

Europäisches Patentamt European Patent Office

Office européen des brevets

EP 1 022 087 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

26.07.2000 Patentblatt 2000/30

(21) Anmeldenummer: 00100822.6

(22) Anmeldetag: 17.01.2000

(51) Int. Cl.⁷: **B23K 26/12**

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 19.01.1999 DE 19901900

(71) Anmelder:

Linde Technische Gase GmbH 82049 Höllriegelskreuth (DE)

(72) Erfinder: Herrmann, Johann 85716 Unterschleissheim (DE)

(74) Vertreter:

Obermüller, Bernhard et al Linde Aktiengesellschaft Zentrale Patentabteilung 82049 Höllriegelskreuth (DE)

(54)Laserschweissen mit Prozessgas

(57)Die Erfindung betrifft ein Prozeßgas zum Laserschweißen mit einem auf ein zu schweißendes Werkstück fokussierten Laserstrahl. Erfindungsgemäß enthält das Prozeßgas neben Helium und gegebenenfalls Argon zumindest Kohlendioxid mit einem Anteil bis zu 40 Vol.-%. Das Prozeßgas kann weniger oder gleich 85 Vol.-% Helium aufweisen. Vorteilhafterweise liegt der Anteil von Kohlendioxid zwischen 1 und 35 Vol.-%. Das Prozeßgas kann ferner Sauerstoff mit einem Anteil bis zu 30 Vol.-% enthalten.

10

15

20

25

30

35

Beschreibung

Die Erfindung betrifft ein Prozeßgas zum [0001] Laserschweißen mit einem auf ein zu schweißendes Werkstück fokussierten Laserstrahl. Die Erfindung betrifft ferner ein Verfahren zum Laserschweißen, wobei ein fokussierter Laserstrahl auf eine zu bearbeitende Werkstückoberfläche geführt wird und ein inertgashaltiger Prozeßgasstrom gegen die Werkstückoberfläche geleitet wird, bei dem das Prozeßgas eingesetzt wird.

1

[0002] Die Eigenschaften der Laserstrahlung, insbesondere die Intensität und gute Fokussierbarkeit, haben dazu geführt, daß Laser heute in vielen Gebieten der Materialbearbeitung zum Einsatz kommen. Die Laserbearbeitungsanlagen sind an sich bekannt. In der Regel weisen sie einen Laserbearbeitungskopf, gegebenenfalls mit einer zum Laserstrahl koaxial angeordneten Düse auf. Oftmals werden Laserbearbeitungsanlagen in Verbindung mit einer CNC-Steuerung eingesetzt.

[0003] Unter einem fokussierten Laserstrahl wird im Rahmen der Erfindung ein im wesentlichen auf die Werkstückoberfläche fokussierter Laserstrahl verstanden. Außer bei der überwiegend eingesetzten Methode mit auf die Werkstückoberfläche fokussierter Laserstrahlung kann die Erfindung auch bei der selten benutzten Variante mit nicht exakt auf die Werkstückoberfläche fokussierter Strahlung angewandt werden.

Bei vielen Verfahren der Lasermaterialbear-[0004] beitung wird metallisches und/oder sonstiges Material auf Temperaturen erhitzt, bei denen eine Reaktion mit den einhüllenden Gasen stattfindet. In vielen Fällen werden daher technische Gase eingesetzt, um diese Materialberarbeitungsprozesse effektiver, schneller und/oder mit verbesserter Qualität durchführen zu kön-

[0005] Beim Laserschweißen erfüllen Prozeßgase verschiedene Aufgaben. Die Kontrolle und Reduzierung des Plasmas ist bei hohen Laserleistungen zwingend. Dies ist beispielsweise aus der Veröffentlichung "Laser im Nebel", Dr. W. Danzer und Klaus Behler, Zeitschrift LASER, Ausgabe 1/87, Seiten 32 bis 36, bekannt. Andere Aufgaben wie der Schutz vor Oxidation, eine metallurgische Optimierung und/oder eine Maximierung der Geschwindigkeit und der Qualität (Spritzer, Poren, Nahtqualität) werden bislang vernachlässigt.

