Lógica proposicional

Matemática estructural y lógica ISIS-1104

Lógica como sistema formal

■ El alfabeto:

$$\textit{A} = \{\neg, \land, \lor, (,), \textit{True}, \textit{False}, \textit{p}, \textit{q}, \textit{r}, \textit{s}, ...\}$$

■ El alfabeto:

$$A = {\neg, \land, \lor, (,), True, False, p, q, r, s, ...}$$

La sintaxis:

```
\begin{array}{c} \texttt{sentence} \to \texttt{atomic\_sentence} \mid \texttt{complex\_sentence} \\ \texttt{atomic\_sentence} \to \textit{True} \mid \textit{False} \mid \textit{p} \mid \textit{q} \mid \textit{r} \mid \textit{s} \mid ... \\ \texttt{complex\_sentence} \to \texttt{unary\_op sentence} \\ \texttt{complex\_sentence} \to (\texttt{sentence binary\_op sentence}) \\ \texttt{unary\_op} \to \neg \\ \texttt{binary\_op} \to \land \mid \lor \end{array}
```

• Fórmulas bien formadas:

- Fórmulas bien formadas:
 - ¬µ

- Fórmulas bien formadas:
 - ¬p
 - $(\neg s \lor q)$

- Fórmulas bien formadas:
 - ¬p
 - $(\neg s \lor q)$
 - $(p \land \neg r)$

- Fórmulas bien formadas:
 - ¬p
 - $(\neg s \lor q)$
 - $(p \land \neg r)$
 - $(p \land (q \lor r))$

- Fórmulas bien formadas:
 - ¬p
 - $(\neg s \lor q)$
 - $(p \land \neg r)$
 - $(p \land (q \lor r))$

- Fórmulas bien formadas:
 - ¬p
 - $(\neg s \lor q)$
 - $(p \land \neg r)$
 - $(p \land (q \lor r))$
 - $\neg (p \lor q)$
- ¿Qué semántica podemos asignarle a este lenguaje?

- Fórmulas bien formadas:
 - ¬p
 - $(\neg s \lor q)$
 - $(p \land \neg r)$
 - $(p \land (q \lor r))$
 - $\neg (p \lor q)$
- ¿Qué semántica podemos asignarle a este lenguaje?
- ¿Qué aparato deductivo podemos asignarle a este lenguaje?

 Todas las fórmulas representan proposiciones o afirmaciones.

- Todas las fórmulas representan proposiciones o afirmaciones.
- True/False representa la proposición que siempre es verdadera/falsa.

- Todas las fórmulas representan proposiciones o afirmaciones.
- True/False representa la proposición que siempre es verdadera/falsa.
- p, q, r, ... son variables proposicionales y pueden usarse para representar cualquier proposición.

 $p \equiv \text{hoy está lloviendo}$

- Todas las fórmulas representan proposiciones o afirmaciones.
- True/False representa la proposición que siempre es verdadera/falsa.
- p, q, r, ... son variables proposicionales y pueden usarse para representar cualquier proposición.

$$p \equiv \text{hoy está lloviendo}$$

■ ¬, ∧ y ∨ son **operaciones lógicas**.

- Todas las fórmulas representan proposiciones o afirmaciones.
- True/False representa la proposición que siempre es verdadera/falsa.
- p, q, r, ... son variables proposicionales y pueden usarse para representar cualquier proposición.

$$p \equiv \text{hoy está lloviendo}$$

- ¬, ∧ y ∨ son **operaciones lógicas**.
- para entender el significado de las operaciones lógicas hacemos uso de tablas de verdad.

 Si p es una proposición cualquiera, ¬p representa la negación de p o simplemente no p.

- Si p es una proposición cualquiera, ¬p representa la negación de p o simplemente no p.
- Su tabla de verdad es:

р	$\neg p$
True	False
False	True

- Si p es una proposición cualquiera, ¬p representa la negación de p o simplemente no p.
- Su tabla de verdad es:

р	$\neg p$
True	False
False	True

Ejemplo:

 $p \equiv$ ahora está lloviendo $\neg p \equiv$ ahora no está lloviendo

El operador \wedge

El operador \wedge

• Si p y q son dos proposiciones, $(p \land q)$ representa la **conjunción entre** p **y** q o simplemente p **y** q.

