Métodos Utilizados na Preparação de Dados

Stanley Robson de Medeiros Oliveira

Resumo da Aula

- □ Aspectos relevantes na preparação de dados
 - □ Por que **pré-processar** os dados?
 - □ Sumarização de dados descritivos.
 - Qualidade dos dados.
 - □ Integração de dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

2

Mineração de Dados: Fatores de Sucesso

- □ Você sabe que Mineração de Dados é um projeto contínuo de busca de inteligência e inferência aplicada aos dados? ☐
- □ Você sabe com detalhe qual é o seu problema?
- □ Seus **objetivos** e **metas** estão claramente definidos?
- Você detém técnicas necessárias e possui equipe com domínio em análise de dados?
- Você tem os dados necessários, na granularidade desejada?

Pré-processamento de dados

- No mundo real, dados coletados e organizados tendem a ser:
 - incompletos;
 - com ruídos:
 - redundantes; e
 - inconsistentes.
- □ A fase de pré-processamento tem início após a coleta e organização desses dados.
- Esta fase pode consumir 60% ou mais do tempo para exploração de dados (Pyle,1999).

Pré-processamento de dados

Pré-processamento de dados

- O sucesso ou fracasso de um projeto de mineração de dados está relacionado à preparação de dados:
 - Melhora fortemente a precisão do modelo;
 - Produz grande economia em termos de tempo, esforço e dinheiro.
- □ A preparação de dados ajuda um analista a:
 - Interpretar melhor os resultados;
 - Entender os limites nos dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

6

Exploração de Dados: Estágios

	Tempo Necessário (% do total)		Importância p/ Sucesso (% do total)	
Identificação do Problema	10		15	
2. Explorar possíveis soluções	9	20	14	80
3. Especificação da implementação	1		51	
4. Mineração de dados				
4a. Preparação	60)	15	
4b. Explorar cenários	15	80	3	20
4c. Modelagem	5	J	2	

FONTE: PYLE, D., Data Preparation for Data Mining, Morgan Kaufmann, 1999.

Resumo da Aula

- □ Aspectos relevantes na preparação de dados
- Por que pré-processar os dados?
 - □ Sumarização de dados descritivos.
 - Qualidade dos dados.
 - □ Integração de dados.

Por que pré-processar os dados?

- □ No mundo real, geralmente os dados são (têm):
 - Incompletos: ausência de valores de atributos, ausência de atributos de interesse, ou dados com valores agregados.
 - Ruídos: existências de erros ou outliers.
 - Inconsistentes: informações desatualizadas ou oriundas de erros no momento de introdução dos dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

9

11

Por que pré-processar os dados?

- Sem qualidade de dados, não há qualidade nos resultados em mineração de dados!
- □ Decisões com qualidade são baseadas em dados com qualidade.
- □ Dependendo da tarefa de mineração de dados, você precisa ter o processamento de dados correspondente.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

10

Resumo da Aula

- □ Aspectos relevantes na preparação de dados
- □ Por que **pré-processar** os dados?
- Sumarização de dados descritivos.
 - Qualidade dos dados.
 - □ Integração de dados.

Características descritivas de dados

■ Motivação:

- Melhor entendimento sobre os dados: tendência central, variação e distribuição.
- Medidas de posição e de dispersão dos dados:
 - média, max, min, quartils, outliers, variância, etc.
- □ **Dimensões numéricas**: relação c/ intervalos ordenados.
 - Dispersão de dados: analisada em múltiplas granularidades.
 - Análise de Boxplot ou quartil em intervalos ordenados.
- □ Medidas de Assimetria: (simetria e assimetria)
 - Indicador da forma da distribuição dos dados.

Medidas de Posição (tendência central)

- □ Média aritmética simples: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\mu = \frac{\sum x_i}{N}$
- □ Média aritmética ponderada: $\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$
- □ Moda (Mo):
 - É o valor mais frequente em um conjunto de valores numéricos.
- Mediana (Md):
 - Dado um grupo de dados ordenados, a mediana separa a metade inferior da amostra da metade superior.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

13

Exemplos

- □ Para o seguinte conjunto: {1, 3, 5, 7, 9}
 - A média é 5;
 - A mediana é 5.
- No entanto, para o conjunto: {1, 2, 7, 7, 13}
 - A mediana é 7, enquanto a média é 6;
 - A moda é 7.
- □ Qual seria a **mediana** para o **conjunto**: {1, 2, 4, 10, 12, 13}?

