CS440/ECE448: Intro to Artificial Intelligence

Lecture 2: Intelligent Agents

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Key concepts from last lecture

Last time's key concepts

Content-wise:

- What is Artificial Intelligence?Why is it difficult?
- What is reasoning?Why does it require models?

Class admin:

- Can you log onto your Compass site?
- Did you do the survey on Compass?
- Do you have access to the textbook?

Compass survey

Java experience (26% no):

TA office hours next week will offer Java tutorials

Parisa's OH will be 3pm-5pm on Monday. Yonatan's OH will be 11am-1pm on Wednesday

Compass survey

What is Al?

- How to make something behave like a human
- How to make something intelligently solve problems/reason.

Second answer is correct, first is not.

CS440/ECE448: Intro Al

Today's lecture

Today's key questions

How can we design an "intelligent" **agent** to solve a specific **task** in a particular **environment**?

What is **intelligence**?

Today's key concepts

Agents:

5

- Different kinds of agents
- The structure and components of agents

Describing and evaluating agents:

- Performance measures
- Task environments

Rationality:

- What makes an agent intelligent?

The vacuum world

The environment: Location A and location B

Either can be clean or dirty

The agent: a vacuum cleaner
The task: clean both A and B

The face recognition world

Photo: Jason Sewell, on flickr.com

CS440/ECE448: Intro AI 9 CS440/ECE448: Intro AI 10

The chess world

- 1. e4 e5 2. Qh5 Nc6
- 3. Bc4 Nf6
- 4. Qxf7# 1-0

X			X			X	
	X		X		X		
		X	X	X			
X	X	X	響	X	X	X	X
		X	X	Х			
	X		X		X		
X			X			X	
			V				L_{X}^{T}

The environment: a chess game

The agent: a game

The task: play chess, win match

Agents

Agents operate in an environment

Toy example: the vacuum world

Sensor: a camera

Percepts: current location, is clean or dirty

Actions: move left, move right, suck

Definitions....

Sensor: eyes, ears, nose (human); camera, microphone (robot); stdin (NLP system),

Percept: the perceptual input at any instant.

Percept sequence: the complete history of what the agent has perceived

Actuator: arms, legs (human, robot), hose (vacuum), stdout (NLP system),

CS440/ECE448: Intro Al

The agent program (the 'brain')

14

The agent program decides what action to take in each situation.

- Situation = the current percept sequence
- It implements a mapping from percept sequences to actions (=the agent function)

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[A, Clean], [A, Dirty]	Suck

Agent program vs. agent function

Agent function:

A (complete) mapping from sequences of percepts to actions:

AgentFunction
$$(\langle p^{(1)}p^{(2)}...p^{(t)}\rangle) = a^{(t)}$$

Agent program:

What is *actually* implemented in the agent. Typically an approximation of the agent function.

CS440/ECE448: Intro Al 17

Model-based reflex agents

Agent has an **internal model** of the current state of the world.

Examples: the agent's previous location; current locations of all objects it has seen;

Last percept	Last location	Action
[Clean]	Left of current	Right
[Clean]	Right of current	Left

Simple reflex agents

Action depends *only* on current percept. Agent has no memory.

Last percept	Action
[Clean]	Right
[cat]	RUN!

May choose actions stochastically to escape infinite loops.

Last percept	Action
[Clean]	Right (p=0.8) Left(p=0.2)

CS440/ECE448: Intro Al 18

Model-based reflex agents

Agent may also have (generic) domain knowledge of the world.

Examples: effects of agent's actions, behavior of entities in the environment

Action	Effect	
agent sucks cat	cat bites agent	
agent moves down stairs	agent breaks	

Goal-based agents

Agent has a goal, which may require a sequence of actions.

(This requires *searching* or *planning*)

Goal	Required actions
a clean house	clean every room

CS440/ECE448: Intro Al

21

Utility-based agents

Agent can choose between multiple actions to achieve its goal. Which is best?

