Análise Matemática. Curso 2022-2023.

Grao en Enxenería Informática. ESEI Ourense.

Departamento de Matemáticas. Universidade de Vigo.

BLOQUE II

Data: 10/11/2022

APELIDOS	NOME	DNI	NOTA

- 1. Considérese a función $f: [-5,5] \to \mathbb{R}$ definida como $f(x) = \frac{3x+4}{1+x^2}$.
 - a) Encontrar os intervalos de crecemento e decrecemento de f.

SOLUCIÓN: Analizamos o signo da súa derivada

$$f'(x) = \frac{3(1+x^2) - (3x+4)2x}{(1+x^2)^2} = \frac{3+3x^2 - 6x^2 - 8x}{(1+x^2)^2} = \frac{-3x^2 - 8x + 3}{(1+x^2)^2}$$

calculando onde se anula

$$f'(x) = 0 \iff -3x^2 - 8x + 3 = 0 \iff x = -3, \ x = \frac{1}{3}$$

e substituíndo valores nos intervalos que se forman:

$$f'(-4) < 0 \Longrightarrow f'(x) < 0$$
 para todo $x \in (-5, -3) \Longrightarrow f$ é decrecente en $(-5, -3)$, $f'(0) > 0 \Longrightarrow f'(x) > 0$ para todo $x \in (-3, \frac{1}{3}) \Longrightarrow f$ é crecente en $(-3, \frac{1}{3})$, $f'(1) < 0 \Longrightarrow f'(x) < 0$ para todo $x \in (\frac{1}{3}, 5) \Longrightarrow f$ é decrecente en $(\frac{1}{3}, 5)$,

b) Clasificar todos os extremos relativos de f en [-5, 5].

Do estudo anterior sobre os intervalos de crecemento e decrecemento podemos concluir que f alcanza máximos relativos en x=-5 e $x=\frac{1}{3}$ e mínimos relativos en x=-3 e x=5.

Ademais o Teorema de Weierstrass garantiza que a función f, que é continua por ser cociente de continuas con denominador distinto de cero, alcanza o seu máximo e mínimo absolutos no intervalo pechado e acotado [-5,5]. Evaluando a función nos extremos relativos

$$f(-5) = -\frac{11}{26}, f(-3) = -\frac{1}{2}, f(1/3) = \frac{9}{2}, f(5) = \frac{19}{26},$$

concluimos que f alcanza o seu mínimo absoluto en x=-3 e o seu máximo absoluto en x=1/3.

1

2. a) Calcular a integral indefinida $\int x \cos(x) dx$.

Solución: Integrando por partes $[u=x \implies du=1dx,\ dv=\cos(x)dx \implies v=\sin(x)],$ obtemos

$$\int x \cos(x) dx = x \sin(x) - \int \sin(x) dx = x \sin(x) + \cos(x) + c.$$

b) Obter a área encerrada entre a gráfica da función $y = x \cos(x)$ o eixe OX e as rectas verticais $x = 0, x = \pi$.

Solución: Área= $\int_0^{\pi} |x\cos(x)| dx$.

Para quitar o valor absoluto que aparece dentro da integral temos que estudar o signo da función $f(x) = x \cos(x)$ no intervalo $[0, \pi]$. Como $x \ge 0$ en $[0, \pi]$ basta estudar o signo de $\cos(x)$ no intervalo:

$$\cos(x) = 0 \quad \text{en } [0, \pi] \Longleftrightarrow x = \frac{\pi}{2}.$$

$$\cos(0) = 1 > 0 \Longrightarrow f(x) > 0 \quad \text{para todo } x \in (0, \pi/2),$$

$$\cos(\pi) = -1 \Longrightarrow f(x) < 0 \quad \text{para todo } x \in (\pi/2, \pi].$$

Logo,

$$\int_0^{\pi} |x\cos(x)| \, dx = \int_0^{\pi/2} x\cos(x) dx - \int_{\pi/2}^{\pi} x\cos(x) dx =$$

$$= (x\sin(x) + \cos(x))]_{x=0}^{x=\pi/2} - (x\sin(x) + \cos(x))]_{x=\pi/2}^{x=\pi} =$$

$$= (\pi/2 - 1) - (-\pi/2 - 1) = \pi/2 - 1 + \pi/2 + 1 = \pi u^2.$$