Mediana = (4 + 10)/2 = 7.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

1/1

Separatrizes

- Não são medidas de tendência central.
- As separatrizes estão ligadas à mediana relativamente à sua característica de **separar a série** em duas partes que apresentam o **mesmo número de valores**.
- As separatrizes são:
 - Quartil: divide um conjunto de dados em quatro partes iguais.
 - Decil: divide um conjunto de dados em dez partes iguais.
 - Percentil: divide um conjunto de dados em cem partes iguais.

Exemplo de Separatrizes

- Quartil: Os quartis dividem o conjunto de dados em quatro partes iguais:
 - Se (*Md Q1*) = (*Q3 Md*) => **dist. simétrica**.
 - Se (Md Q1) < (Q3 Md) => assimetria à direita ou positiva;
 - Se (Md Q1) > (Q3 Md) => assimetria à esquerda ou negativa.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

Distribuição Simétrica e Assimétrica

Mediana, média e moda de dados com distribuição simétrica e assimétrica.

Medindo a dispersão dos dados

- Quartils, outliers e boxplots
 - Quartils: Q₁ (25° percentil), Q₃ (75° percentil).
 - Amplitude interquartílica: IQR = Q₃ - Q₁ (50% dos dados).
 - Sumário dos 5 números: Min, Q₁, Med, Q₃, Max. —
 - Boxplot: uma linha central mostrando a mediana, uma linha inferior mostrando o primeiro quartil, uma linha superior mostrando o terceiro quartil.
 - Outliers: Limite Inferior = Q₁ 1.5 x IQR;
 Limite Superior = Q₃ + 1.5 x IQR.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

18

Medindo a dispersão dos dados ...

- Variância e desvio padrão (amostra: s, população: σ)
 - Variância: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2 = \frac{1}{n-1} [\sum_{i=1}^{n} x_i^2 \frac{1}{n} (\sum_{i=1}^{n} x_i)^2]$
 - Desvio padrão s (ou σ) é a raiz quadrada da variância
 s² (ou σ²)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^n (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^n x_i^2 - \mu^2$$

Análise de Boxplot

□ Boxplot:

□ Um percentil é uma medida da posição relativa de uma unidade observacional em relação a todas as outras.

- □ O p-ésimo percentil tem no mínimo p% dos valores abaixo daquele ponto e no mínimo (100 p)% dos valores acima.
- □ Se uma altura de 1,80m é o 90º percentil de uma turma de estudantes, então 90% da turma tem alturas menores que 1,80m e 10% tem altura superior a 1,80m.

Exemplo de BoxPlots

□ Boxplots podem ser usados para comparar a dispersão dos valores de atributos.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

21

Exercício sobre Boxplot

- □ Carreque o arquivo cpu.csv e depois use o script boxplot.R:
- □ Determine o sumário dos cinco números: min. Q1, Mediana, Q3, max para o primeiro atributo.
- □ Esboce o **boxplot** dos dados desse arquivo.
- Quais os valores que podem ser considerados outliers?
- □ Faça o mesmo procedimento para as outras variáveis (atributos).

AP-539: Métodos e Técnicas de Aprendizado Estatístico

Propriedades da distribuição normal

- A distribuição normal com média μ e desvio padrão σ:
 - No intervalo de μ – σ até μ + σ : contém 68% das observações;
 - No intervalo de μ−2σ até μ+2σ: contém 95% das observações;
 - No intervalo de μ−3σ até μ+3σ: contém 99.7% das observações.

Análise de Histogramas

- ☐ Gráfico que mostra a **estatística básica** da descrição de classes.
 - Histograma de Frequências
 - Mostra a distribuição dos valores de uma variável;
 - Consiste em um conjunto de retângulos, em que cada retângulo representa a frequência de uma das classes presentes nos dados.

(a) Amplitudes iquais

Idade dos alunos da disciplina Inferência Estatística do curso de Estatística da UEM, 21/03/2005.

