

Voronoi diyagramları: Her öğrenme örneğini çevreleyen dışbükey cokgenlerden oluşan karar yüzeyi

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

komşuya göre negatif

olarak sınıflandırılır

K-En Yakın Komşu Yöntemi

- Uzaklık-ağırlıklı k-en yakın komşu algoritması
 - Öğrenme kümesindeki örneklere (x), sınıflandırılmak istenen örneğe (x_q) olan uzaklıklarına göre ağırlıklar verilmesi
 - yakın örneklerin ağırlığı daha fazla

$$w\!\equiv\!\frac{1}{d(x_q,\!x_i)^2}$$

- k-en yakın komşunun ortalaması alındığı için gürültülü veriden az etkileniyor
- İlgisiz nitelikler uzaklığı etkileyebilir
 - bu nitelikler uzaklık hesaplarken kullanılmayabilir

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Konular

- Sınıflandırma yöntemleri
- Örnek tabanlı yöntemler
 - k-En Yakın Komşu Yöntemi
 - Genetik Algoritmalar
 - Destek Vektör Makineleri
 - Bulanık Küme Sınıflandırıcılar
 - Öngörü
 - Eğri Uydurma
- Model Değerlendirme
- Öğrenme, sınama, geçerleme kümelerini oluşturma
- Sınıflandırıcıları birleştirme

http://www.ninova.itu.edu.tr/FgitimDetay.aspx?eId=195/

Genetik Algoritmalar

- Optimizasyon amaçlı
- Bir başlangıç çözümü öneriyor, tekrarlanan her ara adımda daha iyi çözüm üretmeye çalışıyor.
- Doğal evrime ve en iyi olanın yaşamını sürdürmesine dayanıyor
- Çözümü birey olarak sunuyor.
- Birey: I=I₁,I₂,...,I_n I_i kullanılan alfabenin bir karakteri
- gen: Ii
- Toplum: Bireylerden oluşan küme

http://www.ninova.itu.edu.tr/FgitimDetav.aspx?eId=195/

Genetik Algoritmalar

- Genetik Algoritmalar (GA) 5 parçadan oluşuyor:
 - Bireylerden oluşan bir başlangıç kümesi, P
 - Çaprazlama (Crossover): Bir anne babadan yeni bireyler üretmek için yapılan işlem
 - Mutasyon: Bir bireyi rastgele değiştirme
 - Uygunluk (fitness): En iyi bireyleri belirleme
 - Çaprazlama ve mutasyon tekniklerini uygulayan ve uygunluk fonksiyonuna göre toplum içindeki en iyi bireyleri seçen algoritma

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Çaprazlama Örnekleri

a) Single Crossover

a) Multiple Crossover

• Çaprazlama ve mutasyon tekniklerini belirlemek

zor

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

14

Konular

- Sınıflandırma yöntemleri
 - Örnek tabanlı yöntemler
 k-En Yakın Komşu Yöntemi
 - Genetik Algoritmalar
 - Destek Vektör Makineleri
 - Bulanık Küme Sınıflandırıcılar
 - Öngörü
 - Eğri Uydurma
- Model Değerlendirme
- Öğrenme, sınama, geçerleme kümelerini oluşturma
- Sınıflandırıcıları birleştirme

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

4

15

Destek Vektör Makineleri

- Hem doğrusal olarak ayırt edilebilen hem de edilemeyen veri kümesini sınıflandırabilir
- Doğrusal olmayan bir eşlem ile n boyutlu veri kümesi m > n olacak şekilde m boyutlu yeni bir veri kümesine dönüştürülür
- Yüksek boyutta doğrusal sınıflandırma işlemi yapılır
- Uygun bir dönüşüm ile her zaman veri bir hiper düzlem ile iki sınıfa ayrılabilir
- Hiper düzleme en yakın öğrenme verileri destek vektörleri olarak adlandırılır

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

16

Destek Vektör Makineleri Destek Vektör Makineleri Destek Vektör Makineleri (Support Vector Machines SVM): Veriyi ayıracak doğrusal bir sınır http://www.ninova.ttu.edu.tr/EgitimDetay.aspx?eld=195/

4

Eniyileme Problemi Çözümü

Çözüm

$$\mathbf{w} = \Sigma \alpha_i y_i \mathbf{x_i} \qquad b = y_k \text{-} \mathbf{w}^\mathsf{T} \mathbf{x_k} \ \forall \ \mathbf{x_k} \ , \ \alpha_k \neq 0$$

Sınıflandırma fonksiyonu

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

 f(x) = 1 ise x pozitif olarak, diğer durumlarda negatif olarak sınıflandırılıyor.

