Matrices aléatoires et zéros de polynômes: Notes de cours

Enseignant: Prof. Alain VALETTE

Scribe: Laurent HAYEZ

Année 2018-2019, semestre de printemps Dernière modification: 21 février 2019

Table des matières

0	Résumé	3
1	De la mécanique quantique à l'analyse fonctionnelle	4
	1.1 Mécanique quantique	4
	1.2 C*-algèbres	5

Chapitre 0 Résumé

Insérer schema

Chapitre 1

De la mécanique quantique à l'analyse fonctionnelle

1.1 Mécanique quantique

Paul Adrien Maurice DIRAC (1902 - 1984) physicien anglais d'origine valaisanne, a écrit en 1930 les « Principles of quantum mechanics » (plusieurs fois ré-édités).

Principes:

• Les états d'un système physique sont représentés par les vecteurs-unités d'un espace de Hilbert \mathcal{H} .

Exemples 1.1. — Une particule libre à une dimension : $\mathcal{H}=L^2(\mathbb{R})$. — Une particule libre à deux dimensions : $\mathcal{H}=L^2(\mathbb{R}^2)$.

• Les grandeurs physiques (« observables ») sont des opérateurs auto-adjoints ($T = T^*$) sur \mathcal{H} .

Exemples 1.2. — Sur $L^2(\mathbb{R})$, l'opérateur de position P est la multiplication par x sur $L^2(\mathbb{R})$.

— L'opérateur de moment (ou impulsion) $Q = \frac{1}{i} \frac{d}{dx}$.

• Ce qu'on peut observer (en laboratoire) est la probabilité que la valeur d'une observable sur un état donné, soit comprise entre deux valeurs a et b.

Exemples 1.3. — Soit $\psi\in L^2(\mathbb{R}), \, \|\psi\|=1,$ c'est-à-dire $\int_{-\infty}^\infty |\psi(x)|^2 dx = 1.$

La probabilité que la position d'une particule dans l'état ψ , soit entre

a et b est

$$\int_a^b |\psi(x)|^2 dx.$$

En effet, le fait que $\|\psi\|=1$ nous dit que ψ est une densité de probabilité.

*

Ces trois principes sont parfois appelés les « axiomes de la mécanique quantique ». Dans le chapitre 18 de son livre, « Probability amplitudes », Dirac donne une recette pour obtenir ces probabilités.

Définition 1.4. Deux observables S et T sont dit compatibles si ST = TS.

Exemples 1.5. 1. Les observables P et Q précédemment définis ne sont pas compatibles. En effet,

$$PQ - QP = \frac{-1}{i}Id,$$

qui est la relation d'indétermination de Heisenberg.

2. Pour une particule libre à deux dimensions, posons P_x l'opérateur de multiplication par la première variable x sur $L^2(\mathbb{R})$ $(P_x f(x,y) = x f(x,y))$ et P_y l'opérateur de multiplication par la deuxième variable y. Ces deux opérateurs sont compatibles,

$$P_x P_y = P_y P_x$$
.

*

La recette de Dirac est la suivante :

- 1. considérer un ensemble maximal d'observables deux à deux compatibles,
- 2. spécifier les probabilités associées sur les observables dans un état quantique donné,
- 3. étendre ces probabilités à toutes les observables, même non compatibles.

1.2 C*-algèbres

Si \mathcal{H} est un espace de Hilbert, on note $\mathcal{B}(\mathcal{H})$ l'espace des opérateurs linéaires bornés (donc continus) de \mathcal{H} vers \mathcal{H} , avec la norme opérateur

$$\|\mathsf{T}\| = \sup_{\|\mathsf{x}\| \leqslant 1} \|\mathsf{T}\mathsf{x}\|.$$

L'espace $\mathcal{B}(\mathcal{H})$ est une algèbre de Banach

$$||ST|| \leq ||S|| ||T||$$
.

Si $T \in \mathcal{B}(\mathcal{H})$, $T^* \in \mathcal{B}(\mathcal{H})$ est défini par

$$\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle \quad \forall \xi, \eta \in \mathcal{H}.$$

Définition 1.6. • Une sous-algèbre est un sous espace vectoriel qui est stable pour la multiplication.

• Une *-sous-algèbre A a la propriété $T \in A \Rightarrow T^* \in A$ et est fermée pour la norme opérateur.

Définition 1.7. Une C*-algèbre est une *-sous-algèbre fermée de $\mathcal{B}(\mathcal{H})$.

Exemples 1.8. 1. $\mathcal{B}(\mathcal{H})$, $\mathbb{C}\mathbb{1} = \{\lambda\mathbb{1}, \lambda \in \mathbb{C}\}$, $\{0\}$, $\mathcal{K}(\mathcal{H})$ l'ensemble des opérateurs compacts.

2. Soit X un espace topologique compact, et C(X) l'ensemble des fonctions continues de X dans $\mathbb C$ muni de la norme

$$\|f\|_{\infty} = \max_{x \in X} |f(x)|$$

et de l'involution

$$f^*(x) = \overline{f(x)}$$
.

On prend sur X une mesure de probabilité μ telle que $\mu(U)>0$ pour tout ouvert non vide de X. L'exemple a garder en tête est [0,1] avec la mesure de Lebesgue. Ainsi $\mathcal{H}=L^2(X,\mu)$ est un espace de Hilbert. Si on multiplie une fonction de L^2 par une fonction continue, elle reste dans L^2 , ainsi

$$\pi \colon C(X) \to \mathcal{B}(\mathcal{H}), \ f \mapsto \text{multiplication par } f \ \text{sur } \mathcal{H}.$$

Exercice 1.1. Avec $\|\pi(f)\| = \|f\|_{\infty}$, C(X) est une C^* -algèbre. \spadesuit

*

Théorème 1.9 (GELFAND, 1940). Soit A une C*-algèbre commutative à unité $(1 \in A)$. Il existe un espace compact X, unique à homéomorphisme près, tel que $A \simeq C(X)$.

