under Graduate Homework In Mathematics

SetTheory 3

白永乐

202011150087

ROBEM I Prove the following statements.

- 1. If $x \cap y = \emptyset$ and $x \cup y \leq y$, then $\omega \times x \leq y$.
- 2. If $x \cap y = \emptyset$ and $\omega \times x \leq y$, then $x \cup y \approx y$.
- SOLION. 1. Assume $f: x \cup y \to y$ is injective, define $f_1 = f, f_{n+1} = f_n \circ f$. Let $g: \omega \times x \to y, g(n,t) \mapsto f_{n+1}(t)$. We only need to prove g is injective. For $(n,u), (m,v) \in \omega \times x$, if n = m, then since f is injective we get f_n is injective, so $f_n(u) \neq f_n(v)$. Else, $m \neq n$, assume n < m, m = n + k. Obviously $f_{n+k}[x] = f_n[f_k[x]] \subset f_n[y]$. Since f_n is injective, we get $f_n[x] \cap f_n[y] = \emptyset$. So $f_n[x] \ni g(n,u) \neq g(m,v) \in f_n[y]$. So g is injective.
- 2. Assume $f: \omega \times x \to y$ is injective. Let $x_n := \{(n,t) : t \in x\}$. Then $\omega \times x = \bigcup_{n \in \omega} x_n$. Consider $g: x \cup y \to y$, for $t \in x$ let g(t) := f(0,t), for $t \in f[x_n]$, let g(t) = f(n+1,t), for other t, let g(t) = t. Then we prove g is bijection.

First we prove g is injection. For $u, v \in x \cup y, u \neq v$, we will prove $g(u) \neq g(v)$.

- $u, v \in x$: Since f is injective, we have $g(u) = f(0, u) \neq f(0, v) = g(v)$.
- $u \in x, v \notin x$: From definition we obtain $f(u) \in f[x_0]$. If $v \in f[x_n]$ for some n, then $f(v) \in f[x_{n+1}]$. Since f is injective, $f[x_0] \cap f[x_{n+1}] = \emptyset$. So $f(u) \neq f(v)$. Else, we know $g(v) = v \notin f[x_0] \ni f(u)$.
- $u \in f[x_m], v \in f[x_n]$: If m = n then $g(u) = f(m+1, u) \neq f(n+1, v) = g(v)$. Else $m \neq n$, then $g(u) \in f[x_{m+1}], g(v) \in f[x_{m+1}], f[x_{m+1}] \cap f[x_{m+1}] = \emptyset$. So $g(u) \neq g(v)$.
- $u \in x_n, v \notin x, \forall m, v \notin f[x_m]$: Easily $g(u) \in f[x_{n+1}]$ and $g(v) = v \notin f[x_{n+1}]$.
- $u, v \notin x, \forall n, u, v \notin f[x_n]$: Easily $g(u) = u \neq v = g(v)$.

SOUTON. 1. Use MI to prove $\varphi(n) := \forall A \approx n, \forall B \subset A, \exists m \in \omega, B \approx m \text{ for } n \in \omega.$ When n = 0, we know $A \approx 0 \to A = \emptyset$. So $B = \emptyset$ and thus $B \approx 0$. Now we prove $\varphi(n) \to \varphi(n+1)$. For $A \approx n+1$, if B = A then $B \approx n+1$. Else, $\exists x \in A \setminus B$. Assume $f : A \to n+1$ is bijection.

Consider
$$g:A\to n+1$$

$$\begin{cases} g(t)=f(t) & t\neq x\wedge g(t)\neq n\\ g(t)=n+1 & t=x\\ g(t)=f(x) & f(t)=n \end{cases}$$
 Easy to know g is bijection, too.

And since $x \notin B$ we get $B \subset g^{-1}[n] \approx n$, so by induction we get $\exists m \in \omega, B \approx m$.

2. First we prove union of two disjoint finite sets A and B is finite.

Use MI to the card of the second set B. For $B = \emptyset$ it's obvious. For $B \approx 1$, assume $A \approx n$, Thrn $B \approx \{n\}$, so $A \cup B \approx n \cup \{n\} = n+1$ is finite. Assume for certain $n, \forall B \approx n$ it's right, now we prove it's right for n+1. Assume $f: B \to n+1$ is bijection, then $f^{-1}[n] \approx n$, so $A \cup f^{-1}[n]$ is finite. Since $B = f^{-1}[n] \cup \{f^{-1}(n)\}$ we get $A \cup B = A \cup f^{-1}[n] \cup \{f^{-1}(n)\}$. Since $\{f^{-1}(n)\} \approx 1$, so the union is finite.

For general two finite sets A, B we have $A \cup B = A \cup (B \setminus A)$ and from II.1 we know $B \setminus A$ is finite, so $A \cup B$ is finite. Now we use MI to prove $\varphi(n) := \forall x \approx n((\forall y \in x, isFinite(y)) \rightarrow isFinite(\bigcup x))$ for $n \in \omega$. When n = 0, 1, 2 it's obvious. Assume for certain $n \geq 2$ we have $\varphi(n)$, then we prove $\varphi(n+1)$. Assume $f: x \to n+1$ is bijective, let $y = f^{-1}[n] \subset x$. Then $y \approx n$, by induction we know $\bigcup y$ is finite. Since $x = y \cup \{f^{-1}(n)\}$ we get $\bigcup x = (\bigcup y) \cup f^{-1}(n)$. So $\bigcup x$ is finite, too.

