CS & IT

ENGINERING

DISCRETE MATHS
Set theory

Lecture No. 03

TOPICS

Onto (Right side must be full)

Range O - O Codomain.

Function: 1

1:1 /
Onto X

Range s rodomain

$$0 \rightarrow 0$$

0

1:11

onto x

Range = codomain

1:1 X
ontov

(Range = codomain

$$f: z \rightarrow z$$

$$f(n) = x + 1.$$

$$x = 0$$

$$1 \rightarrow 2.$$

$$2 \rightarrow 3$$

$$3 \rightarrow 4.$$

$$3 \rightarrow 4.$$

$$3 \rightarrow 4.$$

$$f(n) = n+1$$

$$y = n+1$$

$$y$$

$$f(x) = x^2$$
 $f(x) = x^2$
 $f(x) = x^2$
 $f(x) = x^2$

$$y = 2$$
.
 $f(x) = x^2$.
 $\sqrt{2} = x^2$.
 $\sqrt{3} = x^2$.
 $\sqrt{3} = x^2$.

not onto.

$$f(x) = x + 7$$

$$f(x) = -x + 5$$

e)
$$f(x) = x^2 + x$$

b)
$$f(x) = 2x - 3$$

$$\mathbf{d}) \ f(x) = x^2$$

$$f(x) = x^3$$

$$y = 2$$
, $f(x) = 2x - 3$.
 $y = 2x - 3$
 $y = 2x - 3$

$$f: Z \rightarrow Z$$

$$f(n) = 2x - 3$$

$$f(x) = x + 4$$

$$f(x) = y = x + 4$$

$$f(x) = y = x + 4$$

$$y - 7 = x$$

$$y - 7 = x$$

$$y - 7 = x$$

$$f: A \rightarrow B$$

$$|A| = 3 \quad |B| = 5$$

$$|A| < |B|$$

$$|A| < |A|$$

$$|A| < |A|$$

$$|A| < |A|$$

$$f: A \to B$$
 $|A| \ge |B|$
 $|A| = 5 |B| = 3$

|A|=3 |B|=2 Total onto Functions= Total - Total non onto

non onto (R.S is not full)

000)

= 6 function (onto)

f:A→B |A|=4 |B|=3.

Total onto = Total - Total non onto

Skip1.

f:A3B |A|=4 |B|=3 Total Onto = Total Functions - Total non boto.

= 34 - (3c124 + 3c2) 14

Skipping 1 element Skipping 2 elements

 $f: A \to B$ |A| = 4 = m |B| = 3 = n

 $\sum_{i=0}^{n} (-1)^{i} \cdot n_{C}(n-i)^{m}$

Total Onto = Total Functions - Total non boto.

= 34 - 3c124 + 3c2 14

 $= 3^{4} - 3_{c_{1}} 2^{4} + 3_{c_{2}} 1^{4}$ $= 3_{c_{0}} (3-0)^{4} - 3_{c_{1}} (3-1)^{4} + 3_{c_{2}} (3-2)^{4}$ $= n_{c_{0}} (n-0)^{m} - n_{c_{1}} (n-1)^{m} + n_{c_{2}} (n-2)^{m} - n_{c_{3}} (n-3)^{m}$

+ ANBNC.

$$3^{4} - 3c_{1} \cdot 2^{4} + 3c_{2} \cdot 2^{4}$$

$$(3-1)^{4} + 3c_{2} \cdot (3-2)^{4}$$

$$(3-2)^{4} - 3c_{1} \cdot (3-1)^{4} + 3c_{2} \cdot (3-2)^{4}$$

$$(3-2)^{4} - 3c_{1} \cdot (3-1)^{4} + 3c_{2} \cdot (3-2)^{4}$$

$$\frac{\Delta}{\sum_{i=0}^{n} (-1)} \cdot (n \cdot i)^{m}$$

How many ways we can arrange 7 diff quest to (Ans: 8400)

4 different rooms, such that none of the rooms must be

empty?

f: A -> B |A|=1 |B|=4 $n_{co}(n-0)^{m}-n_{c_{1}}(n-1)^{m}+n_{c_{2}}(n-2)^{m}-m$ = 4co(4-0)^7-4c1(4-1)^7+4c2(4-2)^7-4c3(4-3)^7 +4(4-4)7

$$f: A \to B$$

 $|A| = 3 |8| = 2$

a
$$R$$
 $(ab)(c)$

R $(ab)(c)$

R $(ab)(c)$

R $(ab)(c)$

$$a$$
 $R_1(ac)_2 b_1 b$
 R_2
 C
 R_2
 C
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

3 diff quest
$$\rightarrow$$
 2 diffrooms onto = 6.
3 diff quest \rightarrow 2 identical $\frac{6}{2} = \frac{\text{onto}}{21}$

$$(ac)_{1}(b)_{2}$$
 $(ac)_{2}(b)$

3 quest.

didentical

3 diff quest-didentica!

onto

m diff quest -> n diffroom (none of the rooms should be empty)

> onto > \frac{1}{2}(-1)^i \cdot \cdot \cdot \cdot (n-i)^m.

m diff quest -> n identical rooms.

Sterling second kind no.
$$S(m,n) = \frac{\text{onto}}{n!} = \frac{1}{n!} \sum_{i=0}^{n} (-i)^{i} n (-i)^{n}$$

difficulties

