Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 CA5EL05 Design and Analysis of Algorithms

Branch/Specialisation: Computer Application Programme: MCA

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1

		uld be written in full instead of	Fonly a, b, c or d.	Ų.
Q.1	i.	Which notation expresses asy (a) Big oh (b) Omega	ymptotic tight bound for a function (c) Theta (d) All of these	1
	ii.	Consider an undirected gr represented by adjacency li algorithm is:	raph G with n vertices and e edges ist. Time taken by breadth first search	1
	iii.	Algorithm for single source method is:	(c) $O(n + 2e)$ (d) $O(n^3)$ se shortest path problem using greedy	1
		(a) Dijkstra algorithm(c) Hoare algorithm	(b) Kruskal algorithm(d) None of these	
	iv.	The recurrence relation of bin (a) $T(n/2) + k$ (c) $T(n/2) + \log n$	nary search is: (b) $2T(n/2) + k$ (d) $T(n/2) + n$	1
	v.	Matrix chain multiplication p		1
	vi.	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	is not related to dynamic programming (b) Principle of optimality	1
	vii.	Explicit constraints are rules (a) Are dependent on problem (b) Are independent of problem (c) Satisfy criteria function (d) None of these	that m instance	1

P.T.O.

Q.6

	viii.	Depth first generation of nodes with bounding function is called (a) FIFO Branch and bound (b) LIFO Branch and bound (c) LC Branch and bound (d) Backtracking	1
	ix.	Both P and NP are closed under the operation of	1
	17.	(a) Union (b) Intersection (c) Kleene (d) Concatenation	_
	х.	If P1 is a NP-complete and there is a polynomial time reduction of P1 to P2 then P2 is	1
		(a) NP-complete (b) Not necessarily NP-complete	
		(c) Cannot be NP-complete (d) None of these	
Q.2	i.	Explain the purpose of asymptotic notations?	2
	ii.	What is an algorithm? Discuss the criteria an algorithm should satisfy.	3
	iii.	Explain depth first traversal algorithm with the help of an example.	5
OR	iv.	Explain two ways to represent directed graphs.	5
Q.3	i.	Write the recurrence relation of strassen's matrix multiplication. Specify it's time complexity.	2
	ii.	Discuss worst case behaviour of Quick sort and techniques to avoid it.	8
OR	iii.	What is minimum cost spanning tree? Write Prim's algorithm to generate minimum cost spanning tree.	8
Q.4	i.	Differentiate between dynamic programming and greedy method.	3
		Calculate and construct minimum cost tour for the following graph	7
		using dynamic programming approach.	
		$\begin{bmatrix} 0 & 2 & 9 & 10 \end{bmatrix}$	
		1 0 6 4	
		$\begin{bmatrix} 0 & 2 & 9 & 10 \\ 1 & 0 & 6 & 4 \\ 15 & 7 & 0 & 8 \\ 6 & 3 & 12 & 0 \end{bmatrix}$	
OR	iii.	Find longest common subsequence for the sequences AGGTAB and	7
		GXTXAYB using dynamic programming approach.	
Q.5	i.	Discuss explicit constraints and implicit constraints for 4-queen problem.	4
	ii.	Discuss LC search	6
OR	iii.	Explain FIFO branch and bound	6

	Attempt any two:	
i.	Discuss relationship between class P, NP, NP-Hard and NP-complete	5
	problems.	
ii.	State and prove Cook's theorem.	5
iii.	Explain Knuth-Morris Pratt algorithm.	5

Marking Scheme

CA5EL05 Design and Analysis of Algorithms

Q.1	i.	Which notation expresses asymptotic function (c) Theta	tight bound for a	1
	ii.	Consider an undirected graph G with <i>n</i> v represented by adjacency list. Time take Search algorithm is:	· ·	1
	iii.	(b) O(n + e)Algorithm for single source shortest pageedy method is:(a) Dijkstra algorithm	ath problem using	1
	iv.	The recurrence relation of binary search is (a) $T(n/2) + k$:	1
	v.	Matrix chain multiplication problem can b (b) Overlapping sub-problems	e expressed as	1
	vi.	Which of the following term is not r programming (c) Pre-decided split point	elated to dynamic	1
	vii.	Explicit constraints are rules that (a) Are dependent on problem instance		1
	viii.		ounding function is	1
	ix.	Both P and NP are closed under the operat	tion of	1
	х.	If P1 is a NP-complete and there is a polynomial time reduction of P1 to P2 then P2 is (a) NP-complete		1
Q.2	i.	Purpose of asymptotic notations		2
	ii.	Algorithm Criteria an algorithm	- 1 Mark - 2 Marks	3
	iii.	Depth first traversal algorithm Example.	- 3 Marks - 2 Marks	5
OR	iv.	Two ways to represent directed graphs.	- 2.5 marks each (2.5 marks * 2)	5

Q.3	i.	Recurrence relation of strassen's matrix - 1 Mark	2	
		It's time complexity - 1 Mark	0	
	ii.	Worst case behaviour of Quick sort - 6 Marks	8	
OD		Techniques to avoid it 2 Marks	0	
OR	iii.	Minimum cost spanning tree - 2 Marks	8	
		Prim's algorithm - 6 Marks		
Q.4	i.	Differentiate between dynamic programming and greedy method.	3	
	ii.	Calculate and construct minimum cost tour for the following	7	
		graph using dynamic programming approach.		
		ΓΛ 2 Ω 1Λ]		
		$\begin{bmatrix} 0 & 2 & 9 & 10 \\ 1 & 0 & 6 & 4 \end{bmatrix}$		
		$\begin{bmatrix} 0 & 2 & 9 & 10 \\ 1 & 0 & 6 & 4 \\ 15 & 7 & 0 & 8 \\ 6 & 3 & 12 & 0 \end{bmatrix}$		
		[6 3 12 0]		
		(6 Marks + 1 Mark)		
OR	iii.	Find longest common subsequence and its length for the sequences GXTXAYB and AGGTAB using dynamic programming approach. (6 Marks + 1 Mark)	7	
Q.5	i.	Explicit constraints - 2 Marks	4	
		Implicit constraints for 4-queen problem 2 Marks	_	
	ii.	Discuss LC search	6	
OR	iii.	Explain FIFO branch and bound	6	
Q.6		Attempt any two:		
		Discuss relationship between class P, NP, NP-Hard and NP-		
		complete problems. (1 Mark + 1 Mark + 2 Marks + 1 Mark)		
	ii.	State and prove Cook's theorem.	5	
	iii.	Explain Knuth-Morris Pratt algorithm.	5	
	111,	Zapami iznam miorno i iun uigonumi.	J	
