NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1967 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on UHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 6.7 dB$ $@V_{CC} = 13.5 V$, $P_0 = 7 W$, f = 470 MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Ability of withstanding more than 20:1 load VSWR all phase when operated at V_{CC} = 15.2V, P_O = 7W, f = 470MHz.
- Low thermal resistance ceramic package with flange.

APPLICATION

3 to 5 watts output power amplifiers in UHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V _{CBO}	Collector to base voltage		35	V	
VEBO	Emitter to base voltage		4	V	
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V	
Ic	Collector current		2	Α	
Pc	Collector dissipation	T _C =25°C	20	w	
Tj	Junction temperature		175	,c	
Tstg	Storage temperature		-55 to 175	.c	
Rth-c	Thermal resistance	Junction to case	7.5	°C/W	

Note. Above parameters are guaranteed independently

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

Symbol	Parameter Test conditions	Total and distant	Limits			
		est conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =5mA, I _C =0	4			٧
V _(BR) CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	. 17			٧
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			200	μΑ
1 _{EBO}	Emitter cutoff current	V _{EB} =2V, I _C =0			200	μА
hFE	DC forward current gain *	V _{CE} = 10 V, I _C = 0.1A	10	50	180	_
Po	Output power	V _{CC} =13.5V, P _{In} =1.5W, f=470MHz	7	8		W
η_{C}	Collector efficiency		50	60		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%

Above parameters, ratings, limits and conditions are subject to change

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

P : Pitch of coil

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

P : Pitch of coil

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)