Guía 2: Posets e isomorfismos

Órdenes parciales

- Orden parcial: una relación binaria R sobre un conjunto A es un orden parcial sobre A si es reflexiva, transitiva y antisimétrica respecto de A.
 - El orden parcial se denota con \leq
 - $<= \{(a,b) \in A^2 : a \le b \land a \ne b\}$
 - Cubrir: $\prec = \{(a,b) \in A^2 : a < b \land \nexists z | a < z < b\}$
 - * Cuando se de $a \prec b$, diremos que b cubre a a (respecto de \leq).
 - **Tapar**: Dado un poset (P, \leq) y $a, b \in P$, diremos que b tapa a a cuando $a < b \land b \leq c \forall c \in P : a \leq c$
 - \ast Si btapa a a, entonces b cubre a a. Pero no se cumple la recíproca
 - Poset denso: un poset (P, \leq) es denso si $\forall a, b \in P : a < b \Rightarrow \exists c \in P : a < c \land c < b$
- Orden total: un orden total sobre A es un orden parcial \leq sobre A que cumple $x \leq y \vee y \leq x \forall x, y \in A$.
- Poset (conjunto parcialmente ordenado): Un poset es un par (P, \leq) donde P es un conjunto no vacío y \leq es un orden parcial sobre P
- Conjunto totalmente ordenado: es un par (P, \leq) donde P es un conjunto no vacío y \leq es un orden total sobre P
 - Todo conjunto totalmente ordenado es un poset

Diagramas de Hasse

- Dado un poset (P, \leq) con P finito, el diagrama de Hasse se hace siguiendo estas instrucciones:
 - 1. Asociar en forma inyectiva a cada $a \in P$ un punto p_a del plano
 - 2. Trazar un segmento de recta uniendo los puntos p_a y p_b , cada vez que $a \prec b$
 - 3. Realizar lo indicado en los puntos (1) y (2) en tal forma que
 - 1. Si $a \prec b$, entonces p_a está por debajo de p_b
 - 2. Si un punto p_a ocurre en un segmento del diagrama, entonces lo hace en alguno de sus extremos

Elementos maximales, máximos, minimales y mínimos

- Máximo y mínimo: Sea (P, \leq) un poset, diremos que $a \in P$ es un elemento máximo de (P, \leq) si $b < a \forall b \in P$. Análogamente se define el mínimo.
 - Hay a lo sumo un máximo o mínimo (pero puede no haber)
 - El máximo se denota con 1 y el mínimo con 0.
- Maximal y minimal: Sea (P, \leq) un poset, diremos que $a \in P$ es un elemento maximal de (P, \leq) si $\nexists b \in P : a < b$. De forma análoga se define el minimal.
 - No siempre hay maximales o minimales en un poset
 - Todo máximo (resp. mínimo) es un elemento maximal (resp. minimal) del poset
 - Si un poset no tiene elementos maximales, entonces es infinito

Supremos e ínfimos

Supremos

- Cota superior: Sea (P, \leq) un poset y dado $S \subseteq P$, diremos que $a \in P$ es cota superior de S en (P, \leq) cuando $b \leq a \forall b \in S$.
- Supremo: Un elemento $a \in P$ es supremo de S en (P, \leq) cuando:
 - 1. a es cota superior de S en (P, \leq)
 - 2. $\forall b \in P$, si b es cota superior de S en (P, \leq) , entonces $a \leq b$

- Se denotará, en caso que exista, con sup(S)
- Propiedades:
 - * Hay a lo sumo un supremo (no siempre existe)
 - * En caso de existir, $sup(\emptyset)$ en (P, \leq) es el mínimo de (P, \leq)
 - * Si $a = \sup(S)$, entonces $a = \sup(S \cup \{a\})$
 - * Si $a \in P$, entonces a es máximo de $(P, \leq) \iff a = \sup(P)$
 - * Sea $S \subseteq P$ y $b \in P$, si a = sup(S) y existe $sup(\{a,b\})$, entonces $sup(S \cup \{b\}) = sup(\{a,b\})$
- Ejemplo de supremo: Considerando el poset (\mathbb{N}, D) donde $D = \{(x, y) \in \mathbb{N}^2 : x | y\}$, dados $x, y \in \mathbb{N}$, se tiene que mcm(x, y) es el supremo de $\{x, y\}$ en (\mathbb{N}, D)