Exemplos de diagramas de dispersão

Valor de <i>r</i>	Descrição do relacionamento	Diagrama de dispersão
+1,00	Relacionamento positivo perfeito	y x
Cerca de 0,7	Relacionamento positivo moderado	·::••••
-1,0	Relacionamento negativo perfeito	y
Cerca de -0,7	Relacionamento negativo moderado	<i>x</i>

AP-539: Métodos e Técnicas de Aprendizado Estatístico

25

Exemplos de ausência de relacionamento

AP-539: Métodos e Técnicas de Aprendizado Estatístico

26

Exercício: histograma e correlação

- □ Carregue o arquivo cpu.csv e depois use o script hist-correl.R:
- Esboce o histograma de algumas variáveis desse arquivo.
- □ Calcule a matriz de correlação dos atributos do arquivo.
- □ Como eliminar variáveis com alta correlação (acima de 70%)?

Resumo da Aula

- □ Aspectos relevantes na preparação de dados
- □ Por que **pré-processar** os dados?
- □ Sumarização de dados descritivos.
- Qualidade dos dados.
 - □ Integração de dados.

Qualidade dos Dados

■ Relevância:

- "Data cleaning is one of the three biggest problems in data warehousing" — Ralph Kimball.
- "Data cleaning is the number one problem in data warehousing" — DCI (Downtown Cincinnati Inc.) survey.
- □ Procedimentos para qualidade dos dados:
 - Preencher valores faltantes;
 - Identificar outliers e remover ruídos nos dados;
 - Corrigir e eliminar inconsistências.
 - Remover redundâncias causadas pela integração de dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

29

31

Valores faltantes

- □ Em muitos casos, dados podem ser incompletos:
 - Muitas observações podem não possuir valores para alguns atributos (Ex.: renda anual de clientes em dados de vendas).
- □ Valores faltantes ocorrem devido:
 - Problemas com equipamentos (perdas de dados);
 - Inconsistência com outros registros e portanto são deletados;
 - Dados não digitados por causa de mal interpretação;
 - Alguns dados não são importantes no momento da entrada;
 - Falta de registros históricos ou mudança nos dados.
- Em muitos casos, valores faltantes podem ser inferidos.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

30

Valores faltantes ...

□ Razões para os valores faltantes:

- Informação não foi coletada: (Ex.: pessoas não querem fornecer suas idades).
- Atributo pode não ser aplicado em todos os casos: (Ex.: renda anual não é aplicada para crianças).

□ Lidando com os valores faltantes:

- Eliminar alguns objetos do conjunto de dados;
- Estimar os valores faltantes;
- Ignorar os valores faltantes durante a análise;
- Substituir com possíveis valores (ponderados por suas probabilidades).

Lidando com valores faltantes

- Método 1: Ignorar as observações (registros):
 - A alternativa mais simples.
- Deve ser usado somente se a observação possui vários atributos com valores faltantes.
- □ É um **método ineficiente**:
 - Parte da informação é perdida;
 - É um método pobre quando a porcentagem de valores faltantes varia entre os atributos.

Lidando com valores faltantes ...

- Método 2: Preencher os valores manualmente.
- Essa alternativa só vale a pena se o dataset for muito pequeno.
- □ Ineficiência desse método:
 - Consome muito tempo;
 - Impraticável para grandes datasets.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

33

Lidando com valores faltantes ...

- Método 3: Usar a média do atributo para preencher os valores faltantes.
- Exemplo: se idade média de um grupo de pessoas é 35, esse valor deve ser usado para preencher os valores faltantes.

■ Vantagem:

Procedimento simples de ser implementado.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

34

Lidando com valores faltantes ...

- Método 4: Para atributo nominal, usar a moda para preencher os valores faltantes.
- □ A **moda** é o valor mais frequente em um conjunto de valores.
- □ Pode não ser uma boa alternativa quando o atributo considerado é o atributo-meta.

Lidando com valores faltantes ...

- Método 5: Usar a média para observações pertencentes a uma mesma classe.
- Nesse caso, o valor faltante não está no atributo meta.
- Exemplo: se um cliente não possui informação sobre o consumo mensal de cartão de crédito, substitua o valor faltante pela média de consumo de clientes na categoria (mesma classe).
- □ Em caso de atributo nominal (não-meta), use a moda do atributo considerando as observações que pertencem a mesma classe.

Lidando com valores faltantes ...

- Método 6: Preencher os valores faltantes por meio de uma regressão linear.
- □ O primeiro passo é identificar se o atributo com valores faltantes tem uma boa correlação (r > 0,7) com um outro atributo do dataset.
- O segundo passo é fazer a regressão entre os atributos correlacionados.
- Importante: esse método deve ser usado com muito cuidado, pois pode inserir ruído nos dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

37

Lidando com valores faltantes ...