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Eniyileme Problemi Çözümü

Çözüm

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k (1 - \zeta_k) - \mathbf{w}^T \mathbf{x_k}, \mathbf{k} = \operatorname{argmax} \alpha_k$$

Sınıflandırma fonksiyonu

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

http://www.ninova.itu.edu.tr/FaitimDetay.aspx?eId=195/

25

27

DVM Uygulamaları

- Boser, Guyon ve Vapnik tarafından 1992 yılında önerildi. 1990'ların sonlarına doğru yaygın olarak kullanılmaya başlandı
- DVM için en yaygın eniyileme algoritmaları SMO [Platt '99] ve SVM^{light} [Joachims' 99]

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

28

Konular

- Sınıflandırma yöntemleri
 - Örnek tabanlı yöntemler
 - k-En Yakın Komşu Yöntemi
 - Genetik Algoritmalar
 - Destek Vektör Makineleri
 - Bulanık Küme Sınıflandırıcılar
 - Öngörü
 - Eğri Uydurma
- Model Değerlendirme
- Öğrenme, sınama, geçerleme kümelerini oluşturma
- Sınıflandırıcıları birleştirme

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

- Bulanık mantık 0.0 ve 1.0 arasında gerçel değerler kullanarak üyelik dereceleri hesaplar
- Nitelik değerleri bulanık değerlere dönüştürülür
- Kurallar kümesi oluşturulur
- Yeni bir örneği sınıflandırmak için birden fazla kural kullanılır
- Her kuraldan gelen sonuç toplanır

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Konular

- Sınıflandırma yöntemleri
 - Örnek tabanlı yöntemler
 - k-En Yakın Komşu Yöntemi
 - Genetik Algoritmalar
 - Destek Vektör Makineleri
 - Bulanık Küme Sınıflandırıcılar
 - Öngörü
 Eğri Uydurma
- Model Değerlendirme
- Öğrenme, sınama, geçerleme kümelerini oluşturma
- Sınıflandırıcıları birleştirme

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Öngörü

- Sınıflandırma problemleriyle aynı yaklaşım
 - model oluştur
 - bilinmeyen değeri hesaplamak için modeli kullan
 - eğri uydurma
 - doğrusal
 - doğrusal olmayan
- Sınıflandırma ayrık değerli
- Öngörü sürekli değerli

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

32

Eğri Uydurma

- Doğrusal eğri uydurma:
- en basit eğri uydurma yöntemi
 - veri doğrusal bir eğri ile modellenir.
 - veri kümesindeki niteliklerin doğrusal fonksiyonu

$$y = w_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

ullet öğrenme kümesindeki y_i sınıfından bir x_i örneği için çıkış

$$y = w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2} + ... + w_k x_{ik} = \sum_{i=1}^{k} w_i x_{ij}$$

karesel hatayı enküçültecek ağırlıkları bulma

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{k} w_j x_{ij} \right)$$

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

31

33

Konular

- Sınıflandırma yöntemleri
- Model Değerlendirme
- Hata orani
- Anma
- Kesinlik
- F-ölgütüROC eğrileri
- Öğrenme, sınama, geçerleme kümelerini oluşturma
- Sınıflandırıcıları birleştirme

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

3

Sınıflandırma Modelini Değerlendirme

- Hata oranı
- Anma
- Kesinlik
- F-ölçütü
- Farklı modellerin başarımı nasıl karşılaştırılır?
 - ROC

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195

Sınıflandırma Hatası

- Sınıflandırma yöntemlerinin hatalarını ölçme
 - başarı: örnek doğru sınıfa atandı
 - hata: örnek yanlış sınıfa atandı
 - hata oranı: hata sayısının toplam örnek sayısına bölünmesi
- Hata oranı sınama kümesi kullanılarak hesaplanır

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Model Başarımını Değerlendirme

- Model başarımını değerlendirme ölçütleri
 - modelin ne kadar doğru sınıflandırma yaptığını ölçer
 hız, ölçeklenebilirlik gibi özellikleri değerlendirmez
- Karışıklık matrisi:

	ÖNGÖRÜLEN SINIF		
		Sınıf=1	Sınıf=-1
DOĞRU SINIF	Sınıf =1	a	b
	Sınıf =-1	С	d

a: TP (true positive) b: FN (false negative) c: FP (false positive) d: TN (true negative)

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Sınıflandırıcıları Karşılaştırma

- Doğruluk en basit ölçüt
- Kesinlik ve anma daha iyi ölçme sağlıyor
 - Model A'nın kesinliği model B'den daha iyi ancak model B'nin anma değeri model A'dan daha iyi olabilir.

