

An Empirical Study of Partial Deduction for MINIKANREN

Kate Verbitskaia, Daniil Berezun, Dmitry Boulytchev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg State University

27.08.2020

input program

```
let rec eval° fm s r = fm \equiv neg x & eval° x s a & not° a r | ...
```

input program

```
let rec eval° fm s r =
fm ≡ neg x & eval° x s a & not° a r |
...

eval° fm s true←
```

input program

Partial Deduction: Specialization for Logic Programming

input

```
let double_append^{o} x y z r =
  ocanren {
    fresh t in
      appendo x y t &
      appendo t z r}
let rec appendo x y r =
  ocanren {
    (x \equiv [] \& y \equiv r) |
    (fresh h x' r' in
      x = h \cdot \cdot \cdot x' \&
      append° x' y r' &
      r \equiv h :: r')
```

double_appendo x y z r

output

```
let double_appendo x y z r =
  ocanren {
    (x \equiv [] \& append^o y z r) |
    (fresh h x' r' in
      x \equiv h :: x' \&
      double_append° x' y z r' &
      r \equiv h :: r')
let rec appendo x y r =
  ocanren {
    (x \equiv [] \& y \equiv r) \mid
    (fresh h x' r' in
      x \equiv h :: x' \&
      appendo x'y r'&
      r \equiv h :: r')
```

```
let rec append° x y r =
    ocanren {
        (x ≡ [] & y ≡ r) |
        (fresh h x' r' in
        x ≡ h :: x' &
        append° x' y r' &
        r ≡ h :: r')}
```

driving let rec appendo x y r = ocanren { (x = [] & y = r) | (fresh h x' r' in x = h :: x' & appendo x' y r' & x = h :: r')} appendo x' y r' (x \rightarrow f], y \rightarrow r') appendo x'' y r' (x' \rightarrow f': x'', r' \rightarrow h': r'') appendo x'' y r'' (x' \rightarrow f': x'', r' \rightarrow h': r'') appendo x y r


```
let rec append° x y r =
    ocanren {
        (x = [] & y = r) |
        (fresh h x' r' in
        x = h :: x' &
        append° x' y r' &
        r = h :: r')}
```



```
let rec append° x y r =
    ocanren {
        (x ≡ [] & y ≡ r) |
        (fresh h x' r' in
        x ≡ h :: x' &
        append° x' y r' &
        r ≡ h :: r')}
        append° x y r
```


substitution


```
let rec append° x y r =
    ocanren {
        (x = [] & y = r) |
        (fresh h x' r' in
        x = h :: x' &
        append° x' y r' &
        r = h :: r')}
        append° x y r
```


substitution

appendo x' y r'goal $\langle x \rightarrow h :: x', r \rightarrow h :: r' \rangle$

Partial Deduction

```
let double_append° x y z r =
  ocanren {
    fresh t in
      append° x y t &
      append° t z r}
```


Conjunctive Partial Deduction

```
let double_appendo x y z r =
  ocanren {
      fresh t in
        appendo x v t &
                                                                           double_appendo x y z r
        appendo t z r}
                                                                     \sqrt{\text{append}^o \times y \ t \ \& \ \text{append}^o \ t \ z \ r}
                                          call to unfold
                                                   appendo tzr
                                                                                                appendo x' y t' & appendo (h :: t') z r
                                                   \langle x \to [], y \to t \rangle
                                                                                                          \langle x \to h :: x', t \to h :: t' \rangle
                                                                 appendo t' z r'
                                                                                                    append^{o} x' y t' & append^{o} t' z r'
                                  \langle t \to [], z \to r \rangle
                                                            \langle t \rightarrow h :: t', r \rightarrow h :: r' \rangle
                                                                                                                  \langle r \rightarrow h :: r' \rangle
let double_appendo x y z r =
  ocanren {
      (x \equiv [] \& append^o y z r)
      (fresh h x' r' in
        x \equiv h :: x' \&
        {\tt double\_append}^o \ {\tt x'} \ {\tt y} \ {\tt z} \ {\tt r'} \ \& \\
        r \equiv h :: r')
```

Evaluator of Logic Formulas

Evaluator of Logic Formulas: Unfolding 2

Boolean Connectives

Evaluator of Logic Formulas: Unfolding 3

Evaluator of Logic Formulas: ConsPD

Evaluator of Logic Formulas: ConsPD

reverse^o

```
let rec reverse° xs sx =

ocanren {

(xs = [] & sx = []) |

(fresh h t t' in

xs = h :: t &

reverse° t t' &

append° t' [h] sx}

reverse° xs sx
```


Split

Conservative Partial Deduction

Branching Heuristics

Branching heuristics is used to select a call to unfold

If the call has less branches in the process tree than the relation can possible have, unfold the call

Evaluation

Evaluator of Logic Formulas

Evaluator of Logic Formulas: Order of Calls

:

Evaluator of Logic Formulas: Results

Unification

Path Search

Evaluation Results

	last	plain	unify	isPath
Original	1.06s	1.84s	_	_
CPD	_	1.13s	14.12s	3.62s
ConsPD	0.93s	0.99s	0.96s	2.51s
Branching	3.11s	7.53s	3.53s	0.54s

Table: Evaluation results

Conclusion

- Conservative Partial Deduction
 - Less-branching heuristics
- Evaluation shows some improvement, but not for every query
- Models to predict performance can help