- Método 7: Usar o método KNN (k- Nearest Neighbor) – Vizinho mais próximo.
- □ Eficiente para atributos discretos e contínuos.
- □ Para atributos **discretos**, usar o valor mais frequente entre os *k* vizinhos do valor faltante.
- □ Para atributos **contínuos**, usar a média entre os **k vizinhos** do valor faltante.
- □ A única **desvantagem** é que esse procedimento pode consumir muito tempo em grandes datasets.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

38

Lidando com valores faltantes ...

- Método 8: Usar o valor mais provável que é baseado em inferência.
- Exemplo: Determinar o valor faltante usando uma árvore de decisão, um modelo Bayesiano, etc.
- □ O método é muito **eficiente**, mas é também muito **caro** computacionalmente.

Exercício: preencher valores faltantes

- □ Carregar o arquivo **soybean.arff** no Weka e responder as seguintes questões:
- Existem valores faltantes?
- Preencher os valores faltantes de todos os atributos usando a média para atributos numéricos e a moda para atributos nominais.
- Quais seriam as melhores alternativas para preencher os valores faltantes dos atributos desse dataset?

Ruído no dados

□ Ruído refere-se à modificação de valores originais.

□ Exemplos:

- Falhas nos equipamentos de coleta de dados;
- Problemas na entrada de dados:
- Problemas na transmissão de dados;
- Inconsistência na convenção de nomes;
- Transformações erradas aplicadas aos dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

4

Regressão: reduzindo ruídos

- Os pontos dispersos podem ser representados por uma reta.
- □ Em seguida, os valores originais são substituídos pelos valores da equação da reta.
- Esse procedimento ameniza (suaviza) os ruídos nos dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

42

Outliers

Outliers são objetos com características diferentes da maioria dos outros objetos em um conjunto de dados.

Análise de Agrupamento

Outliers podem ser detectados por meios de agrupamentos (**clusters**). Intuitivamente, objetos que estão fora dos clusters são **outliers**.

Outliers – Proibido esquecer

PROBLEMA	ABORDAGEM
Análise Univariada	Boxplot
Análise Multivariada	Análise de Agrupamentos

AP-539: Métodos e Técnicas de Aprendizado Estatístico

45

Valores Redundantes

□ O dataset pode incluir objetos que são duplicados ou quase duplicados de outros.

□ Exemplos:

- Ocorre quando dados são integrados de fontes heterogêneas.
- Quando uma variável é uma combinação linear de outras.
- Quando duas os mais variáveis são altamente correlacionadas.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

46

Inconsistências

- Erro na entrada de dados: Tipo de inconsistência muito comum.
 - Causado quando mais de um usuário editam o mesmo arquivo.
 - Exemplo: para o atributo data, um usuário preenche os dados no formato "dd/mm/aaaa", enquanto o outro usuário usa o formato "yyyy/mm/dd".
- Atributo com valores diferentes para a mesma informação:
 - Exemplo: um atributo que armazena informação sobre Unidades da Federação assume os valores São Paulo, SP, S.P., S. Paulo, Sao Paulo.

Eliminação de inconsistências ...

Mesmo valor de um atributo para diferentes rótulos:
 O mesmo dado é representado por rótulos diferentes.

		ATRIBUTOS				CLASSE
	Dia	Tempo	Temperatura	Umidade	Vento	Joga-Tenis
	1	Sol	Quente	Alta	Fraco	Não
	2	Sol	Quente	Alta	Forte	Não
	3	Nublado	Quente	Alta	Fraco	Sim
	4	Chuva	Moderado	Alta	Fraco	Sim
	5	Chuva	Frio	Normal	Forte	Sim
	6	Chuva	Frio	Normal	Forte	Não
	7	Nublado	Frio	Normal	Forte	Sim
	8	Sol	Moderado	Alta	Fraco	Não
	9	Sol	Frio	Normal	Fraco	Sim

□ A correção da inconsistência seria uma alteração do valor do atributo Vento para uma das tuplas.