3. Use MI of the card. For $x \approx 0$ we know $\mathscr{P}(x) = \{\varnothing\} \approx 1$. Assume for certain n we have $\forall x \approx n, isFinite(\mathscr{P}(x))$, then for $x \approx n+1$: Assume $f: x \to n+1$ is bijection. Let $y = f^{-1}[n]$ and $t = f^{-1}(n)$. Then $u \approx n$. Let $\theta: \mathscr{P}(x) \setminus \mathscr{P}(u) \to \mathscr{P}(u)$ $\theta(a) := a \setminus \{t\}$. Easily θ is

then there is nothing to do. Now assume x is infinite. We define f on ω by induction. Let $f(0) = \min x$ and $f(n) = \min(x \setminus f[n])$. Since x is infinite, we know $f[n] \subsetneq x$, so f is well-defined. And easily to prove f is a bijection. So $x \approx \omega$ is countable.

2. Use MI to the number of sets to cup, write n. When n=1 it's obvious. For n=2, we should prove two countable sets u, v's union $u \cup v$ is countable. Let $f: \omega \to u, g: \omega \to v$ is bijections, we need to find a bijection $h: \omega \to u \cup v$. We define h by induction. Let $h(n) = f(\min f^{-1}[u \setminus h[n]])$ for $2 \mid n$ and let $h(n) = g(\min g^{-1}[v \setminus h[n]])$ for $n \nmid 2$. Since u, v is infinite we obtain h is well-defined. Now we prove h is bijective. First we prove h is injective. For $m, n \in \omega, m \neq n$, assume m < n. If $x \mid n$, then $h(n) = f(\min f^{-1}[u \setminus h[n]]) \in f[f^{-1}[u \setminus h[n]]] = u \setminus h[n]$ and $h(m) \in h[n]$. So $h(m) \neq h(n)$. If $x \nmid n$ for the same reason we get $h(m) \neq h(n)$.

Second we prove h is surjective. Only need to prove $u, v \in h[\omega]$. By symmetry we only need to peove $u \in h[\omega]$. Since $u = f[\omega]$, we only need to prove $f[n] \in h[2n-1], \forall n \in \omega$. Use MI to prove it. For n = 0 it's obvious. Assume for certain n it's right, for n + 1, we only need to prove $a := f(n) \in h[2n+1]$. If not, since $h(2n) = f(\min f^{-1}[u \setminus h[2n]])$ and $a \notin h[2n]$, we have $a \in u \setminus h[2n]$. Then $n = f^{-1}(a) \in f^{-1}[u \setminus h[2n]]$. For m < n, by induction we get $f(m) \in h[2m-1] \subset h[2n]$, so $m \notin f^{-1}[u \setminus h[2n]]$, thus $n = \min f^{-1}[u \setminus h[2n]]$. So h(2n) = a, contridiction! So h is surjective.

Now we assume for certain $n \geq 2$ we have union of n countable sets is countable, we need to prove so do n+1 sets. Assume $A \approx n+1$ and $\forall x \in A, x \approx \omega$. Assume $f: A \to n+1$ is bijection, and let $B:=f^{-1}[n], t=f^{-1}(n)$, then $\bigcup A=(\bigcup B)\cup t$. By induction we know $\bigcup B$ is countable. And we have proved union of two countable sets is countable. So finally we get $\bigcup A$ is countable.

SOUTION. Only need to find a injection $h: {}^{\kappa}\kappa \to {}^{\kappa \times \kappa}2$. For $f \in {}^{\kappa}\kappa$, let $h(f) \in {}^{\kappa \times \kappa}2$, and for $u, v \in \kappa$ let $h(f)(u, v) := \begin{cases} 1 & u = f(v) \\ 0 & u \neq f(v) \end{cases}$. Then we prove h is a injection. Assume $f, g \in {}^{\kappa}\kappa$ and

h(f) = h(g). Then $\forall v \in \kappa$, we have h(g)(f(v), v) = h(f)(f(v), v) = 1, so f(v) = g(v). So h is injective.

 \mathbb{R}^{OBEM} VI If $A \leq B$, then $A \leq^* B$.

SOUTHON. If $A=\varnothing$ then it's obvious. Now assume $A\neq\varnothing$ and $a\in A$. Assume $f:A\to B$ is injection. Let $h:B\to A, h(y):=\begin{cases} f^{-1}(y) & y\in\operatorname{ran}(f)\\ a & y\notin\operatorname{ran}(f) \end{cases}$ Then $\forall x\in A, h(f(x))=x$. So h is surjective.

ROBEM VII If $A \preceq^* B$, then $\mathscr{P}(A) \preceq \mathscr{P}(B)$

SOUTON. If $A=\varnothing$ then $\mathscr{P}(A)=1$. Let $f:\mathscr{P}(A)\to\mathscr{P}(B), 0\mapsto B$, then f is injective. Else we get $A\neq\varnothing$. Then assume $f:B\to A$ is surjective. Let $h:\mathscr{P}(A)\to\mathscr{P}(B), U\mapsto f^{-1}[U]$. Then we only need to prove h is injective. Assume $U,V\subset A$ and h(U)=h(V). We get $f^{-1}[U]=f^{-1}[V]$. If $U\neq V$, assume $U\setminus V\neq\varnothing$ and $x\in U\setminus V$, then since f is surjective we get $\exists t\in A, f(t)=x$. So $t\in f^{-1}[U]$ but $t\notin f^{-1}[V]$, contridiction! So h is injective. Then $\mathscr{P}(A)\preccurlyeq\mathscr{P}(B)$.

ROBEM VIII Let X be a set. If there is an injective function $f: X \to X$ such that $\operatorname{ran}(f) \subsetneq X$, then X is infinite.

SOUTHOW. Use MI to prove $\forall n \in \omega, X \not\approx n$. For n=0, if $X\approx n$ then X=0. So $X\subset \operatorname{ran}(f),$