Differential Hoare Logics and Refinement Calculi for Hybrid Systems with Isabelle/HOL

Simon Foster¹ Jonathan Julián Huerta y Munive² Georg Struth²

University of York, UK

University of Sheffield, UK

Verification of Hybrid Systems


```
\begin{array}{ll} \mathsf{dynamics} &=& T' = -a(T - T_\theta) \\ & \mathsf{pre} &=& T_m \leq T \leq T_M \\ & \mathsf{pos} &=& T_m \leq T \leq T_M \\ & \mathsf{control} &=& t := 0 \; ; \; T_0 := T \; ; \; \dots \\ & \mathsf{therm} &=& (\mathsf{control} \; ; \; \mathsf{dynamics})^* \\ & \mathsf{\{pre\}} \; \mathsf{therm} \; \mathsf{\{pos\}} \end{array}
```

hybrid program correctness spec

Previous Work

- Isabelle/HOL verification components for hybrid programs that
 - ▶ benefit from huge libraries of topology, analysis, and ODEs;
 - based on MKA;
 - work with weakest liberal preconditions;
 - support various verification procedures for systems of ODEs, and
 - are correct by construction.
- Yet, program verification requires simpler methods:
 - ▶ Hoare logic serves for program verification, and
 - Morgan's refinement calculus is closely related.

Can we obtain simpler Hoare logic and refinement calculus to do hybrid program verification?

Main Contributions

Development of minimal proof systems for verification of hybrid systems:

- 1. rules of differential Hoare logic $d\mathcal{H}$ based on KAT;
- 2. laws of differential refinement calculus $d\mathcal{R}$ based on rKAT;
- 3. integration of lenses as the store model;
- support invariant reasoning in the style of differential dynamic logic dL, and
- 5. tactics for automated verification condition generation.

https://github.com/yonoteam/CPSVerification

Kleene Algebras with Tests

Kleene Algebra

Tests

- \circ $(B, +, :, 0, 1, \neg)$ is a boolean algebra,
- ∘ use $\alpha, \beta \in K$ and $p, q \in B$ where $B \subseteq K$,
- \circ if p then α else $\beta = p$; $\alpha + \neg p$; β , and
- $\circ \{p\} \alpha \{q\} \leftrightarrow p; \alpha \leq \beta; q$

State Transformer Model

Programs are functions $S \to \mathcal{P} S$:

$$(\alpha + \beta) s = \alpha s \cup \beta s,$$

$$(\alpha; \beta) s = (\alpha \circ_{K} \beta) s = \bigcup \{\beta s' \mid s' \in \alpha s\},$$

$$0 s = \emptyset,$$

$$1 s = \{s\},$$

$$(\neg p) s = \begin{cases} \{s\}, & \text{if } p s = \emptyset, \\ \emptyset, & \text{otherwise,} \end{cases}$$

$$\alpha^{*} s = \bigcup_{n \geq 0} \alpha^{n} s,$$

where $\alpha^0 s = 1 s$ and $\alpha^{n+1} = \alpha^n \circ_K \alpha$.

$$\{p\} \alpha \{q\} \leftrightarrow (\forall s_1. \ p \ s_1 \rightarrow (\forall s_2. \ s_2 \in \alpha \ s_1 \rightarrow q \ s))$$

What about Assignments?

Lenses

• Variables are lenses $x = (A, S, get_x, put_x)$ where

$$get_x: S \rightarrow A \text{ and } put_x: S \rightarrow A \rightarrow S$$

- A provides values of variable while S is the state space
- They satisfy the axioms

$$\begin{split} & \textit{get}_{\scriptscriptstyle X} \; (\textit{put}_{\scriptscriptstyle X} \; s \; v) = v \\ & \textit{put}_{\scriptscriptstyle X} \; (\textit{put}_{\scriptscriptstyle X} \; s \; u) \; v = \textit{put}_{\scriptscriptstyle X} \; s \; v, \\ & \textit{put}_{\scriptscriptstyle X} \; s \; (\textit{get}_{\scriptscriptstyle X} \; s) = s. \end{split}$$

