Documentación: Proyecto NACHO_LIBRE

(Versión 1.0 – 27/03/2025)

1. Descripción General

Sistema embebido que automatiza el relleno de un comedero para cerdos mediante:

- Hardware: Raspberry Pi (unidad central) + ESP32 (control de sensores/actuadores).
- Software:
 - o Backend en Python (Raspberry Pi).
 - Conexión con el servidor en PyQt6 (servidor)
 - o App móvil en Flutter (control remoto).

Objetivo principal: Permitir al supervisor monitorear y activar el relleno del comedero de forma remota (Flutter).

2. Diagrama de Funcionamiento

```
A[App Flutter] -->|WiFi/4G| B(Raspberry Pi)
```

C[Interfaz PyQt6] --> B

B --> D[ESP32]

D --> E[Sensor de Nivel]

D --> F[Actuador/Motor]

- Flujo:
 - 1. El supervisor envía una orden (desde la app).
 - 2. La Raspberry Pi procesa la solicitud y envía comandos al ESP32.
 - 3. ESP32 activa el motor/servo para rellenar el comedero si el sensor indica bajo nivel.

3. Componentes Clave

3.1 Hardware

Componente Función

Raspberry Pi Ejecuta el backend en Python, comunica app + ESP32.

ESP32 Controla el sensor de nivel y el motor/actuador del comedero.

Sensor de nivel Detecta cuándo el comedero está vacío.

Motor/Actuador Abre/cierra el mecanismo de relleno

3.2 Software

Backend (Python):

- API REST (para la app Flutter).
- o Comunicación WIFI con ESP32.

PyQt6:

Servidor conectado a un dominio.

App Flutter:

- Visualización del estado del comedero (lleno/vacío).
- o Botón de relleno remoto y notificaciones.

4. Proceso de Relleno

1. Condición de activación:

o El sensor detecta nivel bajo **o** el supervisor presiona "Rellenar" (app).

2. Secuencia:

- ESP32 recibe la señal y activa el motor durante X segundos (tiempo calibrado).
- o El sensor verifica el nuevo nivel y envía confirmación a la Raspberry Pi.

3. Notificaciones:

La app muestra: "Comedero rellenado - Hora: [timestamp]".

5. Protocolos de Seguridad

- Autenticación: La app requiere usuario/contraseña.
- **Timeout**: Si el motor se activa por más de Y segundos, se fuerza su apagado (evita sobrecarga).
- Registro de eventos: Logs almacenados en la Raspberry Pi (últimos 30 días).

6. Posibles Fallos y Soluciones

Síntoma	Causa probable	Solución
Motor no se activa	Falta de conexión ESP32	2 Verificar cables y puerto serial.
App no actualiza estado	o WiFi/API caída	Reiniciar Raspberry Pi.
Falso "vacío" en sensor	Suciedad en sensor	Limpiar o recalibrar.

7. Notas de Mantenimiento

- Limpieza: Verificar mensualmente el sensor y el mecanismo de relleno.
- **Actualizaciones**: La Raspberry Pi debe estar conectada a internet para recibir parches.