Model Development

Robert Clements

MSDS Program

University of San Francisco

We'll Start with Model Development and Talk About the Data Later

• Goal: to learn how to approach the development of a machine learning model like a scientist.

 How: in the lab we will grab some freely available ML datasets and use a popular tool called MLFlow to conduct "experiments".

 Note: we are *not* going to be all that concerned with the actual model that we build. That is not the point here.

Experiment Tracking

How do YOU keep track of your models during model development?

Doing Experiments

- Not talking about Experimentation (A/B testing, Multi-armed Bandit)
- Main idea:

What Should We Track in our Experiments?

Examples

- You randomly split your data into a training and testing set using a random seed:
 - You should log the seed and version your training, validation and testing sets.
- You do hyperparameter tuning to find the optimal model:
 - You should log all results from each model (metric, performance charts, model weights, hyperparameter values) for each combination of hyperparameter values.
- You decide to try a different algorithm:
 - You should log all results of this model (metric, performance charts, model weights, hyperparameter values) to compare with your other models.

Why do we need a new tool to do this for us?

• It is difficult, and prone to error, to track results by porting them over to a spreadsheet.

	A	В	C	D	E	F	G	Н	1
1	Iteration	Training	Validation	Testing	Model-ID	algorithm	mtry	ntree	AUC
2	1	dataA	valA	testA	rf1.1	rf	3	50	0.65
3	2	dataA	ValA	testA	rf1.2	rf	4	50	0.652
4	3	dataA	valA	testA	rf1.3	rf	5	50	0.652
5	4	dataA	ValA	testA	rf2.1	rf	3	70	0.651
6	5	dataA	valA	testA	rf2.2	rf	4	70	0.652
7	6	dataA	ValA	testA	rf2.3	rf	5	70	0.65
8	7	dataA	valA	testA	rf3.1	rf	3	90	0.651
9	8	dataA	ValA	testA	rf3.2	rf	4	90	0.653
10	9	dataA	valA	testA	rf3.3	rf	5	90	0.654
11	10	dataA	ValA	testA	rf4.1	rf	3	100	0.654
12	11	dataA	valA	testA	rf5.1	rf	3	120	0.655
13	12	dataA	ValA	testA	rf5.2	rf	4	120	0.6551
14	13	dataA	valA	testA	rf5.3	rf	5	120	0.6551
15	14	dataA	ValA	testA	rf5.4	rf	5	150	0.655
16	15	dataA	valA	testA	rf5.5	rf	5	200	0.65
17									

Why do we need a new tool to do this for us?

• It is difficult, and prone to error, to track results by porting them over to a spreadsheet.

Experiment Tracking Tools

MLFlow

- MLFlow is a tool that promises to do four things:
 - Track experiments
 - Package projects
 - Store artifacts
 - Deploy models
- MLFlow is a python library:
 - Needs a backend store
 - Can run locally or on a server

MLFlow Architecture

- Where should everything be recorded?
- Options:

Experiment Tracking in MLFlow

```
Import mlflow
with mlflow.start run():
     ...code...
     mlflow.set_tag("Tag_name", "Tag value") creates metadata
     mlflow.log_params(params)
     mlflow.log_metric("metric_name", metric_value)
     mlflow.end run()
OR
     mlflow.autolog() # can customize what gets logged
     mlflow.sklearn.autolog() # specific to sklearn
```

Experiment Tracking in MLFlow

```
Import mlflow
with mlflow.start run():
     ...code...
    mlflow.set tag("Tag name", "Tag value")
    mlflow.log params(params)
    mlflow.log_metric("metric name", metric value)
    mlflow.end run()
OR
    mlflow.autolog() # can customize what gets logged
    mlflow.sklearn.autolog() # specific to sklearn
```

Autologging exists for all of these

- Fastai
- Gluon
- Keras/TensorFlow
- LangChain
- LlamaIndex
- LightGBM
- OpenAl
- Paddle
- PySpark
- PyTorch
- Scikit-learn
- Spark
- Statsmodels
- XGBoost

MLFlow Experiment Tracking Demo

Artifact Tracking and Model Registry

• An artifact is any output file that you'd like to store from the runs of your experiments:

Plots/images

 An artifact is any output file that you'd like to store from the runs of your experiments:

Plots/images

• An artifact is any output file that you'd like to store from the runs of your experiments:

Plots/images

• An artifact is any output file that you'd like to store from the runs of your experiments:

Plots/images

Artifact Tracking in MLFlow

```
Import mlflow
with mlflow.start_run():
     ...code...
     mlflow.set_tag("Tag_name", "Tag value")
     mlflow.log_params(params)
     mlflow.log_metric("metric_name", metric_value)
     mlflow.log artifacts("path/to/artifact")
     mlflow.end run()
```

What is a model registry?

A model registry is where you store and register your models.

MLFlow Artifact Tracking and Model Registry Demo

Experiment Tracking Lab