El operador \wedge

- Si p y q son dos proposiciones, $(p \land q)$ representa la **conjunción entre** p **y** q o simplemente p **y** q.
- Su tabla de verdad es:

р	q	$(p \wedge q)$	
True	True	True	
True	False	False	
False	True	False	
False	False	False	

6

- Si p y q son dos proposiciones, $(p \land q)$ representa la **conjunción entre** p **y** q o simplemente p **y** q.
- Su tabla de verdad es:

р	p q $(p \land q)$	
True	True	True
True	False	False
False	True	False
False	False	False

• Ejemplo:

 $p \equiv$ ahora está lloviendo

 $q \equiv$ tengo mi sombrilla

 $p \wedge q \equiv$ ahora está lloviendo y tengo mi sombrilla

• Si $p \vee q$ son dos proposiciones, $(p \vee q)$ representa la **disyunción entre** $p \vee q$ o simplemente $p \vee q$.

El operador \lor

- Si $p \vee q$ son dos proposiciones, $(p \vee q)$ representa la **disyunción entre** $p \vee q$ o simplemente $p \vee q$.
- Su tabla de verdad es:

р	q	$(p \wedge q)$	
True	True	True	
True	False	True	
False	True	True	
False	False	False	

7

- Si $p \ y \ q$ son dos proposiciones, $(p \lor q)$ representa la **disyunción entre** $p \ \mathbf{y} \ q$ o simplemente $p \ \mathbf{o} \ q$.
- Su tabla de verdad es:

р	p q $(p \land q)$	
True	True	True
True	False	True
False	True	True
False	False	False

• Ejemplo:

 $p \equiv$ ahora está lloviendo

 $q\equiv$ tengo mi sombrilla

 $p \vee q \equiv$ ahora está lloviendo o tengo mi sombrilla

 Ahora podemos decidir el valor de verdad de cualquier fórmula de nuestro lenguaje.

- Ahora podemos decidir el valor de verdad de cualquier fórmula de nuestro lenguaje.
- Por ejemplo, la tabla de verdad de $(\neg p \land q)$:

р	q	$\neg p$	$(\neg p \wedge q)$
True	True	False	False
True	False	False	False
False	True	True	True
False	False	True	False

 \blacksquare Ahora ustedes calculen la tabla de verdad de $(\neg p \lor q)$

Extendiendo nuestro lenguaje

 Si p y q son dos proposiciones, (p ⇒ q) representa el condicional material entre p y q o simplemente si p entonces q.

- Si p y q son dos proposiciones, (p ⇒ q) representa el condicional material entre p y q o simplemente si p entonces q.
- Su tabla de verdad es:

р	q	$(p \Rightarrow q)$
True	True	True
True	False	False
False	True	True
False	False	True

- Si p y q son dos proposiciones, (p ⇒ q) representa el condicional material entre p y q o simplemente si p entonces q.
- Su tabla de verdad es:

р	q	$(p \Rightarrow q)$
True	True	True
True	False	False
False	True	True
False	False	True

Hay que tener cuidado con la interpretación:

- Si p y q son dos proposiciones, (p ⇒ q) representa el condicional material entre p y q o simplemente si p entonces q.
- Su tabla de verdad es:

р	q	$(p \Rightarrow q)$
True	True	True
True	False	False
False	True	True
False	False	True

- Hay que tener cuidado con la interpretación:
 - Si Colombia gana el próximo mundial, entonces Bogotá queda en Sudamérica.

- Si p y q son dos proposiciones, (p ⇒ q) representa el condicional material entre p y q o simplemente si p entonces q.
- Su tabla de verdad es:

р	q	$(p \Rightarrow q)$
True	True	True
True	False	False
False	True	True
False	False	True

- Hay que tener cuidado con la interpretación:
 - Si Colombia gana el próximo mundial, entonces Bogotá queda en Sudamérica.
 - Si ahora está lloviendo, entonces yo tengo mi sombrilla.

■ Como $(\neg p \lor q)$ y $(p \Rightarrow q)$ siempre tienen el **mismo valor de verdad**, decimos que son **equivalentes**.

$$((\neg p \lor q) \equiv (p \Rightarrow q))$$

■ Como $(\neg p \lor q)$ y $(p \Rightarrow q)$ siempre tienen el **mismo valor de verdad**, decimos que son **equivalentes**.

$$((\neg p \lor q) \equiv (p \Rightarrow q))$$

 Sin embargo son fórmulas distintas porque estan construidas con distintos símbolos.

