-a}{b} = \frac{ab - ab}{b^2} = \frac{0}{b^2} = \frac{0}{1},$$

and if $a \neq 0$, then

$$\frac{a}{b} \cdot \frac{b}{a} = \frac{a \cdot b}{a \cdot b} = \frac{1}{1}.$$

So, both operations have an inverse.

Finally, let $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in R \times R \setminus \{0\}/\sim$. We know that

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} = \frac{ca}{db} = \frac{c}{b} \cdot \frac{a}{b},$$

so the multiplication operation is commutative. Moreover,

$$\frac{a}{b} \cdot \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} \cdot \frac{cf + de}{df}$$

$$= \frac{acf + ade}{bdf}$$

$$= \frac{abcf + abde}{b^2 df}$$

$$= \frac{ac}{bd} + \frac{ae}{bf}$$

$$= \frac{a}{b} \cdot \frac{c}{d} + \frac{a}{b} \cdot \frac{e}{f}.$$

Hence, the operation is distributive. This implies that the quotient is a field.

Theorem 1.3.12. Let R be an integral domain. Then, there exists a field $\operatorname{Quot}(R)$ and an injective ring homomorphism $\iota \colon R \to \operatorname{Quot}(R)$ such that for any injective ring homomorphism $f \colon R \to K$ into a field K, there exists a unique field homomorphism $F \colon \operatorname{Quot}(R) \to K$ such that $F \circ \iota = f$.

Proof. Let $\operatorname{Quot}(R) = R \times R \setminus \{0\}/\sim$. Define the map $\iota \colon R \to \operatorname{Quot}(R)$ by $\iota(r) = \frac{r}{1}$. For $r_1, r_2 \in R$, we have

$$\iota(r_1) + \iota(r_2) = \frac{r_1}{1} + \frac{r_2}{1} = \frac{r_1 \cdot 1 + 1 \cdot r_2}{1 \cdot 1} = \frac{r_1 + r_2}{1} = \iota(r_1 + r_2)$$
$$\iota(r_1) \cdot \iota(r_2) = \frac{r_1}{1} \cdot \frac{r_2}{1} = \frac{r_1 r_2}{1} = \iota(r_1 r_2).$$

Moreover, $\iota(1) = \frac{1}{1}$, meaning that ι is a ring homomorphism. Now, let $r \in \ker \iota$. In that case,

$$\iota(r) = \frac{r}{1} = \frac{0}{1}.$$

So, $(r,1) \sim (0,1)$, meaning that r=0. So, $\ker \iota$ is trivial, which implies that ι is injective.

Now, let $f: R \to K$ be an injective ring homomorphism. Define the map $F: \operatorname{Quot}(R) \to K$ by

$$F(\frac{a}{b}) = f(a)f(b)^{-1}.$$

The map is well-defined- we have $b \neq 0$, and since f is injective, we must have $f(b) \neq 0$, i.e. it is a unit. Now, for $\frac{a}{b}, \frac{c}{d} \in \text{Quot}(R)$,

$$F(\frac{a}{b} + \frac{c}{d}) = F(\frac{ad+bc}{bd})$$

$$= f(ad+bc)f(bd)^{-1}$$

$$= [f(a)f(d) + f(b)f(c)] \cdot f(b)^{-1}f(d)^{-1}$$

$$= f(a)f(b)^{-1} + f(c)f(d)^{-1}$$

$$= F(\frac{a}{b}) + F(\frac{c}{d}),$$

and

$$F(\frac{a}{b} \cdot \frac{c}{d}) = F(\frac{ac}{bd})$$

$$= f(ac)f(bd)^{-1}$$

$$= [f(a)f(b)^{-1}] \cdot [f(c)f(d)^{-1}]$$

$$= F(\frac{a}{b})F(\frac{c}{d}).$$

So, F is a ring homomorphism. Moreover, for all $r \in R$,

$$F(\iota(r)) = F(\frac{r}{1}) = f(r)f(1)^{-1} = f(r) \cdot 1 = f(r),$$

meaning that $F \circ \iota = f$.

Next, we show that the field homomorphism is unique. So, let $G: \operatorname{Quot}(R) \to K$ such that $G \circ \iota = f$. In that case, for $\frac{a}{b} \in \operatorname{Quot}(R)$,

$$G(\tfrac{a}{b}) = G(\tfrac{a}{1} \cdot \tfrac{1}{b}) = G(\tfrac{a}{1})G(\tfrac{b}{1})^{-1} = f(a)f(b)^{-1} = F(\tfrac{a}{b}).$$

This implies that G = F, meaning that F is unique.

