Limites d'une fonction

Notion de limite d'une fonction

Partons d'un exemple très simple, on va introduire la fonction $f(x) = \frac{x}{(x-5)^2}$.

Par exemple:

- l'image de 3 par f est $f(3) = \frac{3}{(3-5)^2} = 0.75$,
- l'image de 10 par f est $f(10) = \frac{10}{(10-5)^2} = 0.4$,
- ... et l'image de 5 ?

On ne peut pas calculer l'image de 5 par f car c'est une valeur interdite!

Cependant, il est possible de calculer les images de valeurs assez proches de 5 .

Par exemple:

- l'image de 4,9 par f est f(4,9)=490 ,
- l'image de 4,999 par f est f(4,999)=4999000,
- l'image de 4,9999 par f est f(4,9999)=499990000.

La question est de savoir quel est le comportement de la fonction f lorsque x se rapproche de plus en plus de 5. On dira que x tend vers 5. On écrit :

$$\lim_{x\to 5} f(x) = +\infty .$$

Donc, on est amené à faire des calculs de limites dans le cas où la fonction n'est pas définie.

Par ailleurs, on peut être amené à faire des calculs de limites lorsque x tend vers l'un des deux infinis, par exemple :

- l'image de 100 par f est f(100)=0,011080332,
- l'image de 10000 par f est f(10000)=0,0001001,
- ... et l'image de $+\infty$?

Je ne peux pas calculer l'image de l'infini car il n'est pas un nombre.

La question est de savoir quel est le comportement de la fonction f lorsque x prend des valeurs de plus en plus grandes. On dira que x tend vers $+\infty$. On écrit :

$$\lim_{x\to +\infty} f(x) = 0 .$$

Limites de fonctions usuelles

Fonction carré : $f(x) = x^2$

- f est définie sur \mathbb{R} .
- $\lim_{x \to -\infty} (x^2) = +\infty$; $\lim_{x \to +\infty} (x^2) = +\infty$.
- · Courbe représentative :

Fonction cube : $f(x) = x^3$

- f est définie sur R.
- $\lim_{x \to -\infty} (x^3) = -\infty$; $\lim_{x \to +\infty} (x^3) = +\infty$.
- · Courbe représentative :

Fonction inverse : $f(x) = \frac{1}{x}$

f est définie sur chacun des intervalles
]-∞; 0[et]0; +∞[.

$$\lim_{x \to -\infty} \left(\frac{1}{x} \right) = 0 ; \lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0.$$

$$\lim_{\substack{x \to 0 \\ x < 0}} \left(\frac{1}{x} \right) = -\infty; \quad \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{x} \right) = +\infty.$$

· Courbe représentative :

Fonction $f: x \mapsto \frac{1}{x-a}: a \text{ réel}$

- f est définie sur chacun des intervalles]- ∞ ; a[et]a; + ∞ [.
- $\lim_{x \to -\infty} \left(\frac{1}{x-a} \right) = 0 ; \lim_{x \to +\infty} \left(\frac{1}{x-a} \right) = 0.$

$$\lim_{\substack{x \to a \\ x < a}} \left(\frac{1}{x - a} \right) = -\infty; \quad \lim_{\substack{x \to a \\ x > a}} \left(\frac{1}{x - a} \right) = +\infty.$$

· Courbe représentative :

Fonction logarithme népérien : $f(x) = \ln(x)$

- f est définie sur R.
- $\lim_{x \to 0} \ln(x) = -\infty$; $\lim_{x \to +\infty} \ln(x) = +\infty$.
- · Courbe représentative :

Fonction exponentielle : $f(x) = e^x$

- f est définie sur R.
- $\lim_{x \to -\infty} (e^x) = 0$; $\lim_{x \to +\infty} (e^x) = +\infty$.
- · Courbe représentative :

Opérations sur les limites

- Somme: $\lim (f+g) = \lim f + \lim g$.
- Produit: $\lim (fg) = (\lim f)(\lim g)$.
- Quotient: $\lim \left(\frac{f}{g}\right) = \frac{\lim f}{\lim g}$.

Attention! Il y a des cas dans lesquels on ne peut pas conclure directement:

- Somme: $\lim f = +\infty$ et $\lim g = -\infty$ alors $\lim (f+g) = +\infty \infty = ?$.
- Produit: $\lim_{x \to \infty} f = 0$ et $\lim_{x \to \infty} g = \pm \infty$ alors $\lim_{x \to \infty} (fg) = (0)(\pm \infty) = ?$.
- Quotient: 1. $\lim f = 0$ et $\lim g = 0$ alors $\lim \left(\frac{f}{g}\right) = \frac{0}{0} = ?$,
 - 2. $\lim f = \pm \infty$ et $\lim g = \pm \infty$ alors $\lim \left(\frac{f}{g}\right) = \frac{\pm \infty}{\pm \infty} = ?$.