Ínfimos

- Cota inferior: Sea (P, \leq) un poset, dado $S \subseteq P$, diremos que un elemento $a \in P$ es cota inferior de S en (P, \leq) cuando $a \leq b \forall b \in S$.
- Ínfimo: Un elemento $a \in P$ será llamado ínfimo de S en (P, \leq) cuando:
 - 1. a es cota inferior de S en (P, <)
 - 2. $\forall b \in P$, si b es cota inferior de S en (P, \leq) , entonces $b \leq a$
 - Se denotará, en caso de que exista, inf(S)
 - Propiedades:
 - * Hay a lo sumo un ínfimo (no siempre existe)
 - * En caso de existir, el ínfimo de \emptyset es el máximo del poset
 - Ejemplo de ínfimo: Sea el poset (\mathbb{N}, D) donde $D = \{(x, y) \in \mathbb{N}^2 : x | y\}$, dados $x, y \in \mathbb{N}$ se tiene que mcd(x, y) es el ínfimo de $\{x, y\}$ en (\mathbb{N}, D)

Homomorfismos e isomorfimos

- Homomorfismo: Sean (P, \leq) y (P', \leq') posets, una función $F: P \to P'$ será llamada homomorfismo de (P, \leq) en (P', \leq') si $\forall x, y \in P$ se cumple que $x \leq y \Rightarrow F(x) \leq' F(y)$.
 - Escribiremos $F:(P,\leq)\to (P',\leq')$ para expresar que F es un homomorfismo de (P,\leq) en (P',\leq')
 - Propiedades: Suponiendo que F es survectiva, entonces
 - * Si (P, \leq) es un conjunto totalmente ordenado, (P', \leq') también lo es
 - * Si (P, \leq) tiene un elemento máximo/mínimo, entonces (P', \leq') también
- Isomorfismo: Una función $F: P \to P'$ será llamada un isomorfismo de (P, \leq) en (P', \leq') si F es biyectiva, F es un homomorfismo de (P, \leq) en (P', \leq') y F^{-1} es un homomorfismo de (P', \leq') en (P, \leq) .
 - Escribiremos $(P, \leq) \cong (P', \leq')$ cuando exista un isomorfismo entre $(P, \leq), (P', \leq')$ y, en este caso, diremos que son isomorfos
- Propiedades:
 - Lema (isomorfismos conservan todas las propiedades matemáticas): Sean $(P, \leq 1)$, $(P', \leq 1)$ posets y F un isomorfismo de $(P, \leq 1)$ en $(P', \leq 1)$:
 - * $\forall x, y \in P, x < y \iff F(x) <' F(y)$
 - * $\forall x \in P, x$ es máximo (resp. mínimo) de $(P, \leq) \iff F(x)$ es máximo (resp. mínimo) de (P', \leq')
 - * $\forall x \in P, x$ es maximal (resp. minimal) en $(P, \leq) \iff F(x)$ es maximal (resp. minimal) en (P', \leq')
 - * $\forall x, y, z \in P, z = \sup\{x, y\} \iff F(z) = \sup\{F(x), F(y)\}\$
 - * $\forall x, y, z \in P, z = \inf\{x, y\} \iff F(z) = \inf\{F(x), F(y)\}$
 - $* \forall x, y \in P, x \prec y \iff F(x) \prec' F(y)$
 - · Esto garantiza que si dos posets finitos son isomorfos, entonces pueden representarse con el mismo diagrama de Hasse

- El isomorfismo conserva las siguientes propiedades:
 - $\ast\,$ Que el poset sea denso
 - * La cantidad de máximos/mínimos/maximales/minimales * x es tapado por $y \iff F(x)$ es tapado por F(y)