Definition 1.3.13. Let R be an integral domain. Then, the field Quot(R) is the *field of fractions* in R, or the *quotient field* of R.

1.4 Polynomial Rings

Proposition 1.4.1. Let R be a commutative ring. Then, R is an integral domain if and only if R[x] is an integral domain.

Proof. First, assume that R is not an integral domain. In that case, there exist $a, b \in R$ non-zero such that ab = 0. Hence, $a, b \in R[x]$ still satisfy ab = 0. So, R[x] is not an integral domain.

Now, assume that R[x] is not an integral domain. In that case, there exist $f, g \in R[x]$ non-zero such that fg = 0. Without loss of generality, assume that f and g are not constant¹. Now, denote

$$f(x) = a_n x^n + \dots + a_1 x + a_0,$$
 $g(x) = b_m x^m + \dots + b_1 x + b_0,$

for $m, n \ge 1$ and $a_n, b_m \ne 0$. In that case, since fg = 0, we must have $a_n b_n = 0$. So, $a_n \in R$ is a zero divisor, meaning that R is not an integral domain. \square

Proposition 1.4.2 (Division Algorithm). Let K be a field and let $f, g \in K[x]$ with $g \neq 0$. Then, there exist unique $q, r \in K[x]$ such that

$$f(x) = g(x)q(x) + r(x)$$

with r = 0 or $\deg r < \deg g$.

Proposition 1.4.3. Let R be a field, and let $a \in R$. Then, the map $ev_a : R[x] \to R$ given by $ev_a(f) = f(a)$ is a ring homomorphism, with kernel $\ker ev_a = (x - a)$.

Proof. Let $f, g \in R[x]$. Then,

$$ev_a(f+g) = (f+g)(a) = f(a) + g(a) = ev_a(f) + ev_a(g)$$

and

$$ev_a(f \cdot g) = (f \cdot g)(a) = f(a) \cdot g(a) = ev_a(f) \cdot ev_a(g).$$

So, ev_a is a ring homomorphism.

Now, we show that $\ker ev_a=(x-a)$. So, let $f\in (x-a)$. By definition, we can find a $g\in R[x]$ such that f(x)=(x-a)g(x). In that case,

$$ev_a(f) = f(a) = 0 \cdot g(a) = 0,$$

meaning that $f \in \ker ev_a$. Next, let $f \in \ker ev_a$. By the division algorithm, we can find $q, r \in R[x]$ such that

$$f(x) = (x - a)q(x) + r(x),$$

where r = 0 or $\deg r < 1$. So, r is a constant. Since

$$f(a) = (a-a)q(a) + r(a) \iff 0 = r(a),$$

meaning that r=0. Hence, $f\in (x-a)$. So, $\ker ev_a=(x-a)$.

Corollary 1.4.4. Let K be a field. Then, K[x] is a principal ideal domain.

¹ If either function is a constant, we can multiply by x and we still have fq = 0.

Proof. Let $I \subseteq K[x]$ be an ideal. If $I = \{0\}$, then I = (0). Otherwise, let $f \in I$ be a polynomial of minimal degree. Now, let $g \in I$. By the division algorithm, there exist $q, r \in K[x]$ such that

$$g = qf + r$$
,

with r = 0 or $\deg r < \deg f$. We have

$$r = g - qf \in I$$

since I is an ideal. By the minimality of the degree of f, we must have that r=0. That is, $g=qf\in (f)$. Hence, I=(f).

Definition 1.4.5. Let K be a field. We say that the polynomial ring K is algebraically closed if every non-constant polynomial in K[x] has a root in K.

Proposition 1.4.6. Let K be a field. Then, the following are equivalent:

- 1. A non-constant polynomial in K[x] of degree n has n roots in K;
- 2. K is algebraically closed;
- 3. Every non-constant polynomial in K[x] splits into linear factors in K[x].

Proof. Trivially, we have $(1) \implies (2)$.

(2) \Longrightarrow (3) We prove this by the order of the polynomial $f \in K[x]$. So, if $f \in K[x]$ is (monic) of degree 1, then f(x) = ax + b, which is trivially split into linear factors in K[x]. Now, assume that $f \in K[x]$ has degree n, for some n > 1. Since K is algebraically closed, it has a root $\alpha_1 \in K$. We apply the division algorithm to find $q, r \in K[x]$ such that

$$f(x) = q(x)(x - \alpha_1) + r(x),$$

with r a constant function. We find that $r(\alpha_1) = 0$, so r = 0. Hence, $f(x) = q(x)(x - \alpha_1)$, so $\deg q = n - 1$. By induction, q factors into linear factors in K[x], i.e.

$$q(x) = (x - \alpha_2) \dots (x - \alpha_n).$$

Hence,

$$f(x) = (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n).$$

So, the result follows.

