RETINANET: FOCAL LOSS FOR OBJECT DETECTION

ZHIYUAN WEN

(b) detection

(c) segmentation

OBJECT DETECTION

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

IOU

MAP

CROSS ENTROPY (CE) LOSS

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1 - p) & \text{otherwise.} \end{cases}$$

$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise,} \end{cases}$$

$$CE(p, y) = CE(p_t) = -\log(p_t)$$

BALANCED CROSS ENTROPY

$$CE(p_t) = -\alpha_t \log(p_t)$$

$$\alpha_{t} \begin{cases} \alpha & if \ y = 1 \\ 1 - \alpha & otherwise \end{cases}$$

FOCAL LOSS

$$FL(p_{t}) = -(1 - p_{t})^{\gamma} \log(p_{t})$$

$$FL(p_{\mathsf{t}}) = -\alpha_{\mathsf{t}}(1 - p_{\mathsf{t}})^{\gamma} \log(p_{\mathsf{t}})$$

INLIERS

Loss	数量多的类别(如: Background)	数量少的类别
被正确分类时的loss	大幅下降↓	稍微下降↓
被错误分类时的loss	适当下降↓	几乎不变

Figure 3. The one-stage **RetinaNet** network architecture uses a Feature Pyramid Network (FPN) [20] backbone on top of a feedforward ResNet architecture [16] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [20] while running at faster speeds.

α	AP	AP_{50}	AP ₇₅		γ	α	AP	AP_{50}	AP ₇₅		#sc	#ar	AP	AP50	AP ₇₅	
.10	0.0	0.0	0.0		0	.75	31.1	49.4	33.0	•	1	1	30.3	49.0	31.8	
.25	10.8	16.0	11.7		0.1	.75	31.4	49.9	33.1		2	1	31.9	50.0	34.0	
.50	30.2	46.7	32.8		0.2	.75	31.9	50.7	33.4		3	1	31.8	49.4	33.7	
.75	31.1	49.4	33.0		0.5	.50	32.9	51.7	35.2		1	3	32.4	52.3	33.9	
.90	30.8	49.7	32.3		1.0	.25	33.7	52.0	36.2		2	3	34.2	53.1	36.5	
.99	28.7	47.4	29.9		2.0	.25	34.0	52.5	36.5		3	3	34.0	52.5	36.5	
.999	25.1	41.7	26.1		5.0	.25	32.2	49.6	34.8		4	3	33.8	52.1	36.2	
(a) Varying α for CE loss ($\gamma = 0$)					(b) Varying γ for FL (w. optimal α)						(c) Varying anchor scales and aspects					

method	batch size	nms thr	AP	AP ₅₀	AP ₇₅	dej	oth s	scale	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L	time
OHEM	128	.7	31.1	47.2	33.2	5	0 4	400	30.5	47.8	32.7	11.2	33.8	46.1	64
OHEM	256	.7	31.8	48.8	33.9	5	0 :	500	32.5	50.9	34.8	13.9	35.8	46.7	72
OHEM	512	.7	30.6	47.0	32.6	5	0 (600	34.3	53.2	36.9	16.2	37.4	47.4	98
OHEM	128	.5	32.8	50.3	35.1	5	0	700	35.1	54.2	37.7	18.0	39.3	46.4	121
OHEM	256	.5	31.0	47.4	33.0	5	0 8	800	35.7	55.0	38.5	18.9	38.9	46.3	153
OHEM	512	.5	27.6	42.0	29.2	10)1 4	400	31.9	49.5	34.1	11.6	35.8	48.5	81
OHEM 1:3	128	.5	31.1	47.2	33.2	10)1 :	500	34.4	53.1	36.8	14.7	38.5	49.1	90
OHEM 1:3	256	.5	28.3	42.4	30.3	10)1 (600	36.0	55.2	38.7	17.4	39.6	49.7	122
OHEM 1:3	512	.5	24.0	35.5	25.8	10)1 (700	37.1	56.6	39.8	19.1	40.6	49.4	154
FL	n/a	n/a	36.0	54.9	38.7	10)1 8	800	37.8	57.5	40.8	20.2	41.1	49.2	198

(d) FL vs. OHEM baselines (with ResNet-101-FPN)

(e) Accuracy/speed trade-off RetinaNet (on test-dev)

CONCLUSION

- DATA AUGMENTATION / TRUNCATION
- LOSS

Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev. Enabled by the focal loss, our simple one-stage *RetinaNet* detector outperforms all previous one-stage and two-stage detectors, including the best reported Faster R-CNN [28] system from [20]. We show variants of RetinaNet with ResNet-50-FPN (blue circles) and ResNet-101-FPN (orange diamonds) at five scales (400-800 pixels). Ignoring the low-accuracy regime (AP<25), RetinaNet forms an upper envelope of all current detectors, and an improved variant (not shown) achieves 40.8 AP. Details are given in §5.