Relacion 2

Curso 2024-2025

${\bf \acute{I}ndice}$

1	EJE	ERCICIO 1	2
	1.1	Apartado a)	2
	1.2	Apartado b)	3
	1.3	Apartado c)	3
	1.4	Apartado d)	4
	1.5	Apartado e)	5
2	EJE	ERCICIO 2	6
	2.1	Apartado a)	6
	2.2	Apartado b)	7
3	EJE	ERCICIO 3	8
	3.1	Apartado a)	8
	3.2	Apartado b)	9
4	EJE	ERCICIO 4	9
	4.1	Funciones de clase	9
	4.2	Diagrama Jerarquias	10
	4.3	Método ahp	11
5	EJE	ERCICIO 5	13
	5.1	Funciones de clase	13
	5.2	Diagrama Jerarquias	14
	5.3	Método ahp	15
##	Load	ding required package: shape	

1 EJERCICIO 1

1.1 Apartado a)

	a1	a2	a3
a1	1	0	1
a2	1	1	1
a3	0	0	1

• Método de construcción de la función de utilidad "Maximal"

```
(sol01a <- multicriterio.constfuncutilidad.maximales(tab01a)) # suma por filas
```

```
## a1 a2 a3
## 2 3 1
```

Cuánto más alto mejor, por lo tanto nos está diciendo que la mejor alternativa sería a2. La siguiente es la a1 y la peor es a 3. Ahora ordenamos de mejor a peor:

```
sort(sol01a, decreasing = T)
## a2 a1 a3
## 3 2 1
```

• Método de construcción de la función de utilidad "Borroso"

```
(sol01aBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab01a)) #calculo del flujo neto
```

```
## a1 a2 a3
## 0 2 -2
```

```
sort(sol01aBor, decreasing = T)
```

```
## a2 a1 a3
## 2 0 -2
```

La mejor es la alternativa 2

1.2 Apartado b)

	a1	a2	a3
a1	1	0	1
a2	1	1	1
a3	1	0	1

• Método de construcción de la función de utilidad "Maximal".

```
(sol01b <- multicriterio.constfuncutilidad.maximales(tab01b)) # suma por filas

## a1 a2 a3
## 2 3 2

sort(sol01b, decreasing = T)

## a2 a1 a3
## 3 2 2</pre>
```

La mejor es la alternativa 2

• Método de construcción de la función de utilidad "Borroso"

```
(sol01bBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab01b)) #calculo del flujo neto
## a1 a2 a3
## -1 2 -1
sort(sol01bBor, decreasing = T)
## a2 a1 a3</pre>
```

La mejor es la alternativa 2

1.3 Apartado c)

2 -1 -1

```
tab01c <- multicriterio.crea.matrizvaloraciones(rep(1,9), numalternativas = 3)</pre>
```

	a1	a2	a3
a1	1	1	1
a2	1	1	1
a3	1	1	1

• Método de construcción de la función de utilidad "Maximal".

```
(sol01c <- multicriterio.constfuncutilidad.maximales(tab01c)) # suma por filas

## a1 a2 a3
## 3 3 3

sort(sol01c, decreasing = T)

## a1 a2 a3
## 3 3 3</pre>
```

Cualquiera de los 3 es la mejor alternativa

• Método de construcción de la función de utilidad "Borroso"

```
(sol01cBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab01c)) #calculo del flujo neto
## a1 a2 a3
## 0 0 0
sort(sol01cBor, decreasing = T)</pre>
```

a1 a2 a3 ## 0 0 0

Cualquiera de los 3 es la mejor alternativa

1.4 Apartado d)

	a1	a2	a3	a4	a5
a1	1	1	1	0	1
a2	0	1	0	0	1
a3	1	0	1	0	1
a4	1	1	1	1	0
a5	0	0	0	0	1

• Método de construcción de la función de utilidad "Maximal".

```
(sol01d <- multicriterio.constfuncutilidad.maximales(tab01d)) # suma por filas

## a1 a2 a3 a4 a5
## 4 2 4 5 1

sort(sol01d, decreasing = T)

## a4 a1 a3 a2 a5
## 5 4 4 2 1</pre>
La mejor es la alternativa 4
```

• Método de construcción de la función de utilidad "Borroso"

```
(sol01dBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab01d)) #calculo del flujo neto
```

```
## a1 a2 a3 a4 a5
## 1 -1 0 3 -3
```

```
sort(sol01dBor, decreasing = T)
```

```
## a4 a1 a3 a2 a5
## 3 1 0 -1 -3
```

La mejor es la alternativa 4

1.5 Apartado e)

	a1	a2	a3	a4	a5
a1	1	1	1	0	1
a2	0	1	0	0	1
a3	1	1	1	0	1
a4	1	1	1	1	0
a_5	0	0	0	0	1

• Método de construcción de la función de utilidad "Maximal".

```
(sol01e <- multicriterio.constfuncutilidad.maximales(tab01e)) # suma por filas

## a1 a2 a3 a4 a5
## 4 2 4 5 1

sort(sol01e, decreasing = T)

## a4 a1 a3 a2 a5
## 5 4 4 2 1</pre>
```