 $(3) \implies (1)$ Let $f \in K[x]$ be of degree n. We know that

$$f(x) = (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n).$$

So, f has n roots- $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$.

Theorem 1.4.7 (Fundamental Theorem of Algebra). The field $\mathbb C$ is algebraically closed.

14 Pete Gautam

Proposition 1.4.8. Let R and S be rings, $s \in S$ and let $f: R \to S$ be a ring homomorphism. Then, there exists a unique ring homomorphism $F: R[x] \to S$ such that F(a) = f(a) for all $a \in R$ and F(x) = s.

Proof. Define the map F as follows: for

$$g(x) = a_n x^n + \dots + a_1 x + a_0,$$

define

$$F(g) = f(a_n)s^n + \dots + f(a_1)s + f(a_0).$$

Clearly, F is a ring homomorphism with F(x) = s, and F(a) = f(a) for all $a \in R$.

Now, let $F': R[x] \to S$ be a ring homomorphism such that F'(a) = f(a) for all $a \in R$ and F(x) = s. In that case, for $g \in R[x]$ satisfying

$$g(x) = a_n x^n + \dots + a_1 x + a_0,$$

we have

$$F'(g) = F'(a_n x^n + \dots + a_1 x + a_0)$$

= $F'(a_n) F'(x)^n + \dots + F'(a_1) F'(x) + F'(a_0)$
= $f(a_n) s^n + \dots + f(a_1) s + a_0 = F(g).$

So, F is unique.

Definition 1.4.9. Let K be a field. The field of fractions Quot(K[x]) is called the *field of rational fractions over* K.

Definition 1.4.10. Let K be a field, and let $f, g \in K[x]$. We say that g divides f if there exists a $g \in K[x]$ such that f = gg. If so, we write $g \mid f$.

Definition 1.4.11. Let K be a field and let $f, g \in K[x]$. The *greatest common divisor* (gcd) of f and g is a polynomial $d \in K[x]$ such that:

- $d \mid f$ and $d \mid g$;
- if $e \mid f$ and $e \mid g$, then $e \mid d$.

We denote gcd(f, g) = d.

Theorem 1.4.12. Let K be a field and let $f, g \in K[x]$ be non-zero. Then, there exist $a, b \in K[x]$ such that $af + bg = \gcd(f, g)$.

Definition 1.4.13. Let R be an integral domain and let $f \in R[x]$ be a non-constant polynomial. We say that f is *irreducible over* R if $f \in R[x]$ is irreducible.

Theorem 1.4.14. Let K be a field. Then, $f \in K[x]$ factorises into irreducible factors, and the factorisation is unique up to reorder and multiplication by non-zero constants.

Proposition 1.4.15. Let K be a field and let $f \in K[x]$ be a non-constant polynomial. If $\alpha_1, \ldots, \alpha_k$ are the roots of f in K, with multiplicities m_1, \ldots, m_k , then

$$f(x) = (x - \alpha_1)^{m_1} (x - \alpha_2)^{m_2} \dots (x - \alpha_k)^{m_k} q(x),$$

where $q \in K[x]$ has no roots. In particular, a polynomial of degree n has at most n roots in K, counted with multiplicities.

Lemma 1.4.16 (Gauss' Lemma). Let $f \in \mathbb{Z}[x]$ be a polynomial that is irreducible over \mathbb{Z} . Then, f is irreducible over \mathbb{Q} .