■ Como $(\neg p \lor q)$ y $(p \Rightarrow q)$ siempre tienen el **mismo valor de verdad**, decimos que son **equivalentes**.

$$((\neg p \lor q) \equiv (p \Rightarrow q))$$

- Sin embargo son fórmulas distintas porque estan construidas con distintos símbolos.
- La tabla de verdad de $(p \equiv q)$ es:

р	q	$(p \equiv q)$
True	True	True
True	False	False
False	True	False
False	False	True

El resultado final

El resultado final

■ El alfabeto:

$$A = \{\neg, \land, \lor, \Rightarrow, \equiv, (,), \mathit{True}, \mathit{False}, p, q, r, s, ...\}$$

El resultado final

■ El alfabeto:

$$A = \{\neg, \land, \lor, \Rightarrow, \equiv, (,), True, False, p, q, r, s, ...\}$$

La sintaxis:

```
\begin{array}{c} \texttt{sentence} \to \texttt{atomic\_sentence} \mid \texttt{complex\_sentence} \\ \texttt{atomic\_sentence} \to \textit{True} \mid \textit{False} \mid \textit{p} \mid \textit{q} \mid \textit{r} \mid \textit{s} \mid ... \\ \texttt{complex\_sentence} \to \texttt{unary\_op} \texttt{ sentence} \\ \texttt{complex\_sentence} \to (\texttt{sentence} \texttt{ binary\_op} \texttt{ sentence}) \\ \texttt{unary\_op} \to \neg \\ \texttt{binary\_op} \to \land \mid \lor \end{array}
```

paréntesis y otros demonios

De la lógica proposicional, los

• Tengamos en cuenta la siguiente fórmula bien formada

$$(((((\neg p \land q) \land r) \Rightarrow ((r \lor t) \lor u)) \land v)$$

• Tengamos en cuenta la siguiente fórmula bien formada

$$((((\neg p \land q) \land r) \Rightarrow ((r \lor t) \lor u)) \land v)$$

El uso de paréntesis hace difícil su lectura, entonces

$$\neg p \land q \land r \Rightarrow r \lor t \lor u \land v$$

Tengamos en cuenta la siguiente fórmula bien formada

$$((((\neg p \land q) \land r) \Rightarrow ((r \lor t) \lor u)) \land v)$$

El uso de paréntesis hace difícil su lectura, entonces

$$\neg p \land q \land r \Rightarrow r \lor t \lor u \land v$$

Necesitamos una convención para evitar ambigüedad.

Tomaremos una convención prestada de la aritmética

Tomaremos una convención prestada de la aritmética

■ Las operaciones * y / tienen precedencia sobre + y -:

$$2*3+5=(2*3)+5$$

$$6 - 8/2 = 6 - (8/2)$$

Tomaremos una convención prestada de la aritmética

■ Las operaciones * y / tienen precedencia sobre + y -:

$$2*3+5=(2*3)+5$$

$$6 - 8/2 = 6 - (8/2)$$

 Las operaciones con la misma precedencia son asociativas a izquierda:

$$2-3+5=(2-3)+5$$

$$10/5 * 2 = (10/5) * 2$$

• La precedencia de operadores lógicos que tomaremos es

 \neg precede a $^{\wedge\!\!/_{\!\!\!\!\vee}}$ precede a \Rightarrow precede a \equiv

• La precedencia de operadores lógicos que tomaremos es

$$\neg$$
precede a ^/v precede a \Rightarrow precede a \equiv

• Las operaciones son asociativas a izquierda.

• La precedencia de operadores lógicos que tomaremos es

$$\neg$$
precede a ^/v precede a \Rightarrow precede a \equiv

- Las operaciones son asociativas a izquierda.
- Ejemplo

$$p \Rightarrow \neg q \land r \lor s \text{ es lo mismo que } (p \Rightarrow ((\neg q \land r) \lor s))$$

• La precedencia de operadores lógicos que tomaremos es

$$\neg$$
precede a ^/v precede a \Rightarrow precede a \equiv

- Las operaciones son asociativas a izquierda.
- Ejemplo

$$p \Rightarrow \neg q \land r \lor s$$
 es lo mismo que $(p \Rightarrow ((\neg q \land r) \lor s))$

 Dado que esto es una convención, no lo incluiremos dentro de la sintaxis de nuestro lenguaje.