• Método de construcción de la función de utilidad "Borroso"

```
(sol01eBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab01e)) #calculo del flujo neto
## a1 a2 a3 a4 a5
## 1 -2 1 3 -3</pre>
```

```
sort(sol01eBor, decreasing = T)
```

```
## a4 a1 a3 a2 a5
## 3 1 1 -2 -3
```

La mejor es la alternativa 4

La mejor es la alternativa 4

2 EJERCICIO 2

2.1 Apartado a)

	a1	a2	a3
a1	0.0	0.4	0.7
a2	0.2	0.0	0.5
a3	0.3	0.6	0.0

• Método de construcción de la función de utilidad "Maximal".

```
(sol02a <- multicriterio.constfuncutilidad.maximales(tab02a)) # suma por filas

## a1 a2 a3
## 3 1 2

sort(sol02a, decreasing = T)

## a1 a3 a2
## 3 2 1</pre>
```

La mejor es la alternativa 1

• Método de construcción de la función de utilidad "Borroso"

```
(sol02aBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab02a)) #calculo del flujo neto
## a1 a2 a3
## 0.6 -0.3 -0.3
sort(sol02aBor, decreasing = T)</pre>
```

```
## a1 a2 a3
## 0.6 -0.3 -0.3
```

La mejor es la alternativa 1

2.2 Apartado b)

	a1	a2	a3
a1	0.0	0.2	0.4
a2	0.9	0.0	0.8
a3	0.1	0.3	0.0

• Método de construcción de la función de utilidad "Maximal".

```
(sol02b <- multicriterio.constfuncutilidad.maximales(tab02b)) # suma por filas
## a1 a2 a3
## 2 3 1</pre>
```

```
sort(sol02b, decreasing = T)
## a2 a1 a3
## 3 2 1
```

La mejor es la alternativa 2

• Método de construcción de la función de utilidad "Borroso"

```
(sol02bBor <- multicriterio.constfuncutilidad.estructuraborrosa(tab02b)) #calculo del flujo neto

## a1 a2 a3
## -0.4 1.2 -0.8

sort(sol02bBor, decreasing = T)

## a2 a1 a3
## 1.2 -0.4 -0.8</pre>
```

La mejor es la alternativa 2

3 EJERCICIO 3

	C1	C2	С3	C4	C5
a1	100	15	7	40	50
a2	200	25	7	60	200
a3	100	20	4	25	25
a4	200	30	20	70	350
a5	250	25	25	100	500

3.1 Apartado a)

Vamos a homogeneizar las columnas de la tabla de decisión por el método Nadir

```
sol03a <- round(multicriterio.homogeneizacion.nadir(tab03), 4)</pre>
```

	C1	C2	С3	C4	C5
a1	0.0000	0.0000	0.1429	0.2000	0.0526
a2	0.6667	0.6667	0.1429	0.4667	0.3684
a3	0.0000	0.3333	0.0000	0.0000	0.0000
a4	0.6667	1.0000	0.7619	0.6000	0.6842
a5	1.0000	0.6667	1.0000	1.0000	1.0000

3.2 Apartado b)

Vamos a homogeneizar las columnas de la tabla de decisión por el método Ptomethee

	C1	C2	С3	C4	C5
a1	-2.5556	-2.7778	-2.0000	-1.250	-1.8333
a2	1.3333	0.7778	-2.0000	-0.125	-0.4167
a3	-2.5556	-1.0000	-2.0000	-2.000	-2.0000
a4	1.3333	2.2222	2.8333	0.625	1.4167
a5	2.4444	0.7778	3.1667	2.750	2.8333

4 EJERCICIO 4

4.1 Funciones de clase

Introducción datos

Cálculo pesos locales

Método mayor autovalor

```
pes1 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab1)
pes2 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab2)
pes3 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab3)</pre>
```

Cálculo pesos globales

	Rendimiento	Riesgo	Ponderadores Globales
A	0.7500000	0.3333333	0.6111111
В	0.2500000	0.6666667	0.3888889
Ponder.Criterios	0.6666667	0.3333333	NA

La mejor decisión es la alternativa A (peso global del 61,11%)

```
which.max(tab04[,1])
```

```
## A
## 1
```

Para el rendimiento la mejor alternativa es la A

```
which.max(tab04[,2])
```

```
## B
## 2
```

Para el riesgo la mejor alternativa es la B

Además del método de mayor autovalor, tambien tenemos:

Método de media geométrica

```
pes1 <- multicriterio.metodoAHP.variante2.mediageometrica(tab1)
pes2 <- multicriterio.metodoAHP.variante2.mediageometrica(tab2)
pes3 <- multicriterio.metodoAHP.variante2.mediageometrica(tab3)</pre>
```

Método básico

```
pes1 <- multicriterio.metodoAHP.variante3.basico(tab1)
pes2 <- multicriterio.metodoAHP.variante3.basico(tab2)
pes3 <- multicriterio.metodoAHP.variante3.basico(tab3)</pre>
```