Agent may have conflicting goals. Which one to pursue first?

Agents may have a **utility function**, which (ideally) approximates the external performance measure.

CS440/ECE448: Intro Al 22

Learning-based agents

We cannot foresee every eventuality. Agents need to change their behavior to adapt to their environment.

This requires an (external) **teacher** or **reward** which tell the agent how well it is currently doing.

Evaluating agents

How well does the agent perform?

Objective evaluation:

What are the consequences of its actions on the environment?

Performance measure:

Do the agent's actions reach the desired *state* of the environment?

- We don't care about the state of the agent
- We usually don't care how the agent behaves to reach its goal

CS440/ECE448: Intro Al 25

Strategies for maximizing expected performance

Information gathering (first look, then act): Choose an action that yields a more informative percepts for the following action

Learning (act according to prior experience)
Augment or modify knowledge of the task or the
environment according to experience.
NB: learning requires autonomy

Rationality

A rational agent should always choose the action that maximizes its expected performance,

given the current situation

How rational an agent can be depends on

- a) the performance measure
- b) its prior knowledge of the environment
- c) what actions it can perform
- d) its current percept sequence

NB: rationality ≠ omniscience CS440/ECE448: Intro Al

26

Comparing agents and tasks

The **task environment** specifies the problem that the agent has to solve.

It is defined by:

- 1. the objective Performance measure
- 2. the external Environment
- 3. the agent's **Actuators**
- 4. the agent's **Sensors**

PEAS descriptions for....

- ... medical diagnosis system?
- ... assembly line robot?
- ... chess computer?
- ... autonomous car?

Performance measure
Environment
Actuators
Sensors

CS440/ECE448: Intro AI

29

Comparing task environments

1. What information do the *sensors* provide?

Fully observable:

The percepts contain all relevant properties of the environment

Partially observable:

The percepts contain only *some* relevant **properties** of the environment

2. What is the agent's *knowledge* about the environment?

Known:

Agent knows **all the rules** that hold in the environment. Can **predict outcomes** from complete observations.

Unknown:

Agent doesn't know the rules of the environment. Can't predict outcomes.

3. What effect do the actions have?

Deterministic:

Outcome of actions (next state of the environment) is fully determined by the current state.

Nondeterministic:

Each action has a set of possible outcomes.

Stochastic:

There is a probability distribution over possible outcomes.

CS440/ECE448: Intro AI

5. How does the *environment* change over time?

Static: Environment doesn't change unless agent performs an action. (e.g. crossword puzzles)

Dynamic: Environment changes even when the agent doesn't do anything. (e.g. traffic)

Semi-dynamic: Environment is static, but agent's performance score changes over time. (e.g. chess against a clock)

4. How do the *percepts* change over time?

Episodic:

Agent receives a single percept per episode. Its action in this episode does not affect future percepts (e.g. classification)

Sequential:

Agent receives a sequence of percepts. The current action affects future percepts. (e.g. navigation, game playing)

CS440/ECE448: Intro Al

6. Is the world discrete or continuous?

34

Continuous:

Time, percepts and actions are continuous. Example: driving a car.

Discrete:

Time, percepts and actions are discrete. Example: playing a board game.

33

7. Does the performance depend on *other agents*?

Single-agent environment:

Performance of agent A does not depend on any other agents.

Competitive multi-agent environment:

Maximizing performance of agent A minimizes performance of agent B. (competitive games)

Cooperative multi-agent environment:

Maximizing performance of agent A maximizes performance of agent B. (avoiding traffic accidents)

CS440/ECE448: Intro Al

To conclude...

Today's key concepts

Agents:

- Different kinds of agents
- The structure and components of agents

Describing and evaluating agents:

- Performance measures
- Task environments

Rationality:

- What makes an agent intelligent?

Your tasks

Reading:

37

Chapter 2

Compass quiz

Online after 2pm

Assignments

Read up on (basic) Java if you don't know Java yet.

CS440/ECE448: Intro Al