43

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Model Başarımını Değerlendirme: F-ölçütü

F-ölçütü: Anma ve kesinliğin harmonik ortalamasını alır.

F-ölçütü = 2 * kesinlik * anma kesinlik + anma

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eld=195/

R

ROC (Receiver Operating Characteristic)

- İşaret işlemede bir sezicinin, gürültülü bir kanalda doğru algılama oranının yanlış alarm oranına karşı çizdirilen grafiği (algılayıcı işletim eğrisi)
- Farklı sınıflandırıcıları karşılaştırmak için ROC eğrileri
- Doğru pozitif (TPR y ekseni) oranının yanlış pozitif (FPR - x ekseni) oranına karşı çizdirilen grafiği
 - TPR = TP / (TP + FN)
 - FPR = FP / (TN + FP)
- ROC üzerindeki her nokta bir sınıflandırıcının oluşturduğu bir modele karşı düşer

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

ROC Eğrisinin Çizilmesi

- Her örnek için P(+|A) olasılığı hesaplanır
- P(+|A) değeri azalarak sıralanır
- Her farklı P(+|A) değeri için bir eşik değeri uygulanır
- Her eşik değeri için TP, FP, TN, FN hesaplanır

Örnek	P(+ A)	Sınıf
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Model Parametrelerini Belirleme

- Sınama kümesi sınıflandırıcı oluşturmak için kullanılmaz
- Bazı sınıflandırıcılar modeli iki aşamada oluşturur
 - modeli oluştur
 - parametreleri ayarla
- Sınama kümesi parametreleri ayarlamak için kullanılmaz
- Uygun yöntem üç veri kümesi kullanma: öğrenme, geçerleme, sınama
 - geçerleme kümesi parametre ayarlamaları için kullanılır
 - model oluşturulduktan sonra öğrenme ve geçerleme kümesi son modeli oluşturmak için kullanılabilir

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

51

Model Başarımını Tahmin Etme

- Örnek: Doğruluğu %25 olan bir modelin gerçek başarımı ne kadardır?
 - Sınama kümesinin büyüklüğüne bağlı
- Sınıflandırma (hileli) yazı tura atmaya benziyor
 - tura doğru sınıflandırma (başarı), yazı yanlış sınıflandırma (başarısızlık)
- İstatistikte birbirinden bağımsız olayların başarı ya da başarısızlıkla sonuçlanmaları Bernoulli dağılımı ile modellenir.
- Gerçek başarı oranını belirlemek için istatistikte güven aralıkları tanımlanmıştır.

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

53

Güven Aralığı

- ullet p belli bir güvenle belli bir aralıkta bulunmaktadır.
- Örnek: N=1000 olayda S=750 başarı sağlanmış.
 - Tahmin edilen başarı oranı: 75%
 - Gerçek başarıya ne kadar yakın
 - %80 güven ile *p*∈[73,2 76,7]
- Örnek: N=100 olayda S=75 başarı sağlanmış.
 - Tahmin edilen başarı oranı: 75%
 - Gerçek başarıya ne kadar yakın
 - %80 güven ile *p*∈[69,1 80,1]

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195

Ortalama Değer ve Varyans

- Başarı oranı p olan bir Bernoulli dağılımının ortalama değeri ve varyansı: p, p (1-p)
- N kere tekrarlanan bir deneyin beklenen başarı oranı f=S/N
- Büyük N değerleri için, f normal dağılım
- fiçin ortalama değer ve varyans: p, p (1−p)/N
- Ortalama değeri 0 ve varyansı 1 olan X rastlantı değişkeninin %c güven aralığı : Pr[-z ≤ X ≤ z]=c
- Simetrik bir dağılım için:

 $Pr[-z \le X \le z] = 1 - 2*Pr[X \ge z]$

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

55

Dönüşüm

- fin ortalama değerinin 0, varyansının 1 olacak şekilde dönüştürülmesi için f p
- Güven aralığı

$$\Pr\left[-z \le \frac{f-p}{\sqrt{p(1-p)/N}} \le z\right] = c$$

p'nin değeri

$$p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)$$

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Örnek

- f = 75%, N = 1000, c = 80% (z = 1.28): p ∈ [0,732 - 0,767]
- f = 75%, N = 100, C = 80% (Z = 1.28): p ∈ [0,691 – 0,801]

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Konular

- Sınıflandırma yöntemleri
- Model Değerlendirme
- Öğrenme, sınama, geçerleme kümelerini oluşturma
 - holdout
 - k-kat çapraz geçerleme
 - Bootstrap
- Sınıflandırıcıları birleştirme