Proof. Let f be reducible over \mathbb{Q} . In that case, f = gh, for $g, h \in \mathbb{Q}[x]$. Since $g, h \in \mathbb{Q}[x]$, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that Nf = g'h', for $g', h' \in \mathbb{Z}[x]$. Now, denote

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

$$g'(x) = b_s x^s + \dots + b_1 x + b_0$$

$$h'(x) = c_t x^t + \dots + c_1 x + c_0.$$

We claim that for any prime p dividing N, either $p \mid b_i$ for all $0 \le i \le s$ or $p \mid c_j$ for all $0 \le j \le t$. Assume, for a contradiction, that this is not the case. In that case, there exist minimal $0 \le i \le s$ and $0 \le j \le t$ such that $p \nmid b_i c_j$. Then,

$$N \cdot a_{i+j} = (b_0 c_{i+j} + \dots + b_{i-1} c_{j+1}) + b_i c_j + (b_{i+1} c_{j-1} + \dots + b_{i+j} c_0).$$

By the minimality of N, we find that $p \mid b_k$ for $0 \leq k \leq i-1$ and $p \mid c_l$ for $0 \leq l \leq j-1$. Since $p \nmid b_i c_j$, we must have that $p \nmid N \cdot a_{i+j}$, meaning that $p \nmid N$. This is a contradiction. So, either $p \mid b_i$ for all $0 \leq i \leq s$ or $p \mid c_j$ for all $0 \leq j \leq t$. So, we can go through the prime factorisation of N to cancel each prime number from the factorisation, and still find either f = gh or f = (-g)h. Either way, f is reducible in \mathbb{Z} .

Proposition 1.4.17 (Eisenstein's Criterion). Let

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$$

be a polynomial of degree n. If there exists a prime p such that:

- $a_0, a_1, \ldots, a_{n-1}$ are divisible by p;
- a_n is not divisible by p;
- a_0 is not divisible by p^2 .

Then, f is irreducible over \mathbb{Q}

Proof. Let f be of degree n > 1, with f = gh, where

$$g(x) = b_r x^r + b_{r-1} x^{r-1} + \dots + b_0 \in \mathbb{Z}[x],$$

$$h(x) = c_s x^s + c_{s-1} x^{s-1} + \dots + c_0 \in \mathbb{Z}[x].$$

We have $p \mid a_0$ and $p^2 \nmid a_0$, with $a_0 = b_0 c_0$, p must divide precisely one of b_0 and c_0 . Without loss of generality, assume that $p \nmid b_0$ and $b \mid c_0$. Similarly,

since $p \nmid a_n = b_r c_s$, we have $p \nmid b_r$ and $p \nmid c_s$. So, there exists a minimal $m \leq s$ such that $p \mid c_m$, and $p \mid c_k$ for $0 \leq k < m$. In that case,

$$a_m = b_0 c_m + (b_1 c_{m-1} + \dots + b_m c_0).$$

We know that $p \nmid b_0$ and $p \nmid c_m$, so $p \nmid b_0 c_m$. Hence, $p \nmid a_m$. So, we find that m = n. Therefore, deg g = 0, meaning that f is irreducible over \mathbb{Z} . So, Gauss' Lemma tells us that f is irreducible over \mathbb{Q} .

Proposition 1.4.18. Let R be an integral domain, $f \in R[x]$ and let $a \in R$. Then, f(x) is irreducible over R if and only if f(x + a) is irreducible over R.

Proof. Assume that f(x) is reducible over R. In that case, there exist nonconstant polynomials $g, h \in R[x]$ such that f(x) = g(x)h(x). In that case, f(x+a) = g(x+a)h(x+a). Since $\deg(g(x+a)) = \deg(g(x))$ and $\deg(h(x+a)) = \deg(h(x))$, we find that f(x+a) is reducible over R. Similarly, if f(x+a) is reducible over R, then f(x+a) = f((x+a)-a) is reducible over R.

Proposition 1.4.19. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ and let p be a prime not dividing a_n . Let $f + p\mathbb{Z} \in \mathbb{F}_p[x]$ be given by

$$(f+p\mathbb{Z})(x)+(a_n+p\mathbb{Z})x^n+\cdots+(a_1+p\mathbb{Z})x+(a_0+p\mathbb{Z}).$$

If $f + p\mathbb{Z}$ is irreducible over \mathbb{F}_p , then f is irreducible over \mathbb{Q} .

Proof. Assume that f is reducible over \mathbb{Q} . In that case, f = gh, for nonconstant polynomials g and h such that $\deg f = \deg g + \deg h$. Now, denote

$$g(x) = b_p x^p + \dots + b_1 x + b_0, \qquad h(x) = c_q x^q + \dots + c_1 x + c_0.$$

Since p does not divide a_n , and $a_n = b_p c_q$, p does not divide b_p and c_q . So, we have $f + p\mathbb{Z} = (g + p\mathbb{Z})(h + p\mathbb{Z})$, for $g + p\mathbb{Z}$ and $h + p\mathbb{Z}$ are non-constant polynomials. Hence, $f + p\mathbb{Z}$ is reducible over \mathbb{F}_p .