Polynôme et fonction rationnelle

La limite en $+\infty$ et $-\infty$ d'une <u>fonction polynôme</u> est celle de son terme de plus haut degré :

$$\lim_{x \to +\infty} (x^2 + 2x + 3) = \lim_{x \to +\infty} x^2 = +\infty .$$

La limite en $+\infty$ et $-\infty$ d'une <u>fonction rationnelle</u> (quotient de deux fonctions polynômes) est celle du quotient de ses termes de plus haut degré :

$$\lim_{x \to +\infty} \frac{x}{(x-5)^2} = \lim_{x \to +\infty} \frac{x}{x^2 - 10x + 25} = \lim_{x \to +\infty} \frac{x}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0 .$$

Comparaison des fonctions logarithme népérien, exponentielle et puissance

Pour $\alpha > 0$:

•
$$\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty$$
 et $\lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0$,

•
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0 \quad ; \quad \lim_{\substack{x \to 0 \\ x > 0}} x^{\alpha} \ln x = 0 \quad \text{et} \quad \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln x}{x^{\alpha}} = -\infty .$$

Comment calculer une limite?

Exemple 1 : Calculer les limites en $+\infty$ et $-\infty$ de f définie sur \mathbb{R} par $f(x)=x+2+3e^x$.

On pose: f(x)=u(x)+v(x) avec u(x)=x+2 et $v(x)=3e^x$.

Donc $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to +\infty} v(x) = +\infty$.

On en déduit : $\lim_{x \to +\infty} f(x) = +\infty$ (limite d'une somme).

On a $\lim_{x \to -\infty} u(x) = \lim_{x \to -\infty} x = -\infty$ et $\lim_{x \to -\infty} v(x) = 0$.

On en déduit : $\lim_{x \to -\infty} f(x) = -\infty$ (limite d'une somme).

Exemple 2 : Calculer $\lim_{\substack{x \to 1 \ x > 1}} \frac{x^2 + x + 1}{x - 1}$.

On pose: $u(x)=x^2+x+1$ et v(x)=x-1.

Donc $\lim_{\substack{x \to 1 \\ x > 1}} u(x) = 3$ et $\lim_{\substack{x \to 1 \\ x > 1}} v(x) = 0$.

Attention ! $x>1 \Leftrightarrow x-1>0$, il faut donc utiliser la règle des signes en faisant le quotient.

On en déduit : $\lim_{\substack{x \to 1 \ x > 1}} \frac{x^2 + x + 1}{x - 1} = \frac{3}{0} = +\infty$.

Exemple 3: Calculer $\lim_{x \to +\infty} (x^2 - \ln x)$.

On pose : f(x)=u(x)-v(x) avec $u(x)=x^2$ et $v(x)=\ln x$.

Donc $\lim_{x \to +\infty} u(x) = +\infty$ et $\lim_{x \to +\infty} v(x) = +\infty$ \Rightarrow $\lim_{x \to +\infty} f(x) = +\infty - \infty = ?$.

On ne peut pas conclure directement.

Pour conclure on met x^2 en facteur :

 $x^2 - \ln x = x^2 \left(1 - \frac{\ln x}{x^2} \right)$; on sait que $\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$,

donc $\lim_{x \to +\infty} (x^2 - \ln x) = \lim_{x \to +\infty} x^2 \left(1 - \frac{\ln x}{x^2} \right) = (+\infty)(1+0) = (+\infty)(1) = +\infty$ (limite d'un produit).

Asymptote à une courbe représentative

Définition

Une <u>asymptote</u> à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.

Asymptote verticale

Asymptote horizontale

Asymptote oblique

Démontrer qu'une droite est asymptote verticale

Soit f définie sur $\mathbb{R}\setminus\{4\}$ par $f(x)=\frac{2x}{x-4}$. Démontrer que la droite d'équation x=4 est asymptote verticale à la courbe représentative de la fonction f.