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Verinin Dengesiz Dağılımı

- Küçük veya dengesiz veri kümeleri için örnekler tanımlayıcı olmayabilir
- Veri içinde bazı sınıflardan çok az örnek olabilir
 - tıbbi veriler: %90 sağlıklı, %10 hastalık
 - elektronik ticaret: %99 alışveriş yapmamış, %1 alışveriş yapmış
 - güvenlik: %99 sahtekarlık yapmamış, %1 sahtekarlık yapmış
- Örnek: Sınıf1: 9990 örnek, Sınıf2: 10 örnek
 - bütün örnekleri sınıf1'e atayan bir sınıflandırıcının hata oranı: 9990 / 10000= %99,9
 - hata oranı yanıltıcı bir ölçüt olabilir

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Dengeli Dağılım Nasıl Sağlanır?

- Veri kümesinde iki sınıf varsa
 - iki sınıfın eşit dağıldığı bir veri kümesi oluştur
 - Az örneği olan sınıftan istenen sayıda rasgele örnekler seç
 - Çok örneği olan sınıftan aynı sayıda örnekleri ekle
- Veri kümesinde iki sınıftan fazla sınıf varsa
 - Öğrenme ve sınama kümesini farklı sınıflardan aynı sayıda örnek olacak şekilde oluştur

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Büyük Veri Kümelerinde Değerlendirme

- Veri dağılımı dengeli ise: Veri kümesindeki örnek sayısı ve her sınıfa ait örnek sayısı fazla ise basit bir değerlendirme yeterli
 - holdout yöntemi: Belli sayıda örnek sınama için ayrılır, geriye kalan örnekler öğrenme için kullanılır
 - genelde veri kümesinin 2/3'ü öğrenme, 1/3'i sınama kümesi olarak avrılır
 - öğrenme kümesi kullanılarak model oluşturulur ve sınama kümesi kullanılarak model değerlendirilir

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

61

Tekrarlı Holdout Yöntemini

- Veri kümesini farklı altkümelere bölerek holdout yöntemini tekrarlama
 - Her eğitme işleminde veri kümesinin belli bir bölümü öğrenme kümesi olarak rasgele ayrılır
 - Modelin hata oranı, işlemler sonunda elde edilen modellerin hata oranlarının ortalaması
- Problem: Farklı eğitme işlemlerindeki sınama kümeleri örtüşebilir

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

6

Biri Hariç Çapraz Geçerleme

- k-kat çapraz geçerlemenin özel hali
 - k sayısı veri kümesindeki örnek sayısına (N) eşit
- Model N-1 örnek üzerinde eğitilir, dışarıda bırakılan 1 örnek üzerinde sınanır
- Bu işlem her örnek 1 kez sınama için kullanılacak şekilde tekrarlanır
 - model N kez eğitilir
- Model başarımı denemelerin başarımının ortalaması
- Verinin en etkin şekilde kullanımı

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

0.632 bootstrap

- N örnekten oluşan bir veri kümesinde bir örneğin seçilmeme olasılığı: $1-\frac{1}{N}$
- Sınama kümesinde yer alma olasılığı:

$$\left(1 - \frac{1}{N}\right)^N \approx e^{-1} = 0.368$$

 Öğrenme kümesi veri kümesindeki örneklerin %63,2'sinden oluşuyor

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

68

http://www.ninova.itu.edu.tr/FgitimDetay.aspx?eId=195/

Konular

- Sınıflandırma yöntemleri
- Model Değerlendirme
- Öğrenme, sınama, geçerleme kümelerini oluşturma
- Sınıflandırıcıları birleştirme
 - Bagging
 - Boosting

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

7

69

Bagging

- Wörnekten oluşan bir veri kümesinde bootstrap yöntemi ile Törnek sec
- Bu işlemi k öğrenme kümesi oluşturmak üzere tekrarla
- Aynı sınıflandırma algoritmasını k öğrenme kümesi üzerinde kullanarak k adet sınıflandırıcı oluştur
- Yeni bir örneği sınıflandırmak için her sınıflandırıcının sonucunu öğren
- Yeni örnek en çok hangi sınıfa atanmışsa o sınıfın etiketiyle etiketlendir.

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

/2

Boosting

- Öğrenme kümesindeki her örneğin bir ağırlığı var
- Her öğrenme işleminden sonra, her sınıflandırıcı için yapılan sınıflandırma hatasına bağlı olarak örneklerin ağırlığı güncelleniyor
- Yeni bir örneği sınıflandırmak için her sınıflandırıcının doğruluğuna bağlı olarak ağırlıklı ortalaması alınıyor.

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/