Paul Gustafson Math 644

HW 1

- **1** Given a (left) R-module show:
 - i. The covariant functor $\operatorname{Hom}_R(M,-)$ is a left-exact functor.

Proof. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence. Application of the functor gives a complex

$$0 \to \operatorname{Hom}_R(M,A) \xrightarrow{f_*} \operatorname{Hom}_R(M,B) \xrightarrow{g_*} \operatorname{Hom}_R(M,C) \to 0.$$

For exactness at $\operatorname{Hom}_R(M,A)$, suppose $f_*(\alpha)=0$ for some $\alpha:M\to A$. Then $f(\alpha(m))=0$ for all $m\in M$. Thus, $\alpha(m)=0$ for all $m\in M$ since f is injective. Thus f_* is injective.

For the exactness at $\operatorname{Hom}_R(M,B)$, suppose $g_*(\beta)=0$ for some $\beta:M\to B$. Then $\operatorname{im}(\beta)\subset \ker(g)$. Since f is an isomorphism from A to $\operatorname{im}(A)$, the map $f^{-1}\beta:M\to A$ is well-defined. Thus, $\beta=f_*(f^{-1}\beta)$ is in the image of f_* . Thus $\ker(g_*)=\operatorname{im}(f_*)$.

ii. This functor is right-exact iff M is a projective R-module.

Proof. In view of part (i), for the functor to be right-exact is the same as saying that g_* surjects onto $\operatorname{Hom}_R(M,C)$ for every surjection $g:B\to C$. This is the same as saying that every map $M\to C$ lifts through every surjection $B\to C$, i.e. M satisfies the definition of projective R-module. \square

2 Given an R-module M and a short exact sequence of R-modules

$$0 \to A \to B \to C \to 0$$
,

use the previous problem to show that the sequence induces a long exact sequence:

$$0 \to \operatorname{Hom}_R(M,A) \to \operatorname{Hom}_R(M,B) \to \operatorname{Hom}_R(M,C) \to \operatorname{Ext}^1_R(M,A) \to \cdots$$

Proof. Let P_* be a projective resolution of M. Since the P_i are projective we get a s.e.s. of chain complexes $0 \to \operatorname{Hom}_R(P_*, A) \to \operatorname{Hom}_R(P_*, B) \to \operatorname{Hom}_R(P_*, C) \to 0$. Applying the cohomology functor and the snake lemma gives the desired long exact sequence.

3 Regarding \mathbb{Z}_2 as a module over the ring \mathbb{Z}_4 , construct a resolution of \mathbb{Z}_2 by free modules over \mathbb{Z}_4 and use this to show that $\operatorname{Ext}^n_{\mathbb{Z}_4}(\mathbb{Z}_2,\mathbb{Z}_2)$ is nonzero for all n.

Proof. A free resolution is the following:

$$\cdots \stackrel{\times 2}{\to} \mathbb{Z}_4 \stackrel{\times 2}{\to} \mathbb{Z}_4 \stackrel{\times 2}{\to} \mathbb{Z}_4 \stackrel{\mathrm{mod}}{\to} {}^2\mathbb{Z}_2 \to 0.$$

Applying the $\operatorname{Hom}_{\mathbb{Z}_4}(-,\mathbb{Z}_2)$ functor, we get

$$\cdots \stackrel{0}{\leftarrow} \mathbb{Z}_2 \stackrel{0}{\leftarrow} \mathbb{Z}_2 \stackrel{0}{\leftarrow} \mathbb{Z}_2 \stackrel{\mathrm{id}}{\leftarrow} \mathbb{Z}_2 \leftarrow 0.$$

Thus
$$\operatorname{Ext}_{\mathbb{Z}_4}^n(\mathbb{Z}_2,\mathbb{Z}_2)=\mathbb{Z}_2$$
 for all $n\geq 1$.