10. Consider the two cascaded  $2 \times 1$  multiplexers as shown below in Fig. Q10. Determine the minimal sum of products expression for the output f(P,Q,R) if  $I_0$  of MUX, and MUX, are  $\overline{R}$  and 0 respectively. [2]



Fig. Q10

Solution: f(P,9,R) = Em (2,7) = P9R+ P9R

11. A synchronous counter has three J K flip-flops with the input functions  $J_2 = \overline{Q_1}$ ;  $K_2 = Q_0$ ;  $J_1 = Q_2 + Q_0$ ;  $K_1 = \overline{Q_2}$ ;  $J_0 = Q_1$  and  $K_0 = 0$ . (a) Assuming that  $Q_2Q_1Q_0=000$  , determine the number of clock pulses are required before the counter begins as a modulo-N counter? (b) What is N?

[1+2]

Solution: (a)

12. A three bit pseudo random number generator is shown in Fig. Q12. Initially the value of output  $Y_2Y_1Y_0$  is set to 111. What is the value of the outputs  $Y_2Y_1Y_0$  after 600 clock cycles? [2]



Solution:



## **EE-101: Basic Electronics End semester Examination**

Set Code: EE-101/2019/ES-SD

Max. Time: 180 min

Max. Marks: 30

Tutorial Group: T- 18

Roll no.: 190123046 Name: Radnesh P. Kalkar

Invigilator's Signature:



## Instructions

- Write answers neatly with appropriate SI units in the spaces provided
- All answers should be rounded up to the third decimal point
- Exchange of Calculators or any other material is not allowed.
- Mobile phones are not allowed inside the examination hall.
- Write answers neatly in the space below the question marked as Solution



1. A balanced three-phase system has star connected loads, star connected sources and nonzero line impedances. At the source end, the nomenclature of the three lines are with small letters a, b, c and at the load end, the nomenclatures are with capital letters A, B, C. The line voltage  $V_{AB}$  has a value of  $500 \angle 0^o$  V (rms). Voltage coil of one wattmeter (W) is connected between the lines A & B and the current coil is in series with the line aA. If the line and the load impedances per phase are  $Z_L = 1 +$ j0 and  $Z_P = 12 + j5$ . Find, (a)  $V_{bn}$  (rms) (answer in phasor form) and (b) the reading of the wattmeter in kW. [1+2]



Solution: (a)  $V_{bn} = 309 \cdot 285 \angle -151 \cdot 582$  V

2. A 400 V rms (line voltage) balanced three-phase system supplies 1500 W to a balanced Y-connected load at a lagging PF of 0.9. What are the values of (a) the per phase load resistance ( $R_P$ ) and (b) the per phase load reactance  $(X_P)$ ? [1+1]

Solution: (a)  $R_P =$ 86.4001

- 3. Find the equivalent inductances seen at terminals 1 and 2 in the network of Fig. Q3 if the following terminals are connected together: (a) none and (b) A to B.





Solution: (a)

Page 1 of 4



4. Fig. Q4 shows a parallel magnetic circuit. The core material has a relative permeability of 4000. The number of turns is given as N = 800 and the cross-sectional area of the core is  $A_c = 3 \times 3 \ cm^2$ . The length of the air gap is  $l_a = 0.02 cm$  and the flux in the central limb is 0.01 Wb. Find (a) the flux [1+2]in the right limb and (b) the required exciting current.



Solution: (a) 0.002Wb (b) 3-186 A



5. Let  $i_s = 3 \cos(10t)$  A in the circuit shown in Fig. Q5. Find the total energy stored when the current is is maximum if (a) a-b is open-circuited, (b) a-b is short-circuited. [1+1]





6. Determine (a) the value of the resonant frequency ( $f_0$ ) in Hz and (b) the magnitude of the impedance seen from the source at half power frequencies for the network shown in Fig. Q6.



100 Ω 0.02  $\mu$ F M = 20 H  $( \bigcirc )$  10 cos  $\omega$ t V 40 H ≺ Fig. Q6

Solution: (a) 217-392 Hz

[1+1]



7. Given the network of figure shown in Fig. Q7, express the functions  $f_2(w,x,y,z)$  and  $f_3(w,x,y,z)$  using minimum possible number of minterms if  $f_1 = w y + w y$  and the overall transmission function is to be  $f(w, x, y, z) = \sum m(0, 4, 9, 10, 11)$ . Given that  $f_2(w, x, y, z) \neq 0$ .



olution: 
$$f(w \times y z) = \sum m(G)$$
 :  $f(w)$ 

Solution: 
$$f_2(w, x, y, z) = \sum_{m \in \mathcal{G}} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_1} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_1} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_1, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x, y, z) = \sum_{m \in \mathcal{G}_2} m(\mathcal{G}_2, w, x$$

Page 2 of 4



8. The literal count of a Boolean expression is the sum of the number of times each literal appears in the expression. For example, the literal count of (xy + xz) is 4. What are the minimum possible literal counts of the (a) product-of-sum and (b) sum-of-product representations respectively of the function given by the following K-map (Fig. Q8)? Here, X denotes "don't-care". [1.5+1.5]

| ZW | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | X  | 1  | 0  | 1  |
| 01 | 0  | 1  | ×  | 0  |
| 11 | 1  | 1  | ×  | 0  |
| 10 | X  | 0  | 0  | X  |
|    |    |    |    |    |

Fig. Q8

Solution: (a)

Page 3 of 4

10

9. The borrow obtained from the operation x-y-z of a full subtractor can be realized using two  $2 \times 4$  decoders as shown in Fig. Q9. For feasible realization, the input and enable signals of the decoders can be connected to one of the six signals  $\{x, x, y, y, z, z\}$ . The appropriate choice for [3]  $A_0, A_1, E_0, B_0, B_1$  and  $E_1$  are respectively.

Solution:  $A_0 = \mathbf{Z}$  ;  $A_1 = \mathbf{Y}$  ;  $E_0 = \mathbf{X}$  ;  $B_0 = \mathbf{Z}$  ;  $B_1 = \mathbf{Y}$  ;  $E_1 = \mathbf{Z}$ 



Fig. Q9