Beim Laserschweißen ist es bekannt, inerte [0006] Schutzgase wie Helium oder Argon einzusetzen. Auch Stickstoff wird teilweise verwendet. Vereinzelt werden auch Beimengungen von Kohlendioxid, Sauerstoff oder Wasserstoff zu Argon oder Stickstoff gemischt.

Der Erfindung lag daher die Aufgabe [0007] zugrunde, ein Prozeßgas und ein Verfahren der eingangs genannten Art aufzuzeigen, welche ein verbessertes Laserschweißen ermöglichen. Insbesondere sollten mit Hilfe des Prozeßgases auch neben der Kontrolle und Reduzierung des Plasmas ein Schutz vor Oxidation, eine metallurgische Optimierung und/oder eine

Maximierung der Geschwindigkeit und der Qualität erreicht werden.

[0008] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Prozeßgas neben Helium und gegebenenfalls Argon zumindest Kohlendioxid mit einem Anteil bis zu 40 Vol.-% enthält.

[00091 Wesentlich ist für die Erfindung, daß das Prozeßgas neben einem Inertgasanteil auch einen Aktivgasanteil aufweist.

[0010] In Ausgestaltung der Erfindung enthält das Prozeßgas weniger oder gleich 85 Vol.-% Helium. Vorteilhafterweise liegt der Anteil von Helium im Prozeßgas zwischen 5 und 50 Vol.-%.

Es hat sich in Versuchen gezeigt, daß sogar [0011] bereits ein relativ niedriger Anteil an Helium in der Größenordnung von etwa 25 Vol.-% (z.B. ± 10 %) in der Regel für eine wirksame Plasmakontrolle ausreicht. Der genaue Prozentsatz für den Heliumanteil ist von verschiedenen Faktoren wie beispielsweise der Laserleistung, der Energiedichte, der Materialart, der Menge an verdampftem Material, der Schutzgasmenge, der Art der Gaszufuhr zum Schweißprozeß etc. abhängig. Die Anpassung der Gaszusammensetzung vor dem Hintergrund dieser Einflußfaktoren stellt für den Fachmann keinerlei Schwierigkeit dar.

[0012] In Weiterbildung der Erfindung enthält das Prozeßgas zwischen 1 und 35 Vol.-% Kohlendioxid, vorzugsweise zwischen 5 und 30 Vol.-% Kohlendioxid, besonders bevorzugt zwischen 10 und 25 Vol.-% Kohlendioxid.

[0013] Versuche an verzinkten Blechen brachten sehr gute Ergebnisse mit einem Anteil von 10 bis 25 Vol.-% Kohlendioxid (z.B. 15 Vol.-% CO2). Der erfindungsgemäße Kohlendioxidanteil führte zu wesentlich konstanteren Schweißergebnissen. Der Schweißprozeß war wesentlich sicherer und gegen Verunreinigununempfindlicher. gen des Nahtbereichs Geschwindigkeit konnte in einem Fall von 6 m/min auf 7 m/min gesteigert werden.

Mit Vorteil kann das Prozeßgas Sauerstoff 40 [0014] mit einem Anteil bis zu 30 Vol.-% enthalten. Gute Ergebnisse haben sich bei Prozeßgasen mit mehr als 10 Vol.-% Sauerstoff ergeben. Vorzugsweise enthält das Prozeßgas zwischen 15 und 25 Vol.-% Sauerstoff.

[0015] Es haben sich insbesondere Prozeßgase 45

- aus einem ternären Gasgemisch mit den Komponenten Helium, Argon und Kohlendioxid,
- aus einem ternären Gasgemisch mit den Komponenten Helium, Argon und Sauerstoff
- aus einem guaternären Gasgemisch mit den Komponenten Helium, Argon, Kohlendioxid und Sauerstoff

bewährt.