4.2 Diagrama Jerarquias

```
num.alt <- 2
num.crt <- 2
Xmatriznivel2_04 <- array(NA, dim = c(num.alt, num.alt, num.crt))
Xmatriznivel2_04[,,1] <- tab2
Xmatriznivel2_04[,,2] <- tab3
dimnames(Xmatriznivel2_04)[[1]] <- c("A","B")
multicriterio.metodoahp.diagrama(tab1, Xmatriznivel2_04)</pre>
```

Estructura Jerárquica (AHP)

4.3 Método ahp

```
library(ahp)
datos04 = Load("problema4.ahp")
Calculate(datos04)
```

Visualize(datos04)

Tabla solución (contribución total)

export_formattable(AnalyzeTable(datos04), file = "tablaahp104.png")

	Weight	AltA	AltB	Inconsistency
Elegir mejor alternativa	100.0%	61.1%	38.9%	0.0%
Rendimiento	66.7%	50.0%	16.7%	0.0%
Riesgo	33.3%	11.1%	22.2%	0.0%

La mejor decisión es la alternativa A (peso global del 61,11%)

Tabla solución (pesos locales)

```
t2 = AnalyzeTable(datos04, variable = "priority")
export_formattable(t2, file = "tablaahp204.png")
```

	Priority	AltA	AltB	Inconsistency
Elegir mejor alternativa	100.0%			0.0%
Rendimiento	66.7%	75.0%	25.0%	0.0%
Riesgo	33.3%	33.3%	66.7%	0.0%

5 EJERCICIO 5

5.1 Funciones de clase

Introducción datos

Cálculo pesos locales

Método mayor autovalor

```
pes1 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab1)
pes2 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab2)
pes3 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab3)
pes4 <- multicriterio.metodoAHP.variante1.autovectormayorautovalor(tab4)</pre>
```

Cálculo pesos globales

	Liderazgo	Habilidad personal	Habilidad Gestión	Ponderadores Globales
A	0.800000	0.7500000	0.6666667	0.7263353
В	0.200000	0.2500000	0.3333333	0.2736647
Ponder.Criterios	0.124306	0.5171336	0.3585604	NA

La mejor decisión es la alternativa A (peso global del 72,63%)

```
which.max(tab05[,1])
```

A

1

Para el liderazgo la mejor alternativa es la A

```
which.max(tab05[,2])
```

A

1

Para la habilidad personal la mejor alternativa es la A

```
which.max(tab05[,3])
```

A

1

Para la habilidad gestión la mejor alternativa es la A

Además del método de mayor autovalor, tambien tenemos:

Método de media geométrica

```
pes1 <- multicriterio.metodoAHP.variante2.mediageometrica(tab1)
pes2 <- multicriterio.metodoAHP.variante2.mediageometrica(tab2)
pes3 <- multicriterio.metodoAHP.variante2.mediageometrica(tab3)
pes4 <- multicriterio.metodoAHP.variante2.mediageometrica(tab4)</pre>
```

Método básico

```
pes1 <- multicriterio.metodoAHP.variante3.basico(tab1)
pes2 <- multicriterio.metodoAHP.variante3.basico(tab2)
pes3 <- multicriterio.metodoAHP.variante3.basico(tab3)
pes4 <- multicriterio.metodoAHP.variante3.basico(tab4)</pre>
```

5.2 Diagrama Jerarquias

```
num.alt <- 2
num.crt <- 3
Xmatriznivel2_05 <- array(NA, dim = c(num.alt, num.alt, num.crt))
Xmatriznivel2_05[,,1] <- tab2
Xmatriznivel2_05[,,2] <- tab3
Xmatriznivel2_05[,,3] <- tab4
dimnames(Xmatriznivel2_05)[[1]] <- c("A","B")
dimnames(Xmatriznivel2_05)[[2]] <- c("A","B")
dimnames(Xmatriznivel2_05)[[3]] <- c("Liderazgo","Habilidad personal", "Habilidad gestión")
multicriterio.metodoahp.diagrama(tab1, Xmatriznivel2_05)</pre>
```

Estructura Jerárquica (AHP)

5.3 Método ahp

```
library(ahp)
datos05 = Load("problema5.ahp")
Calculate(datos05)
Visualize(datos05)
```


Tabla solución (contribución total)

export_formattable(AnalyzeTable(datos05), file = "tablaahp105.png")

	Weight	AltA	AltB	Inconsistency
Elegir mejor alternativa	100.0%	72.6%	27.4%	9 10.3%
Habilidad personal	51.7%	38.8%	12.9%	0.0%
Habilidad gestión	35.9%	23.9%	12.0%	0.0%
Liderazgo	12.4%	9.9%	2.5%	0.0%

La mejor decisión es la alternativa A (peso global del $72,\!63\%)$

Tabla solución (pesos locales)

```
t2 = AnalyzeTable(datos05, variable = "priority")
export_formattable(t2, file = "tablaahp205.png")
```

	Priority	AltA	AltB	Inconsistency
Elegir mejor alternativa	100.0%			9 10.3%
Habilidad personal	51.7%	75.0%	25.0%	0.0%
Habilidad gestión	35.9%	66.7%	33.3%	0.0%
Liderazgo	12.4%	80.0%	20.0%	0.0%