Semantics $S \to \mathcal{P} S$ for assignments are

$$(x := e) s = \{put_x s (e s)\}$$

Verification Rules

Traditional Hoare logic:

$$\begin{split} p_1 &\leq p_2 \wedge \{p_2\} \, \alpha \, \{q_2\} \wedge \, q_2 \leq q_1 \ \, \rightarrow \{p_1\} \, \alpha \, \{q_1\} \\ &\qquad \qquad \{p\} \, \alpha \, \{r\} \wedge \{r\} \, \beta \, \{q\} \rightarrow \{p\} \, \alpha \, ; \, \beta \, \{q\}, \\ &\qquad \qquad \{r\, ; \, p\} \, \alpha \, \{q\} \wedge \{\neg r\, ; \, p\} \, \beta \, \{q\} \ \, \rightarrow \, \{p\} \, \text{if} \, \, r \, \, \text{then} \, \, \alpha \, \, \text{else} \, \beta \, \{q\}, \\ &\qquad \qquad \{r\, ; \, p\} \, \alpha \, \{p\} \ \, \rightarrow \, \{p\} \, \, \text{while} \, \, r \, \, \text{do} \, \, \alpha \, \{\neg r\, ; \, p\}, \\ &\qquad \qquad \{\lambda s. \, \, q \, (put_x \, s \, (e\, s))\} \, x := e\, \{q\}. \end{split}$$

Extended to regular programs

$$\{p\}\operatorname{skip}\{p\},\\ \{p\}\operatorname{abort}\{q\},\\ \{p\}\alpha\{q\}\wedge\{p\}\beta\{q\}\rightarrow\{p\}\alpha+\beta\{q\},\\ \{p\}\alpha\{p\}\rightarrow\{p\}\operatorname{loop}\alpha\{p\},\\$$

where **loop** $\alpha = \alpha^*$, **skip** = 1, and **abort** = 0.

What about ODEs?

Vector Field

$$X' t = f t(X t)$$

where

$$X: T \subseteq \mathbb{R} \to S$$
 $f: T \to S \to S$ $X = 0$

$$f: T \rightarrow S \rightarrow$$

$$X 0 = s$$

orbit : $s \mapsto \{X \mid t \in T\}$

Semantics for ODEs

Solutions to initial value problems (IVPs)

Sols
$$f T s = \{X : T \rightarrow S \mid (\forall t \in T. X' t = f t (X t) \land X 0 = s\}$$

Guarded orbit

$$\operatorname{orbit}_{G}^{X} s = \{X \ t \mid t \in T \land (\forall \tau \in [0, t]. \ G(X \ \tau))\}$$

• Semantics $S \to \mathcal{P} S$ for assignments are

$$(x' = f \& G) s = \bigcup \{ \operatorname{orbit}_{G}^{X} s \mid X \in \operatorname{Sols} f T s \}$$

• The corresponding rule of inference is

$$\{\lambda s. \ \forall t \in T. \ (\forall \tau \in [0, t]. \ G(X t)) \rightarrow Q(X t)\}\ (x'=f \& G)\ \{Q\}$$

easy to obtain if there is a unique solution $X:T\to S$ to the IVPs associated to each s and the vector field f

Invariants in $d\mathcal{H}$

o I is an invariant for f iff $\{I\} x' = f \& G \{I\}$, or equivalently

$$\bigcup (\mathcal{P}(x'=f \& G) I) \subseteq I,$$

We obtain the following rules

$$\begin{split} p &\leq i \wedge \{i\} \, \alpha \, \{i\} \wedge i \leq q \ \rightarrow \{p\} \, \alpha \, \operatorname{inv} \, i \, \{q\}, \\ & \{i\} \, \alpha \, \{i\} \wedge \{j\} \, \alpha \, \{j\} \rightarrow \{i\,;j\} \, \alpha \, \{i\,;j\}, \\ & \{i\} \, \alpha \, \{i\} \wedge \{j\} \, \alpha \, \{j\} \rightarrow \{i\,+j\} \, \alpha \, \{i\,+j\}, \\ p &\leq i \wedge \{i\,;t\} \, \alpha \, \{i\} \wedge \neg r\,; \, i \leq q \ \rightarrow \{p\} \, \operatorname{while} \, r \, \operatorname{do} \, \alpha \, \operatorname{inv} \, i \, \{q\}, \\ p &\leq i \wedge \{i\} \, \alpha \, \{i\} \wedge i \leq q \ \rightarrow \{p\} \, \operatorname{loop} \, \alpha \, \operatorname{inv} \, i \, \{q\}, \\ p &\leq i \wedge i \, \operatorname{is} \, \operatorname{inv}. \, \operatorname{for} \, f \wedge (G\,;i) \leq q \ \rightarrow \{p\} \, x' = f \, \& \, G \, \operatorname{inv} \, i \, \{q\}. \end{split}$$

where operationally α inv $i = \alpha$.