[0016] In Ausbildung der Erfindung, insbesondere der genannten ternären bzw. guaternären Gasgemi-

50

sche, eignen sich für das Laserschweißen Prozeßgase, welche zwischen 5 und 50 Vol.-% Helium, 0 bis 40 Vol.-% Kohlendioxid, 0 bis 40 Vol.-% Sauerstoff und restlich Argon enthalten.

[0017] Helium dient dabei der Plasmaunterdrükkung bzw. -kontrolle. Kohlendioxid unterstützt den
Schmelzfluß. Argon erhöht die Abdeckung der
Schweißzone. Argon erfüllt auch zumindest teilweise
die Aufgabe des Heliums und trägt daher als preisgünstiger Ersatz des Inertgases Helium zur Wirtschaftlichkeit des Laserschweißens bei. Die Sauerstoffbeigabe kann am Schweißprozeß bestimmte positive Effekte hervorrufen.

[0018] Die Erfindung kann im Zusammenhang mit allen Arten von Lasern zur Anwendung kommen. Vor allem eignet sie sich für den Einsatz bei der Laserbearbeitung mit Nd-YAG-Laser, Dioden-Laser und CO_2 -Laser.

[0019] Mit dem erfindungsgemäßen Prozeßgas können insbesondere mit Vorteil niedriglegierte Stähle 20 und verzinkte Stähle geschweißt werden.

Patentansprüche

- Prozeßgas zum Laserschweißen mit einem auf ein zu schweißendes Werkstück fokussierten Laserstrahl, dadurch gekennzeichnet, daß das Prozeßgas neben Helium und gegebenenfalls Argon zumindest Kohlendioxid mit einem Anteil bis zu 40 Vol.-% enthält.
- Prozeßgas nach Anspruch 1, dadurch gekennzeichnet, daß das Prozeßgas weniger oder gleich 85 Vol.-% Helium enthält.
- Prozeßgas nach Anspruch 2, dadurch gekennzeichnet, daß das Prozeßgas zwischen 5 und 50 Vol.-% Helium enthält.
- Prozeßgas nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Prozeßgas zwischen 1 und 35 Vol.-% Kohlendioxid, vorzugsweise zwischen 5 und 30 Vol.-% Kohlendioxid enthält.
- **5.** Prozeßgas nach einem der Ansprüche 1 bis 4, 45 dadurch gekennzeichnet, daß das Prozeßgas Sauerstoff mit einem Anteil bis zu 30 Vol.-% enthält.
- 6. Prozeßgas nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Prozeßgas mehr als 10 Vol.-% Sauerstoff, vorzugsweise zwischen 15 und 25 Vol.-% Sauerstoff enthält
- Prozeßgas nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Prozeßgas aus 55 einem
 - · ein ternäres Gasgemisch mit den Komponen-

ten Helium, Argon und Kohlendioxid,

- ein ternäres Gasgemisch mit den Komponenten Helium, Argon und Sauerstoff oder
- ein quaternäres Gasgemisch mit den Komponenten Helium, Argon, Kohlendioxid und Sauerstoff

besteht.

- Prozeßgas nach Anspruch 7, dadurch gekennzeichnet, daß das Prozeßgas zwischen 5 und 50 Vol.-% Hellum, 0 bis 40 Vol.-% Kohlendioxid, 0 bis 40 Vol.-% Sauerstoff und restlich Argon enthält.
- 9. Verfahren zum Laserschweißen, wobei ein fokussierter Laserstrahl auf eine zu bearbeitende Werkstückoberfläche geführt wird und ein inertgashaltiger Prozeßgasstrom gegen die Werkstückoberfläche geleitet wird, dadurch gekennzeichnet daß ein Prozeßgas nach einem der Ansprüche 1 bis 8 verwendet wird.

35