Méthode graphique:

- La courbe se rapproche de plus en plus de la droite lorsque l'ordonnée tend vers $+\infty$ et $-\infty$.
- 1^{er} cas: x>4 donc $\lim_{\substack{x\to 4\\x>4}} f(x)=+\infty$.
- $2^{\text{ème}}$ cas: x < 4 donc $\lim_{\substack{x \to 4 \\ x < 4}} f(x) = -\infty$
- On peut conclure que la droite x=4 est bien asymptote verticale à la courbe représentative de la fonction f .

Par le calcul:

On pose: u(x)=2x et v(x)=x-4. Donc $\lim_{x\to 4} u(x)=8$ et $\lim_{x\to 4} v(x)=0$.

- 1^{er} cas: $x>4 \Leftrightarrow x-4>0$. On en déduit: $\lim_{\substack{x\to 4\\x>4}} \frac{2x}{x-4} = \frac{8}{0} = +\infty$.
- $2^{\text{ème}} \text{ cas}: x < 4 \Leftrightarrow x 4 < 0$. On en déduit : $\lim_{x \to 4} \frac{2x}{x 4} = \frac{8}{0} = -\infty$.

On peut conclure que la droite x=4 est bien asymptote verticale à la courbe représentative de la fonction f .

En général : La droite d'équation x = A est **asymptote verticale** à la courbe représentative de la fonction f si $\lim_{x \to A} f(x) = +\infty$ ou $\lim_{x \to A} f(x) = -\infty$.

Démontrer qu'une droite est asymptote horizontale

Soit f définie sur $\mathbb{R}\setminus\{2\}$ par $f(x)=\frac{3x+1}{2-x}$. Démontrer que la droite d'équation y=-3 est asymptote horizontale à la courbe représentative de la fonction f en $+\infty$.

Méthode graphique:

- La courbe se rapproche de plus en plus de la droite lorsque l'abscisse tend vers $+\infty$.
- On observe : $\lim_{x \to +\infty} f(x) = -3$.
- On peut conclure que la droite y=-3 est bien asymptote horizontale à la courbe représentative de la fonction f en $+\infty$.

Par le calcul:

On calcule: $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x}{-x} = -3$.

On peut conclure que la droite y=-3 est bien asymptote horizontale à la courbe représentative de la fonction f en $+\infty$.

En général :

- La droite d'équation y = A est **asymptote horizontale** à la courbe représentative de la fonction f en $+\infty$ si $\lim_{x \to +\infty} f(x) = A$.
- La droite d'équation y = A est **asymptote horizontale** à la courbe représentative de la fonction f en $-\infty$ si $\lim_{x \to -\infty} f(x) = A$.

Démontrer qu'une droite est asymptote oblique

Soit f définie sur $\mathbb{R}\setminus\{2\}$ par $f(x)=\frac{-x^2+6x-5}{x-2}$. Démontrer que la droite D d'équation y=-x+4 est asymptote oblique à la courbe représentative de la fonction f en $+\infty$.

Méthode graphique :

- La courbe se rapproche de plus en plus de la droite lorsque l'abscisse et tend vers $+\infty$.
- On observe que la distance de la courbe à la droite tend vers 0 lorsque $x \rightarrow +\infty$. On exprime analytiquement cette condition sous la forme :

$$\lim_{x\to+\infty}(f-D)=0.$$

• Le signe de f-D détermine la position de f par rapport à D . f est au-dessus de D pour $x \rightarrow +\infty$.

Par le calcul:

• On calcule la distance de la courbe à la droite:

$$f(x) - (-x+4) = \frac{-x^2 + 6x - 5}{x - 2} + x - 4 = \frac{-x^2 + 6x - 5 + (x - 4)(x - 2)}{x - 2} = \frac{3}{x - 2} .$$

• On calcule la limite :

$$\lim_{x \to +\infty} \frac{3}{x-2} = 0 .$$

On peut conclure que la droite y=-x+4 est bien asymptote oblique à la courbe représentative de la fonction f en $+\infty$.

• On étudie le signe :

$$\frac{3}{x-2} > 0 \quad \Leftrightarrow \quad x > 2$$
.

On peut conclure que la courbe représentative de la fonction f est au-dessus de la droite d'équation y=-x+4 en $+\infty$.

En général:

- La droite d'équation y=ax+b est **asymptote oblique** à la courbe représentative de la fonction f en $+\infty$ si $\lim_{x\to +\infty} [f(x)-(ax+b)]=0$.
- La droite d'équation y=ax+b est **asymptote oblique** à la courbe représentative de la fonction f en $-\infty$ si $\lim_{x\to -\infty} [f(x)-(ax+b)]=0$.
- Le signe de f(x)-(ax+b) détermine la position de la courbe par rapport à la droite.