Zadanie 7. (1 pkt)

Równanie
$$\frac{x^2 + 2x}{x^2 - 4} = 0$$

A. ma trzy rozwiązania: x = -2, x = 0, x = 2

B. ma dwa rozwiązania: x = 0, x = 2

C. ma dwa rozwiązania: x = -2, x = 2

D. ma jedno rozwiazanie: x = 0

Zadanie 8. (1 pkt)

Funkcja liniowa f określona jest wzorem $f(x) = \frac{1}{2}x - 1$, dla wszystkich liczb rzeczywistych x. Wskaż zdanie prawdziwe.

A. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie $P = \left(0, \frac{1}{3}\right)$.

B. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie P = (0, -1).

C. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie $P = \left(0, \frac{1}{3}\right)$.

D. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie P = (0, -1).

Zadanie 9. (1 pkt)

Wykresem funkcji kwadratowej $f(x) = x^2 - 6x - 3$ jest parabola, której wierzchołkiem jest punkt o współrzędnych

A.
$$(-6, -3)$$

C.
$$(3,-12)$$
 D. $(6,-3)$

D.
$$(6, -3)$$

Zadanie 10. *(1 pkt)*

Liczba 1 jest miejscem zerowym funkcji liniowej f(x) = ax + b, a punkt M = (3, -2) należy do wykresu tej funkcji. Współczynnik a we wzorze tej funkcji jest równy

B.
$$\frac{3}{2}$$

B.
$$\frac{3}{2}$$
 C. $-\frac{3}{2}$

Zadanie 11. *(1 pkt)*

Dany jest ciąg (a_n) jest określony wzorem $a_n = \frac{5-2n}{6}$ dla $n \ge 1$. Ciąg ten jest

A. arytmetyczny i jego różnica jest równa $r = -\frac{1}{2}$.

B. arytmetyczny i jego różnica jest równa r = -2.

C. geometryczny i jego iloraz jest równy $q = -\frac{1}{3}$.

D. geometryczny i jego iloraz jest równy $q = \frac{5}{4}$.