Formalisation of the Thermostat

Lenses $\Pi[n] = (\mathbb{R}, \mathbb{R}^{\{0,1,2,3\}}, \lambda s. \ s. \ n, \lambda s. \ t. \ s[n \mapsto t])$ give us variables

```
abbreviation T:: real \Longrightarrow real^4 where T \equiv \Pi[0] abbreviation t:: real \Longrightarrow real^4 where t \equiv \Pi[1] abbreviation T_0:: real \Longrightarrow real^4 where T_0 \equiv \Pi[2] abbreviation \vartheta:: real \Longrightarrow real^4 where \vartheta \equiv \Pi[3]
```

Formalisation of the Thermostat

Provide vector field and unique solution

abbreviation
$$f$$
 a $c \equiv [T \mapsto_s - (a*(T-c)), T_0 \mapsto_s 0, \vartheta \mapsto_s 0, t \mapsto_s 1]$
abbreviation φ a $c \tau \equiv [T \mapsto_s - \exp(-a*\tau)*(c-T) + c, T_0 \mapsto_s T_0, \vartheta \mapsto_s \vartheta, t \mapsto_s \tau + t]$

Verification of the Thermostat

```
abbreviation G T_m T_M a L \equiv
 \mathbf{U}(t < -(\ln((L-(if L=0 \text{ then } T_m \text{ else } T_M))/(L-T_0)))/a)
abbreviation I T_m T_M \equiv \mathbf{U}(T_m \leq T \land T \leq T_M \land (\vartheta = 0 \lor \vartheta = 1))
abbreviation ctrl T_m T_M \equiv
 (t := 0): (T_0 := T):
 (IF (\vartheta = 0 \land T_0 < T_m + 1) THEN (\vartheta ::= 1) ELSE
  IF (\vartheta = 1 \land T_0 > T_h - 1) THEN (\vartheta ::= 0) ELSE skip)
abbreviation dyn T_m T_M a T_u \tau \equiv
 IF (\theta = 0) THEN x' = f a 0 \& G T_m T_M a 0 on <math>\{0..\tau\} UNIV @ 0
   ELSE x' = f a T_u \& G T_m T_M a T_u on \{0..\tau\} UNIV @ 0
abbreviation therm T_m T_M a L \tau \equiv
  LOOP (ctrl T_m T_M; dyn T_m T_M a L \tau) INV (I T_m T_M)
```

Verification of the Thermostat

lemma thermostat-flow:

assumes 0 < a and $0 \le \tau$ and $0 < T_m$ and $T_M < T_u$ shows $\{I T_m T_M\}$ therm $T_m T_M a T_u \tau \{I T_m T_M\}$ apply (hyb-hoare $U(I T_m T_M \wedge t=0 \wedge T_0 = T)$) prefer 4 prefer 8 using local-flow-therm assms apply force+using assms therm-dyn-up therm-dyn-down by rel-auto'

Differential Refinement Calculus d \mathcal{R}

Extend KAT with refinement operation $[-,-]:B\times B\to K$ such that

$$\{p\} \alpha \{q\} \leftrightarrow \alpha \leq [p,q].$$

Obtain traditional Morgan Style Refinement laws:

```
\begin{aligned} \mathbf{skip} &\leq [p,p], \\ \mathbf{abort} &\leq [p,q], \\ [p',q'] &\leq [p,q], \qquad \text{if } p \leq p' \text{ and } q' \leq q, \\ [p,r] &; [r,q] \leq [p,q], \\ [p,q] &+ [p,q] \leq [p,q], \\ \mathbf{if } t \text{ then } [t \, ; \, p,q] \text{ else } [\neg t \, ; \, p,q] \leq [p,q], \\ \mathbf{while } t \text{ do } [t \, ; \, p,p] \leq [p,\neg t \, ; \, p], \\ \mathbf{loop } [p,p] &\leq [p,p]. \end{aligned}
```

More Refinement Laws

- Laws for assignments $(x := e) \le [\lambda s. \ Q(put_x s(e s)), Q].$
- o Laws for evolution commands where X' t = f(X t) and X 0 = s

$$(x' = f \& G) \le [\lambda s \in S. \forall t \in T. \ (\forall \tau \in [0, t]. \ G(X\tau)) \rightarrow Q(Xt), Q].$$