Définition 1.10. Un opérateur $T \in \mathcal{B}(\mathcal{H})$ est positif $(T \geqslant 0)$ si les conditions équivalentes suivantes sont satisfaites :

- 1. pour tout $\xi \in \mathcal{H}$, $\langle T\xi, \xi \rangle \geqslant 0$,
- 2. il existe $S \in \mathcal{B}(\mathcal{H})$ tel que $T = S^*S$,
- 3. $T = T^*$ et $Sp(T) \subset [0, +\infty[$ (Rappel : le spectre de T $Sp(T) = \{\lambda \in \mathbb{C} : T \lambda \mathbb{1} \text{ n'est pas inversible}\}$, Sp(T) est un compact non vide de \mathbb{C} et $Sp(T) \subseteq B(0, \|T\|)$.

Définition 1.11. Si A est une C^* -algèbre à unité, un état sur A est une forme linéaire $\varphi:A\to\mathbb{C}$ telle que

- 1. $\varphi(1) = 1$,
- $2. \ \phi(T^*T) \geqslant 0 \ pour \ tout \ T \in A.$

On note S(A) l'ensemble des états sur A.

Exemple 1.12. Soit $\xi \in \mathcal{H}$ tel que $\|\xi\| = 1$, alors pour $T \in \mathcal{B}(\mathcal{H})$

$$\varphi(T) = \langle T\xi, \xi \rangle$$

est un état vectoriel et

$$\phi(1) = \|\xi\|^2 = 1, \ \phi(T^*T) = \langle T^*T\xi, \, \xi \rangle = \langle T\xi, \, T\xi \rangle = \|T\xi\|^2 \geqslant 0$$

 \star

et ainsi $S(A) \neq \emptyset$.

Proposition 1.13. S(A) est une partie convexe de la boule-unité du dual A^* (ici A^* est l'ensemble des formes linéaires continues sur A).

Preuve. 1. Soient $\varphi_1, \varphi_2 \in S(A)$, soit $t \in [0, 1]$. On doit montrer que

$$t\phi_1+(1-t)\phi_2\in S(A).$$

On a

$$(t\phi_1 + (1-t)\phi_2)(1) = 1, \quad (t\phi_1 + (1-t)\phi_2)(T^*T) \ge 0.$$

2. Si $\phi \in S(A)$, on doit montrer que $\|\phi\| \leqslant 1$, c'est-à-dire

$$|\phi(t)| \leqslant 1 \text{ si } ||T|| \leqslant 1.$$

Si $||T|| \le 1$, alors $1 - T^*T \ge 0$ car

$$\langle (1 - T^*T)\xi, \xi \rangle = ||\xi||^2 - ||T\xi||^2 \geqslant 0$$

puisque $||T|| \le 1$. On peut encore écrire

$$1 - T^*T = S^*S$$

pour $S \in A$. Ainsi

$$1-\phi(T^*T)=\phi(\mathbb{1}-T^*T)=\phi(S^*S)\geqslant 0 \implies \phi(T^*T)\leqslant 1.$$

L'application $A\times A\to \mathbb{C},\ (x,y)\mapsto \phi(y^*x)$ vérifie l'inégalité de Cauchy-Schwartz

$$|\phi(y^*x)|^2\leqslant \phi(y^*y)\phi(x^*x)\,\forall x,y\in A.$$

Pour x = T, y = 1,

$$|\phi(T)|^2\leqslant \phi(\mathbb{1})\phi(T^*T)\leqslant 1.$$

Remarque 1.14. Comme $1 = \varphi(1) \le ||\varphi||$, on a que S(A) est contenu dans la sphère unité de A^* .

Définition 1.15. Soit K un convexe dans un espace vectoriel réel ou complexe. Un point K est extrême dans K si x n'est pas intérieur à un segment contenu dans K, c'est-à-dire si $x = tx_1 + (1-t)x_2$ avec 0 < t < 1, $x_1, x_2 \in K$, alors $x = x_1 = x_2$. insérer fig1.

Un point extrême de S(A) est appelé un état pur.

Exemples 1.16. 1. On montre que tout état vectoriel de $\mathcal{B}(\mathcal{H})$ est pur. On verra qu'il y a des états purs non vectoriels.

2. Soit A = C(X), alors S(A) s'identifie avec Prob(X) l'espace des mesures de probabilités sur X (un des théorèmes de représentation de RIESZ).

 \star

Les états purs s'identifient aux points extrêmes de Prob(X), c'est-à-dire aux mesures de Dirac δ_x , définie par (pour $A \subset X$)

$$\delta_{x}(A) = \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{sinon.} \end{cases}$$

Chapitre 2

Index

```
C*-algèbre, 6
*-sous-algèbre, 6
état, 7
état pur, 8
état vectoriel, 7
algèbre de Banach, 5
axiomes de la mécanique quantique, 5
espace des opérateurs linéaires bornés,
observables compatibles, 5
opérateur de moment, 4
opérateur de position, 4
opérateur positif, 7
point extrême, 8
relation d'indétermination de Heisenberg,
       5
sous-algèbre, 6
```