Resumo da Aula

- Aspectos relevantes na preparação de dados
- □ Por que **pré-processar** os dados?
- □ Sumarização de dados descritivos.
- Qualidade dos dados.
- 📺 🛮 Integração de dados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

49

Integração de dados

Processo que combina dados residentes em diferentes fontes, mantendo a consistência e a coerência dos dados integrados.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

50

Integração de esquemas

■ **Metadados** podem ser utilizados para ajudar a **unificar** os atributos e **transformar** os dados.

O atributo **Sigla** do primeiro esquema assume os valores **T** e **P**, representando cultura **temporária** e cultura **perene**, enquanto no segundo esquema, os valores do atributo **Sigla** são **CT** e **CP**.

Lidando com redundância na integração

- Dados redundantes geralmente provêm da integração de múltiplas fontes de dados:
 - Identificação de objeto: o mesmo atributo pode ter diferentes nomes em diferentes arquivos (datasets);
 - Dados derivados: preço de um produto e o valor do imposto pago por ele (combinação linear).
- □ Atributos redundantes podem ser detectados por:
 - Análise de correlação: atributos numéricos; ou
 - Teste do Qui-quadrado: atributos nominais ou categóricos.

Análise de correlação (dados numéricos)

 Coeficiente de correlação (também conhecido como coeficiente de Pearson):

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_{A}\sigma_{B}} = \frac{\sum (AB) - n\overline{AB}}{(n-1)\sigma_{A}\sigma_{B}}$$

Onde n é o número de observações, \overline{A} e \overline{B} são as médias das variáveis A e B, σ_A e σ_B são os devios-padrão de A e B.

- Se r_{A,B} > 0, A e B são positivamente correlacionadas (quanto maior for o valor r_{A,B}, maior será a correlação entres as variáveis A e B).
- □ r_{A,B} = 0: A e B são **independentes** ou não possuem relacionamento;

AP-539: Métodos e Técnicas de Aprendizado Estatístico

53

Análise de correlação (dados categóricos)

α χ² (teste do qui-quadrado)

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- □ As frequências observadas são obtidas diretamente dos dados das amostras, enquanto que as frequências esperadas são calculadas a partir destas.
- Quanto maior o valor de χ², mais provável é a correlação das variáveis.
- □ Cuidado: Correlação não implica casualidade:
 - Número de hospitais e número carros roubados em uma cidade pode ser correlacionado;
 - Ambas as variáveis estão ligadas com uma terceira variável: população.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

54

Qui-quadrado (χ^2)

- O teste do χ² é muito eficiente para avaliar a associação existente entre variáveis qualitativas.
- O analista de dados estará sempre trabalhando com duas hipóteses:
 - H₀: não há associação entre os atributos (**independência**)
 - H₁: há associação entre os atributos.
- □ A hipótese H_0 é rejeitada para valores elevados de χ^2 .
- □ O cálculo dos **graus de liberdade** de χ^2 é dado por: gl = (número de linhas – 1) × (número de colunas – 1)

Qui-quadrado (χ^2) ...

A forma da função de densidade de χ^2

Rejeitamos a **hipótese nula** se χ^2 for maior que o **valor crítico** fornecido pela tabela. Para 1 grau de liberdade, o **valor crítico é 3,841**.

Exemplo do cálculo de χ^2

	Joga xadrez	Não joga xadrez	Soma (linhas)
Gosta de ficção científica	250(90)	200(360)	450
Não gosta de ficção científica	50(210)	1000(840)	1050
Soma (colunas)	300	1200	1500

- □ Os números entre parênteses são os **valores esperados**, calculados com base na distribuição dos dados das duas categorias.
- □ O resultado mostra que gostar_ficção_científica e jogar_xadrez são correlacionadas nesse grupo:

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

Neste caso, a hipótese nula é rejeitada, pois 507.93 > 3.841. Então, existe correlação entre as variáveis estudadas.

AP-539: Métodos e Técnicas de Aprendizado Estatístico

Sugestões de Leitura

- □ Jiawei Han, Micheline Kamber, Jian Pei. Data mining: concepts and techniques. 3rd ed., 2012.
 - Capítulo 3 (Data Preprocessing).
- □ Ian H. Witten, Frank Eibe, Mark A. Hall. Data mining: practical machine learning tools and techniques. 3rd ed., 2011.
 - Capítulo 2 (Input: Concepts, Instances, and Attributes).

AP-539: Métodos e Técnicas de Aprendizado Estatístico

57

58