Monotonoic laws and laws with invariants

```
\begin{array}{ll} \textbf{if} \ t \ \textbf{then} \ \alpha_1 \ \textbf{else} \ \beta_1 \leq \textbf{if} \ t \ \textbf{then} \ \alpha_2 \ \textbf{else} \ \beta_2, & \text{if} \ \alpha_1 \leq \alpha_2 \ \text{and} \ \beta_1 \leq \beta_2; \\ \textbf{while} \ t \ \textbf{do} \ \alpha_1 \leq \textbf{while} \ t \ \textbf{do} \ \alpha_2, & \text{if} \ \alpha_1 \leq \alpha_2; \\ \textbf{loop} \ \alpha_1 \leq \textbf{loop} \ \alpha_2, & \text{if} \ \alpha_1 \leq \alpha_2; \\ \textbf{while} \ t \ \textbf{do} \ \alpha \ \textbf{inv} \ i \leq [p,q] & \text{if} \ p \leq i \ \textbf{;} \ t \ \textbf{and} \ \alpha \leq [i,i] \ \textbf{and} \ \neg t \ \textbf{;} \ i \leq q; \\ \textbf{loop} \ \alpha \ \textbf{inv} \ i \leq [p,q] & \text{if} \ p \leq i \ \textbf{and} \ \alpha \leq [i,i] \ \textbf{and} \ i \leq q. \end{array}
```

Refinement of the Thermostat

```
abbreviation dyn T_m T_M a T_u \tau \equiv
 IF (\vartheta = 0) THEN x' = f a 0 \& G T_m T_M a 0 on <math>\{0..\tau\} UNIV @ 0
  ELSE x' = f a T_{ii} \& G T_{m} T_{M} a T_{ii} on \{0..\tau\} UNIV @ 0
lemma R-therm-down
 assumes a > 0 and 0 < \tau and 0 < T_m and T_M < T_u
 shows [\vartheta = 0 \land I T_m T_M \land t = 0 \land T_0 = T, I T_m T_M] >
 (x' = f \ a \ 0 \ \& \ G \ T_m \ T_M \ a \ 0 \ on \ \{0..\tau\} \ UNIV @ 0)
 apply(rule local-flow.R-g-ode-ivl[OF local-flow-therm])
 using therm-dyn-down [OF \ assms(1,3), \ of - T_M] assms by rel-auto'
lemma R-therm-up:
 assumes a > 0 and 0 \le \tau and 0 < T_m and T_M < T_m
 shows [\neg \vartheta = 0 \land I T_m T_M \land t = 0 \land T_0 = T, I T_m T_M] > 
 (x' = f a T_u \& G T_m T_M a T_u on \{0..\tau\} UNIV @ 0)
 apply(rule local-flow.R-g-ode-ivl[OF local-flow-therm])
 using therm-dyn-up[OF assms(1) - - assms(4), of T_m] assms by rel-auto'
```

Refinement of the Thermostat

```
abbreviation ctrl T_m T_M \equiv
 (t := 0); (T_0 := T);
 (IF (\vartheta = 0 \land T_0 < T_m + 1) THEN (\vartheta := 1) ELSE
  IF (\vartheta = 1 \land T_0 \ge T_h - 1) THEN (\vartheta ::= 0) ELSE skip)
lemma R-therm-time: [I T_m T_M, I T_m T_M \land t = 0] \ge (t := 0)
 by (rule R-assign-law, pred-simp)
lemma R-therm-temp:
 [I T_m T_M \wedge t = 0, I T_m T_M \wedge t = 0 \wedge T_0 = T] > (T_0 ::= T)
 by (rule R-assign-law, pred-simp)
lemma R-thermostat-flow:
 assumes a > 0 and 0 \le \tau and 0 < T_m and T_M < T_u
 shows [I T_m T_M, I T_m T_M] \ge therm T_m T_M \ a T_u \ \tau
 by (refinement; (rule R-therm-time)?, (rule R-therm-temp)?,
    (rule R-assign-law)?, (rule R-therm-up[OF assms])?,
     (rule R-therm-down[OF assms])?) rel-auto'
```

Conclusions

- Used modular semantic framework in Isabelle/HOL to
 - \triangleright derive a minimal logic $d\mathcal{H}$ for verification of hybrid programs,
 - \triangleright obtain refinement components via the laws of $d\mathcal{R}$,
- Added lenses for better parsing and alternative program stores
- Future work:
 - Explore total correctness,
 - Adversarial dynamics like in differential game logic,
 - Code generation of verified executable code,
 - Integrate with a CAS that supplies solutions and invariants, leaving the certification work to Isabelle.

https://github.com/yonoteam/CPSVerification